G^{2}NetPL: Generic Game-Theoretic Network for Partial-Label Image Classification

Rabab Abdelfattah¹ Xin Zhang¹ Mostafa M. Fouda² Xiao-feng Wang¹ Song Wang¹
University of South Carolina, USA Idaho State University, USA

Motivation

• Multi-label image classification aims to predict all possible labels in an image which it is expensive to annotate all the labels.
• To relieve the annotation burden of full labeling, partial-label learning is used.

Overview of G^{2}NetPL

In G^{2}NetPL, each unobserved label is associated with a soft pseudo label, which, together with the network, formulates a two-player non-zero-sum non-cooperative game.

Loss Functions

\[\mathcal{L}_{\text{obs}}(\mathbf{y}, \mathbf{y}^\prime) = \sum_{j=1}^{n} |C_j(\mathbf{y}_j, F_j(\mathbf{y}_j)) + \lambda_j F_j(\mathbf{y}_j)(1 - F_j(\mathbf{y}_j))| \]
\[\mathcal{L}_{\text{G^{2}NetPL}} = \mathcal{L}_{\text{obs}} + \mathcal{L}_{\text{uns}}. \]
\[\mathcal{L}_{\text{uns}} = \sum_{j=1}^{n} \sum_{k=1}^{m_j} \mathcal{L}_k(\mathbf{y}_j, \mathbf{y}_k^0). \]

The pseudo labels will gradually build up their confidence during iterations.

Experiments

Table 1: Quantitative results (mAP) of multi-label image classification on four different datasets. Bold represents the highest mAP and underline represents the second-best among FSPL setting (Single positive and No negative).

Observed Labels	End-to-End Setting
LS [25]	All
LS–LS	All
AN [18]	Single
AN–LS [7]	Single
WSN [22]	Single
EPW [7]	Single
ROLE [7] (ours)	Single
G^{2}NetPL	Single

Comparison with Semi-supervised models:

Convergence of pseudo labels during the epochs:

1 or 0 mean strong indication, high confidence
0.5 means no information, low confidence