Energy Use in Quantum Data Centers: Scaling the Impact of Computer Architecture, Qubit Performance, Size, and Thermal Parameters

Michael James Martin, Caroline Hughes, Gilberto Moreno, Eric B. Jones, David Sickinger, Sreekant Narumanchi, and Ray Grout

Abstract—As quantum computers increase in size, the total energy used by a quantum data center, including the cooling, will become a greater concern. The cooling requirements of quantum computers, which operate at temperatures near absolute zero, are determined by computing system parameters, including the number and type of physical qubits, the packaging efficiency of the system, and the split between circuits operating at cryogenic temperatures and those operating at room temperature. When combined with thermal system parameters such as cooling efficiency and cryostat heat transfer, the total energy use can be determined using a first-principles energy model. These models show that cooling of quantum computers differs in two fundamental ways from conventional data centers: (1) the energy required for cooling is much greater than the energy required for computation, and (2) the cooling loads are sensitive to the computational architecture. The temperature requirements for different qubit types can change energy requirements by orders of magnitude. Power use and computational power, as quantified by quantum volume, are analytically correlated. Approaches are identified for minimizing energy use in integrated quantum systems relative to computational power. Designing a sustainable quantum computer will require both efficient cooling and system design that minimizes cooling requirements.

Index Terms—Cryogenics, data center integration, energy efficiency, quantum computing, sustainability

1 INTRODUCTION

Quantum computers capable of solving the scientific and cryptography problems that drive research interest in the technology will be much larger than current systems. For instance, a computer capable of using Shor’s algorithm for current cryptography problems will require on the order of 10^6 physical (as opposed to computational) qubits [1], while using quantum computing to simulate nitrogen fixation, a computational chemistry problem widely used as an example of the scientific potential of quantum computing, will require on the order of 10^5 to 10^6 physical qubits, depending on the error rate [2]. This compares to the 53-qubit machine recently used to sample the output of a pseudorandom quantum circuit [3]. As computers scale up, their power usage will also increase.

Because of the extremely low temperatures (mK to K) required by the majority of proposed quantum computing systems, quantum computers require very different thermal management approaches from conventional data centers. The cooling system must remove all power dissipated by electronics operating at low temperatures from a cryostat, in addition to heat entering the cryostat from the ambient environment. Because of this, the power consumption of the cooling system is likely to be much greater than the power consumption of the electronics. This has already been demonstrated with existing quantum annealing systems [4] and was identified as a major challenge in a recent National Academies of Sciences, Engineering, and Medicine overview of the state of quantum computing [5]. These challenges are not limited to quantum computing; they have been identified as a limiting factor for incorporating other cryogenic components into conventional computing architectures [6], [7]. These changes in the balance of power supplied to electronics compared to the power for cooling mark a significant change from conventional computing, where cooling requirements are typically 10%–30% of the power used by the electronics [8]. Identifying the combined cooling and electronics power requirements of these systems is therefore crucial to engineering quantum computers to decrease power consumption and in predicting the impact of quantum systems on national and global energy use [9], [10].

2 ENERGY MODEL DEVELOPMENT

2.1 Model Derivation

The majority of quantum information systems are heterogeneous computer systems composed of (1) qubits and associated circuits and sensors operating at a temperature T_c in a cryostat, and (2) external control and communications circuits operating at a temperature T_{av} at or above the ambient temperature T_{amb}, as shown in Fig. 1. [11] The external environment
serves as a heat reservoir. There are two electronic power loads: P_1 is the power used by the qubits and other circuits operating at cryogenic temperatures, and P_2 is the power used by the external circuits. These terms can be combined to form a total electronic power load P_e. This model does not describe photonic quantum computers, which operate entirely at room temperature [12] or have individual cryogenic components deployed throughout the system [13].

Scaling these power loads based on the size of the system is complicated by the range of electronics that will operate in the system. In addition to the qubits and their associated control and readout electronics, most quantum systems will contain a set of gates and other associated electronics. Their power usage must also be taken into account.

A reasonable first approximation is that the total power load will scale as some power a of the number of physical qubits in the computer n_p:

$$P_e \propto (n_p)^a. \quad (1)$$

The most likely scaling is a linear scaling, where a is equal to one. In this case P_e will be equal to $n_p q$, where q is the value of power used per qubit:

$$P_e = n_p q. \quad (2)$$

The power usage can then, at both the qubit and overall system level, be split between the power used in the cryostat and the ambient environment. Because all power used by these electronics will ultimately be dissipated as heat, either inside of or outside of the cryostat, it is appropriate to think of these values as heat loads. The power used per qubit q will be split between the power used per qubit by the electronics inside the cryostat (q_1), and the power used per qubit by the electronics at ambient temperature (q_2):

$$q = q_1 + q_2. \quad (3)$$

The parameter ϕ can then be used to define how the total energy is split between the circuits operating at cryogenic temperatures and the external circuits:

$$q_1 = \phi q, \quad (4)$$

$$q_2 = (1 - \phi) q, \quad (5)$$

$$P_1 = \phi P_e, \quad (6)$$

$$P_2 = (1 - \phi) P_e. \quad (7)$$

A value of ϕ of 1 then corresponds to a system where all electronics operate at cryogenic temperatures, while a value of 0 represents a system where there is no energy usage in quantum systems.

To maintain the cryogenic electronics at a temperature T_c that is below the ambient temperature T_o, the cryogenic cooling system must remove both the power dissipated by the circuits in the cryostat, equal to P_1, and the heat entering the chamber Q_o. Q_o will depend on the cryogenic chamber area A, the heat transfer coefficient U, and the temperatures T_c and T_o:

$$Q_o = UA(T_o - T_c). \quad (8)$$

Because T_c is much less than T_o, Q_o can be approximated as being equal to UAT_c. Two additional assumptions allow this value to be rewritten in terms of the number of qubits. The first assumption is that A is equal to $C_1 V_q^{2/3}$, where V is the volume of the chamber and C_1 is a geometric constant. (For a cube, C_1 is 6; for a sphere, C_1 is $\sqrt[3]{3}$.) The second assumption is that volume can be re-written as the product of the number of qubits and a volume per qubit v_q, so that V is equal to $n_p v_q$. Note that v_q is not the volume of the qubit, but the volume required to house a qubit when all interconnections and other geometric constraints are taken into account. The heat load Q_o now depends on the number of qubits:

$$Q_o = UC_1T_o v_q^{2/3} n_p^{2/3}. \quad (9)$$

The total heat Q_t that must be removed from the cryogenic chamber Q_c is the sum of P_1 and Q_o:

$$Q_1 = P_1 + Q_o = n_p q_1 + UC_1 T_o v_q^{2/3} n_p^{2/3}$$

$$= n_p q_1 (1 + \left(UC_1 T_o v_q^{2/3}/q_1\right) n_p^{-1/3})$$

$$= n_p q_1 (1 + \beta n_p^{-1/3})$$

$$= \phi n_p q (1 + \beta n_p^{-1/3}). \quad (10)$$

where the parameter β equal to $UC_1 T_o v_q^{2/3}/q_1$ captures the importance of heat transfer into the chamber relative to the electronic heat generation within the chamber. This scaling has one limitation: it assumes that power of the electronics in the cryostat is not negligible compared to the heat entering the cryostat, which would lead to a value of β of infinity. This situation could occur if the packaging is not optimized to minimize heat entering...
the cryostat. Conversely, a perfectly insulated system would have a β of zero.

The work \(W_1 \) required to remove heat from the cryogenic chamber is calculated by dividing the heat by the coefficient of performance, or \(\text{COP}(T_c) \) [14]. This value can be expressed as a product of the value of the Carnot efficiency \(\text{COP}(T_c) \) and a correction factor \(\eta_c \):

\[
\text{COP}(T_c) = \frac{Q_1}{W_1} = \eta_c \text{COP}(T_c) = \eta_c \left(\frac{T_c}{T_o - T_c} \right). \tag{11}
\]

Combining (10) and (11) gives a value for \(W_1 \):

\[
W_1 = n_p q_1 \left(\frac{1 + \beta n_p^{-1/3}}{\eta_c \text{COP}(T_c)} \right) = \phi n_p q_1 \left(\frac{1 + \beta n_p^{-1/3}}{\eta_c \text{COP}(T_c)} \right). \tag{12}
\]

The heat that must be removed from the external electronics \(Q_2 \) is equal to \(P_l \), which is equal to \(n_p q_2 \) or \((1-\phi)n_p q_1 \). Because the cooling of room-temperature electronics is not performed using a direct refrigeration cycle, the cooling energy cost \(W_2 \) is characterized using a cooling figure of merit \(\text{FOM}(T_o) \), which is defined similarly to a coefficient of performance:

\[
W_2 = \frac{P_2}{\text{FOM}(T_o)} = \frac{n_p q_2}{\text{FOM}(T_o)} = \frac{(1-\phi)n_p q_1}{\text{FOM}(T_o)}. \tag{13}
\]

The total energy required to cool the system \(W_S \) is then the sum of \(W_1 \) and \(W_2 \):

\[
W_S = n_p q_1 \left(\frac{1 + \beta n_p^{-1/3}}{\eta_c \text{COP}(T_c)} \right) + \frac{n_p q_2}{\text{FOM}(T_o)} = n_p q_1 \left(\phi \left(\frac{1 + \beta n_p^{-1/3}}{\eta_c \text{COP}(T_c)} \right) + \left(\frac{1 - \phi}{\text{FOM}(T_o)} \right) \right). \tag{14}
\]

The total power required by the system \(P_T \) is then the sum of \(P_C \) and \(W_S \):

\[
P_T = n_p q_1 \left(1 + \phi \left(\frac{1 + \beta n_p^{-1/3}}{\eta_c \text{COP}(T_c)} \right) + \left(\frac{1 - \phi}{\text{FOM}(T_o)} \right) \right). \tag{15}
\]

A list of all system parameters, with their definitions and units, is given as Table 1.

2.2 Derivation of Scaled Energy Usage

Because \(q \) is the most difficult of these terms to estimate for future quantum information systems, it is useful to look at the ratio of the energy use \(P_T \) to the total computational power usage \(q \) required for a single qubit, which is defined as \(P_T^q \):

\[
P_T^q = n_p \left[1 + \phi \left(\frac{1 + \beta n_p^{-1/3}}{\eta_c \text{COP}(T_c)} \right) + \left(\frac{1 - \phi}{\text{FOM}(T_o)} \right) \right]. \tag{16}
\]

Note that \(q \) is not completely eliminated from the equation: it still appears in the scaling of \(\beta \). However, if \(\beta \) is seen fundamentally as a scaling of the importance of heat dissipation within the cryostat to heat entering the cryostat, this simplification remains useful and appropriate. The identical scaling can be applied to \(P_T, P_2, Q_o, W_2, W_3, P_S, \) and \(P_c \).

A range of metrics are available for quantifying the energy use and sustainability of data centers [15]. The efficiency of conventional data centers is frequently characterized by the power usage efficiency, or PUE [16]. This metric is the ratio of the total energy used by the data center divided by the energy used by computation. If PUE is calculated instantaneously, or if all loadings are constant, power may be used instead of energy, and PUE will be equal to the total power \(P_T \) divided by the power going to computation \(P_C \). If other possible loadings such as lighting are excluded, the PUE for a quantum system can be found simply by dividing (15) by a value of \(P_C \) of \(n_p q_1 \):

\[
PUE = \frac{1}{\phi} \left(\frac{1 + \beta n_p^{-1/3}}{\eta_c \text{COP}(T_c)} \right) + \left(\frac{1 - \phi}{\text{FOM}(T_o)} \right). \tag{17}
\]

3 Review of Representative Physical Parameters

Though there is considerable uncertainty in how quantum computers will evolve, enough is known about key parameters to allow initial assessments of energy use in quantum computing. As shown in Fig. 2, several key parameters can already be identified for quantum systems. Two types of qubits have already been integrated into quantum computers: superconducting qubits and trapped-ion qubits; each has a range of reported operating temperatures [17]–[22]. The temperature ranges for silicon and diamond qubits, which have been demonstrated as stand-alone components, are also shown [23]–[27]. The total operating range for existing qubit technologies ranges from 0.01 K to 10 K. The type of qubit used will determine \(T_c \) and \(\text{COP}(T_c) \) for the system.

At 10 mK, distillation refrigeration using helium and laser cooling are currently the only viable cooling technologies. Laser cooling has been successfully used to maintain...
4.1 Ideal Results: No Heat Transfer

In the absence of heat transfer, the efficiency of quantum systems is dominated by the Carnot efficiency, which is given by

$$\eta_C = 1 - \frac{T_L}{T_H}$$

where \(T_L\) and \(T_H\) are the lower and higher temperature limits, respectively. For quantum systems, \(T_L\) is typically the temperature of the qubit, and \(T_H\) is the temperature of the environment.

The Landauer limit suggests that the minimum energy required to erase information is

$$E_{\text{Landauer}} = k_B T_L \ln 2$$

where \(k_B\) is the Boltzmann constant and \(T_L\) is the temperature of the qubit. This limit is independent of the size of the computer.

The only computer architecture parameter that can be identified as relevant for future systems is the number of physical qubits \(n_p\) to perform useful computational tasks. The required power for electronics per qubit \(q\) that will be seen in future quantum systems is challenging to estimate. The Landauer limit suggests the value of modifying information will be proportional to, or will at least increase with, \(T_L\) [35]. Though this limit has been extended to quantum systems [36], it does not reflect the power usage of related electronics either inside or outside the cryostat. Additional work suggests a lower bound for energy use per qubit [37], while other research suggests that proper manipulation of information in quantum systems can lower the total energy used [38]. However, the value of \(q\) for future quantum systems cannot be reliably determined. Similarly, the required cryostat volume per qubit, \(v_p\), cannot be characterized for a rapidly changing technology.

Though \(\phi\) is bounded between 0 and 1, it may vary by orders of magnitude within that range in future systems. The value of \(\phi\) reflects not only the qubit type and the power required by associated sensors, control systems, and electronics, but also a design decision about where to place conventional silicon electronics used to control the qubits. Placing these electronics inside the cryostat may simplify integration and decrease latency [39], but doing so leads to reliability challenges for CMOS electronics [40]. Doing so also creates a cooling penalty that has already been observed in laboratory experiments [41]. These reliability and power concerns have led to the development of specialized conventional CMOS circuits for use with quantum electronics [42]–[48].

The design decisions made to move electronics in or out of the cryostat, increasing or decreasing \(\phi\), will impact other parameters. Increasing \(\phi\) is likely to decrease \(q\), as low-temperature electronics may consume less power than room-temperature electronics to perform the same function. Increasing \(\phi\) will also increase \(v_p\) and therefore \(A\) and \(B\) as more cryostat volume and surface heat transfer area will be required per qubit as these electronics are added. Finally, increasing \(\phi\) may decrease the need for interconnects, reducing the effective value of \(U\). These relationships can be evaluated in depth for an individual technology. For purposes of this paper, they will be considered as independent parameters.
the PUE as a function of ϕ for the two types of qubits that have been successfully integrated into quantum computers for the range of operating temperatures T_c demonstrated for both qubit types. The results show that the power usage is extremely sensitive to values of ϕ, which is consistent with previous findings that moving electronics inside the cryostat tended to exceed the cooling capacity of laboratory experiments. For a superconducting qubit, the energy used for cooling is much larger than the electronics energy usage at values of ϕ ranging from 10^{-7} to 10^{-6}, depending on the operating temperature. The cooling requirements of a system operating at 10 mK are roughly twice those of a system operating at 20 mK. For a trapped-ion system, the cooling power requirements dominate the electronics power requirements at values of ϕ of around 10^{-3}. There is also much less variation over the range of possible operating temperatures.

Fig. 4 shows the range of possible PUEs for silicon and diamond qubits. Because silicon qubits have been demonstrated over temperatures from 0.1 to 10.0 K, the potential values for PUE range over three orders of magnitude. Depending on the operating temperature, the cooling power usage becomes much larger than the electronics power usage anywhere from a value of ϕ of 10^{-5} to 10^{-3}. For diamond qubits, the range of potential power usage is much narrower. These results show that the type of qubit used, the operating temperature, and how the electronics are integrated all dramatically impact the power required to cool quantum systems.

4.2 Results for Systems With Heat Transfer

For real systems, the heat transfer term β will not be zero, meaning the PUE will no longer be independent of the system size, and P_T and P_T^β will no longer be linear functions of the number of qubits. For any given value of ϕ, β, or n_P, the shares of the power used (1) between the electronics F_{elec}, (2) to cool the low-temperature electronics inside the cryostat F_{ltc}, (3) to maintain the cryostat at temperature because of external heat transfer F_{ext} can

![Fig. 3. Quantum data center power usage efficiencies (PUEs) with no external heat transfer for qubit types currently integrated into quantum computers.](image1)

![Fig. 4. Quantum data center power usage efficiencies (PUEs) with no external heat transfer for qubit types currently demonstrated in laboratory environments.](image2)

![Fig. 5. Quantum data center power usage efficiencies (PUEs) with no external heat transfer for superconducting qubits for different cooling system efficiencies.](image3)
around 90%, and the share of power going to cooling for external heat transfer \(F_e \) increases to around 10%. At a value of \(\beta \) of 10, the two cooling needs are equal, while at a \(\beta \) of 100, cooling for external heat transfer dominates. The combined power needs for all electronics and external cooling \(F_e + F_{ext} \) never exceed 0.01% of the total power used. At a value of \(\phi \) of 0.001, the power distributions are similar.

However, when \(\phi \) is reduced to 0.0001, other forms of power usage become significant. When there is no external heat transfer, cooling the electronics in the cryostat requires approximately 50% of the total power usage, while the electronics themselves use 40% of the total power, and external cooling uses approximately 10% of the total power. However, as \(\beta \) increases, the power required to remove heat from the cryostat because of external heat transfer dominates the power usage.

Fig. 8 shows the same information for a trapped-ion system operating at a temperature of 4.5 K. Because \(COP(T) \) is approximately 300 times higher at 4.5 K than at 15 mK, the values for \(P_{T} \) and PUE decrease significantly. The distribution of energy usage within the system also changes. At a value of \(\phi \) of 0.1, the combined cooling loads for the electronics in the cryostat and external heat transfer into the cryostat are still dominant. However, at a value of \(\beta \) of 0, electronics account for 2.3% of total power use. This decreases to 1.1% of total power usage as \(\beta \) increases to 10.0 and to less than 0.2% at a value of \(\beta \) of 100.0, which reflects the decreased cost of cooling in the overall power budget.

As \(\phi \) decreases to 0.001, the total cost of maintaining the low-temperature circuits at 4.5 K decreases dramatically. For values of \(\beta \) of 10 or less, the electronics become the dominant consumer of power in the system. When \(\phi \) decreases to 0.00001, the cost of maintaining low-temperature circuits at 4.5 K is only significant for values of \(\beta \) greater than 10.0, and even then, it is less than 4% of total power usage. For these cases, \(P_{T} \) and PUE do not change significantly as \(\beta \) increases. The combination of reducing electronics in the cryostat to a minimal level and operating at higher temperatures lead to power usage that mimics a conventional computer. However, this configuration may compromise the ability of the conventional electronics to control the qubits effectively.

5 Quantum Volume versus Power Scaling

In conventional computing, the power of a processor scales directly with the number of transistors, and the power of a parallel computer scales directly as the number of processors times some parallelization efficiency. For linear algebra problems, this can be quantified using the time required to solve standardized problems such as the commonly used LINPACK benchmark [49]. While there is no universally accepted equivalent for quantum computing, the concept of “quantum volume,” which has been quantified for systems, has gained some acceptance [50], [51].

The quantum volume of a processor \(V_Q \) quantifies the largest random quantum circuit of equal width and depth for which a heavy output distribution can be generated with at least probability 2/3. In the limit of independent stochastic errors, it depends on the number of qubits \(n_p \) and the effective error rate \(\varepsilon_{\text{eff}} \). The effective error will depend...
on the computing architecture, the noise of the qubits, and the total number of qubits, and is therefore not completely independent of n_p. In this limit quantum volume for a system of n_p qubits with an effective error rate ε_{eff} is approximated by:

$$V_Q = \max_{n < n_p} \left(\min \left[n, \frac{1}{n \varepsilon_{\text{eff}}(n)} \right] \right)^2. \tag{19}$$

This expression shows that the quantum volume is proportional to n_p^2 until the threshold value of n_{peak} equal to $\sqrt{1/\varepsilon_{\text{eff}}(n)}$ is reached. At this point, adding additional qubits to the system will not increase the computational volume. Scaling quantum volume for proposed calculations is still a subject of considerable uncertainty. A processor and circuit with quantum volume of approximately 2000 ($V_o = 43^3$) would require roughly 140 Terabytes of memory to store the wavefunction for Schrödinger evolution, roughly the largest instance that would fit on the Jülich supercomputer [12]. The number of qubits required for Shor’s algorithm, or chemical calculations, corresponds to a quantum volume on the order of 10^6 or greater. Fig. 9 shows V_Q as a function of the number of qubits for various error rates. These effective error rates are generally far below those seen in current machines: current two-qubit error rates for state-of-the-art superconducting processors with tens of physical qubits are in the range of 0.36%–1.1% [3], [42], while two-qubit error rates for trapped-ion processors with a few to roughly a dozen physical qubits are in the range of 0.79%–2.5% [52], [53].

As long as the number of qubits is below n_{peak}, the quantum volume will be proportional to n_p^2, and Equation (16) for the scaled power use can be re-written as:
As the limit of a large system, or negligible heat transfer is reached, the power required to operate a quantum computer scales with V_1^2.

The scaled power use as a function of quantum volume for a system with ϕ of 0.001 operating at 0.015 K is shown as Fig. 10. The maximum values of Q_V for different error rates are shown as vertical lines. The large system limit, where cryostat heat transfer can be ignored, is generally above the limit imposed by quantum volume consideration scalings.

$$P_T = V_Q^{1/2} \left[1 + \frac{\phi}{\eta_c \text{COP}(T_c)} + \left(1 - \phi \frac{\text{FOM}(T_o)}{\text{FOM}(T_c)} \right) \right]$$

$+ Q_V^{1/6} \left[\frac{\phi \beta}{\eta_c \text{COP}(T_o)} \right]$.

As shown in Fig. 11, a similar pattern, with lower overall power usage, is obtained for a system operating at 4 K.

6 Conclusion

Quantum information systems use energy in very different ways than conventional computers. Instead of the energy use being dominated by energy used within the electronic circuitry, energy use is dominated by cooling requirements. While this is well understood empirically, the current work quantifies the requirements across computational architectures, computer sizes, and thermal design parameters. A direct scale-up of power use in future quantum systems using this model based on published data is challenging, since key technologies, including both quantum electronics and conventional electronics that are integrated into quantum systems, are changing rapidly. Because the quantum
computing has not yet considered sustainability, parameters relevant to energy use are generally not reported in descriptions of new technologies. However, even with this limitation, it is possible to use this framework to consider paths to energy optimization. This work points to two strategies for improving the energy efficiency of quantum systems, which will both lessen the energy impact of deploying quantum systems and reduce operational costs.

The first strategy is to design quantum systems in an energy-efficient manner. The qubit type will have a huge impact on overall energy use, since the Carnot efficiency of a system operating at the 4 K temperature of trapped-ion qubits is more than 400 times the Carnot efficiency of a system operating at the 10 mK temperature required by some superconducting qubits. Even relatively small increases in operating temperatures for superconducting qubits are likely to significant increases in energy efficiency. While the effect of moving electronics out of the cryostat is somewhat harder to quantify due to potential changes in electronics power use, cryostat size, and heat lost through interconnects, the high cost of cooling at low temperatures means that this will be a critical decision in minimizing energy use. Finally, minimizing the physical size of electronics, even if the power use of the electronics does not change, will minimize the cooling power required.

The second strategy is to reduce the energy costs of cooling to quantum temperatures. Within conventional data center operation, experience shows that careful engineering design and integration to reduce non-computing data center energy costs can reduce PUE from 1.60 to 1.02. This reduction corresponds to a thirtyfold reduction in noncomputational energy costs. The current work shows that the largest opportunity for reducing energy use and obtaining similar improvements in quantum systems is through improving η_c. This approach will require both careful consideration of cycle efficiency and efficient detailed design of individual components.

The approach most likely to yield energy-efficient quantum systems is to combine these two strategies through codesign, where the impact of decisions made in deciding the computational architecture on the energy and cooling requirements of the system are considered during design and are matched with existing cooling capabilities. This may require designers to choose the optimal approaches to achieving a computational output within a set energy budget by selecting system architecture parameters.

ACKNOWLEDGMENT

The authors wish to thank Dr. Brian Bush for his constant advice and encouragement during the process of performing...
and publishing this research. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and publishes, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

References

[1] T. Häner, M. Roetteler, and K. M. Svore, “Factoring using 2n+2 qubits with toffoli based modular multiplication,” *Quantum Inf. Computation*, vol. 18, no. 7–8, pp. 673–684, Jun. 2017.

[2] M. Keijzer et al., “Elucidating reaction mechanisms on quantum computer,” *Proc. Nat. Acad. Sci. USA*, vol. 114, no. 29, pp. 7555–7560, Jul. 2017.

[3] F. Arute et al., “Quantum supremacy using a programmable superconducting processor,” *Nature*, vol. 574, pp. 505–510, Oct. 2019.

[4] D-Wave Systems, “The D-Wave 2000Q quantum computer,” 2018. [Online]. Available: www.dwavesys.com/sites/default/files/D-Wave%202000Q%20Tech%20Collateral_1029F.pdf.

[5] E. Grumbling and M. Horowitz, *Quantum Computing: Progress and Prospects*, Washington, DC, USA: National Academies Press, 2018, pp. 207–214.

[6] D. Gupta et al., “Digital output data links from superconductor integrated data circuits,” *IEEE Trans. Appl. Supercond.*, vol. 29, no. 5, Aug. 2019, Art. no. 1303208.

[7] D. S. Holmes, A. L. Ripple, and M. A. Manheimer, “Energy-efficient superconducting computing—power budgets and requirements,” *IEEE Trans. Appl. Supercond.*, vol. 23, no. 3, Jun. 2013, Art. no. 1701610.

[8] A. Shehab et al., *United States Data Center Energy Usage Report*, Berkeley, CA, USA: Lawrence Berkeley National Laboratory, 2016.

[9] International Energy Agency, *Digitalization & Energy*, Paris, France: IEA, 2017.

[10] E. Masnet al. et al., “Recalibrating global data center energy usage estimates,” *Science*, vol. 367, no. 6481, pp. 984–986, Feb. 2020.

[11] D. J. Reilly, “Engineering the quantum-classical interface of solid-state qubits,” *npj Quantum Inf.*, vol. 1, Oct. 2015, Art. no. 15011.

[12] H.-S. Zhong et al., “Quantum computational advantage using photons,” *Science*, vol. 370, no. 6523, pp. 1460–1463, Dec. 2020.

[13] J. M. Arrazola et al., “Quantum circuits with many photons on a programmable nanophotonic chip,” *Nature*, vol. 591, no. 7848, Aug. 2021, Art. no. 30 Mar. 2019.

[14] R. E. Sonntag and C. Borgnakke, *Fundamentals of Thermodynamics*, 10th ed., Hoboken, NJ, USA: Wiley, 2019.

[15] V. D. Reddy et al., “Metrics for sustainable data centers,” *IEEE Trans. Sustain. Comput.*, vol. 2, no. 3, pp. 290–303, Jul.–Sep. 2017.

[16] C. Belady, A. Rawson, J. Pfleuger, and T. Cader, “The green grid aging to qutech,” 2017. [Online]. Available: https://newsroom.intel.com/pressroom/docs/18823325_1029F.pdf.

[17] A. Youssefi et al., “Cryogenic electro-optic interconnect for superconducting devices,” *Nature Electron.*, vol. 4, no. 5, pp. 326–332, 2021.

[18] R. Landauer, “Irreversibility and heat generation in the computing process,” *IBM J. Res. Develop.*, vol. 5, no. 3, pp. 183–191, Jul. 1961.

[19] V. D. Reddy et al., “A cryogenic electro-optic interconnect for superconducting nanowire single photon detectors,” *IEEE Trans. Appl. Supercond.*, vol. 27, no. 4, Jun. 2017, Art. no. 950405.

[20] M. Linder et al., “Cryogenics in space—A review of the missions and technologies,” *ESA Bull.*, vol. 107, pp. 92–105, Aug. 2001.

[21] V. Parma, “Cryostat design,” in *Proc. CAS-CERN Adv. Sch.: Supercond. accelerators*, 2014, pp. 353–399.

[22] J. Ikeno, J. Salmilehto, and M. Möttönen, “Energy-efficient quantum computing,” *NPJ Quantum Inf.*, vol. 3, Apr. 2017, Art. no. 17.

[23] J. M. Hornbrook et al., “Cryogenic control architecture for large-scale quantum computing,” *Phys. Rev. Appl.*, vol. 3, no. 2, Feb. 2015, Art. no. 024010.

[24] F. Jazaeri, A. Beckers, A. Tajalli, and J.-M. Sallese, “A review on quantum computing: From qubits to front-end electronics and cryogenic MOPS/ET physics,” in *Proc. 26th Int. Conf. Mixed Des. Integr. Circuits Syst.*, 2019, pp. 15–25.

[25] T. Lehmann, “Cryogenic support circuits and systems for silicon quantum computers,” in *Proc. IEEE Int. Symp. Circuits Syst.*, 2019, pp. 1–5.

[26] J. C. Bardin et al., “Design and characterization of a 28-nm bulk-CMOS cryogenic quantum controller dissipating less than 2 mW at 3 K,” *IEEE J. Solid-State Circuits*, vol. 54, no. 11, pp. 3043–3060, Nov. 2019.

[27] Z. Xue et al., “CMOS-based cryogenic control of silicon quantum bits,” *Nature*, vol. 568, pp. 205–210, May 2021.

[28] S. J. Pauka et al., “A cryogenic CMOS chip for generating control signals for multiple qubits,” *Nature Electron.*, vol. 4, no. 1, pp. 64–70, Feb. 2021.

[29] M. Mehrpour, F. Sebastiano, E. Charbon, and M. Babaie, “A cryogenic CMOS parametric amplifier,” *IEEE Solid-State Circuits Lett.*, vol. 3, pp. 5–8, 2020.

[30] A. Esmailian et al., “A fully integrated DAC for CMOS position-based charge qubits with single-electron detector loopback testing,” *IEEE Solid-State Circuits Lett.*, vol. 3, pp. 354–357, 2020.

[31] B. C. Paz et al., “Integrated variability measurements of 28 nm FDOSI MOSFETs down to 4.2 K for cryogenic CMOS applications,” in *Proc. IEEE 33rd Int. Conf. Microelectronic Test Structures*, 2020, pp. 1–5.

[32] E. Cha, N. Wadefalk, G. Moschetti, A. Pourkabirian, J. Stenarson, and E. Cha, “Validating quantum computers using randomized benchmarking,” in *Proc. IEEE/MTT-S Int. Microwave Symp.*, 2020, pp. 1299–1302.

[33] J. Dongarva, P. Luszczek, and A. Petitet, “The LINPACK benchmark: Past, present and future,” *Concurrency Computat. Pract. Experience*, vol. 15, no. 9, pp. 803–820, Aug. 2003.

[34] N. Moll et al., “Quantum optimization using variational algorithms on near-term quantum devices,” *Quantum Sci. Technol.*, vol. 3, no. 5, Nov. 2018, Art. no. 054004.

[35] A. W. Cross et al., “Validating quantum computers using randomized model circuits,” *Phys. Rev. A*, vol. 100, no. 3, Sep. 2019, Art. no. 032328.

[36] J. M. Pino et al., “Demonstration of the QCCD trapped-ion quantum computer architecture,” 2020, arXiv:2003.01293.

[37] K. Wright et al., “Benchmarking an 11-qubit quantum computer,” *Nature Commun.*, vol. 10, Nov. 2019, Art. no. 5464.
Michael James Martin received the PhD degree in aerospace engineering from the University of Michigan, in 2007, and the MS degree in science and technology studies from Virginia Tech, in 2018. He is currently a staff scientist with the National Renewable Energy Laboratory, Computational Sciences Center. Prior to joining NREL, he held research appointments with NASA-JPL, Louisiana State University, and the Naval Research Laboratory, as well as policy appointments with the Department of Energy, United States Senate. His professional honors include the Department of Energy Secretary’s Appreciation Award, the American Society of Mechanical Engineers (ASME) Congressional Fellowship, associate fellow with the American Institute of Aeronautics and Astronautics (AIAA) as well as multiple teaching awards. He is currently a member of the ASME’s Energy and Public Policy committee and the second cohort of the National Academies of Science, Engineering, and Medicine’s New Voices Program. His current research interests include the physics and sustainability of new energy technologies.

Caroline L. Hughes received the BS degree in engineering physics from the University of Colorado Boulder, in 2015, and the MS degree in nuclear engineering from the University of California, Berkeley, in 2018, with emphases in applied mathematics and numerical analysis. She is a researcher with the Strategic Energy Analysis Center, National Renewable Energy Laboratory in Golden, CO. Her research ranges from software development to strategic planning in energy research and quantum computing.

Gilberto Moreno received the BS degree in mechanical engineering from the University of Texas, El Paso, in 2001, and the MS and PhD degrees in mechanical engineering from the University of Texas at Arlington, in 2005 and 2009, respectively. He is a senior research engineer with the National Renewable Energy Laboratory (NREL) where he conducts research into the thermal management of automotive power electronics. He has worked at NREL for more than 12 years developing advanced cooling technologies for various DOE and industry funded projects.

Eric B. Jones received the dual BA degree in mathematics and physics from Wesleyan University, in 2013, and the MSc degree in quantum fields and fundamental forces from Imperial College London, in 2015, and the PhD degree in applied physics from the Colorado School of Mines, in 2020. He subsequently held a postdoctoral appointment with the Computational Sciences Center, National Renewable Energy Laboratory in Golden, CO. He is currently a quantum applications engineer with ColdQuanta, Inc. His research interests include revolves around noisy intermediate-scale quantum computation and applications thereof to quantum simulation, optimization, and artificial intelligence, in addition to quantum error mitigation and the integration of quantum computing and quantum sensing technologies.

David Sickinger received the MS degree in mechanical engineering from the University of Arizona, in 2001, and the postgraduate diploma degree in computer science from the University of Auckland, in 2004. He is a researcher with the Computational Science Center, National Renewable Energy Laboratory, Golden, CO. His research interests revolves around facility cooling and power infrastructure, with a focus on energy and water efficient data center facilities (design, construction, operation).

Sreekant Narumanchi received the PhD degree in mechanical engineering from Carnegie Mellon University. He is currently a group manager for the Advanced Power Electronics and Electric Machines (APEEM) Group, NREL. His professional recognition includes fellow of the American Society of Mechanical Engineers (ASME), the 2022 THERMI Award, the 2018 ASME EPPD-K16 Clock Award, the 2016 R&D 100 Award, the 2003 Best Paper Award from the ASME Journal of Electronic Packaging, and the ASME 2013 InterPACK Conference Outstanding Paper Award. He serves as an associate editor for the ASME Journal of Electronic Packaging, as a guest editor of the IEEE Components, Packaging, and Manufacturing Technologies Journal, as a member of the Executive Committee of the ASME Electronic and Photonic Packaging Division, and as a member of Thermal Working Group of the IEEE Heterogeneous Integration Roadmap Committee. His current research interests include thermal-fluids, electro-thermal, mechanical and reliability aspects of power electronics and electric machines.

Ray Grout received the PhD degree in engineering from the University of Cambridge. He is currently the director of NREL’s Computational Science Center. Prior to joining NREL, he was a postdoctoral researcher with Sandia National Laboratory. His research interests include reacting flows, simulation using exa-scale computing and other new architectures, turbulence, and machine learning for physical systems.

For more information on this or any other computing topic, please visit our Digital Library at www.computer.org/csdl.