Synthesis of photo-excited Chlorin e6 conjugated silica nanoparticles for enhanced anti-bacterial efficiency to overcome methicillin-resistant Staphylococcus aureus

Citation for published version:
Lin, J, Li, J, Gopal, A, Munshi, T, Chu, Y, Wang, J, Liu, T, Shi, B, Chen, X & Yan, L 2019, 'Synthesis of photo-excited Chlorin e6 conjugated silica nanoparticles for enhanced anti-bacterial efficiency to overcome methicillin-resistant Staphylococcus aureus' Chemical Communications, vol. 55. DOI: 10.1039/C9CC00166B

Digital Object Identifier (DOI):
10.1039/C9CC00166B

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Chemical Communications

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
This article can be cited before page numbers have been issued, to do this please use: J. Lin, J. Li, A. Gopal, T. Munshi, Y. Chu, J. Wang, T. Liu, B. Shi, X. Chen and L. Yan, *Chem. Commun.*, 2019, DOI: 10.1039/C9CC00166B.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the author guidelines.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms & Conditions and the ethical guidelines, outlined in our author and reviewer resource centre, still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Multidrug resistant bacterial infection remains a significant public concern. In this report, photosensitizer Chlorin e6 doped silica was synthesized. This hybrid structure performs enhanced photostability and high antibacterial efficiency towards *Staphylococcus aureus* (S. aureus) and methicillin-resistant *S. aureus* (MRSA). In summary, this work demonstrates an effective platform to improve the efficiency of antibiotics for better treatment of wound infection.

The birth of antibiotics advances modern medicine, and it is an essential tool for almost all medical intervention processes. However, despite the continuous development of antibiotics, bacterial infection remains a significant public concern, particularly over the past a few years, as bacteria are generating increasing resistance towards currently available antibiotics, and the generation of bacterial resistance to antibiotics always surpasses the development process of new ones. As a result, this leads to emerging antibiotic-resistant "superbugs", which increases the death toll related to bacterial infection. Among these, multi-drug resistant gram-positive organisms are major vital pathogens that cause serious infections, such as methicillin-resistant *Staphylococcus aureus* (MRSA). MRSA has been ranked to be on the world’s most dangerous bacteria by the World Health Organization (WHO). These nano-systems have attractive merits for the treatment of bacterial infection, namely their ease of surface functionalization, high antibacterial efficacy and ability to overcome bacterial resistance. Among them, mesoporous silica nanoparticles are biodegradable, leading to excellent biocompatibility and bio-safety, and the convenience of maintaining in release of bio-active molecules during degradation. All of these advantages make silica nanoparticles a desirable candidate for antibiotics delivery. Particularly, Song et al. recently reported that silica nanopollens with surface roughness can load an antimicrobial enzyme, lysozyme, and achieve significantly enhanced adhesion to bacteria for long-term bacterial inhibition in comparison with those with smooth surface. This characteristic further facilitates the application of silica nanoparticles.

researching new antibiotics, nanomaterials have been employed as a tool to significantly increase the drug efficacy. For example, silver, silica, zinc oxide, graphene and polymer nanoparticles have been utilized to inhibit growth of bacteria. These nano-systems have attractive merits for the treatment of bacterial infection, namely their ease of surface functionalization, high antibacterial efficacy and ability to overcome bacterial resistance. Among them, mesoporous silica nanoparticles are biodegradable, leading to excellent biocompatibility and bio-safety, and the convenience of maintaining in release of bio-active molecules during degradation. All of these advantages make silica nanoparticles a desirable candidate for antibiotics delivery. Particularly, Song et al. recently reported that silica nanopollens with surface roughness can load an antimicrobial enzyme, lysozyme, and achieve significantly enhanced adhesion to bacteria for long-term bacterial inhibition in comparison with those with smooth surface. This characteristic further facilitates the application of silica nanoparticles.

Scheme 1. Schematic illustration of Ce6 doped silica nanoparticle fabrication and photo-inspired disinfection.
Beyond using antibiotics for antimicrobial chemotherapy, photodynamic therapy (PDT) has also been applied to fight bacteria. In PDT, singlet oxygen is generated in the presence of a photosensitizer and oxygen under light illumination, causing mortal damage to bacteria. The application of PDT has been growing rapidly, because it is able to significantly improve antibacterial efficacy and can effectively alleviate drug resistance. However, the poor photostability of photosensitizers and low bacteria affinity hinder their successful applications. Inspired by the success of using surface nanostructure for elevated antimicrobial/anticancer chemotherapy, we first report a way to synthesize a silica nanomaterial carrying photosensitizer molecules for potent photodynamic therapy to treat *Staphylococcus aureus* (*S. aureus*) and MRSA (Scheme 1). This simple technique is expected to enhance the stability of photosensitizer in silica matrix, efficiently inhibit bacteria and overcome multi-drug resistance.

Silica nanoparticles are formed by a modified Stöber synthesis solution, followed by treatment at 500 °C for 5 h to remove the template surfactant during fabrication. Then, (3-aminopropyl)triethoxysilane (APTES) conjugated chlorin e6 (Ce6) molecules are incubated with silica nanoparticles, enabling Ce6 loading and creating a rough surface. Their X-ray diffraction (XRD) pattern indicates that these silica nanoparticles are amorphous (MCM-Ce6) (Fig. S1A ESI). The Fourier Transform Infrared (FT-IR) spectra of MCM-Ce6 and Ce6 display identical Ce6 peaks, confirming successful conjugation of Ce6 to silica (Fig. S1B ESI). The loading capacity of Ce6 is approximately 7.8 wt%, which was measured by absorbance at 400 nm. The morphology of MCM-Ce6 was characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) (Fig. 1A and Fig. 1B). It can be seen that the diameter of these silica nanoparticles is approximately 80-150 nm and these nanoparticles have very rough surfaces.

Next, the optical properties and singlet oxygen generation capacity of MCM-Ce6 were evaluated (Fig. S2 and Fig. S3 ESI). From the UV-vis absorption spectrum, it is clear that Ce6 modified silica nanoparticles exhibit very similar absorption characteristic with free Ce6, further indicating successful conjugation of Ce6 to silica nanoparticles (Fig. S2A ESI). Subsequently, the photostability of MCM-Ce6 was tested and compared to that of free Ce6 by exposing the materials to 650 nm light for different time periods (Fig. S2B ESI and Fig. S3 ESI) followed by absorbance intensity measurement at 400 nm. The results show that, after 10 minutes of light irradiation, MCM-Ce6 possesses an absorbance intensity of 70% of the original value; while in sharp contrast, the absorbance of free Ce6 molecules substantially drops to below 30%. This observation demonstrates that the photostability of Ce6 has been improved.

Fig. 1 Characterization of Ce6 doped silica nanoparticles (MCM-Ce6): A. TEM image and B. SEM image.

![Fig. 1](image1.png)

Fig. 1 Characterization of Ce6 doped silica nanoparticles (MCM-Ce6): A. TEM image and B. SEM image.

Fig. 2 *S. aureus* inhibition by MCM-Ce6 with different concentrations: A. 200, B. 66.7, C. 22.2 and D. 7.4 µg/mL. Control means only LB added. “+” indicates with light illumination; “−” indicates without light illumination. All data are expressed as mean ± s.d. (indicated by error bar), based on values obtained from six biological replicates (n=6). E. Live/Dead analysis of *S. aureus* treated with light (Light +) or without light (Light −). Scale bars indicate 5 µm.

![Fig. 2](image2.png)

Fig. 2 *S. aureus* inhibition by MCM-Ce6 with different concentrations: A. 200, B. 66.7, C. 22.2 and D. 7.4 µg/mL. Control means only LB added. “+” indicates with light illumination; “−” indicates without light illumination. All data are expressed as mean ± s.d. (indicated by error bar), based on values obtained from six biological replicates (n=6). E. Live/Dead analysis of *S. aureus* treated with light (Light +) or without light (Light −). Scale bars indicate 5 µm.
30 minutes before evaluation of their capacity of singlet oxygen generation. However, if both materials were exposed to light for aggregation and cause decreased capacity of singlet oxygen molecules to silica nanoparticles does not induce Ce6 (Fig. S2C ESI). This reveals that the process of doping Ce6 seen that both materials can effectively generate singlet oxygen diphenylisobenzofuran (DPBF) as a chemical probe. It can be significantly improved after covalent conjugation to silica nanoparticles.

The capacity of singlet oxygen generation of the MCM-Ce6 and free Ce6 molecules was also studied by using 1, 3-diphenylisobenzofuran (DPBF) as a chemical probe. It can be seen that both materials can effectively generate singlet oxygen (Fig. S2C ESI). This reveals that the process of doping Ce6 molecules to silica nanoparticles does not induce Ce6 aggregation and cause decreased capacity of singlet oxygen generation. However, if both materials were exposed to light for 30 minutes before evaluation of their capacity of singlet oxygen generation, the situation will be different. From Fig. S2D ESI, it can be seen that MCM-Ce6 can continuously generate singlet oxygen and cause the absorbance of DPBF to decrease; while free Ce6 molecules produce very low amount of singlet oxygen. This further confirms the enhanced photostability of Ce6 after being loaded to silica nanoparticles.

After confirming the improved photostability of MCM-Ce6, its antibacterial performance was next investigated against S. aureus and MRSA and the results are presented in Fig. 2 and Fig 3, respectively. S. aureus is a common naturally occurring and pathogenic Gram-positive spherical bacterium; while MRSA is a multi-drug resistant bacterium, which causes intractable infections in the clinic. Therefore, effective antibacterial agents to eliminate S. aureus and MRSA are highly desirable. In the test, the bacteria were cultured with MCM-Ce6 at different concentrations (200, 66.7, 22.2 and 7.4 µg/mL) in the presence or absence of light illumination. After treatment, the samples were monitored for turbidity by measuring the optical density (O.D.) at 600 nm. First, the potential risk of killing bacteria by light irradiation alone was investigated. It is apparent that the light irradiation at our used power intensity did not affect the growth of S. aureus and MRSA (Control +). At a low concentration of 7.4 µg/mL, MCM-Ce6 has already exhibited excellent bacterial inhibition of both S. aureus and MRSA upon light irradiation (Fig. 2D). In comparison, we also studied the antibacterial performance of MCM-Ce6 without light irradiation and the results show dramatically reduced bacterial inhibition efficacy (Fig. 2A-D). This observation clearly demonstrates the contribution of light excitation. To further evaluate the antibacterial performance, Live/Dead analysis to S. aureus was performed (Fig. 2E). In consistent with O.D. measurement, large amount of killed bacteria were found in light treated group. Moreover, the plate count method was carried out after O.D. measurement. Similar bacterial inhibition profiles were also observed (Fig. S4 ESI and Fig. S5 ESI). In addition, the antibacterial performance of MCM-Ce6 was compared with traditional Ce6 conjugated silica nanoparticles. The traditional Ce6 conjugated silica nanoparticles were fabricated by conjugating Ce6 molecules with amine modified silica. It was found that, MCM-Ce6 exhibited obviously improved S. aureus inhibition performance than traditional Ce6 conjugated silica nanoparticles, particularly after a short exposure period. (Fig. S6 ESI) Therefore, it is very important to conjugate APTES and Ce-6 molecules first and then attach them to silica nanoparticles for enhanced antibacterial performance.

Once demonstrating the great efficacy of MCM-Ce6 in antibacterial inhibition in vitro, we moved the application to in vivo wound healing, utilizing Balb/c mice as a model. A wound was created on their back followed by infection with S. aureus (Fig. 4). Then the mice were randomly divided into three groups. Two groups of mice were treated by either free Ce6 molecules or MCM-Ce6. The untreated mice were used as a control group. During treatment, clear difference in wound morphology was observed among groups and the representative images are shown in Fig. 4A. Obviously, scabs were quickly formed in the group of mice treated MCM-Ce6 under light irradiation. In contrast, it was difficult to even form a scab in the group of mice treated with free Ce6 molecules, indicating the poor efficiency in in vivo wound treatment. During the whole treatment period,
the mice did not show obvious body weight change in all experimental groups (Fig. 4B). Fig. 4C shows the H&E staining of the wound skin harvested from the mice treated with MCM-Ce6, which indicates a well-organised skin structure and good wound-healing effect. In addition, H&E staining of the major organs of the mice treated with MCM-Ce6 under light illumination was also conducted (Fig. S7 ESI), from which no obvious abnormality was found, indicating excellent compatibility of Ce6 doped silica nanoparticles.

In summary, our study illustrates a strategy to synthesize photosensitizer loaded silica nanoparticles for significantly enhanced photodynamic therapy to effectively inhibit S. aureus and MRSA. This drug delivery system improves the photostability of Ce6 molecules and correspondingly maintains the singlet oxygen generation capacity under light illumination. When tested in vivo, the drug delivery system dramatically enhances wound healing efficiency in comparison with free Ce6 molecules. Also importantly, these Ce6 doped silica nanoparticles have excellent biocompatibility. This work is the first report in the use of the nanomaterials’ rough surface for increased performance in antibacterial photodynamic therapy and demonstrates an effective platform to improve the efficiency of antibiotics.

The authors acknowledge the support provided from National Natural Science Foundation of China (No. 81803480), the Chengdu University (Nos. 2081916010 and ARRKLK16-05), Sichuan Science and Technology Program (No. 2018HH0007), School of Engineering of The University of Edinburgh, and the Royal Society Research Grant Scheme RG150564.

Conflicts of interest
There are no conflicts to declare

Notes and references
1 J. M. Munita, A. S. Bayer and C. A. Arias, Clinical Infections Diseases, 2015, 61, 548-57.
2 D. Mao, F. Hu, Kenry, S. Ji, W. Wu, D. Ding, K. Dong and B. Liu, Adv. Mater., 2018, 30, 1706831.
3 C. Mao, Y. Xiang, X. Liu, Z. Cui, X. Yang, K. W. K. Yeung, H. Pan, X. Wang, P. K. Chu and S. Wu, ACS Nano, 2017, 11, 9010-9021.
4 C. M. Courtney, S. M. Goodman, J. A. McDaniel, N. E. Maingard, A. Chatterjee and P. Nagpal, Nat. Mater., 2016, 15, 529-34.
5 X. Yang, J. Yang, L. Wang, B. Ran, Y. Jia, L. Zhang, G. Yang, H. Shao and X. Jiang, ACS Nano, 2017, 11, 5737-5745.
6 L. Liu, K. Xu, H. Wang, P. K. Tan, W. Fan, S. S. Venkataraman, L. Li and Y. Y. Yang, Nat. Nanotechnol., 2009, 4, 457-63.
7 H. Alhmoud, A. Cifuentes-Rius, B. Delalat, D. G. Lancaster, N. H. Voelcker, ACS Appl. Mater. Interfaces, 2017, 9, 33707-33716.
8 L. Han, S. Che, Adv. Funct. Mater., 2018, 28, 1705708.
9 X. Fan, F. Yang, C. Nie, Y. Yang, H. Ji, C. He, C. Cheng, C. Zhao, ACS Appl. Mater. Interfaces, 2018, 10, 296-307.
10 Y. Xie, Y. Liu, J. Yang, Y. Liu, F. Hu, K. Zhu and X. Jiang, Angew. Chem. Int. Ed., 2018, 57, 3958-3962.
11 J. Wang, J. Li, S. Qian, G. Guo, Q. Wang, J. Tang, H. Shen, X. Liu, X. Zhang and P. K. Chu, ACS Appl. Mater. Interfaces, 2016, 8, 11162-11178.