NF-κB signaling and crosstalk during carcinogenesis

Björn L.D.M. Brücher1,2,3,* Florian Lang4, and Ijaz S. Jamall1,2,5

1 Theodor-Billroth-Academy*, Germany, USA
2 INCORE, International Consortium of Research Excellence of the Theodor-Billroth-Academy*, Germany, USA
3 Department of Surgery, Carl-Thiem-Klinikum, Cottbus, Germany
4 Department of Physiology, University of Tübingen, Tübingen, Germany
5 Risk-Based Decisions Inc., Sacramento, CA, USA

Received 11 December 2018, Accepted 9 April 2019

Abstract – Transcription factors (TFs) are proteins that control the transcription of genetic information from DNA to mRNA by binding to specific DNA sequences either on their own or with other proteins as a complex. TFs thus support or suppress the recruitment of the corresponding RNA polymerase. In general, TFs are classified by structure or function. The TF, Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), is expressed in all cell types and tissues. NF-κB signaling and crosstalk are involved in several steps of carcinogenesis including in sequences involving pathogenic stimulus, chronic inflammation, fibrosis, establishment of its remodeling to the precancerous niche (PCN) and transition of a normal cell to a cancer cell. Triggered by various inflammatory cytokines, NF-κB is activated along with other TFs with subsequent stimulation of cell proliferation and inhibition of apoptosis. The involvement of NF-κB in carcinogenesis provides an opportunity to develop anti-NF-κB therapies. The complexity of these interactions requires that we elucidate those aspects of NF-κB interactions that play a role in carcinogenesis, the sequence of events leading to cancer.

Keywords: z-SMA, AFT3, AMPK, ANXA2, AP1, APO-1, BAG-1, Barrett, Bcl-2, Bp, Cancer, Carcinogenesis, CCC, CD54, CD95, CD106, cdk2, CDX2, Cell transition, Chronic inflammation, Cox-2, cRel, CXCL8, Cyclin B1, Cyclin D1, C/EBPβ, EBV, ECM, EGFR, ELAM-1, Epstein-Barr virus, E-selectin, Fas, Fibrosis, GC-C, GERD, Ghrelin, GHS-R, GM-CSF, GTPase, HBV, HBx, HCC, HCV, Helicobacter, Hepatitis, Hiap, HPV, H-ras, hTERT, ICAM-1, IκBα, IκBβ, IxBγ, IxBε, IκB kinase (IKK) complex, IKK1, IKK2, IKKγ, IL-6, IL-8, IL-13, IL-β1, iNOS, Lysyl oxidase, LOX, LOXL2, MAP2K1, Metallo proteinase, Metaplasia, Microbiome, MMP1α, MMP, MMP-1, MMP-9, Morbid obesity, Mycoplasma, M. fermentans, M. hominis, M. penetrans, M. penetrans, NEMO, Nuclear factor kappa-light-chain-enhancer of activated B cells, NF-κB, p50, p52, p53, p65, p100, Pathogenic stimulus, PLA2, PRDM1, RelA, RelB, Remodeling, RHD, Schistosomiasis, S. japonicum, S. mansoni, SOCS2, STAT3, TGF-β1, TF, TLR, TNFα, TRAF1, TRAF2, TTF, UPR, VCAM-1, VEGF.

Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)

DNA transcription factors

Transcription factors (TFs) are proteins that control the transfer of genetic information from deoxyribonucleic acid (DNA) to messenger ribonucleic acid (mRNA) by binding to specific DNA sequences. TFs are effective by themselves or in conjunction with other proteins as a complex. TFs stimulate or suppress the recruitment of the corresponding ribonucleic acid (RNA) polymerase. In general, TFs are classified by structure or function [1]. The complexity of transcription is reflected by the fact that a tumor suppressor protein, such as protein 53 (p53), can act as an intracellular ligand (autocrine)-dependent functional TF and can be activated by small intracellular molecules. Other TFs are inactive and become activated only after translocation into the nucleus e.g., nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB).

NF-κB discovery and structure

NF-κB is a TF which occurs in all cell types and tissues [2]. NF-κB was discovered at the Salk Institute by Ranjan and Harinder Singh in David Baltimore's lab in 1986 [3]. The hidden form of NF-κB within the cytoplasm of unstimulated cells was discovered by Patrick Baeuerle in 1988 [4] who also reported the purification of an inhibitor [5] as previously reviewed [6, 7].
The NF-κB protein superfamily family [8] has a DNA-binding/dimerization termed the Rel homology domain (RHD) [9] and consists of NF-κB1 protein 50 (p50) and its progenitor protein 105 (p105), NF-κB2, protein 52 (p52) and its progenitor protein 100 (p100), transcription factor p65 encoded by RELA gene (RelA, protein 65, p65), transcription factor encoded by the RELB gene (RelB), and proto-oncogene, c-Rel, encoded by REL gene (cRel, Rel) and Drosophila Dorsal and Dif. NF-κB inhibiting proteins are IκB proteins (nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor protein) such as IκBα, IκBβ, IκBγ, IκBε, and Drosophila Cactus.

The NF-κB-IκB complex is located in the cytoplasm in its inactive latent form. The IκB kinase complex (IKK) with its regulating subunits nuclear factor kappa-B kinase 1 (IKK1, inhibitor of nuclear factor kappa-B kinase subunit alpha, IKK-α), inhibitor of nuclear factor kappa-B kinase subunit beta, IKKβ), and the framework protein NF-κB essential modulator (NEMO, inhibitor of nuclear factor kappa-B kinase subunit gamma, IKKγ) phosphorylates and degrades IκB resulting in NF-κB dimers with their translocation into the nucleus. The major dimer in cells is the specific p50-ReLA heterodimer.

NF-κB controls many genes involved in inflammation and in cancer and directly influences cell proliferation, cell survival, and can decrease apoptosis via tumor necrosis factor alpha (TNFα) receptor-associated factor 1 and 2 (TRAF1, TRAF2).

NF-κB inhibiting IκB proteins

NF-κB is present in the cytoplasm as “a heterotrimer consisting of p50, p65, and inhibitory subunit of NF-κB (IκB) α subunits” (reviewed in [10]). NF-κB builds a complex with inhibitory IκB proteins such as IκBα, IκBβ, IκBε, IκBγ, p100, p105, B-cell lymphoma 3 (Bcl3), or the Toll-like receptor (TLR)-inducible nuclear IκB protein IκBNS, and this complex is maintained within the cytoplasm in its inactive form [11, 12]. Activating signaling pathways promote the degradation of IκB, mediated by the IKK complex consisting of the kinases IKKα (IKK1) and IKKβ (IKK2) and a regulatory scaffolding protein, NEMO (IKKγ). In this manner, IκB is phosphorylated resulting in its degradation with translocation of NF-κB dimers into the nucleus to affect the target gene expression. After phosphorylation of the subunit of IκBz and its degradation on the p50–p65 heterodimer, phosphorylation of the p65 molecule occurs with binding to a specific DNA-sequence, resulting in gene transcription. IκBn can regulate inflammation by inhibiting the induction of TLRs-dependent genes through modulation of NF-κB [13].

Canonical and non-canonical NF-κB signaling

Canonical pathways are “idealized or generalized pathways that represent common properties of a particular signaling module or pathway, and accordingly categorizes the genes in specific canonical pathways and networks” [14].

The canonical (Fig. 1) and non-canonical NF-κB (Fig. 3) pathways have been extensively reviewed [11, 12]. Both, canonical (classical) and non-canonical (alternative) pathways in IKK/NF-κB signaling influence whether a cell lives or dies [11].

In the canonical pathway, various cytokines such as TNFα, interleukin 1 beta (IL-1β), and viruses or TLRs are involved in inflammatory and immune-mediated responses. These include increases in TNFα, IL-β1, interleukin 6 (IL-6), granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin 8 (IL-8, chemokine (C-X-C motif) ligand 8, CXCL8), macrophage inflammatory protein 1 alpha (MIP1α, chemokine (C–C motif) ligand 3, CCL3), vascular cell adhesion molecule 1 (VCAM-1, cluster of differentiation 106, CD106), intercellular adhesion molecule 1 (ICAM-1, cluster of differentiation 54, CD54), E-selectin (endothelial-leukocyte adhesion molecule 1, ELAM-1, CD62 antigen-like family member E, CD62E, leukocyte-endothelial cell adhesion molecule 2, LECAM2), or nitric oxidase synthase (iNOS), cyclooxygenase 2 (Cox-2) and phospholipase A2 (PLA2).

The non-canonical NF-κB signaling is dependent on IKKx homodimers. It is activated by lymphotxin β receptor (LTβR), B cell-activating factor belonging to the TNF family (BAFF), cluster of differentiation 40 (CD40) ligand (CD40L), and cluster of differentiation 154 (CD154)-induced expression of interferon regulatory factor 3 (Irf3) or retinoid X receptor alpha (Rxra, nuclear receptor subfamily 2, group B, member 1, NR2B1) [11]. LTβR can induce apoptosis in both the canonical and non-canonical pathways [15]. Knocking down Irf3 or the stimulator of interferon genes (STING) results in reduced inflammation and apoptosis modulated by NF-κB [16], and Irf3 inhibition results in decreases of the transforming growth factor beta 1 (TGF-β1)-induced proliferation of hepatic stellate cells (HSC) [17].

Recently, a novel mechanism of NF-κB activation B-cell receptor (BCR) was reported which could be relevant in B-lymphoproliferative disorders: NF-κB p50/p65 was rapidly activated (within 30 s) by anti-IgM stimulation of BCR through a Bruton’s tyrosine kinase (Btk)-dependent and IKK-independent mechanism [18]. Btk expression is increased and required for EGFR-induced NF-κB activation with poor prognosis in glioma [19]. Furthermore, Btk membrane translocation is observed in multiple meloma [20] as it regulates Toll-like receptor 7 and 8 (TLR7/8) induced TNF transcription through NF-κB [21]. Inhibiting Btk by the small molecule and inhibitor of tubulin polymerization, KS99, results in the inhibition of tumor growth in multiple myeloma and osteoclastogenesis in vivo [22].

NF-κB polymorphism

Blood samples from 565 healthy volunteers in a Turkish cohort were tested to determine the frequency of polymorphisms. Polymerase chain reaction (PCR) amplification was performed followed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). This revealed that NF-κB1-94ins/delATTG and NF-κBIA...
3′ UTR polymorphisms were, in general, quite similar to other populations in Germany, Sweden, Czechoslovakia, and Australia [23]. Wang et al. tested 564 gastric cancer patients and 566 healthy controls to see if the polymorphism rs2233408 T/C genotype in the promoter region of IkBz was associated with increased risk for gastric cancer [24], and found that “IkBz rs2233408 T heterozygotes were associated with reduced gastric cancer risk”. Stable expressions of Runt-related transcription factor 3 (RUNX3)/protein 33 (p33) were associated with a 1.9-fold elevation in NF-κB transcriptional activity [25]. In 1010 gastric cancer patients compared to 1500 healthy controls in Guangdong, China, IkBz rs17103265 deletion homozygote was identified as a novel risk factor for gastric cancer [26]. This was followed by the association of homozygous rs4648068 GG with an increased risk of gastric cancer in the Han Chinese population [27]. Lo et al. correlated polymorphisms of NFKB1 promoter with susceptibility to gastric cancer in aged patients [28].

Ubiquitination and degradation

The process of adding ubiquitin known as “ubquitination” is used to mark proteins or protein complexes for degradation through covalent binding by monoubiquitin or polyubiquitin chains with different enzymes such as ubiquitination through covalent binding by monoubquitin or polyubquitin which is involved in distinct cellular functions, e.g., signaling a molecule for degradation by the proteasome [29–35].

Because of their discovery of protein-regulating systems, the 2004 Nobel Prize for chemistry was awarded to Aaron Ciechanover, Avram Hershko, and Irwin Rose [36–39].

Ubiquitin-mediated proteolysis of IkBs is irreversible, and ubiquitination and degradation of the inhibitors of NF-κB is an important component of transcriptional activation (reviewed in [40]).

NF-κB and cancer

NF-κB association with precancerous lesions and cancer

Increased constitutive NF-κB activity has been reported in precancerous lesions of the skin [41, 42], breast [43], head and neck [44, 45], Barrett’s esophagus [46], colon adenoma [47], chronic pancreatitis [48], colitis [49, 50], in premetastatic lung [51] and in the stroma of precancerous lesions of colon adenoma [52].

Furthermore, NF-κB has been reported in a number of adenocarcinoma cell lines [53] and NF-κB activity was associated with cancers of the breast [54–60], ovaries [61, 62], endometrium [63], prostate [64–66], thyroid [67–70], pancreas [71–74], squamous cell carcinoma (SCC) [75, 76], esophagus [77–79], stomach [80], colorectum [61, 81–83], liver [84–86], kidneys [87–89], bladder [90], lymphoma [91–95], leukemia [96–98], multiple myeloma [99–102], brain [103–105], melanoma [106–109], and sarcoma [110–112]. However, NF-κB signaling in carcinogenesis is complex and depends on which subunits are involved: NF-κB2/p52 seems to be required for colitis-associated adenoma while c-Rel-induced signaling is involved in colonic epithelial cell turnover [113]. Furthermore, there is a difference between acute versus chronic inflammation. NF-κB can have anti-inflammatory effects in an acute, chemically induced colitis model with IL-β1 suppression and IKKβ inhibitors could potentially serve as a therapeutic option in such cases [49], but IKKβ is needed for healing after colitis [114] and “NF-κB2/p52 is necessary for the development of colitis, whilst c-Rel-mediated signalling regulates colonic epithelial cell turnover” [113].

In vitro NF-κB cancer model

For about 25 years, increased NF-κB activity has been recognized to be associated with cancer development in transgenic mice [115]. For example, the chemotherapeutic efficacy of cisplatin can be enhanced by inhibiting NF-κB in vitro and in vivo [116]. In 2014, an in vitro model of NF-κB-driven carcinogenesis was published [117]. The authors used a cell-based phenotypic readout and isolated 12 genetic elements that induced NK-κB activity (NF-κB-activating genetic elements, NASPs) of lentiviral libraries encoding 20 or 50 amino acid-long polypeptides “none of which was previously associated with NF-κB activation, were isolated from libraries of 200 000 peptides derived from 500 human extracellular proteins”. By selective knockdown experiments, it was shown that isolated NASPs “act either via or upstream of TNF receptor-associated factor 6” (TRAF6). Growth in mice or rat embryo fibroblasts was unaffected after NASP transduction but co-expression with Ras (protein superfamily of small guanosine triphosphate hydrolase enzymes (GTPases) by GTP hydrolase enzyme, transforming protein p21 (H-ras, H-RasV12) resulted in cell transformation. Constitutive activation of NF-κB attenuated p53 and promoted carcinogenesis. In contrast, activated K-Ras, but not H-Ras or N-Ras was assumed to imitate tumors of endodermal origin via stem cell expansion [118] though this could be related to the model used. Buchanan et al. showed that phospholipase D1 (PLD1) activity in H-RasV12 is required for transformation [119].

NF-κB and cancer aggressiveness

Tumor aggressiveness in gastric cancer was shown by investigating 90 human cancer tissues versus 50 nonmalignant specimens. A higher NF-κB expression in cancer tissue versus normal mucosa (31% vs. 4%, p < 0.0001) was found along with activation of metalloproteinase 9 (MMP-9), IL-β1, and IL-8 in AGS cells [120]. Another example of NF-κB signaling and chronic inflammation was provided by Kwon et al. [121] who demonstrated that the Vitamin D(3) upregulated protein 1 (VDUP1) with its tumor suppressive effect was shown in VDUP1 knockout (KO) revealing that VDUP1 negatively regulates Helicobacter pylori (H. pylori)-associated gastric cancer by inhibiting the
induction of TNFα, NF-κB, and Cox-2, and by disrupting cell growth.

Combining non-steroidal anti-inflammatory drugs (NSAIDs) with NF-κB inhibitors increased apoptosis in different ovarian cancer cell lines SKOV-3, CAOV-3, SW626 and 36M2 [122].

NF-κB signaling and crosstalk in carcinogenesis and pathogenic stimulus

The importance of NF-κB signaling in carcinogenesis was emphasized in the proposed new paradigm for the origin of the majority of cancers [123, 124].

Viruses

Increased NF-κB activity has been associated with pathogenic stimuli such as Epstein-Barr virus (EBV) [125], Hepatitis B virus (HBV) [126], and Hepatitis C Virus (HCV) [127].

Hepatitis B viral protein (HBx) is a small transcriptional transactivator essential for infectivity and which activates NF-κB signaling in the cytoplasm [128] via deactivation of two NF-κB inhibitors [129], phosphorylation of IkBα inhibitor and NF-κB1 (p50) precursor inhibitor protein p105 (Fig. 2) with reduction of IkBα stability, and decreased NF-κB1 (p50), resulting in the accumulation of NF-κB within the nucleus.

HBV and HCV trigger chronic inflammation with NF-κB activation, which in turn, is associated with hepatocellular carcinoma (HCC) [130–132]. Despite HBV suppression, HCC development is still observed in patients with residual hepatitis B surface antigen (HBsAg) titers [133, 134] reviewed in [135]). Patients with spontaneous HBV DNA clearance and residual high HBsAg titers also show increased HCC risk [136] reviewed in [135].

HBV induces an unfolded protein response (UPR), NF-κB activation [136], signal transducer and activator of transcription 3 (STAT3) [137], and IL-8 [138]. HBsAg, together with inhibition of NF-κB, decreases UPR, binding immunoglobulin protein (BiP), 78 kDa glucose-regulated protein, GRP-78, heat shock 70 kDa protein 5, HSPA5), Cyclin E, cyclin-dependent kinase 2 (cdk2), and increases cytosine-cytosine-adenosine-adenosine-thymidine (CCAAAT)/enhancer binding protein homologous protein (CHOP), activating transcription factor 3 (APF3), Cyclin D1 which results in a 100% incidence of HCC [135].

Human papilloma virus (HPV) infection with HPV Type 16 (HPV16) appears to be responsible for some 18% of oral cancers [139] and has been shown to modulate NF-κB signaling [140]. This is associated with the p65 NF-κB complex formation and consequent heterodimerization of p50/p65 which is thought to be one reason why disease outcome is better in patients with HPV-positive oral cancers than in patients with HPV-negative oral cancers [141]. HPV16 E6 protein activates NF-κB signaling via p50, NF-kappa-B-inducing kinase (NIK), and TRAF-interacting protein [142] while human fibroblasts expressing E7 protein decreases pro-caspase 8 activation, and can partially protect from apoptosis by activating the TNF receptor 1-related cytokine receptor, first apoptosis signal receptor (Fas, FasR, apoptosis antigen 1, APT, cluster of differentiation 95, CD95) [143].

HPV-negative tumors are associated with STAT3/pSTAT3 together with NF-κB “irrespective of the presence or absence of activator protein 1 (AP1)” while “AP1 and NF-κB lacking involvement of STAT3” are associated in HPV-positive tumors [144].

Inhibition of NF-κB and AP1 transcription factors by the T-cell–specific inhibitor, 2-chloro-4-(trifluoromethyl)-pyrimidine-5-N-(39,59-bis[trifluoromethyl]phenyl)-carboxamide (SP100030), suppressed fibrosis in the lung by decreasing coagulation, and decreasing collagen deposition in the lung [145].

Another important example is the first apoptosis signal receptor (Fas, FasR, apoptosis antigen, APO-1, APT, cluster of differentiation 95, CD95) which is thought to be one reason why decreased NF-κB activity has been associated with increased HCC risk [135]). Patients with spontaneous HBV DNA clearance and residual high HBsAg titers also show increased HCC risk [136] reviewed in [135].

Fas and FasR, apoptosis antigen 1, APT, cluster of differentiation 95, CD95) [143]. Fas is a cell surface receptor whose activation results in apoptosis [146]. NF-κB can directly regulate Fas-mediated apoptosis by acting as a Fas transcriptor activator in human colon carcinoma cells and in mouse embryonic cells (MEFs). Thus, an anti-NF-κB therapy might suppress Fas-mediated apoptosis and impair natural immune anti-cancer cell suppression [147] or act via the regulation of caspase-4 [148].

Stromal fibroblasts in HPV infection acts via IL6/CCAAT/enhancer-binding protein β (C/EBPβ) signaling to recruit T helper 17 cells (Th17) with consequent chronic inflammation during carcinogenesis [149]. C/EBPβ signaling together with adenosine early region 1A (E1A) binding protein (p300, EP300) induces IL-8/CXCL8 expression in lung cancer [150] and promotes NF-κB triggered invasion and cell migration in renal cancer [151]. Metastasis by migration via C/EBPβ also occurs by TNFα-induced matrix metalloproteinase 1 (MMP-1)/matrix metalloproteinase 3 (MMP-3) expressions in a p38 MAPK-dependent manner [152]. Interestingly, knockdown of C/EBPβ inhibits p65-NF-κB signaling resulting in protection against fibrosis in cardiac myocytes [153] and in adipocyte-mediated chronic inflammation via mitogen-activated protein kinase kinase (MEK, MAPK2, MAPKK), C/EBPβ with NF-κB/RelA inducing 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) [154].

Human papilloma virus type 8 (HPV8) induces matrix metalloproteinase 14 (MMP-14, MT1-MMP) in the stroma and cells of cutaneous tumors [155], but the exact role of HPV-induced fibrosis in HPV-triggered cancers remains to be elucidated. Human ovarian carcinoma cell line, SKOV-3, transfected with adenosine early region E1A protein revealed increased sensitivity to radiation-induced cell death for which NF-κB modulation and/or inactivation is required [156].

NF-κB signaling is associated with G2/mitotic-specific cyclin-B1 (Cyclin B1), Cyclin D1, human inhibitor of apoptosis protein (HIAP), BAG family molecular chaperone regulator 1 (BAG-1), transcription termination factor (TTF),
and fibronectin in radioresistance of p53-inactive human keratinocytes [157].

Bacteria

Enteroinvasive bacteria induce chronic inflammation [158–160] through the activation of cytokines such as IL-8, iNOS, and Cox-2 [161]. Enteroinvasive bacteria can also suppress NF-kB activation and expression of IL-6 and IL-8 [162, 163].

NF-kB activation via DNA and RNA from bacteria and viruses likely occurs through the promotion of inflammatory cytokines such as TNF, IL-6, inactive IL-β1 precursor (pro-IL-1 β), intracellular NOD-like receptor pyrin domain containing 3 (Nlrp3), IFN, TLRs [164–167], lipopolysaccharide (LPS) [168] mediated by cluster of differentiation 14 (CD14) [169].

Helicobacter pylori was shown to be actively involved in stimulating IL-8 in gastric cancer [170]. Increased NF-kB binding activity is observed with elevated IL-8 levels from the more virulent *H. pylori* strains [171, 172]. In a series of 289 biopsies, an association between increased NF-kB activity was reported in *H. pylori* virulence factor (cagA) positive metaplasia, dysplasia, and in gastric carcinoma [173]. *H. pylori* infected human gastric epithelial cells induce matrix metalloproteinase 7 (MMP-7) through activation of the Ras homolog gene family (Rho) and the subfamily of the Rho family of GTPases (Rac). Here Ras homolog gene family member A (RhoA) activates NF-kB and AP1, while Rac activates NF-kB, but not AP1 [174] so the effects are selective.

The *H. pylori* virulence factor CagA promotes chronic inflammation and proliferation through phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling with consequent activation of beta-catenin and NF-kB [175]. The Helicobacter species, *H. bilis*, in the human bile duct cancer cell line, HUCCT-1, activated NF-kB activity independent of the tumor stage. This was associated with production of vascular endothelial growth factor (VEGF) [176] and was later shown in extrahepatic cholangiocellular carcinoma (CCC) specimens to occur especially within the common bile duct [177].

Mycoplasma

Mycoplasma infection was shown to induce NF-kB activation, p53 suppression, and promotion of Ras-induced cell transformation [178, 179]. Infecting the gastric mucosa of immunodeficient mice with the prokaryotic intracellular parasite, *Mycoplasma sp.*, induced chronic inflammation and facilitated malignant cell transformation with increased expression of p53, p21, B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax), transforming protein p21 (GTPase HRas, H-ras), B-cell lymphoma 2 (Bcl-2), transcription factor p65 (p65, nuclear factor NF-kappa-B p65 subunit) and TNFα together with upregulated NF-kB signaling, which by itself elicits resistance to apoptosis [180].

Mycoplasma hyorhinis (*M. hyorhinis*) expresses the *M. hyorhinis* membrane protein p37 and binds to gastric cancer cells, MGC803 and AGS, in a time- and dose-dependent manner as shown in the cell ELISA, which is p37-dependent mediating the p37/annexin II (ANXA2) interaction and important for the host-receptor mediating *M. hyorhinis* infection.

EGFR increases ANXA2 phosphorylation and facilitates *M. hyorhinis* infection. This increases expression of NF-kB target genes IkBz, Cox-2, MMP-1, PR domain zinc finger protein 1 (PRDM1), suppressor of cytokine signaling 2 (SOCS2), dual specificity mitogen-activated protein kinase kinase 1 (MAP2K1) contributing to cell invasiveness [181]. Furthermore, the direct induction of the LTβR and non-canonical NF-kB signaling has recently been demonstrated [182].

Tsai et al. found unusually high frequencies of *Mycoplasma fermentans* (*M. fermentans*) and *Mycoplasma penetrans* (*M. penetrans*) in acquired immune deficiency syndrome (AIDS) patients that could not be associated with immediate (acute) transformation of cells into cancer cells [183]. Investigating the mouse fibroblast cell line, C3H cells, a persistent infection with *M. fermentans* resulted in cell phenotypes with malignant characteristics, which were more pronounced with prolonged infection. Furthermore, the authors reported that this phenomenon was dependent on the number of passages: mycoplasma needed one week per passage, at least six passages were necessary and until the 11th passage the malignant transformation was reversible if anti-mycoplasma therapy was implemented. In contrast, the malignant state was irreversible if mycoplasma infection persisted until the 18th passage. Importantly, no chromosomal loss or translocations were observed during the reversibility window. In regards to our knowledge today, the authors drew the incorrect conclusions when they assumed that genetic instability was most likely caused by somatic mutations. The important take away from this investigation was that despite the long latency, a mycoplasma infection triggered development of malignant cells, that there was a reversible stage which could be eradicated, and which speaks against hypothesizing the need for mutations or other genetic changes at least within a window of time. Nonetheless, after another long period of persistent infection, signs of genetic instability were reported.

This also explains why locally advanced cancers reveal mutations or other genetic changes and why recurrent cancers show chromosomal aberrations [184] and even why reports of mycoplasma-infected cancer cells were correctly observed to show chromosomal aberrations [185, 186] but incorrectly interpreted in assigning genetic changes as being causal to the cancer.

Tsai et al. showed almost 50 years ago that latency, as well as multiple cell passages, were mandatory events in carcinogenesis [183].

In 194 Nigerian women tested for *high-risk human papillomavirus* (hrHPV), a significant association with *Mycoplasma hominis* (*M. hominis*) was observed with an OR of 8.78 (95% Confidence Interval, 1.49–51.6, *P* = 0.01) and human immunodeficiency virus (HIV) positive females had a three-fold increase in OR in the presence of persistent hrHPV infection [187].
As multiple biological stimuli may be involved during carcinogenesis, it seems that we are at the beginning of creating a focus in cancer research by exploring the role played by physiological and chemical stimuli [123, 124, 188–191].

Schistosomiasis

Schistosomula are the parasitic stage of *Schistosomiasis* residing in the lungs and retained in capillaries responsible for initiating inflammatory response and leukocyte recruitment [192]. Endothelial cells (ECs) are activated by *Schistosoma mansoni* (*S. mansoni*) with schistosomula gaining an anti-inflammatory phenotype with reduction of VCAM-1 and E-selectin in TNFα-stimulated ECs mediated by cyclic 5′ adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling [193] which, in turn, is affected in reducing NF-κB transcriptional activity (and not by blocking NF-κB) [194] through PKA-induced cAMP response element-binding protein (CREB) phosphorylation. This results in the removal of the transcriptional co-activator CREB binding protein (CBP) from the NF-κB complex ([195] reviewed in [194]).

RNase resistant double-stranded RNAs (dsRNAs) from *Schistosomiasis mansoni* activates toll like receptor 3 (TLR3) with consequent phosphorylation of signaling transducer and activator of transcription 1 (STAT1) together with consequent phosphorylation of signaling transducer and activator of transcription 1 (STAT1) together with consequent phosphorylation of NF-κB transcriptional activity ([196] reviewed in [194]).

The association of *Schistosomiasis*-induced cancers and fibrosis has long been reported in liver cancers such as HCC and CCC [197, 198] but under-appreciated in the literature. Anti-*Schistosomiasis* therapy improves and ameliorates fibrosis via NF-κB signaling [199, 200]. The application of Boswellic acid (BA)-containing extracts attenuated *Schistosoma japonicum* (*S. japonicum*)-induced fibrosis via decreases in NF-κB signaling and subsequent decreases in VEGF, TNFα, and monocyte chemoattractant protein 1 (MCP-1, chemokine (C-C motif) ligand 2, CCL2) [201]. Other anti-helminthic drugs, such as niclosamide, target NF-κB, Wnt/β-catenin, Notch, reactive oxygen species (ROS), mammalian target of rapamycin complex 1 (mTORc1), and STAT3 [202]. Paeoniflorin (PAE) decreases interleukin 13 (IL-13), NF-κB, TGF-β1 and alpha-smooth muscle actin (α-SMA, alpha-actin 2) expression resulting in a decrease of fibrosis [199].

Although increases of lysyl oxidase (LOX) were shown in murine *Schistosomiasis* some 25 years ago [203], an anti-LOX approach was not investigated. LOX is expressed in *Escherichia coli* (*E. coli*) [204]. Lysyl oxidase homolog 2 (LOXL2) [205] was found in human lung fibrosis, bronchiolo-alveolar carcinomas, and in *situ* ductal breast tumors [206]. In *S. mansoni*-infected mice and early stages of liver granuloma, the LOX gene and LOX-like gene (LOXL) were upregulated. LOXL2 promotes zinc finger protein SNAI1 (Snail) and decreases E-cadherin, both important for metastasis. Investigations of the extracellular matrix (ECM) by atomic force microscopy showed that LOXL2 does not affect ECM properties [207]. Incubating oral epithelial cells with the natural di-thiol z-Lipoic acid was shown “to modulate periodontal bacterial induced NF-κB activation, pro-inflammatory gene expression and cytokine production” [208].

Barrett’s, reflux and bile acid

The development of Barrett’s intestinal metaplasia is multifactorial in etiology [209]. The incidence rates vary between 0.19 and 0.33% ([210, 211] reviewed in [212]) while in 1997 the prevalence was reported as being 19.8% in patients with heartburn [213]. Although it was previously assumed that Barrett’s originates from intestinal metaplasia, Takubo et al. showed that small lesions of Barrett’s are surrounded by non-intestinalised epithelium and not by intestinal metaplasia [214], a finding that was subsequently reproduced [215, 216]. On the one hand, intestinal metaplasia shows higher rates of molecular aberrations compared to non-intestinal metaplasia [217] while on the other, even *The Cancer Genome Atlas* (TCGA) which consists of approximately 10 000 specimens representing 33 types of cancer [218] and the most recent Mutational Assessment of iClusters [219] failed to provide evidence of one unique genetic signature for the majority of Barrett’s cancers. Despite this, the contributors to Barrett’s are assumed to be gastro-esophageal reflux disease (GERD), hiatal hernia, and alcohol [212], all of which have just one condition in common: chronic inflammation.

Babar et al. investigated Barrett’s patients who underwent anti-reflux surgery versus proton pump inhibitor (PPI) treatment and investigated endoscopic biopsy specimens from 2 cm below the squamo-columnar junction for NF-κB, cytokines, and growth factors [220]. “Mean activated NF-kappaB p50 and p65 subunits, interleukin (IL)-1αlpha, IL-1beta, and interleukin-8 levels, were significantly (P < 0.05) lower in the surgically treated group” and led the authors to conclude that anti-reflux surgery may create a less inflammatory environment.

Bile acids activate farnesoid X receptor (FXR)/nerve growth factor (NGF)/transient receptor potential vanilloid 1 (TRPV1) axis through mucosal mast cell-to-nociceptor signaling inducing visceral hypersensitivity in a rat model investigating diarrhea-predominant irritable bowel syndrome (IBS-D) [221].

In obesity, FXR additionally promotes inflammation in diet-induced obese mice through a dysregulation of homeostasis of pro- and anti-inflammatory signaling [222]. Otherwise, FXR activation occurred in high-fat diet (HFD) fed mice with increased proinflammatory leukotrienes B4 (LTB4) and lower (~3-fold) anti-inflammatory epoxyeicosatrienoic acids (EETs) [223]. FXR induced inflammation can be suppressed by the novel FXR-agonist, dioscin, and bile acids activate farnesoid X receptor (FXR)/nerve growth factor (NGF)/transient receptor potential vanilloid 1 (TRPV1) axis through mucosal mast cell-to-nociceptor signaling inducing visceral hypersensitivity in a rat model investigating diarrhea-predominant irritable bowel syndrome (IBS-D) [221].

In obesity, FXR additionally promotes inflammation in diet-induced obese mice through a dysregulation of homeostasis of pro- and anti-inflammatory signaling [222]. Otherwise, FXR activation occurred in high-fat diet (HFD) fed mice with increased proinflammatory leukotrienes B4 (LTB4) and lower (~3-fold) anti-inflammatory epoxyeicosatrienoic acids (EETs) [223]. FXR induced inflammation can be suppressed by the novel FXR-agonist, dioscin, and bile acids activate farnesoid X receptor (FXR)/nerve growth factor (NGF)/transient receptor potential vanilloid 1 (TRPV1) axis through mucosal mast cell-to-nociceptor signaling inducing visceral hypersensitivity in a rat model investigating diarrhea-predominant irritable bowel syndrome (IBS-D) [221].

In obesity, FXR additionally promotes inflammation in diet-induced obese mice through a dysregulation of homeostasis of pro- and anti-inflammatory signaling [222]. Otherwise, FXR activation occurred in high-fat diet (HFD) fed mice with increased proinflammatory leukotrienes B4 (LTB4) and lower (~3-fold) anti-inflammatory epoxyeicosatrienoic acids (EETs) [223]. FXR induced inflammation can be suppressed by the novel FXR-agonist, dioscin, and bile acids activate farnesoid X receptor (FXR)/nerve growth factor (NGF)/transient receptor potential vanilloid 1 (TRPV1) axis through mucosal mast cell-to-nociceptor signaling inducing visceral hypersensitivity in a rat model investigating diarrhea-predominant irritable bowel syndrome (IBS-D) [221].
dose-dependent in that it appears to be dependent on how strongly the homeostasis is disrupted [226, 227]. As shown, NGF stimulates T-lymphocyte-dependent basophilic cell differentiation in vivo at sites of allergic tissue inflammation [228] as NGF is also often a secondary upregulated endogenous factor [229].

The induction of NF-κB through NGF works through the p75 receptor with an anti-apoptotic effect in Schwannoma cells [230] contributing to survival of NGF-dependent sympathetic neurons [231]. Here, NGF is contrary to TNFz, as the Bcl-x survival gene expression requires tyrosine phosphorylation of IκBalpha [232] explaining the disruption of homeostasis of the NGF-TNFz axis is of importance. TNFz regulates the response to NGF in neuroblastoma cells [233].

Upregulation of TRPV1 is mediated by the p38 mitogen-activated protein kinase (MAPK) and NF-κB signaling pathways by urban particulate matter (UPM) resulting into chronic inflammation [234]. Local acidic microenvironment incudes TRPV1 activation with consequent NF-κB activation with observed lymphangionesis in lymphatic endothelial cells (LECs) [235].

Bile acid is associated with homeobox protein CDX-2 (Cdx2) expression, a transcription factor for the intestine-specific tumor suppressor guanyl cyclase (GC-C), and mediated by NF-κB. The increase in Cdx2 by deoxycholate is associated with NF-κB nuclear translocation. This was interpreted as bile acid-induced intestinal metaplasia involving Cdx2 and NF-κB [236]. Deoxycholic acid shows a non-linear dose response relationship for DNA damage only above doses of 100 mM and even higher in esophageal OE33 cells with a similar dose-response association to NF-κB activation but it was not possible to replicate the applied deoxycholic acid doses in the gene expression part of the study [237]. However, the close association of IL-8 and IκB gene expression levels, together with NF-κB activity was shown earlier (Figure 2 in [237] – not shown here).

The bile acid-induced chronic inflammation involves the suppression of EGFR and Akt, resulting in activation of the NF-κB- and the Cdx2 axis [238]. Human telomerase reverse transcriptase (hTERT) which upregulates Cdx2 through NF-κB signaling promoting intestinal metaplasia [239]. Wang et al. found increased activity of NF-κB and hTERT
when comparing normal gastric mucosa with dysplasia, intestinal metaplasia, and gastric cancer [240].

Morbid obesity

The association of morbid obesity and the role played by its different signaling pathways during carcinogenesis have recently been published [191] and the disruption of NF-κB signaling could present a therapeutic approach in the future [241].

The gastric peptide, Ghrelin, associated with food intake and energy balance was shown to be able to induce cell migration via its receptor growth hormone secretagogue receptor (GHS-R), Ca\(^{2+}\)/calmodulin-dependent protein kinase II (CaMKII), 5’ adenosine monophosphate-activated protein kinase (AMP)-activated protein kinase (AMPK), and the NF-κB signaling pathway in rat C6 and human U251 glioma cells [242].

NF-κB signaling and crosstalk in carcinogenesis and chronic inflammation

Chronic inflammation is extensively reviewed within this Special Issue (Fig. 4) [189, 190]. In summary, the inclusion of chronic inflammation within a multistep sequence to explain carcinogenesis revealed that continuously induced inflammatory cells such as monocytes, lymphocytes, plasma cells, fibroblasts, and mast cells (MCs), together with cell-communication and the crosstalk of two major components, TGF-β and LOX play important roles in the overall process [123, 124].

TGF-β1 activates Akt through PI3K followed by phosphorylation of glycogen synthase kinase-3β (GSK3β) promoting stability and activity of Snail. Furthermore, TGF-β1 activates the mechanistic targets of mTORc1 and mTORc2. Together with various inflammatory cytokines, such as TNFα, NF-κB is activated along with other transcriptional factors, such as hypoxia-inducible factor
alpha (HIF1α) and STAT3, resulting in decreases of E-cadherin and apoptosis. Nuclear protein 120 (p120) accumulation stimulated by TGF-β and LOX promotes cell division control protein 42 homolog (cdc42) activating Ras-related C3 botulinum toxin substrate 1 (Rac1), further decreasing E-cadherin and increasing matrix metalloproteinases (MMPs), fibronectin, vimentin, and twist-related protein 1 (TWIST), zinc finger E-box-binding homeobox 1 (ZEB1), and ZEB2 [123].

The proinflammatory cytokine, interleukin 32 (IL-32), induces NF-κB. Gastric cancer patients were more often IL-32 positive than negative for IL-32 expression (p < 0.01) and the five-year survival rate of the IL-32 positive group was 56%, significantly higher than the IL-32 negative group (p < 0.01). Multivariate analysis showed that IL-32 expression was an independent prognostic marker for gastric cancer (p < 0.05) after lymph node stage and metastasis [243].

NF-κB is constitutively found within the nucleus in B-lymphocytes and dendritic cells and inactive NF-κB is usually found in the cytoplasm where it can be triggered by inhibitory proteins, such as nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IkBα). Activation can also occur by cytokines, bacteria, viruses, or chemical agents, which result in phosphorylation (pNF-κB). Activation of NF-κB was also shown to be triggered by Cox-2 or IL-6 with increases in TNFα, IL-β1 as well as production of prostaglandin-E2 (PGE2, Figure 3. Non-canonical NF-κB signaling pathway. Simplified scheme of the non-canonical NF-κB signaling pathway. Nomenclature: RANKL: receptor activator of nuclear factor kappa-B ligand; RANK: receptor activator of nuclear factor kappa-B; TNFβ: tumor necrosis factor-beta, lymphotoxin; LTβR: lymphotoxin β-receptor; CD40L: cluster of differentiation 40 ligand, CD154, protein expressed on T-cells; CD40: cluster of differentiation 40, costimulatory protein on T-cells; BAFF: B-cell activating factor, tumor necrosis factor ligand superfamily member 13B; BAFFR: B-cell activating factor receptor; NIK: NF-κB inducing kinase; IKK complex: IκB kinase enzyme complex to upregulate the NF-κB signaling; IκBα: IκB kinase 1 (IKK1); IκBβ: IκB kinase 2 (IKK2); IκBγ: IκB kinase gamma; NEMO: NF-kappa-B essential modulator, regulatory scaffolding protein; P: phosphorylated; p100: NF-κB2 (p52) precursor protein; p52: NF-κB2; RelB: transcription factor RelB. Non-canonical NF-κB-IKK-complex is the inactive cytoplasmic form, consisting out of IκBα, p52 and RelB. The non-canonical NF-κB heterodimer is the active form entering into the nucleus consisting out of p52 and RelB.
Figure 4. NF-kB signaling and crosstalk during carcinogenesis – Special Issue: Disruption of homeostasis-induced signaling and crosstalk in the carcinogenesis paradigm “Epistemology of the origin of cancer”. Simplified scheme of NF-kB signaling and crosstalk during carcinogenesis in the Disruption of signaling homeostasis induced crosstalk in the carcinogenesis paradigm “Epistemology of the origin of cancer” consisting of a six-step sequence: (1) a pathogenic stimulus followed by (2) chronic inflammation from which develops (3) fibrosis with associated remodeling of the cellular microenvironment; and from these changes a (4) precancerous niche (PCN), a product of fibrosis, with remodeling by persistent inflammation, develops which triggers the deployment of (5) a chronic stress escape strategy and when this fails resolves it by (6) normal cell to cancerous cell transition (NCCCT) by PCN-induced cell matrix stress occurs. This figure was published in paper 2 of this Special Issue [189] and modified in accordance to NF-kB signaling and crosstalk.

Nomenclature: Common abbreviations are bold, followed by the common trivial names (if available) and (if available) by the name in accordance to the International Union of Pure and Applied Chemistry (IUPAC): PCN: precancerous niche; CSES: chronic stress escape strategy; NCCCT: normal cell to cancerous cell transition; SphK: sphingosine kinase isoform; S1P: sphingosine-1-phosphate; IL-6: interleukin 6; IL-8: interleukin 8; TNFα: tumor necrosis factor alpha; IFNγ: interferon gamma; ALOX: cyclooxygenase, arachidonate lipooxygenase; ALOX12: 12-lipoxygenase, 12-LOX, arachidonate 12-lipoxygenase 12S type; ALOX5: 5-lipoxygenase, 5-LOX, arachidonate 5-lipoxygenase; 12-HETE: 12-hydroxyeicosatetraenoic acid; LTC4: leukotriene C4, (5S,6R,7E,9E,11Z,14Z)-6\{(2R)-2\}-[4S]-4-amino-4-carboxybutanoylamino\}-3\{carboxymethylamino\}-3\{oxopropyl\}\{sulfanyl\}5\-hydroxyicos-7,9,11,14-tetraenoic acid; LTD4: leukotriene D4, (5S,6R,7E,9E,11Z,14Z)-6\{(2R)-2\}-amino-3\{carboxymethylamino\}-3\{oxopropyl\}\{sulfanyl\}5\-hydroxyicos-7,9,11,14-tetraenoic acid; LTA4: leukotriene A4, 4\{(2S,3S)-3\{\[(1E,3E,5Z,8Z)\}-tetradeca-1,3,5,8-tetraenyl\]oxiran-2-yl\}butanoic acid; LTB4: leukotriene B4, (5S,6Z,8E,12R,14Z)-5,12-dihydroxyicos-6,8,10,14-tetraenoic acid; MD2: malondialdehyde, propanedial; TXA2: thromboxane A2, (Z)-7\{(1S,2S,3R,5S)-3\{\[(E,3S)\]-hydroxyoct-1-enyl\}]hept-5-enoic acid; CYP*: cytochrome P450 isomseros; 20-OH-PGE2: 20-hydroxy prostaglandin E2; 20-HETE: 20-hydroxyeicosatetraenoic acid; SNAIL: [sex-determining region Y (Sry) box-containing] transcription factor family; IL-β1: interleukin beta 1; IL-33: interleukin 33; ROS: reactive oxygen species; CXC CC: chemokine receptors; eSMAD: alpha-smooth muscle actin; miR21: micro RNA-21; p300: protein 300 (p300-CBP coactivator family); SP1: specificity protein 1; AP1: activator protein 1; E2F4/5: cytoplasmic complex of Smad3, retinoblastoma-like protein 1 (p107, RBL1), E2F4/5 and D-prostanoid (DP1); p107: retinoblastoma-like protein 1, RBL1; TGFβ: transforming growth factor beta; Pro-MMP-9: pro-matrix metalloproteinase 9; Pro-MMP-1: pro-matrix metalloproteinase 1; Pro-MMP-7: pro matrix metalloproteinase 7; SNAIL.
Caspase-associated recruitment domain 6 (CARD6)

CARDs are important in virus infections and in interactions with mitochondria and innate immunity [28]. CARDs exist as inactive zymogens and are activated with adaptor molecules containing CARD and involved in apoptosis and inflammation through NF-κB signaling [249]. The microtubule-associated protein, CARD6, increases receptor-interacting protein 1 and 2 (RIP1 and 2) triggering mitogen-activated protein kinase kinase kinase 3 (MEKK3) which induces NF-κB. CARD6 acts as a NF-κB modulator [250].

Kim et al. analyzed 100 gastric carcinoma (GC) and 58 esophageal squamous cell carcinoma (ESCC) tissues and 103 colorectal cancer (CRC) specimens and found increased CARD6 expression in ESCC (70.7%), GC (45%) and CRC (78.6%) compared to adjacent normal epithelium used as controls [251]. The GC expression was higher in intestinal type GC (77.8%) according to the Lauren classification compared to diffuse GC (20%).

Chronic inflammation by H. pylori increases Cox-2 [252] resulting in an increase of NF-κB, which also can be activated by Akt. This results in an increase of Snail and a decrease of E-cadherin resulting in compromised tissue integrity, increased cell detachment, and greater invasive potential, which serves as a precursor to metastasis [253].

Activation of NF-κB occurs by cysteine-rich 61 (Cyr61, CCN family member 1, CCN1) which promotes the expression of Cox-2 mRNA as suppression of Cyr61-mediated NF-κB activation, Cox-2 gene expression, and invasiveness can be achieved by applying function-neutralizing antibodies to alphavbeta3 (but not to alphavbeta5) [254, 255]. NF-κB activation signaling also occurs through the ubiquitin-proteasome pathway [256].

Lipopolysaccharide (LPS) of bacteria was previously shown to induce NF-κB in pre-B cells [3, 168] reviewed in [257].

There is extensive cytokine involvement in inflammation. An example is the sequential events in interleukin 1 (IL-1) binding to its receptor, thereby demonstrating that tyrosine kinase signaling is essential [258]: IL-1 triggers tyrosine kinase activity and NF-κB protein activation followed by NF-κB protein binding to NF-κB1 site in gro-promoter regions and simulating the growth-related oncogenes (gro).

The previous term “gro-oncogenes” is synonymous with gro1 oncogene, groz, KC, neutrophil-activating protein 3 (NAP-3), and melanoma growth stimulating activity alpha (MSGA-α) all of which are now summarized by the chemokine (C-X-C motif) ligand 1-3: CXCL1 (gro-α), CXCL2 (gro-β), and CXCL3 (gro-γ). The isolation and characterizing of the CXCL/gro-oncogenes occurred within the last three decades (reviewed in [250]): gro-α [260], gro-β and gro-γ [261, 262].

Increased gro-α expression in melanoma enhances “colony-forming activity and tumorigenicity” in nude mice [263] reviewed in [28]. The inhibition of NF-κB by sodium salicylate or nuclear factor NF-kappa-B protein 65 (p65) subunit (p65) RNA results in decreases of gro-α and gro-β expression [28].

The constitutive expression of gro-α and its receptor CXCR2 (gro-α receptor) was shown to be associated with metastatic potential, modulation of cancer cell proliferation, and with an invasive phenotype [264].

The chemokine family members “are divided into four main classes based on their cysteine (C) residue sequence: the CXC chemokines, the CC chemokines, the C chemokines, and the CX3C chemokines, in which X represents any amino acid” ([265] reviewed in [266]). Their roles are complex with the immunology in different cell compartments versus when carcinogenesis is completed and cancer cells result. Chemokines are therapeutically promising in inhibiting angiogenic CXC chemokine ligands and/or receptors as options to decrease cancer cell development or to decrease metastasis [267, 268].

Another ubiquitous protein is valosin-containing protein (VCP, CDC48) which can be stimulated by IL-6 and results in the progression of prostate cancer LNCaP cells through proto-oncogene serine/threonine-protein kinase (Pim-1) via signal transducer and STAT3 signaling [269]. Transfecting LNCaP cells for VCP overexpression resulted in an increase in cell proliferation, migration, and invasive behavior. VCP expression is also involved in the regulation of NF-κB activation [270, 271]. Yamamoto et al. found VCP to be an independent factor in multivariate analysis in GC patients for disease-free progression and overall survival, for lymph node metastasis (P < 0.01), and depth of invasion (P < 0.01) [272, 273].

A member of the IL-1 family, interleukin 33 (IL-33), is involved in carcinogenesis and high doses result in inflammation, mucosal atrophy and metaplasia in the gastric fundus in mice, with concurrent increases in IL-6 and interleukin 9 (IL-9) expression. IL-33 also binds to interleukin 1 receptor-like 1 (IL1RL1, ST2) and IL-1 receptor protein IL1RAP activating NF-κB and MAPK signaling ([274] reviewed in [275]).

Figure 4. (Continued) zinc finger protein SNAI1; MMP-1: matrix metalloproteinase 1; MMP-7: matrix metalloproteinase 7; MMP-2: matrix metalloproteinase 2; E-Cadherin: CAM 120/80 or epithelial cadherin, cadherin-1, epithelial cadherin; CXCL1: chemokine (C-X-C motif) ligand 1; Osm: oncostatin-M; P13K: phosphatidylinositol 3-kinase; FOXO3a: forkhead box protein O3a; p120: catenin delta-1, protein 120; Rho: Ras homolog gene family, member A; Rac1: Ras-related C3 botulinum toxin substrate 1; cdc42: cell division control protein 42 homolog; BIM: Bcl-2 interacting mediator of cell death; PUMA: BH3-only protein; CXCR4: C-X-C motif of chemokine receptor 4; cdk2: cyclin-dependent kinase 2; LOXL3: lysyl oxidase homolog 3; mTORc1: rapamycin complex 1; PAI1: Plasminogen activator inhibitor-1; NF-κB: nuclear factor kappa-light-chain-enhancer of activated B cells.
Exosomes derived from GC cells have the ability to sustain chronic inflammation by activating macrophages through phosphorylation of NF-κB in macrophages [276].

Knockdown of the cytoskeleton protein, Radixin, together with the NF-κB/Snail signaling resulted in an increase of E-cadherin with suppression of metastasis in human gastric carcinoma SGC-7901 cells [277]. Radixin is also involved in the transition of a normal cell to a cancer cell: Akt phosphorylates Ezrin (pEzrin), which is a member of the ERM (Ezrin/Radixin/Moesin) proteins. High levels of pEzrin together with increased vimentin, and decreased E-Cadherin levels, were seen in tongue squamous cell carcinoma patients with poor prognosis and metastasis [278]. Vimentin is induced by NF-κB and TGF-β1 and is an independent predictor of recurrence after radical prostatectomy [279].

NF-κB signaling and crosstalk during carcinogenesis in fibrosis and remodeling

The association of NF-κB signaling and fibrosis due to various pathogenic stimuli have been previously reviewed. The involvement of NF-κB and fibrosis in carcinogenesis has been recognized for some 20 years [280, 281]. IL-1β is an example of a pro-inflammatory cytokine with regulatory properties in the context of carcinogenesis and inflammation [282]. Yokoo et al. showed that NF-κB regulates E-cadherin (E-cad) in cancer cells [283]. In gingival fibroblasts, NF-κB is induced by IL-1β [284].

MMP-9 induction in malignant glioma cells acts on polymerization with consequent MMP-9 modulation [285]. LOX, and especially LOXL2, are major players in remodeling the tumor microenvironment to create the PCN for the transition of a normal cell to a cancer cell [123, 286]. LOXL2 promotes cell proliferation and inhibits apoptosis via a regulator of cellular homeostasis: myristoylated alanine-rich C-kinase substrate-like 1 (MARCKSL1) [287]. Keratin 8 (K8) is involved in the development of papilomas to malignant tumors in transgenic mice [288] and has a regulatory signaling effect on target of methylation-mediated silencing (TMS1), MARCKSL1, Rho-specific binding protein 1 (RanBP1), tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein gamma (14-3-3γ), Rho GDP-dissociation inhibitor 2 (RhodGDI2) and K8 loss results into alteration of TMS1 NF-κB signaling [289].

NF-κB signaling is increased in the precancerous lesion, oral submucosal fibrosis (OSF) compared to human buccal mucosal fibroblasts (BMFs) [44]. Another regulator of transcription interacting with NF-κB is the DNA repair protein, Ku [290]. The double-strand repair of DNA with its DNA repair protein, Ku activity, can be mediated by NF-κB activity affecting cell growth and proliferation [291, 292].

Inflammatory signaling induces chronic stress with consequent fibrosis and a remodeled tumor microenvironment which leads to the PCN [293]. Even for stress-induced lymphatic remodeling, chronic inflammatory signaling is necessary [294]. Such chronic stress results in the disruption of homeostasis, which uncorrected, leads to carcinogenesis [286]. With regard to NF-κB, protein kinase RNA-like endoplasmic reticulum kinase (PERK) appears to be important since it functions as a sensor of UPR [295] – next to inositol-requiring enzyme 1 (Ire1) and activating transcription factor 6 (ATF6) [296].

The transcription factor STAT3 induces IL-6 and modulates PERK “independently of the classic canonical IκBα signaling pathway” [295]. Fan et al. showed that inhibition of PERK interfered with “DNA binding of both STAT3 and NF-κB, thereby preventing induction of NF-κB-dependent genes and E2-induced apoptosis” in breast cancer cells.

The PCN consists of an altered tumor microenvironment that also induces chemoresistance by fibroblast-derived IL-6 upregulating the cell membrane receptor C-X-C motif of chemokine receptor 7 (CXCR7, G-protein coupled receptor 159, GPR159, atypical chemokine receptor 3) via NF-κB [297].

Thelen M and Thelen S investigated 45 ESCC tissues, normal esophageal cell line Het-1a and human ESCC lines TE1, TE7, EC109, KYSE70 and KYSE450 for chemoresistance mechanism and CXCR7 knockdown decreased gene expression associated with cell transition. Until recently it was assumed that CXCR7 “does not mediate typical chemokine receptor responses” [288] but Peng et al. demonstrated that inhibiting CXCR7 decreases chemotaxis of adipose tissue macrophages [298].

C-C chemokine receptor type 7 (CCR7) promotes invasion via activation of P38/Akt/mTOR signaling [300]. The P38/Akt/mTOR axis is associated with cell proliferation, migration and invasion in cancer [301] and activation through TGF-β1 resulting in EMT [302].

HIF-1α activation by inflammation induces cell transition via P38/Akt/mTOR [303] and inhibition results in apoptosis and autophagy [304]. The crosstalk between NF-κB and P38/Akt/mTOR has been shown in lymphoma [305] and there is hope that targeting this pathway might be effective in anticancer therapy [306].

NF-κB activation by CCR7 via P38/Akt/mTOR signaling is relevant as both NF-κB and CCR7 are upregulated in head and neck cancers and promote cell invasion [300]. C-C chemokine receptor (CCR) together with chemokine (C-C motif) ligand 19 (CCL19) results in phosphorylation of IκBα, the inhibitor of NF-κB promoting NF-κB translocation to the nucleus while inhibiting NF-κB and CCR7/P38K signaling increases apoptosis, cell arrest, and attenuated survival of SCCC cells.

The novel PEST-containing nuclear protein (PCNP) along with the ubiquitin ligase ubiquitin-like, containing PHD and RING finger domains 1 (UHRF1, Np95)/ICBP90-like RING finger protein (NIRF), both located in the nucleus, were recently associated with increased NIRF expression in a human fibrosarcoma and hepatocellular carcinoma cell line (HT-1080, HepG2 cells) [307, 308]. PCNP mediates cell proliferation, migration and invasion in neuroblastoma through activating P38/K/Akt/mTOR together with MAPK [309].

NF-κB regulates C-X-C chemokine receptor 4 (CXCR4) while the O-GlcNAc modification of p65-NF-κB stimulates
its activity [310]. Prostate cancer cells showed dysregulation of NF-κB and STAT1 signaling, a property dependent upon the cell line under investigation and the production of angiostatic CXC chemokines [311]: PZ-HPV-7 cells produce a high amount of CXC chemokines whereas a lower amount were observed in CA-HPV-10 and PC-3 cell lines.

NF-κB signaling and crosstalk during carcinogenesis in cell transition

Transformation of a normal cell to a cancer cell is dependent on the microenvironment, the cell matrix, and transcription factors ([312] reviewed in [188]). NF-κB is important for cell transition [313, 314].

Chronic application of TGF-β1 to HeLa cells resulted in chronic inflammation with increased TNFα, with TGF-β1-induced increase of epithelial-to-mesenchymal cell transition, and self-renewal [315]. This effect was dependent on NF-κB and Twist1 and “Overexpression of NF-κBp65 upregulated Twist and促进EMT and cancer stem cell-like (CSCL) properties in HeLa cells exposed to inflammatory cytokines”. The inhibition of TGF-β1 by Dusilfiram resulted in the inhibition of cell transition and stem cell features via extracellular signal-regulated kinase (ERK)/NF-κB/Snail signaling [316].

Using an in vivo breast cancer model it was shown that the IKK-2 /IkappaBalpha/ NF-κB pathway is required for introduction, maintenance, and cell transition, and that NF-κB inhibition in mesenchymal cells reversed cell transition [317].

Inhibiting NF-κB or TGF-β1 signaling in prostate cancer PC-3 cell line decreased Vimentin expression as well as invasive cell capability. Cell transition was shown to be TGF-β1 induced and mediated by NF-κB. Investigating a large number of prostatectomy specimen revealed that high expressions of TGF-β1, NF-κB and vimentin together with low levels of cytokeratin 18 resulted in recurrence [279].

TGF-β1 induces IL-6 through mothers against decapentaplegic homolog 2 (Smad2), p38-NF-κBp38, c-Jun N-terminal kinase (JNK), and the protein superfamily of small guanosine triphosphate hydrolase enzymes (Ras, GTPases) in prostate cancer cell lines [318]. However, it seemed to matter as to which NF-κB pathway and/or subunit was activated [319]. The inhibition of Akt and NF-κB suppressed epidermal growth factor (EGF)-induced cell transition in a squamous cell carcinoma cell line of the tongue and facilitated both cell migration and invasion [278].

In a tetracycline model, activation of proto-oncogene c-Rel (cRel, transcription factor containing Rel homolog domain, RHD) activation with consequent nuclear expression, arrested cell proliferation in the G1/S-phase together with accumulation of hypophosphorylated retinoblastoma protein (Rb), increase of the cyclin-dependent kinase (CDK) inhibitor 1 (p21, CIP1/WAF1/CAP20/SDI1, p21WAF1), reduced cdk2 activity, increased p53 protein stability [318]. cRel knockdown abolished these effects. This is concordant to cRel expression found in all hematopoietic tissues, but cRel is abundant in mature lymphocytes [320] and induces cell proliferation and survival in mature B-Cells [321]. Furthermore, cRel induces apoptosis in avian fibroblasts [322] but this apoptosis can be inhibited by cRel activating the Bcl-2 homolog Bfl-1/A1 [323, 324]. However, it is not just the transcription factor itself, but that NF-κB activation is dependent on which way NF-κB acetylation/deacetylation occurs with its effect on other pathways such as HIF-1 [325].

TNF-like weak inducer of apoptosis (TWEAK), together with its fibroblast growth factor-inducible 14 (Fn14), has pro-inflammatory and tissue remodeling effects ([326] reviewed in [327]) and increases TGF-β1 induced epithelial-mesenchymal transition in human bronchial epithelial cells and downregulates E-cadherin which requires p38 MAPK and NF-κB [327]. The fibroblast growth factor-inducible 14 (Fn14) gene was located and isolated in 1999 and shown to modulate fibroblast adhesion [328]. The member of the TWEAK superfamily is a ligand to Fn14 meaning Fn14 serves as a receptor at the cell surface and TWEAK increases during cancer progression [329]. The absence of Fn14 is associated with carcinogenesis in colitis-associated cancer but Fn14 can be protective in an acute inflammatory situation [330]. Thus, Fn14 action is necessary in homeostasis and acts aberrantly when homeostasis is disrupted.

The Fn14 protein mediates NF-κB activation [331] and contains NF-κB binding sites [332]. TWEAK/Fn14 activation is also involved in the development of another chronic inflammatory disease, atherosclerosis, where it results in increases of MMP-9 through NF-κB and involved in modulation of the ECM [333]. Fn14 is increased in various cancers such as glioblastoma [332], breast cancer [334], ovarian cancer [335], melanoma [336], non-small lung cancer [337], hepatocellular cancer (HCC) [338], pancreatic cancer [339], colon cancer [340], as well as in esophageal [341] and gastric cancer [342].

Fn14 knockdown showed that Fn14 affects cell growth through NF-κB and B-cell lymphoma-extra large (Bcl-xL) in gastric cancer [342] and in small-cell lung cancer (SCLC) [343]. Microarray analysis comparing Barrett’s biopsies to surgically resected esophageal adenocarcinoma showed only Fn14 over expression when the biopsied Barrett’s epithelium was directly adjacent to esophageal adenocarcinoma [341] which was in contrast to a prior investigation [344]. We contend that this is related to the difference in the degree of development of the PCN.

The TWEAK/Fn14 axis is reported in biological pathogenic stimulus, such as HPV infection, triggering the switch of keratinocytes from apoptosis into proliferation [345]. TWEAK also regulates mesenchymal cells [346] and the switch to proliferation was also observed in endothelial cells [347]. Intraabdominal TWEAK application induced peritoneal inflammation with “increased Fn14, MCP-1 and chemokine (C-C motif) ligand 21 (CCL21) expression and submesothelial tissue macrophage recruitment” [348]. This might be relevant to a future understanding how peritoneal carcinomatosis develops and progresses. TWEAK induces next to changes of phenotype a decrease of cell-cell interaction and anchoring junctions such as E-cadherin,
Cadherin-16, β-catenin and adherens, and the tight junction protein Zonula occludens-1 (ZO-1) resulting in weaker epithelial integrity as well as epithelial-mesenchymal transition (EMT) which occur through Fn14 together with NF-κB ERK activation and the vitamin D receptor modulation independent of TGF-β1 [349].

TRADDs, TRAFs, RIPs, FADD, RANK signaling with NF-κB

The TNF superfamily contains multiple transmembrane proteins that interact with the TNF receptor superfamily (TNFRSF) and various cytokines, named TNF-related activation-induced cytokines (TRANCE), which are expressed on cell surfaces, such as activated T-cells and osteoblasts [350]. TNF receptors need an adaptor protein such as TRADD, TRAF, RIP, FADD, RANK signaling, receptor-interacting protein kinases (RIPs) and/or Fas-associated protein with death domain (FADD) [351]. TNFs, TNFRSFs as well as TRANCE, TRADDs, TRAFs and RIPs and FADDs are of importance in the signaling and crosstalk with NF-κB [352, 353].

The disruption of bone homeostasis affecting osteoclastogenesis and osteoblastogenesis is important in the elderly who may be osteoporotic, and apparently with cancers connected by multiple signaling pathways of cytokines, hormones, and growth factors [354–356]. Bone remodeling is of importance in prostate cancers. In a routine autopsy study among 19,316 individuals from 1967 to 1995, 8.2% (1589) had prostate cancers and, of these, hematogeneous metastasis were most frequently observed (90%) in the bone of men older than 40 years [357]. The NF-κB signaling pathway is involved here as well.

The receptor of nuclear factor kappaB (RANK) was discovered in 1997 [358] and is of importance together with its receptor activator of NF-κB ligand (RANKL), and decoy receptor osteo NF-κB protegerin (OPG), as expression analysis of the RANKL/RANK/OPG axis correlates with aggressive advanced and metastatic prostate cancers [359].

Esophageal high-grade dysplasia tissue revealed a weaker RANK immunoreactivity compared to 23 esophagectomy cancer specimens [360], and investigating 309 ESCC showed that RANK over expression was associated with a poor prognosis [361]. Increased RANK expression was found in breast cancer [358, 362–364]. As reviewed recently, RANK signaling targets various pathways, such as the PI3K/Akt axis, MAPK signaling (JNK, ERK and p38), and NF-κB [365]. RANK promotes IL-1, IL-6 and interleukin 12 (IL-12) and the RANK signaling pathway is mediated by the adaptor protein TRAF6 to induce osteoclast differentiation [366].

TGF-β1 mediated NF-κB activation induces expression of metalloproteinase 12 (ADAM-12) in a dose-dependent manner in MDA-MB-231 breast cancer cells [367]. The gene expression signature studied by Ooi et al. identified proliferation/stem cell- and Wnt/β-catenin- signaling as well as deregulation of the NF-κB pathway in more than 70% of gastric cancers [368].

NF-κB influences transcription-dependent genes by binding to specific sections of DNA (κB-motif) [369] and thus has numerous target genes which mediate its varied effects [370]. The κB-motif, by itself, has a certain degree of variability which suggests that it has the ability to fine tune its effects [371]. NF-κB counters senescence induced by oncogenes and thus drives pro-carcinogenic inflammation [117, 179]. KO experiments of the NF-κB-pathway revealed that NASPs occur upstream of TNF receptor-associated factor 6. After transduction of NASPs into the fibroblasts of mice and rats resulted in the co-expression of Ras (H-Ras V12) and revealed that rodent fibroblasts mastered the p53-dependent senescence which is mediated by H-Ras V12 and this in turn resulted in a transformed carcinogenic phenotype [117]. These observations underly the different functions of NF-κB and its cooperation with Ras as an oncogene by the attenuation of p53 as well its effects on the inflammatory cascade.

NF-κB Inhibition

In 1992, p65 antisense oligonucleotide treatment in mice gave hope that anti-NF-κB therapy could be useful against cancer [115]. 7,12-dimethylbenz-(a)anthracene (DMBA) treatment in rats showed NF-κB activation with the development of mammary gland cancer [54]. NF-κB activation in fibroblasts in hormone-independent ER negative cancers occurs through IL-6 and urokinase plasminogen activator (uPA) dependent on interleukin 1 alpha (IL-1α) [56].

There is potential to using anti-NF-κB therapy in gastric cancer patients because Cyclosporin A increased docetaxel (Taxotere)-induced apoptosis through the activation of NF-κB in human gastric cancer cells and thereby prevented the anti-apoptotic NF-κB effect [372]. This may explain why NF-κB data were generated in upper GI cancers. However, the reality of immunosuppressed patients who have undergone organ transplants is different as such patients have an increased risk of developing cancer later [373]. Furthermore, this might serve as an example that inhibition of a single signaling pathway is not enough in diseases such as cancer as cancer occurs from the broader disruption of homeostasis [189–191, 286, 293]. It has been reported that targeting NF-κB might have a therapeutic effect in cancer treatment [374–376].

Preventing NF-κB activation does not alter deoxycytolate-induced apoptosis, suggesting that NF-κB may not be essential for apoptosis and likely represents just one of many signaling pathways. However, aspirin prevents the deoxycytolate-induced apoptosis although it has not been shown to have a direct anti- NF-κB effect [377]. This illustrates the complexity of the various pathways involved.

Urokinase-type plasminogen activator receptor (uPAR) together with uPA forms a complex that is associated with tumor cell invasion and that affects cell motility and integrin function ([378, 379] reviewed in [380]). The uPAR expression through tumor NF-κB suppression was demonstrated by investigating the diterpenoid triepoxide, triptolide from the Chinese herb Tripterygium wilfordii Hook F.
NF-κB was also implicated in cancer with regard to 5-fluorouracil (5-FU). Scientists showed an induction of NF-κB by 5-FU application within human gastric adenocarcinoma cell line, NUGC3 cells (5-fluorouracil sensitive), but not within NUGC3/5FU/L cells, which are 5-fluorouracil resistant. The inhibition of NF-κB reduced chemoresistance and increased apoptosis again lends credence to the likelihood of addressing a huge problem in chemotherapy, namely the development of chemoresistance [381]. Inhibition of NF-κB-dependent signaling might overcome braf-mutation and extra terminal protein inhibitors (BETi) resistance in uveal melanoma [382]. Additionally, paeoniflorin from *Paeonia lactiflora*, can inhibit NF-κB activity in gastric SGC-7901 cancer cells with consequent increases of 5-FU induced apoptosis [383].

Non-steroidal anti-inflammatory drugs (NSAID)

The NSAID drug aspirin and sodium salicylate suppresses NF-κB [384] and prostaglandin production by inhibiting cyclooxygenase 1 (Cox-1, prostaglandin G/H synthase 1) and Cox-2 and is effective in suppressing colon cancer growth but only at high concentrations [385]. The investigation of the mechanism of ibuprofen showed that it activates IkappaB kinase alpha with consequent inhibition of the activation of NF-κB and IKKz in human prostate cell lines (hormone-independent cell lines, PC-3 and DU-145) and it may be noted that ionizing PC-3 cells did not result in NF-κB modulated DNA-binding activity [386].

Metformin

Metformin inhibits inflammatory response and malignant cell transformation [387]. It also inhibits NF-κB in a dose-dependent manner [388]. Metformin decreases both pro-inflammatory cytokines and NF-κB and improves the immune response to cancer cells in colorectal, prostate, pancreatic, renal, cervical, endometrial, gastric, lung, breast, and ovarian cancer (reviewed in [389]). These findings, and the fact that NF-κB signaling triggers E-cadherin downregulation, and enhanced by connective tissue growth factor (CTGF, CCN2); it is upregulated in gastric cancer tissues promoting cell proliferation and metastasis [390] which explain recent signaling pathways identified during carcinogenesis as affecting the disruption of homeostasis [189–192, 286, 293, 388, 391]. Furthermore, Metformin decreases NF-κB in in the soleus muscle of diabetic rats and increases its inhibitor, IκB [392]. The transcriptional factors NF-κB and STAT3 are ubiquitously expressed and operate in concert to promote cancer development and progression of colon, gastric and liver cancers [393].

Silibinin

The polyphenolic flavonoid, Silibinin, is an extract from milk thistle (*Silybum marianum*) and was earlier reported to have an anticancer effect [394–397]. Silibinin is a direct STAT3 inhibitor [398] with no direct effect on apoptosis or changes in p53 and bcl2 [399]. Silibinin inhibits NF-κB p50 translocation via the upregulation of IκB and downregulates ZEB1 and Zinc finger protein SNAI2 (SLUG) transcription factors, and can reverse cell transition [399]. In colon carcinoma, protein levels of Bcl-2, Cox-2, iNOS, VEGF and MMPs, which are also NF-κB-regulated molecules, can be decreased in cell culture and xenograft analyses by the application of Silibinin due to inhibition of nuclear p50 (NF-κB1) and 65 translocation [400].

NF-κB signaling balances between apoptosis versus necrosis both at host and tumor interfaces through various pathways, which reveal that the weight of disruption of homeostasis in this regard determine which effect will prevail.

Caffeic acid phenethyl ester (CAPE)

Another inhibitor of NF-κB activity and chronic inflammation with reduced expression of mediators such as TNFα, interferon gamma (IFNγ), IL-2, IL-6, KC (IL-8 homologue), and inducible iNOS is the anti-inflammatory caffeic acid phenethyl ester (CAPE) in *H. pylori*-induced gastritis in *Mongolian gerbils* [401]. NF-κB activity was also shown to be suppressed by the novel oligosaccharide, JG3, derived from marine oligomannururate which results in tumor growth in xenograft models [402].

Furthermore, more detailed information of inhibitory effects of potential anti-NF-κB compounds were confirmed in *T. flavus* induced NF-κB * bla* assay investigating 2800 clinically approved drugs and bioactive compounds from the NIH Chemical Genomics Center Pharmaceutical Collection (NPC) [403]. Nineteen drugs inhibiting NF-κB with potencies as low as 20 nM were identified: bithionol, bortezombi, cantharidin, chromomycin A3, daunorubicinum, digitoxin, ectrinsacidin 743, enetine, flulosalan, manidipine hydrochloride, narasin, lestatunitib, ouabain, sorafenib tosylate, sunitib malate, tocloanazole, tribronsalan, trylabantadozum and zafirulakst. Some induce NF-κB inhibition through inhibition of IkappaBalpha phosphorylation (emetine, flunosalan, sunitinib malate, bithionol, narasin, tribronsalan, and lestatunitib).

However, as a disruption of homeostasis in NF-κB signaling also results in the consequent various activation/deactivation of pathways, the expectations may have to be toned down, especially as it has been shown that some classical drugs may act as NF-κB modulators or IKKβ inhibitors [404]. For example, the compound salvianolic acid C (SalC) isolated from the plant, *Salvia miltiorrhiza Bunge*, can inhibit “LPS-induced inflammatory response and NF-κB activation through the activation of AMPK/ Nrf2 signaling both in vivo and in vitro” [405].

Otherwise, having an anti-NF-κB therapeutic modality might result into unwanted effects. Nrf2 is responsible for migration and invasion in cancers of the cervix [406], and aggressiveness in various cancers, such as breast cancer [407, 408], gastric cancer [409] and colorectal cancer [410], or responsible for drug resistance in glioma and melanoma [411].

This reveals how carefully any anti-NF-κB approach needs to be investigated prior to drawing conclusions about its role in a specific anticancer regimen.
Summary

The available information on NF-κB expression in tissues provides a perspective on understanding signaling and crosstalk during pathogenic stimuli and carcinogenesis. This provides a rational basis to investigate NF-κB and to implement an anti-NF-κB therapy into existing anti-cancer treatment regimens, when appropriate. For this, the NF-κB interplay in sequences that contribute to carcinogenesis such as chronic inflammation, remodeled fibrosis with the precancerous niche (PCN), and the transition of a normal cell to a cancer cell is essential. However, inhibition of a single signaling pathway is not enough in diseases such as cancer as cancer occurs from the broader disruption of homeostasis.

Nomenclature of abbreviations

Abbreviation	Description
5-FU	5-fluorouracil
5-oxo-ETE	(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoic acid
12-HETE	12-hydroxyeicosatetraenoic acid
14-3-3γ	Tyrosine 3-monoxygenase/tryptophan 5-monoxygenase activation protein gamma
20-HETE	20-hydroxyeicosatetraenoic acid, (5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoic acid
20-OH-PGE2	20-hydroxy prostaglandin E2; 20-HETE 20-hydroxyeicosatetraenoic acid, (5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoic acid
α-SMA	Alpha smooth muscle actin, alpha-actin-2
11β-HSD1	11β-hydroxysteroid dehydrogenase type 1
ADAM-12	Matrix metalloproteinase 12 (MMP-12)
AFT3	Activating transcription factor 3
AIDS	Acquired immune deficiency syndrome
Akt	Protein kinase B
ALOX	Lipooxygenase, arachidonate lipooxygenase
ALOX5	5-lipoxygenase, 5-LOX, arachidonate 5-lipoxygenase
ALOX12	12-lipoxygenase, 12-LOX, 12S-LOX, arachidonate 12-lipoxygenase 12S type
AMPK	5’ adenosine monophosphate-activated protein kinase (AMP)-activated protein kinase
ANXA2	Annexin II
AP1	Activator protein 1
APO-1	Apoptosis antigen 1 (APT), cluster of differentiation 95, CD95, first apoptosis signal receptor (Fas, FasR)
APT	Apoptosis antigen 1 (APO-1), cluster of differentiation 95, CD95, first apoptosis signal receptor (Fas, FasR)
ATF6	Activating transcription factor 6
BAFF	B cell-activating factor belonging to the tumor necrosis factor (TNF) family
BAFFR	B-cell activating factor receptor
BAG-1	BAG family molecular chaperone regulator 1
Bax	B-cell lymphoma 2 (Bcl-2)-associated X protein
Bcl-2	B-cell lymphoma 2
Bcl-3	B-cell lymphoma 3
BCR	B-cell receptor
BETi	Bromodomain and extra terminal protein inhibitor
BIM	Bcl-2 interacting mediator of cell death
BiP	Binding immunoglobulin protein, 78 kDa glucose-regulated protein (GRP-78), heat shock 70 kDa protein 5 (HSPA5)
BMF	Bucal mucosal fibrosis
Btk	Bruton’s tyrosine kinase
C	Cysteine
CaMKII	Ca2+/calmodulin-dependent protein kinase II
cAMP	Cyclic 5’ adenosine monophosphate (AMP)
CAPE	Caffeic acid phenethyl ester
CARD6	Caspase-associated recruitment domain 6
CBP	Co-activator CREB binding protein
CCAAT	Cytosine-cytosine-adenosine-adenosine-thymidine
CCC	Cholangiocellular carcinoma
CCL2	Chemokine (C–C motif) ligand 2, monocyte chemotactant protein 1, MCP-1
CCL3	Chemokine (C–C motif) ligand 3, macrophage inflammatory protein 1 alpha (MIP1α)
CD14	Cluster of differentiation 14
CD40	Cluster of differentiation 40, costimulatory protein on T-cells
CD40L	Cluster of differentiation 40 (CD40) ligand, CD154, protein expressed on T-cells
CD54	Cluster of differentiation 54, intercellular adhesion molecule 1 (ICAM-1)
CD62	Cluster of differentiation 62
CD62E	Cluster of differentiation (CD62, endothelial-leukocyte adhesion molecule 1, E-selectin) antigen-like family member E (leukocyte-endothelial cell adhesion, molecule 2, LECAM2)
CD95	Cluster of differentiation 95, first apoptosis signal receptor (Fas, FasR), apoptosis antigen 1 (APO-1, APT)
CD106	Cluster of differentiation 106, vascular cell adhesion protein 1, vascular cell adhesion molecule 1 (VCAM-1)
CD154	Cluster of differentiation 154
cdc42	Cell division control protein 42 homolog
CDK	Cyclin-dependent kinase
cdk2	Cyclin-dependent kinase 2
CDX2	Homeobox protein CDX-2
C/EBPβ	CCAAT/enhancer-binding protein β
Abbreviation	Description
--------------	-------------
cagA	Helicobacter pylori virulence factor CagA, cytotoxin-associated gene A
CCL19	Chemokine (C–C motif) ligand 19
CCL21	Chemokine (C–C motif) ligand 21
CCN1	CCN family member 1, cysteine-rich 61 (Cyr61)
CCN2	Connective tissue growth factor (CTGF)
CCR	C–C chemokine receptor
CCR7	C–C chemokine receptor type 7
CHOP	Cytosine-cytosine-adenosine-adenosine-thymidine (CCAAT)/enhancer binding protein homologous protein
Cox	Cyclooxygenase
Cox-1	Cyclooxygenase 1, prostaglandin G/H synthase 1
Cox-2	Cyclooxygenase 2
Cox-3	Isoform of Cox-2 (therefore in brakes)
CRC	Colorectal carcinoma
CREB	cAMP response element-binding protein
cRel	Proto-oncogene c-Rel, transcription factor containing Rel homolog domain (RHD)
CTGF	Connective tissue growth factor (CCN2)
CytB1	G2/mitotic-specific cyclin-B1
Cyclin D1	G1/S phase transition specific cyclin-D1
Cyclin E	G1-to-S phase transition specific cyclin-E
CXCL CC	Chemokine receptors
CXCL1	Chemokine (C-X-C motif) ligand 1
CXCL8	Chemokine (C-X-C motif) ligand 8, interleukin 8 (IL-8)
CXCR2	Gro-α receptor
CXCR4	C-X-C chemokine receptor 4
CXCR7	C-X-C motif of chemokine receptor 7
CYP*	Cytochrome P450 isoforms
Cyr61	Cysteine-rich 61, CCN family member 1 (CCN1)
DMBA	7,12-dimethylbenz-(a)anthracene
DNA	Deoxyribonucleic acid
dsRNAs	Double-stranded RNAs
E2F4/5	Cytoplasmic complex of Smad3, retinoblastoma-like protein 1 (P107, RBL1), E2F4/5 and D-prostanoid (DP1)
E. coli	Escherichia coli
E-Cadherin	CAM 120/80 or epithelial cadherin, cadherin-1, epithelial cadherin
ECM	Extracellular matrix
EMT	Epithelial-mesenchymal transition
E1	Ubiquitin-activating enzyme
E1A	Adenovirus early region E1A protein
E2	Ubiquitin-conjugating enzyme
E3	Ubiquitin ligase
EBV	Epstein-Barr virus
ECs	Endothelial cells
EET	Epoxycosatricenic acid
EGFR	Epidermal growth factor receptor (ErbB-1, HER1)
ELAM-1	Endothelial-leukocyte adhesion molecule 1
E-selectin	Endothelial-leukocyte adhesion molecule 1, cluster of differentiation (CD62) antigen-like family member E (CD62E), leukocyte-endotheal cell adhesion molecule 2 (LECAM2)
ERK	Extracellular signal-regulated kinase
ESCC	Esophageal squamous cell carcinoma
FADD	Fas-associated protein with death domain
Fas	First apoptosis signal receptor (FasR), apoptosis antigen 1 (APT, APO-1), cluster of differentiation 95 (CD95)
FOXO3a	Forkhead box protein O3a
FXR	Farnesoid X receptor
GC	Gastric carcinoma
GC-C	Guanylyl cyclase 2
GERD	Gastro-esophageal reflux disease
GM-CSF	Growth hormone secretagogue receptor
HIF1α	Hypoxia-inducible factor alpha
HBSAg	Hepatitis B surface antigen
HBV	Hepatitis B virus
HBx	Hepatitis B viral protein
HCC	Hepatocellular carcinoma
HCV	Hepatitis C virus
HIF1α	Hypoxia-inducible factor alpha
HIAP	Human inhibitor of apoptosis protein
HIB	Human immunodeficiency virus
HIV	Human immunodeficiency virus
HMGB-1	High mobility group box 1 protein
HPV	Human papilloma virus
HPV8	Human papilloma virus type 8
HPV16	Human papilloma virus type 16
H-ras	Guanosine triphosphate (GTP) hydrolase enzyme, transforming protein p21, HRas, H-ras
HFD	High-fat diet
hrHPV	High-risk human papillomavirus
HSC	Hepatic stellate cells
hTERT	Human telomerase reverse transcriptase
IBS-D	Diarrhea-predominant irritable bowel syndrome
ICAM-1	Intercellular adhesion molecule 1, cluster of differentiation 54, CD54
IFN Interferon
IFNγ Interferon gamma
IkB Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor protein
IkBα Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha
IkBβ Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, beta,
IkB kinase 1 (IKK1)
IkBγ Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, gamma,
IkB kinase gamma
IkBε Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, epsilon
IKK IκB kinase enzyme complex
IKKα Inhibitor of nuclear factor kappa-B kinase subunit alpha, inhibitor of nuclear factor kappa-B kinase 1 (IKK1)
IKKβ Inhibitor of nuclear factor kappa-B kinase subunit beta, inhibitor of nuclear factor kappa-B kinase 2 (IKK2)
IKKγ Inhibitor of nuclear factor kappa-B kinase subunit gamma, NF-kappa-B essential modulator (NEMO)
IKK1 Inhibitor of nuclear factor kappa-B kinase 1, inhibitor of nuclear factor kappa-B kinase subunit alpha (IKK-α)
IKK2 Inhibitor of nuclear factor kappa-B kinase 2, inhibitor of nuclear factor kappa-B kinase subunit beta (IKK-β)
IL-1z Interleukin 1 alpha
IL-1β Interleukin 1 beta 1
IL-1 Interleukin 1
IL-6 Interleukin 6
IL-8 Interleukin 8, chemokine (C-X-C motif) ligand 8 (CXCL8)
IL-9 Interleukin 9
IL-12 Interleukin 12
IL-13 Interleukin 13
IL-32 Interleukin 32
IL-33 Interleukin 33
ILR1 Interleukin 1 receptor
IL1RL1 Interleukin 1 receptor-like 1 (ST2)
iNOS Nitric oxide synthetase
Ire1 Inositol-requiring enzyme 1
Irf3 Interferon regulatory factor 3
JNK c-Jun N-terminal kinase
K8 Keratin 8
KC IL-8 homologue
KO Knockout
LEC Lymphatic endothelial cell
LOX Lysyl oxidase
LOXL LO-like gene
LOXL2 Lysyl oxidase homolog 2
LOXL3 Lysyl oxidase homolog 3
LPS Lipopolysaccharide
LTβR Lymphotaxin beta receptor
LTA4 Leukotriene A4, 4-[(2S,3S)-3-[(1E,3E,5Z,8Z)-tetradeca-1,3,5,8-tetraenyl]oxiran-2-yl]butanoic acid
LTB4 Leukotriene B4, (5S,6Z,8E,10E,12R,14Z)-5,12-dihydroxyicos-6,8,10,14-tetraenoic acid
LTC4 Leukotriene C4, (5S,6R,7E,9E,11Z,14Z)-6-[(2R)-2-[(4S)-4-amino-4-carboxybutanoyl]amino]-3-(carboxymethylamino)-3-oxopropyl)sulfanyl-5-hydroxyicos-7,9,11,14-tetraenoic acid
LTE4 Leukotriene E4, (5S,6R,7E,9E,11Z,14Z)-6-[(2R)-2-amino-2-carboxyethyl]sulfanyl-5-hydroxyicos-7,9,11,14-tetraenoic acid
mTORc1 Rapamycin complex 1
M. fermentans Mycoplasma fermentans
M. hominis Mycoplasma hominis
M. hyorhinis Mycoplasma hyorhinis
M. penetrans Mycoplasma penetrans
MAPK p38 mitogen-activated protein kinase
MAPK2 Mitogen-activated protein kinase kinase, MEK, MAPKK
MAPK3 Mitogen-activated protein kinase 3 (ERK1)
MAP2K1 Dual specificity mitogen-activated protein kinase kinase 1
MAPKK Mitogen-activated protein kinase kinase, MEK, MAPK
MARCKSL1 Myristoylated alanine-rich C kinase substrate-like 1
MC Mast cell
MCP-1 Monocyte chemoattractant protein 1, chemokine (C–C motif) ligand 2, CCL2
MDA Malondialdehyde, propanedial
MEFs Mouse embryonic cells
MEK Mitogen-activated protein kinase kinase, MEK, MAPK
MEKK3 Mitogen-activated protein kinase kinase 3
MEKP Mitogen-activated protein kinase kinase, MAPK2, MAPKK
MEP Mitogen-activated protein kinase, MEK, MAPK
MIP1α Macrophage inflammatory protein 1-alpha, chemokine (C–C motif) ligand 3 (CCL3)
miR21 Micro RNA-21
MM Matrix metalloproteinase
MMP Matrix metalloproteinase
MMP-1 Matrix metalloproteinase 1
MMP-2 Matrix metalloproteinase 2
MMP-3 Matrix metalloproteinase 3
MMP-7 Matrix metalloproteinase 7
MMP-9 Matrix metalloproteinase 9
MMP-12 Matrix metalloproteinase 12 (ADAM-12)
MMP-14 Matrix metalloproteinase 14, MT1-MMP
mRNA Messenger ribonucleic acid
MSGA-α Melanoma growth stimulating activity alpha
NAP3 Neutrophil-activating protein 3, gro-oncogene
NASPs NF-κB-activating genetic elements
NCCCT Normal cell to cancerous cell transition
NEMO NF-κB essential modulator, inhibitor of nuclear factor kappa-B kinase subunit gamma, IKK-γ
NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells
NF-κB1 Nuclear factor kappa-light-chain-enhancer of activated B cells 1, protein 50 (p50) its progenitor protein 105 (p105)
NF-κB2 Nuclear factor kappa-light-chain-enhancer of activated B cells 2, protein 52 (p52) and its progenitor protein 100 (p100)
NGF Nerve growth factor
NIRF ICBP90-like RING finger protein
NIK Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) -inducing kinase
Nlrp3 Intracellular NOD-like receptor pyrin domain containing 3
NPC NIH Chemical Genomics Center Pharmaceutical Collection
NR2B1 Nuclear receptor subfamily 2, group B, member 1, retinoid X receptor alpha (Rxra)
NSAID Non-steroidal anti-inflammatory drugs
OPG Decoy receptor osteo NF-κB protegerin
OSF Oral submucosal fibrosis
Osm Oncostatin-M
p21 Protein p21, guanosine triphosphate (GTP) hydrolase enzyme, transforming H-ras
p33 Protein 33
p37 Mycoplasma hyorhinis membrane protein p37
p37 Protein 37
p50 Protein 50, nuclear factor kappa-light-chain-enhancer of activated B cells 1 (NF-κB1)
p52 Protein 52
p53 Protein 53
p65 Nuclear factor NF-kappa-B protein 65 (p65) subunit
p100 Protein 100
p105 Protein 105, p50 (NF-κB1) progenitor
p107 Retinoblastoma-like protein 1, RBL1
p120 Protein 120, catenin delta-1
p300 Adenovirus early region 1A (E1A) binding protein p300, EP300, p300-CBP coactivator family
PAE Paoniflorin
PAI1 Plasminogen activator inhibitor-1
PCN Precancerous niche
PCNP PEST-containing nuclear protein
PCR Polymerase chain reaction
PCR-RFLP Polymerase chain reaction-restriction fragment length polymorphism
PERK Protein kinase RNA-like endoplasmic reticulum kinase
PGD2 Prostaglandin D2, (Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]hept-5-enoic acid
PGE2 Prostaglandin E2, (Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]hept-5-enoic acid
PGF2α Prostaglandin F2α, (Z)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]hept-5-enoic acid
PGG2 Prostaglandin G2, (Z)-7-[(1S,4R,5R,6R)-5-[(E,3S)-3-hydroperoxyoct-1-enyl]-2,3-dioxabicyclo[2.2.1]heptan-6-yl]hept-5-enoic acid
PGH2 Prostaglandin H2, (Z)-7-[(1S,4R,5R,6R)-5-[(E,3S)-3-hydroxyoct-1-enyl]-2,3-dioxabicyclo[2.2.1]heptan-6-yl]hept-5-enoic acid
PIm-1 Proto-oncogene serine/threonine-protein kinase
PKA Protein kinase A
PLA2 Phospholipase A2
PLD1 Phospholipase D1
PPI Proton pump inhibitor
PRDM1 PR domain zinc finger protein 1
pro-IL-1β Inactive interleukin 1 beta precursor
Pro-MMP-1 Pro-matrix metalloproteinase 1
Pro-MMP-7 Pro matrix metalloproteinase 7
Pro-MMP-9 Pro-matrix metalloproteinase 9
PUMA BH3-only protein
Rac Subfamily of the Rho family of GTPases
Rac1 Ras-related C3 botulinum toxin substrate 1
RanBP1 Ran-specific binding protein 1
RANK Receptor of nuclear factor kappaB
RANKL Receptor activator of NF-κB ligand
Ras Protein superfamily of small guanosine triphosphate hydrolase enzymes (GTPases)
Rb Retinoblastoma protein
Rel Proto-oncogene c-Rel encoded by REL gene (cRel)
RelA Transcription factor p65 encoded by RELA gene
RelB Transcription factor encoded by the RELB gene interacting with NF-κB
Acknowledgments

The manuscripts of this Special Issue were supported by the Theodor-Billroth-Academy® (TBA®) and INCORE, (International Consortium of Research Excellence) of the (TBA®). We express our gratitude to the discussions on the web group of the Theodor-Billroth-Academy® (TBA®) on LinkedIn, the exchange with scientists at Researchgate.com, as well as personal exchanges with distinguished colleagues who stimulated our thinking all named individually earlier in publications — we thank each one.

Conflict of interest

The author reports the following conflict of interest: Björn LDM Brücher is Editor-in-Chief in Life Sciences-Medicine of 4open by EDP Sciences. Florian Lang is Editor-in-Chief of Cellular Physiology and Biochemistry. Ijaz S. Jamall is Senior Editorial Board member in Life Sciences-Medicine of 4open by EDP Sciences. The authors, of their own initiative, suggested to the Managing Editorial to perform a transparent peer-review of their submittals. Neither author took any action to influence the standard submission and peer-review process, and report no conflict of interest. The authors alone are responsible for the content and writing of the manuscript of this Special Issue. This manuscript contains original material that has not previously been published. All authors contributed on its contents and approved the different manuscript.
31. Chau V, Tobias JW, Bachmair A, Marriott D, Ecker DJ, Gonda DK, Varshavsky A (1989), A multibiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243, 4898, 1576–1583.

32. Pickart CM (2001), Mechanisms underlying ubiquitination. Annu Rev Biochem 70, 505–533. https://doi.org/10.1146/annurev.biochem.70.1.503.

33. Blickman MH, Ciechanover A (2002), The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82, 2, 373–428. https://doi.org/10.1152/physrev.00027.2001.

34. Schnell JD, Hicke L (2003), Non-traditional functions of ubiquitin and ubiquitin-binding proteins. J Biol Chem 278, 38, 35857–35860.

35. Pickart CM, Eddins MJ (2004), Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta 1695, 1–3, 55–72. https://doi.org/10.1016/j.bbamer.2004.09.019.

36. Ciehanover A, Hod Y, Hershko A (1978), A heat-stable polypeptide component of an ATP-dependent proteolytic system from reticulocytes. Biochem Biophys Res Commun 81, 4, 1100–1105.

37. Hershko A, Ciechanover A, Rose IA (1979), Resolution of the ATP-dependent proteolytic system from reticulocytes: a component that interacts with ATP. Proc Natl Acad Sci USA 76, 7, 3107–3110.

38. Ciechanover A, Heller H, Elias S, Haas AL, Hershko A (1982), Mechanisms of intracellular protein breakdown. Annu Rev Biochem 51, 335–364. https://doi.org/10.1146/annurev.bi.51.070182.002003.

39. Liao WT, Chang KL, Yu CL, Chen GS, Chang LW, Yu HS (2002), Constitutive activation of NF-kappaB during progression of breast cancer to hormone-independent growth. Mol Cell Biol 22, 7, 4639–4648. https://doi.org/10.1128/MCB.22.7.4639-4648.2002.

40. Banerjee S, Bueso-Ramos C, Aggarwal BB (2002), Suppression of 7,12-dimethylbenz(a)anthracene-induced mammary carcinogenesis in rats by resveratrol: role of nuclear factor-kappaB, cyclooxygenase 2, and matrix metalloproteinase 9. Cancer Res 62, 17, 4945–4954.

41. Poligone B, Hayden MS, Chen L, Pentland AP, Jimi E, Ghosh S (2013), A role for NF-xB activity in skin hyperplasia and the development of keratoacanthoma in mice. PLoS One 8, 7, e71887. https://doi.org/10.1371/journal.pone.0071887.

42. Banerjee S, Bueso-Ramos C, Aggarwal BB (2002), Suppression of 7,12-dimethylbenz(a)anthracene-induced mammary carcinogenesis in rats by resveratrol: role of nuclear factor-kappaB, cyclooxygenase 2, and matrix metalloproteinase 9. Cancer Res 62, 17, 4945–4954.

43. Gamerspan EJ, Madigan JP, Boardman LA, Rosenberg DW (2011), Ibuprofen inhibits activation of nuclear (beta)-catenin in human colon adenomas and induces the phosphorylation of GSK-3(beta). Cancer Prev Res (Phila) 4, 1, 161–171. https://doi.org/10.1158/1940-6207.CAPR-10-0021.

44. Hasel C, Blumrick US, Heydrich R, Strüter M, Müller P (2005), Parenchymal regression in chronic pancreatitis spares islets reprogrammed for the expression of NKappab and IAPs. Lab Invest 85, 10, 1263–1275. https://doi.org/10.1038/labinvest.3700323.

45. Greten FR, Eckmann L, Greten TF, Park JM, Li ZW, Egan LJ, Kagnoff MF, Karin M (2004), IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118, 3, 285–296. https://doi.org/10.1016/j.cell.2004.07.013.

46. Huo X, Zhang X, Yu C, Cheng E, Zhang Q, Dumbar KB, Pham TH, Lynch JP, Wang DH, Bresalier RS, Spechler SJ, Souza RF (2018), Aspirin prevents NF-kappaB during progression of breast cancer to hormone-independent growth. Mol Cell Biol 22, 7, 4639–4648. https://doi.org/10.1128/MCB.22.7.4639-4648.2002.

47. Grohmann DE, Madigan JP, Boardman LA, Rosenberg DW (2011), Ibuprofen inhibits activation of nuclear (beta)-catenin in human colon adenomas and induces the phosphorylation of GSK-3(beta). Cancer Prev Res (Phila) 4, 1, 161–171. https://doi.org/10.1158/1940-6207.CAPR-10-0021.
60. Rengarajan T, Nandakumar N, Rajendran P, Ganesh MK, Balasubramanian MP, Nishigaki I (2015), D-pinitol mitigates tumor growth by modulating interleukins and hormones and induces apoptosis in rat breast carcinogenesis through inhibition of NF-κB. J Physiol Biochem 71, 2, 191–204. https://doi.org/10.1007/s13105-015-0307-9.

61. Bours V, Dejeardin E, Goujon-Letawe F, Merville MP, Castronovo V (1994), The NF-kappa B transcription factor and cancer: high expression of NF-kappa B and I kappa B-related proteins in tumor cell lines. Biochem Pharmacol 47, 1, 145–149.

62. Hagemann T, Wilson J, Kulbe H, Li NF, Leinster DA, Charles K, Klemm F, Pukrop T, Binder C, Balkwill FR (2005), Macrophages induce invasiveness of epithelial cancer cells via NF-kappa B and JNK. J Immunol 175, 2, 1197–1205.

63. Guo Y, Liao Y, Jia C, Ren J, Wang J, Li T (2013), Overexpression of urokinase-type plasminogen activator in prostate-specific antigen expression and is upregulated in androgen-independent prostate cancer. Mol Cell Biol 22, 8, 2862–2870.

64. Papadopoulou N, Charalampopoulos I, Anagnostopoulou V, Konstantinidis G, Föller M, Gravanis A, Alevizopoulos K, Lang F, Stournaras C (2008), Membrane androgen receptor activation triggers down-regulation of PI-3K/Akt/NF-kappaB activity and induces apoptotic responses via Bad, Fasl and caspase-3 in DU145 prostate cancer cells. Mol Cancer 7, 88. https://doi.org/10.1159/0001476–4598-7-88.

65. Fu W, Yao J, Huang Y, Li Q, Li W, Chen Z, He F, Zhou Z, Yan J (2014), LXRs agonist regulates the carcinogenesis of PCs via the SOCS3 pathway. Cell Physiol Biochem 33, 1, 195–204. https://doi.org/10.1159/000355662.

66. Chuang WM, Cao J, Chiao PJ (1999), The nuclear factor-kappa B RelA transcription factor is constitutively activated in human pancreatic adenocarcinoma cells. Clin Cancer Res 5, 1, 119–127.

67. Wang W, Abbuzzese JL, Evans DB, Chiao PJ (1999), Overexpression of urokinase-type plasminogen activator in pancreatic adenocarcinoma is regulated by constitutively activated RelA. Oncogene 18, 32, 4554–4563. https://doi.org/10.1038/sj.onc.1202833.

68. Takaya H, Andoh A, Shimada M, Hata K, Fujiyama Y, Bamba T (2000), The expression of chemokine genes correlates with nuclear factor-kappaB activation in human pancreatic cancer cell lines. Pancreas 21, 1, 32–40.

69. van Hogerlinden M, Rozell BL, Ahrlund-Richter L, Toftgard R (1999), Squamous cell carcinomas and increased apoptosis in skin with inhibited Rel/nuclear factor-kappaB signaling. Cancer Res 59, 3299–3303.

70. Dajee M, Lazarov M, Zhang JY, Cai T, Green CL, Russell AJ, Marinkovich MP, Tao S, Lin Q, Kubo Y, Khavari PA (2003), NF-kappaB blockade and oncogenic Ras trigger invasive human epidermal neoplasia. Nature 421, 6923, 639–643.

71. Huang C, Huang Y, Li J, Hu W, Aziz R, Tang MS, Sun N, Cassidy J, Stoner GD (2002), Inhibition of benzo(a)pyrene diol-epoxide-induced transactivation of activated protein 1 and nuclear factor kappaB by black raspberry extracts. Cancer Res 62, 23, 6857–6863, PMID: 12460899.

72. Jenkins GJ, Harries K, Doak SH, Wilmes A, Griffiths AP, Baxter JN, Parry JM (2004), The bile acid deoxycholic acid (DCA) at neutral pH activates NF-kappaB and induces IL-8 expression in esophageal cells in vitro. Carcinogenesis 25, 3, 317–323. https://doi.org/10.1093/carcin/bgh032.

73. Li X, Chen D, Li M, Gao X, Shi G, Zhao H (2018), Plantamajoside inhibits lipopolysaccharide-induced epithelial-mesenchymal transition through suppressing the NF-kB/IL-6 signaling in esophageal squamous cell carcinoma cells. Biomed Pharmacother 102, 1045–1051. https://doi.org/10.1016/j.biopharm.2018.03.171.

74. Zhou Y, Xia L, Liu Q, Wang H, Lin J, Oyang L, Chen X, Luo X, Tan S, Li W, Su M, Wang Y, Chen P, Wu Y, Wang H, Liao Q (2018), Inhibition of pro-inflammatory response via activated macrophage-mediated NF-kB and STAT3 pathways in gastric cancer cells. Cell Physiol Biochem 47, 4, 1399–1410. https://doi.org/10.1159/000490829.

75. Lind DS, Hochwald SN, Malaty J, Rekkas S, Hebig P, Mishra G, Moldawer LL, Copeland EM 3rd, Mackay S (2001), Nuclear factor-kappaB is upregulated in colorectal cancer. Surgery 130, 2, 363–369.

76. Alm DH, Crawley SC, Hokari R, Kato S, Yang SC, Li JD, Kim YS (2005), TNF-alpha activates MUC2 transcription via NF-kappaB but inhibits via JNK activation. Cell Physiol Biochem 15, 1, 29–40. https://doi.org/10.1159/000083636.

77. Clemo NK, Collard TJ, Southern SL, Edwards KD, Moorghen M, Packham G, Hague A, Paraskeva C, Williams AC (2008), BAG-1 is up-regulated in colorectal tumour progression and promotes colorectal tumour cell survival through increased NF-kappaB activity. Carcinogenesis 29, 4, 849–857. https://doi.org/10.1093/carcin/bgn004.

78. Tai DI, Tsai SL, Chang YH, Huang SN, Chen TC, Chang KS, Liaw YF (2000), Constitutive activation of nuclear factor kappaB in hepatocellular carcinoma. Cancer 89, 11, 2274–2281.

79. Tietze MK, Wuestefeld T, Paul Y, Zender L, Trautwein C, Manns MP, Kubicka S (2000), IkappaB Alpha gene therapy in tumor necrosis factor-alpha- and chemotherapy-mediated apoptosis of hepatocellular carcinomas. Cancer Gene Ther 7, 10, 1315–1323.

80. Glauert HP, Eyigor A, Tharappel JC, Cooper S, Lee EY, Spear BT (2006), Inhibition of hepatocarcinogenesis by the deletion of the p50 subunit of NF-kappaB in mice administered the peroxisome proliferator Wy-14,643. Toxicol Sci 90, 2, 331–336. https://doi.org/10.1093/toxsci/kfj116.
87. Li X, Liu J, Park JK, Hamilton TA, Rayman P, Klein E, Edinger M, Tubbs R, Bukowski R, Finke J (1994), T cells from renal cell carcinoma patients exhibit an abnormal pattern of kappa B-specific DNA-binding activity: a preliminary report. Cancer Res 54, 20, 5424-5429.

88. Oya M, Ohtsubo M, Takayanagi A, Tachibana M, Shimizu N, Murai M (2003), Increased nuclear factor-kappa B activation is related to the tumor development of renal cell carcinoma. Carcinogenesis 24, 3, 377–384.

89. Sumitomo M, Tachibana M, Ozt C, Assakura H, Murai M, Hayakawa M, Nakamura H, Takayanagi A, Shimizu N (1999), Induction of apoptosis of cytokine-producing blader cancer cells by adenovirus-mediated IkappaBalpha over expression. Hum Gene Ther 10, 1, 37-47. https://doi.org/10.1089/10430349950019174.

90. Naumovski L, Utz PJ, Bergstrom SK, Morgan R, Molina A, Bargou RC, Leng C, Krappmann D, Emmerich F, Mapara MY, Bommert K, Royer HD, Scheidereit C, Dörken B (2002), T cells from renal cell carcinoma patients exhibit an abnormal pattern of kappa B-speciﬁc DNA-binding activity: a preliminary report. Cancer Res 54, 20, 5424–5429. PMID: 1204525.

91. Keller SA, Hernandez-Hopkins D, Javelaud D, Poupon MF, Wietzerbin J, Besançon F (2002), NF-kappaB activity is critical in focal necrosis formation of human glioblastoma by regulation of the expression of tissue factor. Int J Oncol 33, 1, 5–15.

92. Harant H, de Martin R, Andrew PJ, Foglar E, Dittrich C, Lindley LJ (1996), Synergistic activation of interleukin-8 gene transcription by all-trans-retinoic acid and tumor necrosis factor-alpha in the transcription factor NF-kappaB. J Biol Chem 271, 43, 26954–26961.

93. Shattuck-Brandt RL, Richmond A (1997), Enhanced degradation of IkappaB alpha contributes to endogenous activation of NF-kappaB in Hs294T melanoma cells. Cancer Res 57, 14, 3032–3039.

94. Yang J, Richmond A (2001), Constitutive IkappaB kinase activity correlates with nuclear factor-IkappaB activation in human melanoma cells. Cancer Res 61, 12, 4901–4909.

95. Myszkens FL Jr, Buckmeier JA, McNulty SE, Tohidian NB (1999), Activation of nuclear factor-kappa B in human metastatic melanomas and the effect of oxidative stress. Clin Cancer Res 5, 8, 1197–1202.

96. Claudio E, Segade F, Wrobel K, Ramos S, Bravo R, Lazo PS (1996), Molecular mechanisms of TNFalpha cytotoxicity: activation of NF-kappaB and nuclear translocation. Exp Cell Res 224, 1, 63–71.

97. Javelaud D, Ponpou MF, Wietzerbin J, Besançon F (2002), Inhibition of constitutive NF-kappaB activity suppresses tumorigenicity of Ewing sarcoma EW7 cells. Int J Cancer 98, 2, 193–198.

98. Schmid E, Stango MJ, Yan J, Stournaras C, Lang F, Fuchs J, Seitz G (2016), Store-operated Ca(2+) entry in rhabdomyosarcoma cells. Biochem Biophys Res Commun 477, 1, 23–28. https://doi.org/10.1016/j.bbrc.2016.06.032.

99. Burkitt MD, Hanedi AF, Duckworth CA, Williams JM, Tang JM, O'Reilly LA, Putoeczki TL, Gerondakis S, Dimalone R, Caamano JH, Pritchard DM (2015), NF-kB1, NF-kB2 and c-Rel differentially regulate susceptibility to colitis-associated adenoma development in C57BL/6 mice. J Pathol 236, 3, 326–336. https://doi.org/10.1002/path.4527.

100. Eckmann L, Nebesiek T, Fingerle AA, Dann SM, Mages J, Lang R, Robine S, Kaggoff MF, Schmid RM, Karin M, Arkan MC, Greten FR (2008), Opposing functions of IKKbeta during acute and chronic intestinal inflammation.
B.L.D.M. Brücher et al.: 4open 2019, 2, 13

Proc Natl Acad Sci USA 105, 39, 15058–15063. https://doi.org/10.1073/pnas.080216105.

115. Kitajima I, Shimohara T, Blakovjes C, Brown DA, Xu X, Nerenberg M (1992), Ablation of transplanted IHTLV-I Tax-transformed tumors in mice by antisenese inhibition of NF-kappa B. Science 258, 1792.

116. Nabuchi S, Ohmichi M, Nishio Y, Hayasaka T, Kimura A, Ohta T, Saito M, Kawagoe J, Takahashi K, Yada-Hashimoto N, Sakata M, Motoyama T, Kurachi H, Tasaka K, Murata Y (2004), Inhibition of NFkappaB increases the efficacy of cisplatin in in vitro and in vivo ovarian cancer models. J Biol Chem 279, 22, 23477–23485. https://doi.org/10.1074/jbc.M313709200.

117. Natarajan V, Komarov AP, Ippolito T, Bonneau K, Chenchik AA, Gudkov AV (2014), Peptides genetically selected for NF-xB activation cooperate with oncogene Ras and model carcinogenic role of inflammation. Proc Natl Acad Sci USA 111, 4, E474–E483. https://doi.org/10.1073/pnas.1311945111.

118. Quinlan MP, Quatela SE, Philips MR, Settleman J (2008), N-terminal repeat of human immunodeficiency virus type 1. Proc Natl Acad Sci USA 86, 13, 5168–5172.

119. Su F, Schneider RJ (1996), Hepatitis B virus HBx protein activates transcription factor NF-kappaB by acting on multiple cytoplasmic inhibitors of rel-related proteins. J Virol 70, 7, 4558–4566.

120. Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kased S, et al. (2004), NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 431, 461–466.

121. Maeda S, Kamata H, Luo JL, Leffert H, Karin M (2005), IKKbeta couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 121, 977–990.

122. Haybaec J, Zerbini LF, Tamura RE, Correa RG, Czibere A, Cordeiro J, Zerkle J, Fries H, Schmid RM, Greiser Wirth T, Heikenwalder M (2016), Canonical NF-xB signaling in hepatocytes acts as a tumor-suppressor in hepatitis B virus surface antigen-driven hepatocellular carcinoma by controlling the unfolded protein response. Hepatology 63, 5, 1592–1607. https://doi.org/10.1002/hep.28435.

123. Liu J, Yang H, Lee MH, Lu SN, Jen CL, Battria-Utermann R, et al. (2014), Spontaneous seroclearance of hepatitis B seromarkers and subsequent risk of hepatocellular carcinoma. Gut 63, 1648–1657.

124. Waris G, Huh KW, Siddiqui A (2001 Nov), Mitochondrially associated hepatitis B virus X protein constitutively activates transcription factors STAT-3 and NF-kappa B via oxidative stress. Mol Cell Biol 21, 22, 7721–7730.

125. Pollio E, Bellinghieri L, Raimondi G, Musolino C, Alibrandi A, Teti D, Raimondi G (2013), Hepatitis B virus (HBV) induces the expression of interferon-lambda-8 that in turn reduces HBV sensitivity to interferon-alpha. Virology 444, 1–2, 317–328. https://doi.org/10.1016/j.virol.2013.06.028.

126. Nees M, Geoghegan JM, Hyman T, Frank S, Miller L, Woodworth CD (2001), Papillomavirus type 16 oncocenes downregulate expression of interferon-responsive genes and
upregulate proliferation-associated and NF-kappaB-responsive genes in cervical keratinocytes. J Virol 75, 9, 4283–4296. https://doi.org/10.1128/JVI.75.9.4283-4296.2001.

143. Thompson DA, Zacny V, Belinsky GS, Classon M, Jones DL, Schlegel R, Münger K (2001). The HPV E7 oncoprotein induces tumor necrosis factor alpha-mediated apoptosis in normal human fibroblasts. Oncogene 20, 28, 3629–3640. https://doi.org/10.1038/sj.onc.1204483.

144. Verma G, Vishnoi K, Tyagi A, Jadhil M, Singh T, Goel A, Sharma A, Agarwal K, Prasad SC, Pandey D, Sharma S, Mehrotra R, Singh SM, Bharti AC (2017), Characterization of a panel of transcription factors as molecular signatures of HPV-positive and HPV-negative oral cancers. Cancer Med 6, 3, 591–604. https://doi.org/10.1002/cam4.983.

145. Fujimoto H, D’Alessandro-Gabazza CN, Palanti MS, Erdman PE, Takagi T, Gabazza EC, Bruno NE, Yano Y, Hayashi T, Tamaki M, Sumida Y, Adachi Y, Suzuki K, Taguchi O (2007). Inhibition of nuclear factor-kappaB in T cells suppresses lung fibrosis. Am J Res Crit Care Med 176, 12, 1251–1260. https://doi.org/10.1111/j.1537-2205.200609-1288OC.

146. Inazawa J, Itoh N, Abe T, Nagata S (1992). Assignment of the human Fas antigen gene (Fas) to 10q24.1. Genomics 14, 3, 821–822.

147. Liu F, Bardhan K, Yang D, Thangaraju M, Ganapathy V, Waller JL, Liles GB, Lee JR, Liu K (2012). NF-κB directly regulates Fas transcription to modulate Fas-mediated apoptosis and tumor suppression. J Biol Chem 287, 30, 25530–25540. https://doi.org/10.1074/jbc.M111.356279.

148. Yang HJ, Wang M, Wang L, Cheng BF, Liu XY, Feng ZW (2015), NF-κB regulates caspase-4 expression and sensitizes neuroblastoma cells to Fas-induced apoptosis. PLoS One 10, 2, e0117953. https://doi.org/10.1371/journal.pone.0117953.

149. Walcher-Fischl B, Mavrova RA, Seckl JR, Chapman KE (2014), NF-κB regulates Fas transcription to modulate Fas-mediated apoptosis and tumor suppression. J Clin Invest 95, 1, 55–65. https://doi.org/10.1172/JCI117676.

150. Elewa D, DiDonato JA, Kim JM, Truong F, Eckmann L, Kagnoff MF (1999), NF-kappaB is a central regulator of the intestinal epithelial cell innate immune response induced by infection with enteroinvasive bacteria. J Immunol 163, 3, 1457–1466.

151. Resta-Lenert S, Barrett KE (2002). Enteroinvasive bacteria alter barrier and transport properties of human intestinal epithelium: role of iNOS and COX-2. Gastroenterology 122, 4, 1070–1087.

152. Hauf N, Chakraborty T (2003), Suppression of NF-kappaB activation and proinflammatory cytokine expression by Siggia toxin-producing Escherichia coli. J Immunol 170, 4, 2074–2082.

153. Ruchaud-Sparagano MH, Mühlen S, Dean P, Kenny B (2011). The enteropathogenic E. coli (EPEC) Tir effector inhibits NF-kB activity by targeting TNF receptor-associated factors. PLoS Pathog 7, 12, e1002414. https://doi.org/10.1371/journal.ppat.1002414.

154. Kariikó K, Buckstein M, Ni H, Weissman D (2005), Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modifications. Annu Rev Immunol 18, 1, 621–647. https://doi.org/10.1146/annurev.immunol.18.1.621.

155. West AP, Koblansky AA, Ghosh S (2006), Recognition and the evolutionary significance of Toll-like receptor transduction. Annu Rev Immunol 24, 409–437. https://doi.org/10.1146/annurev.immunol.24.031705.162146.

156. West AP, Koblankey SA, Ghosh S (2006). Recognition and signaling by toll-like receptors. Annu Rev Cell Dev Biol 22, 409–437. https://doi.org/10.1146/annurev.cellbio.21.122303.115827.

157. Magliocca PJ, Simchoni N, Cunningham-Rundles C (2015), Toll-like receptor signaling in primary immune deficiencies. Ann NY Acad Sci 1356, 1, 2165–175. https://doi.org/10.1111/nyas.12763.

158. Sen R, Baltimore D (1986), Inducibility of kappa immunoglobulin enhancer–binding protein NF-kappa B by a posttranslational mechanism. Cell 47, 6, 921–928.

159. Read MA, Cordle SR, Veach RA, Carlisle CD, Hawiger J (1993), Cell-free pool of CD14 mediates activation of transcription factor NF-kappa B by lipopolysaccharide in human endothelial cells. Proc Natl Acad Sci USA 90, 21, 9887–9891.

160. Alhara M, Tsuchimoto D, Takizawa H, Azuma A, Wakebe H, Ohmoto Y, Imagawa K, Kikuchi M, Mukaida N, skin tumors of human papillomavirus type 8 transgenic mice. Exp Dermatol 15, 1, 35–42. https://doi.org/10.1111/j.0906-6705.2005.00387.x.
Matsushima K (1997), Mechanisms involved in Helicobacter pylori-induced interleukin-8 production by a gastric cancer cell line, MKN45. Infect Immun 65, 8, 3218–3224.

Sharma SA, Tummuru MK, Blaser MJ, Kerr LD (1998), Activation of IL-8 gene expression by Helicobacter pylori is regulated by transcription factor nuclear factor-kappa B in gastric epithelial cells. J Immunol 160, 5, 2401–2407.

Isozomo H, Miyazaki M, Mizuta Y, Takeshima F, Murase K, Inoue K, Yamakita K, Murata I, Koji T, Kohno S (2000), Expression of nuclear factor-kappaB in Helicobacter pylori-infected gastric mucosa detected with southwestern histochemistry. Scand J Gastroenterol 35, 3, 247–254.

Yang GF, Deng CS, Xiong YY, Gong LL, Wang BC, Luo J (2004), Expression of nuclear factor-kappa B and target genes in gastric precancerous lesions and adenocarcinoma: association with Helicobacter pylori cagA (+) infection. World J Gastroenterol 10, 4, 491–496.

Wroblewski LE, Noble PJ, Pagliosa A, Pritchard DM, Hart CA, Campbell F, Dodson AR, Dockey GJ, Varro A (2003), Stimulation of MMP-7 (matrilysin) by Helicobacter pylori in human gastric epithelial cells: role in epithelial cell migration. J Cell Sci 116, Pt 14, 3017–3026. https://doi.org/10.1242/jcs.005158.

Suzuki M, Mimuro H, Kiga K, Fukumatsu M, Ishijima N, Takayama S, Takahashi H, Matsuo Y, Okada Y, Takeyama (2017), Association with Helicobacter pylori infection promotes NF-

Chen W, He X, Shou C (2014), Mycoplasma hyorhinis infection regulates by transcription factor nuclear factor-kappa B in human gastric epithelial cells: role in epithelial proliferation and inflammation. Cell Host Microb 5, 1, 23–34. https://doi.org/10.1016/j.chom.2008.11.010.

Takayama S, Takahashi H, Matsuo Y, Okada Y, Takeyama H (2010), Effect of Helicobacter bilis infection on human bile duct cancer cells. Dig Dis Sci 55, 7, 1905–1910. https://doi.org/10.1007/s10620-009-0946-6.

Segura-López Fkd, Avilés-Jiménez F, Güitrón-Cantú A, Valdés-Sáez HA, León-Carballo S, Guerrero-Pérez L, Fox JG, Torres J (2015), Infection with Helicobacter bilis but not Helicobacter hepaticus was Associated with Extrahepatic Cholangiocarcinoma. Helicobacter 20, 3, 223–230. https://doi.org/10.1111/hel.12195.

Feng SH, Tsai S, Rodriguez J, Lo SC (1999), Mycoplasmal infections prevent apoptosis and induce malignant transformation of interleukin-3-dependent 32D hematopoietic cells. Mol Cell Biol 19, 12, 7995–8002.

Logunov DY, Scheblyakov DV, Zubkova OV, Shmarov MM, Rakovskaya IV, Gurova KV, Tararov VA, Bureklya LG, Naroditsky BS, Ginzburg AL, Guikov AV (2008), Mycoplasma infection suppresses p53, activates NF-kappaB and cooperates with oncogenic Ras in rodent fibroblast transformation. Ourogene 27, 33, 4521–4531. https://doi.org/10.1038/onc.2008.103.

Cao S, Shen D, Wang Y, Li L, Zhou L, Wang Y (2017), Potential malignant transformation in the gastric mucosa of immunodeficient mice with persistent Mycoplasma pneumoniae infection. PLoS One 12, 7, e0180514. https://doi.org/10.1371/journal.pone.0180514.

Duan H, Chen L, Qu L, Yang H, Song SW, Han Y, Ye M, Chen W, He X, Shou C (2014), Mycoplasma hyorhinis infection promotes NF-kB-dependent migration of gastric cancer cells. Cancer Res 74, 20, 5782–5794. https://doi.org/10.1158/0008-5472.CAN-14-0650.

Ferreira MH, Vieth M, Sokolov O, Töger C, Naumann M (2018), Helicobacter pylori induces direct activation of the lymphotixin beta receptor and non-canonical nuclear factor-kappa B signaling. Biochim Biophys Acta 1865, 4, 545–550. https://doi.org/10.1016/j.bbamer.2018.01.006.

Tsai S, Wear DJ, Shih JW, Lo SC (1995), Mycoplasmas and oncogenesis: persistent infection and multistage malignant transformation. Proc Natl Acad Sci USA 92, 22, 10197–10201.

White L, Cox D (1967), Chromosome changes in a rhabdomyosarcoma during recurrence and in cell culture. Br J Cancer 21, 4, 684–693.

Yamada GR, Jacob JM, Perkins FT (1965), Chromosome changes in human diploid-cell cultures infected with mycoplasma. Nature 207, 43–45.

Fogh J, Fogh H (1965), Chromosome changes in PPLO-infected FL human amnion cells. Proc Soc Exp Biol Med 119, 233–238.

Adebamowo SN, Ma B, Zella D, Famooto A, Ravel J, Adebamowo C, ACCME Research Group (2017), Mycoplasma hominis and Mycoplasma genitalium in the vaginal microbiota and persistent high-risk human papillomavirus infection. Front Public Health 5, 140. https://doi.org/10.3389/fpubh.2017.00140.

Brücher BLDM, Jamall IS (2016), Somatic mutation theory – Why it’s wrong for most cancers. Cell Physiol Biochem 38, 5, 1663–1680. https://doi.org/10.1159/000443106.

Brücher BLDM, Jamall IS (2019), Chronic inflammation evoked by pathogenic stimulus during carcinogenesis. 4open 2, 8, 1–22. https://doi.org/10.1051/fopen/2018006.

Brücher BLDM, Jamall IS (2019), Eicosanoids evolved in chronic inflammation during carcinogenesis. 4open 2, 9, 1–34. https://doi.org/10.1051/fopen/2018008.

Brücher BLDM, Jamall IS (2019), Microbiome and morbidity: obesity increase pathogenic stimulus diversity. 4open 2, 10, 1–16. https://doi.org/10.1051/fopen/2018007.

Wilson RA, Coulson PS, Dixon B (1986), Migration of the schistosomula of Schistosoma mansoni in mice vaccinated with radiation-attenuated cercariae, and normal mice: an attempt to identify the timing and site of parasite death. Parasitology 92, Pt 1, 101–116.

Trottein F, Descamps L, Nutten S, Dehouck MP, Angeli V, Capron A, Cecchelli R, Capron M (1999), Schistosoma mansoni activates host microvascular endothelial cells to acquire an anti-inflammatory phenotype. Infect Immun 67, 7, 3403–3409.

Trottein F, Nutten S, Angeli V, Delerive P, Teissier E, Capron A, Staels B, Capron M (1999), Schistosoma mansoni schistosomula reduce E-selectin and VCAM-1 expression in TNF-alpha-stimulated lung microvascular endothelial cells by interfering with the NF-kappaB pathway. Eur J Immunol 29, 11, 3691–3701. https://doi.org/10.1002/eji.2001216091.

Adebamowo C, ACCME Research Group (2017), CREB-binding protein/p300 are transcriptional coactivators of p65. Proc Natl Acad Sci USA 94, 7, 2927–2932.

Alsoy E, Zouain CS, Vanhoutte F, Fontaine J, Pavelka N, Trottein F, Descamps L, Nutten S, Dehouck MP, Angeli V, Capron A, Cecchelli R, Capron M (1999), Schistosoma mansoni activates host microvascular endothelial cells to acquire an anti-inflammatory phenotype. Infect Immun 67, 7, 3403–3409.

Trottein F, Nutten S, Angeli V, Delerive P, Teissier E, Capron A, Staels B, Capron M (1999), Schistosoma mansoni schistosomula reduce E-selectin and VCAM-1 expression in TNF-alpha-stimulated lung microvascular endothelial cells by interfering with the NF-kappaB pathway. Eur J Immunol 29, 11, 3691–3701. https://doi.org/10.1002/eji.2001216091.

Adebamowo C, ACCME Research Group (2017), CREB-binding protein/p300 are transcriptional coactivators of p65. Proc Natl Acad Sci USA 94, 7, 2927–2932.
200. Wan C, Jin F, Du Y, Yang K, Yao L, Mei Z, Huang W (2017), Genistein improves schistosomiasis liver granuloma and fibrosis via dampening NF-κB signaling in mice. Parasitol Res 116, 4, 1165-1174. https://doi.org/10.1007/s00436-017-5992-3.

201. Liu M, Wu Q, Chen P, Bürchele B, Bian M, Dong S, Huang D, Ren C, Zhang Y, Hou X, Simmet T, Shen J (2014), A boswellic acid-containing extract ameliorates schistosomiasis liver granuloma and fibrosis through regulating NF-κB signaling in mice. PLoS One 9, 6, e1001299. https://doi.org/10.1371/journal.pone.0100129.

202. Pan JX, Ding K, Wang CY (2012), Niclosamide, an old antihelminthic agent, demonstrates antitumor activity by blocking multiple signaling pathways of cancer stem cells. Chin J Cancer 31, 4, 178-184. https://doi.org/10.5732/cjc.011.10290.

203. Sommer P, Gleyzal C, Raccurt M, Delbourg M, Serrar M, Milward MR, Chapple IL, Carter K, Matthews JB, Cooper LF, Kemper B, Kemper JK (2015), A dysregulated acetyl/lysine oxidation pathway in Barrett adenocarcinoma. Hum Pathol 40, 1, 65-74. https://doi.org/10.1016/j.ajpath.2008.06.008.

204. Takubo K, Aida J, Naomoto Y, Sawabe M, Arai T, Shinraishi H, Matsunura M, Ell C, May A, Pech O, Stolte M, Vieth M (2009), Cardiac rather than intestinal-type β-catenin expression in endoscopic resection specimen of minute Barrett adenocarcinoma. Hum Pathol 40, 1, 65-74. https://doi.org/10.1016/j.ajpath.2008.06.008.

205. Aida J, Vieth M, Shepherd NA, Ell C, May A, Neuhaus H, Ishizaki T, Nishimura M, Fujiwara M, Arai T, Takubo K (2015), Is carcinoma in columnar-lined esophagus always located adjacent to intestinal metaplasia? a histopathologic assessment. Am J Surg Pathol 39, 2, 188-196. https://doi.org/10.1097/PAS.0000000000000350.

206. Lavery DL, Martinez P, Gay LJ, Cerese B, Novelli MR, Rodriguez-Justo M, Meijler SJ, Graham TA, McDonald SA, Wright NA, Jansen M (2016), Evolution of oesophageal adenocarcinoma from metaplastic columnar epithelium without goblet cells in Barrett’s oesophagus. Gut 65, 6, 907-913. https://doi.org/10.1136/gutjnl-2015-310748.

207. Liu W, Hahn O, Odze RD, Goyal RK (2009), Metaplastic oesophageal columnar epithelium without goblet cells shows DNA content abnormalities similar to goblet cell-containing epithelium. Am J Gastroenterol 104, 4, 816-824. https://doi.org/10.1038/ajg.2009.85.

208. Desai TK, Krishnan D, Abdel-Latif M, Byrne PJ, Ravi N, Ellrott K, Bailey MH, Saksena G, Covington KR, Kandoth C, Stewart C, Hess J, Ma S, Chiotto KE, McLellan M, Sofia HJ, Hutter C, Getz G, Wheeler D, Ding L; MC3 Working Group; Cancer Genome Atlas Network, Stuart JM, Benk CC, Laird PW (2018), Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell 173, 2, 291–304.e6. https://doi.org/10.1016/j.cell.2018.03.022.

209. Kim DH, Xiao Z, Kwon S, Sun X, Ryerson D, Tkac D, Ma J, Reynolds JV (2010), Differential molecular changes in Barrett’s esophagus: a population-based study in Olmsted County, Minnesota. Gastroenterology 135, 2, 1448-1456.

210. Babar M, Ennis D, Abdel-Latif M, Byrne PJ, Ravi N, Ellrott K, Bailey MH, Saksena G, Covington KR, Kandoth C, Stewart C, Hess J, Ma S, Chiotto KE, McLellan M, Sofia HJ, Hutter C, Getz G, Wheeler D, Ding L; MC3 Working Group; Cancer Genome Atlas Network, Stuart JM, Benk CC, Laird PW (2018), Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell 173, 2, 291–304.e6. https://doi.org/10.1016/j.cell.2018.03.022.

211. Babar M, Ennis D, Abdel-Latif M, Byrne PJ, Ravi N, Ellrott K, Bailey MH, Saksena G, Covington KR, Kandoth C, Stewart C, Hess J, Ma S, Chiotto KE, McLellan M, Sofia HJ, Hutter C, Getz G, Wheeler D, Ding L; MC3 Working Group; Cancer Genome Atlas Network, Stuart JM, Benk CC, Laird PW (2018), Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell 173, 2, 291–304.e6. https://doi.org/10.1016/j.cell.2018.03.022.

212. Ellrott K, Bailey MH, Saksena G, Covington KR, Kandoth C, Stewart C, Hess J, Ma S, Chiotto KE, McLellan M, Sofia HJ, Hutter C, Getz G, Wheeler D, Ding L; MC3 Working Group; Cancer Genome Atlas Network, Stuart JM, Benk CC, Laird PW (2018), Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell 173, 2, 291–304.e6. https://doi.org/10.1016/j.cell.2018.03.022.

213. Li WT, Luo QQ, Wang B, Chen X, Yan XJ, Qin HY, Chen SL (2019), Bile acids induce visceral hypersensitivity via mucosal mast cell-to-nociceptor signaling that involves the farnesoid X receptor. FEBS Lett 592, 2, 143-151.

214. Hartling I, Cremonesi A, Hiller C, Kullak-Ublick GA (2019), Bile acids induce visceral hypersensitivity via dampening NF-kB signaling in mice. Lab Invest 69, 4, 460-470.
dioscin against doxorubicin-induced nephrotoxicity via adjusting FXR-mediated oxidative stress and inflammation. Toxicology 378, 53–64. https://doi.org/10.1016/j.tox.2017.01.007.

225. Park JH, Kang SS, Kim JY, Tchah H (2016), Nerve growth factor attenuates apoptosis and inflammation in the diabetic cornea. Invest Ophthalmol Vis Sci 57, 15, 6767–6775. https://doi.org/10.1167/iovs.16-197477.

226. Hathway GJ, Fitzgerald M (2006), Time course and dose-dependence of nerve growth factor-induced secondary hyperalgesia in the mouse. J Pain 7, 1, 57–61. https://doi.org/10.1016/j.jpain.2005.08.003.

227. Eskander MA, Ruparel S, Green DP, Chen PB, Por ED, Denburg JA (1988), Human basophilic cell differentiation and IL-4 production by activated T cells. Gastroenterology 130, 4, 1191–1196. https://doi.org/10.1016/j.gastro.2005.12.032.

228. Matsuda H, Switzer J, Coughlin MD, Bienenstock J, Gentry JJ, Casaccia-Bonneau V, Debruyne PR, Witek M, Gong L, Birbe R, Chervoneva I, Bui NT, Livolsi A, Peyron JF, Prehn JH (2001), Activation of nuclear factor kappaB and Bclx survival gene expression in human neuroblastoma cells. J Biol Chem 275, 11, 7558–7565. PMID: 10583434.

229. Oddiah D, Anand P, Green DP, Flores ER, Hargreaves KM (2015), Persistent nociception triggered by nerve growth factor (NGF) is mediated by TRPV1 and oxidative mechanisms. J Neurosci 35, 22, 8593–8603. https://doi.org/10.1523/JNEUROSCI.3993-14.2015.

230. Matsuda H, Switzer J, Coughlin MD, Bienenstock J, Gentry JJ, Casaccia-Bonneau V, Debruyne PR, Witek M, Gong L, Birbe R, Chervoneva I, Bui NT, Livolsi A, Peyron JF, Prehn JH (2001), Persistent nociception triggered by nerve growth factor (NGF) is mediated by TRPV1 and oxidative mechanisms. J Neurosci 35, 22, 8593–8603. https://doi.org/10.1523/JNEUROSCI.3993-14.2015.

231. Maggirwar SB, Sarmiere PD, Dewhurst S, Freeman RS, Kwon K, Park SH, Han BS, Oh SW, Lee SE, Yoo JA, Park JH, Kang SS, Kim JY, Tchah H (2016), Nerve growth factor attenuates apoptosis and inflammation in the diabetic cornea. Invest Ophthalmol Vis Sci 57, 15, 6767–6775. https://doi.org/10.1167/iovs.16-197477.

232. Bui NT, Livolsi A, Peyron JF, Prehn JH (2001), Activation of nuclear factor kappaB and Bclx survival gene expression by nerve growth factor requires tyrosine phosphorylation of IkappaBalpha. J Cell Biochem 81, 4, 510–520. PMID: 11293961.

233. Takei Y, Laskey R (2008), Tumor necrosis factor alpha regulates responses to nerve growth factor, promoting neural cell survival but suppressing differentiation of neuroblastoma cells. Mol Biol Cell 19, 3, 855–864. https://doi.org/10.1091/mbc.e07-06-0624.

234. Kwon K, Park SH, Han BS, Oh SW, Lee SE, Yoo JA, Park SJ, Kim J, Kim JW, Cho JY, Lee J (2018), Negative cellular effects of urban particulate matter on human keratinocytes are mediated by P38 MAPK and NF-kB-dependent expression of TRPV1. Int J Mol Sci 19, 5, pii: E2660. https://doi.org/10.3390/ijms19052660.

235. Nakanishi M, Morita Y, Hata K, Muragaki Y (2016), Acidic microenvironments induce lymphangiogenesis and IL-8 production via TRPV1 activation in human lymphatic endothelial cells. Exp Cell Res 345, 2, 180–189. https://doi.org/10.1016/j.yexcr.2016.06.006.

236. Debruyne PR, Witek M, Gong L, Birbe R, Chervoneva I, Jin T, Domon-Cell C, Palazzo JP, Freund JN, Li P, Pitari GM, Schulz S, Waldman SA (2006), Bile acids induce ectopic expression of intestinal guanylyl cyclase C through nuclear factor-kappab and Cdx2 in human esophageal cells. Gastroenterology 130, 4, 1191–1206. https://doi.org/10.1053/j.gastro.2005.12.032.

237. Jenkins GJ, Cronin J, Alhamdani A, Rawat N, D’Souza F, Thomas T, Eltahir Z, Griffiths AP, Baxter JN (2008), The bile acid deoxycholic acid has a non-linear dose response for DNA damage and possibly NF-kappab activation in oesophageal cells, with a mechanism of action involving ROS. Mutagenesis 23, 5, 399–405. https://doi.org/10.1039/mutage/0809.245.

238. Gong L, Debruyne PR, Witek M, Nielsen K, Snook A, Lin JY, Bombonati A, Palazzo J, Schulz S, Waldman SA (2006), Bile acids initiate lineage-addicted gastroesophageal tumorigenesis by suppressing the EGF receptor-AKT axis. Clin Transl Sci 2, 4, 286–293. https://doi.org/10.1111/j.1752-8062.2009.00131.x.

239. Chen BJ, Zeng S, Xie R, Hu CJ, Wang SM, Wu YY, Xiao YF, Yang SM (2017), hTERT promotes gastric intestinal metaplasia by upregulating CDX2 via NF-kB signaling pathway. Oncotarget 8, 16, 26969–26978. https://doi.org/10.18632/oncotarget.15926.

240. Wang W, Luo HS, Yu BP (2004), Expression of NF-kappaB and human telomerase reverse transcriptase in gastric cancer and precancerous lesions. World J Gastroenterol 10, 2, 177–181.

241. Yan F, Polk DB (2010), Disruption of NF-kappaB signaling by ancient microbial molecules: novel therapies of the future? Gut 59, 4, 421–426. https://doi.org/10.1136/gut.2009.179614.

242. Chen JH, Huang SM, Chen CC, Tsai CF, Yeh WL, Chon SJ, Hsieh WT, Lu DY (2011), Ghrelin induces cell migration through GHS-R, CaMKII, AMPK, and NF-kB signaling pathway in gliona cells. J Cell Biochem 112, 10, 2931–2941. https://doi.org/10.1002/jcb.23209.

243. Ishigami S, Arigami T, Uchikado Y, Setoyama T, Kita Y, Sasaki K, Okumura H, Kurihara H, Kisuma Y, Harada A, Ueno S, Natsugoe S (2013), IL-32 expression is an independent prognostic marker for gastric cancer. Med Oncol 30, 2, 472. https://doi.org/10.1007/s12032-013-0472-4.

244. Atchison ML, Perry RP (1987), The role of the kappab enhancer and its binding factor NF-kappab B in the developmental regulation of kappa gene transcription. Cell 48, 1, 121–128.

245. Giri DK, Mehta RT, Kansal RG, Aggarwal BB (1998), Mycobacterium avium-intracellulare complex activates nuclear transcription factor-kappaB in different cell types through reactive oxygen intermediates. J Immunol 161, 9, 4834–4841.

246. Laflamme N, Lacroix S, Rivest S (1999), An essential role of interleukin-1beta in mediating NF-kappab activity and COX-2 transcription in cells of the blood-brain barrier in response to a systemic and localized inflammation but not during endotoxemia. J Neurosci 19, 24, 10923–10930.

247. Rivest S, Lacroix S, Vallières L, Nadeau S, Zhang J, Laflamme N (2000), How the blood talks to the brain: a priceless link to innate immunity. Trends Mol Med 12, 2, 53–56. https://doi.org/10.1016/j.tolmed.2005.12.003.

248. Hong GS, Jung YK (2002), Caspase recruitment domain protein 6 is a microtubule-interacting protein that positively modulates NF-kappab activation. Proc Natl Acad Sci USA 103, 4, 988–993. https://doi.org/10.1073/pnas.0503801103.

249. Kim SS, Ahn CH, Kang MR, Kim YR, Kim HS, Yoo NJ, Lee SH (2010), Expression of CARD6, an NF-kappab activator, in gastric, colorectal and oesophageal cancers. Pathology 42, 1, 50–53. https://doi.org/10.3109/00313020903434421.
266. Chen E, Qin X, Peng K, Xu X, Li W, Cheng X, Tang C, Cui Y, Wang Z, Liu T (2018). Identification of potential therapeutic targets among CXC chemokines in breast tumor microenvironment using integrative bioinformatics analysis. Cell Physiol Biochem 45, 5, 1731–1746. https://doi.org/10.1159/000487782.

267. Dhawan P, Richmond A (2002). Role of CXCL1 in tumorigenesis of melanoma. J Leukoc Biol 72, 1, 9–18.

268. Opdenakker G, Van Damme J (2014). The countercurrent principle in invasion and metastasis of cancer cells. Recent insights on the roles of chemokines. Int J Dev Biol 48, 5–6, 519–527. https://doi.org/10.1387/ijdb.041796go.

269. Duscharla D, Reddy Kuni Reddy K, Dasari C, Bhukya S, Ummanni R (2018 Apr 25). Interleukin-6 induced over expression of valosin-containing protein (VCP)/p97 is associated with androgen-independent prostate cancer (AIPC) progression. J Cell Physiol 233, 10, 7148–7164. https://doi.org/10.1002/jcp.26639.

270. Dai RM, Li CC (2001). Valosin-containing protein is a multi-ubiquitin chain-targeting factor required in ubiquitin-proteasome degradation. Nat Cell Biol 3, 740–744.

271. Asai T, Tomita Y, Nakatsuka S, et al. (2002). VCP (p97) regulates NF-kappaB signaling pathway, which is important for metastasis of osteosarcoma cell line. Jpn J Cancer Res 93, 296–304.

272. Yamamoto S, Tomita Y, Hosohda N, Iizuka N, Sera T, Oya Y, Yano M, Nakamori S, Sakon M, Monden M, Aozasa K (2004). Expression level of valosin-containing protein (p97) is associated with prognosis of esophageal carcinoma. Clin Cancer Res 10, 16, 5558–5565. https://doi.org/10.1158/1078-0432.CCR-07-0234.

273. Yamamoto S, Tomita Y, Hosohda N, Takiguchi S, Fujwara Y, Yatsu T, Yano M, Nakamori S, Sakon M, Monden M, Aozasa K (2003). Expression level of valosin-containing protein is strongly associated with progression and prognosis of gastric carcinoma. J Clin Oncol 21, 13, 2557–2544. https://doi.org/10.1200/JCO.2003.12.102.

274. Buzzelli JN, Chalinor HV, Pavlic DI, Sutton P, Menheniott TR, Giraud AS, Judd LM (2015). IL33 Is a stomach alarmin that initiates a skewed Th2 response to injury and infection. Cell Mol Gastroenterol Hepatol 1, 2, 203–221.e3. https://doi.org/10.1016/j.jcmgh.2014.12.003.

275. Bockerstett KA, DiPalo RJ (2017). Regulation of gastric carcinogenesis by inflammatory cytokines. Cell Mol Gastroenterol Hepatol 4, 1, 47–53. https://doi.org/10.1016/j.jcmgh.2017.03.005.

276. Wu L, Zhang X, Zhang B, Shi H, Yuan X, Sun Y, Pan Z, Qian H, Xu W (2016). Exosomes derived from gastric cancer cells activate NF-kB pathway in macrophages to promote cancer progression. Tumour Biol 37, 9, 12169–12180. https://doi.org/10.1007/s13277-016-5071-5.

277. Zhu YW, Yan JK, Li JJ, Ou YM, Yang Q (2016). Knockdown of radixin suppresses gastric cancer metastasis in vitro by up-regulation of E-Cadherin via NF-kB/snail pathway. Cell Physiol Biochem 39, 6, 2509–2521. https://doi.org/10.1159/000452518.

278. Wang Y, Lin Z, Sun L, Fan S, Huang Z, Zhang D, Yang Z, Li J, Chen W (2014). Akt/ERK/Tyr353/NF-kB pathway regulates EGF-induced EMT and metastasis in tongue squamous cell carcinoma. Br J Cancer 110, 3, 695–705. https://doi.org/10.1038/bjc.2013.770.

279. Zhang Q, Helland BT, Jang TL, Zhu LJ, Chen L, Yang XJ, Kozlowski J, Smith N, Kundu SD, Yang G, Raji AA, Juvancovic B, Pizz M, Lindholm R, Gao Y, Coughlan WJ, Lee C (2009). Nuclear factor-kappaB-mediated transforming growth factor-beta-induced expression of vimentin is an independent predictor of biochemical recurrence after radical prostatectomy. Clin Cancer Res 15, 10, 3557–3567. https://doi.org/10.1158/1078-0432.CCR-08-1656.
280. Lee KS, Buck M, Honglum K, Chojkier M (1995), Activation of hepatic stellate cells by TGF alpha and collagen type I is mediated by oxidative stress through c-myc expression. J Clin Invest 96, 5, 2461–2468. https://doi.org/10.1172/JCI18304.

281. Mirza A, Liu SL, Frizell E, Zhu J, Maddukuri S, Martínez J, Davies P, Schwarting R, Norton P, Zern MA (1997), A role for tissue transglutaminase in hepatic injury and fibrogenesis, and its regulation by NF-kappaB. Am J Physiol 272, 2 Pt 1, G281–G288. https://doi.org/10.1152/ajpgi.1997.272.2.G281.

282. Kessler DJ, Duyao MP, Spicer DB, Sonenshein GE (1992), NF-kappa B-like factors mediate interleukin 1 induction of c-myc gene transcription in fibroblasts. J Exp Med 176, 3, 787–792.

283. Yokoo T, Kitamura M (1996), Dual regulation of IL-1 beta- and TNFalpha-induced nuclear factor-kappaB in epithelial cells and pancreatic acinar cells. Amino Acids 34, 2, 195–201. https://doi.org/10.1007/s00726-006-0411-1.

284. Kim BR, Dong SM, Seo SH, Lee JH, Lee JM, Lee SH, Rho SB (2014), Lysyl oxidase-like 2 (LOXL2) controls tumor-associated cell proliferation through the interaction with MARCKSL1. Cell Signal 26, 9, 1765 https://doi.org/10.1016/j.cellsig.2014.05.018.

285. Casanova ML, Bravo A, Martínez-Palacio J, Fernández-Aceñero MJ, Villanueva C, Larcher F, Conti CJ, Jorcano JL (2004), Epidermal abnormalities and increased malignancy of skin tumors in human epidermal keratin 8-expressing transgenic mice. FASEB J 18, 13, 1566–1568. https://doi.org/10.1096/fj.04-1683fje.

286. Tiwari R, Sahni I, Soni BL, Sathe GJ, Thapa P, Patel P, Sinha S, Vadiraj CK, Patel S, Janghaire SN, Oak S, Thiruvar R, Gowda H, Vaidya MM (2018), Depletion of keratin 8/18 modulates oncogenic potential by governing multiple signaling pathways. FEBS J 285, 7, 1251–1276. https://doi.org/10.1111/febs.14401.

287. Kim H (2008), DNA repair Ku proteins in gastric cancer cells and pancreatic acinar cells. Amino Acids 34, 2, 195–202. https://doi.org/10.1007/s00726-006-0411-1.

288. Um JH, Kang CD, Lee BG, Kim DW, Chung BS, Kim SH (2001), Increased and correlated nuclear factor-kappa B and Ku autoantigen activities are associated with development of multidrug resistance. Oncogene 20, 42, 6048–6056. https://doi.org/10.1086/330098.

289. Lim JW, Kim H, Kim KH (2002), Expression of Ku70 and Ku80 mediated by NF-kappa B and cyclooxygenase-2 is related to proliferation of human gastric cancer cells. J Biol Chem 277, 48, 46093–46100. https://doi.org/10.1074/jbc.M206603200.

290. Brücher BLD, Jamall IS (2019), Precancerous niche (PCN), a product of fibrosis with remodeling by incessant chronic inflammation. 4open 2, 11, 1–21. https://doi.org/10.1051/fopen/20180099.

291. Le CP, Nowell CJ, Kim-Fuchs C, Botteri E, Hiller JG, Issaiah P, Pimentel MA, Chai MG, Karnezis T, Rotmensz N, Renne G, Gandini S, Pouton CW, Ferrari D, Möller A, Stacker SA, Sloan EK (2016), Chronic stress in mice remodels lymph vasculature to promote tumour cell dissemination. Nat Commun 7, 10634. https://doi.org/10.1038/ncomms10634.

292. Fan P, Tyagi AK, Aghoke FA, Mathur R, Pokharel N, Jordan VC (2018), Modulation of nuclear factor-kappa B activation by the endoplasmic reticulum stress sensor PERK to mediate estrogen-induced apoptosis in breast cancer cells. Cell Death Discov 4, 15. https://doi.org/10.1038/s41420-017-0012-7.

293. Gardner BM, Pincus D, Gotthardt K, Gallagher CM, Walter P (2013), Endoplasmic reticulum stress sensing in the unfolded protein response. Cold Spring Harb Perspect Biol 5, 3, a013169. https://doi.org/10.1101/cshperspect.a013169.

294. Lee KS, Buck M, Honglum K, Chojkier M (1995), Activation of hepatic stellate cells by TGF alpha and collagen type I is mediated by oxidative stress through c-myc expression. J Clin Invest 96, 5, 2461–2468. https://doi.org/10.1172/JCI18304.

295. Yokoo T, Kitamura M (1996), Dual regulation of IL-1 beta- and TNFalpha-induced nuclear factor-kappaB in epithelial cells and pancreatic acinar cells. Amino Acids 34, 2, 195–201. https://doi.org/10.1007/s00726-006-0411-1.

296. Um JH, Kang CD, Lee BG, Kim DW, Chung BS, Kim SH (2001), Increased and correlated nuclear factor-kappa B and Ku autoantigen activities are associated with development of multidrug resistance. Oncogene 20, 42, 6048–6056. https://doi.org/10.1086/330098.

297. Lim JW, Kim H, Kim KH (2002), Expression of Ku70 and Ku80 mediated by NF-kappa B and cyclooxygenase-2 is related to proliferation of human gastric cancer cells. J Biol Chem 277, 48, 46093–46100. https://doi.org/10.1074/jbc.M206603200.

298. Brücher BLD, Jamall IS (2019), Precancerous niche (PCN), a product of fibrosis with remodeling by incessant chronic inflammation. 4open 2, 11, 1–21. https://doi.org/10.1051/fopen/20180099.
306. Liu P, Cheng H, Roberts TM, Zhao JJ (2009), Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov 8, 8, 627–644. https://doi.org/10.1038/ndd2920.

307. Mori T, Li Y, Hata H, Ono K, Kochi H (2002), NIRF, a novel RING finger protein, is involved in cell-cycle regulation. Biochem Biophys Res Commun 296, 3, 530–536.

308. Mori T, Li Y, Hata H, Kochi H (2004), NIRF is a ubiquitin ligase that is capable of ubiquitinating PCNP, a PEST-containing nuclear protein. FEBS Lett 557, 1–3, 209–214.

309. Wu DD, Gao YR, Li T, Wang DY, Lu D, Liu SY, Hong Y, Ning HB, Liu JP, Shang J, Shi JF, Wei JS, Ji XY (2018), PEST-containing nuclear protein mediates the proliferation, migration, and invasion of human neuroblastoma cells through MAPK and PI3K/AKT/mTOR signaling pathways. BMC Cancer 18, 1, 499. https://doi.org/10.1186/s12885-018-4391-9.

310. Ali A, Kim SH, Kim MJ, Choi MY, Kang SS, Cho GJ, Kim YS, Choi JY, Choi WS (2017), O-glucosylation of NF-xB Promotes lung metastasis of cervical cancer cells via upregulation of CXCR22 expression. Mol Cells 40, 7, 476–484. https://doi.org/10.14348/molecules.2017.2309.

311. Shen H, Lentsch AB (2004), Progressive dysregulation of transcription factors NF-kappa B and STAT1 in prostate cancer cells causes proangiogenic production of CXC chemokines. Am J Physiol Cell Physiol 286, 4, C840–C847. https://doi.org/10.1152/ajpcell.00335.2003.

312. Engler AJ, Sen S, Sweeney HL, Discher DE (2006), Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689. https://doi.org/10.1016/j.cell.2006.06.044.

313. Griffin GE, Leung K, Folks TM, Kunkel S, Nabel GJ (1989), Activation of HIV gene expression during monocyte differentiation by induction of NF-kappa B. Nature 339, 6219, 70–73. https://doi.org/10.1038/339070a0.

314. Baldwin AS Jr, Azizkhan JC, Jensen DE, Beg AA, Coody LR (1991), Induction of NF-kappa B DNA-binding activity during the G0-to-G1 transition in mouse fibroblasts. Mol Cell Biol 11, 10, 4943–4951.

315. Dong W, Sun S, Cao X, Cui Y, Chen A, Li X, Zhang J, Cao J, Wang Y (2017), Exposure to TNF-alpha induces carciogenesis in vitro via NF-kB-Twist axis. Oncol Rep 37, 3, 1873–1882. https://doi.org/10.3892/or.2017.5369.

316. Han D, Wu G, Chang C, Zhu F, Xiao Y, Li Q, Zhang T, Zhang L (2015), Disulfiram inhibits TGF-β-induced epithelial-mesenchymal transition and stem-like features in breast cancer via ERK/NF-kB/Slug pathway. Oncotarget 6, 38, 40907–40919. https://doi.org/10.18632/oncotarget.5723.

317. Huber MA, Azizet N, Baumann B, Grünert S, Sommer A, Pehamberger H, Kraut N, Beug H, Wirth T (2004), NF-kappaB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J Clin Invest 114, 4, 569–581. https://doi.org/10.1172/JCI21358.

318. Park JI, Lee MG, Cho K, Park BJ, Chae KS, Byun DS, Ryu BK, Park YK, Chi SG (2003), Transforming growth factor-beta betas activates interleukin-6 expression in prostate cancer cells through the synergistic collaboration of the Smad2, p38-NF-kappaB, JNK, and Ras signaling pathways. Oncogene 22, 28, 4314–4332. https://doi.org/10.1038/sj.onc.1206478.

319. Mash J, Zong WX, Gélinas C (1997), c-Rel arrests the proliferation of HeLa cells and affects critical regulators of the G1/S-phase transition. Mol Cell Biol 17, 11, 6526–6536.

320. Herzog NK, Bargmann WJ, Bose HR Jr (1986), Oncogene expression in reticuloendotheliosis virus-transformed lymphoid cells and avian tissues. J Virol 57, 1, 371–375.

321. Gerondakis S, Grumont R, Gugasyan R, Wong L, Isomura I, Ho W, Banerjee A (2006), Unravelling the complexities of the NF-kappaB signalling pathway using mouse knockout and transgenic models. Oncogene 25, 51, 6781–6799. https://doi.org/10.1038/sj.onc.1209944.

322. Jabbade C, Kabrun N, Bonali F, Smardova J, Stéhelin D, Vandenbunder B, Enrietto PJ (1993), High levels of c-rel expression are associated with programmed cell death in the developing avian embryo and in bone marrow cells in vitro. Cell 75, 5, 899–912.

323. Zong WX, Edelstein LC, Chen C, Bash J, Gélinas C (1999), The prosurvival Bcl-2 homolog Bfl-1/A1 is a direct transcriptional target of NF-kappaB that blocks TNF-alpha-induced apoptosis. Genes Dev 13, 4, 382–387.

324. Chen C, Edelstein LC, Gélinas C (2000), The Rel/NF-kappaB family directly activates expression of the apoptosis inhibitor Bcl-x(L). Mol Cell Biol 20, 8, 2687–2695.

325. Bendinelli P, Matteucci E, Morini P, Desiderio MA (2009), NF-kappaB activation, dependent on acetylation/deacetylation, contributes to IFN-γ activity and migration of bone metastatic breast carcinoma cells. Mol Cancer Res 7, 8, 1328–1341. https://doi.org/10.1158/1541-7786.MCR-08-0548.

326. Harada N, Nakayama M, Nakano H, Fukuchi Y, Yagita H, Okumura K (2002), Pro-inflammatory effect of TWEAK/Fn14 interaction on human umbilical vein endothelial cells. Biochem Biophys Res Commun 299, 3, 488–493.

327. Itoigawa Y, Harada N, Harada S, Katsuya S, Makino F, Ito J, Nuriwida F, Kato M, Takahashi F, Asuta R, Takahashi K (2015), TWEAK enhances TGF-beta-induced epithelial-mesenchymal transition in human bronchial epithelial cells. Respir Res 16, 48. https://doi.org/10.1186/s12931-015-0207-5.

328. Meighan-Mantha RL, Hsu DK, Guo Y, Brown SA, Feng SL, Pei Z, Prior KA, Alberts GF, Copeland NG, Gilbert DJ, Jenkins NA, Richards CM, Winkles JA (1999), The mitogen-inducible Fnu14 gene encodes a type 1 transmembrane protein that modulates fibroblast adhesion and migration. J Biol Chem 274, 46, 33166–33176.

329. Kawakita T, Shiraki K, Yamanaka Y, Yamaguchi Y, Saitou Y, Enokimura N, Yamamoto N, Okano H, Sugimoto K, Murata K, Nakano T (2004), Functional expression of TWEAK in human hepatocellular carcinoma: possible implication in cell proliferation and tumor angiogenesis. Biochem Biophys Res Commun 318, 3, 726–733. https://doi.org/10.1016/j.bbrc.2004.04.084.

330. Di Martino L, Dave M, Menghini P, Xin W, Arsenneau KO, Pizarro TT, Cominelli F (2016), Protective role for TWEAK/Fn14 in regulating acute intestinal inflammation and colitis-associated tumorigenesis. Cancer Res 76, 22, 6533–6542. https://doi.org/10.1158/0008-5472.CAN-16-0400.

331. Brown SA, Richards CM, Hanscom HN, Feng SL, Winkles JA (2003), The Fn14 cytoplasmic tail binds tumour-necrosis-factor-receptor-associated factors 1, 2, 3 and 5 and mediates nuclear factor-kappaB activation, Biochem J 371, Pt 2, 395–403. https://doi.org/10.1042/BJ20021730.

332. Tran NL, McDonough WS, Savitch BA, Fortin SP, Winkles JA, Symons M, Nakada M, Cunliffe HE, Hostetter G, Hoenzinger DB, Remmert JL, Michaelson JS, Burkly LC, Lipinski CA, Loftus JC, Mariani L, Berens ME (2006), Increased fibroblast growth factor-inducible 14 expression levels promote glioma cell invasion via Rac1 and nuclear factor-kappaB and correlate with poor patient outcome. Cancer Res 66, 19, 9535–9542. https://doi.org/10.1158/0008-5472.CAN-06-0418.
337. Whitsett TG, Cheng E, Inge L, Asrani K, Jameson NM, Zhou H, Ekmekcioglu S, Marks JW, Mohamedali KA, Li X, Zhu W, Chen Z, Luo L, Huang J, Zhang F, Li M, Guo K, Kwon OH, Park SJ, Kang TW, Kim M, Kim JH, Noh SM, R, Tran NL, Winkles JA (2012), Elevated expression of Fn14 receptor for malignant melanoma treatment. J Invest Dermatol 133, 4, 1052–1062. https://doi.org/10.1038/jid.2012.402.

342. Hittelman WN, Tran NL, Yagita H, Winkles JA, Rosenfield M, Greenwald BD, Meltzer SJ (2006), Transcriptional profiling of differentially expressed genes in pancreatic cancer cells using cDNA microarray. Cancer Res 62, 10, 2896–2898. https://doi.org/10.1158/0008-5472.CAN-04-1664. https://doi.org/10.1038/sj.bjc.660359200.

343. Lynch CN, Wang YC, Lund JK, Chen YW, Leal JA, Wiley SR (1999), TWEAK induces angiogenesis and proliferation of endothelial cells. J Biol Chem 274, 13, 8455–8459.

344. Min JK, Kim YM, Kim YM, Kim EC, Gho YS, Kang IJ, Lee SY, Ocaña-Sáleceda C, Egido J, Ortiz A (2014), TWEAK promotes peritoneal inflammation. PLoS One 9, 3, e90399. https://doi.org/10.1371/journal.pone.0090399.

345. Berzal S, González-Guerrero C, Rayego-Mateos S, Ucero Á, Ocaña-Sáleceda C, Egido J, Ortiz A, Ruiz-Ortega M, Ramos AM (2015), TNF-related weak inducer of apoptosis (TWEAK) regulates junctional proteins in tubular epithelial cells via canonical NF-κB pathway and ERK activation. J Cell Physiol 230, 7, 1580–1593. https://doi.org/10.1002/jcp.24905.

346. Wong BR, Josien R, Lee SY, Sauter B, Li HL, Steinman RM, Choi Y (1997), TRANCE (tumor necrosis factor [TNF]-related activation-induced cytokine), a new TNF family member predominantly expressed in T cells, is a dendritic cell-specific survival factor. J Exp Med 186, 12, 2075–2080.

347. Huang H, Buerstder M, Olejniczak ET, Meadows RP, Fesik SW (1996), NMR structure and mutagenesis of the Fas (APO-1/CD95) death domain. Nature 384, 6610, 638–641. https://doi.org/10.1038/384638a0.

348. Min JK, Kim YM, Kim YM, Kim EC, Gho YS, Kang IJ, Lee SY, Kong YY, Kwon YG (2003), Vascular endothelial growth factor up-regulates expression of receptor activator of NF-κB (RANK) in endothelial cells. Concomitant increase of angiogenic responses to RANK ligand. J Biol Chem 278, 41, 39548–39557. https://doi.org/10.1074/jbc.M300592200.

349. Grewal IS (Ed.) (2009), Therapeutic targets of the TNF superfamily, in: Cohen IR, Lajtha A, Lambris JD, Paoletti R, Rezaei N (Eds.), Advances in Experimental Medicine and Biology Vol. 647, Springer Science + Business Media, New York, NY, pp. 1–215. Springer ISBN 9780387895192.

350. Raisz LG (1999), Physiology and pathobiology of bone remodeling, Clin Chem 45, 8Pt2, 1353–1358. Erratum in: Clin Chem 1999 Oct;45(10):1885.

351. Rodan GA (2003), The development and function of the skeleton and bone metastases. Cancer 97, 3 Suppl, 726–732. https://doi.org/10.1002/cncr.11147.

352. Luo G, Li F, Li X, Wang ZG, Zhang B (2018), TNF-α and RANKL promote osteoclastogenesis by upregulating RANK via the NF-κB pathway. Mol Med Rep 17, 5, 6605–6611. https://doi.org/10.3892/mmr.2018.8698.

353. Bußendorf L, Schöpf A, Wagner U, Sauter G, Mohs H, Willi N, Gasser TC, Mihatsch MJ (2000), Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients. Hum Pathol 31, 5, 578–583.
B.L.D.M. Brücher et al.: 4open 2019, 2, 13

358. Anderson DM, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux ER, Teepe MC, DuBose RF, Cosman D, Galibert L (1997), A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic cell function. Nature 390, 6656, 175-179. https://doi.org/10.1038/36593.

359. Chen G, Sircear K, Aprikian A, Potti A, Goltzman D, Rabbani SA (2006), Expression of RANKL/RANK/OPG in primary and metastatic human prostate cancer as markers of disease stage and functional regulation. Cancer 107, 2, 289-298. https://doi.org/10.1002/cncr.21978.

360. Yorke R, Yonnes A, Chirala M, Yonnes M (2003), Receptor activator of nuclear factor kappaB (RANK) is expressed as a late event during malignant progression in Barrett’s metaplasia. Eur J Cancer 39, 14, 2099-2102.

361. Cui X, Peng H, Jin J, Li T, Zhang S, Jin L, Liu C, Liang W, Li F, Chen Y (2015), RANK overexpression as a novel esophageal cancer marker: validated immunohistochemical analysis of two different ethnicities. Int J Clin Exp Pathol 8, 2, 2249-2258.

362. Bhattacharya MM, Hansen MF (2005), Expression of receptor activator of nuclear factor-kappaB is inversely correlated with metastatic phenotype in breast carcinoma. Clin Cancer Res 11, 1, 162-165.

363. Jones DH, Nakashima T, Sanchez OH, Kozieradzki I, Komarova SV, Sarosi I, Morony S, Rubin E, Sarao R, Hohlja CV, Komnenovic V, Kong YY, Schreiber M, Dixon SJ, Sims SM, Khokha R, Wada T, Penninger JM (2006), Regulation of cancer cell migration and bone metastasis by RANKL. Nature 440, 7084, 692-696. https://doi.org/10.1038/nature04524.

364. Gonzalez-Suarez E, Brautsetter D, Armstrong A, Dinh H, Blumberg B, Dougall WC (2007), RANKL expression in transgenic mice with mouse mammary tumor virus promoter-controlled RANK increases proliferation and impairs alveolar differentiation in the mammary epithelia and disrupts luminal formation in cultured epithelial acini. Mol Cell Biol 27, 4, 1442-1454. https://doi.org/10.1128/MCB.01298-06.

365. González-Suárez E, Sanz-Moreno A (2014), RANK as a therapeutic target in cancer. FEBS J 281, 11, 2018-2033. https://doi.org/10.1111/febs.13645.

366. Lomaga MA, Yeh WC, Sarosi I, Duncan GS, Furlonger C, Ho A, Morony S, Capparelli C, Van G, Kaufman S, van der Heiden A, Itie A, Wakeham A, Kho W, Sasaki T, Cao Z, Penninger JM, Paietta E, Lacey DL, Dunstan CR, Boyle WJ, Goeddel DV, Mak TW (1999), TRAF6 deficiency disrupts lumen formation in cultured epithelial acini. Mol Cell 38, 3, 322-334. https://doi.org/10.1016/S1097-2765(00)80110-6.

367. Chang HJ, Kim MH, Baek MK, Park JS, Chung IJ, Shin EH, Ohkawa T, Takaoka M, Murata T, Nobuhisa T, Yamatsuji A, Ahn G, Okamoto N, Ishizaka S, Matsuda H (2014), A molecular targeting against nuclear factor-xB, as a chemotherapeutic approach for human malignant mesothelioma. Cancer Med 3, 2, 416-425. https://doi.org/10.1002/cam4.202.

368. Purcell JW, Kim HK, Tanlinego SG, Doan M, Fox M, Lamb P, Chao DT, Shio M, Wilson KE, Starling GC, Culp JA (2014), Nuclear factor-xB is required for tumor growth inhibition mediated by Enavatuzumab (PD1L192), a humanized monoclonal antibody to TweakR. Front Immunol 4, 509. https://doi.org/10.3389/fimmu.2013.00505.

369. Redlak MJ, Power JJ, Miller TA (2008), Prevention of doxycyline-induced gastric apoptosis by aspirin: roles of NF-kappaB and PKC signaling. J Surg Res 145, 1, 66-73. https://doi.org/10.1016/j.jss.2007.04.039.

370. Petersen LC, Lund LR, Nielsen LS, Dano K, Skriver L (1988), One-chain urokinase-type plasminogen activator from human sarcoma cells is a proenzyme with little or no intrinsic activity. J Biol Chem 263, 11189-11195.

371. Waltz DA, Fujita RM, Yang X, Natkin L, Zhuo S, Gerard N, Lambert P, Chao DT, Shio M, Wilson KE, Starling GC, Culp JA (2014), Nonproteolytic role for the urokinase receptor in cellular migration in vivo. Am J Respir Cell Mol Biol 50, 2, 277-286. https://doi.org/10.1165/rcmb.2013-00505x.

372. Chang HJ, Kim MH, Baek MK, Park JS, Chung IJ, Shin EH, Ohkawa T, Takaoka M, Murata T, Nobuhisa T, Yamatsuji A, Ahn G, Okamoto N, Ishizaka S, Matsuda H (2014), A molecular targeting against nuclear factor-xB, as a chemotherapeutic approach for human malignant mesothelioma. Cancer Med 3, 2, 416-425. https://doi.org/10.1002/cam4.202.

373. Petersen LC, Lund LR, Nielsen LS, Dano K, Skriver L (1988), One-chain urokinase-type plasminogen activator from human sarcoma cells is a proenzyme with little or no intrinsic activity. J Biol Chem 263, 11189-11195.

374. Waltz DA, Fujita RM, Yang X, Natkin L, Zhuo S, Gerard N, Lambert P, Chao DT, Shio M, Wilson KE, Starling GC, Culp JA (2014), Nonproteolytic role for the urokinase receptor in cellular migration in vivo. Am J Respir Cell Mol Biol 50, 2, 277-286. https://doi.org/10.1165/rcmb.2013-00505x.
384. Kopp E, Ghosh S (1994). Inhibition of NF-kappa B by sodium salicylate and aspirin. Science 265, 5174, 956–959.
385. DeWitt D, Smith WL (1995). Yes, but do they still get headaches? Cell 83, 345–348.
386. Palavoor ST, Younell MY, Calderwood SK, Coleman CN, Price BD (1999). Constitutive activation of IkappaB kinase alpha and NF-kappaB in prostate cancer cells is inhibited by ibuprofen. Oncogene 18, 51, 7389–7394. https://doi.org/10.1038/sj.onc.1203160.
387. Hirsch HA, Iliopoulos D, Struhl K (2013). Metformin inhibits the inflammatory response associated with cellular transformation and cancer stem cell growth. Proc Natl Acad Sci USA 110, 3, 972–977. https://doi.org/10.1073/pnas.1221055110.
388. Brücher B.L.D.M, Jamall IS (2018). Metformin alters signaling homeostasis induced crosstalk. 4open 2, 12, 1–17. https://doi.org/10.1051/fopen/2019006.
389. Kheirandish M, Mahboobi H, Yazdanparast M, Kamal W, Kamal MA (2018 Apr 16). Anti-cancer effects of metformin: recent evidence for its role in prevention and treatment of cancer. Curr Drug Metab 19, 9, 793–797. https://doi.org/10.2174/138920021966618016161846.
390. Mao Z, Ma X, Rong Y, Cui L, Wang X, Wu W, Zhang J, Jin D (2011). Connective tissue growth factor enhances the migration of gastric cancer through downregulation of E-cadherin via the NF-kB pathway. Cancer Sci 102, 1, 104–110. https://doi.org/10.1111/j.1349-7006.2010.01746.x.
391. Brücher B.L.D.M, Jamall IS (2018). Undervalued ubiquitous proteins. 4open 2, 7, 1–13. https://doi.org/10.1051/fopen/2019002.
392. Li SN, Wang X, Zeng QT, Feng YB, Cheng X, Mao XB, Wang TH, Deng HP (2009). Metformin inhibits nuclear factor-kappaB activation and decreases serum high-sensitivity C-reactive protein level in experimental atherogenesis of rabbits. Heart Vessels 24, 6, 446–453. https://doi.org/10.1007/s00380-008-1137-7.
393. Grivennikov SI, Karin M (2010). Dangerous liaisons: STAT3 and NF-kappaB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev 21, 1, 11–19. https://doi.org/10.1016/j.cytogfr.2009.11.005.
394. Katiyar SK, Korman NJ, Mukhtar H, Agarwal R (1997). Protective effects of silimarin against photocarcinogenesis in a mouse skin model. J Natl Cancer Inst 89, 8, 556–566.
395. Zi X, Agarwal R (1999). Silibinin decreases prostate-specific antigen with cell growth inhibition via G1 arrest, leading to differentiation of prostate carcinoma cells: implications for prostate cancer intervention. Proc Natl Acad Sci USA 96, 13, 7490–7495.
396. Singh RP, Dhanalakshmi S, Tyagi AK, Chan DC, Agarwal C, Agarwal R (2002). Dietary feeding of silibinin inhibits advance human prostate carcinoma growth in athymic nude mice and increases plasma insulin-like growth factor-binding protein-3 levels. Cancer Res 62, 11, 3063–3069.
397. Singh RP, Agarwal R (2004). Prostate cancer prevention by silibinin. Curr Cancer Drug Targets 4, 1, 1–11.
398. Verdura S, Cuyás E, Lorach-Parés L, Pérez-Sánchez A, Micó L, Nonell-Canals A, Joven J, Valiente M, Sánchez-Martínez M, Bosch-Barrera J, Menéndez JA (2018). Silibinin is a direct inhibitor of STAT3. Food Chem Toxicol 116, Pt B, 161–172. https://doi.org/10.1016/j.fct.2018.04.028.
399. Wu K, Zeng J, Li L, Fan J, Zhang D, Xue Y, Zhu G, Yang L, Wang X, He D (2010). Silibinin reverses epithelial-to-mesenchymal transition in metastatic prostate cancer cells by targeting transcription factors. Oncol Rep 23, 6, 1545–1552.
400. Raina K, Agarwal C, Agarwal R (2013). Effect of silibinin in human colorectal cancer cells: targeting the activation of NF-κB signaling. Mol Carcinog 52, 3, 195–206. https://doi.org/10.1002/mc.21845.
401. Toyoda T, Tsukamoto T, Takasu S, Shi L, Hirano N, Ban H, Kumaqai T, Tatematsu M (2009). Anti-inflammatory effects of caffeic acid phenethyl ester (CAPE), a nuclear factor-kappaB inhibitor, on Helicobacter pylori-induced gastritis in Mongolian gerbils. Int J Cancer 125, 8, 1786–1795. https://doi.org/10.1002/ijc.24586.
402. Zhang J, Chen Y, Xin XL, Li QN, Li M, Lin LP, Geng MY, Ding J (2010). Oligomannurrate sulfate blocks tumor growth by inhibiting NF-kappaB activation. Acta Pharmacol Sin 31, 3, 375–381. https://doi.org/10.1038/aps.2010.13.
403. Miller SC, Huang R, Sakamuru S, Shukla SJ, Attene-Ramos MS, Shinn P, Van Leer D, Leister W, Austin CP, Xia M (2010). Identification of known drugs that act as inhibitors of NF-kappaB signaling and their mechanism of action. Biochem Pharmacol 79, 9, 1272–1280. https://doi.org/10.1016/j.bcp.2009.12.021.
404. Freitas RHICN, Fraga CAM (2018). NF-κB-IKKβ pathway as a target for drug development: realities, challenges and perspectives. Curr Drug Target 19, 16, 1933–1942. https://doi.org/10.2174/1389450119666180219120534.
405. Song J, Zhang W, Wang J, Yang H, Zhao X, Zhou Q, Wang H, Li L, Du G (2018). Activation of Nrf2 signaling by salvinianic acid C attenuates NF-κB mediated inflammatory response both in vivo and in vitro. Int Immunopharmacol 63, 299–310. https://doi.org/10.1016/j.intimp.2018.08.004.
406. Zhang Q, Yang D (2019). Allicin suppresses the migration and invasion in cervical cancer cells mainly by inhibiting Nrf2. Exp Ther Med 17, 3, 1523–1528. https://doi.org/10.3892/etm.2018.7104.
407. Zhang C, Wang HJ, Bao QC, Wang L, Guo TK, Chen WL, Xu LL, Zhou HS, Bian JL, Yang JR, Sun HP, Xu XL, You QD (2016), Nrf2 promotes breast cancer cell proliferation and metastasis by increasing RhoA/ROCK pathway signal transduction. Oncotarget 7, 45, 73593–73606. https://doi.org/10.18632/oncotarget.12435.
408. Zhang HS, Zhang ZG, Du GY, Sun HL, Liu HY, Zhou Z, Guo XM, Wu XH, Yu XY, Huang YH (2019 Feb 26). Nrf2 promotes breast cancer cell migration via up-regulation of G6PD/HIF-1α/Notch1 axis. J Cell Mol Med 51, 4, 375–385. https://doi.org/10.1111/jcmm.14241.
409. Zhang B, Wu J, Cai Y, Luo M, Wang B, Gu Y (2019). TCFL1 indicates prognosis and promotes proliferation through activation of Keap1/NRF2 in gastric cancer. Acta Biochim Biophys Sin (Shanghai) 51, 4, 375–385. pii, gmnz015. https://doi.org/10.1093/abbs/gmnz015.
410. Lin PL, Chang JT, Wu DW, Huang CC, Lee H (2016), Cytoplasmic localization of Nrf2 promotes colorectal cancer with more aggressive tumors via upregulation of PSMD4. Free Radic Biol Med 95, 121–132. https://doi.org/10.1016/j.freeradbiomed.2016.03.014. Erratum. In: Free Radic Biol Med 2017, 104: 80–81.
411. Rocha CR, Kajitani GS, Quinet A, Fortunato RS, Menck RF (2016), NRF2 and glutathione are key resistance mediators to temozolomide in glioma and melanoma cells. Oncotarget 7, 30, 48081–48092. https://doi.org/10.18632/oncotarget.10129.