ON A FUNCTION INVOLVING GENERALIZED COMPLETE
\((p, q)\)-ELLIPTIC INTEGRALS

BARKAT ALI BHAYO AND LI YIN

Abstract. Motivated by the work of Alzer and Richards \cite{3}, here authors study
the monotonicity and convexity properties of the function
\[
\Delta_{p,q}(r) = \frac{E_{p,q} - (r')^p K_{p,q}}{r^p} - \frac{E_{p,q} - r^p K_{p,q}}{(r')^p},
\]
where \(K_{p,q}\) and \(E_{p,q}\) denote the complete \((p, q)\)-elliptic integrals of the first and
second kind, respectively.

2010 Mathematics Subject Classification: 33C99, 33B99

Keywords and phrases: inequalities, \((p, q)\)-elliptic integrals, hypergeometric
function, monotonicity, convexity.

1. INTRODUCTION

For \(0 < r < 1\) and \(r' = \sqrt{1 - r^2}\), the Legendre’s complete elliptic integrals of the
first and the second kind are defined by

\[
\begin{align*}
\mathcal{K} &= \mathcal{K}(r) = \int_0^{\pi/2} \frac{dt}{\sqrt{1 - r^2 \sin(t)^2}} = \int_0^1 \frac{dt}{\sqrt{(1 - t^2)(1 - r^2 t^2)}}, \\
\mathcal{E} &= \mathcal{E}(r) = \int_0^{\pi/2} \sqrt{1 - r^2 \sin(t)^2} dt = \int_0^1 \frac{dt}{\sqrt{1 - r^2 t^2}}, \\
\end{align*}
\]

\[
\begin{align*}
\mathcal{K}(0) = \frac{\pi}{2} = \mathcal{E}(0), \quad \mathcal{K}(1) = \infty, \quad \mathcal{E}(1) = 0, \\
\mathcal{K}' = \mathcal{K}'(r) = \mathcal{K}(r') \quad \text{and} \quad \mathcal{E}' = \mathcal{E}'(r) = \mathcal{E}(r'),
\end{align*}
\]

respectively. These integrals have played very crucial role in many branches of math-
ematics, for example, they helps us to find the length of curves and to express the
solution of differential equations. The elliptic integrals of the first and the second
kind have been extensive interest of the research for several authors, and many results
have been established about these integrals in the literature For the monotonicity,
convexity properties, asymptotic approximations, functional inequalities of these in-
tegrals and their relations with elementary functions, we refer the reader to see e.g.
\cite{5, Chapter 3} and the references therein.

The second author was supported by NSFC11401041, PhD research capital of Binzhou University under grant 2013Y02, Science and Project of Shandong Province under grant J14li54 and by the Science Foundation of Binzhou University under grantBZXYL1401
The Gaussian hypergeometric function is defined by
\begin{equation}
F(a, b; c; z) = 2F_1(a, b; c; z) = \sum_{n \geq 0} \frac{(a, n)(b, n)}{(c, n)} \frac{z^n}{n!}, \quad |z| < 1.
\end{equation}

Here \((a, 0) = 1\) for \(a \neq 0\), and \((a, n)\) is the Pochhammer symbol \((a, n) = a(a+1) \cdots (a+n-1)\), for \(n \in \mathbb{N}\). The Gaussian hypergeometric function can be represented in the integral form as follows,
\begin{equation}
F(a, b; c; z) = \frac{\Gamma(c)}{\Gamma(b)(c-b)} \int_0^1 t^{b-1}(1-t)^{c-b-1}(1-zt)^{-a} dt,
\end{equation}
\(\text{Re}(c) > \text{Re}(a) > 0, |\arg(1-z)| < \pi\), see \([1]\).

For \(|s| < 1/2\) and \(1 \leq |r| < 1\), the complete elliptic integrals of the first and the second kind were slightly generalized by Borwein and Borwein \([12]\) as follows:
\begin{align*}
K_s(r) &= F\left(\frac{1}{2} - s, \frac{1}{2} + s; 1; r^2\right), \\
E_s(r) &= F\left(-\frac{1}{2} - s, \frac{1}{2} + s; 1; r^2\right).
\end{align*}

Note that \(K_0(r) = K(r)\) and \(E_0(r) = E(r)\).

In order to define the generalized complete \((p, q)\)-elliptic integrals of the first and the second kind, we need to define the generalized sine function.

The eigenfunction \(\sin_{p,q}\) of the so-called one-dimensional \((p, q)\)-Laplacian problem \([16]\)
\[-\Delta_{p,q}u = -(|u'|^{p-2} u')' = \lambda |u|^{q-2} u, u(0) = u(1) = 0, \quad p, q > 1,\]
is known as the generalized sine function with two parameters \(p, q > 1\) in the literature (see, \([9, 10, 14, 17, 21, 22, 23, 24]\)), and defined as the inverse function of
\[\text{arcsin}_{p,q}(x) = \int_0^x (1 - t^p)^{-\frac{1}{p}} dt, \quad 0 < x < 1.\]

Also the generalized \(\pi\) is defined as
\[
\pi_{p,q} = 2\text{arcsin}_{p,q}(1) = \frac{2}{q} B\left(1 - \frac{1}{p}, \frac{1}{q}\right),
\]
which is the generalized version of the celebrated formula of \(\pi\) proved by Salamin \([19]\) and Brent \([13]\) in 1976. Here \(B(., .)\) denotes the classical beta function.

For all \(p, q \in (1, \infty), r \in (0, 1)\) and \(r' = (1-r^p)^{1/p}\), the generalized complete \((p, q)\)-elliptic integrals of the first and the second kind are defined by
\begin{align*}
K_{p,q}(r) &= \int_0^{\pi_{p,q}/2} \left(1 - r^q \sin_{p,q}^q t\right)^{1/p-1} dt, \quad K'_{p,q} = K'_{p,q}(r) = K_{p,q}(r'), \\
E_{p,q}(r) &= \int_0^{\pi_{p,q}/2} \left(1 - r^q \sin_{p,q}^q t\right)^{1/p} dt, \quad E'_{p} = E'_{p,q}(r) = E_{p,q}(r'),
\end{align*}
respectively. Applying the integral representation formula (1.2), the generalized complete \((p, q)\)-elliptic integrals can be expressed in terms of hypergeometric functions as follows:

\[
K_{p,q}(r) = \frac{\pi_{p,q}}{2} \, _2F_1\left(\frac{1}{q}, 1 - \frac{1}{p}; 1 - \frac{1}{p} + \frac{1}{q}; r^p\right),
\]

and

\[
E_{p,q}(r) = \frac{\pi_{p,q}}{2} \, _2F_1\left(\frac{1}{q}, 1 - \frac{1}{p}; 1 - \frac{1}{p} + \frac{1}{q}; r^p\right),
\]

see, e.g. \[11\]. For \(p = q\), we write \(K_{p,p} = K_p\). Note that \(K_2 = \kappa\) and \(E_2 = \varepsilon\). It is worth to mention that Takeuchi \[22\] proved that

\[
K_s(r) = \frac{\pi}{\pi_p} K_p\left(r^{2/p}\right) \quad \text{and} \quad E_s(r) = \frac{\pi}{\pi_p} E_p\left(r^{2/p}\right),
\]

for \(|s| < 1/2\) and \(p = 2/(2s + 1)\).

In 1998, Anderson, Qiu and Vamanamurthy studied the monotonicity and convexity property of the function

\[
f(r) = \frac{\varepsilon - r^2 \kappa}{r^2} - \frac{r^2}{\varepsilon' - r \kappa'}
\]

by giving the following theorem.

1.5. **Theorem.** \[4, Theorem 1.14\] The function \(f(r)\) is increasing and convex from \((0, 1)\) onto \((\pi/4, 4/\pi)\). In particular,

\[
\frac{\pi}{4} < f(r) < \frac{\pi}{4} + \left(\frac{4}{\pi} - \frac{\pi}{4}\right) r
\]

for \(r \in (0, 1)\). These two inequalities are sharp as \(r \to 0\), while the second inequality is also sharp as \(r \to 1\).

Recently, Alzer and Richards \[3\] studied the properties of the additive counterpart

\[
\Delta(r) = \frac{\varepsilon - (1 - r^2) \kappa}{r^2} - \frac{\varepsilon' - r^2 \kappa'}{(1 - r^2)}
\]

of the above result, and proved the following theorem.

1.6. **Proposition.** The function \(\Delta(r)\) is strictly increasing and strictly convex from \((0, 1)\) onto \((\pi/4 - 1, 1 - \pi/4)\). Moreover, for all \(r \in (0, 1)\), one has

\[
\frac{\pi}{4} - 1 + \alpha r < \Delta(r) < \frac{\pi}{4} - 1 + \beta r,
\]

with best possible constants \(\alpha = 0\) and \(\beta = 2 - \frac{\pi}{2} = 0.42920\ldots\).

It is natural to extend the result of Alzer and Richards in terms of generalized complete \((p, q)\)-elliptic integrals of the first and second kind. We generalize their function \(\Delta\) by

\[
\Delta_{p,q}(r) = \frac{E_{p,q} - (r')^p K_{p,q}}{r^p} - \frac{E'_{p,q} - r^p K'_{p,q}}{(r')^p},
\]
and state the following theorem.

1.8. **Theorem.** For \(p, q > 1 \), the function \(\Delta_{p,q} \) is strictly increasing and strictly convex from \((0, 1)\) onto \(\left(\frac{1}{2(1+\frac{1}{q} - \frac{1}{p})} - 1, 1 - \frac{1}{2(1+\frac{1}{q} - \frac{1}{p})} \right) \), if the following conditions hold:

1. \(2 + \frac{1}{p} + \frac{1}{p^2} \leq \frac{5}{p} + \frac{1}{q} < 3 + \frac{1}{p^2} \),

2. \(\varepsilon(p, q) > 0 \), where

\[
\varepsilon(p, q) = 20 - \frac{42}{p} + \frac{6}{q} + \frac{21}{p^2} - \frac{2}{q^2} - \frac{20}{pq} + \frac{9}{p^2q} - \frac{3}{p^3} - \frac{1}{p^3q}.
\]

Moreover, for all \(r \in (0, 1) \), we have

\[
\frac{1}{2} \left(\frac{1}{p} - \frac{1}{q} \right) \pi_{p,q} - 1 + \alpha_1 r < \Delta_{p,q}(r) < \frac{1}{2} \left(\frac{1}{p} - \frac{1}{q} \right) \pi_{p,q} - 1 + \beta_1 r,
\]

with best possible constants \(\alpha_1 = 0 \) and \(\beta_1 = 2 - \frac{1}{2} \frac{\pi_{p,q}}{\pi_{p,q}} \).

1.10. **Theorem.** For all \(r, s \in (0, 1) \) and \(p, q > 1 \) satisfying the conditions (1) and (2) given in the above theorem, then we have

\[
\frac{1}{2} \left(\frac{1}{p} - \frac{1}{q} \right) \pi_{p,q} - 1 < \Delta_{p,q}(rs) - \Delta_{p,q}(r) - \Delta_{p,q}(s) < 1 - \frac{1}{2} \left(\frac{1}{p} - \frac{1}{q} \right) \pi_{p,q}.
\]

2. **Lemmas**

In this section we give few lemmas which will be used in the proof of the theorems. Moreover, we will use same method for proving our theorems as it is applied in [3].

2.1. **Lemma.** Write

\[
H_{a,b}(r) = \frac{\pi_{1/b,1/a}}{2r^{1/b}} \left[F(a, -b; 1 + a - b; r^{1/b}) - (1 - r^{1/b}) F(a, 1 - b; 1 + a - b; r^{1/b}) \right].
\]

For \(a, b, r \in (0, 1) \), we have

\[
H_{a,b}(r) = \frac{(1 - b)\pi_{1/b,1/a}}{2(1 + a - b)} F(a, 1 - b; 2 + a - b; r^{1/b}).
\]
Proof. By using the formula (1.1), we obtain

\[
H_{a,b}(r) = \frac{\pi_1/b_1/a}{2r^{1/b}} \left[\sum_{n=0}^{\infty} \frac{(a)_n(-b)_n}{(1 + a - b)_n n!} r^{n/b} - (1 - r^{1/b}) \sum_{n=0}^{\infty} \frac{(a)_n(1 - b)_n}{(1 + a - b)_n n!} r^{n/b} \right]
\]

By definition, it is easy to see that

\[
H_{a,b}(r) = \frac{\pi_1/b_1/a}{2r^{1/b}} \left[\sum_{n=0}^{\infty} \frac{(a)_n(-b)_n}{(1 + a - b)_n n!} r^{n/b} - \sum_{n=0}^{\infty} \frac{(a)_n(1 - b)_n}{(1 + a - b)_n n!} r^{n/b} \right]
\]

where \(\xi_{a,n} = (n + a)(-b) - (a + n)(1 - b + n) + (n + 1)(n + 1 + a - b) = (1 - b)(n + 1) \).

2.3. Lemma. For \(p, q > 1 \) and \(r \in (0, 1) \), we have

\[
H_{1/q,1/p}(0) = \frac{(1 - \frac{1}{p}) \pi_{p,q}}{2 \left(1 + \frac{1}{q} - \frac{1}{p} \right)}, \quad H_{1/q,1/p}(1) = 1.
\]

Proof. By definition, it is easy to see that

\[
H_{1/q,1/p}(0) = \frac{(1 - \frac{1}{p}) \pi_{p,q}}{2 \left(1 + \frac{1}{q} - \frac{1}{p} \right)} F \left(\frac{1}{q}, 1 - \frac{1}{p}; 2 + \frac{1}{q} - \frac{1}{p}; 0 \right) = \frac{(1 - \frac{1}{p}) \pi_{p,q}}{2 \left(1 + \frac{1}{q} - \frac{1}{p} \right)}.
\]

Again, by using the following identity

\[
F(\alpha, \beta; \gamma; 1) = \frac{\Gamma(\gamma)\Gamma(\gamma - \alpha - \beta)}{\Gamma(\gamma - \alpha)\Gamma(\gamma - \beta)},
\]

(see, [25 p. 153]), we get

\[
H_{1/q,1/p}(1) = \frac{(1 - \frac{1}{p}) \pi_{p,q}}{2 \left(1 + \frac{1}{q} - \frac{1}{p} \right)} F \left(\frac{1}{q}, 1 - \frac{1}{p}; 2 + \frac{1}{q} - \frac{1}{p}; 1 \right)
\]
2.6. Lemma. For \(p, q > 1 \) and \(r \in (0, 1) \), we have

\[
\begin{align*}
\frac{\pi_{p,q}}{2} & \left(1 - \frac{1}{p} \right) \Gamma \left(1 + \frac{1}{q} - \frac{1}{p} \right) \Gamma(1) \\
\frac{\pi_{p,q}}{2} & \left(1 + \frac{1}{q} - \frac{1}{p} \right) \Gamma \left(1 - \frac{1}{p} \right) \Gamma \left(1 + \frac{1}{q} \right) \\
= & 1.
\end{align*}
\]

2.6. Lemma. For \(p, q > 1 \) and \(r \in (0, 1) \), we have

\[
\frac{\pi_{p,q}}{2} \left(1 - \frac{1}{p} \right) \Gamma \left(1 + \frac{1}{q} - \frac{1}{p} \right) \Gamma(1) \\
\frac{\pi_{p,q}}{2} \left(1 + \frac{1}{q} - \frac{1}{p} \right) \Gamma \left(1 - \frac{1}{p} \right) \Gamma \left(1 + \frac{1}{q} \right) \\
= 1.
\]

2.6. Lemma. For \(p, q > 1 \) and \(r \in (0, 1) \), we have

\[
\frac{\pi_{p,q}}{2} \left(1 - \frac{1}{p} \right) \Gamma \left(1 + \frac{1}{q} - \frac{1}{p} \right) \Gamma(1) \\
\frac{\pi_{p,q}}{2} \left(1 + \frac{1}{q} - \frac{1}{p} \right) \Gamma \left(1 - \frac{1}{p} \right) \Gamma \left(1 + \frac{1}{q} \right) \\
= 1.
\]

2.6. Lemma. For \(p, q > 1 \) and \(r \in (0, 1) \), we have

\[
\frac{\pi_{p,q}}{2} \left(1 - \frac{1}{p} \right) \Gamma \left(1 + \frac{1}{q} - \frac{1}{p} \right) \Gamma(1) \\
\frac{\pi_{p,q}}{2} \left(1 + \frac{1}{q} - \frac{1}{p} \right) \Gamma \left(1 - \frac{1}{p} \right) \Gamma \left(1 + \frac{1}{q} \right) \\
= 1.
\]

2.6. Lemma. For \(p, q > 1 \) and \(r \in (0, 1) \), we have

\[
\frac{\pi_{p,q}}{2} \left(1 - \frac{1}{p} \right) \Gamma \left(1 + \frac{1}{q} - \frac{1}{p} \right) \Gamma(1) \\
\frac{\pi_{p,q}}{2} \left(1 + \frac{1}{q} - \frac{1}{p} \right) \Gamma \left(1 - \frac{1}{p} \right) \Gamma \left(1 + \frac{1}{q} \right) \\
= 1.
\]

2.6. Lemma. For \(p, q > 1 \) and \(r \in (0, 1) \), we have

\[
\frac{\pi_{p,q}}{2} \left(1 - \frac{1}{p} \right) \Gamma \left(1 + \frac{1}{q} - \frac{1}{p} \right) \Gamma(1) \\
\frac{\pi_{p,q}}{2} \left(1 + \frac{1}{q} - \frac{1}{p} \right) \Gamma \left(1 - \frac{1}{p} \right) \Gamma \left(1 + \frac{1}{q} \right) \\
= 1.
\]

2.6. Lemma. For \(p, q > 1 \) and \(r \in (0, 1) \), we have

\[
\frac{\pi_{p,q}}{2} \left(1 - \frac{1}{p} \right) \Gamma \left(1 + \frac{1}{q} - \frac{1}{p} \right) \Gamma(1) \\
\frac{\pi_{p,q}}{2} \left(1 + \frac{1}{q} - \frac{1}{p} \right) \Gamma \left(1 - \frac{1}{p} \right) \Gamma \left(1 + \frac{1}{q} \right) \\
= 1.
\]

2.6. Lemma. For \(p, q > 1 \) and \(r \in (0, 1) \), we have

\[
\frac{\pi_{p,q}}{2} \left(1 - \frac{1}{p} \right) \Gamma \left(1 + \frac{1}{q} - \frac{1}{p} \right) \Gamma(1) \\
\frac{\pi_{p,q}}{2} \left(1 + \frac{1}{q} - \frac{1}{p} \right) \Gamma \left(1 - \frac{1}{p} \right) \Gamma \left(1 + \frac{1}{q} \right) \\
= 1.
\]

2.6. Lemma. For \(p, q > 1 \) and \(r \in (0, 1) \), we have

\[
\frac{\pi_{p,q}}{2} \left(1 - \frac{1}{p} \right) \Gamma \left(1 + \frac{1}{q} - \frac{1}{p} \right) \Gamma(1) \\
\frac{\pi_{p,q}}{2} \left(1 + \frac{1}{q} - \frac{1}{p} \right) \Gamma \left(1 - \frac{1}{p} \right) \Gamma \left(1 + \frac{1}{q} \right) \\
= 1.
\]

2.6. Lemma. For \(p, q > 1 \) and \(r \in (0, 1) \), we have

\[
\frac{\pi_{p,q}}{2} \left(1 - \frac{1}{p} \right) \Gamma \left(1 + \frac{1}{q} - \frac{1}{p} \right) \Gamma(1) \\
\frac{\pi_{p,q}}{2} \left(1 + \frac{1}{q} - \frac{1}{p} \right) \Gamma \left(1 - \frac{1}{p} \right) \Gamma \left(1 + \frac{1}{q} \right) \\
= 1.
\]

2.6. Lemma. For \(p, q > 1 \) and \(r \in (0, 1) \), we have

\[
\frac{\pi_{p,q}}{2} \left(1 - \frac{1}{p} \right) \Gamma \left(1 + \frac{1}{q} - \frac{1}{p} \right) \Gamma(1) \\
\frac{\pi_{p,q}}{2} \left(1 + \frac{1}{q} - \frac{1}{p} \right) \Gamma \left(1 - \frac{1}{p} \right) \Gamma \left(1 + \frac{1}{q} \right) \\
= 1.
\]

2.6. Lemma. For \(p, q > 1 \) and \(r \in (0, 1) \), we have

\[
\frac{\pi_{p,q}}{2} \left(1 - \frac{1}{p} \right) \Gamma \left(1 + \frac{1}{q} - \frac{1}{p} \right) \Gamma(1) \\
\frac{\pi_{p,q}}{2} \left(1 + \frac{1}{q} - \frac{1}{p} \right) \Gamma \left(1 - \frac{1}{p} \right) \Gamma \left(1 + \frac{1}{q} \right) \\
= 1.
\]

2.6. Lemma. For \(p, q > 1 \) and \(r \in (0, 1) \), we have

\[
\frac{\pi_{p,q}}{2} \left(1 - \frac{1}{p} \right) \Gamma \left(1 + \frac{1}{q} - \frac{1}{p} \right) \Gamma(1) \\
\frac{\pi_{p,q}}{2} \left(1 + \frac{1}{q} - \frac{1}{p} \right) \Gamma \left(1 - \frac{1}{p} \right) \Gamma \left(1 + \frac{1}{q} \right) \\
= 1.
\]

2.6. Lemma. For \(p, q > 1 \) and \(r \in (0, 1) \), we have

\[
\frac{\pi_{p,q}}{2} \left(1 - \frac{1}{p} \right) \Gamma \left(1 + \frac{1}{q} - \frac{1}{p} \right) \Gamma(1) \\
\frac{\pi_{p,q}}{2} \left(1 + \frac{1}{q} - \frac{1}{p} \right) \Gamma \left(1 - \frac{1}{p} \right) \Gamma \left(1 + \frac{1}{q} \right) \\
= 1.
\]
and
\[
\frac{1}{\eta_{p,q} r^p} \Delta''_{p,q}(r) = (p - 1) \left[F \left(1 + \frac{1}{q}, 2 - \frac{1}{p}; 3 + \frac{1}{q} - \frac{1}{p}; r^p \right) - F \left(1 + \frac{1}{q}, 2 - \frac{1}{p}; 3 + \frac{1}{q} - \frac{1}{p}; (r')^p \right) \right] \\
+ \frac{p(1+\frac{1}{q}) (2-\frac{1}{q})}{(3+\frac{1}{q} - \frac{1}{p})} r^p \left[F \left(2 + \frac{1}{q}, 3 - \frac{1}{p}; 4 + \frac{1}{q} - \frac{1}{p}; r^p \right) + F \left(2 + \frac{1}{q}, 3 - \frac{1}{p}; 4 + \frac{1}{q} - \frac{1}{p}; (r')^p \right) \right],
\]

where
\[\eta_{p,q} = \frac{p}{q} \left(1 - \frac{1}{q} \right)^2 \frac{\pi_{p,q}}{ \left(1 + \frac{1}{q} - \frac{1}{p} \right) \left(2 + \frac{1}{q} - \frac{1}{p} \right)} .\]

By utilizing the following identity
\[(1 - z) F (a + 1, b + 1; a + b + 1; z) = F (a, b; a + b + 1; z) \]
(see [34]) and letting \(a = 1 + \frac{1}{q}, b = 2 - \frac{1}{p}, z = 1 - r^p \), we get
\[
\frac{1}{\eta_{p,q} r^p} \Delta''_{p,q}(r) = (p - 1) \left[F \left(1 + \frac{1}{q}, 2 - \frac{1}{p}; 3 + \frac{1}{q} - \frac{1}{p}; r^p \right) - F \left(1 + \frac{1}{q}, 2 - \frac{1}{p}; 3 + \frac{1}{q} - \frac{1}{p}; (r')^p \right) \right] \\
+ \frac{p(1+\frac{1}{q}) (2-\frac{1}{q})}{(3+\frac{1}{q} - \frac{1}{p})} r^p \left[F \left(2 + \frac{1}{q}, 3 - \frac{1}{p}; 4 + \frac{1}{q} - \frac{1}{p}; r^p \right) + F \left(2 + \frac{1}{q}, 3 - \frac{1}{p}; 4 + \frac{1}{q} - \frac{1}{p}; (r')^p \right) \right],
\]

Now by Lemma 26 we have
\[
\frac{1}{\eta_{p,q} r^p} \Delta''_{p,q}(r) = (p - 1) F \left(1 + \frac{1}{q}, 2 - \frac{1}{p}; 3 + \frac{1}{q} - \frac{1}{p}; r^p \right) + F \left(1 + \frac{1}{q}, 2 - \frac{1}{p}; 3 + \frac{1}{q} - \frac{1}{p}; (r')^p \right) \\
+ \frac{p(1+\frac{1}{q}) (2-\frac{1}{q})}{(3+\frac{1}{q} - \frac{1}{p})} r^p \left[F \left(2 + \frac{1}{q}, 3 - \frac{1}{p}; 4 + \frac{1}{q} - \frac{1}{p}; r^p \right) + F \left(2 + \frac{1}{q}, 3 - \frac{1}{p}; 4 + \frac{1}{q} - \frac{1}{p}; (r')^p \right) \right] \\
- \frac{p(2-\frac{1}{q})^2}{(3+\frac{1}{q} - \frac{1}{p})} F \left(1 + \frac{1}{q}, 2 - \frac{1}{p}; 3 + \frac{1}{q} - \frac{1}{p}; (r')^p \right) \\
+ \frac{p(2-\frac{1}{q})^2}{(3+\frac{1}{q} - \frac{1}{p})} F \left(1 + \frac{1}{q}, 3 - \frac{1}{p}; 4 + \frac{1}{q} - \frac{1}{p}; (r')^p \right).
\]
Considering the condition (1) and (2) we conclude that
\[
\frac{1}{\eta_{p,q}} \Delta''_{p,q}(r)
\geq (p - 1) - pF \left(1 + \frac{1}{q}, 2 - \frac{1}{p}; 3 + \frac{1}{q} - \frac{1}{p}; (r')^p \right) + \frac{p(2 - \frac{1}{p})^2}{(3 + \frac{1}{q} - \frac{1}{p})}
F \left(1 + \frac{1}{q}, 3 - \frac{1}{p}; 4 + \frac{1}{q} - \frac{1}{p}; (r')^p \right)
\]
\[
= (p - 1) \left[\sum_{n=0}^{\infty} \frac{(1 + \frac{1}{q}) \frac{2 - \frac{1}{p}}{n + 1}}{3 + \frac{1}{q} - \frac{1}{p}} \left(n - \frac{\frac{1}{q} + \frac{2}{p} - 1}{\frac{1}{p}} \right) \left(\frac{(r')^n}{n!} \right) \frac{(r')^n}{n!} \right]
\]
\[
> (p - 1) \left[\sum_{n=0}^{\infty} \frac{1}{3 + \frac{1}{q} - \frac{1}{p}} \left(n - \frac{\frac{1}{q} + \frac{2}{p} - 1}{\frac{1}{p}} \right) \left(\frac{(r')^n}{n!} \right) \frac{(r')^n}{n!} \right]
\]
\[
= (p - 1) \left[\frac{\epsilon(p,q)}{(1 - \frac{1}{p})(3 + \frac{1}{q} - \frac{1}{p})(\frac{4 + \frac{1}{q} - \frac{1}{p}}{1 + \frac{1}{p}})} + \frac{(1 + \frac{1}{q})(2 - \frac{1}{p})(\frac{\frac{1}{q} + \frac{2}{p} - \frac{1}{2}}{\frac{1}{2} - \frac{1}{p}}) r^p}{(1 - \frac{1}{p})(3 + \frac{1}{q} - \frac{1}{p})(\frac{4 + \frac{1}{q} - \frac{1}{p}}{1 + \frac{1}{p}})} \right]
\]
\[
> 0.
\]

Now we conclude that \(\Delta'_{p,q}(r) \) is strictly increasing on \((0, 1)\), because \(\Delta''_{p,q}(r) > 0 \). Hence, \(\Delta'_{p,q}(r) > \Delta'_{p,q}(0) \). By L’Hôpital rule, we get
\[
\Delta'_{p,q}(0) = \lim_{r \to 0^+} \frac{\Delta'_{p,q}(r) - \Delta'_{p,q}(0)}{r - 0}
\]
\[
= \lim_{r \to 0^+} \left[\frac{H_{1/q,1/p}(r) - H_{1/q,1/p}(0)}{r} - \frac{H_{1/q,1/p}(r') - H_{1/q,1/p}(1)}{r} \right]
\]
\[
= H'_{1/q,1/p}(0) - \lim_{x \to 1^+} \frac{H_{1/q,1/p}(x) - 1}{(1 - x^p)^{1/p}}
\]
\[
= \lim_{x \to 1^+} H'_{1/q,1/p}(x) \frac{(1 - x^p)^{1 - 1/p}}{x^p - 1}
\]
\[
= 0,
\]
where we apply
\[
H'_{1/q,1/p}(0)
\]
\[
= \frac{\frac{\epsilon(p,q)}{2} \left(\frac{1 - \frac{1}{p}}{r} \right)^2 r^{p-1} \pi_{p,q}}{2 \left(1 + \frac{1}{q} - \frac{1}{p} \right) \left(2 + \frac{1}{q} - \frac{1}{p} \right)^2} \left[1 + \frac{1}{q}, 2 - \frac{1}{p}; 3 + \frac{1}{q} - \frac{1}{p}; (r')^p \right] |r = 0 = 0.
\]

This implies that \(\Delta_{p,q}(r) \) is strictly increasing on \((0, 1)\). Define
\[
M_{p,q}(r) = \frac{\Delta_{p,q}(r) - \Delta_{p,q}(0)}{r - 0}.
\]

Since \(\Delta_{p,q}(r) \) is strictly convex on \((0, 1)\), it follows that \(M_{p,q}(r) \) is strictly increasing on \((0, 1)\). This leads to
\[
M_{p,q}(0) < M_{p,q}(r) < M_{p,q}(1).
\]

(3.1)
Using Lemma 2.3 we have \(\Delta_{p,q}(0) = 0 \) and
\[
M(p,q)(1) = \Delta_{p,q}(1) - \Delta_{p,q}(0) = 2H_{1/q,1/p}(1) - 2H_{1/q,1/p}(0) = 2 - \left(1 - \frac{1}{p}\right)\frac{\pi_{p,q}}{1 + \frac{1}{q} - \frac{1}{p}}.
\]
So, the formula (3.1) implies the double inequalities in (1.9). This completes the proof.

\[\square\]

Proof of Theorem 1.10. Let
\[
\lambda_{p,q}(r, s) = \Delta_{p,q}(rs) - \Delta_{p,q}(r) - \Delta_{p,q}(s).
\]
Simple computation yields
\[
\frac{\partial}{\partial r} \lambda_{p,q}(r, s) = s\Delta_{p,q}'(rs) - \Delta_{p,q}'(r)
\]
and
\[
\frac{\partial^2}{\partial r \partial s} \lambda_{p,q}(r, s) = \Delta_{p,q}'(rs) + rs\Delta_{p,q}''(rs).
\]
Considering the results of Theorem 1.8, we have \(\frac{\partial}{\partial r} \lambda_{p,q}(r, s) > 0 \). So, the function \(\frac{\partial}{\partial r} \lambda_{p,q}(r, s) \) is strictly increasing with respect to \(s \). Thus,
\[
\left. \frac{\partial}{\partial r} \lambda_{p,q}(r, s) \right|_{s=1} = 0.
\]
It follows that \(r \mapsto \lambda_{p,q}(r, s) \) is strictly decreasing which lead to
\[
-\Delta_{p,q}(1) = \lambda_{p,q}(1, s) < \lambda_{p,q}(r, s) < \lambda_{p,q}(0, s) = -\Delta_{p,q}(s) < -\Delta_{p,q}(0).
\]
where we apply
\[
\Delta_{p,q}(0) = H_{1/q,1/p}(0) - H_{1/q,1/p}(1) = \frac{\left(1 - \frac{1}{p}\right)\pi_{p,q}}{2 \left(1 + \frac{1}{q} - \frac{1}{p}\right)} - 1
\]
and
\[
\Delta_{p,q}(1) = H_{1/q,1/p}(1) - H_{1/q,1/p}(0) = 1 - \frac{\left(1 - \frac{1}{p}\right)\pi_{p,q}}{2 \left(1 + \frac{1}{q} - \frac{1}{p}\right)}.
\]
This completes the proof.

\[\square\]

3.2. **Remark.** When \(p = q = 2 \), then it is easy to observe that Theorem 1.10 coincides with Proposition 1.6.
References

[1] M. Abramowitz, I. Stegun, eds.: Handbook of mathematical functions with formulas, graphs and mathematical tables. National Bureau of Standards, Dover, New York, 1965.
[2] H. Alzer, S.-L. Qiu: Monotonicity theorems and inequalities for the generalized complete elliptic integrals, J. Comput. Appl. Math., 172 2004, No. 2, pp:289-312.
[3] H. Alzer, K. Richards: A note on a function involving complete elliptic integrals: Monotonicity, convexity, inequalities, Anal. Math., 41 2015, pp: 133-139.
[4] G.D. Anderson, S.-L. Qiu, and M.K. Vamanamurthy: Elliptic integrals inequalities, with applications, Constr. Approx., 14, 1998, pp:195-207.
[5] G.D. Anderson, M.K. Vamanamurthy, and M. Vuorinen: Conformal invariants, inequalities and quasiconformal maps. J. Wiley, 1997, 505 pp.
[6] G.D. Anderson, and M.K. Vamanamurthy: Some properties of quasiconformal distortion functions, New Zealand J. Math., 24, 1995, pp:1-16.
[7] G.E. Andrews, R. Askey and R. Roy: Special functions. Cambridge University Press, Cambridge, 1999.
[8] G.D. Anderson, P. Duren, and M.K. Vamanamurthy: An inequality for elliptic integrals, J. Math. Anal. Appl., 182, 1994, pp:257-259.
[9] Á. Baricz, B.A. Bhayo, R. Klén: Convexity properties of generalized trigonometric and hyperbolic functions, Aequat. Math. 89 (2015), 473–484.
[10] B.A. Bhayo, M. Vuorinen: On generalized trigonometric functions with two parameters, J. Approx. Theory 164 (2012), 1415–1426.
[11] B.A. Bhayo, and L. Yin: On generalized (p, q)-elliptic integrals, arXiv:1507.00031 [math.CA]
[12] J.M. Borwein and P.B. Borwein: Pi and the AGM, A study in analytic number theory and computational complexity. Reprint of the 1987 original. Canadian Mathematical Society Series of Monographs and Advanced Texts, 4. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1998.
[13] R.P. Brent: Fast multiple-precision evaluation of elementary functions, J. Assoc. Comput. Math. 23 (1976), no. 2, 242–251.
[14] P.J. Bushell, D.E. Edmunds: Remarks on generalised trigonometric functions, Rocky Mountain J. Math. 42 (2012), 13–52.
[15] F. Carlson and J.L. Gustafson: Asymptotic approximations for symmetric elliptic integrals, SIAM J. Math. Anal., 25, 1994, pp:288-303.
[16] P. Drábek and R. Manásevich: On the closed solution to some p−Laplacian nonhomogeneous eigenvalue problems. Diff. and Int. Eqns. 12 (1999), 723-740.
[17] D.E. Edmunds, P. Gurka, J. Lang: Properties of generalized trigonometric functions, J. Approx. Theory 164 (2012), 47–56.
[18] A.P. Prudnikov, Y.A. Brychkov and O.I. Marichev: Integrals and series, V 3, Gordon and Breach Science Publishers(Amsterdam-New York, 1990).
[19] E. Salamin: Computation of π using arithmetic-geometric means, Math. Comp. 30 (1976), no. 135, 565–570.
[20] G.-D. Wang, X.-H. Zhang and Y.-M. Chu: Inequalities for the generalized elliptic integrals and modular equations, J. Math. Anal. Appl., 331 2007, No. 2, pp:1275-1283.
[21] S. Takeuchi: Generalized Jacobian elliptic functions and their application to bifurcation problems associated with p-Laplacian, J. Math. Anal. Appl. 385, 2012, pp:24-35.
[22] S. Takeuchi: Complete (p,q)-elliptic integrals with application to a family of means, http://arxiv.org/abs/1507.01383
[23] S. Takeuchi: The complete p-elliptic integrals and a computation formula of πp for p = 4, http://arxiv.org/abs/1503.02994
[24] S. Takeuchi: A new form of the generalized complete elliptic integrals, http://arxiv.org/abs/1411.4778
[25] Zh.-X. Wang and D.-R. Guo: *Introduction to Special Function*, Peking University Press, Beijing, 2004.

Department of mathematics, Sukkur IBA University, Sindh, Pakistan
Email address: barkat.bhayo@iba-suk.edu.pk

Department of Mathematics, Binzhou University, Binzhou City, Shandong Province, 256603, China
Email address: yinli_79@163.com