Optimal Timing and Duration of Induction Therapy for HIV-1 Infection

Marcel E. Curlin1,2, Shyamala Iyer2, John E. Mittler2*

1 Department of Medicine, University of Washington, Seattle, Washington, United States of America, 2 Department of Microbiology, University of Washington, Seattle, Washington, United States of America

The tradeoff between the need to suppress drug-resistant viruses and the problem of treatment toxicity has led to the development of various drug-sparing HIV-1 treatment strategies. Here we use a stochastic simulation model for viral dynamics to investigate how the timing and duration of the induction phase of induction–maintenance therapies might be optimized. Our model suggests that under a variety of biologically plausible conditions, 6–10 mo of induction therapy are needed to achieve durable suppression and maximize the probability of eradicating viruses resistant to the maintenance regimen. For induction regimens of more limited duration, a delayed-induction or -intensification period initiated sometime after the start of maintenance therapy appears to be optimal. The optimal delay length depends on the fitness of resistant viruses and the rate at which target-cell populations recover after therapy is initiated. These observations have implications for both the timing and the kinds of drugs selected for induction–maintenance and therapy-intensification strategies.

Introduction

The failure of antiretroviral therapies to completely suppress viral replication in some patients represents a major difficulty in the management of HIV infection. In therapy-naive patients without clinically apparent resistance mutations, triple-drug therapy with two nucleoside-analog reverse transcriptase inhibitors and a protease inhibitor or a non-nucleoside reverse transcriptase inhibitor is standard [1]. In these patients, treatment success rates, defined as viral load <50 copies/ml at 48 wk, range from 70% to 80%–85% (reviewed in [2]). However, in patients with previous regimen failure requiring salvage therapy, response rates are usually considerably lower [3–5], and it is frequently not possible to assemble a three-drug regimen with uncompromised activity against all viral strains present. In these individuals, treatment failure often occurs after an initial period of response to a new regimen, and is usually associated with the appearance of multiply drug-resistant viral strains. This has led to attempts to treat highly experienced patients with various deep salvage regimens consisting of four, five, or six individual drugs [6–11]. These patients are particularly vulnerable to the many drug interactions [12] (also reviewed in [13]) and adverse metabolic, hematologic, neurologic, cardiovascular, and gastrointestinal side effects that complicate HIV therapy and seriously undermine the success of clinical management [14–20] (also reviewed in [21]).

The need to minimize drug resistance while reducing treatment-related toxicities has engendered an interest in induction–maintenance (IM) strategies, in which a period of intensified antiretroviral therapy (induction phase) is followed by a simplified long-term regimen (maintenance phase) [22–25]. Most such trials have yielded higher failure rates in the treatment group than in controls receiving conventional therapy. Failure typically occurs during maintenance therapy, and has been attributed to poor regimen adherence [25] and recrudescence of resistance mutations present before insti-
Author Summary

Clinicians treating HIV infection must balance the need to suppress viral replication against the harmful side effects and significant cost of antiretroviral therapy. Inadequate therapy often results in the emergence of resistant viruses and treatment failure. These difficulties are especially acute in resource-poor settings, where antiretroviral agents are limited. This has prompted an interest in induction–maintenance (IM) treatment strategies, in which brief intensive therapy is used to reduce host viral levels. Induction is followed by a simplified and more easily tolerated maintenance regimen. IM approaches remain an unproven concept in HIV therapy. We have developed a mathematical model to simulate clinical responses to antiretroviral drug therapy. We account for latent infection, partial drug efficacy, cross-resistance, viral recombination, and other factors. This model accurately reflects expected outcomes under single, double, and standard three-drug antiretroviral therapy. When applied to IM therapy, we find that (1) IM is expected to be successful beyond 3 y under a variety of conditions; (2) short-term induction therapy is optimally started several days to weeks after the start of maintenance; and (3) IM therapy may eradicate some preexisting drug-resistant viral strains from the host. Our simulations may help develop new treatment strategies and optimize future clinical trials.

of eradicating these resistant viruses. For shorter induction periods, we find that it is optimal to use a “delayed-induction” regimen administered several days to weeks after the start of the intended long-term maintenance therapy.

Results

Overview of the Model and Parameters

The model consists of CD4+ target cells, free viruses, and three types of infected cells: short-lived infected cells with $t_{1/2}$ of \sim1 d, moderately long-lived infected cells with $t_{1/2}$ of \sim2.5 wk, and long-lived infected cells or “latently” infected cells with $t_{1/2}$ of \sim3.5 y (Figure 1A). The model includes four possible mutations that confer resistance to three antiretroviral drugs; mutations 1 and 2 each confer partial resistance to drug I, whereas mutations 3 and 4 confer a high level of resistance to drugs II and III, respectively (Figure 1B). Our model allows viral recombination, and includes the effects of partial drug efficacy, incomplete viral resistance, and cross-resistance between drugs II and III. Drug-resistant viruses can infect moderately long-lived and latently infected cells, allowing for the formation of latent drug-resistant viral reservoirs. Because our model assumes finite population sizes, the various viral genotypes may fall below a threshold for extinction. Since extinction is a chance event, we used random, stochastic modeling to model the rate of change of free viruses and infected cell populations that are near the extinction threshold.

Viral Dynamics during Untreated Early and Chronic Infection

In the absence of therapy, viral load rises to a peak of approximately 10^6 virions/ml by day 25, then falls to an equilibrium of $\sim10^5$ virions/ml by day 100. Target-cell populations decrease during acute viremia, then recover somewhat as viral load falls to its steady state. (Analytical formulas for the steady-state concentrations of infected cells and free virus under a model very similar to the one here can be found in [31–37].) As observed in [31–37], our model assumes that resistant viruses have lower fitness in the absence of drug. With our conservative parameter choices, viruses with one, two, and three drug-resistance mutations are generally present at frequencies of 10^{-3}, 10^{-6}, and 10^{-9}, respectively, during the period of acute primary infection, whereas viruses with four drug-resistance mutations are generally absent (Figure 2A). Thereafter, the frequency of mutants and latently infected cells (unpublished data) increase slowly to equilibrium. To account for this increase in our simulations, we allowed viral populations to equilibrate over a 4,000-d period (\geq10 y) before initiating therapy. With less conservative parameter choices, viruses with three resistance mutations will not generally preexist. In this case, the qualitative results described below can be duplicated with less intensive drug therapies.

Viral Dynamics during Conventional ART

After initiation of conventional triple-drug therapy, the viral load decays at a rate of 0.6 d⁻¹ (first phase decay) for \sim10 d, then at 0.04 d⁻¹ (second phase decay), until HIV-1 RNA falls below the detection limit of 50 RNA copies (25 virions) per ml of plasma around day 120 (Figure 2B). A population of latently infected cells is assumed to contribute a third phase of decay beginning around day 200, during which virus decays at a rate of 0.00052 d⁻¹. Viral loads during the third phase are on the order of 1.0 ml⁻¹ [40]. Model behavior during primary infection, chronic disease, and ART has been designed to match experimental viral dynamics [38–40]. The minority populations of resistant mutants form a reservoir of drug-resistant viruses that can fuel viral rebound if therapy is prematurely reduced or withdrawn. As expected, at low population densities under conditions prevailing during induction therapy, the appearance and loss of drug-resistant populations behave as random, stochastic processes.

IM Therapy: Effect of Timing and Duration of Induction Therapy on the Probability of Eradicating Viruses Resistant to the Maintenance Regimen

We have used this model to investigate two questions about IM therapies. (1) How long should the induction phase be in order to eradicate viruses resistant to the drugs in the maintenance regimen? (2) What is the optimal timing of induction therapy relative to maintenance therapy? Could IM therapies be improved, for example, if the agents that were unique to the induction regimen were started before starting the maintenance drugs? In the simulations below, the maintenance regimen consists of drugs I and II, while drug III is applied only during induction therapy (Figure 3). We define “success” as achieving and maintaining a fully suppressed circulating free virus population for a period of at least 3 y after the end of induction therapy.

Figure 3A–3B gives typical results; Figure 3A shows how the probability of success varies with the length of the induction phase. In this simulation, the percentage of success increased dramatically as the length of the induction therapy was increased to \sim120 d, and increased more gradually between 120 and 180 d. Further increases in the length of the induction phase beyond 180 d had little effect with these parameters. Figure 3B shows a typical simulation in which the timing of induction therapy was altered. In these simulations, a 30-d course of therapy intensification was started before
maintenance therapy (start days 30 to 10), at the same time as maintenance therapy (start day 0), or after drugs unique to the maintenance therapy were started (start days 10 and higher). In the latter case, we refer to the period of intensified therapy as a “delayed-induction” therapy. Interestingly, we note that for induction therapies of limited duration, the highest success rates occurred with delayed-induction therapy initiated 40 d after the start of maintenance therapy.

Delayed-induction therapy (also referred to as delayed-intensification or booster therapy) results in higher eradication rates because drug-resistant viral populations are predicted to decline transiently after the start of maintenance therapy [41–43]. This decline occurs because resistant viruses, which are assumed to be less fit than sensitive viruses [31–37], are no longer created via mutation once drug therapy interrupts viral replication within the drug-sensitive population. Drug-resistant populations do not increase until target-cell populations increase enough to offset their intrinsic growth rate disadvantage. Specifically suppressing replication of resistant viruses with additional drugs when
this population is reduced in size maximizes the net impact of induction therapy. This result can be shown analytically using a simple one-infected-cell, one-resistant virus, deterministic version of this model in which wild-type (WT) virus is completely sensitive to drug, and resistant virus is completely resistant to drug (Figure 4A and 4B). With these simplifications, Nowak et al. [41] have shown that the dynamics of resistant virus after therapy is approximately

\[V_1(t) = V_1(0) \exp(\delta \left((R_1 - 1) t - R_1 (1 - 1/R_0) (1 - e^{-\mu t}) \right)/m) \]

where \(V_1(0) \) is the density of the resistant virus at the time that therapy is initiated, \(m \) is the turnover rate of target cells at steady state, \(\delta \) is the death rate of infected cells, \(R_0 = ps_k / c_0m \), and \(R_1 = ps_k (c_0m \exp(C_0)) \). \(R_0 \) and \(R_1 \) are the basic reproductive numbers (i.e., the mean number of new cells infected from a single infected cell in a newly infected host who is not being treated) for WT and resistant viruses [41]. For \(t \ll 1/m \) and \(0 < R_1 < R_0 \), the second term inside the curly brackets is large compared with the first, leading to transient declines in \(V_1 \). As \(t \) becomes large compared with \(1/m \), this second term approaches \(R_1 (1 - R_0)/m \), whereas the first term continues to increase linearly with \(t \), allowing for eventual increases in \(V_1 \). Setting the derivative of \(V_1(t) \) equal to zero, it is straightforward to show that \(V_1 \) reaches a nadir at

\[t_{\min} = -\ln\left(\frac{(R_1 - 1)/[R_1 (1 - 1/R_0)]}{m} \right) \]

This indicates that the turnover rate of target cells is of major importance in determining the optimal timing of induction therapy relative to the maintenance therapy (as illustrated in Figure 4B), though the replicative fitness of resistant viruses (as quantified by values of \(R_1 \) and \(R_0 \)) also plays a role. Although we have focused on reductions in the infection rate constant as the most logical way of modeling fitness reductions, the dependence of \(t_{\min} \) on \(R_0 \) and \(R_1 \) indicates that we will observe nearly identical results if the resistant viruses have lower fitness due to a lower burst size or a higher clearance rate.

Figure 2. Simulations of Viral Dynamics

(A) Dynamics in the absence of therapy.
(B) Decline in viral load during potent triple-drug combination therapy. Maintenance and inducer drugs are provided for 360 d starting on day 0. Dark blue line, target cells; black line, WT virus; blue-green lines, single mutants; orange lines, double mutants; red lines, triple mutants. Viral populations that are above the threshold for stochastic effects (dark gray line) may fluctuate if the corresponding infected cell populations are below the cutoff for stochastic effects. After the initiation of therapy, WT virus declines with appropriate first-, second-, and third-order kinetics. Viruses with a single mutation decline to near steady-state levels above the extinction threshold. Viruses with two resistance mutations approach the extinction threshold, but are not entirely eliminated by day 300. Triple viruses are generally extinct by day 40.

doi:10.1371/journal.pcbi.0030133.g002

Effect of Varying Viral Dynamic Parameters on the Probability of Successful IM Therapy

The results above suggest that induction therapy should be at least 180 d if started at the same time as the maintenance therapy. It also suggests that the optimal time to initiate short-term induction therapy may be several weeks after the start of maintenance therapy. To explore these results in more detail, and to verify that the results are not overly specific to our parameter choices, we systematically varied the key parameters in the full, stochastic model.

We first explored the effect of altering the fitness costs associated with resistance to antiviral drugs (Figure 5A and 5B). As expected, the probability of success decreased with increasing viral fitness under both treatment strategies. Consistent with the equation for \(t_{\min} \) above, the optimal time to intensify therapy increased as the fitness of the resistant virus decreased. Interestingly, we found that changing the fitness of viruses resistant to the induction regimen (drug III) had little or no effect on the optimal time to intensify therapy; the effects depicted in Figure 5B can be ascribed almost entirely to decreased fitness of viruses resistant to the maintenance regimen. As predicted from the equation for \(t_{\min} \) above, we obtained nearly identical results if fitness costs were due to resistant viruses having low burst sizes (unpublished data).

Under simple population genetic models, the frequencies of singly and doubly resistant viruses prior to therapy are proportional to \(\mu s_1 \) and \(\mu^2 s_2 \), respectively, where \(s \) is the selective disadvantage of a drug-resistance mutation [43]. When viruses resistant to the maintenance therapy suffer large fitness costs (e.g., \(s_1 = s_2 < 0.65 \)), they rarely, if ever, contribute to the pool of long-lived infected cells. However, when these mutations have very small fitness costs (e.g., \(s_2 > 0.96 \)), these viruses frequently infect cells destined for latency. (We note that if the cost of resistance to the maintenance therapy is very low, simultaneous triple therapy will fail as well.) We conclude, therefore, that the success of
maintenance therapy will depend greatly on resistance mutations having measurable fitness costs.

We next explored the effects of altering the turnover rate \(m \) of the target-cell population, which we accomplished by simultaneously increasing \(m \) and \(k \). From the approximate equation for steady-state viral load:

\[
V = \frac{ps}{c} \frac{d}{C0} m = k
\]

obtained from the simple one-infected cell model, we predict that varying \(m \) and \(k \) proportionally will change the dynamics of target-cell renewal without affecting pre-therapy viral load (which is a potentially important confounding factor). In the full model, we found that both the optimal time to intensify therapy and the probability that standard IM therapy is successful increased as target-cell turnover rates decreased (Figure 5C and 5D). Success rates are influenced by \(m \) because the target-cell populations needed for the growth of resistant viruses recover more slowly when \(m \) is small. In the simple one-infected cell model, recovery of target cells after therapy is given by

\[
T(t) = s/m + \frac{c \delta/kp - s/m}{\delta/t} e^{-mt}
\]

where \(t \) is time since the initiation of therapy. From this equation, we see that the rate at which target cells return to their pre-therapy steady state is strongly affected by their death rate, \(m \).

To examine the role of the latent viral reservoir, we varied the rate at which latently infected cells are created (\(f_L \)) in the full, stochastic model. (Unless otherwise specified, all subsequent results are derived from this stochastic model.) With our canonical simulation parameters (with its conservative estimate for the number of latently infected cells), latently infected cells affected outcomes in only a small percentage of cases. The probability of IM therapy failure changed little within the range of \(f_L = 10^{-8} - 10^{-6} \), but decreased significantly for \(f_L \geq 6.4 \times 10^{-6} \) (Figure 6A and 6B, and unpublished data). These results indicate that both IM and conventional triple-drug therapy may fail if the number of latently infected cells is pushed too far above \(10^6 \), a value near the upper end of experimentally derived estimates (Table 1). As expected from the analytical equations above, altering the number of latently infected cells did not change our previous conclusions concerning optimal timing of IM therapy (Figure 6B).

Finally, we varied the death rate of the moderately long-lived infected cells. In contrast to our conservative estimate for \(\delta_L \), our canonical value for the death rate of moderately long-lived cells, \(\delta_M = 0.04/d \), is at the upper end of what might be inferred from second-phase decay rates \([38,44–55]\). We believe \(\delta_M = 0.04/d \) is appropriate because imperfect efficacy and/ or poor adherence will cause the second-phase decay rate to be less than \(\delta_M \). Second-phase decay rates, furthermore, have been shown to be higher in patients with higher viral loads \([55]\) (the situation modeled here). When we repeated our simulations with lower values for \(\delta_M \), we found, as expected, that the duration of induction therapy needed for
concentration of drug-resistant viruses declines transiently following the initiation of therapy. Interpretation: these simulations illustrate previous theoretical studies showing the effect of altering IC50 values and decreasing drug concentration. As in our previous simulations, the marginal benefit of increasing the density of moderately long-lived infected cells. For the case δM = 0.02/d, we observed that induction therapy needed to be at least 300 d to have a high probability of driving viruses resistant to the maintenance therapy to extinction. As expected, changing δM had little effect on the optimal time to intensify therapy (Figure 6D).

Effect of Resistance Levels and Cross-Resistance on the Probability of Successful IM Therapy

Our canonical simulation includes somewhat arbitrary choices for IC50 values for both drug I (for which high-level resistance is assumed to require two mutations) and drugs II and III (for which a single mutation confers high-level resistance). To explore the effects of varying IC50 values, we conducted simulations under a range of IC50 values for drugs II and III (Figure 7A and 7B) and for drug I (Figure 7C and 7D). As expected, we found that the probability of success in eliminating drug-resistant viruses decreased with increasing IC50 values and decreasing drug concentration. As in our previous simulations, the marginal benefit of increasing the length of an induction regimen reached a plateau between 150 d and 270 d. We explored the effect of adding a cross-resistance term wherein resistance to drug II confers partial (or full) resistance to drug III, and vice versa. Success rates decreased with increasing degree of cross-resistance, particularly when induction therapy preceded the start of maintenance (Figure 8A and 8B). However, the qualitative results of our previous simulations remained unchanged.

Effect of Simultaneously Varying Both the Length and Timing of Delayed-Induction Therapy

All of the delayed-induction therapy simulations above assume a delayed-induction phase of 30 d. To explore the effect of varying the duration and start time of delayed-induction therapy, we repeated our simulations over a range of induction treatment lengths and start times relative to maintenance therapy (Figure 9). For induction therapies of 40 d or less, the optimal time to initiate induction therapy continued to be 30–50 d, as in previous simulations. When the length of induction therapy was increased to 160 d, however, the curve flattened out considerably, indicating that the benefit of delaying induction is diminished at longer treatment durations. This is intuitively reasonable, since longer induction therapies will cover the critical time when resistant viruses are predicted to hit their nadir, even though they might be started well before the optimal therapy intensification times. The benefit of an optimally timed induction therapy, therefore, is most acute when the length of therapy intensification is short.

Effect of Viral Recombination on the Predicted Results of IM Therapy

To explore the effects of viral recombination on these strategies, we extended the model further to account for the effect of recombination between genotypes V12 and V34. At realistic recombination rates (i.e., with r ≤ 0.01), we observed virtually no effect on the success rate of IM therapy (unpublished data). This is in part because terms of the form μkTV1234, which approximate the rate of production of V1234 by mutation, are at least an order of magnitude greater than terms of the form μkTV1234, which approximate the rate of input into the V1234 population by recombination in our model. To achieve a higher-order resistance genotype by recombination, two or more dissimilar resistant virions must coinfect a cell, establish productive infection, and copackaged two nonidentical templates to produce a heterozygous virus during virus production. After infection of a new target cell, an odd number of recombination events must occur between templates during reverse transcription, within a locus between the relevant resistance mutations. In the case of drugs targeting protease and reverse transcriptase (the two most common drugs), recombination must occur within a span of ~900 bp, or roughly one-tenth of the viral genome. Only a fraction of resistant viruses will overcome all of these
hurdles. Given published estimates of approximately three recombination events per replication cycle [56], \(r = 0.01 \) is reasonable, and perhaps somewhat high. To illustrate the ultimate consequences of very high recombination rates, we also performed simulations with unrealistically high recombination rates (i.e., with \(r \geq 1 \)). At these extreme values, success rates declined in a manner similar to other perturbations that make therapy less likely to be effective (unpublished data). Thus, biologically plausible recombination rates had little qualitative or quantitative effect on the outcomes observed in our four-mutation model.

Effect of Viral Population Size on the Probability of Eradicating Resistant Viruses

The fact that effective population sizes are so much lower than census sizes is one of the major riddles of HIV-1 evolution. This controversy arises from the observation that the viral effective population size, as measured using standard tools of population genetics, is orders of magnitude lower than the census size (physical count of the number of viruses). In the simulations shown so far, we have conservatively assumed that the dynamics of viral resistance can be described using a model in which the number of viruses in the body equals a liberal estimate of census size. The controversy over viral effective population size has led to suggestions that the use of viral census size is too conservative [57,58]. Unfortunately, it is not clear how to model the effective population size since there is a lack of agreement on why effective population sizes are so low. However, it is possible to explore the effects of some of the more commonly proposed explanations using the modeling framework developed here.

One explanation for low viral effective population size is that most of the infected cells and virions assayed by PCR are noninfectious. If this were the entire explanation for extremely low effective population sizes, use of current
estimates of census size would be inappropriate. To explore what occurs if very few virions and integrated proviruses are replication-competent, we repeated our simulations with a census size 10,000-fold lower than the one used previously. Under this assumption, we obtained qualitatively similar results under a treatment regimen in which both the induction and the maintenance therapies consist of one drug. While a reduced therapy burden would be a welcome finding, two-drug therapies have not been generally successful, suggesting that these conditions are a less accurate approximation of biological conditions.

Another possibility is that the effects of a genetic bottleneck during primary infection and rapid turnover of viral populations due to strong immune selection periodically purge HIV-1 populations of genetic variation. Because the effective population size is proportional to the amount of genetic variation, these factors would have a large negative effect on the measured effective population size during primary infection. To examine the impact of these processes on the dynamics of resistant virus, we set viral load to a very low value at the beginning of primary infection, and simulated immune selection for a character unrelated to resistance mutations, starting near day 200. We found that neither mechanism for low effective population size had a significant long-term impact on the frequencies of drug-resistant viruses (unpublished data). Although these simulations cover only some of the possible mechanisms for low effective population size [59–61], they indicate that it is possible to appropriately model drug therapy using population sizes similar to the census size, regardless of the calculated effective population size.

Behavior of Drug-Resistant Viruses under an Immune-Control Model

The results above are all based on a “standard” model that assumes that HIV is limited in vivo by the supply of CD4+ target cells [38,45–48,62,63]. We have chosen to use this standard model because it is supported by independent lines of evidence [64] and is well-studied mathematically, and because there is no clear consensus on appropriate methods...
Table 1. Parameters and Variables Used in the Model

Name	Description	Canonical Value	Range in Simulations	Comments/References
c	Clearance rate of free virus (d$^{-1}$)	3	3	Original estimate from [95]. More recent studies have given even higher estimates [90,96], but our results do not depend much on c since the dynamics of free virus is fast compared to infected cells.
D_j	Concentration of drug j (ng/ml)	20	20	Chosen so that the K value for WT virus (assumption IC_{50} for WT = 1.0) is reduced by 95%.
δ_I	Death rate of short-lived infected cells (d$^{-1}$)	0.6	0.6	[38,44-48,51-53,63,95]
δ_L	Death rate of long-lived infected cells (d$^{-1}$)	0.00052	0.00052-0.001	Lower end of estimates in [50,89,91-93]
δ_M	Death rate of moderately long-lived infected cells (d$^{-1}$)	0.04	0.04	[38,44-55]
f_I	Fraction of target cells that become short-lived infected cells	0.93	0.93	Fixed to $1 - \frac{1}{\lambda}$.
f_L	Fraction of target cells that become long-lived infected cells	0.07	0.07	Not known experimentally. Set here to yield a value for M at the upper end of what might be inferred from [38,44-55].
f_M	Fraction of target cells that become moderately long-lived infected cells	0.07	0.07	Value at steady state before drug therapy. This equates to ~10^7 infected cells/body, a value that represents upper range of estimates in [97,98].
I	Number of short-lived cells/µl	2.4	2.4	Value at steady state before drug therapy.
$IC_{50,J}$	Concentration of drug j at which infection rate constant for mutant i is 50% of its original value (ng/ml)	Varies. See Table 2.	1-800	Varies by drug. Range is motivated by estimates for fold change in IC_{50} values calculated from the model described in [86].
$IC_{50,INT}$	Degree of resistance to drug I conferred by mutation 1 or mutation 2 (µg/ml)	5.0	3.0–8.0	Values reflect fact that single mutations often increase IC_{50} value for protease inhibitors by ~5-fold. [86] See Table 2.
$IC_{50,MUT}$	Degree of resistance to drug II conferred by mutation 3, and to drug III by mutation 4 (µg/ml)	100	25–800	Values reflect fact that single mutations increase IC_{50} value for nevirapine and 3TC by ~100-fold. [86] See Table 2.
K	Infection rate constant for WT virus in presence of drug (µl virions/cell/day)	0.00004	0.00004	Determined from values for D, k, and the IC_{50} for WT. Equation is the same as that used in [49].
K_s	Density of immune effectors at which viral infection rate is reduced 50%	1	1	Arbitrarily set to give reasonable dynamics in the immune-control model.
k	Baseline infection rate constant for WT virus in absence of drug units are µl/cell/d for virus, µl/virion/d for cells	0.0008	0.0005–0.001	Arbitrarily set to reflect viral dynamics in absence of therapy.
k_X	Rate at which HIV-1 infected cells activate immune effectors	0.00005	0.000025–0.00004	Arbitrarily set to yield reasonable viral dynamics in the immune-control model.
L	Number of long-lived, latently infected cells/µl	.0025	0.0025–0.064	Value at steady state before drug therapy. Value has been set so that total number of latently infected cells is at the upper end of experimental estimates (~10^7) [38,48-50,89,91-93,97].
m	Turnover rate of target-cell population (d$^{-1}$)	0.02	0.005–0.32	Not known. Our value reflects data and previous interpretations in [38,44-49,62,63,8,99-101].
m_x	Death rate of immune effectors in absence of immune stimulation	0.1	0.05–0.8	Arbitrarily set to give reasonable dynamics under an immune-control model.
M	Number of intermediate long-lived cells/µl	2.7	2.7	Value at steady state before drug therapy. Not known experimentally. We have adjusted p_{MU} and μ_a to give value at the high end of what might be inferred from [38,44-51,53].
μ	Probability that a cell infected with WT virus will acquire a drug-resistant mutation	10^{-4}	3×10^{-3}–6×10^{-4}	Based on Mansky and Temin's estimate 3×10^{-5}/base pair [102]. Our values account for the fact that more than one mutation per amino acid site may lead to drug resistance.
p_{I}	Rate at which short-lived infected cells produce virus (virions/cell/d)	100	100	Not known experimentally. We have used a value that gives a moderately high viral load assuming $c = 3/d$. Our value reflects [38,44-48,50,82].
p_{L}	Rate at which latently infected cells produce virus (virions/cell/d)	2	2	Not known experimentally. Set to give ~1 virion/ml during HAART [40].
p_{M}	Rate at which moderately long-lived infected cells produce virus (virions/cell/d)	6	6	Not known experimentally. Set here to give a relatively high value for M while matching viral dynamics during HAART [38,44-53].
r	Probability of transition to higher-order resistance genotype through recombination	0.01	0–1	Product of recombination rate [56,103,104] 3×10^{-8} x number of base pairs separating sites (~900 x probability that previous cell was coinfected and produced a heterozygous virion (conservatively assumed to be ~4%).
Table 1. Continued.

Name	Description	Canonical Value	Range in Simulations	Comments/References
R_0	Basic reproduction ratio for sensitive virus (psk/clim)	4.4	4.4	This value gives up-slopes (~1.2/d) during the earliest phase of acute infection and steady state viral loads during chronic infection approximating data in [46,47,105–111].
R_1	Basic reproduction ratio for resistant virus (psk,clim)	4.2	3.1–4.3	Range reflects range in k_1 values.
s_l	Input rate of target cells (cells/μl/d)	2	1–3.5	Not known. Arbitrarily set so that $R_0 = 4.4$.
s_i	Input rate of immune effectors (cells/μl/d)	1.0	0.5–8.0	Arbitrarily set to give reasonable dynamics in the immune-control model.
t	Time (d) since start of maintenance therapy	N/A	-4,000–1,455	Range reflects time for virus and target cells to equilibrate prior to drug therapy and the need to follow maintenance therapy for up to 3 y after halting the induction phase.
T	Number of CD4+ target cells/μl	22.7	22.7	Value at steady state before drug therapy. This value assumes only a fraction of CD4 cells are infectable.
V	Number of virions/μl	85	85	Value at steady state before drug therapy [95,105–110].
w_i	Replicative fitness cost associated with mutant (percentage of k)	0.95	0.85–0.98	Determined by k_i values.
X	Number of immune effectors targeting HIV-1/μl	69.5	69.5	Value at steady state before drug therapy. This value is determined by other parameters of immune-control model.

Discussion

In this study, we have used a detailed differential equation model to investigate induction-maintenance (IM) strategies for treating HIV-1 infection. In these strategies, the length of the dip depends on how rapidly the environment for the virus improves (modeled here as a stochastic target-cell limited model in Figure 4A). When this model was extended to account for moderately long and very long-lived CD4+ target cells, we obtained results analogous to those for the HAART, highly active antiretroviral therapy.

doi:10.1371/journal.pcbi.0030133.t001

Optimized Induction-Maintenance Therapy

In the immune-control model, drug-resistant viruses underwent larger transient declines if drug-resistant viruses transiently drop in density following drug therapy (figure 1A). We show using this model that drug-resistant viruses transiently drop in density following drug therapy in a manner very similar to that which occurs under the one-drug, one-cell, one-mutation, target-cell limited model in Figure 4B. When this model was extended to account for moderately long and very long-lived CD4+ target cells, we obtained results analogous to those for the immune-control model. Drug-resistant viruses undergo larger transient declines if the HIV-specific effector cells do not stay with the start of maintenance drugs. (This regimen may be optimally started several days to weeks after ART, the optimal time to initiate a short-term induction regimen may also be referred to as delayed-induction therapy.) These delays are advantageous because the start of maintenance therapy may be optimal to start several days to weeks after ART. The optimal time to initiate a short-term induction regimen depends on the parameter choices. Intriguingly, we find that CD4+ target cells recover slowly after therapy. This delayed-induction phase starts to level off between 4 and 10 mo, depending on the parameter choices. Interestingly, we find that in cases where target-cell populations are not increasing again, the environment for the virus improves (modeled here as a stochastic target-cell limited model in Figure 4A). When this model was extended to account for moderately long and very long-lived CD4+ target cells, we obtained results analogous to those for the immune-control model. Drug-resistant viruses undergo larger transient declines if drug-resistant viruses transiently drop in density following drug therapy. Under a model in which viral populations are not increasing again, the dynamics of the viral load are determined primarily by the dynamics of the viral load. However, some patients have seen an increase in viral load under a model in which viral populations are not increasing again, the dynamics of the viral load are determined primarily by the dynamics of the viral load. However, some patients have seen an increase in viral load under a model in which viral populations are not increasing again, the dynamics of the viral load are determined primarily by the dynamics of the viral load. However, some patients have seen an increase in viral load under a model in which viral populations are not increasing again, the dynamics of the viral load are determined primarily by the dynamics of the viral load. However, some patients have seen an increase in viral load under a model in which viral populations are not increasing again, the dynamics of the viral load are determined primarily by the dynamics of the viral load. However, some patients have seen an increase in viral load under a model in which viral populations are not increasing again, the dynamics of the viral load are determined primarily by the dynamics of the viral load. However, some patients have seen an increase in viral load under a model in which viral populations are not increasing again, the dynamics of the viral load are determined primarily by the dynamics of the viral load. However, some patients have seen an increase in viral load under a model in which viral populations are not increasing again, the dynamics of the viral load are determined primarily by the dynamics of the viral load. However, some patients have seen an increase in viral load under a model in which viral populations are not increasing again, the dynamics of the viral load are determined primarily by the dynamics of the viral load. However, some patients have seen an increase in viral load under a model in which viral populations are not increasing again, the dynamics of the viral load are determined primarily by the dynamics of the viral load. However, some patients have seen an increase in viral load under a model in which viral populations are not increasing again, the dynamics of the viral load are determined primarily by the dynamics of the viral load. However, some patients have seen an increase in viral load under a model in which viral populations are not increasing again, the dynamics of the viral load are determined primarily by
no fitness costs (Figure 5A and 5B), situations in which latently infected cells are formed at high rates (Figure 6A and 6B), and situations in which the primary mutations responsible for drug resistance have large effects on the IC50 values, either directly (Figure 7) or indirectly via cross-resistance (Figure 8A and 8B). Our specific predictions about the optimal length for the induction period, likewise, depend on the size of the overall viral reservoir and the rate of the decay of moderately long-lived infected cells (the primary determinant of optimal induction length). Finally, as discussed above, our finding that the best time to intensify therapy is often several days to weeks after the start of regular therapy depends critically on two parameters: the fitness of the resistant virus and the rate at which target-cell populations recover after initiation of therapy. The lower the fitness of resistant viruses and the slower the rate of recovery of target cells (or other factors regulating viral density), the later the optimal time to maximize therapy. In cases where target-cell populations increase rapidly, or when other factors that limit viral replication decay quickly during therapy, delaying the induction phase may not be beneficial.

These findings may be important in several clinical scenarios. IM therapy may be useful in resource-poor settings where patients have limited access to antiretroviral drugs. In these settings, it is particularly important to minimize the chance of selecting for drug-resistant viruses during the initial attempt to administer antiretroviral drugs. In addition, an intensification–maintenance approach could provide protection against the development of drug resistance in antiretroviral-naive patients, particularly in patients infected by a donor with known poor adherence to medications (in which case it would be advisable to consider a maintenance phase consisting of three or more drugs, as opposed to the two-drug maintenance regimens modeled here). Recent estimates suggest that up to 10%–15% of treatment-naive patients harbor one or more drug-resistance mutations [68–70], and this problem is likely to increase with increasing availability of ART. Finally, the principle of IM approaches could also be applied to the difficult problem of salvage therapy. The latter two scenarios have not been specifically modeled here.

The results presented here must be weighed against several practical considerations: a two-drug maintenance regimen may incur a higher failure risk among patients prone to

Figure 7. Simulations Demonstrating the Effects of Varying the Degree of Resistance on Treatment Success Rates

As in Figures 5 and 6, (A) and (C) demonstrate success rates as the duration of induction therapy is increased, and (B) and (D) demonstrate success rates over a range of induction therapy/therapy intensification start times. IC50INT quantifies the degree of resistance that either mutation 1 or mutation 2 confers to drug I. IC50MUT quantifies both the degree of resistance that mutation 3 confers to drug II and the degree of resistance that mutation 4 confers to drug III. x-Axis indicates duration of induction therapy in days (A,C), or interval between start of a 30-d induction therapy and maintenance therapy, in days (B,D). Maintenance therapy is assumed to start on day 0. y-Axis indicates percentage of simulations in which viral load remained undetectable for at least 3 y after ending induction therapy. Data in each panel were based on 400 simulations. Interpretation: IM therapy success rates decrease with the degree of resistance conferred by these mutations.

doi:10.1371/journal.pcbi.0030133.g007
subtherapeutic drug levels for any reason, since there will be a reduced level of concurrent coverage by other agents in the regimen. It is also essential that the maintenance regimen not include drugs for which the patient previously developed drug resistance, a requirement that is complicated by the problem of cross-resistance. In addition, it would be highly desirable that agents used in maintenance therapy be simple and well-tolerated, with favorable pharmacokinetics, and have a high barrier to the development of resistance—both in terms of the number of mutations required for resistance and the fitness of the resulting mutants. By contrast, the requirements for induction regimens are considerably less stringent: induction therapy must be able to suppress replication of viruses resistant to the maintenance regimen and be free of intolerable adverse effects during short-term use.

Although we have gone to considerable lengths to make the model realistic, we still make a number of simplifying assumptions. First, we ignore drug redistribution, and assume that drug levels immediately reach the therapeutic window at the time of initiation, remain constant during therapy, and fall to zero at discontinuation. There will clearly be some deviation from these ideal conditions in vivo because of pharmacokinetic 'loading effects', individual failure to adhere to treatments, antagonistic drug interactions, and other factors. Although we believe that four mutations are sufficient to capture the basic behavior of drug resistance, this is clearly a simplification, as are some of our assumptions about IC50 values and cross-resistance. Our point is to make a reasonable model that captures key features, not to make a complete model of drug resistance. We have also neglected reversion of drug-resistant variants to WT virus. However, this effect is likely to be small under drug therapy, and would result in lower failure rates than modeled here.

In building our model, we assumed that double therapy usually fails and that triple therapy usually succeeds, as has been observed in clinical practice. There are, of course, wide regions of parameter space where double therapy always succeeds and, conversely, where triple therapy always fails, and it is possible that many real patients could fall into one of these two categories. Although the specific simulations presented here would not be relevant to these patients, the same concept (but with a different number of drugs) can be applied to these patients. The key to applying IM strategies to such patients would be to develop methods for distinguishing among patients whose maintenance therapies would require one, two, three, or more drugs.

Finally, our model assumes a degree of fitness cost of resistance to drugs. Several studies have linked the presence of resistance mutations with decreased RT processivity [71], reduced replicative capacity in vitro [72–75], a competitive disadvantage against WT viruses in competition assays [75],...
lower viral loads, and lower rates of CD4 T cell loss in vivo [72,73,75], and have shown a tendency for overgrowth by WT viruses after discontinuation of therapy in cases of mixed infection [76,77]. As shown in Figure 5A and 5B, the probability of treatment success drops dramatically as the cost of resistance decreases. An essential feature of any two-drug maintenance regimen, therefore, is that the maintenance regimen includes drugs for which resistant mutations incur measurable fitness costs. In cases where fitness costs are small, it would be advisable to choose maintenance regimens in which four or more mutations are required for resistance (something that can easily be implemented using a three-drug maintenance regimen).

Key experiments needed to test the model’s assumptions would focus on how the concentration of resistant viruses residing in short-lived, moderately long-lived, and latently infected cells changes during the first 90 d of therapy. Experiments designed to test the prediction that resistant viruses decrease transiently during therapy could be particularly informative. A better understanding of factors that allow for continued replication in the face of various therapies (e.g., identification of sanctuary sites in which drugs do not penetrate) would also be very important. More generally, experiments designed to improve our understanding of viral effective populations size and factors that control viral load in the absence of therapy could lead to the construction of more realistic models for viral dynamics. Also, since our model shows that the probability of therapy success decreases as the number of latently infected cells increases, our study suggests that it would be useful to obtain

Table 2. Effects of Individual Drugs on IC_{50} Values

Genotype	IC_{50} Value in the Presence of Drug I	IC_{50} Value in the Presence of Drug II	IC_{50} Value in the Presence of Drug III
V	1	1	1
V_1	5	1	1
V_2	5	100	1
V_3	1	1	1
V_4	25	1	100
V_12	25	1	100
V_13	5	100	1
V_14	5	1	100
V_23	5	100	1
V_24	5	1	100
V_34	1	100	1
V_123	25	100	1
V_124	25	1	100
V_134	5	100	100
V_234	5	100	100
V_1234	25	100	100

Drug concentrations were set to 20. Viruses with IC_{50} values greater than 20 are considered to be highly resistant in our model.

doi:10.1371/journal.pcbi.0030133.s002
additional quantitative estimates of the size of the latent viral reservoirs. Most studies of the latent reservoir have focused on blood. If less intensively studied sites such as the lung, brain, or gastrointestinal tract were found to have larger than expected numbers of latently infected cells, it might be necessary to choose more conservative treatment strategies.

In addition to HIV-1, IM approaches are being used for the treatment of a growing number of infectious illnesses, including active tuberculosis [78], bacterial endocarditis [79], and prosthetic joint infections [80], and have widespread application in oncology. In these settings, induction therapy is usually timed to coincide with initiation of maintenance therapy, and maintained for an empirically determined period of time. Although the replication dynamics of the pathogenic elements in these cases (i.e., infecting microorganisms or aberrant host cells) differ significantly from those of HIV, the chronic nature of these conditions, the requirement for long-term therapy, and the potential for developing resistance to drugs and immune responses pose similar challenges to the host. The counterintuitive results that have emerged from our analysis of HIV replication under therapy suggest that it may be beneficial to explore dynamic modeling approaches in these cases as well.

Materials and Methods

Overview of the model-building process. As with most biological models, certain parameters and assumptions are better supported than others. Parameters used in our model are given in Table 1. These values resulted from a sequential process in which we first fixed parameters, such as viral load, δs, δβ, and δI, which have been characterized experimentally. We then manipulated unknown/less-well-characterized parameters to match in vivo data on the viral kinetics during primary infection, during therapy, and after a treatment interruption. Most of these parameters were set to yield conservative (i.e., higher than average) estimates for the number of infected cells. We then varied the drug concentrations and IC50 values (within estimated ranges) to match experimental observations that triple therapy is usually successful but double therapy usually fails. After completing these three steps, we performed our key exploratory simulations in which we examined the effects of varying the length and timing of induction therapy. Simulations were repeated across a wide range of reasonable values for parameters that remain poorly characterized by experimental methods (e.g., target-cell turnover rates).

Equations for viral dynamics. Dynamics of infection were simulated using an extension of a commonly used model for viral dynamics [38,41,45–48,62,81–85] that assumes that viral load is characterized experimentally. We then manipulated unknown/less-well-characterized parameters to match experimental observations that triple therapy is usually successful but double therapy usually fails. After completing these three steps, we performed our key exploratory simulations in which we examined the effects of varying the length and timing of induction therapy. Simulations were repeated across a wide range of reasonable values for parameters that remain poorly characterized by experimental methods (e.g., target-cell turnover rates).

\[
\begin{align*}
\frac{dI}{dt} &= f_I KVT - \delta_I I, \\
\frac{dM}{dt} &= f_M KVT - \delta_M M, \\
\frac{dL}{dt} &= f_L KVT - \delta_L L, \\
\frac{dV}{dt} &= p_I M - p_M M + p_L L - cV,
\end{align*}
\]

where \(I, M, L\) represent short-lived, moderately long-lived, and latently infected cells, respectively; \(V\) represents free virions; \(T\) represents target cells; \(f_S\) and \(f_I\) are the fractions of target infected cells that become moderately long-lived and latently infected cells upon HIV-1 infection; \(f_S = 1 - f_M - f_I\); \(s\) is the input rate of target cells; \(m\) is the death rate of target cells; \(\delta_s, \delta_M, \text{and} \delta_L\) are the death rates of short-lived, moderately long-lived, and latently infected cells, respectively; \(p_M, p_L\), and \(p_I\) are the rates at which short-lived, moderately long-lived, and latently infected cells produce virus; \(c\) is the clearance rate of free virus; \(t\) is time in days; \(K\) is the rate at which WT virus infects cells, and \(k\) is the rate at which virus with resistance mutation \(i\) infects target cells in the presence of therapy. To model the effects of drugs on these different viruses, we assume that infection rate constants \(K_i, K_l, K_M, \ldots, K_{234}\) decline in the presence of drug-using functions described below (see Modeling of viral replication under drug therapy).

The dynamics of mutants partially resistant to drug I, but sensitive to drugs II and III, are given by equations of the form:

\[
\begin{align*}
\frac{dI}{dt} &= f_I KVT + \mu I KVT - \delta_I I, \\
\frac{dM}{dt} &= f_M KVT - \delta_M M, \\
\frac{dL}{dt} &= f_L KVT - \delta_L L, \\
\frac{dV}{dt} &= p_I M - p_M M + p_L L - cV,
\end{align*}
\]

where \(\mu\) is the probability that a cell infected with WT virus will acquire a resistance mutation to one of these drugs. The equations of other resistant mutants are straightforward extensions of these equations with sequential mutation formulation. For example, the dynamics of mutants with high-level resistance to drug I, but sensitive to drugs II and III, are given by the equations

\[
\begin{align*}
\frac{dI}{dt} &= f_I KVT + \mu I KVT - \delta_I I, \\
\frac{dM}{dt} &= f_M KVT - \delta_M M, \\
\frac{dL}{dt} &= f_L KVT - \delta_L L, \\
\frac{dV}{dt} &= p_I M - p_M M + p_L L - cV,
\end{align*}
\]

while the dynamics of mutants resistant to all four drugs is given by the equations

\[
\begin{align*}
\frac{dI}{dt} &= f_I KVT + \mu I KVT - \delta_I I, \\
\frac{dM}{dt} &= f_M KVT - \delta_M M, \\
\frac{dL}{dt} &= f_L KVT - \delta_L L, \\
\frac{dV}{dt} &= p_I M - p_M M + p_L L - cV.
\end{align*}
\]

We note that this model assumes that reverse mutations from drug resistance to sensitivity is negligible. Another cryptic assumption is that short-lived, long-lived, and latently infected cells are derived from a single population of CD4+ target cells, as modeled by Nowak et al. [41]. In preliminary simulations and/or calculations, we have determined under reasonable conditions that neither of these factors has much effect on our qualitative conclusions.

Extinction conditions. The extinction threshold was set to \(3 \times 10^6\) infected cells/l, which is roughly equivalent to one infected cell per 2 \times 10^11 CD4 cells (the approximate total body CD4 cell population). In preliminary work, we found that it is almost impossible to eliminate viruses resistant to any single drug during triple-drug therapy. IM therapy was therefore considered to be successful when the concentration of viruses and cells infected with viruses resistant to both of the drugs in a two-drug maintenance regimen fell to zero or if viral load failed to rebound for a period of 3 y after ending induction therapy.

Modeling of viral replication under drug therapy. To allow for imperfect drug efficacy against WT virus, we assumed that the infection rate constant for genotype \(i\) in the presence of drug \(j\) can be modeled as:

\[K_{ij} = w_i \times IC50_{ij}/(IC50_{ij} + D_j) \times k\]
where \(k \) is the baseline infection rate constant for WT virus in the absence of drug, \(w_i \) is the replicative fitness cost associated with mutation \(i \) (expressed as a percentage of 1), IC50S is the concentration of drug \(j \) at which infection rate constant for mutant \(i \) is 50% of its original value, and \(D_j \) is the concentration of drug \(j \) [49]. In our four-mutation system, mutations 1 and 2 confer partial resistance to drug 1, while mutations 3 and 4 confer substantial (though not 100%) resistance to drugs II and III, respectively. For the “canonical case,” we assumed that mutations 1 and 2 each confer a 5-fold increase in IC50 value against drug I, resulting in a 25-fold increase in resistance for the double mutant \(V_{12} \) as expected [89]. While mutations 3 and 4 confer 100-fold increases in IC50 values against drugs II and III, respectively. In the figures, we refer to the fold increase in resistance conferred by mutations 1 or 2 as “IC50MUT” (since these mutations confer an intermediate level of resistance), and the fold increase in resistance conferred by mutations 3 and 4 as “IC50MUT” (since these mutations confer high-level resistance). It is therefore assumed that these mutations are not transmitted.

Under this model, resistance to drug I would be analogous to resistance to a protease inhibitor, while resistance to drugs II and III would resemble resistance to nucleoside reverse transcriptase inhibitors and first-generation nonnucleoside reverse transcriptase inhibitors. The resulting IC50 values are summarized in Table 2. To calculate the infection constants in the presence of multiple drugs, we used generalizations of the IC50 formula given above, wherein fitness effects and IC50 effects are multiplied together to give the composite infection rate constant. For example, the infection rate constant for the quadruple mutant \(V_{1234} \) in the presence of drugs is given by:

\[
K_{1234} = w_{12}w_{34}w_{13}w_{24}[IC50_{1231}(1/IC50_{1251} + D_1)][IC50_{1234}/(IC50_{1254} + D_3)][IC50_{1234}/(IC50_{1254} + D_3)]\times k
\]

where \(k \) is the baseline infection rate constant for WT virus in the absence of drug; \(w_{12}, w_{34}, w_{13}, \) and \(w_{24} \) are the negative fitness effects associated with each resistance mutation; IC50;1, IC50;2, and IC50;3 are the IC50 values for genotype \(V_1 \) against drugs I, II, and III, respectively; IC50;12, IC50;23, and IC50;24 are the IC50 values for genotype \(V_{12} \) against drugs II and I, III, respectively; and \(D_1, D_2, \) and \(D_3 \) are the concentrations of drugs I, II, and III, respectively. In the presence of drug, we assumed drug concentration values of 20 ng/ml when these drugs are present. The input rate of target cells, \(s \), was set so that the steady state concentration of target cells is 100 cells/l, or approximately 10% of a typical peripheral blood CD4 T cell count, since not all CD4+ T cells are susceptible to HIV-1 infection. Units for target cells are based on a total estimate of 2 × 1011 CD4 cells per body, of which 2% are in blood. The stochastic cutoff threshold was set at one infected cell per body, or 3 × 10−6 cells/l. The death rate of latently infected cells of \(\delta_{3} = 0.00052/d \) (t1/2 = 44 mo) was conservatively set to one of the lower experimental estimates [50,89,91–93]. The mutation rate was deliberately set to approximately the three estimated per-base rate to account for the fact that more than one nucleotide substitution may lead to an amino acid change or results in resistance. In all simulations, we assume that fitness effects are multiplicative: that is, that \(k_{1234} = k_{1}k_{2}k_{3}k_{4} \) for the quadruple mutant compared to the wild-type virus; \(k_{12} = k_{1}k_{2} \) for the double mutant compared to the wild-type virus; etc. We also assumed that the peak concentration of any drug does not exceed the concentration of the wild-type virus.

Modeling the effects of recombination

In models with three or more mutations, recombination between \(V_{12} \) and \(V_{34} \) reduces the number of mutation/recombination events needed to create a fully resistant virus. To account for recombination without adding a huge number of terms, we assumed that infection of \(I_{34} \) by \(V_{12} \) or infection of \(I_{23} \) by \(V_{34} \) results in the formation of the quadruple mutant with probability \(r \), where \(0 < r < 1 \). For example, the equation for short-lived infected cells with virus I with all four resistance mutations becomes:

\[
dI_{1234}/dt = [k(K_{1234}V_{1234} + K_{124}V_{124} + K_{134}V_{134} + K_{234}V_{234})]T
\]

\[
+ [rK_{123}V_{123} + K_{24}V_{24} + K_{34}V_{34} + K_{134}V_{134}]T - \delta_{1234}\]

Modifications for \(M_{1234} \) and \(L_{123} \) were similar.

Stochastic effects at low population densities

To account for random genetic drift occurring at low population densities, we used stochastic terms similar to those used in [46] to model populations near the fixation. For example, \(\text{fl} \) (e.g., I, V), we first determined if \(x < n_{\text{xmin}} \), where \(n_x \) is the number of copies below which \(x \) is subject to stochastic forces and \(n_{\text{xmin}} \) is the concentration at which there is only one virus or infected cell in the body. For \(x > n_{\text{xmin}} \), we set \(x/(t+h) = x(t) + [(x(t) - M(x))h, \) where \(h \) is the step size. \(B(x) \) is the sum of the “birth” terms, and \(M(x) \) is the sum of the “mortality” terms. For \(x < n_{\text{xmin}} \), we set \(x/(t+h) = x(t) - \lambda(x), \) or \(x(t) + 1 \) according to the probabilities \(K(x), \) \(1 - [M(x) + B(x)], \) and \(K(x) \).

Optimal Induction–Maintenance Therapy

Starting parameter values.

To create a realistic simulation of IM therapy, we adjusted the parameter values to track the dynamics of viral decay during potent combination therapies [38,40,89,90]. Prior to the initiation of therapy, we assumed that there are \(-10^5\) viruses, \(-3 \times 10^5\) short-lived infected cells, \(-10^5\) moderately long-lived infected cells, and \(-10^6\) latently infected cells per body. Under otherwise stated, other parameter values used were: \(w_{1} = 2, \) \(w_{2} = 0.02, \) \(w_{3} = 0.02, \) \(w_{4} = 0.05, \) \(w_{5} = 0.09, \) \(w_{6} = 0.05, \) \(\delta_{1} = 0.06 \) cells/d, \(\delta_{2} = 0.00052 \) cells/d, \(f_{M} = 0.07, \) \(f_{I} = 10^{-6}, \) \(p = 100 \) virions/d, \(p_{G} = 0 \) virions/d, \(p_{B} = 2 \) virions/d, \(e = 3 \times 10^{-4}, \) and \(\mu = 1 \times 10^{-5} \). All three drugs (\(D_1, D_2, D_3 \)) are set at 20 mg/ml when these drugs are present. The input rate of target cells, \(s \), was set so that the steady state concentration of target cells is 100 cells/l, or approximately 10% of a typical peripheral blood CD4 T cell count, since not all CD4+ T cells are susceptible to HIV-1 infection. Units for target cells are based on a total estimate of 2 × 1011 CD4 cells per body, of which 2% are in blood. The stochastic cutoff threshold was set at one infected cell per body, or 3 × 10−6 cells/l.

Immune-control model.

Although we focus on the target-cell limited model described above, we also explored a simple immune-control model to determine how dependent our qualitative results are on the factors that regulate HIV-1 density. In our immune-control model, the virus population expands exponentially without limitation in the absence of immunity. Immune effectors, which are assumed to be a rate proportional to the density of infected cells, interfere with the ability of virus to infect cells (as might happen if immune cells release chemokines and/or neutralizing antibodies). We implemented this initially using the following model with one mutation and one type of infected cell:

\[
dX/dt = X \mu_X - X \mu_Y + b_X(I + I_c)X
\]

\[
dI/dt = KTVK_s/(K_s + X) - \delta l
\]

\[
dl/dt = K_lTVK_s/(K_s + X) + \mu T - \delta l
\]

\[
dV/dt = B - cV
\]

where \(X \) is the concentration of immune effectors, \(\mu_X \) is the rate of appearance of immune effectors in the absence of immune stimulation, \(s \) is the death rate of immune effectors, \(K_s \) is the rate at which HIV-1-infected cells are killed by the immune effectors, \(\delta_l \) is a saturation constant describing the negative effect that the immune effectors have on the ability of HIV-1 to initiate infections. The symbols \(T, I, I_c, V, K_s, \mu' = \delta,) \) have the same meanings as in the target-cell limited model above, though when simulating dynamics under this model, we assume that \(T \) does not change over time. We extend this immune-control mechanism to the full, stochastic model, we made analogous extensions, setting \(dX/dt = \mu_X + \delta_l + \mu'X + b_X(I + I_c + ... + b_MX + M ... + M_X)X \) and multiplying the infection rate constants by \(K_s, K_1, ... , K_{1234} \) by \(K_s/(K_s + X) \).
keeping T constant. To simulate drug treatment for different rates of turnover of immune effectors without also changing pretherapy viral loads, we increased s_X, m_X, and k_X proportionately. (The latter is needed since steady-state viral load is the sum of terms proportional to s_X / β_X and m_X / β_X.)

Acknowledgments

We thank three anonymous reviewers for helpful comments.

Author contributions. MEC and JEM conceived and designed the experiments and wrote the paper. All authors performed the experiments and analyzed the data. SI and JEM contributed reagents/materials/analysis tools.

Funding. This work was supported by National Institutes of Health (NIH) grants K08AI52791, R03 AI053594, R21AI12063, R01 HL072631, and a new investigator award from the University of Washington Center for AIDS Research (NIH grant AI27757).

Competing interests. The authors have declared that no competing interests exist.

References

1. Vieni PG, Hammer SM, Hirsch MS, Saag MS, Schechter M, et al. (2004) Treatment for adults HIV infection: 2004 recommendations of the International AIDS Society—USA Panel. JAMA 292: 251–265.
2. Saag MS (2004) Initiation of antiretroviral therapy: Implications of recent findings. Top HIV Med 12: 83–88.
3. Havlir DV, Hassebrock L, Taburet AM, Droz C, et al. (2004) Salvage therapy with ampranavir, lopinavir and ritonavir 200 mg/d or 400 mg/d in HIV-infected patients in virological failure. Antivir Ther 9: 615–625.
4. Murphy MD, Maroussis GI, Chou S (2004) HIV protease mutations associated with ampranavir resistance during salvage therapy: Importance of I54M. J Clin Virol 30: 62–67.
5. Fourrier S, Chaffaut C, Maillard D, Loë T, Lascoux C, et al. (2005) Factors associated with virological response in HIV-infected patients failing antiretroviral therapy: A prospective cohort study. HIV Med 6: 129–134.
6. Rottmann C, Miller V, Staniszewski S (1999) Mega-HAART: Preliminary results and correlation with baseline resistance. Antivir Ther 4 (Suppl 3): 93–94.
7. Plipat N, Ruan PK, Fenton T, Yogev R (2004) Rapid human immunodeficiency virus decay in highly active antiretroviral therapy (HAART)-experienced children after starting mega-HAART. J Virol 78: 11272–11275.
8. Miller V, Cozzi-Lepri A, Hertogs K, Gute P, Larder B, et al. (2000) HIV drug susceptibility and treatment response to mega-HAART regimen in patients from the Frankfurt HIV cohort. Antivir Ther 5: 49–55.
9. De Luca A, Baldini F, Cingolani A, Di Giambenedetto S, Hoetelmans RM, et al. (2004) DDI-associated virological and non-virological adverse events: impact of DDI dose and lopinavir/ritonavir. Correlation of pharmacokinetics and drug resistance with pharmacodynamics. J Acquir Immune Defic Syndr 35: 359–366.
10. Moyle G, Higgs C, Teague A, Mandala S, Nelson M, et al. (2006) An open-label, randomized comparative pilot study of a single-class quadruple therapy regimen versus a 2-class triple therapy regimen for individuals initiating antiretroviral therapy. Antivir Ther 11: 75–78.
11. Molto J, Ruiz L, Valle M, Martinez-Picado J, Bonjoch A, et al. (2006) Increased antiretroviral potency by the addition of enfuvirtide to a four-drug regimen in antiretroviral-naive, HIV-infected patients. Antivir Ther 11: 47–51.
12. Zimmermann AE, Pizzoferrato T, Bedford J, Morris A, Hoffman R, et al. (2004) Tenoforv-associated acute and chronic kidney disease: A case of multiple drug interactions. Clin Infect Dis 42: 283–290.
13. Catanazzo LM, Slish JC, DeCenzo R, Morse GD (2004) Drug interactions with antiretrovirals. Curr HIV/AIDS Rep 1: 89–96.
14. Yashinski KE, Telzak EE, Siganrud C, Danpure-Jack S, Bohrer A, et al. (1999) Insulin resistance in HIV protease inhibitor-associated diabetes. J Acquir Immune Defic Syndr 21: 209–216.
15. Moh R, Daniel C, Sorho S, Sauvageot D, Anzian A, et al. (2005) HAART regimen in combination with cotrimoxazole in Cote d’Ivoire: Optimized Induction–Maintenance Therapy.
antiretroviral therapy aimed at HIV-1 eradication or maintenance of low viral loads. J Theor Biol 192: 81–98.

43. Ribeiro RM, Bonhoeffer S (2000) Production of resistant HIV-1 mutants during antiretroviral therapy. Proc Natl Acad Sci U S A 97: 7681–7686.

44. Ribeiro RM, Asouumi P, Ho DD (1997) Dynamics of HIV-1 and CD4+ lymphocytes in vivo. AIDS 11: S17–S24.

45. Perelson AS, Nelson PW, Oldstone MB (1997) HIV-1 dynamics in vivo: HTLV-1 infection. J Acquir Immune Defic Syndr 13: 351–357.

46. Staff MA, Cao Y, Daar ES, Ho DD, et al. (2000) Modeling plasma virus concentration during primary HIV infection. J Theor Biol 203: 265–301.

47. Bonhoeffer S, May RM, Shaw GM, Nowak MA (1997) Virus dynamics and antiretroviral therapy. Proc Natl Acad Sci U S A 94: 6971–6976.

48. Wahl LM, Nowak MA (2000) Adherence and drug resistance: Predictions of HIV population outcomes. Proc Natl Acad Sci U S A 97: 8044–8048.

49. Zhang L, Ramratnam B, Tenner-Racz K, He Y, Veseyan M, et al. (2000) Quantifying HIV-1 replication in patients receiving combination antiretroviral therapy. N Engl J Med 343: 1605–1613.

50. Phillips AN (1996) Reduction of HIV RNA to baseline and drug regimen. AIDS 12: 1483–1490.

51. Wu H, Mellors J, Ruan P, McMahon D, Kelleher D, et al. (2003) Viral dynamics and their relation to baseline factors and longer term virologic responses in treat-naive HIV-1-infected patients receiving abacavir in combination with HIV-1 protease inhibitors. J Acquir Immune Defic Syndr 33: 557–563.

52. Kuritzkes DR, Sevin A, Young B, Bakkhitiari M, Wu H, et al. (2000) Effect of zidovudine resistance mutations on virologic response to treatment with zidovudine–lamivudine–ritonavir: Genotypic analysis of human immunodeficiency virus type 1 isolates from AIDS clinical trials group protocol 315. ACTG Protocol 315 Team. J Infect Dis 181: 491–497.

53. Wu H, Lathio J, Ruan P, Douglas SD, Specter SA, et al. (2004) Relationship of plasma HIV-1 RNA dynamics to baseline factors and virological responses to highly active antiretroviral therapy in adolescents (12–22 years) infected through high-risk behavior. J Infect Dis 190: 593–601.

54. Wu H, Kuritzkes DR, McColm DR, Kessler H, Connick E, et al. (1999) Characterization of viral dynamics in human immunodeficiency virus type 1-infected patients treated with combination antiretroviral therapy: Relationships to host factors, cellular restoration, and virologic endpoints. J Infect Dis 179: 799–807.

55. Juste AE, Yu H, Klarrmann GJ, Ron Y, Preston BD, et al. (2000) High rate of recombination throughout the human immunodeficiency virus type 1 genome. J Virol 74: 1234–1240.

56. Phillips AN (1996) Reduced HIV concentration during acute infection: Independence from a specific immune response. Science 271: 497–499.

57. Bonhoeffer S, Coffin JM, Nowak MA (1997) Human immunodeficiency virus drug therapy and virus load. J Virol 71: 3275–3278.

58. Frost SD, McLean AR (1994) Quasispecies dynamics and the emergence of drug resistance during zidovudine therapy of HIV infection. AIDS 8: 323–332.

59. Perelson AS (1999) Viral kinetics and mathematical models. Am J Med 107: part 2 suppl 1B 51–58.

60. Wu H, Huang Y, Acosta EP, Rosenkrantz SL, Kuritzkes DR, et al. (2005) Modeling long-term HIV dynamics and antiretroviral response: Effects of drug potency, pharmacokinetics, adherence, and drug resistance. J Acquir Immun Defic Syndr 39: 272–285.

61. Wang K, Jenwitheesuk E, Samudrala R, Mittler JE (2004) Simple linear equidistributed uniform pseudo-random number generator. ACM Transactions on Modeling and Computer Simulation (TOMACS) 8: 3–30.

62. Press WH (1992) Numerical recipes in C: The art of scientific computing. New York: Cambridge University Press. 994 p.

63. Finzi D, Blankson J, Siliciano JD, Margolick JB, Chadwick K, et al. (1999) Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nature Med 5: 512–517.

64. Zhang L, Dailey PJ, He T, Gettie A, Bonhoeffer S, et al. (1999) Rapid clearance of simian immunodeficiency virus particles from plasma of rhesus macaques. J Virol 73: 855–860.

65. Ramratnam B, Ribeiro R, He T, Chung C, Simon V, et al. (2004) Intensification of antiretroviral therapy accelerates the decay of the HIV-1 latent reservoir and decreases, but does not eliminate, ongoing viral replication. J Acquir Immune Defic Syndr 35: 33–37.

66. Ando T, Mitani K, Nozaki K, Kishiko Y, et al. (2003) Persistence of primary drug resistance among recently HIV-1 infected individuals. J Infect Dis 188: 1216–1221.

67. Perelson AS, Neumann AU, Markowitz M, Leonard J, Ho DD (1996) HIV-1 dynamics in vivo: Virion clearance rate, infected cell life span, and viral generation time. Science 271: 1582–1586.

68. Alleyne G, Martin D, Pletcher AS (1999) Improved estimates for HIV-1 clearance rate and intracellular delay. AIDS 13: 1415–1417.

69. Chen TW, Carruth L, Finzi D, Shen X, Di Giuseppe JA, et al. (1997) Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 387: 183–188.

70. Haase JF (1999) Population biology of HIV-1 infection: Viral and CD4+ T cell demographics and dynamics in lymphatic tissues. Annu Rev Immunol 17: 625–656.
99. Ho DD, Neumann AU, Perelson AS, Chen W, Leonard JM, et al. (1995) Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373: 123–126.

100. Sachsenberg N, Perelson AS, Yerly S, Schockmel GA, Leduc D, et al. (1998) Turnover of CD4+ and CD8+ T lymphocytes in HIV-1 infection as measured by Ki-67 antigen. J Exp Med 187: 1295–1303.

101. Mohri H, Perelson AS, Tung K, Ribeiro RM, Ramratnam B, et al. (2001) Increased turnover of T lymphocytes in HIV-1 infection and its reduction by antiretroviral therapy. J Exp Med 194: 1277–1287.

102. Mansky LM, Temin HM (1995) Lower in vivo mutation rate of Human Immunodeficiency Virus Type 1 than that predicted from the fidelity of purified reverse transcriptase. J Virology 69: 5087–5094.

103. Zhuang J, Jetzt AE, Sun G, Yu H, Klarmann G, et al. (2002) Human immunodeficiency virus type 1 recombination: Rate, fidelity, and putative hot spots. J Virol 76: 11273–11282.

104. Zhang J, Temin HM (1995) Rate and mechanism of nonhomologous recombination during a single cycle of retroviral replication. Science 259: 234–238.

105. Daar ES, Moudgil T, Meyer RD, Ho DD (1991) Transient high levels of viremia in patients with primary human immunodeficiency virus type 1 infection. N Engl J Med 324: 961–964.

106. Piatak M Jr, Szag MS, Yang LC, Clark SJ, Kappes JC, et al. (1993) High levels of HIV-1 in plasma during all stages of infection determined by competitive PCR. Science 259: 1749–1754.

107. Coombs RW, Collier AC, Allain JP, Nikora B, Leuher M, et al. (1989) Plasma viremia in human immunodeficiency virus infection. N Engl J Med 321: 1626–1631.

108. Ho DD, Moudgil T, Alam M (1989) Quantitation of human immunodeficiency virus type 1 in the blood of infected persons. N Engl J Med 321: 1621–1625.

109. Mellors JW, Rinaldo CR Jr, Gupta P, White RM, Todd JA, et al. (1996) Prognosis in HIV-1 infection predicted by the quantity of virus in plasma. Science 272: 1167–1170.

110. Wei X, Ghosh SK, Taylor ME, Johnson VA, Emni EA, et al. (1995) Viral dynamics in human immunodeficiency virus type 1 infection. Nature 373: 117–122.

111. Lindback S, Karlsson AC, Mittler J, Blaxhult A, Carlsson M, et al. (2000) Viral dynamics in primary infection. AIDS 14: 2283–2291.