Existence and uniqueness of reflecting diffusions in cusps

Cristina Costantini Thomas G. Kurtz
Dipartimento di Economia Department of Mathematics
and Unità locale INdAM and Department of Statistics
Università di Chieti-Pescara University of Wisconsin - Madison
v.le Pindaro 42 480 Lincoln Drive
65127 Pescara, Italy Madison, WI 53706-1388, USA
c.costantini@unich.it kurtz@math.wisc.edu

http://www.math.wisc.edu/~kurtz/

October 12, 2017

Abstract

We consider stochastic differential equations with (oblique) reflection in a 2-dimensional domain that has a cusp at the origin, i.e. in a neighborhood of the origin has the form \(\{(x_1, x_2) : 0 < x_1 \leq \delta_0, \psi_1(x_1) < x_2 < \psi_2(x_1)\} \), with \(\psi_1(0) = \psi_2(0) = 0 \), \(\psi_1'(0) = \psi_2'(0) = 0 \).

Given a vector field \(\gamma \) of directions of reflection at the boundary points other than the origin, defining directions of reflection at the origin \(\gamma_i(0) := \lim_{x_1 \to 0^+} \gamma(x_1, \psi_i(x_1)) \), \(i = 1, 2 \), and assuming there exists a vector \(e^* \) such that \(\langle e^*, \gamma_i(0) \rangle > 0 \), \(i = 1, 2 \), and \(e_1^* > 0 \), we prove weak existence and uniqueness of the solution starting at the origin and strong existence and uniqueness starting away from the origin.

Our proof uses a new scaling result and a coupling argument.

Key words: Oblique reflection, stochastic differential equation, diffusion process, cusp, boundary singularity.

MSC 2010 Subject Classification: Primary: 60J60 Diffusion processes, 60H10 Stochastic ordinary differential equations Secondary: 60J55 Local time and additive functionals, 60G17 Sample path properties

1 Introduction

In this work we prove existence and uniqueness of reflecting diffusions in 2-dimensional domains with cusps. By saying that the domain has a cusp, we mean that in a neighborhood of some point, which we take to be the origin, the domain has the form

\[\{(x_1, x_2) \in D : 0 < x_1 \leq \delta_0\} = \{(x_1, x_2) : 0 < x_1 \leq \delta_0, \psi_1(x_1) < x_2 < \psi_2(x_1)\}, \]
where we assume ψ_1 and ψ_2 are C^1 with
\[\psi_1(0) = \psi_2(0) = 0, \quad \psi'_1(0) = \psi'_2(0) = 0, \]
and, in general, the boundary is C^1 away from the origin.

The direction of reflection, γ, is assumed Lipschitz continuous on the smooth part of the boundary, with a uniformly positive scalar product with the inward normal. At the tip,
\[\gamma^i(0) := \lim_{x_1 \to 0^+} \gamma(x_1, \psi_i(x_1)), \quad i = 1, 2, \]
is assumed to exist, and for some $e^* \in \mathbb{R}^2$
\[\langle e^*, \gamma \rangle > 0, \quad \forall \gamma \in \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \gamma^1(0), \gamma^2(0) \right\}. \]

See Section 2 for the complete formulation of our assumptions.

In the case of a domain D of the form
\[D := \{(x_1, x_2) : 0 < x_1, \; \psi_1(x_1) := -x_2^\beta_1 < x_2 < \psi_2(x_1) := x_2^\beta_2 \}, \]
(where either $\beta_1 = \beta_2 > 1$ or $\beta_1 > 2\beta_2 - 1$, $\beta_2 > 1$), under the assumption that on each of $\{(x_1, x_2) : 0 < x_1, x_2 = -x_2^\beta_1 \}$ and $\{(x_1, x_2) : 0 < x_1, x_2 = x_2^\beta_2 \}$ the direction of reflection forms a constant angle with the inward normal, weak existence and uniqueness of reflecting Brownian motions have been exhaustively studied by DeBlassie and Toby (1993a).

DeBlassie and Toby (1993b) gives a complete characterization of the cases in which, in the above setup, the reflecting Brownian motion is a semimartingale. For general continuous ψ_1, ψ_2 ($\psi_1(0) = \psi_2(0) = 0, \psi_2(x_1) > \psi_1(x_1)$ for every $x_1 > 0$), the case when the directions of reflection on $\{(x_1, x_2) : 0 < x_1, x_2 = \psi_1(x_1) \}$ and $\{(x_1, x_2) : 0 < x_1, x_2 = \psi_2(x_1) \}$ are constant, opposite vertical vectors - a case when the process is not a semimartingale - has been studied by Burdzy and Toby (1995) and Burdzy et al. (2009). In higher dimensions, normally reflecting diffusions in domains with Hölder cusps have been studied by Fukushima and Tomisaki (1996) by analytical techniques.

Here we characterize the reflecting diffusion as the solution of a stochastic differential equation with reflection (SDER) which will always be a semimartingale. In particular, we recover the results by DeBlassie and Toby (1993a) and DeBlassie and Toby (1993b) for the cases when the process is a semimartingale, except for the case when $\gamma^1(0)$ and $\gamma^2(0)$ point at each other and $\beta_2 < 2$.

First, we show that our conditions imply that, starting away from the origin, the origin is never reached. Therefore we easily obtain strong existence and uniqueness of the reflecting diffusion from known results on existence and uniqueness in smooth domains (Section 3).

Moreover, the fact that, starting away from the origin, the reflecting diffusion is well defined for all times allows us to obtain a weak solution of the SDER starting at the origin as the limit of solutions starting away from the origin (Section 4.1). To this end, we employ a random time change of the SDER (the same that is used in Kurtz (1990) to obtain a solution of a patchwork martingale problem from a solution of the corresponding constrained martingale problem) that makes it particularly simple to prove relative compactness of the processes.
The main result of this paper, however, is weak uniqueness of the solution to the SDER starting at the origin (Section 4.3). Our assumptions on the direction of reflection guarantee that any solution starting at the origin immediately leaves it. Since the distribution of a solution starting away from the origin is uniquely determined, the distribution of a solution starting at the origin is determined by its exit distribution from an arbitrarily small neighborhood of the origin. The crucial ingredient that allows us to understand the behavior of the process near the origin is a scaling result (Section 4.2). Combined with a coupling argument based on Lindvall and Rogers (1986), this scaling result shows that indeed all solutions starting at the origin must have the same exit distribution from every neighborhood of the origin. For a more detailed discussion of our approach, see the beginning of Section 4. Some technical lemmas that are needed in our argument are proved in Section 5. The Feller property is proved in Section 4.4.

The most general uniqueness result for SDER in piecewise C^1 domains can be found in Dupuis and Ishii (1993). Reflecting diffusions in piecewise smooth domains are characterized as solutions of constrained martingale problems in Kurtz (1990), and Costantini and Kurtz (2015) reduces the problem of proving uniqueness for the solution of a constrained martingale problem (as well as of a martingale problem in a general Polish space) to that of proving a comparison principle for viscosity semisolutions of the corresponding resolvent equation. None of these results applies to the situation we are considering here. In particular, Dupuis and Ishii (1993) makes the assumption that the convex cone generated by the normal vectors at each point does not contain any straight line, which is violated at the tip of the cusp.

Finally, we wish to mention that our work was partly motivated by diffusion approximations for some queueing models where domains with cusplike singularities appear (in particular Kang et al. (2009)). These models are in higher dimensions, but this paper is intended as a first contribution in the direction of understanding reflecting diffusions in such domains.

The notation used in the paper is collected in Section 6.

2 Formulation of the problem and assumptions

We are interested in studying diffusion processes with oblique reflection in the closure of a simply connected 2-dimensional domain $D \subset [0, \infty) \times \mathbb{R}$ with a boundary ∂D that is C^1 except at a single point (which we will take to be the origin 0), where the domain has a cusp. More precisely D satisfies the following.

Condition 2.1

a) D is a bounded, simply connected domain in $[0, \infty) \times \mathbb{R}$ with $0 \in \partial D$.

b) ∂D is C^1 except at 0.

c) There exists a $\delta_0 > 0$ and continuously differentiable functions ψ_1 and ψ_2 with $\psi_1 \leq \psi_2$ and $\psi_1(0) = \psi_2(0) = 0$, $\psi_1'(0) = \psi_2'(0) = 0$.
such that
\[\{(x_1, x_2) \in D : x_1 \leq \delta_0\} = \{(x_1, x_2) : 0 < x_1 \leq \delta_0, \psi_1(x_1) < x_2 < \psi_2(x_1)\}, \]
and
\[\lim_{x_1 \to 0^+} \frac{\psi_1(x_1)}{\psi_2(x_1) - \psi_1(x_1)} = L \in (-\infty, \infty). \]

The direction of reflection is assigned at all points of the boundary except the origin and is given by a unit vector field γ verifying the following condition.

Condition 2.2

a) $\gamma: \partial D - \{0\} \to \mathbb{R}^2$ is locally Lipschitz continuous and satisfies
\[\inf_{x \in \partial D - 0} \langle \gamma(x), \nu(x) \rangle > 0. \]

The mappings
\[x_1 \in (0, \delta_0] \to \gamma^i(x_1) := \gamma(x_1, \psi_i(x_1)), \quad i = 1, 2, \]
are Lipschitz continuous and hence the limits
\[\gamma^i(0) := \lim_{x_1 \to 0^+} \gamma(x_1, \psi_i(x_1)), \quad i = 1, 2, \]
exist.

b) Let $\Gamma(0)$ be the convex cone generated by
\[\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \gamma^1(0), \gamma^2(0) \right\}. \]

There exists $e^* \in \mathbb{R}^2$ such that
\[\langle e^*, \gamma \rangle > 0, \quad \forall \gamma \in \Gamma(0). \]

Of course, without loss of generality, we can suppose that $|e^*| = 1$.

Remark 2.3 Condition 2.2(b) can be reformulated as follows. In a neighborhood of the origin, we can view D as being the intersection of three C^1 domains,
\[\{x : x_2 > \psi_1(x_1)\}, \quad \{x : x_2 < \psi_2(x_1)\}, \quad \{x : x_1 > 0\}, \]
with unit inward normal vector at the origin, respectively,
\[\nu^1(0) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad \nu^2(0) = \begin{bmatrix} 0 \\ -1 \end{bmatrix}, \quad \nu^0(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}. \]

Then, letting the normal cone at the origin, $N(0)$, be the closed, convex cone generated by $\{\nu^1(0), \nu^2(0), \nu^0(0)\}$, Condition 2.2(b) is equivalent to requiring that there exists $e^* \in N(0)$ such that
\[\langle e^*, \gamma \rangle > 0, \quad \forall \gamma \in \Gamma(0), \]
where we can think of $\Gamma(0)$ as the closed, convex cone generated by the directions of reflection at the origin for each of the three domains. In other terms, Condition 2.2(b) is the analog of the condition usually assumed in the literature for polyhedral domains (see e.g. Varadhan and Williams (1985), Taylor and Williams (1993) or Dai and Williams (1996)).

Note that, in contrast, the condition that there exists $e^{**} \in \Gamma(0)$ such that $\langle e^{**}, \nu \rangle > 0$, $\forall \nu \in N(0)$,
can never be satisfied at a cusp, because $\nu^2(0) = -\nu^1(0)$.

Remark 2.4 Note that, under Condition 2.2(b), $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ can be expressed as a positive linear combination of $\gamma^1(0)$ and $\gamma^2(0)$, so that $\Gamma(0)$ coincides with the closed, convex cone generated by $\{\gamma^1(0), \gamma^2(0)\}$.

We seek to characterize the diffusion process with directions of reflection γ as the solution of a stochastic differential equation driven by a standard Brownian motion W:

$$X(t) = X(0) + \int_0^t b(X(s))ds + \int_0^t \sigma(X(s))dW(s) + \int_0^t \gamma(s)d\Lambda(s), \quad t \geq 0, \quad \gamma(s) \in \Gamma_1(X(s)), \quad d\Lambda - a.e., \quad t \geq 0, \quad X(t) \in \bar{D}, \quad \int_0^t 1_{\partial D}(X(s))d\Lambda(s) = \Lambda(t), \quad t \geq 0,$$

where Λ is nondecreasing, $\Gamma_1(0)$ is the convex hull of $\gamma^1(0)$ and $\gamma^2(0)$ and for $x \in \partial D - \{0\}$ $\Gamma_1(x) := \{\gamma(x)\}$ and γ is almost surely measurable.

We make the following assumptions on the coefficients.

Condition 2.5

a) σ and b are Lipschitz continuous on \bar{D}.

b) $(\sigma \sigma^T)(0)$ is nonsingular.

We will denote

$$Af(x) := Df(x)b(x) + \frac{1}{2} \text{tr}((\sigma \sigma^T)(x)D^2f(x)). \quad (2.2)$$

Definition 2.6 A stochastic process Z is compatible with a Brownian motion W if for each $t \geq 0$, $W(t + \cdot) - W(t)$ is independent of $\mathcal{F}_t^{W,Z}$, where $\{\mathcal{F}_t^{W,Z}\}$ is the filtration generated by W and Z.

Definition 2.7 Given a standard Brownian motion W and $X(0) \in \bar{D}$ independent of W, (X, Λ) is a strong solution of (2.1) if (X, Λ) is adapted to the filtration generated by $X(0)$ and W and the equation is satisfied.

(X, Λ, W), defined on some probability space, is a weak solution of (2.1) if W is a standard Brownian motion, (X, Λ) is compatible with W, and the equation is satisfied.
Given an initial distribution \(\mu \in \mathcal{P}(\overline{D}) \), weak uniqueness or uniqueness in distribution holds if for all weak solutions with \(P\{X(0) \in \cdot\} = \mu \), \(X \) has the same distribution on \(\mathcal{C}_D[0, \infty) \).

Strong uniqueness holds if for any standard Brownian motion \(W \) and weak solutions \((X, \Lambda, W)\), \((\tilde{X}, \tilde{\Lambda}, W)\) such that \(X(0) = \tilde{X}(0) \) a.s. and \((X, \Lambda, \tilde{X}, \tilde{\Lambda})\) is compatible with \(W \), \(X = \tilde{X} \) a.s.

Remark 2.8 Of course, any strong solution is a weak solution. Existence of a weak solution and strong uniqueness imply that the weak solution is a strong solution (c.f. Yamada and Watanabe (1971) and Kurtz (2014)).

For processes starting away from the tip, existence and uniqueness follows from results of Dupuis and Ishii (1993) and the fact that under our conditions, the solution never hits the tip. For processes starting at the tip, we only prove weak existence and uniqueness. The proof is based on rescaling of the process near the tip and a coupling argument.

3 Strong existence and uniqueness starting at \(x^0 \neq 0 \)

Our first result is that, for every \(x^0 \in \overline{D} - \{0\} \), (2.1) has a unique strong solution with \(X(0) = x^0 \), well-defined for all times. In fact, by Dupuis and Ishii (1993), for each \(n > 0 \), the solution, \(X \), is well-defined up to

\[\tau_n := \inf\{t \geq 0: X_1(t) < \frac{1}{n}\}, \tag{3.1} \]

so the proof consists in showing that, almost surely,

\[\lim_{n \to +\infty} \tau_n = +\infty. \tag{3.2} \]

We will do this by means of a modification of the Lyapunov function used in Section 2.2 of Varadhan and Williams (1985).

Theorem 3.1 Let \(W \) be a standard Brownian motion. Then, for every \(x^0 \in \overline{D} - \{0\} \), there is a unique strong solution to (2.1) with \(X(0) = x^0 \).

Proof. As anticipated above, by Dupuis and Ishii (1993) there is one and only one stochastic process \(X \) that satisfies (2.1) for \(t < \lim_{n \to +\infty} \tau_n \), where \(\tau_n \) is defined by (3.1). Therefore, we only have to prove (3.2). Define

\[V(x) := |(\sigma \sigma^T)(0)^{-1/2} x|^{-p} \cos(\vartheta((\sigma \sigma^T)(0)^{-1/2} x) + \xi), \]

where \(\vartheta(z) \in (-\pi, \pi] \) is the angular polar coordinate of \(z \) and

\[\xi := \vartheta((\sigma \sigma^T)(0)^{1/2} e^*) - 2\vartheta_0, \quad \vartheta_0 := \lim_{x \to 0, x \not\in \overline{D} - \{0\}} \vartheta((\sigma \sigma^T)(0)^{-1/2} x), \quad p \in (0, 1), \]
(notice that $-\frac{\pi}{2} < \vartheta_0 < \frac{\pi}{2}$). Then one can check that, if p is taken sufficiently close to 1,

$$
\lim_{x \in \overline{D} - \{0\}, x \to 0} V(x) = +\infty,
\lim_{x \in \overline{D} - \{0\}, x \to 0} AV(x) = -\infty,
\lim_{x \in \partial D - \{0\}, x \to 0} DV(x) \gamma(x) = -\infty.
$$

Therefore there exists $\delta > 0$ such that

$$
\inf_{x \in \overline{D} - \{0\}, x_1 \leq \delta} V(x) > 0,
\sup_{x \in \overline{D} - \{0\}, x_1 \leq \delta} AV(x) < 0
$$

and

$$
\sup_{x \in \partial D - \{0\}, x_1 \leq \delta} DV(x) \gamma(x) < 0.
$$

Let

$$
\alpha_\delta = \inf\{t \geq 0 : X_1(t) \leq \delta/2\}
$$

and

$$
\beta_\delta = \inf\{t \geq \alpha_\delta : X_1(t) \geq \delta\}.
$$

Without loss of generality, we can assume that $x_1^0 > \delta$.

By Itô’s formula, for $n^{-1} < \delta/2$,

$$
E[V(X(\tau_n \wedge \beta_\delta)) 1_{\{\alpha_\delta < \infty\}}] \leq E[V(X(\alpha_\delta)) 1_{\{\alpha_\delta < \infty\}}].
$$

Consequently,

$$
V(\frac{1}{n}) P\{\tau_n < \beta_\delta | \alpha_\delta < \infty\} + V(\delta) P\{\beta_\delta < \tau_n | \alpha_\delta < \infty\} \leq V(\frac{\delta}{2}).
$$

Consequently, if X_1 hits $\delta/2$, then with probability one, it hits δ before it hits 0. In particular, with probability one, X_1 never hits 0.

\[\square\]

Remark 3.2 Theorem 3.1 implies existence and uniqueness of a strong solution to (2.1) for every initial condition such that $\mathbb{P}(X(0) \in \overline{D} - \{0\}) = 1$ which in turn implies existence and uniqueness in distribution of a weak solution to (2.1) for every initial distribution μ such that $\mu(\overline{D} - \{0\}) = 1$.

4 Weak existence and uniqueness starting at $x^0 = 0$

In this section we prove weak existence and uniqueness for the solution of (2.1) starting at the origin.

In order to prove existence (Theorem 4.1), we start with a sequence of solutions to (2.1) starting at $x^n \in \overline{D} - \{0\}$, where $\{x^n\}$ converges to the origin. For every n, we consider a
random time change of the solution, the same time change that is used in Kurtz (1990) to construct a solution to a patchwork martingale problem from a solution to the corresponding constrained martingale problem. The time changed processes and the time changes are relatively compact, and any limit point satisfies the time changed version of (2.1) with X(0) = 0. The key point of the proof is to show that the limit time change is invertible. The process obtained is a weak solution to (2.1) defined for all times.

Weak uniqueness of the solution of (2.1) starting at the origin (Theorem 4.6 below) is the main result of this paper. Our proof takes inspiration from the one used in Taylor and Williams (1993) for reflecting Brownian motion in the nonnegative orthant. The argument of that paper, in the case when the origin is not reached, can essentially be reformulated as follows: First, it is shown that, for any solution of the SDER starting at the origin, the exit time from \(B_\delta(0), \delta > 0 \), is finite and tends to zero as \(\delta \to 0 \), almost surely, and that any two solutions of the SDER, starting at the origin, that have the same exit distributions from \(B_\delta(0) \), for all \(\delta > 0 \) sufficiently small, have the same distribution; next it is proved that, for any \(\xi \in \partial B_1(0), \xi \) in the nonnegative orthant, letting \(X^{\delta \xi} \) be the solution of the SDER starting at \(\delta \xi \) and \(\tau_{2\delta} \) be its exit time from \(B_{2\delta}(0) \), \(\mathbb{P}(X^{\delta \xi}(\tau_{2\delta})/(2\delta) \in \cdot) \) is independent of \(\delta \) and hence defines the transition kernel of a Markov chain on \(\partial B_1(0) \). This Markov chain is shown to be ergodic and that in turn ensures that, for any initial distribution \(\mu^n \) on \(\overline{D} \cap (\partial B_{\delta/2n}(0)) \), the exit distribution of \(X^{\mu^n} \) from \(B_\delta(0) \) converges, as \(n \) goes to infinity, to a uniquely determined distribution. Consequently, any two solutions of the SDER starting at the origin have the same exit distributions from \(B_\delta(0) \).

The first part of our argument is the same as in Taylor and Williams (1993), except that we find it more convenient to use the exit distribution from \(\{x : x_1 < \delta\} \) rather than from \(B_\delta(0) \). We prove that, for any solution of (2.1) starting at the origin, the exit time from \(\{x : x_1 < \delta\}, \delta > 0 \), is finite and tends to zero as \(\delta \to 0 \), almost surely (Lemma 4.3), and that any two solutions of (2.1) starting at the origin that have the same exit distributions from \(\{x : x_1 < \delta\} \), for all \(\delta > 0 \) sufficiently small, have the same distribution (Lemma 4.5).

The second part of our argument consists in showing that, for \(\{\delta_n\} \), a sequence of positive numbers decreasing to zero, any two solutions \(X, \tilde{X} \) of (2.1) starting at the origin satisfy

\[
\mathcal{L}(X_2(\tau_{\delta_n}^X)) = \mathcal{L}(\tilde{X}_2(\tau_{\delta_n})),
\]

where \(\tau_{\delta_n}^X \) and \(\tau_{\delta_n}^\tilde{X} \) are the corresponding exit times from \([0, \delta_n)\). This fact cannot be proved by the arguments used in Taylor and Williams (1993). Instead, it is achieved by the rescaling result of Section 4.2 together with a coupling argument based on Lindvall and Rogers (1986).

4.1 Existence

Theorem 4.1 There exists a weak solution to (2.1) starting at \(x^0 = 0 \).

Proof. Consider a sequence \(\{x^n\} \subseteq \overline{D} - \{0\} \) that converges to the origin. Let \((X^n, \Lambda^n)\) be the solution of (2.1) starting at \(x^n \). Define

\[
H^n_0(t) := \inf\{s \geq 0 : s + \Lambda^n(s) > t\},
\]

8
and set

\[Y^n(t) := X^n(H^n_0(t)), \quad M^n(t) := W(H^n_0(t)), \quad H^n_1(t) := \Lambda^n(H^n_0(t)), \quad \eta^n(t) := \gamma^n(H^n_0(t)). \]

Then \(H^n_0, H^n_1 \) are nonnegative and nondecreasing,

\[H^n_0(t) + H^n_1(t) = t, \quad t \geq 0, \]

and

\[Y^n(t) = x^n + \int_0^t \sigma(Y^n(s))dM^n(s) + \int_0^t b(Y^n(s))dH^n_0(s) + \int_0^t \eta^n(s)dH^n_1(s). \]

\[Y^n(t) \in \overline{D}, \quad \eta^n(t) \in \Gamma_1(Y^n(t)), \quad dH^n_1 - a.e., \quad \int_0^t 1_{\partial D}(Y^n(s))dH^n_1(s) = H^n_1(t), \]

where \(M^n \) is a continuous, square integrable martingale with

\[[M^n](t) = H^n_0(t)I, \quad t \geq 0. \]

With reference to Theorem 5.4 in [Kurtz and Protter, 1991], let

\[U^n(t) = \int_0^t \eta^n(s)dH^n_1(s). \]

Since \(U^n, H^n_0, H^n_1 \) are all Lipschitz with Lipschitz constants bounded by 1, \(\{(Y^n, U^n, M^n, H^n_0, H^n_1)\} \) is relatively compact in distribution in the appropriate space of continuous function. Taking a convergent subsequence with limit \((Y, U, M, H_0, H_1) \), \(Y \) satisfies

\[Y(t) = Y(0) + \int_0^t \sigma(Y(s))dM(s) + \int_0^t b(Y(s))dH_0(s) + U(t), \]

where \(M(t) = W(H_0(t)) \) for a standard Brownian motion \(W \). Since \(|U^n(r) - U^n(t)| \leq |H^n_1(r) - H^n_1(t)| \), the same inequality holds for \(U \) and \(H_1 \) and hence

\[U(t) = \int_0^t \eta(s)dH_1(s). \]

It remains only to characterize \(\eta \).

Invoking the Skorohod representation theorem, we assume that \((Y^n, U^n, M^n, H^n_0, H^n_1) \to (Y, U, M, H_0, H_1) \) uniformly over compact time intervals, almost surely. Then the argument of Theorem 3.1 of [Costantini, 1992] yields that

\[\eta(t) \in \Gamma_1(Y(t)), \quad dH_1 - a.e., \quad \int_0^t 1_{\partial D}(Y(s))dH_1(s) = H_1(t). \quad (4.2) \]

Finally, let us show that \(H_0 \) is invertible and \(H_0^{-1} \) is defined on all \([0, \infty)\). Suppose, by contradiction, that \(H_0 \) is constant on some time interval \([t_1, t_2]\), \(0 \leq t_1 < t_2 \). Then, since

\[H_0(t) + H_1(t) = t. \quad (4.3) \]
\begin{equation}
H_1(s) - H_1(t) = s - t, \quad \text{for } t_1 \leq t < s \leq t_2.
\end{equation}

In particular, by (4.2), \(Y(t) \in \partial D\) for all \(t \in [t_1, t_2]\). For \(x \in \partial D - \{0\}\), let \(\nu(x)\) denote the unit inward normal vector at \(x\). If, for some \(t \in [t_1, t_2]\), \(Y(t) \in \partial D - \{0\}\), then for \(s > t\) close enough to \(t\) so that \(Y(r) \in \partial D - \{0\}, r \in [t, s]\), we have, by Condition 2.2(a),

\[
\inf_{r \in [t, s]} \langle \gamma(Y(r)), \nu(Y(t)) \rangle > 0,
\]

and hence

\[
\langle Y(s) - Y(t), \nu(Y(t)) \rangle = \int_{t}^{s} \langle \gamma(Y(r)), \nu(Y(t)) \rangle dH_1(r) > 0,
\]

which implies, for \(s\) close enough to \(t\),

\[Y(s) \in D,\]

and this contradicts (4.4). On the other hand, if \(Y(t) = 0\) for all \(t \in [t_1, t_2]\), then,

\[
\int_{t_1}^{t} \eta(r) dH_1(r) = 0,
\]

while Condition 2.2(b) gives

\[
\langle \int_{t_1}^{t} \eta(r) dH_1(r), e^* \rangle \geq \inf_{\Gamma_1(0)} \langle \gamma, e^* \rangle (t - t_1) > 0.
\]

Therefore \(H_0\) is strictly increasing.

In order to see that \(H_0\) diverges as \(t\) goes to infinity, we can use the argument of Lemma 1.9 of [Kurtz (1990)], provided there is a \(C^2\) function \(\varphi\) such that

\[
\inf_{x \in \partial D} \inf_{\gamma \in \Gamma_1(x)} D\varphi(x) \gamma > 0.
\]

Let \(e^*\) be the vector in Condition 2.2(b), and let \(r^* > 0\) be such that

\[
\inf_{x \in \partial D, \langle e^*, x \rangle \leq 2r^*} \inf_{\gamma \in \Gamma_1(x)} \langle e^*, \gamma \rangle > 0.
\]

By Condition 2.1(b),

\[
\{x \in D : \langle e^*, x \rangle \geq r^*\} = \{x \in D : \Psi_3(x) > 0, \langle e^*, x \rangle \geq r^*\},
\]

for some \(C^1\) function \(\Psi_3\) such that \(\inf_{x : \Psi_3(x) = 0} |D\Psi_3(x)| > 0\). Then (see, e.g., Crandall et al. (1992), Lemma 7.6) there exists a \(C^2\) function \(\varphi_3\) such that

\[
\inf_{x \in \partial D, \langle e^*, x \rangle \geq r^*} D\varphi_3(x) \gamma(x) > 0.
\]

Of course we can always assume

\[
\inf_{x \in \partial D, \langle e^*, x \rangle \geq r^*} \varphi_3(x) \geq 2r^*.
\]
Therefore the function
\[
\varphi(x) := \langle e^*, x \rangle \chi(\langle e^*, x \rangle - r^*) + [1 - \chi(\langle e^*, x \rangle - r^*)] \varphi_3(x),
\]
where \(\chi : \mathbb{R} \to [0, 1] \) is a smooth, nonincreasing function such that \(\chi(r) = 1 \) for \(r \leq 0 \), \(\chi(r) = 0 \) for \(r \geq 1 \), satisfies (4.5).

We conclude our proof by setting
\[
X(t) := Y(H_0^{-1}(t)), \quad \Lambda(t) := H_1(H_0^{-1}(t)), \quad \gamma(t) := \eta(H_0^{-1}(t)).
\]
It can be easily checked that \(X, \Lambda \) and \(\gamma \) verify (2.1) with \(x_0 = 0 \). \(\square \)

4.2 Scaling near the tip

The following scaling result is central to our argument.

Recall Condition 2.1. Let \(\{\delta_n\} \) be the sequence of positive numbers defined by
\[
q_n := (\psi_2 - \psi_1)(\delta_n), \quad \delta_{n+1} := \delta_n - q_n, \quad n \geq 0. \tag{4.6}
\]
\(\{\delta_n\} \) is decreasing and converges to zero. In addition, by Condition 2.1(c),
\[
\lim_{n \to \infty} q_n = 0. \tag{4.7}
\]

Lemma 4.2 Let \(X^n \) be a solution to (2.1) starting at \(x^n \in \overline{D} - \{0\} \), where \(\{ar{x}^n\} := \{q_n^{-1}(x_1^n - \delta_{n+1}, x_2^n)\} \) converges to a point \(\bar{x}^0 \).

Then the sequence of processes
\[
\{\bar{X}^n\} := \{q_n^{-1} (X_1^n(q_n^2) - \delta_{n+1}, X_2^n(q_n^2))\} \tag{4.8}
\]
converges in distribution to a reflecting Brownian motion in \((-\infty, \infty) \times [L, L + 1]\) with directions of reflection \(\gamma^1(0) \) on \((-\infty, \infty) \times \{L\}\) and \(\gamma^2(0) \) on \((-\infty, \infty) \times \{L+1\}\), respectively, covariance matrix \((\sigma \sigma^T)(0) \) and initial condition \(\bar{x}^0 \).

Proof. \(\bar{X}^n \) is a solution of the rescaled SDER
\[
\bar{X}^n(t) = \bar{x}^n + q_n \int_0^t b((q_n \bar{X}_1^n(s) + \delta_{n+1}, q_n \bar{X}_2^n(s)))d(s) + \int_0^t \sigma((q_n \bar{X}_1^n(s) + \delta_{n+1}, q_n \bar{X}_2^n(s)))dW(s) + \int_0^t \bar{\gamma}(s)d\bar{\Lambda}(s), \quad t \geq 0,
\]
and
\[
\bar{X}^n(t) \in \bar{D}^n, \quad \bar{\gamma}(t) \in \Gamma_1(\bar{X}^n(t)), \quad d\bar{\Lambda} \text{ - a.e.}, \quad \bar{\Lambda}(t) = \int_0^t 1_{\partial \bar{D}^n}(\bar{X}^n(s))d\bar{\Lambda}(s), \quad t \geq 0,
\]
where
where
\[\bar{D}^n := \{ x : (q_n x_1 + \delta_{n+1}, q_n x_2) \in D \}, \quad \partial \bar{D}^n := \{ x : (q_n x_1 + \delta_{n+1}, q_n x_2) \in \partial D \}. \]

Observe that
\[\bar{D}^n \to \Delta := (-\infty, \infty) \times [L, L+1] \]
in the sense of Hausdorff convergence of sets, or, more precisely, the boundaries converge uniformly on compact subsets of \(({-\infty}, \infty)\), that is,
\[
\lim_{n \to \infty} \frac{\psi_1(q_n x_1 + \delta_{n+1})}{q_n} = \lim_{n \to \infty} \frac{\psi_1(q_n x_1 - 1 + \delta_n)}{q_n} = \lim_{n \to \infty} \frac{\psi_1(\delta_n)}{q_n} = L,
\]
(notice that eventually \(0 < q_n (x_1 - 1 + \delta_n < \delta_0)\), and analogously
\[
\lim_{n \to \infty} \frac{\psi_2(q_n x_1 + \delta_{n+1})}{q_n} = \lim_{n \to \infty} \frac{\psi_2(\delta_n)}{q_n} = L + 1.
\]

Note that the second term on the right of (4.9) converges to zero. By applying the same time-change argument as in Theorem 4.1, we see that \(\{\bar{X}^n\}\) is relatively compact and
\[
(q_n \bar{X}_1^n(s) + \delta_{n+1}, q_n \bar{X}_2^n(s)) \to 0.
\]
Consequently, \(\{\bar{X}^n\}\) converges in distribution to \(\bar{X}\) satisfying
\[
\bar{X}(t) = x^0 + \sigma(0)W(t) + \gamma_1(0)\Lambda_L(t) + \gamma_2(0)\Lambda_{L+1}(t), \tag{4.10}
\]
where \(\bar{X} \in \Delta, \Lambda_L\) is nondecreasing and increases only when \(\bar{X}_2 = L\), and \(\Lambda_{L+1}\) is non-decreasing and increases only when \(\bar{X}_2 = L + 1\), that is, \(\bar{X}\) is a reflecting Brownian motion in \(({-\infty}, \infty) \times [L, L+1]\) with directions of reflection \(\gamma_1(0)\) on \(({-\infty}, \infty) \times \{L\}\) and \(\gamma_2(0)\) on \(({-\infty}, \infty) \times \{L+1\}\), respectively, covariance matrix \((\sigma\sigma^T)(0)\) and initial condition \(\bar{x}^0\). Then the thesis follows from the fact that the distribution of \(\bar{X}\) is uniquely determined. \(\Box\)

4.3 Uniqueness

Of course, we can suppose, without loss of generality, that
\[
\sup_{0 \leq x_1 \leq \delta_0} |\psi'_1(x_1)|, \quad \sup_{0 \leq x_1 \leq \delta_0} |\psi'_2(x_1)| < \frac{1}{2}, \tag{4.11}
\]
and that for \(x_1 \leq \delta_0\), \((\sigma\sigma^T)(x)\) is strictly positive definite and
\[
\sup_{x \in \bar{D}, x_1 \leq \delta_0} |\sigma(x)^{-1}| < 2|\sigma(0)^{-1}|, \quad \sup_{x \in \bar{D}, x_1 \leq \delta_0} |\sigma(x) - \sigma(0)| < \frac{1}{2}|\sigma(0)^{-1}|^{-1}. \tag{4.12}
\]

For every solution \(X\) of (2.1), let
\[
\tau^X_{\delta} = \inf\{t \geq 0 : X_1(t) \geq \delta\}, \quad \delta > 0. \tag{4.13}
\]
Lemma 4.3 For \(\delta \) sufficiently small, for any solution, \(X \), of (2.1) starting at the origin

\[\mathbb{E}[\tau_\delta^X] \leq C\delta^2. \]

Proof. Here \(X \) is fixed, so we will omit the superscript \(X \). Let \(e^* \) be the vector in Condition 2.2(b) and

\[f(x) = \frac{1}{2} \langle e^*, x \rangle^2. \]

Then

\[
\mathbb{E}[f(X(t \wedge \tau_\delta))] = \mathbb{E} \left[\int_0^{t \wedge \tau_\delta} \left(\langle e^*, X(s) \rangle \langle e^*, b(X(s)) \rangle + \frac{1}{2} (e^*)^T (\sigma \sigma^T) (X(s)) e^* \right) ds \\
+ \int_0^{t \wedge \tau_\delta} \langle e^*, X(s) \rangle \langle e^*, \gamma(s) \rangle d\Lambda(s) \right].
\]

Observe that

\[
\lim_{x \in \overline{D} \setminus \{0\}, x_1 \to 0^+} \frac{|x|}{x_1} = 1, \quad \lim_{x \in \overline{D} \setminus \{0\}, x_1 \to 0^+} \frac{\langle e^*, x \rangle}{e_1^* x_1} = 1,
\]

and hence, for \(\delta \) sufficiently small,

\[|X(t \wedge \tau_\delta)|^2 \leq 4\delta^2, \]

and

\[
\int_0^{t \wedge \tau_\delta} \langle e^*, X(s) \rangle \langle e^*, \gamma(s) \rangle d\Lambda_i(s) \geq \frac{1}{2} \int_0^{t \wedge \tau_\delta} e_1^* X_1(s) \langle e^*, \gamma(s) \rangle d\Lambda(s).
\]

Therefore, for \(\delta \) sufficiently small,

\[2\delta^2 \geq \mathbb{E}[f(X(t \wedge \tau_\delta))] \geq \frac{1}{4} (e^*)^T (\sigma \sigma^T)(0) e^* \mathbb{E}[t \wedge \tau_\delta], \]

which yields the assertion by taking the limit as \(t \) goes to infinity. \(\square \)

Remark 4.4 By looking at the proof of Lemma 4.3, we see that we have proved, more generally, that, for every \(x_0 \in \overline{D} \) with \(x_1^0 < \delta \), for every solution \(X \) of (2.1) starting at \(x_0 \),

\[\mathbb{E}[\tau_\delta^X] \leq C \left(4\delta^2 - \langle e^*, x_0 \rangle^2 \right). \]

Lemma 4.5 Suppose any two weak solutions, \(X, \tilde{X}, \) of (2.1) starting at the origin satisfy

\[\mathcal{L}(X(\tau_\delta^X)) = \mathcal{L}(\tilde{X}(\tau_\delta^{\tilde{X}})), \]

for all \(\delta \) sufficiently small (recall that, by Lemma 4.3, \(\tau_\delta^X \) and \(\tau_\delta^{\tilde{X}} \) are almost surely finite). Then the solution of (2.1) starting at the origin is unique in distribution.

Proof. Since starting away from 0, we have strong and weak uniqueness, if (4.14) holds, we have \(\mathcal{L}(X(\tau_\delta^X + \cdot)) = \mathcal{L}(\tilde{X}(\tau_\delta^{\tilde{X}} + \cdot)) \). Since \(\tau_\delta^X \) and \(\tau_\delta^{\tilde{X}} \) converge to zero as \(\delta \to 0 \) and \(X(\tau_\delta^X + \cdot) \to X \) and \(\tilde{X}(\tau_\delta^{\tilde{X}} + \cdot) \to \tilde{X} \), uniformly over compact time intervals. Consequently, we must have \(\mathcal{L}(X) = \mathcal{L}(\tilde{X}) \). \(\square \)
Theorem 4.6 The solution of (2.1) starting at \(x^0 = 0 \) is unique in distribution.

Proof. In what follows, \(X \) and \(\tilde{X} \) will be weak solutions of (2.1) starting at the origin. Let \(\{\delta_n\} = \{\delta_n\}_{n \geq 0} \) be given by (4.16). We want to show that

\[
\|L(X_2(\tau_{\delta_n}^X)) - L(\tilde{X}_2(\tau_{\delta_n}^\tilde{X}))\|_{TV} \leq (1 - p_0 \eta_0^2)\|L(X_2(\tau_{\delta_n+2}^X)) - L(\tilde{X}_2(\tau_{\delta_n+2}^\tilde{X}))\|_{TV},
\]

where \(p_0, \eta_0 \in (0, 1) \) come from Lemma 5.3 and Lemma 5.2 respectively, so that by iterating (4.15), we obtain

\[
\|L(X_2(\tau_{\delta_n}^X)) - L(\tilde{X}_2(\tau_{\delta_n}^\tilde{X}))\|_{TV} = 0,
\]

for all \(n \). The theorem then follows from Lemma 4.5.

To prove this, we construct below two solutions of (2.1), \(\chi \), starting at \((\delta_{n+2}, \chi_2(0)) \), and \(\tilde{\chi} \), starting at \((\delta_{n+2}, \tilde{\chi}_2(0)) \), that are coupled in such a way that, letting

\[
\tau_2 := \inf\{t \geq 0: \chi_1(t) \geq \delta_n\}, \quad \tilde{\tau}_2 := \inf\{t \geq 0: \tilde{\chi}_1(t) \geq \delta_n\},
\]

it holds

\[
P(\chi(\tau_2) = \tilde{\chi}(\tilde{\tau}_2)) \geq p_0 \eta_0^2,
\]

no matter what the distributions of \(\chi_2(0) \) and \(\tilde{\chi}_2(0) \). This implies that

\[
\|L(\chi(\tau_2)) - L(\tilde{\chi}(\tilde{\tau}_2))\|_{TV} \leq (1 - p_0 \eta_0^2).
\]

Consequently, with the notation of Lemma 5.4, denoting by \(P \) the transition function from \([\psi_1(\delta_{n+2}), \psi_2(\delta_{n+2})]\) to \([\psi_1(\delta_n), \psi_2(\delta_n)]\) defined by

\[
P(x_2, \cdot) := P(\chi_2(\tau_2) \in \cdot | \chi_2(0) = x_2) = P(X_2(\tau_{\delta_n}^X) \in \cdot | X_2(\tau_{\delta_n+2}^X) = x_2),
\]

we have

\[
\|P\nu - P\tilde{\nu}\|_{TV} \leq (1 - p_0 \eta_0^2),
\]

for any two probability distributions \(\nu \) and \(\tilde{\nu} \) on \([\psi_1(\delta_{n+2}), \psi_2(\delta_{n+2})]\). Therefore (4.15) follows from Lemma 5.4.

We conclude the proof with the construction of the coupled solutions \(\chi \) and \(\tilde{\chi} \). We start \(\chi \) and \(\tilde{\chi} \) as two independent solutions of (2.1), with initial condition \((\delta_{n+2}, \chi_2(0)) \) and \((\delta_{n+2}, \tilde{\chi}_2(0)) \), respectively, and we run them until the times

\[
\tau_1 := \inf\{t \geq 0: \chi_1(t) \geq \delta_{n+1}\}, \quad \tilde{\tau}_1 := \inf\{t \geq 0: \tilde{\chi}_1(t) \geq \delta_{n+1}\}.
\]

We then consider a solution, \((Z, \tilde{Z})\), with initial distribution \((\chi(\tau_1), \tilde{\chi}(\tilde{\tau}_1))\), of the coupled SDE (5.6) with \(\beta = b, \varsigma = \sigma \) and \(B \) independent of \((\chi(\tau_1), \tilde{\chi}(\tilde{\tau}_1))\), until the times

\[
\Theta := \inf\{t \geq 0: Z(t) \notin Q\}, \quad \tilde{\Theta} := \inf\{t \geq 0: \tilde{Z}(t) \notin Q\},
\]

where \(Q \) is the rectangle

\[
Q := (\delta_{n+1} - \frac{1}{4} q_{n+1}, \delta_{n+1} + \frac{1}{4} q_{n+1}) \times I_{n+1}^{\sigma+1/2}.
\]
and $I_{n+1}^{0+1/2}$ is the interval in Lemma 5.2 for a value of ϵ_0 to be chosen later. We set

$$\chi(\tau_1 + t) := Z(t), \quad \overline{\chi}(\tau_1 + t) := \overline{Z}(t), \quad \text{for } t \leq \Theta \wedge \overline{\Theta}.$$

For $\epsilon_0 \leq 1/4$, by (4.11),

$$\overline{Q} \subseteq D,$$

therefore χ and $\overline{\chi}$ are solutions of (2.1) up to $\tau_1 + \Theta \wedge \overline{\Theta}$ and $\overline{\tau}_1 + \Theta \wedge \overline{\Theta}$ respectively. Moreover, by (4.12), the assumptions of Lemma 5.3 are satisfied. By choosing $\epsilon_0 \leq C_0/4$, where C_0 is the constant in Lemma 5.3, we have that, for $x_2, \overline{x}_2 \in I_{n+1}^{0+}$, it holds

$$|x_2 - \overline{x}_2| \leq C_0 q_{n+1}/4, \quad B_{q_{n+1}/4}(\delta_{n+1}, x_2), \quad B_{q_{n+1}/4}(\delta_{n+1}, \overline{x}_2) \subseteq \overline{Q}.$$

Therefore Lemma 5.3 yields that

$$\mathbb{P}(Z(\Theta \wedge \overline{\Theta}) = \overline{Z}(\Theta \wedge \overline{\Theta})|Z_2(0) \in I_{n+1}^{\epsilon_0}, \overline{Z}_2(0) \in I_{n+1}^{\epsilon_0}) \geq p_0.$$

Combining this with Lemma 5.2 we get

$$\begin{align*}
\mathbb{P}(\chi(\tau_1 + \Theta \wedge \overline{\Theta}) = \overline{\chi}(\overline{\tau}_1 + \Theta \wedge \overline{\Theta})) & \geq \mathbb{P}(\chi(\tau_1 + \Theta \wedge \overline{\Theta}) = \overline{\chi}(\overline{\tau}_1 + \Theta \wedge \overline{\Theta})|\chi_2(\tau_1) \in I_{n+1}^{\epsilon_0}, \overline{\chi}_2(\overline{\tau}_1) \in I_{n+1}^{\epsilon_0}) \mathbb{P}(\chi_2(\tau_1) \in I_{n+1}^{\epsilon_0}, \overline{\chi}_2(\overline{\tau}_1) \in I_{n+1}^{\epsilon_0}) \mathbb{P}(Z(\Theta \wedge \overline{\Theta}) = \overline{Z}(\Theta \wedge \overline{\Theta})|Z_2(0) \in I_{n+1}^{\epsilon_0}, \overline{Z}_2(0) \in I_{n+1}^{\epsilon_0}) \eta_{\epsilon_0}^2 \\
& \geq p_0 \eta_{\epsilon_0}^2.
\end{align*}$$

Finally, we define $\chi(\tau_1 + \Theta \wedge \overline{\Theta} + \cdot)$ as a solution of (2.1) starting at $\chi(\tau_1 + \Theta \wedge \overline{\Theta})$ and $\overline{\chi}(\overline{\tau}_1 + \Theta \wedge \overline{\Theta} + \cdot) = \chi(\tau_1 + \Theta \wedge \overline{\Theta} + \cdot)$, if $\chi(\tau_1 + \Theta \wedge \overline{\Theta}) = \chi(\overline{\tau}_1 + \Theta \wedge \overline{\Theta})$, and as a solution of (2.1) starting at $\chi(\overline{\tau}_1 + \Theta \wedge \overline{\Theta})$ otherwise. Since, with Q as above,

$$\tau_1 + \Theta \wedge \overline{\Theta} < \tau_2, \quad \overline{\tau}_1 + \Theta \wedge \overline{\Theta} < \overline{\tau}_2,$$

χ and $\overline{\chi}$ have the desired property. \(\square\)

4.4 The Feller property

We conclude with the observation that the family of distributions $\{P^x\}_{x \in \overline{D}}$, where P^x is the distribution of the unique weak solution of (2.1) starting at x, enjoys the Feller property.

Proposition 4.7 Let X^x be the unique weak solution of (2.1) starting at x. Then the mapping $x \in \overline{D} \to X^x$ is continuous in distribution.

Proof. The proof is exactly the same as that of Theorem 4.1. In fact, once it is known that the weak solution of (2.1) starting at the origin is unique, the proof of Lemma 4.4 amounts to showing that X^x is continuous in distribution at the origin. \(\square\)
5 Technical lemmas

Lemma 5.1 Let $\bar{X}^{(0,x_2)}$ satisfy (4.11) with $\bar{X}^{(0,x_2)}(0) = (0, x_2)$, $x_2 \in [L, L+1]$, and let

$$\bar{\tau}_1 := \inf\{t \geq 0 : \bar{X}_1^{(0,x_2)}(t) \geq 1\}.$$

Then

(i) $\bar{\tau}_1$ is a.s. finite.

(ii) For every $\epsilon > 0$,

$$\inf_{L \leq x_2 \leq L+1} \mathbb{P}\left(\bar{X}_2^{(0,x_2)}(\bar{\tau}_1) \in (L + \frac{1}{2} - \epsilon, L + \frac{1}{2} + \epsilon) \right) > 0. \quad (5.1)$$

Proof.

(i) To simplify notation, whenever possible without loss of clarity, we will omit the superscript on \bar{X}.

Let e^* be the vector in Condition 2.2(b). Then, for $\bar{X}(0) = x_0 \in \mathbb{R} \times [L, L+1]$, for all $N > 0$,

$$\inf\{t \geq 0 : \langle \bar{X}(t), e^* \rangle \geq N + \langle x_0, e^* \rangle \} \leq \inf\{t \geq 0 : \langle \sigma(0)W(t), e^* \rangle \geq N \} < +\infty \quad \text{a.s..}$$

On the other hand

$$\bar{X}_1(t) = \frac{1}{e^*_1}(\langle \bar{X}(t), e^* \rangle - \bar{X}_2(t)e^*_2) \geq \frac{1}{e^*_1}(\langle \bar{X}(t), e^* \rangle - (|L| + 1)).$$

Therefore, for N large enough,

$$\bar{\tau}_1 \leq \inf\{t \geq 0 : \langle \bar{X}(t), e^* \rangle \geq N + \langle x_0, e^* \rangle \}.$$

(ii) We can suppose, without loss of generality, $\epsilon < 1/2$. Let $h : \mathbb{R}^2 \to [0, 1]$ be a smooth function such that

$$h(1, L + \frac{1}{2}) = 1, \quad h(x) = 0 \text{ for } x \notin B_\epsilon((1, L + \frac{1}{2})).$$

We can estimate the probability in the left hand side of (5.1) by

$$\mathbb{P}(\bar{X}_2(\bar{\tau}_1) \in (L + \frac{1}{2} - \epsilon, L + \frac{1}{2} + \epsilon)) \geq \mathbb{E}[h(\bar{X}(\bar{\tau}_1))].$$

Set

$$u(x) := \mathbb{E}[h(\bar{X}^x(\bar{\tau}^x_1))], \quad x \in (-\infty, 1] \times [L, L+1].$$

u is continuous on $(-\infty, 1] \times [L, L+1]$, because \bar{X} is a Feller process and the functional: $\inf\{t \geq 0 : x(t) \geq 1\}$, $x(\cdot) \in C_{\mathbb{R} \times [L,L+1]}[0,\infty)$, is almost surely continuous under the law of \bar{X}^x, for every $x \in (-\infty, 1] \times [L, L+1]$. For any bounded, smooth domain Q such that
$\overline{Q} \subseteq (-\infty, 1) \times (L, L + 1)$, u is the classical solution of the Dirichlet problem with itself as boundary datum. Therefore $u \in C^2((-\infty, 1) \times (L, L + 1))$ and
\[
\text{tr}((\sigma \sigma^T)(0) D^2 u(x)) = 0, \quad \forall x \in (-\infty, 1) \times (L, L + 1).
\]
For $0 < \eta < 1/2$, let
\[
Q_{\eta} := (-1 + \eta, 1 - \eta) \times (L + \eta, L + 1 - \eta).
\]
By the Harnack inequality,
\[
\inf_{x \in Q_{\eta}} u(x) \geq c_{\eta} \sup_{x \in Q_{\eta}} u(x), \quad (5.2)
\]
for some $c_{\eta} > 0$. For η small enough the right hand side of (5.2) is strictly positive and hence
\[
u(0, x_2) > 0, \quad \forall x_2 \in (L, L + 1).
\]
Now let
\[
\bar{\tau}_{Q_{\eta}}^{(0,L+1)} := \inf\{t \geq 0 : \overline{X}^{(0,L+1)}(t) \in \overline{Q_{\eta}}\},
\]
and fix η small enough that the right hand side of (5.2) is strictly positive and that
\[
\mathbb{P}(\bar{\tau}_{Q_{\eta}}^{(0,L+1)} < \bar{\tau}_{1}^{(0,L+1)}) > 0.
\]
Then
\[
u(0, L + 1) = \mathbb{E}[h(\overline{X}^{(0,L+1)}(\bar{\tau}_{1}^{(0,L+1)}))] \\
\geq \mathbb{E}[\mathbb{1}_{\bar{\tau}_{Q_{\eta}}^{(0,L+1)} < \bar{\tau}_{1}^{(0,L+1)}} h(\overline{X}^{(0,L+1)}(\bar{\tau}_{Q_{\eta}}^{(0,L+1)}))] \\
= \mathbb{E}[\mathbb{1}_{\bar{\tau}_{Q_{\eta}}^{(0,L+1)} < \bar{\tau}_{1}^{(0,L+1)}} u(\overline{X}^{(0,L+1)}(\bar{\tau}_{Q_{\eta}}^{(0,L+1)}))] \\
\geq \inf_{x \in Q_{\eta}} u(x) \mathbb{P}(\bar{\tau}_{Q_{\eta}}^{(0,L+1)} < \bar{\tau}_{1}^{(0,L+1)}) \\
> 0.
\]
Analogously
\[
u(0, L) > 0,
\]
and the assertion follows by the continuity of u on $\{0\} \times [L, L + 1]$.
\[
\square
\]
\textbf{Lemma 5.2} Let X^{x^0} be the solution of \textbf{2.1} starting at $x^0 \in \overline{D} \setminus \{0\}$, $\tau_{\delta_n}^{x^0} := \inf\{t \geq 0 : X^{x^0}_1(t) \geq \delta_n\}$, $n \geq 0$, and for $0 < \epsilon < 1$, I_{ϵ}^{n} be the open interval of length $\epsilon (\psi_2 - \psi_1)(\delta_n)$ centered at $\frac{\psi_1 + \psi_2}{2}(\delta_n)$. Then there exists $n_* \geq 0$ and $\eta_* > 0$ such that
\[
\inf_{n \geq n_*} \inf_{x_2 : (\delta_{n+1}, x_2) \in \overline{D}} \mathbb{P}(X_{2}^{(\delta_{n+1}, x_2)}(\tau_{\delta_n}^{(\delta_{n+1}, x_2)}) \in I_{\epsilon}^{n}) = \eta_* > 0. \quad (5.3)
\]
Proof. Let \(\{x_2^n\}, \psi_1(\delta_{n+1}) \leq x_2^n \leq \psi_2(\delta_{n+1}) \) be such that \(q_n^{-1}x_2^n \) converges to \(\bar{x}_2^0 \in [L, L + 1] \), and let \(X^n \) denote the solution of (2.21) starting at \((\delta_{n+1}, x_2^n) \). Let \(X^n \) denote the scaled process \(T \xi x \) with initial condition \((0, q_n^{-1}x_2^n) \), and let \(\bar{X} \) denote the limiting reflecting Brownian motion starting at \((0, \bar{x}_2^0) \). Define

\[
\tau^n = \tau^{(\delta_{n+1}, x_2^n)} := \inf\{t \geq 0 : X^n_1(t) \geq \delta_n\}
\]

\[
\bar{\tau}^n := \inf\{t \geq 0 : \bar{X}_1^n(t) \geq 1\}
\]

\[
\bar{x}_1 := \inf\{t \geq 0 : X_1(t) \geq 1\}
\]

Notice that \(\tau^n \) is a.s. finite by Remark 4.4 and that

\[
\tau^n = q_n^{-2}\bar{\tau}^n.
\]

Since the first exit time from \((-\infty, 1) \times \mathbb{R} \) is a continuous functional on a set of paths that has probability one under the distribution of \(\bar{X} \), by the continuous mapping theorem we may assume that \(\bar{X}_2^n(\bar{\tau}^n) \) converges in distribution to \(\bar{X}_2(\bar{x}_1) \). Then

\[
\liminf_n \mathbb{P}(X_2^n(\tau^n) \in I^n) \geq \liminf_n \mathbb{P}\left(X_2^n(\tau^n) \in (q_n(L + \frac{1}{2} - \frac{\epsilon}{4}), q_n(L + \frac{1}{2} + \frac{\epsilon}{4}))\right)
\]

\[
= \liminf_n \mathbb{P}\left(\bar{X}_2^n(\bar{\tau}^n) \in (L + \frac{1}{2} - \frac{\epsilon}{4}, L + \frac{1}{2} + \frac{\epsilon}{4})\right)
\]

\[
\geq \mathbb{P}\left(\bar{X}_2(\bar{x}_1) \in (L + \frac{1}{2} - \frac{\epsilon}{4}, L + \frac{1}{2} + \frac{\epsilon}{4})\right)
\]

\[
\geq \inf_{L \leq x_2 \leq L + 1} \mathbb{P}\left(X_2^{0,x_2}(\bar{x}_1^{0,x_2}) \in (L + \frac{1}{2} - \frac{\epsilon}{4}, L + \frac{1}{2} + \frac{\epsilon}{4})\right),
\]

and the assertion follows by (5.1) and by the arbitrariness of \(\{x_2^n\} \).

The following lemma, which uses the coupling of Lindvall and Rogers (1986), may be of independent interest.

Lemma 5.3 Let \(\beta : \mathbb{R}^d \to \mathbb{R}^d \) and \(\zeta : \mathbb{R}^d \to \mathbb{R}^d \times \mathbb{R}^d \) be Lipschitz continuous and bounded and let \(\zeta \zeta^T \) be uniformly positive definite. Suppose that

\[
\sup_{x, \bar{x}} |\zeta(x) - \zeta(\bar{x})| < 2(\sup_x |\zeta(x)^{-1}|)^{-1}.
\]

Define

\[
K(x, \bar{x}) := I - 2\zeta(\bar{x})^{-1}(x - \bar{x})(x - \bar{x})^T(\zeta(\bar{x})^{-1})^T, \quad (5.5)
\]

Let \(B \) be a standard Brownian motion on a probability space \((\Omega, \mathcal{F}, \mathbb{P}) \) and \((Z, \tilde{Z}) \) be the solution of the system of stochastic differential equations

\[
dZ(t) = \beta(Z(t))dt + \zeta(Z(t))dB(t), \quad Z(0) = x^0,
\]

\[
d\tilde{Z}(t) = \beta(\tilde{Z}(t))dt + \zeta(\tilde{Z}(t))K(Z(t), \tilde{Z}(t))dB(t), \quad \tilde{Z}(0) = \bar{x}^0 \neq x^0
\]

for \(t < \zeta \), where

\[
\zeta := \lim_{\epsilon \to 0} \zeta_\epsilon, \quad \zeta_\epsilon := \inf\{t \geq 0 : |Z(t) - \tilde{Z}(t)| < \epsilon\}.
\]

(5.7)
and $\tilde{Z}(t) = Z(t)$ for $t \geq \zeta$, on the set $\{\zeta < \infty\}$. (Notice that K is locally Lipschitz continuous on $\mathbb{R}^d \times \mathbb{R}^d - \{(x, x), x \in \mathbb{R}^d\}.)

Then \tilde{Z} is a diffusion process with generator $Df(x)\beta(x) + \frac{1}{2}\text{tr}(\varsigma(x)\varsigma(x)^T D^2 f(x))$ and, for every p_0, $0 < p_0 < \frac{1}{4}$, there exists a positive constant $C_0 < 1$, depending only on p_0, β and ς, such that, setting

$$\vartheta_{\rho} := \inf\{t \geq 0 : |Z(t) - x^0| > \rho\}, \quad \tilde{\vartheta}_{\rho} := \inf\{t \geq 0 : |\tilde{Z}(t) - \tilde{x}^0| > \rho\},$$

for $\rho \leq 1$,

$$|x^0 - \tilde{x}^0| \leq C_0\rho \implies \mathbb{P}(\zeta \leq \vartheta_{\rho} \wedge \tilde{\vartheta}_{\rho}) \geq p_0.$$

Proof. The fact that \tilde{Z} has generator $Df(x)\beta(x) + \frac{1}{2}\text{tr}(\varsigma(x)\varsigma(x)^T D^2 f(x))$ follows from the fact $K(x, \tilde{x})$ is an orthogonal matrix.

As in [Lindvall and Rogers (1986)](Lindvall_and_Rogers1986), consider

$$U(t) := |Z(t) - \tilde{Z}(t)|.$$

For $t < \zeta$, U satisfies

$$dU(t) = a(t)dt + \alpha(t)dW(t),$$

where

$$a(t) := \frac{(Z(t) - \tilde{Z}(t), \beta(Z(t)) - \beta(\tilde{Z}(t)))}{|Z(t) - \tilde{Z}(t)|} + \frac{\text{tr}((\varsigma(Z(t)) - \varsigma(\tilde{Z}(t))) (\varsigma(Z(t)) - \varsigma(\tilde{Z}(t)))^T)}{2|Z(t) - \tilde{Z}(t)|} - \frac{|(\varsigma(Z(t)) - \varsigma(\tilde{Z}(t)))^T \frac{Z(t) - \tilde{Z}(t)}{|Z(t) - \tilde{Z}(t)|}|}{2|Z(t) - \tilde{Z}(t)|},$$

$$\alpha(t) := \left|\varsigma(Z(t)) - \varsigma(\tilde{Z}(t))\right| K(Z(t), \tilde{Z}(t)) \frac{Z(t) - \tilde{Z}(t)}{|Z(t) - \tilde{Z}(t)|},$$

and W is a standard Brownian motion. Then, as in [Lindvall and Rogers (1986)](Lindvall_and_Rogers1986), setting

$$g(u) := \sup_{|x - \tilde{x}| = u} \left\{\frac{\left|\varsigma(x) - \varsigma(\tilde{x})\right|^T \frac{x - \tilde{x}}{|x - \tilde{x}|}}{2|x - \tilde{x}|} + \frac{\text{tr}((\varsigma(x) - \varsigma(\tilde{x})) (\varsigma(x) - \varsigma(\tilde{x}))^T)}{2|x - \tilde{x}|} \left|\varsigma(x) - \varsigma(\tilde{x})\right|^T \frac{x - \tilde{x}}{|x - \tilde{x}|} \right\}^2,$$

we have

$$a(t) \leq \alpha(t)^2 g(U(t)).$$

In addition, by (5.4), the Lipschitz property of β and ς and the boundedness of ς,

$$\alpha := \inf_t \alpha(t) > 0 \quad \alpha := \sup_t \alpha(t) \leq 2\|\varsigma\| \quad (5.8)$$

$$|a(t)| \leq \alpha U(t), \text{ a.s.}$$

$$|g(u)| \leq Cu$$

19
(See the computations at page 866 of Lindvall and Rogers (1986).) In particular \(g \) is locally square integrable on \((0, \infty)\). Therefore, applying Itô’s formula to the process \(U \) and the function
\[
G(u) := \int_1^u dv \exp \left(-2 \int_1^v g(z)dz \right),
\]
we see that, for \(u := |x^0 - \bar{x}^0|, \theta_{2u} := \inf\{t \geq 0 : U(t) > 2u\}, \)
\[
\mathbb{P}(\zeta_\epsilon < \theta_{2u}) \geq \frac{G(2u) - G(u)}{G(2u) - G(\epsilon)}.
\]

On the other hand, we have, for any \(0 < t \leq 1, \)
\[
\mathbb{P}(\zeta_\epsilon < \varrho \land \tilde{\varrho}) \geq \mathbb{P}(\zeta_\epsilon \leq t, \ t < \varrho \land \tilde{\varrho})
\geq \mathbb{P}(\zeta_\epsilon \leq t) - \mathbb{P}(\varrho \land \tilde{\varrho} \leq t)
\geq \mathbb{P}(\zeta_\epsilon < \theta_{2u}, \ \zeta_\epsilon \land \theta_{2u} \leq t) - \mathbb{P}(\varrho \land \tilde{\varrho} \leq t)
\geq \mathbb{P}(\zeta_\epsilon < \theta_{2u}) - \mathbb{P}(\zeta_\epsilon \land \theta_{2u} > t) - \mathbb{P}(\varrho \land \tilde{\varrho} \leq t)
\geq \frac{G(2u) - G(u)}{G(2u) - G(\epsilon)} - \mathbb{P}\left(\sup_{s \leq t} |U(s) - u| \leq u\right) - \mathbb{P}(\varrho \land \tilde{\varrho} \leq t).
\]

By (5.8), we have
\[
G(0) := \lim_{\epsilon \to 0} G(\epsilon) > -\infty.
\]
Then, noting that \(\mathbb{P}(\varrho \land \tilde{\varrho} < \infty) = 1 \), taking the limit as \(\epsilon \) goes to zero, we obtain
\[
\mathbb{P}(\zeta_\epsilon \leq \varrho \land \tilde{\varrho}) \geq \frac{G(2u) - G(u)}{G(2u) - G(0)} - \mathbb{P}\left(\sup_{s \leq t} \int_0^s a(r)dr + \int_0^s \alpha(r)dW(r) \leq u\right)
- \mathbb{P}(\varrho \land \tilde{\varrho} \leq t).
\]

Now, we can easily see (for instance applying Itô’s formula to the function \(f(x) = |x - x^0|^2 \)) that
\[
\mathbb{P}(\varrho \land \tilde{\varrho} \leq t) \leq \frac{C_1 t}{\rho^2},
\]
where \(C_1 \) depends only on \(b \) and \(\varsigma \). Of course we can suppose, without loss of generality, that \(C_1 \geq 1 \). Therefore, we will take
\[
t = \frac{1}{C_1} \left(\frac{1}{4} - p_0 \right) \rho^2.
\] (5.9)
We have, for \(\rho \leq 1 \) and \(u \leq C_0 \rho \), where \(C_0 \) is a constant to be chosen later,
\[
\mathbb{P}\left(\sup_{s \leq t} \int_0^s a(r)dr + \int_0^s \alpha(r)dW(r) \leq u\right)
= \mathbb{P}\left(\sup_{s \leq t} \int_0^s a(r)dr + \int_0^s \alpha(r)dW(r) \leq u, \sup_{s \leq t} U(s) \leq 2u\right)
\leq \mathbb{P}\left(\sup_{s \leq t} \alpha(s)dW(s) \leq C_0(1 + 2\pi) \sqrt{\frac{4C_1}{1 - 4p_0} \sqrt{t}}\right).
\]

20
where in the last inequality we have used the fact that \(|a(t)| \leq 7U(t)|\), (5.8) and (5.9). We take \(C_0\) small enough that

\[
C' := C_0(1 + 2\alpha) \sqrt{\frac{4C_1}{1 - 4p_0}} < \alpha. \tag{5.10}
\]

Then setting \(\theta_{C^{-1}} := \inf\{s \geq 0 : \left| \int_0^s \alpha(r)dW(r) \right| > C\sqrt{t}\}\),

\[
\mathbb{P} \left(\sup_{s \leq t} \left| \int_0^s \alpha(s)dW(s) \right| \leq C\sqrt{t} \right) = \mathbb{P} \left(\theta_{C\sqrt{t}} \geq t, \left(\int_0^t \alpha(s)dW(s) \right)^2 \leq C^2t \right) \\
= \mathbb{P} \left(\theta_{C\sqrt{t}} \geq t, \int_0^t \left(\int_0^s \alpha(r)dW(r) \right)\alpha(s)dW(s) + \int_0^t \alpha(s)^2ds \leq C^2t \right) \\
\leq \mathbb{P} \left(\int_0^{\theta_{C\sqrt{t}}} \left(\int_0^s \alpha(r)dW(r) \right)\alpha(s)dW(s) \leq \frac{1}{2}(C^2 - \alpha^2)t \right),
\]

where the last inequality uses (5.8). Since \(C < \alpha\), the above chain of inequalities can be continued as

\[
\leq \mathbb{P} \left(\left| \int_0^{\theta_{C\sqrt{t}}} \left(\int_0^s \alpha(r)dW(r) \right)\alpha(s)dW(s) \right| \geq \frac{1}{2}(\alpha^2 - C^2)t \right) \\
\leq \frac{4}{(\alpha^2 - C^2)^2 t^2} \mathbb{E} \left[\int_0^{\theta_{C\sqrt{t}}} \left(\int_0^s \alpha(r)dW(r) \right)^2\alpha(s)^2ds \right] \\
\leq \frac{4C^2t}{(\alpha^2 - C^2)^2 t^2} \mathbb{E} \left[\int_0^t \alpha(s)^2ds \right] \\
\leq \frac{4C^2\alpha t^2}{(\alpha^2 - C^2)^2 t^2}.
\]

Finally, observe that \(\frac{G(2u) - G(0)}{G(2u) - G(0)}\) tends to \(\frac{1}{2}\) as \(u\) goes to zero. Then, by choosing \(C_0\) small enough that (5.10) holds,

\[
\frac{4C^2\alpha}{(\alpha^2 - C^2)^2} \leq \frac{1}{4} - p_0,
\]

and that, for \(u \leq C_0\),

\[
\frac{G(2u) - G(u)}{G(2u) - G(0)} \geq \frac{1}{2} - p_0,
\]

the assertion is proved. \(\Box\)

Lemma 5.4

(i) Let \(E\) be a complete, separable metric space, and for \(\mu_1, \mu_2 \in \mathcal{P}(E)\) define

\[
\|\mu_1 - \mu_2\|_{TV} := \sup_{A \in \mathcal{B}(E)} |\mu_1(A) - \mu_2(A)|.
\]

21
Then there exist $\nu_0, \nu_1, \nu_2 \in \mathcal{P}(E)$ such that

$$
\mu_1 = (1 - \rho)\nu_0 + \rho\nu_1, \quad \mu_2 = (1 - \rho)\nu_0 + \rho\nu_2,
$$

(5.11)

where

$$
\rho = \|\mu_1 - \mu_2\|_{TV}.
$$

(ii) Let E_1 and E_2 be complete separable metric spaces and P be a transition function from E_1 to E_2, and let

$$
P\mu(dy) = \int_{E_1} P(x,dy)\mu(dx), \quad \mu \in \mathcal{P}(E_1).
$$

Then, for $\mu_1, \mu_2 \in \mathcal{P}(E_1)$ and ν_1, ν_2 as in (a),

$$
\|P\mu_1 - P\mu_2\|_{TV} = \|\mu_1 - \mu_2\|_{TV} \|P\nu_1 - P\nu_2\|_{TV}.
$$

Proof. (i) Let

$$
l_i := \frac{d\mu_i}{d(\mu_1 + \mu_2)}, \quad i = 1, 2,
$$

$$
\nu_0(A) := \frac{1}{\int_{E_1} (l_1(x) \land l_2(x)) (\mu_1 + \mu_2)(dx)} \int_{A} (l_1(x) \land l_2(x)) (\mu_1 + \mu_2)(dx),
$$

$$
\nu_i(A) := \frac{1}{1 - \int_{E_1} (l_1(x) \land l_2(x)) (\mu_1 + \mu_2)(dx)} \int_{A} (l_i(x) - l_1(x) \land l_2(x)) (\mu_1 + \mu_2)(dx), \quad i = 1, 2,
$$

and

$$
\rho := 1 - \int_{E_1} (l_1(x) \land l_2(x)) (\mu_1 + \mu_2)(dx).
$$

Then (5.11) holds. In addition

$$
\|\mu_1 - \mu_2\|_{TV} = \rho\|\nu_1 - \nu_2\|_{TV} = \rho,
$$

because ν_1 and ν_2 are mutually singular.

(ii) By (i),

$$
\|P\mu_1 - P\mu_2\|_{TV} = \|(1 - \rho)P\nu_0 + \rhoP\nu_1 - (1 - \rho)P\nu_0 - \rhoP\nu_1\|_{TV} = \rho\|P\nu_1 - P\nu_2\|_{TV}.
$$

\[\square\]

6 Notation

$\langle \cdot, \cdot \rangle$ denotes the scalar product of two vectors.

For any matrix M (or vector v), M^T (v^T) denotes its transpose.

$\text{tr}M$ denotes the trace of a matrix.

For vectors $v^1, v^2, \ldots, v^k \in \mathbb{R}^h$, $C(v^i, i = 1, \ldots, k)$ denotes the closed convex cone generated by v^1, v^2, \ldots, v^k.

22
I_E is the indicator function of a set E.

For E \subseteq \mathbb{R}^h d(x, E) is the distance of a point x from E.

B_r(x) \subseteq \mathbb{R}^h is a ball of radius r centered at x.

For f : \mathbb{R}^h \to \mathbb{R}^m with first order partial derivatives, Df denotes the Jacobian matrix of f.

For f : \mathbb{R}^h \to \mathbb{R} with second order partial derivatives D^2f denotes the Hessian matrix.

\| \cdot \| denotes indifferently the absolute value of a number, the norm of a vector or of a matrix, while \| \cdot \| denotes the supremum norm of a bounded, real valued function.

For an open set E \subseteq \mathbb{R}^h, C^i(E) denotes the set of real valued functions defined on E with continuous partial derivatives up to the order i. For E closed, C^i(E) denotes the set of real valued functions defined on an open neighborhood of E that admit continuous partial derivatives up to the order i. C^i_b(E) denotes the subset of functions of C^i(E) that are bounded with all their derivatives.

For a complete, separable, metric space E, D_E[0, \infty) is the space of E valued functions on [0, \infty) that are right continuous with left hand limits, and C_E[0, \infty) is the space of continuous functions.

\mathcal{L}(\xi) denotes the law (distribution) of a random variable \xi.

\| \cdot \|_{TV} denotes the total variation norm of a finite, signed measure.

Throughout the paper c and C denote positive constants depending only on the data of the problem. When necessary, they are indexed c_0, c_1, ..., C_0, C_1, ... and the dependence on the data or other parameters is explicitly pointed out.

References

Krzysztof Burdzy and Ellen Toby. A Skorohod-type lemma and a decomposition of reflected Brownian motion. *Ann. Probab.*, 23(2):586–604, 1995. ISSN 0091-1798. URL \url{http://links.jstor.org/sici?sici=0091-1798(199504)23:2<586:ASLAAD>2.0.CO;2-1}

Krzysztof Burdzy, Weining Kang, and Kavita Ramanan. The Skorokod problem in a time-dependent interval. *Stochastic Process. Appl.*, 119(2):428–452, 2009. ISSN 0304-4149. doi: 10.1016/j.spa.2008.03.001. URL \url{http://dx.doi.org/10.1016/j.spa.2008.03.001}

C. Costantini. The Skorohod oblique reflection problem in domains with corners and application to stochastic differential equations. *Probab. Theory Related Fields*, 91(1):43–70, 1992. ISSN 0178-8051. doi: 10.1007/BF01194489. URL \url{http://dx.doi.org.ezproxy.library.wisc.edu/10.1007/BF01194489}

Cristina Costantini and Thomas G. Kurtz. Viscosity methods giving uniqueness for martingale problems. *Electron. J. Probab.*, 20:no. 67, 27, 2015. ISSN 1083-6489. doi: 10.1214/EJP.v20-3624. URL \url{http://dx.doi.org/10.1214/EJP.v20-3624}

Michael G. Crandall, Hitoshi Ishii, and Pierre-Louis Lions. User’s guide to viscosity solutions of second order partial differential equations. *Bull. Amer. Math. Soc. (N.S.)*, 27(1):1–67, 1992. ISSN 0273-0979. doi: 10.1090/S0273-0979-1992-00266-5. URL \url{http://dx.doi.org/10.1090/S0273-0979-1992-00266-5}
J. G. Dai and R. J. Williams. Existence and uniqueness of semimartingale reflecting brownian motions in convex polyhedrons. *Theory of Probability & Its Applications*, 40(1):1–40, 1996. doi: 10.1137/1140001. URL https://doi.org/10.1137/1140001.

R. Dante DeBlassie and Ellen H. Toby. Reflecting Brownian motion in a cusp. *Trans. Amer. Math. Soc.*, 339(1):297–321, 1993a. ISSN 0002-9947. doi: 10.2307/2154220. URL http://dx.doi.org/10.2307/2154220.

R. Dante DeBlassie and Ellen H. Toby. On the semimartingale representation of reflecting Brownian motion in a cusp. *Probab. Theory Related Fields*, 94(4):505–524, 1993b. ISSN 0178-8051. doi: 10.1007/BF01192561. URL http://dx.doi.org/10.1007/BF01192561.

Paul Dupuis and Hitoshi Ishii. SDEs with oblique reflection on nonsmooth domains. *Ann. Probab.*, 21(1):554–580, 1993. ISSN 0091-1798. URL http://links.jstor.org/sici?sici=0091-1798(199301)21:1<554:SWORON>2.0.CO;2-D.

Masatoshi Fukushima and Matsuyo Tomisaki. Construction and decomposition of reflecting diffusions on Lipschitz domains with Hölder cusps. *Probab. Theory Related Fields*, 106(4):521–557, 1996. ISSN 0178-8051. doi: 10.1007/s004400050074. URL http://dx.doi.org/10.1007/s004400050074.

W. N. Kang, F. P. Kelly, N. H. Lee, and R. J. Williams. State space collapse and diffusion approximation for a network operating under a fair bandwidth sharing policy. *Ann. Appl. Probab.*, 19(5):1719–1780, 2009. ISSN 1050-5164. doi: 10.1214/08-AAP591. URL http://dx.doi.org/10.1214/08-AAP591.

Thomas G. Kurtz. Martingale problems for constrained Markov problems. In *Recent advances in stochastic calculus (College Park, MD, 1987)*, Progr. Automat. Info. Systems, pages 151–168. Springer, New York, 1990.

Thomas G. Kurtz. Weak and strong solutions of general stochastic models. *Electron. Commun. Probab.*, 19:no. 58, 16, 2014. ISSN 1083-589X. doi: 10.1214/ECP.v19-2833. URL http://dx.doi.org/ezproxy.library.wisc.edu/10.1214/ECP.v19-2833.

Thomas G. Kurtz and Philip Protter. Weak limit theorems for stochastic integrals and stochastic differential equations. *Ann. Probab.*, 19(3):1035–1070, 1991. ISSN 0091-1798.

Torgny Lindvall and L. C. G. Rogers. Coupling of multidimensional diffusions by reflection. *Ann. Probab.*, 14(3):860–872, 1986. ISSN 0091-1798. URL http://links.jstor.org/sici?sici=0091-1798(198607)14:3<860:COMDBR>2.0.CO;2-V.

L. M. Taylor and R. J. Williams. Existence and uniqueness of semimartingale reflecting Brownian motions in an orthant. *Probab. Theory Related Fields*, 96(3):283–317, 1993. ISSN 0178-8051. doi: 10.1007/BF01292674. URL http://dx.doi.org/10.1007/BF01292674.

S. R. S. Varadhan and R. J. Williams. Brownian motion in a wedge with oblique reflection. *Comm. Pure Appl. Math.*, 38(4):405–443, 1985. ISSN 0010-3640. doi: 10.1002/cpa.3160380405. URL http://dx.doi.org/10.1002/cpa.3160380405.
Toshio Yamada and Shinzo Watanabe. On the uniqueness of solutions of stochastic differential equations. *J. Math. Kyoto Univ.*, 11:155–167, 1971.