Awareness About Medical Applications Of QL-47 Among Dental Students

Nithyanandham Masilamani, Dhanraj Ganapathy*
Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India

Article History:
Received on: 20 Jul 2020
Revised on: 10 Aug 2020
Accepted on: 21 Aug 2020

ABSTRACT
QL47 a Bruton Tyrosine Kinase inhibitor is a host-targeted, small molecule antiviral that inhibits steady-state viral protein expression. This small molecule broadly inhibits both viral and host protein synthesis and targets a translation step specific to eukaryotic cells and has the potential to be used as an antiviral medication. The aim of the study was to assess the awareness about medical applications of QL-47 among dental students. This was a questionnaire-based cross-sectional type of study comprising 100 dental college students in Chennai. A self-designed questionnaire with ten questions eliciting the knowledge and awareness about QL 47 therapy among dental college students. Questionnaires were circulated through an online website survey planets questions explored the awareness on QL 47 therapy, indications, contraindications, mechanism of action and side effects. After the responses were received from 100 participants, data were collected and analysed. 5% were aware about QL 47 therapy. 3% were aware of the mechanism of action of QL 47 therapy. 4% were aware of the indications of QL 47 therapy. 3% were aware of the side effects of QL 47 therapy. The awareness about QL 47 in medical applications and managing viral infections was less among dental students. Increased awareness and educational programs should be initiated to spread knowledge about QL 47 therapy.

INTRODUCTION
Owing to the rapid progression of the viral pandemic COVID19, the research pertaining to the pharmaceutical agents to treat this disease has been galvanized. All possible options in every field of health science are constantly working for discovering a cure for this disease. Hence there is a need to explore the antiviral activities of lesser-known drugs, as COVID 19 is resistant to the commonly used antiviral drugs. QL47 is a drug with antiviral properties that can be explored. Originally QL 47 is an anticancer drug which is a Bruton Tyrosine Kinase (BTK) inhibitor hinder the chemical BTK, which is a vital piece of the B-cell receptor flagging pathway as certain B-cell leukaemias and lymphomas use B-cell receptor motioning for development and endurance (Wu et al., 2016).

QL47, a BTK inhibitor can covalently adjust Cys481. QL47 inhibits BTK kinase movement with an IC50 of 7 nM, hinders autophosphorylation of BTK on Tyr223 in cells with an EC50 of 475 nM, and restrains phosphorylation of a downstream effector PLCγ2 (Tyr759) with an EC50 of 318 nM. In Ramos cells, QL47 induces a G1 cell cycle capture that is related with articulated corruption of BTK protein. QL47 inhibits the expansion of B-cell lymphoma malignant growth cell lines at submicromo-
lar concentrations. These systems can adjust the viral pathways additionally and could offer a fix in overseeing COVID 19 (Wu et al., 2014; Erlanson et al., 2016). This study was done with an aim to assess the awareness about medical applications of QL-47 among dental students.

MATERIALS AND METHODS

This was a questionnaire-based cross-sectional type of study comprising 100 dental college students in Chennai. A self-designed questionnaire with ten questions eliciting the knowledge and awareness about QL 47 therapy among dental college students. Questionnaires were circulated through an online website survey planets questions explored the awareness on QL 47 therapy, indications, contraindications, mechanism of action and side effects. After the responses were received from 100 participants, data were collected and analysed.
RESULTS AND DISCUSSION

5% were aware about QL 47 therapy (Figure 1). 3% were aware of the mechanism of action of QL 47 therapy (Figure 2). 4% were aware of the indications of QL 47 therapy (Figure 3). 3% were aware of the QL 47 therapy (Figure 4). 3% were aware of the side effects of QL 47 therapy (Figure 5).

(de Wispelaere et al., 2020) showed the extensive range antiviral movement as QL47 restrains. Flaviviruses, yet in addition a few inconsequential, restoratively applicable infections including poliovirus, Ebola infection, and human orthopneumovirus, predictable with a host-rather infection focusing on the method of activity. The antiviral action of QL 47 is firmly connected with the restraint of consistent state viral protein articulation.

While the sub-atomic objective of QL47 isn’t known, almost certainly, this compound focuses on a host factor that is engaged with the interpretation of a particular subset of emissary RNAs, including viral RNAs (Hopkins et al., 2019; Zou et al., 2016). Liang et al. sought after a correlative way to deal with recognize intensifies that target have factors that are fundamental for viral replication and opinioned that the expected favourable position of this methodology is that viral obstruction may develop all the more gradually in light of the fact that there is definitely not an immediate course to viral opposition emerging from transformations that square drug-official to a viral objective (Liang et al., 2017).

The following preferred position is that host-directed antivirals may have more extensive range antiviral movement on the off chance that they target forms regularly used by various viruses. They revealed the structure-action relationship (SAR) examinations of QL-XII-47 (QL47), a compound with broad-spectrum antiviral activity against dengue infection and other RNA infections and finished up QL47 is a powerful inhibitor of viral interpretation and showed cellular antiviral activity at 35-overlay lower fixations comparative with the hindrance of host-cell proliferation (Liang et al., 2017; Ahammad et al., 2019).

QL47 can repress protein biosynthesis started by both sanctioned top driven and non-accepted commencement procedures, no doubt by focusing on an early advance in interpretation stretching (Hu et al., 2019). In this manner, QL47 as another little particle inhibitor can be used to test the eukaryotic interpretation apparatus, and that can be additionally evolved as another helpful specialist for rewarding a few viral infections (de Wispelaere et al., 2017; Zhai et al., 2019).

CONCLUSIONS

The awareness about QL 47 in medical applications and managing viral infections was less among dental students. Increased awareness and educational programs should be initiated to spread knowledge about QL 47 therapy.

Funding Support

The authors declare that they have no funding support for this study.

Conflict of Interest

The authors declare that they have no conflict of interest for this study.

REFERENCES

Ahammad, F., Rashid, T. R. T. A., Mohamed, M., Tanbin, S., Fuad, F. A. A. 2019. Contemporary Strategies and Current Trends in Designing Antiviral Drugs against Dengue Fever via Targeting Host-Based Approaches. Microorganisms, 7(9):296–296.

de Wispelaere, M., Carocci, M., Burri, D. J., Neidermyer, W. J., Olson, C. M., Roggenbach, I., Liang, Y., Wang, J., Whelan, S. P. J., Gray, N. S., Yang, P. L. 2020. A broad-spectrum antiviral molecule, QL47, selectively inhibits eukaryotic translation. Journal of Biological Chemistry, 295(6):1694–1703.

de Wispelaere, M., Carocci, M., Liang, Y., Liu, Q., Sun, E., Vetter, M. L., Wang, J., Gray, N. S., Yang, P. L. 2017. Discovery of host-targeted covalent inhibitors of dengue virus. Antiviral Research, 139:171–179.

Erlanson, D. A., Jahnke, W., Mannhold, R., Kubinyi, H., Folkers, G. 2016. Fragment-based Drug Discovery: Lessons and Outlook. John Wiley and Sons.

Hopkins, B. T., Bame, E., Bell, N., Bohnert, T., Bowden-Verhoek, J. K., Bui, M., Cancilla, M. T., Conlon, P., Cullen, P., Erlanson, D. A., Fan, J., Fuchs-Knotts, T., Hansen, S., Heumann, S., Jenkins, T. J., Marcotte, D., McDowell, B., Mertsching, E., Negrou, E., Otipoby, K. L., Poreci, U., Romanowski, M. J., Scott, D., Silvian, L., Yang, W., Zhong, M. 2019. Optimization of novel reversible Bruton’s tyrosine kinase inhibitors identified using Tethering-fragment-based screens. Bioorganic & Medicinal Chemistry, 27(13):2905–2913.

Hu, H., Li, M., Wu, D., Li, Z., Miao, R., Liu, Y., Gong, P. 2019. Design, synthesis and biological evaluation of novel aryl-acrylic derivatives as novel indoleamine-2,3-dioxygenase 1 (IDO1) inhibitors. Bioorganic & Medicinal Chemistry, 27(14):3135–3144.

Liang, Y., de Wispelaere, M., Carocci, M., Liu, Q,
Wang, J., Yang, P. L., Gray, N. S. 2017. Structure-Activity Relationship Study of QL47: A Broad-Spectrum Antiviral Agent. *ACS Medicinal Chemistry Letters*, 8(3):344–349.

Wu, H., Hu, C., Wang, A., Weisberg, E. L., Chen, Y., Yun, C. H., Wang, W., Liu, Y., Liu, X., Tian, B., Wang, J., Zhao, Z., Liang, Y., Li, B., Wang, L., Wang, B., Chen, C., Buhrlage, S. J., Qi, Z., Zou, F., Nonami, A., Li, Y., Fernandes, S. M., Adamia, S., Stone, R. M., Galinsky, I. A., Wang, X., Yang, G., Griffin, J. D., Brown, J. R., Eck, M. J., Liu, J., Gray, N. S., Liu, Q. 2016. Discovery of a BTK/MNK dual inhibitor for lymphoma and leukemia. *Leukemia*, 30(1):173–181.

Wu, H., Wang, W., Liu, F., Weisberg, E. L., Tian, B., Chen, Y., Li, B., Wang, A., Wang, B., Zhao, Z., Mcmillin, D. W., Hu, C., Li, H., Wang, J., Liang, Y., Buhrlage, S. J., Liang, J., Liu, J., Yang, G., Gray, N. S. 2014. Discovery of a Potent, Covalent BTK Inhibitor for B-Cell Lymphoma. *ACS Chemical Biology*, 9:1086–1091.

Zhai, Z., Li, R., Bai, X., Ning, X., Lin, Z., Zhao, X., Jin, Y., Yin, Y. 2019. Design, synthesis and biological evaluation of novel dithiocarbamate-substituted diphenylaminopyrimidine derivatives as BTK inhibitors. *Bioorganic & Medicinal Chemistry*, 27:4124–4142.

Zou, Y., Xiao, J., Tu, Z., Zhang, Y., Yao, K., Luo, M., Ding, K., Zhang, Y., Lai, Y. 2016. Structure-based discovery of novel 4,5,6-trisubstituted pyrimidines as potent covalent Bruton’s tyrosine kinase inhibitors. *In Bioorganic & Medicinal Chemistry Letters*, 26:3052–3059.