Pathogenic features of urinary *Escherichia coli* strains causing Asymptomatic Bacteriuria during Pregnancy

CURRENT STATUS: UNDER REVISION

BMC Infectious Diseases
BMC Series

Samane Mohebi
Shiraz University of Medical Sciences

zahra Hashemizade
Shiraz University of Medical Sciences

Mahtab Hadadi
Shiraz University of Medical Sciences

Soudeh Kholdi
Shiraz University of Medical Sciences

Kasra Javadi
Shiraz University of Medical Sciences

Mohammad Motamedifar
Shiraz University of Medical Sciences

✉ motamedm@yahoo.com *Corresponding Author*

DOI:
10.21203/rs.2.22234/v1

SUBJECT AREAS
Infectious Diseases

KEYWORDS
Escherichia coli, Urinary tract infections, virulence genes, Phylogenetic group
Abstract
Background Asymptomatic bacteriuria is one of the common problems in pregnancy. Pyelonephritis, preterm labor and low birth weight infants have been associated with bacterial infection. Urinary tract infection (UTI) during pregnancy is frequently associated with complications. An observational cross-sectional study including investigated the prevalence of virulence genes, antimicrobial resistance, and its relationship with phylogenetic groups among E. coli strains isolated from pregnant women with asymptomatic bacteriuria who referred to Hafez hospital, Shiraz, Iran.

Material and Methods A total of 300 urine samples were screened for Escherichia coli strains. Susceptibility testing was determined by the disk-diffusion method. The phylogenetic groups and 13 virulence genes were identified by PCR. ESBL and AmpC producing isolates were detected using phenotypic methods. PCR was used to identify the bla TEM, bla SHV and bla CTXM genes in ESBL and AmpC-positive isolates.

Results Our results revealed that among 300 urine samples, 105 (35%) were positive for E. coli. The data showed that the highest and the lowest resistance rates were observed against nalidixic acid (82.1%), and imipenem (2.8%), respectively. The prevalence of ESBLs and AmpC-β-lactamase, in the E. coli isolates was 41% and 9.5% respectively. bla CTXM was the commonest genotype (93%). Phylogenetic group distribution was as follow: B1 2.8%, A 14.2%, B2 61.9%, and D 4.6%. Our result showed that most of the virulence genes belonged to group B2 and also several virulence genes such as hlyA, cnf-1, and papGII genes were positively associated with group B2.

Conclusion Among E. coli strains isolated from patients with UTIs, different features phylogroups, with special virulence factors, could cause severe infection. Awareness about the Virulence patterns distribution among Phylogenetic groups of UPEC could greatly aid in confine and prevent the development of lethal infection caused by these strains.

Background
Pregnant women are typically screened for urinary tract infections (UTIs) in early pregnancy and those with bacteriuria are treated with antibiotics[1]. Its accurate and prompt diagnosis plays an important role in reducing the course of the disease by preventing renal failure following the ascent of
the infection in the upper urinary tract[2]. During pregnancy, UTI might be present as asymptomatic bacteriuria or as symptomatic infection[3]. Most infections are caused by Enterobacteriaceae and the most common causative pathogen is E. coli. Uropathogenic Escherichia coli (UPEC) strains are responsible for 80–90% of all cases[4]. E. coli ability to colonize various sites is due in part to genome specific characteristics by acquisition or loss of genes encoding virulence factors and antibiotic resistance genes[5]. The interaction between UPEC and epithelial cells is effected by several factors and complex phenomenon, involving various adhesins produced according to the stage of infection while its adherence to epithelial cells plays a critical role for a successful colonization and establishment. The severity of the disease is dependent on the expression of other genes encoding virulence factors[6]. Furthermore, an increasing trend in the spectrum and frequency of antimicrobial-resistant UTIs was observed in the past few years[7]. Not only E. coli resistance to various groups of antibiotics such as β-lactams, aminoglycosides and fluoroquinolones can be attributed to some genes, but it also intrinsically resistant to some special antibiotics[8]. Phylogenetic analyses have shown that E. coli strains falls into four main phylogenetic groups (A, B1, B2, and D), each of which has a unique panel of genes that characterize its own evolutionary pattern. Various studies have exhibited that groups B2 and D are proportionately higher in pathogenic samples and usually more virulent, whereas groups A and B1 tend to be found at higher rates in commensal samples[9, 10]. However, there are few studies on virulence factor genes (VFGs), antimicrobial resistance and pattern of phylogenetic groups amongst the E. coli isolated from asymptomatic pregnant women in Iran. The objective of our study was investigated the prevalence of virulence genes, antimicrobial resistance, and its relationship with phylogenetic groups among E. coli strains isolated from asymptomatic pregnant women who referred to Hafez hospital, Shiraz, Iran.

Methods

Setting

Urine samples were collected from June to September 2018 from 300 pregnant women (with recurrent UTIs before pregnancy) suspected of having UTI, who had not received antimicrobials within the past two months. All of the pregnant women were in the age range 18–35 years and had referred
to Hafez hospital for regular perinatal care. The study was approved by the Ethics Committee of Shiraz University of Medical Sciences (EC IR.SUMS.REC. 96.16589).

Sample collection and identification

A midstream clean-catch urine sample were obtained from each participant. The urine samples were cultured on MacConkey agar (MA) plates, and plates were incubated in an aerobic atmosphere at 37°C for 18 h. [11]. Bacterial isolates (300) were obtained from pregnant women diagnosed and confirmed by the clinical laboratory. Confirmed E. coli isolates were kept frozen in tryptic soy broth (Merck, Germany) containing 20% glycerol (Merck, Germany) at -70 °C until further experiments.

Antibiotic susceptibility testing (AST)

AST was carried out using the Kirby-Bauer disk diffusion technique as described previously, using single antibiotic disks consisting of sulphonmethoxazole-trimethoprim (SXT, 25 µg), gentamicin (GEN, 10 µg), cefazidime (CAZ, 30 µg), nalixidic acid (NA, 3 µg), cefotaxime (CTX, 30 µg), ciprofloxacin(CIP, 30 µg), piperacillin (PIP, 100 µg), cefuroxime-clavulanic acid (AMC,20/10 µg), imipenem (IPM, 10 µg), aztreonam (AZT, 30 µg), ceftriaxone (CRO, 30 µg) and nitrofurantoin (NI, 300 µg) (Mast, UK). E. coli ATCC 25922 was used as the quality control strain for antibacterial susceptibility testing[12].

Detection of ESBLs and AmpC-Positive Isolates

ESBLs producing isolates were detected by combined disk method with clavulanic acid according to CLSI guideline[12].The following antibiotics (Mast, UK) were used for detecting ESBLs: CAZ (30 µg), CTX (30 µg) alone as well as with 10 µg clavulanic acid. Klebsiella pneumonia ATCC 700603 and E. coli ATCC 25922 were used as positive and negative controls respectively. Furthermore, AmpC phenotype was specified by means of compound disk using cefoxitin (FOX), (Mast, UK) with and without boronic acid (Sigma-Aldrich Chemie, Germany) were used to detect AmpC phenotypes[13].

According to CLSI criteria, all isolates classified as resistant to cefoxitin were suspected to be AmpC producers. An increase in the zone diameter of ≥5 mm in the presence of boronic acid is taken to be a phenotypic confirmation of AmpC production.
Detection of virulence factors and beta-lactamase genes

DNA was extracted from one single colony of each isolate by incubation in a final volume of 100 μL of distilled water at 95 °C for 10 min followed by centrifugation. PCR was used to detect thirteen genes encoding virulence determinants that are usually associated with the *E. coli* strains responsible for extraintestinal infections: including (*fmH, papC, sfa/focDE, sfaS, kpsMTII, ecpA, ecpR-B, hlyA, cnf-1, papGII, iutA, tratT, and fyuA*), genes[5-14]. Also PCR screening was used for the presence of different beta-lactamase genes (*bla* TEM, *bla* SHV, *bla* CTXM)(15). Each VF and β-lactamase gene was amplified with the primers described in Table 1.

Determination of *Escherichia coli* phylogenetic groups

Isolates were assigned to one of the four main phylogenetic groups of *E. coli* (A, B1, B2, and D), using the triplex PCR as described by Clermont et al. [10]. The genes *chuA, yjaA* and *TSPE4.C2* were amplified by PCR using the primers listed in Table 1. The *E. coli* strain ECOR62 and RS218 (B1 and B2 groups respectively) were used as a controls[16].

Statistical analysis

The data was analyzed using SPSS version 18.0 (SPSS Inc., Chicago, IL, USA). The Chi-square test or the Fisher exact test was used to compare categorical variables. A P-value less than 0.05 was considered to be statistically significant.

Results

A total of 300 urine samples were screened and confirmed 105 (35%) as uropathogenic *E. coli* (CFU ≥10⁵/mL).

Phylogenetic analysis

Of the 105 *E. coli* isolates, 65 (61.9%) belonged to group B2, 22 (20.9%) belonged to group D, 15 (14.2%) belonged to group A and 3 (2.8%) belonged to B1.

Antibiotic Resistance

Over 50% antibiotic resistance was observed for Nalidixic acid (82.1%), trimethoprim/sulfamethoxazole (76.1%), ampicillin (75.9%), piperacillin (61.1%), cefotaxime (60.2%), and ciprofloxacin (51.3%) and nitrofurantoin (11.8%), gentamicin (14.2%) prevalence lower than 15%.
Sensitivity values above 50% were found in imipenem (97.2%), aztreonam (88.4%), piperacillin/tazobactam (76.5%), ceftriaxone (68.5%), cefazidime (57.6%) and amoxicillin/ clavulanic acid (54.8%). Isolates that exhibited resistance to more than ≥3 chemotherapeutic groups were considered multi drug resistant isolates, representing 58% of the isolates. However, no statistical significant was observed among multi drug resistance and phylogenetic groups (Table2).

Prevalence of virulence and resistance genes among the isolates

Higher prevalence (above 70%) was observed for the *kpsMTII, fimH, papC, iutA, fyuA, traT* and *sfa/focDE* genes (100%, 90.4%, 88.5%, 83.8%, 76.1%, 72.3% and 70.4%, respectively). For *ecp* gene prevalence was close to 60% (58.1%) while the *papGII, hlyA, cnf-1* and *sfaS* genes registered prevalence lower than 15%. (14.2%, 12.3%, 8.5% and 2.8%, respectively). Table 3 shows the distribution of virulence genes regarding the phylogenetic group. Most of the virulence factors associated with the phylogenetic group B2 were identified. Among the phylogenetic groups, most of the virulence genes were found to be significantly high in groups B2 and D compared to other groups. The *kpsMTII* and *fmH* genes were widely distributed among all groups (B2 100%/100%, D 100%/81.8%, B1 100%/100%, and A 100%/86.6%, resp.). The *papC, iutA, traT, kpsMTII, fimH* and *fyuA* genes were found in isolates in all groups. The *hlyA, cnf-1*, and *papGII* genes were positively associated with group B2, whereas *sfaS* gene was found only in D group.

Out of the 105 *E. coli* isolates examined for β-lactamases, 41% (43) were found to be ESBL producers and 9.5% (10) were AmpC β-lactamase producers. All AmpC producers were also found to be ESBLs positive. Among the ESBL and AmpC-producing isolates, the multiplex PCR assay results indicated that 40(93%) *blaCTX-M* and 34(79%) *blaTEM* genes were detected in the *E. coli* isolates and *blaSHV* was not found in any of the isolates.

Discussion

In this study, the prevalence of asymptomatic bacteriuria in pregnant women (with recurrent UTIs before pregnancy) was 42%, which was similar to what was observed by a study in Nigeria(47.5%)}
[17] and a study in Ghana (42.8%)[18]. In contrast, some other studies found lower prevalence than ours, a study in Chitwan, Nepal, conducted by Neupane et al. (26%)[19] a study in Cameroon conducted by Mokube M.N. et al. (23.5%)[20] , and a study in India, conducted by Sujatha R et al. (7.3%)[21]. These differences might be due to factors including the geographical areas being investigated, the social habits of the communities, the socio-economic statuses, and standards of personal hygiene[11]. Quinolones, trimethoprim-sulfamethoxazole, and β-lactam antibiotics include penicillins and cephalosporins are the most common antibacterial drugs in UTIs’ treatment[22]. In this study, *E. coli* isolates were highly resistant to nalidixic acid, trimethoprim/sulfamethoxazole and ampicillin by more than 70%, and sensitivity values above 80% were found to imipenem, aztreonam and nitrofurantoin. Findings are in line with the earlier studies in Iran[6-23]. The findings of previous studies as well our current findings indicate that ESBL and AmpC-β-lactamase-producing isolates are typically resistant to other antibiotics such as trimethoprim/sulfamethoxazole and fluoroquinolones[13]. ESBL was detected in 41/105 (43%) of the isolates recovered from patients, and *blaCTXM* was the commonest genotype (93%). Also, all of the AmpC-producing (9.5%) isolates were ESBL positive. ESBL-producing *E. coli* showed the greatest resistance to ampicillin, amoxicillin-clavulanic acid, ceftazidime and trimethoprim-sulphamethoxazole (Table 4). This finding is in agreement with previous studies[24]. This study showed a considerable number of bacteria to harbor the *kpsMTII*, *fimH*, *papC*, *iutA*, *fyuA*, *traT* and *sfa/focDE*, respectively, which was in contrast to Sáez-López et al., but in line with Forson et al. study on pregnant women in Barcelona[23] and Ghana[18]. In our study, *kpsMTII* was the only gene found in all 105(100%) isolates. Also, 95 out of 105(90.4%) isolates harbored, *fimH* genes. *papC*, *papGII* and *ecp* (A and RB) _the other genes related to the ability to colonize the urinary tract epithelium were detected in 88.5% , 14.2% and 58.1% of the isolates, respectively. Our results are in agreement with those found by other studies [17, 18- 23]. Also, among the tested VFs in our study, there was only *sfaS* gene at the lowest rate (2.8%). *iutA* and *fyuA* play an important role in iron acquisition systems by up-taking the hydroxamate siderophore aerobactin[25]. The prevalence of the *iutA* (83.8%) and *fyuA* (76.1%) genes found in our *E. coli* isolates correlates with the results published by Forson et al.[18]. Significant associations were
observed between SXT resistance and the presence of the siderophores \textit{fyuA} and \textit{iutA}. At least one of the tested siderophores was present in 98 (93.3\%) of the tested isolates. Meanwhile, of the toxin-encoding genes, \textit{hlyA} was present in 12.3\% of the isolates, while \textit{cnf1} was detected in 8.5\% of the studied strains. Positive isolates of \textit{hlyA}, and \textit{cnf-1} genes were susceptible to ciprofloxacin, which was in line with that of Piatti et al\cite{26}. The distribution of the 105 \textit{E. coli} isolates in relation to virulence genes in pregnant women revealed 76.1\% (80 isolates) \textit{E. coli} contained two or more virulence genes. The distribution of virulence genes and the phylogenetic classification are different among countries. For example, in Russia\cite{27}, UTI isolates belonged more often to phylogenetic group A. In Spain and the United States, lower percentages were recorded for the phylogenetic group D \cite{5}; however, in the present study, the most prevalent phylogenetic group was B2 (61.9\%). Our result showed that most of the virulence genes belonged to group B2 and also several virulence genes such as \textit{hlyA}, \textit{cnf-1}, and \textit{papGII} genes were positively associated with group B2. All of the 65 isolates in group B2 were positive for \textit{kpsMT} KII and \textit{fimH} genes. Strains belonging to group B2 carry more virulence-factor genes compared to strains from other phylogenetic groups, suggesting a relationship between virulence factors and pathogenic potential. Group D contained the second highest number of \textit{E. coli} strains. Extraintestinal pathogenic isolates from this group typically have somewhat fewer virulence factor genes and a different mix of \textit{VFGs} than do group B2 isolates. In our study the lowest prevalence belonged to \textit{sfaS} (2.8\%) found in all 3 isolates of group D. This was in agreement with the report of López-Banda et al\cite{10}. Group A contains fewer virulence factors genes than group D. \textit{E. coli} strains belong to this group that expresses \textit{kpsMTII}, \textit{papC}, \textit{fmH} and \textit{iutA} genes in high percentages. \textit{E. coli} strains belonging to groups A and B1 do not frequently cause extraintestinal infection. These strains which are not highly virulent, generally cause disease only in hosts that are immunocompromised, and could be pathogenic in healthy hosts only if they were to acquire sufficient extraintestinal factors\cite{28}. All 3 \textit{isolated in group B1 were kpsMTII, fimH, papC} and \textit{tratT} positive. \textit{No association was found between phylogroup B1 and VFGs.}

Conclusions

Our results showed that antibiotic resistant \textit{E. coli} strains associated with Virulence properties of
asymptomatic bacteriuria in pregnant women, which enables them to attach, invade and utilize the iron acquisition systems. To our knowledge, the present work is the first study in Iran that describe the different combinations of virulence genes in pregnant women and warrants more intensive research.

Abbreviations
ESBL
extended-spectrum β-lactamase, AST: Antibiotic susceptibility testing, UTIs: urinary tract infections, UPEC: Uropathogenic Escherichia coli

Declarations

Acknowledgments
The authors wish to thank Mr. H. Argasi at the Research Consultation Center (RCC) of Shiraz University of Medical Sciences for his invaluable assistance in editing this manuscript, also we thank Dr. Ghanbarpour R, Molecular Microbiology Research Group, Shahid Bahonar University of Kerman, Kerman, Iran for kindly providing control strains for phylogenetic analysis.

Funding
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
All data generated or analysed during this study are included in this published article.

Authors’ contributions
Study concept and design: SM, MM; acquisition of data and sampling: SKH; KJ analysis and interpretation of data: SM, Z.H, MH; drafting of the manuscript: SM; critical revision of the manuscript for important intellectual content: MM.; study supervision: MM.

Ethics approval and consent to participate
Not applicable.

Consent for publication

Not applicable.

References

1. Ailes EC, Summers AD, Tran EL, Gilboa SM, Arnold KE, Meaney-Delman D, et al. Antibiotics Dispensed to Privately Insured Pregnant Women with Urinary Tract Infections - United States, 2014. MMWR Morb Mortal Wkly Rep. 2018;67(1):18-22.

2. Farajnia S, Alikhani MY, Ghotaslou R, Naghili B, Nakhilband A. Causative agents and antimicrobial susceptibilities of urinary tract infections in the northwest of Iran. Int J Infect Dis. 2009;13(2):140-4.

3. Kant S, Lohiya A, Kapil A, Gupta SK. Urinary tract infection among pregnant women at a secondary level hospital in Northern India. Indian J Public Health. 2017;61(2): 118-123.

4. Raeispour M, Ranjbar R. Antibiotic resistance, virulence factors and genotyping of Uropathogenic Escherichia coli strains. Antimicrob Resist Infect Control. 2018;7(1):118.

5. López-Banda DA, Carrillo-Casas EM, Leyva-Leyva M, Orozco-Hoyuela G, Manjarrez-Hernández ÁH, Arroyo-Escalante S, et al. Identification of virulence factors genes in Escherichia coli isolates from women with urinary tract infection in Mexico. Biomed Res Int. 2014;959206.

6. Munkhdelger Y, Gunregjav N, Dorjpurev A, Juniichiro N, Sarantuya J. Detection of
virulence genes, phylogenetic group and antibiotic resistance of uropathogenic *Escherichia coli* in Mongolia. J Infect Dev Ctries. 2017;11(01):51-7.

7. Tajbakhsh E, Khamesipour F, Ranjbar R, Ugwu IC. Prevalence of class 1 and 2 integrons in multi-drug resistant *Escherichia coli* isolated from aquaculture water in Chaharmahal Va Bakhtiari province, Iran. Ann Clin Microbiol Antimicrob. 2015;14(1):37.

8. Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ. Molecular mechanisms of antibiotic resistance. Nat Rev MicrobiolNat Rev Microbiol. 2015;13(1):42-51.

9. Kryger J, Burleigh A, Christensen M, Hopkins W. Genetic evaluation of *E. coli* strains isolated from asymptomatic children with neurogenic bladders. Int J Chronic Dis. 2015; 2015: 206570.

10. Clermont O, Bonacorsi S, Bingen E. Rapid and simple determination of the *Escherichia coli* phylogenetic group. Appl Environ Microbiol. 2000;66(10):4555-8.

11. Khan S, Singh P, Siddiqui Z, Ansari M. Pregnancy-associated asymptomatic bacteriuria and drug resistance. Journal of Taibah University Medical Sciences. 2015;10(3):340-5.

12. Wayne P. Performance standards for antimicrobial susceptibility testing. Clinical and Laboratory Standards Institute (CLSI) 25th Informational Supplement. 2017.
13. Koshesh M, Mansouri S, Hashemizadeh Z, Kalantar-Neyestanaki D. Identification of extended-spectrum β-lactamase genes and ampc-β-lactamase in clinical isolates of escherichia coli recovered from patients with urinary tract infections in Kerman, Iran. Arch Pediatr Infect Dis. 2017;5(2):e37968.

14. Guiral E, Bosch J, Vila J, Soto SM. Prevalence of Escherichia coli among samples collected from the genital tract in pregnant and nonpregnant women: relationship with virulence. FEMS microbiology lett. 2011;314(2):170-3.

15. El-Shazly D, Nasef S, Mahmoud F, Jonas D. Expanded spectrum β-lactamase producing Escherichia coli isolated from chickens with colibacillosis in Egypt. Poult Sci. 2017;96(7):2375-2384.

16. Moulin-Schouleur M, Schouler C, Tailliez P, Kao M-R, Brée A, Germon P, et al. Common virulence factors and genetic relationships between O18: K1: H7 Escherichia coli isolates of human and avian origin. J Clin Microbiol. 2006;44(10):3484-92.

17. Okonko I, Donbraye-Emmanuel O, Ijandipe L, Ogun A, Adedeji A, Udeze A. Antibiotics sensitivity and resistance patterns of uropathogens to nitrofurantoin and nalidixic acid in pregnant women with urinary tract infections in Ibadan, Nigeria. Middle-East J Sci Res. 2009;4(2):105-9.

18. Forson AO, Tsidi WB, Nana-Adjei D, Quarchie MN, Obeng-Nkuramah N. Escherichia coli bacteriuria in pregnant women in Ghana: antibiotic resistance patterns and
virulence factors. BMC Res Notes. 2018;11(1):901.

19. Neupane M, Dhakal K, Neupane H, Adhikari S, Aryal B. Asymptomatic bacteriuria among pregnant women attending the outpatient clinics of chitwan medical college teaching hospital in chitwan, Nepal. Nepal IRJP. 2012;3(11):78-80.

20. Mokube MN, Atashili J, Halle-Ekane GE, Ikomey GM, Ndumbe PM. Bacteriuria amongst pregnant women in the Buea Health District, Cameroon: Prevalence, predictors, antibiotic susceptibility patterns and diagnosis. PloS one. 2013;8(8):e71086.

21. Sujatha R, Nawani M. Prevalence of asymptomatic bacteriuria and its antibacterial susceptibility pattern among pregnant women attending the antenatal clinic at Kanpur, India. J Clin Diagn Res: JCDR. 2014;8(4):DC01-3.

22. Moura A, Nicolau A, Hooton T, Azeredo J. Antibiotherapy and pathogenesis of uncomplicated UTI: difficult relationships. J Appl Microbiol. 2009;106(6):1779-91.

23. Sáez-López E, Cossa A, Benmessaoud R, Madrid L, Moraleda C, Villanueva S, et al. Characterization of vaginal Escherichia coli isolated from pregnant women in two different African sites. PloS one. 2016;11(7):e0158695.

24. Kumar D, Singh AK, Ali MR, Chander Y. Antimicrobial susceptibility profile of extended spectrum β-lactamase (ESBL) producing Escherichia coli from various
clinical samples. Infect Dis. 2014;7:IDRT. S13820.

25. Aljanaby AAJ, Alfaham QMH. Phenotypic and molecular characterization of some virulence factors in multidrug resistance *Escherichia coli* isolated from different clinical infections in Iraq. Am J Biochem Mol Biol. 2017;7:65-78.

26. Piatti G, Mannini A, Balistreri M, Schito AM. Virulence factors in urinary *Escherichia coli* strains: phylogenetic background and quinolone and fluoroquinolone resistance. J Clin Microbiol. 2008;46(2):480-7.

27. Grude N, Potaturkina-Nesterova N, Jenkins A, Strand L, Nowrouzian F, Nyhus J, et al. A comparison of phylogenetic group, virulence factors and antibiotic resistance in Russian and Norwegian isolates of *Escherichia coli* from urinary tract infection. Clin Microbiol Infect. 2007;13(2):208-11

28. Sukumaran D, Hatha AAM. Antibiotic resistance and virulence genes of extraintestinal pathogenic *Escherichia coli* from tropical estuary, south India. J Infect Dev Ctries. 2015;9(05):

Tables

Table 1. Nucleotide sequences of primers used to amplify thirteen virulence factors, phylogenetic grouping and beta-lactamase gene
Genes	Primer (5′-3′)	size of amplicon
ecpA	TGAAAAAAAGGTTCTGGCAATAGC CGC TGA TGA GGA GAA AGT GAA	483-bp
ecpRB	GTGACATGGCAAAATGATTACAGC TCA CGG GAA TGA ACT TAT CAC CC	498-bp
papC	GTG GCA GTA TGA GTA ATG ACC GTT A ATA TCC TTT CTG CAG GGA TGC AAT A	200-bp
sfaS	GTGGATACGACGATTACGTG CCG CCA GCA TTC CCT GTA TTT	240-bp
fmH	TGCAAGACGGATAAGCCGTTGG GCA GTC ACC TGC CCT CCG GTA	508-bp
sfa/focDE	CTC CGG AGA ACT GGG TGC ATC TTA C CGG AGG AGT AAT TAC AAA CCT GGC A	410-bp
cnf1	AAG ATG GAG TTT CCT ATG CAG GAG CAT TCA GAG TCC TGC CCT CAT TAT T	602-bp
hlyA	AAC AAG GAT AAG CAC TGT TCT GGC T ACC ATA TAA GCC GTC ATT CCC GTC A	1177-bp
fyuA	TGA TTA ACC CCG CGA CGG GAA CGC AGT AGG CAC GAT GTT GTA	880-bp
iutA	GGC TGG ACA TCA TGG GAA CTG G CGT CGG GAA CGG GTA GAA GTA TCG	300-bp
traT	GGTGTGTTGCGATGAGCACAGCAC GGT TCA GCG ATC CCT GAG	290-bp
papGII	GGGATGAGCGGGCCCTTGTG CCG CCCCCAAGTAACCTCG	190-bp
kpsMTII	CCATCGATACGATCATTGCCAGC ATGCAAGAGTATGTCAGACTCA	400-bp
chuA	GACGAAACCAACCGTGCAAGCATGC CGC GCCCAGTACCACACAGA	279-bp
yjaA	TGAAGTGTCAAGAGACGTG CTG ATGGGAAGTACGGTTCCTCAAC	211-bp
tspE4C2	GAGTAATGTCGGGGGCATTCCA CGCGCCCAACAAAGTATACCAG	152-bp
blaTEM	GAGTATTCAACATTTCCGTCG GTAATCAGTGGACCATCATCTATCTC	800-bp
blaSHV	TCAGCGAAAAACACCCTTG TCCCGCAGATAAATCACCC	475-bp
blaCTX	CGCTTTGCGAGTGTGCAG ACCGCGATATCCTGGT	539-bp
Table 2: Relation among multidrug resistance and phylogenetic group

Phylogenetic group	Multidrug resistance	(positive isolates number (%))
	No-MDS (n=44)	MDS
(n=61)		
A	7(16)	8(13.1)
B1	1(2.2)	2(3.2)
B2	25(56.8)	40(65.5)
D	11(25)	11(18.2)

Table 3. Relation among phylogenetic group and virulence genes of *E. coli* isolates from pregnant women

Presence of virulence factor (Number)	Phylogenic groups. Number (%)							
A (n=15)	B1 (n=3)	B2 (n=65)	D (n=22)					
fmH,								
13(86.6)	3(100)	65(100)	18(81.8)					
papC72.7	(92.3)60	(100)3	(93.3)14					
sfa/focDE	0	1(33.3)	62(95.3)	11(50)				
sfaS	0	0	0	3(13.6)				
kpsMTII	15(100)	3(100)100)22	(100)65					
ecp	8(53.3)	0	47(72.3)	6(27.2)				
hlyA	0	0	13(20)	0				
cnf-1	0	0	9(13.8)	0				
Gene	Count	Percent	Count	Percent	Count	Percent	Count	Percent
--------	-------	---------	-------	---------	-------	---------	-------	---------
papGII	0	0	15	23	0	0		
iutA	12	80	1	33.3	57	87.6	18	81.8
tratT	10	66.6	3	100	46	70.7	17	77.2
fyuA	9	60	2	66.6	50	76.9	19	86.3

Table 4. Percentages of antibiotic resistant UPEC isolates. n (%).
Antibiotic	Total no.			
	Resistant No. (%)	Susceptible No. (%)	Resistant No. (%)	Susceptible No. (%)
Ampicillin	75.9	24.1	92.7	7.3
Amoxicillin/ clavulanic acid	45.2	54.8	73	27
Nalidixic acid	82.1	17.9	43.3	56.7
Trimethoprim/sulfamethoxazole	76.1	23.9	92.7	7.3
Piperacillin	61.1	38.9	42.4	57.6
Piperacillin/tazobactam	76.5	23.5	32.8	67.2
Cefotaxime	60.2	39.8	71.3	28.7
Ciprofloxacin	51.3	48.7	41.4	58.6
Ceftriaxone	31.5	68.5	28.5	71.5
Cefazidime	42.6	57.6	100	0
Gentamicin	14.2	85.8	13.4	86.6
Imipenem	2.8	97.2	0	100
Aztreonam	11.6	88.4	9.7	90.3
Nitrofurantoin	11.8	88.2	4.8	95.5