Excitation-power-dependent upconversion luminescence competition in single β-NaYbF4:Er microcrystal pumped at 808 nm

Maohui Yuan
National University of Defense Technology College of Advanced Interdisciplinary Studies

Zining Yang
National University of Defense Technology College of Advanced Interdisciplinary Studies

Xu Yang
National University of Defense Technology College of Advanced Interdisciplinary Studies

Linxuan Wang
National University of Defense Technology College of Advanced Interdisciplinary Studies

Rui Wang
National University of Defense Technology College of Advanced Interdisciplinary Studies

Sheng Lan
South China Normal University Guangzhou Higher Education Mega Center

Kai Han
National University of Defense Technology College of Advanced Interdisciplinary Studies

Hongyan Wang
National University of Defense Technology https://orcid.org/0000-0001-5390-5813

Xiaojun Xu
National University of Defense Technology College of Advanced Interdisciplinary Studies

Nano Express

Keywords: Single NaYbF4:Er microcrystals, Upconversion luminescence, 808 nm excitation, Excitation-power-dependent, Multicolor

Posted Date: September 15th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-903372/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Excitation-power-dependent upconversion luminescence competition in single β-NaYbF₄:Er microcrystal pumped at 808 nm

Maohui Yuan,¹,⁴,⁶ Zining Yang,¹,²,³,⁶ Xu Yang,¹,²,³ Linxuan Wang,¹,²,³ Rui Wang,¹,²,³ Sheng Lan,⁵ Kai Han,¹,²,³,* Hongyan Wang,¹,²,³,* and Xiaojun Xu¹,²,³

¹College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China
²State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Changsha, 410073, China
³Hunan Provincial Key Laboratory of High Energy Laser Technology, National University of Defense Technology, Changsha, 410073, China
⁴Department of Physics and Chemistry, PLA Army Academy of Special Operations, Guangzhou 510507, China
⁵Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, China
⁶Maohui Yuan and Zining Yang contributed equally to this work.

*Corresponding author: hankai0071@nudt.edu.cn and wanghongyan@nudt.edu.cn

Abstract: Controlling the upconversion luminescence (UCL) intensity ratio, especially pumped at 808 nm, is of fundamental importance in biological applications due to the water molecules exhibiting low absorption at this excitation wavelength. In this work, a series of β-NaYbF₄:Er microrods were synthesized by a simple one-pot hydrothermal method and their intense green (545 nm) and red (650 nm) UCL were experimentally investigated based on single particle level under the excitation of 808 nm continuous-wave (CW) laser. Interestingly, the competition between the green and red UCL can be observed in highly Yb³⁺-doped microcrystals as the excitation intensity gradually increases, which leads to the UCL color changes from green to orange. However, the microcrystals doped with low Yb³⁺ concentration keep green color which is independent on the excitation power. Further investigations demonstrate that the cross-relaxation (CR) processes between Yb³⁺ and Er³⁺ ions result in the UCL competition.

Keywords: Single NaYbF₄:Er microcrystals, Upconversion luminescence, 808 nm excitation, Excitation-power-dependent, Multicolor

1. Introduction

Rare-earth-ion doped UC nanomaterials have drawn a great attention recently due to their promising applications in biological issues [1], super-resolutions imaging [2], multicolor display [3], thermometer sensor [4], laser refrigeration [5-6], and laser materials [7-8]. These UC nanomaterials can efficiently convert the near infrared light into visible emissions according to the anti-Stokes process. Generally, the achieving of UCL relies on the sensitizer-activator pair. To obtain the efficient UCL, the sensitizer-activator pair of lanthanides should incorporate in
appropriate host lattices [9]. To date, the NaYF₄ has been considered to the most efficient host for generating UCL owing to its low phonon energy (~350 cm⁻¹) [10]. In general, the typical Yb³⁺ ions act as the sensitizer absorbing the excitation energy and the activator of Er³⁺ (Tm³⁺ or Ho³⁺) is responsible for emitting the UCL [11-13].

It is well-known that the Yb³⁺ ions have large absorption cross-section at 980 nm, which can be efficiently excited by the high-performance and commercial laser diode [14]. However, owing to the large absorption coefficient of water molecules at 980 nm, the Yb³⁺-sensitized UC nanoparticles would face severe overheating problems, which limits its further application in biological tissues and aqueous environment by decreasing the depth of penetration [15]. To overcome the overheating effects, the conventional approach is to dope Nd³⁺ ions as sensitizer which can shift the excitation wavelength from 980 to 808 nm [16-17]. Nonetheless, the dopant of Nd³⁺ usually yields small nanoparticles and hardly grows to microcrystals due to the larger Nd³⁺ (r = 1.249 Å) substitution of the relatively smaller Y³⁺ (r = 1.159 Å) in NaYF₄ lattice [10]. Importantly, compared with the nano-scale UC particles, micro-scale UC particles facilitate more advantages for applications in micro-optoelectronic devices, volumetric color display, and microlasers based on their high crystallinity and luminescent efficiency [18-22]. However, the most present researches are mainly conducted in aqueous solutions, organic solvents or as-prepared solid powders. This may lead to severe overheating problems and the UCL will be influenced by the adjacent particles. Therefore, exploring the UCL and tunable color in single microparticle level, especially pumped at 808 nm wavelength, will effectively avoid the effects of external environment and broaden its further applications in micro-optoelectronic devices and aqueous environment.

In this study, we firstly report the effect of excitation-power-dependent UCL competition in single Yb³⁺-sensitized NaYbF₄:Er microcrystal pumped at 808 nm. The properties of the UCL competition are characterized by the single microcrystal level. The competition between green and red UCL is clearly observed in highly Yb³⁺-doped microcrystals with varying the excitation intensity, and the UCL color was tuned from green to orange. On the contrary, there is no UCL competitions observed in lowly Yb³⁺-doped microcrystal and the UCL color always maintains green which is independent on the excitation power. The mechanism of the UCL competition is also demonstrated in detail.

2. Experimental Sections

2.1 Chemicals

The chemicals of rare-earth (RE) nitrates (Y(NO₃)₃, Yb(NO₃)₃, and Er(NO₃)₃, 99.9%), nitric acid (HNO₃, AR), Ethylenediaminetetraacetic acid disodium salt dihydrate (EDTA-2Na, AR), sodium hydroxide (NaOH, AR) and ammonium fluoride (NH₄F, AR) were purchased from Aladdin (China). All the chemicals were directly used as received without further purification.

2.2 Synthesis of β-NaYbF₄ microcrystals

The β-NaYbF₄ microcrystals were synthesized by the similar hydrothermal method procedure according to our previous study [23]. In a typical procedure, for instance, synthesis of the β-NaYbF₄:2%Er (mol%) microcrystals: firstly, the Yb(NO₃)₃ and Er(NO₃)₃ powders were dissolved in deionized water yielding a clear solution of Ln(NO₃)₃ (0.2 M); then the EDTA-2Na (1 mmol) and NaOH (5 mmol) were mixed
with 12.5 mL deionized water under continuously stirring in a beaker; following, 5 mL of Ln(NO$_3$)$_3$ (0.2 M) aqueous solutions (the total Ln$^{3+}$ is 1 mmol), 8 mL of NH$_4$F (2.0 M) aqueous solutions and 7 mL of dilute hydrochloric acid (1 M) were added into the beaker; finally, the above mixtures were stirred for 1.5 hour and transferred into a 50 mL Teflon-lined autoclave and heated at 200°C for 40 hours. The as-prepared white precipitates were collected by centrifugation, washed with DI water and ethanol for several times, and dried in air at 40°C for 8 hours. The microcrystals doped with different concentrations of Yb$^{3+}$ or Er$^{3+}$ can be similarly synthesized by varying the volume of Ln(NO$_3$)$_3$ aqueous solutions.

2.3 Structural Characterization

The morphology and size of the β-NaYbF$_4$:Er microcrystals were characterized by scanning electron microscope (SEM) (S4800, Hitachi). X-ray diffraction (XRD) patterns of the microcrystals were measured using powder X-ray diffractometer (Rigaku).

2.4 Upconversion luminescence measurements

In the photoluminescence experiments, the 808 nm CW laser was integrated with an inverted microscope (Observer A1, Zeiss) and irradiated on the microcrystals with a 100× objective lens (NA=1.4). The diameter of the excitation spot was estimated to be ~2.0 μm. The UCL generated from the microcrystals was collected by the same objective lens and then transmitted to a spectrometer (SR-500I-B1, Andor) coupled with a charge-coupled device (DU970N, Andor) for optical signal analysis. The UCL colors of the microcrystals were photographed using a high sensitivity of camera (DS-Ri2, Nikon).

3. Results and discussion

Fig. 1a-c shows the SEM images of the as-prepared β-NaYbF$_4$:Er microcrystals doped with different Yb$^{3+}$ concentrations. The results indicate that the microcrystals exhibit the hexagonal prism morphology and uniform size distribution (with the lengths of ~15 μm and diameters of ~6 μm). Notably, adjusting the doping Yb$^{3+}$ concentrations slightly varies the size of microcrystals. Fig. 1d gives the elements mapping of single NaYF$_4$:60%Yb,2%Er microcrystal, which clearly demonstrates that the Y$^{3+}$, Yb$^{3+}$ and Er$^{3+}$ ions are homogeneously incorporated in the NaYF$_4$ host lattices. Fig. 1e displays the XRD patterns of the β-NaYF$_4$:x%Yb,2%Er microcrystals with different Yb$^{3+}$ concentrations. It reveals
that all the diffraction peaks are well in accordance with the standard hexagonal phases of NaYF\(_4\) host (JCPDS No. 16-0334). The SEM images and XRD patterns confirm that the NaYF\(_4\) microcrystals are successfully synthesized and highly crystalline.

![Fig. 2. The UCL spectra of single microcrystals.](image)

Fig. 2. The UCL spectra of single (a) \(\beta\)-NaYF\(_4\):98\%Yb,2\%Er, (b) \(\beta\)-NaYF\(_4\):60\%Yb,2\%Er, (c) \(\beta\)-NaYF\(_4\):20\%Yb,2\%Er microcrystal under the excitation of 808 nm CW laser with different excitation density. The insert UCL photographs are corresponding to the relevant spectrum, respectively.

Fig. 2 shows the UCL spectra of single \(\beta\)-NaYF\(_4\):x\%Yb,2\%Er microcrystal under the excitation of 808 nm CW laser with different excitation density. The corresponding UCL photographs are also provided in the inserts of relevant spectrum, respectively. Fig. 2a gives the spectra of the highly Yb\(^{3+}\)-doped single NaYbF\(_4\):2\%Er microcrystal. The typical green (525 and 545 nm) and red (650 nm) UCL can be clearly observed, which are ascribed to the transitions of \(^{2}H_{11/2}\leftrightarrow^{4}S_{3/2}\) and \(^{4}F_{9/2}\leftrightarrow^{4}I_{15/2}\) from Er\(^{3+}\), respectively. Under the excitation density of 1.59 kW cm\(^{-2}\), the relatively weak green and red UCL emerge in the spectrum. The intensity of the green (545 nm) UC emission is larger than the red (650 nm) one, leading to the single hexagonal microcrystal exhibiting green color. As the excitation intensity slightly increases to 3.18 kW cm\(^{-2}\), the red UCL increases more fast than the green UCL and their intensities are almost equal. This results in the UCL color changing to dark yellow. Notably, it can clearly observe that the UC emissions are transparent to the hexagonal microcrystal and transport from middle of the microrod to the two side ports. This phenomenon has also been demonstrated in previous literatures [21, 24]. When further rises the excitation intensity up to 12.7 kW cm\(^{-2}\), the red UCL enhances rapidly and exceeds the green UC emission, which causes the luminescence color tuning to yellow. Moreover, a new blue UCL centered at 410 nm appears, which is originated from the transition of \(^{4}H_{9/2}\leftrightarrow^{4}I_{15/2}\) from Er\(^{3+}\). As the excitation intensity continues to increase to 38.2 kW cm\(^{-2}\), the red UCL increases remarkably and further surpasses the green UC emission leading to the UCL color turning into orange. The results demonstrate that the green and red UCL compete to each other as varies the excitation power. It is the first time that the UCL competition is observed in Er\(^{3+}\) ions for the highly Yb\(^{3+}\)-doped micromaterials pumped at 808 nm.
To explore the influence of the Yb\(^{3+}\) concentration on the UCL competition, we further investigate the UCL properties of the single NaYF\(_4\):x\%Yb,2\%Er microcrystal doped with different Yb\(^{3+}\) concentrations. Fig. 2b displays the UCL spectra of the single NaYF\(_4\):60\%Yb,2\%Er microcrystal. The same phenomenon to the microcrystal doped with 98\% Yb\(^{3+}\) can be observed (Fig. 1a). Differently, the red UCL exceeds the green UCL at a relatively high excitation intensity which is higher than that of the NaYF\(_4\):98\%Yb,2\%Er microcrystal. Moreover, the UCL color of the single NaYF\(_4\):60\%Yb,2\%Er microcrystal changes from green to yellow as the excitation intensity increases. However, as shown in Fig. 2c, when the doping Yb\(^{3+}\) ions further decrease to 20\%, the green and red UCL keep the similar growth trend as the excitation intensity gradually reinforces. This leads to the UCL color maintaining green and no UCL competition occurs in the single microcrystal. Thus, the results verify that the highly Yb\(^{3+}\)-doped microcrystals can efficiently generate the green and red UCL competition, causing the UCL color turning from green to orange with increasing the excitation intensity. In contrast, for lowly Yb\(^{3+}\)-doped microcrystals, the green UCL is always larger than the red one and the UCL color is green regardless of the variation of excitation intensity.

![Fig. 3.](image-url)

Fig. 3. The ratios of R/G for single (a) β-NaYF\(_4\):98\%Yb,2\%Er, (b) β-NaYF\(_4\):60\%Yb,2\%Er and (c) β-NaYF\(_4\):20\%Yb,2\%Er microcrystal as a function of the excitation intensity. The dependences of the UCL intensity on the excitation intensity for single (d) β-NaYF\(_4\):98\%Yb,2\%Er, (e) β-NaYF\(_4\):60\%Yb,2\%Er and (f) β-NaYF\(_4\):20\%Yb,2\%Er microcrystal. All excitation wavelengths are at ~808 nm.

To further investigate the UCL competition behaviors, we have calculated the ratios of red-to-green (R/G) UCL intensity for the single NaYF\(_4\):x\%Yb,2\%Er microcrystal under different pump powers, as shown in Fig. 3a-c. For NaYF\(_4\):98\%Yb,2\%Er microcrystal (Fig. 3a), the R/G ratios increase from 0.59 to 2.51 when the excitation intensity increases from 1.59 to 38.2 kW cm\(^{-2}\). Moreover, the red and green UCL are
equivalent when the excitation intensity pumps at 3.18 kW cm$^{-2}$. However, Fig. 3b displays the R/G ratios rise merely from 0.19 to 1.36 as the excitation intensity gradually enhances. The excitation intensity for the red UCL exceeds the green one occurs at 12.7 kW cm$^{-2}$. Exceptionally, for NaYF$_4$:20%Yb,2%Er microcrystal shown in Fig. 3c, this R/G ratio keeps at ~0.20 which is independent to the excitation intensity. Fig. 3d-f shows the dependences of UCL intensity on the excitation intensity for NaYF$_4$:x%Yb,2%Er microcrystals doped with different Yb$^{3+}$ concentrations. The slopes for the green and red UCL are all approximate to ~2, which indicates that these two UCL are derived from the two-photon absorption processes. Notably, for doping with 98% and 60% Yb$^{3+}$ concentrations of microcrystals, the red and green UCL appear saturation effects. In addition, the excitation intensity for the NaYF$_4$:98%Yb,2%Er microcrystal is lower than the NaYF$_4$:60%Yb,2%Er microcrystal. However, the UCL slope of NaYF$_4$:20%Yb,2%Er microcrystal is consistent under different excitation intensity due to without occurring of saturation effects.

Next, we further investigate the influence of doping Er$^{3+}$ concentration on the UCL competition. Fig. 4a illustrates the ratios of R/G as a function of the excitation intensity for single β-NaYbF$_4$:x%Er microcrystals doped with different Er$^{3+}$ concentrations. It reveals that the R/G ratios reduce as the doping Er$^{3+}$ concentrations increase. Moreover, we make further efforts to explore the UCL properties for the single Er$^{3+}$-doped NaYF$_4$ microcrystal. Fig. 4b shows the UCL spectra of single β-NaYF$_4$:2%Er microcrystal under the excitation of 808 nm CW laser with different excitation density. The UCL spectra demonstrates that the green UCL is constantly larger than the red UCL and there is no UCL competition appearance. Therefore, its UCL color maintains green and is independent with the excitation intensity.

![Fig. 4.](image.png)

Having systematically demonstrated the experimental phenomenon, here we discuss the mechanism of the UCL competition induced by variation of excitation power. Fig. 5 gives the proposed UCL mechanism and possible routes for populating the upper emitting states of Er$^{3+}$ ions. The corresponding UCL transitions as well as the energy-transfer (ET) processes are also provided. The population of the Er$^{3+}$ ions can be divided in two steps: firstly, the electrons in the ground state of Er$^{3+}$ are excited to the $^4I_{15/2}$ state by ground-state-absorption (GSA) or through ET from Yb$^{3+}$ after absorbing the 808 nm photon; then continues to reach the $^2H_{15/2}$ state by absorbing a second 808 nm photon or $^4I_{11/2}$ state
through a non-radiative transition [25]. After that, the emitting states \(^2H_{11/2}, ^4S_{3/2} \) and \(^4F_{9/2} \) can be populated by excited-state-absorption (ESA), CR, ET and non-radiative transition processes, which are clearly elaborated in Fig. 5. The significant population of the upper states of Er\(^{3+}\) ions can efficiently generate the UCL.

Notably, under the excitation of 808 nm laser, the doping Yb\(^{3+}\) concentrations will affect the populating routes for upper states of Er\(^{3+}\). For highly Yb\(^{3+}\)-doped NaYF\(_4\):2\%Er microcrystal, the distance between the Yb\(^{3+}\) and Er\(^{3+}\) is relatively close, thus leads to the significant CR processes happening. The proposed CR processes are:

\[
\text{Er}(^4S_{3/2}, ^2H_{11/2}) + \text{Yb}(^2F_{5/2}) \rightarrow \text{Er}(^4I_{15/2}) + \text{Yb}(^2F_{7/2}) \quad (1)
\]

\[
\text{Yb}(^2F_{5/2}) + \text{Er}(^4I_{13/2}) \rightarrow \text{Yb}(^2F_{7/2}) + \text{Er}(^4F_{9/2}) \quad (2)
\]

The above CR processes can efficiently enhance the population of red-emitting state \(^4F_{9/2} \) and depopulate the green-emitting states \(^4S_{3/2} \) and \(^2H_{11/2} \). Therefore, under relatively lower excitation intensity, it mainly populates the green-emitting states, thus the green UCL is larger than red one and the UCL color tends to green. When gradually increase the excitation intensity, the CR processes become efficient, thus enhances the red UCL and supresses green UC emissions. This causes the red and green UCL compete to each other. This experimental phenomenon is similar to our previous literature reported that the highly-Yb\(^{3+}\) doped NaYF\(_4\):Er microcrystals always tend to generate red UCL color under 980 nm excitation [23]. However, for lowly Yb\(^{3+}\)-doped NaYF\(_4\):2\%Er microcrystal, there is no CR processes occurrence because of the relatively far distance between Yb\(^{3+}\) and Er\(^{3+}\) ions. Therefore, the green- and red-emitting states maintain the same populating proportion as increases the excitation intensity, which results in the microcrystal keeping green UCL color.

4. Conclusions

In conclusion, we have systematically investigated the excitation power induced UCL competition in single NaYF\(_4\):x\%Yb,2\%Er microcrystal under the excitation of 808 nm. It finds that, for highly Yb\(^{3+}\)-doped microcrystals, the red and green UCL compete to each other.
and its UCL color can be finely tuned from green to orange when gradually increases the excitation intensity. On the contrary, there is no competition in lowly Yb$^{3+}$-doped microcrystals and the UCL color retains green which is unchanged. The mechanism of the UCL competition is interpreted by CR processes owing to the short distance between Yb$^{3+}$ and Er$^{3+}$ ions in highly Yb$^{3+}$-doped microcrystals. However, for lowly Yb$^{3+}$-doped microcrystals, the long distance between Yb$^{3+}$ and Er$^{3+}$ ions prohibits the CR processes and the population of Er$^{3+}$ ions keeps the original approaches, thereby creating the lowly Yb$^{3+}$-doped NaYF$_4$:2%Er microcrystal facilitates green UCL color. Owing to the remarkable optical properties in micro-scale and particularly pumped at 808 nm laser, these microcrystals can be potentially applied in biological issues, aqueous environment and micro-optical devices.

Abbreviations

UCL: Upconversion luminescence; CW: Continuous-wave; CR: Cross-relaxation; SEM: Scanning electron microscopy; XRD: X-ray diffraction; R/G: Ratio of red-to-green; ET: Energy transfer; GSA: Ground-state-absorption; ESA: Excited-state-absorption.

Availability of Data and Materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Competing Interests

The authors declare that they have no competing interests.

Funding

This work was financially supported by Natural Science Foundation of Guangdong Province (Grant No. 2016A030308010).

Authors’ Contributions

MY and KH contributed the design of this research. MY, ZY and XY carried out the experiments. LW and RW contributed to the date analysis. SL provided the optical spectrum test and measurement. MY and ZY wrote the draft of manuscript. HW and XX revised and finalized the manuscript. All authors have read and approved the final manuscript.

Acknowledgments

Not applicable.

Author details

1 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China. 2 State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Changsha, 410073, China. 3 Hunan Provincial Key Laboratory of High Energy Laser Technology, National University of Defense Technology, Changsha, 410073, China. 4 Department of physics and
chemistry, PLA Army Academy of Special Operations, Guangzhou 510507, China. Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, China

References

1. Xu X, Li W, Hu C, Lei B, Zhang X, Li Y, Zhan Q, Liu Y, Zhuang J (2020) Promoting the growth of mung bean plants through uptake and light conversion of NaYF₄:Yb,Er@CDs nanocomposites. ACS Sustain Chem Eng 8:9751–9762

2. Liang L, Feng Z, Zhang Q, Cong TD, Wang Y, Qin X, Yi Z, Ang MJY, Zhou L, Feng H, Xing B, Gu M, Li X, Liu X (2021) Continuous-wave near-infrared stimulated-emission depletion microscopy using downshifting lanthanide nanoparticles. Nat Nanotechnol doi: 10.1038/s41565-021-00927-y

3. Liu H, Xu J, Wang H, Liu Y, Ruan Q, Wu Y, Liu X, Yang JKW (2019) Tunable resonator-upconverted emission (TRUE) color printing and applications in optical security. Adv Mater 31:1807900

4. Kaczmarek AM, Suta M, Rijckaert H, Van Swieten TP, Van Driessche I, Kaczmarek MK, Meijerink A (2021) High temperature (nano)thermometers based on LiLuF₄:Er³⁺,Yb³⁺ nano- and microcrystals. Confounded results for core-shell nanocrystals. J Mater Chem C 9:3589–3600

5. Zhou X, Smith BE, Roder PB, Pauzauskie PJ (2016) Laser refrigeration of ytterbium-doped sodium-yttrium-fluoride nanowires. Adv Mater 28:8658–8662

6. Rahman ATMA, Barker PF (2017) Laser refrigeration, alignment and rotation of levitated Yb³⁺:YLF nanocrystals. Nat Photonics 11:634–638

7. Liu Y, Teitelboim A, Fernandez-Bravo A, Yao K, Altoe M, Aloni S, Zhang C, Cohen BE, Schuck PJ, Chan EM (2020) Controlled assembly of upconverting nanoparticles for low-threshold microlasers and their imaging in scattering media. ACS Nano 14:1508–1519

8. Shang Y, Zhou J, Cai Y, Wang F, Fernandez-Bravo A, Yang C, Jiang L, Jin D (2020) Low threshold lasing emissions from a single upconversion nanocrystal. Nat Commun 11:6156

9. Wang Y, Zheng K, Song S, Fan D, Zhang H, Liu X (2018) Remote manipulation of upconversion luminescence. Chem Soc Rev 47:6473–6485

10. Wang F, Han Y, Lim CS, Lu Y, Wang J, Xu J, Chen H, Zhang C, Hong M, Liu X (2010) Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463:1061–1065

11. Zhou J, Chen G, Wu E, Bi G, Wu B, Teng Y, Zhou S, Qiu J (2013) Ultrasensitive polarized up-conversion of Tm³⁺:Yb³⁺ doped β-NaYF₄ single nanorod. Nano Lett 13:2241–2246
12. Chen B, Liu Y, Xiao Y, Chen X, Li Y, Li M, Qiao X, Fan X, Wang F (2016) Amplifying excitation-power sensitivity of photon upconversion in a NaYbF$_4$:Ho nanostructure for direct visualization of electromagnetic hotspots. J Phys Chem Lett 7:4916

13. Hossan MY, Hor A, Luu Q, Smith SJ, May PS, Berry MT (2017) Explaining the nanoscale effect in the upconversion dynamics of β-NaYF$_4$:Yb$^{3+}$, Er$^{3+}$ core and core-shell nanocrystals. J Phys Chem C 121:16592–16606

14. Wen S, Zhou J, Schuck PJ, Suh YD, Schmidt TW, Jin D (2019) Future and challenges for hybrid upconversion nanosystems. Nat Photonics 13:828–838

15. Zhang Y, Yu Z, Li J, Ao Y, Xue J, Zeng Z, Yang X, Tan TTY (2017) Ultrasmall-superbright neodymium-upconversion nanoparticles via energy migration manipulation and lattice modification: 808 nm-activated drug release. ACS Nano 11:2846–2857

16. Liu B, Li C, Yang P, Hou Z, Lin J (2017) 808-nm-light-excited lanthanide-doped nanoparticles: rational design, luminescence control and theranostic applications. Adv Mater 29:1605434

17. Huang X (2015) Giant enhancement of upconversion emission in (NaYF$_4$:Nd$^{3+}$/Yb$^{3+}$/Ho$^{3+}$)/(NaYF$_4$:Nd$^{3+}$/Yb$^{3+}$) core/shell nanoparticles excited at 808 nm. Opt Lett 40:3599–3602

18. Li C, Zhang C, Hou Z, Wang L, Quan Z, Lian H, Lin J (2009) β-NaYF$_4$ and β-NaYF$_4$:Eu$^{3+}$ microstructures: morphology control and tunable luminescence properties. J Phys Chem C 113:2332–2339

19. Wang T, Yu H, Siu CK, Qiu J, Xu X, Yu SF (2017) White-light whispering-gallery-mode lasing from lanthanide-doped upconversion NaYF$_4$ hexagonal microrods. ACS Photonics 4:1539–1543

20. Chen B, Kong W, Liu Y, Lu Y, Li M, Qiao X, Fan X, Wang F (2017) Crystalline hollow microrods for site-selective enhancement of nonlinear photoluminescence. Angew Chem Int Edit 56:10383–10387

21. Chen B, Sun T, Qiao X, Fan X, Wang F (2015) Directional light emission in a single NaYF$_4$ microcrystal via photon upconversion. Adv Opt Mater 3:1577–1581

22. Han Q, Gao W, Zhang C, Mi X, Zhao X, Zhang Z, Dong J, Zheng H (2018) Tunable flower-like upconversion emission and directional red radiation in a single NaYF$_4$:Yb$^{3+}$/Tm$^{3+}$ microcrystal particle. J Alloy Compd 748:252–257

23. Yuan M, Wang R, Zhang C, Yang Z, Cui W, Yang X, Xiao N, Wang H, Xu X (2018) Exploiting the silent upconversion emissions from a single β-NaYF$_4$:Yb/Er microcrystal via saturated excitation. J Mater Chem C 6:10226–10232

24. Gao D, Wang D, Zhang X, Feng X, Xin H, Yun S, Tian D (2018) Spatial control of upconversion emission in a single fluoride microcrystal via the excitation mode and native interference effect. J Mater Chem C 6:622–629

25. Yang X, Wang L, Wang R, Yang Z, Song C, Yuan M, Han K, Lan S, Wang H, Xu X (2021) Achieving tunable multicolor display and sensitive temperature sensing in self-sensitization of erbium-doped CaF$_2$ nanocrystals under 808, 980 and 1532 nm irradiation. Opt Mater Express 11:2514–2527