Woody Species Composition, Plant Communities, and Environmental Determinants in Gennemar Dry Afromontane Forest, Southern Ethiopia

Shemsu Ahmed,1 Debissa Lemessa,2 and Abera Seyum1

1Forest and Rangeland Plant Biodiversity Directorate, Ethiopian Biodiversity Institute, Addis Ababa, Ethiopia
2Addis Ababa University, Addis Ababa, Ethiopia

Correspondence should be addressed to Shemsu Ahmed; shemsuthesun@gmail.com

Received 4 March 2022; Accepted 2 June 2022; Published 22 June 2022

Academic Editor: Pablo M. Vergara

Copyright © 2022 Shemsu Ahmed et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Dry Afromontane forests in Ethiopia are vital for the conservation of plant diversity and climate change mitigation. However, these forest resources are rapidly degrading and shrinking, necessitating empirical scientific investigations to ensure their successful conservation and long-term management. As a result, this study was conducted to evaluate the composition, plant communities, and environmental determinants of woody species in the Gennemar dry Afromontane forest of southern Ethiopia. Environmental variables such as altitude, aspect, and geographical location were recorded from 46 plots of 20 × 20 m for trees and 92 subplots of 10 × 10 m for shrubs were laid along 10 transect lines. Vegetation structure, diversity, vegetation classification, importance value index (IVI) and correlation with environmental parameters were analyzed. A total of 55 woody species belonging to 51 genera and 34 families were identified. Among the species identified, Jasminum stans, Maytenus addat, and Pittosporum abyssinicum were endemic to Ethiopia. Celastraceae (with 659 individuals) was the most dominant family, followed by Cupressaceae (268 individuals) and Myrsinaceae (222 individuals). Four plant communities were identified: Syzygium guineense-Mystroxylon aethiopicum, Maytenus arbutifolia-Podocarpus falcatus, Myrsine africana-Erica arborea, and Juniperus procera-Carissa spinarum. Juniperus procera, Podocarpus falcatus, and Maytenus arbutifolia were species with the highest IVI, while Maesa lanceolata, Bhamnus prinoides, and Gnida glauca had the lowest. The DBH class distribution shows an inverted J-shaped distribution. As DBH increases, the number of individuals decreases in the higher DBH class. The distribution of plant communities and the composition of the species depend on altitude and topographic aspects. The study found that the dry Afromontane Forest is rich in species and that it should be prioritized for conservation to protect endemic and native species. Decisive elements such as the type of species, altitude, and topographic aspects must be considered for forestry activities.

1. Introduction

Ethiopia is a mountainous country with striking contrasts: rugged mountains, flat plateaus, deep gorges and river valleys, and rolling plains. Its elevation varies from 110 meters below sea level in the Dallol depression to 4620 meters at the highest peak of the Ras Dejen [1]. The proximity of the Equator on Ethiopia’s southern border and the complexity of the topography are the two key topographic variables that govern the country’s climate, resulting in seasonal variability, annual precipitation, and climatic conditions [2–4]. Topographic factors, such as soil moisture, chemical qualities (nitrogen, potassium), physical (drainage, porosity, etc.), and other characteristics, all play a role in the distribution and diversity of plant species [5–7]. Ethiopia is one of the 25 biodiversity rich countries of the world, and about 6500 species of vascular plants has been estimated [8]. However, this plant genetic resource of Ethiopia has been reduced due to deforestation for agricultural land, timber products, fuelwood, settlement, and other anthropogenic effects [9–11]. Forest degradation causes not only depletion of the forest resources but also leads to loss of other fauna
and flora as it is home for these fauna and flora, soil degradation, soil erosion, reduction in underground water and annual precipitation, and other natural resource depletion [12].

The Afromontane forest covers more than half of the total land area in Ethiopia’s highlands, with dry evergreen Afromontane forests accounting for more than half of that [13]. This dry Afromontane forest is found in Ethiopia’s northern, northeastern, central, southern, southeastern, and southwestern regions at elevations ranging from 1800 to 3000 meters above sea level [4]. Juniperus–Podocarpus forests or primarily Podocarpus forests, both with broad-leaved species, make up these dry Afromontane forests [14]. Despite this, the dry Afromontane forest resource of Ethiopia is currently under significant threat, mainly due to fast population increase as natural products and lands are the mainstays of the population’s livelihood, and demand for both is steadily increasing [13, 15].

Analysis of species composition provides natural sustainability for all living forms, as well as the conservation of species, ecosystem, communities, and habitats of an organism for upcoming generations and proper use of genetic resources [16]. Environmental factors such as altitude, slope, and aspect have a significant impact on the diversity and richness of woody species [17]. However, the effect of these environmental factors was poorly understood [18, 19]. Gennemar natural forest is a dry evergreen Afromontane forest that is located in the Gurage Zone in Southern Ethiopia. This forest is one of the dominant dry Afromontane forests and is enclosed by agricultural land. It serves as the home to indigenous plant species, mammals, and birds. The effect of altitude and topographic aspect on species and plant community distribution in the Gennemar natural forest has not been investigated so far. Therefore, this study was carried out with the objective of determining the woody species composition and its environmental determinants in the natural forest.

2. Materials and Method

2.1. Description of the Study Area. The study was conducted at Gennemar natural forest of Ezha district (Woreda, Figure 1) which is located in the Gurage Zone of the South Nations and Nationalities People Region. The geographical location of the district lies between 8°03’–8°16’ N latitude and 37°50’–38°12’E longitude. Gennemar natural forest is one of the Dry Afromontane Forests found in Ezha district, with an area coverage of 85.8 ha [20]. The district receives a range of annual rainfall between 900 and 1600 mm and a range of annual temperatures of 5–38°C [21]. The study area is situated 200 km southwest of Addis Ababa.

2.2. Sampling Design. A systematic sampling procedure was applied to collect vegetation data from the study forest. Transects and sample plots were laid out based on the total area of the forest using QGIS (version 3.6). Ten transects and 46 main sample plots of 20 m × 20 m were laid horizontally at 125 m intervals. Here, the length of each transect varies based on the extent of the forest edges and ranges between 0.43–0.97 km. To collect data on shrubs, ninety-two subplots of size 10 m × 10 m are located at the two corners of the sample plots.

2.3. Data Collection. All woody species found in the sample plots were recorded and given a local name. Outside of the sample plots but within the forest, they were recorded as present but not included in the vegetation data analysis. The species list and number of individuals for each species in the sample plot were recorded. Trees and shrubs whose DBH (diameter at breast height) are ≥5 cm were measured using a caliper. A Garmin GPS (+3 m) was used to navigate to sample plots and record the elevation of the sample plots. The topographic aspects of the sample plots were identified using the Silva Compass. The plant specimens were collected for all woody species, pressed using a plant press, and transported to the herbarium of the Ethiopian Biodiversity Institute. After the plant specimens collected from the field were ventilated and dried well in the sunlight, they were identified to the species level, mounted, labeled, and conserved in the herbarium of the Ethiopian biodiversity institute.

2.4. Data Analysis

2.4.1. Species Richness and Diversity. The species diversity, the classification of plant community types, and their relation to altitude and topographic aspects were determined by multivariate analysis using the vegan package R version 4.0.2 [22]. Hierarchical cluster analysis techniques using similarity ratios were used to classify the types of plant communities. The Shannon–Wiener diversity index (H') which is the most commonly used) was applied to estimate species diversity based on species richness and evenness [23].

$$H' = \sum_{i=1}^{S} P_i \ln(P_i).$$ \hspace{1cm} (1)

where H' is Shannon–Wiener index, P_i is the proportion of the total abundance of the community represented by the ith species, $\ln(P_i)$ is the natural log of P_i, S = number of species encountered, and $\Sigma = \text{sum of species 1 to species } S$.

2.4.2. Plant Community and Environmental Factors. To investigate vegetation data and environmental factors, the vegan package’s Adonis function was used, which fits linear models to distance matrices and uses 999 permutation tests using Pseudo F-ratios. The Adonis function implements a multivariate analysis of variances (MANOVA) using distance matrices and draws a PCA plot with only those environmental variables that show significant effects (in our case $P < 0.01$) on the composition of species of communities [24]. The relationship between environmental factors and specific communities depends on the relative distance between them [22].
2.4.3. Importance Value Index. The importance value index (IVI) was used to compare the overall dominance and ecological significance of species using the following formula, which integrates data from three factors (relative density, relative frequency, and relative dominance) [25]:

$$IVI = \text{relative density} + \text{relative frequency} + \text{relative dominance}.$$
(2)

Relative density is the study of the numerical strength of a species in relation to the total number of individuals of all the species and is calculated as

$$\text{relative density} = \frac{\text{number of individuals of species}}{\text{number of individual of all species}} \times 100.$$
(3)

Relative frequency is the degree of individual species distribution in a given area in relation to the total number of species that occurred.

$$\text{relative frequency} = \frac{\text{number of occurrence of the species}}{\text{number of occurrence of all the species}} \times 100.$$
(4)

Relative dominance is the coverage value of a species with respect to the sum of coverage of the rest of the species in the area.

$$BA = 0.0000785 \times (DBH)^2,$$
(5)

where $BA =$ basal area and $DBH =$ diameter at breast height.

$$\text{relative dominance} = \frac{\text{total basal area of the species}}{\text{total basal area of all the species}} \times 100.$$
(6)

3. Result

3.1. Composition of Woody Species. A total of 55 woody species belonging to 51 genera and 34 families were recorded in the Gennemar natural forest. Approximately 22 tree species, 31 shrub species, and 2 lianas were recorded (Table 1). Fifty-three woody species were recorded inside the sample plots, while two species, *Eucalyptus globulus* and *Yushania alpina*, were recorded outside the sample plots. Celastraceae (with 659 individuals) was the most dominant family, followed by Cupressaceae (268 individuals), Myrsinaceae (222 individuals), Oleaceae (187 individuals) and Rosaceae (158 individuals). Meliaceae and Primulaceae are the least dominant plant families in the forest both with 2 individuals (Figure 2). Among the species recorded, *Jasminum stans*, *Maytenus addat*, and *Pittosporum abyssinicum* were endemic to Ethiopia.

3.2. Woody Plant Communities. The classification of the woody vegetation of Gennemar forest resulted in four community types: *Syzygium guineense-Mystroxylon aethiopicum*, *Maytenus arbutifolia- Podocarpus falcatus*, *Myrsine Africana- Erica arborea* and *Juniperus procera-Carissa spinarum* community (Figure 3). The name for each
Table 1: Species list recorded with Gurage local name, language, and growth habit.

Scientific name	Local name	Growth habit
Acacia lahai	Girar	T
Agarista salicifolia	Adya	S
Allophylus abyssinicus	Kemo	T
Allophylus macrobotrys	Kemo	S
Apodytes dimidiata	Gefea	T
Asparagus africanus	Yefur det	S
Bersama abyssinica	Hureta	T
Brucea antidisenterica	Abaryet	S
Calopurina aurea	Yefek mshra	S
Canthium oligocarpum	Yedbr kawa	S
Carissa spinarum	Wethra	S
Clutia abyssinica	Demesnat	S
Dodonaea angustifolia	Kitkita	S
Dovyalis abyssinica	Koshm	S
Dracaena afrromontana	Geshamba	T
Ekebergia capensis	Ner	T
Embelia schimperi	Qera	L
Erica arborea	Gedra	S
Galiniex saxifraga	Tikur eche	T
Gnidia glauca	Shera	T
Helichrysum argyranthum	Amedwet	S
Hypericum quartinianum	Abeje	S
Hypericum revolutum	Abeje	S
Jasminum abyssinicum	Abta	L
Jasminum dichotomum	Anfar	S
Jasminum stans	Bitara	S
Juniperus procera	Ded	S
Lobelia giberroa	Gimar	S
Maesa lanceolata	Aguaj	S
Maytenus addat	Shamene	T
Maytenus arbutifolia	Atat	S
Myrica salicifolia	Qechecha	T
Myrsine Africana	Kecho	S
Myrsine melanophloeois	Gomra	T
Mystroxylon aethiopicum	Chire	S
Noxia congesta	Awre	T
Olea capensis	Chet	T
Olea europaea	Warea	T
Olmia rochetiana	Tifeae	T
Osyris quadripartite	Mekekr	S
Pentas schimiperia	Meseukene	S
Phoenix reclinata	Deye	T
Pittasporum abyssinicum	Emeksushe	T
Podocarpus falcatus	Zigba	T
Pterus Africana	Gereabe	T
Rhamnus primoides	Geasho	S
Rhamnus staddio	Wach	S
Rosa abyssinica	Enkoche	S
Rubus steudneri	Ingeya	S
Schefflera volkensii	Angab	T
Syzygium guineense	Guareba	T
Tephrasoa interrata	Ashatla	S
Vernonia auriculifera	Terashe	S

T = tree, S = shrub and L = liana.

The No. of individuals varied between 100 and 700. The entire forest resulting occurrence of several species in wide range.

3.2.1. Syzygium guineense-Mystroxylon aethiopicum Community. This community type was found between an altitudinal range of 2453–2518 m.a.s.l. and aspects of N, S, SW, NW, W, and NE. It was the most species-rich forest which consisted of 20 plots and 45 species. This community was represented by Mystroxylon aethiopicum and Syzygium guineense. Some species in the tree layer include Juniperus procera, Agarista salicifolia, and Allophylus abyssinicus. Some of the species at the shrub layer include Asparagus africanus, Brucea antidisenterica, and Allophylus macrobotrys. The common liana of this community was Embelia schimperi.

3.2.2. Maytenus arbutifolia-Podocarpus falcatus Community. The Maytenus arbutifolia-Podocarpus falcatus community occurs between the altitudinal range of 2495–2562 m.a.s.l. and the aspects of SE and SW. It consisted of 5 plots and 20 species including Maytenus arbutifolia and Podocarpus falcatus as representative species. Tree species like Mystroxylon aethiopicum, Apodytes dimidiata, and Bersama abyssinica from the tree layer and Carissa spinarum, Canthium oligocarpum, and Myrsine Africana from the shrub layer were characteristic species of this community. Embelia schimperi and Jasminum dichotomum were liana species in the community.

3.2.3. Myrsine Africana-Erica arborea Community. This community consisted of 8 plots and 33 species between altitude ranges of 2474–2517 m.a.s.l. and with aspects of N, S, W, SW, NE, and NW. Myrsine Africana and Erica arborea were representatives of this community. The tree layer consists of species such as Juniperus procera, Bersama abyssinica, and Galinia saxifraga. The shrub layer includes Agarista salicifolia, Allophylus macrobotrys, and Canthium oligocarpum. Two liana species of this community were Embelia schimperi and Jasminum dichotomum.
3.2.4. Juniperus procera-Carissa spinarum Community. This community consisted of 13 plots and 41 species between altitude ranges of 2505–2587 m.a.s.l. and with N, NE, NW, SE, SW, and W aspects. It is the second most species-rich community in the forest, next to the Syzygium guineense-Mystroxylon aethiopicum community. Juniperus procera and Carissa spinarum were the dominant species of this community. Species such as Apodytes dimidiata, Bersama abyssinica, and Dracaena afromontana, from the tree layer, and Allophylus macrobotrys, Agarista salicifolia, and Canthium oligocarpum, from the shrub layer, are dominant species of the community. Jasminum dichotomum was a species of liana represented in the community.

3.3. DBH Class Distribution. According to the analysis of the distribution of DBH classes, most species had more individuals in the lower DBH classes, and it tended to decrease as DBH increased (Figure 4). This indicates that the forest has favorable regeneration potential. The highest class of DBH was recorded for Schefflera volkensii (130 cm), followed by Podocarpus falcatus and Juniperus procera with a DBH of 68 cm and 61 cm respectively. Myricasalicifolia, Mystroxylon aethiopicum and Rhamnus staddo occurred in lower DBH classes. Podocarpus falcatus and Juniperus procera were
found in both the lower and higher DBH classes. The distribution of the DBH class shows an inverted J-Shaped distribution as the DBH increases, the number of individuals decreases in the higher DBH class (Figure 4). Such a pattern portrays healthy populations that are replacing themselves spontaneously through effective regeneration.

Table 3: Showing the IVI value of the top 10 dominant species in the Gennemar forest.

No.	Species list	Relative frequency	Relative dominance	Relative density	IVI
1	Juniperus proceria	91.3	40.0	17.2	148.5
2	Podocarpus falcatus	54.3	34.8	2.3	91.5
3	Maytenus arbutifolia	76.1	0.1	14.2	90.4
4	Mystroxylon aethiopicum	67.3	1.5	0.8	69.7
5	Syzygium guineense	60.8	2.6	3.6	67.1
6	Carissa spinarum	56.5	0.0	8.4	64.9
7	Myrsine africana	47.8	0.0	6.6	54.4
8	Jasminum stans	47.8	0.0	4.8	52.6
9	Erica arborea	47.8	0.01	4.1	51.9
10	Osyris quadriflora	45.6	0.0	5.9	51.5

Table 4: Showing basal area of woody species in the Gennemar forest.

No.	Scientific name	Basal area (m²·ha⁻¹)
1	Juniperus proceria	7.79
2	Podocarpus falcatus	6.77
3	Schefflera volkensii	1.71
4	Pittosporum abyssinicum	1.58
5	Syzygium guineense	0.51
6	Mystroxylon aethiopicum	0.30
7	Prunus africana	0.17
8	Myrsine melanolophoes	0.08
9	Apodytes dimidiata	0.07
10	Olea capensis	0.06
11	Olea europea	0.06
12	Myrica salicifolia	0.06
13	Dead wood	0.05
14	Jasminum dichotomum	0.04
15	Allophylus abyssinicus	0.03
16	Bersana abyssinica	0.03
17	Maytenus arbutifolia	0.02
18	Olinia rochiana	0.02
19	Maytenus addat	0.01
20	Brucea antisynderica	0.01
21	Rhamnus staddo	0.01
22	Allophylus macrobotrys	0.01
23	Canthium oligocarpum	0.01
24	Hypericum revolutum	0.01
25	Noxia congesta	0.01
26	Agarista salicifolia	0.00
27	Erica arborea	0.00
28	Total	19.42

3.5. Importance Value Index (IVI) of Species. Juniperus procer (IVI = 148.5) was the most dominant and ecologically important species, followed by Podocarpus falcatus (IVI = 91.5), Maytenus arbutifolia (IVI = 90.4), Mystroxylon aethiopicum ((IVI = 69.7), Syzygium guineense (IVI = 67), Carissa spinarum (IVI = 64.9), Myrsine africana (IVI = 54.4), Jasminum stans (IVI = 52.6), Erica arborea (IVI = 51.9) and Osyris quadriflora (IVI = 51.5) (Table 3). Species such as Vernonia auriculifera, Maesa lanceolata, Rhamnus prinoides, and Gnidia glauca were species with a lower IVI (less than 1). Of the woody species encountered, Jasminum stans, Maytenus addat, and Pittosporum abyssinicum are endemic plants in Ethiopia (Table 4).

Figure 5: NMDS plot showing species related to altitudinal variation and topographic aspects. In both axes, cluster A shows species that are positively correlated with altitude; in the first axis, cluster B shows species that are positively correlated with topographic aspects (N, NW, SW, and SE); in the second axis, cluster C shows species that are positively correlated with topographic aspects (W, NE, and S). Abbreviated species’ scientific names were described in (Table 5).

3.6. The Association of Woody Species with Altitude and Topographic Aspects. The NMDS plot shows the association of woody species to altitude and topographic aspects within the forest.
The adonis function shows that the composition varies significantly with the altitudinal gradient (Adonis, $F(1, 38) = 3.7, P = 0.01$) and the topographic aspect ($F(6, 38) = 1.39, P = 0.03$). The composition is more dependent on the altitudinal variation than topographic aspect.

4. Discussion

4.1. Woody Species Composition. Gennemar dry Afro-montane forest is home to a diversity of 55 woody species. The number of woody species recorded in this forest is lower than in similar dry Afro-montane forest types of Ethiopia. Bale mountain national park (230 species) [27], Kumuli forest (133 species) [28], Boda forest (95 species) [29], Arero forest (84 species) [30], Menagesha Suba forest (82 species) [31]. However, the number of woody species recorded was higher than in Denkoro forest (50 species) [32], Wanzaye forest (49 species) [33], Mount Duro (44 species) [34], and Chilimo forest (31 species) [35].

4.2. Importance Value Index. The important value index can be used to determine which species should be prioritized for conservation [36]. Higher IVIs were recorded for Juniperus procera, Podocarpus falcatus, and Maytenus arbutifolia. They are considered the most ecologically important woody species due to their relatively higher frequency, density, and dominance in the forest. Similar results have been reported for Juniperus procera and Podocarpus falcatus in Chilimo forest [37], Bale Mountains national park [27] and in Boda forest [38]. The species Vernonia auriculifera, Maesa lanceolata, Rhamnus prinoides, and Gnidia glauca have lower IVI and hence require conservation priority.

4.3. Influence of Environmental Factors

4.3.1. Altitude. The plant community and species composition were influenced by altitude. Altitude is a complicated mixture of related climate variables that are strongly linked to a variety of other environmental features, such as soil texture, nutrients, and substrate stability [39]. Differences in solar radiation distribution can result in changes in microclimate (temperature) and water balance (moisture) [40]. Temperature changes over short vertical distances can be influenced by changes in altitude [41].

This has an impact on the growth, distribution, and diversity of species in forest communities [42–44]. Similarly, several studies have discovered that altitude has an important role in the distribution of woody species [45–48].

4.3.2. Topographic Aspects. Topographic aspects were another determinant factor in species composition and plant community [40, 49, 50]. The differences in woody species composition across topographic aspects were most likely caused by changes in incoming solar radiation that influenced temperature and moisture [51]. The amount of incident solar radiation can also affect the temperature of the soil and air at the ground’s surface [49]. Soil temperature has a significant impact on plant growth and establishment.

Table 5: Abbreviations used in NMDS plotting.

Species	Abbreviation
Acal	Acacia lahai
Agas	Agarista salicifolia
Alla	Allophylus abyssinicus
Allm	Allophylus macrobotrys
Apd	Aposeytes dimidiata
Aspa	Asparagus africanus
Bera	Bersama abyssinica
Brua	Bruea antisydenterica
Cala	Calyptrina aurea
Cano	Canthium olgecarpum
Cars	Carissa spinarum
Clua	Clutia abyssinica
Doda	Dodonaea angustifolia
Dova	Dovyalis abyssinica
Draa	Dracena afromontana
Ekek	Ekebergia capensis
Embs	Embelia schirmeri
Eria	Erica arborea
Gals	Galina saxifraga
Gign	Gnidia glauca
Hela	Helichrysum argyranthum
Hypq	Hypericum quartinianum
Hypr	Hypericum revolutum
Jasa	Jasminum abyssinicum
Jasd	Jasminum dichotomum
Jass	Jassminum stans
Junp	Juniperus procera
Lobg	Lobelia giberica
Mael	Maesa lanceolata
Mayad	Maytenus addat
Myar	Maytenus arbutifolia
Myra	Myrica salicifolia
Myrm	Myrsine africana
Myrs	Myrsine melanophloeos
Mysta	Mystroxylon aethiopicum
Noxc	Noxia congesta
Olec	Olea capensis
Olee	Olea europaea
Olir	Olinia rochetiana
Osyq	Osyris quadripartita
Pens	Pentas schimperiana
Phor	Phoenix reclinata
Pitra	Pittosporum abyssinicum
Podf	Podocarpus falcati
Prua	Prunas africana
Rhap	Rhamnus prinoides
Rhas	Rhamnus staddo
Rosa	Rosa abyssinica
Rubs	Rubus steudneri
Schv	Scheffiera volkensis
Syzg	Syzygium guineense
Tephi	Tephrosia interrupta
Vera	Vernonia auriculifera

ordination of the first two axes (Stress = 0.15) (Figure 5). The species including Agas, Doda, Tephi, Rosa, Osyq, Eria, prua, Junp, Jass, Vera, and Cars are associated with altitude in the first axis. The species such as Gign, Dova, Myrs, Phor, Myra, Allm, Pens, Clec, Clua, Pita, Rosa, Osyq, Eria, Hypr, Jass, Clua, Rhas, Podf, Lobg, Mayar, Bera, Vera, Mym, Mya, Mysta, Apd, Cao, Syzg, Schv, and Gals are associated with the NE, W, NW, SE, and SW aspects on both axes (Table 5).
5. Conclusions and Recommendations

5.1. Conclusions. The Gennemar forest is one of the most important dry Afromontane forests in Southern Ethiopia. When compared to some of Ethiopia’s dry Afromontane forests, it has a similar number of species (55 species) and more or less equal species diversity and evenness ratings. Four plant community types were identified by cluster analysis using the presence/absence value of each species in each plot. The altitude and topographic aspects determine the distributions of these woody species compositions and communities. The DBH class distribution showed that the density of individuals decreases with increasing DBH. The most economically and ecologically important woody species in the forest were Juniperus procera and Podocarpus falcatus. The most frequent tree species was Mystroxylon aethiopicum, which is similar to other dry Afromontane forests probably due to its geographic similarity to the study area.

5.2. Recommendations. The following recommendations are more important for the sustainability of forest biodiversity based on the findings of the current study.

(i) Promote community awareness campaigns about forest use through extension activities
(ii) By discussing and consulting with local communities, strategies such as participatory forest management and community forest planting can be developed to reduce human impacts on the forest
(iii) By implementing in situ conservation and restoration operations, the entire forest ecosystem, as well as endemic and threatened species, has to be safeguarded
(iv) Need to take into account the determinant factors such as species type, altitude, and topographic aspect in selecting a certain forest for forestry activities
(v) The current study was limited to determinant factors of species composition and plant community, mainly altitude and topographic aspects; therefore, additional research is required on the soil seed bank, seed physiology, herbaceous plants, and methods of propagating ecologically and economically useful species, as well as other determinant factors of the soil.

Data Availability

The data used to support the findings of this study are included within the article.

Conflicts of Interest

The authors declare that there are no conflicts of interest.

Acknowledgments

The authors are grateful to thank Eza Woreda environment, forest, and climate change office experts especially Dino Nasir and Kebede Minuta, for their unreserved assistance during data collection. Fieldwork would not be an easy task without the great help and support the authors received from Kinfe, Timerga, Yidnekachew, Ibrahim, Bogale, and Alem. Finally, the authors would like to acknowledge Ethiopian Biodiversity Institute (EBI) and Hawassa University for financial support and logistic facilities.

References

[1] T. Bekele, Vegetation Ecology of Remnant Afromontane Forests on the Central Plateau of Shewa, Ethiopia, Opulus Press AB, 1993.
[2] R. Fichtl and A. Adi, Honeybee Flora of Ethiopia, Margraf, 1994.
[3] I. Friis and S. Demissew, Vegetation Maps of Ethiopia and Eritrea. A Review of Existing Maps and the Need for a New Map for the Flora of Ethiopia and Eritrea, 2001.
[4] I. Friis and S. Demissew, Atlas of the Potential Vegetation of Ethiopia, p. 315, 2010.
[5] R. Karami, H. R. Mehrabi, and A. Ariapoor, The Effect of Altitude and Slope in the Species Diversity of Herbaceous Plants (Case Study: Watershed Miandar Qarootag—Gilangharb), vol. 8, 2015a.
[6] Q. Lyu, J. Liu, J. Liu et al., "Response of plant diversity and soil physicochemical properties to different gap sizes in a Pinus massoniana plantation," PeerJ, vol. 9, Article ID e12222, 2021.
[7] M. Tatian, H. Arzani, M. K. Reihan, M. A. Bahmanyar, and H. Jalilvand, "Effect of soil and physiographic factors on ecological plant groups in the eastern Elborz mountain rangeland of Iran: ecological plant groups in Elborz rangeland," Grassland Science, vol. 56, no. 2, pp. 77–86, 2010.
[8] World Conservation Monitoring Centre, Global Biodiversity: Status of the Earth’s Living Resources, vol. 624, 1992.
[9] B. Bishaw, Deforestation and Land Degradation on the Ethiopian Highlands: A Strategy for Physical Recovery, vol. 17, 2001.
[10] F. Nemera, T. Zewdu, and A. Ebro, The Effect of Altitude Gradients in the Species Diversity of Woody Plants of the Natural Grazing Lands of West Shoa, Ethiopia, vol. 6, 2018.
[11] S. B. Wassie, “Natural resource degradation tendencies in Ethiopia: a review,” Environmental Systems Research, vol. 9, no. 1, p. 33, 2020.
[12] R. Kumari, A. Banerjee, R. Kumar, A. Kumar, P. Saikia, and M. Latif Khan, "Deforestation in India: consequences and sustainable solutions," in Forest Degradation Around the World, M. Nazip Suratman, Z. Abd Latif, G. De Oliveira, N. Brunsell, Y. Shimabukuro, and C. Antonio Costa Dos Santos, Eds., IntechOpen, 2020.
[13] D. Teketay and T. Bekele, “Floristic composition of Wof-Washa natural forest, Central Ethiopia: implications for the conservation of biodiversity,” *Feddes Repertorium*, vol. 106, no. 1–5, pp. 127–147, 1995.

[14] D. Teketay, *Seed and Regeneration Ecology in Dry Afro-montane Forests of Ethiopia: I. Seed Production—Population Structures*, vol. 17, 2005.

[15] M. Asefa, M. Cao, Y. He, E. Mekonnen, X. Song, and J. Yang, “Ethiopian vegetation types, climate and topography,” *Plant Diversity*, vol. 42, no. 4, pp. 302–311, 2020.

[16] M. J. B. Green and R. How, “The importance of monitoring biological diversity and its application in Sri Lanka,” vol. 16, 2009.

[17] R. Karami, H. R. Mehrabi, and A. Ariapoor, *The Effect of Altitude and Slope in the Species Diversity of Herbaceous Plants (Case Study: Watershed Miandar Qarootag—Gilanghharb)*, vol. 8, 2015.

[18] G. P. Asner, R. Flint Hughes, T. A. Varga, D. E. Knapp, and T. Kennedy-Bowdoin, “Environmental and biotic controls over aboveground biomass throughout a tropical rain forest,” *Ecosystems*, vol. 12, no. 2, pp. 261–278, 2009.

[19] C. Gonnadje, C. Doumenge, T. Sunderland, and D. McKey, “Environmental filtering determines patterns of tree species composition in small mountains of Atlantic Central African forests,” *Acta Oecologica*, vol. 94, pp. 12–21, 2019.

[20] I. Friis, S. Demissew, and P. Breugel, *Atlas of the Potential Vegetation of Ethiopia*, Det Kongelige Danske Videnskabernes Selskab, 2010.

[21] A. Bereda, “Handling, processing and utilization of milk and milk products in Etha district of the Gurage zone, Southern Ethiopia,” *Journal of Agricultural Biotechnology and Sustainable Development*, vol. 5, no. 6, pp. 91–98, 2013.

[22] J. Oksanen, F. G. Blanchet, R. Kindt et al., “Vegan: community ecology package,” 2014, https://CRAN.Rproject.org/package=vegan.

[23] I. F. Spellerberg and P. J. Fedor, “A tribute blackwellsience, Ltd to claude shannon (1916 –2001) and a plea for more rigorous use of species richness, species diversity and the “Shannon–Wiener” Index,” vol. 3, 2003.

[24] R. Parsad and L. M. Bhar, *Multivariate Analysis of Variance*, vol. 13, 1987.

[25] P. Greig-Smith and J. T. Curtis, “The vegetation of Wisconsin. An ordination of plant communities,” *Journal of Ecology*, vol. 49, no. 2, p. 463, 1961.

[26] A. Bekele, *Useful Trees and Shrubs for Ethiopia*, p. 486, 1993.

[27] H. Yineger, E. Kelbessa, T. Bekele, and E. Lulekal, “Floristic composition and structure of the dry afromontane forest at bale mountains national park, Ethiopia,” *Sinet: Ethiopian Journal of Science*, vol. 31, no. 2, pp. 103–120, 2011.

[28] G. Woldemariam, S. Demissew, Z. Asfaw, P. O. Box, and P. O. Box, *Woody Species Composition, Diversity and Structure of Kumuli Dry Evergreen Afromontane Forest in Yem District, Southern Ethiopia*, vol. 13, 2016.

[29] E. Fikadu, M. Melesse, and A. Wendawek, “Floristic composition, diversity and vegetation structure of woody plant communities in boda dry evergreen montane forest, west showa, Ethiopia,” *International Journal of Biodiversity and Conservation*, vol. 6, no. 5, pp. 382–391, 2014.

[30] W. Shiferaw, M. Lemenih, and T. W. M. Gole, “Analysis of plant species diversity and forest structure in arero dry afromontane forest of Borena zone, South Ethiopia,” *Tropical Plant Research*, vol. 5, no. 2, pp. 129–140, 2018.

[31] B. Abate Zewdie, *Comparative Floristic Study on Menagesha Suba State Forest on Years 1980 and 2006*, Addis Ababa University, Addis Ababa, Ethiopia, 2007.

[32] H. Awoke and B. Mewed, “Changes in woody species composition and structure of Denkoro dry evergreen afromontane forest over 16 years (2001–2017), South Wollo, Ethiopia,” *Forest Ecology and Management*, vol. 441, pp. 71–79, 2019.

[33] A. G. Asfaw, “Woody species composition, diversity and vegetation structure of dry afromontane forest, Ethiopia,” *Journal of Agriculture and Ecology Research International*, vol. 16, no. 3, pp. 1–20, 2018.

[34] M. Teshome, Z. Asfaw, and G. Dalle, “Effect of environmental gradients on diversity and plant community distribution in remnant dry afromontane forest of mount duro, Nagelle Arsi, Ethiopia,” *Biodiversity: Research and Conservation*, vol. 58, no. 1, pp. 21–31, 2020.

[35] M. Alebachew, O. Gardib, and J. Blaser, “Temporal variation in species composition, diversity and regeneration status along altitudinal gradient and slope: the case of chilimo dry afromontane forest in the central highlands of Ethiopia,” vol. 33, 2019.

[36] G. Cottam and J. T. Curtis, *Ecology*, vol. 37, no. 3, pp. 451–460, 1956.

[37] M. A. Tesfaye, O. Gardib, and J. Blaser, “Temporal variation in species composition, diversity and regeneration status along altitudinal gradient and slope: the case of chilimo dry afromontane forest in the central highlands of Ethiopia,” vol. 33, 2019.

[38] E. Fikadu, M. Melesse, and A. Wendawek, “Floristic composition, diversity and vegetation structure of woody plant communities in boda dry evergreen montane forest, west showa, Ethiopia,” *International Journal of Biodiversity and Conservation*, vol. 6, no. 5, pp. 382–391, 2014b.

[39] P. M. Ramsay and E. R. B. Oxley, “The growth form composition of plant communities in the ecuadorian pa’ ramos,” vol. 20, 1997.

[40] J. E. Moebslund, L. Arge, P. K. Bacher, T. Dalgaard, and J.-C. Svenning, “Topography as a driver of local terrestrial vascular plant diversity patterns,” *Nordic Journal of Botany*, vol. 31, no. 2, pp. 129–144, 2013.

[41] C. M. Sharma, A. K. Mishra, O. P. Tiwari, R. Krishan, and Y. S. Rana, “Effect of altitudinal gradients on forest structure and composition on ridge tops in Garhwal Himalaya,” *Energy, Ecology and Environment*, vol. 2, no. 6, pp. 404–417, 2017.

[42] M. Ganamé, P. Bayen, I. Ouédraogo, K. Dimobe, and A. Thiombiano, “Woody species composition, diversity and vegetation structure of two protected areas along a climatic gradient in Burkina Faso (West Africa),” *Folia Geobotanica*, vol. 54, no. 3–4, pp. 163–175, 2019.

[43] M. D. L. ´A. La Torre-Cuadros, S. Herrando-P´ erez, and I. Ou ´edraogo, “Floristic composition and structure and environmental determinants in a moist evergreen afromontane forest, southern Ethiopia,” *Biodiversity & Conservation*, vol. 16, no. 10, pp. 2965–2988, 2007.

[44] I. Trojo and R. Dirzo, “Floristic diversity of Mexican seasonally dry tropical forests,” vol. 22, 2002.

[45] B. Mewed, M. Negash, and T. Awas, “Woody species composition, structure and environmental determinants in a moist evergreen afromontane forest, southern Ethiopia,” *Journal of Forestry Research*, vol. 31, no. 4, pp. 1173–1186, 2020.
forest compositions of singalila national park in khang-chendzonga landscape, eastern Himalaya, India,” *Journal of Asia-Pacific Biodiversity*, vol. 11, no. 2, pp. 267–275, 2018.

[47] H. A. Wale, T. Bekele, and G. Dalle, “Plant community and ecological analysis of woodland vegetation in metema area, amhara national regional state, Northwestern Ethiopia,” *Journal of Forestry Research*, vol. 23, no. 4, pp. 599–607, 2012.

[48] C. Zhang, X. Li, L. Chen, G. Xie, C. Liu, and S. Pei, “Effects of topographical and edaphic factors on tree community structure and diversity of subtropical mountain forests in the lower lancang river basin,” *Forests*, vol. 7, no. 12, p. 222, 2016.

[49] T. T. Li, “Soil temperature as influenced by forest cover,” vol. 109, 1926.

[50] T. J. Stohlgren and R. R. Bachand, “Lodgepole pine (*Pinus Contorta*) ecotones in rocky mountain national park, Colorado, USA,” *Ecology*, vol. 78, no. 2, p. 632, 1997.

[51] S. Paudel and O. R. Vetaas, “Effects of topography and land use on woody plant species composition and beta diversity in an arid Trans-Himalayan landscape, Nepal,” *Journal of Mountain Science*, vol. 11, no. 5, pp. 1112–1122, 2014.

[52] J. Yang, Y. A. El-Kassaby, and W. Guan, “The effect of slope aspect on vegetation attributes in a mountainous dry valley, Southwest China,” *Scientific Reports*, vol. 10, no. 1, Article ID 16465, 2020.

[53] S. Harrison, M. Vellend, and E. I. Damschen, “Structured beta diversity increases with climatic productivity in a classic dataset,” *Ecosphere*, vol. 2, no. 1, 2011.