Evaluation of the use of the PLP-01M microwave laboratory system using working samples to control the accuracy of the results of examining product samples for lead content

M B Rebezov1,2, L N Tretyak3, S A Solodov4, A V Galaev4 and I N Korneev4

1 V M Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 26 Talalikhina St., Moscow, 109316, Russian Federation
2Prokhorov General Physics Institute of the Russian Academy of Science, 38 Vavilova str., Moscow, 119991, Russian Federation
3Orenburg State University, 13 pr. Pobedy, Orenburg, 460018, Russian Federation
4K G Razumovsky Moscow State University of technologies and management (the First Cossack University), 73 Zemlyanoy Val, Moscow, 109004, Russian Federation

E-mail: dr.rebezov.m@gmail.com

Abstract. In order to compare the results obtained when working on the Kvant-2AT atomic absorption spectrometer, taking into account the use of the PLP-01M microwave laboratory system and during sample preparation in accordance with GOST 26929 "Raw materials and food products. Sample preparation. Mineralization to determine the content of toxic elements", on the working samples, the products were selected that most fully covered the range of results obtained during the research. Within 30 working days, a set of research results and analysis of data obtained during operation on the Kvant-2AT atomic absorption spectrometer, taking into account the use of the PLP-01M microwave laboratory system and during sample preparation in accordance with GOST 26929, were carried out. Average values obtained under conditions repeatability were recorded in the table. In order to assess the accuracy of the obtained values, the analytic, lead, was added. The implementation of sample preparation methods taking into account the microwave decomposition of the sample in the case of using the PLP-01M microwave laboratory system and during sample preparation in accordance with GOST 26929-94 achieves the precision of the analysis results both under conditions of repeatability and under conditions of intermediate precision.

1. Introduction
Research into the influence of heavy metals in ecosystems and technological methods for reducing the residual amounts of contaminants in products is one of the topical issues [1-8].

Ensuring product testing for the content of xenobiotics requires constant improvement [9-18]. Acceptable levels of lead in products are shown in figure 1.
Figure 1. Permissible levels of lead in fishery products according to the requirements of technical regulations, mg/kg, not more.

The toxicity of lead is shown in figure 2.

Figure 2. Lead toxicity.
One of the important tasks of testing centers is to ensure the reliability of tests at minimal cost [19-23]. The relevance of the problem under consideration is confirmed by numerous studies of scientists from different countries [24-29].

In the PLP-01M microwave laboratory system (figure 3), a fundamentally new method of sample preparation is used. The decomposition was carried out in a closed system - sealed fluoroplastic vessels under the influence of high temperature, pressure and microwave field. The microwave field in the working chamber of the furnace was created by a special generator-magnetron.

The advantages of microwave decomposition of samples using PLP-01M over classical methods of sample preparation are undeniable.

2. Material and methods
This paper considers and analyzes the results of examining samples for cadmium content by determining them on a Kvant-2AT atomic absorption spectrometer, taking into account the use of the PLP-01M microwave laboratory system and during sample preparation in accordance with GOST 26929 “Raw materials and food products. Sample preparation. Mineralization to determine the content of toxic elements”.

Sample mineralization by microwave decomposition using a PLP-01M microwave laboratory system was carried out according to the general scheme in accordance with the instructions for a microwave laboratory oven from the Ural-Hephaestus TP.

In order to cover the entire range of results obtained during research and thereby simulate the obtaining of values of various concentrations in the analysis of working samples of food products, intervals were identified and control samples (OK Pb/OK Cd) with a certified value of the determined toxic element - cadmium - were selected for these intervals (table 1).

Intervals, mg/dm³	OK Pb, mg/dm³
0.01–0.03	0.015
0.03–0.05	0.04
0.05–0.10	0.085
0.1–1.0	0.55

For research purposes, we used standard samples of the composition of a solution of lead ions, shown in figure 4.
3. Results and discussion

3.1. Checking the accuracy of the results

In order to compare the results obtained when working on the Kvant-2AT atomic absorption spectrometer, taking into account the use of the PLP-01M microwave laboratory system and during sample preparation in accordance with GOST 26929 "Raw materials and food products. Sample preparation. Mineralization to determine the content of toxic elements ", on the working samples, the products were selected that most fully cover the range of results obtained during the research.

Within 30 working days, a set of research results and analysis of data obtained during operation on the Kvant-2AT atomic absorption spectrometer, taking into account the use of the PLP-01M microwave laboratory system and during sample preparation in accordance with GOST 26929, were carried out. Average values obtained under conditions repeatability were recorded in the table. In order to assess the accuracy of the obtained values, the analyte, lead, was added.

As a result, under conditions of intermediate precision, five average values were obtained.

Sample preparation of the selected food samples was carried out in accordance with GOST 26929 and in accordance with the instructions of the PLP-01M microwave laboratory oven from the Ural-Gefest TP, the volume of the sample taken for analysis is shown in table 2.

Table 2. Sample weight in g.
Sample preparation according to with GOST 26929
Microwave decomposition on PLP-01M
10
2

The research results are presented in table 3.

Table 3. Results of Lead Testing of Fish Samples.
Day

1
2
3
4
5
Xcp

Assessing the precision of results \((X_{max}−X_{min}) ≤ CR_{0.95}(5)\)

\[
 Assessing the precision of results (X_{max}−X_{min}) ≤ CR_{0.95}(5) \\
0.009<0.024 0.007<0.033 0.029<0.059 0.029<0.078
\]

Analyzing the results obtained during the experiment, we assert that the condition \((X_{max}−X_{min}) ≤ CR_{0.95}(5)\) is fulfilled.

3.2. Monitoring the stability of analysis results using the addition method

When carrying out operational control of the analysis procedure using the control procedure for error control (SSC) using the additive method, the control means were working samples of a stable
composition and the same samples with a known addition of the analyte.

The control by the addition method during the implementation of various types of sample preparation in this work was carried out according to the following scheme.

The sample was taken in double size; the analyzed sample was divided into two parts. One part remained unchanged, the second was supplemented with the determined element C_d. The addition was carried out at the stage of sample preparation.

Under the conditions of intralaboratory precision, the analysis of samples was carried out with the added additive of the determined element and without the additive.

In accordance with the analysis methods, taking into account various types of sample preparation, the results of control measurements of the concentration of the determined element in the averaged working sample - $X_{(n)}$ and in the averaged working sample with a known addition of the determined element – $X_{(n)+d}$.

As the results of control measurements of the concentration of the determined element in the sample and in the sample with the additive, the arithmetic means of two results of a single analysis were used, the discrepancy between which does not exceed the repeatability limit.

The result of the control procedure K_k and the control standard K were calculated according to the approved methods. The fulfillment of the comparison condition was also checked.

The results of the operational control of the analysis procedure using the control procedure to control the error using the addition method are summarized in table 4.

Table 4. Results of operational control of the analysis procedure using the method of additions for lead content.
GOST 26929
K_k
-0.0028
-0.0038
-0.0048
-0.012

The research results presented in table 4 constitutes that the condition $|K_k| \leq K$ is fulfilled for all measurement results. Evaluation of the precision of the analysis results obtained taking into account the use of two different types of sample preparation.

The analysis procedure was considered satisfactory if condition 3.12 was met.

The results of evaluating the precision of the results obtained taking into account the use of different types of sample preparation are presented in table 5.

Table 5. Lead analysis of food samples.
№

$X_{(5)}$
X_{av}

Evaluation of the precision of the results obtained by different sample preparations

K_k	K
-0.0017	0.01982478
-0.0038	0.00438914
The analysis of the data obtained concludes that the results for the assessment of precision and operational control of the error using the method of additions are satisfactory.

4. Conclusion
The results of analyzes carried out under conditions of repeatability and intermediate precision are considered satisfactory. The results for the assessment of precision and operational control of the error using the method of additions are satisfactory.

The implementation of sample preparation methods taking into account the microwave decomposition of the sample in the case of using the PLP-01M microwave laboratory system and during sample preparation in accordance with GOST 26929-94 achieves the precision of the analysis results both under conditions of repeatability and under conditions of intermediate precision.

Acknowledgements
The authors would like to express special gratitude to the engineer A M Chuprakova who carried out multi-stage tests of the designated products for compliance with the requirements of regulatory documents.

References
[1] Macleod C and Coughanowr C 2019 Heavy metal pollution in the derwent estuary: history, science and management Regional Studies in Marine Science 32 100866
[2] Larsen E H et al. 2005 Determination of inorganic arsenic in white fish using microwave-assisted al-kaline alcoholic sample dissolution and HPLC-ICP-MS Anal.and Bioanal.Chem 381(2) 339-46
[3] Ali MM et al. 2019 Heavy metal concentrations in commercially valuable fishes with health hazard inference from Karnaphuliriver Bangladesh Human and Ecological Risk Assessment An Int.J. 1-17
[4] Kaushik A, Kansal A, Santosh M, Kumari S and Kaushik C P 2009 Heavy metal contamination of river Yamuna, Haryana, India: assessment by metal enrichment factor of the sediments Journal of Hazardous Materials 164(1) 265-70
[5] Cherfi A, Abdoun S and Gaci O 2014 Food survey: levels and potential health risks of chromium, lead, zinc and copper content in fruits and vegetables consumed in Algeria Food and Chemical Toxicology 70 48-53
[6] Mansour S A 2014 Monitoring and health risk assessment of heavy metal contamination in food Practical Food Safety: Contemporary Issues and Future Directions 235-55
[7] Mourya A, Mazumdar B and Sinha S K 2019 Determination and quantification of the heavy metal ion by electrochemical method Journal of Environmental Chemical Engineering 7(6) 103459
[8] Ivanova-Petropulos V et al. 2015 Determination of Pb and Cd in Macedonian wines by electrother-mal atomic absorption spectrometry (ETAAS) Food Analytical Methods 8(8) 1947-52
[9] Kataoka Y et al. 2015 Development of ICP-OES, ICP-MS and GF-AAS methods for simultaneous quantification of lead, total arsenic and cadmium in soft drinks Food Hygiene and Safety Science 56(3) 88-95
[10] Lu H, Lu X, Ma L, Cui Y, Wang J and Zhao M 2004 Microwave cleavage for the determination of lead in milk powder by atomic fluorescence spectrometry and mass spectrometry with induction plasma Journal of Chinese Mass Spectrometry Society 25 9-10
[11] Li N et al. 2009 Determination of arsenic in foods by flow injection on-line sorption pre-concentration with hydride generation atomic fluorescence spectrometry Food Additives and Contaminants 26(6) 839-46
[12] Katsnelson B et al. 2014 Some considerations concerning the theory of combined toxicity: a case study of subchronic experimental intoxication with cadmium and lead Food and Chemical
Toxicology 64 144-56

[13] Kim B-M et al. 2013 Influence of squid liver powder on accumulation of cadmium in serum kidney and liver of mice. Preventive Nutrition and Food Science 18(1) 1-10

[14] Ma W, Zhao B and Ma J 2019 Comparison of heavy metal accumulation ability in rainwater by 10 sponge city plant species Environmental Science and Pollution Research 26(26) 26733-47

[15] Alaouiri H A A et al. 2020 The possibility of using scots pine needles as biomonitor in determination of heavy metal accumulation Environmental Science and Pollution Research NN 1-22

[16] Šrut M, Menke S, Sommer S and Höckner M 2019 Earthworms and cadmium – heavy metal resistant gut bacteria as indicators for heavy metal pollution in soils? Ecotoxicology and Environmental Safety 171 843-53

[17] Rahimi G, Kolahchi Z and Bayat S 2019 Heavy metals' bio-accumulation and transfer in lemon balm (melissa officinalis L.) irrigated with industrial wastewater International Journal of Environment and Waste Management 23(3) 238-56

[18] Singh B R et al. 2011 Safety of food crops on land contaminated with trace elements J. Sci. Food Agric. 91(8) 1349-66

[19] Sizentsov A N, Kvan O V, Sizentsov Y A, Bibartseva E V and Osipova E A 2019 Comparative analysis of heavy metal sorption characteristics on laboratory animal models Research Journal of Pharmaceutical, Biological and Chemical Sciences 10(1) 1313-6

[20] Tumanyan A F, Tusaint F, Shcherbakova N A, Selerstova A P and Tyutyuma N V 2019 Heavy metal contents in soils and vegetables of Southern Russia Chemistry and Technology of Fuels and Oils 54(6) 766-70

[21] Barsova N, Yakimenko O, Tolpeshta I and Motuzova G 2019 Current state and dynamics of heavy metal soil pollution in Russian Federation Environmental Pollution 249 200-7

[22] Kuramshina N, Rebezov M, Kuramshin E, Tretyak L, Topuria G, Kulikov D, Evtushenko A, Harlap S and Okuskhanova E 2019 Heavy metals content in meat and milk of Orenburg region of Russia International Journal of Pharmaceutical Research 11(1) 1301-5 DOI: 10.21668/health.risk/2019.2.04.eng

[23] Kuramshina N, Rebezov M, Kuramshin E, Krasnogorskaya N, Tretyak L, Somova Yu, Dolmatova I, Zaitseva T, Grigoryeva I and Bakirova L 2018 Heavy Metals Contamination of Soil in Urban Areas of Southern Ural Region of Russia International Journal of Engineering and Technology (UAE) 7(4.42) 14-8 DOI: 10.14419 / ij.et.v7i4.42.25536

[24] Zykova I, Maksimuk N, Rebezov M, Kuznetsova E, Derkho M, Sereda T, Kazhibayeva G, Somova Yu and Zaitseva T 2019 Interaction between heavy metals and microorganisms during wastewater treatment by activated sludge Journal of Engineering and Applied Sciences 14(11) 2139-45

[25] Assenova B, Okuskhanova E, Rebezov M, Korzhikenova N, Yessimbek Zh and Dragoev S 2016 Trace and toxic elements in meat of maral (red deer) grazing in Kazakhstan Research Journal of Pharmaceutical, Biological and Chemical Sciences 7(1) 1425-33

[26] Barbosa J T P, Korn M G A, Santos C M M, Flores E M M, Peralva V N, Korn M and Nóbrega J A 2015 Microwave-assisted diluted acid digestion for trace element analysis of edible soybean products Food Chemistry 175 212-7

[27] Yang Z Y 2005 To study the activity of palladium used as modifier under microwave decomposition and atomic absorption spectrometry with graphite furnace for the determination of trace elements in food products Chinese Journal of Spectroscopy Laboratory 22(3) 607-17

[28] Rebezov M et al. 2020 Improvement of Laboratory Services When using Sample Preparation in Microwave System International Journal of Current Research and Review 12(16) 29-33 doi:10.31782/IJCRR.2020.12167