SAT-595
The arcuate nucleus (ARH) is considered the main mediator of the effects of leptin on energy homeostasis, as well, part of the hypothalamic circuitry through which the sex steroids mediate the ovulatory cycle and therefore reproduction. While it is known that aging influences synaptic plasticity of ARH neurons, the effects of increased weight gain early in life onto in the activity of ARH neurons are still poorly understood. In order to demonstrate whether prepubertal adiposity gain is able to modulate the synaptic transmission in leptin receptor (LepR)-expressing cells of the ARH, we employed a postnatal over-nutrition model by raising mice in small litters (SL), while control mice were maintained in regularitters (6-8 pups per litter). The spontaneous currents of LepR-expressing neurons in the ARH were measured by whole-cell patch-clamp recordings in hypothalamic slices obtained from prepubertal, pubertal and adult female LepR-reporter mice. As expected, mice raised in SL exhibited increased body weight compared to control mice at prepubertal and pubertal stage (prepubertal, t_{59} = 6.9, P < 0.001; pubertal, t_{59} = 5.3, P < 0.001), despite no difference at adult age (t_{59} = 1.5, P = 0.4). By evaluating ARH neuronal activity we observed an increased average of excitatory and inhibitory currents frequency during development, in both control females (sEPSC: F_{2, 49} = 17.76, P < 0.0001, iEPSC: F_{2, 49} = 4.064, P = 0.0322) and in mice raised in SL (sEPSC: F_{2, 49} = 27.76, P < 0.0001, iEPSC: F_{2, 49} = 6.714, P = 0.0062). However, SL and control mice exhibited similar sEPSC amplitudes at all stages of development. A significant interaction between litter size and excitatory transmission frequency onto LepR-expressing cells were noted at the pubertal and adult stages (F_{2, 49} = 3.164, P = 0.046), despite no changes in the amplitudes of these signals (interaction: F_{2, 49} = 1.5116, P = 0.8596; age: F_{2, 49} = 0.9961, P = 0.3731; litter size: F_{2, 49} = 0.076, P = 0.7832). By evaluating the inhibitory transmission to ARH LepR-expressing neurons, no significant interaction between litter size and inhibitory transmission frequency were observed (F_{2, 49} = 0.09271, P = 0.9117). However, the average iEPSC amplitude were significantly reduced in the ARH cells recorded from mice raised in SL, when compared to the control group (F_{2, 49} = 22.86, P < 0.0001), despite no identifiable interaction between litter size and inhibitory transmission (F_{2, 49} = 0.6619, P = 0.5212). Taken together our results suggest that early weight gain influences the excitatory transmission pattern in LepR-expressing neurons by increasing presynaptic excitatory inputs and suppressing postsynaptically transmission to ARH neurons.

Adrenal
ADRENAL - TUMORS
Shorter Hospital Stays Are Not Associated with Increased Readmission or Complication Rates in Patients Undergoing Laparoscopic Adrenalectomies
Rahul K. Sharma, BS2, Bernice Huang, MD3, James A. Lee, MD2, Jennifer H. Kuo, MD MS FACS2.
1Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA, 2Division of Endocrine Surgery, Columbia University Irving Medical Center, New York, NY, USA.

SAT-156
Background: Traditionally, elective adrenalectomies have been performed as an inpatient procedure. However, the adoption of laparoscopic adrenalectomy as the gold standard has allowed for shorter postoperative stays. Our objective was to assess the safety of same-day discharge for patients undergoing laparoscopic adrenalectomy.

Methods: A retrospective cohort study of patients who underwent laparoscopic adrenalectomy from 2011-2017 was conducted using The American College of Surgeons National Surgical Quality Improvement Project (ACS NSQIP) database. Demographic data was obtained. Multivariable logistic regression models to assess the association between length of stay and both postoperative complication rates and 30-day readmission rates were regressed on age, sex, race, comorbidities, functional status, postoperative diagnosis, and operative time. Statistical significance was defined as p<.05.

Results: 5,611 unique patients who underwent a laparoscopic adrenalectomy were identified. 1,564 patients had a postoperative diagnosis of a pheochromocytoma (27.9%), 162 with Cushing's syndrome (2.9%) and 210 (3.7%) had metastatic disease to the adrenal glands. The average post-operative length of stay was 2.4 days (SD=3.9). 93 patients (1.7%) were discharged on the same day as their surgery (POD0). 2,509 (44.7%) were discharged on postoperative day 1 (POD1), 1,558 (27.8%) on postoperative day 2 (POD2), and 1,451 (25.9%) after POD2. Longer hospital stays were predicted by male sex, non-white race, longer operating time, and postoperative complications in regression models. 351 patients (6.26%) experienced a complication postoperatively. Complication rates were 3.23% for patients discharged on POD0, 1.67% for those discharged on POD1, 3.27% for those discharged on POD2, and 17.57% for those discharged after POD2 (p<.01). An increased risk of post-operative complications was also associated with male sex, impaired functional status and the presence of multiple comorbidities in regression models. 290 patients (5.17%) experienced a readmission. Readmission rates were 4.30% for patients discharged on POD0, 3.67% for those discharged on POD1, 4.49% for those discharged on POD2, and 8.55% for those discharged after POD2 (p<.01). Multiple comorbidities, African American race, and post-operative complications were associated with higher readmission rates. Length of hospital stay was not associated with readmission rates in regression models.

Conclusions: Readmission rates were not significantly different for patients discharged on POD0 than POD1 after a laparoscopic adrenalectomy. Readmission rates were higher for patients who had complications or multiple comorbidities. Therefore, low-risk patients with uncomplicated laparoscopic adrenalectomies can be considered for same day discharge to potentially reduce hospital spending and resource utilization.

Neuroendocrinology and Pituitary ADVANCES IN NEUROENDOCRINOLOGY
The Synthetic Progestin, 17-alpha-hydroxyprogesterone Caproate, Used in Human Pregnancy Alters Prefrontal Cortical Development in Rats
Melanie L. Lolier, MA, BS, Christine K. Wagner, PHD.
University at Albany, Albany, NY, USA.
SUN-255
17-alpha-hydroxyprogesterone caproate (17-OHPC) is a synthetic progestin commonly prescribed for the prevention of recurrent preterm birth. Treatment with 17-OHPC in high-risk pregnant women begins between gestational weeks 16-20, and continues through week 36. Recent studies suggest that 17-OHPC is not an effective treatment for reducing rates of preterm delivery. Most concerning is the timing of 17-OHPC administration, which coincides with critical periods of mesocortical dopamine pathway development in the fetus. Regulating behaviors of executive function, the mesocortical pathway originates in dopaminergic neurons of the ventral tegmental area (VTA) that innervate the medial prefrontal cortex (mPFC). Disruptions in mesocortical dopamine pathway development are believed to underlie deficits in cognitive functioning. In rodent models of cortical development, the developing mesocortical dopamine pathway is sensitive to progestins. There is transient expression of nuclear progesterone receptors (PR) in both the VTA and mPFC. PR are powerful transcription factors that can alter gene expression and fundamentally alter neural development. When rodents are treated with 17-OHPC during mesocortical dopamine pathway development, there are significant sex-specific alterations in dopaminergic innervation of the mPFC and deficits in cognitive behaviors in adulthood. Microglia, the resident immune cells of the central nervous system, play a critical role in establishing dopaminergic circuitry of the forebrain. The following experiment tested the hypothesis that 17-OHPC alters microglia activity in a sex-specific manner. Our results reveal that there is an innate sex difference in the number of reactive microglia, where control group females had significantly more than males. Treatment with 17-OHPC abolishes this sex difference by reducing the number of reactive microglia in 17-OHPC-treated females to male-like levels in both the prelimbic (PL) and infralimbic (IL) mPFC. There is also a significant reduction in the percentage of reactive microglia in 17-OHPC treated animals compared to controls. These results suggest that early 17-OHPC exposure may decrease functional microglial activity during critical periods of cortical development, and that females are more vulnerable than males. Consideration should be given to the potential effects of 17-OHPC on neural and cognitive development in children.

Steroid Hormones and Receptors

Next Generation AR Antagonists Increase Systemic Active Glucocorticoid Exposure by Altering Glucocorticoid Metabolism

Mohammad Alyamani, PhD1, Nima Sharifi, MD2, Jianbo Li, PhD3, Mona Patel, MS1, Michael Berk, MS1, Susan Taylor, BSN1, Christopher Przybycin, MD1, Edwin M. Posadas, MD2, Ravi Madan, MD1, James L. Gulley, MD, PhD, FACPC, Brian I. Rini, MD, FACPC1, Jorgi A. Garcia, FACPC, MD1, Eric A. Klein, MD1.

1Cleveland Clinic, Cleveland, OH, USA, 2Cedars-Sinai Medical Center, Los Angeles, CA, USA, 3The National Cancer Institute at the National Institutes of Health, Bethesda, MD, USA.

Diabetes Mellitus and Glucose Metabolism

CLINICAL AND TRANSLATIONAL STUDIES IN DIABETES

Prandial Insulin Dosing Based on Carbohydrate Content Does Not Significantly Improve Glycemic Control in Hospitalized Patients with Diabetes

HEENAM GOEL1, Farheen K. Dojki, MD2, Dawn Belt Davis, MD, PhD2.

1UNIVERSITY OF WISCONSIN, Madison, WI, USA, 2University of Illinois at Chicago, Chicago, IL, USA.

MON-663

Introduction: Diabetes mellitus (DM) is a highly prevalent concern in hospital medicine. In-hospital hyperglycemia and hypoglycemia are common. Hospitalized patients have variable and unpredictable amounts of carbohydrate content in their meals. We hypothesized that order sets that allow for flexible dosing of prandial insulin using an insulin to carbohydrate ratio (ICR) would provide