Case Report

Severe pneumonia leading to death in an achondroplasic infant: a rare case report

Mankiran K. Matharoo*, Gursharn S. Narang

Department of Pediatrics, Sri Guru Ram Das Institute of Medical Sciences and Research, Amritsar, Punjab, India

Received: 21 December 2017
Accepted: 25 January 2018

*Correspondence:
Dr. Mankiran K. Matharoo,
E-mail: dr.mankirankaur@gmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Abstract: This report concerns a 9-month-old male with achondroplasia presenting with severe respiratory distress having history of frequent respiratory infections, developmental delay and failure to thrive. Child had septicemia and ended up in multiorgan failure, ultimately leading to death due to cardiopulmonary arrest.

Keywords: Achondroplasia, Mortality, Multiorgan failure, Severe pneumonia

INTRODUCTION

Achondroplasia is the best described and most common form of the congenital short-limbed dwarfing. This disorder is characterized by frontal bossing, midface hypoplasia, otolaryngeal system dysfunction, and rhizomelic short stature.1 Achondroplasia is apparent at birth and has a birth prevalence of 1 in 20000-30000 live-born infants. It is inherited as an autosomal dominant condition, although 80% of cases occur sporadically as new events in their families. Achondroplasia is caused, in virtually all of the cases, by a G380R mutation in fibroblast growth factor receptor 3 (FGFR3).2 Being at risk for a variety of respiratory problems, increased frequency of airway malacia in infants and young children with achondroplasia is well known.3

CASE REPORT

A 9-month-old boy with achondroplasia reported to the Paediatric Emergency, SGRDIM&SAR with complaints of fever and cough for 1 week and regurgitation of feeds following an apneic episode which was followed by respiratory distress requiring assisted ventilation. Child presented with history of frequent chest infections since birth. He was born at term with birth weight of 2 kg to gravida 2nd mother with both parents being achondroplastic, and elder 5-year-old normal female sibling. History of delayed milestones and failure to thrive was also present.

At presentation, on examination heart rate was 168/minute, respiratory rates of 58/minute, temperature of 105°F was recorded. Pallor was evident. All anthropometric parameters being less than 3rd percentile on growth charts for achondroplastics, rhizomelic shortening of limbs, saddle nose and prominent frontal bossing was present with large bulging anterior fontanel. Severe respiratory distress was present with tachypnea and marked retractions. Hepatomegaly with liver span of 7 cm was present.

Hemoglobin was 8.5 gm/dl on presentation, sequentially decreased to 5.8 gm/dl corrected to 12.5 with blood transfusions with leukocytosis of 18,200 and neutrophilia. Platelet count remained normal throughout. Liver function tests were deranged with SGOT of 88 and SGPT 28 on day 1, increased to 228 and 997 respectively and serum bilirubin rising to total of 3.8 and direct fraction 1.6 in a span of 2 days and ultimately TSB/DSB of
Child was managed with immediate intubation, fluid resuscitation followed by inotropic support and IV antibiotics.

Child was managed on lines of septicemia. Blood transfusions given in view of decreased hemoglobin. Ventilatory setting were increased as per clinical and blood gas deterioration. Despite adequate efforts child landed in cardiopulmonary arrest after 6 days of hospital stay and was declared dead.

DISCUSSION

With frequent respiratory infections being common, respiratory difficulties and breathing disorders in achondroplasia are thought to underlie the increased risk for sudden infant death and neuropsychological deficits seen in this condition. Respiratory failure due to small thoracic volumes is also reported. Mortality rate at all ages was 2.27 (CI: 1.7-3.0) with age-specific mortality increased at all ages. Despite earlier recognition and treatment of respiratory complications of achondroplasia, increased mortality rates and other complications remain high. Prenatal testing for pregnancies at increased risk is possible once the pathogenic variant has been identified in the family. In individuals in whom there is diagnostic uncertainty or atypical findings, molecular genetic testing can be used to detect a pathogenic variant in FGFR3, the only gene known to be associated with achondroplasia.

Future and ongoing evaluation of the prevalence and impact of respiratory disorders in achondroplasia are recommended.

CONCLUSION

Monitoring of height, weight, and head circumference in childhood using growth curves standardized for achondroplasia; evaluation of developmental milestones throughout infancy and childhood; baseline CT scan of the brain in infancy; monitor for signs and symptoms of sleep apnea; monitor for middle ear problems or evidence of hearing loss in childhood; clinical assessment for kyphosis and bowed legs, with radiographic evaluation is necessary. Since respiratory infections are common in these patients prevention and appropriate care should be taken to avoid these, as even early recognition may also have a poor prognosis.

Funding: No funding sources

Conflict of interest: None declared

Ethical approval: Not required

REFERENCES

1. Trotter TL, Hall JG. Health supervision for children with achondroplasia. Pediatr. 2005;116(3):771-83.
2. Liu J, Tang X, Cheng J, Wang L, Yang X. Analysis of the clinical and molecular characteristics of a child with achondroplasia: a rare case report. Exp Ther Med. 2015;1763-67.
3. Horton WA, Hecht JT. Disorders involving transmembrane receptors. In: Kliegman RM, Stanton BF, St Genes JW, Behrman RE, Schor NF. Nelson Textook of Paediatrics. First South Asia Edition. New Delhi: Elsevier; 2016;3:3370-72.
4. Afsaharpaian S, Saburi A, Waters KA. Respiratory difficulties and breathing disorders in achondroplasia. Paediatr Respir Rev. 2013;14(4):250-5.

5. Pauli RM, Scott CI, Wassman ER, Gilbert EF, Leavitt LA, Ver Hoeve J, et al. Apnea and sudden unexpected death in infants with achondroplasia. J Pediatr. 1984;104(3):342-8.

6. Sisk EA, Heatley DG, Borowski BJ, Leverson GE, Pauli RM. Obstructive sleep apnea in children with achondroplasia: surgical and anesthetic considerations. Otolaryngol Head Neck Surg. 1999;120(2):248-54.

7. Modaff P, Horton V, Pauli RM. Errors in the prenatal diagnosis of children with achondroplasia. Prenatal Diag. 1996;16(6):525-30.

8. Hecht JT, Bodensteiner JB, Butler JJ. Neurologic manifestations of achondroplasia. Handbook of Clinical Neurology. 2014;119:551-63.

9. Colvin JS, Bohne BA, Harding GW, McEwen DG, Ornitz DM. Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nature Genetics. 1996;12(4):390-7.

10. Ireland PJ, Pacey V, Zankl A, Edwards P, Johnston LM, Savarirayan R. Optimal management of complications associated with achondroplasia. App Clin Genetics. 2014;7:117.

Cite this article as: Matharoo MK, Narang GS. Severe pneumonia leading to death in an achondroplastic infant: a rare case report. Int J Contemp Pediatr 2018;5:681-3.