Methods Patients with UC were prospectively recruited from 11 international centres. Participating endoscopists experienced in IBD received training on PICA SSO before starting the study. The rectum and sigmoid were examined using iScan 1,2&3 (Pentax, Japan) and inflammatory activity was assessed using Mayo, UCEIS and PICA SSO. Biopsies were taken for histological assessment using Robarts Histological Index (RHI), Nancy, ECAP, Geboes and Villanacci. Follow up data was obtained at 12 months.

Results A total of 307 patients were recruited. The interobserver agreement for the PICA SSO score was 0.879 (95% CI 0.826–0.924). The PICA SSO total and PICA SSO mucosal scores strongly correlated with histology scores and was statistically better than MES and UCEIS as shown in figure 1. When using a PICA SSO total score of ≤3 the AUROC to predict MH by RHI (≤3 + absence of neutrophils) was 0.90 (95% CI 0.86–0.94) and when we compare the AUROC of Picasso vs Mayo p = 0.06. When using the Nancy score (≤1) the AUROC was 0.816 (95% CI 0.77–0.87). A Kaplan-Meier curve shows a significant favourable survival probability without relapse with a PICA SSO score of ≤3 Likelihood ratio test=26.41, p<0.0000.

Conclusions This real-life validation study shows the electronic chromoendoscopy score, PICA SSO, can predict accurately histological healing and long-term remission and can be a useful tool in the management of UC.

O5 BOUGIECAP DILATATION DEVICE: NOVEL ENDOSCOPIC METHOD FOR TREATMENT OF OESOPHAGEAL STRICTURES-RESULTS FROM A MULTICENTRE STUDY

1Patricia Duarte*, 2Walter Benjamin, 3Pratul Patel, 4Philip Boger, 5Simone Schmidaub, 6David Albers, 7Brigitte Schumacher, 8Alexander Meining, 9Imdadur Rahman, 10Southampton Interventional Endoscopy Unit, University Hospital Southampton, UK; 11Ulm University Hospital, Ulm, Germany; 12Elisabeth Krankenhaus Hospital, Essen, Germany

Introduction A novel dilatation device, BougieCap (Ovesco, Germany), allows both tactile and optic feedback of the dilatation procedure without the need for fluoroscopy. The aim of this study was to assess the safety and efficacy of this device in a prospective cohort of patients.

Methods Patients with benign oesophageal strictures and symptoms of dysphagia were recruited from 3 centres in the UK and Germany for planned dilatation with the BougieCap. The device is a single-use transparent conical cap which is fixed to the tip of the endoscope. Once in place, the endoscope is inserted and positioned in front of the stricture and by pushing forward and rotating with the endoscope, enables the conical cap to dilate the mucosa. The primary outcome measure was the technical success of dilatation. Secondary outcome measures were improvement in symptoms of dysphagia, assessed by the Dysphagia Handicap Index (DHI) before and 14 days after the procedure, and adverse events.

Results 104 patients with benign oesophageal strictures underwent BougieCap dilatation between February 2018 to September 2019. Aetiology of strictures were peptic 63%, radiation 15%, anastomotic 7%, caustic 6%, EoE 5%, post-ESD/EMR 4%. Mean diameter of strictures was 5 mm (±2.3). Bougien- age was successful in 97%. In 3 cases, with a long narrow stricture, bougienage failed because of high resistance at the site of the stricture causing buckling of the endoscope in the pharynx. Symptoms of dysphagia improved after bougienage (53 points Day 0 v 21 points day 14, p<0.01). No severe adverse events were reported.

Conclusions Endoscopic treatment of benign strictures using the BougieCap is highly successful and safe. It enables direct visual and tactile control of the bougienage procedure with control of mucosal damage within the strictured area. This might help to adapt treatment more precisely to the stricture. Symptoms of dysphagia are improved in short-term follow-up.

O6 ARTIFICIAL INTELLIGENCE USING CONVOLUTIONAL NEURAL NETWORKS FOR DETECTION OF EARLY BARRETT’S NEOPLASIA

1Mohamed Abdelrahim*, 2Masahiro Saiko, 3Yuiko Masaika, 4Shota Ohtsuka, 5Ejaz Hossain, 6Sophie Arndtz, 7Pradeep Bhandari, 8Queen Alexandra Hospital Portsmouth, Portsmouth, UK; 9Biometrics Research Laboratories, NEC, Kanagawa, Japan; 10NEC Europe Ltd, London, UK; 11NEC Corporation, Tokyo, Japan

Initial results from THE PAIGE PROJECT Portsmouth’s Project on Artificial Intelligence in Gastrointestinal Endoscopy

Introduction Endoscopic detection of early Barrett’s neoplasia remains very challenging, with significant inter-observer variation in identifying and assessing these lesions. Artificial intelligence is proposed to help with computer aided detection in this field and could have significant clinical and cost implications. We aim to develop and validate a deep learning (DL) algorithm using Convolutional Neural Networks (CNN) for detection of Barrett’s neoplasia.

Methods We collected 132 high definition white light endoscopy images from 46 lesions of histologically confirmed Barrett’s neoplasia. These images were marked and annotated using specially designed software, and reviewed by two experts on advanced assessment and management of Barrett’s neoplasia. Another 119 images of non dysplastic Barrett’s were collected from 20 patients and used as control. Both dysplastic and non dysplastic images were divided into three datasets and used for training, validation and testing of CNN algorithm. We used SegNet segmentation architecture. Graphical processing unit used was GeForce RTX 2080 Ti. We collected metrics on processing speed,
sensitivity, specificity and global accuracy at different score thresholds.

Results Image processing speed by the algorithm was 33 ms/image. This is much faster than the average human visual response latency which is estimated at 70–100 ms. The algorithm was able to detect Barrett’s neoplasia with sensitivity of 93%, specificity of 78% and global accuracy of 83% (see figure (1) below for examples of algorithm detection).

Conclusions We developed and validated an early AI algorithm with high sensitivity and reasonable specificity when compared with PVI criteria. The ultra short image processing time would suggest this algorithm may be suitable for real time detection of Barrett’s neoplasia. We will develop this model further for use during real time endoscopy.

07 OUTCOMES FROM THE UK ENDOSCOPIC SUBMUCOSAL DISSECTION (UK ESD) REGISTRY - WHAT HAVE WE LEARNT?

1Ejaz Hussain*, 2S Subramaniam, 3S Amrdez, 4M Abdelrahim, 5G Longcroft-Wheaton, 6B Saunders, 7N Suzuki, 8M Banks, 9J East, 10A Haj, 11B Haye, 12A Parra-Blanco, 13P Bhandari, 14Portsmouth Hospital NHS Trust, Portsmouth, UK; 15St Mark’s Hospital, London; 16University College Hospital, London; 17John Radcliffe Hospital, Oxford; 18Kings College Hospital, London; 19Nottingham University Hospitals NHS Trust, Nottingham

10.1136/gutjnl-2020-bsgcampus.7

Inflammatory bowel disease

08 RANDOMISED CONTROLLED TRIAL OF ANTIBIOTIC/HYDROXYCHLOROQUINE COMBINATION VERSUS STANDARD BUDENOSIDE IN ACTIVE CROHNS DISEASE (APRICOT)

1Jonathan Rhodes*, 2Sreedhar Subramanian, 3Paul Flanagan, 4Graham Horgan, 5Kate Martin, 6John Mansfield, 7Miles Parkes, 8Aliya Hart, 9Helen Dallal, 10Tariq Iqbal, 11Jeff Butterworth, 12Kate Culpshaw, 13Christopher Probert. 1Royal Liverpool University Hospital, Liverpool, UK; 2Wirral University Hospital, Wirral, UK; 3Biometrics and Statistics Scotland, Aberdeen, UK; 4Newcastle upon Tyne Hospitals, Newcastle, UK; 5Cambridge University Hospitals, Cambridge, UK; 6St Mark’s Hospital, Harrow, UK; 7James Cook University Hospital, Middlesbrough, UK; 8Queen Elizabeth Hospital, Birmingham, UK; 9Shrewsbury and Telford Hospital, Shrewsbury, UK; 10Liverpool Cancer Trials Unit, Liverpool, UK

10.1136/gutjnl-2020-bsgcampus.8

Abstract 07 Table 1

	Standard ESD	Hybrid ESD				
	En bloc	Complication	Recurrence	En bloc	Complication	Recurrence
Oesophageal (N=88)	76/78=97.4%	Bled: 2/78 (2.6%)	11/78=14%	10/10=100%	Bled: 0	2/10= 20%
		Perforation: 0			Perforation: 0	
Gastric (N=87)	76/77=98.7%	Bled: 1/77 (1.3%)	1/77= 1.3%	9/10=90%	Bled: 0	1/10= 10%
		Perforation: 0			Perforation: 0	
Duodenal (N=6)	1/1= 100%	Bled: 0	0	4/5= 80%	Bled: 0	1/5= 20%
		Perforation: 0			Perforation: 0	
Colorectal (N=128)	68/70=97.1%	Bled: 3/70 (4.3%)	3/70= 4.2%	20/58=34.5%	Bled: 1/58 (1.7%)	4/58=6.9%
		Perf: 2/70 (2.9%)			Perf: 2/58 (3.4%)	