Alpha-PET for Prostate Cancer: Preclinical investigation using 149Tb-PSMA-617

Christoph A. Umbricht1, Ulli Köster2, Peter Bernhardt3,4, Nadezda Gracheva1, Karl Johnston5, Roger Schibli1,6, Nicholas P. van der Meulen1,7 & Cristina Müller$^{1,6}\ast$

In this study, it was aimed to investigate 149Tb-PSMA-617 for targeted α-therapy (TAT) using a mouse model of prostate-specific membrane antigen (PSMA)-expressing prostate cancer. 149Tb-PSMA-617 was prepared with $>98\%$ radiochemical purity (6 MBq/nmol) for the treatment of mice with PSMA-positive PC-3 PIP tumors. 149Tb-PSMA-617 was applied at 1×6 MBq (Day 0) or 2×3 MBq (Day 0 & Day 1 or Day 0 & Day 3) and the mice were monitored over time until they had reached a pre-defined endpoint which required euthanasia. The tumor growth was significantly delayed in mice of the treated groups as compared to untreated controls ($p < 0.05$). TAT was most effective in mice injected with 2×3 MBq (Day 0 & 1) resulting in a median lifetime of 36 days, whereas in untreated mice, the median lifetime was only 20 days. Due to the β^+-emission of 149Tb, tumor localization was feasible using PET/CT after injection of 149Tb-PSMA-617 (5 MBq). The PET images confirmed the selective accumulation of 149Tb-PSMA-617 in PC-3 PIP tumor xenografts. The unique characteristics of 149Tb for TAT make this radionuclide of particular interest for future clinical translation, thereby, potentially enabling PET-based imaging to monitor the radioligand’s tissue distribution.

In recent years, targeted radioligand therapy has emerged as a promising option for patients suffering from metastatic castration-resistant prostate cancer (mCRPC1). PSMA-617 is a small-molecular-weight ligand used to target the prostate-specific membrane antigen (PSMA), which is overexpressed in most prostate cancer cases2. It has been used in combination with 177Lu, a β^--particle-emitting radiolanthanide, for the treatment of mCRPC patients3. In the majority of treated patients, the tumor lesions and PSA levels were reduced after multiple cycles of 177Lu-PSMA-617 therapy4, however, complete remission remained rare and some patients still showed progressive disease after several therapy cycles5,6. Targeted α-therapy (TAT) has, therefore, been proposed due to the known increased radiobiological effectiveness of α-particles as compared to β^--particles6.

First-in-man studies using α-emitters, such as 225Ac and 213Bi, were performed in patients with 177Lu-resistant disease or when 177Lu-PSMA-617 was contra-indicated, due to excessive involvement of bone lesions and the inherent risk of bone marrow toxicity as a consequence of 177Lu-PSMA-617 accumulation7,8. The results of 225Ac-PSMA-617 therapy were impressive and illustrated the efficacy of α-emitters to kill cancer cells that had become resistant to more conventional therapies. 213Bi-PSMA-617 showed remarkable effects in a mCRPC patient who was determined to be progressive using conventional therapy8. Undoubtedly, α-therapy has the potential to be effective in patients with metastasized cancer, however, both 225Ac- and 213Bi-based radioligands are associated with currently unsolved challenges regarding the therapeutic window and logistics. 225Ac, with a relatively long half-life of 9.9 d, decays via several α- and β^--disintegrations through its daughters to 209Bi (Fig. 1a)8,10. Since the radiometal is released from the chelator during the first α-decay11, the subsequent decay of daughter nuclides may occur at sites in the body other than the tumor lesions, potentially causing undesired side effects. The decay scheme of 213Bi may be of less concern in view of toxicity to healthy tissue, however, its short half-life of only 46 min makes it generally unsuitable for systemic therapy (Fig. 1a).

1Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232, Villigen-PSI, Switzerland. 2Institut Laue-Langevin, 38042, Grenoble, France. 3Department of Radiation Physics, Institution of Clinical Science, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden. 4Medical Bioengineering, Sahlgrenska University Hospital, 413 45, Gothenburg, Sweden. 5CERN, 1211, Geneva 23, Switzerland. 6Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland. 7Laboratory of Radiochemistry, Paul Scherrer Institute, 5232, Villigen-PSI, Switzerland. *email: cristina.mueller@psi.ch
Herein, we propose 149Tb as a potential alternative α-emitter for targeted radioligand therapy, based on several attractive features: (i) 149Tb decays with a half-life of 4.1 h, which is relatively short as compared to 225Ac, but more than four-fold longer than the half-life of 213Bi. This situation makes 149Tb particularly interesting in combination with small molecules that are characterized by fast accumulation in the tumor lesions and efficient clearance from healthy tissue. (ii) 149Tb emits low-energy α-particles ($E_\alpha = 3.97 \text{ MeV}$; $I = 17\%$), but the decay does not involve relevant α-emitting daughter nuclides, which is advantageous over 213Bi and 225Ac (Fig. 1b). (iii) The co-emission of β^+-particles (positrons) is a unique feature of 149Tb, making it suitable to trace 149Tb-labeled radioligands using positron emission tomography (PET). This has recently been exemplified in a preclinical pilot study, in which we demonstrated the feasibility of visualizing 149Tb using PET and referred to this approach as “alpha-PET”12. (iv) 149Tb, as a radiolanthanide, can be stably coordinated with a DOTA chelator and, hence, be used with any established tumor-targeting agent that is also applied for 177Lu-therapy. (v) Finally, it is important to recognize that additional, medically-interesting Tb radioisotopes exist, among those 161Tb, which has similar characteristics to 177Lu but co-emits conversion and Auger electrons that were shown to potentiate the therapeutic efficacy in a preclinical setting13–16. This situation could enable using chemically-identical radioligands for either β^-- or Auger electron therapy or TAT, respectively.

The potential of 149Tb was demonstrated for the first time in a preclinical therapy study more than a decade ago17. It was shown that 149Tb-rituximab was able to specifically kill circulating cancer cells and small cell clusters in a leukemia mouse model. The therapeutic efficacy of 149Tb was also investigated by our own group using a 149Tb-labeled DOTA-folate conjugate in a therapy study with KB tumor-bearing mice12.

In this study, 149Tb was used for the labeling of PSMA-617 and tested in a preclinical setting. 149Tb-PSMA-617 was investigated in a therapy experiment with tumor-bearing mice using variable application schemes and for the visualization of PSMA-positive tumor xenografts using preclinical PET/CT.

Results

Preparation of 149Tb-PSMA-617. Directly after separation from zinc and isobar impurities, the final product (149Tb in HCl 0.05 M) was used for the labeling of PSMA-617. 149Tb-PSMA-617 was obtained at a molar activity of up to 6 MBq/nmol, with a radiochemical purity of >98%. The retention time of the product ($t_R = 8.7$ min) was equivalent to previous data obtained with 177Lu-PSMA-617 (Supplementary Information, Fig. S1)18.

Areas under the curve (AUC) and AUC ratios of 149Tb-PSMA-617. Based on previous studies that showed equal distribution of 177Lu- and $^{161/152}$Tb-labeled tumor targeting agents (including DOTA-folate14, DOTANOC19 and PSMA-61720), it was assumed that 149Tb-PSMA-617 and 177Lu-PSMA-617 would distribute equally in the body. The distribution of 177Lu-PSMA-617 showed fast accumulation in PC-3 PIP tumor xenografts, with the kidneys being the only healthy organs with substantial accumulation of activity (Supplementary Information, Table S1)2. The biodistribution data obtained with 177Lu-PSMA-617 were transformed to non-decay-corrected data, using the half-life of 149Tb, to obtain the time-dependent uptake of 149Tb-PSMA-617 in the various tissues. This enabled the determination of the areas under the curves (AUCs) and the respective

Figure 1. Principle decay schemes of 225Ac, 213Bi and 149Tb. (a) Decay scheme of 225Ac and 213Bi. (b) Decay scheme of 149Tb.
tumor-to-background AUC ratios. Due to the much shorter half-life of 149Tb as compared to 177Lu, the activity retention in the tumor xenograft was shorter resulting in lower uptake values (0.66 ± 0.10% IA/g) at 24 h p.i. In any normal tissue and organ the retention of activity was <0.1% IA/g at 24 h after injection of 149Tb-PSMA-617 (Supplementary Information, Table S2). The tumor-to-blood, tumor-to-kidney and tumor-to-liver AUC ratios of 149Tb-PSMA-617 were determined as 74, 10 and 225, respectively (Table 1). Based on the pharmacokinetic properties of radionabeled PSMA-617, characterized by high retention of tumor-accumulated activity but fast excretion from background organs, the AUC ratios correlated positively with the half-life of the respective radionuclide. Calculations of AUC ratios for 213Bi-PSMA-617 - under the assumption that it would distribute the same as 177Lu-PSMA-617 - revealed clearly lower values than determined for 149Tb-PSMA-617 (Table 1). Accordingly, calculated AUC ratios of 225Ac-PSMA-617 resembled more closely those of 177Lu-PSMA-617. It has to be critically acknowledged, however, that the daughter nuclides and their uncontrollable decay, also potentially in non-targeted tissues, has not been taken into consideration for this estimation.

Dose estimation for 149Tb-PSMA-617 and 177Lu-PSMA-617.

The calculated mean specific absorbed doses of 149Tb-PSMA-617 to the tumor and kidneys determined values of 1.5 Gy/MBq and 0.14 Gy/MBq, respectively. Due to the increased radiobiological effectiveness (RBE) of α-particles as compared to β^--particles, the estimated equivalent dose to tumors and kidneys was calculated at 6.9 Sv$_{\text{RBE}}$/MBq and 0.63 Sv$_{\text{RBE}}$/MBq, respectively, when using 149Tb-PSMA-617.

The calculations for 177Lu-PSMA-617 were performed in analogy and revealed a mean specific absorbed dose to the tumors and kidneys of 3.2 Gy/MBq and 0.041 Gy/MBq, respectively (Supplementary Information). It should be noted that these dosimetry estimations are based on the assumptions of an average sphere size of 60 mm3, while interindividual differences in tumor sizes were not considered. The variation in absorbed doses due to tumor size variations was, however, less than 5% for 149Tb and 177Lu, respectively.

Therapy study.

Mice from four groups were injected with either only saline or a cumulative activity of 6 MBq 149Tb-PSMA-617 using variable injection schemes (Fig. 2a). Group A (control group; injected with saline) showed constant tumor growth and, as a result, the first mouse had to be euthanized at Day 12 due to an oversized tumor. Tumor growth of mice in Group B, which received one injection of 6 MBq 149Tb-PSMA-617 at Day 0, was clearly constant tumor growth and, as a result, the first mouse had to be euthanized at Day 12 due to an oversized tumor. Tumor growth inhibition in mice from Group B-D and untreated control mice of Group A (Supplementary Information, Table S3). Moreover, the average body weight at the time of euthanasia, as well as the organ mass of kidneys, liver and brain, and the ratios thereof did not reveal any significant differences among the mice of the different groups (Table 3).
Figure 2. Analysis of therapy study performed with 149Tb-PSMA-617 in PC-3 PIP tumor-bearing mice.
(a) Timeline of the application of 149Tb-PSMA-617 to the various groups of mice. (b) Tumor growth curves of Groups A–D relative to the tumor volume at Day 0 (set to 1). Data shown until the first mouse of the group in question reached a predefined endpoint. (c) Curves reflecting the lifetime of mice of Groups A–D (mice were euthanized when they reached one or several of the predefined endpoints). (d) Relative body weight of mice of Groups A–D.

Group	Treatment Group	First mouse euthanized [Day]	Median$^{(2)}$ lifetime [days]	TGI [%]	TGD$^{(2)}$	TGD$^{(5)}$
A	saline	12	20	0 ± 47	1.0 ± 0.5	1.0 ± 0.3
B	149Tb-PSMA-617$^{(b)}$	22	26	82 ± 3.9*	2.7 ± 0.2*	2.0 ± 0.1*
C	149Tb-PSMA-617$^{(c)}$	30	36	87 ± 4.5*	3.4 ± 0.5*	2.4 ± 0.2*
D	149Tb-PSMA-617$^{(d)}$	26	32	87 ± 4.8*	3.5 ± 0.2*	2.3 ± 0.1*

Table 2. Treatment group, day when the first mouse of the group had to be euthanized, median lifetime, tumor growth inhibition (TGI) and tumor growth delay index with 2- and 5-fold increase of tumor size (TGD$^{(2)}$ and TGD$^{(5)}$) of Groups B–D, respectively, as compared to the untreated control mice of Group A. Values indicated as average ± SD. $^{(1)}$The lifetime was based on euthanasia required, according to predefined endpoints. $^{(b)}$Injected with 6 MBq at Day 1. $^{(c)}$Injected with 3 MBq at Day 0 and Day 1, respectively. $^{(d)}$Injected with 3 MBq at Day 0 and Day 3, respectively. *Indicating significant difference from the control group (p < 0.05). Remark: TGD$^{(2)}$ and TGD$^{(5)}$ values differed significantly between Groups B and C.
In a separate experiment, PET/CT scans were performed with PC-3 PIP/flu tumor-bearing mice at 30 min, 2 h and 4 h after injection of 5 MBq 149Tb-PSMA-617 (Fig. 3, Supplementary Information Fig. S2). Significant uptake of radioactivity was detected in the PC-3 PIP tumors (right shoulder), while accumulation of the radioligand in PC-3 flu tumors (left shoulder) was not observed. In normal tissues and organs, activity accumulation was only visible in the kidneys at early time points after injection and in the urinary bladder as a result of the renal excretion of the radioligand.

Discussion

In the present study, 149Tb was produced at a quantity and quality that enabled the labeling of PSMA-617 at a specific activity and radiochemical purity suitable for a preclinical therapy study. The experiment was designed with four groups of six mice, namely, one group of untreated control animals and three groups of mice treated with 149Tb-PSMA-617 according to different application schemes. The treated groups of mice that received 149Tb-PSMA-617 in two fractions showed a somewhat better tumor growth inhibition than the group of mice that received a single application of 149Tb-PSMA-617. Overall, mice that received 149Tb-PSMA-617 on two consecutive days reached the endpoints later than mice of the other groups, as reflected by highest median lifetime and a stable body weight over the entire time of investigation.

Dosimetry estimations revealed a mean absorbed tumor dose of 6.9 SvRBE5/MBq for 149Tb-PSMA-617, which was about double the value calculated for the tumor dose after application of 177Lu-PSMA-617 (3.2 Gy/MBq). Speculations regarding the required activity of 149Tb-PSMA-617 for a clinical application appear difficult, based on the dosimetry estimation from a preclinical setting. The TAT recently performed with 213Bi-PSMA-617 in a patient used a cumulative activity of ~600 MBq, applied in two cycles. The outcome was an impressive molecular imaging result, as well as biochemical response, with significantly reduced PSA values after 11 months.

Group (n = 6)	Whole body weight [g] (average ± SD)	Organ weighta [mg] (average ± SD)	Organ weight ratio (average ± SD)			
		Kidneys	Liver	Brain		
Group A	14.5 ± 0.62	184 ± 25	779 ± 138	358 ± 14	0.51 ± 0.07	2.2 ± 0.44
Group B	14.7 ± 1.02	223 ± 146	743 ± 154	361 ± 30	0.62 ± 0.40	2.1 ± 0.40
Group C	15.7 ± 1.24	195 ± 23	795 ± 77	377 ± 18	0.52 ± 0.05	2.1 ± 0.16
Group D	14.4 ± 0.42	185 ± 7	801 ± 49	366 ± 19	0.51 ± 0.04	2.2 ± 0.17

Table 3. Body weight and organ weight of mice in the therapy study and their corresponding ratios. Values indicated as average ± standard deviation (SD). aData obtained at the day of euthanasia when an endpoint criterion was reached.

Figure 3. Maximum intensity projections of PET/CT scans of a mouse bearing a PSMA-positive PC-3 PIP tumor xenograft (right shoulder) and PSMA-negative PC-3 flu (left shoulder) tumor xenografts. (a) PET/CT scan obtained 30 min after injection of 149Tb-PSMA-617. (b) PET/CT scan obtained 2 h after injection of 149Tb-PSMA-617. (c) PET/CT scan obtained 4 h after injection of 149Tb-PSMA-617. PC-3 PIP = PSMA-positive tumor; PC-3 flu tumor = PSMA-negative tumor, Ki = kidneys, Bl = urinary bladder.
According to the decay properties of the radionuclides in question, 149Tb-PSMA-617 is likely to be more potent than 211Bi-PSMA-617 and, therefore, most probably equally effective at lower activities.

The mean absorbed dose of 149Tb-PSMA-617 to the kidneys was determined to be ~10-fold higher than that of 177Lu-PSMA-617. In a previously-performed therapy study in mice performed with 177Lu-folate, a dose level of ~23 Gy to the kidneys was well tolerated. Should this renal dose limit be translatable to α-emitters, one could still apply 6 cycles safely with 149Tb-PSMA-617 (using 6 MBq per mouse with a cumulative activity of 36 MBq) resulting in accumulative dose of ~23 SvRBE$_5$ to the kidneys.

Radionephrotoxicity in patients treated with 177Lu-PSMA-617 has not been observed, due to the low renal uptake and, consequently, low mean absorbed dose to the kidneys (~0.6 Gy/GBq). It is, therefore, likely that the generally-accepted (conservative) threshold dose of ~23 Gy would not be reached with 149Tb-PSMA-617, since the quantity of injected activity would be significantly lower. It can even be expected that the renal dose would still be within the safety margins if it was increased by a factor of 10 (i.e. ~6 SvRBE$_5$/GBq), as observed in this preclinical study. Importantly, the calculated absorbed kidney dose reported for 211Bi-PSMA-617 in patients was determined to be in a similar range (~8 SvRBE$_5$/Gy).

Our calculations of AUC ratios from preclinical data indicated the highest and, thus, most favorable ratios for the longer-lived 225Ac. These results were in line with literature reports on theoretical dose estimations that considered 225Ac-PSMA-617 to be superior to 211Bi-PSMA-617, due to favorable dosimetry, with an increased therapeutic index and less off-target radiation. It is, however, important to recognize that 225Ac decays by several α- and β^--disintegrations, which may add to the off-target dose. The fact that 149Tb does not have relevant α-emitting daughters adds particular value to this radionuclide. As the tumor-to-background AUC ratios increase with the half-life of the applied radionuclide, 149Tb would be a clearly more favorable α-emitter than 211Bi for TAT. The four-fold increased half-life of 149Tb, as compared to 211Bi would not only improve the tumor-to-background dose ratios but also facilitate the logistics of radioligand preparation and distribution. These promising circumstances warrant the evaluation of new production sites to make 149Tb routinely available at larger quantities.

Due to the positron emission of 149Tb, the accumulation of 149Tb-PSMA-617 in PSMA-positive prostate tumor xenografts was readily visualized using preclinical PET. This approach was previously demonstrated with 149Tb-DOTANOC. The unique characteristic of 149Tb to emit α-particles and positrons (previously referred to as the concept of “alpha-PET”) would most likely allow the imaging of 149Tb-based α-therapy in patients. This would give 149Tb an advantage over existing α-emitters and provide a new dimension in view of its clinical translation. It would also allow accurate retrospective dose estimations to plan future applications and minimize off-target toxicity.

Potential limitations of this study include the fact that the PC-3 PIP tumor mouse model is based on PCa cells that were transduced to stably express PSMA at levels which are higher than in LNCaP xenografts that express PSMA physiologically. Moreover, tumor xenografts based on PC-3 PIP cells express PSMA homogeneously throughout the xenograft, which may not exactly reflect the situation of lesions in patients. Finally, a human xenograft only grows in immune-deficient (athymic nude) mice, hence, immunological reactions, which may have an impact on the therapy outcome, are not considered in this model.

The mice were treated when the tumor xenografts were still quite small, in order to enable monitoring of the tumor growth (delay) over a reasonable time period as commonly performed in preclinical settings. This may be seen as a limitation, since tumor lesions in patients may have developed over several weeks. It is, however, important to mention that the patients suffering from metastatic disease with very small lesions would profit most from TAT. It is, thus, vital to show the therapy effect in small tumors since these smallest lesions are commonly the ones, which do not get sufficient dose when using the current generation of 3-emitting radionuclides such as 177Lu.

A further limitation of any preclinical study refers to the legal requirements of defining endpoints, when mice have to be euthanized, which do not necessarily reflect the situation of a cancer patient. In this study, the endpoints of mice were defined based on the tumor size and body weight loss according to ethical guidelines of the local law of animal protection.

Conclusion

The interesting features of 149Tb for “alpha-PET” make it attractive for in-depth preclinical follow-up investigations. Certainly, higher quantities of activity and/or more frequent injections of 149Tb-PSMA-617 would be necessary to eradicate the tumors entirely. This was, however, not feasible in this study due to the still limited availability of 149Tb. Beyond the application of 149Tb-PSMA-617, 149Tb could be employed in combination with a large variety of DOTA-functionalized, tumor-targeting ligands used in clinics or currently under development. A potential clinical translation of 149Tb-based radionuclide therapy may, thus, become a realistic future perspective, provided that a significant scale-up of the current production capabilities can be achieved by establishing effective new production sites.

Materials and Methods

Production and chemical separation of 149Tb. 149Tb was produced by proton-induced spallation in a tantalum target, followed by ionization of the spallation products and online mass separation at the ISOLDE facility (CERN, Geneva, Switzerland), as previously reported. The foils, containing the 149isobars, were transported to PSI where the 149Tb was chemically separated from the zinc, as well as from the isobar and pseudo-isobar impurities using chromatographic methods. The final product was obtained as 149TbCl$_3$ in a small volume of 0.05 M HCl, which enabled its application for direct radiolabeling. A detailed description of the separation process will be published elsewhere.
Preparation of 149Tb-PSMA-617. The labeling of PSMA-617 (Advanced Biochemical Compounds, ABX GmbH, Radeberg, Germany) with 149Tb was performed according to a standard radiolabeling protocol at pH 4.5. An aliquot of 149TbCl$_3$/HCl (0.05 M) was added to a mixture of sodium acetate (0.5 M, pH ~8) and HCl (0.05 M) containing PSMA-617 to obtain the required molar activity of 3 MBq/nmol or 6 MBq/nmol, respectively. The reaction mixture was incubated for 15 min at 95 °C, followed by quality control using HPLC (Supplementary Information). The in vivo experiments were performed using 149Tb-PSMA-617 without further purification.

Estimation of AUC ratios of 149Tb-PSMA-617. In this study, it was assumed that the tissue distribution of 149Tb-PSMA-617 was equal to 177Lu-PSMA-617, which enabled us to use previously-published biodistribution data obtained with 177Lu-PSMA-617 with permission from (Benešová et al. 2018 Mol Pharm 15(3):934-946). Copyright (2019) American Chemical Society. Transformation of these data to non-decay-corrected data using the half-life of 149Tb revealed the effective uptake of 149Tb-PSMA-617 in the tumors, blood, kidneys and liver over time. The time-activity curves for the tumor were obtained with a mono-exponential function, while a bi-exponential function was utilized for the kidney, liver and blood, fitted to the non-decay-corrected data points using MATLAB. The time-integrated activity was obtained by integration to infinity. These AUC values were used to determine the tumor-to-blood, tumor-to-kidney and tumor-to-liver AUC ratios for 149Tb-PSMA-617 as a measure of the dose ratios. The data also enabled the comparison of the dose ratios with those theoretically obtained when PSMA-617 would be used in combination with other α-emitters, such as 212Bi ($T_{1/2} = 46$ min) and 225Ac ($T_{1/2} = 9.9$ d), under the assumption that the tissue distribution would be identical in this mouse model.

Dosimetry estimations for 149Tb-PSMA-617 and 177Lu-PSMA-617. The mean specific absorbed doses (Gy/MBq) to the tumors and kidneys were calculated by multiplication of time-integrated activity concentration (corresponding to the AUC values), by the emitted α-energy (663 keV/decay) and the emitted electron energy (86 keV/decay) for 149Tb. The emitted photon energy, as well as the electron energy emitted from the daughter radionuclides (149Gd, 145Eu, and 145Sm), was omitted. The absorbed electron fractions for tumors and kidneys were assessed by Monte Carlo simulations using PENELOPE-2014 and a conversion factor. Due to the increased radiobiological effectiveness as compared to β^+-particles, the estimated equivalent dose was calculated using a RBE of 5 for the energy emitted as α-particles (663 keV/decay) and the RBE reset to 1 for the emitted electrons (86 keV/decay); the resulting unit is indicated as SvRBE. The calculations for 177Lu-PSMA-617 were performed in analogy (Supplementary Information).

In vivo studies. In vivo experiments were approved by the local veterinarian department and conducted in accordance with the Swiss law of animal protection. The preclinical studies have been ethically approved by the Cantonal Committee of Animal Experimentation and permitted by the responsible cantonal authorities (license number 75668). Athymic BALB/c nude mice were obtained from Charles River Laboratories (Sulzfeld, Germany) at the age of 5–6 weeks.

Tumor cells. Sub-lines of the androgen-independent PC-3 human prostate cancer xenograft, originally derived from an advanced androgen-independent bone metastasis, were kindly provided by Prof. M. Pomper (Johns Hopkins University, Medical School, Baltimore, U.S.A.). The cell lines are transduced to express high levels of PSMA (PC-3 PIP) or mock-transduced as a PSMA-negative control (PC-3 flu). PC-3 PIP/flu tumor cells are widely used in the community for preclinical studies to evaluate PSMA-targeted radioligands. It was previously reported that PC-3 PIP cells express PSMA at significantly higher levels than LNCaP cells, hence, the PSMA expression level of PC-3 PIP tumor xenografts does not exactly reflect the expression level of lesions in a patient.

Therapy study and monitoring of mice. The therapy study was performed with 6 mice per group 7 days after inoculation of PC-3 PIP tumor cells (4×10^6 cells, 100 μL Hank’s Balanced Salt Solution (HBSS)) on the right shoulder. At this stage, the tumors were still quite small (average ~60 mm3; Table 4) closely reflecting metastasized disease in patients with small lesions. At Day 0 of the study, animals of Group A were injected with 100 μL saline (NaCl solution 0.9%). Mice of Group B were injected with 6 MBq 149Tb-PSMA-617, mice of Group C were injected with 2 × 3 MBq 149Tb-PSMA-617 at Day 0 and at Day 1 and mice of Group D were injected with 2 × 3 MBq 149Tb-PSMA-617 at Day 0 and at Day 3. 149Tb-PSMA-617 was diluted to the respective activity with 100 μL saline (Table 4). The mice were monitored by measuring body weights and the tumor size every other day until the end of the study. Mice were euthanized when a predefined endpoint criterion was reached or when the study was terminated at Day 40. Endpoint criteria were defined as (i) body weight loss of >15%, (ii) a tumor volume of >800 mm3, (iii) a combination of body weight loss of >10% and a tumor volume of >700 mm3, (iv)

Group	Treatment (n = 6)	Injected Radioactivity	Days of Injections (Day)	Tumor Volume [mm3]	Body Weight [g]
A	saline	—	—	46 ± 18	16 ± 0.6
B	149Tb-PSMA-617	1 × 6 MBq	Day 0	82 ± 56	17 ± 1.5
C	149Tb-PSMA-617	2 × 3 MBq	Day 0 and Day 1	56 ± 30	17 ± 0.7
D	149Tb-PSMA-617	2 × 3 MBq	Day 0 and Day 3	64 ± 15	17 ± 0.6

Table 4. Design of the therapy study indicating the application scheme, as well as the average tumor volume and body weight of each group at therapy start. Values indicated as average ± SD.
signs of unease and pain or (v) a combination thereof. The relative body weight (RBW) was defined as \[\text{RBW} = \frac{W_x}{W_0} \], where \(W_x \) is the body weight (in grams) at a given Day X and \(W_0 \) the body weight (in grams) at Day 0. The tumor dimensions were determined by measuring the longest tumor axis (L) and its perpendicular axis (W) with a digital caliper. The tumor volume (V) was calculated according to the equation \(V = \frac{4}{3} \pi (L \times W^2) \). The relative tumor volume (RTV) was defined as \[\frac{V_x}{V_0} \], where \(V_x \) was defined as the tumor volume in \(\text{mm}^3 \) at a given Day X and \(V_0 \) the tumor volume in \(\text{mm}^3 \) at Day 0. The anti-tumor efficacy of \(^{149}\text{Tb}\)-PSMA-617 was expressed as percentage tumor growth inhibition (% TGI), using the equation \[\left(\frac{100 - \left(\frac{T}{C} \right) \times 100 \right) \], where T is the mean RTV of treated mice and C is the mean RTV of control mice at the time of euthanasia of the first mouse of the control group. As an additional measure of the efficacy of the radionuclide therapy, the tumor growth delay indices were determined. The tumor growth delay (TGD) was the time required for the tumor volume to increase x-fold over the initial volume at the Day 0. The tumor growth delay index \[\frac{\text{TGD}(x)}{\text{TGD}(x)} \] was calculated as the \(\text{TGD}(x) \) ratio of treated mice (T) over control mice (C) for a 2-fold \((x = 2, \text{TGD}(2))\) and 5-fold \((x = 5, \text{TGD}(5))\) increase of the initial tumor volume. The median lifetime, based on euthanasia of the mice when they reached an endpoint, was calculated using GraphPad Prism software (version 7). After euthanasia, kidneys, liver and the brain were collected and weighed. The organ ratios (kidney-to-brain and liver-to-brain) were calculated using the organ masses obtained at the day of euthanasia. Organ data were analyzed for significance using a one-way ANOVA test with a Tukey’s post correction (GraphPad Prism software, version 7). A p-value of <0.05 was considered as statistically significant.

Blood samples were taken at the time of euthanasia for the evaluation of a selection of clinical chemistry parameters of renal and hepatic function (creatinine, blood urea nitrogen, alkaline phosphatase, total bilirubin and albumin) (Supplementary information).

PET/CT imaging studies. In a separate experiment, PET/CT scans were performed using a small-animal bench-top PET/CT scanner \(^{40}\) (G8, Perkin Elmer, Massachusetts, U.S.), as previously reported, with a set energy window ranging from 150 keV to 650 keV \(^{41}\). Mice were subcutaneously inoculated with PC-3 PIP tumor cells (6 \(\times 10^6 \) cells) and PC-3 flu tumor cells (5 \(\times 10^6 \) cells) on the right and left shoulder, respectively, 7–10 days before the acquisition of the PET/CT scans. This mouse model with a PSMA-positive and a PSMA-negative tumor xenograft in one animal enables the determination of PSMA-specific radioligand uptake without the need for blocking studies using 2-(phosphonomethyl)-pentandioic acid (2-PMPA) as a PSMA inhibitor. During the scan, mice were anesthetized with a mixture of isoflurane and oxygen. Static whole-body PET scans of 10 min duration were performed at 30 min, 2 h and 4 h after injection of \(^{149}\text{Tb}\)-PSMA-617 (5 MBq, 1.2 nmol, 200 \(\mu \)L), followed by a CT scan of 1.5 minutes. The acquisition of the data and their reconstruction was performed using the G8 PET/CT scanner software (version 2.0.0.10). All images were prepared using VivoQuant post-processing software (version 3.5, inviCRO Imaging Services and Software, Boston U.S.). A Gaussian post-reconstruction filter (full width at half maximum 3.5, inviCRO Imaging Services and Software, Boston U.S.).

Ethical approval. This study was performed in agreement with the national law and PSI-internal guidelines of radiation safety protection. *In vivo* experiments were approved by the local veterinarian department and conducted in accordance with the Swiss law of animal protection.

Received: 29 July 2019; Accepted: 5 November 2019;
Published online: 28 November 2019

References

1. Beheshti, M., Heinzel, A., von Mallek, D., Filss, C. & Mottaghy, F. M. Prostate-specific membrane antigen radioligand therapy of prostate cancer. *Q J Nucl Mol Imaging* 63, 29–36, https://doi.org/10.23736/S1824-4785.19.03155-8 (2019).

2. Benesova, M. et al. Preclinical evaluation of a tailor-made DOTA-conjugated PSMA inhibitor with optimized linker moiety for imaging and endoradiotherapy of prostate cancer. *J Nucl Med* 56, 914–920, https://doi.org/10.2967/jnumed.114.147413 (2015).

3. Rahbar, K. et al. German multicenter study investigating \(^{177}\text{Lu}\)-PSMA-617 radioisogand therapy in advanced prostate cancer patients. *J Nucl Med* 58, 85–90, https://doi.org/10.2967/jnumed.116.183194 (2017).

4. Rahbar, K., Afshar-Oromieh, A., Jadvar, H. & Ahmadzadehfar, H. PSMA theranostics: current status and future directions. *Mol Imaging* 17, 1536012118776068, https://doi.org/10.1177/1536012118776068 (2018).

5. von Eyben, F. E. et al. Third-line treatment and \(^{177}\text{Lu}\)-PSMA radioisogand therapy of metastatic castration-resistant prostate cancer: a systematic review. *Eur J Nucl Med Mol Imaging* 45, 496–508, https://doi.org/10.1007/s00259-017-3895-x (2018).

6. Sgouros, G. Alpha-particles for targeted therapy. *Adv Drug Deliv Rev* 60, 1402–1406, https://doi.org/10.1016/j.addr.2008.04.007 (2008).

7. Kratochwil, C. et al. \(^{225}\text{Ac}\)-PSMA-617 for PSMA-targeted alpha-radiation therapy of metastatic castration-resistant prostate cancer. *J Nucl Med* 57, 1941–1944, https://doi.org/10.2967/jnumed.116.178673 (2016).

8. Sathkeghe, M. et al. \(^{225}\text{Ac}\)-PSMA-617 targeted alpha-radiomuclide therapy in metastatic castration-resistant prostate cancer. *Eur J Nucl Med Mol Imaging* 44, 1099–1100, https://doi.org/10.1007/s00259-017-3657-9 (2017).

9. Miederer, M., Scheinberg, D. A. & McDevitt, M. R. Realizing the potential of the actinium-225 radionuclide generator in targeted alpha particle therapy applications. *Adv Drug Deliv Rev* 60, 1371–1382, https://doi.org/10.1016/j.addr.2008.04.009 (2008).

10. Thiele, N. A. & Wilson, J. Actinium-225 for targeted alpha therapy: coordination chemistry and current chelation approaches. *Cancer Biother Radiopharm* 33, 336–348, https://doi.org/10.1089/cbr.2018.2494 (2018).

11. de Kruifj, R. M., Wollerbeek, H. T. & Denkova, A. G. A critical review of alpha radionuclide therapy–how to deal with recoiling daughters? *Pharmaceuticals (Basel)* 8, 321–336, https://doi.org/10.3390/ph8020321 (2015).

12. Müller, C. et al. Alpha-PET with terbium-149: evidence and perspectives for radiotheragnostics. *EJNMMI Radiopharm Chem* 1, 5, https://doi.org/10.1186/s41181-016-0008-2 (2017).

13. Müller, C. et al. A unique matched quadruplet of terbium radioisotopes for PET and SPECT and for \(\alpha \)–\(\beta \)–\(\gamma \)–\(\delta \) radionuclide therapy: An in vivo proof-of-concept study with a new receptor-targeting folate derivative. *Nucl Med Imaging* 53, 1951–1959, https://doi.org/10.2967/jnumed.111.107549 (2012).

14. Müller, C. et al. Direct in vitro and in vivo comparison of \(^{149}\text{Tb}\) and \(^{177}\text{Lu}\) using a tumour-targeting folate conjugate. *Eur J Nucl Med Mol Imaging* 41, 476–485, https://doi.org/10.1007/s00259-013-2563-z (2014).
34. Elgqvist, J.
33. Salvat, F. PENELOPE-2014: A code system for MONTE CARLO simulation of electron and photon transport.
41. Farkas, R.
31. Müller, C.
32. Benesova, M., Umbricht, C. A., Schibli, R. & Müller, C. Albumin-binding PSMA ligands: optimization of the tissue distribution profile. Mol Pharm 15, 934–946, https://doi.org/10.1021/acs.molpharmaceut.7b00877 (2018).
35. Kratochwil, C. et al. Targeted alpha therapy of mCRPC: Dosimetry estimate of 212Bismuth-PSMA-617. Eur J Nucl Med Mol Imaging 45, 31–37, https://doi.org/10.1007/s00259-017-3817-y (2018).
22. Delker, A. et al. Dosimetry for 177Lu-DKFZ-PSMA-617: a new radiopharmaceutical for the treatment of metastatic prostate cancer. Eur J Nucl Med Imaging 43, 42–51, https://doi.org/10.1007/s00259-017-3814-7 (2016).
39. Wang, Z.
38. Wang, Z.
37. Umbricht, C. A.
36. Banerjee, S. R.
24. Luxton, R. W. Radiation nephritis. A long-term study of 54 patients. Lancet 2, 1221–1224, https://doi.org/10.1016/s0140-6736(61)92590-9 (1961).
23. Fendler, W. P. et al. Preliminary experience with dosimetry, response and patient reported outcome after 177Lu-PSMA-617 therapy for metastatic castration-resistant prostate cancer. Oncotarget 8, 3581–3590, https://doi.org/10.18632/oncotarget.12240 (2017).
31. Müller, C. Preclinical in vivo application of 125I-Tb-DOTANOC: a radiodanhanide for PET imaging. EJNMIM Res 6, 35, https://doi.org/10.1086/s13550-016-0189-4 (2016).
26. Kratochwil, C. et al. Targeted alpha therapy of mCRPC: Dosimetry estimate of 212Bismuth-PSMA-617. Eur J Nucl Med Mol Imaging 45, 31–37, https://doi.org/10.1007/s00259-017-3817-y (2018).
37. Umbricht, C. A.
36. Banerjee, S. R.
20. Eckerman, K. & Endo, A. ICRP Publication 107. Nuclear decay data for dosimetric calculations. Ann ICRP 38, 7–96, https://doi.org/10.1016/j.icrp.2008.10.004, S0146-6433(07)00046-8 [pii] (2008).
32. Benesova, M., Umbricht, C. A., Schibli, R. & Müller, C. Albumin-binding PSMA ligands: optimization of the tissue distribution profile. Mol Pharm 15, 934–946, https://doi.org/10.1021/acs.molpharmaceut.7b00877 (2018).
Salvat, F. PENeLOPE-2014: A code system for MONTE CARLO simulation of electron and photon transport. OECD/NEA Data Bank NEA/NSC/DOC 3, http://www.nea.fr/lists/penelope.html (2015).
Elqayt, J., et al. Myelo-toxicity and RBE of 211At-conjugated monoclonal antibodies compared with 90Yer-c-am conjugated monoclonal antibodies and 60Co irradiation in nude mice. J Nucl Med 46, 464–471 (2005).
Kratochwil, C. et al. Targeted α-therapy of metastatic castration-resistant prostate cancer with 225Ac-PSMA-617: dosimetry estimate and empiric dose finding. J Nucl Med 58, 1624–1631, https://doi.org/10.2967/jnumed.117.191395 (2017).
Banerjee, S. R. et al. 44Ca-labeled inhibitors of prostate-specific membrane antigen for PET imaging of prostate cancer. J Med Chem 57, 2657–2669, https://doi.org/10.1021/acs.jmedchem.1001921 (2014).
Umbricht, C. A. et al. Design and preclinical evaluation of an albumin-binding PSMA ligand for 64Cu-based PET imaging. Mol Pharm 15, 5556–5564, https://doi.org/10.1021/acs.molpharmaceut.8b00712 (2018).
Wang, Z. et al. Radioligand therapy of prostate cancer with a long-lasting prostate-specific membrane antigen targeting agent 99Y-DOTA-EB-MCG. Bioconjug Chem 29, 2309–2315, https://doi.org/10.1021/acs.bioconjchem.8b00292 (2018).
Wang, Z. et al. Single low-dose Injection of Evans blue modified 125I-Tb-1 radioligand therapy eliminates prostate-specific membrane antigen positive tumors. Bioconjug Chem 29, 3213–3221, https://doi.org/10.1021/acs.bioconjchem.8b00556 (2018).
Gu, Z. et al. Performance evaluation of G8, a high-sensitivity benchtop preclinical PET/CT tomograph. J Nucl Med 60, 142–149, https://doi.org/10.2967/jnumed.118.208827 (2019).
Farkas, R. et al. 44Ca- and 68Ga-based PET imaging of folate receptor-positive tumors: development and evaluation of an albumin-binding NODAGA-folate. Mol Pharm 13, 1979–1987, https://doi.org/10.1021/acs.molpharmaceut.6b00143 (2016).

Acknowledgements
The authors thank Susan Cohrs for assistance in the study, as well as the people responsible for radiation safety and radioactive transport at the Center for Radiopharmaceutical Sciences (CRS) at PSI and CERN. The authors are grateful to Walter Hirzel, Alexander Sommerhalder and Muhamed Djelili (Radionuclide Production and Maintenance Group at CRS, PSI) for technical assistance. The authors thank the ISOLDE RILIS team for efficient Dy ionization and the ISOLTRAP-MR-TOF-MS team for beam characterization. Furthermore, the authors thank Isotope Technologies Garching (ITG GmbH) Germany, for providing no-carrier-added 177Lu. Support by ENSAR2 (EU H2020 project Nr. 654002) is gratefully acknowledged for the construction of the shielded collection chamber, the user visits to CERN-ISOLDE and the payment of the Open Access fee. C.A.U. and N.P.v.d.M. were funded by the Swiss National Science Foundation (Grants 310030_156803 and IZLIZ3_156800).

Author contributions
C.A.U. has performed the animal studies at PSI, analyzed the data and contributed to the original writing of the manuscript and preparation of the figures. U.K. and K.J. were responsible for the production of 149Tb at ISOLDE/CERN and have critically reviewed the manuscript. P.B. has performed the dosimetry estimations and critically reviewed the manuscript. N.G. performed and assisted the separation of 149Tb at PSI. R.S. has critically reviewed the manuscript. N.P.v.d.M. was responsible for the separation of 149Tb at PSI and critically reviewed the manuscript. C.M. has coordinated the entire project, designed and supervised the preclinical therapy and PET study including data analysis, contributed to the original writing of the manuscript and revised it after revision by co-authors.

www.nature.com/scientificreports/
Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-019-54150-w.
Correspondence and requests for materials should be addressed to C.M.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019