Catalytic enantioselective C(sp³)-H functionalization involving radical intermediates

Chi Zhang¹, Zhong-Liang Li², Qiang-Shuai Gu²✉ & Xin-Yuan Liu¹✉

Recently, with the boosted development of radical chemistry, enantioselective functionalization of C(sp³)-H bonds via a radical pathway has witnessed a renaissance. In principle, two distinct catalytic modes, distinguished by the steps in which the stereochemistry is determined (the radical formation step or the radical functionalization step), can be devised. This Perspective discusses the state-of-the-art in the area of catalytic enantioselective C(sp³)-H functionalization involving radical intermediates as well as future challenges and opportunities.

Direct enantioselective functionalization of C(sp³)-H bonds¹,², which are ubiquitous motifs in organic molecules, is undoubtedly an ideal approach to construct high value-added chiral molecules from the viewpoint of atom and step economy. In recent years, many powerful methods with different catalysts have been developed toward this goal and representative strategies include: (1) transition metal-catalyzed (typically, palladium-catalyzed) C–H activation (Fig. 1a); (2) concerted metal carbenoid/nitrenoid C–H insertion (Fig. 1b); (3) hydrogen atom abstraction (HAA) or a formal HAA process followed by functionalization of the resulting alkyl radical (Fig. 1c). With respect to the former two strategies, many excellent and comprehensive reviews have recently been published, detailing the progress, advantages, and limitations³–⁵. Reactions of the third strategy, even though they widely occur in natural biosystems, have been overlooked by chemists for a long time. This is mainly due to the highly reactive nature of radical intermediates and the lack of efficient methods to control the reactivity and enantioselectivity in radical transformations. Nonetheless, a series of elegant works on such a strategy have emerged in the past a few years, showing promising solutions to the aforementioned fundamental, yet unsolved challenge. The intention of this Perspective is to highlight some key efforts in this burgeoning research field, and thus, cannot be comprehensive. In addition, the remaining challenges and promising future directions that need to be further exploited will also be discussed. A special kind of reactions are the asymmetric cross-dehydrogenative coupling (CDC) reactions developed by Li and others⁶. Although some of them may indeed involve radical intermediates, their enantiodetermining steps usually proceed through an ionic mechanism. In addition, there have been many specialized accounts/reviews on this topic⁷,⁸. Thus, CDC reactions will not be covered in this Perspective. Another noteworthy kind of reactions involve the enantioselective functionalization of activated α-carbonyl C(sp³)–H bonds via radical addition to the corresponding enolate⁹–¹² or enamine¹³,¹⁴ intermediates. Although significant, most of these reactions¹⁵,¹⁶ do not involve C–H-derived radical species and thus are out of the scope of this Perspective unless otherwise discussed below.
In essence, enantioselective C(sp³)-H functionalization reactions via a radical intermediate can be largely categorized into two catalytic modes depending on the different enantiodetermining steps. Reactions of the first catalytic mode involve initial enantiodiscriminative HAA producing a transient conformationally constrained radical, which then undergoes fast stereoretentive radical rebound (RR) before overcoming the conformational constraint imposed by its environment (solvent cage and/or catalyst cavity; Fig. 2a). In contrast, in the reactions of the second catalytic mode, a free-diffusing achiral/prochiral radical is first produced via non-stereoselective HAA/formal HAA, of which the subsequent enantioselective functionalization provides the enantioenriched product (Fig. 2b). This Perspective will be mainly organized on the basis of the classification into these two categories, with emphasis on the scope of C(sp³)-H bonds and the enantiocontrol under different catalytic modes. Definite exceptions to this classification are rare and thus, will be sporadically discussed where appropriate.

Reactions with enantiodetermining HAA. Reactions of this first category entail both highly enantioselective HAA and sufficiently fast ensuing RR for achieving superior overall enantioselectivity. Such a mechanistic scenario is common in many enzymatic C(sp³)-H hydroxylation reactions. Specifically, substrates are believed to first undergo HAA with a high-valent metal-oxo species, and the enantioselectivity is defined by the confined cavity of enzymes, such as cytochromes P450. Next, rapid oxygen rebound between the resulting radicals and metal-hydroxy intermediates occurs with retention of the stereochemistry. Most of these enzymatic reactions have already been well summarized17–20, and thus will not be elaborated in this Perspective. Biomimetic catalysts of Fe and other transition metals, such as Mn and Ru with various ligands, including salen and porphyrin, have been investigated and some effective catalysts have been developed21. However, most of the current methods are troubled with two common problems: (1) many catalysts cannot distinguish the desired reacting C–H bond from many other ones with similar bond dissociation energies; (2) overoxidation of the resulting alcohol to ketone is often inevitable, thus diminishing the yield of the target alcohol. In regard to the first problem, Bach’s group has designed a Mn–porphyrin catalyst 1 with a structurally rigid chiral amide attachment (Fig. 3a)22,23. Upon exposure to substrates containing an amide moiety under oxidative conditions, the hydrogen bonds between the substrates and the catalyst direct the in situ formed high-valent Mn-oxo center to a specific (hetero)benzylic C(sp²)-H bond, thus ensuring highly regioselective and enantioselective HAA. Unfortunately, the overoxidation problem, though largely suppressed, still exists with this method. In this vein, Bietti, Costas, and coworkers have introduced a carboxylic acid into substrates to realize efficient enantioselective lactonization of unactivated C(sp³)-H bonds; second, it spontaneously transforms the produced alcohol to a lactone in the

Fig. 1 General strategies for enantioselective C(sp³)-H functionalization. a Transition metal-catalyzed C–H activation. b Concerted metal carbenoid/nitrenoid C–H insertion. c Sequential HAA/formal HAA and functionalization of the resulting alkyl radical. HAA hydrogen atom abstraction.

Fig. 2 Two catalytic modes of enantioselective C(sp³)-H functionalization reactions via radical intermediates. a Enantiodiscriminative HAA coupled with fast stereoretentive RR. b Non-stereoselective HAA/formal HAA followed by enantioselective functionalization of the resulting prochiral/achiral radical. RR radical rebound.

Fig. 3 Examples of catalytic enantioselective C(sp³)-H functionalization with enantiodiscriminative HAA. a Mn-catalyzed enantioselective hydroxylation of secondary C(sp³)-H bonds. b Co-catalyzed enantioselective amination/alkylation of secondary C(sp³)-H bonds.
polarfluorinated alcohol solvent, thus efficiently avoiding the overoxidation side reaction.

Besides hydroxylation, the strategy is also applicable to enantioselective C(sp³)–H alkylation and amination reactions. In this aspect, inspired by heme enzyme-catalyzed C–H oxidation, Zhang and coworkers have designed a series of chiral Co (II)–porphyrin complexes with a well-defined open-shell doublet d² electronic structure for metalloricalal oxidation23–30. Upon reaction with diazo/sulfonyl hydrazine/azide precursors, these metalloradical complexes form por®–Co(III)–carbene/nitrene radicals (Fig. 3b)31,32, which exhibit discrete radical character for enantioselective HAA. In a latest work, a bridged chiral porphyrin ligand 3 has been utilized for the synthesis of cyclic sulfamides33 with excellent enantioselectivity from (hetero)benzylc, allylic, and propargylic C–H bonds, as well as other equivalents (Fig. 3b). The enantiodifferentiative HAA is supported by both kinetic isotopic effect studies and density functional theory calculations. In addition, the confined chiral cavity environment induced by the Co–porphyrin complex is shown to conformationally stabilize the facial chirality of the radical thus generated, therefore, preventing it from racemization. Interestingly, the two major HAA transition states that ultimately lead to the two enantiomeric products, respectively, are connected by the interconversion of two low-lying conformers of the reaction complex. And a short bridge length is found to be crucial for kinetically impeding this interconversion, rendering the thermodynamically favored transition state kinetically less accessible. Thus, shortening the bridge length together with installing appropriate non-chiral substituents on the arenes flanking the central porphyrin ring results in a complete reversal of the enantioselectivity, without altering the major chiral elements.

This strategy, when armed with enantioselective HAA that efficiently discriminates two enantiotopic groups, is also suitable for developing desymmetrization processes. As such, Bach’s group has disclosed highly enantiotopos-selective benzylc methylene oxidation of spirocyclic oxindole with a Ru-based catalyst structurally similar to 1 (ref. 34). With regard to nonactivated C(sp³)–H oxidation, Costas, Bietti, and coworkers have achieved highly enantiotopos-selective oxidation of amide-monosubstituted cyclohexane35. With the synergistic cooperation of a sterically demanding tetradentate Mn catalyst analogous to 2 and an oxidatively robust alkenoic acid, the reaction furnishes the corresponding chiral ketone with excellent regioselectivity and enantioselectivity. Similarly, Nam, Sun, and coworkers have employed a structurally related Mn catalyst for enantiotopos-selective benzylc C(sp³)–H oxidation of spirocyclic ketone36.

Reactions with enantiodetermining radical functionalization. In reactions falling into this category, an achiral/prochiral alkyl radical is non-stereoselectively produced via direct HAA or indirect tandem electron transfer/deprotonation with or without the involvement of any chiral catalys. In the reactions discussed above, the alkyl radicals, once generated, are immediately consumed within the solvent cage and/or ligand cavity where they are just formed. In contrast, the alkyl radicals involved in the reactions of the second category are usually free-diffusing radicals with high reactivity. Accordingly, they readily undergo racemic background reactions, evading the influence of any chiral catalyst. In addition, the usually low activation barriers for radical reactions leave any chiral catalyst with a rather limited tunable space for inducing competent energetic distribution of different stereoisomeric transition states that can ultimately lead to the favorable formation of one single enantiomer. These two facts render the enantioselective functionalization of such alkyl radicals greatly challenging. Nonetheless, a number of chiral amine, Lewis/Brønsted acid, and transition metal catalysts have recently been successfully developed, as discussed below, to accomplish a variety of enantioselective C(sp³)–H functionalization using this second catalytic mode.

Chiral amine catalysis. Reactions of this type are mainly dealing with an α-C(sp³)–H bond of aldehyde via SOMO (singly occupied molecular orbital) activation, pioneered by MacMillan’s group37. In this regard, they have employed chiral amine 4 (Fig. 4a) to form enamine from aldehyde, of which single-electron transfer (SET) oxidation by an external oxidant leads to a 3–π-electron radical cation, i.e., a SOMO electrophile. The amine catalyst is finely tuned so that only the si face of this radical cation is exposed for potential reaction with a SOMO nucleophile, e.g., allylsilane37, thus providing a high level of enantiocontrol. In addition to enantioselective alkylation, a panel of other transformations38 such as vinylation39, arylation40, alkynylation41, and alkylation42,43 reactions have been also established. Besides, the SOMO activation strategy has been extended to the γ-alkylation of enal via a dieneamine intermediate formed by condensation with proline-derived catalyst 5. SET oxidation of the dienamine delivers the corresponding 5–π-electron radical cation44, and subsequent enantioselective radical homo- or heterocoupling affords chiral bis-enal in high diastereoselectivity and enantioselectivity (Fig. 4b).

A mechanistically related α-alkylation of aldehyde has been developed by Melchiorre’s group using chiral amine 6 (Fig. 4c)45. In this case, a colored electron donor–acceptor (EDA) complex is preformed between the enamine and benzylc bromide, which, upon visible light irradiation, undergoes photoinduced electron transfer to provide the 3–π-electron radical cation together with a radical anion. Subsequent fast bromide extrusion and in-cage radical coupling provides the alkylation product. Noteworthy is that the configuration of the EDA complex is deemed to be largely retained during the following transformations and in this sense, the enantioselectivity is likely already determined before the radical formation. The robust reactivity of this methodology is manifested by the ready accommodation of α-disubstituted aldehyde for the challenging construction of chiral quaternary carbon stereocenters. The reaction has been extended to cyclic ketone by the same group using a sterically less demanding cinchona alkaloid-derived primary amine catalyst46.

In contrast to these examples using essentially the enamine catalysis, the corresponding iminium catalysis has been also maneuvered by Melchiorre’s group for enantioselective alkylation of α-heteroatom and benzylc C(sp³)–H bonds. Thus, the chiral amine 7-derived α,β-unsaturated iminium intermediate is enantioselectively attacked by achiral or prochiral nucleophilic alkyl radicals, which are generated from corresponding acetal or amine via HAA or sequential SET oxidation and deprotonation, respectively (Fig. 4d)47. The advantage of radical transformations has been clearly demonstrated by the facile formation of sterically congested chiral tetrasubstituted carbon stereocenters, even two contiguous ones. As for benzylc C(sp³)–H bonds, aromatic enal, amine 8, and an acid cocatalyst are first converted to the corresponding iminium salt, which next undergoes sequential multisite proton-coupled electron transfer with alkyl arenes upon excitation with visible light irradiation (Fig. 4e)48. Finally, the resulting benzylc radical is enantioselectively coupled with the accompanying chiral β-enaminyl radical.

Chiral Lewis/Brønsted acid catalysis. This kind of reactions mainly covers the functionalization of activated C(sp³)–H bonds that are α to carbonyl groups or heteroatoms, such as oxygen and nitrogen. Akin to the chiral amine-catalyzed reactions discussed
above, the C–H-derived alkyl radicals are enantioselecdly functionalized via addition to (heteroatom-containing) double bonds or coupling with another type of in situ generated radicals, while the chiral Lewis acid catalysts are bonded to either the C–H-derived alkyl radicals or the other reactants. For example, Meggers’ group has reported enantioselective addition of nucleophilic heteroatom-stabilized (O and S) alkyl radicals generated by intramolecular HAA to α,β-unsaturated N-acetylpyrazoles (Fig. 5a)\(^49\). The chiral-at-metal Rh catalyst 9 coordinates to the N-acetylpyrazole moiety, thus rendering the conjugated alkene sufficiently more electrophilic than those in free substrates. In this way, the racemic background reaction is successfully out-competed and high enantioselectivity is achieved. Wu’s group has later greatly extended the scope of this reaction by merging it with hydrogen atom transfer photocatalysis, thus enabling facile intermolecular HAA of aldehyde, tetrahydrofuran, amine, and 1,3-dioxolane\(^30\). In addition, tetrahydroisoquinoline-derived α-amino alkyl radicals has been also generated by Kang’s group via sequential SET oxidation and deprotonation for enantioselective addition to chiral Rh-coordinated 2-acyl imidazole\(^31\).

Similarly, the coordination of chiral Lewis acid catalysts to C–H-derived α-carbonyl alkyl radicals would also enhance their electrophilicity, thus promoting their addition to electron-rich alkenes. In this aspect, Meggers’ group has generated α-carbonyl alkyl radicals from 2-acyl imidazoles by tandem deprotonation and electrochemical SET oxidation, which subsequently add to silyl enol ethers catalyzed by a Rh catalyst analogous to 9, affording a series of 1,4-dicarbonyl compounds with all-carbon quaternary stereocenters in high enantiopurity (Fig. 5b)\(^32\). As for the radical coupling scenario, the coordination of a Lewis acid catalyst to the electrophilic radicals would also boost their coupling with nucleophilic radicals. Thus, Meggers’ group has used an Ir-based analogue of complex 9 as the catalyst for achieving enantioselective coupling of nucleophilic α-amino alkyl radicals, obtained by tandem SET oxidation and deprotonation of amine, with electron-deficient ketyl radicals (Fig. 5c)\(^33\). Interestingly, the same group has also reported a rare direct generation of β-alkyl radicals from 2-acyl imidazole via a tandem deprotonation, SET oxidation, and deprotonation process (Fig. 5d)\(^34\). The subsequent enantioselective coupling with certain free α-hydroxy alkyl radicals is realized under the stereocontrol of the coordinated sterically more congested derivative of 9. Similar enantioselective coupling of such Lewis acid-stabilized enolate radicals with simple tertiary alkyl radicals formed via...
intramolecular HAA of unactivated C(sp³)–H bonds has been also described by Meggers, Gong, and coworkers, and this time, a benzoazole-based analogue of 9 is found to be a suitable catalyst55.

In addition to these chiral-at-metal Lewis acids, other catalysts of Ni (11)36, Cu (12)37, and La (13)38 (Fig. 5e) with various chiral ligands have recently been discovered to promote C(sp³)–H functionalization via enantioselective radical coupling. Further, chiral cationic Brønsted acid 10 (Fig. 5e) has been devised by Ooi’s group to promote the enantioselective coupling of anionic radicals with free nucleophilic α-amino alkyl radicals from SET oxidation and deprotonation of amine59. Both the cationic charge and the hydrogen-bond-donor ability of the catalyst are found to be essential for the reaction on the basis of a series of control experiments, supporting the indispensable association of the catalyst with the presumed anionic radical. In contrast, neutral chiral phosphoric acid (CPA) 14 (Fig. 5e) has been employed by List’s group for enantioselective coupling of α-carbonyl alkyl radicals with semiquinone, of which both are formed by PCET within the complex of hydrogen-bonded enol, CPA, and quinone60. Thus, α-C(sp³)–H bonds of cyclic ketones are directly oxidized with high enantioselectivity. In addition, CPA has been also briefly explored by Jiang’s group for the enantioselective coupling of C–H-derived free benzylic radicals with ketyl radicals58. A noteworthy feature for the reactions discussed above is the difficulty in controlling the stereochemistry on the C–H-derived allyl radical carbons, when an amine or Lewis acid catalyst is not directly bound to these radicals. Thus, poor to moderate diastereoselectivity is usually obtained48–51,53,55,57,58.

Chiral transition metal catalysis. This class of reactions mainly cover benzylic and allylic, as well as propargylic C(sp³)–H bonds, which are cleaved largely by intramolecular or intermolecular HAA. Unlike the aforementioned two types of catalysts, the redox active transition metal catalysts are able to transform reactive radical species into relatively stable polar species, thus partially alleviating the enantiocontrol challenge. For example, in the classic enantioselective Kharasch–Sosnovsky reaction (Fig. 6a)61, the trap of prochiral allylic radicals with chiral Cu(II) complexes leads to formation of chiral Cu(III) species, of which subsequent reductive elimination via a pericyclic rearrangement process delivers the enantioenriched allyl esters. A range of chiral ligands61–63, mainly oxazoline-based ones, have been developed for high enantioselectivity. Nonetheless, the substrate scope has been largely limited to simple cyclic alkenes so far.

A breakthrough in this area has recently been made by Liu, Stahl, and their coworkers with the discovery of a highly efficient and enantioselective intermolecular cyanation of benzylic C(sp³)–H bonds (Fig. 6b), using the Cu(I)/chiral bisoxazoline (box) catalyst 15 (Fig. 6d)64. In this case, prochiral benzylic radicals are generated via HAA by arylsulfonylaldimides radicals and next are trapped by chiral Cu(II) complexes to afford Cu(III) intermediates. Direct reductive elimination from these intermediates leads to enantioenriched α-chiral nitriles with a broad substrate scope. DFT calculations support reversible radical trap and subsequent enantiodetermining reductive elimination. In addition, the reaction has been extended to intermolecular benzylic C(sp³)–H arylation65 and alknylation66 by replacing the cyanation reagent TMSCN (trimethylsilyl cyanide) with aryl boronic acid and alkynyl silane, respectively. Furthermore, the groups led by Liu, Nagib, Wang, and Yu have independently reported enantioselective benzylic C(sp³)–H cyanation67–70 and alknylation71 by merging oxidative radical precursors into substrates, which upon SET reduction provides alkoxy, sulfonamidyl, or amydyl radicals for intramolecular 1,5-HAA with high regioselectivity. At the same time, Liu’s group has also found mildly oxidative N-fluoroamide is well compatible with their Cu(I)/cinchona alkaloid-derived N,N,P-ligand catalyst 16 (Fig. 6d)72–77, which readily reduces N-fluoroamide to amidyl radicals for
highly regioselective intramolecular 1,5-HAA under ambient conditions. Accordingly, highly regioselective and enantioselective benzyl C(sp²)-H alkylation is achieved with terminal alkynes, of which the undesired Glaser homocoupling is efficiently suppressed. The Cu(I)/chiral box catalyst system has been also utilized by Liu’s and Lin’s groups for highly site- and stereoselective intermolecular allylic C(sp²)-H amination by copper/chiral phosphoric acid dual catalysis. Structures of typical chiral transition metal catalysts employed in relevant works. Box bisoxazoline.

Fig. 6 Examples of enantiocontrol by chiral transition metal catalysts in enantioselective C(sp²)-H functionalization. a Enantiocontrol in enantioselective Kharasch-Sosnovsky allylic C(sp²)-H acyloxylation catalyzed by chiral copper complexes. b Enantiocontrol in enantioselective benzyl C(sp²)-H cyanation catalyzed by copper/chiral box complexes. c Enantiocontrol in enantioselective tertiary benzyllic C(sp²)-H amination by copper/chiral phosphoric acid dual catalysis. d Structures of typical chiral transition metal catalysts employed in relevant works. Box bisoxazoline.

respectively. The challenge for developing such a transformation mainly rests on the issue of chirality retention, which is common to most of the C(sp²)-H functionalization methods based on the transition metal-catalyzed C–H activation, the concerted metal carbenoid/nitrenoid C–H insertion, or the coupled enantiodiscriminative HAA/stereoretentive RR mechanistic manifolds. Thus, only kinetic resolution of racemic tertiary C(sp³)-H bonds is, in theory, likely achievable using these methods. To this end, Arnold, Liu, and coworkers have managed to identify a mutated variant of cytochromes P441 (ref. 82), designated as P441Danell3, catalyzing the enantioconvergent intramolecular amination of racemic tertiary benzylic C(sp³)-H bonds with sulfamoyl azide. Of particular note is that another variant P441Danell even fulfills the rare enantioconvergent amination of an unactivated tertiary C(sp³)-H bond bearing a methyl and an ethyl substituent. The DFT calculations on a model system suggest a relatively slow RR process that allows for facile conformational rotations of the radical intermediates, leading to complete loss of the original stereochemical information in advance. To address this same challenge with transition metal catalysts, Liu’s group has deliberately combined their chiral Cu(I)/CPA catalysis (17 in Fig. 6d) with a decoupled intramolecular 1,5-HAA by in situ generated sulfonyl hydrazonyl radicals (Fig. 6c)83. The HAA process does not involve any copper species and thus, the loss of stereochemical information on the generated alkyl radicals before their subsequent functionalization is expected. Subsequent association of the thus-obtained prochiral tertiary benzylic radicals with Cu(II)/chiral phosphate leads to the enantioselective C–N bond formation. In addition, Liu’s group has employed the same catalyst system for realizing enantioselective intramolecular prochiral benzylic and allylic C(sp³)-H amination. In this case, an N-hydroxyphthalimide derivative is found to be indispensable as a mediator for achieving highly efficient intramolecular HAA.

In addition to copper catalysts, a Ni/chiral biimidazoline catalyst 18 has been reported by Lu’s group for enantioselective benzylic C(sp³)-H arylation reaction with aryl bromides (Fig. 6d)89. According to the mechanistic experiments, the benzylic C(sp³)-H is likely abstracted by a photochemically generated bromine radical, and the resulting prochiral benzylic radical is then captured to form a chiral Ni(III) complex. Subsequent reductive elimination from this complex affords the biologically important chiral 1,1-diarylmethane products. Unfortunately, excess C–H substrates (4 equivalents or more) are necessary for obtaining satisfactory yields.

A Cr/chiral box catalyst 19 has been also disclosed by Mitsunuma, Kanai, and coworkers for enantioselective alkylation of aldehyde via allylic C(sp³)-H functionalization (Fig. 6d)90. An achiral/prochiral allylic radical is first produced via a tandem SET oxidation/deprotonation process in the presence of a strong oxidative acidinium photocatalyst under visible light irradiation. Interception of the allylic radical by the Cr(II)/chiral phosphate leads to the high regioselective intramolecular 1,5-HAA with aryl substrates (4 equivalents or more) to provide the enantioenriched allylation product. Currently, only kinetic resolution of racemic tertiary C(sp³)-H bonds has just been demonstrated by Yu’s group using a Pd/chiral bisphosphine catalyst 20 (ref. 91). The α-amino alkyl radicals are first formed by sequential SET oxidation and deprotonation, which next coordinate to in situ generated chiral allyl Pd(II) complexes to forge Pd(III) intermediates. Lastly, reductive elimination of these high-valent intermediates leads to enantioenriched α-allylated aniline products.
Conclusion and future perspectives. Enormous strides in the area of enantioselective C(sp^3)-H functionalization involving radical intermediates have been made during the past years, providing fresh opportunities in synthetic radical chemistry, and therefore stimulating more endeavors in this burgeoning field. As briefly summarized in this Perspective, these nascent yet powerful methods, which generally fall into two categories distinguished by their different stereo-determining steps, have been exploited to give enantioenriched products from relatively simple C(sp^3)-H substrates without pre-functionalization. Some of them have been shown to be applicable to complex natural products and drug molecules, showcasing their potentials in late-stage functionalization. However, major developments discussed as follows are still necessary for the broad application of these methods.

First, enantioselective functionalization of unactivated C(sp^3)-H bonds for the construction of stereocenters on the original carbons has been a daunting task (Fig. 7a). In fact, they are generally more abundant than activated ones in common commercially available starting materials, natural products, drugs, and bioactive small molecules. Thus, realizing such a transformation would be highly desirable. Nonetheless, the corresponding alkyl radicals are much more reactive than those derived from activated C(sp^3)-H bonds due to the lack of stabilizing interactions. This has rendered the catalysts in the second catalytic mode category inappropriate so far, with the sole exception of enzymes.

In this aspect, intramolecular directing groups have been introduced to facilitate the trap of such radicals by chiral transition metals, realizing their enantioselective functionalization. However, the corresponding enantioselective C(sp^3)-H functionalization using such a strategy remains rare. In contrast, for the catalysts in the first catalytic mode category, the enantioselectivity has been determined during the radical generation, and thus, the problem seems not to be exceptionally severe as long as the stereoretentive RR is maintained. Nonetheless, the corresponding successful examples are still rare.

Secondly, enantioselective functionalization of C(sp^3)-H bonds with heteroatoms remains much less established compared to that involving C-C bond formation (Fig. 7b). Heteroatom-based functionalities, particularly amines and alcohols, are important elements that decorate the carbon skeletons in a number of chiral bioactive or functional molecules. In addition, they also constitute excellent starting functionalities for further derivatization to increase molecular complexity. However, most of the known methods for their installation into C(sp^3)-H bonds via alkyl radical intermediates are either of limited efficiency and/or substrate scopes or confined to intramolecular reactions. Accordingly, continued endeavors toward highly efficient intermolecular hetero-functionalization of C(sp^3)-H bonds are still in high demand.

Thirdly, catalytic enantioconvergent functionalization of racemic tertiary C(sp^3)-H bonds (pK_a > 25) remains largely underdeveloped (Fig. 7c). The resulting chiral tetrasubstituted carbon stereocenters are important motifs in many natural products and pharmaceuticals. Currently, the only workable strategy is using chiral transition metal catalysis for enantioselective functionalization of prochiral tertiary alkyl radicals. Nonetheless, successful examples are limited to intramolecular amination. In fact, transition metal-catalyzed enantioselective intermolecular functionalization of tertiary α-carbonyl alkyl radicals has started to emerge, which should encourage more efforts toward implementing enantioselective intermolecular functionalization of racemic tertiary C(sp^3)-H bonds (pK_a > 25).

Received: 14 October 2020; Accepted: 18 December 2020; Published online: 20 January 2021

References

1. Zheng, C. & You, S.-L. Recent development of direct asymmetric functionalization of inert C-H bonds. RSC Adv. 4, 6173–6214 (2014).

2. Newton, C. G., Wang, S.-G., Oliveira, C. C. & Cramer, N. Catalytic enantioselective transformations involving C–H bond cleavage by transition-metal complexes. Chem. Rev. 117, 8908–8976 (2017).

3. Saint-Denis, T. G., Zhu, R.-Y., Chen, G., Wu, Q.-F. & Yu, J.-Q. Enantioselective C(sp^3)-H bond activation by chiral transition metal catalysts. Science 359, eaao5798 (2018).

4. Davies, H. M. L. & Liao, K. Dhrodium tetracarbonylates as catalysts for selective intermolecular C–H functionalization. Nat. Rev. Chem. 3, 347–360 (2019).

5. Hayashi, H. & Uchida, T. Nitrene transfer reactions for asymmetric C–H activation: recent development. Eur. J. Org. Chem. 2020, 909–916 (2020).

6. Li, Z. & Li, C.-J. CuBr-catalyzed efficient alkynylation of sp^3 C–H bonds adjacent to a nitrogen atom. J. Am. Chem. Soc. 126, 11810–11811 (2004).

7. Li, C.-J. Cross-dehydrogenative coupling (CDC): exploring C–C bond formations beyond functional group transformations. Acc. Chem. Res. 42, 335–344 (2009).

8. Girard, S. A., Krauter, T. & Li, C.-J. The cross-dehydrogenative coupling of C(sp^3)-H bonds: a versatile strategy for C–C bond formations. Angew. Chem. Int. Ed. 53, 74–100 (2014).

9. Huo, H. et al. Asymmetric photoredox transition-metal catalysis activated by visible light. Nature 515, 100–103 (2014).

10. Liu, J. et al. Enantioselective di-perfluoroalkylation of β-ketoesters enabled by cooperative photoredox/nickel catalysis. Org. Lett. 20, 461–464 (2018).

11. Woźniak, L., Murphy, J. J. & Melchiorre, P. Photo-organocatalytic enantioselective perfluoroalkylation of β-ketoesters. J. Am. Chem. Soc. 137, 5678–5681 (2015).

12. Song, J., Zhang, Z.-J., Chen, S.-S., Fan, T. & Gong, L.-Z. Lewis base/copper cooperatively catalyzed asymmetric α-amination of esters with diaziridine. J. Am. Chem. Soc. 140, 3177–3180 (2018).

13. Nicewicz, D. A. & MacMillan, D. W. C. Merging photoredox catalysis with organocatalysis: the direct asymmetric alkylation of aldehydes. Science 322, 77–80 (2008).

14. Silvi, M., Arceo, E., Jurberg, I. D., Cassani, C. & Melchiorre, P. Enantioselective organocatalytic alkylation of aldehydes and enals driven by the direct photoexcitation of enamines. J. Am. Chem. Soc. 137, 6120–6123 (2015).

15. Prentice, C., Morrison, J., Smith, A. D. & Zysman-Colman, E. Recent developments in enantioselective photocatalysis. Beilstein J. Org. Chem. 16, 2363–2441 (2020).

16. Qiu, X. et al. Applications of nanomaterials in asymmetric photocatalysis: recent progress, challenges, and opportunities. Adv. Mater. 2001731 (2020).

17. de Montellano, P. R. O. Hydrocarbon hydroxylation by cytochrome P450 enzymes. Chem. Rev. 110, 932–948 (2010).

18. Roiban, G.-D. & Reetz, M. T. Expanding the toolbox of organic chemists: directed evolution of P450 monooxygenases as catalysts in regio- and stereoselective oxidative hydroxylation. Chem. Commun. 51, 2208–2224 (2015).

19. Liang, Y., Wei, J., Qiu, X. & Jiao, N. Homogeneous oxygenase catalysis. Chem. Rev. 118, 4912–4945 (2018).
Capacci, A. G., Malinowski, J. T., McAlpine, N. J., Kuhne, J. & MacMillan, D. W. C. Direct, enantioselective α-alkylation of aldehydes using simple oximes. *Nat. Chem.*, 9, 1073–1077 (2017).

Yang, J. et al. Enantioselective catalytic aldehyde α-alkylation/semipinacol rearrangement: construction of α-quaternary-6-carboxyl cycloketones and total synthesis of (+)-cyclopyrrole. *Chem. Commun.*, 54, 9595–9570 (2018).

Capacci, A. G., Malinowski, J. T., McAlpine, N. J., Kuhne, J. & MacMillan, D. W. C. Direct, enantioselective α-alkylation of aldehydes using simple oximes. *Nat. Chem.*, 9, 1073–1077 (2017).

Nexø, L., Corti, V., Leth, L. A., Poulsen, P. H. & Jørgensen, K. A. Catalytic asymmetric oxidative γ-coupling of α,β-unsaturated aldehydes with air as the terminal oxidant. *Angew. Chem. Int. Ed.*, 57, 1606–1610 (2018).

Arceo, E., Jurberg, I. D., Álvarez-Fernández, A. & Melchiorre, P. Photochemical activity of a key donor-acceptor complex can drive stereoselective catalytic α-alkylation of aldehydes. *Nat. Chem.*, 5, 750–756 (2013).

Arceo, E., Bahamonde, A., Bergonzini, G. & Melchiorre, P. Enantioselective direct α-alkylation of cyclic ketones by means of photo-organocatalysis. *Chem. Sci.*, 5, 2438–2442 (2014).

Murphy, J. J., Bastida, D., Paria, S., Fagnoni, M. & Melchiorre, P. Asymmetric catalytic formation of quaternary carbons by iminium ion trapping of radicals. *Nature*, 532, 218–222 (2016). The first demonstration of chiral amine-catalyzed enantioselective radical C(sp^3^)-H functionalization via iminium catalysis.

Mazzarella, D., Crisienza, G. E. M. & Melchiorre, P. Asymmetric photocatalytic C-H functionalization of toluene and derivatives. *J. Am. Chem. Soc.*, 140, 8439–8443 (2018).

Wang, C., Harms, K. & Meggers, E. Catalytic asymmetric C(sp^3^)-H functionalization under photoredox conditions by radical translocation and stereocontrolled alkene addition. *Angew. Chem. Int. Ed.*, 55, 13495–13498 (2016).

Kuang, Y. et al. Asymmetric synthesis of 1,4-dicarboxyl compounds from aldehydes by hydrogen atom transfer photocatalysis and chiral Lewis acid catalysis. *Angew. Chem. Int. Ed.*, 58, 16859–16863 (2019).

Lin, S.-X., Sun, G.-J. & Kang, Q. A visible-light-activated rhodium complex in enantioselective conjugate addition of α-amino radicals with Michael acceptors. *Chem. Sci.*, 3, 7665–7668 (2012).

Huang, X., Zhang, Q., Lin, J., Harms, K. & Meggers, E. Electricity-driven asymmetric Lewis acid catalysis. *Nat. Catal.*, 2, 34–40 (2019).

Wang, C. et al. Asymmetric radical–radical cross-coupling through visible-light-activated iridium catalysis. *Angew. Chem. Int. Ed.*, 55, 685–688 (2016). The first demonstration of chiral Lewis acid-catalyzed C(sp^3^)-H functionalization via enantioselective radical coupling.

Ma, J. et al. Visible-light-activated asymmetric β-C-H functionalization of acceptor-substituted ketones with 1,2-dicarbonyl compounds. *J. Am. Chem. Soc.*, 139, 17245–17248 (2017).

Yuan, W., Zhou, Z., Gong, L. & Meggers, E. Asymmetric alkylation of remote C(sp^3^)-H bonds by combining proton-coupled electron transfer with chiral Lewis acid catalysis. *Chem. Commun.*, 53, 8964–8967 (2017).

Zhang, Q., Chang, X., Peng, L. & Guo, C. Asymmetric Lewis acid catalyzed photocatalytic electrochemical catalysis. *Angew. Chem. Int. Ed.*, 60, 6999–7003 (2019).

Li, Y., Lei, M. & Gong, L. Photocatalytic regio- and stereoselective C(sp^3^)-H functionalization of benzylic and allylic hydrocarbons as well as unactivated olefins. *Nat. Catal.*, 2, 1055–1063 (2019).

Li, F. et al. Chiral acid-catalysed enantioselective C-H functionalization of toluene and its derivatives driven by visible light. *Nat. Commun.*, 10, 1774 (2019).

Uruchugi, D., Kinoshita, N., Kizu, T. & Ooi, T. Synergistic catalysis of ionic Bronsted acid and photoexcitation for a redox neutral asymmetric α-c Coupling of N-arylaminomethanes with aldmines. *J. Am. Chem. Soc.*, 137, 13768–13771 (2015). It reports on the use of chiral Bronsted acid catalyst for highly enantioselective C(sp^3^)-H transformations.

Shevchenko, G. A., Oppelaar, B. & List, B. An unexpected α-oxidation of cyclic ketones with 1,4-benzoquinone by enol catalysis. *Angew. Chem. Int. Ed.*, 57, 10756–10759 (2018).

Andrus, M. B. & Lashley, J. C. Copper catalyzed allylic oxidation with peresters. *Tetrahedron*, 58, 845–866 (2002).

Gao, D.-W., Zheng, J., Ye, K.-Y., Zheng, C. & You, S.-L. In Asymmetric Functionalization of C-H Bonds (ed. You, S.-L.) 199–202 (The Royal Society of Chemistry, 2015).

Samadi, S., Jaddid, K., Samadi, M., Ashouri, A. & Notash, B. Designing chiral amino-oxazolines as new chelating ligands devoted to direct Cu-catalyzed oxidation of allylic C-H bonds in cyclic olefins. *Tetrahedron*, 75, 862–867 (2019).

Zhang, W. et al. Enantioselective cyanation of benzylic C-H bonds via copper-catalyzed radical relay. *Science*, 353, 1014–1018 (2016). The discovery of the combination of N-F oxidant with copper/Chiral box catalyst for highly efficient and enantioselective benzylic C(sp^3^)-H functionalization via radical intermediates.

Zhang, W., Wu, L., Chen, P. & Liu, G. Enantioselective arylation of benzylic C-H bonds by copper-catalyzed radical relay. *Angew. Chem. Int. Ed.*, 58, 6425–6429 (2019).
66. Fu, L., Zhang, Z., Chen, P., Lin, Z. & Liu, G. Enantioselective copper-catalyzed alknylation of benzylic C–H bonds via radical relay. J. Am. Chem. Soc. 142, 12493–12500 (2020).

67. Chen, Z., Chen, P. & Liu, G. Enantioselective cyanoation of remote C–H bonds via cooperative photoredox and copper catalysis. Acta Chim. Sinica 77, 856–860 (2019).

68. Zhang, Z., Zhang, X. & Nagib, D. A. Chiral piperidines from acyclic amines via enantioselective, radical-mediated α-C–H cyanaation. Chem. 5, 3127–3134 (2019).

69. Wang, C.-Y. et al. Enantioselective copper-catalyzed cyanoation of remote C(sp3)–H bonds enabled by 1,5-hydrogen atom transfer. Science 21, 490–498 (2019).

70. Chen, H., Jin, W. & Yu, S. Enantioselective remote C(sp3)–H cyanaation via dual photoredox and copper catalysis. Org. Lett. 22, 5910–5914 (2020).

71. Wang, C.-Y. et al. Enantioselective copper-catalyzed remote C(sp3)–H alknylation of linear primary sulfonamides. Org. Lett. 22, 4006–4009 (2020).

72. Dong, X.-Y. et al. A general asymmetric copper-catalyzed Sonogashira C(sp3)–C(sp) coupling. Nat. Chem. 11, 1158–1166 (2019).

73. Dong, X.-Y. et al. Copper-catalyzed asymmetric radical 1,2-carboalkylation of alkynes with alkyl halides and terminal alkynes. J. Am. Chem. Soc. 142, 9501–9509 (2020).

74. Xia, H.-D. et al. Photoinduced copper-catalyzed asymmetric decarboxylative alknylation with terminal alkynes. Angew. Chem. Int. Ed. 59, 16926–16932 (2020).

75. Wang, Z.-Y. et al. Copper-catalyzed asymmetric coupling of alleny radicals with terminal alkynes to access tetrasubstituted allenes. Angew. Chem. Int. Ed. https://doi.org/10.1002/anie.202013022 (2020).

76. Su, X.-L. et al. Copper-catalyzed enantioconvergent cross-coupling of racemic alkyl bromides with azole C(sp)–(sp) bonds. Angew. Chem. Int. Ed. 60, 380–384 (2020).

77. Jiang, S.-P. et al. Copper-catalyzed enantioconvergent radical Suzuki–Miyaura C(sp3)–C(sp3) cross-coupling. J. Am. Chem. Soc. 142, 19652–19659 (2020).

78. Zhang, Z.-H. et al. Copper-catalyzed enantioselective Sonogashira-type oxidative cross-coupling of unactivated C(sp3)–H bonds with alkynes. Nat. Commun. 10, 5689 (2019).

79. Li, J. et al. Site-specific allylic C–H bond functionalization with a copper-bound N-centred radical. Nature 574, 516–521 (2019).

80. Nakafuku, K. M. et al. Enantioselective radical C–H amination for the synthesis of β-amino alcohols. Nat. Chem. 12, 697–704 (2020). A rare explicit demonstration of synergistic stereoselective HAA and stereoselective radical functionalization for intramolecular C(sp3)–H amination in high enantioselectivity.

81. Shin, N. Y., Ryss, J. M., Zhang, X., Miller, S. J. & Knowles, R. R. Light-driven deracemization enabled by excited-state electron transfer. Science 366, 364–369 (2019).

82. Yang, Y., Cho, I., Qi, X., Liu, P. & Arnold, F. H. An enzymatic platform for the asymmetric amination of primary, secondary and tertiary C(sp3)–H bonds. Nat. Chem. 11, 987–993 (2019). The first report on enantioconvergent transformation of racemic tertiary C(sp3)–H bonds using enzymatic catalysis.

83. Yang, C.-J. et al. Cu-catalysed intramolecular radical enantioconvergent tertiary β(C(sp3))–H amination of racemic ketones. Nat. Catal. 3, 539–546 (2020). The first demonstration of chiral transition metal-catalyzed enantioconvergent tertiary C(sp3)–H functionalization.

84. Gu, Q.-S., Li, Z.-L. & Liu, X.-Y. Copper(I)-catalyzed asymmetric reactions involving radicals. Acc. Chem. Res. 53, 170–181 (2020).

85. Cheng, Y.-F. et al. Catalytic enantioselective desymmetrizing functionalization of allyl radicals via Cu(I)/CPA cooperative catalysis. Nat. Catal. 3, 401–410 (2020).

86. Bhat, V., Welin, E. R., Guo, X. & Stoltz, B. M. Advances in stereocentre catalysis from 2005 to 2015: transition-metal-mediated stoelraative reactions, dynamic kinetic resolutions, and dynamic kinetic asymmetric transformations. Chem. Rev. 117, 4528–4561 (2017).

87. Ito, H., Kuni, S. & Sawamura, M. Direct enantio-convergent transformation of racemic substrates without racemization or symmetricization. Nat. Chem. 2, 972–976 (2010).

88. Ye, L., Tian, Y., Meng, X., Gu, Q.-S. & Liu, X.-Y. Enantioselective copper(I)/chiral phosphoric acid catalyzed intramolecular amination of allylic and benzylic C–H bonds. Angew. Chem. Int. Ed. 59, 1129–1133 (2020).

89. Cheng, X., Lu, H. & Lu, Z. Enantioselective benzylic C–H arylation via photoredox and nickel dual catalysis. Nat. Commun. 10, 3549 (2019).

90. Mitsunuma, H., Tanabe, S., Fuse, H., Ohkubo, K. & Kanai, M. Catalytic asymmetric amination of aldehydes with alkenes through allylic C(sp3)–H functionalization mediated by organophotoredox and chiral chromium hybrid catalysis. Chem. Sci. 10, 3459–3465 (2019).

91. Zhang, H.-H., Zhao, J.-J. & Yu, S. Enantioselective α-amination of anilines enabled by a combined palladium and photoredox catalytic system. ACS Catal. 10, 4710–4716 (2020).

92. Saito, B. & Fu, G. C. Enantioselective alkyl-alkyl Suzuki cross-couplings of unactivated homobenzylic halides. J. Am. Chem. Soc. 130, 6694–6695 (2008).

93. Owston, N. A. & Fu, G. C. Asymmetric alkyl–alkyl Suzuki cross-couplings of unactivated secondary alkyl electrophiles: stereoconvergent Suzuki reactions of racemic acylated halohydins. J. Am. Chem. Soc. 132, 11908–11909 (2010).

94. Lu, Z., Wilksly, A. & Fu, G. C. Stereovromentive amine-directed alkyl–alkyl Suzuki reactions of unactivated secondary alkyl chlorides. J. Am. Chem. Soc. 133, 8154–8157 (2011).

95. Zulianski, S. L. & Fu, G. C. Catalytic asymmetric y-alkylation of carbonyl compounds via stereoconvergent Suzuki cross-couplings. J. Am. Chem. Soc. 133, 15362–15364 (2011).

96. Wilksly, A., Trumatola, F., Owston, N. A. & Fu, G. C. New directing groups for metal-catalyzed asymmetric carbon–carbon bond-forming processes: stereoconvergent alkyl–alkyl Suzuki cross-couplings of unactivated electrophiles. J. Am. Chem. Soc. 134, 5794–5797 (2012).

97. Zhou, S. et al. Copper-catalyzed asymmetric cyanation of alkenes via carbonyl-assisted coupling of alkyl-substituted carbon-centered radicals. Org. Lett. 22, 6299–6303 (2020).

98. Kainz, Q. M. et al. Asymmetric copper-catalyzed C–N cross-couplings induced by visible light. Science 351, 681–684 (2016).

99. Wang, Z., Yin, H. & Fu, G. C. Catalytic enantioconvergent coupling of secondary and tertiary electrophiles with olefins. Nature 563, 379–383 (2018).

100. Wu, L., Wang, F., Chen, P. & Liu, G. Enantioselective construction of quaternary all-carbon centers via copper-catalyzed arylation of tertiary carbon-centered radicals. J. Am. Chem. Soc. 141, 1887–1892 (2019).

Acknowledgements

Financial support from the National Natural Science Foundation of China (Nos. 22025103, 21831002, and 22001109), Guangdong Provincial Key Laboratory of Catalysis (No. 2020B12101002), Guangdong Innovative Program (No. 2019B0102373S), Guangdong Basic and Applied Basic Research Foundation (No. 2019A1515110822), and SUSTech Special Fund for the Construction of High-Level Universities (No. G02216303) is acknowledged.

Author contributions

C.Z., Q.-S.G., and X.-Y.L. conceived the study and cowrote the manuscript with thoughtful input from Z.-L.I. Z.-I.L. also helped in editing the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to Q.-S.G. or X.-Y.L.

Peer review information Nature Communications thanks Jie Wu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.