Food and feeding habits of *Oreochromis niloticus* (Linnaeus, 1757) in a tropical soda lake, lake Shaalaa, Ethiopia

Solomon Wagaw, Seyoum Mengistou and Abebe Getahun

DOI: https://doi.org/10.22271/fish.2021.v9.i1e.2429

Abstract

The food and feeding habits of *Oreochromis niloticus* in Lake Shalla, Ethiopia was examined by stomach contents analysis. Analysis of stomach revealed that 226 (65.9%) fish contained different food items, while 117 (34.1%) had empty stomachs. Non-empty stomachs had a variety of food items with phytoplankton, zooplankton, insect, detritus, nematodes and fish scales. *O. niloticus* mainly feed on phytoplankton and had phytoplanktivorous feeding habit. Bacillariophyceae (*Nitzschia, Anomoeoneis, Navicula* and *Melosira*) were identified as the most desired phytoplankton item. The prey items of *O. niloticus* differed among size classes (ANOVA, *p* < 0.05). The main prey items were zooplankton by the smaller-size class, and phytoplankton in fish of the larger-size class. Seasonal variation in the diet composition was evident (t-test, *p* < 0.05) and zooplankton, chironomids, nematodes, fish scales and detritus were important during the wet season, while phytoplankton predominates during the dry season. This study concludes that the food items and feeding habits depending on availability as influenced by season and fish size *O. niloticus* in Lake Shalla.

Keywords: Bacillariophyceae, feeding habits, *Oreochromis niloticus*, Phytoplanktivores, Stomach contents analysis

Introduction

The Nile’s tilapia *Oreochromis niloticus* (Linnaeus, 1757), is one of the most widespread and important species in tropical freshwater. *O. niloticus* can be found in most types of freshwater habitats, such as rivers, streams, lakes, reservoirs and ponds [17]. The species prefer water temperatures between 16 and 29 °C [23, 32]. In Ethiopia, it is widely distributed in the lakes, rivers, reservoirs and swamps with a significant economic and ecological contribution [17, 39]. However, some economically driven developments in and around the lakes continue to exert considerable pressure on saline lake fish populations [42, 22, 23]. The best example of this is Lake Abijata, in which the lake was full of *O. niloticus* [22]. However, Abdi [1] noted the disappearance of *O. niloticus* from Lake Abijata after the establishment of the soda ash factory. At the same time a number of piscivorous birds such as the Great White Pelican (*Pelecanus onocrotalus roseus*) and cormorant have been migrating to adjacent lakes.

Studies on the diet composition and natural feeding of fish are important for the identification of the trophic relationships present in aquatic ecosystems, identifying feeding composition, structure and stability of food webs [34, 19]. *O. niloticus* has a flexible feeding habits, characterized by generalist and opportunistic omnivorous feeding behavior [35, 19]. Moreover, its food composition vary within a wide range of seasonal and spatial condition of the environments, maturity, size and age of the fish [18, 14, 12]. Several authors have studied the food and feeding habits of *O. niloticus* in different Ethiopian water bodies [38, 14, 4]. These studies mainly focused on freshwater *O. niloticus*. Research on the Soda Lake of fish species is limited only to the description of diversity [16]. The fish fauna of Lake Shala was reported by Golubitsv et al. [17] and Klempener and Cash [27], the latter reported only *Aphocheilichthys* which was retrieved after seismic detonations in the lake. There was no report of tilapia or other fish in the lake, and it was presumed that tilapia had disappeared due to osmotic stress and other factors from the lake. It was a surprise for this study to ‘locate’ a tilapia stock from the southern river mouth of the freshwater Gidu River.
This study on the food and feeding habits of this species is part of a general study on the biology and ecology of the fish. The tilapia stock is important as food for many shore birds and has some potential for the establishment of a fishery to support local livelihoods.

Materials and Methods
Description of the study area
Lake Shalla lies between 7 °24'–7 °33'N and 38 °23'–38 °39'E at altitudes of approximately 1,558 m within the Abijata-Shalla Lakes National Park (Fig. 1). The lake is a volcano-tectonic lake [29], deep (max. 266 m) and large (329 km²), with a vast catchment area (3,920 km²) [41, 8]. The lake region is characterized by a high evaporation rate that exceeds the mean annual rainfall [6]. Climate of the Ziway–Shala region is mainly characterized by alternating wet and dry seasons following the annual movements of the Intertropical Convergence Zone (ITCZ) [41], the dry seasons from October to February and rainy seasons March to September. The rainy season is characterized by a bimodal rainfall pattern, with a minor rainy period extending from March to May and the major rainy period from June to September.

Lake Shalla receives its water from the Adabat and Gidu River [7, 8]. The lake is also surrounded by numerous hot springs, of varying salinity, temperature, size and discharge rate, which feed the lake [8]. Lake Shalla is characterized by a high surface water temperature, pH, saline–alkaline conditions and a high phosphate content, but with very low nitrogen levels [26, 33]. Despite this hostile nature of the environment, Lake Shalla supports phytoplankton, dominated by diatoms [26]. Lake Shalla also supports sparse zooplankton community and dominated by rotifers including Brachionus dimidiatus, B. pliciatus, Hexarthra spp, and Copepods (Cylopoids and Harpacticoids). The benthic macroinvertebrate community of the lake comprises Tubificidae, Ostracoda and Chironomidae [40]. The lake also known by an outstanding avifauna diversity, mainly Pelicans and Lesser Flamingos, inhabiting the lake and its volcanic island. The cichlid O. niloticus [17] and Aplocheilichthys sp [27] being reported for the lake.

Lake Shala is endorheic, and high temperatures associated with the Rift Valley lead to high evaporation rates of water, resulting in high concentrations of Na⁺, HCO₃⁻ and CO₃²⁻ salts [30]. Because of such extreme water conditions in these lakes, the O. niloticus is exposed to huge and diverse physiological challenges. Also the source of food are restricted to a few species and frequent atelomictic mixing of the lake keeps benthic algal species suspended and small-bodied crustaceans production high enough to sustain the tilapia stock.

Field fish sampling and morphometric measurement
Samples of O. niloticus were collected monthly between January and December 2018 using experimental gill net at a fixed site throughout the study (Fig. 1). Gillnets had stretched mesh sizes of 4-14 cm with a panel length of 50 m and a width of 1.5-2.0 m per mesh size. The nets were set parallel to the shoreline in the afternoon (about 05:00 pm) and lifted in the following morning (about 7:00 am). Immediately after capture, total length (TL) and total weight (TW) of each specimen were measured to the nearest 0.1 cm and 1.0 g, respectively. Each specimen was dissected to determine sex, stomach containing food was preserved in 5% formaldehyde and transported to Addis Ababa University for further laboratory analysis.

Stomach content analysis
The preserved stomach content of O. niloticus was transferred into a petri dish and analyzed using a modified point method according to Hyslop [20]. Food items were examined under a dissecting LEICA S8 APO and a compound LEICA DME microscope (100X to 400X). The food items were identified to the lowest possible taxonomic level by using description,
illustrations and keys in the literature. Each category was assigned several points proportional to the estimated contribution. The contribution of each prey functional category to the overall stomach contents was assessed using two indices: percent frequency of occurrence (%Q) and percent composition by volume (%V). In the frequency of occurrence method, the occurrence of food items was expressed as the percentage of the total number of stomachs. %Q provides information on the proportion of fish stomachs containing a particular prey item despite amount. The percentage volume contribution of each food item is visually assessed relative to all of the food items present in the gut. Volumetric contribution (ml) and frequency of occurrence were also used to compute the index of food preponderance (IOP) and geometric importance of index (GIIi).

For the assessment of the importance of each prey category, the index of preponderance (IOP) was calculated as:

\[
IOP_a(i) = \frac{\sum_{i=1}^{n} Qi \times Vi}{\sum_{i=1}^{n} (Qi + Vi)}
\]

Where S is the number of prey types, Qi is the frequency of occurrence of species i and % Vi is the percent composition by volume of species i. To facilitate comparisons among species, IOPa was converted into percent IOPa (%IOPa).

In order to evaluate the relative importance of food items and species-level dietary variations, Geometric Index of Importance (GIIi) was computed as:

\[
GIIi = \frac{\sum_{i=1}^{n} RMPQi}{(\sqrt{n})}
\]

Where, RMPQi= percentage of volume and frequency of occurrence (as a percentage of total occurrences) and n= total number of RMPQ parameters used to generate GIIi. GIIi index treats each dietary metric equally and some prey items were better represented by %N (e.g., smaller but countable prey) whereas others were better represented by %V (e.g., fish and other larger prey).

Phytoplankton preference index (PPI) was determined using percentage frequency of occurrence through the following equation described by Chrisafi et al. and Hussian et al. (1991). The different values of this index, allow separation of phytoplankton preference to three categories as main diet, secondary and occasionally eaten phytoplankton species.

Estimation of seasonal and size based food habit relationship

Seasonal and sized based dietary variations of *O. niloticus* in Lake Shalla was studied based on the percent volumetric contribution, frequency of each food item, IOPa and GIIi indices within each length group and seasons. For studying seasonal and size based diet variation, fish were classified into five size classes (15-20, 20-25, 25-30 and > 30 cm TL) and two seasons (dry and wet seasons).

Results

Diet composition of *O. niloticus* in Lake Shalla

A total number of 343 *O. niloticus* samples were caught during the period of this study. Out of the total number of fish samples collected 117 (34.1%) had empty stomachs, while 226 (65.9%) fish contained different food items in their stomach contents. The food of *O. niloticus* in Lake Shalla consisted of different food items including phytoplankton, zooplankton, insect, detritus, nematodes and fish scales (Table 1). Out of these food items, phytoplankton constituted the bulk of the foods consumed while zooplankton were the immediately consumed prey types. The remaining food items such as insect, detritus, nematodes and fish scales were rarely consumed food items. The percentage of geometric importance index value (%GIIi) also showed that phytoplankton was the primarily consumed prey type (Fig. 2). According to this index, zooplankton constituted the next important prey in the diet of *O. niloticus*, whereas insect, detritus, nematodes and fish scales were occasionally consumed. Phytoplankton occurred in 90.3% and constituted 75.5% of the total volume of food items. Based on the %IOP index, phytoplankton also contributed about 91.0% of the diet. Among the phytoplanktons, Bacillariophyceae (Diatoms) such as *Nitzschia, Anomoeoneis, Navicula* and *Melosira* largely contributed to the highest preponderance index value (91.3%) which occurred in 88.9% and accounted for 72.3% of the total volume of food items (Table 2). Moreover, the food selectivity index for phytoplankton species also indicated that *O. niloticus* in Lake Shalla is more selective to *Nitzschia, Anomoeoneis, Navicula* and *Melosira* from Bacillariophyceae (Fig. 3). While Cyanophyceae (blue-green algae) such as *Anabaena, Planktolyngbya, Phormidium* and *Spirulina* were observed in 28.3% of the stomachs and constituted 3.2% of the total volume.

Food type	Qi	%Qi	Vi	%Vi	IOP	IOP%
Phytoplankton	204	90.3	221.3	75.5	31.4	91.0
Zooplankton	87	38.5	42.5	14.5	2.6	7.5
Insects	27	11.9	14.9	5.1	0.3	0.8
Nematodes	24	10.6	2.4	0.8	0.04	0.1
Fish scales	18	8.0	4.6	1.6	0.06	0.2
Detritus	31	13.7	7.25	2.5	0.2	0.5

Zooplankton (Rotifers, Cyclopoids and Cladoceran) were the second important food items in the diet of *O. niloticus* that occurred in 38.5% of the stomach examined and constituted 14.5% of the total volume of the food items consumed. The percentage index of preponderance (%IOP = 7.5%) and geometric importance index value (%GIIi = 19.4%) also showed that zooplankton were the most preferred food types. In the zooplankton food items, rotifers were the most important food items (55.5% of the total volume of food items). Among the phytoplanktons, Bacillariophyceae (Diatoms) such as *Nitzschia, Anomoeoneis, Navicula* and *Melosira* from Bacillariophyceae (Fig. 3). While Cyanophyceae (blue-green algae) such as *Anabaena, Planktolyngbya, Phormidium* and *Spirulina* were observed in 28.3% of the stomachs and constituted 3.2% of the total volume.
Fig 2: Graphical presentation of percentage geometric index of importance (%GII) for food types of *Oreochromis niloticus* (n = 226) in Lake Shalla. Phyto – Phytoplankton; Zoop – Zooplankton; Nema – Nematodes and F. scale – Fish scales; vertical lines separate the different degrees of preference of the food items.

Fig 3: Phytoplankton preference index of *Oreochromis niloticus* in Lake Shalla.

Table 2: Frequency of occurrence (Qi), volumetric contribution (Vi), index of preponderance (IOP) and percentage contribution of various food items of *Oreochromis niloticus* (n = 226) in Lake Shalla.

Food items	Qi	%Qi	Vi	%Vi	IOPa	IOP%
Bacillariophyceae	201	88.9	211.9	72.3	24.9	91.3
Nitzschia spp.	198	87.6	89.04	30.4	4.7	17.8
Navicula spp.	176	77.9	27.1	9.3	1.3	14.4
Melosira spp.	121	53.5	15.4	5.3	0.5	9.8
Achnanthes spp.	36	15.9	2.6	0.9	0.02	2.9
Anomoeoneis spp.	181	80.1	36.7	12.5	1.8	15.1
Cyclotella spp.	52	23.0	7.1	2.4	0.1	4.2
Epithemia spp.	43	19.0	4.8	1.6	0.05	3.5
Rhopalodia spp.	71	31.4	13.4	4.6	0.3	6.0
Frustulia spp.	86	38.1	7.9	2.7	0.18	6.9
Campylopus spp.	41	18.1	1.91	0.7	0.02	3.2
Anphora spp.	36	15.9	1.4	0.5	0.01	2.8
Surulla spp.	28	12.4	0.81	0.3	0.006	2.2
Flagillaria spp.	31	13.7	0.94	0.3	0.008	2.4
Variation of food composition with fish size

In *O. niloticus* there were significant differences in diet among size classes (ANOVA, *p* < 0.05). The most important food source was zooplankton over the fish below 15 cm size classes (Fig. 4). Their volumetric contribution was 48.9% of the total food items. In addition to zooplankton as the main prey item, other important food resources for smaller-sized fish (<15 cm) were phytoplankton and accounted for 24.6% of the total volume of food items. Insect (Chironomidae) was another food source of animal origin relatively important in the diet. Their volumetric contribution was 18.9% of the food items in this specific size class. However, the volumetric contribution of zooplankton, insect and detritus decreased considerably as the fish size increased.

![Fig 4: Volumetric contributions of different food items in the diet of different size classes of *Oreochromis niloticus* in Lake Shalla, Ethiopia.](http://www.fisheriesjournal.com)

The volumetric contribution of phytoplankton showed significant variation among the different size classes (ANOVA, *p* < 0.05). The volumetric contribution of phytoplankton showed an increasing trend with fish size. In the intermediate and largest size class 15-20, 20-25, 25-30 and > 30 cm TL, the contribution of phytoplankton was 64.8%, 85.9%, 98.9% and 100% of the total volume of food items, respectively. While the contributions of other foods of animal origin such as zooplankton and insects were insignificant.

Seasonal variation in the diet of *O. niloticus* in Lake Shalla

The seasonal contribution of different food items in the stomach of *O. niloticus* is shown in Table 3. The result clearly exhibits seasonal variations in the diet composition of the fish in Lake Shalla. Phytoplankton was the most important food item during both the dry and wet seasons. However, phytoplankton showed a significant variation in the dietary contribution of *O. niloticus* (t-test, *p* < 0.05) and significant during the dry months. During the dry season, phytoplanktons occurred in 94.7% of the stomachs and comprising 84.9% of the total volume of food items. However, its contribution decreased to 60.3% of the total volume during the wet season.

Zooplankton also showed a seasonal variation in the diet composition of *O. niloticus* and significant during the wet season. Zooplankton was observed in 54.3% of the stomach contents and comprised 21.4% of the total volume of the food during the wet season. But their contribution declined during the dry season (27.3%) and accounted for 10.3% of the total volume of food items. Insect (Chironomids), nematode, fish scales and detritus also demonstrated significant seasonal variations in the diet of *O. niloticus* and it was important during the wet season.

Table 3: Relative contribution percentage frequency of occurrence (% Qi), volumetric contribution (% Vi), index of preponderance (% IOP) and geometric index of importance (% GII) of different food items in the diet of *Oreochromis niloticus* in Lake Shalla during the dry and wet seasons.

Food type	%Qi Dry	%Qi Wet	%Vi Dry	%Vi Wet	IOP% Dry	IOP% Wet	(% GII) Dry	(% GII) Wet
Phytoplankton	94.7	84.0	84.9	60.3	96.2	77.4	65.8	47.4
Zooplankton	27.3	54.3	10.3	21.4	3.4	17.7	13.8	24.9
Insects	9.1	16.0	3.0	8.5	0.3	2.1	4.4	8.0
Nematodes	7.6	14.9	0.4	1.4	0.04	0.3	2.9	5.4
Fish scales	5.3	11.7	0.9	2.6	0.06	0.5	2.3	4.7
Detritus	6.8	23.4	0.4	5.8	0.04	2.1	2.7	9.6
Discussion

Food and Feeding Habits of O. niloticus

The food composition of *O. niloticus* can be highly variable within a water body, depending on the size and age of the fish, the habitat occupied and the time of the year [12]. The analysis of stomach content analysis showed that 117 (34.1%) of the stomachs were empty while 226 (65.9%) contained varied quantity of food. This high number of empty stomachs may be attributed the post-harvest digestion or the method of catching of the specimens. Oso et al. [34] and Engdaw *et al.* [14] also reported an empty stomachs for *O. niloticus*, caught with gill nets in Ero and Koka reservoir. The reason for this may be due to the fact that the food items in their stomach may have been regurgitated or digested as the fish struggled for escape in gill nets during the catches. The present study found a variety of food items of phytoplankton, zooplankton, insects, nematodes, fish scales, and detritus in the stomachs of *O. niloticus*. This did not differ from the findings of Adeyemi *et al.* [3] and Kuebutorny *et al.* [20] which reported *O. niloticus* have varying food including plant and animal origin in its gut. Many authors have also reported in different Ethiopian water bodies that *O. niloticus* feeds on a variety of food items [38, 14, 30, 4, 39].

Phytoplankton was the most important food item in all stomach of *O. niloticus in Lake Shalla*. This indicated that the fish was a phytoplanktivorous or herbivorous feeder. These findings are supported well by earlier findings that have classified *O. niloticus* as herbivorous that favor phytoplankton species [38, 14, 2, 19]. Phytoplanktivorous or herbivorous feeding habits of *O. niloticus* have also been reported in Ethiopian water bodies such as Lake Chamo [19], Koka Reservoir [14] and Lake Hayq [4]. However, this result was in disagreement with Oso *et al.* [34], who suggested that *O. niloticus* has omnivorous feeding habits. The contrasting feeding habits of the fish may be due to the differences in the abundance of food items in different locations.

In the present study, *O. niloticus* preferred Bacillariophyceae (diatoms) than the phytoplankton groups. These findings were supported by the work of Abdulhakim *et al.* [2], Temesgen [39], and Hussian *et al.* [19] who mentioned that Bacillariophyceae were the most prevailing food items and highly desired by *O. niloticus*. The study of Shalloof and Khalifa [50] also pointed out that the diatoms are the most important food items than any food items and represented about 68.0% from the total gut content of *O. niloticus* in Abu-Zabal Lake, Egypt. However, the dominance of green algae in Lake Hawassa [49], blue-green algae in Lake Zeway [37], Hayq [4] and Koka Reservoir [14] were reported in the food composition of the same fish. These differences could be related to variations in environmental and biological factors among the lakes which influence the types of food items ingested by the fish [10, 39]. According to Elizabeth and Willén [25] the diatoms had a higher percentage abundance than the blue-green algae in Lake Shalla. Besides, these diatoms are highly digestible because the holes in the frustules permit the entry of enzyme into the cytoplasm to enhance digestion [18, 38]. This means that *O. niloticus* in Lake Shalla was selecting diatoms more than other groups of algae.

Apart from the major food items, they also picked a variety of other food items including rotifers, copepods, and Chironomidae, which contributed an appreciable amount in the food composition of *O. niloticus* in Lake Shalla due to some nutritional benefits. Several authors have provided similar interpretations about the importance of zooplankton and insects in the diet of *O. niloticus* in different lakes and reservoirs [38, 3, 14, 2, 4, 39].

Diet composition in relation to fish size

O. niloticus have been known to feed on a wide variety of items such as phytoplankton, detritus, plant material, chironomids and zooplankton [34, 12, 28]. Its feeding habits of may be varying according to size [39, 12]. In the present study, *O. niloticus* showed size-based differences in their feeding habit. The main prey items were phytoplankton in the larger-size class, but smaller size fish tended to consume various aquatic animals and planktons, such as zooplankton, insects and phytoplankton. This showed that juveniles of *O. niloticus* are generally omnivorous in their feeding style. This did not differ markedly from Temesgen [39], who suggested *O. niloticus* as omnivorous feeding on both animal and plant origin at juvenile size class. However, this was in contrast with Teferi *et al.* [38] and Engdaw *et al.* [14], who reported that *O. niloticus* had a preference for food items of animal origin (zooplankton and insects) at juvenile stages.

The study showed that adult *O. niloticus* fed more on phytoplankton than other food items. This suggested that *O. niloticus* in Lake Shalla switched their primary food resource in favor of phytoplankton. This finding agreed with Hussian *et al.* [19] and Engdaw *et al.* [14], who reported *O. niloticus* was phytoplanktivore in its feeding habit at a larger size. Similarly, the findings from the current study also agreed with the work of Teferi *et al.* [39], who reported phytoplankton as a major item in the diet of adult *O. niloticus* in Lake Chamo. This size based difference in feeding habits of *O. niloticus* may be due to energy demands, development of the fish’s morphological and physiological features as it grows [31, 2].

Also, the life history of *O. niloticus* is diverse [10, 32], depending on the habitat they used, and its food habits can vary widely. [37, 38, 14, 4].

Seasonal variation in the diet of *O. niloticus* in Lake Shalla

During the studies of fish feeding, the effect of seasonality should always be considered, because the seasonal changes of biotic and abiotic factors alters the structure of the food web along the year and, as a consequence, the fish often shows seasonal diet shifts [21]. In the current study, the food items of *O. niloticus* in Lake Shalla showed a significant seasonal variation. Some previous studies also found a seasonal variation of food types in the diet composition of *O. niloticus* in the Ethiopian water bodies [38, 14, 4, 39]. The volumetric contribution of phytoplankton was higher during the dry than a wet season and is consistent with the study of Temesgen [39] and Assefa and Getahun [4] who indicated that phytoplankton is the most important food item consumed during the dry season. However, this finding was in contrast to that recorded by Mulugeta [30] who found a higher contribution of phytoplankton in the diet of *O. niloticus* during the wet season in Gilgel Gibe I Reservoir, Ethiopia.

The results from this study showed that the contribution of zooplankton, insect, detritus, nematodes, and fish scales was higher during the wet season. This was similar to earlier reports for these fish species in some other water bodies [14, 30, 4, 39]. The proportion of zooplankton in the diet of *O. niloticus* was higher during the wet season, might be related with seasonal flooding which contribute to the high zooplankton population through bringing nutrients from the catchments which support the growth of phytoplankton and consequently zooplankton productivity [39]. This corroborates the reports of...
Assefa and Getahun [4] and Engdaw et al. [14] in Lake Hayq and Koka Reservoir, respectively.

The contribution of detritus was higher in the diet of *O. niloticus* during the wet season. This may be due to flooding which brings dead plant and animal parts into the lake and undergo partial decomposition. The dominance of detritus in the diet during the rainy season was consistent with the study by Temesgen [39] in Lake Langeno and Engdaw et al. [14] in Koka Reservoir. Similarly, the high contribution of insects in the diet composition of *O. niloticus* during the wet season may be associated with the reproductive biology of the fish [24]. Fish activities to shallow parts of the lake and remaining there for reproduction could be an explanation to the increase in ingested insects in the wet season [30, 4, 39]. This is quite similar to the findings of other investigators in the Ethiopian rift valley lakes [37, 38, 14, 39].

Conclusion

This study shows the importance of phytoplankton as food items and *O. niloticus* is primarily phytoplanktivores in Lake Shalla. They fed mainly on Bacillariophyceae than any other group of phytoplankton. However, the feeding habit and diet composition varied according to size, the juvenile *O. niloticus* is an omnivores, feeding on diverse aquatic animals and planktons, such as zooplankton, insects and phytoplankton while the adult is phytoplanktivores feeding mainly on phytoplankton. The diet composition of *O. niloticus* also differed among the studied seasons. The main prey items were phytoplankton during the dry season and the contribution of zooplankton, insect, detritus, nematodes, and fish scales was higher during the wet season. Therefore, it could be concluded that food items and feeding habits depending on availability as influenced by season and fish size *O. niloticus* in Lake Shalla.

Acknowledgements

We appreciate the financial support provided by Addis Ababa University through its Graduate Studies Program and Thematic Research Project. We thank Dr. Assefa Wosnie and Dr. Yirga Enawgaw for their help and advice in fieldwork and research techniques. Finally, we thank the Ethiopian Wildlife Conservation Authority (EWCA) and Abijatta-Shalla Lakes National Park Administration for granting permission to conduct research in Lake Shalla.

References

1. Abd, M. **Impact of Human Activity on Abijata-Shalla Lakes National Park Ecosystem.** Diss. MSc. Thesis, Agricultural University of Norway, Oslo 1993;1:1-75
2. Abdulkahim A, Addo S, Lawan Z, Ebenezer A. Feeding habits and condition factor of *Oreochromis niloticus* in Lake Alau, Northeastern Nigeria. Algae 2015;32:23-36.
3. Adeyemi SO, Akombu PM, Toluhi OO. Food and feeding habits of *Oreochromis niloticus* in Lake Gbedikere, Bassa, Kogi state. Continental Journal of Animal and Veterinary Research 2009;1:25 - 30.
4. Assefa WW, Getahun A. The food and feeding ecology of Nile tilapia, *Oreochromis niloticus*, in Lake Hayq, Ethiopia. International Journal of Ecology and Environmental Sciences 2015;28:41(1, 2):55-65.
5. Assis C. A generalized index for stomach contents analysis in fish. Scienta Marina 1996;60(2, 3):385-389.
6. Ayenew T, Legesse D. The changing face of the Ethiopian rift lakes and their environs: call of the time.

Lakes & Reservoirs: Research & Management 2007;12(3):149-65.
7. Baumann A, Förstner U, Rohde R. Lake Shala: water chemistry, mineralogy and geochemistry of sediments in an Ethiopian rift lake. Geologische Rundschau 1975;64(1):593-609.
8. Baxter RM. *Lake morphology and chemistry*. Ethiopian Rift Valley Lakes. Backhuys, Leiden 2002, 45-60.
9. Bellinger E, Sige D. Introduction to freshwater algae. Freshwater algae: Identification and use as bioindicators. 2010, 1-40.
10. Bwanika G, Makanga B, Kizito Y, Chapman L, Baliwra J. Observations on the biology of Nile tilapia, *Oreochromis niloticus*, in two Ugandan crater lakes. African Journal of Ecology 2004;42:93-101.
11. Chrisafi E, Kaspiris P, Katselis G. Feeding habits of sand smelt (*Atherina boyeri*, Risso 1810) in Trichonis Lake (western Greece). Journal of Applied Ichthyology 2007;23(3):209-214.
12. Daiki T, Prachya M, Akihisa I. Food habits of three non-native cichlid fishes in the lowermost Chao Phraya River basin, Thailand. Journal of Freshwater Ecology 2019;34(1):419-432.
13. Defaye D. Contribution a la connaissance des Copepodes d’Ethiopie. Hyrobiologia 1988;164:103-147.
14. Engdaw F, Dadebo E, Nagappan R. Morphometric relationships and feeding habits of Nile tilapia *Oreochromis niloticus* (L.) (*Pisces: Cichlidae*) from Lake Koka, Ethiopia. International Journal of Fisheries and Aquatic Sciences 2013;2(4):56-71.
15. Gasse F, Talling J, Kilham P. Diatom assemblages in East Africa: classification, distribution and ecology (lakes, water chemistry). Revue d'Hydrobiologie Tropicale (France) 1983;16(1):3-4.
16. Getahun A. Lake Aldera: a threatened saline lake in Ethiopia. SINET: Ethiopian Journal of Science. 2001;24(1):127-31.
17. Golubtsov AS, Dgebudze YY, Mina M. Fishes of the Ethiopian rift valley. *Ethiopian rift valley lakes* (Pisces: Cichlidae) from Lake Koka, Ethiopia. International Journal of Fisheries and Aquatic Sciences 2013;2(4):56-71.
18. Harbott BJ. Preliminary observation on the feeding of *Tilapia nilotica* Linn. In Lke Rudolf. Afr J Trop Hydrobio Fish 1975;12:71-81.
19. Hussain AE, Walid A, Morsi HH. Feeding on phytoplankton profile of two African Cichlids in large reservoir, Lake Nasser, Egypt. Egyptian Journal of Aquatic Biology and Fisheries 2019;23(4):451-464.
20. Hyslop EJ. Stomach contents analysis - a review of methods and their application. Journal of Fish Biology. 1980;17:411-429.
21. Kariman A, Shalloof S, Nehad K. Stomach Contents and Feeding Habits of *Oreochromis niloticus* (L.) From Abu-Zabal Lakes, Egypt. World Applied Sciences 2009;6(1):01-05.
22. Kathleen RF. Abijata-Shalla Lakes National Park: Assessment of Factors Driving Environmental Change for Management Decision-Making. (E. W. C. Authority, Ed.), Addis Ababa, Ethiopia 2011.
23. Kavembe GD, Axel M, Chris MW. Fish Populations in East African Saline Lakes. In *Soda Lakes of East Africa* (Michael Schagerl, Ed.) 2016, 227-257. Springer, Cham.
24. Kebede MT, Abebe G, Brook L. Reproductive biology of commercially important fish species in Lake Langeno, Ethiopia. Asian Fisheries Science. 2018;31(4):319-39.
25. Kebede E, Willén E. Phytoplankton in a salinity-alkalinity series of lakes in the Ethiopian Rift Valley. Uppsala: Acta Universitatis Upsaliensis 1996.

26. Kebede E, Mariam ZG, Ahlgren I. The Ethiopian Rift Valley lakes: chemical characteristics of a salinity-alkalinity series. Hydrobiologia 1994;288(1):1-2.

27. Klemperer SL, Cash MD. Temporal geochemical variation in Ethiopian Lakes Shala, Arenguade, Awasa, and Beseka: possible environmental impacts from underwater and borehole detonations. Journal of African Earth Sciences 2007;48(2, 3):174-198.

28. Kuebutonye F, Akongyure D, Alhassan E. Morphometric Characteristics and Feeding Habits of Five Commercial Fish Species of the Libga Reservoir in the Northern Region of Ghana. International Journal of Oceanography & Aquaculture 2019;3(2).

29. Le Turdu C, Tiercelin JJ, Gibert E, Travi Y, Lezzar KE et al. The Ziway–Shala lake basin system, Main Ethiopian Rift: influence of volcanism, tectonics, and climatic forcing on basin formation and sedimentation. Palaeogeography, Palaeoclimatology, Palaeoecology 1999;150(3, 4):135-177.

30. Mulugeta W. Feeding Habits and Some Biological Aspects of Fish Species in Gilgel Gibe Reservoir, Ethiopia. International Journal of Current Research. 2013;5(12):4124-4132

31. Njiru M, Okeyo-Owuor JB, Muchiri M, Cowx IG. Shifts in the food of Nile tilapia, Oreochromis niloticus (L.) in Lake Victoria, Kenya. African Journal of Ecology 2004;42:163-170.

32. Nyakuni L. Habitat utilization and Reproductive Biology of Nile Tilapia (Oreochromis Niloticus) in Albert Nile, Nebbi District. Makerere University 2009.

33. Ogato T. Dynamics of phytoplankton and physicochemical features of the Ethiopian soda lakes Chitu and Shala, and evaluation of the potential of their waters for the production of Arthrospira (Spirulina) fusiformis (Cyanophyceae) in laboratory cultures (Doctoral dissertation, Addis Ababa University Addis Ababa, Ethiopia).

34. Oso JA, Ayodele IA, Fagbuaoro O. Food and Feeding Habits of Oreochromis niloticus (L.) and Sarotherodon galilaeus (L.) in a Tropical Reservoir. World Journal of Zoology 2006;1(2):118-121.

35. Shalloof S, Khalifa N. Stomach contents and feeding habits of Oreochromis niloticus (L.) from Abu-Zabal lakes, Egypt. World Applied Sciences Journal 2009;6(1):1-5.

36. Seeraj N, Raghavan R, Prasad G. The diet of Horabagrus brachysoma (G€unther), an endangered bagrid catfish from Lake Vembanad (South India). Journal of Fish Biology 2006;69(2):637-642.

37. Tadesse Z. Studies on some aspects of the biology of Oreochromis niloticus Linn. (Pisces: Cichlidae) in Lake Zewai (Doctoral dissertation, MSc. Thesis. Addis Ababa, Addis Ababa University).

38. Teferi Y, Admassu D, Mengistou S. The food and feeding habit of Oreochromis niloticus L.(Pisces: Cichlidae) in Lake Chamo, Ethiopia. SINET: Ethiopian Journal of Science 2000;23(1):1-2.

39. Temesgen M. Status and trends of fish and fisheries in Lake Langano, Ethiopia. PhD dissertation submitted to Department of Zoological Sciences. Addis Ababa University, Addis Ababa, Ethiopia 2018.