Dose–Response Matters! – A Perspective on the Exercise Prescription in Exercise–Cognition Research

Fabian Herold1*, Patrick Müller1,2, Thomas Gronwald3 and Notger G. Müller1,2,4

1 Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany, 2 Department of Neurology, Medical Faculty, Otto von Guericke University, Magdeburg, Germany, 3 Department Performance, Neuroscience, Therapy and Health, Medical School Hamburg, University of Applied Sciences and Medical University, Hamburg, Germany, 4 Center for Behavioral Brain Sciences, Magdeburg, Germany

In general, it is well recognized that both acute physical exercises and regular physical training influence brain plasticity and cognitive functions positively. However, growing evidence shows that the same physical exercises induce very heterogeneous outcomes across individuals. In an attempt to better understand this interindividual heterogeneity in response to acute and regular physical exercising, most research, so far, has focused on non-modifiable factors such as sex and different genotypes, while relatively little attention has been paid to exercise prescription as a modifiable factor. With an adapted exercise prescription, dosage can be made comparable across individuals, a procedure that is necessary to better understand the dose–response relationship in exercise–cognition research. This improved understanding of dose–response relationships could help to design more efficient physical training approaches against, for instance, cognitive decline.

Keywords: physical activity, cognition, personalized training, personalized medicine, neuroplasticity, neuroprotection

INTRODUCTION

In the last decades, the average time that people are physically active has decreased dramatically in Western countries (Owen et al., 2010; Church et al., 2011; Copeland et al., 2015), and physical inactivity has been named as a big, if not even the biggest, health problem of the twenty-first century (Blair, 2009). Remarkably, physical inactivity is associated with impaired cognitive functions (Aichberger et al., 2010; Falck et al., 2016; Ku et al., 2017; Tan et al., 2017) and higher risk of neurodegenerative diseases (e.g., dementia) in the aging population (Laurin et al., 2001; Rovio et al., 2005; Ravaglia et al., 2008; Hamer and Chida, 2009; Paillard-Borg et al., 2009; Abe, 2012; Bowen, 2012; de Bruijn et al., 2013; Grande et al., 2014; Paillard, 2015). In order to counteract such negative effects of physical inactivity, an increase in the habitual physical activity level, which is typically engendered through a regular engagement in physical exercises, is empathically recommended (Hillman et al., 2008; Bherer et al., 2013; Erickson et al., 2013, 2014; Hötting and Röder, 2013; Paillard, 2015; Müller et al., 2017; Liu-Ambrose et al., 2018; Herold et al., 2019). It has been well demonstrated in the literature that a single bout of physical exercises (Chang et al., 2012a; Basso and Suzuki, 2017; Herold et al., 2018b; McSween et al., 2018; Moreau and Chou, 2019) as
well as repeated sessions of physical exercises in the form of a training intervention (e.g., endurance training) (Colcombe et al., 2006; Erickson et al., 2011; Voelcker-Rehage et al., 2011; Herold et al., 2018b, 2019; Falck et al., 2019; Stern et al., 2019) induce substantial neurocognitive changes. Based on such positive effects of physical exercises and/or physical training on brain plasticity and on cognition, it is not surprising that many scientific disciplines (e.g., medicine, psychology, neuroscience, and sport science) pay attention to this research field. Although these different scientific disciplines use different approaches to understand the relationship between physical exercises and/or physical training and the central nervous system, it is undoubted that all of them are based on an appropriate exercise prescription that specifies exercise (e.g., exercise intensity, exercise duration) and/or training variables (e.g., frequency of training sessions) (Lightfoot, 2008; Williams et al., 2019). Furthermore, exercise prescription is the key for dosing (Wasfy and Baggish, 2016; Pontifex et al., 2018) and for individualization of acute physical exercises and physical training (Lightfoot, 2008). Individualization (personalizing) is an emerging approach aiming at maximizing the efficiency of an intervention by accounting for the interindividual heterogeneity in the response to acute physical exercises and/or physical training (Lightfoot, 2008; Buford et al., 2013; Barha et al., 2017b; Müller et al., 2017, 2018; Gallen and D’Esposito, 2019). Notably, what parameters are optimal to prescribe the best exercise for an individual is extensively discussed in the literature (Katch et al., 1978; Weltman et al., 1989, 1990; Gass et al., 1991; Meyer et al., 1999; Hofmann and Tschakert, 2010; Scharhag-Rosenberger et al., 2010; Mann et al., 2013; Weatherwax et al., 2016), but not all scientific disciplines investigating exercise–cognition are taking this issue into account sufficiently (Gronwald et al., 2018b, 2019a; Suwabe et al., 2018). Hence, the purpose of this article is to shed light on differences in exercise prescription and their relation to the dose and the interindividual heterogeneity in neurocognitive outcome measures.

Physical Activity, Physical Exercises, Physical Training – Where Are the Differences?

Prior to going more deeply into the topic of physical activity, physical exercise, and/or physical training, it is necessary to clarify these terms because they represent different concepts while it is, unfortunately, common behavior to use them interchangeably (Caspersen et al., 1985; Budde et al., 2016). "Physical activity" is defined as muscle-induced bodily movement that increases energy expenditure above

\[1.0 \text{MET} = 1 \text{kcal} (4.184 \text{kJ}) \times \text{kg}^{-1} \times \text{h}^{-1} \] (Caspersen et al., 1985; Ainsworth et al., 2000; Budde et al., 2016). Hence, the term physical activity is a hypernym (i) that covers a wide range of physical activities that are conducted on a regular or irregular basis in a relatively unstructured and unplanned manner and (ii) that includes specific, planned, and structured forms of physical activities that are known as physical exercises (Caspersen et al., 1985; Howley, 2001; Budde et al., 2016). Physical exercises should be distinguished based on temporal characteristics into acute physical exercise (single bout) and chronic physical exercises (repeated bouts of acute exercises) (Scheuer and Tipton, 1977; Budde et al., 2016). A single bout of physical exercise is commonly referred to as an "acute (single) bout of physical exercise" or as "acute physical exercises" (Budde et al., 2016; Herold et al., 2018b). Furthermore, chronic physical exercises can be denoted as "physical training" when they are conducted regularly in a planned, structured, and purposive manner with the objective to increase (or maintain) individual capabilities in one or multiple fitness dimensions (Scheuer and Tipton, 1977; Caspersen et al., 1985; Howley, 2001; Budde et al., 2016; Herold et al., 2018a). In essence, distinguishing and using these terms carefully allows a better classification and interpretation of observed effects and of the underlying (neuro)biological mechanisms (Budde et al., 2016).

“Responder” or “Non-responder” – That Is the Question

Since every human is unique, there is a considerable amount of within-individual (intra-individual) (Katch et al., 1982; Coggan and Costill, 1984; Bagger et al., 2003; Skurvydas et al., 2010; Faude et al., 2017; Chrzanowski-Smith et al., 2019; Voisin et al., 2019) and between-individual (interindividual) heterogeneity (Karavirta et al., 2011; Chmelo et al., 2015; Bonafiglia et al., 2016; Greenham et al., 2018) in acute psychophysiological response(s) to the same acute physical exercises and/or long-term adaptations to the same physical training. Especially, the interindividual heterogeneity gained attention in the research of the recent years (Buford and Pahor, 2012; Buford et al., 2013; Mann et al., 2014; Sparks, 2017; Pickering and Kiely, 2018b; Ross et al., 2019) and is commonly observed in studies dealing with endurance (cardiovascular) training (Chmelo et al., 2015; Bonafiglia et al., 2016), resistance (strength) training (Hubal et al., 2005; Chmelo et al., 2015; Ahtiainen et al., 2016), or combined training (consisting of endurance and resistance training) (Karavirta et al., 2011). In order to account for this interindividual heterogeneity, the concept of (i) “responder” [also referred as “individuals with high sensitivity” (Booth and Laye, 2010)] and (ii) "non-responder" [also referred as “individuals with low-sensitivity” (Booth and Laye, 2010), limited responders (Burley et al., 2018), or “individuals which did not respond” (Pickering and Kiely, 2018b)] was introduced, however, with varying definitions (Booth and Laye, 2010; Buford and Pahor, 2012; Scharhag-Rosenberger et al., 2012; Buford et al., 2013; Mann et al., 2014). While the definition and methods to classify responders and non-responders are currently discussed in the literature (Atkinson and Batterham, 2015; Hecksteden et al., 2015, 2018; Bonafiglia et al., 2018, 2019a,b; Swinton et al., 2018; Atkinson et al., 2019; Dankel and Loenneke, 2019), it is relatively accepted that (i) not all outcome variables are affected equally by the responsiveness state (e.g., be a responder or non-responder) (Sparks, 2017; Pickering and Kiely, 2018b, 2019b; Toigo, 2019), (ii) measurement errors are inevitable in repeated measurements and are caused, for instance, by random biological fluctuations that do not represent a meaningful
change in the outcome variable (Atkinson and Nevill, 1998; Scharhag-Rosenberger et al., 2012; Atkinson and Batterham, 2015; Williamson et al., 2017; Pickering and Kiely, 2019a), and (iii) some responses are likely to be transient, causing uncertainty regarding the time course of the responsiveness state (Pickering and Kiely, 2018b). Hence, the following working definitions can be proposed (see Table 1). Regarding the response to acute physical exercises and/or physical training, (i) responders are individuals who exhibit, at a certain time point, changes in a variable of interest that are above (below) a distinct threshold, and (ii) non-responders are individuals who exhibit, at a certain time point, changes in a variable of interest that are below (above) a distinct threshold. There is ongoing vivid discussion on how to define these critical thresholds (Atkinson and Batterham, 2015; Swinton et al., 2018; Atkinson et al., 2019; Dankel and Loenneke, 2019) and whether further subgroups should be established (Dankel and Loenneke, 2019). For instance, “adverse responders” (Bouchard et al., 2012) or “negative responders” (Leifer et al., 2014), have been defined as individuals who exhibit, at a certain time point, in response to acute physical exercise or physical training, unfavorable responses below (above) a distinct threshold. In addition, “above” and “below” need to be referenced relative to a specific outcome in the variable of interest. For instance, in a cognitive test, performance could be operationalized by “number of correct items” and “reaction time” (variables of interest). Regarding number of correct items, it is favorable to achieve a higher number of correct items (responder: above; non-responder: below). Regarding reaction time, on the other hand, it is favorable to react faster (responder: below; non-responder: above). Regardless of the ongoing discussion about how to classify the level of responsiveness, there is some evidence that the interindividual heterogeneity in response to acute physical exercise and/or physical training might contribute to the interindividual heterogeneity observed in neurocognitive outcomes. This evidence is outlined in the following section.

Responsiveness State, Functional and Structural Brain Changes, and Cognition

In the following, we will refer to acute endurance exercises and endurance training because (i) from a neuroevolutionary view, endurance capacities (e.g., running during foraging) are important to ensure physical and/or neurocognitive well-functioning (Mattson, 2012; Raichlen and Alexander, 2017), (ii) acute endurance exercises and/or endurance training are currently in the focus of exercise–cognition research (Hillman et al., 2008; Stimpson et al., 2018), (iii) endurance training induces substantial structural brain changes (Erickson et al., 2011; Stern et al., 2019), and (iv) endurance training entails greater benefits in cognitive performance than resistance training (Barha et al., 2017a).

Acute Physical Exercises

With regard to acute physical exercises, it was observed that individual baseline working memory function was linked with changes in working memory performance following acute very-light-to-moderate-intensity endurance exercises.
heterogeneity in measures of neurocognition in response to also contribute, among other factors, to the interindividual large interindividual heterogeneity in measures of CRF may causal in nature), it seems plausible to hypothesize that the performance measures (albeit these correlations are not strictly CRF, measures of brain function and structure, and cognitive functions in younger adults (Stern et al., 2019) and (v) are increases in VO2 max. (iv) mediate the improvement in cognitive Alzheimer’s disease (Burns et al., 2008; Honea et al., 2009; Vidoni Szabo et al., 2011; Bugg et al., 2012) and individuals with older adults (Colcombe et al., 2003; Erickson et al., 2009; Erickson et al., 2016); and (iii) favorable structural brain changes in younger adults (Stillman et al., 2018) and older adults (Colcombe et al., 2004; Albiet et al., 2014; Dupuy et al., 2015; Hyodo et al., 2016); and (iii) favorable structural brain changes in older adults (Colcombe et al., 2003; Erickson et al., 2009; Szabo et al., 2011; Bugg et al., 2012) and individuals with Alzheimer’s disease (Burns et al., 2008; Honea et al., 2009; Vidoni et al., 2012). Furthermore, in response to endurance training, increases in VO2 max. (iv) mediate the improvement in cognitive functions in younger adults (Stern et al., 2019) and (v) are associated with increases in hippocampal volumes in older adults (Erickson et al., 2011).

In sum, based on these associations between measures of CRF, measures of brain function and structure, and cognitive performance measures (albeit these correlations are not strictly causal in nature), it seems plausible to hypothesize that the large interindividual heterogeneity in measures of CRF may also contribute, among other factors, to the interindividual heterogeneity in measures of neurocognition in response to endurance training. However, to clarify the validity of these assumptions, further research is required.

Master (of) the Fate? – How Genetics and Lifestyle Contribute to Interindividual Heterogeneity

The interindividual responsiveness to physical exercises and/or physical training and, in turn, the interindividual heterogeneity in outcomes are caused by several moderators, including both non-modifiable factors (e.g., sex or genotypes) and modifiable factors (e.g., nutrition, social or cognitive activities, exercise prescription) (Spiering et al., 2008; Bamman et al., 2014; Mann et al., 2014; Erickson et al., 2015; Sparks, 2017; Pickering and Kiely, 2018b). Notably, these factors can also be classified as endogenous factors (factors attributable to the individual such as sex or genotypes) and exogenous factors (factors attributable to external inputs, e.g., generated by exercise prescription) (Sparks, 2017). Currently, the roles of non-modifiable (endogenous) factors such as sex (Barha et al., 2017a,b, 2019; Barha and Liu-Ambrose, 2018; Cobbold, 2018; Loprinzi and Frith, 2018; Dao et al., 2019) and genotypes (Booth and Laye, 2010; Timmons et al., 2010; Timmons, 2011; Bouchard et al., 2012, 2019; Mann et al., 2014; Bouchard et al., 2015; Jones et al., 2016; Pickering and Kiely, 2017a,b,c, 2018a; Del Coso et al., 2018) are investigated most. Among these factors, it has been shown that a considerable amount (approximately up to half of the variance) of the interindividual heterogeneity in physical outcomes (Bouchard and Rankinen, 2001; Timmons et al., 2010; Davidsen et al., 2011; Timmons, 2011; Bouchard, 2012; Wilson et al., 2019), cognitive outcomes (McClean, 1997; Goldberg and Weinberger, 2004; Blokland et al., 2008; Erickson et al., 2008; Friedman et al., 2008; Canivet et al., 2015, 2017), and brain structure outcomes (Thompson et al., 2001; Toga and Thompson, 2005; Bueller et al., 2006) are explained by genetics. However, considering current evidence, lifestyle factors may equalize a “genetic handicap” since people with a high CRF level but “unfavorable” genetic polymorphisms do not need to perform significantly poorer than individuals with low CRF level but “favorable” genetic equipment (Brown et al., 2019). These findings suggest that a genetic handicap can be counteracted by other factors (Flück, 2018) and that “overemphasizing” genetics for the individualization of exercise prescriptions is counter-productive (Carlsten and Burke, 2006; Kohane, 2009; Horwitz et al., 2013; Joyner and Lundby, 2018; Peck, 2018; Joyner, 2019). However, analysis of the genetics of participants is undoubtedly helpful in supporting individualization of acute physical exercise and/or physical training by aiding, for instance, the identification of potential responders and non-responders (Lightfoot, 2008; Pescatello, 2008; Booth and Laye, 2010; Timmons et al., 2010; Timmons, 2011; Pickering and Kiely, 2019a,b). Remarkably, it has also been highlighted that no “global non-responders” exist (Ross et al., 2015; Bonafiglia et al., 2016; Montero and Lundby, 2017; Pickering and Kiely, 2017c, 2018b; Toigo, 2019). Moreover, it is assumed that non-responsiveness can best be counteracted by modifying the dose of the physical exercise and/or physical
training (Churchward-Venne et al., 2015; Ross et al., 2015; Montero and Lundby, 2017; Toigo, 2019). The latter suggests that the dose of physical interventions per se contributes significantly to the observed interindividual heterogeneity in (neurocognitive) outcomes.

What Dose (It) Means?
The terminus dose is differently defined in the literature (Voils et al., 2012), but in exercise(-cognition) research, “dose” is commonly referred to as the product of exercise variables (e.g., exercise intensity, exercise duration, type of exercise; see Table 2) when considering an acute bout of physical exercises (Wasfy and Baggish, 2016; Pontifex et al., 2018). In training studies, dose can be seen as the product of exercise variables (e.g., exercise intensity, exercise duration, type of exercise), training variables (e.g., frequency of training sessions), and the application of training principles (Wasfy and Baggish, 2016; Northey et al., 2017; Solomon, 2018; Cabral et al., 2019; Erickson et al., 2019; Etnier et al., 2019; Falck et al., 2019; Ross et al., 2019; Williams et al., 2019). In reverse, dose could be modified in acute physical exercise studies by adjusting the exercise variables, while in physical training studies, exercise variables, training variables, and training principles must be taken into account (see Table 2). Such a purposeful modification is referred to as the adjustment of the exercise prescription.

In the context of exercise prescription, it is also imperative to clarify the terms “external load” and “internal load.” While external load along with influencing factors (e.g., climatic conditions, equipment, ground condition) is defined as the work completed by the individual independent of internal characteristics (Wallace et al., 2009; Halson, 2014; Bourdon et al., 2017; Burgess, 2017; Vanrenterghem et al., 2017; McLaren et al., 2018; Impellizzeri et al., 2019), internal load is defined as individual and acute biomechanical, physiological, and/or psychological response(s) to the influencing factors and the work performed (Wallace et al., 2009; Halson, 2014; Bourdon et al., 2017; Burgess, 2017; Vanrenterghem et al., 2017; McLaren et al., 2018; Impellizzeri et al., 2019). According to the definition of internal load, which states that internal load is characterized by the individual and acute psychophysiological response(s) to the external load, it appears that internal load can be adjusted by modifying the external load. However, given that exercise variables such as exercise intensity can be operationalized using parameters of either external load (e.g., running with a speed of 10 km/h) or internal load (e.g., running with 60% of maximal heart rate), current definitions of dose are rather broad. Since dose is an essential factor for triggering neurobiological processes (e.g., release of neurotrophins such as BDNF; Dinoff et al., 2017), which in turn lead to neuroplastic and cognitive changes (Cotman et al., 2007; Voss et al., 2011, 2013a; Lucas et al., 2015; Zimmer et al., 2015; Basso and Suzuki, 2017; Stimpson et al., 2018), it is crucial to agree on an appropriate concept of dose. Although markers of internal load could be more difficult to measure (compared to markers of external load), we suggest that dose should be operationalized by using a specific marker or specific markers of internal load as a proxy. The two reasons for this assumption are outlined in the following.

TABLE 2	Overview of general exercise variables, training variables, and training principles.
Exercise intensity	The exercise intensity describes how strenuous the exercise is.
Exercise duration	Time period that is spent for a specific exercise or the entire exercise session.
Type of exercise	Type(s) of exercise(s) that is (are) used in the exercise session (e.g., cycling, dancing).
Frequency	The number of training sessions across a distinct time interval.
Density	Distribution of training sessions across a distinct time interval with regard to recovery time in-between training sessions.
Duration	Duration over which a training program is carried out.
Variation	To prolong adaptations over a distinct training duration, systematic manipulation (variation) of exercise variables and training variables is necessary.
Specificity	To elicit a desired adaptation, the stimuli provided by the used physical exercises must be tailored to the desired adaptations (i).
Overload	To improve a distinct type of fitness, an appropriate stimulus must be provided that exceeds the already-existing individual capacities to a distinct extent.
Progression	To ensure continuous improvements, the stimulus must be appropriately modified over time (e.g., increase in external load).
Reversibility	Once the physical intervention induced stimulus is removed (e.g., stop the training), de-adaptational process will occur, and the changes in fitness level will eventually return to the baseline level.
Periodization and programming	In this context, periodization and programming are crucial elements for an appropriate exercise prescription. Periodization is the temporal coordination of training periods with specific fitness characteristics (e.g., strength or endurance) and application of training principles, which is referred to as macromanagement. Programming describes the organization of exercise variables and training variables (micromanagement). Periodization includes various forms such as linear periodization (LP) or non-linear periodization (NLP). In LP, typically, a gradual increase in intensity is conducted, whereas in NLP, exercise prescription is changed on weekly or daily basis.

Why Internal Load Should Be Used as a Proxy for Dose
Given (i) that internal load equals, per definition, the individual and acute psychophysiological response(s) to a given external load (Wallace et al., 2009; Halson, 2014; Bourdon et al., 2017; Burgess, 2017; Vanrenterghem et al., 2017; McLaren et al., 2018; Impellizzeri et al., 2019) and (ii) that neurocognitive changes are triggered by such distinct psychophysiological responses (Cotman et al., 2007; Zimmer et al., 2015; Basso and Suzuki, 2017; Stimpson et al., 2018), it seems reasonable to assume that internal load is a better proxy for dose than external load.
Why a Specific Marker of Internal Load Is Needed as a Proxy for Dose

There are several markers of internal load that can be used to prescribe the exercise intensity in acute endurance exercises and/or endurance training [e.g., oxygen uptake, heart rate, or heart rate variability (HRV)]. For instance, HRV, i.e., the beat-to-beat variation over a distinct time period, under rest conditions or while exercising is an interesting marker of internal load because the internal load quantification by HRV indices is progressive and takes the individual fitness level as well as daily readiness and actual health state into account (Thayer et al., 2012; Plews et al., 2013; Vesterinen et al., 2013, 2016; Gronwald et al., 2016, 2018a, 2019b,c). Furthermore, resting-state HRV is associated with cognitive performance (Hansen et al., 2003; Frewen et al., 2013; Gillie et al., 2014; Zeki Al Hazzouri et al., 2014; Colzato et al., 2018).

However, currently, several hypotheses exist in literature that explain the positive effects of acute physical exercises and physical training on brain plasticity and cognition (Kramer et al., 1999; Smiley-Oyen et al., 2008; Davenport et al., 2012; McMorris and Hale, 2015; McMorris, 2016a,b,c,d; McMorris et al., 2016; Voss, 2016; Raichlen and Alexander, 2017; Pontifex et al., 2018; Stimpson et al., 2018; Audiffren and André, 2019). Among them, one of the most popular hypotheses is the “neurotrophic hypothesis,” which posits that in response to physical exercises, the organism releases several neurochemicals (e.g., neurotrophic factors such as BDNF), which in turn trigger neuroplasticity and facilitate cognitive enhancement (Voss et al., 2013b; Basso and Suzuki, 2017; Stimpson et al., 2018; Audiffren and André, 2019). Hence, it seems more promising to use a marker or markers of internal load that are related to changes in neurotrophic molecules in order to individualize and adjust exercise prescription (Pedersen, 2019). In this regard, the peripheral level of blood lactate could be a promising marker of internal load because peripheral blood lactate (e.g., from muscles) can cross the blood–brain barrier and provides energy to the brain (Kemppainen et al., 2005; Quistorff et al., 2008; van Hall et al., 2009; Dennis et al., 2015; Proia et al., 2016; Taher et al., 2016; Riske et al., 2017; Brooks, 2018; Sobral-Monteiro-Junior et al., 2019). Hence, it is not surprising that relative changes in peripheral levels of blood lactate are correlated significantly with cognitive performance levels after high-intensity interval endurance exercises (Lee et al., 2014; Tsukamoto et al., 2016; Hashimoto et al., 2017). The crucial role of blood lactate for neuroplasticity is further emphasized by findings of peripheral blood lactate levels being associated with the peripheral serum BDNF levels (Ferris et al., 2007; Schiffer et al., 2011). However, the exact molecular mechanisms of increased BDNF production in response to physical exercising are not fully understood (for review, see Jiménez-Maldonado et al., 2018). BDNF in the brain is involved in neuroplasticity (Brigadski and Leßmann, 2014), and serum levels of BDNF have been shown to be directly linked to cognitive performance after an acute bout of high-intensity endurance exercises (Hwang et al., 2016). Moreover, (i) serum BDNF mediates improvements in cognitive functions following a 1-year aerobic endurance training (Leckie et al., 2014), (ii) greater serum BDNF concentration changes in response to a 1-year-long aerobic endurance training are linked to hippocampal volume changes (Erickson et al., 2011), and (iii) reduced levels of serum BDNF are related to a decline in hippocampal volume and poorer memory performance (Erickson et al., 2010). In sum, a specific marker or specific markers of internal load such as the peripheral blood lactate level seems to constitute a promising proxy for dose. However, the optimal marker(s) that is (are), with regard to neuroplasticity and cognition, the most suitable proxy for the dose of physical exercise and/or physical training has yet to be discovered.

Become Personal – How to Individualize the Exercise Prescription?

Based on the large interindividual heterogeneity (i) in psychophysiological responses to acute physical exercises and (ii) in long-term adaptions to a physical training, it is assumed that tailoring of these to the characteristics and needs of a particular person is well suited to maximize their efficiency (Buford and Pahor, 2012; Buford et al., 2013; Müller et al., 2017, 2018; Cobbold, 2018; Pickering and Kiely, 2018b). Such an individualization of acute physical exercises and/or physical training could be achieved by adjusting the exercise prescription (e.g., exercise intensity) (Lightfoot, 2008), which influences, in turn, the dose (objectified by a specific marker or specific markers of internal load; see previous section and Figure 1A). In order to illustrate our thoughts in practical terms, we focus on exercise intensity because a full discussion of all exercise variables, training variables, and training principles is beyond the scope of this article. As outlined in the previous section, using markers of internal load to prescribe exercise intensity is preferable instead of using parameters of external load such as speed in running specific exercises. Therefore, traditional markers of internal load such as the fixed percentage of the maximally achievable value of oxygen uptake or heart rate are often used (Garber et al., 2011; Suwabe et al., 2018). Using a fixed percentage of a maximally achievable value of oxygen uptake or heart rate involves a considerable amount of interindividual heterogeneity in other markers of internal load (e.g., metabolic responses objectified by, for instance, peripheral blood lactate) (Weltman et al., 1989, 1990; Meyer et al., 1999; Vollaard et al., 2009; Scharhag-Rosenberger et al., 2010). Metabolic responses (e.g., peripheral blood lactate level) constitute specific markers of internal load that are likely to be proxies for the dose that triggers neuroplastic processes and cognitive changes (see “Why a specific marker of internal load is needed as a proxy for dose”). Hence, traditional exercise prescriptions lead to largely varying individual doses as revealed by the marker(s) of internal load. This may lead, among other factors, to the observed interindividual heterogeneity in neurocognitive outcomes (see Figure 1B). Consequently, approaches that ensure that a comparable dose is provided to each individual (e.g., adapted exercise prescriptions that ensure a comparable level of peripheral blood lactate) may lower the interindividual heterogeneity regarding neurocognitive outcomes. Hence, such approaches are favorable in exercise–cognition research.
FIGURE 1 | (A) Schematic illustration of the possible influence of exercise prescription on dose, and individual responsiveness (responder and non-responder) with the assumed extent of improvements (high improvements in neurocognitive outcomes and low improvements in neurocognitive outcomes). The dotted red lines show that by using an appropriate exercise prescription, non-responders could be turned into responders. In part (B) of the figure, the difference between “traditional exercise prescription” and “adapted exercise prescription” regarding the load, the dose, the individual response(s), and the corresponding heterogeneity in outcomes is illustrated. **” with regard to subsequent neurobiological processes. In part (C) of the figure, the multiple levels on which physical activity (including physical exercise and physical training) could affect cognitive performance are shown (Stillman et al., 2016). “#” indicates that the brain could be seen as outcome, mediator, or predictor (Stillman and Erickson, 2018). “a” indicates that there are several possibilities in which way structural and functional brain changes, socioemotional changes and cognitive changes are intertwined (Stillman et al., 2016).

(see Figure 1). In this context, individual threshold concepts (aerobic and anaerobic threshold) that are based on individual metabolic (or respiratory) responses could be used to determine an individual's initial exercise intensity (Meyer et al., 1999; Hofmann and Tschakert, 2010; Scharhag-Rosenberger et al., 2010; Weatherwax et al., 2016). However, while there is a strong theoretical basis for the application of a threshold-based exercise prescription for endurance exercises and endurance training, the challenges and pitfalls of determining such individual thresholds may explain why many researchers continue to favor exercise intensity prescriptions based on relative percentages of maximum values (Hofmann and Tschakert, 2010; Mann et al., 2013). Although our assumptions are well grounded on possible neurobiological mechanisms, they are mostly theoretical in nature, and thus, further research comparing, for instance, traditional versus adapted exercise prescriptions with regard to neuroplasticity and cognition is urgently needed.

Progress Is Not Without Limitations
Since the level and detail of description required to extensively describe and discuss the influence of all exercise variables, training variables, training principles, and factors influencing exercise–cognition interaction go far beyond the scope and intent of this article, our assumptions still remain imperfect because other exercise-related factors such as movement...
frequency (e.g., cycling cadence) (Ludyga et al., 2015, 2016) or psychological factors such as affective response (e.g., enjoyment or expectations) (Davidson et al., 2000; Davidson and McEwen, 2012; Burnet et al., 2018; Lindheimer et al., 2019) have not been considered. Nevertheless, given (i) that our knowledge of the dose–response relationship between acute physical exercises and/or physical training, neurobiological processes (e.g., neuroplasticity), and cognitive changes is still limited (Etnier et al., 2006, 2019; Hillman et al., 2008; Chang et al., 2012a,b; Barha et al., 2017b; Ströhlein et al., 2017; Tait et al., 2017; Pontifex et al., 2018; Stimpson et al., 2018; Erickson et al., 2019; Falck et al., 2019; Sanders et al., 2019), (ii) that peripheral blood lactate levels constitute an established marker of internal load (Hofmann and Tschakert, 2010; Beneke et al., 2011; Soligard et al., 2016; Impellizzeri et al., 2019), and (iii) that peripheral blood lactate levels are easily quantifiable by portable devices, the use of peripheral blood lactate as a proxy for dose seems a reasonable starting point. Nevertheless, lactate monitoring suffers from the drawbacks that (i) it necessitates blood sampling, which could be impractical in daily practice, and (ii) it requires a graded exercise test to calculate an individual threshold to prescribe the exercise intensity. Regarding the first objection, new methods to non-invasively determine critical physiological thresholds (e.g., lactate threshold) by means of muscle near-infrared spectroscopy (Wang et al., 2006; Xu et al., 2011; Bellotti et al., 2013; Borges and Driller, 2016; Driller et al., 2016) may constitute a more appropriate approach in daily practice, but this has yet to be investigated. With regard to the second objection, it is worth mentioning that graded exercise tests are relatively complex and time consuming and that exercise intensity could be more easily determined by using specific formulas (e.g., Karvonen formula to determine a target heart rate) (Karvonen and Vuorimaa, 1988; Tanaka et al., 2001; Gellish et al., 2007; Zhu et al., 2010; Nes et al., 2013; Shargal et al., 2015). However, a graded exercise test should be an integral part of the process of a proper exercise prescription because, currently, exercise intensity cannot be accurately predicted by specific formulas (Strzeleczyk et al., 2001; Robers and Landwehr, 2002; Silva et al., 2007; Sarzynski et al., 2013; Correa Mesa et al., 2015; Esco et al., 2015; Arena et al., 2016), and a fixed percentage of a maximally achievable value of heart rate leads to a considerable amount of interindividual heterogeneity in metabolic responses (e.g., blood lactate) (Meyer et al., 1999), which is deemed to contribute, at least partly, to the interindividual heterogeneity in neurocognitive outcomes (see previous sections).

Still, even if peripheral blood lactate concentrations are associated with serum BDNF concentrations (Ferris et al., 2007; Schiffer et al., 2011), further studies will be required to investigate the dose–response relationship between exercise prescription and (serum) BDNF levels (Knaepen et al., 2010; Coelho et al., 2013; Huang et al., 2014). Since BDNF release is also influenced by several other non-modifiable (e.g., sex Trajkovska et al., 2007; Komulainen et al., 2010; Bus et al., 2011) or non-exercise-related modifiable factors (e.g., sleep or nutrition; Giese et al., 2013, 2014; Walsh et al., 2015; Schmitt et al., 2016) that are known to influence neuroplasticity in general (e.g., sleep, Meerlo et al., 2009; Raven et al., 2018; or nutrition, Greenwood and Parasuraman, 2010; Phillips, 2017; Poulou et al., 2017), these factors should be carefully monitored in further studies.

In addition, with regard to the optimal dose, it could be useful to gather markers of internal load that are directly related to the state of the central nervous system itself (e.g., brain activity during exercise) because differences in brain activity (e.g., measured by functional near-infrared spectroscopy) (i) allow distinguishing between responders and non-responders (Yamazaki et al., 2017), (ii) are sensitive to changes of exercise variables (e.g., exercise intensity) (Rooks et al., 2010; Giles et al., 2014; Tempest et al., 2014; Santos-Concejero et al., 2015, 2017; Takehara et al., 2017), (iii) are sensitive to demands posed by the cognitive task (Herff et al., 2013; Fishburn et al., 2014; Causse et al., 2017; Khaksari et al., 2019) or the motor task (Carius et al., 2016), (iv) and are associated with performance improvements in motor–cognitive tasks (Ono et al., 2014, 2015; Herold et al., 2017; Seidel et al., 2017). Hence, markers of internal load assessing activation of the central nervous system may serve to quantify “complexity” (defined as neurocognitive demands posed by the exercise), which is an important variable with regard to neurocognitive changes in response to acute physical exercises and physical training, too (Netz, 2019). However, while measuring brain activation during exercise offers great potential to understand exercise–cognition interaction in general and interindividual variability in particular, future research in this area is strongly needed before measures of brain activity can be used to guide exercise prescription.

Furthermore, we wish to stress that a traditional individualization of exercise prescription is perhaps necessary to answer basic research questions (e.g., Are the peripheral blood lactate release and changes in neurocognition a function of exercise intensity?) but that the individualization using an adapted exercise prescription may lead to further insights into exercise–cognition research (e.g., How to adapt exercise intensity to achieve a comparable change in the release of peripheral blood lactate across individuals and how this affects neurocognition?).

CONCLUSION AND FURTHER REMARKS

In essence, this article aimed at providing a suggestion for a clearer definition of the dose in exercise–cognition research and presenting evidence in how interindividual variability in the dose might contribute to the interindividual heterogeneity in neurocognitive outcomes. We propose that the dose of an acute bout of physical exercises and/or physical training should be operationalized by a specific marker (or specific markers) of internal load. Modifying the exercise prescription by carefully adjusting the external load, a comparable dose can be achieved across individuals (see Figures 1A,B). Research is
strongly encouraged to investigate in the future whether an exercise prescription inducing a comparable dose may lower toward identifying what dose is optimal for achieving the greatest benefits with regard to neurocognitive outcomes in an individual.

AUTHOR CONTRIBUTIONS

FH wrote and edited the manuscript. PM, TG, and NM reviewed and edited the drafted versions.

REFERENCES

Abe, K. (2012). Total daily physical activity and the risk of AD and cognitive decline in older adults. *Neurology* 79:1071; author reply 1071. doi: 10.1212/WNL.0b13e31826bd56f

Ahtiainen, J. P., Walker, S., Peltonen, H., Holviala, J., Sillanpää, E., Karavirta, L., et al. (2016). Heterogeneity in resistance training-induced muscle strength and mass responses in men and women of different ages. *Age* 38:10. doi: 10.1007/s11357-015-9870-1

Aichberger, M. C., Busch, M. A., Reischies, F. M., Ströhle, A., Heinz, A., and Rapp, M. A. (2010). Effect of Physical Inactivity on Cognitive Performance after 2.5 Years of Follow-Up. *GeroPsych* 23, 7–15. doi: 10.1024/1662-9647/a000003

Ainsworth, B. E., Haskell, W. L., Whitt, M. M., Irwin, M. L., Swartz, A. M., Strath, S. J., et al. (2000). Compendium of physical activities. An update of activity codes and MET intensities. *Med. Sci. Sports Exerc.* 32, S498–S504.

Albinet, C. T., Mandrick, K., Bernard, P. L., Perrey, S., and Blain, H. (2014). Improved cerebral oxygenation response and executive performance as a function of cardiorespiratory fitness in older women: a fNIRS study. *Front. Aging Neurosci.* 6:273185. doi: 10.3389/fnagi.2014.00272

Arena, R., Myers, J., and Kaminsky, L. A. (2016). Revisiting age-predicted maximal heart rate. Can it be used as a valid measure of effort? *Am. Heart J.* 173, 49–56. doi: 10.1016/j.ahj.2015.12.006

Atkinson, G., and Batterham, A. M. (2015). True and false interindividual differences in the physiological response to an intervention. *Exp. Physiol.* 100, 577–588. doi: 10.1111/ep085070

Atkinson, G., and Nevill, A. M. (1998). Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. *Sports Med.* 26, 217–238.

Atkinson, G., Williamson, P., and Batterham, A. M. (2019). Issues in the determination of “responders” and “non-responders” in physiological research. *Exp. Physiol.* 104, 1215–1225. doi: 10.1113/EP087712.

Audiffren, M., and André, N. (2019). The exercise-cognition relationship: a virtuous circle. *J. Sport Health Sci.* 8:10. doi: 10.1016/j.jshs.2019.03.001

Bagger, M., Petersen, P. H., and Pedersen, P. K. (2003). Biological variation in mass responses in men and women of different ages. *Acta Physiol. Scand.* 26, 217–238.

Bass, J. C., and Suzuki, W. A. (2017). The effects of acute exercise on mood, cognition, neurophysiology, and neurochemical pathways. *Brain* 140, 127–152. doi: 10.1249/BRS.0b013e3187828ab2

Beneke, R., Leithäuser, R. M., and Ochental, O. (2011). Blood lactate diagnostics in exercise testing and training. *Int. J. Sports Physiol. Perform.* 6, 8–24.

Bhlerer, L., Ericsson, K. I., and Liu-Ambrose, T. (2013). A review of the effects of physical activity and exercise on cognitive and brain functions in older adults. *J. Aging Res.* 2013:657508. doi: 10.1155/2013/657508

Bhlerer, L., Langeard, A., Kauhal, N., Vrincaeneau, T., Desjardins-Crépeau, L., Langlois, F., et al. (2019). Physical exercise training effect and mediation through cardiorespiratory fitness on dual-task performances differ in younger-old and older-old adults. *J. Gerontol. Ser. B Psychol. Sci. Soc. Sci.* doi: 10.1093/geronb/gbz066 [Epub ahead of print].

Blair, S. N. (2009). Physical inactivity: the biggest public health problem of the 21st century. *Br. J. Sports Med.* 43, 1–2.

Blokland, G. A. M., McMahon, K. L., Hoffman, J., Zhu, G., Meredith, M., Martin, N. G., et al. (2008). Quantifying the heritability of task-related brain activation and performance during the N-back working memory task: a twin fMRI study. *Biol. Psychol.* 79, 70–79. doi: 10.1016/j.biopsycho.2008.03.006

Bonafilia, J. T., Brennan, A. M., Ross, R., and Gurd, B. J. (2019a). An appraisal of the SDIR as an estimate of true individual differences in training responsiveness in parallel-arm exercise randomized controlled trials. *Physiol. Rep.* 7:e14163. doi: 10.14814/phy2.14163

Bonafilia, J. T., Ross, R., and Gurd, B. J. (2019b). The application of repeated testing and monoeponential regressions to classify individual cardiorespiratory fitness responses to exercise training. *Eur. J. Appl. Physiol.* 119, 889–900. doi: 10.1007/s00421-019-04078-w

Bonafilia, J. T., Nelms, M. W., Preobrazenski, N., LeBlanc, C., Robins, L., Lu, S., et al. (2018). Moving beyond threshold-based dichotomous classification to improve the accuracy in classifying non-responders. *Physiol. Rep.* 6:13928. doi: 10.14814/phy2.13928

Bonafilia, J. T., Rotundo, M. P., Whittall, J. P., Scribbans, T. D., Graham, R. B., and Gurd, B. J. (2016). Inter-individual variability in the adaptive responses to endurance and sprint interval training: a randomized crossover study. *PLoS One* 11:e0167790. doi: 10.1371/journal.pone.0167790

Booth, F. W., and Laye, M. J. (2010). The future: genes, physical activity and health. *Acta Physiol.* 199, 549–556. doi: 10.1111/j.1748-1716.2010.01174.x

Borges, N. R., and Driller, M. W. (2016). Wearable lactate threshold predicting load in rowing: a pilot study. *Front. Physiol.* 7:99. doi: 10.3389/fphys.2016.00009

Bouchard, C. (2019). DNA sequence variations contribute to variability in fitness and trainability. *Br. J. Sports Med.* 113:e0167790. doi: 10.1371/journal.pone.0167790

Bouchard, C. (2012). Genomic predictors of trainability. *Exp. Physiol.* 97, 347–352. doi: 10.1113/expphysiol.2011.058735

Bouchard, C. (2017). Moving beyond threshold-based dichotomous classification to improve the accuracy in classifying non-responders. *Physiol. Rep.* 6:e13928. doi: 10.14814/phy2.13928

Bouchard, C. (2016). Moving beyond threshold-based dichotomous classification to improve the accuracy in classifying non-responders. *Physiol. Rep.* 6:e13928. doi: 10.14814/phy2.13928

Bouchard, C., and trainability. *Physiol. Rep.* 97, 347–352. doi: 10.1113/expphysiol.2011.058735

Bouchard, C. (2019). DNA sequence variations contribute to variability in fitness and trainability. *Br. J. Sports Med.* 51, 1781–1785. doi: 10.1249/BJS.0000000000001976

Bouchard, C., An, P., Rice, T., Skinner, J. S., Wilmore, J. H., Gagnon, J., et al. (1999). Familial aggregation of VO2max response to exercise training: results from the HERITAGE family study. *J. Appl. Physiol.* 87, 1003–1008. doi: 10.1152/jappl.1999.87.3.1003
Bouchard, C., Antunes-Correa, L. M., Ashley, E. A., Franklin, N., Hwang, P. M., Mattsson, C., et al. (2015). Personalized preventive medicine: genetics and the response to regular exercise in preventive interventions. Prog. Cardiovasc. Dis. 57, 337–346. doi: 10.1016/j.pcad.2014.08.005

Bouchard, C., Blair, S. N., Church, T. S., Earnest, C. P., Hagberg, J. M., Hakkinen, K., et al. (2012). Adverse metabolic response to regular exercise: is it a rare or common occurrence? PLoS One 7:e37887. doi: 10.1371/journal.pone.0037887

Bouchard, C., and Rankinen, T. (2001). Individual differences in response to regular physical activity. Med. Sci. Sports Exerc. 33, S46–S451. doi: 10.1097/00005461-200106001-00013

Budde, H., Schwarz, R., Velasques, B., Ribeiro, P., Holzweg, M., Machado, S., et al. (2012). Adverse metabolic response to regular exercise: is it a rare or common occurrence? PLoS One 7:e37887. doi: 10.1371/journal.pone.0037887

Brown, B. M., Castalanelli, N., Rainey-Smith, S. R., Doecke, J., Weinborn, M., et al. (2012). A prospective examination of the relationship between physical activity and dementia risk in later life. Am. J. Health Promot. 26, 333–340. doi: 10.4278/ajhp.110311–QUAN-115

Brigadski, T., and Leffmann, V. (2018). BDNF. A regulator of learning and memory processes with clinical potential. eNeuroforum 1, 1–11. doi: 10.1007/s13295-014-0053-9

Brooks, G. A. (2018). The Science and Translation of Lactate Shuttle Theory. Cell Metab. 27, 757–785. doi: 10.1016/j.cmet.2018.03.008

Brown, B. M., Castalanelli, N., Rainey-Smith, S. R., Doeeke, J., Weinborn, M., Sohrabi, H. R., et al. (2019). Influence of BDNF Val66Met on the relationship between cardiorespiratory fitness and memory in cognitively normal older adults. Behav. Brain Res. 362, 103–108. doi: 10.1016/j.bbr.2019.01.013

Budle, H., Schwarz, R., Velasques, B., Ribeiro, P., Holzweg, M., Machado, S., et al. (2016). The need for differentiating between exercise, physical activity, and training. Auton. Neuromus. Rev. 15, 110–111. doi: 10.1016/j.autneurrev.2015.09.004

Bueller, J. A., Aflak, M., Sen, S., Gomez-Hassan, D., Burmeister, M., and Zubieta, J.-K. (2006). BDNF Val66Met allele is associated with reduced hippocampal volume in healthy subjects. Biol. Psychiatry 59, 812–815. doi: 10.1016/j.biopsych.2005.09.022

 Buford, T. W., and Pahor, M. (2012). Making preventive medicine more personalized. Implications for exercise-related research. Preven. Med. 55, 34–36. doi: 10.1016/j.ypmed.2012.05.001

 Buford, T. W., Roberts, M. D., and Church, T. S. (2013). Toward exercise as personalized medicine. Sports Med. 43, 157–165. doi: 10.1007/s40279-013-0018-0

 Bugg, J. M., Shah, K., Villareal, D. T., and Head, D. (2012). Cognitive and neural correlates of aerobic fitness in obese older adults. Exp. Aging Res. 38, 131–145. doi: 10.1080/0361073X.2012.659995

 Burgess, D. J. (2017). The Research Doesn’t Always Apply. practical solutions to evidence-based training-load monitoring in elite team sports. Int. J. Sports Physiol. Perform. 12, S2136–S2141. doi: 10.1123/ijspp.2016-0608

 Burley, S. D., Drain, J. R., Sampson, J. A., and Groeller, H. (2018). Positive, limited Hemodynamic Response Alteration As a Function of Task Complexity and Expertise—An INIRS Study in Jugglers. Front. Hum. Neurosci. 10:126. doi: 10.3389/fnhum.2016.00112

 Carlsen, T., and Burke, W. (2006). Potential for genetics to promote public health: genetics research on smoking suggests caution about expectations. J. Am. Med. Assoc. 296, 2480–2482. doi: 10.1001/jama.296.20.2480

 Caspersen, C. J., Powell, K. E., and Christenson, G. M. (1985). Physical activity, exercise, and physical fitness. Definitions and distinctions for health-related research. Publ. Health Rep. 100, 126–131.

 Castañeda, N., Weinborn, M., Gignac, G. E., Markovic, S., Rainey-Smith, S. R., Sohrabi, H. R., et al. (2019). Higher cardiorespiratory fitness is associated with better verbal generativity in community dwelling older adults. J. Aging Phys. Activ. doi: 10.1123/japa.2018-0382 [Epub ahead of print].

 Cause, M., Chua, Z., Pysakovich, V., Del Campo, N., and Matton, N. (2017). Mental workload and neural efficiency quantified in the prefrontal cortex using INIRS. Sci. Rep. 7:5222. doi: 10.1038/s41598-017-0737-8

 Chang, Y. K., Labban, J. D., Gapsin, J. L., and Etnier, J. L. (2012a). The effects of acute exercise on cognitive performance: a meta-analysis. Brain Res. 1453, 87–101. doi: 10.1016/j.brainres.2012.02.068

 Chang, Y.-K., Pan, C.-Y., Chen, F.-T., Tsai, C.-L., and Huang, C.-C. (2012b). Effect of resistance-exercise training on cognitive function in healthy older adults. A review. J. Aging Phys. Activ. 20, 497–517. doi: 10.1123/japa.20.4.497

 Chmelo, E. A., Crotts, C. L., Newman, J. C., Brinkley, T. E., Lyles, M. F., Leng, X., et al. (2015). Heterogeneity of physical function responses to exercise training in older adults. J. Am. Geriatr. Soc. 63, 462–469. doi: 10.1111/jgs.13322

 Chhrzanowski-Smith, O. J., Piatrikova, E., Betts, J. A., Williams, S., and Gonzalez, J. T. (2019). Variability in exercise physiology: can capturing intra-individual variation help better understand true inter-individual responses? Eur. J. Sport Sci. doi: 10.1080/17461391.2019.1655000 [Epub ahead of print].

 Church, T. S., Thomas, D. M., Tudor-Locke, C., Katzmarzyk, P. T., Earnest, C. P., Rodarte, R. Q., et al. (2011). Trends over 5 decades in U.S. occupation-related physical activity and their associations with obesity. PLoS One 6:e19657. doi: 10.1371/journal.pone.004798

 Churchward-Venne, T. A., Tieland, M., Verdijk, L. B., Leenders, M., Dirks, M. L., and de Groot, L. C. P., et al. (2015). There are no nonresponders to resistance-type exercise training in older men and women. J. Am. Med. Direct. Assoc. 16, 400–411. doi: 10.1016/j.jamda.2015.01.071

 Cobbold, C. (2018). Battle of the sexes: which is better for you, high- or low-intensity exercise? J. Sport Health Sci. 7, 429–432. doi: 10.1016/j.jshs.2018.05.004

 Cooelho, F. G., Gobbi, S., Andreatto, C. A., Corazza, D. L., Pedroso, R. V., and Santos-Galduroz, R. F. (2013). Physical exercise modulates peripheral levels of brain-derived neurotrophic factor (BDNF): a systematic review of experimental studies in the elderly. Arch. Gerontol. Geriatr. 56, 10–15. doi: 10.1016/j.archger.2012.06.003

 Coggan, A. R., and Costill, D. L. (1984). Biological and technological variability of three anaerobic ergometer tests. Int. J. Sports Med. 5, 142–145. doi: 10.1055/s-2008-1025896

 Colcombe, S. J., Erickson, K. I., Raz, N., Webb, A. G., Cohen, N. J., McAuley, E., et al. (2003). Aerobic fitness reduces brain tissue loss in aging humans. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 58, 176–180.

 Colcombe, S. J., Erickson, K. I., ScafF, P. E., Kim, J. S., Prakash, R., McAuley, E., and Siddall-Galdoroz, R. F. (2013). Physical exercise modulates peripheral levels of brain-derived neurotrophic factor (BDNF): a systematic review of experimental studies in the elderly. Arch. Gerontol. Geriatr. 56, 10–15. doi: 10.1016/j.archger.2012.06.003

 Colcombe, S. J., Kramer, A. F., Erickson, K. I., ScafF, P. E., McAuley, E., Cohen, N. J., et al. (2004). Cardiovascular fitness, cortical plasticity, and aging.
Dinoff, A., Herrmann, N., Swardfager, W., and Lanctôt, K. L. (2017). The effect of

Dupuy, O., Gauthier, C. J., Fraser, S. A., Desjardins-Crepeau, L., Desjardins, M.,

Erickson, K. I., Hillman, C., and Kramer, A. F. (2015). Physical activity, brain,

Erickson, K. I., Gildeengs, A. G., and Butters, M. A. (2013). Physical activity and

B. M., and Conroy, J. C., et al. (2014). Exercise as a way of capitalizing on neuroplasticity in late adulthood. Top. Geriatr. Rehabil. 30, 8–14. doi: 10.1097/TGR.0000000000000088

Erickson, K. I., Prakash, R. S., Voss, M. W., Chaddock, L., Heo, S., McLaren, M., et al. (2010). Brain-derived neurotrophic factor is associated with age-related decline in hippocampal volume. J. Neurosci. 30, 3568–3575. doi: 10.1523/NEUROSCI.6251-09-2010

Erickson, K. I., Prakash, R. S., Voss, M. W., Chaddock, L., Hu, L., Morris, K. S., et al. (2009). Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus 19, 1030–1039. doi: 10.1002/hipo.20547

Erickson, K. I., Voss, M. W., Basak, C., Szabo, A., Chaddock, L., et al. (2011). Exercise training increases size of hippocampus and improves memory. Proc. Nat. Acad. Sci. U.S.A. 108, 3017–3022. doi: 10.1073/pnas.1009510108

Esco, M. R., Chamberlain, N., Flatt, A. A., Snarr, R. L., Bishop, P. A., and Williford, H. N. (2015). Cross-validation of age-predicted maximal heart rate equations among female collegiate athletes. J. Strength Cond. Res. 29, 3033–3039. doi: 10.1519/JSC.0000000000000978

Etter, J. L., Drollette, E. S., and Slutsky, A. B. (2019). Physical activity and cognition: a narrative review of the evidence for older adults. Psychol. Sport Exerc. 42, 156–166. doi: 10.1016/j.psychsport.2018.12.006

Etter, J. L., Nowell, P. M., Landers, D. M., and Sibley, B. A. (2006). A meta-regression to examine the relationship between aerobic fitness and cognitive performance. Br. J. Sports Sci. Res. 52, 119–130. doi: 10.1038/sj.bjsports.2006.0100

Falk, R. S., Davis, J. C., Best, J. R., Crockett, R. A., and Liu-Ambrose, T. (2019). Impact of exercise training on physical and cognitive function among older adults: a systematic review and meta-analysis. Neurobiol. Aging 79, 119–130. doi: 10.1016/j.neurobiolaging.2019.03.007

Falk, R. S., Davis, J. C., and Liu-Ambrose, T. (2016). What is the association between sedentary behaviour and cognitive function? A systematic review. Br. J. Sports Med. 51, 800–811. doi: 10.1136/bjsports-2015-095551

Faude, O., Hecksteden, A., Hammes, D., Schumacher, F., Besenius, E., Sperlich, B., et al. (2017). Reliability of time-to-exhaustion and selected psycho-physiological variables during constant-load cycling at the maximal lactate steady-state. Appl. Physiol. Nutr. Metab. 42, 142–147. doi: 10.1139/apnm-2016–0375

Ferris, L. T., Williams, J. S., and Shen, C.-L. (2007). The effect of acute exercise on brain-derived neurotrophic factor levels and cognitive function. Med. Sci. Sports Exerc. 39, 728–734. doi: 10.1097/MSS.0b013e31802840c7

Fishburn, F. A., Norr, M. E., Medvedev, A. V., and Vaidya, C. J. (2014). Sensitivity of fNIRS to cognitive state and load. Front. Hum. Neurosci. 8:76. doi: 10.3389/fnhum.2014.00076

Fluck, M. (2018). Optimierung der muskuloskelettalen Rehabilitation durch einbezug individueller faktoren der zellulären plastizität. Disch Z Sportmed. 2018, 283–284. doi: 10.5960/dzsm.2018.345

Fortune, J. M., Kelly, A. M., Robertson, I. H., and Hussey, J. (2019). An investigation into the relationship between cardiorespiratory fitness, cognition and BDNF in young healthy males. Neurosci. Lett. 704, 126–132. doi: 10.1016/j.neulet.2019.03.012

Freundberger, P., Petrovic, K., Sen, A., Toghofer, A. M., Fixa, A., Hofer, E., et al. (2016). Fitness and cognition in the elderly. The Austrian stroke prevention study. Neurology 86, 418–424. doi: 10.1212/WNL.0000000000003239

Frewen, J., Finucane, C., Savva, G. M., Boyle, G., Coen, R. F., and Kenny, R. A. (2016). Fitness and cognition in the elderly. The Austrian stroke prevention study. Neurosci. Lett 594, 126–132. doi: 10.1016/j.neulet.2019.03.012

Frontiers in Psychology | www.frontiersin.org 11 November 2019 | Volume 10 | Article 2338
genetic in origin. J. Exp. Psychol. Gen. 137, 201–225. doi: 10.1037/0096-3445.137.2.201
Gallen, C. L., and D’Esposito, M. (2019). Brain modularity: a biomarker of intervention-related plasticity. Trends Cogn. Sci. 23, 293–304. doi: 10.1016/j.tics.2019.01.014
Garber, C. E., Blissmer, B., Deschenes, M. R., Franklin, B. A., Lamontagne, M. J., Lee, I.-M., et al. (2011). American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med. Sci. Sports Exerc. 43, 1334–1359. doi: 10.1249/01MS5003496
Gass, G. C., McLellan, T. M., and Gass, E. M. (1991). Effects of prolonged exercise at a similar percentage of maximal oxygen consumption in trained and untrained subjects. Eur. J. Appl. Physiol. 63, 430–455. doi: 10.1007/BF00686074
Gellish, R. L., Goslin, B. R., Olson, R. E., McDonald, A., Russi, G. D., and Moudgil, V. K. (2007). Longitudinal modeling of the relationship between age and maximal heart rate. Med. Sci. Sports Exerc. 39, 822–829. doi: 10.1097/mss.0b013e3183394c6
Giese, M., Unternaehrer, E., Brand, S., Calabrese, P., Holsboer-Trachsler, E., and Herold et al. Individualization of Exercise Prescription in Exercise-Cognition Research
Grande, G., Vanacore, N., Maggiore, L., Cucumo, V., Ghiretti, R., Galimberti, D., Goldberg, T. E., and Weinberger, D. R. (2004). Genes and the parsing of cognitive function. Mol. Psychiatry 9, 353ñ367. doi: 10.1038/sj.mp.4001215
Gass, G. C., McLellan, T. M., and Gass, E. M. (1991). Effects of prolonged exercise at a similar percentage of maximal oxygen consumption in trained and untrained subjects. Eur. J. Appl. Physiol. 63, 430–455. doi: 10.1007/BF00686074
Gellish, R. L., Goslin, B. R., Olson, R. E., McDonald, A., Russi, G. D., and Moudgil, V. K. (2007). Longitudinal modeling of the relationship between age and maximal heart rate. Med. Sci. Sports Exerc. 39, 822–829. doi: 10.1097/mss.0b013e3183394c6
Giese, M., Unternaehrer, E., Brand, S., Calabrese, P., Holsboer-Trachsler, E., and Eckert, A. (2013). The interplay of stress and sleep impacts BDNF level. Front. Physiol. 4, 8. doi: 10.3389/fphys.2013.00150
Goldberg, T. E., and Weinberger, D. R. (2004). Genes and the parsing of cognitive processes. Trends Cogn. Sci. 8, 325–335. doi: 10.1016/j.tics.2004.05.011
Grande, G., Vanacore, N., Maggiore, L., Cucumo, V., Ghiretti, R., Galimberti, D., et al. (2014). Physical activity reduces the risk of dementia in mild cognitive impairment subjects. A cohort study. J. Alzheimers Dis. 37, 2.201
Hamer, M., and Chida, Y. (2009). Physical activity and risk of neurodegenerative disease: a systematic review of prospective evidence. Psychol. Med. 39, 3–11. doi: 10.1017/S0033291708003681
Hansen, A. L., Johnson, B. H., and Thayer, J. F. (2003). Vagal influence on working memory and attention. Int. J. Psychophysiol. 48, 263–274. doi: 10.1016/S0167-8760(03)00073-4
Hashimoto, T., Tsukamoto, H., Takenaka, S., Olesen, N. D., Petersen, L. G., Sørensen, H., et al. (2017). Maintained exercise-enhanced brain executive function related to cerebral lactate metabolism in men. FASEB J. 32, 1417–1427. doi: 10.1096/fj.201700381RR
Hayes, S. M., Forman, D. E., and Verfaellie, M. (2016). Cardiorespiratory fitness is associated with cognitive performance in older but not younger adults. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 71, 471–474. doi: 10.1093/geronb/gbu167
Hecksteden, A., Kraushaar, J., Scharhag-Rosenberger, F., Theisen, D., Senn, D., and Meyer, T. (2015). Individual response to exercise training - a statistical perspective. J. Appl. Physiol. 118, 1450–1459. doi: 10.1152/japplphysiol.00714.2014
Hecksteden, A., Pitsch, W., Rosenberger, F., and Meyer, T. (2018). Repeated testing for the assessment of individual response to exercise training. J. Appl. Physiol. 124, 1567–1579. doi: 10.1152/japplphysiol.00896.2017
Heisz, J. J., Clark, L. B., Bonin, K., Paolucci, E. M., Michalski, B., Becker, S., et al. (2017). The effects of physical exercise and cognitive training on memory and neurotrophic factors. J. Cogn. Neurosci. 29, 1895–1907. doi: 10.1162/jocn_a_01164
Herf, C., Heger, D., Fortmann, O., Henrich, J., Putze, F., and Schultz, T. (2013). Mental workload during n-back task-quantified in the prefrontal cortex using fNIRS. Front. Hum. Neurosci. 7:93. doi: 10.3389/fnhum.2013.00935
Herold, F., Hamacher, D., Scheja, L., and Müller, N. G. (2018a). Thinking while moving or moving while thinking – concepts of motor-cognitive training for cognitive performance enhancement. Front. Aging Neurosci. 10, 1–11. doi: 10.3389/fnagi.2018.00028
Heinz, F., Wiegel, P., Scholkmann, F., and Müller, N. G. (2018b). Applications of functional near-infrared spectroscopy (fnirs) neuroimaging in exercise/cognition science: a systematic, methodology-focused review. J. Clin. Med. 7:466. doi: 10.3390/jcm7120466
Herold, F., Orlowski, K., Börmel, S., and Müller, N. G. (2017). Cortical activation during balancing on a balance board. Hum. Mov. Sci. 51, 51–58. doi: 10.1016/j.jhumov.2016.11.002
Herold, F., Törpel, A., Scheja, L., and Müller, N. G. (2019). Functional and/or structural brain changes in response to resistance exercises and resistance training lead to cognitive improvements – a systematic review. Eur. Rev. Aging Phys. Act. 16:10. doi: 10.1186/s11556-019-0217-2
Hillman, C. H., Erickson, K. I., and Kramer, A. F. (2008). Be smart, exercise your brain. Exercise effects on brain and cognition. Nat. Rev. Neurosci. 9, 58–65. doi: 10.1038/nrn2298
Hofmann, P., and Tschakert, G. (2010). Special needs to prescribe exercise intensity for scientific studies. Cardiol. Res. Pract. 2011:209302. doi: 10.4061/2011:209302
Honea, R. A., Thomas, G. P., Harsha, A., Anderson, H. S., Donnelly, J. E., Brooks, W. M., et al. (2009). Cardiorespiratory fitness and preserved medial temporal lobe volume in Alzheimer disease. Alzheimer Dis. Assoc. Disord. 23, 188–197. doi: 10.1097/WAD.0b013e31819b8d82
Horwitz, R. I., Cullen, M. R., Abell, J., and Christian, B. J. (2013). Medicine. (De)personalized medicine. Science 339, 1155–1156. doi: 10.1126/science.1234106
Höting, K., and Röder, B. (2013). Beneficial effects of physical exercise on neuropsychology and cognition. Neurosci. Biobehav. Rev. 37, 2243–2257. doi: 10.1016/j.neubiorev.2013.04.005
Howley, E. T. (2001). Type of activity. Resistance, aerobic and leisure versus occupational physical activity. Med. Sci. Sports Exerc. 33, S364–S369; discussion S419–S420
Huang, T., Larsen, K. T., Ried-Larsen, M., Møller, N. C., and Andersen, L. B. (2014). The effects of physical activity and exercise on brain-derived neurotrophic factor in healthy humans: a review. Scand. J. Med. Sci. Sports 24, 1–10. doi: 10.1111/jms.12069
Hubal, M. J., Gordish-Dressman, H., Thompson, P. D., Price, T. B., Hofman, E. P., Angelopoulos, T. J., et al. (2005). Variability in muscle size and...
strength gain after unilateral resistance training. Med. Sci. Sports Exerc. 37, 964–972.

Hwang, J., Brothers, R. M., Castelli, D. M., Glowacki, E. M., Chen, Y. T., Salinas, M. M., et al. (2016). Acute high-intensity exercise-induced cognitive enhancement and brain-derived neurotrophic factor in young, healthy adults. Neurosci. Lett. 609, 247–253. doi: 10.1016/j.neulet.2016.07.033

Hyodo, K., Dan, I., Kyotoku, Y., Suwabe, K., Byun, K., Ochi, G., et al. (2016). The association between aerobic fitness and cognitive function in older men mediated by frontal lateralization. NeuroImage 125, 291–300. doi: 10.1016/j.neuroimage.2015.09.062

Impellizzeri, F. M., Marcora, S. M., and Coutts, A. J. (2019). Internal and external training load: 15 years on. Int. J. Sports Physiol. Perform. 14, 270–273. doi: 10.1123/ijspp.2018-0935

Jiménez-Maldonado, A., Rentería, I., García-Suárez, P. C., Moncada-Jiménez, I., and Freire-Royes, L. F. (2018). The impact of high-intensity interval training on brain derived neurotrophic factor in brain: a mini-review. Front. Neurosci. 12:839. doi: 10.3389/fnins.2018.00839

Jones, N., Kiely, J., Suraci, B., Collins, D., de Lorenzo, D., Pickering, C., et al. (2016). Ageing, fitness and neurocognitive function. Ageing Res. Rev. 117–126. doi: 10.1016/j.arr.2012.01.007

Komulainen, P., Kivipelto, M., Lakka, T. A., Savonen, K., Hassinen, M., Kiviniemi, V., et al. (2015). Higher levels of objectively measured sedentary behavior is associated with worse cognitive ability. Two-year follow-up study in community-dwelling older adults. Med. Sci. Sports Exerc. 47, 1105–1112. doi: 10.1249/MSS.0000000000001977

Ku, P.-W., Liu, Y.-T., Lo, M.-K., Chen, L.-J., and Stubbs, B. (2017). Levels higher of objectively measured sedentary behavior is associated with worse cognitive ability. Two-year follow-up study in community-dwelling older adults. Exp. Gerontol. 99, 110–114. doi: 10.1016/j.exger.2017.09.014

Laurin, D., Verreault, R., Lindsay, J., MacPherson, K., and Rockwood, K. (2001). Physical activity and risk of cognitive impairment and dementia in elderly persons. Arch. Neurol. 58, 498–504. doi: 10.1001/archneur.58.3.498

Leckie, R. L., Oberlin, L. E., Voss, M. W., Prakash, R. S., Szabo-Reed, A., Chaddock-Heyman, L., et al. (2014). BDNF mediates improvements in executive function following a 1-year exercise intervention. Front. Hum. Neurosci. 8:985. doi: 10.3389/fnhum.2014.00985

Lee, J. K., Koh, A. C., Koh, S. X., Liu, G. J., Nio, A. Q., and Fan, P. W. (2014). Neck cooling and cognitive performance following exercise-induced hyperthermia. Eur. J. Appl. Physiol. 114, 375–384. doi: 10.1007/s00421-013-2774-9

Leifer, E. S., Brawner, C. A., Fleg, J. L., Kraus, W. E., Whelan, D. J., Piña, I. L., et al. (2014). Are there negative responders to exercise training among heart failure patients? Med. Sci. Sports Exerc. 46, 219–224. doi: 10.1249/MSS.0000000000001416

Lightfoot, J. T. (2008). Commentary on viewpoint: Perspective on the future use of genomics in exercise prescription. J. Appl. Physiol. 104, 1249. doi: 10.1152/japplphysiol.00014.2008

Lindheimer, J. B., Szabo, A., Raglin, J. S., and Beedie, C. (2019). Advancing the understanding of placebo effects in psychological outcomes of exercise: lessons learned and future directions. Eur. J. Sport. Sci. doi: 10.1080/17461391.2019.1632937 [Epub ahead of print].

Liu-Ambrose, T., Barha, C. K., and Best, J. R. (2018). Physical activity for brain health in older adults. Appl. Physiol. Nutr. Metab. 43, 1105–1112. doi: 10.1139/apmn-2018-0260

Loprinzi, P. D., and Frith, E. (2018). The role of sex in memory function: considerations and recommendations in the context of exercise. J. Clin. Med. 7:132. doi: 10.3390/jcm7060132

Lucas, S. J. E., Cotter, J. D., Brassard, P., and Bailey, D. M. (2015). High-intensity interval exercise and cerebrovascular health: curiosity, cause, and consequence. J. Cereb. Blood Flow Metab. 35, 902–911. doi: 10.1038/jcbfm.2015.49

Lucyga, S., Gronwald, T., and Hottenrott, K. (2015). Effects of high vs. low cadence training on cyclists’ brain cortical activity during exercise. J. Sci. Med. Sport 19, 342–347. doi: 10.1016/j.jsams.2015.04.003

Ludyya, S., Gronwald, T., and Hottenrott, K. (2016). The athlete’s brain: cross-sectional evidence for neural efficiency during cycling exercise. Neural Plast. 2016:453674. doi: 10.1155/2016/453674

Mann, T., Lambe, R. P., and Lambert, M. I. (2013). Methods of prescribing relative exercise intensity. Physiol. Pract. Consider. Sports Med. 43, 613–625. doi: 10.1007/s40279-013-0045-x

Mann, T. N., Lambe, R. P., and Lambert, M. I. (2014). High responders and low responders: factors associated with individual variation in response to standardized training. Sports Med. 44, 1113–1124. doi: 10.1007/s40279-014-0197-3

Mattson, M. P. (2012). Evolutionary aspects of human exercise—born to run purposefully. Ageing Res. Rev. 11, 347–352. doi: 10.1016/j.arr.2012.01.007

McClean, G. E. (1997). Substantial genetic influence on cognitive abilities in twins 80 or more years old. Science 276, 1560–1563. doi: 10.1126/science.276.5318.1560

McLaren, S. J., Macpherson, T. W., Coutts, A. J., Hurst, C., Spears, I. R., and Coutts, A. J. (2018). The relationships between internal and external measures of training load and intensity in team sports. A Meta-Analysis. Sports Med. 48, 641–658. doi: 10.1007/s40279-017-0830-z

McMorris, T., and Hale, B. J. (2015). Is there an acute exercise-induced cognitive enhancement and brain-derived neurotrophic factor in young, healthy adults? Eur. J. Appl. Physiol. Nutr. Metab. 43, 1105–1112. doi: 10.1139/apmn-2018-0260

McMorris, T. (ed.) (2016a). “Chronic exercise and cognition in humans,” in Exercise-Cognition Interaction, ed T. McMorris (San Diego, CA:Elsevier), 65–103.

McMorris, T. (ed.) (2016a). “Chronic exercise and cognition in humans,” in Exercise-Cognition Interaction (New York, NY:Elsevier), 167–186.

McMorris, T. (2016b). Developing the catecholamines hypothesis for the acute exercise-cognition interaction,” in Exercise-Cognition Interaction, ed T. McMorris (San Diego, CA:Elsevier), 65–103.

McMorris, T. (ed.) (2016d). “History of research into the acute exercise–cognition interaction,” in Exercise-Cognition Interaction (New York, NY:Elsevier), 1–28.

McSween, M. P., Coombes, J. S., Mackay, C. P., Rodriguez, A. D., Erickson, K. I., Copland, D. A., et al. (2018). The immediate effects of acute aerobic exercise on
cognition in healthy older adults: a systematic review. Med. Sci. Sports Exerc. 49, 67–82. doi: 10.1249/01.wnl.0000296276.50595.8

Peck, R. W. (2018). Precision medicine is not just genomics: the right dose for every patient. Annu. Rev. Pharmacol. Toxicol. 58, 105–122. doi: 10.1146/annurev-pharmaco-010616-095657

Pattalard, T. (2015). Preventive effects of regular physical exercise against cognitive decline and the risk of dementia with age advancement. Sport Med. Open 1:4. doi: 10.1186/s40279-016-0016-x

Pattalard, B., Fratiglioni, L., Winblad, B., and Wang, H.-X. (2009). Leisure activities in late life in relation to dementia risk. Principal component analysis. Dement. Geriatr. Cogn. Disord. 28, 136–144. doi: 10.1159/000235576

Peck, R. W. (2018). Precision medicine is not just genomics: the right dose for every patient. Annu. Rev. Pharmacol. Toxicol. 58, 105–122. doi: 10.1146/annurev-pharmaco-010616-095657

Pedersen, B. K. (2019). Physical activity and muscle-brain crosstalk. Nat. Rev. Endocrinol. 15, 383–392. doi: 10.1038/s41574-019-0174-x

Pentikäinen, H., Savonen, K., Ngandu, T., Solomon, A., Komulainen, P., Paajanen, T., et al. (2019). Cardiorespiratory fitness and cognition: longitudinal associations in the FINGER study. Sleep Med. 50, S2–S18. doi: 10.1016/j.sleep.2019.01.015

Perspect. Psychol. Sci. 14, 734–764. doi: 10.1111/1600-0838.2012.0445.x

Pitts, C. (2017). ACTN3: more than just a gene for speed. Front. Physiol. 8:1080. doi: 10.3389/fphys.2017.01080

Picketing, C., and Kiely, J. (2017b). Exercise genetics: seeking clarity from noise. BMJ Open Sport Exerc. Med. 3:e000309. doi: 10.1136/bmjsem-2017-000309

Picketing, C., and Kiely, J. (2017a). Understanding personalized training responses: can genetic assessment help? Open Sports Sci. J. 10, 191–213. doi: 10.2174/1875399301710010191

Picketing, C., and Kiely, J. (2018a). ACTN3, morbidity, and healthy aging. Front. Genet. 9.15. doi: 10.3389/fgene.2018.00104

Picketing, C., and Kiely, J. (2018b). Do non-responders to exercise exist—and if so, what should we do about them? Sports Med. 49, 1–7. doi: 10.1007/s40279-018-01041-1

Picketing, C., and Kiely, J. (2019a). Exercise response efficiency: a novel way to enhance population health? Lifestyle Genom. 11, 129–135. doi: 10.1159/000501206

Picketing, C., and Kiely, J. (2019b). The development of a personalised training framework: implementation of emerging technologies for performance. JFMK 4:25. doi: 10.3390/jfmk04020025

Plews, D. J., Laurens, P. B., Stanley, J., Kilding, A. E., and Buchheit, M. (2013). Training adaptation and heart rate variability in elite endurance athletes: opening the door to effective monitoring. Sports Med. 43, 773–781. doi: 10.1007/s40279-013-0071-8

Pontefex, M. B., McGowan, A. L., Chandler, M. C., Gwizdala, K. L., Parks, A. C., Fenn, K., et al. (2018). A primer on investigating the after effects of acute bouts of physical activity on cognition. Psychol. Sport Exerc. 40, 1–22. doi: 10.1016/j.psychsport.2018.08.015

Poulose, S. M., Miller, M. G., Scott, T., and Shukitt-Hale, B. (2017). Nutritional factors affecting adult neurogenesis and cognitive function. Adv. Nutr. 8, 804–811. doi: 10.1093/advances/nmx261

Proia, P., Di Liegro, C. M., Schiera, G., Fricano, A., and Di Liegro, I. (2016). Lactate as a metabolite and a regulator in the central nervous system. Int. J. Mol. Sci. 17:1450. doi: 10.3390/ijms17091450

Quistorff, B., Secher, N. H., and van Lieshout, J. J. (2008). Lactate fuels the human brain during exercise. PASEEB 22, 3443–3449. doi: 10.1096/fj.08-106104

Raichlen, D. A., and Alexander, G. E. (2017). Adaptive capacity: an evolutionary neuroscience model linking exercise, cognition, and brain health. Trends Neurosci. 40, 408–421. doi: 10.1016/j.tins.2017.05.001

Ratamess, N., Alvar, B. A., Etovetch, T. K., Housh, T. J., Kibler, W. B., Kraemer, W. J., et al. (2009). American college of sports medicine position stand. Progression models in resistance training for healthy adults. Med. Sci. Sports Exerc. 41, 687–708. doi: 10.1249/01.MSS.0000318195670

Ravaglia, G., Forti, P., Luciserae, A., Piscane, N., Rietti, E., Bianchin, M., et al. (2008). Physical activity and dementia risk in the elderly: findings from a prospective Italian study. Neurology 70, 1786–1794. doi: 10.1212/01.wnl.0000296276.50595.8

Raven, F., van der Zee, E. A., Meero, P., and Havekes, R. (2018). The role of sleep in regulating structural plasticity and synaptic strength: implications for memory and cognitive function. Sleep Med. Rev. 39, 3–11. doi: 10.1016/j.smrv.2017.05.001

Riske, L., Thomas, R. K., Baker, G. B., and Dursun, S. M. (2017). Lactate in the brain: an update on its relevance to brain energy, glia and panic disorder. Ther. Adv. Psychopharmacol. 7, 85–89. doi: 10.1177/2045125316675579

Robers, R. A., and Landwehr, R. (2002). The surprising history of the “HRmax=220-age” equation. J. Exerc. Physiol. 5, 1–10

Rooks, C. R., Thom, N. J., McCully, K. K., and Dishman, R. K. (2010). Effects of incremental exercise on cerebral oxygenation measured by near-infrared spectroscopy. A systematic review. Prog. Neurobiol. 92, 134–150. doi: 10.1016/j.pneurobio.2010.06.002

Ross, R., Goodpaster, B. H., Koch, L. G., Sarzynski, M. A., Kohrt, W. M., Johannsen, N. M., et al. (2019). Precision exercise medicine: understanding exercise response variability. Br. J. Sports Med. 53, 1141–1153. doi: 10.1136/bjsports-2018-100328

Ross, R., de Lannoy, L., and Stott, P. J. (2015). Separate effects of intensity and amount of exercise on interindividual cardiorespiratory fitness response. Mayo Clin. Proc. 90, 1506–1514. doi: 10.1016/j.mayocp.2015.07.024

Rovio, S., Käreholt, I., Helkama, E.-L., Viitanen, M., Winblad, B., Tuomilehto, J., et al. (2005). Leisure-time physical activity at midlife and the risk of dementia and Alzheimer’s disease. Lancet Neurol. 4, 705–711. doi: 10.1016/S1474-4422(05)70198-8

Sand, L. M. J., Hortobágyi, T., La Bastide-van, Gemert, S., van der Zee, E. A., and van Heuvelen, M. J. G. (2019). Dose-response relationship between exercise
and cognitive function in older adults with and without cognitive impairment: a systematic review and meta-analysis. PLoS One 14:e0210036. doi: 10.1371/journal.pone.0210036

Santos-Concejoer, J., Billaut, F., Grobler, L., Oliván, J., Noakes, T. D., and Tucker, R. (2015). Maintained cerebral oxygenation during maximal self-paced exercise in elite Kenyan runners. J. Appl. Physiol. 118, 156–162. doi: 1152/japplphysiol.009992014

Santos-Concejoer, J., Billaut, F., Grobler, L., Oliván, J., Noakes, T. D., and Tucker, R. (2017). Brain oxygenation declines in elite Kenyan runners during a maximal interval training session. Eur. J. Appl. Physiol. 117(5):1017–1024. doi: 10.1007/s00421–017-3590–4

Sarzynski, M. A., Rankinen, T., Earnest, C. P., Leon, A. S., Rao, D. C., Skinner, J. S., and Tipton, C. M. (2008). Training principles: evaluation of modes and neuropsychiatric symptoms after aerobic exercise in patients with mild insomnia, and sleep deprivation. J. Appl. Physiol. 105, 234–242. doi: 10.1152/japplphysiol.00419.2017

Seidel, O., Carusi, D., Kenvilie, R., and Ragert, P. (2017). Motor learning in a complex balance task and associated neuroplasticity. A comparison between endurance athletes and non-athletes. J. Neurophysiol. 118, 1849–1860. doi: 10.1152/jn.00419.2017

Stillman, C. M., Cohen, J., Lehrman, M. E., and Erickson, K. I. (2016). Mediators of physical activity on neurocognitive function: a review at multiple levels of analysis. Front. Hum. Neurosci. 10:626. doi: 10.3389/fnhum.2016.00626

Szabo, A. N., McAuley, E., Erickson, K. I., Voss, M., Prakash, R. S., Mailey, E. L., Szabo, R. A., et al. (2017). Physical activity as a model for health neuroscience. Ann. N. Y. Acad. Sci. 1428, 103ñ111. doi: 10.1111/nyas.13669

Strebel, A., Quigg, R. J., Pfeifer, P. B., Parker, M. A., and Greenland, P. (2001). Accuracy of estimating exercise prescription intensity in patients with left ventricular systolic dysfunction. J. Cardiopulm. Rehabil. 21, 158–163.

Suwabe, K., Byun, K., Hyodo, K., Reagh, Z. M., Roberts, J. M., Matsushita, A., et al. (2011). Cardiorespiratory fitness, hippocampal volume, and frequency of forgetting in older adults. Neurology 76, 137ñ145. doi: 10.1212/WNL.0b013e3182135123

Tan, Z. S., Spartano, N. L., Beiser, A. S., DeCarli, C., Auerbach, S. H., Vasan, R. S., et al. (2016). Influence of sequential vs. simultaneous dual-task exercise training on cognitive function in older adults. Front. Aging Neurosci. 8:626. doi: 10.3389/fnagi.2016.00626

Tait, J. I., Duckham, R. L., Milte, C. M., Main, L. C., and Daly, R. M. (2017). Influence of sequential vs. simultaneous dual-task exercise training on cognitive function in older adults. Front. Aging Neurosci. 9:638. doi: 10.3389/fnagi.2017.00638

Takehara, N., Tsubaki, A., Hyodo, K., Sato, D., Morishita, S., et al. (2015). Changes in oxyhemoglobin concentration in the prefrontal cortex and primary motor cortex during low- and moderate-intensity exercise on a cycle ergometer. Adv. Exp. Med. Biol. 977, 241–247. doi: 10.1007/978-3-319-55231-6_33

Tan, Z. S., Spartanro, N. L., Beiser, A. S., DeCarli, C., Auerbach, S. H., Vasan, R. S., et al. (2017). Physical activity, brain volume, and dementia risk. The framingham study. J. Gerontol. A Biol. Sci. Med. Sci. 72, 789–795. doi: 10.1093/gerona/glw130

Tempest, G. D., Eston, R. G., and Parfitt, G. (2014). Prefrontal cortex haemodynamics and affective responses during exercise. A multi-channel near
infrared spectroscopy study. *PLoS One* 9:e95924. doi: 10.1371/journal.pone.0095924

Thayer, J. F., Åhs, F., Fredriksson, M., Solliers, J. J., and Wager, T. D. (2012). A meta-analysis of heart rate variability and neuroimaging studies. Implications for heart rate variability as a marker of stress and health. *Neurosci. Biobehav. Rev.* 36, 747–756. doi: 10.1016/j.neubiorev.2011.11.009

Thompson, P. M., Cannon, T. D., Natt, K. L., van Erp, T., Poutman, V. P., Huttunen, M., et al. (2001). Genetic influences on brain structure. *Nat. Neurosci.* 4, 1253–1258. doi: 10.1038/nn758

Timmons, J. A. (2011). Variability in training-induced skeletal muscle adaptation. *J. Appl. Physiol.* 110, 486–853. doi: 10.1152/japplphysiol.00934.2010

Timmons, J. A., Knudsen, S., Rannikko, T., Koch, L. G., Sarzynski, M., Jensen, T., et al. (2010). Using molecular classification to predict gains in maximal aerobic capacity following endurance exercise training in humans. *J. Appl. Physiol.* 108, 1487–1496. doi: 10.1152/japplphysiol.01295.2009

Toga, A. W., and Thompson, P. M. (2005). Genetics of brain structure and intelligence. *Ann. Rev. Neurosci.* 28, 1–23. doi: 10.1146/annurev.neuro.28.061604.135655

Toigo, M. (2019). *MuscleRevolution*. Berlin: Springer.

Törpel, A., Herold, F., Hamacher, D., Müller, N. G., and Schega, L. (2018). Strengthening the brain—is resistance training with blood flow restriction an effective strategy for cognitive improvement? *J. Clin. Med.* 7:E377. doi: 10.3390/jcm7100337

Trajković, V., Marcussen, A. B., Vinberg, M., Hartvig, P., Aznar, S., and Knudsen, G. M. (2007). Measurements of brain-derived neurotrophic factor. Methodological aspects and demographic data. *Brain Res. Bull.* 73, 143–149. doi: 10.1016/j.brresbull.2007.03.009

Tsukamoto, H., Suga, T., Takenaka, S., Tanaka, D., Takeuchi, T., Hamaoka, T., et al. (2016). Repeated high-intensity interval exercise shortens the positive effect on executive function during post-exercise recovery in healthy young males. *Physiol. Behav.* 160, 26–34. doi: 10.1016/j.physbeh.2016.03.029

van Hall, G., Stromstad, M., Rasmussen, P., Jans, O., Zaar, M., Gam, C., et al. (2009). Blood lactate is an important energy source for the human brain. *J. Cereb. Blood Flow Metab.* 29, 1121–1129. doi: 10.1038/jcbfm.2009.35

Vanrenterghem, J., Nederkoorn, N. J., Robinson, M. A., and Drust, B. (2017). Training load monitoring in team sports. A novel framework separating physiological and biomechanical load-adaptation pathways. *Sports Med. 47*, 2135–2142. doi: 10.1007/s40279-017-0714-2

Verstynen, T. D., Lynch, B., Miller, D. L., Voss, M. W., Prakash, R. S., Chaddock, L., et al. (2012). Caudate nucleus volume mediates the link between cardiorespiratory fitness and cognitive flexibility in older adults. *J. Aging Res.* 2012:939285. doi: 10.1155/2012/939285

Vesteringen, V., Hakkinen, K., Hynynen, E., Mikkola, J., Hokka, L., and Nummela, A. (2013). Heart rate variability in prediction of individual adaptation to endurance training in recreational endurance runners. *Scan. J. Med. Sci. Sports* 23, 171–180. doi: 10.1111/j.1600-0838.2011.01365.x

Vesteringen, V., Nummela, A., Heikura, I., Laine, T., Hynynen, E., Botella, J., et al. (2016). Individual endurance training prescription with heart rate variability. *Med. Sci. Sports Exerc.* 48, 1347–1354. doi: 10.1249/MSS.0000000000000910

Vidoni, E. D., Honea, R. A., Billinger, S. A., Swardlow, R. H., and Burns, J. M. (2012). Cardiorespiratory fitness is associated with atrophy in Alzheimer’s and aging over 2 years. *Neurobiol. Aging* 33, 1624–1632. doi: 10.1016/j.neurobiolaging.2011.03.016

Voelcker-Rehage, C., Godde, B., and Staudinger, U. M. (2011). Cardiovascular and coordination training differentially improve cognitive performance and neural processing in older adults. *Front. Hum. Neurosci.* 5:26. doi: 10.3389/fnhum.2011.00026

Voils, C. I., Chang, Y., Crandell, J., Leeman, J., Sandelowski, M., and Maciejewski, M. L. (2012). Informing the dosage of interventions in randomized trials. *Contemp. Clin. Trials* 33, 1225–1230. doi: 10.1016/j.cct.2012.07.011

Voisin, S., Jacques, M., Lucia, A., Bishop, D. J., and Eynon, N. (2019). Statistical considerations for exercise protocols aimed at measuring trainability. *Exerc. Sport Sci. Rev.* 47, 37–45. doi: 10.1249/ESR.0000000000000176

Vollaard, N. B. J., Constantin-Todiosiu, D., Fredriksson, K., Rooyackers, O., Janssen, E., Greenhaff, P. L., et al. (2009). Systematic analysis of adaptations in aerobic capacity and submaximal energy metabolism provides a unique insight into determinants of human aerobic performance. *J. Appl. Physiol.* 106, 1479–1486. doi: 10.1152/japplphysiol.91453.2008
performance in elderly Mexican Americans. *Hypertension* 63, 181–187. doi: 10.1161/HYPERTENSIONAHA.113.01888

Zhu, N., Suarez-Lopez, J. R., Sidney, S., Sternefeld, B., Schreiner, P. J., Carnethon, M. R., et al. (2010). Longitudinal examination of age-predicted symptom-limited exercise maximum HR. *Med. Sci. Sports Exerc.* 42, 1519–1527. doi: 10.1249/MSS.0b013e3181cf8242

Zimmer, P., Oberste, M., and Bloch, W. (2015). Einfluss von sport auf das zentrale nervensystem – molekulare und zelluläre wirkmechanismen. *Dtsch. Z. Sportmed.* 2015, 42–49. doi: 10.5960/dzsm.2015.164

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Herold, Müller, Gronwald and Müller. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.