In vitro infection of Madin-Darby bovine kidney (MDBK) cells with *Eimeria acervulina* sporozoites: quantitative analysis of parasite cellular invasion and replication using real-time polymerase chain reaction (PCR)

Shahinaz Taha1,2 · Tran Nguyen-Ho-Bao1,3 · Arwid Daugschies1,4 · Zaida Rentería-Solís1,4

Received: 8 February 2021 / Accepted: 7 June 2021 / Published online: 19 June 2021
© The Author(s) 2021

Abstract

Poultry coccidiosis causes considerable economical losses to the livestock industry. *Eimeria* parasites are responsible for this disease. On a global scale, *E. acervulina* and *E. tenella* are amongst the most common *Eimeria* spp. infecting broilers. *E. tenella* is commonly used as infection model in in vivo and in vitro studies. On the other hand, *E. acervulina* has barely been studied under in vitro conditions. A well established and widely used in vitro model for *E. tenella* infection is the Madin-Darby bovine kidney cell line (MDBK); however, little is known regarding suitability of MDBK cells as host cells for *E. acervulina*. We infected MDBK monolayers with two different doses, 5 × 10⁴ and 2 × 10⁵, of *E. acervulina* sporozoites and evaluated cultures at 24 and 96 h post infection (hpi). For comparison, we ran an identical infection assay using *E. tenella* sporozoites. To assess parasite reproduction, the number of DNA copies of *E. acervulina* SCAR marker and *E. tenella* ITS-1 gene was quantified using real-time quantitative PCR. We found that the number of *E. acervulina* copies increased significantly at 24 hpi in comparison to *E. tenella* (*p* < 0.05). After 96 hpi, *E. acervulina* gene copies were considerably reduced while *E. tenella* continued to multiply (*p* < 0.05). Our results show that MDBK monolayers could be used for in vitro research aimed to study *E. acervulina* sporozoite cell invasion. Nevertheless, modifications of in vitro cultivation appear necessary to allow qualitative and quantitative studies over longer periods of parasite reproduction.

Keywords Coccidiosis · *Eimeria acervulina* · *Eimeria tenella* · Poultry · MDBK cells

Introduction

Coccidiosis is an economically important malady in the poultry industry (Blake et al. 2020). The disease is caused by apicomplexan parasites of the *Eimeria* genus. Infection occurs via oral ingestion of sporulated oocysts. Once in the host, the oocysts release sporozoites which invade the intestinal epithelial cells. Inside the host cells, sporozoites undergo asexual and sexual multiplication cycles. Oocysts are thereby produced and consequently shed in the feces. Infected animals can present weight loss, diarrhea, low egg production, and the disease can be fatal in some cases (López-Osorio et al 2020).

Seven species of *Eimeria* (*E. acervulina, E. brunetti, E. maxima, E. mitis, E. necatrix, E. praecox, and E. tenella*) are responsible for avian coccidiosis globally. Oocysts morphology, pathology, and severity of the disease are common differentiating factors amongst these species. From all seven
Eimeria, E. acervulina, E. tenella, and E. maxima are the most prevalent in broiler farms (Jordan et al. 2018; Moraes et al. 2015; Györke et al. 2013). Out of these 3 species, E. tenella is considered highly pathogenic while E. acervulina and E. maxima show moderate pathogenicity (López-Osorio et al. 2020). Notwithstanding variations in pathogenicity, moderate pathogenic Eimeria spp. such as E. acervulina could increase the severity of the disease during co-infection (Hiob et al. 2017).

Animal models are a valuable element in infection research. However, in vitro studies of coccidial parasites can contribute to the baseline understanding of the disease on a cellular level (Marugán-Hernández et al. 2020, Bussiere et al. 2018, Thabet et al. 2017). Moreover, they can be a useful tool providing baseline data for future therapies (Thabet et al. 2017; Khalafalla et al. 2011). Due to its ability to grow in non-avian cell lines (Marugán-Hernández et al. 2020; Thabet et al. 2017), E. tenella has been widely used as model organism in in vitro research (Marugán-Hernández et al. 2020; Thabet et al. 2019, 2017; Khalafalla et al. 2011) and considerable efforts have been directed to E. tenella in vitro and in vivo research, including the use of molecular approaches such as real-time quantitative PCR (RT-qPCR) (Marugán-Hernández et al. 2020; Thabet et al. 2019, 2017; Hiob et al. 2017; Raj et al. 2013). Less efforts have been reported for other Eimeria species, including E. acervulina (Naciri-Bontemps 1976; Itagaki et al. 1974; Strout et al. 1965; Hiob et al. 2017). The aim of this study was to evaluate in vitro invasion and replication of E. acervulina sporozoites in MDBK cell monolayers using real-time quantitative PCR.

Materials and methods

Passage of E. acervulina and E. tenella oocysts

Oocysts of E. acervulina and E. tenella were separately passaged in healthy 11-day-old chicks according to a modified method from Eckert et al. (1995). Sporulated oocysts were collected and stored in 4% potassium dichromate solution at 4 °C until further use.

Purification and excystation of oocysts

Oocysts of both Eimeria species were cleaned from the 4% potassium dichromate solution. Thereafter, sporozoites were excysted and purified according to the modified method described by Rentería-Solís et al. (2020).

Cell culture

Madin-Darby bovine kidney (MDBK) monolayers (DSMZ, Braunschweig, Germany) were used as infection model. MDBK cells were seeded (2 × 10⁵ cells/well) in 24-well plates with Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 100 IU penicillin, 100 μg/mL streptomycin, and 2.5 μg/mL amphotericin and incubated at 37 °C in an atmosphere of 5% CO₂ in air until they reached 80% confluency.

Infection of MDBK cells with Eimeria sporozoites

Confluent MDBK monolayers were inoculated with E. acervulina sporozoites. Preliminary studies were performed in order to select an infection doses based on different multiplicity of infection (MOI) rates (parasite:cell): 0.25, 0.5, 1.0, 1.5, and 5.0 (Taha et al. unpublished data). Two separate doses were selected for infection: 5 × 10⁴ (MOI: 0.25) or 2 × 10⁵ sporozoites/well (MOI: 0.5). Cultures exposed to infection were then incubated at 41 °C in DMEM medium with 2% FBS, 100 IU penicillin, 100 μg/mL streptomycin, and 2.5 μg/mL amphotericin. Two different incubation times were implemented: 24 h post infection (hpi) and 96 hpi. An identical set of infection doses and incubation times was conducted for E. tenella sporozoites. All experiments included one negative control consisting of uninfected MDBK monolayers (NC-uninfected cells). All assays were performed in triplicates. After 24 hpi, cells were washed three times with sterile PBS (pH 7.2) and new medium was added to the 96 hpi group whereas the 24 hpi cultures were terminated. Monolayers were trypsinized at the end of each incubation period (24 hpi or 96 hpi, respectively).

DNA extraction and real-time quantitative polymerase chain reaction (RT-qPCR)

DNA was extracted from the trypsinized cells using the DNaseasy Blood & Tissue kit (Qiagen, Hilden, Germany) according to the manufacturer’s protocol. RT-qPCR was performed to quantify copies of E. acervulina sequence characterized amplified region (SCAR) marker Ac-R01-1731 and for E. tenella internal transcribed spacer 1 of ribosomal DNA (ITS-1) gene as correlate of parasite replication. RT-qPCR assays were conducted according to the methods described by Blake et al. (2008) and Kawahara et al. (2008), respectively, with some modifications. Briefly, a 20 µl volume reaction contained 10 µl SYBR Green® master mix (Thermo Scientific, Dreieich, Germany), 500 nM of forward and reverse primers (Table 1), 2 µl of DNA template, and 7 µl nuclease-free water. A non-template control (NTC) consisting of nuclease-free water was added to each assay. RT-qPCR reactions were amplified in triplicates and conducted on a Bio-Rad CFX Connect Real-Time PCR Detection System (Bio-Rad, Feldkirchen, Germany). RT-qPCR conditions were 95 °C for 5 min followed by 40 cycles of 95 °C for 30 s. Annealing was performed at 59.8 °C and 58 °C for 20 s, for
E. acervulina and E. tenella, respectively, followed by one extension cycle of 20 s at 72 °C. A melting curve program was applied involving a temperature range from 60 to 95 °C to create a dissociation curve. Finally, E. acervulina and E. tenella standard curves were generated by a serial dilution of genomic DNA and a serial dilution of cloned ITS-1 gene fragments (according to Thabet et al. 2015), respectively.

Statistical analysis

D’Agostino-Pearson and Shapiro–Wilk normality tests were used to determine normal distribution of data. A two-way ANOVA test was used for comparison of reproduction considering time points, infection doses, and Eimeria species. Differences were considered statistically significant when \(p > 0.05 \). All statistical analysis were made in GraphPad prism 9 software (San Diego, CA, USA).

Results and discussion

Gene copies of E. acervulina SCAR marker and E. tenella ITS-1 gene were successfully amplified and detected through RT-qPCR in every reaction. After an incubation period of 24 hpi, the number of copies detected after application of a dose of 5 × 10⁴ sporozoites was significantly higher (\(p = 0.0002 \)) for E. acervulina \((1.88 \times 10^5 \pm 5.56 \times 10^4)\) than for E. tenella \((3.60 \times 10^4 \pm 5.37 \times 10^3)\) (Fig. 1). Similarly, a significantly higher (\(p = 0.0002 \)) number of copies were obtained for E. acervulina \((4.82 \times 10^5 \pm 8.50 \times 10^4)\) than for E. tenella \((1.27 \times 10^5 \pm 9.32 \times 10^3)\) 24 hpi after application of 2 × 10⁵ sporozoites (Fig. 1).

In contrast, 96 hpi following infection with 5 × 10⁴ sporozoites, the number of copies in the E. acervulina infected cultures was significantly (\(p = 0.0044 \)) lower \((6.96 \times 10^3 \pm 3.87 \times 10^3)\) as compared to E. tenella \((1.24 \times 10^5 \pm 1.01 \times 10^5)\). Likewise, the higher dose of 2 × 10⁵ sporozoites incubated with monolayers for the longer period of 96 hpi resulted in significantly (\(p = 0.0044 \)) lower quantities of E. acervulina copies \((3.35 \times 10^4 \pm 1.53 \times 10^4)\) in comparison with E. tenella \((4.98 \times 10^5 \pm 1.28 \times 10^5)\) (Fig. 1).

We tested the ability of E. acervulina to invade MDBK monolayers and to subsequently multiply over 24 and 96 hpi. Earlier attempts to evaluate E. acervulina culture have been conducted with variable results. Strout et al. (1965) infected different primary (chicken embryo kidney and fibroblasts) and permanent cell lines (mouse fibroblasts, HeLa cells). Strout et al. (1965) reported recognizable cell infection at 24 hpi in all cell lines. Interestingly, they did not observe parasitic growth over periods of more than 24 hpi in any of the tested cell models (Strout et al. 1965) which is in accordance with our observations of decreasing numbers of gene copies detected 96 hpi. **\(p < 0.005 \), ***\(p < 0.0005 \), infection doses: sporozoites/well.

Table 1	Species-specific set of primers for real-time quantitative PCR		
Oligonucleotide identity	Primer sequences (5’ to 3’)	Amplicon size (base pairs)	References
E. acervulina forward	Eac_qPCRf CTCGCGTGTCACTACAT	124	Blake et al. (2008)
E. acervulina reverse	Eac_qPCRr GATAGCGTCTTGGCTTTTTC		
E. tenella forward	Et_qPCRf TGGAGGGATTATGAGAGGA	147	Kawahara et al. (2008)
E. tenella reverse	Et_qPCRr CAACGACATGGAAGGAGA		

Fig. 1 E. acervulina and E. tenella parasite multiplication. A Comparison between E. acervulina and E. tenella number of copies detected 24 hpi. B Comparison between E. acervulina and E. tenella number of copies detected 96 hpi. **\(p < 0.005 \), ***\(p < 0.0005 \), infection doses: sporozoites/well
copies 96 hpi. Naciri-Bontemps (1976) reported growth of *E. acervulina* in chicken kidney cells until 93 hpi and observed oocyst formation after inoculation of merozoites. However, to the best of our knowledge, these findings were not confirmed by later publications.

Only one article has been published on MDBK monolayers infected with *E. acervulina* sporozoites (Talebi 2001). In short, the author exposed MDBK cells previously treated with hyperimmune chicken or rabbit antisera to *E. acervulina* sporozoites for 24 hpi. Cultures were stained and intracellular sporozoites were microscopically counted. Unfortunately, the study solely presents percentages of parasite inhibition by antisera (Talebi 2001), and thus, conclusions on efficacy of infection in this model cannot be easily drawn. To our knowledge, no further attempts to use MDBK cells as infection model for *E. acervulina* have been reported.

In accordance to the findings of Strout et al. (1965), we observed peak parasite reproduction at 24 hpi and a distinct decrease later represented by low copy numbers at 96 hpi. Strout et al. (1965) and Naciri-Bontemps (1976) reported qualitative data that originated from microscopy analysis only. However, RT-qPCR is a more accurate and sensitive means to assess parasite reproduction. In fact, RT-qPCR is nowadays commonly used for quantitative evaluation and has been established successfully to assess reproduction of coccidia (e.g., Marugán-Hernández et al. 2020, Rentería-Solís et al. 2020, Thabet et al. 2019, Bussiere et al. 2018, Thabet et al. 2017, Khalafalla et al. 2011). Marugán-Hernández et al. (2020), for example, conducted a comprehensive description of intracellular development of *E. tenella* in MDBK cells. In this study, the authors tracked via RT-qPCR and reverse-transcriptase real-time PCR cellular division and stage development of transgenic strains of *E. tenella*.

Our goal was to quantify *E. acervulina* multiplication in MDBK cells by PCR technology. To the best of our current knowledge, such data has not been published before. Morphological analysis was not considered in our experiment. However, it has been repeatedly (Marugán-Hernández et al. 2020, Thabet et al. 2017 and Raj et al. 2013) shown that increase of gene copy numbers is in fact related to multiplication during merogony. Development beyond this phase of asexual multiplication is rather unlikely under the conditions given in our experiment.

We found that in comparison to *E. tenella, E. acervulina* sporozoites invade the cell and multiply at a higher rate during the first 24 hpi. However, the numbers of gene copies drop considerably by 96 hpi, showing dynamics of parasite multiplication for *E. acervulina* that distinctly differ from those of *E. tenella*. Thus, it appears likely that the various *Eimeria* species behave differently in vitro culture and that general conclusions obtained from *E. tenella* as the only established model organism should be drawn with caution. The addition of more time points could be helpful to evaluate the dynamics of in vitro multiplication in more detail. Additional techniques can be applied to elucidate what happens during this period and if practical applications for future therapies can derive from these results.

Nevertheless, we have shown parasite invasion success in this cell line. Therefore, MDBK cells could be further used as infection model for *E. acervulina* sporozoite cell invasion. Also, the use of RT-qPCR and other sensitive tools is recommended. More importantly, this cell line also supports *E. tenella* infection. This could be translated into comparative studies between both *Eimeria* species.

Further detailed quantitative and qualitative analyses should be performed to assess the suitability of MDBK culture as in vitro matrix for *E. acervulina* and developmental stages of other chicken *Eimeria* species.

Acknowledgements The authors wish to thank S. Gawłowska (Institute of Parasitology, University of Leipzig) for providing technical
assistance; we are also grateful to M. Fritsche, B. Schneidewind, and R. Schumacher (Institute of Parasitology, University of Leipzig) for their excellent assistance as animal keepers. Many thanks also to R. Zhang (College of Animal and Veterinary Sciences, Southwest Minzu University) for her valuable help during laboratory work. The authors also wish to thank R. Schmäschke (Institute of Parasitology, University of Leipzig) for his valuable work with the preparation of animal permits.

Funding Open Access funding enabled and organized by Projekt DEAL. This work was funded by the Sudanese Ministry of Higher Education and Scientific Research (financial assistance to S. Taha), as well as by the Vietnamese Government Scholarship (financial support to T. Nguyen-Ho-Bao). This study was partially funded by the University of Leipzig Flexible Funds Program for Junior Researchers (project no. 43700871 for Z. Rentería-Solís).

Declarations

Ethics approval All procedures performed involving live animals were in accordance with the ethical standards of the local authorities (Landesdirektion Sachsen, permit no. A04/19).

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Blake D, Knox J, Dehaeck B, Huntington B, Rathinam T, Ravipati V, Ayoade S, Gilbert W, Adembamo A, Jatau I, Raman M, Parker D, Rushton J, Tomley F (2020) Re-calculating the cost of coccidiosis in chickens. Vet Res 51:1. https://doi.org/10.1186/s13567-020-00837-2

Blake D, Qin Z, Cai J, Smith A (2008) Development and validation of real-time polymerase chain reaction assays specific to four species of Eimeria. Avian Pathol 37:1

Bussiere Fl, Niepceron A, Sausset A, Esnault E, Silvestre A, Walker RA, Smith NC, Quéré P, Laurent F (2018) Establishment of an in vitro chicken epithelial cell line model to investigate Eimeria tenella gamete development. Parasit Vectors 11:44

Eckert J, Braun R, Shirley MW, Coudert P (1995) Biotechnology guidelines on techniques in coccidiosis research. COST European Cooperation in the Field of Scientific and Technical Research, Brussels

Györke A, Pop L, Cozma V (2013) Prevalence and distribution of Eimeria species in broiler chicken farms of different capacities. Parasite 20:5. https://doi.org/10.1015/parasite/2013052

Hibb L, Koethe M, Scharfs G, Goroll T, Daugschies A, Bangoura B (2017) Experimental Toxoplasma gondii and Eimeria tenella co-infection in chickens. Parasitol Res 116:11

Itagaki K, Hirayama N, Tsubokura M, Otsuki K (1974) Development of Eimeria tenella, E. brunetti and E. acervulina in cell cultures. Jap J Vet Sci 36:467–482

Jordan AB, Blake D, Beard J, Beharry A, Serrette L, Soleyan A, Sookhoj BL, Blake L, Brown G, Oura C (2018) Molecular identification of Eimeria species in broiler chickens in Trinidad West Indies. Vet Sci 5:12

Kawahara F, Taira K, Nagai S, Onaga H, Onuma M, Nunoya T (2008) Detection of five avian Eimeria species by species-specific real-time polymerase chain reaction assay. Avian Dis 52:4

Khalafalla RE, Müller U, Shahiduzzaman M, Dychenko V, Desouky AY, Alber G, Daugschies A (2011) Effects of curcumin (diferuloylmethane) on Eimeria tenella sporozoites in vitro. Parasitol Res 108:879–886

López-Osorio S, Chaparro-Gutiérrez JJ, Gómez-Osorio L (2020) Overview of poultry Eimeria life cycle and host-parasite interactions. Front Vet Sci 7:384

Marugán-Hernández V, Jeremiah G, Aguilar-Martins K, Burrell A, Vaughan S, Xia D, Randle N, Tomley F (2020) The growth of Eimeria tenella: characterization and application of quantitative methods to assess sporozoite invasion and endogenous development in cell culture. Front Cell Infect Microbiol 10:579833. https://doi.org/10.3389/fcimb.2020.579833

Moraes J, França M, Sartor A, Bellato V, de Moura A, Magalhães M, de Souza A, Miletti L (2015) Prevalence of Eimeria spp. in broilers by multiplex PCR in the southern region of Brazil on two hundred and fifty farms. Avian Dis 59:2

Naciri-Bontemps M (1976) Reproduction of the cycle of Coccidia Eimeria acervulina (Tyzzer, 1929) in cell cultures of chicken kidneys. Ann Rech Vét 7:223–230

Raj GD, Aarthi S, Selvabharathi R, Raman M, Blake DP, Tomley FM (2013) Real-time PCR-based quantification of Eimeria genomes: a method to outweigh underestimation of genome numbers due to PCR inhibition. Avian Pathol 42:4

Rentería-Solís Z, Zhang R, Taha SH, Daugschies A (2020) A modified method for purification of Eimeria tenella sporozoites. Parasitol Res 119:1429–1432

Strout R, Solis J, Smith S, Dunlop W (1965) In vitro cultivation of Eimeria acervulina (Coccidia). Exp Parasitol 17:3

Talebi A (2001) Inhibition of Eimeria acervulina sporozoite invasion by rabbit and chicken antisera using ELISA assay. Arch Razi Ins 52:49–59

Thabet A, Alnassan AA, Daugschies A, Bangoura B (2015) Combination of cell culture and qPCR to assess the efficacy of different anticoccidials on Eimeria tenella sporozoites. Parasitol Res 114:6

Thabet A, Schmäschke R, Fertey J, Bangoura B, Schönfelder J, Lender M, Ulbert S, Daugschies A (2019) Eimeria tenella oocysts attenuated by low energy electron irradiation (LEEI) induce protection against challenge infection in chickens. Vet Parasitol 266:18–26. https://doi.org/10.1016/j.vetpar.2019.01.001

Thabet A, Zhang R, Alnassan AA, Daugschies A, Bangoura B (2017) Anticoccidial efficacy testing: in vitro Eimeria tenella assays as replacement for animal experiments. Vet Parasitol 233:3. https://doi.org/10.1016/j.vetpar.2016.12.005

Verma A, Verma M, Singh A (2020) Animal tissue culture principles and applications, 2nd edn. Animal Biotechnology, Boston, pp 269–293

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.