Complementation and anti-complementation in intuitionistic anti-fuzzy graphs

R. Muthuraj, V. V. Vijesh and S. Sujith

Abstract
In this paper, we define the notion of intuitionistic anti-fuzzy graphs and their special cases. We illustrate the concepts regarding properties of intuitionistic anti-fuzzy graphs with some examples. Also, we introduce the concept of complement and anti-complement of intuitionistic anti-fuzzy graphs and prove some of their properties.

Keywords
Intuitionistic anti-fuzzy graphs, intuitionistic anti-fuzzy subgraphs, \((\mu, \gamma)\)-degrees of vertices, strong intuitionistic anti-fuzzy graphs, regular intuitionistic anti-fuzzy graph, complement of intuitionistic anti-fuzzy graphs, anti-complement of intuitionistic anti-fuzzy graphs.

1 Introduction
The concept of fuzzy graph was introduced by Kaufmann [3] from the fuzzy relation introduced by Zadeh [21]. The study of fuzzy graph theory started in the year 1975 after the phenomenal work published by Rosenfeld [16]. He has introduced another elaborated definition of fuzzy graphs and also proved many results on the fuzzy graph as an analog of graph theory. J. N. Mordeson and Premchand S. Nair [5] introduced the concept of operations on fuzzy graphs, but this concept was extended by M. S. Sunitha and A. Vijayakumar [19]. Muhammad Akram [6] introduced the concept of connected anti fuzzy graphs, self-centroid anti fuzzy graphs constant and totally constant anti fuzzy graphs with some of their properties together with regularity and irregularity. R. Seethalakshmi and R. B. Gnanajothi [17] introduced the concept of anti-fuzzy graph and discussed the concept of some operations such as union and join on anti-fuzzy graphs.

Intuitionistic fuzzy sets are generalization of fuzzy sets [21]. Atanassov [1] introduced the concept of intuitionistic fuzzy relation, which has both membership grades and non-membership grades. He applied his ideas into expert systems, pattern recognition and mainly in decision making. A new emerging study of an intuitionistic fuzzy graph (IFG) has been addressed in [18]. The operations [15] and particular cases of intuitionistic fuzzy graphs [14] were done by Parvathy and Karunabigai. Whenever we discuss the intuitionistic fuzzy structures in any algebraic theory, analogously the notion of intuitionistic anti-fuzzy structures has been studied. However, in the theory of intuitionistic fuzzy graphs, no theory on intuitionistic anti-fuzzy structures has been introduced. This motivated us to introduce the theory of intuitionistic anti-fuzzy graphs [10]. R. Muthuraj, Vijesh V. V. and Sujith S. [12] explained the concept of split and strong split dominations in intuitionistic anti-fuzzy graphs.

In this paper, we introduce the concept of complement of intuitionistic anti-fuzzy graphs and anti-complement on
intuitionistic anti-fuzzy graphs. We derive some theorems and results on these two ideas together with an application of intuitionistic anti-fuzzy graph.

2. Preliminaries

Definition 2.1. An intuitionistic anti-fuzzy graph is of the form $G = (V, E)$ where

(i) $V = \{v_1, v_2, \ldots, v_n\}$ such that $\mu_1 : V \to [0, 1]$ and $\gamma_1 : V \to [0, 1]$ denote the degree of membership and non-membership of the element $v_i \in V$ respectively and

$$0 \leq \mu_1(v_i) + \gamma_1(v_i) \leq 1 \quad (2.1)$$

for every $v_i \in V, (i = 1, 2, \ldots, n)$.

(ii) $E \subseteq V \times V$ where $\mu_2 : V \times V \to [0, 1]$ and $\gamma_2 : V \times V \to [0, 1]$ are such that

$$\mu_2(v_i, v_j) \geq \max \left\{ \mu_1(v_i), \mu_1(v_j) \right\}, \quad (2.2)$$

$$\gamma_2(v_i, v_j) \leq \min \left\{ \gamma_1(v_i), \gamma_1(v_j) \right\}, \quad (2.3)$$

$$0 \leq \mu_2(v_i, v_j) + \gamma_2(v_i, v_j) \leq 1 \ldots \quad (2.4)$$

for every $(v_i, v_j) \in E, (i, j = 1, 2, \ldots, n)$.

Note 2.2. If one of the inequalities (2.1) or (2.2) or (2.3) or (2.4) is not satisfied, then the graph G is not an intuitionistic anti-fuzzy graph.

Note 2.3. An intuitionistic anti-fuzzy graph (V, E) is denoted by $G_A(V, E)$.

Example 2.4. See Fig. 1.

![Figure 1. Intuitionistic anti-fuzzy graph $G_A(V, E)$](image)

Definition 2.5. An intuitionistic anti-fuzzy graph $H_A(V', E')$ is an intuitionistic anti-fuzzy sub graph of $G_A(V, E)$ if $V' \subseteq V, E' \subseteq E$ such that $\mu_{1i}' \leq \mu_{1i}, \ \gamma_{1i}' \geq \gamma_1(v_i)$ and $\mu_{2ij}' \leq \mu_{2ij}, \ \gamma_{2ij}' \geq \gamma_{2ij}$.

Definition 2.6. An intuitionistic anti-fuzzy sub graph $H_A(V', E')$ is called a spanning intuitionistic anti-fuzzy sub graph of $G_A(V, E)$ if

(i) $V' = V, E' = E$

(ii) $\mu_{1i}' = \mu_{1i}, \ \gamma_{1i}' = \gamma_{1i}, \forall i, j$
Consider the following intuitionistic anti-fuzzy graph. See Fig. 3.

Example 2.14. Consider the following intuitionistic anti-fuzzy graph $G_A(V,E)$.

Vertex cardinality of V is

$$|V| = \sum_{v \in V} \left(\frac{1 + \mu_1(v_i) - \gamma_1(v_i)}{2} \right) = 2.55$$

Edge cardinality of E is

$$|E| = \sum_{(v_i,v_j) \in E} \left(\frac{1 + \mu_2(v_i,v_j) - \gamma_2(v_i,v_j) + \mu_3(v_i) + \mu_3(v_j)}{2} \right) = 3.9$$

Cardinality of G_A is $|G_A| = |V| + |E| = 6.45$. Now, (μ, γ)-degrees of vertices v_i are $d_{G_A}(v_1) = (2.2, 0.7), d_{G_A}(v_2) = (1.7, 0.2), d_{G_A}(v_3) = (1.8, 1.0), d_{G_A}(v_4) = (1.5, 1.5), d_{G_A}(v_5) = (0.4, 0.6)$.

Thus, minimum (μ, γ)-degree of G_A is

$$\delta(G_A) = (\delta_\mu(G_A), \delta_\gamma(G_A)) = (0.4,0.2)$$

Maximum (μ, γ)-degree of G_A is

$$\Delta(G_A) = (\Delta_\mu(G_A), \Delta_\gamma(G_A)) = (2.2, 1.5)$$

Definition 2.15. An edge $e = (u,v)$ of intuitionistic anti-fuzzy graph $G_A = (V,E)$ is said to be an effective edge if $\mu_2(u,v) = \max \{\mu_1(u),\mu_1(v)\}$ and $\gamma_2(u,v) = \min \{\gamma_1(u),\gamma_1(v)\}$.

Definition 2.16. An intuitionistic anti-fuzzy graph $G_A = (V,E)$ is said to be complete if $\mu_2_{ij} = \max \{\mu_{1i},\mu_{1j}\}$ and $\gamma_2_{ij} = \min \{\gamma_{1i},\gamma_{1j}\}$, $\forall v_i, v_j \in V$.

Note 2.17. The underlying graph of a complete intuitionistic anti-fuzzy graph is complete.

Example 2.18. The graph given below is a complete intuitionistic anti-fuzzy graph. See Fig. 4.

Definition 2.19. An intuitionistic anti-fuzzy graph $G_A(V,E)$ is said to be strong if $\mu_{2ij} = \max \{\mu_{1i},\mu_{1j}\}$ and $\gamma_{2ij} = \min \{\gamma_{1i},\gamma_{1j}\}, \forall (v_i,v_j) \in E$.

Example 2.20. The graph given below is a strong intuitionistic anti-fuzzy graph. See Fig. 5.

Definition 2.21. An intuitionistic anti-fuzzy graph $G_A(V,E)$ is said to be K_1, K_2-regular if $d_{G_A}(v_i) = (K_1, K_2), \forall v_i \in V$ and also G_A is said to be a regular intuitionistic anti-fuzzy graph of (μ, γ)-degree (K_1, K_2), where K_1 and K_2 are real constants.

Example 2.22. The graph given below is a $(1.3, 0.6)$-regular intuitionistic anti-fuzzy graph. See Fig. 6.

Definition 3.1. The complement of a strong intuitionistic anti-fuzzy graph $G_A(V,E)$ is a strong intuitionistic anti-fuzzy graph $\overline{G_A} = (\overline{V},\overline{E})$, where

(i) $\overline{V} = V$

(ii) $\mu_{1i} = \mu_{1i}$ and $\gamma_{1i} = \gamma_{1i}, \forall i = 1,2,3,\ldots,n$
Let $G_A = \langle V, E \rangle$ be a complete intuitionistic anti-fuzzy graph. Therefore,

$$
\mu_2(u, v) = \max \{ \mu_1(u), \mu_1(v) \}
\gamma_2(u, v) = \min \{ \gamma_1(u), \gamma_1(v) \}, \text{ for all } u, v \in V.
$$

Let $\overline{G}_A = \langle \overline{V}, \overline{E} \rangle$ be the complement of G_A. Then, $\overline{\mu}_1(u) = \mu_1(u)$; $\overline{\gamma}_1(u) = \gamma_1(u), \forall u \in V$. Thus, for all $u, v \in V$,

$$
\overline{\mu}_2(u, v) = \max \{ \mu_1(u), \mu_1(v) \} - \mu_2(u, v)
= \max \{ \mu_1(u), \mu_1(v) \} - \max \{ \mu_1(u), \mu_1(v) \}
= 0
$$

$$
\overline{\gamma}_2(u, v) = \min \{ \gamma_1(u), \gamma_1(v) \} - \gamma_2(u, v)
= \min \{ \gamma_1(u), \gamma_1(v) \} - \min \{ \gamma_1(u), \gamma_1(v) \}
= 0
$$

So, $(\overline{\mu}_2(u, v), \overline{\gamma}_2(u, v)) = (0, 0), \forall u, v \in V.$

This means, there does not exists arcs between any two distinct vertices u and v of \overline{G}_A. Thus, $E = \emptyset$.

Remark 3.4. The complement of a strong intuitionistic anti-fuzzy graph is again a strong intuitionistic anti-fuzzy graph.

Example 3.5. See Fig. 9. and 10.

Here, figure 9 is a Strong Intuitionistic anti-fuzzy graph G_A and figure 10 is its complement, which is also a strong graph as well an intuitionistic anti-fuzzy graph.

Theorem 3.6. The complement of complement of a strong intuitionistic anti-fuzzy graph $G_A = \langle V, E \rangle$ is the same IAFG G_A itself. (i.e. $\overline{\overline{G}_A} = G_A$)

Proof. Let $G_A = \langle V, E \rangle$ be a strong intuitionistic anti-fuzzy graph. Then,

$$
\mu_2(u, v) = \max \{ \mu_1(u), \mu_1(v) \}
\gamma_2(u, v) = \min \{ \gamma_1(u), \gamma_1(v) \}, \text{ for all } u, v \in V.
$$

Let $\overline{G}_A = \langle \overline{V}, \overline{E} \rangle$ be the complement of G_A. Then, $\overline{\mu}_1(u) = \mu_1(u)$; $\overline{\gamma}_1(u) = \gamma_1(u), \forall u \in V$. Thus, for all $u, v \in V$,

$$
\overline{\mu}_2(u, v) = \max \{ \mu_1(u), \mu_1(v) \} - \mu_2(u, v)
= \max \{ \mu_1(u), \mu_1(v) \} - \max \{ \mu_1(u), \mu_1(v) \}
= 0
$$

$$
\overline{\gamma}_2(u, v) = \min \{ \gamma_1(u), \gamma_1(v) \} - \gamma_2(u, v)
= \min \{ \gamma_1(u), \gamma_1(v) \} - \min \{ \gamma_1(u), \gamma_1(v) \}
= 0
$$

Hence, $\overline{\overline{G}_A} = G_A$.
Thus, for all \((u, v) \notin E\) of \(G_A = \langle V, E \rangle\),
\[
\overline{\mu_2}(u, v) = \max \{\mu_1(u), \mu_1(v)\}
\]
\[
\overline{\nu}(u, v) = \min \{\nu_1(u), \nu_1(v)\}, \text{ for all } (u, v) \in E \text{ in } \overline{G_A}.
\]

So, the vertices which are not incident in \(G_A\) are incident vertices in \(\overline{G_A}\) and the corresponding arcs are effective arcs.

When we find the anti-union of \(G_A\) and \(\overline{G_A}\), the vertex set of \(G_A \cup \overline{G_A}\) is same as \(V\) itself with the same membership and non-membership values as they are in \(G_A\) (or in \(\overline{G_A}\)). The edge membership and non-membership values of an arbitrary edge \((u, v)\) in anti-union \(G_A \cup \overline{G_A}\) because
\[
(\mu_2 \cup \overline{\mu_2})(u, v) = \begin{cases}
\mu_2(u, v), & \text{if } (u, v) \in E \setminus E \\
\overline{\mu_2}(u, v), & \text{if } (u, v) \in E \setminus E
\end{cases}
\]
\[
(\nu \cup \overline{\nu})(u, v) = \begin{cases}
\nu(u, v), & \text{if } (u, v) \in E \setminus E \\
\overline{\nu}(u, v), & \text{if } (u, v) \in E \setminus E
\end{cases}
\]

Thus, \(G_A \cup \overline{G_A}\) gives its underlying graph as a complete graph, where \(G_A\) and \(\overline{G_A}\) are strong intuitionistic anti-fuzzy graphs.

Since the anti-union of two strong intuitionistic anti-fuzzy graphs is also a strong intuitionistic anti-fuzzy graph, \(G_A \cup \overline{G_A}\) becomes a strong intuitionistic anti-fuzzy graph.

Hence, \(G_A \cup \overline{G_A}\) will be a complete intuitionistic anti-fuzzy graph.

4. Anti-complement of intuitionistic anti-fuzzy graphs

Definition 4.1. The anti-complement of an intuitionistic anti-fuzzy graph \(G_A = \langle V, E \rangle\) is a graph \(G_A = \langle \overline{V}, \overline{E} \rangle\) where

(i) \(\overline{V} = V\)
(ii) \(\overline{\mu_1} = \mu_1, \forall i = 1, 2, 3, \ldots, n\)

(iii) \(\overline{\nu}_1 = \nu_1, \forall i = 1, 2, 3, \ldots, n\)

Example 4.2. See Fig. 11. and 12.

Proposition 4.3. The anti-complement of an intuitionistic anti-fuzzy graph need not be an intuitionistic anti-fuzzy graph.
Theorem 4.6. Let $G_A = (V, E)$ be an intuitionistic anti-fuzzy graph. Then $\overline{G_A} = G_A$

Proof. Let $\overline{G_A} = (\overline{V}, \overline{E})$ be the anti-complement of intuitionistic anti-fuzzy graph $G_A = (V, E)$. So

(i) $\overline{V} = V$

(ii) $\overline{\mu}_{ij} = \mu_{ij}$ and $\overline{\gamma}_{ij} = \gamma_{ij}, \forall i, j = 1, 2, 3, \ldots, n$

(iii) $\mu_{ij} = 1 - \mu_{ijj} + \max \{\mu_{ij}, \mu_{jj}\}$ and $\overline{\gamma}_{ij} = 1 - \gamma_{ij} + \min \{\gamma_{ij}, \gamma_{jj}\}, \forall (v_i, v_j) \in \overline{E}$.

Considering the anti-complement $\overline{G_A} = (\overline{V}, \overline{E})$ of $G_A = (V, E)$.

Thus

(i) $\overline{\mu}_{ij} = \mu_{ij}$ and $\overline{\gamma}_{ij} = \gamma_{ij}, \forall i, j = 1, 2, 3, \ldots, n$

(ii) $\mu_{ij} = 1 - \mu_{ijj} + \max \{\mu_{ij}, \mu_{jj}\}$ and $\overline{\gamma}_{ij} = 1 - \gamma_{ij} + \min \{\gamma_{ij}, \gamma_{jj}\}, \forall (v_i, v_j) \in \overline{E}$.

Definition 4.7. An intuitionistic anti-fuzzy graph G_A is self-anti-complementary if $G_A = \overline{G_A}$.

Example 4.8. See Fig. 13 and 14.

\[d_{G_A}(v_i) = \left(\sum_{k=1}^{n-1} 1, \sum_{k=1}^{n-1} 1\right) = (n-1, n-1) \]

Thus $\overline{G_A}$ is $(n-1, n-1)$-regular. \(\square\)

Theorem 4.5. If $G_A = (V, E)$ is an intuitionistic anti-fuzzy graph, then the underlying graph of G_A is complete.

Proof. Let $G_A = (V, E)$ be an intuitionistic anti-fuzzy graph and $\overline{G_A} = (\overline{V}, \overline{E})$ be the anti-complement of G_A. So

(i) $\overline{V} = V$

(ii) $\overline{\mu}_{i1} = \mu_{ii}$ and $\overline{\gamma}_{i1} = \gamma_{ii}, \forall i = 1, 2, 3, \ldots, n$

(iii) $\overline{\mu}_{ij} = 1 - \mu_{ijj} + \max \{\mu_{ij}, \mu_{jj}\}$ and $\overline{\gamma}_{ij} = 1 - \gamma_{ij} + \min \{\gamma_{ij}, \gamma_{jj}\}, \forall (v_i, v_j) \in \overline{E}$.

When $\mu_{ij} \neq 0, \mu_{ijj} > 0, \forall (v_i, v_j) \in E \Rightarrow \overline{\mu}_{ij} > 0$

When $\mu_{ij} = 0, \overline{\mu}_{ij} = 1 + \max \{\mu_{ij}, \mu_{jj}\}$

Thus $\overline{\mu}_{ij} > 0, \forall i = 1, 2, 3, \ldots, n.$

When $\gamma_{ij} \neq 0, \gamma_{ijj} > 0, \forall (v_i, v_j) \in E \Rightarrow \overline{\gamma}_{ij} > 0$

When $\gamma_{ij} = 0, \overline{\gamma}_{ij} = 1 + \min \{\gamma_{ij}, \gamma_{jj}\}$

Thus $\overline{\gamma}_{ij} > 0, \forall i = 1, 2, 3, \ldots, n.$

Therefore the underlying graph of $\overline{G_A}$ is complete. \(\square\)
which leads to increase the membership value of the vertex. These changes in the affection of corona virus and immunity power can be represented by arcs between vertices of an intuitionistic anti-fuzzy graph.

Based on these information it is possible to construct an intuitionistic anti-fuzzy graph and illustrate the situation thoroughly.

Consider the following intuitionistic anti-fuzzy graph (figure 15) for 5 persons who are communicating each other to transfer the coronavirus. In this intuitionistic anti-fuzzy graph G_{A, v_1} is a vertex which represent a person P_1 where 0.5 is the membership value for the rate of affectedness of coronavirus disease according to the common symptoms and 0.3 is the non-membership value for the quantitative representation of immunity power of his body in the current situation. Thus in v_1 for the person P_1, $\mu_1 = 0.5$ and $\gamma_1 = 0.3$. If the value of μ_1 is increased, then automatically the value of γ_1 will decrease by the definition of an intuitionistic anti-fuzzy graph according to the criteria $0 \leq \mu_1 + \gamma_1 \leq 1$ for a vertex. The rate of spread of this virus on communication or mutual contacts can be represented by an edge between two vertices. The membership values μ_1 or μ_2 are decided on the basis of the intensity of common symptoms like persistent cough, continuous fever of more than 102 degrees, difficulty in breathing, persistent pain or pressure in the chest, mental confusion or inability to arouse the patient, somnolence and poor feeding in children, seizures, decreased urine output, persistent or worsening of initial symptoms beyond 72 hours and developing bluish discoloration of lips or face.

Joining two vertices in this intuitionistic anti-fuzzy graph would cause to the increase of infection and increase in death rate due to the disease. It is possible to isolate the vertices or human beings using different mode of quarantine techniques for a large number of humans by taking the domination of intuitionistic anti-fuzzy graphs. Here it is easy to break the multiple connected domination followed by connected strong domination using the theory of split and strong split domination in intuitionistic anti-fuzzy graphs [12]. For that it is necessary to identify the strong arcs and the strong domination set. Isolation of vertices in an isolated intuitionistic anti-fuzzy graph prevent the increase in membership value of edges or prevent to transfer virus from vertex to vertex and hence which results the decrease the rate of spread of the virus from the society.

Consider an example to represent this situation by using intuitionistic anti-fuzzy graphs:

Here c is a vertex in place of a person having quantitative
representation of corona virus affection by common symptoms as 0.8 and his contemporaneous immunity power as 0.1. Again p is a vertex in place of a second person having quantitative representation of corona virus affection by common symptoms as 0.0 and his contemporaneous immunity power as 1.0. In this case second person p is having no infection of corona virus at this stage and his health condition is perfectly good, so the immunity power is at the peak. If these peoples are in close contact to each other, then the person p may infected by corona virus and the rate of infection may bigger or equal to 0.8, so as the immunity power may reduce accordingly.

So intuitionistic anti-fuzzy graph has significant application in health and medical field especially in communicable diseases like covid-19 pandemic. It is possible to study and analyze the infection rate of such viruses in different areas of our society by using intuitionistic anti-fuzzy graphs and which will be helpful to adopt proper remedial measures to remove the disease from the surroundings.

6. Conclusion

The concept of intuitionistic anti-fuzzy graphs and their special cases like intuitionistic anti-fuzzy sub graphs, vertex (μ, γ)-degrees and cardinality and strong intuitionistic anti-fuzzy graphs were introduced. Complement of strong intuitionistic anti-fuzzy graph has been defined and develop some results on it. Anti-complement is applied on intuitionistic anti-fuzzy graphs and some theorems and results are found with proof. A significant application of intuitionistic anti-fuzzy graph on medical ground is explained in the infectious circumstances of pandemic covid-19 is described. The theory of intuitionistic anti-fuzzy graph has more applications in efficiency management, communication networks, information technology, pattern clustering, image retrieval and so on. In future, it is anticipated to do these perceptions on the other extension of intuitionistic anti-fuzzy graphs.

References

[1] K. T. Atanassov, Intuitionistic Fuzzy Sets: Theory and Applications, Physica, New York, 1999.
[2] P. Chountas, M. Alzebdi, A. Shannon, K. Atanassov, On intuitionistic fuzzy trees, Notes on Intuitionistic Fuzzy Sets, 15(2)(2009), 30–32.
[3] A. Kaufmann, Introduction to the Theory of Fuzzy Subsets, Vol.1, Academic press, New York, 1975.
[4] M. G. Karunambigai, S. Sivasankar, K. Palanivel, Secure Edge Domination and Vertex Edge Domination in Intuitionistic Fuzzy Graphs, International Journal of Mathematical Archive, 9(1)(2018), 190–196.
[5] J. N. Mordeson, P. S. Nair, Fuzzy Graphs and Fuzzy Hypergraphs, Physica-Verlag, Heidelberg, New York (2000).
[6] Muhammad Akram, Anti Fuzzy Structures on graphs, Middle East Journal of Scientific Research, 11(12)(2012), 1641–1648.
[7] R. Muthuraj, A. Sasireka, On anti fuzzy graph, Advances in Fuzzy Mathematics, 12(5)(2017), 1123–1135.
[8] R. Muthuraj, A. Sasireka, Some Characterization on Operations of Anti Fuzzy Graphs, International Conference on Mathematical Impacts in Science and Technology, (MIST-17), November 2017, IJRASET, 109 – 117.
[9] R. Muthuraj, S. Sujith and V. V. Vijesh, Operations on intuitionistic anti fuzzy graphs, International Journal of Recent Technology and Engineering, (IJRTE), ISSN: 2277-3878, 8(2019), 1098 – 1103.
[10] R. Muthuraj, V. V. Vijesh and S. Sujith, Domination on intuitionistic anti fuzzy graphs, Advances in Mathematics: Scientific Journal, 8, ISSN 1857-8365 printed version and ISSN 1857-8438 electronic version (2019)
[11] R. Muthuraj, V. V. Vijesh and S. Sujith, Split and Strong Split Dominations in Intuitionistic Anti-Fuzzy Graphs, Solid state technology, 63(6)(2020), 20989–20999.
[12] A. Nagoor Gani, S. S. Begum, Degree, order and size in intuitionistic fuzzy graphs, Int. J. Algorithms, Computing and Mathematics, 3(3)(2010), 11-16.
[13] R. Parvathi, M. G. Karunambigai, intuitionistic fuzzy graphs, Computational Intelligence, Theory and Applications: International Conference 9th Fuzzy Days in Dortmund, Germany, Sept. 18–20, 2006 Proceedings, (2006) 139–150.
[14] R. Parvathi, M. G. Karunambigai, K. Atanassov, operations on intuitionistic fuzzy graphs, Proceedings of IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), (2009), 1396-1401.
[15] A. Rosenfeld, Fuzzy graphs, in Fuzzy Sets and Their Applications, Academic Press, New York, NY, USA, 1975.
[16] R. Seethalakshmi, R. B. Gnanajothi, Operations on antifuzzy graph, Mathematical Sciences International Research Journal, 5(2)(2016), 210-214.
[17] A. Shannon, K. Atanassov, On a generalization of intuitionistic fuzzy graphs, Notes on intuitionistic fuzzy sets, 12(1)(2006), 24-29.
[18] M. S. Sunita, A. Vijayakumar, Complement of a fuzzy graph, Indian J. Pure Appl. Math, 33(9)(2002), 1451-1464.
[19] V. V. Vijesh, R. Muthuraj, Some Characteristics on Join of Intuitionistic Fuzzy Graphs, IOSR Journal of Mathematics (IOSR-JM), e-ISSN:2278-5728, p-ISSN: 2319-765X, 23 – 31.
[20] L. A. Zadeh, Fuzzy Sets, Information Sciences, 8(1965), 338-353.

ISSN(P):2319 – 3786
