Data Article

Inflammatory and mitochondrial gene expression data in GPER-deficient cardiomyocytes from male and female mice

Hao Wanga,b, Xuming Suna, Jeff Chouc, Marina Lina, Carlos M. Ferrariod,e, Gisele Zapata-Sudoa,f, Leanne Grobana,b,g,h

a Department of Anesthesiology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157-1009, USA
b Internal Medicine/Molecular Medicine, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
c Public Health Sciences, Section on Biostatistical Sciences, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
d Department of Surgery, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
e Department of Internal Medicine/Nephrology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
f Institute of Biomedical Sciences, Drug Development Program, Federal University of Rio de Janeiro, Brazil
g Cardiovascular Research Center, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
h Sticht Center on Aging, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA

DOI of original article: http://dx.doi.org/10.1016/j.bbadis.2016.10.003
E-mail addresses: haowang@wakehealth.edu (H. Wang), lgroban@wakehealth.edu (L. Groban).

http://dx.doi.org/10.1016/j.dib.2016.11.057
2352-3409/© 2016 The Authors. Published by Elsevier Inc. All rights reserved.
We previously showed that cardiomyocyte-specific G protein-coupled estrogen receptor (GPER) gene deletion leads to sex-specific adverse effects on cardiac structure and function; alterations which may be due to distinct differences in mitochondrial and inflammatory processes between sexes. Here, we provide the results of Gene Set Enrichment Analysis (GSEA) based on the DNA microarray data from GPER-knockout versus GPER-intact (intact) cardiomyocytes. This article contains complete data on the mitochondrial and inflammatory response-related gene expression changes that were significant in GPER knockout versus intact cardiomyocytes from adult male and female mice. The data are supplemental to our original research article “Cardiomyocyte-specific deletion of the G protein-coupled estrogen receptor (GPER) leads to left ventricular dysfunction and adverse remodeling: a sex-specific gene profiling” (Wang et al., 2016) [1]. Data have been deposited to the Gene Expression Omnibus (GEO) database repository with the dataset identifier GSE86843.

© 2016 The Authors. Published by Elsevier Inc. All rights reserved.

Specifications Table

Subject area	Biology
More specific subject area	Heart disease, gene knockdown
Type of data	Tables
How data was acquired	Microarray data in cardiomyocytes generated using Affymetrix GeneAtlas 3′-IVT Express Kit
Data format	Analyzed
Experimental factors	Comparison of inflammatory and mitochondrial gene expression profiles of GPER-deficient versus intact cardiomyocytes from male and female mice
Experimental features	RNA isolation, global gene expression analysis, and bioinformatics analyses using Gene Set Enrichment Analysis (GSEA) software
Data source location	Wake Forest School of Medicine, Winston-Salem, NC, USA
Data accessibility	Dataset is within this article and available in the Gene Expression Omnibus with accession number GEO: GSE86843.

Value of the data

- This dataset provides the complete list of altered genes related to mitochondria and inflammatory response in GPER-knockout versus intact cardiomyocytes from mice of both sexes.
- May facilitate further research that reveals the pathophysiology for sex-specific differences in heart disease.
- May serve as a benchmark for comparison with data obtained from estrogen receptor (ER) α and ERβ cardiomyocyte-specific knockout mice for further insight into the functional roles of the estrogen receptors in the maintenance of cardiac structure and function.
Table 1
Core enrichment gene list of GSEA for mitochondrial genes in female mice.

Gene symbol	Gene title	Rank in gene list	Rank metric score	Enrichment score
1 HMGCS2	3-hydroxy-3-methylglutaryl-Coenzyme A synthase 2 (mitochondrial)	37	0.274	0.0158
2 MAOB	monoamine oxidase B	39	0.272	0.0332
3 COX6B2	cytochrome c oxidase subunit VIb polypeptide 2 (testis)	48	0.261	0.0495
4 HSPA1B	heat shock 70 kDa protein 1B	63	0.244	0.0645
5 UCP3	uncoupling protein 3 (mitochondrial, proton carrier)	70	0.237	0.0794
6 ALAS2	aminolevulinate, delta-, synthase 2 (sideroblastic/hypochromic anemia)	206	0.175	0.0843
7 BCKDH8	branched chain keto acid dehydrogenase E1, beta polypeptide (maple syrup urine disease)	222	0.172	0.0946
8 DUT	dUTP pyrophosphatase	311	0.159	0.1007
9 HTRA2	HtrA serine peptidase 2	313	0.158	0.1107
10 ME3	malic enzyme 3, NADP(+)-dependent, mitochondrial	431	0.145	0.1146
11 GSTZ1	glutathione transferase zeta 1 (maleylacetocetate isomerase)	575	0.143	0.1165
12 ACOT2	acyl-CoA thioesterase 2	647	0.13	0.1215
13 PCCB	propionyl Coenzyme A carboxylase, beta polypeptide	660	0.13	0.1293
14 TIMMDC1	Translocase of inner mitochondrial membrane domain-containing protein 1	795	0.124	0.1309
15 RAF1	v-raf-1 murine leukemia viral oncogene homolog 1	851	0.121	0.1361
16 TMEM143	transmembrane protein 143	880	0.12	0.1425
17 NME4	non-metastatic cells 4, protein expressed in	920	0.119	0.1483
18 ACAP6	acid phosphatase 6, lysophosphatidic	975	0.116	0.1532
19 FXN	frataxin	1014	0.114	0.1587
20 CRY1	cryptochrome 1 (photolyase-like)	1065	0.112	0.1636
21 HSD3B2	hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 2	1079	0.112	0.1701
22 ABCB8	ATP-binding cassette, sub-family B (MDR/TAP), member 8	1234	0.107	0.1698
23 GCDH	glutaryl-Coenzyme A dehydrogenase	1258	0.107	0.1756
24 CASP7	caspase 7, apoptosis-related cysteine peptidase	1424	0.102	0.1744
25 MYL10	myosin, light chain 10, regulatory	1446	0.102	0.18
26 BCA2T	branched chain aminotransferase 2, mitochondrial	1546	0.099	0.1817
27 B2RAF1	benzodiazapine receptor (peripheral) (associated protein 1	1591	0.098	0.186
28 MECR	mitochondrial trans-2-enoyl-CoA reductase	1638	0.097	0.19
29 MTIF3	Mitochondrial Translational Initiation Factor 3	1773	0.094	0.198
30 BCL2L10	BCL2-like 10 (apoptosis facilitator)	1825	0.093	0.1934
31 ACADS	acyl-Coenzyme A dehydrogenase, C-2 to C-3 short chain delta-isomerase 2	1827	0.093	0.1993
32 ECST1	ECST homolog (Drosophila)	1946	0.091	0.1996
33 MRPL23	mitochondrial ribosomal protein L23	1970	0.09	0.2043
34 MRPS15	mitochondrial ribosomal protein S15	2039	0.089	0.2068
35 MRPS28	mitochondrial ribosomal protein S28	2158	0.087	0.2068
36 TBRG4	transforming growth factor beta regulator 4	2223	0.085	0.2093
37 SLC25A22	solute carrier family 25 (mitochondrial carrier: glutamate), member 22	2236	0.085	0.2142
38 MRPS11	mitochondrial ribosomal protein S11	2257	0.085	0.2187
39 BCKDH1A	branched chain keto acid dehydrogenase E1, alpha polypeptide	2321	0.084	0.2211
40 TRIAP1	TP53 regulated inhibitor of apoptosis 1	2336	0.084	0.2258
41 FDXR	ferredoxin reductase	2407	0.082	0.2278
42 RHOT2	ras homolog gene family, member T2	2434	0.082	0.2319
43 MRPS24	mitochondrial ribosomal protein S24	2473	0.081	0.2353
44 MRPS35	mitochondrial ribosomal protein S35	2493	0.081	0.2396
45 MTCH1	mitochondrial carrier homolog 1 (C. elegans)	2494	0.081	0.2447
46 BCKDK	branched chain ketoadic dehydrogenase kinase	2503	0.081	0.2495
47 MRPS21	mitochondrial ribosomal protein S21	2584	0.079	0.2509
48 SHMT2	serine hydroxymethyltransferase 2 (mitochondrial)	2609	0.079	0.2548
49 PKK2	phosphoenolpyruvate carboxykinase 2 (mitochondrial)	2761	0.077	0.2527
50 CPT1A	carnitine palmitoyltransferase 1A (liver)	2776	0.076	0.2569
51 DMGDH	dimethylglycine dehydrogenase	2946	0.074	0.2538
52 MSTO1	misato homolog 1 (Drosophila)	3029	0.073	0.2546
53 DGUOK	deoxyguanosine kinase	3045	0.073	0.2586
54 PET112	glutamyl-TRNA(Gln) amidotransferase, subunit B	3058	0.072	0.2626
55 AMACR	alpha-methylacyl-CoA racemase	3069	0.072	0.2668
56 MRPS22	mitochondrial ribosomal protein S22	3103	0.072	0.2699
Gene symbol	Gene title	Rank in gene list	Rank metric score	Enrichment score
-------------	---	-------------------	-------------------	------------------
ABCF2	ATP-binding cassette, sub-family F (GCN20), member 2	3118	0.072	0.2738
EC2	Enoyl-CoA Delta Isomerase 2	3129	0.072	0.2779
TXNRD2	thioredoxin reductase 2	3191	0.071	0.2796
TEMEM186	Transmembrane Protein 186	3236	0.07	0.2821
PINK1	PTEN induced putative kinase 1	3351	0.069	0.2812
ALDH4A1	aldehyde dehydrogenase 4 family, member A1	3430	0.068	0.2819
PITRM1	pyruvate dehydrogenase kinase, isozyme 4	3548	0.067	0.2851
MIPEP	mitochondrial intermediate peptidase	3577	0.066	0.288
MRPL40	mitochondrial ribosomal protein 14	3589	0.066	0.2918
TAMM41	TAM41 Mitochondrial Translocator Assembly And Maintenance Homolog	3780	0.064	0.287
MSTRB2	methionine sulfoxide reductase B2	3929	0.063	0.2841
SURF1	surfeit 1	3949	0.062	0.2872
ATGPS2	ATP synthase, H+ transporting, mitochondrial F0 complex, subunit C2 (subunit 9)	3962	0.062	0.2907
SPG7	spastic paraplegia 7, paraplegin (pure and complicated autosomal recessive)	3988	0.062	0.2935
BCS1L	BCS1-like (yeast)	4000	0.062	0.2969
ALDH4A1	aldehyde dehydrogenase 5 family, member A1 (succinate-semialdehyde dehydrogenase)	4110	0.061	0.2957
MARS2	methionine-tRNA synthetase 2 (mitochondrial)	4164	0.06	0.2971
CLN3	ceroid-lipofuscinosis, neuronal 3, juvenile (Batten, Spielemeyer-Vogt disease)	4185	0.06	0.3
FIS1	fission 1 (mitochondrial outer membrane) homolog (S. cerevisiae)	4205	0.06	0.303
POLG	polymerase (DNA directed), gamma	4255	0.059	0.3045
TUFM	Tu translation elongation factor, mitochondrial	4299	0.059	0.3062
POLG2	polymerase (DNA directed), gamma 2, accessory subunit	4333	0.059	0.3085
PMA1P	phorbol-12-myristate-13-acetate-induced protein 1	4394	0.058	0.3094
COX11	COX11 homolog, cytochrome c oxidase assembly protein (yeast)	4427	0.058	0.3116
OGDH	oxoglutarate (alpha-ketoglutarate) dehydrogenase (lipoamide)	4436	0.058	0.3149
COX15	COX15 homolog, cytochrome c oxidase assembly protein (yeast)	4447	0.058	0.3181
MCAT	malonyl CoA:ACP acyltransferase (mitochondrial)	4527	0.057	0.3181
DEC1R	2,4-dienoyl CoA reductase 1, mitochondrial	4638	0.056	0.3166
C15P8	caspase 8, apoptosis-related cysteine peptidase	4729	0.055	0.3159
TIMM17B	translocase of inner mitochondrial membrane 17 homolog B (yeast)	4752	0.055	0.3184
TIMM50	translocase of inner mitochondrial membrane 50 homolog (S. cerevisiae)	4791	0.055	0.3201
MRPS10	mitochondrial ribosomal protein S10	4848	0.054	0.321
AGPAT5	1-acylglycerol-3-phosphate O-acetyltransferase 5 (lysophosphatidic acid acyltransferase, epsilon)	4921	0.053	0.3211
GBAS	gliblastoma amplified sequence	4930	0.053	0.3241
HSD17B10	Hydroxysteroid (17-Beta) Dehydrogenase 10	4977	0.053	0.3253
OXA1L	oxidase (cytochrome c) assembly 1-like	5075	0.052	0.3241
ETFB	electron-transfer-flavoprotein, beta polypeptide	5085	0.052	0.327
MRPL10	mitochondrial ribosomal protein L10	5190	0.051	0.3254
PHB2	prohibitin 2	5222	0.051	0.3272
COQ4	coenzyme Q4 homolog (S. cerevisiae)	5242	0.05	0.3295
SDHC	succinate dehydrogenase complex, subunit C, integral membrane protein, 15kDa	5276	0.05	0.3312
FDX1	ferredoxin 1	5338	0.049	0.3315
THG1L	tRNA-histidine guanylyltransferase 1-like (S. cerevisiae)	5342	0.049	0.3345
AIFM3	Apoptosis Inducing Factor, Mitochondria Associated 3	5344	0.049	0.3377
SLC25A15	solute carrier family 25 (mitochondrial carrier; ornithine transporter) member 15	5345	0.049	0.3408
PTGES2	prostaglandin E synthase 2	5367	0.049	0.343
Table 2
Core enrichment gene list of GSEA for mitochondrial genes in male mice.

Gene symbol	Gene title	Rank in gene list	Rank metric score	Enrichment score	
1	DBT	dihydrolipoamide branched chain transacylase E2	199	0.195	0.009
2	CRY1	cryptochrome 1 (photolyase-like)	255	0.181	0.023
3	BCKDHB	branched chain keto acid dehydrogenase E1, beta polypeptide (maple syrup urine disease)	440	0.151	0.028
4	MAOB	monoamine oxidase B	458	0.149	0.041
5	HMGC2	3-hydroxy-3-methylglutaryl-Coenzyme A synthase 2 (mitochondrial)	631	0.132	0.045
6	PDK4	pyruvate dehydrogenase kinase, isozyme 4	1006	0.106	0.037
7	ABCB7	ATP-binding cassette, sub-family B (MDR/TAP), member 7	1092	0.102	0.042
8	DUT	diUTP pyrophosphatase	1286	0.095	0.042
9	METAP1D	Methionyl Aminopeptidase Type 1D (Mitochondrial)	1303	0.094	0.050
10	GSTZ1	glutathione transferase zeta 1 (maleylacetoacetate isomerase)	1346	0.092	0.057
11	UCP3	uncoupling protein 3 (mitochondrial, proton carrier)	1489	0.088	0.058
12	NR3C1	nuclear receptor subfamily 3, group C, member 1 (glucocorticoid receptor)	1533	0.087	0.064
13	MUT	methylmalonyl Coenzyme A mutase	1581	0.086	0.070
14	OPA1	optic atrophy 1 (dominant)	1820	0.079	0.066
15	NDUFS5	NADH dehydrogenase (ubiquinone) Fe-S protein 5, 15kDa (NADH-coenzyme Q reductase)	2107	0.073	0.059
16	ASAH2	N-acylsphingosine amidohydrolase (non-lysosomal ceramide) 2	2138	0.073	0.065
17	ACOT2	acyl-CoA thioesterase 2	2203	0.071	0.075
18	MTIF2	mitochondrial transcriptional initiation factor 2	2334	0.069	0.082
19	MSRB3	methionine sulfoxide reductase B3	2777	0.070	0.078
20	RAF1	v-raf-1 murine leukemia viral oncogene homolog 1	2334	0.069	0.082
21	GLUD1	glutamate dehydrogenase 1	2407	0.068	0.084
22	ALDH5A1	aldehyde dehydrogenase 5 family, member A1 (sucinate-semialdehyde dehydrogenase)	2408	0.068	0.091
23	NLRP5	NLR Family, Pyrin Domain Containing 5	2469	0.066	0.094
24	DLD	dihydrolipoamide dehydrogenase	2485	0.066	0.099
25	PDK1	pyruvate dehydrogenase kinase, isozyme 1	2529	0.065	0.103
26	AASS	aminoadipate-semialdehyde synthase	2537	0.065	0.109
27	LDHD	lactate dehydrogenase D	2610	0.063	0.111
28	COX6B2	cytochrome c oxidase subunit VIb polypeptide 2 (testis)	2615	0.063	0.117
29	ACAT1	acyl-Coenzyme A acetyltransferase 1 (acetoacetyl Coenzyme A thiolase)	2674	0.062	0.120
30	CLPX	ClpX caseinolytic peptidase X homolog (E. coli)	2697	0.062	0.125
31	L2HGHD	L-2-hydroxyglutarate dehydrogenase	2736	0.061	0.128
32	AIFM1	Apoptosis Inducing Factor, Mitochondria Associated 1	2820	0.060	0.130
33	SUCLA2	succinate-CoA ligase, ADP-forming, beta subunit	2846	0.060	0.134
34	HCCS	holocysteine c synthase (cytochrome c heme-lyase)	2931	0.058	0.136
35	RHOT1	ras homolog gene family, member T1	2974	0.058	0.139
36	BCKDHA	branched chain keto acid dehydrogenase E1, alpha polypeptide	3019	0.057	0.142
37	ACADSB	acyl-Coenzyme A dehydrogenase, short/branched chain	3061	0.056	0.146
38	TRNT1	tRNA nucleotidyl transferase, CCA-adding, 1	3237	0.053	0.142
39	ABCE1	ATP-binding cassette, sub-family E (OABP), member 1	3317	0.052	0.143
40	TFB2M	transcription factor B2, mitochondrial	3417	0.051	0.143
41	GBAS	glioblastoma amplified sequence	3429	0.050	0.148
42	ETFA	electron-transfer-flavoprotein, alpha polypeptide (glutaric aciduria II)	3444	0.050	0.151
43	HTRA2	HtrA serine peptidase 2	3461	0.050	0.155
44	HSPD1	heat shock 60kDa protein 1 (chaperonin)	3504	0.049	0.158
45	POLG	polymerase (DNA directed), gamma	3642	0.048	0.156
46	GCDH	glutaryl-Coenzyme A dehydrogenase	3649	0.048	0.160
47	NIPSNA1	nipsnap homolog 1 (C. elegans)	3769	0.046	0.159
May stimulate further research on the clinical potential of targeting GPER in the treatment of heart disease and other age-related disorders, in which mitochondrial dysfunction and inflammation have central roles in the underlying pathophysiology.

1. Data

To examine the differences in the mitochondrial and inflammatory response gene expressions between GPER-knockout and intact cardiomyocytes, microarray data were loaded into GSEA 2.0.1 software using GSEA gene sets "MITOCHONDRION (including 314 genes)" and "HALLMARK_INFLAMMATORY_RESPONSE (including 193 genes)" [1,2]. The altered individual mitochondrial and inflammatory genes in GPER knockout versus intact cardiomyocytes from both sexes are presented in Tables 1–4.

2. Experimental design, materials and methods

2.1. Cardiomyocyte isolation from GPER KO and GPER-intact or wild-type mice

Mice at 18–20 weeks of age were injected i.p. with 200 μl heparin (Sagent Pharmaceutical Inc., Schaumburg, IL, 100 IU/mouse) 10 min prior to anesthesia with pentobarbital (Akorn Inc., Lake Forest, IL, 100 mg/kg body weight) by i.p. injection. Upon verification of deep anesthesia by the absence of response to tail/toe pinches, the heart was quickly removed and trimmed in an ice-cold, calcium-free perfusion buffer (126 mM NaCl, 4.4 mM KCl, 1 mM MgCl2, 4 mM NaHCO3, 10 mM HEPES, 11 mM glucose, 30 mM 2,3-butanedine monoxime [Sigma, St. Louis, MO], 5 mM taurine [Sigma], pH 7.35). The heart was then cannulated through the aorta on an Easycell System for Cardiomyocyte Isolation (Harvard Apparatus, Holliston, MA) and perfused at 37 °C with calcium-free perfusion buffer at a flow rate of 3 ml/min for 4–5 min until the effluent became clear. The heart was switched to digestion buffer (perfusion buffer plus 50 μM CaCl2 and 0.5 mg/ml collagenase II [Worthington Biochemical Corp., Freehold, NJ]), and perfused for 10–15 min at a flow rate of 4 ml/min until the heart was pale.
and flaccid. The heart was pulled from the cannula and the ventricles were transferred to a 60-mm sterile dish containing 5 ml of transfer buffer (perfusion buffer plus 0.1 mM CaCl2 and 2% bovine serum albumin [Sigma]) and cut into small pieces. The minced tissue was incubated in a 37 °C water bath for 10 min. The cell suspension was filtered through a 100-μm mesh cell strainer (BD Biosciences, San Jose, CA) to remove tissue debris and spun at 420 rpm at room temperature for 2 min. After removing the supernatant, cardiomyocytes were washed with 1 ml of PBS and centrifuged at 1500 rpm at 4°C for 3 min. The cells were suspended in 1 ml of QIAzol (Qiagen Inc, Valencia, CA), mixed, and homogenized before storing at −80°C.

2.2. DNA microarray assay

Total RNA was isolated from cardiomyocytes using the RNeasy Lipid Tissue Mini Kit (Qiagen Inc) and further purified using RNeasy MinElute Cleanup Kit (Qiagen Inc) followed by quality assessment on an Agilent 2100 bioanalyzer. Samples with RIN values > 8.0 and a 260/280 ratio between 1.8 and 2.1 were carried forward for cRNA synthesis and hybridization to GeneAtlas MG-430 PM Array Strips (Affymetrix, Santa Clara, CA) following the manufacturer’s recommended protocol [3]. Briefly, approximately 250 ng of purified total RNA was reverse transcribed and biotin labeled to produce biotinylated cRNA targets according to the standard Affymetrix GeneAtlas 3′-IVT Express labeling.
Following fragmentation, 6 μg of biotinylated cRNA was hybridized for 16 h at 45 °C on the Affymetrix GeneAtlas Mouse MG-430 PM Array Strip. Strips were washed and stained using the GeneAtlas Fluidics Station according to standard Affymetrix operating procedures (GeneAtlas™ System User's Guide, P/N 08-0306 Rev A January 2010). Strips were subsequently scanned using the GeneAtlas Imager system according to the standard Affymetrix protocol. Fluidics control, scan control, and data collection were performed using the GeneAtlas Instrument Control Software version 1.0.5.267. All microarray analyses were performed by the Wake Forest School of Medicine Microarray Shared Resource Core.

2.3. Gene set enrichment analysis (GSEA)

GSEA was performed to determine whether genes belonging to a biological pathway or a previously determined functional group were significantly overrepresented at the top or bottom of a table.

Gene symbol	Gene title	Rank in gene list	Rank metric score	Enrichment score
TIMP1	TIMP metalloproteinase inhibitor 1	3	0.804	0.061
CD48	CD48 molecule	30	0.397	0.091
CD14	CD14 molecule	59	0.322	0.114
SCN1B	sodium channel, voltage-gated, type I, beta	76	0.303	0.136
CYBB	cytochrome b-245, beta polypeptide (chronic granulomatous disease)	96	0.273	0.156
CDKN1A	cyclin-dependent kinase inhibitor 1A (p21, Cip1)	159	0.227	0.171
OSMR	oncostatin M receptor	163	0.223	0.188
C3AR1	complement component 3a receptor 1	215	0.200	0.201
CCL7	chemokine (C-C motif) ligand 7	246	0.188	0.214
ICAM4	intercellular adhesion molecule 4 (Landsteiner-Wiener blood group)	269	0.182	0.227

Table 4
Core enrichment gene list of GSEA for inflammatory response genes in male mice.
ranked gene list compared to controls without a predefined cut-off value. This bioinformatic tool evaluates all significantly measured targets derived from a microarray experiment at the level of gene sets, which are defined based on prior biological knowledge. Thus, biologically relevant information is not missed by losing target genes due to an “arbitrarily” chosen cut-off value [4]. In this study, expression data of all 21,782 genes were compared against functional gene sets to determine whether any of these sets were enriched in GPER KO cardiomyocytes vs. intact cardiomyocytes.

Acknowledgments

The GPER knockout mouse strain was generated with the help of the KOMP Repository (WWW.KOMP.org) and the Mouse Biology Program (www.mousebiology.org) at the University of California Davis. We appreciate the assistance of Ms. Lou Craddock at Wake Forest University Comprehensive Cancer Center Microarray facility in running the microarray. This work was funded by the National Institutes of Health, USA Grants AG-042758 (L.G.), AG-033727 (L.G.), and HL-051952 (C.M.F.).

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2016.11.057.

References

[1] H. Wang, X. Sun, J. Chou, M. Lin, C.M. Ferrario, G. Zapata-Sudo, L. Groban, Cardiomyocyte-specific deletion of the G protein-coupled estrogen receptor (GPER) leads to left ventricular dysfunction and adverse remodeling: a sex-specific gene profiling analysis, Biochim Biophys Acta. Available online Oct 6, 2016, http://dx.doi.org/10.1016/j.bbadis.2016.10.003.

[2] X.Q. Wang, B.B. Tao, B. Li, X.H. Wang, W.C. Zhang, L. Wan, X.M. Hua, S.T. Li, Overexpression of TREM2 enhances glioma cell proliferation and invasion: a therapeutic target in human glioma, Oncotarget 7 (2016) 2354–2366. http://dx.doi.org/10.18632/oncotarget.6221.

[3] R.F. Loeser, A.L. Olex, M.A. McNulty, C.S. Carlson, M.F. Callahan, C.M. Ferguson, J. Chou, X. Leng, J.S. Fetrow, Microarray analysis reveals age-related differences in gene expression during the development of osteoarthritis in mice, Arthritis Rheumatol. 64 (2012) 705–717. http://dx.doi.org/10.1002/art.33388.

[4] K. He, Z. Chen, Y. Ma, Y. Pan, Identification of high-copper-responsive target pathways in Atp7b knockout mouse liver by GSEA on microarray data sets, Mamm. Genome 22 (2011) 703–713.