Effects of an external circuit on a MHD slider bearing with couplestress fluid between conducting plates

Syeda Tasneem Fathima¹, Salma Jamal² and B N Hanumagowda³

¹ West Monroe, USA.
² KNS Institute of Technology, Bangalore-560064, India.
³ Department of Mathematics, Reva University, Bangalore-560064, India.

Abstract: A MHD Slideer bearing lubricated with conducting couplestress fluid (CCSF) between two electrical conducting plates under the influence of magnetic field in free space is theoretically investigated. A closed form solution for the film pressure and load carrying capacity is obtained analytically in terms of inlet-outlet (IO) film height ratio of slider bearings. The results are presented graphically for different values of operating parameters. The results suggest that the bearings with couplestress fluid as lubricant provide significant load carrying capacity than Newtonian lubricant case. Further, it is observed that the influence of applied magnetic field and induced magnetic field is to increase the load carrying capacity substantially while, the load decreases with increase in IO film ratio. Besides, the conductivity increases the load carrying capacity significantly. The results are compared with the Newtonian Fluid case.

1. Introduction

Slider bearings are designed to support axial loads and are used in hydroelectric generators, steam and gas turbines and similar equipments. The MHD lubrication of finite slider bearings was analysed by Lin [1]. He has shown that the application of the magnetic field signifies an influence in the load carrying capacity, power loss and friction parameter of slider bearing. Kuzma [2] investigated the effect of a non-uniform applied magnetic field on the operation of a parallel plate slider bearing and shown that the optimum magnetic field profile enhances the load-carrying capacity while decreasing the friction factor. Recently several authors have investigated the performance of MHD slider bearing with various film shapes [3-5]. They have shown that the applied magnetic field provide significant improvement in the load carrying capacity, stiffness coefficient and the damping coefficient. Several investigators [6- 8] have studied the lubrication problems of MHD slider bearings.

The study of a couple stress fluids is very useful in understanding various physical problems. Since the classical Newtonian theory cannot accurately describe the rheological behaviour of lubricants blended with various additives, many micro continuum theories are proposed to model the flow rheology. Among these Stokes [9] theory is the simplest theory which accounts for the effects of couple stresses, body couple and asymmetric tensors. Das [10] observed that for slider bearings both the values of maximum load capacity and the corresponding inlet-outlet film ratio depend on couplestress and magnetic parameters. Lin et al.,[11- 13] in their studies have shown that increasing
values of the couple stress parameter increases the load carrying capacity and reduces the required volume flow rate and the friction parameter. Some recent investigations regarding MHD couple stress fluids are mentioned in the studies [14-18]. These studies have shown that the MHD couple stress fluids have better lubricating qualities than the corresponding Non-conducting Newtonian lubricant (NCNL).

Most of the studies assume the bearing surfaces to be electrically non-conducting refs. [1-18] but conductivity influences the performance of bearings. This is been shown by Synder [19] who considered the influence of finite wall conductance on load capacity of the MHD slider bearings. Such an analysis in the case of a hydromagnetic squeeze film has been carried out by Shukla et al., [20] and shown that an increase in load capacity, pressure and time of approach are possible by increasing either the strength of the magnetic field or conductivities or both. In the case of MHD slider bearing, the effect of magnetic field in the free space between two electrically conducting plates was studied by Soundalgekar [21] and it was observed that an increase in the magnetic field in the free space leads to an increase in load carrying capacity of bearing. The effects of external circuit on MHD conducting plates and MHD channel flow with couple stresses on the working of bearing were discussed by Soundalgekar et al.,[22-23].

The objective of the present paper is to study the effects of an External circuit on a MHD slider bearing between electrically conducting surfaces lubricated with conducting couple stress fluids (CCSF), which has not been studied so far.

2. Mathematical Analysis
The configuration of the slider bearing is shown in figure 1. The surfaces of the bearing are assumed to be conducting. The lubricant between the surfaces is an isothermal, incompressible electrically conducting couple stress fluid. The origin is chosen at one end of the lower plate with x-axis along the plate and y-axis normal to it. A uniform magnetic field is assumed to be applied parallel to the y-axis. The plates are assumed to be infinite in extent in the x and z direction.

The basic equations governing the hydrodynamic flow of the couple-stress lubricant between two conducting plates are:

$$
\mu \frac{\partial^2 u}{\partial y^2} - \eta \frac{\partial^4 u}{\partial y^4} - J_i B_i = \frac{\partial p}{\partial x}
$$

(1)

$$
\frac{dH}{dy} = -J_z
$$

(2)

where the third term represents the magnetic body force, where J_z is the current density given by Ohm’s law

$$
J_z = \sigma (E_z + uB_i)
$$

(3)

Eliminating J_z between equations (1) and (2) gives

$$
\frac{d^2 u}{dy^2} + \frac{\eta}{\mu} \frac{d^4 u}{dy^4} - \frac{M^2}{h_2^2} u = \frac{1}{\mu} \frac{\partial p}{\partial x} + \frac{\sigma M}{\mu h_2} E_z
$$

(4)
\[
\frac{dH_y}{dy} = -\sigma \left(E_z + uB_y \right)
\]

(5)

where \(M = B_f h_y \sqrt{\sigma/\mu} \) is the Hartmann number.

The boundary conditions and no-stress conditions for the velocity are:

\[
\begin{align*}
&u = 0 \quad \text{at} \quad y = 0 \quad \text{for channel flow} \\
&u = 0 \quad \text{at} \quad y = h \\
&u = U \quad \text{at} \quad y = 0 \quad \text{for Couette flow} \\
&u = 0 \quad \text{at} \quad y = h
\end{align*}
\]

(6)

\[
\frac{\partial^2 u}{\partial y^2} = 0 \quad \text{at} \quad y = 0, h
\]

(7)

and the boundary conditions on the induced magnetic field are

\[
\begin{align*}
&\frac{dH_y}{dy} - \frac{H_z}{\Phi_1 h_2} = -\frac{H_n}{\Phi_1 h_2} \quad \text{at} \quad y = 0 \\
&\frac{dH_y}{dy} + \frac{H_z}{\Phi_2 h_1} = \frac{H_n}{\Phi_2 h_1} \quad \text{at} \quad y = h
\end{align*}
\]

(9)

Channel flow

The solution of equations (4) and (5) subject to conditions (6), (8) and (9) are

\[
U_{ch} = \frac{h_y^2}{M^2} \left(1 + \frac{\sigma}{\mu} \frac{M}{h_z} E_z \right) f_i (h, l, M, y)
\]

(10)
\[
\begin{align*}
H_z &= -\sigma E_z (y + \Phi_h z) - \sqrt{\sigma \mu h_z} \left(\frac{1}{\mu} \frac{\partial p}{\partial x} + \frac{\sigma M}{\mu h_z} E_z \right) \left[f_z (h, l, M, y) - y \right] + H_n, \\
E_c &= \frac{h_z}{\sqrt{\sigma \mu}} \left(\frac{\partial p}{\partial x} \left[h - f_z (h, l, M) \right] \right) - \frac{\left(H_n - H_\infty \right)}{\sigma} \\
\end{align*}
\]

where \(l = \frac{\eta}{\mu} \) is the couplestress parameter,

\[
A = \sqrt{\frac{1 + \sqrt{1 - 4l^2 M^2}}{2}}, \quad B = \sqrt{\frac{1 - \sqrt{1 - 4l^2 M^2}}{2}}
\]

\[
f_1 (h, l, M, y) = \frac{A^2}{A^2 - B^2} \left(\frac{\cosh \left(\frac{B(2y - h)}{2l} \right)}{\cosh \left(\frac{Bh}{2l} \right)} \right) - \frac{B^2}{A^2 - B^2} \left(\frac{\cosh \left(\frac{A(2y - h)}{2l} \right)}{\cosh \left(\frac{Ah}{2l} \right)} \right) - 1
\]

\[
f_2 (h, l, M, y) = \frac{A^2 l}{B \left(A^2 - B^2 \right)} \left(\frac{\sinh \left(\frac{B(2y - h)}{2l} \right)}{\cosh \left(\frac{Bh}{2l} \right)} + \tanh \left(\frac{Bh}{2l} \right) \right) - \frac{B^2 l}{A \left(A^2 - B^2 \right)} \left(\frac{\sinh \left(\frac{A(2y - h)}{2l} \right)}{\cosh \left(\frac{Ah}{2l} \right)} + \tanh \left(\frac{Ah}{2l} \right) \right)
\]

\[
f_3 (h, l, M) = \frac{2l}{B \tanh \left(\frac{Bh}{2l} \right)} \left(\frac{A^2}{B} \tanh \left(\frac{Bh}{2l} / A \tanh \left(\frac{Ah}{2l} \right) \right) \right)
\]

Eliminating \(E_c \) between equations (10) and (12), we have the expression for velocity in channel flow as

\[
U_{ch} = \frac{h_z^2}{M^2} \left\{ \frac{1}{\mu} \frac{\partial p}{\partial x} (\Phi h_z + \Phi_z h_z + h) - \frac{M \left(H_n - H_\infty \right)}{h_z \sqrt{\sigma \mu}} \right\} \left[f_z (h, l, M, y) \right]
\]

Couette flow

Equation (4) for plane coquette flow reduces to

\[
\frac{d^2 u}{dy^2} - l_z \frac{d^4 u}{dy^4} - \frac{M^2}{h_z^2} u = \frac{\sigma M}{\sqrt{\mu \ h_z}} E_z
\]

The solution of equations (14) and (5) with respect to the conditions (7), (8) and (9) are

\[
U_{co} = \frac{h_z}{M} \left\{ \frac{\sigma}{\mu} E_z f_z (h, l, M, y) + U_f (h, l, M, y) \right\}
\]

\[
H_z = -\sigma E_z \left[\Phi h_z + f_z (h, l, M, y) \right] - \frac{M \sqrt{\sigma \mu}}{h_z} U \left[\Phi h_z + f_z (h, l, M, y) \right] + H_n
\]

\[
E_z = -\frac{M}{h_z} \left\{ \frac{\sqrt{M \ U}}{\sigma} \left[\frac{f_z (h, l, M)}{2} + \Phi h_z \right] + \frac{\left(H_n - H_\infty \right)}{\sigma} \right\}
\]
where \(f_s(h,l,M,y) = \frac{B^2}{A^2-B^2} \left(\frac{\sinh A(y-h)}{l} \right) - \frac{A^2}{A^2-B^2} \left(\frac{\sinh B(y-h)}{l} \right) \)

\[f_s(h,l,M,y) = \frac{B^2 l}{A(A^2-B^2)} \left(\frac{\cosh A(y-h)}{l} - \frac{\cosh A h}{l} \right) - \frac{A^2 l}{A^2-B^2} \left(\frac{\cosh B(y-h)}{l} - \frac{\cosh B h}{l} \right) \]

Eliminating \(E_z \) between equations (15) and (17), we have the expression for velocity in couette flow as

\[
U_{co} = \frac{1}{M \sqrt{\sigma \mu}} f_s(h,l,M,y) + U f_s(h,l,M,y)
\]

Rouse [24] has shown in the case of an ordinary slider bearing that the velocity of the lubricant between the bearing plates can be approximated by the superposition of the velocities for channel and plane coquette flow, a valid approximation when the inclination angle between the bearing plates is very small.

Hence, the velocity for the whole region is obtained by superposing equation (13) on equation (18):

\[
u = U_{ch} + U_{co} = f_s(h,l,M, \Phi_1, \Phi_2) f_s(h,l,M,y) + U f_s(h,l,M,y)
\]

where

\[Q = \int_0^h \nu \, dy \]

Substituting equation (19) in equation (20) and carrying out the integration, we obtain

\[Q = f_s(h,l,M, \Phi_1, \Phi_2) \left[f_s(h,l,M) - h \right] + U f_s(h,l,M) \]

But the net current \(I_x \) and the external magnetic field are related by:

\[I_x = H - H_n \]

where \(H_n \) and \(-H_n \) are the quantities of the net current which return to the channel through an upper and lower path respectively. If the conducting path is solely in the lower region, then \(H_n = 0 \) and \(I_x = H_n \). Hence equation (21) becomes

\[Q = f_s(h,l,M, \Phi_1, \Phi_2) \left[f_s(h,l,M) - h \right] + U f_s(h,l,M) \]

where

\[Q = \int_0^h \nu \, dy = \frac{h^2}{M^2} \frac{1}{\mu} \left(\Phi_1 h_2 + \Phi_2 h_2 + h \right) - \frac{2 h_2}{M \sqrt{\sigma \mu}} \left[f_s(h,l,M) - h \right] + \frac{\Phi_1 h_2}{M \sqrt{\sigma \mu}} - U f_s(h,l,M) \]

The Volume flow rate is

\[Q = \int_0^h \nu \, dy \]

Substituting equation (19) in equation (20) and carrying out the integration, we obtain

\[Q = f_s(h,l,M, \Phi_1, \Phi_2) \left[f_s(h,l,M) - h \right] + U f_s(h,l,M) \]

But the net current \(I_x \) and the external magnetic field are related by:

\[I_x = H - H_n \]

Where \(H_n \) and \(-H_n \) are the quantities of the net current which return to the channel through an upper and lower path respectively. If the conducting path is solely in the lower region, then \(H_n = 0 \) and \(I_x = H_n \). Hence equation (21) becomes

\[Q = f_s(h,l,M, \Phi_1, \Phi_2) \left[f_s(h,l,M) - h \right] + U f_s(h,l,M) \]

where

\[Q = \int_0^h \nu \, dy = \frac{h^2}{M^2} \frac{1}{\mu} \left(\Phi_1 h_2 + \Phi_2 h_2 + h \right) - \frac{2 h_2}{M \sqrt{\sigma \mu}} \left[f_s(h,l,M) - h \right] + \frac{\Phi_1 h_2}{M \sqrt{\sigma \mu}} - U f_s(h,l,M) \]
Equation (22) can be solved for $\frac{\partial p}{\partial x}$. But the resulting expression cannot be integrated in closed form.

Hence, attention is restricted to the case of high Hartmann number. For a large M, the expression $\frac{\partial p}{\partial x}$ in non-dimensional form is given by

$$\frac{\partial p^*}{\partial x^*} = M^2 \left(2I + \frac{G(I', M)}{2} + \Phi_1 \right) M^2 \left(Q' - \frac{G(I', M)}{2} \right) \frac{(\Phi_1 + \Phi_2 + G(I', M))}{(\Phi_1 + \Phi_2 + h^*)}$$

(23)

where $G(I', M) = \frac{I'}{(A^2 - B^2)} \left(\frac{A^2 - B^2}{B' - A'} - \frac{B^2}{A^2} \right)$

$$A^* = \sqrt{1 + \frac{1 - I'^2}{M^2}}, \quad B^* = \sqrt{1 - \frac{1 - I'^2}{M^2}}$$

From figure 1, the relation between h^* and x^* is

$$h^* = a - (a-1)x^*$$

(24)

where $a = \frac{h_1}{h_2}$

The relevant boundary conditions on pressure p^* are:

$$p^* = p_e \quad \text{at} \quad h^* = a$$

$$p^* = p_e \quad \text{at} \quad h^* = 1$$

(25)

Substituting equation (24) in equation (23) and carrying out the integration using the boundary conditions (25), we get

$$Q' = \frac{2I + \frac{G(I', M)}{2} + \Phi_1}{\log \left(\frac{G(I', M) - a}{G(I', M) - 1} \right)} \frac{\Phi_1 + \Phi_2 + a}{(\Phi_1 + \Phi_2 + h^*)}$$

(26)

and

$$p^* - p_e = M^2 \left(2I + \frac{G(I', M)}{2} + \Phi_1 \right) A_1 \quad M^2 \left(Q' - \frac{G(I', M)}{2} \right) A_2$$

(27)

where $A_1 = \log \left(\frac{\Phi_1 + \Phi_2 + a}{\Phi_1 + \Phi_2 + h^*} \right)$

$A_2 = \log \left(\frac{G(I', M) - a}{G(I', M) - h^*} \right) \frac{(\Phi_1 + \Phi_2 + a)}{(\Phi_1 + \Phi_2 + h^*)}$
The load carrying capacity of the bearing is

$$ W = \int_{0}^{L} (p - p_0) \, dx $$

The non-dimensional form of load carrying capacity is

$$ W' = \int_{0}^{1} \left(p' - p_0' \right) \, dx' $$

Substituting for \(p' - p_0' \) from equation (27) and for \(h' \) from equation (24), and carrying out the integration, we get

$$ W' = \frac{M^2 \left(2I + \frac{G(I', M)}{2} + \Phi_1 \right) (A_s + (a-1)) + M^2 \left(Q' - \frac{G(I', M)}{2} \right) (A_s + A_s + 2(a-1))}{(a-1)^2} $$

Where

$$ A_s = \left(\Phi_1 + \Phi_2 + 1 \right) \log \left(\Phi_1 + \Phi_2 + a \right) $$

$$ A_s = \left(G(I', M) + 1 \right) \log \left(\frac{G(I', M) - 1}{G(I', M) - a} \right) $$

3. Results and discussion

The results are presented graphically for different values of operating parameters namely viz. Hartmann number \(M \), couplestress parameter \(I' \), conductivity parameters \(\Phi_1, \Phi_2 \), IO film height ratio \(a \), and external current \(I \). Various graphs have been drawn to understand load bearing behaviour.

3.1. Fluid film pressure

Figure 2 shows the effect of wall conductance \(\Phi_1, \Phi_2 \) and couplestress parameter \(I' \) on non-dimensional film pressure when \(a, M \) and \(I \) are constant. It is noticed that increasing values of \(I' \) increases pressure for \(\Phi_1 \leq \Phi_2 \). The variation of dimensionless pressure with \(x' \) for various values of Hartmann number \(M \) and couplestress parameter \(I' \) are displayed in figure 3. It indicates that combined effect of \(M \) and \(I' \) increases the pressure significantly.

The variation of dimensionless pressure with \(x' \) for different values of couplestress parameter \(I' \) and external current \(I \) is shown in figure 4. It is observed that the external current \(I \) plays a prominent role in enhancing the pressure in the presence of couplestress parameter \(I' \) and it shows that the pressure is more in the presence of external circuit \(I \neq 0 \) than in its absence \(I = 0 \). Figure 5 depicts the variation of pressure with respect to \(x' \) for different values of \(I' \) and \(a \). It shows an increase in pressure as \(I' \) and \(a \) increases.
Figure 2. Variation of dimensionless pressure $p^* - p_e$ with x^* for different values of l^*, Φ_1 and Φ_2 at $a=1.5$, $M=10$ and $l=2$.

Figure 3. Variation of dimensionless pressure $p^* - p_e$ with x^* for different values of l^* and M at $a=1.5$, $I=2$, $\Phi_1 = 0.6$ and $\Phi_2 = 0.6$.
Figure 4. Variation of dimensionless pressure $p^* - p_*$ with x^* for different values of I^* and I at $a = 1.5$, $M = 10$, $\Phi_1 = 0.6$ and $\Phi_2 = 6$.

Figure 5. Variation of dimensionless pressure $p^* - p_*$ with x^* for different values of I^* and a at $l = 2$, $M = 10$, $\Phi_1 = 0.6$ and $\Phi_2 = 6$.
3.2. **Load carrying capacity**

Variation of load carrying capacity with current \(I \) for increasing values of \(l' \) for \(\Phi_1 \leq \Phi_2 \) is shown in figure 6. We observe from this figure that the load increases with increasing values of \(l' \) and the effects are more prominent for \(\Phi_1 \geq \Phi_2 \) than for \(\Phi_1 < \Phi_2 \). From the results presented in figure 7 for the variation of load with current \(I \) for various values of \(l' \) and \(M \), it can be concluded that \(M \) and \(l' \) enhances the load carrying capacity of the bearing. Also with the increasing values of \(I \), \(W' \) increases significantly.

Figure 8 gives the load profile with respect to \(a \) for different values of wall conductance \(\Phi_1, \Phi_2 \) and couplestress parameter \(l' \). It is clear from this figure that the bearing suffers on account of IO film ratio \(a \), as a result the load carrying capacity decreases considerably. But it is also clear that load increases with increasing \(l' \) and it is more prominent for \(\Phi_1 \geq \Phi_2 \) than \(\Phi_1 < \Phi_2 \). Figure 9 presents the values of \(W' \) at various IO film ratios \(a \) of slider bearings for different values of \(l' \) and \(M \). It is observed that load decreases with increasing IO film ratios which can be compensated by increasing the magnetic field \(M \) and the couplestress \(l' \) of the fluid.

![Figure 6. Variation of dimensionless load \(W' \) with \(I \) for different values of \(l' \), \(\Phi_1 \) and \(\Phi_2 \) at \(a=1.5 \) and \(M=10 \).](image-url)
Figure 7. Variation of dimensionless load W^* with I for different values of l^* and M at $a=1.5$, $\Phi_1=0.6$ and $\Phi_2=6$.

Figure 8. Variation of dimensionless load W^* with a for different values of l^*, Φ_1 and Φ_2 at $I=2$ and $M=10$.
3.3. Study of the variation of conductivities of bearing surfaces

Numerical values of conductivities of plates $\Phi_1 \leq \Phi_2$ have been calculated and entered in table 1-table 3.

Table 1 and table 2 shows the variation of dimensionless pressure and load carrying capacity, when the conductivities of both surfaces are different ($\Phi_1 \neq \Phi_2$). It is observed that, the dimensionless pressure and load carrying capacity effects are more prominent for $I = 0.3$ than $I = 0.0$ for both $\Phi_1 \geq \Phi_2$. Further, for fixed l' and Φ_1 [Φ_2, an increase in Φ_2] Φ_1 leads to decrease [increase in pressure for both $\Phi_1 \geq \Phi_2$. Also, it is observed that there is significant increase in dimensionless pressure and load carrying capacity for increasing values of l' in either the cases.

Table 3 shows the variation of dimensionless pressure and load carrying capacity, when both surfaces have same conductivities i.e, $\Phi_1 = \Phi_2 = \Phi$. It is interesting to note that pressure and load carrying capacity increases with increasing values of fixed l' and Φ and the effects are more prominent in the presence of external current I.

Table 4 shows the variation of non dimensional pressure and load carrying capacity with increasing values of M and l'. Combined effect of M and l' is to enhance the non-dimensional pressure and load carrying capacity significantly as compared to non magnetic case and Newtonian case.

Table 5 shows the prominent effects of couplestresses l' and the results are compared with Soundalgekar case [21]. As $l' \rightarrow 0$ the present analysis reduces to Newtonian case as studies by Soundalgekar [21].
Table 1. Variation of dimensionless pressure $p^* - p_o$ for unequal conductivities at $a = 1.5$, $x = 0.2$ and $M = 10$.

l^*	ϕ_1	ϕ_2	$I = 0$	$I = 0.3$		
0.2	0.159984	0.129368	0.105593	0.47995	0.388102	0.316778
0.4	0.261657	0.211029	0.172718	0.575645	0.464263	0.37998
0.6	0.359042	0.289224	0.23738	0.666792	0.537131	0.440849
0.2	0.176485	0.141569	0.115164	0.176485	0.282619	0.384049
0.4	0.282619	0.2263	0.184636	0.611584	0.489709	0.399551
0.6	0.384049	0.307366	0.251529	0.706116	0.565126	0.462463
0.2	0.198275	0.157527	0.127629	0.554282	0.440372	0.356791
0.4	0.310145	0.24621	0.200123	0.658515	0.522765	0.424912
0.6	0.416771	0.33097	0.269887	0.757379	0.601457	0.490455

Table 2. Variation of dimensionless load capacity W^* for unequal conductivities at $a = 1.5$ and $M = 10$.

l^*	ϕ_1	ϕ_2	$I = 0$	$I = 0.3$		
0.2	1.11988	1.09896	1.07713	1.43985	1.41295	1.38488
0.4	1.76802	1.73043	1.69403	2.02675	1.98367	1.94193
0.6	2.14705	2.10716	2.0686	2.35823	2.31442	2.27206
0.2	1.18347	1.15986	1.13554	1.51913	1.48882	1.45761
0.4	1.84684	1.80676	1.76801	2.11609	2.07017	2.02577
0.6	2.23249	2.1905	2.14994	2.45152	2.40542	2.36087
0.2	1.2663	1.23913	1.21152	1.6223	1.5875	1.55213
0.4	1.94887	1.90554	1.86373	2.23172	2.1821	2.13422
0.6	2.34286	2.29815	2.25499	2.57202	2.52294	2.47556
Table 3. Variation of dimensionless pressure $p^* - p_*$ and dimensionless load capacity W^* with equal conductivities i.e., $\Phi_1 = \Phi_2 = \Phi$ at $a = 1.5$, $x = 0.2$ and $M = 10$.

l'	Φ_1	Φ_2	$p^* - p_*$	W^*
	$l = 0$	$l = 0.3$	$l = 0$	$l = 0.3$
0.0	2	38.8765	37.2401	35.7355
	4	52.7162	51.1525	49.6789
	6	60.0654	58.6907	57.3775
0.2	2	45.3946	43.466	41.6943
	4	61.1578	59.3325	57.6129
	6	69.4952	67.8973	66.3713
0.4	2	53.5197	51.2219	49.113
	4	71.5589	69.4081	67.3827
	6	81.0558	79.1821	77.3931

Table 4. Variation of dimensionless pressure $p^* - p_*$ and dimensionless load capacity W^* with increasing values of M and l'.

$l = 2$, $x = 0.2$, $a = 1.5$	$p^* - p_*$	W^*					
	$l' = 0.0$	$l' = 0.3$	$l' = 0.6$	$l' = 0.0$	$l' = 0.3$	$l' = 0.6$	
$\Phi_1 = 0.4$	$M = 0$	0	0	-0.004	-0.004	-0.004	
$\Phi_2 = 0.6$	$M = 4$	0.380815	0.406239	0.448517	18.2418	19.8523	22.2517
$(\Phi_1 < \Phi_2)$	$M = 6$	0.668056	0.712202	0.774099	26.4535	30.2914	35.2278
$(\Phi_1 = \Phi_2)$	$M = 8$	1.06118	1.13179	1.22078	34.8129	41.8313	49.9733
$\Phi_1 = 2$	$M = 0$	0	0	-0.004	-0.004	-0.004	
$\Phi_2 = 2$	$M = 4$	0.678979	0.722703	0.807565	34.3429	37.4121	41.997
$(\Phi_1 < \Phi_2)$	$M = 6$	1.17115	1.25429	1.37171	49.603	56.8606	66.2165
$(\Phi_1 = \Phi_2)$	$M = 8$	1.84457	1.97703	2.1444	65.1431	78.3715	93.749
$\Phi_1 = 4$	$M = 0$	0	0	-0.004	-0.004	-0.004	
$\Phi_2 = 0.9$	$M = 4$	0.799443	0.853535	0.943547	39.4106	42.8594	47.9917
$(\Phi_1 < \Phi_2)$	$M = 6$	1.39759	1.49133	1.62349	57.3358	65.5956	76.2013
\[
\begin{array}{ccccccc}
(\phi_1 > \phi_2) & M = 8 & 2.21628 & 2.36604 & 2.55493 & 75.5773 & 90.7288 & 108.271 \\
\end{array}
\]

Table 5. Comparison of the present analysis with Newtonian case (NC) by Soundalgekar [21] with \(I = 2 \), \(x = 0.2 \), \(M = 10 \), \(\phi_1 = 0.6 \), \(\phi_2 = 6 \).

\(a \)	NC [21]	Present Analysis			
\(\rho^* - \rho_c \)	\(l' = 0.0 \)	\(l' = 0.3 \)	\(l' = 0.6 \)	\(l' = 0.9 \)	
1.5	1.59383	1.59384	1.69909	1.82112	1.93841
2.0	2.27418	2.27419	2.40186	2.54735	2.68474
2.5	2.59222	2.59222	2.72257	2.86969	3.00729
3.0	2.736	2.736	2.86295	3.00537	3.13777
3.5	2.78688	2.78689	2.90846	3.04431	3.17012
\(W^* \)	44.2083	44.2089	55.1589	67.645	78.4136
2.0	23.0164	23.0167	28.5174	34.4237	39.6776
2.5	16.3005	16.3007	19.8933	23.7563	27.1979
3.0	13.0629	13.0631	15.7132	18.5663	21.1116
3.5	11.161	11.161	13.2516	15.5046	17.5168

Conclusions

An analysis of the combined effects of external circuit and couplestresses on MHD slider bearing between conducting plates is presented in this paper. From the theoretical results presented in this article, we can conclude that

- The effect of couplestresses \(l' \), applied magnetic field \(M \) and magnetic field in the free space \(I \) increases the non-dimensional fluid film pressure and load carrying capacity considerably. Further, as \(l' \to 0 \) the present analysis reduce to Newtonian case [21].
- The IO film ratio increases the non-dimensional pressure whereas the reverse trend is seen in non-dimensional load carrying capacity.
- For fixed conductivity of upper plate, an increase in conductivity of lower plate leads to increase in pressure and load capacity while an opposite effect is seen when the conductivity of upper plate is increased by fixing that for lower plate. i.e the non-dimensional pressure and load carrying capacity is more prominent in case of \(\phi_1 \geq \phi_2 \) than \(\phi_1 < \phi_2 \).
- The presence of \(I \) increases the dimensionless pressure and load carrying capacity significantly in comparison with \(I = 0 \).

References

[1] Lin J R 2002 Magnetohydrodynamic lubrication of finite slider bearings Int. J. Applied Mech. and Engg. 7 1229-46
[2] Kuzma D C 1965 The Magnetohydrodynamic parallel plate slider bearing J. Basic Engg., Trans. ASME 87(3) 778-80.
[3] Lin J R and Lu R F 2010 Dynamic characteristics for magnetohydrodynamic wide slider bearings with an exponential film profile J. Marine Sci. and Tech. 18 268-76.
[4] Lin J R, Hung C R, Hsu C H and Lai C 2009 Dynamic stiffness and damping characteristics of one-dimensional Magnetohydrodynamic inclined plane slider bearings JET 223(J) 211-19
[5] Lin J R 2010 MHD steady and dynamic characteristics of wide tapered-land slider bearings Tribology International 43 2378-83
[6] Hughes W F 1963 The Magnetohydrodynamic inclined slider bearing with a transverse magnetic field Wear 6 315-24
[7] Synder W T 1962 The magnetohydrodynamic slider bearing ASME J. Basic Engg. D 84(1) 197-204
[8] Hughes W F 1963 The Magnetohydrodynamic finite step slider bearing J. Basic Engg. 85 129-36
[9] Stokes V K. 1966 Couple stresses in fluids Phys. Fluids 9 1709-15
[10] Das N C 1998 A study of optimum load bearing capacity for slider bearings lubricated with couple stress fluids in magnetic field Tribology International 31(7) 393-400
[11] Lin J R and Lu Y M 2004 Steady-state performance of wide parabolic shaped slider bearings with a couple stress fluid J. Marine Sci. and Tech. 12 239-46
[12] Lin J R, Lu R F and Hung C R 2006 Dynamic Characteristics of wide exponential film-shape slider bearings lubricated with a non-Newtonian couple stress fluid J. Marine Sci. and Tech. 14 93-101
[13] Lin J R, Chon T L, Chiang H L and Chang C Y 2010 Non-Newtonian couplestress effects on the frictional and flow-rate performance of wide composite slider bearings Nanya.edu.tw 35-46
[14] Naduvimani N B, Fathima S T and Hanumagowda B N 2011 Magneto-Hydrodynamic Couplestress Squeeze Film Lubrication of Circular Stepped Plates J. Engg. Tribology 225(3) 111-19
[15] Naduvimani N B and Rajashekar M 2011 MHD couple stress squeeze film characteristics between sphere and plane surface Tribology 5(3) 94-99
[16] Shalini Patil M, Dinesh P A and Vinay C V 2013 Combined effects of couple stress and MHD on squeeze film lubrication between two parallel plates International Journal of Mathematical Archive(IJMA) 4(12)
[17] Biradar Kasinath and Hanumagowda B N 2014 MHD Effects on Composite Slider Bearing Lubricated with Couple-stress Fluids International Journal of Mathematical Trends and Technology (IJMTT) 5(1) 27-49
[18] Biradar Kashinath 2013 Magneto hydrodynamic Couple stress Squeeze Film Lubrication of Triangular Plates International Journal of Engineering Inventions 3(3) 66-73
[19] Synder W T 1964 The influence of finite wall conductance on load capacity of the MHD slider bearing J. Basic Engg. 86(3) 436-440
[20] Shukla J B and Prasad R 1965 Hydromagnetic squeeze film between two conducting plates Trans. Of ASME 87(4) 818-22
[21] Soundalgekar V M 1972 Effect of an External circuit on a MHD slider bearing Wear 21 17-20
[22] Soundalgekar V M and Amrute A S 1972 Effect of External circuit on MHD squeeze film between conducting plates Wear 19 117-122
[23] Soundalgekar V M and Akolkar S P 1990 Effects of External circuit on MHD channel flow with couple stresses Int. J. Energy Res. 14(9) 949-964
[24] Rouse H 1959 Advanced Mechanics of Fluids, John Wiley and Sons, Inc., New York, 216

Nomenclature
\(a\) ratio of heights \(h_1/h_2\)
\(B_z\) applied magnetic field
\(E_z\) induced electric field in the \(Z\)-direction
\(h\) film thickness
\(h_1\) film thickness at the inlet
\(h_2\) film thickness at the outlet
\(h'\) non-dimensional film thickness \(h/h_2\)
\(H_x\) induced magnetic field in the \(X\)-direction
\(H_{x_0}\) magnetic field below the lower plate in free space
\(H_{x_1}\) magnetic field above the upper plate in free space
\(H^*\) non-dimensional magnetic field \(\left(\frac{H_x}{\sigma UB_h}\right)\)
\(I_x\) external current \(\left(H_{x_0} - H_{x_1}\right)\)
\(I\) non-dimensional external current \(\left(I_x/\sigma UB_h\right)\)
\(I^*\) couplestress parameter \(\left(\frac{\eta}{\mu}\right)^\frac{1}{2}\)
\(l^*\) non-dimensional couplestress parameter \(\left(2l/h_2\right)\)
\(L\) length of the bearing
\(L_1\) thickness of the lower plate
\(L_2\) thickness of the upper plate
\(M\) Hartmann number \(\left(R_h h_2 \frac{\sqrt{\sigma}}{\mu}\right)\)
\(p\) pressure in the film region
\(p^*\) non-dimensional pressure \(\left(wh_2^2/\mu UL\right)\)
\(Q\) rate of flow per unit length
\(Q^*\) non-dimensional rate of flow \(\left(Q/wh_2\right)\)
\(U\) velocity of the lower plate
\(\mu\) viscosity of lubricant
\(\eta\) material constant characterizing couple stress
\(\sigma\) electrical conductivity of the fluid
\(\sigma_1\) electrical conductivity of the lower plate
\(\sigma_2\) electrical conductivity of the upper plate
\(\Phi_1\) electrical conductance ratio of the lower plate
\(\Phi_2\) electrical conductance ratio of the upper plate