Interleukin 10 Polymorphisms as Risk Factors for Progression to Chagas Disease Cardiomyopathy: A Case-Control Study and Meta-Analysis

Alicia Grijalva1, Lucia Gallo Vaulet2,3, Roberto Nicolas Agüero4, Analia Toledano2,3, Marikena Guadalupe Risso1, Juan Quarroz Braghini1,5, David Sosa2,3, Paula Ruybal1, Silvia Repetto5,6† and Catalina Dirney Alba Soto1,5*

1 Instituto de investigaciones en Microbiología y Parásitología Médica (IMPAM). Universidad de Buenos Aires- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina, 2 Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Cátedra de Microbiología Clínica, Universidad de Buenos Aires, Buenos Aires, Argentina, 3 Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Universidad de Buenos Aires, Buenos Aires, Argentina, 4 División Cardiología, Hospital de Clínicas “José de San Martín”, Universidad de Buenos Aires, Buenos Aires, Argentina, 5 Departamento de Microbiología Parasitológica e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina, 6 División Infectología, Hospital de Clínicas “José de San Martín”, Universidad de Buenos Aires, Buenos Aires, Argentina

Background: Chagas disease is a lifelong infection caused by the protozoa Trypanosoma cruzi endemic in Latin-America and emergent worldwide. Decades after primary infection, 20-30% of infected people develop chronic Chagas cardiomyopathy (CCC) while the others remain asymptomatic. CCC pathogenesis is complex but associated with sustained pro-inflammatory response leading to tissue damage. Hence, levels of IL-10 could have a determinant role in CCC etiology. Studies with Latin-American populations have addressed the association of genetic variants of IL-10 and the risk of developing CCC with inconsistent results. We carried out a case control study to explore the association between IL-10-1082G>A (rs18008969), -819C>T (rs1800871), -592A>C (rs1800872) polymorphisms and CCC in a population attending a hospital in Buenos Aires Argentina. Next, a systematic review of the literature and a meta-analysis were performed based on the random effect model.

Methods: Our case control study included 122 individuals with chronic T. cruzi infection including 64 patients with any degree of CCC and 58 asymptomatic individuals. Genotyping of IL-10 -1082G>A, -819C>T, -592A>C polymorphisms was performed by capillary sequencing of the region spanning the three polymorphic sites and univariate and multivariate statistical analysis was undertaken. Databases in English, Spanish and Portuguese language were searched for papers related to these polymorphisms and Chagas disease up to December 2021. A metanalysis of the selected literature and our study was performed based on the random effect model.

Results: In our cohort, we found a significant association between TT genotype of -819 rs1800871 and AA genotype of -592 rs1800872 with CCC under the codominant
INTRODUCTION

Chagas disease is one of the most widespread endemic diseases in Latin America being responsible for 9490 deaths (95% CI 5500–16 500) in 2019 (1). With an annual incidence of 28,000 cases in Central and South America, it is estimated that Chagas disease affects around six million people and causes nearly 12,000 deaths each year being around 65 million people are at risk of contracting the disease (2). Chronic Chagas disease is one of the impoverishment factors in rural areas of Latin America and responsible for 275 000 DALYs (184 000–459 000) in 2019 (1). In recent decades, a phenomenon of global dispersion of the disease has been observed, due to the migration of infected individuals from rural to urban areas within endemic countries and from endemic countries to non-endemic countries. Congenital transmission, blood transfusions, organ transplantation and laboratory accidents, transmission routes that do not require vector intermediation, are responsible for the global emergence of the disease.

Chagas disease is a condition with a wide spectrum of clinical outcomes. The majority of infected individuals remains asymptomatic for life (60-70%). Some, individuals will develop symptoms, predominantly cardiomyopathy but also digestive, or cardiogastic symptoms. Progression to cardiomyopathy among infected individuals occurs at an annual rate of 1.85% to 7% (3). Chronic Chagas cardiomyopathy (CCC) pathogenesis is not completely understood but is believed to be multifactorial. Dysregulated inflammatory processes associated with parasite persistence result in progressive cardiac conduction anomalies, microvascular alterations leading to thrombosis, myocardial fibrosis, adverse left ventricle remodeling and heart failure (4–6).

Hence, one of the biggest challenges for physicians and researchers tackling this disease is to predict and prevent the establishment of the pathology in chronically infected individuals. It is therefore necessary to understand the factors that mediate clinical progression of susceptible individuals. In this line, host’s immune response appears to play a central role in the development of CCC and recent studies are helping to differentiate protective responses from pathogenic ones (7–11).

IL-10 is a cytokine with anti-inflammatory functions that regulates the immune response by limiting the production of other pro-inflammatory cytokines and, indirectly, the Th1 response by modulating the function of antigen-presenting cells (12, 13). This cytokine is produced by different cell types in response to infection by T. cruzi and other intracellular pathogens thus modulating immune mechanisms elicited against these pathogens (13–18). In late stages of Chagas disease, IL-10 participates in delaying the onset of CCC in infected individuals (19–21). A comprehensive analysis of the cytokine profile revealed that the decrease in IL-10 levels switches the immune response from the anti-inflammatory profile of asymptomatic patients to the pro-inflammatory one of cardiac patients (22–25).

Several studies have evaluated the association of human polymorphisms in genes encoding for cytokines with the progression of inflammatory, infectious, and autoimmune diseases as well as cancer. Such polymorphisms could be used as genetic biomarkers of susceptibility and severity of disease (26). Single nucleotide polymorphisms (SNPs) have been described upstream of the transcription start site of the IL10 gene (27). Three of them -1082 (rs1800896, transition from A to G), -819 (rs1800871, transversion from C to T and -592; rs1800872, transversion from C to T) are functional polymorphisms with an influence on the levels of cytokine production (28, 29). Low production genotypes are related to susceptibility to systemic lupus erythematosus and progression of HIV to AIDS among other conditions (30–33).

Association between variants of IL10 promoter region and the susceptibility to CCC has been found in a genetic study performed in a Brazilian cohort (34). However, studies in a Colombian cohort (35) and in Brazilian populations from other regions failed to confirm this association or showed only trends of association (36, 37). The heterogeneity of populations in Latin America as well as the small sample size are limitations for these association studies. Still, in view of the central role of IL-10 in Chagas disease progression we aimed to establish the association between IL-10 polymorphisms and the development of CCC in seropositive T. cruzi patients attending to a hospital in Buenos Aires, Argentina. Next, we performed a systematic review of the literature of studies on IL-10 polymorphisms and Chagas disease and conducted a meta-analysis to estimate a consensus association estimation.
MATERIALS AND METHODS

Study Population
The project was submitted to and approved by the HCJSM ethics committee in accordance with the principles of the Declaration of Helsinki. All patients signed an informed consent after reading and understanding the study information prior to entering this study.

A cross-sectional study was carried out from January 2015 to January 2019. Patients attended by spontaneous demand to infectious diseases specialist and cardiologist at the Hospital de Clinicas José de San Martin of the University of Buenos Aires (HCJSM). Those patients who met the inclusion criteria and agreed to participate in the study were included. The inclusion criteria were patients over 18 years of age with a diagnosis of chronic infection by T. cruzi without risk of acute vectorial or transfusional infection or by intravenous drug abuse. Individuals with reactive anti T. cruzi antibodies by two of three distinct serological techniques were considered at chronic infection. The clinical-epidemiological data were included in a file completed by the physicians in charge. Patients with reactive serology for T. cruzi were classified according to the clinical form of the infection. Those without cardiac signs and symptoms by clinical evaluation and electrocardiogram without alterations were classified as asymptomatic (ASYM). Patients with associated cardiac signs and symptoms or presence of electrocardiographic abnormalities, altered echocardiography, cardiomegaly and/or placement of cardiac devices were included in the cardiomyopathy group (CCC). Patients with heart disease from non-Chagas disease ethology (congenital, hypertensive, ischemic and primary) diabetes mellitus, renal insufficiency, immunocompromised patients or those with autoimmune or oncological diseases were excluded from the study.

Blood and serum samples used for molecular biology and immunological studies were labeled and identified by a group investigator. An alphanumeric code which was later allowed the sample to be identified in the database. DNA was extracted from EDTA-anticoagulated whole blood (mixed 1: 1 with guanidine) using a commercial DNA Puriprep S-kit (Inbio Highway), following manufacturer’s protocol.

IL-10 Genotyping
A PCR with the primers 5’ATC CAA GAC AAC ACT ACTA A 3’ 5’TAA ATA TCC TCA AAG TTC C 3’ was carried out to generate the amplification product (587 bp) that covered the 3 polymorphic sites (rs1800872, rs1800871 and rs1800896) of the IL-10 gene promoter region (28). PCR products were subjected to capillary sequencing and the complementarity with the sequence deposited in GenBank was confirmed (ACC N °: Z30175, ID: 3586).

Statistical Analysis
Categorical and continuous data were expressed as percentages of total or as mean ± SD, respectively. Student’s t-test was used to determine differences in means while χ² test was used for differences in categorical variables between groups. Logistic regression analysis was used to determine the odds ratios (OR) and 95% confidence intervals (95% CI) associated with CARD risk in four genetic models (codominant, dominant, recessive, overdominant) taking the major allele as the reference. Binary logistic regression was also used to adjust for confounders. Statistical significance was set at P < 0.05. Statistical analysis was performed on STATA 13 (StatCorp).

Genotypes of the three SNPs were tested for Hardy–Weinberg equilibrium (HWE) in the control and cases using the χ² test. Pairwise linkage disequilibrium (LD) (D’ and r²) was estimated using Arlequin 3.11 and haplotype reconstruction was performed by the expectation maximization method (Haplovie 4.2).

Systematic Review and Meta-Analysis

Search Strategy, Study Selection and Data Extraction
The PRISMA 2020 guidelines were used to design a meta-analysis. A comprehensive search of the literature published up to December 2021 in English, Spanish or Portuguese was performed on the PubMed, LILACS and Scopus online databases. The searching terms used were as follows: (“Chagas” OR “Chagas disease” OR “Trypanosoma cruzi” OR “American trypanosomiasis”) AND (“polymorphism” OR “single nucleotide polymorphism” OR “SNP” OR “variant”) AND (“interleukin-10” OR “IL-10” OR “IL10”). Eligible studies were those case-control-studies focused on the associations between IL-10 -1082G>A, -819C>T, -592A>C polymorphisms and risk of chronic Chagas cardiomyopathy in Chagas disease patients. Reference lists in identified articles and reviews were also searched manually to identify additional eligible studies. Additional inclusion criteria were 1) diagnosis of CCC established by a cardiologist with a minimum criterion of electrocardiogram and chest X-ray and 2) availability of either number or odds ratio of alleles genotypes or haplotypes. Exclusion criteria were prospective studies, case reports, meeting abstracts, repeated publication, or overlapped data.

The relevant data extracted from the eligible publications by 2 independent researchers (CAS and JQB) included: first authors name, publication date, country of origin, genotyping methods, sample size of cases and controls, allele and genotype frequency of IL-10 -1082G>A, -819C>T, -592A>C polymorphisms in cases and controls, minor allele frequencies (MAF) and Hardy-Weinberg equilibrium (HWE) in healthy controls.

Quality Assessment and Risk of Bias
The quality of the studies included in the analysis was assessed applying the Newcastle Ottawa scale (38) independently by two assessors (CAS and JQB). Only high-quality studies were included in the meta-analysis (scores above 5 points on a 10-point Newcastle Ottawa scale).

Meta-Analysis
Effect sizes were calculated from raw data as unadjusted odds ratio (OR) with 95% confidence interval (CI) to assess the
strengh of the association of IL-10 -1082G>A, -819C>T or -592>C>A polymorphisms and risk of CCC among individuals with chronic *T. cruzi* infection.

The association of IL-10 -1082G>A, -819C>T and -592>C>A polymorphism was estimated under five genetic models, i.e., homozygote (MM vs. mm), heterozygote (Mm vs. mm), dominant (MM+Mm vs. mm), recessive (MM vs. Mm+mm) and the over-dominant (MM+mm vs Mm).

As we anticipated considerable between-study heterogeneity, we used the Mantel-Haenszel method to pool effect sizes under the random-effects model. The heterogeneity variance \(\tau^2 \) was calculated with the Paule-Mandel estimator for binary effect size data (39). We used Knapp-Hartung adjustments (40) to calculate the confidence interval around the pooled effect. HWE in control groups were assessed using the goodness-of-fit Chi-square test and a p-value <0.05 was considered as significant disequilibrium.

Statistical tests for the meta-analysis were performed in a R environment version 4.0.3 using the “meta” and “metafor” packages (41). All tests were two-sided, and the P< 0.05 was considered statistically significant.

RESULTS

Characteristics of Participants

Our study population comprises fewer males than females. However, gender was equally distributed among cases and control individuals (Table 1). Mean age distribution was a significantly different between cases and controls (P<0.0001). Although more than 50% of patients in either group were > 50 year. The case to control ratio was 1.18 (cases=52.5%; controls =47.5%).

Association Studies

All participants were genotyped for the three SNPs (rs1800896; rs1800871; rs1800872) being genotype frequencies of these SNPs in controls in Hardy-Weinberg equilibrium (P=0.70; P=0.36; and P=0.36 respectively). Minor allele frequencies calculated for each SNP were above 20% and higher in the cases than in control individuals for the three SNPs. Allele and genotype distributions of these polymorphism are summarized in Table 2. The association of these SNPs with increased risk of CCC was evaluated under four genetic models: Codominant; dominant, recessive model and over dominant model. Crude odds ratios revealed a significant association between TT genotype of -819 rs1800871 and AA genotype of -592 rs1800872 with CCC under the codominant and the recessive models. Adjusting for gender did not modify the OR but adjusting for age increased it.

As reported in previous studies with subjects from diverse demographic characteristics, the three SNPs are in LD. The D and \(r^2 \) value between -1082 rs1800896 and - 819 rs1800871 are 1 and 0.15 respectively. Yet, these SNPs cannot substitute each other. Regarding - 819 rs1800871 and -592 rs1800872 they are in complete LD (\(r^2 = 1; D^2=1 \)) thus retrieving similar genetic results (Figure 1). The three SNPs constructed three haplotypes (“GCC,” “ACC”, “ATA”) in the promoter region of the IL-10 gene that combined retrieved six genotypes. The homozygous genotype ATA was significantly associated with increased risk of CCC under a crude logistic-regression model (Table 3). Adjusting for gender did not modify the OR but adjusting for age further increased the association.

Meta-Analysis

Description of Studies

The searching strategy used for the online databases identified 23 records at Pubmed, 29 records at Scopus and 14 records at Lilacs. In agreement with the eligibility criteria, the relevant articles were checked according to the inclusion and exclusion criteria thus retrieving 4 case control studies focusing on the association of IL-10 polymorphisms and CCC to be included in the meta-analysis. Of these studies, and our present study, 5 studies involving 851 cases and 443 controls were on -1082>G>A, 4 studies involving 754 cases and 385 controls were on -819>C>T and two studies involving 196 cases and 186 controls were on -592>C>A polymorphism. The distribution of genotypes in controls was consistent with Hardy-Weinberg equilibrium (P>.05) in all studies. The quality of the included studies was adequate being the mean Newcastle-Ottawa score 6.4 (Table 4).

Quantitative Data Synthesis

The overall results are summarized in the forest plots (Figure 2). Heterogeneity between studies was moderate to low. The significance of the association was tested under five different genetic models. For each genetic model, the OR and CI95% and the weight given to each study are shown.

TABLE 1 | Demographic Parameters of Chronic Chagas Cardiomyopathy (CCC) Patients and Control Group (ASYM).

	ASYM n = 58	CCC n = 64	P value \((x^2) \)
Gender			
Female	46 (79.3%)	38 (65.5%)	0.199 *
Male	12 (20.7%)	26 (34.5%)	
Age			
Range (Min-Max)	57 (19-76)	60 (26-86)	
Mean ±SD	46.31 ± 14.15	61.17 ± 11.00	<0.0001b
Argentine	31 (53.4%)	52 (81.3%)	0.0017b

*Fisher’s exact test.

bUnpaired t test with Welch’s correction.
(blue squares and horizontal lines) and the pooled effect sized under the random-effects model and CI95% (light blue diamonds). Regarding 1082G>A rs1800896 (left panel), the analysis comprised 5 studies involving in total 851 cases and 443 controls. The meta-analysis did not show significant association for IL-10 -1082G>A and CCC risk among T. cruzi infected individuals. Still, a tendency towards protection of the GG genotype was noticeable under dominant, recessive and homozygote models (left panel). Regarding -819C>T rs1800871 (right panel), the analysis comprised 4 studies involving in total 754 cases and 385 controls. The overall results of the meta-analysis indicated that the TT genotype of -819C>T could be associated with increased CCC risk according to the dominant model (OR=1.13, 95% CI=1.02–1.25, P=0.03, Figure 2).

DISCUSSION

Genetic variations in the IL-10 gene promoter influence the levels of IL-10 production and are associated with the outcome of infectious diseases and inflammatory disorder. The case control study presented here shows an association in our population between the -819C>T (rs1800871) polymorphism in IL-10 and an enhanced risk of developing CCC in individuals with chronic T. cruzi carrying the TT genotype under the codominant and recessive genetic models. Frade-Barros and coworkers (36) also found a significant association for this marker -819 (rs1800871) and severe CCC when compared to ASYM under the overdominant model but not when comparing between the ASYM subjects and the whole CCC group in a Brazilian cohort. Studies evaluating this same marker in cohorts from Colombia (35) and other regions of Brazil (34, 37), did not found such association. Regarding -1082 rs1800896 marker, Costa (34) and Alvarado-Arnex (37) found for this marker an association between AA genotype and CCC. In our cohort, in line with other studies from Colombia and Brazil, we observed no association of this marker and risk of progression to CCC.

LD analysis of our study population is in accordance with results from ensembl.org which show a strong LD (r2= 0.208745) between -1082 and -819 or -592 and a complete LD (r2 = 1) between -819 and -592. As observed by diverse reports in Caucasian and Asian populations, only three out of eight possible haplotypes (GCC, ACC and ATA) segregate in our population. Previous work identified the same haplotypes in a

SNP	Model	Genotype	ASYM n (%)	CCC n (%)	OR (CI95%)	P	Age adjusted OR (CI95%)	P
-1082 rs1800896	Codominant	AA	28 (50)	36 (54.5)	1	0.71		
		AG	24 (42.9)	24 (36.4)	0.77 (0.37-1.62)	0.56		
		GG	4 (7.1)	6 (9.1)	1.16 (0.32-3.93)	>0.99		
	Dominant	AA	28 (50)	36 (54.5)	1			
		GG+GA	28 (50)	30 (45.5)	0.83 (0.39-1.72)	0.71		
	Recessive	QA+AA	52 (92.9)	60 (90.9)	1			
		GG	4 (7.1)	6 (9.1)	1.3 (0.35-4.25)	0.75		
	Overdominant	AA+GG	32 (57.1)	42 (63.6)	1			
		GA	24 (42.9)	24 (36.4)	0.76 (0.37-1.55)	0.57		
-819 rs1800871	Codominant	CC	31 (55.4)	33 (50)	1			
		TC	23 (41.6)	23 (34.8)	0.93 (0.44-1.99)	>0.99		
		TT	2 (3.6)	10 (15.2)	5.00 (1.12-23.87)	0.04	5.76 (1.06-31.13)	0.04
	Dominant	CC	31 (55.3)	33 (50)	1			
		TT+TC	25 (41.1)	33 (50)	1.24 (0.59-2.60)	0.58		
	Recessive	TC+CC	54 (96.4)	56 (84.8)	1			
		TT	2 (3.6)	10 (15.2)	5.37 (1.12-25.68)	0.03	6.45 (1.31-31.59)	0.02
	Overdominant	TT+CC	33 (55.4)	43 (65.2)	1			
		TC	23 (41.6)	23 (34.8)	0.76 (0.37-1.55)	0.57		
		TT	2 (3.6)	10 (15.2)	5.00 (1.12-23.87)	0.04	5.76 (1.06-31.13)	0.04
-592 rs1800872	Codominant	CC	31 (55.4)	33 (50)	1			
		AC	23 (41.6)	23 (34.8)	0.93 (0.44-1.99)	>0.99		
		AA	2 (3.6)	10 (15.2)	5.00 (1.12-23.87)	0.04	5.76 (1.06-31.13)	0.04
	Dominant	CC	31 (55.3)	33 (50)	1			
		AA + AC	25 (41.1)	33 (50)	1.24 (0.59-2.60)	0.58		
	Recessive	AC + CC	54 (96.4)	56 (84.8)	1			
		AA	2 (3.6)	10 (15.2)	5.37 (1.12-25.68)	0.03	6.45 (1.31-31.59)	0.02
	Overdominant	AA+CC	33 (55.4)	43 (65.2)	1			
		AC	23 (41.6)	23 (34.8)	0.76 (0.37-1.55)	0.57		

The bold text represents the statistically significant results (p<0.05).

The table contains the association of SNPs with CCC in cases and controls.
TABLE 3 | Association of the genotypes with CCC in cases and controls.

Genotype	ASYM n (%)	CCC n (%)	OR (CI95%)	P	Age adjusted OR (CI95%)	P
AYM	14 (25,0)	13 (19,7)	0,73 (0,29 - 1.77)	0,71		
RYM	9 (16,1)	10 (15,2)	0,93 (0,36 - 2.36)	$>$0.99		
RCC	15 (26,8)	14 (21,2)	0,73 (0,31 - 1.68)	0,52		
GCC	4 (7,1)	6 (9,1)	1,30 (0,35 - 4.25)	0,75		
ATA	2 (3,6)	10 (15,2)	5,37 (1,12- 25,68)	0,03	6,45 (1.31-31,59)	0,02
AGC	12 (21,4)	13 (19,7)	0,89 (0,38 - 2.07)	0,82		

TABLE 4 | Methodological quality of studies included in the meta-analysis, based on the Newcastle - Ottawa quality assessment scale for case control studies.

Study	Present study	Costa	Flores	Alvarado-Arnez	Frade-Barros
Selection	Adequate definition of cases	1	1	1	1
	Representativeness of the cases	1	1	1	1
	Selection of controls	1	0	1	0
	Definition of controls	1	1	0	1
Comparability	Control for important factor or additional factor	1	1	0	1
Exposure	Ascertainment of exposure	0	0	0	0
	Same method of ascertainment for cases and controls	1	1	1	1
	Non-Response rate	1	1	1	1
Total score	7	6	6	6	7
We are aware of the limitations from our meta-analysis as confounding factors which correlate with CCC susceptibility, such as age, sex, endemic region, were not taken into consideration. Moreover, even though the pathogenesis of CCC is complex and multifactorial the associations between IL-10 polymorphisms and CCC susceptibility were analyzed independently without contemplating neither other host factors as the production of other immunoregulatory cytokines (i.e. IL-4; TGF-beta or IL-35) nor gene-environment, gene-gene interactions, and the parasite genetics. Still, this first meta-analysis may improve our understanding of the role of IL-10 -1082G>A, -819C>T and -592C>A polymorphisms in susceptibility to CCC.

In summary, TT at -819 contributes to the genetic susceptibility to CCC making this polymorphism a suitable
candidate to be included in a panel of predictive biomarkers of disease progression. A most needed tool to improve the follow up and clinical management of individuals chronically infected with Trypanosoma cruzi.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/supplementary material. Further inquiries can be directed to the corresponding author.

ETHICS STATEMENT

The studies involving human participants were reviewed and approved by Comité de ética del Hospital de Clínicas José de San Martin. The patients/participants provided their written informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

CAS and SR contributed to conception and study design. CAS, SR, and JQB performed the statistical analysis and interpreted data. AG and JQB contributed to the methodology and data curation and edited the manuscript. AG, SR, LGV, AT, DS, PR, MGR, and RNA collected data and edited the manuscript. AG, LGV, RNA, JQB, and AT organized the database. All authors contributed to the article and approved the submitted version.

ACKNOWLEDGMENTS

We thank all participants to the study and the staff of the Hospital de Clínicas José de San Martin. JQB was supported by an undergraduate scholarship from UBACYT (Universidad de Buenos Aires, Argentina). CAS, PR, and MGR are members of the research career from CONICET.

REFERENCES

1. Global Health Data Exchange Chagas Disease — Level 3 Cause. Available at: https://www.healthdata.org/results/gbd_summaries/2019/chagas-disease-level-3-cause (Accessed December 2021).
2. PAHO. Guidelines for the Diagnosis and Treatment of Chagas Diseases (2019). Available at: https://iris.paho.org/bitstream/handle/10665.2/49653/9789275120439_eng.pdf.
3. Nunes MCP, Beaton A, Acquatella H, Bern C, Bolger AF, Echeverria LE, et al. Chagas Cardiomyopathy: An Update of Current Clinical Knowledge and Management: A Scientific Statement From the American Heart Association. Circulation (2018) 138(12):e169–209. doi: 10.1161/CIR.0000000000000599.
4. Marin-Neto JA, Cunha-Neto E, Maciel BC, Simões MV, Bilate AMB, Salemi VMC, et al. Pathogenesis of Chronic Chagas Heart Disease. Circulation (2007) 115:1109–23. doi: 10.1161/CIRCULATIONAHA.106.624296.
5. Higuchi ML, De Morais CF, Pereira Barreto AC, Lopes EA, Stolf N, Bellotti G, et al. The Role of Active Myocarditis in the Development of Heart Failure in Chronic Chagas’ Disease: A Study Based on Endomyocardial Biopsies. Clin Cardiol (1987) 10:665–70. doi: 10.1002/clc.4960101113.
6. Kalil R, Bocchi EA, Ferreira BM, de Lourdes Higuchi M, Lopes NH, Magalhães AC, et al. Magnetic Resonance Imaging in Chronic Chagas Cardiopathy. Correlation With Endomyocardial Biopsy Findings. Arq Bras Cardiol (1995) 65:413–6.
7. Dutra WO, Gollob KJ. Current Concepts in Immunoregulation and Pathology of Human Chagas Disease. Curr Opin Infect Dis (2008) 21(3):287–92. doi: 10.1097/QCO.0b013e3282880860.
8. Fiuza JA, Fujisawa RT, Gomes JA, Rocha MO, Chaves AT, de Araújo FF, et al. Profile of Central and Effector Memory T Cells in the Progression of Chronic Human Chagas Disease. PLoS Negl Trop Dis (2009) 3(9):e512. doi: 10.1371/journal.pntd.0000512.
9. Ferreira LR, Frede AF, Baron MA, Navarro IC, Kalil J, Chevillard C, et al. Interferon-γ and Other Inflammatory Mediators in Cardiomyocyte Signaling During Chagas Disease Cardiomyopathy. World J Cardiol (2014) 6(8):782–90. doi: 10.4330/wjc.v6.i8.782.
10. Chevillard C, Nunes JPS, Frede AF, Almeida RR, Pandey RP, Nascimento MS, et al. Disease Tolerance and Pathogen Resistance Genes May Underlie Trypanosoma Cruzi Persistence and Differential Progression to Chagas Disease Cardiomyopathy. Front Immunol (2018) 9:2791. doi: 10.3389/fimmu.2018.02791.
11. Santos ES, Silva DKC, Dos Reis BPZC, Barreto BC, Cardoso CMA, Ribeiro Dos Santos R, et al. Immunomodulation for the Treatment of Chronic Chagas Disease Cardiomyopathy: A New Approach to an Old Enemy. Front Cell Infect Microbiol (2021) 11:765879. doi: 10.3389/fcimb.2021.765879.
12. Moore KW, de Waal Maleft R, Coffman RL, O’Garra A. Interleukin-10 and the Interleukin-10 Receptor. Annu Rev Immunol (2001) 19:683–765. doi: 10.1146/annurev.immunol.19.1.683.
13. Saraiva M, Vieira P, O’Garra A. Biology and Therapeutic Potential of Interleukin-10. J Exp Med (2020) 217(1):e20190418. doi: 10.1084/jem.20190418.
14. Vogt J, Alba Soto CD, Mincz MP, Mirkin GA. Impaired Trypanosoma Cruzi-Specific IFN-Gamma Secretion by T Cells Bearing the BV9 T-Cell Receptor is Associated With Local IL-10 Production in Non-Lymphoid Tissues of Chronically Infected Mice. Microbes Infect (2008) 10(7):781–90. doi: 10.1016/j.micinf.2008.04.013.
15. Alba Soto CD, Solana ME, Poncini CV, Pino-Martinez AM, Tekiel V, González-Cappa SM. Dendritic Cells Devoid of IL-10 Induce Protective Immunity Against the Protozoan Parasite Trypanosoma Cruzi. Vaccine (2010) 28(46):7407–13. doi: 10.1016/j.vaccine.2010.08.105.
16. Batalla EJ, Pino Martinez AM, Poncini CV, Duffy T, Schijman AG, González Cappa SM, et al. Impairment in Natural Killer Cells Editing of Immature Dendritic Cells by Infection With a Virulent Trypanosoma Cruzi Population. J Immunol (2013) 5(9):494–504. doi: 10.1159/000350242.
17. Cooper KN, Blount DG, Riley EM. IL-10: The Master Regulator of Immunity to Infection. J Immunol (2008) 180(9):5771–7. doi: 10.4049/jimmunol.180.9.5771.
18. Abrahamsohn IA, Coffman RL. Trypanosoma Cruzi: IL-10, TNF, IFN-Gamma, and IL-12 Regulate Innate and Acquired Immunity to Infection. Exp Parasitol (1996) 84(2):231–44. doi: 10.1006/expb.1996.0109.
19. Passos LSA, Koh CC, Magalhães LMD, Nunes MDCP, Gollob KJ, Dutra WO. Distinct CD4-CD8- (Double-Negative) Memory T-Cell Subpopulations Are Associated With Indeterminate and Cardiac Clinical Forms of Chagas Disease. Front Immunol (2021) 12:761795. doi: 10.3389/fimmu.2021.761795.
Dutra WO, Menezes CA, Magalhães LM, Gollob KJ. Immunoregulatory Networks in Human Chagas Disease. *Parasite Immunol* (2014) 36(8):377–87. doi: 10.1111/j.1365-3016.2014.01107.x.

21. Sousa GR, Gomes JA, Fares RC, Damásio MP, Chaves AT, Ferreira KS, et al. Plasma Cytokine Expression is Associated With Cardiac Morbidity in Chagas Disease. *PloS One* (2014) 9(3):e87082. doi: 10.1371/journal.pone.0087082.

22. de Melo AS, de Lorena VM, de Moura Braz SC, Docena C, de Miranda Gomes Y. IL-10 and IFN-γ Gene Expression in Chronic Chagas Disease Patients After In Vitro Stimulation With Recombinant Antigens of *Trypanosoma Cruzi*. *Cytokine* (2012) 58(2):207–12. doi: 10.1016/j.cyto.2012.01.008.

23. Poveda C, Fresno M, Giromè N, Martins-Filho OA, Ramirez JD, Santi-Rocca J, et al. Cytokine Profiling in Chagas Disease: Towards Understanding the Association With Infecting *Trypanosoma Cruzi* Discrete Typing Units (a BENEFIT TRAIL Sub-Study). *PloS One* (2014) 9(3):e91154. doi: 10.1371/journal.pone.0091154.

24. Medeiros NL, Fares RC, Franco EP, Sousa GR, Mattos RT, Chaves AT, et al. Differential Expression of Matrix Metalloproteinases 2, 9 and Cytokines by Neutrophils and Monocytes in the Clinical Forms of Chagas Disease. *PloS Negl Trop Dis* (2017) 11(1):e0050284. doi: 10.1371/journal.pntd.0005028.

25. Keating SM, Deng X, Fernandes F, Cunha-Neto E, Ribeiro AL, Adesina B, et al. NHLBI Retinovirus Epidemiology Donor Study-II (REDS-II), International Component. Inflammatory and Cardiac Biomarkers are Differentially Expressed in Clinical Stages of Chagas Disease. *Int J Cardiol* (2015) 199:151–9. doi: 10.1016/j.ijcard.2015.07.040.

26. Bidwell J, Keen L, Gallagher G, Kimberly R, Huizinga T, McDermott M, et al. Cytokine Gene Polymorphism in Human Disease: on-Line Databases. *Genes Immun* (1999) 1(1):3–19. doi: 10.1038/sj.gen.6363645.

27. Eskdale J, Gallagher G, Verweij CL, Keijzers V, Westendorp RG, Huizinga TW. Interleukin 10 Secretion in Relation to Human IL-10 Locus Haplotype. *Proc Natl Acad Sci USA* (1998) 95(16):9465–70. doi: 10.1073/pnas.95.16.9465.

28. Turner DM, Williams DM, Sankaran D, Lazarus M, Sinnott PJ, Hutchison IV, An Investigation of Polymorphism in the Interleukin-10 Gene Promoter. *Eur J Immunogenet* (1997) 24(1):1–8. doi: 10.1111/j.1365-2370.1997.tb00001.x.

29. Suárez A, Castro P, Alonso R, Moso L, Gutierrez C, Interindividual Variations in Constitutive Interleukin-10 Messenger RNA and Protein Levels and Their Association With Genetic Polymorphisms. *Transplantation* (2003) 75(5):711–7. doi: 10.1097/01.TP.0000055216.19866.9A.

30. Opdal SH. IL-10 Gene Polymorphisms in Infectious Disease and SIDS. *FEMS Immunol Med Microbiol* (2004) 42(1):48–52. doi: 10.1016/j.femsim.2004.06.006.

31. Gibson AW, Edberg JC, Wu J, Westendorp RG, Huizinga TW, Kimberly RP. Novel Single Nucleotide Polymorphisms in the Distal IL-10 Promoter Affect IL-10 Production and Enhance the Risk of Systemic Lupus Erythematosus. *J Immunol* (2001) 166(6):3915–22. doi: 10.4049/jimmunol.166.6.3915.

32. Naicker DD, Werner L, Kornath E, Passmore JA, Miliana K, Karim SA, et al. Interleukin-10 Promoter Polymorphisms Influence HIV-1 Susceptibility and Primary HIV-1 Pathogenesis. *J Infect Dis* (2009) 200(3):448–52. doi: 10.1086/600072.

33. Lin MT, Storer B, Martin PJ, Tseng LH, Gooley T, Chen PJ, et al. Relation of an Interleukin-10 Promoter Polymorphism to Graft-Versus-Host Disease and Survival After Hematopoetic-Cell Transplantation. *N Engl J Med* (2003) 349(23):2201–10. doi: 10.1056/NEJMoa022060.

34. Costa GC, da Costa Rocha MO, Moreira PA, Menezes CA, Silva MR, Gollob KJ, et al. Functional IL-10 Gene Polymorphism Is Associated With Chagas Disease Cardiomyopathy. *J Infect Dis*. 2009 1:199(3):451–4. doi: 10.1086/596061.

35. Florez O, Martin J, Gonzalez CJ. Interleukin 4, Interleukin 4 Receptor-α and Interleukin 10 Gene Polymorphisms in Chagas Disease. *Parasite Immunol* (2011) 33(9):506–11. doi: 10.1111/j.1365-3024.2011.01314.x.

36. Frade-Barros AF, Ianni BM, Cabantous S, Pissetti CW, Saba B, Lin-Wang HT, et al. Polymorphisms in Genes Affecting Interferon-γ Production and Th1 T Cell Differentiation Are Associated With Progression to Chagas Disease Cardiomyopathy. *Front Immunol* (2020) 11:13186. doi: 10.3389/immu.2020.013186.

37. Alvarado-Arnez LE, Batista AM, Alves SM, Melo G, Lorena VM, Cardoso CC, et al. Single Nucleotide Polymorphisms of Cytokine-Related Genes and Association With Clinical Outcome in a Chagas Disease Case-Control Study From Brazil. *Mem Inst Oswaldo Cruz* (2018) 113(6):e170489. doi: 10.1590/0074-02760170489.

38. Peterson J, Welch V, Losos M, Tugwell P. The *Newcastle-Ottawa Scale (NOS)* for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. Ottawa, ON: Ottawa Hospital Research Institute (2011).

39. Paula RC, Manzel J. Consensus Values and Weighting Factors. *J Res Natl Bur Stand (US)* (1982) 87:377. doi: 10.6028/jres.087.022.

40. Knapp G, Hartung J. Improved Tests for a Random Effects Meta-Regression With a Single Covariate. *J Stat Med* (2003) 22(17):2693–710. doi: 10.1002/sim.1482.

41. Balduzzi S, Rücker G, Schwarzer G. How to Perform a Meta-Analysis With R: A Practical Tutorial. *Evid Based Ment Health* (2019) 22:153–60. doi: 10.1136/ebmental-2019-300117.

42. Basquiera AL, Sembaj A, Aguerri AM, Omelianiuk M, Güzman S, Moreno Barral J, et al. Risk Progression to Chronic Chagas Cardiomyopathy: Influence of Male Sex and of Parasitinaemia Detected by Polymerase Chain Reaction. *Heart* (2003) 89(10):1186–90. doi: 10.1136/heart.89.11.1186.

43. Assunção ANR, Jerosch-Herold M, Melo RL, Mauricio AV, Rocha L, Torreão JA, et al. Chagas’ Heart Disease: Gender Differences in Myocardial Damage Assessed by Cardiovascular Magnetic Resonance. *J Cardiovasc Magn Reson* (2016) 18(1):88. doi: 10.1186/s12968-016-0307-5.

44. Echalar JC, Veliz D, Urquizo ON, Niemeyer HM, Pinto CF. Age-Related Anomalies of Electrophysiograms in Patients From Areas With Differential Seroprevalence of Chagas Disease in Southern Bolivia. *Parasite Epidemiol Control* (2021) 13:e00204. doi: 10.1016/j.parepi.2021.e00204.

45. Edwards-Smith CJ, Jonsson JR, Purdie DM, Bansal A, Shorthouse C, Powell EE. Interleukin-10 Promoter Polymorphism Predicts Initial Response of Chronic Hepatitis C to Interferon Alfa. *J Hepatol* (2004) 40(6):747–52. doi: 10.1016/j.jhep.2004.04.035.

46. Reuss E, Fimmers R, Kruger A, Becker C, Rittner C, Hohler T. Differential Regulation of Interleukin-10 Production by Genetic and Environmental Factors—a Twin Study. *Genes Immun* (2002) 3:407–13. doi: 10.1038/sj.gen.6363920.