A circular dielectric grating for vertical extraction of single quantum dot emission

M. Davanço,1,2,* M. T. Rakher,1 D. Schuh,3 A. Badolato,4 and K. Srinivasan1

1Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
2Maryland NanoCenter, University of Maryland, College Park, MD
3Institute for Experimental and Applied Physics, University of Regensburg, D-93053 Regensburg, Germany
4Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA

(Dated: May 12, 2011)

We demonstrate a nanostructure composed of partially etched annular trenches in a suspended GaAs membrane, designed for efficient and moderately broadband (≈ 5 nm) emission extraction from single InAs quantum dots. Simulations indicate that a dipole embedded in the nanostructure center radiates upwards into free space with a nearly Gaussian far field, allowing a collection efficiency > 80 % with a high numerical aperture (NA=0.7) optic, and with ≈ 12× Purcell radiative rate enhancement. Fabricated devices exhibit a ≈ 10 % photon collection efficiency with a NA=0.42 objective, a 20× improvement over quantum dots in unpatterned GaAs. A fourfold exciton lifetime reduction indicates moderate Purcell enhancement.

Efficient extraction of single photons emitted by individual semiconductor epitaxial quantum dots (QDs) is a necessity for many applications in spectroscopy and classical and quantum information processing [1]. As epitaxially grown QDs are embedded in semiconductor material, total internal reflection of the emitted light at the semiconductor-air interface and radiation divergence can typically lead to < 1 % collection efficiencies even with high numerical aperture (NA) optics. Photonic structures such as micropillar cavities can provide both QD radiative rate Purcell enhancement and a far-field radiation pattern that can be effectively collected [2], but require precise spectral tuning of the cavity resonance to the QD emission line. In contrast, vertically-oriented etched nanowires [3] are spectrally broadband structures that have recently been shown to provide large free space collection efficiencies, albeit without Purcell enhancement and with an involved fabrication process. Broadband operation not only relaxes the spectral alignment requirement, which may impose strict constraints in fabrication tolerances, but is also a necessity in spectroscopic applications in which simultaneous detection of various spectrally separate transitions is desired. Here, we present an approach for efficient free space extraction of QD emission using a suspended circular grating. This structure requires a simple nanofabrication procedure, and supports a relatively broad (few nanometer) optical resonance with a directional, nearly Gaussian far-field, which allows efficient free space photon collection. Simulations predict a collection efficiency of ≈ 53 % (80 %) into a NA=0.42 (0.7) optic. In fabricated devices, we report a ≈ 10 % single QD photoluminescence (PL) collection efficiency into a NA=0.42 optic, a ≈ 20× improvement compared to QDs in unpatterned bulk GaAs. A fourfold reduction in QD lifetime is also observed, indicating moderate radiative rate enhancement.

FIG. 1: (a) Top, (b) angled, and (c) cross-sectional SEM images of suspended circular dielectric grating structure.

Our nanostructure (Fig. 1) consists of a circular dielectric grating with radial period Λ that surrounds a central circular region of radius 2Λ, produced on a suspended GaAs slab of thickness t = 190 nm. The GaAs slab supports single TE and TM polarized modes (electric or magnetic field parallel to the slab, respectively). The grating is composed of ten partially etched circular trenches of width w and depth d, with t/2 < d < t. Quantum dots are grown at half the GaAs slab thickness (z = 0), and located randomly in the xy plane. This 'bullseye' geometry favors extraction of emission from QDs in the central circular region. It is based on (linear) high-contrast second-order Bragg gratings recently introduced [4] for light extraction from planar waveguides. While similar circular geometries have been employed for enhanced light extraction from light emitting diodes [5], and for demonstrating annular Bragg lasers [6], here we show an application in QD single photon extraction.

The design process consisted of a series of finite difference time domain simulations that maximized vertical light extraction near the expected QD s-shell emission.

*Electronic address: mdavanco@nist.gov
constants in the semiconductor and air produce significant resonance spectral shifts with small variations in trench width. Trench depth (d) has a strong influence on the quality factor (Q) and vertical light extraction, as incomplete spatial overlap between a trench and an incident slab-bound wave leads to both coupling to radiating waves and lower modal reflectivity. Preferential upwards vertical extraction results from the grating asymmetry, and is optimized through the trench depth [7]. We note that in addition to the mode shown in Fig. 1, the cavity supports additional resonances which can be excited by dipoles offset from the bullseye center. Coupling to these resonances can lead to modified spontaneous emission rates and collection efficiencies [7].

Figure 2(c) shows simulated, upwards (continuous) and downwards (dotted) vertically extracted power as a function of wavelength for structures with Λ = 350 nm, 360 nm, and 370 nm, w = 110 nm, and d ≈ 0.70t. All curves are normalized to the homogeneous medium electric dipole power, \(P_{\text{Hom}} \). Trench parameters reflect a trade-off in cavity Q and vertical light extraction, as discussed above. It is apparent that for each Λ, a ≈ 5 nm wide resonance exists, with preferential upwards (+z) light extraction. The upwards extracted power is ≈ 10 × \(P_{\text{Hom}} \), an indication of Purcell radiation rate enhancement due to the cavity [8]. Indeed, for the Λ = 360 nm structure, on which we now focus, the enhancement \(F_p \) at the maximum extraction wavelength (\(\lambda_c = 948.9 \) nm) is \(F_p = P_{\text{tot}} / P_{\text{Hom}} = 11.0 \), where \(P_{\text{tot}} \) is the total radiated power in all directions. This resonance has \(Q = 200 \), and its effective mode volume, calculated from the field distribution, is \(V_{\text{eff}} = 1.29 (\lambda_c/n)^3 \) (n is the GaAs refractive index) [7]. The value for \(F_p \) predicted by Q and \(V_{\text{eff}} \) is ≈11.8, and is consistent with the value determined above by the dipole radiation simulations. Note that, given the modal field distribution in Fig. 2(a), the modified dipole emission rate depends strongly on its spatial location, being maximal at the bullseye center.

The steady-state fields at a surface just above the GaAs slab were used to calculate the far-field pattern in Fig. 2(c), which shows that the emission is nearly Gaussian with a small divergence angle. To better quantify this, we calculate the power \(P_{\text{col}} \) collected by an optic of varying NA. Figure 2(d) shows the fractions of the upwards emitted \((P_{+z}) \) and total \((P_{\text{tot}}) \) powers collected as a function of the collection optic acceptance angle. For NA=0.42 (24.8° acceptance angle), ≈ 60 % of the upwards emitted power (or ≈ 53 % of the total emission) can be collected. For NA>0.7, or an acceptance angle > 44.4°, collection superior to 80 % of the total emission can be achieved. We note that our suspended grating approach limits radiation into the substrate without the need to oxidize the AlGaAs, bond the grating to a low index layer[6], or utilize a deeply etched geometry [2, 3].

Gratings were fabricated in a t = 190 nm GaAs layer containing a single layer of InAs QDs (density gradient from > 100 µm\(^{-2}\) to 0 µm\(^{-2}\) along the (011) direction) on top of a 1 µm thick Al\(_{0.6}\)Ga\(_{0.4}\)As sacrifi-
past this level. This further supports our assignments of QD transitions and cavity mode in the Fig. 3(a) spectra. Saturated photon rates (collected with a NA=0.42 objective) from X_1 and X_2 were at least 20 times higher than from typical QDs embedded in unpatterned GaAs, as shown in Fig. 4(a). Assuming 100 % QD quantum efficiency, we estimate a collection efficiency of $\approx 10 \%$ is achieved with the bullseye pattern [7]. A lifetime measurement of X_1 after a ≈ 300 pm bandpass filter (Fig. 4(b)) exhibits a multi-exponential decay with a fast lifetime of ≈ 360 ps, limited by the ≈ 600 ps timing jitter of the detectors. For comparison, the lifetime of a single QD inside of a suspended GaAs waveguide [13] (dotted in Fig. 4(b)), for which no radiative rate modification is expected, was ≈ 1.5 ns. This suggests $F_p > 4$. Note that since the pump in Fig. 4(a) is pulsed with a 20 ns repetition period, significantly longer than the lifetime, the increase in detected counts relative to unpatterned GaAs is solely due to enhanced photon extraction and collection into the objective.

![FIG. 3: (a) PL spectrum from a low QD density $\Lambda = 360$ nm device, for various pump powers. (b) Temperature evolution of spectrum in (a) (25 nW pump). (c) Temperature evolution of excitonic energies. Continuous lines are fits.](image)

![FIG. 4: (a) PL as a function of pump power for X_1, X_2 and cavity emission from Fig. 3(a), and two QDs in unpatterned GaAs. Error bars are 95% fit confidence intervals. (b) Solid: X_1 lifetime trace with fit. Dotted: lifetime trace for QD embedded in a suspended GaAs waveguide.](image)
hancement. This structure allows for efficient and broadband spectroscopy of single QDs, and has potential for use as a bright single-photon source.

The authors acknowledge the help of Robert Hoyt. This work has been partly supported by the NIST-CNST/UMD-NanoCenter Cooperative Agreement.

[1] A. J. Shields, Nature Photonics 1, 215 (2007), 0704.0403.
[2] S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, Nature Photonics 1, 704 (2007).
[3] J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. Gérard, Nature Photonics 4, 174 (2010).
[4] D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. V. Daele, I. Moerman, S. Vertuyt, K. D. Mesel, and R. Baets, IEEE J. Quan. Elec. 38, 949 (2002).
[5] M. Y. Su and R. P. Mirin, Applied Physics Letters 89, 033105 (2006).
[6] W. M. J. Green, J. Scheuer, G. DeRose, and A. Yariv, Appl. Phys. Lett. 85, 3669 (2004).
[7] See EPAPS supplemental material for details on simulation, nanofabrication, data fitting and quantum dot temperature dependence modeling.
[8] J. Vučković, O. Painter, Y. Xu, A. Yariv, and A. Scherer, IEEE J. Quan. Elec. 35, 1168 (1999).
[9] G. Ortner, M. Schwab, M. Bayer, R. Pääßler, S. Fafard, Z. Wasilewski, P. Hawrylak, and A. Forchel, Phys. Rev. B 72, 085328 (2005).
[10] M. Kroner, K. M. Weiss, S. Seidl, R. J. Warburton, A. Badolato, P. M. Petroff, and K. Karrai, physica status solidi (b) 246, 795 (2009), ISSN 1521-3951.
[11] M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoglu, Phys. Rev. Lett., 103, 207403 (2009).
[12] A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, Science 308, 1158 (2005).
[13] M. I. Davanço, M. T. Rakher, D. Schuh, W. Wegsneider, A. Badolato, and K. Srinivasan (2011), arXiv:1104.4036.
[14] K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Guide, S. Falt, E. Hu, and A. Imamoglu, Nature (London) 445, 896 (2007).
[15] S. M. Thon, M. T. Rakher, H. Kim, J. Gudat, W. T. M. Irvine, P. M. Petroff, and D. Bouwmeester, Appl. Phys. Lett. 94, 111115 (2009).
[16] S. Ates, S. M. Ulrich, S. Reitzenstein, A. Löffler, A. Forchel, and P. Michler, Phys. Rev. Lett. 103, 167402 (2009).
Supplemental Information for
A circular dielectric grating for vertical extraction of single quantum dot emission

M. Davanço,1,2, ∗ M. T. Rakher,1 D. Schuh,3 A. Badolato,4 and K. Srinivasan1
1 Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
2 Maryland NanoCenter, University of Maryland, College Park, MD
3 Institute for Experimental and Applied Physics, University of Regensburg, D-93053 Regensburg, Germany
4 Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA

I. DESIGN SIMULATIONS

The following simulation results illustrate the effects of varying trench depths on emission properties of the circular dielectric grating. Figure 1(a) shows total emitted power P_{tot} as a function of wavelength for various trench depths, and Fig. 1(b) shows the corresponding upwards (P_{z+}) and downwards (P_{z-}) extracted powers.

Apparent in Fig. 1(a) are a significant central wavelength shift and a strong radiative rate modification. Indeed, as shown in Fig. 1(c), the central wavelength blue shifts more than 40 nm for depths increasing from 95 nm to 190 nm. The resonance full width at half maximum (FWHM), correspondingly, decreases, indicating an increase in field confinement and, consequently, the Purcell Factor (F_p), Fig. 1(e). The increased field confinement for deeper trenches is a consequence of better overlap of the guided field inside the slab and the etched region, which leads to increased guided wave reflectivity and reduces coupling to out-of-plane radiation.

Figures 1(b) and (f) show the effect of grating asymmetry on the ratio between upwards and downwards emitted powers. For a symmetric grating with $d = t$, emission in both directions is the same. Upwards emission is maximized for $d/t \approx 0.8$, for which $P_{z+}/P_{z-} = 2.19$. This ratio increases to 5.8 for $d/t = 0.7$, however for a reduced F_p. Clearly, a trade-off must be reached between Purcell enhancement and asymmetric emission.

*Electronic address: mdavanco@nist.gov
We note that, due to its large dimensions, the cavity does not support only the one cavity mode discussed in the text, but instead an ensemble of broad, spectrally overlapping resonances that can be excited by dipoles offset from the bullseye center. These resonances can have β-factors comparable to that of the main mode (depending on the dipole location), however less directional far-fields. In this situation, an enhanced spontaneous emission rate can be achieved (with contributions from all modes), together with a reduced overall collection efficiency.

Imperfections in the fabricated pattern can lead to a reduction in the collection efficiency, and while modification of the far field pattern is a likely contribution, an additional affecting factor would be a non-optimal trench depth, as apparent in Fig. 1(f) in the supplementary text. There, the ratio between upwards and downwards emitted powers varies significantly with etched trench depth. Indeed, for a trench depth $d = 0.8t$, the collection efficiency into a 0.42 NA objective drops to approximately 30% from the 52% for $d = 0.7t$. As $t = 190$ nm, a 20 nm difference in trench depth lowers the extraction efficiency significantly.

We believe that most likely, the reduced collection efficiency observed experimentally results from a combination of the factors discussed above.

II. EFFECTIVE MODE VOLUME CALCULATION

The bullseye cavity’s effective mode volume $V_{\text{eff}} = 1.29(\lambda_0 / n)^3$ quoted in the text was obtained with the expression

$$V_{\text{eff}} = \frac{\int \epsilon(r) |\mathbf{E}(r)|^2 d^3r}{\max \left\{ \epsilon(r) |\mathbf{E}(r)|^2 \right\}},$$

(1)

where \mathbf{E} is the modal electric field and $\epsilon(r)$ the medium permittivity. From V_{eff} and the calculated cavity $Q \approx 200$, we can estimate the maximum Purcell enhancement factor F_p:

$$F_p = \frac{3Q(\lambda_0 / n)^3}{4\pi^2 V_{\text{eff}}}$$

(2)

where n is the refractive index and λ_0 is the cavity mode wavelength. The value determined through this calculation, $F_p = 11.8$, corresponds well with the value $F_p = 11.0$ that we determine from simulations of the enhanced radiated power for an electric dipole in the bullseye. The above values for F_p assume perfect dipole orientation with respect to the cavity field and optimal dipole location within the field (i.e., in the bullseye center).

III. FABRICATION

Based on simulation parameters, gratings were fabricated on an $t=190$ nm thick GaAs layer containing a single layer of self-assembled InAs quantum dots on top of a 1 μm thick AlGaAs sacrificial layer. The epiwafer was grown with molecular beam epitaxy, and displayed a quantum dot density gradient from > 100 μm$^{-2}$ to 0 μm$^{-2}$ along the (011) direction. Electron-beam lithography was used to define the patterns, and a single, timed, inductively-coupled plasma reactive ion etch (ICP-RIE) step with an Ar/Cl$_2$ chemistry transferred the gratings into the GaAs. This step was optimized so that the GaAs would be partially etched to a desired depth in the grating region (see Fig.1(b)), and fully etched over the large, curved rectangles just outside the grating region seen in Fig.1(a). These open areas were included to give access to the AlGaAs sacrificial layer, which was etched with Hydrofluoric acid in a final step. Devices with varying quantum dot (QD) densities were produced by fabricating the devices along the QD density gradient of the wafer.

IV. PHOTOLUMINESCENCE SPECTRA AND COLLECTION EFFICIENCY

The spectra shown in Fig. 3 were obtained with a grating spectrometer and a Si charge-coupled device (CCD). To obtain the PL intensity from the excitonic lines X_1 and X_2 in Fig. 3(a) without contributions from the broad cavity background, Lorentzians were fitted to the corresponding peaks. Emitted photon rates plotted in Fig. 4(a) for X_1 and X_2 and for unpatterned GaAs QD lines correspond to the Lorentzian areas. The integrated cavity photon rates in Fig. 4(b) were obtained by integrating the spectra between 930 nm and 955 nm and subtracting rates from the two excitonic lines.

To estimate the collection efficiency, we convert detected CCD counts to photon counts into our NA=0.42 objective. The two are related by a conversion factor that is equal to the product of our detection efficiency ξ, the transmission through the PL setup T_{path}, and the transmission through the cryostat windows T_{windows}. ξ includes the in-coupling efficiency into the spectrometer, the spectrometer’s grating efficiency, and the CCD’s quantum efficiency, and is determined by sending a reference laser with
known power and wavelength into the spectrometer. In particular, we attenuate a 102 nW laser at 960 nm by 50 dB and acquire a spectrum with a 1 s integration time. Integrating the laser spectrum yielded a count rate of 6.46×10^4 s$^{-1}$, which, when compared to the photon rate just before the spectrometer (4.93×10^9 s$^{-1}$), gives a factor of ≈ 77 photons per count. Because the QD emission wavelength ($\lambda_{\text{QD}} = 941$ nm) differs from the calibration wavelength of 960 nm, we multiply this conversion factor by 0.78, which is the ratio of the manufacturer-specified CCD quantum efficiencies at these two wavelengths. We therefore get an overall detection efficiency $\xi = 0.0167$ (± 60 photons per count).

The transmission through the optical path (including the collection objective) was $T_{\text{path}} = 0.156$, and was measured by launching a fiber-coupled laser of known power and wavelength through the optical setup. Note that, since the fiber NA=0.13 is less than the objective’s NA, all of the power emitted from the fiber is collected, so the measured transmission includes only transmission losses through the objective and routing optics. $T_{\text{windows}} \approx 0.87$, and includes transmission through the radiation shield and outer cryostat windows.

The QD line X_1 in Fig. 4(a) yields a saturated CCD count rate of $R_{X_1} = 1.14 \times 10^4$ s$^{-1} \pm 0.16 \times 10^4$ s$^{-1}$, where the uncertainty is a 95 % fit confidence interval, due to spectrometer resolution and detection noise. Assuming 100 % QD quantum efficiency, the rate of single photons emitted by the saturated QD is equal to the pulsed pump excitation rate, like $R_{\text{ex}} = 50$ MHz. The collection efficiency was then calculated as

$$\eta = \frac{R_{X_1}}{R_{\text{ex}} \cdot \xi \cdot T_{\text{path}} \cdot T_{\text{windows}}}.$$

(3)

Substituting all these values yields a collection efficiency $\eta = 10.1 \% \pm 1.4 \%$.

V. QUANTUM DOT TEMPERATURE DEPENDENCE

The temperature dependence of the sharp features X_1, X_2 and X_3 in Figs. 3(a) and (b) was fitted with the Bose-Einstein expression

$$E_{\text{res}}(T) = E_{\text{res}}(T = 0) - \frac{\hbar \omega_s}{2 k_B T} \coth \left(\frac{\hbar \omega_s}{2 k_B T} \right).$$

(4)

This expression models the evolution of the semiconductor bandgap energy with temperature due to electron-phonon interaction, assuming no phonon dispersion, and has been successfully applied towards excitonic transitions in epitaxially grown quantum dots. In Eq. (4), T is the sample temperature, $E_{\text{res}}(T)$ is the excitonic resonance energy, $\hbar \omega_s$ is the phonon energy, and S is a dimensionless coupling constant. The fits shown in Fig. 3(c) were obtained with the parameters in Table I.

The phonon energies $\hbar \omega_s$ in Table I are between the bulk GaAs transverse acoustic phonon energies at the X and L points, $\hbar \omega_{TA}(X) = 7.7$ meV and $\hbar \omega_{TA}(X) = 9.8$ meV, and the coupling coefficients S are compatible with those reported in refs. 2 and 3. This indicates that the sharp spectral lines correspond to excitonic QD transitions.

$E_{\text{res}}(T = 0)$ (eV)	X_1	X_2	X_3
$E_{\text{res}}(T = 0)$ (eV)	1.3186 ± 0.7 x 10$^{-4}$	1.3173 ± 0.4 x 10$^{-4}$	1.3161 ± 0.3 x 10$^{-4}$
$\hbar \omega_s$ (meV)	9.1601 ± 0.8632	9.1373 ± 0.4890	8.7596 ± 0.4536
S	0.9093 ± 0.1005	0.9276 ± 0.0581	0.8662 ± 0.0581

TABLE I: Fitting parameters for temperature dependence of QD lines X_1, X_2 and X_3 with eq.(4). Errors are 95 % fit confidence intervals (two standard deviations).

1. J.-M. Gérard and B. Gayral, J. Lightwave Tech. 17, 2089 (1999).
2. G. Ortner, M. Schwab, M. Bayer, R. Fässler, S. Fafard, Z. Wasilewski, P. Hawrylak, and A. Forchel, Phys. Rev. B 72, 085328 (2005).
3. M. Kroner, K. M. Weiss, S. Seidl, J. J. Warburton, A. Badolato, P. M. Petroff, and K. Karrai, physica status solidi (b) 246, 795 (2009).