Gene profiling of CD11b$^+$ and CD11b$^-$ B1 cell subsets reveals potential cell sorting artifacts

To the Editor:
In a recent issue of The Journal of Experimental Medicine, Griffin and Rothstein described two subsets within the human B1 cell compartment: a major CD11b$^-$ subset (9/10th of the population) and a minor CD11b$^+$ subset (1/10th of the population), with the latter being increased in lupus (Griffin and Rothstein, 2011).

Griffin and Rothstein (2011) analyzed these two B1 cell subsets using gene profiling and compared these gene profiles with those of naive and memory blood B cells. A heat map is shown in Fig. 2 of their paper. This figure highlights a distinct expression profile for each of the CD11b$^+$ and CD11b$^-$ subsets compared with naive and memory B cells.

Using the data deposited in the National Center for Biotechnology Information GEO database (GSE29717), we performed the same comparison and found that the gene profile of each of these subsets argues in favor of a different conclusion.

For CD11b$^-$ B1 cells, the 50 most discriminating genes (comparing this subset to CD11b$^+$ B1 cells, naive cells, and memory B cells) include those encoding CD8α; CD3γ; CD3δ; CD2; CD5; CD7; CD96; LAT; MAL; granzymes A, B, H, and K; and granulolysin (Fig. 1 A). This profile resembles that of cytotoxic CD8$^+$ T cells. This subset also expresses CD19, CD22, and other B cell markers, which does not discriminate them from naive and memory B cells. Thus CD11b$^-$ B1 cells most likely consist of CD8$^+$ T cell–B cell doublets.

For CD11b$^+$ B1 cells, overexpressed genes include those encoding SIRPα, CD33, CD68, CD163, CD302, IL-1β, APRIL (TNFSF13), and CD14 (Fig. 1 B). These genes correspond to a myeloid profile. Underexpressed genes include those encoding CD79A and CD79B, and other B cell markers, including TACI, BAFF-R (TNFRSF13b and TNFRSF13c), BLK, CD19, and CD27.

Figure 1. Gene expression profiles of human CD11b$^+$ and CD11b$^-$ B1 cell subsets. [A] Top 50 overexpressed genes discriminating CD11b$^+$ B1 cells from CD11b$^-$, naïve, and memory B cells. Sec_B cells, CD11b$^+$ B1 cells. Orc_B cells, CD11b$^-$ B1 cells. (B) Top 106 overexpressed genes discriminating CD11b$^+$ B1 cells from CD11b$^-$, naïve, and memory B cells. (C) Top 73 underexpressed genes discriminating CD11b$^+$ B1 cells from CD11b$^-$, naïve, and memory B cells. The total number of genes displayed, which represent an unbiased list of genes according to their ranking order in the comparison, was selected to include most of the discriminating genes selected by Griffin and Rothstein in the heat map in Fig. 2 of their paper. A classical red/green heat map display is used for overexpressed/under-expressed genes.
in aggregate, expressed genes characteristic of T cells along with genes characteristic of B cells. The potential issue of B cell–T cell doublets, raised previously by these authors, is a topic we have already addressed by demonstrating that our sort-purified B1 cells exist as singlets (Griffin and Rothstein, 2011; Griffin et al., 2011b). At the same time, we identified procedures that can be used to circumvent the potential problem of doublet events (Griffin et al., 2011b). In our published work, we reported that B1 cells sort-purified without CD3 staining contained an estimated 1–3% CD3+ events (Griffin and Rothstein, 2011; Griffin et al., 2011b). We have now sort-purified CD11b+ B1 cells again, exactly as was done to generate our published microarray results, and have analyzed three independent postsort samples for CD3 expression, along with purified T cells (Fig. 1 A). We again find a very small proportion of CD3+ events (1.9 ± 0.66%; mean ± SEM) in the CD11b− B1 cell population. This very low level of CD3 expression is likely attributable to a minor degree of T cell contamination that could account for the appearance of very low levels of some characteristically T cell transcripts among CD11b− B1 cells. In keeping with this, flow cytometric analysis of unsorted CD19− enriched PBMCs demonstrates a small degree of CD2, CD7, CD8, and CD3 staining among CD11b− B1 cells that is eliminated by CD3 exclusion and subsequent analysis of CD3− CD20+CD27− CD43− CD70− B1 cells (Fig. 1, B and C). Importantly, when CD3 exclusion is combined with sort purification, expression of T cell genes such as CD7, CD8, and granzyme A is essentially eliminated (to <0.2% that of CD3+CD20+ T cells from the same samples), as assessed by TaqMan QPCR (unpublished data). Collectively, these results indicate that CD11b− B1 cells represent a distinct B cell population, as we previously reported. They are not doublets and do not express multiple T cell markers. Our deposited NCBI data show minor amplification of some characteristically T cell genes caused by the presence of very few T cells in the samples used for microarray analysis.

Reynaud and Weill also contend that CD11b+ B1 cells are not B cells, but are monocytes, because this population underexpressed some characteristically CD14 phenotype is thus not surprising. CD19+CD27+ cells. The CD11b− and CD11b+ subset thus represents cells of the monocyte lineage that were sorted by unspecific (possibly Fc-mediated) staining as CD19−CD27+ cells. The CD11b+ and CD14 phenotype is thus not surprising. CD19+CD27+ cells. The CD11b− and CD11b+ subset thus represents cells of the monocyte lineage that were sorted by unspecific (possibly Fc-mediated) staining as CD19−CD27+ cells. The CD11b+ and CD14 phenotype is thus not surprising.
Figure 1. CD11b+ B1 cells are B cells, not T cells or monocytes. (A) Adult PBMCs from three separate donors were CD19 enriched and immunofluorescently stained for CD11b, CD20, CD27, and CD43. CD11b– B1 cells (CD20+CD27+CD43–CD11b–) were sort-purified (Influx; BD) and evaluated postsort for expression of CD3 by flow cytometric analysis (LSRII; BD), and then compared with separately purified T cells, as indicated. (B and C) Adult PBMCs were CD19-enriched and immunofluorescently stained for CD11b, CD20, CD27, and CD43, as well as CD2, CD3, CD7, and CD8. The expression of T cell markers on naive (CD20+CD27–CD43–), memory (CD20+CD27+CD43–), and CD11b+ B1 (CD20+CD27+CD43–CD11b+) cells was evaluated by flow cytometric analysis and compared with T cells (CD3+CD20–), as indicated (B). B cells were gated to exclude CD3+ events, and the expression of T cells markers was evaluated on CD11b+ B1 cells by flow cytometric analysis and compared with T cells (CD3+CD20+), as indicated (C). (D) Adult PBMCs were immunofluorescently stained for CD11b, CD20, CD27, and CD43, as well as CD19, CD79a, and κ and λ light chains (combined). B cells were gated to exclude CD3+ events, and naive, memory, and CD11b+ B1 cells were then evaluated for expression of B cell markers by flow cytometric analysis and compared with T cells (CD3+CD20+), as indicated. (E) Adult PBMCs were CD19 enriched and immunofluorescently stained for CD11b, CD20, CD27, and CD43, as well as CD7. B cells were gated to exclude CD3+ events, and naive, memory, and CD11b+ B1 cells were then evaluated for CD7 expression by flow cytometric analysis and compared with T cells and monocytes, as indicated. (F) Sort-purified CD11b– B1 cells, CD11b+ B1 cells, T cells, and monocytes were cytocentrifuged onto glass slides, stained with Wright-Giemsa, and examined by light microscopy. Representative images for each cell type are shown. Bars, 5 μm. Results shown in B–F represent one of three separate donors.

B cell genes and overexpressed some characteristically monocyte genes by microarray. Although some B cell genes were not well expressed by CD11b+ B1 cells, the corresponding proteins are expressed normally, as shown by immunofluorescent staining. For example, CD19 and CD79a (Fig. 1 D), as well as CD21, CD22, and BAFFR (not depicted), are expressed on CD11b+ B1 cells at levels similar to those on naive and memory B cells. These staining results do not represent nonspecific binding, as CD11b+ B1 cells are negative for staining with CD7 (Fig. 1 E), CD2, CD3, and CD8 (not depicted), as well as CD80 and CD71 (Griffin and Rothstein, 2011). Importantly, CD11b+ B1 cells all express surface immunoglobulin, as demonstrated by positive staining with anti-κ and anti-λ Ig light chain antibodies conjugated to the same fluorophore (Fig. 1 D). Consistent with this, additional evidence that CD11b+ B1 cells belong to the B cell lineage is provided by single-cell PCR amplification of rearranged immunoglobulin (Tiller et al., 2008; Griffin et al., 2011a), which we find to be even more efficient in CD11b+ B1 cells than naive B cells from the same samples (unpublished data). On the basis of immunoglobulin gene rearrangement, B cell receptor expression, and expression of characteristically B-cell surface antigens, CD11b+ B1 cells are B cells.

The notion that CD11b+ B1 cells express monocyte genes is entirely consistent with what is known about mouse B1 cells. Expression of monocyte genes by some human B1 cells fits well with an extensive literature indicating a close relationship between B1 cells and monocytes, extending even to B1 cell phagocytic activity (Cumano et al., 1992; Borrello and Phipps, 1996; Almeida et al., 2001; Montecino-Rodriguez et al., 2001; Ghosn et al., 2006; Kawamoto, 2006; Popi et al., 2009; Parra et al., 2011). This does not mean, however, that CD11b+ B1 cells are monocytes, as can be readily seen by the morphology of CD11b+ B1 cells, which is quite different from the distinctive features of monocytes (Fig. 1 F).
In sum, the mining of our microarray data by Reynaud and Weill has led them to speculative inferences that are firmly contradicted by an extensive body of evidence. Our work has established the overall phenotype of human B1 cells, as well as the nature and characteristics of two functionally distinct human B1 cell subpopulations, one of which is increased in frequency in the blood of lupus patients.

Daniel O. Griffin,1,2 Tam Quach,2 Franak Batliwalla,3 Dennis Andreopoulos,2 Nichol E. Holodick,2 and Thomas L. Rothstein2,3,4

1Elmezzi Graduate School of Molecular Medicine and 2Center and for Oncology and Cell Biology, the Feinstein Institute for Medical Research, Manhasset, NY 11030
3Department of Medicine and 4Department of Molecular Medicine, Hofstra North Shore-LIJ School of Medicine, Manhasset, NY 11030

CORRESPONDENCE
Thomas L. Rothstein: tr@nshs.edu

REFERENCES
Almeida, S.R., L.S. Aroeira, E. Frymuller, M.A. Dias, C.S. Bogsan, J.D. Lopes, and M. Mariano. 2001. Mouse B-1 cell-derived mononuclear phagocyte, a novel cellular component of acute non-specific inflammatory exudate. Int. Immunol. 13:1193–1201. http://dx.doi.org/10.1093/intimm/13.9.1193

Borrello, M.A., and R.P. Phipps. 1996. The B/macrophage cell: an elusive link between CD5+ B lymphocytes and macrophages. Immunol. Today. 17:471–475. http://dx.doi.org/10.1016/0167-5699(96)00031-B

Cumano, A., C.J. Paige, N.N. Iscove, and G. Brady. 1992. Bipotential precursors of B cells and macrophages in murine fetal liver. Nature. 356:612–615. http://dx.doi.org/10.1038/356612a0

Descatoire, M., J.C. Weill, C.A. Reynaud, and S. Weller. 2011. A human equivalent of mouse B-1 cells? J. Exp. Med. 208:2563–2564. http://dx.doi.org/10.1084/jem.20112232

Ghosn, E.E., M. Russo, and S.R. Almeida. 2006. Nitric oxide-dependent killing of Cryptococcus neoformans by B-1-derived mononuclear phagocyte. J. Leukoc. Biol. 80:36–44. http://dx.doi.org/10.1189/jlb.1005603

Griffin, D.O., and T.L. Rothstein. 2011. A small CD11b(+) human B1 cell subpopulation stimulates T cells and is expanded in lupus. J. Exp. Med. 208:2591–2598. http://dx.doi.org/10.1084/jem.20110978

Griffin, D.O., N.E. Holodick, and T.L. Rothstein. 2011a. A small CD11b(+) human B1 cell subpopulation stimulates T cells and is expanded in lupus. J. Exp. Med. 208:2591–2598. http://dx.doi.org/10.1084/jem.20110978

Kawamoto, H. 2006. A close developmental relationship between the lymphoid and myeloid lineages. Trends Immunol. 27:169–175. http://dx.doi.org/10.1016/j.it.2006.02.004

Montecino-Rodriguez, E., H. Leathers, and K. Dorshkind. 2001. Bipotential B-macrophage progenitors are present in adult bone marrow. Nat. Immunol. 2:83–88. http://dx.doi.org/10.1038/83210

Parra, D., A.M. Rieger, J. Li, Y.A. Zhang, L.M. Randall, C.A. Hunter, D.R. Barrelda, and J.O. Sunyer. 2011. Pivotal advance: peritoneal cavity B-1 B cells have phagocytic and microbicidal capacities and present phagocytosed antigen to CD4+ T cells. J. Leukoc. Biol. http://dx.doi.org/10.1189/jlb.0711372.

Popi, A.F., F.L. Motta, R.A. Mortara, S. Schenkmann, J.D. Lopes, and M. Mariano. 2009. Coordinated expression of lymphoid and myeloid specific transcription factors during B-1b cell differentiation into mononuclear phagocytes in vitro. Immunology. 126:114–122. http://dx.doi.org/10.1111/j.1365-2567.2008.02883.x

Reynaud, C.-A., and J.-C. Weill. 2012. Gene profiling of CD11b- and CD11b+ B1 cell subsets reveals potential cell sorting artifacts. J. Exp. Med. 209:433–436.

Tiller, T., E. Meffre, S. Yurasov, M. Tsuji, M.C. Nussenzweig, and H. Wardemann. 2008. Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning. J. Immunol. Methods. 329:112–124. http://dx.doi.org/10.1016/j.jim.2007.09.017