Advances in the Chemical and Biological Characterization of Amaryllidaceae Alkaloids and Natural Analogues Isolated in the Last Decade

Marco Masi, Roberta Di Lecce, Alessio Cimmino and Antonio Evidente *

Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant’Angelo, Via Cintia 4, 80126 Napoli, Italy; marco.masi@unina.it (M.M.); roberta.dilecce@unina.it (R.D.L.); alessio.cimmino@unina.it (A.C.)
* Correspondence: evidente@unina.it; Tel.:+39-081-2539178

Academic Editors: Jaume Bastida and Strahil Berkov
Received: 4 November 2020; Accepted: 25 November 2020; Published: 29 November 2020

Abstract: Amaryllidaceae are bulbous wild and cultivated plants well known for their beautiful flowers and pharmaceutical applications, essentially due to the alkaloids and flavonoids content. Hundreds of alkaloids have been isolated until now and several scientific publications reported their sources, chemical structures, and biological activities. During the last decade, some unstudied Amaryllidaceae plants were the object of in-depth investigations to isolate and chemically and biologically characterize new and already known alkaloids as well as some analogues. This review describes the isolation and chemical and biological characterization of the Amaryllidaceae alkaloids, and their analogues obtained in the last decade, focusing the discussion on the new ones.

Keywords: Amaryllidaceae; alkaloids; natural analogues; last decade

1. Introduction

The Amaryllidaceae are wild [1] and cultivated plants in several countries. They are considered ornamental plants for their beautiful flowers and to produce volatile oils. They are dominant plants in Andean South America, the Mediterranean basin, and southern Africa [2,3]. The main metabolites synthesized by Amaryllidaceae are essentially alkaloids which accumulate in their bulbs.

Several transcriptomic and biochemical studies described the molecular features involved in the biosynthesis of Amaryllidaceae alkaloids, including enzymes from the shikimate and phenylpropanoid pathways, were recently reviewed [4]. Amaryllidaceae plants consist of ca. 85 genera and 1100 species, and ca. 600 structurally diverse alkaloids have been isolated from plants and grouped in 12 ring-types [5,6].

The investigation on the Amaryllidaceae alkaloids began in 1877 with the isolation of lycorine from Narcissus pseudonarcissus [7] and then the interest around this group of naturally occurring compounds increased because of the large spectrum of their biological activities. These include antitumor, antibacterial, antifungal, antimalarial, antiviral, analgesic, and cholinesterase (AChE and BuChE) inhibitory activities. The uniqueness of these alkaloid structures provided a viable platform for phytochemical-based drug discovery [6,8,9]. Galanthamine represents the main medicinal application of Amaryllidaceae alkaloids and is commercialized as an Alzheimer’s drug [2].

Detailed investigations were carried out on the in vitro antiproliferative, apoptosis-inducing, and antinvasive activities of Amaryllidaceae alkaloids and their derivatives, aiming to analyze their potential anticancer activity. These studies showed the potency of several Amaryllidaceae alkaloids as well as related isocarbostyryls (pancratistatine and narciclasine) against some solid tumors, reporting the mode of action to explain their cytotoxic activity [8–17].
Some Amaryllidaceae alkaloids also exhibited good growth inhibitory activities against several fungal pathogens and this activity was further investigated due to the emergence of drug-resistant strains and the loss of efficacy of existing antifungals [18]. Similarly, the antimalarial effect of some crinine alkaloids was investigated against various strains of the parasite *Plasmodium falciparum* and these studies afforded useful information on the anti-plasmodial pharmacophore [19].

Amaryllidaceae plants are also known to be poisonous and these toxic effects have to be taken into account [20].

Recently, the assignment of the absolute configuration to these alkaloids, which is closely related to their biological activity, was also reviewed [21]. Finally, the synthesis, the chemodiversity, chemotaxonomy, and chemoecology of some Amaryllidaceae alkaloids was reported [22].

This review reports the advances in the chemical and biological characterization of Amaryllidaceae alkaloids and natural analogues isolated in the last decade, focusing on the new ones.

2. Novel Alkaloids from Different Unstudied Amaryllidaceae Plants

2.1. Alkaloids from Phaedranassa dubia

Phaedranassa dubia belong to *Phaedranassa* [23], which is a small genus in the Amaryllidaceae family comprising eleven species: eight endemic to Ecuador, three known from Colombia, and one from Costa Rica [24]. From the bulbs of *P. dubia*, collected in Colombia, a new alkaloid, named phaedranamine (1, Figure 1, Table 1), and belonging to the crinine-type, was isolated together with the well-known Amaryllidaceae alkaloids epino-nor-galanthamine, galanthamine, haemanthamine, pseudolycorine, sanguinine, ungeremine, and zefbetaine [25].

Alkaloid	Amaryllidacea	Reference
Phaedranamine (1, Figure 1)	*Phaedranassa dubia*	[25]
6-O-Methylkrigeine (2, Figure 1)	*Nerine huttoniae*	[26]
N-methylhemeanthidine chloride (3, Figure 1)	*Zephyranthes candida*	[27][28]
Jonquailine (4, Figure 1)	*Narcissus jonquilla*	[29]
Lycoloricine A (5, Figure 1)	*Lycoris longituba*	[30]
Lycoloringrine B (6, Figure 1)	"	"
Lycoloringrine C (7, Figure 1)	"	"
Hippapiline (8, Figure 1)	*Hippeastrum papilio*	[31]
Papiline (9, Figure 1)	"	"
3-O-Demethyl-3-O-(3-hydroxybutanoyl)-haemanthamine (10, Figure 1)	"	"
Crinsarine (11, Figure 1)	*Nerine sarniensis*	[32]
Sarniensinol (12, Figure 1)	"	[33]
Sarniensine (13, Figure 1)	"	[32]
4,8-Dimethoxy-cripowellin C, (14, Figure 1)	*Crinum latifolium*	[34]
4,8-Dimethoxy-cripowellin D (15, Figure 1)	"	"
9-Methoxy-cripowellin B (16, Figure 1)	"	"
4-Methoxy-8-hydroxy-cripowellin B (17, Figure 1)	"	"
Zephygranditine A (18, Figure 2)	*Zephyranthes grandiflora*	[35]
Zephygranditine B (19, Figure 2)	"	"
Zephygranditine C (20, Figure 2)	"	"
Zephygranditine D (21, Figure 2)	"	"
Zephygranditine E (22, Figure 2)	"	"
Zephygranditine F (23, Figure 2)	"	"
3-O-Methyl-epi-vittatine (24, Figure 2)	*Brunsvigia natalensis*	[36]
Crouchinine (25, Figure 2)	"	"
Gigantelline (26 Figure 2)	*Crinum jagus*	[37]
Gigantellinine (27 Figure 2)	"	"
Gigancrinine (28 Figure 2)	"	"

1 This means that the table cell contain the same concept of the previous cell.
Figure 1. Alkaloids and natural analogues isolated from *Phaedranassa dubia, Nerine huttoniae, Zephyranthes candida, Narcissus jonquilla quail, Lycoris longituba, Hippeastrum papilio, Nerine sarniensis, and Crinum latifolium.*
2.2. Alkaloid from

Nerine huttoniae

Nerine huttoniae is a species belonging to the *Nerine* genus [23], which comprises ca. 23 perennial bulbous species native to southern Africa. This Amaryllidaceae is a summer growing, evergreen species, and was essentially found in the western part of the Eastern Cape Province of South Africa [39,40]. It was used in folk medicine and in particular by Sotho and Zulu tribes [41].

From the bulbs of *N. huttoniae*, a new alkaloid, belonging to the homolycorine-type of Amaryllidaceae alkaloids and named 6-O-methylkrigeine (2, Figure 1, Table 1), was isolated together with the known oxokrigenamine. Compound 2 did not exhibit acetylcholine esterase inhibitory activity when tested at a concentration of 50 μg mL⁻¹ [26].
2.3. Alkaloids from Zephyranthes candida

Zephyranthes candida is an Amaryllidacea plant well-known for its use in folk medicine and in particular in China [42]. In fact, its organic extract showed potent cytotoxicity against tumor cells. Fifteen alkaloids were isolated from the whole plant extract and identified as *N*-methylhemeanthidine chloride, *N*-methyl-5,6-dihydroplicane, *O*-methylnerinine, *N*-ethoxycarbonylethylcrinasiadine, *N*-ethoxycarbonylethylpropylcrinasiadine, *N*-phenethylcrinasiadine, *N*-isopentylcrinasiadine, hemeanthamine, 3-epi-macronine, (+)-tazettine, *N*-methylcrinasiadine, trisphaeridine, 5,6-dihydrobicolorine, lycorine, and nigragillin. When tested for their cytotoxicity against five human cancer cell lines and the Beas-2B immortalized (noncancerous) human bronchial epithelial cell line, the *N*-methyl-5,6-dihydroplicane, hemeanthamine, *N*-isopentylcrinasiadine, and lycorine showed toxicity, with IC$_{50}$ values ranging from 0.81 to 13 µM [42].

Subsequently, the new *N*-methylhemeanthidine chloride (3, Figure 1, Tables 1 and 2) was isolated from *Z. candida* and exhibited potent cytotoxicity on a spectrum of tumor cells.

| Table 2. Biological activities of Amaryllidaceae alkaloids and natural analogues isolated in the last decade. |
|---|---|------------------|
| Alkaloid | Biological Activity | Reference |
| *N*-methylhemeanthidine chloride (3, Figure 1) | Cytotoxic | [27] |
| Jonquailine (4, Figure 1) | Anticancer against AML | [28] |
| Lycolongirine A (5, Figure 1) | Neuroprotective | [29] |
| Lycolongirine B (6, Figure 1) | "1" | |
| Lycolongirine C (7, Figure 1) | "1" | |
| Crinsarnine (11, Figure 1) | Insecticidal | [32] |
| Sarniensine (13, Figure 1) | Insecticidal | [32] |
| 4,8-Dimethoxy-cripowellin C (14, Figure 1) | Cytotoxic | [34,43] |
| 4,8-Dimethoxy-cripowellinD (15, Figure 1) | Anti-inflammatory | |
| 9-Methoxy-cripowellin B (16, Figure 1) | Cytotoxic | |
| 4-Methoxy-8-hydroxy-cripowellin B (17, Figure 1)| Anti-inflammatory | |
| Zephyranditine A (18, Figure 2) | Cytotoxic | [35] |
| Zephyranditine B (19, Figure 2) | Anti-inflammatory | |
| Zephyranditine C (20, Figure 2) | Cytotoxic | |
| Gignantelline (27 Figure 2) | Inhibition of AChE | |

1) This means that the table cell contain the same concept of the previous cell.

In particular, the cytotoxic activity of compound 3 was deeply investigated using multiple cell lines derived from human pancreatic cancer, which is one of the most mortal and refractory human malignancies. Compound 3 showed a very strong cytotoxic activity on cancerous cells but was not toxic to healthy ones. Although the mode of action of compound 3 remains un-determined, the results obtained comparing its cytotoxicity with the activity of the chemotherapeutic agent gemcitabine allowed the proposal of compound 3 as a promising drug against pancreatic cancer [27]. Further studies were carried out on the anticancer activity of compound 3, suggesting that this haemanthidine derivative has a tumor suppressive role of NOTCH (Notch Pathway Modulators as Anticancer Chemotherapeutics), signaling in acute myeloid leukemia (AML). The reactivation of this mechanism in a new attractive opportunity to develop an alternative therapy against AML [28].

2.4. Alkaloids from Narcissus jonquilla quail

Narcissus jonquilla quail, native to Spain and Portugal, has now become naturalized in many regions of Europe and the United States. The extract of bulbs collected in Middlesex county of southeast
England, as shown by GC analysis, showed the presence of galanthamine and haemanthamine as the main alkaloids [44].

Further investigation carried out by Masi et al. [29] allowed to isolate abundant amounts of haemanthamine, lycorine and narcilasaine, and a new alkaloid, named jonquailine (4, Figure 1, Tables 1 and 2) and belonging to the pretazettine group of Amaryllidaceae alkaloids [29]. An extensive work was carried out by comparing the ECD spectrum of jonquailine and tazettine, and the ECD data reported in the literature for pretazettine showed that compound 4 and pretazettine have the same absolute configuration at the B/C and B/D ring junctions, while they are empmers at C-8. The stereochemistry at C-8 was not previously assigned in pretazettine and thus is not assigned in the alkaloid 4 [44]. Subsequently, the absolute configuration, R, at C-8 of compound 4 was assigned by density functional theory (DFT) calculations of chiroptical properties, namely electronic circular dichroism (ECD), vibrational circular dichroism (VCD), and optical rotatory dispersion (ORD). These results confirmed the absolute configuration of jonquailine and allowed the assignment of an S configuration to C-8 of pretazettine [45].

Jonquailine showed anticancer activity against drug-resistant human tumor models with diverse mechanisms and displayed synergy with paclitaxel. These results and literature data demonstrated that the hydroxylation at C-8 is an important feature to impart the anticancer activity, which is independent from its stereochemistry as both jonquiline and pretazettine showed significant activity, while tazettine, lacking this hydroxyl group, had no activity [29].

2.5. Alkaloids from Lycoris longituba

Lycoris longituba is native in Jiangsu province in China [46], and its bulbs were used in folk medicine for different skin diseases [47].

Three novel alkaloids, named lycolongirine A, lycolongirine B, and lycolongirine C (5-7, Figure 1, Tables 1 and 2), were isolated from the bulbs of *L. longituba* collected in Baohua Mountain, Jiangsu province. Twenty-two already known alkaloids were also obtained [30]. Lycolongirines B and C (6 and 7) belong to the ismine and to montanine-type alkaloids, respectively. The known alkaloids were identified as: incartine, norharmane, harmame, perlolyrine, lycorine, hippamine, *N*-chloromethyl narcissidine, trisphaeridine, *N*-methylcrinasiadine, (+)-haemanthidine, (-)-haemanthidine, galanthamine, *N*-norgalanthamine, *N*-chloromethyl galanthamine, 11β-hydroxy galanthamine, sanguinine, *N*-chloromethyl lycoramine, O-demethyllycoramine, and tazettine deoxytazettine. All the isolated alkaloids showed different degrees of neuroprotective activities against CoCl$_2$, H$_2$O$_2$, and Aβ$_{25-35}$-induced SH-SY5Y cell injuries, while *N*-methylcrinasiadine galanthamine *N*-norgalanthamine, *N*-chloromethyl galanthamine, 11β-hydroxy galanthamine, sanguinine, *N*-chloromethyl lycoramine, O-demethyllycoramine, and deoxytazettine strongly inhibited Acetylcholinesterase (AChE) activities [30].

2.6. Alkaloids from Hippeastrum papilio

Hippeastrum papilio is an Amaryllidacea collected in Brazil, and from its dried bulbs three novel alkaloids were isolated, named hippapiline, papiline, and 3-O-demethyl-3-O-(3-hydroxybutanoyl)-haemanthamine (8-10, Figure 1, Table 1). Alkaloids 8-10 belong to homolycorine-, ismine-, and crinine-type Amaryllidaceae alkaloids. Also, six already known alkaloids were isolated from the same plant and identified as haemanthamine, galanthamine, narwedine, 11b-hydroxy galanthamine, apogalanthamine, and 9-O-demethyllycosinine B [31].

2.7. Alkaloids from Nerine sarniensis

Nerine sarniensis belonging to a genus well-known as ornamental plants is an herbaceous bulbous perennial species. *Nerine* genus is comprised of 24 species in the Amaryllidaceae family and is endemic to South Africa and a few neighboring countries [2]. *N. sarniensis* is restricted to the Western Cape of South Africa [48].
From the organic extract of the bulbs of *N. sarniensis*, a new crinine-type alkaloid named crisarnine (11, Figure 1, Tables 1 and 2), and two new mesembrine-type alkaloids named sarniensinol (12, Figure 1, Table 1) and sarniensine (13, Figure 1, Table 1 and Table 2), were isolated. Also, several known alkaloids were isolated and identified as tazzetine, lycorine, and 3-epi-macronine, as the main alkaloid, and bowdensine, sarniensine, hippadine, and 1-O-acetyl-lycorine [32,33].

The extract of *N. sarnine* bulbs showed strong larvicidal activity with an LC50 value of 0.008 µg µL\(^{-1}\) against first instar *Aedes aegypti* larvae, and with an LD50 value 4.6 µg/mosquito against adult female *Ae. aegypti*, which is the major vector of dengue and yellow fevers and the Zika virus. All the alkaloids were tested against *Ae. aegypti* and only crinsarnine (12) showed adulticidal activity with an LD50 = 2.29 – 0.049 ± µg/mosquito [48], while sarniensine (10), at a concentration of 0.1 µg µL\(^{-1}\), exhibited strong adulticidal activity, with an LD50 value of 1.38 ± 0.056 µg/mosquito [33].

2.8. Alkaloids from *Crinum latifolium*

Crinum latifolium is widespread in the upper Gangetic Plain. It is also cultivated and used in folk medicine [16]. This Amaryllidaceae belongs to *Crinum* L., which is the only genus mainly distributed in Africa, America, Australia, and southern Asia [49–52]. This genus contains ca. 110 species [53].

Four new bioactive alkaloids, belonging to the crynine-type subgroup and named 4,8-dimethoxy-cripowellin C, 4,8-dimethoxycripowellin D, 9-methoxy-cripowellin B, and 4-methoxy-8-hydroxy-cripowellin B (14–17, Figure 1, Table 1 and Table 2), were isolated from the *C. latifolium* bulbs extract, together, the known cripowellin [34]. The alkaloids 14–17 and cripowellin showed strong cytotoxicity against seven lung cancer cell lines with IC50 < 30 nM. Compounds 16 and 17 also showed significant antimicrobial activity with IC50 values < 0.50 mM when tested against the Gram+ bacteria, such as *Streptococcus pneumoniae*, *Staphylococcus aureus*, and *Staphylococcus epidermidis*, and Gram– bacteria such as *Klebsiella pneumoniae*, *Pseudomonas aeruginosa*, *Haemophilus influenzae*, *Enterobacter cloacae*, and *Shigella dysenteriae*. All the alkaloids also showed antioxidant activity in the ABTS+ and DPPH tests. In addition, alkaloids 14–17 and cripowellin, tested in vitro for their anti-inflammatory potential, showed comparable inhibition of Cox(Cyclo-oxigenase)-1 (>64%) with positive control SC-560 and of Cox-2 (>90%) with positive control NS–398, respectively [34]. These results suggested that the cleavage between C-1 and C-13 in crinine alkaloid skeleton is a structural feature important to impart biological activity, in which also the presence of the hydroxyl at C-6′ could play a role [34].

2.9. Alkaloids from *Zephyranthes grandiflora*

Zephyranthes grandiflora, as the above-reported for *Z. candida*, belong to genus *Zephyranthes*, and consists of 60 species which are distributed mainly in the warm-temperate regions of the Western hemisphere [54,55]. These plants are well-known for their ornamental use and medicinal properties [56].

Six new 4a-epi-plicamine-type alkaloids, named zephyranditines A–C (18–20, Figure 2 and Tables 1 and 2) and zephyranditines D–F (21–23, Figure 2, Table 1), including three novel 11,12-seco-plicamine-type alkaloids, were isolated from the organic extract of *Z. grandiflora*. Zephyranditines A–C (18–20) alkaloids showed cytotoxic activity against seven malignant melanoma cell lines with IC50 values < 20 µM, while only alkaloids 18 and 19 exhibited anti-inflammatory activity in both assays of inhibitory activity for nitric oxide production and Cox-1/Cox-2 [56].

2.10. Alkaloids from *Brunsvigia natalensis*

Brunsvigia natalensis, also named as Natal Candelabra Flower, occurs in South Africa, Lesotho, and Swaziland, and was used in traditional medicine [35].

3-O-Methyl-epi-vittatine and crouchinine (24 and 25, Figure 2, Table 1), two new 5,10b-ethanophenanthridine bridge alkaloids, were isolated from *B. natalensis* together with (2R)-7-hydroxyflavan and a novel ceramide, named brunsceramide [57].
2.11. Alkaloids from Crinum jagus

Crinum jagus (syn. = *Crinum giganteum*) grows in Senegal and belongs to a genus which was shown to be very rich in crinine-type alkaloids [36]. The metabolites present in the aqueous and organic extract of *C. jagus* showed potential for the treatment of inflammatory processes [58], antibacterial [59], sedative [60], inhibition of cholinesterases [61], and antiviral [62] activities.

Three undescribed Amaryllidaceae alkaloids, named gigantelline (26, Figure 2, Table 1), gigantellinine (27, Figure 2, Tables 1 and 2) and gigancrinine (28, Figure 2, Table 1), and belonging to the cherylline- and crine-type subgroups, were isolated from the acid organic extract of *C. jagus* bulbs. The new alkaloids were extracted together with some already known alkaloids identified as sanguinine, cherylline, lycorine, crinine, flexinine, and the isoquinolinone derivative hippadine [37]. Cherylline, gigantellinine, crinine, flexinine, and sanguinine inhibited the activity of AChE in a dose-dependent manner, and the inhibition by sanguinine was remarkably effective (IC$_{50}$ = 1.83 ± 0.01 µM), while cherylline and hippadine showed weak cytotoxicity at 100 µM [37].

3. Conclusions

This review described the alkaloids and their natural analogues isolated in the last decade from different Amaryllidaceae species, focusing the discussion on the new ones. The world region in which they grow and their diffused use in folk medicine was also reported. Together with the new alkaloids, some new analogues were reported as well as other well-known alkaloids and other metabolites isolated from Amaryllidaceae plants. The description of isolation and chemical and biological characterization of the new alkaloids follows a chronological order and their biological activities in the tests were described and listed in Table 1, together with the plant source and literature. In some cases, results on the structure activity relationships were also described.

Author Contributions: A.E. planned the review content, wrote a draft and revised the final version. M.M., R.D.L. and A.C. equally contributed to this work integrating the draft. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: Antonio Evidente is associated to the Istituto di Chimica Biomolecolare, CNR, Pozzuoli, Italy.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chase, M.W.; Reveal, J.L.; Fay, M.F. A subfamilial classification for the expanded asparagalean families Amaryllidaceae, Asparagaceae and Xanthorrhoeaceae. *Bot. J. Linn. Soc.* 2009, 161, 132–136. [CrossRef]
2. Nair, J.J.; Bastida, J.; Codina, C.; Viladomat, F.; van Staden, J. Alkaloids of the South African Amaryllidaceae: A review. *Nat. Prod. Commun.* 2013, 8, 1335–1350. [CrossRef] [PubMed]
3. Echeverria, J.; Niemeyer, H.M. Alkaloids from the native flora of Chile: A review. *Bol. Latinoam. Caribe Plantas Med. Aromát.* 2012, 11, 291–305.
4. Desgagné-Penix, I. Biosynthesis of alkaloids in Amaryllidaceae plants: A review. *Phytochemistry* 2020. [CrossRef]
5. Kornienko, A.; Evidente, A. Chemistry, biology, and medicinal potential of narciclasine and its congeners. *Chem. Rev.* 2008, 108, 1982–2014. [CrossRef]
6. Jin, Z.; Yao, G. Amaryllidaceae and Sceletium alkaloids. *Nat. Prod. Rep.* 2019, 36, 1462–1488. [CrossRef]
7. Hartwell, J.L. Plants used against cancer. A survey. *Lloydia* 1967, 30, 379–436.
8. He, M.; Qu, C.; Gao, O.; Hu, X.; Hong, X. Biological and pharmacological activities of Amaryllidaceae alkaloids. *RSC Adv.* 2015, 5, 16562–16574. [CrossRef]
9. Ding, Y.; Qu, D.; Zhang, K.M.; Cang, X.X.; Kou, Z.N.; Xiao, W.; Zhu, J.B. Phytochemical and biological investigations of Amaryllidaceae alkaloids: A review. *J. Asian Nat. Prod. Res.* 2017, 19, 53–100. [CrossRef]
10. Lefranc, F.; Sauvage, S.; Van Goitsenoven, G.; Mégalizzi, V.; Lamoral-Theys, D.; Debeir, O.; Spiegl-Kreinecker, S.; Berger, W.; Mathieu, V.; Decaestecker, C.; et al. Narcisaline, a plant growth modulator, activates Rho and stress fibers in glioblastoma cells. *Mol. Cancer Ther.* 2009, 8, 1739–1750. [CrossRef] [PubMed]

11. Ingrassia, L.; Lefranc, F.; Dewelle, J.; Pottier, L.; Mathieu, V.; Spiegl-Kreinecker, S.; Sauvage, S.; El Yazidi, M.; Dehoux, M.; Berger, W.; et al. Structure-activity relationship analysis of novel derivatives of narcisaline (an Amaryllidaceae isocarbostyril derivative as potential anticancer agents). *J. Med. Chem.* 2009, 52, 1100–1114. [CrossRef] [PubMed]

12. Evidente, A.; Kireev, A.S.; Jenkins, A.R.; Romero, A.E.; Steelant, W.F.A.; Van Slambrouck, S.; Kornienko, A. Biological evaluation of structurally diverse Amaryllidaceae alkaloids and their synthetic derivatives: Discovery of novel leads for anticancer drug design. *Planta Med.* 2009, 75, 501–507. [CrossRef] [PubMed]

13. Evidente, A.; Kornienko, A. Anticancer evaluation of structurally diverse Amaryllidaceae alkaloids and their synthetic derivatives. *Phytochem. Rev.* 2009, 8, 449–459. [CrossRef]

14. Lamoral-Theys, D.; Decaestecker, C.; Mathieu, V.; Dubois, J.; Kornienko, A.; Kiss, R.; Evidente, A.; Pottier, L. Lycorine and its derivatives for anticancer drug design. *Mini Rev. Med. Chem.* 2010, 10, 41–50. [CrossRef] [PubMed]

15. Nair, J.J.; van Staden, J. Mechanistic insights to the cytotoxicity of Amaryllidaceae alkaloids. *Nat. Prod. Commun.* 2015, 10, 171–182. [CrossRef]

16. Nair, J.J.; van Staden, J. The plant family Amaryllidaceae as a source of cytotoxic homolycorine alkaloid principles. *S. Afr. J. Bot.* 2020. [CrossRef]

17. Koutová, D.; Maaťí, N.; Havelek, R.; Opletal, L.; Blunden, G.; Řezáčová, M.; Cahlíková, L. Chemical and biological aspects of montanine-type alkaloids isolated from plants of the Amaryllidaceae family. *Molecules* 2020, 25, 2337. [CrossRef]

18. Nair, J.J.; van Staden, J. Insight to the antifungal properties of Amaryllidaceae constituents. *Phytomedicine* 2018, 73, 152753. [CrossRef]

19. Kornienko, A.; et al. Jonquailine, a new pretazettine-type alkaloid isolated from *Narcissus jonquilla quail* (Amaryllidaceae). *Nat. Prod. Res.* 2015, 29, 486–499. [CrossRef] [PubMed]

20. Nair, J.J.; van Staden, J. The Amaryllidaceae as a source of antiplasmodial crinane alkaloid constituents. *Fitoterapia* 2019, 134, 305–313. [CrossRef]

21. Nair, J.J.; van Staden, J. Pharmacological and toxicological insights to the South African Amaryllidaceae. *Food Chem. Toxicol.* 2013, 62, 262–275. [CrossRef]

22. Cimmino, A.; Masi, M.; Evidente, M.; Superchi, S.; Evidente, A. Amaryllidaceae alkaloids: Absolute configuration and biological activity. *Chirality* 2017, 29, 486–499. [CrossRef] [PubMed]

23. Berkov, S.; Osorio, E.; Viladomat, F.; Bastida, J. Chemodiversity, chemotaxonomy and chemoeology of Amaryllidaceae alkaloids. In *The Alkaloids: Chemistry and Biology*; Knölker, H.-J., Ed.; Academic Press: London, UK, 2012; Volume 83, pp. 113–185.

24. Herbert, W. *Phaedranassa*; Edwards’s Botanical Register; Lindley, J., Ed.; James Ridgway Sons: London, UK, 1845; Volume 31.

25. Meerow, A. *Amaryllidaceae*; Harling, G., Andersson, L., Eds.; University of Göteborg: Gothenburg, Sweden, 1990; Volume 41, pp. 1–52.

26. Osorio, E.J.; Berkov, S.; Brun, R.; Codina, C.; Viladomat, F.; Cabezás, F.; Bastida, J. In vitro antiprotozoal activity of alkaloids from *Phaedranassa dubia* (Amaryllidaceae). *Phytochem. Lett.* 2010, 3, 161–163. [CrossRef]

27. Molander, M.; Christensen, S.B.; Jäger, A.K.; Olsen, C.E.; Rønsted, N. 6-O-Methylkrigeine, a new Amaryllidaceae alkaloid from *Nerine bowei* Schönland. *Nat. Prod. Res.* 2012, 26, 56–60. [CrossRef]

28. Guo, G.; Yao, G.; Zhan, G.; Hu, Y.; Yue, M.; Cheng, L.; Liu, H.; Ye, Q.; Qing, G.; Zhang, Y.; et al. N-methylhamethidine chloride, a novel Amaryllidaceae alkaloid, inhibits pancreatic cancer cell proliferation via down-regulating AKT activation. *Toxicol. Appl. Pharmacol.* 2014, 280, 475–483. [CrossRef]

29. Ye, Q.; Jiang, J.; Zhan, G.; Yan, W.; Huang, L.; Hu, Y.; Su, H.; Tong, Q.; Yue, M.; Li, H.; et al. Small molecule activation of NOTCH signaling inhibits acute myeloid leukemia. *Sci. Rep.* 2016, 6, 26510. [CrossRef] [PubMed]

30. Zhu, Y.Y.; Li, X.; Yu, H.Y.; Xiong, Y.F.; Zhang, P.; Pi, H.F.; Ruan, H.L. Alkaloids from the bulbs of *Lycoris longituba* and their neuroprotective and acetylcholinesterase inhibitory activities. *Arch. Pharmacal. Res.* 2015, 38, 604–613. [CrossRef] [PubMed]
31. Guo, Y.; de Andrade, J.P.; Pigni, N.B.; Torras-Claveria, L.; Tallini, L.R.; de S. Borges, W.; Viladomat, F.; Nair, J.J.; Zuanazzi, J.A.S.; Bastida, J. New alkaloids from Hippeastrum papilio (Ravenna) van Scheepen. Helv. Chim. Acta 2016, 99, 143–147. [CrossRef]

32. Masi, M.; Cala, A.; Tabanca, N.; Cimmino, A.; Green, I.R.; Bloomquist, J.R.; van Otterlo, W.A.L.; Macias, F.A.; Evidente, A. Alkaloids with activity against the Zika virus vector Aedes aegypti (L.)—Crinsarine and sarniensinol, two new crinine and mesembrine type alkaloids isolated from the South African plant Nerine sarniensis. Molecules 2016, 21, 1432. [CrossRef]

33. Masi, M.; van der Westhuizen, A.E.; Tabanca, N.; Evidente, M.; Cimmino, A.; Green, I.R.; Bernier, U.R.; Becnel, J.J.; Bloomquist, J.R.; van Otterlo, W.A.L.; et al. Sarniensine, a mesembrine-type alkaloid isolated from Nerine sarniensis, an indigenous South African Amaryllidaceae, with larvicidal and adulticidal activities against Aedes aegypti. Fitoterapia 2017, 116, 34–38. [CrossRef]

34. Chen, M.X.; Huo, J.M.; Hu, J.; Xu, Z.P.; Zhang, X. Amaryllidaceae alkaloids from Zephyranthes candida. Phytother. Res. 2003, 17, 362–365. [CrossRef] [PubMed]

35. Pooley, E. A Field Guide to Wild Flowers; KwaZulu-Natal and the Eastern Region; Natal Flora Publications Trust: Durban, South Africa, 1998.

36. Ghosal, S.; Saini, K.S.; Razdan, S. Crinum alkaloids: Their chemistry and biology. Phytochemistry 1985, 24, 2141–2156. [CrossRef]

37. Ka, S.; Masi, M.; Merindol, N.; Di Lecce, R.; Plourde, M.B.; Seck, M.; Górecki, M.; Pescitelli, G.; Desgagne-Penix, I.; Evidente, A. Gigantelline, gigantellinine and gigancrinine, cherylline-and crinine-type alkaloids isolated from Crinum jagus with anti-acetylcholinesterase activity. Phytochemistry 2020, 175, 112390. [CrossRef]

38. Sener, B.; Orhan, I.; Satayavivad, J. Antimalarial activity screening of some alkaloids and the plant extracts from Amaryllidaceae. Phytother. Res. 2003, 17, 1220–1223. [CrossRef] [PubMed]

39. Dold, T.; Weeks, D.C. Nerine huttoniae: A rare endemic from the Fish River. Veld Flora 2000, 86, 14–15.

40. Dyer, R.A. Nerine huttoniae. Flower. Plants Afr. 1952, 29, 1130.

41. Nair, J.J.; Campbell, W.E.; Brun, R.; Viladomat, F.; Codina, C.; Bastida, J. Alkaloids from Nerine filifolia. Phytochemistry 2005, 66, 373–382. [CrossRef]

42. Luo, Z.; Wang, F.; Zhang, J.; Li, X.; Zhang, M.; Hao, X.; Xue, Y.; Li, Y.; Horgen, F.D.; Yao, G.; et al. Cytotoxic alkaloids from the whole plants of Zephyranthes candida. J. Nat. Prod. 2012, 75, 2113–2120. [CrossRef]

43. Thoibi, D.T.; Borua, P.K. Meiotic behaviour and pollen fertility in three species of Zephyranthes (Amaryllidaceae). Biol. Plant. 1997, 39, 355–360.

44. Gotti, R.; Fiori, J.; Bartolini, M.; Cavrini, V. Analysis of Amaryllidaceae alkaloids from Narcissus by GC–MS and capillary electrophoresis. J. Pharm. Biomed. Anal. 2006, 42, 17–24. [CrossRef]

45. Vergura, S.; Santoro, E.; Masi, M.; Evidente, A.; Scafato, P.; Superchi, S.; Mazzeo, G.; Longhi, G.; Abbate, S. Absolute configuration assignment to anticancer Amaryllidaceae alkaloid jonquailine. Fitoterapia 2018, 129, 78–84. [CrossRef]

46. McNulty, J.; Nair, J.J.; Codina, C.; Bastida, J.; Pandey, S.; Gerasimoff, J.; Griffin, C. Selective apoptosis-inducing activity of crinum-type Amaryllidaceae alkaloids. Phytochemistry 2007, 68, 1068–1074. [CrossRef]

47. He, Q.; Shen, Y.; Wang, M.; Huang, M.; Yang, R.; Zhu, S.; Wang, L.; Xu, Y.; Wu, R. Natural variation in petal color in Lycoris longituba revealed by anthocyanin components. PLoS ONE 2011, 6, 22098. [CrossRef] [PubMed]

48. Meerow, A.W.; Snijman, D.A. Amaryllidaceae. In Flowering Plants Monocotyledons; Kubiski, K., Ed.; Springer: Berlin, Germany, 1998; pp. 83–110.

49. Ghosal, S.; Saini, K.S.; Frahm, A.W. Alkaloids of Crinum latifolium. Phytochemistry 1983, 22, 2305–2309. [CrossRef]

50. Snijman, D.A.; Linder, H.P. Phylogenetic relationships, seed characters, and dispersal system evolution in Amaryllidaceae (Amaryllidaceae). Ann. Missouri Botanical Garden 1996, 83, 362–386. [CrossRef]

51. Meerow, A.W.; Lehmliller, D.J.; Clayton, J.R. Phylogeny and biogeography of Crinum L. (Amaryllidaceae) inferred from nuclear and limited plastid non-coding DNA sequences. Bot. J. Linn. Soc. 2003, 141, 349–363. [CrossRef]
52. Hanh, T.T.H.; Huong, P.T.T.; Van Thanh, N.; Trung, N.Q.; Van Cuong, T.; Mai, N.T.; Cuong, N.T.; Cuong, N.X.; Mai, N.T.; Van Minh, C. Crinane, augustamine, and β-carboline alkaloids from *Crinum latifolium*. *Phytochem. Lett.* 2018, 24, 27–30. [CrossRef]

53. Presley, C.C.; Krai, P.; Dalal, S.; Su, Q.; Cassera, M.; Goetz, M.; Kingston, D.G. New potently bioactive alkaloids from *Crinum erubescens*. *Bioorg. Med. Chem.* 2016, 24, 5418–5422. [CrossRef]

54. Meerow, A.W.; Fay, M.F.; Guy, C.L.; Li, Q.B.; Zaman, F.Q.; Chase, M.W. Systematics of Amaryllidaceae based on cladistic analysis of plastid RBCL and TML-F sequences of data. *Amer. J. Bot.* 1999, 86, 1325–1345. [CrossRef]

55. Katoch, D.; Kumar, S.; Kumar, N.; Singh, B. Simultaneous quantification of Amaryllidaceae alkaloids from *Zephyranthes grandiflora* by UPLC–DAD/ESI-MS/MS. *J. Pharmaceut. Biomed.* 2012, 71, 187–192. [CrossRef]

56. Wang, H.Y.; Qu, S.M.; Wang, Y.; Wang, H.T. Cytotoxic and anti-inflammatory active plicamine alkaloids from *Zephyranthes grandiflora*. *Fitoterapia* 2018, 130, 163–168. [CrossRef]

57. Moodley, N.; Crouch, N.R.; Bastida, J.; Mulholland, D.A. Novel alkaloids and a ceramide from *Brunsvigia natalensis* (Amaryllidaceae) and their anti-neoplastic activity. *S. Afr. J. Bot.* 2020. [CrossRef]

58. Kapu, S.D.; Ngwai, Y.B.; Kayode, O.; Akah, P.A.; Wambebe, C.; Ganimal, K. Antiinflammatory, analgesic and anti-lymphocytic activities of the aqueous extract of *Crinum giganteum*. *J. Ethnopharmacol.* 2001, 78, 7–13. [CrossRef]

59. Adesanya, S.A.; Olugbade, T.A.; Odebiyi, O.O.; Aladesanmi, J.A. Antibacterial alkaloids in *Crinum jagus*. *Int. J. Pharmacogn.* 1992, 30, 303–307. [CrossRef]

60. Amos, S.; Binda, L.; Akah, P.; Wambebe, C.; Ganimal, K. Central inhibitory activity of the aqueous extract of *Crinum giganteum*. *Fitoterapia* 2003, 74, 23–28. [CrossRef]

61. Cortes, N.; Sierra, K.; Alzate, F.; Orsorio, E.H.; Orsorio, E. Alkaloids of Amaryllidaceae as inhibitors of cholinesterases (AChEs and BChEs): An integrated bioguided study. *Phytochem. Anal.* 2018, 29, 217–227. [CrossRef]

62. Ogbole, O.O.; Akinleye, T.E.; Segun, P.A.; Faley, T.C.; Adeniji, A.J. In vitro antiviral activity of twenty-seven medicinal plant extracts from Southwest Nigeria against three serotypes of echoviruses. *Virol. J.* 2018, 15, 110. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).