Thrombus formation followed by disruption of atherosclerotic plaques leads to major clinical complications such as acute coronary syndromes and ischemic stroke. Although the process of thrombus formation is regulated by many factors, such as vascular wall thrombogenicity, local hemorheology, and the activity of blood coagulation and the fibrinolysis system, the thrombogenicity of atherosclerotic plaque plays the most important role in the progression of atherothrombosis after plaque disruption. Tissue factor (TF), also known as thromboplastin, is the key initiator of the coagulation cascade. Under normal physiological conditions, TF is expressed only at extravascular sites and perivascularly in the adventitial layer of blood vessels. Following arterial plaque disruption, various factors, such as cytokines, growth factors, and TF-containing microparticles, are released into the blood, leading to rapid initiation of coagulation, platelet aggregation, and, ultimately, thrombus formation with vessel occlusion.

Figure. Positron emission tomography (PET) imaging using [18F]-fluorodeoxyglucose ([18F]-FDG) for the detection of macrophage-derived inflammation, tissue factor (TF) expression, and thrombus formation in atherosclerotic plaque. [18F]-FDG accumulation in the vessel wall reflects the severity of atherosclerotic plaque inflammation, and [18F]-FDG uptake closely correlates with plaque macrophage content. In the inflammatory environment of atherosclerotic plaques, TF is present at high levels, especially in macrophages/foam cells of the necrotic core. NF-κB activation induced by the plaque inflammation accelerates TF expression in the atherosclerotic plaques, whereas inhibition of NF-κB significantly reduces TF expression in cultured plaque tissues. On plaque rupture, highly procoagulant material, including TF-containing microparticles, is released into the blood, leading to rapid initiation of coagulation, platelet aggregation, and, ultimately, thrombus formation with vessel occlusion.

The opinions expressed in this article are not necessarily those of the editors or of the Japanese Circulation Society.

Received August 11, 2013; accepted August 12, 2013; released online August 28, 2013

Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan

Mailing address: Koichi Kaikita, MD, PhD, Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan. E-mail; kaikitak@kumamoto-u.ac.jp

ISSN-1346-9843 doi:10.1253/circj.CJ-13-1021

All rights are reserved to the Japanese Circulation Society. For permissions, please e-mail: cj@j-circ.or.jp
and biogenic amines, can induce TF expression and activity in endothelial cells, vascular smooth muscle cells (SMCs), and monocytes/macrophages in the atherosclerotic plaque, leading to thrombus formation. Based on these observations, one can conclude that TF expression is probably a crucial determinant of thrombogenicity in atherosclerotic plaques.

The most important clinical implication of the current study is whether PET imaging using \(^{18}\)F-FDG is useful clinically, especially for the detection of vulnerable coronary, carotid and cerebral atherosclerotic plaques that can cause thrombus formation. This issue needs to be elucidated because thrombi induced mechanically by a balloon catheter are not identical to those that follow spontaneous plaque rupture in human atherothrombosis. Some clinical studies in a retrospective series of patients with cancer who underwent PET scanning have suggested that \(^{18}\)F-FDG PET can identify patients at risk for future cardiovascular events. Prospective clinical studies are needed to confirm the predictive value of \(^{18}\)F-FDG PET for cardiovascular events in patients with non-cardiovascular diseases, and to assess the effects of medical treatment after cardiovascular events, such as acute coronary syndromes or ischemic stroke. Hopefully, we will be able to use \(^{18}\)F-FDG PET to assess the thrombotic risk of atherosclerotic plaques in patients with cardiovascular diseases.

References

1. Lee KW, Lip GY. Acute coronary syndromes: Vincloz’s trial revisited. *Blood Coagul Fibrinolysis* 2003; 14: 9–11.
2. Drake TA, Morrissette JH, Edgington TS. Selective cellular expression of tissue factor in human tissues. Implications for disorders of hemostasis and thrombosis. *Am J Pathol* 1989; 134: 1087–1097.
3. Steffel J, Lüüscher TF, Tannen FC. Tissue factor in cardiovascular diseases: Molecular mechanisms and clinical implications. *Circulation* 2006; 113: 722–731.
4. Zagochev I, Mulligan-Kehoe MJ. Advances in imaging angiogenesis and inflammation in atherosclerosis. *Thromb Haemost* 2011; 105: 820–827.
5. Zhao Y, Zhao S, Kuge Y, Strauss WH, Blankenberg FG, Tamaki N. Localization of deoxyglucose and annexin A5 in experimental atheroma correlates with macrophage infiltration but not lipid deposition in the lesion. *Mol Imaging Biol* 2011; 13: 712–720.
6. Ogawa M, Ishino S, Maki K, Kurosawa Y, Watabe H et al. \(^{18}\)F-FDG accumulation in atherosclerotic plaques: Immunohistochemical and PET imaging study. *J Nucl Med* 2004; 45: 1245–1250.
7. Kaikita K, Ogawa H, Yasue H, Takeya M, Takahashi K, Saito T, et al. Tissue factor expression in macropahges in coronary plaques in patients with unstable angina. *Arterioscler Thromb Vasc Biol* 1997; 17: 2232–2237.
8. Annex BH, Denning SM, Channon KM, Sketch MH Jr, Stack RS, Morrissette JH, et al. Differential expression of tissue factor protein in directionally atherectomy specimens from patients with stable and unstable coronary syndromes. *Circulation* 1995; 91: 619–622.
9. Yamashita A, Zhao Y, Zhao S, Matsuura Y, Sugita C, Iwakiri T, et al. Arterial \(^{18}\)F-fluorodeoxyglucose uptake reflects balloon catheter-induced thrombus formation and tissue factor expression via nuclear factor-\(\kappa\)B in rabbit atherosclerotic lesions. *Circ J* 2013; 77: 2626–2635.
10. Patel R, Janoudi A, Ventre A, Aziz K, Tamhane U, Rubinstein J, et al. Plaque rupture and thrombosis are reduced by lowering cholesterol levels and crystallization of ezetimibe and are correlated with fluorodeoxyglucose positron emission tomography. *Arterioscler Thromb Vasc Biol* 2011; 31: 2007–2014.
11. Myers KS, Rudd JH, Halman EP, Bolognese JA, Burke J, Pinto CA, et al. Correlation between arterial FDG uptake and biomarkers in peripheral artery disease. *JACC Cardiovasc Imaging* 2012; 5: 38–45.
12. Cunningham MA, Romas P, Hutchinson P, Holdsworth SR, Tipping PG. Tissue factor and factor VIIa receptor/ligand interactions induce proinflammatory effects in macrophages. *Blood* 1999; 94: 3413–3420.
13. Nakagomi A, Sasaki M, Ishikawa Y, Morikawa M, Shibui T, Kusama Y, et al. Upregulation of monocyte tissue factor activity is significantly associated with low-grade chronic inflammation and insulin resistance in patients with metabolic syndrome. *Circ J* 2010; 74: 572–577.
14. Rominger A, Saam T, Wolpers S, Cyran CC, Schmidt M, Foerster S, et al. \(^{18}\)F-FDG PET/CT identifies patients at risk for future vascular events in an otherwise asymptomatic cohort with neoplastic disease. *J Nucl Med* 2009; 50: 1611–1620.
15. Paulmier B, Duet M, Khayat R, Pierquet-Ghazzar N, Laissy JP, Maunoury C, et al. Arterial wall uptake of fluorodeoxyglucose on PET imaging in stable cancer disease patients indicates high risk for cardiovascular events. *J Nucl Cardiol* 2008; 15: 209–217.