On rainbow antimagic coloring of some special graph

Z L Al Jabbar, Dafik, R Adawiyah, E R Albirri, I H Agustin

1 CGANT-University of Jember
2 Mathematics Education Post Graduate Departement University of Jember Indonesia
3 Mathematics Education Departement University of Jember Indonesia
4 Mathematics Departement University of Jember Indonesia

E-mail: zuhriis1994@gmail.com

Abstract. Let $G = (V, E)$ be a connected and simple graphs with vertex set V and edge set E. A coloring of graph G is rainbow connected if there is a rainbow path that connects each two vertices of graph G. The minimum k such that G has a rainbow-connected using k colors of the edges of G is the rainbow connection number $rc(G)$ of G. A graph with a bijective mapping $f : E \rightarrow \{1, 2, ..., |E|\}$. The sums of each paired vertex has distinct value, defined as $\sum_{e \in E(v)} f(e)$. Thus, the function of G clearly an antimagic labeling if the sums of each paired vertex has distinct value. It is clear that rainbow antimagic connection number is the smallest number of colors which are needed to make G rainbow connected, denoted by $rcA(G)$. A bijection function $f : E \rightarrow \{1, 2, ..., |E|\}$ is called a rainbow antimagic labeling if there is a rainbow path between every pair of vertices and for each edge $e = uv \in E(G)$, the weight $w(e) = f(u) + f(v)$. A graph G is rainbow antimagic if G has a rainbow antimagic labeling. In this paper, we will analyze the rainbow antimagic coloring of related book graph.

1. Introduction

We study about the rainbow antimagic coloring. Every graph considered in this paper are connected and simple graph. Let $G = (V, E)$ be a connected and simple graphs with vertex set V and edge set E.

Suppose G is a nontrivial connected graph on which an edge coloring $c : (E(G) \rightarrow \{1, 2, 3, ..., s\}, s \in N$, where adjacent edges may have the same color. We could say rainbow path if there are no two edges with the same coloring on the $u-v$ path in G. A coloring of graph G is rainbow connected if there is a rainbow path that connects each two vertices of graph G. The minimum k such that G has a rainbow-connected using k colors of the edges of G is the rainbow connection number which is denoted by $rc(G)$. The complete concept of rainbow connection can see in Chartrand et al [3]. Furthermore, there are further research about rainbow connection can be found in Agustin et al [1], Dafik et al [4], Fauziah et al [5], and Hasan et al [7].

There is study in graph about magic labeling. The opponent of magic labeling, it is known as an antimagic labeling. Hartsfield and Ringel [6] was proposed the antimagic labeling in graphs with two conjecture. Then, Jackanich [8] defined it. Furthermore, another studies about antimagic are as follows [9], [10], [12]. Let $G = (V(G), E(G))$ be a graph with a bijective mapping $f : E \rightarrow \{1, 2, ..., |E|\}$ so that the sums of each paired vertex has distinct value, which is the sums of each paired vertex is defined as $\sum_{e \in E(v)} f(e)$. Thus, the function of G clearly an antimagic labeling if the sums of each paired vertex has distinct value.
Suppose that Lemma 2.

Let W is a rainbow antimagic labeling, then G is rainbow antimagic.

Theorem 1. Suppose that G is a triangular book graph with $n \geq 2$. The rainbow connection number $rc = \begin{cases} 2, & \text{if } 2 \leq n \leq 4 \\ 3, & \text{if } n \geq 5 \end{cases}$

Proof. The proof of this theorem proofed by Alfarisi in [2]

Lemma 2. Suppose that $a, b, c, i = 1, 2, ..., n$ with n positive integers and $a \neq b \neq c$, $\forall i$. $W_1 = \{a + c_i | i = 1, 2, 3, ..., n\}; W_2 = \{b + c_i | i = 1, 2, 3, ..., n\};$ so, $|W_1 \cup W_2| \geq n + 1$.

Proof. Suppose $|W_1 | = |W_2| = n$, so $|W_1 \cup W_2| = n$. It consequent $W_1 \cup W_2$, or $a + c = b + c$, the result is $a = b$, which is contradiction with $a \neq b$ Thus, $|W_1 \cup W_2| \geq n + 1$.

Theorem 3. Let Tb_n be a triangular book graph with $n \geq 3$. The rainbow antimagic connection number $rc_A(Tb_n) = n + 2$.

Proof. Triangular book has vertex set is $\{x_1, x_2\} \cup \{y_j, 1 \leq j \leq n\}$ and the edge set is $\{x_1, x_2\} \cup \{y_j, x_1, y_j, x_2, 1 \leq j \leq n\}$. Cardinality of vertex is $|V(Tb_n)| = n + 2$ and the cardinality of edge is $|E(Tb_n)| = 2n + 1$.

Based on Lemma 2, it is clear that the lower bound has been proved. Afterwards, we prove the upper bound in this graph. Based on definition of antimagic labeling, define a bijective mapping $f : E \rightarrow \{1, 2, ..., |E|\}$, we define $f(x_1) = 2; f(x_2) = 1; f(y_j) = j + 2, 1 \leq j \leq n$. The weight ($W$) of triangular book in Figure 2 are as follows:

$$w(e) = \begin{cases} w(x_1, x_2) = 3 \\ w(x_1, y_j) = j + 4, & \text{if } 1 \leq j \leq n \\ w(x_2, y_j) = j + 3, & \text{if } 1 \leq j \leq n \end{cases}$$

Theorem 4. Suppose that B_n with $n \geq 3$, clearly $rc(B_n) = 4$.

![Triangular Book with 2 rainbow connection](image)
Table 1. Rainbow path antimagic in Triangular Book

Edge	Color of Edge
x_1x_2	3
x_1y_1	5
x_1y_2	6
x_1y_3	7
\ldots	\ldots
x_2y_j	$j + 4$
x_2y_1	4
x_1y_2	5
x_1y_3	6
\ldots	\ldots
x_2y_j	$j + 3$

Figure 2. Triangular Book with 5 rainbow antimagic coloring

Figure 3. Book with 3 rainbow connection

Proof. This theorem has been proved by Syafrizal in [11].

Lemma 5. Suppose that $a_i, b_i, i = 1, 2, ..., n$ with n = positive integers and $a_i \neq b_i, \forall i$. $W_1 = \{a + a_i|i = 1, 2, 3, ..., n\}; W_2 = \{b + b_i|i = 1, 2, 3, ..., n\}; W_3 = \{a_i + b_i|i = 1, 2, 3, ..., n\}$ so, $|W_1 \cup W_2 \cup W_3| \geq n + 1$.

Proof. Suppose $|W_1 \cup W_2 \cup W_3| \leq n$, because $|W_1| = |W_2| = |W_3| = n$, so $|W_1 \cup W_2 \cup W_3| = n$. It consequent $W_1 = W_2 = W_3$, or $a + a_i = b + b_i = a_i + b_i$, the result is $a = b$, which is contradiction with $a \neq b$. Thus, $|W_1 \cup W_2| \geq n + 1$.

Theorem 6. Suppose that B_n with $3 \leq n \leq 7$. The rainbow antimagic connection number

$$rc_A(B_n) = \begin{cases}
 n + 2; & \text{n=odd} \\
 n + 1; & \text{n=even}
\end{cases}$$
Proof. Book graph has vertex set $\{ab\} \cup \{a_i, 1 \leq i \leq n\} \cup \{b_i, 1 \leq i \leq n\}$ and the edge set is $\{ab\} \cup \{aa_i, 1 \leq i \leq n\} \cup \{bb_i, 1 \leq i \leq n\} \cup \{a_i b_i, 1 \leq i \leq n\}$. The cardinality of vertex is $|V(B_n)| = 2n + 2$ and the cardinality of edge is $|E(B_n)| = 3n + 1$.

It is easy to see that the lower bound has been proved in lemma 5. Then, we are going to proof the upper bound. Based on definition of antimagic labeling, define a bijective mapping $f : E \rightarrow \{1, 2, ..., |E|\}$, we define the function of x is defined as follows

$$f(x_i) = \begin{cases} \frac{\Sigma v}{i}; & i=1 \\ \frac{\Sigma v}{2} + 1; & i=2 \end{cases}$$

For book graph $n = 3$, the function of y is defined as follows:

$$f(y_i) = \begin{cases} i + (\Sigma v - 1); & i=1 \\ \frac{\Sigma v}{2} + 1; & i=2 \\ i - 1; & i=n \end{cases}$$

For book graph $n = 4$, the function of y is defined as follows:

$$f(y_i) = \begin{cases} i + (\Sigma v - 1); & i=1 \\ \frac{\Sigma v}{2} + 1; & i=2 \\ i + 1; & i=n-1 \\ i - 2; & i=n \end{cases}$$

For book graph $n = 5$, the function of y is defined as follows:

$$f(y_i) = \begin{cases} i + (\Sigma v - 1); & i=1 \\ \frac{\Sigma v}{2} + 2; & i=2 \\ \frac{\Sigma v}{2} - 1; & i=3 \\ i; & i=n-1 \\ i - 1; & i=n \end{cases}$$

For book graph $n = 6$, the function of y is defined as follows:

$$f(y_i) = \begin{cases} i + (\Sigma v - 1); & i=1 \\ \frac{\Sigma v}{2} + 3; & i=2 \\ \frac{\Sigma v}{2}; & i=3 \\ i + 2; & i=4 \\ i - 1; & i=n-1 \\ i - 4; & i=n \end{cases}$$

For book graph $n = 7$, the function of y is defined as follows:

$$f(y_i) = \begin{cases} i + (\Sigma v - 1); & i=1 \\ \frac{\Sigma v}{2} + 4; & i=2 \\ \frac{\Sigma v}{2} + 1; & i=3 \\ \frac{\Sigma v}{2} - 2; & i=4 \\ i + 1; & i=5 \\ i - 2; & i=n-1 \\ i - 5; & i=n \end{cases}$$

For book graph $n = 3$, the function of z is defined as follows:

$$f(z_i) = \begin{cases} 1; & i=1 \\ i + 1; & i=2 \\ \Sigma v - 1; & i=n \end{cases}$$
For book graph \(n = 4 \), the function of \(z \) is defined as follows:

\[
f(z_i) = \begin{cases}
1; & i=1 \\
i + 1; & i=2 \\
\sum v + 2; & i=n-1 \\
\sum v - 1; & i=n
\end{cases}
\]

For book graph \(n = 5 \), the function of \(z \) is defined as follows:

\[
f(z_i) = \begin{cases}
1; & i=1 \\
i + 1; & i=2 \\
\sum v - 1; & i=3 \\
\sum v + 3; & i=n-1 \\
\sum v - 1; & i=n
\end{cases}
\]

For book graph \(n = 6 \), the function of \(z \) is defined as follows:

\[
f(z_i) = \begin{cases}
1; & i=1 \\
i + 1; & i=2 \\
\sum v - 2; & i=3 \\
\sum v + 2; & i=4 \\
\sum v + 4; & i=n-1 \\
\sum v - 1; & i=n
\end{cases}
\]

For book graph \(n = 7 \), the function of \(z \) is defined as follows:

\[
f(z_i) = \begin{cases}
1; & i=1 \\
i + 1; & i=2 \\
\sum v - 3; & i=3 \\
\sum v - 1; & i=4 \\
\sum v + 3; & i=5 \\
\sum v + 5; & i=n-1 \\
\sum v - 1; & i=n
\end{cases}
\]

We define the weight \((w)\) of book in Figure 4 that for book graph \(n = 3 \), the weight is defined as follows:

\[
w(e) = \sum v + 1 \begin{cases}
e = x_1x_2 & \\
e = y_iz_i & \\
e = y_1y_1 & \\
e = x_2z_n & \\
e = x_1y_2 & \\
e = x_2z_2 & \\
e = x_1y_n & \\
e = x_2z_1
\end{cases}
\]
We define the weight \((w)\) of book in Figure 4 that for book graph \(n = 4\), the weight is defined as follows:

\[
\begin{align*}
 w(e) &= \Sigma v + 1 \begin{cases}
 e = x_1x_2 \\
 e = y_i z_i
 \end{cases} \\
 w(e) &= \frac{3}{2} \Sigma v \begin{cases}
 e = x_1y_1 \\
 e = x_2z_n
 \end{cases} \\
 w(e) &= \Sigma v + 3 \begin{cases}
 e = x_1y_2 \\
 e = x_2z_3
 \end{cases} \\
 w(e) &= \frac{\Sigma v}{2} + 4 \begin{cases}
 e = x_1y_3 \\
 e = x_2z_2
 \end{cases} \\
 w(e) &= \frac{\Sigma v}{2} + 2 \begin{cases}
 e = x_1y_4 \\
 e = x_2z_1
 \end{cases}
\end{align*}
\]

We define the weight \((w)\) of book in Figure 4 that for book graph \(n = 5\), the weight is defined as follows:

\[
\begin{align*}
 w(e) &= \Sigma v + 1 \begin{cases}
 e = x_1x_2 \\
 e = y_i z_i
 \end{cases} \\
 w(e) &= \frac{3}{2} \Sigma v \begin{cases}
 e = x_1y_1 \\
 e = x_2z_n
 \end{cases} \\
 w(e) &= \Sigma v + 4 \begin{cases}
 e = x_1y_2 \\
 e = x_2z_4
 \end{cases} \\
 w(e) &= \Sigma v + 2; \quad e = x_1y_3 \\
 w(e) &= \Sigma v; \quad e = x_2z_3
\end{align*}
\]

\[
\begin{align*}
 w(e) &= \frac{\Sigma v}{2} + 4 \begin{cases}
 e = x_1y_4 \\
 e = x_2z_2
 \end{cases} \\
 w(e) &= \frac{\Sigma v}{2} + 2 \begin{cases}
 e = x_1y_5 \\
 e = x_2z_1
 \end{cases}
\end{align*}
\]

We define the weight \((w)\) of book in Figure 4 that for book graph \(n = 6\), the weight is defined as follows:

\[
\begin{align*}
 w(e) &= \Sigma v + 1 \begin{cases}
 e = x_1x_2 \\
 e = y_i z_i
 \end{cases} \\
 w(e) &= \frac{3}{2} \Sigma v \begin{cases}
 e = x_1y_1 \\
 e = x_2z_n
 \end{cases} \\
 w(e) &= \Sigma v + 5 \begin{cases}
 e = x_1y_2 \\
 e = x_2z_5
 \end{cases} \\
 w(e) &= \Sigma v + 3 \begin{cases}
 e = x_1y_3 \\
 e = x_2z_4
 \end{cases}
\end{align*}
\]
Figure 4. Book graph $n = 3$ with 5 rainbow antimagic coloring

\[w(e) = \sum v - 1 \left\{ \begin{array}{l} e = x_1 y_4 \\ e = x_2 z_3 \end{array} \right. \]

\[w(e) = \frac{\sum v}{2} + 4 \left\{ \begin{array}{l} e = x_1 y_5 \\ e = x_2 z_2 \end{array} \right. \]

\[w(e) = \frac{\sum v}{2} + 2 \left\{ \begin{array}{l} e = x_1 y_3 \\ e = x_2 z_1 \end{array} \right. \]

We define the weight \((w)\) of book in Figure 4 that for book graph $n = 7$, the weight is defined as follows:

\[w(e) = \sum v + 1 \left\{ \begin{array}{l} e = x_1 x_2 \\ e = y_i z_i \end{array} \right. \]

\[w(e) = \frac{3}{2} \sum v \left\{ \begin{array}{l} e = x_1 y_1 \\ e = x_2 z_n \end{array} \right. \]

\[w(e) = \sum v + 6 \left\{ \begin{array}{l} e = x_1 y_2 \\ e = x_2 z_6 \end{array} \right. \]

\[w(e) = \sum v + 4 \left\{ \begin{array}{l} e = x_1 y_3 \\ e = x_2 z_5 \end{array} \right. \]

\[w(e) = \sum v + 2; \ e = x_1 y_4 \]

\[w(e) = \sum v; \ e = x_2 z_4 \]

\[w(e) = \sum v - 2 \left\{ \begin{array}{l} e = x_1 y_5 \\ e = x_2 z_3 \end{array} \right. \]

\[w(e) = \frac{\sum v}{2} + 4 \left\{ \begin{array}{l} e = x_1 y_6 \\ e = x_2 z_2 \end{array} \right. \]

\[w(e) = \frac{\sum v}{2} + 2 \left\{ \begin{array}{l} e = x_1 y_5 \\ e = x_2 z_1 \end{array} \right. \]
Suppose that Theorem 8. Suppose that Lemma 7.

a connection number a with n = positive integers and a \(\neq \) b \(\neq \) x_{i,1} \(\neq \) x_{i,2} \(\neq \) x_{i,3}, \(i \) = 1, 2, ..., n. The result is \(\mid W_f \mid = 3 \), \(x_i, x_2, x_3, \ldots, x_n \); W_4 = \{ b + x_{i,3} \mid i = 1, 2, 3, \ldots, n \}; so, \(\mid W_1 \cup W_2 \cup W_3 \cup W_4 \mid \geq n + 1 \).

Proof. Suppose \(\mid W_1 \cup W_2 \cup W_3 \cup W_4 \mid \leq n \), because \(\mid W_1 \mid = \mid W_2 \mid = \mid W_3 \mid = \mid W_4 \mid = n \), so \(\mid W_1 \cup W_2 \mid = n \). It consequent \(W_1 = W_2 = W_3 = W_4 \), or \(a + x_{i,1} = x_{i,1} + x_{i,2} = x_{i,2} + x_{i,3} = b + x_{i,3} \), the result is \(a = b \), which is contradiction with \(a \neq b \). Thus, \(\mid W_1 \cup W_2 \cup W_3 \cup W_4 \mid \geq n + 1 \).

Theorem 8. Suppose that \(G \) be a generalized of book graph with \(n \geq 3 \). The rainbow antimagic connection number \(rc_A(G) = n + 5 \).

Proof. The graph has vertex set \(\{xy\} \cup \{x_{a,1}, 1 \leq a \leq n\} \cup \{x_{a,2}, 1 \leq a \leq n\} \cup \{x_{a,3}, 1 \leq a \leq n\} \) and the edge set is \(\{xy\} \cup \{xx_{a,1}, 1 \leq a \leq n\} \cup \{yx_{a,3}, 1 \leq a \leq n\} \cup \{x_{a,1}x_{a,2}, 1 \leq a \leq n\} \cup \{x_{a,2}x_{a,3}, 1 \leq a \leq n\} \). The cardinality of vertex is \(\mid V(G) \mid = 3n + 2 \) and \(\mid E(G) \mid = 4n + 1 \) is cardinality of edge.

In Lemma 7, it is clear that the lower bound has been proofed. Afterwards, we are going to prove the upper bound. Based on definition of antimagic labeling, define a bijective mapping \(f : E \rightarrow \{1, 2, \ldots, \mid E \mid \} \), we define \(f(x) = 2; f(y) = 1; f(x_{a,1}) = 3n + 3 - a, 1 \leq a \leq n; f(x_{a,2}) = a + 2, 1 \leq a \leq n; f(x_{a,3}) = a + 5, 1 \leq a \leq n \). The weight \((W) \) of this graph in Figure 5 that.

\[
w(e) = \begin{cases}
w(xy) = 3 & \text{if } 1 \leq a \leq n \\
w(xx_{a,1}) = 3n + 5 - a, & \text{if } 1 \leq a \leq n \\
w(yx_{a,3}) = a + 6, & \text{if } 1 \leq a \leq n \\
w(x_{a,1}x_{a,2}) = 3n + 5, & \text{if } 1 \leq a \leq n \\
w(x_{a,2}x_{a,3}) = 2a + 7, & \text{if } 1 \leq a \leq n
\end{cases}
\]

3. Conclusion
We have obtained the exact value of rainbow antimagic of triangular book graph \((T_{bn}) \), book graph \((B_n) \), and generalized of book graph.

Open Problem 1. Let \(G \) be a special graph, determine the rainbow antimagic coloring of \(G \).

Acknowledgement
We gratefully acknowledge CGANT (Combinatoric, Graph Theory and Network Topology) for the support and supervision to completing this paper.
References
[1] Agustin I H, Dafik, Gembong A W and Alfarisi R 2017 On Rainbow k-Connection Number of Special Graphs and It’s Sharp Lower Bound Journal of Physics: Conference Series 855 012003
[2] Alfarisi R, Dafik and Fatahillah A 2014 Penerapan Teknik Konstruksi Graf, Rainbow Connection, Dominating Set dalam Analisis Morfologi Jalan (Jember:Universitas Jember)
[3] Chartrand G, Johns G L, McKeon K A and Zhang P 2008 Rainbow Connection in Graphs Mathematica Bohemica 133 pp 85-98
[4] Dafik, Slamin and Muharrromah A 2018 On the (Strong) Rainbow Vertex Connection of Graphs Resulting from Edge Comb Product Journal of Physics: Conference Series 1008 012055
[5] Fauziah D A, Dafik, Agustin I H and Alfarisi R 2019 The Rainbow Vertex Connection Number of Edge Corona Product Graphs Journal of Physics: Conference Series 243 012020
[6] Hartsfield N and Ringel G 1994 Pearls in Graph Theory, Academic Press.
[7] Hasan M S, Slamin, Dafik, Agustin I H and Alfarisi R 2018 On The Total Rainbow Connection of The Wheel Related Graphs Journal of Physics: Conference Series 1008 012054
[8] Jackanich M 2011 Antimagic Labeling of Graphs Vers of April 13
[9] Liang Y C and Zhu X 2012 Antimagic Labeling of Cubic Graphs Journal of Graph Theory revised version 2012
[10] Ryan J, Phanalasy O, Miller M and Rylands L 2010 On Antimagic Labeling for Generalized Web and Flower Graphs Iliopoulos C.S., Smyth W.F. (eds) Combinatorial Algorithms, IWOCA. 6460
[11] Sy S, Wijaya R and Surahmat 2014 Rainbow Connection Numbers of Some Graphs Applied Mathematical Sciences 8(94) pp 4693-4696
[12] Wang T M and Hsiao C C 2008 On Anti-magic Labeling for Graph Products Discrete Mathematics 830 pp 3624-3633