Women sociodemographic characteristics, lifestyle habits and the use of medications during pregnancy: a cohort study

Federico Romanese¹, Francesca Palese¹, Fabio Barbone¹ and Federica Edith Pisa²,₃*

¹Department of Medicine, University of Udine, Udine, Italy
²Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
³Institute of Hygiene and Clinical Epidemiology, University Hospital of Udine, Udine, Italy

Abstract

Purpose: Medication use during pregnancy has been associated with women’s socioeconomic status and lifestyle habits, but maternal health status has hardly been accounted for. We evaluated the association of prescription medication use with sociodemographic characteristics and lifestyle habits in a cohort of pregnant women, adjusting for comorbidities.

Methods: Pregnant women recruited in a prenatal clinic in Trieste, Italy, 2007 to 2009, filled a questionnaire. Prescription data were obtained from pharmacy database through record linkage. Adjusted unconditional logistic regression Odds Ratio (aOR), with 95% confidence interval (95%CI), of having ≥ 1 dispensing for (a) any medication, (b) folic acid and/or iron was calculated.

Results: Among 767 women, 70.5% had ≥ 1 dispensing for any medication, 46.1% of folic acid/iron. For any medication, the aOR (95%CI) was strongly associated with age (<25 years 2.08; 0.92-4.72, ≥40 years 2.30; 1.10-4.81 vs. 29-34 years). Women with lower education (high school 1.23; 0.76-2.00 vs. university) immigrant or with immigrant partner (1.48; 0.76-2.85 vs. non-immigrant), unemployed (1.38; 0.74-2.57 vs. employed in maternity leave), with lowest or highest BMI (1.35; 0.70-2.63 and 1.20; 0.57-2.56 vs. normal) were more likely to use medications. Women with lower education were less likely to use folic acid/iron (high school 0.80; 0.56-1.15, <high school 0.65; 0.40-1.08 vs. university)

Conclusions: In this cohort, sociodemographic characteristics were independently associated with use of medication when comorbidities were adjusted for. Care providers should thus target women with low educational level in promoting folic and iron supplementation during pregnancy.

Background

Women frequently use medications during pregnancy. The prevalence of use of prescription medications ranged from 27% to 99% in developed countries [1] and it was about 67% for Over-the-Counter (OTC) agents [2]. The evidence on the risk–benefit profile in pregnant women is limited to few post-approval studies for most medications, as pregnant women are not included in clinical trials. Thus pregnant women often have concerns about using medicines [3] and their compliance with even needed pharmacologic treatments may be influenced by the perception of medication-related risk: about 70% of women reportedly avoided to take a medication for fear of foetal adverse effects [4]. Sociodemographic differences in risk perception have been reported: young maternal age, low educational level and being at first pregnancy have been associated with an increased perceived risk for both prescription and Over The Counter (OTC) medications [5].

Sociodemographic characteristics and lifestyle habits have indeed been associated with the use of medications during pregnancy, even though with some inconsistencies. A number of studies reported that use of medications increases with increasing maternal age [2,6,7], however younger pregnant women were more likely to report use of medications for acute/short-term illnesses [2] and anti-asthmatics [8], and of filling prescriptions of antibiotics [9]. Use of medications was inversely associated with maternal [2,8,10] and paternal [2,10] education in some studies, but in a large US cohort the use of prescription medication increased with maternal education [6]. Immigrant women in Western and Northern Europe were less likely to report medications for chronic/long-term disorders than not immigrant women [2]. In Belgium, medication use has been positively associated with Western origin, being born in the country, high education and being employed [7]. Unemployed women were more likely to report use of medications with potential for fetal harm (vs. professional/manager) [11]. Welfare recipients and unemployed were more likely to use antibiotics (vs. white/blue collar workers) [9]. Smoking [2,8] and alcohol consumption during pregnancy [2,11] have been positively associated with medications use, and obesity with the use of anti-asthmatics [8].

Maternal health status is a strong determinant of medication use. Women reporting health problems during the pregnancy were more likely to use analgesics, anti-infectives and antihistamines than those who did not report problems [12]. Sociodemographic characteristics and lifestyle habits have a complex relation with maternal health status as well as with health care utilization during pregnancy, such as prenatal care visits and ultrasound evaluations. For instance, maternal education

*Correspondence to: Federica Edith Pisa, Leibniz Institute for Prevention Research and Epidemiology - BIPS GmbH, Department Clinical Epidemiology, Unit Drug Safety, Achterstraße 30, 28359 Bremen, Germany, Tel: +49 / 421 / 218-56869; Fax: +49 / 421 / 218-56841; E-mail: pisa@leibniz-bips.de

Key words: pregnancy, medication use, prescription database, sociodemographic characteristics, education, immigration

Received: March 05, 2018; Accepted: March 19, 2018; Published: March 26, 2018
has been inversely associated with hypertension and preterm delivery [13-16] as well as with obesity [17]. A social gradient in lifestyle habits, such as smoking during pregnancy [13,18] has been reported as well. Few prior studies, however, took into account maternal health status in assessing the relation between medication use and the characteristics of the women. This prospective cohort study evaluated the association of prescription medication use with sociodemographic characteristics and lifestyle habits, adjusting for comorbidities before and during pregnancy. Moreover we evaluated the relation between medication use and indicators of health care utilization during pregnancy.

Methods

Study cohort

The cohort included all pregnant women resident of Friuli Venezia Giulia (FVG) region, Northeast Italy, attending their prenatal visit between 20 and 22 weeks of gestation at the Institute for Maternal and Child Health IRCCS Burlo Garofolo, in Trieste, from April 3, 2007 to March 3, 2009. During the recruitment period, about 1,800 live births per year were recorded in Trieste and 9,000 in FVG [19]. Exclusion criteria were: age <18 years, Italian language not fluent, twin or complicated pregnancies defined as those with maternal abnormalities of the reproductive tract (such as uterine fibroids, pre-existing chronic illness such as cancer, AIDS, severe heart disease, severe kidney disease, severe Crohn's disease or ulcerative colitis) and those with foetal congenital defects.

All the women filled a self-administered questionnaire inquiring on: date of birth, marital status (woman cohabiting with the partner or living alone), house size (<50 m², 50-100 m², 100+ m²), smoking, alcohol consumption, comorbidities before and during pregnancy (diabetes, asthma, allergy, epilepsy, hypertension, vomit, hypothyroidism, hyperthyroidism, lupus, rheumatic diseases, urinary infections, infections, fever, seizures, anemia, cardiovascular diseases, neurological diseases), prior pregnancies (gravidity), number of prenatal visits and ultrasound examinations, height and weight before and during pregnancy, gestational age at birth and date of delivery. For both the woman and her partner information on country of origin, level of education (degree achieved: less than high school, high school, university or higher) and occupational status (employed in maternity leave, employed, housewife, unemployed) was collected.

Prescription data

For each woman, through record linkage using an individual identifier, we extracted the records of all prescriptions redeemed between 2006 and 2012 from the outpatient prescription database of the FVG Region. This database records prescriptions at pharmacy redemption level. It captures all redeemed prescriptions for reimbursed medications dispensed to residents of the region. A unique personal identifier links anonymized individual records. Prescription medications are reimbursed to residents, including pregnant women. All residents are registered with the Regional Health System, providing universal access to health care.

For each redeemed prescription, the following information is recorded: date of redemption, active substance (description and Anatomical Therapeutic and Chemical ATC classification code) [20], brand, quantity, strength, dispensed form, number of units and number of refills. Information on the indication and the prescribed dosage regimen is not recorded.

All prescriptions redeemed from the estimated date of conception to the date of delivery were considered to have occurred during pregnancy. The estimated date of conception was obtained by subtracting gestational age at birth from the date of delivery.

Statistical analysis

Unconditional logistic regression Odds Ratio (OR), with 95% confidence interval (95%CI), of redeeming ≥ 1 prescription (a) of any medication, (b) of any medication excluding folic acid and iron and (c) of systemic antibiotics (ATC J01) was calculated. The following variables were evaluated through uni- and multi-variate analysis: age at delivery (5 classes), education of the women and partner, occupational status of the women and partner, prior pregnancies, smoking, alcohol consumption, BMI before pregnancy (underweight below 18.5; normal weight 18.5-24.9; overweight 25.0-29.9; obesity 30.0 and more) [21], comorbidities before and during pregnancy (none; 1; 2+), country of origin of the women and partner (Italy, other), marital status, number of visits and of ultrasound imaging, house size. The manual process of multivariate model building included entering individual terms and evaluating the likelihood ratio test for inclusion of each variable in the model. Variables with at least one modality had Wald p ≥0.20 were entered individually in multivariate models and only those with p<0.05 or explained the variability or modified the regression coefficient estimators were retained. Two final multivariate models were fitted: one adjusting for age, paternal education, ultrasound imaging and one adding comorbidities as well. Stratified analysis according to reported comorbidities (yes/no) were performed. The statistical analysis was performed with SAS® software, version 9.3 (SAS, Cary, NC, USA).

Ethics Committee review

The study protocol was reviewed by the Ethics Committees at the University Hospital of Udine and at the Institute for Maternal and Child Health of Trieste. Written informed consent for participation in the study was obtained.

Results

Out of 767 women included, 70.5% (N= 541) had at least one dispensing for any medication during pregnancy (Table 1). Folic acid (36.0%) and iron (26.2%) were the most common medications, followed by non-opioid analgesics (6.2%), thyroid hormones (4.3%), medications for acid related disorders (3.6%) and antithrombotics (3.2%).

When adjusting for age, partner education and house size, the OR of having at least one dispensing during pregnancy was directly associated with comorbidities (one 1.72; 95%CI 1.17-2.54; 2 or more 1.96; 95%CI 1.30-2.94), BMI in the lowest (1.27; 95%CI 0.68-2.37) and highest (1.28; 95%CI 0.60-2.73) category, immigrant status of the woman (1.41; 95%CI 0.74-2.68; of the partner 1.42; 95%CI 0.67-3.01), being housewife (1.23; 95%CI 0.68-2.22) or unemployed (1.67; 95%CI 0.87-3.21), having an unemployed partner (1.20; 95%CI 0.54-2.65) (Table 2). Conversely, a decreased OR was associated with current employment (0.80; 95%CI 0.44-1.46) and being single (0.82; 95%CI 0.46-1.45).

The results did not change when prescription of folic acid and iron were excluded (Table 3). When only prescriptions for folic acid and iron were considered, an inverse association with obesity (0.67; 95%CI 0.35-1.32) and educational level of the women (< high school 0.61; 95%CI 0.37-0.99; high school 0.75; 95%CI 0.53-1.07), but not of the partner was found (Table 4).

Women immigrant status (3.12; 95%CI 0.77-12.75), lower educational level (< high school 2.11; 95%CI 0.82-5.44; high school 1.26; 95%CI 0.63-2.52) and BMI in the lowest (4.08; 95%CI 1.02-16.36)
Romanese F (2018) Women sociodemographic characteristics, lifestyle habits and the use of medications during pregnancy: a cohort study

Table 1. Number of women with at least one dispensing during pregnancy, by therapeutic class.

Therapeutic class	ATC1	N	%
alimentary tract and metabolism			
medications for acid related disorders	A02	27	3.6
antacids	A02A	21	2.8
medications for peptic ulcer and gastro-esophageal reflux	A02B	7	0.9
medications for functional gastrointestinal disorders	A03	12	1.6
bile and liver therapy	A05	2	0.3
laxatives and anti diarrheals	A06	4	0.5
insulin	A10A	1	0.1
vitamins and mineral supplements	A11, A12	18	2.4
blood and blood forming organs			
antithrombotic agents	B01	24	3.2
heparins	B01AB	14	1.8
platelet aggregation inhibitors	B01AC	14	1.8
antihemorrhagics	B02	0	-
iron	B03A	199	26.2
folic acid	B03B	273	36.0
solutions	B05BB	0	-
cardiovascular system			
antihypertensive medications	C02, C07, C08, C09A	6	0.8
methyldopa	C02	0	-
beta-blocking agents	C07	3	0.4
calcium channel blockers	C08	5	0.7
angiotensin inhibitors	C09A	0	-
lipid modifying agents	C10A	0	-
diuretics	C03	0	-
vasoprotectives	C05C	2	0.3
genito-urinary system and sex hormones			
gynecological antiinfectives - antiseptics	G01A	7	0.9
sympathomimetics, labour repressants	G02CA	10	1.3
prolactin inhibitors	G02CB	0	-
hormonal contraceptives	G03A	0	-
estrogens	G03C	0	-
progesterones	G03D	19	2.5
gonadotrophins	G03G	0	-
systemic hormonal preparations			
glucocorticoid, systemic	H02A	5	0.7
thyroid preparations	H03	35	4.6
thyroid hormones	H03A	33	4.3
antithyroid preparations	H03B	2	0.3
anti-infective agents			
antibiotics, systemic	J01	20	2.6
antimycotics, systemic	J02	1	0.1
antivirals, systemic	J05	1	0.1
immune sera and immunoglobulins	J06B	0	-
musculo-skeletal system			
non-steroidal anti-inflammatory drugs	M01A	2	0.3
bisphosphonates	M05B	0	-
nervous system			
non-opioid analgesics	N02BE	47	6.2
selective serotonin agonists	N02CC	1	0.1
antiepileptic medications	N03	1	0.1
antidepressants	N06A	0	-
methadone	N07B	0	-
antiparasitic products			
antiprotozoals and antinematodals	P01	0	-
respiratory system			
medications for obstructive airway disease	R03	7	0.9
adrenergic inhalants	R03A	5	0.7
other inhalants	R03B	1	0.1

Table 1. Number of women with at least one dispensing during pregnancy, by therapeutic class.

Users (N=541)
Table 2. Odds Ratios (OR), with 95% Confidence Interval (95%CI), of having at least one dispensing for any medication during pregnancy, by socio-demographic characteristics.

Age category (years)	dispensing for any medication during pregnancy	univariate	multivariate1	multivariate2			
	at least one (N= 541)	OR	95%CI	OR	95%CI	OR	95%CI
<25		1.78	0.81-3.91	2.42	1.01-5.83	2.96	1.17-7.45
25-294		1.69	0.69-2.66	1.85	1.16-2.93	2.01	1.25-3.24
30-34		1.44	0.89-2.31	1.58	0.97-2.58	1.72	1.04-2.84
40+		2.19	1.06-4.52	2.99	1.37-6.52	3.18	1.44-7.05
Country of origin							
Italy3		1.00	- -	1.00	- -	1.00	- -
Other		1.00	- -	1.00	- -	1.00	- -
Partner country of origin		1.00	- -	1.00	- -	1.00	- -
Marital status							
Married3		1.00	- -	1.00	- -	1.00	- -
Single		1.00	- -	1.00	- -	1.00	- -
Women level of education (degree achieved)							
Less than high school		1.00	- -	1.00	- -	1.00	- -
High school		1.00	- -	1.00	- -	1.00	- -
University3		1.00	- -	1.00	- -	1.00	- -
Partner level of education (degree achieved)							
Less than high school		1.00	- -	1.00	- -	1.00	- -
High school		1.00	- -	1.00	- -	1.00	- -
University3		1.00	- -	1.00	- -	1.00	- -
Occupational status							
Employed in maternity leave2		1.00	- -	1.00	- -	1.00	- -
Employed		1.00	- -	1.00	- -	1.00	- -
Housewife		1.00	- -	1.00	- -	1.00	- -
Unemployed		1.00	- -	1.00	- -	1.00	- -
Partner occupational status		1.00	- -	1.00	- -	1.00	- -
Employed3		1.00	- -	1.00	- -	1.00	- -
Unemployed		1.00	- -	1.00	- -	1.00	- -
Smoking							
Never4		1.00	- -	1.00	- -	1.00	- -
Smoker		1.00	- -	1.00	- -	1.00	- -
Ex smoker		1.00	- -	1.00	- -	1.00	- -
Alcohol consumption (drinks/week)							
Abstainer3		1.00	- -	1.00	- -	1.00	- -
<=4		1.00	- -	1.00	- -	1.00	- -
>4		1.00	- -	1.00	- -	1.00	- -
BMI (kg/m2)							
<18.50 underweight		1.00	- -	1.00	- -	1.00	- -
18.50-24.99 normal5		1.00	- -	1.00	- -	1.00	- -
25-30 overweight		1.00	- -	1.00	- -	1.00	- -
>30 obese		1.00	- -	1.00	- -	1.00	- -
Prior pregnancies							
1		1.00	- -	1.00	- -	1.00	- -
1 to 2		1.00	- -	1.00	- -	1.00	- -

1 Anatomic and Therapeutic Classification.
3 Percentage of the total number of cohort members.

Romanese F (2018) Women sociodemographic characteristics, lifestyle habits and the use of medications during pregnancy: a cohort study

Front Womens Health, 2018 doi: 10.15761/FWH.1000139 Volume 3(1): 4-11
Romanese F (2018) Women sociodemographic characteristics, lifestyle habits and the use of medications during pregnancy: a cohort study

| Table 3. Odds Ratio (OR), with 95% Confidence Interval (95%CI), of redeeming at least one prescription of any medication excluding folic acid and iron during pregnancy, by sociodemographic characteristics. |
|---------------------------------|-----------------|-----------------|------------------|------------------|
| prescription redemption | no (N= 226) | yes (N= 359) | univariate | age-adjusted | multivariate* | multivariate* |
| N | % | N | % | OR | 95%CI | OR | 95%CI | OR | 95%CI | OR | 95%CI |
| age category (years) | | | | | | | | | | | | |
| <25 | 11.2 | 4.87 | 20 | 5.57 | 1.96 | 0.83 | 4.58 | - | - | - | - | 2.57 | 1.00 | 6.61 | 2.93 | 1.08 | 7.94 |
| 25-39 | 43.0 | 19.03 | 40 | 11.14 | 1.00 | - | - | - | - | - | - | 1.00 | - | - | - | - |
| 30-34 | 89.38 | 151 | 42.06 | 1.82 | 1.10 | 3.02 | - | - | - | - | 2.02 | 1.21 | 3.37 | 2.25 | 1.32 | 3.84 |
| 35-39 | 70.30 | 115 | 32.03 | 1.77 | 1.05 | 2.98 | - | - | - | - | 1.94 | 1.13 | 3.32 | 2.19 | 1.25 | 3.82 |
| 40+ | 13.75 | 33 | 9.19 | 2.73 | 1.26 | 5.91 | - | - | - | - | 3.83 | 1.67 | 8.80 | 4.15 | 1.76 | 9.78 |
| Country of origin | | | | | | | | | | | | | |
| Italy | 211.93 | 36 | 91.64 | 1.00 | - | - | 1.00 | - | - | - | - | 1.00 | - | - | - |
| Other | 14.61 | 25 | 6.96 | 1.15 | 0.58 | 2.25 | 1.18 | 0.59 | 2.36 | 1.24 | 0.61 | 2.51 | 1.21 | 0.57 | 2.53 |
| partner Country of origin | | | | | | | | | | | | | |
| Italy | 207.91 | 59 | 36 | 88.02 | 1.00 | - | - | 1.00 | - | - | - | - | 1.00 | - | - |
| Other | 10.44 | 22 | 6.13 | 1.44 | 0.67 | 3.11 | 1.37 | 0.63 | 2.97 | 1.57 | 0.71 | 3.45 | 1.51 | 0.67 | 3.40 |
| marital status | | | | | | | | | | | | | |
| married | 201.88 | 94 | 318 | 88.58 | 1.00 | - | - | 1.00 | - | - | - | - | 1.00 | - | - |
| single | 24.10 | 62 | 37 | 10.31 | 0.97 | 0.57 | 1.68 | 0.88 | 0.51 | 1.54 | 0.92 | 0.50 | 1.67 | 0.86 | 0.46 | 1.60 |
| women level of education (degree achieved) | | | | | | | | | | | | | |
| less than high school | 38.16 | 81 | 17.86 | 1.10 | 0.68 | 1.79 | 1.21 | 0.73 | 2.02 | 1.06 | 0.59 | 1.91 | 1.11 | 0.61 | 2.03 |
| high school | 110.48 | 67 | 15.46 | 0.94 | 0.65 | 1.36 | 1.00 | 0.68 | 1.46 | 0.89 | 0.59 | 1.34 | 0.92 | 0.60 | 1.41 |
| university | 78 | 34.51 | 125 | 34.82 | 1.00 | - | - | 1.00 | - | - | - | - | 1.00 | - | - |
| partner level of education (degree achieved) | | | | | | | | | | | | | |
| less than high school | 69.30 | 50 | 23.69 | 1.11 | 0.71 | 1.73 | 1.21 | 0.77 | 1.91 | 1.14 | 0.72 | 1.80 | 1.21 | 0.75 | 1.95 |
| high school | 88.38 | 94 | 15.46 | 1.40 | 0.92 | 2.11 | 1.57 | 1.02 | 2.39 | 1.48 | 0.96 | 2.27 | 1.51 | 0.97 | 2.35 |
| university | 64.28 | 32 | 16.96 | 1.00 | - | - | 1.00 | - | - | - | - | 1.00 | - | - |
| occupational status | | | | | | | | | | | | | |
| employed in maternity leave | 169.74 | 274 | 76.32 | 1.00 | - | - | 1.00 | - | - | - | - | 1.00 | - | - |
| employed | 20.85 | 23 | 6.41 | 0.71 | 0.38 | 1.33 | 0.70 | 0.37 | 1.33 | 0.77 | 0.40 | 1.49 | 0.79 | 0.40 | 1.55 |
| housewife | 18.79 | 26 | 7.24 | 0.89 | 0.47 | 1.67 | 0.96 | 0.50 | 1.83 | 0.96 | 0.49 | 1.85 | 1.04 | 0.52 | 2.06 |
| unemployed | 15.66 | 31 | 8.64 | 1.28 | 0.67 | 2.43 | 1.35 | 0.70 | 2.60 | 1.63 | 0.81 | 3.26 | 1.47 | 0.72 | 2.98 |
| partner occupational status | | | | | | | | | | | | | |
| employed | 209.92 | 48 | 336 | 93.59 | 1.00 | - | - | 1.00 | - | - | - | - | 1.00 | - | - |
| unemployed | 9.39 | 18 | 5.01 | 1.24 | 0.55 | 2.82 | 1.22 | 0.53 | 2.80 | 1.14 | 0.48 | 2.66 | 1.02 | 0.43 | 2.45 |
| house size (m²) | | | | | | | | | | | | | |
| >100 | 70.30 | 85 | 23.68 | 1.00 | - | - | 1.00 | - | - | - | - | 1.00 | - | - |
| <=100 | 155.68 | 58 | 31.21 | 1.44 | 0.99 | 2.08 | 1.56 | 1.06 | 2.28 | 1.52 | 1.03 | 2.24 | 1.51 | 1.02 | 2.25 |
| smoking | | | | | | | | | | | | | |
| never | 119.52 | 65 | 58.22 | 1.00 | - | - | 1.00 | - | - | - | - | 1.00 | - | - |
| smoker | 21.92 | 38 | 10.58 | 1.03 | 0.58 | 1.84 | 1.06 | 0.59 | 1.90 | 1.11 | 0.60 | 2.06 | 1.25 | 0.65 | 2.40 |
| ex smoker | 82.36 | 207 | 29 | 89.01 | 0.74 | 0.52 | 1.07 | 0.76 | 0.52 | 1.09 | 0.74 | 0.51 | 1.09 | 0.81 | 0.55 | 1.21 |

* Multivariate model adjusted for: age, partner education, house

Note													
1	Multivariate model adjusted for: age, partner education, house, comorbidities												
2	Reference category												
Table 4. Odds Ratios (OR), with 95% Confidence Interval (95%CI), of having at least one dispensing for folic acid and/or iron during pregnancy, by socio-demographic characteristics.

Characteristic	dispensing for folic acid and/or iron during pregnancy	univariate	multivariate	multivariate											
	none (N= 413)	at least one (N= 354)	OR	95%CI	OR	95%CI	OR	95%CI							
age category (years)															
<25			20	4.8	0.73	3.06	1.64	0.77	1.79	0.83	3.85				
25-29			64	15.5	1.00	0.99	1.00	0.99	1.00	0.99	1.00				
30-34			171	41.4	0.80	1.27	0.82	1.97	1.33	0.85	2.09				
35-39			129	31.2	0.67	0.67	0.99	0.69	0.75	0.71	1.86				
40+			29	7.0	0.72	2.58	1.57	0.81	1.70	0.86	3.34				
country of origin			384	93.0	0.90	0.90	0.90	0.90	0.90	0.90	0.90				
Italy			24	5.8	3.5	0.99	1.77	1.03	3.03	1.64	0.94	2.86	1.57	0.88	2.80
Other country of origin			19	4.6	6.5	1.42	0.76	2.66	1.35	0.71	2.57	1.35	0.71	2.59	
marital status			367	88.9	316	89.3	1.00	-	-	1.00	-	-	1.00	-	
married			41	9.9	10.2	1.02	0.64	1.63	0.95	0.56	1.59	0.89	0.52	1.51	
single			78	18.9	61	17.2	0.79	0.52	1.20	0.62	0.37	0.99	0.65	0.40	1.08
women level of education (degree achieved)			202	48.9	162	45.8	0.81	0.59	1.12	0.75	0.53	1.07	0.80	0.56	1.15
less than high school			132	32.0	130	36.7	1.00	-	-	1.00	-	-	1.00	-	
high school			124	30.0	100	28.2	1.03	0.70	1.53	0.98	0.65	1.47	1.04	0.69	1.57
university			181	43.8	167	47.2	1.18	0.82	1.69	1.14	0.78	1.65	1.17	0.80	1.71
occupational status			101	24.5	79	22.3	1.00	-	-	1.00	-	-	1.00	-	
employed in maternity leave			308	74.6	260	73.4	1.00	-	-	1.00	-	-	1.00	-	
employed			31	7.5	26	7.3	0.99	0.57	1.72	1.01	0.57	1.78	0.98	0.55	1.75
Romanese F (2018) Women sociodemographic characteristics, lifestyle habits and the use of medications during pregnancy: a cohort study

Discussion

In this cohort 70% of women was dispensed at least one medication during pregnancy, in the range of a recent systematic review [1]. Iron and folic acid were the most common agents. Women younger than 25 and above 30 years were more likely to have at least one prescription medication dispensed during pregnancy. This result is in line with prior studies showing higher use of medication in the oldest and youngest age categories compared to the intermediate age [2,6,7,22,23]. In FVG the mean maternal age at delivery in 2008 was 31.2 years [24], suggesting that health care personnel should pose even more attention to supervising medication use, as many of their patients would use at least one medication.

We found that women with education lower education were less likely to use folic acid and iron but not other medications, compared with women with university degree. Prior studies reported inconsistent results. In two Danish studies women in the lowest educational category were 30% and 40% more likely of filling prescriptions for antibiotics, respectively, than those with women with university degree. Prior studies reported inconsistent results. In two Danish studies women in the lowest educational category were 30% and 40% more likely of filling prescriptions for antibiotics, respectively, than those with women with university degree. Prior studies reported inconsistent results. In two Danish studies women in the lowest educational category were 30% and 40% more likely of filling prescriptions for antibiotics, respectively, than those with women with university degree. Prior studies reported inconsistent results. In two Danish studies women in the lowest educational category were 30% and 40% more likely of filling prescriptions for antibiotics, respectively, than those with women with university degree. Prior studies reported inconsistent results. In two Danish studies women in the lowest educational category were 30% and 40% more likely of filling prescriptions for antibiotics, respectively, than those with women with university degree. Prior studies reported inconsistent results. In two Danish studies women in the lowest educational category were 30% and 40% more likely of filling prescriptions for antibiotics, respectively, than those with women with university degree. Prior studies reported inconsistent results. In two Danish studies women in the lowest educational category were 30% and 40% more likely of filling prescriptions for antibiotics, respectively, than those with women with university degree. Prior studies reported inconsistent results. In two Danish studies women in the lowest educational category were 30% and 40% more likely of filling prescriptions for antibiotics, respectively, than those with women with university degree. Prior studies reported inconsistent results. In two Danish studies women in the lowest educational category were 30% and 40% more likely of filling prescriptions for antibiotics, respectively, than those with

and highest (1.20; 95%CI 0.25-5.81) category were associated with increased OR only in women not reporting comorbidities, however several strata included a small number of subjects (Table 5).

Discussion

In this cohort 70% of women was dispensed at least one medication during pregnancy, in the range of a recent systematic review [1]. Iron and folic acid were the most common agents. Women younger than 25 and above 30 years were more likely to have at least one prescription medication dispensed during pregnancy. This result is in line with prior studies showing higher use of medication in the oldest and youngest age categories compared to the intermediate age [2,6,7,22,23]. In FVG the mean maternal age at delivery in 2008 was 31.2 years [24], suggesting that health care personnel should pose even more attention to supervising medication use, as many of their patients would use at least one medication.

We found that women with education lower education were less likely to use folic acid and iron but not other medications, compared with women with university degree. Prior studies reported inconsistent results. In two Danish studies women in the lowest educational category were 30% and 40% more likely of filling prescriptions for any medication and for antibiotics, respectively, than those with intermediate education [10]; low education, obesity and young maternal age were positively associated with filling prescriptions for chronic conditions has been reported [2]. Medication use was conversely higher in more educated women in a large cohort in the USA [6] and in a cross-sectional study in Belgium [7].

In our cohort, immigrant women and those with immigrant partner were more likely to use medications as well as iron and folic acid than those born in Italy and with Italian native partners, respectively. Conversely, in prior studies, immigrant women were less likely to use medications than not immigrant women [2,8]. In Belgium, maternal self-reported medication use was positively associated with Western origin, being born in Belgium, and employment status
Table 5. Odds Ratio (OR), with 95% Confidence Interval (95%CI), of redeeming at least one prescription of any medication during pregnancy according to comorbidities, by socio-demographic characteristics.

comorbidities during pregnancy	at least one	none																
prescription redemption	univariate	age adjusted	multivariate¹	prescription redemption	univariate	age adjusted	multivariate¹											
none	at least one	(N= 133)	1.36	0.53-3.46	- -	- -	1.61	0.57-4.53	2 (2.25)	10 (6.62)	6.36	1.15-35.23	- -	12.22	1.31-13.89			
(N= 89)	at least one	(N=151)	6.36	1.15-35.23	- -	- -	1.61	0.57-4.53	2 (2.25)	10 (6.62)	6.36	1.15-35.23	- -	12.22	1.31-13.89			
age category (years)																		
<25																		
-																		
25-29¹																		
30-34																		
35-39																		
40+																		
country of origin																		
Italy¹																		
Other																		
marital status																		
married¹																		
single																		
women level of education																		
(degree achieved)																		
less than high school																		
high school																		
university²																		
partner level of education																		
(degree achieved)																		
less than high school																		
high school																		
occupational status																		
employed²																		
unemployed																		

Romanese F (2018) Women sociodemographic characteristics, lifestyle habits and the use of medications during pregnancy: a cohort study

Front Womens Health, 2018 doi: 10.15761/FWH.1000139 Volume 3(1): 8-11
Variable	Measurement	Mean	Median	25th Percentile	75th Percentile	P-value	95% CI
partner occupational status							
employed		121	90.98	1.00	-		
unemployed		348	92.06	1.00	-		
house size (m²)		20	5.29	1.16	0.45-2.95	0.07	0.35-7.84
>100		6	4.51	1.00	-		
<=100		100	4.82	1.00	-		
smoking							
never		77	57.89	1.00	-		
<4		86	64.66	1.00	-		
5+		3	2.26	1.00	-		
alcohol consumption (drinks/week)		44	33.08	1.00	-		
BMI (kg/m²)							
<18.50 under weight		10	7.52	1.05	0.49-2.23	0.07	1.02-16.36
18.50-24.99 normal		269	24.33	1.00	-		
25+30 overweight		56	14.29	1.06	0.60-1.88	0.07	0.24-1.19
>=30 obese		26	5.26	1.06	0.52-2.96	0.07	0.25-5.81
prior pregnancies							
1-2		16	50.38	0.87	0.57-1.31	0.07	0.51-1.66
3 or more		9	6.77	1.06	0.47-2.38	0.07	0.42-4.02
prenatal care visits (number)							
<7		12	9.02	1.00	-		
7		23	17.29	0.66	0.30-1.48	0.07	0.72-4.64
8		39	29.32	0.50	0.24-1.16	0.07	0.63-4.64
9 or more		49	36.84	1.00	0.49-2.04	0.07	0.53-2.48
prenatal ultrasound imaging (number)		33	24.81	1.00	-		
<4		66	17.46	1.00	-		
4		21	15.79	1.74	0.92-3.30	0.07	0.39-2.22
5-7		33	24.81	1.67	0.94-2.95	0.07	0.39-2.22
8 or more		40	30.08	1.34	0.77-2.33	0.07	0.39-2.22

1 Multivariate model adjusted for: age, partner education, house
2 Reference category
medication consumption. It has been estimated that 6% of dispensed OTC medications use [32].

Prior parity was inversely associated with prescriptions of any medication, and of antibiotics. In some prior studies, nulliparity was associated with a 40% increased likelihood of reporting medications with potential for fetal harm, but not any medication [11] and with a 66% increased likelihood of reporting OTCs [32]. Conversely, in another study nulliparous women were 40% less likely of reporting medication use than parous women [7]. Having had previous children has been associated with an increased likelihood of reporting the use of medications for acute/short-term illnesses and of OTCs, but not of medications for chronic or long-term conditions [2].

We collected information on education and occupational status as measures of socio-economic status, but not on household income. However, education as a measure of socioeconomic status captures both the dimension of knowledge and earning capacity, through professional position.

Strengths

This study takes into account the health status of the women, a strong determinant of medication use during pregnancy, through adjustment for comorbidities.

Moreover, the study evaluates also the effect of characteristics of the partner, such as educational level, occupational and immigration status.

The prescription database covers the entire resident population, without any exclusion according to occupational or socioeconomic status. All women in the cohort were linked to dispensing records, without omissions of population subgroups (e.g. unemployed or immigrant women). The potential for information bias is thus reduced.

Conclusion

Adjusting for maternal age and comorbidities, sociodemographic characteristics remained associated with the use of prescription medication during pregnancy. Use of any medication was associated with lower education, immigrant status and unemployment. However, less educated women were less likely to use folic acid and iron. Care providers should thus target women with low educational level in promoting folic and iron supplementation during pregnancy. Detecting differences in medication use during pregnancy according to sociodemographic and lifestyle variables is useful for planning interventions promoting safe medication use during pregnancy and to tailor such interventions to the specific characteristics of women. Future studies should evaluate if the inappropriate use of medications during pregnancy has sociodemographic differential.

Funding

The establishment of the cohort was funded by a grant from European Union Sixth Framework Project (PHIME FP6- FOOD-CT-2006-016253). This study was carried out by University of Udine with no external funding.

Prior posting and presentations

The herein submitted material was partially presented as an abstract at the 31th International Conference on Pharmacoepidemiology and Therapeutic Risk Management.

References

1. Daw JR, Hanley GE, Greyson DL, Morgan SG (2011) Prescription drug use during pregnancy in developed countries: a systematic review. Pharmacoepidemiol Drug Saf 20: 895-902. [Crossref]

2. Lupattelli A, Spigset O, Twigg MJ, Zagorodnikova K, Månby AC, et al. (2014) Medication use in pregnancy: a cross-sectional, multinational web-based study. BMJ Open 4: e004365. [Crossref]
3. Pijpers EL, Kreijkamp-Kaspers S, McGuire TM, Deckx L, Brodribb W, van Driel ML (2017) Women’s questions about medicines in pregnancy - A analysis of calls to an Australian national medicines call centre. *Aust NZ J Obstet Gynaecol* 57: 334-341.

4. Nordeng H, Ystsm E, Einarsen A (2010) Perception of risk regarding the use of medications and other exposures during pregnancy. *Eur J Clin Pharmacol* 66: 207-214. [Crossref]

5. Petersen I, McCrea RL, Lupattelli A, Nordeng H (2015) Women’s perception of risks of adverse fetal pregnancy outcomes: a large-scale multinational survey. *BMJ Open* 5: e007390. [Crossref]

6. Mitchell AA, Gilboa SM, Werler MM, Kelley KE, Louk C, et al. (2011) Medication use during pregnancy, with particular focus on prescription drugs: 1976-2008. *Am J Obstet Gynecol* 205: e51-58. [Crossref]

7. Baraka M, Steurbaut S, Coomans D, Dupont AG (2014) Determinants of medication use in a multi-ethnic population of pregnant women: a cross-sectional study. *J Contracept Reprod Health Care* 19: 108-120.

8. Kallen B, Otterblad Olausson P (2007) Use of anti-asthmatic drugs during pregnancy. 1. Maternal characteristics, pregnancy and delivery complications. *Eur J Clin Pharmacol* 63: 363-373. [Crossref]

9. Amanu U, Egen-Lappe V, Stranz-Lehner C, Hasford J (2006) Antibiotics in pregnancy: analysis of potential risks and determinants in a large German statutory sickness fund population. *Pharmacoeconomics Drug Saf* 15: 327-337.

10. Olesen C, Thrane N, Henriksen TB, Ehrenstein V, Olsen J (2006) Associations between socio-economic factors and the use of prescription medication during pregnancy: a population-based study among 19,874 Danish women. *Eur J Clin Pharmacol* 62: 547-553. [Crossref]

11. Cleary BJ, Butt H, Strawbridge JD, Gallagher PJ, Fahey T, et al. (2010) Medication use in early pregnancy-prevalence and determinants of use in a prospective cohort of women. *Pharmacoeconomics Drug Saf* 19: 408-417. [Crossref]

12. Nordeng H, Eskild A, Nesheim BI, Aursnes I, Jacobsen G (2001) Drug use during pregnancy. The impact of maternal illness, outcome of prior pregnancies and socio-demographic factors. *Eur J Clin Pharmacol* 57: 259-263.

13. Baron R, Mannien J, te Velde SJ, Cordier S, et al. (2015) Socio-demographic inequalities across a range of health status indicators and health behaviours among pregnant women in prenatal care: a cross-sectional study. *BMC Pregnancy Childbirth* 15: 261.

14. Heshmati A, Mishra G, Koupil I (2013) Childhood and adulthood socio-economic position and hypertensive disorders in pregnancy: the Uppsala Birth Cohort Multigenerational Study. *J Epidemiol Community Health* 67: 939-946. [Crossref]

15. Poulsen G, Strandberg-Larsen K, Mortensen L, Barros H, Cordier S, et al. (2015) Exploring educational disparities in risk of preterm delivery: a comparative study of 12 European birth cohorts. *Paediatr Perinat Epidemiol* 29: 172-183. [Crossref]

16. Silva L, Coolman M, Steegers E, Jaddoe V, Moll H, et al. (2008) Maternal educational level and risk of gestational hypertension: the Generation R Study. *J Hum Hypertens* 22: 483-492. [Crossref]

17. Bjørn H, Lind S, Rasmussen F (2015) The educational gradient of obesity increases among Swedish pregnant women: a register-based study. *BMC Public Health* 15: 315. [Crossref]

18. Larranaga I, Santa-Maria L, Begrjistan H, Machon M, Erijbaid M, et al. (2013) Socio-economic inequalities in health, habits and self-care during pregnancy in Spain. *Matern Child Health J* 17: 1315-1324. [Crossref]

19. ISTAT Italian Statistical Institute http://www.istat.it/it/files/2012/01/indicatoridemograficiti.pdf

20. WHO (2015) Collaborating Centre for Drug Statistics Methodology NoPh: ATC/DDD Index. http://www.whocc.no/atc_ddd_index/

21. http://www.euro.who.int/en/health-topics/disease-prevention/nutrition-a-healthy-lifestyle/body-mass-index-bmi

22. Smolina K, Hanley GE, Mintzes B, Oberlander TF, Morgan S (2015) Trends and Determinants of Prescription Drug Use during Pregnancy and Postpartum in British Columbia, 2002-2011: A Population-Based Cohort Study. *PLoS One* 10: e0128312.

23. Bjorn AM, Norgaard M, Hundborg HH, Norh EA, Ehrenstein V (2011) Use of prescribed drugs among primiparous women: an 11-year-population-based study in Denmark. *Clin Epidemiol* 3: 149-156. [Crossref]

24. http://www.istat.it/it/friuli-veneziagiulia/dati/?q=gettable&dataset=DCIS_INDDEMOGi&dim=47,0,,0&lang=2&n=0&te=0.

25. Broe A, Pottegård A, Lamont RF, Jørgensen JS, Damkier P (2014) Increasing use of antibiotics in pregnancy during the period 2000-2010: prevalence, timing, category, and demographics. *BIOG* 121: 988-996. [Crossref]

26. de Jong PCMP, Berns MPH, van Duynhoven YTHP, Nijdam WS, Eskes TKAB, et al. (1995) Zielhuis GA: Recall of medication during pregnancy: Validity and accuracy of an adjusted questionnaire. *Pharmacoeconomics Drug Saf* 4: 23-30.

27. Radin RG, Mitchell AA, Werler MM (2013) Predictors of recall certainty of dates of analytic medication use in pregnancy. *Pharmacoeconomics Drug Saf* 22: 25-32. [Crossref]

28. Olesen C, Søndergaard C, Thrane N, Nielsen GL, de Jong-van den Berg L, et al. (2001) Do pregnant women report use of dispensed medications? *Epidemiology* 12: 497-501. [Crossref]

29. de Jong-van den Berg LT, Waardenburg CM, Haaijer-Ruskamp FM, Dukes MN, Wesseling H (1993) Drug use in pregnancy: a comparative appraisal of data collecting methods. *Eur J Clin Pharmacol* 45: 9-14. [Crossref]

30. Gama H, Correia S, Lunet N (2009) Questionnaire design and the recall of pharmacological treatments: a systematic review. *Pharmacoeconomics Drug Saf* 18: 175-187. [Crossref]

31. Klungel OH, de Boer A, Paes AH, Herings RM, Seidell JC, et al. (2000) Influence of question structure on the recall of self-reported drug use. *J Clin Epidemiol* 53: 273-277. [Crossref]

32. Verstappen GM, Smolders EJ, Munster JM, Aarnoudse JG, Wesseling H (2013) Prevalence and predictors of over-the-counter medication use among pregnant women: a cross-sectional study in the Netherlands. *BMC Public Health* 13: 185. [Crossref]

33. de Jong van den Berg LT, Feenstra N, Sorensen HT, Cornel MC (1999) Improvement of drug exposure data in a registration of congenital anomalies. Pilot-study: pharmacist and mother as sources for drug exposure data during pregnancy. *EuroMAP Group. Europen Medicine and Pregnancy Group*. *Teratology* 66: 33-36. [Crossref]

34. Petersen EE, Rasmussen SA, Daniel KL, Yazdy MM, Honein MA (2008) Prescription medication borrowing and sharing among women of reproductive age. *J Womens Health (Larchmt)* 17: 1073-1080. [Crossref]