ON THE ERDŐS-FALCONER DISTANCE PROBLEM FOR TWO
SETS OF DIFFERENT SIZE IN VECTOR SPACES OVER FINITE
FIELDS

RAINER DIETMANN

ABSTRACT. We consider a finite fields version of the Erdős-Falconer distance
problem for two different sets. In a certain range for the sizes of the two sets
we obtain results of the conjectured order of magnitude.

1. Introduction

Let \(E \subset \mathbb{R}^s \), and let
\[
\Delta(E) = \{ \| x - y \| : x, y \in E \}
\]
be the set of distances between elements in \(E \), where \(\| \cdot \| \) denotes the Euclidean
metric. Erdős’ distance conjecture [2] is that
\[
\# \Delta(E) \gg \varepsilon (\#E)^{s/2-\varepsilon}
\]
for \(s \geq 2 \) and finite \(E \). In a recent breakthrough paper by Guth and Katz [4], this
problem has been solved for \(s = 2 \), whereas it is still open for higher dimensions.
Later Falconer [3] considered a continuous version of Erdős’ distance problem, re-
placing \(\#E \) by the Hausdorff dimension of \(E \), and \(\#\Delta(E) \) by the Lebesgue measure
of \(\Delta(E) \). More recently, Iosevich and Rudnev [6] dealt with a finite fields version
of these problems. For a finite field \(\mathbb{F}_q \) and \(x \in \mathbb{F}_q^s \), let
\[
|x|^2 = \sum_{i=1}^{s} x_i^2.
\]
Note that this is a natural way of defining distance over finite fields, as for Euclidean
distance keeping the property of being invariant under orthogonal transformations,
whereas on the other hand \(|x|^2 = 0 \) no longer implies that \(x = 0 \), since for \(s \geq 3 \)
all quadratic forms over finite fields are isotropic.
In the following we will always assume that \(q \) is odd; in particular, \(q \geq 3 \). As
pointed out in the introduction of [6], the conjecture (1.1) no longer holds true over
finite fields irrespective of the size of \(E \). One example (see introduction of [4]) for
this phenomenon are sets \(E \) small enough to fall prey to certain number theoretic
properties of \(\mathbb{F}_q \): Let \(q \) be a prime such that \(q \equiv 1 \pmod{4} \), and let \(i \in \mathbb{F}_q \) be a
square root of \(-1\). For the set
\[
E = \{(x, ix) : x \in \mathbb{F}_q \}
\]
in \(\mathbb{F}_q^2 \) one then immediately verifies that \(\#E = q \), but \(\#\Delta(E) = 1 \). For sets of
large enough size, however, one should expect \(\Delta(E) \) to have order of magnitude
\(q \) many elements, or even be the set of all elements in \(\mathbb{F}_q \). In this context, one of

2000 Mathematics Subject Classification. 11T24, 52C10.
Iosevich and Rudnev’s main results (see [6], Theorem 1.2) is that if $E \subset \mathbb{F}_q^s$ where $\#E \geq Cq^{s/2}$ for a sufficiently large constant C, then

$$\#\Delta(E) \gg \min\left\{ q, \frac{\#E}{q^{(s-1)/2}} \right\},$$

where

$$\Delta(E) = \{|x - y|^2 : x, y \in E\}.$$

In particular, if $\#E \gg q^{(s+1)/2}$, then $\#\Delta(E) \gg q$. For $s = 2$, the stronger result that $\#\Delta(E) \gg q$ if

$$\#E \gg q^{4/3}$$

has recently been established by Chapman, Erdogan, Hart, Iosevich and Koh (see [1], Theorem 2.2). Our focus in this paper is on a generalisation of this problem to the situation of distances between two different sets $E, F \subset \mathbb{F}_q^s$. Analogously to above, we define

$$\Delta(E, F) = \{|x - y|^2 : x \in E, y \in F\}.$$

It is straightforward to adapt Iosevich and Rudnev’s approach to show that if

$$\#(E)(\#F) \geq Cq^s$$

for a sufficiently large constant C, then

$$\#\Delta(E, F) \gg \min\left\{ q, \frac{(\#E)^{1/2}(\#F)^{1/2}}{q^{(s-1)/2}} \right\};$$

see also Theorem 2.1 in [10] for a similar result. In particular, if $(\#E)(\#F) \gg q^{s+1}$, then $\#\Delta(E, F) \gg q$. For $s = 2$, the stronger result that $\#\Delta(E, F) \gg q$ if

$$\#(E)(\#F) \gg q^{9/3}$$

has recently been proved by Koh and Shen ([8], Theorem 1.3), this way generalising (1.3), and they also put forward the following conjecture (see Conjecture 1.2 in [9]) generalising Conjecture 1.1 in [6] for even s.

Conjecture 1. Let $s \geq 2$ be even and $(\#E)(\#F) \geq Cq^s$ for a sufficiently large constant C. Then $\#\Delta(E, F) \gg q$.

In this paper we establish the following result, which improves on (1.4) and (1.5) for sets E, F of different size in a certain range for $(\#E)$ and $(\#F)$.

Theorem 1. Let $E, F \subset \mathbb{F}_q^s$ where $s \geq 2$. Further, let $\#E \leq \#F$ and $(\#E)(\#F) \geq (900 + \log q)q^s$. Then

$$\#\Delta(E, F) \gg \min\left\{ q, \frac{\#F}{q^{(s-1)/2} \log q} \right\}.$$

For $s = 2$ also the alternative lower bound

$$\#\Delta(E, F) \gg \min\left\{ q, \frac{(\#E)^{1/2}\#F}{q \log q} \right\}$$

holds true.

Note that (1.7) is superior to (1.6) for $s = 2$ if and only if $\#E \gg q$. Note also that Theorem 1 implies that if $(\#E)(\#F) \geq (900 + \log q)q^s$ and $\max\{\#E, \#F\} \geq q^{(s+1)/2} \log q$, then $\#\Delta(E, F) \gg q$. These conditions on E and F are for example satisfied if $\#E \geq q^{(s-1)/2}$ and $\#F \geq (900 + \log q)q^{(s+1)/2}$. Hence, apart from a factor $\log q$, Conjecture 1 holds true for a certain range of cardinalities of E and F, both for even and odd dimension s.
Our approach follows that of Iosevich and Rudnev, paying close attention to certain spherical averages of Fourier transforms.

2. Notation

Our notation is fairly standard. Let \mathbb{C} be the field of complex numbers, and we write \mathbb{F}_q for a fixed finite field having q elements, where q is odd, and we denote by \mathbb{F}_q^* the non-zero elements of \mathbb{F}_q. Further, if $a \in \mathbb{F}_q^*$, we write \overline{a} for the multiplicative inverse of a. Moreover, we write

$$e \left(\frac{j}{q} \right) \quad (1 \leq j \leq q)$$

for the additive characters of \mathbb{F}_q, the main character being that where $j = q$. If q is a prime, then $e(j/q)$ is just

$$e \left(\frac{j}{q} \right) = e^{2\pi i \frac{j}{q}}$$

where $i^2 = -1$. If $f : \mathbb{F}_q^s \to \mathbb{C}$ is any function, then we denote by \hat{f} its Fourier transform given by

$$\hat{f}(x) = q^{-s} \sum_{m \in \mathbb{F}_q^s} e \left(\frac{-mx}{q} \right) f(m),$$

where as usual mx is the inner product

$$mx = \sum_{i=1}^s m_i x_i.$$

The function f can be recovered from its Fourier transform \hat{f} via the inversion formula

$$f(x) = \sum_{m \in \mathbb{F}_q^s} e \left(\frac{mx}{q} \right) \hat{f}(m).$$

The tool that underpins many arguments is Plancherel’s formula

$$\sum_{m \in \mathbb{F}_q^s} \left| \hat{f}(m) \right|^2 = q^{-s} \sum_{x \in \mathbb{F}_q^s} |f(x)|^2.$$

All these formulas are easy to verify, and proofs can be found in many textbooks on number theory or Fourier analysis. For a subset $E \subset \mathbb{F}_q^s$, we also write E for its characteristic function, i.e.

$$E(x) = \begin{cases} 1 & \text{if } x \in E, \\ 0 & \text{otherwise}, \end{cases}$$

and analogously for subsets $F \subset \mathbb{F}_q^*$. Moreover, let S_r be the sphere

$$S_r = \{ x \in \mathbb{F}_q^s : |x|^2 = r \},$$

and as above we also write S_r for the corresponding characteristic function. Moreover, for $E \subset \mathbb{F}_q^s$ and $r \in \mathbb{F}_q$, let $\sigma_E(r)$ be the spherical average

$$\sigma_E(r) = \sum_{a \in \mathbb{F}_q^s \mid |a|^2 = r} |E(a)|^2.$$
of the Fourier transform $\hat{E}(a)$ of E, and we define analogously $\sigma_F(r)$. Furthermore, we define
$$\sigma_{E,F}(r) = \sum_{m \in \mathbb{F}_q^*: |m|^2 = r} \overline{E(m)F(m)},$$
where as usual $\overline{\cdot}$ denotes complex conjugation. In particular, $\sigma_E(r) = \sigma_{E,E}(r)$. Our main tool for bounding $\#\Delta(E,F)$ below is the following upper bound on $\sigma_E \sigma_F$ on average. In the following, all implied O-constants depend at most on the dimension s.

Lemma 1. In the notation from above, let $s \geq 2$. Then we have

$$\sum_{r \in \mathbb{F}_q^*} \sigma_E(r) \sigma_F(r) \ll \log q \left(q^{-2s-1}(\#E)(\#F) + q^{-\frac{s+1}{2}}(\#E)^2(\#F) \right).$$

For odd $s \geq 2$, also the bound

$$\sum_{r \in \mathbb{F}_q} \sigma_E(r) \sigma_F(r) \ll \log q \left(q^{-2s-1}(\#E)(\#F) + q^{-\frac{s+1}{2}}(\#E)^2(\#F) \right).$$

holds true, including the term $r = 0$. Moreover, for $s = 2$ we also have the alternative bound

$$\sum_{r \in \mathbb{F}_q^*} \sigma_E(r) \sigma_F(r) \ll (\log q)^2 q^{-5}(\#E)^{3/2}(\#F).$$

Note that (2.3) is superior to (2.1) for $s = 2$ if and only if $\#E \gg q$. Finally, for fixed $E,F \in \mathbb{F}_q^s$ and given $j \in \mathbb{F}_q^*$, we define

$$\nu(j) = \#\{(x,y) \in E \times F : |x - y|^2 = j\}.$$

3. Bounding the Fourier transform of a sphere

In this section we collect some useful bounds on the Fourier transform of a sphere in the finite fields setting.

Lemma 2. For $m \in \mathbb{F}_q^s$, let

$$\chi(m) = \begin{cases} 1 & \text{if } m = 0, \\ 0 & \text{if } m \neq 0. \end{cases}$$

Then

$$\hat{S}_r(m) = \frac{\chi(m)}{q} + q^{-\frac{s}{2}-1} c_q s \sum_{j \in \mathbb{F}_q^*} e \left(\frac{jr + |m|^2 j}{q} \right) \eta_q(j),$$

where the complex number c_q depends only on q and s, such that $|c_q| = 1$, and where η_q denotes a quadratic multiplicative character of \mathbb{F}_q^*.

Proof. This is Lemma 4 in [5].

Corollary 1. Let $m \neq 0$. Then

$$|\hat{S}_r(m)| \leq q^{-s/2}.$$

Moreover, still assuming $m \neq 0$, for $r \neq 0$ or odd s, the stronger bound

$$\hat{S}_r(m) \ll q^{-\frac{s+1}{2}}$$
holds true. Further, for \(s \geq 2 \) and \(m = 0 \) we have the bound
\[
|\hat{S}_r(0)| \leq \frac{2}{q}.
\]
Finally,
\[
\hat{S}_0(m) = c_s(q^{-s/2} - q^{-s/2-1})
\]
for \(m \neq 0 \), \(|m|^2 = 0 \) and even \(s \), and
\[
\hat{S}_0(m) \ll q^{-s/2-1}
\]
for \(m \neq 0 \), \(|m|^2 \neq 0 \) and even \(s \).

Proof. The first and third bound follow immediately from Lemma 2 on trivially bounding the sum over \(j \). For the second one we make use of Weil’s seminal work (see for example Corollary 11.12 in [7]) to bound the resulting Kloosterman sum over \(j \) (even \(s \)), or use the elementary evaluation of the Salié sum (see for example Lemma 12.4 in [7]) to bound the relevant sum over \(j \) (odd \(s \)). The last two bounds follow on evaluating the summation over \(j \) after noting that the term \(\eta_s(j) \) vanishes for even \(s \). □

Lemma 3. Let \(s \geq 2 \) and \(r \in \mathbb{F}_q^* \). Then
\[
\sigma_E(r) = q^{-s} \#E + q^{-s+1} (\#E)^2.
\]
This bound is also true for \(r = 0 \) and odd \(s \). Moreover, for \(s = 2 \), we also have the alternative bound
\[
\sigma_E(r) \ll q^{-3} (\#E)^{3/2}.
\]
Proof. The bound (3.1) for \(r \neq 0 \) is essentially Lemma 1.8 in [6], but in order to cover the case \(r = 0 \) and odd \(s \) as well let us give a complete proof. We have
\[
\sigma_E(r) = \sum_{m \in \mathbb{F}_q : |m|^2 = r} |E(m)|^2 \sum_{m \in \mathbb{F}_q} \overline{E(m)} \hat{E}(m) S_r(m)
\]
\[
= q^{-2s} \sum_{m \in \mathbb{F}_q} \sum_{x \in \mathbb{F}_q} E(x) e\left(\frac{mx}{q}\right) \sum_{y \in \mathbb{F}_q} E(y) e\left(-\frac{my}{q}\right) S_r(m)
\]
\[
= q^{-2s} \sum_{x, y \in \mathbb{F}_q} E(x) E(y) \sum_{m \in \mathbb{F}_q} e\left(\frac{mx - y}{q}\right) S_r(m)
\]
\[
= q^{-s} \sum_{x, y \in \mathbb{F}_q} E(x) E(y) \hat{S}_r(y - x)
\]
\[
\leq q^{-s} \#E \cdot |\hat{S}_r(0)| + q^{-s} (\#E)^2 \max_{m \in \mathbb{F}_q \setminus \{0\}} |\hat{S}_r(m)|.
\]
Corollary [1] now yields (3.1). The second bound (3.2) is Lemma 4.4 in [1]. □

4. PROOF OF LEMMA [1]

Clearly, by Plancherel’s formula,
\[
\sigma_F(r) \leq \sum_{a \in \mathbb{F}_q} |\hat{F}(a)|^2 = \frac{|F|}{q^s} \leq 1,
\]
and the same bound holds true for $\sigma_E(r)$. Hence, on writing
\[T_i = \sum_{r \in \mathbb{F}_q^{*2i-1} \leq \sigma_F(r) \leq 2i} \sigma_E(r) \sigma_F(r) \]
for $i \in \mathbb{Z}$, by a dyadic intersection of the range of possible values of σ_F we find that
\[\sum_{r \in \mathbb{F}_q^*} \sigma_E(r) \sigma_F(r) \leq q^{-4s+1} + \sum_{-4s \leq i \leq 0} T_i \ll q^{-4s+1} + \log q \cdot \max_{-4s \leq i \leq 0} T_i. \]
We conclude that there exists a subset $M \subset \mathbb{F}_q^*$ such that
\[\sum_{r \in M} \sigma_E(r) \sigma_F(r) \ll q^{-4s+1} + \log q \sum_{r \in M} \sigma_E(r) \sigma_F(r) \]
and
\[A \leq \sigma_F(r) \leq 2A \]
for all $r \in M$, for a suitable positive constant A. By Cauchy-Schwarz,
\[\sum_{r \in M} \sigma_E(r) \sigma_F(r) \leq \left(\sum_{r \in M} \sigma_E(r)^2 \right)^{1/2} \left(\sum_{r \in M} \sigma_F(r)^2 \right)^{1/2}. \]
Let us first bound $\sum_{r \in M} \sigma_E(r)^2$. Using Lemma 3 we obtain
\[\sum_{r \in M} \sigma_E(r)^2 \leq \left(\max_{t \in \mathbb{F}_q^*} \sigma_E(t) \right)^2 \#M \ll (\#M) \left(q^{-2s-2}(\#F)^2 + q^{-3s-1}(\#E)^4 \right) \]
in general, and for $s = 2$ we also obtain the alternative bound
\[\sum_{r \in M} \sigma_E(r)^2 \ll (\#M) q^{-6}(\#E)^3. \]
Next, let us bound $\sum_{r \in M} \sigma_F(r)^2$.

Lemma 4. We have
\[\sum_{r \in \mathbb{F}_q} \sigma_F(r) = q^{-s} \#F. \]

Proof. Since
\[\sum_{r \in \mathbb{F}_q} \sigma_F(r) = \sum_{a \in \mathbb{F}_q^*} |\hat{F}(a)|^2, \]
the result follows immediately from Plancherel’s formula
\[\sum_{a \in \mathbb{F}_q^*} |\hat{F}(a)|^2 = q^{-s} \sum_{a \in \mathbb{F}_q^*} F(a)^2 = q^{-s} \#F. \]

We start with the observation that by (4.2), we have
\[\sum_{r \in M} \sigma_F(r)^2 \leq 4 \cdot \#M \cdot A^2. \]
Next, by Lemma 4

\[(4.7) \quad q^{-2s}(\#F)^2 = \left(\sum_{r \in \mathbb{F}_q} \sigma_F(r)\right)^2 = \sum_{m,n \in \mathbb{F}_q} \sigma_F(m)\sigma_F(n).\]

Moreover, by \[(4.2),\]

\[(4.8) \quad \sum_{m,n \in \mathbb{F}_q} \sigma_F(m)\sigma_F(n) \geq \sum_{m,n \in \mathbb{M}} \sigma_F(m)\sigma_F(n) \gg (\#M)^2 A^2.\]

By \[(4.6), (4.7),\] and \[(4.8)\] we obtain

\[\sum_{r \in \mathbb{M}} \sigma_F(r)^2 \ll \#M \cdot A^2 \ll (\#M)^{-1} \sum_{m,n \in \mathbb{M}} \sigma_F(m)\sigma_F(n)\]

\[(4.9) \quad \ll (\#M)^{-1} q^{-2s}(\#F)^2.\]

Summarising \[(4.1), (4.3), (4.4)\] and \[(4.9)\], and noting that

\[q^{-4s+1} \ll (\log q)q^{-2s-1}(\#E)/(\#F)\]

since \(\#E, \#F \geq 1\), we obtain

\[\sum_{r \in \mathbb{F}_q} \sigma_E(r)\sigma_F(r) \ll (\log q)q^{-2s-1}(\#E)/(\#F) + q^{-2s+1}((\#E)^2/(\#F)).\]

In case of odd \(s\), Lemma 3 also applies for \(r = 0\), so in the argument above we can replace \(\mathbb{F}_q^*\) by \(\mathbb{F}_q\), this way arriving at \[(2.2).\] Further, using \[(4.5)\] instead of \[(4.4)\], for \(s = 2\) we also obtain

\[\sum_{r \in \mathbb{F}_q} \sigma_E(r)\sigma_F(r) \ll (\log q)q^{-5}(\#E)^{3/2}/(\#F).\]

This completes the proof of Lemma 1. \(\square\)

5. PREPARATIONS FOR THE PROOF OF THEOREM 1

Before we embark on the proof of Theorem 1, we first need to collect some useful lemmata.

Lemma 5. Let \(j \in \mathbb{F}_q\). Then

\[\nu(j) = q^{2s} \sum_{m \in \mathbb{F}_q} \hat{S}_j(m)\overline{E(m)\hat{F}(m)}.\]

Proof. We have

\[\nu(j) = \sum_{x,y \in \mathbb{F}_q} E(x)F(y)S_j(x - y)\]

\[= \sum_{x,y \in \mathbb{F}_q} E(x)F(y) \sum_{m \in \mathbb{F}_q} e\left(\frac{(x - y)m}{q}\right)\hat{S}_j(m)\]

\[= \sum_{m \in \mathbb{F}_q} \hat{S}_j(m) \left(\sum_{x \in \mathbb{F}_q} E(x)e\left(\frac{xm}{q}\right)\right) \left(\sum_{y \in \mathbb{F}_q} F(y)e\left(-\frac{ym}{q}\right)\right)\]

\[= q^{2s} \sum_{m \in \mathbb{F}_q} \hat{S}_j(m)\overline{E(m)\hat{F}(m)}.\]
Lemma 6. Let $s \geq 2$ and $(\#E)(\#F) \geq 900q^s$. Then

$$\nu(0) \leq \frac{21}{30}(\#E)(\#F).$$

Proof. Since

$$\hat{E}(0) = q^{-s}\#E$$

and

$$\hat{F}(0) = q^{-s}\#F,$$

Lemma 5 yields

$$\nu(0) = (\#E)(\#F)\hat{S}_0(0) + \delta,$$

where

$$\delta = q^{2s} \sum_{m \in \mathbb{F}_q^* : m \neq 0} \hat{S}_0(m)\hat{E}(m)\hat{F}(m).$$

By Corollary 1, it follows that

$$\nu(0) \leq \frac{2(\#E)(\#F)}{q} + |\delta|.$$

Moreover, Corollary 1 gives

$$|\hat{S}_0(m)| \leq q^{-s/2}$$

for $m \neq 0$. Hence, by Cauchy-Schwarz and Plancherel’s formula,

$$|\delta| \leq q^{2s} \left(\sum_{m \in \mathbb{F}_q^*} |\hat{E}(m)|^2 \right)^{1/2} \left(\sum_{m \in \mathbb{F}_q^*} |\hat{F}(m)|^2 \right)^{1/2} \leq q^{s/2}(\#E)^{1/2}(\#F)^{1/2}.$$

Since $(\#E)(\#F) \geq 900q^s$, we conclude that

$$|\delta| \leq \frac{(\#E)(\#F)}{30}.$$

Therefore, since $q \geq 3$, we have

$$\nu(0) \leq 2\frac{(\#E)(\#F)}{q} + |\delta| \leq \frac{21}{30}(\#E)(\#F).$$

Lemma 7. We have

$$\sum_{j \in \mathbb{F}_q^*} \nu(j)^2 \leq \frac{(\#E)^2(\#F)^2}{q} + q^{s-1}(\#E)(\#F)$$

$$+ q^{3s} |\sigma_{E,F}(0)|^2 + q^{3s} \sum_{r \in \mathbb{F}_q^*} \sigma_E(r)\sigma_F(r)$$

$$\leq \frac{(\#E)^2(\#F)^2}{q} + q^{3s} \sum_{r \in \mathbb{F}_q^*} \sigma_E(r)\sigma_F(r) + q^{s-1}(\#E)(\#F).$$

□
Proof. By Lemma 5 and Lemma 2, we have

\[
\sum_{j \in \mathbb{F}_q} \nu(j)^2 = q^{4s} \sum_{j \in \mathbb{F}_q} \sum_{m,n \in \mathbb{F}_q} \hat{S}_j(m) \overline{S}_j(n) \overline{E(m) \hat{F}(m) \hat{E}(n) \hat{F}(n)}
\]

\[
= q^{4s} \sum_{m,n \in \mathbb{F}_q} \overline{E(m) \hat{F}(m) \hat{E}(n) \hat{F}(n)} \sum_{j \in \mathbb{F}_q} \times
\]

\[
\left(\frac{\chi(m)}{q} + q^{-s/2-1} c^s_q \sum_{k \in \mathbb{F}_q^*} e\left(\frac{kj + |m|^2 \overline{4k}}{q} \right) \eta_q^s(k) \right)
\]

\[
\times \left(\frac{\chi(n)}{q} + q^{-s/2-1} c^s_q \sum_{l \in \mathbb{F}_q^*} e\left(\frac{-lj - |n|^2 \overline{4l}}{q} \right) \eta_q^s(l) \right).
\]

We are now going to expand the product and interchange the order of summation of \(j \) and \(k, l \). Since

\[
\sum_{l \in \mathbb{F}_q^*} \sum_{j \in \mathbb{F}_q} e\left(\frac{-lj - |n|^2 \overline{4l}}{q} \right) \eta_q^s(l) = 0,
\]

the two cross terms turn out to be zero. Moreover,

\[
\hat{E}(0) = \overline{E(0)} = q^{-s} \#E
\]

and

\[
\hat{F}(0) = \overline{F(0)} = q^{-s} \#F.
\]

Therefore,

\[
\sum_{j \in \mathbb{F}_q} \nu(j)^2 = \frac{(#E)^2(#F)^2}{q} + q^{3s-2} \sum_{m,n \in \mathbb{F}_q} \overline{E(m) \hat{F}(m) \hat{E}(n) \hat{F}(n)}T(m,n),
\]

where

\[
T(m,n) = c^2_q c^s_q \sum_{j \in \mathbb{F}_q} \sum_{k \in \mathbb{F}_q^*} e\left(\frac{kj + |m|^2 \overline{4k}}{q} \right) \eta_q^s(k) \sum_{l \in \mathbb{F}_q^*} e\left(\frac{-lj - |n|^2 \overline{4l}}{q} \right) \eta_q^s(l)
\]

\[
= q \sum_{k \in \mathbb{F}_q^*} e\left(\frac{4k(|m|^2 - |n|^2)}{q} \right)
\]

\[
= q \left(\sum_{k \in \mathbb{F}_q^*} e\left(\frac{4k(|m|^2 - |n|^2)}{q} \right) - 1 \right)
\]

\[
= \begin{cases}
q^2 - q & \text{if } |m|^2 = |n|^2 \\
-q & \text{if } |m|^2 \neq |n|^2.
\end{cases}
\]

Hence

\[
(5.1) \quad \sum_{j \in \mathbb{F}_q} \nu(j)^2 - \frac{(#E)^2(#F)^2}{q} \leq U + |V|
\]
Another application of Cauchy-Schwarz shows that

\[U = q^{3s} \sum_{m, n \in \mathbb{F}_q} \overline{E(m)} \hat{F}(m) \hat{E}(n) \overline{F(n)} = q^{3s} \sum_{r \in \mathbb{F}_q} |\sigma_{E,F}(r)|^2 \]

and

\[V = q^{3s-1} \sum_{m, n \in \mathbb{F}_q} \overline{E(m)} F(m) \hat{E}(n) \overline{F(n)}. \]

By Cauchy-Schwarz’ inequality,

\[|\sigma_{E,F}(r)|^2 \leq \left(\sum_{m \in \mathbb{F}_q : |m|^2 = r} |\hat{E}(m)|^2 \right) \left(\sum_{m \in \mathbb{F}_q : |m|^2 = r} |\hat{F}(m)|^2 \right) = \sigma_E(r) \sigma_F(r). \]

Thus

(5.2) \[U \leq q^{3s} |\sigma_{E,F}(0)|^2 + q^{3s} \sum_{r \in \mathbb{F}_q} \sigma_E(r) \sigma_F(r) \leq q^{3s} \sum_{r \in \mathbb{F}_q} \sigma_E(r) \sigma_F(r). \]

Another application of Cauchy-Schwarz shows that

\[\left| \sum_{m, n \in \mathbb{F}_q} \overline{E(m)} \hat{F}(m) \hat{E}(n) \overline{F(n)} \right| \leq \left(\sum_{m \in \mathbb{F}_q} |\hat{E}(m)| \right)^2 \left(\sum_{m \in \mathbb{F}_q} |\hat{F}(m)| \right)^2 \leq \sum_{m \in \mathbb{F}_q} |\hat{E}(m)|^2 \sum_{m \in \mathbb{F}_q} |\hat{F}(m)|^2. \]

Hence, by Plancherel’s formula,

(5.3) \[|V| \leq q^{s-1} (\#E)(\#F). \]

The result now follows from (5.1), (5.2) and (5.3). □

Lemma 8. Let \(s \geq 2 \) be even, \(\#E \leq \#F \) and \((\#E)(\#F) \geq 900q^s \). Then we have

\[|\sigma_{E,F}(0)|^2 = q^{-3s} \nu(0)^2 + O \left(q^{-3s-1} (\#E)^2 (\#F)^2 \right). \]

Proof. As in the proof of Lemma 3

\[
\sigma_{E,F}(0) = \sum_{m \in \mathbb{F}_q^* : |m|^2 = 0} \overline{E(m)} \hat{F}(m) = \sum_{m \in \mathbb{F}_q^*} \overline{E(m)} \hat{F}(m) S_0(m) \\
= q^{-2s} \sum_{m \in \mathbb{F}_q^*} \sum_{x \in \mathbb{F}_q^*} E(x) e \left(\frac{mx}{q} \right) \sum_{y \in \mathbb{F}_q^*} F(y) e \left(-\frac{my}{q} \right) S_0(m) \\
= q^{-2s} \sum_{x,y \in \mathbb{F}_q^*} E(x) F(y) \sum_{m \in \mathbb{F}_q^*} e \left(\frac{m(x-y)}{q} \right) S_0(m) \\
= q^{-s} \sum_{x,y \in \mathbb{F}_q^*} E(x) F(y) \hat{S}_0(y-x).
\]
By Corollary 1 and Cauchy-Schwarz’ inequality we obtain
\[\sigma_E(0) = q^{-s}c_q^s \sum_{x, y \in \mathbb{P}_q^2 : x \neq y, |x - y|^2 = 0} E(x)F(y) \left(q^{-s/2} - q^{-s/2-1} \right) + O \left(q^{-s} \sum_{x \in \mathbb{P}_q^2} E(x)F(x)q^{-1} \right) + O \left(q^{-s} \sum_{x, y \in \mathbb{P}_q^2 : x \neq y, |x - y|^2 \neq 0} E(x)F(y)q^{-s/2-1} \right) = q^{-\frac{3}{2}s}c_q^s (\nu(0) + O(#E)) + O \left(q^{-s-1} \sum_{x \in \mathbb{P}_q^2} E(x)F(x) \right) + O \left(q^{-\frac{3}{2}s-1} \sum_{x, y \in \mathbb{P}_q^2 : x \neq y} E(x)F(y) \right) = q^{-\frac{3}{2}s}c_q^s \nu(0) + O \left(q^{-\frac{3}{2}s} #E \right) + O \left(q^{-s-1}(\#E)^{1/2}/(\#F)^{1/2} \right) + O \left(q^{-s-1}(\#E)/\#F \right) = q^{-\frac{3}{2}s}c_q^s \nu(0) + O \left(q^{-\frac{3}{2}s-1}(\#E)(\#F) \right). \]

Multiplying with \(\sigma_{E,F}(0) \) and noting that \(\nu(0) = O((\#E)(\#F)) \) by Lemma 6 then yields the result. \[\square \]

Lemma 9. Let \(s \geq 2 \), \(\#E \leq \#F \) and \((\#E)(\#F) \geq (\log q + 900)q^s \). Then
\[
\sum_{r \in \mathbb{P}_q^*} \nu(r)^2 \ll \frac{(\#E)^2(\#F)^2}{q} + (\log q)\frac{q^{-s}}{}(\#E)^2(\#F).
\]

For \(s = 2 \), we also have the alternative bound
\[
\sum_{r \in \mathbb{P}_q^*} \nu(r)^2 \ll \frac{(\#E)^2(\#F)^2}{q} + (\log q)(\#E)^{3/2}(\#F).
\]

Proof. By Lemma 6 and Lemma 9 for odd \(s \geq 2 \) we obtain
\[
\sum_{r \in \mathbb{P}_q^*} \nu(r)^2 \ll \frac{(\#E)^2(\#F)^2}{q} + q^{s-1}(\#E)(\#F) + (\log q)(q^{s-1}(\#E)(\#F) + q^{s-1}(\#E)^2(\#F)).
\]
Note that
\[(\log q)q^{s-1}(\#E)(\#F) \ll \frac{(\#E)^2(\#F)^2}{q}\]
since \((\#E)(\#F) \gg (\log q)q^s\), whence
\[
\sum_{r \in \mathbb{F}_q} \nu(r)^2 \ll \frac{(\#E)^2(\#F)^2}{q} + (\log q)q^{\frac{s-1}{2}}(\#E)^2(\#F).
\]
Since \(\nu(0)^2 \geq 0\), this is even stronger than the claim (5.4). For even \(s \geq 2\), Lemma 7 and Lemma 8 yield
\[
\sum_{r \in \mathbb{F}_q} \nu(r)^2 \leq \frac{(\#E)^2(\#F)^2}{q} + q^{-1}(\#E)(\#F)
+ \nu(0)^2 + O(q^{-1}(\#E)^2(\#F)^2) + q^{3s} \sum_{r \in \mathbb{F}_q^*} \sigma_E(r)\sigma_F(r).
\]
As above, subtracting \(\nu(0)^2\) and applying Lemma 11 then gives
\[
\sum_{r \in \mathbb{F}_q^*} \nu(r)^2 \ll \frac{(\#E)^2(\#F)^2}{q} + (\log q)q^{\frac{s-1}{2}}(\#E)^2(\#F).
\]
To obtain the alternative bound for \(s = 2\), we just use the alternative bound in Lemma 11 and keep the rest of the proof the same. \(\square\)

6. PROOF OF THEOREM 1

We follow the argument leading to formula (2.6) in [6]. By definition (2.4) of \(\nu(j)\), clearly
\[
\sum_{j \in \mathbb{F}_q} \nu(j) = (\#E)(\#F).
\]
Hence, by Lemma 6
\[
\left(\sum_{j \in \mathbb{F}_q} \nu(j)\right)^2 - 2\nu(0)^2 \geq \frac{1}{50}(\#E)^2(\#F)^2.
\]
Moreover, by Cauchy-Schwarz,
\[
\left(\sum_{j \in \mathbb{F}_q} \nu(j)\right)^2 \leq 2\nu(0)^2 + 2 \left(\sum_{j \in \mathbb{F}_q} \nu(j)\right)^2
\leq 2\nu(0)^2 + 2 \left(\sum_{j \in \mathbb{F}_q^*} \nu(j)\right)^2 \cdot \left(\sum_{j \in \mathbb{F}_q^*; \nu(j) > 0} 1\right)
\leq 2\nu(0)^2 + 2\#\Delta(E, F) \cdot \sum_{j \in \mathbb{F}_q^*} \nu(j)^2.
\]
Thus
\[
\#\Delta(E, F) \gg \frac{(\#E)^2(\#F)^2}{\sum_{j \in \mathbb{F}_q^*} \nu(j)^2}.
\]
The conclusion now follows immediately from Lemma 9.
References

[1] Chapman, J., Erdogan, M.B., Hart, D., Iosevich, A., Koh, D. Pinned distance sets, k-simplices, Wolff’s exponent in finite fields and sum-product estimates, Math. Z. 271 (2012), 63–93.

[2] Erdős, P. On sets of distances of n points, Amer. Math. Monthly 53 (1946), 248–250.

[3] Falconer, K. J. On the Hausdorff dimension of distance sets, Mathematika 32 (1985), 206–212.

[4] Guth, L. & Katz, N.H. On the Erdős distance problem in the plane, arXiv:1011.4105.

[5] Iosevich, A. & Koh, D. Extension theorems for spheres in the finite field setting, Forum Math. 22 (2010), 457–483.

[6] Iosevich, A. & Rudnev, M. Erdős distance problem in vector spaces over finite fields, Trans. Amer. Math. Soc. 359 (2007), 6127–6142.

[7] Iwaniec, H. & Kowalski, E. Analytic Number Theory, American Mathematical Society Colloquium Publications 53, American Mathematical Society, Providence, RI, 2004.

[8] Koh, D. & Shen, C. Sharp extension theorems and Falconer distance problems for algebraic curves in two dimensional vector spaces over finite fields, Revista Matemática Iberoamericana 28 (2012), 157–178.

[9] Koh, D. & Shen, C. Additive energy and the Falconer distance problem in finite fields, arXiv:1010.1597.

[10] Shparlinski, I. On the set of distances between two sets over finite fields, Int. J. Math. Math. Sci. 2006 Art. ID 59482, 5 pp.

Department of Mathematics, Royal Holloway, University of London, TW20 0EX Egham, United Kingdom
E-mail address: Rainer.Dietmann@rhul.ac.uk