Outcome of ovarian cancer after breast cancer in BRCA1 and BRCA2 mutation carriers

Zaaijer, Leendert H.; van Doorn, Helena C.; Mourits, Marian J. E.; van Beurden, Marc; de Hullu, Joanne A.; Adank, Muriel A.; van Lonkhuijzen, Luc R. C. W.; Vasen, Hans F. A.; Slangen, Brigitte F. M.; Gaarenstroom, Katja N.

Published in:
British Journal of Cancer

DOI:
10.1038/bjc.2016.333

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2016

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Zaaijer, L. H., van Doorn, H. C., Mourits, M. J. E., van Beurden, M., de Hullu, J. A., Adank, M. A., van Lonkhuijzen, L. R. C. W., Vasen, H. F. A., Slangen, B. F. M., Gaarenstroom, K. N., Zweemer, R. P., Vencken, P. M. L. H., Seynaeve, C., & Kriege, M. (2016). Outcome of ovarian cancer after breast cancer in BRCA1 and BRCA2 mutation carriers. British Journal of Cancer, 115(10), 1174-1178. https://doi.org/10.1038/bjc.2016.333

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Outcome of ovarian cancer after breast cancer in BRCA1 and BRCA2 mutation carriers

Leendert H Zaaijer1,2, Helena C van Doorn1, Marian J E Mourits3, Marc van Beurden4, Joanne A de Hullu5, Muriel A Adank6, Luc R C W van Lonkhuijzen7, Hans F A Vasen8, Brigitte F M Slangen9, Katja N Gaarenstroom10, Ronald P Zweemer11, Peggy M L H Vencken12, Caroline Seynaeve2 and Mieke Kriege*,2

1Department of Obstetrics and Gynaecology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands; 2Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands; 3Department of Obstetrics and Gynaecology, Medical Centre Groningen, University of Groningen, Groningen, The Netherlands; 4Department of Obstetrics and Gynaecology, Netherlands Cancer Institute NKI-AVL, Amsterdam, The Netherlands; 5Department of Obstetrics and Gynaecology, Radboud University Medical Centre, Nijmegen, The Netherlands; 6Department of Clinical Genetics, VU Medical Centre, Amsterdam, The Netherlands; 7Center for Gynecologic Oncology, Academic Medical Centre, Amsterdam, The Netherlands; 8Foundation for the Detection of Hereditary Tumours (STOET), Leiden, The Netherlands; 9Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, The Netherlands; 10Department of Obstetrics and Gynaecology, Leiden University Medical Centre, Leiden, The Netherlands; 11Department Gynaecological Oncology, UMC Utrecht Cancer Centre, Utrecht, The Netherlands and 12Department of Obstetrics and Gynaecology, Bravis Hospital, Bergen op Zoom, The Netherlands

Background: It is unknown whether a history of breast cancer (BC) affects the outcome of BRCA1/2-associated epithelial ovarian cancer (EOC). This was investigated in the current analysis.

Methods: We included 386 BRCA1/2-associated EOC patients diagnosed between 1980 and 2015. Progression-free survival (PFS), progression-free interval (PFI), overall survival (OS) and ovarian cancer-specific survival (OCSS) were compared between EOC patients with and without previous BC.

Results: BRCA-associated EOC patients with, vs without, a BC history had a significantly worse PFS and PFI (multivariate hazard ratio (HRmult) 1.47; 95% confidence interval (CI) 1.03–2.08 and HRmult 1.43; 95% CI 1.01–2.03), and a non-significantly worse OS (HRmult 1.15; 95% CI 0.84–1.57) and OCSS (HRmult 1.18; 95% CI 0.85–1.62). Ovarian cancer-specific survival was significantly worse for the subgroup treated with adjuvant chemotherapy for BC (HRmult 1.99; 95% CI 1.21–3.31).

Conclusions: Our results suggest that BRCA1/2-associated EOC patients with a previous BC have a worse outcome than EOC patients without BC, especially when treated with adjuvant chemotherapy.

It is assumed that 8–16% of all epithelial ovarian cancer (EOC) cases are due to BRCA1/2 germ line mutations (Risch et al, 2001; Thompson et al, 2002; Alsop et al, 2012). An improved survival after primary therapy has been reported for BRCA1/2-associated compared with sporadic EOC patients (Vencken et al, 2011; Yang et al, 2011; Hyman et al, 2012). This is thought to be explained by the crucial role of BRCA genes in homologous recombination, a mechanism to repair double-strand DNA breaks, which is deficient in patients without functional BRCA proteins. Platinum chemotherapy, like cisplatin or carboplatin, being a
cornerstone in EOC treatment, typically induces double-strand DNA breaks leading to more cancer cell death in BRCA1/2 mutation carriers.

Around 30–50% of the BRCA1/2-associated EOC patients have been treated for previous breast cancer (BC; Alsop et al, 2012; Vencken et al, 2013), whereas data on the incidence of EOC after

Table 1. Patient, tumour and treatment characteristics of OC in BRCA1/2 patients with and without a history of BC
Patients with a history of BC
Total number of patients
Age at diagnosis
Median in years (range)
Mean in years (s.d.)
Follow-up time
Median in years (range)
Type of mutation
BRCA1
BRCA2
BRCA1/2 testing after EOC diagnosis*
Mean time after EOC in years
Median time after EOC in years
Year of diagnosis
1980–1989
1990–1999
2000–2009
≥2010
CA-125 (kU l−1) at primary diagnosis
<35
35–500
>500
Unknown
Histology
Serous
Mucinous
Endometrioid
Clear cell
Undifferentiated
Adenocarcinoma NOS
Other
Unknown
Tumour grade (Silverberg)
1 (well differentiated)
2 (moderately differentiated)
3 (poorly differentiated)
Unknown
FIGO stage
I
II
III
IV
Unknown
Surgery
Primary surgery
Interval debulking
Both
None
Unknown
Radiotherapy
Yes
No
Unknown
Chemotherapy
Platinum with Paclitaxel
Platinum without Paclitaxel
Other
No
Unknown
Duration of chemotherapy for primary OC
Median in weeks (range)
Mean in weeks (s.d.)

Abbreviations: BC – breast cancer; FIGO – international federation of gynecology and obstetrics; OC – ovarian cancer; NOS – not otherwise specified.

*Date of DNA test was missing for 18 patients (5 with and 13 without a BC history).
In the current study, we observed a significantly worse PFS and PFI, in BRCA-associated EOC patients with a BC history vs EOC patients without a previous BC, not yet resulting in a significantly worse survival. A significantly worse OCSS, however, was found in BC patients with and without a previous BC separately. To address the possible impact of adjuvant chemotherapy administered for BC on the PFS and OCSS of subsequent EOC patients with BC before OC treated with chemotherapy and patients not treated with adjuvant chemotherapy for BC were separately analysed and compared with EOC patients without previous BC (Figure 2 and Supplementary Table 3). We observed that PFS and OCSS were especially worse for patients treated with adjuvant chemotherapy for previous BC vs patients without previous BC (median 1.5 vs 2.0, and median 5.0 vs 5.3 years, respectively). In the multivariate analyses these differences were significant (HRmult 2.38; 95% CI 1.40–4.02 and HRmult 1.99; 95% CI 1.21–3.31, respectively). The patients with a BC history not treated with adjuvant chemotherapy had similar PFS and OCSS compared with EOC patients without a BC history (HRmult 1.16; 95% CI 0.76–1.79 and HRmult 0.87; 95% CI 0.59–1.29, respectively; Figure 2 and Supplementary Table 3).
No differences in grade, stage and histology were observed between both groups. A first hypothetical explanation for this survival difference might be that chemotherapy induces mutations and alters the behaviour of already present malignant EOC cells, or induces chromosomal instability in stem cells with subsequent development of EOC. Another possible explanation might be that treatment for the initial BC aggravates the (bone marrow) condition of the patient and, therefore, optimal therapy for EOC cannot be given to these patients. However, the time between BC diagnosis and OC diagnosis was not associated with outcome, suggesting that the condition of the patients is not the main reason for the worse survival in patients with a BC history.

The retrospective nature of the study brings corresponding limitations, such as different treatments regimens, and some missing data. Another limitation includes that the majority of the patients were tested for a BRCA1/2 mutation after EOC diagnosis (64% and 82% in the groups with and without a BC history, respectively), this will select for survivors. To account for this possible survivorship bias we have conducted left-truncation survival analyses. Because of the retrospective design, no firm conclusions can be drawn and our results should be confirmed in other (prospective) studies with greater sample size.

The results of this study underline the importance of offering genetic testing to BC patients being at risk of BRCA1/2 mutation carrierhip. Newly diagnosed mutation carriers can then be informed about risk reducing salpingo-oophorectomy, which has been associated with improved survival (Finch et al, 2014). Further,
we suggest that studies on survival in BRCA1/2-associated EOC should stratify for BC history.

ACKNOWLEDGEMENTS

This study was supported by the Dutch Cancer Society (EMCR 2014–6699). We thank Petra Bos, Annemarie de Jong, Natalia Teixeira, Fon Kosterman and Kelly Kesselaar for their assistance in data collection.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

REFERENCES

Alsop K, Fereday S, Meldrum C, Defazio A, Emmanuel C, George J, Dobrovic A, Birrer MJ, Webb PM, Stewart C, Friedlander M, Fox S, Bowtell D, Mitchell G (2012) BRCA mutation frequency and patterns of treatment response in BRCA mutation-positive women with ovarian cancer: a report from the Australian Ovarian Cancer Study Group. J Clin Oncol 30: 2654–2663.

Finch AP, Lubinski J, Moller P, Singer CF, Karlan B, Senter L, Rosen B, Maehle L, Ghadirian P, Cybulski C, Huzarski T, Eisen A, Foulkes WD, Kim-Sing C, Ainsworth P, Tung N, Lynch HT, Neuhausen S, Metcalfe KA, Thompson I, Murphy J, Sun P, Narod SA (2011) Chemosensitivity and outcome of BRCA1- and BRCA2-associated ovarian cancer patients after first-line chemotherapy compared with sporadic ovarian cancer patients. Ann Oncol 22: 1346–1352.

Vencken PM, Reitsma W, Kriege M, Mourits MJ, de Bock GH, de Hullu JA, van Altena AM, Gaarenstroom KN, van der Burg ME, Hoogwerf B, Beugelink S, van der Bruggen MJ, Hoonstra T, van der Leek E, Engels JA, van den Heuvel LP, Slangen BF, Burger CW, Seynaeve C (2013) Outcome of BRCA1- compared with BRCA2-associated ovarian cancer: a nationwide study in The Netherlands. Ann Oncol 24: 2036–2042.

Yang D, Khan S, Sun Y, Hess K, Shmulevich I, Sood AK, Zhang W (2011) Association of BRCA1 and BRCA2 mutations with survival, chemotherapy sensitivity, and gene mutator phenotype in patients with ovarian cancer. JAMA 306: 1557–1565.

Supplementary Information accompanies this paper on British Journal of Cancer website (http://www.nature.com/bjc)