Genome-enabled discovery of candidate virulence loci in *Striga hermonthica*, a devastating parasite of African cereal crops

Suo Qiu1*, James M. Bradley1*, Peijun Zhang1, Roy Chaudhuri1, Mark Blaxter2,3, Roger K. Butlin1,4* and Julie D. Scholes1

1School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK; 2Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK; 3Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK; 4Department of Marine Sciences, University of Gothenburg, S-405 30, Gothenburg, Sweden

Summary
- Parasites have evolved proteins, virulence factors (VFs), that facilitate plant colonisation, however VFs mediating parasitic plant–host interactions are poorly understood. *Striga hermonthica* is an obligate, root-parasitic plant of cereal hosts in sub-Saharan Africa, causing devastating yield losses. Understanding the molecular nature and allelic variation of VFs in *S. hermonthica* is essential for breeding resistance and delaying the evolution of parasite virulence.
- We assembled the *S. hermonthica* genome and identified secreted proteins using *in silico* prediction. Pooled sequencing of parasites growing on a susceptible and a strongly resistant host allowed us to scan for loci where selection imposed by the resistant host had elevated the frequency of alleles contributing to successful colonisation.
- Thirty-eight putatively secreted VFs had very different allele frequencies with functions including host cell wall modification, protease or protease inhibitor and kinase activities. These candidate loci had significantly higher Tajima’s *D* than the genomic background, consistent with balancing selection.
- Our results reveal diverse strategies used by *S. hermonthica* to overcome different layers of host resistance. Understanding the maintenance of variation at virulence loci by balancing selection will be critical to managing the evolution of virulence as part of a sustainable control strategy.

Introduction

Plants are constantly challenged by diverse parasites. As a consequence, they have evolved sophisticated surveillance systems to detect and protect themselves against parasite invasion (Wu et al., 2018; Kanyuka & Rudd, 2019). In turn, plant parasites have evolved suites of proteins, miRNAs, or other molecules that are delivered into host plants to facilitate colonisation (virulence factors (VFs)) (Win et al., 2012; Mitsumatsu et al., 2015; Ceulemans et al., 2021; Mitchum & Liu, 2022) and they are pivotal in determining the outcome of a parasite–plant interaction.

Parasitic plants have evolved independently at least 12 times (Kuijt, 1969; Westwood et al., 2010). Regardless of evolutionary origin, parasitic plants possess a multicellular organ called the ‘haustorium’, through which direct structural and physiological connections are formed with their host plant (Westwood, 2013; Yoshida et al., 2016). This allows them to abstract water, organic and inorganic nutrients. In addition, the haustorium is increasingly recognised to play a role in host manipulation, through the movement of parasite VFs into the host plant (Shahid et al., 2018; Clarke et al., 2019). An example is provided by a particular ‘race’ of *Striga gesnerioides*, which delivers a small, secreted leucine-rich repeat (LRR) domain-containing effector (Suppressor of Host Resistance 4z (SHR4z)) into cowpea host cells, whereupon it triggers rapid turnover of the E3 ubiquitin ligase, VuPOB1, a positive regulator of the host’s defence response (Su et al., 2020).

Striga is a genus of obligate, root-parasitic plants within the Orobanchaceae (Parker & Riches, 1993; Spallek et al., 2013). One species in particular, *Striga hermonthica*, infests rain-fed rice, maize, sorghum and millets, leading to devastating losses in crop yields for resource-poor farmers in sub-Saharan Africa (Scholes & Press, 2008; Rodenburg et al., 2016). Control of *S. hermonthica* is extremely difficult as the parasite is an obligate outbreeder, with high fecundity, wide dispersal and a persistent, long-lived seed bank (Parker & Riches, 1993) leading to a large effective population size (Huang et al., 2012). Resistant crop varieties are a crucial component of successful control strategies (Scholes &...
To develop crop varieties with durable resistance against *S. hermonthica*, it is vital to understand the repertoire, mode of action and genetic variability of parasite VFs (Timko et al., 2012; Rodenburg et al., 2017). Given the highly polymorphic populations of *S. hermonthica* and genetic diversity of the seed bank, we hypothesised that *S. hermonthica* is likely to possess suites of VFs that allow it to overcome layers of resistance in multiple host plant varieties. The aim of this study was to discover candidate genes encoding polymorphic VFs in *S. hermonthica*.

To achieve our aims we combined two complementary approaches. First, we assembled and annotated the genome of *S. hermonthica*, and developed a pipeline for computational prediction of putative secreted proteins (the secreteme) and candidate VFs. The assembled genome was then used as a reference for an experimental, population genomics analysis, to compare DNA sequence variants in bulked (pooled) samples of *S. hermonthica* grown on a susceptible (NERICA-7) or resistant (NERICA-17) rice host (Fig. 1a, i,ii). This allowed us to scan for loci in the *S. hermonthica* genome where the selection imposed by the resistant host had elevated the frequency of alleles contributing to successful colonisation (termed ‘virulence’ alleles) (Fig. 1b–d). A similar approach was used to identify candidate genomic regions associated with resistance in *Solanum vernei* to the potato cyst nematode, *Globodera pallida* (Eoche-Bosy et al., 2017). The intersection between genes encoding predicted VFs and genes with highly significant allele frequency differences in the genome scan of *S. hermonthica*, revealed a set of candidate virulence loci encoding proteins with many functions, for example, cell wall modification, protease or protease inhibitor and receptor-like protein kinase activities. Our results suggest that diverse strategies are used by *S. hermonthica* to overcome different layers of host resistance, resulting in a polygenic basis of virulence in this parasite.

Materials and Methods

Collection and extraction of *S. hermonthica* DNA

An accession (population sample) of *S. hermonthica* (Del.) Benth. seeds was collected from individuals parasitising maize in farmers’ fields in the Kibos region of Kenya (0°5’30”S, 34°46’4”E). To obtain *S. hermonthica* for genome sequencing and the bulked sample analysis (BSA), rice seedlings of the varieties, NERICA-7 and NERICA-17, were grown in rhizotrons and infected with germinated *S. hermonthica* seeds (Gurney et al., 2006). Plants were grown in a 12 h photoperiod, a photon-flux density of 500 μmol quanta m⁻² s⁻¹ at plant height, a day : night temperature of 28°C : 25°C and 60% relative humidity. For the construction of a reference genome, one *S. hermonthica* individual was randomly harvested from NERICA-7. For the pooled sequencing, 300 *S. hermonthica* individuals (>30 mg in weight) were harvested from NERICA-7 and NERICA-17, divided into 20 mg aliquots and immediately frozen in liquid nitrogen. The 300 individuals from NERICA-7 and NERICA-17 were divided into three pools of 100 individuals (biological replicates). DNA was extracted from the six pools (Supporting Information Methods S1) and samples were subjected to paired-end sequencing using Illumina HiSeq at the Beijing Genomics Institute, China. The libraries, insert sizes and sequencing depth are shown in Table S1. DNA from the individual harvested from NERICA-7, for the production of a reference genome, was sequenced on an Illumina HiSeq 2500 system at Edinburgh Genomics, UK. Six paired-end DNA libraries were constructed with different insert sizes (Table S1).

De novo assembly of the *S. hermonthica* genome

Reads were cleaned and filtered (Methods S1). After filtering, c. 2.7 billion reads were generated from the short insert libraries and 0.76 billion reads from mate-pair libraries. This corresponded to c. 230x and c. 54x coverage of the *S. hermonthica* genome, respectively. The cleaned and filtered reads were used to assess the *S. hermonthica* genome size, repetitiveness and heterozygosity, compared with 12 other plant species (Table S2), in the module preQC, implemented in the software SGA (https://github.com/its/sga). This analysis showed *S. hermonthica* was highly heterozygous and therefore the software PLATANUS, which is specifically designed for highly heterozygous genomes, was chosen to assemble the *S. hermonthica* genome (Kajitani et al., 2014) (Table S3).

To further improve the *S. hermonthica* genome assembly, Chicago and Dovetail Hi-C libraries were prepared and sequenced at Dovetail Genomics, CA, USA (https://dovetailgenomics.com/plant-animal/) (Table S3). For the Chicago libraries, DNA from the *S. hermonthica* individual used for the genome, was sequenced on an Illumina HiSeq 2500 system. For the Hi-C libraries, an F1 individual from a cross between the genome individual and another Kibos individual was used. The Chicago and Hi-C libraries were used only to improve the contiguity of the initial genome assembly, using the Dovetail HiRise Assembler software. RepeatModeler was used to generate a *S. hermonthica*-specific repeat library and RepeatMasker was then used to classify repeat elements in the genome. A repeat-masked version of the genome was used for annotation (Smit & Hubley, 2008; Smit et al., 2013).

Annotation of the *S. hermonthica* genome

The genome was annotated using three methods (full details in Methods S1). First, gene structures were inferred using a *S. hermonthica* transcriptome dataset of cDNAs collected from *S. hermonthica* individuals at eight developmental stages, generated by the Parasitic Plant Genome Project (PPGP) (Westwood et al., 2012). Second, protein sequences from *Arabidopsis thaliana* (TAR10), *Mimulus guttatus* (v.2.0), *Solanum lycopersicum* (ITAG2.4), *Oryza sativa* (IRGSP1.0) and *Sorghum bicolor* (79), were used to determine consensus gene models in the genome. Third, an ab initio method was used for de novo prediction of genes in the *S. hermonthica* genome using the software, BRAKER.
with default settings (Hoff et al., 2016). Finally, Evidence Gene Modeler was used to integrate various gene models from these approaches (Haas et al., 2008). The completeness of the gene set was assessed using BUSCO v.5 using the 2326 core orthologues from eudicots_odb10, with default settings. Missing BUSCO IDs for Striga and Cuscuta genomes were queried against OrthoDB v.10.1 (Kriventseva et al., 2019) to retrieve the corresponding Gene Ontology (GO) terms. Enrichment of GO terms was tested using a chi-squared test against a background of GO terms obtained for the complete set of BUSCOS in eudicots_odb10, with the chisq.test function in R (R Core Team, 2021).

Putative protein functions were assigned to S. hermonthica proteins using BLASTP analyses against the SwissProt and TrEMBL databases, and against the proteomes of A. thaliana (v.30) and
Predicted, analysis and refinement of the *S. hermonthica* secretome

Secreted *S. hermonthica* proteins were predicted using SignalP v.3.0 and 4.1 (Bendtsen *et al.*, 2004; Petersen *et al.*, 2011) (Fig. S1). Transmembrane spanning regions were identified using TMHMM2.0 (Krogh *et al.*, 2001). Proteins with a secretion signal but without a predicted transmembrane helix were retained as the ‘secretome’. Pfam domains enriched in the *S. hermonthica* secretome compared with the rest of the proteome (nonsecretome) were significant when the corrected P-value was <0.1, according to a chi-squared test with a false discovery rate (FDR) correction for multiple testing (Benjamini & Hochberg, 1995). The initial secretome was then refined by subsets based on a series of structural and functional characteristics (Fig. S1) (details in Methods S1).

Identification and analysis of candidate virulence loci using pooled sequencing data

The raw sequence reads from the six pools were trimmed and filtered for coverage (please refer to Methods S1). The likelihood of the observed read counts for the two most common alleles, across the six pools was calculated according to eqn 3 from Gompert & Buerkle (2011) to allow for the two levels of sampling associated with pooled sequencing data (sampling of reads and of individuals). We compared three allele frequency models for each single nucleotide polymorphism (SNP) using the Akaike information criterion (AIC): a null model with a single allele frequency for all pools, a control-virulent model with one frequency for the control pools (from the NERICA-7 host) and one for the virulent pools (from the NERICA-17 host) and a replicate model with a different allele frequency for each of the three pairs of pools (one control and one virulent) that were sequenced together. The control-virulent model was the model of interest whilst the replicate model was intended to check for consistency across pairs of pools. Therefore, two ΔAIC values were obtained: ΔAICcv = AICnull – AICcontrol-virulent and ΔAICrep = AICcontrol-virulent – AICreplicate. High positive values of ΔAICcv represent better fits compared with the null model and indicate significant differences between control and virulent pool types. SNPs with positive ΔAICrep values were likely to be affected by artefacts caused by sequencing methods and were excluded from the following analyses. All analysis steps were repeated independently for SNPs based on Bwa and Novoalign mapping as recommended by Kofler *et al.* (2016).

The effective population size in *Striga* is likely to be large (Parker & Riches, 1993) and this is consistent with high diversity in our samples (overall mean π = 0.011). Therefore, we also expected that linkage disequilibrium would break down quickly. To define a suitable window size to search for regions potentially implicated in virulence, the extent of linkage disequilibrium in *S. hermonthica* was investigated (please refer to Methods S1 for details). On the basis of this analysis (Fig. S2), 1 kbp windows were used to detect genomic regions potentially associated with virulence on the basis of allele frequency differences between pools from the susceptible and resistant hosts. Permutation tests were then used to detect candidate genes with outlying levels divergence (described in Methods S1).

Two population statistics were calculated for each genic region in the control pool using the software Popoolation (Kofler *et al.*, 2011) (details in Methods S1). These were nucleotide diversity (π) and Tajima’s D, a statistic describing the allele frequency spectrum used for testing whether a DNA sequence is evolving under a process that departs from the standard neutral model, such as selection or demographic change (Tajima, 1989).

The candidate virulence genes were categorised into functional groups based on the annotations of the closest matching homologs from the *A. thaliana* and *O. sativa* proteomes, as well as the Pfam domain annotations. For each gene, the numbers of SNPs were counted for the promoter region (within 2 kbp upstream of the start codon), the intronic region and coding region, and the numbers of nonsynonymous SNPs were determined. To quantify the allele frequency differences between control and virulent pools for these candidate virulence genes, the proportion of SNPs with high fixation index (FST) values in the significant window was calculated (please refer to Methods S1).

Expression profiling of candidate virulence genes

Expression profiles for candidate virulence genes were determined for *S. hermonthica* collected at 2, 4, or 7 d post inoculation (dpi) from the roots of NERICA-7 rice plants (full details in Methods S1). In addition, unattached *S. hermonthica* haustoria were induced in *vitro* by the addition of 10 μM DMBQ (Fernández-Aparicio *et al.*, 2013). Cleaned reads were mapped to the *S. hermonthica* genome using TopHat2 v.2.0.12 and quantified with HTSeq (v.0.6.1). FPKM values for each gene at each time point were used to calculate a fold change in expression relative to the haustorial sample and significance assessed with a one-way ANOVA using the aov function in R (R Core Team, 2021). For
each gene, log₂ fold expression values, across the time points, were centred around 0 and scaled by the standard deviation for plotting as a heatmap using the `pheatmap` function in R. Further details are provided in Methods S1.

Results

The *S. hermonthica* genome is very heterozygous

We obtained a single population of *S. hermonthica* seeds from farmer’s fields in Kibos, Kenya and infected a highly susceptible rice variety, NERICA-7 (Fig. 1a). The genetic diversity of the seed population is reflected in the subtle differences of flower colour of attached parasites (Fig. 2a). We sequenced, assembled and characterised the genome of a single individual from this population. The genome size was estimated by k-mer analysis to be 1475 Mbp (Fig. 2b), in close agreement with a flow cytometry-based estimate (Estep et al., 2012) and more than twice the size of the genome of *S. asiatica* (Yoshida et al., 2019). The assembly consisted of 34 907 scaffolds > 1 kbp in length, with an N50 of 10.0 Mbp and 29 scaffolds making up half of the genome size (Table S3). The *S. hermonthica* genome was markedly heterozygous (overall mean $\pi = 0.011$) (Fig. 2c) when compared with other parasitic and nonparasitic plant genomes, likely to reflect the fact that it is an obligate outbreeding species. In addition, the genome contained a large proportion (69%) of repetitive DNA (Fig. 2b,c), dominated by long terminal repeat (LTR) elements (Table S4), a pattern also found for the shoot-parasitic plants, *Cuscuta australis* and *C. campestris* (Sun et al., 2018; Vogel et al., 2018) and the closely related parasitic plant *S. asiatica* (Yoshida et al., 2019). As expected, the density of repetitive elements along each scaffold negatively correlated with the density of protein-coding genes (Fig. 2c). In total, 29 518 protein-coding genes were predicted from the *S. hermonthica* genome, which was comparable with *S. asiatica* (34 577), the closely related nonparasitic plant *M. guttatus* (28 140) and to *A. thaliana* (27 416) (Table S5).

BUSCO analysis

The BUSCO analysis of gene set completeness (Waterhouse et al., 2018), showed 87.3% of 2326 conserved single-copy orthologues in eudicots were complete in the *S. hermonthica* genome, similar to that found in *S. asiatica* (88.7%) (Fig. 3a; Table S6). Of the BUSCOs not found in the *S. hermonthica* genome, over half were also absent from the *S. asiatica* genome (Fig. 3b; Table S6). Both *Striga* spp. shared missing BUSCOs that were present in the genome of the closely related nonparasitic *M. guttatus* (Fig. 3b; Table S6). Similarly, two shoot holoparasites, *C. australis* and *C. campestris*, with a BUSCO completeness of 81.0% and 81.7% respectively, also shared many missing BUSCOs that were present in the genome of their nonparasitic relative, *Ipomoea nil* (Fig. 3b). Of the BUSCOs missing from the *Striga* or *Cuscuta* genomes, 65 were missing from all four parasitic plants (Fig. 3b) and these were enriched with GO terms related to the chloroplast and photosynthesis (Fig. 3c; Table S7). This is consistent with previous findings suggesting some missing BUSCOs are likely to be a result of the parasitic lifestyle (Sun et al., 2018; Vogel et al., 2018; Yoshida et al., 2019; Cai et al., 2021).

Orthogroups

Comparative analysis of OGs (orthogroups) between *S. hermonthica* and 12 other plant species identified 22 624 orthogroups in total, of which 12 278 contained *S. hermonthica* genes. Of these, 327 were significantly expanded and 104 were contracted in the *S. hermonthica* genome, identified by CAFé analysis (Fig. 4a). Low branch supports due to short branch lengths were observed for the clade consisting of *P. trichocarpa*, *V. vinifera*, *M. truncatula* and *A. thaliana* (Fig. S3). This might influence the numbers of significantly expanded and contracted orthogroups for these four species but it is less likely to affect the results in *S. hermonthica*, especially the most expanded orthogroups shown in Fig. 4(b). Expanded orthogroups included the α/β-hydrolase family, recently shown to have undergone duplication in *S. hermonthica* (Toh et al., 2015), as well as numerous F-box, LRR and protein kinase domain-containing proteins (Fig. 4b). Of particular interest in the context of pathogenicity were *S. hermonthica*-specific orthogroups annotated as papain family cysteine proteases, xylanase inhibitors and trypsin and protease inhibitors (Fig. 4b). Both proteases and protease inhibitors function in a wide range of plant–plant parasitic interactions and may act offensively, by degrading host proteins or defensively, by inhibiting host defence enzymes (Bleischwitz et al., 2010; Mueller et al., 2013).

The *S. hermonthica* secretome

One way that parasite proteins can interact with host biology is through parasite-directed secretion. We identified 3375 putatively secreted proteins in *S. hermonthica* (11.4% of the proteome) (Fig. S1), many of which were homologous to *A. thaliana* secreted proteins (Table S8), providing experimental evidence for secretion into the extracellular space. On average, the *S. hermonthica* secreted proteins were both significantly smaller and had a higher percentage of cysteine residues compared with the rest of the proteome (Fig. 5a,b). Genes encoding secreted proteins tended to be more clustered (within 15 kbp of their nearest neighbour) compared with all genes in the genome ($P<10^{-4}$, 10^5 permutations) (Fig. S4) suggesting that they are likely to be arrayed in tandem and belong to large gene families (Elizondo et al., 2009). Functionally, the secretome was rich in protein domains involved in cell wall modification (e.g. endoglucanases, cellulases, pectin esterases, expansins, and pectate lyases), protease activity (e.g. papain-like cysteine proteases, aspartic proteases, and subtilase proteases) and oxidoreductase activity (peroxidases, copper oxidases, and cytochrome p450 proteins) (Figs 5c, S5, S6). Three highly abundant protein domains in the secretome were described as copper oxidases (Fig. 5S) and are commonly found in laccases that are involved in the generation or breakdown of phenolic components, such as lignin (Kwiatos et al., 2015). Small cysteine-rich proteins are common characteristics of VFs from a range of phytoparasites (Saunders et al., 2012; Lu & Edwards, 2016). In *S. hermonthica*, 183 such proteins were identified (Fig. 5a) and were similar to proteins annotated as carbohydrate binding X8 domain-containing proteins, protease inhibitor/lipid transfer proteins, PAR1-like proteins, pectinesterases, RALF-like proteins and thaumatin-like
proteins (Fig. S6), many of which are likely to play a role in host–Striga interactions (Yang et al., 2015; Yoshida et al., 2019).

We identified several protein domains in the S. hermonthica secretome that were enriched to a higher degree than observed in the secretome of the closely related nonparasitic plant, M. guttatus (Dataset S1; Fig. 5c), suggesting these functions are relevant to the parasitic lifestyle. Many of these were carbohydrate-active enzymes (CAZymes). The xyloglucan endotransglycosylase
Population genomic analysis to identify candidate virulence loci

Our experimental system allowed us to identify a subset of VF's with genetic variation relevant to the ability to infect some host genotypes and not others. Hundreds of S. hermonthica individuals were harvested from either a resistant (NERICA-17) or susceptible (NERICA-7) rice cultivar, and pools of these individuals were subjected to genome re-sequencing. After aligning the reads to our reference genome, we detected 1.8 million SNPs in genic regions. These genic regions were split into 150 741 1 kbp windows and, of these, 194 (0.13%) contained SNPs with large and consistent allele frequency differences between the bulked pools of S. hermonthica selected on the resistant vs the susceptible hosts (Fig. S7; Dataset S2). These highly differentiated windows were located in 190 genes and potentially encode VF's with allelic variants, influencing either structure or expression, that contribute to the ability of some individuals to parasitise NERICA-17. Of these candidate VF's, 152 were not predicted to be secreted and were assigned to a wide range of functional categories, including putative transcription factors, hormone signalling pathways, transporters, repeat-containing proteins and some proteins of unknown function (Dataset S2; Fig. 6a). One-sixth (24) of these nonsecreted proteins had sequence similarity to proteins in the pathogen–host interaction database (Winnenburg et al., 2007). These included S. hermonthica proteins with sequence similarity to a putative LRR protein from Ralstonia solanacearum, a mitogen-activated protein kinase from Ustilago maydis, a calreticulin-like protein from Magnaporthe oryzae and a cytochrome P450 from Bursaphelenchus xylophilus (Dataset S2).

The remaining 38 genes were members of the S. hermonthica secretome and represented particularly strong candidate VF's associated with the ability to parasitise NERICA-17 successfully (Dataset S2; Fig. 6a,b). These genes were categorised into six functional groups, the largest of which contained 12 genes associated with cell wall modification (Fig. 6a,b), including genes encoding an expansin protein, a COBRA-like protein, a β-(1–2)-xyllosyltransferase, two trichome birefringence-like (TBL) proteins, a pollen Ole e allergen and two exostosin family proteins, all of which can function to modify the extensibility or other mechanical properties of plant cell walls (Li, 2003; Honaas et al., 2013; Mitsumasu et al., 2015) (Fig. 6b). Groups of genes annotated as proteases (six genes including subtilases, aspartyl proteases, and a cysteine proteinase), lipases (three genes) and kinases (three genes) were also found. The proteases were always associated with an inhibitor protein domain (Fig. 6b). For example, the putative aspartyl proteases possessed one or more xylanase inhibitor domain(s) (Fig. 6b). There were also eight genes encoding proteins with a range of putative functions, including a PAR1-like protein, a probable aquaporin, an α/β-hydrolase and two receptor-like protein kinases (Fig. 6b). In addition, a further six genes were annotated as proteins of unknown function (Fig. 6b).

The 38 candidate VF's were investigated in more detail by quantifying changes in gene expression in haustoria at critical stages of parasite development on the susceptible rice variety NERICA-7 by inspecting the distribution of SNPs throughout the promoter and genic regions, and testing for signatures of historical selection. Gene expression was measured in an independent experiment (Fig. 7). Changes in gene expression of attached haustoria were measured relative to gene expression in haustoria generated in vitro. At 2 d after inoculation of the host root, parasite haustoria were attached and parasite intrusive cells had penetrated into the host root cortex. By day 4, the parasite intrusive cells had penetrated between the endodermal cells and by day 7 had formed connections with the xylem vessels of the host, providing direct access to host resources (Fig. 1a iii).

Before attachment to the host, some of the genes encoding candidate VF's were not expressed in haustoria (e.g. subtilase gene...
(SHERM_16883) and subtilisin-like protease (SHERM_08443)) or were expressed at very low levels (e.g. the peroxidase (SHERM_00887), glycosyl hydrolase (SHERM_20042), both aspartyl proteases (SHERM_16482 and SHERM_26730) and an unknown protein (SHERM_03853)) (DatasetS3). However, all 38 genes were expressed in haustoria during the early stages of infection of the susceptible host, NERICA-7 (Dataset S3; Fig. 7). There were two main patterns of gene expression. Firstly, 21 genes, including those mentioned above, had low levels of expression in haustoria 2 dpi, followed by an increase in expression as infection progressed (Dataset S3; Fig. 7). In contrast, 17 genes were highly expressed in haustoria 2 dpi and expression then increased in the susceptible host, NERICA-7 (Dataset S3; Fig. 7).
decreased progressively with time, for example genes encoding β-glucosidase, β-(1–2)-xylosyltransferase, and TBL protein SHERM_06484, all of which modify cell walls. The cysteine protease, PAR1, α/β-hydrolase and aquaporin genes also exhibited a similar expression profile (Dataset S3; Fig. 7).

Most of the 38 genes had significantly differentiating SNPs in their promoter regions (from the start site to 2 kbp upstream). Some of these SNPs may lead to a change in the regulation of gene expression (Fig. 6b). Some genes, for example, the gene encoding the pollen Ole e allergen protein (SHERM_15460), one of the exostosin family proteins SHERM_12118), a probable aquaporin SIP2-1 (SHERM_13450) and one of the two protein TBL genes (SHERM_16484), also had nonsynonymous SNPs in the coding region (Fig. 6b) that may result in functional differences between the alleles of these genes in individuals infecting NERICA-7 and NERICA-17. Finally, SNPs were also found within predicted intron regions in many of the genes (Fig. 6b).

The co-evolutionary interactions between hosts and parasites can generate balancing selection (Frank, 1993). We predicted that genes contributing to virulence would tend to have a history of balancing selection because of the diverse range of hosts used by S. hermonthica. To test this prediction, we compared Tajima’s D between candidate loci and the rest of the genome, expecting to see more positive values (Charlesworth, 2006). We used the pools from the susceptible host for this comparison because they represented the Striga population as a whole. As predicted, the 152 candidate loci in the S. hermonthica proteome (Fig. S8) and the 38 candidate loci in the secretome (Fig. 6c) had significantly elevated Tajima’s D, on average, compared with all the genes in the genome (P < 0.0001 and P < 0.0003, respectively; 105 permutations). Some loci had particularly high Tajima’s D values, for example the two receptor-like protein kinases (Fig. 6b). Interestingly, some loci showed large differences in Tajima’s D between the control and virulent S. hermonthica pools with the largest difference seen for the TBL gene (SHERM_16484) with a negative D (DVir/C0 = 0.9).

This suggests strong selection resulting in one common haplotype in the virulent pools in contrast with two or more haplotypes at intermediate frequencies in the control pools. There were also large positive D values: 0.71, 0.16 and 0.20 for one of the putative receptor-like protein kinases (Fig. 6b). Interestingly, some loci showed large differences in Tajima’s D between the control and virulent S. hermonthica pools with the largest difference seen for the TBL gene (SHERM_16484) with a negative ΔD (DVir – DC0) of −0.9. This suggests strong selection resulting in one common haplotype in the virulent pools in contrast with two or more haplotypes at intermediate frequencies in the control pools. These changes indicate that selection on the resistant host caused changes in frequency of multi-SNP haplotypes at these loci, haplotypes that may have been created by areas of low recombination or by recent invasion of new variants under positive selection (Cutter & Payseur, 2013).
and which underlie the ability of some *S. hermonthica* individuals to overcome resistance in NERICA-17.

Discussion

In parasitic plants such as *S. hermonthica*, a subset of secreted proteins is likely to function as VFs and contributes towards parasite fitness by facilitating host colonisation. We combined *in silico* prediction of the *S. hermonthica* secretome and pooled sequencing of parasites derived from susceptible and resistant rice hosts, both facilitated by the first available *S. hermonthica* genome assembly, to discover potential VFs. Our candidate VFs had very different allele frequencies between replicated pools derived from susceptible and resistant hosts, suggesting strong selection for

Key Pfam ID

Pfam domain description	Pfam domain ID
Fasciclin domain	PF02469
Probable lipid transfer	PF14368
Glycosyl hydrolase family 9 (cellulase)	PF00759
Glycosyl hydrolases family 16	PF00722
Plant self-incompatibility protein S1	PF05938
Plant invertase/pectin methyltransferase inhibitor	PF04043
Cupin	PF00190
Xyloglucan endo-transglycosylase (XET) C-terminus	PF06955
Peptidase C13 family	PF01650
Glycosyl transferase family 90	PF06686
Glycosyl hydrolase family 79--N-terminal domain	PF03662
Glycosyl hydrolase family 5 (cellulase)	PF00150
Cysteine rich secretory protein family	PF00188
Papain family cysteine protease	PF00112
Glycosyl hydrolases family 18	PF0704
Peptidase	PF01095
PMRS N-terminal domain	PF14416
GDSSLGN/H-like acyl-esterase family in Pmr5 & Cas1p	PF13839
Glycosyl transferase family 8	PF01501
Leucine rich repeat-terminal domain	PF08263
Pectate lyase superfamily protein	PF12708
Signal peptidase--peptidase S26	PF10502

Fig. 5 *Striga hermonthica* secretome. (a) Relationship between protein length (log scale) and cysteine content (as a % of total amino acid number) for putatively secreted (blue) and nonsecreted (red) proteins in the *S. hermonthica* proteome. Secreted proteins < 500 amino acids in length and with a cysteine % > 1 standard deviation above the mean, were selected as a subset of small, cysteine-rich proteins. (b) Descriptive statistics for length and cysteine content for secreted and nonsecreted proteins. (c) Pfam domains enrichment (log fold change) in the *S. hermonthica* secretome, relative to the proteome as a whole, compared with the corresponding enrichment in the *Mimulus guttatus* secretome. INF denotes infinite enrichment (Pfam domain only found in the secretome). Points above the 1 : 1 diagonal were enriched more in the *S. hermonthica* secretome relative to *M. guttatus* and have been coloured accordingly. Red symbol: domains only enriched in the *S. hermonthica* secretome. Yellow symbol: domains enriched more in the *S. hermonthica* secretome than in the *M. guttatus* secretome. Green symbol: domains enriched more in the *M. guttatus* secretome than in the *S. hermonthica* secretome. Blue symbol: domains present only in the secretome in both species. Sizes of the points were weighted according to the frequency of occurrence of each Pfam domain in the *S. hermonthica* secretome. Annotations for the most significantly enriched of the Pfam domains (P < 0.01) that were also enriched more in the *S. hermonthica* secretome relative to the *M. guttatus* secretome, are given in the accompanying table with their functional descriptions.
Identification of Striga hermonthica genes that display significant allele frequency differences between pools of individuals parasitising the susceptible rice variety (NERICA 7) and those that successfully parasitise the resistant rice variety (NERICA 17). (a) Functional categorisation of nonsecreted proteins and secreted, candidate virulence factors (VFs). (b) The 38 genes encoding putative secreted S. hermonthica proteins with their associated measure of differentiation (proportion of differentiating single nucleotide polymorphisms (SNPs) within the significant window) between the control and virulent sets of pools. The presence of SNPs in the promoter region (P), nonsynonymous SNPs in the coding region (NS) and those in the intronic regions (I) are indicated with an X. The annotation of the closest matching Arabidopsis thaliana protein is shown along with coloured boxes that correspond to the functional category assigned in the pie chart in (a). Tajima’s D was calculated for individuals grown on NERICA 7 (Con) or NERICA 17 (Vir). (c) Comparison of Tajima’s D for the 38 putative VFs (red) and all the genes in the genome (grey) for the control pools.

Fig. 6
particular variants that facilitate successful colonisation despite host resistance. They encompass a wide range of different functional categories.

Candidate VFs point to key functions associated with pathogenicity

The largest proportion of our 38 candidate secreted VFs (with the largest allele frequency differences) exhibited functions relating to cell wall modification. Cell wall modification is a critical step in plant invasions by many different parasites, including *S. hermonthica*. Upon host root contact, *Striga* epidermal cells differentiate to form elongated intrusive cells (Musselman & Dickison, 1975) which intrude between the host cell walls of the host epidermis, cortex, casparian strip and endodermal barrier, to reach the host xylem vessels and establish a xylem bridge (Cui *et al.*, 2016; Wakatake *et al.*, 2018), therefore allowing access to host water and nutrients (Yoshida *et al.*, 2016; Clarke *et al.*, 2019). Consistent with this, our candidate’s secreted VFs included an expansin, pollen allergen-like proteins, exostosins, a β-glucosidase, a glycosyl family protein 3 (likely to be a β-glucosidase or β-xilosidase), a β (1–2) xylosyltransferase, a peroxidase and two TBL proteins, all of which may function to modify or degrade different components of the cell walls.

In our study, the TBL protein, SHERM_16484, showed the highest difference in Tajima’s D between the control and virulent pools, consistent with selection favouring one haplotype on the resistant NERICA-17, out of several haplotypes present in the population. This gene contained SNPs in the promoter region and nonsynonymous SNPs in the coding region. In *A. thaliana* and *O. sativa*, TBL proteins belong to large gene families with functions related to cell wall modifications. At-TBL44 has been implicated in pectin esterification (Vogel *et al.*, 2004; Bacete *et al.*, 2018), whilst in rice other members of this family appear to be involved in acetylation of xylan moieties in cell walls (Gao *et al.*, 2017). In each case, changes in enzyme activity altered resistance in *A. thaliana* to powdery mildew and in rice to leaf blight (Vogel *et al.*, 2004; Gao *et al.*, 2017).

Our study supports the growing body of evidence that the production of cell wall modifying and degrading enzymes represents a general strategy used by parasitic plants to facilitate successful invasion of the host (Honaas *et al.*, 2013; Mitsumasu *et al.*, 2015;
Yang et al., 2015), or alter the composition of their own cell walls to protect against autodegradation (Johnsen et al., 2015). A comparative transcriptome study of S. hermonthica, Tryphasia versicolor and Phelipanche aegyptiaca identified a core set of c. 180 genes that were upregulated in parasite haustoria following attachment and penetration of their hosts (Yang et al., 2015). This set was significantly enriched for cell wall and extracellular localisation annotation terms. Johnsen et al. (2015) compared differences in carbohydrate epitopes in cross-sections of Pelargonium zonale parasitised by C. reflexa together with an analysis of enzymes within haustoria and concluded that it was likely that the parasite secretes some enzymes that remodel its own cell walls for protection.

Several candidate VF s were predicted to have protease activity. Interestingly, all had a dual-domain predicted structure consisting of a propeptide inhibitor domain and a catalytic protease domain. In other such protease enzymes, the propeptide domain autoinhibits the enzyme activity until cleavage of this inhibitor domain activates the catalytic domain (Shindo & Van Der Hoornt, 2007). This provides a mechanism by which the parasite could initially secrete an inactive VF that only becomes active once in the host environment. A similar dual-domain structure was found for a highly expressed, haustorium-specific cysteine protease, cuscuitain, in the shoot-parasitic plant C. reflexa (Bleischwitz et al., 2010). The main cuscuitain protein was targeted to the extracellular space by the prepeptide and deletion of the inhibitor propeptide subunit converted the enzyme to an active form, which positively contributed towards pathogenicity via protein degradation (Bleischwitz et al., 2010). These authors also hypothesised that the large amount of pectin on the surface of C. reflexa haustoria may protect parasite tissue from degradation.

Subtilases perform diverse functions in plants including protein turnover, plant development and biotic and abiotic interactions (Figueiredo et al., 2018). In our study the three subtilases were highly upregulated from 4 to 7 dpi in the susceptible host. The expression of subtilases was also upregulated in haustoria of S. asiatica (Yoshida et al., 2019) and Phtheirospermum japonicum (Ishida et al., 2016) during infection of their respective host plants. A transcriptome analysis of laser dissected intrusive cells of P. japonicum has recently revealed that four subtilases, only found in parasitic plants, were highly expressed from 3 to 7 dpi and that inhibition of the activity of these subtilases delayed the maturation of the haustorium and xylem bridge formation, consistent with an important role in parasitism (Ogawa et al., 2021). It is interesting to note that one of the most common phenotypes of resistance in NERICA-17 is the inability to form a xylem bridge with the host (Fig. 1a vi).

In plants, receptor-like kinases are a large gene family that have multiple functions in regulating plant growth, development and immunity (Lin et al., 2013). Two candidate VFs were annotated as receptor-like protein kinases, one of which, SHERM_01541, had a large positive ∆D value which suggests this haplotype may be present at a greater frequency in the virulent compared with susceptible Striga pools. Both genes were upregulated in S. hermonthica haustoria from 4 to 7 dpi. Although the function of these genes has however to be determined, Yang et al. (2015) also observed upregulation of genes encoding receptor-like protein kinases in S. hermonthica during haustorial development. Some of our VFs had predicted functions for which a role in virulence is less clear, including a putative aquaporin, PAR1 protein and a cytochrome P450. However genes with similar functional annotations were also identified through comparative transcriptomics approaches as likely to be important in parasitism in parasitic Orobanchaceae species (Yang et al., 2015), highlighting the robustness of this approach and providing exciting avenues for further investigation.

Conclusions and the way forward

Striga hermonthica parasitises many different host species and varieties, often within the same geographical area. Populations therefore encounter many different forms of resistance, which they experience as a highly heterogeneous environment. This is expected to maintain genetic diversity at many loci contributing to virulence, consistent with observations from field studies that resistant varieties, of any particular crop species, are often parasitised by one or two S. hermonthica individuals (Gurney et al., 2006; Cissoko et al., 2011; Rodenburg et al., 2015, 2017). A typical example is the host–parasite combination used in this study, in which NERICA-17 is strongly resistant to the S. hermonthica population from Kibos, with just a few individuals forming successful attachments, whereas NERICA-7 is extremely susceptible.

This host range predicts a wide range of functions implicated in overcoming host resistance. We detected 190 candidates (secreted and nonsecreted) for contribution to virulence, with large allele frequency differences between our control and virulent pools, including many gene families. It is likely that many additional candidate VFs would be revealed by repeating this comparison on other resistant hosts. An important question for the future will be to determine how individual VFs (and their allelic variants) are implicated in overcoming resistance for specific hosts or across a range of hosts. Ideally this requires a high-throughput, efficient, transformation system for S. hermonthica. Although it is now possible to produce and transform S. hermonthica callus in vitro (Waweru et al., 2019), to the best of our knowledge it is not however possible to regenerate plants.

The wide host range also predicts the maintenance of variation at virulence loci by balancing selection. We found the overall Tajima’s D in S. hermonthica to be negative, perhaps reflecting population expansion following the spread of agriculture, but our candidate loci had significantly higher Tajima’s D on average, consistent with balancing selection on these loci maintaining multiple alleles. Further understanding the maintenance of variation at virulence loci will be critical to managing the evolution of virulence as part of a sustainable control strategy (Mikaberidze et al., 2015).

Effective control of S. hermonthica is essential for food security and poverty alleviation for small-holder subsistence farmers. The use of resistance crop varieties is recognised as sustainable and cost effective (Scholes & Press, 2008), but requires a knowledge of the VFs involved, their allelic variation within and between
Striga populations and their interaction with different host resistance alleles. Our experimental approach and identification of candidate VFs and allelic variation within a S. hermonthica population, is a critical first step in this direction. This approach has not been applied previously to investigate the virulence of any parasitic plant. Its success here paves the way to apply similar methods to other host–parasite combinations, therefore underpinning the development of sustainable control strategies.

Acknowledgements

We thank members of the library production, instrumentation and informatics teams at Edinburgh Genomics. We also thank Dr Hernan Morales, University of Gothenburg, Sweden for providing the R script used to infer the read coverage distribution for each SNP for each pool of sequenced reads, based on three-component mixture models. We thank Dr Mamadou Cissoko, University of Sheffield, for help with the production of the transverse sections through rice roots infected with S. hermonthica. This project was funded by UKRI Biotechnology and Biological Sciences Research Council (https://bbsrc.ukri.org) grants, BB/J011703/1 and BB/P022456/1, awarded to JDS and RKB and The Leverhulme Trust (https://www.leverhulme.ac.uk) grant (RPG 2013-050) awarded to JDS and RKB. Open access funding enabled and organized by ProjektDEAL.

Author contributions

JDS and RKB planned and designed the research. SQ, PZ and JDS contributed to the production of S. hermonthica materials and extraction of DNA for genome and pooled sequencing. MB carried out library preparation and sequencing of the S. hermonthica genome. SQ led the genome assembly and annotation with contributions from JMB, RC, JDS and RKB. JMB carried out the prediction and analysis of the S. hermonthica secretome. SQ mapped the pooled S. hermonthica sequence reads to the S. hermonthica genome. SQ, RKB and JMB contributed to the population genomic analyses. JMB, PZ and JDS contributed to the analysis of changes in gene expression in S. hermonthica haustoria. All authors contributed to writing of the manuscript. SQ and JMB contributed equally to this work.

ORCID

Mark Blaxter https://orcid.org/0000-0003-2861-949X
James M. Bradley https://orcid.org/0000-0001-9579-6803
Roger K. Butlin https://orcid.org/0000-0003-4736-0954
Roy Chaudhuri https://orcid.org/0000-0001-5037-2695
Suo Qiu https://orcid.org/0000-0003-4913-2015
Julie D. Scholes https://orcid.org/0000-0002-8540-5319
Peijun Zhang https://orcid.org/0000-0002-2004-8429

Data availability

Raw reads for the pooled S. hermonthica sequences and for the S. hermonthica genome sequence, the assembled genome sequence and annotations have been submitted to the European Nucleotide Archive (ENA) browser at http://www.ebi.ac.uk/ena/data/view/ under the Project ID: PRJEB35606 (ERP118683). JAVA and R script files for the work detailed in Methods S1 can be found in Notes S1–S3.

References

Bacete L, Mélida H, Miedes E, Molina A. 2018. Plant cell wall-mediated immunity: cell wall changes trigger disease resistance responses. The Plant Journal 99: 614–636.

Bendtsen JD, Nielsen H, von Heijne G, Brunak S. 2004. Improved prediction of signal peptides: SIGNALP 3.0. Journal of Molecular Biology 340: 783–795.

Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological) 57: 289–300.

Bleischwitz M, Albert M, Fuchsbauer H-L, Kaldenhoff R. 2010. Significance of Cuscuta, a cyanobacterium from Cuscuta reflexa, in host-parasite interactions. BMC Plant Biology 10: 8.

Cai L, Arnold BJ, Xi Z, Kholost DE, Patel N, Hartmann CB, Manickam S, Sasirat S, Nikolov LA, Mathews S et al. 2021. Deeply altered genome architecture in the endoparasitic flowering plant Sapium bimalayanum Griff. (Rafflesiaeaceae). Current Biology 31: 1002–1011.

Coelemans E, Ibrahim HMM, De Coninck B, Goossens A. 2021. Pathogen effectors: exploiting the promiscuity of plant signalling hubs. Trends in Plant Sciences 26: 780–795.

Charlesworth D. 2006. Balancing selection and its effects on sequences in nearby genome regions. PLoS Genetics 2: 6.

Cisoko M, Boisnard A, Rodenburg J, Press MC, Scholes JD. 2011. New Rice for Africa (NERICA) cultivars exhibit different levels of post-attachment resistance against the parasitic weeds Striga hermonthica and Striga asiatica. New Phytologist 192: 952–963.

Clarke CR, Timko MP, Yoder JJ, Axtell MJ, Westwood JH. 2019. Molecular dialog between parasitic plants and their hosts. Annual Review of Phytopathology 57: 279–299.

Cui S, Wakatake T, Hashimoto K, Sautet SB, Yoshida S, Shirasu K. 2016. Haustorial hairs are specialized root hairs that support parasitism in the facultative parasitic plant Phtheirospermum japonicum. Plant Physiology 170: 1492–1503.

Cutter AD, Payseur BA. 2013. Genomic signatures of selection at linked sites: unifying the disparity among species. Nature Reviews Genetics 14: 262–274.

Elizondo JJ, Jafar-Nejad P, Clewing JM, Boerkoel CF. 2009. Gene clusters, molecular evolution and disease: a speculation. Current Genetics 12: 64–75.

Emms DM, Kelly S. 2015. ORTHOFINDER: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biology 16: 157.

Figueiredo J, Sousa Silva JM, Figueiredo A. 2018. Subtilisin-like proteases in plant defence: the past, the present and beyond. Molecular Biology Reports 45: 192–192.

Fournet S, Grenier E, Montarry J. 2017. Characterization for parasitic weeds of the genus by sample sequence analysis. Molecular Ecology 26: 157.

Gao Y, He C, Zhang D, Liu X, Xu Z, Tian Y, Liu X-H, Zang S, Pauly M, Zhou Y et al. 2017. Two trichome birefringence-like proteins mediate xylan
Timko MP, Huang K, Liu KE. 2012. Host resistance and parasite virulence in Striga-host plant interactions: a shifting balance of power. *Weed Science* 60: 307–315.

Toh S, Holbrook-Smith D, Stogios PJ, Onopriyenko O, Lumba S, Tsujiya Y, Savchenko A, McCourt P. 2015. Structure-function analysis identifies highly sensitive strigolactone receptors in *Striga*. *Science* 350: 203–207.

Vogel A, Schwacke R, Denton AK, Usadel B, Hoffmann J, Fischer K, Bolger A, Schmidt MH-W, Bolger ME, Gundlach H et al. 2018. Footprints of parasitism in the genome of the parasitic flowering plant *Cuscuta campestris*. *Nature Communications* 9: 2515.

Vogel JP, Raab TK, Somerville CR, Somerville SC. 2004. Mutations in PMR5 result in powdery mildew resistance and altered cell wall composition: PMR5 is required for powdery mildew susceptibility. *The Plant Journal* 40: 968–978.

Wakatake T, Yoshida S, Shirasu K. 2018. Induced cell fate transitions at multiple cell layers configure haustorium development in parasitic plants. *Development* 145: dev168488.

Waterhouse RM, Seppey M, Simao FA, Manni M, Ioannidis P, Klioutchnikov G, Kriventseva EV, Zdobnov EM. 2018. *BUSCO* applications from quality assessments to gene prediction and phylogenomics. *Molecular Biology and Evolution* 35: 543–548.

Waweru DN, Kuria EK, Bradley JM, Runo S, Scholes JD. 2019. Tissue culture protocols for the obligate parasitic plant *Striga hermonthica* and implications for host-parasite co-cultivation. *Plant Cell Tissue and Organ Culture* 138: 247–256.

Westwood JH. 2013. The physiology of the established parasite-host association. In: Gressel JD, Musselman LJ, eds. *Parasitic Orobanchaceae*. Heidelberg & Berlin, Germany: Springer, 87–114.

Westwood JH, dePamphilis CW, Das M, Fernández-Aparicio M, Honaa LA, Timko MP, Wafula EK, Wickett NJ, Yoder JI. 2012. The parasitic plant genome project: new tools for understanding the biology of *Orobanchaceae* and *Striga*. *Weed Science* 60: 295–306.

Westwood JH, Yoder JI, Timko MP, dePamphilis CW. 2010. The evolution of parasitism in plants. *Trends in Plant Science* 15: 227–235.

Win J, Chaparro-García A, Belhaj K, Saunders DGO, Yoshida K, Dong S, Schornack S, Zipfel C, Robatzek S, Hogenhout SA et al. 2012. Effector biology of plant-associated organisms: concepts and perspectives. *Cold Spring Harbor Symposia on Quantitative Biology* 77: 235–247.

Winnenburg R, Urban M, Beacham A, Baldwin TK, Holland S, Lindeberg M, Hansen H, Rawlings C, Hammond-Kosack KE, Kohler J. 2007. PHI-base update: additions to the pathogen host interaction database. *Nucleic Acids Research* 36: D572–D576.

Wu C-H, Derevenska L, Kamoun S. 2018. Receptor networks underpin plant immunity. *Science* 360: 1300–1301.

Yang Z, Wafula EK, Honaa LA, Zhang H, Das M, Fernandez-Aparicio M, Huang K, Bandaranayake PCG, Wu B, Der JP et al. 2015. Comparative transcriptome analyses reveal core parasitism genes and suggest gene duplication and repurposing as sources of structural novelty. *Molecular Biology and Evolution* 32: 767–790.

Yoshida S, Cui S, Ichihashi Y, Shirazu K. 2016. The haustorium, a specialized invasive organ in parasitic plants. *Annual Review of Plant Biology* 67: 643–667.

Yoshida S, Kim S, Wafula EK, Tanskanen J, Kim Y-M, Honaa L, Yang Z, Spallek T, Conn CE, Ichihashi Y et al. 2019. Genome sequence of *Striga asiatica* provides insight into the evolution of plant parasitism. *Current Biology* 29: 3041–3052.e4.

Supporting Information

Additional Supporting Information may be found online in the Supporting Information section at the end of the article.

Dataset S1 Pfam domains enriched in the secretome of *Striga hermonthica* and *Mimulus guttatus*.

Dataset S2 Genes encoding putative secreted and nonsecreted *Striga hermonthica* virulence factors.

Dataset S3 FPKM values for *Striga hermonthica* haustoria during infection of the susceptible rice variety NERICA 7.

Fig. S1 Three-step pipeline to predict the *Striga hermonthica* secretome and subsets of candidate pathogenicity-related genes.

Fig. S2 Distribution of mean ΔAICcv difference to the maximum ΔAICcv ratios in each distance interval.

Fig. S3 Comparison of a maximum likelihood tree constructed in *MEGA* and a species tree generated in *ORTHOFINDER*.

Fig. S4 Testing gene clustering in the secretome of *Striga hermonthica*.

Fig. S5 Relative abundance of Pfam domains in the *Striga hermonthica* secretome or in the rest of the proteome.

Fig. S6 Functional categorisation of four subsets of proteins selected from the *Striga hermonthica* secretome.

Fig. S7 Mean ΔAICcv in relation to the numbers of SNPs in 1 kb windows in genic regions.

Fig. S8 Comparison of Tajima’s *D* for the 152 putative virulence factors (green) and all the genes in the genome for the control pools.

Methods S1 Detailed list of methods and supplementary references.

Notes S1 JAVA-script for testing gene clustering in the secretome.

Notes S2 R script for the permutation test on mean ΔAICcv values.

Notes S3 JAVA-script for obtaining the permutation *P*-values on mean ΔAICcv values of each 1 kb window.

Table S1 Sequencing information for the *Striga hermonthica* reference genome and the bulked samples for pooled re-sequencing analysis.

Table S2 Plant species included in the analysis of genome size, heterozygosity and repetitiveness.

Table S3 Summary statistics for the *Striga hermonthica* genome assembly.

Table S4 Repeat elements identified in the *Striga hermonthica* genome.

Table S5 Comparison of the *Striga hermonthica* genome annotation with other plant species.
Table S6 BUSCO completeness analysis using 2326 core orthologous genes for eudicots (version: eudicots_odb10).

Table S7 Enriched GO terms associated with BUSCOs that were missing from the genomes of only the two *Striga* species, only the two *Cuscuta* species or both the two *Striga* species and the two *Cuscuta* species.

Table S8 Predicted subcellular location of *Striga hermonthica* proteins according to their closest orthologue in *Arabidopsis thaliana*.

Please note: Wiley Blackwell are not responsible for the content or functionality of any Supporting Information supplied by the authors. Any queries (other than missing material) should be directed to the *New Phytologist* Central Office.