Pulse Excitation of a System Containing a Textile Layer

DOI: 10.5604/01.3001.0010.1703

Abstract
In this paper the problem of the vibration of a mass supported on a textile layer and subjected to pulse excitation is analysed. A mathematical model of a system containing an elastic spring and electromagnet is formulated. The numerical simulation shows that the electromagnet may ensure the maintenance of a compressive force acting on the textile layer provided that the period of natural oscillations is shorter than the time duration of the pulse.

Key words: pulse excitation, textile layer.

Introduction
A broad discussion of the vibration of a mechanical system subjected to pulse excitation can be found in book [1]. The compression characteristics of fibre masses were presented in paper [2]. The relationship between the force and magnitude of the layer compression was defined in paper [3], in which the reaction of the layer to an impacting body was analysed. The vibration of an elastic system that contains textile layers was studied in work [4]. The problem of the transmission of vibration through a textile layer was studied. The purpose of this paper is to study the response of the textile layer to a pulse excitation. Examples of such loadings of textiles are feed mechanisms in sewing machines [5] and grippers for textiles [6].

Equations of motion
The system considered is shown in Figure 1. It consists of a steel bar of mass m, a textile layer k, springs of stiffness s and an electromagnet of inductance L. e is the distance from the core to the centre of the coil at rest; w denotes the core displacement, x the position of the core centre, and y the displacement of the textile layer support if it is moving.

$$F_{ke} = k \frac{(w + y)}{(1 - \frac{w + y}{L_1})} + c \frac{d(w + y)}{dt} \frac{d(w + y)}{dt}^2 \text{sgn}$$

if $F_{ke} > 0$, otherwise $F_{ke} = 0$, \(w + y < H_1, \ w + y < L_1. \) \hspace{1cm} (2)

$$L \frac{d^2x}{dt^2} + R \frac{dx}{dt} + F_e = -\frac{1}{2} c \frac{dL}{dx}, \quad x = e - w. \hspace{1cm} (3)$$

$$L(x) = \frac{L_{\text{max}} - L_{\text{min}}}{2} \sqrt{\frac{\kappa}{T}} + \frac{1}{7} \left(\frac{1}{\sqrt{\frac{\kappa}{T}}} + \frac{1 + \frac{\kappa}{T}}{\sqrt{\frac{1}{T} + \frac{\kappa}{T}}} \right) + L_{\text{min}}, \hspace{1cm} (4)$$

$$\frac{dL}{dx} = \frac{L_{\text{max}} - L_{\text{min}}}{2} \sqrt{\frac{\kappa}{T}} + \frac{1}{7} \left(\frac{1}{\sqrt{\frac{\kappa}{T}}} + \frac{1 + \frac{\kappa}{T}}{\sqrt{\frac{1}{T} + \frac{\kappa}{T}}} \right) \frac{1}{\sqrt{\frac{\kappa}{T}}} + \frac{1}{7} \left(\frac{1}{\sqrt{\frac{1}{T} + \frac{\kappa}{T}}} \right) \left(\frac{1}{\sqrt{\frac{1}{T} + \frac{\kappa}{T}}} + \frac{1}{7} \right) \left(1 - \frac{1 - \frac{\kappa}{T}}{\sqrt{\frac{1}{T} + \frac{\kappa}{T}}} \right) \left(\frac{1}{\sqrt{\frac{1}{T} + \frac{\kappa}{T}}} + \frac{1}{7} \right).$$

Equations (2), (3) and (4).
The electromagnetic force can be found from Equation (3). Here, L [4] is the inductance of the electromagnet approximately found from Equation (4). i the current intensity, R the resistance of the circuit, and u denotes the feed voltage.

The inductance L and its derivative dL/dx can be calculated as explained in paper [7] or approximately [4] from Equation (4). In Equation (4) r_c denotes the computational radius of the coil, l half of the computational length of the coil, and L_{min} & L_{max} denote the minimum and maximum inductance of the coil measured.

Results

Calculations were performed for $g = 9.81 \text{ m/s}^2$, mass $m = 0.1 \text{ kg}$, spring stiffness $s = 500 \text{ N/m}$, textile layer parameters $k = 500 \text{ N/m}$, $c = 100 \text{Ns/m}^2$, $L_i = 0.03 \text{ m}$ & $H_i = 0.03 \text{ m}$, excitation circular frequency and period $\omega = 0.125((s+k)/m)^{0.5}$, $T = 2\pi/\omega$. Electromagnet parameters: maximum inductance of the coil, that is when the centre of the core coincides with the centre of the coil $L_{\text{max}} = 0.364319 \text{ H}$; the minimum

Figure 1. Model of vibrating mass supported on the textile layer, excited to vibrate by the electromagnet.

Figure 2. Magnitude of compression of the textile layer $w+y$ and compressive force F_{ic} for constant voltage $u=U_m$ and for a rectangular pulse of motion defined as $y=Y_m$ for $\sin(\omega t) > 0$ and $y = 0$ for $\sin(\omega t) \leq 0$, $Y_m = 0.002 \text{ mm}$.

Figure 3. Magnitude of compression of the textile layer w and compressive force F_{ic} for a motionless support of the textile layer $y = 0$ and the rectangular pulse of the voltage defined as $u=U_m$ for $\sin(\omega t) > 0$ and $u = 0$ for $\sin(\omega t) \leq 0$.

FIBRES & TEXTILES in Eastern Europe 2017, Vol. 25, 3(123)
The inductance of the coil, that is when core is in the end position \(L_{\text{min}} = 0.04 \text{ H} \); resistance of the coil \(R = 40 \Omega \), computational radius of the coil \(r_0 = 0.032 \text{ m} \), half of the computational length of the coil \(l = 0.028 \text{ m} \), mass position at rest \(e = 3l \) and voltage \(U_m = 24 \text{ V} \).

The layer compression \(w+y \) or \(w \) versus time \(t \), the time derivative \(\frac{dw}{dt} \) versus the layer compression, the electromagnetic force \(F_E \) and the layer compression force \(F_{kc} \) versus time \(t \) are shown in Figures 2 for the motion pulse and in Figure 3 for the voltage pulse.

Conclusions

From Figures 2 and 3 it can be concluded:

1. The electromagnet ensures that the compressive force acting on the layer is maintained.
2. In order to maintain the pulse type response, the frequency of natural vibration of the system should be higher than that of the excitation.
3. The rectangular pulse excitation results in a decreasing oscillatory force acting on the layer.

References

1. Broch J T. Mechanical Vibration and Shock Measurements. Brüel & Kjær, April 1984.
2. Dunlop JI. On the compression characteristics of fiber masses. J. Textile Institute, 1983; 74: 92-7.
3. Zajączkowski J. Impact of an object on a layer of fibres submerged in a fluid. Fibres and Textiles in Eastern Europe 2010; 18, 6(83): 60-62.
4. Zajączkowski J. Vibrations of Elastically Supported Masses Separated by a Textile Layer. Fibres and Textiles in Eastern Europe 2017; 25, 1(121): 131-133. DOI: 10.5604/12303666.1227894
5. Robak D. A model of fabric transport in a sewing machine using a feed dog covered with a supple material of increased friction. Fibres and Textiles in Eastern Europe 2002; 10, 3(38): 59-62.
6. Slask K. Mathematical model of a mechatronic parallel finger gripper for textiles. Fibres and Textiles in Eastern Europe 2005; 13, 2(50): 73-75.
7. Schauer M J, Newman S A, Goodman L R, Suzuki IS and Suzuki M. Measurement of mutual inductance from the frequency dependence of impedance of AC coupled circuits using a digital dual-phase lock-in amplifier. American Journal of Physics. 2008; 76: 129.

Received 31.03.2016 Reviewed 11.10.2016