Thermal insulation and acoustic building composite materials based on expanded obsidian

Artsruni Safaryan*, Tamara Sargsyan, Marine Kalantaryan, Hripsime Melyan

National University of Architecture and Construction of Armenia, Yerevan, Teryan 105, RA

E-mail: ar_saf@mail.ru,

Abstract. In modern conditions, one of the ways allowing the construction company to be competitive in the market is the use of modern high-quality and, at the same time, cheaper building materials. Many technogenic formations, in particular solid waste, are valuable technological raw materials and can be involved in technological redistribution in order to obtain composite building materials. In the production of crushed stone, sands from lithoid pumice and perlite, it is advisable to produce separation and separate obsidian. In this case, the separated obsidian turns into production waste. The expansion of obsidian will allow to obtain a large porous ultralight material and thereby solve environmental issues – recycle production waste. On the base of expanded obsidian, it is possible to obtain new types of effective composite thermal insulation and acoustic materials (cellular concretes and acoustic plasters), which have high performance properties and expand the range of effective building composite materials.

Introduction

It is known that in the construction of buildings and structures, developers are faced with a number of problems relating to both architectural solutions (external and internal layout, appearance of the building, its colors) and the creation of a sound and durable structure. Thus, a natural question arises: how to achieve comfortable conditions inside the premises and maximum comfort at minimum cost of construction (thermal insulation and acoustic comfort accounts for 1 to 3% of the total cost of construction and installation works) to minimize operating costs, primarily energy costs.

It is possible to solve this problem only by using those construction materials which guarantee high efficiency when using in concrete parts of the given building or a construction. And here it should be born in mind that composite thermal insulation and acoustic materials are exactly those types of materials that give the largest economic benefit during the operation and provide comfortable living [1...8].

The characteristics of a satisfactory indoor climate of the room vary within fairly narrow limits: the temperature fluctuation is only ±3°C, the permissible humidity is from 20 to 60%, the air velocity is not more than 0.2 m/sec. Therefore, it is very important to make such design solutions that could significantly reduce the load on the heating and air conditioning equipment.

In modern conditions, one of the ways allowing the construction company to be competitive in the market is the use of modern high-quality and, at the same time, cheaper building materials.

Many technogenic formations, in particular solid waste, are valuable technological raw materials and can be involved in technological redistribution in order to obtain composite building materials [1...8].
In the production of crushed stone, sands from lithoid pumice and perlite, it is advisable to separate and separate obsidian. In this case, the separated obsidian turns into production waste. The expansion of obsidian will allow to obtain a large porous ultralight material and thereby solve environmental issues - recycle production waste. Expanding of volcanic glass (obsidian) occurs due to gases, primary (magmatic) and secondary (hydraulic) water located in the pores. During the expanding process, the gases in the pores expand about 4.5 times when heated, which contributes to expansion.

Methodology
The technology of expansion of obsidians containing hard-to-remove cohesive moisture is based on the combination of the processes of evaporation of moisture and expansion of various gases in the pores with the process of transition of the rock substance from solid to pyroplastic state. Theoretically, the volume of moisture vapor at 900-950°C is 4000 times greater than the volume of moisture from which they are obtained, it is enough that obsidian contains only 0.045% water to expand it more than 13 times. In the process of expansion, the limiting shear stress of the vitreous substance in the elastoplastic state is initially overcome by expanding in the pores when heated by moisture vapor. After that, the vapor release from the expanding pores is regulated by the viscosity of the vitreous substance, the value of which should be slightly greater than the value of the viscosity available during the transition from the elastoplastic to the fluid state. When cooled, a vacuum is created inside the closed pores.

Considering the model of expanded obsidian, the mechanism of this process can be represented as follows: under the action of a heat flux having a temperature of the beginning of the rock transition to the elastoplastic state, the peripheral and then the deep layers are heated with the gradual evaporation of the moisture contained in it. In addition to moisture vapors, various gases are also released [9...12].

The results of chemical analysis of gas pores of volcanic glasses showed that their 45.2...73.0% is water vapor, 5.9...56.23% is carbon dioxide, 1.1...2.4% is hydrogen and 1.6%...17.9% is nitrogen. When heated, the front of the heat flux does not pass inside immediately, so first the peripheral and then the deep layers are expanded. The prerequisite is that the expanded peripheral layers of obsidian until the end of the expansion of the deep layers remained in the original condition. The main factors influencing the expansion coefficient are: the expansion temperature and the expansion interval; the higher the transition temperature of the rock to the elastoplastic state, the more difficult it is to obtain a high value of the expansion coefficient; the higher the temperature of the medium, the less time it will take to heat the inner layers of the grain to and it is easier to combine the evaporation of moisture with the moment the substance reaches the viscosity interval; the duration of the thermal effect on the grain of the rock subjected to expansion; the maximum temperature of the medium in conjunction with the duration of its impact on the volcanic glass; the chemical composition of the rock expansion and the alkali content of it; with increasing content of Na₂O+K₂O from 4.81 to 6.41%, the values of the expansion coefficient are decreasing.

Results
It is experimentally proved that obsidian can be expanded at temperatures from 1000 to 1200°C. Above 1200°C there is a partial melting of the mass. We found that the expansion of obsidian fractions from 5 to 20 mm at temperature of 1050...1150°C for 3...10 minutes it is possible to get ultralight large aggregate with an average density of 200...350 kg / m³.

Table 1 and 2 show the chemical composition of obsidian and physical and mechanical properties of expanded obsidian. Figures 1 and 2 show photographs of not expanded, expanded and expanded obsidian fractions a) 10...20 mm b) 5...10 mm c) 2.5...5 mm d) porosity.
Table 1. Chemical composition of obsidian (mass, %)

	N	SiO₂	Al₂O₃	Fe₂O₃	FeO	CaO	MgO	MnO	Na₂O	P₂O₅	R₂O	loss on ignition	PH of water behavior
On average	73.11	14.02	0.67	0.91	1.1	0.4	0.09	0.06	0.9	8.67	0.8	7.1	

Table 2. Physical and mechanical properties of expanded obsidian

Indicators	2.5...5.0 mm grain size	5.0...10.0 mm grain size	10.0...20.0 mm grain size
Average density, kg/m³	360	390	454
Porosity, %	89.2	88.4	86.2
Compressive strength limit, MPa	8.8	10.2	15.1

Figure 1. Obsidian a) not expanded, b) expanded

a) b)
Figure 2. Expanded obsidian fractions a) 10 ... 20 mm b) 5 ... 10 mm c) 2.5 ... 5 mm g) porosity

On the base of expanded obsidian, thermal insulation and acoustic materials were developed and obtained: aerated concrete and plaster with cement and gypsum (compositions and physical and mechanical parameters are given in table 3).

Table 3. Compositions and physical and mechanical properties, thermal insulation and acoustic materials.

Composition of 1 m³, kg/m³	Expanded obsidian	Cement	Lime	Alumina powder	Gypsum	Water	Density, kg/m³	Compressive strength, MPa	Bending strength, MPa	% sound insulation	Coefficient of thermal conductivity, W/mK
Aerated concrete	536,4	220,4	91,8	0,688	--	481,1	835	12,9	--	58,4	0,08
Gypsum plaster	404,3	--	--	--	890,6	528,7	1311	19,79	6,923	56,0	0,14
Cement plaster	532,0	781,3	--	--	--	507,8	1563,3	28,87	6,24	55,1	0,12

Summary

Many technogenic formations, in particular solid waste of enterprises are valuable technological raw materials and can be involved in technological redistribution in order to obtain composite materials. The advantages of materials based on expanded obsidian – a porous material, is a unique combination of thermal insulation and acoustic and structural properties.

References

[1] Khudyakov V A, Proshin A P, Kislitsyna S N 2006 Modern composite building materials (Moscow, ASV).
[2] Chineses V A 1970 Technology of heat-insulating materials (Moscow, Stroyizdat).
[3] Dronov A A 2000 Modern technologies of thermal protection (Industrial and civil construction) 6 p. 21-24.
[4] Ovcharenko G E, Petrov - Denisov V G, Artemyev V M 1996 The Main directions of development of heat-insulating materials (Building materials) 6 p. 2-4.
[5] Bagrov B O 1985 Production of heat-insulating material from waste of non-ferrous metallurgy (Moscow, metallurgy) 5-63.
[6] Novokhatskaya E A 2010 Noise pollution of the metropolis and its impact on human health (Social Policy and Sociology) 3 pp. 135–144. (rus)
[7] Osipov L G, Bobylev V N, Borisov L A and others 2004 *Sound insulation and sound absorption* (Moscow, AST Publishing House) p. 450.

[8] Gorlov Yu P 1989 *Technology of heat-insulating and acoustic materials and products* (Moscow, Higher School) p. 384.

[9] Kalinin V I 1985 *Theoretical Foundations of the Expansion of Mineral and Silicate and Aluminosilicate Raw Materials* (Krasnoyarsk, Promstroyizdat) p. 92-98.

[10] Safaryan A M, Sarkisyan T M 2010 *Bloating of obsidian- a waste product of gravel and sand production from perlite and lithoid mass- as a filler for lightweight concrete* (Cooperation for solution of waste problems. Proceedings of the VII International Conference, Kharkov, Ukraine) p. 48-50. (rus).

[11] Patents of RA (The invention patents Republic of Armenia) Safaryan, A., T. Sargsyan. N2726A Method of production of light fillers. Registered in the State Register 25.03.13. (arm).

[12] Information on https://www.e3sconferences.org/articles/e3sconf/pdf/2019/23/e3sconf_form2018_02038.pdf (eng)

Acknowledgements

This work has been carried out in the frame of “Creating the ways for sustainable urban, architectural and construction complexes development in RA and elaboration of directions with use of permanent monitoring systems” programme, financed by Committee of Science of Republic of Armenia.