Upper Bounds For Families Without Weak Delta-Systems

Eric Naslund

Abstract
For $k \geq 3$, a collection of k sets is said to form a weak Δ-system if the intersection of any two sets from the collection has the same size. Erdős and Szemerédi asked about the size of the largest family \mathcal{F} of subsets of $\{1, \ldots, n\}$ that does not contain a weak Δ-system. In this note we improve upon the best upper bound due to the author and Sawin, and show that

$$|\mathcal{F}| \leq \left(\frac{2}{3} \Theta(C) + o(1)\right)^n$$

where $\Theta(C)$ is the capset capacity. In particular, this shows that

$$|\mathcal{F}| \leq (1.8367 \ldots + o(1))^n.$$

1 Introduction

A collection of k sets for $k \geq 3$ is said to form a k-sunflower, or a Δ-system, if the intersection of any two sets from the collection is the same. This notion was introduced in 1960 by Erdős and Rado [1], and they famously conjectured that for $k \geq 3$, there exists $C_k > 0$ depending on k, such that any k-sunflower-free family \mathcal{F} of sets of size m satisfies

$$|\mathcal{F}| \leq C_k^m.$$

This was one of Erdős’s favorite problems, for which he offered 1000 [2, Problem 90], and while still out of reach, progress was made recently by Alweiss, Lovett, Wu and Zhang [3] (see also [4–7]).
In 1974, Erdős, E. Milner, and Rado [8] introduced the related notion of a weak \(\Delta \)-system (see [9] for a survey). For \(k \geq 3 \), a collection of \(k \) sets is said to form a weak \(\Delta \)-system of size \(k \) if the intersection of any two sets from the collection has the same size. Let \(G_k(n) \) denote the size of the largest family of subsets of \(\{1, \ldots, n\} \) that does not contain a weak \(\Delta \)-system of size \(k \). Erdős and Szemerédi asked about the growth rate of \(G_k(n) \) [10] (see also [2, Problem 94]), and in their paper they gave the lower bound

\[
G_k(n) \geq n^{\frac{\log n}{4 \log \log n}}.
\]

The current best lower bound, due to Kostochka and Rödl [11] (which improved upon [12]), is

\[
G_k(n) \geq k^{c(n \log n)^{\frac{1}{3}}}.
\]

Frankl and Rödl [13] resolved a conjecture of Erdős and Szemerédi, and proved that for every \(k \), there exists \(\varepsilon_k > 0 \) such that \(G_k(n) < (2 - \varepsilon_k)^n \). In the case \(k = 3 \), the stronger upper bound

\[
G_3(n) \leq \left(\frac{3}{2^{2/3}} + o(1) \right)^n = (1.889881 \ldots + o(1))^n
\]

is a consequence of the upper bound for 3-sunflower-free families due to the author and Sawin [14]. That result was proven using the slice-rank method, which was introduced by Tao [15] following the polynomial method breakthrough of Croot, Lev, and Pach [16], and Ellenberg and Gijswijt [17]. Throughout, we refer to a 3-sunflower-free family simply as sunflower-free since it contains no \(k \)-sunflower for any \(k \). The bound for sunflower-free sets achieved in [14] cannot be improved without a substantial change in approach, since the result also applies to multicolored sunflower-free sets (see [18] for a definition). The multicolored lower bounds from the work of Kleinberg, Sawin, and Speyer, [19], and Pebody [20], imply that for multicolored sunflower-free sets, the bound in equation (1.1) is optimal up to sub-exponential factors. Note that if a family does not contain a weak \(\Delta \)-system for \(k = 3 \), then it does not contain a weak \(\Delta \)-system for any \(k \).

In this paper we relate the size of the largest family that does not contain a weak \(\Delta \)-system in \(\{0, 1\}^n \) to the size of the largest capset in \(\mathbb{F}_3^n \), and improve upon the upper bound for \(G_3(n) \). A set \(A \subseteq \mathbb{F}_3^n \) is called a capset if there is no triple \(x, y, z \in A \), not all equal, such that \(x + y + z = 0 \) (mod 3). Equivalently, \(A \) is a capset if there does not exist a triple \(x, y, z \), not all equal, such that for every coordinate \(i \),

\[
\{x_i, y_i, z_i\} \in \{\{0, 1, 2\}, \{0, 0, 0\}, \{1, 1, 1\}, \{2, 2, 2\}\}.
\]
Let C_n denote the size of largest capset in \mathbb{F}_3^n, and define the capset capacity, $\Theta(C)$, to be

$$\Theta(C) = \limsup_{n \to \infty} (C_n)^{1/n}.$$

In particular, Ellenberg and Gijswijt proved that

$$\Theta(C) \leq \min_{0 < t < 1} t^{-2}(1 + t + t^2) = \frac{3}{8}\sqrt{207 + 33\sqrt{33}} = 2.7551046 \ldots.$$

The notation $\Theta(C)$ is used since this quantity is precisely the Shannon Capacity of the hypergraph with three elements and one edge, see [21] for details on this notation.

Our main result is:

Theorem 1 Let X be a set of size $|X| = n$, and let \mathcal{F} be a collection of subsets of X, and suppose that \mathcal{F} does not contain a weak Δ-system. Then

$$|\mathcal{F}| \leq \left(\frac{2}{3}\Theta(C) + o(1)\right)^n,$$

where $\Theta(C)$ is the capset capacity. In particular due to (1.2) we have that

$$|\mathcal{F}| \leq \left(\frac{1}{4}\sqrt{207 + 33\sqrt{33}} + o(1)\right)^n = (1.8367 \ldots + o(1))^n.$$

Equivalently, Theorem 1 states that

$$G_3(n) \leq \left(\frac{2}{3}\Theta(C) + o(1)\right)^n.$$

To prove this, we examine sets without non-trivial equilateral triangles in $\{0, 1\}^n$, where an equilateral triangle is a triple $x, y, z \in \mathbb{R}^n$ such that $\|x - y\| = \|y - z\| = \|z - x\|$, and it is said to be trivial if $x = y = z$. In the next section, we prove the following upper bound:

Theorem 2 Let $A \subset \{0, 1\}^n$ that does not contain a non-trivial equilateral triangle. Then $|A| \leq \left(\frac{2}{3}\Theta(C) + o(1)\right)^n$ where $\Theta(C)$ is the capset capacity.

Since we are working in $\{0, 1\}^n$, coordinate-wise distances are either 0 or 1, and so the above result holds for any L^p norm. Let us begin by deducing Theorem 1 from Theorem 2.

Proof of Theorem 1 assuming Theorem 2 Let \mathcal{F} be a family of subsets of $\{1, \ldots, n\}$, and suppose that \mathcal{F} does not contain a weak Δ-system. Every subset $A \subset \{1, 2, \ldots, n\}$ corresponds to a vector $x \in \{0, 1\}^n$ where $x_i = 1$ if and only if $i \in A$, and so our family \mathcal{F} corresponds to a set $A \subset \{0, 1\}^n$. In this setting, three vectors $x, y, z \in \{0, 1\}^n$ form a weak Δ-system if and only if $\langle x, y \rangle = \langle y, z \rangle = \langle z, x \rangle$. For $x \in \{0, 1\}^n$, the weight
of x is defined to be the number of non-zero entries. If x, y, z all have the same weight w, then $\|x\|_2^2 = \|y\|_2^2 = \|z\|_2^2$, and so x, y, z form a weak Δ-system if and only if $\|x - y\|_2^2 = \|y - z\|_2^2 = \|z - x\|^2$, that is, if and only if x, y, z form an equilateral triangle. Let A_w denote the elements of A of weight w. Since $\sum_{w=0}^n |A_w| = |A|$, there must exist w such that $|A_w| \geq |A|/n+1$. Then A_w is a set that does not contain an equilateral triangle, and so by Theorem 2, $|A_w| \leq (2^{1/3} \Theta(C))^n$, and the proof is complete.

\[\square \]

2 Subsets of $\{0, 1\}^n$ Avoiding Equilateral Triangles

To prove Theorem 2, we first prove a lemma that allows us to upper bound the density of the largest set without equilateral triangles in $\{0, 1\}^n$ by the the relative density of the largest set without equilateral triangles inside any subset of $\{0, 1\}^n$. Then we define a mapping that allows us to use the Ellenberg–Gijswijt capset bound to upper bound the density of the largest set without equilateral triangles among the elements of weight w.

For any $x \in \{0, 1\}^n$ define the map $f_x : \{0, 1\}^n \to \{0, 1\}^n$ by

\[f_x(y) = x + y \pmod{2}. \]

Lemma 1 For any $x \in \{0, 1\}^n$, f_x is an isometry. That is, for any $y, z \in \{0, 1\}^n$ we have that $\|y - z\| = \|f_x(y) - f_x(z)\|$.

Proof Given x, y, z, examine coordinate by coordinate. If $y_i = z_i$, then $x_i + y_i = x_i + z_i \pmod{2}$, and so the distance is still 0. If $y_i \neq z_i$, then $x_i + y_i \neq x_i + z_i \pmod{2}$, and so once again the distance is preserved. \square

For any set $B \subset \{0, 1\}^n$, let $w_\Delta(B)$ denote the size of the largest subset of B that does not contain an equilateral triangle, and define

\[\delta(B) \Delta(B) = \frac{w_\Delta(B)}{|B|}. \]

Note that if B does not contain any equilateral triangles, then $\delta(B) = 1$.

Lemma 2 Let $A \subset \{0, 1\}^n$ that does not contain an equilateral triangle. Then

\[|A| \leq 2^n \min_{B \subset \{0, 1\}^n} \delta(B). \]

Proof Let $A, B \subset \{0, 1\}^n$ be given, and suppose that A does not contain an equilateral triangle. For every element $x \in \{0, 1\}^n$ consider $f_x(A) \cap B$. For each pair of elements, $a \in A, b \in B$, there is one and only one element $x \in \{0, 1\}^n$ such that $f_x(a) = b$, which implies that

\[\sum_{x \in \{0, 1\}^n} |f_x(A) \cap B| = |A||B|. \]
and hence there exists \(x \in \{0, 1\}^n \) such that
\[
\frac{|A|}{2^n} \leq \frac{|f_x(A) \cap B|}{|B|}.
\]
Since \(A \) does not contain an equilateral triangle, by Lemma 1, neither does \(f_x(A) \). Hence
\[
\frac{|f_x(A) \cap B|}{|B|} \leq \delta_\Delta(B),
\]
by definition of \(\delta_\Delta \), and the lemma follows.

We say that a subset of \(\{0, 1\}^n \) is sunflower-free if it does not contain three elements \(x, y, z \), not all equal, such that \(\{x_i, y_i, z_i\} \subseteq \{0, 0, 0\}, \{1, 1, 1\}, \{0, 0, 1\} \) for every \(i \). Note that in this definition of sunflower-free, we do allow triples where two of the three are equal, and so for example \(A = \{(0, 1), (1, 1)\} \) is not sunflower-free since \((0, 1), (0, 1), (1, 1) \) form a sunflower. For a set of vectors of a fixed weight, this definition of sunflower-free is the same if the three vectors are required to be distinct.

Consider the map \(F : \mathbb{F}_3^n \to \{0, 1\}^n \) defined coordinate-wise by \(F_i(0) = 0 \), \(F_i(1) = 1 \) and \(F_i(2) = 0 \) for each \(i \).

Lemma 3 Let \(A \subset \{0, 1\}^n \) be a sunflower-free set. Then \(F^{-1}(A) \) is a capset.

Proof We will show that if \(x, y, z \in \mathbb{F}_3^n \) are not all equal, and if \(F(x), F(y), F(z) \) is not a sunflower, then \(x + y + z \neq 0 \) (mod 3). If \(F(x) = F(y) = F(z) \), then we cannot have \(x + y + z = 0 \) unless \(x = y = z \) since \(\{0, 2\}^n \) is a capset in \(\mathbb{F}_3^n \). If \(F(x), F(y), F(z) \) are not all equal, and do not form a sunflower, then there exists a coordinate \(i \) such that \(\{F(x_i), F(y_i), F(z_i)\} = \{0, 1, 1\} \). This implies that \(\{x_i, y_i, z_i\} = \{\ast, 1, 1\} \) where \(\ast \) is either a 0 or a 2, and in either case this guarantees that \(x + y + z \neq 0 \).

Let \(B_k \subset \{0, 1\}^n \) denote the set of vectors of weight \(k \).

Theorem 3 If \(A \subset B_k \) does not contain a sunflower, we have that
\[
|A| \leq \frac{\Theta(C)^n}{2^{n-k}}
\]
where \(\Theta(C) \) is the capset capacity.

Proof Let \(A \subset B_k \) be a sunflower-free set. Each element in \(A \) has \(n - k \) zeros, and so
\[
|F^{-1}(A)| = |A| \cdot 2^{n-k}.
\]
The result follows since Lemma 3 implies that \(|F^{-1}(A)| \leq \Theta(C)^n \) since \(\Theta(C)^n \) bounds from above the size of the largest capset of size \(n \).

Putting this all together, we prove Theorem 2.

Proof of Theorem 2 A set without equilateral triangles in \(\mathbb{R}^n \) gives rise to such a set in \(\mathbb{R}^{n+m} \) by appending \(m \) 0’s to each vector, so we may suppose that \(3|n \) which can only
impact the bound by at most a factor of 4. Among the vectors of weight \(n/3 \), every sunflower is an equilateral triangle. Since

\[
|B_{n/3}| = \binom{n}{n/3} = \left(\frac{3}{2^{2/3}} + o(1) \right)^n,
\]
due to Stirling’s approximation, Theorem 3 implies that for \(B_{n/3} \),

\[
\delta_\Delta(B_{n/3}) \leq \left(\frac{\Theta(C)}{2^{2/3}} \right)^n \cdot \left(\frac{3}{2^{2/3}} + o(1) \right)^{-n} = \left(\frac{\Theta(C)}{3} + o(1) \right)^n.
\]

Lemma 2 implies that for any \(A \subset \{0, 1\}^n \) that does not contain an equilateral triangle, we have

\[
|A| \leq 2^n \delta_\Delta(B_{n/3}) \leq \left(\frac{2\Theta(C)}{3} + o(1) \right)^n,
\]
and the result follows.

\[\square \]

Acknowledgements I would like to thank Lisa Sauermann for her many helpful comments, and for pointing out an error in the original version of this paper. I would also like to thank the anonymous referees for their valuable feedback.

References

1. Erdős, Paul, Rado, Richard: Intersection theorems for systems of sets. J. London Math. Soc. 35, 85–90 (1960)
2. Chung, L., Fan, R.K.: Open problems of Paul Erdos in graph theory. J. Graph. Theory 25(1), 3–36 (1997)
3. Alweiss, R., Lovett, S., Wu, K., Zhang, J.: Improved bounds for the sunflower lemma. Ann. Math. 194(3), 795–815 (2021)
4. Rao, A.: Coding for sunflowers. Discret. Anal. 2, 8 (2020)
5. Tao, T.: The sunflower lemma via shannon entropy, (2020). https://terrytao.wordpress.com/2020/07/20/the-sunflower-lemma-via-shannon-entropy
6. Bell, T., Suchakree, C., Lutz, W.: Note on sunflowers. Discret. Math. 344(7), 112367 (2021)
7. Rao, A.: Sunflowers: from soil to oil. Bull. Amer. Math. Soc. (N.S.) 60(1), 29–38 (2023)
8. Erdös, P., Milner, E.C., Rado, R.: Intersection theorems for systems of sets. J. Combinatorial Theory Ser. A 300(1), 166–173 (1974)
9. Erdős, Paul, Szemerédi, Endre: Extremal problems on \(\Delta \)-systems. In: Numbers, information and complexity (Bielefeld, 1998), pp. 143–150. Kluwer Acad. Publ, Boston (2000)
10. Erdős, Paul, Szemerédi, Endre: Combinatorial properties of systems of sets. J. Combinatorial Theory Ser. A 24(3), 308–313 (1978)
11. Kostochka, Alexandr V., Rödl, Vojtěch: On large systems of sets with no large weak \(\Delta \)-subsystems. Combinatorica 18(2), 235–240 (1998)
12. Rödl, Vojtěch, Thoma, Luboš: On the size of set systems on \([n] \) not containing weak \((r, \Delta)\)-systems. J. Combin. Theory Ser. A 80(1), 166–173 (1997)
13. Frankl, Peter, Rödl, Vojtěch: Forbidden intersections. Trans. Amer. Math. Soc. 300(1), 259–286 (1987)
14. Naslund, E., Sawin, W.: Upper bounds for sunflower-free sets. Forum Math. Sigma 5, e15 (2017)
15. Tao, T.: A symmetric formulation of the croot-lev-pach-ellenberg-gijswijt capset bound, (2016). https://www.terrytao.wordpress.com/2016/05/18/a-symmetric-formulation-of-the-croot-lev-pach-ellenberg-gijswijt-capset-bound
16. Croot, E., Lev, V.F., Pach, P.P.: Progression-free sets in \mathbb{Z}_n^4 are exponentially small. Ann. Math. 185(1), 331–337 (2017)
17. Ellenberg, J.S., Gijswijt, D.: On large subsets of F_{nq} with no three-term arithmetic progression. Ann. Math. 185(1), 339–343 (2017)
18. Blasiak, J., Church, T., Cohn, H., Grochow, J.A., Naslund, E., Sawin, W.F., Umans, C.: On cap sets and the group-theoretic approach to matrix multiplication. Discret. Anal. 3, 27 (2017)
19. Kleinberg, R., Speyer, D.E., Sawin, W.: The growth of tri-colored sum-free sets. Discret. Anal. 12, 10 (2018)
20. Pebody, L.: Proof of a conjecture of kleinberg-sawin-speyer. ArXiv e-prints, (2017). arxiv:1608.05740
21. Christandl M, Fawzi O, Ta H, Zuiddam, J.: Larger corner-free sets from combinatorial degenerations. In 13th Innovations in Theoretical Computer Science Conference

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.