Abstract

Objective: Immunophilin FKBP51 assists polypeptide folding, participates in glucocorticoid actions and may play a role in glucocorticoid resistance. FKBP51 is altered in patients with asthma, but its role in chronic obstructive pulmonary disease (COPD) characterized by dysregulation of several pro/anti-inflammatory genes is less clear.

Methods: We assessed changes in nuclear/cytosolic FKBP51 protein using SDS-PAGE/WB and FKBP51 mRNA by qRT-PCR in cells isolated from induced sputum of stable COPD patients treated with formoterol/budesonide or formoterol/budesonide/theophylline for 4 wk.

Results: Expression of FKBP51 was higher in formoterol/budesonide/theophylline-treated patients, compared with formoterol/budesonide group in both cytosolic and nuclear fractions by about 57% and 31%, respectively (P<0.001, P<0.01). FKBP51 mRNA was only slightly, but not significantly, higher in patients on formoterol/budesonide/theophylline.

Conclusions: Increased FKBP51 in COPD patients treated with formoterol/budesonide/theophylline may be important in altering signaling from corticosteroid receptors.

Key words: budesonide, FKBP51, formoterol, glucocorticoids, theophylline

INTRODUCTION

Glucocorticoids effectively switch off pro-inflammatory genes in asthma, but are ineffective in chronic obstructive pulmonary disease (COPD) [1]. It is possible that glucocorticoid resistance in COPD is related to altered glucocorticoid signaling. FK506-binding protein (FKBP), the peptidyl prolyl cis-trans isomerase and the member of a large immunophilin family assists proper folding of polypeptides, responds to bronchodilator drugs and alters glucocorticoid effects [2, 3]. There are two functional FKBP proteins interacting with glucocorticoid receptor (GR)-Hsp90 complex: FKBP51 coded by FKBP5 gene, which binds unliganded GR and FKBP52 coded by FKBP4 gene, which interacts with liganded GR and activate GR complex [4]. This complex called transportosome is transported to the nucleus and transactivates or transrepresses specific genes or transcription factors [4]. It has been shown that increased levels of FKBP51 caused glucocorticoid resistance in New World primates [5]. The role of FKBP51 in COPD, characterized by dysregulation of several pro/anti-inflammatory genes and signaling proteins remain largely unknown, but expression of FKBP51 is altered in asthma [6] and affected by glucocorticoids [4, 7], theophylline (Th) [8], or inhaled β2-receptor agonists [9].

Theophylline may restore steroid responsiveness in COPD patients via normalization of reduced histone deacetylase [1, 10], the drug has both antiinflammatory and antioxidant properties and affects glucocorticoid response [11, 12]. The possible Th-dependent pathway involves increased cyclic AMP, activation of cyclic AMP response element binding protein (CREB) and chaperone system [13], since the levels of phosphorylated CREB correlated with increased expression of human hsp90β gene [14]. The goal of the present study was to assess FKBP51 protein expression and nuclear/cytosolic protein distribution and possible changes in FKBP51 mRNA in cells isolated from induced sputum of stable COPD patients treated with formoterol/budesonide or formoterol/budesonide/theophylline.

SUBJECTS AND METHODS

All patients included in the study gave their consent after a full discussion of the nature of the study and the study was approved by a local Ethics Committee.

Sputum was induced in 36 COPD patients with stable disease, defined according to Global Initiative for Chronic Obstructive Lung Disease (GOLD) guidelines [15]. All patients with COPD had airflow limitation (FEV1 <80% predicted, FEV1/FVC <70%, GOLD stage 2-3) and received no COPD therapy for 4 wk. Lung function and DLCO tests were performed with a body box (Elite DL, Medgraphics, USA). The measurement was performed using standard protocols according to American Thoracic Society guidelines. All subjects were characterized with respect to sex, age, smoking history, COPD symptoms, comorbidity, and current medical treatment. Exclusion criteria included the following: other systemic diseases, other lung diseases apart from COPD and lung tumors, pulmonary infection, and antibiotic treatment 4 wk before inclusion or inhaled or oral glucocorticoids in the 3 mo before inclusion. No patient in the study had symptoms.
nor was treated for COPD exacerbation during at least 2 mo preceding the day of inclusion.

TREATMENT

All patients underwent a 4 wk washout salbutamol only on demand therapy. At the beginning of the treatment patients were stratified to following treatments: formoterol/budesonide (F/ICS; n=18) and formoterol/budesonide/theophylline (F/ICS/Th); n = 18) b.i.d. for 4 wk.

SPUTUM INDUCTION AND PROCESSING

Sputum was induced by the inhalation of a 4.5% hypertonic aerosol saline solution, which was generated by an ultrasonic nebulizer (Voyager, Secura Nova; Warsaw, Poland) [16]. Samples were processed within 15 min after the termination of induction. Throughout the procedure, subjects were encouraged to cough and to expectorate into a plastic container. Three flow volume curves were performed before and after each inhalation, and the best FEV1 was recorded. Induction of sputum was stopped if the FEV1 value fell by at least 20% from baseline or if troublesome symptoms occurred.

Induced sputum samples were processed to isolate mRNA (qPCR-grade RNA isolation kit, SABiosciences, Frederick, USA) or were homogenized for 1 min in the lysis buffer containing 10 mM N-2-hydroxyethylpiperaizine-N’-ethane sulfonic acid, 10 mM KCl, 2 mM MgCl₂, 1 mM dithiothreitol, 0.1 mM ethylenediaminetetraacetic acid, 0.2 mM NaF, 50 mM γ-glycerophosphate, a protease inhibitor tablet, 0.2 mM Na-orthovanadate, 0.5 mM phenylmethylsulfonyl fluoride, 1 µg/ml leupeptin, 1 µg/ml aprotenin, and 10% Nonidet P-40. The samples were then incubated on ice for 15 min and centrifuged at 13000 x g for 5 min. The resulting nuclei or cytosolic fractions were evaluated for the expression of FKBP51.

FKBP51 PROTEIN LEVELS

FKBP51 protein levels were assessed in nuclear and cytosolic fractions using SDS/PAGE/ Western blots. Nuclear or cytosolic proteins were separated by SDS/PAGE in reducing conditions, transferred onto polyvinylidene difluoride membranes, and incubated with specific rabbit antibodies against human FKBP51 (Abcam, Cambridge, USA). After washing, bound antibody was detected using appropriate secondary anti-rabbit antibody (Abcam) linked to horseradish peroxidase. The bound complexes were detected using enhanced chemiluminescence (ECL, Amersham, GE Healthcare, Little Chalfont, UK) and quantified using Image Quant software. The constitutively expressed protein, β-actin, served as a loading control and the data were quantified in respect to β-actin expression.

FKBP51 mRNA

Expression of FKBP5 gene coding for immunophilin FKBP51 was assessed using SYBR Green based qRT-PCR after total RNA extraction from induced sputum cells, RNA purification and template cDNA synthesis was performed with commercial PCR master mixes containing appropriate controls and reference dyes (SABiosciences, Frederick, USA) as described earlier [17]. Samples were run on ABI 7900HT instrument and data were analyzed and quantified using SABiosciences software based on the ΔΔCt method with normalization of the raw data to either housekeeping genes or an external RNA control.

STATISTICAL ANALYSIS

Data are expressed as means ±SD. Statistical significance was calculated using one-way analysis of variance ANOVA, followed by Bonferroni post-hoc test for selected pairs of data.

RESULTS

Table 1 demonstrates the cytosolic and nuclear FKBP51 proteins and the FKBP51 mRNA in cells of

	F/ICS	F/ICS/Th
Protein	100.0 ± 18.1	157.6 ± 21.4**
Nuclei (N)	61.0 ± 11.9	79.5 ± 14.7*
Ratio (C/N)	1.64 ± 0.36	1.98 ± 0.38**
mRNA	100.0 ± 46.8	132.7 ± 51.1

Table 1. Cytosolic and nuclear FKBP51 protein and FKBP51 mRNA in cells of patients treated with F/ICS and F/ICS/Th for 4 weeks.

Relative content of cytosolic and nuclear FKBP51 protein and FKBP51 mRNA in cells isolated from induced sputum of stable COPD patients treated with formoterol +budesonide (F/ICS; n=18) and formoterol + budesonide + theophylline (F/ICS/Th; n=18) b.i.d for 4 wk. Expressions of FKBP51 were equalized in each sample for loading and numerized with densitometry software. The mean FKBP51 expression in cytosolic fraction of cells isolated from F/ICS-treated patients was set as 100 relative units. *P<0.05 compared with the F/ICS-treated group; **P<0.01 compared with the F/ICS-treated group.
patients treated with F/ICS and F/ICS/Th for 4 wk. Corresponding representative Western Blot pictures are shown in Fig. 1. The expression of FKBP51 was higher in the F/ICS/Th-treated patients, compared with the F/ICS treated patients in both cytosolic and nuclear fractions by about 58% (P<0.01) and 31% (P<0.05), respectively. The cytosolic/nuclear FKBP51 ratio was significantly (P<0.01) increased in the F/ICS/Th patients compared with the F/ICS-treated patients indicating relative accumulation of FKBP51 in the cytosol. FKBP51 mRNA in cells isolated from the F/ICS/Th patients was highly variable between patients, and although the mean expression in this group was slightly higher than in F/ICS patients, the difference was not statistically significant.

DISCUSSION

Theophylline, a non-specific phosphodiesterase inhibitor, is a narrow therapeutic index drug and must be monitored due to significant side effects. In COPD, theophylline is used as one of main bronchodilators, aside from inhaled anticholinergics and glucocorticoids in polytherapy may act synergistically in this aspect, but functional consequences of increased FKBP51 in COPD patients remain to be established.

REFERENCES

[1] Barnes PJ, Adcock IM Glucocorticoid resistance in inflammatory diseases. Lancet 2009; 373: 1905-17. Review.
[2] Schiene-Fischer C, Yu C. Receptor accessory folding helper enzymes: the functional role of peptidyl prolyl cis/trans isomerases. FEBS Lett 2001; 495: 1-6. Review.
[3] Kang CB, Hong Y, Dhe-Paganon S, Yoon HS. FKBP family proteins: immunophilins with versatile biological functions. Neurosignals 2008; 16:318-25. Review.
[4] Zhang X, Clark AF, Yorio T, FK506-binding protein 51 regulates nuclear transport of the glucocorticoid receptor beta and glucocorticoid responsiveness. Invest Ophthalmol Vis Sci 2008; 49: 1037-47.
[5] Woodruff PG, Boushey HA, Dolganov GM, Barker CS, Yang YH, Donnelly S, Eibwanger A, Sidhu SS, Dao-Pick TP, Pantoja C, Erle DJ, Yamamoto KR, Fakhry JV, Genome-wide profiling identifies epithelial cell genes associated with asthma and with treatment response to corticosteroids. Proc Natl Acad Sci USA 2007; 104: 15858-63.
[7] Bolger GB, Peden AH, Steele MR, MacKenzie C, McEwan DG, Wallace DA, Huston E, Baillie GS, Houslay MD. Attenuation of the activity of the cAMP-specific phosphodiesterase PDE4A5 by interaction with the immunophilin XAP2. Biol Chem 2003; 278: 3351-63.

[8] Kaur M, Chivers JE, Giembycz MA, Newton R. Long-acting beta2-adrenoceptor agonists synergistically enhance glucocorticoid-dependent transcription in human airway epithelial and smooth muscle cells. Mol Pharmacol 2008; 73: 203-14.

[9] Scammell JG, Denny WB, Valentine DL, Smith DF. Overexpression of the FK506-binding immunophilin FKBP51 is the common cause of glucocorticoid resistance in three New World primates. Gen Comp Endocrinol 2001; 124: 152-65.

[10] Marwick JA, Wallis G, Meja K, Kuster B, Bouwmeester T, Chakravarty P, Fletcher D, Whittaker PA, Barnes PJ, Itso K, Adcock IM, Kirkham PA. Oxidative stress modulates theophylline effects on steroid responsiveness. Biochem Biophys Res Commun 2008; 355: 435-42. Review.

[11] Mroz RM, Holownia A, Chyczewska E, Braszko JJ. Chronic obstructive pulmonary disease: an update on nuclear signaling related to inflammation and anti-inflammatory treatment. J Physiol Pharmacol 2008; 59 Suppl 6: 303-9. Review.

[12] Costio BG, Iglesias A, Rios A, Noguera A, Sala E, Itso K, Barnes PJ, Agusti A. Low-dose theophylline enhances the anti-inflammatory effects of steroids during exacerbations of COPD. Thorax 2009;64: 424-9.

[13] Mroz RM, Holownia A, Chyczewska E, Braszko JJ, Noparlik J, Donaldson K, Maexee W. Cytoplasm-nuclear trafficking of CREB and CREB phosphorylation at Ser133 during therapy of chronic obstructive pulmonary disease. J Physiol Pharmacol 2007; 58: 437-44. Review.

[14] Caramori G, Adcock I. Pharmacology of airway inflammation in asthma and COPD. Pulm Pharmacol Ther 2008; 364: 558-61.

[15] Ichiyama T, Hasegawa S, Matsubara T, Hayashi T, Fukukawa S. Theophylline inhibits NF-kappa B activation and I kappa B alpha degradation in human pulmonary epithelial cells. Naunyn Schmiedebergs Arch Pharmacol 2001; 364: 558-61.

[16] Yao PL, Tsai MF, Lin YC, Wang CH, Liao WY, Chen JJ, Yang PC. Global expression profiling of theophylline response genes in macrophages: evidence of airway anti-inflammatory regulation. Respir Res 2005; 6: 89.

[17] Wolf IM, Periyasamy S, Hinds T Jr, Yong W, Shou W, Sanchez ER. Targeted ablation reveals a novel role of FKBP52 in specific gene regulation of glucocorticoid receptor transcriptional activity. J Steroid Biochem Mol Biol 2009; 113: 36-45.

[18] Zhu W, Zhang JS, Young CY. Silymarin inhibits function of the androgen receptor by reducing nuclear localization of the receptor in the human prostate cancer cell line LNCaP: Carcinogenesis 2001; 22: 1399-403.

[19] Veermve H, Hendriks-Stegeman BI, van der Burg B, van Buul-Offers SC, Jansen M. Glucocorticoid-induced increase in lymphocyte FKBP51 messenger ribonucleic acid expression: a potential marker for glucocorticoid sensitivity, potency, and bioavailability. J Clin Endocrinol Metab 2003; 88: 277-284. Cell Death Differ 2004; 11: 45–55.

Corresponding author:
Dr. Adam Holownia
Department of Clinical Pharmacology
Medical University of Bialystok
Waszyngtona 15a St.
15-279 Bialystok
Phone/Fax: +48857450647
E-mail: Holow_sinai@hotmail.com