Evaluate the Efficiency of Gamma Irradiation and Chitosan on Shelf-Life of Strawberries Fruits

Ehab A. Salem¹, Abeer A. Ali²

¹Food irradiation department, National center for Radiation Research and Technology, Atomic Energy Authority, Egypt.
²Mythological Res. and Plant Dis. Survey Dept., Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt.

Abstract—Chitosan play an important role as an antifungal against Botrytis cinerea and the effect was a concentration dependent. The obtained results of in vitro experiment demonstrated that chitosan (4%) decreased radial growth of B. cinereato 2 %. In vivo the severity of infection reduced from 59.8 and 100.0 to 9.7, 33.8 and 40.1 in first, second and third week’s storage periods at 13°C, respectively. Also, chitosan coating (4%) significantly caused an increase in fruit firmness whereas TSS was decreased with an increase by increasing in storage time. However, Vitamin C gave fluctuated results by increasing storage time. Gamma irradiation at 2.5 kGy reduced severity (%) of infected fruits from 55.5, 100 and 100 to 9.7, 33.8 and 49.9 and in healthy fruits severity (%) reduced from 48.9, 100 and 100 to 23.3, 25.1 and 29.1 in different storage periods 1, 2 and 3 weeks, respectively. Similarly, chitosan as well as gamma irradiation combination induced a significant increase of peroxidase enzyme (POD) activity. Induced changes in surface morphology and damage of cell structure caused by using chitosan shown by scanning electron microscopy. Also, gamma irradiation causes changes in hyphae structure and in surface morphology but combination of gamma irradiation with chitosan was more effective in altering fungus morphology and cell structure damage and no spore forming. This providing the efficiency of combination on reducing disease severity (%) of strawberry.

Keywords — gamma irradiation, chitosan coating, strawberry fruits.

I. INTRODUCTION

Strawberries (Fragaria x ananassa Duch.) was a highly perishable fruit in a postharvest stage due to fungal infections. The shelf-life of fresh fruits at low temperature (0±4°C) was around 5 days.

Braun and Sutton (1987) showed the postharvest decay represent major losses in horticultural industry. Losses during storage and shipment of fruits by Botrytis cinerea and Rhizopus stolonifer caused gray mould and soft rot, diseases, respectively.

Application of fungicides is most effective method to control postharvest disease. However, chemical control program face imminent problem first there are reports of on increasing number of fungicide-resistant strains of postharvest fungi and second due to health risk concerns. Thus, there is a growing need to one tactic that is being actively pursued involves: the use of bio-active substances(Tarek 2004).

Chitosan, a high molecular weight cationic polysaccharide has been shown to be fungicidal against several fungi (El-Ghaouth et al., 1990). Vargas et al., (2006) found that, chitosan treatment of strawberry fruits delayed the occurrence of fungal infections compared with the uncoated fruits which started to decay from the beginning of storage.

Gianfranco Romanazzi, et al. (2013) found that the commercial chitosan formulation was effective in the control of gray mold and Rhizopus rot of strawberries when immersed in this solution and preserved for 4 days at 20±1°C. Shiellk, et al. (2013) confirmed that the chitosan is edible active coatings, maintain the quality and expand shelf-life of fresh fruits and prevent microbial damage.

Milena Petriccione et al. (2015); Reported that chitosan coating significantly reduced water loss and delayed the qualitative changes in color, titratable acidity and ascorbic acid content of strawberry also chitosan coating enhanced the activity of some antioxidant enzymes, preventing flesh browning and reducing membrane damage.

Chu et al. (2015); gamma irradiation was evaluated for its in vitro and in vivo antifungal activity against Botrytis cinerea on cut rose varieties. The irradiating dose required to reduce the population by 90% was 0.99 kGy. Gamma irradiation showed complete inhibition of spore germination and mycelia growth of B. cinerea especially 4.0 kGy in vitro.
Combinatory treatments have also widely been investigated to give synergistic effects. Gamma irradiation in combination with other treatments (e.g., heat, washing, modified atmosphere storage and edible coating process) give an effective result in extending shelf-life of the fruits. (Hussain et al., 2013).

II. MATERIALS AND METHODS

Strawberry fruits collected from different fields of El-Sharkia governatore were classified into two groups healthy and decayed fruits. Decayed fruits were examined after 3 day of storage at 13°C. The developing fungal colonies were picked up and examined.

Isolation, purification and identification of causal organisms:

Rotted fruits of strawberry were rinsed several time with sterilized water, surface disinfected by 70% ethanol, dried and cut into small pieces. These parts were cultivated in sterilized Petri dishes containing potato dextrose agar (PDA) and incubated at 20°C for 3 days. The growing fungi were isolated and purified on PDA and identified. The purified cultures were maintained on PDA and identified according to Raper and Thom (1968) in Mycological Lab.2 (ML2), Faculty of Science, Zagazig University. The media used for identification was Czapek’s – Dox agar medium.

Isolation purification in vitro antifungal activity of chitosan:

The antifungal activity of chitosan against Botrytis cinerea were determined using PDA plates amended with (1,2 and 4%) chitosan. The PDA plates were prepared then inoculated with disks (3mm diameter) of fungal growth taken from 7 days old culture of Botrytis cinerea. The linear growth of the fungus was measured when control plates reached full growth.

Preparation of inoculums

Botrytis cinerea was isolated from infected Strawberries and maintained on Potato dextrose agar (PDA). Conidia of B. cinerea were recovered by filtering the mycelial suspension of 2 weeks old culture through 3 layers of sterile cheese cloth. The concentration of the conidial suspension was adjusted to 2 x 10^3 conidia per mL.

In vivo antifungal activity of chitosan

Strawberries were immersed in a conidial suspension of B. cinerea containing 0.1% tween 80 and allowed to air dry at room temperature for 2 hrs. in order to fixed fungal infection. Different concentrations (0, 1, 2 and 4%) of chitosan were added individually to Erlenmeyer flasks (250ml capacity). Each contain 100 ml sterilized potato dextrose agar (PDA) media. The prepared media were poured in sterilized Petri dishes. After solidification, the dishes were inoculated singly at the center with equal discs (3 mm diameter) of fungal growth taken from 10 days old culture grown on PDA medium incubated at 20 °C. The linear growth of tested fungi was measured when the control plates reached full growth and the percentage of growth inhibition (%) calculated .Three replicates were used for each treatment.

After treated healthy and infected strawberries with chitosan or with gamma irradiation Strawberry fruits were examined for diseases assessment (Severity %) through different storage periods (weeks) under 13°C.

Radiation: Strawberry fruits were exposed to different gamma irradiation doses 1.0, 1.5 and 2.5 KGy in Indian Co60 gamma cell at the dose rate was 2.45kGy/hr at the time of experiment. Each treatment was replicated three times, each replicate contain 15 fruits. All treatments fruits and control were packed in perforated plastic containers and stored the Strawberry fruits were examined for disease assessment at different storage periods.

Chitosan treatment: chitosan solutions were prepared by dissolving 1, 2 and 4 gm of chitosan in 100 mL of distilled water with 2 mL acetic acid. Then heating with constantly agitation for 24 h. The obtained solution was adjusted to pH 5.5 by sodium hydroxide 0.1N; than 0.1 mL of tween 80 was added (El-Ghaoth et al., 1991). Sprays of the different coating chitosan concentrations were applied and then stored the treated fruits.

Quality parameters:

1- Total soluble solids (TSS): TSS content expressed in °(Brix) was determined using a ago (Japan) NI refractometer according to Kader (1991).

2- Firmness: Firmness (Firm) was measured as the maximum penetration force reached during tissue breaking of each fruit with hand penetrometer equipped with 1-9 mm diameter plunger (g/Cm²) according to Kader (1991).

3- Ascorbic acid (Vitamin C): Ascorbic acid content was determined by titration in the presence of 2.6 dichlorophenol- indophenol dye as an indicator against 2% oxalic acid solution as substrate. Ascorbic acid was calculated as milligram L - ascorbic acid per 100 mL of juice as described by Lucoss (1994).

Determination of peroxidase activity:

Samples of infected strawberry fruits treated with each antioxidant at 8 g/L, caraway oil at 700 μL/L and 2.5 kGy radiation dose, were collected after 10 days storage at 13°C for peroxidase activity assay. Also, infected fruits without treatment were used as control. Enzyme extract was obtained by grinding fruits tissues (2 ml/g fruits tissue) in 0.1 M sodium phosphate buffer at pH (7.1) in a porcelain mortar and extracted. The extracted tissues were strained through four layers of
Cheesecloth. Filtrates were centrifuged at 3000 rpm for 20 min. at 6°C. The clear supernatants were collected and considered as crude enzyme extract. Peroxidase activity was expressed as changes in absorbance/min at 425 nm according to the method of Allam and Hollis (1972). Determination of peroxidase enzyme was conducted in Central Lab. of Biotechnology, Plant Pathology Research Institute, Agricultural Research Centre, Egypt.

Scanning electron microscopy: Mycelia of B. cinerea grown in PD broth medium treated with chitosan 4% and that from non-treated (control) were fixed in 2.5% glutaraldehyde at 4°C for 24 hr and post-fixed in 1.0% osmium tetroxide for one hr at room temperature (Harley and Ferguson, 1990). The specimens were then dehydrated with ascending concentrations of acetone, critical point dried, and finally sputter coated with gold. The examination and photographing was done through Joel Scanning Electron Microscope (JSM – 1200 EX).

Conclusion

This study demonstrated that chitosan play an important role as an antifungal against Botrytis cinerea. Also, chitosan coating (4%) significantly caused an increase in fruit firmness whereas TSS was decreased with an increase by increasing in storage time. However, Vitamin C gave fluctuated results by increasing storage time. Gamma irradiation at 2.5 KGY reduced severity (%) but combination of gamma irradiation with chitosan was more effective in altering fungus morphology and cell structure damage and no spore forming. This providing the efficiency of combination on reducing disease severity (%) of strawberry.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

There is no Fund but This work was carried out in Food irradiation department, National center for Radiation Research and Technology, Atomic Energy Authority and Mythological Res. and Plant Dis. Survey Dept., Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt.

Experimental design and statistical analysis:

All treatments in this study were arranged in complete randomized design. The obtained data were subjected to analysis of variance using the general linear module procedure of SAS (1985), where appropriate treatment means were separated using Duncan’s multiple range test (Duncan 1955) and all percentages were transferred to angles before statistical analysis.

III. RESULTS

Antifungal activity of different chitosan concentrations on Botrytis cinerea

The obtained data from Table (1) and Fig. (1) show that the correlation between increased chitosan concentrations with decreased the linear growth of Botrytis cinerea.

Table 1: Effect of different chitosan concentrations on radial growth of Botrytis cinerea

chitosan concentrations %	Linear growth (cm)	inhibition %
0	9.0	0.0
1	7.0	30
2	5.0	50
4	2.0	80

* Means having the same letters in each column are statistically insignificant at 5% level
Table 2: Effect of different gamma irradiation and Chitosan treatment on (severity %) of strawberries fruits gray mold at different storage periods (weeks) at 13°C.

Storage periods (weeks)	Gamma doses kGy	Severity %	Chitosan %	Severity %		
	Infected	Healthy	Infected	Healthy		
1	0	55.5A	48.9A	0	59.8A	42.4A
	1	45.3B	40.1B	1	31.1B	21.6B
	1.5	38.4C	29.8C	2	20.1C	7.2C
	2	31.7D	23.3D	4	9.7D	2.4D
2	0	100.0A	100.0A	0	89.4A	77.66A
	1	73.8B	45.5B	1	57.3B	30.1B
	1.5	65.6C	41.7C	2	39.9C	20.4C
	2	45.9D	25.1D	4	33.8D	16.9D
3	0	100.0A	100.0A	0	100.0A	100.0A
	1	80.8B	54.4B	1	62.5B	40.4B
	1.5	69.7C	46.3C	2	53.4C	28.1C
	2	49.9D	29.1D	4	40.1D	19.2D

* Means having the same letters in each column are statistically insignificant at 5% level.

Data in Table (2) show that effect of different gamma irradiation doses (1, 1.5 and 2.5 KGY) and different chitosan concentrations (0, 1, 2 and 4%) coating on severity (%) of strawberry fruits at 13°C for different periods (1, 2, 3 weeks).

The obtained data show that as chitosan % increased the severity % decreased. The lowest severity % obtained at 4% chitosan. Also as the storage period increase the severity % increased. Moreover, as storage period increase the severity (%) increased, and different doses of gamma ray decreased the severity (%) and at 2.5 KGY is the effective dose decrease severity (%) in different storage periods.

Table 3: Effect of chitosan treatment concentrations, storage time (weeks) and Botrytis cinerea infection on some strawberries quality parameters at 13°C.

Storage periods (weeks)	Chitosan %	TSS (Brix)	Firmness (g/cm²)	Vitamin C			
		Healthy	Infected	Healthy	Infected	Healthy	Infected
1	0.0	7.21A	8.21A	423.3A	404.1A	0.020A	0.030A
	1	7.01B	6.73B	422.5B	400.0B	0.027B	0.025B
	2	6.88C	6.87C	448.7C	453.7C	0.019A	0.018C
	4	5.9B	7.1D	450.1D	457.6C	0.018A	0.015C

Effect of chitosan treatments concentrations, storage time (weeks) and Botrytis cinerea infection on some strawberries quality parameters.

Data in Table (3) show that interaction between storage time and chitosan treatments on quality parameters of strawberry fruits. Data indicate that, treating strawberries with chitosan significantly decreased the values of TSS by increasing storage time (1, 2, 3 weeks) while an opposite effect was obtained in firmness which increased by using chitosan coating at different concentrations (0, 1, 2 and 4%), since at 4% chitosan give the highest values of firmness at different storage periods. Vitamin gave fluctuated values by increasing storage time.
Combination of gamma irradiation and chitosan on strawberry fruits gray mold at different storage periods (weeks) at 13°C.

Data in Table (4) show that combination effect of gamma ray (2.5 KGy) and chitosan (4%) on severity (%) of gray mold on strawberry fruits. The combination between gamma ray (2.5 KGy) and chitosan (4%) was more effective to reduce severity (%) as compared when we used chitosan (4%) alone or when used gamma rays at (2.5 KGy) alone, since combination reduced severity (%) from 55.5, 48.9 to 8.5, 2.1 for infected and healthy fruits respectively at first week, from 100.0, 100.0 to 19.9, 8.7 for infected and healthy fruits respectively at second week and at third week severity (%) of infected and healthy fruits decreased from 100.0, 100.0 to 24.7, 18.9 respectively.

Table 4: Combination of gamma irradiation and chitosan on strawberry fruits gray mold (severity %) at different storage periods (weeks) at 13°C.

Storage periods (weeks)	Treatments	Severity %	
		Infected	Healthy
1	Control	55.5A	48.9A
	Chitosan (4%)	10.8B	4.5B
	2.5 KGy	31.7C	26.3C
	2.5 KGy + Chitosan (4%)	8.5D	2.1D
2	Control	100.0A	100.0A
	Chitosan (4%)	33.8B	16.9B
	2.5 KGy	48.9C	25.1C
	2.5 KGy + Chitosan (4%)	19.9D	8.7D
3	Control	100.0A	100.0A
	Chitosan (4%)	40.1B	19.2B
	2.5 KGy	49.9B	29.1C
	2.5 KGy + Chitosan (4%)	24.7C	18.9B

* Means having the same letters in each column are statistically insignificant at 5% level.

Effect of gamma irradiation (2.5 kGy), chitosan (4%) and combination between gamma irradiation and chitosan on peroxidase enzyme activity in strawberry fruits infected with B. cinerea and stored for one week

Results in Fig(2) Show that strawberry fruits inoculated with B. cinerea treated with combination of chitosan (4%) and gamma irradiation 2.5kGy induce higher activity of peroxidase (POD) enzyme, followed by chitosan(4%) and gamma irradiation 2.5 kGy irrespectively as compared with control fruits after one week storage periods.
Scanning electron microscopy

Fig. (3) showed the morphological changes occurred in hyphae and conidiophores of *B. cinerea* treated with chitosan(4%), gamma irradiation 2.5 kGy and combination between chitosan (4%) and gamma irradiation2.5kGy irrespectively.

It was found that control fungus *B. cinerea* have normal hypha, sporangium, sporangiophiore and normal cell wall and spore(Fig. 3A).

Chitosan treatment(4%) induced changes in surface morphology and cause damage to cell structure of *B.cinerea* and sporangiophiore without spore(Fig. 3B).
Gamma irradiation induced changes in surface morphology and cause damage to hypha also an affected sporangiophore(Fig. 3C).

The combination effect of chitosan(4%) and gamma irradiation2.5kGy on B. cinerea show more destructive effect in surface morphology and more effective damage to cell structure , corregate surface and no spore found (Fig. 3D).

IV. DISCUSSION

Several studies have been performed to extend strawberry fruits shelf-life, using alternative methods rather than chemicals to avoid residues such as fungicide residues for the fruit itself (Peng and sutton, 1991) and to avoid pathogen populations from developing resistance to pesticides (Bakkali et al., 2008).

Chitosan, a high molecular weight cationic polysaccharide, has been shown to be fungicidal against several fungi (El-Ghouth et al., 1990).

The obtained results show that chitosan (4%) reduced the severity % of gray mold on different storage period and these results are in agreement with Li and Yu (2000). Confirmed the potential effect of chitosan to protect postharvest brown rot of peach caused by M. fructicola by decreasing the incidence, prolonging the incubation period and reducing of brown rot is correlated with chitosan induction of defence response, in addition to its antifungal property. Romanazzi et al.(2000) reported that strawberries dipped in 1% and 0.5% chitosan decreased the gray mold infection from natural inoculum after 10-days storage at 0°C. Followed by 4 days shelf-life. Casariego(2004) confirmed that chitosan films were also reported to inhibit the growth of fungi and yeasts in the area of contact, forming a halo of inhibition on the inoculated plates.

Atiæt et al., (2005)suggested that the mechanism by which chitosan coating reduced that decay of strawberries appear to be related to its fungistatic property rather than to its ability to induce defense enzymes such as chitinase, chitosanase and ß-1,3-glucanase,and its capacity to stimulate plant defence mechanisms (Aziz, et al.,2006)

Ribeiro et al. (2007)explained that strawberry in non-climacteric fruits, but has a high postharvest respiration rate, which leads to a rapid deterioration at room temperature, coating with 1% chitosan reduced the growth rate of microorganisms in strawberries.

Romanazzi (2010)confirmed that pre-harvest and postharvest chitosan treatments of table grapes, strawberries and sweet cherries reduce their decay under field and during storage.

Besides its antifungal activity, chitosan also has the potential for inducing defenserelated enzymes (Bautista-Bonas et al.,2006) and phenolics in plants (Benhamou,1996).

Ben-Shalom et al., (2003) demonstrated that POD activity was elicited by chitosan in cucumber, resulting in an increase in resistance againstB. cinerea. Liu et al.(2007)confirmed that chitosan inhibit the growth of B. cinerea and P. expasumin vitro and potently induce defense reactions in tomato fruits.

Li et al. (2000)used chitosan as a semi-permeable coating and found that it can maintain the qualities of the treated fruit and prolong its storage life, chitosan slows down the aging process of peaches by decreasing respiration rate and ethylene production, reducing malondialdehyde(MDA) production, stimulate superoxide dismutase(SOD) activity and maintaining membrane integrity.

Chitosan has a double mechanism of action: it reduces the growth of decay causing fungi, and it induces resistance responses in host tissues. With this double effectiveness chitosan can be considered as the first compound of a new class of plant protection products (Atia et al., 2005).

Hernandez-Lauzardoetal. (2011) demonstrate the mode of action of chitosan on different fungal pathogen. They reported that molecules of chitosan can penetrate the intracellular level and interact with intracellular structure and cause damage.

Greater effects of chitosan to inhabit the growth of B. cinerea and cause serious damage to cell structure as well as the ability to form an impervious layer around the cell, therefore, chitosan could be considered as a potential alternative for synthetic fungicides (Silva Junior et al.,2014).

SEM show that chitosan causing changes on morphology of B. cinerea and cause damage to cell structure also gamma irradiation cause changes in surface morphology and cause damage to hypha also effect on sporangiophore but combination between chitosan(4%) and gamma irradiation 2.5 kGy show more destructive effect in surface morphology and more damage to cell structure. these result arein agreement with Swelim (2004) who confirmed that scanning electron microscope showed that the decrease in sporulation and morphology abnormalities of Fusarium solani were occurred after irradiation with 6, 8 and 10 kGy. Meanwhile low dose levels of 1, 2 and 3 kGy cause malformation and compactness of mycelia as well as absence of sporulation in F. verticilloides.

Our results indicated that treating strawberries with chitosan significantly decreased the value of TSS by increasing storage time(weeks) while an opposite effect was obtained in firmness which increased by chitosan coating but vitamin C would not be detected in clear level of amounts. These results are in agreement with El-
Gaouth (1991) and Luna et al., (2001) who reported that greater firmness of fruits such as strawberries, tomatoes and peaches were obtained when fruits coated with a chitosan. Also, Dam and Nguyen 2011 suggested that, all chitosan treatments enhanced the firmness of strawberries fruits compared to untreated fruits.

Gamma irradiation doses reduced the severity (%) of strawberry fruits in our obtained results and 2.5 kGy doses was the most effective doses decreased the severity % these obtained results are in agreement with Shadka and Ebab (2011) who confirmed that gamma radiation decreased the percentage of infection of strawberry fruits artificially inoculated with B. cinerea and naturally infected at 2.5 kGy compare with control.

The combination of chitosan and gamma radiation indicated that this treatment was the more effective in reducing severity (%) as compared when use every one alone.

REFERENCES

[1] Allam, A. I. and Hollis, S. P. (1972): Sulfide inhibition of oxidase in rice root phytopathology, 62: 634-639.

[2] Ana Niurka Hernandez-Lauzardo, Miguel Gerardo Velazquez-del Valle and Maria Guad Guerrra-Sanchez, (2011): Current status of action mode and effect of chitosan against Phytophagenis fungi. African J. Microbiol. Res., 2: 4243-4247.

[3] Atia, M. M. M.; Buchenauer, H., Aly, A. Z. and Abou-Zaied, M. I. (2005): Antifungal activity of chitosan against Phytophthora infestans and activation of defence mechanisms in tomato late blight. PolymBuil., 20: 83-88.

[4] Aziz, A., Trotel-Aziz, P., Dhuiq, L., Jeaner, P., Coudercher, M., Vernet, G., (2006): Chitosan Oligomers and copper sulfate induce grapevine mildew. Phytopathology, 96:1188-1194.

[5] Bakkali, F.; Averbeck, S.; Averbeck, D. and Aziz, P., Dhuicq, L., Jeander, P., Launier, P., (2003): Sulfide chemistry, 115: 22-29.

[6] Bautista-Banos, S., Hernandez-Lauzardo, A. N., Velazquez-del Valle, M.G., Hernandez- Lopez, M., AitBarka, E. Bosquez-Molina, E., Wilson, C.L., (2006): Chitosan as a potential natural compound to control pre and postharvest disease of horticultural commodities. Crop. Prot., 25, 108-118.

[7] Benhamou, N., (1996): Elicitor-induced plant defense pathways. Trends Plant Sci., 1: 233-240.

[8] Ben-Shalom, N., Ardi, R., Pinto, R., Aki, C., Fallik, E., (2003): Controlling gray mould caused by Botrytis cinerea in Cucumber plants by means of chitosan. Crop. Prot., 22: 285-290.

[9] Braun, P. G. and Sutton, J. C., (1987): Inoculum sources of Botrytis cinerea in Fruit rot strawberries in Ontario. Can. J. Plant Pathol., 9: 1-5.

[10] Casariego, A. (2004): Obtencion de pellcules antimicrobian como a partir de quitosana. CienciayTecnologia de los Alimentos, 14: 11-14.

[11] Dam, S. M. and Nguyen, H. X. P. (2011): The effect of the neem seed extract (Azadirachthinindica), Chitosan and CaCl2 on strawberry (Fragariaananasssu) storage. The 12th Asian Food Conference, Thailand.

[12] Duncan, D. B. (1955): Multiple range and multiple F. tests. Biometrics, 11: 1-42.

[13] El-Ghaouth, A.; Arul, J. and Ponnamaram, R. (1990): The effect of chitosan on growth and morphology of Rhizopusstolonifer. (Abst.). Phytopathology, 80: 1020.

[14] Eun-Hee Chu, Eun-Jung Shin and Hae-Jun Park (2015): Effect of gamma irradiation and its convergent treatment for control of postharvest Botrytis cinerea of cut roses. Radiation physics and chemistry, 115: 22-29.

[15] Harley, MM. and Fergusen, IK. 1990: The role of SEM in pollen morphology and plant systematic. Association special, 41: 45-68, Clarendon press, oxford.

[16] Hongye Li and Ting Yu (2000): Effect of chitosan on incidence of brown rot, quality and physiological attributes of postharvest peach fruit. Journal of the Science of Food and Agriculture, 81(2): 269-274.

[17] Hongye Li and Ting Yu, (2001): Effect of chitosan on incidence of brown rot, quality and physiological attributes of postharvest Peach fruit. Journal of the Science of food and Agriculture, 18 (2): 269-274.

[18] Hussain, P. R., Dar, R. S. and Wani, A. M. (2013): Impact of radiation processing on quality during storage and post-refrigeration decay of plum (Prunusdomestica L) cv. Santaoroza. Rad. Phys. and Chem. 4(1): 1016-1020.

[19] Jia Liu, Shiping Tian, Xianghong Meng and Yong X.U., (2007): Effects of chitosan on control of postharvest diseases and physiological responses of tomato fruits. Postharvest biology and Technology 44: 300-306.

[20] Kader, A. A. (1991): Quality and its maintenance in relation to the postharvest physiology of strawberry. The strawberry into the 21st. century: Proc, third North Amer. Strawberry Conf. Timber press, Portland. OR, PP. 145-152.

[21] Lucoss, E. H. (1994): Determination ascorbic acid in large numbers of plant samples. Ind. Eng. Chem. Anal., 15: 649-652.
[22] Luna, D.; Bustamanta, L. M.; Gonzalez, G.; Dominguez, S. J.; Bautista, B. S.; Shirai, K. and Bosquez, M. E. (2011): Treatments on the quality of papaya fruit during storage. Proceeding of the Eighth international congress on Engineering Food. Technomic publishing Co. Inc., Lancaster, Abstr., PP.: 1042-1046.

[23] Milena petriccione, Francesco Mastrobuoni, Maria Silvia pasquariello, Luigi Zampella, Elvira nobis, Giuseppe Capriolo and Marco Scortichini (2015); Effect of chitosan coating on postharvest quality and antioxidant enzyme system response of strawberry fruit during cold storage. Foods ISSN 2304-8158, 4: 501-523.

[24] Peng, G. and Sutton, J. C. (1991): Evaluation of microorganism for biocontrol of Botrytis cinerea in strawberry. Can. J. plant pathol., 13: 247-257.

[25] Raper, K. B. and Thom, C. (1968): A manual of the penicillia. Hafner publishing company, New York and London.

[26] Rayees Ahmed Shiekh, Mqsood Ahmed Malik, Shaeel Ahmed Al-ThaBatti and Muneer Ahmed Shiekh (2013); Chitosan as a Novel Edible coating for fresh fruits. Review. Food Sci. Technol. Res., 19(2): 139-155.

[27] Ribeiro, C.; Vicenta, A. A.; Teixeira, J. A. and Miranda, C. (2007): Optimization of edible coating composition to treat strawberry fruit senescence. Postharvest Biol. and Tech., 44: 63-70.

[28] Romanazzi, F.; Nigro, F. and Ippolito, A. (2000): Effect to di trattamenti pre postraccolta con chitosan sui marciundellafragola in conservazione. Rivista di Frutticolture, 62(5): 71-75.

[29] Romanazzi, G. (2010): Chitosan treatment for the control of postharvest decay of table grapes, strawberries and sweet cherries. Fresh Produce 4 (Special Issue), 111-115.

[30] Romanazzi, G., Feliziani, E., Santini, M. and Landi, L. (2013): Effectiveness of postharvest treatment with chitosan and other resistance inducers in the control of storage decay of strawberry. Postharvest biology and technology, volume 75. January, pages 24-27.

[31] SAS “Statistical Analysis System” (1985): SAS/STAT user’s guide: statistics, version 6. 03 Edition. SAS Institute Inc. Cary, N. C. USA.

[32] Shadi, A. A. and Ehab, A. S. (2011): Effect of some Antioxidants, caraway oil (Carium carvum L.) and Gamma Radiation on Gray Mold of strawberry fruits during storage. J. Rad. Res. Appl. Sci., vol., 4(B): 1415-1428.

[33] Silva Junior S., Stamford N., P., Lima M.A.B., Arnaud, T.M.S., Pintado, M.M. and Sarmento, B. F., (2004): Characterization and inhibitory activity of chitosan on hypha growth and morphology of Botrytis cinerea plant pathogen. International Journal of Applied Research in Natural Products, 7(4): 31-38.

[34] Swelim, M.A., (2004): Effect of gamma irradiation on growth and cellular structure of two Fusarium species. Isotope and Rad. Res., 36, 135-150.

[35] Tarek, S.S.S. (2004): Integrated control for minimizing postharvest diseases of strawberry. M.Sc. thesis, Fac. Agric. Ain shams Univ., 165pp.

[36] Vargas, M.; Albors, A.; Chiralt, C. and Gonzalez – Martinez, S. (2006): Quality of cold-stored strawberries as effected by chitosan-oleic acid edible Coatings. Postharvest Biol. and Tech., 41: 164-171.