Simply-connected minimal surfaces with finite total curvature in $\mathbb{H}^2 \times \mathbb{R}$

Juncheol Pyo* and M. Magdalena Rodríguez†

May 3, 2014

Abstract

Laurent Hauswirth and Harold Rosenberg developed in [4] the theory of minimal surfaces with finite total curvature in $\mathbb{H}^2 \times \mathbb{R}$. They showed that the total curvature of one such a surface must be a non-negative integer multiple of -2π. The first examples appearing in this context are vertical geodesic planes and Scherk minimal graphs over ideal polygonal domains. Other non simply-connected examples have been constructed recently in [6, 11, 14].

In the present paper, we show that the only complete minimal surfaces in $\mathbb{H}^2 \times \mathbb{R}$ of total curvature -2π are Scherk minimal graphs over ideal quadrilaterals. We also construct properly embedded simply-connected minimal surfaces with total curvature $-4k\pi$, for any integer $k \geq 1$, which are not Scherk minimal graphs over ideal polygonal domains.

Mathematics Subject Classification: Primary 53A10, Secondary 49Q05, 53C42

1 Introduction

In the classical theory of minimal surfaces in \mathbb{R}^3, the ones better known are those with finite total curvature. We recall that the total curvature of a surface M is defined as $C(M) = \int_M K$, where K denotes the Gauss curvature of M. If a minimal surface M of \mathbb{R}^3 has finite total

*Research partially supported by the CEI BioTIC GENIL project (CEB09-0010) and the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2012-0007728).
†Research partially supported by the MEC-FEDER Grant no. MTM2011-22547 and the Regional J. Andalucía Grant no. P09-FQM-5088.
curvature (i.e. $|C(M)| < +\infty$) then either M is a plane or it must be $C(M) = -4\pi k$, for some integer $k \geq 1$, and the equality only holds for M being the catenoid or Enneper's surface (see [13, Theorems 9.2 and 9.4]).

In the last decade, the geometry of minimal surfaces in $\mathbb{H}^2 \times \mathbb{R}$ has been actively studied, and many examples have been constructed (see for instance [1, 3, 9, 10, 12, 15]). Hauswirth and Rosenberg started in [4] the study of complete minimal surfaces of finite total curvature in $\mathbb{H}^2 \times \mathbb{R}$. The only known examples at that moment were the Scherk minimal graphs over ideal polygonal domains with an even number of edges, with boundary values $\pm \infty$ disposed alternately. Morabito and the authors constructed in [11, 14] non simply-connected properly embedded minimal surfaces with finite total curvature and genus zero. Quite recently, in a joint work with Martín and Mazzeo, the second author [6] has constructed properly embedded minimal surfaces with finite total curvature and positive genus.

The classification of minimal surfaces of finite total curvature in $\mathbb{H}^2 \times \mathbb{R}$ arises very naturally. The first result of classification appearing in this theory was that the only complete minimal surfaces with vanishing total curvature are the vertical geodesic planes (see [5, Corollary 5]). Quite recently, Hauswirth, Nelli, Sa Earp and Toubiana have proved in [7] that a complete minimal surface in $\mathbb{H}^2 \times \mathbb{R}$ with finite total curvature and two ends, each one asymptotic to a vertical geodesic plane, must be one of the horizontal catenoids constructed in [11, 14]. In this paper, we show that the Scherk minimal graphs over ideal quadrilaterals (i.e. ideal polygonal domains bounded by four ideal geodesics) are the only complete minimal surfaces of total curvature -2π.

It was expected that each end of a minimal surface with finite curvature in $\mathbb{H}^2 \times \mathbb{R}$ were asymptotic to either a vertical geodesic plane or a Scherk graph over an ideal polygonal domain. We construct new simply-connected examples, that we call twisted Scherk examples, that highlight this is not the case. They all have total curvature an integer multiple of -4π, so we cannot expect a classification result for Scherk graphs over ideal polygonal domains bounded by $4k + 2$ edges as the only simply-connected complete minimal surfaces in $\mathbb{H}^2 \times \mathbb{R}$ with total curvature $-4k\pi$.

2 Preliminaires

We consider the Poincaré disk model of \mathbb{H}^2; i.e. $\mathbb{H}^2 = \{z \in \mathbb{C} \mid |z| < 1\}$, with the hyperbolic metric $g_{-1} = \frac{4}{(1-|z|^2)^2} |dz|^2$. We denote by $\partial_\infty \mathbb{H}^2$ the infinite boundary of \mathbb{H}^2 (i.e. $\partial_\infty \mathbb{H}^2 = \{z \in \mathbb{C} \mid |z| = 1\}$) and by 0 the origin of \mathbb{H}^2. Also t will denote the coordinate in \mathbb{R}.

Let M be a complete orientable minimal surface immersed in $\mathbb{H}^2 \times \mathbb{R}$. We define the total curvature of M as $C(M) = \int_M K$, where $K \leq 0$ denotes the Gaussian curvature of M. We say that M has finite total curvature when $|C(M)| < +\infty$.

2
In this section we summarize the geometric properties of minimal surfaces in $\mathbb{H}^2 \times \mathbb{R}$ with finite total curvature given by Hauswirth and Rosenberg in [4].

We call the height function of M the horizontal projection $h : M \to \mathbb{R}$, and we denote by F the vertical projection of M over \mathbb{H}^2. It is well-known that h is a real harmonic function on M and that F is an harmonic map from M to \mathbb{H}^2. Given a conformal parameter w on M, Sa Earp and Toubiana [15] proved that $(h_w)^2 = -Q$, where Q is the Hopf differential associated to F. Then the zeroes of Q are of even order and, up to a sign (which corresponds to a reflection symmetry with respect to $\mathbb{H}^2 \times \mathbb{R}$),

$$h = \Re \left(-2i \int \sqrt{Q} \right),$$

see equation (3) in [4].

We fix a unit normal vector field N on M. We now state the main theorem in [4].

Theorem 1. [4] Let M be a complete, orientable, minimal surface immersed in $\mathbb{H}^2 \times \mathbb{R}$ with finite total curvature. Then:

1. M is conformally a closed Riemann surface \mathbb{M} punctured in a finite number of points p_1, \ldots, p_n, called ends of Σ.

2. Q is holomorphic on M and extends meromorphically to its ends p_i. If we parameterize conformally a neighborhood of p_i in M by $\Omega = \mathbb{C} \setminus D_0$, where D_0 is the open unit disk in \mathbb{C} centered at the origin, then

$$Q(z) = z^{2m_i}(dz)^2,$$

for some integer $m_i \geq -1$.

3. $N_3 = \langle N, \partial_t \rangle$ converges uniformly to zero on each end p_i.

4. The total curvature of M is given by

$$\int_M K = 2\pi \left(2 - 2g - 2n - \sum_{i=1}^{n} m_i \right).$$

Remark 2. Suppose p_i is an end of M for which $m_i = -1$. If we want to close periods in equation (1), then we have to choose $Q(z) = -z^{-2}(dz)^2$, $z \in \Omega$.

Assertion 3. In the second item of Theorem 1, m_i cannot equal -1.
Proof. Suppose M (in the setting of Theorem 1) has an end p_i for which $m_1 = -1$. We know that a neighborhood E of p_i can be conformally parameterized on $\Omega = \{ z \in \mathbb{C} \mid |z| \geq 1 \}$, where $Q(z) = -z^{-2}dz^2$ (see Remark 2). From (1) we then get $h(z) = 2 \Re \left(\int_M \frac{dz}{z} \right) = 2 \ln |z|$. Therefore, E is a vertical annulus whose intersection with each horizontal slice $\mathbb{H}^2 \times \{ t \}$, $t \geq 0$, is a compact curve.

The boundary of E (which corresponds to $\{|z| = 1\}$) consists of a horizontal compact curve Γ at height zero. Consider $R > 0$ big enough so that the disc $D \subset \mathbb{H}^2$ of radius R centered at the origin contains Γ in its interior. And let C be the complete vertical rotational catenoid constructed by Nelli and Rosenberg in [12] whose neck is ∂D. Since E intersects each horizontal slice in a compact curve, we deduce using the Maximum Principle with vertically translated copies of C that E must be contained in $D \times \mathbb{R}$. But this is not possible: If we translate C vertically up a distance π, we reach a contradiction by applying the Maximum Principle with the family of shrunk catenoids going from C to the 2-sheeted covering of the punctured slice $(\mathbb{H}^2 - \{0\}) \times \{\pi\}$.

We finish this section by describing the asymptotic behavior of a complete, orientable, minimal surface immersed in $\mathbb{H}^2 \times \mathbb{R}$ with finite total curvature.

Lemma 4. [4] Let M be a minimal surface in the hypothesis of Theorem 1, and p_i an end of M. If $m_i \geq 0$ is the integer associated to p_i, as defined in Theorem 1, then p_i corresponds to $m_i + 1$ geodesics $\gamma_1, \ldots, \gamma_{m_i+1} \subset \mathbb{H}^2 \times \{+\infty\}$, $m_i + 1$ geodesics $\Gamma_1, \ldots, \Gamma_{m_i+1} \subset \mathbb{H}^2 \times \{-\infty\}$, and $2(m_i + 1)$ vertical straight lines (possibly some of them coincide) in $\partial_\infty \mathbb{H}^2 \times \mathbb{R}$, each one joining an endpoint of some γ_j to an endpoint of some Γ_j.

3 Minimal examples with finite total curvature

Given any two points $p, q \in \mathbb{H}^2 \cup \partial_\infty \mathbb{H}^2$, we will denote by \overline{pq} the geodesic arc joining p, q.

We consider an even number of different points $p_1, \cdots, p_{2k} \in \partial_\infty \mathbb{H}^2$ (cyclically ordered), with $k \geq 2$, and we call $A_i = \overline{p_{2i-1}p_{2i}}, B_i = \overline{p_{2i}p_{2i+1}}$, for any $1 \leq i \leq k$, where we consider the cyclic notation $p_{2k+1} = p_1$. Let Ω be the ideal polygonal domain bounded by $A_1, B_1, \cdots, A_k, B_k$. We call Scherk minimal graph over Ω to a minimal graph over Ω with boundary values $+\infty$ over the A_i edges and $-\infty$ over the B_i edges (in [1, 12] it is proved that it exists and it is unique up to a vertical translation). In [1, 4] it is proved that such a graph has total curvature $2\pi(1-k)$. Scherk graphs over ideal polygonal domains, together with the vertical geodesic planes, where the first known examples of minimal surfaces with finite total curvature.

In [11, 14] other non-simply-connected examples where presented, called minimal k-noids. We briefly explain their construction: Consider an even number of points p_1, \cdots, p_{2k} (cyclically ordered) such that $p_{2i-1} \in \mathbb{H}^2$ and $p_{2i} \in \partial_\infty \mathbb{H}^2$. We call $A_i = \overline{p_{2i-1}p_{2i}}$ and $B_i = \overline{p_{2i}p_{2i+1}}$.
Consider the minimal graph Σ over the polygonal domain bounded by $A_1, B_1, \cdots, A_k, B_k$ with boundary values $+\infty$ over the A_i edges and $-\infty$ over the B_i edges (it exists and is unique up to a vertical translation, by [1, 9]), which has total curvature $2\pi(1-k)$ (see [1]). The conjugate minimal surface Σ^* of Σ is a minimal graph contained in $\mathbb{H}^2 \times \{ t \geq 0 \}$, whose boundary consists of k geodesic curvature lines in $\mathbb{H}^2 \times \{ 0 \}$. (The conjugation for minimal surfaces in $\mathbb{H}^2 \times \mathbb{R}$ was introduced by Daniel [2] and by Hauswirth, Sa Earp and Toubiana [5].) If we reflect Σ^* with respect to $\mathbb{H}^2 \times \{ 0 \}$, we get a properly embedded minimal surface of genus zero, k ends asymptotic to vertical geodesic planes and total curvature $4\pi(1-k)$. For $k=2$, the obtained examples are usually called horizontal catenoids, and have been recently classified by Hauswirth, Nelli, Sa Earp and Toubiana as the only complete minimal surfaces in $\mathbb{H}^2 \times \mathbb{R}$ with finite total curvature and two ends, each one asymptotic to a vertical geodesic plane.

Using a gluing method, the second author has recently constructed in a joint work with Martín and Mazzeo a wide range of properly embedded minimal surfaces with finite total curvature and two ends, each one asymptotic to a vertical geodesic plane.

We wondered if Scherk minimal graphs were, together with the vertical geodesic planes, the only complete, embedded, simply-connected examples of finite total curvature and finite topology (with possibly positive genus).

We explain the simple construction of other different complete, embedded, simply-connected examples, that we will call twisted Scherk examples.

3.1 Twisted Scherk examples

Let us first construct an example with total curvature -4π. Let p_1, p_2 be two points in $\partial_\infty \mathbb{H}^2$. Up to an isometry of \mathbb{H}^2, we can assume $p_1 = 1$ and $p_2 = e^{i\theta}$, for some fixed $\theta \in (0, \pi/2]$ (see Figure 1). We call $A_1 = \overline{0p_1}$, $B_1 = \overline{p_1p_2}$ and $C_1 = \overline{0p_2}$. Let Δ be the geodesic triangle bounded by $A_1 \cup B_1 \cup C_1$. By the triangle inequality at infinity (see [1, Lemma 3]), we get that Δ satisfies the Jenkins-Serrin condition for the existence of a minimal graph u over Δ with boundary values $+\infty$ on A_1, $-\infty$ on B_1 and 0 on C_1 (see [1, Theorem 3] and [9, Theorem 3.3]).

Now let us see that the graph surface $\Sigma(u)$ of u has finite total curvature: For any positive integer n, we denote $r = 1 - 1/(n+1)$ and $p_{1,n} = r$, $p_{2,n} = re^{i\theta}$. By Theorem 3 in [12], there exists a minimal graph $u_r(n)$ over the geodesic triangle of vertices $0, p_{1,n}, p_{2,n}$ taking boundary values $+n$ on $\overline{0p_{1,n}}$, $-n$ on $\overline{p_{1,n}p_{2,n}}$ and 0 on $\overline{0p_{2,n}}$. By the Gauss-Bonnet formula, the graph surface of $u_r(n)$ has total curvature π. Since $u_r(n)$ converges uniformly on compact sets of Δ to u as $n \to \infty$, the total curvature of $\Sigma(u)$ is at most π, and then finite.

By rotating $\Sigma(u)$ an angle π about the horizontal geodesic ray $\overline{0p_2}$ contained in its boundary, we obtain a minimal graph whose boundary consists of the vertical geodesic $\{ 0 \} \times \mathbb{R}$. We extend such a graph by rotation of angle π about its boundary, and we get a properly embedded simply-connected minimal surface Σ_1.

Since Σ_1 consists of four copies of $\Sigma(u)$, then it has finite total curvature. Then equation (2)
applies. In our case, $g = 0$, $n = 1$ and $m_1 = 2$ ($m_1 = 2$ follows from the fact that the intersection of M with a horizontal slice $\mathbb{H}^2 \times \{t\}$, for $t > 0$ large enough, consists of three divergent curves, see Figure 1). Thus $\int_{\Sigma_1} K = -4\pi$.

Now, let us consider $k \geq 2$. Let Ω be a polygonal domain whose vertices are 0 and $2k - 1$ different ideal points $p_1, \ldots, p_{2k - 1} \in \partial_\infty \mathbb{H}^2$. Assume that Ω satisfies the Jenkins-Serrin condition of Theorem 3 in [1] or Theorem 3.3 in [9]. The example below proves that there exist such domains. We call Σ the minimal graph over Ω with boundary values $+\infty$ on $0\tilde{p}_1$ and on $p_{2i}p_{2i+1}$, for $1 \leq i \leq k - 1$; and $-\infty$ on $p_{2i-1}p_{2i}$, for $1 \leq i \leq k - 1$, and zero on $0p_{2k-1}$. By rotating Σ an angle π about the vertical geodesic line $\{0\} \times \mathbb{R}$ in its boundary, we obtain a properly embedded simply-connected minimal surface Σ_k. Arguing similarly as for Σ_1, we can prove that $\int_{\Sigma_k} K = -4k\pi$. Then we have proved the following theorem.

Theorem 5. For any integer $k \geq 1$, there exists a properly embedded simply-connected minimal surface Σ_k of finite total curvature $-4k\pi$ which is not a minimal (vertical) graph.

Now let us construct a polygonal domain Ω in the above setting. For any $\theta \in (0, \frac{\pi}{2k})$, let Ω_θ be the polygonal domain with vertices $0, \tilde{p}_1 = 1$, and

$$p_n = e^{i(n-1)\theta}, \quad 2 \leq n \leq k + 1.$$

We mark by $+\infty$ the edge $0\tilde{p}_1$ and those of the form $p_{2i}p_{2i+1}$; by $-\infty$ the edges of the form $p_{2i-1}p_{2i}$; and by 0 the edge $0p_{2k-1}$. It is clear that Ω_θ does not satisfy the Jenkins-Serrin condition (see Theorem 3 in [1] or Theorem 3.3 in [9]), as we can consider the inscribed polygonal domain.
Theorem 6. If M is a complete minimal surface of total curvature -2π in $\mathbb{H}^2 \times \mathbb{R}$, then M is the Scherk minimal graph over an ideal quadrilateral.

Proof. Since the total curvature of M is -2π, we have by equation (2) in Theorem 1 that

$$-2\pi = 2\pi \left(2 - 2g - 2n - \sum_{i=1}^{n} m_i \right).$$

We already know that $m_i \geq 0$, by Assertion 3. And $n \geq 1$, since a complete minimal surface in $\mathbb{H}^2 \times \mathbb{R}$ cannot be compact. So the only possibility is $g = 0$, $n = 1$ (hence the complete minimal surface M is simply-connected) and $m_1 = 1$.

Figure 2: Left: The fundamental piece of a twisted Scherk example Σ_2 with total curvature -8π. Right: Vertical projection of Σ_2.

$\mathcal{P} \subset \Omega$ with vertices $0, \bar{p}_1, p_2, p_3$ and any choice of disjoints horocycles H_1, H_2, H_3 at \bar{p}_1, p_2, p_3 respectively, for which $\text{dist}_{\mathbb{H}^2}(0, H_1) + \text{dist}_{\mathbb{H}^2}(H_2, H_3) = \text{dist}_{\mathbb{H}^2}(0, H_3) + \text{dist}_{\mathbb{H}^2}(H_1, H_2)$.

To solve this problem, we consider a small perturbation of \bar{p}_1: Let $\Omega_{\theta,\beta}$ be the polygonal domain with vertices $p_1 = e^{-i\beta}$, for $\beta \in (0, \frac{\pi}{2} - k\theta]$ small, and p_n defined as above, for $2 \leq n \leq k+1$. This domain $\Omega_{\theta,\beta}$ satisfies the Jenkins-Serrin condition if we label by $+\infty$ the edge $0, p_1$ and those of the form $p_{2i}p_{2i+1}$; by $-\infty$ the edges of the form $p_{2i-1}p_{2i}$; and by 0 the edge $0p_{k+1}$.

Let R be the reflection with respect to the geodesic containing $0p_{k+1}$. Then $\Omega = \Omega_{\theta,\beta} \cup R(\Omega_{\theta,\beta})$ is in the desired conditions. See Figure 2.
As \(m_1 = 1 \), we know by Lemma 4 that there are four points \(p_1, p_2, p_3, p_4 \in \partial_{\infty} \mathbb{H}^2 \), with \(p_i \neq p_{i+1} \) for any \(i \), such that the end of \(M \) corresponds to

\[
(p_1p_2 \times \{+\infty\}) \cup (p_2p_3 \times \{-\infty\}) \cup (p_3p_4 \times \{+\infty\}) \cup (p_4p_1 \times \{-\infty\}),
\]

together with the complete vertical geodesics \(\{p_i\} \times \mathbb{R} \) in the ideal cylinder \(\partial_{\infty} \mathbb{H}^2 \times \mathbb{R} \) joining their endpoints.

Let us now prove that the four points \(p_i \) are all different. By the maximum principle using vertical geodesic planes, we know that at least three of them are different as \(M \) cannot be a vertical plane. Suppose \(p_1 = p_3 \) (the case \(p_2 = p_4 \) follows similarly). Also using the maximum principle with vertical geodesic planes, we get that the vertical projection \(\pi(M) \) of \(M \) is contained in the ideal geodesic triangle of vertices \(p_1, p_2, p_4 \). Even more, \(\pi(M) \) is contained in a domain \(T \subset \mathbb{H}^2 \) bounded by \(\overline{p_1p_2}, \overline{p_1p_4} \) and a strictly concave (with respect to \(T \)) curve \(\alpha \). We observe that the points in \(M \) projecting onto \(\alpha \) have horizontal normal vector. Suppose that the vertical projection of the limit normal vector of \(M \) (that we also call \(N \)) along \(\overline{p_1p_2} \times \{+\infty\} \) points to \(T \). We observe that the horizontal curves in \(M \) with endpoint in \(\{p_2\} \times \mathbb{R} \) arrive orthogonally to \(\partial_{\infty} \mathbb{H}^2 \times \mathbb{R} \). In particular, \(N \) is constant along the vertical asymptotic line \(\{p_2\} \times \mathbb{R} \). On one hand that implies, looking at the behavior of \(N \) along the asymptotic boundary of \(M \) (corresponding to the end) that the vertical projection of \(N \) along \(\overline{p_1p_2} \times \{-\infty\} \) also points to \(T \), and its projection along \(\overline{p_1p_4} \times \{\pm\infty\} \) goes out from \(T \). On the other hand, if we follow the projection of \(N \) along \(\alpha \), we obtain that it points to \(T \) along \(\overline{p_1p_4} \times \{\pm\infty\} \), a contradiction.

We now claim that \(p_1, p_2, p_3, p_4 \) are cyclically ordered. We define the solid cylinder \(C_{r,T} = \{(z,t) : |z| \leq r, |t| \leq T\} \), for \(r < 1 \) close to one and \(T \) large, and consider \(M_{r,T} = M \cap C_{r,T} \), which is a compact minimal surface bounded by two horizontal compact curves contained in \(\{t = T\} \) close to \(\overline{p_1p_2} \times \{T\} \) and \(\overline{p_3p_4} \times \{T\} \), two curves on \(\{t = -T\} \) close to \(\overline{p_2p_3} \times \{-T\} \) and \(\overline{p_4p_1} \times \{-T\} \), and four curves on \(\{|z| = r\} \) close to vertical lines. By the flux formula with respect to the Killing vector field \(\partial_t \) (see [8, Proposition 3]), we have

\[
\int_{\partial M_{r,T}} \langle \nu, \partial_t \rangle = 0,
\]

(3)

where \(\nu \) is the outward-pointing unit conormal to \(M_{r,T} \) along \(\partial M_{r,T} \). We get from (3), taking limits as \(r \to 1 \) and \(T \to +\infty \), that \(|\overline{p_1p_2}| + |\overline{p_3p_4}| = |\overline{p_2p_3}| + |\overline{p_4p_1}| \), where \(|\bullet| \) denotes (as in [1]) the hyperbolic length of the curve \(\bullet \) outside some disjoint horocycles at the ideal points \(p_i \), identifying \(\mathbb{H}^2 \) with the corresponding horizontal slice. By the triangle inequality at infinity [1, Lemma 3] we get that \(p_1, p_2, p_3, p_4 \) must be cyclically ordered.

We call \(\Omega \) the ideal quadrilateral with vertices \(p_1, p_2, p_3, p_4 \). By the maximum principle using vertical geodesic planes, we get that \(\pi(M) \subset \Omega \). On the other hand, the geometry of
the end of M says that a neighborhood of $\partial \Omega$ is contained in $\pi(M)$. Since M is complete and simply-connected, we conclude $\pi(M) = \Omega$.

Now let us show that the normal vector of M is never horizontal. Suppose there exists a point $P \in M$ such that $N_3(P) = 0$. Let $\Gamma \times \mathbb{R}$ be the vertical geodesic plane tangent to M at P. Since M and $\Gamma \times \mathbb{R}$ have first contact order at P, their intersection consists of k curves meeting at equals angles at P, with $k \geq 2$. Thus, there are at least four branches of $M \cap (\Gamma \times \mathbb{R})$ leaving P (see Figure 3, left). Since M is simply-connected, we deduce using the maximum principle with vertical planes that there cannot exist a compact cycle in $M \cap (\Gamma \times \mathbb{R})$. Hence Γ cannot intersect two edges of Ω, so it must have some p_i as an endpoint. Denote by $\gamma = \gamma(t)$, $t \in \mathbb{R}$, the arc-length parameterized geodesic of \mathbb{H}^2 orthogonal to Γ such that $\gamma(0) = \pi(P)$; and by Γ_t the geodesic of \mathbb{H}^2 passing through $\gamma(t)$ orthogonally (in particular, $\Gamma_0 = \Gamma$). For $\varepsilon > 0$ small, Γ_ε intersects two edges of Ω, say p_1p_2 and p_2p_3, and the number of intersection curves between the vertical plane $\Gamma_\varepsilon \times \mathbb{R}$ and M is at least two (see Figure 3, right). But only one branch of the intersection curves can arrive to $p_1p_2 \times \{+\infty\}$ (resp. $p_2p_3 \times \{-\infty\}$), the other branch should be a compact loop, a contradiction.

We have prove then that, for any point $q \in \Omega$, the intersection of $\{q\} \times \mathbb{R}$ with M is transverse. So the number of intersection points does not depend on q. For q near an edge of Ω this number is one. We conclude that M is a graph over Ω. \qed
References

[1] P. Collin and H. Rosenberg, *Construction of harmonic diffeomorphisms and minimal graphs*, Ann. of Math., 172 (2010), 1879-1906. DOI:10.4007/annals.2010.172.1879, arXiv:math/0701547.

[2] B. Daniel, *Isometric immersions into $S^n \times \mathbb{R}$ and $\mathbb{H}^n \times \mathbb{R}$ and applications to minimal surfaces*, Trans. Amer. Math. Soc., 361 (2009), 6255–6282. MR2538594, Zbl pre05638191.

[3] L. Hauswirth, *Minimal surfaces of Riemann type in three-dimensional product manifolds*, Pacific J. Math. 224 (2006), 91-117. arXiv:math/0507187, MR2231653, Zbl 1108.49031.

[4] L. Hauswirth and H. Rosenberg, *Minimal surfaces of finite total curvature in $\mathbb{H}^2 \times \mathbb{R}$*, Mat. Contemp., 31 (2006), 65-80. MR2385437, Zbl 1144.53323.

[5] L. Hauswirth, R. Sa Earp and E. Toubiana, *Associate and conjugate minimal immersions in $M \times \mathbb{R}$*, Tohoku Math. J. (2) 60 (2008), 267-286.

[6] F. Martín, Rafe Mazzeo and M.M. Rodríguez, *Minimal surfaces with positive genus and finite total curvature in $\mathbb{H}^2 \times \mathbb{R}$*, arXiv:1208.5253.

[7] L. Hauswirth, B. Nelli, R. Sa Earp and E. Toubiana, *Minimal ends in $\mathbb{H}^2 \times \mathbb{R}$ with finite total curvature and a Schoen type theorem*, prepint, arXiv:1111.0851.

[8] D. Hoffman, J. Lira and H. Rosenberg, *Constant Mean Curvature Surfaces in $M^2 \times \mathbb{R}$*, Trans. Amer. Math. Soc., 358:2 (2006), 491-507.

[9] L. Mazet, M.M. Rodriguez and H. Rosenberg, *The Dirichlet problem for the minimal surface equation with possible infinite boundary data over domains in a Riemannian surface*, Proc. London Math. Soc., 102:3 (2011), 985-1023. DOI:10.1112/plms/pdq032. arXiv:0806.0498.

[10] F. Morabito, *A Costa-Hoffman-Meeks type surface in $\mathbb{H}^2 \times \mathbb{R}$*, Trans. Amer. Math. Soc., 363:1 (2010), 1-36.

[11] F. Morabito and M.M. Rodríguez, *Saddle Towers and minimal k-noids in $\mathbb{H}^2 \times \mathbb{R}$*, J. Inst. Math. Jussieu, 11(2): 333-349 (2012). DOI:10.1017/S1474748011000107. arXiv:0910.5676.

[12] B. Nelli and H. Rosenberg, *Minimal surfaces in $\mathbb{H}^2 \times \mathbb{R}$*, Bull. Braz. Math. Soc., 33:2 (2002), 263-292.
[13] R. Osserman, *A survey of minimal surfaces*, Dover Publications, New York (1986). MR0852409, Zbl 0209.52901.

[14] J. Pyo, *New complete embedded minimal surfaces in $\mathbb{H}^2 \times \mathbb{R}$*, Ann. Global Anal. Geom. 40:2 (2011) 167-176. arXiv:math/0911.5577.

[15] R. Sa Earp and E. Toubiana, *Screw motion surfaces in $\mathbb{H}^2 \times \mathbb{R}$ and $\mathbb{S}^2 \times \mathbb{R}$*, Illinois J. Math., 49:4 (2005), 1323-1362.

Juncheol Pyo
Department of Mathematics
Pusan National University
Busan 609-735, Korea
e-mail: jcpyo@pusan.ac.kr

M. Magdalena Rodríguez
Departamento de Geometría y Topología
Universidad de Granada
Fuentenueva, 18071, Granada, Spain
e-mail: magdarp@ugr.es