Supplemental Information

Heat wave exposure in India in current, 1.5°C, and 2.0°C worlds

Vimal Mishra*, Sourav Mukherjee¹, Rohini Kumar², and Dáithí A. Stone³

1. Civil Engineering, Indian Institute of Technology (IIT) Gandhinagar, Gandhinagar, Gujarat, India, 382355
2. UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
3. Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
*Corresponding author: vmishra@iitgn.ac.in

Corresponding Author: Vimal Mishra, vmishra@iitgn.ac.in, +91-9687944337
Section S1: Anthropogenic influence on the frequency of heatwaves in India

In order to be a tool for understanding past, current, and future trends in heatwaves over India, we must understand the extent to which climate models are capable of reproducing observed characteristics. We examine the frequency of heatwaves (above magnitude 3) in simulations from seven models from the CMIP5 archive driven with observed variations in radiative forcings (e.g. greenhouse gases) and land surface properties ("Hist") (see Table S2). For the period of 1980-2005, when simulation data are available from seven models that have data for both Hist and HistNat (without anthropogenic forcing) scenarios, the climate models produce about 3-8 heatwaves of at least magnitude 3 at each grid cell in the entire period of 1980-2005 under the Hist scenario (Fig. S1c) and underestimate observed frequency of heatwaves (Fig. S1a).

Over the 1951-2005 period during which observations and "Hist" simulations are available, the "Hist" simulations from the seven CMIP5 models (Table S2) all produce an increase in 3-day annual maximum temperature (an alternative index for heat wave) (Fig. S1h). The CMIP5 models, however, underestimate trends in 3-day AMT and do not capture regional variability (Fig. S1f, h). The CESM-LENS ensemble also shows an increasing trend in 3-day annual maximum temperature during the period of 1951-2005 (Fig. S1i-j). We notice a decline in the observed 3-day AMT in the Indo-Gangetic Plain, which may be associated with the presence of atmospheric aerosols (Menon et al 2002) or irrigation (Roy et al 2007, Sacks et al 2009) (Fig S1f). The HistNat simulations (Table S2) of these same CMIP5 models run without anthropogenic forcing show no systematic change in 3-day AMT indicating an anthropogenic contribution in the observed trend (Fig. S1f-j).

References:

Menon S, Hansen J, Nazarenko L and Luo Y 2002 Climate Effects of Black Carbon Aerosols in China and India Science 297 2250

Roy S S, Mahmood R, Niyogi D, Lei M, Foster S A, Hubbard K G, Douglas E and Pielke R 2007 Impacts of the agricultural Green Revolution–induced land use changes on air temperatures in India J. Geophys. Res. Atmospheres 112 D21108

Sacks W J, Cook B I, Buening N, Levis S and Helkowski J H 2009 Effects of global irrigation on the near-surface climate Clim. Dyn. 33 159–75
Figure S1. Anthropogenic influence on frequency of heat waves in India. (a) Frequency of heat waves (F-HW; in 26 years) with magnitude more than 3 from the observed daily Tmax data during the period 1980-2005. (b) multimodel ensemble mean F-HW with magnitude more than 3 in the historical natural (HistNat, CMIP5), (c) historical (Hist) scenarios for the period of 1980-2005 based on seven CMIP5 models (Table S2), (d) 20th Century scenario based on 7 members from CESM-LENS, (e) empirical kernel density functions for the observed F-HW (blue) and the multimodel ensemble mean F-HW estimated using all the grid cells for the HistNat (black) and Hist (red) scenarios based on the seven CMIP5 models, and 20th Century (brown) scenarios based on 7 CESM-LENS-runs during the period of 1980-2005. For the CMIP5-GCMs, heatwave magnitude was calculated based on the HistNat (1971-2000) as the reference period. Heatwave characteristics for the observed and 7-runs CESM-LENS 20th Century scenarios were also estimated using the reference period of 1971-2000. (f) trend (per year, °C) in 3-day annual maximum temperature (AMT) in the observed record of 1951-2005, (g, h, and i) multimodel ensemble mean trend in 3-day AMT for the 7 CMIP5-GCM's HistNat, Hist scenarios, and 7 runs CESM-LENS 20th Century scenarios (h) kernel density function estimated using trend in 3 day AMT for each grid in the observed, CMIP5-Hist, CMIP5-HistNat, and CESM-LENS 20th Century scenarios.
Figure S2 (a) All India averaged 3-day annual maximum temperature (Tmax) anomaly for the period of 1951-2015. 3-day annual Tmax anomaly was estimated against the reference period of 1971-2000. (b) change in 3-Day AMT during the period of 1951-2015 estimated using the nonparametric Mann-Kendall trend test and Sen’s slope method. Stippling in (b) indicates statistically significant trend in 3-day AMT at 5% significance level assuming uncorrelated noise. (c) and (d) 3-day AMT Anomaly for the year 1998 and 2015, respectively as estimated against the reference period of 1971-2000.
Figure S3 (a, b, and c) Gridded population of India in the year 2000, 2050, and 2100, respectively, for SSP1 scenario. (d-f) same as in (a-c) but for SSP2 scenario. (g-f) same as in (a-c) but for SSP3 scenario.
Figure S4 (a-h) same as in Figure 2(a-h) but for duration.
Figure S5 All India aggregated MPEHWd (millions) based on 11 ensembles of CESM-2C.
Table S1. Duration for which daily maximum temperature (Tmax) and monthly global mean temperature data are available for the Historical and RCP8.5 (ensemble: r1i1p1) scenarios from 27 CMIP5 climate models

Sl No.	Model	Tmax Historical period through RCP8.5	Global Mean Temperature Historical period through RCP8.5
1	ACCESS1-0	1850-2100	1850-2100
2	ACCESS1-3	1850-2100	1850-2100
3	CanESM2	1850-2100	1850-2300
4	CCSM4	1850-2100	1850-2300
5	CESM1-BGC	1850-2100	1850-2300
6	CESM1-CAM5	1850-2100	1850-2300
7	CMCC-CM	1850-2100	1850-2300
8	CMCC-CMS	1850-2100	1850-2300
9	CNRM-CM5	1850-2100	1850-2300
10	CSIRO-Mk3-6-0	1850-2100	1850-2300
11	EC-EARTH	1850-2100	1850-2300
12	GFDL-CM3	1860-2100	1860-2100
13	GFDL-ESM2G	1861-2100	1861-2300
14	GFDL-ESM2M	1861-2100	1861-2300
15	HadGEM2-AO	1860-2100	1860-2300
16	HadGEM2-CC	1860-2100	1860-2300
17	HAdGEM2-ES	1860-2100	1860-2300
18	inmcm4	1850-2100	1850-2300
19	IPSL-CM5A-LR	1850-2100	1850-2300
20	IPSL-CM5A-MR	1850-2100	1850-2300
21	MIROC-5	1850-2100	1850-2300
22	MIROC-ESM	1850-2100	1850-2300
23	MIROC-ESM-CHEM	1850-2100	1850-2300
24	MPI-ESM-LR	1850-2100	1850-2300
25	MPI-ESM-MR	1850-2100	1850-2300
CMIP5 Model	Historic Natural (HistNat)	Historic (Hist)	RCP8.5
--------------------------	---------------------------	----------------	---------
CNRM-CM5	1950-2005	1950-2005	2006-2099
GFDL-ESM2M	1946-2005	1946-2005	2006-2100
IPSL-CM5A-LR	1850-2005	1850-2005	2006-2205
IPSL-CM5A-MR	1950-2005	1950-2005	2006-2100
MIROC-ESM	1850-2005	1850-2005	2006-2100
MIROC-ESM-CHEM	1850-2005	1850-2005	2006-2100
MRI-CGCM3	1950-2005	1950-2005	2006-2100

Table S2. Duration for which data are available for the HistNat, Hist, and RCP8.5 (ensemble: r1i1p1) from the seven CMIP5 climate models used in the analysis.
Table S3. All India heat waves and their magnitude, duration, and time of occurrence, based on gridded daily station measurements and the methodology of Russo et al. (2015) (/). Heatwaves were estimated using the gridded maximum temperature data for the period of 1951-2015.

Year	Duration (year)	Magnitude	Start Date	End Date
1956	3	0.9	09-May	11-May
1958	5	5.2	02-Jun	06-Jun
1960	3	0.8	11-May	13-May
1962	3	1.5	27-May	29-May
1966	10	9.0	19-May	28-May
1967	7	3.8	30-May	05-Jun
1969	4	2.3	25-May	28-May
1970	7	6.8	12-May	18-May
1972	4	2.4	12-Jun	15-Jun
1973	8	4.7	25-Apr	02-May
1974	3	0.8	08-May	10-May
1978	7	6.4	17-May	23-May
1979	6	7.3	05-Jun	10-Jun
1980	4	3.5	24-May	27-May
1984	10	9.9	18-May	27-May
1985	4	1.8	18-May	21-May
1988	7	7.2	08-May	14-May
1989	4	2.5	20-May	23-May
1992	3	1.7	05-Jun	07-Jun
1993	7	3.0	02-May	08-May
1994	4	2.3	29-May	01-Jun
1995	13	18.4	29-May	10-Jun
1998	15	17.9	20-May	03-Jun
1999	10	4.1	25-Apr	04-May
2002	3	1.1	09-May	11-May
2003	7	10.7	30-May	05-Jun
2009	6	5.1	27-Apr	02-May
2010	9	6.8	10-May	18-May
2012	11	11.6	23-May	02-Jun
2013	9	9.3	17-May	25-May
2014	5	5.2	04-Jun	08-Jun
2015	8	7.5	20-May	27-May
Table S4 Total number of severe heat waves (with magnitude greater than 16) for the current year (1986-2015), mid-21st century (2021-2050), and end-21st century (2071-2100) based on the 27 CMIP5 climate models listed in Table S3. Heat waves were estimated using the 1971-2000 as the reference period.

Model	Current (1986-2015)	Mid-21st century (2021-2050)	End-21st century (2071-2100)
ACCESS1-0	0.5	6.1	24.5
ACCESS1-3	0.1	4.0	24.0
CanESM2	0.2	1.8	20.2
CCSM4	0.5	3.2	19.8
CESM1-BGC	0.2	2.3	20.0
CESM1-CAM5	0.2	3.8	25.3
CMCC-CM	0.6	5.2	26.4
CMCC-CMS	0.2	1.7	16.2
CNRM-CM5	0.6	8.0	28.2
CSIRO-Mk3-6-0	0.7	8.7	25.3
EC-EARTH	0.8	6.0	23.1
GFDL-CM3	0.3	6.9	28.2
GFDL-ESM2G	0.6	2.8	19.8
GFDL-ESM2M	0.5	3.2	20.1
HadGEM2-AO	0.3	3.2	24.7
HadGEM2-CC	0.4	7.0	27.4
HAdGEM2-ES	1.0	9.3	27.7
inmcm4	1.6	15.2	29.5
IPSL-CM5A-LR	0.6	9.3	29.1
IPSL-CM5A-MR	0.1	0.8	13.7
MIROC-5	0.1	1.0	15.0
MIROC-ESM	0.8	2.9	13.2
MIROC-ESM-CHEM	0.6	5.0	26.7
MPI-ESM-LR	0.2	4.4	25.5
MPI-ESM-MR	0.4	3.3	20.4
MRI-CGCM3	0.4	3.0	21.5
NorESM1-M	0.1	0.9	13.1
Table S5 Total number of severe heat waves (with magnitude greater than 16) for the current period, mid-21st century, and end-21st century based on the 11 members from CESM-LENS RCP8.5 scenario. Heat waves were estimated using the 1971-2000 as the reference period.

Run	Current (1986-2015)	Mid-21st century (2021-2050)	End-21st century (2071-2100)
1	0.2	2.6	20.3
2	0.6	2.3	22.3
3	0.3	2.7	21.7
4	0.1	2.6	22.1
5	0.3	3.5	21.4
6	0.2	2.7	23.4
7	0.5	4.6	21.5
8	0.1	3.2	22.0
9	0.4	4.1	23.1
10	0.1	3.2	22.7
11	0.3	4.0	21.7
Table S6 Total number of severe heat waves (with magnitude greater than 16) for the current year (1986-2015), mid-21st century (2021-2050), and end-21st century (2071-2100) based on the 11 runs from LENS Low warming 2°C scenario. Heat waves were estimated using the 1971-2000 as the reference period.

Run	Current (1986-2015)	Mid-21st century (2021-2050)	End-21st century (2071-2100)
1	0.2	3.1	20.6
2	0.6	2.3	22.3
3	0.4	2.6	6.6
4	0.2	2.1	4.8
5	0.2	1.3	5.5
6	0.3	1.5	4.0
7	0.1	2.7	7.7
8	0.1	1.8	4.9
9	0.4	3.2	8.4
10	0.2	1.7	4.9
11	0.3	3.2	5.6
Table S7: Total number of severe heat waves (with magnitude greater than 16) for the current (1986-2015) period, mid-21st century (2021-2050), and end-21st century (2071-2100) based on the 11 members from CESM-LENS Low warming 1.5°C scenario. Heat waves were estimated using the 1971-2000 as the reference period.

Run	Current (1986-2015)	Mid-21st century (2021-2050)	End-21st century (2071-2100)
1	0.1	1.1	2.4
2	0.4	1.5	2.4
3	0.3	1.8	3.0
4	0.5	0.9	2.5
5	0.5	1.3	2.9
6	0.4	1.4	3.1
7	0.5	2.5	4.4
8	0.1	1.3	1.9
9	0.3	2.6	3.0
10	0.1	1.4	1.9
11	0.4	1.7	2.0
Table S8 Duration of severe heat waves (with magnitude greater than 16) for the current period, mid-21st century, and end-21st century based on the 27 CMIP5 climate models listed in Table S3. Heat waves were estimated using the 1971-2000 as the reference period.

Model	Current (1986-2015)	Mid-21st century (2021-2050)	End-21st century (2071-2100)
ACCESS1-0	7.3	17.6	31.4
ACCESS1-3	0.9	12.6	28.8
CanESM2	2.0	12.0	20.5
CCSM4	3.5	12.7	19.7
CESM1-BGC	2.8	12.7	20.9
CESM1-CAM5	2.1	14.3	27.8
CMCC-CM	7.7	16.7	32.2
CMCC-CMS	2.2	8.6	17.2
CNRM-CM5	6.9	16.4	45.7
CSIRO-Mk3-6-0	7.7	17.3	28.0
EC-EARTH	8.8	17.9	25.7
GFDL-CM3	3.2	18.4	41.3
GFDL-ESM2G	6.3	13.0	20.4
GFDL-ESM2M	3.9	13.8	21.9
HadGEM2-AO	3.8	13.2	28.6
HadGEM2-CC	5.5	17.3	39.5
HadGEM2-ES	12.2	17.7	37.4
inmcm4	9.8	22.7	54.4
IPSL-CM5A-LR	6.0	20.3	44.6
IPSL-CM5A-MR	0.8	5.3	19.9
MIROC-5	2.0	6.1	23.6
MIROC-ESM	8.7	14.5	22.3
MIROC-ESM-CHEM	6.8	16.2	33.6
MPI-ESM-LR	2.1	16.3	27.3
MPI-ESM-MR	3.5	11.9	21.0
MRI-CGCM3	4.3	14.2	22.3
NorESM1-M	2.0	8.5	16.7
Table S9 Duration of severe heat waves (with magnitude greater than 16) for the current year (1986-2015), mid- 21st century (2021-2050), and end- 21st century (2071-2100) based on the 11 members from CESM-RCP8.5. Heat waves were estimated using the 1971-2000 as the reference period.

Run	Current (1986-2015)	Mid-21st century (2021-2050)	End-21st century (2071-2100)
1	2.3	11.5	20.2
2	5.4	12.3	22.9
3	4.9	10.9	21.7
4	1.0	13.4	22.6
5	4.0	12.3	21.4
6	3.1	12.8	23.7
7	6.0	12.9	21.4
8	1.1	11.9	20.9
9	3.5	14.3	23.6
10	0.9	13.2	22.5
11	3.4	14.8	21.5
Table S10 Duration of severe heat waves (with magnitude greater than 16) for the current year (1986-2015), mid-21st century (2021-2050), and end-21st century (2071-2100) based on the 11 members from CESM-2C. Heat waves were estimated using the 1971-2000 as the reference period.

Run	Current (1986-2015)	Mid-21st century (2021-2050)	End-21st century (2071-2100)
1	3.0	12.1	21.1
2	5.4	12.3	22.8
3	5.3	12.6	13.9
4	3.5	12.2	15.4
5	3.4	11.0	15.0
6	4.1	11.7	14.0
7	1.0	9.9	15.4
8	1.7	10.2	14.0
9	5.2	12.1	16.2
10	3.2	10.8	14.1
11	3.5	12.7	15.3
Table S11 Duration of severe heat waves (with magnitude greater than 16) for the current year (1986-2015), mid-21st century (2021-2050), and end-21st century (2071-2100) based on the 11 members from CESM-1.5C. Heat waves were estimated using the 1971-2000 as the reference period.

Run	Current (1986-2015)	Mid-21st century (2021-2050)	End-21st century (2071-2100)
1	2.1	9.8	12.2
2	5.0	11.6	13.4
3	4.8	10.2	11.2
4	5.3	8.3	13.1
5	6.1	8.5	12.9
6	5.3	9.0	13.0
7	5.7	10.1	13.3
8	1.9	9.3	10.6
9	3.9	10.0	11.9
10	1.6	9.6	11.0
11	6.4	10.1	12.0
Table S12 MPEHWd for the SSP3 scenario for the current year (1986-2015), mid-21st century (2021-2050), and end-21st century (2071-2100) scenarios based on the 27 CMIP5 climate models listed in Table S3.

Model	Current (1986-2015)	Mid-21st century (2021-2050)	End-21st century (2071-2100)
ACCESS1-0	3853	90966	1219700
ACCESS1-3	771	49509	1002300
CanESM2	3019	24530	644130
CCSM4	6397	43336	640220
CESM1-BGC	1657	24645	663210
CESM1-CAM5	1592	50282	1047000
CMCC-CM	8849	81333	1392400
CMCC-CMS	1440	16300	393830
CNRM-CM5	7554	130110	2038100
CSIRO-Mk3-6-0	5040	139680	1124200
EC-EARTH	6370	98082	1007400
GFDL-CM3	5621	296680	2617600
GFDL-ESM2G	6009	51678	568400
GFDL-ESM2M	3724	74682	708260
HadGEM2-AO	3944	37571	1044700
HadGEM2-CC	2535	104170	1635200
HAdGEM2-ES	7483	149710	1615500
inmcm4	12400	360480	3003300
IPSL-CM5A-LR	3300	187510	2489400
IPSL-CM5A-MR	695	13727	717550
MIROC-5	1187	22580	865300
MIROC-ESM	5029	32611	396920
MIROC-ESM-CHEM	6383	73888	1379300
MPI-ESM-LR	1443	74097	1095700
MPI-ESM-MR	4744	43166	751180
MRI-CGCM3	4808	42929	798950
NorESM1-M	7017	9396	330410
Table S13 MPEHWd for the SSP3 scenario for the current year (1986-2015), mid-21st century (2021-2050), and end 21st century (2071-2100) scenarios based on the 11 members from CESM-LENS RCP8.5 (CESM-RCP8.5) scenario.

Run	Current (1986-2015)	Mid-21st century (2021-2050)	End-21st century (2071-2100)
1	1094.2	28826.0	644620.0
2	3243.5	26444.0	817420.0
3	1792.4	31180.0	727610.0
4	318.3	31789.0	775860.0
5	1828.9	34743.0	718540.0
6	1500.6	32802.0	867090.0
7	3176.2	55895.0	731570.0
8	906.4	38911.0	732280.0
9	2727.4	46178.0	839050.0
10	781.0	37143.0	814600.0
11	2862.5	48538.0	725890.0
Table S14 MPEHWd for the SSP1 scenario for the current year (1986-2015), mid-21st century (2021-2050), and end-21st century (2071-2100) scenarios based on the 11 members from CESM-LENS Low warming 2 °C (CESM-2C) scenario.

Run	Current (1986-2015)	Mid-21st century (2021-2050)	End-21st century (2071-2100)
1	1615.6	39826.0	493950.0
2	3246.2	27801.0	577270.0
3	2160.0	33044.0	108400.0
4	1113.2	28092.0	88643.0
5	1423.1	16512.0	87643.0
6	2128.6	20223.0	62302.0
7	674.8	26334.0	132950.0
8	873.3	25502.0	85269.0
9	3059.6	39830.0	141240.0
10	2437.4	19757.0	75471.0
11	2404.4	39920.0	104910.0
Table S15 MPEHWd for the SSP1 scenario for the current year (1986-2015), mid-21st century (2021-2050), and end 21st century (2071-2100) scenarios based on the 11 members from CESM-LENS Low warming 1.5 °C (CESM-1.5C) scenario.

Run	Current (1986-2015)	Mid-21st century (2021-2050)	End-21st century (2071-2100)
1	1088.7	15049.0	33416.0
2	2978.8	18925.0	39774.0
3	1827.0	19574.0	50867.0
4	3073.1	11011.0	36094.0
5	2446.7	14640.0	42009.0
6	2558.2	15795.0	45154.0
7	2848.4	27616.0	66566.0
8	804.2	15244.0	28987.0
9	1661.7	28439.0	44180.0
10	942.0	17268.0	31800.0
11	3334.2	19177.0	38313.0
Table S16: MPEHWd for the SSP3 scenario based on CMIP5-RCP 8.5, CESM-RCP 8.5, CESM-1.5C, and CESM-2C.

Year	Mean Population per 30 year (SSP3)	Ensemble mean MPEHWd based on CESM-LENS	Ensemble mean MPEHWd based on CMIP5-RCP8.5		
		CESM-1.5C	CESM-2C	CESM-RCP8.5	
2009	718.78	1472.9	1308.6	1334.5	3111.3
2010	731.12	1706	1565.4	1427.1	3315.4
2011	743.51	1685.5	1502.2	1343.4	3425.9
2012	755.97	1699.5	1575.7	1358.2	3504.7
2013	768.48	1762.3	1689.1	1622.1	3762.6
2014	781.05	1875.3	1837.5	1716.6	4095.3
2015	793.68	2140.3	1924.3	1839.2	4550.4
2016	806.37	2145.8	2012.3	1860.6	4998.4
2017	819.12	2394.1	2299	1942.6	5616.3
2018	831.93	2479.8	2370.7	2007.5	6109.9
2019	844.8	2722.5	2445.2	2223.1	6988.3
2020	857.72	2855.2	2713.9	2669.7	7445.4
2021	870.74	3058.2	2977.4	2898.2	8574.7
2022	883.87	3120.9	3196.3	3023.8	9511.1
2023	901.42	3483.4	3251.9	3165.6	10373
2024	923.84	3707.5	3375.8	3687.5	11162
2025	937.36	3908.6	3660.3	3881.1	12297
2026	950.98	4088.1	3854.6	4144	13273
2027	964.7	4263	4242.7	4651.5	14220
2028	978.52	4461.7	4613.7	5080.2	15429
2029	992.44	4969.6	4917.7	5430.7	16892
2030	1006.4	5634.1	5275.1	6079.3	18221
2031	1020.5	5937.9	5836.1	6419.6	19958
2032	1034.5	6044.1	6600.2	6543.3	21582
2033	1048.7	6293.5	7030.5	7045.7	24051
2034	1062.9	6758.6	7593.3	7524.9	25304
2035	1077.2	6977.3	7911.5	8602.1	27256
2036	1091.5	7295	8551.8	9245.8	29660
2037	1105.8	7983.2	9447.7	10647	32375
2038	1120.3	8375.4	10784	12826	34616
2039	1134.8	9327	10868	13768	37735
2040	1149.2	9607.3	12377	15312	41959
2041	1163.5	10217	13402	17053	46185
2042	1177.8	11095	14891	19479	49943
2043	1192.1	11942	16072	22030	55453
2044	1206.2	12308	17962	23760	59496
2045	1220.3	13276	19322	26054	64607
2046	1234.3	13573	20872	28247	69443
2047	1248.3	14732	22739	31612	74967
2048	1262.2	14798	24724	34673	80242
2049	1276	16736	25786	37495	86246
2050	1289.8	17869	27944	42378	93941
2051	1303.5	18623	29666	46642	101580
2052	1317.2	19445	30582	50278	109290
2053	1330.8	19664	32539	54662	117900
----	-----	-----	-----	-----	-----
2055	1344.4	20899	36084	59844	127810
2056	1357.9	22313	38161	63946	137900
2057	1371.3	22775	42534	69803	146980
2058	1384.7	24141	45824	76457	157210
2059	1398.1	24923	49060	84081	167780
2060	1411.4	25320	53247	92055	179360
2061	1424.6	25729	56201	98317	191290
2062	1437.8	27884	59895	106250	203020
2063	1450.8	29448	63507	114310	216220
2064	1463.8	30701	65464	121760	229900
2065	1476.7	32089	69803	129360	243990
2066	1489.6	32372	71093	139400	260020
2067	1502.3	33418	75003	153270	276060
2068	1515.0	33839	79024	166880	291930
2069	1527.6	34540	81277	176800	304800
2070	1540.1	34272	86689	189780	327420
2071	1552.5	35371	90064	194320	345290
2072	1564.9	35484	95346	206680	364230
2073	1577.3	36296	100300	213260	384170
2074	1589.5	36589	106790	224690	400840
2075	1601.7	37111	111030	236040	423270
2076	1613.8	37173	115950	247560	444710
2077	1625.9	39152	118620	259070	466890
2078	1637.9	38729	121680	261030	491990
2079	1649.8	40418	126030	275200	515150
2080	1661.7	38871	132060	281650	538750
2081	1673.4	39186	139300	293000	563330
2082	1685.0	41430	144310	325200	588180
2083	1696.4	41887	152800	341970	615200
2084	1707.7	42447	159180	342180	639150
2085	1718.8	41933	160860	349930	665130
2086	1729.8	41676	166910	364080	693020
2087	1740.6	43273	169830	385170	722580
2088	1751.2	43445	173120	505020	750520
2089	1761.7	44325	177610	522730	781540
2090	1772.1	45684	182200	539860	811880
2091	1782.4	46779	186340	561430	842380
2092	1792.8	44604	192750	584110	878820
2093	1803.1	43460	201860	609270	909390
2094	1813.5	43941	206710	629270	940780
2095	1823.8	44234	214210	655760	975460
2096	1834.1	46743	217070	682700	1011400
2097	1844.4	47307	223120	704060	1043000
2098	1854.7	49839	227980	721950	1081600
2099	1864.9	51265	234750	744320	1117000
2100	1875.2	53455	240860	763140	1155200
Table S17: MPEHWd for the SSP1 scenario based on CMIP5-RCP 8.5, CESM-RCP 8.5, CESM-1.5C, and CESM-2C.

year	Mean Population per 30 year (SSP1)	Ensemble mean MPEHWd based on CESM-LENS	Ensemble mean MPEHWd based on CMIP5-RCP8.5		
		CESM-1.5C	CESM-2C	CESM-RCP8.5	CESM-RCP8.5
2009	726.95	1468.9	1306.6	1333.6	3123.8
2010	739.56	1703.5	1561.7	1423.8	3329.6
2011	752.14	1682.6	1498.1	1339.9	3438.5
2012	764.69	1696.7	1570.3	1354.4	3518
2013	777.2	1759.8	1685.1	1620	3777.7
2014	789.67	1873.8	1834.1	1716.3	4114.9
2015	802.11	2142.1	1921.5	1842.2	4571.3
2016	814.52	2151.5	2012.6	1867	5025.9
2017	826.9	2400.4	2303.2	1951.7	5646.7
2018	839.24	2489.5	2375.9	2019.3	6145.8
2019	851.54	2741.6	2453.2	2236.3	7032.7
2020	863.82	2876.2	2728.3	2691.8	7495.7
2021	875.97	2896.4	2775.9	2777.6	8155.5
2022	888	3093.4	3006.6	2937.8	8638.4
2023	899.91	3169.5	3241.7	3074.5	9588.6
2024	911.7	3559.6	3308.2	3229.1	10458
2025	923.37	3807	3447.3	3765.8	11260
2026	934.92	4022.6	3752.9	3979.8	12411
2027	946.34	4222	3961.5	4250.4	13407
2028	957.65	4418.4	4367	4782.3	14356
2029	968.83	4639.7	4758.8	5241	15565
2030	979.9	5179.5	5077.3	5622.8	17038
2031	990.84	5892.2	5477.1	6341.8	18394
2032	1001.7	6227.4	6103.5	6732.2	20150
2033	1012.4	6389.3	6909	6900.5	21796
2034	1022.9	6680	7386.9	7476.1	24230
2035	1033.4	7242.1	8035.3	8041.4	25498
2036	1043.7	7530.9	8413.4	9226.5	27506
2037	1053.9	7924.7	9157.2	9973.5	29973
2038	1064	8687.9	10182	11647	32666
2039	1073.9	9148.2	11689	14071	34960
2040	1083.8	10035	11842	15189	37967
2041	1093.4	10382	13590	16951	42089
2042	1102.7	11055	14773	18955	46203
2043	1111.8	12001	16460	21745	50094
2044	1120.7	12924	17898	24611	55790
2045	1129.3	41560	19947	26664	59882
2046	1137.7	13236	21507	29313	64934
2047	1145.9	40277	23327	31836	69835
2048	1153.8	14439	25407	35434	75299
2049	1161.5	39905	27723	38910	80525
2050	1168.9	14779	28804	42004	86549
2051	1176	38164	31102	47443	93941
2052	1182.9	16057	33090	52255	101060
2053	1189.4	38044	34185	56331	108570
Year	Area	Julian Day	Julian Day	Julian Day	Julian Day
------	---------	------------	------------	------------	------------
2054	1195.6	16121	36320	61020	116760
2055	1201.6	36565	39915	66599	126130
2056	1207.2	18431	42194	70820	135590
2057	1212.5	37245	47071	77341	144070
2058	1217.6	19535	50386	84287	153390
2059	1222.3	36957	53602	92598	163280
2060	1226.8	20374	58216	101210	174140
2061	1230.8	38034	61121	107820	184760
2062	1234.6	21052	62835	115980	195140
2063	1238	40232	82583	131240	231590
2064	1241	21104	89462	138730	245470
2065	1243.7	39994	96966	148440	301280
2066	1246	22292	106220	151280	358380
2067	1248	39126	113240	159070	374840
2068	1249.6	23860	114930	163250	391080
2069	1250.9	38652	119490	168940	408360
2070	1251.8	24327	123850	174560	426240
2071	1252.3	39402	127650	183840	458370
2072	1252.5	25966	131240	193840	515610
2073	1252.4	38486	136940	203840	556190
2074	1251.9	26819	141640	213840	598630
2075	1251	39268	146340	223840	642470
2076	1249.8	27194	151040	233840	688310
2077	1248.2	39968	155740	243840	735070
2078	1246.2	27678	160440	253840	783870
2079	1243.9	39632	165140	263840	833670
2080	1241.3	29877	170440	273840	884370
2081	1238.3	39403	175140	283840	934070
2082	1235	31278	179840	293840	984770
2083	1231.5	37347	184540	303840	1035470
2084	1227.6	32389	190240	313840	1085170
2085	1223.5	37203	194940	323840	1134870
2086	1219	33811	200640	333840	1184570
2087	1214.2	39149	205340	343840	1234270
2088	1209.2	33928	210040	353840	1283970
2089	1203.8	37823	214740	363840	1333670
2090	1198.1	35066	219440	373840	1383370
2091	1192.2	38486	224140	383840	1433070
2092	1186.1	35372	228840	393840	1482770
2093	1179.6	36879	233540	403840	1532470
2094	1172.9	35968	238240	413840	1582170
2095	1166	37385	242940	423840	1631870
2096	1158.8	35960	247640	433840	1681570
2097	1151.4	36925	252340	443840	1731270
2098	1143.7	36759	257040	453840	1780970
2099	1135.7	37008	261740	463840	1829670
2100	1127.5	36698	266440	473840	1879370

Reference:

Menon S, Hansen J, Nazarenko L and Luo Y 2002 Climate Effects of Black Carbon Aerosols in China and India *Science* **297** 2250

Roy S S, Mahmood R, Niyogi D, Lei M, Foster S A, Hubbard K G, Douglas E and Pielke R 2007 Impacts of the agricultural Green Revolution–induced land use changes on air temperatures in India *J. Geophys.*
Russo S, Sillmann J and Fischer E M 2015 Top ten European heatwaves since 1950 and their occurrence in the coming decades Environ. Res. Lett. 10 124003

Sacks W J, Cook B I, Buenning N, Levis S and Helkowski J H 2009 Effects of global irrigation on the near-surface climate Clim. Dyn. 33 159–75