Total Energy of Cycle and Some Cycle Related Graphs

K.Palani, M.LalithaKumari, L.Pandiselvi

Associate Professor,
Research Scholar, Reg.No: 20212012092007,
Assistant Professor,
PG & Research Department of Mathematics,
A.P.C. Mahalaxmi College for Women, Thoothukudi-628002, Tamil Nadu, India,
V.O.Chidambaram College, Thoothukudi-628008, Tamil Nadu, India,
Affiliated to ManonmaniamSundaranar University, Abishekapatti, Tirunelveli-627012,Tamil Nadu, India.

Email: palani@apcmcollege.ac.in, lalithasat32@gmail.com,lpandiselvibala@gmail.com

Abstract: In this article we write algorithms and MATLAB programs to find the total energy of Cycle and some Cycle related graphs. The concept of total matrix and total energy of a graph G is introduced by K.Palani&M.Lalithakumari in [9]. Let G=(V,E) be a (p,q) simple graph. Let (G) = {v_i/i = 1,2, ... p} and E(G) = {e_i/i = 1,2, ... q}.The total matrix T = (G) of G is a square matrix of order p+q whose (i,j)-entry is defined as:

\[
T = (t_{ij}) = \begin{cases}
1 & \text{if } v_i \text{ adjacent to } v_j \text{ i ≠ j} \\
1 & \text{if } e_i \text{ adjacent to } e_j \text{ i ≠ j} \\
1 & \text{e_i incident with } v_j \\
0 & \text{otherwise}
\end{cases}
\]

The Total Energy of a graph is the sum of absolute value of the eigen values of its Total matrix (G). For any (p,q) graph G, the total number of eigen value is p+q.

Let \(\lambda_1, \lambda_2, \lambda_3, ..., \lambda_{p+q}\) be the eigen values of T. Then total energy of G is \(TE = \sum_{i=1}^{p+q} |\lambda_i|\).

Key words: Total matrix, Total Energy, Cycle, Dumbbell, Pan, \(<C_1C_{n-1}>\).

AMS Subject Classification: 05C50

I. Introduction

Throughout this article we deal with finite, simple and undirected graphs. The concept of energy of a graph was proposed by Gutman[7] in 1978 as the sum of absolute values of the eigen value of a graph G and is denoted by \(E(G)\). The eigen values of the total matrix T is known as the total eigen values of G. We find the total energy for Path, Star, \(Y_{n+1}\) & Bull Graph.

1.2 Definition

Let \(\lambda_1, \lambda_2, \lambda_3, ..., \lambda_{p+q}\) be the total eigen values of T. Then the spectrum of \(G\) is \(Specr(G) = \{\lambda_1^m,\lambda_2^m,\lambda_3^m, ..., \lambda_{p+q}^m\}\) where \(m\) is the algebraic multiplicity of the total eigenvalues \(\lambda_i\), for \(1 ≤ i ≤ p + q\).
1.3 Definition
The total graph $T(G)$ of a graph G is a graph such that (i) the vertex set of $T(G)$ corresponds to the vertices and edges of G and (ii) two vertices are adjacent in $T(G)$ if and only if their corresponding elements are either adjacent or incident in G.

1.4 Definition
Let $G = (V, E)$ be a (p,q) graph. The energy of total matrix of G is called the total energy. It is denoted as $TE(G)$.

That is the total energy of $G = \text{Energy of Total matrix of } G$

$$= \sum_{i=1}^{p+q} |\lambda_i|$$

II. Total Energy of cycle related graphs

2.1 Algorithm to generate the total energy of cycle graph C_n

Step I: Assume $G=(V,E)$ to be a (p,q) graph.

Step II: Assume that in the total matrix representation, vertices and edges appear alternatively along both rows and columns.

Step III: Let $T_G = T_e + T_v$.

Step IV: For $i=1$ to $r-1$ assign $t_{i,i+1} = t_{i+1,i} = 1$.

Step V: For $i=1$ to $r-2$ assign $t_{i,i+2} = t_{i+2,i} = 1$.

Step VI: For $i=1 & 2$ assign $t_{i,r} = t_{r,i} = 1$.

Step VII: Assign $t_{1r-1} = t_{r-11} = 1$.

Step VIII: Assume the other entries as zero.

Step IX: Find eigen values of T.

Step X: Find Total Energy TE.

2.2 MATLAB program to generate the total energy of cycle graph C_n

```matlab
% "T" is the Total matrix of a graph
% "K" is the eigen values of the matrix
% "TE" is the Total Energy of the graph
% r=p+q
% p,q refers the number of vertices and edges of $C_n$
for i=1:r-1
    T(i,i+1)=1;
    T(i+1,i)=1;
end
for i=1:r-2
    T(i,i+2)=1;
```
\begin{verbatim}
T(i+2,i)=1;
end
for i=1:2
T(i,r)=1;
T(r,i)=1;
end
T(1,r-1)=1;
T(r-1,1)=1;
T
K=eig(T);
TE=sum(abs(K))

2.3 Illustration

When the above program is executed for \(G_6 \), the output will be \(TE=18.93 \)

2.4 Algorithm to generate the total energy of Dumbbell graph \(D_n \).

Step I:
Assume \(G=(V,E) \) to be a \((p,q)\) graph.

Step II:
Assume that in the total matrix representation, vertices and edges appear alternatively along both rows and columns.

Step III:
Let \(r = p + q \).

Step IV:
For \(i=1 \) to \(p-1 \) assign \(t_{i,i+1} = t_{i+1,i} = 1 \).

Step V:
For \(i=p+2 \) to \(r-1 \) assign \(t_{i,i+1} = t_{i+1,i} = 1 \).

Step VI:
For \(i=1 \) to \(p-2 \) assign \(t_{i,i+2} = t_{i+2,i} = 1 \).

Step VII:
For \(i=p+2 \) to \(r-2 \) assign \(t_{i,i+2} = t_{i+2,i} = 1 \).

Step VIII:
For \(i=1 \) to \(2 \) assign \(t_{ip} = t_{pi} = 1 \).

Step IX:
For \(i=q+1 \) to \(q+2 \) assign \(t_{iq} = t_{qi} = 1 \).

Step X:
For \(i=p+2 \) to \(p \) assign \(t_{iq} = t_{qi} = 1 \).

Step XI:
Define \(t_{ip}\) = \(t_{ip-1} = t_{q+1} r-1 = t_{r-1-q} +1 = 1, t_{q+1} q+1 = t_{q+1} q+1 = 1, t_{q+2} q+2 = t_{q+2} q+2 = 1, t_{q+1} q+1 = 1 \).

Step XII:
Assign \(t_{1p-1} = t_{r-1} 1 = 1 \).

Step XIII:
Assume the other entries as zero.

Step XIV:
Find eigen values of \(T \).

Step XV:
Find Total Energy \(TE \).
2.5 MATLAB program to generate the total energy of Dumbbell graph D_n

% "T" is the Total matrix of a graph
% "K" is the eigen values of the matrix
% "TE" is the Total Energy of the graph
% $r=p+q$
% p,q refers the number of vertices and edges of D_n
for i=1:p-1
 T(i,i+1)=1;
 T(i+1,i)=1;
end
for i=p+2:r-1
 T(i,i+1)=1;
 T(i+1,i)=1;
end
for i=1:p-2
 T(i,i+2)=1;
 T(i+2,i)=1;
end
for i=p+2:r-2
 T(i,i+2)=1;
 T(i+2,i)=1;
end
for i=1:2
 T(i,p)=1;
 T(p,i)=1;
end
for i=q+1:q+2
 T(i,r)=1;
 T(r,i)=1;
end
for i=p-2:p
 T(i,q)=1;
 T(q,i)=1;
end
T(1,p-1)=1;
T(p-1,1)=1;
T(q+1,r-1)=1;
T(r-1,q+1)=1;
T(q+1,q)=1;
T(q,q+1)=1;
T(q+2,q)=1;
T(q,r)=1;
T(r,q)=1;
K=eig(T);
TE=sum(abs(K))

2.6 Illustration
When the above program is executed for D_5, the output will be $TE=36.7617$
2.7 Algorithm to generate the total energy of Pan graph P_{a_n}.

Step I:
Assume $G=(V, E)$ to be a (p,q) graph.

Step II:
Assume that in the total matrix representation, vertices and edges appear alternatively along both rows and columns.

Step III:
Let $r = p + q$.

Step IV:
For $i=1$ to $r-1$ assign $t_{i+1} = t_{i+1i} = 1$.

Step V:
For $i=1$ to $r-3$ assign $t_{i+2} = t_{i+2i} = 1$.

Step VI:
For $i=1$ and 2 assign $t_{i-2} = t_{i-2i} = 1$.

Step VII:
For $i=r-4$ to $r-3$ assign $t_{i+3} = t_{i+3i} = 1$.

Step VIII:
Assign $t_{r-3} = t_{r-3r} = 1$.

Step IX:
Assume the other entries as zero.

Step X:
Find eigen values of T.

Step XI:
Find Total Energy T_E.

2.8 MATLAB program to generate the total energy of Pan graph P_{a_n}

```matlab
% "T" is the Total matrix of a graph
% "K" is the eigen values of the matrix
% "TE" is the Total Energy of the graph
% r=p+q
% p,q refers the number of vertices and edges of $P_{a_n}$
for i=1:r-1
    T(i,i+1)=1;
    T(i+1,i)=1;
end
for i=1:r-3
    T(i,i+2)=1;
    T(i+2,i)=1;
end
for i=1:2
    T(i,r-2)=1;
    T(r-2,i)=1;
end
for i=r-4:r-3
    T(i,i+3)=1;
    T(i+3,i)=1;
end
T(1,r-3)=1;
```
T(r-3,1)=1;
T
K=eig(T);
TE=sum(abs(K))

2.9 Illustration

When the above program is executed for Pa_5, the output will be $TE=20.4252$

2.10 Algorithm to generate the total energy of graph $<C_n, C_{n-1}>$.

Step I:
Assume $G= (V, E)$ to be a (p,q) graph.

Step II:
Assume that in the total matrix representation, vertices and edges appear alternatively along both rows and columns.

Step III:
Let $r = p + q$.

Step IV:
For $i=1$ to $r-1$ assign $t_{i,i+1} = t_{i+1,i} = 1$.

Step V:
For $i=1$ to q assign $t_{i,i+2} = t_{i+2,i} = 1$.

Step VI:
For $i=q+2$ to $r-2$ assign $t_{i,i+2} = t_{i+2,i} = 1$.

Step VII:
For $i=1\&2$ assign $t_{i,q+1} = t_{q+1,i} = 1$.

Step VIII:
For $i=p$ to $q+1$ assign $t_{i,r} = t_{r,i} = 1$.

Step IX:
For $i=p\&q$ assign $t_{i,i+3} = t_{i+3,i} = 1$.

Step X:
Assign $t_{q+2,r} = t_{r,q+2} = 1$, $t_{q,r-1} = t_{r-1,q} = 1$, $t_{1,q} = t_{q,1} = 1$

Step XI:
Assume the other entries as zero.

Step XII:
Find eigen values of T.

Step XIII:
Find Total Energy TE.

2.11 MATLAB program to generate the total energy of graph $<C_n, C_{n-1}>$.

```matlab
% "T" is the Total matrix of a graph
% "K" is the eigen values of the matrix
% "TE" is the Total Energy of the graph
% r=p+q
% p,q refers the number of vertices and edges of $<C_n, C_{n-1}>$.
for i=1:r-1
    T(i,i+1)=1;
    T(i+1,i)=1;
end
```
for i=1:q
T(i,i+2)=1;
T(i+2,i)=1;
end
for i=q+2:r-2
T(i,i+2)=1;
T(i+2,i)=1;
end
for i=1:2
T(i,q+1)=1;
T(q+1,i)=1;
end
for i=p:q+1
T(i,r)=1;
T(r,i)=1;
end
for i=p:q
T(i,i+3)=1;
T(i+3,i)=1;
end
T(q+2,r)=1;
T(r,q+2)=1;
T(q,r-1)=1;
T(r-1,q)=1;
T(q,1)=1;
K=eig(T);
TE=sum(abs(K))

2.12 Illustration

When the above program is executed for G_5, G_4, the output will be $TE=30.5443$

References

[1] Arumugam S, Isaac A T, Modern algebra, Scitech Publications.
[2] Arumugam S, Ramachandran S, Invitation to Graph Theory, Scitech Publications.
[3] Arundadhi R, Megala B, A Study on Energy of Helm, Closed Helm, Flower AndBistargrap using MATLAB program, Indian journal of applied research, vol.8, issue II, Nov 2018.
[4] Balakrishnan R, The Energy of a Graph, Lin. algebra Appl. 387(2004), 287-295.
[5] Cvetkovic D, Doob M, Sach H: Spectra of Graphs- Theory and Application. Academic Press, New York, 1980; 2nd revised ed.: Barth, Heidelberg, 1995
[6] Eigenvalues of a matrix calculator-Online software tool – dCode. https://www.dcode.fr/matrix-eigenvalues
[7] Gutman I, The energy of a graph, Ber. Math. Statist.Sekt.Forschungsz. Graz, 103(1978) 1-22.
[8] Harary F, Graph Theory, Addition-Wesley, Reading Mass,1972
[9] Palani K, LalithaKumari M, “ Total Energy of a Graph”, Second International Conference on Applied Mathematics and Intellectual Property Rights, 9-10 March 2021 (Communicated)
[10] Sangeeta Gupta, SwetaSrivastav, “MATLAB Program For Energy Of Some Graphs,” Int. J. Appl. Eng. Research.,vol. 12, pp. 10145-10147, 2017.