On mini-superspace limit of boundary three-point function in Liouville field theory

November 2017

Elena Apresyan1 and Gor Sarkissian1,2

1 Yerevan Physics Institute,
Alikhanian Br. 2, 0036 Yerevan, Armenia

2Department of Physics, Yerevan State University,
Alex Manoogian 1, 0025 Yerevan, Armenia

Abstract

We study mini-superspace semiclassical limit of the boundary three-point function in the Liouville field theory. We compute also matrix elements for the Morse potential quantum mechanics. An exact agreement between the former and the latter is found. We show that both of them are given by the generalized hypergeometric functions.
1 Introduction

Recently the various semiclassical limits of the Liouville correlation functions appeared in different instances. For example we can mention study of conformal blocks in AdS/CFT correspondence, see e.g. [1–3], semiclassical limits of the Nekrasov partition functions, see e.g [4–9], minisuperspace limit of correlation functions in AdS$_3$/H$_3^+$ [10,11], semiclassical limit of correlation functions in the presence of defects and boundaries [12,13] and the most recently found application of the semiclassical limit of Liouville field theory to the SYK problem [14].

In this paper we study matrix elements of the boundary Liouville field theory in mini-superspace limit. In the mini-superspace limit one considers a limit where only the zero mode dynamics survives and the theory is reduced to the corresponding quantum mechanical problem. The mini-superspace limit of the Liouville field theory was considered in [15,16]. In these papers the matrix elements of the Liouville quantum mechanics with the exponential potential were computed. Later it was shown in [17] that the DOZZ structure constants [18,19] in this limit coincide with the matrix elements found in [15,16]. It was also demonstrated in [19] that the Liouville two-point function in the mini-superspace limit in agreement with the reflection function of the Liouville quantum mechanics eigenfunctions given by the modified Bessel function. In papers [20,21] was studied the mini-superspace limit of the boundary Liouville field theory (BLFT). It was found that BLFT in this limit reduced to the Morse potential quantum mechanics. It was shown in [20] that in the mini-superspace limit the boundary two-point function, computed in [22], coincides with the reflection amplitude of the eigenfunctions of the Morse potential Hamiltonian given by the Whittaker functions.

In this paper we study the mini-superspace limit of the boundary three-point function in the BLFT. The boundary three-point function in the BLFT was computed in [23] and expressed via double Gamma and double Sine functions [24,25]. Using the asymptotic properties of the double Gamma and Sine functions [10] we have shown that in the mini-superspace limit the boundary three-point function can be expressed via the Meijer functions $G^{3,2}_{3,3}$ with the unit argument or equivalently via the generalized hypergeometric functions $3F_2$ with the unit argument. We also computed matrix elements for the Morse potential and have shown that they can be expressed via the generalized hypergeometric functions $3F_2$ with the unit argument as well. Using the identities, relating different generalized hyper-
geometric functions with the unit argument \cite{26,28}, and matching quantum and classical parameters, we established exact agreement between the mini-superspace limit of the boundary three-point function and the matrix elements for the Morse potential. It is important to note that in the BLFT relation of the boundary cosmological parameter to the corresponding quantum parameter appearing in the boundary one-point function is twofold due to a sign ambiguity in the choice of the square root branch. We found that to match the mini-superspace limit of the boundary three-point with the corresponding quantum mechanical matrix element we should use the branch with the negative sign. We also found that passing from one branch to another brings to additional factor in the normalization of the wave functions corresponding to the boundary condition changing operators. We would like also to mention that various consequences of the branching of the BLFT parameters earlier were considered in \cite{29}.

The paper is organized as follows. In section 2 we review the BLFT and compute the mini-superspace limit of the boundary three-point function. In section 3 we compute matrix elements for the Morse potential and establish precise agreement with the boundary three-point function in the mini-superspace limit found in the previous section. In appendices A, B and C we review various properties of the special functions used in the paper.

2 Boundary Liouville field theory

Let us consider the Liouville field theory on a strip $\mathbb{R} \times [0, \pi]$, parameterized by the time τ and space σ coordinates, $0 \leq \sigma \leq \pi$. The conformal invariant action has the form:

$$S = \int_{-\infty}^{\infty} d\tau \int_{0}^{\pi} d\sigma \left(\frac{1}{4\pi} (\partial_{\sigma} \phi)^2 + \mu e^{2b\phi} \right) + \int_{-\infty}^{\infty} d\tau M_1 e^{b\phi}|_{\sigma=0} + \int_{-\infty}^{\infty} d\tau M_2 e^{b\phi}|_{\sigma=\pi}$$

where M_1 and M_2 are the corresponding boundary cosmological constants.

Let us review some facts on the boundary Liouville field theory \cite{22,23,30}. The primary fields of the Liouville field theory are V_α, associated with the vertex operators $e^{2\alpha \phi}$. They have conformal dimension

$$\Delta_\alpha = \alpha (Q - \alpha), \quad Q = b + \frac{1}{b}$$

In the presence of the boundary with the cosmological constant M the primary
fields V_α have the one-point functions:

$$
\langle 0| V_\alpha(z, \bar{z}) |0 \rangle = \frac{U_\sigma(\alpha)}{|z - \bar{z}|^{2\Delta_\alpha}}
$$

(3)

where

$$
U_\sigma(\alpha) = \frac{2}{b} (\pi \mu \gamma(b^2))^{(Q-2\alpha)/2b} \Gamma(1-b(Q-2\alpha)) \Gamma(-b^{-1}(Q-2\alpha)) \cos(\pi(2\sigma-Q)(2\alpha-Q))
$$

(4)

where the parameter σ is related to the boundary cosmological constant M by the relation:

$$
M = \sqrt{\frac{\mu}{\sin(\pi b^2)}} \cos \pi b^2 (2\sigma - Q)
$$

(5)

Besides bulk primary fields in the boundary conformal field theory exist also boundary condition changing operators, parameterized by the types of the switched boundary conditions and conformal weight. In the case of the BLFT they are given by the fields $\Psi^{\sigma_1\sigma_2}_\beta$ with conformal weight $\Delta_\beta = \beta(\beta - Q)$. They have the two-point function:

$$
\langle 0| \Psi^{\sigma_1\sigma_2}_\beta(x) \Psi^{\sigma_2\sigma_1}_\beta(0) |0 \rangle = \frac{\delta(\beta_2 + \beta_1 - Q) + S(\beta_1, \sigma_2, \sigma_1) \delta(\beta_2 - \beta_1)}{|x|^{2\Delta_\beta}}
$$

(6)

where

$$
S(\beta, \sigma_2, \sigma_1) = \left(\frac{\pi \mu \gamma(b^2)b^{2-2b^2}}{2b} \right)^{Q-2\beta} \times
\frac{\Gamma_b(2\beta - Q) S_b(\sigma_2 + \sigma_1 - \beta) S_b(2Q - \sigma_2 - \sigma_1 - \beta)}{\Gamma_b(Q - 2\beta)}
\frac{S_b(\sigma_2 - \sigma_1 + \beta) S_b(\sigma_1 - \sigma_2 + \beta)}{S_b(\sigma_2 - \sigma_1 - \beta) S_b(\sigma_1 - \sigma_2 - \beta)}
$$

(7)

and three-point function

$$
\langle 0| \Psi^{\sigma_1\sigma_3}_\beta(x_3) \Psi^{\sigma_2\sigma_2}_\beta(x_3) \Psi^{\sigma_2\sigma_1}_\beta(x_3) |0 \rangle = \frac{C^{\sigma_3\sigma_2\sigma_1}_{\beta_3\beta_2\beta_1}}{|x_{21}|^{\Delta_1+\Delta_2-\Delta_3} |x_{32}|^{\Delta_2+\Delta_3-\Delta_1} |x_{31}|^{\Delta_3+\Delta_1-\Delta_2}}
$$

(8)

$$
C^{\sigma_3\sigma_2\sigma_1}_{\beta_3\beta_2\beta_1} = C^{\sigma_3\sigma_2\sigma_1}_{Q-\beta_3,\beta_2,\beta_1}
$$

(9)

$$
C^{\sigma_3\sigma_2\sigma_1}_{\beta_3\beta_2\beta_1} = R_{\sigma_2,\beta_3} \left[\begin{array}{cc} \beta_2 & \beta_1 \\ \sigma_3 & \sigma_1 \end{array} \right] \int_{-i\infty}^{i\infty} \frac{d\tau}{i} J_{\sigma_2,\beta_3} \left[\begin{array}{cc} \beta_2 & \beta_1 \\ \sigma_3 & \sigma_1 \end{array} \right]
$$

(10)

where
\[R_{\sigma_2,\beta_3} \left[\begin{array}{cc} \beta_2 & \beta_1 \\ \sigma_3 & \sigma_1 \end{array} \right] = (\pi \mu \gamma(b^2) b^{3-2b^2}) \frac{1}{b^2} \left(\beta_3 - \beta_2 - \beta_1 \right) \] (11)

\[\Gamma_b(2Q - \beta_1 - \beta_2 - \beta_3) \frac{\Gamma_b(\beta_2 + \beta_3 - \beta_1) \Gamma_b(Q + \beta_2 - \beta_1 - \beta_3) \Gamma_b(Q + \beta_3 - \beta_2 - \beta_1)}{\Gamma_b(2\beta_3 - Q) \Gamma_b(Q - 2\beta_2) \Gamma_b(Q - 2\beta_1) \Gamma_b(Q)} \times \] \[\frac{S_b(\beta_3 + \sigma_1 - \sigma_3) S_b(Q + \beta_3 - \sigma_3 - \sigma_1)}{S_b(\beta_2 + \sigma_2 - \sigma_3) S_b(Q + \beta_2 - \sigma_3 - \sigma_2)} \]

and

\[J_{\sigma_2,\beta_3} \left[\begin{array}{cc} \beta_2 & \beta_1 \\ \sigma_3 & \sigma_1 \end{array} \right] = \frac{S_b(U_1 + \tau) S_b(U_2 + \tau) S_b(U_3 + \tau) S_b(U_4 + \tau)}{S_b(V_1 + \tau) S_b(V_2 + \tau) S_b(V_3 + \tau) S_b(V_4 + \tau)} \] (12)

\[U_1 = \sigma_2 + \sigma_1 - \beta_1, \quad V_1 = Q + \sigma_2 + \beta_3 - \beta_1 - \sigma_3 \] (13)

\[U_2 = Q + \sigma_2 - \beta_1 - \sigma_1, \quad V_2 = 2Q + \sigma_2 - \beta_3 - \sigma_3 - \beta_1 \]

\[U_3 = \sigma_2 + \beta_2 - \sigma_3, \quad V_3 = 2\sigma_2 \]

\[U_4 = Q + \sigma_2 - \beta_2 - \sigma_3, \quad V_4 = Q \]

\(\Gamma_b(x) \) and \(S_b(x) \) in the formulae above denote the double Gamma and Sine functions reviewed in appendix A.

The three-point function has the property, that setting one of the field to vacuum, one recovers the two-point function. For example it was checked in [23] that

\[\lim_{\beta_1 \to 0} C_{\beta_3}^{\sigma_3, \sigma_2, \sigma_1} = \delta(\beta_3 - \beta_2) + S(\beta_2, \sigma_3, \sigma_2) \delta(\beta_3 + \beta_2 - Q) \] (14)

Let us now consider the minisuperspace limit of three-point function.

As the warm-up exercise we review the minisuperspace limit of two-point function (7), computed in [20]. It is argued in [20] that one should take the limit \(b \to 0 \) and scale the parameters \(\beta \) and \(\sigma \) in the following way:

\[\beta = \frac{Q}{2} + ikb \] (15)

and

\[\sigma_1 = \frac{1}{4b} + \rho_1 b \] (16)

\[\sigma_2 = \frac{1}{4b} + \rho_2 b \]
Using formulae (54), (55) and (57) in appendix A one can easily obtain:

\[S(\beta, \sigma_2, \sigma_1) \rightarrow \left(\frac{4\pi \mu}{b^2} \right)^{-i k} \frac{\Gamma(2 i k) \Gamma(\rho_1 + \rho_2 - \frac{1}{2} - i k)}{\Gamma(-2 i k) \Gamma(\rho_1 + \rho_2 - \frac{1}{2} + i k)} \] (17)

To compute the mini-superspace limit of the boundary three-point function we will use the ansatz (16) for all the three boundary condition parameters:

\[
\begin{align*}
\sigma_1 &= \frac{1}{4b} + \rho_1 b \\
\sigma_2 &= \frac{1}{4b} + \rho_2 b \\
\sigma_3 &= \frac{1}{4b} + \rho_3 b
\end{align*}
\] (18)

For the primary fields parameters we will use the ansatz suggested in (17) for calculation of the mini-superspace limit of the bulk three-point function:

\[
\begin{align*}
\beta_1 &= \frac{Q}{2} + i k_1 b \\
\beta_2 &= \eta b \\
\beta_3 &= \frac{Q}{2} + i k_2 b
\end{align*}
\] (19)

It is convenient to denote

\[
\begin{align*}
\rho_1 + \rho_2 &= 1 - \lambda \\
\rho_2 - \rho_3 &= \xi
\end{align*}
\] (20)

implying also

\[
\rho_1 + \rho_3 = 1 - \lambda - \xi
\] (21)

Inserting (18) and (19) in (17), using the formulas (54), (55), (56) in appendix A, and rescaling the integration variable \(\tau \to b\tau \), one obtains in the limit \(b \to 0 \)

\[
\int_{-i\infty}^{i\infty} \frac{d\tau}{i} J_{\sigma_2, \beta_3} \left[\frac{\beta_2}{\sigma_3} \right] \rightarrow 2^{-7/2}(\pi b^2)^{-\lambda + i k_1} b^{-1} \pi^{-2} \times
\] (23)

\[
\int_{-i\infty}^{i\infty} \frac{d\tau}{i} \Gamma(-\tau) \Gamma(\tau - i k_1 + 1/2 - \lambda) \Gamma(\eta + \xi + \tau) \Gamma(i k_1 - i k_2 - \xi - \tau) \Gamma(i k_2 + i k_1 - \xi - \tau) \Gamma(\eta - \xi - \tau)
\]

Using the definition of the Meijer G-functions, reviewed in appendix B, one can write

\[
\int_{-i\infty}^{i\infty} \frac{d\tau}{i} J_{\sigma_2, \beta_3} \left[\frac{\beta_2}{\sigma_3} \right] \rightarrow
\] (24)
\[2^{-5/2}(\pi b^2)^{-\lambda + ik_1} b^{-1} \pi^{-1} G_{3,3}^{3,2} \left(1 \mid \begin{array}{c} \frac{1}{2} + \lambda + ik_1, 1 - \eta - \xi, \eta - \xi \\ \xi, ik_1 - ik_2, ik_1 + ik_2 \end{array} \right) = \]

\[2^{-5/2}(\pi b^2)^{-\lambda + ik_1} b^{-1} \pi^{-1} G_{3,3}^{3,2} \left(1 \mid \begin{array}{c} \frac{1}{2} + \lambda + \xi, 1 - \eta, \eta \\ \xi, ik_1 - ik_2, ik_1 + ik_2 \end{array} \right) \]

In the second line we used the identity (62) in appendix B.

For further purposes, it is convenient to present the Meijer \(G_{3,3}^{3,2} \)-function (24) in a special way, use of which become clear in the next section. Namely, first we decompose the \(G_{3,3}^{3,2} \)-function as a sum of \(3F_2 \) hypergeometric functions with the unit argument according to eq. (60) in appendix B. Afterwards we transform obtained in this way \(3F_2 \) hypergeometric functions with the unit argument successively applying identities (63) and (64) in appendix C. We end up with

\[
G_{3,3}^{3,2} \left(1 \mid \begin{array}{c} \frac{1}{2} + \lambda + ik_1 + \xi, 1 - \eta, \eta \\ \xi, ik_1 - ik_2, ik_1 + ik_2 \end{array} \right) = \frac{\Gamma(\xi + \eta)\Gamma(\frac{1}{2} + \lambda - ik_1)}{\sin \pi(ik_1 + \frac{1}{2} + \lambda)} \times
\]

\[
\left[\frac{\Gamma(2ik_2)\Gamma(ik_1 - ik_2 + \eta)\Gamma(\frac{1}{2} - ik_2 - \lambda - \xi)}{\Gamma(-ik_1 + ik_2 + \eta)\Gamma(-ik_2 + \frac{1}{2} + \lambda + \eta)\Gamma(-ik_2 + \frac{1}{2} - \lambda + \eta)\Gamma(ik_2 + \frac{1}{2} + \lambda - \eta)} \times
\]

\[
3F_2 \left(\begin{array}{c} -\eta, ik_1 - ik_2 + \eta, ik_1 - ik_2 + \eta, \frac{1}{2} + \lambda + \xi - ik_2; \\ 1 - 2ik_2, \frac{1}{2} + \lambda - ik_2 + \eta : 1 \end{array} \right) +
\]

\[
\frac{\Gamma(-2ik_2)\Gamma(ik_1 + ik_2 + \eta)\Gamma(\frac{1}{2} + ik_2 - \lambda - \xi)}{\Gamma(-ik_1 - ik_2 + \eta)\Gamma(ik_2 + \frac{1}{2} + \lambda + \eta)\Gamma(ik_2 + \frac{1}{2} - \lambda + \eta)\Gamma(-ik_2 + \frac{1}{2} + \lambda - \eta)} \times
\]

\[
3F_2 \left(\begin{array}{c} ik_1 + ik_2 + \eta, -\eta, ik_1 + ik_2 + \eta, \frac{1}{2} + \lambda + \xi + ik_2; \\ 1 + 2ik_2, \frac{1}{2} + \lambda + ik_2 + \eta : 1 \end{array} \right) \right]
\]

Now inserting (18) and (19) in (11), and using formulae (50)-(58) in appendix A, we obtain for the prefactor (11) in the limit \(b \to 0 \)

\[
R_{\sigma_2, \beta_3} \left[\begin{array}{cc} \beta_2 & \beta_1 \\ \sigma_3 & \sigma_1 \end{array} \right] \to \left(\frac{4\pi \mu}{b^2} \right)^{(ik_2 - ik_1 - \eta)/2} 4(\pi b^2)^{-ik_1 + \lambda b\pi^{3/2}} \] \hspace{1cm} (26)

Combining (26) and (25) finally we obtain:

\[
C_{\beta_3, \beta_2, \beta_1}^{\sigma_3, \sigma_2, \sigma_1} \to C_{\sigma_2, \beta_3}^{\lambda \xi, \beta_1} =
\left(\frac{4\pi \mu}{b^2} \right)^{(ik_2 - ik_1 - \eta)/2} \frac{\Gamma(\frac{1}{2} + \lambda - ik_1)}{\sin \pi(ik_1 + \frac{1}{2} + \lambda)\Gamma(2ik_2)\Gamma(-2ik_1)\Gamma(\frac{1}{2} - ik_2 - \lambda - \xi)} \times
\]

\[\text{†probably up to some inessential numerical factors}\]
the Hamiltonian with the Morse potential \[20, 21\]. The corresponding eigenfunctions in the mini-superspace limit the boundary Liouville field theory is described by \[3\]. Matrix elements in the Morse potential in agreement with (17).

\[\lim_{\beta_2 \to 0} C_{k_2|\eta k_1}^{\lambda(-\eta)} = \delta(k_1 - k_2) + \left(\frac{4\pi \mu}{b^2}\right)^{-i k_1} \frac{\Gamma(2i k_1)}{\Gamma(-2i k_1)} \frac{\Gamma\left(\frac{1}{2} - \lambda - i k_1\right)}{\Gamma\left(\frac{1}{2} + \lambda + i k_1\right)} \delta(k_1 + k_2) \quad (29)\]
in agreement with (17).

3 Matrix elements in the Morse potential

In the mini-superspace limit the boundary Liouville field theory is described by the Hamiltonian with the Morse potential \[20\11\]. The corresponding eigenfunctions satisfy the Schrödinger equation:
\[-\frac{\partial^2 \psi}{\partial \phi^2} + \pi \mu e^{2b\phi_0} \psi + (M_1 + M_2)e^{b\phi_0} \psi = k^2 b^2 \psi \] \hspace{1cm} (30)

The relation between parameters \(M_i\) appearing in the Schrödinger equation and parameters \(\rho_i\) used in the previous section can be found using (18) and (5) and taking the limit \(b \to 0:\)

\[M_i = \sqrt{\frac{\mu}{\sin(\pi b^2)}} \sin \pi b^2(2\rho_i - 1) \to \pm \left(\frac{\mu \pi}{12}\right)^{1/2} b(2\rho_i - 1) \] \hspace{1cm} (31)

The solution of the eq. (30) is given by the Whittaker functions \(W_{\mu, \nu}(y)\) [31,32]:

\[
\psi = \mathcal{N} \left[e^{-y/2}y^{ik} \frac{\Gamma(-2ik)}{\Gamma \left(\frac{1}{2} - ik + \frac{M_1 + M_2}{2b\sqrt{\pi \mu}} \right)} _1F_1 \left(\frac{1}{2} + ik + \frac{M_1 + M_2}{2b\sqrt{\pi \mu}}, 1 + 2ik, y \right) + e^{-y/2}y^{-ik} \frac{\Gamma(2ik)}{\Gamma \left(\frac{1}{2} + ik + \frac{M_1 + M_2}{2b\sqrt{\pi \mu}} \right)} _1F_1 \left(\frac{1}{2} - ik + \frac{M_1 + M_2}{2b\sqrt{\pi \mu}}, 1 - 2ik, y \right) \right] \equiv \mathcal{N} W_{-\frac{M_1 + M_2}{2b\sqrt{\pi \mu}}, ik}(y)y^{-\frac{1}{2}} \] \hspace{1cm} (32)

where

\[y = \frac{2\sqrt{\pi \mu}}{b} e^{b\phi_0} \] \hspace{1cm} (33)

\(\mathcal{N}\) is the normalization and \(_1F_1(a, c, z)\) is the confluent hypergeometric function:

\[_1F_1(a, c, z) = \frac{\Gamma(c)}{\Gamma(a)} \sum_{n=0}^{\infty} \frac{\Gamma(a + n) z^n}{\Gamma(c + n) n!} \] \hspace{1cm} (34)

Now we wish to compute matrix element of the “vertex operator” \(e^{b\phi_0}\), between the wave functions corresponding to the boundary condition changing operators. According to this solution to the operator \(\Psi_{\sigma_1}^{\sigma_2}\) corresponds the wave function \(\mathcal{N}_1W_{\chi_1, ik_1}(y)y^{-\frac{1}{2}}\) with

\[\chi_1 = -\frac{M_1 + M_2}{2b\sqrt{\pi \mu}} = \pm \lambda \] \hspace{1cm} (35)

and to \(\Psi_{\sigma_3}^{\sigma_4}\) corresponds the wave function \(\mathcal{N}_2W_{\chi_2, ik_2}(y)y^{-\frac{1}{2}}\) with

\[\chi_2 = -\frac{M_1 + M_3}{2b\sqrt{\pi \mu}} = \pm (\lambda + \xi) \] \hspace{1cm} (36)
The corresponding integral can be found in [31, 32]:

\[M_{\eta k_1 k_2} = \mathcal{N}_1 \mathcal{N}_2^* \int_{-\infty}^{\infty} W_{\chi_1, ik_1}(y) y^{-\frac{\chi_1}{2}} W_{\chi_2, -ik_2}(y) y^{-\frac{\chi_2}{2}} e^{\eta b \phi_0} d\phi_0 = \] (37)

\[= \frac{\mathcal{N}_1 \mathcal{N}_2^*}{b} \left(\frac{4\pi \mu}{b^2} \right)^{-\eta/2} \left[\Gamma(i k_1 - i k_2 + \eta) \Gamma(-i k_1 - i k_2 + \eta) \Gamma(2i k_2) \right] \times \]

\[\frac{1}{\Gamma(\frac{1}{2} - \chi_2 + i k_2) \Gamma(\frac{1}{2} - \chi_1 - i k_2 + \eta)} \times \]

\[\begin{align*}
& \quad \left[3F_2 \left(-i k_1 - i k_2 + \eta, i k_1 - i k_2 + \eta, \frac{1}{2} - \chi_2 - i k_2; 1 - 2i k_2, \frac{1}{2} - \chi_1 - i k_2 + \eta : 1 \right) + \\
& \quad \Gamma(i k_1 + i k_2 + \eta) \Gamma(-i k_1 + i k_2 + \eta) \Gamma(-2i k_2) \right] \times \\
& \quad \left[3F_2 \left(i k_1 + i k_2 + \eta, -i k_1 + i k_2 + \eta, \frac{1}{2} - \chi_2 + i k_2; 1 + 2i k_2, \frac{1}{2} - \chi_1 + i k_2 + \eta : 1 \right) \right]
\end{align*} \]

Comparing (37) with (28) we see that they coincide if we set:

\[\chi_1 = -\lambda \] (38)

\[\chi_2 = -\lambda + \eta \] (39)

\[\mathcal{N}_1 = \frac{(4\pi \mu b^{-2})^{-ik_1/2} b^{1/2}}{\sin \pi \left(\frac{1}{2} + ik_1 + \lambda \right)} \frac{\Gamma \left(\frac{1}{2} + \lambda - i k_1 \right)}{\Gamma(-2i k_1)} \] (40)

\[\mathcal{N}_2 = \frac{1}{\pi} \frac{(4\pi \mu b^{-2})^{-ik_2/2} b^{1/2}}{\sin \pi \left(\frac{1}{2} + ik_2 - \lambda + \eta \right)} \frac{\Gamma \left(\frac{1}{2} + \lambda - \eta - i k_2 \right)}{\Gamma(-2i k_2)} \] (41)

This result leads us to the following conclusion on a role of the exponential operator \(e^{\eta b \phi_0} \). Combining (35) and (36) with lower signes, as indicating in (38) and (39), and also remembering (18) and (21) one has

\[\frac{M_3 - M_2}{2\sqrt{\pi \mu}} = b \xi = -b \eta = \sigma_2 - \sigma_3 \] (42)

Therefore recalling also that the exponential operator \(e^{\eta b \phi_0} \) should correspond to a boundary condition changing operator \(\Psi_{\beta_2}^{a_3 \sigma_2} \), this result implies that the operator \(e^{\eta b \phi_0} \) in the semiclassical limit produces change of the boundary condition given by (42).

It is instructive to compare the normalization of the wave functions found here with those used in [20]. For this purpose let us compute the matrix element...
for $\eta \to 0$ and $\chi_1 = \chi_2$. In this limit we obtain:

$$\mathcal{M}_{\chi_1 \chi_1}^{\chi_1 \chi_1} = \frac{\mathcal{N}_1 \mathcal{N}_2 b^{-1} \Gamma(2ik_1) \Gamma(-2ik_1)}{\Gamma(\frac{1}{2} - \chi_1 + ik_1) \Gamma(\frac{1}{2} - \chi_1 - ik_1)} \delta(k_1 - k_2) +$$

$$\frac{\mathcal{N}_1 \mathcal{N}_2 b^{-1} \Gamma(2ik_1) \Gamma(-2ik_1)}{\Gamma(\frac{1}{2} - \chi_1 - ik_1) \Gamma(\frac{1}{2} - \chi_1 + ik_1)} \delta(k_1 + k_2)$$

expression (43) again coincides with the two-point function (29). This was established in [20].

For $\chi_1, \chi_2, \mathcal{N}_1, \mathcal{N}_2$, chosen as in (38)-(41), with $\eta = 0$, expression (43) surely coincides with the two-point function (29). But note that for

$$\chi_1 = \lambda$$

$$\chi_2 = \lambda$$

$$\mathcal{N}_1 = (4\pi \mu b^{-2})^{-ik_1/2} b^{1/2} \frac{\Gamma(\frac{1}{2} - \lambda - ik_1)}{\Gamma(-2ik_1)}$$

$$\mathcal{N}_2 = (4\pi \mu b^{-2})^{-ik_2/2} b^{1/2} \frac{\Gamma(\frac{1}{2} - \lambda - ik_2)}{\Gamma(-2ik_2)}$$

expression (43) again coincides with the two-point function (29). This was established in [20].

This shows that passing from the one branch of the square root to another introduces additional sine factors in the normalization of the wave functions in a way to keep unchanged the two-point functions.

4 Conclusion

We discussed in this paper semiclassical properties of the boundary three-point functions. We found perfect agreement with the corresponding quantum mechanical calculations. The matching of the calculations required to consider the negative branch in the branched correspondence of the classical and quantum parameters. We show that passing from one branch to another leads to the change in the normalization of the wave functions. We also found the flip of the boundary conditions induced by the exponential operators in the minisuperspace limit.
Acknowledgments

This work was partially carried out while the second author G.S. was visiting the high energy section of the Abdus Salam ICTP, Trieste as a regular associate member. We thank George Jorjadze for many valuable discussions. We would like to give our special thanks to Sylvain Ribault for sharing with us his knowledge on the asymptotic behaviour of the double Gamma and Sine functions and sending his private notes. The work of both authors was partially supported by the Armenian SCS grant 15T-1C308.

A Double Gamma and double Sine functions

Here we review double Gamma $\Gamma_b(x)$ and double Sine $S_b(x)$ functions [24,25].

$\Gamma_b(x)$ can be defined by means of the integral representation

$$\log \Gamma_b(x) = \int_0^\infty \frac{dt}{t} \left[\frac{e^{-xt} - e^{-Qt/2}}{(1-e^{-bt})(1-e^{-t/b})} - \frac{(Q-2x)^2}{8e^t} - \frac{Q-2x}{t} \right].$$ (48)

It has the property:

$$\Gamma_b(x+b) = \sqrt{2\pi} b^{-\frac{1}{2}} \Gamma^{-1}(bx) \Gamma_b(x)$$ (49)

The double Sine function $S_b(x)$ may be defined in term of $\Gamma_b(x)$ as

$$S_b(x) = \frac{\Gamma_b(x)}{\Gamma_b(Q-x)}.$$ (50)

It has an integral representation:

$$\log S_b(x) = \int_0^\infty \frac{dt}{t} \left(\frac{\sinh t(Q-2x)}{2 \sinh bt \sinh b^{-1}t} - \frac{Q-2x}{2t} \right).$$ (51)

and the properties:

$$S_b(x+b) = 2 \sin(\pi bx) S_b(x)$$ (52)

$$S_b(x+1/b) = 2 \sin(\pi x/b) S_b(x)$$ (53)

For $b \to 0$ the double Gamma $\Gamma_b(x)$ and double Sine $S_b(x)$ functions have the asymptotic behaviour [10]:

$$S_b(bx) \to (2\pi b^2)^{-\frac{1}{2}} \Gamma(x)$$ (54)
\[S_b \left(\frac{1}{2b} + bx \right) \to 2^{x - \frac{1}{2}} \]
\[S_b \left(\frac{1}{b} + bx \right) \to \frac{2\pi(2\pi b^2)^{x - \frac{3}{2}}}{\Gamma(1 - x)} \]
\[\Gamma_b(bx) \to (2\pi b^3)^{\frac{1}{2}(x - \frac{1}{2})}\Gamma(x) \]
\[\Gamma_b(Q - bx) \to \sqrt{2\pi}(2\pi b)^{\frac{1}{2}(\frac{3}{2} - x)} \]

\[G_{3,2} \left(\frac{1}{2b} + bx \right) \to 2^{x - \frac{1}{2}} \]
\[G_{3,2} \left(\frac{1}{b} + bx \right) \to \frac{2\pi(2\pi b^2)^{x - \frac{3}{2}}}{\Gamma(1 - x)} \]
\[\Gamma(bx) \to (2\pi b^3)^{\frac{1}{2}(x - \frac{1}{2})}\Gamma(x) \]
\[\Gamma(Q - bx) \to \sqrt{2\pi}(2\pi b)^{\frac{1}{2}(\frac{3}{2} - x)} \]

B Meijer G-function

The Meijer G-function can be defined via the integral [31]:

\[G_{m,n}^{p,q} \left(x \middle| a_1, \ldots, a_p \middle| b_1, \ldots, b_q \right) = \frac{1}{2\pi i} \int \frac{\prod_{j=1}^m \Gamma(b_j - s) \prod_{j=1}^n \Gamma(1 - a_j + s) x^s}{\prod_{j=m+1}^q \Gamma(1 - b_j + s) \prod_{j=n+1}^p \Gamma(a_j - s)} ds \]

In this paper we will consider the \(G_{3,2}^{3,3} \) function. It admits the decomposition [31]:

\[G_{3,3}^{3,2} \left(x \middle| a_1, a_2, a_3 \middle| b_1, b_2, b_3 \right) = \frac{\Gamma(a_1 - a_2)\Gamma(1 + b_1 - a_1)\Gamma(1 + b_2 - a_1)\Gamma(1 + b_3 - a_1) x^{a_1 - 1}}{\Gamma(1 + a_3 - a_1)} \]
\[\times \ _3 F_2 \left(\frac{1 + b_1 - a_1, 1 + b_2 - a_1, 1 + b_3 - a_1}{1 + a_2 - a_1, 1 + a_3 - a_1; x^{-1}} \right) + \frac{\Gamma(a_2 - a_1)\Gamma(1 + b_1 - a_2)\Gamma(1 + b_2 - a_2)\Gamma(1 + b_3 - a_2) x^{a_2 - 1}}{\Gamma(1 + a_3 - a_2)} \]
\[\times \ _3 F_2 \left(\frac{1 + b_1 - a_2, 1 + b_2 - a_2, 1 + b_3 - a_2}{1 + a_1 - a_2, 1 + a_3 - a_2; x^{-1}} \right) \]

Here \(_3 F_2 \) is the generalized hypergeometric function:

\[_3 F_2 \left(\frac{a, b, c;}{d, e : x} \right) = \sum_{n=0}^{\infty} \frac{(a)_n(b)_n(c)_n x^n}{(d)_n(e)_n n!} \]

where

\[(a)_n = \frac{\Gamma(a + n)}{\Gamma(a)} \]

14
is the Pochhammer symbol. We will need also the following property of the Meijer G-function:

\[
x^\xi G_{3,3}^{3,2} \left(\begin{array}{c} a_1, a_2, a_3 \\ b_1, b_2, b_3 \end{array} \right) = G_{3,3}^{3,2} \left(\begin{array}{c} a_1 + \xi, a_2 + \xi, a_3 + \xi \\ b_1 + \xi, b_2 + \xi, b_3 + \xi \end{array} \right)
\] (62)

C $3F_2$ and $2F_1$ hypergeometric functions with unit argument

The $3F_2$ function with the unit argument satisfies the identities [26][28]

\[
3F_2 \left(\begin{array}{c} a, b, c \\ d, e : 1 \end{array} \right) = \frac{\Gamma(1-a)\Gamma(d)\Gamma(e)\Gamma(c-b)}{\Gamma(e-b)\Gamma(d-b)\Gamma(1+b-a)\Gamma(1+c-a)\Gamma(b)} 3F_2 \left(\begin{array}{c} b, 1+b-d, 1+b-e; \\ 1+b-c, 1+b-a : 1 \end{array} \right) + \frac{\Gamma(1-a)\Gamma(d)\Gamma(e)\Gamma(b-c)}{\Gamma(e-c)\Gamma(d-c)\Gamma(1+c-a)\Gamma(b)} 3F_2 \left(\begin{array}{c} c, 1+c-e, 1+c-d; \\ 1+c-b, 1+c-a : 1 \end{array} \right)
\] (63)

\[
3F_2 \left(\begin{array}{c} a, b, c \\ d, e : 1 \end{array} \right) = \frac{\Gamma(d)\Gamma(d+e-a-b-c)}{\Gamma(d-a)\Gamma(d+e-b-c)} 3F_2 \left(\begin{array}{c} e-c, e-b, a; \\ d+e-b-c, e : 1 \end{array} \right)
\] (64)

Note that if one of the “upper” arguments of the $3F_2$ function coincide with one of the “lower” argument it reduces to $2F_1$ function:

\[
2F_1 \left(\begin{array}{c} a, b; \\ c : x \end{array} \right) = \sum_{n=0}^{\infty} \frac{(a)_n(b)_n}{(c)_n} \frac{x^n}{n!}
\]

$2F_1$ function with unit argument is equal to:

\[
2F_1 \left(\begin{array}{c} a, b; \\ c : 1 \end{array} \right) = \frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)}
\] (65)

References

[1] E. Hijano, P. Kraus, E. Perlmutter and R. Snively, “Semiclassical Virasoro Blocks from AdS$_3$ Gravity,” JHEP 1512 (2015) 077 [arXiv:1508.04987]

[2] K. B. Alkalaev and V. A. Belavin, “Classical conformal blocks via AdS/CFT correspondence,” JHEP 1508 (2015) 049 [arXiv:1504.05943]
[3] A. L. Fitzpatrick, J. Kaplan and M. T. Walters, “Virasoro Conformal Blocks and Thermality from Classical Background Fields,” JHEP 1511 (2015) 200 arXiv:1501.05315.

[4] A. Mironov and A. Morozov, “Proving AGT relations in the large-c limit,” Phys. Lett. B 682 (2009) 118 arXiv:0909.3531.

[5] V. Fateev and S. Ribault, “The Large central charge limit of conformal blocks,” JHEP 1202 (2012) 001 arXiv:1109.6764.

[6] N. Hama and K. Hosomichi, “AGT relation in the light asymptotic limit,” JHEP 1310 (2013) 152 arXiv:1307.8174.

[7] M. Piatek, “Classical torus conformal block, $\mathcal{N} = 2^*$ twisted superpotential and the accessory parameter of Lam equation,” JHEP 1403 (2014) 124 arXiv:1309.7672.

[8] H. Poghosyan, “The light asymptotic limit of conformal blocks in $\mathcal{N} = 1$ super Liouville field theory,” JHEP 1709 (2017) 062, arXiv:1706.07474.

[9] H. Poghosyan, R. Poghossian and G. Sarkissian, “The light asymptotic limit of conformal blocks in Toda field theory,” JHEP 1605 (2016) 087 arXiv:1602.04829.

[10] S. Ribault, “Boundary three-point function on AdS$_2$ D-branes,” JHEP 0801 (2008) 004 arXiv:0708.3028.

[11] S. Ribault, “Minisuperspace limit of the AdS$_3$ WZNW model,” JHEP 1004 (2010) 096 arXiv:0912.4481.

[12] V. Fateev and S. Ribault, “Conformal Toda theory with a boundary,” JHEP 1012 (2010) 089 arXiv:1007.1293.

[13] H. Poghosyan and G. Sarkissian, “On classical and semiclassical properties of the Liouville theory with defects,” JHEP 1511 (2015) 005 arXiv:1505.00366.

[14] T. G. Mertens, G. J. Turiaci and H. L. Verlinde, “Solving the Schwarzian via the Conformal Bootstrap,” JHEP 1708 (2017) 136, arXiv:1705.08408.

[15] E. Braaten, T. Curtright, G. Ghandour and C. B. Thorn, “Nonperturbative Weak Coupling Analysis of the Quantum Liouville Field Theory,” Annals Phys. 153 (1984) 147.
[16] E. Braaten, T. Curtright and C. B. Thorn, “An Exact Operator Solution of the Quantum Liouville Field Theory,” Annals Phys. 147 (1983) 365.

[17] C. B. Thorn, “Liouville perturbation theory,” Phys. Rev. D 66 (2002) 027702 hep-th/0204142

[18] H. Dorn and H. J. Otto, “Two and three point functions in Liouville theory,” Nucl. Phys. B 429 (1994) 375 arXiv:hep-th/9403141

[19] A. B. Zamolodchikov and A. B. Zamolodchikov, “Structure constants and conformal bootstrap in Liouville field theory,” Nucl. Phys. B 477 (1996) 577 arXiv:hep-th/9506136.

[20] Z. Bajnok, C. Rim and A. Zamolodchikov, “Sinh-Gordon boundary TBA and boundary Liouville reflection amplitude,” Nucl. Phys. B 796 (2008) 622 arXiv:0710.4789.

[21] H. Dorn and G. Jorjadze, “Operator Approach to Boundary Liouville Theory,” Annals Phys. 323 (2008) 2799 arXiv:0801.3206.

[22] V. Fateev, A. B. Zamolodchikov and A. B. Zamolodchikov, “Boundary Liouville field theory. 1. Boundary state and boundary two point function,” hep-th/0001012.

[23] B. Ponsot and J. Teschner, “Boundary Liouville field theory: Boundary three point function,” Nucl. Phys. B 622 (2002) 309 hep-th/0110244.

[24] E. W. Barnes, “Theory of the double gamma function”, Phil. Trans. Roy. Soc A196 (1901) 265-388

[25] T. Shintani, “On a Kronecker limit formula for real quadratic fields”, J. Fac. Sci. Univ. Tokyo Sect. 1A Math. 24 (1977) 167-199.

[26] L. J. Slater, “Generalized Hypergeometric Functions”, Cambridge, England: Cambridge University Press, (1966).

[27] W. N. Bailey, “Generalised Hypergeometric Series”, New York and London: Stechert-Hafner Service Agency, (1964).

[28] F. J. W. Whipple, “A group of generalized hypergeometric series: relations between 120 allied series of the type $F[a, b, c; d, e]$”, Proc. London Math. Soc. (2), 23 (1925), 104-114.
[29] J. Teschner, "On boundary perturbations in Liouville theory and brane dynamics in noncritical string theories," JHEP 0404 (2004) 023 [hep-th/0308140].

[30] J. Teschner, "Remarks on Liouville theory with boundary," PoS tmr 2000 (2000) 041 [hep-th/0009138].

[31] I. S. Gradshteyn, I. M. Ryzhik, “Table of Integrals, Series, and Products”, Academic Press, (2015).

[32] H. Bateman, “Tables of integral Transforms” (A. Erdélyi, Ed.), Vol. II, McGraw-Hill, New York, (1954).