New designs of reversible sequential devices

Anindita Banerjee and Anirban Pathak

August 12, 2009

Jaypee Institute of Information Technology University, Noida, India

Abstract

A clear protocol for synthesis of sequential reversible circuits from any particular gate library has been provided. Using that protocol, reversible circuits for SR latch, D latch, JK latch and T latch are designed from NCT gate library. All the circuits have been optimized with the help of existing local optimization algorithms (e.g., template matching, moving rule and deletion rule). It has been shown that the present proposals have lower gate complexities, lower number of garbage bits, lower quantum cost and lower number of feedback loops compared to the earlier proposals. For a fair comparison, the optimized sequential circuits have been compared with the earlier proposals for the same after converting the earlier proposed circuits into equivalent NCT circuits. Further, we have shown that the advantage in gate count obtained in some of the earlier proposals by introduction of New gates is an artifact and if it is allowed then every reversible circuit block can be reduced to a single gate. In this context, some important conceptual issues related to the designing and optimization of sequential reversible circuits have been addressed. A protocol for minimization of quantum cost of reversible circuit has also been proposed here.

1 Introduction

Landauer’s principle [1] states that any logically irreversible operation on information, such as the erasure of a bit or the merging of two computation paths, is always associated with an increase of entropy of the non-information bearing degrees of freedom of the information processing apparatus or its environment. Each bit of lost information will lead to the release of at least $kT \ln 2$ amount of heat, where $k = 1.3806505 \times 10^{-23} m^2 kg s^{-2} K^{-1}$ (Jouleskelvin$^{-1}$) is Boltzamann’s constant and T is the absolute temperature at which the operation is performed. By 2020 this loss will become a substantial part of energy dissipation in VLSI circuits, if Moore’s law continues to be in effect. This particular problem of VLSI designing was realized by Feynman and Bennet in 1970s. In 1973 Bennet [2] had shown that energy dissipation problem of VLSI circuits can be circumvented by using reversible logic. This is so because reversible computation does not require to erase any bit of information and consequently it does not dissipate any energy for computation. Reversible computation requires reversible logic circuits and synthesis of reversible logic circuits differs significantly from its irreversible counterpart because of different factors [3]. The technological requirement of designing of energy dissipation free VLSI circuits, particular characteristics of synthesis and testing of reversible circuits and the tremendous advantage of quantum circuits have motivated scientists and engineers from various background (e.g., Physics, Electronics, Computer science, Mathematics, Material science, Chemistry) to study various aspects of reversible circuits.

Quantum mechanical operations are always reversible and consequently all quantum gates are reversible. A classical reversible gate can not handle superposition of states (qubit) so it forms a special case of quantum circuit or a subset of the set of the quantum circuits. But from the construction point of view classical reversible gates are easy to build [4, 5]. A lot of interesting works have already been reported in the field of synthesis [6]-[10], optimization [11, 12], evaluation [13] and testing [14] of reversible circuits. In a short period the reversible computation has emerged as a promising technology having applications in low power CMOS [15], nanotechnology [16], optical computing [17], optical information processing, DNA computing [18], bioinformatics, digital signal processing and quantum computing [3]. From these wide range of potential applications and from the energy dissipation problem of VLSI it is clearly evident that the reversibility will play dominant role in designing circuits in future.

But the designing aspect of reversible sequential circuit is not yet studied rigorously. This is because of the fact that feedback in a reversible circuit can not be visualized in the usual sense in which feedback is visualized in a conventional irreversible circuit. This issue was first addressed by Toffoli [19], where he had shown that the reversible sequential circuits can be constructed provided the transition function of the circuit block without the feedback loop is unitary. His ideas on the sequential reversible circuit had further strengthen in his pioneering work on conservative logic [20]. Later on some efforts have been made to construct reversible sequential circuit [21]-[28]. All these efforts are concentrated on the designing of various flip flops because of the fact that the flip flops are the basic building block of the memory element of a computer and if one wishes to build a reversible classical computer then these designs will play a crucial role. But several conceptual issues related to designing and optimization

1.3806505 × 10^{-23} m^2 kg s^{-2} K^{-1}
of reversible sequential circuits are not addressed till now. The earlier works \cite{21}-\cite{28} neither provide any clear protocol for synthesis of reversible sequential circuit nor they have systematically tried to think beyond the scope of classical irreversible logic. Further the quantum cost of the reversible sequential elements have not been calculated so far nor a systematic algorithm for minimization of quantum cost has been reported. These facts have motivated us to provide a protocol for synthesis of optimized reversible circuits. We have also provided a protocol to optimize the quantum cost of a reversible circuit/gate. We have also addressed the other important conceptual issues related to the designing of reversible sequential circuits. In the next section we provide background of reversible circuits and in section 3 we address conceptual issues related to the feedback and the choice of gate library. In section 4 we have discussed the earlier approaches and their limitations. In section 5, we have provided a protocol for synthesis of reversible circuits we have also used it to design reversible sequential elements. In section 6, we have given a protocol for comparing our designs with the earlier proposals. Finally we conclude in section 7.

2 Background

A reversible logic circuit comprises of reversible gates. A gate is reversible if it has equal number of inputs and outputs and the boolean function that maps the input in output is bijective. Consider Fig. 1, where input vector I is (x_1, x_2, \ldots, x_n) and output vector O is (y_1, y_2, \ldots, y_n). The gate (function) is reversible if it satisfies the condition of one to one and onto mapping between input and output domains.

A garbage bit is the additional output to make a function reversible and it is not used for further computations. Therefore large number of garbage bits are undesirable in a reversible circuit. As an example, in Table 1 we have shown an irreversible and a reversible AND gate. It is evident that the Z output gives us the required output and the other outputs X and Y are garbage.

The quantum cost \cite{13, 29, 30, 31} of a reversible gate is the number of primitive quantum gates needed to implement the gate. All (1×1) and (2×2) are considered as quantum primitive gate and the cost all quantum primitive gates are considered. For example we can construct Toffoli with square root of not gate (V) and CNOT and in that construction the total gate count of Toffoli is five \cite{32}. Thus the quantum cost of Toffoli is five.

Following two methods have been provided by Mohammadi \cite{33} to find the quantum cost of a non-primitive reversible gate or a circuit:

1. Implement a circuit/gate using only the quantum primitive (1×1) and (2×2) gates and count them \cite{29, 30, 33}.

2. Synthesize the new circuit/gate using the well known gates whose quantum cost is specified and add up their quantum cost to calculate total quantum cost \cite{33, 34}.

At this point we would like to mention that quantum cost obtained in these two procedures may be higher than the actual one unless local optimization algorithm is applied to equivalent circuit obtained in terms of quantum primitive gates. Further we would like to mention that there is a conceptual difference between optimization algorithm used for reduction of circuit complexity and the one used for reduction of quantum cost. This is so because in case of circuit optimization we are restricted to a gate library but to reduce the quantum cost we can introduce any New gate as long as the gate is (1×1) or (2×2). Let us show how the modified local optimization
Figure 2: Modified local optimization algorithm (moving rule) is applied to minimize the quantum cost of Fredkin gate

Figure 3: Protocol for optimization of quantum cost

algorithm may help. Consider a Fredkin gate as given in Fig 2a, which has 3 Toffoli gates. This can further be reduced by template matching to one Toffoli and two CNOT gates as shown in Fig. 2b. If we substitute the Toffoli gates by quantum primitives we obtain the circuit shown in Fig. 2c. According to Mohammadi’s methods [33] the quantum cost is seven. We now apply the moving rule [11] twice to circuit in Fig 2c (the movements are shown by arrows) to obtain Fig. 2d, in which the quantum cost of Fredkin gate is found to be five. Here we would like to draw your attention towards the fact that the moving rule (which was essentially designed to reduce circuit complexity) has not reduced the circuit complexity but it has reduced the quantum cost.

Thus we have established that local optimization play a very crucial role in reducing the quantum cost, earlier works [13, 33, 34] have not provided adequate attention towards this fact and consequently we observe that quantum cost of several gates proposed in earlier works on reversible circuits can be reduced using local optimization algorithms. Here we would like to note that the recently Maslov [12] has used local optimization technique based on templates to reduce the quantum circuit cost but he has not provided any systematic protocol for reduction of quantum cost.

We have shown our protocol in Fig. 3 and have used it to find quantum cost of our circuit and also the quantum cost of different reversible circuits proposed in [29, 33, 34].
3 Conceptual issues related to reversible circuit

To provide a systematic protocol for designing reversible sequential circuit and to compare the proposed circuit designs with the existing designs we need to address certain conceptual issues related to reversible circuit designing. To be precise, conceptual issues related to feedback, choices of gate library and approximate optimization (local optimization) techniques will be addressed in the following subsections.

3.1 Feedback in a reversible circuit

![Circuit Diagram]

Figure 4: Circuit a and b are equivalent but the idea of time axis is not valid in b. Here $|\Psi(t)\rangle$ is the product state at time t and $t_3 > t_2 > t_1 > 0$.

It is widely believed that feedback is not allowed in a reversible circuit. This is true if we consider feedback in a similar fashion as it is dealt in classical irreversible logic. The objection against feedback is twofold. Firstly, merging of two computational paths is not allowed in a reversible circuit and secondly, time axis goes from left to right in a reversible circuit (as shown in Fig. 4a). Thus if we need to follow the same notion of time axis in a reversible sequential circuit then feedback will essentially mean a journey in negative time axis or existence of time machine. This is against the notion of physical reality. But these strong objections against feedback in reversible circuit can be circumvented by establishing the equivalence between the circuits in Fig. 4a and Fig. 4b. To be precise, the feedback loop shown in Fig. 4b is only in space not in time. Therefore, the circuit in Fig. 4b is equivalent to a cascaded circuit in time axis (see Fig. 4a). Thus the usual notion of time axis is not valid in reversible sequential circuit (i.e. in a circuit having spatial feedback loop similar to one shown in Fig. 4b). Further, since the circuit in Fig. 4b is equivalent to the cascade shown in Fig. 4a, there is no merging of computational paths and consequently there would not be any loss of energy provided U is unitary. This conclusion coincides with the Toffoli’s idea of unitary transition function. Now if we follow, this notion of feedback, then to establish the reversibility of the design it would be sufficient to establish the unitarity of U. Here we would also like to note that in this restricted notion of spatial feedback we can not allow any arbitrary feedback loop. An allowed loop has to be reducible to the structure shown in Fig. 4b.

3.2 Latch and Flip flop

In digital designing a latch is defined as a bistable memory unit which changes its output with the input and is independent of a clock. The term flip flop is defined as a sequential device that samples its input and changes its output only at times determined by clock signals. But this is also called gated latch in some books. In these books flip flop are constructed from two gated latches, one of them is the master latch and other is the slave latch. They have classified flip flops into two categories one is master slave flip flop. In this flip flop the master latch is disabled when (clock pulse) CP=0 and slave latch is disabled when CP=1. The other type of flip flop is edge triggered flip flop and this synchronizes the state changes during a CP transition. The structure of master slave type and edge triggered type are same that is it consists of two gated latches with a not gate as shown in Fig 7b. This methodology has been followed throughout the existing designs for [22, 28]. Hence for reversible sequential circuit designing, it is important to mention which convention is used but hardly any previous works has mentioned this.

3.3 Gate library: Which gates should be used for the synthesis of the reversible circuit?

Whichever synthesis algorithm we follow, it is important to choose a gate library which is universal but the choice of the gate library (i.e. gates which are the member of that library) is not unique and there does not exist any
Table 2: Reversible gates from NCT gate library, their size and functions.

NCTgates	Size	Function
NOT	1x1	A - A
Feynman CNOT gate	2x2	A - A, A ⊕ B
Toffoli CCNOT gate	3x3	A - A, A ⊕ B, A ⊕ C

single convention. The physical complexity of gates may not be same in two different implementation of reversible circuits. For example, it may be easy to build an arbitrary gate ‘A’ in MOSFET technology but it may not be that easy to implement in optical based technology [37, 38]. A N-qubit reversible gate is represented by $2^N \times 2^N$ unitary matrix and product of any arbitrary number of unitary matrices is always unitary. Consequently, if we put a set of reversible quantum gates in a black box then an unitary matrix will represent the box and one can technically consider it as a New gate. If we allow such construction of New gates then any circuit block (of arbitrary size) can be reduced to a single New gate.

Thus it is straightforward to observe that the use of New gate to reduce the gate count [39]-[43] is an artifact. To be precise, we would like to mention that to reduce the gate complexity and garbage bits various papers have reported different New gates. For example, Hassan Babu [40] has introduced a 3x3 New gate for full adder circuit, H. Thapliyal [24, 39] has introduced New gate and 3x3 TKS gate for multiplexer based full adder and multipliers and a 4x4 TSG gate for carry look-ahead and other adder architectures. In [26] he has also introduced New Toffoli gate and New Fredkin gate for SR latch and JK Gated latch respectively. Majid Haghparast [41]-[43] has proposed various gates, which includes New Fault Tolerant gate for fault tolerant reversible logic circuits, HNG gate for reversible multiplier circuit and MKG gate for full adder. Thus the gate count (gate complexity) reported in these works are misleading and consequently we need a logical approach to construct an universal gate library which in turn will help us to compare more than one circuit designs proposed for the same purpose.

![Realization of classical irreversible operations with the help of reversible gates](image)

Figure 5: Realization of classical irreversible operations with the help of reversible gates: a) COPY gate, b) AND gate, c) NAND gate, d) OR gate, e) NOR gate

Different universal set of quantum gates have been reported by various groups and among them one of particular interest was introduced by Aharonov [44] which contains Hadamard (H) and Toffoli (T) gates. Thus for all computation in the domain of classical reversible computation it is sufficient to consider Toffoli as the universal gate. This is easy to visualize through Fig. 5c where it is shown that the NAND gate can be constructed using Toffoli. Further we would like to note that NOT and CNOT gates can be achieved from (T) gates. (For NOT gate choose both the first and second control bits as $|1\rangle$ and for CNOT gate choose the first control bit as $|1\rangle$.) Toffoli [19] had also shown that the NCT gate library is universal for the synthesis of reversible Boolean circuits. Actually the inclusion of NOT and CNOT makes the universal set over complete but this inclusion is justifiable from the perspective of implementational simplicity [4, 5, 38] and consistency with earlier works [7, 29].

Maslov has prescribed a reversible logic synthesis benchmark [25] in which he has suggested several gate libraries, which are NCT (NOT, CNOT, Toffoli), NCTSF (NOT, CNOT, Toffoli, Swap, Fredkin), GT (generalized n-bit Toffoli) and GT&GF (generalized Toffoli and generalized n-bit Fredkin). Among these libraries NCT library is the smallest complete set. Consequently NCT is a good choice of gate library. Further, these gates can be experimentally realized using MOSFET [4, 5] and simple optics [37, 38]. Keeping all these facts in mind, we have chosen NCT gate library. The circuits from NCT gate library as shown in Table 2 is called NCT circuits. In text we will refer NOT as N, CNOT as C, Toffoli as T. In addition to NCT circuits of reversible sequential elements we have also synthesized NCV circuits for the same. The NCV circuits are made using gates from NCV gate library, which includes N, C, controlled V and controlled V^+ gates, is complete. In [3] the universality of this library is proved and this library is also used in earlier work [12]. Further the NCV circuits are required for determination of quantum cost. Here we

This is true in case of any quantum circuit block too, provided it does not contain any measurement operation.
would like to note that the quantum cost of circuit is the number of quantum primitive gates required to construct the circuit. Since T is not a quantum primitive gate, an NCT circuit can not be used directly to determine the quantum cost. But T can be constructed using square root of not gate (V) and CNOT and in that construction the total gate count of Toffoli is five \[30, 32\]. It is also interesting to note that according to the Solovay-Kitaev theorem \[15\] translation between different universal sets causes only poly-logarithmic overhead. We have used these facts to compare our designs of sequential circuits with the existing proposals. The comparison is done with respect to the NCT gate library, NCV gate library, number of garbage bits (G), quantum cost (QC) and total cost (TC) which is as shown in Table 3, 4 and 5. It should be noted that reversible logic is used in many areas like optical computing, low power CMOS design, DNA computing quantum computing etc. The choice of gate library has a significant role in designing implementable feasibility and resources cost.

3.4 Why are the optimized designs different?

Even if we start with the same truth table and same gate library then also different logical paths may lead to different circuits. After designing a circuit we need to optimize it but an exact optimization technique’s time complexity (τ) is

\[
\tau = O \left(2^{2n}n^{l/m}\right)
\]

where, \(n\) is the number of qubit line present in the circuit, \(m\) is the total number gate present in the circuit and \(l\) is the number of qubit associated with the largest gate present in the gate library where \(l \leq n\). Thus in the present case when the gate library is (NCT) then \(l = 3\) and the time complexity of global optimization algorithm is

\[
\tau = O \left(2^{2n}n^{3m}\right)
\]

This increases exponentially with \(n\) and \(m\). In order to avoid this exponential rise in time, certain approximate optimization (local optimization) algorithms \([11, 12]\) have been designed and in practice we use them. Since the optimization algorithm is an approximate one, it may lead to different circuit designs but the order of gate complexities have to be the same. This fact is clearly reflected in the Table 3, 4 and 5 given below.

4 How to design the circuit

4.1 Earlier approaches

In the previous subsection we have shown that in order to design a reversible sequential circuit we have to design \(U\) as in Fig. 4, as unitary. Now if we know the truth table of \(U\) and wish to decompose \(U\) in terms of finite number of logic gates, we can use one of the two existing approaches.

1. The first approach is the direct substitution method where one designs reversible circuit \([21] - [25]\) by substituting the irreversible gates with equivalent reversible gates. To understand this let us take an example, see Fig 2, in which the classical irreversible gates like OR, NOR, AND, NAND, etc are replaced by corresponding NCT reversible gates (Fig 2b and 2c) and NCT reversible circuits (Fig 2d and 2e) respectively. In this approach after designing the equivalent gates one can substitute each irreversible gate of a conventional circuit by corresponding equivalent reversible gates and obtain the required reversible circuit. The application of this approach is limited since it requires an existing reversible circuit and it can not go beyond the limits of classical computation. Picton \([21]\) has substituted Fredkin gates in the traditional SR latch built from NOR gates, Rice \([22, 23]\) has used Toffoli gate in SR latch and used Fredkin gate to generate fanout from the clock. Thapliyal \([24]\) has substituted NAND gate by a New gate and AND gate by Fredkin gate. In another paper of Thapliyal et al. \([25]\) they have defined another gate named as New Toffoli gate that replaces NOR gate in traditional SR latch circuit.

2. The second approach is the augmented truth table approach \([25]\) where one starts with irreversible truth table and extend it to an augmented one and apply transformation based synthesis algorithm to obtain the circuit. Apart from these two main approaches there are other work \([25, 26]\) where authors have proposed novel reversible circuits that optimizes the gate count by introducing New gates i.e. they have obtained the characteristic equation of a particular latch and mapped it to reversible gate (which can be Toffoli or Fredkin) or proposed a new gate that performs the same logic. Thapliyal \([27]\) has also designed reversible latches and flip flops for DNA technology where he has used Fredkin gates for Fan out, AND and OR operations.

\[^2\text{Sum of garbage bit, quantum cost and gate count (circuit cost) may be considered as the total cost } TC \text{ of the circuit.}\]
4.1.1 Limitations of earlier approach

1. In the former approach the resource cost is higher which means large number of gates and garbages. This is so because each irreversible gate is substituted by a reversible circuit. Also the number of feedback loops are same as that in classical irreversible design.

2. The latter approach is not an unique approach, as mentioned in [28], the designs of latches depend on the output column (see Table II in [28]), therefore different values assigned to these output columns will affect the design. Thus it is not clear whether the proposed design is optimal or not.

4.2 Past works

Picton [21] was first to propose a reversible circuit for SR latch in 1996. Later on Rice [22] had shown that Picton’s design does not have the desired characteristics of SR latch. This observation had motivated Rice to modify Picton’s SR latch and present its Toffoli version. The design proposed by Rice with Toffoli gates has \(S \) (Set) and \(R \) (Reset) as inputs but while drawing a comparison we consider the primary inputs \(S \) and \(R \) so we add a NOT gate before \(S \) and \(R \) and consider its gate count as 4 as shown in Fig. 6.

![Circuits of (a) Rice SR latch and (b) Rice SR latch with primary inputs.](image)

The SR Latch introduced by Thapliyal and Vinod [26] uses a Modified Toffoli gate (see Fig. 9 in [23]) which was claimed to function as NOR gate for the purpose of designing SR latch but we found that it does not function as a NOR gate because the output \(R = (A + B) \oplus C \) (where A B and C are the inputs) so if \(C = 0 \) then \(R = (A + B) \oplus 0 = A + B \). Therefore its implementation gives faulty output. However if we substitute 0 by 1 at the input i.e. \(C=1 \) then it gives desired output. Bijectivity is defined as one to one and on to mapping from the inputs to the outputs and a reversible gate or circuit should always be bijective. If we operate the traditional flip flop in Set condition (i.e. \(S=1 \) and \(R=0 \)) then the output will be \(Q^+ = 1 \) and \(Q^- = 0 \) for following two cases: (i) when the previous state was in SET condition and (ii) when the previous state was in RESET condition. Since we obtain same result for two different cases, it always violates bijectivity. This problem may arise in the circuits designed by the first approach and this fact is reflected in the state table of SR latch reported by Rice (see Table V in [22] as it gives same output \((0100)\) for two different inputs \((0100)\) and \((0101)\)). Apart from this the circuits of [24, 25] have fanout problem. Thapliyal and Vinod [26] presented the transistor implementation of reversible circuit designs which had fanout at various places of the circuit. Chuang [28] has proposed implementation of sequential elements designed by them in electron waveguide Y- branch switch technology which also had fanout and fanin at various places. Apart from this unstability, is an important concern. All the earlier designs [21-27] inherited the unstable condition of the conventional SR Latch which is observed when \(S = 1 \) and \(R = 1 \). Also we would like to note that all the proposed reversible flip flops [22-27] (master slave type or edge triggered type) imitate the same conventional model as given below in Fig. 7. It should be noted that the purpose of this conventional model of flip flop is to overcome the transparent nature of the gated latch so that the current output of master is transferred to the slave.

![Circuits of (a) Conventional master slave flip flop and (b) Reversible master slave flip flop.](image)
5 New designs for reversible sequential elements: latch, gated latch and flip flop

In the earlier works no systematic protocol for synthesis of optimized reversible circuits have been proposed. Consequently the reversible sequential circuits proposed so far are to some extent adhoc. Here we have proposed a systematic protocol for the synthesis and optimization of the reversible sequential circuits. The protocol is described through the flowchart shown in Fig. 8. We have taken a reversible truth table and obtained different circuits by applying basic algorithm and bi-directional algorithm and optimized it. We then calculated the quantum cost of each circuit and then selected the circuit with optimal quantum cost. We counted NCT gates and then substituted the T gates with quantum primitive gates and calculated the NCV gate count. In this section we present some new designs of reversible latches which are constructed using the proposed synthesis protocol. It was reported by Rice [22, 23] that a reversible latch must have at least three inputs which is S, R and non-inverted Q [22]. In our latch we have kept similar inputs and have obtained desired output Q+ while S' and R' are garbage outputs. The traditional truth table of SR latch and its reversible truth table is given in Fig. 9. It is evident that it does not
violate bijectivity. Here as you can see that the extended reversible truth table is smarter than conventional truth table because it has no unstable condition that is when S and R is 1 then the outputs retain the last state. In other words it works in a domain which is beyond the reach of irreversible logic.

Also the minimum number of garbage outputs required for reversibility is $\lceil \log(q) \rceil$ where q is the hamming weight in output patterns (that is the number of times the logical ones is repeated) [47]. In our design we have 2 garbage bits, which is minimal. We present some new designs of some latches along with their truth table in Fig.10 and Fig.11. In designing latches we have concentrated on logic requirement. For example, in SR latch the requirement would be met by two inputs the output which is feedback to input that governs the output (output change when inputs are different that is $S \oplus R = 1$ and last state and input S are different otherwise it will hold the last state) so we extended the truth table to logic driven extended truth table and our inputs S and R are transformed to S' and R'. Then we applied bidirectional algorithm synthesis to obtain a circuit and now our output of R' was $(A \oplus C) \oplus (C \oplus B) = A \oplus B$ so we further optimized it. The algorithm was tried using different approaches/choice of gate (N, C or T) and different circuits were obtained. Often these circuits have same NCT gate count even after applying optimization algorithms therefore quantum cost for every circuit is found and the NCT circuit with optimal quantum cost is selected. Here we would like to note that the number of loops considerably reduces in above designs. For example the conventional SR latch and proposed SR latch by Picton [21], Rice [22] and Thapliyal [26] requires two feed back loops while present proposal requires one.

We have also presented designs for gated latches which is given in Fig. 12. These have been designed from respective latches by extending those CNOT gate to Toffoli whose target is Q^{th} bit line. In Fig. 13 we have presented the designs for flip flops where we have used the circuit in box as slave. The slave follows the master when clock goes low. Consider the SR flip flop in Fig. 13a, here the slave box has a Not gate and a Toffoli gate which gives the output of flip flop on 4^{th} bit line only when the clock goes low. A CNOT gate at the end copies the output and it is fed back to 3^{rd} bit line. We have compared our resources of SR latch, gated latches and flip flops with the resources used in earlier designs in Table 3, 4 and 5 respectively.

6 Comparison Protocol

Since the earlier designs of reversible circuits use different gate libraries. For the purpose of comparison of circuit complexity of our proposals with the existing proposals we have followed the steps given below:

1. Equivalent circuit: An equivalent circuit (using NCT gate library) is obtained for each non-NCT gates using
our protocol in Fig. 8 and NCT gate count is obtained, for example Fredkin gate was used in \cite{21,22} requires 3 NCT-gates, New gate was used in \cite{40} requires 4 NCT-gates, CCCNOT gate was used in \cite{22,28} requires 3 Toffoli gates, Modified Toffoli gate and Modified Fredkin gate in \cite{26} requires 3 and 4 NCT gates respectively.

2. Optimization: The equivalent circuits constructed by the above techniques are then optimized with the help of template matching, moving rule and deletion rule \cite{11}.

3. Substitution: Once the optimized circuits equivalent to non-NCT gates are obtained, they are replaced in the original circuits of Picton, Thapliyal, Rice and Chuang. Thus the essential logic remains the same.

4. Re-optimization: After obtaining the NCT equivalent and logic conserving circuits of earlier proposals, the optimization techniques (i.e. template matching algorithm, moving rule and deletion rule) are applied once again on the whole circuit to obtain optimized, NCT equivalent and logic conserving circuit of the earlier proposals.

5. Cost of resources: Number of NCT gates present in these circuits is counted and this count is considered as NCT gate count of the circuit. As the choice of NCT as universal gate library is not unique it may be tempting to see what happens if one uses a different universal gate library. We have chosen NCV as the alternate universal gate library and calculated the NCV gate count. We have also calculated the quantum cost discussed in section 2 and finally total cost (TC) of the circuit is obtained by adding the gate count (circuit...
Table 3: Comparison of resources of SR Latch of our design with existing designs of Picton [21], Rice [22] and Thapliyal [26].

	NCT (Gate count)	NCV (Gate count)	QC	G	TC (NCT+QC+G)	TC (NCV+OC+G)
[20]	6	14	10	2	13	26
[21]	4	12	10	2	16	24
[25]	6	14	12	2	20	28
Ours	4	8	7	2	13	17

Table 4: Comparison of resources of our designs of gated latches with resources of existing designs of Rice [22], Thapliyal [24, 26, 27], Chuang [28] and Banerjee [46].

	NCT (Gate count)	NCV (Gate count)	QC	G	TC (NCT+QC+G)	TC (NCV+OC+G)
[21]	9	10	13	14	28	30
[23]	17	20	25	26	37	43
[25]	4	10	4	12	6	22
[29]	27	20	21	26	63	49
[27]	4	6	2	25	-	6
[46]	9	14	12	45	33	12
Ours	6	3	4	2	18	7

cost, quantum cost (QC) and the number of garbage bits (G). While applying moving rule and deletion rule we have often used following identities:

(a) \(V \times V = N \)
(b) \(V \times V^+ = I \)
(c) \(V^+ \times V^+ = N \)

6. Comparison: We have compared our resources with the existing resources of Rice [22], Thapliyal [24, 26, 27], Chuang [28] and Banerjee [46] and have found that the present proposals have lower total cost (TC).

The result of comparison is in Table 3, 4 and 5. It is interesting to note that the advantages of our design over the earlier proposals (observed for NCT circuits) and all other conclusions remained same.

7 Conclusions

In section 3 of the present work, we have addressed the conceptual issues related to the designing and optimization of reversible circuits in general with a special attention to the issues related to the designing of reversible sequential circuits. We have shown that it is very important to define an acceptable gate library and a good choice for that can be NCT gate library. Further, it has been shown that the advantage in gate count obtained in some of the earlier proposals by introduction of New gates or unconventional gates (such as TSG and TKS gates) is an artifact and if it is allowed then every reversible circuit block can be reduced to a single gate. We have proposed new designs for SR Latch, D latch, and T Latch with their corresponding gated latches and flip flops. We have compared our proposals with the existing proposals [21-28] and calculated the total cost (TC) of the circuit and found that our circuits use least resources. We have shown that in appropriate reversible designs one can go beyond the domain of classical irreversible logic. For example, we have shown that the unstable condition of SR latch is not present here and minimum number of feedback loops required in the domain of irreversible logic can be reduced in the domain of reversible logic. To be precise, we have observed that conventional JK flip flop requires 8 feedback loops whereas reversible Master slave flip flop proposed in [28] requires 2 and our design requires 1. It is straightforward to realize that number of feedback loop is minimal. We have used NCT gate library and there exist
Table 5: Comparison of resources of our designs of flip flops using NCT gate library with resources of existing designs of Rice [22], Thapliyal [24, 26, 27] and Chuang [28].

Flip flop	D	JK	T
[21]	17	22	23
[23]	-	46	-
[25]	9	15	9
[26]	15	66	69
[27]	9	11	7
Ours	5	6	4

several proposals [1, 5, 37, 38] for realization of CNOT and CCNOT gates using optical computing and CMOS based technology. Thus experimentalists can easily implement our circuits. Consequently, we can easily build classical reversible memory element. But the implementation of the present work is not limited to classical domain, this is because of the fact that we can also implement the proposed circuits in quantum domain with the help of optical implementation [37, 38]. If one aims to provide optimized reversible circuits for all the useful components of a classical computer then this work along with the proposal of [1, 5, 37, 38] will help him to provide a complete design for a classical reversible computer. Since it will be free from the problem of decoherence and scalability it seems more practical and easy to built than a real scalable quantum computer.

References

[1] R. Landuer, Irreversibility and heat generation in the computing process, IBM J. Res. Develop., 5 (1961) 183.
[2] C. H. Bennet, Logical reversibility of computation, IBM J. Res. Dev., 6 (1973) 525.
[3] M. Nielsen and I. Chuang, Quantum computation and quantum information, Cambridge University Press, New Delhi (2002).
[4] A. De Vos et al, Design of reversible logic circuits by means of control gates, Integrated Circuit Design, LNCS, 1918 (2000) 255.
[5] B. Desoete and A. De Vos, A reversible carry-look-ahead adder using control gates, Integration, VLSI J., 33 (2002) 88.
[6] P. Kerntopf, A new heuristic algorithm for reversible logic synthesis, In Proceedings of the IEEE Design Automation Conference (2004) 834.
[7] A. Agarwal and N. K. Jha, Synthesis of reversible logic, Proceedings of IEEE, Design, Automation and Test in Europe Conference and Exhibition, 2 (2004) 1384.
[8] A. De Vos and Y. Van Rentergem, Reversible computing: from mathematical group theory to electronical circuit experiment, In Proceedings of the 2nd Conference on Computing Frontiers (2005).
[9] V. V. Shende, I. L. Markov, and S. S. Bullock, Synthesis of quantum logic circuits, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 25 (2006) 1000.
[10] M. Mohammadi and M. Eshghi, Heuristic methods to use dont cares in automated design of reversible and quantum logic circuits, Quantum Inform. Process. J. 7 (2008) 175.
[11] D. M. Miller, D. Maslov, G. W. Duek, A Transformation based algorithm for reversible logic synthesis, Proceedings of 40th Design Automation conference (DAC'03), Anaheim, California (2003) 318.
[12] D. Maslov et al., Quantum Circuit Simplification and Level Compaction, quant-ph/0604001 (2008).
[13] M. Mohammadi and M. Eshghi, On figures of merit in reversible and quantum logic designs, Quant. Infor. Pro., 8 (2009) 297.
[14] D. P. Vasudevan et al, Reversible-logic design with online testability, IEEE Trans. Instru. and Meas., 55 (2006) 406.
[15] G. Schrom, Ultra-low-power CMOS technology. PhD thesis, Technischen Universität Wien (1998).
[16] R. C. Merkle, Two types of mechanical reversible logic. Nanotech, 4 (1993) 114.
[17] E. Knill, R. Laflamme and G. J. Milburn, A scheme for efficient quantum computation with linear optics. Nature, 409 (2001) 46.
[18] H. Wood and D. J. Chen, Fredkin gate circuits via recombination enzymes, Proceedings Evolutionary Computation, 2004 (CEC2004).
[19] T. Toffoli, Reversible computing. Tech mem MIT/LCS/TM-151, MIT Lab for Computer Science (1980).
[20] E. Fredkin and T. Toffoli, Conservative logic, Int. J. Theo. Phys., 21 (1982) 219.
[21] P. Picton, Multi-valued sequential logic design using fredkin gates, MVL Journal, 1 (1996) 241.
[22] J. E. Rice, A New Look at Reversible Memory Elements. Proc. Int. Symp. Circuits and Systems (ISCAS), Kos, Greece, IEEE, Piscataway, NJ. (2006) 1243.
[23] J. E. Rice, An Introduction to reversible latches, The Computer Journal, 51 (2008) 700.
[24] H. Thapliyal and M. B. Shrinivas, A beginning in the reversible logic synthesis of sequential circuits, Proceedings of MAPLD, 2005.
[25] H. Thapliyal and M. Zwolinski, Reversible logic to cryptographic hardware: A New Paradigm, Proceedings of the 49th IEEE International Midwest Symposium on Circuits and Systems (MWSCAS 2006) Puerto Rico (2006).
[26] H. Thapliyal and A. P. Vinod, Design of reversible sequential elements with feasibility of transistor implementation, Proceedings of the 2007 IEEE International Symposium on Circuits and Systems (ISCAS 2007), New Orleans, USA, (2007) 625.
[27] H. Thapliyal, M.B Srinivas, An Extension to DNA Based Fredkin Gate Circuits: Design of Reversible Sequential Circuits using Fredkin Gates, arXiv cs/0603092.
[28] M. Chuang and C. Wang, ACM Journal on emerging technologies in computing systems, 3 (2008) 19.1.
[29] D. Maslov, G. W. Dueck and N. Scott, Reversible logic synthesis benchmark page, http://webhome.cs.uvic.ca/~dmaslov/ (2009).
[30] A. Barenco et al., Elementary Gates for Quantum Computation, Physical Review A, 52 (1995) 3457.
[31] P. Gupta, A. Agarwal and N. K. Jha, An algorithm for synthesis of reversible logic circuits, Proceedings on Computer Aided Design of Integrated Circuits and Systems, 25 (2006) 2317.
[32] J. A. Smolin and D. P. DiVincenzo, Five two-bit quantum gates are sufficient to implement the quantum Fredkin gate, Phys. Rev. A, 53 (1996) 2855.
[33] M. Mohammadi, K. Navi and M. Eshghi, Optimized reversible multiplier circuit, Journal of circuits, systems and computers, 18 (2009) 1.
[34] M. S. Islam et al., Low cost quantum realization of reversible multiplier circuit, Infor Tech J., 8 (2009) 208.
[35] M. M. Mano, and C. R. Kime, Logic computer design fundamentals, Pearson Education, Delhi (2003).
[36] T. Sasao, Switching theory for logic synthesis, Kluwer Academic, (1999).
[37] J. L. O’Brien et al., Demonstration of an all-optical quantum controlled-NOT gate, Nature 426 (2003) 264.
[38] J. Fiuráek, Linear-optics quantum Toffoli and Fredkin gates, Phys. Rev. A, 73 (2006) 062313.
[39] H. M. Thapliyal and M. B. Srinivas, A New reversible TSG gate and its applications for designing efficient adder circuit, 7th International Symposium on Representations and Methodologies of Future Computing Technologies (RM2005), Tokyo, Japan (2005)
[40] H. H. Babu and A. R. Chowdhury, Journal of Systems Architecture, Design of a compact reversible binary coded decimal adder circuit, 52 (2006) 272.
[41] M. Haghparast and K. Navi, A new fault tolerant reversible gate for nanotechnology based systems, Am. J. Applied Sci., 5 (2008) 519.
[42] M. Haghparast et al., Design of a novel reversible multiplier circuit using HNG gate in Nanotechnology, World Appl. Sci. J., 3 (2008) 974.

[43] M. Haghparast and K. Navi, A novel reversible full adder circuit for nanotechnology based systems, J. Applied Sci., 7 (2007) 3995.

[44] D. Aharonov, A simple proof that toffoli and hadamard are quantum universal, quant-ph/0301040v1 (2003).

[45] A. Yu. Kitaev, Quantum computations:Algorithms and error correction, Russian math, 6 (1997) 1191.

[46] A. Banerjee and A. Pathak, On the synthesis of sequential circuits, quant-ph, 0707.4233v1.

[47] D. Maslov and G. W. Duek, Garbage in reversible design of multiple output functions, Proc. of 6th International Symposium on Representations and Methodology of Future Computing Technologies, (2003) 162.