A bulk 2D Pauli-Limited Superconductor

T. Coffey,1 C. Martin,1 C. C. Agosta,1 T. Kinoshota,2 and M. Tokumoto2,3

1Department of Physics, Clark University, Worcester, MA, 01610
2CREST, JST, Kawaguchi 332-0012 Japan
3Nanotechnology Research Institute, AIST, Tsukuba 305-8568, Japan

(Dated: December 7, 2018)

We present a nearly perfect Pauli-limited critical field phase diagram for the anisotropic organic superconductor α-(ET)2NH4(SCN)4 when the applied magnetic field is oriented parallel to the conducting layers. The critical fields (Hc2) were found by use of penetration depth measurements. Because Hc2 is Pauli-limited, the size of the superconducting energy gap can be calculated. The role of spin-orbit scattering and many-body effects play a role in explaining our measurements.

PACS numbers: 74.70.Kn, 74.25.Dw

Over the past 40 years there have been many theoretical calculations1–3 and experiments on layered superconductors4–12 subjected to an external magnetic field applied parallel to the conducting layers. When the magnetic field is precisely aligned parallel to the conducting layers, magnetic flux lines effectively penetrate the least conducting layers between the conducting planes and the orbital destruction of superconductivity associated with the vortices is suppressed.

In this case, the superconductor can be described as a series of Josephson coupled layers (JCL) as long as the temperature is below the 2-D/3-D transition temperature (T < T∗) that occurs when the coherence length perpendicular to the layers (ξ⊥) is less than the distance between the layers. In the parallel orientation, the Cooper pairs will be broken for a typical superconductor when the energy gained by being in the superconducting state equals the energy cost of maintaining anti-parallel spins in an applied field. This limit is known as the Clogston-Chandrasekar or Pauli paramagnetic limit. For a BCS superconductor μoHc2BCS = 1.84τ/κ Tc. Many investigations of layered superconductors have focused on the possibility of realizing an exotic, inhomogeneous state known as the Fulde-Ferrell-Larkin-Ovchinikov state (FFLO)14,15, which allows Hc2 to exceed Hc2.

In this letter we present a Pauli-limited critical field phase diagram with the applied field parallel to the conducting layers (μoH || ac-plane) for the anisotropic organic superconductor α-(ET)2NH4(SCN)4 (short form ET-NH4)16. Our phase diagram is based on rf penetration depth measurements that utilize a tunnel diode oscillator (TDO)17,18. The phase diagram we present is a close match to the calculations from Klemm, Luther, and Beasley2 in the limit of small spin-orbit scattering, and the low-temperature Hc2 we measure is a close match to the many-body prediction from McKenzie19. The remarkable result is that due to Pauli-limiting, Hc2 tracks the superconducting energy gap at all temperatures. In contrast to other organic superconductors20–23, we observe no evidence of Hc2 exceeding the Pauli limit in ET-NH4.

Previous attempts to synthesize and measure a bulk Pauli-limited superconductor have been stymied by materials that have low anisotropy or weak spin-orbit scattering7. Other investigations may have been limited by the available magnetic fields and low temperatures at the time of the experiments12. A convincing Pauli-limited superconductor was realized for a single layer of aluminum24.

Despite having a low Tc (∼ 0.9 K25,26), ET-NH4 is an ideal material to study because it is one of the most anisotropic layered superconductors and should be a model JCL superconductor. The anisotropy parameter (γ) for ET-NH4 = 2000, while γ=150 for Bi2Sr2CaCu2O8+δ27. The high anisotropy in ET-NH4 produces a broad, zero-field resistive transition (reported onset temperatures vary from 1.2 K to 2.4 K27,32), a broad peak in the zero-field specific heat at Tc25–27, anisotropic penetration depths (λ∥ = 1400 μm and λ⊥ = 0.7 μm as T → 027), and anisotropic resistivity (20Ω·cm ≤ ρ∥ ≤ 40Ω·cm and 10 μΩ·cm ≤ ρ⊥ ≤ 100 μΩ·cm at 3 K27).

In a TDO experiment we measure the amplitude (A) and frequency shift (∆F) of a self-resonant circuit with unperturbed frequency F0. These quantities are determined by the complex impedance of the coil containing the sample (L′). For the case of a long rod in a axial coil, L′ = L0(1 + 4πη(χ′ − jχ′′)), where η is defined as the volume filling factor, directly related to the penetration depth. As the rf field is expelled from the sample, η changes and thus A and ∆F, related to χ′ and χ′′ shift together. The region where η dominates is called the skin depth region28. The sample we characterized is a small block (1.69 mm by 1.83 mm by 1.0 mm), not a long rod; therefore, L′ must be corrected by a demagnetization factor in order to measure absolute quantities. We did not measure the demagnetization factor of our sample and do not report absolute values for the pen-
tration depth. However, the temperature or applied field at which a transition occurs is clear in our measurements.

In type II superconductors, a complex penetration depth (λ) includes the normal skin depth (δ), the London penetration depth (λ_L), and the Campbell penetration depth (λ_C) \[9, 34, 35\]. As the applied field is increased the following occurs: the flux lattice is destroyed, λ_L diverges at H_{c2}, and λ becomes limited by δ. From our data, we define H_{c2} via the maximum in the second derivative of the frequency response of the TDO (ΔF) with respect to the applied field and is calculated for fields above and below H_{c2}.

The phase diagram we present is constructed from three different experimental runs, two at the NHMFL and one at Clark University, using three different circuits, where $F_o \approx 25\, MHz, 10\, MHz, 35\, MHz$ respectively. All three experimental runs produced consistent results. The parallel orientation is determined from the sharp cusp in H_{c2} versus angle. At Clark University, a transverse 1 T electromagnet, single-shot He3 refrigerator, and rotating probe with an angular resolution of 0.1° were used. At the NHMFL a 18 T superconducting magnet, dilution refrigerator, and rotating probe with an angular resolution of 0.050° were used \[36\]. In all cases the sample is placed in a small coil that is part of a self-resonant circuit. Small balls of cotton are packed between the sample and the coil and a Teflon gurney is tied around the coil and the rotating platform to hold the sample in place. The flatest side of the sample sits on a rotating platform such that the conducting (ac) planes are roughly parallel to the platform and perpendicular to the axis of the coil, as in Fig. 1. The platform’s axis of rotation is roughly parallel to either the a or c crystallographic direction of the sample. The rf coil excites currents in the conducting planes of the sample. Using $\rho_{||}$ from Ref. \[27\], $\delta_{||} = 70\, \mu m$ at 25 MHz and 3 K. The rf field generated by the coil is $\lesssim 70\, \mu T$.

In addition to the parallel and perpendicular phase diagrams, we found $T_c \approx 0.96\, K$ from temperature sweeps at Clark University. In the normal state the TDO measures resistivity, which as a function of magnetic field exhibits Shubinkov-de Haas (SdH) oscillations \[37\]. From these SdH oscillations we extracted Fermi surface parameters such as: the SdH frequency, $F_{SdH} = 564 \pm 2\, T$, the effective mass, $m^* = 2.5 m_e$, and the Dingle temperature $T_D = 1.11\, K$, which can be directly translated into a scattering rate via $\frac{1}{\tau} = 2\pi k_b T_D / h$. From our SdH data, we find $\ell = 681\, \AA$ and $\tau = 1.09\, ps$, where ℓ is the mean free path of the conducting quasi-particles. These results are consistent with previous results \[38\]. From the perpendicular, zero-temperature critical field ($\mu_0 H_{c2}^\perp (0) = 0.13\, T$) we calculated the coherence length for quasi-particles in the conducting layers, $\xi_{||} = 500\, \AA$. To the best of our knowledge, a previously reported value ($\xi_{||} = 500\, \AA$) was calculated from the slope ($\frac{d \mu_0 H_{c2}^\perp}{dn_{SDH}}$) of a perpendicular phase diagram generated via specific heat data \[27\]. For a superconductor, the dirty limit is defined when $\ell << \xi_{||}$. Given that $\ell / \xi_{||} \approx 1.4$, ET-NH4 resides just on the clean side of the boundary between a clean and dirty superconductor.

Fig. 2 shows amplitude and frequency data for field sweeps in the parallel and perpendicular orientations. This experiment is in the skin depth regime because $\delta / r_s \approx 0.04$. Fig. 2 suggests that we observe Campbell penetration in the perpendicular orientation because $\frac{\Delta F}{\Delta T} \propto \sqrt{T}$ at low fields. There is very little structure in the amplitude signal at low field, because the coil resistance dominates Q_{ic}.

Microscopic calculations in the clean \[39\] and dirty \[2\] limits have predicted specific phase diagrams for JCL superconductors. For a clean, JCL superconductor with negligible spin-orbit scattering ($\tau_{so} \to \infty$), Ref. \[39\] predicts that $H_{c2}^\perp = H_{BCS}^\perp \sqrt{1 - T/T_c}$ when the temperature is below the 2-D/3-D transition ($T < T^*$). For a dirty, JCL superconductor with strong spin-orbit scattering ($\tau_{so} \to 0$), H_{c2} may reach up to 6 times H_F \[2\] according to

$$H_{c2}^\perp (0) = 0.602 (k_b T_c \tau_{so} / h)^{-1/2} H_{BCS}^\perp.$$

In a dirty system with no spin-orbit scattering ($\tau_{so} \to \infty$), H_{c2} saturates near H_F \[3\].

A relevant complication is that two mechanisms can enhance H_{BCS}^\perp — strong coupling and many-body effects. Many-body effects can increase H_F for a spin-singlet Fermi liquid with a quasi 2-D circular Fermi surface by the factor R, $H_F = H_{BCS}^\perp R$, where R is Wilson’s ratio \[19\]. A theory-independent method to estimate the many-body enhancement has also been proposed \[8, 40\]. This method equates the condensation energy of the superconductor and the energy gained by having the electrons’ spin align with the applied field.

The low concentration of conducting quasi-particles in the organic superconductors promotes strong interactions among the carriers and H_F may well be enhanced by many-body effects. Wilson’s ratio (R) for ET-NH4 is 0.7 ± 0.2 or 0.86 ± 0.05 \[19\]. Using the value
Wilson’s ratio. In both cases the low estimates predict a low estimate very similar to the many-body theory using the dependent method [8]. This method depends on which result of being in the skin depth limit, just below and above the skin depth. Even though the insert shows the orientation of the applied field with respect to the conducting layers. As the field increases the frequency actually decreases.

As a result of being in the skin depth limit, just below and above the skin depth, the inherent assumptions in the JCL theories presented in Ref. [2] and Ref. [39] assume a weakly coupled and ET-NH 4 is a weakly coupled superconductor [42].

The inherent assumptions in the JCL theories presented in Ref. [2] and Ref. [39] assume a weakly coupled superconductor [42]. In contrast to many other organic superconductors, specific heat data show that ET-NH4 is a weakly coupled superconductor [42]. Even though d-wave symmetry has been proposed in the κ phase organic superconductors and p-wave symmetry clearly shown in some Bechgaard salts [10], there has been no data indicating anything besides a conventional order parameter in ET-NH4.

The inherent 2D nature of our sample suggests that it is below T* over most of the temperature range. It is expected that the angular dependence of H is given by the bell-like anisotropic G-L equation,

\[H_{c2}^2 \left[\frac{\cos(\Phi)^2}{H_{c2\parallel}} + \frac{\sin(\Phi)^2}{H_{c2\perp}} \right] = 1, \]

above T* [4].

For a truly Pauli limited superconductor even Eq. 2 should not be valid, because it is still based on orbital destruction of superconductivity. However, one can argue phenomenologically that a similar equation should exist with \(H^P \) in place of \(H_{c2} \) parallel. A theoretical argument for this phenomenological equation was made by Bulaevskii [43]. When the sample is within a fraction of a degree of parallel, the \(H_{c2} \) should deviate form any of these equations, and this phenomena was seen in recent studies [21]. To insure that the parallel critical fields we report are accurate, seven full angular studies were conducted between 40 mK and 750 mK. Below 750 mK our data fit very well to the Tinkham thin film equation (Eq. 2).

A comparison between the data and the predictions for a layered superconductor in the 2D and 3D limiting cases is made in Fig. 3b at angles close to the parallel orientation. The agreement between our data and the Tinkham thin film equation indicates that the vortices in each layer are decoupled and ET-NH4 is a JCL superconductor.
Finally, in Fig. 4 we present the phase diagram we measured in reduced coordinates, where \(t = \frac{T}{T_c} \) and \(h = \frac{H_c}{H_p} \). This phase diagram has the essential features of a superconductor in the Pauli limit. The critical field follows the temperature dependence of the energy gap, starting out with a square root dependence near \(T_c (H_c) \propto \sqrt{1 - t} \) and approaching a constant by \(t = 0.4 \). The low temperature section of this phase diagram is striking because the low temperature critical field follows the temperature dependence of the energy gap.

One can estimate \(\tau_{so} \) using a qualitative comparison between the phase diagram in Fig. 4 and Fig. 9 of Ref. 2 and \(\tau_{so} = \infty \) or if one uses Eq. 1 and assumes that all of the enhancement in \(H_c \) in ET-NH4 is due to spin-orbit scattering \(\tau_{so} = 2.0 \) ps. In this case it is difficult to know whether the enhancement in \(H_c \) is due to many body effects, spin orbit scattering or a combination of the two. Because \(\tau_{so} \) is at least twice as great as \(\tau \), it is more likely that the effects of spin orbit scattering are small to negligible. In the case that spin orbit scattering is negligible, \(\Delta_{so} = 2.0 \times 10^{-2} \) J per Cooper pair.

We would like to acknowledge H. Gao, J. Norton, T. Murphy, E. Palm and S. Hannahs for help doing these experiments, R. Klemm and J. Singleton for useful discussions, L. Rubin for donated equipment from the FBNML, and NSF grant #9805784 and DOE grant ER46214 for support.

[1] W. E. Lawrence and S. Doniach. In E. Kanada, ed., Proceedings of the 12th International Conference on Low Temperature Physics, p. 361 (1971).
[2] R. A. Klemm, et al. Phys. Rev. B. 12, 877 (1975).
[3] L. N. Bulaevskii. Zh. Eksp. Teor. Fiz. 65, 1278 (1973). JETP 38, 634 (1974).
[4] T. Schneider and A. Schmidt. Phys. Rev. B. 47, 5015 (1993).
[5] A. G. Lebed and K. Yamaji. Phys. Rev. Lett. 80, 2697 (1998).
[6] P. W. Adams. Phys. Rev. Lett. 92, 067003 (2004).
[7] C. Strunk, et al. Phys. Rev. B. 49, 4053 (1994).
[8] F. Zuo, et al. Phys. Rev. B. 61, 750 (2000).
[9] P. A. Mansky, et al. Phys. Rev. Lett. 70, 1323 (1993).
[10] I. J. Lee, et al. Phys. Rev. Lett. 78, 3555 (1997).
[11] W. K. Kwok, et al. Phys. Rev. B. 42, 8686 (1990).
[12] D. E. Prober, et al. Phys. Rev. B. 21, 2717 (1980).
[13] A. M. Clogston. Phys. Rev. Lett. 9, 266 (1962).
[14] P. Fulde and R. A. Ferrell. Phys. Rev. 135, A550 (1964).
[15] A. I. Larkin and Y. N. Ovchinnikov. Zh. Eksp. Teor. Fiz. 47, 1136 (1964). Sov. Phys. JETP 20, 762 (1965).
[16] The initial motivation for this experiment was two phase diagrams that contradicted each other [24, 31].
[17] T. Coffey, et al. Rev. Sci. Instrum. 71, 4600 (2000).
[18] C. H. Mielke and J. Singleton. J. Phys.: Condens. Matter 13, 8325 (2001).
[19] R. H. Mckenzie pp. cond-mat/9905044 v2 (1999).
[20] C. C. Agosta, et al. Rev. Sci. Instrum. 70, 750 (2000).
[21] W. A. Coniglio, et al. arXiv cond-mat/9905044 v2 (1999).
[22] K. Cho, et al. Phys. Rev. B. 79, 220507(R) (2009).
[23] P. M. Tedrow and R. Meservey. Phys. Rev. B. 8, 5098 (1973).
[24] B. Andraka, et al. Phys. Rev. B. 42, 9963 (1990).
[25] Y. Nakazawa, et al. Phys. Rev. B. 52, 12890 (1995).
[26] H. Taniguchi, et al. Phys. Rev. B. 57, 3623 (1998).
[27] H. H. Wang, et al. Physica C 166, 57 (1990).
[28] J. S. Brooks, et al. Synth. Metals 70, 839 (1995).
[29] Y. Shimojo, et al. J. Phys. Soc. Jpn. 71, 717 (2002).
[30] Y. Shimojo, et al. J. Superconductivity 12, 501 (1999).
[31] H. Sato, et al. Synth. Metals 70, 915 (1995).
[32] O. Klein, et al. International Journal of Infrared and Millimeter Waves 14, 2423 (1993).
[33] M. W. Coffey and J. R. Clem. Phys. Rev. Lett. 67, 386 (1991).
[34] S. Sridhar, et al. Phys. Rev. Lett. 68, 2220 (1992).
[35] T. P. Murphy, et al. Rev. Sci. Instrum. 70, 237 (1999).
[36] D. Shoenberg, Magnetic Oscillations in Metals. Cambridge University Press (1984).
[37] J. Wosnitza, et al. Phys. Rev. B. 45, 3018 (1992).
[38] L. N. Bulaevskii. Advances in Physics 37, 443 (1988).
[39] A more detailed discussion of calculating the Pauli limit can be found at http://physics.clarku.edu/superconductor/PauliFold/CalculatingHP.html.
[40] K. Miyagawa, et al. Synth. Metals 86, 1987 (1997).
[41] S. Wanka, et al. Phys. Rev. B. 57, 3084 (1998).
[42] L. N. Bulaevskii. J. Mod. Phys. B 4, 1849 (1990).
[43] Y. Shimojo, et al. J. Phys. Soc. Jpn. 71, 2240 (2002).
[44] Jeremy Qualls of Wake Forest U. made the new samples.