New species and noteworthy findings for flora of the Urals and adjacent territories

N. V. Zolotareva1,10, E. N. Podgaevskaya1,11, V. A. Glazunov2,12, E. D. Lapshina3,13, A. S. Tretyakova4,5,14, N. Yu. Grudanov5,4,15, P. V. Kondratkov4,16, Ya. M. Golovanov6,17, N. I. Naumenko7,18, A. N. Puzyrev7,19, S. A. Nikolaenko2,8,20, I. V. Filippov3,21, D. G. Melnikov9,22*

1 Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy of Sciences, 8 Marta str., 202, Yekaterinburg, 620144, Russian Federation
2 Tyumen Scientific Centre, Siberian Branch of the Russian Academy of Sciences, Malygina st., 86, Tyumen, 625026, Russian Federation
3 Yugra State University, Chekhova st., 16, Khanty-Mansiysk, 628012, Russian Federation
4 Ural Federal University named after the first President of Russia B. N. Yeltsin, Mira st., 19, Yekaterinburg, 620002, Russian Federation
5 Institute Botanical Garden of Ural Branch of the Russian Academy of Sciences, 8 March st., 202a, Yekaterinburg, 620144, Russian Federation
6 South Ural Botanical Garden-Institute of the Ufa Federal Scientific Center of the Russian Academy of Sciences, Mendeleyeva St., 195, build. 3., Ufa, 450080, Russian Federation
7 Udmurt State University, Universitetskaya str., 1, Izhevsk, 426034, Russian Federation
8 Papanin Institute for Biology of Inland Waters Russian Academy of Sciences, Yaroslavl Region, Nekouzsky district, v. Borok, 109, 152742, Russian Federation
9 Komarov Botanical Institute of the Russian Academy of Sciences (BIN RAS), Prof. Popova str., 2, St. Petersburg, 197376, Russian Federation
10 ORCID iD: https://orcid.org/0000-0003-1895-4681, 11 ORCID iD: https://orcid.org/0000-0003-2355-5781, 12 ORCID iD: https://orcid.org/0000-0003-0344-024X, 13 ORCID iD: https://orcid.org/0000-0001-5571-7787, 14 ORCID iD: https://orcid.org/0000-0001-8735-4482, 15 ORCID iD: https://orcid.org/0000-0002-0498-2975, 16 ORCID iD: https://orcid.org/0000-0001-6472-5455, 17 ORCID iD: https://orcid.org/0000-0002-4790-8900, 18 ORCID iD: https://orcid.org/0000-0001-6807-3773, 19 ORCID iD: https://orcid.org/0000-0003-4969-6355, 20 ORCID iD: https://orcid.org/0000-0002-4545-9240, 21 ORCID iD: https://orcid.org/0000-0002-3639-553X
22 E mail: DMelnikov@binran.ru; ORCID iD: https://orcid.org/0000-0002-9622-2737

* Corresponding author

\textbf{Keywords}: Aktobe Region, Chelyabinsk Region, ecology, Khanty-Mansi Autonomous Area – Yugra, Sverdlovsk Region, taxonomy, Udmurtian Republic.

\textbf{Summary}. The article provides information about rare and newly described species for the flora of the Urals and adjacent territories, namely: \textit{Astragalus saphronovae} Kulikov, \textit{Atraphaxis decipiens} Jaub. et Spach., \textit{Carex amgunensis} F. Schmidt, \textit{Galium densiflorum} Ledeb., \textit{Jovibarba globifera} (L.) J. Parn., \textit{Najas minor} All., \textit{Potamogeton nodosus} Poir., \textit{Pseudorchis albida} (L.) Á. Löve et D. Löve, \textit{Salix myrsinites} L., \textit{Veronica agrestis} L. Essays include the information on the species ecology and short taxonomic notes.
Новые виды и наиболее интересные находки для флоры Урала и прилегающих территорий

Н. В. Золотарева1, Е. Н. Подгаевская1, В. А. Глазунов2, Е. Д. Лапшина3, А. С. Третьякова4-5, Н. Ю. Груданов4-6, П. В. Кондратков4, Я. М. Голованов6, Н. И. Науменко7, А. Н. Пузырев7, С. А. Николаенко2,8, И. В. Филиппов3, Д. Г. Мельников9*

1 Институт экологии растений и животных Уральского отделения Российской академии наук, ул. 8 Марта, 202, г. Екатеринбург, 620144, Россия
2 Тюменский научный центр Сибирского отделения Российской академии наук, ул. Малыгина, 86, г. Тюмень, 625026, Россия
3 Югорский государственный университет, ул. Чехова, 16, г. Ханты-Мансийск, 628012, Россия
4 Уральский федеральный университет имени первого Президента России Б. Н. Ельцина, ул. Мира, 19, г. Екатеринбург, 620003, Россия
5 Ботанический сад Уральского отделения Российской академии наук, ул. 8 Марта, 202а, г. Екатеринбург, 620144, Россия
6 Южно-Уральский ботанический сад-институт Уфимского федерального исследовательского центра Российской академии наук, ул. Менделеева 195, корп. 3, г. Уфа, 450080, Россия
7 Удмуртский государственный университет, ул. Университетская, 1, г. Ижевск, 426034, Россия
8 Институт биологии внутренних вод им. И. Д. Папанина Российской академии наук, Ярославская область, Некоузский район, пос. Борок, 109, 152742, Россия
9 Ботанический институт им. В. Л. Комарова Российской академии наук, ул. Проф. Попова, 2, г. Санкт-Петербург, 197376, Россия

* Автор для переписки

Ключевые слова: Актюбинская область, Свердловская область, систематика, Удмуртская республика, Ханты-Мансийский автономный округ – Югра, Челябинская область, экология.

Аннотация. В статье приводятся сведения о произрастании редких и новых видов для флоры Урала и прилегающих территорий: Astragalus saphronovae Kulikov, Atraphaxis decipiens Jaub. et Spach., Carex amgunensis F. Schmidt, Galium densiflorum Ledeb., Jovibarba globifera (L.) J. Parn., Najas minor All., Potamogeton nodosus Poir., Pseudorchis albida (L.) ´A. Löve et D. Löve, Salix myrsinites L., Veronica agrestis L. Очерки включают сведения об экологии видов и краткие таксономические заметки.

Introduction

The flora of the Urals has been studied for a relatively long time. Naturalists of the 18th century including D. G. Messerschmidt, I. G. Gmelin, G. V. Steller, I. P. Falk, P. S. Pallas, I. I. Lepyoikhin and others collected numerous specimens and made seminal floristic observation. The systematic study of the flora of the Urals began in the late 19th – and early 20th centuries; some prominent research scientists of the flora of the Urals during this period were E. Hoffman, F. Ruprecht, V. S. Sergeev, O. E. Kler, P. G. Helm, P. N. Krylov, A. Ya. Gordyagin, S. I. Kozhzhinsky, P. V. Suizev, I. M. Krascheninnikov, B. N. Gorodkov, V. S. Govorukhin, P. L. Gorchakovskiy and a number of others. The most important summaries on the flora of the Urals are somewhat scant (Krylov, 1927–1939; Goworuchin, 1937; Gorchakovskiy, 1966, 1975; Opredelitel sosudistykh ..., 1994) and have already outdated in many ways. Thus, a new “Flora of the Urals” is required. In the past two decades, a number of regional “Keys for plant identification” and “Floras” for different subregions of the Urals have appeared, which substantially compensates for this deficiency (for example, Illyustrirovannyy opredelitel ..., 2007; Tarasova, 2007; Martynenko, Gruzdev, 2008; Naumenko, 2008; Ryabinina, Knayzev, 2009; Kulikov, 2010; Baranova, Puzyrev, 2012; etc.).
Currently, the project “Flora of the Urals and Adjacent Territories” has been launched, its strategies have been defined, and the boundaries of this “Flora” have been outlined in general (Melnikov et al., 2018; Melnikov, 2019). Botanists from all republics, regions and krais (territories) of the study area joined in this project. Within the framework of the “Flora of the Urals”, in this article we report on newly described species and noteworthy floristic finds within the Ural region as a whole.

All the species presented in the article are indigenous to the flora of the Urals in general, except for three species, which are adventive for the Sverdlovsk Region (Jovibarba globifera (L.) J. Parn., Potamogeton nodosus Poir., Veronica agrestis L.) and the Udumtiran Republic (V. agrestis).

Materials and methods

The materials were obtained during expeditionary work and excursions in the period from 2012 to 2020 on the territory of the the Khanty-Mansi Autonomous Area – Yugra, Udumtiran Republic, Sverdlovsk, Chelyabinsk and Aktobe Regions, which are within the boundaries of the planned “Flora of the Urals and adjacent territories” (Melnikov, 2019). The collection of herbarium material was carried out by the route method. The coordinates of the locations were determined by GPS receivers (Garmin series) with an error of up to 100 m; for a number of cases, the coordinates were retrieved from satellite maps of the Yandex service with an error of up to 200 m. Identification of the species was carried out on the basis of modern “Floras” affecting the studied area and taxonomic monographs, for individual species consulted with taxonomists (publications and authors of definitions are indicated in the species essay). Taxa names are given according to “The World Checklist of Vascular Plants” (URL: https://wcvp.science.kew.org), except for cases of disagreement in the interpretation of the taxa status (here we relied on the opinion of the monographs). The cited samples are stored at SUBGI UFSC RAS1, UFA2, SVER, TMN, UDU, UFU, LE herbaria. The species are arranged in the text alphabetically.

1 South Ural Botanical Garden-Institute of the Ufa Federal Scientific Center of the Russian Academy of Sciences.
2 Herbarium acronyms are given according to the Index Herbarium database (http://sweetgum.nybg.org/science/ih/).

Results and discussion

New records for the flora of the Urals and Adjacent Territories

Astragalus saphronovae Kulikov (Fabaceae)
Contributor: Ya. M. Golovanov

Distribution and habitat

The species were described from the northern part of the western edge (‘chink’) of the Ustyurt Plateau, within the Mangistau Oblast of Kazakhstan (Kulikov, 2014), where it grows on fine-earth-gravely slopes as part of agropyreto-artemisetum communities. Until now, it has only been known from the type locality. We found the species in an isolated location 500 km north of the type locality area at the foot of chalk hills within talus of chalk rocks. It is recorded for the first time within the Aktobe Region of the Republic of Kazakhstan.

Taxonomic notes

The sect. Cystodes Bunge (syn. Vesicariai DC.), which includes A. saphronovae, consists of about 15 species common in Central and South Asia, the Middle East, Western Asia, and Southern Europe (Ghahremani, 2004). In Middle Asia this section initially included two species: A. medius Schrenk and A. albicaulis DC. (Vasilyeva, 1961). Later, this section included A. zingeri Korsh., an endemic species for the Middle Volga and Trans-Volga regions (Vasilyeva, 1987). In modern classification of the genus (Podlech, 1999; Sytin, 2009; Podlech, Zarre, 2013), the sect. Cystodes is included in the sect. Dissitiflori DC. (syn. section Xiphidium Bunge). The species of the sect. Cystodes differ from those of the sect. Dissitiflori by a swollen calyx at fruition and the unpressed pubescence of the fruits (Ghahremani, 2004).

A. saphronovae is similar to the desert-steppe species of the same section, which is more widespread in the region – A. medius Schrenk. It differs from it in having much higher, erect, strongly lignified perennial shoots (by the nature of the life form, it is more similar to those of the sect. Dissitiflori, such as A. brachylobus DC. and A. cornutus Pall.), elongated loose racemes (even more elongated in fruiting phase) and particularly in fruit form – much longer and narrower (14–25 mm long and 2.5–3 mm wide) than A. medius (10–18 mm long and 4–5 mm wide), which is a sign of similarity with representatives of the sect. Dissitiflori (Kulikov, 2014). For a number of species (for example, A. zingeri, A. aktiubensis), a hypothesis has been made about their hybrid origin (Kulikov, 2014),...
Examined specimens (new record): “Republic of Kazakhstan, Aktobe Region, Khobdinsky district, chalk mountains 16 km north-east of the village of Zhatantalap (324 m above sea level), 50°24′58.1″N, 56°3′11.6″E. 21 V 2019. Ya. M. Golovanov”. Identified by M. S. Knyazev (Herbarium of SUBGI UFSC RAS, UFA).

Atraphaxis decipiens Jaub. et Spach (Polygonaceae)

Contributor: N. V. Zolotareva

Distribution and habitat

The species was first described from the Kazakh Upland (Kashina, 1992). The main part of the range is concentrated in Kazakhstan (Lovelius, 1978), but the species was also recorded in the Orenburg Region in Sol-Iletskiy, Akbulakskiy (Ryabinina, Knyazev, 2009), Gayskiy, Novosergievskiy, Perevolotskiy districts (data from the SVER herbarium). Within the territory of Siberia, two finds are known in the Russko-Polyansky district of the Omsk Region (Koropachinskiy, Vstovskaya, 2002) and in the Ulug-Khem district of the Republic of Tuva (Shaulo et al., 2006). It grows singularly in steppes on stony-gravelly soils (Koropachinskiy, Vstovskaya, 2002), often on chalk outcrops (Ryabinina, Knyazev, 2009), sometimes on gravelly solonetzes (data from the SVER herbarium). It was not previously known from the territory of the Chelyabinsk Region (Kulikov, 2010). The location identified by us is 190 km northeast of the nearest locality near the village Novopetropavlovka, Gaysky district, Orenburg Region (collection by M. S. Knyazev, SVER). A new species for the flora of the Chelyabinsk Region, the given location is the most northern collection for the region.

Taxonomic notes

The genus *Atraphaxis* L. includes about 30 species distributed from the eastern part of the Mediterranean, and from the Balkan Peninsula to Mongolia, but mainly occurs in Middle, Central and Southwest Asia (Lovelius, 1978; Tzvelev, 1996). Within the territory of the Southern Urals in the Orenburg Region, four species of this genus are found, to the north (in the Chelyabinsk Region and the Republic of Bashkortostan) previously only one species was known – *A. frutescens* (L.) K. Koch (Opredelitel vysshikh ..., 1989; Kulikov, 2010).

A. decipiens differs from *A. frutescens* by having small (5–9 mm long) and narrow (1–2 mm wide) linear or linear-lanceolate leaves with revolute margins and inconspicuous lateral veins, short (2–2.5 cm long) and few-flowered inflorescences, with bright pink sepals at fruition (Ryabinina, Knyazev, 2009; Kulikov, 2010).

Examined specimens (new record): “Chelyabinsk Region, Bredinsky district, left bank of the river Syntasty 3.5 km north-west of the village of Andreevsky (52°23′36.5″N, 60°44′44.9″E), poor herbo-sofistucetum valesiacae steppe in the upper part of the slope of a small hill, on gravelly solonetzes. 14 VI 2020. N. V. Zolotareva” (SVER).

Carex amgunensis F. Schmidt (Cyperaceae)

Contributors: N. V. Zolotareva, E. N. Podgaevskaya

Distribution and habitat

The species area covers Western and Eastern Siberia, the Far East, Mongolia and Northeastern China (Egorova, 1999), but some relict localities are known from the Urals (Kulikov, 2010; Knyazev et al., 2017). It grows in dry light coniferous (mainly larch and pine) forests at woodland edges, on dry stony and steppe slopes; in the forest belt of mountains, less often on the plains (Egorova, 1999). Until now, no more than five localities were known in the Northern Urals (near the city of Karpinsk and along the Sosva river in the Sverdlovsk Region) (Krasnaya kniga ..., 2018) along with two localities from the South Urals (in the Miass and Karabash urban districts of the Chelyabinsk Region) (Krasnaya kniga ..., 2017a). In the Middle Urals, the species was recorded for the first time. The location identified by us is located 130 km north of the nearest locality on Shigirskiye Sopki near the village of Slyudorudnik, Karabash urban district of the Chelyabinsk Region (Krasnaya kniga ..., 2017a).

Taxonomic notes

Carex amgunensis is within sect. *Acrocystis* Dumort. This section includes about 45 species, of which 17 are found in Europe and Asia, about 25 species are endemic to North America and one to South America (Egorova, 1999). In the flora of the Urals, the section includes five species (Egorova, 1999; Kulikov, 2010; Knyazev et al., 2017), of which *C. amgunensis* is closest to *C. ericetorum* Pollich, but it is well distinguished by a short (0.6–0.8(1) cm long) and narrow-linear (1–2 mm wide) few-flowered staminate spikelet, spherical pistillate spikelets (0.5 cm long), of which the upper is located on the same level with the staminate spikelet, larger perigynia (3.5–4(4.5) mm long) each with an
Elongated beak (1–1.2 mm long), narrower (1.5–2 mm wide) and softer leaf blades and purple-brown sheaths (Kulikov, 2010).

Examined specimens (new records):
“Sverdlovsk Region, Yekaterinburg city, environs of the Palkino railway station, granite rocks «Kamennaya Chasha», 56°51′59.6″N, 60°22′48.8″E, under the rocks. 18 VII 2020. N. V. Zolotareva, E. N. Podgaevskaya” (SVER); the same city, “environs of the Severka settlement, outcrops of the Severkie Rocks granites (56°51′50.5″N, 60°18′26.5″E), under the rocks. 17 VII 2020. N. Zolotareva, E. N. Podgaevskaya” (SVER).

Galium densiflorum Ledeb. (Rubiaceae)

Contributor: V. A. Glazunov

Distribution and habitat

The species is distributed in the Arctic from the northern Malozemelskaya tundra in the west to Chukotka in the East (including the Polar Urals, Yamal), in the southeast of Western Siberia (including Altai), in Central and Eastern Siberia, in Eastern Kazakhstan, in the Far East, Mongolia and China (var. saurense (Litvinov) Tzvelev – pubescent variety) (Igoshina, 1966; Naumova, 1996; Rastitelnyy pokrov ..., 2006; Pinzhena, 2020; *Galium densiflorum*, 2021).

It grows in the lower zones of alpine areas on stony slopes, rocks and in the lower zones in open steppe meadows, among bushes, river banks and flooded meadows (Krylov, 1939; Pobedimova, 1978; Naumova, 1996). The species is characterized by habitats with a periodic deficit of moisture in the soil, although it also occurs on moderately humid dry-meadow areas of the slopes of river terraces and high floodplain (Tzvelev, 1987). N. N. Tzvelev (1986, 1987) assigned it to the group of arctic-montane species.

This is the first find in the Subpolar Urals and the southernmost in the Urals (the distance to the nearest find in the Polar Urals is about 240 km). A new species for the Khanty-Mansi Autonomous Area – Yugra.

Taxonomic notes

Galium densiflorum is part of the type section (sect. *Galium*) and belongs to the relationship of *G. verum* L. and *G. ruthenicum* Willd., *G. wirtgenii* F. W. Schultz (Pobedimova, 1958, 1978; Ehrendorfer et al., 1976; Tzvelev, 1986). The aggregate *G. verum* is sometimes considered as one species (*G. verum* s. l.) (Ehrendorfer et al., 1976) with several subspecies, and *G. densiflorum*, *G. wirtgenii* and *G. ruthenicum* are treated as synonyms, or at least questionable taxa. However, recent studies of this group showed the stability of a number of morphological characters in the above species. *G. densiflorum* differs from *G. verum* and *G. ruthenicum* by having a very narrow paniculate inflorescence, leaves with revolute margins, the lower branches of the inflorescence, which are shorter than the internodes and equal to the leaves that are not reduced in the inflorescence, in having styles split to ¼ of its length (in *G. verum*, the style is bipartite and split to the very base, in *G. ruthenicum* and *G. wirtgenii*, the styles are split only to the middle), and differs from *G. wirtgenii* in densely hairy ovaries and fruits (Pobedimova, 1958; Tzvelev, 1986; Pinzhena (Balde), 2014).

Examined specimens (new record): “Khanty-Mansi Autonomous Area – Yugra. Subpolar Urals, north of the river Tykotlova, 65°17′54.6″N, 62°5′4.5″E, on a carbonate rock, solitary, blooming. 12 VII 2018. V. A. Glazunov” (TMN).

Joviharba globiflora (L.) J. Parn. s. str. (*Sempervivum globiferum* L.) (Crassulaceae)

Contributors: N. V. Zolotareva, E. N. Podgaevskaya

Distribution and habitat

The species occurs in Central and Eastern Europe, from central Germany to the eastern Carpathians, in the west and northwest of the European part of Russia (Favarger et al., 1993). The eastern limit of the species range passes through the Nizhny Novgorod and Penza Regions, where single localities have been documented, and the species is included in the regional Red Data Books (Krasnaya kniga ..., 2013, 2017b; Vasjukov, Saksonov, 2020). Further, east to the Urals, there are no natural localities of the species: in the Samara, Ulyanovsk Regions and Republic of Mordovia it is cultivated as an ornamental plant (Plantae vasculares ..., 2010; Saksonov, Senator, 2012; Rakov et al., 2014), in the flora of Chuvash Republic, Republic of Tatarstan, Republic of Mari El, Udmurtian Republic, Kirov Region it is absent (Abramov, 1995; Bakin et al., 2000; Tarasova, 2007; Baranova, Puzyrev, 2012; Gafurova, 2014). In the Urals, the species was not previously recorded either, representatives of the genus *Joviharba* Opiz are absent in the flora of the Sverdlovsk, Chelyabinsk and Orenburg Regions, Perm Territory, Republic of Bashkortostan (Opredelitel vyshshikh ..., 1989; Kulikov, 2005; Illyustrirovanny opredelitel ..., 2007; Ryabinina, Knyazev, 2009; Knyazev et al., 2019). In the primary area, it grows on dry sandy soils, carbonate outcrops, pine forests and dry meadows (Favarger et al., 1993;
The location of the species identified by us is probably associated with its escape from cultivation – collective gardens are located 0.5 km away. A new species and genus for the flora of the Sverdlovsk Region, as well as for the territory of the Urals.

Taxonomic notes

The genus *Jovibarba* Opiz includes from two to six species (depending on the understanding of the volume of the species) in Central, Eastern and Southern Europe (Favarger et al., 1993; Bjalt, 2001). In the flora of the Urals, *J. globifera* is morphology closest to species of the genus *Orostachys* Fisch., from which it differs in the presence of stolons and the absence of a spine on the tops of leaves (in *J. globifera*, the leaves are ciliate along the margin) (Bjalt, 2001; Kulikov, 2010).

Examined specimens (new record): “Sverdlovsk Region, Yekaterinburg city, environs of the railway Palkino station, right bank of Reshetka River (56°52′5.3″N, 60°22′30.1″E), small outcrops of granite surrounded by a herboso-calamagrostietum epigei meadow. 18 VII 2020. N. V. Zolotareva, E. N. Podgaevskaya” (SVER).

Najas minor All. (*Caulinia minor* (All.) Coss. et Germ.) (Hydrocharitaceae)

Contributors: N. Yu. Grudanov, A. S. Tretyakova

Distribution and habitat

Najas minor is an indigenous Eurasian southern boreal forest-steppe species. It is found in Western, Central, Northern (south) and Eastern (south, including the Caucasus) Europe, North Africa, Western (Turkey, Syria, Lebanon, Iran, Iraq), Middle (Kazakhstan and Uzbekistan), Central (Afghanistan, Pakistan), South (northern India) and East (China, Korean Peninsula, Japan) Asia, southern regions of Siberia and the Far East. It is an invasive species in North America (Merkulowicz, 1941; Tzvelev, 1979; Triest, 1988; Conspectus florae …, 2005; *Najas minor* …, 2021). Within the territory of the region, the species was collected in the 19th century in the Perm Region (in the cities of Perm and Ocher; Suizev, 1912; Goworuchin, 1937; Ovesnov, 1997), in the Tyumen Region – lake Gryaznoe to the north of the village Peganovo, Berdyuzhsky district; lake Aiginskoye, 9 km north-east of the village Shcherbak; lake Kuchakovo, Nizhnetavdinsky District (Khoyzainova, Glazunov, 2001; Zasukha, Likhovidova, 2001; Naumenko et al., 2011; Glazunov; Nikolaenko, 2015). This species is presented for the first time in the Sverdlovsk Region. It is an annual that reproduces exclusively by seeds. Seed transfer is carried out by hydrochoria, as well as by endo- and epizoochory (Triest, 1988; Birykova et al., 2017). It occurs in shallow, relatively warm stagnant water bodies (floodplain lakes, river backwaters, less often mainland lakes and ponds) but can also grow in streams and rivers. *N. minor* prefers an alkaline condition (pH 6.0–9.3 with an optimal range of about 6.6–7.2). It occurs at a depth of up to 5 m with an optimum of about 0.5–2 m and temperatures up to 8 °C, and can inhabit brackish waters with salinity up to 0.3 ppt (Krasnaya kniga …, 2008; Global Invasive …, 2013). There are conflicting opinions regarding the turbidity of water and its eutrophication. So, for the Tyumen Region, it is indicated (Kapitonova, 2017) that the species is characterized by low competitiveness, does not withstand water pollution or turbidity, while for the USA, it is indicated that it is resistant to turbidity and eutrophication, and this gives it competitive advantages and contributes to the replacement of native species (Global Invasive …, 2013). Considering its relict nature (Birykova et al., 2017) and its extremely rare localities in the Ural region, it can be agreed that the species is at the limit of its ecological range.

Taxonomic notes

N. minor belongs to the subgenus *Caulinia* (Willd.) A. Br. ex Rendle (considered by some authors as part of the independent genus *Caulinia* Willd. (Tikhomirov, 2015)), in sect. *Euvaginatae* Magnus. It differs from the similar species *N. flexilis* (Willd.) Rostk. et W. L. E. Schmidt (from sect. *Americanae* Magnus) by having leaves suddenly (rather than gradually) narrowed towards the base of the blade, brittle leaves (rather than flexible), narrower leaf blades (0.3–0.5 mm wide, excluding the teeth, not 0.4–1.2 mm wide) with spaced teeth along the edge, narrower (about 0.5 mm wide, not 0.6–0.8 mm wide) fruits, a seed envelope with a clearly visible sculpture of rectangular cells (but not with a smooth surface) (Kulikov, 2010). In the Far East (Eastern China, Japan) and in South Asia (northern India, Nepal), it is replaced by the closely related species *N. oguraensis* Miki. *N. minor* differs from the latter species in having single-sporangiate (rather than tetra-sporangiate) anthers 0.56–1.3 mm long (*N. oguraensis* 1.3–1.8 mm long), seeds 1.74–2.74 mm long (in *N. oguraensis* 2.6–3.5 mm long) and, on average, two times smaller epidermal cells of the leaf and slightly smaller leaf sizes (6.5–35 mm long, 0.13–0.7 mm wide in *N. minor* and 7–43 mm long, 0.21–0.9 mm wide in *N. oguraensis*).
long, 0.1–0.66 mm wide in *N. oguraensis* (Triest, 1988; Midorikawa et al., 2020). *N. minor* is highly variable in leaf shape, especially in the length of the leaf teeth. In some Asian specimens, the midrib is spiked on the underside of the leaf (for example, Litwinow 3118 (LE)) (Triest, 1988).

Examined specimens (new record): “Russia, Sverdlovsk Region, Sukholohsky district, the vicinity of Refinskiy village, warm waters of the Refinskaya SDPP [State District Power Plant], 57°06′01.4″N, 61°43′09.7″E. 24 VIII 2019. N. Yu. Grudanov, A. S. Tretyakova” (UFU).

Ortilia obtusata (Turcz.) H. Hara (Pyrolaceae)

Contributor: N. I. Naumenko

Distribution and habitat

O. obtusata is a predominantly mountain forest and tundra species (Kobeleva, 1977) distributed in the mountain forests of Siberia (east of Western Siberia, Central and Eastern Siberia, the Northern Urals and the European Arctic (Busch, 1952); also indicated from the mountainous regions of the Caucasus and Central Asia, Mongolia, the Himalayas, and North America (Skvortsov, 1980, 1981; Malyschev, 1997). Within the territory of the European part of Russia, the species is documented from the Arctic and Dvino-Pechersk floristic regions (Skvortsov, 1960, 1981). It grows in light green-moss and herb-green-moss coniferous and mixed forests, herbaceous and shrub tundras, in subalpine meadows, occurs not only on acidic, but also on basic and medium silicate rocks, calcareous sandstones and shales (Skvortsov, 1980; Malyschev, 1997). For the territory of the Udmurtian Republic, it was not previously documented (Baranova, Puzyrev, 2012). The location identified by us represents a significant separation (about 500 km to the south) from the southern boundary of the species distribution in the European part of Russia (60–65°N), as well as from known localities on the eastern slope of the Sverdlovsk Region (about 440 km to southwest) (Skvortsov, 1960; Knyshev et al., 2018). A new species for the flora of the Udmurtian Republic, the given location is the most southern for the region.

Taxonomic notes

The genus *Ortilia* Rafin., includes two or three species (depending on the point of view on the volume of the species): *O. secunda* (L.) House, *O. kareliniana* (A. K. Skvortsov) Holub, and *O. obtusata*, which have a boreal Holarctic range (Skvortsov, 1960, 1980), common in the Arctic and temperate forest areas of the mountains and plains of the Northern Hemisphere. Within the boundaries of the Udmurtian Republic and the adjacent regions of the Urals and the Cis-Urals, only one species was previously known – *O. secunda* (Illyustririovannyy opredelitel ..., 2007; Baranova, Puzyrev, 2012), which is widespread in the lowland forests of Eurasia (Busch, 1952).

It is described in the rank of variety (*Pyrola secunda* (L.) Garcke var. *obtusata* Turcz.) by N. S. Turczaninow from Tunkinskiye Goltsy (Eastern Siberia). *O. obtusata* is taxonomically closer to *O. kareliniana*. It differs from *O. secunda* in the noticeably smaller size of the plant: stems 3–15 cm high; opaque, dark green above and light below, broadly ovate, oval or rounded, rounded at the top of the leaves 1–2.5 cm long and 1–2 cm wide (*O. secunda* leaves slightly glossy, green, almost monochromatic above and below, ovoid, pointed, 2–5 cm long and 1–4 cm wide), as well as shorter (1.5–4 cm long), open, few-flowered inflorescences with 4–5 (up to 10) flowers per raceme (*O. secunda* has up to 25 flowers per raceme).

Comparison with herbarium material from Eastern Siberia (LE, LECB) confirmed the conspecificity of the samples from the Udmurtian Republic to the samples of *O. obtusata*.

Examined specimens (new records): “Udmurtian Republic, Kezsky district, environs of the village of Guleishur (57°48′31.4″N, 53°22′13.8″E), sphagnum pine forest in the valley of the river Cheptsa. 25 VII 2019. N. I. Naumenko, A. N. Puzyrev” (UDU); “Udmurtian Republic, Kezsky district, environs of the village Malyy Polom (57°44′52.2″N, 53°29′25.7″E), sphagnum swamp forest. 06 VIII 2020. N. I. Naumenko, A. N. Puzyrev” (UDU).

Potamogeton nodosus Poir. (Potamogetonaceae)

Contributors: N. Yu. Grudanov, A. S. Tretyakova.

Distribution and habitat

The species has a rather extensive area. It is distributed in Europe to the north to the Baltic and North Seas and to the taiga zone, in Africa, in Anterior, Middle, Central and South and Southeast Asia, North, Central and South America, in the north and west of Australia (Dandy, 1980; Kaplan, Symoens, 2005; *Potamogeton nodosus* …, 2021). This species occurs in water bodies and streams with slightly alkaline water rich in minerals (Kaplan, Symoens, 2005).

In the European part of Russia, it grows mainly in the chernozem zone, but in recent decades, the species began to expand its area in northern and...
northeastern directions (Shcherbakov et al., 2008; Mayevskiy, 2014). For the Sverdlovsk Region, this is the first documented occurrence (Opredeletel sosudistykh ..., 1994; Knyazev et al., 2017). Apparently, the species is adventive in the region, because it is significantly (over 550 km) north of the known localities in the Orenburg Region (Ryabinina, Knyazev, 2009), does not occur in the adjacent areas of the Kurgan and Chelyabinsk Regions (Ovesnov, 1997; Naumenko, 2008; Kulikov, 2010), and only occurs in the unnaturally warm water of the Reftinskaya SDPP in the studied region. For the Middle Urals, this species is presented for the first time.

Taxonomic notes

It differs from the similar *P. natans* L. in the absence of a mobile, usually pale, articulation of the petiole and leaf blade, submerged leaves with a developed lanceolate translucent leaf blade (and not reduced to the petiole), shorter fruitlets (up to 4.2 mm long), a well-marked sharp keel, and a straight (rather than curved) stylodium (Dandy, 1980; Lisitsyna et al., 2009).

Examined specimens (new record):

“Sverdlovsk Region, Sukholozhsky district, the vicinity of Reftinsky village, discharge channel of the Reftinskaya SDPP, in the water near the coast (57°06′01.4″N, 61°43′09.7″E). 24 VII 2019. N. Yu. Grudanov” (UFU).

Pseudorchis albida (L.) Á. Löve et D. Löve (*Leucorchis albida* (L.) E. Mey.) (Orchidaceae)

Contributors: E. D. Lapshina, V. A. Glazunov

Distribution and habitat

Distributed in the east of North America, in Greenland, in Western and Central Europe (mainly in mountainous areas such as the Alps, Pyrenees, south of the Dinaric Highlands) and Northern Europe (British Isles, Fennoscandia), Iceland, in the northern regions of Eastern Europe (Murmansk, Arkhangelsk, Vologda Regions, the Komi Republic), in the north of the Urals and Western Siberia (Moore, 1980; Pseudorchis albida …, 2021). In the Urals, it is the rare species and is recorded in the northern taiga and tundra zone of the Subpolar and Polar Urals and the Cis-Urals area (from the lower reaches of the Pechora to the upper reaches of the Vychegda (Mamayev et al., 2004). The nearest location is known from the vicinity of the village of Neroyka (Khanty-Mansi Autonomous Area – Yugra) (Korikova, Tyurin, 2018), 140 km south-west of this find, and another locality has been documented over 200 km south-south-west of this find in the Northern Urals, in the upper reaches of the Volya River (Tyurin, Baykalova, 2012). It grows in a wide range of soil conditions: from acidic waterlogged substrates of sphagnum bogs to alkaline drained soils on gypsum karsts (Jersáková et al., 2011; Varlygina et al., 2014). In the Urals, it occurs in sparse coniferous and birch forests, forest edges, damp and swampy meadows, and in mountain tundra (Mamayev et al., 2004). The species is significantly reduced in abundance almost throughout its area (Jersáková et al., 2011). It is included in the Red Data Book of the Khanty-Mansi Autonomous Area – Yugra (Krasnaya kniga …, 2013) with status 2 and in the Red Data Book of the Komi Republic (Krasnaya kniga …, 2019) with status 3.

Taxonomic notes

Monotypic (or oligotypic) genus. Sometimes a closely related species *P. straminea* (Fernald) Sojak is recognized (Bateman et al., 2017), whose populations in Northern Europe clearly differ from *P. albida*, but to the south, the morphological boundaries between them are erased (the differences are mainly in dimensional characters). Thus, it has been proposed to consider these two taxa as morphotypes of the same species (Varlygina et al., 2014). However, Bateman et al. (2017) consider the smaller sizes of plant organs from northern populations as adaptive characters to the habitat and the populations attributed to *P. straminea* as a young sister species.

Examined specimens (new records): “Khanty-Mansi Autonomous Area – Yugra. Subpolar Urals, north of the river Tykotlova, 65°18′19″N, 62°8′15″E, spruce-cedar-birch subshrub-green moss forest, solitary, 12 VII 2018, E. D. Lapshina” (TMN); ibid., “65°18′7.4″N, 62°4′48.7″E, spruce-birch dwarf birch-green moss-sphagnum forest, solitary. 12 VII 2018. V. A. Glazunov” (TMN).

Salix myrsinites L.

Contributor: V. A. Glazunov

Distribution and habitat

The species is common in Western, Northern and Eastern (north and north-east) (north of Great Britain, Fennoscandia, Kola Peninsula and north of Karelia, Bolshezemelskaya tundra, in the Northern, Subpolar and Polar Urals) Europe and Western Siberia (eastern slope of the Polar Urals) (Belyaeva et al., 2006; Rastitelnyy pokrov ..., 2006; *Salix myrsinites* …, 2021). Within the administrative boundaries in the Urals, it is found in the Sverdlovsk Region, the Komi Republic and the Yamalo-Nenets
Autonomous Area. It prefers basic rocks, mostly on limestones, on well-moistened substrates along banks of streams, on swamp outskirts, hollows, and on conglomerations of boulders (Skvortzov, 1966; Belyaeva et al., 2006). This find is a new species for the Khanty-Mansi Autonomous Area – Yugra.

Taxonomic notes

A. K. Skvortzov (1966) considered populations from the Pyrenees, Alps and Carpathians as independent species (S. breviserrata Flod., S. alpina Scop.). In the south of Siberia (Altai, Sayany, Sokhondo, Barguzinsky ridge), S. myrsinites is replaced by a closely related species S. rectijulis Ledeb. The latter species is distinguished by the falling leaves of the last season, rather than remaining on the shoots. (Skvortzov, 1999).

Examined specimens (new record): “Khanty-Mansi Autonomous Area – Yugra. Subpolar Urals, north of the river Tykotlova, 65º17′34″N, 62º8′44″E, along streambank, abundant. 10 VII 2018. V. A. Glazunov” (definition confirmed by I. V. Belyaeva) (TMN).

Veronica agrestis L.

Contributors: A. N. Puzyrev, N. Yu. Grudanov, P. V. Kondratkov, A. S. Tretyakova

Distribution and habitat

V. agrestis is distributed mainly in Western and Central Europe, avoids the extreme northern territories, and is a rather rare invasive species for many areas of the world including Eastern Europe (Baltics, Belarus, Ukraine, Nord, Central and South Russian regions), the Caucasus, Iran, Siberia, Eastern China, North and South America, South Africa, Australia, and New Zealand (Flora Nizhnego Dona …, 1985; Tabaka et al., 1988; Mosyakin, Fedoronchuk, 1999; Opredelitel vysshikh …, 1999; Mayevskiy, 2014; Veronica agrestis …, 2021).

There is one indication for Siberia in the city of Tomsk (Kosachev, Ebel, 2010). For the flora of the Ural region, only one find is indicated each for the Republic of Bashkortostan in the Ufa city (Noskov, 1931, cited in Muldashev et al., 2017), for the Chelyabinsk Region in Solnechny settlement (Kulikov, 2010), for the Perm Territory (Illyustiriovannyy opredelitel …, 2007). These are the first collection of this species from the territory of the Sverdlovsk Region and the Udmurtian Republic.

Taxonomic notes

V. agrestis is a ruderal-segetal annual plant, belongs to the subgenus *Pocilla* (Dumort.) Martínez-Ortega, Albach et Fischer. The species complex of *V. agrestis*, *V. opaca* Fr. and *V. polita* Fr. is considered as sibling species. It differs from *V. opaca* and *V. polita* in the absence of simple hairs in the pubescence of the capsule (only glandular hairs are present), in a whitish, pale blue or pinkish corolla (in *V. opaca* and *V. polita*, corollas are generally bright blue), from *V. opaca*, it differs in less pubescent sepals, an obcordate capsule (in *V. opaca*, it is obreniform), and from *V. polita* – in lanceolate obtuse rather than ovoid acicular sepals (Drabble, Little, 1931; Walters, Webb, 1972; Yelenevsky, 1978). *V. agrestis*, unlike the other two species, is a tetraploid (2n = 28), not a diploid.

Examined specimens (new records): “Udmurtian Republic, Sharkanskysky district, Lyalshur village, in the courtyard of the Lyalshur secondary school. On a flower garden near the school building, widely, blooms, bears fruit. 30 VII 2012. A. N. Puzyrev, Yu. N. Batanogova” (UDU); “Udmurtian Republic, Yakshur-Bodya district, village Yakshur-Bodya, on a flower garden near the building of an elementary school opposite the bus station. 15 VIII 2013. A. N. Puzyrev, N. A. Prozorova” (UDU); Ibid., “Weed on the flower garden, on the paths and in the crevice at the edge of the sidewalk. 21 VIII 2014. A. N. Puzyrev, N. A. Prozorova” (UDU); “Udmurtian Republic, Uvinsky district, the city of Novy Multan, in the courtyard of the Novomultan special correctional general education residential school of the VIII type. In the gap at the sidewalk, near the flower garden, several specimens. 22 VIII 2015. A. N. Puzyrev, K. N. Lipina” (UDU, LE); Ibid. “In planting beets, widely. 22 VIII 2015. A. N. Puzyrev, K. N. Lipina” (UDU, LE); Ibid. “Weed on the flower garden near the school building, widely. 22 VIII 2015. A. N. Puzyrev, K. N. Lipina” (UDU, LE); Ibid. “In planting beets, often. 22 VIII 2015. A. N. Puzyrev, K. N. Lipina” (UDU); “Udmurt Republic, village of Yakshur-Bodya, in courtyard of a secondary school (Pushinoy str., 61), near the building of an elementary school. On a flower garden among Lobularia and other ornamental plants. 09 VIII 2016. A. N. Puzyrev, N. A. Prozorova” (UDU, LE); “Udmurtian Republic, the city of Votkinsk, in the courtyard of the ecological and biological center (Chaikovskogo str., 6). Weed in the orchard, near the compost heap. 24 VIII 2017. A. N. Puzyrev, E. N. Baralgina” (UDU); Ibid. “On the path between planting onions. 24 VIII 2017. A. N. Puzyrev, E. N. Baralgina” (UDU); “Sverdlovsk Region, Alapaevsky district, the vicinity of the village Novoyamovo, sowing peas (59°54′46.3″N, 61°43′23.7″E). 26 VII 2019. N. Yu. Grudanov, P. V. Kondratkov, A. S. Tretyakova” (UFU).
Conclusions

In the course of the studies carried out in some regions of the Urals and adjacent territories, a number of rare and new species for these territories were discovered: Astragalus saphronovae Kulikov, Atraphaxis decipiens Jaub. et Spach., Carex angunensis F. Schmidt, Galium densiflorum Ledeb., Jovibarba globifera (L.) J. Parn., Najas minor All., Potamogeton nodosus Poir., Pseudorchis albida (L.) A. Löve et D. Löve, Salix myrsinifolium L., Veronica agrestis L. The materials will be useful for maintaining the Red Data Books and floristic lists of the Aktobe, Sverdlovsk and Chelyabinsk Regions, as well as for the Udmurtian Republic and Khanty-Mansi Autonomous Area.

Acknowledgments

We express our gratitude to Doctors of Biology M. S. Knyazev and I. V. Belyaeva for advice and assistance in determining herbarium specimens.

The work was supported by the state assignments: AAAA-A19-119031290052-1 “Sosudistyye rasteniya Evrazi: sistematika, flora, rastitel'nye resursy” [“Vascular plants of Eurasia: systematics, flora, plant resources”], AAAA-A18-118011990151-7 “Izucheniye, sokhraneniye i rasshireniye bioraznoobraziya rasteniy v prirode i pri introduktii na Yuzh nom Urale i Priuralye” [“Study, conservation and expansion of plant biodiversity in nature and during introduction in the Southern Urals and the Cis- and Trans-Urals region”], AAAA-A17-117050400146-5 “Otsenka prostranstvennovremennoy izmenchivosti bioraznoobraziya i usloviy yego formirovaniya na Severe Zapadnoy Sibiri v svyazi s izmeneniyem klima i osvoynenyim neftegazovykny resursov” [“Assessment of the spatio-temporal variability of biodiversity and the conditions for its formation in the north of Western Siberia in connection with climate change and the development of oil and gas resources”], and by “ Programmoy povysheniya konkurentosposobnosti Uralskogo federalnogo universiteta” [“The program for improving the competitiveness of the Ural Federal University”] (the decree no. 211 of the Government of the Russian Federation, contract no. 02.A03.21.0006).

The finds of species in the Khanty-Mansi Autonomous Area – Yugra were made during the research for the regional Red Data Book.

REFERENCES / ЛИТЕРАТУРА

Abramov N. V. 1995. Konspekt flory Respubliki Mariy El [Synopsis of the flora of the Republic of Mari El]. Yoshkar-Ola: Mari State University Press. 192 pp. [In Russian] (Абрамов Н. В. Конспект флоры Республики Марий Эл. Йошкар-Ола: МарГУ, 1995. 192 c.).

Baranova O. G., Puzyrev A. N. 2012. Conspectus florae provinciae Udmurtiensis (plantae vasculares). Moscow, Izhevsk: Institute for Computer Research. 212 pp. [In Russian] (Баранова О. Г., Пузьрев А. Н. Конспект флоры Удмуртской Республики (сосудистые растения): монография. М.-Ижевск: Институт компьютерных исследований, 2012. 212 c.).

Bakin O. V., Rogova T. V., Sitnikov A. P. 2000. Sosudistyye rasteniya Tatarstana [Vascular plants of Tatarstan]. Kazan: Kazan University Publishing House. 496 pp. [In Russian] (Бакин О. В., Рогова Т. В., Ситников А. П. Сосудистые растения Татарстана. Казань: Изд-во Казанского университета, 2000. 496 c.).

Bartha L., Dragoş N., Molnár V. A., Sramkó G. 2013. Molecular evidence for reticulate speciation in Astragalus (Fabaceae) as revealed by a case study from sect. Dissitiflori. Botany 91(10): 702–714. DOI: 10.1139/cjb-2013-0036

Bateman R. M., Rudall R. J., Denholm I. 2017. Morphometric comparison of British Pseudorchis albida with Icelandic P. straminea (Orchidaceae: Orchidinae). New Journal of Botany 7(2–3): 78–93. DOI: 10.1080/20423489.2017.1408191

Belyaeva I. V., Epanchintseva O. V., Shatalina A. A., Semkina L. A. 2006. Willows of Ural: atlas and identification key. Yekaterinburg: UB RAS. 174 pp. [In Russian] (Беляева И. В., Епанчинцева О. В., Шаталина А. А., Семкина Л. А. Ива Урала: атлас-определитель. Екатеринбург: УрО РАН, 2006. 174 c.).

Birykova O. V., Schestakova A. A., Belyakov E. A., Garin E. V. 2017. On the distribution of Caulinia minor (All.) Coss. et Germ. (Hydrocaritaceae, Lilippsida) on the territory of the Nizhny Novgorod region. Povolzhskiy Journal of Ecology 3: 251–259. DOI: 10.18500/1684-7318-2017-3-251-259

 Bjalt V. V. 2001. Jovibarba Opiz In: Flora Europae orientalis. T. 10. Magnoliophyta (=Angiospermae). N. N. Tzvelev (Ed.). Petropoli: Mir i Semia. Pp. 257–259. [In Russian] (Бялт В. В. Бородник – Jovibarba Opiz // Флора Восточной Европы. Т. 10. Под ред. Н. Н. Цвелев. СПб: Мир и семья, 2001. С. 257–259).

Busch N. A. 1952. Pyrolaceae Lindl. In: Flora USSR. T. XVIII. B. K. Schischkin, E. G. Bobrov (eds). Moscow, Leningrad. Editio Academiae scientiarum URSS. Fl. Pp. 7–19. [In Russian] (Бус Ш. А. Сем. Грушанковые – Pyrolaceae Lindl. // Флора СССР. Т. 18. М.-Л.: Наукова Думка, 1952. С. 7–19).
Мартыненко В. А., Груцев В. И. 2008. Сосудистые растения Республики Коми. Сыктывкар, 2008. 136 с.

Майевский П. Ф. 2014. Flora sredney polosy veyropeyskoy chasti Rossii [Flora of the middle zone of the European part of Russia]. 11th ed. Moscow: Tovarishchestvo nauchnykh izdaniy KMK. 635 pp. [In Russian] (Майевский П. Ф. Флора средней полосы европейской части России. 11-e изд. М.: Т-во науч. изд. КМК, 2014. 635 с.).

Мелников Д. Г. 2019. The planned border of “Flora of the Urals and adjacent territories”. In: Botaniko-geograficheskije issledovaniya: sbornik nauchnykh trudov [Botanical and geographical research. Kamelinsky readings: compendium of scientific works]. S. A. Ovesnov, O. G. Baranova (eds). Perm: Publishing House of the Perm National Research Polytechnic University. Pp. 108–112. [In Russian] (Мелников Д. Г. Планируемые границы «Флоры Урала и прилегающих территорий» // Ботанико-географические исследования. Камелинские чтения: сб. науч. тр. Под ред. С. А. Овеснова, О. Г. Барановой. Пермь: Изд-во Перм. нац. исслед. политехн. ун-та, 2019. С. 108–112).

Мелников Д. Г., Князев М. С., Баранова О. Г. 2018. The Urals need its own “Flora”. In: Botanika v sovremennom mire. Trudy XIV Sъезда Русского ботанического общества и конференции “Botanika v sovremennom mire” [Botany in the modern world. Proceedings of the XIV Congress of the Russian Botanical Society and the conference “Botany in the modern world” (Makhachkala, June 18-23, 2018)]. Vol. 1: Systematics of higher plants. Floristics and geography of plants. Plant protection. Paleobotany. Botanical education. Makhachkala: ALEF. Pp. 134–165.

Меркулович Н. А. 1941. Najadaceae. In: Flora Uzbekistanica. Vol. 1. R. R. Schreder (Ed.). Taschkent: Editio sectionis Uzbekistanciae Academiae Scientiarum URSS. Pp. 134–135. [In Russian] (Меркулович Н. А. Najadaceae // Флора Узбекистана. Т. 1. Гл. ред. Р. Р. Шредер. Ташкент: Изд-во Узб. филиала АН СССР, 1941. С. 134–135).

Мидорикава Ш., Шутох К., Шига Т. 2020. An easy method of identifying herbarium specimens of Najas minor and N. oguraensis (Hydrocharitaceae). Acta Phytotax. Geobot. 71(1): 55–63. DOI: 10.18942/apg.201915

Моо D. M. 1980. Pseudorchis Seguier. In: Flora Europaea. Vol. 5. Alismataceae to Orchidaceae (Monocotyledones). T. G. Tutin, V. H. Heywood, N. A. Burges, D. M. Moore, D. H. Valentine, S. M. Walters, D. A. Webb (eds). Cambridge: Cambridge University Press. P. 332.

Мосякин С. Л., Федорончук М. М. 1999. Vascular plants of Ukraine. A nomenclatural checklist. Kiyev. 346 pp. DOI: 10.13140/2.1.2985.0409

Мулдасhev A. A., Abramova L. M., Golovanov Ya. M. 2017. Konspekt adventivnykh vidov rasteniy Respubliki Bashkortostan [Synopsis of adventive plant species of the Republic of Bashkortostan]. Ufa: Bashkirskaya entsiklopediya. 168 pp. [In Russian] (Мулдасhev A. A., Abramova L. M., Golovanov Ya. M. Konspekt adventivnykh vidov rasteniy Respubliki Bashkortostan. Уфа: Баш. энциклопедия, 2017. 168 с.).

Najas minor All. in GBIF Secretariat. 2021. GBIF Backbone Taxonomy. Checklist dataset https://doi.org/10.15468/39omei

Науменко Н. И. 2008. On the flora and vegetative cover of Southern Zauralye. Kurgan: Kurgan University Press. 512 pp. [In Russian] (Науменко Н. И. Флора и растительность Южного Зауралья: монография. Курган: Изд-во Курганского ун-та, 2008. 512 с.).

Науменко Н. И., Кузмин И. В., Глаузуков В. А. 2011. Additions and corrections to the flora of the Nizhnetavdinsky district of the Tuymen Region and the history of its study. In: IV Tavdinskije chteniya: Materialy regionalnog nauchno-prakticheskij konferentsi// IV Tavdinsky readings: Materials of the regional scientific-practical conference (v. Nizhnyaya Tavda, 3 November 2011). Tuymen. Pp. 105–116. [In Russian] (Науменко Н. И., Кузмин И. В., Глаузуков В. А. Дополнения и исправления к флоре Нижнетавдинского района Тюменской области и истории ее изучения // IV Тавдинские чтения: Материалы регионально-научно-практической конференции (т. Нижняя Тавда, 3 ноября 2011). Тюмень, 2011. С. 105–116).

Наутоva E. G. 1996. Galium L. In: Flora Sibiri [Flora of Siberia]. Т. 12. Solanaceae – Lobeliaceae. А. В. Полозжив, Г. А. Пешкова (eds). Novosibirsk: Science. Siberian publishing firm RAN. Pp. 110–124. [In Russian] (Наутоva E. G. Galium L. – Подмаревник // Флора Сибири: в 14 т. Т. 12: Solanaceae – Lobeliaceae / Сост. А. В. Полозжив, С. Н. Выдрин, В. И. Курбатский и др. Новосибирск: Наука. Сибирская издательская фирма РАН, 1996. С. 110–124).

Носков А. К. 1931. Ufa and its environs (Preliminary report on botanical and geographical research). Acta horti botanici Acad. Scient. (ante Petropolitani) 42(2): 181–209. [In Russian] (Носков А. К. Уфа и ее окрестности (Предварительный отчет о ботаническо-географических исследованиях // Тр. Ботан. сада АН СССР, 1931. T. XII. Вып. 2. С. 181–209).

Определитель высших растений Башкирии ASSR [Key for higher plants identification of the Bashkir ASSR. Brassicaceae – Asteraceae]. 1989. E. V. Kucherov, A. A. Muldashev (Ex. Eds). Moscow: Nauka. 375 pp. [In Russian]
(Определитель высших растений Башкирской АССР. Сем. Brassicaceae – Asteraceae. Отв. ред. Е. В. Кучеров, А. А. Мулдашев, М.: Наука, 1989. 375 с.)

Определитель вышних растений Беларуси [Key for higher plants identification of Belarus]. 1999. V. I. Парфенов (Ed.). Minsk: Dizaim PRO. 472 pp. [In Russian] (Определитель высших растений Беларуси. Под ред. В. И. Парфенова. Минск: Дизай ПРО, 1999, 472 с.).

Определитель сосудистых растений Среднего Урала [Key for vascular plants identification of the Middle Urals], 1994. П. Л. Гочаковский (Ex. Ed.). Moscow: Nauka. 525 pp. [In Russian] (Определитель сосудистых растений Среднего Урала. Отв. ред. П. Л. Гочаковский. М.: Наука, 1994. 525 с.).

Определитель сосудистых растений Ульяновской области (Флора Ульяновской области. Т. 2). Тольятти: Кассандра, 2014. 295 с.

Саксонов С. В., Сенатор С. А. (eds.). Madrid: Real Jardín Botánico, CSIC. Pp. 279–338. [In Spanish] (Á. M. Саксонов, S. А. Сенатор (eds.). Мадрид: Реал Ботанический сад, CSIC. С. 279–338.)

Саксонов С. В., Сенатор С. А., Васюков В. М. 2014. Определитель сосудистых растений Ульяновской области (Флора Ульяновской области. Т. 2). Тольятти: Кассандра. 295 с.

Саксонов С. В., Сенатор С. А., Васюков В. М. 2014. Определитель сосудистых растений Ульяновской области (Флора Ульяновской области. Т. 2). Тольятти: Кассандра. 295 с.

Сенатор С. А., Васюков В. М. 2014. Определитель сосудистых растений Ульяновской области (Флора Ульяновской области. Т. 2). Тольятти: Кассандра. 295 с.

Pinchenina (Balde) E. A. 2014. The taxonomic characters and its significance for systematics of genus Galium (Rubiaceae). In: Perspektivy razvitiya i problemy sovremennoy botaniki. Materialy III (V) Vserossiyskoy molodezhnoy konferentsii s uchastiyem inostrannykh uchenykh [Development prospects and problems of modern botany: Proceedings of the III (V) All-Russian youth conference with the participation of foreign scientists (November 10–14, 2014, Novosibirsk)]. S. V. Asbaganov (Ex. Ed.). Novosibirsk: Publishing house “Akademizdat”. Pp. 31–33. [In Russian] (Пинженнина (Балде) Е. А. Таксономические признаки и их значение для систематики рода Galium (Rubiaceae) // Перспективы развития и проблемы современной ботаники: Материалы III (V) Всеросс. молодеж. конф. с участием иностран. ученых (10–14 ноября 2014 г., г. Новосибирск). Отв. ред. С. В. Асбаганов. Новосибирск: Изд-во «Академиздат», 2014, С. 31–33.)

Pinchenina E. A. 2020. Analysis of the ranges of the type section representatives of the genus Galium L. (Rubiaceae Juss.) in Asian Russia. In: Problems of Botany of South Siberia and Mongolia 19(2): 346–351. [In Russian] (Пинженнина Е. А. Анализ ареалов представителей типовой секции рода Galium L. (Rubiaceae Juss.) в Азийской России) // Проблемы ботаники Южной Сибири и Монголии, 2020. Т. 19, № 2. DOI: 10.14258/pbssm.2020132.
Salix myrsinifolius L. in GBIF Secretariat. 2021. GBIF Backbone Taxonomy. Checklist dataset https://doi.org/10.15468/390mei accessed via GBIF.org on 2021-06-10.

Shaulo D., Artemov A., Doduk A., Molokova N. 2006. The floristic findings in Tyva Republic. Turczaninowia 9, 3: 90–98. [In Russian]. (Shaule D. N., Artemoev A. I., Doduk A. D., Molokova N. N. Флористические находки в Республике Тыва // Turczaninowia. 2006. Т. 9, № 3. С. 90–98).

Skvortsov A. K. 1966. Salix L. In: Flora Arctica USSR. Revisio critica plantarum vascularum in regione Arctica Unionis Rerum Publicarum Sovieticarum Socialisticarum sponte crescentium. Fasc. V. Salicaceae – Portulacaceae. A. I. Tolmatchev (Ed.). Moskva, Leninopoli: Editio "Nauka". Pp. 11–118. [In Russian] (Скворцов А. К. Salix – Ива // Арктическая флора СССР. Критический обзор сосудистых растений, встречающихся в арктических районах СССР. Вып. 5. Salicaceae – Portulacaceae. Под ред. А. И. Толмащева. М.–Л.: Наука, 1966. С. 11–118).

Skvortsov A. K. 1980. Pyroleaceae Dum. In: Flora Arctica USSR. Revisio critica plantarum vascularum in regione Arctica Unionis Rerum Publicarum Sovieticarum Socialisticarum sponte crescentium. Fasc. VIII. Geraniaceae – Scrophulariaceae. A. I. Tolmatchev, B. A. Yurtsev (eds). Leninopoli: Editio "Nauka". Pp. 95–105. [In Russian] (Скворцов А. К. Сем. Pyroleaceae Dum. – Грушанковые // Арктическая флора СССР. Критический обзор сосудистых растений, встречающихся в арктических районах СССР. Вып. 8. Salicaceae – Portulacaceae. Под ред. А. И. Толмащева и Б. А. Юрцева. Л.: Наука, 1980. С. 95–105).

Skvortsov A. K. 1981. Pyroleaceae Dum. In: Flora partis europaeae URSS. T. V. Magnoliophyta (=Angiospermae), Magnoliopsida (=Dicotyledines). An. A. Fedorov (Ed. Princ.). Leningrad: Nauka. Pp. 52–57. [In Russian] (Скворцов А. К. Сем. Pyroleaceae Dum. – Грушанковые // Флора Европейской части СССР. Т. 5. Покрытосеменные, Двудольные. Л.: Наука, 1981. С. 52–57).

Skvortsov A. K. 1999. Willows of Russia and adjacent countries. Taxonomical and geographical revision. Univ. Joensuu Fac. Math. Nat. Sci. Rep. Ser. 39: 1–307.

Suizer P. V. 1912. Florae uralensis in finibus provinciae Permensis conspectus. In: Materialy k poznaniu fauny i flory Rossisskiy imperit [Materials for the knowledge of the fauna and flora of the Russian Empire. Botanical department]. Iss. 7. Moscow: Tipo-litografyia Tovarishchestva I. N. Kushnerev i Ko. 206 pp. [In Russian] (Сюзев П. В. Конспект флоры Урала в пределах Пермской губернии // Материалы к познанию фауны и флоры Российской империи. Отд. ботан. Вып. 7. М.: Типо-литография Товарищества И. Н. Кушнерева и Ко., 1912. 206 c.).

Sytn A. K. 2009. Astralagyl (Astralagus L., Fabaceae) Vostochnyy Yevropy i Kavkaza: sistematika, geografiya, evolyutsiya [Astralagus L. (Fabaceae) of Eastern Europe and the Caucasus: taxonomy, geography, evolution]: Abstract of dissertation ... Doctor of Biological Sciences. St. Petersburg. 48 pp. [In Russian] (Сытин А. К. Астрагалы (Astralagus L., Fabaceae) Восточной Европы и Кавказа: систематика, география, эволюция: Автореф. дис. ... д-ра биол. наук. СПб., 2009. 48 c.).

Tabaka L., Gavrilova G., Fatare I. 1988. Flora sosudishtyk rasteniy Latviyskoy SSR [Flora of vascular plants of the Latvian SSR]. Rigas: Zinatne. 195 pp. [In Russian] (Табака Л., Гаврилова Г., Фатаре И. Флора сосудистых растений Латвийской ССР. Рига: Зинатне, 1988. 195 c.).

Tarasova E. M. 2007. Flora Vyatskogo kraya. Chast I. Sosudistyye rasteniy [Flora of the Vyatka Territory. Part I. Vascular plants]. Kirov: OAO "Кировская областная типография". 440 pp. [In Russian] (Тарасова Е. М. Флора Вятского края. Ч. 1. Сосудистые растения. Киров: ОАО "Кировская областная типография", 2007. 440 c.).

The World Checklist of Vascular Plants (WCVP). [2021]. URL: https://wcvp.science.kew.org (Accessed 18 Jun 2021).

Tikhomirov Val. N. 2015. New combination in the genus Caulinia Willd. (Hydrocharitaceae). Novosti sistematiki vyshshikh rasteniy [Novit. Syst. Pl. Vasc.] 46: 25–28. [In Russian] (Тихомиров В. Н. Новая комбинация в роде Caulinia Willd. (Hydrocharitaceae) // Новости систем. высш. раст., 2015. Т. 46. С. 25–28).

Triest L. 1988. A revision of the genus Najas L. (Najadaceae) in the Old World. Brussels: Academie Royale des Sciences d'Outre-Mer. 172 pp.

Tyurin V. N., Baykalova A. S. 2012. New finds of rare plants in the Northern Urals (Khanty-Mansi Autonomous Area – Yugra). In: Biologicheskiye raznoobraznye rastitelnykh mira Urala i sopredelnykh territoriy: materialy Vserossiyskoy konferentsii s mezhdunarodnym uchastvistom [Biological diversity of the flora of the Urals and adjacent territories: materials of the All-Russian conference with international participation (Yekaterinburg, May 28 – June 1, 2012)]. Yekaterinburg: Goshchitskiy. Pp. 96–97. [In Russian] (Тюрин В. Н., Байкалова А. С. Новые находки редких растений на Северном Урале (ХМАО – Югра) // Биологическое разнообразие растительного мира Урала и
Варлыгина Т. И., Вахрамеева М. Г., Татаренко И. В. 2014. Орхидные России (биология, экология, охрана). М.: Т-во науч. изд. КМК, 2014. 437 с. (Варлыгина Т. И., Вахрамеева М. Г., Татаренко И. В. Орхидные России (биология, экология, охрана). М.: Т-во науч. изд. КМК, 2014. 437 с.).

Васильева Л. И. 1987. Astragalus L. In: Flora Europaea Orientalis. T. IX. Magnoliophyta (= Angiospermae), Magnoliopsida (= Dicotyledines). N. N. Tzvelev (Ed. Princ.). Petropoli: Mir и Semia–XCV. Pp. 47–76. [In Russian] (Васильева Л. И. Род Астрагал – Astragalus L. // Флора Восточной Европы. Т. 9. Покрытосеменные, Двудольные. СПб.: Мир и семья–95, 1996. С. 8–23).

Васильева Л. И. 1987. Astragalus subgenus Calycocystis Bge. In: Flora Kazakhstana [Flora of Kazakhstan]. Vol. 5. N. V. Pavlov (Ch. Ed.). Alma-Ata: Publishing house of the Academy of Sciences of the Kazakh SSR. Pp. 299–330. [In Russian] (Васильева Л. И. Род Астрагал – Astragalus subgenus Calycocystis // Флора Казахстана. Т. V. Гл. ред. Н. В. Павлов. Алма-Ата: Изд-во АН КазССР, 1961. С. 299–330).

Васюков В. М., Саксонов С. В. 2020. Check-list of the flora of Penza Region (Flora of the Volga River basin. Vol. IV). S. V. Saksnon (Ed.). Togliatti: Anna. 211 pp. [In Russian] (Васюков В. М., Саксонов С. В. Контект флоры Пензенской области (Флора Волжского бассейна. Т. 4). Тольятти: Анна, 2020. 211 с.).

Veronica agrestis L. in GBIF Secretariat. 2021. GBIF Backbone Taxonomy. Checklist dataset https://doi.org/10.15468/39omei accessed via GBIF.org on 2021-06-10.

Walters S. M., Webb D. A. 1972. Veronica L. In: Flora Europaea. Vol. 3. Diapensiaceae to Myoporaceae. Tutin T. G., Heywood V. H., Burges N. A., Moore D. M., Valentine D. H., Walters S. M., Webb D. A. (eds.). Cambridge: Cambridge University Press. Pp. 242–251.

Yelenovsky A. G. 1978. Sistematika i geografiya veronik SSSR i prilezhashchikh stran [Systematics and geography of the Veronica of the USSR and adjacent countries]. Москвa: Наукa. 259 pp. [In Russian] (Еленевский А. Г. Систематика и география вероник СССР и прилегающих стран. М.: Наука, 1978. 259 с.).

Zasukha T. A., Likhovidova T. F. 2001. Rare plants of the Tyumen Region according to the results of the expedition “Tyumen forest-steppe – 2000”. In: Yezyegodnik Tyumenskogo oblastnogo krayevedcheskogo museya – 2000 [Yearbook of the Tyumen Regional Museum of Local History – 2000]. Tyumen. Pp. 340–348. [In Russian] (Засуха Т. А., Лиховидова Т. Ф. Редкие растения Тюменской области по результатам экспедиции «Тюменская лесостепь – 2000» // Ежегодник Тюменского областного краеведческого музея – 2000. Тюмень, 2001. С. 340–348).