Isotonic L_2-projection test for local monotonicity of a hazard

Piet Groeneboom and Geurt Jongbloed

Delft University of Technology

January 18, 2011

Abstract

We introduce a new test statistic for testing the null hypothesis that the sampling distribution has an increasing hazard rate on a specified interval $[0,a]$. It is based on a comparison of the empirical distribution function with an isotonic estimate, using the restriction that the hazard is increasing, and measures the excursions of the empirical distribution above the isotonic estimate, due to local non-monotonicity. It is proved in the companion paper Groeneboom and Jongbloed (2011a) that the test statistic is asymptotically normal if the hazard is strictly increasing on the interval $[0,a]$ and certain regularity conditions are satisfied. We discuss a bootstrap method for computing the critical values and compare the test, thus obtained, with other proposals in a simulation study.

1 Introduction

In reliability theory and medical statistics, one is often interested in the lifetime distribution of a certain subject, e.g. the distribution of the time it takes before effect of a certain treatment can be noticed or the time it takes before a system device breaks down. In such situations, it is more natural to model the distribution in terms of its hazard rate (or failure rate) than in terms of the distribution function or density function. Qualitative properties of the hazard rate can be most easily interpreted. These reveal whether or not the device is subject to aging (in case of an increasing failure rate) or not.

Already in the sixties of the preceding century, estimation of the behavior of the hazard rate based on a sample from the associated distribution, was studied intensively. The (nonparametric) maximum likelihood estimator (MLE) for the hazard rate is described in, e.g., Barlow et al. (1972) and has properties somewhat comparable with the Grenander estimator (MLE) of a decreasing density. Also, procedures were developed to test the null hypothesis of a constant hazard rate (corresponding to an exponential distribution) against the alternative of an increasing hazard (presence of aging). One popular test statistic in this context is the Total Time on Test statistic of Proschan and Pyke (1967). This is a scale invariant statistic, allowing for efficient computation of Monte Carlo-based critical values.

Only rather recently, the problem of testing the nonparametric null hypothesis that a hazard rate is (locally) monotone against the alternative that it is not, has gained attention. In Gijbels and Heckman (2004) local versions of the test statistic of Proschan and Pyke (1967) are studied. In Durot (2008), the supremum distance between two estimators of the cumulative hazard rate

MSC 2000 subject classifications. Primary: 62G10, secondary 62N05.

Key words and phrases. failure rate, nonparametric testing, bootstrap, isotonic regression
is introduced as test statistic. In both papers, critical values are obtained using the exponential
distribution, which lies ‘on the boundary of the null hypothesis’. As will be seen in this paper,
this choice of the exponential distribution leads to conservative tests when the true underlying
distribution has a strictly convex cumulative hazard.

Hall and van Keilegom (2005) developed a test which “projects” the hazard on the space of
nondecreasing hazards by performing a global smoothing of the hazard until it becomes nondecreas-
ing, using kernel estimators. Their criterion for non-convexity of the (non-smoothed) cumulative
hazard is compared with the same criterion for a bootstrap sample from the projected (smooth)
hazard (this method has been called a “biased bootstrap”). The idea is that the criterion will be
close to zero for bootstrap samples generated from the projected hazard, while the criterion will not
be close to zero for the original sample, if the underlying hazard is not monotone. They compare
the criterion in the original sample with, say, the 90th or 95th percentile of the distribution of the
criterion in the bootstrap samples, and reject the hypothesis of monotonicity if the criterion in the
original sample exceeds the chosen percentile of the distribution of the criterion in the bootstrap
samples. There are some difficulties with this interesting idea, having to do with non-conservative
behavior of this procedure. We will discuss this below.

In this paper we propose another approach, where the type of projection is different from the
projection used by Hall and van Keilegom (2005). As in Durot (2008), our test statistic is a
distance between two estimators for the cumulative hazard. One under the local monotonicity
hypothesis and another nonparametric estimator that does not require this monotonicity. Our
distance measure is of integral type rather than the supremum distance considered in Durot (2008).

In order to obtain critical values for this test statistic, we propose a bootstrap procedure. Our
approach will be described in section 2. As in the method used by Hall and van Keilegom
(2005) and in a certain sense also the method used by Durot (2008), we will use a bootstrap
method for obtaining critical values. In generating the bootstrap samples, we use certain results in
Groeneboom and Jongbloed (2011b), and in the justification of this bootstrap method, we will
heavily rely on results in Groeneboom and Jongbloed (2011a). Section 3 contains a simulation
study of the various testing procedures, showing that the proposed test has a rather good power,
without exhibiting the extreme anti-conservative behavior, exhibited by the method, proposed in
Hall and van Keilegom (2005). The appendix provides the proofs of certain results in section 2.

2 Setting and testing procedure

Consider a sequence of i.i.d. random variables X_1, X_2, \ldots with density function f_0 on $[0, \infty)$. Denote
the distribution function, hazard function and cumulative hazard function associated with f_0 by
F_0, h_0 and H_0 respectively and recall the relations between these functions:

$$h_0(x) = \frac{f_0(x)}{1 - F_0(x)}, \quad H_0(x) = -\log(1 - F_0(x)), \quad F_0(x) = 1 - \exp(-H_0(x)).$$ \hspace{1cm} (2.1)

In this paper, we consider the problem of testing local monotonicity (we restrict ourselves to the
increasing case; the case of locally decreasing hazard can be considered analogously) of h_0. More
precisely, given an interval $[a, b] \subset [0, \infty)$, we wish to test

$$H_{[a,b]} : \forall x, y \in [a, b] \text{ with } x \leq y, \ h_0(x) \leq h_0(y)$$

against the alternative that this monotonicity does not hold. Our test statistic is defined as a
distance between two estimators for the cumulative hazard function: one under $H_{[a,b]}$ and one that
is not.
An estimator for H_0 without assuming $H_{[a,b]}$, is just the empirical cumulative hazard function obtained by plugging in the empirical distribution function of the sample X_1, \ldots, X_n, F_n, in (2.1):

$$H_n(x) = \begin{cases} -\log \{1 - F_n(x)\}, & x \in [0, X(n)], \\ \infty, & x \geq X(n). \end{cases} \quad (2.2)$$

Our estimator of h_0 under $H_{[a,b]}$ is the least squares estimator, minimizing the function

$$h \mapsto \frac{1}{2} \int_{[a,b]} h(x)^2 \, dx - \int_{[a,b]} h(x) \, dH_n(x) \quad (2.3)$$

over all nondecreasing functions h on $[a, b]$.

The solution of the problem of minimizing (2.3) under the null hypothesis can be constructed explicitly. On $[a, b]$ it is given by the right-continuous derivative of the convex minorant (GCM) of the empirical cumulative hazard function given by (2.2), restricted to $[a, b]$. The estimator \hat{H}_n of H_0 under the null hypothesis $H_{[a,b]}$ is therefore defined by

$$\hat{H}_n(x) = \begin{cases} H_n(x), & x \in [0, a) \cup [b, \infty) \\ \text{GCM}(y \mapsto H_n(y) : a \leq y \leq b)(x), & x \in [a, b]. \end{cases} \quad (2.4)$$

Note that this estimator is continuous at a and, if $b \neq X_i$ for all i, at b.

Our test statistic for testing the null hypothesis of monotonicity of the hazard on the interval $[a,b] \subset (0, \infty)$ is defined by

$$T_n = \int_{[a,b]} \left\{ F_n(x-) - \hat{F}_n(x) \right\} \, dF_n(x). \quad (2.5)$$

where \hat{F}_n is the distribution function corresponding to \hat{H}_n:

$$\hat{F}_n(x) = 1 - e^{-\hat{H}_n(x)}. \quad (2.6)$$

Note that $T_n \geq 0$, since \hat{H}_n is the greatest convex minorant (hence a minorant) of H_n on $[a, b]$.

Also note that under the alternative hypothesis, T_n will tend to be higher than under the null hypothesis.

To illustrate the behavior of the estimator we introduce the family of hazards $\{h^d : d \in [-1, 1]\}$, also considered in Hall and Van Keilegom (2005):

$$h^d(x) = \frac{1}{2} + \frac{5}{2} \left\{ \left(x - \frac{3}{4} \right)^3 + \left(\frac{3}{4} \right)^3 \right\} + dx^2, \ x \geq 0. \quad (2.7)$$

The corresponding distribution functions are given by:

$$F^d(x) = 1 - \exp \left\{ -\frac{1}{2} x - \frac{5}{2} \left\{ \frac{1}{4} \left(x - \frac{3}{4} \right)^4 + \left(\frac{3}{4} \right)^4 \right\} - \frac{1}{3} dx^3 + \frac{5}{8} \left(\frac{3}{4} \right)^4 \right\}, \ x \geq 0. \quad (2.7)$$

If $d > 0$ we get a strictly increasing hazard; if $d < 0$, the hazard is decreasing on the interval

$$\left(\frac{3}{4} - \frac{2}{15} d - \frac{2}{15} \sqrt{d^2 - \frac{45}{4} d}, \frac{3}{4} - \frac{2}{15} d + \frac{2}{15} \sqrt{d^2 - \frac{45}{4} d} \right)$$

and if $d = 0$ the hazard has a stationary point at $x = 3/4$. See Figure 1 for some hazards in this family.
Figure 1: The hazard functions $h^{(d)}$ for $d = -1, -0.75, -0.50, -0.25$ (dashed), $d = 0$ (full curve) and $d = 0.25, 0.50, 0.75, 1$ (dotted) corresponding to distribution functions (2.7). The stationary points are shown by the red dots.

Remark 2.1 Note that we need the constant $\frac{5}{8} \left(\frac{3}{4}\right)^4$ in the exponent to make the distribution function zero at the left endpoint 0, but that this constant is missing in the formula given below (4.1) on p. 1121 in HALL AND VAN KEILEGOM (2005).

The rather different nature of our isotonic projection of the hazard rate and the projection of HALL AND VAN KEILEGOM (2005) is illustrated in the left panel of Figure 2, where $d = -1$. Their hazard estimate, given by the blue curve in Figure 2 extends (with positive values) to the left of zero and has a slower increase to the right of 2.0 than the actual hazard which is given by the black curve (which is clearly not monotone). The isotonic projection, on the other hand, only lives on $[0, \infty)$, and follows the steep increase of the real hazard to the right of 2.0, whereas it only locally corrects for the non-monotonicity. The interval on which the hazard was estimated (and made monotone) was $[0, F^{-1}(0.95)) \approx [0, 2.31165)$, where $F = F^{(d)}$ in (2.7) with $d = -1$.

On the other hand, if we are at the other end of the family $\{F^{(d)} : d \in [-1, 1]\}$ at $d = 1$, and therefore “deep inside the null hypothesis region”, so to speak, the starting bandwidth for the calibration of the HALL AND VAN KEILEGOM (2005) method immediately gives an increasing hazard on the interval $[0, F^{-1}(0.95)) \approx [0, 1.39778)$, where $F = F^{(d)}$ with $d = 1$, and the projections of the two methods are less different, see the right panel in Figure 2.

In order to obtain critical values for statistic T_n, there are various possible approaches. The first is to use that its distribution under $H \in H_{[a,b]}$ is stochastically bounded by its distribution under the distribution function with the cumulative hazard function that is obtained by linear interpolation on the interval (a, b)

$$H_{a,b}(x) = \frac{H(b)(x - a) + H(a)(b - x)}{b - a}1_{[a,b]}(x) + H(x)1_{[0,a)\cup(b,\infty)}(x).$$
Figure 2: The real hazard function $h^{(d)}$ (black), the isotonic estimate $\hat{h}^{(d)}_n$ of the hazard (red), and the Hall and van Keilegom estimate (blue) of the hazard (after calibration), for a sample of size $n = 1000$ from the distribution function $F^{(d)}$. The left panel corresponds to $d = -1$, the right panel with $d = 1$.

Lemma 2.1 For each $H \in H_{[a,b]}$, \[P_H(T_n \geq t) \leq P_{H_{a,b}}(T_n \geq t) \] for all $t \geq 0$.

Remark 2.2 The proof of Lemma 2.1 (given in the appendix) reveals that the stochastic ordering result also holds if in the definition of $T_n \left(\overline{F}_n(x) - \hat{F}_n(x) \right)^p$ would be used for some $1 < p \leq \infty$ rather than for $p = 1$. Lemma 2.1 is related to the approximation in Durot (2008), section III. If $H(a)$ and $H(b)$ were known, the distribution of T_n under $H_{a,b}$ could be approximated efficiently using Monte Carlo simulation. In practice, however, $H(a)$ and $H(b)$ are unknown. In order to really use the approximation, estimates for H_0 at a and b are needed. In Durot (2008) this estimation, combined with the stochastic domination of Lemma 2.1, is called the bootstrap.

It is clear that if the function H_0 is strictly convex on $[a, b]$, the lower bound of Lemma 2.1 may be quite rough. Also, overestimation of the interval $[H_0(a), H_0(b)]$ will lead to a rough bound. In case of strict convexity of H_0 on $[a, b]$, the convex minorant of its empirical version will tend to wrap tightly around this version whereas in case the cumulative hazard is linear on $[a, b]$ (as in the exponential case), this difference will tend to be bigger. The following theorem, proved in Groeneboom and Jongbloed (2011a), describes the asymptotic behavior of T_n, if the underlying hazard is strictly increasing on $[a, b]$.

5
Theorem 2.1 Let h_0 be strictly increasing and positive on the interval $I = [a, b] \subset [0, \infty)$, with a bounded continuous derivative, staying away from zero on I. Moreover, let $\zeta(t)$ be the distance at t of the process

$$W(x) + x^2, \ x \in \mathbb{R},$$

to its greatest convex minorant, where W is two-sided Brownian motion, originating from zero. Then, for T_n as defined in (2.5),

$$n^{5/6} \{T_n - ET_n\} \xrightarrow{D} N \left(0, \sigma_{F_0}^2\right)$$

where $N \left(0, \sigma_{F_0}^2\right)$ is a normal distribution with mean zero and variance $\sigma_{F_0}^2$, and where

$$ET_n \sim n^{-2/3}E\zeta(0) \int_a^b \left(\frac{2h_0(t)f_0(t)}{h_0'(t)}\right)^{1/3} dF_0(t), \ n \to \infty,$$

and

$$\sigma_{F_0}^2 = 2 \int_0^\infty \text{covar}(\zeta(0), \zeta(s)) \text{ds} \int_a^b \left(\frac{2h_0(t)f_0(t)}{h_0'(t)}\right)^{4/3} dF_0(t).$$

If we want to test the hypothesis that the hazard is strictly increasing on $[a, b]$, we could try to estimate the parameters μ and σ of Theorem 2.1 and use the limiting normal distribution for the critical values. The difficulty with this approach is that it cannot be used if the derivative of h_0 is zero, as is the case, for example, if the underlying distribution is the exponential distribution. For the latter situation we have the following result, proved in Groeneboom and Jongbloed (2011a).

Theorem 2.2 Let U be given by

$$U = \int_0^a \left\{1 - F_0(x)\right\} \left\{W \left(\frac{F_0(x)}{1 - F_0(x)}\right) - C(x)\right\} dF_0(x),$$

where W is standard Brownian motion on $[0, \infty)$ and C is the greatest convex minorant of

$$x \mapsto W \left(\frac{F_0(x)}{1 - F_0(x)}\right), \ x \in [0, a].$$

Suppose that the underlying hazard h_0 is constant on $[0, a]$. Then:

$$n^{1/2}T_n \xrightarrow{D} U, \ n \to \infty.$$
distribution of these bootstrap values and its critical value at (for example) level 10% by the 90-th percentile of this generated set of bootstrap values. In fact, Hall and van Keilegom (2005) also use a bootstrap procedure of this type, but based on a totally different “projection” of the hazard estimate on the set of increasing hazards.

In the further description of the method, we take the left endpoint of the interval at the origin and denote the right endpoint by a, as in Groeneboom and Jongbloed (2011a). In order to prevent inconsistency of \hat{h}_n at the endpoints, we define a penalized version of \tilde{h}_n, $\hat{h}_n^{[p]}$, as the derivative of the penalized cusum diagram consisting of the points

\[(0, 0), \quad (X_{(i)}, \hat{H}_n(X_{(i)}) - 2n^{-2/3}) \quad \text{for} \quad X_{(i)} < a, \quad (a, \hat{H}_n(a)) \,. \tag{2.12} \]

The left derivative of the present cusum diagram minimizes the criterion

\[\frac{1}{2} \int_0^a h(x)^2 \, dx - \int_{[0,a]} h(x) \, d\hat{H}_n(x) - \alpha_n h(0) + \beta_n b(a), \tag{2.13} \]

where $\alpha_n = \beta_n = 2n^{-2/3}$, over all nondecreasing functions h on $[0,a]$. The reason for choosing a penalty of order $cn^{-2/3}$ is explained in Groeneboom and Jongbloed (2011b), where also a proof of the consistency of this estimator at the boundary points is given.

For $x \in [0,a]$, we estimate the hazard by kernel smoothing of $\hat{h}_n^{[p]}$. Let K be the triweight kernel

\[K(u) = \frac{35}{32} \{1 - u^2\}^3 1_{[-1,1]}(u), \quad u \in \mathbb{R}. \tag{2.14} \]

This is a mean zero probability density with second moment $1/9$. Then, define for bandwidth $b_n > 0$

\[\tilde{h}_n(x) = \int K_{b_n}(x - y) \, d\hat{H}_n^{[p]}(y) = \int K_{b_n}(x - y) \, \hat{h}_n^{[p]}(y) \, dy, \tag{2.15} \]

where $K_{b_n}(u) = K(u/b_n)/b_n$. Equation (2.15) can then be written as

\[\tilde{h}_n(x) = \int K_{b_n}(x - y) \int_0^y \hat{h}_n^{[p]}(u) \, du = \int \int_{u < y} K_{b_n}(x - y) \, dy \, \hat{h}_n^{[p]}(u) \]

\[= \int_{u=0}^{x+b_n} \int_{y=0}^{x+b_n} K_{b_n}(x - y) \, dy \, \hat{h}_n^{[p]}(u) = \int_{u=0}^{x+b_n} \int_{u=0}^{x+b_n} K \left(\frac{x - u}{b_n} \right) \, d\hat{h}_n^{[p]}(u), \]

where

\[K(u) = \int_{-\infty}^u K(w) \, dw = 1_{[-1,1]}(u) \int_{-1}^u K(w) \, dw + 1_{[1,\infty]}(u). \]

The corresponding estimate of the h'_0 and H_0 are then given by

\[\hat{h}_n'(x) = \int K_{b_n}(x - y) \, \hat{h}_n^{[p]}(y) \quad \text{and} \quad \hat{H}_n(x) = \int_0^x \hat{h}_n(u) \, du. \tag{2.16} \]

In justifying this method for testing that the hazard is strictly increasing on $[0,a]$, we use the following bootstrap version of Theorems 2.1, which will be proved in section 4.

Theorem 2.3 Let the conditions of Theorem 2.1 be satisfied, and let \tilde{H}_n be the estimate of the cumulative hazard function under the null hypothesis, defined by (2.16), and based on a sample X_1, \ldots, X_n from F_0, where we take a vanishing bandwidth b_n, satisfying $b_n \geq n^{-1/4}$. Let X_1^*, \ldots, X_n^* be a bootstrap sample generated by \tilde{H}_n and let \tilde{F}_n^* and \tilde{F}_n^* be the (bootstrap) empirical distribution
Figure 3: The estimate \hat{h}_n (blue) of the hazard $h^{(1)}$ (black) of the family $\{h^{(d)} : d \in [-1, 1]\}$ for a sample of size $n = 100$, together with the (penalized with $2n^{-2/3} \approx 0.093$) isotonic estimate \hat{h}_n (red) on the 95% percentile interval $[0, (F^{(1)})^{-1}(0.95)]$. Bandwidth $b_n = n^{-1/4} \approx 0.316$.

function and corresponding estimate \hat{F}_n^*, based on the greatest convex minorant of the function $x \mapsto -\log(1 - F_n(x-))$, respectively. Finally, let T_n^* be defined by

$$T_n^* = \int_{[0,a]} \left\{ F_n^*(x-)-\hat{F}_n^*(x) \right\} dF_n^*(x),$$

and let its (bootstrap) expectation be defined by

$$E^* T_n^* = \int_{[0,a]} E \left\{ F_n^*(x-)-\hat{F}_n^*(x) \mid \tilde{F}_n \right\} d\tilde{F}_n(x),$$

where $\tilde{F}_n(x) = 1 - \exp\{-\tilde{H}_n(x)\}$. Then we have, almost surely,

$$n^{5/6} \left\{ T_n^* - E^* T_n^* \mid X_1, \ldots, X_n \right\} \xrightarrow{D} N \left(0, \sigma_{F_0}^2 \right),$$

as $n \to \infty$, where $\sigma_{F_0}^2$ is given in Theorem 2.1.

3 A simulation study

In this section we compare the power behavior of the test based on our test statistic T_n, defined by (2.5), with other test statistics for the families that were also considered in Hall and van Keilegom (2005). The bootstrap resampling for T_n was done by taking $B = 2000$ samples from the estimate \hat{H}_n defined in (2.16) with bandwidth $b_n = n^{-1/4}$. For the estimator $h_n^{[p]}$ on which \hat{H}_n is based (see
(2.12)), the penalty was taken equal to $2n^{-2/3}$. The sample was generated by first generating a standard exponential sample E_1, \ldots, E_n, producing the bootstrap sample via

$$X^*_i = \hat{H}_n^{-1}(E_i), \quad 1 \leq i \leq n.$$

In this way, B values T^*_n were obtained. The critical value is taken to be the 90th percentile of these values of T^*_n.

Below we also make a comparison with a test, proposed in Durot (2008), referred to as Durot test in the sequel. This test is based on the supremum distance between the empirical cumulative hazard function and its greatest convex minorant:

$$T_n,\text{Durot} = \sup_{x \in [0, a]} \{\mathbb{H}_n(x) - \hat{H}_n(x)\}.$$

For determining a critical value, again $B = 2000$ random standard exponential samples were generated, and the value

$$T^*_n,\text{Durot} = \sup_{x \in [0, \mathbb{H}_n(a)')} \{\mathbb{H}^*_n(x) - \hat{H}^*_n(x)\}$$

was determined for each such “bootstrap” sample (taking the interval $[0, \mathbb{H}_n(a)]$ as interval of convexity). The critical value was then taken to be the 90th percentile of the so obtained values of T^*_n,Durot. Note that this procedure is equivalent to the procedure that first estimates the (constant) hazard rate on $[0, a]$ by $\mathbb{H}_n(a)/a$, then takes bootstrap samples from the exponential distribution with this hazard rate and finally determines the supremum distance between the two resulting estimators on the interval $[0, a]$.

In Table 1, four tests are compared: the test, based on T_n, the test proposed in Hall and van Keilegom (2005) (in the sequel referred to as HvK test), the Durot test and the integral statistic version of this statistic, where we replace the maximum distance statistic by T_n defined by (2.5) using Durot’s method of approximating the critical value. In this table the tests are compared on the fixed interval $[0, a] = [0, F^{-1}_0(0.95)]$ (instead of on the random interval $[0, F^{-1}_n(0.95)]$, as in Hall and van Keilegom (2005). In all cases we generated 2000 samples, and also $B = 2000$ bootstrap samples from each original sample.

The simulations for Hall and van Keilegom (2005) took rather long, since repeated density estimation is needed at each step in view of the needed calibration of the bandwidth to create a non-decreasing hazard in the original sample. Also, one has to compute an estimator of the distribution function, the density, and the derivative of the density to check whether one gets a nondecreasing hazard on the chosen interval at the critical bandwidth. The estimation of the density and its derivative was speeded up by using Fast Fourier Transform, and the distribtution function was computed by numerically integrating the density estimate.

It is seen from Table 1 that the test based on T_n is slightly more powerful for the alternatives $F^{(d)}$ for $d \in [-1, -0.5]$ than the HvK test. Table 2 shows that the HvK test is rather anti-conservative. This seems to suggest that the high power in the region $d \in [-0.5, 0]$ is at least partly due to the anti-conservative behavior of this test. The Durot test is very conservative for this interval, as is to be expected, since the estimated critical value is based on the exponential distribution. The test based on T_n, has a middle position: it is more conservative than the HvK test but less conservative than the Durot test. A graphical comparison of the power functions is given in the left panel of Figure 4.

Interestingly, the power of the Durot test increases considerably if we take a smaller interval $[0, F^{-1}_0(0.80)]$. In fact, the Durot test proposed is derived under the assumption that not all order statistics belong to the interval $[0, a]$. But this often happens if we take $[0, a] = [0, F^{-1}_0(0.95)]$, in particular for the “bootstrap samples”.

9
Another reason for the higher power of the Durot test in this situation is the fact that the isotonic projection of the hazard \(h(d) \), for \(d \in [-1, 0] \) is almost constant on the interval \([0, F_{0}^{-1}(0.8)]\), since we miss the steeply increasing part of the hazard from \(F_{0}^{-1}(0.8) \) to \(F_{0}^{-1}(0.95) \), so sampling from the isotonic projection is almost the same as sampling (locally) from an exponential distribution in this case.

The results are shown in Tables 3 and 4, and the right panel of Figure 4. If one chooses this interval, the HvK test is very powerful, but also very anti-conservative. For example, for \(d = 0 \) (which belongs to the null hypothesis region) one gets an estimated rejection probability of more than 25% instead of the desired 10%.

Table 1: Estimated powers for model (2.7), where \(\alpha = 0.1, n = 50, \) and \(d = -1, -0.9, \ldots, -0.1. \) The estimation interval is \([0, F_{0}^{-1}(0.95)]\).

\(d \)	\(-1\)	\(-0.9\)	\(-0.8\)	\(-0.7\)	\(-0.6\)	\(-0.5\)	\(-0.4\)	\(-0.3\)	\(-0.2\)	\(-0.1\)
\(T_n \)	0.869	0.699	0.547	0.408	0.323	0.234	0.195	0.152	0.125	0.112
HvK	0.833	0.636	0.467	0.361	0.297	0.234	0.200	0.183	0.152	0.151
Durot	0.042	0.029	0.024	0.021	0.016	0.018	0.015	0.018	0.015	0.017
Durot, \(T_n \)	0.258	0.162	0.111	0.057	0.040	0.028	0.022	0.015	0.009	0.004

Table 2: Estimated rejection probabilities for model (2.7) under the null hypothesis, where \(\alpha = 0.1, n = 50, \) and \(d = 0, 0.1, \ldots, 1. \) The estimation interval is \([0, F_{0}^{-1}(0.95)]\).

\(d \)	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
\(T_n \)	0.097	0.097	0.080	0.0896	0.086	0.072	0.076	0.077	0.081	0.075	0.071
HvK	0.146	0.138	0.132	0.130	0.124	0.122	0.110	0.103	0.102	0.099	0.110
Durot	0.021	0.019	0.018	0.013	0.015	0.018	0.021	0.024	0.015	0.018	0.021
Durot, \(T_n \)	0.003	0.003	0.004	0.001	0.002	0.003	0.002	0.001	0.001	0.001	0.000

Table 3: Estimated powers for model (2.7), where \(\alpha = 0.1, n = 50, \) and \(d = -1, -0.9, \ldots, -0.1. \) The estimation interval is \([0, F_{0}^{-1}(0.8)]\).

\(d \)	\(-1\)	\(-0.9\)	\(-0.8\)	\(-0.7\)	\(-0.6\)	\(-0.5\)	\(-0.4\)	\(-0.3\)	\(-0.2\)	\(-0.1\)
\(T_n \)	0.880	0.726	0.569	0.433	0.332	0.246	0.204	0.163	0.140	0.127
HvK	0.965	0.864	0.766	0.686	0.544	0.483	0.434	0.326	0.299	0.279
Durot	0.645	0.524	0.399	0.303	0.231	0.168	0.127	0.097	0.080	0.075
Durot, \(T_n \)	0.742	0.569	0.395	0.253	0.181	0.121	0.067	0.063	0.038	0.030

It is also of interest to compare the powers of the procedure, based on bootstrapping from a penalized and smoothed version of the hazard, with the powers obtained by just bootstrapping from the isotonic piecewise constant hazard estimate without any smoothing or penalizing. This is done in Figure 5, where it is seen that the difference is not very large for this family (and this
Figure 4: The estimated power curves for the family \(\{ F^{(d)} : d \in [-1, 1] \} \), the isotonic test statistic \(T_n \), defined by (2.5) (red), for the HvK test (blue), the Durot test (green), and the integral statistic version of this method (black). The sample size \(n = 50 \) and the estimation interval is \([0, F_0^{-1}(0.95)]\) in the left panel, \([0, F_0^{-1}(0.8)]\) in the right panel.

Table 4: Estimated rejection probabilities for model (2.7) under the null hypothesis, where \(\alpha = 0.1 \), \(n = 50 \), and \(d = 0, 0.1, \ldots, 1 \). The estimation interval is \([0, F_0^{-1}(0.8)]\).

\(d \)	\(0 \)	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
\(T_n \)	0.101	0.103	0.101	0.102	0.096	0.094	0.087	0.091	0.085	0.073	0.074
HvK	0.256	0.229	0.192	0.188	0.170	0.139	0.145	0.132	0.121	0.131	0.112
Durot	0.060	0.047	0.043	0.037	0.027	0.029	0.037	0.034	0.028	0.026	0.025
Durot, \(T_n \)	0.024	0.019	0.016	0.009	0.013	0.009	0.005	0.006	0.004	0.004	0.004

The general trend is that bootstrapping from the isotonic estimate itself gives more conservative critical values.

In Hall and van Keilegom (2005) also the model, where the hazard function is of the form

\[
h_{\beta, \gamma, \mu, \sigma}(x) = x^\gamma \exp\left\{ \beta \left(2\pi\sigma^2\right)^{-1/2} \exp\left\{ -(x - \mu)^2/(2\sigma^2) \right\} \right\},
\]

is studied. Typical members of the family are shown in Figure 6. For this family \(T_n \) also seems to provide the most “all-round” test, since it is more powerful than the HvK test for the global alternatives, where \(\gamma < 0 \) (note that the hazard is globally decreasing for these alternatives) and more powerful for detecting the local disturbances where \(\gamma > 0 \) than the Gijbels and Heckman (2004) and Proschan and Pyke (1967) tests. Note that the HvK test gives rejection probabilities which are all above the 10% level in the null hypothesis region. For the exponential distribution (\(\beta = \gamma = 0 \)) the rejection probability is even close to 50%! The test, based on \(T_n \) also gives a
Figure 5: The estimated power curves for the family \(\{F^{(d)} : d \in [-1,1]\} \) and the isotonic test statistic \(T_n \), defined by (2.5), for critical values estimated by bootstrapping from a penalized and smoothed isotonic estimate (red) and for critical values estimated by bootstrapping from the isotonic estimate itself (blue). The sample size \(n = 50 \) and the estimation interval is \([0, F_0^{-1}(0.95)]\) in the left panel, \([0, F_0^{-1}(0.8)]\) in the right panel.

Rejection probability which is too high here. This is probably caused by boundary effects and could possibly be remedied by adding heavier penalties in the cusum diagram at the beginning and end of the interval which is considered. The test was computed for the interval \([0, F_0^{-1}(0.95)]\).

The test based on \(T_n \) also has higher power for this family than the Durot test, except when \(\gamma = 0 \). When \(\gamma = 0 \) (and \(\beta = 0.3 \)) the hazard is constant except for a local bump (see Figure 6), so the isotonic projection is the constant hazard. Since the critical values in the Durot test are specifically based on a (locally) constant hazard, its behavior in this situation is not surprising, because resampling from the exponential distribution is in this case almost the same as resampling from the isotonic projection of the real hazard.

4 Appendix

Proof of Lemma 2.1: Let \(E_1, E_2, \ldots, E_n \) be an i.i.d. sequence of standard exponential random variables. Define

\[
X_i = H^{-1}(E_i), \quad Y_i = H_{a,b}^{-1}(E_i) \quad \text{for } 1 \leq i \leq n.
\]

Then the \(X_i \)'s and the \(Y_i \)'s are samples from the distributions with cumulative hazard \(H \) and \(H_{a,b} \) respectively. Denote by \(U_n \) the test statistic (2.5) based on the \(Y_i \)'s and by \(V_n \) the statistic based on the \(X_i \)'s. Furthermore, define the function \(\phi : [a,b] \to [a,b] \) by \(\phi(x) = H_{a,b}^{-1}(H(x)) \). Note that \(\phi \) is convex and increasing on \([a,b]\) and that \(Y_i = \phi(X_i) \leq X_i \) for all \(i \). Moreover, using obvious notation,

\[
\mathbb{P}_n^X(x) = \frac{1}{n} \# \{ i \mid X_i \leq x \} = \frac{1}{n} \# \{ i \mid \phi(X_i) \leq \phi(x) \} = \frac{1}{n} \# \{ i \mid Y_i \leq \phi(x) \} = \mathbb{P}_n^Y(\phi(x)).
\]
Figure 6: The hazard function $h_{\beta, \gamma, \mu, \sigma}$. The solid line in the left panel corresponds to $\beta = 0.3$, $\gamma = 0$, $\mu = 1$ and $\sigma = 0.2$; the dashed line with $\beta = 0.3$, $\gamma = -0.5$, $\mu = 1$ and $\sigma = 0.1$. In the right panel the solid line corresponds to $\beta = 0.3$, $\gamma = 0.5$, $\mu = 1$ and $\sigma = 0.1$; the dashed line with $h_{\beta, \gamma, \mu, \sigma}$, for $\beta = 0.3$, $\gamma = 0.5$, $\mu = 1$ and $\sigma = 0.2$.

Table 5: Estimated rejection probabilities for model (3.17), for $\alpha = 0.1$ and $n = 50$. The numbers in italics are rejection probabilities under the null hypothesis. The values for the HvK, PP and GH tests were taken from Table 1, p. 1124, in Hall and van Keilegom (2005).

Parameter	Test	γ	-0.5	-0.25	0	0.5	1
$\beta = 0$	T_n	1.000	0.792	0.213	0.050	0.076	
	HvK	0.844	0.525	0.437	0.189	0.121	
	Durot	0.704	0.307	0.096	0.031	0.028	
	PP	1.000	0.800	0.100	0.000	0.000	
	GH	0.983	0.416	0.100	0.034	0.027	
$\sigma = 0.1$	T_n	0.985	0.549	0.229	0.497	0.585	
$\mu = 1$	HvK	0.675	0.753	0.772	0.656	0.508	
	Durot	0.501	0.417	0.320	0.182	0.107	
	PP	0.997	0.458	0.019	0.000	0.000	
	GH	0.962	0.291	0.178	0.176	0.154	
$\beta = 0.3$	T_n	0.991	0.605	0.172	0.214	0.216	
$\sigma = 0.2$	HvK	0.715	0.714	0.663	0.443	0.277	
$\mu = 1$	Durot	0.545	0.346	0.218	0.090	0.045	
	PP	0.999	0.588	0.053	0.000	0.000	
	GH	0.968	0.301	0.114	0.065	0.054	
Consequently, also $H_n^X(x) = H_n^Y(\phi(x))$, where these functions refer to the empirical cumulative hazards based on the sample of X_i’s and Y_i’s respectively. Now define $\bar{H}_n(x) = H_n^Y(\phi(x))$, where the latter denotes the greatest convex minorant of the empirical hazard function based on the Y_i’s, evaluated at $\phi(x)$. Then H_n is a minorant of H_n^X, i.e.,

$$H_n(x) = \bar{H}_n^Y(\phi(x)) \leq H_n^Y(\phi(x)) = H_n^X(x).$$

Moreover, it is also convex. Indeed, using monotonicity and convexity of \bar{H}_n^Y and convexity of ϕ we have for $\alpha \in (0, 1)$ and $x, y \in [a, b]$

$$\bar{H}_n(\alpha x + (1 - \alpha)y) = \bar{H}_n^Y(\phi(\alpha x + (1 - \alpha)y)) \leq \bar{H}_n^Y(\alpha \phi(x) + (1 - \alpha)\phi(y))$$

$$\leq \alpha \bar{H}_n^Y(\phi(x)) + (1 - \alpha)\bar{H}_n^Y(\phi(y)) = \alpha \bar{H}_n(x) + (1 - \alpha)\bar{H}_n(y).$$

Hence, the convex minorant \bar{H}_n of H_n^X is smaller than or equal to the greatest convex minorant \bar{H}_n^X of H_n^X.

$$\bar{H}_n(x) \leq \bar{H}_n^X(x) \leq H_n^X(x) \Rightarrow \bar{F}_n^X(x) \leq \bar{F}_n^X(x) \leq F_n^X(x) - \bar{F}_n(x),$$

where we use the obvious notation relating cumulative hazards to distribution functions. This implies that

$$U_n : = \int_{[a, b]} (\bar{F}_n^X(x) - \bar{F}_n^X(x)) d\bar{F}_n^X(x) = \int_{[a, b]} (\bar{F}_n^X(\phi(x)) - \bar{F}_n^X(\phi(x))) d\bar{F}_n^X(\phi(x))$$

$$= \int_{[a, b]} (\bar{F}_n^X(x) - F_n^X(x)) d\bar{F}_n^X(x) \geq \int_{[a, b]} (\bar{F}_n^X(x) - \bar{F}_n^X(x)) d\bar{F}_n^X(x) = V_n.$$

Noting that $P_H(T_n \geq t) = P(V_n \geq t)$ and $P_{H_{a,b}}(T_n \geq t) = P(U_n \geq t)$, the result follows.

Proof of Theorem 2.3. The result follows from Theorem 2.1, if we can show that the estimate \bar{H}_n, which generates the bootstrap samples, has the property that the corresponding estimates \tilde{f}_n, \tilde{h}_n and \tilde{h}_n' of f_0, h_0 and h_0', respectively, will be consistent (in an almost sure sense), since in this case the integrals

$$\int_a^b \left(\frac{2\bar{h}_n(t) \tilde{f}_n(t)}{\bar{h}_n'(t)} \right)^{1/3} \tilde{f}_n(t) dt,$$

and

$$\int_a^b \left(\frac{2\bar{h}_n(t) \tilde{f}_n(t)}{\bar{h}_n'(t)} \right)^{4/3} \tilde{f}_n(t) dt$$

will converge (almost surely) to the integrals defining (2.9) and (2.10). Moreover, the consistency will ensure that the derivative \tilde{h}_n' will stay away from zero for large n, implying that the distribution, generating the bootstrap samples will satisfy the conditions of Theorem 2.1 for large n, implying that the asymptotic normality result also holds for the test statistics, computed for the bootstrap samples (with parameters μ^*_n and σ^*_n, derived from (4.18) and (4.19)).

But the uniform consistency of the estimates \bar{h}_n and \tilde{f}_n on $[a, b]$ is proved in [Groeneboom and Jongbloed (2011b)] (here we also use the penalization of \bar{h}_n), and the consistency of \tilde{h}_n' on the interior of $[a, b]$ is ensured by the choice of the bandwidth $cn^{-1/4}$. Since this choice of bandwidth also ensures that the right limit of \tilde{h}_n' at a and the left limit of \tilde{h}_n' at b will be positive for all large n, we indeed have:

$$\int_a^b \left(\frac{2\bar{h}_n(t) \tilde{f}_n(t)}{\bar{h}_n'(t)} \right)^{1/3} \tilde{f}_n(t) dt \xrightarrow{a.s.} \int_a^b f_0(t) \left(\frac{2h_0(t) f_0(t)}{h_0'(t)} \right)^{1/3} dF_0(t)$$

14
and
\[
\int_a^b \left(\frac{2\tilde{h}_n(t)f_n(t)}{h'_n(t)} \right)^{4/3} \tilde{f}_n(t) \, dt \xrightarrow{a.s.} \int_a^b f_0(t)^2 \left(\frac{2h_0(t)f_0(t)}{h'_0(t)} \right)^{4/3} \, dF_0(t),
\]
and the result now follows. \qed

Remark 4.1 In order to get a good estimate of the critical value, one wants to choose a small bandwidth in estimating the hazard function for the bootstrap samples, in order to minimize the bias. However, since one also wants to estimate the derivative \(h'_0 \) consistently on the interval \([a, b] \), the bandwidth cannot be too small. As an example, the choice \(b_n = n^{-1/3} \) is too small for this purpose. This motivated the choice of the bandwidth of order \(n^{-1/4} \), but also other choices are possible. Silverman (1978) gives the necessary and sufficient condition:

\[
\frac{nb_n^2}{\log(1/b_n)} \to \infty,
\]

for uniform consistency of a kernel estimate of the density in ordinary density estimation (see his Theorem C, p. 182), where \(b_n \) again denotes the bandwidth.

Acknowledgement The first author wants to thank David Steinsaltz for introducing him to the topic of this paper.

References

Barlow, R.E., Bartholomew, D.J., Bremner, J.M. and Brunk, H.D. (1972). *Statistical Inference under Order Restrictions*. John Wiley & Sons. New York.

Durot, C. (2008). *Testing Convexity or Concavity of a Cumulated Hazard Rate*. IEEE Transactions on Reliability, 57, 2008.

Gijbels, I. and Heckman, N. (2004). Nonparametric estimation of hazard rate under the constraint of monotonicity. J. Nonparametric Statistics, 16, 463-478.

Groeneboom, P. and Jongbloed, G. (2011a) Testing monotonicity of a hazard: asymptotic distribution theory. Submitted.

Groeneboom, P. and Jongbloed, G. (2011b) Smooth and non-smooth estimates of a monotone hazard. To appear in the volume in the IMS Lecture Notes Monograph Series in honor of the 65th birthday of Jon Wellner.

Hall, P. and van Keilegom, I. (2005). Testing for Monotone Increasing Hazard Rate. *Annals of Statistics*, 33, 1109-1137.

Proschan, F. and Pyke, R. (1967). Tests for monotone failure rate. *Proc. Fifth Berkeley Symp. Math. Statist. and Probab.*, 3, 293-312.

Silverman, M. (1978). Weak and strong uniform consistency of the kernel estimate of a density and its derivatives. *Annals of Statistics*, 6, 177-184.