HYDRODYNAMICAL NEUTRON STAR KICKS IN THREE DIMENSIONS

Annop Wongwathanarat, Hans-Thomas Janka, and Ewald Müller
Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching, Germany; annop@mpa-garching.mpg.de

Received 2010 October 1; accepted 2010 November 8; published 2010 November 23

ABSTRACT

Using three-dimensional (3D) simulations of neutrino-powered supernova explosions, we show that the hydrodynamical kick scenario proposed by Scheck et al. on the basis of two-dimensional (2D) models can yield large neutron star (NS) recoil velocities also in 3D. Although the shock stays relatively spherical, standing accretion-shock and convective instabilities lead to a globally asymmetric mass and energy distribution in the post-shock layer. An anisotropic momentum distribution of the ejecta is built up only after the explosion sets in. Total momentum conservation implies the acceleration of the NS on a timescale of 1–3 s, mediated mainly by long-lasting, asymmetric accretion downdrafts and the anisotropic gravitational pull of large inhomogeneities in the ejecta. In a limited set of 15 M_{\odot} models with an explosion energy of about 10^{51} erg, this stochastic mechanism is found to produce kicks from <100 km s$^{-1}$ to ≥ 500 km s$^{-1}$, and kicks ≥ 1000 km s$^{-1}$ seem possible. Strong rotational flows around the accreting NS do not develop in our collapsing, non-rotating progenitors. The NS spins therefore remain low with estimated periods of ~ 500–1000 ms and no alignment with the kicks.

Key words: pulsars: general – stars: kinematics and dynamics – stars: neutron – supernovae: general

1. INTRODUCTION

Young neutron stars (NSs) possess average space velocities around 400 km s$^{-1}$, much larger than those of their progenitor stars, implying that they are accelerated during birth in a supernova (SN) explosion (e.g., Faucher-Giguère & Kaspi 2006; Hobbs et al. 2005; Arzoumanian et al. 2002). Moreover, alignment of the NS spin and kick was inferred for the Crab and Vela pulsars (Kaplan et al. 2008; Ng & Romani 2007) and several other young pulsars (see Wang et al. 2006, and references therein) from comparisons of the direction of proper motion with the projected rotation axis as determined from the symmetry axis of the pulsar wind nebula on X-ray images. The same conclusion was drawn for samples of radio pulsars from the linear polarization of the pulses, whose position angle reflects the spin direction (Johnston et al. 2005; Rankin 2007). However, the Crab and Vela pulsars may not be good cases for determining misalignments because they are moving at smaller speeds than the average pulsar population and therefore the unknown velocity of the progenitor implies a bigger uncertainty. On the other hand, also the radio data do not seem to make a clear case for a general alignment of spin and kick directions in the reference frame of the progenitor’s motion (Johnston et al. 2007).

Analyzing the observational information, as well as characteristics of NS binaries, Lai et al. (2001) concluded that the NSs received their kicks most probably at the time of the SN explosion. A large variety of mechanisms for natal kicks has been proposed, either by hydrodynamical effects linked to large-scale asymmetries of the SN explosion (e.g., Herant 1995; Burrows & Hayes 1996; Janka & Müller 1994; Thompson 2000; Scheck et al. 2004, 2006) or by anisotropic neutrino emission from the nascent NS (e.g., Chugai 1984; Burrows & Woosley 1986; Scheck et al. 2005). However, it is very difficult to produce even only a 1% global dipole asymmetry of the neutrino emission, which is needed for a kick of 300 km s$^{-1}$. For this to be possible one has to invoke controversial assumptions like very strong global dipolar magnetic fields inside the NS ($\gtrsim 10^{16}$ G; e.g., Arras & Lai 1999), arguable neutrino properties (e.g., sterile neutrinos, large neutrino magnetic moments; e.g., Fuller et al. 2003), or unsettled mechanisms to create strong emission asymmetries in the neutrinospheric region (e.g., Socrates et al. 2005).

On the basis of two-dimensional (2D) SN models, Scheck et al. (2004, 2006) argued that the standing accretion-shock instability (SASI; Blondin et al. 2003; Foglizzo & Tagger 2000; Foglizzo 2002), which grows after shock stagnation and causes large, global, non-radial asymmetry of the accretion flow to the NS and of the beginning SN explosion, can lead to kicks of typically several hundred km s$^{-1}$ and even more than 1000 km s$^{-1}$ if the dipole ($\ell = 1$) component of the asymmetry is sufficiently strong. Blondin & Mezzacappa (2007) showed in idealized, stationary-accretion setups that SASI spiral modes may also have the potential to generate pulsar spin periods consistent with observations. In this Letter, we present the first simulations of SN explosions from core bounce to ~ 1.5 s later that confirm the potential of SASI-induced asymmetries to produce typical NS kicks in the more realistic three-dimensional (3D) environment of collapsing stellar cores.

2. NUMERICAL SETUP

We use the explicit finite-volume, Eulerian, multi-fluid hydrodynamics code PROMETHEUS (Fryxell et al. 1991; Müller et al. 1991a, 1991b). The advection of nuclear species is treated by the Consistent Multi-fluid Advection scheme of Plewa & Müller (1999) and self-gravity according to Müller & Steinmetz (1995). General relativistic corrections of the monopole are taken into account as in Scheck et al. (2006) and Arcones et al. (2007).

All simulations are computed on an axis-free overlapping “Yin-Yang” grid (Kageyama & Sato 2004) in spherical polar coordinates, which was recently implemented into our code (Wongwathanarat et al. 2010). We use $400(r) \times 47(\theta) \times 137(\phi) \times 2$ grid cells corresponding to an angular resolution of 2° and covering the full 4π solid angle. Better resolution in the inner region of our computational domain is achieved by a constant radial zone size of about 0.030 km up to $r \approx 100$ km. The radial grid is logarithmically spaced beyond this radius up to an outer grid boundary of $R_{\text{sh}} = 18,000$ km, which is sufficient to
energies than L15-1. Table 1 lists the corresponding explosion luminosities imposed at the lower boundary.

Neutrino heating depending on suitable values of the neutrino luminosity is assumed at Rsh together with the radial grid. Hydrostatic equilibrium is assumed at Rsh. The stellar fluid is described by the tabulated microphysical equation of state (EoS) of Janka & Müller (1996). Neutrino transport and neutrino-matter interactions are approximated as in Scheck et al. (2006) by radial integration of the one-dimensional (spherical), gray transport equation for all angular grid directions (θ, φ) independently. This “ray-by-ray” approach allows for angular variations of the neutrino fluxes.

3. INVESTIGATED MODELS

Our models W15 and L15 are based on two non-rotating 15 M⊙ progenitors, s15s7b2 of Woosley & Weaver (1995) and a star evolved by Limongi et al. (2000), which were followed through collapse to 15 ms after bounce with the PROMETHEUS-VERTEX code in one dimension (R. Buras & A. Marek 2006, private communication). To break spherical symmetry, random seed perturbations of 0.1% are imposed on the radial velocity field. Explosions with chosen energy are initiated by neutrino heating depending on suitable values of the neutrino luminosities imposed at the lower boundary.

Our models W15-1 and W15-2 differ only by the initial seed perturbations, while L15-2 is set to have a higher explosion energy than L15-1. Table 1 lists the corresponding explosion energies Eexp at ~1.4 s post-bounce (p.b.) and explosion times texp, defined as the instant when Eexp (i.e., the total energy of all zones where the internal plus kinetic plus gravitational energy is >0) is 1048 erg. Figure 1 shows that this moment coincides roughly with the time when the average SN shock radius, Rsh, exceeds 500 km. The W15 models explode earlier and their NS (baryonic) mass, Mns (defined as enclosed mass at a radius Rns, where the density is 1011 g cm−3), is therefore smaller.

4. NEUTRON STAR KICKS AND SPINS

Neutrino heating around the NS triggers delayed explosions, which are preceded (and supported) by a post-bounce phase of several 100 ms of violent SASI and convective activity. This leads to large-scale asymmetries of the ejecta, potentially imposing a kick and spin to the NS, for which we evaluate our simulations in a post-processing step. The time evolution of the NS kick velocity vns, NS angular momentum Jns, lateral and longitudinal angles of the kick direction (θkic and φkic, respectively), and the angle αsk between spin and kick directions are plotted in Figure 2. The final numbers are given in Table 1 (Jns values there are normalized by 1046), supplemented by the NS acceleration αns at the end of the runs and our estimated NS spin periods Tspin.

Table 1

Model	Mns (M⊙)	texp (ms)	Eexp (B)	vns (km s−1)	αns (km s−2)	Jns,ib (g cm2 s−1)	αsk (°)	Tspin (ms)
W15-1	1.37	246	1.12	331	175	1.51	117	652
W15-2	1.37	248	1.13	405	144	1.56	58	632
L15-1	1.58	421	1.13	161	66	1.89	148	604
L15-2	1.51	381	1.74	78	3	1.04	62	1041

Since the NS is excited and replaced by a point mass at the grid center, it cannot travel. Nevertheless, like a wall reflecting a bouncing ball, it can absorb momentum (but will not move as if it had an infinite inertial mass). Because of total linear momentum conservation in the rest frame of the progenitor, we can (following Scheck et al. 2006) compute vns from the negative of the total momentum Pgas of the gas outside of the NS as

\[
v_{\text{ns}}(t) = -\frac{P_{\text{gas}}(t)}{M_{\text{ns}}(t)},
\]

where Pgas = \int_{R_{\text{ns}}} dV \rho v. Tests confirmed very good linear momentum conservation of our code, while angular momentum is more difficult to conserve, e.g., when a rotating gas mass is in rapid motion across large distances on the grid. We therefore estimate Jns again as the negative of the angular momentum of the exterior gas, but by integrating only over the volume between Rns and r0 = 500 km and adding to this the angular momentum that is carried by the gas flux leaving this sphere:

\[
J_{\text{ns}}(t) = -\left(\int_{R_{\text{ns}}} dV \rho j(t) + A_{\phi} \int_{0}^{t} dt' \rho j(t') |_{r_0}\right),
\]

where j is the specific angular momentum and A_{\phi} = 4\pi r_0^2. This assumes that the asymmetric gas mass outside of r_0 does...
Figure 2. Time evolution of NS velocity v_{ns} (top left), angular momentum J_{ns} (bottom left), latitudinal (top right), and azimuthal (middle right) angles of the NS kick vector, θ_{kick} and ϕ_{kick}, respectively, and the angle α_{sk} between the NS spin and kick directions (bottom right).

Figure 3. Entropy isosurfaces of the SN shock and the high-entropy bubbles (left), ray-casting image of the density (middle), and entropy distribution in a cross-sectional plane through the center (right) at $t = 1.3$ s after bounce for model W15-2. The outer boundaries coincide with the shock surface, the viewing direction is normal to the plane of the NS kick and spin vectors, which also define the plane for the entropy slice. The kick and spin directions are indicated by the white and black arrows, respectively, in the middle figure. The NS location is also marked by a black cross in the middle image and is clearly displaced from the geometrical center of the expanding shock. The SN shock has an average radius of 13,000 km (a length of 5000 km is given by a yardstick below the middle image) but shows a pronounced dipolar deformation, which is clearly visible from the color asymmetry of the post-shock gas between the lower right (weaker shock with minimum radius of 11,000 km) and upper left (stronger shock with maximum radius of 15,000 km) directions. The middle plot corresponds roughly to the projection of the density distribution on the observational plane. Dilute bubble regions are light colored in white and yellow, while dense clumps appear more intense in reddish and bluish hues. The blue circle around the NS represents the dense inner region of the spherically symmetric neutrino-driven wind. This wind is visible in green in the right image and is bounded by the aspherical wind termination shock. The wind is shocked to higher entropies on the left side, where it passes the termination shock at larger radii because of the faster expansion of the preceding SN ejecta.

not exert any important torque on the gas mass below r_o. Accordingly, we see $J_{ns}(t)$ asymptoting (see Figure 2) when accretion on the NS ends (around 0.6–0.8 s after bounce). At this time the asymmetric downdrafts of cool gas filling the volumes between rising bubbles of high-entropy, neutrino-heated matter (Figure 3, left and right panels) do not reach down below 500 km, but are replaced by the spherically symmetric neutrino-driven wind around the NS (green region in the right panel of Figure 3). Assuming $J_{ns} = |J_{ns}| = \text{const}$ after the end of our simulations (at $t \approx 1.4$ s p.b.), we obtain a rough estimate of the final NS spin period from $T_{spin} = 2\pi I_{ns}/J_{ns}$ by considering a rigidly rotating, homogeneous sphere of mass M_{ns}, i.e., $I_{ns} = \frac{2}{5} M_{ns} R_{ns}^2$, with a final radius of $R_{ns} = 12$ km.

We find NS kick velocities between 80 km s$^{-1}$ (L15-2) and 405 km s$^{-1}$ (W15-2). In the latter case the acceleration at 1.3 s p.b. is still about 150 km s$^{-2}$ (W15-2). In the latter case the acceleration at 1.3 s p.b. is still about 150 km s$^{-2}$ (W15-2). Assuming that half of this value applies for another second leads to a final kick of nearly 500 km s$^{-1}$. Comparing Figures 1 and 2 one sees that the kick remains very small ($\lesssim 10$ km s$^{-1}$) and the kick direction fluctuates chaotically in all cases before the explosion takes off. Only after the radial expansion of the ejecta sets in and the asymmetry pattern of energy and density distribution
gets frozen in, the NS acceleration takes place and continues for 1–3 s (Scheck et al. 2006). Accordingly, the kick finds its final direction only shortly afterward (at 0.4–0.5 s in W15-1 and W15-2 and 0.6–0.8 s in L15-1 and L15-2).

Decomposing the radial integral \(D(\theta, \phi) = \int_{r_a}^{r_b} dr \rho(r)\) in spherical harmonics with the polar axis chosen aligned with the kick vector, we find that the \(l = 1\) mode clearly dominates after 0.3–0.4 s p.b. in W15-1 and W15-2, the models with the largest kick, while this effect is absent in the low-kick models L15-1 and L15-2. In Figure 3, middle panel, the dipolar asymmetry of the explosion is clearly visible. The NS recoil (white arrow) is opposite to the direction of the fastest shock expansion (toward the upper left) driven by big high-entropy bubbles. The lower density there is contrasted by much higher density and slower gas expansion in the opposite direction. Accordingly, the geometrical center of the shock and ejecta shell is displaced from the grid center (and NS location) by several 1000 km (see middle and right panels of Figure 3).

Besides kicks, the PNSs attain angular momentum \((11–2) \times 10^{46} \text{ g cm}^2 \text{ s}^{-1}\) without any obvious correlation in magnitude and direction to the recoil. We estimate final NS spin periods between 600 ms and 1000 ms (Table 1). Evaluating \(D(\theta, \phi)\) for spherical harmonics with the axis parallel to the spin vector, an \(l = 1, m = 1\) mode appears as the dominant non-axisymmetric mode in the W15 models after 0.4 s p.b., reflecting the mass imbalance on both sides of the spin vector as directly visible for W15-2 in the middle panel of Figure 3.

5. PHYSICAL ORIGIN OF THE NS KICKS AND SPINS

The described hydrodynamic NS acceleration proceeds in three stages. (1) Initially convective mass flows and SASI sloshing motion of the post-shock layer create an anisotropy of the mass–energy distribution around the PNS. Convective downdrafts, channeling gas accreted through the stalled shock into the neutrino-heating region, get deflected to feed an asymmetric pattern of high-entropy bubbles. The energy-loaded bubbles are created, collapse again, and reappear in a quasi-chaotic way to become smaller or larger, absorbing less or more neutrino energy. This stochastic bubble formation, however, does not cause an appreciable recoil of the NS (Figure 2). (2) When the explosion sets in, the shock and post-shock gas begin to expand aspherically, driven by the asymmetric inflation of the bubbles. The ejecta gas therefore gains radial momentum and its center of mass begins to shift away from the coordinate origin (Figure 3): the ejecta shell acquires a net linear momentum because of different strengths of the explosion in different directions. The initial energy and mass asymmetry is thus converted to a momentum asymmetry by the conversion of thermal to kinetic energy through hydrodynamical forces. When the expansion timescale becomes shorter than the timescale of lateral mixing, the asymmetric ejecta structures freeze in. (3) Because of linear momentum conservation, the NS must receive the negative of the total momentum of the anisotropic shell of ejecta (Scheck et al. 2006). A hemispheric asymmetry of the mass distribution of \(\Delta m = \pm 10^{-3} M_\odot\) in a shell expanding away from the NS from a radius \(r_i = 100\) km with \(v_i = 1000\) km s\(^{-1}\) can drag it to a velocity of \(v_{ns} \approx 2G\Delta m/(r_i v_i) \approx 2700\) km s\(^{-1}\). Ejecta asymmetries can thus effectively mediate a long-lasting pull on the NS.

We do not expect any significant contribution to the NS kick by anisotropic neutrino emission, because most of the neutrino energy is radiated from the spherical neutrinospheric layer (Scheck et al. 2006). Moreover, including the NS motion is unlikely to change our results, at least statistically for a larger sample of models. This was concluded by Scheck et al. (2006) from tests in which the gas surrounding the NS in the grid center was allowed to move with \((-v_{ns})\) by applying a Galilei transformation. The displacement of the NS is small compared with the asymmetry scale of the ejecta that cause a gravitational acceleration of the NS over seconds. Scheck et al. (2006) also observed little influence of the NS motion on the neutrino emission asymmetry and its associated (very small) NS recoil, in contrast to findings by Fryer (2004).

Our 3D simulations were followed much longer beyond the onset of the explosion than previous 3D studies by Fryer (2004) and Fryer & Young (2007). This is essential because the hydrodynamical NS kicks are no impulsive pre-explosion effect (as, e.g., assumed by Janka & Müller 1994) but a long-time post-explosion phenomenon. The global asymmetry of the mass–energy distribution in the post-shock gas created before the explosion mainly by SASI activity (as analyzed in detail by Scheck et al. 2008 for the considered SN core conditions) is converted to a momentum asymmetry of the ejecta and the NS only gradually after the initiation of the blast. Since the acceleration continues for seconds, kicks of \(\gtrsim 500\) km s\(^{-1}\) are possible although an extreme dipolar shock deformation and persistent one-sided accretion as seen in some 2D models of Scheck et al. (2006) are absent in the presented 3D results.

The NS spin grows considerably faster than the kick but saturates also earlier (Figure 2). Angular momentum is transferred to the NS by off-center impacts of the anisotropic accretion downdrafts (Burrows et al. 1995; Spruit & Phinney 1998). When the accretion ends, the exterior gas separates from the compact remnant. Different from mediating an acceleration by their gravitational drag, the anisotropic ejecta then cannot exert any torque on a spherical, point-like compact remnant. Therefore, the NS spins remain fairly slow, because in spite of an \(l = 1, m = 1\) density asymmetry, we do not find the strong, ordered rotational gas flows near the accreting PNS as seen by Blondin & Mezzacappa (2007). Possibly the investigated SN core conditions are not favorable for the growth of rotating spiral modes (see, e.g., Fernández 2010) or their growth timescale is longer than the explosion timescales in our models.

6. CONCLUSIONS

Our 3D results support the NS recoil scenario proposed on the basis of 2D models by Scheck et al. (2004, 2006). The still small set of 3D simulations for two \(15 M_\odot\) stars yields kicks between \(\sim 50\) km s\(^{-1}\) and \(\sim 500\) km s\(^{-1}\) in the range of the measured space velocities of young pulsars. Since even for our most extreme model the explosion asymmetry of the SN is still fairly small, NS acceleration well beyond 500 km s\(^{-1}\) seems possible. But since the kick mechanism is a quasi-chaotic and stochastic phenomenon, rare cases with more than 1000 km s\(^{-1}\) as in 2D (Scheck et al. 2006) will require many more model
runs, varying the initial random seed perturbations as well as the stellar progenitor and explosion energy.

This will also be necessary for statistically significant conclusions on the relative orientations of NS spins and kicks. Considering non-rotating stars we find spin periods of \(\sim 500-1000 \) ms, but do not see reasons for a spin–kick alignment. For a closer assessment of this question, however, also the investigation of progenitors with rotation is necessary. Core rotation due to the angular momentum of the progenitor (or established by a first strong thrust) might impose a predefined direction and lead to rotational averaging of the following NS acceleration so that a preferentially aligned spin–kick distribution emerges instead of random distributions of the direction vectors (Wang et al. 2007, 2006; Ng & Romani 2007). Moreover, even a modest amount of angular momentum can lead to higher growth rates of corotating, non-axisymmetric SASI (spiral) modes with potentially important consequences for NS spins and kicks (Blondin & Mezzacappa 2007; Yamasaki & Foglizzo 2008).

The recoil scenario described here and by Scheck et al. (2004, 2006) predicts the NS escaping opposite to the direction of the maximum explosion strength. We thus suspect that the nickel production of the SN and the iron concentration in the SN remnant could be higher in the hemisphere pointing away from the NS motion.

DFG grants EXC153, SFB/TR27, and SFB/TR7, and computing time at the RZG in Garching are acknowledged.

REFERENCES

Arcones, A., Janka, H.-T., & Scheck, L. 2007, A&A, 467, 1227
Arras, P., & Lai, D. 1999, ApJ, 519, 745
Arzoumanian, Z., Chernoff, D. F., & Cordes, J. M. 2002, ApJ, 568, 289
Blondin, J. M., & Mezzacappa, A. 2007, Nature, 445, 58
Blondin, J. M., Mezzacappa, A., & DeMarino, C. 2003, ApJ, 584, 971
Burrows, A., & Hayes, J. 1996, Phys. Rev. Lett., 76, 352
Burrows, A., Hayes, J., & Fryxell, B. A. 1995, ApJ, 450, 830
Burrows, A., & Woosley, S. E. 1986, ApJ, 308, 680
Chugai, N. N. 1984, Sov. Astron. Lett., 10, 87
Faucher-Giguère, C., & Kaspi, V. M. 2006, ApJ, 643, 332
Fernández, R. 2010, ApJ, in press (arXiv:1003.1730)
Foglizzo, T. 2002, A&A, 392, 353
Foglizzo, T., & Tagger, M. 2000, A&A, 363, 174
Fryer, C. L. 2004, ApJ, 601, L175
Fryer, C. L., & Young, P. A. 2007, ApJ, 659, 1438
Fryxell, B., Müller, E., & Arnett, D. 1991, ApJ, 367, 619
Füller, G. M., Kusenko, A., Mosconi, I., & Pascoli, S. 2003, Phys. Rev. D, 68, 103002
Herant, M. 1995, Phys. Rep., 256, 117
Hobbs, G., Lorimer, D. R., Lyne, A. G., & Kramer, M. 2005, MNRAS, 360, 974
Janka, H.-T., & Müller, E. 1994, A&A, 290, 496
Janka, H.-T., & Müller, E. 1996, A&A, 306, 167
Johnston, S., Hobbs, G., Vigeland, S., Kramer, M., Weisberg, J. M., & Lyne, A. G. 2005, MNRAS, 364, 1397
Johnston, S., Kramer, M., Karastergiou, A., Hobbs, G., Ord, S., & Wallman, J. 2007, MNRAS, 381, 1625
Kageyama, A., & Sato, T. 2004, Geochim. Geophys. Geosyst., 5, Q09005
Kaplan, D. L., Chatterjee, S., Gaensler, B. M., & Anderson, J. 2008, ApJ, 677, 1201
Lai, D., Chernoff, D. F., & Cordes, J. M. 2001, ApJ, 549, 1111
Limongi, M., Straniero, O., & Chieffi, A. 2000, ApJS, 129, 625
Müller, E., Fryxell, B., & Arnett, D. 1991a, A&A, 251, 505
Müller, E., Fryxell, B., & Arnett, D. 1991b, in European Southern Observatory Conference and Workshop Proceedings, Vol. 37, SN1987A and Other Supernova, ed. I. J. Danziger & K. Kjaer (Garching: ESO), 99
Müller, E., & Steinmetz, M. 1995, Comput. Phys. Commun., 89, 45
Ng, C., & Romani, R. W. 2007, ApJ, 660, 1357
Plewa, T., & Müller, E. 1999, A&A, 342, 179
Rankin, J. M. 2007, ApJ, 664, 443
Scheck, L., Janka, H.-T., Foglizzo, T., & Kifonidis, K. 2008, A&A, 477, 931
Scheck, L., Kifonidis, K., Janka, H.-T., & Müller, E. 2006, A&A, 457, 963
Scheck, L., Plewa, T., Janka, H.-T., Kifonidis, K., & Müller, E. 2004, Phys. Rev. Lett., 92, 011103
Socrates, A., Blaes, O., Hungerford, A., & Fryer, C. L. 2005, ApJ, 632, 531
Spruit, H., & Phinney, E. S. 1998, Nature, 393, 139
Thompson, C. 2000, ApJ, 534, 915
Wang, C., Lai, D., & Han, J. L. 2006, ApJ, 639, 1007
Wang, C., Lai, D., & Han, J. L. 2007, ApJ, 656, 399
Wongwathanarat, A., Hammer, N. J., & Müller, E. 2010, A&A, 514, A48
Woosley, S. E., & Weaver, T. A. 1995, ApJS, 101, 181
Yamasaki, T., & Foglizzo, T. 2008, ApJ, 679, 607