Structure and Dielectric Properties of (Sr$_{0.2}$Ca$_{0.488}$Nd$_{0.208}$)TiO$_3$-Li$_3$NbO$_4$ Ceramic Composites

C C Xia1 and G H Chen2

School of Materials Science and Engineering, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, P.R. China

12324514656@qq.com; 2chengh@guet.edu.cn

Abstract. The new ceramic composites of (1-x) Li$_3$NbO$_4$-(Sr$_{0.2}$Ca$_{0.488}$Nd$_{0.208}$)TiO$_3$ were prepared by the conventional solid state reaction method. The sintering behavior, phase composition, microstructure and microwave dielectric properties of the ceramics were investigated specially. The SEM and XRD results show that (1-x) Li$_3$NbO$_4$-(Sr$_{0.2}$Ca$_{0.488}$Nd$_{0.208}$) TiO$_3$ (0.35≤x≤0.5) composites were composed of two phase, i.e. perovskite and Li$_3$NbO$_4$. With the increase of x, the ε_r increases from 27.1 to 38.7, $Q\times f$ decreases from 55000 GHz to 16770 GHz, and the τ_f increases from -49 ppm/°C to 226.7 ppm/°C. The optimized dielectric properties with ε_r~31.4, $Q\times f$~16770GHz and τ_f~−8.1ppm/°C could be obtained as x=0.4 sintered at 1100°C for 4h. The as-prepared ceramic is expected to be used in resonators, filters, and other microwave devices.

1. Introduction
With the rapid development of microwave communication technology, the widespread usage of several different wireless systems has required the development of materials and process technologies that can provide the rapid production of low-cost, lightweight, small, multifunctional and highly reliable devices[1]. As the development direction of high performance microwave dielectric materials, perovskite structure materials with high ε_r, high $Q\times f$ value and low τ_f quickly become the research focus. It is well known that an effective way to achieve near-zero τ_f is to mix two compounds, one with a positive and the other with a negative τ_f to form a solid solution or composite.

Recently, CaTiO$_3$ with the perovskite structure and SrTiO$_3$ materials, are widely employed as dielectric resonators because of their higher dielectric constant (ε_r)[2,3]. In theory, CaTiO$_3$-Li$_{0.5}$RE$_{0.5}$TiO$_3$ (RE=Sm, Nd), Ca$_{1-x}$Re$_{2x/3}$TiO$_3$-Li$_{1/2}$Ln$_{1/2}$TiO$_3$ (RE=Sm, Nd, La; Ln = Sm, Nd) system showed a higher dielectric constant[4]. Unfortunately, although the resonant frequency temperature coefficient of the material (τ_f) close to zero, but the $Q\times f$ reduced rapidly (2000~7500 GHZ), it is difficult to meet the high demand of high-end communication electronic components on the properties of microwave dielectric ceramic dielectric. Therefore, domestic and foreign scholars have studied not only reduce device size, but also has low loss performance of high Q value, high dielectric of microwave dielectric ceramics. These ceramic materials meet the requirements of thermal stability and have high $Q\times f$ value at the same time. In the past few years, F. Liu et al reported that (Sr$_{0.2}$Ca$_{0.488}$Nd$_{0.208}$)TiO$_3$ ceramic showed following dielectric properties: ε_r=130.4, $Q\times f$ =9500 GHz, and τ_f =332.5 ppm/°C[5]. D. Zhou et al reported that Li$_3$NbO$_4$ exhibited an excellent dielectric properties sintered at 930 °C/2h: ε_r = 15.8, a high $Q\times f$=55,009 GHz and τ_f = -49 ppm/°C [6]. H. F. Zhou et al found that CaTiO$_3$-Li$_3$NbO$_4$ ceramic composites sintered at 1020°C/2h possessed...
outstanding dielectric properties of $\varepsilon_r=21.9$, $Q\times f=24,900$ GHz, and $\tau_f=5.6$ ppm/°C [7]. However, its sintering temperature (≥1400 °C) and τ_f is too high to use practically. The purpose of the present study is to achieve near-zero τ_f along with a high ε_r and high $Q\times f$ by incorporating $(\text{Sr}_{0.2}\text{Ca}_{0.488}\text{Nd}_{0.208})\text{TiO}_3$ into Li_3NbO_4, and to investigate the effects of $(\text{Sr}_{0.2}\text{Ca}_{0.488}\text{Nd}_{0.208})\text{TiO}_3$ addition into the Li_3NbO_4 on the structure and microwave dielectric properties of the ceramics.

2. Experimental

2.1. Sample preparation
Analytical reagent Sr_2CO_3, CaCO_3, TiO_2, Nd_2O_3, Li_2CO_3 and Nb_2O_5 ($>99.0\%$) were used as raw materials. The suppliers of the raw materials are Guangdong Shantou West Long Chemical Company. The Li_3NbO_4 (LN) and $(\text{Sr}_{0.2}\text{Ca}_{0.488}\text{Nd}_{0.208})\text{TiO}_3$ (SCNT) were prepared according to the stoichiometric ratio and ball milled in ethanol medium for 24 h in nylon jars using yttria stabilized zirconia balls. After drying, the LN and SCNT mixtures were calcined at 900 °C and 1150 °C in air for 4 h, respectively. Samples of $(1-x)$ LN-xSCNT with $x=0.35$, 0.4, 0.45, 0.5 were prepared from pure calcined LN and SCNT powders by weight ratio. The mixtures were ball-milled in alcohol for 12 h and dried. The slurries were dried, then mixed with 5wt% polyvinyl alcohol (PVA) as binder and granulated. The granulated powders were pressed into disks of 12 mm diameter and 6 mm in thickness. The specimens obtained were then heat-treated at 600°C for 3 h to eliminate PVA, followed by sintering at 1060-1160°C in air for 4 h at a heating and cooling rate of 4°C/min.

2.2. Performance measuring
The bulk density was measured by using the Archimedes method. The crystal structure and phase purity of the powdered samples were analyzed by using X-ray diffraction (XRD, D8-ADVANCE, Bruker, Karlsruhe, Germany) with CuKa radiation. The microstructure observation of the samples was performed by using scanning electron microscopy (FE-SEM; Quanta FEG450, America). The microwave dielectric properties were measured by a Vector Network Analyzer (N5230C, Agilent Technologies, Palo Alto, CA). The temperature coefficient of resonant frequency (τ_f) was measured in the temperature range of 25°C to 75°C using the following equation [8]:

$$\tau_f = \frac{(f_{75} - f_{25}) \times 10^6}{50 \times f_{25}} \text{ ppm/°C}$$

where f_{75} and f_{25} are the resonant frequencies at 75°C and 25°C, respectively.

3. Results and discussion

3.1. Phase analysis
Figure 1 shows the XRD patterns of $(1-x)$ LN-xSCNT $(0.35 \leq x \leq 0.5)$ composites sintered at optimum sintering temperature for 4h. From the XRD results, it is seen that all samples show two phase coexistence state, i.e. LN and perovskite phase. With the increase of x value, the diffraction peaks of perovskite phase obviously enhance.
Figure 1. XRD patterns of (1-x) LN-xSCNT specimens

3.2. Microstructure

Figure 2. SEM micrographs of 0.6LN-0.4SCNT specimens sintered at different temperatures: (a)1060 °C, (b)1080 °C, (c)1100 °C, (d)1120 °C, (e)1140 °C

Figure 2 shows the SEM micrographs of the 0.6LN-0.4SCNT ceramic sintered at different temperatures. At 1060°C, the ceramic sample has a few of porosity shown in Figure 2a. With the increase of sintering temperature, the ceramic sample gets compact and the grain size is increased. When the sintering temperature reaches 1100°C, the grains grow up quickly, the uniform and densest microstructure is obtained, as shown in Figure 2c. With further increase of the sintering temperature, the grain boundaries become blurred and the porosity gradually is increased, the asymmetrical microstructure is formed, which may be due to excessive sintering. The crystal structure of SCNT and LN have big difference, good stability and easy to form a composite ceramics.
3.3. Sintering characteristics

Figure 3 shows the relative densities of (1-x) N-xSCNT (0.35≤x≤0.5) ceramic composite as a function of sintering temperature. Firstly, the relative densities of samples display a similar variation trend with the increment of temperature and reach a maximum value, then decrease with the further increase of temperature. Raising sintering temperature is beneficial to improving sintering densification of the ceramic materials. The different sample has various optimal sintering temperatures, as shown in Figure 3. At x = 0.4, the optimal sintering temperature is 1100°C and the relative density of the ceramic sample can reach 99.7%. With x increasing, optimal sintering temperature increases, which is due to that the sintering temperature of SCNT (1400 °C) is higher than that of LN (930 °C).

Figure 4 shows the ε_r of (1-x) LN-xSCNT (0.35≤x≤0.5) ceramics sintered at different temperatures. For fixed x value, the ε_r of ceramics first increases and then decreases. This change trend is consistent with that of relative density seen in Figure 3. At their optimum temperatures, the ε_r value is 27.13, 31.38, 34.75, 38.71 for x=0.35, 0.4, 0.45, 0.5 sample, respectively. When x value is increased from 0.35 to 0.5, the dielectric constant is increased from 27.1 to 38.71. We know that the dielectric constant of SCNT (~130.4) is higher than that of Li$_3$NbO$_4$. According to compound rule, the higher the content of compound with high ε_r, the bigger the ε_r of the composite.
Figure 5 shows the $Q \times f$ values of (1-x)LN-xSCNT (0.35≤x≤0.5) ceramics as a function of sintering temperature. The change of $Q \times f$ value is associated with the relative density of samples. As the composition keeps unchanged, the $Q \times f$ values show first increase and then decrease with an increase in sintering temperature. For different compositions, the $Q \times f$ value is distinctly decreased with the increase of x. This is owing to the quality factor of SCNT is lower than LN. Therefore, the $Q \times f$ value is related to not only the densification but also the composition.

Figure 6 shows the τ_f of the composites as a function of x value. It is observed that the τ_f increases from negative to positive with increasing x. One knows that the τ_f of LN is negative (~49 ppm/°C) and the τ_f of SCNT is positive (~332.5 ppm/°C). Therefore, the τ_f of the ceramic composites can be easily adjusted within a certain range. When x=0.4, the τ_f value is -8.1 ppm/°C.

4. Conclusions
The crystal structures and microwave dielectric properties of (1-x)LN-xSCNT (0.35≤x≤0.5) ceramics were investigated in this paper. The ceramic composites have been synthesized by the solid state reaction route. The research results show that the dielectric constant, relative density and quality factor of the composites firstly increase and then decrease with the increase of sintering temperature, but the temperature coefficient of resonant frequency (τ_f) change from negative to positive with the increase of x. At 1100 °C, the 0.6 LN-0.4 SCNT ceramic composite has the best microwave dielectric properties: $\varepsilon_r=31.4, Q\times f=16,770$ GHz, $\tau_f=-8.1$ ppm/°C. The as-prepared ceramic is expected to be used in resonators, filters, and other microwave devices.

Acknowledgments
This work was supported by the Research funds of The Guangxi Key Laboratory of Information Materials (Nos.131018-Z and 131004-Z).

References
[1] Kell R C, Greenham A C, Olds G C E. Cheminform abstract: high-permittivity temperature-stable ceramic dielectrics with low microwave loss. Chem Inform, 4(1973), 352-354.
[2] Liu F , Yuan C L, Liu X Y , Qu J J, Chen G H, Zhou C R, Effects of structural characteristics on microwave dielectric properties of (Sr0.2Ca0.488Nd0.208)Ti1− xGa4x/3O3 ceramics. Materials Research Bulletin, 70(2015) 678-683.
[3] Kell R C, Greenham A C , Olds G C E , Am J. Ceram. Soc. 56 (1974) 352–354.
[4] Qu Q Q, Wei X, Jing B J, Liu F, Yuan C L. Microstructures and Microwave Dielectric Properties of (1-x)(Sr0.2Nd0.208Ca0.488)TiO3- xNd(Ti0.5Mg0.5)O3 Ceramics with High Quality Factor. J Inorg Mater, 11(2015) 1213-1217.
[5] Liu F, Yuan C, Liu X, Yang T, Chen G, Zhou C. Microstructures and dielectric properties of (1-x) SrTiO3-xCa0.61Nd0.26TiO3 ceramic system at microwave frequencies. J. Mater. Sci- Mater. Electron. 26(2014) 128-133.
[6] Zhou D, Wang H, Pang L X, Yao X, Wu X G . Microwave Dielectric Characterization of a Li3NbO4 Ceramic and Its Chemical Compatibility with Silver. J. Am. Ceram. Soc. 91(2008) 4115–4117.
[7] Zhou H, Wang W, Chen X, Miao Y, Liu X, Fang L, He F. Sintering behavior, phase evolution and microwave dielectric properties of thermally stable (1-x) Li3NbO4-xCaTiO3, composite ceramic. Ceram. Int. 40(2014) 2103-2107.
[8] Nishikawa T, Wakino K, Tamura H, Ishikawa Y, in IEEE MTT-S International Microwave Symposium Digest, 87(1987) 277-280.