On S-Comultiplication Modules

Eda Yıldız, Ünsal Tekir, and Suat Koç

Abstract. Let R be a commutative ring with $1 \neq 0$ and M be an R-module. Suppose that $S \subseteq R$ is a multiplicatively closed set of R. Recently, Sevim et al. in ([19], Turk. J. Math. (2019)) introduced the notion of S-prime submodule which is a generalization of prime submodule and used them to characterize certain class of rings/modules such as prime submodules, simple modules, torsion free modules, S-Noetherian modules and etc. Afterwards, in ([2], Comm. Alg. (2020)), Anderson et al. defined the concept of S-multiplication modules and S-cyclic modules which are S-versions of multiplication and cyclic modules and extended many results on multiplication and cyclic modules to S-multiplication and S-cyclic modules. Here, in this article, we introduce and study S-comultiplication module which is the dual notion of S-multiplication module. We also characterize certain class of rings/modules such as comultiplication modules, S-second submodules, S-prime ideals, S-cyclic modules in terms of S-comultiplication modules.

1. Introduction

Throughout this article, we focus only on commutative rings with a unity and nonzero unital modules. Let R will always denote such a ring and M will denote such an R-module. This paper aims to introduce and study the concept of S-comultiplication module which is both the dual notion of S-multiplication modules and a generalization of comultiplication modules. Sevim et al. in their paper [19] gave the concept of S-prime submodules and used them to characterize certain classes of rings/modules such as prime submodules, simple modules, torsion-free modules and S-Noetherian rings. A nonempty subset S of R is said to be a multiplicatively closed set (briefly, m.c.s) of R if $0 \notin S$, $1 \in S$ and $st \in S$ for each $s, t \in S$. From now on S will always denote a m.c.s of R. Suppose that P is a submodule of M, K is a nonempty subset of M and J is an ideal of R. Then the residuals of P by K and J are defined as follows:

$$ (P : K) = \{ x \in R : xK \subseteq P \} $$

$$ (P : M J) = \{ m \in M : Jm \subseteq P \}. $$

In particular, if $P = 0$, we sometimes use $\text{ann}(K)$ instead of $(0 : K)$. Recall from [19] that a submodule P of M is said to be an S-prime submodule if $(P : M) \cap S = \emptyset$.

2000 Mathematics Subject Classification. 13C13, 13C99.

Key words and phrases. S-multiplication module, S-comultiplication module, S-prime submodule, S-second submodule.
and there exists $s \in S$ such that $am \in P$ for some $a \in R$ and $m \in M$ implies either $sa \in (P : M)$ or $sm \in P$. Particularly, an ideal I of R is said to be an S-prime ideal if I is an S-prime submodule of M. We here note that if $S \subseteq u(R)$, where $u(R)$ is the set of all units in R, the notion of S-prime submodule is in fact prime submodule.

Recall that an R-module M is said to be a multiplication module if each submodule N of M has the form $N = IM$ for some ideal I of R [12]. It is easy to note that M is a multiplication module if and only if $N = (N : M)M$ [16]. The author in [16] showed that for a multiplication module M, a submodule N of M is prime if and only if $(N : M)$ is a prime ideal of R [16, Corollary 2.11].

The dual notion of prime submodule which is called second submodule was first introduced and studied by S. Yassemi in [20]. Recall from that a nonzero submodule P of M is said to be a second submodule if for each $a \in R$, the homothety $P \xrightarrow{a} P$ is either zero or surjective. Note that if P is a second submodule of M, then $ann(P)$ is a prime ideal of R. For the last twenty years, the dual notion of prime submodule has attracted many researchers and it has been studied in many papers. See, for example, [5, 6, 7, 9, 13] and [14]. Also the notion of comultiplication module which is the dual notion of multiplication module was first introduced by Ansari-Toroghy and Farshadifar in [8] and has been widely studied by many authors. See, for instance, [1, 10, 11] and [15]. Recall from [8] that an R-module M is said to be a comultiplication module if each submodule N of M has the form $N = (0 :_M I)$ for some ideal I of R. Note that M is a comultiplication module if and only if $N = (0 :_M ann(N))$.

Recently, Anderson et al. in [2], introduced the notions of S-multiplication modules and S-cyclic modules, and they extended many properties of multiplication and cyclic modules to these two new classes of modules. They also showed that for S-multiplication modules, any submodule N of M is S-prime submodule if and only if $(N : M)$ is an S-prime ideal of R [2, Proposition 4]. An R-module M is said to be an S-multiplication module if for each submodule N of M, there exist $s \in S$ and an ideal I of R such that $sN \subseteq IM \subseteq N$. Also M is said to be an S-cyclic module if there exists $s \in S$ such that $sM \subseteq Rm$ for some $m \in M$. They also showed that every S-cyclic module is an S-multiplication module and they characterized finitely generated multiplication modules in terms of S-cyclic modules (See, [2, Proposition 5] and [2, Proposition 8]).

Farshadifar, currently, in her paper [17] defined the dual notion of S-prime submodule which is called S-second submodule and investigate its many properties similar to second submodules. Recall that a submodule N of M is said to be an S-second if $ann(N) \cap S = \emptyset$ and there exists $s \in S$ such that either $saN = 0$ or $saN = sN$ for each $a \in R$. In particular, the author in [17] investigate the S-second submodules of comultiplication modules. Here, we introduce S-comultiplication module which is the dual notion of S-multiplication modules and investigate its many properties. Recall that an R-module M is said to be an S-comultiplication module if for each submodule N of M, there exist an $s \in S$ and an ideal I of R such that $s(0 :_M I) \subseteq N \subseteq (0 :_M I)$.

Among other results in this paper, we characterize certain classes of rings/modules such as comultiplication modules, S-second submodules, S-prime ideals, S-cyclic
modules (See, Theorem 1, Theorem 2, Proposition 3, Theorem 4, Theorem 5, Theorem 6 and Theorem 7). Also, we prove the S-version of Dual Nakayama’s Lemma (See, Theorem 8).

2. S-comultiplication modules

Definition 1. Let M be an R-module and $S \subseteq R$ be a m.c.s of R. M is said to be an S-comultiplication module if for each submodule N of M, there exist an $s \in S$ and an ideal I of R such that $s(0 :_M I) \subseteq N \subseteq (0 :_M I)$. In particular, a ring R is said to be an S-comultiplication ring if it is an S-comultiplication module over itself.

Example 1. Every R-module M with $\text{ann}(M) \cap S \neq \emptyset$ is trivially an S-comultiplication module.

Example 2. *(An S-comultiplication module that is not S-multiplication)*

Let p be a prime number and consider the \mathbb{Z}-module

$$E(p) = \{ \alpha = \frac{m}{p^n} + \mathbb{Z} : m \in \mathbb{Z}, n \in \mathbb{N} \cup \{0\} \}.$$

Then every submodule of $E(p)$ is of the form $G_t = \{ \alpha = \frac{m}{p^n} + \mathbb{Z} : m \in \mathbb{Z} \}$ for some fixed $t \geq 0$. Take the multiplicatively closed set $S = \{ 1 \}$. Note that $(G_t : E(p))E(p) = 0_{E(p)} \neq G_t$ for each $t \geq 1$. Then $E(p)$ is not an S-multiplication module. Now, we will show that $E(p)$ is an S-comultiplication module. Let $t \geq 0$. Then it is easy to see that $(0 :_{E(p)} \text{ann}(G_t)) = (0 :_{E(p)} p^t \mathbb{Z}) = G_t$. Therefore, $E(p)$ is an S-comultiplication module.

Example 3. Every comultiplication module is also an S-comultiplication module. Also the converse is true provided that $S \subseteq u(R)$.

Example 4. *(An S-comultiplication module that is not comultiplication)*

Consider the \mathbb{Z}-module $M = \mathbb{Z}$ and $S = \text{reg}(\mathbb{Z}) = \mathbb{Z} - \{0\}$. Now, take the submodule $N = m\mathbb{Z}$, where $m \neq 0, \pm 1$. Then $(0 : \text{ann}(m\mathbb{Z})) = \mathbb{Z} \neq m\mathbb{Z}$ so that M is not a comultiplication module. Now, take a submodule K of M. Then $K = k\mathbb{Z}$ for some $k \in \mathbb{Z}$. If $k = 0$, then choose $s = 1$ and note that $s(0 : \text{ann}(K)) = (0 : k\mathbb{Z})$. If $k \neq 0$, then choose $s = k$ and note that $s(0 : \text{ann}(K)) \subseteq k\mathbb{Z} = K \subseteq (0 : \text{ann}(K))$. Therefore, M is an S-comultiplication module.

Lemma 1. Let M be an R-module. The following statements are equivalent.

(i) M is an S-comultiplication module.

(ii) For each submodule N of M, there exists $s \in S$ such that $s(0 :_M \text{ann}(N)) \subseteq N \subseteq (0 :_M \text{ann}(N))$.

(iii) For each submodule K, N of M with $\text{ann}(K) \subseteq \text{ann}(N)$, there exists $s \in S$ such that $sN \subseteq K$.

Proof. $(i) \Rightarrow (ii)$: Suppose that M is an S-comultiplication module and take a submodule N of M. Then by definition, there exist $s \in S$ and an ideal I of R such that $s(0 :_M I) \subseteq N \subseteq (0 :_M I)$. Then note that $IN = (0)$ and so $I \subseteq \text{ann}(N)$. This gives that $s(0 :_M \text{ann}(N)) \subseteq s(0 :_M I) \subseteq N \subseteq (0 :_M \text{ann}(N))$ which completes the proof.
which is a generalization of Noetherian rings and they extended many properties if it is an x-Noetherian ring and x-Noetherian module. Then $\text{ann}_S M$ is an x-comultiplication module. Since $\text{ann}(K) \subseteq \text{ann}(N)$, we have $(0 :_M \text{ann}(N)) \subseteq (0 :_M \text{ann}(K))$ and so

$$s_1s_2(0 :_M \text{ann}(N)) \subseteq s_2N \subseteq s_2(0 :_M \text{ann}(N)) \subseteq s_2(0 :_M \text{ann}(K)) \subseteq K$$

which completes the proof.

(iii) \Rightarrow (i): Suppose that (iii) holds. Let N be a submodule of M. Then it is clear that $\text{ann}(N) = \text{ann}(0 :_M \text{ann}(N))$. Then by (iii), there exists $s \in S$ such that $s(0 :_M \text{ann}(N)) \subseteq N \subseteq (0 :_M \text{ann}(N))$.

(ii) \Rightarrow (i): It is clear. \square

Let S be a m.c.s of R. The saturation S^* of S is defined by $S^* = \{x \in R : x|s \text{ for some } s \in S\}$. Also S is said to be a saturated m.c.s of R if $S = S^*$. Note that S^* is always a saturated m.c.s of R containing S.

Proposition 1. Let M be an R-module and S be a m.c.s of R. The following assertions hold.

(i) Let S_1 and S_2 be two m.c.s of R and $S_1 \subseteq S_2$. If M is an S_1-comultiplication module, then M is also an S_2-comultiplication module.

(ii) M is an S-comultiplication module if and only if M is an S^*-comultiplication module, where S^* is the saturation of S.

Proof. (i): Clear.

(ii): Assume that M is an S^*-comultiplication module. Since $S \subseteq S^*$, the result follows from the part (i).

Suppose M is an S^*-comultiplication module. Take a submodule N of M. Since M is S^*-comultiplication module, there exists $x \in S^*$ such that $x((0 :_M \text{ann}(N)) \subseteq N \subseteq (0 :_M \text{ann}(N))$ by Lemma 1. Since $x \in S^*$, there exists $s \in S$ such that $x|s$, that is, $s = rx$ for some $r \in R$. This implies that $s(0 :_M \text{ann}(N)) \subseteq x((0 :_M \text{ann}(N)) \subseteq N \subseteq (0 :_M \text{ann}(N))$. Thus, M is an S-comultiplication module. \square

Anderson and Dumitrescu, in 2002, defined the concept of S-Noetherian rings which is a generalization of Noetherian rings and they extended many properties of Noetherian rings to S-Noetherian rings. Recall from [4] that a submodule N of M is said to be an S-finite submodule if there exists a finitely generated submodule K of M such that $sN \subseteq K \subseteq N$. Also, M is said to be an S-Noetherian module if its each submodule is S-finite. In particular, R is said to be an S-Noetherian ring if it is an S-Noetherian R-module.

Proposition 2. Let R be an S-Noetherian ring and M be an S-comultiplication module. Then $S^{-1} M$ is a comultiplication module.

Proof. Let W be a submodule of $S^{-1} M$. Then, $W = S^{-1} N$ for some submodule N of M. Since M is an S-comultiplication module, there exists $s \in S$ such that $s(0 :_M I) \subseteq N \subseteq (0 :_M I)$ for some ideal I of R. Then, we get $S^{-1}(s(0 :_M I)) = S^{-1}((0 :_M I)) \subseteq S^{-1}N \subseteq S^{-1}((0 :_M I))$ that is $S^{-1}N = S^{-1}((0 :_M I))$. Now, we will show that $S^{-1}((0 :_M I)) = (0 :_{S^{-1}M} S^{-1} I)$. Let $\overline{w} \in S^{-1}((0 :_M I))$
where \(m \in (0 :_M I) \) and \(s' \in S \). Then, we have \(Im = (0) \) and so \((S^{-1} I)(\frac{m}{s}) = (0)\). This implies that \(\frac{m}{s} \in (0 :_{S^{-1}M} S^{-1}I) \). For the converse, let \(\frac{m}{s} \in (0 :_{S^{-1}M} S^{-1}I) \). Then, we have \((S^{-1} I)(\frac{m}{s}) = (0)\). This implies that, for each \(x \in I \), there exists \(s'' \in S \) such that \(s''xm = 0 \). Since \(R \) is an \(S \)-Noetherian ring, \(I \) is \(S \)-finite. So, there exists \(s' \in S \) and \(a_1, a_2, \ldots, a_n \in I \) such that \(s' I \subseteq (a_1, a_2, \ldots, a_n) \subseteq I \). As \((S^{-1} I)(\frac{m}{s}) = (0)\) and \(a_i \in I \), there exists \(s_i \in S \) such that \(s_i a_i m = 0 \). Now, put \(t = s_1 s_2 \cdots s_n s' \in S \). Then we have \(ta_i m = 0 \) for all \(a_i \) and so \(tIm = 0 \). Then we deduce \(\frac{m}{s} = \frac{m}{s} \in S^{-1}(0 :_M I) \). Thus, \(S^{-1}(0 :_M I) = (0 :_{S^{-1}M} S^{-1}I) \) and so \(W = S^{-1} N = (0 :_{S^{-1}M} S^{-1}I) \). Therefore, \(S^{-1} M \) is a comultiplication module. □

Recall from [2] that a m.c.s \(S \) of \(R \) is said to satisfy maximal multiple condition if there exists \(s \in S \) such that \(t \) divides \(s \) for each \(t \in S \).

Theorem 1. Let \(M \) be an \(R \)-module and \(S \) be a m.c.s. of \(R \) satisfying maximal multiple condition. Then, \(M \) is an \(S \)-comultiplication module if and only if \(S^{-1} M \) is a comultiplication module.

Proof. \((\Rightarrow)\) Suppose that \(W \) is a submodule of \(S^{-1} M \). Then \(W = S^{-1} N \) for some submodule \(N \) of \(M \). Since \(M \) is an \(S \)-comultiplication module, there exist \(t' \in S \) and an ideal \(I \) of \(R \) such that \(t' (0 :_M I) \subseteq N \subseteq (0 :_M I) \). This implies that \(IN = (0) \) and so \(S^{-1} (IN) = (S^{-1} I)(S^{-1} N) = 0 \). Then we have \(S^{-1} N \subseteq (0 :_{S^{-1}M} S^{-1}I) \). Let \(\frac{m}{s} \in (0 :_{S^{-1}M} S^{-1}I) \). Then we get \(\frac{m}{s} = 0 \) for each \(a \in I \) and this yields that \(u a m' = 0 \) for some \(u \in S \). As \(S \) satisfies maximal multiple condition, there exists \(s \) such that \(u | s \) for each \(u \in S \). This implies that \(s = u x \) for some \(x \in R \). Then we have \(s a m' = x u a m' = 0 \). Then we conclude that \(I s m' = 0 \) and so \(s m' \in (0 :_M I) \). This yields that \(t' s m' \in t'(0 :_M I) \subseteq N \) and so \(\frac{m}{s} = \frac{t' s m'}{t's ss} \in \subseteq S^{-1} N \). Then we get \(S^{-1} N = (0 :_{S^{-1}M} S^{-1}I) \) and so \(S^{-1} M \) is a comultiplication module.

\((\Leftarrow)\) Suppose that \(S^{-1} M \) is a comultiplication module. Let \(N \) be a submodule of \(M \). Since \(S^{-1} M \) is comultiplication, \(S^{-1} N = (0 :_{S^{-1}M} S^{-1}I) \) for some ideal \(I \) of \(R \). Then we have \((S^{-1} I)(S^{-1} N) = S^{-1} (IN) = 0 \). Then for each \(a \in I, m \in N \), we have \(\frac{m}{s} = 0 \) and thus \(u a m = 0 \) for some \(u \in S \). By maximal multiple condition, there exists \(s \) such that \(s a m = 0 \) and so \(s IN = 0 \). This implies that \(N \subseteq (0 :_M sI) \). Now, let \(m \in (0 :_M sI) \). Then \(I s m = 0 \) so it is easily seen that \((S^{-1} I)(\frac{m}{s}) = 0 \). Then we conclude that \(\frac{m}{s} \in (0 :_{S^{-1}M} S^{-1}I) = S^{-1} N \). Then there exists \(x \in S \) such that \(x m \in N \). Again by maximal multiple condition, \(sm \in N \). Then we have \(s(0 :_M sI) \subseteq N \subseteq (0 :_M sI) \). Since \(sI \) is an ideal of \(R \), \(M \) is an \(S \)-comultiplication module.

Theorem 2. Let \(f : M \to M' \) be an \(R \)-homomorphism and \(t \text{Ker}(f) = (0) \) for some \(t \in S \).

\((i)\) If \(M' \) is an \(S \)-comultiplication module, then \(M \) is an \(S \)-comultiplication module.

\((ii)\) If \(f \) is an \(R \)-epimorphism and \(M \) is an \(S \)-comultiplication module, then \(M' \) is an \(S \)-comultiplication module.

Proof. \((i)\) Let \(N \) be a submodule of \(M \). Since \(M' \) is an \(S \)-comultiplication module, there exist \(s \in S \) and an ideal \(I \) of \(R \) such that \(s(0 :_M I) \subseteq f(N) \subseteq (0 :_{M'} I) \). Then, we have \(f(N) = (0) \) and so \(f(N) \subseteq \text{Ker} f \). Since \(t \text{Ker}(f) = (0) \), we have \(t(N) = (0) \) and so \(N \subseteq (0 :_M tI) \). Now, we will show that \(t^2 s(0 :_M tI) \subseteq N \subseteq (0 :_M tI) \). Let \(m \in (0 :_M tI) \). Then, we have \(tIm = 0 \) and so
$f(tIm) = tf(m) = If(tm) = 0$. This implies that $f(tm) \in (0 : M_1 I)$. Thus, we have $sf(tm) = f(stm) \in s(0 : M_1 I) \subseteq f(N)$ and so there exists $y \in N$ such that $f(stm) = f(y)$ and so $stm - y \in Ker(f)$. Thus, we have $t(stm - y) = 0$ and so $t^2 sm = tx$. Then we obtain

$$t^2 s(0 : M_1 I) \subseteq tN \subseteq N' \subseteq (0 : M_1 I).$$

Now, put $t^2 s = s' \in S$ and $J = tI$. Thus,

$$s'(0 : M_1 J) \subseteq N' \subseteq (0 : M_1 J).$$

Therefore, M is an S-comultiplication module.

(ii) Let N' be a submodule of M'. Since M is an S-comultiplication module, there exist $s \in S$ and an ideal I of R such that

$$s(0 : M_1 I) \subseteq f^{-1}(N') \subseteq (0 : M_1 I).$$

This implies that $fN' = (0)$ and so $f(I^{-1}(N')) = fN' = (0)$ since f is surjective. Then, we have $N' \subseteq (0 : M_1 I)$. On the other hand, we get $f(s(0 : M_1 I)) = sf((0 : M_1 I)) \subseteq f(N') = N'$. Now, let $m' \in (0 : M_1 I)$. Then, $Im' = 0$. Since, f is epimorphism, there exists $m \in M$ such that $m' = f(m)$. Then, we have $Im' = If(m) = f(Im) = 0$ and so $Im \subseteq Ker f$. Since $tKer(f) = 0$, we have $tIm = 0$ and so $tm \in (0 : M_1 I)$. Then we get $f(tm) = tf(m) = tm' \in f((0 : M_1 I)).$

Thus, we have $t(0 : M_1 I) \subseteq f((0 : M_1 I))$ and hence $st(0 : M_1 I) \subseteq sf((0 : M_1 I)) \subseteq N' \subseteq (0 : M_1 I)$. Thus, M' is an S-comultiplication module.

As an immediate consequences of previous theorem, we give the following explicit results.

Corollary 1. Let M be an R-module, N be a submodule of M and S be a m.c.s of R. Then we have the following.

(i) If M is an S-comultiplication module, then N is an S-comultiplication module.

(ii) If M is an S-comultiplication module and $tM \subseteq N$ for some $t \in S$, then M/N is an S-comultiplication R-module.

Proposition 3. Let M_i be an R_i-module and S_i be a m.c.s of R_i for each $i = 1, 2$. Suppose that $M = M_1 \times M_2$, $R = R_1 \times R_2$ and $S = S_1 \times S_2$. The following assertions are equivalent.

(i) M is an S-comultiplication R-module.

(ii) M_1 is an S_1-comultiplication R_1-module and M_2 is an S_2-comultiplication R_2-module.

Proof. (i) \Rightarrow (ii) : Assume that M is an S-comultiplication R-module. Take a submodule N_1 of M_1. Then, $N_1 \times \{0\}$ is a submodule of M. Since M is an S-comultiplication module, there exist $s = (s_1, s_2) \in S_1 \times S_2$ and an ideal $J = I_1 \times I_2$ of R such that $(s_1, s_2)(0 : M_1 I_1 \times I_2) \subseteq N_1 \times \{0\} \subseteq (0 : M_1 I_1 \times I_2)$, where I_i is an ideal of R_i. Then we can easily get $s_1(0 : M_1 I_1) \subseteq N_1 \subseteq (0 : M_1 I_1)$ which shows that M_1 is an S_1-comultiplication module. Similarly, taking a submodule N_2 of M_2 and a submodule $\{0\} \times N_2$ of M, we can show that M_2 is an S_2-comultiplication module.

(ii) \Rightarrow (i) : Now, assume that M_1 is an S_1-comultiplication module and M_2 is an S_2-comultiplication module. Let N be a submodule of M. Then we can write $N = N_1 \times N_2$ for some submodule N_i of M_i. Since M_1 is an S_1-comultiplication module,

$$s_1(0 : M_1 I_1) \subseteq N_1 \subseteq (0 : M_1 I_1)$$
for some ideal \(I_1 \) of \(R_1 \) and \(s_1 \in S_1 \). Since \(M_2 \) is an \(S_2 \)-comultiplication module,
\[
 s_2(0 :_{M_2} I_2) \subseteq N_2 \subseteq (0 :_{M_2} I_2)
\]
for some ideal \(I_2 \) of \(R_2 \) and \(s_2 \in S_2 \). Put \(s = (s_1, s_2) \in S \). Then,
\[
 s(0 :_{M} I_1 \times I_2) = s_1(0 :_{M_1} I_1) \times s_2(0 :_{M_2} I_2)
 \subseteq N_1 \times N_2 \subseteq (0 :_{M_1} I_1) \times (0 :_{M_2} I_2) = (0 :_{M} I_1 \times I_2)
\]
where \(I_1 \times I_2 \) is an ideal of \(R \) and \((s_1, s_2) \in S \), as needed. \(\square \)

Theorem 3. Let \(M = M_1 \times M_2 \times \cdots \times M_n \) be an \(R = R_1 \times R_2 \times \cdots \times R_n \)
module and \(S = S_1 \times S_2 \times \cdots \times S_n \) be a \(\mathbb{m.c.s.} \) of \(R \) where \(M_i \) are \(R_i \)-modules and \(S_i \) are \(\mathbb{m.c.s.} \) of \(R_i \) for all \(i \in \{1, 2, \ldots, n\} \), respectively. The following statements are equivalent.

(i) \(M \) is an \(S \)-comultiplication \(R \)-module.

(ii) \(M_i \) is an \(S_i \)-comultiplication \(R_i \)-module for each \(i = 1, 2, \ldots, n \).

Proof. Here, induction can be applied on \(n \). The statement is true when \(n = 1 \). If \(n = 2 \), result follows from Proposition 3. Assume that statements are equivalent for each \(k < n \). We will show that it also holds for \(k = n \). Now, put \(M' = M_1 \times M_2 \times \cdots \times M_{n-1} \), \(R = R_1 \times R_2 \times \cdots \times R_{n-1} \) and \(S = S_1 \times S_2 \times \cdots \times S_{n-1} \). Note that \(M = M' \times M_n \), \(R = R' \times R_n \) and \(S = S' \times S_n \). Then by Proposition 3 \(M \) is an \(S \)-comultiplication \(R \)-module if and only if \(M' \) is an \(S' \)-comultiplication \(R' \)-module and \(M_n \) is an \(S_n \)-comultiplication \(R_n \)-module. The rest follows from induction hypothesis. \(\square \)

Let \(p \) be a prime ideal of \(R \). Then we know that \(S_p = (R - p) \) is a \(\mathbb{m.c.s.} \) of \(R \). If an \(R \)-module \(M \) is an \(S_p \)-comultiplication for a prime ideal \(p \) of \(R \), then we say that \(M \) is a \(p \)-comultiplication module. Now, we will characterize comultiplication modules in terms of \(S \)-comultiplication modules.

Theorem 4. Let \(M \) be an \(R \)-module. The following statements are equivalent.

(i) \(M \) is a comultiplication module.

(ii) \(M \) is a \(\mathbb{P} \)-comultiplication module for each prime ideal \(\mathbb{P} \) of \(R \).

(iii) \(M \) is an \(\mathbb{M} \)-comultiplication module for each maximal ideal \(\mathbb{M} \) of \(R \).

(iv) \(M \) is an \(\mathbb{M} \)-comultiplication module for each maximal ideal \(\mathbb{M} \) of \(R \) with \(M \mathbb{M} \neq 0 \).

Proof. (i) \(\Rightarrow \) (ii) : Follows from Example 3.

(ii) \(\Rightarrow \) (iii) : Follows from the fact that every maximal ideal is prime.

(iii) \(\Rightarrow \) (iv) : Clear.

(iv) \(\Rightarrow \) (i) : Suppose that \(M \) is an \(\mathbb{M} \)-comultiplication module for each maximal ideal \(\mathbb{M} \) of \(R \) with \(M \mathbb{M} \neq 0 \). Take a submodule \(N \) of \(M \) and a maximal ideal \(\mathbb{M} \) of \(R \). If \(M \mathbb{M} = 0 \), then clearly we have \(N \mathbb{M} = (0 :_{\mathbb{M}} \text{ann}(N)) \mathbb{M} \). So assume that \(M \mathbb{M} \neq 0 \). Since \(M \) is an \(\mathbb{M} \)-comultiplication module, there exists \(s_M \notin \mathbb{M} \) such that \(s_M(0 :_{\mathbb{M}} \text{ann}(N)) \subseteq N \). Then we have
\[
 (0 :_{\mathbb{M}} \text{ann}(N)) \mathbb{M} = (s_M(0 :_{\mathbb{M}} \text{ann}(N))) \mathbb{M} \subseteq N \mathbb{M} \subseteq (0 :_{\mathbb{M}} \text{ann}(N)) \mathbb{M}.
\]
Thus we have \(N \mathbb{M} = (0 :_{\mathbb{M}} \text{ann}(N)) \mathbb{M} \) for each maximal ideal \(\mathbb{M} \) of \(R \). Therefore, \(N = (0 :_{\mathbb{M}} \text{ann}(N)) \) so that \(M \) is a comultiplication module. \(\square \)

Now, we shall give the \(S \)-version of Dual Nakayama’s Lemma for \(S \)-comultiplication module. First, we need the following Proposition.
Proposition 4. Let M be an S-comultiplication R-module. Then,
(i) If I is an ideal of R with $(0 :_M I) = 0$, then there exists $s \in S$ such that $sM \subseteq IM$.
(ii) If I is an ideal of R with $(0 :_M I) = 0$, then for every element $m \in M$, there exists $s \in S$ and $a \in I$ such that $sm = am$.
(iii) If M is an S-finite R-module and I is an ideal of R with $(0 :_M I) = 0$, then there exist $s \in S$ and $a \in I$ such that $(s + a)M = 0$.

Proof. (i) : Suppose that I is an ideal of R with $(0 :_M I) = 0$. Then we have $((0 :_M I) : M) = (0 : IM) = (0 : M)$. Then by Lemma 3 (iii), there exists $s \in S$ such that $sM \subseteq IM$.

(ii) : Suppose that I is an ideal of R with $(0 :_M I) = 0$. Then for any $m \in M$, we have $(0 : Rm) = ((0 :_M I) : Rm) = (0 : Im)$. Again by Lemma 3 (iii), there exists $s \in S$ such that $sRm \subseteq Im$ and so $sm = am$ for some $a \in I$.

(iii) : Suppose that M is an S-finite R-module and I is an ideal of R with $(0 :_M I) = 0$. Then there exists $t \in S$ such that $tM \subseteq Rm_1 + Rm_2 + \cdots + Rm_n$ for some $m_1, m_2, \ldots, m_n \in M$. Since $(0 :_M I) = 0$, by (i), there exists $s \in S$ such that $sM \subseteq IM$. This implies that $stM \subseteq tIM$. Then we obtain that $stM \subseteq tIM = tM \subseteq I(Rm_1 + Rm_2 + \cdots + Rm_n) = Im_1 + Im_2 + \cdots + Im_n$. Then for each $i = 1, 2, \ldots, n$, we have $stm_i = a_1m_1 + a_2m_2 + \cdots + a_im_n$ and so $-a_{1i}m_1 - a_{2i}m_2 - \cdots - (st-a_{ii})m_i + \cdots - a_{ni}m_n = 0$. Now, let Δ be the following matrix

$$\begin{bmatrix}
st-a_{11} & -a_{12} & \cdots & -a_{1n}
-a_{21} & st-a_{22} & \cdots & -a_{2n}
\vdots & \vdots & \ddots & \vdots
-a_{ni} & -a_{ni} & \cdots & st-a_{nn}
\end{bmatrix}_{n \times n}$$

Then we have $|\Delta| m_i = 0$ for each $i = 1, 2, \ldots, n$. Thus we obtain that $t |\Delta| M = 0$. This implies that $t(s^nt^n + a)M = (s^nt^{n+1} + at)M = 0$ for some $a \in I$. Now, put $u = s^nt^{n+1} \in S$ and $b = at \in I$. Then we have $(u + b)M = 0$ which completes the proof. □

Theorem 5. *(S-Dual Nakayama’s Lemma)* Let M be an S-comultiplication module, where S is a m.c. of R satisfying maximal multiple condition. Suppose that I is an ideal of R such that $tI \subseteq \text{Jac}(R)$ for some $t \in S$. If $(0 :_M tI) = 0$, then there exists $s \in S$ such that $sM = 0$.

Proof. Suppose that S satisfies maximal multiple condition. Then there exists $s \in S$ such that $t|s$ for each $t \in S$. Let I be an ideal of R with $tI \subseteq \text{Jac}(R)$ for some $t \in S$ and $(0 :_M tI) = 0$. Then for each $m \in M$, by Proposition 2 (ii), there exists $t' \in S$ such that $t'Rm \subseteq tIm$ and so $s^2t'Rm \subseteq s^2tIm \subseteq s^2Im$. Now, put $u = s^2t'$. By maximal multiple condition, we have $sRm \subseteq uRm \subseteq s^2Rm$ and so $sm = s^2am$ for some $a \in R$. On the other hand, we note that $sI \subseteq tI \subseteq \text{Jac}(R)$. Thus we have $s(1 - sa)m = 0$. Since $sa \in \text{Jac}(R)$, we get $1 - sa$ is an unit and so $sm = 0$. Thus we have $sM = 0$. □

Corollary 2. *(Dual Nakayama’s Lemma)* Let M be a comultiplication module and I an ideal of R such that $I \subseteq \text{Jac}(R)$. If $(0 :_M I) = 0$, then $M = 0$.

Proof. Take $S = \{1\}$ and apply Theorem 5. □
3. S-cyclic modules

In this section, we investigate the relations between S-comultiplication modules and S-cyclic modules.

Proposition 5. Let M be an S-comultiplication R-module and N be a minimal ideal of R such that $(0:_MN) = 0$. Then, M is an S-cyclic module.

Proof. Choose a nonzero element m of M. Since M is an S-comultiplication module, there exist $s \in S$ and an ideal I of R such that $s(0:_MI) \subseteq Rm \subseteq (0:_MI)$. By the assumption $(0:_MN) = 0$, we have

$$s((0:_MN):_MI) \subseteq Rm \subseteq ((0:_MN):_MI) \Rightarrow s(0:_MI) \subseteq Rm \subseteq (0:_MI).$$

Since $0 \subseteq NI \subseteq N$ and N is minimal ideal of R, either $NI = N$ or $NI = 0$. If the former case holds, we have $s(0:_MN) \subseteq Rm \subseteq (0:_MN)$. This means that $Rm = 0$, a contradiction. The second case implies the equality $s(0:_M0) \subseteq Rm \subseteq (0:_M0)$. It means $sM \subseteq Rm \subseteq M$ proving that M is S-cyclic.

Proposition 6. Let M be an S-comultiplication module of R. Let $\{M_i\}$ be a collection of submodules of M with $\bigcap_i M_i = 0$. Then, for every submodule N of M, there exists an $s \in S$ such that

$$s \bigcap_i (N + M_i) \subseteq N \subseteq \bigcap_i (N + M_i).$$

Proof. Let N be a submodule of M. Since M is an S-comultiplication module, we have $s(0:_M\text{ann}(N)) \subseteq N \subseteq (0:_M\text{ann}(N))$ for some $s \in S$. This implies $s(\bigcap_i M_i :_M \text{ann}(N)) \subseteq N \subseteq (\bigcap_i M_i :_M \text{ann}(N))$ since $\bigcap_i M_i = 0$. Then, we obtain $s(\bigcap_i (M_i :_M \text{ann}(N))) \subseteq N \subseteq \bigcap_i (M_i :_M \text{ann}(N))$. Thus,

$$s \bigcap_i (N + M_i) \subseteq s \bigcap_i (M_i :_M \text{ann}(N)) \subseteq N \subseteq \bigcap_i (N + M_i).$$

Proposition 7. Let M be an S-comultiplication module. Then, for each submodule N of M and each ideal I of R with $N \subseteq s(0:_MI)$ for some $s \in S$, there exists an ideal J of R such that $I \subseteq J$ and $s(0:_MJ) \subseteq N$.

Proof. Let N be a submodule of M. Since M is an S-comultiplication module, $s(0:_M\text{ann}(N)) \subseteq N \subseteq (0:_M\text{ann}(N))$ for some $s \in S$. So, we obtain $s(0:_M\text{ann}(N)) \subseteq N \subseteq s(0:_MI)$. Taking $J = I + \text{ann}(N)$,

$$s(0:_MJ) = s(0:_M I + \text{ann}(N)) \subseteq s(0:_MI) \cap s(0:_M\text{ann}(N)) \subseteq s(0:_M\text{ann}(N)) \subseteq N.$$

Recall that an R-module M is said to be a torsion free if the set of torsion elements $T(M) = \{m \in M : rm = 0$ for some $0 \neq r \in R\}$ of M is zero. Also M is called a torsion module if $T(M) = M$. We refer the reader to [3] for more details on torsion subsets $T(M)$ of M.

Theorem 6. Every S-comultiplication module is either S-cyclic or torsion.

Proof. Let M be an S-comultiplication module. Assume that M is not an S-cyclic module and $\text{ann}_R(m) = 0$ for some $m \in M$. Since Rm is a submodule of M and M is an S-comultiplication module, we have $s(0:_M\text{ann}(m)) \subseteq Rm \subseteq (0:_M$.
ann\((m)\). It gives \(sM \subseteq Rm \subseteq M\) for some \(s \in S\). This contradiction completes the proof. Hence, \(\text{ann}(m) \neq 0\) for all \(m \in M\) proving that \(M\) is torsion module. \(\square\)

Theorem 7. Let \(R\) be an integral domain and \(M\) be an \(S\)-finite and \(S\)-comultiplication module. If \(sM\) is faithful for each \(s \in S\), then \(M\) is an \(S\)-cyclic module.

Proof. Suppose that \(M\) is not an \(S\)-cyclic module. Then \(M\) is a torsion module from Theorem \(6\). Since \(M\) is an \(S\)-finite module, there exist \(s \in S\) and \(m_1, m_2, \ldots, m_n \in M\) such that \(sM \subseteq Rm_1 + Rm_2 + \cdots + Rm_n\). This implies that
\[
\text{ann}(Rm_1 + Rm_2 + \cdots + Rm_n) = \bigcap_{i=1}^{n} \text{ann}(m_i) \subseteq \text{ann}(sM) = 0
\]
since \(sM\) is faithful. Hence, \(M\) is an \(S\)-cyclic module. \(\square\)

Recall from [19] that an \(R\)-module \(M\) is said to be an \(S\)-torsion free module if there exists \(s \in S\) and whenever \(am = 0\) for some \(a \in R\) and \(m \in M\), then either \(sa = 0\) or \(sm = 0\).

Theorem 8. Every \(S\)-comultiplication \(S\)-torsion free module is an \(S\)-cyclic module.

Proof. Let \(M\) be an \(S\)-comultiplication and \(S\)-torsion free module. If \(sM = 0\) for some \(s \in S\), then \(M\) is an \(S\)-cyclic module. So assume that \(sM \neq 0\) for each \(s \in S\). Since \(M\) is an \(S\)-torsion free module, there exists \(t' \in S\) and whenever \(am = 0\) for some \(a \in R\) and \(m \in M\), then either \(t'a = 0\) or \(t'm = 0\). Since \(t'M \neq 0\), there exists \(m \in M\) such that \(t'm \neq 0\). As \(M\) is an \(S\)-comultiplication module, there exists \(t \in S\) such that \(t(0 :_M \text{ann}(m)) \subseteq Rm\). Since \(\text{ann}(m)m = 0\) and \(M\) is \(S\)-torsion free module, we conclude either \(t'\text{ann}(m) = 0\) or \(t'm = 0\). The second case is impossible. So we have \(t'\text{ann}(m) = 0\) and so \(t'M \subseteq (0 :_M \text{ann}(m))\). This implies that \(t't'M \subseteq t(0 :_M \text{ann}(m)) \subseteq Rm\) where \(t't' \in S\), namely, \(M\) is an \(S\)-cyclic module. \(\square\)

Let \(K\) be a nonzero submodule of \(M\). \(K\) is said to be an \(S\)-minimal submodule if \(L \subseteq K\) for some submodule of \(M\), then there exists \(s \in S\) such that \(sK \subseteq L\).

Theorem 9. Every \(S\)-comultiplication prime \(R\)-module \(M\) is \(S\)-minimal.

Proof. Let \(M\) be an \(S\)-comultiplication prime \(R\)-module. Assume that \(N\) is a submodule of \(M\). Since \(M\) is prime, \(\text{ann}(N) = \text{ann}(M)\). Also, \((0 :_M \text{ann}(N)) = (0 :_M \text{ann}(M))\). Since \(M\) is an \(S\)-comultiplication module, \(s(0 :_M \text{ann}(N)) \subseteq N \subseteq (0 :_M \text{ann}(N))\) for some \(s \in S\). Hence, we get \(s(0 :_M \text{ann}(M)) \subseteq N \subseteq (0 :_M \text{ann}(M))\) and it shows that \(sM \subseteq N \subseteq M\). Therefore, \(M\) is \(S\)-minimal. \(\square\)

4. S-second submodules of S-comultiplication modules

This section is dedicated to the study of \(S\)-second submodules of \(S\)-comultiplication module. Now, we need the following definition.

Definition 2. Let \(M\) and \(M'\) be two \(R\)-modules and \(f : M \rightarrow M'\) be an \(R\)-homomorphism.

(i) If there exists \(s \in S\) such that \(f(m) = 0\) implies that \(sm = 0\), then \(f\) is said to be an \(S\)-injective (or, just \(S\)-monic).

(ii) If there exists \(s \in S\) such that \(sM' \subseteq \text{Im} f\), then \(f\) is said to be an \(S\)-epimorphism (or, just \(S\)-epic).
The following proposition is explicit. Let M be an R-module. An element $x \in R$ is called a zero divisor on M if there exists $0 \neq m \in M$ such that $xm = 0$, or equivalently, $\text{ann}_M(x) \neq \{0\}$. The set of all zero divisor elements of R on M is denoted by $z(M)$.

Proposition 8. Let M and M' be two R-modules and $f : M \to M'$ be an R-homomorphism.

(i) f is S-monic if and only if there exists $s \in S$ such that $s \text{Ker}(f) = \{0\}$.

(ii) If f is monic, then f is S-monic for each $m.c.s$ S of R. The converse holds in case $S \subseteq R - z(M)$.

(iii) If f is epic, then f is S-epic for each $m.c.s$ S of R. The converse holds in case $S \subseteq u(R)$.

Recall from [19] that a submodule P of M with $(P : M) \cap S = \emptyset$ is said to be an S-prime submodule if there exists a fixed $s \in S$ and whenever $am \in P$ for some $a \in R, m \in M$, then either $sa \in (P : M)$ or $sm \in P$. In particular, an ideal I of R is said to be an S-prime ideal if I is an S-prime submodule of M. We note here that Acrif and Hamed, in their paper [18], studied and investigated the further properties of S-prime ideals. Now, we give the following needed results which can be found in [19].

Proposition 9. (i) ([19] Proposition 2.9) If P is an S-prime submodule of M, then $(P : M)$ is an S-prime ideal of R.

(ii) ([19] Lemma 2.16) If P is an S-prime submodule of M, there exists a fixed $s \in S$ such that $(P : M s') \subseteq (P : M s)$ for each $s' \in S$.

(iii) ([19] Theorem 2.18) P is an S-prime submodule of M if and only if $(P : M s)$ is a prime submodule of M for some $s \in S$.

By the previous proposition, we deduce that P is an S-prime submodule if and only if there exists a fixed $s \in S$ such that $(P : M s)$ is a prime submodule and $(P : M s') \subseteq (P : M s)$ for each $s' \in S$.

Sevim et al. in [19] gave many characterizations of S-prime submodules. Now, we give a new characterization of S-prime submodules from another point of view.

Recall that a homomorphism $f : M \to M'$ is said to be an S-zero if there exists $s \in S$ such that $sf(m) = 0$ for each $m \in M$, that is, $s \text{Im} f = \{0\}$.

Proposition 10. Let P be a submodule of M with $(P : M) \cap S = \emptyset$. The following statements are equivalent.

(i) P is an S-prime submodule of M.

(ii) There exists a fixed $s \in S$, for any $a \in R$ and the homothety $M/P \cong M/P$, either S-zero or S-injective with respect to $s \in S$.

Proof. $(i) \Rightarrow (ii)$: Suppose that P is an S-prime submodule of M. Then there exists a fixed $s \in S$ such that $am \in P$ for some $a \in R, m \in M$ implies that $saM \subseteq P$ or $sm \in P$. Now, take $a \in R$ and assume that the homothety $M/P \cong M/P$ is not S-injective with respect to $s \in S$. Then there exists $m \in M$ such that $a(m + P) = am + P = 0_{M/P}$ but $s(m + P) \neq 0_{M/P}$. This gives that $am \in P$ and $sm \notin P$. Since P is an S-prime submodule, we have $sa \in (P : M)$ and thus $sam' \in P$ for each $m' \in M$. Then we have $sa(m' + P) = 0_{M/P}$ for each $m' \in M$, that is, the homothety $M/P \cong M/P$ is S-zero with respect to s.

$(ii) \Rightarrow (i)$: Suppose that (ii) holds. Let $am \in P$ for some $a \in R$ and $m \in M$. Assume that $sm \notin P$. Then we deduce the homothety $M/P \cong M/P$ is not
is an S-injective. Thus by (ii), $M/P \rightarrow M/P$ is S-zero with respect to $s \in S$, namely, $sa(m' + P) = 0_{M/P}$ for each $m' \in M$. This yields that $sa \in (P : M)$. Therefore, P is an S-prime submodule of M. \qed

It is well known that a submodule P of M is a prime submodule if and only if every homothety $M/P \rightarrow M/P$ is either injective or zero. This fact can be obtained by Proposition 10 by taking $S \subseteq u(R)$.

Recall from [7] that a submodule N of M with $\text{ann}(N) \cap S = \emptyset$ is said to be an S-second submodule if there exists $s \in S$, $srN = 0$ or $srN = sN$ for each $r \in R$. Motivated by Proposition 10, we give a new characterization of S-second submodules from another point of view. Since the proof is similar to Proposition 10, we omit the proof.

Theorem 10. Let N be a submodule of M with $\text{ann}(N) \cap S = \emptyset$. The following assertions are equivalent.

(i) N is an S-second submodule.

(ii) There exists $s \in S$ such that for each $a \in R$, the homothety $N \xrightarrow{a} N$ is either S-zero or S-surjective with respect to $s \in S$.

(iii) There exists a fixed $s \in S$, for each $a \in R$, either $saN = 0$ or $sN \subseteq aN$.

The author in [7] proved that if N is an S-second submodule of M, then $\text{ann}(N)$ is an S-prime ideal of R and the converse holds under the assumption that M is comultiplication module [7] Proposition 2.9]. Now, we show that this fact is true even if M is an S-comultiplication module.

Theorem 11. Let M be an S-comultiplication module. The following statements are equivalent.

(i) N is an S-second submodule of M.

(ii) $\text{ann}(N)$ is an S-prime ideal of R and there exists $s \in S$ such that $sN \subseteq s'N$ for each $s' \in S$.

Proof. (i) \Rightarrow (ii) : The claim follows from [7] Proposition 2.9] and [7] Lemma 2.13).

(ii) \Rightarrow (i) : Suppose that $\text{ann}(N)$ is an S-prime ideal of R. Now, we will show that N is an S-second submodule of M. To prove this, take $a \in R$. Since $\text{ann}(N)$ is an S-prime ideal, by Proposition 1 there exists $s \in S$ such that $\text{ann}(sN)$ is a prime ideal and $\text{ann}(s'N) \subseteq \text{ann}(sN)$ for each $s' \in S$. Assume that $saN \neq (0)$. Now, we shall show that $sN \subseteq aN$. Since M is an S-comultiplication module, there exists $s' \in S$ and an ideal I of R such that $s'(0 :_M I) \subseteq aN \subseteq (0 :_M I)$. This implies that $aI \subseteq \text{ann}(N)$. Since $\text{ann}(N)$ is an S-prime ideal, there exists $s \in S$ such that either $sa \in \text{ann}(N)$ or $sI \subseteq \text{ann}(N)$ by Proposition 1. The first case impossible since $saN \neq (0)$. Thus we have $I \subseteq \text{ann}(sN)$. Then we have $s's(0 :_M \text{ann}(sN)) \subseteq s'(0 :_M I) \subseteq aN$. This implies that $s's^2N \subseteq s's(0 :_M \text{ann}(sN)) \subseteq aN$. Then by (ii), $sN \subseteq s's^2N \subseteq aN$. Then by Theorem 10(iii), N is an S-second submodule of M. \qed

Theorem 12. Let M be a comultiplication module. The following statements are equivalent.

(i) N is a second submodule of M.

(ii) $\text{ann}(N)$ is a prime ideal of R.
Proof. Take $S \subseteq u(R)$ and note that S-comultiplication module and comultiplication modules are equal. On the other hand, second submodule and S-second submodules are equivalent. The rest follows from Theorem 11.

Theorem 13. Let M be an S-comultiplication module and let N be an S-second submodule of M. If $N \subseteq N_1 + N_2 + \cdots + N_m$ for some submodules N_1, N_2, \ldots, N_m of M, then there exists $s \in S$ such that $sN \subseteq N_i$ for some $1 \leq i \leq m$.

Proof. Suppose that N is an S-second submodule of an S-comultiplication module M. Suppose that $N \subseteq \sum_{i=1}^{m} N_i$ for some submodules N_1, N_2, \ldots, N_m of M. Then we have $\text{ann} \left(\sum_{i=1}^{m} N_i \right) = \bigcap_{i=1}^{m} \text{ann} (N_i) \subseteq \text{ann} (N)$. Since N is an S-second submodule, by Theorem 11, $\text{ann} (N)$ is an S-prime ideal of R. Then by [19], Corollary 2.6, there exists $s \in S$ such that $s \text{ann} (N_i) \subseteq \text{ann} (N)$ for some $1 \leq i \leq m$. This implies that $\text{ann} (N_i) \subseteq \text{ann} (sN)$. Then by Lemma 1 (iii), $stN \subseteq N_i$ for some $t \in S$ which completes the proof.

References
[1] Al-Shaniafi, Y., & Smith, P. F. (2011). Comultiplication modules over commutative rings. Journal of commutative algebra, 3(1), 1-29.
[2] Anderson, D. D., Arabaci, T., Tekir, Ü., & Koç, S. (2020). On S-multiplication modules. Communications in Algebra, 1-10.
[3] Anderson, D. D., & Chun, S. (2014). The set of torsion elements of a module. Communications in Algebra, 42(4), 1835-1843.
[4] Anderson, D. D., & Dumitrescu, T. (2002). S-Noetherian rings. Communications in Algebra, 30(9), 4407-4416.
[5] Ansari-Toroghy, H., & Farshadifar, F. (2012, December). On the dual notion of prime submodules. In Algebra Colloquium (Vol. 19, No. spec01, pp. 1109-1116). Academy of Mathematics and Systems Science, Chinese Academy of Sciences, and Suzhou University.
[6] Ansari-Toroghy, H., & Farshadifar, F. (2012). On the dual notion of prime submodules (II). Mediterranean journal of mathematics, 9(2), 327-336.
[7] Ansari-Toroghy, H., & Farshadifar, F. (2014, December). The Zariski topology on the second spectrum of a module. In Algebra Colloquium (Vol. 21, No. 04, pp. 671-688). Academy of Mathematics and Systems Science, Chinese Academy of Sciences, and Suzhou University.
[8] Ansari-Toroghy, H., & Farshadifar, F. (2007). The dual notion of multiplication modules. Taiwanese journal of mathematics, 1189-1201.
[9] Ansari-Toroghy, H., & Farshadifar, F. (2019). Some generalizations of second submodules. Palestine journal of mathematics, 159-168.
[10] Ansari-Toroghy, H., Keyvani, S., & Farshadifar, F. (2016). The Zariski topology on the Second spectrum of a module (II). Bulletin of the Malaysian Mathematical Sciences Society, 39(3), 1089-1103.
[11] Atani, R. E., & Atani, S. E. (2009). Comultiplication modules over a pullback of Dedekind domains. Czechoslovak mathematical journal, 59(4), 1103.
[12] Barnard, A. (1981). Multiplication modules. J. ALGEBRA., 71(1), 174-178.
[13] Çeken, S., Alkan, M., & Smith, P. F. (2013). Second modules over noncommutative rings. Communications in Algebra, 41(1), 83-98.
[14] Çeken, S., & Alkan, M. (2015). On the second spectrum and the second classical Zariski topology of a module. Journal of Algebra and Its Applications, 14(10), 1550150.
[15] Çeken, S. (2019). Comultiplication modules relative to a hereditary torsion theory. Communications in Algebra, 47(10), 4263-4296.
[16] El-Bast, Z. A., & Smith, P. P. (1988). Multiplication modules. Communications in Algebra, 16(4), 755-779.
[17] F. Farshadifar, S-second submodules of a module, Algebra and Discrete Mathematics, to appear.
[18] Hamed, A., & Malek, A. (2019). S-prime ideals of a commutative ring. Beiträge zur Algebra und Geometrie/Contributions to Algebra and Geometry, 1-10.

[19] Sevim, E. Ş., Arabaci, T., Tekir, Ü., & Koc, S. (2019). On S-prime submodules. Turkish Journal of Mathematics, 43(2), 1036-1046.

[20] Yassemi, S. (2001). The dual notion of prime submodules. Arch. Math.(Brno), 37(4), 273-278.

Department of Mathematics, Yildiz Technical University, Istanbul, Turkey.
E-mail address: edyildiz@yildiz.edu.tr

Department of Mathematics, Marmara University, Istanbul, Turkey.
E-mail address: utekir@marmara.edu.tr

Department of Mathematics, Marmara University, Istanbul, Turkey.
E-mail address: suat.koc@marmara.edu.tr