Efeitos Genéticos e Ambientais no Desenvolvimento do Diâmetro da Aorta Abdominal

Genetic and Environmental Effects on the Abdominal Aortic Diameter Development

Adam Domonkos Tarnoki¹, David Laszlo Tarnoki², Levente Littvay², Zsolt Garami³, Kinga Karlinger¹, Viktor Berczi¹

Department of Radiology and Oncotherapy – Semmelweis University¹, Budapest – Hungary; Central European University², Budapest – Hungary; Houston Methodist DeBakey Heart & Vascular Center – The Houston Methodist Hospital³, Houston, TX – USA

Resumo

Fundamento: A configuração da aorta abdominal relaciona-se com o envelhecimento saudável e uma série de distúrbios.

Objetivos: Avaliar efeitos herdáveis e ambientais no diâmetro da aorta abdominal.

Métodos: 114 pares de gêmeos adultos (69 monozigóticos e 45 dizigóticos do mesmo sexo), com idade média de 43,6 ± 16,3 anos, foram submetidos a ultrassonografia abdominal com o aparelho Esaote MyLab 70X para visualização da aorta abdominal abaixo da origem das artérias renais e 1-3 cm acima da bifurcação aórtica.

Resultados: A herdabilidade ajustada para idade e sexo do diâmetro da aorta abdominal abaixo da origem das artérias renais foi 40% [intervalo de confiança (IC) 95%, 14 – 67%] e acima da bifurcação, 55% (IC 95%, 45 – 70%). Nenhum dos diâmetros aórticos apresentou efeitos ambientais comuns, mas os efeitos ambientais não compartilhados foram responsáveis por 60% e 45% dos traços, respectivamente.

Conclusões: Nossa análise mostrou herdabilidade moderada e diferença do diâmetro da aorta abdominal com especificidade de segmento. A parte moderada da variância foi explicada pelo componente ambiental não compartilhado, enfatizando a importância do estilo de vida na prevenção primária. Estudos adicionais nesse campo poderão guiar futuros esforços de mapeamento genético e investigar fatores específicos de estilo de vida para prevenir dilatação da aorta abdominal e suas complicações. (Arq Bras Cardiol. 2016; 106(1):13-17)

Palavras-chave: Aorta Abdominal / genética; Hereditariedade; Aterosclerose; Fatores de Risco.

Abstract

Background: Configuration of the abdominal aorta is related to healthy aging and a variety of disorders.

Objectives: We aimed to assess heritable and environmental effects on the abdominal aortic diameter.

Methods: 114 adult (69 monozygotic, 45 same-sex dizygotic) twin pairs (mean age 43.6 ± 16.3 years) underwent abdominal ultrasound with Esaote MyLab 70X ultrasound machine to visualize the abdominal aorta below the level of the origin of the renal arteries and 1-3 cm above the bifurcation.

Results: Age- and sex-adjusted heritability of the abdominal aortic diameter below the level of the origin of the renal arteries was 40% (95% confidence interval (CI), 14 to 67%) and 55% above the aortic bifurcation (95% CI, 45 to 70%). None of the aortic diameters showed common environmental effects, but unshared environmental effects were responsible for 60% and 45% of the traits, respectively.

Conclusions: Our analysis documents the moderate heritability and its segment-specific difference of the abdominal aortic diameter. The moderate part of variance was explained by unshared environmental components, emphasizing the importance of lifestyle factors in primary prevention. Further studies in this field may guide future gene-mapping efforts and investigate specific lifestyle factors to prevent abdominal aortic dilatation and its complications. (Arq Bras Cardiol. 2016; 106(1):13-17)

Keywords: Aorta, Abdominal / genetics; Heredity; Atherosclerosis; Risk Factors.

Full texts in English - http://www.arquivosonline.com.br

Correspondência: Adam Domonkos Tarnoki • Semmelweis University Department of Radiology and Oncotherapy, 78/A Úllői street. Postal Code 1082, Budapeste – Hungria
E-mail: tarnoki2@gmail.com
Artigo recebido em 22/02/15; revisado em 31/08/15; aceito em 02/09/15

DOI: 10.5935/abc.20150140
Introdução

O tamanho da aorta diminui gradualmente à medida que aumenta a distância da válvula aórtica, definindo-se o diâmetro normal da aorta descendente como < 1,6 cm/m² e o da aorta abdominal, menor do que 3,0 cm.¹,² A configuração da aorta abdominal pode estar relacionada a envelhecimento saudável, exercícios e/ou a uma variedade de distúrbios, como hipertensão, aneurisma, dissecção e ruptura.³,⁴ O aumento do tamanho da aorta é contínuo durante a vida, sendo a taxa de expansão normal de 1–2 mm/ano, e envolve todos os segmentos.¹ O envelhecimento da aorta se acompanha de perda de complacência e aumento da rigidez da parede, causados por alterações estruturais, incluindo aumento no conteúdo de colágeno, formação de aterosclerose intimal com depósitos de cálcio, ativação de músculo liso, degradação da matriz, necrose cística da média, hiperatividade de vias proteolíticas e estresse oxidativo.¹,³,⁴ Sabe-se ainda que certas doenças genéticas, como aneurisma de aorta abdominal, acham-se associadas com a geometria aórtica.⁴,⁵ A relação entre o tamanho crescente da aorta e o risco de ruptura espontânea ou dissecção foi bem documentado.⁶ Apesar de vários estudos terem relatado incidência familiar dessas aneurismas de aorta abdominal, o grau de determinação genética na geometria da aorta abdominal é ainda reduzido. Embora a prevalência de doenças relacionadas ao diâmetro da aorta abdominal, como aterosclerose e aneurisma de aorta, tenha aumentado nas últimas décadas devido às alterações no estilo de vida e vários fatores de risco, nenhum estudo investigou se a variação no diâmetro da aorta abdominal deve-se a diferenças genéticas ou ambientais. Se os efeitos herdados forem considerados importantes, estudos precisam ser realizados para identificar marcadores genéticos específicos que determinem o tamanho da aorta abdominal. Ao contrário, se o ambiente desempenha papel mais importante, devem-se enfatizar intervenções no estilo de vida para interferir no desenvolvimento das doenças relacionadas ao diâmetro da aorta abdominal. Assim, este estudo teve por objetivo avaliar a extensão dos efeitos genéticos e ambientais no diâmetro da aorta abdominal.

Métodos

Participants e design do estudo

Do Registro de Gêmeos da Hungria, selecionaram-se 114 pares de gêmeos saudáveis caucasianos [69 pares de gêmeos monozigóticos (MZ) e 45 dizigóticos (DZ) do mesmo sexo] com idade superior a 18 anos (idade média de 43,6 ± 16,3 anos), que foram recrutados para ultrassonografia abdominal no Departamento de Radiologia e Oncoterapia da Universidade Semmelweis em 2009 e 2010.⁷ Foram excluídos pares de gêmeos DZ de sexos opostos para se evitar o viés das estimativas de herdabilidade na presença de efeitos específicos de sexo ou do cromossomo X. Mulheres grávidas foram excluídas do estudo. Os pacientes com doença aterosclerótica ou outras causas de estenose aórtica não foram excluídos da análise. Em lugar de genotipagem para classificação de zigosidade, utilizou-se um questionário de múltipla escolha autoadministrado com sete partes.⁸ Fatores de risco, história de doenças cardiovasculares e tabagismo foram registrados no questionário. Todos os participantes assinaram o termo de consentimento informado. Este estudo foi aprovado pelo Comitê de Ética da Universidade Semmelweis e foi conduzido de acordo com a Declaração de Helsinki.

Ultrassonografia abdominal limitada

Realizou-se ultrassonografia abdominal limitada com Doppler e modo B para visualizar a aorta abdominal abaixo da origem das artérias renais e 1-3 cm acima da bifurcação aórtica, com transdutor curvo (1–8 MHz, CA431, Esaote MyLab 70X Vision, Esaote, Gênova, Itália). Imagens digitais padronizadas da aorta foram registradas na posição supina no plano transversal para cortes axiais. O ganho de amplificação em escalas de cinza, a curva de compensação tempo-ganho e o número de foco foram ajustados para a aquisição das melhores imagens da aorta. Os exames foram realizados pelo mesmo radiologista. Usou-se trackball para estabelecer a melhor imagem da aorta na sístole, sendo o maior diâmetro aórtico medido no plano transversal por compassos eletrônicos no momento do exame.

Análise estatística

O programa SPSS Statistics 17 (SPSS Inc., Chicago, IL, EUA) foi usado para a análise descritiva, sendo as subamostras MZ e DZ comparadas pelo teste t de amostras independentes. Calcularam-se as correlações de Pearson entre os diâmetros aórticos e as variáveis contínuas. Os parâmetros de diâmetro aórtico apresentaram distribuição normal.

Calculou-se uma estimativa descritiva da influência genética nos pares MZ e DZ usando-se correlações entre gêmeos do mesmo par corrigidas para idade e sexo. Na análise de gêmeos, uma correlação entre MZ substancialmente maior do que uma correlação entre DZ sugere herdabilidade, ao passo que correlações semelhantes entre gêmeos implicam que componentes ambientais compartilhados determinam mais fortemente a variância. Maiores similaridades DZ comparadas aos gêmeos MZ sugerem que fatores ambientais não compartilhados (únicos) sejam responsáveis pelo traço. Com base nas similaridades entre gêmeos MZ e DZ, realizou-se modelagem de equação estrutural (modelo A-C-E) com Mplus, versão 6.1, (Muthén & Muthén, Los Angeles, CA, EUA)¹⁰ para decompor a variação em efeitos genéticos aditivos (A), ambientais comuns ou compartilhados (C) e ambientais únicos ou não compartilhados (E).¹⁰ Os intervalos de confiança empíricos foram calculados com bootstrap de Bollen-Stine.¹¹ Toda a estatística inferencial foi baseada em estimativa por máxima verossimilhança. Modelos aninhados foram comparados usando-se teste de verossimilhança e qui-quadrado, sendo a seleção de modelo realizada através dos critérios de informação de akaike de acordo com o princípio da parcimônia. Valor de p < 0,05 foi considerado significativo.

Resultados

Análise descritiva

Os fatores de risco, história de doenças e características clínicas não diferiram significativamente entre gêmeos MZ e DZ. Os homens representaram 39% da amostra do estudo. Os grupos MZ e DZ foram formados por
32 homens e 106 mulheres, e 30 homens e 60 mulheres, respectivamente. Hipertensão, hipercolesterolemia e diabetes estavam presentes em 32%, 22% e 6%. Os indivíduos ativos corresponderam a 17% da amostra, e ex-fumantes, 14%. Os diâmetros aórticos médios abaixo da origem das artérias renais e acima da bifurcação aórtica foram 1,5 ± 0,2 cm e 1,4 ± 0,2 cm, respectivamente. Não houve diferença significativa entre gêmeos MZ e DZ com relação ao diâmetro aórtico abaixo da origem das artérias renais, mas os gêmeos DZ apresentaram diâmetro aórtico significativamente menor acima da bifurcação (1,4 ± 0,2 vs. 1,3 ± 0,2 cm, p < 0,005). Nenhum aneurisma de aorta abdominal foi identificado. Não houve significativa correlação entre diâmetros aórticos e índice de massa corporal, consumo semanal de álcool, consumo de cigarros, diabetes e hipercolesterolemia. Hipertensos apresentaram diâmetro aórtico significativamente maior abaixo da origem das artérias renais (1,6 ± 0,2 vs. 1,5 ± 0,2, p < 0,05), mas isso não foi observado acima da bifurcação aórtica.

Discussão

Nossos resultados demonstram os efeitos genéticos no diâmetro da aorta abdominal em uma amostra saudável. Essa herdabilidade foi moderada, sendo uma extensão similarmente moderada de variância explicada por componentes ambientais não compartilhados.

Apenas Cecelja et al.11 haviam investigado as dimensões aórticas em gêmeos MZ até agora, tendo relatado que o aumento altamente herdável de pressão nas mulheres acha-se associado com a razão entre os diâmetros arteriais distais e proximais; entretanto, uma avaliação de herdabilidade dos diâmetros aórticos não havia ainda sido feita. O Strong Heart Study12 investigou a herdabilidade dos diâmetros da raiz aórtica obtidos através de ecocardiografia em índios americanos, tendo relatado uma contribuição genética adicional de 51%, comparável aos nossos achados. Entretanto, o diâmetro da aorta abdominal nunca foi avaliado. Nossos achados enfatizam o papel moderado dos efeitos genéticos no desenvolvimento do diâmetro aórtico, podendo predispor à dilatação aórtica. Tais achados indicam que o envelhecimento da aorta abdominal é parcialmente (50%) guiado por efeitos genéticos, sendo a outra metade da variância influenciada pelo estilo de vida. Perda de complacência, aterosclerose e aumento da rigidez aórtica, todos relacionados à geometria aórtica, poderiam ser evitados com um estilo de vida saudável; neles ocorre aumento da síntese de colágeno com a idade, o que pode levar à dilatação.13 Além disso, a existência de uma diferença na herdabilidade específica por segmento nunca foi demonstrada: o diâmetro aórtico acima da bifurcação é mais herdável do que aquele abaixo da origem das artérias renais. Devemos espeçular se tal achado poderia explicar porque a aterosclerose é mais comum antes da bifurcação. Sabe-se que distúrbios hemodinâmicos, como fluxo turbulento ou baixo estresse de cisalhamento, associados com ramificação e grande curvatura, contribuem para algum grau de localização da aterosclerose.14-18 Diferenças em herdabilidade específicas por segmento foram mostradas em artérias carótidas, indicando que os efeitos herdados contribuem de maneira heterogênea para a espessura íntima-média por segmento.18

Além do mecanismo genético, relatamos que fatores ambientais únicos, como estilo de vida, desempenham um papel moderado na determinação dos diâmetros aórticos. Esses fatores de risco e estilo de vida foram bastante estudados (tabagismo, hipertensão, diabetes, obesidade). Segundo alguns pesquisadores, a programação desse mecanismo começa na vida fetal e depende da exposição materna a fatores de risco e de modulação epigenética.19 A identificação de fatores de risco, com 45-60% de influência proximalmente abaixo da origem das artérias renais, tornaria o diagnóstico mais efetivo, permitindo a detecção de doenças em estágio precoce e sua prevenção com alterações no estilo de vida. Acredita-se que a doença esteja ligada a um estilo de vida com altos níveis de estresse oxidativo e alimentos altamente processados.20 O objetivo de longo prazo deste estudo é detectar e mapear novos genes polimórficos que influenciam a variação de tamanho da aorta abdominal, dessa forma contribuindo para o desenvolvimento de dilatação aórtica subclínica assimptomática e dissecção ou ruptura. Recentemente, alguns genes relacionados à formação de aneurisma de aorta abdominal foram relatados. Suspeitou-se mais de genes de susceptibilidade do que de mutações genéticas causadoras de aneurismas, particularmente os de aorta abdominal, que são geneticamente complexos.21 Um estudo do genoma com diâmetro aórtico infrarenal ≥ 30 mm ou aneurisma de aorta abdominal roto demonstrou a associação de LDLR rs6511720 com aneurisma de aorta abdominal.22 Um recente relato na população chinesa mostrou uma significativa associação de rs10757278 e rs1333049 no cromossomo 9p21.3 com aumento do risco de aneurisma de aorta abdominal.23 Entretanto, estudos genéticos em indivíduos saudáveis são necessários, assim como outros estudos de base populacional sobre fatores genéticos que influenciam o tamanho da aorta abdominal para identificar marcadores genéticos específicos. Essa informação pode melhorar as estratégias de diagnóstico e tratamento na prevenção de dilatação de aorta abdominal e suas complicações.

Limitações do nosso estudo devem ser consideradas. Não se usou sincronização com ECG neste estudo, mas dilatação sistólica da aorta foi bem identificada em todos os casos. As medidas de tamanho da aorta forneceram apenas uma única avaliação estática em certo momento. Pacientes mais idosos podem demonstrar uma influência mais significativa dos fatores ambientais sobre o tamanho da aorta, e alterar a análise deste estudo. Além disso, a relação das influências genéticas e ambientais no crescimento aórtico ao longo do tempo seria...
Tabela 1 – Estimativas de parâmetros para efeitos genéticos aditivos (A), ambientais comuns ou compartilhados (C) e ambientais únicos ou não compartilhados (E) no diâmetro aórtico por modelagem de equação estrutural

Variável dependente	AIC	BIC	-2LL	df diferença	Valor de p	rMZ	rDZ	A	IC 95%	C	IC 95%	E	IC 95%
Diâmetro aórtico abaixo das artérias renais*	-57,544	-41,127	-69,54		0,413 (0,201; 0,630)	0,151 (-0,198; 0,436)	0,40	0,14 – 0,67	0,00	0,00 – 0,38	0,60	0,36 – 0,80	
	-59,544	-45,863	-69,54	0	1	1	0,40	0,20 – 0,62	0,00	0,00 – 0,00	0,60	0,38 – 0,80	
	-57,339	-43,658	-67,34	5,628	1	0,018	0,00	0,00 – 0,00	0,30	0,14 – 0,48	0,70	0,52 – 0,86	
Diâmetro aórtico acima da bifurcação†	-79,736	-63,371	-91,736		0,566 (0,306; 0,709)	0,209 (-0,069; 0,570)	0,55	0,29 – 0,72	0,02	0,00 – 0,56	0,45	0,29 – 0,64	
	-81,736	-68,099	-91,736	0	1	1	0,55	0,35 – 0,70	0,00	0,00 – 0,00	0,45	0,30 – 0,65	
	-76,108	-62,472	-86,108	2,204	1	0,138	0,00	0,00 – 0,00	0,39	0,20 – 0,59	0,61	0,41 – 0,80	

* Pares de gêmeos: 69 monozigóticos e 45 dizigóticos; † Pares de gêmeos: 68 monozigóticos e 45 dizigóticos.
AIC: Critérios de informação de akaike; BIC: Critérios de informação bayesiana; -2LL: Log-verossimilhança; Χ^2: Teste qui-quadrado, baseado na comparação dos valores de log-verossimilhança do modelo de melhor ajuste; rMZ: Correlação saturada entre gêmeos monozigóticos; rDZ: Correlação saturada entre gêmeos dizigóticos. † modelo com melhor ajuste

Correlações entre gêmeos MZ (rMZ) e DZ (rDZ) oferecem uma explicação básica sobre os níveis de herdabilidade. Maiores correlações MZ (versus correlações DZ) indicam um efeito genético, enquanto efeitos semelhantes MZ e rDZ indicam influência ambiental compartilhada. Intervalos de confiança (IC) de 95% são apresentados em colchetes para todas as estimativas. Análises univariadas são apresentadas com estimativa de todos os componentes (A – efeitos genéticos aditivos, C – efeitos ambientais comuns, E – efeitos ambientais únicos). A multiplicação dos números por 100 fornece a variância em porcentagens. IC que não inclui 0 indica estimativa significativa. Modelos reduzidos (A-E ou C-E), em que o componente ausente é fixado em 0, são também apresentados. Avaliou-se então se esses modelos reduzidos têm ajuste significativamente pior (ver valor de p) do que o modelo completo ACE, usando-se o teste do qui-quadrado aninhado. AIC e BIC oferecem evidência adicional de qual modelo é mais aceitável.
muito mais importante do que a influência no tamanho em dado momento. Quanto à ultrassonografia, seus pontos fracos são a variabilidade inter-observador e a limitada visibilidade da aorta devido aos gases intestinais e obesidade, mas, neste estudo, todos os participantes foram avaliados pelo mesmo radiologista e a aorta foi bem visualizada em todos eles. A comparação da ultrassonografia e da tomografia computadorizada mostrou imagens da aorta abdominal relativamente iguais.24 Limitações adicionais incluem o número relativamente pequeno de gêmeos DZ participantes em comparação ao usual em estudos de gêmeos, o que pode levar a erros estatísticos na análise do modelo A-C-E ao aumentar a variância dos efeitos ambientais não compartilhados.

Conclusões

Concluindo, herdabilidade moderada e diferença do diâmetro da aorta abdominal com especificidade de segmento foram demonstradas em uma amostra saudável, e poderão orientar esforços futuros de mapeamento genético. Os fatores ambientais não compartilhados foram responsáveis pela outra parte da variância.

Referências

1. Erbel R, Alfonso F, Boileau C, Dirsch O, Eber B, Havercat A, et al; Task Force on Aortic Dissection, European Society of Cardiology. Diagnosis and management of aortic dissection. Eur Heart J. 2001;22(18):1642-81.
2. Erbel R, Egggebrecht H. Aortic dimensions and the risk of dissection. Heart. 2006;92(1):137-42.
3. Roman MJ, Devereux RB, Kramer-Fox R, O’Loughlin J. Two-dimensional echocardiographic aortic root dimensions in normal children and adults. Am J Cardiol. 1989;64(8):507-12.
4. Nordon IM, Hinchliffe RJ, Loftus IM, Thompson MM. Pathophysiology and epidemiology of abdominal aortic aneurysms. Nat Rev Cardiol. 2011;8(2):92-102.
5. Kuivaniemi H, Shibamura H, Arthur C, Berguer R, Cole CW, Juvonen T, et al. Familial abdominal aortic aneurysms: collection of 233 multiplex families. J Vasc Surg. 2003;37(2):340-5.
6. Rider OJ, Petersen SE, Francis JM, Al MK, Hudsmith LE, Robinson MR, et al. Ventricular hypertrophy and cavity dilatation in relation to body mass index in women with uncomplicated obesity. Heart. 2011;97(3):203-8.
7. Littvay L, Methneki J, Tarnoki AD, Tarnoki DL. The Hungarian Twin Registry. Twin Res Hum Genet. 2013;16(1):185-9.
8. Heath AC, Nyholt DR, Neuman R, Madden PA, Bucholz KK, Todd RD, et al. Zygosity diagnosis in the absence of genotypic data: an approach using latent class analysis. Twin Res. 2003;6(1):22-6.
9. Muthen LK, Muthen BO. Mplus: statistical analysis with latent variables. User’s guide. 6th ed. Los Angeles: Muthen & Muthen; 1998-2010.
10. Neale MC, Maes HH, Cardon LR. Methodology for genetic studies of twins and families. Dordrecht [The Netherlands]: Kluwer Academic Publishers BV; 1992.
11. Bollen KA, Stine RA. Bootstrapping goodness-of-fit measures in structural equation models. Sociological Methods Research. 1992;21(2):205-29.
12. Cecelja M, Jiang B, McNeill K, Kató B, Ritter J, Spector T, et al. Increased wave reflection rather than central arterial stiffness is the main determinant of raised pulse pressure in women and relates to mismatch in arterial dimensions: a twin study. J Am Coll Cardiol. 2009;54(8):695-703.
13. Bella NJ, MacCluer JW, Roman MJ, Almasy L, North KE, Welty TK, et al. Genetic influences on aortic root size in American Indians: the Strong Heart Study. Arterioscler Thromb Vasc Biol. 2002;22(6):1008-11.

Contribuição dos autores

Concepcão e desenho da pesquisa: Tarnoki AD, Tarnoki DL, Garami Z, Karlinger K, Berczi V; Obtenção de dados: Tarnoki AD, Tarnoki DL, Littvay L; Análise e interpretação dos dados: Tarnoki AD, Tarnoki DL, Littvay L, Garami Z, Karlinger K; Análise estatística: Tarnoki AD, Tarnoki DL; Redação do manuscrito e Revisão crítica do manuscrito quanto ao conteúdo intelectual importante: Tarnoki AD, Tarnoki DL, Littvay L, Garami Z, Karlinger K, Berczi V.

Potencial conflito de interesse

Declaro não haver conflito de interesses pertinentes.

Fontes de financiamento

O presente estudo não teve fontes de financiamento externas.

Vinculação acadêmica

Não há vinculação deste estudo a programas de pós-graduação.