Disclosures. C. Ford, Seres Therapeutics, Inc: Employee and Shareholder, Salary. M. Henn, Seres Therapeutics, Inc: Employee and Shareholder, Salary. T. Bright, Seres Therapeutics, Inc: Employee and Shareholder, Salary. L. Diao, Seres Therapeutics, Inc: Employee and Shareholder, Salary. J. Wortman, Seres Therapeutics, Inc: Employee and Shareholder, Salary. A. Tomlinson, Seres Therapeutics, Inc: Employee and Shareholder, Salary. K. Liton, w, Seres Therapeutics, Inc: Employee and Shareholder, Salary. P. Bernardi, Seres Therapeutics, Inc: Employee and Shareholder, Salary. B. McGovern, Seres Therapeutics, Inc: Employee and Shareholder, Salary. J. G. Aunins, Seres Therapeutics, Inc: Employee and Shareholder, Salary. D. N. Cook, Seres Therapeutics, Inc: Employee and Shareholder, Salary. M. Truchais, Seres Therapeutics, Inc: Employee and Shareholder, Salary.

1642. Safety and Efficacy of Bacteriophage Therapy: Analysis of Clinical Case Series Data
Saima Aslam, MD, MS1; Timothy Gilber, MD2; Susan Maddocks, MD2; Sandra Morales, PhD3; Susan Lehman, PhD4; Steven Brandon, PhD5; Aleksandra Petrovic, PhD6; Carrie-Lynn Langlais Furr, PhD7; Francisco Rosas, MS/RAC1; Igor Bilinsky, PhD8; Paul Grint, MD9; Robert T. Schooley, MD, FIDSA1 and Jonathan Iredell, Professor12,12, Division of Infectious Diseases, University of California San Diego Health Centers, San Diego, California. 7.7. Critical Infectious Diseases, Westmead Hospital, Sydney, Australia. 1.8. Infectious Diseases, Westmead Hospital, Sydney, Australia. 1.9. Research, AmpliPhi Biosciences, Sydney, Australia. 1.10. Research, AmpliPhi Biosciences, Richmond, Virginia. 2.1. Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Sydney, Australia. 2.2. Regulatory Affairs, AmpliPhi Biosciences, San Diego, California. 2.3. AmpliPhi Biosciences, San Diego, California. 2.4. Medicine/Infectious Diseases, University of California San Diego, La Jolla, California. 2.5. Critical Infection, Westmead Institute for Medical Research, Sydney, Australia
Session: 168. Novel Therapies for Superbugs
Friday, October 5, 2018: 2:00 PM
Background. Bacteriophage therapy (BT) is a re-emerging strategy to treat antibiotic-resistant infections. Here, we describe our initial experience with intravenous (IV) and inhaled BT to treat life-threatening antibiotic-resistant infections and is a promising candidate for controlled clinical trials. BT appears to be a safe adjunct to antibiotic therapy in life-threatening bacteremia patients. After IV infusion, with an inferred initial bacteria:bacteriophage ratio of ~200 for cases. Bacteriophage kinetics revealed bloodstream clearance within a few hours with changes in sensitivity to the individual phage components observed in some adverse events. Clinical treatment success was documented in 75% of patients. Of AB-PA01 (4 IV doses of AB-SA01 (3 = 0.95.2% at MIC=2 mg/L and 43.0% at MIC=4 mg/L; PTA for a 12 mg/kg/day dose was 95.2% at MIC=2 mg/L and 43.0% at MIC=4 mg/L; PTA for a 12 mg/kg/day dose was 95.2% at 4 mg/L.

Conclusion. Compared with our previous observations for DAP monotherapy against enterococcal BSI, a lower DAP PD exposure was required when administered with at least one additional antibiotic. For combination therapy with DAP, a JACU/MIC >12.3 was associated with 30-day survival. As part of an active combination therapy regimen, DAP 6 mg/kg/day was appropriate for treatment of BSI caused by enterococci with MICs ≤2 mg/L, while 12 mg/kg/day was optimal for isolates with MICs of 4 mg/L.

Disclosures. J. L. Kutri, Merck & Co., Inc.: Consultant and Grant Investigator, Consulting fee and Research support. Pfizer, Inc.: Consultant, Consulting fee. Theravance Biopharma: Grant Investigator, Research support. Shionogi, Inc.: Grant Investigator, Research support. Scientific Services, Lancaster, Pennsylvania, Christopher DiPippo, MD: Merck Research Laboratories, Kenilworth, New Jersey. 2. Vaccine Research, Merck Research Lab, West Point, Pennsylvania and Eurofins Lancaster Laboratories Professional Scientific Services, Lancaster, Pennsylvania.
Session: 169. Respiratory and Gastroenteritis Viruses
Friday, October 5, 2018: 2:00 PM
Background. Respiratory syncytial virus (RSV) infection is a major public health burden for infants and the elderly worldwide. Currently, there are 1644. A Potent Broadly Neutralizing Antibody Isolated From Human Memory B-cells Binding to Conserved Site IV of the RSV F Protein
Eun-Kyung Vora, MD1; Zhiling Chen, PhD2; Ha Su, PhD3; Aimin Tang, MS4; Karon Cox, MS5; Cheryl Callahan, MS6; Lan Zhang, PhD7; Sangita Patel, MS8; Debbie Nahas, MS9; Mike Citron, PhD10; Pedro Cejas, PhD11; Ryan Swoyer, MD12; Lin Luo, MS13; Michael Edminds, MS14; John Reid, MS15; Arthur Fridman, PhD16; Jennifer Galli, MS17; Scott Cosmi, MS18; Govindaraj Dhanasekaran, PhD19; Zhiyun Wen, MS20; Xi He, MS21; Dai Wang, PhD22; Gwen Heidecker, MS23; Jessica Flynn, PhD24; James Cook, PhD25; Stephen Soisson, PhD26; Danilo Casimiro, PhD27; Andrew Bett, PhD28; Wade Blair, PhD29; Daniel Dostaleno, MS30 and Christopher Haines, PhD31; Melanie Co., Inc. Kenilworth, New Jersey. 4. Merck Research Laboratories, Kenilworth, New Jersey. 5. Vaccines Research, Merck Research Lab, West Point, Pennsylvania and Eurofins Lancaster Laboratories Professional Scientific Services, Lancaster, Pennsylvania.
no approved vaccines and only one moderately effective marketed antibody (Syngene) for the prevention of RSV infection in high-risk infants. Sampling the human antigen repertoire has led to the realization that the RSV fusion (F) protein in its pre-fusion conformation is the preferred target for potent neutralizing antibodies and thus makes the protein an attractive candidate for vaccine developers.

Methods. We report the isolation of a potent and broad RSV neutralizing monoclonal antibody (mAb), which was discovered through molecular cloning of cultured RSV postfusion F protein-baited single-sorted human memory B cells. The epitope for the mAb was mapped to RSV F protein using various methods, including X-ray crystallography, alanine scan, and RSV escape mutant generation.

Results. The mAb binds to both RSV pre- and postfusion F proteins at site IV and can neutralize RSV and RSV B and laboratory strains with subnanomolar potency, suggesting that this antigenic site IV is conserved between pre- and postfusion F proteins in both RSV A and B subgroups, and sequence alignment showed that the mAb-binding site was conserved in >1,000 RSV A and B clinical isolates. In vivo cotton rat studies demonstrated protection of both the upper and lower respiratory tract of antibody-infused animals challenged with either RSV A or B.

Conclusion. Overall, the fully human mAb we have isolated has great potential to be developed for passive immune prophylaxis in infants. A prevalent view of the RSV scientific community is that RSV neutralizing mAbs in human sera primarily target the prefusion F protein and predominantly bind antigenic site Ω. In contrast, our findings demonstrate that very broad and potent RSV neutralizing mAbs can also recognize sites common to pre- and postfusion F proteins. Furthermore, the RSV F antigenic site IV presents a neutralizing epitope which is highly conserved. Therefore, it is worthwhile to consider site IV, in addition to site Ω, in the design of RSV subunit vaccines.

Disclosures. K. Vora, Merck: Employee, Salary. Z. Chen, Merck: Employee, Salary. H. P. Su, Merck: Employee, Salary. H. Tang, Merck: Employee, Salary. K. Cox, Merck: Employee, Salary. C. Callahan, Merck: Employee, Salary. L. Zhang, Merck: Employee, Salary. S. Patel, Merck: Employee, Salary. D. Nahas, merck: Employee, Salary. S. Miltron, merck: Employee, Salary. P. Cejas, merck: Employee, Salary. L. Bao, merck: Employee, Salary. M. Eddins, Merck: Employee, Salary. J. Reid, Merck: Employee, Salary. A. Fridman, Merck: Employee, Salary. J. Galli, Merck: Employee, Salary. S. Cosmi, Merck: Independent Contractor, Salary. G. Dhanasekaran, Merck: Employee, Salary. S. Wu, Merck: Employee, Salary. D. Wang, Merck: Employee, Salary. G. Heidecker, Merck: Employee, Salary. J. Flynn, Merck: Employee, Salary. J. Cook, merck: Employee, Salary. S. Soisson, Merck: Employee, Salary. D. Casimiro, Merck: Employee, Salary. A. Bich, Merck: Employee, Salary. W. Blaire, Merck: Employee, Salary. D. Distefano, Merck: Employee, Salary. C. Haines, Merck: Employee, Salary.

1645. Exploring Clinical and Antiviral Efficacy of Baloxavir Marboxil in a Phase 3, Randomized, Double-Blind, Placebo- and Active-Controlled Study of Otherwise Healthy Adults/Adolescents in Seasonal Influenza: Impact on Regional Participants, Treatment Time and Influenza Type B Virus Infection (CAPSTONE-1 Study)

Koeki Y. Uehara, MD1 Simon Portsmouth, MD2, Takao Shishido, PhD3, Tatsuki Uehara, PhD4 and Frederick Hayden, MD, 5Shionogi & Co., Ltd., Osaka, Japan, 6Shionogi Inc., Florham Park, New Jersey and 7Department of Medicine, University of Virginia, Charlottesville, Virginia

Session: 169. Respiratory and Gastroenteritis Viruses
Friday, October 5, 2018: 2:00 PM

Background. Baloxavir marboxil (BXM), a selective cap-endonuclease inhibitor, has demonstrated efficacy + safety for influenza in otherwise healthy patients. We present subgroup analyses for (i) United States vs. Japan (1), (ii) time (t) of treatment (early: ≥0 to ≤24 hours, vs. late: >24 to ≤48 hours), and (iii) influenza type B infections from the global Ph 3 trial (16/17 season).

Methods. A multicenter, randomized, double-blind, placebo (PLC)- and oseltamivir (OV)-controlled study recruited patients in Japan (n = 846) and United States (n = 590). Inclusion criteria: age 12–64 years, fever ≥ 100.4°F, and ≤48 hours from symptom onset. Patients (20–64 years) randomized (2:2:1) to a single oral dose of BXM, PLC, or 75 mg OV BID for 5 days; patients 12–19 years were randomized (2:1) to receive BXM or PLC. BXM dose: 40/80 mg for BW </≥280 kg. Primary endpoint: time to alleviation of symptoms (TTAS) in ITTI population (pop). Viral titers measured from pre-/postdose nasal swabs.

Results. BXM reduced the median TTAS by 30.6 hours versus PLC (87.3 versus 117.9 hours, P = 0.0432) in the US pop and 27.6 hours versus PLC (67.3 versus 95.1 hours, P < 0.001) in the Japan pop and 22.4 versus 72 hours for PLC (P < .0001). Median TTAS in the United States versus J pop was longer, due to differences between patients. In both early/late treatments from symptom onset, BXM reduced TTAS versus PLC (Table 1). Regardless of the t to treatment from symptom onset, BXM reduced virus titer significantly from BL versus PLC and OV (Table 2). No significant reduction in TTAS was seen, while BXM reduced virus titer versus PLC and OV in type B virus infection.

Conclusion. Outcomes for United States were aligned with the Ph 3 results. Early treatment with BXM leads to a significantly faster TTAS vs. PLC. BXM caused significant viral titer reduction regardless of treatment time versus OV. BXM reduced virus titer vs. PLC and OV in type B virus infection.

Table 1: Median TTAS (hours) to TTAS

t to Treatment From Symptom Onset	BXM	PLC	Strat. Gen. Wilcoxon Test*
Early	49.3 (W = 238)	82.1 (W = 120)	P = 0.0001
Late	66.2 (W = 217)	79.4 (W = 110)	P = 0.0080

*Stratification factors: region and composite symptom scores at baseline.

Table 2: Mean Change (log_{10} [TCID_{50}/mL] From BL of Viral Titer at 1 Day After Start of Treatment (Age ≥ 20)

t to treatment from symptom onset	BXM	PLC	OV	Strat. Gen. Wilcoxon Test*
Early	-4.46 (n = 180)	-2.57 (n = 187)	P = 0.0001	
Late	-3.42 (n = 160)	-2.48 (n = 161)	P = 0.0001	

*Same with Table 1.

Disclosures. K. Kagawuchi. Shionogi & Co., Ltd.: Employee, Salary. S. Portsmouth, Shionogi Inc.: Employee, Salary. T. Shishido. Shionogi & Co., Ltd.: Employee, Salary. T. Uehara. Shionogi & Co., Ltd.: Employee, Salary. F. Hayden. Shionogi & Co., Ltd.: Scientific Advisor, Consulting fee (donated) and travel support for attending 6th ESWI meeting, 10–13 September 2017, Latvia, to present phase 3 OWH results.

1646. Combined Resistance Analyses From Phase 2b Studies of Presatovir Treatment in RSV-Infected Adults

Danielle Porter, PhD; Ying Guo, PhD; Jason Perry, PhD; David Gossage, M.D.; Timothy Watkins, M.D.; Jason Chien, MD and Robert Jordan, PhD, Gilead Sciences, Inc., Foster City, California

Session: 169. Respiratory and Gastroenteritis Viruses
Saturday, October 6, 2018: 10:00 AM

Background. Presatovir is an oral respiratory syncytial virus (RSV) fusion inhibitor in development for the treatment of RSV infection. Results from a healthy volunteer challenge study show that presatovir significantly reduced RSV viral load and clinical signs and symptoms. Here we present combined resistance analyses from 4 phase 2b studies in naturally RSV-infected adults.

Methods. RSV RNA was isolated from nasal swabs collected at baseline and postbaseline in studies GS-US-218-0108, GS-US-218-1502, GS-US-218-1227, and GS-US-218-1797. Full-length RSV fusion (F) gene was PCR amplified and population sequencing was performed.

Results. Of 233 presatovir-treated adults in the efficacy analyses, postbaseline resistance-associated substitutions were detected in 18 (7.7%) subjects. Frequencies of resistance development varied by study (Table 1). Resistance substitutions known to confer high-level (>200 fold) reduced susceptibility to presatovir detected in ≥1 subject were: T400I (n = 6), S398L (n = 3), L414F (n = 2), and F140I (n = 2) in F. Subjects with resistant virus had less viral load reduction than presatovir-treated subjects without resistant virus. Resistance development did not impact clinical outcomes. In study GS-US-218-0108, subjects with lymphopenia (<200 cells/μL) at baseline were significantly more likely to develop resistance substitutions.

Table 1: Resistance Development Frequencies in Phase 2b Studies

Study	Subject Population	Presatovir Dose	Subjects with Resistance-Associated Substitutions, n (%)
GS-US-218-0018 Hematopoietic cell transplant (HCT) recipients with upper respiratory tract infection	Days 1, 5, 9, 13, and 17; 20 mg	0	0 (0%)
GS-US-218-1502 HCT recipients with lower respiratory tract infection	Days 1, 5, 9, 13, and 17; 20 mg	0	0 (0%)
GS-US-218-1227 Hospitalized adults	Day 1: 200 mg	0	0 (0%)
GS-US-218-1797 Lung transplant recipients	Day 1: 200 mg Days 2–14: 100 mg	0	0 (0%)

Conclusion. Presatovir treatment resulted in varying rates of resistance development across the phase 2b studies. Resistance development impacted virologic response without affecting clinical outcomes. Differences among study populations and dosing regimens may have influenced rates of resistance development.