Title
Methane consumption and emission by Taiga

Permalink
https://escholarship.org/uc/item/9pg787pq

Journal
Global Biogeochemical Cycles, 5(3)

ISSN
0886-6236

Authors
Whalen, SC
Reeburgh, WS
Kizer, KS

Publication Date
1991-09-01

DOI
10.1029/91gb01303

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed
METHANE CONSUMPTION AND EMISSION BY TAIGA

S. C. Whalen, W. S. Reeburgh, and K. S. Kizer

Institute of Marine Science, University of Alaska Fairbanks

Abstract. Taiga or boreal forest environments are a poorly understood component of the global CH\textsubscript{4} budget. Results from a 1-year study of CH\textsubscript{4} fluxes at a range of representative floodplain and upland taiga sites in the Bonanza Creek long term ecological research area show that soil consumption of atmospheric CH\textsubscript{4} was the dominant process. Methane emission occurred only sporadically in the earliest successional stages in the floodplain system; all other floodplain and upland sites were net CH\textsubscript{4} consumers. Our results suggest that upland and floodplain taiga soils are an atmospheric CH\textsubscript{4} sink of up to 0.8 Tg yr-1. Point-source bogs and fens are the only important CH\textsubscript{4}-emitting sites in taiga.

INTRODUCTION

Recent observations of increasing atmospheric CH\textsubscript{4} concentration [Rasmussen and Khalil, 1984; Steele et al., 1987; Blake and Rowland, 1989] have stimulated a reexamination of controls on the global CH\textsubscript{4} budget [Cicerone and Oremland, 1988]. High-latitude terrestrial environments are of particular interest because of their large stored soil carbon contents [Post et al., 1982]. This carbon is believed to have accumulated since the last glacial maximum [Adams et al., 1990] and continues to accumulate in taiga and coastal plain tundra environments [Billings, 1987]. There is concern that regional warming and changes in precipitation might mobilize this reservoir and make it available for biogeochemical conversion into products like CH\textsubscript{4} and CO\textsubscript{2}. The possible mobilization and release of these radiatively active gases is generally viewed as capable of causing a positive climate feedback [Khalil and Rasmussen, 1989].

Tundra and boreal forest environments account for approximately equal amounts (13% and 14%, respectively) of the Earth's terrestrial soil carbon [Post et al. 1982]. Boreal forest is a general term describing the mixed deciduous-coniferous forest biome located between tundra and temperate forest. Taiga is an equivalent term used by Soviet and Alaskan workers. The taiga is one of the Earth's largest single circum-global forest units, covering some 11.1 x 1012 m2 [Billings, 1987] and ranging in latitude from 70\textdegree N in Scandinavia and central Siberia to 45\textdegree N in eastern Siberia [Kimmins and Wein, 1986]. Tundra environments have recently received attention as a CH\textsubscript{4} source [Sebacher et al., 1986; Whalen and Reeburgh, 1988], but we are aware of only one estimate of CH\textsubscript{4} emission by taiga [Whalen and Reeburgh, 1990a].

The goal of this study was to obtain systematic CH\textsubscript{4} flux data from a range of representative taiga sites to determine the source strength of taiga in the global CH\textsubscript{4} budget. This paper presents CH\textsubscript{4} flux measurements obtained during the first year of a continuing study.
METHODS

Sites

Our study was conducted at sites in the Bonanza Creek Experimental Forest (BCEF), a 5000-ha research area located 20 km west of the University of Alaska Fairbanks campus (Figure 1). The BCEF was established in 1963 through a 50-year lease by the U.S. Forest Service from the State of Alaska. Results from research performed within BCEF are summarized by Van Cleve et al. [1986]. The 1983 Rosie Creek Fire burned some 3500 ha and involved approximately half of the south-facing uplands in the BCEF [Juday and Dyrness, 1985]. A long term ecological research (LTER) program was initiated within BCEF in 1987. The activities of the Bonanza Creek LTER program focus on two successional sequences: primary succession on a river floodplain and secondary succession in an upland region following fire. This focus has led to establishment of a range of representative and well-understood sites where ancillary data are collected continuously; the BCEF LTER thus provides an ideal area for a study of taiga trace gas fluxes.

Van Cleve et al. [1991] summarize the state factors controlling taiga forest succession. The floodplain succession is controlled by river erosion and deposition and begins with bare sandbars. These are populated with grasses and shrubs and the soils are frequently salt affected (gypsum and calcite) as a result of evaporation of soil pore water following capillary rise. Fluvial deposition of silt and sand during high river stages leads to development of terraces, which are populated by alder and willow. This stage is followed by development of balsam poplar stands with an understory of white spruce. The longer-lived evergreen spruce overtops the poplar, and an insulating feather moss layer develops. Shading by the evergreen forest and insulation provided by the moss surface lead to development of permafrost. The climax in this successional sequence is a black spruce community, which develops into a bog. Soil pH decreases, and soil carbon and nitrogen increase during the

Fig. 1. Site locations, Bonanza Creek Experimental Forest, Alaska. Hatched area shows extent of 1983 Rosie Creek Fire.
succession. River erosion or fire resets the successional sequence.

The upland successional sequence is fire-dominated, and progresses on micaceous loess soils through herb-shrub, hardwood, and evergreen conifer stages, all governed by longevity and overtopping. North-facing slopes receive much less radiation and are dominated by black spruce and permafrost.

The sites at which we measured CH$_4$ fluxes are representative of each stage in the floodplain and upland successional sequences, so they cover the range of conditions encountered in taiga. Our flux chambers were permanently deployed in the vegetation control site adjacent the primary LTER sites. A variety of data are collected at these sites, including incident radiation, air and soil temperatures, precipitation, and water table depth. Complete vegetation and soil descriptions are available for each site. Table 1, which is largely adapted from Van Cleve et al. [1991], summarizes the sites involved in this study and contains information on the biota, soils, and disturbance history at similar sites.

Flux Measurements

Determinations of net CH$_4$ flux were made using a static chamber technique [Whalen and Reeburgh, 1988]. Each chamber consists of a skirted aluminum base, which is permanently seated in the soil, and lucite vertical sections and lids that utilize a water-filled channel for a seal. Flux chamber bases were permanently deployed in or near the 15 m x 15 m vegetation control plot within each of the floodplain and upland sites (Table 1) during September 1989. Bases were deployed in triplicate at all floodplain sites and at upland site UP3A. Bases at site UP1A were deployed in duplicate in areas where ground cover was predominantly *Calamagrostis* (bluestem) or *Equisetum* (horsetail). Experimental plots (also 15 m x 15 m) adjacent all other upland sites (AS2, SB1, NB2 and BS2) have been fertilized (1:1 mixture of urea and NH$_4$SO$_4$) twice per year since 1988 at rates of 5 and 20 g N m$^{-2}$ yr$^{-1}$. The low-N treatment represents a doubling of the natural N input; the high-N treatment was intended to overwhelm microbiological contributions (F. S. Chapin, personal communication, 1991). Two chamber bases were deployed in the vegetation control and low-N plots within these sites to assess the effect of N fertilization on CH$_4$ flux.

Methane flux measurements were made weekly at each upland and floodplain site from late May through September 1990. Syringe samples were collected from each chamber over a 0.75-hour time course and were analyzed for CH$_4$ in the laboratory by flame ionization detection gas chromatography. Our CH$_4$ standards are relatable to National Bureau of Standards standards. The net CH$_4$ flux was calculated from a least squares fit of concentration change versus time within the chamber. Details are given by Whalen and Reeburgh [1988]. The minimum detectable flux depended on chamber area:volume ratios, but was usually ±0.2 mg CH$_4$ m$^{-2}$ d$^{-1}$. Flux values below the detection limit are reported as zero.

Additional Measurements

A soil temperature profile was measured adjacent to one chamber at each site with a portable multithermistor probe (2-cm intervals), and the mean soil temperature to 15 cm was calculated. Soil moisture (w/w, oven-dried at 105°C) [Black, 1965] was determined on 2.8 cm diameter x 10 cm soil cores collected 1 m from each chamber. Soil organic content (w/w; loss on ignition at 550°C of oven-dried sample) and pH [Black, 1965] were measured on similar cores collected from each control plot in late September, 1990. These data are summarized in Table 2.

Soil CH$_4$ depth distributions were measured at upland sites NB2, SB1, BS2 and UP3A on samples obtained by inserting a steel tube probe to known soil depths and pumping soil gas into Tedlar sample bags [Born et al., 1990] with a battery-powered diaphragm pump. The bags were sampled and analyzed for CH$_4$ in the laboratory.

Methane consumption thresholds and capacities were studied at the above four sites using chambers with ambient and amended atmospheres. The ambient atmosphere experiments involved allowing chambers with free air atmospheres (~1.7 ppm CH$_4$) to "run down" with periodic sampling over a 24 hour period. The amended atmosphere experiments involved adjusting initial chamber atmospheres to concentrations of ~20 ppm CH$_4$ and sampling over a 24 hour period.

Methane fluxes were often below the limit of detection. We report the median and interquartile range (IQR; range of central 50% of data) of the CH$_4$ flux data as measures of central value and variability. This procedure is recommended by Helsel [1990] for analysis of censored (i.e., many values below detection limit) data. Nonparametric statistics [Conover, 1980; Zar, 1984] are used because of the large number of values below the detection limit and because no single data transformation consistently homogenized variances. Statistical analyses were
TABLE 1. Characteristics of Interior Alaska Taiga Sites

Site	Principal Vegetation	Soil Properties		Biomass\(^a\)	Annual Production\(^{a,c}\)	Time Since Disturbance\(^a\)					
		Aspect\(^a\)	Texture\(^a\)	Terrace Level\(^b\)	Heat\(^{d,c}\)	pH	Organic Content\(^d\)	Permafrost?	kg m\(^{-2}\)	g m\(^{-2}\)	years
Floodplain Sites											
FP1A	sandbar, willow	level	sand	1.8-2.2	1600	7.1	2	-	-	0.2-0.6	200-300
FP2A	alder-poplar	level	sand	1.1-2.6	696	6.5	21	-	-	1.0-6.4	290-350
FP3A	poplar-spruce	level	silt-sand	2.3-3.0	150-1300	6.5	30	-	-	1.0-6.4	390-350
FP4A	white spruce	level	silt-sand	3.2-3.8	800-1140	6.1	35	±	-	14.6-22.7	331-540
FP5A	black spruce	level	silt-sand	4.0-4.5	40-760	5.3	45	+	-	1.6-10.9	57-148
Upland Sites											
UP1A	burn site, herb	south	silt	-	1150-1200	7.5	9	-	-	0.02-.2	5-20
AS2	aspen	south	silt	-	970-1400	5.6	18	-	-	4.6-17.5	346-760
SB1	birch	south	silt	-	970-1400	5.2	19	-	-	4.6-17.5	346-760
UP3A	white spruce	south	silt	-	875-1120	5.9	16	-	-	23.2	353
NB2	birch	north	silt	-	1000	5.6	22	+	-	4.6-17.5	343-760
BS2	black spruce	north	silt	-	500-800	4.5	37	+	-	5.3-11.3	101-160

\(^a\) From Van Cleve et al. [1991]. Observations from sites similar to those in this study.

\(^b\) Elevation above winter low river level. Mean annual river level range is 1.5 m. Horizontal extreme is 6 m. (L. A. Vierack, personal communication, 1991)

\(^c\) Degree-days above 0°C at 10 cm depth (May to September).

\(^d\) Surface 10 cm of soil.

\(^e\) Aboveground.
TABLE 2. Summary Statistics for 1990 CH$_4$ Flux, Soil Temperature, and Soil Moisture in Bonanza Creek Long Term Ecological Research Sites

Site	CH$_4$ Flux, mg m$^{-2}$ d$^{-1}$	Soil Temperature, °C	Soil Moisture, %w/w	
	n(BDL)a Maximum Minimum Median	n Maximum Minimum Mean(SEM)c	n Maximum Minimum Mean(SEM)c	
	Mean (IQR)b 25%ile 75%ile	n Mean (IQR)b 25%ile 75%ile		
Floodplain Sites				
FP1A	48 (25) 8.37 0 0 0 0 1.85	16 21.8 6.2 15.7 (1.2)	33 52 20 37 (1)	
FP2A	48 (42) 1.85 -0.35 0 0 0 0	16 14.3 4.3 10.5 (0.7)	33 108 32 66 (4)	
FP3A	42 (27) -0.22 -0.75 0 -0.31 0	14 14.9 3.3 11.1 (0.9)	30 159 32 72 (5)	
FP4A	45 (9) 0 -1.01 -0.34 -0.43 -0.24	15 16.0 5.5 11.9 (0.8)	33 93 18 51 (3)	
FP5A	45 (24) 0 -0.95 0 -0.37 0	15 21.9 1.4 12.2 (1.4)	32 180 7 88 (7)	
Total	228 (127) 8.37 -1.01 0 -0.31 0	76 21.9 1.4 12.3 (0.5)	161 180 7 63 (2)	
Upland Sites				
UP1A	76 (73) 0 -0.98 0 0 0	19 17.7 5.5 12.5 (0.9)	60 220 34 74 (5)	
AS2	76 (10) 0 -0.77 -0.43 -0.51 -0.28	19 20.8 6.1 12.9 (0.9)	60 220 34 74 (5)	
SB1	76 (42) 0 -0.52 0 0 -0.33	19 18.3 5.0 11.7 (0.9)	59 218 16 56 (4)	
NB2	76 (26) 0 -0.55 -0.26 0 -0.34	19 16.1 3.2 10.6 (0.8)	60 256 20 15 (5)	
UP3A	55 (3) 0 -0.79 -0.40 -0.52 -0.30	19 13.8 2.7 9.4 (0.7)	45 231 29 75 (6)	
BS2	76 (6) 0 -1.81 -0.56 -0.67 -0.47	19 14.7 2.9 8.9 (0.9)	60 389 19 152 (10)	
Total	435 (160) 0 -1.81 -0.29 0 -0.47	114 20.8 2.7 11.0 (0.4)	344 389 12 76 (3)	
All Sites				
Total	663 (287) 8.37 -1.81 -0.23 -0.42 0	190 21.9 1.4 11.5 (0.3)	505 389 7 72 (2)	

a BDL, number of flux measurements below detection limit; these measurements are reported as zero.

b IQR, interquartile range, central 50% of data.

c SEM, standard error of mean.
performed at a significance level of \(\alpha = 0.05 \) in all cases.

RESULTS

Fluxes from the floodplain sites and upland sites are are presented in Figures 2 and 3, respectively. Table 2 gives summary statistics for the \(\text{CH}_4 \) flux measurements. Both positive (net \(\text{CH}_4 \) emission) and negative (net \(\text{CH}_4 \) consumption) fluxes were observed. Fluxes varied from \(-1.81\) to \(8.37 \text{ mg } \text{CH}_4 \text{ m}^{-2} \text{ d}^{-1}\), with a median of \(-0.23 \text{ mg } \text{CH}_4 \text{ m}^{-2} \text{ d}^{-1}\) for the entire data set. Overall, \(\text{CH}_4 \) fluxes were low, with 43\% of the observations below the detection limit.

No seasonal signal for \(\text{CH}_4 \) flux was evident in the floodplain sites, but there were clear differences in fluxes among sites (Figure 2). A transition from \(\text{CH}_4 \) production to consumption with advancing plant community succession is evident in Figure 2. Methane emission was frequently observed in the earliest stage of succession (sandbar, Figure 2a), and

![Fig. 2. Methane fluxes (mg m\(^{-2}\) d\(^{-1}\)) from Bonanza Creek Experimental Forest floodplain sites, May 24 to September 25, 1990. (a) FP1A, sandbar (note that flux scale differs from other sites). (b) FP2A, alder to poplar. (c) FP3A, poplar with spruce understory. (d) FP4A, white spruce. (e) FP5A, black spruce.](image-url)
Fig. 3. Methane fluxes (mg m\(^{-2}\) d\(^{-1}\)) from Bonanza Creek Experimental Forest upland sites, May 22 - September 27, 1990. Data from the N-fertilized plots at sites AS2, SB1, NB2, and BS2 are plotted as triangles. (a) UP1A, burn site (*Calamagrostis*, triangles; *Equisetum*, open symbols). (b) AS2, aspen. (c) SB1, birch. (d) UP3A, white spruce. (e) NB2, north birch. (f) BS2, north black spruce.

sporadically seen in middle stages of succession (alder-poplar, Figure 2b; poplar, Figure 2c). The magnitude and frequency of emission decreased along the succession for these sites with some stations showing consumption as well as emission, depending on date. The late stages of succession, white spruce (Figure 2d) and black spruce (Figure 2e) showed only CH\(_4\) consumption when fluxes were detectable. Differences in CH\(_4\) flux among sites were statistically significant (Kruskal-Wallis one-way analysis of variance or ANOVA). A posteriori analysis by Dunn's nonparametric multiple comparison clearly showed that the sandbar site (Figure 4a) had the highest CH\(_4\) flux (data ranked lowest to highest, i.e., greatest rate of consumption to greatest rate of emission). The remaining data showed three sets of overlapping similarities (Figure 4a). The mean ranks follow an order that shows the
transition from CH$_4$ emission to consumption with increasing ecosystem maturity. There is no difference in CH$_4$ consumption between white spruce (FP4A) and black spruce (FP5A) or between black spruce and poplar (FP3A), but consumption is greater in white spruce than in poplar and in black spruce than in the alder-poplar (FP2A) stand.

Methane emission was never observed at the upland sites (Figure 3; Table 2). As in the floodplain sites, there was no clear seasonal signal for CH$_4$ flux. The earliest successional stage (burn site, Figure 3a) showed the smallest flux, with only 4% (3 of 76) of the flux determinations above the detectable level. The later successional stages, white spruce (Figure 3d) and black spruce (Figure 3f), exhibited higher rates of CH$_4$ consumption than the middle stages of succession (aspen, Figure 3b; and birch, Figures 3c and 3e). Differences in CH$_4$ flux at control stations among sites were significant (ANOVA), and multiple comparison of fluxes (Dunn’s test) suggests that consumption increases with advancing plant community succession (Figure 4b). A significant increase in CH$_4$ consumption rate was observed at black spruce (BS2) relative to the burn site (UP1A). The CH$_4$ consumption rate at all other sites could not be clearly classified. However, ranks and overlapping similarities together indicated that white spruce (UP3A) was most closely related to black spruce (late successional stage) and north birch (NB2) was most closely related to other mid-successional (south birch, SB1 and aspen, AS2) sites. The lack of a significant difference in CH$_4$ consumption between south birch and north birch (Figure 4b) indicates that aspect had no influence on CH$_4$ flux for this plant community. Net CH$_4$ fluxes were significantly lower (i.e., higher rate of CH$_4$ consumption) in the upland sites than in the floodplain sites when the entire data were pooled (Mann-Whitney U test).

The soil pH at the study sites ranged from slightly basic to acidic (Table 1). The highest values of pH were observed in the first stage of succession (FP1A, UP1A), and the lowest values were found at the black spruce sites in both the floodplain (FP5A) and upland (BS2) areas. The soil organic content varied from 2 to 45% and from 9 to 37% in the floodplain and upland sites, respectively (Table 1), with the lowest value for each sequence occurring in the first successional stage.

The soil temperature during the observation period
varied from about 2° to 21°C in both the floodplain and upland sites (Table 2). Means varied from 10.5° to 15.7°C for floodplain sites and from 8.9 to 12.9°C for upland sites. The mean soil moisture content showed a higher range for upland sites (112%) than for floodplain sites (51%), due to the high mean soil moisture at BS2 (Table 2). The effect of soil temperature and moisture on CH₄ flux at each site was assessed by correlation analysis (Table 3). Correlations were not statistically significant in many cases. However, statistically significant data show three trends. First, CH₄ flux is negatively correlated with soil temperature, indicating that soil CH₄ consumption (negative flux) increases with increasing temperature. Second, CH₄ flux is positively correlated with soil moisture at sites showing no CH₄ emission (Figures 2 and 3), indicating that CH₄ consumption decreased with increasing soil moisture. Third, increasing CH₄ emission is correlated with decreasing soil moisture at the only site showing CH₄ emission and no consumption (FP1A, sandbar).

Nitrogen fertilization had no consistent effect on CH₄ flux in the upland sites. Neither station within the fertilized plot at SB1 (Figure 3c) showed detectable CH₄ consumption during the entire field season. Comparison of N-fertilized and control plots within other upland sites (Mann-Whitney U test) showed significantly increased consumption in the fertilized plot at AS2 (Figure 3b) and no difference between plots at BS2 (Figure 3f) and NB2 (Figure 3e).

The CH₄ concentration in soil atmospheres decreased rapidly with increasing depth at upland sites NB2, SB1, BS2, and UP3A. Figure 5a shows results from NB2, which are typical of the other sites. Methane was essentially depleted below a depth of 40 cm, and concentrations between 40 to 60 cm were consistently at or below the detection limit.

Soils at upland sites showed a low threshold and high capacity for CH₄ consumption. Methane concentrations in unamended chambers at NB2, SB1, BS2, and UP3A decreased to a threshold value varying from below the limit of detection (0.1 ppm) to 0.87 ppm over 24 hours; results from NB2 are shown in Figure 5b. Methane concentrations in

TABLE 3. Kendall's Rank Correlation Coefficient τ for Correlations Between CH₄ Flux and Soil Temperature and Moisture

Soil Temperature	Soil Moisture				
Site	Station 1	Station 2	Station 3	Station 4	
FP1A	-0.59	-0.52	-		
FP2A					
FP3A					
FP4A	-0.43	0.53	0.49		
FP5A			0.63		
UP1A					
AS2	-0.57	0.70	0.62	0.39	0.79
SB1	-0.38	0.47			
NB2	-0.60	0.46			
UP3A			0.46	0.41	
BS2					

The number of observations at a station for each τ varied as follows: Floodplain temperature, 14-16; Floodplain moisture, 10-11; Upland temperature, 19; Upland moisture, 15. Stations 1 and 2 are within the control plot at upland sites; stations 3 and 4 are within the adjacent N-fertilized plot. Only statistically significant correlations are reported. A dash (-) indicates no data; a blank indicates no significant correlation.
chambers with atmospheres amended to -20 ppm decreased to values varying from below the detection limit to 1.08 ppm within 24 hours. Figure 5c shows results from an amendment experiment at NB2.

DISCUSSION

Results of this study clearly indicate that well-drained taiga soils are a CH$_4$ sink. Seasonal studies have also reported net CH$_4$ consumption for other undisturbed, moist forest soils. Temperate deciduous and evergreen forests showed mean fluxes of -4.15 and -3.51 mg CH$_4$ m$^{-2}$ d$^{-1}$ [Steudler et al., 1990], and tropical forest soils had average fluxes of -0.14 [Keller et al., 1986], -0.57 (dry season) [Goreau and de Mello, 1988] and -0.8 [Keller et al., 1990] mg CH$_4$ m$^{-2}$ d$^{-1}$. Our median flux of -0.23 mg CH$_4$ m$^{-2}$ d$^{-1}$ is closest to the lower mean reported for tropical soils.

The significant difference in CH$_4$ flux between floodplain and upland sites may be related to drainage and water table level. Early successional stages at floodplain sites (lowest terrace elevations, Table 1) showed episodic CH$_4$ emission (Figure 2a to 2c) following heavy rains. Sites at higher floodplain terrace elevations (late successional stages) and all upland sites consumed CH$_4$ or had fluxes below the detection limit. Soils in the floodplain and upland sites also differed; floodplain soils were a sandy or silty alluvium, while the upland soils consisted of a micaceous loess [Van Cleve et al., 1991].

Nitrogen fertilization had no influence on CH$_4$ consumption at our upland taiga sites but resulted in significantly lower CH$_4$ consumption rates in temperate hardwood and softwood forests [Steudler et al., 1990]. The studies differed in form of N added, relative N loading, and frequency of application, so their results are not directly comparable.

Soil CH$_4$ profiles (Figure 5a) strongly suggest that soils at deciduous and coniferous upland sites are well aerated at least to 60 cm. The organic horizon in these soils is generally limited to depths less than 20 cm. Thus it is likely that methanogenesis is nonexistent or confined to anaerobic microzones [Smith and Arah, 1985] and the important biological process influencing the soil CH$_4$ distribution is oxidation. Keller et al. [1990] and Born et al. [1990] found similar depth distributions for CH$_4$ in moist soils from tropical and temperate forests, which also suggests CH$_4$ consumption only. Yavitt et al. [1990] report CH$_4$ oxidation in the upper 0 to 20 cm
and production below 20 cm in CH₄ profiles for temperate mesophytic and spruce forest soils. Collectively, these data indicate that forest soils support a community of methanotrophs or other CH₄-oxidizing bacteria (e.g. nitrifiers [Bedard and Knowles, 1989]) whose CH₄ source is largely atmospheric.

Our taiga sites showed no strong seasonal signal for CH₄ consumption (Figures 2 and 3). Keller et al. [1983] found no seasonal trend in CH₄ consumption in soils of a temperate hardwood forest, and no seasonal variations are evident in the May through October record at other temperate hardwood sites [Steudler et al., 1990]. These reports are consistent with our observation that the atmosphere is the major CH₄ source for microbial oxidation in many forest soils. The moist surface zone of microbial activity can be expected to thaw and warm quickly in the spring. In contrast, the gradual thawing and warming of saturated, biologically active tundra soils underlain by permafrost results in a pronounced seasonal signal for CH₄ emission [Whalen and Reeburgh, 1988].

The low threshold and high capacity for CH₄ oxidation shown in the CH₄ amendment experiment (Figure 5c) is in agreement with our previous observations on end-member CH₄ oxidizing environments, namely well-drained subarctic tundra [Whalen and Reeburgh, 1990b] and the surface soil of a retired landfill [Whalen et al., 1990]. These results indicate the presence of a ubiquitous bacterial community capable of rapidly oxidizing CH₄ at concentrations well above and below atmospheric levels. These results also suggest that the rates of CH₄ consumption reported above for forest soils are governed by physical soil conditions (morphology, porosity, moisture content, and temperature) that regulate CH₄ diffusion to microbes, rather than intrinsic biological factors. Further support for physical control of CH₄ consumption by forest soils is shown in Table 3; increased CH₄ consumption (negative flux) was correlated with increasing soil temperature and decreasing soil moisture when significant values of τ were found for sites that showed CH₄ consumption only. It is likely that soil moisture content exerts the greatest physical influence on CH₄ oxidation rates in forest and other soils. We demonstrated experimentally that CH₄ oxidation rates in moist soils from a retired landfill were reduced nearly ten fold when saturated with water [Whalen et al., 1990], and Steudler et al. [1990] reported significant decreases in rates of CH₄ consumption by temperate forest soils under conditions of increased moisture.

The increase in CH₄ consumption with increasing ecosystem maturity (Figures 2 and 3) also points to physical control of the CH₄ consumption rate. As the taiga matures, mineral soil becomes covered with decaying organic matter and a thick carpet of feather moss [Van Cleve et al., 1991]. We observed the highest rates of CH₄ oxidation and gas diffusion in experiments involving both chambers and soil cores from mossy environments [Whalen and Reeburgh, 1990b; also unpublished data, 1990], and attribute them to rapid gas phase diffusion in the pillowy, moist surface matrix.

Taiga has been considered a net CH₄ source [Sebacher et al., 1986; Matthews and Fung, 1987] of ~15 Tg yr⁻¹ [Whalen and Reeburgh, 1990a], largely because of high rates of CH₄ emission from point sources (bogs and fens) [Crill et al., 1988; Harris et al., 1985; Moore et al., 1990; Moore and Knowles, 1990] distributed throughout this environment. Using the overall flux results from this study (IQR of 0.0 to -0.42 mg CH₄ m⁻² d⁻¹, Table 2), an active period of 150 days, and a global taiga coverage of 1.1x10⁶ km², we estimate that upland and floodplain taiga have a CH₄ sink strength of 0.0 - 0.8 Tg yr⁻¹. This is smaller than the previous boreal forest soil consumption estimates of -1 to -15 Tg yr⁻¹ [Born et al., 1990] and -0.3 to -5.1 Tg CH₄ yr⁻¹ [Steudler et al., 1990], which were based on fewer data. Resolving the contributions of point sources within taiga environments will require a high resolution data base for the global extent of each site type.

The results from this study extend beyond establishing a firmly based estimate for CH₄ consumption by taiga. The data clearly show quantitative consumption of atmospheric CH₄ by moist taiga soils and support control of oxidation by physical processes. Recent studies have indicated that moist soils in both natural and managed ecosystems are net CH₄ sinks (summarized by Steudler et al. [1990] and Born et al. [1990]) and suggest CH₄ consumption equivalent to 1 to 11% of the 540 Tg CH₄ yr⁻¹ emitted to the atmosphere from all sources [Cicerone and Oremland, 1988]. Consumption of atmospheric CH₄ by these ecosystems could provide a significant negative feedback to increases in atmospheric CH₄. Changes in soil physical characteristics resulting from temperature and precipitation changes are likely to influence rates of CH₄ consumption. Water table and temperature manipulation experiments (1 to 10 m² scale) are an approach to understanding these relationships.
Acknowledgments. Keith Van Cleve (University of Alaska), Leslie A. Viereck (U.S. Forest Service), and C. T. Dymess (U.S. Forest Service) provided the opportunity to work within the Bonanza Creek Experimental Forest Long Term Ecological Research program. Advice on site selection and logistic support in the floodplain studies was provided by the aforementioned individuals and by Bob Schlenetter. Terry Chapin and Eric Vance advised on upland site selection and made their N-fertilized plots available to this study. Glenn Juday provided Figure 1. Undergraduate summer assistant Heather Anderson assisted with field sampling and laboratory analyses. We are grateful for all of these contributions. This work was supported by NASA grant IDP-88-032; the Bonanza Creek L.T.E.R. is supported by NSF grant BSR 8702629.

REFERENCES

Adams, J. M., H. Faure, L. Faure-Denard, J. M. McGlade, and F. I. Woodward, Increases in terrestrial carbon storage from the last glacial maximum to the present, Nature, 348, 711-714, 1990.

Bedard, C., and R. Knowles, Physiology, biochemistry and specific inhibitors of CH$_4$, NH$_4^+$ and CO oxidation by methylotrophs and nitrifiers, Microbiol. Rev., 53, 68-84, 1989.

Billings, W. D., Carbon balance of Alaskan tundra and taiga ecosystems: past, present and future, Quat. Sci. Rev., 6, 165-177, 1987.

Black, C.A., (Ed.), Methods of Soil Analysis, parts 1 and 2, American Society of Agronomy, Madison, Wis., 1965.

Blake, D. R., and F. S. Rowland, Continuing worldwide increase in tropospheric methane, 1978-1987, Science, 239, 1129-1131, 1989.

Born, M., H. Dörr, and I. Levin, Methane consumption in aerated soils of the temperate zone, Tellus, Ser. B, 42, 2-8, 1990.

Cicerone, R. J., and R. S. Oremland, Biogeochemical aspects of atmospheric methane, Global Biogeochem. Cycles, 2, 299-327, 1988.

Conover, W.J., Practical Nonparametric Statistics, John Wiley, New York, 1980.

Crill, P. M., K. B. Bartlett, R. C. Harriss, E. Gorham, E. S. Verry, D. I. Sebacher, L. Mazdar, and W. Sanner, Methane flux from Minnesota peatlands, Global Biogeochem. Cycles, 2, 371-384, 1988.

Goreau, T. J., and W. Z. de Mello, Tropical deforestation: Some effects on atmospheric chemistry, Ambio, 17, 275-281, 1988.

Helsel, D.R., Less than obvious: Statistical treatment of data below the detection limit, Environ. Sci. Technol., 24, 1766-1774, 1990.

Juday, G. P., and C. T. Dymess (Eds.), Early results of the Rosie Creek Fire Research Project 1984, Misc. Publ. 85-2, 46 pp., Sch. of Agric. and Land Resour. Manage., Univ. of Alaska Fairbanks, 1985.

Keller, M., T. J. Goreau, S. C. Wofsy, W. A. Kaplan, and M. B. McElroy, Production of nitrous oxide and consumption of methane by forest soils, Geophys. Res. Lett., 10, 1156-1159, 1983.

Keller, M., W. A. Kaplan, and S. C. Wofsy, Emissions of N$_2$O, CH$_4$, and CO$_2$ from tropical forest soils, J. Geophys. Res., 91(D11), 11,791-11,802, 1986.

Keller, M., M. E. Mitre, and R. F. Stallard, Consumption of atmospheric methane in soils of central Panama: Effects of agricultural development, Global Biogeochem. Cycles, 4, 21-27, 1990.

Khalil, M. A. K. and R. A. Rasmussen, Climate-induced feedbacks for global cycles of methane and nitrous oxide, Tellus, Ser. B, 41, 554-559, 1989.

Kimmins, J. P., and R. W. Wein, Introduction, in Forest Ecosystems in the Alaska Taiga, edited by K. Van Cleve et al., pp. 3-8, Springer-Verlag, New York, 1986.

Harriss, R. C., E. Gorham, D. I. Sebacher, K. B. Bartlett, and P. A. Flebbe, Methane flux from northern peatlands, Nature, 315, 652-654, 1985.

Matthews, E., and I. Fung, Methane emission from natural wetlands: Global distribution, area, and environmental characteristics of sources, Global Biogeochem. Cycles, 1, 61-86, 1987.

Moore, T. R., and R. Knowles, Methane emissions from fen, bog and swamp peatlands in Quebec, Biogeochemistry, 11, 45-61, 1990.

Moore, T., N. Roulet, and R. Knowles, Spatial and temporal variations of methane flux from subarctic/northern boreal fens, Global Biogeochem. Cycles, 4, 29-46, 1990.

Post, W. M., W. R. Emanuel, P. J. Zinke, and A. G. Stangenberg, Soil carbon pools and world life zones, Nature, 298, 156-159, 1982.

Rasmussen, R. A., and M. A. K. Khalil, Atmospheric methane in the recent and ancient atmospheres: Concentrations, trends and the interhemispheric gradient, J. Geophys. Res., 89(D7), 11,599-11,605, 1984.

Sebacher, D. I., R. C. Harriss, K. B. Bartlett, S. M. Sebacher, and S. S. Grice, Atmospheric methane sources: Alaskan tundra, an alpine fen and a subarctic boreal marsh, Tellus, Ser. B, 38, 1-10, 1986.
Whalen et al.: Methane Consumption and Emission by Taiga

Smith, K. A., and J. R. M. Arah, Anaerobic micro-environments in soil and the occurrence of anaerobic bacteria, in Microbial Communities in Soil, FEMS Symp. 33, edited by V. Jensen et al., pp. 247-261, Elsevier, New York, 1985

Steele, L. P., P. J. Fraser, R. A. Rasmussen, M. A. K. Khalil, T. J. Conway, A. J. Crawford, R. H. Gammon, K A. Masarie, and K. W. Thoning, The global distribution of methane in the troposphere, J. Atmos. Chem., 5, 125-171, 1987.

Steudler, P. A., R. D. Bowden, J. M. Melillo, and J. D. Aber, Influence of nitrogen fertilization on methane uptake in temperate forest soils, Nature, 341, 314-316, 1990.

Van Cleve, K., F. S. Chapin III, P. W. Flanagan, L. A. Viereck, and C. T. Dyrness, (Eds.), Forest Ecosystems in the Alaskan Taiga: A Synthesis of Structure and Function, 230 pp., Springer-Verlag, New York, 1986.

Van Cleve, K., F. S. Chapin III, C. T. Dyrness, and L. A. Viereck, Element cycling in taiga forests: state-factor control, BioScience, 41(2), 78-88, 1991.

Whalen, S. C., and W. S. Reeburgh, A methane flux time series for tundra environments, Global Biogeochem. Cycles, 2, 399-409, 1988.

Whalen, S. C. and W. S. Reeburgh, A methane flux transect along the trans-Alaska pipeline haul road, Tellus, Ser. B, 42, 237-249, 1990a.

Whalen, S. C., and W. S. Reeburgh, Consumption of atmospheric methane by tundra soils, Nature, 346, 160-162, 1990b.

Whalen, S. C., W. S. Reeburgh, and K. A. Sandbeck, Rapid methane oxidation in a landfill cover soil, Appl. Environ. Microbiol., 56, 3405-3411, 1990.

Yavitt, J. B., D. M. Downey, G. E. Lang, and A. J. Sextone, Methane consumption in two temperate forest soils, Biogeochemistry, 9, 39-92, 1990.

Zar, J.H. Biostatistical Analysis, Prentice Hall, Englewood Cliffs, N.J., 1984.

K. S. Kizer, W. S. Reeburgh, and S. C. Whalen, Institute of Marine Science, University of Alaska Fairbanks, Fairbanks, AK 99775-1080.

(Received March 4, 1991; revised May 1, 1991; accepted May 10, 1991)