POISSON LIMIT FOR ASSOCIATED RANDOM FIELDS

YURI BAKHTIN

Abstract. We prove that under an easily verifiable set of conditions a sequence of associated random fields converges under rescaling to the Poisson Point Process and give a couple of examples.

1. Introduction and Main result

In this note we prove a Poisson scaling limit for a sequence of associated random fields. Let us recall that a finite family (vector) \((X_1, \ldots, X_m)\) of random variables (r.v.’s) is called associated if for every pair of bounded and coordinatewise nondecreasing functions \(f, g : \mathbb{R}^m \to \mathbb{R}\),

\[\text{cov}(f(X_1, \ldots, X_m), g(X_1, \ldots, X_m)) \geq 0. \]

An infinite family of r.v.’s is called associated if its every finite subfamily is associated.

The notion of association was introduced and studied in [4]. Inequalities (1) with their equivalents have been often referred to as FKG inequalities by the initials of authors of [5] who studied this type of positive correlation independently.

Associated r.v.’s arise frequently in various problems of statistical mechanics and many other areas, see numerous examples, a historic overview, theory and applications in a recent monograph [1].

Basic properties of associated random vectors: jointly independent r.v’s form an associated family; monotone transformations of associated random vectors are associated, too.

A number of limit theorems for sums of associated r.v.’s have been proved, see [1] and references therein. To the best of our knowledge, no theorem on convergence to a Poisson Point Process has appeared in the literature, although some results on Poisson approximations for systems satisfying FKG inequalities can be found in [2] and references therein.

We proceed to describe the setting. We fix a dimension \(d \in \mathbb{N}\), and for each \(n \in \mathbb{N}\), let \((X_j^{(n)})_{j \in \mathbb{Z}^d}\) be a weakly stationary (i.e. in the sense of first moment and covariance) associated random field. We assume that for all \(n, j\), r.v. \(X_j^{(n)}\) takes two values, 0 and 1, and there is a number \(\lambda > 0\) such that

\[p_n = \frac{\lambda + o(1)}{n^d}, \]

where \(p_n = P\{X_0^{(n)} = 1\}\).
We also assume that
\[
\lim_{n \to \infty} n^d \sigma(n) = 0,
\]
where
\[
\sigma(n) = \sum_{j \neq 0} \text{cov}(X_0^{(n)}, X_j^{(n)}).
\]

For any \(n\) we define a random measure \(\mu_n\) on \(\mathbb{R}^d\) via
\[
\mu_n(A) = \sum_{j \in \mathbb{Z}^d \cap nA} X_j^{(n)},
\]
where \(nA = \{nx : x \in A\}\).

The vague topology on locally bounded Borel measures is defined by its base, the class of finite intersections of sets of the form \(\{\nu : s < \int_{\mathbb{R}^d} f \, d\nu < t\}\) with arbitrary nonnegative continuous function \(f\) with bounded support and \(s, t \in \mathbb{R}\), see \cite{8} Appendix 7.

Theorem 1. Under the conditions stated above, the sequence of measures \(\mu_n\) converges in distribution in the vague topology to the Poisson measure \(\mu\) with parameter \(\lambda\).

Proof. By \cite{8} Theorem 4.2, it is sufficient to check that for every continuous nonnegative function \(f\) with compact support,
\[
\int_{\mathbb{R}^d} f \, d\mu_n \xrightarrow{\text{Law}} \int_{\mathbb{R}^d} f \, d\mu, \quad \text{as } n \to \infty.
\]

Take a continuous function \(f\) with compact support and a number \(t \in \mathbb{R}\), and find
\[
\mathbb{E} e^{it \int f \, d\mu_n} = \mathbb{E} e^{it \sum_{j \in \mathbb{Z}^d} f(\frac{j}{n}) X_j^{(n)}}
\]
\[
= \prod_{j \in \mathbb{Z}^d} \mathbb{E} e^{it f(\frac{j}{n}) X_j^{(n)}} + \mathbb{E} e^{it \sum_{j \in \mathbb{Z}^d} f(\frac{j}{n}) X_j^{(n)}} - \prod_{j \in \mathbb{Z}^d} \mathbb{E} e^{it f(\frac{j}{n}) X_j^{(n)}}
\]
\[
= I_1(n) + I_2(n).
\]

Notice that, in fact, the product in \(I_1(n)\) involves finitely many factors, and
\[
I_1(n) = \prod_{j \in \mathbb{Z}^d} \left(1 + p_n(e^{it f(\frac{j}{n})} - 1)\right).
\]

Choosing the main branch of the natural logarithm \(\ln\), we can write
\[
I_1(n) = \exp \left\{ \sum_{j \in \mathbb{Z}^d} \ln(1 + p_n(e^{it f(\frac{j}{n})} - 1)) \right\}.
\]
Using the boundedness of f and the Taylor expansion for the logarithm we derive that

$$I_1(n) = \exp \left\{ \frac{\lambda + o(1)}{n^d} \sum_{j \in \mathbb{Z}^d} (e^{itf(\frac{j}{n})} - 1) \right\} (1 + o(1)).$$

Obviously, the r.h.s converges to

$$\phi(t) = \exp \left\{ \lambda \int_{\mathbb{R}^d} (e^{itf(x)} - 1) dx \right\},$$

the characteristic function of $\int_{\mathbb{R}^d} f d\mu$, and the proof will be finished as soon as we show that

$$\lim_{n \to \infty} I_2(n) = 0.$$

To estimate $I_2(n)$ we need Newman’s inequality:

Theorem 2 ([9]). If (Y_1, \ldots, Y_m) is a family of associated r.v.’s with finite second moment then

$$\left| E e^{i \sum_{j=1}^m r_j Y_j} - \prod_{j=1}^m E e^{i r_j Y_j} \right| \leq \frac{1}{2} \sum_{j_1 \neq j_2} |r_{j_1} r_{j_2}| \text{cov}(Y_{j_1}, Y_{j_2}),$$

for any real numbers r_1, \ldots, r_m.

Applying this inequality to $I_2(n)$ we see that

$$I_2(n) \leq \frac{t^2 \|f\|^2_{L^\infty} K n^d}{2} \sum_{j_1, j_2 \in \mathbb{Z}^d \cap n \text{supp}(f)} \text{cov}(X_{j_1}^{(n)}, X_{j_2}^{(n)}),$$

where $\text{supp}(f)$ denotes the support of f, and $| \cdot |$ denotes the number of elements. Since $|\mathbb{Z}^d \cap n \text{supp}(f)| \leq Kn^d$ for some constant $K > 0$ and all $n > 0$, (3) follows from (2).

Remark 1. The crucial step in the proof above is the application of Newman’s inequality for associated random variables. Covariance inequalities of this type can be obtained for a wide class of dependent r.v.’s. In particular the theorem is also applicable if one replaces association by quasi-association, see [2] and proof of Theorem 2 in [9].

2. Examples

Let G be a finite subset of \mathbb{Z}^d for some $d \in \mathbb{N}$. Denote $m = |G|$ and for each n consider an i.i.d. family $(Y_k^{(n)})_{k \in \mathbb{Z}^d}$ of Bernoulli random variables with

$$P\{Y_0^{(n)} = x\} = \begin{cases} q_n, & x = 1, \\ 1 - q_n, & x = 0, \end{cases}$$

for each $x = 0, 1$.

where

\[q_n = \frac{1}{n^{d/m}}. \]

For any finite subset \(H \) of \(\mathbb{Z}^d \) and every \(n \), we denote

\[\chi^{(n)}_H = \prod_{j \in H} Y^{(n)}_j = 1_{\{Y^{(n)}_j = 1, j \in H\}}, \]

and define a random field \((X^{(n)}_k)_{k \in \mathbb{Z}^d}\) via

\[X^{(n)}_k = \chi^{(n)}_{k+G}, \]

where \(k + G = \{k + j : j \in G\} \). Poisson approximations for a similar model with rectangular \(G \) was considered in [6].

Let us verify that \(X^{(n)} \) satisfies the conditions of Theorem 1. Random field \(Y^{(n)} \) is associated since it is composed of independent components. Therefore, \(X^{(n)} \) is associated being a monotone transform of the associated field \(Y^{(n)} \). It is also stationary due to stationarity of \(Y^{(n)} \).

For each \(n \), \(X^{(n)}_0 \) is a Bernoulli r.v. with

\[P\{X^{(n)}_0 = 1\} = P\{Y^{(n)}_j = 1, j \in G\} = \left(\frac{1}{n^{d/m}}\right)^m = \frac{1}{n^d}. \]

Let us now estimate \(\sigma(n) \). Notice that \(\text{cov}(X^{(n)}_0, X^{(n)}_j) = 0 \) for sufficiently large values of \(|j| \), so that there is a number \(M \) such that for all \(n \),

\[\sigma(n) \leq M \max_{j \neq 0} \text{cov}(X^{(n)}_0, X^{(n)}_j). \]

(4)

Notice that

\[\text{cov}(X^{(n)}_0, X^{(n)}_j) = \text{E}X^{(n)}_{G \cup (j+G)} - \text{E}X^{(n)}_G \text{E}X^{(n)}_{j+G}. \]

Since a finite set cannot be invariant under a translation, \(|G \cup (j+G)| \geq m+1 \) for any \(j \). Therefore,

\[\text{cov}(X^{(n)}_0, X^{(n)}_j) \leq \frac{1}{n^{d(m+1)/m}} = o(1/n^d), \]

which, together with (4), implies (2), so that all the conditions of Theorem 1 are satisfied.

For an associated random field \(X^{(n)} \), condition (2) means that \(X^{(n)}_0 \) is asymptotically independent of the rest of the random field. There is a variety of situations that can happen if this condition is replaced with weaker restrictions on dependence. The next example illustrates the convergence to a compound Poisson point process (with nonrandom mass 2 assigned to each atom), see [3] for the definition and properties of compound Poisson point processes.

Consider \(d = 1 \), and for every \(n \) and all \(k \in \mathbb{Z} \),

\[X^{(n)}_k = Y^{(n)}_k \vee Y^{(n)}_{k+1} = Y^{(n)}_k + Y^{(n)}_{k+1} - Y^{(n)}_k Y^{(n)}_{k+1}, \]
where $Y^{(n)}$ is a sequence of i.i.d. Bernoulli r.v.’s with $P\{Y_0^{(n)} = 1\} = 1/n$. Then, as an easy computation shows, $\sigma(n) \sim 1/n$ so that (2) is violated. One can also show that the sequence of random measures μ_n converges in distribution to 2μ, where μ is the Poisson process with unit intensity, so that the conclusion of Theorem 1 is violated as well. Indeed, take a continuous function f with compact support, and write

$$E e^{it \int_R f d\mu_n} = E e^{it \sum_{j \in \mathbb{Z}} f\left(\frac{j}{n}\right) (Y_j^{(n)} + Y_{j+1}^{(n)}) - it \sum_{j \in \mathbb{Z}} f\left(\frac{j}{n}\right) Y_j^{(n)} Y_{j+1}^{(n)}}.$$

Notice that

$$\sum_{j \in \mathbb{Z}} f\left(\frac{j}{n}\right) Y_j^{(n)} Y_{j+1}^{(n)} \overset{P}{\to} 0, \quad n \to \infty,$$

due to the Markov inequality, since the expectation of l.h.s. is $O(1/n)$. Therefore, we see that

$$\lim_{n \to \infty} E e^{it \int_R f d\mu_n} = \lim_{n \to \infty} E e^{it \sum_{j \in \mathbb{Z}} f\left(\frac{j}{n}\right) + f\left(\frac{j-1}{n}\right)} Y_j^{(n)}$$

$$= \exp \left\{ \int_R (e^{it2f(x)} - 1) dx \right\},$$

by the same argument we used to analyze $I_1(n)$.

REFERENCES

[1] Alexander Bulinski and Alexey Shashkin. Limit theorems for associated random fields and related systems. Advanced Series on Statistical Science & Applied Probability, 10. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2007.

[2] Alexander Bulinski and Charles Suquet. Normal approximation for quasi-associated random fields. Statist. Probab. Lett., 54(2):215–226, 2001.

[3] D. J. Daley and D. Vere-Jones. An introduction to the theory of point processes. Springer Series in Statistics. Springer-Verlag, New York, 1988.

[4] J. D. Esary, F. Proschan, and D. W. Walkup. Association of random variables, with applications. Ann. Math. Statist., 38:1466–1474, 1967.

[5] C. M. Fortuin, P. W. Kasteleyn, and J. Ginibre. Correlation inequalities on some partially ordered sets. Comm. Math. Phys., 22:89–103, 1971.

[6] James C. Fu and Markos V. Kountras. Poisson approximations for 2-dimensional patterns. Ann. Inst. Statist. Math., 46(1):179–192, 1994.

[7] A. Ganesh, B. M. Hambly, Neil O’Connell, Dudley Stark, and P. J. Upton. Poissonian behavior of Ising spin systems in an external field. J. Statist. Phys., 99(1-2):613–626, 2000.

[8] Olav Kallenberg. Random measures. Akademie-Verlag, Berlin, 1976.

[9] C. M. Newman. Normal fluctuations and the FKG inequalities. Comm. Math. Phys., 74(2):119–128, 1980.