Black Cotton Soil Properties Modification using Costaceae Lacerus Bagasse Fibre as Road Pavement Stabilizer

Gabriel Okonkwo Nnaji¹, Charles Kennedy², Nwaobakata Chukwuemeka³

¹Department of Civil Engineering, Enugu State University of Science and Technology, Enugu
²Department of Civil Engineering, Faculty of Engineering, Rivers State University, Port Harcourt - Rivers State, Nigeria
³Department of Civil Engineering, University of Port Harcourt, Port Harcourt, Nigeria

DOI: 10.36348/sjce.2020.v04i02.001 | Received: 19.02.2020 | Accepted: 26.02.2020 | Published: 29.02.2020

*Corresponding author: Charles Kennedy

Abstract

The research work examined the modification of expansive soils with bagasse fibre to improve its engineering properties for road pavement structures. Preliminary investigations classified the clay soils as A – 7 – 6 on the AASHTO Classification System and soils are dark grey at all conditions and percentage (%) passing BS sieves #200 are 73.85%, 67.38%, 6.35%, 82.35%, and 71.55%. Comparative results confirmed a decrease in plastic index properties of clay soils. Compaction test results showed a decreased in MDD values while OMC recorded increased values due to bagasse fibre inclusion. Results obtained showed an increase in UCS with an increase in fibre percentages to soil corresponding ratio. Relative results showed an increased in CBR values with an increase in bagasse fibre percentages to a peak ratio of 0.75% to soil ratio. The entire results showed the potential of using costaceae lacerus bagasse fibre (CLBF) as admixtures in the treatment of clay soils. The swelling potential of treated soil decreased with the inclusion of bagasse fibre up to 0.75%.

Keywords: Clay Soils, Costaceae Lacerus Bagasse Fibre, CBR, UCS, Consistency, Compaction.

INTRODUCTION

Large soils are formed by the breakdown of the original igneous rocks where seasonal variations of weather occur at the peak. Nigerian black cotton soil is formed by weathering of the Shelley and mud sediments and basaltic rocks. They contain more montmorillonite, with a later appearance of self-propelling properties and a tendency to expand [1]. Expansive soils are problematic and are commonly encountered in foundation engineering designs for highways, embankments, retaining walls, etc. These soils are found in arid and semi-arid regions of tropical/temperate regions marked with dry and wet climates, and in the Niger Delta region of the River State of Nigeria with low rainfall, poor drainage, and extreme heat. Climate conditions are such that annual evaporation exceeds precipitation ([2–4]). The vast soil found in the extensive deposits in the northeastern part of Nigeria is referred to as black cotton soil, which is dark brown to black soil with high clay content, typically from 50% more in which montmorillonite is the main clay mineral [5]. These expansion soils do not conform to the standard subgrade pavement specified by the Federal Ministry of Works FMW, 1997. Soil stabilization is an approved alternative to measure this trend.

Investigated the effectiveness of natural fiber, Cotus afer bagasse (stabilizer/reinforcement in bush sugarcane bagasse fiber (BSBF) soils with inclusion of 0.25%, 0.50%, 0.75% and 1.0% fiber). MDD and OMC decreased in both soils with the inclusion of fiber percentage. CBR values increased significantly with the optimum value percent inclusion of 0.75%, beyond this value, cracks were formed, resulting in potential failure states[6].

Studied the combined effects of RHA and cement on the engineering properties of black cotton soil. From the strength characteristics point of view, they recommended 8% cement and 10% RHA as the optimal dosage for stabilization[7].

Studied the effects of polypropylene fibers on the engineering properties of RHA-Lime. Polypropylene fibers were added 0.5% to 2% at a 0.5% increase. The determined properties were condensation, the effect of UCS, soaked CBR, hydraulic conductivity and P soaking of 0-day, 7-day and 28-day curing
vessels were also studied by UCS, CBR, hydraulic conductivity and swelling pressure. The optimum soil ratio: RHA: lime: fiber was found to be 84.5: 10: 4: 1.5[8].

Reinforced on soil samples showed that both fiber content and aspect ratio have significant effects in shear strength parameters (C, Ø)[9].

Investigated the effectiveness and application of waste agricultural products from plantain rachis fibers as stabilizers for lateritic soil amendments with unrelated and volatile characteristics. The comparative results for un-stabilized and stabilized soils showed a decrease in the values of maximum dry density and an increase in the optimum moisture content values for stabilized lateritic soil. Results on the comparison with un-stabilized soil showed a percentage of decreasing ratio with a decrease in the values of the plastic index parameters of the stabilized soils. Comparative results show increased values of unconfined compression strength tests with similar percentage ratio inclusions compared to non-stationary soils. Results on the comparison with un-stabilized soil showed a percentage of decreasing ratio with a decrease in the values of the plastic index parameters of the stabilized soils. The overall results showed the potential use of plantain rachis fibers in soil stabilization [10].

MATERIALS AND METHODS

Materials

Soil

Sampled soils are gotten from Ogoda Town Road, Ubie, Districts of Ekpeye, Ahoada-East and Ahoada-West Local Government Area, Bodo Town Road, Gokana Local Government Area, Ogbogu Town Road, Egbeama/Ndoni/Egbema Local Government Area, Ula-Ikata Town Road, Ahoada-East Local Government area, and Kaani Town Road, Khana Local Government Area, all of Rivers State, Niger Delta, Nigeria.

Costaceae Lacerus Bagasse Fibre (CLBF)

Costaceae Lacerus bagasse fibre is abundantly and widely medicinal plants gotten from bushes of Oyigba Town, Ubie Clan, Ahoada-West, and Ahoada State, Nigeria.

Method

Sampling Locality

Sampled soils are gotten from Rivers State in Ogoda Town Road, (latitude 5.04 ° 59'S and longitude 6.38 ° 42'E), Bodo Town Road, (latitude 4.65 ° 05'S and longitude 7.27 ° 15'E, Ogbogu Town Road, Latitude 5.13 ° 08'S and longitude 6.33 ° 25'E), Ula Ikata Town Road, (latitude 5.95 ° 45'S and longitude 6.66 ° 13'E) and Kanni Town Roads, latitude 4.67 ° 13'S and longitude 6.81 ° 55'E).

Test Conducted

Tests performed included (1) Moisture Content Determination (2) Consistency limits test (3) Particle size distribution (sieve analysis) and (4) Standard Proctor Compaction test, California Bearing Ratio test (CBR) and Unconfined compressive strength (UCS) tests;

Moisture Content Determination

The natural moisture content of the soil obtained from the site was determined according to BS 1377 (1990) Part 2. The freshly collected sample was dug and placed loosely in the containers and the containers were weighed together with samples at 0.01g.

Grain Size Analysis (Sieve Analysis)

Mechanical or sieve analysis is performed to determine the distribution of course, large-sized particles. This test is performed to determine the percentage of different grain sizes contained within the soil.

Consistency Limits

The liquid limit (LL) is defined as the arbitrary water content, in percentage, at which a portion of the soil in the standard cup and a groove of standard dimensions is cut, for a distance of 13 mm will flow simultaneously at the base of the drain (1 / 2in.) When subjected to 25 shocks being dropped 25 mm from the cup in a standard fluid limit mechanism operated at a rate of two shocks per second.

Moisture – Density (Compaction) Test

This laboratory test is performed to determine the relationship between the moisture content and the dry density of a soil for a specified compaction effort.

Unconfined Compression (UC) Test

Unconfined compressed power is taken as the maximum load achieved per unit area, or loaded at 15% axial stress per unit area, whichever occurs during the performance of a test. The primary objective of this test is to determine the undefined compressive strength, which is then used to calculate the unconsolidated shear strength of the soil under unconfined conditions.

California Bearing Ratio (CBR) Test

The California Bearing Ratio (CBR) test by the California Division of Ratio was developed and evaluated and evaluated the soil-sub-base and base course material for flexible pavements

RESULTS AND DISCUSSIONS

The soils classified as A – 7 – 6 on the AASHTO classification System as shown in table 3.1 and are less matured in the soils vertical profile and probably much more sensitive to all forms of manipulation that other deltaic lateritic soils are known for [11-14]. Preliminary results on clay soils as seen in detailed test results given in Tables: 5 showed that the physical and engineering properties fall below the minimum requirement for such application and needs stabilization to improve its properties. The soils are
reddish brown and dark grey in color (from wet to dry states) plasticity index of 20.33%, 20.35%, 21.85%, 26.30%, and 21.35% respectively for Ogoda, Bodo, Ogbogu, Ula-Ikata, Kaani Town Roads. The soil has unsoaked CBR values of 8.58%, 8.83%, 8.05%, 7.38%, and 9.05% and soaked CBR values of 6.33%, 7.15%, 7.35%, 5.9% and 8.23 %, unconfined compressive strength (UCS) values of 58.85kPa, 63.35kPa, 57.75 kPa, 53.75kPa and 63.85kPa when compacted with British Standard Light (BSL), respectively.

Compaction Test Results

Table 3.1 showed the compaction test of maximum dry density (MDD) at natural state 100% clay as 1.875KN/m³, 1.923KN/m³, 1.823KN/m³, 1.795KN/m³, 1.985KN/m³ and Optimum moisture content (OMC) as 15.68%, 14.93%, 16.30%, 17.45% and 15.35%. Stabilized soil with costacea lacerus bagasse fibre (CLBF) at 0.25%, 0.50%, 0.75%, and 1.0% decreased to 1.758 KN/m³, 1.825 KN/m³, 1.794 KN/m³, 1.683 KN/m³, 1.883 KN/m³ with percentile representations from 99.58%, 98.26%, 98.75%, 98.84%, 99.35%, 109.46% to 103.15%, 111.80%, 104.06%, 105.07%, 121.31%, 128.72%. Optimum moisture content (OMC) increased to 16.48%,15.98%, 14.93%, 13.22%, 13.88%, 12.85%, 15.38% with represented percentile increased of 763.82%, 736.36%, 642.86%, 688.14%, 684.69%. Comparative results showed an increased in CBR values with increase in bagasse fibre percentages to a peak ratio of 0.75% to soil ratio.

Unconfined Compressive Strength Test

Results obtained of clay soils at preliminary engineering soil properties of Ogoda, Bodo, Ogbogu, Ula-Ikata, Kaani Town Roads at 100% soils unconfined compressive strength (UCS) values of 58.85kPa, 63.35kPa, 57.75kPa, 53.75kPa and 63.85kPa, with percentile values of 87.38%, 92.75%, 70.90%, 78.64%, 80.52%. Stabilized clay soils with inclusion as represented in figures 3.5 increased to 138.18kPa, 158.75kPa, 150.45kPa, 127.38kPa, and 163.10kPa with percentile representation of 234.80%, 250.59%, 260.52%, 236.99%, and 255.44%. Results obtained showed increased in CBR values with increase in fibre percentages to soil corresponding ratio.

Consistency Limits Test

Results of consistency limits (Plastic Index) at 100% clay soils are 20.33%, 20.35%, 21.85%, 26.30% and 21.35%, with percentile representation of 101.04%, 102.62%, 105.30%, 101.39%, 101.50%. At Stabilized conditions, the obtained values are 15.08%, 17.65%, 18.85%, 19.23% and 17.16% with percentile values representation of 94.69%, 92.78%, 90.71%, 93.17%, and 93.22%. Comparative results showed decreased in plastic index properties of clay soils.

Table 3.1: Engineering Properties of Soil Samples

LOCATION DESCRIPTION	OGDONA TOWN ROAD, AHOADA-WEST L.G.A RIVERS STATE	BODO TOWN ROAD, GOKANA L.G.A RIVERS STATE	OGBOGU TOWN ROAD, OGBEGILLA L.G.A RIVERS STATE	ULA-IKATA TOWN ROAD, AHOADA-BEMA EAST L.G.A RIVERS STATE	KAAI TOWN ROAD, KHANNA L.G.A RIVERS STATE	
Depth of sampling (m)	1.5	1.5	1.5	1.5	1.5	
Percentage (%) passing BS sieve #200	73.85	67.38	76.35	82.35	71.55	
Colour	Grey	Grey	Grey	Grey	Grey	
Specific gravity	2.71	2.68	2.1	2.63	2.63	
Natural moisture content (%)	46.25	45.38	45.86	49.30	46.85	
Consistency Limits						
Liquid limit (%)	58.85	59.45	58.35	56.67	48.25	
Plastic limit (%)	38.52	39.10	37.50	30.37	24.90	
Plasticity Index	20.33	20.35	21.85	26.30	21.35	
AASHTO soil classification	A - 6	A - 6	A - 6	A - 6	A - 6	
Optimum moisture content (%)	15.68	14.93	16.30	17.45	15.35	
Maximum dry density (kN/m³)	1.875	1.923	1.823	1.795	1.985	
Gravel (%)	1.85	0.85	2.45	0.53	1.95	
Sand (%)	12.35	11.08	9.75	7.34	13.25	
Silt (%)	32.35	47.35	47.85	33.68	48.23	
Clay (%)	33.45	40.72	39.95	38.45	36.55	
Unconfined compressive strength (kPa)	58.85	63.35	57.75	53.75	63.85	
California Bearing Capacity (CBR)	Unsoaked (%) CBR	8.58	8.83	8.05	7.38	9.05
Soaked (%) CBR	6.33	7.15	7.35	5.9	8.23	
Table-3.2: Properties of Coataceae Lacerus bagasse fibre. (University of Uyo, Chemical Engineering Department, Material Lab.1)

Property	Value
Fibre form	Single
Average length (mm)	400
Average diameter (mm)	0.86
Tensile strength (MPa)	68 - 33
Modulus of elasticity (GPa)	1.5 – 0.54
Specific weight (g/cm³)	0.69
Natural moisture content (%)	6.3
Water absorption (%)	178 - 256

Source, 2018

Table-3.3: Composition of Bagasse. (University of Uyo, Chemical Engineering Department, Material Lab.1)

Item	%
Moisture	49.0
Soluble Solids	2.3
Fiber	48.7
Cellulose	41.8
Hemicelluloses	28
Lignin	21.8

Source, 2018

Table-3.4: Results of Subgrade Soil (Clay) Test Stabilization with Binding Cementitious Products at Different Percentages and Combination

SAMPLE LOCATION	SOIL + FIBRE RATIO	MDD (kN/m²)	OMC (%)	UNSOAKED CBR (%)	SOAKED CBR (%)	UCS (kPa)	LL (%)	PI (%)	PI (%)	SIEVE #200	ANSIIF / USCS (Classification)	NOTES	
OGODA TOWN ROAD, AHOADA-WEST L.G.A	100%	1.875	15.68	8.56	6.33	58.85	58.85	38.52	20.33	73.85	A – 7 – 6	POOR	
99.75+0.25 %	1.858	15.77	10.25	10.05	67.35	58.58	40.33	18.25	73.85	A – 7 – 6	GOOD		
99.50+0.50 %	1.838	15.93	12.85	11.35	82.30	58.21	41.96	17.25	73.85	A – 7 – 6	GOOD		
99.25+0.75 %	1.758	16.28	14.30	13.45	118.15	57.93	42.25	16.38	73.85	A – 7 – 6	GOOD		
99.0+1.0%	1.758	16.48	13.18	12.35	138.18	57.72	42.64	15.08	73.85	A – 7 – 6	GOOD		
BODO TOWN ROAD, GOKANA L.G.A	100%	1.923	14.93	8.88	7.15	63.35	59.45	39.10	20.35	67.38	A – 7 – 6	POOR	
99.75+0.25%	1.904	15.21	10.38	10.15	68.30	59.18	39.23	19.95	67.38	A – 7 – 6	GOOD		
99.50+0.50%	1.886	15.38	12.58	11.86	89.50	58.83	40.08	18.75	67.38	A – 7 – 6	GOOD		
99.25+0.75%	1.866	15.78	14.88	13.22	127.30	58.55	40.37	18.18	67.38	A – 7 – 6	GOOD		
99.0+1.0%	1.825	15.98	12.35	12.05	158.75	58.17	40.54	17.65	67.38	A – 7 – 6	GOOD		
OGBOGU TOWN ROAD OGBA EGE/ ELEANA NDONI L.G.A	100%	1.823	16.30	8.25	7.35	57.75	58.35	37.50	21.85	76.35	A – 7 – 6	POOR	
99.75+0.25%	1.785	16.81	11.25	10.86	81.45	58.13	36.18	19.95	76.35	A – 7 – 6	GOOD		
99.50+0.50%	1.733	16.93	13.45	12.98	117.40	57.85	38.07	19.78	76.35	A – 7 – 6	GOOD		
99.25+0.75%	1.718	17.15	14.15	13.88	138.53	57.53	38.28	19.25	76.35	A – 7 – 6	GOOD		
99.0+1.0%	1.794	17.45	12.38	12.08	150.45	57.15	38.30	18.85	76.35	A – 7 – 6	GOOD		
ULA-IKATA TOWN ROAD, AHOADA-EAST L.G.A	100%	1.794	17.45	7.38	5.90	53.75	56.67	38.37	18.30	82.35	A – 7 – 6	POOR	
99.75+0.25%	1.769	17.17	9.25	8.75	68.35	56.45	38.60	17.85	82.35	A – 7 – 6	POOR		
99.50+0.50%	1.740	17.78	11.15	10.38	79.30	56.18	38.58	17.66	82.35	A – 7 – 6	GOOD		
99.25+0.75%	1.762	18.15	13.55	12.85	107.85	55.89	38.56	17.33	82.35	A – 7 – 6	GOOD		
99.0+1.0%	1.683	18.38	12.85	12.05	137.38	55.52	38.36	17.16	82.35	A – 7 – 6	GOOD		
KANI TOWN ROAD, KHANA L.G.A	100%	1.985	15.35	9.05	8.23	63.85	48.25	27.90	20.35	71.55	A – 7 – 6	POOR	
99.75+0.25%	1.962	15.61	11.65	10.95	79.30	48.03	27.94	20.09	71.55	A – 7 – 6	GOOD		
99.50+0.50%	1.938	15.38	12.93	12.38	93.28	47.88	28.05	19.83	71.55	A – 7 – 6	GOOD		
99.25+0.75%	1.908	16.15	15.38	14.95	125.78	47.65	28.02	19.63	71.55	A – 7 – 6	GOOD		
99.0+1.0%	1.883	16.42	13.93	13.25	163.10	47.28	28.05	19.23	71.35	A – 7 – 6	GOOD		
Table 3.5: Percentile Combination of Soft Clay + Costaceae Lacerus Bagasses Fibre (CLBF)

RATIO (%)	100%	97.25±0.25+2.5	94.5+0.5+5.0%	91.75±0.75+7.5%	89+1.0+10
MAXIMUM DRY DENSITY (MDD) (kN/m³)					
OGA TOWN ROAD, AHOADA-WEST L.G.A	1.88	1.88	1.94	1.93	1.99
BODO TOWN ROAD GOKANA L.G.A MDD (kN/m³)	1.92	1.96	1.99	2.15	2.11
OGBOGU TOWN ROAD OGBA/EGBEMA/NDONI L.G.A MDD (kN/m³)	1.82	1.85	1.88	1.90	1.94
ULA-IKATA TOWN ROAD, AHOADA-EAST L.G.A MDD (kN/m³)	1.79	1.82	1.87	1.89	1.91
KAA NJI TOWN ROAD, KHANA L.G.A MDD (kN/m³)	1.99	2.00	2.12	2.41	2.56
OPTIMUM MOISTURE CONTENT (%)					
OGA TOWN ROAD, AHOADA-WEST L.G.A OMC (%)	16.68	16.08	16.35	16.85	17.20
BODO TOWN ROAD GOKANA L.G.A OMC (%)	14.93	15.21	15.31	15.78	16.15
OGBOGU TOWN ROAD OGBA/EGBEMA/NDONI L.G.A OMC (%)	16.30	16.59	16.83	17.05	17.38
ULA-IKATA TOWN ROAD, AHOADA-EAST L.G.A OMC (%)	17.45	17.82	18.15	18.52	18.83
KAA NJI TOWN ROAD, KHANA L.G.A OMC (%)	15.35	15.70	15.96	16.12	16.47
CONSISTENCY LIMITS (%)					
OGA TOWN ROAD, AHOADA-WEST L.G.A LL (%)	58.85	58.93	59.83	59.83	60.15
OGA TOWN ROAD, AHOADA-WEST L.G.A PL (%)	38.52	38.91	40.21	40.21	40.90
OGA TOWN ROAD, AHOADA-WEST L.G.A IP (%)	20.33	20.12	19.62	19.62	19.25
BODO TOWN ROAD GOKANA L.G.A LL (%)	59.45	59.78	60.15	61.48	62.65
BODO TOWN ROAD GOKANA L.G.A PL (%)	39.10	39.95	40.53	43.87	43.77
BODO TOWN ROAD GOKANA L.G.A IP (%)	20.35	19.83	19.62	19.30	18.88
OGBOGU TOWN ROAD OGBA/EGBEMA/NDONI L.G.A LL (%)	58.35	59.85	60.18	60.66	60.97
OGBOGU TOWN ROAD OGBA/EGBEMA/NDONI L.G.A PL (%)	37.50	39.10	39.82	40.63	41.15
OGBOGU TOWN ROAD OGBA/EGBEMA/NDONI L.G.A IP (%)	21.85	20.75	20.36	20.03	19.82
ULA-IKATA TOWN ROAD, AHOADA-EAST L.G.A LL (%)	56.67	57.15	57.65	58.15	58.65
ULA-IKATA TOWN ROAD, AHOADA-EAST L.G.A PL (%)	38.37	34.10	39.83	40.72	41.60
ULA-IKATA TOWN ROAD, AHOADA-EAST L.G.A IP (%)	18.30	18.05	17.82	17.43	17.05
KAA NJI TOWN ROAD, KHANA L.G.A LL (%)	48.25	48.53	48.96	49.23	49.75
KAA NJI TOWN ROAD, KHANA L.G.A PL (%)	27.90	28.48	29.14	29.88	30.98
KAA NJI TOWN ROAD, KHANA L.G.A IP (%)	20.35	20.05	19.82	19.35	18.97
CALIFORNIA BEARING RATIO (%)					
OGA TOWN ROAD, AHOADA-WEST L.G.A	8.65	23.45	37.55	51.85	46.33
OGA TOWN ROAD, AHOADA-WEST L.G.A SOAKED CBR (%)	6.33	21.15	32.80	48.35	41.60
BODO TOWN ROAD GOKANA L.G.A UNSOAKED CBR (%)	8.83	29.60	41.30	56.30	48.36
BODO TOWN ROAD GOKANA L.G.A SOAKED CBR (%)	7.15	26.85	38.15	52.65	39.30
OGBOGU TOWN ROAD OGBA/EGBEMA/NDONI L.G.A UNSOAKED CBR (%)	8.25	27.35	34.30	49.75	37.37
OGBOGU TOWN ROAD OGBA/EGBEMA/NDONI L.G.A SOAKED CBR (%)	7.35	24.40	29.88	47.25	32.35
ULA-IKATA TOWN ROAD, AHOADA-EAST L.G.A UNSOAKED CBR (%)	7.38	23.40	31.45	45.80	36.35
ULA-IKATA TOWN ROAD, AHOADA-EAST L.G.A SOAKED CBR (%)	5.90	19.05	27.35	40.60	31.78
KAA NJI TOWN ROAD, KHANA L.G.A UNSOAKED CBR (%)	9.05	28.25	48.35	57.30	53.45
KAA NJI TOWN ROAD, KHANA L.G.A SOAKED CBR (%)	8.23	26.55	46.85	56.35	49.75
UNCONFINED COMPRESSIVE STRENGTH (KPa)					
OGA TOWN ROAD, AHOADA-WEST L.G.A UCS (Kpa)	58.85	67.35	82.30	118.15	138.18
BODO TOWN ROAD GOKANA L.G.A UCS (Kpa)	63.35	68.30	89.50	127.30	158.75
OGBOGU TOWN ROAD OGBA/EGBEMA/NDONI L.G.A UCS (Kpa)	57.75	81.45	117.40	138.53	150.45
ULA-IKATA TOWN ROAD, AHOADA-EAST L.G.A UCS (Kpa)	53.75	68.35	79.30	107.85	127.38
KAA NJI TOWN ROAD, KHANA L.G.A UCS (Kpa)	63.85	79.30	93.28	125.78	163.10
Table 3.6: Percentile Decrease / Increase of Soft Clay + Costaceae Lacerus Bagasses Fibre (CLBF)

RATIO (%)	1.000	97.25+0.25	94.5+0.5	91.75+0.75	89+1.0
	MDD(kN/m³)	MDD(kN/m³)	MDD(kN/m³)	MDD(kN/m³)	MDD(kN/m³)
OGOODA TOWN ROAD, AHOADA-WEST L.G.A	99.575	100.427	103.253	103.147	105.867
BODO TOWN ROAD GOKANA L.G.A MDD(kN/m3)	98.263	101.768	103.328	111.804	109.464
OGBBOGU TOWN ROAD OGBA/EBEMA/NDONI L.G.A MDD(kN/m3)	98.754	101.262	102.852	104.059	106.144
ULA-IKATA TOWN ROAD, AHOADA-EAST L.G.A MDD(kN/m3)	98.843	101.171	103.958	105.072	106.466
KAANI TOWN ROAD, KHANA L.G.A MDD(kN/m3)	99.349	100.655	106.801	121.310	128.715

Optimum Moisture Content (%)

RATIO (%)	1.000	97.25+0.25	94.5+0.5	91.75+0.75	89+1.0
	OMC (%)				
OGOODA TOWN ROAD, AHOADA-WEST L.G.A	97.512	102.551	104.273	107.462	109.694
BODO TOWN ROAD GOKANA L.G.A OMC (%)	98.159	101.875	102.545	105.693	108.171
OGBBOGU TOWN ROAD OGBA/EBEMA/NDONI L.G.AOMC (%)	98.252	101.779	103.252	104.601	106.626
ULA-IKATA TOWN ROAD, AHOADA-EAST L.G.A OMC (%)	97.924	102.120	104.011	106.132	107.908
KAANI TOWN ROAD, KHANA L.G.A OMC (%)	97.771	102.280	103.974	105.016	107.296

Consistency Limits (%)

RATIO (%)	1.000	97.25+0.25	94.5+0.5	91.75+0.75	89+1.0
	LL(%)	LL(%)	LL(%)	LL(%)	LL(%)
OGOODA TOWN ROAD, AHOADA-WEST L.G.A	99.864	100.136	101.665	101.665	102.209
OGOODA TOWN ROAD, AHOADA-WEST L.G.A PL(%)	98.998	101.012	104.387	104.387	106.179
OGOODA TOWN ROAD, AHOADA-WEST L.G.A IP(%)	101.044	98.967	96.508	96.508	94.688
BODO TOWN ROAD GOKANA L.G.A LL(%)	99.448	100.555	101.177	103.415	105.383
BODO TOWN ROAD GOKANA L.G.A PL(%)	97.872	102.174	103.657	112.199	111.944
BODO TOWN ROAD GOKANA L.G.A IP(%)	102.622	97.445	96.413	94.840	92.776

California Bearing Ratio (%)

RATIO (%)	1.000	97.25+0.25	94.5+0.5	91.75+0.75	89+1.0
	CLBF (%)				
OGOODA TOWN ROAD, AHOADA-WEST L.G.A	36.887	271.098	434.104	599.422	535.607
OGOODA TOWN ROAD, AHOADA-WEST L.G.A SOAKED CBR (%)	29.929	334.123	518.167	763.823	657.188
BODO TOWN ROAD GOKANA L.G.A UNSOAKED CBR (%)	29.831	335.221	467.724	637.599	547.678
BODO TOWN ROAD GOKANA L.G.A SOAKED CBR (%)	26.629	375.524	533.566	736.364	549.650
OGBBOGU TOWN ROAD OGBA/EBEMA/NDONI L.G.A UNSOAKED CBR (%)	30.165	331.515	415.758	603.030	452.970
OGBBOGU TOWN ROAD OGBA/EBEMA/NDONI L.G.A SOAKED CBR (%)	30.123	331.973	406.531	642.857	440.136
ULA-IKATA TOWN ROAD, AHOADA-EAST L.G.A	31.538	317.073	426.152	620.596	492.547
ULA-IKATA TOWN ROAD, AHOADA-EAST L.G.A SOAKED CBR (%)	30.971	322.881	463.559	688.136	538.644
KAANI TOWN ROAD, KHANA L.G.A UNSOAKED CBR (%)	32.035	312.155	534.254	633.149	590.608
KAANI TOWN ROAD, KHANA L.G.A SOAKED CBR (%)	30.998	322.600	569.259	684.690	604.496

Unconfined Compressive Strength (KPa)

RATIO (%)	1.000	97.25+0.25	94.5+0.5	91.75+0.75	89+1.0
	UCS (Kpa)				
OGOODA TOWN ROAD, AHOADA-WEST L.G.A UCS (Kpa)	87.379	114.444	139.847	200.765	234.800
BODO TOWN ROAD GOKANA L.G.A UCS (Kpa)	92.753	107.814	141.279	200.947	260.792
OGBBOGU TOWN ROAD OGBA/EBEMA/NDONI L.G.A UCS (Kpa)	70.902	141.039	203.290	239.879	260.519
ULA-IKATA TOWN ROAD, AHOADA-EAST L.G.A UCS (Kpa)	78.639	127.163	147.355	200.651	236.986
KAANI TOWN ROAD, KHANA L.G.A UCS (Kpa)	80.517	124.197	146.092	196.993	255.442

© 2020 | Published by Scholars Middle East Publishers, Dubai, United Arab Emirates
Fig-3.1: Maximum Dry Density of Subgrade Stabilization Test of Clay Soil from Ogoda, Bodo, Ogbogu, Ula-Ikata, Kaani Towns), Rivers State with CLBF at Different Percentages and Combinations

Fig-3.2: Optimum Moisture Content of Subgrade Stabilization Test of Clay Soil Ogoda, Bodo, Ogbogu, Ula-Ikata, Kaani Towns), Rivers State with CLBF at Different Percentages and Combinations

Fig-3.3: Consistency Limits of Subgrade Stabilization Test of Clay Soil from Ogoda, Bodo, Ogbogu, Ula-Ikata, Kaani Towns), Rivers State with CLBF at Different Percentages and Combination

Fig-3.4: California Bearing Ratio of Subgrade Stabilization Test of Clay Soil from Ogoda, Bodo, Ogbogu, Ula-Ikata, Kaani Towns), Rivers State with CLBF at Different Percentages and Combination
Fig-3.5: Unconfined Compressive Strength (UCS) of Subgrade Soil from Ogoda, Bodo, Ogbogu, Ula-Ikata, Kaaani Towns, Rivers State with CLBF at Different Percentages and Combinations

Plate i. Costaceae Lacerus plant

Plate ii. Costaceae Lacerus stem

Plate iii. Costaceae Lacerus piled stem

Plate iv. Costaceae Lacerus pulverized stage
CONCLUSIONS

The following conclusions were made from the experimental research results.

i. The soils classified as A – 7 – 6 on the AASHTO Classification System and soils are dark grey in color (from wet to dry states) plasticity index of 20.33%, 20.35%, 21.85%, 26.30%, and 21.35% respectively for Ogoda, Bodo, Ogbogu, Ula-Ikata, and Kaani.

ii. The entire results showed the potential of using CLBF as admixtures in the treatment of clay soils

iii. The swelling potential of treated soil decreased with the inclusion of bagasse fibre up to 0.75%.

iv. Preliminary investigations of the engineering properties of soils at natural state are percentage (%) passing BS sieves #200 are 73.85%, 67.38%, 6.35%, 82.35%, and 71.55%.

v. Comparative results showed decreased in plastic index properties of clay soils

vi. Results obtained showed increased in UCS with an increase in fibre percentages to soil the corresponding ratio

vii. Comparative results showed an increased in CBR values with increase in bagasse fibre percentages to a peak ration of 0.75% to soil ratio

REFERENCES

1. Chen, F. H. (1988). Foundation on Expansive Soils. Elsevier Scientific Publication Company, Amsterdam.

2. Nelson, D., & Miller, J. (1992). Expansive Soils: Problems and Practices in Foundation and Pavement Engineering. John Wiley and Sons, Inc. New York.

3. Warren, K. W., & Kirby, T. M. (2004). Expansive Clay Soil: A Widespread and Costly Geohazard. Geostrata, Geo-Institute of the American Society Civil Engineers, Jan 24-28

4. Morin, W. J. (1971). Properties of African tropical black clay soils. Proceedings 5th Regional Conference for Africa on Soil Mechanics and Foundation Engineering Luanda, 1(5):1-59.

5. Charles, K., Essien, U., Gbinu, S. K. (2018). Stabilization of Deltaic Soils using Costus Afer Bagasse Fiber. International Journal of Civil and Structural Engineering Research, 6(1): 148-156

6. Ramakrishna, A.N., & Pradeepkumar, A.V. (2006). Stabilization of Black Cotton Soil using Rice Husk Ash and Cement, Proc. of National conference, Civil Engineering meeting the challenges of tomorrow, 215-220

7. Sabat, A. K. (2013). Engineering Properties of an Expansive Soil Stabilized with Rice Husk Ash and Lime sludge, International Journal of Engineering and Technology, 5(6): 4826-4833

8. Prabakar, J., & Sridhar, R.S. (2002). Effect of random inclusion of Sisal Fibre on Strength Behaviour of Soil," Constr Build Mater, 16:123–131.

9. Ola, S. A. (1974). Need for Estimated Cement Requirements for Stabilizing Lateritic Soils. Journal of Transportation Engineering, ASCE, 100(2):379–388

10. Allam, M. M., & Sridhara, A. (1981). Effect of wetting and drying on shear strength. Journal of the Soil Mechanics and Foundations Division, 107(4), 421-438.

11. Omotosho, P. O. (1993). Multi-Cyclic Influence on Standard Laboratory Compaction of Residual Soils, Engineering Geology, 36, 109–115.

12. Omotosho, P.O., & Akinmusuru, J. O. (1992). Behavior of Soils (Lateritic) Subjected to Multi-Cyclic Compaction. Engineering Geology, 32, 53–58.