Low-cost Rice Husk Ash and Silica for Chromium Ion Sorption from Aqueous System: Characterisation and Kinetics

Adelagun Ruth Olubukola Ajoke

Department of Chemical Sciences, Federal University Wukari, Wukari, Nigeria

Email address: jemiruth2009@yahoo.com

To cite this article: Adelagun Ruth Olubukola Ajoke. Low-cost Rice Husk Ash and Silica for Chromium Ion Sorption from Aqueous System: Characterisation and Kinetics. American Journal of BioScience. Vol. 9, No. 3, 2021, pp. 72-78. doi: 10.11648/j.ajbio.20210903.11

Received: March 29, 2021; Accepted: April 20, 2021; Published: April 29, 2021

Abstract: Several materials have been developed and used to remove Chromate (VI) from industrial wastewater before discharge into the environment because of its toxicity and lethality. In this study, low-cost adsorbents (rice husk ash (RHA) and silica (RHS)) were prepared from rice husks purchased locally from a rice mill industry and characterised. While the crystallinity and mineralogy of the adsorbents were analysed using powdered XRD crystallography, analysis of the physico-chemical properties was performed using standard procedures. Elemental analysis (CHN) was done using Perkin Elmer CHN elemental analyser and FTIR Spectrometer was used to determine the functional groups on the surface of the adsorbents at room temperature. The prepared samples were used as adsorbents for the removal of chromate (VI) ion in a batch sorption process with reaction conditions vis–a–viz adsorbent dosage = 0.5 g, adsorbate volume = 500 ml, adsorbate solution concentrations: 10-200 mg/l, time = 4 h, temperature = ambient temperature. The residual Cr (VI) concentration in the solution was analyzed spectrophotometrically at λ = 540 nm following the 1,5–diphenylcarbazide procedure. Results obtained for the characterisation of the adsorbents were similar and comparable with what obtained in literatures. Physico - chemical analysis revealed a high ash content of 89% and silica content of 95.83%. XRD analysis for the rice husk ash samples reflected the presence of cristobalite (SiO$_2$) in amorphous form and a characteristics broad peak at 20 angle = 26.5°. FTIR analysis revealed the presence of silanol groups (Si-OH), silicic acid (Si-O-Si-OH) in the ash and Si-O-Si and Si-O) in the silica. The results of effect of time-concentration experiments of chromium ion sorption by the adsorbents revealed that Cr (VI) ion sorption was both time and initial solution concentration dependent with over 80% removal achieved within the first 30 min of contact for both adsorbents as the initial chromate concentration was increased. Kinetic modeling of the process showed up for pseudo second order, hinting on chemisorption as the mechanism of interaction.

Keywords: Characterisation, Chromium, Cristobalite, Kinetics, Rice Husk, Ash, Silica

1. Introduction

Chromate (VI) amelioration in industrial wastewater before discharge into the environment has become mandatory due to its lethality. The extensive use of chromate compounds in mining operations, electronic device manufacturing, power generation, tannery, metal plating and production of stainless steel has been reported to generate process water containing up to 10-100 mg/L of chromate [1]; much higher than limit of 0.1 mg/L stipulated for industrial wastewater, thus requiring specialized or advance treatment for its removal. Chromium exhibits +3, +6 and 0 oxidation states in environmental matrix. Hexavalent chromium is very mobile in the environment, speciated as dichromate, hydrogen chromate and chromate and a confirmed carcinogen and mutagen. Technological options of removal include chemical precipitation, membrane filtration, electrolysis and ion exchange. Conventionally, Cr$^{6+}$ is removed by chemical reduction to the Cr$^{3+}$ which is of lesser toxicity, and subsequent precipitation with a precipitant e.g. NaOH. The aforementioned technologies while able to effectively meet the standards, are hampered by various factors such as consumption of chemical agents, huge cost, generation of large amount of sludge requiring disposal and ineffective for the removal of low concentration of pollutants. Adsorptive method
for Cr (VI) abstraction in waste streams has gained acceptance by researchers in recent times due to its simplicity of operations, economics, high efficiency and availability of many arrays of cheap environmental-friendly adsorbents [2]. Many agro-based adsorbents have been applied with success for the treatment of chromium contaminated wastewater.

Table 1. Some Biosorbents Used for Cr (VI) Removal.

Adsorbents	mg Cr (VI)/g	Reference
Potato peel	3.28	[3]
Sawdust	3.6	[4]
Rubber wood sawdust	44.1	[5]
Hazel nut shell	17.7	[6]
Groundnut husk	11.4	[7]
Aligator weed	82.57	[8]

Rice husk (RH) is an agricultural waste obtained during rice milling, and composed of both mineral and organic materials including cellulose, lignin silica, alkalis and trace element. Traditionally, rice husk is considered a waste material and generally disposed off by dumping or burning, although some are used as a low-grade fuel. However, the amounts of rice husk available are so far in excess of any local use and have posed environmental problem. The unique physical and chemical properties of RH such as granular structure, chemical stability, high ash and silica content, has promoted its use in domestic and industrial application [9]. Rice husk has been applied (directly or as rice husk ash) as a resource in the industry as a value added material or in manufacture and synthesis of new materials [10]. Controlled burning of rice husk at moderate temperature followed by acid leaching treatment yields rice husk ash (RHA) of high silica content (> 92%) of very high purity [11, 12]. The high silica content in RHA has been employed for the production of silicon carbide, sodium silicate, zeolite and silica gel. Silica gels have been employed to remove heavy metals and organic pollutants from aqueous system [13-15]. Silica is a polymer of silicic acid made of inter-linked SiO₄ repeating units in tetrahedral arrangement. The active silica surface with large specific surface area and surface hydroxyl groups have been credited to its importance in adsorption and ion exchange processes. On the outer surface of the silica structure, there are free silanol groups, referred to as isolated silanol groups, and hydrogen bonded to adjoining silanol groups referred to as vicinal or geminal silanol group [16]. In this work, we report the preparation and characterization of rice husk ash and silica from rice husk as well as the kinetic of the adsorption of chromate VI ion from aqueous solutions by these materials in a batch reactor. Elucidation of mechanism of interaction was undertaken through kinetic modeling of the data obtained.

2. Materials and Methods

2.1. Materials

(a) Preparation of Rice Husk Ash (RHA)

Rice Husks (RH) was obtained from a nearby rice mill, sieved to remove very fine particles, washed with deionized water and dried in an open air. Rice husk ash was prepared from the dried rice husk by acid leaching using nitric acid (Analar grade) followed by calcination in a muffle furnace (CARBOLITE, 5220). Acid leaching of the dried rice husks was done to remove soluble elemental impurities and to increase the purity of silica content. 50 g of the dried rice husks was soaked in 200 ml of 0.1M nitric acid solution and heated at 80°C for 15 min. Rice husk was filtered and rinsed several times with distilled water until neutral pH and dried at 100°C for 2 hr. The rice husk ash was obtained by pyrolysis of the acid leached rice husk in a muffle furnace at 700°C for 6 h in the form of a white-greyish powder.

(b) Preparation of Rice Husk Silica (RHS)

The chemicals and reagents used in the process were of analytical grade. Preparation of the rice husk silica was carried out thus: 35g of rice husk ash was mixed with 250 ml of 1N sodium hydroxide aqueous solution. The mixture was refluxed for 3 h at 110°C, filtered and stored in a refrigerator as sodium silicate. 50 ml of sodium silicate solution was poured into 15 ml distilled water at a time and stirred. This was followed by drop wise titration with 3M H₂SO₄ until a final pH 5 under stirring speed to form rice husk silica. The acidic condition of pH 5 indicates approximately the complete precipitation of silica from sodium silicate by the following reaction:

\[
\text{SiO}_2 + 2\text{NaOH} \rightarrow \text{Na}_2\text{SiO}_3 + \text{H}_2\text{O} \quad (1)
\]

\[
\text{Na}_2\text{SiO}_3 + \text{H}_2\text{SO}_4 \rightarrow \text{SiO}_2 + \text{Na}_2\text{SO}_4 + \text{H}_2\text{O} \quad (2)
\]

© Characterisation of adsorbents

The physico-chemical characterisation and proximate analysis of the samples (RHA and RHS) was carried out by following approved procedures. Elemental analysis (CHN) was done using Perkin Elmer CHN elemental analyser. FTIR Spectrometer (IR PRESTIGE 21, SHIMADZU) was used to determine the functional groups on the surface of RHA and RHS. Pellet pressed technique was used for this purpose at the spectral range of 4000–400cm⁻¹ with resolution of 4 cm⁻¹. The adsorbents crystallinity and mineralogy was assessed using powdered XRD crystallography (XRD D8, ADVANCE BRUKER), using copper as the target, with Ni as the filter media and K radiation maintained at 1.54Å. Diffraction patterns of the samples were recorded in the range of 10–90° at a scanning rate of 2°/min and step size of 0.01.

2.2. Methods

(a) Preparation and analysis of adsorbate

A stock solution of hexavalent chromium (1000 mg/L) was prepared in a double distilled deionized water using potassium dichromate (K₂Cr₂O₇). Working solutions of varying concentrations (10-200 mg/L) were obtained by serial dilution of the stock solution. The residual Cr (VI) concentration in the supernatant was determined using a UV–visible spectrophotometer (UV-1601, Shimadu) at λ max = 540 nm, following the 1, 5 – diphenylcarbazide procedure.

(b) Data analysis
The amount of chromium removed by the RHA and RHS samples (mg/g) was calculated using the equations:

\[
\text{Amount of Cr (VI) sorbed per mg of adsorbent} = \frac{c_0 - c_e}{w} x \nu \quad (3)
\]

\[
\text{Percentage Cr (VI) removal} = \frac{c_0}{c_e} x 100 \quad (4)
\]

Where \(c_0 \) is the initial concentration of adsorbate (mg/L), \(c_e \) is the equilibrium concentration of adsorbate (mg/L), \(\nu \) is the volume of the solution (ml) and \(w \) is the mass of the adsorbent (g).

© Adsorption Experiments

All sorption studies were done and carried out at 25°C. Adsorbate solution pH was corrected to 5.3 using 0.1M HNO\(_3\) and NaOH for the entire reaction.

Effect of Initial Solution Concentration
This was done by contacting 0.5 g of the RHA and RHS samples with 500 ml of varying concentrations of the adsorbate (Cr\(^{VI}\)) solution that ranged between 10-200 mg/L in a batch reactor. The system was agitated on a magnetic stirrer at a speed of 200 rpm. Solution samples were withdrawn with a syringe after 4 hr of contact filtered using 0.45 µm membrane filter centrifuged and the supernatant was analysed for residual Cr (VI) as previously described.

Effect of Time
The time-concentration profiles of the sorption of the adsorbate by the samples was studied to obtained the kinetic parameters by contacting 2 g of adsorbent sample to 1000 ml of adsorbate solution of varying initial concentrations (10-200 mg/L) in a batch reactor. The system was agitated on a magnetic stirrer at a speed of 200 rpm. Solution samples were withdrawn with a syringe at intervals between 0 and 4 hr of contact, filtered using 0.45 µm membrane filter, centrifuged and the supernatant was analysed for residual Cr (VI) as previously described.

3. Results and Discussion

3.1. Physical and Chemical Characterisations of RHA and RHS Samples

Results of the proximate analysis of RHA presented in Table 2 showed its high ash content thus indicating the highly inorganic nature of RHA with silica content of 95.83%. The values obtained for the physicochemical parameters for the RHS prepared in this study are similar and compare favourably with what obtained in literatures [16, 17].

3.2. Instrumental Characterisation via FTIR and XRD Analysis of RHA and RHS Samples

In the FTIR spectral of the RHA (Figure 1), the peak between 2830 - 3720 cm\(^{-1}\) and 3440 - 2900 cm\(^{-1}\) were ascribed to the presence of OH and Si-OH groups on the RHA surface. The band at 3430 cm\(^{-1}\) pertained to the silanol group and water adsorbed on the surface of RHA [18, 19]. The structure of the silanol groups are similar to that of silicic acid and are in form of silicon dioxide structure (Si-O-Si-OH) [16]. The weak broad peaks around 1600 cm\(^{-1}\) corresponded to stretching of ketonic (C=O) and aldehydic (C-OH) groups. The presence of other organics groups were indicated at 2940 - 1300 cm\(^{-1}\), for instance, the bands observed between 2920 - 2855 cm\(^{-1}\) and at 1423 cm\(^{-1}\) corresponded to the presence of methyl groups and aromatic rings due to the presence of lignin, respectively [18]. The peak at 1100 cm\(^{-1}\) is ascribed to Si-O-Si and –C-O-H stretching and OH deformation while peaks at 793 cm\(^{-1}\) and 469 cm\(^{-1}\) suggest the presence of Si-H [17, 19]. FTIR analysis of the RHS presented in Figure 1 showed a little broad band between 3380 cm\(^{-1}\) and 3240 cm\(^{-1}\) is ascribed to the hydroxyl group of both the silanol groups and water molecules bonded to the silica surface of RHS. Characteristic peak detected at 1647 cm\(^{-1}\) pertained to the bonding vibration of water molecule trapped in the SiO\(_2\) matrix. Notable silica peaks were detected at 1014 cm\(^{-1}\), 989 cm\(^{-1}\) for (Si-O-Si) and 866 cm\(^{-1}\) and 478 cm\(^{-1}\) for (Si-O) groups, respectively.

Parameters	Amount (%)
Proximate Analysis	
Ash content	89
Moisture	0.69
Volatile Matter	5.6
Fixed Carbon	6.2
Inorganic Composition	
SiO\(_2\)	95.83
MgO	0.50
Fe\(_2\)O\(_3\)	0.19
CaO	0.33
Al\(_2\)O\(_3\)	0.39
Elemental analysis (CHN)	
Carbon	6.989
Hydrogen	0.073
Nitrogen and others	0.889

Figure 1. (a) FTIR Pattern of RHA, (b) FTIR Pattern of RHS.
The XRD spectra of the RHA and RHS are presented in Figure 2a and 2b, respectively. The spectrum of the RHA indicated a highly amorphous material with the broad peak spanning 2θ angle range of 18-30° confirms an amorphous form of silica. RHA presented lower crystallinity than RHS. The spectrum of the RHS indicated a crystalline material with a sharp notable characteristic silica peak at 20 = 26.5°. This change in texture from amorphous to crystalline phase is attributed to the calcination of the material in temperature above 500°C [17, 19]. The value of the distance between the basal interlayer (d) was calculated using Bragg’s law:

\[d = \frac{\lambda}{2\sin\theta} \]

\(d \) is the interlayer distance between planes of atoms; \(\theta \) is diffraction angle; \(\lambda \) (1.542 Å) is wavelength. The incidence angles (2θ) of 22.75° and 26.50° for RHA and RHS, respectively gives basal interlayer distances (d) of 4.23 and 4.99 Å, respectively. The d-spacing depends upon size and orientation of the charge balancing ion. The mineralogical classification of the RHS indicated the presence of cristobalite [20] and presence of cristobalite (SiO\(_2\)), Magaritasite and Macedonite for RHA.

3.3. Adsorption Experiments

Effect of Initial Chromate Solution Concentration (\(C_o \))

The result of effect of initial solution concentration on hexavalent chromium ion removal (%) by RHA and RHS sample is shown in Table 3. It was observed that chromate removal from the aqueous system is dependent on and increases with initial solution concentration. That is, the amount of Cr (VI) ions sorbed per unit mass of the adsorbents increases with increase in initial adsorbate concentration. As the \(C_o \) was increased from 10 - 200 mg/L, the amount (%) of Cr\(^{VI}\) removed increased from 5% to 75% for RHA and 17% to 90% for RHS. The reason given for this observed trend is that the driving force needed to overcome resistance to the mass transfer of Cr ions between the aqueous and solid phases was increased by the increase in adsorbate initial solution concentration. Thus, as the \(C_o \) increases, it enhances interaction that led to the adsorption uptake of the chromate ions by the adsorbents. Consequently, an increase in the initial chromate concentration increased the amount of Cr\(^{VI}\) removed per gram of the RHS/RHA samples.

At the initial concentration of 10 mg/L, the efficiency ranged between 3.67 - 5.15% whereas at 200 mg/L initial chromate concentration, efficiency ranged between 32.56 - 74.87% for RHA while it was 17.62 - 36.46% for 10 mg/L and 39.10 - 90.91% for RHS after 4 h of contact time.

Concentration (mg/L)	10	50	100	200
% Removal by RHA	5	15	37	75
% Removal by RHS	17	38	75	90

This was conducted between a time range of 0-4 h by contacting 2 g of the adsorbent samples with 2 L of adsorbate solution of different concentrations (10-200 mg/L) in a batch reactor. The results of the time-concentration profiles presented in Figure 3 and Figure 4 showed that chromate (VI) ions removal by RHA and RHS, respectively were clearly time dependent. The sorption rate of the adsorbate by the adsorbents was very rapid during the initial 15 min of contact, and thereafter slowed down. This was seen in the gradual approach of the state of equilibrium after the first 120 min period of the process. No appreciable adsorbate sorption was observed thereafter. Values up to 80% of the total chromate removed was obtained within the first 60 min of the process followed by an additional 20% removal after 90 min of contact time and then values less than 3% additional Cr (VI) removal occurred in the remaining 120 min of contact time. At the commencement of the process, there existed large number of vacant active sites on the adsorbent surface available for adsorption, these accounted for the initial rapid uptake of Cr observed at the inception of the sorption process. These active sites become saturated after the lapse of some time which results in the slowing down of the adsorbate removal during the later period of adsorption and eventual repulsion between the solute molecules on the solid surface and the bulk solution [21]. For the present study the equilibrium time of 120 min could be considered economically favourable for the sorption process.
Kinetic Modeling of the Sorption Process

Kinetics of adsorption as a dynamic process is usually used to describe rate as well as mechanism of adsorbate uptake from the solution by the adsorbent. Data obtained from the kinetic studies of adsorbate uptake is used in selecting optimum operating conditions for the full scale batch process. Elucidation of the mechanism of Cr (VI) sorption by the RHA/RHS was studied with the aid of frequently used kinetic models. The data obtained from the time-concentration profile were fitted into the equations of the model: Lagergren pseudo-first order and pseudo-second order. The Lagergren pseudo first-order kinetic model is represented as:

$$\frac{dq_t}{dt} = k_1 (q_e - q_t)$$

On integration gives the linear form expressed as:

$$\log(q_e - q_t) = \log q_e - \frac{k_1 t}{2.303}$$ (7)

Where \(q_e \) and \(q_t \) are the sorption capacity at equilibrium and time \(t \) respectively (mg/g). \(k_1 \) is the rate constant of pseudo –first order adsorption (min\(^{-1}\)). A plot of \(\log (q_e - q_t) \) against \(t \) gave a linear relationship from where the pseudo - first order parameters \((k_1, q_e) \) were determined from the slope and intercept, respectively. The pseudo - first order parameters obtained from the plots for Cr (VI) sorption by RHA are presented in Table 4. The pseudo second order kinetic model considers the rate – limiting step as the formation of a chemisorption bond as well as exchange or sharing of electrons between the sorbate and sorbent [22]. The non linear form is expressed as:

$$\frac{dq_t}{dt} = k_2 (q_e - q_t)^2$$ (8)

The linear form is expressed as:

$$\frac{t}{qt} = \frac{1}{k_2 q_e} + \frac{1}{q_e} t$$ (9)

Where \(k \) is the overall rate constant of pseudo-second order sorption ((g/mg)/min). The plot of \(t/qt \) against \(t \) gives a linear relationship, from which \(q_e \) and \(k \) could be determined from the slope and intercept, respectively. The pseudo - second order parameters obtained from the plots for CR (VI) sorption by RHS are presented in Table 5. Establishment of the better model amongst the two was carried out thus: i. From the results presented in Tables 4 and 5, it could be deduced that values of \(q_e \) obtained for the pseudo second order were closer in magnitude to the experimental data than what was obtained for the pseudo first order model ii. the values of \(R^2 \) obtained for the pseudo second order plot were very high, \((R^2 > 0.99) \) compared to pseudo first order. Thus, it could be concluded that the pseudo second order model describes adequately the sorption process. This therefore implies that the mechanism of sorption of chromium (VI) on the adsorbents (RHA and RHS) was chemisorption.
Table 4. Kinetics Models Parameters of Chromium (VI) sorption on RHA.

co (mg/L)	q_{exp} (mg/g)	q_{cal.} (mg/g)	K_1 (g/mg min^{-1})	R^2
10	6.121	2.329	0.154	0.874
50	25.970	7.710	0.0306	0.777
100	50.667	10.552	0.0289	0.894
200	78.63	14.389	0.0175	0.634

Second Order Model

co (mg/L)	q_{exp} (mg/g)	q_{cal.} (mg/g)	K_2 (g/mg min^{-1})	R^2
10	6.121	5.45	0.126	0.992
50	25.970	29.99	0.199	1.000
100	50.667	49.25	0.314	0.997
200	78.63	73.77	0.200	0.999

Table 5. Kinetics Models Parameters of Chromium (VI) sorption on RHS.

co (mg/L)	q_{exp} (mg/g)	q_{cal.} (mg/g)	K_1 (g/mg min^{-1})	R^2
10	7.221	1.101	0.154	0.671
50	34.700	8.716	0.0306	0.707
100	66.661	11.152	0.0289	0.888
200	108.23	34.119	0.0175	0.634

Second Order Model

co (mg/L)	q_{exp} (mg/g)	q_{cal.} (mg/g)	K_2 (g/mg min^{-1})	R^2
10	7.221	7.45	0.249	0.999
50	34.700	31.69	0.432	1.000
100	66.661	66.85	0.351	0.997
200	108.203	103.43	0.447	1.000

Estimation of Sorption Performance

A parameter \(k_{2qe} \) (min^{-1}) defined as the second order rate index was used to define the kinetic performance as described by Wu et al., [23]. At the half-life of the sorption process,

\[
t_{0.5} = \frac{1}{k_{2qe}}
\]

Using equation (11), results obtained presented in Table 6 showed that increase in the initial concentrations of chromate ion in solution led to a reduction in the values of the half-life of the sorption process. This indicates therefore increase in initial adsorbate concentration brings about a lowering of the time needed to reduce it to half its initial amount.

Table 6. Sorption performance of RHA for Cr (VI) removal.

Parameters	10 mg/l	50 mg/l	100 mg/l	200 mg/l
k_{2qe} (min^{-1})	2.218	7.33	6.080	25.13
t_{0.5}	0.854	0.667	0.426	0.247

Table 7. Sorption performance of RHS for Cr (VI) removal.

Parameters	10 mg/l	50 mg/l	100 mg/l	200 mg/l
k_{2qe} (min^{-1})	5.510	14.072	36.08	50.13
t_{0.5}	0.254	0.167	0.066	0.034

4. Conclusion

Based on the findings in this work, it is justifiable that both RHA and RHS can be used for the abstraction of Cr (VI) ions from contaminated effluents. The following deductions were drawn:

XRD analysis revealed the presence of cristobalite (SiO\(_2\)), Magaritasite and Macedonite in RHA and cristobalite in RHS, respectively.

FTIR analysis revealed that functional groups such as – OH, -C-OH, C=O, Si-O-Si and Si-H are present on the RHA and RHS surfaces.

Kinetics study showed that sorption is favourably influenced by increase in initial adsorbate concentration and time.

Kinetic modeling followed the pseudo second order rate expression, a hint on chemisorption as mechanism of interaction.

The equilibrium time of 120 min is favourable economically for hexavalent chromate adsorption by RHS.
and RHA from aqueous system. The adsorption rate of RHS is higher than that of RHA. Both RHS and RHA are effective adsorbents for the removal of Cr (VI) from aqueous solution.

References

[1] Kameda, T., Kondo E. and Yoshioka T. (2014). Preparation of Mg-Al layered double hydroxide doped with Fe$^{2+}$ and its application to Cr (VI) removal. Sep. and Purif. Tech. 122: 12-16.

[2] Li, Y.; Gao, B.; Wu, T.; Sun, D.; Li, X.; Wang, B.; Lu, F. (2009). Hexavalent chromium removal from aqueous solution by adsorption on aluminum magnesium mixed hydroxide. Water Res. 43, 3067–3075.

[3] Mutongo F., Kuipa O., and Kuipa P. K. (2014). Removal of Cr (VI) from Aqueous Solutions Using Powder of Potato Peelings as a Low Cost Sorbent. Bioinorganic Chemistry and Applications 7 pages http://dx.doi.org/10.1155/2014/973153

[4] Baral, S. S., Das, S. N., & Rath, P. (2006). Cr (VI) removal from aqueous solution by adsorption on treated sawdust. Biochemical Engineering Journal, 31 (3), 216–222.

[5] Karthikeyan, T., Rajgopal, S., & Miranda, L. R. (2005). Chromium (VI) adsorption from aqueous solution by Hevea brasiliensis sawdust activated carbon. Journal of Hazardous Materials, 124 (1–3), 192–199.

[6] Cimino, G., Passerini, A., & Toscano, G. (2000). Removal of toxic cations and Cr(VI) from aqueous solution by hazelnut shell. Water Research, 34 (11), 2955–2962.

[7] Dubey, S. P., & Gopal, K. (2007). Adsorption of chromium (VI) on low cost adsorbents derived from agricultural waste material: a comparative study. Journal of Hazardous Materials, 145 (3), 465–470.

[8] Wang, X. S.; Tang, Y. P.; Tao, S. R. (2008). Removal of Cr (VI) from aqueous solutions by the non-living biomass of alligator weed: kinetics and equilibrium. Adsorption, 14 (6), 823–830.

[9] Shwetha, M. K., Geethanjali H. M. and Chowdary K. (2014). A great opportunity in prospective management of rice husk. International Journal of Commerce and Business Management. 7 (1): 176-180.

[10] Yadav, J. P., and Singh, B. R. (2011). Study on comparison of boiler efficiency using husk and coal as fuel in rice mill. SAMRIDDHI-A Journal of Physical Sciences, Engineering and Technology. 2: 2229-7111.

[11] Lata, S., and Samadder, R. (2014). Removal of heavy metals using rice husk: a review. International Journal of Environmental Research and Development. 4: 165-170.

[12] Babaso, P. N. and Sharanganouda H. (2017). Rice Husk and Its Applications: Review International Journal of Current Microbiology and Applied Sciences. 6 (1): 1144-1156.

[13] Inyim, A., and Prapalinrungsi, E. (2010). Humic acids removal from water by aminopropyl functionalized rice husk ash. Journal of Hazardous Materials. 184 (1): 775-781.

[14] Sharma, P., Kaur, R., Chinnappan, B. and Chung, W. J. (2010). Removal of methylene blue from aqueous waste using rice husk and rice husk ash. Desalination 259 (1): 249-257.

[15] Malhotra, C., R. Patil, S. Kaushal and Ahmad, D. (2013). Novel uses of rice-husk-ash (a natural silica-carbon matrix) in low-cost water purification applications. AIP Conference Proceeding.

[16] Nakbanpote, W., P. Thiravetyan and Kalambaheti, C. (2000). Preconcentration of gold by rice husk ash. Mining engineering. 13 (4): 391-400.

[17] Srivastava V. C., Prasad B., Mall I. D., Mahadevswamy M., and Mishra I. M. (2006). Adsorptive removal of phenol by bagasse fly ash and activated carbon: equilibrium, kinetic and thermodynamics. Colloids Surface A: Physicochem. Eng. Aspect 272: 89-104.

[18] Tarley, C. R. T. and Arruda, M. A. Z. (2004). Biosorption of heavy metals using rice milling by-products. Characterization and application for removal of metals from aqueous effluents. Chemosphere, 54, 987-995.

[19] Nakbanpote, W., Goodman, B. A. and Thiravetyan, P. (2007). Cooper adsorption on rice husk derived materials studied by EPR and FTIR. Colloids Surf., A. 304, 7-13.

[20] Geetha, D., Ananthiand, A. and Ramesh, P. S. (2019). Preparation and Characterization of Silica Material from Rice Husk – An Economically Viable Method. J. of Pure and Applied Physics 4 (3): 20-27.

[21] Adelagun R. O. A. (2018). Adsorption of Tetracycline by a Tailor- made Adsorbent in Aqueous System. Open Access Journal of Chemistry (2) 4: 45-52.

[22] Ho Y. S., and McKay G. 1998. Pseudo second order model for sorption processes. Process Biochem. 34: 451-465.

[23] Wu F. C., Tseng, R. L., and Jangu R. S. (2009). Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chem. Eng. J. 153: 1–8.