Unconventional magnetic field response of the hyperhoneycomb Kitaev magnet β-Li$_2$IrO$_3$

Mengqun Li,1 Ioannis Rousochatzakis,2 and Natalia B. Perkins*

1School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
2Department of Physics, Loughborough University, Loughborough LE11 3TU, United Kingdom

(Received 1 November 2019; published 22 January 2020)

We present a unified description of the response of the hyperhoneycomb Kitaev magnet β-Li$_2$IrO$_3$ to applied magnetic fields along the orthorhombic directions \mathbf{a}, \mathbf{b}, and \mathbf{c}. This description is based on the minimal nearest-neighbor J-K-Γ' model and builds on the idea that the incommensurate counter-rotating order observed experimentally at zero field can be treated as a long-distance twisting of a nearby commensurate order with six spin sublattices. The results reveal that the behavior of the system for $H \parallel \mathbf{a}$, $H \parallel \mathbf{b}$, and $H \parallel \mathbf{c}$ share a number of qualitative features, including (i) a strong intertwining of the modulated, counter-rotating order with a set of uniform orders; (ii) the disappearance of the modulated order at a critical field H^*, whose value is strongly anisotropic with $H^*_c < H^*_b < H^*_a$; (iii) the presence of a robust zigzag phase above H^*; and (iv) the fulfillment of the Bragg peak intensity sum rule. It is noteworthy that the disappearance of the modulated order for $H \parallel \mathbf{c}$ proceeds via a “metamagnetic” first-order transition which does not restore all broken symmetries. This implies the existence of a second finite-T phase transition at higher magnetic fields. We also demonstrate that quantum fluctuations give rise to a significant reduction of the local moments for all directions of the field. The results for the total magnetization for $H \parallel \mathbf{b}$ are consistent with available data and confirm a previous assertion that the system is very close to the highly frustrated J-K-Γ' frame, and two counter-rotating sets of moments [14], similar to those in α-Li$_2$IrO$_3$ [15] and γ-Li$_2$IrO$_3$ [19,48]. Here we revisit the case of the hyper-honeycomb β-Li$_2$IrO$_3$ and show that its strongly anisotropic response signifies a large separation of energy scales between the relevant microscopic interactions and that it can thus be used to extract information about the relative strength of these interactions in a direct way.

Remarkably, all experimental data reported so far for Kitaev materials show that their response to the magnetic field depends very strongly on its direction. This is true for the layered compounds Na$_3$IrO$_3$ [10], α-Li$_2$IrO$_3$ [46], and α-RuCl$_3$ [29–31,47], as well as for the three-dimensional (3D) iridates β-Li$_2$IrO$_3$ [21,24] and γ-Li$_2$IrO$_3$ [19,48]. Here we revisit the case of the hyper-honeycomb β-Li$_2$IrO$_3$ and show that its strongly anisotropic response signifies a large separation of energy scales between the relevant microscopic interactions and that it can thus be used to extract information about the relative strength of these interactions in a direct way.

The main features of β-Li$_2$IrO$_3$ that are known so far are as follows [14,16,21,22,24]. At zero field, the system orders magnetically below $T_N = 38$ K, with the spins forming a noncoplanar, incommensurate (IC) modulation, with propagation wave vector $\mathbf{Q} = (0.57, 0, 0)$ in the orthorhombic frame, and two counter-rotating sets of moments [14], similar to those in γ-Li$_2$IrO$_3$ [15] and α-Li$_2$IrO$_3$ [18]. A magnetic field along \mathbf{b} destroys the IC order at a characteristic field $H_b^* \sim 2.8$ T, beyond which the spins show a uniform $\mathbf{Q} = 0$ coplanar phase, comprising a ferromagnetic (FM) component along the field and a robust zigzag component along \mathbf{a} [21]. These components are also present below H_b^* but are too small to be detected at zero field [49,50]. For $H \parallel \mathbf{a}$ and $H \parallel \mathbf{c}$, the system shows a much weaker response, with the IC order remaining robust and the magnetization being linear up to...
the maximum fields measured (see Supplemental Material in Refs. [21] and [24]).

On the theory side, it has been established that the magnetism of β-Li$_2$IrO$_3$ can be accurately described by the nearest neighbor (NN) J-K-Γ model [49–52], where K denotes the Kitaev coupling, J is the Heisenberg coupling, and Γ represents the so-called symmetric exchange anisotropy which is present in many Kitaev materials [51–56]. In particular, β-Li$_2$IrO$_3$ is believed to be in the regime of large negative K, large negative Γ (with $|\Gamma| < |K|$), and small positive J (with $J \ll |\Gamma|$); see detailed discussion in Refs. [49,50]. Remarkably, in this parameter regime, the critical field H^*_b depends only on J, specifically [50] $\mu_B H^*_b \sim 0.46J/(4S/g_{\text{tot}})$, where $S = 1/2$ denotes the classical spin length of the Li_2IrO_3 system. Here, μ_B is the Bohr magneton, and g_{tot} is the diagonal element of the electronic g tensor along b. The small value of the experimentally measured H^*_b is therefore a signature of the smallness of J ($J \sim 4$ K).

It has also been shown [49,50] that the IC order of β-Li$_2$IrO$_3$ can be treated as a long-distance twisting of a nearby commensurate period-3 state with $Q = \frac{2\pi}{3}\hat{a}$ (in units of $\frac{2\pi}{a}$). This state is amenable to a semianalytical treatment of the problem, with results that are consistent with almost all experimental findings so far, both in zero and at finite fields along b [49,50]. This analysis explains, for example, the presence of a uniform zigzag component along a on top of the modulated order, and the intensity sum rule of the corresponding Bragg peaks [21].

Here we show that this semianalytical description can be naturally extended to the cases where H is along a and c. The results, which are cross-checked with classical Monte Carlo simulations, show that the response along a and c directions shares many qualitative features with that along b. Specifically, we find that the period-3 order disappears at a critical field H^*, whose value depends strongly on the field direction. Importantly, none of the critical fields depends on the Kitaev interaction K, and moreover H^*_a are mainly controlled by Γ. A realistic set of coupling parameters,

\[J = 0.4 \text{ meV}, \quad K = -18 \text{ meV}, \quad \text{and} \quad \Gamma = -10 \text{ meV}, \quad (1) \]

delivers $H^*_b \sim 2.88$ T and $T_N \sim 35.5$ K (in good agreement with corresponding experimental values of 2.8 T and 38 K [14,21]) and also gives $H^*_a \sim 102$ T and $H^*_c \sim 13$ T. This means that at least the transition at H^*_c should be accessible experimentally, and the measured value of H^*_c can provide the value of Γ.

The same semianalytical approach provides a number of additional qualitative findings: (i) The period-3 order is always intertwined with a set of uniform orders, some of which give rise to a finite torque that can be measured experimentally. (ii) Among these uniform orders, there is always a zigzag component which remains robust above H^* and coexists with the FM order along the field. Classically, the zigzag component disappears (but only for $g_{\text{tot}}=0$, see below) at $H^* \rightarrow \infty$ for fields along a and b, but for $H \parallel c$ the corresponding field H^*_c is finite. In particular, H^*_c is governed mostly by Γ, with $H^*_c \sim 45$ T for the parameters of Eq. (1). (iii) The intensity sum rule between the Bragg peaks at $Q = \frac{2\pi}{3}\hat{a}$ and $Q = 0$, which has been observed experimentally for $H \parallel b$ [21], is actually fulfilled for all field directions. As it turns out, this rule is an experimental fingerprint of the spin length constraints. (iv) While the transitions at H^*_a and H^*_c are continuous, the transition at H^*_b is of first order. Moreover, this transition does not restore all broken symmetries, which leads to the prediction of a second thermal phase transition at high enough fields along c. This transition will be demonstrated explicitly by classical Monte Carlo simulations.

One shortcoming of our semianalytical classical approach is that it overestimates the magnetization at H^*_b by approximately a factor of 2 compared to the experimental value. This has led to the assertion [50] that the spin lengths are strongly renormalized by quantum fluctuations due to the close proximity to the special K-Γ line in parameter space, where the system is highly frustrated [49]. This assertion is now demonstrated explicitly by a semiclassical $1/S$ expansion. The results confirm that the magnetization correction can be as large as 50%, and a direct comparison with published experimental data shows good agreement for all three field directions.

The rest of the paper is organized as follows. In Sec. II, we recall the structural and symmetry aspects of β-Li$_2$IrO$_3$ that are most relevant for this study. In Sec. III, we review the minimal J-K-Γ model [51,52] and the symmetries of the corresponding spin Hamiltonian. In Sec. IV, we present the unified semianalytical description for all three orthorhombic directions. This includes the basic spin-sublattice structure of the various configurations (Sec. IV A), their parametrization in terms of Cartesian components, and the associated symmetry-resolved static structure factors (Secs. IV B–IV C), the dependence of the critical fields H^* on the model parameters (Sec. IV E), and a discussion of the symmetries that are broken in each regime (Sec. IV F). The role of quantum fluctuations is then addressed in Sec. V, along with the direct comparison of the predicted magnetizations with available experimental data. In Sec. VI, we discuss how the various transitions can be detected experimentally via measurements of the magnetic torque, for which we provide predictions with and without harmonic spin-wave corrections. In Sec. VII, we cross-check our ansatzes with classical Monte Carlo simulations and compute the H-T phase diagram for all three orthorhombic directions. Here we also highlight the qualitative difference between the zigzag orders for $H \parallel a$ and $H \parallel b$ versus the spontaneous high-field zigzag order for $H \parallel c$. A summary and a general discussion is given in Sec. VIII. Auxiliary information and technical details are provided in Appendices A–E.

II. LATTICE STRUCTURE, SYMMETRIES, AND CONVENTIONS

β-Li$_2$IrO$_3$ crystallizes in a hyperhoneycomb structure (shown in Fig. 1) and has the $F\bar{dd}d$ space group. Its conventional orthorhombic unit cell is set by the crystallographic axes $\{\hat{a}, \hat{b}, \hat{c}\}$, which are related to the Cartesian axes $\{\hat{x}, \hat{y}, \hat{z}\}$ appearing in the spin Hamiltonian below [Eqs. (4) and (5)] by

\[\hat{x} = (\hat{a} + \hat{c})/\sqrt{2}, \quad \hat{y} = (\hat{c} - \hat{a})/\sqrt{2}, \quad \hat{z} = -\hat{b}. \quad (2) \]

We note here that we stick to the xyz-frame convention of Refs. [49–52], which is different from the one used in Ref. [14]. The two xyz frames are related to each other by
FIG. 1. Sketch of a hyperhoneycomb lattice. The five NN bonds of the J-K-Γ model are shown by solid (dashed) red lines for $t \in \{x, x^\prime\}$, solid (dashed) green lines for $t \in \{y, y^\prime\}$, and solid blue lines for $t \in \{z\}$.

a twofold rotation around the x axis. This is important as the choice of the frame affects the overall sign structure of the Γ interactions.

The orthorhombic unit cell contains four primitive unit cells, of four Ir$^{4+}$ ions each (labeled by Ir$_1$-Ir$_4$ in Fig. 1). The Ir$^{4+}$ ions form a hyperhoneycomb structure, which can be viewed as a stacking of two types of zigzag chains, which we will denote by x- and x^\prime- chains. The xy chains run along the direction $a + b$ and are shown in Fig. 1 by the alternating red and green solid bonds, denoted by x and y respectively. The $x^\prime y$ chains run along $a - b$ and are shown in Fig. 1 by the alternating red and green dashed bonds, denoted by x^\prime and y^\prime respectively. The two types of chains are interconnected with vertical NN Ir-Ir bonds denoted in Fig. 1 by z (blue solid lines). In total, there are five types of NN Ir-Ir bonds, x, y, x^\prime, y^\prime, and z.

Apart from translations, the crystal structure is invariant under the following point group operations [21]: (i) Inversion I through the center of every x, y, x^\prime, y^\prime, or y^\prime type of bond, such as the center of the Ir$_2$-Ir$_1$ bond of Fig. 1. (ii) Three π rotations in combined spin-orbit space, $C_{2a}, C_{2b},$ and C_{2e}, around the axes a, b, and c, respectively, passing through the middle of the z bonds, as shown in Fig. 1. In particular, C_{2a} maps x bonds to y^\prime bonds and y bonds to x^\prime bonds in real space, and $[S_x, S_y, S_z] \rightarrow [-S_y, -S_z, S_x]$ in spin space. Similarly, C_{2b} maps x bonds to x^\prime bonds and y bonds to y^\prime bonds in real space, and $[S_x, S_y, S_z] \rightarrow [-S_x, -S_z, S_y]$ in spin space. Finally, C_{2e} maps x bonds to y bonds and x^\prime bonds to y^\prime bonds in real space, and $[S_x, S_y, S_z] \rightarrow [S_y, S_z, -S_x]$ in spin space. (iii) Three glide planes which arise by reflections across the $ab, bc,$ and ac planes passing through an inversion center, followed by nonprimitive translations by $(\frac{1}{2} \frac{1}{2} 0), (0 \frac{1}{2} \frac{1}{2})$, and $(\frac{1}{4} \frac{1}{4} \frac{1}{4})$, in orthorhombic units, respectively.

At this point, it is also worth introducing some terminology that we will need later in the analysis of the static structure factors. Following Ref. [14], we define four-component symmetry basis vectors,

$$A = \begin{pmatrix} -1 & -1 \\ 1 & -1 \\ 1 & 1 \\ -1 & 1 \\ -1 & -1 \end{pmatrix}, \quad C = \begin{pmatrix} 1 \\ 1 \\ -1 \\ -1 \\ -1 \end{pmatrix}, \quad F = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \quad G = \begin{pmatrix} -1 \\ -1 \\ 1 \\ 1 \\ -1 \end{pmatrix}. \quad (3)$$

These vectors represent, respectively, the relative amplitudes of the four sites of the primitive unit cell in the Néel (A), stripy (C), ferromagnetic (F), and zigzag (G) order. Note that, for consistency, our four-site labeling Ir$_1$-Ir$_4$ of Fig. 1 follows the convention of Fig. 7 of Ref. [14].

For the various components of the static structure factor, we follow the convention of Ref. [49] and denote the modulated components with $Q = \frac{2}{3} \hat{a}$ by the letter M and the uniform components with $Q = 0$ by M'. Therefore, $M_i(A)$ denotes the modulated Néel (A) component along a, $M'_i(F)$ denotes the uniform ferromagnetic (F) component along b, and so on. The definitions of these components in terms of the Fourier transform of the spin configuration are given in Appendix A.1.

III. THE MINIMAL J-K-Γ MODEL

Following earlier works [49–52], we consider here the minimal microscopic J-K-Γ model mentioned above, supplemented with a Zeeman term H_Z to describe the coupling to the external field H. The total Hamiltonian then reads

$$H = \sum_{i, j} \sum_{ij} H'_{ij} + H_Z, \quad (4)$$

where

$$H'_{ij} = J S_i \cdot S_j + KS_i^\alpha S_j^\beta + \sigma_i \Gamma(S_i^b S_j^b + S_i^c S_j^c),$$

$$H_Z = -\mu_B H \cdot \sum_i \mathbf{g}_i \cdot \mathbf{S}_i. \quad (5)$$

Here S_i denotes the pseudospin $j_{\text{eff}} = 1/2$ operator at site i, $t \in \{x, y, z, x', y'\}$ labels the five different types of NN Ir-Ir bonds and $(\alpha, \beta, \gamma) = (x, y, z, (y, z, x), (z, x, y)$ for $t \in \{x, x', y, y', z\}$, respectively. The prefactor σ_i equals $+1$ for $t \in \{x, y, z\}$ and -1 for $t \in \{x', y', z\}$, see ± symbols in Figs. 1 and 2. This overall sign structure of the Γ interactions derives from the symmetries mentioned above [51] and our choice of the xyz frame in Eq. (2). Finally, \mathbf{g}_i stands for the ith Ir ion. As discussed by Ruiz et al. [21], these tensors carry a site-dependent, staggered off-diagonal element g_{ab} specifically, in the orthorhombic frame,

$$\mathbf{g}_i = \mathbf{g}_{\text{diag}} + p_i \mathbf{g}_{\text{off-diag}} \equiv \begin{pmatrix} g_{aa} & 0 & 0 \\ 0 & g_{bb} & 0 \\ 0 & 0 & g_{cc} \end{pmatrix} + p_i \begin{pmatrix} 0 & g_{ab} & 0 \\ g_{ab} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}. \quad (6)$$
where \(p_i = +1 \) for spins on the \(xy \) chains and \(-1\) for spins on the \(x'y' \) chains. Here we take \(g_{ax} = g_{bh} = g_{cc} = 2 \) and \(g_{ab} = 0.1 \).

We note that, depending on the direction of the field, some of the discrete symmetries mentioned above may or may not be preserved; see Table II. A field along \(a \), for example, breaks both \(C_{2b} \) and \(C_{2c} \), but still respects \(C_{2a}, \Theta C_{2b} \), and \(\Theta C_{2c} \), where \(\Theta \) is the time-reversal operation.

In the following, we restrict ourselves to the so-called \(K \) region of the parameter space with dominant Kitaev interaction, which is believed to be relevant for \(\beta\text{-Li}_2\text{IrO}_3 \) [49], and fix the parameters to the representative set given in Eq. (1).

IV. UNIFIED DESCRIPTION OF \(\beta\text{-Li}_2\text{IrO}_3 \)

FOR \(H \) ALONG \(a, b, \) AND \(c \) AXES

A. General spin sublattice structure

The behavior of \(\beta\text{-Li}_2\text{IrO}_3 \) under a magnetic field along the three orthorhombic directions can be described in a unified manner as shown in Fig. 2. For all three directions, \(a, b, \) and \(c \), the system goes through a low-field phase \((0 < H < H^*)\) with six spin sublattices [\(A, B, \) and \(C \) along the \(xy \) chains, and \(A', B', \) and \(C' \) along the \(x'y' \) chains; see Fig. 2(a)], followed by a high-field canted phase \((H^* < H < H^{**})\) with two spin sublattices [\(\tilde{F} \) along the \(xy \) chains and \(F' \) along the \(x'y' \) chains; see Fig. 2(b)]. The high-field phase terminates at \(H^{**} = \infty \) for \(H \parallel a \) and \(H \parallel b \) (with a small zigzag component remaining if \(g_{ab} \neq 0 \); see Appendix B), whereas \(H^{**} \) is finite and the classical state reached at \(H^{**} \) is the fully polarized state.

Figure 3 shows a series of representative snapshots of various ground-state configurations for different field directions and strengths (obtained from numerical minimization of the classical ansatzes discussed below). As discussed in Ref. [49], in the zero-field state, the three sublattices \(A, B, \) and \(C \) along the \(xy \) chains form a nearly coplanar \(120^\circ \) state, and the three sublattices \(A', B', \) and \(C' \) along the \(x'y' \) chains form another such nearly \(120^\circ \) structure, on a different plane; see the dotted blue triangles at the top left panel of Fig. 3. Under a magnetic field, the three sublattices of each given chain cant toward the field in a nonuniform way and at a pace that is strongly dependent on the field direction.

B. Basic characterization of the low-field phase \((H < H^*)\)

The individual Cartesian spin components of the various configurations are related to each other in a specific way; see the parametrization in Table I. For each given spin sublattice, a spin length constraint must be imposed, for example, \(x_1^2 + y_1^2 + z_1^2 = 1 \) for the \(A \) sublattice, \(2x_3^3 + z_3^3 = 1 \) for the \(C \) sublattice of the \(H \parallel a \) case, etc. The field dependence of the Cartesian components can be obtained by a numerical minimization of the total energy of the system [see Eqs. (B5)],

\(H \parallel a \)	\(H \parallel b \)	\(H \parallel c \)	
\(A \)	\(\delta[x_1, y_1, z_1] \)	\(\delta[x_1, y_1, z_1] \)	\(\delta[x_1, y_1, z_1] \)
\(A' \)	\(\delta[y_2, x_2, z_2] \)	\(\delta[y_2, x_2, z_2] \)	\(\delta[y_1, x_1, z_1] \)
\(B \)	\(\delta[-y_1, -x_1, z_1] \)	\(\delta[-y_1, -x_1, z_1] \)	\(\delta[-y_2, -x_2, z_2] \)
\(B' \)	\(\delta[-x_2, -y_2, z_2] \)	\(\delta[-x_2, -y_2, z_2] \)	\(\delta[-x_2, -y_2, z_2] \)
\(C \)	\(\delta[-x_3, x_3, z_3] \)	\(\delta[-x_2, -x_2, -z_2] \)	\(\delta[-y_3, x_3, -z_3] \)
\(C' \)	\(\delta[x_4, -x_4, -z_4] \)	\(\delta[x_2, -x_2, -z_2] \)	\(\delta[x_3, -y_3, -z_3] \)
Figs. 4(d)–4(f) and 5.

The relations between the two are given in Eqs. (B2), obey the same number of constraints as the Cartesian components (see Eqs. (B6), (B18), and (B30)). The structure factors can be described in terms of the associated symmetry-resolved static structure factors, and the same is true for the total energy [see Eqs. (B17), and (B29)], and their evolution with field are shown in Figs. 4(a)–4(c) and (B15), and (B27)], and their evolution with field are shown in Figs. 4(d)–4(f) and 5.

The low-field phase for $H \parallel b$ is described by five Cartesian components $(x_1, y_1, z_1, x_2,$ and $z_2)$ or, equivalently, by five structure factors [50]: Three modulated $Q = \frac{2}{3} \mathbf{a}$ components $M_a(A), M_b(C),$ and $M_c(F)$ and two uniform $Q = 0$ components $M'_a(G)$ and $M'_b(F).$ This precise combination is in fact present for all three orthorhombic directions for $0 \leq H < H^*,$ as it is a property of the zero-field state. In particular, the uniform components $M'_a(G)$ and $M'_b(F)$ of the zero-field order reflect the deviation from the perfect 120° coplanar order mentioned above; see the detailed analysis in Ref. [49].

Note further that the modulated components $M_a(A), M_b(C),$ and $M_c(F)$ belong to the Γ_4 irreducible representation, in agreement with experiment [14]. The five structure factors satisfy two constraints which, when normalized appropriately (see Appendix A1), can be combined to give the Bragg peak intensity sum rule observed experimentally [21]. Namely,

$$I_{\text{tot}} = 2I_I + I_V = S^2,$$

where

$$I_I = |M_a(A)|^2 + |M_b(C)|^2 + |M_c(F)|^2 \equiv I_{I, \text{tot}},$$

$$I_V = |M'_a(G)|^2 + |M'_b(F)|^2.$$

Turning to the low-field phase for $H \parallel a,$ here we have ten Cartesian components (see Table I) or, equivalently, ten structure factors: six modulated components (the three zero-field plus those induced by the field) and four uniform components (the two zero-field components plus two induced by the field):

$$H \geq 0: M_a(A), M_b(C), M_c(F) \text{ and } M'_a(G), M'_b(F),$$

$$H > 0: M_a(A), M_b(C), M_c(G) \text{ and } M'_a(F), M'_b(G).$$

Hence, a field along a induces a finite FM component $M'_a(F)$ (which couples explicitly to the Zeeman field) and a finite zigzag component $M'_a(G)$ along $b.$ The latter can become relatively large with field [see Fig. 4(d)] and should be observable experimentally, unlike the components $M'_a(G)$ and $M'_b(F)$ which remain at least one order of magnitude smaller; see Fig. 5(a). The same is true for the field-induced modulated components $M_a(C), M_b(A),$ and $M_c(G),$ which belong to the irreducible representation Γ_2 (see Table II of Ref. [14]). Altogether, the ten structure factors satisfy four constraints, and one combination of them gives the Bragg peak intensity

FIG. 4. Field evolution of Cartesian spin components [(a)–(c)], dominant symmetry-resolved static structure factors [(d)–(f)] (see Fig. 5 for the remaining much weaker components), and Bragg peak intensities $I_I, I_V,$ and I_{tot} [(g)–(i)]. The insets in panels (b) and (e) show the high-field behavior.
The sum rule of Eq. (7), where now

\[I_I = I_{I,rr} + I_{I,rr} ∝ I_{I,rr}, \]

\[I_{I,rr} = |M_{a}(C)|^2 + |M_{b}(A)|^2 + |M_{c}(G)|^2 \ll I_{I,rr}, \]

\[I_{V} = |M_{a}(G)|^2 + |M_{b}(F)|^2 + |M_{c}(F)|^2 + |M_{b}(G)|^2. \]

(10)

The low-field phase for \(H/\Gamma \) is described by nine Cartesian components (see Table I) or by nine structure factors:

\[H ≥ 0: M_{a}(A), M_{b}(C), M_{c}(F) \quad \text{and} \quad M_{a}(G), M_{b}(F), M_{c}(C) \]

\[H > 0: M_{a}(G), M_{b}(F), M_{c}(C) \quad \text{and} \quad M_{b}(F). \]

(11)

Here, the field induces three modulated components \(|M_{a}(C)| \), \(|M_{b}(A)| \), \(|M_{c}(G)| \) and \(|M_{b}(F)| \) (which couples directly to the Zeeman field). The modulated components belong to the irreducible representation \(ω_3 \) (see Table II of Ref. [14]), and, as it turns out, they remain at least one order of magnitude smaller than the dominant \(ω_4 \) components; see Fig. 5(b). Altogether, the nine structure factors satisfy three constraints, and one combination of them gives the Bragg peak intensity sum rule of Eq. (7), where now

\[I_I = I_{I,rr} + I_{I,rr} ∝ I_{I,rr}, \]

\[I_{I,rr} = |M_{a}(G)|^2 + |M_{b}(F)|^2 + |M_{c}(C)|^2 \ll I_{I,rr}, \]

\[I_{V} = |M_{a}(G)|^2 + |M_{b}(F)|^2 + |M_{b}(F)|^2. \]

(12)

Let us emphasize that the fulfillment of the intensity sum rule Eq. (7) for all field directions and strengths is a direct fingerprint of the local spin length constraints. The numerical prefactor of 2 in the definition \(I_{ab} = I_I + I_V \) reflects the fact that there are twice as many Bragg peaks characterizing the modulated order \(Q = ± \frac{1}{2} \hat{a} \) compared to the peaks characterizing the uniform order \(Q = 0 \); see detailed analysis and a general proof of Eq. (7) in Appendix A.2.

Note finally that some of the uniform components generated for \(H \) along \(\hat{a} \) and \(\hat{c} \) give rise to a finite magnetic torque signal, which will be examined separately in Sec. VI.

C. Basic characterization of the high-field phase \(H^* < H < H^** \)

For \(H > H^* \), all modulated components vanish identically, and we are left with uniform structure factors only. In particular, for \(H \) along \(\hat{a} \) and \(\hat{b} \), there are only two uniform components: a FM component along the field and a zigzag component perpendicular to the field. For \(H/\Gamma \), there is an additional FM component \(M_{a}(G) \) perpendicular to the field. In terms of the two spin sublattices \(F \) and \(F' \) of Fig. 2(b), the FM component is proportional to \(F + F' \) and the zigzag component is proportional to \(F - F' \). The direction of the zigzag component depends on the direction of the field. When \(H/\Gamma \) and \(F - F' = 2S\hat{c} \hat{z} \) (see Table I), and therefore the zigzag component is fixed along \(\hat{b} \). By contrast, the zigzag component is fixed along \(\hat{a} \) when \(H \) points along \(\hat{b} \) or \(\hat{c} \), with \(F - F' = 2\sqrt{2}S\hat{c} \hat{a} \) and \(F - F' = 2\sqrt{2}S(\hat{x} - \hat{y}) \hat{a} \), respectively; see Table I. Note also that, for \(H > H^* \), the spins lie on the \(\hat{a} \) plane for \(H/\Gamma \) along \(\hat{a} \) and \(\hat{b} \), but for \(H/\Gamma \) the spin plane changes continuously. This is related to the fact that the uniform components of the zero-field state all lie in the \(\hat{b} \) plane, and so a field applied in this plane will merely reorganize these components and not rotate them out of the plane, unlike what happens for \(H/\Gamma \).

The zigzag component disappears at a characteristic field \(H^* \). As mentioned above, \(H^* \) is infinite for \(H/\Gamma \) along \(\hat{a} \) and \(\hat{b} \) but finite for \(H/\Gamma \) along \(\hat{c} \), with (see Appendix B.3)

\[\mu_{b}H_{c}^* = \left(1 + 2J + \sqrt{(1 - 2J)^2 + 8I^2} \right) \frac{S}{8\sqrt{2}}. \]

(13)

which, for \(J \ll |\Gamma| \), reduces to

\[\mu_{b}H_{c}^* \approx \left(\frac{4}{3}J + |\Gamma| \right) \frac{S}{8\sqrt{2}}. \]

(14)

According to this relation, \(H_{c}^* \) depends mostly on \(\Gamma \), with \(H_{c}^* \approx 45 \) T for the coupling parameters of Eq. (1).

D. Robustness of high-field zigzag orders

We now discuss why the various high-field zigzag orders remain robust up to very high fields, for all three orthorhombic directions. The most direct way to see this is to express the total energies \(\epsilon_{b} \) and \(\epsilon_{c} \) in terms of the two spin sublattices \(F \) and \(F' \) of Fig. 2(b). The zigzag component disappears at a characteristic field \(H^* \). As mentioned above, \(H^* \) is infinite for \(H/\Gamma \) along \(\hat{a} \) and \(\hat{b} \) but finite for \(H/\Gamma \) along \(\hat{c} \), with (see Appendix B.3)

\[\mu_{b}H_{c}^* = \left(1 + 2J + \sqrt{(1 - 2J)^2 + 8I^2} \right) \frac{S}{8\sqrt{2}}. \]

(13)

which, for \(J \ll |\Gamma| \), reduces to

\[\mu_{b}H_{c}^* \approx \left(\frac{4}{3}J + |\Gamma| \right) \frac{S}{8\sqrt{2}}. \]

(14)

According to this relation, \(H_{c}^* \) depends mostly on \(\Gamma \), with \(H_{c}^* \approx 45 \) T for the coupling parameters of Eq. (1).
strong \(\Gamma \) interaction. Of course, the actual quantitative details for each field direction derive from the minimization of the total energies under the given constraints. For example, the analytical expression Eq. (13) for \(H^*_{\parallel} \) can be derived by minimizing \(E_e \) in Eq. (B35) under the single constraint \(|M'_e(G)|^2 + |M'_f(F)|^2 + |M'_g(F)|^2 = S^2\).

E. Dependence of \(H^* \) on microscopic coupling parameters

The characteristic field \(H^* \) marks the disappearance of the modulated components \([M'_e(G) \text{ and } M'_f(F)] \) for \(\mathbf{H} \parallel \mathbf{a} \). As mentioned earlier, this transition is continuous for \(\mathbf{H} \parallel \mathbf{a} \) and \(\mathbf{H} \parallel \mathbf{b} \), but of first order for \(\mathbf{H} \parallel \mathbf{c} \); see Figs. 4(a)–4(f). Furthermore, the value of \(H^* \) depends strongly on the direction of the field. For the coupling parameters of Eq. (1), \(H^*_{\parallel} \sim 102 \text{ T}, H^*_2 \sim 2.88 \text{ T}, \) and \(H^*_3 \sim 13 \text{ T} \). This large difference between the critical fields along different directions is related to the strongly anisotropic character of the Hamiltonian, and the different role of the various couplings in each case. For example, as we discussed in Ref. [50], in the parameter regime of interest, \(H^*_{\parallel} \) depends only on \(J \), which is why \(H^*_{\parallel} \) is very small.

We will now show that \(H^*_{\parallel} \) and \(H^*_{\parallel} \) do not depend on \(K \) but only on \(J \) and \(\Gamma \), and that the inequality \(J \ll |\Gamma| \) explains why these critical fields are larger compared to \(H^*_{\parallel} \). To this end, we will vary the parameters of the model and take a closer look at the evolution of the various contributions to the total energy with the field. Figures 6(a)–6(c) shows the field-driven evolution of \(E_J, E_K, E_r, \) and \(E_Z \), which denote the contributions from \(J, K, \) and \(\Gamma \) interactions and the Zeeman energy, respectively. The corresponding derivatives of these energies with respect to \(H \) are shown in Figs. 6(d)–6(f). The main finding is that, in the parameter regime of interest, \(E_K \) remains almost insensitive to \(H \), and this is true for all field directions. This means that the Zeeman field does not act against \(K \), which explains why none of the critical fields \(H^* \) depends on the dominant coupling of the theory. The results also show that, unlike \(H^*_{\parallel} \) and \(H^*_{\parallel} \), the critical field \(H^*_{\parallel} \) depends only on \(J \) and not on \(\Gamma \); this is the consequence of the fact that \(E_r \) does not change with \(H \) in this direction. These arguments can be formulated mathematically by the following relations that arise from a classical version of Feynman-Hellmann theorem (see Appendix C):

\[
\mathcal{N} \frac{\partial}{\partial J} m_J(J, K, \Gamma, H) = - \frac{\partial}{\partial H} E_J(J, K, \Gamma, H)/J,
\]

\[
\mathcal{N} \frac{\partial}{\partial K} m_K(J, K, \Gamma, H) = - \frac{\partial}{\partial H} E_K(J, K, \Gamma, H)/K, \tag{17}
\]

\[
\mathcal{N} \frac{\partial}{\partial \Gamma} m_\Gamma(J, K, \Gamma, H) = - \frac{\partial}{\partial H} E_\Gamma(J, K, \Gamma, H)/\Gamma,
\]

where \(\mathcal{N} \) is the total number of spins and \(m_J(J, K, \Gamma, H) \) is the magnetization per site along the field. According to these relations, the fact that \(\partial E_J/\partial H \approx 0 \) implies that \(\partial m_J/\partial K \approx 0 \), i.e., that the whole magnetization process does not depend on \(K \). Likewise, the fact that \(\partial E_K/\partial H \approx 0 \) implies that \(\partial m_K/\partial \Gamma \approx 0 \) and therefore the whole magnetization process depends only on \(J \) in this field direction.

We can go one step further and extract the actual dependence of the critical fields on the relevant couplings by computing these fields for a wider range of parameters. The

![Figure 6](image-url)
results are shown in Fig. 7 and demonstrate that the critical fields H_α^* and H_β^* depend almost perfectly linearly on J and Γ. Fitting the numerical data for H_α^* gives, in particular,

$$\mu_B H_\alpha^* \simeq (0.54 J + 0.57|\Gamma|) \frac{4S}{g_{\alpha\alpha}}.$$

$$\mu_B H_\beta^* \simeq 0.42 J \left(\frac{4S}{g_{\beta\beta}} \right).$$

$$\mu_B H_\kappa^* \simeq (0.94 J + 0.04|\Gamma|) \frac{4S}{g_{\kappa\kappa}}.$$

Thus, besides the independence of H_α^* on K and Γ [57], we find that H_α^* is controlled mainly by Γ (given that $J \ll |\Gamma|$), whereas H_κ^* is controlled by both J and Γ. Note that the coefficients appearing in Eqs. (18) correspond to the value $g_{ab} = 0.1$ whose sign and magnitude is chosen arbitrarily here. However, the coefficients do not depend much on this choice. For example, for $g_{ab} = 0$ we get $\mu_B H_\alpha^* \simeq (0.54 J + 0.59|\Gamma|) \frac{4S}{g_{\alpha\alpha}}$, $\mu_B H_\beta^* \simeq 0.45 J \left(\frac{4S}{g_{\beta\beta}} \right)$, while H_κ^* remains unchanged.

F. Symmetries

Table II shows the symmetry properties of the various field-induced configurations for different field directions. The primitive translations (denoted by T) are broken spontaneously in the low-field phase ($0 < H < H^*$) due to the modulating components of the order. This symmetry is restored above H^* with the disappearance of these components. Furthermore, the low-field phases preserve the inversion symmetries \mathcal{I} around the centers of the FM dimers $\mathbf{A}_1\mathbf{A}_2$, $\mathbf{B}_1\mathbf{B}_2$, $\mathbf{A}'\mathbf{A}'$, or $\mathbf{B}'\mathbf{B}'$ of Fig. 2(a), while the high-field phases preserve the inversion centers on all x, y, x', and y' bonds.

Let us now turn to the C_2-rotation symmetries discussed in Sec. II or their combinations with time reversal Θ. For $H \parallel \mathbf{b}$, the symmetries ΘC_{2a}, C_{2b}, and ΘC_{2c} of the model are all preserved in both the low- and the high-field phases, emphasizing once again the special role of the \mathbf{b} axis [14,21,50].

For $H \parallel \mathbf{a}$, on the other hand, among the three symmetries C_{2a}, ΘC_{2a}, and ΘC_{2c}, the first two are broken spontaneously in the low-field phase due to $M_1'(G)$ and $M_1'(F)$. This symmetry breaking is associated with the choice of the overall sign of $M_1'(G)$ and $M_1'(F)$. One can see this more directly from the cross-coupling term of Eq. (B18), according to which the relative signs of $M_1'(G)$ and $M_1'(F)$ are fixed by the sign of Γ, but one can still change both signs at the same time without changing the energy. Note that while a similar cross-coupling term appears between $M_1'(F)$ and $M_1'(G)$ [see Eq. (16)], the individual signs of these two components are fixed by the Zeeman field which couples directly to $M_1'(F)$; see Appendix B.2. The symmetries C_{2a} and ΘC_{2b} are restored at H_α^* with the disappearance of the $M_1'(G)$ and $M_1'(F)$.

The situation for $H \parallel \mathbf{c}$ has one qualitative difference (besides the abrupt transition at H_α^*). Here, among the three symmetries ΘC_{2a}, ΘC_{2b}, and C_{2c} of the model, the last two are broken spontaneously in both the low- and the high-field phases and only get restored at $H > H_\alpha^*$. The symmetry breaking occurs again due to $M_1'(G)$ and $M_1'(F)$, which couple via Eq. (15). As above then, Γ fixes the relative signs of $M_1'(G)$ and $M_1'(F)$, but the overall choice of the global sign remains arbitrary. Altogether, unlike what happens along \mathbf{a}, the transition at H_α^* does not restore all broken symmetries, and one thus expects a second thermal phase transition at high fields, even after the disappearance of the modulated order. This will be shown explicitly in Sec. VII.

TABLE II. Discrete symmetries of the Hamiltonian (see Sec. II) and the various states discussed in the text. T denotes the primitive translations of the crystal, Θ is time reversal, and \mathcal{I} denotes the inversion centers of the ferromagnetic dimers for $0 < H < H^*$, or any inversion center of the structure for $H > H^*$. Note that $H_\alpha^* = \infty$ and $H_\beta^* = \infty$, whereas H_κ^* is finite.

Field direction	$\parallel \mathbf{a}$	$\parallel \mathbf{b}$	$\parallel \mathbf{c}$												
$H \parallel \mathbf{a}$	T	\mathcal{I}	C_{2a}	ΘC_{2a}	ΘC_{2c}	T	\mathcal{I}	C_{2b}	ΘC_{2b}	C_{2c}	T	\mathcal{I}	C_{2a}	ΘC_{2a}	ΘC_{2c}
State at $0 < H < H^*$	\times														
State at $H^* < H < H_\kappa^*$	\checkmark														
State at $H > H_\kappa^*$	\checkmark														
For completeness, let us recall that the zero-field state breaks C_{2a} and C_{2x}, but respects ΘC_{2a}, ΘC_{2x}, and C_{2b} [49].

V. MAGNETIZATION PROCESS AND THE EFFECT OF QUANTUM FLUCTUATIONS

We now focus on the magnetization per site m, defined as

$$m = \frac{1}{N_m} \mu_B \left(\sum_{\mu} \langle S_\mu \rangle + \sum_{\mu} \mu_\mu \langle S_\mu \rangle \right).$$

Here N_m is the number of spins inside the magnetic unit cell ($N_m = 48$ for $H < H^*$ and $N_m = 2$ for $H > H^*$), $\mu = 1 - N_m$, $\langle S_\mu \rangle$ is the expectation value of the spin on the μth sublattice, and g_{diag}, $g_{\text{off-diag}}$, and μ_μ are defined in Eq. (6). Recalling that $\mu_\mu = +1$ for spins along the xy chains and -1 for spins along the $x'y'$ chains (see Fig. 1), we see that the second contribution of Eq. (19) comes from the zigzag component of the order. This contribution vanishes for $g_{ab} = 0$ and is about 5% of the first term of Eq. (19) for $g_{ab} = 0.1$. More explicitly, we have

$$m = \left[g_{aur} M'_a(F) + g_{ab} M'_b(G) \right] \hat{a} + \left[g_{ab} M'_b(F) + g_{ab} M'_a(G) \right] \hat{b},$$

$$g_{aur} M'_a(F) \hat{c} + [g_{ab} M'_b(F) + g_{ab} M'_a(G)] \hat{b},$$

for $H \parallel a$, $H \parallel b$, and $H \parallel c$, respectively.

The magnetizations along the field m_1 (denoted by m_a, m_b, and m_c for H along a, b, and c, respectively) are given by $m_a = g_{aur} M'_a(F) + g_{ab} M'_b(G)$, $m_b = g_{ab} M'_b(F) + g_{ab} M'_a(G)$, and $m_c = g_{aur} M'_a(F)$. Their evolutions with field are shown by the orange solid lines in Figs. 8(a)–8(c) and follow the general trend of $M'_a(F)$, $M'_b(F)$, and $M'_c(F)$; see Figs. 4(d)–4(f).

In agreement with experiment, m_b rises much faster than m_a and m_c. Furthermore, the magnetizations m_a and m_b first increase monotonously with the field, then show a kink at H^*_c and H^*_a, respectively, and then increase at a much slower pace toward a limiting value that is determined by the ratios g_{ab}/g_{aur} and g_{ab}/g_{bbr}, respectively (see Appendix B). By contrast, m_c shows a finite jump (instead of a kink) at H^*_c, reflecting the corresponding jumps in Fig. 4(f). At higher fields, m_c shows a kink at H^*_b and then saturates. Note that here the exact saturation is only true for classical spins, and the kink in the classical magnetization will be smoothed by quantum fluctuations (as the spin Hamiltonian does not conserve rotations around the field axis, and the fully polarized state is not a true eigenstate).

Let us now compare these classical predictions for m_1 with available experimental data published by Ruiz et al.
(see Supplemental Material in Ref. [21]), which are shown in Fig. 8 by black lines. Quite generally, while the classical ansatzes capture the observed magnetization processes qualitatively, there is a large quantitative discrepancy. For \(\mathbf{H} \parallel \mathbf{b} \), for example, the classical prediction for the magnetization at \(H_c^* \) is about two times larger than the measured value. This deficiency has been recognized previously [50] and has led to the assertion that the system must feature strong quantum fluctuations due to the close proximity to the highly frustrated \(K' \Gamma' \) line [49].

Here we confirm this hypothesis by calculating the leading \(1/S \) corrections to the magnetization from quantum fluctuations. The details of this calculation are provided in Appendix D and the renormalized magnetization curves are shown by the solid blue lines in Fig. 8. The results show that already the leading \(1/S \) corrections reduce the magnetization quite strongly, bringing the curves much closer to the measured data. While subleading higher order corrections will reduce the magnetization even further, providing a better comparison between theory and experiment, a final quantitative agreement will also require an appropriate readjustment of the microscopic couplings.

Importantly, our semiclassical results show further that, for \(\mathbf{H} \parallel \mathbf{c} \), the magnitude of the magnetization jump at \(H_c^* \) is significantly reduced by quantum fluctuations, almost to the point that there is no visible change, including the overall slopes of the curves below and above \(H_c^* \). This renders the detection of this feature in magnetization measurements more challenging and probably explains the absence of the kink in recent measurements [24]. The detection is even more challenging for powder samples given that \(m_c \) remains nonzero up to \(H_c^* \), the high-field phase scales as

\[
H_c^* \leq H \leq H_c^{**}: \quad \tau/H \propto \sqrt{1 - (H/H_c^{**})^2}. \tag{22}
\]

Thus, a measurement of the torque at high fields can also be used to extract \(H_c^{**} \) and, in turn, an independent constraint on the microscopic parameters \(J \) and \(\Gamma \) via Eq. (13).

\[M'(F) \]
[
\text{see Figs. 5(a) and 4(f)]. Third, both torques show a nonmonotonic behavior as a function of the field. The torque for \(\mathbf{H} \parallel \mathbf{c} \), in particular, shows a characteristic jump at \(H_c^* \), reflecting the first-order transition between the low-field six-sublattice and the high-field two-sublattice states. Importantly, this jump remains present even after we include the leading \(1/S \) spin-wave corrections (blue line; see Appendix D). A measurement of the torque can therefore give direct evidence for the transition at \(H_c^* \) and thus provide information for the value of \(\Gamma \) via Eq. (18).

Finally, for \(\mathbf{H} \parallel \mathbf{c} \), the torque in the high-field phase scales as

\[
H_c^* \leq H \leq H_c^{**}: \quad \tau/H \propto \sqrt{1 - (H/H_c^{**})^2}. \tag{22}
\]

Thus, a measurement of the torque at high fields can also be used to extract \(H_c^{**} \) and, in turn, an independent constraint on the microscopic parameters \(J \) and \(\Gamma \) via Eq. (13).

\[M'(F) \]
[
\text{see Figs. 5(a) and 4(f)]. Third, both torques show a nonmonotonic behavior as a function of the field. The torque for \(\mathbf{H} \parallel \mathbf{c} \), in particular, shows a characteristic jump at \(H_c^* \), reflecting the first-order transition between the low-field six-sublattice and the high-field two-sublattice states. Importantly, this jump remains present even after we include the leading \(1/S \) spin-wave corrections (blue line; see Appendix D). A measurement of the torque can therefore give direct evidence for the transition at \(H_c^* \) and thus provide information for the value of \(\Gamma \) via Eq. (18).

Finally, for \(\mathbf{H} \parallel \mathbf{c} \), the torque in the high-field phase scales as

\[
H_c^* \leq H \leq H_c^{**}: \quad \tau/H \propto \sqrt{1 - (H/H_c^{**})^2}. \tag{22}
\]

Thus, a measurement of the torque at high fields can also be used to extract \(H_c^{**} \) and, in turn, an independent constraint on the microscopic parameters \(J \) and \(\Gamma \) via Eq. (13).

\[M'(F) \]
[
\text{see Figs. 5(a) and 4(f)]. Third, both torques show a nonmonotonic behavior as a function of the field. The torque for \(\mathbf{H} \parallel \mathbf{c} \), in particular, shows a characteristic jump at \(H_c^* \), reflecting the first-order transition between the low-field six-sublattice and the high-field two-sublattice states. Importantly, this jump remains present even after we include the leading \(1/S \) spin-wave corrections (blue line; see Appendix D). A measurement of the torque can therefore give direct evidence for the transition at \(H_c^* \) and thus provide information for the value of \(\Gamma \) via Eq. (18).

Finally, for \(\mathbf{H} \parallel \mathbf{c} \), the torque in the high-field phase scales as

\[
H_c^* \leq H \leq H_c^{**}: \quad \tau/H \propto \sqrt{1 - (H/H_c^{**})^2}. \tag{22}
\]
The study presented here provides a semianalytical framework for the anisotropic response of β-Li$_2$IrO$_3$ under a magnetic field along the three orthorhombic directions. This framework is based on the minimal nearest-neighbor J-K-Γ model \cite{49–52} and the hypothesis that the local correlations of the low-field incommensurate order can be captured by its closest commensurate approximant with the right symmetry \cite{49}. The results are in qualitative agreement with almost all experimental facts collected so far, and we have shown how a quantitative agreement can also be reached by including quantum fluctuations.

We must clarify here that this agreement refers to the low-energy magnetism of β-Li$_2$IrO$_3$. The relatively large quadratic spin-wave corrections reported here, despite the 3D nature of β-Li$_2$IrO$_3$, reflect the close proximity of this compound to the highly frustrated J-K line, as originally suggested in Ref. \cite{49}. And while the low-energy behavior is not influenced \textit{qualitatively} by this proximity, the impact on the dynamical response at intermediate energy or frequency scales remains a nontrivial problem and is a question of much broader relevance \cite{61,62}.

Next, our analysis delivers a number of predictions which await experimental verification. First, the critical fields H^* that mark the disappearance of the modulated order are highly anisotropic, in particular, $H^*_a < H^*_c \ll H^*_b$. Such an anisotropic response, which is also evidenced in susceptibility \cite{21,24}, signifies a large separation of energy scales between J and Γ. An explicit dependence of H^* on these interactions is derived in this work [Eq. (18)] and can be used to extract the actual strength of Γ (the value of J is estimated ≈ 4 K from the value of H^*_b [50]). Importantly, the dominant Kitaev coupling K does not affect any of the critical fields, partly because it is ferromagnetic.

Second, for all orthorhombic directions, our analysis reveals the presence of various intertwined uniform zigzag and FM orders, some of which remain robust far above H^*. The physical origin of this robustness is related to the cross-coupling terms of Eqs. (15) and (16). Some of the uniform orders give rise to a finite torque signal and can thus be detected in a direct way. Alternatively, they can also be observed by magnetic x-ray diffraction [21] or by local probes like NMR or μSR.
Third, we have shown that the high-field response for $H \parallel c$ is special, in that the disappearance of the modulated order at H_c^* restores only the translational symmetry and leaves some of the discrete symmetries broken. This implies the presence of a second thermal transition above H_c^*, which is associated with the onset of the uniform orders $M_x(G)$ and $M_y(F)$. This transition can then be detected with thermodynamic measurements at sufficiently high fields.

A natural extension of the present study is the investigation of the field-induced behavior of β-Li$_2$IrO$_3$ for general field directions, i.e., away from the orthorhombic axes. As it turns out, a semianalytical description can be also obtained for fields in the ab and bc planes [63]. The emerging picture reveals a remarkable interplay of the various modulated and uniform orders and rich anisotropic phase diagrams, the details of which will be given elsewhere [63]. We can, however, comment on one particular aspect related to the torque signal discussed in Sec. VI. As mentioned there, the predicted torque signals are proportional to the quantity $\xi = g_{ab}M_x(G) + g_{bc}M_y(G)$, whose sign is chosen spontaneously by the system for $H \parallel a$ or $H \parallel c$. However, adding an infinitesimal field along b will actually fix the sign of ξ, since the two are directly coupled to each other. This simple argument shows that, as a function of the angle in the ab or bc planes, the torque will show an abrupt reversal when the field passes through the a and c axes, respectively. Such a first-order transition scenario could also be relevant for the explanation of the sawtooth-like torque anomalies observed experimentally in the closely related compound ν-Li$_2$IrO$_3$ [48,64] (see also Ref. [65]).

Finally, we would like to touch upon an aspect that may be relevant for the interpretation of the phase transition reported recently around 100 K [66]. As discussed in Ref. [49], the zero-field and zero-temperature configuration contains the uniform orders $M_x(G)$ and $M_y(F)$, in addition to the modulated order. Given that the two types of order break different symmetries (the modulated order breaks translations whereas the uniform orders break C_{2a} and C_{2c} [49]) one generally expects that the two types of order onset at different temperatures. In particular, we have checked numerically (unpublished) that the modulated period-3 six-sublattice order carries a pseudo-Goldstone low-energy mode, similar to other incommensurate phases in related models [67–69]. On the other hand, the energy barrier associated with flipping the signs of the uniform orders $M_x(G)$ and $M_y(F)$ gives rise to a finite energy gap. It is then plausible that the uniform orders onset at a higher temperature T_{uni} compared to T_0. While the smallness of the uniform orders does not allow us to check this numerically with Monte Carlo, the cross-coupling term of Eq. (14) suggests that T_{uni} could scale with Γ. In such a scenario, a field along the b axis will turn the zero-field line extending from $T = 0$ up to $T = T_{uni}$ into a line of first-order transitions, because the field couples directly to $M_x(G)$ [and to $M_y(G)$ via g_{ab}]. For very low fields, the proximity to this first-order line would then give rise to hysteresis effects, similar to those observed in Ref. [66]. The actual details of this scenario (in particular, the connection of the measured torque signals with the ones we report here at zero temperature) remain to be explored.

ACKNOWLEDGMENTS

We thank J. Analytis, J. Betouras, U. K. Rößler, A. Ruiz, and A. A. Tsirlin for helpful discussions. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award No. DE-SC0018056. We also acknowledge the support of the Minnesota Supercomputing Institute (MSI) at the University of Minnesota. N.B.P. also acknowledges the hospitality of the Aspen Center for Physics supported by National Science Foundation Grant No. PHY-1607611, where part of the work on this paper has been done.

APPENDIX A: STATIC STRUCTURE FACTORS

1. Definitions and conventions

Each orthorhombic unit cell contains four primitive cells (labeled by $i = 1–4$), and each primitive cell contains four spin sites (labeled by $\nu = 1–4$). Each site can then be labeled by the position \mathbf{R} of the orthorhombic unit cell, the position \mathbf{r}_{e} of the primitive unit cell (relative to \mathbf{R}), and the position \mathbf{p}_{ν} of the spin sublattice (relative to \mathbf{r}_{e}). The physical position of each site can then be written as

$$r_{\mathbf{R},\nu,e} = \mathbf{R} + \mathbf{r}_{e} + \mathbf{p}_{\nu}.$$ \hspace{1cm} (A1)

The Fourier transform of the νth spin sublattice is defined as

$$S_{\nu}(Q) = \frac{1}{N/16} \sum_{\mathbf{R},i} e^{i \mathbf{Q} \cdot (\mathbf{R} + \mathbf{r}_{e,i} + \mathbf{p}_{\nu})} S_{\mathbf{R},\nu,e},$$ \hspace{1cm} (A2)

where N is the total number of spins and \mathbf{Q} belongs to the reciprocal space of the orthorhombic Bravais lattice.

The modulated $\mathbf{Q} = 2a/3$ components of the static structure factor are defined as [see Eq. (3)]

$$iM(A) = \begin{cases} S_1(Q) - S_2(Q) - S_3(Q) + S_4(Q), \\ S_1(Q) + S_2(Q) - S_3(Q) - S_4(Q) \end{cases},$$

$$iM(C) = \begin{cases} S_1(Q) - S_2(Q) - S_3(Q) + S_4(Q), \\ S_1(Q) + S_2(Q) - S_3(Q) - S_4(Q) \end{cases},$$

$$iM(F) = \begin{cases} S_1(Q) - S_2(Q) - S_3(Q) + S_4(Q), \\ S_1(Q) + S_2(Q) - S_3(Q) - S_4(Q) \end{cases},$$

$$iM(G) = \begin{cases} S_1(Q) - S_2(Q) - S_3(Q) + S_4(Q), \\ S_1(Q) + S_2(Q) - S_3(Q) - S_4(Q) \end{cases},$$

where $\mathbf{Q} = 2a/3$. Note that the extra prefactors of i in the definitions of $M(A)$, $M(C)$, and $M(G)$ have been inserted to follow the convention of Ref. [14], while the normalization prefactor 1/4 in the right-hand side of Eq. (A3) sets the maximum possible magnitude of the various components to 1. Similarly, the uniform $Q = 0$ components of the static structure factor are defined as

$$M'(A) = \begin{cases} S_1(0) - S_2(0) - S_3(0) + S_4(0), \\ S_1(0) + S_2(0) - S_3(0) - S_4(0) \end{cases},$$

$$M'(C) = \begin{cases} S_1(0) - S_2(0) - S_3(0) + S_4(0), \\ S_1(0) + S_2(0) - S_3(0) - S_4(0) \end{cases},$$

$$M'(F) = \begin{cases} S_1(0) - S_2(0) - S_3(0) + S_4(0), \\ S_1(0) + S_2(0) - S_3(0) - S_4(0) \end{cases},$$

$$M'(G) = \begin{cases} S_1(0) - S_2(0) - S_3(0) + S_4(0), \\ S_1(0) + S_2(0) - S_3(0) - S_4(0) \end{cases}. \hspace{1cm} (A4)

2. Local spin length constraints in terms of structure factors

We now show that the intensity sum rule [Eq. (7)] is a direct consequence of the local spin length constraints. Inverting Eq. (A2), we get

$$S_{\mathbf{R},\nu,e} = \sum_{\mathbf{Q} \in \text{BZ}} e^{-i \mathbf{Q} \cdot (\mathbf{R} + \mathbf{r}_{e,i} + \mathbf{p}_{\nu})} S_{\nu}(Q),$$ \hspace{1cm} (A5)
where the sum over Q is over the first Brillouin zone of the orthorhombic Bravais lattice. The local spin length constraints then take the form

$$S_{R,v,i}^2 = \sum_{Q\in\text{BZ}} e^{-iQ \cdot (R+v+\mathbf{p})} \sum_{Q\in\text{BZ}} S_v(q - Q) \cdot S_v(Q) = S^2,$$

$$\text{(A6)}$$

which holds for all R, v, and i if we require

$$f_v(q) \equiv \sum_{Q\in\text{BZ}} S_v(q - Q) \cdot S_v(Q) = S^2 \delta_{q,0}, \quad \forall v = 1 - 4.$$

$$\text{(A7)}$$

The intensity sum rule derives from the $q = 0$ part, namely

$$\sum_{Q\in\text{BZ}} |S_v(Q)|^2 = S^2, \quad \forall v = 1 - 4.$$

$$\text{(A8)}$$

To see this let us take the general form of Eqs. (A3) and (A4). Squaring each row and adding them up gives

$$|\mathbf{M}_0(A)|^2 + |\mathbf{M}_0(C)|^2 + |\mathbf{M}_0(F)|^2 + |\mathbf{M}_0(G)|^2
= \frac{1}{4} \sum_{v=1-4} |S_v(Q)|^2,$$

$$\text{(A10)}$$

which in conjunction with Eq. (A8) gives

$$\sum_{Q\in\text{BZ}} (|\mathbf{M}_0(A)|^2 + |\mathbf{M}_0(C)|^2 + |\mathbf{M}_0(F)|^2 + |\mathbf{M}_0(G)|^2) = S^2.$$

$$\text{(A11)}$$

The only Q vectors inside the first Brillouin zone of the orthorhombic lattice that contribute to this sum are the ones corresponding to $Q = \pm \frac{\pi}{a}$ and $Q = 0$, which leads to the intensity sum rule Eq. (7).

Note that the above analysis can be carried out for quantum spins as well, in which case the various spin-spin correlations, such as $S_i \cdot S_j$, must be replaced with the corresponding expectation values $\langle S_i \cdot S_j \rangle$ in the quantum-mechanical ground state of the system and $S_i \cdot S_j$ becomes $S(S+1)$.

According to the above, the Bragg peak intensity sum rule is very general and does not depend on the particular values of the microscopic parameters. This generality was missed in Ref. [50], because the components M_{u}, M_{t}', M_{u}', and M_{t}' defined there differ by a relative prefactor of $\sqrt{2}$ from the ones defined here, while this is not the same for the components M_{b} and M_{b}'. As a result, the quantity I_{tot} defined in Ref. [50] does not correspond to the intensity defined here, which is why that quantity satisfies the sum rule only for sufficiently small J (compare in particular the two panels of Fig. 4 of Ref. [50]).

APPENDIX B: AUXILIARY INFORMATION FOR THE VARIOUS ANSATZES

1. Field along the crystallographic b axis

a. Low-field phase for $\mathbf{H} || \mathbf{b}$

According to Table I, the low-field ansatz for $\mathbf{H} || \mathbf{b}$ reads

$$\mathbf{A} = S[x_1, y_1, z_1], \quad \mathbf{A}' = S[y_1, x_1, z_1],$$

$$\mathbf{B} = S[-y_1, -x_1, z_1], \quad \mathbf{B}' = S[-x_1, -y_1, z_1],$$

$$\mathbf{C} = S[-x_2, -z_2, z_2], \quad \mathbf{C}' = S[x_2, -x_2, -z_2].$$

(B1)

where x_1, x_2, y_1, z_1, and z_2 denote Cartesian components of spins. Because of the spin-length constraints $x_1^2 + y_1^2 + z_1^2 = 1$ and $2x_2^2 + z_2^2 = 1$, only three out of these five parameters are independent. The state can also be parametrized in terms of the five symmetry-resolved static structure factor components $M_{u}(A), M_{t}C, M_{t}(F), M_{u}G$, and $M_{b}(F)$, which are related to the Cartesian components by

$$M_{u}(A) = iS(x_1 + 2x_2 - y_1)/(3\sqrt{2}),$$

$$M_{b}(C) = iS(z_1 + z_2)/3,$$

$$M_{t}(C) = iS(x_1 + y_1)/\sqrt{6},$$

$$M_{u}G = -2S(x_1 - y_1 - x_2)/(3\sqrt{2}),$$

$$M_{b}(F) = -S(2z_1 - z_2)/3.$$

(B2)

Out of the five structure factor components, only three are independent, as there are two spin-length constraints. One of them is the Bragg peak intensity sum rule,

$$I_{\text{tot}} = 2|M_{u}(A)|^2 + |M_{b}(C)|^2 + |M_{t}(F)|^2 + |M_{u}(G)|^2 + |M_{b}(F)|^2 = S^2.$$

(B3)

The second constraint reads

$$|M_{t}(F)|^2 = \frac{1}{2}|M_{u}(A)|^2 + |M_{b}(C)|^2 - 2|M_{u}(A)M_{u}(G) + M_{b}(C)M_{b}(F)|.$$

(B4)

This illustrates how the local spin length constraints can lead to effective cross-coupling terms between the modulated and uniform components, i.e., the terms $M_{u}(A)M_{u}(G) + M_{b}(C)M_{b}(F)$.

The total energy per site is given by

$$E_{b}/\mathcal{N} = 1/6S^2 \left[K[3 - 2(y_1 - x_2)^2] + 2\Gamma[1 - z_1^2 + x_2^2 + 2(y_1z_1 + x_2z_1 + x_1z_2)] + J[1 + 2(z_1 - z_2)^2 - 4x_1x_2 + 4(x_1 + x_2)y_1] - 1/3\mu_b H[\sqrt{2}g_{ab}(x_1 - x_2 - y_1) + g_{bb}(-2z_1 + z_2)] \right],$$

(B5)

where \mathcal{N} is the total number of spin sites. In terms of the structure factor components, E_b takes the form

$$E_{b}/\mathcal{N} = \eta_{uu}M_{u}(A)^2 + \eta_{uc}M_{u}(C)^2 + \eta_{uf}M_{u}(F)^2 + \eta_{ug}M_{u}(G)^2 + \eta_{ub}M_{b}(F)^2 - 2\Gamma|M_{u}(A)M_{u}(G) + 3M_{b}(C)M_{b}(F)| + M_{u}G(M_{b}(F)) - \sqrt{3}K M_{u}(A)M_{b}(F) - \mu_b H[g_{bb}M_{b}(F) - g_{ab}M_{b}(G)].$$

(B6)
where
\[\eta_{ba} = -\Gamma + 2J + K/2, \quad \eta_{bc} = -K, \]
\[\eta_{fc}' = -(\Gamma + 2J + K/2), \quad \eta_{bf}' = 1/2(\Gamma + J + K). \]

We are left with the two-sublattice ansatz (see Table I)
\[\eta_{a}^b, \quad \eta_{b}^c, \quad \eta_{c}^f \]
\[\eta_{a}^f = 1/2(\Gamma + J + K). \]

Note that while there are no cross-coupling terms between the modulated and the uniform components, such terms arise from the spin-length constraints, as shown in Eq. (B4).

b. High-field phase for \(H \parallel b \)

For \(H \geq H_b^h \) the Cartesian components satisfy the relations
\[x_1 = -y_1 = -x_2, \quad z_2 = -z_1. \]

and we are left with the two-sublattice ansatz (see Table I)
\[A = B = C \equiv F = S[x_1, -x_1, z_1], \]
\[A' = B' = C' \equiv F' = S[-x_1, x_1, z_1], \]

with \(z_1^2 = 1 - 2x_1^2, x_1 > 0 \), and \(z_1 < 0 \). In this phase, the modulated components \(M_a(A), M_b(C), \) and \(M_c(F) \) vanish identically, and we are left with the two uniform components
\[M_a^g(G) = -\sqrt{2}Sx_1, \quad M_b^g(F) = -Sz_1, \]
subject to the constraint \(M_a^g(F)^2 + M_b^g(F)^2 = S^2 \). The total energy Eq. (B6) becomes
\[E_b/N = \eta_{bb}^bM_b^g(F)^2 + \eta_{bg}^bM_b^g(G)^2 - \sqrt{2}a \Gamma M_a^g(G)M_b^g(F) - \mu_bH[g_{bb}^bM_b^g(F) - g_{ab}^bM_b^g(G)]. \]

Minimizing gives the following relation between the magnitude of the field \(H \) and the components \(x_1 \) and \(z_1 \):
\[\mu_bH = \Gamma(4x_1^2 - 1 - 2J - \Gamma)x_1z_1, \quad H \geq H_b^h. \]

In the limit of very large field, \(H \to \infty \),
\[\sqrt{2}x_1 \to \frac{g_{ab}^b}{\sqrt{g_{bb}^b + g_{ab}^b}}. \]
\[z_1 \to -\frac{g_{bb}^b}{\sqrt{g_{bb}^b + g_{ab}^b}}. \]

Note that the cross-coupling term \(-\sqrt{2}a \Gamma M_a^g(G)M_b^g(F) \) in Eq. (B11) favors opposite signs of \(M_a^g(G) \) and \(M_b^g(F) \), given that \(\Gamma < 0 \). And since the magnetic field favors a positive \(M_b^g(F) \), it follows that \(\Gamma \) favors a negative \(M_b^g(G) \) [the term \(\propto g_{ab}^b \) in Eq. (B11) also favors a negative \(M_b^g(G) \) if \(g_{ab}^b > 0 \); otherwise \(M_b^g(G) \) must turn positive at sufficiently high fields]. In other words, the sign of the zigzag component along \(a \) is fixed by the field.

2. Field along the crystallographic a axis

a. Low-field phase for \(H \parallel a \)

According to Table I, the low-field ansatz for \(H \parallel a \) reads
\[A = S[x_1, y_1, z_1], \quad A' = S[y_2, -x_2, z_2], \]
\[B = S[-y_1, -x_1, z_1], \quad B' = S[-x_2, y_2, z_2], \]
\[C = S[-x_1, y_1, -z_3], \quad C' = S[x_1, -y_1, -z_3]. \]

Here we have ten Cartesian components which obey the four constraints \(x_1^2 + y_1^2 + z_1^2 = 1, x_2^2 + y_2^2 + z_2^2 = 1, 2x_1^2 + z_1^2 = 1, \)
\[2x_2^2 + z_2^2 = 1. \]

Therefore, only six Cartesian components are independent. Note that for \(H = 0 \), the minimum satisfies the relations \(x_1 = x_2, y_1 = y_2, z_1 = z_2, x_3 = x_4, \) and \(z_3 = z_4, \) and the ansatz reduces to the form given in Eq. (B1).

The state can also be described in terms of ten structure factor components. Among these, the first five are the ones we encounter at zero field (and for finite fields along \(b \)). The remaining five include three field-induced modulated components \(M_a(A), M_b(C), \) and \(M_c(G) \) and two field-induced uniform components \(M_a^g(F) \) and \(M_b^g(G) \). Their dependence on the Cartesian components is
\[M_{a}(A) = iS(x_1 + x_2 - y_1 - y_2 + 2x_3 + 2x_4)/(6\sqrt{2}), \]
\[M_{b}(C) = iS(z_1 + z_2 + z_3 + z_4)/6, \]
\[M_{c}(G) = iS(x_1 + x_2 - y_1 + y_2)/(2\sqrt{6}), \]
\[M_{a}^g(G) = -S(x_1 - x_2 - y_1 - y_2)/(3\sqrt{2}), \]
\[M_{b}^g(F) = -S(2z_1 + 2z_2 - z_3 - z_4)/6, \]
\[M_{c}^g(F) = -iS(x_1 + y_1 - x_2 - y_2)/(2\sqrt{6}), \]
\[M_{a}^g(F) = -S(2z_2 - 2z_1 + z_3 - z_4)/6. \]

The ten structure factor components obey four constraints. One of them is the Bragg peak intensity sum rule given in Eq. (10). The remaining three constraints involve various types of effective cross-coupling terms, similar to the ones we have seen in Eq. (B4). For example, one of these constraints reads
\[2[M_a(A)M_a(C) + M_b(A)M_b(C) + iM_c(F)M_c(G)] = M_a^g(F)M_b^g(G) + M_b^g(F)M_a^g(G). \]

The total energy of the system reads
\[E_a/N = 1/6S^2\{K[x_1^2 + x_2^2 + 2(x_3y_1 + x_4y_2 + z_1z_2) + z_3z_4] \]
\[+ 2\Gamma[x_1x_2 + x_3x_4 + y_1y_2 + x_1z_3 + x_2z_1 + x_4z_2 + y_1z_3 + y_2z_4] \]
\[+ 2J[x_1x_3 - x_3x_4 + x_1y_2 + x_2y_1 + x_1y_3 - x_3y_2 + z_4z_3] \]
\[-1/6S\mu_bH[g_{bb}^b(2z_2 - z_1) + z_3 - z_4] \]
\[+ \sqrt{2}g_{ab}^b(x_1 - x_2 + x_3 + y_1 + y_2), \]

or, in terms of the static structure factor components,
\[E_a/N = \eta_{aa}M_a(A)^2 + \eta_{bb}M_b(C)^2 + \eta_{cc}M_c(G)^2 \]
\[+ \eta_{ac}M_a(C)^2 + \eta_{bc}M_b(A)^2 - \eta_{cc}M_c(G)^2 \]
\[+ \eta_{ab}M_a^g(G)^2 + \eta_{bc}M_b^g(F)^2 + \eta_{ac}M_a^g(F)^2 \]
\[+ \eta_{bc}M_b^g(G)^2 \]
\[- \sqrt{2}\Gamma[M_a(A)M_b(C) + M_a(A)M_b(C)] \]
\[+ \sqrt{3}\Gamma M_a^g(G)M_b^g(F) + \sqrt{3}\Gamma M_a^g(G)M_b^g(F) \]
\[- \sqrt{3}K[M_a(A)M_b(C) + iM_a(C)M_b(A)] \]
\[- \mu_bH[g_{bb}^bM_b^g(F) - g_{ab}^bM_b^g(G)], \]
with 2
\[∝ \]
x
\[/ \Gamma_1 < \]
Minimizing the total energy for \(H > H_a^* \) gives the following relation among \(H, x_1 \), and \(z_1 \):
\[\frac{\mu_B H}{2S} = \frac{\Gamma(4x_1^2 - 1) - [\Gamma - 2(2J + K)]x_1 z_1}{2g_{ab} x_1 + \sqrt{2}g_{aa} z_1}. \]
(B24)
In the limit of \(H \to \infty \), we get
\[\sqrt{2}x_1 \to \frac{g_{aa}}{\sqrt{g_{aa}^2 + g_{ab}^2}}, \quad z_1 \to -\frac{g_{ab}}{\sqrt{g_{aa}^2 + g_{ab}^2}}. \]
(B25)
Note that the cross-coupling term \(-\sqrt{2}\Gamma M_a'(G)M_b'(F)\) in Eq. (B23) favors opposite signs of \(M_a'(G) \) and \(M_b'(F) \), since \(\Gamma < 0 \). And given that the magnetic field favors a positive \(M_b'(F) \), it follows that \(M_a'(G) \) is negative (consistent with the term \(\propto g_{ab} \) if \(g_{ab} > 0 \)). Therefore, the sign of the zigzag component along \(b \) is fixed by the field.

3. Field along the crystallographic c axis

a. Low-field phase for \(H \parallel c \)

According to Table I, the low-field ansatz for \(H \parallel c \) reads
\[A = S[x_1, y_1, z_1], \quad A' = S[y_1, x_1, z_1], \]
\[B = S[-y_2, -x_2, z_2], \quad B' = S[-x_2, -y_2, z_2], \]
\[C = S[x_3, -y_3, -z_3], \quad C' = S[x_3, -y_3, z_3]. \]
(B26)
The nine Cartesian components obey three spin-length constraints, \(x_1^2 + y_1^2 + z_1^2 = 1, \ x_2^2 + y_2^2 + z_2^2 = 1, \) and \(x_3^2 + y_3^2 + z_3^2 = 1, \) and therefore only six components are independent. Note that at zero field, the minimum satisfies the relations \(x_1 = x_2, y_1 = y_2, z_1 = z_2, x_3 = y_3, \) and the ansatz Eq. (B1) is again restored.

The state can also be parametrized by nine static structure factor components. Five of them are the ones we encounter at zero field (or for fields along \(b \)). The remaining four include three field-induced modulated components \(M_a(G), M_b(F), \) and \(M_c(C) \), and the uniform field-induced component \(M_e'(F) \).

b. High-field phase for \(H \parallel a \)

For \(H > H_a^* \) the Cartesian components satisfy the relations
\[x_1 = -x_2 = -x_3 = x_4 = -y_1 = y_2, \]
\[z_1 = -z_2 = -z_3 = z_4. \]
(B20)
and we are left with the two-sublattice ansatz (see Table I)
\[A = B = C \equiv F = S[x_1, -x_1, z_1], \]
\[A' = B' = C' \equiv F' = S[x_1, -x_1, -z_1], \]
(B21)
with \(2x_1^2 + z_1^2 = 1, \ x_1 > 0, \) and \(z_1 < 0. \) The only static structure factor components surviving for \(H > H_a^* \) are the uniform components \(M_a'(G) \) and \(M_a'(F) \),
\[M_a'(F) = \sqrt{2}Sx_1, \quad M_a'(G) = Sz_1, \]
subject to the constraint \(M_a' (F)^2 + M_a' (G)^2 = S^2 \), and the total energy Eq. (B18) becomes
\[\frac{E_a/N}{S} = \eta_{af} M_a'(F)^2 + \frac{\eta_{ag}}{\Gamma_1} M_a'(G)^2 - \sqrt{2}\Gamma M_a'(F)M_a'(G) \]
\[- \mu_B H[g_{aa} M_a'(F) - g_{ab} M_a'(G)]. \]
(B23)
Minimizing the total energy for \(H > H_a^* \) gives
\[\frac{\mu_B H}{2S} = \frac{\Gamma(4x_1^2 - 1) - [\Gamma - 2(J + K)]x_1 z_1}{2g_{ab} x_1 + \sqrt{2}g_{aa} z_1}. \]
(B24)
The total energy is given by
\[E_{c'/N} = \frac{1}{6S^2} \left\{ K \left[x_1^2 + x_2^2 + x_3^2 + x_4^2 + y_1^2 + y_2^2 + y_3^2 \right] + x_2 x_3 x_4 y_1 + 2y_2 y_3 \right\} \]
\[+ \frac{\Gamma}{\sqrt{2}g_{aa} z_1} \left[x_1^2 + x_2^2 + x_3^2 + y_1^2 + y_2^2 + y_3^2 \right] + 2(x_1 z_1 + x_2 z_2 + x_3 z_3 + y_1 z_1 + y_2 z_2 + y_3 z_3)] \]
\[+ 2(x_1 y_1 + x_2 y_2 + x_3 y_3 + x_4 y_3 + y_1 y_2 + y_2 y_3 + y_3 y_1)] \]
\[+ \sqrt{2} \left[(x_1 + y_1)^2 + (x_2 + y_2)^2 + (x_3 + y_3)^2 \right] \]
\[- 1/6\sqrt{2}S \mu_B H g_{cc} (x_1 - x_2 + x_3 + y_1 - y_2 - y_3), \]
(B29)
or, in terms of the structure factor components,
\[E_{c'/N} = \eta_{af} M_a(A)^2 + \eta_{ag} M_a(B)^2 + \eta_{bl} M_b(F)^2 + \eta_{aa} M_a(G)^2 \]
\[+ \eta_{ff} M_F(F)^2 + \eta_{gg} M_G'(G)^2 + \eta_{bb} M_b'(F)^2 \]
\[+ \eta_{ff} M_e'(F)^2 - \sqrt{2} \left[M_a(A) M_a(B) - i M_a(G) M_b(F) \right] \]
\[+ \sqrt{3} \left[M_b(F) M_c(C) + \sqrt{3} M_b(F) M_a(G) + M_e'(G) M_b'(F) \right] \]
\[- \sqrt{3} \left[i M_a(G) M_b(C) + M_a(A) M_e'(F) \right] - g_{cc} \mu_B H M_e'(F). \]
(B30)
where
\[\eta_{af} = \Gamma + K/2, \quad \eta_{ff} = -(2J + K), \quad \eta_{gg} = -\Gamma + K/2, \]
\[\eta_{ff} = 1/2(\Gamma + 3J + K). \]
(B31)
b. High-field phase for H \parallel c

For $H \gg H_c^*$, the Cartesian components satisfy the relations

$$x_1 = -y_2 = -y_3, \quad y_1 = -x_2 = x_3, \quad z_1 = z_2 = -z_3,$$

subject to the constraint $x_1^2 + y_1^2 + z_1^2 = 1$. Equivalently, all modulated static structure factor components vanish identically, and we are left with the three uniform components $M_{\parallel}(G)$, $M_{\perp}(F)$, and $M_{\parallel}(F)$,

$$M_{\parallel}(G) = -S \sqrt{(x_1 - y_1)}, \quad M_{\perp}(F) = -S z_1,$$

$$M_{\parallel}(F) = -S \sqrt{(x_1 + y_1)},$$

and we are left with two spin sublattices (see Table I),

$$A = B = C = F = S[x_1, y_1, z_1], \quad A' = B' = C' = F' = S[x_1, y_1, z_1]$$

and one spin length constraint, $x_1^2 + y_1^2 + z_1^2 = 1$. Equivalently, all modulated static structure factor components vanish identically, and we are left with the three uniform components $M_{\parallel}(G)$, $M_{\perp}(F)$, and $M_{\parallel}(F)$,

$$M_{\parallel}(G) = -S \sqrt{(x_1 - y_1)}$$

and the total number of spins) and the free parameters of the model, namely J, K, Γ, H. Therefore, all modulated static structure factor components vanish identically, and we are left with the three uniform components $M_{\parallel}(G)$, $M_{\perp}(F)$, and $M_{\parallel}(F)$,

$$M_{\parallel}(G) = -S \sqrt{(x_1 - y_1)}$$

subject to the constraint $M_{\parallel}(F)^2 + M_{\perp}(F)^2 + M_{\parallel}(F)^2 = S^2$. The total energy Eq. (B30) becomes

$$E_{\text{class}} = \frac{n_{\parallel}M_{\parallel}(G) + n_{\perp}M_{\perp}(F) + n_{\parallel}M_{\parallel}(F)}{\sqrt{1 + t^2}}$$

Here the minimization of the energy for $H \gg H_c^*$ gives the following relations:

$$M_{\parallel}(G) = -S \sqrt{1 - (H/H_c^*)^2}$$

$$M_{\perp}(F) = iM_{\parallel}(G),$$

$$M_{\parallel}(F) = -SH/H_c^*,$$

where $t = \frac{2S - \sqrt{1 + t^2}}{1 + t^2}$ and H_c^* is given by Eq. (13).

Note that the cross-coupling term $\sqrt{2}M_{\parallel}(G)M_{\parallel}(F)$ in Eq. (B35) favors opposite signs for $M_{\parallel}(G)$ and $M_{\perp}(F)$, since $\Gamma < 0$. However, unlike the cases $H \parallel a$ and $H \parallel b$, here none of the signs of $M_{\parallel}(G)$ and $M_{\perp}(F)$ are fixed by the field, meaning that the system can spontaneously choose either $M_{\parallel}(G) > 0$ and $M_{\perp}(F) < 0$ or $M_{\parallel}(G) < 0$ and $M_{\perp}(F) > 0$. The associated broken symmetries are ΘC_{2h} and C_{2v}; see Table II.

APPENDIX C: PROOF OF EQS. (17)

Here we show a mathematical proof of Eqs. (17). The proof is based on a classical version of the so-called Feynman-Hellmann theorem known in quantum mechanics. We begin by writing the total classical energy of the system as a function of the spherical coordinates $[\theta_i, \phi_i]$ of the spins ($i = 1 - N$, the total number of spins) and the free parameters of the model, namely J, K, Γ, H.

$$E_{\text{class}} = f([\theta_i, \phi_i]; J, K, \Gamma, H).$$

Let us denote the classical ground-state configuration for a given set of J, K, Γ, H by $[\theta^*, \phi^*]$, where

$$\theta^*_i = \theta_i^*(J, K, \Gamma, H), \quad \phi^*_i = \phi_i^*(J, K, \Gamma, H).$$

These angles are found by minimizing the total energy

$$\frac{\partial f}{\partial \theta_i} \bigg|_{[\theta^*, \phi^*]} = 0, \quad \frac{\partial f}{\partial \phi_i} \bigg|_{[\theta^*, \phi^*]} = 0. \quad (C3)$$

Then the minimum of the classical energy, or the classical ground-state energy, is given by

$$E_{\text{class}, \min} = f([\theta^*, \phi^*]; J, K, \Gamma, H) = E_J + E_K + E_\Gamma + E_Z. \quad (C4)$$

where the terms in the second line are the individual contributions to the energy from the J, K, and Γ interactions and the Zeeman field, respectively. We can now formulate the classical version of the Feynman-Hellmann theorem by taking the derivative of the ground-state energy with respect to the parameter J, as an example. We have

$$\frac{\partial E}{\partial J} = \left(\sum_i \left(\frac{\partial f}{\partial \theta_i} \frac{\partial \theta_i}{\partial J} + \frac{\partial f}{\partial \phi_i} \frac{\partial \phi_i}{\partial J} \right) + \frac{\partial f}{\partial J} \right)_{\theta_i = \theta^*_i, \phi_i = \phi^*_i} \quad (C5)$$

and using Eqs. (C3) we get

$$\frac{\partial E}{\partial J} = \left(\frac{\partial f}{\partial J} \right)_{\theta_i = \theta^*_i, \phi_i = \phi^*_i} = E_J, \quad (C6)$$

where in the last step we used the fact that $f([\theta^*, \phi^*]; J, K, \Gamma, H)$ depends linearly on J. Similarly, for the other free parameters we get

$$\frac{\partial E}{\partial K} = E_K, \quad \frac{\partial E}{\partial \Gamma} = E_\Gamma, \quad \frac{\partial E}{\partial H} = E_Z = -N m_i. \quad (C7)$$

where m_i is the magnetization per site along the field.

To arrive at Eqs. (17), we need to look at the second derivatives of E. For example,

$$\frac{\partial^2 E}{\partial J^2} = \frac{\partial}{\partial J} \left(\frac{\partial E}{\partial J} \right) = -N \frac{\partial m_i}{\partial J}. \quad (C8)$$

The equality $\frac{\partial^2 E}{\partial J^2} = \frac{\partial^2 E}{\partial J^2}$ then gives

$$-N \frac{\partial^2 m_i}{\partial J^2} = 1 \frac{\partial E_J}{\partial J}. \quad (C9)$$

and similarly for the remaining equations of (17).

APPENDIX D: SPIN WAVE ANALYSIS AND REDUCTION OF SUBLATTICE MAGNETIZATIONS DUE TO QUANTUM FLUCTUATIONS

In this Appendix, we provide the details for the semiclassical expansion around the classical ansatzes of Table I and the calculation of the total magnetization for all field directions. We shall only discuss the case of the six-sublattice states for $H < H_c^*$. The analysis of the high-field two-sublattice states follows along the same lines.

1. Quadratic spin-wave Hamiltonian

We first relabel the spin sites as $i \rightarrow (R, \mu)$, where now $R = (3n_1, n_2, n_3)$ denotes the position of the magnetic unit cell in the orthorhombic frame (n_1, n_2, n_3 are integers),
Next, for each site $i = (\mathbf{R}, \mu)$, we introduce the local reference frame $\{\mathbf{x}, \mathbf{y}, \mathbf{z}\}$ such that \mathbf{z}_i coincides with the direction of spin \mathbf{S}_i in the classical ground state. The spin is then rotated into this local frame of reference by $\mathbf{S}_{R,\mu} = U_{\mu} \cdot \mathbf{S}_{R,\mu}$, where the unitary rotation matrix U_μ can be constructed using the polar and azimuthal angles (θ_μ, ϕ_μ) associated with the direction of the spin in the classical ground state,

$$U_\mu = \begin{pmatrix}
\cos \theta_\mu & \cos \phi_\mu & \cos \phi_\mu & -\sin \theta_\mu \\
-\sin \phi_\mu & \sin \phi_\mu & \sin \phi_\mu & \cos \theta_\mu \\
\sin \theta_\mu & \sin \theta_\mu & \cos \theta_\mu & 0
\end{pmatrix}.$$ (D4)

Subsequently, we express the local spins in terms of the Holstein-Primakoff bosons $a_{R,\mu}$ and $a_{R,\mu}^\dagger$ and expand the Hamiltonian in powers of $1/\sqrt{\gamma}$ about the classical limit. Collecting the terms that are quadratic in the bosonic operators and going into momentum space, with $a_{R,\mu} = \frac{1}{\sqrt{N_m}} \sum_{\mathbf{R}} e^{i\mathbf{q} \cdot \mathbf{R}} a_{R,\mu}$ (with \mathbf{q} belonging to the first magnetic Brillouin zone) gives

$$\mathcal{H}_2 = E_{i1}/S + \sum_{\mathbf{q}} \mathbf{x}_\mathbf{q}^\dagger \cdot \mathbf{H}_\mathbf{q} \cdot \mathbf{x}_\mathbf{q},$$ (D5)

where E_{i1} is the classical energy,

$$\mathbf{x}_\mathbf{q} = (a_{q,1}, \ldots , a_{\mu, N_m}, a_{-q,1}, \ldots , a_{-q, N_m})^\dagger,$$ (D6)

where $\mathbf{H}_\mathbf{q}$ is a $(2N_m) \times (2N_m)$ matrix. The diagonalization of $\mathbf{H}_\mathbf{q}$ involves introducing a set of Bogoliubov quasiparticle operators $[70,71]$

$$\mathbf{q}_\mathbf{q} = (b_{q,1}, \ldots , b_{N_m}, b_{-q,1}, \ldots, b_{-q, N_m})^\dagger,$$ (D7)

obtained from $\mathbf{x}_\mathbf{q}$ by a unitary canonical transformation $\mathbf{x}_\mathbf{q} = T_\mathbf{q} \cdot \mathbf{y}_\mathbf{q}$, where $T_\mathbf{q}$ satisfies the bosonic commutation relations $T_\mathbf{q}^\dagger \cdot \mathbf{y}_\mathbf{q} = \eta$, with $\eta = \text{diag}(1, -1)$ and I is a $N_m \times N_m$ unitary matrix. The matrix $T_\mathbf{q}$ can be found by solving the eigenvalue equation $[71] (\eta \cdot H_\mathbf{q}) \cdot T_\mathbf{q} = T_\mathbf{q} \cdot (\eta \cdot \Omega_\mathbf{q})$, where

$$\Omega_\mathbf{q} = T_\mathbf{q}^\dagger \cdot H_\mathbf{q} \cdot T_\mathbf{q} = \text{diag}(\omega_q, -\omega_q),$$ (D8)

and $\omega_q = \text{diag}(\omega_{q,1}, \omega_{q,2}, \ldots, \omega_{q,N_m})$ contains the frequencies of the elementary magnon excitations.

2. Total magnetization and torque at zero temperature

To find the total magnetization of the system, we must first compute the expectation values of the spins in the local frame. To leading order in the semiclassical expansion, we have

$$\langle \hat{S}_{R,\mu} \rangle \approx 0, \quad \langle \hat{S}_{R,\mu}^2 \rangle \approx 0,$$ (D9)

while symmetry dictates that

$$\langle \hat{S}_{R,\mu}^2 \rangle = S - (a_{R,\mu}^\dagger a_{R,\mu}) = S - \xi_\mu = \text{independent of } \mathbf{R}.$$ (D10)

This property allows us to rewrite the spin length reduction ξ_μ as

$$\xi_\mu = \frac{N_m}{N_m} \sum_{\mathbf{R}} \langle a_{R,\mu}^\dagger a_{R,\mu} \rangle = \frac{N_m}{N_m} \sum_{\mathbf{q}} \langle a_{\mathbf{q},\mu}^\dagger a_{\mathbf{q},\mu} \rangle,$$ (D11)

where \mathbf{q} belongs to the first magnetic Brillouin zone and the total number of magnetic unit cells is given by N / N_m. Using the $T = 0$ limit of the standard relations

$$\langle b_{\mathbf{q},\mu}^\dagger b_{\mathbf{q},\mu} \rangle = \delta_{ij} n(\omega_{q,i}), \quad \langle b_{\mathbf{q},\mu}^\dagger b_{\mathbf{q},\nu} \rangle = \delta_{ij} [1 + n(\omega_{q,i})],$$ (D12)
where \(n(\omega) = (e^{\omega/(k_BT)} - 1)^{-1} \) is the Bose-Einstein distribution function, we arrive at the zero-temperature expression for \(\zeta_\mu \):

\[
\zeta_\mu = \frac{N}{N_0} \sum_q \sum_{j=N_0+1}^{2N_0} (T_q)^{*}_{\mu j} (T_q)_{\mu j}.
\]

Next, we use the relation

\[
S_{\mathbf{R},\mu} = U_\mu^{-1} \tilde{S}_{\mathbf{R},\mu},
\]

where

\[
U_\mu^{-1} = \begin{pmatrix}
\cos \phi_\mu \cos \theta_\mu & -\sin \phi_\mu & \cos \phi_\mu \sin \theta_\mu \\
\sin \phi_\mu \cos \theta_\mu & \cos \phi_\mu & \sin \phi_\mu \sin \theta_\mu \\
-\sin \theta_\mu & 0 & \cos \theta_\mu
\end{pmatrix},
\]

to arrive at

\[
\langle S_{\mathbf{R},\mu}^a \rangle = \frac{\sin \theta_\mu}{\sqrt{2}} (\cos \phi_\mu - \sin \phi_\mu) (S - \zeta_\mu),
\]

\[
\langle S_{\mathbf{R},\mu}^b \rangle = \langle S_{\mathbf{R},\mu}^c \rangle = -\cos \theta_\mu (S - \zeta_\mu),
\]

\[
\langle S_{\mathbf{R},\mu}^d \rangle = \frac{\sin \theta_\mu}{\sqrt{2}} (\cos \phi_\mu + \sin \phi_\mu) (S - \zeta_\mu),
\]

which are all independent of \(\mathbf{R} \). Having computed the expectation values \(\langle S_{\mu} \rangle \), we can then compute the magnetization per site \(\mathbf{m} \) using Eq. (19) of the main text, while the torque per site is given by \(\tau = \mathbf{m} \times \mathbf{H} \).

APPENDIX E: MONTE CARLO SIMULATION

In this Appendix, we present some details of the classical Monte Carlo (MC) simulations which we employed for calculating the finite-temperature phase diagram of the model (5) similar to Refs. [42,72,73]. In our simulations, we treat the spins as three-dimensional vectors, \(\mathbf{S} = (S_x, S_y, S_z) \), of unit magnitude with \(S_x^2 + S_y^2 + S_z^2 = 1 \). To ensure a uniform sampling, we first generate two random numbers \(r_1 \) and \(r_2 \) which are both uniformly distributed on \((0,1)\) [74]. Then we have \(S_x = 2r_1 - 1 \), \(S_y = \sqrt{1 - S_x^2} \cos(2\pi r_2) \), and \(S_z = \sqrt{1 - S_x^2 - S_y^2} \). The simulations were performed on different systems with a total number of sites equal to \(N \in \{48, 96, 144, 192, 240, 288\} \). At each temperature, more than \(10^6 \) MC sweeps were performed. Of these, \(10^5 \) MC sweeps were used to calculate the averages of physical quantities.

To reduce the autocorrelation time, we have used the standard METROPOLIS algorithm combined with the over-relaxation algorithm [58,59]. Namely, one METROPOLIS sweep was performed after completing ten over-relaxation sweeps where each sweep contains \(N \) updates. The over-relaxation process with single spin updates is given by [59]

\[
S_{\mathbf{R},\mu} = -S_{\mathbf{R},\mu} + 2S_{\mathbf{R},\mu} \cdot \mathbf{h}_{\mathbf{R},\mu} / |\mathbf{h}_{\mathbf{R},\mu}|^2, \tag{E1}
\]

where \(\mathbf{h}_{\mathbf{R},\mu} \) is the local effective field at site \(i = (\mathbf{R}, \mu) \). Compared with other MC updates, over-relaxation usually costs less computing time and has fewer autocorrelations. However, because the over-relaxation update is a microcanonical process, we adopt the standard METROPOLIS algorithm to ensure ergodicity of the simulation. In each METROPOLIS update, one spin \(S_{\mathbf{R},\mu} \) is randomly chosen and altered to a new direction confined within a cone defined by \(d\theta \in [0, \pi] \). We first rotate the coordinate such that the \(z \) axis coincides with \(S_{\mathbf{R},\mu} \), i.e., the center of the cone. Similar to the initialization process, here again we generate two random numbers \(p_1 \) and \(p_2 \) in the interval \((0,1)\) and take

\[
S_z = \cos(d\theta) + [1 - \cos(d\theta)]p_1,
\]

\[
S_x = \sqrt{1 - S_z^2} \cos(2\pi p_2),
\]

\[
S_y = \sqrt{1 - S_z^2} \sin(2\pi p_2), \tag{E2}
\]

at which point we generate a random, uniformly distributed unit vector \([S_x, S_y, S_z] \) within the cone. Afterward, we rotate the coordinate back to the original coordinate and compute the change in energy \(\Delta E \) which is related to the probability of acceptance. In the equilibration process, which is the transient time for the system to reach equilibrium, we gradually adjust the magnitude of \(d\theta \) such that the acceptance ratio keeps staying within \([0.4, 0.6] \). In the measurement process, we take one measurement of the observables after every ten METROPOLIS sweeps.

Next, in order to obtain the critical temperatures, we have used the Binder cumulants method. The fourth-order Binder cumulant, \(U_4 = 1 - \langle O^4 \rangle / \langle O^2 \rangle^2 \), where \(O \) denote some long-range order parameter, has a scaling dimension of zero; thus the crossing point of the cumulants for different lattices provides a reliable estimate for the value of the critical temperature \(T_c \) at which the long-range order is destroyed. In Fig. 12, we plot the Binder’s cumulants for \(N \in \{48, 96, 144, 192, 240, 288\} \) for the \(c \) magnetic field with the magnitude \(H_c = 12T \) is applied along the \(c \) crystallographic axis. The corresponding statistical errors are calculated using a jackknife binning analysis.
[48] K. A. Modic, B. J. Ramshaw, A. Shekhter, and C. M. Varma, Phys. Rev. B 98, 205110 (2018).
[49] S. Ducatman, I. Rousochatzakis, and N. B. Perkins, Phys. Rev. B 97, 125125 (2018).
[50] I. Rousochatzakis and N. B. Perkins, Phys. Rev. B 97, 174423 (2018).
[51] E. K.-H. Lee and Y. B. Kim, Phys. Rev. B 91, 064407 (2015).
[52] E. K.-H. Lee, J. G. Rau, and Y. B. Kim, Phys. Rev. B 93, 184420 (2016).
[53] V. M. Katukuri, S. Nishimoto, V. Yushankhai, A. Stoyanova, H. Kandpal, S. Choi, R. Coldea, I. Rousochatzakis, L. Hozoi, and J. van den Brink, New J. Phys. 16, 013056 (2014).
[54] J. G. Rau, E. K.-H. Lee, and H.-Y. Kee, Phys. Rev. Lett. 112, 077204 (2014).
[55] H.-S. Kim, Y. B. Kim, and H.-Y. Kee, Phys. Rev. B 94, 245127 (2016).
[56] I. Rousochatzakis and N. B. Perkins, Phys. Rev. Lett. 118, 147204 (2017).
[57] Note that the coefficient 0.42 in the second relation is slightly different from the corresponding coefficient 0.46 reported previously [50], which was obtained from fitting the numerical data up to larger values of J, where the assumption of H_b being independent of K and Γ breaks down.
[58] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).
[59] M. Creutz, Phys. Rev. D 36, 515 (1987).
[60] K. Binder, D. Heermann, L. Roelofs, A. J. Mallinckrodt, and S. McKay, Comput. Phys. 7, 156 (1993).
[61] S. M. Winter, K. Riedl, P. A. Maksimov, A. L. Chernyshev, A. Honecker, and R. Valentí, Nat. Commun. 8, 1152 (2017).
[62] I. Rousochatzakis, S. Kourtis, J. Knolle, R. Moessner, and N. B. Perkins, Phys. Rev. B 100, 045117 (2019).
[63] M. Li, I. Rousochatzakis, and N. B. Perkins (unpublished).
[64] K. A. Modic, B. J. Ramshaw, J. B. Betts, N. P. Breznay, J. G. Analytis, R. D. McDonald, and A. Shekhter, Nat. Commun. 8, 180 (2017).
[65] K. Riedl, Y. Li, S. M. Winter, and R. Valentí, Phys. Rev. Lett. 122, 197202 (2019).
[66] A. Ruiz, V. Nagarajan, M. Vranas, G. Lopez, G. T. McCandless, I. Kimchi, J. Y. Chan, N. P. Breznay, A. Frano, B. A. Frandsen, and J. G. Analytis, arXiv:1909.06355.
[67] M. Li, N. B. Perkins, and I. Rousochatzakis, Phys. Rev. Res. 1, 013002 (2019).
[68] E. Choi, G.-W. Chern, and N. B. Perkins, Europhys. Lett. 101, 37004 (2013).
[69] E. Choi, G.-W. Chern, and N. B. Perkins, Phys. Rev. B 87, 054418 (2013).
[70] N. Bogoliubov, J. Phys. 11, 23 (1947).
[71] J.-P. Blaizot and G. Ripka, Quantum Theory of Finite Systems (MIT Press, Cambridge, MA, 1985), Chap. 3.
[72] C. C. Price and N. B. Perkins, Phys. Rev. Lett. 109, 187201 (2012).
[73] C. Price and N. B. Perkins, Phys. Rev. B 88, 024410 (2013).
[74] G. Marsaglia, Ann. Math. Statist. 43, 645 (1972).
[75] B. Efron, The Jackknife, the Bootstrap, and Other Resampling Plans, CBMS-NSF Regional Conference Series in Applied Mathematics (SIAM, Philadelphia, PA, 1982), Vol. 38.