Optimization of neutrino beams for underground sites in Europe

A. Longhin

INFN Laboratori Nazionali di Frascati, via E. Fermi 40, 00044 Frascati, Italy; on leave from CEA, Irfu, SPP, Centre de Saclay, F-91191 Gif-sur-Yvette, France.

Abstract. We present an optimization procedure for neutrino beams which could be produced at CERN and aimed to a set of seven possible underground sites in Europe with distances ranging from 130 km to 2300 km. Studies on the feasibility of a next generation very massive neutrino observatory have been performed for these sites in the context of the first phase of the LAGUNA design study. We consider specific scenarios for the proton driver (a high power proton driver at 4.5 GeV for the shortest baseline and a 50 GeV machine for longer baselines) and the far detector (a Water Cherenkov for the shortest baseline and a LAr TPC for longer baselines). The flux simulation profits of a full GEANT4 simulation. The optimization has been performed before the recent results on ν_e appearance by reactor and accelerator experiments and hence it is based on the maximization of the sensitivity on $\sin^2 2\theta_{13}$. Nevertheless the optimized fluxes have been widely used since their publication on the internet (2010). This work is therefore mainly intended as a documentation of the adopted method and at the same time an intermediate step towards future studies which will put the emphasis on the performances of beams for the study of δ_{CP}.

PACS. 14.60.Pq Neutrino mass and mixing

1 Introduction

The feasibility of a European next-generation very massive neutrino observatory in seven potential candidate sites located at distances from CERN ranging from 130 km to 2300 km, has been explored within the LAGUNA design study. In order of increasing distance from Geneva the considered sites have been Fréjus (France) at 130 km, Canfranc (Spain) at 630 km, Caso (Italy) at 665 km, Sierosówce (Poland) at 950 km, Boulby (United Kingdom) at 1050 km, Slănic (Romania) at 1570 km and Pyhäsalmi (Finland) at 2300 km.

When coupled to very intense neutrino beams from CERN, large detectors hosted in such an underground site, could measure with high precision the mixing angle θ_{13}, and eventually determine the neutrino mass hierarchy and the existence of CP violation in the leptonic sector.

The oscillation probability of the $\nu_\mu \rightarrow \nu_e$ channel is shown as a function of the neutrino energy in Fig. 1 for the considered baselines. The energy of the first oscillation maximum spans a wide range of energies for the considered baselines ranging from 0.26 MeV at 130 km up to 4.65 GeV at 2300 km, the full sequence being \{0.26, 1.27, 1.34, 1.92, 2.12, 3.18, 4.65\} GeV.

This parameter is crucial for the optimization of the energy spectrum of the neutrino beam as it will be shown later. Neutrino spectra should cover the region where the oscillation effect is maximal with high statistics and low intrinsic contamination of ν_μ. The study of CP-violation requires to measure the oscillation probability as a function of the neutrino energy, or alternatively to compare large samples of ν_e and $\bar{\nu}_e$ CC events, and suffers in general from neutrino oscillation parameters degeneracies. The possibility to have a broad beam covering the second oscillation maximum at lower energy is beneficial since it provides additional input useful to constraint the effects of mass hierarchy and the δ_{CP} phase and limits the impact of systematic errors on flux normalization by providing spectral information.

In this work we investigate two options for the proton driver: a high power superconducting proton linac at 4.5 GeV and a high power synchrotron at 50 GeV. Concerning the detector technology we consider a 440 kt Water Cherenkov for the 130 km baseline and the low energy proton driver and a 100 kt LAr Time Projection Chamber (LArTPC) at longer baselines with the high energy accelerator. Realistic designs have been proposed for these two detectors: the MEMPHYS and the GLACIER concepts. Previous studies on a high-energy super-beam and a low energy super-beam are available. The simulation of fluxes is based on the GEANT4 libraries and the optimization is performed separately for each one of the considered baselines. The guiding line of the optimization is the final achievable sensitivity on $\sin^2 2\theta_{13}$. Furthermore a direct comparison of a high-energy and low-energy super-beam based on different accelerator scenarios has been done using of a coherent set of simulation tools.
A summary of the assumed accelerator parameters is given in Tab. 1. For the far detector we concentrated on two designs:

- The MEMPHYS water Cherenkov detector is envisaged as consisting of 3 separate tanks of 65 m in diameter and 65 m height each (440 kt). Such dimensions meet the requirements of light attenuation length in (pure) water and hydrostatic pressure on the bottom PMTs. A detector coverage of 30% can be obtained with about 81,000 PMT of 30 cm diameter per tank. Based on the extensive experience of Super-Kamiokande, this technology is best suited for single Cherenkov ring events typically occurring at energies below 1 GeV.

- GLACIER is a scalable concept for single volume very large LAr TPC with a mass of 100 kt. The powerful imaging will allow to reconstruct with high efficiency electron events in the GeV range and above, while considerably suppressing the neutral current background mostly consisting of misidentified \(\pi^0\)s.
3 Optimization of the focusing system

The optimization of the neutrino fluxes for the CERN-Fréjus baseline with a Cherenkov detector and a 4.5 GeV proton driver has been studied extensively in [11] so in the following we will take the optimized fluxes obtained in that work and focus on the optimization of the focusing system for longer baselines assuming a LAr far detector and a 50 GeV proton driver.

The focusing system is based on a pair of parabolic horns which we will denote as horn (upstream) and reflector (downstream) according to the current terminology. This schema is the same which is being used for the NuMI beam. The target is modelled as a 1 m long cylinder of graphite ($\rho = 1.85 \text{ g/cm}^3$) and a radius of 2 mm. Primary interaction in the target were simulated with GEANT4 QGSP hadronic package.

The optimization relies on a parametric model of the horn and reflector profiles. The horn radius as a function of the coordinate along the proton beam, $r(z)$, has been parametrized as shown in the first row of Tab.2 in the three z domains $[0, z_1), [z_1, z_2), [z_2, z_3)$ which reduce to nine after requiring continuity at the points z_1 and z_2 ($a, b, c, d, a’, b’, c’, r, z_1, z_2, z_3$). The layout of a typical configuration is shown in Fig.2.

In addition to the parameters related to the shape of the horn and the reflector, additional degrees of freedom are: the distance between the horn and reflector (ΔHR), the length and radius of the decay tunnel ($L_{\text{tun}}, r_{\text{tun}}$), the longitudinal position of the target (z_{tun}) and the currents circulating in the horn and the reflector (i_H, i_R).

Following the approach already used in [11] for the optimization of the SPL-Fréjus Super Beam, we introduce, as a figure of merit of the focusing, a quantity λ defined as the δ_{CP}-averaged 99 % C.L. sensitivity limit on $\sin^2(2\theta_{13})$ ($:=\lambda_{99}(\delta_{CP})$) in 10^{-3} units

$$
\lambda = \frac{10^3}{2\pi} \int_0^{2\pi} \lambda_{99}(\delta_{CP}) \, d\delta_{CP}
$$

In the following we will denote the quantity λ evaluated for a specific baseline L as λ_L. A sample of 10^5 secondary meson tracks per configuration was used. Fluxes were calculated with 20 energy bins from 0 to 10 GeV. The statistical fluctuations introduced by the size of the sample have been estimated by repeating the simulation for the same configuration several times with independent initialization of the GEANT4 random number engine. The spread is enhanced by the presence of single events which can be assigned large weights. The spread on the parameters λ_L is of the order of 3-4%. The sensitivity limit was calculated with the GLoBES software [15] fixing a null value for θ_{13} and fitting the simulated data with finite values of $\sin^2 2\theta_{13}$ and δ_{CP} sampled in a grid of 10×200 points in the $(\delta_{CP}, \sin^2 2\theta_{13})$ plane for $\delta_{CP} \in [0, 2\pi]$ and $\sin^2 2\theta_{13} \in [10^{-2}, 10^{-4}]$. The 99% C.L. limit was set at the values corresponding to a $\Delta \chi^2$ of 9.21 (2 d.o.f.).

In the simulation of the GLACIER detector the considered backgrounds are the intrinsic ν_e and $\bar{\nu}_e$ components of the beam.

In the simulation of the GLACIER detector the considered backgrounds are the intrinsic ν_e and $\bar{\nu}_e$ components of the beam. Reconstructed neutrino energy was divided into 100 MeV bins while the true neutrino energy in 40 MeV bins from 0 to 1.6 GeV. Four migration matrices for $\nu_e, \bar{\nu}_e, \nu_{\mu}$ and $\bar{\nu}_\mu$ are applied to signal events as well as backgrounds. The considered backgrounds are ν_{μ}^{CC} interactions misidentified as ν_e^{CC}, neutral current events and $\nu_e + \nu_{\mu}$ intrinsic components of the beam.

We followed two strategies in the optimization procedure which we will describe in the following subsections.

$r(z)$	$\sqrt{\frac{x^2}{a^2} - c}$	d	$\sqrt{\frac{x^2}{a'^2} - c'}$		
z range	$[0, z_1)$	$[z_1, z_2)$	$[z_2, z_3)$		
Par. horn refl.	Par. horn refl.				
a	85.5	100	d	0.9	3.9
b	7.0	10.35	r	15	40
c	0.2	0.3	z_1	80	97.6
a'	82.2	100	z_2	83.0	104.8
b'	2.18	0.27	z_3	300	300
c'	0.2	0.3			

Table 2: Analytic parametrization of the horn/reflecter radial profile $r(z)$ and central values of the parameters expressed in cm. r is the conductor outer radius.
In a first step we decided to fix the horn and reflector shapes (central values of Tab. 2), the tunnel geometry ($L_{tun} = 300$ m, $r_{tun} = 1.5$ m) and the circulating currents (200 kA). We then varied the relative positions of the horn, the reflector and the target. We define the distance between the center of the target and the most upstream point of the horn as z_{tar} while we indicate with Δ_{HR} the horn-reflector distance. After having chosen the best point in this space we did a similar exercise in the decay tunnel parameter space (L_{tun}, r_{tun}). At first order these two couples of parameters are expected to be weakly correlated so that doing the optimization in one pair of variables after fixing a specific choice for the other pair should not have a big impact on the final result.

The variables (Δ_{HR}, z_{tar}) were sampled uniformly in the intervals $[0, 300]$ m and $[-1.5, 2.5]$ m respectively. Optimal values were then chosen for each baseline. In general a marked dependence of λ on the longitudinal position of the target (z_{tar}) is observed while variations of Δ_{HR} have a reduced impact. In Fig. 3 we show, taking as an example, the dependence of λ_{630} on z_{tar} after marginalizing on Δ_{HR}. For the 630 km baseline the optimal z_{tar} lies around $+0.5$ m, while for Δ_{HR} a value of 50 m was chosen. At this stage of the optimization the best values for λ_{630} cluster between 1.4-1.5. The first two columns of Tab. 3.1 give the Δ_{HR} and z_{tar} pairs providing the best limit for each baseline ($\lambda_{min}, 3^{rd}$ column).

After having fixed Δ_{HR}, z_{tar} to the optimal values of Tab. 3.1 the tunnel length L_{tun}, previously fixed at 300 m, was sampled uniformly between $[10, 500]$ m keeping r_{tun} fixed at 1.5 m. The optimized values for L_{tun} are given in Tab. 3.1 (4th column). In the case of $L = 630$ km a gain of order 20% is visible in Fig. 4 (left) decreasing L_{tun} from a 300 to 75 m.

The r_{tun} was then sampled in $[0, 3]$ m having fixed the optimal tunnel length. The right plot of Fig. 4 shows that an improvement is obtained increasing r_{tun} to 2 m. The optimized values for r_{tun} are shown in Tab. 3.1 (5th column). The values of λ obtained after the tunnel optimization (λ_{min}) are shown in the 6th column of Tab. 3.1. The variation between λ_{min} and λ_{min}' shows that the tunnel optimization is particularly effective for the short baselines for which the initial geometry was not appropriate.
for z_{tar} which exhibits a strong correlation with λ. It is clear that putting the target more and more upstream with respect to the horn, is mandatory to get good exclusion limits, as far as the baseline increases.

The correlation between the longitudinal position of the target with respect to the horn and the mean energy of the ν_μ spectrum ($\langle E_{\nu_\mu} \rangle$) is shown in Fig. 5. Putting the target upstream, high energy pions, which are typically produced at small angles, are preferentially focused resulting in a high energy neutrino spectrum.

The correlation between $\langle E_{\nu_\mu} \rangle$ and λ is shown in Fig. 6. In general the optimal energies tend to roughly follow the position of the first oscillation maximum (red vertical lines in the plots). Mean energies below 2 GeV are difficult to get with a 50 GeV proton beam. A possible solution, which has not be considered in this work, could be to go towards an off axis beam for baselines lower than 600 km. The horizontal blue lines show the lowest values for λ obtained with the previous fixed horn shape search.

The achieved performance is not drastically improved by the general search though some gain appears for $L > 1000$ km. Blue markers highlight the configuration providing the best limit for each baseline. It turns out that the same configuration provides the best limit both for 630 and 665 km and the same happens for 950-1050 and 1570 km. Given the limited improvement, we decided to stick with the best candidates obtained with the fixed horn shape search. This choice is also motivated by the fact that choosing the configurations with the minimum λ has the disadvantage of being sensitive to statistical fluctuations.

4 Optimized fluxes

The ν_μ fluxes obtained with the optimized focusing setups according to the fixed shape search are shown in Fig. 7 at a reference distance of 100 km. Fluxes are publicly available on the internet [4]. The flux increase as the mean energy increases can be intuitively explained considering that high energy pions are easier to focus since they naturally tend to emerge from the target in the forward direction and the neutrinos they produce have a higher chance to be in the far detector solid angle also thanks to the effect of the Lorentz boost. Un-osciliated interaction rates are given in Tab. 5. It can be noted that considerable samples of τ events becomes collectable with the fluxes optimized for the longer baselines.

5 Conclusions

As it was shown in [4], using the fluxes optimized with the procedure described above, the “discovery potential”

Parameter	Interval	Parameter	Interval
L_{tun}	[200, 1000] m	r_{tun}	2 min
r_{tun}	[0, 8.2] m	Δ_{HR}	4300 m
z_{tun}	[-2.5, 1.5] m	i_H, i_R	[150, 300] kA

Table 3. Fixed horn shape search. Optimal values for Δ_{HR}, z_{tun}, L_{tun} and r_{tun}.

Table 4. Focusing system parameters not related to the horn-reflector shapes.

![Fig. 5. Correlation between the longitudinal position of the target with respect to the horn and $\langle E_{\nu_\mu} \rangle$.](image)

![Fig. 6. Correlation between the figure of merit λ and $\langle E_{\nu_\mu} \rangle$ (positive focusing).](image)
for θ_{13} turned out to be, at first order, almost independent of the baseline. Performances of high- and low-energy super-beams are comparable if we assume for both a 5% systematic error on the fluxes. Concerning the high-energy super beam, better results are obtained for intermediate baselines from 950 to 1570 km even though the difference is not marked. This merit factor, despite being obsolete in order of increasing baseline.

This result could be achieved by a systematic tuning of a few basic parameters of the focusing system: the horn-reflector distance, the target position and decay tunnel geometry.

An exhaustive discussion of the physics potential in terms of CP violation and mass hierarchy obtainable with the fluxes whose optimization is described in this work, has been recently developed in [10, 12, 13, 14, 15] and [20].

By adopting a suitable re-definition of the figure of merit, the approach followed in this study could in the future be specialised to the need for optimal sensitivity on the CP violating effects under the light of the recent measurement of θ_{13}.

6 Acknowledgements

I would like to thank M. Zito for scientific advice and reading of this manuscript and A. Meraviglia for kindly providing the original GLoBES description of the LAr detector. I acknowledge the support from the European Union under the European Commission Framework Programme 07 Design Study EUROnu.

References

1. See http://www.laguna-science.eu/
2. T. Hasegawa, hep-ex/1001.0452.
3. A. De Bellefon et al., hep-ex/0607026
4. A. Rubbia, hep-ph/0402110
5. A. Rubbia, hep-ph/1003.1921v1.
6. A. Longhin. PoS, ICHEP2010:325, 2010.
7. M. Mezzetto J. Phys. G29 (2003), 1781-1784, hep-ex/0302005
8. J.E. Campagne et al. Eur. Phys. J. C 45 (2006).
9. J.E. Campagne et al. (2006), hep-ph/0601172.
10. A G29 (2003), 1781-1784, hep-ph/0601172
11. A. Longhin, Eur. Phys. J. C 71:1745, 2011. [arXiv:1106.1096v1 [physics.acc-ph].
12. PS2 working group. https://paf-ps2.web.cern.ch
13. M. Baylac et al., CERN-2006-006.
14. http://irfu.cea.fr/en/Phocea/Pisp/index.php?id=72
15. P. Huber et al. Comput. Phys. Commun. 167, 195 (2005), hep-ph/0407333
16. P. Coloma et al. hep-ph/1110.1402.
17. S. K. Agarwalla et al. hep-ph/1109.6526.
18. P. Coloma et al. hep-ph/1203.5651.
19. S. K. Agarwalla et al. hep-ph/1204.4217.
20. http://agenda.infn.it/contributionDisplay.py?contribid=23&sessionId=5&confId=4722

Table 5.

(km)	ν_μ (p.o.t. $\times 10^5$)	ν_τ (p.o.t. $\times 10^5$)	ν_e (p.o.t. $\times 10^5$)	ν_μ (p.o.t. $\times 10^5$)	ν_τ (p.o.t. $\times 10^5$)	ν_e (p.o.t. $\times 10^5$)	
130	41316	174	0.42	5915	15	0.42	
630	36844	486	28	1.5	13652	157	11
665	38815	516	28	1.5	14287	158	11
950	37844	349	40	1.0	14700	107	15
1050	51787	314	148	0.64	21728	88	65
1570	26785	174	170	0.67	11184	47	73
2300	17257	110	377	0.67	7577	32	172

Fig. 7. Neutrino fluxes at 100 km for the systems optimized with the fixed horn shape search. The energies of the oscillation maximum for each baseline (Fig. 1) are indicated with vertical lines having the same color as the corresponding spectrum. The integral fluxes in units of $10^{22} \nu_\mu/100 \text{ m}^2/\text{year}$ are 0.38, 1.59, 1.81, 2.69, 3.56, 3.93 and 4.48 in order of increasing baseline.