ON FREIMAN’S THEOREM IN NILPOTENT GROUPS

DAVID FISHER, NETS HAWK KATZ, AND IRINE PENG

Abstract. We generalize a result of Tao which extends Freiman’s theorem to the Heisenberg group. We extend it to simply connected nilpotent Lie groups of arbitrary step.

1. Introduction

Given a set A in an abelian group, we say it has small additive doubling if

$$|A + A| \leq K|A|,$$

where K is a constant which is small in an appropriate sense.

The aim of the classical Freiman’s theorem is to show that sets having small additive doubling exhibit a lot of structure.

Terry Tao in [8] studied the analogous situation for sets of small multiplicative tripling in a Heisenberg group. He showed that such a set can be mapped into an abelian group in such a way that it has additive structure which is consistent with commutation. Our aim is to obtain such a result in the setting of general simply connected nilpotent Lie groups. Our only tool will be a rather direct application of the Baker-Campbell-Hausdorff formula.

We will investigate the structure of a subset $A \subset N$ which is an approximate multiplicative group. We recall an approximate multiplicative group is a set A with the property

$$AA \subset \bigcup_{l=1}^{k} x_l A,$$

where the x_l’s are elements of N and we refer to k as the multiplicative constant of A. We will restrict to approximate multiplicative groups which are symmetric: $A = A^{-1}$. The relations between symmetric approximate multiplicative groups and sets with small tripling are discussed in [8] and [7].

Our goal is to prove the following theorem:

Theorem 1.1. Let A be a symmetric approximate multiplicative group in a simply connected, nilpotent, n-step Lie group N.
We have that for any small set of small integers k_1, k_2, \ldots, k_l that

$$|\log(A^{k_1}) + \log(A^{k_2}) + \ldots \log(A^{k_l})| \lesssim |\log(A)|,$$

with the constants depending only on the multiplicative constant of A, the step n, the maximum of the $|k_j|$'s and l.

Let $B_0 = \log(A)$ and B_j be $[B_{j-1}, B_{j-1}]$. (By nilpotence this sequence terminates.) Then for each j, there is a number l, integers k_1, \ldots, k_l and rationals q_1, \ldots, q_l depending just on j and n so that

$$B_j \subset q_1 \log(A^{k_1}) + q_2 \log(A^{k_2}) + \ldots q_l \log(A^{k_l}).$$

Morally, this result says that if A is a symmetric approximate multiplicative group then $\log(A)$ is very close to being a Lie algebra. In particular, the first says that the log of small powers of A all have small additive doubling and are almost additively parallel. The second part says that the iterated commutators of $\log(A)$ (which by nilpotence live in progressively smaller subspaces of the Lie algebra) are also additively compatible with sets from the first part. In particular, a set A having just these two properties automatically has small multiplicative tripling by applying the Baker-Campbell-Hausdorff formula so that we essentially have a characterization of such sets.

Further, one can apply classical Freiman’s theorem to $\log(A)$ and then use the second condition in our theorem to impose further restrictions on the resulting generalized arithmetic progression. It is also fairly easy to adapt our arguments to the setting of torsion nilpotent groups, at least when all elements have order that is large enough. Here large enough is in terms of various constants arising in the Baker-Campbell-Hausdorff formula. Combining this with the theorem above and known facts about the structure of nilpotent groups gives a result for all nilpotent groups without small torsion.

Our argument uses nilpotency in an essential way. (The Baker-Campbell-Hausdorff formula is finite!) There is some speculation among experts that all symmetric multiplicative subgroups of an arbitrary group G may arise from subsets of nilpotent groups like those arising in our theorem see e.g. [9, Chapter 3.2] and references there. The recent preprint by Helfgott can be seen as further evidence for this speculation [5]. As mentioned there, this problem for general G seems potentially related to Gromov’s theorem on groups of polynomial growth and Kleiner’s recent effective proof of this theorem [4, 6]. The case of linear groups already seems difficult and interesting and should be independent of analogues of Gromov’s theorem. Particularly in the linear case, it seems that ideas from work on uniform exponential growth and uniform independence might be relevant [3, 2, 1].

Acknowledgements: The first author is partially supported by NSF grant 0643546 and a fellowship from the Radcliffe Institute for Advanced Studies. The second author is partially supported by NSF grant 0653763.
2. Proofs

Let N be a simply connected nilpotent Lie group of nilpotency n. It is known that exp, the exponential map, is a diffeomorphism and we let $\log : N \rightarrow n$ be its inverse. For any $x, y \in N$, $q \in \mathbb{Q}$, we write x^q to mean $\exp(q \log(x))$, and $c(x, y)$ to mean their commutator $xyx^{-1}y^{-1}$. For any positive integers L, and $j \geq 1$, we write Ω_j^L to mean all the possible maps from $\{1, 2, 3, \cdots, j\}$ to $\{1, 2, 3, \cdots, L\}$. If $\alpha \in \Omega_j^L$, we define $|\alpha| := j$. Whenever we write $\prod_{\alpha \in \Omega_j^L}$, we mean multiplying from left to right with respect to a pre-fixed linear order on Ω_j^L.

Recall the Campbell-Baker-Hausdorff formula, which says that for any $x, y \in N$,

$$\log(x) + \log(y) = \log(xy) + \sum_{\alpha \in \Omega_2^L} t_{\alpha} h_{\alpha} \quad \text{(1)}$$

where each t_{α} is a rational number and $h_{\alpha} = (adX_1) \circ (adX_2) \cdots \circ (adX_{|\alpha|-1})X_{|\alpha|}$, with X_j equal to $\log(x)$ if $\alpha(j) = 1$ and equal to $\log(y)$ if $\alpha(j) = 2$.

Lemma 2.1. Take $x_1, \cdots, x_L \in N$, and let $X_i = \log(x_i)$. For any $\alpha \in \Omega_j^L$, we write h_{α} to mean $(adX_{\alpha(1)}) \circ \cdots \circ (adX_{\alpha(j-1)})X_{\alpha(j)}$, H_{α} to mean $c(x_{\alpha(1)}, c(x_{\alpha(2)}, \cdots c(x_{\alpha(j-1)}, x_{\alpha(j)})))$. Then

1. $\log(x_1x_2 \cdots x_L) = \sum_{i=1}^{L} X_i + \sum_{\alpha \in \Omega_j^L} c_{\alpha} h_{\alpha}, \ c_{\alpha} \in \mathbb{Q}$
2. For any j and $\alpha \in \Omega_j^L$, (remember L is fixed)
$$\log(H_{\alpha}) = h_{\alpha} + \sum_{\ell=j+1}^{n} \sum_{\beta \in \Omega_j^L} s_{\beta} h_{\beta}, \ s_{\beta} \in \mathbb{Q}$$
3. For any $1 \leq J \leq n$. There are rational numbers $\beta_2, \beta_3, \cdots, \beta_n$ depending only on J and L so that,
$$\sum_{i=1}^{L} X_i = \log(x_1x_2 \cdots x_L) + \sum_{i=2}^{j} \beta_i \log(\tilde{M}_i) + \sum_{i=j+1}^{n} \sum_{\alpha \in \Omega_j^L} c_{\alpha}^D h_{\alpha}$$

where $\tilde{M}_i = \prod_{\alpha \in \Omega_j^L} (H_{\alpha})^{m_{\alpha}}$ for integers m_{α}.
4. For any $1 \leq j \leq n$, There are integers c_1, c_2, \cdots, c_n (depending only on j and L) such that whenever an integer T is divisible by each c_j
$$\sum_{i=1}^{L} TX_i = \log(\prod_{i=1}^{L} x_i^T \prod_{\ell=2}^{j} \prod_{\alpha \in \Omega_j^L} \tilde{H}_{\alpha}) + \sum_{\ell=j+1}^{n} \sum_{\alpha \in \Omega_j^L} s_{\alpha} h_{\alpha}, \ s_{\alpha} \in \mathbb{Q}$$

where each $\tilde{H}_{\alpha} = c(x_{\alpha(1)}^{m_{\alpha(1)}}, c(x_{\alpha(2)}^{m_{\alpha(2)}}), \cdots, c(x_{\alpha(j-1)}^{m_{\alpha(j-1)}}, x_{\alpha(j)}^{m_{\alpha(j)})}))$ for some integers $m_{\alpha(i)}$ (depending on T).
In particular, in the case of (4), we are interested in the case \(j = n \). We have stated the result with the parameter \(j \) so that it is easy to write down a proof which is an induction.

Proof The proof of (1) is a repeated application of Campbell-Baker-Hausdorff. Suppose the claim is true up to \(J \), then
\[
\log(x_1 x_2 \cdots x_J) = \sum_{i=1}^{J} X_i + \sum_{\ell=2}^{n} \sum_{\alpha \in \Omega_{\ell}^J} c_{\alpha} h_{\alpha}
\]

Applying (1) to \(x_1 x_2 \cdots x_J \) and \(x_{J+1} \) gives us
\[
\log(x_1 x_2 \cdots x_J, x_{J+1}) = \log(x_1 x_2 \cdots x_J) + \log(x_{J+1}) + \sum_{j=2}^{n} \sum_{\alpha \in \Omega_{j}^n} t_{\alpha} h_{\alpha}
\]

where each \(h_{\alpha} = (adX_1) \circ (adX_2) \cdots \circ (adX_{|\alpha|-1})X_{|\alpha|} \) with \(X_j \) equal either \(\log(x_{J+1}) \) or \(\log(x_1 x_2 \cdots x_J) \). Substituting the latter by the inductive hypothesis yields 1 for \(J+1 \).

We now prove (2) by induction on \(|\alpha|\). The base step (when \(|\alpha| = 2\) is obtained by combining (1) with the following
\[
\log(e^a e^b e^{-a}) = b + \sum_{j=1}^{n-1} \frac{1}{j!} (ad(a))^j(b)
\]

Suppose now that (2) is true up to \(J \) many arguments. Then,
\[
\log(c(x_1, c(x_2, \cdots, c(x_{J-1}, c(x_J, x_{J+1})))) = [X_1, \log(c(x_2, \cdots, c(x_{J-1}, c(x_J, x_{J+1}))))] + \sum_{\ell=2}^{J+1} \sum_{\alpha \in \Omega_{\ell}^{J+1}} t_{\alpha} h_{\alpha}
\]

where the first line comes from applying the base step to \(x_1 \) and the underlined expression, and the second line comes from applying the inductive assumption.

Equation (3) can be proved similarly by inducting on \(J \). The case \(J = 1 \) is just (1).

Suppose it is true for \(J \). Then
\[
\sum_{i=1}^{L} X_i = \log(x_1 x_2 \cdots x_L) + \sum_{i=2}^{J} \beta_i \log(\hat{M}_i) + \sum_{\alpha \in \Omega_{J+1}^{L}} t_{\alpha} h_{\alpha} + \sum_{i=J+1}^{n} \sum_{\alpha \in \Omega_{i}^{L}} c_{\alpha} h_{\alpha}
\]
Let β_{J+1} be 1 over the smallest common multiple of the denominators of t_α's, where α ranges over Ω_{J+1}^L. Then the second summand above can be replaced by

$$
\sum_{\alpha \in \Omega_{J+1}^L} t_\alpha h_\alpha = \beta_{J+1} \sum_{\alpha \in \Omega_{J+1}^L} m_\alpha h_\alpha, \; m_\alpha \in \mathbb{Z}
$$

$$
= \beta_{J+1} \sum_{\alpha \in \Omega_{J+1}^L} \log(H^{m_\alpha}_\alpha) + \sum_{i=J+2}^n \sum_{\alpha \in \Omega_i^L} t'_\alpha h_\alpha
$$

$$
= \beta_{J+1} \log(\prod_{\alpha \in \Omega_{J+1}^L} H^{m_\alpha}_\alpha) + \sum_{j=J+2}^n \sum_{\alpha \in \Omega_j^L} t''_\alpha h_\alpha
$$

where the second line comes from applying (2) to each term in the sum on the right hand side of first line, and the third line comes from applying (1) followed by (2) to the first sum on the second line.

We now prove (4) by induction on j. The base step is just (1). Suppose it is true up to J. If we let c_{J+1} to be the lowest common multiple between c_J and denominators of s'_α's with $|\alpha| = J + 1$, then using (3) of the lemma, we have:

$$
\sum_{i=1}^L c_{J+1} X_i = \log(\prod_{i=1}^L x_i^{c_{J+1}} \prod_{j=2}^J \prod_{\beta \in \Omega_j^L} \tilde{H}_\beta) + \sum_{\alpha \in \Omega_{J+1}^L} \tilde{h}_\alpha + \sum_{\ell=J+2}^n \sum_{\beta \in \Omega_{\ell}^L} s'_\beta h_\beta
$$

(2)

where $\tilde{h}_\alpha = ad(m_{\alpha(1)}X_{\alpha(1)}) \circ ad(m_{\alpha(1)}X_{\alpha(1)}) \cdots ad(m_{\alpha(J)}X_{\alpha(J)}) (m_{\alpha(J+1)}X_{\alpha(J+1)})$ for integers m_α's.

Applying (2) to the second term on the right hand side, we have

$$
\sum_{i=1}^L c_{J+1} X_i = \log(\prod_{i=1}^L x_i^{c_{J+1}} \prod_{j=2}^J \prod_{\beta \in \Omega_j^L} \tilde{H}_\beta) + \sum_{\alpha \in \Omega_{J+1}^L} \log(\tilde{H}_\alpha) + \sum_{\ell=J+2}^n \sum_{\beta \in \Omega_{\ell}^L} s''_\beta h_\beta
$$

On the right hand side, we can combine the first term and each summand in the second term one at a time by applying (1) and using (1), (2) to get the desired equality.

We proceed towards the proof of the main theorem but we first need the following Lemma.

Lemma 2.2. For all n there exists an integer m depending only on n so that if $a, b \in G$ with G a simply connected n-step nilpotent Lie group then

$$
m(\log a + \log b) = \log(w_{m,n}(a, b)),
$$

with $w_{m,n}(a, b)$ a word in a, b, a^{-1}, b^{-1} with length $l(m, n)$ depending only on m, n.

Proof This is an immediate consequence of Lemma 2.1 part (4).
Now we are ready to prove the main theorem.

Proof

Our first goal is to show that

$$|\log(A^{k_1}) + \log(A^{k_2}) + \ldots + \log(A^{k_l})| \lesssim |\log(A)|,$$

where the constants depend only on the step n, the maximum of the $|k_j|$'s, l and the multiplicative constant of A. This follows directly from Lemma 2.2. Applying that lemma repeatedly, we find that every element of $\log(A^{k_1}) + \log(A^{k_2}) + \ldots + \log(A^{k_l})$ is contained in $\frac{1}{m} \log(A^l(m, n))$. Because A is an approximate multiplicative subgroup we have that

$$|A^l(m, n)| \lesssim |A|,$$

and we have proved the first part.

Next we must show that $B_j \subset q_1 \log(A^{k_1}) + q_2 \log(A^{k_2}) + \ldots + q_l \log(A^{k_l})$.

We prove this by induction. Clearly it is true for B_0. Let us suppose that it is true for B_{j-1}. Then applying lemma 2.2 to the induction hypothesis repeatedly, we find m and k depending only on j and n so that for any $b \in B_{j-1}$ we have $e^{mb} \in A^k$.

We recall again the identity

$$\log(e^a e^{mb} e^{-a}) = mb + \sum_{j=1}^{n-1} \frac{1}{j!} ad(a)^j mb.$$

For any $1 \leq s \leq n - 1$ with s an integer, this implies that

$$\log(e^{sa} e^{mb} e^{-sa}) = mb + \sum_{j=1}^{n-1} \frac{s^j}{j!} ad(a)^j mb.$$

Viewing this as a system of n linear equations for the unknowns $ad(a)^j b$, we can solve by inverting the Vandermonde matrix, and we find finding rationals q_1, \ldots, q_n depending only on n and j so that if $a \in \log(A)$, and $b \in B_{j-1}$ then we have

$$[a, b] \in q_1 \log(A^{k+2}) + q_2 \log(A^{k+4}) + \ldots + q_n \log(A^{k+2n}).$$

Thus we are done.

References

[1] Breuillard, Emmanuel. On uniform exponential growth for solvable groups. *Pure Appl. Math. Q.* 3 (2007), no. 4, part 1, 949–967.

[2] Breuillard, E.; Gelander, T. Uniform independence in linear groups. *Invent. Math.* 173 (2008), no. 2, 225–263.
[3] Eskin, Alex; Mozes, Shahar; Oh, Hee On uniform exponential growth for linear groups.
Invent. Math. 160 (2005), no. 1, 1–30.
[4] Gromov, Mikhael. Groups of polynomial growth and expanding maps. Inst. Hautes
Études Sci. Publ. Math. No. 53 (1981), 53–73.
[5] Helfgott, H. A. Growth in SL₃(Z/pZ), preprint.
[6] B. Kleiner A new proof of Gromov’s theorem on groups of polynomial growth, preprint.
[7] Tao, Terence; Vu, Van Additive combinatorics. Cambridge Studies in Advanced Mathematics, 105. Cambridge University Press, Cambridge, 2006.
[8] Tao, Terence, Product set estimates for non-commutative groups, Combinatorica, available online, to appear.
[9] Tao, Terence, Structure and Randomness: Pages from Year One of a Mathematical Blog,
American Mathematical Society, 2008.

Department of Mathematics, Indiana University, Bloomington

E-mail address: fisherdm@indiana.edu

Department of Mathematics, Indiana University, Bloomington

E-mail address: nhkatz@indiana.edu

Department of Mathematics, Indiana University, Bloomington

E-mail address: kanamejun@gmail.com