THE NONEXISTENCE OF EXPANSIVE POLYCYCLIC GROUP ACTIONS ON THE CIRCLE $S^1$

ENHUI SHI, SUHUA WANG, ZHIWEN XIE, AND HUI XU

Abstract. We show that the circle $S^1$ admits no expansive polycyclic group actions.

1. Introduction

Expansivity is closely related to the structural stability in differential dynamical systems. Which spaces can admit an expansive homeomorphism has been intensively studied. It is known that the Cantor set, the 2-adic solenoid, and the tori $T^n$ with $n \geq 2$ admit expansive homeomorphisms. O’Brien and Reddy showed that every compact orientable surface of positive genus admits an expansive homeomorphism [18]. However, the circle admits no expansive homeomorphisms [5]. It was proved by Kato and Mouron that several classes of one-dimensional continua admit no expansive homeomorphisms [6, 7, 14, 15]. Hiraide obtained the nonexistence of expansive homeomorphisms on the sphere $S^2$ (see [4]). Mañé showed that no infinite dimensional compact metric space admits an expansive homeomorphism, and no compact metric space with positive dimension admits a minimal expansive homeomorphism [11]; the latter result of Mañé was extended to the case of pointwise recurrence by Shi, Xu, and Yu very recently [21].

T. Ward once asked whether the circle $S^1$ can admit an expansive nilpotent group action. This question was answered in negative by Connell, Furman, and Hurder using the technique of semi-ping-pong in an unpublished paper, which is also implied by Margulis’ work when the action is minimal [12]. Mai, Shi, and Wang showed the nonexistence of expansive actions by commutative or nilpotent groups on Peano continua with a free dendrite [10, 23]. Recently, Liang, Shi, Xu, and Xie showed that if the group $G$ is of subexponential growth and $X$ is a Suslinian continuum, then $G$ cannot act on $X$ expansively [8]. Contrary to the case of $\mathbb{Z}$ action, Shi and Zhou constructed an expansive $\mathbb{Z}^2$ action on an infinite dimensional continuum [24]; Meyerovitch and Tsukamoto constructed a minimal expansive $\mathbb{Z}^2$ action on a compact metric space $X$ with $\dim(X) > 0$ (see [13]). Mouron constructed for each positive integer $n$, a continuum $X$ which admits an expansive $\mathbb{Z}^{n+1}$ action but admits no expansive $\mathbb{Z}^n$ actions [16]. These examples indicate that there are essential differences between expansive $\mathbb{Z}$ actions and expansive $\mathbb{Z}^n$ actions with $n > 1$. One may consult [1, 2, 9] for some interesting studies around expansive $\mathbb{Z}^n$ actions and consult [22] for an application of expansive $\mathbb{Z}^2$ actions to Ramsey theory.

The aim of the paper is to continue the study of the existence of expansive group actions on continua. Explicitly, we obtain the following theorem.

Theorem 1.1. The circle $S^1$ admits no expansive polycyclic group actions.

2010 Mathematics Subject Classification. 54H20, 37B20.

Key words and phrases. expansivity, polycyclic group, topological transitivity, circle.
Here we give some remarks on the condition in the main theorem. It is known that a polycyclic group may have exponential growth. In fact, Wolf showed that a polycyclic group is either virtually nilpotent or has exponential growth [25]. Thus Theorem 1.1 is not implied by the main theorem in [8]. In addition, Rosenblatt proved that every finitely generated solvable group either is virtually nilpotent or contains a free non-abelian subsemigroup [20]. So a non-virtually-nilpotent polycyclic group must contain a free non-abelian subsemigroup; and thus the argument of using semi-pong-pong technique does not work in this case. The proof of Theorem 1.1 relies on a detailed description of the structure of any expansive subgroup of Homeo([0, 1]) and the existence of quasi-invariant Radon measure for any polycyclic subgroup of Homeo(ℝ) established by Plante [19]. At last, we should note that there does exist an expansive solvable group action on [0, 1] (and so does on S¹) (see e.g. [24]).

2. Existence of minimal open intervals

Let us first recall some definitions around group actions. Given a group $G$ and a topological space $X$, let $\text{Homeo}(X)$ be the homeomorphism group of $X$. A group homomorphism $\phi : G \to \text{Homeo}(X)$ is called a continuous action of $G$ on $X$; we use the symbol $(X, G, \phi)$ to denote this action and also call it a dynamical system. For brevity, we usually use $gx$ or $g(x)$ instead of $\phi(g)(x)$ and use $(X, G)$ instead of $(X, G, \phi)$ if no confusion occurs. For $x \in X$, the set $Gx := \{gx : g \in G\}$ is called the orbit of $x$ under the action of $G$; if $Gx = \{x\}$, then $x$ is called a fixed point of $G$; if $Gx$ is finite, then $x$ is called a periodic point of $G$; if $Gx$ is dense in $X$, then the action $(X, G)$ is called topologically transitive and $x$ is called a topologically transitive point of $(X, G)$; if every point of $X$ is transitive, then $(X, G)$ is called minimal. A subset $E$ of $X$ is said to be $G$-invariant if $Gx \subseteq E$ for every $x \in E$; thus if $E$ is $G$-invariant, we naturally get a restriction action $(E, G|_E)$ of $G$ on $E$; $(E, G|_E)$ is called a subaction or a subsystem of $(X, G)$. It is well known that if $X$ is a Polish space and $G$ is countable, then $(X, G)$ is topologically transitive if and only if for every nonempty open sets $U, V$ in $X$, there is some $g \in G$ such that $gU \cap V \neq \emptyset$; if $X$ is a compact metric space, $(X, G)$ is minimal if and only if it contains no proper closed subsystem. If $X$ is a compact metric space with metric $d$, then the action $(X, G)$ is called expansive if there is some $c > 0$ such that for every $x \neq y \in X$, there is some $g \in G$ such that $d(gx, gy) > c$; such $c$ is called an expansivity constant of $(X, G)$.

**Lemma 2.1.** Let $G$ be a countable group acting continuously on the closed interval $[0, 1]$. If the action is expansive, then there is a $G$-invariant nonempty open set $U$ in $[0, 1]$ such that the subsystem $(U, G|_U)$ is topologically transitive.

**Proof.** Let $c > 0$ be an expansivity constant for the action $([0, 1], G)$. Take $0 = x_1 < x_2 < \cdots < x_{n-1} < x_n = 1$ such that $x_{i+1} - x_i < c$ for each $i$. Set $A = \bigcup_{i=1}^{n} Gx_i$. Then $A$ is a $G$-invariant closed subset in $[0, 1]$. If for each $i$, $\overline{Gx_i}$ is nowhere dense, then $A$ is nowhere dense. Thus $[0, 1] \setminus A$ is nonempty and open. Choose $x \neq y$ in the same connected component of $[0, 1] \setminus A$. Then $|gx - gy| < c$ for each $g \in G$, which contradicts the expansivity of $([0, 1], G)$. So there exists some $i_0$ such that the interior $U$ of $\overline{Gx_{i_0}}$ is nonempty. Clearly, $U$ is $G$-invariant and $(U, G|_U)$ is topologically transitive. \qed

The following lemma is well known and easy to be checked.
Lemma 2.2. Let $X$ be a compact metric space and let $G$ be a group acting continuously on $X$. Suppose $H$ is a finite index subgroup of $G$. If $(X,G)$ is expansive, then so is the subgroup action $(X,H)$.

Proposition 2.3. Let $G$ be a group acting continuously on the closed interval $[0,1]$. If the action is expansive, then there is a subgroup $H$ of $G$ and an $H$-invariant open interval $(a,b)$ in $[0,1]$ such that the restriction action $((a,b),H|_{(a,b)})$ is minimal and $([a,b],H|_{[a,b]})$ is expansive.

Proof. Fix an expansivity constant $c > 0$ for the action $([0,1],G)$. By Lemma 2.1, we can take a $G$-invariant nonempty open set $U$ in $[0,1]$ with $(U,G|_U)$ being topologically transitive. Let $NT(U)$ be the set of all nontransitive points of $(U,G|_U)$.

Claim A. $U \setminus NT(U)$ is nonempty. Otherwise, we can take $x_1 < x_2 < \cdots < x_n$ in $NT(U)$ such that each connected component of $U \setminus \{x_1, x_2, \cdots, x_n\}$ has diameter less than $c$. Since each $x_i$ is a nontransitive point, the closure $Gx_i$ contains no interior point. Thus $U \setminus \cup_{i=1}^n Gx_i$ is nonempty and $G$-invariant. Take a connected component $A$ of $U \setminus \cup_{i=1}^n Gx_i$. Then the diameter $\text{diam}(gA) < c$ for each $g \in G$. This contradicts the expansivity of $([0,1],G)$. Thus Claim A holds.

From Claim A, we can take a maximal open interval $(a,b)$ in $U \setminus NT(U)$. Let $H = \{g \in G : g(a,b) = (a,b)\}$.

Claim B. $([a,b],H|_{[a,b]})$ is minimal. In fact, from the maximality of $(a,b)$, we have $g(a,b) \cap (a,b) = \emptyset$ for every $g \in G \setminus H$. This together with the topological transitivity of $(U,G|_U)$ implies Claim B.

Claim C. $([a,b],H|_{[a,b]})$ is expansive. This is clear if $H$ has finite index in $G$ by Lemma 2.2. So we may assume that the index $[G:H] = \infty$. Let $G = \cup_{i=1}^\infty g_iH$ be the coset decomposition of $G$ with respect to $H$. Then the sets $g_iU(i = 1,2,\cdots)$ are pairwise disjoint. Thus there is some $N > 0$ such that $\operatorname{diam}(g_iU) < c$ for all $i > N$. By the uniform continuity, there is some $\delta > 0$ such that $|g_ix - g_iy| < c$ for $i = 1,2,\cdots,N$, whenever $|x-y| < \delta$. If $([a,b],H|_{[a,b]})$ is not expansive, then there are $x' \neq y' \in [a,b]$ with $|g_ix' - g_iy'| < \delta$ for each $g \in H$. Thus $|g_ix' - g_iy'| \leq c$ for all $g \in G$. This contradicts the expansivity of $G$.

We complete the proof from Claim B and Claim C. □

3. Minimal polycyclic subgroups of $\text{Homeo}(\mathbb{R})$

Recall that a group $G$ is polycyclic if it has a subnormal decreasing series $G = N_0 \triangleright N_1 \triangleright \cdots \triangleright N_n \triangleright N_{n+1} = \{e\}$ such that $N_i/N_{i+1}$ is cyclic for each $i \geq 0$. It is known that every finitely generated nilpotent group is polycyclic and every polycyclic group is solvable; every subgroup and every quotient group of a polycyclic group is polycyclic. One may consult [3] for a detailed introduction to polycyclic groups.

The following proposition can be seen in [25].

Proposition 3.1. A solvable group $G$ is polycyclic if and only if every subgroup of $G$ is finitely generated.

Let $\mathbb{R}$ be the real line. For $a \in \mathbb{R} \setminus \{0\}$ and $b \in \mathbb{R}$, define the affine transformation $A_{a,b} : \mathbb{R} \to \mathbb{R}$ by $A_{a,b}(x) = ax + b$ for all $x \in \mathbb{R}$. Set $\text{Aff}(\mathbb{R}) = \{A_{a,b} : a \in \mathbb{R} \setminus \{0\}, b \in \mathbb{R}\}$. 

Then \( \text{Aff}(\mathbb{R}) \) is a solvable group and is called the affine transformation group on \( \mathbb{R} \). It is known that \( \text{Aff}(\mathbb{R}) \) consists of the homeomorphisms \( f \) on \( \mathbb{R} \) satisfying that \( |f(x) - f(y)| = c|x - y| \) for some \( c = c(f) > 0 \) and for all \( x, y \in \mathbb{R} \).

**Lemma 3.2.** Let \( G \) be a subgroup of \( \text{Aff}(\mathbb{R}) \). If \( G \) contains an \( A_{a,c} \) with \( |a| \neq 1, c \in \mathbb{R} \) and an \( A_{1,b} \) with \( b \neq 0 \), then \( G \) cannot be polycyclic.

**Proof.** WLOG, we may assume that \( G \) contains an element of the form \( A_{a,0} \); otherwise, we need only consider a conjugation of \( G \) by the translation \( L := A_{1,a}^{-1} \) on \( \mathbb{R} \) \((LA_{a,c}L^{-1} = A_{a,0} \text{ and } LA_{1,b}L^{-1} = A_{1,b})\). It is easy to check that \( A_{a,0}A_{1,b}A_{a,0}^{-1} = A_{1,ab} \). From this we see that the set \( S := \{A_{1,a}^nb : m \in \mathbb{Z}\} \) is contained in \( G \). Since the subgroup \( \langle S \rangle \) generated by \( S \) is not finitely generated, \( G \) is not polycyclic by Proposition 3.1. \( \square \)

Let \( X \) be a topological space and let \( G \) be a group acting on \( X \). A Borel measure \( \mu \) on \( X \) is called a Radon measure if it is finite on every compact subset of \( X \); it is called quasi-invariant if for every \( g \in G \) there is some \( c(g) > 0 \) such that \( \mu(g^{-1}A) = c(g)\mu(A) \) for every Borel subset \( A \) in \( X \); it is called invariant if \( c(g) = 1 \) for every \( g \in G \). Clearly, if \( \mu \) is quasi-invariant, then \( c(g_1g_2) = c(g_1)c(g_2) \) for every \( g_1, g_2 \in G \).

The following theorem is due to Plante [19].

**Theorem 3.3.** Let \( G \) be a polycyclic group acting continuously on the real line \( \mathbb{R} \). Then there is a nontrivial \( G \)-quasi-invariant Radon measure \( \mu \) on \( \mathbb{R} \). (Here, “nontrivial” means \( \mu(A) > 0 \) for some Borel set \( A \).)

Two actions \( (X, G, \phi) \) and \( (Y, G, \psi) \) are said to be topologically conjugate if there is a homeomorphism \( h : X \to Y \) such that \( h(\phi(g)(x)) = \psi(g)(h(x)) \) for every \( x \in X \) and \( g \in G \).

The following proposition clarifies the structure of minimal actions on \( \mathbb{R} \) by polycyclic groups.

**Proposition 3.4.** Let \( G \) be a polycyclic group and let \( \phi : G \to \text{Homeo}(\mathbb{R}) \) be a continuous action. If \( (\mathbb{R}, G, \phi) \) is minimal, then \( (\mathbb{R}, G, \phi) \) is topologically conjugate to an action \( (\mathbb{R}, G, \psi) \) with each element of \( \psi(G) \) being isometric.

**Proof.** From Theorem 3.3, we can take a nontrivial \( G \)-quasi-invariant Radon measure \( \mu \) on \( \mathbb{R} \). Now we define a map \( h : \mathbb{R} \to \mathbb{R} \) as does in [19]:

\[
h(x) = \begin{cases} 
\mu([0,x]), & x \geq 0; \\
-\mu([x,0]), & x < 0. 
\end{cases}
\]

Since \( (\mathbb{R}, G, \phi) \) is minimal, the support \( \text{supp}(\mu) = \mathbb{R} \). Furthermore, \( \mu \) contains no atoms by the minimality of \( G \) and quasi-invariance of \( \mu \) (see the appendix). These imply that \( h \) is a homeomorphism. From the quasi-invariant of \( \mu \), we see that for each \( g \in G \), \( hgh^{-1} \) is an affine transformation on \( \mathbb{R} \). Now define a action \( \psi : G \to \text{Homeo}(\mathbb{R}) \) by \( \psi(g) = hgh^{-1} \) for each \( g \in G \).

By the definition of polycyclic group, there is a subnormal decreasing series \( G = N_0 \triangleright N_1 \triangleright \cdots \triangleright N_n \triangleright N_{n+1} = \{e\} \) such that \( N_i/N_{i+1} \) is cyclic for each \( i \geq 0 \). Take \( g_i \in N_i \setminus N_{i+1} \) such that \( N_i/N_{i+1} = \langle g_iN_{i+1} \rangle \). Thus for each \( i \geq 0 \), \( N_i = \langle g_i, g_{i+1}, \cdots, g_n \rangle \). Let \( f_i = \psi(g_i) = A_{a_i,b_i} \) for each \( i \geq 0 \) and for some \( a_i, b_i \in \mathbb{R} \).
Assume to the contrary that there is some \( i_0 \in \{0, 1, \ldots, n\} \) such that \( f_{i_0} \) is not isometric and for each \( i_0 < i \leq n \), \( f_i \) is isometric; that is \( |a_{i_0}| \neq 1 \) and \( |a_i| = 1 \) for \( i > i_0 \). Since \( \psi(G) \) is polycyclic, from Lemma 3.2, either \( f_i = A_{-1,b_i} \) or \( f_i = A_{1,0} \) for each \( i > i_0 \).

**Case 1.** There is \( i_1 > i_0 \) such that \( f_{i_1} = A_{-1,b_{i_1}} \) and \( f_i = A_{1,0} \) for all \( i > i_1 \). Then \( f_{i_1} \) has a unique fixed point \( c = b_{i_1}/2 \), which is also a fixed point of \( f_i \) with \( i < i_1 \) by the normality of \( N_{i_1} \). Thus \( c \) is a fixed point of \( \psi(G) \). This contradicts the minimality of the action \((\mathbb{R}, G, \psi)\).

**Case 2.** For each \( i > i_0 \), \( f_i = A_{1,0} \). Thus the unique fixed point \( x = b_{i_0}/(1 - a_{i_0}) \) of \( f_{i_0} \) is also a fixed point of \( f_i \) with \( i < i_0 \) by the normality of \( N_{i_0} \). Thus \( x \) is the fixed point of \( \psi(G) \), which contradicts the minimality of \((\mathbb{R}, G, \psi)\) again.

So the assumption is false and each \( f_i \) is isometric. Hence each element of \( \psi(G) \) is isometric.

4. **Proof of the main theorem**

In this section, we will prove the main theorem. We first establish the nonexistence of expansive polycyclic group actions on the interval \([0, 1]\) in the following proposition.

**Proposition 4.1.** The closed interval \([0, 1]\) admits no expansive polycyclic group actions.

**Proof.** Assume to the contrary that there is an expansive action \((([0, 1], G, \phi))\) by a polycyclic group \( G \). By Proposition 2.3, there is an open interval \((a,b)\) in \([0,1]\) and a subgroup \( H \) of \( G \) such that \((a,b)\) is \( H \)-invariant and the restriction action \(([a,b], H_{|a,b})\) is minimal and \(([a,b], H_{|[a,b]})\) is expansive. Let \( c > 0 \) be an expansivity constant for the action \(([a,b], H_{|[a,b]})\). Notice that \( H \) is still polycyclic. Applying Proposition 3.4, there is an orientation-preserving homeomorphism \( \xi : (0,1) \to \mathbb{R} \) such that for every \( g \in H \), \( \xi \phi(g) \xi^{-1} \) is an isometric transformation on \( \mathbb{R} \). Take \( a < a' < b' < b \) such that \( a' - a < c \) and \( b - b' < c \). Let \( A' = \xi(a') \) and \( B' = \xi(b') \). By uniform continuity, there is \( \delta > 0 \), such that for every \( x, y \in [A' - 1, B' + 1] \) with \(|x - y| < \delta\), we always have \(|\xi^{-1}(x) - \xi^{-1}(y)| < c\). Take \( u, v \in \mathbb{R} \) with \(|u - v| < \min\{1, \delta\}\). Then for every \( g \in H \), by the isometry of \( \xi \phi(g) \xi^{-1} \), we have

\[
|\phi(g)(\xi^{-1}(u)) - \phi(g)(\xi^{-1}(v))| = |\xi^{-1}(\xi \phi(g) \xi^{-1})(u) - \xi^{-1}(\xi \phi(g) \xi^{-1})(v)| < c.
\]

This contradicts the expansivity of \(([a,b], H_{|[a,b]})\).

The following proposition can be seen in [17].

**Proposition 4.2.** Let a group \( G \) act continuously on the circle \( \mathbb{S}^1 \) and let \( \Lambda \) be a minimal closed subset of \((\mathbb{S}^1, G)\). Then there are three case: (a) \( \Lambda = \mathbb{S}^1 \); (b) \( \Lambda \) is a Cantor set; (c) \( \Lambda \) is finite.

**Proof of Theorem 1.1.** Assume to the contrary that there is an expansive action on \( \mathbb{S}^1 \) by a polycyclic group \( G \). Let \( \Lambda \) be a minimal closed set for the action. From Proposition 4.2, we discuss into three cases.

**Case 1.** \( \Lambda = \mathbb{S}^1 \). By the amenability of polycyclic groups, there is a \( G \)-invariant probability Borel measure \( \mu \) on \( \mathbb{S}^1 \). Since \((\mathbb{S}^1, G)\) is minimal, the support \( \text{supp} \mu = \mathbb{S}^1 \) and \( \mu \) has no atoms. Thus similar to the construction of \( h \) in Proposition 3.4, we see that \((\mathbb{S}^1, G)\)
is topologically conjugate to an isometric action of \( G \) on \( \mathbb{S}^1 \). So, \( (\mathbb{S}^1, G) \) is not expansive. This is a contradiction.

**Case 2.** \( \Lambda \) is a Cantor set. Take a maximal interval \((\alpha, \beta)\) in \( \mathbb{S}^1 \setminus \Lambda \). Let \( H = \{ g \in G : g(\alpha, \beta) = (\alpha, \beta) \} \). Then \( H \) is a subgroup of \( G \) with index \([G : H] = \infty\). Similar to the proof of Claim C in Proposition 2.3, we see that \((\alpha, \beta), H|_{(\alpha, \beta)} \) is expansive. This contradicts Proposition 4.1.

**Case 3.** \( \Lambda \) is finite. Fix a maximal interval \((\alpha, \beta)\) in \( \mathbb{S}^1 \setminus \Lambda \). Let \( H = \{ g \in G : g(\alpha, \beta) = (\alpha, \beta) \} \). Then \([G : H] < \infty\). If the number of \( \Lambda \) is greater than 1, then \((\alpha, \beta), H|_{(\alpha, \beta)} \) is expansive by Lemma 2.2. This contradicts Proposition 4.1. If \( \Lambda \) consists of only one point, say \( O \). We view \( \mathbb{S}^1 \) as the quotient of \([0, 1]\) by collapsing the two endpoints \( \{0, 1\} \) to one point \( O \). Then the action of \( H \) on \( \mathbb{S}^1 \) can be naturally lifted to an action on \([0, 1]\).

Clearly, the lifting action is still expansive. This contradicts Proposition 4.1 again.

All together, we see that the assumption is false and thus complete the proof. \(\square\)

5. APPENDIX

In this section, we will explain why the measure \( \mu \) appearing in Proposition 3.4 has no atoms. Though this fact is well known to experts, it is hard to find the proof from literature. So we give a detailed proof here.

**Lemma 5.1.** Let \( G \) be a subgroup of \( \text{Homeo}_+(\mathbb{R}) \) admitting a quasi-invariant Radon measure \( \mu \). If the action of \( G \) is minimal, then \( \mu \) is atom-free.

**Proof.** By the quasi-invariance, there is a group homomorphism \( c : G \to (0, +\infty) \) from \( G \) to the multiplication group of positive real numbers such that \( g_*\mu = c(g)\mu \) for each \( g \in G \).

Clearly, \( \mu \) is \( G \)-invariant if and only if \( c(g) = 1 \) for each \( g \in G \).

If \( \mu \) is \( G \)-invariant, then it has no atoms by the minimality of the action and the local finiteness of \( \mu \). Now suppose that \( x \in \mathbb{R} \) is an atom of \( \mu \). Then \( \mu \) is not \( G \)-invariant and hence there is some \( f \in G \) with \( c(f) \neq 1 \).

**Claim 1.** For each \( g \in G \setminus \{e\} \), \( g \) has at most one fixed point.

Otherwise, there is a maximal finite open interval \((a, b)\) of \( \mathbb{R} \setminus \text{Fix}(g) \). By the minimality, there is some \( h \in G \) such that \( hx \in (a, b) \). Then \( g^nhx \in (a, b) \) for each \( n \in \mathbb{Z} \). Thus

\[
\mu([a, b]) \geq \sum_{n \in \mathbb{Z}} \mu(g^nhx) = \sum_{n \in \mathbb{Z}} c(g)^nc(h^{-1})\mu(x) = \infty,
\]

which contradicts the local finiteness of \( \mu \).

**Claim 2.** For each \( g \in G \setminus \{\text{id}\} \), \( c(g) \neq 1 \).

To the contrary, assume \( c(g) = 1 \) for some nontrivial element \( g \in G \).

(1) If \( g \) has no fixed point, then we may assume that \( g(y) > y \) for any \( y \in \mathbb{R} \). Pick \( a \in \mathbb{R} \) and we have \( \mathbb{R} = \bigcup_{n \in \mathbb{Z}} [g^n a, g^{n+1} a] \). Since \( c(g) = 1 \), the measure of \([g^n a, g^{n+1} a] \) is independent of \( n \), saying a positive constant \( \lambda > 0 \). Recall that \( c(f) \neq 1 \). We may assume that \( c(f) > 1 \) by replacing \( f \) with \( f^{-1} \). For sufficiently large \( N \), we have

\[
\mu([f^{-N}x]) = (f\mu)(\{x\}) = c(f)^N \mu(\{x\}) > \lambda.
\]

This is absurd since \( f^{-N}x \) must locate in some interval \([f^n a, f^{n+1} a] \) whose measure is \( \lambda \).
The nonexistence of expansive polycyclic group actions

(2) If the fixed point set of $g$ is nonempty then $g$ has a unique fixed point $p$ by Claim 1. Without loss of generality, we assume that $g(y) > y$ for any $y \in (-\infty, p)$. By the very arguments using in (1), we also obtain a contradiction.

Combining (1) and (2), we complete the proof of Claim 2.

By Claim 2, we conclude that $c : G \to (0, +\infty)$ is an injective homomorphism. Thus $G$ is commutative.

Claim 3. For each $g \in G \setminus \{id\}$, we have $\text{Fix}(g) = \emptyset$.

Otherwise, there is some nontrivial $g \in G$ with $\text{Fix}(g) = \emptyset$. By Claim 1, $g$ has a unique fixed point. Since $G$ is commutative, $\text{Fix}(g)$ is $G$-invariant. Hence $G$ has a global fixed point which contradicts the minimality.

By Claim 3, we can choose an element $g \in G$ satisfying $g(y) > y$ for any $y \in \mathbb{R}$. Set

$$H = \{ h \in G : hx \in (g^{-1}x, x) \}.$$

Claim 4. For each $h \in H$, we have $h^{-1}g^{-1}(x) > g^{-1}(x)$.

Otherwise, we have $h^{-1}g^{-1}(x) \leq g^{-1}(x)$ and hence $h(g^{-1}x) \geq g^{-1}x$. Note that $h(x) < x$.

Thus there must be a fixed point of $h$ in $[g^{-1}x, x)$, which contradicts Claim 3.

Finally, by Claim 4, we have $h^{-1}g^{-1}(x) \in (g^{-1}x, x)$ and hence

$$\mu([g^{-1}x, x]) \geq \frac{1}{2} \sum_{h \in H} (\mu(\{hx\}) + \mu(\{h^{-1}g^{-1}x\}))$$

$$\geq \frac{1}{2} \sum_{h \in H} (c(h) + c(h^{-1})) \min(\mu(\{x\}), \mu(\{g^{-1}x\}))$$

$$\geq \infty,$$

This contradicts the local finiteness of $\mu$. Thus $\mu$ has no atom. \qed

REFERENCES

[1] M. Boyle and D. Lind. Expansive subdynamics. Trans. Amer. Math. Soc. 349 (1997), 55-102.
[2] N. Chung and H. Li. Homoclinic groups, IE groups, and expansive algebraic actions. Invent. Math. 199 (2015), 805-858.
[3] C. Drutu and M. Kapovich. Geometric group theory. With an appendix by Bogdan Nica. American Mathematical Society Colloquium Publications, 63. American Mathematical Society, Providence, RI, 2018.
[4] K. Hiraide. Expansive homeomorphisms of compact surfaces are pseudo-Anosov. Osaka J. Math. 27 (1990), 117-162.
[5] J. Jacobson and W. Utz. The nonexistence of expansive homeomorphisms of a closed 2-cell. Pacific J. Math. 10 (1960), 123-131.
[6] H. Kato. The nonexistence of expansive homeomorphisms of Suslinian continua. J. Math. Soc. Japan 42 (1990), 631-637.
[7] H. Kato. The nonexistence of expansive homeomorphisms of chainable continua. Fund. Math. 149 (1996), 119-126.
[8] B. Liang, E. Shi, Z. Xie, and H. Xu. The nonexistence of expansive actions on Suslinian continua by groups of subexponential growth. (arXiv:2104.06156)
[9] D. Lind and K. Schmidt. Homoclinic points of algebraic $\mathbb{Z}^d$-actions. J. Amer. Math. Soc. 12 (1999), 953-980.
[10] J. Mai and E. Shi. The nonexistence of expansive commutative group actions on Peano continua having free dendrites. Topology Appl. 155 (2007), 33-38.
[11] R. Mañé. *Expansive homeomorphisms and topological dimension*. Trans. Amer. Math. Soc. 252 (1979), 313-319.

[12] G. Margulis. *Free subgroups of the homeomorphism group of the circle*. C. R. Acad. Sci. Paris Sr. I Math. 331 (2000), 669-674.

[13] T. Meyerovitch and M. Tsukamoto. *Expansive multiparameter actions and mean dimension*. Trans. Amer. Math. Soc. 371 (2019), 7275–7299.

[14] C. Mouron. *Tree-like continua do not admit expansive homeomorphisms*. Proc. Amer. Math. Soc. 130 (2002), 3409-3413.

[15] C. Mouron. *The solenoids are the only circle-like continua that admit expansive homeomorphisms*. Fund. Math. 205 (2009), 237-264.

[16] C. Mouron. *Continua that admit expansive $\mathbb{Z}^{n+1}$ actions but not expansive $\mathbb{Z}^n$ actions*. Houston J. Math. 36 (2010), 167-180.

[17] A. Navas. *Groups of circle diffeomorphisms*, Translation of the 2007 Spanish edition, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 2011.

[18] T. O’Brien and W. Reddy. *Each compact orientable surface of positive genus admits an expansive homeomorphism*. Pacific J. Math. 35 (1970), 737-741.

[19] J. Plante. *Solvable groups acting on the line*. Trans. Amer. Math. Soc. 278 (1983), 401-414.

[20] J. Rosenblatt. *Invariant measures and growth conditions*. Trans. Amer. Math. Soc. 193 (1974), 33-53.

[21] E. Shi, H. Xu, and Z. Yu. *The structure of pointwise recurrent expansive homeomorphisms*. (arXiv:2201.00110)

[22] E. Shi and H. Xu. *A dynamical argument for a Ramsey property*. (arXiv:2104.02358)

[23] E. Shi and S. Wang. *The ping-pong game, geometric entropy and expansiveness for group actions on Peano continua having free dendrites*. Fund. Math. 203 (2009), 21-37.

[24] E. Shi and L. Zhou. *The nonexistence of expansive $\mathbb{Z}^d$ actions on graphs*. Acta Math. Sin. (Engl. Ser.) 21 (2005), 1509-1514.

[25] J. Wolf. *Growth of finitely generated solvable groups and curvature of Riemannian manifolds*. J. Differential Geometry 2 (1968), 421-446.

(E. Shi) SOOCHOW UNIVERSITY, SUZHOU, JIANGSU 215006, CHINA
E-mail address: ehsih@suda.edu.cn

(S. Wang) SUZHOU VOCATIONAL UNIVERSITY, SUZHOU, JIANGSU 215104, CHINA
E-mail address: wangsuhuajust@163.com

(Z. Xie) SOOCHOW UNIVERSITY, SUZHOU, JIANGSU 215006, CHINA
E-mail address: 20204007002@stu.suda.edu.cn

(H. Xu) CAS WU WEN-TSUN KEY LABORATORY OF MATHEMATICS, UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA, HEFEI, ANHUI 230026, CHINA
E-mail address: huixu2734@ustc.edu.cn