EXCURSIONS AND OCCUPATION TIMES OF CRITICAL EXCITED RANDOM WALKS

DMITRY DOLGOPYAT AND ELENA KOSYGINA

Abstract. The paper considers excited random walks (ERWs) on integers in i.i.d. environments with a bounded number of excitations per site. The emphasis is primarily on the critical case for the transition between recurrence and transience which occurs when the total expected drift δ at each site of the environment is equal to 1 in absolute value. Several crucial estimates for ERWs fail in the critical case and require a separate treatment. The main results discuss the depth and duration of excursions from the origin for $|\delta| = 1$ as well as occupation times of negative and positive semi-axes and scaling limits of ERW indexed by these occupation times. It is also pointed out that the limiting proportions of the time spent by a non-critical recurrent ERW (i.e. when $|\delta| < 1$) above or below zero converge to beta random variables with explicit parameters given in terms of δ.

1. Introduction and main results

1.1. Model description. We consider an exited random walk (ERW) on \mathbb{Z} with nearest neighbor jumps which evolves in a random “cookie environment”. The environment consists of i.i.d. stacks of “cookies” $\omega_x := (\omega_x(1), \omega_x(2), \ldots)$ placed on each site $x \in \mathbb{Z}$. A cookie $\omega_x(i) \in [0, 1], x \in \mathbb{Z}, i \in \mathbb{N}$, encodes the probability that the walk jumps to the right upon the i-th visit to x. We also assume that there is a non-random $M \geq 0$, the number of excitations per site, such that $\omega_x(i) = 1/2$ for all $i > M$ and $x \in \mathbb{Z}$, i.e. starting from the $(M+1)$-th visit to a site the walk makes only unbiased jumps from this site.

More formally, we suppose that an environment $\omega \in \Omega = [0, 1]^{\mathbb{Z} \times \mathbb{N}}$ is chosen according to a probability measure \mathbb{P} which satisfies the following three assumptions.

(IID) (Independence) The cookie stacks $\omega_x(\cdot), x \in \mathbb{Z}$, are i.i.d. under \mathbb{P}.

(WEL) (Weak ellipticity) For all $x \in \mathbb{Z}$

$\mathbb{P}(\omega_x(i) > 0 \ \forall i \in \mathbb{N}) > 0 \ \text{and} \ \mathbb{P}(\omega_x(i) < 1 \ \forall i \in \mathbb{N}) > 0$.

(BD$_M$) (Bounded number of excitations per site) $\mathbb{P}(\omega_x(i) = 1/2 \ \forall x \in \mathbb{Z}, \ i > M) = 1$.

Given an environment $\omega \in \Omega$, we shall use the usual coin-toss construction of a random walk, albeit we should keep a record of the number of visits of the walk to each site and use appropriately biased coins for the first M visits to each site. Namely, let $(\eta_x(i))_{x \in \mathbb{Z}, i \in \mathbb{N}}$ be independent (under some probability measure P_ω) Bernoulli random variables such that $P_\omega(\eta_x(i) = 1) = 1 - P_\omega(\eta_x(i) = 0) = \omega_x(i)$ for all $x \in \mathbb{Z}, i \in \mathbb{N}$. Set

2010 Mathematics Subject Classification. Primary: 60K37, 60F17, 60J80. Secondary: 60J60.

Key words: random cookie environment, branching process, diffusion approximation, perturbed Brownian motion, beta distribution.
$X_0 = x$, $x \in \mathbb{Z}$, and define recursively

$$X_{n+1} = X_n + 2\eta X_n(\#\{k \in \{0, 1, \ldots, n\} : X_k = X_n\}) - 1, \quad n \in \{0\} \cup \mathbb{N}.$$

The probability measure $P_{\omega,x}$ induced on the space of random walk paths which start from x is called the quenched measure. The probability measure on the product space of environments and random walk paths originating at x defined by

$$P_x(\cdot) = \mathbb{E}[P_{\omega,x}(\cdot)] = \int_{\Omega} P_{\omega,x}(\cdot) d\mathbb{P}(\omega)$$

is called the averaged measure. Observe that ERW is not a Markov process with respect to either of these measures.

Below we shall only quote the facts needed to put our results into the context of previous work. For an overview of various ERW models, methods, and results the reader is referred to [8].

1.2. Excursions from the origin.

Let $T_k := \inf\{n \geq 0 : X_n = k\}$, $k \in \mathbb{Z}$, be the time of the first visit to k and $T^*_0 := \inf\{n \geq 1 : X_n = 0\}$ be the first strictly positive time at which the random walk visits the origin.

Under our assumptions, several phase transitions are known to be characterized by

\begin{align}
\delta := \mathbb{E}\left[\sum_{i=1}^M (2\omega_0(i) - 1)\right],
\end{align}

the expected total drift stored in a single cookie stack. The excited random walk $(X_n)_{n \geq 0}$

(i) is transient, i.e. $|X_n| \to \infty$ P_0-a.s., iff $|\delta| > 1$ (see [8, Theorem 3.10] and the references therein or a combination of [9, Corollary 7.10] and Remark A.6 below);

(ii) is ballistic, i.e. there is a constant $v \neq 0$ such that P_0-a.s. $\lim_{n \to \infty} X_n/n = v$, iff $|\delta| > 2$ (see [8, Theorem 5.2] and the references therein);

(iii) is strongly transient, i.e. $E^0[T^*_0 \mid T^*_0 < \infty] < \infty$, iff $|\delta| > 3$ (see [9, Corollary 1.2]);

(iv) after diffusive scaling converges under P_0 to a Brownian motion iff $|\delta| > 4$ or $\delta = 0$ (see [8, Theorems 6.1, 6.3, 6.5, 6.7] and the references therein).

Remark 1.1. The velocity v in (ii) as well as all constants b, c, c_i, $i \geq 1$, which appear below depend on the distribution of a single cookie stack ω_0 under \mathbb{P}. They are not, in general, functions of δ (see [8, Remark 5.8] for a discussion about v).

The phase transition in (iii) emerged in the study of the depth and duration of excursions of ERW. Since our first result is about excursions in the critical case $|\delta| = 1$ we shall first quote the original relevant theorem.

Theorem 1.2 ([9], Theorem 1.1). Assume that $\delta \in \mathbb{R} \setminus \{1\}$. Then there are constants $c_1,c_2 \in (0,\infty)$ such that

\begin{align}
(2) \quad \lim_{n \to \infty} n^{\delta - 1} P_1(T_n < T_0 < \infty) &= c_1, \nonumber \\
(3) \quad \lim_{n \to \infty} n^{\delta - 1/2} P_1(n < T_0 < \infty) &= c_2. \nonumber
\end{align}

\footnote{for $|\delta| \leq 1$ X is recurrent, i.e. returns to the origin infinitely often P_0-a.s.}
Moreover, if $\delta = 1$ then every $\varepsilon > 0$,
\begin{equation}
\lim_{n \to \infty} n^\varepsilon P_1(T_n < T_0) = \lim_{n \to \infty} n^\varepsilon P_1(T_0 > n) = \infty.
\end{equation}

If $|\delta| \neq 1^2$ then there is a constant $c_3 \in (0, \infty)$ such that
\begin{equation}
\lim_{n \to \infty} n|\delta|^{-1/2} P_0(n < T_0^r < \infty) = c_3.
\end{equation}
Moreover, if $|\delta| = 1$ then for every $\varepsilon > 0$,
\begin{equation}
\lim_{n \to \infty} n^\varepsilon P_1(T_0^r > n) = \infty.
\end{equation}

This theorem immediately implies (iii) but provides very little information about the tail of the return time in the critical case. Our first result fills in this gap.

Theorem 1.3. If $\delta = 1$ then there is a constant $c_4 \in (0, \infty)$ such that
\begin{equation}
\lim_{n \to \infty} (\ln n) P_1(T_n < T_0) = c_4;
\end{equation}
\begin{equation}
\lim_{n \to \infty} (\ln n) P_1(T_0 > n) = 2c_4.
\end{equation}

If $|\delta| = 1$ then there is a constant $c_5 \in (0, \infty)$ such that
\begin{equation}
\lim_{n \to \infty} (\ln n) P_0(T_0^r > n) = c_5.
\end{equation}

The key statements of Theorem 1.3 are (7) and (8). The last conclusion follows easily from (8), (3) with $\delta = -1$, and the following remark by conditioning on the first step (see [9, (6.2)]).

Remark 1.4. There is a useful symmetry in our model. If the environment $(\omega_x)_{x \in \mathbb{Z}}$ is replaced with $(\tilde{\omega}_x)_{x \in \mathbb{Z}}$ where $\tilde{\omega}_x(i) = 1 - \omega_x(i)$, for all $i \in \mathbb{N}$, $x \in \mathbb{Z}$, then \tilde{X}, the ERW corresponding to the new environment, satisfies
\begin{equation}
\tilde{X} \overset{d}{=} -X,
\end{equation}
where $\overset{d}{=}$ denotes the equality in distribution. Thus, it is sufficient to consider only excursions to the right (for all δ). The corresponding results for excursions to the left will follow by symmetry. Thus from now on we shall assume without loss of generality that $\delta \geq 0$.

Remark 1.5. There is a simple relationship between c_4 and c_5. See formula (18) at the end of Section 2.

1.3. **Occupation times and scaling limits.** Unless stated otherwise we shall assume that all processes start at the origin at time 0. Let $B = (B(t))$, $t \geq 0$, denote a standard Brownian motion and $W_{\alpha,\beta} = (W_{\alpha,\beta}(t))$, $t \geq 0$, be an (α, β)-perturbed Brownian motion, i.e. the solution of the equation
\begin{equation}
W_{\alpha,\beta}(t) = B(t) + \alpha \sup_{s \leq t} W_{\alpha,\beta}(s) + \beta \inf_{s \leq t} W_{\alpha,\beta}(s).
\end{equation}

Reflected α-perturbed Brownian motion, $W_\alpha = (W_\alpha(t))$, $t \geq 0$, is the solution of
\begin{equation}
W_\alpha(t) = B(t) + \alpha \sup_{s \leq t} W_\alpha(s) + \frac{1}{2} L^{W_\alpha}(t),
\end{equation}
where
\begin{equation}
\text{(1.5) of [9] both } \delta = 1 \text{ and } \delta = -1 \text{ should have been excluded.}
where \(L^W_\alpha(t) \) is the local time of \(W_\alpha \) at zero. Equation (11) has a pathwise unique solution if \((\alpha, \beta) \in (-\infty, 1) \times (-\infty, 1)\), and (12) has a pathwise unique solution when \(\alpha < 1 \) (\([3, 10]\)). In both cases the solution is adapted to the filtration of \(B \). If \(\beta = 0 \) then the solution of (11) can be written explicitly:

\[
W_{\alpha,0}(t) = B(t) + \frac{\alpha}{1 - \alpha} \sup_{s \leq t} B(s).
\]

The following two theorems describe scaling limits of recurrent ERWs. We write \(\mathcal{J}_1 \) to denote the weak convergence of stochastic processes with respect to the standard Skorokhod topology \(\mathcal{J}_1 \) on \(D([0, \infty)) \), the space of càdlàg functions on \([0, \infty)\).\(^3\)

Theorem 1.6 ([5], Theorem 1.1). Let \(\delta \in [0, 1) \). Then under \(P_0 \)

\[
\frac{X_{[n \cdot]}}{\sqrt{n}} \xrightarrow{\mathcal{J}_1} W_{\delta, -\delta}(\cdot) \text{ as } n \to \infty.
\]

Theorem 1.7 ([5], Theorem 1.2). Let \(\delta = 1 \) and \(B^*(t) := \max_{s \leq t} B(s) \). Then there exists a constant \(b \in (0, \infty) \) such that under \(P_0 \)

\[
\frac{X_{[n \cdot]}}{b \sqrt{n \log n}} \xrightarrow{\mathcal{J}_1} B^*(\cdot) \text{ as } n \to \infty.
\]

At the first glance it appears counter-intuitive that for \(\delta = 1 \) the limiting process is transient while the original process is recurrent. However, the running maximum of Brownian motion is a natural limit of \(W_{\alpha,\beta}((1 - \alpha)^2 \cdot) \) as \(\alpha \uparrow 1 \) (see the discussion right after Theorem 1.8).

Theorem 1.6 suggests that the rescaled occupation times of positive and negative semi-axes of non-critical recurrent ERW should converge to those of reflected perturbed Brownian motion. The latter was studied in detail, and the next theorem quotes results from the literature. Let

\[
A^+(t) := \int_0^t 1_{\{W_{\alpha,\beta}(u) \geq 0\}} \, du, \quad A^-(t) := \int_0^t 1_{\{W_{\alpha,\beta}(u) < 0\}} \, du, \quad t \geq 0,
\]

and \(T_\pm(t) := \inf\{s : A^\pm(s) > t\}, \ t \geq 0, \) be the right continuous inverses of \(A^\pm(\cdot) \). Denote by \(Z(a,b) \) a \(\beta \)-distributed random variable with parameters \(a \) and \(b \).

Theorem 1.8. For all \(\alpha, \beta < 1 \) the following holds:

(a) [2, equation (8)]

\[
\frac{A^+(t)}{t} \overset{d}{=} Z \left(\frac{1 + \beta}{2}, \frac{1 - \alpha}{2} \right) \text{ and } \frac{A^-(t)}{t} \overset{d}{=} Z \left(\frac{1 - \alpha}{2}, \frac{1 + \beta}{2} \right).
\]

(b) [4, Theorem 1]

\[
W_{\alpha,\beta}(T^+(\cdot)) \overset{d}{=} W_\alpha(\cdot) \text{ and } -W_{\alpha,\beta}(T^-(\cdot)) \overset{d}{=} W_\beta(\cdot).
\]

Theorem 1.8 implies that \(W_{\alpha,\beta}((1 - \alpha)^2 \cdot) \Rightarrow B^*(\cdot) \) as \(\alpha \uparrow 1 \). Indeed, the Brownian scaling of \(W_{\alpha,\beta} ([2,\ Propostion 2.3]) \) allows to rewrite the above convergence as

\[
(1 - \alpha)W_{\alpha,\beta}(\cdot) \Rightarrow B^*(\cdot) \text{ as } \alpha \uparrow 1.
\]

\(^3\)Since all limiting processes below have continuous paths, we can also claim the convergence with respect to the uniform topology on \(D([0, T]) \) for each \(T > 0 \) (see [1, Section 15]).
By Theorem 1.8(a) $\alpha \uparrow 1$ the process $W_{\alpha,\beta}$ stays most of the time in $[0, \infty)$ (recall that $\mathbb{E}[A^+(t)/t] = (1 + \beta)/(2 - \alpha + \beta)$). By Theorem 1.8(b) we conclude that the limit in (14) should be independent of β. On the other hand, if $\beta = 0$ then (13) tells us that $(1 - \alpha)W_{\alpha,0}(\cdot)$ has the same law as $(1 - \alpha)B(\cdot) + \alpha \sup_{s \leq t} B(s)$. This implies (14).

The next corollary follows from Theorems 1.6 and 1.8 by the continuous mapping theorem (see Section 4 for details).

Corollary 1.9. Suppose that $\delta \in [0, 1)$. Let

$$A_n^+ := \sum_{i=0}^{n} \mathbb{1}_{\{X_i \geq 0\}} \quad \text{and} \quad A_n^- := \sum_{i=0}^{n} \mathbb{1}_{\{X_i < 0\}}, \ n \geq 0,$$

and $T_n^\pm := \inf\{m : A_n^\pm > m\}, \ m \geq 0$. Then

(a) \(\frac{A_n^+}{n} \Rightarrow Z \left(\frac{1 + \delta}{2}, \frac{1 - \delta}{2}\right) \) and \(\frac{A_n^-}{n} \Rightarrow Z \left(\frac{1 - \delta}{2}, \frac{1 + \delta}{2}\right) \) as \(n \to \infty \);

(b) \(\frac{X_{T_n^+}^\pm}{\sqrt{m}} \overset{d}{\to} W_0(\cdot) \) and \(\frac{X_{T_n^-}^\pm}{\sqrt{m}} \overset{d}{\to} W_\delta(\cdot) \) as \(m \to \infty \).

Consider now the critical case $\delta = 1$. It is clear from Theorem 1.7 that the proportion of time spent in $(-\infty, 0)$ by an ERW with $\delta = 1$ should converge to 0 (see Lemma 4.1 below). Since the critical ERW is recurrent and satisfies (BDM), $A_n^- \to \infty$ as $n \to \infty$. But how fast does A_n^- increase? Our last theorem answers this question on a logarithmic scale and also provides scaling limits of $X_{T_{\{m\}}^\pm}$ when $\delta = 1$.

Theorem 1.10. Let $\delta = 1$ and A_n^\pm, T_n^\pm, $n \geq 0$, be as in Corollary 1.9. Then under P_0

(a) \(\frac{\log A_n^-}{\log n} \Rightarrow U \) as $n \to \infty$, where U is uniform on $[0, 1]$ random variable;

(b) \(\frac{X_{T_n^+}}{\sqrt{m}} \overset{d}{\to} W_{-1}(\cdot) \) as $m \to \infty$;

(c) there is a constant $b \in (0, \infty)$ such that \(\frac{X_{T_n^+}}{b \sqrt{m \log m}} \overset{d}{\to} B^*(\cdot) \) as $m \to \infty$.

Part (a) of the above theorem informally says that $A_n^- \asymp n^U$ where U is a standard uniform random variable. See Section 4.2 for a heuristic derivation of this asymptotics. Part (b) is just a simple extension of the last claim of Corollary 1.9 to $\delta = 1$. This reflects the fact that if we consider an ERW with $\delta = 1$ only at the times when it visits the negative half-line then such process is not critical and can be treated essentially in the same way as the case $\delta \in [0, 1)$. The situation is different if we look at an ERW with $\delta = 1$ only when it visits the positive half-line, since neither $W_{\alpha,\beta}$ nor W_α exists for $\alpha = 1$. But in view of Theorem 1.7 the statement of part (c) is not surprising.

1.4. **Organization of the paper.** In Section 2 we explain the connection between ERWs and some branching processes. The main theorem of Section 2, Theorem 2.1, is an important tool for the proofs of our main results. We illustrate this by deriving Theorem 1.3 as a simple corollary of Theorem 2.1. The proof of Theorem 2.1 is given in Section 3. In Section 4 we prove Corollary 1.9 and Theorem 1.10. Proofs of technical lemmas are collected in the Appendix.
2. Connection with branching processes

In this section we construct the relevant branching process (BP) and restate (7) and (8) in terms of of the tails of the extinction time and the total progeny of these BPs.

We shall use the same environment $\omega \in \Omega$ and Bernoulli random variables $(\eta_x(i))_{x \in \mathbb{Z}, i \in \mathbb{N}}$ as in the construction of the ERW. This will provide us with a natural coupling between the ERW and the BP. We define here only the BP V which corresponds to right excursions of the walk.\footnote{The BP corresponding to left excursions, V^-, is constructed in a symmetric way and will be introduced in Section 4.2.}

For $x \in \{0\} \cup \mathbb{N}$ let

$$S_x(0) = 0, \quad S_x(m) := \inf \left\{ k \geq 1 : \sum_{i=1}^{k} (1 - \eta_x(i)) = m \right\} - m, \quad m \in \mathbb{N}.$$

Thus, $S_x(m)$ is the number of “successes” before the m-th “failure” in the sequence $\eta_x(i), \ i \in \mathbb{N}$. Define the process $V = (V_n)_{n \geq 0}$ which starts with y particles in generation 0 by

$$V_0 = y, \quad V_n = S_n(V_{n-1}), \quad n \in \mathbb{N}. \quad (15)$$

If there were no biased coins, V would be a Galton-Watson process with mean 1 geometric offspring distribution. Our process uses up to M possibly biased coins in each generation, therefore, strictly speaking, it is not a “true” branching process. We could recast it as a branching process with migration (see [7, Section 3]) but, since we do not use any results from branching processes literature, we shall not need this step.

For $y \in [0, \infty)$ we shall denote by P^V_y the (averaged) probability measure corresponding to the process V which starts with $\lfloor y \rfloor$ particles in generation 0. For $x \in [0, \infty)$ define $\tau^V_x := \inf\{n \in \mathbb{N} : V_n \geq x\}$ and $\sigma^V_x := \inf\{n \in \mathbb{N} : V_n \leq x\}$. When there is no danger of confusion we shall drop the superscript V.

Theorem 2.1. Let $\delta = 1$ and $V = (V_n)_{n \geq 0}$ be defined by (15). Then for each $y \in \mathbb{N}$ there is a constant $c_6(y) \in (0, \infty)$ such that

$$\lim_{n \to \infty} (\ln n) P^V_y(\sigma^V_0 > n) = c_6(y), \quad (16)$$

$$\lim_{n \to \infty} (\ln n) P^V_y \left(\sum_{i=0}^{\sigma^V_0 - 1} V_i > n \right) = 2c_6(y). \quad (17)$$

Assume for the moment Theorem 2.1 and derive Theorem 1.3.

Proof of Theorem 1.3. The proof is essentially the same as that of Theorem 1.1 in [9].

Let the ERW start with $x = 1$ and the corresponding BP start with $y = 1$. Observe that, since ERW and BP are constructed from the same $(\eta_x(i))_{x \in \mathbb{Z}, i \in \mathbb{N}}$, we have

$$\sigma^V_0 = \max\{X_n : n < T_0\} \quad \text{and} \quad T_0 \mathbb{1}_{\{T_0 < \infty\}} = \left(2 \sum_{n=0}^{\sigma^V_0 - 1} V_n - 1 \right) \mathbb{1}_{\{\sigma^V_0 < \infty\}}.$$

Therefore, (7) and (8) with $c_4 = c_6(1)$ follow from (16) and (17). To show (9) we start ERW with $x = 0$ and condition on the first step. Since $P_{\omega, \pm 1}(T_0 \geq n)$ do not depend on
ω₀(·),

\[P₀(T₀^r > n) = E[P₁(T₀ ≥ n)] \]

\[= E[\omega_0(1)P₁(T₀ ≥ n) + E[(1 - \omega_0(1))(1)P₁(T₀ ≥ n)] \]

By (WEL), \(E[\omega_0(1)] > 0 \) and \(E[(1 - \omega_0(1))] > 0 \). If \(\delta = 1 \) then \((\ln n)P₁(T₀ ≥ n) \rightarrow 2c₄ \) as \(n \rightarrow \infty \) by (8). By Remark 1.4 and (3) with \(\delta = -1 \), \(nP₁(T₀ ≥ n) \) converges to a constant. We conclude that

\[\lim_{n \rightarrow \infty} (\ln n)P₀(T₀^r > n) = 2c₄E[\omega_0(1)]. \]

The result for \(\delta = -1 \) follows by symmetry.

3. Proof of Theorem 2.1

The proof of Theorem 2.1 depends on a number of additional facts which we state below and prove in the Appendix.

Lemma 3.1. Let \(y \in \mathbb{N} \). Then there is a constant \(c₆(y) \in (0, \infty) \) such that

\[\lim_{n \rightarrow \infty} (\ln n)P_y(\tau_n < \sigma_0) = c₆(y). \]

Lemma 3.2. For every \(y \in \mathbb{N} \) and \(\alpha > 1 \)

\[\lim_{n \rightarrow \infty} (\ln n)P_y\left(\sum_{i=0}^{\sigma_0-1} \mathbb{1}_{\{V_i ≤ n\}} > n^\alpha\right) = 0. \]

Lemma 3.3. For every \(h > 0 \)

\[\lim_{n \rightarrow \infty} nP_n(\sigma_0 > hn) = 1; \]

\[\lim_{n \rightarrow \infty} nP_n\left(\sum_{i=0}^{\sigma_0-1} V_i > hn^2\right) = 1. \]

The following results, which will be referred to as (DA), Diffusion Approximation, and (OS), “Overshoot”, respectively, are borrowed from previous works.

Lemma 3.4 (Diffusion approximation). Fix an arbitrary \(\varepsilon > 0 \) and \(y > \varepsilon \). Let \(Y^{\varepsilon,n}(0) = [ny] \) and \(Y^{\varepsilon,n}(t) = \frac{V[n\varepsilon]^{\lambda\sigma_{\varepsilon,n}}}{n}, t ≥ 0 \). Then, under the averaged measure, \(Y^{\varepsilon,n} \overset{Law}{\rightarrow} Y \), where \(Y \) is the solution of

\[dY(t) = dt + \sqrt{2Y(t)}dB(t), \quad Y(0) = y, \]

stopped when \(Y \) reaches level \(\varepsilon \).

Lemma 3.4 is an immediate consequence of Proposition 3.2 and Lemma 3.3 of [9].

Lemma 3.5 (“Overshoot”, Lemma 5.1 of [6]). There are constants \(c₇, c₈ > 0 \) and \(N \in \mathbb{N} \) such that for all \(x ≥ N \) and \(y ≥ 0 \)

\[\max_{0 ≤ z ≤ x} P_z(V_{τ_x} > x + y | τ_x < \sigma_0) ≤ c₇ \left(e^{-c₈y^2/x} + e^{-c₈y}\right) \]
and
\[
\max_{x < z < 4x} P_x(V_{\sigma_x \wedge \tau_{4x}} < x - y) \leq c_7 e^{-c_8 y^2/x}.
\]

Proof of Theorem 2.1. We start with the proof of (16).

Lower bound for (16). For every \(y \in \mathbb{N} \) we have by the strong Markov property and monotonicity in the starting point that

\[
P_y(\sigma_0 > n) \geq P_y(\sigma_0 > n, \tau_n < \sigma_0)
= P_y(\sigma_0 > n | \tau_n < \sigma_0)P_y(\tau_n < \sigma_0) \geq P_n(\sigma_0 > n)P_y(\tau_n < \sigma_0).
\]

Using Lemma 3.1 and (19) we get

\[
\liminf_{n \to \infty} \ln P_y(\sigma_0 > n) \geq c_6(y).
\]

Upper bound for (16). Fix an arbitrary \(\alpha > 1 \) and notice that for all \(m > y \)

\[
(\ln m) P_y(\sigma_0 > m^\alpha) \leq (\ln m) P_y(\sigma_0 > m^\alpha, \tau_m \leq m^\alpha) + (\ln m) P_y(\tau_m \wedge \sigma_0 > m^\alpha)
\]

\[
\leq (\ln m) P_y(\sigma_0 > \tau_m) + (\ln m) P_y \left(\sum_{i=1}^{\sigma_0-1} 1 \{ \sigma_i > m^\alpha \} \right).
\]

As \(m \to \infty \), the first term in the right hand side converges to \(c_6(y) \) by Lemma 3.1 and the second term vanishes due to Lemma 3.2.

Define \(m = m(n) \) by the condition \(m^\alpha \leq n < (m + 1)^\alpha \). Then we get

\[
\limsup_{n \to \infty} (\ln n) P_y(\sigma_0 > n) \leq \lim_{\alpha \downarrow 1} \lim_{m \to \infty} \alpha (\ln(m + 1)) P_y(\sigma_0 > m^\alpha) = c_6(y),
\]

which matches the lower bound.

We turn now to the proof of (17). It is enough to show that

\[
\lim_{n \to \infty} (\ln n) P_y \left[\sum_{i=0}^{\sigma_0-1} V_i > n^2 \right] = c_6(y).
\]

Lower bound for (22). By Lemma 3.1 and (20),

\[
\liminf_{n \to \infty} (\ln n) P_y \left[\sum_{i=0}^{\sigma_0-1} V_i > n^2 \right] \geq \liminf_{n \to \infty} (\ln n) P_y \left[\sum_{i=0}^{\sigma_0-1} V_i > n^2, \tau_n < \sigma_0 \right]
\]

\[
\geq \lim_{n \to \infty} (\ln n) P_y[\tau_n < \sigma_0] \lim_{n \to \infty} P_n \left[\sum_{i=0}^{\sigma_0-1} V_i > n^2 \right] = c_6(y).
\]

Upper bound for (22). The reasoning is very similar to the one we gave for (16). Fix \(\alpha > 1 \). Using the sequence \(m = m(n) \) such that \(m^\alpha \leq n < (m + 1)^\alpha \) we get

\[
\limsup_{n \to \infty} (\ln n) P_y \left[\sum_{i=0}^{\sigma_0-1} V_i > n^2 \right] \leq \alpha \limsup_{m \to \infty} (\ln(m + 1)) P_y \left[\sum_{i=0}^{\sigma_0-1} V_i > m^{2\alpha} \right].
\]

Therefore, if we show that for every \(\alpha > 1 \)

\[
\limsup_{m \to \infty} (\ln m) P_y \left[\sum_{i=0}^{\sigma_0-1} V_i > m^{2\alpha} \right] \leq c_6(y),
\]

(23)
then letting $\alpha \to 1$ and using the lower bound we shall obtain (22). Notice that

$$(\ln m) P_y \left[\sum_{i=0}^{\sigma_0 - 1} V_i > m^{2\alpha}, \tau_m < \sigma_0 \right] \leq (\ln m) P_y(\tau_m < \sigma_0),$$

which by Lemma 3.1 converges to $c_6(y)$ as $m \to \infty$. Finally,

$$P_y \left[\sum_{i=0}^{\sigma_0 - 1} V_i > m^{2\alpha}, \tau_m > \sigma_0 \right] \leq P_y(\sigma_0 > m^{2\alpha} - 1, \tau_m > \sigma_0) \leq P_y \left[\sum_{i=0}^{\sigma_0 - 1} \mathbb{1}_{\{V_i \leq m\}} > m^{2\alpha - 1} \right].$$

By Lemma 3.2 the last expression is $o(1/\ln m)$ as $m \to \infty$, and we get (23). □

4. Proofs of Corollary 1.9 and Theorem 1.10

4.1. Proof of Corollary 1.9. Part (a) of Corollary 1.9 follows from the following lemma.

Lemma 4.1. Let $\delta \in [0, 1]$. Then as $n \to \infty$

$$\frac{A^+_n}{n} \Rightarrow Z \left(\frac{1 + \delta}{2}, \frac{1 - \delta}{2} \right),$$

where we set $Z(1, 0) \equiv 1$.

Proof. This lemma is an easy consequence of Theorems 1.6 and 1.8 (for $\delta \in [0, 1)$), Theorem 1.7 (for $\delta = 1$), and the continuous mapping theorem. To unify the notation let

$$X_{\delta,n}(\cdot) := \begin{cases} \frac{X_{[n\cdot]} - \mathbb{1}_{[0,\infty)}}{\sqrt{n}}, & \text{if } \delta \in [0, 1); \\ \frac{X_{[n\cdot]} - b}{\sqrt{n \log n}}, & \text{if } \delta = 1; \end{cases} \quad W_{1,-1} := B^*.$$

Define $\varphi : D([0,1]) \to \mathbb{R}$ by

$$\varphi(\omega) = \int_0^1 \mathbb{1}_{[0,\infty)}(\omega(t)) \, dt.$$

Then φ is continuous P-a.s. (P is the measure corresponding to $W_{\delta,-\delta}$), since the Lebesgue measure of the set $Z := \{ t \in [0,1] : W_{\delta,-\delta}(t) = 0 \}$ is 0 P-a.s. Indeed,

$$E \int_0^1 \mathbb{1}_Z(t) \, dt = \int_0^1 P(W_{\delta,-\delta}(t) = 0) \, dt = 0,$$

where the last equality follows from the fact that $W_{-\delta,\delta}$ has density (see [2, Proposition 2.3 and Section 3.3]).

Therefore,

$$\varphi(X_{\delta,n}) = \frac{1}{n} \sum_{k=0}^{n-1} \mathbb{1}_{[0,\infty)}(X_k) = \frac{A^+_n}{n} \Rightarrow \varphi(W_{\delta,-\delta}(1)) \overset{d}{=} Z \left(\frac{1 + \delta}{2}, \frac{1 - \delta}{2} \right).$$

The last equality follows from Theorem 1.8(a) for $\delta \in [0, 1)$ and is trivial for $\delta = 1$. □
It is enough to show the second part of Corollary 1.9(b). The proof of the first part is similar. For every \(R > 0 \) consider the map \(\psi : D([0, \infty)) \to D([0, R]) \) defined by

\[
\psi(\omega(s), 0 \leq s < \infty) = (-\omega(T^-\omega(s)), 0 \leq T^-\omega(s) \leq R),
\]

where \(T^-\omega(s) := \inf \left\{ t : \int_{t}^{\infty} 1_{(-\infty,0)}(\omega(r)) \, dr > s \right\} \). Using again the fact that P-a.s. the Lebesgue measure of \(Z \) is 0, a routine but somewhat tedious argument shows that \(\psi \) is P-a.s. continuous \((P \) is the measure which corresponds to \(W_{\delta,-\delta} \)). After this is done, the desired statement follows from Theorem 1.6 and Theorem 1.8(b) by the continuous mapping theorem. We omit the details.

4.2. Heuristics and the proof of Theorem 1.10(a). We start by introducing some additional notation which will be used throughout the rest of Section 4. Denote by \(d_n \), the number of down-crossings of \(X \) from 0 to \(-1\) up to time \(n \) inclusively and by \(u_n \), the number of up-crossings of \(X \) from 0 to 1 up to time \(n \). Rename the BP \(V \) into \(V^+ \) (for right excursions) and introduce the BP \(V^- \) which corresponds to left excursions of the walk. Namely, for \(x \leq 0 \) let

\[
F_x(0) = 0, \quad F_x(m) := \inf \left\{ k \geq 1 : \sum_{i=1}^{k} \eta_x(i) = m \right\} - m, \quad m \in \mathbb{N}.
\]

Thus, \(F_x(m) \) is the number of “failures” before the \(m \)-th “success” in the sequence \(\eta_x(i), \ i \in \mathbb{N} \). Define the process \(V^- = (V^-_n)_{n \geq 0} \) which starts with \(y \) particles in generation 0 by

\[
V^-_0 = y, \quad V^-_n = F_{-n}(V^-_{n-1}), \quad n \in \mathbb{N}.
\]

If \(V^-_0 = k \) then denote by \(\Sigma^-_k := \sum_{j=0}^{\sigma_0-1} V^-_j \) the total progeny of the BP \(V^- \) over its lifetime and observe that

\[
2\Sigma^-_{d_{n-1}} \leq A^-_n \leq 2\Sigma^-_{d_n} \quad \text{and} \quad 2\Sigma^+_{u_{n-1}} \leq A^+_n \leq 2\Sigma^+_u.
\]

Informal discussion. Let us explain where the uniform distribution in Theorem 1.10(a) comes from. Recall that \(Y \) is a half of a squared Bessel process of dimension 2, i.e. the diffusion satisfying (21), and let \(\tau_x = \inf\{t \geq 0 : Y(t) = x\} \), \(x > 0 \). The uniform distribution appears naturally in the following lemma.

Lemma 4.2. Let \(Y^*(t) = \max_{s \leq t} Y(s) \) and \(Y(0) = y > 1 \). Then

\[
\frac{\ln y}{\ln Y^*(\tau_1)} \xrightarrow{d} U.
\]

Proof. It is easy to check that \(\ln Y(t), t \geq 0 \) is a local martingale and so for all \(R > y \)

\[
P_y(\tau_R < \tau_1) = \frac{\ln y}{\ln R}.
\]

For \(x \in (0, 1) \) we have

\[
P_y \left(\frac{\ln y}{\ln Y^*(\tau_1)} \leq x \right) = P_z(Y^*(\tau_1) \geq y^{1/x}) = P_y(\tau_y^{1/x} \leq \tau_1) \overset{(27)}{=} x. \quad \square
\]

The next step is to observe that for a large starting point \(y \) the area under the path of \(Y \) up to \(\tau_1 \) is roughly the square of \(Y^*(\tau_1) \).
Lemma 4.3. Let $Y(0) = y > 1$. Then

$$\frac{\ln \int_0^{\tau_1} Y(s) \, ds}{\ln Y^*(\tau_1)} \to 2 \quad \text{as } y \to \infty.$$

The proof of Lemma 4.3 is omitted as we use it only for this informal discussion. It can be proven in the same way as Lemma 4.8. The next statement immediately follows from Lemmas 4.2 and 4.3.

Corollary 4.4. Let $Y(0) = y > 1$. Then

$$2 \ln \frac{y}{\ln \int_0^{\tau_1} Y(s) \, ds} \Rightarrow U \quad \text{as } y \to \infty.$$

The key part of the proof of Theorem 1.10(a) is the following analog of (29): let $V_0^+ = n$, then

$$\frac{2 \ln n}{\ln \Sigma_n^+} \Rightarrow U \quad \text{as } n \to \infty.$$

Notice that (30) could not be obtained from (29) simply by the diffusion approximation, since we consider V all the way down to the extinction time and Y does not hit zero with probability 1. In the next subsection we prove BP versions of Lemmas 4.2 and 4.3 (see Lemmas 4.7 and 4.8) and obtain (30).

Once we know (30), it is relatively simple to arrive at the conclusion of Theorem 1.10(a). We want to show that $\ln A_n^- / \ln n \Rightarrow U$. Consider the following chain of substitutions as $n \to \infty$:

$$\frac{\ln A_n^-}{\ln n} \xrightarrow{(26)} \frac{\ln \Sigma_n^+}{\ln n} \xrightarrow{4.5} \frac{2 \ln d_n}{\ln n} \xrightarrow{4.6} \frac{2 \ln u_n}{\ln n} \xrightarrow{4.1} \frac{2 \ln u_n}{\ln \Sigma_n^+} \xrightarrow{(26)} \frac{2 \ln u_n}{\ln \Sigma_n^+} \xrightarrow{4.1} \frac{2 \ln n}{\ln \Sigma_n^+},$$

where the last ratio converges to U by (30). The actual proof combines the last three steps into a single argument. Below we state Lemmas 4.5 and 4.6 mentioned above, and use them together with (30) to derive Theorem 1.10(a). The proofs of Lemmas 4.5 and 4.6 are postponed until Section 4.4.

Lemma 4.5. For every $\nu > 0$, $x \in [0, 1]$, and all sufficiently large n

$$P_0 \left(\frac{2 \ln d_n}{\ln n} \leq x - \nu \right) - \nu \leq P_0 \left(\frac{\ln \Sigma_n^-}{\ln d_n} \leq x \right) \leq P_0 \left(\frac{2 \ln d_n}{\ln n} \leq x + \nu \right) + \nu$$

Lemma 4.6. The following statements hold with probability 1 as $n \to \infty$:

$$u_n \to \infty; \quad d_n \to \infty;$$

$$\frac{d_n}{u_n} \to 1.$$

Proof of Theorem 1.10(a). By (26), Lemma 4.5, and Lemma 4.6 it is enough to show that $2(\ln u_n) / (\ln n) \Rightarrow U$ as $n \to \infty$.

Let $x \in (0, 1)$. Fix an arbitrary $\nu > 0$ and $\varepsilon \in (0, (1-x))$. By Lemma 4.6, (30), and Lemma 4.1 for all sufficiently large n we have

$$P\left(\frac{2\ln u_n}{\ln n} \leq x\right) \leq P\left(2\Sigma_{[n^{x/2}]}^+ \geq (1-\varepsilon)n\right) + P\left(\frac{2\ln u_n}{\ln n} \leq x, 2\Sigma_{[n^{x/2}]}^+ < (1-\varepsilon)n\right)$$

$$= P\left(2\Sigma_{[n^{x/2}]}^+ \geq (1-\varepsilon)n\right) + P\left(u_n \leq \lfloor n^{x/2} \rfloor, 2\Sigma_{[n^{x/2}]}^+ < (1-\varepsilon)n\right).$$

Note that by Lemma 4.1 with probability at least $1 - \nu$ for all large n we have that

$$P\left(u_n \leq \lfloor n^{x/2} \rfloor, 2\Sigma_{[n^{x/2}]}^+ < (1-\varepsilon)n\right) \leq \nu. \quad (33)$$

Moreover, on the set $\{u_n \leq \lfloor n^{x/2} \rfloor\}$ we have by coupling that

$$\Sigma_{u_n}^+ \leq \Sigma_{[n^{x/2}]}^+. \quad (34)$$

Inequalities (33) and (34) imply $(1-\varepsilon)n \leq 2\Sigma_{[n^{x/2}]}^+$, and we can conclude that

$$P\left(u_n \leq \lfloor n^{x/2} \rfloor, 2\Sigma_{[n^{x/2}]}^+ < (1-\varepsilon)n\right) \leq \nu.$$

Hence, for all sufficiently large n

$$P\left(\frac{2\ln u_n}{\ln n} \leq x\right) \leq P\left(2\Sigma_{[n^{x/2}]}^+ \geq (1-\varepsilon)n\right) + \nu$$

$$\leq P\left(\frac{2\ln \lfloor n^{x/2} \rfloor}{\ln \Sigma_{[n^{x/2}]}^+} \leq x + \nu\right) + \nu \leq x + 3\nu. \quad (30)$$

Towards a lower bound, observe that by coupling $\{2\Sigma_{z}^+ > n\} \subset \{u_n \leq z\}$ for all $z \in \mathbb{N}$. Using this fact, Lemma 4.6, and (30) we get for all sufficiently large n that

$$P\left(\frac{2\ln u_n}{\ln n} \leq x\right) \geq P\left(u_n \leq \lfloor n^{x/2} \rfloor, 2\Sigma_{[n^{x/2}]}^+ > n\right)$$

$$= P\left(2\Sigma_{[n^{x/2}]}^+ > n\right) \geq P\left(\frac{2\ln \lfloor n^{x/2} \rfloor}{\ln \Sigma_{[n^{x/2}]}^+} \leq x - \nu\right) \geq x - 3\nu. \quad \square$$

4.3. The lifetime maximum and progeny of a critical BP. In this subsection we prove (30). It is an immediate consequence of the following two lemmas.

Lemma 4.7. Let $V_0 = n > 1$. Then

$$\frac{\ln n}{\ln \max_{j<\sigma_0} V_j} \Rightarrow U \quad \text{as} \ n \to \infty.$$

Lemma 4.8. Let $V_0 = n > 1$. Then

$$\frac{\ln \sum_{j=0}^{\sigma_0-1} V_j}{\ln \max_{j<\sigma_0} V_j} \Rightarrow 2 \quad \text{as} \ n \to \infty.$$
Proof of Lemma 4.7. For every $x \in (0, 1)$

$$P_n(\max_{j<\sigma_0} V_j \geq n^{1/x}) = P_n(\tau_{n^{1/x}} < \sigma_0).$$

The proof will be complete if we can show that the last probability converges to x as $n \to \infty$. Fix a large enough $y \in \mathbb{N}$ to satisfy the conditions of Lemma A.1. Then

$$P_n(\tau_{n^{1/x}} < \sigma_0) = P_n(\tau_{n^{1/x}} < \sigma_0) + P_n(\tau_{n^{1/x}} < \sigma_0 | \tau_{n^{1/x}} > \sigma_0)P_n(\tau_{n^{1/x}} > \sigma_0) \leq P_n(\tau_{n^{1/x}} < \sigma_0) + P_y(\tau_{n^{1/x}} < \sigma_0).$$

By Lemma A.1 the first term in the right-hand side of the above inequality is bounded above by $[\log_2 n]/[x^{-1} \log_2 n]$ which converges to x as $n \to \infty$. By Corollary A.4

$$P_y(\tau_{n^{1/x}} < \sigma_0) \leq \frac{c_{10}(y)}{x^{-1} \ln n} \to 0 \quad \text{as} \quad n \to \infty.$$

The lower bound is even easier. By Lemma A.1

$$\lim_{n \to \infty} \inf P_n(\tau_{n^{1/x}} < \sigma_0) \geq \lim_{n \to \infty} \inf P_n(\tau_{n^{1/x}} < \sigma_0) \geq x. \quad \square$$

Proof of Lemma 4.8. Fix $\varepsilon \in (0, 1)$, let $k_0 = \lfloor \log_2 n \rfloor$.

Lower “tail”. To get a bound on the probability that the ratio in Lemma 4.8 does not exceed $2 - \varepsilon$, we split the path space of the process V according to its lifetime maximum. On each event $\tau_{2^k} < \sigma_0 < \tau_{2^k+1}$, $k \geq k_0$, we shall take into account only the values of V from the time τ_{2^k} up until the time $\sigma'_{2^k-1} := \inf\{i > \tau_{2^k} : V_i \leq 2^{k-1}\}$. On the time interval $\{i \in \mathbb{N} : \tau_{2^k} \leq i \leq \sigma'_{2^k-1}\}$ the process V stays above 2^{k-1} and below 2^{k+1}. Thus,

$$P_n(\sum_{i=0}^{\sigma_0-1} V_i \leq \left(\max_{i<\sigma_0} V_i\right)^{2-\varepsilon}) \leq \sum_{k=k_0}^{\infty} P_n(\sum_{i=\tau_{2^k}}^{\sigma'_{2^k-1}-1} V_i \leq 2^{(k+1)(2-\varepsilon)}, \tau_{2^k} < \sigma_0 < \tau_{2^k+1})$$

$$\leq \sum_{k=k_0}^{\infty} P_n(2^{k-1}(\sigma'_{2^k-1} - \tau_{2^k}) \leq 2^{(k+1)(2-\varepsilon)}, \tau_{2^k} < \sigma_0 < \tau_{2^k+1})$$

$$\leq \sum_{k=k_0}^{\infty} E_n(1_{\{\tau_{2^k} < \sigma_0\}} P_n(\sigma'_{2^k-1} - \tau_{2^k} \leq 2^{k(1-\varepsilon)+3}, \sigma_0 < \tau_{2^k+1} | F_{\tau_{2^k}}))$$

$$\leq \sum_{k=k_0}^{\infty} P_n(\tau_{2^k} < \sigma_0) P_{2^k}(\sigma'_{2^k-1} \leq 2^{k(1-\varepsilon)+3}, \sigma_0 < \tau_{2^k+1}) = \sum_{k=k_0}^{\infty} A_{n,k} B_k,$$

where $A_{n,k} = P_n(\tau_{2^k} < \sigma_0)$ and $B_k = P_{2^k}(\sigma'_{2^k-1} \leq 2^{k(1-\varepsilon)+3}, \sigma_0 < \tau_{2^k+1})$, which we estimate separately.

Let $\ell_0 < k_0$ be fixed as in Lemma A.1, k_0 be sufficiently large, and $k \geq k_0 + 2$ (for $k = k_0, k_0 + 1$ we shall use the trivial bound $A_{n,k} \leq 1$). Then

$$A_{n,k} = P_n(\tau_{2^k} < \sigma_{2^k}) + P_n(\tau_{2^k} < \sigma_0 | \sigma_{2^k} < \tau_{2^k}) P_n(\sigma_{2^k} < \tau_{2^k}) \leq P_{2^{k_0+1}}(\tau_{2^k} < \sigma_{2^k}) + P_{2^k}(\tau_{2^k} < \sigma_0) \leq \frac{k_0 + 1}{k} + \frac{C(\ell)}{k}.$$
Fix an arbitrary \(\nu > 0 \). If \(k_0 \) is large enough then for all \(k \geq k_0 \)

\[
B_k \leq P_{2k}(\sigma_{2k-1} \leq 2^{k(1-\varepsilon)+3}, \sigma_0 < \tau_{2k+1}, V_{\sigma_{2k-1}} \geq 2^{k-2}) + P_{2k}(\sigma_{2k-1} < \tau_{2k+1}, V_{\sigma_{2k-1}} < 2^{k-2})
\]

\[
\overset{(OS)}{\leq} E_{2k} \left(1_{\{\sigma_{2k-1} \leq 2^{k(1-\varepsilon)+3}\}} P_{2k}(\sigma_0 < \tau_{2k+1}, V_{\sigma_{2k-1}} \geq 2^{k-2} | F_{2k-1}) + c_7 \exp(-c_9 2^k) \right)
\]

\[
\leq P_{2k}(\sigma_{2k-1} \leq 2^{k(1-\varepsilon)+3}) P_{2k-2}(\sigma_{2k-1} < \tau_{2k+1}) + c_7 \exp(-c_9 2^k)
\]

\[
\overset{(DA), L. A.1}{\leq} \frac{\nu}{k - \ell_0} + c_7 \exp(-c_9 2^k).
\]

Substituting the estimates for \(A_{n,k} \) and \(B_k \) we conclude that for all sufficiently large \(n \)

\[
P_n \left(\sum_{i=0}^{\sigma_0-1} V_i \leq \left(\max_{i < \sigma_0} V_i \right)^{2-\varepsilon} \right) \leq 3\nu + \nu(k_0 + 1 + C(\ell_0)) \sum_{k=k_0+2}^{\infty} \frac{1}{k(k - \ell_0)} < C_1(\ell_0)\nu.
\]

Upper “tail”. To get a bound on the probability that the ratio in Lemma 4.8 is at least \(2 + \varepsilon \) we let

\[
O_j := \frac{1}{2^j} \sum_{i=0}^{\sigma_0-1} 1_{\{2^j \leq V_i < 2^{j+1}\}}, \quad k^* := \lfloor \log_2 \max_{i < \sigma_0} V_i \rfloor, \quad m_k = \lfloor 2^{\varepsilon k-2} \rfloor,
\]

and use a crude “union bound”:

\[
P_n \left(\sum_{i=0}^{\sigma_0-1} V_i \geq \left(\max_{i < \sigma_0} V_i \right)^{2+\varepsilon} \right) \leq P_n \left(\sum_{j=0}^{k^*} 2^{j+1} O_j \geq 2^{k^*(2+\varepsilon)} \right)
\]

\[
\overset{(35)}{\leq} P_n \left(\max_{0 \leq j \leq k^*} O_j \geq m_k \right) \leq \sum_{k=k_0}^{\infty} \sum_{j=0}^{k} P_n(O_j \geq m_k).
\]

To estimate the (rescaled) time \(O_j \) which the process \(V \) spends in the interval \([2^j, 2^{j+1})\), \(j \geq 0 \), we define

\[
\rho_0^{(j)} := \inf \{ i \geq 0 : V_i \in [2^j, 2^{j+1}) \}, \quad \rho_m^{(j)} := \inf \{ i \geq \rho_m^{(j)} + 2^j : V_i \in [2^j, 2^{j+1}) \}, \quad m \in \mathbb{N}.
\]

Then by the strong Markov property

\[
P_n(O_j \geq m_k) \leq P_n(\rho_0^{(j)} < \sigma_0) \leq P_n(\rho_0^{(j)} < \sigma_0 | \rho_{m_k}^{(j)} < \sigma_0) P_n(\rho_{m_k-1}^{(j)} < \sigma_0)
\]

\[
\leq \left(\max_{2^j \leq x < 2^{j+1}} P_x(\rho_1^{(j)} < \sigma_0) \right)^{m_k} P_n(\rho_0^{(j)} < \sigma_0).
\]

We notice that by (DA) there is a \(c > 0 \) such that \(P_{2^j+1}(\sigma_{2^{j-1}} < 2^{j-1}) > c \) for all \(j \geq 2 \), and choosing \(\ell_0 \) as in Lemma A.1 we get that if \((\ell_0 + 1) \land c_{10}(\ell_0) < j \leq k \) where \(c_{10}(\ell) \)
Proof of Lemma 4.6.

Since $0 \leq \sigma_0 < \tau_{2^j}$ Then for every $\sigma_0 \in (\Sigma_{2^j})$, we have

$$P_n \left(\sum_{i=0}^{n} V_i \geq \left(\max_{i < \sigma_0} V_i \right)^{2+\varepsilon} \right) \leq \sum_{k=k_0}^{\infty} (k+1) \left(1 - \frac{\varepsilon}{k} \right)^{m_k} \to 0 \text{ as } n \to \infty. \quad \square$$

4.4. Proofs of Lemmas 4.5 and 4.6. We shall need the following result.

Lemma 4.9 ((4.4) from Theorem 4.1 of [9]). Let $(Y^-(t))$, $t \geq 0$, be the solution of

$$dY^-(t) = -dt + \sqrt{2Y^-(t)} dB(t), \quad Y^-(0) = 1, \quad t \in [0, \tau_0].$$

Then for every $h > 0$

$$\lim_{n \to \infty} P_n^{Y^-}(\Sigma_n^\tau > hn^2) = P_1^{Y^-} \left(\int_0^{\tau_0} Y^-(s) ds > h \right).$$

Proof of Lemma 4.5. Upper bound:

$$P_0(\Sigma_{d_n}^\tau \leq n^x) \leq P_0(d_n \leq n^{x/2} \ln n) + P_0(\Sigma_{d_n}^\tau \leq n^x, d_n > n^{x/2} \ln n) \leq P_0(d_n \leq n^{x/2} \ln n) + P_0(\Sigma_{[n^{x/2} \ln n]}^\tau \leq n^x) \leq P_0(d_n \leq n^{x/2} \ln n) + \nu. \quad (36)$$

Lower bound:

$$P_0(\Sigma_{d_n}^\tau \leq n^x) \geq P_0(d_n \leq n^{x/2} \ln n) - P_0(\Sigma_{d_n}^\tau > n^x, d_n \leq n^{x/2} \ln n) \geq P_0(d_n \leq n^{x/2} \ln n) - P_0(\Sigma_{[n^{x/2} \ln n]}^\tau > n^x) \geq P_0(d_n \leq n^{x/2} \ln n) - \nu. \quad \square$$

Proof of Lemma 4.6. Let L_n be the number of visits of X to 0 up to time n inclusively. Since $0 \leq L_n - (u_n + d_n) \leq 1$ and the ERW with $\delta = 1$ is recurrent, we have that $L_n - u_n - 1 \leq d_n \leq L_n - u_n$, $L_n \to \infty$ a.s., and both (31) and (32) would follow if we show that

$$\frac{u_n}{L_n} \to \frac{1}{2} \text{ as } n \to \infty \text{ a.s.} \quad (37)$$
Notice that
\[\sum_{i=M+1}^{L_n} \eta_0(i) \leq \frac{u_n}{L_n} \leq \frac{M + \sum_{i=M+1}^{L_n} \eta_0(i)}{L_n}. \]
As \(L_n \to \infty \) a.s. as \(n \to \infty \), the rightmost and leftmost ratios in (38) a.s. converge to 1/2 by the strong law of large numbers for Bernoulli trials.

4.5. **Proof of Theorem 1.10(b), (c).**

Proof of Theorem 1.10(b). Let \(X_0^0 \) denote the excited random walk in the cookie environment obtained by removing all cookies from the positive semi-axis. The same proof as for [5, Theorem 1.1] shows that
\[\frac{X_0^0}{\sqrt{n}} \xrightarrow{J_1} W_{0,-1}. \]
Namely, we write
\[X_0^0 = B_0^0 + C_0^0, \]
where \(B_0^0 = C_0^0 = 0 \) and
\[B_{n+1}^0 - B_n^0 = X_{n+1}^0 - X_n^0, \quad C_{n+1}^0 - C_n^0 = 0 \]
if \(X_0^0 \) visited \(X_0^0 \) at least \(M \) times before time \(n \) and
\[B_{n+1}^0 - B_n^0 = 0, \quad C_{n+1}^0 - C_n^0 = X_{n+1}^0 - X_n^0 \]
otherwise. Then we can show that
\[\left(\frac{B_{n+1}^0}{\sqrt{n}}, \frac{C_{n+1}^0}{\sqrt{n}} \right) \xrightarrow{J_1} \left(B(\cdot), -\min_{s \leq \cdot} B(s) \right), \]
and obtain (39). We refer to [5] for full details. Since there is an obvious coupling such that
\[X_{T_k}^0 = X_{T_k}, \quad k \geq 0, \]
the result follows from Theorem 1.8(b) and the continuity of the map \(\psi \) defined in (24).

Proof of Theorem 1.10(c). This result admits the same proof as the one for Corollary 1.9(b) but, since \(A_n^+ / n \to 1 \) for \(\delta = 1 \), we can give a simpler derivation.

Without loss of generality we show the convergence on \(D([0,1]) \). Write
\[X_{T_m^+} = X_m + (X_{T_m^+} - X_m). \]
By Lemma 4.1 for each \(\epsilon, \nu > 0 \) and all large \(n \)
\[P \left(\max_{m \leq n} (T_m^+ - m) \geq \epsilon n \right) \leq \nu. \]
On the other hand, given arbitrary positive \(\epsilon \) and \(\nu \) we can choose \(\lambda > 0 \) so that
\[P \left(\sup_{0 \leq s \leq t \leq T_m^+ \leq 1+\lambda} (B(t) - B(s)) > \epsilon \right) \leq \nu. \]
The above inequalities and Theorem 1.7 imply that for any fixed \(\epsilon, \nu > 0 \) and all sufficiently large \(n \)
\[P \left(\max_{m \leq n} |X_{T_m^+} - X_m| > \epsilon \sqrt{n \ln n} \right) < \nu. \]
Theorem 1.7 and the “convergence together” theorem [1, Theorem 3.1] imply the desired result.
APPENDIX A. PROOFS OF TECHNICAL RESULTS

The following lemma plays an important role in proofs of Lemmas 3.1 and 3.2.

Lemma A.1 (Main lemma). Let

\[h^\pm(n) := n \pm \frac{1}{n} \quad \text{for all } n \in \mathbb{N}. \]

Then there is \(\ell_0 \in \mathbb{N} \) such that if \(\ell, m, u, x \in \mathbb{N} \) satisfy \(\ell_0 \leq \ell < m < u \) and \(|x - 2^m| \leq 2^{m/3} \) then

\[\frac{h^-(u) - h^-(m)}{h^-(u) - h^-(\ell)} \leq P_x[\sigma_{2^u} < \tau_{2^u}] \leq \frac{h^+(u) - h^+(m)}{h^+(u) - h^+(\ell)}. \]

Remark A.2. A little algebra shows that the lower bound is at least \(1 - m/u \).

The proof of Lemma A.1 is the same as that of Lemma 5.3 in [6] where we take \(a = 2 \), \(h^a(n) = n \pm 1/n \), and use the following result instead of [6, Lemma 5.2].

Lemma A.3. Consider the process \(V \) with \(|V_0 - 2^n| \leq 2^{2n/3} \) and let \(T := \inf\{k \geq 0 : V_k \notin (2^{n-1}, 2^{n+1})\} \). Then for all sufficiently large \(n \)

\[P(\text{dist}(V_T, (2^{n-1}, 2^{n+1})) \geq 2^{(n-1)/3}) \leq \exp(-2^{n/4}); \]

\[\left| P(V_T \leq 2^{n-1}) - \frac{1}{2} \right| \leq 2^{-n/4}. \]

The proof of the above lemma repeats the one of [6, Lemma 5.2] where we use our process \(V \), set \(a = 2 \), and \(s(x) = C + \ln x \) on \((3^{-1}, 3)\).

Corollary A.4. For every \(y \in \mathbb{N} \) there is a constant \(c_{10}(y) \) such that for every \(n \in \mathbb{N} \)

\[(\ln n)P_y(\sigma_0 > \tau_n) \leq c_{10}(y). \]

The proof of this corollary is the same as that of (5.4) in [6] and uses Lemma A.1 instead of Lemma 5.3 of [6].

Corollary A.5. Let \(\delta = 1 \). Then \(P^V_y(\sigma_0^V < \infty) = 1 \) for every \(y \in \mathbb{N} \).

Proof. By Corollary A.4 and the fact that \(P_y(\sigma_0 = \infty, \tau_n = \infty) = 0 \) for \(n > y \),

\[P_y(\sigma_0 = \infty) = P_y(\sigma_0 = \infty, \tau_n < \infty) \leq P_y(\sigma_0 > \tau_n) \leq \frac{c_{10}(y)}{\ln n} \to 0 \quad \text{as } n \to \infty. \]

Remark A.6. Corollary A.5, the first statement of [9, Corollary 7.9], and symmetry imply that ERW with \(|\delta| = 1 \) is recurrent without using any results from the literature on branching processes. A direct proof of recurrence and transience results for \(|\delta| \neq 1 \) was obtained in [9, Corollary 7.10].

Proof of Lemma 3.1. For every \(n > 2 \) there is an \(m \in \mathbb{N} \) such that \(2^m \leq n < 2^{m+1} \) and for this \(m \)

\[(\ln 2^m)P_y(\sigma_0 > \tau_{2^{m+1}}) \leq (\ln n)P_y(\sigma_0 > \tau_n) \leq (\ln 2^{m+1})P_y(\sigma_0 > \tau_{2^m}). \]

If we can show the existence of

\[g(y) := \lim_{m \to \infty} mP_y(\sigma_0 > \tau_{2^m}) \in (0, \infty), \]
then we get
\[
\limsup_{n \to \infty} (\ln n)P_y(\sigma_0 > \tau_n) \leq \lim_{m \to \infty} (m + 1)P_y(\sigma_0 > \tau_{2m}) = (\ln 2)g(y)
\]
\[
= \ln 2 \lim_{m \to \infty} mP_y(\sigma_0 > \tau_{2m+1}) \leq \liminf_{n \to \infty} (\ln n)P_y(\sigma_0 > \tau_n),
\]
and the desired statement follows. Therefore, we shall show (43). Let \(\ell = (\lfloor \log_2 y \rfloor + 1) \lor \ell_0 \), where \(\ell_0 \) is the same as in Lemma A.1. Then
\[
mP_y(\sigma_0 > \tau_{2^m}) = m \left[\prod_{j=\ell+1}^{m} P_y(\sigma_0 > \tau_{2j} | \sigma_0 > \tau_{2^{j-1}}) \right] P_y(\sigma_0 > \tau_{2^\ell})
\]
\[
= \ell P_y(\sigma_0 > \tau_{2^\ell}) \left[\prod_{j=\ell+1}^{\infty} \frac{j}{j-1} P_y(\sigma_0 > \tau_{2j} | \sigma_0 > \tau_{2^{j-1}}) \right].
\]
We need to prove that the last product converges. For this it is sufficient to show that
\[
\sum_{j=\ell+1}^{\infty} \left| \frac{j}{j-1} P_y(\sigma_0 > \tau_{2j} | \sigma_0 > \tau_{2^{j-1}}) - 1 \right| < \infty.
\]
Lemma A.1 and Corollary A.4 allow us to obtain the necessary estimates.
\[
\frac{j}{j-1} P_y(\sigma_0 > \tau_{2j} | \sigma_0 > \tau_{2^{j-1}}) - 1 \geq \frac{j}{j-1} P_{2^{j-1}}(\sigma_0 > \tau_{2^j}) - 1
\]
\[
\geq \frac{j}{j-1} P_{2^{j-1}}(\sigma_{2^j} > \tau_{2^j}) - 1 \geq \frac{j}{j-1} \frac{j-1 + \frac{1}{j} - \ell - \frac{1}{\ell}}{j + \frac{1}{j} - \ell - \frac{1}{\ell}} - 1
\]
\[
= \frac{2^{j-1}}{j^{2(j-1)^2} - \frac{\ell}{j(j-1)} - \frac{1}{j(j-1)}} \geq \frac{2}{j^2(j-1)} - \frac{\ell}{j(j-1)} - \frac{1}{j(j-1)}.
\]
The right hand side of the above expression is a term of an absolutely convergent series. Set \(x := 2^{j-1} + 2^{(j-1)/3} \). Then
\[
\frac{j}{j-1} P_y(\sigma_0 > \tau_{2j} | \sigma_0 > \tau_{2^{j-1}}) \leq \frac{j}{j-1} \left(P_x(\sigma_0 > \tau_{2^j}) + P_y(\tau_{2^{j-1}} > x | \sigma_0 > \tau_{2^{j-1}}) \right).
\]
By (OS) the last term decays exponentially fast in \(j \), and we shall concentrate on the first term in the right hand side of the above inequality. For all sufficiently large \(j \)
\[
\frac{j}{j-1} P_x(\sigma_0 > \tau_{2^j}) - 1
\]
\[
\leq \frac{j}{j-1} P_x(\sigma_{2^j} > \tau_{2^j}) - 1 + \frac{j}{j-1} P_x(\sigma_0 > \tau_{2^j} | \sigma_{2^j} < \tau_{2^j}) P_x(\sigma_{2^j} < \tau_{2^j})
\]
\[
\leq \frac{j}{j-1} \frac{j-1}{j} - 1 + \frac{j}{j-1} P_{2^j}(\sigma_0 > \tau_{2^j}) \geq \frac{j}{j-1} \frac{j-1}{j} - 1 + \frac{j}{j-1} \frac{j-1}{j-1} \frac{1}{j-1}
\]
\[
\leq \frac{j}{(j-1)(j-\ell-1)} P_{2^j}(\sigma_0 > \tau_{2^j}) \leq \frac{C(\ell)}{(j-1)(j-\ell-1)}.
\]
Again the last expression is a term of a convergent series, and we are done. \(\square \)
The proof of Lemma 3.2 depends on an estimate of the time the branching process V spends in an interval $[x, 2x]$ before extinction.

Lemma A.7. For every $\alpha > 1$ there is a constant $c_0(\alpha) \in (0, 1)$ such that for all $k, x, y \in \mathbb{N}$

$$P_y \left(\sum_{j=0}^{\alpha^{-1}} \mathbb{1}_{[x, 2x]}(V_j) > 2kx^\alpha \right) \leq P_y(\rho_0 < \sigma_0)(1 - c_0(\alpha))^k,$$

where $\rho_0 := \inf\{ j \geq 0 : V_j \in [x, 2x] \}$.

Proof. The proof is very similar to the one of Proposition 6.1 in [6]. There are two differences. First, everywhere in the proof of Proposition 6.1 the statement (ii) should be replaced with the following: there is a constant $c = c(\alpha) > 0$ such that for all $x \in \mathbb{N}$

$$P_{x/2}(\sigma_0 < \tau_x) > c.$$

Second, the stopping times ρ_j, $j \in \mathbb{N}$, should be defined as follows: ρ_0 was defined above,

$$\rho_j = \inf\{ r \geq \rho_{j-1} + 2x^\alpha : V_r \in [x, 2x] \}, \quad j \geq 1.$$

Below we show (A.7). The rest of the proof is the same as that of [6, Proposition 6.1].

To prove (A.7) we fix a large $y \in \mathbb{N}$ and observe that by Corollary A.4 and Remark A.2 for all $x > 2y + 1$

$$P_{x/2}(\sigma_0 < \tau_x) = P_{x/2}(\sigma_0 < \tau_x \mid \sigma_y < \tau_x)P_{x/2}(\sigma_y < \tau_x)$$

$$\geq P_y(\sigma_0 < \tau_x)P_{x/2}(\sigma_y < \tau_x) = (1 - P_y(\sigma_0 > \tau_x))P_{x/2}(\sigma_y < \tau_x)$$

$$\geq \left(1 - \frac{c_10(y)}{\alpha \ln x} \right) \left(1 - \frac{\ln(x/2)}{\alpha \ln x} \right) \geq \left(1 - \frac{c_10(y)}{\alpha \ln x} \right) \frac{\alpha - 1}{\alpha} > c > 0.$$

Adjusting the constant c if necessary we obtain (A.7) for all $x \in \mathbb{N}$. \qed

Proof of Lemma 3.2. For every $n \in \mathbb{N}$ let $k \in \mathbb{N}$ be such that $2^{k-1} \leq n < 2^k$. We can always write α as $\alpha' + \lambda$ where $\alpha' > 1$ and $\lambda > 0$. Then

$$P_y \left(\sum_{j=0}^{\alpha^{-1}} \mathbb{1}_{\{V_j \leq n\}} > n^\alpha \right) \leq P_y \left(\sum_{j=0}^{\alpha^{-1}} \mathbb{1}_{\{V_j < 2^k\}} > 2^\alpha(k-1) \right)$$

$$\leq P_y \left(\sum_{j=0}^{\alpha^{-1}} \sum_{i=1}^{k} \mathbb{1}_{\{2^{i-1}2^\alpha \}}(V_j) > 2^{\lambda(k-1)}(1 - 2^{-\alpha'}) \sum_{i=1}^{k} 2^{\alpha'(i-1)} \right)$$

$$\leq \sum_{i=1}^{k} P_y \left(\sum_{j=0}^{\alpha^{-1}} \mathbb{1}_{\{2^{i-1}2^\alpha \}}(V_j) > 2^{\lambda(k-1)}(1 - 2^{-\alpha'}) 2^{\alpha'(i-1)} \right)$$

$$\leq k(1 - c_0(\alpha'))^2[2^{\lambda(k-1)-1}(1 - 2^{-\alpha'})].$$

Multiplying by $\ln n$ which is less than $k \ln 2$ we get that as $n \to \infty$

$$(\ln n) P_y \left(\sum_{j=0}^{\alpha^{-1}} \mathbb{1}_{\{V_j \leq n\}} > n^\alpha \right) \leq (\ln 2) k^2(1 - c_0(\alpha'))^2[2^{\lambda(k-1)-1}(1 - 2^{-\alpha'})] \to 0. \quad \Box$$
Before we turn to the proof of Lemma 3.3 we present its continuous space-time version.

Lemma A.8. Let Y be the diffusion defined by (21) which starts at 1 and $\tau_{\varepsilon} := \inf\{t \geq 0 : Y(t) = \varepsilon\}$. Then for every $h > 0$

$$\lim_{\varepsilon \to 0} P^Y_{\varepsilon} (\tau_{\varepsilon} > h) = 1; \quad (45)$$

$$\lim_{\varepsilon \to 0} P^Y_{\varepsilon} \left(\int_{0}^{\tau_{\varepsilon}} Y(t) \, dt > h \right) = 1. \quad (46)$$

Lemma A.8 follows from the fact that 0 is an inaccessible point for the two-dimensional squared Bessel process. The details are left to the reader.

Proof of Lemma 3.3. We prove only (20), since the proof of (19) is the same (it uses (45) instead of (46)). Notice that

$$\lim_{n \to \infty} P_n \left(\sum_{i=0}^{\sigma_{\varepsilon}-1} V_i > hn^2 \right) \geq \lim_{\varepsilon \to 0} \lim_{n \to \infty} P_n \left(\sum_{i=0}^{\sigma_{\varepsilon n}-1} V_i > hn^2 \right).$$

By the diffusion approximation, for every $\varepsilon \in (0, 1)$

$$\lim_{n \to \infty} P_n \left(\sum_{i=0}^{\sigma_{\varepsilon n}-1} V_i > hn^2 \right) = P^Y \left(\int_{0}^{\tau_{\varepsilon}} Y(t) \, dt > h \right),$$

and by (46),

$$\lim_{\varepsilon \to 0} P^Y_{\varepsilon} \left(\int_{0}^{\tau_{\varepsilon}} Y(t) \, dt > h \right) = 1. \quad \square$$

References

[1] P. Billingsley (1999). Convergence of probability measures. Second edition. John Wiley & Sons, Inc., New York, x+277 pp.

[2] R. Carmona, F. Petit, M. Yor (1998). Beta variables as times spent in $[0, \infty]$ by certain perturbed Brownian motions, *J. London Math. Soc.* 58, 239–256.

[3] L. Chaumont, R. A. Doney (1999). Pathwise uniqueness for perturbed versions of Brownian motion and reflected Brownian motion, *Probab. Theory Related Fields* 113, no. 4, 519–534.

[4] L. Chaumont, R. A. Doney (2000). Some calculations for doubly perturbed Brownian motion, *Stochastic Process. Appl.* 85, no. 1, 61–74.

[5] D. Dolgopyat, E. Kosygina (2012). Scaling limits of recurrent excited random walks on integers, *Electron. Commun. Probab.*, 17, no. 35, 14 pp.

[6] E. Kosygina, T. Mountford (2011). Limit laws of transient excited random walks on integers. *Ann. Inst. H. Poincaré Probab. Statist.* 47, no. 2, 575–600.

[7] E. Kosygina, M. P. W. Zerner (2008). Positively and negatively excited random walks on integers, with branching processes, *Electron. J. Probab.* 13, no. 64, 1952–1979.

[8] E. Kosygina, M. P. W. Zerner (2013). Excited random walks: results, methods, open problems. *Bull. Inst. Math. Acad. Sin. (N.S.)*, 8, no. 1, 105–157.

[9] E. Kosygina, M. P. W. Zerner (2014). Excursions of excited random walks on integers *Electron. J. Probab.* 19, no. 25, 1–25.

[10] M. Perman, W. Werner (1997). Perturbed Brownian motions, *Prob. Theory Related Fields*, 108, no. 3, 357–383.