ORIGINAL RESEARCH

Association of Sleep Duration, Napping, and Sleep Patterns With Risk of Cardiovascular Diseases: A Nationwide Twin Study

Zhiyu Wang, MPH*; Wenzhe Yang, MPH*; Xuerui Li, MSc; Xiuying Qi, PhD; Kuan-Yu Pan, PhD†; Weili Xu, PhD†

BACKGROUND: Although sleep disorders have been linked to cardiovascular diseases (CVDs), the association between sleep characteristics and CVDs remains inconclusive. We aimed to examine the association of nighttime sleep duration, daytime napping, and sleep patterns with CVDs and explore whether genetic and early-life environmental factors account for this association.

METHODS AND RESULTS: In the Swedish Twin Registry, 12,268 CVD-free twin individuals (mean age=70.3 years) at baseline were followed up to 18 years to detect incident CVDs. Sleep duration, napping, and sleep patterns (assessed by sleep duration, chronotype, insomnia, snoring, and daytime sleepiness) were self-reported at baseline. CVDs were ascertained through the Swedish National Patient Registry and the Cause of Death Register. Data were analyzed using a Cox model. In the multiadjusted Cox model, compared with 7 to 9 hours/night, the hazard ratios (HRs) of CVDs were 1.14 (95% CI, 1.01–1.28) for <7 hours/night and 1.10 (95% CI, 1.00–1.21) for ≥10 hours/night, respectively. Compared with no napping, napping 1 to 30 minutes (HR, 1.11 [95% CI, 1.03–1.18]) and >30 minutes (HR, 1.23 [95% CI, 1.14–1.33]) were related to CVDs. Furthermore, a poor sleep pattern was associated with CVDs (HR, 1.22 [95% CI, 1.05–1.41]). The co-twin matched control analyses showed similar results as the unmatched analyses, and there was no significant interaction between sleep characteristics and zygosity (P values >0.05).

CONCLUSIONS: Short or long sleep (<7 or ≥10 hours/night), napping, and poor sleep patterns are associated with an increased CVD risk. Genetic and early-life environmental factors may not account for the sleep–CVD association.

Key Words: cardiovascular diseases • cohort study • sleep • twin study

S

tee, a behavior that we typically perform every day, is vitally important to our health. Sleep problems, including inappropriate or low-quality sleep, are a growing and underappreciated determinant of health. Poor sleep can, independent of primary sleep disorders, contribute to several molecular, immune, and neural changes that play a role in disease development.

Previous studies have shown that sleep duration and quality may influence the development of cardiovascular diseases (CVDs). Although insufficient sleep has been consistently reported to increase the risk of CVDs in several meta-analyses, the association of excessive sleep and CVDs requires further investigation. In addition, whether daytime napping is beneficial or
Wang et al Sleep and Cardiovascular Diseases

The joint effects of nighttime sleep and daytime napping on cardiovascular diseases (CVDs) have not been well studied. Moreover, as nighttime sleep and daytime napping only reflect parts of sleep behavior, a multidimensional sleep assessment including sleep duration, chronotype, insomnia, snoring, and daytime sleepiness has been introduced to evaluate the overall sleep pattern and its impact on CVDs. However, studies undertaking this comprehensive approach to assess the impact of sleep on CVDs have been limited. Accumulating evidence showed that genetic and early-life environmental factors (such as natural environment, fetal environment, childhood socioeconomic status, etc) might influence sleep habits and cardiovascular health. However, it is unclear whether these factors could contribute to the association between sleep and CVDs. Twins who are raised together typically share their early-life environment and genetic background; therefore, a twin study design is useful to explore whether these unmeasurable factors could play a role in the sleep–CVDs association.

In the current study, we aimed to (1) examine the association of nighttime sleep duration and daytime napping with CVDs, (2) assess the overall impact of sleep on CVDs using a comprehensive sleep pattern indicator, and (3) explore whether genetic and early-life environmental factors explain the observed associations using a long-term cohort study of nationwide Swedish twins.

METHODS

The data that support the findings of this study are available from the corresponding author on reasonable request.

Study Population

The study population was drawn from the nationwide STR (Swedish Twin Registry), which began in the 1960s. During 1998 to 2002, all living twins born in 1958 or earlier were recruited to participate in the SALT (Screening Across the Lifespan Twin) study conducted by computer-assisted telephone interview. Of all participants, 14,388 twin individuals participated in the sleep survey in SALT. Of them, we excluded 120 individuals with missing information on nighttime sleep duration and/or daytime napping and 2000 individuals who had prevalent major CVDs (including coronary heart disease [CHD] and stroke) at baseline. Finally, 12,268 individuals remained and were followed up until December 31, 2016.

Data Collection

Information on age, sex, education, marital status (married/cohabiting, single including divorced and living alone), zygosity status (monozygotic, dizygotic, undetermined zygosity), height, weight, smoking status (never, former/current), alcohol consumption (no/mild drinking, heavy drinking), and physical activity was collected in the SALT study. Education (<8 versus ≥8 years) was defined using the years of formal schooling. Body mass index, calculated as weight (kilograms) divided by height (meter squared), was categorized into the following 4 groups: underweight (<20 kg/m²), healthy (20–24.9 kg/m²), overweight (25–29.9 kg/m²), and obese (≥30 kg/m²). The level of physical activity was dichotomized as low (including almost never and much less than average) and regular (including less than average, average, more than average, much more than average, and maximum) based on the annual exercise pattern.

Information on the medical history of type 2 diabetes, hypertension, depression, and CVDs were ascertained from the Swedish NPR (National Patient Registry), which covers all inpatient diagnoses in Sweden from...
the 1960s and outpatient care (specialist clinic) since 2001.26 Disease diagnoses were identified based on the International Classification of Diseases (ICD). The International Classification of Diseases, Seventh Revision (ICD-7) was used until 1968, the International Classification of Diseases, Eighth Revision (ICD-8) from 1969 to 1986, the International Classification of Diseases, Ninth Revision (ICD-9) from 1987 to 1996, and the International Classification of Diseases, Tenth Revision (ICD-10) since 1997.

All participants provided informed consent, and the study was approved by the Regional Ethics Board at Karolinska Institutet, Stockholm, Sweden, and the Institutional Review Board at the University of Southern California.

Assessment of Sleep Characteristics
Sleep was assessed at baseline based on the Karolinska Sleep Questionnaire, including nighttime sleep duration, daytime napping, chronotype, insomnia, snoring, and daytime sleepiness (Table S1).27 Nighttime sleep duration was divided into 4 groups: <7, 7 to 9 (ie, ≥7 to <9), 9 to 10 (ie, ≥9 to <10), or ≥10 hours/night.1,28 Daytime napping was categorized into no napping (0 minutes), 1 to 30 minutes, or >30 minutes/day. Total daily sleep duration was calculated as the sum of nighttime sleep duration and daytime napping duration.

A subsample of SALT participants (n=5464; 44.5%) had complete sleep information. Among these participants, we calculated composite sleep scores, which integrated 5 sleep characteristics (total daily sleep duration, chronotype, insomnia, snoring, and daytime sleepiness) to assess sleep patterns.17 Low-risk sleep characteristics were defined as follows: total daily sleep duration of 7 to 9 hours, morning person (definitely/to some degree a morning person), never/seldom insomnia symptoms, never heavy snoring, or never/seldom daytime sleepiness. For each sleep characteristic, a score of 1 was assigned if defined as low risk, otherwise a score of 0. Thus, the sum of the aforementioned 5 sleep characteristic scores ranged from 0 to 5. We further categorized the sleep patterns as “healthy” (≥4 scores), “intermediate” (2–3 scores), and “poor” (≤1 score).17

Assessment of CVDs
The primary outcomes of this study were major CVDs (including CHD and stroke) according to the previous studies.17 Diagnoses of CVDs were derived from the NPR and the Swedish Cause of Death Register (recording death dates and underlying and contributing death causes since 1952). CVDs were ascertained according to ICD-7 through ICD-10 codes: ICD-7 codes 420 for CHD and codes 330–332 for stroke, ICD-8/ICD-9 codes 410–414 for CHD and codes 430–434 for stroke, and ICD-10 codes I20–I25 for CHD and codes I60–I66 for stroke. The date of CVD onset was recorded according to the earliest documented date of the CVD diagnosis in the NPR or the Swedish Cause of Death Register.

Statistical Analysis
Baseline characteristics of the study participants by nighttime sleep duration were compared using χ^2 tests.
for categorical variables and ANOVA for continuous variables.

The hazard ratios (HRs) and 95% CIs for the associations between sleep characteristics and CVDs were estimated using Cox proportional hazard models in unmatched analysis among all individuals. Follow-up time was calculated from the baseline date until the date of incident CVDs, date of death, or the censoring date (December 31, 2016), whichever occurred first. The analyses were clustered on twin pairs to compute a robust variance that could control for twin dependency within pairs.27 The proportional hazard assumption was assessed using the Schoenfeld residuals method, and no violation was observed. In the basic Cox model, we adjusted for age, sex, and education. In the multivariable Cox model, we additionally adjusted for marital status, body mass index, smoking status, alcohol consumption, physical activity, type 2 diabetes, hypertension, and depression.

We also used restricted cubic splines with 4 knots at the 5th, 35th, 65th, and 95th percentiles29 to visualize the association of nighttime sleep duration with CVDs. In addition, to assess the joint effects of nighttime sleep duration and daytime napping on the risk of CVDs, we created dummy variables of 12 categories according to the cross-tabulation of nighttime sleep duration (<7, 7–9, 9–10, or ≥10 hours/night) and daytime napping (0, 1–30, or >30 minutes). Multiplicative interaction between nighttime sleep duration and daytime napping was examined by adding an interaction term to the model.30

Stratified Cox models by twin pairs were used in the co-twin matched control analyses to explore the role of familial background (ie, genetic and early-life environmental factors) in the association between sleep characteristics and CVDs. Twin pairs discordant both for sleep characteristics and for CVDs status (or CVDs onset dates) were included in these analyses. Finally, 911, 847, and 323 twin pairs were included in the co-twin matched control analyses regarding nighttime sleep duration, daytime napping, and sleep patterns, respectively (Figure 1). If the associations observed in the unmatched analyses among all twin individuals were attenuated in the co-twin matched control analyses, this suggests that genetic and early-life environmental factors might contribute to this association. In addition, the multiplicative interaction term between sleep characteristics and zygosity was included in the Cox model to further examine whether genetic background might account for the sleep–CVD associations.21,24,31

Missing values on education (n=52), marital status (n=3), body mass index (n=518), smoking status (n=25), alcohol consumption (n=60), and physical activity (n=4168) were imputed using “multivariate imputation by chained equations” under the missing at random assumption.32

In the sensitivity analysis, we performed the following analyses: (1) assessing the associations between sleep characteristics and different CVDs subtypes, including CHD, angina pectoris, myocardial infarction, stroke, hemorrhagic stroke, and ischemic stroke; (2) adjusting for daytime napping when analyzing the association of nighttime sleep duration with CVDs and vice versa; (3) adjusting for anxiety; (4) excluding participants who developed CVDs (n=571) in the first 2 years of follow-up; (5) excluding participants who developed atrial fibrillation (n=351) or heart failure (n=188) before baseline; (6) excluding participants with any missing values; and (7) using the Fine-Gray subdistribution hazard model to evaluate the association between sleep characteristics and CVDs in the presence of competing events (considering noncardiovascular death as a competitive risk factor).

Statistical analyses were performed using R software version 4.0.5 (R Foundation, Vienna, Austria). The R packages were used to impute the missing data (mice, version 3.13.0), to draw restricted cubic splines (rms, version 6.2–0), and to fit Cox proportional hazards models (survival, version 3.2–10). All P values were 2-sided, and P<0.05 was considered statistically significant.

RESULTS
Characteristics of the Study Population
Of the 12 268 participants, 7036 (57.4%) were female participants, and the mean (SD) age at baseline was 70.3 (7.6) years. The mean (SD) nighttime sleep duration in the population was 8.5 (1.2) hours/night. Among all participants, 830 (6.8%), 6410 (52.2%), 3608 (29.4%), and 1420 (11.6%) had <7, 7 to 9, 9 to 10, and ≥10 hours of sleep/night at baseline, respectively. In total, 5082 (41.4%) had daytime napping, including 2897 (23.6%) with ≤30 minutes and 2185 (17.8%) with >30 minutes.

Compared with those with 7 to 9 hours of sleep/night, individuals with <7 hours of sleep/night were younger; more educated; more likely to be male sex, smokers, and heavy drinkers; and had a higher body mass index. Those with ≥10 hours of sleep/night were older, less educated, and more likely to be female sex and to have type 2 diabetes. In addition, participants with <7 or ≥10 hours of sleep/night were more likely to be single; have a low level of physical activity; and have depression, habitual daytime napping, and poor sleep patterns (Table 1). Baseline characteristics of the study population by sleep pattern are shown in Table S2.

Association Between Sleep Characteristics and CVDs
During a median follow-up of 12.9 years, 4779 participants developed CVDs, including 3251 CHD and 2292 stroke cases. Restricted cubic spline demonstrated a
U-shaped curve for the association between nighttime sleep duration and CVDs, with the indication that people with 7 to 9 hours of nighttime sleep had the lowest risk of CVDs (Figure 2). Therefore, 7 to 9 hours of sleep/night was used as the reference group in the analyses. In multivariable-adjusted Cox models, compared with 7 to 9 hours of sleep/night, <7 (HR, 1.14 [95% CI, 1.01–1.28]) and ≥10 (HR, 1.10 [95% CI, 1.00–1.21]) hours of sleep/night were associated with an increased risk of CVDs. Compared with no napping, 1 to 30 minutes...
Short and long nighttime sleep (<7 or ≥10 hours/night) and daytime napping were associated with a moderately increased risk of CVDs. Furthermore, compared with the healthy sleep pattern, the poor sleep pattern comprised negative sleep characteristics (ie, insufficient/excessive sleep, evening chronotype, frequent insomnia, heavy snoring, frequent daytime sleepiness) was associated with CVDs, and genetic and early-life environmental factors might not account for the sleep–CVD association.

Supplementary Analysis

Similar results were obtained when we repeated the following analyses: (1) analyzing the association of sleep characteristics with CHD, angina pectoris, myocardial infarction, stroke, hemorrhagic stroke, and ischemic stroke separately (Table S4); (2) adjusting for nighttime sleep duration and daytime napping mutually (Table S5); (3) adjusting for anxiety (Table S6); (4) excluding participants who developed CVDs within the first 2 years of follow-up (Table S7); (5) excluding participants who developed atrial fibrillation or heart failure before baseline (Table S8); (6) excluding participants with any missing values (Table S9); and (7) performing competing risk analysis (Table S10).

DISCUSSION

In this large-scale prospective cohort study of nationwide Swedish twins, we found the following: (1) both short and long nighttime sleep (<7 or ≥10 hours/night) and daytime napping were associated with a moderately increased risk of CVDs, (2) poor sleep patterns comprising negative sleep characteristics (ie, insufficient/excessive sleep, evening chronotype, frequent insomnia, heavy snoring, frequent daytime sleepiness) was associated with CVDs, and (3) genetic and early-life environmental factors might not account for the sleep–CVD association.

In line with previous studies, we observed a U-shaped association between nighttime sleep duration and CVDs, indicating that both short and long nighttime sleep were detrimental to cardiovascular health.4–6,33 However, the definitions of short (such as <5, <6, or <7 hours)5 and long sleep (such as >8, >9, or >10 hours)33 have been variable in previous studies. A Joint Consensus Statement has recommended that the optimal nighttime sleep duration for adults is 7 to 9 hours, and sleeping <7 hours/night is considered to be associated with adverse health outcomes.28 In line with this definition, our study found that nighttime sleep of <7 hours was detrimental to cardiovascular health.28 Similar to several previous studies, we observed that sleeping ≥10 hours/night was also related to a higher risk of CVDs.33,34
Although daytime napping is perceived as a common behavior in older adults, its long-term effect on cardiovascular health remains unclear. A meta-analysis showed that daytime napping of ≥60 minutes was associated with an increased risk of CVDs. In contrast, a Swiss cohort study found that napping once or twice a week was protective against CVDs. In the present study, compared with no napping, both napping 1 to 30 and >30 minutes were associated with an increased risk of CVDs.

The importance of taking into account daytime napping in understanding the association of nighttime sleep duration with cardiovascular risk has been addressed, but few studies have been able to study the interplay between daytime napping and nighttime sleep on CVDs. One study found that daytime napping was associated with increased CVDs in those who slept >6 hours/night, but not in those who slept ≤6 hours/night. Another study showed joint effects of sleeping ≥9 hours/night and midday napping >90 minutes on stroke. In the current study, the highest risk of CVDs was shown in individuals with <7 hours of sleep/night and napping ≥30 minutes, and daytime napping was still related to a higher risk of CVDs, even in those with adequate nighttime sleep (7 to 9 hours/night). However, we did not detect a statistically significant interaction in our study.

In addition to nighttime sleep and daytime napping, chronotype, insomnia, snoring, and daytime sleepiness also contribute to the overall sleep pattern. Individuals with later chronotype were more prone to sleep complaints such as insufficient sleep and insomnia. Previous studies found that short sleep with insomnia or poor sleep quality and snoring with daytime sleepiness were associated with a higher risk of CVDs. Snoring could indicate sleep-disordered breathing, which might cause acute or long-term adverse effects on heart health. Therefore, it is plausible that different sleep characteristics may influence each other and jointly affect cardiovascular health. By applying a comprehensive assessment of sleep incorporating these characteristics, in line with 2 previous studies, we might be able to better understand the complex relationship between sleep and cardiovascular health.

Figure 3. Sleep characteristics and risks of cardiovascular diseases.
Forest plot illustrating the estimated hazard ratios (HRs) and 95% CIs of cardiovascular diseases in relation to sleep characteristics. Adjusted for age, sex, education, marital status, body mass index, smoking status, alcohol consumption, physical activity, type 2 diabetes, hypertension, and depression. *P<0.05.

Sleep characteristics	Cases/Person-Years	HR(95%CI)
Sleep duration		
<7 hours/night	322/10 245	1.14 (1.01−1.28)
7 to 9 hours/night	2397/79 772	Reference
9 to 10 hours/night	1470/41 784	1.03 (0.96−1.10)
≥10 hours/night	590/14 051	1.10 (1.00−1.21)*
Daytime napping		
0 minutes	2553/90 568	Reference
1−30 minutes	1226/33 624	1.11 (1.03−1.18)
>30 minutes	1000/21 661	1.23 (1.14−1.33)
Sleep pattern		
Healthy	636/23 257	Reference
Intermediate	1149/37 503	1.06 (0.96−1.17)
Poor	280/7574	1.22 (1.05−1.41)
activity, disrupt circadian rhythms, which in turn can accelerate the occurrence of cardiovascular risk factors such as diabetes, obesity, atherosclerosis, and hypertension. Prolonged sleep, however, may be a marker that requires medical, neurological, or psychiatric evaluations, especially for older adults. These subclinical states manifested by long sleep may be the underlying cause of CVDs. In addition, after daytime napping, the activation of the sympathetic nervous system can lead to a rapid rise in blood pressure and heart rate. A prolonged nap can enter deep slow-wave sleep but often fail to complete the normal sleep cycle, thereby disrupting circadian rhythms.

The strengths of our study include the large sample of nationwide twins, the long-term follow-up period, and the comprehensive assessment of sleep. The twin cohort provides us a unique opportunity to explore the role of genetic and early-life environmental factors in the sleep–CVD association. However, several limitations need to be acknowledged. First, all sleep characteristics were self-reported, which may lead to potential misclassification. However, the misclassification is likely to be nondifferential, thus leading to an underestimation of the observed associations. Although objective sleep measures, such as actigraphy or polysomnography, can provide more accurate sleep assessments, self-reported sleep measures may be used as an easy tool to target individuals at risk of health outcomes. Second, sleep was evaluated only at baseline; therefore, the potential fluctuation of sleep during follow-up was not taken into account. Third, although we included multiple potential confounders in our analyses, residual confounding (such as air pollution and rural–urban environments) could not be taken into account in the analysis because such data were unavailable. Finally, the present study was conducted on twin individuals in Sweden where relatively the winter time is longer and daytime is shorter than in other countries. Thus, caution is required when generalizing our findings to the general population in other countries.

CONCLUSIONS

In conclusion, our study provides evidence that insufficient (<7 hours/night) or excessive (≥10 hours/night) nighttime sleep, daytime napping, and a poor sleep pattern are associated with an increased risk of CVDs. Genetic and early-life environmental factors may not account for the observed associations. Our findings encourage the adoption of an appropriate night sleep duration (7–9 hours/night) and a healthy sleep pattern to prevent the development of CVDs.

ARTICLE INFORMATION

Received March 3, 2022; accepted May 24, 2022.

Affiliations

Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China (Z.W., W.Y., X.L., X.Q., W.X.); Tianjin Key Laboratory of Environment (Z.W., W.Y., X.L., X.Q., W.X.) and Center for International Collaborative Research on Environment (Z.W., W.Y., X.L., X.Q., W.X.), Nutrition and Public Health, Tianjin, China; Department of Psychiatry, Amsterdam Public Health, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands (K.-Y.P.); and Aging Research

Table 2. HRs and 95% CIs for the Association Between Sleep Characteristics and Cardiovascular Diseases Among Co-Twin Matched Pairs: Results From Stratified Cox Models

Sleep characteristics	No. of pairs	HR (95% CI)*	HR (95% CI)†
Sleep duration, h/night			
<7	911	1.11 (0.79–1.55)	1.03 (0.72–1.46)
7–9	Reference	Reference	
9–10	1.02 (0.85–1.22)	1.01 (0.83–1.21)	
≥10	1.10 (0.83–1.47)	1.09 (0.81–1.47)	
Daytime napping, min	847		
0	Reference	Reference	
1–30	1.28 (1.06–1.55)	1.22 (1.00–1.49)†	
>30	1.50 (1.19–1.90)	1.44 (1.13–1.85)	
Sleep pattern	323		
Healthy	Reference	Reference	
Intermediate	1.83 (1.14–2.05)	1.61 (1.17–2.23)	
Poor	1.79 (1.17–2.74)	1.73 (1.10–2.74)	

HR indicates hazard ratio.
*Adjusted for sex and education.
†Additionally adjusted for marital status, body mass index, smoking status, alcohol consumption, physical activity, type 2 diabetes, hypertension, and depression.
‡P<0.05.

In conclusion, our study provides evidence that insufficient (<7 hours/night) or excessive (≥10 hours/night) nighttime sleep, daytime napping, and a poor sleep pattern are associated with an increased risk of CVDs. Genetic and early-life environmental factors may not account for the observed associations. Our findings encourage the adoption of an appropriate night sleep duration (7–9 hours/night) and a healthy sleep pattern to prevent the development of CVDs.
REFERENCES

1. Consensus Conference P, Watson NF, Badr MS, Belenky G, Bliwise DL, Buxton OM, Buysse D, Dinges DF, Gangwisch J, Grandner MA, et al. Joint consensus statement of the American Academy of Sleep Medicine and Sleep Research Society on the recommended amount of sleep for a healthy adult: methodology and discussion. J Clin Sleep Med. 2015;11:931–952. doi: 10.5664/jcsm.4950

2. Ferrie JE, Kumari M, Salo P, Singh-Manoux A, Kivimaki M. Sleep epidemiology—a rapidly growing field. Int J Epidemiol. 2011;40:1431–1437. doi: 10.1093/ije/dyr203

3. St-Onge MP, Grandner MA, Brown D, Conroy MB, Jean-Louis G, Coons M, Bhatt DL, American Heart Association Obesity, Behavior Change, Diabetes, and Nutrition Committees of the Council on Lifestyle and Cardiometabolic Health; Council on Cardiovascular Disease in the Young; Council on Clinical Cardiology; and Stroke Council. Sleep duration and quality: impact on lifestyle behaviors and cardiometabolic health: a scientific statement from the American Heart Association. Circulation. 2016;134:e367–e386. doi: 10.1161/CIR.0000000000000444

4. Cappuccio FP, Cooper D, D’Elia L, Strazzullo P, Miller MA. Sleep duration predicts cardiovascular outcomes: a systematic review and meta-analysis of prospective studies. Eur Heart J. 2011;32:1484–1492. doi: 10.1093/eurheartj/ehr007

5. Itani O, Jike M, Watanabe N, Kaneita Y. Short sleep duration and health outcomes: a systematic review, meta-analysis, and meta-regression. Sleep Med. 2017;32:246–256. doi: 10.1016/j.sleep.2016.08.006

6. Yin J, Jin X, Shang Z, Li S, Huang H, Li P, Peng X, Peng Z, Yu K, Bao W, et al. Relationship of sleep duration with all-cause mortality and cardiovascular events: a systematic review and dose-response meta-analysis of prospective cohort studies. J Am Heart Assoc. 2017;6:e005947. doi: 10.1161/JAHA.117.005947

7. Knutson KL, Turek FW. The U-shaped association between sleep and health: the 2 peaks do not mean the same thing. Sleep. 2006;29:878–879. doi: 10.1093/sleep/29.7.878

8. Ai S, Zhang J, Zhao G, Wang N, Li G, So HC, Liu Y, Chau SW, Chen J, Tan X, et al. Causal associations of short and long sleep durations with 12 cardiovascular diseases: linear and nonlinear Mendelian randomization analyses in UKBiobank. Eur Heart J. 2021;42:3349–3357. doi: 10.1093/eurheartj/ehab170

9. Yamada T, Hara K, Shojima N, Yamauchi T, Kadowaki T. Daytime napping and the risk of cardiovascular disease and all-cause mortality: a prospective study and dose-response meta-analysis. Sleep. 2015;38:1945–1953. doi: 10.5665/sleep.5246

10. Zhou L, Yu K, Yang L, Wang H, Xiao Y, Qiu G, Liu X, Yuan Y, Bai Y, Li et al. Sleep duration, midday napping, and sleep quality and incident stroke: the Dongfeng-Tongji cohort. Neurology. 2020;94:e345–e356. doi: 10.1212/WNL.0000000000008739

11. Hauserli N, Haba-Rubio J, Heinzer R, Marques-Vidal P. Association of napping with incident cardiovascular events in a prospective cohort study. Heart. 2019;105:1793–1798. doi: 10.1161/JAHA.119.0134999

12. Owens JF, Buysse DJ, Hall M, Kamarck TW, Lee L, Strollo PJ, Reis SE, Matthews KA. Napping, nighttime sleep, and cardiovascular risk factors in mid-life adults. J Clin Sleep Med. 2010;6:330–335. doi: 10.5664/jcsm.27673

13. Merkanto I, Lahti T, Puolijoki H, Vanhala M, Peltonen M, Laatikainen T, Vartiainen E, Salomaa V, Kivimäki M, Partonen T. Associations of chronotype and sleep with cardiovascular diseases and type 2 diabetes. Chronobiol Int. 2013;30:470–477. doi: 10.3109/07420528.2012.741171

14. Zheng B, Yu C, Lv J, Guo Y, Bian Z, Zhou M, Yang L, Chen Y, Li X, Zou J, et al. Insomnia symptoms and risk of cardiovascular diseases among 0.5 million adults: A 10-year cohort, Neurology. 2019;93:e2110–e2120. doi: 10.1212/WNL.000000000008581

15. Li D, Liu D, Wang X, He D. Self-reported habitual napping and risk of cardiovascular disease and all-cause mortality. Atherosclerosis. 2014;235:189–195. doi: 10.1016/j.atherosclerosis.2014.04.031

16. Wang L, Liu Q, Heizhui M, Yao X, Luo Q, Li N. Association between excessive daytime sleepiness and risk of cardiovascular disease and all-cause mortality: a systematic review and meta-analysis of longitudinal cohort studies. J Am Med Dir Assoc. 2020;21:1979–1985. doi: 10.1016/j.jamda.2020.05.023

17. Fan MY, Sun DJY, Zhou T, Heianza Y, Li J, Li LMM, Qi L. Sleep patterns, genetic susceptibility, and incident cardiovascular disease: a prospective study of 385,292 UKBiobank participants. Eur Heart J. 2020;41:1189–1199. doi: 10.1093/eurheartj/ehz849

18. Huang BH, Duncan MJ, Cistulli PA, Nassar N, Hamer M, Stamatakis E. Sleep and physical activity in relation to all-cause, cardiovascular disease and cancer mortality risk. Br J Sports Med. 2021;55:1014–1024. doi: 10.1136/bjsports-2021-104046

19. Goldstein MR, Rana BK, Panizzon MS, Grant MD, Toomey R, Jacobson KG, Xiong H, Cronin-Golomb A, Franz CE, Kremen WS, et al. Genetic and environmental influences on sleep quality in middle-aged men: a twin study. J Sleep Res. 2013;22:519–526. doi: 10.1111/jsr.12048

20. Dashti HS, Daglia I, Lane JM, Huang Y, Udder MS, Wang H, Ollila HM, Jones SE, Kim J, Wood AF, et al. Genetic determinants of daytime napping and effects on cardiometabolic health. Nat Commun. 2021;12:900. doi: 10.1038/s41467-020-20585-3

21. Song C, Chang Z, Magnusson PK, Ingelsson E, Pedersen NL. Genetic factors may play a prominent role in the development of coronary heart disease dependent on important environmental factors. J Intern Med. 2014;275:631–639. doi: 10.1111/jim.12177

22. Riggs DW, Yeager RA, Bhatnagar A. Defining the human envirome: an omics approach for assessing the environmental risk of cardiovascular disease. Circ Res. 2018;122:1259–1275. doi: 10.1161/CIRCRESAHA.117.311220

23. Lichtenstein P, De Faire U, Foderbus B, Svartengren M, Svendberg P, Pedersen NL. The Swedish Twin Registry: a unique resource for clinical, epidemiological and genetic studies. J Intern Med. 2002;252:184–205. doi: 10.1046/j.1365-2966.2002.01032.x

24. Karkkainen S, Ropponen A, Narusyte J, Mather L, Akerstedt T, Silventoinen K, Mondor-Furzeutz E, Svedberg P. Night work as a risk factor of future disability pension due to musculoskeletal diagnoses: a prospective cohort study of Swedish twins. Eur J Public Health. 2017;27:659–664. doi: 10.1093/epih/eht084

25. Yang R, Xu H, Pedersen NL, Li X, Yu J, Bao C, Qi X, Xu W. A healthy lifestyle mitigates the risk of heart disease related to type 2 diabetes: a prospective nested case-control study in a nationwide Swedish twin cohort. Diabetologia. 2021;64:530–539. doi: 10.1007/s00125-020-05324-z

26. Patientregistrat - Socialstyrelsen n.d. Available at: https://www.socia lstyrelsen.se/statistik-och-data/register/alla-register/patientregistrat/. Accessed September 20, 2021.

27. Bokenberger K, Strom P, Anslai AKD, Johansson ALV, Gatz M, Pedersen NL, Akerstedt T. Association between sleep characteristics and incident dementia accounting for baseline cognitive status: a prospective population-based study. J Gerontol A Biol. 2017;72:134–139. doi: 10.1093/gerona/glw127

28. Watson NF, Badr MS, Belenky G, Bliwise DL, Buxton OM, Buysse D, Dinges DF, Gangwisch J, Grandner MA, Kushida C, et al. Recommended amount of sleep for a healthy adult: a joint consensus statement of the American Academy of Sleep Medicine and Sleep Research Society. Sleep. 2015;38:843–844. doi: 10.5665/sleep.4716
30. Westerlund A, Bellocco R, Sundstrom J, Adami HO, Akerstedt T, Trolle LY. Sleep characteristics and cardiovascular events in a large Swedish cohort. *Eur J Epidemiol*. 2013;28:463–473. doi: 10.1007/s10654-013-9802-2

31. Guo J, Li X, Yang R, Marseglia A, Dove A, Johnell K, Xu W. Association of body mass index and its long-term changes with cardiometabolic diseases: a nationwide twin study. *Clin Nutr*. 2021;40:5467–5474. doi: 10.1016/j.clinu.2021.09.030

32. Li P, Stuart EA, Allison DB. Multiple imputation: a flexible tool for handling missing data. *JAMA*. 2015;314:1966–1967. doi: 10.1001/jama.2015.15281

33. Jike M, Itani O, Watanabe N, Buysse DJ, Kaneita Y. Long sleep duration and health outcomes: a systematic review, meta-analysis and meta-regression. *Sleep Med Rev*. 2018;39:25–36. doi: 10.1016/j.smrv.2017.06.011

34. Wang C, Bangdiwala SI, Rangarajan S, Lear SA, AlHabib KF, Mohan V, Teo K, Poirier P, Tse LA, Liu Z, et al. Association of estimated sleep duration and naps with mortality and cardiovascular events: a study of 116 632 people from 21 countries. *Eur Heart J*. 2019;40:1620–1629. doi: 10.1093/eurheartj/ehy695

35. Hirshkowitz M, Whiton K, Albert SM, Alessi C, Bruni O, DonCarlos L, Kryger MH, Roth T, Czeisler CA, Shea SA. Adverse metabolic consequences in humans of prolonged sleep restriction combined with circadian disruption. *Sleepp. 2015;1:233–243. doi: 10.1016/j.sleep.2015.10.004

36. Leng Y, Yaffe K. To nap or not to nap: more questions than answers. *Heart*. 2019;105:1768–1769. doi: 10.1136/heartjnl-2019-315442

37. Hoevenaar-Blom MP, Spijkerman AM, Kromhout D, van den Berg JF, Verschuren WM. Sleep duration and sleep quality in relation to 12-year cardiovascular disease incidence: the MORGEN study. *Sleep*. 2011;34:1487–1492. doi: 10.5665/sleep.1392

38. Endeshaw Y, Rice TB, Schwartz AV, Stone KL, Manini TM, Satterfield S, Cummings S, Harris T, Pahor M, Health ABCS. Snoring, daytime sleepiness, and incident cardiovascular disease in the aging, and body composition study. *Sleep*. 2013;36:1737–1745. doi: 10.5665/sleep.3140

39. Floras JS. Sleep apnea and cardiovascular disease: an enigmatic risk factor. *Circ Res*. 2018;122:1741–1764. doi: 10.1161/CIRCRESAHA.118.310783

40. Gentile F, Borrelli C, Sciarone P, Buoncristiani F, Spiesshofer J, Bramanti F, Iudice G, Vergaro G, Emdin M, Passino C, et al. Central apneas are more detrimental in female than in male patients with heart failure. *J Am Heart Assoc*. 2022;11:e024103. doi: 10.1161/JAHA.121.024103

41. Broussard JL, Ehrmann DA, Van Cauter E, Tasei E, Brady MJ. Impaired insulin signaling in human adipocytes after experimental sleep restriction: a randomized, crossover study. *Ann Intern Med*. 2012;157:549–557. doi: 10.7326/0003-4819-157-8-201210160-00005

42. Taheri S, Lin L, Austin D, Young T, Mignot E. Short sleep duration is associated with reduced leptin, elevated ghrelin, and increased body mass index. *PLoS Med*. 2004;1:e62. doi: 10.1371/journal.pmed.0010062

43. Mullington JM, Haack M, Toth M, Serrador JM, Meier-Ewert HK. Cardiovascular, inflammatory, and metabolic consequences of sleep deprivation. *Prog Cardiovasc Dis*. 2009;51:294–302. doi: 10.1016/j.pcad.2008.10.003

44. Tobaldini E, Costantino G, Solbiati M, Cogliati C, Kara T, Nobili L, Montano N. Sleep, sleep deprivation, autonomic nervous system and cardiovascular diseases. *Neurosci Biobehav Rev*. 2017;74:321–329. doi: 10.1016/j.neubiorev.2016.07.004

45. Crnko S, Du Pre BC, Sluiter JPB, Van Laake LW. Circadian rhythms and the molecular clock in cardiovascular biology and disease. *Nat Rev Cardiol*. 2019;16:437–447. doi: 10.1038/s41569-019-0167-4

46. Buxton OM, Cain SW, O’Connor SP, Porter JH, Duffy JF, Wang W, Czeisler CA, Shea SA. Adverse metabolic consequences in humans of prolonged sleep restriction combined with circadian disruption. *SCTransl Med*. 2012;4:129ra143. doi: 10.1126/scitranslmed.3003200

47. Stergiou GS, Mastorantonakis SE, Roussias LG. Intraindividual reproducibility of blood pressure surge upon rising after nighttime sleep and siesta. *Hypertens Res*. 2008;31:1859–1864. doi: 10.1291/hypres.31.1859

48. Tanabe N, Iso H, Yatsuya H, Toyoshima H, Tamakoshi A, Group JS. Daytime napping and mortality, with a special reference to cardiovascular disease: the JACC study. *Int J Epidemiol*. 2010;39:233–243. doi: 10.1093/ije/dyp327

49. Lempriere S. Air pollution linked to multiple sclerosis and stroke. *Nat Transl Med*. 2019;4:129ra143. doi: 10.1126/scitranslmed.3003200

50. Aggarwal R, Chiu N, Loccoh EC, Kazi DS, Yeh RW, Wadhera RK. Rural-urban disparities: diabetes, hypertension, heart disease, and stroke mortality among black and white adults, 1999-2018. *J Am Coll Cardiol*. 2021;77:1480–1481. doi: 10.1016/j.jacc.2021.01.032
Supplemental Material
Table S1. Sleep characteristic information questionnaire.

Sleep characteristics	Questionnaire	Response options
Nighttime sleep duration*	What time do you usually go to bed and get up?	Get up at [time]
		Go to bed at [time]
Daytime napping	Do you usually take a nap at least every second day? If yes, how long do you nap?	Yes [minutes]
		No
Chronotype	Try to determine to what degree you are a ‘morning person’ or a ‘night person’.	Definitely a morning person
		To some degree a morning person
		To some degree a night person
		Definitely a night person
Insomnia	Have you experienced difficulty falling asleep or continuously waking up and difficulty falling asleep again?	Never
		Seldom
		Sometimes
		Usually
		Always
Snoring	Have you experienced heavy snoring?	Never
		Seldom
		Sometimes
		Usually
		Always
Daytime sleepiness	Have you experienced sleepiness during day time?	Never
		Seldom
		Sometimes
		Usually
		Always

* Nighttime sleep duration was defined as the time difference between “Go to bed” and “Get up”.
Table S2. Baseline characteristics of the study population by sleep pattern (N = 5464).

Characteristics	Healthy (n = 1784)	Intermediate (n = 3023)	Poor (n = 657)	P value
Age (years)	67.5±8.3	69.0±8.4	69.7±8.5	<0.001
Female	882 (49.4)	1721 (56.9)	387 (58.9)	<0.001
Education *				
<8 years	914 (51.3)	1619 (53.8)	375 (57.2)	0.029
≥8 years	867 (48.7)	1389 (46.2)	281 (42.8)	
Marital status				
Married/cohabiting	1257 (70.5)	2077 (68.8)	445 (67.7)	0.321
Single	527 (29.5)	944 (31.2)	212 (32.3)	
Zygosity				
Monozygotic	328 (18.4)	554 (18.3)	132 (20.1)	0.253
Dizygotic	1260 (70.6)	2176 (72.0)	471 (71.7)	
Undetermined zygosity	196 (11.0)	293 (9.7)	54 (8.2)	
Body mass index (kg/m²) *	24.8±3.4	25.1±3.5	25.5±3.9	<0.001
<20 (Underweight)	84 (4.9)	160 (5.5)	22 (3.5)	0.001
20–24.9 (Normal weight)	898 (51.9)	1377 (47.1)	286 (45.0)	
25–29.9 (Overweight)	637 (36.8)	1147 (39.2)	265 (41.7)	
≥30 (Obese)	112 (6.5)	242 (8.3)	62 (9.8)	
Smoking status *				
Never	1049 (58.9)	1756 (58.2)	363 (55.3)	0.285
Former/current smoking	733 (41.1)	1260 (41.8)	293 (44.7)	
Alcohol consumption *				
No/mild drinking	1715 (96.3)	2854 (94.9)	614 (94.3)	0.031
Heavy drinking	65 (3.7)	154 (5.1)	37 (5.7)	
Physical activity *				
Regular	1017 (80.9)	1506 (77.1)	262 (67.7)	<0.001
Low	240 (19.1)	448 (22.9)	125 (32.3)	
Type 2 diabetes mellitus	90 (5.0)	217 (7.2)	55 (8.4)	0.003
Hypertension	664 (37.2)	1190 (39.4)	272 (41.4)	0.127
Depression	30 (1.7)	67 (2.2)	24 (3.7)	0.013

Data are presented as mean ± standard deviation or number (proportion, %).
* Missing data: 19 for education, 173 for body mass index, 10 for smoking status, 25 for alcohol consumption, and 1866 for physical activity.
Table S3. Hazard ratios (HRs) and 95% confidence intervals (CIs) of cardiovascular diseases in relation to sleep characteristics; results from Cox models.

Sleep characteristics	Cases/ Person-Years	HR (95% CI) *	HR (95% CI) †
Sleep duration (hours/night)			
<7	322/10 245	1.18 (1.05–1.32)	1.14 (1.01–1.28)
7 to 9	2397/79 772	Reference	Reference
9 to 10	1470/41 784	1.02 (0.96–1.09)	1.03 (0.96–1.10)
≥10	590/14 051	1.10 (1.00–1.21)	1.10 (1.00–1.21)
Daytime napping (minutes)			
0	2553/90 568	Reference	Reference
1–30	1226/33 624	1.14 (1.06–1.22)	1.11 (1.03–1.18)
>30	1000/21 661	1.30 (1.20–1.40)	1.23 (1.14–1.33)
Sleep pattern ‡			
Healthy	636/23 257	Reference	Reference
Intermediate	1149/37 503	1.09 (0.99–1.20)	1.06 (0.96–1.17)
Poor	280/7574	1.27 (1.09–1.47)	1.22 (1.05–1.41)

* Adjusted for age, sex, and education.
† Additionally adjusted for marital status, body mass index, smoking status, alcohol consumption, physical activity, type 2 diabetes mellitus, hypertension, and depression.
‡ Sleep patterns were analyzed in a subsample (n=5464).
§ P <0.05.
Table S4. Hazard ratios (HRs) and 95% confidence intervals (CIs) of cardiovascular disease subtypes in relation to sleep characteristics; results from Cox models.

Sleep characteristics	Coronary heart diseases	Stroke		
	Cases/Person-Years	HR (95% CI) *	Cases/Person-Years	HR (95% CI) *
Sleep duration (hours/night)				
<7	228/10 767	1.21 (1.05–1.39)	152/11 399	1.17 (0.99–1.38)
7 to 9	1618/83 695	Reference	1166/87 373	Reference
9 to 10	1013/43 972	1.06 (0.98–1.15)	678/45 933	0.94 (0.86–1.04)
≥10	392/14 988	1.11 (0.99–1.24)	296/15 292	1.11 (0.97–1.27)
Daytime napping (minutes)				
0	1715/94 894	Reference	1228/98 312	Reference
1–30	857/35 432	1.17 (1.08–1.28)	572/37 329	1.09 (0.99–1.20)
>30	679/23 096	1.29 (1.18–1.42)	492/24 356	1.29 (1.15–1.43)
Sleep pattern ‡				
Healthy	432/24 206	Reference	318/24 981	Reference
Intermediate	787/39 478	1.09 (0.96–1.22)	555/41 080	1.00 (0.87–1.15)
Poor	196/7968	1.31 (1.10–1.56)	126/8492	1.05 (0.85–1.30)
Angina pectoris				
Myocardial infarction				
Sleep duration (hours/night)				
<7	116/11 147	1.14 (0.94–1.38)	136/11 476	1.26 (1.05–1.52)
7 to 9	826/86 619	Reference	926/88 311	Reference
9 to 10	484/45 496	1.06 (0.94–1.19)	584/46 643	1.05 (0.94–1.16)
≥10	155/15 579	0.95 (0.79–1.13)	234/15 704	1.15 (0.99–1.33)

* p < 0.05; † p < 0.01
| Sleep characteristics | Angina pectoris | | | Myocardial infarction | | | |
|-----------------------|---------------|----------------|----------------|---------------------|----------------|----------------|
| | Cases/Person-Years | HR (95% CI) * | HR (95% CI) † | Cases/Person-Years | HR (95% CI) * | HR (95% CI) † |
| **Daytime napping** (minutes) | | | | | | |
| 0 | 818/97 901 | Reference | Reference | 980/99 744 | Reference | Reference |
| 1–30 | 439/36 756 | 1.28 (1.14-1.44) | 1.23 (1.10-1.39) | 511/37 661 | 1.19 (1.06-1.32) | 1.15 (1.03-1.28) |
| >30 | 324/24 183 | 1.37 (1.20-1.56) | 1.30 (1.14-1.49) | 389/24 728 | 1.23 (1.09-1.39) | 1.16 (1.03-1.31) |
| **Sleep pattern** ‡ | | | | | | |
| Healthy | 211/24 891 | Reference | Reference | 247/25 335 | Reference | Reference |
| Intermediate | 387/40 777 | 1.11 (0.94-1.31) | 1.09 (0.92-1.29) | 437/41 881 | 1.04 (0.89-1.21) | 1.01 (0.86-1.18) |
| Poor | 104/8287 | 1.44 (1.14-1.83) | 1.39 (1.09-1.77) | 121/8 482 | 1.38 (1.11-1.72) | 1.30 (1.04-1.63) |
| **Sleep duration** (hours/night) | | | | | | |
| <7 | 45/11 961 | 1.59 (1.15-2.20) | 1.53 (1.10-2.13) | 109/11 543 | 1.06 (0.87-1.29) | 1.04 (0.85-1.26) |
| 7 to 9 | 240/91 790 | Reference | Reference | 909/88 147 | Reference | Reference |
| 9 to 10 | 114/48 467 | 0.82 (0.65-1.02) | 0.83 (0.66-1.04) | 542/46 374 | 0.97 (0.87-1.08) | 0.98 (0.88-1.09) |
| ≥10 | 54/16 317 | 1.11 (0.82-1.50) | 1.10 (0.81-1.50) | 228/15 475 | 1.11 (0.95-1.29) | 1.11 (0.96-1.30) |
| **Daytime napping** (minutes) | | | | | | |
| 0 | 260/103 075 | Reference | Reference | 941/99 231 | Reference | Reference |
| 1–30 | 105/39 465 | 0.93 (0.73-1.17) | 0.90 (0.72-1.14) | 454/37 671 | 1.13 (1.01-1.27) | 1.11 (0.99-1.24) |
| >30 | 88/25 995 | 1.12 (0.87-1.44) | 1.08 (0.84-1.38) | 393/24 637 | 1.35 (1.19-1.52) | 1.29 (1.14-1.46) |

Note: HR = hazard ratio, 95% CI = 95% confidence interval.
Sleep characteristics	Hemorrhagic stroke	Ischemic stroke				
	Cases/Person-Years	HR (95% CI) *	HR (95% CI) †	Cases/Person-Years	HR (95% CI) *	HR (95% CI) †
Healthy	66/26 089	Reference	Reference	247/25 214	Reference	Reference
Intermediate	99/43 337	0.88 (0.65-1.20)	0.86 (0.63-1.17)	444/41 480	1.03 (0.88-1.20)	1.01 (0.87-1.19)
Poor	25/8964	1.06 (0.67-1.67)	1.01 (0.64-1.61)	95/8557	1.03 (0.81-1.31)	0.99 (0.78-1.26)

* Adjusted for age, sex, and education.
† Additionally adjusted for marital status, body mass index, smoking status, alcohol consumption, physical activity, type 2 diabetes mellitus, hypertension, and depression.
‡ Sleep patterns were analyzed in a subsample (n=5,464).
Table S5. Hazard ratios (HRs) and 95% confidence intervals (CIs) of cardiovascular disease in relation to nighttime sleep duration and daytime napping; results from Cox models.

Sleep characteristics	Cases/Person-Years	HR (95% CI) *
Sleep duration		
<7	322/10 245	1.14 (1.01–1.28)
7 to 9	2397/79 772	Reference
9 to 10	1470/41 784	1.03 (0.96–1.10)
≥10	590/14 051	1.09 (0.99–1.20)
Daytime napping		
0	2553/90 568	Reference
1–30	1226/33 624	1.11 (1.03–1.18)
>30	1000/21 661	1.23 (1.14–1.33)

* Adjusted for age, sex, education, marital status, body mass index, smoking status, alcohol consumption, physical activity, type 2 diabetes mellitus, hypertension, depression, nighttime sleep duration, and daytime napping, if applicable.
Table S6. Hazard ratios (HRs) and 95% confidence intervals (CIs) of cardiovascular diseases in relation to sleep characteristics by additionally adjusting for anxiety; results from Cox models.

Sleep characteristics	Cases/Person-Years	HR (95% CI) *
Sleep duration (hours/night)		
<7	322/10 245	1.14 (1.01–1.28)
7 to 9	2397/79 772	Reference
9 to 10	1470/41 784	1.03 (0.96–1.10)
≥10	590/14 051	1.10 (1.00–1.21)‡
Daytime napping (minutes)		
0	2553/90 568	Reference
1–30	1226/33 624	1.11 (1.03–1.19)
>30	1000/21 661	1.23 (1.14–1.33)
Sleep pattern †		
Healthy	636/23 257	Reference
Intermediate	1149/37 503	1.06 (0.96–1.17)
Poor	280/7574	1.22 (1.05–1.41)

* Adjusted for age, sex, education, marital status, body mass index, smoking status, alcohol consumption, physical activity, type 2 diabetes mellitus, hypertension, depression, and anxiety.
† Sleep patterns were analyzed in a subsample (n=5464).
‡ P <0.05.
Table S7. Hazard ratios (HRs) and 95% confidence intervals (CIs) of cardiovascular disease in relation to sleep characteristics by excluding participants with CVDs in the first two years of follow-up (N=11 697); results from Cox models.

Sleep characteristics	Cases/Person-Years	HR (95% CI) *	HR (95% CI) †
Sleep duration (hours/night)			
<7	286/10 204	1.18 (1.04–1.34)	1.15 (1.01–1.30)
7 to 9	2135/79 498	Reference	Reference
9 to 10	1301/41 605	1.02 (0.95–1.10)	1.03 (0.96–1.11)
≥10	486/13 942	1.06 (0.96–1.18)	1.06 (0.96–1.17)
Daytime napping (minutes)			
0	2288/90 285	Reference	Reference
1–30	1090/33 488	1.14 (1.06–1.23)	1.11 (1.03–1.19)
>30	830/21 477	1.25 (1.15–1.35)	1.18 (1.09–1.29)
Sleep pattern ‡			
Healthy sleep	570/23 189	Reference	Reference
Intermediate sleep	1026/37 367	1.09 (0.98–1.21)	1.07 (0.97–1.19)
Poor sleep	247/7537	1.27 (1.09–1.48)	1.23 (1.05–1.43)

* Adjusted for age, sex, and education.
† Additionally adjusted for marital status, body mass index, smoking status, alcohol consumption, physical activity, type 2 diabetes mellitus, hypertension, and depression.
‡ Sleep patterns were analyzed in a subsample (n=5242).
Table S8. Hazard ratios (HRs) and 95% confidence intervals (CIs) of cardiovascular disease in relation to sleep characteristics by excluding participants with atrial fibrillation and heart failure before baseline (N=11 817); results from Cox models.

Sleep characteristics	Cases/Person-Years	HR (95% CI) *	HR (95% CI) †
Sleep duration (hours/night)			
<7	307/10 089	1.16 (1.03-1.31)	1.13 (1.00-1.27)
7 to 9	2301/78 207	Reference	Reference
9 to 10	1402/40 787	1.03 (0.96-1.10)	1.03 (0.97-1.11)
≥10	535/13 415	1.08 (0.98-1.19)	1.08 (0.98-1.19)
Daytime napping (minutes)			
0	2446/88 980	Reference	Reference
1–30	1167/32 709	1.15 (1.07-1.23)	1.11 (1.03-1.19)
>30	932/20 810	1.30 (1.20-1.41)	1.23 (1.14-1.33)
Sleep pattern ‡			
Healthy sleep	616/22 886	Reference	Reference
Intermediate sleep	1104/36 831	1.09 (0.98-1.20)	1.06 (0.96-1.18)
Poor sleep	265/7433	1.25 (1.08-1.45)	1.20 (1.03-1.39)

* Adjusted for age, sex, and education.
† Additionally adjusted for marital status, body mass index, smoking status, alcohol consumption, physical activity, type 2 diabetes mellitus, hypertension, and depression.
‡ Sleep patterns were analyzed in a subsample (n=5302).
Table S9. Hazard ratios (HRs) and 95% confidence intervals (CIs) of cardiovascular disease in relation to sleep characteristics by excluding participants with any missing values (N=7865); results from Cox models.

Sleep characteristics	Cases/ Person-Years	HR (95% CI) *	HR (95% CI) †
Sleep duration (hours/night)			
<7	224/8392	1.23 (1.06-1.41)	1.14 (0.98-1.32)
7 to 9	1502/61 943	Reference	Reference
9 to 10	710/27 593	1.01 (0.92-1.10)	1.03 (0.94-1.13)
≥10	219/7720	1.15 (0.99-1.33)	1.07 (0.93-1.24)
Daytime napping (minutes)			
0	1540/69 354	Reference	Reference
1–30	676/23 415	1.16 (1.06-1.27)	1.12 (1.02-1.22)
>30	439/12 878	1.34 (1.20-1.49)	1.24 (1.11-1.38)
Sleep pattern ‡			
Healthy sleep	379/18 035	Reference	Reference
Intermediate sleep	598/27 108	1.09 (0.96-1.23)	1.07 (0.94-1.21)
Poor sleep	141/5061	1.35 (1.11-1.65)	1.27 (1.04-1.55)

* Adjusted for age, sex, and education.
† Additionally adjusted for marital status, body mass index, smoking status, alcohol consumption, physical activity, type 2 diabetes mellitus, hypertension, and depression.
‡ Sleep patterns were analyzed in a subsample (n=3521)
Table S10. Subdistribution hazard ratios (sHRs) and 95% confidence intervals (CIs) of cardiovascular diseases in relation to sleep characteristics; results from Fine-Gray competitive risk models.

Sleep characteristics	Cases/Person-Years	sHR (95% CI) *	sHR (95% CI) †
Sleep duration (hours/night)			
<7	322/10 245	1.12 (0.99-1.25)	1.09 (0.97-1.23)
7 to 9	2397/79 772	Reference	Reference
9 to 10	1470/41 784	1.04 (0.97-1.11)	1.04 (0.97-1.11)
≥10	590/14 051	0.99 (0.90-1.09)	1.01 (0.91-1.11)
Daytime napping (minutes)			
0	2553/90 568	Reference	Reference
1–30	1226/33 624	1.14 (1.07-1.23)	1.11 (1.04-1.19)
>30	1000/21 661	1.20 (1.11-1.30)	1.15 (1.07-1.25)
Sleep pattern ‡			
Healthy	636/23 257	Reference	Reference
Intermediate	1149/37 503	1.07 (0.97-1.18)	1.04 (0.95-1.15)
Poor	280/7574	1.22 (1.05-1.41)	1.17 (1.01-1.35)

* Adjusted for age, sex, and education.
† Additionally adjusted for marital status, body mass index, smoking status, alcohol consumption, physical activity, type 2 diabetes mellitus, hypertension, and depression.
‡ Sleep patterns were analyzed in a subsample (n=5464).
Figure S1. Hazard ratios (HRs) and 95% confidence intervals (CIs) of the joint effect of nighttime sleep duration and daytime napping on cardiovascular disease.

Adjusted for age, sex, education, marital status, body mass index, smoking status, alcohol consumption, physical activity, type 2 diabetes mellitus, hypertension, and depression.

P value for multiplicative interaction was 0.740.