Analysis of the sensitivity of the parameters affecting the rate of removal, surface roughness and width in the wire electrical discharge machining

Fardin Shabani a, Siavash Fathollahi Dehkordi b*

a Department of Mechanical Engineering, Arak University, Arak, Iran
b Department of Mechanical Engineering, Shahid Chamran University of Ahwaz, Ahwaz, 6135783151, Iran

KEY WORDS
Wire Electrical Discharge Machining
Material Removal Rate
Roughness Surface
The width of the gap
Sensitivity analysis

ABSTRACT
One of the most attractive modern machining methods is electrical discharge machining, which was introduced in the late 1960s. Electric discharge machining with wires has a number of uses, including high accuracy machining of all conductive materials such as metals, metal alloys, graphite, and ceramics, as well as aerospace, automotive, and other industries. In order to increase the rate and reduce surface roughness and gap width, optimal cutting parameters play a crucial role in selecting output parameters. In this study, input parameters (discharge, pulse duration, pulse frequency, wire speed, wire tension, and dielectric current velocity) were compared to output variables (cutting rate, surface filter, and width). The sensitivity analysis shows that pulse duration parameters, wire speed, and discharge flow are most effective parameters for cutting rate, and pulse duration parameters, dielectric rate, and discharge flow are most effective parameters for surface roughness, as well as pulse duration, wire speed, and discharge current for gap width. Pulse duration with 72%, wire speed with 14%, and discharge current with 10% has the greatest impact on the chip removal rate.

Extended Abstract

1. Introduction

Ceramics, composites, polymers, and super-alloys are important engineering materials in modern production, especially in aircraft manufacturing, automobile manufacturing, cutting tools, and molding. Accurate design requirements are one of the basic challenges in their manufacturing industries. For example, precise machining, drilling at micron or nanometer levels, machining at non-circular holes, and so on. In this paper, our focus is on the wire electrical discharge machining (WEDM) process [1]. The electric discharge machining (EDM) with wire was introduced in the late 1960s, this is one of the most attractive modern machining methods in the last 60 years and has countless advantages to offer [2]. A WEDM is a non-traditional form of EDM in which a conductive wire's electrode moves continuously. Discrete sparks are fired between the work and a thin copper wire electrode (0.25-0.50 mm diameter), separated by a thin film of dielectric liquid (deionized water). It is continuously fed to the machining area to remove the eroded particles, and the hardness of the workpiece does not affect cutting. Workpiece shape and accuracy are controlled numerically by the movement of the wire [3].
In order to meet the needs of newer materials and more complex shapes, EDM with wire is increasingly being used [4]. EDM process with wire has applications in all types of conductive materials, including metals, alloys, graphite, and ceramics of any hardness, used in aerospace, automotive, etc. [5]. As a result of electrical discharge between a wire and a workpiece, it is absolutely crucial to maintain the wire in a fixed position against the object. The wire is typically held in place by pin guides at the top and bottom of the workpiece. Wires are usually thrown away after use. To increase the accuracy of the work, some problem-solving points should be considered. Due to its thermal device technique, this process has relatively low machining speeds compared to other non-traditional machining processes such as laser. Process performance is affected by discharge current, pulse duration, wire feeding speed, and dielectric current speed [6].

The process of EDM with wire is affected by a variety of factors, which have been the subject of extensive research by various researchers and are discussed in this section. To determine the optimal control parameters in WEDM for machining performance measures such as chipping rate and final surface smoothness, Rajurkar and Boena used a factorial design method. EDM with wire machining was significantly influenced by discharge current, duration of pulses, and pulse frequency according to this study [7]. Rajurkar and Wang analyzed the wire tearing phenomena with a thermal model and experimental research, their results indicated that the chip removal rate in the WEDM process initially increases with the reduction of the pulse time. However, in a very short pulse off time, the gap becomes unstable, which leads to a decrease in the machining rate [8]. Toussaint et al. investigated the effects of cutting parameters on the size of the erosion hole (diameter and depth) on the wire electrode. Inspection of the wire electrode opening is very important to understand the wire breakage, gap width size and workpiece surface roughness. The larger size of the openings on the wire increases the risk of wire breakage and also leads to poor surface quality and low machining accuracy. The results show that the increase in the duration of the pulse, open-circuit voltage and wire feeding speed increases the gap, while increasing the dielectric washing pressure decreases the gap size [9]. Singh and Garg, in a study on WEDM, concluded that the chip removal rate increases directly with increasing pulse on time and peak current, while it decreases with increasing pulse off time and open circuit voltage. Wire feeding and wire tension are neutral parameters [4]. Shah et al. investigated the effect of workpiece thickness on the chip removal rate, it was expected that this factor is important, while according to this research, the thickness of the workpiece is not an important factor for the chip removal rate [10]. Liao et al. conducted an experimental study to determine the change of machining components in machining rate, slot width and surface roughness. In their study, although an attempt was made to determine the importance of machining factors in the chip removal rate, the level of importance of gap width and surface roughness was not introduced [11].

Generally, machine tool manufacturers use machining component tables to set up machining components. This process relies on the experience of the operators. In practice, it is very difficult to use the optimal functions of a machine due to the existence of adjustable machining parameters. With the aim of simplification, I have a simple method Reliable based on statistical tests designed to investigate the effects of various process components on chipping rate, surface roughness and gap width, it determines the optimal settings of the process. In this article, the data obtained from laboratory operations with randomly selected factor combinations have been collected. A quadratic model for identifying the process is derived in order to establish an approximate relationship between the various components of the process as well as the response variables. The presented mathematical models have been used to generate data according to the Taguchi model. Finally, the gray-based Taguchi technique is adopted to evaluate the optimal process environment [12].

Complex environmental models are controlled by a large number of parameters. It is almost impossible to accurately estimate the values of all these parameters. The results of the sensitivity analysis allow the selection of parameters to be included in a calibration method, but can also help identify model processes. In addition, sensitivity analysis can provide important information about the use and meaning of model parameters. The use of the Sobol method makes it possible to calculate the first-order effects and other effects, the linear model is not assumed, and the sensitivity values are presented numerically. In the Sobol method, the coefficients are determined in such a way that the method can be used for all distributions with any range [13]. By using Sobol's statistical sensitivity analysis method, which has the advantage of extracting a small amount of the effect of parameters compared to other methods, the effect of input parameters on the force output parameter in the drill process has been studied and the effect of each input parameter has been carefully studied [14]. Also, using the Sobol sensitivity analysis method, which is based on variance, eleven influencing factors on the optimization of the hydroforming process loading path have been investigated [15].

2. Modeling

In this article, modeling consists of two parts, which are:

1) Designing experiments using the response surface method along with the Taguchi Methods
2) Checking Sobol's sensitivity analysis
2.1. Designing experiments using the Taguchi Methods

In the analysis of the Taguchi Methods, the experimental data, that is, the measured characteristics of the quality features, are first normalized from zero to one. This process is known as gray relational emergence. In the next step, based on the normal experimental data, the coefficient of the gray relation is calculated to show the correlation between the intended and actual test data. Then the gray degree is generally determined by the average coefficient of the gray relation related to the selected answers. The overall performance distinctive of the multiple response process depends on the degree of the calculated gray relation. This approach transforms a multiple response process optimization problem into a single response optimization situation. The optimal parameter combination is then evaluated, which leads to the highest degree of gray relation. Setting the optimal factor to maximize the degree of overall gray relation is done by Taguchi method.

The input and constant parameters used in the present study are listed in Table 1. The above parameters have been selected through research and experience. Different settings of discharge current, pulse duration, pulse frequency, wire speed, wire tension and dielectric flow rate used in the experiments are shown in Table 2.

Table 1. Setting Parameters
Control coefficients
Discharge current
Pulse duration
Pulse frequency
Wire speed
Wire tension
Dielectric flow rate

Table 2. Control coefficients and their limits (experiment scope)
Level
unit
Control coefficients
Discharge current
Pulse duration
Pulse frequency
Wire speed
Wire tension

The response function indicating each of the six responses can be expressed as described in equation (1):

\[Y = f(X₁; X₂; X₃; X₄; X₅; X₆) \]

where \(Y \) is the reaction and \(X \) is the agent.

2.2. Checking Sobol's sensitivity analysis

In this section, the sensitivity analysis graphs and the effects of each of the input variables in Table 1 on the output factors (chipping rate, slot width, and surface roughness) have been analyzed using the Sobol sensitivity analysis method and analysis in Simlab software. has been A sensitivity analysis method that is popular in many fields is the variance-based Sobol method. The output variance of the model (V) is the sum of the variances of each term analyzed in the form of equation (2).

\[V(Y) = \sum_{i=1}^{n} V_i + \sum_{i<j}^{n} V_{ij} + \cdots + V_{1..n} \]

3. Simulation

In this section, the statistical relationships and sensitivity analysis that are stated in the modeling section have been investigated using Simlab's sensitivity analysis and simulation software.

Figure 1 shows the effect of the input parameters on the chip removal rate. The results of the Sobel sensitivity analysis show that pulse duration with 72%, wire speed with 14% and discharge current with 10% had the greatest effect on the chip removal rate.

Figure 2 quantitatively shows the effect of input parameters on surface roughness, which results are obtained from Sobol sensitivity analysis. According to Figure 2, it can be concluded that pulse duration with 87%, dielectric rate with 7% and discharge current with 4% had the greatest effect on surface roughness.

Figure 3 quantitatively shows the effect of input parameters on gap width, which results are obtained from Sobol sensitivity analysis. According to Figure 3, it can be concluded that pulse duration with 47%, wire speed with 24% and discharge current with 20% had the greatest effect on the gap width.
4. Conclusion

In this paper, using the Sobol sensitivity analysis method, which has high accuracy compared to other sensitivity analysis methods, for the first time, the effect of six input parameters including discharge current, pulse duration, pulse frequency, wire speed, wire tension and dielectric rate have been studied on chipping rate, surface roughness and gap width in the EDM process with wire. The investigations carried out in this research show that: parameters of pulse duration, wire speed and discharge current are the most effective parameters on the chip removal rate in the investigated period. The parameters of pulse frequency, wire tension and dielectric rate have a negligible effect on the chip removal rate. Pulse duration parameters, dielectric rate and discharge current are the most effective parameters on surface roughness, discharge current parameters, pulse frequency and wire tension can be considered the least effective parameters on surface roughness. The parameters of pulse duration, wire speed and discharge current are the most effective parameters on the gap width, the parameters of pulse frequency, wire tension and dielectric rate can be considered the least effective parameters on the gap width. Pulse duration with 72%, wire speed with 14% and discharge current with 10% have the most effect on the chip removal rate.
آنالیز حساسیت پارامترهای موثر بر نرخ برداشته برداری در مید، پالس، فرکانس پالس، بالا در پالس، سرعت سطح و عرض شکاف در فرآیند مشینکاری تخلیه الکتریکی

فریدن شعباتی، ۳، سیاوش فتحالله دهکردی

چکیده

یکی از جذابترین روش‌های مشینکاری کاری مدل، مشینکاری تخلیه الکتریکی است که در اوایل دهه ۱۹۶۰ معرفی شد. مشینکاری تخلیه الکتریکی باید کاربردی‌ترین نحوه ازجمله مشینکاری با دقت بالا در تمام مواد مشابه فلزات، آلیاژهای فلزی، گرافیت و سرامیک و مجنون صابیا، خودروسازی و سایر صنایع باعث افزایش سرعت و کاهش زیری سطح و عرض شکاف، پارامترهای برهمقه نیز بهینه نشاندهش در انتخاب پارامترهای خروجی دارند. در این مطالعه، پارامترهای وزارت (دبی، مدت پالس، فرکانس پالس، سرعت سیم، کشش سیم و سرعت جریان دی الکتریک) با مغناطیسی بار خروجی (نرخ برخ، فیلتر سطح و عرض) مقایسه شد. نتایج بدست‌آمده از تحلیل حساسیت نشانگر این است که پارامترهای مدت‌زمان باسیس، سرعت سیم و جریان تخلیه الگوگاه‌های پارامترهای بر تبر برداشته برداری و پارامترهای مدت‌زمان باسیس، نرخ دی الکتریک و جریان تخلیه الگوگاه تین پارامترهای بر زیری سطح می‌باشد. سطح می‌ба
نارک (فقره 23/5000 میلی‌متر) چگونه توسط یک فیلم نارک از مدت اکلیل کُریاه (آب‌دلیویANCE) که به‌طور مداوم به منطقه‌های میان‌کاری برای بکار بردن در تام فرآیند ناگهانی و سخت قطعه کار تأثیری را در نفت Bras که ندارد.

حرکت سیم برای دستیابی به شکل و دقیقی مورد نظر برای قطعه کار به صورت عمدی کنترل می‌شود.

از اینجا همچنان موارد به‌طور کامل سه‌تایی و سه‌تایی ارائه می‌شود. در نهایت، هر دلیل تولید سیم کار، منطقه در دو مرحله از ساخته‌ای کاری به‌طور کامل نشان می‌دهد. از این دلیل دستگاه با هر دلیل تقسیم‌بندی (Ra) استفاده می‌کند.

کاربردهای فردی‌دانش کاری تخمینی ارائه شده با سیم عبارتند از نرخ براده برداری (MRR)، ثانیه سطح نهایی و عرض برش. خمای‌سازی، مواد سازنده و دریافت سیم، سرعت تغذیه سیم و سرعت جریان الکتریکی مولفه‌های ماشین کاری هستند که بر عملکرد فردی‌دانش‌کاری می‌باشد.

بروی تحقیقات فردی‌دانش‌کاری با سیم تأثیرگذار می‌باشد و محققین مختلف بر روی آن‌ها تحقیقات گزارش داده‌اند. در این بخش مورد بررسی قرار می‌گیرند. راجر کار و بونا برای تعیین ترکیب بهینه از پارامترهای کنترل در ماشین‌کاری تخمینی ارائه شده با سیم در این پژوهش به کار برده و صافی سطح نهایی از کاربرد صاف‌سازی فاکتوریال استفاده کرده اند. نتایج این مطالعه از طرفی به‌طور کامل متناسب با سیم می‌باشد. یک‌رود سیم و فلزات پالس، سیم که در رابطه با نرخ براده برداری برای تغییر تغییرات در نرخ براده برداری را مورد ارزیابی قرار داده، انتخاب می‌کند. این تحقیق که به‌طور کامل نشان می‌دهد که سطح و سرعت جریان الکتریکی مولفه‌های ماشین کاری به‌طور کامل در فردی‌دانش‌کاری می‌باشد.

برای تحقیقات اقامتی داخلی در فردی‌دانش‌کاری با سیم تأثیرگذار می‌باشد، و محققین مختلف بر روی آن‌ها تحقیقات گزارش داده‌اند. در این پژوهش به کار برده و صافی سطح نهایی از کاربرد صاف‌سازی فاکتوریال استفاده کرده اند. نتایج این مطالعه از طرفی به‌طور کامل متناسب با سیم می‌باشد. یک‌رود سیم و فلزات پالس، سیم که در رابطه با نرخ براده برداری برای تغییر تغییرات در نرخ براده برداری را مورد ارزیابی قرار داده، انتخاب می‌کند. این تحقیق که به‌طور کامل نشان می‌دهد که سطح و سرعت جریان الکتریکی مولفه‌های ماشین کاری به‌طور کامل در فردی‌دانش‌کاری می‌باشد.

1 Material Removal Rate
2 Roughness Surface
به طور کلی، سازندگان ابزار مانیفالت جدید مؤلفه‌ها و راه‌حل‌های اصلی را در تئوری مؤلفه‌ها ماشین‌کاری برای تنظیم مؤلفه‌ها ماشین‌کاری استفاده می‌کنند. این روند ممکن است تجربی ایرواوته‌ای بوده و در عمل، استفاده از توان بهینه یک دستگاه به لحید خود پارامترهای ماشین‌کاری قابل تنظیم سیستم دیوار اس است. با هدف ساده‌سازی، یک سامانه ای ابتکارهای آموزشی آماری، طراحی شده برای بررسی اثرات مختلف مدل فازهای برخی، برای راه برداری، زیری سطح و عرض شکاف پیش‌بینی، تنظیمات بهینه فن آیند را تعیین می‌کند. در این مقاله، داده‌های حاصل از عملیات آزمایشگاهی به ترتیب فاکتور که به طور تصادفی انتخاب شدهاند، جمع آوری شده است. یک مدل درجه دوم برای مدل‌سازی فازهای به‌منظور ارتقاء ارتباط تقیی بین مؤلفه‌های مختلف فازهای و همچنین متغیرهای پاسخ استخراج شده است. از مدل‌های پیشین ارائه شده، برای تولید داده‌ها طبق کوئی ناکوئی استفاده شده است.

شده است. سرانجام، تکنیک تلاسه‌ای مبتنی بر خاکستری برای ارزیابی می‌تواند به‌یاده فن آیند انتخاذ شده است.

مدل‌های پیچیده محیطی توسط تعداد زیادی از پارامترها کنترل می‌شوند. تخمین دقیق مقادیر هیمن پارامترها تقیبیً غیرممکن است. نتایج تجزیه و تحلیل حسابی باعث می‌شود، انتخاب پارامترهایی که، در کمیک کنترلی، علاوه بر این، تجزیه و تحلیل حسابی می‌تواند اطلاعات مهمی در مورد استفاده و میزان پارامترهای مدل داشته باشد. استفاده از روش سپسیک‌یم‌یم، آثار متین اول و سپس آثار یا محاسبه مجدد، مدل درجه دوم فرضش مقدار می‌تواند از ارائه گردد. در روش سپسیک‌یم‌یم، توجه شده است. با گونه‌ای اندازه‌گیری است که روش برای همین توزیع‌ها به‌طور محدود‌های کل استفاده باشد. [13] با بهره‌گیری از روش تحلیل حسابی سپسیک‌یم‌یم، همچنین با استفاده از روش تحلیل حسابی سپسیک‌یم‌یم، می‌توان از طریق روش تحلیل حسابی سپسیک‌یم‌یم، بررسی تأثیرگذار بر روی به‌هم‌بسته‌سازی مسیر داروگاری فرآیند هیدروفمینگ [14] پایداری است. [15]

در تحقیق حاضر، با استفاده از روش‌های رهگیری مرتباً درخت و سطح باشک در بررسی تأثیر پارامترهای ورودی (چرخ‌، تخلیه، مدت پالس، فرکانس پالس، سرعت سیم، کنش سیم و سرعت جریان دکتریک) بر متغیرهای خروجی (ترک برداری، صافی سطح و عرض شکاف) فازهای ماشین‌کاری تخلیه الکتریکی به‌منظور برداشته شده است. علاوه بر این با استفاده از روش تحلیل حسابی سپسیک‌یم‌یم، میزان حساسیت فازهای اصلی نسبت به تغییرات پارامترهای ورودی ارزیابی قرار گرفته است.

۲- مدل‌سازی

در این مقاله، مدل‌سازی از دو نیز تشکیل شده است که عبارت از:

۱) طراحی آزمایش‌ها با استفاده از روش سطح رپه‌م توسط بررسی تسلیت تاکنوگی - خاکستری

۲) بررسی آلاین حسابی سپسیک‌یم‌یم، تاکنوگی - خاکستری

۲-۱- طراحی آزمایش‌ها با استفاده از تکنیک تاکنوگی - خاکستری

طرز تولید پلاستیک پالس سرعت سیم، کنش سیم و سرعت جریان دکتریک بر متغیرهای خروجی (ترک برداری، صافی سطح و عرض شکاف) فازهای ماشین‌کاری تخلیه الکتریکی به‌منظور برداشته شده است. علاوه بر این با استفاده از روش تحلیل حسابی سپسیک‌یم‌یم، میزان حساسیت فازهای اصلی نسبت به تغییرات پارامترهای ورودی ارزیابی قرار گرفته است.

1 Taguchi Method
2 Sobol Sensitivity Analysis
3 Hydroforming Method
پارامترهای ورودی و ثابت مورد استفاده در مطالعه حاضر در جدول ۱ ذکر شده است. پارامترهای فوق از طریق بررسی تحقیقات و تجربیات انتخاب شدهاند. تنظیمات مختلف جریان تخلیه، مدت زمان بالس، فرکانس بالس، سرعت سیم، نش سیم و سرعت جریان دی الکتریک مورد استفاده در آزمایش‌ها در جدول ۲ نشان داده شده است.

جدول ۱ پارامترهای تنظیم

ضرایب کنترل	نشان
X۱	جریان تخلیه
X۲	مدت زمان بالس
X۳	فرکانس بالس
X۴	سرعت سیم
X۵	نش سیم
X۶	سرعت جریان دی الکتریک

جدول ۲ ضرایب کنترل و محدودیت آنها (دامنه آزمایش)

سطح	ضرایب کنترل
	واحد
Amp	3300/1200
µsec	30/1200
KHz	5000/4000
m/min	1000/800
G	1200/200
bars	200/1200

معادلات مربوط به بهینه‌سازی با استفاده از تکنیک تاگوشی-خاکستری به شرح زیر می‌باشد:

تابع پاسخ نشاندهنده هریک از شش پاسخ را می‌توان به شرح معادله (۱) بیان کرد:

\[Y = f(X_1, X_2, X_3, X_4, X_5, X_6) \] (۱)

که در آن Y واقعی و X عامل می‌باشد.

مدل سطح پاسخ مربوط به دوم برای شش پارامتر انتخاب شده توسط معادله (۲) در جدول ۲ نشان داده شده است:

\[Y = \beta_0 + \sum_{i=1}^{6} \beta_i X_i + \sum_{i=1}^{6} \beta_{ij} X_i X_j + \sum_{i=1}^{6} \beta_iX_i^2 + \sum_{i=1}^{6} \beta_{ij} X_i^2 X_j \] (۲)

مدل سطح پاسخ مربوط به دوم فوق می‌توان به شرح معادله (۲) نیز باشد:

\[Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \beta_5 X_5 + \beta_6 X_6 + \beta_11 X_1^2 + \beta_22 X_2^2 + \beta_33 X_3^2 + \beta_12 X_1 X_2 + \beta_13 X_1 X_3 + \beta_14 X_1 X_4 + \beta_15 X_1 X_5 + \beta_16 X_1 X_6 \] (۳)

در معادله‌های کاهش بافتی "Kerf" و "Ra" MRR و "Kerf" و "Ra" MRR می‌باشد:

\[MRR = 3.337 - 0.2111X_1 + 0.2537X_2 + 0.00694X_3 - 0.4206X_4 - 0.000108X_5 - 0.000X_6 + 0.02522X_1 X_2 - 0.02467X_3 X_4 - 0.000000X_5 X_6 \] (۴)

\[Ra = 4.317 + 0.00951X_1 + 0.07152X_2 - 0.00194X_3 + 0.0558X_4 - 0.000144X_5 - 0.944X_6 \] (۵)

\[Kerf = 11.53 - 0.726X_1 + 0.716X_2 + 0.01663X_3 - 1.438X_4 - 0.00029X_5 + 0.011X_6 + 0.0843X_1 X_4 - 0.0750X_2 X_4 + 0.000008X_2 X_5 \] (۶)
بررسی روش آنالیز حساسیت آماری سویل

تجزیه و تحلیل حساسیت می‌تواند اطلاعات مهمی در مورد استفاده و معنی پارامترهای مدل داشته باشد. روش‌های آنالیز حساسیت به سه دسته تقسیم می‌شوند که شامل روش آماری، روش ریاضی و روش گرافیکی می‌باشند.

در روش آماری تحلیل حساسیت به صورت توزیع احتمالی به شیمه‌سازی ورودی می‌پردازد، سپس تأثیر این ورودی را بر خروجی ارزیابی می‌کند. در این روش می‌توان اثر متقابل بین چندین ورودی را بر روی خروجی مشخص گردید.

در روش ریاضی حساسیت را از روی تغییرات خروجی برحسی تغییرات ورودی به دست آورند. این روش عموماً در گروه تحلیل ورودی به دست آمده است.

محاسباتی هستند که به بررسی خروجی در افزایش مقدار کمی تغییر در ورودی می‌پردازد.

در روش گرافیکی حساسیت را در فرم‌های به صورت نمودار و جدول با سطوح نمایش می‌دهند. از روش گرافیکی عموماً برای نشان دادن تغییرات خروجی‌ها تحت تأثیر ورودی‌ها استفاده می‌شود.

در این بخش به بررسی نمودارهای گرافیکی آنالیز حساسیت پرداخته شده و اثرات هر یک از متغیرهای ورودی در جدول ۱ بر روی عامل خروجی (نرخ براده برداری) در نموداری (شرکت و زیری سطح) با استفاده از روش آنالیز حساسیت سویل و در نرم افزار سیمبل 1 تحلیل و بررسی شده است. یک روش تجزیه و تحلیل حساسیت که در سیستم‌های مخابوب است، روش سویل مبتنی بر ورایانس می‌باشد.

در این روش برای محاسبه تغییرات بالا و بالا مقادیر X (X1, X2, ..., Xn) بردار پارامترهای ورودی Y = f(x) که Y که در آن، V یا تأثیر معنی‌داری اول یا اول فاکتور می‌باشد و واریانس (V) می‌باشد.

\[V(Y) = \sum_{i=1}^{n} V_i + \sum_{i \neq j}^{n} V_{ij} + \cdots + V_{1,2,\ldots,n} \]

که در آن، V1 تأثیر اولین واریانس، V2 تأثیر دومین واریانس و ... V1,2,..,n تأثیر مهندان را نشان می‌دهد.

شایع‌تر حساسیت به‌صورت نسبت واریانس مربوط به واریانس کل به دست می‌آید. شایع‌تر حساسیت یا همان تأثیر کلی پارامتر به‌صورت مجموع، نسبت مربوط به واریانس کل به دست می‌آید.

\[S_{fi} = S_i + \sum_{i \neq j} S_{ij} + \cdots \]

معادلات و روابط روش سویل در مرجع [16] به‌طور کامل ارائه شده است.

۳- شبیه‌سازی

در این بخش به بررسی نمودارهای گرافیکی و آماری آنالیز حساسیت پرداخته شده است و اثر هر یک از متغیرهای ورودی جدول ۱ بر روی سه خروجی (نزش برداشته، زیاد سطح و عرض شکاف) تحلیل و بررسی شده است. یک تحلیل حساسیت شیب‌سازی سیمبل مورد بررسی قرار گرفته است.

۴- اثر متغیرهای ورودی بر روی نرخ براده برداری

اولین پارامتر تأثیرگذار بر نرخ براده برداری، مدت‌زمان بالاتر می‌باشد. از نتایج بدست‌آمده و با کمک رسم نمودار تأثیر مدت‌زمان بالاتر در شکل ۱ بررسی شده است، همان‌طور که ملاحظه می‌شود با افزایش مدت‌زمان بالا نرخ براده برداری افزایش

\[\text{Simlab Software} \]
می‌باید این میزان افزایش در نرخ براده برداری نسبت مستقیم با افزایش مدت زمان پالس دارد.

شکل ۱ بررسی اثر مدت زمان پالس بر نرخ براده برداری

پارامتر اثرگذاری موردنیروش به علت نرخ براده برداری، فراکس پالس می‌باشد. همان‌طور که در شکل ۱ مشاهده می‌شود، با افزایش فراکس پالس نرخ براده برداری با شیبی ملایم (۰.۵۰۰۰) افزایش می‌یابد.

شکل ۲ بررسی اثر فراکس پالس بر نرخ براده برداری

در شکل ۲ تأثیر پارامتر پالس سیم بر نرخ براده برداری مورد بررسی قرار گرفته است. همان‌طور که ملاحظه می‌شود با افزایش پالس سیم، نرخ براده برداری با شیب می‌زند که این اثر به تغییر شدت نوری کشش سیم می‌توان اثر آن بر نرخ براده‌برداری را توجه بکند. افزایش سیم منجر به افزایش نرخ براده‌برداری می‌گردد.

شکل ۳ بررسی اثر کشش سیم بر نرخ براده برداری

مکانیک مواد پیشرفته و هوشمند / سال ۱۴۹۰ دوره ۳/ شماره ۲
شکل‌های ۴، ۵ و ۶ نشان‌دهنده اثر ناجی پارامترهای جریان تخلیه، سرعت سیم و نرخ جریان دی الکتریک بر روی نرخ براده برداری می‌باشد. نتایج به‌دست‌آمده نشان‌دهنده این امر است که می‌توان این سه پارامتر را در گروه موثرهایی غیر حساس بر نرخ براده برداری قرار داد.

شکل ۴ بررسی اثر جریان تخلیه بر روی نرخ براده برداری

شکل ۵ بررسی اثر سرعت سیم بر نرخ براده برداری

شکل ۶ بررسی اثر نرخ جریان دی الکتریک بر نرخ براده برداری
شکل 7 به بررسی کمی میزان تأثیر پارامترهای ورودی بر نرخ براده برداری را نشان می‌دهد. نتایج حاصل از آنالیز حساسیت سویل می‌باشد به ترتیب مدت زمان پالس با 22 درصد، سرعت سیم با 14 درصد و جریان تخلیه با 10 درصد بیشترین تأثیر را بر نرخ براده برداری داشته‌اند.

شکل 7 مقایسه کمی تأثیر پارامترهای ورودی بر نرخ براده برداری

2- اثر متغیرهای ورودی بر روی زبری سطح

اولین پارامتر تأثیرگذار بر زبری سطح مدت زمان پالس می‌باشد. از نتایج به‌دست آمده‌ها می‌توان درک نمودار تأثیر مدت زمان پالس در شکل 8 بررسی شده است. همان‌طور که ملاحظه می‌شود مدت زمان پالس زبری سطح افزایش می‌یابد.

در شکل 9 تأثیر پارامتر نرخ الکتریک بر زبری سطح مورد بررسی قرار گرفته است. همان‌طور که ملاحظه می‌شود با افزایش نرخ الکتریک زبری سطح کاهش می‌یابد.

شکل 9 بررسی اثر نرخ الکتریک بر زبری سطح

شکل 8 بررسی اثر مدت زمان پالس بر زبری سطح

مکانیک مواد پیشرفته و هوشمند/ سال 1430/ دوی/ شماره 2
آنالیز حساسیت پارامترهای موثر بر نرخ برداری، زبری سطح و عرض شکاف در فرآیند ماشینگاری تخلیه الکتریکی

در شکل ۱۰ تأثیر پارامتر جریان تخلیه بر زبری سطح مورد بررسی قرار گرفته است. همان طور که ملاحظه می‌شود با افزایش جریان تخلیه، زبری با شیب مطلق افزایش می‌یابد.

شکل ۱۰ بررسی اثر جریان تخلیه بر زبری سطح

در شکل ۱۱ تأثیر پارامتر سرعت سیم بر زبری سطح مورد بررسی قرار گرفته است. همان طور که ملاحظه می‌شود با افزایش سرعت سیم زبری سطح نیز با شیب مطلق افزایش می‌یابد.

شکل ۱۱ بررسی اثر سرعت سیم بر زبری سطح

شکل‌های ۱۲ و ۱۳ نشان‌دهنده اثر ناچیز پارامترهای فرکانس پالس و کشش سیم بر روی زبری سطح می‌باشند و نشان‌دهنده این امر است که می‌توان این دو پارامتر را در گروه مؤلفه‌ای غیر حساس بر زبری سطح قرار داد.

شکل ۱۲ بررسی اثر فرکانس پالس بر زبری سطح

۲۱۴
شکل 13 بررسی اثر کشش سیم بر زبری سطح

شکل 14 به بررسی کمی میزان تأثیر پارامترهای ورودی بر زبری سطح را نشان می‌دهد که نتایج از آنالیز حساسیت سیستم به دست‌آمده‌اند. با توجه به شکل 14 این نتیجه به دست می‌آید که بهترین مدت زمان پالس با 17 درصد، نرخ الکتریک با 17 درصد و جریان تخلیه با 4 درصد بیشترین تأثیر را بر زبری سطح داشته‌اند.

دیگر پارامترهای ورودی بر روی عرض شکاف

اولین پارامتر تأثیرگذار بر عرض شکاف مدت زمان پالس می‌باشد. از نتایج به دست‌آمده‌اند که سیم رسم نمودار تأثیر مدت زمان پالس در شکل 15 بررسی شده است. همان طور که ملاحظه می‌شود با افزایش مدت زمان پالس زبری سطح شکاف افزایش می‌یابد.

در شکل 16 تأثیر پارامتر فرکانس پالس بر عرض شکاف مورد بررسی قرار گرفته است. همان‌طور که ملاحظه می‌شود، با افزایش فرکانس پالس عرض شکاف نیز با شیب ملایم افزایش می‌یابد.

در شکل 17 تأثیر پارامتر جریان تخلیه بر عرض شکاف مورد بررسی قرار گرفته است. همان‌طور که ملاحظه می‌شود، با افزایش جریان تخلیه عرض شکاف کاهش می‌یابد.

مکانیک مواد پیشرفته و هوشمند سال 1400 دوره 2/ شماره 1
آنالیز حساسیت پارامترهای موثر بر نرخ براده بردار، زبری سطح و عرض شکاف در فرآیند ماشینگاری تخلیه الکتریکی

شکل 15 بررسی اثر مدت زمان پالس بر عرض شکاف

شکل 16 بررسی اثر فرکانس پالس بر عرض شکاف

شکل 17 بررسی اثر جریان تخلیه بر عرض شکاف

شکل‌های 18 و 20 نشان دهنده اثر ناچیز پارامترهای سرعت سیم، کشش سیم و نرخ الکتریک بر روی عرض شکاف می‌باشد و نشان دهنده این امر است که می‌توان این سه پارامتر را در گروه مؤلفه‌های غیر حساس بر عرض شکاف قرار داد.

مکانیک مواد پیشرفت و هوشمند سال 1400/ دوره 2/ شماره 4
شکل 18 بررسی اثر سرعت سیم بر عرض شکاف

شکل 19 بررسی اثر کشش سیم بر عرض شکاف

شکل 20 بررسی اثر نرخ الکتریک بر عرض شکاف

شکل 21 به بررسی کمی میزان تأثیر پارامترهای ورودی بر عرض شکاف را نشان می‌دهد که نتایج از آنالیز حساسیت سیبی به دست آمده‌اند. با توجه به شکل 21 این نتیجه بود که به دست می‌آید که ترتیب مدت زمان پالس با 47 درصد، سرعت سیم با 24 درصد و جریان تخلیه با 20 درصد بیشترین تأثیر را بر عرض شکاف داشته‌اند.

مکانیک مواد پیشرفته و هوشمند/ سال 1401/ دوره 2/ شماره 4
نتیجه‌گیری
در این پژوهش با استفاده از روش تحلیل حساسیت سوبل، که از دقت بالایی نسبت به سایر روش‌های تحلیل حساسیت برخوردار می‌باشد برای نخستین بار به بررسی کمی تأثیر شش پارامتر ورودی شامل جریان تخلیه، فرکانس پالس، سرعت سیم، کشش سیم و نرخ الکتریکی بر نرخ براده‌برداری، زبری سطح و عرض شکاف در فرآیند ماشینکاری تخلیه الکتریکی با بهبودیت، که در این پژوهش پیشگیران این است که پارامترهای مدت‌زمان پالس، سرعت سیم و جریان تخلیه الکتریکی پارامترهای بر نرخ براده‌برداری در بازه‌ای محدود به سیم باشد. پارامترهای فرکانس پالس، کشش سیم و نرخ الکتریکی تأثیر تناژی بر نرخ براده‌برداری دارند. پارامترهای مدت‌زمان پالس، سرعت سیم و جریان تخلیه الکتریکی، و جریان تخلیه الکتریکی پارامترهای بر زبری سطح می‌باشد، پارامترهای جریان تخلیه، فرکانس پالس و کشش سیم را در مدت‌زمان‌های پالس، سرعت سیم و جریان تخلیه الکتریکی پارامترهای بر عرض شکاف می‌باشند. پارامترهای فرکانس پالس، کشش سیم و نرخ الکتریکی را می‌توان کمترین پارامترهای بر عرض شکاف می‌باشند. مدت‌زمان پالس با 22 درصد، سرعت سیم با 14 درصد و جریان تخلیه با 10 درصد پیش‌ترین تأثیر را بر نرخ براده‌برداری داشته‌اند.

مراجع
[1] Groover M P. Fundamentals of modern manufacturing: materials, processes, and systems. John Wiley & Sons. 2020.
[2] Kuriakose S, Shunmugam M S. Characteristics of wire-electro discharge machined Ti6Al4V surface. Materials Letters. 2004;58:2231-2237.
[3] Puri A B, Bhattacharyya B. An analysis and optimisation of the geometrical inaccuracy due to wire lag phenomenon in WEDM. International journal of Machine tools and manufacture. 2003;43:151-159.
[4] Singh H, Garg R. Effects of process parameters on material removal rate in WEDM. Journal of achievements in materials and manufacturing engineering. 2009;32:70-74.
[5] Puertas I, Luis C J. A study on the machining parameters optimisation of electrical discharge machining. Journal of materials processing technology. 2003;143:521-526.
[6] Mahapatra S S, Patnaik A. Parametric optimization of wire electrical discharge machining (WEDM) process using Taguchi method. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2006;28:422-429.
[7] Scott D, Boyina S, Rajurkar K P. Analysis and optimization of parameter combinations in wire electrical discharge machining. The International Journal of Production Research. 1991;29:2189-2207.

[8] Rajurkar K P, Wang W M. Thermal modeling and on-line monitoring of wire-EDM. Journal of materials processing technology. 1993;38:417-430.

[9] Tosun N, Cogun C. An investigation on wire wear in WEDM. Journal of materials processing technology. 2003;134:273-278.

[10] Shah A, Mufti N A, Rakwal D, Bamberg E. Material removal rate, kerf, and surface roughness of tungsten carbide machined with wire electrical discharge machining. Journal of materials engineering and performance. 2011;20:71-76.

[11] Liao Y S, Huang J T, Su H C. A study on the machining-parameters optimization of wire electrical discharge machining. Journal of materials processing technology. 1997;71:487-493.

[12] Datta S, Mahapatra S. Modeling, simulation and parametric optimization of wire EDM process using response surface methodology coupled with grey-Taguchi technique. International Journal of Engineering, Science and Technology. 2010;2:162-183.

[13] Motaghed S, Yazdani A, Nicknam A, Khanzadi M. Sobol sensitivity generalization for engineering and science applications. Journal of Modeling in Engineering. 2018;16:217-226.

[14] Majid Ghoreishi M Z, Vahid Tahmasbi. Sobol Sensitivity Analysis, Modeling and Optimization Effective Parameters of Force in Bone Drilling Processes. Mechanical Engineering Journal of Tabriz University. 2018;48:229-237. (In Persian)

[15] Bathae S H, Sabzevari M, Moslemi Naeini H. Investigation of hydroforming process loading paths based on experimental and improvement based on Sobol sensitivity analysis. Mechanic of Advanced and Smart Materials. 2022;2:53-72.DOI: 10.52547/masm.2.1.53. (In Persian)

[16] Saltelli A, Sobol I M. About the use of rank transformation in sensitivity analysis of model output. Reliability Engineering & System Safety. 1995;50:225-239.