3-Rainbow index and forbidden subgraphs

Wenjing Li, Xueliang Li, Jingshu Zhang
Center for Combinatorics and LPMC
Nankai University, Tianjin 300071, China
liwenjing610@mail.nankai.edu.cn; lxl@nankai.edu.cn; jszhang@mail.nankai.edu.cn

Abstract

A tree in an edge-colored connected graph G is called a rainbow tree if no two edges of it are assigned the same color. For a vertex subset $S \subseteq V(G)$, a tree is called an S-tree if it connects S in G. A k-rainbow coloring of G is an edge-coloring of G having the property that for every set S of k vertices of G, there exists a rainbow S-tree in G. The minimum number of colors that are needed in a k-rainbow coloring of G is the k-rainbow index of G, denoted by $rx_k(G)$. The Steiner distance $d(S)$ of a set S of vertices of G is the minimum size of an S-tree T. The k-Steiner diameter $sdiam_k(G)$ of G is defined as the maximum Steiner distance of S among all sets S with k vertices of G. In this paper, we focus on the 3-rainbow index of graphs and find all finite families F of connected graphs, for which there is a constant C_F such that, for every connected F-free graph G, $rx_3(G) \leq sdiam_3(G) + C_F$.

Keywords: rainbow tree, k-rainbow index, 3-rainbow index, forbidden subgraphs.

AMS Subject Classification 2010: 05C15, 05C35, 05C38, 05C40.

1 Introduction

All graphs considered in this paper are simple, finite, undirected and connected. We follow the terminology and notation of Bondy and Murty [1] for those not defined here.

Let G be a nontrivial connected graph with an edge-coloring $c : E(G) \to \{1, 2, \ldots, t\}$, $t \in \mathbb{N}$, where adjacent edges may be colored with the same color. A path in G is called a rainbow path if no two edges of the path are colored with the same color. The graph G is called rainbow connected if for any two distinct vertices of G, there is a rainbow
path connecting them. For a connected graph G, the *rainbow connection number* of G, denoted by $rc(G)$, is defined as the minimum number of colors that are needed to make G rainbow connected. These concepts were first introduced by Chartrand et al. in [4] and have been well-studied since then. For further details, we refer the reader to a survey paper [8] and a book [9].

In [5], Chartrand et al. generalized the concept of rainbow path to rainbow tree. A tree in an edge-colored graph G is called a *rainbow tree* if no two edges of it are assigned the same color. For a vertex subset $S \subseteq V(G)$, a tree is called an S-tree if it connects S in G. Let G be a connected graph of order n. For a fixed integer k with $2 \leq k \leq n$, a *k-rainbow coloring* of G is an edge-coloring of G having the property that for every k-subset S of G, there exists a rainbow S-tree in G, and in this case, the graph G is called *k-rainbow connected*. The minimum number of colors that are needed in a k-rainbow coloring of G is the *k-rainbow index* of G, denoted by $rx_k(G)$. Clearly, $rx_2(G)$ is just the rainbow connection number $rc(G)$ of G. In the sequel, we assume that $k \geq 3$. It is easy to see that $rx_2(G) \leq rx_3(G) \leq \cdots \leq rx_n(G)$. Recently, some results on the k-rainbow index have been published, especially on the 3-rainbow index. We refer to [3, 6] for more details.

The *Steiner distance* $d(S)$ of a set S of vertices in G is the minimum size of a tree in G containing S. Such a tree is called a Steiner S-tree or simply a Steiner tree. The *k-Steiner diameter* $sdiam_k(G)$ of G is defined as the maximum Steiner distance of S among all k-subsets S of G. Then the following observation is immediate.

Observation 1. [5] For every connected graph G of order $n \geq 3$ and each integer k with $3 \leq k \leq n$,

$$k - 1 \leq sdiam_k(G) \leq rx_k(G) \leq n - 1.$$

The authors of [5] showed that the k-rainbow index of trees can achieve the upper bound.

Proposition 1. [5] Let T be a tree of order $n \geq 3$. For each integer k with $3 \leq k \leq n$,

$$rx_k(T) = n - 1.$$

From above, we notice that for a fixed integer k with $k \geq 3$, the difference $rx_k(G) - sdiam_k(G)$ can be arbitrarily large. In fact, if G is a star $K_{1,n}$, then we have $rx_k(G) - sdiam_k(G) = n - k$.

They also determined the precise values for the k-rainbow index of the cycle C_n and the 3-rainbow index of the complete graph K_n.

Theorem 1. [5] For integers k and n with $3 \leq k \leq n$,

$$rx_k(C_n) = \begin{cases}
 n - 2 & \text{if } k = 3 \text{ and } n \geq 4 \\
 n - 1 & \text{if } k = n = 3 \text{ or } 4 \leq k \leq n.
\end{cases}$$

Theorem 2. [5]

$$rx_3(K_n) = \begin{cases}
 2 & \text{if } 3 \leq n \leq 5 \\
 3 & \text{if } n \geq 6.
\end{cases}$$
Let \mathcal{F} be a family of connected graphs. We say that a graph G is \mathcal{F}-free if G does not contain any induced subgraph isomorphic to a graph from \mathcal{F}. Specifically, for $\mathcal{F} = \{X\}$ we say that G is X-free, for $\mathcal{F} = \{X, Y\}$ we say that G is (X,Y)-free, and for $\mathcal{F} = \{X, Y, Z\}$ we say that G is (X,Y,Z)-free. The members of \mathcal{F} will be referred as forbidden induced subgraphs in this context. If $\mathcal{F} = \{X_1, X_2, \ldots, X_k\}$, we also refer to the graphs X_1, X_2, \ldots, X_k as a forbidden k-tuple, and for $|\mathcal{F}| = 2$ and 3 we also say forbidden pair and forbidden triple, respectively.

In [7], Holub et al. considered the question: For which families \mathcal{F} of connected graphs, a connected \mathcal{F}-free graph G satisfies $rc(G) \leq \text{diam}(G) + C_{\mathcal{F}}$, where $C_{\mathcal{F}}$ is a constant (depending on \mathcal{F}), and they gave a complete answer for $|\mathcal{F}| \in \{1, 2\}$ in the following two results (where N denotes the net, a graph obtained by attaching a pendant edge to each vertex of a triangle).

Theorem 3. [7] Let X be a connected graph. Then there is a constant C_X such that every connected X-free graph G satisfies $rc(G) \leq \text{diam}(G) + C_X$, if and only if $X = P_3$.

Theorem 4. [7] Let X, Y be connected graphs such that $X, Y \neq P_3$. Then there is a constant C_{XY} such that every connected (X,Y)-free graph G satisfies $rc(G) \leq \text{diam}(G) + C_{XY}$, if and only if (up to symmetry) either $X = K_{1,r}$ ($r \geq 4$) and $Y = P_4$, or $X = K_{1,3}$ and Y is an induced subgraph of N.

Let $k \geq 3$ be a positive integer. From Observation 1, we know that the k-rainbow index is lower bounded by the k-Steiner diameter. So we wonder an analogous question concerning the k-rainbow index of graphs. In this paper, we will consider the following question.

For which families \mathcal{F} of connected graphs, there is a constant $C_{\mathcal{F}}$ such that $rx_k(G) \leq \text{sdiam}_k(G) + C_{\mathcal{F}}$ if a connected graph G is \mathcal{F}-free ?

In general, it is very difficult to give answers to the above question, even if one considers the case $k = 4$. So, in this paper we pay our attention only on the case $k = 3$. In Sections 3, 4 and 5, we give complete answers for the 3-rainbow index when $|\mathcal{F}| = 1, 2$ and 3, respectively. Finally, we give a complete characterization for an arbitrary finite family \mathcal{F}.

2 Preliminaries

In this section, we introduce some further terminology and notation that will be used in the sequel. Throughout the paper, \mathbb{N} denotes the set of all positive integers.

Let G be a graph. We use $V(G)$, $E(G)$, and $|G|$ to denote the vertex set, edge set, and the order of G, respectively. For $A \subseteq V(G)$, $|A|$ denotes the number of vertices in A, and $G[A]$ denotes the subgraph of G induced by the vertex set A. For two disjoint subsets X and Y of $V(G)$, we use $E[X,Y]$ to denote the set of edges of G between X and Y. For graphs X and G, we write $X \subseteq G$ if X is a subgraph of G, $X \in G$ if X
is an induced subgraph of G, and $X \cong G$ if X is isomorphic to G. In an edge-colored graph G, we use $c(uv)$ to denote the color assigned to an edge $uv \in E(G)$.

Let G be a connect graph. For $u, v \in V(G)$, a path in G from u to v will be referred as a (u, v)-path, and, whenever necessary, it will be considered with orientation from u to v. The distance between u and v in G, denoted by $d_G(u, v)$, is the length of a shortest (u, v)-path in G. The eccentricity of a vertex v is $ecc(v) := \max_{x \in V(G)} d_G(v, x)$. The diameter of G is $diam(G) := \max_{x \in V(G)} ecc(x)$, and the radius of G is $rad(G) := \min_{x \in V(G)} ecc(x)$. One can easily check that $rad(G) \leq diam(G) \leq 2rad(G)$. A vertex x is central in G if $ecc(x) = rad(G)$. Let $D \subseteq V(G)$ and $x \in V(G) \setminus D$. Then we call a path $P = v_0v_1\ldots v_k$ is a v-D path if $v_0 = v$ and $V(P) \cap D = \{v_k\}$, and $d_G(v, D) := \min_{w \in D} d_G(v, w)$.

For a set $S \subseteq V(G)$ and $k \in \mathbb{N}$, we use $N^k_G(S)$ to denote the neighborhood at distance k of S, i.e., the set of all vertices of G at distance k from S. In the special case when $k = 1$, we simply write $N_G(S)$ for $N^1_G(S)$ and if $|S| = 1$ with $x \in S$, we write $N_G(x)$ for $N_G(\{x\})$. For a set $M \subseteq V(G)$, we set $N_G(M) = N_G(S) \cap M$ and $N_G(x) = N_G(x) \cap M$. Finally, we will also use the closed neighborhood of a vertex $x \in V(G)$ defined by $N^k_G[x] = (\cup_{i=1}^k N^i_G(x)) \cup \{x\}$.

A set $D \subseteq V(G)$ is called dominating if every vertex in $V(G) \setminus D$ has a neighbor in D. In addition, if $G[D]$ is connected, then we call D a connected dominating set. A clique of a graph G is a subset $Q \subseteq V(G)$ such that $G[Q]$ is complete. A clique is maximum if G has no clique Q' with $|Q'| > |Q|$. For a graph G, a subset $I \subseteq V(G)$ is called an independent set of G if no two vertices of I are adjacent in G. An independent set is maximum if G has no independent set I' with $|I'| > |I|$.

For two positive integers a and b, the Ramsey number $R(a, b)$ is the smallest integer n such that in any two-coloring of the edges of a complete graph on n vertices K_n by red and blue, either there is a red K_a (i.e., a complete subgraph on a vertices all of whose edges are colored red) or there is a blue K_b. Ramsey [10] showed that $R(a, b)$ is finite for any a and b.

Finally, we will use P_n to denote the path on n vertices. An edge is called a pendant edge if one of its end vertices has degree one.

3 Families with one forbidden subgraph

In this section, we characterize all possible connected graphs X such that every connected X-free graph G satisfies $rx_3(G) \leq sdiam_3(G) + C_X$, where C_X is a constant.

Theorem 5. Let X be a connected graph. Then there is a constant C_X such that every connected X-free graph G satisfies $rx_3(G) \leq sdiam_3(G) + C_X$, if and only if $X = P_3$.

Proof. We have that the graph G is a complete graph since G is P_3-free. Then from Theorem 2 it follows that $rx_3(G) \leq 3 = sdiam_3(G) + 1$.

4
Let t be an arbitrarily large integer, set $G^t_1 = K_{1,t}$, and let G^t_2 denote the graph obtained by attaching a pendant edge to each vertex of the complete graph K_t (see Figure 1). We also use K^t_i to denote G^t_2. Since $rx_3(G^t_1) = t$ but $sdiam_3(G^t_1) = 3$, X is an induced subgraph of G^t_1. Clearly, $rx_3(G^t_2) \geq t + 2$ but $sdiam_3(G^t_2) = 5$, and G^t_2 is $K_{1,3}$-free. Hence, $X = K_{1,2} = P_3$. The proof is thus complete.

4 Forbidden pairs

The following statement, which is the main result of this section, characterizes all possible forbidden pairs X, Y for which there is a constant C_{XY} such that $rx_3(G) \leq sdiam_3(G) + C_{XY}$ if G is (X, Y)-free. Since any P_3-free graph is a complete graph, we exclude the case that one of X, Y is P_3.

Theorem 6. Let $X, Y \neq P_3$ be a pair of connected graphs. Then there is a constant C_{XY} such that every connected (X, Y)-free graph G satisfies $rx_3(G) \leq sdiam_3(G) + C_{XY}$, if and only if (up to symmetry) $X = K_{1,r}, r \geq 3$ and $Y = P_4$.

The proof of Theorem 6 will be divided into two parts. We prove the necessity in Proposition 2 and then we establish the sufficiency in Theorem 7.

Proposition 2. Let $X, Y \neq P_3$ be a pair of connected graphs for which there is a constant C_{XY} such that every connected (X, Y)-free graph G satisfies $rx_3(G) \leq sdiam_3(G) + C_{XY}$. Then, (up to symmetry) $X = K_{1,r}, r \geq 3$ and $Y = P_4$.

Proof. Let t be an arbitrarily large integer, and set $G^t_3 = C_t$. We will also use the graphs G^t_1 and G^t_2 shown in Figure 1.

Consider the graph G^t_1. Since $sdiam_3(G^t_1) = 3$ but $rx_3(G^t_1) = t$, we have, up to symmetry, $X = K_{1,r}, r \geq 3$. Then we consider the graphs G^t_2 and G^t_3. It is easy to verify that $sdiam_3(G^t_2) = 5$ but $rx_3(G^t_2) \geq t + 2$, and $sdiam_3(G^t_3) = \lceil \frac{2}{3}t \rceil$ while $rx_3(G^t_3) \geq t - 2 \geq \frac{1}{2}(sdiam_3(G^t_3) - 1) - 2$, respectively. Clearly, G^t_2 and G^t_3 are both $K_{1,3}$-free, so neither of them contains X, implying that both G^t_2 and G^t_3 contain Y. Since the maximum common induced subgraph of them is P_4, we get that $Y = P_4$. This completes the proof. \qed

Next, we can prove that the converse of Proposition 2 is true.
Theorem 7. Let G be a connected $(P_4, K_{1,r})$-free graph for some $r \geq 3$. Then $rx_3(G) \leq \text{sdiam}_3(G) + r + 3$.

Proof. Let G be a connected $(P_4, K_{1,r})$-free graph ($r \geq 3$). Then, $\text{sdiam}_3(G) \geq 2$. For simplicity, we set $V = V(G)$. Let $S \subseteq V$ be the maximum clique of G.

Claim 1: S is a dominating set.

Proof. Assume that there is a vertex y at distance 2 from S. Let yvu be a shortest path from y to S, where $u \in S$. Because S is the maximum clique, there is some $v \in S$ such that $vx \notin E(G)$. Thus the path $vuxy \cong P_4$, a contradiction. So S is a dominating set. \hfill \blacksquare

Let X be the maximum independent set of $G[V \setminus S]$ and $Y = V \setminus (S \cup X)$. Then for any vertex $y \in Y$, y is adjacent to some $x \in X$. Furthermore, for any independent set W of graph $G[Y]$, $|N_X(W)| \geq |W|$ since X is maximum.

Claim 2: There is a vertex $v \in S$ such that v is adjacent to all the vertices in X.

Proof. Suppose that the claim fails. Let u be the vertex of S with the largest number of neighbors in X. Set $X_1 = N_X(u)$, $X_2 = X \setminus X_1$. Then, $X_2 \neq \emptyset$ according to our assumption. Pick a vertex w in X_2. Then, $uw \notin E(G)$. Let v be a neighbor of w in S. For any vertex z in X_1, $G[w, v, u, z]$ can not be an induced P_4, so vz must be an edge of G. Thus, $N_X(v) \supseteq N_X(u) \cup \{w\}$, contradicting the maximum of u. \hfill \blacksquare

Let z be the vertex in S which is adjacent to all the vertices of X. Set $X = \{x_1, x_2, \ldots, x_\ell\}$. Then, $0 \leq \ell \leq r - 1$ since G is $K_{1,r}$-free. Now we demonstrate a 3-rainbow coloring of G using at most $\ell + 6$ colors. Assign color i to the edge zx_i, and $i + 1$ to the edge x_iy where $1 \leq i \leq \ell$ and $y \in Y$. Color $E[S, Y]$ with color $\ell + 2$ and $E(G[Y])$ with color $\ell + 3$. Give a 3-rainbow coloring of $G[S]$ using colors from $\{\ell + 4, \ell + 5, \ell + 6\}$. And color the remaining edges arbitrarily (e.g., all of them with color 1). Next, we prove that this coloring is a 3-rainbow coloring of G.

Let $W = \{u, v, w\}$ be a 3-subset of V.

(i) $\{u, v, w\} \subseteq S \cup X$. There is a rainbow tree containing W.

(ii) $\{u, v\} \subseteq S \cup X, w \in Y$. We can find a rainbow tree containing an edge in $E[S, Y]$ that connects W.

(iii) $u \in S \cup X, \{v, w\} \subseteq Y$.

a) If $vw \in E(G)$, then there is a rainbow tree containing the edge vw that connects W.

b) If $vw \notin E(G)$, then we have $|N_X(\{v, w\})| \geq |\{v, w\}| = 2$. So there are two vertices x_i and $x_j(i \neq j)$ in X adjacent to v and w, respectively. As $i + 1 \neq j + 1$, so either $i + 1 \neq c(zu)$ or $j + 1 \neq c(zu)$. Without loss of generality, we assume that $i + 1 \neq c(zu)$ and s is a neighbor of w in S. Then there is a rainbow tree containing the edges zu, uw, sw, sz if $u = x_i$ or the edges $zu, zz_i, x_i v, sw, sz$ if $u \neq x_i$.

6
a neighbor of w.

Theorem 8. Let F be a family of connected graphs with $|F| = 3$ such that $F \not\subseteq F'$ for any $F' \in \mathcal{F}_1 \cup \mathcal{F}_2$. Then there is a constant C_F such that every connected F-free graph G satisfies $rx_3(G) \leq sdiam_3(G) + C_F$, if and only if $F \in \mathcal{F}_3$.

First of all, we prove the necessity of the triples given by Theorem 8.

Proposition 3. Let $X, Y, Z \not\subseteq P_3$ be connected graphs, $\{X, Y, Z\} \not\subseteq F'$ for any $F' \in \mathcal{F}_2$, for which there is a constant C_{XYZ} such that every connected (X, Y)-free graph G
satisfies \(rx_3(G) \leq sdiam_3(G) + C_{XYZ} \). Then, (up to symmetry) \(X = K_{1,r}(r \geq 3), Y \subseteq K^h_s(s \geq 3), \) and \(Z = P_t(t > 4) \).

Proof. Let \(t \) be an arbitrarily large integer, and let \(G'_1, G'_2, G'_3 \) be the graphs defined in the proof of Proposition 2.

Firstly, we consider the graph \(G'_1 \). Up to symmetry, we have \(X = K_{1,r}, r \geq 3 \) (for the case \(r = 2 \) is excluded by the assumptions). Secondly, we consider the graph \(G'_2 \). The graph \(G'_2 \) does not contain \(X \), since it is \(K_{1,3} \)-free. Thus, up to symmetry, we have \(G'_2 \) contains \(Y \), implying \(Y \subseteq K^h_s \) for some \(s \geq 3 \) (for the case \(s \leq 2 \) is excluded by the assumptions). Finally, we consider the graphs \(G'_3 \) and \(G'_{3+1} \). Clearly, they are \((K_{1,3}, K^h_s)-\)free, so both of them contain neither \(X \) nor \(Y \). Hence, we get that \(Z = P_{t} \) for some \(\ell > 4 \) (for the case \(\ell \leq 4 \) is excluded by the assumptions).

This completes the proof. \(\square \)

It is easy to observe that if \(X \subseteq X' \), then every \((X', Y, Z) \)-free graph is also \((X', Y, Z)\)-free. Thus, when proving the sufficiency of Theorem \(\text{[8]} \) we will be always interested in maximal triples of forbidden subgraphs, i.e., triples \(X, Y, Z \) such that, if replacing one of \(X, Y, Z \), say \(X \), with a graph \(X' \neq X \) such that \(X' \subseteq X' \), then the statement under consideration is not true for \((X', Y, Z)\)-free graphs.

For every vertex \(c \in V(G) \) and \(i \in \mathbb{N} \), we set \(\alpha_i(G, c) = \max\{|M|, M \subseteq N^i_G(c), M \text{ is independent}\} \) and \(\alpha^0_i(G, c) = \max\{|M^0|, M^0 \subseteq N^i_G(c), M^0 \text{ is independent}\} \).

Lemma 1. \(\text{[2]} \) Let \(r, s, i \in \mathbb{N} \). Then there is a constant \(\alpha(r, s, i) \) such that, for every connected \((K_{1,r}, K^h_s)\)-free graph \(G \) and for every \(c \in V(G) \), \(\alpha_i(G, c) < \alpha(r, s, i) \).

We use the proof of Lemma \(\text{[1]} \) to get the following corollary concerning \(\alpha^0_i(G, c) \) for each integer \(i \geq 1 \).

Corollary 1. Let \(r, s, i \in \mathbb{N} \). Then there is a constant \(\alpha^0(r, s, i) \) such that, for every connected \((K_{1,r}, K^h_s)\)-free graph \(G \) and for every \(c \in V(G) \), \(\alpha^0_i(G, c) < \alpha^0(r, s, i) \).

Proof. For the sake of completeness, here we give a brief proof concentrating on the upper bound of \(\alpha^0_i(G, c) \). We prove the corollary by induction on \(i \).

For \(i = 1 \), we have \(\alpha^0(r, s, 1) = r \), for otherwise \(G \) contains a \(K_{1,r} \) as an induced subgraph.

Let, to the contrary, \(i \) be the smallest integer for which \(\alpha^0(r, s, i) \) does not exist (i.e., \(\alpha^0_i(G, c) \) can be arbitrarily large), choose a graph \(G \) and a vertex \(c \in V(G) \) such that \(\alpha^0_i(G, c) \geq (r - 2)R(s(2r - 3), \alpha^0(r, s, i - 1)) \), and let \(M^0 = \{x_1^0, \ldots, x_k^0\} \subseteq N^i_G(c) \) be an independent set in \(G \) of size \(\alpha^0_i(G, c) \). Obviously, \(k \geq (r - 2)R(s(2r - 3), \alpha^0(r, s, i - 1)) \). Let \(Q_j \) be a shortest \((x_j^0, c)\)-path in \(G \), \(j = 1, \ldots, k \). We denote \(M^1 \subseteq N^{-1}_G(c) \) the set of all successors of the vertices from \(M^0 \) on \(Q_j \), \(j = 1, \ldots, k \), and \(x_j^1 \) the successor of \(x_j^0 \) on \(Q_j \) (note that some distinct vertices in \(M^0 \) can have a common successor in \(M^1 \)). Every vertex in \(M^1 \) has at most \(r - 2 \) neighbors in \(M^0 \) since \(G \) is \(K_{1,r} \)-free. 8
Thus, $|M^1| \geq \frac{k}{2} \geq R(s(2r-3), a^0(r, s, i-1))$. By the induction assumption and the definition of Ramsey number, $G[M^1]$ contains a complete subgraph $K_{s(2r-3)}$. Choose the notation such that $V(K_{s(2r-3)}) = \{x_1^1, \ldots, x_{s(2r-3)}^1\}$, and set $\hat{M}^0 = N_M^0(K_{s(2r-3)})$. Using a matching between $K_{s(2r-3)}$ and \hat{M}^0, we can find in G an induced K_h^s with vertices of degree 1 in \hat{M}^0, a contradiction. For more details about finding the K_h^s, we refer the reader to [2].

Armed with Corollary 1, we can get the following important theorem.

Theorem 9. Let $r \geq 3, s \geq 3$, and $\ell > 4$ be fixed integers. Then there is a constant $C(r, s, \ell)$ such that every connected $(K_{1, r}, K_h^s, P_\ell)$-free graph G satisfies $rx_3(G) \leq sdiam_3(G) + C(r, s, \ell)$.

Proof. We have $diam(G) \leq \ell - 2$ since G is P_ℓ-free. Let c be a central vertex of G, i.e., $ecc(c) = rad(G) \leq diam(G) \leq \ell - 2$. And we set $S_i = \cup_{j=1}^{i} N_G^j[c]$ for an integer $i \geq 1$.

Claim: $rx_3(G[S_i \cup N_G^{i+1}(c)]) \leq rx_3(G[S_i]) + \alpha^0_{i+1}(G, c) + 3$

Proof. Let $X = \{x_1, x_2, \ldots, x_{\alpha^0_{i+1}(G, c)}\}$ be the maximum independent set of $N_G^{i+1}(c)$ and $Y = N_G^{i+1}(c) \setminus X$. Then for any vertex $y \in Y$, y is adjacent to some $x \in X$ and $s \in S$. Further more, for any independent set W of graph $G[Y]$, we have $|N_X(W)| \geq |W|$ since X is maximum.

Now we demonstrate a 3-rainbow coloring of $G[S_i \cup N_G^{i+1}(c)]$ using at most $k + \alpha^0_{i+1}(G, c) + 3$ colors, where $k = rx_3(G[S_i])$. We color the edges of $G[S_i]$ using colors 1, 2, \ldots, k. Color $E[S_i, Y]$ with color $k + 1$ and $E(G[Y])$ with color $k + 2$. And assign color $j + k + 2$ to the edges $E[\{x_j\}, S_i]$, and $j + k + 3$ to the edges $E[\{x_j\}, Y]$ where $1 \leq j \leq \alpha^0_{i+1}(G, c)$. With the same argument as the proof of Theorem 7, we can prove that this coloring is a 3-rainbow coloring of $G[S_i \cup N_G^{i+1}(c)]$.

From the proof of Corollary 1, it follows that $\alpha^0_1(G, c) \leq r - 1$ and $\alpha^0_0(G, c) \leq (r-2)R(s(2r-3), a^0(r, s, i-1)) - 1$ for each integer $i \geq 2$. Let $R(r, s) = \sum_{i=2}^{\infty} R(s(2r-3), a^0(r, s, i-1))$. Recall that $ecc(c) \leq \ell - 2$. Repeated application of Claim gives the following:

$$rx_3(G) \leq rx_3(G[N_G^{ecc(c)-1}(c)]) + \alpha^0_{ecc(c)}(G, c) + 3$$

$$\leq \cdots$$

$$\leq rx_3(c) + \alpha^0_1(G, c) + \cdots + \alpha^0_{ecc(c)}(G, c) + 3ecc(c)$$

$$\leq 0 + r + (r-2)R(r, s) + 2(\ell - 2)$$

$$\leq sdiam_3(G) + (r-2)(R(r, s) + 1) + 2(\ell - 1).$$

Thus, we complete our proof.

Remark The same as the remark in Section 4: for $i \geq 1$, every time $\alpha^0_{i+1}(G, c) \geq 4$ happens, we can save one color in the Claim of Theorem 9.
6 Forbidden k-tuples for any $k \in \mathbb{N}$

Let $\mathcal{F} = \{X_1, X_2, X_3, \ldots, X_k\}$ be a finite family of connected graphs with $k \geq 4$ for which there is a constant k_F such that every connected \mathcal{F}-free graph satisfies $rx_3(G) \leq sdiam_3(G) + C_{\mathcal{F}}$. Let t be an arbitrarily large integer, and let G_1^t, G_2^t and G_3^t be defined in Proposition 2. For the graph G_1^t, up to symmetry, we suppose that $X_1 = K_r, r \geq 3$ (for the case $r = 2$ has been discussed in Section 3). Then, we consider the graphs G_2^t and G_3^t. Notice that G_2^t and G_3^t are both $K_{1,3}$-free, so neither of them contains X_1, implying that G_2^t or G_3^t contains X_i, where $i \neq 1$. We may assume that X_2 is an induced subgraph of G_2^t. If G_3^t contains X_2, then $X_2 = P_4$, which is just the case in Section 4. So we turn to the case that G_3^t contains X_i for some $i > 2$. Now consider the graphs $G_3^t, G_3^{t+1}, G_3^{t+2}, \ldots, G_3^{t+k}$, each of which contains at least one of X_3, X_4, \ldots, X_k as an induced subgraph due to the analysis above. So it is forced that at least one of these $X_i (i \geq 3)$ is isomorphic to P_l for some $l \geq 5$, which goes back to the case in Section 5. Thus, the conclusion comes out.

Theorem 10. Let \mathcal{F} be a finite family of connected graphs. Then there is a constant $C_{\mathcal{F}}$ such that every connected \mathcal{F}-free graph satisfies $rx_3(G) \leq sdiam_3(G) + C_{\mathcal{F}}$, if and only if \mathcal{F} contains a subfamily $\mathcal{F}' \in \mathfrak{F}_1 \cup \mathfrak{F}_2 \cup \mathfrak{F}_3$.

References

[1] J.A. Bondy, U.S.R. Murty, *Graph Theory with Applications*, The Macmillan Press, London and Basingstoke, 1976.

[2] J. Brousek, P. Holub, Z. Ryjáček, P. Vrána, *Finite families of forbidden subgraphs for rainbow connection in graphs*, Discrete Math. 339(9)(2016), 2304-2312.

[3] Q. Cai, X. Li, Y. Zhao, *The 3-rainbow index and connected dominating sets*, J. Combin. Optim. 31(2016), 1142-1159.

[4] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, *Rainbow connection in graphs*, Math. Bohem. 133(1)(2008), 85-98.

[5] G. Chartrand, F. Okamoto, P. Zhang, *Rainbow trees in graphs and generalized connectivity*, Networks 55(2010), 360-367.

[6] L. Chen, X. Li, K. Yang, Y. Zhao, *The 3-rainbow index of a graph*, Discuss. Math. Graph Theory 35(1)(2015), 81-94.

[7] P. Holub, Z. Ryjáček, I. Schiermeyer, P. Vrána, *Rainbow connection and forbidden subgraphs*, Discrete Math. 338(10)(2015), 1706-1713.

[8] X. Li, Y. Shi, Y. Sun, *Rainbow connections of graphs: A survey*, *Graphs & Combin.* 29(2013), 1–38.
[9] X. Li, Y. Sun, *Rainbow Connections of Graphs*, New York, SpringerBriefs in Math., Springer, 2012.

[10] F.P. Ramsey, *On a problem of formal logic*, Proc. London Math. Society 30(1920), 264-286.