No Difference in Effects of ‘PACE Steps to Success’ Palliative Care Program for Nursing Home Residents With and Without Dementia: A Pre-Planned Subgroup Analysis of the Seven-Country PACE Trial

Rose Miranda (rose.miranda@vub.be)
Vrije Universiteit Brussel

Tinne Smets
Vrije Universiteit Brussel

Nele Van Den Noortgate
University Hospital Ghent: Universitair Ziekenhuis Gent

Jenny T. van der Steen
Leiden University Medical Center: Leids Universitair Medisch Centrum

Luc Deliens
Vrije Universiteit Brussel

Sheila Payne
Lancaster University

Katarzyna Szczerbińska
Jagiellonian University: Uniwersytet Jagiellonski w Krakowie

Sophie Pautex
Hôpitaux Universitaires de Genève: Hopitaux Universitaires Geneve

Liesbeth Van Humbeeck
University Hospital Ghent: Universitair Ziekenhuis Gent

Giovanni Gambassi
Università Cattolica del Sacro Cuore: Universita Cattolica del Sacro Cuore

Marika Kylänen
National Institute for Health and Welfare: Terveyden ja hyvinvoinnin laitos

Lieve Van den Block
Vrije Universiteit Brussel

Research article

Keywords: Nursing home care, end of life care, bereavement, pain, communication, neurological conditions

DOI: https://doi.org/10.21203/rs.3.rs-112865/v1
Abstract

Background ‘PACE Steps to Success’ is a multicomponent training program aiming to integrate generalist and non-disease-specific palliative care in nursing homes. This program did not improve residents’ comfort in the last week of life, but it appeared to improve quality of care and dying in their last month of life. Because this program included only three dementia-specific elements, its effects might differ depending on the presence or stage of dementia. We aimed to investigate whether the program effects differ between residents with advanced, non-advanced, and no dementia.

Methods Pre-planned subgroup analysis of the PACE cluster-randomized controlled trial in 78 nursing homes in seven European countries. Participants included residents who died in the previous four months and had advanced (n=104 to 177), non-advanced (n=110 to 167) or no dementia (n=137 to 157). The nursing home staff or general practitioner assessed the presence of dementia; severity was determined using two highly-discriminatory staff-reported instruments. Using after-death questionnaires, staff assessed comfort in the last week of life (Comfort Assessment in Dying–End-of-Life in Dementia-scale; primary outcome) and quality of care and dying in the last month of life (Quality of Dying in Long-Term Care scale; secondary outcome).

Results We found no subgroup differences on comfort, comparing advanced versus without dementia (baseline-adjusted mean sub-group difference 2.1; p-value=0.177), non-advanced versus without dementia (2.7; p=0.092), and advanced versus non-advanced dementia (-0.6; p=0.698); or on quality of care and dying, comparing advanced and without dementia (-0.6; p=0.741), non-advanced and without dementia (-1.5; p=0.428), and advanced and non-advanced dementia (0.9; p=0.632).

Conclusions The lack of subgroup difference suggests that while the program did not improve comfort in dying residents with or without dementia, it appeared to equally improve quality of care and dying in the last month of life for residents with dementia (regardless of the stage) and those without dementia. A generalist and non-disease-specific palliative care program, such as PACE Steps to Success, is a useful starting point for future palliative care improvement in nursing homes, but to effectively improve residents’ comfort, this program needs further development.

Trial registration. ISRCTN, ISRCTN14741671. Registered 8 July 2015 – Retrospectively registered.

http://www.isrctn.com/ISRCTN14741671

Background

Between 14% and 29% of older people in many developed countries die in nursing homes.[1] However, the quality of dying and end-of-life care in this setting, even in countries with high levels of palliative care development, is sub-optimal.[2, 3] To contribute high-quality evidence to address this problem, we developed ‘PACE Steps to Success’, which is a multicomponent program aiming to integrate generalist and non-disease-specific palliative care into nursing homes in six steps using a train-the-trainer approach. Nursing home staff are trained to deliver high-quality palliative care to all residents, from advance care planning to care up to and beyond death.[4] We evaluated this program in a seven-country cluster-randomized controlled trial and found
that it did not improve the comfort of residents in the last week of life (primary outcome), but it appeared to improve quality of care and dying in the last month of life, although the latter was the secondary outcome.[5]

Because this program was designed for all residents and included only three dementia-specific elements,[4] we hypothesized that its effects might differ between those with and without dementia in favor of those with mild/moderate or no dementia compared with advanced dementia. People with dementia, especially those with advanced dementia, have wide-ranging physical, cognitive and behavioral impairments, which make their palliative care needs distinct from those without dementia.[6, 7] It is often assumed that for palliative care programs to be effective for people with dementia, they should specifically address the needs of this population.[7–9] Therefore, at the outset of the trial, we planned a subgroup analysis to test this hypothesis. [10] Understanding whether the program effects differ between people with and without dementia while taking dementia severity into account could inform future development of palliative care programs for nursing home residents, of whom between 60% and 83% die with dementia.[11] The present study aims to answer the research question: “Do the effects of the PACE Steps to Success program on comfort in the last week of life and quality of care and dying in the last month of life differ between residents with advanced, non-advanced and without dementia?”.

Methods

This is a pre-planned subgroup analysis of the PACE cluster randomized controlled trial (see data analyses plan submitted as an official deliverable to the European Commission in Additional file 1).[4, 5, 10] This cluster-RCT was conducted in 78 nursing homes in Belgium, England, Finland, Italy, the Netherlands, Poland and Switzerland to compare PACE Steps to Success with usual care (2015–2017). This trial was registered at http://www.isrctn.com on July 30, 2015 (ISRCTN14741671). Randomization was performed at the nursing home level as the program involved the training of nursing home staff. After baseline measurement, randomization was stratified by country and median number of beds in a 1:1 ratio. Randomization was blinded and performed by independent statisticians. Because of the nature of the study, blinding of treatment was not possible for researchers or participants. More details about the PACE cluster-RCT have been published elsewhere.[4, 5] We reported this study following the CONSORT guidelines for randomized trials.

Program description

PACE Steps to Success was implemented over the course of one year, including two months for preparation, six months training for nursing home staff in the six steps, and four months consolidation. All countries had one or more country trainers. Each nursing home assigned one to six staff members as PACE coordinators. After being trained by two experienced trainers, the country trainers trained and supported the PACE coordinators who were in turn responsible for training and supporting fellow staff. The six PACE Steps included: 1) advance care planning with residents and families; 2) assessment, care planning, and review of resident needs and problems; 3) coordination of care via monthly multidisciplinary palliative care review meetings; 4) high-quality palliative care with a focus on pain and depression; 5) care in the last days of life and 6) care after death.[4] The program included three dementia-specific elements: communication training in advanced dementia for the PACE coordinators, and two elements integrated into the training for all nursing
home staff which emphasized dementia as a terminal illness (as part of Step 2) and offered symptom control strategies for residents with and without dementia (in Step 4).[4, 5]

Participating nursing homes

From a list of nursing homes, those located in a predefined country-specific geographical location were approached randomly by telephone or e-mail to invite them to participate in the study and to evaluate eligibility criteria using a standardized checklist. Inclusion criteria were the provision of on-site nursing care and personal assistance with activities of daily living and off-site medical care by general practitioners (GPs), having at least 30 beds, 15 or more residents having died in or outside the nursing home in the previous year to obtain sufficient power, consent to participation from management in writing before randomization, and agreement to allocate approximately 0.5 days per week for staff to act as PACE coordinators. We excluded nursing homes that had pilot-tested the program materials or used detailed palliative care guidelines/planning tools, the Gold Standards Framework and InterRAI-PC.[4, 5]

Data collection and respondents

One contact person per nursing home identified all residents who had died in the previous four months. After-death structured questionnaires for each resident were sent to the staff member most involved in care (preferably a nurse), nursing home administrator and GP at baseline (month 0) and post-intervention (months 13 and 17). As sensitivity analyses showed no difference between program effects using the two post-intervention data, these combined post-intervention data were used in the primary analyses. In this subgroup analysis, we included residents for whom the presence and severity of dementia was determined, classified into three subgroups: advanced, non-advanced and without dementia. We deviated from our pre-planned subgroups (residents with and without dementia), so that we could better investigate the difference between residents with advanced and without dementia.

Measurements and outcomes

Nursing home staff and GP reported whether a resident “had dementia” or “was diagnosed with dementia”. Dementia was considered present if at least one indicated it was and not present when both indicated it was not or when one indicated this but the other neither returned the questionnaire nor answered the question. Dementia severity was determined using two highly-discriminatory staff-reported instruments, Cognitive Performance Scale (CPS) and Global Deterioration Scale (GDS); those with CPS scores of 5–6 and GDS stage 7 were classified as having advanced dementia, the others as non-advanced dementia. CPS classifies residents into six hierarchical cognitive performance categories, with higher scores indicating worse cognitive impairment.[12] GDS stage 7 indicates very severe cognitive and functional deterioration.[13]

Nursing home administrators reported a resident’s sex and age at time of death. Staff assessed functional status one month before death in terms of dependency level with eating, dressing and mobility using the Bedford Alzheimer Nursing Severity-Scale: categorized into ‘independent’, ‘needs assistance’, or ‘fully dependent’.[14]

Primary outcome was staff-reported comfort in the last week of life using the validated Comfort Assessment in Dying–End-of-Life in Dementia (CAD-EOLD) scale; see comprehensive description of outcomes in
Additional file 2.[15, 16] CAD-EOLD comprises four subscales: physical distress, dying symptoms, emotional distress and well-being. CAD-EOLD was found to have better psychometric properties and user-friendliness than other comfort measures in a mixed nursing home population, including residents with and without dementia.[17–19] Secondary outcome was staff-reported quality of care and dying in the last month of life measured using the validated Quality of Dying in Long Term Care (QOD-LTC) scale, comprising ‘personhood’, ‘preparatory tasks’ and ‘closure’ subscales.[20]

Statistical analyses

Linear mixed models were used to analyze continuous outcomes and account for the clustered nature of data, with staff, nursing home and country as random factors (only random intercepts) and group (intervention versus usual care), time (post-intervention combining data collected at months 13 and 17 versus baseline) and their interaction as fixed factors. We analyzed differential effects by calculating differences in mean change (post-intervention combining data collected at months 13 and 17 minus baseline) between the subgroups, both for the intervention and control groups (interaction group*time*dementia). For the differential effects, we present estimated differences (and 95% Confidence Intervals) in mean change between the subgroups. All hypothesis testing was two-sided. P-values and 95% Confidence Intervals were not adjusted for multiple testing. To address multiplicity concerns with Bonferroni correction, p-values should be compared against a 1% significance level to address multiplicity concerns examining dementia subgroups.[21] In individual subgroups, we presented estimated mean scores and mean differences between groups post-intervention. All analyses were on an intention-to-treat and a complete-case basis, assuming data were missing at random. All statistical analyses were conducted using SAS 9.4 software (©SAS Institute Inc., USA).

Results

Baseline data were collected on 551 residents, of whom 177 had advanced dementia, 126 had non-advanced dementia and 156 had no dementia (Fig. 1). Post-intervention data were collected on 558 in the control group, of whom 136 had advanced dementia, 167 had non-advanced dementia and 157 had no dementia. In the intervention group, data were collected on 426 residents, of whom 104 had advanced dementia, 110 had non-advanced dementia and 137 had no dementia.

At time of death, average age was between 82.5 and 87.5 years at baseline and between 84.0 and 86.9 years post-intervention (Table 1). They were predominantly female, with percentages ranging from 53.7–70.7% at baseline and from 56.1–67.7% post-intervention. Between 73.3% and 97.8% of residents with advanced dementia were ADL-(activities of daily living) dependent for eating, dressing and mobility. Among those with non-advanced and no dementia, between 42.4% and 71.4% were ADL-dependent for dressing and mobility, while between 19.1% and 32.8% were fully dependent for eating.
Table 1
Characteristics of residents by subgroups

TOTAL SAMPLE FOR THE SUBGROUP ANALYSIS	Baseline scores (T0)	Post-intervention (T1 + T2)		
	Control	Intervention	Control	Intervention
	N = 238	N = 221	N = 460	N = 351
Advanced dementia	(n = 99)	(n = 78)	(n = 136)	(n = 104)
Age at time of death, unadjusted mean (SD)	85.5 (7.3)	86.3 (8.6)	86.1 (8.0)	86.5 (8.3)
Gender, female, unadjusted frequency, n (%)	70 (70.7)	47 (60.3)	88 (64.7)	64 (61.5)
Eating dependency^a, n (%)				
- Independent	0 (0)	1 (1.3)	0 (0)	3 (2.9)
- Needs assistance	17 (17.3)	18 (23.4)	26 (19.1)	21 (20.4)
- Fully dependent	81 (82.7)	58 (73.3)	110 (80.9)	79 (76.7)
Dressing dependency^a, n (%)				
- Independent	0 (0)	0 (0)	0 (0)	0 (0)
- Needs assistance	6 (6.1)	4 (5.2)	3 (2.2)	7 (6.7)
- Fully dependent	92 (93.4)	73 (94.8)	133 (97.8)	97 (93.3)
Mobility dependency^a, n (%)				
- Independent	1 (1.0)	2 (2.6)	2 (1.5)	2 (1.9)
- Needs assistance	12 (12.4)	9 (11.7)	11 (8.3)	16 (15.5)
- Fully dependent	84 (86.6)	66 (85.7)	120 (90.2)	85 (82.5)
Non-advanced dementia	(n = 65)	(n = 61)	(n = 167)	(n = 110)
Age at time of death, unadjusted mean (SD)	87.1 (7.9)	87.5 (7.5)	85.7 (7.8)	86.9 (6.1)
Gender, female, unadjusted frequency, n (%)	47 (57.7)	36 (59.0)	113 (67.7)	73 (66.4)
Eating dependency^a, n (%)				

Abbreviations: SD = standard deviation; BANS-S = Bedford Alzheimer Nursing Severity-Scale.

^a Measured using BANS-S one month before death (range 7–28). Higher scores indicate greater severity. Unadjusted frequencies.

Missing cases – Advanced dementia, baseline: age = 3; gender = 4; BANS-S = 3 | post-intervention measurements: age = 6; gender = 3; BANS-S = 3). Non-advanced dementia, baseline: age = 6; gender = 5; BANS-S = 3 | post-intervention measurements: age = 6; gender = 6; BANS-S = 2). Without dementia, baseline: age = 3; gender = 4; BANS-S = 7 | post-intervention measurements: age = 12; gender = 8; BANS-S = 7.
TOTAL SAMPLE FOR THE SUBGROUP ANALYSIS

	Baseline scores (T0)	Post-intervention (T1 + T2)		
	Control	Intervention	Control	Intervention
	N = 238	N = 221	N = 460	N = 351
- Independent	6 (9.4)	13 (21.7)	33 (20.1)	28 (25.5)
- Needs assistance	37 (57.8)	30 (50.0)	97 (59.1)	61 (55.5)
- Fully dependent	21 (32.8)	17 (28.3)	34 (20.7)	21 (19.1)

Dressing dependency\(^a\), n (%)

	Control	Intervention	Control	Intervention
- Independent	1 (1.6)	3 (5.2)	8 (4.8)	6 (5.6)
- Needs assistance	17 (27.0)	19 (32.8)	58 (34.9)	41 (38.0)
- Fully dependent	45 (71.4)	36 (62.1)	100 (60.2)	61 (56.5)

Mobility dependency\(^a\), n (%)

	Control	Intervention	Control	Intervention
- Independent	13 (20.3)	6 (10.2)	29 (17.5)	14 (13.0)
- Needs assistance	18 (28.1)	28 (47.5)	57 (34.3)	39 (36.1)
- Fully dependent	33 (51.6)	25 (42.4)	80 (48.2)	55 (50.9)

Without dementia

	(n = 74)	(n = 82)	(n = 157)	(n = 137)
Age at time of death, unadjusted mean (SD)	82.5 (12.2)	83.2 (9.6)	84.0 (10.9)	84.2 (10.2)

| Gender, female, unadjusted frequency, n (%) | 50 (67.6) | 44 (53.7) | 88 (56.1) | 79 (57.7) |

Eating dependency\(^a\), n (%)

	Control	Intervention	Control	Intervention
- Independent	18 (25.0)	25 (31.6)	55 (35.5)	47 (35.6)
- Needs assistance	34 (47.2)	33 (41.8)	68 (43.9)	51 (38.6)
- Fully dependent	20 (27.8)	21 (26.6)	32 (20.6)	34 (25.8)

Dressing dependency\(^a\), n (%)

	Control	Intervention	Control	Intervention
- Independent	3 (4.2)	11 (13.8)	14 (9.0)	21 (6.1)

Abbreviations: SD = standard deviation; BANS-S = Bedford Alzheimer Nursing Severity-Scale.

\(^a\) Measured using BANS-S one month before death (range 7–28). Higher scores indicate greater severity. Unadjusted frequencies.

Missing cases – Advanced dementia, baseline: age = 3; gender = 4; BANS-S = 3 | post-intervention measurements: age = 6; gender = 3; BANS-S = 3). Non-advanced dementia, baseline: age = 6; gender = 5; BANS-S = 3 | post-intervention measurements: age = 6; gender = 6; BANS-S = 2). Without dementia, baseline: age = 3; gender = 4; BANS-S = 7 | post-intervention measurements: age = 12; gender = 8; BANS-S = 7.
TOTAL SAMPLE FOR THE SUBGROUP ANALYSIS

Mobility dependency	Baseline scores (T0)	Post-intervention (T1 + T2)		
	Control	Intervention	Control	Intervention
- Needs assistance	N = 238	N = 221	N = 460	N = 351
	25 (34.7)	25 (31.3)	63 (40.6)	103 (29.9)
- Fully dependent	44 (61.1)	44 (55.0)	78 (50.3)	220 (64.0)

Abbreviations: SD = standard deviation; BANS-S = Bedford Alzheimer Nursing Severity-Scale.

a Measured using BANS-S one month before death (range 7–28). Higher scores indicate greater severity. Unadjusted frequencies.

The program effects on comfort in the last week of life did not differ statistically between residents with advanced and without dementia (subgroup differences in baseline-adjusted mean differences 2.1; 95% CI -0.9–5.1; p = .177), those with non-advanced and without dementia (2.7; -0.4–5.9; p = .092), or those with advanced and non-advanced dementia (-0.6; -3.8–2.5; p = .698) (Table 2). The baseline-adjusted mean differences in comfort scores were −1.9 without dementia to 0.8 with non-advanced dementia (Table 3).
Table 2
Effects on comfort and quality of care and dying by subgroups

Comparison between the subgroups	Subgroup differences in baseline-adjusted mean difference (95% CI)	p-valuesc
COMFORT IN THE LAST WEEK OF LIFEa		
- Advanced dementia vs Without dementia	2.1 (-0.9-5.1)	0.177
- Non-advanced dementia vs Without dementia	2.7 (-0.4-5.9)	0.092
- Advanced dementia vs Non-advanced dementia	-0.6 (-3.8-2.5)	0.698
QUALITY OF CARE AND DYING IN THE LAST MONTH OF LIFEb		
- Advanced dementia vs Without dementia	-0.6 (-4.1-2.9)	0.741
- Non-advanced dementia vs Without dementia	-1.5 (-5.2-2.2)	0.428
- Advanced dementia vs Non-advanced dementia	0.9 (-2.8-4.6)	0.632

Abbreviations: CAD-EOLD = Comfort Assessment in Dying–End of Life in Dementia; QOD-LTC = Quality of Dying in Long Term Care; CI = confidence intervals.

All mean total scores and p-values are cluster-adjusted.

a Comfort in the last week of life was measured using CAD-EOLD scale (total scores range 14–42). Higher scores indicate better comfort.

b Quality of care and dying in the last month of life was measured using QOD-LTC scale (total scores range 11–55). Higher scores indicate better quality of care and dying.

c Subgroup differences in the estimated baseline-adjusted mean differences between intervention and control groups post-intervention (group x time x dementia interaction).
Table 3
Cluster-adjusted mean scores and differences by subgroups

Individual subgroups	Baseline scores (T0)	Post-intervention scores (T1 + T2)	Baseline-adjusted mean difference intervention versus control group post-intervention								
	Control	Intervention	Control	Intervention							
	Cases No.	Mean									
COMFORT IN THE LAST WEEK OF LIFE^a											
- Advanced dementia	n = 99	91	30.6	n = 78	74	30.8	131	30.3	97	30.7	0.2
- Non-advanced dementia	n = 65	60	30.0	n = 61	57	30.0	157	31.0	102	31.8	0.8
- Without dementia	n = 74	70	29.7	n = 82	75	30.6	146	31.3	128	30.2	-1.9
QUALITY OF CARE AND DYING IN THE LAST MONTH OF LIFE^b											
- Advanced dementia	n = 99	97	38.1	n = 78	75	37.1	135	38.0	103	40.6	3.6
- Non-advanced dementia	n = 65	65	38.4	n = 61	59	38.3	163	39.5	104	42.2	2.7
- Without dementia	n = 74	74	41.2	n = 82	78	39.3	152	39.8	133	42.2	4.2

Abbreviations: CAD-EOLD = Comfort Assessment in Dying – End of Life in Dementia; QOD-LTC = Quality of Dying in Long Term Care.

All mean differences between groups post-intervention are cluster and baseline adjusted.

^a Comfort in the last week of life was measured using CAD-EOLD scale (total scores range 14–42). Higher scores indicate better quality of dying.

^b Quality of care and dying in the last month of life was measured using QOD-LTC scale (total scores range 11–55). Higher scores indicate better quality of end-of-life care.

^c Total scores are averages per subscale multiplied by total number of items. Cases with missing data on more than 50% of items per subscale were excluded from the calculation of the total scale scores.

^d Post intervention measurements collected for residents at T1 (= month 13) and T2 (= month 17).
The program effects on quality of care and dying in the last month of life also did not differ statistically between advanced and no dementia (-0.6; -4.1–2.9; p = .741), non-advanced and no dementia (-1.5; -5.2–2.2; p = 0.428), or advanced and non-advanced dementia (0.9; -2.8–4.6; p = .632) (Table 2). The baseline-adjusted mean differences in quality of care and dying scores were 2.7 in non-advanced dementia to 4.2 in no dementia (Table 3).

Discussion

This subgroup analysis showed that the effects of PACE Steps to Success on comfort in the last week of life and on quality of care and dying in the last month of life did not differ between residents with advanced, non-advanced and no dementia.

Using a subgroup analysis of a large pragmatic cluster-RCT, this study offers insight on the effects of a generalist, non-disease-specific palliative care training program for nursing home residents with dementia (advanced and non-advanced) and without dementia.[22] We also included a large number of residents for whom the severity of dementia was determined using validated instruments. Further, following the formal rules for planning and analysis of subgroup analysis, this subgroup analysis was pre-planned and used statistical tests of interactions, which enhance the validity of study results.[21] Nonetheless, because power calculation was not conducted for this subgroup analysis, our study might not have detected potentially important but small subgroup difference in program effects. For instance, although we found a 2.7 CAD-EOLD score point difference between residents with non-advanced and no dementia, which is close to what we considered as a clinically-important effect (i.e. CAD-EOLD score of 3 points),[4, 5] the limited power might not have allowed us to detect such differences statistically. In addition, as the presence of dementia relied on the estimation of the staff or the GP, there might be some misclassifications, particularly among residents with difficult-to-observe mild dementia symptoms. Finally, since data were collected after death, there might also be some recall bias.[4, 5]

Contrary to our hypothesis, this study showed that the effects of the program did not differ between residents with advanced, non-advanced and no dementia. For the primary outcome – comfort in the last week of life – it did not achieve better outcomes for residents without dementia or with non-advanced dementia than for those with advanced dementia. Hence, as was clear from the primary trial analyses,[5] the stepwise training of nursing home staff over a one-year period was not sufficient to improve comfort in the final days of life, which might be related to the intervention itself, the quality of its implementation in several nursing homes, a possible mismatch between the intervention and the primary outcome, or a combination of these factors.[5, 23]

Regarding the secondary outcome, the PACE program appeared to improve quality of care and dying in the last month of life equally for those with dementia (regardless of the stage) and those without dementia. Although these findings need to be interpreted cautiously as this is a secondary outcome, they are remarkable, as this palliative care program only had a limited number of dementia-specific elements as part of the training.[4] However, the Quality of Dying in Long Term Care (QOD-LTC) scale individual items that differed between the intervention and control groups included ‘receiving affectionate touch’, ‘keeping clothes and body clean’, ‘residents appearing to be at peace’, ‘being prepared to die’, and ‘maintaining their sense of
humor'.[5] Such quality of care and dying topics are not directly related to the cognitive, functional or other specific problems in dying nursing home residents with dementia,[9, 24] which might explain why the effects did not differ between the subgroups.

Overall, our study implies that such a generalist and non-disease-specific palliative care program for nursing homes has the potential to improve quality of care and dying in the last month of life for both residents with and without dementia, though this finding requires further investigation and effects were only medium-sized.[5] Nevertheless, our study provides crucial insight for future developers of palliative care programs aiming to improve quality of life and dying of nursing home residents with and without dementia. A broad palliative care training program, such as PACE Steps to Success, can be a useful starting point for further improvement in palliative care in nursing homes. However, as in the primary trial analyses,[5] this subgroup analysis emphasizes that this program needs to be developed further for both residents with and without dementia, e.g. to effectively promote comfort in the last days of life, either in terms of its components or the implementation processes in practice.[25, 26] Especially for dementia, as end-of-life symptoms might be very specific compared with other diseases, a strong collaboration among experts in research and practice in palliative care and dementia seems important.[11, 26] Future research evaluating palliative care programs should take into account dementia as an important subgroup, as prevalence is high in all countries, and nursing home residents die at varying stages of dementia.[3]

Conclusion

This subgroup analysis showed that the effects of PACE Steps to Success did not differ between residents with advanced, non-advanced and no dementia. These findings suggest that this program did not improve comfort in the last week of life for residents with or without dementia, but it appeared to improve quality of care and dying in the last month of life equally for residents with dementia (regardless of the stage) and without dementia. A generalist and non-disease-specific palliative care training program, such as PACE Steps to Success, can be a useful starting point for future development of palliative care programs in nursing homes. However, PACE Steps to Success needs to be developed further, so that it can effectively improve the quality of life and dying of both residents with and without dementia, e.g. by integrating components to improve residents’ comfort at the end of life.

List Of Abbreviations

ADL Activities of Daily Living

BANS-S Bedford Alzheimer Nursing Severity-Scale

CAD-EOLD Comfort Assessment in Dying–End-of-Life in Dementia

CI Confidence interval

CPS Cognitive Performance Scale

QOD-LTC Quality of Dying in Long Term Care
GDS Global Deterioration Scale

GP General practitioners

RCT Randomized controlled trial

Declarations

Ethics approval and consent to participate

Ethics approval were obtained from the relevant ethics committees in all countries. Belgium: Commissie Medische Ethiek UZBrussel, 27/05/2015; England: NHS – NRES Committee North West-Haydock, 10/09/2015; Finland: Terveyden jahyvinvoinnin laitos, Institutet för hälsa och välfärd, 30/6/2015; Italy: Comitato Etico, Universita Cattolica del Sacro Cuore, 6/11/2017; Netherlands: Medisch Ethische Toetsingscommissie VUMedisch Centrum, 2/7/2015; Poland: Komisja Bioetyczna, Uniwersytetu Jagiellonskiego, 25/6/2015; Switzerland: Commission cantonale d’éthique de la recherche scientifique de Genève (CCER), 6/8/2015. In accordance with national laws and guidelines, each partner involved in data collection developed a protocol for researchers in case adverse events occur in a participating nursing home. No adverse events were reported by researchers during the trial. All respondents gave prior informed consent in writing. In Poland and the Netherlands, informed consent was not required, as the questionnaires were pseudonymized.

Consent for publication

Not applicable.

Availability of data and materials

The data that support the findings of this study are available upon request by e-mail to the project coordinator of PACE. The data can be accessed by researchers whose proposed use of the data for research purposes has been approved by the PACE consortium.

Competing interests

The authors declare that there is no conflict of interest.

Funding

This work was supported by Marie Curie Innovative Training Network (ITN) action, H2020-MSCA-ITN-2015 [grant agreement number 676265] and the Wetenschappelijk Fonds Willy Gepts of the UZ Brussel. The PACE project was supported by the European Union’s Seventh Framework Program FP7/ 2007e2013 under [grant agreement 603111] (PACE project Palliative Care for Older People). It has been co-funded by Polish Ministry of Science and Higher Education in the years 2014 to 2019 based on the decision no 3202/7PR/2014/2 (November 25, 2014) and by the Swiss Academy of Medical Sciences in the years 2015 to 2017. The
sponsors did not have any role in the study design, methods, subject recruitment, data collections, analysis and preparation of paper.

Authors’ contributions

RM, TS and LVDB made equal substantial contribution to conceptualising the design of the work. TS, NVDN, SP, KS, SP, LVH, GG and MK acquired the data. RM and TS conducted the data analyses. RM, TS, and LVDB drafted and revised the manuscript critically for important intellectual content. All authors made substantial contribution to interpreting the data and revising the manuscript critically; have given the final approval of the manuscript to be submitted for publication; and have participated sufficiently in the work to take responsibility for appropriate portions of the content.

Acknowledgements

We thank the Biostatistics Unit of Ghent University (Stefanie De Buyser, PhD) for advising the statistical analyses and the Department of Epidemiology and Biostatistics of the UMC Amsterdam, Vrije Universiteit (Dr MA Jonker, PhD) for performing the randomization. We also thank all participating nursing homes, participants, all country trainers, Jane Ruthven for language editing, and all PACE collaborators who are not in the author list.

*Other PACE collaborators not in the list: Yuliana Gatsolaeva, Lara Pivodic, Elisabeth Honinx, Marc Tanghe, Hein van Hout, Katherine Froggatt, Bregje Onwuteaka-Philipsen, H. Roeline W. Pasman, Ruth Piers, Ilona Baranska, Mariska Oosterveld-Vlug, Anne B. Wichmann, Yvonne Engels, Myrra Vernooij-Dassen, Jo Hockley, Suvi Leppäaho, Catherine Bassal, Federica Mammarella, Martina Mercuri, Paola Rossi, Ivan Segat, Agata Stodolska, Eddy Adang, Suvi Leppäaho, Paula Andreasen, Outi Kuitunen-Kaija, Teija Hammar, Rauha Heikkilä, Danni Collingridge Moore, Violetta Kijowska, Maud ten Koppel, Emilie Morgan de Paula, and the European Association for Palliative Care, European Forum For Primary Care, Age Platform Europe, and Alzheimer Europe.

References

1. Broad JB, Gott M, Kim H, et al. Where do people die? An international comparison of the percentage of deaths occurring in hospital and residential aged care settings in 45 populations, using published and available statistics. Int J Public Heal 2013;58:257–67.

2. Froggatt K, Edwards M, Morbey H, Payne S. Mapping palliative care systems in long term care facilities in Europe. PACE Work Package 1 and EAPC Taskforce Report. 2016.

3. Pivodic L, Smets T, Van den Noortgate N, Onwuteaka-Philipsen BD, et al. Quality of dying and quality of end-of-life care of nursing home residents in six countries: An epidemiological study. Palliat Med 2018;32(10):1584–95.

4. Smets T, Onwuteaka-Philipsen BBD, Miranda R, et al. Integrating palliative care in long-term care facilities across Europe (PACE): Protocol of a cluster randomized controlled trial of the “PACE Steps to Success” intervention in seven countries. BMC Palliat Care 2018;17(1):1–11.
5. Van den Block L, Honinx E, Pivodic L, et al. Evaluation of a Palliative Care Program for Nursing Homes in 7 Countries The PACE Cluster-Randomized Clinical Trial. JAMA Intern Med 2020;180(2):233–42.

6. Mitchell SL, Teno JM, Kiely DK, et al. The Clinical Course of Advanced Dementia. N Engl J Med 2009;361(16):1529–38.

7. Mitchell SL. Advanced dementia. N Engl J Med 2015;372(26):2533–40.

8. Goodman C, Evans C, Wilcock J, et al. End of life care for community dwelling older people with dementia: An integrated review. Int J Geriatr Psychiatry 2010;25(4):329–37.

9. Mitchell SL, Kiely DK, Hamel MB. Dying With Advanced Dementia in the Nursing Home. Arch Intern Med 2004;164(3):321-6

10. PACE consortium. PACE: cluster randomised controlled trial on ‘PACE Steps to Success” palliative care program in Long Term Care Facilities in Europe (ISRCTN14741671). 2015 [cited 2020 May 8]. Available from: https://www.isrctn.com/ISRCTN14741671?q=ISRCTN14741671&filters=&sort=&offset=1&totalResults=1&page=1&pageSize=10&searchType=basic-search

11. Honinx E, Dop N Van, Smets T, et al. Dying in long-term care facilities in Europe: the PACE epidemiological study of deceased residents in six countries. BMC Public Health 2019;19:1199.

12. Morris JN, Fries BE, Mehr DR, et al. MDS cognitive performance scale. Journals Gerontol 1994;49(4):M174–82.

13. Reisberg B, Ferris SH, de Leon MJ, Crook T. The Global Deterioration Scale for assessment of primary degenerative dementia. Am J Psychiatry 1982;139(9):1136–9.

14. Volicer L, Hurley AC, Lathi DC, Kowall NW. Measurement of severity in advanced Alzheimer's disease. Journals Gerontol 1994;49(5):223–6.

15. Kiely DK, Volicer L, Teno J, Jones RN. The validity and reliability of scales for the evaluation of end-of-life care in advanced dementia. Alzheimer Dis Assoc Disord 2006;20(3):176–81.

16. Volicer L, Hurley AC, Blasi Z V. Scales for Evaluation of End-of-Life Care in Dementia. Alzheimer Dis Assoc Disord 2001;15(4):194–200.

17. Zimmerman S, Lauren C, van der Steen JT, et al. Measuring end-of-life care and outcomes in residential care/assisted living and nursing homes. J Pain Symptom Manage. 2015;49:666-679.

18. van Soest-Poortvliet MC, van der Steen JT, Zimmerman S, et al. Selecting the best instruments to measure quality of end-of-life care and quality of dying in long term care. J Am Med Dir Assoc 2013;14(3):179–86.

19. van Soest-Poortvliet MC, van der Steen JT, Zimmerman S, et al. Psychometric properties of instruments to measure the quality of end-of-life care and dying for long-term care residents with dementia. Qual Life Res 2012;21:671–84.

20. Munn JC, Zimmerman S, Hanson LC, et al. Measuring the Quality of Dying in Long-Term Care. N Engl J Med 2007;55(9):1371–9.

21. Wang R, Lagakos SW, Ph D, et al. Statistics in Medicine — Reporting of Subgroup Analyses in Clinical Trials. N Engl J Med 2007;357(21):2189–94.
22. Murphy E, Froggatt K, Connolly S, et al. Palliative care interventions in advanced dementia. Cochrane database Syst Rev 2016;12:CD011513.

23. Oosterveld-Vlug M, Onwuteaka-Philipsen BBD, ten Koppel M, et al. Evaluating the implementation of the PACE Steps to Success Program in long-term care facilities in seven countries according to the REAIM framework. Implement Sci 2019;14:107.

24. Lunney JR, Lynn J, Foley DJ, Lipson S. Patterns of Functional Decline at the End of Life. JAMA 2003;289(18):2387–92.

25. Collingridge Moore D, Payne S, Van den Block L, Ling J, Froggatt K. Strategies for the implementation of palliative care education and organizational interventions in long-term care facilities: A scoping review. Palliat Med 2020;34(5):558-570.

26. Froggatt KA, Collingridge D, Van den Block L, Ling J, Payne SA. Palliative Care Implementation in Long-Term Care Facilities: European Association for Palliative Care White Paper. J Am Med Dir Assoc 2020;1051-1057.