Title
Complete genome sequence of Nitratifractor salsuginis type strain (E9l37-1).

Permalink
https://escholarship.org/uc/item/6c33h201

Journal
Standards in genomic sciences, 4(3)

ISSN
1944-3277

Authors
Anderson, Iain
Sikorski, Johannes
Zeytun, Ahmet
et al.

Publication Date
2011-07-01

DOI
10.4056/sigs.1844518

Peer reviewed
Complete genome sequence of *Nitratifractor salsuginis* type strain (E9I37-1\(^T\))

Iain Anderson\(^1\), Johannes Sikorski\(^2\), Ahmet Zeytun\(^1,3\), Matt Nolan\(^1\), Alla Lapidus\(^1\), Susan Lucas\(^1\), Nancy Hammon\(^1\), Shweta Deshpande\(^1\), Jan-Fang Cheng\(^1\), Roxanne Tapia\(^1,3\), Cliff Han\(^1,3\), Lynne Goodwin\(^1,3\), Sam Pitluck\(^1\), Konstantinos Lioulios\(^1\), Ioanna Pagani\(^1\), Natalia Ivanova\(^1\), Marcel Huntemann\(^1\), Konstantinos Mavromatis\(^1\), Galina Ovchinikova\(^4\), Amrita Pati\(^1\), Amy Chen\(^4\), Krishna Palaniappan\(^1\), Miriam Land\(^1,3\), Loren Hauser\(^1,3\), Evelyn-Marie Brambilla\(^2\), Olivier D. Ngatchou-Djao\(^6\), Manfred Rohde\(^6\), Brian J. Tindall\(^2\), Markus Göker\(^2\), John C. Detter\(^1,3\), Tanja Woyke\(^1\), James Bristow\(^1\), Jonathan A. Eisen\(^1,7\), Victor Markowitz\(^4\), Philip Hugenholtz\(^1,8\), Hans-Peter Klenk\(^2\), and Nikos C. Kyrpides\(^1\)*

\(^1\) DOE Joint Genome Institute, Walnut Creek, California, USA
\(^2\) DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
\(^3\) Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
\(^4\) Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
\(^5\) Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
\(^6\) HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany
\(^7\) University of California Davis Genome Center, Davis, California, USA
\(^8\) Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia

*Corresponding author: Nikos C. Kyrpides

Keywords: anaerobic, microaerobic, non-motile, Gram-negative, mesophilic, strictly chemo-lithoautotroph, *Nautiliaceae*, GEBA

Nitratifractor salsuginis Nakagawa et al. 2005 is the type species of the genus *Nitratifractor*, a member of the family *Nautiliaceae*. The species is of interest because of its high capacity for nitrate reduction via conversion to N\(_2\) through respiration, which is a key compound in plant nutrition. The strain is also of interest because it represents the first mesophilic and facultatively anaerobic member of the *Epsilonproteobacteria* reported to grow on molecular hydrogen. This is the first completed genome sequence of a member of the genus *Nitratifractor* and the second sequence from the family *Nautiliaceae*. The 2,101,285 bp long genome with its 2,121 protein-coding and 54 RNA genes is a part of the *Genomic Encyclopedia of Bacteria and Archaea* project.

Introduction

Strain E9I37-1\(^T\) (= DSM 16511 = JCM 12458) is the type strain of *Nitratifractor salsuginis*, which in turn is the type and currently only species of the genus *Nitratifractor* [1]. The genus name is derived from the Neo-Latin word *nitra* meaning *nitrate* and the Latin word *fractor* meaning *breaker*, yielding the Neo-Latin word *Nitratifractor* meaning *nitrate-breaker* [1]. *N. salsuginis* strain E9I37-1\(^T\) was isolated from a deep sea hydrothermal vent chimney at the Iheya North hydrothermal field in the Mid-Okinawa Trough in Japan [1,2]. No further isolates of *N. salsuginis* have been obtained so far. Here we present a summary classification and a set of features for *N. salsuginis* E9I37-1\(^T\), together with the description of the complete genomic sequencing and annotation.

Classification and features

A representative genomic 16S rRNA sequence of strain E9I37-1\(^T\) was compared using NCBI BLAST under default settings (e.g., considering only the high-scoring segment pairs (HSPs) from the best 250 hits) with the most recent release of the Greengenes database [3] and the relative frequencies, weighted by BLAST scores, of taxa and keywords (reduced to their stem [4]) were determined. The four most frequent genera were *Nitratifi-
ruptor (48.5%), Nitratiruptor (20.7%), Hydrogenimonas (15.7%) and Alvinella (15.1%) (eleven hits in total). Regarding the single hit to sequences from members of the species, the average identity within HSPs was 100.0%, whereas the average coverage by HSPs was 95.6%. Among all other species, the one yielding the highest score was Hydrogenimonas thermophila, which corresponded to an identity of 88.5% and an HSP coverage of 67.2%. (Note that the Greengenes database uses the INSDC (= EMBL/NCBI/DDBJ) annotation, which is not an authoritative source for nomenclature or classification.) The highest-scoring environmental sequence was AP420348 ('hydrothermal sediment clone AF420348') [5], which showed an identity of 96.7% and an HSP coverage of 97.8%. The five most frequent keywords within the labels of environmental samples which yielded hits were ‘cave’ (7.2%), ‘biofilm’ (5.7%), ‘sulfid’ (5.3%), ‘spring’ (4.8%) and ‘structur’ (3.1%) (239 hits in total). The five most frequent keywords within the labels of environmental samples which yielded hits of a higher score than the highest scoring species were ‘hydrotherm’ (8.6%), ‘vent’ (7.5%), ‘pacific’ (4.0%), ‘microbi’ (3.7%) and ‘mar’ (3.0%) (37 hits in total). These keywords are in accordance with the origin of the strain N. salsuginis E9I37-1T from a deep-sea hydrothermal vent chimney at the summits of the sulfide mounds in the sediment-hosted back-arc hydrothermal system Iheya North [1,2].

The 16S rRNA based tree in Figure 1 shows the phylogenetic neighborhood of N. salsuginis E9I37-1T. The sequences of the two identical 16S rRNA gene copies in the genome do not differ from the previously published 16S rRNA sequence (AB175500).

![Figure 1](http://standardsingenomics.org)

Figure 1. Phylogenetic tree highlighting the position of N. salsuginis strain E9I37-1T relative to the other type strains within the family Nautiliaceae. The tree was inferred from 1,356 aligned characters [6,7] of the 16S rRNA gene sequence under the maximum likelihood criterion [8] and rooted in accordance with the current taxonomy. The branches are scaled in terms of the expected number of substitutions per site. Numbers to the right of bifurcations are support values from 200 bootstrap replicates [9] if larger than 60%. Lineages with type strain genome sequencing projects registered in GOLD [10] are labeled with an asterisk when unpublished, and with two asterisks when published [11]. The closest BLAST hit to N. salsuginis (see above) does not belong to Nautiliaceae, and this family does not appear as monophyletic in the last version of the 16S rRNA phylogeny from the All-Species-Living-Tree Project [12]. The species selection for Figure 1 was based on the current taxonomic classification (Table 1). However, an analysis including the type strains of Nautiliaceae and its neighboring families Campylobacteraceae, Helicobacteraceae and Hydrogenimonaceae (data not shown) did not provide evidence for the non-monophyly for any of these families.
The cells of strain E9I37-1T are generally rod-shaped of 2.5 µm in length and 0.6 µm in width (Figure 2) and usually occur singly or in pairs (Figure 2) [1]. Strain E9I37-1T is a Gram-negative, non-motile and non spore-forming bacterium (Table 1). The organism is anaerobic to microaerophilic (0.09-0.55% O$_2$ (v/v)) and chemolithoautotrophic, growing by respiratory nitrate reduction with H$_2$ as the electron donor, forming N$_2$ as a metabolic end product [1]. The main electron acceptors are NO$_3^-$ or O$_2$ [1]. Strain E9I37-1T uses S0 as a source of sulfur [1]. The doubling time of strain E9I37-1T was about 2.5 h [1]. The NaCl range for growth is between 1.5% and 3.5%, with an optimum at 3%; no growth was observed below 1.0% NaCl or above 4.0% NaCl [1]. The temperature range for growth is between 28ºC and 40ºC, with an optimum at 37ºC [1]. The pH range for growth is between 5.6 and 7.6, with an optimum at pH 7; no growth could be detected below pH 5.2 or above pH 8.1 [1]. Strain E9I37-1T was unable to use any organic compounds as energy or carbon sources [1]. The organism was sensitive to ampicillin, rifampicin, streptomycin, chloramphenicol (each at 50 µg ml$^{-1}$) and kanamycin (200 µg ml$^{-1}$), and insensitive to approximately 150 µg ml$^{-1}$ kanamycin [1]. Enzymatic and genetic analyses demonstrated that strain E9I37-1T uses the reductive TCA (rTCA) cycle for carbon assimilation [21]. This was confirmed by the presence of all genes encoding the three key rTCA cycle enzymatic activities, namely ATP-dependent citrate lyase, pyruvate:ferredoxin oxidoreductase, and 2-oxoglutarate:ferredoxin oxidoreductase [21], but it was found to lack the gene for ribulose 1,5-bisphosphate carboxylase (RubisCO) activity, the key enzyme in the Calvin-Benson cycle [21].

Chemotaxonomy
The major cellular fatty acids of strain E9I37-1T are C$_{18:1}$ (42.3% of the total fatty acid), C$_{16:1}$ (30.7%) and C$_{16:0}$ (24.3%), C$_{14:0}$ 3-OH (1.1%), C$_{14:0}$ (0.9%) and C$_{18:0}$ (0.7%) [1]. It should be noted that no information is given on the position of double bonds in the unsaturated fatty acids. No attempt has been made to examine the type strain for the presence of respiratory lipoquinones or to determine the polar lipid composition.

Genome sequencing and annotation
Genome project history
This organism was selected for sequencing on the basis of its phylogenetic position [22], and is part of the Genomic Encyclopedia of Bacteria and Archaea project [23]. The genome project is deposited in the Genome On Line Database [10] and the complete genome sequence is deposited in GenBank. Sequencing, finishing and annotation were performed by the DOE Joint Genome Institute (JGI). A summary of the project information is shown in Table 2.

![Figure 2. Scanning electron micrograph of N. salsuginis E9I37-1T](image-url)
Table 1. Classification and general features of *N. salsuginis* E9I37-1\(^1\) according to the MIGS recommendations [13].

MIGS ID	Property	Term	Evidence code
	Current classification		
	Domain	*Bacteria*	TAS [14]
	Phylum	*Proteobacteria*	TAS [15]
	Class	*Epsilonproteobacteria*	TAS [16,17]
	Order	*Nautiliales*	TAS [18]
	Family	*Nautilialesae*	TAS [18]
	Genus	*Nitratifractor*	TAS [1]
	Species	*Nitratifractor salsuginis*	TAS [1]
	Type strain	E9I37-1	TAS [1]
	Gram stain	negative	TAS [1]
	Cell shape	rod shaped, occurring singly or in pairs	TAS [1]
	Motility	non-motile	TAS [1]
	Sporulation	none	TAS [1]
	Temperature range	28-40°C	TAS [1]
	Optimum temperature	37°C	TAS [1]
	Salinity	1.5-3.5% NaCl	TAS [1]
	Oxygen requirement	anaerobic and microaerobic	TAS [1]
	Carbon source	probably CO\(_2\)	NAS
	Energy metabolism	strictly chemolithoautotrophic	TAS [1]
MIGS-22	Habitat	deep-sea hydrothermal vent chimneys	TAS [1]
MIGS-6	Pathogenicity	not reported	NAS
MIGS-15	Biotic relationship	not reported	NAS
MIGS-14	Biosafety level	1	TAS [19]
	Isolation	deep-sea hydrothermal vent water of ‘E9’ chimney (inside part)	TAS [1,2]
MIGS-4	Geographic location	Iheya North hydrothermal field in the Mid-Okinawa Trough in Japan	TAS [1,2]
MIGS-5	Sample collection time	2002 or before	TAS [1,2]
MIGS-4.1	Latitude	27.78	TAS [1,2]
MIGS-4.2	Longitude	126.88	TAS [1,2]
MIGS-4.3	Depth	984 m	TAS [1,2]
MIGS-4.4	Altitude	not reported	NAS

Evidence codes - IDA: Inferred from Direct Assay (first time in publication); TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from of the Gene Ontology project [20]. If the evidence code is IDA, the property was directly observed by one of the authors or an expert mentioned in the acknowledgements.

Growth conditions and DNA isolation

N. salsuginis E9I37-1\(^1\), DSM 16511, was grown anaerobically in DSMZ medium 1024 (*Nitratiruptor* and *Nitratifractor* medium) [24] at 37°C. DNA was isolated from 0.5-1 g of cell paste using Jetflex Genomic DNA Purification Kit (GENOMED 600100) following the standard protocol as recommended by the manufacturer. Cell lysis was enhanced by adding 20 µl proteinase K for two hours at 58°C. DNA is available through the DNA Bank Network [25].

Genome sequencing and assembly

The genome was sequenced using a combination of Illumina and 454 sequencing platforms. All general aspects of library construction and sequencing can be found at the JGI website [26]. Pyrosequencing reads were assembled using the Newbler assembler (Roche). The initial Newbler assembly consisting of 42 contigs in five scaffolds was converted into a phrap [27] assembly by making fake reads from the consensus, to collect the read pairs in the 454 paired end library.

http://standardsingenomics.org
Table 2. Genome sequencing project information

MIGS ID	Property	Term
MIGS-31	Finishing quality	Finished
MIGS-28	Libraries used	Three genomic libraries: one 454 pyrosequence standard library, one 454 PE library (12 kb insert size), one Illumina library
MIGS-29	Sequencing platforms	Illumina GAii, 454 GS FLX Titanium
MIGS-31.2	Sequencing coverage	75.2 × Illumina; 31.5 × pyrosequence
MIGS-30	Assemblers	Newbler version 2.4, Velvet, phrap
MIGS-32	Gene calling method	Prodigal 1.4, GenePRIMP
INSDC ID		CP002452
Genbank Date of Release		January 24, 2011
GOLD ID		Gc01594
NCBI project ID		46883
Database: IMG-GEBA		2503538035
MIGS-13	Source material identifier	DSM 16511
Project relevance		Tree of Life, GEBA

Genome annotation

Genes were identified using Prodigal [31] as part of the Oak Ridge National Laboratory genome annotation pipeline, followed by a round of manual curation using the JGI GenePRIMP pipeline [32]. The predicted CDSs were translated and used to search the National Center for Biotechnology Information (NCBI) non-redundant database, UniProt, TIGR-Fam, Pfam, PRIAM, KEGG, COG, and InterPro databases. Additional gene prediction analysis and functional annotation was performed within the Integrated Microbial Genomes - Expert Review (IMG-ER) platform [33].

Genome properties

The genome consists of a 2,101,285 bp long chromosome with a G+C content of 53.9% (Table 3 and Figure 3). Of the 2,175 genes predicted, 2,121 were protein-coding genes, and 54 RNAs; 33 pseudogenes were also identified. The majority of the protein-coding genes (66.9%) were assigned with a putative function while the remaining ones were annotated as hypothetical proteins. The distribution of genes into COGs functional categories is presented in Table 4.
Figure 3. Graphical circular map of the chromosome; From outside to the center: Genes on forward strand (color by COG categories), Genes on reverse strand (color by COG categories), RNA genes (tRNAs green, rRNAs red, other RNAs black), GC content, GC skew.
Table 3. Genome Statistics

Attribute	Value	% of Total
Genome size (bp)	2,101,285	100.00%
DNA coding region (bp)	1,916,093	91.19%
DNA G+C content (bp)	1,132,843	53.91%
Number of replicons	1	
Extrachromosomal elements	0	
Total genes	2,175	100.00%
RNA genes	54	2.48%
rRNA operons	2	
Protein-coding genes	2,121	97.52%
Pseudo genes	33	1.52%
Genes with function prediction	1,456	66.94%
Genes in paralog clusters	144	6.62%
Genes assigned to COGs	1,525	70.11%
Genes assigned Pfam domains	1,616	74.30%
Genes with signal peptides	411	18.90%
Genes with transmembrane helices	501	23.03%
CRISPR repeats	2	

Table 4. Number of genes associated with the general COG functional categories

Code	Value	% of Total	Description
J	149	9.0	Translation, ribosomal structure and biogenesis
A	0	0.0	RNA processing and modification
K	64	3.9	Transcription
L	114	6.9	Replication, recombination and repair
B	0	0.0	Chromatin structure and dynamics
D	20	1.2	Cell cycle control, cell division, chromosome partitioning
Y	0	0.0	Nuclear structure
V	25	1.5	Defense mechanisms
T	69	4.2	Signal transduction mechanisms
M	133	8.1	Cell wall/membrane/envelope biogenesis
N	15	0.9	Cell motility
Z	0	0.0	Cytoskeleton
W	0	0.0	Extracellular structures
U	43	2.6	Intracellular trafficking, secretion, and vesicular transport
O	89	5.4	Posttranslational modification, protein turnover, chaperones
C	131	8.0	Energy production and conversion
G	58	3.5	Carbohydrate transport and metabolism
E	136	8.3	Amino acid transport and metabolism
F	50	3.0	Nucleotide transport and metabolism
H	97	5.9	Coenzyme transport and metabolism
I	37	2.3	Lipid transport and metabolism
P	81	4.9	Inorganic ion transport and metabolism
Q	18	1.1	Secondary metabolites biosynthesis, transport and catabolism
R	183	11.1	General function prediction only
S	136	8.3	Function unknown
-	650	29.9	Not in COGs
Acknowledgements
We would like to gratefully acknowledge the help of Andrea Schütze (DSMZ) for growing N. salsuginis cultures. This work was performed under the auspices of the US Department of Energy Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under contract No. DE-AC02-05CH11231, Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and Los Alamos National Laboratory under contract No. DE-AC02-06NA25396, UT-Battelle and Oak Ridge National Laboratory under contract DE-AC05-00OR22725, as well as German Research Foundation (DFG) INST 599/1-2.

References
1. Nakagawa S, Takai K, Inagaki F, Horikoshi K, Sako Y. *Nitratiruptor tergarcus* gen. nov., sp. nov. and *Nitratifractor salsuginis* gen. nov., sp. nov., nitrate-reducing chemolithoautotrophs of the epsilon-Proteobacteria isolated from a deep-sea hydrothermal system in the Mid-Okinawa Trough. *Int J Syst Evol Microbiol* 2005; 55:925-933. [PubMed doi:10.1099/ijs.0.63480-0]
2. Takai K, Inagaki F, Nakagawa S, Hirayama H, Nunoura T, Sako Y, Nealson KH, Horikoshi K. Isolation and phylogenetic diversity of members of previously uncultivated ε-Proteobacteria in deep-sea hydrothermal fields. *FEMS Microbiol Lett* 2003; 218:167-174. [PubMed]
3. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie E, Keller K, Huber T, Dalevi D, Hu P, Andersen G. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. *Appl Environ Microbiol* 2006; 72:5069-5072. [PubMed doi:10.1128/AEM.03006-05]
4. Porter MF. An algorithm for suffix stripping. *Program: electronic library and information systems* 1980; 14:130-137.
5. Teske A, Hinrichs KU, Edgcomb VP, Gomez AD, Kysela DT, Sogin ML, Jannasch HW. Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities. *Appl Environ Microbiol* 2002; 68:1994-2007. [PubMed doi:10.1128/AEM.68.4.1994-2007.2002]
6. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. *Mol Biol Evol* 2000; 17:540-552. [PubMed]
7. Lee C, Grasso C, Sharlow MF. Multiple sequence alignment using partial order graphs. *Bioinformatics* 2002; 18:452-464. [PubMed doi:10.1093/bioinformatics/18.3.452]
8. Stamatakis A, Hoover P, Rougemont J. A rapid bootstrap algorithm for the RAxML Web servers. *Syst Biol* 2008; 57:758-771. [PubMed doi:10.1080/10635150802429642]
9. Pattengale ND, Alipour M, Bininda-Emonds ORP, Moret BME, Stamatakis A. How many bootstrap replicates are necessary? *Lect Notes Comput Sci* 2009; 5541:184-200. [doi:10.1007/978-3-642-02008-7_13]
10. Liolios K, Chen IM, Mavromatis K, Tavernarakis N, Hugenholtz P, Markowitz VM, Kyrpides NC. The Genomes On Line Database (GOLD) in 2009: status of genomic and metagenomic projects and their associated metadata. *Nucleic Acids Res* 2009; 38:D346-D354. [PubMed doi:10.1093/nar/gkp848]
11. Campbell BJ, Smith JL, Hanson TE, Klotz MG, Stein LY, Lee CK, Wu D, Robinson JM, Khouri HM, Eisen JA, et al. Adaptations to submarine hydrothermal environments exemplified by the genome of Natilia profundicola. *PLoS Genet* 2009; 5:e1000362. [PubMed doi:10.1371/journal.pgen.1000362]
12. Yarza P, Ludwig W, Euzéby J, Amman R, Schleifer KH, Glöckner FO, Rosselló-Mora R. Updates of the All-Species-Living-Tree Project based on 16S and 23S rRNA sequence analyses. *Syst Appl Microbiol* 2010; 33:291-299. [PubMed doi:10.1016/j.syapm.2010.08.001]
13. Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, Tatusova T, Thomson N, Allen MJ, Angiuoli SV, et al. The minimum information about a genome sequence (MIGS) specification. *Nat Biotechnol* 2008; 26:541-547. [PubMed doi:10.1038/nbt1360]
14. Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. *Proc Natl Acad Sci USA* 1990; 87:4576-4579. [PubMed doi:10.1073/pnas.87.12.4576]
15. Garrity GM, Bell JA, Lilburn T. Phyllum XIV. Proteobacteria phylog. nov. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT (eds), Bergey's Manual of Sys-
Nitratifractor salsuginis type strain (E9I37-1T)

tematic Bacteriology, Second Edition, Volume 2, Part B, Springer, New York, 2005, p. 1.

16. Validation List No. 107. List of new names and new combinations previously effectively, but not validly, published. *Int J Syst Evol Microbiol* 2006; 56:1-6. PubMed doi:10.1099/ijs.0.64188-0

17. Garrity GM, Bell JA, Lilburn T. Class V. Epsilonproteobacteria class. nov. In: Bergey’s Manual of Systematic Bacteriology, 2nd edn, vol. 2 (The Proteobacteria), part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria), p. 1145. Edited by D. Brenner, N. R. Krieg, J. T. Staley & G. M. Garrity. New York: Springer. 2005.

18. Miroshnichenko ML, L’Haridon S, Schumann P, Spring S, Bonch-Osmolovskaya EA, Jeanthon C, Stackebrandt E. *Caminibacter profundus* sp. nov., a novel thermophile of Nautiliales ord. nov. within the class ‘Epsilonproteobacteria’, isolated from a deep-sea hydrothermal vent. *Int J Syst Evol Microbiol* 2004; 54:41-45. PubMed doi:10.1099/ijs.0.02753-0

19. BAvA. Classification of bacteria and archaea in risk groups. *TRBA* 2010; 466:150.

20. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene Ontology: tool for the unification of biology. *Nat Genet* 2000; 25:25-29. PubMed doi:10.1038/75556

21. Takai K, Campbell BJ, Cary SC, Suzuki M, Oida H, Nunoura T, Hirayama H, Nakagawa S, Suzuki Y, Inagaki F, et al. Enzymatic and genetic characterization of carbon and energy metabolisms by deep-sea hydrothermal chemolithoautotrophic isolates of *Epsilonproteobacteria*. *Appl Environ Microbiol* 2005; 71:7310-7320. PubMed doi:10.1128/AEM.71.11.7310-7320.2005

22. Klenk HP, Göker M. En route to a genome-based classification of Archaea and Bacteria? *Syst Appl Microbiol* 2010; 33:175-182. PubMed doi:10.1016/j.syapm.2010.03.003

23. Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova NN, Kunin V, Goodwin L, Wu M, Tindall BJ, et al. A phylogeny-driven genomic encyclopaedia of *Bacteria* and *Archaea*. *Nature* 2009; 462:1056-1060. PubMed doi:10.1038/nature08656

24. List of growth media used at DSMZ: http://www.dsmz.de/microorganisms/media_list.php

25. Gemeinholzer B, Dröge G, Zetzsche H, Haszprunar G, Klénk HP, Güntsch A, Berendsohn WG, Wägele JW. The DNA Bank Network: the start from a German initiative. *Biopreservation and Biobanking* 2011; 9:51-55. doi:10.1089/bio.2010.0029

26. JGI website. http://www.jgi.doe.gov

27. The Phred/Phrap/Consed software package. http://www.phrap.com

28. Zerboi DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. *Genome Res* 2008; 18:821-829. PubMed doi:10.1101/gr.074492.107

29. Han C, Chain P. Finishing repeat regions automatically with Dupfinisher. In: Proceeding of the 2006 international conference on bioinformatics & computational biology. Arabnia HR, Valafar H (eds), CSREA Press. June 26-29, 2006: 141-146.

30. Lapidus A, LaButti K, Foster B, Lowry S, Trong S, Goltzman E. POLISHER: An effective tool for using ultra short reads in microbial genome assembly and finishing. AGBT, Marco Island, FL, 2008

31. Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. *BMC Bioinformatics* 2010; 11:119. PubMed doi:10.1186/1471-2105-11-119

32. Pati A, Ivanova NN, Mikhailova N, Ovchinnikova G, Hooper SD, Lykidis A, Kyrpides NC. GenePRIMP: a gene prediction improvement pipeline for prokaryotic genomes. *Nat Methods* 2010; 7:455-457. PubMed doi:10.1038/nmeth.1457

33. Markowitz VM, Ivanova NN, Chen IMA, Chu K, Kyrpides NC. IMG ER: a system for microbial genome annotation expert review and curation. *Bioinformatics* 2009; 25:2271-2278. PubMed doi:10.1093/bioinformatics/btp393