The influence of the structural transition on magnetic fluctuations in NaFeAs

Juanjuan Liu¹, Jinchen Wang¹, Wei Luo¹, Jieming Sheng¹, Aifeng Wang², Xianhui Chen²,³, Sergey A Danilkin⁴ and Wei Bao¹

¹Department of Physics, Renmin University of China, Beijing 100872, People’s Republic of China
²Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
³Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People’s Republic of China
⁴Bragg Institute, ANSTO, Lucas Heights, NSW 2234, Australia

E-mail: wbao@ruc.edu.cn

Received 23 March 2016, revised 3 May 2016
Accepted for publication 5 May 2016
Published 23 May 2016

Abstract

NaFeAs belongs to a class of Fe-based superconductors which have parent compounds that show separated structural and magnetic transitions. Effects of the structural transition on spin dynamics therefore can be investigated separately from the magnetic transition. A plateau in dynamic spin response is observed in a critical region around the structural transition temperature $T_S$. It is interpreted as being due to the stiffening of spin fluctuations along the in-plane magnetic hard axis due to the $d_{xz}$ and $d_{yz}$ orbital ordering. The appearance of anisotropic spin dynamics in the critical region above the $T_S$ at $T^*$ offers a dynamic magnetic scattering mechanism for anisotropic electronic properties in the commonly referred ‘nematic phase’.

Keywords: pnictide superconductors, orbital, charge, spin, lattice orders and their coupling, dynamic magnetic properties, neutron inelastic scattering, nematic phase

(Some figures may appear in colour only in the online journal)
demonstrated by Goodenough [14] in his classic explanation of the rich magnetic phases in perovskite manganites observed in neutron diffraction experiments [15]. Orbital ordering has also been identified through such lattice and magnetic interaction corresponding relation more recently in neutron scattering studies on classic transition metal oxides [16, 17]. Since the orbital ordering changes the bonding between the transition-metal ions, it automatically manifests itself by a structural transition [16, 17]. The effective spin Hamiltonian is also altered by the orbital ordering transition. When (I) the Néel temperature $T_N$ of the effective spin Hamiltonian in the orbital ordered state is higher than the orbital order temperature $T_S$, the antiferromagnetic transition will necessarily concur with the structural transition, such as in the case of $\text{V}_2\text{O}_3$ [16], BaFe$_2$As$_2$ [5] and FeTe [6]. When (II) $T_N$ is lower than $T_S$, the antiferromagnetic transition will occur in a separated phase transition upon further cooling after the structural transition, such as in the case of the $\text{C}$-type perovskite manganite [17], LaFeAsO [4] and NaFeAs (1 1 1) [18–20].

Since the antiferromagnetic bond along the $a$-axis and the ferromagnetic bond along the $b$-axis have different spacing [5], detwinned 1 2 2 crystals would reveal the different hopping parameters of the two different bonds in transport measurements along the $a$ and $b$-axis [21, 22]. In-plane anisotropy expected to occur in the orbital ordered state has also been observed in resonant ultrasound spectroscopy [23], torque magnetometry [24], magnetic inelastic neutron scattering [25], time-resolved polarimetry [26] measurements of the 1 2 2 systems. However, theoretical debate has been going on concerning the relative importance of the orbital [12, 27–31], lattice [32] and spin [33, 34] degrees of freedom, and a spontaneous symmetry breaking Fermi liquid state, the so-called ‘nematic phase’, has been introduced [35]. In this connection, the class II orbital-ordered Fe-based superconductors such as the LaFeAsO [4] and NaFeAs [20] families of separated $T_N$ and $T_S$ offer experimental advantage. LaFeAsO and Co-doped BaFe$_2$As$_2$ have been investigated in NMR and inelastic neutron scattering studies to reveal the effect of the structural transition on spin dynamics [36, 37]. Here we report inelastic neutron scattering investigation on NaFeAs.

Single crystals were synthesized as described in [19]. About 2.5 g of samples were co-aligned with the mosaic $\sim 3^\circ$ in the $(h0l)$ scattering plane of the low-temperature orthorhombic unit cell. Both nuclear and magnetic Bragg peaks are accessible in this plane [20], see inset to figure 1. The lattice parameters $a = 5.590$, $b = 5.570$ and $c = 6.993$ Å at 1.5 K. Neutron scattering experiments were performed at the thermal neutron triple-axis spectrometer Taipan [38] in Bragg Institute, Australia Nuclear Science and Technology Organization (ANSTO). The pyrolytic graphite (PG) monochromator was in the double focusing mode and the PG analyzer in the vertical focusing mode. The final energy of the neutron beam was fixed at 14.7 meV, a PG filter was used after the sample to remove higher order neutrons and a 40° collimator was put after the sample. The sample temperature was regulated using an ILL Orange cryostat in the 1.4 K to 300 K range. Figure 1 shows the temperature dependence of the nuclear Bragg peak (4,0,0) and magnetic Bragg peak (1,0,1.5). The anomaly of the nuclear peak marks the tetragonal to orthorhombic structural transition at $T_S = 56$ K, and the magnetic peak appears below the Néel temperature $T_N = 42$ K. The two phase transitions are well separated.

The constant energy scans along the $a$-axis across the magnetic zone center (1,0,1.5) are displayed in figure 2. At $E = 2$ meV, no peak was visible at 1.5 K, consistent with a spin gap formation due to the long-range magnetic order [39]. The most intense peak appears at $T_A = 42$ K when the gap closes and magnetic critical scattering maximizes. The low energy magnetic fluctuation persists into the paramagnetic state, both below and above the structural transition at $T_S = 56$ K. At $E = 4$ meV, a finite peak at the magnetic zone center can be detected at the base temperature 1.5 K. Its intensity increases upon approaching the $T_N$, then decreases upon further rising of temperature, as expected for magnetic excitations.

The fitting parameters of these constant-$E$ scans across (1,0,1.5) are shown in figure 3. A comparison with the results of similar scans in a recent neutron scattering study on LaFeAsO and $\text{Ba(Fe}_{0.953}\text{Co}_{0.047})_2\text{As}_2$ [37] would be beneficial. The maximum of the magnetic signal at $T_N$ in figure 3(a) is the same as the cases for LaFeAsO and $\text{Ba(Fe}_{0.953}\text{Co}_{0.047})_2\text{As}_2$. However, this is a universal critical phenomenon of the second order antiferromagnetic transition, which occurs in any class II orbital ordered material. Such a critical behavior has also been picked up in the NMR study on NaFeAs [40]. For LaFeAsO and $\text{Ba(Fe}_{0.953}\text{Co}_{0.047})_2\text{As}_2$, the peak width reduces drastically below $T_S$ by $\sim 0.12(4)$ Å$^{-1}$ and 0.07(2) Å$^{-1}$, respectively [37]. For NaFeAs, however, our data statistics does not allow such a solid conclusion, putting the upper limit of the peak narrowing at $\sim 0.04$ Å$^{-1}$.

Due to the hydrogen-containing glue used in assembling the single crystals, it contributed substantial background scattering, such as those shown in figure 2 beneath the magnetic peak. Thus, in order to extract magnetic signal $S(Q, E)$ from the inelastic neutron scattering signal $I$, we performed constant-$E$ scans from 1.4 to 80 K and covered the energy range up to

![Figure 1](image-url)
Magnetic signal in our investigation range is sharp enough in the reciprocal $Q$ space, it reaches background level at $h = 0.7$ and $1.3$ in the constant $E$ scan along the $(h,0,1.5)$. Therefore we obtain $S(E,Q)$ at $Q = (1,0,1.5)$ from measurement of $I(Q,E)$ at $Q = (1,0,1.5)$ subtracted by background measured at $Q = (0.7,0,1.5)$ and $Q = (1.3,0,1.5)$. Figure 4 shows $S(E,Q)$ at the peak position $Q = (1,0,1.5)$ in energy scans at various temperatures. There is an energy gap at 1.5 K, consistent with the measurement from a previous neutron scattering experiment at 2 K [39]. At $T_N = 42$ K, the gap is closed and an overdamped critical spin dynamic response appears. The critical spin dynamics extend above the structural or orbital transition at $T_S$.

To pin down the elusive influence of the structural transition on spin dynamics, we now focus on the most temperature sensitive part of dynamic magnetic correlation function $S(E,Q)$ at $Q = (1,0,1.5)$ and $E = 2$ meV. Figure 5(a) shows the raw data of the peak intensity and background measured at $Q = (1.3,0,1.5)$ as a function of temperature. The longer counting time was used to ensure adequate data statistics for the background subtracted $S(Q,E)$ shown in figure 5(b). The energy gap at 1.5 K, demonstrated in figures 2(a) and 4, disappears rather abruptly upon warming the sample to the Néel temperature $T_N$, where low energy spin fluctuations peak and then decrease upon further warming the sample. The otherwise \(\lambda\)-shaped signal of magnetic critical fluctuations is modified prominently by a plateau around the $T_S$. The abnormal behavior is rather puzzling, in particularly if one follows the building up of the magnetic correlations from high temperature to the base temperature: more and more spins join the dynamic magnetic correlations at the magnetic wave vector, as signified by the increasing intensity with lowering the temperature. However, the build-up is arrested in the neighborhood of the $T_N$.
as a function of $K$ and around $T_\parallel = K$, respectively. The color temperature. (b) The dynamic magnetic correlation function in figure 2 and const-
arrows in (b) indicate the temperatures at which the const-
in the same colors. The plateau of $E = 2$ meV as a function of temperature. (b) The dynamic magnetic correlation function $S(Q, E)$ at $Q = (1, 0, 1.5)$ and $E = 2$ meV as a function of temperature. The vertical dash lines mark the magnetic and structural transition temperatures at $T_S = 42$ K and $T_N = 56$ K, respectively. The color arrows in (b) indicate the temperatures at which the const-$E$ scans in figure 2 and const-$Q$ scans in figure 4 are shown with symbols in the same colors. The plateau of $S(Q, E)$ around $T_S$ is likely due to the suppression of the spin fluctuations along the magnetic hard axis along the $b$-axis. The upper end of the plateau is $T^*$, below which anisotropy in spin dynamics and consequently anisotropic scatterings of conduction electrons occur.

tetragonal-to-orthorhombic structural transition $|T - T_N| \leq 6$ K. Only with further lowering the temperature, the dynamic spin correlations resume the normal magnetic behavior with increasing intensity, which finally condense to the long-range antiferromagnetic order at $T_N$ and gap out the low energy spin fluctuations.

While our measurements shown in figure 5 were performed at a low energy in the energy gap, a possible explanation of the arrest of the spin dynamics at the plateau may be provided from the polarized neutron scattering results at 6 meV above the gap [39]. Song et al show that while spin fluctuations above $T_S$ are isotropic, the transverse component along the ferromagnetic bond direction is partially frozen out at $T_S$. If such a behavior holds also below the gap energy caused by the spin-space anisotropy, one may explain the reduced intensity in the plateau region of our data. Thus, the orbital ordering renders the ferromagnetic bond along the $b$-axis the magnetic hard axis through the usual spin-orbital coupling mechanism, consistent with the observed alignment of the magnetic moments along the easy axis in the $a$-axis discovered in the 1 1 1 [7], 1 2 2 [5] and 1 1 1 [20] families of Fe-based materials.

Resistivity anisotropy along the $a$ and $b$-axis has also been observed in the NaFeAs family of the Fe-based superconductors [41] similar to the 1 2 2 family materials [21, 22], as expected for orbital ordered materials. Such a behavior usually starts above the $T_S$ at a higher temperature $T^*$. Anisotropic electronic state has also been deduced from the quasiparticle interference (QPI) measurements [42, 43] and observed in ARPES measurements [44–46] on the 1 1 1 materials. The $T^*$ is reported to be ~70 K for NaFeAs. If we take the partial frozen picture discussed above, the upper end of the plateau in figure 5 indicates the appearance of the spin space anisotropy, namely the $T^* \approx 62$ K. Our $T^*$ is lower than the value ~70 K for two possible reasons: (1) One would expect higher value of $T^*$ if the measurement energy of spin fluctuations is reduced from 2 meV to 0+, (2) the uniaxial stress to detwin the sample is similar to the uniform magnetic field applying to a ferromagnet, and it is well known that the field increases the $T_C$. The plateau extends above and below the $T_S$ approximately symmetrically, it is likely attributed to the critical fluctuations of the orbital degree of freedom of the orbital ordering transition at $T_S$.

In summary, we performed inelastic neutron scattering investigation on NaFeAs which shows separated structural and antiferromagnetic transitions upon cooling. The prominent influence of the structural transition on spin dynamics manifests in the plateau in the temperature dependence of the low energy dynamic magnetic fluctuations. It reflects the stiffening of spin fluctuations along the ferromagnetic bond in the $b$-axis and is consistent with the eventual condensation of the dynamic magnetic correlations to the long range antiferromagnetic order with the easy axis along the antiferromagnetic bond direction in the $a$-axis. High statistics data allow us to detect the plateau feature, which could be a consequence of the orbital fluctuations and extends the anisotropic spin fluctuations to $T^*$ above the $T_S$. Therefore, an orbital picture involving the $d_{xz}$ and $d_{yz}$ orbitals which we have proposed since 2008 [5, 7] basing on the pioneering idea of Goodenough [14] seems to consistently explain all experimental data on NaFeAs.

Acknowledgments

The works at RUC and USTC were supported by National Basic Research Program of China (Grant Nos. 2012CB921700 and 2011CBA00112) and the National Natural Science Foundation of China (Grant Nos. 11034012 and 11190024).

References

[1] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296
[2] Rotter M, Tegel M and Johrendt D 2008 Phys. Rev. Lett. 101 107006
[3] Hsu F-C et al 2008 Proc. Natl Acad. Sci. 105 14262
[4] de la Cruz C et al 2008 Nature 453 899
[5] Huang Q, Qiu Y, Bao W, Green M, Lynn J, Gasparovic Y, Wu T, Wu G and Chen X H 2008 Phys. Rev. Lett. 101 257003
[6] Bao W et al 2009 Phys. Rev. Lett. 102 247001
[7] Qiu Y et al 2008 Phys. Rev. Lett. 101 257002
[8] Bao W, Huang Q, Chen G F, Green M A, Wang D M, He J B, Wang X Q and Qu Y 2011 Chin. Phys. Lett. 28 086104
[9] Bao W 2013 Chin. Phys. B 22 087405
[10] Imada M, Fujimori A and Tokura Y 1998 Rev. Mod. Phys. 70 1039
[11] Yildirim T 2008 Phys. Rev. Lett. 101 057010
[12] Yin W-G, Lin C-H and Ku W 2012 Phys. Rev. B 86 081106
[13] Yi M et al 2011 Proc. Natl Acad. Sci. 108 6878
[14] Goodenough J B 1955 Phys. Rev. 100 564
[15] Wollan E O and Koehler W C 1955 Phys. Rev. 100 545
[16] Bao W, Broholm C, Aeppli G, Dai P, Honig J M and Metcalf P 1997 Phys. Rev. Lett. 78 507
[17] Bao W, Axe J D, Chen C H and Cheong S-W 1997 Phys. Rev. Lett. 78 543
[18] Chen G F, Hu W Z, Luo J L and Wang N L 2009 Phys. Rev. Lett. 102 227004
[19] Wang A F, Luo X G, Yan Y J, Ying J J, Xiang Z J, Ye G J, Cheng P, Li Z Y, Hu W J and Chen X H 2012 Phys. Rev. B 85 224521
[20] Li S, de la Cruz C, Huang Q, Chen G F, Xia T-L, Luo J L, Wang N L and Dai P 2009 Phys. Rev. B 80 020504
[21] Chu J-H, Analytis J G, Greve K D, McMahon P L, Islam Z, Yamamoto Y and Fisher I R 2010 Science 329 824
[22] Tanatar M A et al 2010 Phys. Rev. B 81 184508
[23] Fernandes R M, VanBebber L H, Bhattacharya S, Chandra P, Keppens V, Mandrus D, McGuire M A, Sales B C, Sefat A S and Schmalian J 2010 Phys. Rev. Lett. 105 157003
[24] Kasahara S et al 2012 Nature 486 382
[25] Lu X, Park J T, Zhang R, Luo H, Nevidomskyy A H, Si Q and Dai P 2014 Science 345 657
[26] Patz A, Li T, Ran S, Fernandes R M, Schmalian J, Bud’ko S L, Canfield P C, Perakis I E and Wang J 2014 Nat. Commun. 5 3229
[27] Lv W, Wu J and Phillips P 2009 Phys. Rev. B 80 224506
[28] Lee C-C, Yin W-G and Ku W 2009 Phys. Rev. Lett. 103 267001
[29] Chen C-C, Maciejko J, Sorini A P, Moritz B, Singh R R P and Devereaux T P 2010 Phys. Rev. B 82 100504
[30] Lee W-C and Phillips P W 2012 Phys. Rev. B 86 245113
[31] Liu D-Y, Quan Y-M, Chen D-M, Zou L-J and Lin H-Q 2011 Phys. Rev. B 84 064435
[32] Liang S, Moreo A and Dagotto E 2013 Phys. Rev. Lett. 111 047004
[33] Fang C, Yao H, Tsai W-F, Hu J and Kivelson S A 2008 Phys. Rev. B 77 224509
[34] Xu C, Müller M and Sachdev S 2008 Phys. Rev. B 78 020501
[35] Fernandes R M, Chubukov A V and Schmalian J 2014 Nat. Phys. 10 97
[36] Fu M, Torchetti D A, Imai T, Ning F L, Yan J-Q and Sefat A S 2012 Phys. Rev. Lett. 109 247001
[37] Zhang Q et al 2015 Phys. Rev. Lett. 114 057001
[38] Danilkin S A, Horton G, Moore R, Braoudakis G and Hagen M 2007 J. Neutron Res. 15 55
[39] Song Y, Regnault L-P, Zhang C, Tan G, Carr S V, Chi S, Christianson A D, Xiang T and Dai P 2013 Phys. Rev. B 88 134512
[40] Ma L, Chen G F, Yao D-X, Zhang J, Zhang S, Xia T-L and Yu W 2011 Phys. Rev. B 83 132501
[41] Deng Q, Liu J, Xing J, Yang H and Wen H-H 2015 Phys. Rev. B 91 020508
[42] Rosenthal E P, Andrade E F, Arguello C J, Fernandes R M, Xing L Y, Wang X C, Jin C Q, Millis A J and Pasupathy A N 2014 Nat. Phys. 10 225
[43] Cai F, Ruan W, Zhou X, Ye C, Wang A, Chen X, Lee D-H and Wang Y 2014 Phys. Rev. Lett. 112 127001
[44] He C et al 2010 Phys. Rev. Lett. 105 177002
[45] Zhang Y et al 2012 Phys. Rev. B 85 085121
[46] Yi M, Lu D H, Moore R G, Kihou K, Lee C-H, Iyo A, Eisaki H, Yoshiida T, Fujimori A and Shen Z-X 2012 New J. Phys. 14 073019