Deep Generative Modeling for Single-cell Transcriptomics

Romain Lopeza, Jeffrey Regiera, Michael Coleb, Michael I. Jordana, and Nir Yosefa,c,d

aDepartment of Electrical Engineering and Computer Sciences, University of California, Berkeley
bDepartment of Physics, University of California, Berkeley
cRagon Institute of MGH, MIT, and Harvard
dChan-Zuckerberg Biohub

Abstract

Single-cell transcriptome measurements can reveal unexplored biological diversity. Yet they suffer from technical noise and bias that must be modeled to account for the resulting uncertainty in downstream analyses. Here, we introduce Single-cell Variational Inference (scVI), a ready-to-use scalable framework for the probabilistic representation and analysis of gene expression in single cells (https://github.com/YosefLab/scVI). scVI uses stochastic optimization and deep neural networks to aggregate information across similar cells and genes and to approximate the distributions that underlie observed expression values, while accounting for batch effects and limited sensitivity. We utilize scVI for a range of fundamental analysis tasks including batch correction, visualization, clustering and differential expression and demonstrate high accuracy for each task.

1. Introduction

Single-cell RNA sequencing (scRNA-seq) is a powerful tool that is beginning to make important contributions to diverse research areas such as development [1], autoimmunity [2], and cancer [3]. Interpreting scRNA-seq remains challenging, however, as the data is confounded by nuisance factors such as variation in capture efficiency and sequencing depth [4], amplification bias, batch effects [5] and transcriptional noise [6]. To avoid mistaking nuisance variation for relevant biological diversity, one must therefore account for measurement bias and uncertainty, especially due to the highly abundant false negatives or “dropout” events [7].

The challenge of modeling bias and uncertainty in single-cell data has been explored in several recent studies. A common theme in these studies is treating each data point (cell \times gene) as a random variable and fitting a parametric statistical model to this variable. Most existing models are a mixture of an “expression” component, which is usually a negative binomial (e.g., ZINB-WaVE [8]) or log normal (e.g., BISCUIT [9]), and a zero (or low expression) component. The parameters of the model are determined by a combination of cell- and gene-level coefficients, and in some cases additional covariates provided as metadata (e.g., biological condition, batch, and cell quality [8]). All of these methods can therefore be interpreted as finding a low-dimensional representation of the data which can be used to approximate the parameters of the cell \times gene random variables. Once these models have been fit to the data, they can then in principle be used for various downstream tasks such as normalization (e.g., scaling, correcting batch effects), imputation of missing data, visualization and clustering.

A complementary line of studies focuses on only one of these tasks, often without explicit probabilistic modeling. For instance, SIMLR [10] fits a cell-cell similarity matrix, under the assumption that this matrix has a block structure with a fixed number of clusters. The resulting model can be used for clustering and for visualization [11]. MAGIC [12] performs imputation of unobserved (dropout) counts by propagation in a cell-cell similarity graph. Census [13] and SCNorm [14] look for proper scaling factors by explicitly modeling the dependence of gene expression on sequencing depth or spike-in RNA. For differential expression analysis, the most common methods consist of

Accepted to Nature Methods (Oct 26, 2018).
This version is a preprint.
both methods developed for bulk count data (e.g., DESeq2 [15] and edgeR [16]) as well as methods
developed for scRNA-seq data, explicitly accounting for the high dropout rates (e.g., MAST [17]).
In [18], neural networks are used as function approximators reducing the dimension of single-cell
RNA sequencing data; however, this model is a supervised learning method and inherently relies on
some labeling of the cells.

While these methods yield insights into biological variation in single-cell data, several significant
limitations remain. First, all of the existing distributional modeling methods assume that a low-
dimensional manifold underlies the data, and that the mapping from this manifold to the parameters
of the model can be captured by a generalized linear model. While the notion of a restricted
dimensionality is plausible (reflecting, for example, common regulatory mechanisms among genes or
common states among cells), it is difficult to justify the assumption of linearity. Second, different
existing methods use their fitted models for different subsets of tasks (e.g., imputation and clustering,
but not differential expression [9]). Ideally, one would have a single distributional model that would
be used for a range of downstream tasks, thus help ensuring consistency and interpretability of the
results. Finally, computational scalability is increasingly important. While most existing methods
can be applied to no more than tens of thousands of cells, the next generation of tools must scale
to the size of recent data sets (commercial [19], or envisioned by consortia such as the Human Cell
Atlas [20]) that consist of hundreds of thousands of cells or more.

To address these limitations, we developed a fully probabilistic approach to normalization and
downstream analysis of scRNA-seq data, which we refer to as Single-cell Variational Inference (scVI).
scVI is based on a hierarchical Bayesian model [21]. For each cell, a low-dimensional random
vector represents its underlying state. Conditional on this state, each observed gene expression level
follows a zero-inflated negative binomial (ZINB) distribution, which captures both overdispersion
and dropout events [22, 15, 8]. The parameters of each ZINB distribution are a nonlinear function
of the cell state. We implement this function with deep neural network.

We infer cell states under this model using another deep neural network, known as an encoder
network [23]. It maps the scRNA-seq data to an approximation of the posterior distribution. The
weights of both neural networks are learned from training data through variation inference [24],
which is a computationally efficient alternative to Markov chain Monte Carlo.

Independent of our work, several recent articles and preprints have also demonstrated the utility
of using neural networks to embed scRNA-seq datasets in a scalable manner [25, 26, 27, 28]. scVI
stands out from these methods in two important ways (summarized in Table A.1 and Methods
section 4.7). First, scVI is the only method that explicitly models the two key nuisance factor in
scRNA-seq data, namely library size and batch effects. Empirical justification for these modeling
choices are underlined in [9, 29] for library size and [8, 30] for batch effects, and are also demonstrated
in this study (Figures 4, 5, S6, and S9). Another important distinction is that scVI is the only
method that offers readily available solutions for a range of important analysis tasks using the same
generative model, thus ensuring consistency of assumptions and facilitating interpretation of the
results.

In the remainder of this paper, we demonstrate the extent to which scVI addresses the current
methodological limitations. First, we demonstrate the scalability of scVI to data sets of up to a
million cells. Second, we show that, by using non-linear transformations, scVI better fits unseen
data (imputation and held-out log-likelihood). Finally, we demonstrate that the model of scVI can
be used for a number of tasks, including batch removal and normalization, clustering, dimensionality
reduction and visualization, and differential expression. For each of these tasks, we show that scVI
compares favorably to the current state-of-the-art methods. scVI is publicly available at https://
gitHub.com/YosefLab/scVI. An implementation for all of the analysis performed in this paper
is available at https://zenodo.org/badge/latestdoi/125294792.
2. Results

2.1. Model definition

The primary output of an scRNA-seq experiment is an $N \times G$-matrix x that records the number of transcripts measured for each of G genes in each of N cells. We may also have a batch annotation s_n observed for each cell n as well.

We model the expression level x_{ng} measured for each cell n and gene g as a sample drawn from a conditional distribution that has a zero-inflated negative binomial (ZINB) form [22, 15, 8]. The distribution is conditioned on the observed batch annotation, as well as two additional, unobserved random variables. The latent random variable ℓ_n represents nuisance variation due to variation in capture efficiency and sequencing depth. It is drawn from a log-normal distribution and serves as a cell-specific scaling factor.

The latent random variable z_n represents the remaining variability, which should better reflect biological differences between cells. It is drawn from a standard multivariate normal of low dimensionality d, and provides a latent-space representation that can be used for visualization and clustering. The reason for drawing z_n from a multivariate normal is essentially for computational convenience (see Methods 4.1). The matrix ρ is an intermediate value that relates the observations x_{ng} to the latent variables. It provides a batch-corrected, normalized estimate of the percentage of transcripts in each cell that originate from each gene. We use ρ for differential expression analysis and its scaled version (multiplying by the estimated library size) for imputation.

Altogether, each expression value x_{ng} is drawn independently through the following process:

$$z_n \sim \text{Normal}(0, I)$$ (1)

$$\ell_n \sim \text{LogNormal}(\ell_\mu, \ell_\sigma)$$ (2)

$$\rho_n = f_w(z_n, s_n)$$ (3)

$$w_{ng} \sim \text{Gamma}(\rho_n, \theta)$$ (4)

$$y_{ng} \sim \text{Poisson}(\ell_n w_{ng})$$ (5)

$$h_{ng} \sim \text{Bernoulli}(f_h^g(z_n, s_n))$$ (6)

$$x_{ng} = \begin{cases} y_{ng} & \text{if } h_{ng} = 0, \\ 0 & \text{otherwise}. \end{cases}$$ (7)

Here B denotes the number of batches and $\ell_\mu, \ell_\sigma \in \mathbb{R}_+^B$ parameterize the prior for the scaling factor (on a log scale). The specification of these parameters is discussed in Methods 4.1. The parameter $\theta \in \mathbb{R}_+^G$ denotes a gene-specific inverse dispersion, estimated via variational Bayesian inference (Methods 4.2). f_w and f_h are neural networks that map the latent space and batch annotation back to the full dimension of all genes: $\mathbb{R}^d \times \{0, 1\}^B \rightarrow \mathbb{R}_+^G$ (Figure 1b, NN5-6). We use superscript annotation (e.g., $f_w^g(z_n, s_n)$) to refer to a single entry that corresponds to a specific gene g. We enforce $f_h^g(z_n, s_n)$ to take values in the probability simplex (namely, for each cell n the sum of $f_h^g(z_n, s_n)$ values over all genes g is one), thus providing interpretation as expected frequencies. Importantly, neural networks allows us to go beyond the generalized linear model framework and provide a more flexible model of gene expression. Figure 1a specifies the complete graphical model and its implementation using neural-network conditionals. Methods 4.1 provides further details on the specification of this probabilistic model.

The distribution $p(x_{ng} \mid z_n, s_n, \ell_n)$ is zero-inflated negative binomial (ZINB) [22] with mean $\ell_n \rho_n$, gene-specific dispersion θ^g, and zero-inflation probability $f_h^g(z_n, s_n)$ (see Appendix Appendix B). Because the marginal distribution $p(x_{ng} \mid z_n, s_n, \ell_n)$ is not amenable to exact Bayesian computation, we use variational inference [24] to approximate the posterior distribution. Our variational distribution, $q(z_n, \log \ell_n \mid x_n, s_n)$, is Gaussian with a diagonal covariance matrix. The mean and covariance of the variational distribution are given by an encoder network applied to x_n and s_n [23] (Figure 1b, NNI1-4). With this formulation, the approximate inference problem can be efficiently solved using a stochastic optimization procedure where we optimize the variational lower bound (Methods 4.2).
2.2. Datasets

We apply scVI to seven publicly available datasets (see Methods 4.6 for preprocessing information). We focus on datasets with unique molecular identifiers (UMIs), which prevents overcounting due to amplification. Due to scalability issues, not all of the benchmark methods included in this paper are applicable to all datasets. We therefore provide the list of methods applicable to each dataset, along with additional information such as the hyperparameters for scVI, in the Methods section and Table A.2.

The first dataset (BRAIN-LARGE) consists of 1.3 million mouse brain cells, spanning the cortex, hippocampus and subventricular zone, and profiled with 10x chromium [19]. We use this dataset to demonstrate the scalability of scVI.

The second dataset (CORTEX) consists of 3,005 mouse cortex cells profiled with the Smart-seq2 protocol, with the addition of UMI [31]. To facilitate comparison with other methods, we use a filtered set of 558 highly variable genes as in [9]. The CORTEX dataset exhibits a clear high-level subpopulation structure, which has been inferred by the authors of the original publication using computational tools and annotated by inspection of specific genes or transcriptional programs. Similar levels of annotation are provided with the third and fourth datasets.

The third dataset (PBMC) consists of 12,039 human peripheral blood mononuclear cells profiled with 10x [32].

The fourth dataset (RETINA) includes 27,499 mouse retinal bipolar neurons, profiled in two batches using the Drop-Seq technology [33]. The original annotations of these datasets were used to benchmark scRNA-seq algorithms in several subsequent studies (e.g., [10, 9]).

The fifth dataset (HEMATO) includes 4,016 cells from two batches that were profiled using inDrop. This data provides a snapshot of hematopoietic progenitor cells differentiating into various lineages. We use this dataset as an example for cases where gene expression varies in a continuous fashion (along pseudo-temporal axes) rather than forming discrete subpopulations [34].

The sixth dataset (CBMC) includes 8,617 cord blood mononuclear cells profiled using 10x along with, for each cell, 13 well-characterized mononuclear antibodies [35]. We used this dataset to analyze how the latent spaces inferred by dimensionality-reduction algorithms summarize protein marker abundance.

The seventh dataset (BRAIN-SMALL) consists of 9,128 mouse brain cells profiled using 10x [19]. This dataset is used as a complement to PBMC for our study of zero abundance and quality control metric correlation with our generative posterior parameters.

2.3. Scalability to large datasets

We start by comparing the scalability of scVI to that of state-of-the-art algorithms for imputation and dimensionality reduction (Figure 1c). We evaluate scalability in terms of runtime and memory requirements for increasing numbers of cells, sampled from the complete BRAIN-LARGE dataset. To facilitate comparison to less scalable methods, we limited the analysis to the 720 genes with largest standard deviation across all cells. All the algorithms were tested on a machine with one eight-core Intel i7-6820HQ CPU addressing 32 GB RAM, and one NVIDIA Tesla K80 (GK210GL) GPU addressing 24 GB RAM.

Available memory (RAM) limits scalability of many existing algorithms. Under the hardware and input settings above, we find that BISCUIT runs out of memory when provided with more than 15K cells. MAGIC, ZIFA, SIMLR and ZINB-WaVE can process up to 50K cells before running out of memory. One explanation for this is the explicit storage in memory of the full-data matrix or its derivative (e.g., the cell-cell distance matrix or a proxy whose memory complexity is linear in the number of data points, as in SIMLR and MAGIC).

Focusing on the memory-feasible dataset sizes, we also observe a range of runtimes. For instance, ZIFA, ZINB-WaVE and BISCUIT have relatively high runtime requirements, possibly because their optimization algorithms need to go through all of the training data at each each step: the runtime of each iteration scales linearly in the number of samples and linearly in the number of genes.
Figure 1: Overview of scVI. Given a gene-expression matrix with batch annotations as input, scVI learns a non-linear embedding of the cells that can be used for multiple analysis tasks. (a) The underlying graphical model. Shaded vertices represent observed random variables. Empty vertices represent latent random variables. Shaded diamonds represent constants, set a priori. Empty diamonds represent global variables shared across all genes and cells. Edges signify conditional dependency. Rectangles (“plates”) represent independent replication. (b) The computational trees (neural networks) used to compute the embedding as well as the distribution of gene expression. (c) Comparison of running times (y-axis) on the BRAIN-LARGE data with a limited set of 720 genes, and with increasing input sizes (x-axis; cells in each input set are sampled randomly from the complete dataset). scVI is compared against existing methods for dimensionality reduction in the scRNA-seq literature. As a control, we also add basic matrix factorization with factor analysis (FA). For the one-million-cell dataset only, we report the result with and without early stopping (ES).
scVI relies instead on stochastic optimization, sampling a fixed number of cells at each iteration (Methods 4.2). Its time and space complexity per iteration therefore depends only on the number of genes, ensuring scalability both in terms of memory use and processing time. In our experiments, the algorithm converged in less than 250 epochs. Within a reasonable range of sample sizes (less than a hundred thousand cells), our algorithm achieves the best running time and is comparable to DCA, which also uses a neural network and stochastic optimization. As the dataset size reaches one million cells, fewer iterations are needed; heuristics for stopping the learning process may save unnecessary processing time. Evidently, DCA, which implements this strategy, is faster than scVI in the one-million-cell case. To explore this further, for an extremely large dataset, we incorporated an early stopping criterion, commonly used for efficient training of deep generative models (see Methods 4.2). The resulting model, which can be trained in less than an hour, fits the held-out data as well as the standard scVI run with no early stopping (Figure S1).

2.4. Goodness of fit and generalization to held-out data

To evaluate the extent to which the different models fit the data, we use a goodness-of-fit score on unseen data that is defined by the marginal log-likelihood of a held-out dataset (Methods 4.9). We first partition our data into “training” and “testing” sets, and apply the various methods to learn a ten-dimensional latent space and a mapping from this space to the original dimension of the data. We then measure the marginal likelihood \(p(x) \) of the held-out data for the trained model. Exploring a range of training dataset sizes from a few thousand cells to a hundred thousand cells, sampled from the BRAIN-LARGE dataset (Table A.3) with 720 genes, we observe that scVI provides the most likely model for the held-out data (consisting of 10K randomly sampled cells that are not in the training set) and that its added accuracy grows as the training dataset size grows. Using the smaller CORTEX dataset for the same analysis—where we partitioned the data as 60% training and 30% testing—yields similar results (Figure S2a). For both datasets, scVI and ZINB-WAVE are more accurate than ZIFA or a standard factor analysis (FA), thus corroborating that scRNA-seq data is better approximated by a ZINB than a log-normal or a zero-inflated-log-normal.

Held-out marginal likelihood is a less informative metric when the data is dominated by zero entries, but that was not the case for the two datasets reported above due to gene filtering. When zero entries dominate, this test reduces to comparing which algorithm generates a predominance of values close to zero. We therefore turn to imputation benchmarking as a method for assessing the model’s fit on the remaining datasets.

Imputing missing values is useful in practical applications in addition to providing an assay for generalization performance [12]. In the following analysis, we compare scVI to BISCUIT, ZINB-WaVE and ZIFA, as well as DCA [27] (a denoising auto-encoder [36] that proposes a ZINB loss function) and MAGIC (a diffusion method that provides imputation without explicit statistical modeling). To evaluate these methods on a given dataset, we generated a corrupted training set by setting 9% uniformly chosen non-zero entries to zero. We then fitted the perturbed dataset with each of the benchmark methods and evaluated them by comparing the imputed values to the original ones (Methods 4.9). Overall, we observe that scVI, DCA and ZINB-WaVE (when it scales to the dataset size) perform well across all datasets tested, suggesting again that non-Gaussian modeling provides the largest improvement over other existing methods (Figure 2d-f, S2b-d). One important exception when comparing scVI with MAGIC is the full HEMATO dataset, in which the number of cells (4,016) is smaller than the number of genes (7,397). In such cases, scVI is expected to underfit the data, potentially leading to worse imputation performance. However, additional gene filtering (to the top 700 variable genes) helps to recover a more accurate imputation (Figure S2d).

To provide an example in which the perturbed values depend on the amount of mRNA observed, we also generated a corrupted training set by downsampling 10% uniformly chosen non-zero entries with a binomial law of rate 20%. These values guarantee that most of the dataset is unchanged and require that the model has enough flexibility to impute correctly the changed values. With respect to these corruption scheme, scVI also performs well (Figure S3, S4).
Figure 2: Imputation of scVI on the CORTEX dataset. The heatmaps denote density plots of imputed values (by scVI, ZIFA, MAGIC and ZINB-WaVE respectively) on a down-sampled version versus the original (non-zero) values prior to down-sampling. The reported score d is the median imputation error across all the hidden entries (Lower is better; see Methods).
scVI, like ZIFA and FA, can also be used to generate unseen data by sampling from the latent space. As evidence of the validity of this procedure, we sampled from the posterior distribution given the perturbed training data and observed that the samples are largely consistent with the unperturbed data (Figure S5).

2.5. Capturing biological structure in a latent space

To further assess the performance of scVI, we evaluated how well its latent space summarizes biological information and recovers biologically coherent subpopulations. For these experiments, we used three datasets where pre-annotated clusters or subpopulations are available: CORTEX, PBMC and RETINA. We then examined whether the annotated subpopulations were distinguishable in the latent space, as in [10]. We report two different metrics for this analysis. The first is silhouette width [37], which evaluates whether cells from the same subpopulation have a similar latent representation and cells from different subpopulations have a different representation. For the second metric, we used the latent representation as an input to the K-means algorithm, and measured the overlap between the resulting clustering annotations and the pre-specified subpopulations using the adjusted rand index (ARI) and normalized mutual information (NMI) scores (Methods 4.9). For ease of comparison across methods, we set K to the number of annotated subpopulations.

While these annotated subpopulations were subject to manual inspection and interpretation, a remaining caveat is that they are computationally derived. To address this, we make use of the CBMC dataset that includes measurements of thirteen key marker proteins in addition to mRNA. For evaluation, we quantify the extent to which the similarity between cells in the mRNA latent space resembles their similarity at the protein level. To this end, we compute the overlap fold enrichment between the protein and mRNA-based cell 100-nearest neighbor graph and the Spearman correlation of the adjacency matrices (Methods 4.9).

Based on these benchmarks, we compared scVI to other methods that aim to infer a biologically meaningful latent space (ZIFA, ZINB-WaVE, DCA, and FA), using the same clustering scheme. We find that scVI compares favorably to these methods for all of the datasets (Figure S6ab). Focusing on the PBMC dataset, we also compared scVI with a simpler version that does not explicitly model library size. Our results (Figure S6a) suggests that this additional modeling increases the clustering abilities of scVI. Next, we benchmark scVI with SIMLR [10], a method that couples clustering with learning a cell-cell similarity matrix. For the first set of tests, we set the number of clusters in SIMLR to be the true number of annotated subpopulations. For the CBMC case, we let SIMLR automatically determine that number. When we examine the evaluations that were based on the computationally derived annotations, we find that SIMLR outperforms scVI (Figure S6ab). However, while the latent space inferred by SIMLR provides a tight representation for these subpopulations, it may disregard other forms of critical information. Indeed, in the CBMC-based test, where the clustering is based on “external” but biologically meaningful data, scVI and DCA are the best performing methods, albeit by a small margin (Figure S6c).

Another example of important information that may be missed is the hierarchical structure among clusters, such as the one reported for the CORTEX dataset [31]. We take several cuts at different depths of the hierarchical clustering (Table A.4) and report clustering scores based on these agglomerated labels (Figure S6efg). These results suggest that scVI and ZINB-WaVE find low-dimensional representations that better preserve this important biological structure.

A second important case occurs when the variation between cells has a continuous, rather than discrete, form. An example of this is the HEMATO dataset, which consists of hematopoietic cells annotated along seven different stages of differentiation. As a first step, we focus on cell development towards either granulocytic neutrophil or erythroid fate [34]. SIMLR applied to this dataset predicts the presence of five clusters, and the resulting five-nearest-neighbors graph (visualized using a Fruchterman-Reingold force-directed algorithm, see Methods 4.8) does not reflect the continuous nature of this system. Conversely, standard PCA analysis and scVI are able to capture this property of the data (Figure 3), albeit with less precision than the finely tuned process used in the original publication (Figure S7).
Figure 3: We apply scVI, PCA and SIMLR to three datasets (from right to left: CORTEX, HEMATO and a simulated "noise" dataset sampled iid from a fixed zero-inflated negative binomial (ZINB) distribution). For each dataset, we show a distance matrix in the latent space, as well as a two-dimensional embedding of the cells. Distance matrices: the scales are in relative units from low to high similarity (over the range of values in the entire matrix). For CORTEX and HEMATO, cells in the matrices are grouped by their pre-annotated labels, provided by the original studies (for the CORTEX dataset, cell subsets were ordered using hierarchical clustering as in the original study). For ZINB, the color in the distance matrices is determined by the clusters found by SIMLR on this data. Embedding plots: each point represents a cell and the layout is determined either by tSNE (CORTEX, ZINB) or by a 5-nearest neighbors graph visualized using a Fruchterman-Reingold force-directed algorithm (HEMATO; see Figure S8d for the original embedding for SIMLR). For CORTEX and HEMATO, the color scheme in the embeddings is the same as in the distance matrices. For ZINB, the colors reflect the number of UMI in each cell (see Figure S8a-c for coloring of cells according to SIMLR clusters).
Finally, there may be the case of lack of structure, where the data is almost entirely dominated by noise. To explore this setting, we generated a noise dataset, sampled at random from a vector of zero-inflated negative binomial distributions. SIMLR erroneously reports eleven distinct clusters in this data, which are not perceived by any other method (Figure 3, S8a-c).

Altogether, these results suggest that the latent space of scVI is flexible and describes the data well, either as discrete clusters, as a continuum between cell state, or as structureless noise. scVI is therefore better suited than SIMLR in scenarios where the data does not necessarily fit with a simple structure of discrete subpopulations.

2.6. Controlling for batch effects

scVI explicitly accounts for the contribution of discrete nuisance factors of variation such as batch annotations in its graphical model. It does so by enforcing conditional independence between them and the inferred parameters.

Our model therefore learns gene expression bias that comes from the batch effects and provides a parametric distribution that is disentangled from these technical effects, thus ideally reflecting the relevant biological variation. We evaluate the performance of scVI in correcting for batch effects using the RETINA dataset, which consists of two batches. We measured the entropy of batch mixing across the K-nearest neighbors graph (Methods 4.9) with the ideal expectation of a uniform representation of batches (i.e., maximum entropy) in any local neighborhood. We also measure the average silhouette width; with no batch bias, batches should overlap perfectly and exhibit a null silhouette width. We compare our method to the more standard pipeline of batch correction ComBat [38] followed by principal component analysis (Methods 4.8) and the recent mutual nearest neighbors method (MNN [39]). We also report results for methods that do not include batch correction in their underlying model, namely PCA, SIMLR, DCA and a simplified version of scVI with no conditioning for batches (Methods). Our results (Figure 4, S6d, S9) demonstrate that in this dataset scVI aligns the batches better than Combat and MNN, while still maintaining a tight representation of pre-annotated subpopulations and compares favorably to all the other algorithms. Considering the latent space provided by algorithms without explicit batch modeling we find, as expected, that the mixing of the batches is poor. Specifically, while SIMLR and DCA are capable of clustering the cells well within each batch, the respective clusters from each batch remain largely separated. Furthermore, the poor batch mixing of the simplified scVI version demonstrates that the additional modeling complexity brought by the batch correction is important. Notably, we performed a similar analysis with the PBMC dataset, which consists of cells from two donors. However, this data seemed to exhibit only a minor batch effect to begin with (our metrics are averaged across all cell-types) and was thus less informative for the purpose of this evaluation (Figure S6a).

2.7. Differential expression

Identifying genes that are differentially expressed between two subpopulations of cells is an important application of our generative model. The Bayesian model in scVI makes hypothesis testing straightforward. For clarity, throughout this section we assume that the cells are sequenced in the same batch s. (Methods 4.3 describes the general case.) For each gene g and a pair of cells (z_a, z_b) with observed gene expression (x_a, x_b), we consider two mutually exclusive hypotheses: $H_1^g := f_w^g(z_a, s) > f_w^g(z_b, s)$ or $H_2^g := f_w^g(z_a, s) \leq f_w^g(z_b, s)$. Evaluating which hypothesis is more probable amounts to evaluating a Bayes factor [40]:

$$K = \log \frac{p(H_1^g \mid x_a, x_b)}{p(H_2^g \mid x_a, x_b)}$$

A Bayes factor is a Bayesian generalization of the p-value. Its sign indicates which of H_1^g and H_2^g is more likely. Its magnitude is a significance level and throughout the paper, we consider a Bayes factor as strong evidence in favor of a hypothesis if $|K| > 3$ [41] (equivalent to an odds ratio of $\exp(3) \approx 20$).
Figure 4: Batch effect removal with scVI on the RETINA dataset. We visualize the batch removal and clustering performance. A successful method renders a latent space which maintains a satisfactory level of clustering while sufficiently mixing the batches. Embedding plots (PCA with ComBat, scVI without batch correction, scVI and PCA with MNNs) were generated by applying tSNE on the respective latent space. In the upper part of the figure, the cells are colored by batch. In the lower part, cells are colored by the annotation of subpopulations, provided in the original study [33]. For each algorithm, we report the batch entropy mixing for the batches (BE; higher is better) and the adjusted Rand index for the clustering (ARI; higher is better). When using PCA, we used the top 100 principal components (the top 10 resulted in no discernible structure).
The posterior probability for each hypothesis can be approximated by integrating against the variational distribution:

\[p(\mathcal{H}^g \mid x_a, x_b) \approx \int_{z_a, z_b} p[f_w^g(z_a, s) > f_w^g(z_b, s)] dq(z_a \mid x_a) dq(z_b \mid x_b). \]

Sampling \(z_a\) and \(z_b\) from our variational distribution lets us approximate the integral with arbitrary precision. Since we model the cells as i.i.d., we can average the Bayes factors across randomly sampled cell pairs, one from each subpopulation. The average Bayes factor is a low-variance estimate of whether cells from one subpopulation tend to express \(g\) at a higher frequency.

We demonstrate the robustness of our method by repeating the entire evaluation process and comparing the results (Figure 5ab). We also ensure that our Bayes factor are well calibrated by running the differential expression analysis across cells from the same cluster and making sure no genes reach the significance threshold (Figure S10e).

To evaluate scVI as a tool for differential expression, we used the PBMC dataset along with its classification of cells into well-studied subtypes of hematopoietic cells, for which reference bulk expression data is available.

We compare scVI to three widely used methods: DESeq2 [15], MAST [17] and edgeR [16]. We also compare scVI to a simpler version of the model in which we do not explicitly model library size. Finally, we compare to a hybrid method where the counts are first imputed by DCA and then used for differential expression with DESeq2, as proposed by the authors [27]. To facilitate the evaluation, we defined a reference set of differentially expressed genes using publicly available bulk expression datasets. Specifically, we assembled a set of genes (see Methods 4.9) that are differentially expressed between human B cells and dendritic cells (microarrays, \(n=10\) in each group [43]) and between CD4+ and CD8+ T cells (microarrays, \(n=12\) in each group [44]). We apply all six methods in these two differential expression tasks (using the respective clusters of cells) and evaluate the consistency with the reference data using two scores. For the first score, we assign each gene with a label of DE or non-DE based on their p-values from the reference data (genes with a corrected p-values under 0.05 are positive and the rest are negative); then these labels to compute AUROC for scVI and each of the benchmark methods.

Since defining the labels requires a somewhat arbitrary threshold, we use a second score that evaluates the reproducibility of gene ranking (bulk reference vs. single cell; considering all genes), using the irreproducible discovery rate (IDR) [42]. Considering the AUROC metric, scVI is the best performing method in the T cell comparison, while edgeR outperforms scVI by a smaller margin in the B vs. dendritic cell comparison. Considering the proportion of genes with reproducible rank as fitted by IDR, scVI is the best performing method in both comparisons (Figure 5, Figure S10a-d). Interestingly, the simpler scVI model shows extremely poor performance on the B vs. dendritic cell comparison, being the only model that does not explicitly handle normalization. This is evidence of the usefulness of explicitly including library size normalization in the scVI model. Furthermore, we see that the hybrid method of DCA followed by DESeq2 constitutes a solid improvement over a direct application of DESeq2; however, the performance is still lower than other methods.

2.8. Capturing technical variability

To further interpret the fitted models, we study the extent to which they capture technical variability. We focus on datasets that were generated by 10x, as they share the same set of cell quality metrics (generated by cell ranger; see Methods 4.6) and can thus provide reproducible insights about the relationship between our parameters and library quality. Additionally, we required our test datasets to have pre-annotated subpopulations, with the assumption that each subpopulation consists primarily of cells of the same type, thus decreasing the extent of biological heterogeneity (e.g., in total mRNA content). The two datasets that fit these requirements, which we report next, are the PBMC and BRAIN-SMALL.
Figure 5: Benchmark of differential expression analysis using the PBMC dataset, based on consistency with published bulk data. (a, b) Evaluation of consistency with the irreproducible discovery rate (IDR) [42] framework (blue) and using AUROC (green) is shown for comparisons of B cells vs Dendritic cells (a) and CD4 vs CD8 T cells (b). Error bars are obtained by repeatedly sub-sampling the data to show robustness. Whiskers denote the 5th and 95th percentiles. (c,d,e,f): correlation of significance levels of differential expression of B cells vs Dendritic cells, comparing bulk data and single cell. Points are individual genes. Bayes factors or p-values on scRNA-seq data are presented on the x-axis; microarray-based p-values are depicted on the y-axis. Horizontal bars denote significance threshold of 0.05 for corrected p-values. Vertical bars denote significance threshold for the Bayes factor of scVI (c) or 0.05 for corrected p-values for DESeq2 (d), edgeR (e), and MAST (f). We also report the median mixture weight for reproducibility p (higher is better).
In each case, we trained the model on the entire dataset and then investigated each pre-annotated subpopulation separately. As a general rule, we find that variation in library size correlates strongly with the cell-specific scaling factor, which is to be expected by the definition of the model. Figure 6a depicts these results for the CD14+ monocytes subpopulation in the PBMC data (notably, the negative curvature on the plot can be explained by shrinking the values towards the mean due to the use of a prior). Another important nuisance factor to be considered is the limitation in sensitivity, which exacerbates the number of zero entries. In principle, zero entries can be captured by two different components of our model: the negative binomial and the “inflation” of zeros added to it with a Bernoulli distribution. Evidently, the expected number of zeros generated by the negative binomial for each cell correlates strongly with the library size and its proxies (e.g., the number of detected genes or the number of reads per UMI; Figure 6cd, S11d). This result can be explained by our definition of the negative binomial mean, which is the predicted frequency of expression \(\rho_n \) scaled by the respective library size \(t_n \).

The remaining question is therefore, what is the relationship between the expected frequency of expression \(\rho_n \) and the observed zeros? A simple model would consist of a random process of sampling genes from each cell, in a manner proportional to their frequency, and with no added bias (e.g., in capture efficiency). To explore this, for every gene we plot the mean expected frequency against the percent of detecting cells in a subpopulation of interest (Figure 6b). The resulting trend supports this simple model as it closely fits with the zero probability of a hypergeometric distribution—namely, random sampling of molecules without replacement.

Interestingly, the number of additional zeros induced by the Bernoulli random variable in each cell is less correlated with library size, and instead correlates with metrics of alignment rate (Figure 6cd, S11cd). These metrics are not necessarily coupled to size, but may reflect other technical factors such as contamination or the presence of degraded mRNA. However, we observed that most zero values in the data can be explained by the negative binomial component alone (Figure S11a). Taken together, these results therefore corroborate the idea that most zeros, at least in the datasets explored here, can be explained by low (or zero) “biological” abundance of the respective transcript, which is exacerbated by limited sampling.

3. Discussion

Our study focuses on an important need in the field of single-cell RNA-seq — namely, a method capable of accounting for confounding factors and measurement uncertainty in tertiary analysis tasks (e.g., clustering, differential expression, and annotation) through a common, scalable statistical model. To achieve this, we developed scVI — a hierarchical Bayesian model that makes use of neural networks to provide a complete probabilistic representation of single-cell transcriptomes. In this study, we demonstrated that scVI provides a computationally efficient and “all-inclusive” approach to denoising and analyzing gene expression data, and showcased its performance by comparing it to the state-of-the-art methods for a range of downstream tasks, including dimensionality reduction, imputation, visualization, batch-effect removal, clustering and differential expression.

The scVI procedure takes as input a matrix of counts, and therefore does not need a preliminary normalization step. Instead, it learns a cell-specific scaling factor as a hidden variable of the model, with the objective of maximizing the likelihood of the data (as in [9, 8, 29]), which is more justifiable than a posteriori correction of the observed counts [4]. Further, scVI explicitly accounts for the contribution of discrete nuisance factors, such as batch annotations, by enforcing conditional independence between them and the (inferred) parameters that govern gene expression distributions. We demonstrate that these normalization components are needed to achieve good performance in critical tasks such as clustering and differential expression (Figures 4, 5, S6, and S9). An additional discussion, explaining our modeling choices and how different layers of complexity contribute to the model’s performance, is provided in Methods section 4.4. Notably, the batch correction step is performed via the mild modeling assumption of conditional independence, and therefore scVI is expected to reasonably integrate and harmonize multiple datasets. Further modeling would be
Figure 6: Capturing technical variability using scVI. Data for panels a-b is based on the CD14+ cell subpopulation of the PBMC dataset. (a) Scatter plot for each cell of inferred scaling factor using scVI against library size. (b) The frequency of observed zero values versus the expected expression level, as produced by scVI. Each point represents a gene g, where the x-axis is $\bar{\rho}_g$—the average expected frequency per cell (for gene g, average over ρ_{c} for all cells c in the subpopulation), and the y-axis the is observed percentage of cells that detect the fee (UMI>0). The green curve depicts the probability for selecting zero transcripts from every gene as a function of its frequency, assuming a simple model of sampling U molecules from a cell with N molecules at random without replacement. $U = 1398$ is the average number of UMIs in the subpopulation and N is the average number of transcripts per cell (for this curve $N = 10k$). Notably, the curve converges for values larger than $20k$ to the red curve, a binomial selection procedure (conform to the probabilistic limit of the sampling process when $N \rightarrow \infty$). (c, d) Signed log p-values for testing correlations between the zero probabilities from the two distributions (negative binomial, Bernoulli) and quality control metrics across five random initializations of scVI and all subpopulations of the PBMC and BRAIN-SMALL datasets. Whiskers denote the 5th and 95th percentiles.
needed for more intensive usage of batch removal (number of batches/datasets ≥ 20) and is left as an avenue for future research.

Another important feature of scVI and other methods based on neural networks [25, 26, 27, 28] is their scalability. Indeed, unlike many of the benchmark methods, scVI is capable of efficiently processing the very large datasets of up to a million cells explored in this study [20, 19]. To achieve this high level of scalability while ensuring a good fit to the data, we designed an efficient procedure to learn the parameters of our graphical model. Importantly, exact Bayesian inference is in most cases not tractable for these kinds of models. Furthermore, until recently, even variational inference was rarely applied to such models without restrictive “conditional conjugacy” properties. To address this, we use a stochastic optimization procedure that samples our approximation of the posterior distribution (as well as random subsamples or “mini-batches” of our dataset), allowing us to efficiently perform inference with arbitrary models, including those with conditional distributions specified by neural networks [23].

The deep learning architecture used in scVI is built on several canonical building blocks such as rectified linear units, fully-connected layers, dropout [45], mini-batch normalization [46], deterministic warm up [47], and mean-field approximation to the posterior [23] (see Methods 4.2). Together, these building blocks provide the means to effectively fit the generative model of scVI and approximate its posterior. However, an important area of research going forward is to explore other, possibly better, architectures [48] and procedures for parameter and hyper-parameter tuning [49], which may in some instances increase the accuracy of the inferred model. Notably, since our procedure has a random component, and since it optimizes a non-convex objective function, it may give alternative results with different initializations. To address this concern, we demonstrate the stability of scVI in terms of its objective function, as well as imputation and clustering (Figure S12). Another related issue is that, if there are few observations (cells) for each gene, the prior (and the inductive bias of the neural network) may keep us from fitting the data closely. Indeed, in the case of datasets such as HEMATO [34], where the number of cells is smaller than the number of genes, some procedure to pre-filter the genes may be warranted. Another approach that could help make scVI applicable to smaller data sets (hundreds of cells), which we intend to explore, is utilizing techniques such as Bayesian shrinkage [15] or regularization and second order optimization with larger mini-batch size / full dataset [8]. We do however show that for a range of datasets of varying sizes, scVI is able to fit the data well and capture relevant biological diversity between cells.

From a system perspective, single-cell RNA-seq analyses paradoxically benefit from the abundance of zero values, as this allows us to store the data in a sparse (rather than dense) matrix format. A sparse matrix with one million cells and ten thousand genes would represent around 7.5 GB, assuming one percent fill. On the other hand, the output of batch-corrected data is not sparse, and is therefore potentially very large (for 1M cells, approximately 75 GB). While it performs batch correction, scVI still provides a compact representation of the complete data, as it requires only the latent space and the specification of the model (overall, it has a memory footprint of less than 1G, assuming 10 latent variables). One obvious drawback of such compressed representation (apart from the potential loss of information) is that gene expression values need to be computed on the fly; however, this can be done very efficiently in a single pass through the generative networks (which requires approximately 10 seconds for generating the ρ matrix for a test dataset of 500k cells and 8k genes, with the same hardware specification used throughout this paper). This property makes scVI a good baseline for use in interactive visualization tools [50, 51, 52].

Looking ahead, it is important to note that the model of scVI is very general and therefore provides a proper statistical framework for other forms of scRNA-seq analysis that were not explored in this manuscript, such as lineage inference [1] or cell-state annotation [53, 6]. Further, as the scale and diversity of single-cell RNA-seq increase, we expect that there will be a great demand for tools such as scVI, especially in cases where there is interest in harmonizing datasets in a manner that is scalable and conducive to various forms of downstream analysis [20]. Indeed, one subsequent research direction would be to merge multiple datasets from a given tissue to build a generative model with biological annotations of cell-types or phenotypical conditions in a semi-supervised fashion. This
would allow researchers to “query” the generative model with a new dataset in an online fashion in order to “retrieve” previous biological information, which would allow verification of reproducibility across experiments, as well as transfer of cell state annotations between studies.

Availability

The code to reproduce all of the results in this manuscript is deposited at https://zenodo.org/badge/latestdoi/125294792. All of the datasets analyzed in this manuscript are public and referenced at https://github.com/romain-lopez/scVI-reproducibility.

Acknowledgments

NY and RL were supported by grant U19 AI090023 from NIH-NIAID. We thank Allon Klein, Sandrine Dudoit and Jennifer Listgarten for helpful discussions.

Author contributions

RL, JR, and NY developed the statistical model. RL developed the software. RL and MBC applied the software to data. RL, JR, NY, and MIJ wrote the manuscript. NY and MIJ supervised the work.

References

[1] Semrau, S. et al. Dynamics of lineage commitment revealed by single-cell transcriptomics of differentiating embryonic stem cells. *Nature Communications* **8**, 1096 (2017).
[2] Gaublomme, J. T., Yosef, N., Lee, Y., Gertner, R. S. et al. Single-cell genomics unveils critical regulators of Th17 cell pathogenicity. *Cell* **163**, 1400–1412 (2015).
[3] Patel, A. P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. *Science* **344**, 1396–1401 (2014).
[4] Vallejos, C. A., Risso, D., Scialdone, A., Dudoit, S. & Marioni, J. C. Normalizing single-cell RNA sequencing data: challenges and opportunities. *Nature Methods* **565–571** (2017).
[5] Shaham, U. et al. Removal of batch effects using distribution-matching residual networks. *Bioinformatics* **33**, 2539–2546 (2017).
[6] Wagner, A., Regev, A. & Yosef, N. Revealing the vectors of cellular identity with single-cell genomics. *Nature Biotechnology* **34**, 1145–1160 (2016).
[7] Kharchenko, P. V., Silberstein, L. & Scadden, D. T. Bayesian approach to single-cell differential expression analysis. *Nature Methods* **11**, 740–742 (2014).
[8] Risso, D., Perraudeau, F., Gribkova, S., Dudoit, S. & Vert, J.-P. A general and flexible method for signal extraction from single-cell RNA-seq data. *Nature Communications* **9**, 284 (2018).
[9] Prabhakaran, S., Azizi, E. & Pe’er, D. Dirichlet process mixture model for correcting technical variation in single-cell gene expression data. In *International Conference on Machine Learning* (2016).
[10] Wang, B., Zhu, J., Pliouris, G., Ramazzotti, D. & Batzoglou, S. Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning. *Nature Methods* **14**, 414–416 (2017).
[11] van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. *Journal of Machine Learning Research* **9**, 2579–2605 (2008).
[12] van Dijk, D., Nainys, J. et al. MAGIC: A diffusion-based imputation method reveals gene-gene interactions in single-cell RNA-sequencing data. *bioRxiv* (2017). URL https://www.biorxiv.org/content/early/2017/02/25/111591.
[13] Qiu, X. et al. Single-cell mRNA quantification and differential analysis with Census. *Nature Methods* **14**, 309–315 (2017).
[14] Bacher, R. et al. SCnorm: Robust normalization of single-cell RNA-seq data. *Nature Methods* **14**, 584–586 (2017).
[15] Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome Biology* **15**, 550 (2014).
[16] Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: A bioconductor package for differential expression analysis of digital gene expression data. *Bioinformatics* **26**, 139–140 (2010).
[17] Finak, G. et al. MAST: A flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. *Genome Biology* **16**, 278 (2015).
DeTomaso, D. & Yosef, N. FastProject: A tool for low-dimensional analysis of single-cell RNA-seq data. *BMC Bioinformatics* 2017.

Bergstra, J., Bardenet, R., Bengio, Y. & Kégl, B. Algorithms for hyper-parameter optimization. In *Advances in Neural Information Processing Systems 24* (2011).

Grun, D., Kester, L. & van Oudenaarden, A. Validation of noise models for single-cell transcriptomics. *Nature Methods* 2014.

Kingma, D. P. & Welling, M. Auto-encoding variational Bayes. In *The International Conference on Learning Representations* (2014).

Blé, D. M., Kucukelbir, A. & McAuliffe, J. D. Variational inference: A review for statisticians. *Journal of the American Statistical Association* 2017.

Ding, J., Condon, A. & Shah, S. P. Interpretable dimensionality reduction of single cell transcriptome data with deep generative models. *Nature Communications* 2018.

Wang, D. & Gu, J. VASC: Dimension reduction and visualization of single cell RNA sequencing data by deep variational autoencoder. *bioRxiv* (2017). URL https://www.biorxiv.org/content/early/2017/10/06/199315.

Eraslan, G., Simon, L. M., Mircea, M., Mueller, N. S. & Theis, F. J. Single cell RNA-seq denoising using a deep count autoencoder. *bioRxiv* (2018). URL https://www.biorxiv.org/content/early/2018/04/13/300681.

Grenubech, C. H. *et al.* scVAE: Variational auto-encoders for single-cell gene expression data. *bioRxiv* (2018). URL https://www.biorxiv.org/content/early/2018/05/16/318295.

Vallejos, C. A., Marioni, J. C. & Richardson, S. BASICS: Bayesian analysis of single-cell sequencing data. *PLoS Computational Biology* 2015.

Cole, M. B. *et al.* Performance assessment and selection of normalization procedures for single-cell RNA-seq. *bioRxiv* (2017). URL https://www.biorxiv.org/content/early/2018/05/18/235382.

Zheng, G. X. Y., Terry, J. M., Belgrader, P., Ryvkin, P. *et al.* Massively parallel digital transcriptional profiling of single cells. *Nature Communications* 2017.

Shekhar, K., Lapan, S. W., Whitney, I. E., Tran, N. M. *et al.* Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. *Cell* 2017.

Tusi, B. K. *et al.* Population snapshots predict early haematopoietic and erythroid hierarchies. *Nature* 555, 54–60 (2018).

Stoeckius, M. *et al.* Simultaneous epitope and transcriptome measurement in single cells. *Nature Methods* 2017.

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y. & Manzagol, P.-A. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. *Journal of Machine Learning Research* 2010.

Rousseuw, P. J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. *Journal of Computational and Applied Mathematics* 1987.

Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. *Biostatistics* 2007.

Haghverdi, L., Lun, A. T. L., Morgan, M. D. & Marioni, J. C. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. *Nature Biotechnology* 2018.

Held, L. & Ott, M. On p-values and Bayes factors. *Annual Review of Statistics and Its Application* 2018.

Kaes, R. E., Raftery, A. E., Association, S. & Jun, N. Bayes factors. *Journal of the American Statistical Association* 1995.

Li, Q., Brown, J. B., Huang, H. & Bickel, P. J. Measuring reproducibility of high-throughput experiments. In *Annals of Applied Statistics* 2011.

Nakaya, H. I., Wrammert, J., Lee, E. K., Racioppi, L. *et al.* Systems biology of vaccination for seasonal influenza in humans. *Nature Immunology* 2011.

Görögün, G., Holderried, T. A. W., Zahrieh, D., Neuberg, D. & Gribben, J. G. Chronic lymphocytic leukemia cells induce changes in gene expression of CD4 and CD8 T cells. *The Journal of Clinical Investigation* 2005.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout: a simple way to prevent neural networks from overfitting. *The Journal of Machine Learning Research* 2014.

Ioffe, S. & Szegedy, C. Batch normalization: accelerating deep network training by reducing internal covariate shift. In *International Conference on Machine Learning* (2015).

Sonderby, C. K., Raiko, T., Maaløe, L., Sonderby, S. K. & Winther, O. Ladder variational autoencoders. In *Advances in Neural Information Processing Systems* (2016).

Zoph, B. & Le, Q. Neural architecture search with reinforcement learning. In *International Conference on Learning Representations* (2017).

Bergstra, J., Bardenet, R., Bengio, Y. & Kégl, B. Algorithms for hyper-parameter optimization. In *Advances in Neural Information Processing Systems* (2011).

DeTomaso, D. & Yosef, N. FastProject: A tool for low-dimensional analysis of single-cell RNA-seq data. *BMC Bioinformatics*
[51] Fan, J. et al. Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis. *Nature Methods* **13**, 241–244 (2016).

[52] Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: Large-scale single-cell gene expression data analysis. *Genome Biology* **19**, 15 (2018).

[53] Tanay, A. & Regev, A. Scaling single-cell genomics from phenomenology to mechanism. *Nature* **541**, 331–338 (2017).

[54] Pierson, E. & Yau, C. ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis. *Genome Biology* **16**, 241 (2015).

[55] Louizos, C., Swersky, K., Li, Y., Welling, M. & Zemel, R. The variational fair autoencoder. In *International Conference on Learning Representations* (2016).

[56] Macosko, E. *et al.* Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. *Cell* **161**, 1202–1214 (2017).

[57] Weinreb, C., Wolock, S., Tusi, B. K., Socolovsky, M. & Klein, A. M. Fundamental limits on dynamic inference from single-cell snapshots. *Proceedings of the National Academy of Sciences* **115**, E2467–E2476 (2018).
4. Online Methods

4.1. The scVI probabilistic model

First, we present in more detail the generative process for scVI:

Require: constant prior for cell-specific scaling ℓ_μ, ℓ_σ

Require: fitted gene-specific inverse dispersion parameter θ

Require: fitted neural networks f_w, f_h

Require: observed batch ID s_n

1: **for** cell n **do**
2: Choose a low-dimensional vector $z_n \sim \mathcal{N}(0, I)$ describing the cell
3: Choose a batch $s_n \in \{1, \ldots, B\}$ from which the cell is sampled
4: Choose a cell-scaling factor $\ell_n \sim \text{LogN}(\ell_\mu, \ell_\sigma)$
5: **for** gene g in gene set G **do**
6: Choose a normalized expression mean $w_{ng} \sim \text{Gamma}(f_w(z_n, s_n), \theta)$.
7: Choose an expression level $y_{ng} \sim \text{Poisson}(\ell_n w_{ng})$.
8: Choose a dropout event with $h_{ng} \sim \text{Bernoulli}(f_h(z_n, s_n))$
9: Apply dropout to expression level y_{ng} and output x_{ng}
10: **end for**
11: **end for**

A standard multivariate normal prior for z is commonly used in variational autoencoders since it can be reparametrized in a differentiable way into any arbitrary multivariate Gaussian random variable [23], which turns out to be extremely convenient in the inference process (see Methods 4.2). ℓ_μ, ℓ_σ are set to be the empirical mean and variance of the log-library size per each batch. Let us note that the random variable ℓ_n is not the log-library size (scaling the sampled observation) itself but a scaling factor that is expected to correlate strongly with log-library size (hence the choice of the parameters). Neural network f_w is constrained during the inference to encode the mean proportion of transcripts expressed across all genes by using a softmax activation at the last layer. Neural network f_h encodes whether a particular entry has been dropped out due to technical effects [54, 8].

All neural networks use dropout regularization and batch normalization. Each network has 1, 2, or 3 fully connected-layers, with 128 or 256 nodes each. The activation functions between two hidden layers are all ReLU. We use a standard link function to parametrize the distribution parameters (exponential, logarithmic or softmax). Weights for some layers are shared between f_w and f_h. Throughout the paper, we use Adam (a first order stochastic optimizer) with $\epsilon = 0.01$

A complete list of datasets and their properties, the methods we applied, and a complete list of hyperparameters is provided in Table A.2. The hyperparameters were chosen using a small grid search that maximized held-out log likelihood—a common practice for training deep generative models. One of the strengths of scVI is that we have only three dataset-specific hyperparameters to set (learning rate, number of layers, and layer width). We optimize the objective function until convergence —usually between 120 and 250 epochs, where each epoch is a complete pass through the dataset (let us note that bigger datasets require fewer epochs). For the larger subset of the BRAIN-LARGE dataset, we also ran with the early stopping criterion: the algorithm stops after 12 consecutive epochs with no improvement on the loss. The implementation for all of the analyses performed in this paper is available at https://zenodo.org/badge/latestdoi/125294792. The current development version is available at https://github.com/YosefLab/scVI.

4.2. Fast inference via stochastic optimization

The posterior distribution combines the prior knowledge with information acquired from the data X. We cannot directly apply Bayes rule to determine the posterior because the denominator (the marginal distribution) $p(x_n \mid s_n)$ is intractable. Making inference over the whole graphical model is not needed. We can integrate out the latent variables w_{ng}, h_{ng} and y_{ng} by ensuring the conditional $p(x_{ng} \mid z_n, \ell_n, s_n)$ has a closed-form density and is zero-inflated negative binomial (see
Appendix Appendix B). Having simplified our model, we use variational inference [24] to approximate the posterior \(p(z_n, \ell_n \mid x_n, s_n) \). Our variational distribution \(q(z_n, \ell_n \mid x_n, s_n) \) is mean-field:

\[
q(z_n, \ell_n \mid x_n, s_n) = q(z_n \mid x_n, s_n)q(\ell_n \mid x_n, s_n).
\]

The variational distribution \(q(z_n \mid x_n, s_n) \) is chosen to be Gaussian with a diagonal covariance matrix, mean and covariance given by an encoder network applied to \((x_n, s_n) \), as in [23]. The variational distribution \(q(\ell_n \mid x_n, s_n) \) is chosen to be log-normal with the scalar mean and variance also given by an encoder network applied to \((x_n, s_n) \). The variational lower bound is

\[
\log p(x \mid s) \geq \mathbb{E}_{q(z, l \mid x, s)} \log p(x \mid z, l, s) - D_{KL}(q(z \mid x, s) \| \pi(z)) - D_{KL}(q(l \mid x, s) \| \pi(l)).
\]

(8)

In this objective function, the dispersion parameters \(\theta_g \) for each gene are treated as global variables to optimize in a Variational Bayesian inference fashion. To optimize the lower bound, we use the analytic expression for \(p(x \mid z, l, s) \) and use analytic expressions for the Kullback-Leibler divergences. We use the reparametrization trick to compute low-variance Monte-Carlo estimates of the expectations’ gradients. Analytic closed-form for the Kullback-Leibler divergence and the reparametrization trick are only possible on certain distributions which multivariate Gaussians are a part of [23]. Now, our objective function is continuous and end-to-end differentiable, which allows us to use automatic differentiation operators. As indicated in [47], we use deterministic warmup and batch normalization during learning to learn an expressive model.

Our objective function is nonconvex and thus could give alternative results from different initializations. We show the stability of our algorithm and its results in Figure S12.

Since our model assumes cells are identically independently distributed, we can also benefit from stochastic optimization by sampling the training set. We then have an online optimization procedure that can handle massive datasets. At each iteration, we focus only on a small subset of the data randomly sampled (\(M = 128 \) data points) and do not need to go through the entire dataset. Therefore, there is no need to store the entire dataset in memory. Because the number of genes is in practice limited to a few tens of thousands, these mini-batches of cells fit easily into a GPU.

Since the encoder network \(q(z \mid x, s) \) might still produce output correlated with the bath \(s \), we use a Maximum Mean Discrepancy (MMD) based penalty as in [55] to correct the variational distribution. For this paper, however, we did not explicitly enforce the MMD penalty and simply retained the conditional independence property, which has shown to be sufficiently efficient. This may be useful on other datasets.

4.3. Bayesian Differential Expression

For each gene \(g \) and pair of cells \((z_a, z_b)\) with observed gene expression \((x_a, x_b)\) and batch ID \((s_a, s_b)\), we can formulate two mutually exclusive hypotheses:

\[
\mathcal{M}_1^g := \mathbb{E}_s f_{w}^g(z_a, s) > \mathbb{E}_s f_{w}^g(z_b, s) \quad \text{vs.} \quad \mathcal{M}_2^g := \mathbb{E}_s f_{w}^g(z_a, s) \leq \mathbb{E}_s f_{w}^g(z_b, s)
\]

Here the expectation \(\mathbb{E}_s \) is taken with the empirical frequencies. Notably, we propose a hypothesis testing that do not to calibrate the data to one batch but will find genes that are consistently differentially expressed. Again, evaluating the likelihood ratio test for whether our datapoints \((x_a, x_b)\) are more probable under the first hypothesis is equivalent to writing a Bayes factor:

\[
K = \log \frac{p(\mathcal{M}_1^g \mid x_a, x_b)}{p(\mathcal{M}_2^g \mid x_a, x_b)}.
\]

The posterior of these models can be approximated via the variational distribution:

\[
p(\mathcal{M}_1^g \mid x_a, x_b) \approx \sum_s \int \int \int p(f_{w}^g(z_x, s) \leq f_{w}^g(z_x, s))p(s) dq(z_a \mid x_a) dq(z_b \mid x_b).
\]

21
Here \(p(s) \) designates the relative abundance of cells in batch \(s \) and all of the measures are low-dimensional, so we can use naive Monte Carlo to compute these integrals. We can then use a Bayes factor for the test.

Since we assume that the cells are i.i.d., we can average the Bayes factors across a large set of randomly sampled cell pairs, one from each subpopulation. The average factor will provide an estimate of whether cells from one subpopulation tend to express \(g \) at a higher frequency.

4.4. Modeling choices

In this section, we consider the extent to which each of a sequence of modeling choices in the design of scVI contributes to its performance. As a baseline approach, consider normalizing single-cell RNA sequencing data as in previous literature \([54]\) and reducing the dimensionality of the data using a variational autoencoder with a Gaussian prior and a Gaussian conditional probability.

One way in which a model can be enhanced is by changing the Gaussian conditional probability to one of the many available count distributions, such as zero-inflated negative binomial (ZINB), negative binomial (NB), Poisson or others. Recent work by Eraslan and colleagues using simulated data shows that when the dropout effect drives the signal-to-noise ratio to a less favorable regime, a denoising autoencoder with mean squared error (i.e., Gaussian conditional likelihood) cannot recover cell-types from expression data while an autoencoder with ZINB conditional likelihood can \([27]\). This results points to the importance of at least modeling the sparsity of the data and is consistent with previous contributions \([54, 8]\).

The next question is which count distribution to use. In scVI we have chosen to use the zero-inflated negative binomial, a choice motivated by previous literature (e.g., \([8]\)). First, the choice of negative binomial is common in RNA-sequencing data, as it is over dispersed \([15]\). Furthermore, under some assumption this distribution captures the steady state form of the canonical two-state promoter activation model \([22]\). Finally, recent work by Grønbech and colleagues \([28]\) proposes an analysis based on Bayesian model selection (held-out log-likelihood as in this manuscript). In that analysis, the NB and ZINB distribution stand out with similarly high scores. We demonstrate that the addition of a zero-inflation (Bernoulli) component is important for explaining a subset of the zero values in the data (Figure S11) and that it captures important aspects of technical variability which are not captured by the NB component (Figure 6).

To enhance the model further, we added terms to account for library-size as a nuisance factor, which can be considered as a Bayesian approach to normalization as in \([9, 29]\). We showed how this contributes to our model by increasing clustering scores (subsection 2.5) and the accuracy of differential expression analysis (subsection 2.7).

As a further enhancement, we designed the generative model to explain data from different experimental batches. This is not a trivial task as there may exist a significant covariate shift between the observed transcript measurements. We showed how this modification to our model is crucial when dealing with batch effects in subsection 2.6.

4.5. Software implementation

We discuss numerical stability and parametrization of the ZINB distribution in Appendix Appendix C. A functional implementation of our algorithm can be found at \https://github.com/YosefLab/scVI\.

4.6. Datasets and preprocessing

Below we describe all of the datasets and the preprocessing steps used in the paper. A star after the dataset name indicates we used it as an auxiliary dataset; these datasets were not used for general benchmarking, but rather to support specific points presented in the paper. The only case where we subsampled the data multiple times was the BRAIN-LARGE dataset. However, we simply used one instance of it to report all possible scores (further details in Table A.2).
Cortex. The Mouse Cortex Cells dataset from [31] contains 3005 mouse cortex cells and gold-standard labels for seven distinct cell types. Each cell type corresponds to a cluster to recover (see Table A.4). We retain the top 558 genes ordered by variance as in [9].

PBMC. We considered scRNA-seq data from two batches of peripheral blood mononuclear cells (PBMCs) from a healthy donor (4K PBMCs and 8K PBMCs) [32]. We derived quality control metrics using the cellrangerRkit R package (v. 1.1.0). Quality metrics were extracted from CellRanger throughout the molecule-specific information file. After filtering as in [30], we extract 12,039 cells with 10,310 sampled genes and generate biologically meaningful clusters with the software Seurat [56] (see Table A.5). We then filter genes that we could not match with the bulk data used for differential expression to be left with $g = 3346$.

Brain Large. This dataset contains 1.3 million brain cells from 10x Genomics [19]. We randomly shuffle the data to get a 1M subset of cells and order genes by variance to retain first 10,000 and then 720 sampled variable genes. This dataset is then sampled multiple times in cells for the runtime and goodness-of-fit analysis. We report imputation scores on the 10k cells and 720 gene samples only.

Retina. After their original pipeline for filtering, the dataset of bipolar cells from [33] contains 27,499 cells and 13,166 genes from two batches. We use the cluster annotation from 15 cell-types from the author. We also extract their normalized data with Combat and use it for benchmarking.

Hematopoietic. This dataset with continuous gene expression variations from hematopoietic progenitor cells [34] contains 4,016 cells and 7,397 genes. We removed the library basal-bm1, which was of poor quality, based on authors recommendation. We use their population balance analysis [57] result as a potential function for differentiation.

CBMC*. This dataset includes 8,617 cord blood mononuclear cells [35] profiled using 10x along with 13 well-characterized mononuclear antibodies for each cell. We kept the top 600 genes by variance. BRAIN SMALL*. This dataset, which consists of 9,128 mouse brain cells profiled using 10x [19], is used as a complement to PBMC for our study of zero abundance and quality control metric correlation with our generative posterior parameters. We derived quality control metrics using the cellrangerRkit R package (v. 1.1.0). Quality metrics were extracted from CellRanger throughout the molecule-specific information file. We kept the top 3000 genes by variance. We used the clusters provided by cellRanger for the correlation analysis of zero probabilities.

4.7. Related work

Independent of our work, several recent articles and preprints have also describe the use of neural networks, including variational autoencoders [23] (VAEs), to embed scRNA-seq datasets. Like scVI, these methods use stochastic optimization and therefore also scale to the size of recent data sets. scVI stands apart from this research in its focus on separating technical effects from biological signals. To this end, we explicitly model library size and batch effects as nuisance variables in a hierarchical Bayesian model. Empirical advantages of such careful modeling are underlined in [9, 29] for library size and [8, 30] for batch effects. scVI is also distinguished by the large variety of datasets it has been validated on, and the number downstream applications it supports (see Table A.1). In the following, we provide a brief description of each method.

scvis [25] proposes a new variational lower bound inspired by the parametric version of tSNE for single-cell visualization. Unlike scVI, scvis uses principal component analysis for preprocessing the data, and relies on t-distributed conditional distributions. These assumptions may be fruitful for visualization purposes but may not help in recovering hidden gene expression levels for either imputation or differential expression. One notable reason is that the underlying statistical assumptions
for applying principal component analysis are not verified in the scRNA-seq dataset and the output of this preprocessing may have artifacts [8].

VASC [26] adds zero-inflation to a VAE with Gaussian conditional distributions and shows competitive performance on clustering. Preprocessing relies on normalizing the data by library size in order to suit their loss function. However, it is known that size scaling normalization can induce bias in the analysis [4] and that count distributions such as ZINB outperform zero-inflated Gaussian conditional distribution for modeling and downstream analysis [8, 54].

DCA [27] is a denoising auto-encoder [36] that proposes a ZINB loss function. The output of this algorithm is a latent space as well as a point estimate for the conditional distributions (this denoising method is essentially a non-linear version of ZINB-WaVE). However, it is hard to extend this method for differential expression without the possibility of posterior sampling. Notably, library size discrepancies are also corrected via size scaling and potentially hurt downstream analysis [4].

scVAE [28] proposes to use VAEs with count conditional distributions for Bayesian modeling and clustering analysis. Notably, their work uses (among others) the NB and the ZINB as conditional distributions but do not propose an approach for normalization, which is crucial for further analysis.

4.8. Algorithms used for benchmarking

Below we describe the algorithms used whenever applicable (the complete scalability table for each benchmark is in Table A.2). A star after the algorithm name indicates that we used it in order to make a specific point in the paper but not for general benchmarking.

Factor analysis. We used the factor analysis (FA) method from the scikit-learn python package. FA is always applied to log-data.

ZIFA. We used the zero-inflated factor analysis method (ZIFA) from https://github.com/epierson9/ZIFA with default parameters. We always apply ZIFA to log-data.

SIMLR. We used the large scale version of the Single-cell Interpretation via Multi-kernel Learning (SIMLR) algorithm from Bioconductor with parameters recommended by the authors (k=30, kk=200). We always apply SIMLR to log-data as recommended in the original paper. We used the number of clusters as the number of cell-types, except for the HEMATO data and the random ZINB dataset, where we used the procedure SIMLR_Estimate_Number_of_Clusters.

BISCUIT. We applied the BISCUIT algorithm from https://github.com/sandhya212/BISCUIT_SingleCell_IMM_ICML_2016 with default parameters. As the code to recover the exact results from [9] was not available, we did not consider BISCUIT in the clustering benchmark. In addition, we checked different parameters for the number of iterations and the spin parameter without being able to generate a configuration that would provide a better score for imputation.

ZINB-WaVE. We applied the ZINB-WaVE procedure from the R package zinbwave with both the gene-level covariates and the cell-level covariates set to ones vectors. We always apply ZINB-WaVE to count-data.

PCA. We used the Principal Component Analysis method from the scikit-learn python package. We always apply PCA to log-data.

MAGIC. We used the Python3 code of the Markov Affinity-based Graph Imputation of Cells algorithm from https://github.com/KrishnaswamyLab/magic. We used the parameters from their iPython notebook on the github repo.

MAST. We used the R package MAST on log-counts to provide our differential expression analysis.

DESeq2. We used the R package DESeq2 on raw counts to provide our differential expression analysis.
edgeR. We used the R package edgeR on raw counts to provide our differential expression analysis.

ComBat. We used the R package sva on the bipolar dataset following the original preprocessing steps of the bipolar paper [33].

tSNE. We used the TSNE class from scikit-learn with a default perplexity parameter of 30.

Force-directed Layout. We used the spring_layout module from the networkx package by working with the raw 5-nearest neighbors adjacency matrix.

Mutual Nearest Neighbors∗. We used the mnnCorrect package from https://rdrr.io/bioc/scran/man/mnnCorrect.html with default parameters. MNNs was specifically used on the RETINA dataset for the batch removal benchmark.

DCA∗. We used the Deep Count Autoencoder package from https://github.com/theislab/dca with default parameters. DCA was specifically used on the PBMC, RETINA and BRAIN-LARGE dataset for the imputation, batch-removal and differential expression benchmark.

4.9. Evaluation

Log-likelihood on held-out data. We provide a multi-variate metric of goodness of fit on the data. The common method of evaluation for generative models is to evaluate the model on data it has never seen. Let us start with a complete dataset X. From this dataset, we randomly selected a training set X_{train} and a held-out testing set X_{test}. Each model gives and underlying probability measure p that we will specify. We define the log-likelihood on held-out data by integrating in the following way:

$$\int _{\Theta} p(X_{\text{test}}|\Theta) \cdot dp(\Theta|X_{\text{train}})$$

where $dp(\Theta|X_{\text{train}})$ designates the posterior parameters of the model after having fitted the training data and where $p(X_{\text{test}}|\Theta)$ is assessing the goodness-of-fit of the held-out data under the chosen parameter Θ.

In the case of a fully generative model like BISCUIT, the posterior parameter $dp(\Theta|X_{\text{train}})$ is designated by a probability measure we have to sample from. For technical reasons, we did not include BISCUIT in this analysis. Specifically, the original code does not provide a straightforward way to evaluate posterior likelihood on unseen data. In most generative models, we take a point estimate over these parameters (parameters of a neural network in scVI, factor loading matrix or decay rate in ZIFA) and the former measure is a Dirac centered on the parameters fixed at testing time.

Now, we focus on the value $p(X_{\text{test}}|\Theta)$ itself. First, because some algorithms are run on log transformed data and some on raw data, we take into account the distortion for the log-likelihood scores (Appendix Appendix D.1). Second, this quantity can often be intractable because of latent variables we have to marginalize out. In that case, we can take lower bounds from the Expectation Maximization algorithm for ZIFA (Appendix Appendix D.2), exact value for FA and the variational lower bound for scVI (Appendix Appendix D.3). In the case of an algorithm where the latent variables are actual parameters to optimize (as in ZINB-WaVE), we need to re-run this partial optimization at testing-time (Appendix Appendix D.4).

Corrupting the datasets for imputation benchmarking. In this paper we use two different approaches to measure the robustness of algorithms to noise in the data:

- Uniform zero introduction: We randomly select ten percent of the non-zero entries and multiply the entry n with a Ber(0.9) random variable.
- Binomial data corruption: We randomly select 10% of the matrix and replace an entry n with a Bin(n, 0.2) random variable.
Accuracy of imputing missing data. As imputation tantamount to replace missing data by its mean conditioned on being observed, we use the median \(L_1\) distance between the original dataset and the imputed values for corrupted entries only.

We now define what the imputed values are. For MAGIC, we use the output of their algorithm. For BISCUIT, we use the imputed counts. For ZIFA, we use the mean of the generative distribution conditioned on the non-zero event (mean of the factor analysis part) that we project back into count space. For scVI and ZINB-WaVE, we use the mean of the Negative Binomial distribution.

Silhouette width. The silhouette width requires either a similarity matrix or a latent space. We can define a silhouette score for each sample \(i\) with

\[
s(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}},
\]

where \(a(i)\) is the average distance of \(i\) to all data points in the same cluster \(c_i\) and \(b(i)\) is the lowest average distance of \(i\) to all data points in the same cluster \(c\) among all clusters \(c\). Clusters can be replaced with batches if we are estimating the silhouette width for assessing batch effects [30].

Clustering metrics. The following metrics require a clustering and not simply a similarity matrix. For these, we will use a k-means clustering on the given latent space of dimension 10 with \(T = 200\) random initializations to achieve a stable score.

Adjusted Rand Index. For a particular clustering,

\[
ARI = \frac{\sum_{ij} \binom{n_{ij}}{2} - \left[\sum_i \binom{a_i}{2} \sum_j \binom{b_j}{2}\right]/\binom{n}{2}}{\frac{1}{2} \left[\sum_i \binom{a_i}{2} + \sum_j \binom{b_j}{2}\right] - \left[\sum_i \binom{a_i}{2} \sum_j \binom{b_j}{2}\right]/\binom{n}{2}}
\]

where \(n_{ij}, a_i, b_j\) are values from the contingency table.

Normalized Mutual Information.

\[
NMI = \frac{I(P; T)}{\sqrt{H(P)H(T)}}
\]

where \(P, T\) designates empirical categorical distributions for the predicted and real clustering. \(I\) is the mutual entropy and \(H\) is the Shannon entropy.

Entropy of batch mixing. Fix a similarity matrix for the cells and take \(U\) to be a uniform random variable on the population of cells. Take \(B_U\) the empirical frequencies for the 50 nearest neighbors of cell \(U\) being a in batch \(b\). Report the entropy of this categorical variable and average over \(T = 100\) values of \(U\).

Protein abundance / mRNA expression. Take the similarity matrix for the normalized protein abundance (centered log-ratio transformation, see [35], Methods). Compute a 100 nearest neighbors graph. Fix a similarity matrix for the cells and compute a 100 nearest neighbors graph. Report the Spearman correlation of the flattened matrices and the fold enrichment.

Let \(A\) be the set of edges in the protein NN graph, \(B\) the set of edges in the cell NN graph and \(C\) the entire set of possible edges. The fold enrichment is defined as

\[
\frac{|A \cap B| \times |C|}{|A| \times |B|}.
\]

Baseline p-values from microarray data. For B cells against D cells, we used GSE29618) and between CD4+ and CD8+ T cells, we used GSE8835. We then used these reference gene sets to test the association of each gene’s expression with biological class, defining a two-sided t-test p-value per gene.
Differential expression metrics. We used 100 cells from each cluster. In scVI, we draw 200 samples from the variational posterior; subsampling ensures that our results are stable.

Area under the curve. We report the AUROC for detecting the most significantly expressed genes in the micro-array data (in all cases corrected p-values < 0.05).

Irreproducible Discovery Rate. The IDR is computed using the corresponding R package. We adjust the prior for the mixture weight to be the fraction of genes detected in the micro-array data.
Appendix A. Supplementary tables and figures

Characteristics of the Model	Features of the Software						
Dropout	Count distribution	Library size	Batch Effects	Generative Model	Dimensionality Reduction	Imputation	Differential Expression
Factor Analysis							
ZIFA	X						
SIMLR	X		X				
BISCUIT	X	X		X*			
ZINB-WaVE	X	X	X	X	X		
MAGIC	X						
DESeq2	X	X	X				
MAST	X	X	X		X		
edgeR	X	X	X				
ComBat	X					X	
MNNs	X					X	
scvis		X					
DCA	X	X		X	X		
VASC	X		X				
scVAE	X	X	X	X	X		
scVI	X	X	X	X	X		

Table A.1: Presentation of all the papers cited in this manuscript. We describe both features of the model and the corresponding open-source software. Dropout: any computing solution to mitigate the dropout effect on data analysis. Count distribution: the underlying distribution modeling the gene expression has support in the integer set. Library size: the model is designed to correct for library size or other technical effects. Batch effects refers to a model that can account for this technical variation. Generative Model refers to the possibility of sampling from a posterior. The star (\(\ast\)) for BISCUIT indicates that this algorithm cannot perform dimensionality reduction but can still cluster cells.
Table A.2: Presentation of the different datasets, their gene filtering and applicability of algorithms. "_" indicates combinations of algorithms and datasets that were included in this study. "x" indicates that the algorithm took more than four hours to run (ZIFA) or that the computer ran out of memory (others). "NA" indicates datasets where pre-annotated subpopulations were not available, which makes them less useful for application with SIMLR and benchmarks of clustering. "NC" indicates the remaining combinations of algorithms and datasets that were not considered for this study. For instance, BRAIN-SMALL was only used to study the correlation of scVI zero probabilities and quality parameters (Figure 6).

Dataset	Cells	Genes	Learning Rate	Layers	Neurons	FA	ZIFA	ZINB-WaVE	MAGIC	SIMLR
CORTEX	3,005	558	0.0004	1	128	_	_	_	_	_
PBMC	12,039	3,346	0.0004	1	128	_	_	_	_	_
HEMATO	4,016	7,397	0.0004	1	128	_	_	x	x	_
HEMATO*	4,016	700	0.0004	1	128	_	_	x	x	_
BRAIN LARGE	10,000	720	0.001	1	128	_	_	_	NA	
BRAIN LARGE	15,000	720	0.001	2	128	_	_	_	NC	NA
BRAIN LARGE	50,000	720	0.001	3	256	_	x	x	NC NA	
BRAIN LARGE	1M	720	0.001	3	256	_	x	x	x NA	
BRAIN LARGE	1M	10,000	0.001	3	256	_	x	x	x NA	
RETINA	27,499	13,166	0.0005	1	128	_	_	x	x	_
CBMC	8,617	600	0.0005	1	128	_	_	_	_	NC
BRAIN SMALL	9,128	3,000	0.001	1	128	NC	NC	NC	NC	NC

Table A.3: Marginal log likelihood for a held-out subset of the brain-cell dataset. NA indicates we could not run the given algorithm for this sample size. FA denotes factor analysis.

# cells	4K	10K	15K	50K	100K
FA	-1175.36	-1177.35	-1177.27	-1171.93	-1169.86
ZIFA	-1250.44	-1250.77	-1250.59	NA	NA
ZINB-WaVE	-1166.39	-1163.91	-1163.39	NA	NA
scVI	-1150.96	-1146.59	-1144.88	-1136.57	-1133.94

Table A.4: Cell types present in the CORTEX dataset and their labels in some slices of the original hierarchical clustering.
Cell Types	# cells
B cells	1625
CD14+ Monocytes	2237
CD4 T cells	5024
CD8 T cells	1452
Dendritic Cells	339
FCGR3A+ Monocytes	351
Megakaryocytes	88
NK cells	459
Other	464

Table A.5: Cell types present in the PBMC dataset.

Figure S1: Stability of the early stopping criterion on the one-million-cell sample of the BRAIN-LARGE dataset. (a) Evolution of the loss function (y-axis) value on a validation set with the number of epochs (x-axis) (b) Contrast of the expected frequency ρ-values between the model trained with early stopping (x-axis) and the model trained without early stopping (y-axis) on a random subset of 100 cells and all genes. We also report the Pearson correlation, r.

$\rho = 0.976$
Figure S2: (a) Log-likelihood results on the CORTEX dataset. (b) through (d): We investigate how scVI latent space can be used to impute the data (with the uniform perturbation scheme) and report benchmarking across datasets for state-of-the-art methods.
Figure S3: Imputation of scVI on the CORTEX dataset. Models are trained on a binomial-down-sampling corrupted dataset (see Methods). The heatmaps denote density plots of imputed values scVI, ZIFA, MAGIC and ZINB-WaVE on a down-sampled version vs. original values prior to down-sampling. The reported score d is the median imputation error across all the hidden entries (lower is better; see Methods).
Figure S4: (a) through (c): We investigate how scVI latent space can be used to impute the data (with the binomial perturbation scheme) and report benchmarking across datasets for state-of-the-art methods.
Figure S5: Posterior analysis of generative models on the CORTEX dataset. Panels (a-c) depict the observed counts of randomly selected entries of the data matrix (x-axis) and their posterior uncertainty (y-axis) by sampling from the variational posterior (scVI) or the exact posterior (FA, ZIFA). Whiskers denote the 5th and 95th percentiles. Panels (d-f) represent the observed counts of a representative gene, Thy1, in the CORTEX dataset. Data is presented across all cells (n = 3005) (x-axis) against the posterior expected counts produced by scVI, ZIFA and FA, respectively (y-axis). The values on each axis have been divided into 20 bins and the color scale reflects the proportion of cells in each pair of bins. By definition, the uncertainty of FA is independent of the input value and tight around the observed count. ZIFA can generate zero and puts realistically more weight in this area. scVI’s posterior is more complex, and is able to generate zero for low UMI values but also able to generate high UMI values when the original count observed was only of intermediate intensity.
Figure S6: We investigate how scVI latent space can be used to cluster the data and report benchmarking across datasets for state-of-the-art methods. The first four panels depict the results for the (a) PBMC dataset (b) CORTEX (c) CBMC and (d) RETINA. ASW: average silhouette width of pre-annotated subpopulations (higher is better), ARI: adjusted Rand index (higher is better), NMI: normalized mutual information (higher is better), BE: batch-mixing entropy (higher is better), BASW: average silhouette width of batches (lower is better). Panels (e-g) depict the performance of clustering metrics for different depths of the hierarchical clustering in the CORTEX data, computed in the original publication [31]. The numbers in the legend indicate the number of clusters at the given depth.
Figure S7: Additional comparison of scVI and PCA on the HEMATO dataset. All scatter plots illustrate the embedding of a 5-nearest neighbors graph of a latent space. Cells positions are computed using a force-directed layout; (a) denotes a reduction to 60 pcs as in the original paper. (b) denotes the output of a scVI in dimension 60. As the dimension is sensibly different from other experiments, the warm-up schedule (which governs how the prior on z is enforced) was adjusted. (c) denotes the figure from the main paper. To recover all the differentiation paths, the authors performed several operations on the K-nearest neighbors graph that we did not reproduce in this analysis. We instead visualize the graph before the smoothing procedure.
Figure S8: Details for the clustering panel. For the random data, we obtain the labels that order the cell-cell similarity matrices by a k-means clustering on SIMLR latent space. (a) scVI latent space with SIMLR labels. There is no structure. (b) SIMLR latent space with SIMLR labels. (c) PCA latent space with SIMLR labels. (d) SIMLR tSNE on the HEMATO dataset. We prefer to visualize the SIMLR embedding on a kNN graph since the continuum structure of the dataset would be lost, even with tSNE.
Figure S9: Batch effect removal on the RETINA dataset. (a, b) Embedding plots for PCA were generated by applying tSNE on the respective latent space. (c, d) For SIMLR, we used the tSNE coordinates provided by the program and the number of clusters was set to the number of pre-annotated subpopulations (n = 15). (e, f) Embedding plots for DCA were generated by applying tSNE on the respective latent space.
Figure S10: Differential expression with scVI on the PBMC dataset. (a) (b) (c) (d) (f) p-values of microarray against p-values or Bayes factor for CD4/CD8 comparison. In the order indicated, scVI, edgeR, MAST, DESeq2, DESeq2 on DCA imputed counts (e) Bayes factor of scVI when applying DE to two sets of random cells from the same cluster.
Appendix B. Marginalizing out the latent variables of scVI

First, take r to be the gene-specific shape parameter of a Gamma variable w and $\frac{p}{1-p}$ to be its scale parameter, use a scalar $\lambda \in \mathbb{R}^+$, then the count variable $y|w \sim \text{Poisson}(\lambda w)$ has a negative binomial marginal distribution with mean $r\lambda \frac{p}{1-p}$

$$p(y) = \int p(y|w)p(w)dw = \int \frac{w^{r-1}e^{-w(\frac{p}{r} - 1)}e^{-\lambda w}e^{\lambda y}w^y}{p^r \Gamma(r)} \frac{\Gamma(y + 1)}{\Gamma(y + r)} dw$$
$$= \frac{\Gamma(y + r)}{\Gamma(y + 1)\Gamma(r)} \left(\frac{1 - p}{1 - p + \lambda p} \right)^r \left(\frac{p\lambda}{1 - p + \lambda p} \right)^y.$$ \hspace{1cm} (B.1)

Second, multiplication by zero to y_{ng} can be formally encoded as a mixture between a point-mass at zero and the original distribution of y_{ng}.

Then, our conditional $p(x_{ng}|z_n, \ell_n, s_n)$ is a zero-inflated negative binomial:

$$p(x_j = 0|z, l, s) = f_h(z)_j + (1 - f_h(z)_j) \left(\frac{\theta_j}{\theta_j + 1f_w(z)_j} \right)^{\theta_j}$$ \hspace{1cm} (B.2)

and

$$p(x_j = y|z, l, s) = (1 - f_h(z)_j) \frac{\Gamma(y + \theta_j)}{\Gamma(y + 1)\Gamma(\theta_j)} \left(\frac{\theta_j}{\theta_j + 1f_w(z)_j} \right)^{\theta_j} \left(\frac{f_w(z)_j}{\theta_j + 1f_w(z)_j} \right)^y.$$ \hspace{1cm} (B.3)

Here $f_h(z)$ encodes the zero probability of h and $f_w(z)$ the mean of w.

Appendix C. Negative binomial parametrization

Negative binomial PMF parametrization. A choice of parametrization is crucial for optimization considerations. We could follow [8] by using a mean μ and an inverse-dispersion θ parameter:

$$p_{NB}(n; \mu, \theta) = \frac{\Gamma(n + \theta)}{\Gamma(n + 1)\Gamma(\theta)} \left(\frac{\theta}{\theta + \mu} \right)^\theta \left(\frac{\mu}{\theta + \mu} \right)^n.$$

Equivalence of parametrization. Assume now that we want to simulate what the rate of the latent corresponding Poisson variable would have been; we have to sample from a Gamma of shape r and scale $\frac{p}{1-p}$ or rate $\frac{1-p}{p}$.

Numerical considerations. We transformed the expression to incorporate logits and use Tensorflow numerically stable functions. Instead of explicitly writing a sigmoid non-linearity, the probability of zero in the mixture is given by

$$f_z(z) = \frac{1}{1 + e^{-F_z}},$$

where F_z is the output of the neural network without non-linearity. We then write the log-likelihood as a function of F_z.

The use of an r can either be parametrized by a neural net or constant for each gene, and will be noted r for simplicity. S denotes the softplus function $x \mapsto \log(1 + e^x)$. Then,

$$\log p(y|z) = \mathbb{1}_{y=0} \left[S(-F_z + f_{\theta} \log \frac{f_{\theta}}{f_{\theta} + f_{\mu}}) - S(-F_z) \right] + \mathbb{1}_{y>0} \left[-F_z - S(-F_z) + f_{\theta} \log \frac{f_{\theta}}{f_{\theta} + f_{\mu}} + y \log \frac{f_{\mu}}{f_{\theta} + f_{\mu}} + \log \frac{\Gamma(y + \theta)}{\Gamma(\theta)\Gamma(y + 1)} \right].$$
Figure S11: The generative distributions of scVI. This study focuses on a particular subpopulation of the BRAIN-SMALL dataset (n = 2592) (a) To assess whether most of the zeros in the data comes from the negative binomial, for each entry of the count matrix (percentage in y-axis), we plot the probability that a given zero comes from the NB conditioned on having a zero (x-axis). (b) Number of genes detected vs. negative binomial zero probability averaged across all genes. (c) Genome_not_gene vs. Bernoulli zero probability averaged across all genes. (d) Mapped_reads vs. Bernoulli zero probability averaged across all genes.
Figure S12: Robustness analysis for scVI. Whiskers denote 5th and 95th percentiles. (a) Imputation score on the BRAIN-LARGE dataset across multiple random initialization, training and dimension of the latent space. (b) Visualization of scVI numerical objective function during training on the BRAIN-LARGE dataset. This shows our model does not over fit and has a stable training procedure. (c) Imputation score as a function of the number of epochs on the BRAIN-LARGE dataset. This figure also shows stability across posterior sampling since there is not much change in the parameters between two subsequent epochs. (d) Clustering metrics on the CORTEX dataset across multiple initializations and dimensions for the latent space.
Appendix D. Comparing log-likelihood

Appendix D.1. Log and non-log data

Let X be a positive random variable and let us note $Y = \log(1 + X)$ and suppose we have a model for Y written P_Y. The likelihood score on the raw data is given by evaluating the density P_X, which is

$$\forall x = (x_1, ..., x_d) \in \mathbb{R}^d, \, dP_X(x) = dP_Y(\log(1 + x)) \prod_{i=1}^d \frac{1}{1 + x_i}.$$

For the likelihood scores, this yields

$$\log P_X(X = x) = \log P_Y(Y = \log(1 + x)) - \sum_{i=1}^d \log(1 + x_i).$$

Appendix D.2. Log-likelihood for ZIFA

The EM algorithm naively provides a lower bound on the log-likelihood for ZIFA:

$$\log p(Y|\Theta) \geq \mathbb{E}_{p(Z,X,Y|\Theta)} \log p(Z,X,Y|\Theta).$$

The complete log-likelihood has a simple expression is

$$LL = \log p(z_i, x_i, h_i, y_i|\Theta) = -\frac{1}{2} z_i^T z_i - \sum_j \log(\sigma_j) + \sum_{j|i,j=0} -\frac{(x_{i,j} - (Az_i)_j - \mu_j)^2}{w\sigma_j^2} - \lambda_j x_{i,j}^2$$

$$+ \sum_{j|i,j>0} -\frac{(y_{i,j} - (Az_i)_j - \mu_j)^2}{w\sigma_j^2} + \log(1 - e^{-\lambda_j y_{i,j}^2}).$$

Because the prior distribution is close to Gaussian, we can modify ZIFA code and use an E-step to compute the desired value. For the E-step, we use the following values:

- $\mathbb{E}(x_i \circ x_i) = EX^2$
- $\mathbb{E}(x_i z_i^T) = EXZ$
- $\mathbb{E}(z_i z_i^T) = EZZ^T$
- $\mathbb{E}(x_i) = EX$
- $\mathbb{E}(z_i) = EZ$

Then, we have

$$LL = -\frac{1}{2} Tr(EZZ^T) - \frac{d}{2} \log(2\pi) - \sum_j \left[\frac{\log(2\pi \sigma_j^2)}{2} + \frac{\mu_j^2}{2\sigma_j^2} + \frac{(AEZZ^T A^T)_{j,j}}{2\sigma_j^2} + \frac{(AEZ \circ \mu)_j}{\sigma_j^2} \right]$$

$$+ \sum_{j|i,j=0} \frac{1}{2\sigma_j^2} [-EX_j^2 + 2(EXZ A^T)_{j,j} + 2(EX \circ \mu)_j] - \lambda EX_j^2$$

$$+ \sum_{j|i,j>0} \frac{1}{2\sigma_j^2} [-y_{i,j}^2 + 2(y_i \circ AEZ)_{j,j} + 2(y_i \circ \mu)_j] + \log(1 - e^{-\lambda y_{i,j}^2}).$$
Appendix D.3. Log-likelihood for scVI

Our variational inference procedure provides us with a lower bound on the log-likelihood of held-out data:

\[
\log p(x) \geq \mathbb{E}_{q(z, l|x)} \log p(x|z, l) - KL(q(z|x)||p(z)) - KL(q(l|x)||p(l)) \tag{D.1}
\]

This lower-bound is tight whenever \(q(z|x) = p(z|x)\). Keeping the generative model as fitted on training data, we can optimize our inference network at test-time to have a better lower-bound of the held-out log-likelihood and report the best value. This is essentially equivalent to assessing the marginal likelihood of held-out data, conditioned on a latent representation learned for the held-out data.

Appendix D.4. Log-likelihood for ZINB-WaVE

The function to be optimized for ZINB-WaVE is essentially penalized likelihood. We can thus run the full optimization function on a training set once, as follows:

\[
\max_{\beta, \gamma, W, \alpha, \zeta} \mathcal{L}_{\text{train}}(\beta, \gamma, W, \alpha, \zeta) - \text{Pen}(\beta, \gamma, W, \alpha, \zeta)
\]

This optimization is performed by alternating minimization. By fixing the variables \(\beta, \alpha, \zeta\) to values learned from the training set, we can compute the likelihood of a validation set by performing inference over the latent variables \(\gamma\) and \(W\).