Clinical, cortical thickness and neural activity predictors of future affective lability in youth at risk for bipolar disorder: initial discovery and independent sample replication

Michele A. Bertocci1 · Lindsay Hanford1 · Anna Manelis1 · Satish Iyengar2 · Eric A. Youngstrom3 · Mary Kay Gill1 · Kelly Monk1 · Amelia Versace1 · Lisa Bonar1 · Genna Bebko1 · Cecile D. Ladouceur1 · Susan B Perlman1 · Rasim Diler1 · Sarah M. Horwitz4 · L. Eugene Arnold5 · Danella Hafeman1 · Michael J. Travis1 · Robert Kowatch6 · Scott K. Holland7 · Mary. A. Fristad5 · Robert L. Findling8 · Boris Birmaher1 · Mary L. Phillips1

Received: 12 March 2018 / Revised: 31 July 2018 / Accepted: 7 September 2018 © Springer Nature Limited 2018

Abstract
We aimed to identify markers of future affective lability in youth at bipolar disorder risk from the Pittsburgh Bipolar Offspring Study (BIOS) \((n = 41, \text{ age } = 14, \text{ SD } = 2.30) \), and validate these predictors in an independent sample from the Longitudinal Assessment of Manic Symptoms study (LAMS) \((n = 55, \text{ age } = 13.7, \text{ SD } = 1.9) \). We included factors of mixed/mania, irritability, and anxiety/depression (29 months post MRI scan) in regularized regression models. Clinical and demographic variables, along with neural activity during reward and emotion processing and gray matter structure in all cortical regions at baseline, were used to predict future affective lability factor scores, using regularized regression. Future affective lability factor scores were predicted in both samples by unique combinations of baseline neural structure, function, and clinical characteristics. Lower bilateral parietal cortical thickness, greater left ventrolateral prefrontal cortex thickness, lower right transverse temporal cortex thickness, greater self-reported depression, mania severity, and age at scan predicted greater future mixed/mania factor score. Lower bilateral parietal cortical thickness, greater right entorhinal cortical thickness, greater right fusiform gyral activity during emotional face processing, diagnosis of major depressive disorder, and greater self-reported depression severity predicted greater irritability factor score. Greater self-reported depression severity predicted greater anxiety/depression factor score. Elucidating unique clinical and neural predictors of future-specific affective lability factors is a step toward identifying objective markers of bipolar disorder risk, to provide neural targets to better guide and monitor early interventions in bipolar disorder at-risk youth.

Introduction
Bipolar disorder (BD) is a major psychiatric illness that is challenging to diagnose, especially in pediatric samples, due to similarities of symptoms with other disorders, and challenges with consistency of parent and self-reports. The incidence of...
BD is 1–3% of the population and, currently, risk for the development of BD is best predicted by genetics, with heritability rates from 59 to 87% [1, 2]. The absence of objective markers that are predictive of psychiatric outcomes hinders improvement in risk identification and the development of new, pathophysiologically based interventions for BD.

Affective lability, a sudden, exaggerated, unpredictable, and developmentally inappropriate change in emotion, is a key prodromal feature of BD [3–8], and is present in adults with BD even when euthymic [9]. Identified within the self-reported measures of affective lability for youth and adults are three specific factors: mixed/mania, irritability, and anxiety/depression [4, 10]. Youth with BD reported higher mania, irritability, and anxiety/depression factor scores than youth without BD [4]. While high scores on some of these factors are also present to a greater or lesser extent in other disorders in youth [11, 12], these affective lability factors are noted prodromal features of BD in youth, [5, 13–15] and point to underlying mechanisms of BD. Identifying neural predictors of future high scores on these affective lability factors in youth is thus a promising way forward to provide objective biological markers of future BD risk before diagnosable symptoms emerge, and can provide neural targets to guide and monitor interventions to delay or even prevent future mental health problems in BD-at-risk youth.

While there is a growing body of neuroimaging studies showing that aberrant prefrontal activity and connectivity are related to the development of BD, especially during emotion processing and regulation tasks [16–18], the neural basis of affective lability in general, and of its specific factors, is largely unknown. A recent study examining the neurocognitive correlates of affective lability in adults...
showed that current affective lability was related to deficits in executive functioning, presumed to involve prefrontal cortical areas [19]. In parallel, lower prefrontal cortical thickness [20, 21] and larger subcortical volumes [22], especially in the amygdala [22], are evident in individuals with BD relative to healthy individuals, along with higher prefrontal cortical thickness in at-risk populations relative to healthy [21]; and there is a large literature showing lower prefrontal cortical activity and elevated amygdala activity during a variety of emotion processing and emotional regulation tasks in youth and adults with BD [1]. Together, these patterns of aberrant prefrontal-amygdala structure, activity, and connectivity may underlie affective lability. Nonetheless, the extent to which aberrant prefrontal cortical-amygdala structure and function predict future affective lability remains unknown.

We recruited youth from the Bipolar Offspring Study (BIOS), an ongoing longitudinal study of youth across a range of genetic risk for BD [23–25]. We hypothesized that future affective lability factor scores of mixed/mania, irritability, and anxiety/depression, derived from affective lability scales [4, 10], would be predicted by: (1) neural function, measured by the magnitude of whole brain reward and emotion processing circuitry (Fig. 1); and (2) gray matter structure in regions supporting reward and emotion processing. We specifically hypothesized that lower prefrontal cortical thickness and activity and higher amygdala activity would predict greater future affective lability. The absence of previous neuroimaging studies of affective lability did not allow us to make specific hypotheses regarding relationships between neuroimaging measures and severity of specific affective lability factors. We also aimed to determine the relative proportion of future affective lability predicted by neural measures, over and above clinical and demographic measures. Finally, we aimed to replicate findings from the BIOS sample in an independent sample of youth from the Longitudinal Assessment of Manic Symptoms (LAMS) study.

Methods

Participants

Participants in the main analysis comprised BIOS youth with two levels of genetic risk for BD development: (1) offspring with a parent with BD (Offspring of Bipolar Parents, OBP, $n = 20$, age = 14.1(2.39)), with higher than normal risk for BD [26]; and (2) offspring with a parent with a non-BD Axis-1 disorder (Offspring of Community Psychiatric Control Parents, OCP, $n = 21$, age = 13.9 (2.28)), who have lower risk for BD than OBP [23, 24], but potentially higher risk [24, 27] than the healthy population.

| Table. 1 Clinical and demographic information at time of fMRI scan of BIOS and LAMS samples |
|---|---|---|---|---|
| BIOS $n = 41$ | LAMS $n = 55$ | Test statistic | p |
| Age | 14 (2.3) | 13.7 (1.9) | $t(94) = 0.575$ | 0.566 |
| Gender (female) | 19/41 | 25/55 | $\chi^2 = 0.007$ | 0.931 |
| IQ | 102.4 (11.1) | 104.3 (13.3) | $t(99) = 0.626$ | 0.931 |
| Lifetime diagnosis | depression | 4/41 | 16/55 | $\chi^2 = 5.3$ | 0.021* |
| Anxiety | 8/41 | 16/55 | $\chi^2 = 1.15$ | 0.284 |
| ADHD | 6/41 | 38/55 | $\chi^2 = 28.1$ | <0.001* |
| Medication | 6/41 | 37/55 | $\chi^2 = 24.2$ | <0.001* |
| Clinical scores at scan | | | |
| KMRS | 0.90 (1.6) | 4.2 (6.3) | $t(93.346) = -3.71$ | <0.001* |
| KDRS | 3.1 (5.9) | 3.4 (4.1) | $t(94) = -0.261$ | 0.795 |
| CALS | 9.2 (12.3) | 9.0 (10.6) | $t(94) = -0.117$ | 0.907 |
| SCARED | 11.0 (11.6) | 10.3 (10.1) | $t(94) = 0.292$ | 0.771 |
| MFQ | 9.8 (11.3) | 7.9 (7.3) | $t(64.4) = 0.964$ | 0.339 |
| Days between scan and follow-up | 899.68 (342.4) | 752.6 (193.9) | $t(58.9) = 2.5$ | 0.016* |

BIOS Bipolar Offspring Study, LAMS Longitudinal Assessment of Manic Symptoms study, KMRS Kiddie schedule of affective disorders mania rating scale – summary report, KDRS Kiddie Schedule of affective disorders depression rating scale – summary report, CALS Child affect lability scale – child report, SCARED Screen for child anxiety related emotional disorders – child report, MFQ mood and feelings questionnaire – child report

Numbers refer to mean (standard deviation) or proportion. *<0.05 [24, 27]. The participants in the validation study ($n = 55$, mean age = 13.7(1.9)) were youth with a variety of psychiatric disorders presenting with behavioral and emotional dysregulation recruited from the Longitudinal Assessment of Manic Symptoms (LAMS) study, previously described in detail [16, 28, 29], and in the supplementary information (SI) (Table 1). LAMS youth had more severe mania scores, were more likely to have a lifetime diagnosis of major depressive disorder, and had fewer days between scan and follow-up than BIOS youth (Table 1). Institutional Review Boards approved both studies. Parent/guardian consent and child assent were obtained.

Clinical assessments

BIOS youth

Child self-reports on the scan day included the Child Affective Lability Scale (CALS) [30]; the Screen for Child Anxiety...
Anxiety Related Emotional Disorders (SCARED) [31]; and the Mood and Feelings Questionnaire (MFQ), a validated measure of depressive symptoms [32]. Parent report of the CALS on scan day was also obtained. Assessments near the scan day (mean time between assessment and scan day $= 72.8$ days) included the Depression Rating Scale (KDRS) [33] and Mania Rating Scale (KMRS) [34] supplements from the Schedule for Affective Disorders and Schizophrenia for School-Age Children, Present and Lifetime Version, with questions from Washington University (K-SADS-PL-W), a well-validated clinician interview with good psychometric properties [33]. Psychiatric diagnoses

Table 2 Wholebrain task related activity from emotional face, reward, and loss processing tasks used as predictors in penalized regression models

k	MNI x	MNI y	MNI z	Region	Laterality	Brodmann area
				Emotional face processing task activity		
3306	-44	-22		Fusiform	Right	37
2060	-90	-14		Visual association cortex	Left	18
1197	-2	-20		Amygdala	Right	
330	-6	-20		Amygdala	Left	
10	-10	-30		Parahippocampus	Left	
				Reward processing task activity		
1131	26	44		Superior prefrontal cortex	Right	8
1060	-42	48		Parietal cortex	Right	40
570	-60	54		Parietal cortex	Left	39
558	28	32		Dorsolateral prefrontal cortex	Right	9
252	-30	-4		Insula	Left	
251	4	28	20	Posterior cingulate cortex	Right	23
224	36	20	2	Insula	Right	10
184	30	54	0	Medial prefrontal cortex	Right	21
116	64	-28	-12	Temporal cortex	Right	10
95	-34	54	4	Ventromedial prefrontal cortex	Left	10
43	-46	8	36	Superior prefrontal cortex	Left	8
43	-64	-30		Cerebellum	Left	
26	6	-74	46	Parietal cortex	Right	7
15	-38	50	-6	Ventromedial prefrontal cortex	Left	10
12	-10	-76	-28	Cerebellum	Left	
				Loss processing task activity		
691	50	-44	48	Parietal cortex	Right	40
483	6	26	44	Superior prefrontal cortex	Right	8
265	44	22	44	Superior prefrontal cortex	Right	8
134	-40	-64	52	Parietal cortex	Left	39
64	36	18	-2	Insula	Right	
37	2	-14	26	Posterior cingulate cortex	Right	23
33	68	-26	-8	Temporal cortex	Right	21
16	-36	-64	-30	Cerebellum	Left	
15	-34	54	4	Medial prefrontal cortex	Left	10
10	-32	52	24	Medial prefrontal cortex	Left	10
10	-30	18	2	Insula	Left	

Voxel-wise correction $p = 0.05$, cluster correction >10.

Note:

- M. A. Bertocci et al.
were confirmed by a licensed psychiatrist or psychologist, and included major depressive disorder (MDD), anxiety disorder (AnxD), and ADHD.

Affective lability measures were also obtained at follow-up interviews (TIME2) [(mean = 29.6 months (range: 12.2–52.4 months)] after neuroimaging scans. Owing to some participants aging into adulthood, both CALS and Affective Lability Scale (ALS) [10] measures were used at TIME2, hereafter: TIME2:ALS. Factors for the CALS and the ALS were previously identified [4, 10], and included: irritability, mixed/mania, and depression/anxiety. We calculated the mean question score across all questions for each factor (mixed/mania, irritability, and anxiety/depression); and used these as outcome measures (SI).

See SI for the following information: task descriptions, neuroimaging data acquisition, preprocessing, and first-level processing. LAMS clinical assessments, exclusion criteria, and proportion of LAMS youth with a parent with BD.

Data analysis

Mean factor score of TIME2:ALS mixed/mania, irritability, and anxiety/depression factors were dependent variables in three separate regularized regression analyses. The square root transformation was used, to adjust positively skewed data. Given that we had wide data and correlated predictor variables (r > 0.6), we used regularized regression with an elastic net for data selection and reduction using the GLMNET package in R [35]. This machine-learning regularization method shrinks coefficients toward zero and eliminates unimportant terms entirely [35–37], minimizing prediction error, reducing the chances of overfitting, and enforcing sparsity in the solution (SI).

TIME1 predictor variables acquired on or near scan-day included BOLD and cortical thickness neuroimaging measures (Table 2 and SI); TIME1:CALS mean factor scores: TIME1:mixed/mania, TIME1:irritability, and TIME1:anxiety/depression; TIME1:KMRS, TIME1:KDRS, TIME1:SCARED, TIME1:MFQ scores and diagnoses (TIME1: ADHD, TIME1:MDD, TIME1:AnxD); TIME1:age; TIME1:IQ; TIME1:sex; TIME1:medication status (taking versus not taking psychotropic medication); group (OBP, OCP); maternal education; handedness; and days between MRI scan-TIME2:ALS factors. Subsequently, using linear regression, we calculated the significance of, and r2 values associated with, each model.

Independent sample validation analysis

the models identified above in BIOS youth were tested using an independent group of high-risk youth from the LAMS study. We used a two-step procedure to test the utility of these findings in this independent sample.

1. We used the identified non-zero variables from BIOS youth in standard linear regression analyses. We reported the significance of the models, r2, and beta coefficients to show directions of relationships.
2. Given that the LAMS sample comprised youth with higher levels of psychopathology than BIOS youth, we compared LAMS youth with high and low parent-reported CALS at TIME1 (normative cutoff score = 9 [30]).

Results

BIOS participants

Greater mean score for the mixed/mania factor was predicted by greater cortical thickness in left pars orbitalis (coefficient = 0.399) and pars triangularis of the inferior frontal gyrus (coefficient = 0.455) [hereafter: left ventrolateral prefrontal cortex (vlPFC)]; lower thickness of the left precuneus (coefficient = −0.677) and right supramarginal gyrus (coefficient = −0.222); lower thickness of the right transverse temporal cortex (TTC; coefficient = −0.070); greater age (coefficient = 0.0002); greater TIME1:mixed/mania factor score (coefficient = 0.070); and greater TIME1:MFQ (coefficient = 0.005) self-report (Table 3A). These eight non-zero variables explained 67.2% of the variance in the mean score for the mixed/mania factor. Clinical variables explained 41.5%, and neuroimaging variables added 25.6%.

Greater mean score for the irritability factor was predicted by greater right fusiform gyral activity during emotional face processing (coefficient = 0.001); greater right entorhinal cortical thickness (coefficient = 0.213); lower left precuneus cortical thickness (coefficient = −0.239); greater TIME1:MFQ score (coefficient = 0.007); and MDD diagnosis at TIME1 (coefficient = 0.016) (Table 3B). These non-zero variables explained 62.5% of the variance in the mean score for the irritability factor. Clinical variables explained 46.9%, and neuroimaging variables added 15.7%.

Greater mean score for the anxiety/depression factor was predicted by greater self-reported TIME1:MFQ score (coefficient = 0.004), which predicted 28.7% of the variance (Table 3C).

Independent LAMS sample validation

1. (Table 3 for beta coefficients; SI for ANOVA tables). For the mixed/mania factor, the eight non-zero variables above in BIOS youth identified a significant model in the LAMS sample (F(8,45) = 3.71, p = 0.002), and explained 39.8% of the variance. Clinical
Table 3 Beta coefficients for regularized regression models for BIOS sample

Anatomical region	BIOS non-zero variables selected from regularized regression	BIOS standardized beta, \(n = 41 \)	LAMS standardized beta, \(n = 54 \)	LAMS CALS-P score under 9, \(n = 18 \)	LAMS CALS-P score over 9, \(n = 35 \)	
TIME1:mixed/mania factor score	0.07	0.237	0.432	0.454	0.364	
TIME1:MFQ	0.01	0.228	0.068	−0.635	0.151	
Age	0.0002	0.116	−0.014	0.410	0.053	
vlPFC	Left pars orbitalis thickness	0.4	0.258	−0.257	0.037	−0.371
vlPFC	Left pars triangularis thickness	0.46	0.205	0.119	0.885	−0.077
Parietal cortex	Right supramaginal thickness	−0.22	−0.204	−0.043	−0.424	0.011
Parietal cortex	Left precuneus thickness	−0.68	−0.186	0.077	0.305	0.078
Temporal cortex	Left transverse temporal cortex	−0.07	−0.174	−0.123	0.273	−0.245

A: Mean mania/mixed factor score

\(F(8,32) = 8.18, p < 0.001^* \)
\(R^2 = 67.2 \)

B: Mean irritability factor score

| Right fusiform BOLD activity | mni: 42, −44, −22 | 0.001 | 0.264 | 0.184 | 0.171 | 0.331 |
| Right entorhinal cortex | 0.213 | 0.3 | 0.122 | −0.019 | 0.097 |

\(F(5.35) = 11.67, p < 0.001^* \)
\(F(5.48) = 4.61, p = 0.002^* \)
\(F(5,12) = 0.32, p = 0.889 \)
\(F(5,29) = 5.39, p = 0.001^* \)
\(R^2 = 62.5 \)
\(R^2 = 32.4 \)

C: Mean anxiety/depression factor score

\(F(1.40) = 15.66, p < 0.001^* \)
\(F(1,53) = 6.98, p = 0.011^* \)
\(R^2 = 28.7 \)
\(R^2 = 11.9 \)

Beta coefficients for GLM regression models for BIOS, LAMS, and split LAMS samples.*p<.05
variables and age explained 31.5%, and neuroimaging variables added 8.3%, in this independent sample. For the irritability factor, the five non-zero variables above in BIOS youth identified a significant model in the LAMS sample (F(5,48) = 4.61, p = 0.002), and explained 32.4% of the variance. Clinical variables explained 21.1%, and neuroimaging variables added 11.3%. The depression severity variable explained 11.8% of the anxiety/depression factor mean score (F(1,52) = 6.97, p = 0.011).

The directions of the majority of the beta coefficients for the predictors of the three factors in the BIOS and the LAMS samples were consistent (Table 3). For the future mixed/mania factor, directions of predictive effects were consistent in both BIOS and LAMS youth for: TIME1:MFQ score, TIME1:MFQ factor score, left pars triangularis, right supramarginal, and right TTC thickness. For the future irritability factor, directions of predictive effects were consistent in both samples for: TIME1:MFQ score, right fusiform gyral activity, and right entorhinal cortical thickness. For the future anxiety/depression factor, directions of predictive effects were consistent for TIME1:MFQ score.

Opposite directions of predictive relationships in LAMS and BIOS youth were shown for the following relationships and were not the result of multicollinearity (all tolerance > 0.728): left pars orbitalis thickness-mixed/mania factor score, left precuneus thickness-mixed/mania factor score, MDD diagnosis-irritability factor score, and, weakly, for age-mixed/mania factor score (Table 3).

2. Less than 1/3 (18/55) of the LAMS youth had TIME1:CALP scores below the cutoff score = 9 (mean = 4.78 SD = 3.14), similar to TIME1:CALP scores for all BIOS youth (mean = 5.45 SD = 7.79; t(56) = 0.352, p = 0.726). Only 6/41 (15%) of BIOS youth had a TIME1:CALP score above the cutoff score = 9. LAMS youth with lower TIME1:CALP scores showed directions of predictor-factor score relationships consistent with those of BIOS youth for: (1) left pars orbitalis thickness-mixed/mania factor score; (2)
age-mixed/mania factor score, (3) MDD diagnosis-irritability factor score (Table 3). LAMS youth with higher TIME1:CALS-P scores (cutoff > 9, n = 39, mean = 22.27 SD = 1.97) showed opposite directions of relationships to those of BIOS youth, except for the relationship between age and mixed/mania factor score. Here, positive relationships were observed between these measures in both LAMS subgroups (Table 3).

To determine whether the different relationships in high- and low-scoring TIME1:CALS-P LAMS youth were due to differences in left pars orbitalis cortical thickness, age and MDD diagnosis, the magnitudes of these predictors were compared between LAMS TIME1:CALS-P subgroups. None differed significantly between LAMS subgroups (Fig. 2b).

Left precuneus thickness was negatively related to both future mixed/mania and irritability factor scores in BIOS youth, but these relationships were positive for all LAMS youth and for both TIME1:CALS-P subgroups (Table 3). There were no differences in left precuneus cortical thickness between LAMS TIME1:CALS-P subgroups (Fig. 2b).

Discussion

In youth at risk for BD, scores on affective lability factors two years after an MRI scan (mean 29 and 24.8 months) in two independent youth samples were predicted by unique combinations of clinical and neural measures at scan, despite differing processing methods. These findings indicate neural markers of specific prodromal features of BD and can help elucidate underlying neural mechanisms predisposing to BD in youth.

In BIOS youth, future mixed/mania and future irritability factor scores were predicted by lower parietal cortical thickness. This parallels findings of lower parietal cortical thickness in adults with BD, BD at-risk youth and adults, and depressed youth relative to healthy adults and youth [20, 38–42]. The fronto-parietal-cingulo network is implicated in phonological decision making [43] and executive functioning [44, 45], and functional dysregulation in this network is associated with psychopathology [16, 17]. Thus, lower parietal cortical thickness may lead to lower executive functioning and emotional regulation capacity and predispose to higher future mixed/mania and irritability.

Greater left vPFC cortical thickness predicted greater future mixed/mania factor score in BIOS youth. Greater left prefrontal cortical thickness was reported in BD relative to healthy adults [46, 47]. Additionally, longitudinal increases in thickness of the left inferior frontal gyrus, which includes the left vPFC, were reported in at-risk young adults who later developed MDD, potentially the result of insufficient synaptic pruning, although change in cortical thickness was unrelated to depression severity [48]. Furthermore, abnormally elevated left vPFC activity during uncertain reward expectancy was reported in adults with BD across different mood episodes [49, 50]. Abnormally increased cortical thickness in the left vPFC may thus predispose to risk for future BD and mood disorders in general, and abnormally elevated reward sensitivity, a characteristic of BD [1, 49–51].

Lower right TTC cortical thickness [52] predicted greater future mixed/mania factor score in BIOS youth, paralleling findings of lower cortical thickness in this region in pediatric-onset depression [39]. The right TTC is involved in social processing, specifically eye gaze interpretation and attribution [53], and auditory processing [54]. Lower right TTC cortical thickness may thus predispose to abnormalities interpreting emotional cues, and to a range of disorders characterized by these abnormalities, including BD, MDD, autism spectrum disorders, and schizophrenia [55–58]. The combination of the above cortical thickness measures may result in difficulty regulating sensory social processing, behaviors, and emotions in rewarding contexts, and thereby predispose to hypo/mania in at-risk youth. Importantly, all the above neural measures, together with TIME1 affective lability and TIME1 depression severity, explained 67.2% of the variance in the mixed/mania factor, with neuroimaging variables contributing over one-fourth of the explained variance.

Predictors of greater future irritability factor score explained 62.5% of the variance, nearly one-fourth of which were explained by neuroimaging variables, and included, along with lower parietal thickness discussed above, greater depression severity and MDD diagnosis, greater right fusiform activity during emotion processing, and greater right entorhinal cortical thickness. The fusiform gyrus, especially right fusiform gyrus [59], supports face processing, social communication [60], and facial identity processing [61]. Normative decreases in right fusiform activity to emotional faces with age are absent in youth high in irritability [62], and may reflect an abnormal perception of facial stimuli as potentially threatening. The association of greater right fusiform gyral activity to emotional faces and greater future irritability may reflect this abnormal process. The entorhinal cortex is a key component of the medial temporal lobe episodic memory network [63]. This region also has connections with cortical regions implicated in emotion and reward processing [64], and encodes motivational aspects of memory [65]. Greater entorhinal cortical thickness may thus predispose to enhanced encoding of emotionally-salient memories, and higher levels of irritability in youth. Lower parietal cortical thickness, greater right fusiform gyral activity, and greater right entorhinal cortical thickness, neural regions with known reciprocal connections [66, 67], may predispose to enhanced processing of ambiguous/threatening emotional faces, greater
encoding of emotionally salient memories, and decreased capacity to regulate these processes, resulting in greater future irritability in at-risk youth.

It is unclear why neuroimaging measures of reward, emotion processing, and cortical thickness did not predict anxiety/depression factor score. This factor includes just four questions from the CALS and five from the ALS focusing on physiological response to anxious distress and arousal, and thus may represent a non-specific distress measure not associated with the specific neural measures included in the present analyses.

TIME1:mixed/mania factor score was a non-zero predictor of future mixed/mania factor score. Interestingly, the other TIME1 factor scores did not predict the repeated future factor scores, and age was a non-zero predictor only of future mixed/mania factor score. These findings indicate increasing severity of mixed/mania, but not irritability or anxiety/depression, with greater age in BIOS youth, and highlight the importance of the mixed/mania factor as a potential risk factor for future BD [14].

Greater self-reported depression, predicted all three affective lability factors suggesting, as proposed by the Research Domain Criteria (RDoC), that some constructs, such as depressive symptoms, are common risk factors for different mood and anxiety disorders.

Importantly, we confirmed the validity of the predictor models for each affective lability factor in an independent sample of youth. All three validation models were significant, and explained portions of the variance in outcome measures, particularly for the mixed/mania and irritability factor scores. Although the majority of the directions of the relationships were consistent across BIOS and LAMS youth, there were some discrepancies. The relationship between left pars orbitalis thickness and future mean mixed/mania factor score differed across BIOS and LAMS youth, and was related to TIME1:CALS-P severity in LAMS youth. 65% (35/54) of LAMS youth, but only 15% (6/41) of BIOS youth, had TIME1:CALS-P scores above the normative cutoff, indicating greater illness severity in LAMS youth. LAMS youth with lower CALS-P scores showed the same positive predictive relationship between the two variables as BIOS youth, while LAMS youth with CALS-P scores above the normative cutoff showed a negative relationship between these variables. There were no differences in TIME1 left pars orbitalis thickness between LAMS subgroups, however suggesting subtle differences that warrant further study. Previous findings indicate greater right vlPFC cortical thickness in BD at-risk samples, but lower right vlPFC cortical thickness in individuals with BD, versus healthy individuals [21]. These findings were interpreted as greater cortical thickness being a potential compensation marker in at-risk individuals, with lower cortical thickness reflecting toxicity and illness-related burdens to the prefrontal cortex. Thus, it is possible that toxicity effects of higher CALS-P scores predispose to reduced left pars orbitalis thickness and higher mixed/mania factor scores in the future, but this needs to be determined in further studies.

As in BIOS youth, TIME1:age positively predicted mixed/mania factor score in low and higher CALS-P LAMS subgroups. In all LAMS youth, the weak negative relationship between these measures is intriguing, and may have resulted from a suppression effect of another predictor variable on the age-mixed/mania factor relationship [68]. Having an MDD diagnosis predicted greater future irritability factor score in the low CALS-P LAMS subgroup, as in BIOS youth, but lower future irritability factor score in the higher CALS-P LAMS subgroup. The combination of higher than normative CALS-P score and MDD diagnosis predicting lower future irritability in youth may reflect lower risk for future BD and associated irritability in this LAMS subgroup, but this needs to be replicated [69].

LAMS youth, unlike BIOS youth, showed positive predictive relationships for left precuneus thickness and both future mixed/mania and irritability factor scores. These findings were not related to CALS-P severity, however, as both LAMS CALS-P subgroups showed positive relationships between left precuneus cortical thickness and factor scores, and had similar left precuneus thickness. This may be related to the effects of psychotropic medications on precuneus function [70–72], as LAMS youth were more likely to be medicated. The absence of an association between future factor scores and amygdala activity may suggest that changes in amygdala activity, rather than baseline amygdala activity, are related to future symptom measures [73]. Further studies are needed to understand the above relationships.

There were limitations to the study. The use of both adult and child versions of the ALS was necessitated by participants aging into adulthood. Independent investigators, however, identified three similar factors within the two scales [10, 31]. We focused on measures of reward, emotion processing, and cortical thickness that have shown key relationships with BD development. Other neuroimaging measures, including global measures of cortical thickness and volume, and more refined gray matter structural atlas-defined cortical subregions (e.g., insula) and subcortical regions (e.g., thalamus and striatum) can be neural predictors in future studies. Some of these measures may be related to anxiety/depression factor scores [74–76].

The validation sample was multisite; adding site to the validation model did not improve model fit (all $p’s > 0.484$). Some participants were medicated. Medication use was not a non-zero predictor of outcomes, however, and was not correlated with outcome variables (all $p’s > 0.347$; SI).

We show for the first time that future affective lability factor scores are predicted by unique combinations of clinical measures, cortical thickness and neural activity in
both an initial and a second, independent youth sample, regardless of processing methods. In both samples, over one-fourth of the explained variance of mixed/mania and irritability factors were explained by neural measures, while the anxiety/depression factor was not predicted by neural measures utilized in this analysis. Together, our findings across two youth samples suggest that combinations of neural and clinical measures may indicate risk for future BD, and provide neural markers to guide and monitor new, early interventions targeting these markers to improve their effectiveness in BD at-risk youth.

Funding BIOS is supported by the National Institute of Mental Health grant R01 MH060952-16 (Birmaher and Phillips, University of Pittsburgh). LAMS was supported by the National Institute of Mental Health grants: 2R01 MH73953-09A1 (Birmaher and Phillips, University of Pittsburgh), 2R01 MH73816-09A1 (Holland, Children’s Hospital Medical Center), 2R01 MH73967-09A1 (Findling, Case Western Reserve University), and 2R01 MH73801-09A1 (Fristad, Ohio State University), and the Pittsburgh Foundation (Phillips).

Compliance with ethical standards

Conflict of interest BB has or will receive royalties from for publications from Random House, Inc (New hope for children and teens with bipolar disorder) and Lippincott Williams & Wilkins (Treating Child and Adolescent Depression). He is employed by the University of Pittsburgh and the University of Pittsburgh Medical Center and receives research funding from NIMH. MLP is a consultant for Roche Pharmaceuticals. LEA has received research funding from Curemark, Forest, Lilly, Neuropharm, Novartis, Noven, Shire, Supernus, and YoungLiving (as well as NIH and Autism Speaks) and has consulted with or been on advisory boards for Arbor, Gowlings, Ironshore, Neuropharm, Novartis, Noven, Organon, Otsuka, Pfizer, Roche, Sea-side Therapeutics, Sigma Tau, Shire, Tris Pharma, and Waypoint and received travel support from Noven. RLF receives or has received research support, acted as a consultant and/or served on a speaker’s bureau for Aevi, Akili, Alcobra, Amerex, American Academy of Child & Adolescent Psychiatry, American Psychiatric Press, Bracket, Ephaa Solutions, Forest, Genentech, Guilford Press, Ironshore, Johns Hopkins University Press, KemPharm, Lundbeck, Merck, NIH, Neurim, Nuvolution, Otsuka, PCORI, Pfizer, Physicians Postgraduate Press, Purdue, Roche, Sage, Shire, Sunovion, Supernus Pharmaceuticals, Syneurx, Teva, Tris, TouchPoint, Validus, and WebMD. MAF receives royalties from Guilford Press, American Psychiatric Press, and CFPSI. RK is a consultant for Forest Pharmaceutical and the REACH Foundation. He is employed by the Ohio State Wexner Medical Center. EAY has consulted with Pearson, Western Psychological Services, Lundbeck and Otsuka about assessment, as well as having grant support from the NIH. All the remaining authors declare that they have no conflict of interest.

References

1. Phillips ML, Swartz HA. A critical appraisal of neuroimaging studies of bipolar disorder: toward a new conceptualization of underlying neural circuitry and a road map for future research. Am J Psychiatry. 2014;171:829–43.
2. Singh MK, Chang KD. Brain structural response in individuals at familial risk for bipolar disorder: a tale of two outcomes. Biol Psychiatry. 2013;73:109–10.
3. Axelsson D, Goldstein B, Goldstein T, Monk K, Yu H, Hickey MB, et al. Diagnostic precursors to bipolar disorder in offspring of parents with bipolar disorder: a longitudinal study. Am J Psychiatry. 2015;172:638–46. https://doi.org/10.1176/appi.ajp.2014. 14010035
4. Birmaher B, Goldstein BI, Axelsson DA, Monk K, Hickey MB, Fan J, et al. Mood liability among offspring of parents with bipolar disorder and community controls. Bipolar Disord. 2013;15:253–63. https://doi.org/10.1111/bdi.12060
5. Hafeman DM, Merranko J, Axelsson D, Goldstein BI, Goldstein T, Monk K, et al. Toward the definition of a bipolar prodrome: dimensional predictors of bipolar spectrum disorders in at-risk youths. Am J Psychiatry. 2016;173:695–704. https://doi.org/10.1176/appi.ajp.2015.15040414
6. Howes OD, Lim S, Theologos G, Yung AR, Goodwin GM, McGuire P. A comprehensive review and model of putative prodromal features of bipolar affective disorder. Psychol Med. 2010;41:1567–77. https://doi.org/10.1017/S0033291710001790
7. Angst J, Gamma A, Endrass J. Risk factors for the bipolar and depression spectra. Acta Psychiatric Scand Suppl. 2003;108:15–9.
8. Aas M, Pedersen G, Henry C, Bjella T, Bellivier F, Leboyer M, et al. Psychometric properties of the Affective Liability Scale (54 and 18-item version) in patients with bipolar disorder, first-degree relatives, and healthy controls. J Affect Disord. 2015;172:375–80. https://doi.org/10.1016/j.jad.2014.10.028
9. Henry C, Van den Bulke D, Bellivier F, Roy I, Swendsen J, M’Bailara K, et al. Affective liability and affect intensity as core dimensions of bipolar disorders during euthymic period. Psychiatry Res. 2008;159:1–6. https://doi.org/10.1016/j.psychres.2005.11.016
10. Weibel S, Micoulaud-Franch J-A, Brandejsky J, Lopez R, Prada P, Nicastro R, Ardu S, Dayer A, Lançon C, Perroud N. Psychometric Properties and Factor Structure of the Short Form of the Affective Liability Scale in Adult Patients With ADHD. JAMA Psychiatry. 2017;70:107054717690808.
11. Harvey PD, Greenberg BR, Serper MR. The Affective Liability Scales: development, reliability, and validity. J Clin Psychol. 1989;45:786–93.
12. Stringaris A, Goodman R. Mood liability and psychopathology in youth. Psychol Med. 2008;39:1237–45. https://doi.org/10.1017/S0033291710004662
13. Leopold K, Ritter P, Correll CU, Marx C, Özgürdal S, Juckel G, et al. Risk constellations prior to the development of bipolar disorders: rationale of a new risk assessment tool. J Affect Disord. 2012;136:1000–10.
14. Hafeman DM, Merranko J, Goldstein TR, et al. Assessment of a person-level risk calculator to predict new-onset bipolar spectrum disorder in youth at familial risk. JAMA Psychiatry. 2017;74:841–7. https://doi.org/10.1001/jamapsychiatry.2017.1763
15. Fergus EL, Miller RB, Luckenbaugh DA, Leverich GS, Findling RL, Speer AM, et al. Is there progression from irritability/dyscontrol to major depressive and manic symptoms? A retrospective community survey of parents of bipolar children. J Affect Disord. 2003;77:71–78.
16. Bertocci MA, Bebko G, Olsino T, Fournier J, Hinze AK, Bonar L, et al. Behavioral and emotional dysregulation trajectories marked by prefrontal-amygadala function in symptomatic youth. Psychol Med. 2014;27:1–13.
17. Bertocci MA, Bebko GM, Mullin BC, Langenecker SA, Ladouceur CD, Almeida JRC, et al. Abnormal anterior cingulate cortical activity during emotional n-back task performance distinguishes bipolar from unipolar depressed females. Psychol Med. 2011;42:1417–28. https://doi.org/10.1017/S003329171100242X
18. Hafeman D, Bebko G, Bertocci MA, Fournier JC, Chase HW, Bonar L, et al. Amygdala-prefrontal cortical functional connectivity during implicit emotion processing differentiates youth...
with bipolar spectrum from youth with externalizing disorders. J Affect Disord. 2017;208:94–100. https://doi.org/10.1016/j.jad.2016.09.064

19. Aminoff SR, Jensen J, Lagerberg TV, Hellvin T, Sundet K, Andreassen OA, et al. An association between affective lability and executive functioning in bipolar disorder. Psychiatry Res. 2012;198:58–61. https://doi.org/10.1016/j.psychres.2011.12.044

20. Lan MJ, Chhery BT, Oquendo MA, Sublette ME, Sullivan G, Mann JJ, et al. Cortical thickness differences between bipolar depression and major depressive disorder. Bipolar Disord. 2014;16:378–88. https://doi.org/10.1111/bdi.12175

21. Hajek T, Cullis J, Novak T, Kopecck M, Blagdon R, Propper L, et al. Brain structural signature of familial predisposition for bipolar disorder: replicable evidence for involvement of the right inferior frontal gyrus. Biol Psychiatry. 2013;73:144–52. https://doi.org/10.1016/j.biopsych.2012.06.015

22. Strakowski SM, DelBello MP, Sax KW, Zimmerman ME, Shear PK, Hawkins JM, et al. Brain magnetic resonance imaging of structural abnormalities in bipolar disorder. Arch Gen Psychiatry. 1999;56:254–60.

23. Birmaher B, Axelson D, Goldstein B, Monk K, Kalas C, Obreja M, et al. Psychiatric disorders in preschool offspring of parents with bipolar disorder: the Pittsburgh Bipolar Offspring Study (BIOS). Am J Psychiatry. 2010;167:321–30. https://doi.org/10.1176/appi.ajp.2009.09070977

24. Birmaher B, Axelson D, Monk K, Kalas C, Goldstein B, Hickey MB, et al. Lifetime psychiatric disorders in school-aged offspring of parents with bipolar disorder: the Pittsburgh Bipolar Offspring study. Arch Gen Psychiatry. 2009;66:287–96. https://doi.org/10.1001/archgenpsychiatry.2008.546

25. Goldstein BI, Shamseddien W, Axelson DA, Kalas C, Monk K, Brent DA, et al. Clinical, demographic, and familial correlates of bipolar spectrum disorders among offspring of parents with bipolar disorder. J Am Acad Child Adolesc Psychiatry. 2010;49:388–96.

26. Birmaher B, Axelson D, Monk K, Kalas C, Goldstein B, Hickey MB, et al. Lifetime psychiatric disorders in school-aged offspring of parents with bipolar disorder: the Pittsburgh Bipolar Offspring study. Arch Gen Psychiatry. 2009;66:287–96.

27. Smoller JW, Finn CT. Family, twin, and adoption studies of bipolar disorder. Am J Med Genet Part C Semin Med Genet. 2003;123C:48–58. https://doi.org/10.1002/jamc.20013

28. Bebko G, Bertocci MA, Fournier JC, Hinze AK, Bonar L, Almeida JR, et al. Parsing dimensional vs diagnostic category related patterns of reward circuitry function in behaviorally and emotionally dysregulated youth in the longitudinal assessment of manic symptoms study. JAMA Psychiatry. 2014;71:71–80.

29. Perlman SB, Fournier JC, Bebko G, Bertocci MA, Hinze AK, Bonar L, et al. Emotional face processing in pediatric bipolar disorder: evidence for functional impairments in the fusiform gyrus. J Am Acad Child Adolesc Psychiatry. 2013;52:1314–25.e3

30. Gerson AC, Gerring JP, Freund L, Joshi PT, Capozzoli J, Brady K, et al. The Children’s Affective Lability Scale: a psychometric evaluation of reliability. Psychiatry Res. 1996;65:189–98. https://doi.org/10.1016/S0165-1781(96)02851-X

31. Birmaher B, Brent DA, Chiappetta L, Bridge J, Monga S, Baugh M. Psychometric properties of the Screen for Child Anxiety Related Emotional Disorders (SCARED): a replication study. J Am Acad Child Adolesc Psychiatry. 1999;38:1230–6. https://doi.org/10.1097/00004583-199910000-00011

32. Angold A, Costello EJ, Messer SC, Pickles A. Development of a short questionnaire for use in epidemiological studies of depression in children and adolescents. International Journal of Methods in Psychiatric Research. 1995;5:237–249.

33. Kaufman J, Birmaher B, Brent DA, Rao U, Flynn C, Moreci P, et al. Schedule for Affective Disorders and Schizophrenia for School-age Children-present and Lifetime Version (K-SADS-PL): initial reliability and validity data. J Am Acad Child Adolesc Psychiatry. 1997;36:980–8.

34. Axelson DA, Birmaher B, Brent DA, Wassick S, Hoover C, Bridge J, et al. A preliminary study of the Kiddie Schedule for Affective Disorders and Schizophrenia for School-age Children mania rating scale for children and adolescents. J Child Adolesc Psychopharmacol. 2003;13:463–70.

35. Friedman JH, Hastie T, Tibshirani R. glmnet: lasso and elastic-net regularized generalized linear models. 2014. http://CRAN-R-projectorg/package=glmnetRpackageversion2.0.2.

36. Tibshirani R. Regression shrinkage and selection via the lasso. J Roy Stat Soc Ser B (Methodol). 1996;58:267–88. https://doi.org/10.2307/2346178

37. Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw. 2010;33:1–22.

38. Ferro A, Bonivento C, Delvecchio G, Bellani M, Perlini C, Dusi N, et al. Longitudinal investigation of the parietal lobe anatomy in bipolar disorder and its association with general functioning. Psychiatry Res. 2017;267:22–31. https://doi.org/10.1016/j.psychres.2017.06.010

39. Jaworska N, MacMaster FP, Gaxiola I, Cortese F, Goodyear B, Ramasubbu R. A preliminary study of the influence of age of onset and childhood trauma on cortical thickness in major depressive disorder. BioMed Res. Int. 2014;2014:410472.

40. Hatton SN, Lagopoulos J, Hermens DF, Scott E, Hickie IB, Bennett MR. Cortical thinning in young psychosis and bipolar patients correlate with common neurocognitive deficits. Int J Bipolar Disord. 2013;1:13.

41. Hanford LC, Sassi RB, Minuzzi L, Hall GB. Cortical thickness in symptomatic and asymptomatic bipolar offspring. Psychiatry Res. 2016;251:26–33. https://doi.org/10.1016/j.psychres.2016.04.007

42. Peterson BS, Warner V, Bansal R, Zhu H, Hao X, Liu J, et al. Cortical thinning in persons at increased familial risk for major depression. Proc Natl Acad Sci USA. 2009;106:6273–8. https://doi.org/10.1073/pnas.0805541106

43. Hartwigsen G, Baumgaertner A, Price CJ, Koehnke M, Ulmer S, Siebner HR. Phonological decisions require both the left and right supramarginal gyr. Proc Natl Acad Sci. 2010;107:16494–9.

44. Blakemore S-J, Choudhury S. Development of the adolescent brain: implications for executive function and social cognition. J Child Psychol Psychiatry. 2006;47:296–312. https://doi.org/10.1111/j.1469-7610.2006.01611.x

45. Bush G. Cingulate, Frontal, and parietal cortical dysfunction in attention-deficit/hyperactivity disorder. Biol Psychiatry. 2011;69:1160–7. https://doi.org/10.1016/j.biopsych.2011.01.022

46. Maller JJ, Thaveenthiran P, Thomson RH, McQueen S, Fitzgerald PB. Volumetric, cortical thickness and white matter integrity alterations in bipolar disorder type I and II. J Affect Disord. 2014;169:118–27.

47. Hanford LC, Nazaror A, Hall GB, Sassi RB. Cortical thickness in bipolar disorder: a systematic review. Bipolar Disord. 2016;18:4–18. https://doi.org/10.1111/bdi.12362

48. Papmeyer M, Giles S, Sussmann JE, Kielsy S, Stewart T, Lawrie SM, et al. Cortical thickness in individuals at high familial risk of mood disorders as they develop major depressive disorder. Biol Psychiatry. 2015;78:58–66. https://doi.org/10.1016/j.biopsych.2014.10.018

49. Chase HW, Nusslock R, Almeida JR, Forbes EE, LaBarbara EJ, Phillips ML. Dissociable patterns of abnormal frontal cortical activation during anticipation of an uncertain reward or loss in bipolar versus major depression. Bipolar Disord. 2013;15:839–54. https://doi.org/10.1111/bdi.12132
orbitofrontal cortical activity during reward anticipation in euthymic bipolar disorder adults. Bipolar Disord. 2012;14:249–60. https://doi.org/10.1111/j.1399-5618.2012.01012.x

51. Phillips ML, Drevets WC, Rauch SL, Lane R. Neurobiology of emotion perception II: implications for major psychiatric disorders. Biol Psychiatry. 2003;54:515–28.

52. Lauter JL, Herscovitch P, Formby C, Raichle ME. Tonotopic organization in human auditory cortex revealed by positron emission tomography. Hear Res. 1985;20:199–205.

53. Wicker B, Perrett DJ, Baron-Cohen S, Decety J. Being the target of another’s emotion: a PET study. Neuropsychologia. 2003;41:139–46.

54. Howard MA, Volkov I, Mirsky R, Garell P, Noh M, Granner M, et al. Auditory cortex on the human posterior superior temporal gyrus. J Comp Neurol. 2000;416:79–92.

55. Macdonald H, Rutter M, Howlin P, Rios P, Conteur AL, Evered C, et al. Recognition and expression of emotional cues by autistic and normal adults. J Child Psychol Psychiatry. 1989;30:865–77. https://doi.org/10.1111/j.1469-7610.1989.tb00288.x

56. Mandal MK, Pandey R, Garell P, Noh M, Granner M, et al. Auditory cortex on the human posterior superior temporal gyrus. J Comp Neurol. 2000;416:79–92.

57. Macdonald H, Rutter M, Howlin P, Rios P, Conteur AL, Evered C, et al. Recognition and expression of emotional cues by autistic and normal adults. J Child Psychol Psychiatry. 1989;30:865–77. https://doi.org/10.1111/j.1469-7610.1989.tb00288.x

58. Mandal MK, Pandey R, Garell P, Noh M, Granner M, et al. Auditory cortex on the human posterior superior temporal gyrus. J Comp Neurol. 2000;416:79–92.

59. McCarthy G, Puce A, Gore JC, Allison T. Face-speciﬁc processes in the human fusiform gyrus. J Cogn Neurosci. 1997;9:605–10.

60. Haxby JV, Hoffman EA, Gobbini MI. Human neural systems for face recognition and social communication. Biol Psychiatry. 2002;51:59–67. https://doi.org/10.1016/S0006-3223(01)01330-0

61. Hoffman EA, Haxby JV. Distinct representations of eye gaze and identity in the distributed human neural system for face perception. Nat Neurosci. 2000;3:80.

62. Karim HT, Perlman SB. Neurodevelopmental maturation as a function of irritable temperament. Hum Brain Mapp. 2017;38:5307–21. https://doi.org/10.1002/hbm.23742

63. Eichenbaum H, Yonelinas AR, Ranganath C. The medial temporal lobe and recognition memory. Annu Rev Neurosci. 2007;30:123–52. https://doi.org/10.1146/annurev.neuro.30.051606.094328

64. Navarro Schröder T, Haak KV, Zaragoza Jimenez NI, Beckmann CF, Doeller CF. Functional topography of the human entorhinal cortex. eLife. 2015;4:e06738 https://doi.org/10.7554/eLife.06738

65. Schultz H, Sommer T, Peters J. The role of the human entorhinal cortex in a representational account of memory. Front Human Neurosci 2015;9 https://doi.org/10.3389/fnhum.2015.00628.