Regulation of ion channels and transporters by AMP-activated kinase (AMPK)

Florian Lang and Michael Föller

Department of Physiology; University of Tübingen; Tübingen, Germany

Keywords: K⁺ channels, Na⁺ channels, Cl⁻ channels, Ca²⁺ channels, glucose carriers, Na⁺/H⁺ exchanger, monocarboxylate transporters, amino acid transporters, Na⁺/Ca²⁺ exchanger, Na⁺/K⁺ ATPase

Abbreviations: AMPK, AMP activated kinase; B0AT, amino acid transporter; BGT, NaCl coupled betaine, GABA transporter BGT; BKCa, Big Ca2+ activated K⁺ channels; CaMKKβ, Ca2+/calmodulin-dependent kinase kinase-beta; CFTR, cystic fibrosis transmembrane transport regulator; CICκa/barttin, Cl⁻ channels; CIC2, Cl⁻ channels; CreaT, creatine transporter; EAAT, Excitatory amino acid transporter; ENaC, epithelial Na⁺ channel; GAP, GTPase activating protein; GLUT, glucose transporters; GSK, glycogen synthase kinase; hERG, human ether a gogo K⁺ channels; KATP, ATP regulated K⁺ channels; KCa, Ca2+ activated K⁺ channels; KCNQ1, voltage gated K⁺ channels; Kir, inwardly rectifying K⁺ channels; Kv, voltage gated K⁺ channels; LKB1, liver kinase B1; MCT, monocarboxylate transporters; NaPi-IIb, phosphate transporter; Nav, voltage gated Na⁺ channels; Nedd4.2, neuronal precursor cells expressed developmentally downregulated 4-2; NF-κB, Nuclear factor kappa B; OHC, outer hair cells; Orai1, Ca2+ release activated Ca2+ channel; PepT1, peptide transporter; PIKfyve, phosphatidylinositol 3-phosphate 5-kinase; PTEN, Phosphatase and tensin homologue (PTEN) via glycogen synthase; ROMK, renal outer medullary K⁺ channels; SGLT, Na⁺ coupled glucose transporter; SMIT, Na⁺ coupled myo-inositol transporter; SN1, amino acid transporter; STK11, serine/threonine kinase 11; SOCE, store-operated Ca²⁺ entry; TBC1D1, TBC domain Rab GTPase activating protein; TASK, Tandem pore domain K⁺ channels; TREK, Tandem pore domain K⁺ channels

Introduction

The ubiquitously expressed adenosine 5’-monophosphate (AMP) -activated protein kinase (AMPK) is composed of a catalytic α-subunit and regulatory β- and γ-subunits.¹ The α1 isof orm is ubiquitously expressed, whereas the α2 isof orm is mainly expressed in skeletal muscle, heart and liver.² AMPK is activated by increase in the cytosolic AMP/ATP concentration ratio and thus responds to the cellular energy status.³,⁵ AMPK is further activated by increases in the cytosolic Ca²⁺ concentration even in energy-replete cells,⁴,⁶,⁹ an effect involving Ca²⁺/calmodulin-dependent kinase kinase–β (CaMKKβ) dependent phosphorylation of threonine 172 (Thr-172) residue in the AMPK catalytic α subunit.¹⁰,¹¹ Moreover, AMPK is activated by the liver kinase B1 (LKB1) or serine/threonine kinase 11 (STK11),¹¹ the transforming growth factor β-associated kinase 1² and by glucosamine.¹³ AMPK phosphorylates target proteins at serine or threonine within the consensus sequence Φ(XX/XX)XX/XXXΨ (Ψ, hydrophobic; Φ, basic).¹⁴ Phosphorylation modifies the function of target proteins. The cellular functions thus stimulated by AMPK serve in large part to refuel cellular ATP levels.¹⁵ AMPK increases ATP generation by stimulating cellular glucose uptake, glycolysis, fatty acid oxidation and the activity of enzymes required for ATP production.⁵,¹⁶,³⁸ It curtails energy expenditure by decreasing protein synthesis, gluconeogenesis and lipogenesis.⁵,¹⁵,¹⁷,³⁹,⁴¹ AMPK thus protects cells against detrimental effects of energy depletion.¹²,¹³,⁴²,⁴⁴ However, AMPK may trigger

The energy-sensing AMP-activated kinase AMPK ensures survival of energy-depleted cells by stimulating ATP production and limiting ATP utilization. Both energy production and energy consumption are profoundly influenced by transport processes across the cell membrane including channels, carriers and pumps. Accordingly, AMPK is a powerful regulator of transport across the cell membrane. AMPK regulates diverse K⁺ channels, Na⁺ channels, Ca²⁺ release activated Ca²⁺ channels, Cl⁻ channels, gap junctional channels, glucose carriers, Na⁺/H⁺-exchanger, monocarboxylate-, phosphate-, creatine-, amino acid-, peptide- and osmolyte-transporters, Na⁺/Ca²⁺-exchanger, H⁺-ATPase and Na⁺/K⁺-ATPase. AMPK activates ubiquitin ligase Nedd4-2, which labels several plasma membrane proteins for degradation. AMPK further regulates transport proteins by inhibition of Rab GTPase activating protein (GAP) TBC1D1. It stimulates phosphatidylinositol 3-phosphate 5-kinase PIKfyve and inhibits phosphatase and tensin homolog (PTEN) via glycogen synthase kinase 3β (GSK3β). Moreover, it stabilizes F-actin as well as downregulates transcription factor NF-κB. All those cellular effects serve to regulate transport proteins.

The energy-sensing AMP-activated kinase AMPK ensures survival of energy-depleted cells by stimulating ATP production and limiting ATP utilization. Both energy production and energy consumption are profoundly influenced by transport processes across the cell membrane including channels, carriers and pumps. Accordingly, AMPK is a powerful regulator of transport across the cell membrane. AMPK regulates diverse K⁺ channels, Na⁺ channels, Ca²⁺ release activated Ca²⁺ channels, Cl⁻ channels, gap junctional channels, glucose carriers, Na⁺/H⁺-exchanger, monocarboxylate-, phosphate-, creatine-, amino acid-, peptide- and osmolyte-transporters, Na⁺/Ca²⁺-exchanger, H⁺-ATPase and Na⁺/K⁺-ATPase. AMPK activates ubiquitin ligase Nedd4-2, which labels several plasma membrane proteins for degradation. AMPK further regulates transport proteins by inhibition of Rab GTPase activating protein (GAP) TBC1D1. It stimulates phosphatidylinositol 3-phosphate 5-kinase PIKfyve and inhibits phosphatase and tensin homolog (PTEN) via glycogen synthase kinase 3β (GSK3β). Moreover, it stabilizes F-actin as well as downregulates transcription factor NF-κB. All those cellular effects serve to regulate transport proteins.

*Correspondence to: Florian Lang; E-mail: florian.lang@uni-tuebingen.de
Submitted: 11/17/2013; Revised: 11/29/2013; Accepted: 12/03/2013; Published Online: 12/23/2013
http://dx.doi.org/10.4161/chan.27423

©2014 Landes Bioscience. Do not distribute.
suicidal death of energy-depleted cells.45 It further inhibits cell proliferation,46 counteracts hypertrophy,47 fosters phagocytosis,48 and stimulates autophagy.49,50

The orchestration of cell survival during energy depletion involves regulation of transport across the cell membrane. Avoidance of Ca2+ overflow requires regulation of Ca2+ transport. The present brief review thus compiles the effects of AMPK on channels, carriers, and pumps. Some examples are provided of how AMPK-sensitive transport could counteract energy depletion and/or Ca2+ overflow. The reader is encouraged to consult excellent earlier reviews on similar topics.51,52

AMPK-Regulated Ion Channels

AMPK regulates a wide variety of membrane transport proteins.51,53-72 K+ channels downregulated by AMPK include Ca2+-activated potassium channels such as K\textsubscript{Ca3.1},51,73 inwardly rectifying potassium channels such as Kir1.1 (ROMK),77 and Kir2.1,74 the voltage-gated K+ channels Kv1.5,78 Kv2.1,76 Kv7.1,78,79,86 and Kv11.1 (hERG),78 as well as 2-P potassium channels such as K\textsubscript{ir}2.1 (TREK-1),71 K\textsubscript{ir}3.9 (TASK-3),69 and K\textsubscript{ir}10.1 (TREK-2).71

AMPK has been shown to inhibit ATP-sensitive Kir6.x channels,78,79 whereas other studies reported a stimulatory effect on cardiac ATP-sensitive Kir6.2,72,79 and on Kir6.2 in β-cells.70 The large Ca2+-activated K+ channel K\textsubscript{Ca}1.1 has similarly been shown to be up-41 or downregulated82 by AMPK.

K+ channels are the most important channels maintaining the cell membrane potential.83 Reduced K+ fluxes through inhibited K+ channels depolarize whereas enhanced K+ fluxes through activated K+ channels hyperpolarize energy-depleted cells. Depolarization following downregulation of K+ channels decreases the electical driving force for electrogenic Na+-coupled transport thus curtailing Na+ entry and the subsequent requirement for costly Na+ extrusion by Na+/K+ ATPase in epithelia such as the proximal renal tubule.85

Depolarization following inhibition of K+ channels decreases the electrical driving force for HCO\textsubscript{3}- exit and thus favors alkalinization of cells with HCO\textsubscript{3}- permeable channels or Na+-coupled HCO\textsubscript{3}- cotransport.84 Similarly, depolarization alkalinizes the cytosol of cells expressing Cl- channels in parallel to Cl-/HCO\textsubscript{3}- exchange, as it decreases the electrical driving force for Cl- exit thus increasing the cytosolic Cl- concentration and via Cl-/HCO\textsubscript{3}- exchange the cytosolic HCO\textsubscript{3}- concentration. A depolarization by 18 mV doubles the cytosolic equilibrium Cl- concentration, doubles the equilibrium HCO\textsubscript{3}- concentration and thus increases cytosolic pH at equilibrium by 0.3 pH units. The alkalinization fosters glycolytic flux and thus ATP generation from glucose85 without the requirement of energy-consuming extrusion of H+ by either H+/H3O- or Na+/H+ exchanger (see below).

A depolarization further leads to decreased store-operated Ca2+ entry (SOCE) through Ca2+ release activated Ca2+ channels (Fig. 1), which show a prominent inward rectification.86 In contrast, depolarization activates voltage-gated Ca2+ channels87 with subsequent Ca2+ entry and energy-consuming excitation in excitable cells. Thus, hyperpolarization rather than depolarization results in a reduction of energy consumption of excitable cells. The impact of K+ channel activity on cytosolic Ca2+ activity and energy consumption hence depends on the expression and regulation of the Ca2+ channel types in the energy-depleted cell.

Cardiac repolarization is expected to be delayed by the AMPK-induced downregulation of the cardiac K+ channels Kv11.175 and Kv7.1.90 This mechanism may participate in the events causing arrhythmia following cardiac ischemia. Mutations in the AMPK γ2 subunit are associated with potentially fatal cardiac arrhythmias.51,73,91 Whether regulation of K+ channels contributes to the underlying mechanisms, has, however, remained ill defined.

AMPK activity decreases the frequency of evoked action potentials in cultured hippocampal neurons thus decreasing the energy consumption of those cells.76 The increase in K\textsubscript{ATP} current in cardiomyocytes by AMPK activity contributes to hypoxia-induced preconditioning of the heart protecting against myocardial infarction.72
AMPK-dependent stimulation of K\textsubscript{ATP} channel activity inhibits and AMPK-dependent inhibition of K\textsubscript{ATP} channel activity stimulates insulin release.78-80,88-90 The decrease of K\textsubscript{Ca,1.1},70,91 K\textsubscript{Ca,2.1},69,91 K\textsubscript{Ca,2.1}17 and/or K\textsubscript{Ca,10.1}171 activity by AMPK presumably contributes to oxygen sensing within type I cells of the carotid body.51 Hypoxia leads to K+ channel inhibition with subsequent cell membrane depolarization, Ca2+ entry and degranulation in those cells.82,92

AMPK-sensitive stimulation of K\textsubscript{Ca,1.1} channel activity contributes to the protection of outer hair cells (OHC) of the inner ear against acoustic trauma.81 Accordingly, recovery from hearing loss following acoustic overexposure is significantly delayed in AMPK\textsubscript{α1}-deficient mice.81

AMPK participates in the regulation of Cl secretion. It reduces the activity of some Cl channel proteins implicated in epithelial transport and cell volume regulation.51,93-96 In particular, AMPK inhibits the Cl channel CFTR (cystic transmembrane transport regulator), which is expressed in the apical cell membrane of Cl-secreting epithelial cells.51,93-96

AMPK activity slows the inactivation of the voltage-gated cardiac Na+ channel Nav1.5 and shifts the voltage activation curve toward hyperpolarized values, an effect which could prolong the action potential.97 Activation of AMPK and subsequent AMPK-sensitive regulation of this channel may contribute to the arrhythmia following cardiac ischemia.

AMPK reduces the activity of the epithelial Na+ channel ENaC97,98,99 and may therefore decrease Na+ transport in a variety of epithelia100 and nonepithelial tissues including endothelia.101 Decrease of Na+ entry lowers the work load of the respective epithelial cell and thus protects against energy depletion. As enhanced expression of endothelial ENaC is followed by endothelial stiffening with decreased endothelial NO release,101,102 reduction of ENaC activity by AMPK may at least in theory contribute to the stimulation of AMPK-sensitive endothelial NO release following ischemia.103

AMPK contributes to the regulation of the pore-forming subunits of Ca2+ release activated Ca2+ channels Orai1, Orai2, and Orai3 (Fig. 1), which are activated by the Ca2+-sensing subunits STIM1 and STIM2.104-106 Along those lines, the increase in the intracellular Ca2+ concentration ([Ca2+]) following stimulation of the chemokine receptor CXCR4 with its ligand CXCL12 was more pronounced in dendritic cells (DCs) isolated from gene-targeted mice lacking functional AMPK\textsubscript{α1} (ampk−/−) than in DCs isolated from wild type mice (ampk+/+).105 Inhibition of endosomal Ca2+ ATPase with thapsigargin in the absence of extracellular Ca2+ leads to a similar release of Ca2+ from the cytoplasmic stores, indicating that AMPK does not significantly modify Ca2+ stores.105 The increase in cytosolic Ca2+ activity following readduction of extracellular Ca2+ is, however, more pronounced in ampk\textsubscript{−/−} DCs than in ampk\textsubscript{+/+} DCs.105 AMPK further plays a role in the regulation of Orai1 in lymphocytes.107 The inhibition of Ca2+ channels by AMPK is part of a negative feedback,106 as an increase in [Ca2+i] is followed by activation of Ca2+/calmodulin-dependent kinase kinase-B (CaMKKB) and CaMKKB-dependent phosphorylation and thus activation of AMPK.7 Along those lines, AMPK phosphorylation following hypoxia is blunted by silencing of STIM1.7 Without this negative feedback, energy depletion would be expected to activate Orai1 due to impaired function of the endoplasmatic reticulum Ca2+ ATPase SERCA with subsequent depletion of intracellular Ca2+ stores and activation of Orai by STIM. AMPK-mediated inhibition of Ca2+ entry presumably contributes to the regulation of a wide variety of functions even without energy depletion, such as inhibition of cell proliferation,46,107 and of cell migration105 by AMPK. For instance, the chemokine CXCL12 enhances migration of immature ampk−/− DCs more potently than migration of immature ampk+/+ DCs.105 Notably, activation with bacterial lipopolysaccharides downregulates AMPK phosphorylation in DCs and thus stimulates migration to a similar extent in ampk−/− DCs and ampk+/+ DCs.105 AMPK further blunts DC activation,108 AMPK counteracts metabolic transition to aerobic glycolysis and cytokine release following triggering of Toll-like receptors.108,109

AMPK downregulates the gap junctional protein connexin 26 (CX26) and may thus disrupt the connection between neighboring cells.55 Open gap junctions to intact neighboring cells support the survival of energy-depleted cells, as Na+ and K+ fluxes through gap junctions maintain ion gradients and the cell membrane potential difference across the cell membrane of the energy-depleted cells despite impaired Na+ extrusion and K+ uptake. The gap junctional fluxes impose, however, an additional burden to the Na+/K+ ATPase of the adjacent cell. Closure of the gap junctions thus jeopardizes the survival of the energy-depleted cell but by the same token protects the adjacent intact cells, which could otherwise be ripped to death by the energy-depleted neighboring cell.
AMPK Regulates Carriers

AMPK regulates a wide variety of carriers. Most importantly, AMPK upregulates both Na⁺-independent (GLUT₅)³³,³⁴,¹⁰,¹³ and Na⁺-coupled (SGLT1)¹⁰,¹⁵ glucose carriers (Fig. 1). The carriers supply energy-depleted cells with glucose, which could be utilized for ATP generation by anaerobic glycolysis, i.e., without consumption of oxygen.¹⁶ Besides cells exposed to hypoxia, glycolysis is the preferential source of ATP in inflammatory immune cells and tumor cells.¹¹⁶ At first glance, it appears counterintuitive to employ secondary active Na⁺-coupled transport (SGLT1) for cellular glucose uptake into energy-depleted cells, as Na⁺ entering in parallel to glucose needs to be extruded by energy-consuming Na⁺/K⁺ ATPase. However, the amount of ATP generated from glycolytic degradation of glucose by far exceeds the amount of ATP required for extrusion of the cotransported Na⁺. In contrast to GLUT transporters, SGLT1 accomplishes cellular glucose uptake even at extracellular glucose concentrations lower than those prevailing in the cell. Thus, AMPK-stimulated SGLT1 activity could indeed contribute to energy repletion.

The utilization of glucose for glycolytic energy production requires an alkaline cytosolic pH, as the glycolytic enzymes are highly sensitive to cytosolic pH and are inhibited by cytosolic acidification.⁸⁵ Cytosolic alkalization may be caused by inhibition of K⁺ channels with subsequent depolarization of the cell membrane (Fig. 2). Beyond that AMPK stimulates H⁺ extrusion by the Na⁺/H⁺ exchanger¹¹⁷ and thus sets the stage for glucose utilization (Fig. 2). The lactate produced by anaerobic glycolysis could exit via the monocarboxylate transporters MCT1 and MCT4, which are both upregulated by AMPK.¹¹⁸ As lactate exit through MCT1 and MCT4 is paralleled by exit of H⁺,¹⁹ the carriers counteract cytosolic acidification.

In contrast to its effect on SGLT1, AMPK downregulates a variety of Na⁺ coupled transporters, such as the Na⁺ coupled phosphate transporter NaPi-IIa,¹¹⁹ the Na⁺ coupled creatine transporter CreaT,¹₂¹ the Na⁺ coupled myoinositol transporter SMIT, the NaCl coupled betaine,GABA transporter BGT¹²² as well as the Na⁺ coupled amino acid transporters EAAT3 and EAAT4.¹²³ Inhibition of those transporters decreases the Na⁺ burden for the Na⁺/K⁺ ATPase and thus energy consumption. AMPK further downregulates the H⁺ driven peptide transporter PepT.¹²⁴ Decreased activity of this carrier lowers the acid load of the cell.

AMPK inhibits Na⁺/Ca²⁺ exchangers¹⁰⁵ (Fig. 2), which may limit Na⁺ entry but by the same token disrupts Ca²⁺ extrusion by this carrier.¹⁰⁶ The purpose of this inhibition is presumably the avoidance of Ca²⁺ uptake into energy-depleted cells. Energy deprivation compromises Na⁺/K⁺ ATPase function due to lack of ATP and due to inhibition by AMPK. A decrease of Na⁺/K⁺ ATPase activity increases cytosolic Na⁺ activity and depolarizes the cell membrane which eventually leads to the reversal of the electrochemical gradients for the carrier. Without inhibition by AMPK the carrier would presumably contribute to cellular Ca²⁺ accumulation during energy depletion.

AMPK Regulated Pumps

AMPK downregulates the vacuolar H⁺ ATPase¹²⁵⁻¹²⁷ and thus directly energy-consuming proton extrusion. Inhibition of the H⁺ ATPase in intercalated cells of the distal nephron impairs urinary acidification.

AMPK has been reported to inhibit the Na⁺/K⁺ ATPase and to contribute to its downregulation during hypoxia.¹²⁸ AMPK-sensitive inhibition of Na⁺/K⁺ ATPase hence leads to downregulation of pulmonary transepithelial Na⁺ transport in hypoxia.¹²⁹ As Na⁺/K⁺ ATPase is the most important ATP-consuming transport protein in the cell membrane, its downregulation has a profound effect on the energy balance of the cell. Inhibition of Na⁺/K⁺ ATPase is at least in some cells followed by inhibition of K⁺ channels with subsequent depolarization.⁸³ As outlined above, the depolarization decreases the driving force for Na⁺ coupled transport and results in cytosolic alkalization, which in turn favors glycolysis and lowers the requirement of primary or secondary active extrusion of H⁺.

In active skeletal muscle, however, AMPK is activated in parallel to Na⁺/K⁺ ATPase and contributes to the upregulation of the pump under this condition.¹³⁰ It should be kept in mind that excitable cells would presumably not decrease energy consumption following depolarization (see above). Moreover, inhibition of Na⁺/K⁺ ATPase would be expected to increase the cytosolic Na⁺ concentration, which could, at least in theory, reverse the Na⁺/Ca²⁺ exchanger action thus resulting in Ca²⁺ uptake with subsequent energy-consuming muscle contraction. Clearly, inhibition of Na⁺/K⁺ ATPase serves to reduce energy expenditure but by the same token jeopardizes the second function of AMPK; i.e., the maintenance of low cytosolic Ca²⁺ activity.

Mechanisms Employed in AMPK-Sensitive Transport Regulation

AMPK may regulate transport proteins by direct phosphorylation,⁵¹ as shown for Kv₁.₁,₁², Kv₂.₁,¹⁷, Kir6.2,⁷⁹, Kᵥ₂.₁,⁷¹ and Kᵥ₁₀.₁,⁷¹ CFTR,⁸³-⁹⁵ as well as for H⁺ ATPase.¹²⁵ AMPK stimulates Nedd4–2 (neuronal precursor cells expressed developmentally downregulated), an ubiquitin ligase labeling transport proteins for clearance from the cell membrane and subsequent degradation.⁵⁷,⁵⁸,⁹⁸,⁹⁹ For instance, Nedd4–2 mediates the downregulation of the epithelial Na⁺ channel ENaC,⁷⁹,⁹⁸,⁹⁹ the inwardly rectifying K⁺ channel Kir2.1,¹⁴ and the voltage gated K⁺ channels Kv7.1.⁵¹,⁵⁶,⁵⁸ In theory, AMPK could similarly downregulate other Nedd4–2 sensitive transport proteins including the ion channels Nav1.5, Kv1.3, Kv1.5, Kv4.3, Kv7.2/3, CLCKa/barttin, Orai1, and CIC2,¹³¹-¹³⁴ the carriers SGLT1, NaPi-IIb, SN1, EAAT1, EAAT2, EAAT4,¹³⁵,¹³⁷ AMPK may enhance GLUT4 insertion into the cell membrane by phosphorylation and thus inhibition of TBC1D1, the Rab GTase activating protein (GAP), which otherwise counteracts GLUT4 translocation into the plasma membrane.¹³⁸ AMPK may upregulate carriers such as GLUT4 further by stimulating the
phosphatidylinositol 3-phosphate 5-kinase PIKfyve, a kinase generating PtdIns(3,5)P2, which in turn mediates the trafficking of carrier-containing vesicles to the cell membrane. It is noteworthy that several further transport proteins are regulated by PIKfyve, such as the AMPA-type glutamate receptor GluA1, the K+ channels Kv11.1, Kir2.1, and Kir2.2, the Ca2+-channel TRPV6, the Cl- channel CIC2, the Na+, glucose cotransporter SGLT1, the creatine transporter CreaT166 as well as the amino acid transporters B0AT1, EAAT2, EAAT3, and EAAT4. Whether or not AMPK-sensitivity of PIKfyve contributes to the regulation of those channels and carriers, remains, however, to be shown.

AMPK has been shown to modify KATP channel trafficking by inhibition of phosphatase and tensin homolog (PTEN) via glycogen synthase kinase 3B (GSK3B). Moreover, AMPK-sensitive KATP channel trafficking is impaired by stabilization of F-actin and stimulated by destabilization of F-actin. Whether those signaling mechanisms play a role in the regulation of other channels or carriers, is not known.

AMPK is further effective through downregulation of NF-κB (nuclear factor kappa B). As NF-κB stimulates the expression of Orai1, the inhibitory effect of AMPK on Orai1 may be partially due to downregulation of NF-κB. Channels upregulated by NF-κB further include the voltage-gated K+ channel Kv1.3 and the epithelial Cl- channel CFTR. CFTR in turn downregulates the expression of the transcription factor. Channels downregulated by NF-κB include the epithelial Na+ channel ENaC. Among the carriers upregulated by NF-κB is the Na+/H+ exchanger NHE3. carriers downregulated by NF-κB include SGLT1. NF-κB presumably regulates the expression of multiple further transport proteins and/or several signaling cascades involved in transport regulation. For instance, NF-κB downregulates the expression of the serum and glucocorticoid inducible kinase SGK1, a powerful regulator of a wide variety of channels, carriers and Na+/K+ ATPase. Along those lines, NF-κB inhibits ENaC in the renal collecting duct by downregulating SGK1. However, the contribution of NF-κB or other transcription factors to AMPK-sensitive transport regulation has hitherto remained ill defined.

Conclusions

In conclusion, AMPK is a powerful regulator of a wide variety of channels, carriers and pumps. The kinase is at least partially effective by directly phosphorylating transport proteins, by stimulating Nedd4-2-sensitive transport protein degradation and by interference with NF-κB-sensitive transcription. AMPK-dependent regulation of transport proteins is an integral part of the cell survival strategy during energy depletion, Ca2+ overload and further threats of cell survival. Clearly, additional experimental effort is needed to fully understand the AMPK-dependent orchestration of transport under physiological and pathophysiological conditions.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

The authors acknowledge the support of the manuscript by T. Loch, L. Subasic and Ali Soleimanpour. Research in the authors’ laboratory was supported by the Deutsche Forschungsgemeinschaft (Fo 695/1-1, GK 1302 and SFB 773) and the IZKF of the Medical Faculty of the University of Tübingen (Nachwuchsgruppe).

References

1. Carling D. The AMP-activated protein kinase cascade—a unifying system for energy control. Trends Biochem Sci 2004; 29:18-24; PMID:14729328; http://dx.doi.org/10.1016/j.tibs.2003.11.005
2. Stapleton D, Mitchelhill KI, Gao G, Widmer J, Michell BJ, Teh T, House CM, Fernandez CS, Cox T, Witters LA, et al. Mammalian AMP-activated protein kinase subfamily. J Biol Chem 1996; 271:611-4; PMID:8537660; http://dx.doi.org/10.1074/jbc.271.2.611
3. Steinberg GR, Kemp BE. AMPK in Health and Disease. Physiol Rev 2009; 89:1025-78; PMID:19584320; http://dx.doi.org/10.1152/physrev.00011.2008
4. Toller MC, Hardie DG. AMP-activated protein kinase in metabolic control and insulin signaling. Circ Res 2007; 100:328-41; PMID:17360971; http://dx.doi.org/10.1161/01.RES.0000256909.42690.05
5. Winder WW, Thomson DM. Cellular energy sensing and signaling by AMP-activated protein kinase. Cell Biochem Biophys 2007; 47:352-47; PMID:17652779; http://dx.doi.org/10.1007/s12013-007-0008-7
6. Bair AM, Thippegovda PB, Freichel M, Cheng N, Ye RD, Vogel SM, Yu Y, Flockerzi V, Malik AB, Tricipari C. Ca2+ entry via TRPC channels is necessary for thioribim-induced NF-kappAB activation in endothelial cells through AMPK-activated protein kinase and protein kinase Cdelta. J Biol Chem 2009; 284:563-74; PMID:18990707; http://dx.doi. org/10.1074/jbc.M803894200
56. Alesustor I, Foller M, Sopiani M, Démakou-Sopiani M, Zelenak C, Frohlich H, Velic A, Fraser S, Kemp BE, Seebom G, et al. Inhibition of the heterotrimeric K+ channel KCNQ1/KCNQ1 subunit by the AMP-activated protein kinase. Mol Membr Biol 2010; 27:188-91; PMID:20213794; http://dx.doi.org/10.1080/09687680.2010.520037

57. Almaca J, Kangoughul P, Hieke B, Ousingsawat J, Violler B, Schreiber R, Amaral MD, Knuzelmann K. AMPK controls epithelial Na+ channels through Nedd4-2 and causes an epithelial phenotype when mutated. Pflugers Arch 2009; 458:713-21; PMID:19333618; http://dx.doi.org/10.1007/s00424-009-0666-4

58. Alzamora R, Geng F, Rondanino C, Lee JMK, Smolak C, Pastor-Soler NM, Hallows KR. AMP-activated protein kinase inhibits KCNQ1 channels through regulation of the ubiquitin ligase Nedd4-2 in renal epithelial cells. Am J Physiol Renal Physiol 2010; 299:F108-19; PMID:20681072; http://dx.doi.org/10.1152/ajprenal.00423.2010

59. Andersen MN, Kryszatane K, Jespersen T, Olsen SP, Rasmussen HB. AMP-activated protein kinase downregulates Kv7.1 cell surface expression. Traffic 2012; 13:143-56; PMID:21957902; doi.org/10.1111/j.1600-0854.2011.01295.x

60. Dallas ML, Scragg JL, Peers C. Inhibition of L-type Ca2+ channels by carbon monoxide. Adv Exp Med Biol 2009; 648:89-95; PMID:19536469; http://dx.doi.org/10.1007/978-90-481-2295-2_10

61. Evans AM, Hardie DG, Peers C, Wyatt CN, Violler B, Kumar P, Dallas ML, Ross F, Ikematsu N, Jordan HL, et al. Ion channel regulation by AMPK: the route of hypoxia-response coupling in thecardiac body and pulmonary artery. Ann N Y Acad Sci 2009; 1177; PMID:19845611; http://dx.doi.org/10.1111/j.1749-6632.2009.05941.x

62. Hitchens-Laskiewicz I, Tong Q, Waybill K, Conrad K, Keere K, Zhang W, Chen SJ, Cheung YJ, Miller BA. The transient receptor potential (TRP) channel TRPC3 TRP domain and AMP-activated protein kinase binding site are required for TRPC3 activation by erythropoietin. J Biol Chem 2011; 286:30636-46; PMID:21757714; http://dx.doi.org/10.1074/jbc.M111.28360

63. Mace OJ, Woolhead AM, Baines DL. AICAR activates AMPK and alters P2P association with the cardiac L-type calcium channel ENAC to inhibit Na+ transport in H441 lang epithelial cells. J Physiol 2008; 586:4451-57; PMID:18669532; http://dx.doi.org/10.1113/jphysiol.2008.158253

64. Myerburg MM, King JD Jr, Ostery OM, Finch AC, Magillic A, Bury CJ, Warinka SC, Kolls JK, Pilewski JM, Hallows KR. AMPK agonists ameliorate sodium and fluid transport and inflammation in cystic fibrosis airway epithelial cells. Am J Respir Cell Mol Biol 2010; 42:676-84; PMID:19617399; http://dx.doi.org/10.1165/rccm.200901-017OC

65. Sidani S, Kopice S, Socrates T, Kirchhoff P, Foller M, Murek M, Capasso A, Geibel JP. AMP-activated protein kinase: a physiological off switch for murine pancreatic Langerhans cells. Diabetologia 2009; 52:1112-21; PMID:19357830; http://dx.doi.org/10.1007/s00125-009-1337-4

66. Lim A, Park SH, Sohn JW, Jeon JH, Park JH, Song DK, Lee SH, Ho WK. Glucose deprivation regulates KATP channel trafficking via AMP-activated protein kinase in cancer beta-cells. Diabetes 2009; 58:2813-9; PMID:19720793; http://dx.doi.org/10.2373/diabetes.09-0609

67. Foller M, Jaumann M, Dettling J, Saxena A, Pakladok T, Munoz C, Ruh P, Sophian M, Seebohm G, Rüttiger L, et al. AMP-activated protein kinase in BK-channel regulation and protection against beta cell loss following acute oscillatory stress. FASEB J 2012; 26:2443-53; PMID:22762731; http://dx.doi.org/10.1096/fj.11-2014232

68. Wyatt CN, Mustard KJ, Pearson SA, Dallas ML, Arkinson L, Kumar P, Peers C, Hardie DG, Evans AM. AMP-activated protein kinase mediates cardiotomy cell death by excytosis. J Biol Chem 2007; 282:10992-8; PMID:17915716; http://dx.doi.org/10.1074/jbc.M608722200

69. Lang F, Rehwald W. Potassium channels in renal epithelial transport. Physiol Rev 1992; 72:1-32; PMID:1731368

70. Lang F, Messner G, Rehwald W. Electrolyte pH of sodium-coupled transport in proximal renal tubules. Am J Physiol 1986; 250:F953-62; PMID:3521326

71. Boitoux A, Hess B. Design of glycosylation. Philos Trans R Soc Lond B Biol Sci 1981; 293:5-12; PMID:615423; http://dx.doi.org/10.1098/rstb.1981.0056

72. Schmid E, Bhandaru M, Ninaba RK, Yang W, Sretny K, Rasso A, Leibrock C, Tyan L, Pearce D, Shumilina E, et al. SKG3 regulates Ca2+ entry and migration of dendritic cells. Cell Physiol Biochem 2012; 30:1423-31; PMID:21371960; http://dx.doi.org/10.1159/000343330

73. Turner RW, Anderson D, Zamponi GW. Signaling complexes of voltage-gated calcium channels. Channels (Austin) 2011; 5:440-8; PMID:21828880; http://dx.doi.org/10.4161/chann.5.5.16473

74. Chen PC, Kryuovana YN, Shyng SL. Leptin Regulates KATP Channel Trafficking in Pancreatic beta-cells by a Signaling Mechanism Involving AMPK. J Biol Chem 2015; Forthcoming; PMID:24100028

75. Deng R, Nie A, Tian F, Liu Y, Tang H, Zhang J, Zhang Y, Shao L, Li F, Zhou L, et al. Exposure of beta-cells to troglitazone decreases insulin hypersecrecion via activating AMPK. Am J Physiol Endocrinol Metab 2014; 1849:577-85; PMID:24144566; http://dx.doi.org/10.1152/ajpendo.00320.2013

76. Park SH, Ho WK, Jeon JH. AMPK regulates K(A(TP)) channel trafficking via PTEN inhibition in leptin-treated pancreatic beta-cells. Biochem Biophys Res Commun 2013; 430:539-44; PMID:24103758; http://dx.doi.org/10.1016/j.bbrc.2013.09.099

77. Evans AM, Peers C, Wyatt CN, Kumar P, Hardie DG. Ion channel regulation by the LKB1-AMPK signalling pathway: the key to cardiac beta cell activation by hypoxia and metabolic homeostasis at the whole body level. Adv Exp Med Biol 2012; 758:81-90; PMID:23080146; http://dx.doi.org/10.1007/978-94-007-4584-1_11

78. Weir EK, López-Barnes J, Buckler JK, Archer SL. Acute oxygen-sensing mechanisms. N Engl J Med 2005; 353:2042-55; PMID:16282179; http://dx.doi.org/10.1056/NEJMra050002
Ahn, Eylenstein by AMP-activated protein kinase in oocytes and KR CIR.0000069269.60167.02 JCI 9622 PMID:12682004

Palmer, A, Schlattner M, Tyan J: Long-term application of the Epithelial sodium channels: Biochem Biophys Res Commun 2003; 306:204-14; PMID:12682004

Kang, V: Stimulation of Ca2+- dependent Ena-Vav1 activity in dendritic cells from inflammatory diseases. Am J Physiol Renal Physiol 2010; 305:F943-56; PMID:20863464; http://dx.doi.org/10.1152/ajpren.00300.2013

Alzamora R, Al-Bataineh MM, Liu W, Gong F, Li H, Thalii RF, Joho-Auchli Y, Brunihsol RA, Sarlin LM, Neumann D, et al. AMPK and PKA-activated protein kinase regulates the vacuolar H+-ATPase via direct phosphorylation of the Subunit A (ATP6V1A) in the kidney. Am J Physiol Renal Physiol 2010; 305:F943-56; PMID:20863464; http://dx.doi.org/10.1152/ajpren.00300.2013

Gong F, Alzamora R, Smolak C, Li H, Naved N, Neumann D, Hallows KR, Pastor-Soler NM. Vascular H+-ATPase apical accumulation in kidney intercalated cells is regulated by PKA and AMP-activated protein kinase. Am J Physiol Renal Physiol 2010; 308:F1162-9; PMID:20756640; http://dx.doi.org/10.1152/ajprenal.00356.2009

Hallows KR, Alzamora R, Li H, Gong F, Smolak C, Neumann D, Pastor-Soler NM. AMP-activated protein kinase inhibits alkaline pH- and PKA-induced apical vascular H+-ATPase accumulation in epididymal clear cells. Am J Physiol Cell Physiol 2009; 296:C672-81; PMID:19219188; http://dx.doi.org/10.1152/ajpcell.00004.2009

Gasparova GA, Trejo HE, Dada LA, Briva A, Welch LC, Hamanaka RB, Murlu GM, Chandel NS, Prakhacharoenpintchara M, Snajder M. Activation leads to Na+,K+-ATPase downregulation via Ca(2+)-release activated Ca(2+)-channels and AMPK activation. Mol Cell Biol 2011; 31:3546-56; PMID:21730292; http://dx.doi.org/10.1128/MCB.01514-11

Tanj CD, Smolskien RT, Hurhun A, Patel HK, Ahmed S, Wajid A, Lapu-Co Yáñez-Muñoz JR, Rains DL. AMP-activated protein kinase (AMPK)-dependent and -independent pathways regulate hypoxic inhibition of transepithelial Na+ transport across human airway epithelial cells. Br J Pharmacol 2011; 163:167-82; PMID:21224882; http://dx.doi.org/10.1111/j.1476-5381.2010.04935.x
130. Benzone B, Björnholm M, Pirkmajer S, Austin RL, Kotova O, Viollet B, Zierath JR, Chihalin AV. Activation of AMP-activated protein kinase stimulates Na+,K+-ATPase activity in skeletal muscle cells. J Biol Chem 2012; 287:24513-63; PMID:22610379; http://dx.doi.org/10.1074/jbc.M111.339226.

131. Rotin D, Staub O. Role of the ubiquitin system in regulating ion transport. Pflugers Arch 2011; 461:1-21; PMID:20972579; http://dx.doi.org/10.1007/s00424-010-0895-2.

132. Emhark HM, Böhmer C, Palmada M, Rajamanickam J, Wyatt AW, Wallisch S, Capasso G, Waldegger P, Seyberth HW, Waldegger S, et al. Regulation of CLC-Ka/barttin by the ubiquitin ligase Nedd4-2 and the serum- and glucocorticoid-inducible kinases. Kidney Int 2004; 66:1918-25; PMID:15496163; http://dx.doi.org/10.1111/j.1523-1755.2004.00966.x.

133. Palmada M, Dieter M, Boehmer C, Waldegger S, Lang F. Serum and glucocorticoid inducible kinases functionally regulate CLC-2 channels. Biochem Biophys Res Commun 2004; 321:1001-6; PMID:15598127; http://dx.doi.org/10.1016/j.brc.2004.07.064.

134. Baltaev R, Strutz-Seebhoom N, Korniyuck G, Myssina S, Lang F, Seebhoom G. Regulation of cardiac sar-related potassium channel Kv4.3 by serum- and glucocorticoid-inducible kinase isoforms in Xenopus oocytes. Pflugers Arch 2005; 450:26-33; PMID:15578212; http://dx.doi.org/10.1007/s00424-004-1369-x.

135. Boehmer C, Palmada M, Rajamanickam J, Schniapp R, Amara S, Lang F. Post-translational regulation of EAAT2 function by co-expressed ubiquitin ligase Nedd4-2 is impacted by SGK kinases. J Neurochem 2006; 97:911-21; PMID:16573659; http://dx.doi.org/10.1111/j.1471-4141.2006.06362.x.

136. Rajamanickam J, Palmada M, Lang F, Boehmer C. EAAT4 phosphorylation at the SGK1 consensus site is required for transport modulation by the kinase. J Neurochem 2007; 102:858-66; PMID:17442044; http://dx.doi.org/10.1111/j.1471-4141.2007.04585.x.

137. Lang F, Böhmer C, Palmada M, Seebhoom G, Strutz-Seebhoom N, Vallon V (Pathophysiologische Significance of the serum- and glucocorticoid-inducible kinase isoforms. Physiol Rev 2006; 86:1151-78; PMID:17015487; http://dx.doi.org/10.1152/physrev.00050.2005.

138. Pelmther C, Teebek JT, Birk JB, Chen S, Mackintosh C, Hardie DG, Richter EA, Woitaszewski JF. Genetic disruption of AMPK signaling abolishes both contraction- and insulin-stimulated TBC1D1 phosphorylation and 14-3-3 binding in mouse skeletal muscle. Am J Physiol Endocrinol Metab 2009; 297:E665-75; PMID:19531644; http://dx.doi.org/10.1152/japendoc.00115.2009.

139. Seebhoom G, Neumann S, Theiss C, Novikovic T, Hill EV, Tavare JM, Lang F, Hoffmann M, Manahan-Vaughan D, Strutz-Seebhoom N. Identification of a novel signaling pathway and its relevance for GluA1 recycling. PLoS One 2012; 7:e33889; PMID:22470488; http://dx.doi.org/10.1371/journal.pone.0033889.

140. Pakladok T, Almilaji A, Munoz C, Alesutan I, Lang F. PhIP sensitivity of iERG channels. Cell Physiol Biochem 2013; 31:785-94; PMID:23735862; http://dx.doi.org/10.1159/000350906.

141. Munoz C, Almilaji A, Serizawa I, Fuller M, Lang F. Up-regulation of the inwardlyrectifying K+ channel Kir2.1 (KCNN2) by protein kinase B (PKB/ Akt) and PIKfyve. J Membr Biol 2013; 246:189-97; PMID:23188060; http://dx.doi.org/10.1007/s00232-012-9520-9.

142. Seebhoom G, Strutz-Seebhoom N, Usón ON, Preisig-Müller R, Zuartze M, Hill EV, Kienitz MC, Bendahhou S, Fauler M, Tapken D, et al. Altered stress stimulation of inward rectifier potassium channels in Andersen-Tawil syndrome. FASEB J 2012; 26:513-22; PMID:22002906; http://dx.doi.org/10.1096/fj.11-189126.

143. Sopiani M, Kunert A, Czarzakowski K, Klaus F, Lafer J, Fuller M, Lang F. Regulation of the Cal(2+)-channel TRPV6 by the kinases SGK1, PKB/Akt, and PIKfyve. J Membr Biol 2010; 233:35-41; PMID:20041238; http://dx.doi.org/10.1007/s00232-009-9222-0.

144. Klaus F, Lafer J, Czarzakowski K, Strutz-Seebhoom N, Seebhoom G, Lang F. PIKfyve-dependent regulation of the Cl- channel ClC-2. Biochem Biophys Res Commun 2009; 381:407-11; PMID:1923516; http://dx.doi.org/10.1016/j.bbrc.2009.02.053.

145. Shojaiefard M, Strutz-Seebhoom N, Tavare JM, Seebhoom G, Lang F. Regulation of the Na(+)-glucose cotransporter by PIKfyve and the serum and glucocorticoid inducible kinase SGK1. Biochem Biophys Res Commun 2007; 359:843-7; PMID:17570343; http://dx.doi.org/10.1016/j.bbrc.2007.05.111.

146. Strutz-Seebhoom N, Shojaiefard M, Christie D, Tavare J, Seebhoom G, Lang F. PIKfyve-dependent regulation of the creatine transporter SLC6A8. Cell Physiol Biochem 2010; 20:729-34; PMID:19782255; http://dx.doi.org/10.1159/000104433.

147. Bogatikov E, Munoz C, Pakladok T, Alesutan I, Shojaieafard M, Seebhoom G, Fuller M, Palmada M, Böhmer C, Boier S, et al. Up-regulation of amino acid transporter SLCA6A19 activity and surface protein abundance by PKB/Akt and PIKfyve. Cell Physiol Biochem 2012; 30:1558-66; PMID:22534856; http://dx.doi.org/10.1159/000343341.

148. Gehring EM, Zurn A, Klaus F, Lafer J, Sopiani M, Lindner R, Strutz-Seebhoom N, Tavare JM, Böhmer C, Palmada M, et al. Regulation of the glutamate transporter EAAT2 by PIKfyve. Cell Physiol Biochem 2009; 24:361-8; PMID:19910667; http://dx.doi.org/10.1159/000275248.

149. Klaus F, Gehring EM, Zurn A, Lafer J, Lindner R, Strutz-Seebhoom N, Tavare JM, Rothstein JD, Böhmer C, Palmada M, et al. Regulation of the Na(+)-coupled glutamate transporter EAAT3 by PIKfyve. Neurochem Int 2009; 54:372-7; PMID:19418632; http://dx.doi.org/10.1111/j.1472-6432.2009.00815.x.

150. Alesutan IS, Ureche ON, Lafer J, Klaus F, Zurn A, Lindner R, Strutz-Seebhoom N, Tavare JM, Boehmer C, Palmada M, et al. Regulation of the glutamate transporter EAAT4 by PIKfyve. Cell Physiol Biochem 2010; 25:187-94; PMID:20110679; http://dx.doi.org/10.1159/000276569.

151. Bess E, Fisslthaler B, Frömml T, Fleming I. Nitric oxide-induced activation of the AMP-activated protein kinase γ2 subunit attenuates iNOS mediated activity and inflammatory responses in endothelial cells. PLoS One 2011; 6:e20848; PMID:21673972; http://dx.doi.org/10.1371/journal.pone.0020848.