Family-based genome-wide association study of leprosy in Vietnam

Chaima Gzara1,2, Monica Dallmann-Sauer3,4,#, Marianna Orlova3,4,#, Nguyen Van Thuc5, VuHong Thai3, Vinicius M. Fava3,4, Marie-Thérèse Bihoreau6, Anne Boland6, Laurent Abel1,2,7, Alexandre Alcaïs1,2,8, Erwin Schurr3,4,8,9, Aurélie Cobat1,2,*,

1. Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM
2. Université de Paris, Imagine Institute, 75015 Paris, France, EU.
3. McGill International TB Centre, Montreal, QC, Canada H4A 3J1.
4. Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada H4A 3J1.
5. Hospital for Dermato-Venereology, District 3, Ho Chi Minh City, Vietnam.
6. CNG - Centre National de Génotypage, Paris, France, EU
7. St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA.
8. Department of Medicine and Human Genetics, Faculty of Medicine, McGill University, Montreal, QC, Canada, H3A 0C7

These authors contributed equally
$ These authors share senior authorship
* Corresponding author: aurelie.cobat@inserm.fr
Short title: Family-based GWAS of leprosy in Vietnam
Abstract

Leprosy is a chronic infectious disease of the skin and peripheral nerves with a strong genetic predisposition. Recent genome-wide approaches have identified numerous common variants associated with leprosy, almost all in the Chinese population. We conducted the first family-based genome-wide association study of leprosy in 622 affected offspring from Vietnam, followed by replication in an independent sample of 1189 leprosy cases and 671 controls of the same ethnic origin. The most significant results were observed within the HLA region, in which six SNPs displayed genome-wide significant associations, all of which were replicated in the independent case/control sample. We investigated the signal in the HLA region in more detail, by conducting a multivariate analysis on the case/control sample of 319 GWAS-suggestive HLA hits for which evidence for replication was obtained. We identified three independently associated SNPs, two located in the HLA class I region (rs1265048: OR=0.69 [0.58-0.80], combined \(p \)-value = 5.53x10^{-11}, and rs114598080: OR=1.47 [1.46-1.48], combined \(p \)-value = 8.77x10^{-13}), and one located in the HLA class II region (rs3187964 (OR=1.67 [1.55-1.80], combined \(p \)-value = 8.35x10^{-16}). We also validated two previously identified risk factors for leprosy: the missense variant rs3764147 in the LACC1 gene (OR=1.52 [1.41-1.63], combined \(p \)-value = 5.06x10^{-14}, and the intergenic variant rs6871626 located close to the IL12B gene (OR=0.73 [0.61-0.84], combined \(p \)-value = 6.44x10^{-8}). These results shed new light on the genetic control of leprosy, by dissecting the influence of HLA SNPs, and validating the independent role of two additional variants in a large Vietnamese sample.
Introduction

Leprosy is a chronic infectious disease caused by *Mycobacterium leprae*. It primarily affects the skin and peripheral nerves, and can cause an irreversible impairment of nerve function, often leading to severe disabilities and social stigma. Despite a decrease in its prevalence over the last two decades, leprosy remains a major public health problem in regions of endemic countries, with over 200,000 new cases detected in 2018 (https://www.who.int/gho/neglected_diseases/leprosy/en/). However, this number of cases is probably a severe underestimate of the true incidence (1). The clinical disease develops in a minority of exposed individuals, manifesting as a spectrum of disease symptoms reflecting the interactions between the host immune response and the bacterium (2). Tuberculoid and lepromatous leprosy are at opposite ends of the clinical spectrum and are associated with a relatively stable host immune status while borderline categories of the disease are associated with an unstable immune response to the bacilli.

Only a subset of individuals develops clinical leprosy after sustained exposure to *M. leprae*. Due to the extreme reductive evolution of the *M. leprae* genome (3), it is highly unlikely that differences in susceptibility or clinical manifestations are governed by the *M. leprae* strain or by intrastrain variation (4). From the early observations of familial clusters of leprosy cases to recent whole-exome sequencing studies identifying genetic variants associated with leprosy, there is strong evidence to suggest that the development of this disease is under tight human genetic control (2, 5). Genetic studies, including positional cloning analyses (6-8), genome-wide association studies (9-15), and, more recently, whole-exome sequencing (16) have identified several susceptibility loci for leprosy (reviewed in (17) and (5)), and have demonstrated the involvement of both innate and adaptive immune responses in this disease (18). Almost all the susceptibility loci identified in genome-wide studies to date were found in the Chinese population. The association with leprosy has been
replicated in the Vietnamese population for some of these loci (19, 20), but others were found to be associated with type-1 reactions (T1Rs), a pathological inflammatory response afflicting a subgroup of leprosy patients and resulting in peripheral nerve damage (21-23), rather than with leprosy itself. Here, we performed a two-stage family-based genome-wide association study on leprosy per se, i.e. leprosy independent of its clinical subtype, in a large collection of Vietnamese families including 622 affected offspring, followed by a replication study in an independent sample of 1189 leprosy cases and 671 controls.

Materials and Methods

Ethics statement

The study was conducted in accordance with the Declaration of Helsinki. Written informed consent was obtained from all adult subjects participating in the study. All minors agreed to take part, and a parent or guardian provided informed consent on their behalf. The study was approved by the Research Ethics Board at the Research Institute at McGill University Health Centre in Montreal (REC98-041) and the regulatory authorities and ethics committees of Ho Chi Minh City in Vietnam (So3813/UB-VX and 4933/UBND-VX).

Samples and study design

Over twenty-five years (1990-2015), we have, in close collaboration with the Dermatology and Venereal Diseases Hospital of Ho-Chi-Minh City (Vietnam), recruited a large sample of nuclear families with at least one child diagnosed with leprosy and including either both parents or unaffected sibling(s) if one of the parents was unavailable. Leprosy was diagnosed by at least two independent and experienced physicians and was classified into MB or PB subtype according to the operational WHO-96 definition based solely on the number of lesions (2). For replication purposes, we collected an independent case/control sample of
Vietnamese origin. The same criteria were used for leprosy diagnosis as in the family-based discovery study. The controls had no personal or family (among first-, second- or third-degree relatives) history of leprosy or tuberculosis.

GWAS genotyping and imputation

The genotypes of all children and parents (or siblings) were determined with the Illumina Human 660w Quad v1 bead chip containing 592,633 single-nucleotide polymorphisms (SNPs) during the discovery phase. Genotypes were called with the Illuminus algorithm (24). Quality control (QC) was performed on genotype data with PLINK software (25) and the “GASTON” package in R (https://CRAN.R-project.org/package=gaston). Only autosomal SNPs were considered. SNPs with a call-rate < 0.95, more than 10 Mendelian errors, a minor allele frequency (MAF) < 0.05 or displaying significant departure from Hardy-Weinberg equilibrium ($p < 10^{-5}$) were removed from the analyses, resulting in a final set of 412,639 high-quality autosomal SNPs. Individuals with a call-rate < 0.95, more than 10 Mendelian errors and a heterozygosity rate more than three standard deviations on either side of the mean were excluded. In total, 1850 individuals were genotyped and 1749 fulfilled the quality control criteria, including 622 leprosy-affected offspring, from 481 informative families (Table S1).

Before imputation in the discovery sample, A/T or G/C SNPs were removed to prevent strand mismatches between the study sample and the reference sample used for imputation. The remaining high-quality SNPs were pre-phased with SHAPEIT (26) v2 software using the duoHMM method, to incorporate the known pedigree information and improve phasing (27). Genotypes from the 1000 Genomes Project phase 3 haplotype reference panel released in October 2014 were further imputed with IMPUTE2 software (28). An information imputation threshold (Info) > 0.9 was applied to capture most of the common variants (MAF > 5%) with
reasonable confidence, leading to the retention of ~5 million additional variants (SNPs and INDELs).

Replication strategy

We used three different strategies to select SNPs for genotyping in the replication sample, according to the type of variant. First, for genome-wide suggestive (p-value < 10^{-5}) hits located outside the HLA region (non-HLA SNPs), we used a linkage disequilibrium (LD)-based clumping procedure, implemented in PLINK 1.9 (25, 29), to identify independent loci. This procedure considers all SNPs with p-values for association below 10^{-5}, and forms clumps of these ‘index’ SNPs, together with all other SNPs in LD with them at an r^2 threshold of 0.5 and in close physical proximity (less than 5 Mb away from the index SNPs). Only SNPs with a p-value below a secondary significance threshold of 10^{-4} are clumped. As input for the clumping procedure, we used association p-values from the discovery GWAS and LD patterns estimated from the Kinh in Ho Chi Minh City, Vietnam (KHV) population of the 1000 Genomes phase 3 reference set. We selected one SNP from each clump for genotyping in the replication sample, based on technical considerations. We applied a second strategy specifically to the non-HLA SNPs previously associated with leprosy at a genome-wide level of significance (Table S2). For these SNPs, we used a 10^{-2} p-value threshold to select the SNPs for the replication study. Finally, for SNPs located within the HLA region, we used a third strategy, because there were large numbers of SNPs displaying suggestive evidence of association, including genome-wide significant (p-value < 5×10^{-8}) results, and complex LD patterns. We selected a set of 88 SNPs located at positions from 30 Mb to 33 Mb on chromosome 6, on the basis of preliminary association results, LD structure and technical considerations for genotyping, and we genotyped these SNPs in the replication sample. We then used these SNPs to impute, in the replication sample, all the variants for which there was genome-wide suggestive evidence of association.
For the replication sample, genotypes were determined by FLUIDIGM targeted sequencing or with SEQUENOM technology. For FLUIDIGM data, we used the Genome Analysis Toolkit (GATK v3.3) to process the bam files. Individual genomic variant call files (gVCF) were generated with GATK HaplotypeCaller, and joint genotyping was performed with GATK GenotypeGVCFs. SNPs with a call-rate < 0.95 or significant departure from Hardy-Weinberg equilibrium ($p < 0.001$) were removed from the analyses. Individuals with a call-rate < 0.95 were excluded. Imputation in the MHC region was performed with SHAPEIT v2 (26) and IMPUTE2 (28) software and the 1000 Genomes Project phase 3 haplotype reference panel.

Statistical methods

In the discovery phase, a family-based association test was used to estimate the non-random transmission of alleles from heterozygous parents to leprosy-affected offspring. The analysis was carried out under the additive model, with FBATdosage v2.6, for genotyped and imputed variants (19). Alleles for which some evidence of association was obtained were also analyzed by conditional logistic regression, as previously described (31-33). Briefly, for each affected child, up to three matched unaffected pseudosibs were formed by all other possible combinations of parental alleles. The real affected offspring were compared with the pseudosibs in a matched case-control design. This approach generated odds ratio estimates and made it possible to perform multivariate stepwise regression. Conditional logistic regression was also used for a combined analysis of the discovery family and replication case-control samples. In this combined analysis, all cases and controls from the case-control study were grouped together in a stratum for analysis, in combination with the strata consisting of the affected offspring and their pseudosibs, as previously described (32, 33). Conditional logistic analysis was performed with the LOGISTIC procedure implemented in SAS software v. 9.3 (SAS Institute, Cary, North Carolina, USA).
Case/control association analyses of genotyped and imputed SNPs in the replication sample were performed by logistic regression analysis, under the additive model, with SNPTEST software (28, 34). A one-tailed test was performed with the alternative hypothesis that the leprosy susceptibility alleles of the discovery sample were also susceptibility factors in the replication sample, and a \(p \)-value threshold of 0.01 was used in this one-tailed test for the detection of significant replication. We also performed a multivariable analysis of the HLA SNPs replicated in the case/control replication sample, using the best subset selection method of the SAS 9.3 logistic regression procedure.

RESULTS

Genome-Wide Analyses in the Primary Cohort

We carried out a family-based GWAS on leprosy *per se* in 481 informative families consisting of 1749 individuals, including 622 offspring with leprosy (Table S1). For the discovery phase, 5,533,693 high-quality genotyped and imputed autosomal variants were analyzed. Principal component analysis of our samples with data for individuals from the 1000 Genomes database revealed clustering with the 1000 Genomes KHV population (Figure S1). A Manhattan plot of the association with leprosy *per se* is shown in Figure 1. The most significant results were obtained for the HLA region, in which genome-wide significant association with leprosy was detected for six SNPs (\(p \)-value < 5x10^{-8}) (Table 1), and genome-wide suggestive association with leprosy was detected for 358 SNPs (\(p \)-value < 10^{-5}). Outside the HLA region, there was no significant deviation from expectations on the quantile-quantile plot of the GWAS results (Figure S2). In total, 21 SNPs from eight independent clusters (Table S2) on chromosomes 4, 5, 9, 10, 11, 14 and 21 (2 clusters) displayed genome-wide suggestive association with leprosy (\(p \)-value < 10^{-5}). Finally, evidence of association was found in the Vietnamese discovery sample, for five of the 33 genome-wide significant
previously published non-HLA hits, with a p-value threshold of 10^{-2} and the same risk allele as in the original study (Table S3).
Replication Study

Outside the MHC region

Within each of the 8 loci for which suggestive association with leprosy was detected, we genotyped one SNP in an independent replication cohort of 1189 leprosy cases and 674 controls. We also genotyped the 5 previously published non-HLA hits replicated in the discovery cohort with a p-value threshold of 10^{-2}. In total, 10 of the 13 SNPs satisfying the quality control filters in the replication cohort were tested for association in the 1181 cases and 668 controls. No evidence of replication was obtained for any of the suggestive GWAS hits that could be tested in the replication sample (Table S2). For two suggestive GWAS hits, on chromosomal region 4q26 and 9q31.1, the genotyping failed in the replication sample. Replication was observed for two previously published hits fulfilling the genotyping quality criteria (Table 1 and Table S3). The first, rs3764147, located on chromosome 13, is a missense variant (p.Ile254Val) of the LACC1 gene with a highly significant genome-wide p-value in the combined analysis of the discovery family and the replication case/control samples ($p = 5.1 \times 10^{-14}$). The odds ratio (OR) for developing leprosy for AG subjects vs. GG subjects (or AA vs. AG) was 1.52 [95% confidence interval: 1.41-1.63] (Table 2). This SNP belongs to a bin of 10 SNPs in strong LD ($r^2 > 0.8$) in the 1000 Genomes KHV population that are located either within or just downstream of the LACC1 gene (Table S4). The second replicated hit, rs6871626, is located on chromosome 5, 69 kb 5’ to IL12B. A borderline non-significant genome-wide p-value of 6.4×10^{-8} was obtained for this SNP, with an OR of developing leprosy for AC vs. AA (or CC vs. AC) of 0.73 [0.61-0.84]. This SNP is not part of the 1000 Genomes phase 3 reference panel and no LD information was available for the KHV population, but it was successfully sequenced in the genome part of The Genome Aggregation Database (gnomAD) (35).
Within the MHC region

We genotyped 88 SNPs within the MHC region, and used them to impute the 364 SNPs with a discovery \(p \)-value < 10\(^{-5} \). More than 98% of these SNPs (358/364) were imputed with an information score > 0.8. The six HLA SNPs with genome-wide significance were replicated, all with a one-tailed \(p \)-value < 5x10\(^{-4} \) (Table 1). In addition, 319 of the 358 genome-wide suggestive HLA SNPs were replicated, with a one-tailed \(p \)-value threshold of 0.01. They clustered in two intervals, from 31 Mb to 31.5 Mb and from 32.5 Mb to 32.7 Mb (Figure 2, Table S5). We further investigated the number of SNPs in the HLA region required to capture the full association signal, by performing a multivariable analysis. This analysis was conducted in the replication sample, which provided the most reliable set of SNPs and facilitated the analysis because of its case/control nature. Before performing this multivariable analysis, we clumped the SNPs, as described in the methods section, on the basis of their genotyping status in the replication sample (genotyped SNPs were favored over imputed ones), their one-tailed replication \(p \)-value and a LD \(r^2 \) threshold of 0.5.

The clumping procedure identified 18 index SNPs with one-tailed \(p \)-value < 0.01, which were then tested in the multivariable model with the best subset method (SCORE) implemented in the logistic regression procedure of the SAS software (Table S6). We found that three SNPs (rs3187964, rs114598080 and rs1265048) were required to capture the full association signal in the HLA region (Table S7). The addition of a fourth SNP did not significantly improve the multivariable model \((p\)-value = 0.23\). The most significant SNP in the multivariable model was rs3187964 \((\text{multivariable } p\text{-value} = 7.8 \times 10^{-8})\). The strength of association was much lower for rs114598080 \((\text{multivariable } p\text{-value} = 3.75 \times 10^{-5})\), and even lower for rs1265048, \((\text{multivariable } p\text{-value} = 0.011)\). These three SNPs were sufficient to account for the HLA association signal found in our GWAS.
We then investigated in more detail the location, LD in the 1000 Genome KHV population and univariate results in the combined sample of these three HLA SNPs (Table 2). The rs3187964 SNP belongs to the HLA interval corresponding to the HLA class II region (Figure 2B). In the combined analysis of the discovery and replication samples, it gave a univariate \(p \)-value of \(8.3 \times 10^{-16} \) with an OR for developing leprosy for CG vs. GG (or CC vs. CG) of 1.67 [1.55-1.80]. This SNP is located in the 5’ untranslated region of the \(HLA-DQA1 \) gene and was not in strong LD (\(r^2 > 0.8 \)) with other SNPs in the 1000 Genomes KHV population in an LDproxy analysis (36). The other two SNPs are in the first HLA interval, which includes HLA class I genes, together with many other genes (Figure 2A). The rs114598080 SNP, located in a CTCF binding site (ENSR00000262841) 15.6 kb upstream of the \(HLA-C \) gene, gave a univariate \(p \)-value of \(8.8 \times 10^{-13} \) in the combined analysis, with an OR for developing leprosy for AG vs. GG (or AA vs. AG) of 1.47 [1.46-1.48]. This SNP belongs to a bin of 245 SNPs in strong LD that span almost 200 kb (Table S8). The third SNP, rs1265048, is located near the \(C6orf15 \) (1.07 kb), \(PSORS1C1 \) (1.12 kb), and \(CDSN \) (1.2 kb) genes and it gave a univariate \(p \)-value of \(5.5 \times 10^{-11} \) in the combined analysis, with an OR for developing leprosy for CT vs. TT (or CC vs. CT) of 0.69 [0.58-0.80]. It was not in strong LD with other SNPs in the 1000 Genomes KHV population in LDproxy analysis.

Discussion

We performed the first family-based GWAS for leprosy in a Vietnamese population. The main susceptibility loci identified were in the HLA region. The most significant SNP, rs3187964, is located in the MHC class II region, in the 5’ untranslated region of \(HLA-DQA1 \) and did not display strong LD (\(r^2 > 0.8 \)) with other SNPs in the region in the 1000 Genomes KHV population. Several studies have consistently reported the involvement of HLA class II alleles, mostly \(HLA-DRBI \) alleles, as key genetic factors controlling susceptibility to various
forms of leprosy (11, 18, 37-39). A recent HLA imputation-based meta-analysis in the Chinese population identified HLA-DRB1 and HLA-DQA1 alleles and specific amino acids of HLA-DRβ1 as independent protective factors for leprosy (37). Interestingly, in the GTex project V7 (https://gtxexportal.org/home/), rs3187964 was identified as a strong eQTL for several HLA class II genes with p-values below 10^{-50} for HLA-DQB1, HLA-DQB2, HLA-DQA1 and HLA-DQA2 in multiple tissues, including skin and nerves (Table S9). It was also found to be a splice QTL for HLA-DQA1 (nominal p-value = 3.3×10^{-7}, FDR = 0.000155). HLA-DQ genes have been implicated in several autoimmune and inflammatory diseases (40) and, recently, in susceptibility to streptococcal disease (41).

The other two independent SNPs associated with leprosy in the HLA region are located in the class I region. The most significant, rs114598080, belongs to a large bin of SNPs in strong LD spanning the HLA class I genes HLA-C and HLA-B and the non-HLA genes CCHCR1, TCF19, POU5F1, PSORS1C3, and HCG27. The complex LD structure makes it difficult to identify the gene related to this association hit. Nevertheless, one SNP of the bin, rs2394885, was shown to tag the HLA-C*15:05 allele in the Vietnamese population (42). This SNP was also validated as a leprosy susceptibility locus in an Indian population (42). In the Chinese HLA imputation-based meta-analysis, HLA-C*08:01 and specific HLA-C amino acids were found to be independent protective and risk factors for leprosy (37). The rs114598080 SNP is also in strong LD with a possibly damaging missense variant of the CCHCR1 gene. CCHCR1 is a protein of unknown function that was recently found to have properties typical of P body-resident proteins (43). In addition, rs114598080 is a strong eQTL in sun-exposed skin and tibial artery for POU5F1 ($p < 10^{-10}$), also known as OCT4, which encodes a master transcription factor for pluripotent cell self-renewal (44) (Table S10). The second SNP of the HLA class I region, rs1265048, is located 1.1 kb upstream of C6orf15, 1.1 kb upstream of PSORS1C1 and 1.2 kb upstream of CDSN. Interestingly, the SNP correlates with the
expression of several genes, including HLA-C (minimum \(p \)-value = 1.3x10^{-5}), and POU5F1 (minimum \(p \)-value = 2.8x10^{-5}) in particular, sporadically in some tissues (Table S11).

In addition to the HLA locus, we were able to consistently replicate the LACC1 and IL12B loci previously associated with leprosy in the Chinese population both in the discovery GWAS and the replication sample. The LACC1 leprosy susceptibility SNP rs3764147 is a missense variant (p.Ile254Val) first identified by a leprosy GWAS in the Han Chinese population (9) and then replicated in Indian, African (45), Vietnamese (20), Yi (46), Wenshan and Yuxi (16) Chinese populations. The leprosy susceptibility allele was also shown to be associated with an increased susceptibility to Crohn’s (47, 48) and inflammatory bowel diseases (49, 50). SNP rs3764147 has a PHRED-scaled CADD score (51, 52) of 16, placing it in the top 2.5% of deleterious variants relative to all possible reference genome single-nucleotide variants. Interestingly, recent functional studies have shown that LACC1 encodes a central regulator of the metabolic function and bioenergetic state of macrophages (53). Furthermore, the rs3764147 G risk allele is associated with lower levels of innate receptor-induced activity in primary human monocyte-derived macrophages (54), potentially accounting for the higher susceptibility to intestinal inflammatory diseases and leprosy.

SNP rs6871626 is located in an intergenic region on chromosome 5. In a previous genome-wide meta-analysis study of ulcerative colitis, the most likely candidate gene assigned to this SNP by Gene Relationship Across Implicated Loci (GRAIL) pathway analysis was IL12B (55). GRAIL is a statistical tool that assesses the degree of relatedness of a list of disease regions by text mining PubMed abstracts, for the annotation of candidate genes for disease risk (56). IL12B encodes IL-12p40, which is common to two interleukins, IL-12 and IL-23. Both IL-12- and IL-23-dependent signaling pathways play critical roles in human antimycobacterial immunity, through the induction of IFN-\(\gamma \) (57, 58). Autosomal recessive complete IL12B deficiency is a genetic etiology of Mendelian susceptibility to mycobacterial
diseases (MSMD), a rare condition characterized by predisposition to clinical disease caused
by weakly virulent mycobacteria, such as BCG vaccines and environmental mycobacteria, in
otherwise healthy individuals (59). The rs6871626 C allele is associated with a risk of
leprosy, but has been shown to be protective against ulcerative colitis (55), ankylosing
spondylitis and Crohn’s disease (60), inflammatory bowel disease (49) and Takayasu arteritis
(61). Interestingly, in patients with Takayasu arteritis, the rs6871626 C allele, which confers
susceptibility to leprosy, was associated with abnormally low levels of IL-12 (composed of
IL-12p40 and IL-12p35) in plasma and low levels of both IL-12p40 and IL12 in the culture
supernatants of patient monocytes/macrophages stimulated with LPS (62).

In conclusion, we performed the first family-based GWAS of leprosy per se in the
Vietnamese population. The strongest association signals were observed for SNPs within the
HLA region. We also validated the independent impact of two additional variants, one in
LACC1 and the second close to IL12B, recently reported to play functional roles. We further
broke down the association signal within the HLA region into three independent signals, two
mapping to the HLA class I region, and one, the leading signal, located in the class II region
close to HLA-DQA1. More refined analyses based on direct HLA typing, which is lacking so
far, are required to characterize further the precise contribution of HLA class I and class II
alleles to leprosy susceptibility.
Table 1. Association statistics in the discovery and replication samples for the six genome-wide significant HLA SNPs and the five previously published non-HLA SNPs replicated in the discovery GWAS

SNP	Chr	Position\(^3\)	m/M	Type	MAF	OR* [95% CI]	\(P\)	MAF	\(P\)#	OR*# [95% CI]
Significant HLA hits										
rs3095309	6	31091475	T/C	imputed	0.476	1.6 [1.43-1.77]	8.2x10^-09	0.44	9.46x10^-05	1.30 [1.16 - Inf]
rs3094194	6	31136240	G/A	imputed	0.46	1.71 [1.53-1.88]	1.4x10^-08	0.44	5.03x10^-06	1.36 [1.21 - Inf]
rs2844633	6	31096189	T/C	imputed	0.269	0.56 [0.38-0.75]	1.7x10^-08	0.30	4.20x10^-04	0.79 [0 - 0.89]
rs2844634	6	31096184	G/C	imputed	0.269	0.56 [0.38-0.75]	1.7x10^-08	0.30	4.65x10^-04	0.79 [0 - 0.89]
rs2394945	6	31220971	C/G	imputed	0.353	1.73 [1.54-1.93]	4.2x10^-08	0.35	9.20x10^-07	1.42 [1.25 - Inf]
rs3094196	6	31093947	G/A	imputed	0.269	0.57 [0.38-0.75]	4.9x10^-08	0.30	4.70x10^-04	0.79 [0 - 0.89]
Previously published non-HLA hits replicated in the discovery GWAS										
rs3762318	1	67597119	G/A	genotyped	0.05	0.52 [0.12-0.93]	4.41x10^-03	0.06	1.57x10^-01	0.86 [0 - 1.10]
rs2221593	1	212873431	T/C	genotyped	0.229	1.33 [1.13-1.53]	1.94x10^-04	Failed call rate < 95%		
rs2058660	2	103054449	G/A	imputed	0.414	0.75 [0.57-0.92]	5.66x10^-03	0.40	6.46x10^-02	0.90 [0 - 1.01]
rs6871626	5	158826792	A/C	imputed\(^\d\)	0.324	0.71 [0.58 - 0.86]	5.12x10^-04	0.32	1.37x10^-05	0.74 [0 - 0.83]
rs3764147	13	44457925	G/A	genotyped	0.396	1.41 [1.18 - 1.67]	6.56x10^-05	0.39	2.36x10^-11	1.61 [1.43 - Inf]

\(^{\dagger}\) positions are given according to the hg19 genome build
\(^{\ast}\) with respect to the minor allele
\(^{\#}\) one-tailed test
\(^{\text{imputed}}\) imputed using the 1000 Genomes phase 1 reference panel

\(\text{m/M} = \text{minor/Major alleles; MAF = minor allele frequency; OR = odds ratio; CI = confidence interval}\)

\(\text{\textbf{Bold typeface indicates SNPs significant in the replication sample}}\)
Table 2. Association statistics in the discovery GWAS, the case/control replication and the combined GWAS and replication samples for the five independent SNPs identified by multivariate analysis

SNP (chr:position$)	m/M	Gene	MAF@	Discovery GWAS	Replication	Combined GWAS and replication sample			
				P value	OR* [95% CI]	P value$^#$	OR*# [95% CI]	P value	OR* [95% CI]
rs1265048 (6:31081409)	C/T	C6orf15	0.49	8.72x10^{-6}	0.63 [0.52 -0.63]	1.58x10^{-6}	0.72 [0.72 -0.81]	5.53x10^{-11}	0.69 [0.58-0.80]
rs114598080 (6:31255442)	A/G	HLA-C	0.10	3.90x10^{-6}	1.85 [1.39 -2.44]	4.39x10^{-11}	2.06 [1.7 - Inf]	8.77x10^{-13}	1.47 [1.46-1.48]
rs3187964 (6:32605207)	C/G	HLA-DQA1	0.41	1.28x10^{-6}	1.52 [1.25 - 1.85]	5.28x10^{-13}	1.72 [1.51 - Inf]	8.35x10^{-16}	1.67 [1.55-1.80]
rs3764147 (13:44457925)	G/A	LACC1	0.35	6.56x10^{-6}	1.41 [1.18 - 1.67]	2.36x10^{-11}	1.61 [1.49-Inf]	5.06x10^{-14}	1.52 [1.41-1.63]
rs6871626£ (5:158826792)	A/C	IL12B	0.35	5.12x10^{-6}	0.71 [0.58 - 0.86]	1.37x10^{-05}	0.74 [0.69 -0.86]	6.44x10^{-08}	0.73 [0.61-0.84]

m/M = minor/Major alleles; MAF = minor allele frequency; OR = odds ratio; CI = confidence interval

† positions are given according to the hg19 genome build

$^\circ$ MAF was estimated from the 939 leprosy unaffected parents of the discovery GWAS and 668 controls of the replication sample

* with respect to the minor allele

$^\#$ one-tailed test

£ imputed using the 1000 Genomes phase 1 reference panel
Figure legends

Figure 1. Manhattan plot of the results for association with leprosy per se in the family-based GWAS

Manhattan plot showing results of the family-based genome-wide association study of leprosy per se in 622 affected offspring, for 5,533,693 variants (minor allele frequency > 5% and info > 0.8). The –log10(p-value) for each variant (y-axis) is plotted according to its chromosomal position (x-axis, build hg19). The red and blue lines indicate the genome-wide significance (5.0x10^-8) and suggestive (10^-5) thresholds, respectively.

Figure 2. Regional association plot for HLA class I (A) and class II (B) SNPs in the case/control replication sample

Locus zoom plot showing one-tailed p-values for association within the HLA region. The three independent SNPs identified by multivariate analysis, rs1265048 (A), rs114598080 (A) and rs3187964 (B), are represented as blue, red and purple diamonds, respectively. The colors indicate the pairwise linkage disequilibrium (r^2) with the three independent SNPs, as calculated in the 1000 Genomes KHV population. SNPs not found in the reference populations are shown in gray.
Acknowledgments

We thank all leprosy patients and their family who participated in this study. We thank the staff of leprosy control program in Southern Việt Nam and the members of leprosy control program at Hospital of D-V of Ho Chi Minh City, Việt Nam. We thank members of the laboratory of human genetics of infectious diseases and the Erwin Schurr laboratory for helpful discussions. We thank the French national genotyping center (CNG) and Genome Quebec for performing genotyping. This work was supported by grants from the Canadian Institutes of Health Research (CIHR; FDN-143332) to ES, MALTALEP from l’Ordre de Malte to AA and ES, the Agence Nationale de la Recherche (ANR) to AA.
1. Smith WC, van Brakel W, Gillis T, Sauderson P, Richardus JH. The missing millions: a threat to the elimination of leprosy. PLoS Negl Trop Dis. 2015;9(4):e0003658.

2. Gaschignard J, Grant AV, Thuc NV, Orlova M, Cobat A, Huong NT, et al. Pauci- and Multibacillary Leprosy: Two Distinct, Genetically Neglected Diseases. PLoS Negl Trop Dis. 2016;10(5):e0004345.

3. Cole ST, Eiglmeier K, Parkhill J, James KD, Thomson NR, Wheeler PR, et al. Massive gene decay in the leprosy bacillus. Nature. 2001;409(6823):1007-11.

4. Monot M, Honore N, Garnier T, Araoz R, Coppee JY, Lacroix C, et al. On the origin of leprosy. Science. 2005;308(5724):1040-2.

5. Fava VM, Dallmann-Sauer M, Schurr E. Genetics of leprosy: today and beyond. Hum Genet. 2019.

6. Mira MT, Alcais A, Van Thuc N, Thai VH, Huong NT, Ba NN, et al. Chromosome 6q25 is linked to susceptibility to leprosy in a Vietnamese population. Nat Genet. 2003;33(3):412-5.

7. Mira MT, Alcais A, Nguyen VT, Moraes MO, Di Flumeri C, Vu HT, et al. Susceptibility to leprosy is associated with PARK2 and PACRG. Nature. 2004;427(6975):636-40.

8. Alcais A, Alter A, Antoni G, Orlova M, Nguyen VT, Singh M, et al. Stepwise replication identifies a low-producing lymphotoxin-alpha allele as a major risk factor for early-onset leprosy. Nat Genet. 2007;39(4):517-22.

9. Zhang FR, Huang W, Chen SM, Sun LD, Liu H, Li Y, et al. Genomewide association study of leprosy. N Engl J Med. 2009;361(27):2609-18.

10. Zhang F, Liu H, Chen S, Low H, Sun L, Cui Y, et al. Identification of two new loci at IL23R and RAB32 that influence susceptibility to leprosy. Nat Genet. 2011;43(12):1247-51.

11. Liu H, Irwanto A, Fu X, Yu G, Yu Y, Sun Y, et al. Discovery of six new susceptibility loci and analysis of pleiotropic effects in leprosy. Nat Genet. 2015;47(3):267-71.

12. Wang Z, Sun Y, Fu X, Yu G, Wang C, Bao F, et al. A large-scale genome-wide association and meta-analysis identified four novel susceptibility loci for leprosy. Nat Commun. 2016;7:13760.

13. Wong SH, Gochhait S, Malhotra D, Pettersson FH, Teo YY, Khor CC, et al. Leprosy and the adaptation of human toll-like receptor 1. PLoS Pathog. 2010;6:e1000979.

14. Liu H, Wang Z, Li Y, Yu G, Fu X, Wang C, et al. Genome-Wide Analysis of Protein-Coding Variants in Leprosy. J Invest Dermatol. 2017;137(12):2544-51.

15. Wang Z, Mi Z, Wang H, Sun L, Yu G, Fu X, et al. Discovery of 4 exonic and 1 intergenic novel susceptibility loci for leprosy. Clin Genet. 2018;94(2):259-63.

16. Wang D, Fan Y, Malhi M, Bi R, Wu Y, Xu M, et al. Missense Variants in HIF1A and LACC1 Contribute to Leprosy Risk in Han Chinese. Am J Hum Genet. 2018;102(5):794-805.

17. Dallmann-Sauer M, Correa-Macedo W, Schurr E. Human genetics of mycobacterial disease. Mamm Genome. 2018;29(7-8):523-38.

18. Cambri G, Mira MT. Genetic Susceptibility to Leprosy-From Classic Immune-Related Candidate Genes to Hypothesis-Free, Whole Genome Approaches. Front Immunol. 2018;9:1674.

19. Cobat A, Abel L, Alcais A, Schurr E. A general efficient and flexible approach for genome-wide association analyses of imputed genotypes in family-based designs. Genet Epidemiol. 2014;38(6):560-71.

20. Grant AV, Alter A, Huong NT, Orlova M, Van Thuc N, Ba NN, et al. Crohn's disease susceptibility genes are associated with leprosy in the Vietnamese population. J Infect Dis. 2012;206(11):1763-7.
21. Fava VM, Cobat A, Van Thuc N, Latini AC, Stefani MM, Belone AF, et al. Association of TNFSF8 regulatory variants with excessive inflammatory responses but not leprosy per se. J Infect Dis. 2015;211(6):968-77.

22. Fava VM, Manry J, Cobat A, Orlova M, Van Thuc N, Ba NN, et al. A Missense LRRK2 Variant Is a Risk Factor for Excessive Inflammatory Responses in Leprosy. PLoS Negl Trop Dis. 2016;10(2):e0004412.

23. Fava VM, Xu YZ, Lettre G, Van Thuc N, Orlova M, Thai VH, et al. Pleiotropic effects for Parkin and LRRK2 in leprosy type-1 reactions and Parkinson's disease. Proc Natl Acad Sci U S A. 2019;116(31):15616-24.

24. Teo YY, Inouye M, Small KS, Gwilliam R, Deloukas P, Kwiatkowski DP, et al. A genotype calling algorithm for the Illumina BeadArray platform. Bioinformatics. 2007;23(20):2741-6.

25. Purcell S, Chang C. PLINK 1.9 [Available from: www.cog-genomics.org/plink/1.9/]

26. Delaneau O, Marchini J, Zagury JF. A linear complexity phasing method for thousands of genomes. Nat Methods. 2011;9(2):179-81.

27. O'Connell J, Gurdasani D, Delaneau O, Pirastu N, Ulivi S, Cocca M, et al. A general approach for haplotype phasing across the full spectrum of relatedness. PLoS Genet. 2014;10(4):e1004234.

28. Marchini J, Howie B, Myers S, McVean G, Donnelly P. A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet. 2007;39(7):906-13.

29. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4:7.

30. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43(5):491-8.

31. Cordell HJ, Barratt BJ, Clayton DG. Case/pseudocontrol analysis in genetic association studies: A unified framework for detection of genotype and haplotype associations, gene-gene and gene-environment interactions, and parent-of-origin effects. Genet Epidemiol. 2004;26(3):167-85.

32. Grant AV, El Baghdadi J, Sabri A, El Azbaoui S, Alaoui-Tahiri K, Abderrahmani Rhorfi I, et al. Age-dependent association between pulmonary tuberculosis and common TOX variants in the 8q12-13 linkage region. Am J Hum Genet. 2013;92(3):407-14.

33. Grant AV, Sabri A, Abid A, Abderrahmani Rhorfi I, Benkirane M, Souhi H, et al. A genome-wide association study of pulmonary tuberculosis in Morocco. Hum Genet. 2016;135(3):299-307.

34. Wellcome Trust Case Control C. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447(7145):661-78.

35. Konrad J. Karczewski, Laurent C. Francioli, Grace Tiao, Beryl B. Cummings, Jessica Alföldi, Qingbo Wang, et al. Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-function intolerance across human protein-coding genes. bioRxiv. 2019.

36. Machiela MJ, Chanock SJ. LDlink: a web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics. 2015;31(21):3555-7.

37. Zhang X, Cheng Y, Zhang Q, Wang X, Lin Y, Yang C, et al. Meta-Analysis Identifies Major Histocompatibility Complex Loci in or Near HLA-DRB1, HLA-DQA1, HLA-C as Associated with Leprosy in Chinese Han Population. J Invest Dermatol. 2019;139(4):957-60.

38. Jarduli LR, Sell AM, Reis PG, Sippert EA, Ayo CM, Mazini PS, et al. Role of HLA, KIR, MICA, and cytokines genes in leprosy. Biomed Res Int. 2013;2013:989837.
39. Krause-Kyora B, Nutsua M, Boehme L, Pierini F, Pedersen DD, Kornell SC, et al. Ancient DNA study reveals HLA susceptibility locus for leprosy in medieval Europeans. Nat Commun. 2018;9(1):1569.

40. Matzaraki V, Kumar V, Wijmenga C, Zhernakova A. The MHC locus and genetic susceptibility to autoimmune and infectious diseases. Genome Biol. 2017;18(1):76.

41. Parks T, Elliott K, Lamagni T, Auckland K, Mentzer AJ, Guy R, et al. Elevated risk of invasive group A streptococcal disease and host genetic variation in the human leucocyte antigen locus. Genes Immun. 2019.

42. Alter A, Huong NT, Singh M, Orlova M, Van Thuc N, Katoch K, et al. Human leukocyte antigen class I region single-nucleotide polymorphisms are associated with leprosy susceptibility in Vietnam and India. J Infect Dis. 2011;203(9):1274-81.

43. Luo Y, Na Z, Slavoff SA. P-Bodies: Composition, Properties, and Functions. Biochemistry. 2018;57(17):2424-31.

44. Radzisheuskaya A, Chia Gle B, dos Santos RL, Theunissen TW, Castro LF, Nichols J, et al. A defined Oct4 level governs cell state transitions of pluripotency entry and differentiation into all embryonic lineages. Nat Cell Biol. 2013;15(6):579-90.

45. Wong SH, Hill AV, Vannberg FO, India-Africa-United Kingdom Leprosy Genetics C. Genomewide association study of leprosy. N Engl J Med. 2010;362(15):1446-7; author reply 7-8.

46. Xiong JH, Mao C, Sha XW, Jin Z, Wang H, Liu YY, et al. Association between genetic variants in NOD2, C13orf31, and CCDC122 genes and leprosy among the Chinese Yi population. Int J Dermatol. 2016;55(1):65-9.

47. Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH, Rioux JD, et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nat Genet. 2008;40(8):955-62.

48. Franke A, McGovern DP, Barrett JC, Wang K, Radford-Smith GL, Ahmad T, et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nat Genet. 2010;42(12):1118-25.

49. Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491(7422):119-24.

50. Liu JZ, van Sommeren S, Huang H, Ng SC, Alberts R, Takahashi A, et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat Genet. 2015;47(9):979-86.

51. Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46(3):310-5.

52. Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 2019;47(D1):D886-D94.

53. Cader MZ, Boroviak K, Zhang Q, Assadi G, Kempster SL, Sewell GW, et al. C13orf31 (FAMIN) is a central regulator of immunometabolic function. Nat Immunol. 2016;17(9):1046-56.

54. Lahiri A, Hedl M, Yan J, Abraham C. Human LACC1 increases innate receptor-induced responses and a LACC1 disease-risk variant modulates these outcomes. Nat Commun. 2017;8:15614.

55. Anderson CA, Boucher G, Lees CW, Franke A, D'Amato M, Taylor KD, et al. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat Genet. 2011;43(3):246-52.
Raychaudhuri S, Plenge RM, Rossin EJ, Ng AC, International Schizophrenia C, Purcell SM, et al. Identifying relationships among genomic disease regions: predicting genes at pathogenic SNP associations and rare deletions. PLoS Genet. 2009;5(6):e1000534.

Boisson-Dupuis S, Ramirez-Alejo N, Li Z, Patin E, Rao G, Kerner G, et al. Tuberculosis and impaired IL-23-dependent IFN-gamma immunity in humans homozygous for a common TYK2 missense variant. Sci Immunol. 2018;3(30).

Martinez-Barricarte R, Markle JG, Ma CS, Deenick EK, Ramirez-Alejo N, Mele F, et al. Human IFN-gamma immunity to mycobacteria is governed by both IL-12 and IL-23. Sci Immunol. 2018;3(30).

Bustamante J, Boisson-Dupuis S, Abel L, Casanova JL. Mendelian susceptibility to mycobacterial disease: genetic, immunological, and clinical features of inborn errors of IFN-gamma immunity. Semin Immunol. 2014;26(6):454-70.

International Genetics of Ankylosing Spondylitis C, Cortes A, Hadler J, Pointon JP, Robinson PC, Karaderi T, et al. Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci. Nat Genet. 2013;45(7):730-8.

Terao C, Yoshifuji H, Kimura A, Matsumura T, Ohmura K, Takahashi M, et al. Two susceptibility loci to Takayasu arteritis reveal a synergistic role of the IL12B and HLA-B regions in a Japanese population. Am J Hum Genet. 2013;93(2):289-97.

Nakajima T, Yoshifuji H, Shimizu M, Kitagori K, Murakami K, Nakashima R, et al. A novel susceptibility locus in the IL12B region is associated with the pathophysiology of Takayasu arteritis through IL-12p40 and IL-12p70 production. Arthritis Res Ther. 2017;19(1):197.
