Imaging of Tendons

Anthony Chang, MD, and Theodore T. Miller, MD, FACR

Both magnetic resonance imaging (MRI) and sonography are well suited to tendon imaging. A normal tendon on MRI demonstrates low signal intensity and on sonography, an echogenic fibrillar pattern. MRI is considered the imaging gold standard, providing an anatomic overview and excellent soft tissue contrast. Sonography is a more rapidly performed examination; it has greater resolution than that of MRI; it allows dynamic evaluation of tendons and muscles; and it can guide percutaneous therapeutic procedures. Moreover, the advent of sonographic extended-field-of-view imaging allows the demonstration of the entire length of a tendon, matching MRI’s ability to display a large anatomic region. Sonography should best be considered a focused examination, concentrating on the area of pain and clinical suspicion of pathology, whereas MRI can provide a global assessment of the region of concern. Both modalities demonstrate high accuracy for abnormalities of various tendons. This article reviews normal tendon anatomy and its imaging appearance, as well as the imaging appearances of tendon degeneration and tear.

Keywords: tendon; tendinopathy; magnetic resonance imaging; sonography

ANATOMY

Tendons are composed of type 1 and, to a lesser degree, types 3 and 4 collagen fibers that are oriented longitudinally into fascicles and surrounded by dense fibrous connective tissue with little cellular stroma. Tropocollagen, the building block upon which tendons are constructed, is made by specialized fibroblasts called tenocytes, and consists of 3 polypeptide chains arranged in a triple-helical formation, aligned end to end and in parallel fashion, to form microfibrils. Collagen microfibrils are then organized into fibrils, the bundles of which constitute fibers that are embedded in an amorphous matrix of proteoglycans. Fiber aggregates make up fascicles, which are the major unit of the tendon, with each fascicle enveloped in its own endotenon. Fascicles of collagen fibers are arranged into primary to quartenary bundles and are contained within a peritenon, consisting of loose connective tissue that invaginates between the fiber bundles.

In addition to comprising the peritenon, some tendons are covered by a synovial sheath in areas of mechanical stress or in areas requiring tendon constraint. Those tendons not covered by a synovial sheath are surrounded by a paratenon, consisting of loose connective tissue. Blood supply to tendons is scant, as opposed to that of muscle or bone, and it comes from the myotendinous junction, the tendon sheath or paratenon, and the enthesis. Peritendinous bursae occur at sites of potential tendon friction or compression (eg, where a tendon changes...
course, where a tendon may be compressed against a bone or another tendon.18

SONOGRAPHY

The normal tendon has an echogenic fibrillar pattern in both short and long axis because sound waves reflect back to the transducer from the collagen bundles, whose interfascicular interfaces act as specular reflectors (Figure 1). Caution should be exercised when scanning tendons, to make sure that the sonographic beam is perpendicular to the tendinous structure in whatever plane is being imaged; a nonorthogonal sound beam may make the tendon look artifactually hypoechoic, thereby mimicking tendinosis or tear, due to anisotropy. Anisotropy is the property of highly ordered structures, such as tendons, ligaments, and nerves, to vary in their reflective echogenicity depending on the angle of insonation of the interrogating sound beam. At an angle of insonation directly perpendicular to the tendon, the reflected sound energy is at its greatest as it is returned to the transducer, thus giving the tendon its typical echogenic appearance. At any other angle of incidence, however, the sound energy returning to the transducer is decreased, yielding diminished echogenicity and an artifactual appearance that can be misinterpreted as tendinosis (Figure 2).14

MAGNETIC RESONANCE IMAGING

On all conventional pulse sequences, normal tendons should be homogeneously low signal intensity (Figure 3). However, when a tendon is oriented approximately 55° to the main magnetic field, as it may when it changes course, there is an increase in signal intensity, which occurs on short echo sequences and is a form of anisotropic prolongation of relaxation time, referred to as the magic angle phenomenon.17 It is the highly ordered organization of predominantly collagen type 1 fibers that results in this structural anisotropy. Magic angle phenomenon is less apparent when the echo time is greater than 37 milliseconds46; thus, signal hyperintensity attributed to magic angle is not discernable on T2-weighted images while signal hyperintensity owing to tendinosis persists (Figure 4).

The densely arranged and highly organized microstructure of tendons is thought to restrict the rotational motion of water, accounting for the uniformly low signal intensity on conventional

Figure 1. Longitudinal sonographic image of a normal Achilles tendon (arrow) showing uniform thickness and an echogenic fibrillar appearance.

Figure 2. Sonographic anisotropy. A, when the transducer is perpendicular to the tendon, the sound waves (arrows) are maximally reflected back and the tendon has an echogenic appearance; B, when the transducer is oblique to the tendon, the sound waves (arrows) are not reflected back to the transducer and the tendon has a hypoechoic appearance. Tr, transducer.
In addition, the densely packed and ordered collagen bundles generate a static, local magnetic field that results in increased spin-spin interaction, which in turn leads to tendon T2 relaxation times on the order of microseconds. The tendon signal decays faster than it can be detected using conventional pulse sequences, which image on the order of milliseconds; thus, the tendon appears as low signal intensity. However, advances in gradient strength have enabled ultra-short echo time imaging (ie, in microseconds), and preliminary investigations have shown tendon ultrastructure not visible on conventional sequence.

TENDON INJURY

Tendon injury is a spectrum of abnormalities, ranging from degeneration to tears. *Tendinosis* refers to degeneration, which is caused by repetitive cyclical loading with resultant microtears of the tendon and which leads to crimping and disorganization of collagen fibers, tenocyte death, chondroid metaplasia of tenocytes, increase in mucoid ground substance, and occasionally, angiofibroblastic proliferation due to vascular endothelial growth factor. The term *tendinitis* is a misnomer because there is no evidence of acute or chronic inflammatory infiltrate on histologic inspection. Tendinosis may also be a function of senescence; for example, the aging supraspinatus tendon demonstrates decreased mucopolysaccharides, decreased cellularity, increased collagen cross-linking (which makes the tendon more brittle), and an increased amount of type 3 collagen (which is weaker than type 1 collagen, found in younger tendons).
On MRI, the degenerated tendon may be thickened and may have signal heterogeneity, instead of the usual low signal intensity (Figures 5, 6, and 7). Sonographically, a degenerated tendon will be thickened and hypoechogenic, with loss of the normal echogenic fibrillar pattern (Figures 8 and 9). Power or color Doppler imaging may demonstrate hyperemia because of the neovascularity of angiofibroblastic proliferation (Figure 10).

Whereas tendinosis refers to the structural changes of degeneration seen histologically or with imaging, tendinopathy is a clinical term describing tendon pain, swelling, and resultant decreased athletic capability; as such, these 2 processes can be mutually exclusive. In 83 patients with clinical tendinopathy of the Achilles, tendinotic changes were seen sonographically in only 35% of the cases, with the remaining symptomatic cases showing no abnormality; conversely, 18 asymptomatic tendons showed sonographic abnormalities. Similarly, in a study of 45 patients with Achilles tendinopathy, 20 of the 57 clinically abnormal tendons were sonographically normal, whereas 9 of the 28 clinically normal tendons were sonographically abnormal. Although some studies have shown that symptomatic patients with normal sonographic results have a significantly better clinical outcome than that of those with abnormal sonographic results, Khan et al found that the severity of the US findings in the Achilles tendon at baseline was not associated with clinical outcome 1 year later. Moreover, the gray scale sonographic appearances may resolve, persist, or enlarge, without any relation to symptoms.

Tendon subluxation may also be a cause of tendinosis, owing to altered tensile stress from altered biomechanics or repeated frictional forces. Tendon subluxation, whether dynamic or static, is usually due to failure of the tendon’s soft tissue or osseous restraints. Sonography has the capability of dynamically assessing subluxation.

The presence of neovascularity in the degenerated tendon has been suggested as a cause of pain, but this finding may not be the entire cause of symptoms, given that 8 of 20 symptomatic foci in one study lacked vascularity on power Doppler imaging and 10 asymptomatic tendons in another study had gray scale and Doppler abnormalities. Moreover, Boesen et al have demonstrated increased vascularity in the Achilles tendon.
Calcium hydroxyapatite may precipitate in a tendon because of tendon degeneration with local tissue hypoxia and decreased oxygen tension or because of an endocrine disturbance, with a general prevalence of approximately 3% to 22%. On MRI, the calcium typically appears as an oval focus of low signal intensity, but small or amorphous foci may be difficult to identify against the background of the low signal intensity tendon (Figure 1). Sonographically, the calcific deposit has an echogenic surface and may or may not have posterior acoustic shadowing, depending on its concentration (Miller et al, unpublished data) (Figure 12). One study showed that hyperemia around the calcific deposit correlated with symptomatology, possibly representing inflammation during the resorptive phase of the process.

A trace amount of fluid within the tendon sheath is normal, but circumferential presence of fluid or thickening of the tendon sheath indicates tenosynovitis. However, if the tendon sheath normally communicates with a joint, such as in the case of the long head of the biceps in the shoulder and the flexor hallucis longus tendon at the ankle, fluid may track into the sheath from an associated joint effusion.

Continued repetitive tensile stress and micro-tearing can lead to macro-tear of the tendon, which may be purely interstitial or may involve the tendon surface. Rosenberg et al first described the imaging classification of tendon tear: grade 1 (low grade)
appears as tendon thickening; grade 2 (high grade) appears as thinning and attenuation of the tendon; grade 3 (rupture) manifests as tendinous discontinuity, with or without retraction.

Notwithstanding this generic model of tendon tear, some tendons exhibit additional patterns of tear. For example, the peroneal tendons may develop longitudinal split tears.\(^3\),\(^15\),\(^16\),\(^42\),\(^52\) The peroneus brevis tendon is more often involved than the longus tendon because of its anterior location in the fibular groove; in the setting of superior peroneal retinacular insufficiency, repetitive subluxation of the brevis tendon, as pressed against the malleolus by the longus tendon, leads to compressive and shear forces with the eventual longitudinal split tear of this tendon.

Figure 10. Longitudinal sonographic power Doppler image of proximal patellar tendinosis showing hyperemia (red color) in a thickened and hypoechoic proximal tendon. P, patella.

Figure 11. Oblique coronal proton density magnetic resonance image of supraspinatus calcific tendinosis showing low signal intensity (arrow) within the tendon.

Figure 12. Longitudinal sonographic image of supraspinatus calcific tendinosis showing an echogenic surface of the calcium deposit (large arrow) within the tendon, as well as focal posterior acoustic shadowing (small arrow) partially obscuring the underlying humeral cortex.

Figure 13. Sagittal T2-weighted magnetic resonance image of Achilles tendon rupture showing thickening and signal heterogeneity within the retracted tendon edges (white arrows), indicating underlying tendinosis, with high signal intensity edema/hemorrhage within the tendon gap (black arrow).
tendon. The supraspinatus tendon may undergo delamination and retraction of its articular surface, partly owing to different shear forces and tensile forces as experienced by the bursal and articular surfaces.35,57

Degeneration of the tendon is a risk factor for rupture. Gibbon et al found 3 or more microtears in athletes with partial-thickness Achilles tendon tears, compared to normal tendons or tendons without partial-thickness tear.20 A histological study of normal, tendinotic, and ruptured Achilles tendons showed a significantly greater amount of degeneration in ruptured tendons compared to that of tendinotic or normal tendons.53 Similarly, a longitudinal study of patients with achillodynia found 7 ruptured tendons in patients with sonographically abnormal tendons at the beginning of the study and none in patients with initially normal appearing tendons.41 Systemic diseases, such as diabetes, chronic renal failure, rheumatoid arthritis, and chronic steroid therapy, are also risk factors for tendon rupture.21

Tendon ruptures are characterized on MRI and ultrasound as discontinuity of the tendon fibers, with or without retraction and residuant tendon gap (Figures 13 and 14). The gap can be filled with fluid, fat, or scar tissue.59 The free edges of the ruptured tendon are typically thickened and heterogeneous in their echogenicity or signal intensity, as a result of underlying tendon degeneration. An advantage of MRI for evaluating suspected tendon rupture is the large field of view and global evaluation of any other anatomic abnormalities. An advantage of sonography is the ability to perform a dynamic examination; this can be helpful in cases of tendon tear in which the torn ends are apposed to one another, thus making clinical distinction between partial tear and rupture difficult.77,88

REFERENCES

1. Archambault JM, Wiley JP, Bray RC, et al. Can sonography predict the outcome in patients with achillodynia? J Clin Ultrasound. 1996;26:355-359.

2. Aström M, Gentz CF, Nilsson P, Rausing A, Sjöberg S, Westlin N. Imaging in chronic Achilles tendinopathy: a comparison of ultrasonography, magnetic resonance imaging and surgical findings in 27 histologically verified cases. Skeletal Radiol. 1996;25:615-620.

3. Beltran J, Cheung Y, Colon E, et al. MR features of longitudinal tears of the peroneus brevis tendon. AJR Am J Roentgenol. 1997;168:141.

4. Benjamin M, Bydder GM. Magnetic resonance imaging of entheses using ultrashort TE (UTE) pulse sequences. J Magn Reson Imaging. 2007;25:381-389.

5. Bertolotto M, Perrone R, Martinoli C, Rollandi GA, Patetta R, Dersch LE. High resolution ultrasound anatomy of normal Achilles tendon. Br J Radiol. 1995;68:986-991.

6. Boesen MI, Boesen A, Koenig MJ, et al. Ultrasonographic Investigation of the Achilles tendon in elite badminton players using color Doppler. Am J Sports Med. 2006;34:203-2022.

7. Boesen MI, Koenig MJ, Torp-Pedersen S, Bliddal H, Langberg H. Tendinopathy and Doppler activity: the vascular response of the Achilles tendon to exercise. Scand J Med Sci Sports. 2006;16:463-469.

8. Brewer BJ. Aging of the rotator cuff. Am J Sports Med. 1979;7:102-110.

9. Chou HH, Chou YH, Wu JJ, Hsu CC, Huang DF, Chang CY. Evaluation of calcific tendinitis of the rotator cuff: role of color Doppler ultrasonography. J Ultrasound Med. 2002;21:289-295.

10. Choi YS, Lee, SM, Song BY, Paik SH, Yoon YK. Dynamic sonography of external snapping hip syndrome. J Ultrasound Med. 2002;21:753-758.

11. Cook JL, Khan KM, Kiss ZS, et al. Prospective imaging study of asymptomatic patellar tendinopathy in elite junior basketball players. J Ultrasound Med. 2000;19:475-479.

12. Cook JL, Malliaras P, De Luca J, et al. Neovascularization and pain in abnormal patellar tendons of active jumping athletes. Clin J Sport Med. 2004;14:296-299.

13. Cook JL, Malliaras P, De Luca J, et al. Vascularity and pain in the patellar tendon of adult jumping athletes: a 5 month longitudinal study. Br J Sports Med. 2005;39:458-461.

14. Crass JR, van de Vegte GL, Harkavy LA. Tendon echogenicity: ex vivo study. Radiology. 1988;169:499-501.

15. Diaz GC, van Hobbeek M, Jacobson, JA. Longitudinal split of the peroneus longus and peroneus brevis tendons with disruption of the superior peroneal retinaculum. J Ultrasound Med. 1998;17:525-529.

16. Donath MK, Lamm BM, Salzrick K, et al. Peroneal tendon tears: a retrospective review. J Foot Ankle Surg. 2003;42:250-258.

17. Erickson SJ, Cox IH, Hylde JS, Carrera GP, Strandt JA, Estkowski LD. Effect of tendon orientation on MR imaging signal intensity: A manifestation of the "magic angle" phenomenon. Radiology. 1991;181:389-392.

18. Formage BD, Rilkin MD. Ultrasound examination of tendons. Radiol Clin North Am. 1988;26:87-107.

19. Gerling MC, Pfiirrmann CWA, Farrookis S, et al. Posterior tibialis tendon tears: comparison of the diagnostic efficacy of magnetic resonance imaging and ultrasonography for the detection of surgically created longitudinal tears in cadavers. Invest Radiol. 2005;40:58-56.

20. Gibbon WW, Cooper JR, Rakcliffe GS. Sonographic incidence of tendon microtears in athletes with chronic Achilles tendonosis. Br J Sports Med. 1999;33:129-130.

21. Gisslen K, Alfredson H. Neovascularisation and pain in jumper’s knee: a prospective clinical and sonographic study in elite junior volleyball players. Br J Sports Med. 2005;39:423-428.

22. Gisslen K, Gyulai C, Soderman K, et al. High prevalence of jumper’s knee and sonographic changes in Swedish elite junior volleyball players compared to matched controls. Br J Sports Med. 2005;39:298-301.

23. Grant TH, Kelikian AS, Jereb SE, et al. Ultrasound diagnosis of peroneal tendon tears: a surgical correlation. J Bone Joint Surg Am. 2005;87:1788-1794.

24. Green PE, Holstrom MC, Lahart A. Surgical treatment options for patella tendon rupture, part I: acute. Orthopedics. 2005;28:072-079.

25. Hartgerink P, Fessell DP, Jacobson JA, et al. Full- versus partial-thickness Achilles tendon tears: sonographic accuracy and characterization in 26 cases with surgical correlation. Radiology. 2001;220:406-412.

26. Harvie P, Pollard TC, Carr AJ. Calcific tendinitis: natural history and association with endocrine disorders. J Shoulder Elbow Surg. 2007;16:169-173.

27. Heyde CE, Mulfield K, Stabel PP, Kayser K. Ultrasonography as a reliable diagnostic tool in old quadriceps tendon ruptures: a prospective multicentre study. Knee Surg Sports Traumatol Arthrosc. 2005;13:564-568.

28. Hurt G, Baker CJ Jr. Calcific tendinitis of the shoulder. Orthop Clin North Am. 2003;34:567-575.

29. Järvinen M. Epidemiology of tendon injuries in sports. Clin Sports Med. 1992;11:493-504.
30. Jarvinen TAH, Kannus P, Maffulli N, et al. Achilles tendon disorders: etiology and epidemiology. *Foot Ankle Clin N Am.* 2005;10:255-266.
31. Jarvinen TAH, Kannus P, Paavola M, et al. Achilles tendon injuries. *Curr Opin Rheumatol.* 2001;13:150-155.
32. Kannus P, Jozsa L. Histopathological changes preceding spontaneous rupture of a tendon: a controlled study of 891 patients. *J Bone Joint Surg Am.* 1991;73:1507-1525.
33. Kassarjian A, Torriani M, Ouellette H, Palmer WE. Intramuscular rotator cuff cysts: association with tendon tears on MRI and arthroscopy. *AJR Am J Roentgenol.* 2005;185:160-165.
34. Khan KM, Bonar F, Desmond PM. Patellar tendinosis (jumper’s knee): findings at histopathologic examination, US, and MR imaging. *Victorian Institute of Sports Tendon Study Group. Radiology.* 1996;200:821-827.
35. Khan KM, Cook JL, Kiss ZS, et al. Patellar tendon ultrasonography and jumper’s knee in female basketball players: a longitudinal study. *Clin J Sport Med.* 1997;7:199-206.
36. Khan KM, Forster BB, Robinson J, et al. Are ultrasound and magnetic resonance imaging of value in assessment of Achilles tendon disorders? A two year prospective study. *Br J Sports Med.* 2003;37:149-155.
37. Knobloch K, Yoon U, Vogt PM. Acute and overuse injuries correlated to hours of training in master running athletes. *Foot Ankle Int.* 2008;29:671-676.
38. La S, Fessell DP, Femino JE, Jacobson JA, Jamadar D, Hayes C. Sonography of partial-thickness quadiceps tendon tears with surgical correlation. *J Ultrasound Med.* 2003;22:1323-1329.
39. Lee MH, Chang CB, Cho JH, et al. Tibialis anterior tendon and extensor retinaculum: imaging in cadavers and patients with tendon tear. *AJR Am J Roentgenol.* 2006;187:163-168.
40. Lind B, Ohberg I, Alfredson H. Sclerosing polidocanol injections in midportion Achilles tendinosis: remaining good clinical results and decreased tendon thickness at 2-year follow-up. *Knee Surg Sports Traumatol Arthrosc.* 2006;14:1327-1332.
41. Nehrer S, Breitenseher M, Brodner W, et al. Clinical and sonographic evaluation of the risk of rupture in the Achilles tendon. *Arch Orthop Trauma Surg.* 1997;116:14-18.
42. Neustadter J, Raikin SM, Nazarian LN. Dynamic sonographic evaluation of peroneal tendon subluxation. *AJR Am J Roentgenol.* 2004;183:985-988.
43. Ohberg I, Alfredson H. Sclerosing therapy in chronic Achilles tendon insertion pain—results of a pilot study. *Knee Surg Sports Traumatol Arthrosc.* 2003;11:339-343.
44. Paavola M, Kannus P, Jarvinen TAH, et al. Achilles tendinopathy. *J Bone Joint Surg Am.* 2002;84:2062-2076.
45. Paavola M, Kannus P, Paakkala T, et al. Long-term prognosis of patients with Achilles tendinopathy: an observational 8-year follow-up study. *Am J Sports Med.* 2000;28:634-642.
46. Peh WC, Chan JH. The magic angle phenomenon in tendons: effect of varying the MR echo time. *Br J Radiol.* 1998;71:51-56.
47. Riley GP, Harrall BL, Constant CR, Chard MD, Cawston TE, Hazleman BL. Glycosaminoglycans of human rotator cuff tendons: changes with age and in chronic rotator cuff tendinitis. *Ann Rheum Dis.* 1994;53:367-376.
48. Robson MD, Benjamin M, Gishen P, Bydder GM. Magnetic resonance imaging of the Achilles tendon using ultra-short TE (UTE) pulse sequences. *Clin Radiol.* 2004;59:727-735.
49. Rosenberg ZS, Cheung Y, Jahss MH, et al. Rupture of posterior tibial tendon: CT and MR imaging with surgical correlation. *Radiology.* 1988;169:229-235.
50. Scott A, Ashe MC. Common tendinopathies in the upper and lower extremities. *Curr Sports Med Rep.* 2006;5:233-241.
51. Scott A, Lian Ø, Bahr R, Hart DA, Duronio V. VEGF expression in patellar tendinopathy: a preliminary study. *Clin Orthop Relat Res.* 2008;466:1598-1604.
52. Sobel M, DiCarlo E, Bohne E, et al. Longitudinal splitting of the peroneus brevis tendon: an anatomic and histologic study of cadaveric material. *Foot Ankle.* 1991;12:165-170.
53. Tallon C, Maffulli N, Ewen SWB. Ruptured Achilles tendons are significantly more degenerated than tendinopathic tendons. *Med Sci Sports Exerc.* 2001;33:1983-1990.
54. Teefey SA, Rubin DA, Middleton WD, Hildebolt CF, Leibold RA, Yamaguchi K. Detection and quantification of rotator cuff tears: comparison of ultrasonographic, magnetic resonance imaging, and arthroscopic findings in seventy-one consecutive cases. *J Bone Joint Surg Am.* 2004;86:708-716.
55. Torriani M, Kattaparam SV. Musculoskeletal ultrasound: an alternative imaging modality for sports-related injuries. *Top Magn Reson Imaging.* 2005;14:103-112.
56. Vora AM, Myerson MS, Oliva F, et al. Tendinopathy of the main body of the Achilles tendon. *Foot Ankle Clin.* 2005;10:293-308.
57. Walz DM, Miller TT, Chen S, Hofman J. MR imaging of delamination tears of the rotator cuff tendons. *Skeletal Radiol.* 2007;36:411-416.
58. Willberg L, Sunding K, Ohberg L, Fahlström M, Alfredson H. Sclerosing injections to treat midportion Achilles tendinosis: a randomized controlled study evaluating two different concentrations of Polidocanol. *Knee Surg Sports Traumatol Arthrosc.* 2008;16:859-864.