The Existence of Strong Solutions to the 3D Zakharov-Kuznestov Equation in a Bounded Domain

Chuntian Wang

Department of Mathematics and The Institute for Scientific Computing and Applied Mathematics
Indiana University, Bloomington, IN 47405
email: wang211@umail.iu.edu

February 6, 2014

Contents

1 Introduction .. 2

2 ZK equation in a rectangle in dimensions 2 and 3 3

3 Existence of solutions \(u \in C([0,T]; H^1(M)) \) in dimensions 2 and 3 .. 4
 3.1 Parabolic regularization .. 4
 3.2 Estimates independent of \(\epsilon \) .. 5
 3.2.1 \(L^2 \) estimate independent of \(\epsilon \) 5
 3.2.2 \(H^1 \) estimate independent of \(\epsilon \) 7
 3.2.3 Estimates independent of \(\epsilon \) for \(u^\epsilon_{xxx} \) and \(u^\epsilon u_\epsilon^\epsilon \) 11
 3.3 The main result .. 14

4 Discussions about the uniqueness of solutions. 14
Abstract

We consider the Zakharov-Kuznestov (ZK) equation posed in a limited domain $\mathcal{M} = (0, 1)_x \times (-\pi/2, \pi/2)^d$, $d = 1, 2$ supplemented with suitable boundary conditions. We prove that there exists a solution $u \in C([0, T]; H^1(\mathcal{M}))$ to the initial and boundary value problem for the ZK equation in both dimensions 2 and 3 for every $T > 0$. To the best of our knowledge, this is the first result of the global existence of strong solutions for the ZK equation in 3D.

More importantly, the idea behind the application of anisotropic estimation to cancel the nonlinear term, we believe, is not only suited for this model but can also be applied to other nonlinear equations with similar structures.

At the same time, the uniqueness of solutions is still open in $2D$ and $3D$ due to the partially hyperbolic feature of the model.

Keywords: Zakharov-Kuznetsov equation, Korteweg-de Vries equation

1 Introduction

The Zakharov-Kuznestov (ZK) equation

$$\frac{\partial u}{\partial t} + \Delta \frac{\partial u}{\partial x} + c \frac{\partial u}{\partial x} + u \frac{\partial u}{\partial x} = f; \quad (1.1)$$

where $u = u(x, x^\perp, t)$, $x^\perp = y$ or $x^\perp = (y, z)$, describes the propagation of nonlinear ionic-sonic waves in a plasma submitted to a magnetic field directed along the x-axis. Here $c > 0$ is the sound velocity. It has been derived formally in a long wave, weakly nonlinear regime from the Euler-Poisson system in [ZK74] and [LS82]. A rigorous derivation is provided in [LLS13]. For more general physical references, see [BPS81] and [BPS83]. When u depends only on x and t, (1.1) reduces to the classical Korteweg-de Vries (KdV) equation.

Recently the ZK equation has caught much attention, not only because it is closely related with the physical phenomena but also because it is the start to explore more general problems that are partly hyperbolic (such as the inviscid primitive equations).

Concerning the initial and boundary value problems of the Korteweg-de Vries equation posed on a bounded interval $(0, L)$, we refer the interested readers to e.g. [BSZ03], [CG01a], [QT12] and [CG01b].

The initial and boundary value problem associated with (1.1) has been studied in the half space $\{(x, y) : x > 0\}$ ([Fam06]), on a strip like $\{(x, y) : x \in \mathbb{R}, 0 < y < L\}$ ([BF13]) or $\{(x, x^\perp) : 0 < x < 1, x^\perp \in \mathbb{R}^d, d = 1, 2\}$ ([Fam08] and [ST10]), and in a rectangle $\{(x, x^\perp) : 0 < x < 1, x^\perp \in (-\pi/2, \pi/2)^d, d = 1, 2\}$ ([STW12]). Specifically in [STW12], the authors have established, for arbitrary large initial data, the existence of global weak solutions in space dimensions 2 and 3 ($d = 1$ and 2 respectively) and a result of uniqueness of such solutions in the two-dimensional case.

As for the existence of strong solutions, the global existence in space dimension 2 has been proven in a half strip $\{(x, y) : x > 0, y \in (0, L)\}$ in [LT13]. The existence and exponential decay of regular solutions to the linearized ZK equation in a rectangle $\{(x, y) : x \in (0, L), y \in (0, B)\}$
has been studied in [DL14]. The local existence of strong solutions in space dimensions 2 and 3 is established in [Wan]. In these previous works, the boundary conditions on $x = 0, 1$ are assumed to be $u|_{x=0} = u|_{x=1} = u_x|_{x=1} = 0$; however here we suppose different boundary conditions to serve our purposes.

To the best of our knowledge, the global existence and uniqueness of regular solutions in 3D is still an open problem. In this article, we prove that there exists a global solution $u \in \mathcal{C}([0, T]; L^2(\mathcal{M}))$ for the initial and boundary value problem of the ZK equation in both 2D and 3D, which we believe, will lead to the global well-posedness of strong solutions in 3D eventually. It is interesting to observe that, for the 3D ZK equation, the nonlinear term has the same structure as the nonlinear term in the 3D Navier-Stokes equations and that the basic a priori estimates ($L^\infty(0, T; L^2(\mathcal{M}))$ and $L^2(0, T; H^1(\mathcal{M}))$) are the same, although the structure of the linear operator is totally different (e.g. not coercive as in (3.11) below).

For the proof we use the parabolic regularization as in [ST10], [STW12] and [Wan]. There are four main difficulties. Firstly, as in the case of 3D Navier-Stokes equation, the nonlinear term will pose a problem when we apply the Sobolev imbedding in 3D. Secondly, since the linear operator is not coercive, the L^p estimations (see e.g. [CT07]) does not work. Thirdly, some assumption on the trace $u_{xx}|_{x=0}$ is necessary for the estimate of $\nabla u \in L^\infty(0, T; L^2(\mathcal{M}))$. Finally, to pass to the limit on the boundary conditions, the methods in [ST10] and [STW12] are not applicable any more because of the change of the boundary conditions.

To overcome these difficulties, firstly we utilize the anisotropic resonance of the term u_{xxx} and the nonlinear term uu_x to cancel u_{xx}, which leads to a bound of the H^1 norm over $(0, T)$ for u. This step of canceling the nonlinear term may also be applied to other nonlinear equations with similar structures. Next, we suppose periodic boundary conditions of u and u_{xj} at $x = 0, 1, j = 1, 2$, so that the trace $u_{xx}|_{x=0}$ now vanishes. Finally, we investigate a bound independent of ϵ for $u_{xxx}' \in L^{3/2}(I_x; Y)$, with Y a Banach space in x^\perp and t, which facilitates the passage to the limit on the traces of u_{xj} at $x = 0, 1, j = 1, 2$.

However the uniqueness of solutions is still open in both 2D and 3D, even with such a regularity and all the periodic boundary conditions satisfied. In particular, the methods in [ST10] and [STW12] can not be adapted to our case due to the lack of the boundary condition $u_x = 0$ at $x = 1$.

The article is organized as follows. Firstly we introduce the basic settings of the equation in Section 2. Secondly we introduce the parabolic regularization as in [ST10] and [STW12] (Section 3.1). Then we derive the estimates independent of ϵ for u' in $L^\infty(0, T; L^2(\mathcal{M}))$ (Section 3.2.1), $\nabla u'$ in $L^\infty(0, T; L^2(\mathcal{M}))$ (Section 3.2.2) and for u_{xxx}' in $L^{3/2}(I_x; H^{-1}_r(0, T; H^{-1}(I_{x+})))$ (Section 3.2.3). Eventually we can pass to the limit on the parabolic regularization and the traces and deduce the global existence of solutions $u \in \mathcal{C}([0, T]; H^1(\mathcal{M}))$ (Section 3.3). Finally, we discuss about the difficulties in the attempt of proving the uniqueness of solutions (Section 4).

2 ZK equation in a rectangle in dimensions 2 and 3

We aim to study the ZK equation:

$$\frac{\partial u}{\partial t} + \Delta \frac{\partial u}{\partial x} + c \frac{\partial u}{\partial x} + uu_x = f, \quad (2.1)$$
in a rectangle or parallelepiped domain in \(\mathbb{R}^n \) with \(n = 2 \) or \(3 \), denoted as \(\mathcal{M} = (0,1)_x \times (-\pi/2,\pi/2)_d \), with \(d = 1 \) or \(2 \), \(\Delta u = u_{xx} + \Delta^1 u \), \(\Delta^1 u = u_{yy} \) or \(u_{yy} + u_{zz} \) depending on the dimension. In the sequel we will use the notations \(I_x = (0,1)_x, I_y = (-\pi/2,\pi/2)_y, I_z = (-\pi/2,\pi/2)_z \), and \(I_{x^\perp} = I_y \) or \(I_y \times I_z \). We assume the boundary conditions of \(u, u_x \) and \(u_{xx} \) on \(x = 0,1 \) to be periodic:

\[
\begin{align*}
 u(0, x^\perp, t) &= u(1, x^\perp, t), \\
 u_x(0, x^\perp, t) &= u_x(1, x^\perp, t), \\
 u_{xx}(0, x^\perp, t) &= u_{xx}(1, x^\perp, t).
\end{align*}
\]

(2.2)

(2.3)

For the boundary conditions in the \(y \) and \(z \) directions, we will choose either the Dirichlet boundary conditions

\[
\begin{align*}
 u &= 0 \text{ at } y = \pm \frac{\pi}{2} \text{ and } z = \pm \frac{\pi}{2},
\end{align*}
\]

(2.4)

or the periodic boundary conditions

\[
\begin{align*}
 u|_{y = \frac{\pi}{2}} &= u|_{y = -\frac{\pi}{2}} = 0, \\
 u|_{z = \frac{\pi}{2}} &= u|_{z = -\frac{\pi}{2}} = 0.
\end{align*}
\]

(2.5)

The initial condition reads:

\[
\begin{align*}
 u(x, x^\perp, 0) &= u_0(x, x^\perp).
\end{align*}
\]

(2.6)

We study the initial and boundary value problem (2.1)-(2.3) and (2.6) supplemented with the boundary condition (2.4), that is, the Dirichlet case on the \(x^\perp \) boundaries, and we will make some remarks on the extension to the periodic boundary condition case.

We denote by \(|\cdot| \) and \((\cdot, \cdot)\) the norm and the inner product of \(L^2(\mathcal{M}) \), and by \([\cdot]_2 \) the following seminorm which will be useful in the sequel:

\[
\begin{align*}
 \left(\int_{\mathcal{M}} u_{xx}^2 + u_{yy}^2 + u_{yy}^2 \, d\mathcal{M} \right)^{1/2} =: [u]_2, \quad u \in H^2(\mathcal{M}).
\end{align*}
\]

(2.7)

3 Existence of solutions \(u \in C([0,T]; H^1(\mathcal{M})) \) in dimensions 2 and 3

To prove this result, we use the parabolic regularization as in [STW12], but with different boundary conditions. For the sake of simplicity we only treat the more complicated case when \(d = 2 \).

3.1 Parabolic regularization

To begin with, we recall the parabolic regularization introduced in [ST10] and [STW12], that is, for \(\epsilon > 0 \) “small”, we consider the parabolic equation,

\[
\begin{align*}
\left\{ \begin{array}{l}
 \frac{\partial u^\epsilon}{\partial t} + \Delta \frac{\partial u^\epsilon}{\partial x} + c \frac{\partial u^\epsilon}{\partial x} + u^\epsilon \frac{\partial u^\epsilon}{\partial x} + \epsilon L u^\epsilon = f, \\
 u^\epsilon(0) = u_0,
\end{array} \right.
\end{align*}
\]

(3.1)
where
\[Lu^\varepsilon := \frac{\partial^4 u^\varepsilon}{\partial x^4} + \frac{\partial^4 u^\varepsilon}{\partial y^4} + \frac{\partial^4 u^\varepsilon}{\partial z^4}, \]
supplemented with the boundary conditions (2.2)-(2.4) and the additional boundary conditions
\[u^\varepsilon_{xxx}(0, x^\perp, t) = u^\varepsilon_{xxx}(1, x^\perp, t), \quad (3.2) \]
\[u^\varepsilon_{yy} = 0 \text{ at } y = \pm \frac{\pi}{2}, \quad u^\varepsilon_{zz} = 0 \text{ at } z = \pm \frac{\pi}{2}. \quad (3.3) \]
Note that from (2.3) and (3.2) we infer
\[u^\varepsilon_{xj}(0, x^\perp, t) = u^\varepsilon_{xj}(1, x^\perp, t), \quad j = 1, 2, 3. \quad (3.4) \]
We also note that since \[u^\varepsilon_{yy}|_{x=0} = u^\varepsilon_{zz}|_{x=0} = 0, \] (3.4) is equivalent to
\[\Delta u^\varepsilon|_{x=0} = 0. \quad (3.5) \]
It is a classical result (see e.g. [Lio69], [LSU68] or also [STW12]) that there exists a unique solution to the parabolic problem which is sufficiently regular for all the subsequent calculations to be valid; in particular, we have
\[u^\varepsilon \in L^2(0,T; H^4(M)) \cap C^1([0,T]; H^2(M)). \quad (3.6) \]

3.2 Estimates independent of \(\varepsilon \)

We establish the estimates independent of \(\varepsilon \) for various norms of the solutions.

3.2.1 \(L^2 \) estimate independent of \(\varepsilon \)

We first show a bound independent of \(\varepsilon \) for \(u^\varepsilon \) in \(L^\infty(0,T; L^2(M)) \).

Lemma 3.1. We assume that
\[u_0 \in L^2(M), \quad (3.7) \]
\[f \in L^2(0,T; L^2(M)). \quad (3.8) \]
Then for every \(T > 0 \) the following estimates independent of \(\varepsilon \) hold:
\[u^\varepsilon \text{ is bounded in } L^\infty(0,T; L^2(M)), \quad (3.9) \]
\[\sqrt{\varepsilon} u^\varepsilon \text{ is bounded in } L^2(0,T; H^2(M)). \quad (3.10) \]

Proof. As in [STW12], we multiply (3.1) with \(u \), integrate over \(M \) and integrate by parts, dropping the superscript \(\varepsilon \) for the moment we find:
\[\int_M \frac{\partial u}{\partial t} u \, dM = \frac{1}{2} \frac{d}{dt} |u|^2, \]
\[\int_M \Delta u_x u dM + \int_M cu_x u dM = (\text{thanks to } (2.2)) \]
\[= -\int_M \nabla u_x \nabla u dM + \frac{c}{2} \int_{I_{x=0}^1} u^2 d^1 x \]
\[= -\frac{1}{2} \int_{I_{x=0}^1} (\nabla u)^2 d^1 x + \frac{c}{2} \int_{I_{x=0}^1} u^2 d^1 x \]
\[= (\text{thanks to } (2.2) \text{ and } (3.4)) = 0, \quad (3.11) \]

- \[\int_M u_x u_d M = \int_M \frac{\partial}{\partial x} \left(\frac{u^3}{3} \right) dM = (\text{thanks to } (2.2)) = 0, \]

- \[\epsilon \int_M u_{xxx} u dM = (\text{thanks to } (2.2) \text{ and } (3.4)) \]
\[= -\epsilon \int_M u_{xxx} u_x dM = (\text{thanks to } (3.4)) = \epsilon \int_M u_{xx}^2 u dM, \]

- \[\epsilon \int_M (u_{xxx} + u_{yyy} + u_{zzzz}) u dM = \epsilon \int_M u_{xx}^2 + u_{yy}^2 + u_{yy}^2 dM \]
\[= (\text{thanks to } (2.7)) = \epsilon |u|^2, \]

- \[\int_M f u dM \leq \frac{1}{2} |f|^2 + \frac{1}{2} |u|^2. \]

Hence we find
\[\frac{d}{dt} |u^\epsilon(t)|^2 + 2\epsilon |u^\epsilon|^2 \leq |f|^2 + |u|^2. \quad (3.12) \]

Using the Gronwall lemma we classically infer
\[\sup_{t \in (0,T)} |u^\epsilon(t)|^2 + \epsilon \int_0^T |u^\epsilon|^2 dt \leq \text{const} := \mu_1, \quad (3.13) \]

where \(\mu_i \) indicates a constant depending only on the data \(u_0, f\), etc, whereas \(C' \) below is an absolute constant. These constants may be different at each occurrence. Let us admit for the moment the following:

Lemma 3.2.
\[|u^\epsilon|_{H^2(M)} \leq C' \left(|u|^2_2 + |u|^2 \right). \quad (3.14) \]

By the previous lemma, we have
\[\epsilon \int_0^T |u^\epsilon|_{H^2(M)}^2 dt \leq C' \left(\epsilon \int_0^T |u^\epsilon|^2_2 dt + \epsilon \int_0^T |u|^2 dt \right) \]
\[\leq C' \left(\epsilon \int_0^T |u^\epsilon|^2_2 dt + \epsilon T \sup_{t \in (0,T)} |u^\epsilon(t)|^2 \right) \]
\[\leq (\text{thanks to } (3.13)) \]
\[\leq \text{const} := \mu_2, \]

Hence we find
\[\frac{d}{dt} |u^\epsilon(t)|^2 + 2\epsilon |u^\epsilon|^2 \leq |f|^2 + |u|^2. \quad (3.12) \]

Using the Gronwall lemma we classically infer
\[\sup_{t \in (0,T)} |u^\epsilon(t)|^2 + \epsilon \int_0^T |u^\epsilon|^2 dt \leq \text{const} := \mu_1, \quad (3.13) \]

where \(\mu_i \) indicates a constant depending only on the data \(u_0, f\), etc, whereas \(C' \) below is an absolute constant. These constants may be different at each occurrence. Let us admit for the moment the following:

Lemma 3.2.
\[|u^\epsilon|_{H^2(M)} \leq C' \left(|u|^2_2 + |u|^2 \right). \quad (3.14) \]

By the previous lemma, we have
\[\epsilon \int_0^T |u^\epsilon|_{H^2(M)}^2 dt \leq C' \left(\epsilon \int_0^T |u^\epsilon|^2_2 dt + \epsilon \int_0^T |u|^2 dt \right) \]
\[\leq C' \left(\epsilon \int_0^T |u^\epsilon|^2_2 dt + \epsilon T \sup_{t \in (0,T)} |u^\epsilon(t)|^2 \right) \]
\[\leq (\text{thanks to } (3.13)) \]
\[\leq \text{const} := \mu_2, \]
which implies (3.10). Thus Lemma 3.1 is proven once we have proven Lemma (3.2).

Proof of Lemma 3.2. We first observe that using the generalized Poincaré inequality (see [Tem97]) we have

$$|u^\varepsilon_x - \int_0^1 u^\varepsilon_x \, dx|_{L^2(I_x)} \leq C'|u^\varepsilon_{xx}|_{L^2(I_x)}.$$ (3.15)

Thanks to (2.2), we have \(\int_0^1 u^\varepsilon_x \, dx = u^\varepsilon|_{x=1} - u^\varepsilon|_{x=0} = 0\), and hence (3.15) implies

$$|u^\varepsilon_x|_{L^2(I_x)} \leq C'|u^\varepsilon_{xx}|_{L^2(I_x)}.$$

Squaring both sides and integrating both sides on \(I_{x\perp}\), we find

$$|u^\varepsilon_x| \leq C'|u^\varepsilon_{xx}|.$$ (3.16)

Similarly we can show that \(|u^\varepsilon_y| \leq C'|u^\varepsilon_{yy}|\) and \(|u^\varepsilon_z| \leq C'|u^\varepsilon_{zz}|\), which implies

$$|\nabla u^\varepsilon| \leq C'[u^\varepsilon]_2.$$ (3.17)

Next we see that, for smooth functions

$$|u^\varepsilon_{xy}|^2 = (\text{thanks to (2.2) and (3.4)})$$

$$= - \int_\mathcal{M} u^\varepsilon_y u^\varepsilon_{xy} d\mathcal{M}$$

$$= (\text{thanks to (2.4)})$$

$$= \int_\mathcal{M} u^\varepsilon_{yy} u^\varepsilon_{xx} d\mathcal{M}$$

$$\leq |u^\varepsilon_{xx}|^2 + |u^\varepsilon_{yy}|^2 \leq [u^\varepsilon]_2^2.$$ (3.18)

Similarly we can prove that \(|u^\varepsilon_{xz}| \leq [u^\varepsilon]_2\) and \(|u^\varepsilon_{yz}| \leq [u^\varepsilon]_2\), and hence

$$|u^\varepsilon_{xy}|^2 + |u^\varepsilon_{xz}|^2 + |u^\varepsilon_{yz}|^2 \leq C'[u^\varepsilon]_2^2.$$ (3.19)

Then inequality (3.18) and (3.19) extend by continuity to all \(H^2\) function periodic in \(x\) and satisfying (2.4) and (3.3). Finally from (3.19) and (3.17) we deduce (3.14).

3.2.2 \(H^1\) estimate independent of \(\varepsilon\)

Now we establish the key observation, a bound independent of \(\varepsilon\) for \(\nabla u^\varepsilon\) in \(L^\infty(0,T;L^2(\mathcal{M}))\).

Proposition 3.1. Under the same assumptions as in Lemma 3.1, we further suppose that

$$u_0 \in H^1(\mathcal{M}) \cap L^3(\mathcal{M}),$$ (3.20)

$$f \in L^2(0,T;H^2(I_x) \cap H^1_0(I_{x\perp}))) \cap L^2(0,T;L^\infty(\mathcal{M})),$$ (3.21)

and \(f\) and \(f_x\) assume the periodic boundary conditions on \(x = 0, 1\). Then for every \(T > 0\), the following estimates independent of \(\varepsilon\) hold:

$$u^\varepsilon\text{ is bounded in } L^\infty(0,T; H^1(\mathcal{M})),$$ (3.22)

$$\sqrt{\varepsilon} \nabla u^\varepsilon_{xx}, \sqrt{\varepsilon} \nabla u^\varepsilon_{yy}, \sqrt{\varepsilon} \nabla u^\varepsilon_{zz} \text{ are bounded in } L^2(0,T;L^2(\mathcal{M})).$$ (3.23)
Proof. We multiply (3.1) with $-\Delta u^\epsilon - \frac{1}{2} (u^\epsilon)^2$, integrate over \mathcal{M} and integrate by parts. Firstly we show the calculation details of the multiplication by Δu^ϵ, integration over \mathcal{M} and integration by parts (dropping the super index of ϵ for the moment):

- $\int_\mathcal{M} u_t \Delta u \, d\mathcal{M} = -\int_\mathcal{M} \nabla u_t \nabla u \, d\mathcal{M} + \int_{\partial \mathcal{M}} u_t \frac{\partial u}{\partial n} \, d\partial \mathcal{M} = (\text{thanks to (2.2) and (3.4)})$
 $= -\int_\mathcal{M} \nabla u_t \nabla u \, d\mathcal{M} = -\frac{1}{2} \frac{d}{dt} |\nabla u|^2$,

- $\int_\mathcal{M} \Delta u_x \Delta u \, d\mathcal{M} = \int_\mathcal{M} \frac{\partial}{\partial x} \left(\frac{(\Delta u)^2}{2} \right) \, d\mathcal{M} = \frac{1}{2} \int_{I_{x=0}^\perp} (\Delta u)^2 |_{x=0} \, dI_{x=0}^\perp = (\text{thanks to (3.5)}) = 0$,

- $c \int_\mathcal{M} u_x \Delta u \, d\mathcal{M} = c \int_\mathcal{M} u_x u_{xx} + u_x \Delta u^\perp \, d\mathcal{M} = (\text{thanks to (2.2)}) = c \int_\mathcal{M} \frac{\partial}{\partial x} \left(\frac{(u_x)^2}{2} \right) \, d\mathcal{M} - c \int_\mathcal{M} \nabla u_x \nabla u \, d\mathcal{M}$
 $= c \int_\mathcal{M} \frac{\partial}{\partial x} \left(\frac{(u_x)^2}{2} \right) \, d\mathcal{M} - c \int_\mathcal{M} \frac{\partial}{\partial x} \left(\frac{(\nabla u_x)^2}{2} \right) \, d\mathcal{M} = (\text{thanks to (3.4) and (2.2)}) = 0$,

- $\int_\mathcal{M} u_{xxxx} u_{xx} \, d\mathcal{M} = (\text{thanks to (3.4)}) = -\int_\mathcal{M} u_{xxx}^2 \, d\mathcal{M}$,

- $\int_\mathcal{M} u_{xxxx} u_{yy} \, d\mathcal{M} = (\text{thanks to (2.2)-(2.4) and (3.4)}) = -\int_\mathcal{M} u_{xxy}^2 \, d\mathcal{M}$,

- $\int_\mathcal{M} u_{xxxx} u_{zz} \, d\mathcal{M} = (\text{thanks to (2.2)-(2.4) and (3.4)}) = -\int_\mathcal{M} u_{xzz}^2 \, d\mathcal{M}$,

- $\int_\mathcal{M} u_{yyyy} \Delta u \, d\mathcal{M} = (\text{thanks to (2.4) and (3.3)}) = -\int_\mathcal{M} u_{yyyy} \Delta u_g \, d\mathcal{M}$
 $= (\text{thanks to (3.3)}) = \int_\mathcal{M} u_{yyyy} \Delta u_y \, d\mathcal{M}$

- $\int_\mathcal{M} (\nabla u_{yy})^2 \, d\mathcal{M} = (\text{thanks to (3.3)}) = \int_\mathcal{M} (\nabla u_{yy})^2 \, d\mathcal{M}$,

- $\int_\mathcal{M} u_{zzzz} \Delta u \, d\mathcal{M} = -\int_\mathcal{M} (\nabla u_{zz})^2 \, d\mathcal{M}$,

- $\int_\mathcal{M} f \Delta u \, d\mathcal{M} = (\text{thanks to (3.21)}) = \int_\mathcal{M} \Delta f u \, d\mathcal{M}$,

Hence we find after changing the sign,

$$\frac{1}{2} \frac{d}{dt} |\nabla u^\epsilon|^2 - \int_\mathcal{M} u^\epsilon u_x^\epsilon \Delta u^\epsilon \, d\mathcal{M} + \epsilon |\nabla u^\epsilon|^2 = -\int_\mathcal{M} \Delta f u^\epsilon \, d\mathcal{M}. \quad (3.24)$$

Next we show the calculation details of the multiplication by $(u^\epsilon)^2$, integrating over \mathcal{M} and
integrating by parts:

\[\int_M u_t u^2 \, dM = \int_M \frac{\partial}{\partial t} \left(\frac{u^3}{3} \right) \, dM = \frac{1}{3} \frac{d}{dt} \left(\int_M u^3 \, dM \right), \]

\[\int_M \Delta u_x u^2 \, dM = -2 \int_M \Delta u u x u \, dM + \int_{I_{x=0}} \Delta u u^2 \, dI_{x=0} \]

= (thanks to (3.5) and (2.2)) = -2 \int_M \Delta u u x u \, dM,

\[c \int_M u_x u^2 \, dM = c \int_M \frac{\partial}{\partial x} \left(\frac{u^3}{3} \right) \, dM = \frac{c}{3} \int_{I_{x=0}} u^3 \, dI_{x=0} = (\text{thanks to (2.2)}) = 0, \]

\[\int_M u u x u^2 \, dM = \int_M \frac{\partial}{\partial x} \left(\frac{u^4}{4} \right) \, dM = \frac{1}{4} \int_{I_{x=0}} u^4 \, dI_{x=0} = (\text{thanks to (2.2)}) = 0, \]

\[\int_M u_{xxx} u^2 \, dM = (\text{thanks to (2.2) and (3.4)}) = -2 \int_M u_{xxx} u x u \, dM, \]

\[\int_M u_{yyy} u^2 \, dM = (\text{thanks to (2.4)}) = -2 \int_M u_{yyy} u y u \, dM, \]

\[\int_M u_{zzz} u^2 \, dM = (\text{thanks to (2.4)}) = -2 \int_M u_{zzz} u z u \, dM. \]

Hence we find

\[
\frac{d}{dt} \left(\int_M (u^\epsilon)^3 \, dM \right) - 2 \int_M \Delta u^\epsilon u^\epsilon u^\epsilon_\epsilon \, dM =
\]

\[
2\epsilon \int_M u_{xxx}^\epsilon u_x^\epsilon u^\epsilon + u_{yyy}^\epsilon u_y^\epsilon u^\epsilon + u_{zzz}^\epsilon u_z^\epsilon u^\epsilon \, dM + \int_M f(u^\epsilon)^2 \, dM. \tag{3.25}
\]

Adding (3.24) to (3.25) multiplied by \(-1/2\), we observe that the terms \(\int_M \Delta u^\epsilon u^\epsilon u^\epsilon_\epsilon \, dM \) get canceled, which yields

\[
\frac{1}{2} \frac{d}{dt} |\nabla u^\epsilon|^2 + \epsilon |\nabla u^\epsilon|^2 = \frac{1}{6} \frac{d}{dt} \left(\int_M (u^\epsilon)^3 \, dM \right) - \epsilon \int_M u_{xxx}^\epsilon u_x^\epsilon u^\epsilon + u_{yyy}^\epsilon u_y^\epsilon u^\epsilon + u_{zzz}^\epsilon u_z^\epsilon u^\epsilon \, dM - \int_M \Delta f u^\epsilon \, dM - \frac{1}{2} \int_M f(u^\epsilon)^2 \, dM.
\]

Integrating both sides in time from 0 to \(t \), we obtain for every \(t \in (0, T) \),

\[
\frac{1}{2} |\nabla u^\epsilon(t)|^2 + \epsilon \int_0^t |\nabla u^\epsilon(s)|^2 \, ds = \frac{1}{6} \int_M (u^\epsilon(t))^3 \, dM + \kappa_0
\]

\[
- \epsilon \int_0^t \int_M u_{xxx}^\epsilon u_x^\epsilon u^\epsilon + u_{yyy}^\epsilon u_y^\epsilon u^\epsilon + u_{zzz}^\epsilon u_z^\epsilon u^\epsilon \, dM \, ds \tag{3.26}
\]

\[
- \int_0^t \int_M \Delta f u^\epsilon \, dM \, ds - \frac{1}{2} \int_0^t \int_M f(u^\epsilon)^2 \, dM \, ds,
\]

9
where
\[\kappa_0 := \frac{1}{2} |\nabla u_0|^2 - \frac{1}{6} \int_M u_0^3 \, dM. \]

We estimate each term on the right-hand-side of (3.26); we will use here the interpolation space \(H^{1/2}(M) \) as defined in [LM72] where it is shown that \(H^{1/2}(M) \subset L^3(M) \) in dimension 3 with a continuous embedding. Dropping the superscript \(\epsilon \) for the moment we then find:

\[\left| \frac{1}{6} \int_M u^3(t) \, dM \right| \leq \frac{1}{6} |u(t)|_{L^3(M)}^3 \leq C' |u(t)|_{H^{1/2}(M)}^3 \leq C' |u(t)|^{3/2} |\nabla u(t)|^{3/2} \leq C' |u(t)|^6 + \frac{1}{4} |\nabla u(t)|^2, \]

\[\epsilon \left| \int_M u_{xx} u_x \, dM \right| \leq \epsilon |u_{xx}| |u_x u| \leq C' \epsilon |u_x u|^2 + \frac{\epsilon}{10} |u_{xxx}|^2 \leq C' \epsilon |u_{L^3(M)}|^2 |u_x|^2_{L^4(M)} + \frac{\epsilon}{10} |u_{xxx}|^2 \]

\(\leq (by \ H^{3/4}(M) \subset L^4(M) \ in \ 3D) \)

\[\leq C' \epsilon |u|^{1/2} |\nabla u|^3/2 |u_x|^{1/2} |u|_{H^1(M)}^{3/2} + \frac{\epsilon}{10} |u_{xxx}|^2 \leq C' \epsilon |u|^{1/2} |\nabla u|^3/2 |u|_{H^2(M)}^{3/2} + \frac{\epsilon}{10} |u_{xxx}|^2, \]

\(\epsilon \left| \int_M u_{yy} x u_y \, dM \right| \leq (by \ similar \ estimates \ as \ above) \)

\[\leq C' \epsilon |u|^{1/2} |\nabla u|^3/2 |u_x|^{3/2}_{H^2(M)} + \frac{\epsilon}{10} |u_{yyy}|^2, \]

\(\epsilon \left| \int_M u_{zz} x u_z \, dM \right| \leq (by \ similar \ estimates \ as \ above) \)

\[\leq C' \epsilon |u|^{1/2} |\nabla u|^3/2 |u_z|^{3/2}_{H^2(M)} + \frac{\epsilon}{10} |u_{zzz}|^2, \]

\[\left| \int_M \Delta f u \, dM \right| \leq |\Delta f|^2 + |u|^2, \]

\[\left| \int_M f u^2 \, dM \right| \leq |f|_{L^\infty(M)} |u|^2 \leq |f|_{L^\infty(M)}^2 + |u|^4. \]

Collecting the above estimates, along with (3.26) we observe that the terms with third-order derivatives in the RHS of (3.27) and the following two inequalities can be canceled by a term on
the LHS of (3.26). Thus (3.26) now yields

\[
\frac{1}{4} |\nabla u^\varepsilon(t)|^2 + \frac{\varepsilon}{10} \int_0^t |\nabla u^\varepsilon|^2_2 \, ds
\]

\[
\leq \int_0^t \left(1 + C'\varepsilon |u^\varepsilon|^{1/2} |u^\varepsilon|_{H^2(M)}^{3/2} \right) |\nabla u^\varepsilon(s)|^2 \, ds + C'|u^\varepsilon(t)|^6 + \kappa_0
\]

\[
+ \int_0^t |\Delta f|^2 \, ds + \int_0^t |u^\varepsilon|^2 + |u^\varepsilon|^4 \, ds + \int_0^t |f|_{L^\infty(M)}^2 \, ds
\]

\[
\leq (\text{thanks to (3.13)})
\]

\[
\leq \int_0^t \left(1 + C'\varepsilon \mu_1^{1/4} |u^\varepsilon|_{H^2(M)}^{3/2} \right) |\nabla u^\varepsilon(s)|^2 \, ds + C'\mu_1^3 + \kappa_0
\]

\[
+ |f|_{L^2(0,T;H^0_0(M))}^2 + (\mu_1 + \mu_2^3) T + |f|_{L^2(0,T;L^\infty(M))}^2.
\]

In particular, setting \(\sigma^\varepsilon(t) := 1 + C'\varepsilon \mu_1^{1/4} |u^\varepsilon|_{H^2(M)}^{3/2} \), from (3.28) we deduce

\[
\frac{1}{4} |\nabla u^\varepsilon(t)|^2 + \frac{\varepsilon}{10} \int_0^t |\nabla u^\varepsilon|^2_2 \, ds \leq \int_0^t \sigma^\varepsilon(s) |\nabla u^\varepsilon(s)|^2 \, ds
\]

\[
+ C'\mu_1^3 + \kappa_0 + |f|_{L^2(0,T;H^0_0(M))}^2 + (\mu_1 + \mu_2^3) T + |f|_{L^2(0,T;L^\infty(M))}^2.
\]

Since \(|u^\varepsilon|_{H^2(M)}^{3/2} \leq |u^\varepsilon|_{H^2(M)}^2 + C', \) we find

\[
\int_0^T \sigma^\varepsilon(s) \, ds \leq T + C'\varepsilon \mu_1^{1/4} \int_0^T \left(|u^\varepsilon|_{H^2(M)}^2 + C' \right) \, ds
\]

\[
\leq (\text{thanks to (3.10)})
\]

\[
\leq \text{const} := \mu_3.
\]

We can then apply the Gronwall inequality to (3.29) to obtain

\[
\sup_{t \in (0,T)} |\nabla u^\varepsilon(t)|^2 + \frac{\varepsilon}{10} \int_0^T |\nabla u^\varepsilon|^2_2 \, ds \leq \text{const} := \mu_4.
\]

This together with (3.9) implies (3.22) and (3.23).

\[\square\]

3.2.3 Estimates independent of \(\varepsilon\) for \(u^\varepsilon_{xxx}\) and \(u^\varepsilon_x\)

For the sake of the passage to the limit on the boundary conditions and the compactness argument, we now derive bounds independent of \(\varepsilon\) for \(u^\varepsilon_{xxx}\) and \(u^\varepsilon_x\). In particular, to obtain the estimates for \(u^\varepsilon_{xxx}\), we first deduce a bound independent of \(\varepsilon\) for \(\varepsilon u^\varepsilon_{xxx}\) in \(L^2(0,T;L^2(M))\).

Proposition 3.2. Under the same assumptions as in Proposition 3.1, we further suppose that

\[
u_{0xx} \in L^2(M),
\]

\[
f_{xxx} \in L^2(0,T;L^2(M)),
\]

\[
u_{xxxx} \in L^2(M),
\]

\[
f_{xxxx} \in L^2(0,T;L^2(M)).
\]
and f_{xxx} assume the periodic boundary condition on $x = 0, 1$. Then we have the following bounds independent of ϵ,

\[\epsilon \| u_{xx} \|^2 \text{ is bounded in } L^2(0, T; L^2(M)), \tag{3.33} \]

\[u_x^\epsilon u_x^\epsilon \text{ is bounded in } L^\infty(0, T; L^{3/2}(M)). \tag{3.34} \]

\[u_{xxx}^\epsilon \text{ is bounded in } L^{3/2}(I_x; H^{-1}_t(0, T; H^{-4}(I_x^\perp))), \tag{3.35} \]

Proof. For notational simplicity, we will drop the super index ϵ in the calculations. Multiplying (3.1) by u_{xxx}^ϵ, integrating over M and integrating by parts we find:

\[\int_M u_t u_{xxx} \, dM = (\text{thanks to (2.2) and (3.4)}) = \frac{1}{2} \frac{d}{dt} |u_{xx}|^2, \]

\[\int_M \Delta u_x u_{xxx} \, dM = (\text{thanks to (2.2), (3.4) and (2.4)}) = 0, \]

\[\int_M u_x u_{xxx} \, dM = (\text{thanks to (2.2), (3.4) and (2.4)}) = 0, \]

\[\int_M u_{xx} u_{xxx} \, dM = -\int_M u_x^2 u_{xxx} \, dM - \int_M u_{xxx} u_{xxx} \, dM \]

\[= \frac{5}{2} \int_M u_x u_{xx}^2 \, dM, \]

\[\int_M u_{gyy} u_{xxx} \, dM = (\text{thanks to (2.2), (3.4) and (2.4)}) \]

\[= \int_M u_{xyy}^2 \, dM, \]

\[\int_M u_{zzzz} u_{xxx} \, dM = \int_M u_{xxzz}^2 \, dM, \]

\[\int_M f u_{xxx} \, dM = -\int_M f_{xxx} u_x \, dM \leq \|f_{xxx}\|^2 + |u_x|^2. \]

Hence we find

\[\frac{1}{2} \frac{d}{dt} |u_{xx}|^2 + \epsilon |u_{xx}|^2 \leq \frac{5}{2} \int_M u_x^\epsilon (u_x^\epsilon)^2 \, dM + \|f_{xxx}\|^2 + |u_x^\epsilon|^2. \]

Multiplying both sides by ϵ we obtain

\[\epsilon \frac{d}{dt} |u_{xx}|^2 + \frac{1}{2} \epsilon |u_{xx}|^2 \leq \frac{5}{2} \int_M u_x^\epsilon (u_x^\epsilon)^2 \, dM + \epsilon |f_{xxx}|^2 + \epsilon |u_x^\epsilon|^2. \tag{3.36} \]
We estimate the first term on the right-hand side of (3.36) and find

\[\epsilon \left| \int_M u_x u_{xx} dM \right| \leq \epsilon |u_x| |u_{xx}|^2(I(M)) \]
\[\leq C' \epsilon |u_x||u_{xx}|^{1/2}|\nabla u_{xx}|^{3/2} \]
\[\leq (\text{by the intermediate derivative theorem } |u_{xx}|^2 \leq |u_x||u_{xxx}|) \]
\[\leq C' \epsilon |u_x|^{5/4}|u_{xxx}|^{1/4} |\nabla u_{xx}|^{3/2} \]
\[\leq C' \epsilon |u_x|^{5/4} |\nabla u_{xx}|^{7/4} \]
\[\leq (\text{thanks to (3.30)})) \]
\[\leq C' \epsilon \mu_4^{5/8} |\nabla u_{xx}|^{7/4}. \]

This along with (3.36) implies

\[\frac{\epsilon}{2} \frac{d}{dt} |u_{xx}^\epsilon|^2 + \epsilon^2 |u_{xx}^\epsilon|^2 \leq C' \epsilon \mu_4^{5/8} |\nabla u_{xx}^\epsilon|^{7/4} + \epsilon |f_{xxx}|^2 + \epsilon \mu_4. \]

Integrating both sides in \(t \) from 0 to \(T \), we find

\[\epsilon^2 \int_0^T |u_{xx}^\epsilon|^2 dt \leq \frac{\epsilon}{2} |u_{0xx}|^2 + C' \mu_4^{5/8} \int_0^T \epsilon |\nabla u_{xx}^\epsilon|^{7/4} dt + \epsilon |f_{xxx}|^2 + \epsilon \mu_4 T. \] \hspace{1cm} (3.37)

From (3.23), we see that \(\int_0^T \epsilon |\nabla u_{xx}^\epsilon|^{7/4} dt \leq C' \int_0^T \epsilon (|\nabla u_{xx}^\epsilon|^2 + 1) dt \leq \text{const} := \mu_6 \). This along with (3.37) implies (3.33).

Now since

\[\int_M (u_{xx})^{3/2} dM \leq C' |u|^{3/2}_{H^6(M)} |u_x|^{3/2} \leq (\text{by } H^1(M) \subset L^6(M) \text{ in } 3D) \leq C' |u|_{H^1}, \]

this along with (3.22) implies (3.34), and hence

\[u^\epsilon u_x^\epsilon \text{ is bounded in } L^{3/2}(I_x; L^{3/2}((0,T) \times I_x)). \] \hspace{1cm} (3.38)

Finally rewriting (3.1) we find

\[u_{xxx}^\epsilon = -u_t^\epsilon - \Delta^\epsilon u_x^\epsilon - cu_x^\epsilon - u^\epsilon u_x^\epsilon - \epsilon u_{xxxx}^\epsilon - \epsilon u_{yyyy}^\epsilon - \epsilon u_{zzzz}^\epsilon. \] \hspace{1cm} (3.39)

Thanks to (3.33), we see that \(\epsilon u_{xxx}^\epsilon \) remains bounded in \(L^2(0,T; L^2(M)) \). Moreover since \(u^\epsilon \) remains \(L^\infty(0,T; H^1(M)) \), we find that each term on the right-hand side of (3.39) except for \(u^\epsilon u_x^\epsilon \) remains bounded at least in \(L^2(I_x; H^{-1}(0,T; H^{-4}(I_x)) \)). This together with (3.38) implies that each term on the right-hand side of (3.39) remains bounded at least in \(L^{3/2}(I_x; H^{-1}(0,T; H^{-4}(I_x)) \)). Thus we obtain (3.35) from (3.39).
3.3 The main result

Using a compactness argument, we can pass to the limit in (3.1) and obtain (2.1), with a function $u \in C([0,T];H^1(\mathcal{M})) \cap H^3(I_x; H^{-1}_t(0,T; H^{-4}(I_x)))$. Moreover, from (3.35) we see that u_{xxx} converges weakly in $L^{3/2}(I_x; H^{-1}(0,T; H^{-4}(I_x)))$, hence by the trace theorem and Mazur’s theorem, we deduce that $u_{xj}(0,x^\perp,t)$ and $u_{xj}(1,x^\perp,t)$ converge weakly in $H^{-1}_t(0,T; H^{-4}(I_x))$, $j = 1, 2$. Thus from (3.4) we obtain (2.3).

Now we are ready to state the main result of the article by collecting all the previous estimates.

Theorem 3.1. The assumptions are the same as in Proposition 3.2, that is (3.7), (3.8), (3.21), (3.20), (3.32), (3.31), and f and f_{xj} assume the periodic boundary conditions on $x = 0, 1$, $j = 1, 2$. Then the initial and boundary value problem for the ZK equation, that is, (2.1), (2.2)-(2.4) and (2.6), possesses at least a solution u:

$$u \in C([0,T];H^1(\mathcal{M})) \cap W^{3,3/2}(I_x; H^{-1}_t(0,T; H^{-4}(I_x))).$$

(3.40)

Remark 3.1. We can obtain stronger regularity for $\bar{u}(x^\perp,t) := \int_0^1 u(x,x^\perp,t) dx$. Integrating (2.1) in x from 0 to 1, we find by (2.2) and (2.3)

$$\frac{\partial \bar{u}}{\partial t} = \bar{f}.$$

(3.41)

Thus $u = \bar{u} + v$, where \bar{u} satisfies (3.41), and v satisfies $\bar{v} = 0$ and (3.40).

4 Discussions about the uniqueness of solutions.

Let u and v be two solutions of (2.1)-(2.4) and (2.6) and let $w = u - v$. Letting $\bar{w}(x^\perp,t) := \int_0^1 u(x,x^\perp,t) dx$, we see that $\frac{\partial \bar{w}}{\partial t} = 0$ and hence

$$\bar{w}(t) = 0, \ \forall \ t \in [0,T].$$

(4.1)

However, it is not clear if we can further prove that $w(t) = 0, \ \forall \ t \in [0,T]$. Firstly, the ideas in the proof of existence can not be extended to prove the uniqueness because the structure of the nonlinear term is changed. Secondly, the methods in [ST10] and [STW12] are not applicable due to the lack of assumptions on the boundary condition u_x at $x = 1$. For the same reason, the proof of the local existence in [Wan] fails as well, which prevents us from using the methods in [CT07].

To conclude, the uniqueness of solutions in both dimensions 2 and 3 are still open due to the partially hyperbolic feature of this model.

Remark 4.1. As for the periodic case, that is, (2.1) and the boundary and initial conditions (2.2), (2.3), (2.5) and (2.6), the results are exactly the same as in the Dirichlet case discussed above. The reasoning is totally the same and therefore we skip it.
Acknowledgments

This work was partially supported by the National Science Foundation under the grants, DMS-0906440 and DMS 1206438, and by the Research Fund of Indiana University.

The author would like to thank my advisers Professor Roger Temam and Nathan Glatt-Holtz for their encouragements and suggestions.
References

[BF13] E.S. Baykova and A. Faminskii, *On initial-boundary value problem in a strip for generalized two-dimensional Zakharov-Kuznetsov equation*, Advances Diff. Equations (2013), no. 18(7–8), 663–686.

[BPS81] J. L. Bona, W. G. Pritchard, and L. R. Scott, *An evaluation of a model equation for water waves*, Philos. Trans. Roy. Soc. London Ser. A 302 (1981), no. 1471, 457–510. MR 633485 (83a:35088)

[BPS83] ______, *A comparison of solutions of two model equations for long waves*, Fluid dynamics in astrophysics and geophysics (Chicago, Ill., 1981), Lectures in Appl. Math., vol. 20, Amer. Math. Soc., Providence, R.I., 1983, pp. 235–267. MR 716887 (84j:76011)

[BSZ03] Jerry L. Bona, Shu Ming Sun, and Bing-Yu Zhang, *A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation posed on a finite domain*, Comm. Partial Differential Equations 28 (2003), no. 7-8, 1391–1436. MR 1998942 (2004h:35195)

[CG01a] Thierry Colin and Jean-Michel Ghidaglia, *An initial-boundary value problem for the Korteweg-de Vries equation posed on a finite interval*, Adv. Differential Equations 6 (2001), no. 12, 1463–1492. MR 1858429 (2002i:35160)

[CG01b] Thierry Colin and Marguerite Gisclon, *An initial-boundary-value problem that approximate the quarter-plane problem for the Korteweg-de Vries equation*, Nonlinear Anal. 46 (2001), no. 6, Ser. A: Theory Methods, 869–892. MR 1859802 (2002i:35161)

[CT07] C. Cao and E. Titi, *Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics*, Ann. of Math. (2) 166 (2007), no. 1, 245–267. MR 2342696

[DL14] G. G. Doronin and N. A. Larkin, *Exponential decay for the linear Zakharov-Kuznetsov equation without critical domain restrictions*, Appl. Math. Lett. 27 (2014), 6–10. MR 3111599

[Fam06] A. V. Faminskii, *On the nonlocal well-posedness of a mixed problem for the Zakharov-Kuznetsov equation*, Sovrem. Mat. Prilozh. (2006), no. 38, 135–148. MR 2469478 (2010a:35215)

[Fam08] Andrei V. Faminskii, *Well-posed initial-boundary value problems for the Zakharov-Kuznetsov equation*, Electron. J. Differential Equations (2008), No. 127, 23. MR 2443150 (2009g:35261)

[Lio69] J.-L. Lions, *Quelques méthodes de résolution des problèmes aux limites non linéaires*, Dunod, 1969. MR 0259693 (41 #4326)

[LLS13] F. Linares, D. Lannes, and Jean-Claude Saut, *The Cauchy problem for the Euler-Poisson system and derivation of the Zakharov-Kuznetsov equation*, Progress in Nonlinear Differential Equations and their Applications, M. Cicognani, FL. Colombini and D. Del Santo Eds. Vol 84 (2013), 183–215.

[LM72] J.-L. Lions and E. Magenes, *Non-homogeneous boundary value problems and applications. Vol. I*, Springer-Verlag, New York, 1972, Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181. MR MR0350177 (50 #2670)

[LS82] E.W. Laedke and K.H. Spatschek, *Growth rates of bending solitons*, J. Plasma Phys. 26 (1982), no. 3, 469–484.

[LSU68] O. A. Ladyzenskaja, V. A. Solonnikov, and N. N. Ural’ceva, *Linear and quasilinear equations of parabolic type*, Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, R.I., 1968. MR 0241822 (39 #3159b)
Nikolai A. Larkin and Eduardo Tronco, *Regular solutions of the 2D Zakharov-Kuznetsov equation on a half-strip*, J. Differential Equations 254 (2013), no. 1, 81–101. MR 2983044

Zhen Qin and Roger Temam, *Penalty method for the KdV equation*, Appl. Anal. 91 (2012), no. 2, 193–211. MR 2876749

Jean-Claude Saut and Roger Temam, *An initial boundary-value problem for the Zakharov-Kuznetsov equation*, Adv. Differential Equations 15 (2010), no. 11-12, 1001–1031.

Jean-Claude Saut, Roger Temam, and Chuntian Wang, *An initial and boundary-value problem for the Zakharov-Kuznetsov equation in a bounded domain*, J. Math. Phys. 53 (2012), no. 11, 115612, 29. MR 3026557

R. Temam, *Infinite-dimensional dynamical systems in mechanics and physics*, second ed., Applied Mathematical Sciences, vol. 68, Springer-Verlag, New York, 1997. MR MR1441312 (98b:58056)

Chuntian Wang, *Local Existence of Strong Solutions to the 3D Zakharov-Kuznetsov Equation in a Bounded Domain*, Appl. Math. Optim., no. 10.1007/s00245-013-9212-6.

V.E. Zakharov and E.A. Kuznetsov, *On three-dimensional solitons*, Sov. Phys. JETP 30 (1974), 285–286.