On the Riemann hypothesis for self-dual weight enumerators of genus three

Koji Chinen* and Yuki Imamura**

Abstract

In this note, we give an equivalent condition for a self-dual weight enumerator of genus three to satisfy the Riemann hypothesis. We also observe the truth and falsehood of the Riemann hypothesis for some families of invariant polynomials.

Key Words: Zeta function for codes; Invariant polynomial ring; Riemann hypothesis.
Mathematics Subject Classification: Primary 11T71; Secondary 13A50, 12D10.

1 Introduction

Zeta functions for linear codes were introduced by Iwan Duursma [6] in 1999 and they have attracted attention of many mathematicians:

Definition 1.1 Let C be an $[n,k,d]$-code over \mathbf{F}_q ($q = p^r$, p is a prime) with the Hamming weight enumerator $W_C(x,y)$. Then there exists a unique polynomial $P(T) \in \mathbf{R}[T]$ of degree at most $n-d$ such that

$$
\frac{P(T)}{(1-T)(1-qT)}(y(1-T) + xT)^n = \cdots + \frac{W_C(x,y) - x^n}{q-1} T^{n-d} + \cdots.
$$

We call $P(T)$ and $Z(T) = P(T)/(1-T)(1-qT)$ the zeta polynomial and the zeta function of $W(x,y)$, respectively.

If C is self-dual, then $P(T)$ satisfies the functional equation (see [7, §2]):

Theorem 1.2 If C is self-dual, then we have

$$
P(T) = P\left(\frac{1}{qT}\right)q^{gT^{-2g}},
$$

where $g = n/2 + 1 - d$.

*Department of Mathematics, School of Science and Engineering, Kindai University. 3-4-1, Kowakae, Higashi-Osaka, 577-8502 Japan. E-mail: chinen@math.kindai.ac.jp
**Interprism Inc. Kurihara BLD 2F Nihonbashi-kakigara-cho 2-12-8 Chuo-ku Tokyo, 103-0014 Japan. E-mail: yuki-i-xyz@outlook.jp
The number g is called the *genus* of C. It is appropriate to formulate the Riemann hypothesis as follows:

Definition 1.3 The code C satisfies the Riemann hypothesis if all the zeros of $P(T)$ have the same absolute value $1/\sqrt{q}$.

The reader is referred to [8] and [9] for other results by Duursma.

Remark. The definition of the zeta function can be extended to much wider classes of invariant polynomials: let $W(x, y)$ be a polynomial of the form

$$W(x, y) = x^n + \sum_{i=d}^{n} A_i x^{n-i} y^i \in \mathbb{C}[x, y] \quad (A_d \neq 0)$$

which satisfy $W^{\sigma_q}(x, y) = \pm W(x, y)$ for some $q \in \mathbb{R}$, $q > 0$, $q \neq 1$, where

$$\sigma_q = \frac{1}{\sqrt{q}} \begin{pmatrix} 1 & q-1 \\ 1 & -1 \end{pmatrix} \quad (\text{the MacWilliams transform})$$

and the action of $\sigma = \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right)$ on a polynomial $f(x, y) \in \mathbb{C}[x, y]$ is defined by $f^\sigma(x, y) = f(ax + by, cx + dy)$. Then we can formulate the zeta function and the Riemann hypothesis for $W(x, y)$ in the same way as Definitions 1.1 and 1.3. For the results in this direction, the reader is referred to [1]–[5], for example. We should also note that we must assume $d, d^\perp \geq 2$, where d^\perp is defined by $W^{\sigma_q}(x, y) = B_0 x^n + B_{d^\perp} x^{n-d^\perp} y^{d^\perp} + \cdots$, when considering the zeta function of $W(x, y)$.

We do not know much about the Riemann hypothesis for self-dual weight enumerators, but one of the remarkable results is the following theorem by Nishimura [11, Theorem 1], an equivalent condition for a self-dual weight enumerator of genus one to satisfy the Riemann hypothesis:

Theorem 1.4 (Nishimura) A self-dual weight enumerator $W(x, y) = x^{2d} + A_d x^d y^d + \cdots$ satisfies the Riemann hypothesis if and only if

$$\frac{\sqrt{q} - 1}{\sqrt{q} + 1} \left(\frac{2d}{d} \right) \leq A_d \leq \frac{\sqrt{q} + 1}{\sqrt{q} - 1} \left(\frac{2d}{d} \right).$$

Nishimura also deduces the following, the case of genus two ([11, Theorem 2]):

Theorem 1.5 (Nishimura) A self-dual weight enumerator $W(x, y) = x^{2d+2} + A_d x^{2d+2} y^d + \cdots$ satisfies the Riemann hypothesis if and only if the both roots of the quadratic polynomial

$$A_d X^2 - \left((d - q) A_d + \frac{d + 1}{d + 2} A_{d+1} \right) X - (d + 1)(q + 1) \left(A_d + \frac{A_{d+1}}{d + 2} \right) + (q - 1) \left(\frac{2d + 2}{d} \right)$$

are contained in $[-2\sqrt{q}, 2\sqrt{q}]$.

The purpose of this article is to establish an analogous equivalent condition for the case of genus three. Our main result is the following:

2
Theorem 1.6 A self-dual weight enumerator \(W(x, y) = x^{2d+4} + A_d x^{d+4} y^d + \cdots \) satisfies the Riemann hypothesis if and only if all the roots of the cubic polynomial

\[
 f_3 X^3 + f_2 X^2 + f_1 X + f_0
\]

are contained in \([-2\sqrt{q}, 2\sqrt{q}]\), where \(f_i \) is defined as follows.

\[
 f_3 = A_d,
\]
\[
 f_2 = (q - d)A_d - \frac{d + 1}{d + 4} A_{d+1},
\]
\[
 f_1 = \frac{1}{2} (d^2 - 2qd + d - 6q) A_d + (d - q + 1) \frac{d + 1}{d + 4} A_{d+1} + \frac{(d + 1)(d + 2)}{(d + 3)(d + 4)} A_{d+2},
\]
\[
 f_0 = \frac{1}{2} (q + 1)(d^2 + 3d - 4q + 2) A_d + (q + 1)(d + 1)(d + 2) \frac{A_{d+1}}{d + 4} + (q + 1) \frac{(d + 1)(d + 2)}{(d + 3)(d + 4)} A_{d+2} - (q - 1) \left(\frac{2d + 4}{d + 4} \right).
\]

By this theorem, we can verify the truth of the Riemann hypothesis of \(W(x, y) \) only by three parameters \(A_d, A_{d+1}, A_{d+2} \) (the number of parameters which are needed coincides with the genus \(g \), see [1]). Moreover, in many cases, we have \(A_{d+1} = 0 \) and the verification of the Riemann hypothesis is simplified.

Theorem 1.6 leads us to the consideration of the truth or falsehood of the Riemann hypothesis as the numbers \(q \) and \(n \) vary. As was mentioned in Remark before, \(q \) can take other numbers than prime powers. In this context, we can notice the tendency that the Riemann hypothesis becomes harder to hold if \(n \) or \(q \) are larger. Some of the results in [3] and [4] also support it. Theorem 1.6 can illustrate this tendency by considering a certain sequence of invariant polynomials, that is

\[
 W_{n,q}(x, y) = (x^2 + (q - 1)y^2)^n. \tag{1.8}
\]

In Section 2, we give a proof of Theorem 1.6. In Section 3, we observe the behavior of \(W_{n,q}(x, y) \), give some theoretical and experimental results, and state a conjecture on their Riemann hypothesis.

2 Proof of Theorem 1.6

Let \(W(x, y) = x^{2d+4} + \sum_{i=d}^{2d+4} A_i x^{2d+4-i} y^i \) be a self-dual weight enumerator. Using the functional equation (1.2) (note that \(g = 3 \) in our case), we can assume that the zeta polynomial \(P(T) \) of \(W(x, y) \) is of the form

\[
 P(T) = a_0 + a_1 T + a_2 T^2 + a_3 T^3 + a_2 q T^4 + a_1 q^2 T^5 + a_0 q^3 T^6.
\]

We obtain another expression of \(P(T) \) because \(1/q \alpha \) is a root of \(P(T) \) if \(P(\alpha) = 0 \):

\[
 P(T) = a_0 q^3 \prod_{i=1}^{3} (T^2 + b_i T + 1/q). \tag{2.1}
\]
Comparing the coefficients, we get

\[b_1 + b_2 + b_3 = \frac{a_1}{a_0 q}, \]
\[b_1b_2 + b_2b_3 + b_3b_1 = \frac{(a_2 - 3a_0 q)}{a_0 q^2}, \]
\[b_1b_2b_3 = \frac{(a_3 - 2a_1 q)}{a_0 q^3}. \]

Thus \(b_i \) is the roots of the following cubic polynomial:

\[a_0 q^3 X^3 - a_1 q^2 X^2 + (a_2 - 3a_0 q)qX - a_3 + 2a_1 q. \] (2.2)

Considering the distribution of the roots of each factor \(T^2 + b_i T + 1/q \) in (2.1), we can see that a self-dual weight enumerator \(W(x, y) \) of genus three satisfies the Riemann hypothesis if and only if \(b_1, b_2 \) and \(b_3 \) are contained in \([-2/\sqrt{q}, 2/\sqrt{q}]\). By change of variable in (2.2), we get the following:

Lemma 2.1 \(W(x, y) \) satisfies the Riemann hypothesis if and only if all the roots of the polynomial

\[a_0 X^3 - a_1 X^2 + (a_2 - 3a_0 q)X - a_3 + 2a_1 q \] (2.3)

are contained in \([-2\sqrt{q}, 2\sqrt{q}]\).

Our next task is to express the coefficients \(a_i \) in (2.3) by way of \(A_i \) in \(W(x, y) \). This can be done by comparing the coefficients of the both sides in (1.1). Our method is similar to that of Nishimura [11]. The result is the following (here, \(\alpha_{d+i} = A_{d+i}/(q - 1)\binom{n}{d+i} \)):

\[a_0 = \alpha_d, \]
\[a_1 = (d - q)\alpha_d + \alpha_{d+1}, \]
\[a_2 = \frac{1}{2}d(d - 2q + 1)\alpha_d + (d - q + 1)\alpha_{d+1} + \alpha_{d+2}, \]
\[a_3 = \frac{1}{6}d(d+1)(d-3q+2)\alpha_d + \frac{1}{2}(d+1)(d-2q+2)\alpha_{d+1} \\
 + (d - q + 2)\alpha_{d+2} + \alpha_{d+3}. \]

The coefficient \(a_3 \) is expressed by four parameters \(A_d, \ldots, A_{d+3} \). By invoking the binomial moment, the number of parameters is reduced to three. In fact, we have the following:

Lemma 2.2 Let \(W(x, y) \) be a self-dual weight enumerator of the form (1.3) and we assume \(g = 3 \). Then we have

\[\sum_{i=d+1}^{d+3} A_i \binom{2d + 4 - i}{d + 1} = q \sum_{i=0}^{d+1} A_i \binom{2d + 4 - i}{d + 3}. \] (2.4)

Proof. The equalities satisfied by the binomial moment of \(W(x, y) \) is given by

\[\sum_{i=0}^{n-j} \binom{n - i}{j} A_i = q^{\frac{2}{2} - j} \sum_{i=0}^{j} \binom{n - i}{n - j} A_i \quad (j = 0, 1, \ldots, n) \] (2.5)
We get (2.4) by putting $n = 2d + 4$ and $j = d + 1$. Using $A_0 = 1$, $A_1 = \cdots = A_{d-1} = 0$, we can see that (2.4) gives a linear relation among A_d, \cdots, A_{d+3}, so we can express A_{d+3} by A_d, A_{d+1} and A_{d+2}. Thus we get
\[
a_3 = -\frac{1}{2}(d + 1)(dq + d - 2q + 2)\alpha_d - (qd + d + 2)\alpha_{d+1} - (q + 1)\alpha_{d+2} + 1.
\]
Rewriting (2.3) using above a_i, we obtain Theorem 1.6.

3 Some examples and observations

We examine the polynomials (1.8), which has essentially only one parameter q and is easy to see the phenomenon. Using Nishimura’s results ($g = 1, 2$) and our theorem ($g = 3$), we can see that the range of q for which the Riemann hypothesis is true are the following:
\[
g = 1: \quad 4 - 2\sqrt{3} (\approx 0.53590) \leq q \leq 4 + 2\sqrt{3} (\approx 7.46410) \quad (q \neq 1),
\]
\[
g = 2: \quad -4 + 2\sqrt{5} (\approx 0.47214) \leq q \leq \alpha^2 (\approx 3.46812) \quad (q \neq 1),
\]
where
\[
\alpha = \frac{1}{6} \left(1 + \sqrt[3]{5(29 + 6\sqrt{6})} + \sqrt[3]{5(29 - 6\sqrt{6})}\right),
\]
and
\[
g = 3: \quad \beta_1 (\approx 0.47448) \leq q \leq \beta_3^2 (\approx 2.47607) \quad (q \neq 1),
\]
where β_1 is the unique real root of the polynomial
\[
100t^5 + 495t^4 + 2056t^3 - 2928t^2 + 1408t - 256
\]
and β_3 is the positive root of the polynomial
\[
13t^4 + 4t^3 - 20t^2 - 24t - 8.
\]
The cases $g = 1$ and 2 are not very complicated, but the last case needs some explanation. The relevant coefficients of $W_{4,q}(x, y)$ are
\[
A_d = A_2 = 4(q - 1), \quad A_3 = 0, \quad A_4 = 6(q - 1)^2.
\]
Using these values, we get the explicit form of the polynomial (1.7) as follows:
\[
g(X) := 5X^3 + 5(q - 2)X^2 - 2(11q - 6)X - 7q^2 + 20q - 8.
\]
Let D_g be the discriminant of $g(X)$, X_1 and X_2 be the roots of $g'(X)$ (we assume X_1, X_2 are real and $X_1 \leq X_2$). Then, by Theorem 1.6, $W_{4,q}(x, y)$ satisfies the Riemann hypothesis if and only if
\[
D_g \geq 0, \quad -2\sqrt{q} \leq X_1, \quad X_2 \leq 2\sqrt{q},
\]
\[
g(-2\sqrt{q}) \leq 0, \quad g(2\sqrt{q}) \geq 0.
\]
We have
\[\frac{D_g^{35}}{35} = 100q^5 + 495q^4 + 2056q^3 - 2928q^2 + 1408q - 256, \]
so \(D_g \geq 0 \) is equivalent to
\[q \geq \beta_1 \] (3.3)
with the above mentioned \(\beta_1 \). The roots \(X_i \) are given by
\[X_1 = \frac{-5(q-2) - \sqrt{25q^2 + 230q - 80}}{15}, \]
\[X_2 = \frac{-5(q-2) + \sqrt{25q^2 + 230q - 80}}{15}. \]
The range of \(q \) satisfying \(-2\sqrt{q} \leq X_1 \) is (note that we also have \(25q^2 + 230q - 80 \geq 0 \))
\[\frac{\sqrt{609} - 23}{5} \leq q \leq \beta_2, \] (3.4)
where \(\beta_2 \) is the square of the unique real root of the polynomial
\[10t^3 - 19t^2 - 20t - 6 \] (3.5)
(this polynomial comes from the equation \(-2\sqrt{q} = X_1 \)). The explicit value is
\[\beta_2 = \frac{1}{300} \left(761 + \sqrt[3]{386669681 + 396000\sqrt{17318}} + \sqrt[3]{386669681 - 396000\sqrt{17318}} \right) \]
\((\beta_2 \approx 7.38366, \) this expression of \(\beta_2 \) can be obtained by constructing the cubic polynomial having the squares of roots of (3.5) as its roots: \(100t^3 - 761t^2 + 172t - 36 \). The inequality \(X_2 \leq 2\sqrt{q} \) gives \((\sqrt{609} - 23)/5 \leq q \). Finally, putting \(\sqrt{q} = t \), we have
\[g(-2\sqrt{q}) = 13t^4 + 4t^3 - 20t^2 - 24t - 8, \]
\[g(2\sqrt{q}) = 13t^4 - 4t^3 - 20t^2 + 24t - 8. \]
The inequalities \(g(-2\sqrt{q}) \leq 0 \) and \(g(2\sqrt{q}) \geq 0 \) give
\[0 \leq q \leq \beta_3^2 \quad \text{and} \quad q \geq \beta_4^2 \approx 0.356397, \] (3.6)
respectively. Gathering the inequalities (3.3), (3.4) and (3.6), we obtain the estimate (3.1).
We can see from the above estimation that the range of \(q \) for which the Riemann hypothesis is true becomes smaller as \(n \) becomes larger. We show some results of numerical experiment for \(W_{n,q}(x, y) \). In the following table, “RH true” means the range of \(n \) where the Riemann hypothesis for \(W_{n,q}(x, y) \) seems to be true:

\(q \)	RH true
2	2 \leq q \leq 6
\frac{2}{3}	2 \leq n \leq 8
\frac{13}{10}	2 \leq n \leq 36
\frac{24}{20}	2 \leq n \leq 71
\frac{4}{5}	2 \leq n \leq 29
\frac{1}{2}	2 \leq n \leq 5
These numerical examples also support the above observation. We conclude the manuscript with the following conjecture:

Conjecture 3.1 For any \(n \geq 2 \), there exists \(q (q \approx 1) \) and \(W_{n,q}(x,y) \) satisfies the Riemann hypothesis.

References

[1] K. Chinen: Zeta functions for formal weight enumerators and the extremal property, Proc. Japan Acad. 81 Ser. A. (2005), 168-173.

[2] K. Chinen: An abundance of invariant polynomials satisfying the Riemann hypothesis, Discrete Math. 308 (2008), 6426-6440.

[3] K. Chinen: Construction of divisible formal weight enumerators and extremal polynomials not satisfying the Riemann hypothesis, arXiv:1709.03380.

[4] K. Chinen: Extremal invariant polynomials not satisfying the Riemann hypothesis, arXiv:1709.03389, to appear in Appl. Algebra Engrg. Comm. Comput.

[5] K. Chinen: On some families of divisible formal weight enumerators and their zeta functions, arXiv:1709.03396.

[6] I. Duursma: Weight distribution of geometric Goppa codes, Trans. Amer. Math. Soc. 351, No.9 (1999), 3609-3639.

[7] I. Duursma: From weight enumerators to zeta functions, Discrete Appl. Math. 111 (2001), 55-73.

[8] I. Duursma: A Riemann hypothesis analogue for self-dual codes, DIMACS series in Discrete Math. and Theoretical Computer Science 56 (2001), 115-124.

[9] I. Duursma: Extremal weight enumerators and ultraspherical polynomials, Discrete Math. 268, No.1-3 (2003), 103-127.

[10] F. J. MacWilliams, N. J. A. Sloane: The Theory of Error-Correcting Codes, North-Holland, Amsterdam, 1977.

[11] S. Nishimura: On a Riemann hypothesis analogue for selfdual weight enumerators of genus less than 3, Discrete Appl. Math. 156 (2008), 2352-2358.