A Big-Data Variational Bayesian Framework for Supporting the Prediction of Functional Outcomes in Wake-Up Stroke Patients

Miloš Ajčević, Aleksandar Miladinović, Giulia Silveri, Giovanni Furlani, Tommaso Cilotto, Alex Buote Stella, Paola Caruso, Maja Ukmar, Marcello Naccarato, Alfredo Cuzzocrea, Paolo Manganotti, and Agostino Accardo

1 Department of Engineering and Architecture, University of Trieste, Trieste, Italy
2 Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, University Hospital of Trieste, University of Trieste, Trieste, Italy
3 Radiology Unit, Department of Medicine, Surgery and Health Sciences, University Hospital of Trieste, University of Trieste, Trieste, Italy
4 iDEA Lab, University of Calabria, Rende, Italy

alfredo.cuzzocrea@unical.it

Abstract. Prognosis in Wake-up ischemic stroke (WUS) is important for guiding treatment and rehabilitation strategies, in order to improve recovery and minimize disability. For this reason, there is growing interest on models to predict functional recovery after acute ischemic events in order to personalize the therapeutic intervention and improve the final functional outcome. The aim of this preliminary study is to evaluate the possibility to predict a good functional outcome, in terms of modified Rankin Scale (mRS ≤ 2), in thrombolysis treated WUS patients by Bayesian analysis of clinical, demographic and neuroimaging data at admission. The study was conducted on 54 thrombolysis treated WUS patients. The Variational Bayesian logistic regression with Automatic Relevance Determination (VB-ARD) was used to produce model and select informative features to predict a good functional outcome (mRS ≤ 2) at discharge. The produced model showed moderately high 10-fold cross validation accuracy of 71% to predict outcome. The sparse model highlighted the relevance of NIHSS at admission, age, TACI stroke syndrome, ASPECTs, ischemic core CT Perfusion volume, hypertension and diabetes mellitus. In conclusion, in this preliminary study we assess the possibility to model the prognosis in thrombolysis treated WUS patients by using VB ARD. The identified features related to initial neurological deficit, history of diabetes and hypertension, together with necrotic tissue relate ASPECT and CTP core volume neuroimaging features, were able to predict outcome with moderately high accuracy.

Keywords: Variational Bayesian inference · Automatic relevance determination · Modeling · Wake-up ischemic stroke · Neuroimaging
1 Introduction

Worldwide, cerebrovascular ischemia is one of leading causes of disability and death among elderly population [1]. Wake-up Stroke (WUS) represents around a quarter of acute ischemic stroke events [2, 3]. The etiology of ischemic strokes is due to either a thrombotic or embolic event that causes a cerebral brain vessel occlusion and consequent decrease in blood flow to the brain. Nowadays, ischemic stroke is highly treatable using thrombectomy and intravenous thrombolysis reperfusion therapies in selected patients [2]. Neuroimaging plays an important role in patient selection for reperfusion therapy [4]. Recent trials and studies, reported that thrombolysis is safe and efficacious in WUS in patients selected by perfusion neuroimaging [3, 5, 6]. CT perfusion (CTP) is very helpful in determining the necrotic core areas, as well as the extent of hypoperfused tissue that can recover [7, 8], allowing eligibility the reperfusion treatment in wake-up stroke cases [5, 6, 9].

Early prognosis in acute ischemic stroke is important for guiding treatment and rehabilitation strategies, in order to improve recovery and minimize disability [10]. The modified Rankin Scale (mRS) is a commonly used scale to measure the degree of disability or dependence in daily activities of people with neurological and non-neurological disability owing to stroke or other causes [11]. It has become the most widely used clinical outcome measurement for stroke clinical trials [11–13]. mRS ranges from 0 to 6, from perfect health without symptoms to death. The mRS is a 6-point disability scale with possible scores ranging from 0 to 5, from perfect health without symptoms to high disability, with a separate category of 6 for patients who died. Good outcome following stroke is commonly defined as scores 0–2.

Various clinical, demographic and neuroimaging prognostic markers, such as age, clinical severity at admission or infarct size, were associated with functional outcome [10]. Nevertheless, prediction of post-stroke outcome is still challenging since there is large inter-patient variability.

Different machine learning methods can be applied to investigate the possibility to produce a model for predicting functional outcome. However, a high number of predictive features can lead to overfitting. To overcome this problem, a technique like variational Bayes automatic relevance determination (VB-ARD) that eliminates irrelevant features is preferable.

The aim of this preliminary study is to evaluate the possibility to predict a good functional outcome (mRS ≤ 2) in thrombolysis treated WUS patients by Bayesian analysis of clinical, demographic and neuroimaging data at admission.

2 Materials and Methods

2.1 Study Protocol

The study was conducted on 54 WUS patients (25M/29F; age 72 ± 9 years) admitted to the Stroke Unit of the University Medical Hospital of Trieste, Italy. We included subjects with acute ischemic stroke developed at morning awakening, admitted within 4.5 h, assessed with CTP within 4.5 h and subsequently underwent thrombolysis.
treatment if eligible. No age limit was applied and both genders were included in the study sample. We excluded patients with previous brain lesions and hemorrhagic strokes. Stroke mimics cases were excluded by a complete diagnostic work-up including clinical and CT or MRI follow-up assessment.

All patients received standardized clinical and diagnostic assessment, during admission and at discharge. Non-enhanced CT (NECT), Angio-CT, CT Perfusion neuroimaging work-up was performed at admission in all subjects. Patients eligible for thrombolysis were treated with standard dose of intravenous rtPA (0.9 mg/kg of body weight, maximum of 90 mg, infused over 60 min with 10% of the total dose administered as an initial intravenous bolus over 1 min).

The study was approved by the Local Ethics Committee and conducted in line with the principles of the Declaration of Helsinki. All participants released their informed consent to participate in the study.

2.2 Dataset

2.2.1 Demographic and Clinical Data
The following demographic and clinical data at admission were collected for each included patients: (1) age (y); (2) sex (M/F); (3) Stroke severity measured by National Institutes of Health Stroke Scale (NIHSS) score at admission [14]; (4) premorbid and discharge mRS [11]; (5) Lesion side (Left/Right); (6) stroke risk factors (hypertension, diabetes mellitus, dyslipidemia, smoking, obesity, ischemic cardiopathy, atrial fibrillation); (7) Stroke syndrome by Bamford classification [15] (Total Anterior Circulation Infarct, TACI; Partial Anterior Circulation Infarct, PACI; Lacunar Stroke, LACI; Posterior Circulation Infarct, POCI); (8) Stroke etiology by TOAST classification [16] (Atherothrombotic, Lacunar, Cardioembolic, Cryptogenic, other cause); (9) Time from last seen well to admission; (10) Time from admission to thrombolysis treatment.

2.2.2 Neuroimaging Data and CTP Processing
All patients underwent a standardized CT protocol at admission consisting of NECT, CTA, and CTP. NECT performed with a 256 slice CT scanner (Brilliance iCT 256 slices, Philips Medical Systems, Best, Netherlands) at the Radiology Department of the University Medical Hospital of Trieste (Italy). The Alberta Stroke Program Early CT Score (ASPECTS) was used to quantify the amount of ischemia on NECT [17]. CTP acquisition involves intravenous injection of contrast medium and acquisition of three-dimensional axial acquisitions on a whole brain volume every 4 s, resulting in a total scanning time of 60 s. CTP source image processing was performed by using Extended Brilliance Workstation v 4.5 (Philips Medical Systems, Best, Netherlands) and in-house code developed in Matlab (MathWorks Inc., Natick, MA), as previously described [18, 19]. The perfusion maps mean transit time (MTT), cerebral blood volume (CBV) and cerebral blood flow (CBF) were calculated. Ischemic core and penumbra areas were identified by application of specific thresholds [20]. Ischemic core volume as well as total hypoperfused volume including core and penumbra regions, excluding artifacts was calculated with an algorithm described in a previous study [18]. Core/penumbra mismatch was calculated as a ratio between penumbra volume and total hypoperfused volume. CTP processing is summarized in Fig. 1.
2.2.3 Outcome Measure

The mRS, an ordinal scale with 7 categories ranging from zero (no symptoms) to 6 (death), was the outcome measure: 0) No symptoms at all; 1) No significant disability despite symptoms; able to carry out all usual duties and activities; 2) Slight disability; unable to carry out all previous activities, but able to look after own affairs without assistance; 3) Moderate disability; requiring some help, but able to walk without assistance; 4) Moderately severe disability; unable to walk and attend to bodily needs without assistance; 5) Severe disability; bedridden, incontinent and requiring constant nursing care and attention; 6) Dead. Good outcome class was defined with mRS \(\leq 2 \), while bad outcome class with mRS > 3.

Fig. 1. CTP processing summary. From top to bottom: Source CTP data; MTT, CBV and CBF calculated maps, from left to right, respectively; core (red)/penumbra (green) summary map; 3D representation of total hypoperfused volume (core + penumbra). (Color figure online)
2.3 Data Pre-processing and Classification

In this study, we used a dataset consisting of all aforementioned demographic, clinical and neuroimaging features. The dataset was preprocessed before the analysis. Considering that the dataset variables were measured in different units, each variable was normalized by subtracting the mean from each variable and then divided by its standard deviation [21].

In this work, we used Variational Bayesian logistic regression with Automatic Relevance Determination (VB-ARD) [22] to select informative features and produce a sparse model to predict a good functional outcome (mRS ≤ 2) in thrombolysis treated WUS patients.

Given some data \(D = \{X, Y\} \) where \(X = \{x_1, \ldots, x_N\} \) and \(Y = \{y_1, \ldots, y_N\} \), \(N = 54 \) subjects are input/output pairs. The length of each \(x_n \) input vector is 27, corresponding to the number of features, and \(y_n \) is the output class (\(y_n = 1 \) for good outcome mRS \(≤ 2 \) and \(y_n = −1 \) for bad outcome mRS > 3).

This approach has an advantage over some regularization methods which require a separate validation set to prune less relevant features. Furthermore, this method produces a posterior distribution allowing us to build the varying-intercept sparse feature model. The methodology applied here is similar to the one proposed by Bishop (2006) [23] with a different implementation of Automatic Relevance Determination (ARD). Instead of using type-II maximum likelihood [24–26], where the parameters are tuned by maximizing the marginal likelihood, here we applied full Bayesian treatment [22]. The basic generative model corresponds to the one used in Bishop (2006) [23], and the prior is selected to be non-informative, modelled by a conjugate Gamma distribution [22]. The posterior probability distribution of the model parameters conditionally upon the predictors has been obtained by Variational Bayesian inference that is based on maximizing a lower bound on the marginal data log-likelihood [22, 27]. The obtained distribution allows us to find the inverse of the predictors’ covariance matrix (precision matrix) and apply Automatic Relevance Determination that consists of assigning an individual hyper-prior to each regression coefficient independently determining how relevant each of them is.

The ability of a produced model to predict accurately the outcome was validated with 10 times 5–fold cross-validation. Finally, the average accuracy over 50 runs was calculated.

3 Experimental Results

Summary of patient’s demographic and clinical data at admission, as well as neuroimaging findings are reported in Table 1.
Table 1. Demographic, clinical characteristics and neuroimaging findings at admission. Data are presented as Means ± SD, Medians (IQR) and frequencies.

Patient’s characteristics	N = 54
Age [y]	72 ± 9
Sex F: M [n]	29: 25
Last time seen well - Admission [min]	509 (364–702)
Admission - Thrombolysis [min]	68 (52–140)
ASPECTS	10 (10–10)
NIHSS at baseline	7 (5–14)
Pre-morbid mRS	0 (0–0)
Lesion side L: R [n]	28: 26
Bamford stroke subtypes [n (%)]	
TACI	13 (24%)
PACI	27 (50%)
LACI	5 (9%)
POCI	9 (17%)
TOAST classification [n (%)]	
Atherothrombotic	9 (17%)
Lacunar	5 (9%)
Cardioembolic	22 (41%)
Cryptogenic	18 (33%)
Other cause	0 (0%)
CTP parameters	
Mismatch	1.0 (0.9–1.0)
Total hypoperfused tissue [ml]	16.2 (2.5–79.6)
Penumbra [ml]	15.1 (2.6–71.2)
Core [ml]	0 (0–3.8)
Stroke risk factors [n (%)]	
Hypertension	35 (65%)
Diabetes mellitus type II	9 (17%)
Dyslipidemia	39 (72%)
Smoking	11 (20%)
Obesity	6 (11%)
Atrial fibrillation	21 (39%)
Ischemic cardiopathy	14 (26%)

VB-ARD produced a sparse model and as a result the following features were selected: (1) NIHSS at admission, (2) Age, (3) TACI stroke syndrome, (4) ASPECTs, (5) Core CTP volume as well as presence of risk factors as (6) arterial hypertension and (7) diabetes mellitus type II. Posterior means and their standard errors for selected model features are reported in Table 2. The overall accuracy of the identified model was 71%.
4 Discussion

The last decade has seen a substantial increase in the amount of collected health-related data and significant progress has been made in technologies able to analyze and understand this data. This is correlated to the emerging *big data* context [28] and to the increasing focus on the definition of a *big data analytics* methodologies [29–31] as well as to the *big data* privacy and security aspects [32, 33]. In recent years there is growing interest on the role of *big data* in healthcare and stroke [34, 35], as well as on markers and models to predict functional recovery after acute ischemic events in order to personalize the therapeutic intervention and improve the final functional outcome [10, 36].

Currently, there is no study on clinical features and models to predict functional outcome measured by mRS in thrombolysis treated WUS patients. Bayesian techniques are becoming very popular in the field of data analysis in medicine [37–39]. In this preliminary study we proposed a method based on Bayesian inference for functional outcome prediction in terms of mRS in WUS as a challenging subtype of stroke.

The Bayesian analysis produced a sparse predictive model which exhibited moderately high accuracy 71% in WUS treated patients, highlighting the importance of NIHSS at admission, age, TACI stroke syndrome, ASPECTs, core CTP volume as well as presence of risk factors as arterial hypertension and diabetes mellitus type II.

Posterior mean	Posterior standard error	
NIHSS at admission	−1.126	0.009
Age	−0.595	0.005
TACI	−0.426	0.007
ASPECTS	0.304	0.006
Hypertension	−0.234	0.005
Diabetes mellitus type II	−0.212	0.004
Core Volume	−0.101	0.007

Table 2. Posterior means and their standard errors for model features.
following reperfusion treatment in patients admitted within 4.5 h from symptom onset [46, 47]. Although the total ischemic CTP volume didn’t result as direct predictor, it participates indirectly through its contribution to NIHSS at admission [18] and TACI syndrome. A recent WUS CTP study showed that CTP core volume, NIHSS at admission and ASPECTS predict NIHSS at 7-days, while total hypoperfused volume and core volume on CTP predict infarct lesion volume at follow-up CT [48].

5 Conclusions and Future Work

In this study Variational Bayesian logistic regression with Automatic Relevance Determination produced a sparse model selecting informative features to predict a good functional outcome in thrombolysis treated WUS patients. This approach has an advantage over some regularization methods which require a separate validation set to prune less relevant features. Indeed, time last seen well to admission was not associated with functional outcome at discharge supporting the hypothesis that neurological assessment, comorbidities together with the advanced neuroimaging are more important than the influence from time to admission. The main limitation of this pilot study is limited single center sample size, mild/moderate stroke severity and prevalence penumbra compared to ischemic core on CTP in our cohort.

In conclusion, in this preliminary study we assessed the possibility to model the prognosis in thrombolysis treated WUS patients by using VB-ARD. The identified features related to initial neurological deficit, history of diabetes and hypertension, together with necrotic tissue related ASPECT and CTP core volume neuroimaging features, were able to predict outcome with moderately high accuracy. Future work will be mainly focused to improve the actual framework.

Acknowledgements. This study was partially supported by Master in Clinical Engineering, University of Trieste. A. Miladinović is supported by the European Social Fund (ESF) and Autonomous Region of Friuli Venezia Giulia (FVG).

Conflict of Interest. The authors have no conflict of interest do declare.

References

1. Gorelick, P.B.: The global burden of stroke: persistent and disabling. Lancet Neurol. 18(5), 417–418 (2019)
2. Mackey, J., Kleindorfer, D., Sucharew, H., et al.: Population-based study of wake-up strokes. Neurology 76, 1662–1667 (2011)
3. Thomalla, G., Fiebach, J.B., Ostergaard, L., et al.: A multicenter, randomized, double-blind, placebo-controlled trial to test efficacy and safety of magnetic resonance imaging-based thrombolysis in wake-up stroke (WAKE-UP). Int. J. Stroke 9, 829–836. https://doi.org/10.1111/ijs.12011
4. Vilela, P., Rowley, H.A.: Brain ischemia: CT and MRI techniques in acute ischemic stroke. Eur. J. Radiol. 96, 162–172 (2017)
5. Furlanis, G., et al.: Wake-up stroke: thrombolysis reduces ischemic lesion volume and neurological deficit. J. Neurol. 267(3), 666–673 (2019). https://doi.org/10.1007/s00415-019-09603-7

6. Caruso, P., et al.: Wake-up stroke and CT perfusion: effectiveness and safety of reperfusion therapy. Neurol. Sci. 39(10), 1705–1712 (2018). https://doi.org/10.1007/s10072-018-3486-z

7. Peisker, T., Koznar, B., Stetkarova, I., et al.: Acute stroke therapy: a review. Trends Cardiovasc. Med. 27, 59–66 (2017)

8. Stragapede, L., Furlanis, G., Ajčević, M., et al.: Brain oscillatory activity and CT perfusion in hyper-acute ischemic stroke. J. Clin. Neurosci. 69, 184–189 (2019). https://doi.org/10.1016/j.jocn.2019.07.068

9. Ma, H., Campbell, B.C.V., Parsons, M.W., et al.: Thrombolysis guided by perfusion imaging up to 9 hours after onset of stroke. N. Engl. J. Med. 380, 1795–1803 (2019). https://doi.org/10.1056/NEJMoa1813046

10. Bentes, C., Peralta, A.R., Viana, P., et al.: Quantitative EEG and functional outcome following acute ischemic stroke. Clin. Neurophysiol. 129(8), 1680–1687 (2018)

11. Banks, J.L., Marotta, C.A.: Outcomes validity and reliability of the modified Rankin scale: implications for stroke clinical trials: a literature review and synthesis. Stroke 38(3), 1091–1096 (2007)

12. Caruso, P., Ajčević, M., Furlanis, G., et al.: Thrombolysis safety and effectiveness in acute ischemic stroke patients with pre-morbid disability. J. Clin. Neurosci. 72, 180–184 (2020). https://doi.org/10.1016/j.jocn.2019.11.047

13. Saver, J.L., Filip, B., Hamilton, S., et al.: Improving the reliability of stroke disability grading in clinical trials and clinical practice: the Rankin Focused Assessment (RFA). Stroke 41(5), 992–995 (2010)

14. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group: Tissue plasminogen activator for acute ischemic stroke. N. Engl. J. Med. 333, 1581–1588 (1995)

15. Bamford, J., Sandercock, P., Dennis, M., et al.: Classification and natural history of clinically identifiable subtypes of cerebral infarction. Lancet 337(8756), 1521–1526 (1991)

16. Adams Jr., H.P., Davis, P.H., Leira, E.C., et al.: Baseline NIH Stroke Scale score strongly predicts outcome after stroke: a report of the Trial of Org 10172 in Acute Stroke Treatment (TOAST). Neurology 53, 126–131 (1999). https://doi.org/10.1212/wnl.53.1.126

17. Barber, P.A., Demchuk, A.M., Zhang, J., Buchan, A.M., for the ASPECTS Study Group: The validity and reliability of a novel quantitative CT score in predicting outcome in hyperacute stroke prior to thrombolytic therapy. Lancet 355, 1670–1674 (2000)

18. Furlanis, G., Ajčević, M., Stragapede, L., et al.: Ischemic volume and neurological deficit: correlation of computed tomography perfusion with the National Institutes of Health Stroke Scale Score in acute ischemic stroke. J. Stroke Cerebrovasc. Dis. 27(8), 2200–2207 (2018). https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.04.003

19. Granato, A., D’Acunto, L., Ajčević, M., et al.: A novel Computed Tomography Perfusion-based quantitative tool for evaluation of perfusional abnormalities in migrainous aura stroke mimic. Neurol. Sci. (2020). https://doi.org/10.1007/s10072-020-04476-5

20. Wintermark, M., Flanders, A.E., Velthuis, B., et al.: Perfusion-CT assessment of infarct core and penumbra: receiver operating characteristic curve analysis in 130 patients suspected of acute hemorrhagic stroke. Stroke 37, 979–985 (2006)

21. Treder, M.S., Blankertz, B.: (C)overt attention and visual speller design in an ERP-based brain-computer interface. Behav. Brain Funct. (2010). https://doi.org/10.1186/1744-9081-6-28

22. Drugowitsch, J.: Variational Bayesian inference for linear and logistic regression. arXiv e-prints (2013)
23. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)
24. MacKay, D.J.C.: Bayesian interpolation. Neural Comput. 4(3), 415–447 (1992)
25. Neal, R.M.: Bayesian Learning for Neural Networks. Springer, New York (1996). https://doi.org/10.1007/978-1-4612-0745-0
26. Tipping, M.E.: Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 1, 211–244 (2001)
27. Jaakkola, T.S., Jordan, M.M.: Bayesian parameter estimation via variational methods. Stat. Comput. 10, 25–37 (2000). https://doi.org/10.1023/A:1008932416310
28. Zikopoulos, P., Eaton, C.: Understanding Big Data Analytics for Enterprise Class Hadoop and Streaming Data. McGraw Hill, New York (2012)
29. Cuzzocrea, A., Moussa, R., Xu, G.: OLAP*: effectively and efficiently supporting parallel OLAP over big data. In: Cuzzocrea, A., Maabout, S. (eds.) MEDI 2013. LNCS, vol. 8216, pp. 38–49. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41366-7_4
30. Chatzimilioudis, G., Cuzzocrea, A., Gunopulos, D., Mamoulis, N.: A novel distributed framework for optimizing query routing trees in wireless sensor networks via optimal operator placement. J. Comput. Syst. Sci. 79(3), 349–368 (2013)
31. Cuzzocrea, A.: Combining multidimensional user models and knowledge representation and management techniques for making web services knowledge-aware. Web Intell. Agent Syst. 4(3), 289–312 (2006)
32. Cuzzocrea, A., Bertino, E.: Privacy preserving OLAP over distributed XML data: a theoretically-sound secure-multiparty-computation approach. J. Comput. Syst. Sci. 77(6), 965–987 (2011)
33. Cuzzocrea, A., Russo, V.: Privacy preserving OLAP and OLAP security. In: Encyclopedia of Data Warehousing and Mining, pp. 1575–1581 (2009)
34. Wang, L., Alexander, C.A.: Stroke care and the role of big data in healthcare and stroke. Rehabil. Sci. 1(1), 16–24 (2016)
35. Nishimura, A., Nishimura, K., Kada, A., Iihara, K., J-ASPECT Study Group: Status and future perspectives of utilizing big data in neurosurgical and stroke research. Neurol. Med.-Chir. 56(11), 655–663 (2016)
36. Burke Quinlan, E., Dodakian, L., See, J., et al.: Neural function, injury, and stroke subtype predict treatment gains after stroke. Ann. Neurol. 77, 132–145 (2015)
37. Spyroglou, I.I., Spöck, G., Chatzimichail, E.A., et al.: A Bayesian logistic regression approach in asthma persistence prediction. Epidemiol. Biostat. Public Health 15(1), e12777 (2018)
38. Ashby, D.: Bayesian statistics in medicine: a 25 year review. Stat. Med. 25(21), 3589–3631 (2006)
39. Miladinović, A., et al.: Slow cortical potential BCI classification using sparse variational Bayesian logistic regression with automatic relevance determination. In: Henriques, J., Neves, N., de Carvalho, P. (eds.) MEDICON 2019. IP, vol. 76, pp. 1853–1860. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-31635-8_225
40. Weimar, C., König, I.R., Kraywinkel, K., et al.: Age and National Institutes of Health Stroke Scale Score within 6 hours after onset are accurate predictors of outcome after cerebral ischemia: development and external validation of prognostic models. Stroke 35, 158–162 (2004)
41. Saver, J.L., Altman, H.: Relationship between neurologic deficit severity and final functional outcome shifts and strengths during first hours after onset. Stroke 43, 1537–1541 (2012)
42. Di Carlo, A., Lamassa, M., Baldereschi, M., et al.: Risk factors and outcome of subtypes of ischemic stroke. Data from a multicenter multinational hospital-based registry. The European Community Stroke Project. J. Neurol. Sci. 244, 143–150 (2006)
43. Desilles, J.P., Meseguer, E., Labreuche, J., et al.: Diabetes mellitus, admission glucose, and outcomes after stroke thrombolysis: a registry and systematic review. Stroke 44, 1915–1923 (2013)

44. Manabe, Y., Kono, S., Tanaka, T., et al.: High blood pressure in acute ischemic stroke and clinical outcome. Neurol. Int. 1(1), e1 (2009). https://doi.org/10.4081/ni.2009.e1

45. Baek, J.H., Kim, K., Lee, Y.B., et al.: Predicting stroke outcome using clinical- versus imaging-based scoring system. J. Stroke Cerebrovasc. Dis. 24(3), 642–648 (2015). https://doi.org/10.1016/j.jstrokecerebrovasdis.2014.10.009

46. Bivard, A., Spratt, N., Miteff, F., et al.: Tissue is more important than time in stroke patients being assessed for thrombolysis. Front. Neurol. 9, 41 (2018)

47. Tian, H., Parsons, M.W., Levi, C.R., et al.: Influence of occlusion site and baseline ischemic core on outcome in patients with ischemic stroke. Neurology 92, e2626–e2643 (2019). https://doi.org/10.1212/WNL.0000000000007553

48. Ajčević, M., Furlanis, G., Buoite Stella, A., et al.: CTP based model predicts outcome in rTPA treated wake-up stroke patients. Physiol. Meas. (2020). https://doi.org/10.1088/1361-6579/ab9c70