tumors. The presence of metastatic seeding is rare and has been reported as an adverse prognostic factor. We present 2 cases of young children with recurrent metastatic DIA/DIG to describe their presentation, therapeutic management, outcome and to highlight the importance of molecular characterization of these rare tumors to guide adjuvant therapy. CASES DESCRIPTION: The first patient developed metastatic recurrence after initial gross total resection (GTR) of a localized DIG. The disseminated relapse was successfully treated with monthly carboplatin and vincristine (CBV) and complete response was achieved after 15 cycles and the patient has remained in continuous complete remission for 5 years. Post hoc molecular analysis of the tumor revealed a BRAF-RDX fusion. The second patient presented with a disseminated intraventricular recurrence following an incomplete resection in a DIA associated with a SPECC1L-NTRK2 fusion. The patient received 2 cycles of CBVCR with minimal response and was then switched to Larotrectinib leading to a very good partial response (VGPR) 3 months into therapy and has remained on treatment since then with significant clinical improvement. DISCUSSION/ CONCLUSION: In our 2 cases of metastatic recurrence was responsive to adjuvant therapy leading to complete response with conventional chemotherapy in the first one and to VGPR with NTRK inhibitor in the second patient. Early molecular characterization of these being tumors is critical in case of incomplete resection or metastatic seeding. Response with NTRK inhibitor appears rapid and significant but the total duration of treatment and sustainability of response after discontinuation remain unknown.

RARE-20. RETROSPECTIVE ANALYSIS OF 9 PINEOBLASTOMA
Renu Ai, Juan Li, Mingyao Lai, Linbo Cai; Guangdong Sanju Brain Hospital, Guangzhou, Guangdong, China

BACKGROUND: Pineoblastomas (PBs) are rare, supratentorial, primitive neuroectodermal tumors. Little is known with the clinical features and outcome in PBs. PBs were once considered whole-geneomatozed tumors. We retrospectively analyzed consecutive patients with PBs who were treated in Guangdong Sanju Brain Hospital between December 2006 to May 2020. RESULTS: A total of 9 patients (7 males and 2 females) with PBs were treated in our hospital with a median age of 9 years (range:2-17). Total or near total resection was achieved in 3 patients (33%), partial resection in 4 (44.4%), and biopsy in 2 (22.2%). There were 4 patients with spinal cord metastasis at diagnosis. Five patients received craniospinal irradiation (CSI), with concurrent or adjuvant chemotherapy. The average total dose of CSI was 34.80±2.683 Gy, and the average dose to local tumor bed was 56.08±6.41Gy. Two patients younger than 3 years old only received chemotherapy, while 1 patient did not receive any postoperative treatment, and 1 patient was unknown. The median follow-up time was 7 months (range:3-13 months). At the last follow up, 3 patients were died, 3 patients were survived, and 1 was lost to follow-up. The median OS was 31 months (95%CI 1.782-60.281). Disease progression occurred in 5 patients during the follow-up period, and the median PFS was 19 months. CONCLUSION: Pineoblastoma is a rare central nervous system malignancy with a tendency for disseminated disease. Comprehensive therapies such as surgical resection, radiation and chemo therapy are effective therapies for PBs.

RARE-21 SOX2 PLAYS AN IMPORTANT ROLE IN CHOROID PLEXUS TUMOR DEVELOPMENT
Lukas Palming, Tammama Sarowar, James Virga, Navleen Singh, Brigham Young, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA

Choroid plexus (CP) tumors are rare primary brain neoplasms found most commonly in children and are thought to arise from CP epithelial cells. Sox2 is a transcription factor that not only plays a role in the development in the ventricular zone, CP, and roof plate, but also contributes to cancer stemness, tumorigenesis, and drug resistance. Gene expression studies demonstrate aberrant Sox2 expression in human CP tumors, suggesting a role in tumor development. A subset of CP tumors exhibit abnormal NOTCH pathway activity. Using animal models, we previously showed that sustained NOTCH activity leads to CP tumors. Immunofluorescence, RT-qPCR, and RNA scope assays have revealed increased Sox2 levels in NOTCH-driven CP tumors compared to wild type CP. To investigate the role of Sox2 in CP tumors, we eliminated Sox2 expression in NOTCH-driven CP tumors. Loss of Sox2 almost completely blocked NOTCH-driven CP tumor growth in these mice, supporting a role for Sox2 in these tumors. Ciliation regulation is one proposed functional pathway for tumorigenesis in CP tumors. Using immunofluorescence assays for cilia (ARL13B) and aquaporin transport protein 1 (AQP1) in combination with super resolution microscopy, we observe a stark contrast between wild type CP epithelial cells whose multiciliated features and AQP1 positive, indicating that Sox2 loss does not affect the ciliation machinery. Together this warrants further study into the mechanisms of Sox2 functions in CP tumors. By unraveling the role of Sox2 in CP tumors, we may better understand their origin and biology to ultimately design improved treatment options.

RARE-22 CHARACTERIZING THE LANDSCAPE OF STRUCTURAL VARIANTS IN ADAMANTINOMATOUS CRANIOPHARYNGIOMA
Danny Joma, Prasuddha Khadka, Dana Novickova, Ziauddin A. Condurache, Jessica W. Isaac, Frank Dubose, Shu Zhang, Kevin Zhou, Rose Goldel, Cecilia Sousa, Jayne Vogelzang, Eric Prince, Sophie Lu, Veronika Silnov, Georg W. Otto, Sergio Castellano Hereza, David Ashley, Aaron A. Cohen-Gadol, Eric Thompson, Rameen Beroukhim, John Apps, Juan Pedro Martinez-Barbera, Todd Head, Evan J. Mathieu, Brigitte D’Angelo, Jesse Morris, Harvard Medical School, Boston, MA, USA. Dana-Farber Cancer Institute, Boston, MA, USA.

Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, USA. Morgan Adams Foundation for Pediatric Brain Tumor Research Program, University of Colorado School of Medicine, Aurora, CO, USA. "Milken Institute of Public Health, George Washington University, Washington, DC, USA. Indiana University Health, Indianapolis, IN, USA. University College London, London, England, United Kingdom. Department of Neurosurgery, Duke University, Durham, NC, USA. Department of Neurosurgery, Indiana University, Indianapolis, IN, USA. Brigham and Women’s Hospital, Boston, MA, USA. University of Birmingham, Birmingham, England, United Kingdom

INTRODUCTION: Adamantinomatous craniopharyngiomas (ACPs) are rare brain tumors that primarily occur in children and impact long-term morbidity and mortality. The molecular driver mutations that occur in ACPs are not well-characterized, thereby limiting the development of effective therapies. We comprehensively investigated the structural variant (SV) landscape in a cohort of 41 ACP samples. METHODS: We performed whole-genome sequencing (WGS) and RNA-sequencing at a higher read depth. Matched normal samples were also characterized by WGS. RESULTS: We identified 180 recurrent SVs in ACP tumors. SV analysis identified a median of 11.5 events per tumor. Overall, 9.7% of events were interchromosomal. Of the remainder, the majority (78.6%) were deletions. No SVs occurred within the CTNNB1 region. A positive correlation (r = 0.533) was observed between the frequency of SVs and SNVs within samples. Analysis of significantly recurrent breakpoints (SRBs) did not identify recurrent breakpoint events. Differential gene expression analysis comparing samples with and without CTNNB1 variants identified 2,183 differentially expressed genes with q-value < 0.05. CONCLUSION: This study identifies activating mutations in exon 3 of CTNNB1 in a large cohort of ACP samples. We also integrate SV and transcriptomic data to comprehensively investigate ACP tumor genomes and identify putative novel tumorigenic mechanisms that advance our understanding of ACP biology.

RARE-23. PRESERVATION OF ENDOCRINE FUNCTION AFTER OMMAYA RESERVOIR INSERTION IN CHILDREN WITH CYSTIC CRANIOPHARYNGIOMA
Laura-Nanna Lohkamp, Abhaya V Kulkarni, James Drake, James T Rutka, Jill Hamilton, Ute K Bartels; The Hospital for Sick Children, Toronto, Ontario, Canada

INTRODUCTION: Children with craniopharyngiomas (CP) can be subjected to significant morbidities caused by radical surgery and/or radiation with deleterious long-term consequences. Ommaya reservoir insertion (ORI) into cystic CP represents a minimally invasive procedure allowing immediate decompression and aims to avoid additional injuries. The purpose of this study was to determine the relevance of upfront ORI (+/- intracystic treatment) for preservation of endocrine function. METHODS: We performed a retrospective review of children with CP treated at the Hospital for Sick Children between 01/01/2000 and 15/01/2020 for review of endocrinological outcome after ORI. Endocrine function was reviewed at the time of initial surgery and throughout the course of follow-up. Event-free survival (EFS) was defined as the time to further surgical resection or irradiation. RESULTS: Seventy-nine patients were identified with a median age of 8.3 years (range 2.1-18.0) years, 31 were males. Sixty-six patients underwent surgical treatment, including 41 ORI. ORI was performed as upfront treatment in 32 patients. Of 33 patients underwent total or near total ORI and 1 patient underwent BYR as first treatment. Fifty-five of 79 patients had sufficient endocrine follow-up data. Endocrine function remained stable after ORI with a mean of EFS of 27.64 (± 5.22) months. Surgical resection was associated with worsened endocrine function postoperatively with an EFS of 5.48 (± 1.74) months (p< 0.001). CONCLUSIONS: Upfront ORI (+/- intracystic treat-