SIMPSON TYPE INEQUALITIES VIA ϕ–CONVEXITY

M.EMİN ÖZDEMİR♦, MERVE AVCI♦, AND A. OCAK AKDEMIR♣

Abstract. In this paper, we obtain some Simpson type inequalities for functions whose derivatives in absolute value are ϕ–convex.

1. INTRODUCTION AND PRELIMINARIES

Suppose \(f : [a, b] \to \mathbb{R} \) is a four times continuously differentiable mapping on \((a, b)\) and \(\|f^{(4)}\|_{\infty} = \sup |f^{(4)}(x)| < \infty \). The following inequality

\[
\left| \frac{1}{3} \left[f(a) + f(b) \right] + 2f\left(\frac{a+b}{2}\right) - \frac{1}{b-a} \int_{a}^{b} f(x)dx \right| \leq \frac{1}{2880} \|f^{(4)}\|_{\infty} (b-a)^4
\]

is well known in the literature as Simpson’s inequality.

For some results about Simpson inequality see [3]-[7].

In [3], Alomari et al. proved some inequalities of Simpson type for \(s \)-convex functions by using the following Lemma.

Lemma 1. Let \(f, \varphi : K \to \mathbb{R} \) be two continuous functions. We recall the following results, which are due to Noor and Noor [1], Noor [2] as follows:

\[p(t) = \begin{cases}
 t - \frac{1}{6}, & t \in \left[0, \frac{1}{2}\right) \\
 t - \frac{5}{6}, & t \in \left[\frac{1}{2}, 1\right].
\end{cases} \]

Let \(f, \varphi : K \to \mathbb{R} \), where \(K \) is a nonempty closed set in \(\mathbb{R}^n \), be continuous functions. We recall the following results, which are due to Noor and Noor [1], Noor [2] as follows:

Definition 1. Let \(u \in K \). Then the set \(K \) is said to be \(\varphi \)–convex at \(u \) with respect to \(\varphi \), if

\[u + t\varphi(v-u) \in K, \quad \forall u, v \in K, \quad t \in [0,1]. \]

1991 Mathematics Subject Classification. 26D10, 26D15.

Key words and phrases. Simpson inequality, \(\varphi \)–convex function, Hölder inequality, power-mean inequality.

Corresponding Author.
Remark 1. We would like to mention that the Definition[7] of a \(\varphi \)-convex set has a clear geometric interpretation. This definition essentially says that there is a path starting from a point \(u \) which is contained in \(K \). We don’t require that the point \(v \) should be one of the end points of the path. This observation plays an important role in our analysis. Note that, if we demand that \(v \) should be an end point of the path for every pair of points, \(u, v \in K \), then \(e^{i\varphi}(v-u) = v-u \) if and only if, \(\varphi = 0 \), and consequently \(\varphi \)-convexity reduces to convexity. Thus, it is true that every convex set is also an \(\varphi \)-convex set, but the converse is not necessarily true.

Definition 2. The function \(f \) on the \(\varphi \)-convex set \(K \) is said to be \(\varphi \)-convex with respect to \(\varphi \), if
\[
f(u + te^{i\varphi}(v-u)) \leq (1-t)f(u) + tf(v), \quad \forall u, v \in K, \quad t \in [0, 1].
\]
The function \(f \) is said to be \(\varphi \)-concave if and only if \(-f\) is \(\varphi \)-convex. Note that every convex function is a \(\varphi \)-convex function, but the converse is not true.

The following inequality is known as the Hölder inequality[8]:

Theorem 1. Let \(p > 1 \) and \(\frac{1}{p} + \frac{1}{q} = 1 \). If \(f \) and \(g \) are real functions defined on \([a, b]\) and if \(|f|^p \) and \(|g|^q \) are integrable functions on \([a, b]\) then
\[
\int_a^b |f(x)g(x)| \, dx \leq \left(\int_a^b |f(x)|^p \, dx \right)^{\frac{1}{p}} \left(\int_a^b |g(x)|^q \, dx \right)^{\frac{1}{q}},
\]
with equality holding if and only if \(A |f(x)|^p = B |g(x)|^q \) almost everywhere, where \(A \) and \(B \) are constants.

2. Simpson type inequalities for \(\varphi \)-convex functions

Throughout this section, let \(K = [a, a + e^{i\varphi}(b-a)] \) and \(0 \leq \varphi \leq \frac{\pi}{2} \).

We used the following Lemma to obtain our main results.

Lemma 2. Let \(K \subset \mathbb{R} \) be a \(\varphi \)-convex subset and \(f : K \to (0, \infty) \) be a differentiable function on \(K^\circ \) (the interior of \(K \)), \(a, b \in K \) with \(a < a + e^{i\varphi}(b-a) \). If \(f' \) is integrable on \([a, a + e^{i\varphi}(b-a)]\), following equality holds:
\[
\left| \int_0^1 f(a + 4f \left(\frac{2a + e^{i\varphi}(b-a)}{2} \right) + f(a + e^{i\varphi}(b-a)) \right| - \frac{1}{e^{i\varphi}(b-a)} \int_a^{a+e^{i\varphi}(b-a)} f(x) \, dx
\]
\[
= e^{i\varphi}(b-a) \int_0^1 p(t)f'(a + te^{i\varphi}(b-a)) \, dt,
\]
where
\[
p(t) = \begin{cases}
 t - \frac{1}{6}, & t \in [0, \frac{1}{2}) \\
 t - \frac{5}{6}, & t \in [\frac{1}{2}, 1].
\end{cases}
\]
Proof. Since \(K \) is a \(\varphi \)-convex set, for \(a, b \in K \) and \(t \in [0, 1] \) we have \(a + e^{i\varphi}(b-a) \in K \). Integrating by parts implies that
\[
\int_0^1 \left(t - \frac{1}{6} \right) \frac{f'(a + te^{i\varphi}(b-a))}{e^{i\varphi}(b-a)} \, dt + \int_0^1 \left(t - \frac{5}{6} \right) \frac{f'(a + te^{i\varphi}(b-a))}{e^{i\varphi}(b-a)} \, dt
\]

\[
= \left(t - \frac{1}{6} \right) \frac{f(a + te^{i\varphi}(b-a))}{e^{i\varphi}(b-a)} \bigg|_0^1 - \int_0^1 \frac{f(a + te^{i\varphi}(b-a))}{e^{i\varphi}(b-a)} \, dt
\]

\[
+ \left(t - \frac{5}{6} \right) \frac{f(a + te^{i\varphi}(b-a))}{e^{i\varphi}(b-a)} \bigg|_0^1 - \int_0^1 \frac{f(a + te^{i\varphi}(b-a))}{e^{i\varphi}(b-a)} \, dt
\]

\[
= \frac{1}{6e^{i\varphi}(b-a)} \left[f(a) + 4f \left(\frac{2a + e^{i\varphi}(b-a)}{2} \right) + f(a + e^{i\varphi}(b-a)) \right]
\]

\[
- \frac{1}{e^{i\varphi}(b-a)} \left[\int_0^1 f(a + te^{i\varphi}(b-a)) \, dt + \int_0^1 f(a + te^{i\varphi}(b-a)) \, dt \right].
\]

If we change the variable \(x = a + te^{i\varphi}(b-a) \) and multiply the resulting equality
with \(e^{i\varphi}(b-a) \) we get the desired result. \(\square \)

Theorem 2. Let \(f : K \rightarrow (0, \infty) \) be a differentiable function on \(K^o \). If \(|f'| \) is \(\varphi \)-convex function on \(K^o \) and \(a, b \in K \) with \(a < a + e^{i\varphi}(b-a) \). Then, the following inequality holds:

\[
\left| \frac{1}{6} \left[f(a) + 4f \left(\frac{2a + e^{i\varphi}(b-a)}{2} \right) + f(a + e^{i\varphi}(b-a)) \right] - \frac{1}{e^{i\varphi}(b-a)} \int_a^{a+e^{i\varphi}(b-a)} f(x) \, dx \right|
\]

\[
\leq \frac{5}{72} e^{i\varphi}(b-a) \left[|f'(a)| + |f'(b)| \right].
\]

Proof. From Lemma 2 and using the \(\varphi \)-convexity of \(|f'| \) we have

\[
\left| \frac{1}{6} \left[f(a) + 4f \left(\frac{2a + e^{i\varphi}(b-a)}{2} \right) + f(a + e^{i\varphi}(b-a)) \right] - \frac{1}{e^{i\varphi}(b-a)} \int_a^{a+e^{i\varphi}(b-a)} f(x) \, dx \right|
\]

\[
\leq e^{i\varphi}(b-a) \left\{ \int_0^1 \left(t - \frac{1}{6} \right) \left| f'(a + te^{i\varphi}(b-a)) \right| \, dt + \int_0^1 \left| t - \frac{5}{6} \right| \left| f'(a + te^{i\varphi}(b-a)) \right| \, dt \right\}
\]

\[
\leq e^{i\varphi}(b-a) \left\{ \int_0^1 \left(1 - t \right) \left| f'(a) \right| + t \left| f'(b) \right| \, dt + \int_0^1 \left(t - \frac{1}{6} \right) \left| f'(a) \right| + t \left| f'(b) \right| \, dt + \int_0^1 \left(t - \frac{5}{6} \right) \left| f'(a) \right| + t \left| f'(b) \right| \, dt \right\}
\]

\[
= \frac{5}{72} e^{i\varphi}(b-a) \left[|f'(a)| + |f'(b)| \right]
\]

which completes the proof. \(\square \)
Theorem 3. Let $f : K \to (0, \infty)$ be a differentiable function on K, $a, b \in K$ with $a < a + e^{i\varphi}(b - a)$. If $|f'|^q$ is φ–convex function on K for some fixed $q > 1$ then the following inequality holds

$$\left| \frac{1}{6} \left[f(a) + 4f\left(\frac{2a + e^{i\varphi}(b - a)}{2} \right) + f(a + e^{i\varphi}(b - a)) \right] - \frac{1}{e^{i\varphi}(b - a)} \int_a^{a + e^{i\varphi}(b - a)} f(x)dx \right| \leq e^{i\varphi}(b - a) \left(1 + \frac{2p+1}{6p+1(p+1)} \right)^{\frac{q}{p}}$$

$$\times \left\{ \left(\frac{3}{8} |f'(a)|^q + \frac{1}{8} |f'(b)|^q \right)^{\frac{1}{q}} + \left(\frac{1}{8} |f'(a)|^q + \frac{3}{8} |f'(b)|^q \right)^{\frac{1}{q}} \right\}.$$

where $p = \frac{q}{q-1}$.

Proof. From Lemma 2 and using the Hölder inequality, we have

$$\left| \frac{1}{6} \left[f(a) + 4f\left(\frac{2a + e^{i\varphi}(b - a)}{2} \right) + f(a + e^{i\varphi}(b - a)) \right] - \frac{1}{e^{i\varphi}(b - a)} \int_a^{a + e^{i\varphi}(b - a)} f(x)dx \right| \leq e^{i\varphi}(b - a) \left(\int_0^{\frac{1}{2}} \left| \int_0^t \left(\frac{1}{6} - t \right)^p dt \right|^q dt \right)^{\frac{1}{q}}$$

$$\times \left(\int_0^{\frac{1}{2}} [(1 - t)|f'(a)|^q + t|f'(b)|^q] dt \right)^{\frac{1}{q}}$$

$$+ \left(\int_{\frac{1}{2}}^1 \left(t - \frac{5}{6} \right)^p dt + \int_{\frac{1}{2}}^1 \left(t - \frac{5}{6} \right)^p dt \right)^{\frac{1}{q}}$$

$$\times \left(\int_{\frac{1}{2}}^1 [(1 - t)|f'(a)|^q + t|f'(b)|^q] dt \right)^{\frac{1}{q}} \right\} \right.$$

$$= e^{i\varphi}(b - a) \left(1 + \frac{2p+1}{6p+1(p+1)} \right)^{\frac{q}{p}}$$

$$\times \left\{ \left(\frac{3}{8} |f'(a)|^q + \frac{1}{8} |f'(b)|^q \right)^{\frac{1}{q}} + \left(\frac{1}{8} |f'(a)|^q + \frac{3}{8} |f'(b)|^q \right)^{\frac{1}{q}} \right\}.$$

which is the desired. \qed
Theorem 4. Under the assumptions of Theorem 3 we have the following inequality

\[
\left| \frac{1}{6} \left[f(a) + 4f\left(\frac{2a + e^{i\varphi}(b-a)}{2} \right) \right] + f(a + e^{i\varphi}(b-a)) \right| - \frac{1}{e^{i\varphi}(b-a)} \int_a^{a+e^{i\varphi}(b-a)} f(x) dx \leq e^{i\varphi}(b-a) \left(\frac{2(1 + 2^{p+1})}{6^{p+1}(p+1)} \right)^{\frac{1}{q}} \left[\frac{|f'(a)|^q + |f'(b)|^q}{2} \right].
\]

Proof. From Lemma 2 \(\varphi \)–convexity of \(|f'|^q\) and using the Hölder inequality, we have

\[
\left| \frac{1}{6} \left[f(a) + 4f\left(\frac{2a + e^{i\varphi}(b-a)}{2} \right) \right] + f(a + e^{i\varphi}(b-a)) \right| - \frac{1}{e^{i\varphi}(b-a)} \int_a^{a+e^{i\varphi}(b-a)} f(x) dx \leq e^{i\varphi}(b-a) \left(\int_0^1 |p(t)| \left| f'(a + te^{i\varphi}(b-a)) \right| dt \right)
\]

\[
\leq e^{i\varphi}(b-a) \left(\int_0^1 |p(t)|^p dt \right)^{\frac{1}{p}} \left(\int_0^1 \left| f'(a + te^{i\varphi}(b-a)) \right|^q dt \right)^{\frac{1}{q}}
\]

\[
\leq e^{i\varphi}(b-a) \left(\int_0^1 t - \frac{1}{6} |t - \frac{5}{6} |^p dt + \int_0^1 |t - \frac{5}{6} |^p dt \right) \left(\int_0^1 \left| t - \frac{5}{6} \right| \left| f'(a) \right|^q + t \left| f'(b) \right|^q dt \right)^{\frac{1}{q}}
\]

\[
= e^{i\varphi}(b-a) \left(\frac{2(1 + 2^{p+1})}{6^{p+1}(p+1)} \right)^{\frac{1}{q}} \left[\frac{|f'(a)|^q + |f'(b)|^q}{2} \right]
\]

where we used the fact that

\[
\int_0^1 \left| t - \frac{1}{6} \right|^p dt = \int_\frac{1}{2}^1 \left| t - \frac{5}{6} \right|^p dt = \frac{(1 + 2^{p+1})}{6^{p+1}(p+1)}.
\]

The proof is completed. \(\square \)

Theorem 5. Let \(f : K \to (0, \infty) \) be a differentiable function on \(K^o \), \(a, b \in K \) with \(a < a + e^{i\varphi}(b-a) \). If \(|f'|^q\) is \(\varphi \)–convex function on \(K^o \) for some fixed \(q \geq 1 \) then the following inequality holds

\[
\left| \frac{1}{6} \left[f(a) + 4f\left(\frac{2a + e^{i\varphi}(b-a)}{2} \right) \right] + f(a + e^{i\varphi}(b-a)) \right| - \frac{1}{e^{i\varphi}(b-a)} \int_a^{a+e^{i\varphi}(b-a)} f(x) dx \leq e^{i\varphi}(b-a) \left(\frac{5}{72} \right)^{1-\frac{1}{q}}
\]

\[
\times \left\{ \left(\frac{61 |f'(a)|^q + 29 |f'(b)|^q}{1296} \right)^{\frac{1}{q}} + \left(\frac{29 |f'(a)|^q + 61 |f'(b)|^q}{1296} \right)^{\frac{1}{q}} \right\}.
\]
Proof. From Lemma 2 and using the power-mean inequality, we have
\[
\left| \frac{1}{6} \left[f(a) + 4f \left(\frac{2a + e^{i\varphi} (b - a)}{2} \right) + f \left(a + e^{i\varphi} (b - a) \right) \right] - \frac{1}{e^{i\varphi} (b - a)} \int_{a}^{a + e^{i\varphi} (b - a)} f(x) dx \right|
\]
\[
\leq e^{i\varphi} (b - a) \times \left\{ \left(\int_{0}^{\frac{1}{2}} \left| t - \frac{1}{6} \right|^{1 - \frac{q}{2}} dt \right)^{\frac{1}{q}} \left(\int_{0}^{\frac{1}{2}} \left| t - \frac{1}{6} \right| |f'(a + te^{i\varphi} (b - a))|^{q} dt \right)^{\frac{1}{q}} \right.
+ \left. \left(\int_{\frac{1}{2}}^{1} \left| t - \frac{5}{6} \right|^{1 - \frac{q}{2}} dt \right)^{\frac{1}{q}} \left(\int_{\frac{1}{2}}^{1} \left| t - \frac{5}{6} \right| |f'(a + te^{i\varphi} (b - a))|^{q} dt \right)^{\frac{1}{q}} \right\}.
\]

Since $|f'|^{q}$ is $\varphi-$convex function we have
\[
\int_{0}^{\frac{1}{2}} \left| t - \frac{1}{6} \right| |f'(a + te^{i\varphi} (b - a))|^{q} dt
\leq \int_{0}^{\frac{1}{2}} \left(\frac{1}{6} - t \right) [(1 - t) |f'(a)|^{q} + t |f'(b)|^{q}] dt
+ \int_{\frac{1}{2}}^{1} \left(t - \frac{1}{6} \right) [(1 - t) |f'(a)|^{q} + t |f'(b)|^{q}] dt
= \frac{61 |f'(a)|^{q} + 29 |f'(b)|^{q}}{1296}.
\]

and
\[
\int_{\frac{1}{2}}^{1} \left| t - \frac{5}{6} \right| |f'(a + te^{i\varphi} (b - a))|^{q} dt
\leq \int_{\frac{1}{2}}^{1} \left(\frac{5}{6} - t \right) [(1 - t) |f'(a)|^{q} + t |f'(b)|^{q}] dt
+ \int_{\frac{1}{2}}^{1} \left(t - \frac{5}{6} \right) [(1 - t) |f'(a)|^{q} + t |f'(b)|^{q}] dt
= \frac{29 |f'(a)|^{q} + 61 |f'(b)|^{q}}{1296}.
\]

Combining all the above inequalities gives us the desired result.

\[\square\]

References

[1] K. Inayat Noor and M. Aslam Noor, Relaxed strongly nonconvex functions, Appl. Math. E-Notes, 6 (2006), 259-267.
[2] M. Aslam Noor, Some new classes of nonconvex functions, Nonl. Funct. Anal. Appl., 11 (2006), 165-171.
[3] M. Alomari, M. Darus and S.S. Dragomir, New inequalities of Simpson’s type for $s-$convex functions with applications, RGMIA Res. Rep. Coll., 12 (4) (2009).
[4] M. Alomari and M. Darus, “On some inequalities of Simpson-type via quasi-convex functions and applications,” Transylvanian Journal of Mathematics and Mechanics, vol. 2, no. 1, pp. 15–24, 2010.
[5] M.Z. Sarikaya, E. Set and M.E. Özdemir, On new inequalities of Simpson’s type for $s-$convex functions, Comput. Math. Appl. 60 (2010) 2191–2199.
[6] A. Barani, S. Barani and S.S. Dragomir, Simpson’s Type Inequalities for Functions Whose Third Derivatives in the Absolute Values are P–Convex, RGMIA Res. Rep. Coll., 14 (2011) Preprints.

[7] S. S. Dragomir, R. P. Agarwal, and P. Cerone, On Simpson’s inequality and applications, Journal of Inequalities and Applications, vol. 5, no. 6, pp. 533–579, 2000.

[8] D.S. Mitrinović, J.E. Pečarić and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht/Boston/London, 1993.

♦ Atatürk University, K.K. Education Faculty, Department of Mathematics, Erzurum 25240, Turkey
E-mail address: emos@atauni.edu.tr

★ Adiyaman University, Faculty of Science and Arts, Department of Mathematics, Adiyaman 02040, Turkey
E-mail address: mavci@posta.adiyaman.edu.tr

♣ Ağrı İbrahim Çeçen University, Faculty of Science and Arts, Department of Mathematics, Ağrı 04100, Turkey