Anthropometric Estimations for Iranian General Population

*Mahnaz SAREMI 1,2, Mahnaz KAZEMHAGHIGHI 2

1. Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
2. Department of Ergonomics, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran

*Corresponding Author: Email: m.saremi@sbmu.ac.ir

(Received 23 Jan 2018; accepted 12 Apr 2018)

Abstract

Background: An essential requirement exists for a single exhaustive source of anthropometric databank in Iran. Available information about Iranian bodily dimensions is not applicable to the general population due to the sample of people investigated. This study aimed to present the first Iranian anthropometric databank by estimation.

Methods: After a systematic review, 24 relevant sources of information were found and included. No time limit was considered. The method of Rapid Anthropometrics Scaled for Height was used.

Results: Overall, 36 bodily dimensions were estimated, for which the seven percentiles of 1st, 5th, 25th, 50th, 75th, 95th, and 99th were calculated, stratified by sex.

Conclusion: The resulting tables can be claimed as the most representative anthropometric databank for Iranian general 20-64 yr population now. Data are suitable for practical purpose and are applicable in both occupational and community setting.

Keywords: Anthropometry; Estimation; Iran

Introduction

The main principle of ergonomics is to design the activity to match the characteristics of the user. On the other word, if an instrument, a workplace or a system is intended for human use, then its design should be based upon the characteristics of its human users. This principle, so-called “user-centered design”, could result in many enhancements in terms of functional efficiency, comfort, health, safety and quality of life (1). In contrast, the lack of incorporating anthropometric information in the design phase would result in an increase in the frequency of work-related injuries, as well as a decrease in human performance and well-being.

However, human beings are not all the same. Their anthropometric (e.g. body size, shape strength, and endurance), physiological, Biomechanical and psychological characteristics differ from one to another. In addition, factors such as age, sex, race, job, diet, physical exercise and so on influence human body dimensions (1, 2). These variabilities need to be taken into account by designers in order to provide adequate adjustability of workstations, tools, products and human-machine interfaces.

Because of the above mentioned human inter and intra-individual changes, the majority of developed and developing countries have produced their own anthropometric databank. Some examples include anthropometric data of Asian (3, 4), African (5, 6), European (7, 8) and American (9, 10) peoples. However, although publication of the first systematic anthropometric tables dated on 1950s, no anthropometric survey has yet been

Available at: http://ijph.tums.ac.ir
conducted on Iranian general population with regard to the occupational health application. Available data on this topic is mainly limited to Iranian industrial (11) and army (12) personnel which would not be presentative for the general population. Apart from its vital importance for designing various work stations and spaces, national anthropometric tables are required to fabricate any ease of use urban spaces such as public buildings, leisure facilities, general transportation services, and so on. Since anthropometric surveys are often costly and time-consuming, ergonomists prefer to prepare anthropometric databases based on more simple methods such as estimation rather than measurement. One of the most widely employed methods of estimation is that proposed by Barkla (13) and Roebuck et al. (14). Entitled “Rapid Anthropometrics Scaled for Height” (RASH) by Pheasant, this method was validated and employed to estimate British anthropometric database (15, 16). The RASH method requires only data on the stature (i.e. mean and standard deviation) of an unknown population to which scaling factors derived from a known homogeneous population is applied. The technique was used in some similar researches afterward all over the world (17, 18).

An important need for appropriate anthropometric source on Iranian body characteristics exists among national ergonomists and designers. Recently, existed anthropometric data for Iranian population is not sufficiently comprehensive with respect to both sample size and representativeness (19). Therefore, the present study is the first attempt to provide a single comprehensive and representative source of anthropometric information on Iranian general population. Such database is extensively applicable as a key element to provide ergonomic design requirements and to create products, hand tools, furniture, workstations, etc. as much fit as possible to the nation. In this regard, after an integrated review of related published literature, a dataset is assembled using the RASH method assumed to be sufficiently exhaustive and accurate for practical purpose; especially in terms of the creation of spaces in various public or industrial environments.

Materials and Methods

The method of RASH was applied for estimating anthropometric database of Iranian general population. This method is based on the assumption that although people vary greatly in size, they are likely to be similar in proportions (2). It requires only know the mean (m) and standard deviation (s) of stature of an unknown population (i.e. target population). Scaling factors for intended bodily dimensions would be calculated from a known population (i.e. reference population) and then applied to the height data in the target one. Coefficient e_m was calculated using following formula (15): $e_m = \frac{x}{h}$

Where x is the mean value of the intended bodily dimension and h is the mean stature in the reference population. Then, scaling ratio (E_m) was obtained as arithmetic mean of e_m (15, 16): $E_m = \frac{\sum e_m}{n}$

The same method was used for estimating coefficients (e_s) and scaling ratios (E_s) related to the standard deviations. Calculations were made as a function of sex.

The reference population

Conducting a systematic review using Google Scholar, Medline, SID, IranMedex, Magiran, MedLib and Civilica, an integrative collection of ever published anthropometric datasets of Iranian adults was developed. No time limit was considered. This collection was considered as the reference population. Studies were included as a function of their aim and methodology. Therefore, cases hypothesized any relationship between body variables (e.g. weight, BMI, wrist circumferences, etc.) and health problems (obesity, diseases, etc.) or conducted on children were excluded. Repeated datasets (i.e. same data published in more than one source) were also removed. As presented in Table 1, altogether 24 sources of information were found.
Table 1: The reference population

References	Sample size	Study population
1 Shahnavaz and Davies (39)	400	Iranian steel workers
2 Mououdi (21)	179	University students
3 Abarghouie and HoseiniNasab (22)	330	Iranian office workers
4 Motamedzade et al. (38)	303	
5 Sadeghi and Habibi (23)	95	Bus drivers
6 Vafee et al. (24)	115	University students
7 Mirmohammadi et al. (46)	911	University students
8 Mohammadi et al. (26)	70	Iranian women
9 Shokoohi H, Khoshroo (40)	853	Military personnel
10 Osquei-Zadeh et al. (25)	267	University students
11 Habibi et al. (47)	768	University students
12 Abedini et al. (27)	194	University students
13 Mououdi (28)	178	Iranian men
14 Mohammadi et al. (29)	140	Iranian women
15 Hemmatjoo et al. (30)	80	Military personnel
16 Falahati et al. (31)	70	University students
17 Ilbeigi et al. (32)	120	Iranian men
18 Davoudiantalab et al. (33)	400	Iranian male workers
19 Bahrampour et al. (34)	194	University students
20 Pourtaghi et al. (12)	12635	Military personnel
21 Moshkdanian et al. (35)	300	Iranian adults
22 Eftekhar Vaghefi et al. (36)	1599	Medical personnel
23 Famil Alamdar and Famil Alamdar (37)	144	Iranian adults
24 Sadeghi et al. (11)	3720	Iranian workers

The target population

For the target population, we have selected recent nationwide surveillance on non-communicable disease risk factors, which in our knowledge is the best representative of the general population in terms of sample size, age, sex, socio-economic, and geographical distribution. Using a random multistage cluster sampling method, the study measured, among other variables, stature of 79,611 Iranian rural and urban citizens (50.1% men; 49.9% women) aged from 20 to 64 yr with standardized and calibrated instruments (20).

Results

Scaling factors for 36 anthropometric estimations are presented in Table 2. Accordingly, stature has the highest ratios with eye and shoulders heights; and the smallest ratios with hand and foot breadths. Indeed, body dimensions of men and women are likely to follow a similar scaling profile (Table 2).

Tables 3 and 4 show anthropometric estimates calculated based on these scaling factors for men and women, respectively. Iranian men’s average height is estimated to be 1697 mm versus 1564 mm for female. The tallest Iranian man is about 348 mm taller than the shortest one; while the tallest Iranian woman is about 317 mm taller than the shortest woman is.

Discussion

The main purpose of the present study was to estimate as much as comprehensive and accurate anthropometric database for Iranian adults which could be applicable in industrial and nonindustrial design. Assembling the totality of relevant published tables by means of the simple, rapid and
valid method of RASH, this study was able to present the first single source of anthropometric information for Iranian general population. It is therefore not illogical to claim that the present set of estimations is the most valid representation of the anthropometrics of the Iranian general 20-64 yr people achieved now. The pioneer in using this method was Pheasant, who developed an anthropometric source for British civilian adults based on a combination of the main previously published datasets (15).

Table 2: Scaling ratios for mean (E_m) and standard deviation (E_s) of 36 bodily dimensions

Dimensions	Women				Men			
	E_m	E_s	n	E_m	E_s	n	E_m	E_s
1 Stature	1.000	1.000	7	1.000	1.000	10	1.000	1.000
2 Eye height	0.928	1.224	7	0.936	1.021	9	0.966	0.764
3 Shoulder height	0.829	1.274	7	0.835	0.966	9		
4 Elbow height	0.624	1.117	7	0.629	0.764	10		
5 Hip height	0.540	1.165	4	0.533	0.855	5		
6 Knuckle height	0.421	0.985	4	0.458	0.582	4		
7 Fingertip height	0.391	0.746	7	0.400	0.585	6		
8 Sitting height	0.531	0.779	7	0.581	0.685	11		
9 Sitting eye height	0.467	0.897	6	0.521	0.667	10		
10 Sitting elbow height	0.151	0.753	8	0.152	0.464	10		
11 Thigh thickness	0.087	0.538	6	0.086	0.330	8		
12 Sitting shoulder height	0.374	0.911	7	0.360	0.444	6		
13 Buttock knee length	0.350	1.025	7	0.337	0.524	9		
14 Buttock to popliteal length	0.280	0.924	8	0.271	0.499	11		
15 Knee height	0.306	0.604	8	0.306	0.519	10		
16 Popliteal height	0.251	0.608	10	0.246	0.451	11		
17 Shoulder breadth (bi-deltoid)	0.251	0.495	10	0.258	0.452	12		
18 Shoulder breadth (bi-acromial)	0.199	0.897	3	0.198	0.588	3		
19 Hip breadth	0.224	0.562	9	0.207	0.449	10		
20 Chest depth	0.150	0.462	8	0.131	0.508	9		
21 Abdominal depth	0.157	0.917	6	0.134	0.527	8		
22 Shoulder elbow length	0.208	0.681	8	0.212	0.443	8		
23 Elbow fingertip length	0.262	0.466	4	0.257	0.590	4		
24 Upper limb length	0.446	0.784	4	0.472	0.864	4		
25 Shoulder grip length	0.373	0.816	5	0.368	0.855	4		
26 Head length	0.113	0.638	4	0.110	0.460	5		
27 Head breadth	0.087	0.540	4	0.087	0.253	5		
28 Hand length	0.107	0.459	4	0.109	0.172	5		
29 Hand breadth	0.044	0.245	5	0.048	0.118	6		
30 Foot length	0.145	0.229	6	0.151	0.210	7		
31 Food breadth	0.053	0.183	6	0.054	0.124	7		
32 Vertical grip reach (standing)	1.198	2.525	4	1.215	1.171	5		
33 Vertical grip reach (sitting)	0.718	0.787	3	0.809	0.783	4		
34 Forward grip reach	0.420	1.052	5	0.440	1.020	4		
35 Span	0.254	0.533	2	0.271	0.412	2		
36 Elbow span	0.257	0.726	2	0.269	0.568	3		

n=Number of available sources in each sex category;

Available at: http://ijph.tums.ac.ir
For being representative, a sample should be an unbiased indication of the intended population. In the case of previously reported Iranian anthropometric datasets, one of the limitations face to the representativeness of data is that the sample size for about 80% of them is under 500 (21-39). Moreover, being conducted on the specified groups of industrial (11, 33, 39) or army (12, 30, 40) employees or in a specified location (32, 35), not across Iran, is the fact supporting the inaccuracy of using previous datasets for the general population. Anthropometric dimensions significantly differ between various occupational groups (41). Incorrect design of workplaces and products due to the lack of having access to an appropriate source of anthropometric databank could cause work-related physiological damages because of prolonged exposure to awkward postures. This could at least partly explain the high prevalence of musculoskeletal disorders in different Iranian industrial and nonindustrial sectors (42-45). Anthropometric dimensions should also be taken into consideration in the design of urban spaces such as public buildings, restaurants, hospitals and so on in order to provide an environment that supports the majority of residents especially with respect to some aspects such as clearance and reach.
Some key anthropometric dimensions are “knee height”, “sitting height” and “arms reach” (1). A good anthropometric database should also be up-to-date. This feature is essential since human body characteristics vary over time and from generation to another. Our proposed set of estimations has the potential of being rapidly updated as soon as a more recent source of Iranian height would be available. Indeed, these data could be easily repeated for any sub-group of the general population.

Errors associated with using this technique are small and would be considered as negligible, even in comparison with common interpretation errors or those arising from the corrections for shoes and cloths (16). However, one could suggest that this method is much better applicable to body dimensions which best depend on the length of bones than circumferential dimensions. If relevant, this may be considered as a limitation of this study.

Conclusion

Even though estimated data should be employed with prudence, but data prepared with this method is sufficiently reliable for many purposes (15). The application of the present anthropometric databank would be beneficial to better match the numerous manmade products and spaces with individual users. Therefore, a better match between national designs and Iranian users; as well

Table 4: Anthropometric estimates for Iranian female adults (all dimensions in mm)

Dimensions	1th	5th	25th	50th	75th	95th	99th	SD
Stature	1405	1452	1518	1564	1609	1676	1722	68
Eye height	1258	1315	1396	1452	1508	1589	1646	83
Shoulder height	1095	1154	1238	1296	1354	1439	1498	87
Elbow height	799	851	925	976	1027	1101	1153	76
Hip height	659	713	791	844	897	974	1028	79
Knee height	502	548	613	658	703	769	814	67
Fingertip height	494	529	578	612	646	696	730	51
Sitting height	706	742	794	830	865	917	953	53
Sitting eye height	589	630	690	731	772	831	873	61
Sitting elbow height	117	152	202	236	270	320	355	51
Thigh thickness	50	75	111	135	160	196	221	37
Sitting shoulder height	440	483	543	585	626	687	729	62
Buttock knee length	385	433	501	548	594	662	710	70
Buttock to poplitical length	292	335	396	438	480	542	585	63
Knee height	382	410	450	478	505	545	574	41
Popliteal height	297	325	365	393	421	461	489	41
Shoulder breadth (hi-deltoid)	314	337	370	393	415	448	471	34
Shoulder breadth (hi-acromial)	170	211	271	312	353	412	454	61
Hip breadth	261	287	324	350	375	413	439	38
Chest depth	162	183	214	235	256	287	308	31
Abdominal depth	100	142	203	245	287	347	390	62
Shoulder elbow length	218	250	295	326	357	402	434	46
Elbow fingertip length	335	357	388	409	430	461	483	32
Upper limb length	573	610	662	697	733	785	822	53
Shoulder grip length	453	491	545	583	620	674	712	56
Head length	76	105	148	177	206	248	278	43
Head breadth	51	76	112	136	161	197	222	37
Hand length	95	116	147	168	189	219	240	31
Hand breadth	30	41	58	69	80	96	108	17
Foot length	190	200	216	226	236	252	262	16
Food breadth	53	62	74	83	91	103	112	12
Vertical grip reach (standing)	1474	1591	1758	1874	1989	2156	2273	172
Vertical grip reach (sitting)	999	1035	1088	1124	1159	1212	1248	54
Forward grip reach	489	538	608	656	704	774	823	72
Span	312	337	372	397	421	456	481	36
Elbow span	287	321	369	402	435	484	517	49

Available at: http://ijph.tums.ac.ir
as a more accurate evaluation of all products, machinery and spaces, either national or imported international ones, is expected. By means of integrating the presented tables into design phase, we hope national designers to provide greater safety, satisfaction and commonwealth for Iranian citizens.

Acknowledgements

This work was part of an MSc thesis by the second author at Shahid Beheshti University of Medical Sciences, Tehran, Iran (Grant number: 6692).

Ethical considerations

Ethical issues (Including plagiarism, informed consent, misconduct, data fabrication and/or falsification, double publication and/or submission, redundancy, etc.) have been completely observed by the authors.

Conflict of interest

The authors declare that there is no conflict of interests.

References

1. Pheasant S, Haslegrave CM (2016). Bodyspace: Anthropometry, ergonomics and the design of work. ed. CRC Press.
2. Bridger RS (2003). Introduction to ergonomics. 2nd ed. ed. Taylor & Francis, London ; New York.
3. Chuan TK, Hartono M, Kumar N (2010). Anthropometry of the Singaporean and Indonesian populations. International Journal of Industrial Ergonomics, 40:757-766.
4. Fernandez JE, Uppugonduri KG (1992). Anthropometry of South Indian industrial workmen. Ergonomics, 35:1393-1398.
5. Mokdad M (2002). Anthropometric study of Algerian farmers. International Journal of Industrial Ergonomics, 29:331-341.
6. Steyn K, Bourne I, Jooste P, Fourie J, Rossouw K, Lombard C (1998). Anthropometric profile of a black population of the Cape Peninsula in South Africa, East Afr Med J. 75:35-40.
7. Bolstad G, Benum B, Rokne A (2001). Anthropometry of Norwegian office workers. Appl Ergon, 32:239-246.
8. Hertzberg HT. (1963). Anthropometric Survey of Turkey, Greece and Italy. ed. Macmillan.
9. McDowell MA, Fryar CD, Hirsch R, Ogden CL (2005). Anthropometric reference data for children and adults: US population, 1999–2002. Adv Data, (361):1-5.
10. Fryar CD, Gu Q, Ogden CL (2012). Anthropometric reference data for children and adults: United States, 2007-2010. Vital Health Stat 11, (252):1-48.
11. Sadeghi F, Mazloumi A, Kazemi Z (2015). An anthropometric data bank for the Iranian working population with ethnic diversity. Appl Ergon, 48:95-103.
12. Pourtaghi G, Valipour F, Sadeghialavi H, Lahmi M (2014). Anthropometric characteristics of Iranian military personnel and their changes over recent years. Int J Occup Environ Med. 5:115-24.
13. Barkla D (1961). The estimation of body measurements of British population in relation to seat design. Ergonomics, 4:123-132.
14. Roebuck JA, Kroemer KHE, Thomson WG (1975). Engineering anthropometry methods. ed. John Wiley & Sons.
15. Pheasant S (1982). Anthropometric estimates for British civilian adults. Ergonomics, 25:993-1001.
16. Pheasant S (1982). A technique for estimating anthropometric data from the parameters of the distribution of stature. Ergonomics, 25:981-92.
17. Ali İ, Arslan N (2009). Estimated anthropometric measurements of Turkish adults and effects of age and geographical regions. International Journal of Industrial Ergonomics, 39:860-865.
18. Resnick M (1995). Estimating the anthropometry of international populations using the scaling ratio method. (ed)^(eds) Proceedings of the Human Factors and Ergonomics Society Annual Meeting, SAGE Publications, pp. 673-677.
19. Kazemhaghigi M, Saremi M. The situation of anthropometric databank in Iran: a review study. *Iran Occupational Health*, 14:95-102-95.

20. Ahranjani SA, Kashani H, Forouzanfar M et al (2012). Waist circumference, weight, and body mass index of iranians based on national non-communicable disease risk factors surveillance. *Iran J Public Health*, 41:35-45.

21. Mououdi MA (1997). Static anthropometric characteristics of Tehran University students age 20-30. *Appl Ergon*, 28:149-150.

22. Abarghouie NS, HoseiniNasab H (2008). Static anthropometry in Iran. *First International Conference on Ergonomics*.

23. Sadeghi N, Habibi E (2009). The survey of relation between musculoskeletal disorders and anthropometric indices in the bus drivers in Isfahan. *Iran Occupational Health*, 6(1):6-14.

24. Vafae B, Zaree F, Nikpoy A, Varmazyar S, Safaryvaryani A (2011). Review the Proportion of university seats with body dimensions of students at the School of Public Health of Qazvin University of Medical Sciences in 1388. *Iran Occupational Health*, 8:39-47.

25. Osquei-Zadeh R, Ghamari J, Abedi M, Shiri H (2012). Ergonomic and anthropometric consideration for library furniture in an Iranian public university. *Int J Ocup Environ Med*, 3:19-26.

26. Mohammadi M, Sadeghi H, Sadeghi-Naeini H, Nikbakht H (2011). The relationship between ergonomics characteristics park oval bike with anthropometric indices Iranian women. *The Sixth National Conference on Physical Education and Sport Sciences students of Iran*.

27. Abedini R, Choobineh AR, Soltanzadeh A et al (2012). Static Anthropometric Dimensions and Regression Equations among Student Population. *Health System Research*, 8(4):613-623.

28. Mououdi MA (2013). The determination of static anthropometry characteristics for designing and evaluating the comfort of saddle chair. *Iran Occupational Health*, 9(4):24-29.

29. Mohammadi M, Sadeghi H, Sadeghi Naeini H et al (2012). The ergonomic properties of outdoor fitness equipment with respect to the anthropometric characteristic of Iranian women: a case study chest press machine and pull chairs. *European Journal of Experimental Biology*, 2:2077-2082.

30. Hemmatjoo Y, Ebrahimi MH, Mohammadi A, Roshani M (2012). Anthropometric assessment of military personnel of the Ministry of Defence industry in the city of Tabriz and compare it with non-military personnel in the studied city and Iran country. *Journal of Medical Sciences the Army of Islamic republic of iran*, Proceedings of the Second National Conference of preventive medicine, health, relief and treatment of surface and subsurface sea.

31. Falahati M, Zokaei M, Sadeghi Naeini H, Moradi GR (2013). Determination of variables and anthropometric indicators for classroom chair design (Study group: Tehran University medicine science–2011). *Iran Occupational Health*, 10:99-108.

32. Ilbeigi S, Ebrahimi-Sadr M, Afzalpour MA (2013). Survey The Ergonomic Properties of Outdoor Fitness Equipment with Anthropometric Characteristics of men. *Journal of Research in Rehabilitation Sports*, 1:37-27.

33. Davoudianatalab AH, Meshikani M, Nourian S, Mofidi AA (2013). Anthropometric Dimensions of Iranian Male Workers and Comparison with Three Asian Countries. *International Journal of Occupational Hygiene*, 5:166-171.

34. Baharampour S, Nazari J, Dianat I, Asgharijafarabadi M (2013). Student's Body Dimensions in Relation to Classroom Furniture. *Health Promot Perspect*. 3:165-174.

35. Mosshdianian G, Moghani-Ghoroghi F, Shiasi M et al (2014). Anthropometric characteristics of upper limb in Iranian and Pakistani subjects. *Journal of Gorgan University of Medical Sciences*, 16:80-85.

36. Eftekhari Vaghefi SH, Elyasi L, Amirian SR, Eftekhari Vaghefi S (2013). Anthropometric Survey of Worker Population in Bandar-Abbas. *Tbiota*, 3:e11669.

37. Famil Alamdar S, Famil Alamdar P (2014). Ergonomic Chair Design Consistent with the Physical Aspects of Iranian Officials. *Applied mathematics in Engineering, Management and Technology 2014*, The special issue in Management and Technology, 224-232.

Available at: http://ijph.tums.ac.ir
38. Motamedzade M, HassanBeigi MR, Choobineh AR, Mahjoob H (2009). Design and Development of An Ergonomic Chair for Iranian Office Workers. ZUMS journal, 17:45-52.

39. Shahnawaz H, Davies B (1977). Anthropometric study of Iranian steel workers. Ergonomics, 20:651-658.

40. Shokoohi H, Khoshroo MR (2011). Fitness Measurement of the Combat Troops to Prevent the Skeleton and Muscular Disorders due to Inappropriate Design of the Military Equipments. JAUMS, 9:177-172.

41. Del Prado-Lu JL (2007). Anthropometric measurement of Filipino manufacturing workers. International Journal of Industrial Ergonomics, 37:497-503.

42. Ghaffari M, Alipour A, Jensen I, Farshad AA, Vingard E (2006). Low back pain among Iranian industrial workers. Occup Med (Lond). 56:455-460.

43. Saremi M, Khayati F (2015). Evaluation of incidence of low back pain and its relationship with ergonomic risk level of wards among nurses. Journal of Modern Rehabilitation, 9:68-77.

44. Parno A, Poursadeghiyan M, Omidi L, Parno M, Sayehmiri K, Sayehmiri F (2016). The Prevalence of Work-Related Musculoskeletal Disorders in the upper Extremity: A Systematic Review and Meta-Analysis. Safety Promotion and Injury Prevention, 4:9-18.

45. Mozafari A, Vahedian M, Mohebi S, Najafi M (2015). Work-Related Musculoskeletal Disorders in Truck Drivers and Official Workers. Acta Med Iran. 53:432-438.

46. Mirmohammadi SJ, Mehrparvar AH, Jafari S, Mostaghaci M (2011). An assessment of the anthropometric data of Iranian university students. International Journal of Occupational Hygiene, 3:85-89.

47. Habibi E, Sadeghi N, Mansouri F, Sadeghi MRM, Ranjbar M (2012). Comparison of Iranian student's anthropometric information and American and English standards. Journal of Jahrom University of Medical Sciences, 10:25-36.