Efficient Low-rank Multimodal Fusion
With Modality-specific Factors

Zhun Liu, Ying Shen,
Varun Bharadwaj, Paul Pu Liang,
Amir Zadeh, Louis-Philippe Morency
Artificial Intelligence
Sentiment and Emotion Analysis

Speaker’s behaviors

"This movie is sick"

Smile

Loud

Sentiment Intensity

?
Multimodal Sentiment and Emotion Analysis

Speaker’s behaviors

“This movie is sick”

Sentiment Intensity

?

Multimodal Representation
(Multimodal Fusion)

① Intra-modal Interactions
② Cross-modal Interactions
③ Computational Efficiency
Multimodal Fusion using Tensor Representation

Intra-modal interactions

Cross-modal interactions

Computational efficiency

“This movie is sick”

Multimodal Representation

Unimodal

Bimodal

h

h

$Z = [Z_v] \otimes [Z_l] = [Z_v] 1 \otimes [Z_v] 1$

“Tensor Fusion Network for Multimodal Sentiment Analysis” by Zadeh, A., et al. (2017)
Computational Complexity – Tensor Product

\[O\left(\prod_{m=1}^{M} d_m \right) \]

\[O(d_1 \times d_2 \times d_3) \]

\[O(d_1 \times d_2) \]

\[M=2 \quad M=3 \]

Number of Modalities

Computationally Complex

\[\mathbb{Z} \]
CORE CONTRIBUTIONS

Low-rank Multimodal Fusion (LMF)
From Tensor Representation to Low-rank Fusion

Visual
Language

① Decomposition of weight W.

② Decomposition of input tensor Z.

③ Rearrange the computation of h.

Tensor Fusion Networks

Low-rank Multimodal Fusion
Canonical Polyadic (CP) Decomposition of tensors

\[W = W_{v}^{(1)} \otimes W_{l}^{(1)} + W_{v}^{(2)} \otimes W_{l}^{(2)} + \cdots \]

Rank of tensor \(W \): minimum number of vector tuples needed for exact reconstruction
Canonical Polyadic (CP) Decomposition of 3D tensors

\(\mathcal{W} = |h| \otimes \mathcal{L} + \otimes \mathcal{L} + \cdots \)
Modality-specific Decomposition

\[\mathcal{W} = W_{v}^{(1)} \times w_{l}^{(1)} + W_{v}^{(2)} \times w_{l}^{(2)} + \ldots \]

Retain the dimension for the multimodal representation h during decomposition
 Decomposition of weight tensor W
Decomposition of weight tensor W

$$\mathbf{Z} = \mathbf{w}_v^{(1)} \otimes \mathbf{w}_l^{(1)} + \mathbf{w}_v^{(2)} \otimes \mathbf{w}_l^{(2)} + \cdots = \mathbf{h}$$
\[Z = h\]

\[Z = w^{(1)}_v \times w^{(1)}_l + w^{(2)}_v \times w^{(2)}_l + \cdots\]
③ Rearranging computation

\[
\begin{align*}
\left[w_v^{(1)} + w_v^{(2)} + \cdots + w_v^{(r)} \right] \cdot [1] \cdot \left[w_l^{(1)} + w_l^{(2)} + \cdots + w_l^{(r)} \right] = h
\end{align*}
\]
Low-rank Multimodal Fusion

$x_v \rightarrow f_v$

z_v

$x_l \rightarrow f_l$

z_l

Low-rank Multimodal Fusion

h

Prediction

Task output

Low-rank factors

$w^{(1)}_v + w^{(2)}_v + \ldots + w^{(r)}_v \cdot z_v$

Low-rank factors

$w^{(1)}_l + w^{(2)}_l + \ldots + w^{(r)}_l \cdot z_l$
Easily scales to more modalities

- Intra-modal interactions
- Cross-modal interactions
- Computational complexity
EXPERIMENTS AND RESULTS
Datasets

CMU-MOSI

Sentiment Analysis
2199 video segments
• Single-speaker
• From 93 Movie reviews

Segment level annotations
• Sentiment
• Real-valued

POM

Speaker Trait Recognition
1000 full video clips
• Single-speaker
• Movie reviews

Video level annotations
• 16 types of speaker traits
• Categorical annotations

IEMOCAP

Emotion Recognition
10039 video segments
• Dyadic interaction
• From 302 videos

Segment level annotations
• 10 classes of emotions
• Categorical annotations
Compare to full rank tensor fusion

CMU-MOSI

Low-rank Multimodal Fusion (Our Model)

Tensor Fusion Networks (Zadeh, et al., 2017)
Compare to full rank tensor fusion

	CMU-MOSI	POM	IEMOCAP
MAE ↓	0.67	0.90	86.0
Correlation ↑	0.91	0.89	85.8
F1-Happy ↑	0.97	1.0	83.6
F1-Sad ↑	0.67	0.40	85.9

Data includes CMU-MOSI, POM, and IEMOCAP datasets.
Compare with State-of-the-Art Approaches

CMU-MOSI

Low-rank Multimodal Fusion (our model)

Memory Fusion Networks (Zadeh, et al., 2018)

Multi-attention Recurrent Networks (Zadeh, et al., 2018)

Tensor Fusion Networks (Zadeh, et al., 2017)

Multi-view LSTM (Rajagopalan, et al., 2016)

Deep Fusion (Nojavanasghari, et al., 2016)
Compare with Top 2 State-of-the-Art Approaches

Dataset	CMU-MOSI	POM	IEMOCAP
MAE			
LMF	0.912	0.805	85.9
MFN	0.965	0.396	84.3
MARN	0.968	0.349	84.2
TFN	0.67	0.270	81.0
MV-LSTM	0.668	0.886	90.0
Correlation↑	0.632	0.633	89.0
MAE↓	0.60	0.805	84.2
Correlation↑	0.796	0.396	82.8
F1-Angry↑	0.67	0.349	82.1
F1-Sad↑	0.89	0.270	82.1

Legend:
- **LMF**
- **MFN**
- **MARN**
- **TFN**
- **MV-LSTM**
Efficiency Metric: Number of data samples processed per second

- Training Efficiency
- Testing Efficiency
Conclusions

- Intra-modal interactions
- Cross-modal interactions
- Computational complexity
- State-of-the-art results
Thank you!

Code: https://github.com/Justin1904/Low-rank-Multimodal-Fusion

http://multicomp.cs.cmu.edu/