Identification and Characterization of NeuB3 from Campylobacter jejuni as a Pseudaminic Acid Synthase*

Wayne K. Chou, Scott Dick, Warren W. Wakarchuk, and Martin E. Tanner

Campylobacter jejuni and Campylobacter coli are the main causes of bacterial diarrhea worldwide, and Helicobacter pylori is known to cause duodenal ulcers. In all of these pathogenic organisms, the flagellin proteins are heavily glycosylated with a 2-keto-3-deoxy acid, pseudaminic acid (5,7-diacetamido-3,5,7,9-tetraacetyloxy-L-glycero-L-manno-nonulosonic acid). The presence of pseudaminic acid is required for the proper development of the flagella and is thereby necessary for motility in, and invasion of, the host. In this study we report the first characterization of NeuB3 from C. jejuni as a pseudaminic acid synthase; the enzyme directly responsible for the biosynthesis of pseudaminic acid. Pseudaminic acid synthase catalyzes the condensation of phosphoenolpyruvate (PEP) with the hexose, 2,4-diacetamido-2,4,6-trideoxy-L-altrose (6-deoxy-AltdiNAc), to form pseudaminic acid and phosphate. The enzymatic activity was monitored using 1H and 31P NMR spectroscopy, and the product was isolated and characterized. Kinetic analysis reveals that pseudaminic acid synthase requires the presence of a divalent metal ion for catalysis and that optimal catalysis occurs at pH 7.0. A coupled enzymatic assay gave the values for k_{cat} of 0.65 ± 0.01 s$^{-1}$, K_{m} of 6.5 ± 0.4 μM, and K_{m} of 6-deoxy-AltdiNAc of 9.5 ± 0.7 μM. A mechanistic study on pseudaminic acid synthase, using [2-18O]PEP, shows that catalysis proceeds through a C-O bond cleavage mechanism similar to other PEP condensing synthases such as sialic acid synthase.

Campylobacter jejuni, Campylobacter coli, and Helicobacter pylori are flagellated, motile, Gram-negative bacteria that colonize the gastrointestinal tract of people worldwide. C. jejuni and C. coli are the main causative agents of bacterial diarrhea (1, 2), and H. pylori causes duodenal ulcers (3). Their flagellin proteins are heavily glycosylated with a 9-carbon 2-keto-3-deoxy acid, pseudaminic acid (5,7-diacetamido-3,5,7,9-tetraacetyloxy-L-glycero-L-manno-nonulosonic acid) (Fig. 1A) (4–7). The production of pseudaminic acid is important for the development of flagella in these organisms as evidenced by the flagellate C. jejuni (8) and H. pylori (6) mutants unable to produce pseudaminic acid. Motility is a key factor implicated in the colonization of the viscous gastrointestinal tract of the host and therefore flagella are necessary for their invasiveness (1, 9–11). By studying the enzymes involved in the biosynthesis of pseudaminic acid, methods can be developed for combating these pathogenic organisms.

Pseudaminic acid shares great structural similarity with another 9-carbon 2-keto-3-deoxy acid, N-acetylmuramic acid (NeuNac or sialic acid) (Fig. 1B). The biosynthesis of sialic acid has been well studied and the enzyme directly responsible for forming sialic acid is known as sialic acid synthase or N-acetylmuramic acid synthase (SAS or NeuB). Sialic acid synthase catalyzes the condensation of phosphoenolpyruvate with N-acetyl-D-mannosamine (ManNAc) to form sialic acid and phosphate (12–14). Recent studies have reported on both the structure of NeuB and its mechanism of action (15, 16). Catalysis was demonstrated to proceed through an overall C-O bond cleavage process where the si-face of phosphoenolpyruvate (PEP) initially attacks the aldehyde of the open chain form of ManNAc and water adds to the C-2 position forming a tetrahedral intermediate (Fig. 2a). The tetrahedral intermediate then collapses to form orthophosphate and the open chain form of sialic acid that cyclizes to the pyranose form in solution. Formation of the tetrahedral intermediate was proposed to proceed in a stepwise fashion through an oxocarbenium ion intermediate. Two other well studied PEP condensing enzymes that utilize very similar mechanisms are 2-keto-3-deoxy-D-manno-octulosonate-8-phosphate synthase, which catalyzes the condensation of PEP and D-arabinose-5-phosphate (17, 18), and 2-keto-3-deoxy-D-arabino-heptulosonate-7-phosphate synthase, which catalyzes the condensation of PEP and D-erythro-4-phosphate (19, 20). A key mechanistic experiment performed with all three of these synthases was the use of [2-18O]PEP as a substrate during enzymatic incubations (see labeled atoms in Fig. 2). In each case, catalysis resulted in the production of 18O-labeled inorganic phosphate indicating that a C-O bond cleavage process was occurring (15, 19, 21).

To date none of the enzymes of pseudaminic acid biosynthesis have been characterized, however; it is reasonable to assume that a pseudaminic acid synthase exists that would catalyze the condensation of PEP with the hexose, 2,4-diacetamido-2,4,6-trideoxy-L-altrose (6-deoxy-AltdiNAc) (Fig. 1A). Three genes that show homology to neuB were identified in C. jejuni, where one encoded a sialic acid synthase (neuB1) and the other two genes were thought to encode proteins that modify the flagellin proteins (neuB2 and neuB3) (8, 16). NeuB3 shows 35.0% identity to the NeuB from Neisseria meningitidis and was found to be essential for the formation of flagella because an insertion mutation in the gene resulted in aflagellate C. jejuni (8). In this study we report the first identification and characterization of the activity of NeuB3 as a pseudaminic acid synthase that catalyzes the condensation of PEP with 6-deoxy-AltdiNAc to form pseudaminic acid.

There are two potential mechanisms proposed for pseudaminic acid synthase. The first and most likely mechanism is a C-O bond cleavage mechanism similar to that of sialic acid synthase (Fig. 2A). The second potential mechanism involves P-O bond cleavage whereby a direct attack of water onto the phosphate group of PEP generates phosphate and the enolate anion of pyruvate (Fig. 2B). The enolate then attacks the

* This work was supported by the Canadian Institutes of Health Research and the Natural Sciences and Engineering Research Council of Canada. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 To whom correspondence may be addressed. Tel: 604-822-9453; Fax: 604-822-2847; E-mail: m.tanner@chem.ubc.ca.

2 The abbreviations used are: PEP, phosphoenolpyruvate; 6-deoxy-AltdiNAc, 2,4-diacetamido-2,4,6-trideoxy-L-altrose; NeuNac, N-acetylmuramic acid; ManNAc, N-acetyl-D-mannosamine; ESI-MS, electrospray ionization-mass spectrometry; MES, 4-morpholineethanesulfonic acid.
aldehyde of the open chain form of 6-deoxy-AltDINAc producing the open chain form of pseudaminic acid. Precedence for this mechanism comes from pyruvate kinase (22) and PEP carboxykinase (23) where catalysis occurs through formation of the enolate anion of pyruvate via nucleophilic attack at the phosphate group of PEP. In this article we use [2-18O]PEP to show that, like sialic acid synthase, pseudaminic acid synthase also employs a C-O bond cleavage mechanism.

EXPERIMENTAL PROCEDURES

Materials and General Methods—Purine nucleoside phosphorylase and phosphoenolpyruvate were purchased from Sigma. 18O-Enriched water (95%) was purchased from Icon Isotopes. 2-Amino-6-mercapto-7-methylpurine ribonucleoside was purchased from Berry and Associates. Protein concentrations were determined by the method of Bradford (24) using bovine serum albumin as the standard. Concentrations of stock substrate solutions were determined enzymatically using the reported assay conditions with high concentrations of NeuB3 (64 μg) and excess co-substrate. NMR spectroscopy was performed on a Bruker AV300 or AV400 spectrometer. ESI-MS was performed on a Bruker Esquire LC mass spectrometer.

Cloning, Overexpression, and Purification of NeuB3—The *neuB3* gene, Cj1317, was obtained from the genome strain *C. jejuni* 11168 by PCR amplification with Pwo polymerase according to manufacturer’s conditions (Roche) (8). The primers used were: 5'-CCCCCCCATAT-GCAAATAGGAAATTTTAAC-3' (forward sequence) and 5'-CCC-CCGTCGACTCATCATTGGAAATCTCCTTGTTTAAAG-3' (reverse sequence). The gene was then cloned into the expression plasmid pCWori as an NdeI-SalI fragment, and the construct was maintained in *Escherichia coli* AD202, which was used for enzyme production (25). Cells were grown at 37 °C in 500 ml of Luria-Bertani (LB) medium supplemented with 100 μg ml⁻¹ ampicillin. Overexpression of NeuB3 was induced through the addition of 0.5 mM isopropyl β-D-thiogalactopyranoside at an A₆₀₀ of 0.60, with growth at 37 °C for 6 h. Cells were harvested through centrifugation at 5,000 × g for 30 min, resuspended...
Identification and Characterization of NeuB3

in Tris-HCl buffer (20 mM, pH 7.0) containing peptatin A (1 mg/liter) and apronin (1 mg/liter), and lysed with two passes through a French press. The cell lysate was centrifuged at 7,000 × g for 1.5 h, passed through a 0.45-μm filter, and loaded directly onto a 5-ml Hi-trap™ Q-Sepharose column (Amersham Biosciences) pre-equilibrated with 20 mM Tris-HCl buffer (pH 7.0). NeuB3 was eluted with a linear gradient of 0 to 1 M NaCl in 20 mM Tris-HCl buffer (pH 7.0). Fractions containing active enzyme were desalted 2 times by concentration and reconstitution with 20 mM Tris-HCl buffer (pH 7.0) using Amicon Ultra Centricons (Millipore), and then flash frozen with 10% glycerol. Protein samples were determined to be >90% pure by SDS-PAGE. The molecular mass was determined to be 38,670 using ESI-MS (38,647 predicted).

NMR Incubation Studies and Tests for Activity—6-Deoxy-AltdiNAc was synthesized according to literature procedures (28, 29). The extent of 13.4 s, pulse delay of 2 s, and pulse width of 10 μs. The NMR frequency of 121.5 MHz, sweep width of 2437 Hz, acquisition time of 1.6 s, and a point resolution of 7.4 Hz containing 6-deoxy-AltdiNAc (10 mM) and 20 mM [2-18O]PEP was constructed using a mixture of 50 mM Tris-HCl and 50 mM MES buffer (variable), PEP (variable), 2-amino-6-mercapto-7-methylpurine ribonucleoside (200 μM), purine nucleoside phosphorylase (5 units buffer exchanged twice into 100 mM Tris-HCl buffer pH 7.0), and MnCl2 (10 mM) was thermally equilibrated for 5 min at 37 °C. The enzymatic reaction was initiated by the addition of NeuB3 (3.2 μg) for a total assay volume of 300 μl and the enzymatic rate was calculated from the observed increase of absorption at A360 (ε = 11,000 M⁻¹ cm⁻¹). The Kₘ value for 6-deoxy-AltdiNAc was measured in the presence of 1 mM PEP (saturating), and that for PEP was measured in the presence of 1 mM 6-deoxy-AltdiNAc (saturating). Kinetic parameters were determined from initial velocities fit to Michaelis-Menten kinetics using the program Grafit (31).

C-O Versus P-O Bond Cleavage—[2-18O]PEP disodium salt was prepared according to literature reported procedures (28, 29). The extent of 18O incorporation at the C-2 position was determined to be 54% by mass spectroscopy: ESI-MS (MeOH) m/z 267 (M-18O, PEP), 165 (M-16O), 153 (M-14O, 85). 31P NMR spectroscopy was used to determine that the position of the label was at the C-2 position: 31P NMR δ = -2.999 (s, P-16O, PEP), -3.018 (s, P-18O, PEP).

Metal Dependence Experiment—The metal dependence experiment was carried out with saturating 6-deoxy-AltdiNAc (1 mM) and saturating PEP (1 mM) at pH 7.0 using the kinetic assay above. Different divalent metal cations were independently added at a concentration of 10 mM and the initial velocities were determined. The rates were normalized to the fastest rate (Co2⁺). Controls included adding 10 mM EDTA or no additives (enzyme as isolated) to the kinetic assay.

RESULTS AND DISCUSSION

Overexpression and Purification of NeuB3—C. jejuni—The neuB3 gene, Cj1317, was obtained from the genome strain C. jejuni 11168 by PCR amplification and overexpressed in E. coli. NeuB3 was isolated using a single anion exchange chromatographic step and the resulting protein was found to be greater than 90% pure as determined by SDS-PAGE (Fig. 3). The molecular mass of NeuB3 was determined to be 38,670 ± 30 using electrospray ionization-mass spectrometry (38,647 predicted).

Metal Dependence Experiment—The metal dependence experiment was carried out with saturating 6-deoxy-AltdiNAc (1 mM) and saturating PEP (1 mM) at pH 7.0 using the kinetic assay above. Different divalent metal cations were independently added at a concentration of 10 mM and the initial velocities were determined. The rates were normalized to the fastest rate (Co2⁺). Controls included adding 10 mM EDTA or no additives (enzyme as isolated) to the kinetic assay.
showed pseudaminic acid synthase activity. 1 eq of 6-deoxy-AltdiNAc and 2 eq of PEP were incubated in deuterated buffer containing Mn2+ and NeuB3, and the reaction was monitored by 1H and 31P NMR spectroscopy. Before the addition of NeuB3, the 31P NMR spectrum shows a single phosphorus peak corresponding to the phosphate group of PEP at -3.01 ppm (Fig. 4, upper panel). After the addition, a new peak appears at 0 ppm corresponding to inorganic phosphate released during catalysis (Fig. 4, lower panel). The identities of the phosphorus peaks were verified by spiking with PEP and phosphate standards (data not shown). Control incubations lacking either enzyme or 6-deoxy-AltdiNAc did not show the formation of orthophosphate under identical conditions, indicating that the reaction was not because of either background hydrolysis or a phosphatase impurity. In addition, ManNAc could not replace 6-deoxy-AltdiNAc as a substrate indicating that NeuB3 does not possess detectable sialic acid synthase activity.

The time course as observed by 1H NMR spectroscopy shows the conversion of 6-deoxy-AltdiNAc to pseudaminic acid. The initial 1H NMR spectra shows that 6-deoxy-AltdiNAc exists as a 3:1 ratio of the \(\beta\) to \(\alpha\) anomer in solution (Fig. 5, upper panel). The anomic ratio is apparent from integration of the two acetamido signals of 6-deoxy-AltdiNAc (\(\beta\)-anomer at 1.88 and 1.93 ppm, and \(\alpha\)-anomer at 1.89 and 1.90 ppm) and also the anomic protons (data not shown). After the addition of NeuB3, the complete conversion of the substrate into largely a single anomer of a new product is observed (acetamido peaks at 1.81 and 1.85 ppm). This would be expected for the pyranose form of a nonulosonic acid that would strongly favor the \(\alpha\)-anomer in solution. Further support is seen in the appearance of the key characteristic peaks of pseudaminic acid because of the signals of the C-3 methylene protons (Fig. 5, lower panel). The H-3ax (axial) proton signal is a doublet of doublets that appears at 1.62 ppm and the H-3eq (equatorial) proton signal is a doublet of doublets that appears at 1.77 ppm (slightly obscured by the methyl N-acetyl proton signals) under these conditions. The fact that the H-3ax proton signal appears as a triplet is because of strong geminal coupling to the H-3eq proton (\(J_{3ax,3eq} = 13.3\) Hz) and strong coupling to the H-4 proton (\(J_{3ax,4} = 12.2\) Hz). The large \(J_{3ax,4}\) coupling can only arise if H-3ax and H-4 have a trans-diaxial relationship. This indicates that PEP attacks the \(\alpha\)-face of the aldehyde of 6-deoxy-AltdiNAc to generate an \(S\)-configuration at C-4.

Whereas previous studies have demonstrated that the absolute stereochemistry of pseudaminic acid from \textit{Pseudomonas aeruginosa} is of the \(L\)-glycero-\(L\)-manno configuration, this has not been unequivocally shown in the case of \textit{C. jejuni}. One can postulate reasonable biosynthetic routes to either enantiomer using very similar enzymatic pathways and therefore it was conceivable that either the \(D\)- or \(L\)-enantiomer of 6-deoxy-AltdiNAc could be the correct substrate for NeuB3. The fact that the \(L\)-isomer of 6-deoxy-AltdiNAc is the substrate of NeuB3 indi-
cates that the stereochemical assignment of pseudaminic acid is correct as the previously assigned L-glycerol-1-manno isomer (4, 32–35).

Isolation and Characterization of Pseudaminic Acid—The pseudaminic acid produced from the NeuB3 reaction was isolated using anion exchange chromatography and fully characterized. Mass spectral analysis (-ve ESI-MS) showed signals for the expected parental ion at m/z 333 (M − H⁻) and the oxonium ion at m/z 315 (M − H₂O⁻). The NMR spectra were similar to those previously reported in the literature for pseudaminic acid derivatives characterized from the lipopolysaccharide of P. aeruginosa, Shigella boydii, Vibrio cholerae, Proteus vulgaris, and the flagellin proteins of C. jejuni (4, 32–35). 1H NMR spectroscopy was used to assign the relative configuration of the pyranose ring protons.

The large coupling constants of \(J_{3ax,3eq} \), \(J_{6,7} \), and \(J_{6,7} \) indicated that C-6 and C-7 have the equatorial, and H-6 is axial (TABLE ONE). The large \(J_{6,7} \) of 10.3 Hz indicates that C-6 and C-7 have the erythro configuration as opposed to sialic acid, which has a small \(J_{6,7} \) of 1.2 Hz and the three configuration (33). In the \(^{13}C\) NMR spectrum (TABLE TWO), the C-9 chemical shift is 15.3 ppm, which is similar to the chemical shift of the methyl group for N-acetyl-L-allothreonine (17.5 ppm) indicating that C-7 and C-8 has the threo configuration (versus 19.5 ppm with N-acetyl L-threonine) (33). The difference in the \(^1H\) chemical shifts of H-3ax and H-3eq is small (0.77 ppm) as seen in C-2 glycosylated pseudaminic acid produced from the NeuB3 reaction was isolated using anion exchange chromatography and fully characterized. Mass spectral analysis (-ve ESI-MS) showed signals for the expected parental ion at m/z 333 (M − H⁻) and the oxonium ion at m/z 315 (M − H₂O⁻). The NMR spectra were similar to those previously reported in the literature for pseudaminic acid derivatives characterized from the lipopolysaccharide of P. aeruginosa, Shigella boydii, Vibrio cholerae, Proteus vulgaris, and the flagellin proteins of C. jejuni (4, 32–35). 1H NMR spectroscopy was used to assign the relative configuration of the pyranose ring protons. The large coupling constants of \(J_{3ax,3eq} \) (12.2 Hz) and small coupling constants of \(J_{4,5} \) (5.5 Hz) and \(J_{5,6} \) (1.7 Hz) indicates that H-4 is axial, H-5 is equatorial, and H-6 is axial (TABLE ONE). The large \(J_{6,7} \) of 10.3 Hz indicates that C-6 and C-7 have the erythro configuration as opposed to sialic acid, which has a small \(J_{6,7} \) of 1.2 Hz and the three configuration (33). In the \(^{13}C\) NMR spectrum (TABLE TWO), the C-9 chemical shift is 15.3 ppm, which is similar to the chemical shift of the methyl group for N-acetyl L-allothreonine (17.5 ppm) indicating that C-7 and C-8 has the threo configuration (versus 19.5 ppm with N-acetyl L-threonine) (33). The difference in the \(^1H\) chemical shifts of H-3ax and H-3eq is small (0.14 ppm), indicating that the \(\alpha \)-anomer is the predominant anomer because the \(\beta \)-anomer has a larger difference in chemical shift between the two proton signals (0.77 ppm) as seen in C-2 glycosylated pseudaminic acid that is \(\beta \)-linked (4, 32–35).

Enzyme Kinetics of NeuB3 as Determined by a Continuous Coupled Assay—The kinetic parameters of the NeuB3 reaction were determined using a continuous coupled assay for phosphate release (30). Initial reaction velocities (\(v_0 \)) were determined for each substrate by varying its concentration in the presence of saturating amounts of the other substrate. The kinetic data obeyed Michaelis-Menten kinetics (Fig. 6) and gave kinetic constants of \(k_{cat} = 0.65 \pm 0.01 \text{s}^{-1} \) and \(K_{M,\text{PEP}} = 6.5 \pm 0.4 \text{mM} \) and \(K_{M,6\text{-deoxy-AltdiNAc}} = 9.5 \pm 0.7 \text{mM} \) (100 mM Tris-HCl, pH 7.0, 10 mM Mn²⁺, and 37 °C). Whereas the turnover numbers is similar to that observed with sialic acid synthase, the \(K_{M,\text{PEP}} \) values were considerably lower, potentially reflecting the lower concentration of 6-deoxy-AltdiNAc that is available in the cell. A qualitative screen of maximal rate versus \(\text{PEP} \) gave a bell-shaped profile and indicated that optimal activity was observed at pH 7. Finally, an assessment of the metal ion requirements for pseudaminic acid synthase was performed (TABLE THREE). When the enzyme was assayed directly as isolated, only low levels of activity were observed. Activity was gained upon the addition of various divalent metal ions with the highest values observed in the presence of Mn²⁺ and Co²⁺. The addition of EDTA completely abolished the activity of the synthase. These observations indicate that pseudaminic acid synthase requires a divalent cation for activity and that the bound metal is largely lost during isolation of the enzyme. Similar observations have been made with sialic acid synthase, NeuB, which apparently uses the divalent cation to increase the electrophilicity of the substrate aldehyde (15). A recent x-ray crystal structure of NeuB complexed with Mn²⁺, PEP, and N-acetylmannosaminitol (a reduced form of ManNAc bearing a hydroxyl group at C-1) showed that the divalent metal ion was in close proximity (2.5 Å) to the C-1 hydroxyl group of the substrate analog (Protein Data Bank file 1UXZ). This indicated that the stereochemical assignment of pseudaminic acid is correct as the previously assigned L-glycerol-1-manno isomer (4, 32–35).

Identification and Characterization of NeuB3

Table ONE

Proton signal (integration)	\(\delta \)	Multiplicity	Coupling constants
	ppm		Hz
H-3eq (1 H)	1.81	dd	\(J_{3ax,3eq} = 4.6 \)
H-3ax (1 H)	1.67	dd	\(J_{ax,3eq} = 13.3 \)
H-4 (1 H)	4.05	ddd	\(J_{3ax,3eq} = 12.2 \)
H-5 (1 H)	4.13	dd	\(J_{6,7} = 5.5 \)
H-6 (1 H)	3.91	dd	\(J_{5,6} = 1.7 \)
H-7 (1 H)	4.03	dd	\(J_{6,7} = 10.3 \)
H-8 (1 H)	4.01	dq	\(J_{ax,3eq} = 3.7 \)
H-9 (3 H)	-99	d	\(J_{6,7} = 6.5 \)
N-Ac (3 H)	1.86	s	
N-Ac (3 H)	1.89	s	

Table TWO

Carbon signal	\(\delta \)
	ppm
C-2	96.4
C-3	34.8
C-4	65.2
C-5	48.8
C-6	70.0
C-7	52.9
C-8	66.8
C-9	15.3
CH₃-NAc	21.8
	22.0
C = O	173.7
	174.6
	176.3
Identification and Characterization of NeuB3

cates that in the Michaelis complex the Mn
2+ would be in a favorable position for activation of the aldehyde (15).

Mechanistic Studies on Pseudaminic Acid Synthase—To probe the mechanism of pseudaminic acid synthase, [2-18O]PEP was synthesized with a 54% incorporation of the label (28, 29). The location of the 18O was determined using 31P NMR spectroscopy because the substitution of 18O for 16O in a singly bonded position to phosphorus results in a small upfield shift for the labeled phosphorus atom (36, 37). By monitoring the enzymatic reaction of [2-18O]PEP and 6-deoxy-AltdiNAc with 31P NMR spectroscopy, the fate of the 18O label can be determined. The initial 31P NMR spectrum of [2-18O]PEP with 6-deoxy-AltdiNAc shows two phosphorus signals, one for unlabeled PEP at −3.01 ppm and the other for [2-18O]PEP shifted slightly upfield at −3.03 ppm (Fig. 7, upper panel). After addition of NeuB3 and incubation for 5 min, two new peaks appear corresponding to inorganic phosphate (0 ppm) and 18O-labeled inorganic phosphate (−0.02 ppm) (Fig. 7, lower panel). The ratio of 16O to 18O in the inorganic phosphate produced was the same as that of the starting material indicating that the label was fully retained and that C-O bond cleavage was occurring during catalysis.

PEP-condensing enzymes that catalyze C-O bond cleavage processes must inherently proceed through a tetrahedral intermediate. Therefore the proposed catalytic mechanism of pseudaminic acid synthase is the attack of the C-3 of PEP to the aldehyde of the open chain form of 6-deoxy-AltdiNAc and an attack of water to the C-2 of PEP to form a tetrahedral intermediate (Fig. 2A). The tetrahedral intermediate then collapses to release inorganic phosphate and form the open chain form of pseudaminic acid that cyclizes to the pyranose form in solution. The formation of the tetrahedral intermediate could occur in a concerted fashion if water attacks the C-2 of PEP at the same time as the C-3 of PEP attacks the aldehyde. The tetrahedral intermediate could also form in a stepwise manner through an oxocarbenium ion intermediate (shown in Fig. 2A) that is subsequently attacked by water to form the tetrahedral intermediate. The most convincing evidence for the oxocarbenium ion intermediate comes from the work done on 2-keto-3-deoxy-D-manno-octulosonate-8-phosphate synthase where a cationic mimic of the oxocarbenium ion intermediate was found to be a potent inhibitor (37–39).

Conclusion—This is the first identification and kinetic characterization of NeuB3 from C. jejuni as a metal-dependent pseudaminic acid synthase that catalyzes the condensation of PEP with 6-deoxy-AltdiNAc. The characterization of the enzymatically produced pseudaminic acid verifies that the stereochemical assignment of pseudaminic acid is correct as the L-glycero-L-manno configuration. A mechanistic 18O labeling study shows that catalysis proceeds through a C-O bond cleavage mechanism similar to other PEP condensing enzymes.

Pseudaminic acid production is important for the invasiveness of these pathogenic organisms. The discovery of the activity of NeuB3 as a pseudaminic acid synthase furthers our understanding of the biosynthetic pathway of pseudaminic acid and acts as a novel target for drug development. Other derivatives of pseudaminic acid have also been identified such as N-formamido derivatives, N-acetamidino derivatives and N-dihydroxypropionyl derivatives (4–6, 32–35). It is likely that they are biosynthesized from derivatives of 6-deoxy-AltdiNAc that may be alternate substrates of pseudaminic acid synthase. In this light, it is interesting to note that sialic acid synthase has been shown to catalyze the condensation of PEP with longer N-acyl substituents (16). Other isomers of pseudaminic acid have also been isolated from the lipopolysaccharide of P. aeruginosa and Legionella pneumophila (40–43). These include legionaminic acid (5,7-diacetamido-8-O-acetyl-3,5,7,9-tetradeoxy-D-glycero-D-galacto-non-2-ulosonic acid), a C-4 epimeric derivative (5-acetamidino-7-acetamido-3,5,7,9-tetradeoxy-D-glycero-D-talo-non-2-ulosonic acid), and a C-8 epimeric derivative of legionaminic acid (5,7-diacetamido-8-O-acetyl-3,5,7,9-tetradeoxy-L-glycero-D-galacto-non-2-ulosonic acid). It is also likely that there are closely related PEP-condensing synthases that are responsible for the biosynthesis of these isomers.

| TABLE THREE |
| Metal dependence study of pseudaminic acid synthase |
| All percent activity values are normalized to the rate of catalysis of NeuB3 with Co
2+ |

Additive (10 mM)	Activity (%)
Co	
2+	100
Mn	
2+	91
Mg	
2+	48
Ca	
2+	30
Ni	
2+	26
Enzyme as isolated	4
EDTA	0

FIGURE 7. 31P NMR spectra monitoring the conversion of partially labeled [2-18O]PEP into 18O-labeled phosphate by NeuB3. The upper panel shows the spectrum before the addition of NeuB3. The lower panel shows the spectrum taken after 5 min of incubation.
Identification and Characterization of NeuB3

REFERENCES

1. Black, R. E., Levine, M. M., Clements, M. L., Hughes, T. P., and Blaser, M. J. (1988) J. Infect. Dis. 157, 472–479
2. Butzler, J. P., and Skirrow, M. B. (1979) Clin. Gastroenterol. 8, 737–765
3. Cover, T. L., and Blaser, M. J. (1992) Annu. Rev. Med. 43, 135–145
4. Thibault, P., Logan, S. M., Kelly, J. F., Brisson, J. R., Ewing, C. P., Trust, T. J., and Guerry, P. (2001) J. Biol. Chem. 276, 34862–34870
5. Logan, S. M., Kelly, J. F., Thibault, P., Ewing, C. P., and Guerry, P. (2002) Mol. Microbiol. 46, 587–597
6. Schirm, M., Sos, E. C., Aubry, A. J., Austin, J., Thibault, P., and Logan, S. M. (2003) Mol. Microbiol. 48, 1579–1592
7. Szymanski, C. M., and Wren, B. W. (2005) Nat. Rev. Microbiol. 3, 225–237
8. Linton, D., Karlyshev, A. V., Hitchen, P. G., Morris, H. R., Dell, A., Gregson, N. A., and Wren, B. W. (2000) Mol. Microbiol. 35, 1120–1134
9. Morooka, T., Umeda, A., and Amako, K. (1985) J. Bacteriol. 157, 1973–1980
10. Caldwell, M. B., Guerry, P., Lee, E. C., Burans, J. P., and Walker, R. I. (1985) Infect. Immun. 50, 941–943
11. Josenhans, C., Labigne, A., and Suerbaum, S. (1995) J. Bacteriol. 177, 3010–3020
12. Blacklow, R. S., and Warren, L. (1962) J. Biol. Chem. 237, 3520–3526
13. Kolbein, B. E., and Basson, L. (1983) J. Bacteriol. 157, 728–736
14. Angata, T., and Varki, A. (2002) Chem. Rev. 102, 439–469
15. Gunawan, J., Simard, D., Gilbert, M., Lovering, A. L., Wakarchuk, W. W., Tanner, M. E., and Strynadka, N. C. J. (2005) J. Biol. Chem. 280, 3555–3563
16. Sundaram, A. K., Pitts, L., Muhammad, K., Wu, J., Betenbaugh, M., Woodward, R. W., and Vann, W. F. (2004) Biochem. J. 383, 83–89
17. Levin, D. H., and Racker, E. (1959) J. Biol. Chem. 234, 2532–2539
18. Shulami, S., Faridui, C., Adir, N., Shoham, Y., Anderson, K. S., and Baasov, T. (2004) J. Biol. Chem. 279, 45110–45120
19. DeLeo, A. B., and Sprinzen, D. B. (1968) Biochem. Biophys. Res. Commun. 23, 873–877
20. Faridui, C., Zhou, L., Woodward, R. W., and Anderson, K. S. (2004) J. Biol. Chem. 279, 45618–45625
21. Hedstrom, L., and Abeles, R. (1988) Biochem. Biophys. Res. Commun. 157, 816–820
22. Seelhofer, S. H., Jaworowski, A., and Rose, I. A. (1991) Biochemistry 30, 727–732
23. Matte, A., Tari, L. W., Goldie, H., and Delhaere, L. T. (1997) J. Biol. Chem. 272, 8105–8108
24. Bradford, M. M. (1976) Anal. Biochem. 72, 248–254
25. Wakarchuk, W. W., Campbell, R. L., Sung, W. L., Davoodi, J., and Yaguchi, M. (1994) Protein Sci. 3, 467–475
26. Flowers, H. M., Levy, A., and Sharon, N. (1967) Carbohydr. Res. 189–195
27. Liav, A. L., and Sharon, N. (1973) Carbohydr. Res. 30, 109–126
28. Gore, M. P., Nanjappan, P., Hoops, G. C., and Woodard, R. W. (1990) J. Org. Chem. 55, 758–760
29. Bartlett, P. A., and Chouinard, P. M. (1983) J. Org. Chem. 48, 3854–3855
30. Webb, M. R. (1992) Proc. Natl. Acad. Sci. U. S. A. 89, 4884–4887
31. Erithacus Software Ltd. (2003) GraFit, Erithacus Software Ltd., Staines, UK
32. Knirel, Y. A., Vinogradov, E. V., Lwow, V. L., Kocharova, N. A., Shashkov, A. S., Dmitriev, B. A., and Kochetkov, N. K. (2004) Carbohydr. Res. 333, C5–C8
33. Knirel, Y. A., Kocharova, N. A., Shashkov, A. S., Dmitriev, B. A., Kochetkov, N. K., Stanisavljev, E. S., and Mashiola, G. M. (1987) Eur. J. Biochem. 163, 639–652
34. Kenne, I., Lindberg, B., Schweda, E., Gustafsson, B., and Holme, T. (1988) Carbohydr. Res. 285–294
35. Kuenda, A. N., Perpelov, A. V., Bartodziejska, B., Shashkov, A. S., Senchenkova, S. N., Wykrota, M., Knirel, Y. A., and Rozalski, A. (2001) Carbohydr. Res. 333, 241–249
36. Cohen, M., and Hu, A. (1978) Proc. Natl. Acad. Sci. U. S. A. 75, 200–203
37. Asojo, O., Friedman, J., Adir, N., Belakhov, V., Shoham, Y., and Baasov, T. (2001) Biochemistry 40, 6326–6334
38. Wang, J., Duewel, H. S., Woodward, R. W., and Gatti, D. L. (2001) Biochemistry 40, 15676–15683
39. Kazutov, L., Kababya, S., Belakhov, V., Baasov, T., Shoham, Y., and Schmidt, A. (2003) J. Am. Chem. Soc. 125, 4662–4669
40. Knirel, Y. A., Vinogradov, E. V., Shashkov, A. S., Dmitriev, B. A., Kochetkov, N. K., Stanisavljev, E. S., and Mashiola, G. M. (1987) Eur. J. Biochem. 163, 627–637
41. Knirel, Y. A., Kruse, T., Marre, R., and Zahringer, U. (1994) Eur. J. Biochem. 221, 239–245
42. Knirel, Y. A., Moll, H., Helbig, J. H., and Zahringer, U. (1997) Carbohydr. Res. 304, 77–79
43. Tsvetkov, Y. E., Shashkov, A. S., Knirel, Y. A., and Zahringer, U. (2001) Carbohydr. Res. 331, 233–237
