Preconditioning of Hypoxic Culture Increases The Therapeutic Potential of Adipose Derived Mesenchymal Stem Cells

Tito Sumarwoto1,2, Heri Suroto3, Ferdiansyah Mahyudin4, Dwikora Novembri Utomo5, Romaniyanto6, Andhi Prijosejati7, Pamudji Utomo8, Cita Rosita Sigit Prakoeswa9, Fedik Abdul Rantam10, Damayanti Tinduh11, Hari Basuki Notobroto11, Sholahuddin Rhatomy112

1Doctoral Program, Faculty of Medicine, Airlangga University, Surabaya, Indonesia; 2Department of Orthopaedics and Traumatology, Faculty of Medicine, Prof Soeharso Orthopaedic Hospital, Sebelas Maret University, Surakarta, Indonesia; 3Department of Orthopaedic and Traumatology, Faculty of Medicine, Dr. Soetomo General Hospital, Airlangga University, Surabaya, Indonesia; 4Department of Dermatology and Venereology, Faculty of Medicine, Dr. Soetomo General Hospital, Airlangga University, Surabaya, Indonesia; 5Department of Microbiology, Virology and Immunology Laboratory, Faculty of Medicine, Virology and Immunology Laboratory, Faculty of Medicine, Airlangga University, Surabaya, Indonesia; 6Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Dr. Soetomo General Hospital, Airlangga University, Surabaya, Indonesia; 7Faculty of Public Health, Airlangga University, Surabaya, Indonesia; 8Department of Orthopaedics and Traumatology, Dr. Soeradji Tirtonegoro General Hospital, Klaten, Indonesia; 9Department of Orthopaedics and Traumatology, Faculty of Medicine, Dr. Soetomo General Hospital, Surabaya, Indonesia; 10Stem Cell Research and Development Center, Airlangga University, Surabaya, Indonesia; 11Faculty of Medicine, Public Health, and Nursing, Gadjah Mada University, Yogyakarta, Indonesia

Abstract

Stem cell-based therapy is one of the most promising strategies in promoting tissue regeneration. Mesenchymal stem cells (MSCs) derived from adipose are widely used as a source of stem cells. However, most donor stem cells die before their regenerative effects appear. Thereby, various strategies are carried out to enhance the therapeutic potential. It is hoped that the survival, engraftment, and function of implanted MSCs by preconditioning the cells will be improved. In vitro preconditioning strategies can improve the survival, engraftment, and paracrine properties of MSCs, thus optimize their reparative and regenerative capacities. One such attempt is to propagate these stem cells in a hypoxic environment, which mimics the natural tissue oxygen environment. Hypoxia preconditioning represents a comprehensive increase in regenerative gene expression in stem cell therapy. There are significant advantages in stem cell therapy with hypoxia preconditioning.

Introduction

Stem cell-based therapy is one of the most promising strategies in the medical field to promote tissue regeneration. Over the past few decades, stem cells have been widely used as regenerative therapy and mesenchymal stem cells (MSCs) emerged as a promising therapeutic option. Currently, stem cells are effective agents as therapeutic agents for several diseases due to their tissue protective and reparative mechanisms [1].

MSCs derived from adipose tissue are widely used as a source of stem cells. This is due to the fact they are accessible, abundant, and painless collection procedure in comparison to other sources. These cells can be maintained and cultured for long periods of time without losing their differentiation capacity [2].

Unfortunately, several recent studies have shown that donor stem cells die before their regenerative effects appear. Most of the stem cells did not survive the first 24 h in vivo, mainly due to the hypoxia-induced apoptosis of stem cells [3].
For this reason, various strategies are carried out to increase the therapeutic potential. Thus, it will improve the survival, engraftment, and function of implanted MSCs by conditioning the cells prior to implantation, known as preconditioning. To obtain optimal therapeutic potential, an adipose-derived MSCs (AdMSC) with maximum regenerative capacity is required and in vitro initial conditioning strategy can optimize its therapeutic potential [4].

One such attempt is to propagate these stem cells in a hypoxic environment prior to implantation (hypoxia preconditioning), which mimics the natural tissue oxygen environment (1–7%), unlike standard culture conditions (21%). This will increase the viability of these cells and will stimulate the secretion of growth factors required in the regenerative process [5], [6].

The following review aims to provide an overview of hypoxia preconditioning to enhance the therapeutic potential of AdMSCs.

Characteristics of MSCs

According to the MSC and Tissue Committee of the International Society for Cellular Therapy, MSCs have both self-renewing and differentiating capabilities. These cells showed positive expression for stromal markers CD73 and CD 105 and negative for the hematopoietic markers CD14 or CD 11b, CD34 and CD45; CD79a or CD19 and HLA class II. These cells have the ability to be plastic adherent and possess fibroblast-like morphology. These cells can be maintained in culture for a long period of time. Nevertheless, their potential for osteogenic, adipogenic, and chondrogenic differentiation must be demonstrated [2], [7].

The most useful characteristic reported for MSC is the non-immunogenic profile. MSCs are reported to exhibit Major Histocompatibility Complex (MHC) I, but deficiency of MHC II results in T-cell inactivation and immunosuppressive properties. MSCs secrete a variety of growth factors, chemokines, cytokines, and extracellular matrix (ECM) proteins that are involved in various biological processes including hematopoiesis, angiogenesis, leukocyte multiplication, immunity, and inflammatory responses. Multiple growth factors, including basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), insulin-like growth factor 1, hepatocyte growth factors (HGF), and transforming growth factors (TGF)-β1 are also secreted. This evidence holds a great promise in MSC-based therapies which allow allogenic transplantation without the need for immunosuppression [8], [9], [10].

AdMSCs

Stem cells in adipose tissue, called AdMSC, have been shown to have broadly the same biological capabilities as bone marrow MSC (BM-MSCs) [11]. The advantages of AdMSC over BM-MSCs and other types of adult stem cells are that they are relatively easy to obtain. It can be obtained in large quantities through liposuction performed under local anesthesia. These cells are able to be maintain long-term phenotype and plasticity of in vitro culture. These cells also possess low immunogenicity characteristic. As a result, AdMSC was able to attract greater interest and is the most preferred cell type for tissue engineering and regenerative medicine [12], [13], [14].

One gram of adipose tissue yields approximately 3.5×10^5 to 1×10^6 AdMSC, whereas isolation from one gram of bone marrow aspiration yields only 5×10^2 to 5×10^4 BM-MSC. In addition, AdMSC has advantages in terms of proliferation and differentiation, as well as the fact that age and location of origin do not have a significant effect in the therapeutic effect of these adipose-derived stem cells [9], [15].

Zuk et al., were the first to investigate whether human adipose could be an alternative source of MSCs. They obtained human adipose from liposuction aspiration and used the enzyme collagenase to release stromal cells from the ECM by processing the stromal vascular fraction, which contains various cell types including AdMSC (Figure 1). Isolated adipose stromal cells are cultured with specific media to induce adipogenic, osteogenic, or chondrogenic differentiation. Adipose stromal cells are capable of developing intracellular lipid stores, markers representing adipose tissue, bone, and cartilage, respectively, as well as expressing alkaline

![Figure 1: Isolation and utilization of adipose-derived mesenchymal stem cells [13]](https://oamjms.eu/index.php/mjms/index)
phosphatase or proteoglycan [16]. To determine whether isolated adipose stromal cells were truly stem cells, Zuk et al., investigated surface antigen expression and differentiation capacity against clonogenic cultures [17].

Using flowcytometry, it was shown that clonogenic cells express a surface antigen similar to BM-MSCs. In addition to the differentiation of mesenchymal lineages, clonal cells are also able to differentiate into neuron-like cells, which are proven by morphology and expression of phenotypic markers. AdMSCs also tend to stimulate angiogenesis as an important feature for regenerative [18], [19]. Its neurotropic and angiogenic properties have been shown to be due to neural growth factor (NGF), brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF), VEGF-A, and angiopoietin-1 [20]. The secretome of AdMSC is very complex. AdMSC has the ability to secrete proteins involved in angiogenesis, injury healing, tissue regeneration, and immunomodulation [21]. In addition, AdMSC has the capacity to differentiate into Schwann cell [22], pancreatic beta cells [23], and hepatocytes [24]. AdMSCs have important healing properties in injuries and can be an attractive source of stem cells for tissue engineering as well as regenerative therapy for many medical and surgical applications.

A comparison of the yield and differentiation capacity of cells isolated from each tissue was performed to determine whether adipose tissue is a source of MSC bone marrow. De Ugarte et al., [25] found no significant difference in the number of cultured adherent cells between those of stromal cells obtained from bone marrow and those from adipose tissue. However, the average mass of adipose tissue (17 g) obtained from each patient was higher than the average mass of bone marrow (7 g). Cultured isolated cells in various differentiation media showed no difference in the number of cells developing lipid droplets (adipogenic cells), or osteogenic cell alkaline phosphatase activity. However, in terms of differentiation towards cartilage, adipose-derived cells were positively stained for chondrogenesis whereas bone marrow-derived cells were not.

Using a similar method, several other studies have compared the ability of bone marrow and adipose cells to differentiate along this lineage and demonstrated that cells from both tissues have the same capacity to become adipose, bone, and cartilage tissue [26], [27], [28]. Overall, this is the result of different culture conditions and/or isolation of different parts of MSC. Carbone et al. demonstrated that AdMSC cultured in conditioned medium from chondrocyte and osteocytes were capable of producing glycosaminoglycans and mineralized matrix, respectively [29]. These results suggest that AdMSC requires growth factor supplementation from the tissue environment in order to properly differentiate according to the mesodermic lineage. This evidence suggests that compared to bone marrow, a large number of MSCs capable of differentiating into multiple lineages can also be obtained from adipose tissue (Figure 2).

AdMSCs Precondition Concept

Therapy using MSCs is a therapy that provides hope for organ and tissue regeneration. The

![Figure 2: Adipose-derived mesenchymal stem cells: Origin, immunophenotype, morphology, and differentiation potential. Lipoaspirate can be easily obtained and processed to obtain a heterogenous cell population including stromal vascular fraction. Characterization of the cell was by mesenchymal stem cell markers (CD73, CD90, CD105) at the expense of hematopoietic stem cell markers (CD45) and their spindle-shaped morphology with their ability to differentiate into the adipogenic, osteogenic, and chondrogenic lineages. Histological staining was able to analyze the differentiation potential, Oil red O for adipogenic differentiation, Alizarin red for osteogenic differentiation, and Alcian blue for chondrogenic differentiation [30].](image-url)
conditioned medium or MSCs-EVs exert a protective effect on peripheral nerve tissue and have been shown to promote regeneration in injured tissue. However, transplanting MSCs or administering MSCs-CM or MSCs-EV requires the MSC to have the maximum regenerative capacity. Thus, it is necessary to develop a new strategy to increase the regenerative efficiency of MSCs (Figure 3). In vitro preconditioning strategies can improve the survival, engraftment, and paracrine properties of MSCs so as to optimize their reparative and regenerative capacities [4].

Hypoxic Preconditions and Hypoxia Inducible Factor (HIF)-1α

Several strategies were carried out to increase the therapeutic potential of AdMSCs by increasing the survival, grafting, and function of the implanted MSCs by conditioning the cells prior to implantation. Implantation of MSCs into nutrient-deprived and oxygen-deprived environments, such as in recipient tissue, results in extremely low cell survival [32]. Among these strategies, hypoxia preconditioning represents a comprehensive increase in regenerative gene expression in stem cell therapy. Previous studies have shown the successful application of this strategy in several diseases. Furthermore, there are significant advantages in stem cell therapy in the precondition of hypoxia [33].

Hypoxia preconditioning ensures the cells to adapt to the ischemic environment [34]. Preconditioning MSCs can be done by culturing them in a hypoxic environment, which mimics the natural tissue oxygen environment (1–7%) unlike the standard culture conditions (21%). This increases the survival of these cells via HIF-1α and through Akt-dependent mechanisms. In addition, the hypoxia preconditioning stimulates the secretion of pro-angiogenic growth factor, increases the expression of chemokines stromal cell-derived factor-1 (SDF-1) and its receptor chemokine receptor type 4 (CXCR) - CXCR7 and increases engraftment of MSCs in vivo [5], [6], [35]. Hypoxia preconditioning has also been shown to enhance the paracrine effect of MSCs and has been applied to several diseases, such as myocardial infarction and diabetes-related erectile dysfunction [36].

The in vivo oxygen concentration is about 0.4%, significantly lower than the oxygen concentration conventionally used in vitro, 21% [37]. Most stem cells die within the first 24 h in vivo, mainly due to stem cell apoptosis induced by hypoxia [3]. Research by injecting bone marrow stem cells into mice with ventricular myocardial infarction found that 99% of bone marrow stem cells died 4 days later. These results indicate that these stem cells are highly susceptible to ischemia and hypoxia [38]. Based on these results, many studies have used hypoxic state methods to improve stem cell viability. Greijer and van der Wall showed that the severity of hypoxia affects the rate of cell apoptosis versus cell survival during hypoxia. The 0.5% O₂ condition was shown to initiate apoptosis in some cells. In order to prevent the accumulation of hypoxia-induced genetic mutations, there is a balance between pro-apoptotic and anti-apoptotic factors. HIF-1α as shown in Figure 5, plays an important role in maintaining that balance [39].

Sun et al. simulated a hypoxic environment to induce hypoxic precondition in bone marrow stem cells and found that after hypoxia preconditioning, the bone marrow stem cells overexpressed HIF-1α, leading to decreased apoptosis and minimizing loss.
of mitochondrial membrane potential. These results suggest that hypoxia preconditioning has a protective effect on the survival of BM-MSCs in vivo under ischemic and hypoxic conditions. Once MSCs are exposed to the precondition of hypoxia (Figure 6), the hypoxia-induced apoptosis pathway is rapidly activated thereby inhibiting feedback from this pathway and then reducing apoptosis in subsequent ischemic and hypoxic conditions [41].

Figure 6: Hypoxia-induced signaling pathways with HIF-1α involvement. Schematic depiction of signaling pathways induced by hypoxia leading to apoptosis suggesting the involvement of HIF-1α. Solid lines represent direct interactions, dotted lines represent indirect interactions. Apaf-1: Apoptotic protease activating factor-1, BNIP3: BCL-2/adenovirus E1B 19 kDa interacting protein 3, HIF-1: Hypoxia-inducible factor 1, IAP-2: Inhibitor of apoptosis protein 2, J NK: c-jun NH2 terminal kinase, SAPK: Stress activated protein kinase [39]

HIF-1α is a subunit of a heterodimeric transcription factor HIF-1α encoded by the HIF-1α gene. It is the basic domain of the PAS helix-loop-helix-containing proteins and is considered to be the primary transcription regulator of cellular responses and cellular development responses to hypoxia. Dysregulation and overexpression of HIF-1α caused by hypoxia or genetic alteration are involved in cancer biology, a number of pathophysiology in the fields of vascularity and angiogenesis, metabolism energy, cell survival, and tumor invasion [42].

HIF-1α protein plays a major role in regulating the expression of many genes involved in angiogenesis and erythropoiesis, metabolic adaptation to hypoxia, epithelial-mesenchymal transition, extracellular matrix degradation, and chemotaxis through CXCR4 and the CXCL12/SDF-1 axis [43].

Exposure of MSCs to hypoxic conditions may enhance their immunomodulatory and regenerative properties by over-expression of cytoprotective genes and secretory factors. HIF-1α has a crucial role in upregulating these genes and factors [44]. HIF1α can promote MSC migration to ischemic and hypoxic sites by regulating the expression levels of molecules such as stromal cellderived factor1 (SDF1) in the microenvironment. Stem cells express the SDF1 receptor C-XC CXCR4 and CXCR7, and serve a key role in tissue repair [45].

Hypoxia activates the hypoxia signaling pathway, which is largely regulated by HIF stabilization (Figure 7). Under normoxic conditions, the proline residues from the HIF-1α subunit is hydroxylated by oxygen-dependent prolyl-4-hydroxylase (PHD). The Von Hippel-Lindau protein (pVHL), a ubiquitin E3 ligase, binds to the hydroxylated HIF-α and acts as a substrate recognition component of the ubiquitin E3 ligase complex, leading to proteosomal degradation of the HIF protein. Asparagine residue from the HIF-α subunit is also hydroxylated by...
factor inhibiting HIF (FIH), which inhibits the binding of HIF to the p300/CREB binding protein co-activator [46].

In a hypoxic state, PHD and FIH activity are suppressed, and the HIF-α subunit translocates into the nucleus to bind to HIF-1β. The heterodimeric complex of transcription factor HIF-1α: HIF-1β then looks for hypoxia-responsive elements of its target genes, which results in transcriptional upregulation (Figure 8). There are other HIF-independent signaling pathways that are activated under hypoxia, such as the factor-κB (NF-κB) pathway. Early studies reported that IκBα is phosphorylated during hypoxia and this results in degradation of IκBα and activation of NF-κB1. Other studies have shown that IκB kinase activity is increased via calcium/calmodulin-dependent kinase 2 (calcium/calmodulin-dependent kinase 2) during hypoxia and required kinase 1 activated by TGF-β [47].

(Nobel Prize in Physiology or Medicine 2019: How Cells Sense and Adapt to Oxygen Availability).

Hypoxia can cause tissue inflammation and HIF stabilization can reduce tissue inflammation and promote its repair. HIF elicits a variety of adaptive responses, particularly focusing on enhancing the transcription cascade which is important for tissue protection and adaptation. HIF-1α (HIF1A) is known to be associated with the upregulation of glycolytic gene such as phosphoglycerate kinase (CKD) and lactate dehydrogenase A, both of which function metabolically to adapt tissues to oxygen uptake and anaerobic ATP synthesis. HIF-2α (HIF2A) induces erythropoietin and VEGF, which are important for increasing oxygen supply to hypoxic areas [48].

The secretion of several cytokines associated with neuroprotective and vascular protection was significantly increased from MSCs after hypoxic conditions, namely VEGF, bFGF, BDNF, and GDNF [30]. Hypoxia was reported to increase the angiogenic and mitogenic paracrine activity of AdMSCs. Hypoxia (0.5–2% O2) significantly increases VEGF, HGF, bFGF, IL-6, angiogenin, NGF, IGFBP-1, IGFBP-2, and the PDGF-b receptors. In contrast, EGF and anti-angiogenic factors are inhibited by hypoxic condition. The increased paracrine factors improve survival, homing, and angiogenesis, which increases the regenerative potential of AdMSCs after transplantation [9], [49].

![Nobel Prize in Physiology or Medicine 2019: How Cells Sense and Adapt to Oxygen Availability](https://oamjms.eu/index.php/mjms/index)

Figure 8: Hypoxia-inducible factor (HIF)-1α in Normoxia and Hypoxia State. Under normoxic conditions, HIF-1α is hydroxylated at two proline residues. The protein is then combined with VHL and then tagged with ubiquitin. After the ubiquitination process, it is transferred to the proteasome which is then undergone degradation. Under hypoxic conditions, no oxygen is available for the hydroxylation of proline. In this situation HIF-1α translocates to the cell nucleus (nucleus) and combines with HIF-1β, also called aryl hydrocarbon receptor nuclear translocator. This complex then binds to a region of DNA called the hypoxia-responsive element, which causes the target gene to be transcribed. This gene is involved in the regulation of many processes, including erythropoiesis, glycolysis, and angiogenesis.
Flowcytometric analysis showed that the stem cell phenotype of adipose derivatives was not significantly affected by hypoxic conditions for 24 h. Hypoxic conditions can cause MSCs to remain undifferentiated for a certain period of time [50]. Several research reports indicate the existence of hypoxia-induced differentiation of MSCs, however, to grow MSCs in a hypoxic state and in differentiation condition it takes a longer time (can be more than 2 weeks). After transplantation, MSCs in the precondition of hypoxic state significantly reduced vascular and nerve damage compared with MSCs in the normoxic state [33].

In addition to the paracrine effect, AdMSCs have been shown to have the potential to differentiate into a wider range of cell types including endothelial cells, smooth muscle cells, Schwann cells, and neuron cells [51]. Engraftment and pluripotency of transplanted stem cells can contribute to the regeneration of blood vessels and nerves. Hypoxia preconditioning can increase the involvement and viability of MSCs in the host tissue (Figure 9). At 4 weeks after transplantation, the in situ differentiation of the transplanted cells was also analyzed by staining the tissue sections with vascular markers (CD31 and α-SMA). It can be concluded that hypoxic pretreatment increases the binding of AdMSCs to the tissue [36], [52].

Several studies have shown that hypoxic or anoxic preconditions substantially increase the regenerative potential of MSCs (Figure 10). Exposure to reduced partial oxygen pressure to MSCs induces expression of genes involved in migration and homing (e.g. CXCR4 and SDF-1), regulated mainly by the activity of HIF-1α [58]. In addition, MSCs culture in a hypoxic environment resembles the presence of actual MSCs in situ than in the standard ‘artificial’ (21% O2) culture conditions. Cellular response to hypoxia in vitro varies at different oxygen concentrations; 0.1–5% O2 [4], 1–7% O2 [5], [6], 1% O2 [33], [59], 0.5–2% O2 [49].

Figure 9: Functional change of AdMSCs in hypoxic state. Hypoxia induces the proliferation, migration, and secretion of growth factor AdMSCs in vitro. Hypoxia preconditioning increases the regenerative potential of AdMSCs in vivo. In addition, hypoxia regulates the differentiation of AdMSCs in an oxygen concentration-dependent manner [49].

Table 1: Cellular Response of AdMSCs

O2 level	Altered functions	Reference
0.1%	Increased cell death	Dalpiaz et al., 2008
0.1%	Increased ROS level and enhanced paracrine effect	De Boer et al., 2013
1%	Increased growth factor secretion	Bhattacharya et al., 2005, Li et al., 2013
Increased proliferation, survival, and reduced aging	Harlow et al., 2010	
Differentiation arrest and maintained undifferentiation state	Li et al., 2010	
Increased proliferation, cell cycle inhibition	Rigaud et al., 2006	
Upregulation of hypoxia sensors	Pociot et al., 2006	
Increased expression of proangiogenic factors and decreased expression of proatherogenic factors	Pociot et al., 2006	
Increased growth factor secretion	Lee et al., 2008, Arora et al., 2008, Pociot et al., 2008	
Increased migration potential	Arora et al., 2008	
Increase proliferation and differentiation	Saiki et al., 2005	
Increased proliferation and decreased differentiation	Nam et al., 2011	
Decreased apoptosis and DNA degradation	Narita et al., 2012	
Increased adhesion and migration	Watanabe et al., 2007	
5%	Increased chemotaxis	Khan et al., 2005, Unger et al., 2012, Boutet et al., 2012
Increased chemotaxis, but decreased differentiation	Meller et al., 2013	
Increased survival and enhanced paracrine effect	Quiles et al., 2008	
Increased proliferation and cell survival	Kim et al., 2009	

Figure 10: Signaling pathways and molecular changes in a hypoxic state. Hypoxia induces ROS formation primarily by NADPH oxidase. Acute increase in cellular ROS levels induces PDGFR-β activation and results in phosphorylation of Akt and ERK1/2. Activation of this signaling pathway induces expression of miR-210 via phosphorylation of NF-kB and Erk1/2; elevated miR-210 levels downregulate PTPN2 and ISCU2, thereby increasing the proliferation and migration of AdMSCs. On the other hand, inhibition of proline hydroxylase under hypoxic states stabilizes HIF-1α, which modulates angiogenic growth factor transcription after binding to hypoxia-responsive elements in the nucleus [49].
Hypoxia preconditioning in vitro has been shown to stimulate the secretion of growth factors, cytokines and other proteins, and the release of extracellular vesicles (exosomes and microvesicles) from MSCs [60]. Extracellular vesicles also carry various biomolecules such as growth factors, receptors, enzymes, transcription factors, signaling and immunomodulatory molecules, DNA, RNA transcripts, and non-coding RNA transcript including retrotransposons, vault RNA, long non-coding RNA, and long non-coding microRNA [61], [62].

Hypoxic preconditions have also been shown to increase survival and cell proliferation [63], [64], [65]. Pre-incubation of hypoxic MSCs induces metabolic changes resulting in higher in vivo cell survival after transplantation [63]. This suggests that culture in a hypoxic state increases the angiogenic potential of MSCs and improves their survival in both in vitro and in vivo studies [63], [64]. The signaling pathway involved translocation of HIF-1α to the nucleus by activation of gene expression (e.g. VEGF), as well as the formation of ROS and phosphorylation of Akt - MAPK ERK1/2 (Figure 11) [66].

![Figure 11: Axon-Schwann cell interactions and some of the molecules involved [66]](image)

References

1. Zhang R, Rosen JM. The role of undifferentiated adipose-derived stem cells in peripheral nerve repair. Neural Regen Res. 2018;13(5):757-63. https://doi.org/10.4103/1673-5374.232457 PMid:29862994

2. Mazini L, Rochette L, Amine M, Malka G. Regenerative capacity of adipose derived stem cells (ADSCs), comparison with mesenchymal stem cells (MSCs). Int J Mol Sci. 2019;20(10):2523. https://doi.org/10.3390/ijms20102523 PMid:31121953

3. Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation. 2002;105(1):93-8. https://doi.org/10.1161/hc0102.101442 PMid:11772882

4. Schäfer R, Spohn G, Baer PC. Mesenchymal stem/stromal cells in regenerative medicine: Can preconditioning strategies improve therapeutic efficacy? Transfus Med Hemother. 2016;43(4):256-67. https://doi.org/10.1159/000447458 PMid:27721701

5. Hu X, Yu SP, Fraser JL, Lu Z, Ogle ME, Wang JA, et al. Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis. J Thorac Cardiovasc Surg. 2008;135(4):799-808. https://doi.org/10.1016/j.jtcs.2007.07.071 PMid:18374759

6. Hunger S, Pochampally RR, Hsu S, Sanchez C, Chen SC, Spees J, et al. Short-term exposure of multipotent stromal cells to low oxygen increases their expression of CX3CR1 and CXCR4 and their engraftment in vivo. PLoS One. 2007;5:e416. https://doi.org/10.1371/journal.pone.0000416 PMid:17476338

7. Horwitz EM, Le Blanc K, Dominici M, Mueller I, Slaport-Cortenbach I, Marini FC, et al. Clarification of the nomenclature for MSC: The international society for cellular therapy position statement. Cytotherapy. 2005;7(5):393-5. https://doi.org/10.1080/14653240500319234 PMid:16236628

8. Jacobs SA, Pinxteren J, Roobrouck VD, Luyckx A, van’t Hof W, Deans R, et al. Human multipotent adult progenitor cells are nonimmunogenic and exert potent immunomodulatory effects on alloreactive T-cell responses. Cell Transplant. 2013;22(10):1915-28. https://doi.org/10.3727/096368912x657369 PMid:23031260

9. Tsuji W, Rubin JP, Marra KG. Adipose-derived stem cells: Implications in tissue regeneration. World J Stem Cells. 2014;6(3):312-21. https://doi.org/10.4252/wjsc.v6.i3.312 PMid:25126381

512
10. Meng F, Zhou D, Li W. Adipose-derived stem cells as a potential weapon for diabetic foot ulcers. Int J Clin Exp Med. 2017;10(12):15967-73.

11. Lee HC, An SG, Lee HW, Park JS, Cha KS, Hong TJ, et al. Safety and effect of adipose tissue-derived stem cell implantation in patients with critical limb ischemia: A pilot study. Circ J. 2012;76:1750-60. https://doi.org/10.1253/circj.cj-11-1135 PMid:22498564

12. Porada C, Zanjanii E, Almeida-Porada G. Adult mesenchymal stem cells: A pluripotent population with multiple applications. Curr Stem Cell Res Ther. 2012;1(3):365-9. https://doi.org/10.2174/157488806787226821 PMid:18220880

13. Zuk P. Adipose-derived stem cells in tissue regeneration: A review. ISRN Stem Cells. 2013;2013(1):1-35. https://doi.org/10.1155/2013/713959

14. Casadei A, Epis R, Ferroni L, Tocco I, Gardin C, Bressan E, et al. Adipose tissue regeneration: A state of the art. J Biomed Biotechnol. 2012;2012:462543. https://doi.org/10.1155/2012/462543 PMid:23193362

15. Fairbairn NG, Meppelink AM, Ng-Glazier J, Randolph MA, de las Heras L, Wahlborn C, et al. Hypoxia preconditioning of hypoxic culture increases the therapeutic potential of adipose derived mesenchymal stem cells in vivo. J Biomed Biotechnol. 2012;2012:15748880678726821. https://doi.org/10.1155/2012/157488806787226821. PMid:22498564

16. Kingham PJ, Novikova LN, Novikov LN, Wiberg M. Adipose-derived stem cells differentiate in vivo and in vitro. Part B Rev. 2012;18(2):101-15. https://doi.org/10.1089/ten.teb.2011.0488 PMid:21995703

17. Kim YJ, Kim HK, Cho HK, Bae YC, Suh KT, Jung JS. Direct comparison of human mesenchymal stem cells derived from adipose tissue and bone marrow in mediating neovascularization in response to vascular ischemia. Cell Physiol Biochem. 2007;20(6):867-76. https://doi.org/10.1159/000110447 PMid:17982269

18. Caput SK, Katz AJ. Review of the adipose derived stem cell secretome. Biochimie. 2013;95(12):2222-8. https://doi.org/10.1016/j.bioch.2013.06.001 PMid:23770442

19. Kingham PJ, Kolm M, Novikova LN, Novikov LN, Wiberg M. Stimulating the neurotrophic and angiogenic properties of human adipose-derived stem cells enhances nerve repair. Stem Cells Dev. 2013;23(7):741-54. https://doi.org/10.1089/scd.2013.0396. PMid:24124760

20. Zuk P. Adipose-derived stem cells in tissue regeneration: A review. ISRN Stem Cells. 2013;2013(1):1-35. https://doi.org/10.1155/2013/713959

21. Kingham PJ, Kolm M, Novikova LN, Novikov LN, Wiberg M. Stimulating the neurotrophic and angiogenic properties of human adipose-derived stem cells enhances nerve repair. Stem Cells Dev. 2013;23(7):741-54. https://doi.org/10.1089/scd.2013.0396 PMid:24124760

22. Kingham PJ, Kolm M, Novikova LN, Novikov LN, Wiberg M. Stimulating the neurotrophic and angiogenic properties of human adipose-derived stem cells enhances nerve repair. Stem Cells Dev. 2013;23(7):741-54. https://doi.org/10.1089/scd.2013.0396 PMid:24124760

23. Chandra V, Swetha G, Muthyalala S, Jaiswal AK, Bellare JR, Nair PD, et al. Islet-like cell aggregates generated from human adipose tissue derived stem cells ameliorate experimental diabetes in mice. PLoS One. 2011;6(6):e20615. https://doi.org/10.1371/journal.pone.0020615 PMid:21687371

24. Banas A, Teratani T, Yamamoto Y, Tokuhara M, Takeshita F. Rapid hepatic fate specification of adipose-derived stem cells and their therapeutic potential for liver failure. J Gastroenterol Hepatol. 2009;24(1):70-7. https://doi.org/10.1111/j.1440-1746.2008.05496.x PMid:18624899

25. De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M, et al. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs. 2003;174(3):101-9. https://doi.org/10.1159/000071150 PMid:12835573

26. Kern S, Eichler H, Stoever J, Küster H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24(5):1294-301. https://doi.org/10.1634/stemcells.2005-0342 PMid:16410387

27. Wagner W, Wein F, Seckinger A, Frankhauser M, Winkler U, Krause U, et al. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol. 2005;33(11):1402-16. https://doi.org/10.1016/j.exphem.2005.07.003 PMid:16263424

28. Heo JS, Choi Y, Kim HS, Kim HO. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue. Int J Mol Med. 2016;37(1):115-25. https://doi.org/10.3892/ijmm.2015.2413 PMid:26719857

29. Carbino A, Rucci M, Luigi A, Portincasa A, Conese M. Adipose-derived stem cells and platelet-rich plasma: Inputs for regenerative medicine. Med Res Arch. 2017;5(10):1-12.

30. Oberbauer E, Steffenhagen C, Wurzer C, Gabriel C, Redl H, Wolkbank S. Enzymatic and non-enzymatic isolation systems for adipose tissue-derived cells: Current state of the art. Cell Regen. 2015;4:7. https://doi.org/10.1186/s13619-015-0020-0 PMid:26435835

31. Baldari S, di Rocco G, Piccoli M, Muraca M, Toietta G. Challenges and strategies for improving the regenerative effects of mesenchymal stromal cell-based therapies. Int J Mol Sci. 2017;18(10):2087. https://doi.org/10.3390/ijms18102087 PMid:28974046

32. Doorn J, Moll G, Le Blanc K, van Blitterswijk C, de Boer PB. Therapeutic applications of mesenchymal stromal cells: Paracrine effects and potential improvements. Tissue Eng Part B Rev. 2012;18(2):101-15. https://doi.org/10.1089/ten.teb.2011.0488 PMid:21995703

33. Wang X, Liu C, Li S, Xu Y, Chen P, Liu Y, et al. Hypoxia precondition promotes adipose-derived mesenchymal stem cells based repair of diabetic erectile dysfunction via augmenting angiogenesis and neuroprotection. PLoS One. 2015;10(3):e0118951. https://doi.org/10.1371/journal.pone.0118951 PMid:25790284

34. Sart S, Ma T, Li Y. Preconditioning stem cells for in vivo delivery. Bioreactors. 2014;3(4):137-49. PMid:25126478

35. Guo M, Cai C, Zhao G, Qiu X, Zhao H, Ma Q, et al. Hypoxia promotes migration and induces CXCR4 expression via HIF-1α activation in human osteosarcoma. PLoS One. 2014;9(3):e90518. https://doi.org/10.1371/journal.pone.0090518 PMid:24618817
36. Wei L, Fraser JL, Lu Z, Hu X, Ping S. Transplantation of hypoxia preconditioned bone marrow mesenchymal stem cells enhances angiogenesis and neurogenesis after cerebral ischemia in rats. Neurobiol Dis. 2012;46(3):635-45. https://doi.org/10.1016/j.nbd.2012.03.002
PMid:22426403

37. Lennon DP, Edmison JM, Caplan AI. Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen tension: Effects on in vitro and in vivo osteochondrogenesis. J Cell Physiol. 2001;187(3):345-55. https://doi.org/10.1002/jcp.1081
PMid:11319758

38. Geng YJ. Molecular mechanisms for cardiovascular stem cell apoptosis and growth in the hearts with atherosclerotic coronary disease and ischemic heart failure. Ann NY Acad Sci. 2003;1010:687-97. https://doi.org/10.1196/annals.1299.126
PMid:15033813

39. Greijer AE, van der Wall E. The role of hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosis. J Clin Pathol. 2004;57(10):1009-14. https://doi.org/10.1136/jcp.2003.015032
PMid:15452150

40. Martin AR, Ronco C, Demange L, Benhida R. Hypoxia inducible factor down-regulation, cancer and cancer stem cells (CSCs): Ongoing success stories. MedChemComm. 2017;8(1):21-52. https://doi.org/10.1039/c6md00432f
PMid:30108689

41. Sun X, Fang B, Zhao X, Zhang G, Ma H. Preconditioning of mesenchymal stem cells by sevoflurane to improve their therapeutic potential. PLoS One. 2014;9(3):e90667. https://doi.org/10.1371/journal.pone.0090667
PMid:24599264

42. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3(10):721-32.
PMid:13130303

43. Romain B, Hachet-Haas M, Rohr S, Brigand C, Galzi JL, Gaub MP, et al. Hypoxia differentially regulated CXCR4 and CXCR7 signaling in colon cancer. Mol Cancer. 2014;13:58. https://doi.org/10.1186/1476-4598-13-58
PMid:24629239

44. Abdolmohammadi K, Mahmoudi T, Nojejdehi S, Tayebi L, Hashemi SM, Noorbakhsh F, et al. Effect of hypoxia preconditioned adipose-derived mesenchymal stem cell conditioned medium on cerulein-induced acute pancreatitis in vivo. Adv Pharm Bull. 2020;10(2):297-306. https://doi.org/10.34172/apb.2020.036
PMid:32373500

45. Xue Y, Li Z, Wang Y, Zhu X, Hu R, Xu W. Role of the HIF-1 α/ SDF1/CXCR4 signaling axis in accelerated fracture healing after cranio-cerebral injury. Mol Med Rep. 2020;22(16):2767-74. https://doi.org/10.3892/mmr.2020.11361
PMid:32945380

46. Lee JW, Ko J. Hypoxia signaling in human diseases and therapeutic targets. Exp Mol Med. 2019;51(6):1-13. https://doi.org/10.1038/s41321-019-0281-0
PMid:31221962

47. Culver C, Sundqvist A, Mudie S, Koolwijk P, Gibbs S, Koolwijk P. The influence of hypoxia and fibrinogen variants on the expansion and differentiation of adipose tissue-derived mesenchymal stem cells. Tissue Eng Part A. 2015;18(21-22):2675-85. https://doi.org/10.1089/teng.2014.10880
PMid:24125612

48. Yang J, Zhang H, Zhao L, Chen Y, Liu H, Zhang T. Human adipose tissue-derived stem cells protect impaired cardiomyocytes from hypoxia/reoxygenation injury through hypoxia-induced paracrine mechanism. Cell Biochem Funct. 2012;30(6):505-14. https://doi.org/10.1002/cbf.2829
PMid:22610511

49. Weijsers EM, van den Broek LJ, Waaijman T, van Hinsbergh VW, Gibbs S, Koolwijk P. The influence of hypoxia and fibrinogen variants on the expansion and differentiation of adipose tissue-derived mesenchymal stem cells. Tissue Eng Part A. 2014;17(21-22):2675-85. https://doi.org/10.1089/ten.tea.2014.0661
PMid:24125612

50. Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med. 2004;10(8):858-64. https://doi.org/10.1038/nm1075
PMid:15233597

51. Rotondo M, Biancone L, Fornari S, Baldini N. Hypoxia enhances proliferation and stemness of human adipose-derived mesenchymal stem cells. Cell Biochem Funct. 2015;33(6):1074-84. https://doi.org/10.1002/cbf.3159
PMid:22181007

52. Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med. 2004;10(8):858-64. https://doi.org/10.1038/nm1075
PMid:15233597

53. Fotia C, Massa A, Boriani F, Baldini N. Hypoxia enhances proliferation and stemness of human adipose-derived mesenchymal stem cells. Cell Biochem Funct. 2015;33(6):1074-84. https://doi.org/10.1002/cbf.3159
PMid:22181007

54. Weiss E, van den Broek LJ, Waaijman T, van Hinsbergh VW, Gibbs S, Koolwijk P. The influence of hypoxia and fibrinogen variants on the expansion and differentiation of adipose tissue-derived mesenchymal stem cells. Tissue Eng Part A. 2014;17(21-22):2675-85. https://doi.org/10.1089/ten.tea.2014.0661
PMid:24125612

55. Fotia C, Massa A, Boriani F, Baldini N. Hypoxia enhances proliferation and stemness of human adipose-derived mesenchymal stem cells. Cell Biochem Funct. 2015;33(6):1074-84. https://doi.org/10.1002/cbf.3159
PMid:22181007

56. Fotia C, Massa A, Boriani F, Baldini N. Hypoxia enhances proliferation and stemness of human adipose-derived mesenchymal stem cells. Cell Biochem Funct. 2015;33(6):1074-84. https://doi.org/10.1002/cbf.3159
PMid:22181007

57. Fotia C, Massa A, Boriani F, Baldini N. Hypoxia enhances proliferation and stemness of human adipose-derived mesenchymal stem cells. Cell Biochem Funct. 2015;33(6):1074-84. https://doi.org/10.1002/cbf.3159
PMid:22181007

58. Fotia C, Massa A, Boriani F, Baldini N. Hypoxia enhances proliferation and stemness of human adipose-derived mesenchymal stem cells. Cell Biochem Funct. 2015;33(6):1074-84. https://doi.org/10.1002/cbf.3159
PMid:22181007

59. Fotia C, Massa A, Boriani F, Baldini N. Hypoxia enhances proliferation and stemness of human adipose-derived mesenchymal stem cells. Cell Biochem Funct. 2015;33(6):1074-84. https://doi.org/10.1002/cbf.3159
PMid:22181007

60. Fotia C, Massa A, Boriani F, Baldini N. Hypoxia enhances proliferation and stemness of human adipose-derived mesenchymal stem cells. Cell Biochem Funct. 2015;33(6):1074-84. https://doi.org/10.1002/cbf.3159
PMid:22181007
61. Chistiakov DA, Chekhonin VP. Extracellular vesicles shed by glioma cells: Pathogenic role and clinical value. Tumour Biol. 2014;35(9):8425-38. https://doi.org/10.1007/s13277-014-2262-9 PMid:24969563

62. Quesenberry PJ, Goldberg LR, Aliotta JM, Dooner MS, Pereira MG, Wen S, et al. Cellular phenotype and extracellular vesicles: Basic and clinical considerations. Stem Cells Dev. 2014;23(13):1429-36. https://doi.org/10.1089/scd.2013.0594 PMid:24564699

63. Beegle J, Lakatos K, Kalomoiris S, Stewart H, Isseroff RR, Nolta JA, et al. Hypoxic preconditioning of mesenchymal stromal cells induces metabolic changes, enhances survival, and promotes cell retention in vivo. Stem Cells. 2015;33:1818-28. https://doi.org/10.1002/stem.1976 PMid:25702874

64. Stubbs SL, Hsiao ST, Peshavariya HM, Lim SY, Dusting GJ, Dilley RJ. Hypoxic preconditioning enhances survival of human adipose-derived stem cells and conditions endothelial cells in vitro. Stem Cells Dev. 2012;21(11):1887-96. https://doi.org/10.1089/scd.2011.0289 PMid:22165914

65. Zhang W, Liu L, Huo Y, Yang Y, Wang Y. Hypoxia-pretreated human MSCs attenuate acute kidney injury through enhanced angiogenic and antioxidative capacities. Biomed Res Int. 2014;2014:462472. https://doi.org/10.1155/2014/462472 PMid:25133162

66. Wang L, Sanford MT, Xin Z, Lin G, Lue TF. Role of schwann cells in the regeneration of penile and peripheral nerves. Asian J Androl. 2015;17(5):776-82. https://doi.org/10.4103/1008-682x.154306 PMid:25999369