What kind of theory we gain from the scientific study of systems strongly depends on our choice of model. By ‘model’ we here mean a representation of the aspects that currently interest us of the studied object, in a form that is tractable for analysis. For example: when we are interested in the interactions between genetic factors for mutations, but at the moment do not care about the molecular structure of genes, we find that representing genes as points on a line that represents a chromosome allows analytical handling (interpretation, prediction).

This, then, is a model: the ‘factorgenetic’ model. If we choose a mathematical-stochastic representation we will get the population genetic model, if we choose a representation in terms of chemical structures we will get a molecular genetic model. (Note that all 3 models (not just the mathematical model) are exact, that is to say, lead to unequivocal statements.)

In the study of dynamical systems we can distinguish 2 classes of models: one that represents the system as an energy processing system, and one that represents the system as an information processing system. For example: if we study the nervous system in the light of metabolism, oxygen uptake etc., then we speak in terms of energy, chemical potential, etc.; if we study it in the light of action potentials, sensory and motor control etc., then we use terminology such as information, pulse patterns, etc.

For this reason it is often useful in physical and biological research to distinguish between studying the energetic phenomena and studying the ‘informatic’ phenomena in the studied object. For this classification one generally uses the collective terms: ‘energetics’ and ‘informatics’. Note that currently an important subfield of informatics is the academic field of using computers for information processing. The term ‘informatics’ is often used specifically for this subfield. This is of course no problem, as long as we keep in mind that a broader interpretation is possible.

Within informatics we can distinguish subfields based on the physical phenomenon that ‘carries’ the information, e.g. electronics (flow of electrons as information carriers), fluidics (flow of fluids), photonics (flow of photons), neuronics (dynamics of neural action potentials), similar to how we distinguish mechanics, kinetics, etc. as subfields in energetics.

We can also classify scientific disciplines based on the type of object we work with, namely with a prefix. We do this for example when talking about geophysics, hydrodynamics, biomechanics, biomathematics.
As information processing plays a very important role in living systems (they are, after all, needed to maintain ‘order’ and are therefore at least as important as energetic processes), it is useful to speak about ‘bio-informatics’. And so with this we mean: the study of information processing in biological systems. Examples: the functioning of the nervous system, hormonal regulation, interactions in ecosystems, genetic information transfer.

We should distinguish this from the application of informatics in biological research, e.g. the use of computers, electronics, photographic methods. Because this is just informatics and no different from informatics applied in other fields.

Ben Hesper
Paulien Hogeweg
Als we systemen wetenschappelijk bestuderen hangt de theorie die we verkrijgen sterk af van het 'model' dat we kiezen. Met 'model' bedoelen we de representatie van de, op dat ogenblik voor ons interessante, aspecten van het onderzochte object in een analytisch handelbare vorm. Bijvoorbeeld: zijn we geïnteresseerd in de onderlinge samenhang van genetische factoren bij mutaties, zonder op dat ogenblik interesse te hebben voor de moleculaire structuur van de genen, dan blijkt het representeren van de genen door punten op een lijn, die het chromosoom representeert, analytische hantering mogelijk te maken (interpretatie, voorspelling).

Dit is dan een model: het factorgenetisch model. Kiezen we een mathematisch-stochastische representatie dan krijgen we het populatiegenetisch model, kiezen we een representatie d.m.v. chemische structuren dan krijgen we een moleculair genetisch model. (Let wel dat alle 3 deze modellen niet alleen het mathematische exact zijn, d.w.z. tot eenduidige uit- spraken leiden).

Bij het bestuderen van dynamische systemen kunnen we onderscheid maken tussen 2 klassen van modellen: één die het systeem reprenteert als een energieverwerkend systeem en één die het systeem reprenteert als een informatieverwerkend systeem. Bijvoorbeeld: bestuderen we het zenuwstelsel in het aspect van metabolisme, zuurstofcyclus, e.d. dan spreken we in termen van energie, chemische potentiaal, enz.; bestuderen we het in het aspect van pulsgelijkeiding, sensorische en motorische sturing, e.d. dan gebruiken we termen als informatie, pulsgpatronen, enz.

Het is dan ook vaak zinvol bij fysisch en biologisch onderzoek onderscheid te maken tussen: studie van energetische verschijnselen en van 'informatie's' verschijnselen in het onderzochte object. Men gebruikt voor deze indeling de verzamelbegrippen: 'energetica' en 'informatica'. N.B.: een belangrijk deelgebied van de informatica is op het ogenblik de leer van het gebruik van computers voor informatieverwerking. De term 'informatica' wordt daardoor vaak gebruikt om alleen dit gebied aan te duiden. Daartegen is natuurlijk geen bezwaar, als we ons steeds realiseren dat een ruimere interpretatie mogelijk is.

Binnen de informatica kunnen we deelgebieden onderscheiden naar het fysische verschijnsel dat de informatie 'draagt', bijv.: electronica (elektrostenlen als informatiedrager), fluidica (vloeiufstomen),
fotonica (fotonenstromen), neuronica (neuronoplusstromen), op dezelfde wijze als we binnen de energetica deelgebieden als: mechanica, kinetica, e.d. onderscheiden.

We kunnen een studiegebied ook indelen naar het soort van object waar mee we werken, nl. met voorvoegsels. We doen dit bijvoorbeeld als we het hebben over: geofysica, hydrodynamica, biomechanica, biomathematica.

Daar informatieverwerkende processen in levende systemen een zeer grote rol spelen (ze zijn immers nodig om de 'orde' te handhaven en zijn dus minstens zo belangrijk als energetische processen) is het zinvol te gaan spreken van: 'bio-informatica. Hiermee duiden we dus aan: de studie van informatieverwerkende processen in biologische systemen. Voorbeelden: werking van het zenuwstelsel, hormonale regelsystemen, interactie in oecosystemen, genetische informatie-overdracht.

We moeten dit wel onderscheiden van het toepassen van informatica bij het biologisch onderzoek, bijv.: gebruik van computers, electronica, fotografische methoden, enz. Dit is nl. gewoon: informatica, en onderscheidt zich niet van informatica op andere terreinen toegestAPT.

Ben Hesber
Paulien Hogeweg