On the quantum and classical scattering times due to charged dislocations in an impure electron gas

Debdeep Jena and Umesh K. Mishra
Department of Electrical and Computer Engineering and Materials Department
University of California, Santa Barbara
CA, 93106

(Dated: November 10, 2021)

We derive the ratio of transport and single particle relaxation times in three and two-dimensional electron gases due to scattering from charged dislocations in semiconductors. The results are compared to the respective relaxation times due to randomly placed charged impurities. We find that the ratio is larger than the case of ionized impurity scattering in both three and two-dimensional electron transport.

Keywords: Scattering, quantum scattering time, transport scattering time, ionized impurity, charged dislocation

PACS numbers: 81.10.Bk, 72.80.Ey

In their work on the transport properties of impure metallic systems, Das Sarma and Stern show the difference between two characteristic relaxation times for the case of scattering from randomly located charged impurities. They make a clear distinction between the transport case of scattering from randomly located charged impurities between two characteristic relaxation times for the field measure of the time spent in scattering potential, the transport scattering time is the time spent by a carrier in a particular momentum (or the single particle relaxation time)τ. The screened Coulombic potential due to such a charge of density q pierces a three-dimensional electron gas of density n along the z direction. We set c to be the distance between the individual charges on the dislocation, making it a line charge of density $1/c$.

The screened Coulombic potential due to such a charged dislocation immersed in the gas of mobile carriers is given by:

$$\frac{1}{\tau} = \sum_{k'} S(k', k) f(\theta)$$

(1)

where $f(\theta) = 1$ or $(1 - \cos \theta)$ for quantum and transport relaxation rates respectively. Using this result, Das Sarma and Stern have shown that the ratio τ_t/τ_q exceeds unity for ionized impurity scattering for both the three and two-dimensional metallic electron gases.

Among the elastic scattering processes, the ratio deviates strongly from unity for Coulombic scatterers where the scattering potential has a long-range nature. Short range scattering processes such as due to alloy scattering are isotropic, and so are inelastic scattering processes such as due to phonons. For such scatterers, the ratio remains close to unity. Gold extended the results of Das-Sarma and Stern to include interface roughness and alloy scattering in two-dimensions. The two main Coulombic scattering mechanisms in semiconductors originate from randomly distributed individual charge centers (such as those from dopants, impurities, or charged vacancies) or from charged dislocations.

The problem of the ratio of transport to quantum scattering times has not yet been solved for dislocation scattering. Thus, the scattering rate is defined to be $\frac{1}{\tau} = \sum_{k'} S(k', k) f(\theta)$

In this work, we present the theory of quantum scattering times for charged dislocation scattering for both three and two-dimensional electron gases. First, we derive a closed form expression for the ratio τ_t/τ_q for dislocation scattering in the three-dimensional electron gas (3DEG). We compare the results to the case of ionized impurity scattering. We then derive the ratio for the two-dimensional electron gas (2DEG) and compare the ratio to remote ionized impurity scattering.

We now derive an expression for the quantum scattering time of electrons for three-dimensional carriers for scattering from charged dislocations. We assume that there are N_{disl} parallel dislocations per unit area that pierce a three-dimensional electron gas of density n along the z direction. We set c to be the distance between the individual charges on the dislocation, making it a line charge of density $1/c$.

The screened Coulombic potential due to such a charged dislocation immersed in the gas of mobile carriers is given by
scattering is two-dimensional, affecting only the components of momentum of incident electrons perpendicular to the dislocation axis, \(\mathbf{k}_\perp \). Under these assumptions, the dislocation scattering matrix rate can be shown to be given by

\[
S_{\text{dist}}(k', k) = \frac{2\pi}{\hbar} \frac{e^2}{\epsilon c} \frac{\lambda^2}{[1 + (q\lambda)^2]^2} \delta(E_{k_\perp} - E_{k'_\perp})
\]

where \(q^2 = |\mathbf{k}'_\perp - \mathbf{k}_\perp|^2 = 2k_\perp^2 (1 - \cos \theta) \).

To find the quantum scattering rate, we have to sum this scattering rate for all values of \(k'_\perp \) without the \((1 - \cos \theta) \) term that is required for calculating the classical mobility. Summing this expression over all values of \(k'_\perp \) using the prescription for 2-dimensional DOS

\[
\sum_{k'_\perp} (\ldots) \rightarrow 1/(2\pi)^2 \int d^2k_\perp (\ldots),
\]

and evaluating the integral exactly, we get the quantum scattering rate due to charged dislocations to be

\[
\frac{1}{\tau_{\text{dist}}^q(k)} = \frac{N_{\text{dist}} e^4 m^*}{\hbar^3 \epsilon^2 c^2} \frac{\lambda^4}{(1 + 4k^2 \lambda^2)^{3/2}} \times [1 + 2(k\lambda)^2]. \tag{4}
\]

Comparing this to the transport scattering rate due to charged dislocations derived by Podor,[4]

\[
\frac{1}{\tau_{\text{dist}}^q(k)} = \frac{N_{\text{dist}} e^4 m^*}{\hbar^3 \epsilon^2 c^2} \frac{\lambda^4}{(1 + 4k^2 \lambda^2)^{3/2}}
\]

we find the simple relation

\[
\frac{\tau_q}{\tau_q^\text{dist}} = 1 + \frac{1}{2}\zeta^2. \tag{5}
\]

where \(\zeta = k\lambda \). For a metallic 3DEG, transport occurs between carriers at the Fermi level. Then, the scattering times can be evaluated at the Fermi energy, and \(\zeta = 2k_F\lambda_{TF} \), where \(k_F = (3\pi^2 n)^{1/3} \) is the Fermi wavevector and \(\lambda_{TF} = q_F^{1/2} = \sqrt{2\epsilon_F/3\epsilon^*n} \) is the Thomas-Fermi screening length, \(\epsilon_F = \hbar^2 k_F^2/2m^* \) being the Fermi energy. Under these conditions, the lifetime ratio is dependent only on the carrier concentration \(n \).

In Figure 1, we plot the ratio of transport and quantum scattering times against the dimensionless quantity \(\zeta \). In the figure, we also plot the ratio for random impurity scattering to show the relative intensity. It is seen that the ratio is more for dislocation scattering than for impurity scattering since dislocation scattering is inherently more anisotropic than impurity scattering. While impurity scattering potential of point charges possesses spherical symmetry, dislocation scattering potential of a line charge is cylindrically symmetric, thus causing an additional anisotropy in scattering of three-dimensional carriers. The ratio approaches unity (as is also true for impurity scattering) as \(\zeta \to 0 \).

The transport to quantum scattering times ratio due to ionized impurities for a 2DEG has been studied in some detail in the light of experimental evidence for both Si-MOSFET inversion layers and AlGaAs/GaAs modulation-doped 2DEGs. Das Sarma and Stern show in their work[14] how remote ionized impurity scattering causes the ratio to become very large as the remote donors are placed farther away from the 2DEG channel, strongly enhancing forward angle scattering. In a Si-MOSFET, the 2DEG is formed by inversion induced by a gate voltage. In a AlGaAs/GaAs heterojunction, the 2DEG is formed by intentional modulation doping from remote donors.

An AlGaN/GaN 2DEG is distinct from these cases, where the 2DEG forms due to the strong internal polarization fields[15] that extract carriers from remote surface states[14]. There is no intentional doping for these structures, and scattering originates from the donor-like surface states that supply the 2DEG electrons. Thus, the distance of the remote donors from the 2DEG is fixed by the AlGaN layer thickness. We calculate the relaxation

\[
\beta \sigma dx = \frac{e^4 m^*}{\hbar^3 \epsilon^2 c^2} \frac{\lambda^4}{(1 + 4k^2 \lambda^2)^{3/2}} \times [1 + 2(k\lambda)^2]. \tag{6}
\]
The transport scattering rate due to charged dislocation scattering was derived recently\cite{K69,K6D,K70}. The screened matrix element for charged dislocation scattering was derived to be

\begin{equation}
\langle k' | V(r) | k \rangle = \frac{e}{\varepsilon \varepsilon_0 q(q + q_{TF})}
\end{equation}

where \(q_{TF}\) is the two-dimensional Thomas-Fermi screening wavevector and \(q = |k' - k| = 2k_F \sin(\theta/2)\) is the change in the 2D wavevector due to scattering. Using this result, we derive the quantum scattering rate to be

\begin{equation}
\frac{1}{\tau_q} = \frac{N_{\text{dis}} m^* e^2}{\hbar^2 e^2 c^2} \frac{I_q}{4\pi k_F^4}
\end{equation}

where \(I_q\), an integral dependent on the dimensionless parameters \(\zeta\) and \(u = q/2k_F = \sin(\theta/2)\) (\(\theta\) is the angle of scattering) is given by

\begin{equation}
I_q = \frac{1}{2} \zeta^2 \int_0^1 du \frac{1}{u^2(1 + \zeta^2 u^2)^{\frac{1}{2}}}.
\end{equation}

The transport scattering rate is given by

\begin{equation}
\frac{1}{\tau_t} = \frac{N_{\text{dis}} m^* e^2 I_t}{\hbar^3 e^2 c^2 \pi k_F^4}
\end{equation}

where \(I_t\) is given by

\begin{equation}
I_t = \zeta^2 \int_0^1 du \frac{1}{(1 + \zeta^2 u^2)^{\frac{1}{2}}}.
\end{equation}

Whilst \(I_t\) can be evaluated exactly, it can be easily seen that \(I_q\) diverges as \(u = \sin(\theta/2) \rightarrow 0\), or, in other words, when \(\theta \rightarrow 0\). This is the case of scattering that is strongly peaked in the forward direction. The ratio of the quantum and transport scattering times, given by the ratio \(\tau_t/\tau_q\) thus acquires a singularity at small scattering angles. We define a scattering angle cutoff \(\theta_c\) and evaluate the ratio \(\tau_t/\tau_q\) by including dislocation scattering restricted to \(\theta \geq \theta_c\) only. We evaluate the ratio for the cutoffs \(\theta_c = \pi/10, \pi/100, \pi/1000, \pi/10000\). The results are shown in Figure 3.
As more small angle scattering contribution is included, the ratio becomes much larger than unity. On the other hand, as the scattering is restricted to be more large angle, the ratio approaches unity since it mimics isotropic scattering. Two points can be made about the results. First, that the dependence of the ratio on the 2DEG density is much weaker than for impurity scattering (Figure II). Second, that the ratio is much larger than that for impurity scattering as $\theta_c \to 0$.

One can argue that as opposed to the case of impurity scattering for 2DEGs where the modulation dopants can be placed at any distance from the 2DEG, a charged dislocation line always has a strong remote impurity nature due to the geometry. This causes a strong preference for small angle scattering, causing the ratio $\tau_l/\tau_q \to \infty$ as $\theta_c \to 0$. Our model of dislocation scattering implies that quantum scattering from dislocations should have a minimal effect on the broadening of Landau levels which in all likelihood will be determined by other scattering events. We point out here that such a divergence of the quantum scattering time for a 2DEG was also observed by Gold for the case of residual impurity scattering. In his work, considering multiple scattering events contribution to the self energy in the Green’s function, he was able to arrive at a renormalized quantum scattering time which removed the singularity. This kind of a treatment for the case of residual impurity scattering. The recently demonstrated polarization-doped three-dimensional electron gases provide an ideal testing ground for applying our results for the 3DEG case. By exploiting the internal polarization fields, wide degenerate electron slabs of high mobility were demonstrated in graded AlGaN material systems. The 3DEG densities in such electron slabs is in principle tunable over a wide range $10^{16} – 10^{18} \text{cm}^{-3}$. Besides, the carriers do not freeze out at low temperatures and have been shown to exhibit Shubnikov de-Haas oscillations. Such degenerate 3DEGs typically have a high density of dislocations ($N_{\text{disl}} \approx 10^9 \text{cm}^{-2}$) and should be an ideal testing ground for our theoretical predictions.

In summary, we derived the transport to quantum scattering times for dislocation scattering for the three and two-dimensional electron gases. We compared the results to impurity scattering and found the effect to be stronger for dislocation scattering for both cases. We attribute this to the inherent anisotropy in scattering events due to the geometry of dislocations. We point out experimental systems where our results will prove helpful.

* Electronic mail: jena@engineering.ucsb.edu

1. S. Das Sarma and F. Stern, Phys. Rev. B, 32, 8442 (1985).
2. L. Hsu and W. Walukiewicz, Appl. Phys. Lett., 80, 2508 (2002).
3. A. Gold, Phys. Rev. B, 38, 10798 (1988).
4. D. C. Look and J. R. Sizelove, Phys. Rev. Lett., 82, 1237 (1999).
5. D. Jena, A. C. Gossard, and U. K. Mishra, Appl. Phys. Lett., 76, 1707 (2000).
6. S. Elhamri et. al., Phys. Rev. B 57, 1374 (1998).
7. Z. W. Zheng et. al., Phys. Rev. B 62, R7739 (2000).
8. E. Frayssinet et. al., Appl. Phys. Lett. 77, 2551 (2000).
9. A. Saxler et. al. J. Appl. Phys. 87, 369 (2000).
10. S. Elhamri et. al., J. Appl. Phys. 88, 6583 (2000).
11. A. F. Brana, C. Diaz-Paniagua, F. Batallan, J. A. Garrido, E. Munoz and F. Omnes, J. Appl. Phys. 88, 932 (2000).
12. D. Jena et. al, Accepted for publication in Appl. Phys. Lett.
13. K. Seeger Semiconductor Physics, an introduction (Springer Verlag, Berlin 1999), p. 222.
14. B. Pödör, Phys. Status Solidi 16, K167 (1966).
15. O. Ambacher et al., J. Appl. Phys. 87, 334 (2000).
16. J. P. Ibbetson et. al., Appl. Phys. Lett. 77, 250 (2000).
17. D. Jena and U. K. Mishra, cond-mat/0209664.