IMMUNOBIOLOGY AND IMMUNE BIOMARKERS IN T1D

It is generally accepted that type 1 diabetes (T1D) develops as a result of breakdown in immunological tolerance induction mechanisms. The contribution of various tolerance mechanisms has been clearly delineated with the aid of animal models of T1D. It is postulated that T1D and other autoimmune diseases are likely caused by specific breaches in a network of immunological tolerance mechanisms (Mathis and Benoist, 2010). However, a general defect at a system level has also been implicated by clinical and experimental evidence (Gallegos and Bevan, 2004; King et al., 2004; Schurts et al., 2010). Indeed, studies with animal models suggested that autoimmune diabetes could be caused by either specific defects in immune dysregulation (for review, see Lehuen et al., 2010), or a general immune insufficiency (lymphopenia, King et al., 2004). However, it is difficult to pinpoint the breakdown of immunological tolerance in human patients. In common cases of human T1D, the status of the immune system remains a vaguely delineated framework that awaits characterization at molecular and cellular levels.

In the mean time, studies of biomarkers that are associated with T1D are expected to provide important tools for clinical management of the disease. Biomarkers can be derived from a broad spectrum of factors (Puri and She, 2008), for example, T1D-associated genetic loci, antibodies against endocrine pancreatic tissues and products, potentially pathogenic or protective cytokines, and expression profiles of immunological or metabolic genes. The best examples are perhaps the predicative values of anti-insulin and anti-islet-cell antibodies for T1D development (Eisenbarth et al., 1998). Another well-recognized example is the measurement of hemoglobin A1c (HbA1c), which is commonly used for clinical diabetes management. Since immunological processes are believed to play critical roles in all stages of T1D development, immune gene expression profiles can potentially be used as biomarkers for staging T1D development as well as gauging the impact of the disease.

Microarray gene expression profiles of peripheral blood provided new insights into pathogenesis of T1D (Reynier et al., 2010). Such studies could reveal differences in immune responsiveness between patients with T1D and healthy controls, and...
may identify changes in gene expression that associate with progression of T1D. Studies of the peripheral immune system of new-onset T1D patients have shown significantly higher levels of IL-1, IFN-γ, and TNF-α as compared to normal controls (Hussain et al., 1996; Kallmann et al., 1997). Patients with childhood-onset T1D show abnormal monocyte gene expression levels with an altered gene expression network, implicating monocyte abnormalities in susceptibility to diabetes (Beyan et al., 2010). Two distinct gene expression profiles have been reported in monocytes from peripheral blood: a proinflammatory profile mainly associated to adult-onset and a chemotaxis, adhesion, and metabolism profile mainly associated to juvenile-onset diabetes (Padmos et al., 2008). Recently, a study showed that healthy controls (Hussain et al., 1996; Kallmann et al., 1997). Patients with first-degree relatives of patients with T1D exhibited significant differences in expression pattern of genes involved in the regulation of innate immune responses such as TLR signaling and CXCR3 signaling in eosinophils, costimulation, and cytokine responses mediated by CD137, CD40, and CD28 signaling and IL-1 proinflammatory pathway, as compared to healthy controls (Stephova et al., 2011). One of the major subsets in the adaptive immune system, B lymphocytes, have been implicated to play a role in T1D development and disease progression (Serceze et al., 1998; Silveira and Grey, 2006), but the actual role that B cells play remains to be elucidated (Serceze et al., 1998; Wong et al., 2004). Several studies from animal models of autoimmune disease have shown that B cells can serve as antigen-presenting cells and prime B cell-specific T cells (Falchione et al., 1996; Servette et al., 1996; Rosazza et al., 2007). Data from a recent clinical trial demonstrated that treatment of new-onset T1D patients with anti-CD20 (Rituxan) preserved residual insulin secretion for at least 1 year (O’Neill et al., 2009; Pescovitz et al., 2009). B cells may also contribute to immune responses through the secretion of effector cytokines (Harris et al., 2005a,b; Duddy et al., 2007). Gene expression levels of two key B cell markers, activation-induced cytidine deaminase and immunoglobulin G gamma chain, were found significantly lower in long-term T1D patients as compared to healthy controls and T1D groups in mRNA levels for “baseline” immune gene such as IL-1α, IL-1β, and TNF-α as compared to normal controls (Han et al., 2011). Unexpectedly, we found a significant difference between immune-related genes using commercially tested primer and probe sets (Han et al., 2011, 2012). In this initial stage of studies, whole blood samples from at-risk, new-onset, and long-term T1D patients, as well as healthy controls were preserved for analyses after collection, without further processing or fractioning, to avoid any potential loss and changes caused by processing. It was found that IFN-γ, IL-4, and IL-10 mRNA levels were significantly higher in new-onset as compared to at-risk and long-term T1D patients (Han et al., 2011). The gene expression levels of most cytokines and effector molecules were suppressed in long-term T1D patients as compared to healthy controls (Han et al., 2011). Surprisingly, CTLA4 expression levels per se were not changed in the at-risk or new-onset stages, but reduced in long-term diabetic patients (Han et al., 2012). Unexpectedly, we found a significant difference between healthy controls and T1D groups in mRNA levels for “baseline” immune gene such as CD40 (representing T cells), CD80 (representing B cells), and CD11b (representing myeloid cells). When CTLA4 expression was examined in reference to C3G expression,
as a ratio of CTLA4/CD3G, we detected a decreased ratio in the sample from at-risk and new-onset patients but an increased ratio in samples from long-term T1D patients. The distinct "ratio profiles" for various immune regulatory genes (Han et al., 2012) prompted us to further examine the relationship of immune gene expression in different stages of T1D.

"RELATIONSHIP PROFILE" OF INNATE AND ADAPTIVE IMMUNE GENE EXPRESSION

It is thought that "cross-talk" between different subsets of immune cells is crucial for immunological tolerance (Lehuen et al., 2010; Suzuki et al., 2010), but it remains a challenge to study immune cell interaction in human patients. The gene expression values were obtained for T lymphocyte genes (CD3G and CTLA4), B lymphocyte genes (CD19 and CD20), and myeloid cell-related genes (CD11b, TLR9, and ARG1), as well as a subset of members of the S100 family that has been implicated in immune regulation (Han et al., 2012). We probed the relationship of these values, by a computational approach, to gain a clue to the systemic and regulatory relationships among T-, B-, and myeloid cells. Whereas the well-established immunological relationships between CD3G and CTLA4, as well as CD19 and CD20, should validate the experimental and computational methods of gene expression relationship and network analyses, the inclusion of the S100 family members in the expression analyses (Han et al., 2012) attests the approaches' utility to explore novel relationships between a gene with a well-defined immunological function and another gene with a yet-to-be-characterized role in immunity and tolerance.

Gene expression networks were analyzed by calculating Pearson’s correlation coefficient among the expression values of each pair of genes, measured in a previously reported study (Han et al., 2012). Correlation between any two genes with an absolute coefficient value greater than 0.8 was presented in gene expression networks (Figure 1). A robust correlation between four pairs of genes was expected in the healthy samples, based on the established function of these genes: (1) CTLA4 and CD3G, (2) CD19 and CD20, (3) CD11b and TLR9, and (4) S100A8 and S100A9. The anticipated relationships were designed to be a "positive" control for the computational method. Indeed, strong correlations of expression between all four pairs of genes were validated in the healthy control samples (Figure 1A). The correlation between the T cell pair and the B cell pair appeared to be relatively weak (<0.8) in the healthy group (Figure 1A). The sample size in the at-risk group (n = 19; Han et al., 2012) may be too small to estimate correlation coefficients reliably. Therefore, the at-risk group was not included in this computational analysis. In the healthy control group, one sample was discarded from this analysis because it contained statistical outliers (n = 69; Han et al., 2012).

The gene expression network was constructed using a standard formula for Pearson’s correlation coefficient. The computational analysis with this formula does not predict how the correlation coefficients of pairs of genes in one subject group would change when the average expression levels of a set of genes are all reduced, for example, whether the absolute values of the correlation coefficients would increase, decrease, or remain similar. Intuitively, we expected that the onset and duration of T1D might be associated with a disruption of a gene expression correlation network that exists in the healthy controls. Contrary to our expectation, we did not detect an apparent disruption of the gene expression correlations in the samples from the new-onset diabetes group (n = 33; Figure 1B). Instead, it was clear that the basic correlation pattern was preserved in the new-onset group as compared to the HT controls. Surprisingly, when compared to healthy controls (Figure 1A), the gene expression correlation network was much strengthened overall in long-term diabetic patients (n = 59; Figure 1C).

FIGURE 1 Gene expression network analysis to examine potential coordination among innate and adaptive immune gene expression. Quantitative RT-PCR was used to assess the levels of mRNA expression for thirteen innate (CD11b, TLR9, and S100 family) and adaptive (CD3, CTLA4, CD19, and CD20) immune genes. Gene expression relationships were analyzed for healthy controls (A) and compared to that of new-onset (B) and long-term T1D patients (C). Solid red lines, absolute value of correlation coefficient ≥0.9; dashed blue lines, absolute value of correlation coefficient 0.8 but <0.9.
As expected, the expression of several S100 genes correlated with the mRNA level of CD11b, an indicator of myeloid cells. Novel relationships of gene expressions were identified in the samples from the healthy group between S100 family genes and T cell genes (CTLA4 and CD3G), but not with B cell genes (CD20 and CD19). Surprisingly, although healthy controls and new-onset T1D patients exhibited a similar pattern of gene expression relationships, more correlative relationships of gene expression were identified in the long-term diabetic group than in healthy controls, such that the expression of CD3G, CD11b, S100A8, S100A9, S100A18, S100A11, or S100A13 correlated with a majority of the other genes analyzed in the study, regardless of their primary functional denotation in T-, B-, or myeloid cells. Distinct gene expression relationships also emerged in the samples from the new-onset and long-term T1D groups between the B cell gene CD19 and TLR9, or between CD19 and members of S100 gene family (Figures 1B,C).

The correlation coefficients were further used as a distance metric in a hierarchical clustering analysis that yielded a dendrogram, a commonly used method for depiction of relationship analyses. The healthy, new-onset and long-term T1D groups generally exhibited similar clusters (Figure 2). Thus, the results from the hierarchical clustering analyses support the finding from network analyses, suggesting that the expression relationships of the selected immune genes were well-preserved during progression of T1D.

CROSS-GROUP ANALYSIS OF GENE–GENE INTERACTIONS

For experimental biologists to identify gene expression relationships, the most straightforward method is perhaps to simply analyze the ratio of gene expression levels for genes that are known to be related (Han et al., 2012), as described above. Statistical analyses of correlation coefficients, as described in Figures 1 and 2, are also intuitively comprehensible and desirable by experimental biologists to detect potential relationships. However, other types of interactive relationships could exist and may necessitate more sophisticated computation methods. In genetic association studies, interactions of several genetic loci were found, in addition to the other well-established loci such as HLA, to be associated with T1D (Cordell et al., 1995; Ide et al., 2004). Gene–gene interactions are believed to be an important factor that may account for missing heritability for T1D (Pociot et al., 2010) and other complex human diseases (Manolio et al., 2009). We therefore employed a computational approach to identify gene–gene interactions that were associated with a T1D group vis-à-vis the healthy controls, using the gene expression values.

When we compared a T1D group with the healthy group, we used an indicator variable Y to indicate whether a subject is from the T1D group ($Y = 1$) or the healthy group ($Y = 0$), and then employed the following logistic regression model to investigate the effect of gene expression and the age on the status of the subject,

$$
\log \left(\frac{P(Y = 1)}{P(Y = 0)} \right) = \beta_0 + \sum_{i=1}^{13} \beta_i X_i + \sum_{i=1}^{13} \sum_{j=i+1}^{13} \beta_{ij} X_i X_j + \text{age} \times \beta_a,
$$

where $P(Y = 1)$ or $P(Y = 0)$ is the probability that the subject belongs to the T1D or healthy group, X_i is the expression level of gene i, and β_0, β_i, β_{ij} are regression coefficients to be determined. This logistic regression model is similar to the one used to detect gene–gene interactions in genome-wide association analysis (Cordell, 2009), except the variables here are gene expression values and the age instead of genotypes. Since the number

FIGURE 2 | Hierarchical clustering analysis of expression relationship among innate and adaptive immune genes. A dendrogram was presented based on correlation coefficient of gene expression levels. The HT, NO, and LT groups exhibited a similar pattern of gene expression correlation. Most of the 13 genes appeared in two clusters: a B cell cluster and a cluster consisting of both T cell and myeloid cell genes. The sample size in the AT group ($n = 108$) may not be sufficient for the clustering technique.
of variables in the model is greater than the number of samples available, the traditional maximum likelihood approach cannot be used to determine the regression coefficients. We thus employed a method named elastic net (Zou and Trevor, 2005), which is capable of selecting relevant variables from a set of a large number of variables. The elastic net was originally used to predict if a leukemia patient has type 1 or 2 leukemia using the expression levels of 7129 genes (Zou and Trevor, 2005). Specifically, the elastic net determined the values of regression coefficients by maximizing the following penalized likelihood function,

\[L(y|\beta) = \frac{1}{2}(y - \beta)^T \Sigma^{-1}(y - \beta) - \frac{1}{2}\lambda(\alpha \beta^T \beta + \sum_{i=1}^{m} \sum_{j=1}^{m} \beta_i \beta_j) \]

where \(L(y|\beta) \) is the log-likelihood function of the data with \(\beta \) standing for all regression coefficients, \(\alpha (0 < \alpha \leq 1) \) and \(\lambda (> 0) \) are two constants that could be determined with cross-validation. We used an efficient program named glmnet (Friedman et al., 2010) that implemented the elastic net to fit the data to the logistic regression model. The constants \(\alpha \) and \(\lambda \) were chosen from leave-one-out cross-validation that yielded the smallest deviance. The standard errors of non-zero coefficients obtained from glmnet were then calculated from the sandwich formula for the penalized regression models (Fan and Li, 2001).

In the analysis for LT versus HT group, cross-validation yielded \(\alpha = 0.71 \) and \(\lambda = 0.01393 \). Hosmer–Lemeshow test for the goodness of fit of the model gave a \(p \)-value of 0.567 which implies that the data fitted the model properly. The area under the receiver operating characteristic (ROC) curve is 0.831, which also indicates that the data fitted the model well. The regression coefficients obtained from the glmnet were presented in Table 1. Three pairwise gene interactions were identified associating with long-term T1D vis-à-vis healthy controls: ARG1 versus S100A6, ARG1 versus S100A9, and CDSG versus CD20, since their corresponding regression coefficient is \(\#0 \) with a statistical significance \(< 0.05 \). To illustrate the effect of gene-gene interactions, let us denote the probability of a subject belonging to the long-term T1D group as \(p \) and correspondingly the probability of subject being in the healthy group as \(1 - p \). The odds for the subject being associated with the long-term T1D group is then \(o = p/(1 - p) \). Taking the analysis of CDSG versus CD20 for illustration, the regression coefficient is 0.21 (Table 1).

In a hypothesized situation where the product of expression levels of CD3G and CD20 is increased by onefold but all other expression levels do not change, the odds of the subject being associated with long-term T1D is denoted in this situation as \(o_{11} \) and the odds ratio is defined as \(o_1/o \). The odds ratio \(o_1/o = e^0.21 = 1.23 \) implies that the relative likelihood of association with the long-term T1D group is increased by 1.23 times if the product of expression levels of CD3G and CD20 is increased by onefold under this hypothesized situation. Of course, this kind of hypothetical situation unlikely occurs, because (1) if the product of expression levels of CD3G and CD20 changes, most likely expression levels of CD3G and CD20 themselves change too, and (2) as we have seen expression levels of some genes are highly correlated; meaning, if expression levels of CD3G and CD20 change, expression levels of some other genes may change too. Therefore, the number does not really specify exact relative risk, but rather suggests that a characteristic CD3G and CD20 interaction indicates a biased association with the long-term T1D versus healthy condition.

Table 1 | Elastic net regression analyses of gene–gene interaction between the HT and LT T1D groups.

Gene	CD19	CD3G	CTLA4	CD11b	CD20	S100A10	S100A11	S100A13	S100A6	S100A8	TLR9
ARG1	0	0.07	0	0	0	0.03	0.22*	0.01	-0.21*	0	
CD19	0	0	0	0	0	0	0	0	0	0	
CD3G	0	0	0	0	0	0.06	0	0	0	0	
CTLA4	0	0	0	0	0	0.03	0	0	0	0	
CD11b	0	0	0	0	0	0.02	0	0	0	0	
CD20	0	0	0	0	0	0.04	0	0	-0.15	0	
S100A10	0	0	-0.05	0	0	0	0	0	0.11		
S100A11	0	0	0	0	0	0	0	0	0	0	
S100A13	0	0	-0.62**	0.09	0	-0.11	0.01				
S100A6	0	0	0	0	0	0	0	0	0	0	
S100A8	0	0	0	0	0	0	0	0	0	0	
S100A9	0	0	0	0	0	0	0	0	0	0	
TLR9	0	0	0	0	0	0	0	0	0	0	

For a cross-group analysis of gene expression and interaction, gene expression data were fitted to a penalized logistic regression model named elastic net, according to an algorithm described in the text. Numbers in the table are the regression coefficients obtained from the analysis for healthy controls (HT) versus the long-term (LT) T1D group. *p < 0.05, **p < 0.005. This approach of multiple penalized regression did not detect any gene–gene interaction between HT versus AT, or HT versus NO groups.
The immunological significance of this finding, as to how it is related to T1D, remains to be tested. It might suggest, although purely speculative at this point, an altered T–B collaboration in an established diabetes condition. Collaboration of T- and B-lymphocytes is critical for a productive immune response and its regulation.

Statistically, this penalized regression model identified only one main effect of single genes between long-term T1D patients and healthy individuals (S100A13, p < 0.0005; Table 1); although both Student’s t test and linear regression analyses involving single genes and age indicated significant reduction of expression in 10 of the 13 genes (Han et al., 2012). This was due to the fact that the correlations among genes were high and the multiple penalized regression analysis only picked out the gene whose difference between the two groups was most significant. This approach did not identify any gene–gene interaction in cross-group analyses between HT versus AT, or HT versus NO.

SUMMARY

A large on-going effort has been devoted by many groups to rTv e r s u N O. For a number of known and unknown elements (Chen et al., 2005). Clinical observations and experimental studies suggest that a general immune insufficiency may cause autoimmune diseases (Gallegos and Bevan; 2004; King et al., 2014; Schuiz et al., 2012). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

REFERENCES

| Amour, S. M., Shao, W., Marchand, L., and Polychronakos, C. (2005). Abl organs on gene regulation at the autoimmunity-predisposing CTLa4 locus: a re-evaluation of the T' s effect. J. Immunogenet. 32, 24–33. | Bevan, H., De La Pea, H., Veldhoen, M., Phillips, E. M., Uyttenhove, C., Stockinger, B., et al. (2009). Highly purified Th17 cells from BDC2.5NOD mice convert into Th1-like cells in NOD/SCID mice. J. Clin. Invest. 119, 565–572. |

Bending, D., De La Pea, H., Veldhoen, M., Phillips, E. M., Uyttenhove, C., Stockinger, B., et al. (2009). Highly purified Th17 cells from BDC2.5NOD mice convert into Th1-like cells in NOD/SCID recip-

Table 1.

For a reason(s) yet to be determined, a strengthened correlation of immune gene expression was associated with T1D progression. It remains to be understood whether and how the altered relationships may impact immune function and immune tolerance induction. A tightened immune regulatory network might facilitate tolerance induction. On the other hand, an increased rigidity of a network might also affect its responsiveness. In that vein, the general insufficiency of immune gene expression in long-term diabetes, together with a tightened network of immune gene expression, might pose a secondary risk of suboptimal immune function and malperturbation in the homeostasis of the immune system.

ACKNOWLEDGMENTS

This work was supported by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK, award DP3DK085696). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIDDK or NIH. Xiaodong Cai was partly supported by the National Science Foundation (award 0746882. Stochastic Modeling, Analysis and Simulation of Gene Networks). The authors gratefully acknowledge the expert support of Dts. J. S. Skyler, A. Pugliese, R. Alejandro, D. Minero, and D. M. Berman and Ms. D. Matheson.
Halmstedt, S., et al. (2004). Cytokine expression in unmethylated FMC7 of patients with type 1 diabetes and subjects positive for diabetes-associated autoantibodies. Scan J Immunol. 59, 510–513.

Han, D., Cui, X., Wen, H., Mathison, D., Skyler, J., Sinsky, N. S., et al. (2007). Immune profiling by multiplexed gene expression analysis in patients at risk and with type 1 diabetes. Clin Exp Immunol. 150, 131–138.

Han, H., Lu, S., Zeng, T., Long, W., Wang, Z., Chen, X., and Dong, C. (2009). Th17 cells promote pancreatic inflammation but only induce diabetes efficiently in lymphopenic hosts after conversion into TH1 cells. Eur J Immunol. 39, 216–224.

Harakawa, A. K., Crome, S. O., Pan, G., Gries, F. A., et al. (1997). Systemic lupus erythematosus development of IL-17 immunity in mice. J Clin Invest. 105, 16400–16405.

Harish, H., Itoh, N., Miyagawa, J., Moriwaki, M., Itoh, N., Miyagawa, J., et al. (2010). IL-17 immunity in human type 1 diabetes. J Hum Genet. 55, 920–934.

Harik, Y., Huang, S., Chen, Z., Stockton, J., Mathis, D., and Benoist, C. (2010). Expression of CD152 (CTLA-4) in children with newly diagnosed type 1 diabetes. J Clin Immunol. 30, 74–84.

Harrison, C. (2008). Diabetes: from bench to bedside. Nat Rev Endocrinol. 4, 517–526.

Hatanpaa, J., et al. (2009). Inhibition of Th17 cells regenerating the missing heritability of complex diseases. Nature 461, 747–753.

Hattori, M., et al. (2010). CTLA-4 suppresses the relative role of perforin/granzyme B effector T cells in children with newly diagnosed type 1 diabetes. J Clin Immunol. 30, 164–170.

Hather, M., et al. (2009). CTLA-4 linked autoimmunity with IDDM1 in type 1 diabetes. Diabetologia 52, 1348–1360.

Hawke, J., et al. (2008). Th17 cells in inflammatory conditions. Rev Diabet Stud. 5, 72–75.

Heath, W. R., and Olive, J. A. (2010). CD95 (Fas/APO-1) molecule on T cells in the pathogenic alpha, and Th2 cells. Is controlled by IL-4, IL-4 receptor and +49 A/G polymorphism of the cytokine-inducible chemokine gene. Cell 129, 207–213.

Heifets, L. B., and Sarvetnick, N. (1998). Regulation of Th1 differentiation by B cells. J Exp Med. 178, 6921–6929.

Heikinheimo, K., and Nordenskjold, A. (2009). Double deletion of the TNF-α and Fas ligand expression in inflamed pancreas of mice. J Autoimmun. 32, 207–213.

Hempstead, B. L., and Depinho, R. A. (2009). Cutting edge: the development of IL-17+ regulatory T cells by cell-intrinsic and cell-nonintrinsic mechanisms. Nat Rev Immunol. 9, 129–135.

Henderson, K. S., et al. (2003). CTLA-4 in T cell-mediated immune regulation in IDDM and toward humoral immunity in Graves’ disease. Diabetes 52, 237–243.

Hensley, L. M., et al. (2004). CTLA-4 in autoimmunity with anti-mouse thymocyte globulin in mice. J Immunol. 170, 6992–6999.

Hessel, S. M., et al. (2007). Distinct effector cytokine profiles of memory and naive human B cell subsets and implication in multiple sclerosis. J Immunol. 178, 6921–6929.

Hessman, M. J., et al. (2009). Role of intrinsic and extrinsic mechanisms. Nat Rev Immunol. 11, 131–138.

Hickey, S. R., et al. (2008). IFN-gamma in high-risk relatives of IDDM. J Clin Immunol. 28, 207–213.

Hickman, A. J., et al. (2010). Th17 cells in patients at-risk and with type 1 diabetes. J Exp Med. 117, 149–151.

Hicks, P. J., et al. (2004). Th17 cells in inflammatory diseases—a general susceptibility gene to autoimmunity? Genes Immun. 1, 176–189.

Higashida, M., et al. (2009). Change you can B(cell)eive in: recent progress confirms a critical role for B cells in type 1 diabetes. Diabetologia 52, 1348–1360.

Higuchi, T., et al. (2009). Diminished expression of CD8+ T cell-mediated insulin-dependent diabetes mellitus. J Immunol. 183, 4353–4361.

Hiller, J. L., et al. (2009). CTLA-4 in autoimmunity—mediated antimicrobial tumor as an immunoprivileged self. Eur J Immunol. 39, 216–224.

Hinck, L., et al. (2010). Systemic lupus erythematosus development of IL-17 immunity in mice. J Immunol. 185, 1959–1967.

Hinuma, H., et al. (2007). Distinct effector cytokine profiles of memory and naive human B cell subsets and implication in multiple sclerosis. J Immunol. 178, 6921–6929.

Hinuma, H., et al. (2007). Distinct effector cytokine profiles of memory and naive human B cell subsets and implication in multiple sclerosis. J Immunol. 178, 6921–6929.

Hirano, T., et al. (2004). IFN-gamma in high-risk relatives of IDDM. J Clin Immunol. 28, 207–213.

Hirano, T., et al. (2004). IFN-gamma in high-risk relatives of IDDM. J Clin Immunol. 28, 207–213.

Hirano, T., et al. (2004). IFN-gamma in high-risk relatives of IDDM. J Clin Immunol. 28, 207–213.

Hirano, T., et al. (2004). IFN-gamma in high-risk relatives of IDDM. J Clin Immunol. 28, 207–213.
Peggs, K. S., Quezada, S. A., Cham-
padmos, R. C., Schloot, N. C., Beyan,
han et al. Clue from biomarkers to biology
Reynier, F., Pachot, A., Paye, M.,
Purohit, S., and She, J. X. (2008).
Pruitt, S. K., Boczkowski, D., de Rosa,
pociot, F., Akolkar, B., Concannon, P.,
Pescovitz, M. D., Greenbaum, C. J.,
allison, J. P. (2009). Blockade of
ctla-4 antibodies. T cell compartments contributes
to the antigenic activity of anti-
ctla-4 antibodies. J. Exp. Med. 208,
1717–1725.

Pecquet, M. D., Grottium, C., 135
krause-steinrauf, H., Becker, D. J.,
gimnazon, S. E., galander, K., et al. (2009).
Etiology of autoimmune diabetes.
Front. Immunol. 3, 98–116.

Pechk, F., et al. (2010). Specific gene
expression signature associated with
development of autoimmune type-I
diabetes using whole-blood microar-
ray analysis. Gene Immun. 11,
269–278.

Pyler, A., Bhsomson, C., Jemson, C. O.,
citek, C., and Fuirojo, M. (2012). Low expression and secre-
tion of circulating soluble CTLA-4 in
peripheral blood mononuclear cells and sera from type 1 diabetic chil-
dren. Diabetes Metab. Res. Rev. 28,
84–96.

Shultz, C., Nihoua, T., Fiume, W.,
and Schwartz, K. (2010). Autoim-
munity, autoinflammation and lym-
phoma in combined immunodefi-
ciency (CID). Autoimmun. Rev. 9,
477–482.

Serone, D. V., Briegent, M., Chap-
man, H. D., Chen, X., Richard, S. D.,
and Leiner, E. H. (1998). Sub-
genomic analysis of the Idil5 locus in noDa mice: evidence for sev-
eral susceptibility genes including a
possible diabetogenic role for beta-
2-microglobulin. J. Immunol. 160,
1472–1478.

Shafie, P. A., and Goy, S. T. (2006).
B cells in the spotlight: innocent
bystanders or major players in the
pathogenesis of type 1 diabetes.
Trends Endocrinol. Metab. 17, 128–
135.

Shiohara, K., Kikur, M., Matsumoto, R.
Hilbacher, J., Vasilakos, J., Hubacekova,
M., et al. (2011). Healthy first degree
relatives of patients with type I dia-
betes exhibit significant differences in
blood gene expression pattern of
immunocompetent cells compared to
controls: expression pattern as predi-
ctional of autoimmune diabetes.
Scand. J. Immunol. 73, 210–219.

Suzuki, J., Rion, L., and Chen, Z. (2010). Immune tolerance induction
by integrating innate and adaptive immune regulators. Cell Transplant.
19, 255–268.

Tak, W. A., Krohshhof, M. G., and
Maderson, J. (2006). A molecular per-
spective of CTLA-4 function. Annu.
Rev. Immunol. 24, 65–97.

Ueda, H., Kwov, J. M., Esposito, L.,
Howard, J., Sook, H., Chambread,
G., et al. (2003). Association of the
T cell regulatory gene CTLA4 with
susceptibility to autoimmune disease.
Nature 423, 569–571.

Wong, K., Onhs, Y., Prato-Martin, P.,
Yamaguchi, T., Miyura, M., Fehreri,
Z., et al. (2008). CTLA-4 control over
Fog3+ regulatory T cell function.
Science 322, 271–275.

Wong, F. S., Wei, L., Tang, M.,
Ramanathan, M., Vinmill, I., Class-
erty, J. D. (2010). Antigen recognition and
survival: the role of a colony of B-cells in type 1 dia-
betes in the NOD mouse.
Diabetes 59, 2501–2507.

Yoon, J. W., and Yun, H. S. (2001). Cellular
and molecular pathogenic mecha-
nisms of insulin-dependent diabetes
meleitus. Annu. N. Y. Acad. Sci. 928,
200–211.

Zou, H., and Trevor, T. (2005). Regular-
ization and variable selection via the
elastic net. J. R. Stat. Soc. Ser. B 67,
301–320.