THE REGULARITY OF SONIC CURVES FOR THE
TWO-DIMENSIONAL RIEMANN PROBLEMS OF THE
NONLINEAR WAVE SYSTEM OF CHAPLYGIN GAS

QIN WANG
Department of Mathematics, Yunnan University
Kunming, 650091, China

KYUNGWOO SONG†
Department of Mathematics and Research Institute for Basic Sciences
Kyung Hee University, Seoul 130-701, Korea

(Communicated by Alberto Bressan)

Abstract. We study the regularity of sonic curves from a two-dimensional
Riemann problem for the nonlinear wave system of Chaplygin gas, which is
an essential step for the global existence of solutions to the two-dimensional
Riemann problems. As a result, we establish the global existence of uniformly
smooth solutions in the semi-hyperbolic patches up to the sonic boundary,
where the degeneracy of hyperbolicity occurs. Furthermore, we show the C^1-
regularity of sonic curves.

1. Introduction. The purpose of this paper is to provide the regularity of sonic
curves arising from a two-dimensional Riemann problem governed by the self-similar
nonlinear wave system. Let density be ρ, velocity (u, v), the pressure \bar{p} be given as
a function of ρ. From the well-known 2-D compressible Euler system for isentropic
flow, when the flow is irrotational and the nonlinear velocity terms are ignored, we
can derive the following nonlinear wave system

$$
\begin{align*}
\rho_t + m_x + n_y &= 0, \\
m_t + \bar{p}_x &= 0, \\
n_t + \bar{p}_y &= 0,
\end{align*}
$$

(1.1)

where $(m, n) = (u\rho, v\rho)$ are momenta. We refer the readers to [4, 14, 15] for more
information on this system. In this paper we are interested in the 2-D Riemann
problem of system (1.1) with Chaplygin gas equation of state $\bar{p} = -1/\rho$. The
Chaplygin gas, which can be used to depict some dark-energy models in cosmology,
has been widely studied. Recently, some interesting and important results have
been obtained, especially for the Riemann problem. We refer to [7, 8, 18, 21, 26] and
the references cited therein for the related results.

For decades, there have been wide and intensive developments in the Riemann
problems of conservation laws, in particular the 2-D compressible Euler system

2010 Mathematics Subject Classification. 35L65, 35J70, 35R35.
Key words and phrases. Nonlinear wave system, Chaplygin gas, regularity, 2-D Riemann prob-
lem, bootstrap method.

† Corresponding author.
Figure 1. Four semi-hyperbolic patches, marked by the short and light curves and overlapped by some bold ones, in the interaction of two forward and two backward rarefaction waves for the Euler system with a gas constant $\gamma = 1.4$. The five closed curves at the center are contour curves of the pseudo-Mach number which mark the subsonic region; bold curves originating from the boundaries are characteristics; the short and light curves in the semi-hyperbolic regions are also characteristics. The solution has two axes of symmetry (Courtesy of Glimm et. al. [12]).

and its simple models. Such models are the unsteady transonic small disturbance (UTSD) equations [1–3], the pressure gradient system [10, 17, 19, 24, 29], the potential flow [5, 6, 11, 16], and the nonlinear wave equations [4, 14, 15, 25] and so on. For Riemann problems in two-dimensional flow, those governing equations become quasilinear and mixed types. The type of the flow in the far-field is hyperbolic, while near the origin the type is mixed. In particular, information on the sonic line, located between the elliptic part and the hyperbolic part, is important in obtaining the global existence of solutions to the mixed type problem.

In this paper we consider the presence of the semi-hyperbolic patches with a transonic shock and a sonic curve in a simple wave environment. The regions identified by the existence of a family of characteristics that starts on sonic curves and ends on transonic shock curves are called semi-hyperbolic patches. The study on this region was initiated in [24] via the pressure gradient system and is being continued in [20, 27, 28]. These regions are different from the typical fully hyperbolic regions. As the numerical calculations in [12], we frequently encounter this kind of regions in several configurations in the two-dimensional Riemann problems of the Euler system as well as its simplified models (Figure 1). One of the examples for semi-hyperbolic patches happens when air is accelerated in a planar tunnel over a small inward bulge on one of the walls [9]. A global solution to the boundary value problem of the Riemann problem of a hyperbolic system can be patched
together by pieces along characteristic lines, sonic curves, shock waves or other natural boundaries. We believe that it is helpful and essential to understand these patches of solutions locally before resolving the Riemann problems globally.

In [13], Hu and Wang have studied the semi-hyperbolic patches of solutions to the 2-D nonlinear wave system for Chaplygin gas state. They have constructed the global existence of solutions by solving a Goursat-type boundary value problem which has a sonic curve as a degenerate boundary, and verified that the sonic curve is Lipschitz continuous. However, the smoothness of the sonic curve and the exact behavior of solutions near the sonic curve are still open. The main difficulty is the degeneracy of hyperbolicity near the sonic lines. In several numerical simulations, we can see that the demarcation line between hyperbolic regions and elliptic regions is composed of sonic curves and a transonic shock. Also the pressure seems to change smoothly across the sonic curves. Hence, we mainly focus on the study of the solutions’ precise behaviors near sonic curves, and expect better regularity of sonic curves. As a result, we prove that the semi-hyperbolic patches are uniformly smooth up to the sonic curves, and the sonic curves are C^1 continuous.

In the self-similar coordinates $(\xi, \eta) = (x/t, y/t)$, the nonlinear wave system (1.1) becomes

\[-\xi \tilde{p}_\xi - \eta \tilde{p}_\eta + \tilde{p}^2 m_\xi + \tilde{p}^2 n_\eta = 0, \]
\[-\xi m_\xi - \eta m_\eta + \tilde{p} = 0, \]
\[-\xi n_\xi - \eta n_\eta + \tilde{p} = 0, \]

which yields a second order partial differential equation of \tilde{p}

\[(\tilde{p}^2 - \xi^2)\tilde{p}_\xi - 2\xi \eta \tilde{p}_\eta + (\tilde{p}^2 - \eta^2)\tilde{p}_\eta + \frac{2}{\tilde{p}}(\xi \tilde{p}_\xi + \eta \tilde{p}_\eta)^2 - 2(\xi \tilde{p}_\xi + \eta \tilde{p}_\eta) = 0. \] (1.2)

The two characteristics $\eta = \eta(\xi)$ are defined by

\[\frac{d\eta}{d\xi} = \frac{\xi \eta \pm \sqrt{\tilde{p}^2(\xi^2 + \eta^2 - \tilde{p}^2)}}{\xi^2 - \tilde{p}^2} \] (1.3)

when $\xi^2 + \eta^2 > \tilde{p}^2$. In the polar coordinates $(r, \theta) = (\sqrt{\xi^2 + \eta^2}, \arctan(\eta/\xi))$, the equation (1.2) becomes

\[(p^2 - r^2)p_{rr} + \frac{p^2}{r^2} p_{\theta\theta} + \frac{1}{r^2} p_r^2 + \frac{2r^2}{p} p_r^2 - 2rp_r = 0, \] (1.4)

where $p(r, \theta)$ is a simple notation of $\tilde{p}(r \cos \theta, r \sin \theta)$. Equation (1.4) is elliptic in the region of $r^2 - p^2 < 0$, and degenerates when $r + p = 0$. In particular, in the area of $r^2 - p^2 > 0$, it is hyperbolic, and two characteristics can be defined by

\[\frac{dr}{d\theta} = \pm \lambda^{-1} = \pm \sqrt{\frac{r^2(r^2 - p^2)}{p^2}}. \]

In the hyperbolic region, equation (1.4) can be decoupled to

\[\partial^+ \partial^- p = Q(\partial^+ p - \partial^- p) \partial^- p, \quad \partial^- \partial^+ p = Q(\partial^- p - \partial^+ p) \partial^+ p, \] (1.5)

where

\[Q := \frac{r^2}{2p(r^2 - p^2)}. \]
Figure 2. The semi-hyperbolic region ABC. Here (1) and (4) denote the constant states of $p = p_1$ and $p = p_4$, respectively, and $R_{14} = -\eta$ is a planar wave. Arc CD is an envelope with a sonic point D and the region of $OACD$ is a subsonic region. The region of CBD is a simple wave region where the positive characteristics are straight lines including the line BD. We are interested in the solutions in a curvilinear triangle ABC and the regularity of the sonic curve AC for the further research in the whole region of $OABD$.

blows up near $r = -p$. Here $\partial^\pm := \partial_\theta \pm \lambda^{-1} \partial_r$ are directional derivatives along positive and negative characteristics, respectively. Thus we have a new system

$$
\begin{pmatrix}
\partial^+ p \\
\partial^- p \\
p
\end{pmatrix}_\theta + \begin{pmatrix}
-\lambda^{-1} & 0 & 0 \\
0 & \lambda^{-1} & 0 \\
0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
\partial^+ p \\
\partial^- p \\
p
\end{pmatrix}_r = \begin{pmatrix}
Q(\partial^- p - \partial^+ p)\partial^+ p \\
Q(\partial^+ p - \partial^- p)\partial^- p \\
\frac{1}{2}(\partial^+ p + \partial^- p)
\end{pmatrix}.
$$

(1.6)

Using decompositions like (1.5), it was shown in [13, 20, 24] that the existence of solutions to (1.6) can be obtained in the hyperbolic region even if we cannot get the Riemann invariants. Letting

$$R := \partial^+ p, \quad S := \partial^- p,$$

we have

$$R_\theta - \lambda^{-1} R_r = Q(S - R)R, \quad S_\theta + \lambda^{-1} S_r = Q(R - S)S.$$
connects these two constant states in the domain \{\xi > 0, \eta > 0\}. Let the point \((0, -p_1)\) be \(A\), which is a sonic point satisfying \(\xi^2 + \eta^2 = p^2\). We draw a positive characteristic curve defined by (1.3) passing \(A\) in the planar wave, and intersecting the bottom boundary of the planar wave at \(B\). Next we draw a negative characteristic defined by (1.3) from \(B\) toward the subsonic region, and let \(C\) be the ending point of the negative characteristic on the sonic curve. Upon this configuration in Figure 2, if we assume that the negative characteristic \(BC\) is given, then the region \(ABC\) bounded by two characteristics \(AB\) and \(BC\) forms a semi-hyperbolic region, and \(AC\) is a sonic curve. Here, the curve \(BC\) serves as a spine to support the whole patch.

Let \(W := (R, S, p)\), and we also denote the arcs \(AB\) and \(BC\) by \(\Gamma^+_1\) and \(\Gamma^-_2\), respectively. For given boundary conditions on \(\Gamma^+_1\), the global existence and a priori \(C^1\) estimate of \(W\) in the domain \(ABC\) have been obtained in [13] as follows:

Theorem 1.1. (Global existence [13]). Assume that two constant states \((p_1, m_1, n_1)\) and \((p_4, m_4, n_4)\) are given with \(p_1 < p_4 < 0\) and a planar wave connects these two constant states in the domain \(\xi > 0\). For a given negative characteristic curve \(\Gamma_2\), there exists a classical solution \(W\) to the Goursat boundary value problem of (1.6) in the whole domain \(ABC\) with a Lipschitz continuous sonic boundary \(AC\) if \(p_4\) is close enough to \(p_1\). Furthermore, \(\partial^+ p\) and \(\partial^- p\) are strictly negative in \(ABC\) if the boundary data of \(\partial^+ p, \partial^- p\) on \(\Gamma^+_1\) are strictly negative, and \(\partial^+ p = \partial^- p\) on the sonic curve. And \(\partial^+ p, \partial^- p\) are uniformly bounded in the whole semi-hyperbolic region \(ABC\).

In this paper, we improve the results of Theorem 1.1 in the sense that the solutions in the semi-hyperbolic patches are uniformly smooth up to the sonic curve where the degeneracy of hyperbolicity occurs, and the sonic curve has better regularity. The smoothness of a sonic curve is so important for the global existence of solutions in the complicated region of \(OABD\) in Figure 2 for the future research. The main theorem is as follows.

Theorem 1.2. (Regularity) For the Goursat problem with prescribed characteristic boundaries \(\Gamma^+_1\) and \(\Gamma^-_2\), there exists a global uniformly smooth solution of (1.6) in the domain \(ABC\) under the same conditions as in Theorem 1.1. Moreover, the sonic line \(AC\) has \(C^1\)-regularity, and the two derivatives \(\partial^+ p\) and \(\partial^- p\) approach a common value on the sonic curve with a rate of \(O(\sqrt{r + p})\).

To overcome the difficulty of degeneracy, we will employ a new different coordinate system \((r, t)\) with \(t = \sqrt{r + p(r, \theta)}\) in Section 2. Under the new coordinates, we derive new systems for \((R, S)\). The proof of the main theorem is based heavily on the uniform bounds of \(t^3 R\) and \(t^3 S\), for any \(\delta \in (1, 2)\). In the following section, we will prove the above main theorem using the bootstrap method to get the uniform estimates as in [19, 27]. Especially upon the method of [27], we show that a global smooth solution in [13] is extended up to the sonic boundary by obtaining the convergence rate of \(\partial^+ p\) and \(\partial^- p\) near the sonic curve. With those estimates and the convergence rate, we are able to prove \(\partial^+ p\) and \(\partial^- p\) are uniformly continuous on the sonic curve, and furthermore, the sonic curve is \(C^1\).

For recent related progresses on the classical solution near the sonic lines for 2-D the pressure gradient system and the Euler system, we first would like to mention the work of T. Zhang and Y. Zheng [28]. In [28], for any given smooth curve as a sonic line with any specified non-tangential derivative of the speed of sound, they have constructed classical solutions from the sonic line towards the supersonic side.
by establishing a convergent iteration scheme. On the contrary, in [27] Q. Wang and Y. Zheng solved a Goursat problem and considered the regularity of solutions from the supersonic domain towards the sonic curve. They considered the problem from a different aspect but also hoped it can be used to build a transonic solution that bridges a semi-hyperbolic patch to an elliptic domain which boundary contains a transonic shock and a sonic curve. For the two-dimensional Euler system, M. Li and Y. Zheng [20] studied the semi-hyperbolic patches of solutions. In a forthcoming paper [23], we will consider the regularity of sonic curves for the Euler system.

2. Main results.

2.1. Derivation of new systems. We introduce the new coordinates \((r, t)\), where

\[
t = \sqrt{r + p(r, \theta)}
\]

and \(r\) is a radius-component in the polar coordinates. Then \(\{t = 0\}\) flattens the sonic boundary, and

\[
Q = \frac{-r^2}{2t^2(r - t^2)(2r - t^2)},
\]

\[
\lambda = \frac{rt\sqrt{2r - t^2}}{r - t^2}.
\]

We note that \(\lambda^{-1}\) goes to zero as \(t \to 0\).

The sonic line is defined by the limit of the following level curves \(\{(r, \theta) : r + p(r, \theta) = \varepsilon\}\). Let such level curves be \(\theta = \theta_\varepsilon(r)\). Then

\[
\theta_\varepsilon'(r) = -\frac{p_r + 1}{p_\theta}.
\]

Here, \(p_\theta\) is negative and bounded in the whole domain. However,

\[
p_r = \frac{R - S}{2\lambda^{-1}},
\]

where \(R - S\) and \(\lambda^{-1}\) vanish simultaneously as \(t \to 0\). It seems necessary to know the rate of vanishing of these two components, more precisely the vanishing rate of \(R - S\) with respect to \(t\), in order to know the regularity of the sonic line.

In the coordinate system \((r, t)\), we have

\[
\begin{align*}
R_r - \frac{2t\lambda^{-1}}{S - \lambda^{-1}}R_t &= \frac{2t}{S - \lambda^{-1}}Q(S - R)R, \\
S_t + \frac{2t\lambda^{-1}}{R + \lambda^{-1}}S_r &= \frac{2t}{R + \lambda^{-1}}Q(R - S)S.
\end{align*}
\]

(2.1)

Since \(\lambda^{-1}\) goes to zero as \(t \to 0\), we note that \(S - \lambda^{-1} \neq 0\) and \(R + \lambda^{-1} \neq 0\) in the \((r, t)\)-plane when \(t\) is sufficiently small. Letting

\[
\Lambda_+ := \frac{2t\lambda^{-1}}{R + \lambda^{-1}}, \quad \Lambda_- := -\frac{2t\lambda^{-1}}{S - \lambda^{-1}},
\]

we have

\[
\begin{align*}
\left(\frac{1}{R}\right)_t &= \frac{2t^2Q}{1 - S^{-1}\lambda^{-1}} \left(\frac{1}{S} - \frac{1}{R}\right) \frac{1}{t} + \frac{2t\lambda^{-1}S^{-1}}{1 - S^{-1}\lambda^{-1}} \left(\frac{1}{R}\right)_r, \\
\left(\frac{1}{S}\right)_t &= \frac{2t^2Q}{1 + R^{-1}\lambda^{-1}} \left(\frac{1}{R} - \frac{1}{S}\right) \frac{1}{t} - \frac{2t\lambda^{-1}R^{-1}}{1 + R^{-1}\lambda^{-1}} \left(\frac{1}{S}\right)_r.
\end{align*}
\]

Defining

\[
U := \frac{1}{R} + \frac{1}{S}, \quad V := \frac{1}{S} - \frac{1}{R},
\]

...
where $V = 0$ on the sonic line, we have

$$U_t = \frac{2tQUV\lambda^{-1}}{(1 - S^{-1}\lambda^{-1})(1 + R^{-1}\lambda^{-1})} + \frac{2t\lambda^{-1}S^{-1}}{1 - S^{-1}\lambda^{-1}} \left(\frac{1}{\lambda R} \right)_r - \frac{2t\lambda^{-1}R^{-1}}{1 + R^{-1}\lambda^{-1}} \left(\frac{1}{S} \right)_r,$$

and

$$V_t = \frac{2tQU(-2 + \lambda^{-1}V)}{(1 - S^{-1}\lambda^{-1})(1 + R^{-1}\lambda^{-1})} - \frac{2t\lambda^{-1}S^{-1}}{1 - S^{-1}\lambda^{-1}} \left(\frac{1}{\lambda R} \right)_r - \frac{2t\lambda^{-1}R^{-1}}{1 + R^{-1}\lambda^{-1}} \left(\frac{1}{S} \right)_r.$$

Furthermore, we define

$$G := \partial_+ R - \partial_- R, \quad H := \partial_+ S - \partial_- S,$$

where $\partial_{\pm} := \partial_t \pm \Lambda_{\pm} \partial_r$. Then

$$\partial_- G = \frac{\partial_- \Lambda_+ - \partial_+ \Lambda_-}{\Lambda_+ - \Lambda_-} G + (\partial_+ \partial_- R - \partial_- \partial_+ R),$$

$$\partial_+ H = \frac{\partial_- \Lambda_+ - \partial_+ \Lambda_-}{\Lambda_+ - \Lambda_-} H + (\partial_+ \partial_+ S - \partial_- \partial_- S).$$

Here,

$$\Lambda_+ - \Lambda_- = 2t\lambda^{-1} \frac{R + S}{(R + \lambda^{-1})(S - \lambda^{-1})},$$

and by direct calculations,

$$\frac{\partial_- \Lambda_+ - \partial_+ \Lambda_-}{\Lambda_+ - \Lambda_-} = \frac{2}{t} + h(r, t),$$

where

$$h(r, t) := \frac{t(3r - t^2)}{(r - t^2)(2r - t^2)} + \frac{r^3(3R - 3S + 4\lambda^{-1})}{(R + \lambda^{-1})(S - \lambda^{-1})(r - t^2)^2\sqrt{2r - t^2}}.$$

Note that $h \to 0$ as $t \to 0$. Furthermore,

$$\partial_+ \partial_- R - \partial_- \partial_+ R = (\Lambda_+ - \Lambda_-)(\partial_- R)_r := tf_1(r, t)R_r + tf_2(r, t)S_r + t^2 f_3(r, t),$$

(2.3)

where

$$f_1(r, t) := \frac{r^2(2R - S)}{(S - \lambda^{-1})(r - t^2)(2r - t^2)} E,$$

$$f_2(r, t) := \frac{-R}{S - \lambda^{-1}} \left(1 + \frac{R - S}{S - \lambda^{-1}} \right) \frac{r^2}{(r - t^2)(2r - t^2)} E,$$

$$f_3(r, t) := \frac{rR(R - S)}{(S - \lambda^{-1})(r - t^2)^2(2r - t^2)^{3/2}} \left(\frac{-3r^2t^2 + rt^4 + r^3}{(S - \lambda^{-1})(r - t^2)} - \frac{t(3r - 2t^2)}{\sqrt{2r - t^2}} \right) E,$$

and

$$E(r, t) := 2r \sqrt{\frac{2r - t^2}{r - t^2}} \left(\frac{1}{R + \lambda^{-1}} + \frac{1}{S - \lambda^{-1}} \right).$$

We note that functions E, f_j for $j = 1, 2, 3$ are all bounded in bounded regions. Also we can obtain by direct calculations that

$$\partial_+ \partial_+ S - \partial_- \partial_+ S := tg_1(r, t)R_r + tg_2(r, t)S_r + t^2 g_3(r, t),$$

(2.4)
where
\[
\begin{align*}
g_1(r,t) &:= \frac{-S}{R + \lambda^{-1}} \left(1 + \frac{S - R}{R + \lambda^{-1}}\right) \frac{r^2}{(r - t^2)(2r - t^2)} E, \\
g_2(r,t) &:= \frac{r^2(2S - R)}{(R + \lambda^{-1})(r - t^2)(2r - t^2)} E, \\
g_3(r,t) &:= \frac{rS(S - R)}{(R + \lambda^{-1})(r - t^2)(2r - t^2)^{3/2}} \left[\frac{3r^2t^2 - rt^4 - r^3}{(R + \lambda^{-1})(r - t^2)} - \frac{t(3r - 2t^2)}{\sqrt{2r - t^2}}\right] E.
\end{align*}
\]

We note that functions \(g_j\) for \(j = 1, 2, 3\) are all bounded in bounded regions, too.

2.2. Regularity of solutions near sonic curves. Since we are concerned with the regularity of semi-hyperbolic patches near the sonic line, for any fixed point \((\tau, 0)\) on the sonic line \(AC\), we shall take a new point \(B'(\tau, t_{B'})\), where \(t_{B'}\) is positive and small so that \(B'\) remains in the domain \(ABC\) (Figure 3). Then, through the point \(B'\) we can draw the positive and negative characteristic curves \(r_+(B')\) and \(r_-(B')\) until they intersect the sonic line \(AC\) at two points \(A'\) and \(C'\), respectively. Let us denote the region \(ABC\) by \(\Omega\) and \(A'B'C'\) by \(\mathcal{D}\).

Since \(R, S\) are uniformly bounded and negative in the domain \(\Omega\) and \(R = S\) on the sonic line, we can obtain \(h(r, t), f_j(r, t), g_j(r, t)\) for \(j = 1, 2, 3\) are also uniformly bounded in the small subdomain \(\mathcal{D}\). Let
\[
K_1 = \max_{(r, t) \in \mathcal{D}} \left\{ |h(r, t)|, |f_3(r, t)|, |g_3(r, t)| \right\},
\]
\[
K_2 = \max_{(r, t) \in \mathcal{D}} \left\{ |f_j(r, t)|, |g_j(r, t)|, j = 1, 2 \right\},
\]
and \(K_3 = \min_{(r, t) \in \mathcal{D}} |E|\). We can see that \(K_1\) tends to zero and \(K_2, K_3\) have positive bounds as \(t_{B'} \to 0^+\). If \(t_{B'} = 0\), the domain \(\mathcal{D}\) degenerates into a point on the sonic line, and two constants \(K_2\) and \(K_3\) satisfy that \(2K_2 = |E(\tau, 0)| = K_3\) with \(K_3 > 2K_2\delta^{-1}\) for any \(\delta \in (1, 2)\). Thus, we can let \(K_3 > 2\delta^{-1}K_2e^{2K_1t_{B'}}\) and \(K_1 < K_2\) by taking suitable small \(t_{B'}\).

Let \(\Omega(\tau, 0)\) denote a bounded domain surrounded by a positive characteristic and a negative characteristic starting from \((\tau, 0)\) and the characteristics \(B'C'\) and \(B'A'\). For any \((r, t) \in \Omega(\tau, 0)\), let \(a\) and \(b\) be intersections of the negative characteristic and the positive characteristic through \((r, t)\) with the boundaries \(B'C'\) and \(B'A'\), respectively. Let
\[
M_0 = \max \left\{ \max_{(r, t) \in \Omega(\tau, 0)} \frac{|H(t_a)|}{K_2t_a^{2-\delta}e^{K_1t_a}} + 1, \max_{(r, t) \in \Omega(\tau, 0)} \frac{|G(t_b)|}{K_2t_b^{2-\delta}e^{K_1t_b}} + 1 \right\},
\]
where \(t_a\) and \(t_b\) are \(t\)-coordinates of points \(a\) and \(b\), respectively. As discussed before, \(M_0\) is well-defined and uniform in the domain \(\Omega(\tau, 0)\), but depending on \(\delta\). We can prove the following result.

Lemma 2.1. For any \((r, t) \in \Omega(\tau, 0)\), and any \(\delta \in (1, 2)\), there hold
\[
|t^\delta R_r| \leq M, \quad |t^\delta S_r| \leq M,
\]
where \(M > 0\) is depending on \(\delta\). That is, \(t^\delta R_r\) and \(t^\delta S_r\) are uniformly bounded in the domain \(\Omega(\tau, 0)\).
Figure 3. The regions of $A'B'C'$ and $\Omega(\tau, 0)$

Proof. For a fixed $\varepsilon \in (0, t_{B'}^r)$, let

$$\Omega_\varepsilon := \{(r,t) | \varepsilon \leq t \leq t_{B'}^r, r_-(B') \leq r \leq r_+(B')\} \cap \Omega(\tau, 0).$$

Defining $M_\varepsilon = \max_{\Omega_\varepsilon} \{|t^\delta R_r|, |t^\delta S_r|\}$, we have

$$t_1^\delta |R_r| \leq M_\varepsilon, \quad t_1^\delta |S_r| \leq M_\varepsilon, \quad (2.8)$$

in Ω_ε with M_ε depending on ε. If for any $\varepsilon \in (0, t_{B'}^r)$, we have $M_\varepsilon \leq M_0$, then (2.8) hold in the whole domain $\Omega(\tau, 0)$. If not, then there exists $\varepsilon_0 \in (0, t_{B'}^r)$ making $M_{\varepsilon_0} > M_0$. So we let

$$M_{\varepsilon_0} = \max_{\Omega_{\varepsilon_0}} \{|t^\delta R_r|, |t^\delta S_r|\}.$$

For $(r_{\varepsilon_0}, \varepsilon_0) \in \Omega(\tau, 0)$, we denote the two characteristics passing through $(r_{\varepsilon_0}, \varepsilon_0)$ by r^a_+ and r^b_-, where a, b are the intersection points with $B'C'$ and $B'A'$ respectively. Here $a = a_{\varepsilon_0}$ and $b = b_{\varepsilon_0}$ are dependent on ε_0 and for convenience we omit the subscript ε_0. From the equation

$$\partial_- G = \frac{\partial_- \Lambda_+ - \partial_+ \Lambda_-}{\Lambda_+ - \Lambda_-} G + (\partial_+ \partial_- R - \partial_- \partial_- R),$$

we have

$$\partial_- \left(G(r, t) \exp \int_{t_b}^t -\left(\frac{2}{\tau} + h(r_-(\tau), \tau)\right) d\tau \right)$$

$$= (\partial_+ \partial_- R - \partial_- \partial_- R) \exp \int_{t_b}^t -\left(\frac{2}{\tau} + h(r_-(\tau), \tau)\right) d\tau.$$
Integrating this along the negative characteristic passing through \((r_0, \varepsilon_0)\), we get
\[
G(r, t) \left(\frac{t_b}{t} \right)^2 \exp \int_{t_b}^t \left(-h(r_-(\tau), \tau) \right) d\tau
\]
\[
= G(r, t_b) - \int_t^{t_b} (\partial_+ \partial_- R - \partial_+ \partial_- R) \left(\frac{t_b}{\tau} \right)^2 \exp \int_{t_b}^\tau \left(-h(r_- (s), s) ds \right) d\tau.
\]
Thus, from (2.3) and (2.5) we obtain
\[
|G(r, t)| \left(\frac{t_b}{t} \right)^2 \exp \int_{t_b}^t \left(-h(r_-(\tau), \tau) \right) d\tau
\]
\[
\leq |G(r, t_b)| + \int_{t_b}^t \left(\frac{t_b}{\tau} \right)^2 \exp(K_1(t_b - \tau)) |\partial_+ \partial_- R - \partial_+ \partial_- R| d\tau
\]
\[
\leq |G(r, t_b)| + t_b^2 e^{K_1 t_b} \int_{t}^{t_b} \frac{1}{\tau^2} \left(2 K_2 M_0 \tau^{1-\delta} + K_1 \tau^2 \right) d\tau
\]
\[
= |G(r, t_b)| + t_b^2 e^{K_1 t_b} \left[\frac{2 K_2 M_0}{\delta} (t^{2-\delta} - t_b^{2-\delta}) + K_1 (t_b - t) \right]
\]
\[
< \frac{2 K_2 M_0 t_b^2 e^{K_1 t_b}}{\delta t^\delta},
\]
if \(|G(r, t_b)| + K_1 (t_b - t) t_b^2 e^{K_1 t_b} - 2\delta^{-1} K_2 M_0 e^{K_1 t_b} t_b^{2-\delta} < 0\), which is true by the definition of \(M_0\) and the fact of \(M_\varepsilon > M_0\). Thus we obtain
\[
|G(r, t)| < t^{2-\delta} \frac{2 K_2 M_0 e^{K_1 t_b}}{\delta} \exp \int_{t_b}^t h(r_-(\tau), \tau) d\tau
\]
\[
\leq 2\delta^{-1} t^{2-\delta} K_2 M_\varepsilon e^{K_1 t_b}.
\]
On the other hand,
\[
G(r, t) = (\Lambda_+ - \Lambda_-) R_r = 2t \lambda^{-1} \left(\frac{1}{R + \lambda^{-1}} + \frac{1}{S - \lambda^{-1}} \right) R_r (r, t).
\]
Thus we obtain
\[
|R_r| (t = \varepsilon_0) < \frac{1}{t^\delta} \frac{K_2 M_0 e^{2 K_1 t_b}}{\delta} |\frac{1}{R + \lambda^{-1}} + \frac{1}{S - \lambda^{-1}}| \cdot \frac{r - t^2}{r \sqrt{2 \tau - t^2}}
\]
\[
\leq \frac{1}{t^\delta} \frac{2 K_2 M_0 e^{2 K_1 t_b}}{\delta K_3} \leq \frac{M_\varepsilon}{t^\delta}.
\]
So we have a strict inequality such that
\[
|R_r| < \frac{M_\varepsilon}{\varepsilon_0^\delta}
\]
on the line segment \(t = \varepsilon_0\). Similarly, integration of the equation
\[
\partial_+ H = \frac{\partial_- \Lambda_+ - \partial_+ \Lambda_-}{\Lambda_+ - \Lambda_-} H + (\partial_+ \partial_- S - \partial_+ \partial_- S)
\]
along the positive characteristic makes
\[
|H(r, t)| < t^{2-\delta} \frac{2 K_2 M_\varepsilon e^{2 K_1 t_b}}{\delta}.
\]
Also by the definition of \(H\), we get the following estimate
\[
|S_r|_{t = \varepsilon_0} < \frac{M_\varepsilon}{\varepsilon_0^\delta}.
\]
According to (2.9) and (2.10), \(|t^\delta R_t|\) and \(|t^\delta S_t|\) do not have the maximum values on the line segment \(t = \varepsilon_0\), that is, the maximum happens on \(\varepsilon_0 < t \leq t_{B'}\). Hence we conclude that this argument also holds in a larger domain \(\Omega_{\varepsilon'}\) with \(\varepsilon' < \varepsilon_0\). Repeating this process, we can extend the domain larger and larger until it reaches the whole domain \(\Omega(\tau, 0)\). Thus, we find a constant \(M\) depending on \(\delta\) only and satisfying (2.7). The proof is completed.

Next, for any \((\tau, 0) \in A'C'\), we can take a small open interval \((\tau - r_0, \tau + r_0) \subset A'C'\). Suppose the negative and positive characteristics passing through points \(P(\tau - r_0, 0)\) and \(Q(\tau + r_0, 0)\) intersect the boundaries \(B'C'\) and \(B'A'\) at \(P'\) and \(Q'\), respectively. Then we have the same estimates in the region of \(B'P'PQQ'\) in the following lemma. The proof of it is very similar to that of the previous lemma, so let us omit the proof.

Lemma 2.2. For any \(\delta \in (1, 2)\), there exists a constant \(M\) only depending on the interval \((\tau - r_0, \tau + r_0)\) and \(\delta\) such that

\[
|t^\delta R_t| \leq M, \quad |t^\delta S_t| \leq M
\]

hold in the domain \(B'P'PQQ'\).

Now we can show that \(|V(r, t)|/t\) is uniformly bounded in the whole domain.

Lemma 2.3. \(|V(r, t)|/t\) is uniformly bounded in the domain \(ABC\).

Proof. Let \((\tau, 0) \in AC\). From (2.2) we have

\[
V_t = \frac{2tQV(-2 + \lambda^{-1}V)}{(1 - S^{-1}\lambda^{-1})(1 + R^{-1}\lambda^{-1})} - \frac{2t\lambda^{-1}S^{-1}}{1 - S^{-1}\lambda^{-1}} \frac{1}{R} - \frac{1}{1 + R^{-1}\lambda^{-1}} \frac{1}{S} \cdot \frac{V}{r^2(2 - \lambda^{-1}V)}
\]

\[
= \frac{2\sqrt{2r - t^2}(1 - S^{-1}\lambda^{-1})(1 + R^{-1}\lambda^{-1})}{1 - S^{-1}\lambda^{-1}} \cdot t + t^2 - 2r \sqrt{2r - t^2} \frac{t^\delta R_t}{(r^2 - t^2)RS} - \frac{t^\delta S_t}{(1 - S^{-1}\lambda^{-1})R} + \frac{t^\delta S_t}{(1 + R^{-1}\lambda^{-1})S}
\]

\[
=: l_1(r, t)V_t + l_2(r, t)t^{2-\delta}.
\]

It is obvious that \(\lim_{t \to 0^+} l_1(r, t) = 1\), and \(l_2(r, t)\) is bounded in the domain \(D\). Moreover, we note that

\[
\frac{l_1(r, t) - 1}{t} = \frac{3rt^2 - t^4 + r^2\lambda^{-1}V - 3rt^2\lambda^{-1}V + \lambda^{-1}t^4V + (2r^2 - 3rt^2 + t^4)\lambda^{-2}R^{-1}S^{-1}}{t(1 - S^{-1}\lambda^{-1})(1 + R^{-1}\lambda^{-1})(r - t^2)(2r - t^2)}
\]

also tends to zero as \(t \to 0^+\) since \(V \to 0\) as \(t \to 0^+\). Let

\[
K_4 = \max_D \left| \frac{l_1(r, t) - 1}{t} \right|, \quad K_5 = \max_D |l_2(r, t)|.
\]

Now we rewrite (2.11) in the form of

\[
\partial_t \left(V \exp \left(\int_t^{t_{B'}} \frac{l_1(r, \tau)}{\tau} d\tau \right) \right) = l_2(r, t)t^{2-\delta} \exp \left(\int_t^{t_{B'}} \frac{l_1(r, \tau)}{\tau} d\tau \right),
\]

that is,

\[
\partial_t \left(\frac{V}{t} \exp \left(\int_t^{t_{B'}} \frac{l_1(r, \tau) - 1}{\tau} d\tau \right) \right) = l_2(r, t)t^{1-\delta} \exp \left(\int_t^{t_{B'}} \frac{l_1(r, \tau) - 1}{\tau} d\tau \right). \tag{2.12}
\]
Integration of the above equation from \(t \) to \(t_{B'} \) yields that
\[
\frac{V(t, r, t_{B'})}{t} - \frac{V(t, r, t)}{t} \exp \left(\int_{t}^{t_{B'}} \frac{l_1(r, \tau) - 1}{\tau} d\tau \right)
= \int_{t}^{t_{B'}} l_2(r, \tau) r^{1-\delta} \exp \left(\int_{\tau}^{t_{B'}} \frac{l_1(r, s) - 1}{s} ds \right) d\tau.
\]

Thus
\[
e^{-K_{t, t_{B'}}} \left| \frac{V(t, r, t)}{t} \right| \leq \left| \frac{V(t, r, t_{B'})}{t} + \int_{t}^{t_{B'}} |l_2(r, \tau) r^{1-\delta}| \exp \left(\int_{\tau}^{t_{B'}} \left| \frac{l_1(r, s) - 1}{s} \right| ds \right) d\tau \right|
\leq \left| \frac{V(t, r, t_{B'})}{t} \right| + e^{K_{t, t_{B'}}} \frac{K_5 t_{B'}^{2-\delta}}{2-\delta},
\]
that is,
\[
\left| \frac{V(t, r, t)}{t} \right| < e^{K_{t, t_{B'}}} \left\{ \max_{(r, t_{B'}) \in ABC} \left| \frac{V(t, r, t_{B'})}{t} \right| + e^{K_{t, t_{B'}}} \frac{K_5 t_{B'}^{2-\delta}}{2-\delta} \right\} := \widetilde{M}. \tag{2.13}
\]

Because of the arbitrariness of \(t \) and the continuity of \(V \), we obtain that \(|V(r, t)| \leq \widetilde{M} t \) holds for any \(t \in [0, t_{B'}] \).

Thus we see that the two derivatives \(\partial^+ p \) and \(\partial^- p \) approach a common value on the sonic curve with a rate of \(O(\sqrt{r+\overline{p}}) \). Furthermore, we have the following result.

Lemma 2.4. \(R, S, \) and \(V(r, t)/t \) is uniformly continuous in the domain \(ABC \) including the sonic line.

Proof. Let us choose two sonic points \(P_1(r_1, 0), P_2(r_2, 0) \in AC \). Then we draw a positive characteristic \(\gamma_+ \) passing through \(P_2 \) and a negative characteristic \(\gamma_- \) passing through \(P_1 \). Let \(Q(r_b, t_b) \in \Omega \) be an intersection point of \(\gamma_+ \) and \(\gamma_- \). We note that \(Q \) approaches a sonic point as \(|r_2 - r_1| \to 0 \). From (2.1), we see that
\[
\partial_- R = \frac{2t^2}{S - \lambda^{-1}} QR \cdot \frac{S - R}{t}, \quad \partial_+ S = \frac{2t^2}{R + \lambda^{-1}} QS \cdot \frac{R - S}{t}. \tag{2.14}
\]

Since \(V(r, t)/t \) is uniformly bounded, we have \(|\partial_- R|, |\partial_+ S| \leq L \) for some constant \(L \).

Now integrating the first equation of (2.14) along \(\gamma_- \) from \(P_1 \) to \(Q \) gives
\[
|R(r_b, t_b) - R(r_1, 0)| \leq \int_{0}^{t_b} \left| \frac{2t^2 QR}{S - \lambda^{-1}} \cdot \frac{S - R}{t} \right| dt \leq Lt_b.
\]

Similary the second equation of (2.14) along \(\gamma_+ \) from \(P_2 \) to \(Q \) gives
\[
|S(r_b, t_b) - S(r_2, 0)| \leq Lt_b.
\]

Moreover, since \(R = S \) on \(AC \) and \(R, S \) are continuous on \(\Omega \), \(R(r_j, 0) = S(r_j, 0) \) for \(j = 1, 2 \), and \(|R(r_b, t_b) - S(r_2, 0)| \to 0 \) as \(t_b \to 0 \). Then
\[
|\partial_- R(0, t_b) - R(r_2, 0)|
\leq |R(r_1, 0) - R(r_b, t_b)| + |S(r_2, 0) - S(r_b, t_b)| + |R(r_b, t_b) - S(r_b, t_b)|
\leq w(t_b),
\]
where \(w(t_b) := 2Lt_b + |R(r_b, t_b) - S(r_b, t_b)| \). Similarly, \(|S(r_1, 0) - S(r_2, 0)| \leq w(t_b) \). Since \(w(t_b) \to 0 \) as \(|r_2 - r_1| \to 0 \), which implies that \(R \) and \(S \) are both continuous on the sonic line \(AC \), we prove that \(R \) and \(S \) are both uniformly continuous in the whole domain \(ABC \).

Let \(\varepsilon > 0 \) be given and \(t_b \in (0, t_{B'}) \) with \(t_{B'} < 1 \) will be determined later. From (2.12), we have
\[
\partial_t \left(\frac{V}{t} \exp \left(\int_t^{t_b} \frac{l_1(r, \tau)}{\tau} d\tau \right) \right) = l_2(r, t) t^{1-\delta} \exp \left(\int_t^{t_b} \frac{l_1(r, \tau)}{\tau} d\tau \right),
\]
which yields
\[
\frac{V}{t}(r, t_b) - \frac{V}{t}(r, 0) = \int_0^{t_b} l_2(r, \tau) \tau^{1-\delta} \exp \left(\int_\tau^{t_b} \frac{l_1(r, s)}{s} ds \right) d\tau.
\]
Then
\[
\left| \frac{V}{t}(r, t_b) - \frac{V}{t}(r, 0) \right| \\
\leq \left| \frac{V}{t}(r, 0) \right| \left(\exp \int_0^{t_b} \left| \frac{1}{\tau} \right| d\tau - 1 \right) + \int_0^{t_b} \left| l_2(r, \tau) \right|^\alpha \exp \left(\int_\tau^{t_b} \frac{l_1(r, s)}{s} ds \right) d\tau
\]
\[
\leq 2MK_4 t_{b} + \frac{K_5 t_{b}^{2-\delta} e^{K_4 t_b}}{2-\delta}
\]
\[
\leq K_0 t_{b}^{2-\delta}
\]
for some constant \(K_0 \). Now we take sufficiently small \(t_{B'} \ll 1 \) so that \(K_0 t_{B'}^{2-\delta} < \varepsilon/4 \). For the fixed \(t_b \in (0, t_{B'}) \), since \(V/t \) is continuous inside \(\Omega \), we can take \(d > 0 \) such that, if \(|r_2 - r_1| \leq d \), then we have
\[
\left| \frac{V}{t}(r_1, t_b) - \frac{V}{t}(r_2, t_b) \right| < \varepsilon/4.
\]
Thus for any \(|r_1 - r_2| \leq d \), we have
\[
\left| \frac{V}{t}(r_1, 0) - \frac{V}{t}(r_2, 0) \right| \leq \left| \frac{V}{t}(r_1, 0) - \frac{V}{t}(r_1, t_b) \right| + \left| \frac{V}{t}(r_1, t_b) - \frac{V}{t}(r_2, t_b) \right| + \left| \frac{V}{t}(r_2, t_b) - \frac{V}{t}(r_2, 0) \right|
\]
\[
< 2K_0 t_{b}^{2-\delta} + \varepsilon/4 < \varepsilon.
\]
Therefore, \(V/t \) is uniformly continuous in the whole domain. \(\Box \)

Proof of Theorem 1.2. We consider the sonic curve as the limit of the level curves \(\theta = \theta_\varepsilon(r) \) in the \((r, \theta)\) plane:
\[
r + p(r, \theta) = \varepsilon.
\]
In the semi-hyperbolic regions, \(R, S \) are both strictly negative and uniformly bounded, and thus
\[
p_\theta = \frac{R + S}{2}
\]
is negative and bounded. Therefore, each \(\theta_\varepsilon'(r) = -(1 + p_r)/p_\theta \) is well defined. Next we have
\[
p_r = \frac{R - S}{2\lambda - t} = \frac{R - S}{t} \cdot \frac{r - t^2}{2r(r - t^2)}.
\]
According to Lemma 2.3, p_r is uniformly bounded. Therefore $|\theta'_{r}(r)|$ is also uniformly bounded in the whole domain, including the sonic line AC. Moreover, since p_r and p_θ are uniformly continuous in the whole domain, $\theta'_{r}(r)$ is uniformly continuous as well. Hence $\theta'(r)$ is continuous on the sonic line. That is, the sonic line is C^1 continuous.

Acknowledgments. Qin Wang’s research was supported in part by Chinese National Natural Science Foundation under grant 11401517, and Yunnan University Foundation 2013CG021. Kyungwoo Song’s research was supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education(NRF-2014R1A1A2057401).

REFERENCES

[1] M. Brio and J. K. Hunter, Mach reflection for the two-dimensional Burgers equation, Phys. D, 60 (1992), 194–207.
[2] S. Cani´ c and B. L. Keyfitz, An elliptic problem arising from the unsteady transonic small disturbance equation, J. Differential Equations, 125 (1996), 548–574.
[3] S. Cani´ c, B. L. Keyfitz and E. H. Kim, Free boundary problems for the unsteady transonic small disturbance equation: Transonic regular reflection, Methods Appl. Anal., 7 (2000), 313–335.
[4] S. Cani´ c, B. L. Keyfitz and E. H. Kim, Free boundary problems for nonlinear wave equations: Mach stems for interacting shocks, SIAM J. Math. Anal., 37 (2006), 1947–1977.
[5] G.-Q. Chen and M. Feldman, Multidimensional transonic shocks and free boundary problems for nonlinear equations of mixed type, J. Amer. Math. Soc., 16 (2003), 461–494.
[6] G.-Q. Chen and M. Feldman, Steady transonic shock and free boundary problems in infinite cylinders for the Euler equations, Comm. Pure Appl. Math., 57 (2004), 310–356.
[7] S. Chen and A. Qu, Two-dimensional Riemann problems for Chaplygin gas, SIAM J. Math. Anal., 44 (2012), 2146–2178.
[8] H. Cheng and H. Yang, Riemann problem for the relativistic Chaplygin Euler equations, J. Math. Anal. Appl., 381 (2011), 17–26.
[9] R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves, Interscience, New York, 1948.
[10] Z. Dai and T. Zhang, Existence of a global smooth solution for a degenerate Goursat problem of gas dynamics, Arch. Ration. Mech. Anal., 155 (2000), 277–298.
[11] V. Elling and T.-P. Liu, The ellipticity principle for steady and selfsimilar polytropic potential flow, J. Hyperbolic Differential Equations, 2 (2005), 909–917.
[12] J. Glimm, X. Ji, J. Li, X. Li, P. Zhang, T. Zhang and Y. Zheng, Transonic shock formation in a rarefaction Riemann problem for the 2-D compressible Euler equations, SIAM J. Appl. Math., 69 (2008), 720–742.
[13] Y. Hu and G. Wang, Semi-hyperbolic patches of solutions to the two-dimensional nonlinear wave system for Chaplygin gases, J. Differential Equations, 257 (2014), 1567–1590.
[14] E. H. Kim, An interaction of a rarefaction wave and a transonic shock for the self-similar two-dimensional nonlinear wave system, Comm. Partial Differential Equations, 37 (2012), 610–646.
[15] E. H. Kim, A global subsonic solution to an interacting transonic shock for the self-similar nonlinear wave equation, J. Differential Equations, 248 (2010), 2906–2930.
[16] E. H. Kim, Subsonic solutions for compressible transonic potential flows, J. Differential Equations, 233 (2007), 276–290.
[17] E. H. Kim and K. Song, Classical solutions for the pressure-gradient equations in non-smooth and non-convex domains, J. Math. Anal. Appl., 293 (2004), 541–550.
[18] G. Lai, W. C. Sheng and Y. Zheng, Simple waves and pressure delta waves for a Chaplygin gas in multi-dimensions, Discrete Contin. Dyn. Syst., 31 (2011), 489–523.
[19] Z. Lei and Y. Zheng, A complete global solution to the pressure gradient equation, J. Differential Equations, 236 (2007), 280–292.
[20] M. Li and Y. Zheng, Semi-hyperbolic patches of solutions to the two-dimensional Euler equations, Arch. Ration. Mech. Anal., 201 (2011), 1069–1096.
[21] D. Serre, Multidimensional shock interaction for a Chaplygin gas, Arch. Ration. Mech. Anal., 191 (2009), 539–577.
[22] K. Song, Semi-hyperbolic patches arising from a transonic shock in simple waves interaction, J. Korean Math. Soc., 50 (2013), 945–957.
[23] K. Song, Q. Wang and Y. Zheng, The regularity of semi-hyperbolic patches near sonic lines for the 2-D Euler system in gas dynamics, SIAM J. Math. Anal., 47 (2015), 2200–2219.
[24] K. Song and Y. Zheng, Semi-hyperbolic patches of the pressure gradient system, Disc. Cont. Dyna. Syst., Series A, 24 (2009), 1365–1380.
[25] A. M. Tesdall, R. Sanders and B. L. Keyfitz, The triple point paradox for the nonlinear wave system, SIAM J. Appl. Math., 67 (2006), 321–336.
[26] G. Wang, B. Chen and Y. Hu, The two-dimensional Riemann problem for Chaplygin gas dynamics with three constant states, J. Math. Anal. Appl., 393 (2012), 544–562.
[27] Q. Wang and Y. Zheng, The regularity of semi-hyperbolic patches at sonic lines for the pressure gradient equation in gas dynamics, Indiana Univ. Math. J., 63 (2014), 385–402.
[28] T. Zhang and Y. Zheng, Sonic-supersonic solutions for the steady Euler equations, Indiana Univ. Math. J., 63 (2014), 1785–1817.
[29] Y. Zheng, Existence of solutions to the transonic pressure gradient equations of the compressible Euler equations in elliptic regions, Comm. Partial Differential Equations, 22 (1997), 1849–1868.

Received November 2014; revised March 2015.
E-mail address: mathwq@ynu.edu.cn
E-mail address: kyusong@khu.ac.kr