Microstructure Dependence of Mechanical Property of Commercial MgB₂ Composite Wires

Kozo OSAMURA*1,†, Hidetoshi OGURO*2, Shutaro MACHIYA*3, Yoshimitsu HISHINUMA*4 and Hiroyasu TANIGUCHI*5

Synopsis: It is known that four kinds of MgB₂ composite wires have been commercialized. The present study aims to compare the difference of microstructure dependence of mechanical property of those wires. The volume fraction of MgB₂ filaments in the wire was designed in the range between 0.1 and 0.19. The voids existing in MgB₂ filaments distributed in the scale smaller than a few ten micron meter. The tensile test was carried out at room temperature. Young’s modulus, 0.2 % proof stress and strain were determined. The calculated Young’s modulus was larger than the observed one for all four different wires. This discrepancy was attributed to the poor sintering of MgB₂ filaments as the existence of voids. This situation was proved by the numerically calculated results. A way to realize the higher ductility MgB₂ wire was proposed. The proof stress and strain shall be enhanced by replacing to other constituent metallic element with high thermal expansion coefficient and high Young’s modulus. The further requirement is to densify MgB₂ polycrystalline filaments for reducing the void fraction.

Keywords: magnesium diboride, Young’s modulus, 0.2 % proof stress, voids

1. Introduction

Magnesium diboride (MgB₂) wire is used in a variety of commercial application under liquid helium-free condition: magnetic resonance imaging [1-4], fault current limiters[5], transformers[6], motors[7], generators[8], adiabatic demagnetization refrigerators[9], superconducting magnetic energy storages[10], cables[11] and high-energy physics applications[12,13]. So far MgB₂ has good potentiality for various applications mentioned above due to its much higher critical transition temperature (39 K), the light weight of constituent elements and their abundances in the earth’s crust, and the relatively easier manufacturing processes of conductors to use in cables and magnets[14-16].

To realize its industrially available wire in practice, however, the following issues shall be still overcome: long-length wire fabrication and mass production with desirable current carrying capacity, homogeneity along the conductor, and stability performance[17-19]. In practice, MgB₂ is brittle intermetallic compound and is not possible to deform plastically by itself. Therefore, practical SC wires shall be fabricated as a composite with several metallic components in order to manufacture a long wire. Similar situations have been experienced when fabricating the commercial A15[20], BSCCO[21] and REBCO[22] wires. Further the conjugation with metallic elements brings other advantages of electromagnetic stabilization and so on[23].

Till now, four kinds of composite MgB₂ wire are commercialized[24-27]. In the present study, the difference of microstructures in those commercialized composite wires have been clarified. In particular, the distribution of voids existing in MgB₂ filaments was precisely studied, which influence both mechanical and electromagnetic properties. The mechanical property is an important parameter to certify stability against the hoop stress generating in magnetic coil under high magnetic field. Through the tensile test, the mechanical properties of Young’s modulus and 0.2 % proof load were determined. Their results were compared among four different MgB₂ wires for making clear the microstructure dependence. Further the Young’s modulus was numerically evaluated by using the linear summation rule and the results were compared with the observed ones. Comparing both observed and calculated Young’s moduli, we could get information on the degree of sintering of MgB₂ filaments.
2. Experimental Procedure

2.1 Commercial MgB$_2$ wires

The composite MgB$_2$ wires are commercialized by four manufacturers by different ex-situ method (Columbus) and in-situ one (Sam-Dong, Hyper Tech and Hitachi). Their general cross sectional view is shown in Fig. 1. The filament (1) indicates a sintered MgB$_2$ component, which is surrounded by the inner sheath for preventing any chemical reaction with the matrix. In some cases, the filament (2) consisting of metallic component is installed in order to enhance the mechanical property as a whole. The outer sheath is important to keep uniform superconducting and mechanical properties of such long wire. The practical construction for four kinds of commercialized MgB$_2$ wires is listed in Table 1 and Fig. 2.

2.2 Microstructure analysis

The wire sample was mounted in the thermosetting resin and polished finally to get mirror surface by using the milling machine IM3800 PLUS (Hitachi High-Tech). By using the SEM microscope, the secondary electron and characteristic X-ray images were observed. For measuring void fraction in the sintered MgB$_2$ component, the back scattered electron image was carefully analyzed.

2.3 Mechanical test

The tensile test at room temperature was carried out by using the testing machine Shimadzu AG-50kNIS. The stress vs strain curve was continuously recorded up to about 1 % elongation. The detail of the present procedure was followed to the standard process.28 For measuring the strain precisely, the paired Nyilas type strain gauge was attached on the center part of the wire sample. The 0.2 % proof point ($A_{0.2}$, $R_{0.2}$) as well as the Young’s moduli (E_0, E_u) were evaluated.

3. Experimental Results

3.1 Microstructure of MgB$_2$ composite wires

Fig. 2 shows the backscattered electron image of respective MgB$_2$ composite wires. The area fraction of each component was measured. Their result is listed in Table 1.

As the present MgB$_2$ composite wire consists of each long continuous component, its volume fraction is equal to the observed area fraction. The volume fraction of MgB$_2$ component has been designed in the range between 0.1 and 0.19. The highest volume fraction is found in Hitachi wire and the lowest one is in Hyper Tech one. The result on the volume fraction of each component is summarized in Table 1. Only Hyper Tech includes the filament 2 (Cu). Different kinds of matrix material are used for different wires, which influence mechanical properties as mentioned in the following section. The same kind of outer sheath is utilized for all the present commercial MgB$_2$ wires.

Fig. 3 shows the back scattered electron image inside the MgB$_2$ filament area. The filament has been produced through the sintering of MgB$_2$ powder or a mixture of Mg and B ones. The black dots are voids surrounded by MgB$_2$ grains. The size of voids distributes in the scale smaller than a few ten micron meters. The size distribution and volume fraction look to differ for different wires, respectively. At least, however, two dimensional void density is in the range between 4-25 x104 mm$^{-2}$ and the one dimensional size (α) distributes between 0.1-10 μm. However the contour of void image was not so clear because Mg and B are light elements and the void size is relatively small for getting high

![Fig. 1](image1.png) **Fig. 1** General view of cross section of MgB$_2$ composite wires.

![Fig. 2](image2.png) **Fig. 2** Cross-sectional view of four MgB$_2$ wires.
resolution. As mentioned later, we discussed how the void distribution affects the elastic property with the help of the graphical expression. It is suggested that their different distribution of voids is pointed out to relate with each different sintering schedule. The existence of voids influences the mechanical behavior, which differs from that of the fully sintered polycrystalline MgB$_2$ bulk as mentioned later.

3.2 Result of room temperature tensile test

The result of tensile test at room temperature is reported here. A typical stress vs strain curve for the Columbus wire is shown in Fig. 4(a), where the left graph is the enlarged picture up to 0.2 % elongation and the right is the whole R vs A curve. The straight dotted line is drawn along the initial part. The dotted line deviates soon from the observed curve over about 0.03 % elongation, over which the elasto-plastic deformation starts to take place. The behavior of full plastic deformation is observed in the strain region over the 0.2 % proof point. Some parameters representing the characteristics of the stress vs strain curve were determined as Young’s moduli, E_0 and E_f and the 0.2 % proof stress and strain. Their result is indicated in Table 2.

Table 1 Components and their volume fraction of the composite wires.

Manufacturer	Filament (1)	Filament (2)	Inner Sheath	Matrix	Outer Sheath
Columbus24	MgB$_2$ (0.160)	-	-	Ni (0.314)	Ni-Cu-Fe (0.525)
Sam Dong25	MgB$_2$ (0.132)	-	Nb (0.165)	Cu (0.320)	Ni-Cu-Fe (0.522)
Hyper Tech26	MgB$_2$ (0.099)	Cu (0.149)	-	Nb (0.369)	Ni-Cu-Fe (0.382)
Hitachi27	MgB$_2$ (0.189)	-	Fe (0.296)	Cu (0.224)	Ni-Cu-Fe (0.291)

Fig. 3 Cross sectional surface of the MgB$_2$ filament area.

Fig. 4 Stress vs strain curve at room temperature for four kinds of commercial MgB$_2$ wires.

Fig. 4(b) gives the stress vs strain curve for the Sam Dong wire. When comparing with the Columbus data, the elasto-plastic deformation region takes place up to 0.8 %. The result for the Hyper Tech wire is indicated in *Fig. 4(c)*. The elasto-plastic behavior is observed in the strain region over the 0.2 % proof.
point. Even in the plastic deformation region, the stress increases gradually with increasing strain.

The result for the Hitachi wire is indicated in Fig. 4(d). The elasto-plastic behavior appears in the strain region over the 0.2% proof point. In the plastic deformation region, the stress increases gradually with increasing strain.

For obtaining accurate results, the measurement was repeated five times by using different samples from the same wire. The average value and the standard deviation were calculated as shown in Table 2. This requirement is based on the standardization procedure mentioned in IEC-TC9028. When looking at the standard deviation for both \(E_0 \) and \(E_u \), the \(E_u \)'s value is lower than the \(E_0 \)'s one. So hereafter the \(E_u \) is taking into consideration for discussion. The result is summarized in Table 3. The calculated Young’s modulus is attached here. It is interesting that the Young’s modulus differs largely depending on the wire prepared by each manufacturer. For all wires, the observed \(E_{obs} \) is smaller than \(E_{cal} \), which is numerically obtained.

As shown in Table 3, 0.2% proof stress resulted in a large change depending on the sort of tapes, while the 0.2% proof strain keeps a similar value. This large change of 0.2% proof stress correlates with the amount of Cu content. Comparing two tapes of Sam Dong and Hyper Tech, a large 0.2% proof stress results in the less amount of Cu. Similar tendency meets for Hitachi wire. Those facts might link to the easier plastic deformation of Cu in the small strain region.

3.3 Analysis of Young’s modulus

The present MgB\(_2\) composite wires consist of continuous long components. Due to such characteristic structure, it is reasonable to evaluate the Young modulus by the Voigt rule as indicated,

\[
E_{cal} = \sum f_i E_i
\]

where \(f_i \) and \(E_i \) are volume fraction and Young’s modulus of each component. Their necessary data are listed in Tables 1 and 4, respectively.

The calculated result is listed in Table 3. It looks that all the calculated Young’s moduli are larger than the observed ones. Those discrepancy is suggested to occur relating to the term of volume fraction of MgB\(_2\) filament. The MgB\(_2\) filament part has

Sample #	\(E_0 \) (GPa)	\(E_u \) (GPa)	\(R_{0.2} \) (MPa)	\(A_{0.2} \) (%)
Columbus-1	166	166	216	0.333
Columbus-2	172	168	217	0.340
Columbus-3	162	166	216	0.331
Columbus-4	169	167	216	0.320
Columbus-5	164	166	218	0.345
average	166	167	217	0.334
standard deviation	3.5	0.8	0.8	0.008

Table 2 Summary of mechanical test at room temperature.

Sample #	\(E_0 \) (GPa)	\(E_u \) (GPa)	\(R_{0.2} \) (MPa)	\(A_{0.2} \) (%)
Sam Dong HT1	109	105	174	0.359
Sam Dong HT2	100	106	169	0.370
Sam Dong HT3	107	106	173	0.372
Sam Dong HT4	99	100	170	0.374
Sam Dong HT5	91	102	168	0.366
average	101.2	104	171	0.388
standard deviation	6.6	2.4	2.5	0.005

Table 3 Summary of tensile test for four kinds of commercial wires.

Manufacturer	\(E_{obs} \) (GPa)	\(R_{0.2} \) (MPa)	\(A_{0.2} \) (%)	\(E_{cal} \) (GPa)	\(E_{obs}/E_{cal} \)	\(na \)
Columbus	167	217	0.334	198	0.84	0.16
Sam Dong	104	171	0.368	152	0.68	0.32
Hyper Tech	126	210	0.376	147	0.86	0.14
Hitachi	144	207	0.349	181	0.79	0.21

Table 4 Reference data of Young’s modulus.

Component	\(E \) (GPa)	Reference
MgB\(_2\)	224	[32]
Cu	110	[33]
Nb	103	[33]
Ni	207	[33]
Fe	205	[34]
Monel400	185	[35]
been not fully sintered reaching to 100 % densification, but includes some voids as shown in Fig. 3.

4 Discussion

4.1 Relation between the observed E and the distribution of voids

As listed in Table 3, the observed Young’s modulus of MgB$_2$ filament is smaller than the calculated one. The reason is suggested to be related to the existence of voids in MgB$_2$ filament as shown in Fig. 3. Here the influence of void distribution is analyzed as follows. At first, a single inclusion with the Young’s modulus E_v distributes in the matrix with E_m where its size is expressed as $\alpha x \beta$ as shown in Fig 5(a). We suppose that the stress R is applied along the horizontal direction. Then the total Young’s modulus is given by Eq. (2),

$$E_p = (1-\alpha)E_m + \frac{\alpha E_m E_v}{(1-\beta)E_m + \beta E_v} \Rightarrow (1-\alpha)E_m$$

Replacing the inclusions to voids ($E_v=0$), the total Young’s modulus is given by the second term of the right hand side equation.

When comparing both equations of (2) and (3), the total Young’s modulus is made clear to become smaller when the inclusions (voids) distribute finer. The ratio E_p/E_m given by Eqs. (2) and (3) is the expected Young’s modulus from the observation. Thus we may put as follows,

$$\frac{E_{obs}}{E_{cal}} = \frac{E_p}{E_m} = 1 - n\alpha$$

The rough estimation from Fig. 3 gives that one dimensional void density (n) is $0.2-5 \times 10^2$ mm$^{-1}$ and the size (α) is $0.1-10 \times 10^{-3}$ mm. Their distribution is supposed to obey a log normal distribution function. Then the typical combination of n and α gives the na in the average value of 0.10 and the 50 % probability range of 0.02-0.5. As shown in Fig. 5(b), the Young’s modulus becomes smaller, when the size of voids decreases and the density increases. The na estimated here is quite close to the observed data listed in Table 3. Thus it is concluded that the fine distribution of voids affects the decrease of Young’s modulus. It is suggested that the coarsening of voids is effective during sintering process for improving the Young’s modulus, because the area fraction of matrix including no void increase. On the other hand, the larger voids produce incoherent strain around them and influence the mechanical property in the elastic and plastic regions. In the elastic region, its influence has been discussed just in the present context. The increase of such incoherent strain relates to an earlier fracture behavior. As a whole, we suggest an optimum condition about the distribution of voids, in which the sintered MgB$_2$ elements in the composite wire keep normal Young’s modulus and avoid an early fracture.

![Fig. 5](distribution-of-voids-in-mgb2-area.png)
4.2 Way to realize the higher ductility MgB$_2$ wire

One of targets to improve the commercial MgB$_2$ wire is that the 0.2 % proof stress and strain shall be increased up to 600 MPa and 0.6 %, respectively, which have been already achieved for the REBCO wire 36,37.

The proposed processes for these requirements are suggested as follows,

1) Thermal strain in MgB$_2$ filaments shall be increased for increasing reversible stress and strain. This suggestion might be referred to the report38.

2) Densification and alignment of MgB$_2$ filaments shall be improved for increasing critical current density and fracture strain.

In order to increase thermal strain39, one of solutions is to replace the outer sheath material to stainless steel (SUS), which has higher Young’s modulus and higher thermal expansion coefficient. The thermal residual strain induced in the MgB$_2$ filament is given, for instance, in the present case of Hitachi wire,

$$A'_{MgB2} = \left[\frac{\alpha_1 V_1 + (\alpha_2 - \alpha_1) V_2}{E_1} + \frac{(\alpha_3 - \alpha_1) V_3 + (\alpha_4 - \alpha_1) V_4}{E_4}(T - T_0)\right]$$

where α_i and V_i are thermal expansion coefficient, and volume fraction where 1, 2, 3 and 4 are MgB$_2$, inner sheath, matrix and outer sheath, respectively as listed in Table 1. The result for the present Hitachi wire is

$$A'_{MgB2} = 0.114\%$$

When replacing Monel 400 to SUS with thermal expansion coefficient of 17.3×10^{-6} K$^{-1}$ and Young’s modulus of 200 GPa, then the thermal residual strain is reduced to

$$A'_{MgB2} = 0.061\%$$

According to the further calculation39, the 0.2 % proof strain, $A_{0.2}$ increases up to the target value of 0.6 %, Recently Tanaka et al40 reported the improved MgB$_2$ composite wire by replacing Monel 400 to stainless steel, where the 0.2 % proof strain reached 0.46 %. Further we need to look for other high performance material for reaching the final target.

5. Summary

At the first step, the difference of microstructure was investigated among four kinds of commercialized composite wires. The volume fraction of MgB$_2$ component was found in the range between 0.1 and 0.19. The distribution of voids existing in MgB$_2$ filaments was studied. The voids distributed in the scale smaller than a few ten micron meters.

The tensile test was carried out at room temperature to investigate the mechanical property of those composite wires. Young’s modulus, 0.2 % proof stress and strain were determined. The Young’s modulus was numerically evaluated based on the linear summation rule. The calculated modulus was larger than the observed one for all four different wires. This discrepancy was attributed to the poor sintering of MgB$_2$ filaments as the existence of voids. This situation was proved by the numerically calculated results. The fine distribution of voids affects the decrease of Young’s modulus. So it is suggested that the coarsening of voids is effective during sintering process for improving the Young’s modulus.

The way to realize the higher ductility MgB$_2$ wire was considered. It was suggested that the proof stress and strain shall be enhanced by replacing to another constituent metallic element with high thermal expansion coefficient and high Young’s modulus. The second requirement is to densify MgB$_2$ polycrystalline filaments for reducing the void fraction and achieving better grain connectivity.

Acknowledgements

This work was supported in part by NIFS General Collaboration Research Program (NIFS18KECF023). We acknowledge valuable discussions with Dr Hideki Tanaka and Dr Masahiro Nagae, and technical supports by Hitachi High-Tech, Sam Dong and Hyper Tech.

References

1) Y Iwasa: “Towards liquid-helium-free persistent-mode MgB$_2$ MRI magnets: FBMW experience,” Supercond. Sci. Technol., 30 (2017) 053001
2) Y Choi, D Park, Y Li, H Tanaka, W Lee, J Bascuñán, and Y Iwasa: “Persistent-mode operation and magnetization behavior of a solid nitrogen-cooled MgB$_2$ small-scale test coil towards a tabletop 1.5-T osteoporosis MRI,” Supercond. Sci. Technol., 33 (2020) 1018
3) M Parizh, Y Lvovsky and M Sumption: “Conductors for commercial MRI magnets beyond NbTi: requirements and Challenges,” Supercord. Sci. Technol., 30 (2017) 014007
4) D Patel, M S A Hossain, W Qu, H Jie, Y Yamauchi, M Maeda, M Toms, S Choi and J H Kim: “Solid cryogen: a cooling system for future MgB$_2$ MRI magnet,” Sci. Rep., 7 (2017) 43444
5) Y M Majoras, A Campbell, T A Cooms, S M Harrison, P Sargent, M Hasllett and M Husband: “MgB$_2$ sample tests for possible applications of superconducting fault current limiters,” IEEE Transactions on Applied Superconductivity, 17(2007) 2826 – 2829
6) P Tixador: “Concepts for HTS and MgB$_2$ in Transformers,” Advances in Science and Technology, 47 (2006)195-203
7) K Kajikawa and T Nakamura: “Proposal of a fully superconducting motor for liquid hydrogen pump with MgB$_2$ wire,” IEEE Transactions on Applied Superconductivity, 19 (2009) 1669-1673
8) I Marino, A Pujana, G Sarmiento, S Sanz, J M Merino, M Tropeano, J Sun and T Canosa: “Lightweight MgB₂ superconducting 10 MW wind generator,” Supercond. Sci. Technol., 29 (2016) 024005

9) T Proró, J M Duval, N Luchier and S D’escriván: “Experimental results on MgB₂ used as ADR magnetic shields, and comparison to NbTi,” Cryogenics, 64 (2014) 201-206

10) A G Mamalis, A Kladas and I D Theodorakopoulos: “Numerical Simulation of MgB₂ Superconducting Magnetic Energy Storage Coil,” Materials Science Forum, 721 (2012) 33-38

11) A Ballarino, C E Bruzek, N Dittmar, S Giannelli, W Godacker, G Grasso, F Grilli, C Haberstroh, S Hole, F Lesur, A Marian, J M Martínez-Vel, L Martíni, C Rubbia, D Salmieri, F Schmidt and M Tropeano: “The BEST PATHS project on MgB₂ superconducting cables for very high power transmission,” IEEE Trans. Appl. Supercond., 26 (2016) 5401705

12) H Tanaka, T Suzuki, M Kodama, T Koga, H Watanabe, A Yamamoto, S Michizono: “Performance of MgB₂ superconductor developed for high-efficiency klystron applications,” CERN-ACC-2020-0021; CLIC-Note-1160, DOI: 10.1109/TASC.2020.2970391

13) Y Hishinuma, A Kikuchi, Y Shinoda, T Kashiwai, S Hata, S Yamada, T Muroga, A Sagara: “Development of MgB₂ superconducting wire for the low activation superconducting magnet system operated around core D-T plasma,” Fusion Eng. Des., 98-99 (2015)1076–1080

14) J Nagamatsu, N Nakagawa, T Muranaka, Y Zenitani and J Akimitsu: “Superconductivity at 39 K in magnesium diboride,” Nature 410 (2001) 63–64

15) J H Kim, S Oh, H Kumakura, A Matsumoto, Y U Heo, K S Song, Y M Kang, M Maeda, M Rindfleisch, M Tomsc, S Choi, S X Dou: “Tailored materials for high performance MgB₂ wire,” Adv. Mater. 23 (2011) 4942–4946

16) D Patel, M S A Hossain, A Motaman, S Barua, M Shababuddi and J H Kim: “Rational design of MgB₂ conductors toward practical applications,” Cryogenics, 63 (2014) 160–165

17) H S Shin, M A Diaz, Z M Bautista et al: “Characterization of electromechanical properties in differently sheathed MgB₂ wires under uniaxial tension,” IEEE Transactions on Applied Superconductivity, 29 (2019) 8400805

18) M Kodama, T Suzuki, H Tanaka, K Okishio, K Okamoto, G Nishijima, A Matsumoto, A Yamamoto, J Shimoyma, and K Kishio: “High-performance dense MgB₂ superconducting wire fabricated from mechanically milled powder,” Supercond. Sci. Technol., 30 (2017)044006

19) D Patel, A Matsumoto, H Kumakura, M Maeda, S H Kim, M S A Hossain, S Choi and H J Kim: “MgB₂ for MRI applications: dual sintering induced performance variations in in situ and IMD processed MgB₂ conductors,” J Materials Chemistry C, 8 (2020) 2507–2516

20) K Tachikawa: “Studies on superconducting V3Ga wire,” Proc. ICEC-3, IIIlife Sci. & Technol. Pub., Surrey, UK (1970) 339-340

21) K Osamura, H Ito, T Horita, S Nonaka, H D Ramsbottom: “Phase Equilibrium and Formtion of Bi2223 Phase in P/T-Processed Tapes,” Advances in Cryogenic Engineering (Materials), 44 (1998)427-434

22) Y Iijima, N Tanabe, Y Ikeno and O Kohno: “Biaxially aligned YBa2Cu3O7-x thin film tapes,” Physica C: Superconductivity, 185 (1991)1959-1960

23) T Wang, S Noguchi, X Wang, I Arakawa and K Minami, “Analyses of transient behaviors of no-insulation REBCO pancake coils during sudden discharging and overcurrent,” IEEE Transactions on Applied Superconductivity, 25 (2015) 4603409

24) ASG Superconductors Columbus: https://www.asgsuperconductors.com/columbus-mgb (2021)

25) Hyper Tech Research: http://www.hypertechresearch.com/mgb2%20wire.htm (2021)

26) J H Choi, D G Lee, J H Jeon, E J Lee, M Maeda and S Choi: “Customized MgB₂ Superconducting wire toward practical applications at Sam Dong at Korea,” J. Supercond. And Novel Magnetism, 32 (2018) 1219-1223

27) MgB₂ superconducting multi-core wires, superconducting cables, and superconducting magnets, EP2642543A1 (2013)

28) IEC 61788-18: superconductivity – part 18: mechanical properties measurement-room temperature tensile test of BSCCO composite superconductors

29) https://www.samdongamerica.com/products (2021)

30) http://www.hypertechresearch.com/mgb2 (2021)

31) https://www.hitachi.co.jp/id/news/topics/2019/1008.html (2021)

32) V. Milman and M.C. Warren, “Elastic properties of TiB₂ and MgB₂,” J Phys.: Condensed Matter, 13 (2001) 5585-5595

33) https://www.fintech.co.jp/etc-data/kinzoku-data (2021)

34) https://www.toishi.info/met/young_list (2021)

35) https://www.toishi.info>sozai>monel400 (2021)

36) K Osamura, S Machiya, K Kajiwara, T Kawasaki, S Harjo, Y Zhang, S Fujita, Y Iijima and D Hampshire: “Inverted-parabolic and weak strain dependencies on the critical current in practical<110> and <100> oriented REBCO tapes,” AIP Advances 9 (2019) 075216

37) K Osamura, H-S Shin, K-P Weiss, A Nyilas, A Nijhuis, K Yamamoto, S Machiya and G Nishijima: “International round robin test for mechanical properties of REBCO superconductive tapes at room temperature,” Supercond. Sci. Technol. 27 (2014) 085009

38) K Osamura, S Machiya, T Kawasaki, S Harjo, T Kato, S Kobayashi and G Osabe: “Mechanical-electromagnetic property of stainless sheet laminated BSCCO-2223 wires,” Materials Research Express, 6 (2019)026001

39) K Osamura, S Machiya, S Ochiai, G Osabe, K Yamazaki, and J Fujikami: “High strength / high strain tolerance DI-BSCCO tapes by means of pre-tensioned lamination technique,” IEEE Transactions on Applied Superconductivity, 23 (2013) 6400504-7

40) H Tanaka, T Suzuki, K Kodama, G Nishijima and A Matsumoto: “Improvement of bending tolerance of MgB₂ wire by increasing residual compressive strain of MgB₂ filaments,” Abstracts of CSSJ Conference, 100 (2020)143

Kozo OSAMURA

He graduated from Kyoto University, Dept of Eng. in 1965 and received Doctor Degree of Eng. from Kyoto University in 1970. He was employed as research associate in Dept. of Metallurgy, Kyoto University in 1970 and became professor in 2005. He became emeritus professor in 2005 and now works at Research Institute for Applied Sciences. He now engages in a research of mechanical and critical current characteristics of industrial superconducting composites.
Hidetoshi OGURO Junior Associate Professor of Department of Materials Science, School of Engineering, Tokai University. Research interests are mechanical properties and developments of superconducting wires.

Shutaro MACHIYA He received a PhD from Nagoya University in 2008. In 2008 he was employed as a researcher of Japan Atomic Energy Agency Dept. of quantum beam section and in 2011 he moved to Daido University as a lecturer. He is currently associate professor of Department of Mechanical Engineering, School of Engineering, Daido University. His research subjects are micromechanics and strain measurements in superconducting wires by means of neutron diffraction.

Yoshimitsu HISHINUMA He graduated from the Department of Materials Science and Engineering, Tokai University in 1994 and completed the doctoral course in Materials Science and Engineering at the Graduate School of Engineering, University of Tsukuba, and was honored with a PhD (Engineering) from the University of Tsukuba in 1999. In 2001, he was appointed as an assistant professor at the National Institute for Fusion Science (NIFS), and was become associate professor at the NIFS in 2014. He is mainly engaged in the research and development of A15-type compound system and MgB$_2$ superconducting wires for advanced fusion devices.

Hiroyasu TANIGUCH He graduated from Wakayama Prefectural High School of Technology in 1987. He joined the Osaka Alloying Works. Co. LTD and works ever since as the director of quality assurance. His professional skill as well as research subjects are the development of high quality metallic and superconductive alloys and their quality assessment.