Supplementary Material

Weissella cibaria riboflavin-overproducing and dextran-producing strains useful for the development of functional bread

Annel M. Hernández-Alcántara, Rosana Chiva, Maria Luz Mohedano, Pasquale Russo, José Angel Ruiz-Maso, Gloria del Solar, Giuseppe Spano, Mercedes Tamame, Paloma López

1 Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain

2 Instituto de Biología Funcional y Genómica (IBFG), CSIC-Universidad de Salamanca, Zacarias González 2, 37007 Salamanca, Spain

3 Department of Agriculture Food Natural Science Engineering, University of Foggia, via Napoli 25, 71122 Foggia, Italy
Supplementary Table S1. Description and location of oligonucleotides used for DNA amplification and sequencing of *rib* operon and *dsr* genes

Amplification and sequencing of the *rib* operon

Amplicon size (bp)	Primers for amplification (5’-3’) Length (nt)	Primers for sequencing (5’-3’) Length (nt)
4045 bp	For1: TGGCCTTCGCTGATATTTCG 20	For2: TTTTGCCCCCTTTACGCAG 19
	Rev1: AGCATTGTACATCCCCCTCAAA 21	For3: TATCAAGCCGCACAAACG 19
	For4: TCCCACACTACACACAAAC 21	For5: CTAGTACGACGTTGTATTTGATT 23
	Rev2: GTGGAATTTCCTGTCGTCGG 20	Rev2: GTGGAATTTCCTGTCGTCGG 20
	Rev3: CTTCAATACCCTGCTGGCT 19	Rev3: CTTCAATACCCTGCTGGCT 19
	Rev4: TCCACGTGCCATCCGACC 21	Rev4: TCCACGTGCCATCCGACC 21

Primer walking hybridization map

![Primer walking hybridization map](image)

Amplification and sequencing of the *dsr* gene

Amplicon size (bp)	Primers for amplification (5’-3’) Length (nt)	Primers for sequencing (5’-3’) Length (nt)
4546 bp	For1: GAAAGATTATGCCCGTTA 20	For2: TGGCGTGAAAAAGATGGTAA 20
	Rev1: GCCATATAACAGACTCCTCAAA 22	For3: TTGAAAAATACCGCGACACA 20
For1: TGGGTTAATGCCTACGGAAG
For2: CCTGCCAAATGGTATTGCTT
For3: AAAGCTTGATTGCGGACAAC
For4: CGTTGCTTACCCGTTACCAT
For5: CTACCGCACTTGCACTGTCA

Primer walking hybridization map
Supplementary Table S2. Detection of LAB survival after dough fermentation and prior to the baking process

W. cibaria strain	CFU/g
Uninoculated LAB	4.37×10^6
BAL3C-5	2.26×10^9
BAL3C-5 B2	1.83×10^9
BAL3C-7	1.82×10^9
BAL3C-7 B2	9.15×10^8
BAL3C-22	2.09×10^9
BAL3C-22 B2	2.81×10^9

Doughs were independently inoculated with cells of each BAL3C strain at a concentration of 1×10^9 CFU/g, and after 16 h of fermentation prior baking, the level of LAB CFU/g for the inoculated doughs was determined by plating on MRS agar medium.

To that end, 10 g samples of dough (prepared as described in Materials and Methods) were homogenized in 90 mL of sterile peptone water (1 g/L peptone, 8.5 g/L NaCl) in 250 mL flasks and incubated at 28 °C for 1 h with shaking (200 rpm). For CFU/g quantification, samples of 1 mL were collected by centrifugation at 10 000 rpm and ten-fold dilutions of the supernatants were spread as 0.1 mL aliquots on MRS agar plates that were incubated at 30 °C for ~ 48 h.

In the spontaneously fermented uninoculated dough, low concentrations of LAB (4.37×10^6 CFU/g), likely endogenous to the white wheat flour, were detected. In addition, values $>1 \times 10^9$ CFU/g were detected in all doughs inoculated with each BAL3C strain.
Supplementary Table S3. Comparison of flavin levels present in the experimental breads quantified by direct fluorescence measurement (direct determination) or after HPLC analysis (HPLC)

W. cibaria strain	Direct determination (mg/100 g of bread)	HPLC (mg/100 g of bread)	Ratio Direct/HPLC
Without BAL	0.20±0.01	0.09±0.01	2.17
BAL3C-5	0.24±0.02	0.08±0.02	2.90
BAL3C-5 B2	0.45±0.04	0.56±0.02	0.81
BAL3C-7	0.25±0.00	0.16±0.02	1.50
BAL3C-7 B2	0.48±0.01	0.61±0.08	0.78
BAL3C-22	0.25±0.01	0.13±0.02	1.95
BAL3C-22 B2	0.43±0.06	0.46±0.06	0.93

*Bread samples were subjected to acidic and thermal treatment to convert flavins into riboflavin prior to measurement of fluorescence.
Supplementary Figure S1. Dextran levels produced by *W. cibaria* strains grown in RAMS medium. Values are represented as mean ± standard deviation of three independent experiments. Statistical analyses were carried out by t-test to determine if parental and mutant dextran levels were significantly different (A), or by one-way Anova to establish differences in dextran production between groups (B). In both cases a *p* value ≤ 0.05 was considered significant.
Supplementary Figure S2. Riboflavin produced by *W. cibaria* strains grown in RAMS medium. Values are represented as mean ± standard deviation of three independent experiments. Statistical analyses were carried out by t-test to determine if parental and mutant riboflavin levels were significantly different (A), or by one-way Anova to establish differences in riboflavin production between groups (B), in both cases a *p* value ≤ 0.05 was considered significant.
Supplementary Figure S3. Riboflavin produced by *W. cibaria* strains growth in RAM medium. Values are represented as the mean ± standard deviation of three independent experiments. Statistical analyses were carried out by t-test to determine if parental and mutant riboflavin levels were significantly different (A), and by one-way Anova to establish differences in riboflavin production between groups (B) in both cases a *p* value ≤ 0.05 was considered significant.
Supplementary Figure S4. Real time analysis of the influence of FMN on riboflavin production by *W. cibaria* strains. The bacteria were grown in RAMS medium supplemented with 3 μM FMN in a Varioskan Flask System. The growth was estimated by measurement of the OD$_{600}$ nm (A) and flavin fluorescence (B) was measured upon excitation at a wavelength of 440 nm and detection of emission at a wavelength of 520 nm.
Supplementary Figure S5. GC-MS analysis of breads for detection of soluble dextran hydrolyzed to isomaltose. Chromatograms of breads produced by fermentation with BAL3C-22 B2 (A), BAL3C-22 B2 (B), with only the dough microbiota (without LAB) (C) and of wheat dough (D) are depicted. The samples were resuspended in H₂O and treated with the *Chaetomium erraticum* dextranase at 30 °C for 18 h, as described in Material and Methods, prior to the GC-MS analysis.
Supplementary Figure S6. Statistical analysis of free riboflavin (A) and flavins (B) levels in experimental breads produced with *W. cibaria* strains. Values are represented as mean ± standard deviation of three independent technical replicates. Statistical analyses were carried out by t-test to determine if levels of riboflavin and flavins synthesized by parental and mutant strains were significantly different ($p \leq 0.05$).
Supplementary Figure S7. Determination of soluble (A) and total (B) dextran levels in experimental breads produced with *W. cibaria* strains. Values are represented as mean ± standard deviation of three independent technical replicates. Statistical analyses were carried out by t-test to determine if levels of dextran produced by parental and mutant strains were significantly different (*p* ≤ 0.05).