PCM1-JAK2 Fusion Tyrosine Kinase Gene-Related Neoplasia: A Systematic Review of the Clinical Literature

Henry G. Kaplan1,*, Ruyun Jin2, Carlo B. Bifulco3, James M. Scanlan4, David R. Corwin5,6

1 Swedish Cancer Institute, Seattle, WA, USA
2 Center for Cardiovascular Analytics, Research and Data Science (CARDS), Providence Heart Institute, Providence Research Network, Portland, OR, USA
3 Providence St Joseph Health System, Portland, OR, USA
4 Swedish Center for Research and Innovation, Seattle, WA, USA
5 CellNetix, Seattle, WA, USA
6 Swedish Medical Center, Seattle, WA, USA
*Corresponding author: Henry G. Kaplan, MD, Swedish Cancer Institute, 1221 Madison St, Suite 920, Seattle, Washington 98104, USA. Tel: +1 206 310 4259. Email: hank.kaplan@swedish.org

Abstract

Background: This review summarizes the case studies of PCM1-JAK2 fusion tyrosine kinase gene-related neoplasia. Recommended treatment includes JAK2 inhibitors and hematologic stem cell transplantation (HSCT), although the small number of patients has limited study of their efficacy. Herein, we present all available cases in the current searchable literature with their demographics, diagnoses, treatments, and outcomes.

Methods: PubMed, ScienceDirect, Publons, the Cochrane Library, and Google were searched with the following terms: PCM1-JAK2, ruxolitinib and myeloid/lymphoid.

Results: Sixty-six patients (mean age = 50, 77% male) had an initial diagnosis of myeloproliferative neoplasm (MPN) in 40, acute leukemia in 21 and T-cell cutaneous lymphoma in 5. Thirty-five patients (53%) had completed 5-year follow-up. The 5-year survival for the MPN, acute myelogenous leukemia (AML), acute lymphocytic leukemia, and lymphoma groups are 62.7%, 14.9%, 40.0%, and 100%, respectively. Too few patients have been treated with ruxolitinib to draw conclusions regarding its effect on survival while the 5-year survival for MPN patients with or without HSCT was 80.2% (40.3%-94.8%) versus 51.5% (22.3%-74.6%), respectively. The T-cell cutaneous lymphoma patients have all survived at least 7 years.

Conclusion: This rare condition may be increasingly detected with wider use of genomics. Ruxolitinib can yield hematologic and molecular remissions. However, HSCT is, at this time, the only potentially curative treatment. Useful prognostic markers are needed to determine appropriate timing for HSCT in patients with MPN. Patients presenting with acute leukemia have a poor prognosis.

Key words: PCM1-JAK2; eosinophilia; myelodysplastic neoplasm; leukemia.

Implications for Practice

While PCM1-JAK2 fusion is an uncommon condition it affects a wide variety of hematopoietic cell lines and therefore can present as a myeloproliferative neoplasm (MPN), acute leukemia, non-Hodgkin lymphoma (including mycosis fungoides), and perhaps Hodgkin disease. Eosinophilia and erythrocyte dysplasia can be prominent clues to the diagnosis. While cytogenetics often can demonstrate the fusion, specific probes, and next generation sequencing may be required. JAK2 inhibitors may be helpful in MPN and stem cell transplantation has been successful in a number of cases. Clarifying indicators for early transplantation would be helpful. Patients presenting with acute leukemia have a very poor prognosis.

Introduction

A variety of JAK2 variants that activate tyrosine kinases have been reported, including the well-known V617F variant which occurs in most patients with polycythemia vera and approximately half of the patients with essential thrombocytosis and primary myelofibrosis.1-5 Many of these patients will respond favorably to JAK2 inhibitors.6,7 Translocations and rearrangements involving JAK2, however, are less common. These variants affect many hematopoietic cell lines and may lead to malignancy in any of them.8-10 They are now classified by the World Health Organization as “Myeloid/lymphoid Neoplasms with Eosinophilia and TK Fusion Genes.”11-14 While the diagnosis can usually be made with routine cytogenetic studies, it can sometimes require specific probes, FISH, and next generation sequencing.15-19 This is extremely important as different therapies may be indicated for different variants. For example, within this broader group of neoplasms, fusions of

Received: 26 June 2021; Accepted: 13 December 2021.
© The Author(s) 2022. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Review of the Clinical Literature

In our review of the literature as of September 5, 2021 interrogating PubMed, Science Direct, Publons, Cochrane Library, and Google utilizing search terms PCM1-JAK2, ruxolitinib, and myeloid/lymphoid we were able to identify 66 cases harboring the PCM1-JAK2 fusion mutation. These patients spanned the entire gamut of ages with a median (interquartile range) of 47 (36.5, 69.3) and range of 6 to 86 years (Fig. 1 and Table 1). Forty-eight of the 62 (77%) that reported patient gender were male. The reason for the male preponderance is not clear. Some of these reports overlap with the same patients included in multiple studies, though this overlap has been eliminated in this review by curation of the individual case reports.

In assessing all 66 patients, 40 carried a variety of initial diagnoses that we have curated to be consistent with a myeloproliferative neoplasm (MPN; Fig. 2 and Table 1). These cases included atypical chronic myelogenous leukemia and chronic eosinophilic leukemia. In Fig. 2, we have retained the original diagnoses noted in the source manuscripts to provide historical perspective. However, per current terminology, they are noted as MPN’s in other figures and Table 1. There were also 21 cases of acute leukemia at first diagnosis (32%), 9 cases of acute myelogenous leukemia (AML), 3 cases of the AML subgroup acute erythroleukemia (AEL) and 1 of acute promyelocytic leukemia (APL). There were 6 cases of B-cell acute lymphoblastic leukemia (ALL), and 2 of T-cell ALL. There were also 5 lymphoma patients. In this report we have summarized the individual cases (Table 1) and discuss the course of disease by diagnostic category. Six reports lack clinical outcome data, though they are included in Table 1

Figure 1. Age and gender distribution in 64 patients with PCM1-JAK2.

Five-Year Survival by Initial Diagnosis

Long-term survivals were analyzed using the Kaplan-Meier estimate and compared by the log-rank test. Median survival time was reported with the 95% confidence interval (CI). Statistical analyses were performed using R version 4.0.3 (R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org). Based on the reported data in the literature, only 35 patients (53%) had completed 5-year follow-up (45%, 62%, 63%, and 80% in the MPN, AML, ALL, and Lymphoma initial diagnosis groups, respectively). The survival by the above 4 groups are shown in Fig. 3. The median survival time for AML and ALL groups are 10 and 8 months, respectively. The 5-year survival for the MPN, AML, ALL, and lymphoma initial diagnosis groups are 62.7% (95% CI 39.6-79.0%), 14.9% (0.8-47.3%), 40.0% (6.6-73.4%), and 100%, respectively.

Myeloproliferative Neoplasms

The PCM1-JAK2 fusion was first described as a syndrome of MPNs in multiple patients with acute and chronic leukemia by Reiter in 2005.26 Rearrangements have been noted to involve a variety of breakpoints in both genes. All of the fusions contain a number of the coiled-coil domains of PCM1 and the complete catalytic tyrosine kinase domain of JAK2.37 This leads to the constitutive activation of the JAK2 kinase due to the oligomerization mediated by the coiled-coil domains of PCM1, which in turn, activates the JAK/STAT axis. All of these fusion rearrangements have been associated with eosinophilia and not surprisingly, in view of the polycythemia noted with the V617F mutation, dysplastic erythroid proliferation has been prominently seen as well.32

Ruxolitinib is a potent JAK2 inhibitor that is widely used to treat polycythemia vera and myelofibrosis.6,7 Studies have evaluated this drug in cell lines with a variety of JAK2 fusion variants, including PCM1-JAK2, and found it to be active at nanomolar concentrations.11,12,33,38 Ruxolitinib has produced significant clinical responses in this type of MPN, including hematologic remissions. Eleven patients in this series received ruxolitinib for MPN,27,30,33,35,39 The 5-year survival for MPN patients treated with or without ruxolitinib were 60.6% (95% CI 19.3%-85.9%) versus 64.4% (95% CI 36.6%-82.4%), respectively, P = .736 (Fig. 4). The median survival for patients not treated with ruxolitinib was 89 months and not enough data to compute for ruxolitinib-treated patients. However, this may be biased by the fact that the ruxolitinib group is a smaller, more recent group than those who did not receive this drug. Analysis of ruxolitinib’s effect on survival is also complicated by the fact that 5 of these patients also received HSCT.27,30,33,39 For these 5 patients, the 5-year survival was 75.0% (95% CI 12.8%-96.1%) and for the 6 who did not receive transplant27,30,33,39 the 5-year survival was unavailable (Fig. 5). For the 25 MPN patients who did not receive ruxolitinib, 7 received HSCT25,28,32,34,36,37 and had 5-year survival of 85.7% (95% CI 33.4%-97.9%); 18 patients who did not receive HSCT26,29,31,34,36,39,41,58 had 5-year survival of 53.8% (95% CI 21.0%-78.2%; Fig. 5).

Considering the entire cohort of 36 MPN patients for whom we have clinical data, the 5-year survival for MPN patients with or without HSCT was 80.2% (95% CI 40.3%-94.8%) versus 51.5% (95% CI 22.3%-74.6%), respectively.
Table 1. Clinical course of patients with PCM1-JAK2 fusion variant.

ID	Author	Initial Dx	Eosinophilia	Initial Rx	Duration 1st phase (months)	Transformed Dx	2nd Rx	Survival after 2nd Rx in months	Age	Sex	Survival in months
1	Bousquet	MPN	No	HU, HSCT	7			4	46	M	12
2	Reiter	MPN	No	None	10	ALL	HSCT	53+	32	M	63+
3	Reiter	MPN	Yes	IFN, then HSCT	10			13+	42	M	23+
4	Reiter	MPN	Yes	None	72	AML			74	M	73
5	Schwaab	MPN	No	Ruxolitinib—CHR					70	M	26+
6	Cornfield	MPN	Yes	Imatinib, HU several month, then HSCT					45	M	28+
7	Dargent	MPN	Yes	HU	30+				57	M	30+
8	Lierman	MPN	Yes	HU	15			15+	72	M	30+
9	Precup	MPN	Yes	IFN + prednisone, PR	12+	Myelofibrosis			47	M	12+
10	Prochorec-Sobieszek	MPN	Yes	IFN, HU, Ara C	30		HSCT	3+	22	F	33+
11	Reiter	MPN	Yes	IFN—CR					47	M	89
12	Rumi	MPN	Yes	Ruxolitinib, CR	46+				31	F	46+
13	Rumi	MPN	Yes	Ruxolitinib	36+				72	M	39
14	Murati	MPN	Yes	HU + IFN, HSCT	60+				43	M	60+
15	Reiter	MPN	Yes	None					72	M	0.1
16	Schwaab	MPN	Yes	Ruxolitinib + HSCT (preplanned)	2	HD after HSCT		43+	29	M	45+
17	Schwaab	MPN	No	Ruxolitinib—no response	1				76	M	4
18	Tang	MPN	No	HU				AML	43	M	35
19	Heiss	MPN	Yes	HU	10	Acute erythroleukemia	HSCT		61	M	10+
20	Kaplan	MPN	No	None	27	T-cell ALL	HyperCVAD, HSCT	41+	28	F	68+
21	Schwaab	MPN	Yes	Ruxolitinib—CHR	38			Progressive disease	49	M	43+
22	Schwaab	MPN	Yes	RUXOLITINIB—CHR	26			Clonal evolution; Burkitt after HSCT	50	M	31
23	Schwaab	MPN	Yes	Ruxolitinib—CHR	32			Progressive disease	51	M	69+
24	Chase	MPN	Yes	HU 2 months, IFN + HU + Ara C				HU + IFN + Ara C	20	M	22
25	Murati	MPN	Yes	HU 1 month, IFN 1 year, imatinib 9 months				AML	45	M	21+
26	Murati	MPN	Yes	HU 1 month, IFN 1 year, imatinib 9 months					50	M	16+
27	Patterer	MPN	Yes	Ruxolitinib, splenectomy					72	M	5
28	Patterer	MPN	Yes	HU, Ara C					35	M	
ID	Author	Initial Dx	Eosinophilia	Initial Rx	Duration 1st phase (months)	Transformed Dx	2nd Rx	Survival after 2nd Rx in months	Age	Sex	Survival in months
-----	----------	------------	--------------	-------------------------------------	-----------------------------	-----------------	-------------------------------	----------------------------------	-----	-----	-------------------
30	Stewart	MPN	Yes	HU, splenectomy				24	M	12	
31	Tang	MPN		Decitabine				82	F	8+	
32	Tang	MPN	No	HU, ATRA				86	F	1	
33	Song	MPN	No	After 13 months	13+		13+	42	M	13+	
34	Tang	MPN	Yes	9-Aminocamptotochrome				37	M	24+	
35	Tang	MPN	Yes	Ruxolitinib, HSCT				40	M	29+	
36	Tang	MPN	Yes	HU				53	F	104+	
37	Tang	MPN	Yes	None				70	M	13+	
38	Tang	MPN	Yes	None				71	M	142	
39	Dunlap	MPN									
40	Patnaik	MPN									
41	Bousquet	AML	Yes	Ara C + ida + XRT, CR				44	M	1+	
42	Huang	AML	Yes	Ara C + ida + Hi Ara C—CR				48	F	7	
43	Luedke	AML	No					32	M		
44	Masselli	AML		Induction chemo + HSCT	3.3+						
45	Patterer	AML	Yes	Ara C + doxorubicin				47	M	6	
46	Patterer	AML		palliative care				73	M	0.3	
47	Patterer	AML		palliative care				75	F	7+	
48	Reiter	AML		induction-CR, then IFN 6 yrs				54	M	180+	
49	Schwaa	AML	No	Ruxolitinib—no response	2			69	F	14	
50	Salehi	APL	Yes	Arsenic Trioxide, all trans-retinoic acid				86	F	1	
51	Cheng	Erythroleukemia		Ruxolitinib, HSCT				40	M	2+	
52	Lee	Erythroleukemia		Induction chemo-CR 19 mths; reinduction, HSCT				51	F	29	
53	Murati	Erythroleukemia		CDDP, VP16, ifos				12	F	10	
54	Patterer	B-cell ALL		GMALL protocol, cân CR, genomic PR	4						
55	Tang	B-cell ALL	No	HyperCVAD				47	M	2	
56	Tang	B-cell ALL	No	HyperCVAD, inotuzumab, rituxan				69	M	7+	
57	Wouters	B-cell ALL	No	VCR, DNM, pred, IT	12			Ruxolitinib 12+	77	F	24+
58	Reiter	Pre-B-cell ALL		Chemo							
59	Schwaa	Pre-B-cell ALL	No	Induction chemo + HSCT				Ruxolitinib 6	63	M	6
The Oncologist, 2022, Vol. 27, No. 8

The median survival for no HSCT patients was 73 months and not enough data to compute for HSCT patients (Fig. 6).

Seven patients underwent HSCT while still in chronic phases of MPN. Three other patients were transplanted in a state of “progressive disease” or “clonal evolution,” though they were not reported to have actually transformed into acute leukemia. Eight of these patients were still alive at the time of reportage (Table 1).

A variety of other therapies have been undertaken in chronic phase MPN either simultaneously or sequentially. 14 patients have received hydroxyurea, 5 received interferon, 4 received cytosine arabinoside, 2 received imatinib and 1 each of daunomycin, 9-aminocamptothecan, and ATRA have been noted. Six patients received no therapy whatsoever for chronic phase MPN, with 3 transforming to acute leukemia at 10, 27, and 72 months, while 3 others did not transform and survived 0.1, 13+, and 142 months.

The NCCN guidelines recommend JAK2 inhibitors or experimental therapy with consideration of early transplant for these MPN patients. With data reported for only 11 patients treated with ruxolitinib for MPN it is not possible to draw any conclusions regarding its effect on survival. Schwaab has suggested that the role of ruxolitinib be as a temporizing measure prior to transplantation. It will be important to evaluate prognostic factors that might predict early transformation to guide timing of transplantation, given the presence of untreated and ruxolitinib only treated survivors ranging beyond 5 years.

Acute Leukemia

Among the PCM1-JAK2 patients presenting with acute leukemia, survivals were short with the exception of a patient with AML with prolonged interferon therapy alive at 180 months and the T-cell patient with ALL alive at 85+ months. One patient with ALL was transplanted and was alive at 3+ months and one patient was alive at 2+ months immediately after HSCT. The patient reported by Lee did not obtain remission with HSCT and survived 29 months. Whether or not other patients than these had experienced a more chronic MPN phase prior to their initial diagnosis of acute leukemia could not be ascertained from the review of the literature.
Figure 2. Swimmer plot showing survival and treatments of the 64 PCM1-JAK2 patients by the initial diagnosis. Abbreviations: aCML, atypical chronic myelogenous leukemia; AML, acute myelogenous leukemia; APL, acute promyelocytic leukemia; CEL, chronic eosinophilic leukemia; CML, chronic myeloid leukemia; CMML, chronic myelomonocytic leukemia; CP, chronic phase; F, female; HSCT, hematologic stem cell transplant; M, male; MDS, myelodysplastic syndrome; MF, mycosis fungoides; MPD, myeloproliferative disease; MPN, myeloproliferative neoplasm.
A number of reports have linked PCM1-JAK2 fusions to the development of both Hodgkin’s disease (HD) and non-Hodgkin’s lymphoma. Remarkably, these cases can evolve over many years. In 1992, in the first reported case of PCM1-JAK2 fusion, Davis described a patient with mycosis fungoides (MF) who was initially treated with radiation therapy. Over the course of 16 years this patient developed mixed cellularity CD30+ HD and eventually fatal cutaneous anaplastic large cell lymphoma. All 3 types of lymphoma demonstrated the same sequence of the T-cell receptor alpha chain. Riedlinger also reported a patient with cutaneous T-cell lymphoma/mycosis fungoides. Twelve years later this patient developed what was diagnosed as HD. Eventually, the lymphoma transformed into large cell lymphoma. When lost to follow-up in year 17 the patient had stable disease. The cutaneous lymphoma, the HD, and the large cell lymphoma all possessed the PCM1-JAK2 variant and the authors noted that what was initially diagnosed as HD may well have been an atypical form of T large cell anaplastic lymphoma. All 3 types of lymphoma demonstrated the same sequence of the T-cell receptor alpha chain.

Riedlinger also reported a patient with cutaneous T-cell lymphoma/mycosis fungoides. Twelve years later this patient developed what was diagnosed as HD. Eventually, the lymphoma transformed into large cell lymphoma. When lost to follow-up in year 17 the patient had stable disease. The cutaneous lymphoma, the HD, and the large cell lymphoma all possessed the PCM1-JAK2 variant and the authors noted that what was initially diagnosed as HD may well have been an atypical form of T large cell anaplastic lymphoma.

Fernandez-Pol described 2 additional cases of MF with PCM1-JAK2 variants out of 71 MF cases studied in detail at their institution. In year 6, the first patient’s T-cell clone was demonstrated in peripheral blood and in year 9 her disease transformed to CD30+ HD and eventually fatal cutaneous anaplastic large cell lymphoma. The second patient is alive 7 years after diagnosis with persistent mycosis fungoides. These authors also raise the question of whether or not the Davis and Riedlinger cases actually represent true HD. Both HD cases were CD30+ but also showed the T-cell clone of the cutaneous lymphomas, raising the possibility that while the histology may vary over time in such cases they may all be variants of the same large cell T-cell lymphoma rather than both HD and large cell lymphoma. This concept is supported by the recent report of 6 cases of a variety of JAK2 rearrangements with peripheral T-cell lymphoma, one of which harbored the PCM1-JAK2 fusion. These cases were all CD30+ ALK- and the authors commented on the presence of Hodgkin-like features with Reed-Sternberg-like cells in all of them. No clinical follow-up data are available for the patient with the PCM1-JAK2 variant. Additionally, in Schwaab’s recent report of cases of PCM1-JAK2-related MPN cases of HD and Burkitt’s lymphoma arose after successful HSCT for the myelodysplasia. The Burkitt lymphoma, which proved fatal, was noted to be positive for the fusion gene variant while the HD case was not.

We recently reported a case in which a young woman presented with PCM1-JAK2-related MPN that transformed into T-cell ALL. She had a history of mixed cellularity HD-treated 13 years previously. However, we were unable to obtain adequate tissue from her HD to determine whether or not this was also caused by the fusion variant.

Discussion

PCM1-JAK2 fusion mutations are very uncommon and present with an overwhelmingly male predominance. The most frequent presentation is as an MPN, often, but not always, with eosinophilia. Erythrodyplasia can also be quite
prominent and de novo leukemia of any lineage may be seen, including erythroleukemia. While cytogenetics usually will detect this variant there are patients who require specific probes, PCR and/or NGS.16-19

This variant usually produces aggressive disease. While there have been a number of good responses to ruxolitinib for MPN, the small number of patients reported precludes a definitive statement regarding its effect on survival. Similarly, HSCT has been successful for a number of patients but, again, analysis is limited by small numbers and insufficient follow-up. While the data presented here suggest that early HSCT may be more effective, this retrospective analysis lacks the scientific rigor of a randomized prospective trial and is not conclusive. Since only 2 patients have been treated with ruxolitinib for acute leukemia it is unclear if this drug has a role once acute leukemia has developed, though the report of a stable hematologic response in B-cell ALL is encouraging.27,50 Thus, HSCT or experimental therapy has been recommended to be considered early in the course of disease.8,27

Occasional patients presenting with MPN can do well for long periods of time either with ruxolitinib or even without treatment. It seems reasonable to consider initial treatment for MPN with symptomatic care such as hydroxyurea or interferon or a JAK2 inhibitor if the patient is stable. However, there are no data to suggest that JAK2 inhibitors are curative for this condition. HSCT is, for now, the only potentially curative treatment. All patients with PCM1-JAK2 fusion mutation-related MPN should be evaluated at a transplantation center early in their course. It is important that biomarkers be developed to help guide the timing of transplantation.

The outlook is quite poor for patients presenting with or transforming into AML. These patients should receive induction therapy and undergo HSCT or experimental therapies. Whether the 2 transformed patients with ALL noted here who have done well with HSCT represent a leukemia subgroup with better prognosis remains to be seen with additional cases and follow-up. The favorable response of the one patient with ALL treated with ruxolitinib may be significant as well. Since this variant affects a range of hematopoietic cell lines lymphomas can also be seen. As noted, there has been one case of Burkitt’s lymphoma.27 Of note, 3 patients have now been reported with cutaneous T-cell lymphoma/mycosis fungoides.15-18 All with follow-up data have survived at least 7 years, though 3 of the 4 have transformed into large cell lymphoma. There is not sufficient information to draw any conclusions regarding whether or not these patients behave differently from similar T-cell lymphomas that do not possess the PCM1-JAK2 variant. Though 2 of these patients were initially thought to have HD, there is doubt as to whether they truly had both HD and large cell lymphoma or T cell variants that looked similar to HD.15-18 Finally, we are unaware of any reports of JAK2 inhibitor use for these lymphomas. It would be quite informative to evaluate their use in such cases.

Conclusion
This rare condition may be increasingly detected with wider use of genomics. Ruxolitinib treatment can lead to hematologic or molecular improvement but further studies are needed to determine how best to utilize it. HSCT has demonstrated good results in patients, particularly in the absence of acute leukemia. At this point in time it remains the only potentially curative treatment though very small sample size, lack of random assignment to treatment and often short follow-up make comparisons between treatments underpowered and outcomes difficult to assess. Given the limitations of the data, at this point in time symptomatic care, ruxolitinib or experimental therapy can be considered for patients with stable MPN and may serve as a bridge to HSCT but the development of biomarkers to help determine timing of HSCT would be helpful. The outlook for patients presenting with acute leukemia is poor. These patients should be considered for aggressive treatment. Whether or not JAK2 inhibitors are effective against acute leukemia or lymphoma caused by this fusion remains to be determined.

Funding
Kaplan Cancer Research Fund.

Conflict of Interest
The authors indicated no financial relationships.

Author Contributions
Conception/design: H.G.K. Provision of material or patients: H.G.K. Collection and/or assembly of data: All authors. Data analysis interpretation: All authors. Manuscript writing: H.G.K., R.J., J.M.S. Final approval: All authors.

Data Availability
The data underlying this article will be shared on reasonable request to the corresponding author.

References
1. Basquiera AL, Soria NW, Ryser R, et al. Clinical significance of V617F mutation of the JAK2 gene in patients with chronic myeloproliferative disorders. *Hematology* 2009;14:323-330. https://doi.org/10.1179/102453309X12473408860226.
2. Baxter EJ, Scott LM, Campbell PJ, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. *Lancet* 2005;365(9464):1054-1061. https://doi.org/10.1016/S0140-6736(05)71142-9.
3. James C, Ugo V, Le Couédic J-P, et al. A unique clonal JAK2 mutation leading to constitutive signaling causes polycythaemia vera. *Nature* 2005;434:1144-1148. https://doi.org/10.1038/nature03546.
4. Kralovics R, Passamonti F, Buser AS, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. *N Engl J Med* 2005;352:1779-1790. https://doi.org/10.1056/NEJMoa051113.
5. Steensma DP, Dewald GW, Laslo TL, et al. The JAK2 V617F activating tyrosine kinase mutation is an infrequent event in both “atypical” myeloproliferative disorders and myelodysplastic syndromes. *Blood* 2005;106:1207-1209. https://doi.org/10.1182/blood-2005-03-1183.
6. Vannucchi AM, Verstovsek S, Guglielmelli P, et al. Ruxolitinib reduces JAK2 p.V617F allele burden in patients with polycythemia vera enrolled in the RESPONSE study. *Ann Hematol.* 2017;96:1113-1120. https://doi.org/10.1007/s00277-017-2994-x.
7. Verstovsek S, Mesa RA, Gribb J, et al. The clinical benefit of ruxolitinib across patient subgroups: analysis of a
placebo-controlled, Phase III study in patients with myelofibrosis. Br J Haematol. 2013;161:508-516. https://doi.org/10.1111/bjh.12274.
8. Gerds AT, Golib J, Bose P, et al. Myeloid/lymphoid neoplasms with eosinophilia and TK fusion genes, version 3 2021, NCCN Clinical Practice Guidelines in Oncology. J Natl Comp Can Netw. 2020;18:1248-1269.
9. Salmoiraghi S, Montalvo MLG, D’Agostini E, et al. Mutations and chromosomal rearrangements of JAK2: not only a myeloid issue. *Expert Rev Hematol* 2013;6:429-439. https://doi.org/10.1588/1740-8481.2013.6.429610.
10. Shomali W, Golib J, World Health Organization-defined eosinophilic disorders: 2019 update on diagnosis, risk stratification, and management. *Am J Hematol.* 2019;94:1149-1167. https://doi.org/10.1002/ajh.25617.
11. Vega E, Medeiros LJ, Bueso-Ramos CE, et al. Hematolymphoid neoplasms associated with rearrangements of PDGFRα, PDGFRβ, and FGRF1. *Am J Clin Pathol.* 2015;144:377-392. https://doi.org/10.1309/AJCMORR522IKCEM.
12. Bain BJ, Ahmad S. Should myeloid and lymphoid neoplasms with PDGFRα-JAK2 and other rearrangements of JAK2 be recognized as specific entities? *Br J Haematol.* 2014;166:809-817. https://doi.org/10.1111/bjh.12963.
13. Lacronique V, Bourieux A, Valle VD, et al. : A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. *Science* 1997;278:1309-1312. https://doi.org/10.1126/science.278.5341.1309.
14. Van Roosbroeck K, Cox L, Tousseyn T, et al. JAK2 rearrangements, including the novel SEC11A-JAK2 fusion, are recurrent in classical Hodgkin lymphoma. *Blood* 2011;117:4056-4064. https://doi.org/10.1182/blood-2010-06-291310.
15. Helbig G, Moskwa A, Hus M, et al. Clinical characteristics of patients with chronic eosinophilic leukemia (CEL) harbouring FIP1L1-PDGFRα fusion transcript – results of Polish multicentre study. *Hematol Oncol.* 2010;28:93-97. https://doi.org/10.1002/hon.919.
16. Snider JS, Znoyko I, Lindsey KG, et al. Integrated genomic analysis using chromosomal microarray, fluorescence in situ hybridization and mate pair analyses: characterization of a cryptic t(9;22) (p24.1;q11.2)/BCR-JAK2 in myeloid/lymphoid neoplasm with eosinophilia. *Cancer Genet* 2020;246-247:44-47
17. Bacher U, Reiter A, Haferlach T, et al. : A combination of cytomorphology, cytogenetic analysis, fluorescence in situ hybridization and reverse transcriptase polymerase chain reaction for establishing clonality in cases of persisting hypereosinophilia. *Haematologica* 2006;91:817-820.
18. Baer C, Muchlitcher B, Kern W, et al. : Molecular genetic characterization of myeloid/lymphoid neoplasms associated with eosinophilia and rearrangement of PDGFRα, PDGFRβ, FGRF1 or PCM1-JAK2. *Haematologica* 2018;103:e348-e350. https://doi.org/10.3324/haematol.2017.187302.
19. Van Roosbroeck K, Ferreiro, JE, Tousseyn, T, et al. Genomic alterations of the JAK2 and PDG loci occur in a broad spectrum of lymphoid malignancies. *Genes, Chromosomes Cancer* 2015;65:428-441
20. Jawhar M, Naumann N, Schwaab J, et al. : Imatinib in myeloid/lymphoid neoplasms with eosinophilia and TK fusion genes. *J Natl Comp Can Netw.* 2020;18:1248-1269.
21. Prochorec-Sobieszek M, Nasiłowska-Adamska B, Borg K, et al. JAK2, BCR-JAK2 and ETV6-ABL1 fusion genes. *Am J Hematol.* 2020;95:824-833. https://doi.org/10.1002/ajh.25825.
22. Dargent J-L, Mathieux V, Vidrequin S, et al. : Pathology of the bone marrow and spleen in a case of myelodysplastic/myeloproliferative neoplasm associated with t(8;9)(p22;p24) involving PDGFRα and JAK2 genes. *Eur J Haematol.* 2011;86:87-90. https://doi.org/10.1111/j.1600-0609.2010.01525.x.
23. Lierman E, Selleslag D, Smits S, et al. : Ruxolitinib inhibits transforming JAK2 fusion proteins in vitro and induces complete cytogenetic remission in t(8;9)(p22;p24)/PCMI-JAK2-positive chronic eosinophilic leukemia. *Blood* 2012;120:1529-1531. https://doi.org/10.1182/blood-2012-06-433821.
24. Precup M, Pugin P, Parlier V, et al. : A case of chronic eosinophilic leukaemia with translocation t(8;9) (p22; p24) and PCMI-JAK2 fusion gene. *Swiss Med Forum* 2015;60:456.
25. Prochoorec-Sobieszek M, Nasilowska-Adamska B, Borg K, et al. Chronic eosinophilic leukemia with erythroblastic proliferation and the rare translocation t(8;9)(p22;p24) with PCM1-JAK2 fusion gene: A distinct clinical, pathological and genetic entity with potential treatment target. *Leukemia Lymphoma* 2012;53:1824-1827. https://doi.org/10.3109/10428194.2012.661856.
26. Rumi E, Milosevic JD, Selleslag D, et al. : Efficacy of ruxolitinib in myeloid neoplasms with PCM1-JAK2 fusion gene. *Ann Hematol.* 2015;94:1927-1928. https://doi.org/10.1007/s00277-015-2457-1.
27. Murati A, Gelsi-Boyer V, Adalé J, et al. : JAK2, BCR-JAK2 fusion in myeloproliferative disorders and acute erythroid leukemia with t(8;9) translocation. *Leukemia* 2005;19:1692-1696. https://doi.org/10.1038/sj.leu.2403879.
28. Tang G, Sydney SR, Philips JK, Weinberg O, et al. Hematopoietic neoplasms with 9p24/JAK2 rearrangement: a multicenter study. *Mod Pathol* 2019;32:490-498. https://doi.org/10.1038/s41379-018-0165-9.
29. Heiss S, Erdel M, Gunsilius E, et al. : Myelodysplastic/myeloproliferative disease with erythropoietic hyperplasia (erythroid preleukemia) and the unique translocation t(8;9)(p23;p24); first description of a case. *Hum Pathol.* 2005;36:1148-1151. https://doi.org/10.1016/j.humpath.2005.07.020.
30. Kaplan H, Bifulco, C, Jin, R, et al. Treatment of PCMI-JAK2 fusion tyrosine kinase gene related acute lymphoblastic leukemia with stem cell transplantation. *Fut Rare Dis* 2021;1. https://doi.org/10.2217/frd-2021-0006.
31. Chase A, Bryant C, Score J, et al. : Ruxolitinib as potential targeted therapy for patients with JAK2 rearrangements. *Haematologica* 2013;98:404-408.
32. Patterer V, Schwaab J, Kern W, et al. : Hematologic malignancies with PCMI-JAK2 fusion gene share characteristics with myeloid and lymphoid neoplasms with eosinophilia and abnormalities of PDGFRα, PDGFRβ, and FGRF1. *Ann Hematol.* 2013;92:759-769. https://doi.org/10.1007/s00277-013-1695-3.
33. Saba N, Safah H. : A myeloproliferative neoplasm with translocation t(8;9)(p22;p24) involving JAK2 gene. *Blood* 2013;122:861. https://doi.org/10.1182/blood-2013-03-487348.
41. Song I, Lee DH, Lee JH, et al. A t(8;9)(p22;p24)/PCM1-JAK2 translocation in a patient with myeloproliferative neoplasm and myeloid sarcoma: first report in Korea. *Ann Lab Med* 2016;36:79-81. https://doi.org/10.3343/alm.2016.36.1.79.

42. Dunlap J, Kelemen K, Leeborg N, et al. Association of JAK2 mutation status and cytogenetic abnormalities in myeloproliferative neoplasms and myelodysplastic/myeloproliferative neoplasms. *Am J Clin Pathol.* 2011;135:709-719. https://doi.org/10.1093/ajcp/ajr098.

43. Patnaik MM, Knudson RA, Gangat N, et al. Chromosome 9p24 abnormalities: prevalence, description of novel JAK2 translocations, JAK2V617F mutation analysis and clinicopathologic correlates. *Eur J Haematol.* 2010;84:518-524. https://doi.org/10.1111/j.1600-0609.2010.01428.x.

44. Huang K-P, Chase AJ, Cross NCP, et al. Evolutional change of karyotype with t(8;9)(p22;p24) and HLA-DR immunophenotype in relapsed acute myeloid leukemia. *Int J Hematol.* 2008;88:197-201. https://doi.org/10.1007/s12185-008-0113-4.

45. Luedke C, Rein L. Transformation to erythroblastic sarcoma from myeloid neoplasm with PCM1-JAK2. *Blood* 2013;1113:136:2020.

46. Masselli E, Mecucci C, Gobbi G, et al. Implication of MAPK1/MAPK3 signalling pathway in t(8;9)(p22;24)/PCM1-JAK2 myelodysplastic/myeloproliferative neoplasms. *Br J Haematol.* 2013;162:563-566. https://doi.org/10.1111/bjh.12392.

47. Salehi S, Astle JM, Sadigh S, et al. Myeloid neoplasm with eosinophilia and PCM1-JAK2 associated with acute promyelocytic leukemia with PML-RARA. *Leuk Lymphoma.* 2019;60:2299-2303. https://doi.org/10.1080/10428194.2019.1581927.

48. Cheng JX, Gurbuxani S, LeBeau M, et al. Myeloid/lymphoid neoplasm with PCM1-JAK2. *Am Soc Hematol Image Bank.* 2018. https://imagebank.hematology.org/reference-case/71/myeloidlymphoid-neoplasm-with-pcm1jak2

49. Lee JM, Lee J, Han E, et al. PCM1-JAK2 fusion in a patient with acute myeloid leukemia. *Ann Lab Med* 2018;38:492-494. https://doi.org/10.3343/alm.2018.38.5.492.

50. Wouters Y, Nevejan L, Louwagie A, et al. Efficacy of ruxolitinib in B-lymphoblastic leukaemia with the PCM1-JAK2 fusion gene. *Br J Haematol.* 2021;192:e112-e115.

51. Adelaide J, Pérot C, Gelsi-Boyer V, et al. A t(8;9) translocation with PCM1-JAK2 fusion in a patient with T-cell lymphoma. *Leukemia* 2006;20:536-537. https://doi.org/10.1038/sj.leu.2404104.

52. Tsai CC, Su YC, Chen BJ, et al. A 43-year-old male with PCM1-JAK2 gene fusion experienced T-lymphoblastic lymphoma, myelofibrosis, and acute myeloid leukemia. *Clinics Oncol* 2020; 2:1-4.

53. Fernandez-Pol S, Neishaboori N, Chapman CM, et al. Two cases of mycosis fungoides with PCM1-JAK2 fusion. *J Clin Oncol Precis Oncol* 2019;5:646-652.

54. Fitzpatrick MJ, Massoth LR, Marcus C, et al. JAK2 Rearrangements are a recurrent alteration in CD30+ T-Cell lymphomas with anaplastic morphology. *Am J Surg Pathol.* 2021;45:895-904.

55. Davis TH, Morton CC, Miller-Cassman R, et al. Hodgkin’s disease, lymphomatoid papulosis, and cutaneous T-cell lymphoma derived from a common T-cell clone. *N Engl J Med.* 1992;326:1115-1122. https://doi.org/10.1056/NEJM199204233261704.

56. Riedlinger GM, Chojecki A, Aviv H, et al. Hodgkin lymphoma and cutaneous T-cell lymphoma sharing the PCM1-JAK2 fusion and a common T-cell clone. *JCO Precis Oncol* 2019;3:1-8.

57. Jatiani SS, Baker SJ, Silverman LR, et al. Jak/STAT pathways in cytokine signaling and myeloproliferative disorders: approaches for targeted therapies. *Genes Cancer* 2010;1(10):979-93.

58. Stewart K, Carstairs KC, Dubé ID, et al. Neutrophilic myelofibrosis presenting as Philadelphia chromosome negative BCR non-rearranged chronic myeloid leukemia. *Am J Hematol.* 1990;34:59-63. https://doi.org/10.1002/ajh.2830340113.