Research Article

Effect of deep-litter floor and battery cages system on the feed consumption and egg production rate of commercial Layers

Nura El Dikeir Kogoor¹, Jumma B Jadalla², Mahmoud Fadlelmoula Bakhit³, Idris Adam Idris² and Mohammed Alhadi Ebrahiem¹*

¹Department of Animal Production, Faculty of Agricultural Sciences, Dalanj University, Sudan
²Department of Animal Production, Faculty of Natural Resources and Environmental Studies, University of Kordofan, Sudan
³Ministry of Production and Economic Resources, North Kordofan State, Sudan

Abstract

This study was designed to determine the effects of deep litter floor and battery cages housing system on layer feed consumption and egg production rate. Thirty two commercial hybrid layers (hyline) of 10 months production age were randomly selected and distributed equally in four deep litter ground cages, and thirty (hyline) layers were kept in battery cages, which consisted of triple deck cages, provided with automatic nipple watering system and front trough feeders. During the experimental period there were slight changes in live body weight, it was about -0.01 kg in deep litter and about 0.04 kg in battery cages system. Layers housed in deep litter system significantly consumed more feed compared to that kept in battery cages except at first week, and best averages of feed conversion ratios were calculated for layers housed in deep litter than that kept in battery cages, differences were significant for second, third, fourth and fifth weeks of experimental period. Egg production rate were significantly different in layers housed in deep litter system through the production period except the first weeks.

Introduction

Poultry is an important farm species in almost all countries. It is an important source of animal protein and can be raised in situations with limited feed and housing resources. Chicken egg is one of the finest foods, offering humans an almost complete balance of essential nutrients with proteins, vitamins, minerals and fatty acids of great biological value [1]. In addition of being one of the foods of lowest cost, it increases the consumption of food of high nutritional value for the low-income population [2]. Feed and housing are two main factors of successful poultry farming business. Housing is important for raising layer poultry commercially and in small scale. A good layer poultry housing system keeps the bird safe, well growing, productive and protects the poultry birds from adverse weather conditions, injury and predators [3]. Scientists have made various conflicting reports about the contamination of eggs under different housing systems. The majority of commercial laying hens in the world are housed in cage systems in contrast to non-cage systems such as aviaries, barns or free range [4]. Cage poultry houses are difficult to clean and disinfect [5] and with Salmonella contamination has been shown to be more persistent in successive flocks housed in cages than on-floor due to poor standards of cleaning and disinfection in cage farms [6]. Keeping higher egg production potentials of commercial layers aside management would then be key factor to ensure high profitability [7]. Some important factors from the managerial point of view are appropriate size of operation efficient, utilization of resources, economical feeding, improved housing and appropriate stocking rate. Savory and Pištěková, et
Materials and method

This experiment was conducted in the Poultry Production Research Unit, Department of Animal Production, Faculty of Natural Resources and Environmental Studies, University of Kordofan, Elobeid. The experiment extended from 10 September to 4 November, 2016. Elobeid city (latitudes 13° 14′ 53.2 N and longitudes 30° 05′ 43.2 N and longitudes 30°15′ 12.0 and 30°10′54.5° E. Elobeid is the capital of North Kordofan State with population that was estimated at 398993 [19]. Sixty two of commercial hybrid layers (High line) were randomly selected from layer flock at production age of ten months. The birds vaccinated against Newcastle and Fowl pox diseases and treated against round and tape worms. The experimental birds were fed commercial layer ration ad Libutum (Table 1). The average daily feed consumption per bird was calculated from the total hen-day feed consumption, and the average egg production per bird was calculated from the total hen-day production.

Experimental layer ration

For the sake of feeding level and quality, gross and chemical composition of the experimental ration is presented in Tables 1.1, 1.2.

Data analysis

The completely randomized experimental design was used for data analysis. Analysis of variance was used for detecting variations among different treatment means. Duncan Multiple Range Test (DMRT) was used to assess the significance among treatment means according to Gomez and Gomez (2000). SAS v0.9 software (Statistical Analysis System) was used to analyze data.

Results

Experimental layers initial live body weight

The initial live body weight of the experimental layers ranged from 1.33 kg to 1.46 kg and 1.4 kg to 1.47 kg for the layers housed in deep litter floor and layers kept in battery cages, respectively (Table 2).

Experimental layers final live body weight

Table 3 shows that the final live body weight was ranged from 1.38 kg to 1.42 kg for layers in deep litter floor and 1.36 kg to 1.42 for layers in cages.

Materials and method

This experiment was conducted in the Poultry Production Research Unit, Department of Animal Production, Faculty of Natural Resources and Environmental Studies, University of Kordofan, Elobeid. The experiment extended from 10 September to 4 November, 2016. Elobeid city (latitudes 13° 14′ 53.2 N and longitudes 30° 05′ 43.2 N and longitudes 30°15′ 12.0 and 30°10′54.5° E. Elobeid is the capital of North Kordofan State with population that was estimated at 398993 [19]. Sixty two of commercial hybrid layers (High line) were randomly selected from layer flock at production age of ten months. The birds vaccinated against Newcastle and Fowl pox diseases and treated against round and tape worms. The experimental birds were fed commercial layer ration ad Libutum (Table 1). The average daily feed consumption per bird was calculated from the total hen-day feed consumption, and the average egg production per bird was calculated from the total hen-day production.

Experimental layer ration

For the sake of feeding level and quality, gross and chemical composition of the experimental ration is presented in Tables 1.1, 1.2.

Data analysis

The completely randomized experimental design was used for data analysis. Analysis of variance was used for detecting variations among different treatment means. Duncan Multiple Range Test (DMRT) was used to assess the significance among treatment means according to Gomez and Gomez (2000). SAS v0.9 software (Statistical Analysis System) was used to analyze data.

Results

Experimental layers initial live body weight

The initial live body weight of the experimental layers ranged from 1.33 kg to 1.46 kg and 1.4 kg to 1.47 kg for the layers housed in deep litter floor and layers kept in battery cages, respectively (Table 2).

Experimental layers final live body weight

Table 3 shows that the final live body weight was ranged from 1.38 kg to 1.42 kg for layers in deep litter floor and 1.36 kg to 1.42 for layers in cages.

Table 1.1: Gross composition.

Ingredient	Percentage (%)
Sorghum	57
Peanut/groundnut(cake)	20
Concentrate	05
Limestone	10
Wheat bran	07
Sodium Chloride	0.5
Premix	0.5
Total	100

Table 1.2: Experimental layer ration.

Chemical composition	Calculated analysis
Crude protein (%)	18
Metabolism energy (Kcal/kg)	2870
Crude fiber (%)	4.6
Fats (%)	3.65
Calcium (%)	3.7
Phosphorus (%)	0.7
Birds feed consumption

Table 4 shows the average weekly feed consumption, layers housed in deep litter system consumed significantly (p≤0.05) greater feed compared to layers kept in battery cages during the whole experimental period except the first week Table 5.

Egg production and production rate

The total of egg produced by layers kept in deep-litter floor and battery cages were about 1118 and 921, respectively. So the differences in egg production percentage were significant (p≤0.05) through the whole production period except the first and last weeks in deep litter and cages respectively (Table 6).

Discussion

The study showed no significant differences in body weight gain during the experimental period for layers housed in deep litter floor and layers kept in battery cages, the average body weight gain of battery cages layers (0.04) kg was slightly better over the average body weight gain of deep litter layers (-0.01) kg and that could be due extra energy and heat production and moving [20]. The study explained that hen’s in deep litter floor had higher feed consumption rate than that kept in battery cages. The mean values of weekly feed consumption at the end of experiment were 740.6 and 707.6 g for layers housed in deep litter floor and layers kept in battery cages, respectively. Leeson and summers [21] and Harms, et al. [22] noted that there was a significant relationship between feed consumption and body weight and feed consumption and lying rate. As body weight and production rate increased, feed consumption of hens also increased.

Table 2: Initial live body weight (mean ± sd) Kg of experimental layer.

Replication	Housing type	R1	R2	R3	R4
A	1.37±0.07	1.33±0.11	1.46±0.12	1.43±0.12	
B	1.47±0.15	1.45±0.13	1.40±0.09	1.42±0.14	

* Where: A= deep-litter housing and B= cages housing.
** Numbers between brackets are number of hens.

Table 3: Final live body weight (mean ±sd) Kg of the experimental layers.

Replication	Housing type	R1	R2	R3	R4
A	1.38±0.12	1.41±0.09	1.42±0.17	1.41±0.16	
B	1.42±0.15	1.42±0.12	1.36±0.12	1.38±0.11	

* Where: A= deep-litter housing and B= cages housing.
** Numbers between brackets are number of hens.

Table 4: Feed consumption per bird/day (Gram /Day) of experimental layers.

Age (week)	Housing type	W1	W2	W3	W4	W5	W6	W7	W8
A	93	101	104	105	95	111	121	116	
B	95	94	100	98	89	105	117	113	

* Where: A= deep-litter housing and B= cages housing.
** W1, W2, W2, W4, W5, W6, W7 and W8 are age of layers after starting the experiment by 1, 2, 3, 4, 5, 6, 7 and 8 weeks, respectively.
*** Numbers with different superscripts in the same column are significantly differ (Duncan multiple range test 5%).

Table 5: Feed conversions (Kg/dozen) of experimental layers.

Age (week)	Housing Type	W1	W2	W3	W4	W5	W6	W7	W8
A	1.9±0.02	1.9	1.91	1.83	1.83	2.23	2.05	2.33	
B	1.95±0.06	2.15	2.14	2.12	2.19	2.42	2.51	2.28	

* Where: A= deep-litter housing and B= cages housing.
** W1, W2, W2, W4, W5, W6, W7 and W8 are age of layers after starting the experiment by 1, 2, 3, 4, 5, 6, 7 and 8 weeks, respectively.
*** Numbers with different superscripts in the same column are significantly differ (Duncan multiple range test 5%).
**** Numbers between brackets are number of hens.

Table 6: Weekly production rate (%) of the experimental layers.

Age (week)	Housing Type	W1	W2	W3	W4	W5	W6	W7	W8
A	58.04	63.84	60.27	66.07	60.71	59.82	70.54	59.82	
B	58.57	52.38	56.19	55.71	48.57	51.9	55.71	59.52	

* Where: A= deep-litter housing and B= cages housing.
** W1, W2, W2, W4, W5, W6, W7 and W8 are age of layers after starting the experiment by 1, 2, 3, 4, 5, 6, 7 and 8 weeks, respectively.
*** Numbers between brackets are egg production rate (%).
**** Numbers with different superscripts in the same column are significantly differ (Duncan multiple range test 5%).
reared in deep-litter and battery cage respectively. Highest best feed conversion was observed in deep-litter, battery cage at week fourth 1.91, and 2.12 kg respectively. Also report noted by Gerzilov, et al. [23] and [5] the feed conversion ratio in layers kept in deep-litter floor and layers kept in battery cages, respectively. Differences in egg production percentage were significant (p≤0.05) through the whole production period except the first week. However, the literature reveals that egg production from conventional cage layers is higher than in alternative systems such as aviary, floor management or free-range system [24-27]. Other studies conducted in several European countries indicate that egg production in furnished cages is comparable to that in conventional cages [28]; Meanwhile, Pohle and Cheng [29] reported that layers maintained in furnished cages laid more eggs at 40 weeks compared to conventionally caged birds (P≤0.05) because of considerable improvements in welfare levels [30].

Conclusion

This study showed that deep litter system could provide a good managerial system than battery cages system in open-sided houses. And some advantages of deep litter system have been known, including high feed consumption and feed conversion beside a good egg production rate. The results of this study have demonstrated that there exist differences in productive performance and the housing system. Therefore it is important to select an appropriate housing system for a particular strain of layer in order to produces eggs with highest quality.

References

1. Brugalli I, Rutz F (1998) Efeito dos níveis de óleo e proteína da dieta sobre Qualidade interna de ovos, em diferentes condiçôes Tempode armazenamento. Revista Brasileira de Agrociência, Pelotas 4: 187-190. Link: https://bit.ly/3UnvA1c
2. Pascoal LAF, Bento BA, Santos WS (2008) Comercializados Em diferentes estabelecimentos Na cidade de Imperatriz-MA. Revista Brasileira de Saúde Produção Animal 9: 150-157.
3. Kuit AR, Elhard DA, Blokhujs HJ (1989) Alternative improved Housing System For poultry. Commission of the European communities, Beekbergen 163.
4. Van Horne T, Achterbosch J (2008) Agricultural Economics Research Institute (LEI), Wageningen University and Research Center.
5. Vanalcnony H, Fournier G, Drouin P, Toux JY, Colin P (2001) Disinfection of cage layer houses contaminated with Salmonella. Enteritis British Poultry Science 42: S39-S40.
6. Davies R, Breslin M (2001) Observations on Salmonella Contamination of Commercial lying farms before and after cleaning and disinfection. Vet Rec 152: 283–287. Link: https://bit.ly/3m3LZiO
7. Van Eecker NA, Maas H, Saatkamp W, Verschuur M (2006) Small-scale. World's Poultry Science Association – Secretariat Dr Ir. P.C.M. Simons.
8. Savory CJ (2004) Laying hen welfare standards: a classic case of power to the people. Anim Welf 13: 153-158. Link: https://bit.ly/3AZVnfu
9. Plištěková V, Hovorka M, Večerek V, Straková E, Suchý P (2006) The quality comparison of eggs laid by laying hens kept in battery cages and in a deep litter system. J Anim Sci 51: 318–325. Link: https://bit.ly/2YnufRP
10. Peterman S (2003) Laying hens in alternative housing systems – practical experiences. Dtsch Tierarztl Wochenschr 110: 220–224. Link: https://bit.ly/39LaAUc
11. De Boer LJM, Cornelissen AMG (2002) A method using sustainability indicators to compare conventional and animal-friendly egg production systems. Poult Sci 81: 173–181. Link: https://bit.ly/3obAURB
12. Duncan LJD (2001) The pros and cons of cages. Worlds Poult Sci J 57: 381–390. Link: https://bit.ly/3uqTjd
13. Cooper JJ, Albentosa MJ (2003) Behavioural priorities of laying hens. Avian Poult Biol Rev 14: 127–149.
14. Tauson R (2002) Furnished cages and aviaries: production and health. Worlds Poult Sci J 58: 49–63. Link: https://bit.ly/2XTJf0a
15. Tauson R (2005) Management and housing systems for layers – effects on welfare and production. Worlds Poult Sci J 61: 477–490. Link: https://bit.ly/3UjLXa6
16. Appleby MC, Hughess BO (1991) Welfare of laying hens in cages and alternative systems-environmental, physical and behavioural-aspects. Worlds Poult Sci J 47: 109–128. Link: https://bit.ly/39gwWfJ
17. Hetland H, Moe RO, Tauson R, Lervik S, Svihus B (2004) Effect of including whole oats into pellets on performance and plumage condition in laying hens housed in conventional and furnished cages. Acta Agric Scand A Anim Sci 54: 206–212. Link: https://bit.ly/2Y46FZv
18. Abrahamsson P, Tauson R, Elwinger K (1996) Effects on production, health and egg quality of varying proportions of wheat and barley in diets for two hybrids of laying hens kept in different housing systems. Acta Agric Scand A Anim Sci 46: 173–182. Link: https://bit.ly/2WiyFAb
19. Central Bureau of Statistics (2010) population estimates 2010 for North Kordofan state- Elaboaid, Sudan. Link: https://bit.ly/3IrRWWV
20. Preisinger R (2000) lohnmann Tradition, Praxiser fahrungund. Entwick lungs perspe ktiven lohnmann inform 3: 13-16.
21. Leeson S, Summers JD (1987) Factors influencing egg size. Poultry Science 62: 1155–1159.
22. Harms RH, Russell GB (1982) Ability of commercial laying hens producing Different egg outputs to meet their methionine and energy requirements when fed the same diets. Poult Sci 75: 519–521. Link: https://bit.ly/3kMAu1L
23. Gerzilov V, Datkova V, Mihaylova S, Bozakova N (2012) Effect of poultry housing system on egg production. Bulgarian Journal of Agricultural Science 18: 953-957. Link: https://bit.ly/3hJKoI
24. Tauson R, Wahlstr MA, Abrahamson P (1999) Effect of two floor housing systems and cages on health, production, and fear response in layers. J Appl Poultry Res 8: 152–159. Link: https://bit.ly/3m3NMXg
25. Leyendecker M, Heman H, Hartung J, Kamphues J, Ring C, et al. (2001) Analyze von Genotyp- Umwelt- Interaktionen zwischen legenen hybrid enund Halting’s system en in der Legeleistung, Equalitãt und Knochenfestigkeit.
26. Djkoc M, Stoijci L, Niko P, Milosevic VR, Dragan G (2012) susceptibility of tree seedlings to biotic and abiotic hazards in the understory of montis tropical forest in Panama. Biotropica 41: 47–56.
27. Vosalafo V, Hanzalek Z, Vaseerek V, Strakova E, Suchý P (2006) Comparison between Laying Hen Performance in the Cage System and the Deep Litter System on a Diet Freefrom Animal Protein. Acta Vet Bmo 75: 219-225. Link: https://bit.ly/3ASQGns
28. Abrahamson P, Tauson R (1997) Effects of group size on performance, health and birds' use of facilities in furnished cages for laying hens. Act Agric Scand Sect A Anim Sci 47: 254–260. Link: https://bit.ly/3CORUB6

29. Pohle K, Cheng HW (2009) Comparative effects of furnished and battery cages on egg production and physiological parameters in White Leghorn hens. Poultry Sci 88: 2042–2051. Link: https://bit.ly/3APkVMz

30. Gomez KA, Gomez AA (1984) Statistical procedures for agricultural research. 2nd ed. Wiley and Sons Inc. Link: https://bit.ly/3CQxLdP