Synthesis and antibacterial activity of new 1,2,3-triazolylmethyl-2H-1,4-benzothiazin-3(4H)-one derivatives

Mohamed Ellouz1*, Nada Kheira Sebbar1,7, Ismail Fichtali2, Younes Ouzidan2, Zakaria Mennane3, Reda Charof3, Joel T. Mague4, Martine Urrutigoïty5,6 and El Mokhtar Essassi1,8

Abstract

Background: A novel series of 1,2,3-triazole derivatives containing 1,4-benzothiazin-3-one ring (7a–9a, 7b–9b), (10a–12a, 10b–12b) and (13–15) were synthesized by 1,3-dipolar cycloaddition reactions of azides α-α-d-galactopyranoside azide F, 2,3,4,6-tetra-O-acetyl-(d)-glucopyranosyl azide G and methyl-N-benzoyl-α-azidoglycinate H with compounds 4–6.

Findings: Initially, the reactions were conducted under thermal conditions in ethanol. The reaction leads, each time, to the formation of two regioisomers: (Schemes 2, 3) with yields of 17 to 21% for 1,5-disubstituted 1,2,3-triazole-regioisomers (7b–12b) and yields ranging from 61 to 65% for the 1,4-disubstituted regioisomers (7a–12a). In order to report an unequivocal synthesis of the 1,4-regioisomers and confirm the structures of the two regioisomers obtained in thermal conditions (Huisgen reactions), the method click chemistry (Copper-Catalyzed Azide-Alkyne Cycloaddition) has been used.

Conclusions: The newly synthesized compounds using cycloaddition reactions were evaluated in vitro for their antibacterial activities against some Gram positive and Gram negative microbial strains. Among the compounds tested, the compound 8a showed excellent antibacterial activities against PA ATCC and Acin ESBL (MIC = 31.2 μg/ml).

Keywords: 1,2,3-Triazole, 1,4-Benzothiazine, Antimicrobial activity, Cycloaddition, Spectroscopic methods

Introduction

Compounds containing 1,4-benzothiazine backbone have been studied extensively both in academic and industrial laboratories. These molecules exhibit a wide range of biological applications indicating that 1,4-benzothiazine moiety is a template potentially useful in medicinal chemistry research and therapeutic applications such as anti-inflammatory [1, 2], antipyretic [3], anti-microbial [4–7], anti-viral [8], herbicide [9], anti-cancer [10–13], and anti-oxidant [14] areas. They have also been reported as precursors for the synthesis of compounds [15] possessing anti-diabetic [16] and anti-corrosion activities [17, 18]. Figure 1 gives some examples of bioactive molecules with 1,4-benzothiazine moieties.

In order to prepare new heterocyclic systems with biological applications, we report in the present work 1,3-dipolar cycloaddition reactions [19–21] between 4-propargyl-2-(substituted)-1,4-benzothiazin-3-ones 4–6 as dipolarophiles and α-α-d-galactopyranoside azide F or 2,3,4,6-tetra-O-acetyl-(p)-glucopyranosyl azide G or methyl-N-benzoyl-α-azidoglycinate H as dipoles. It is worthy to note that the integration of two or more active heterocyclic rings in the same molecule may lead to new hybrid with broad biological activities.

As a continuation of our previous works related to the synthesis of new heterocyclic systems with potent pharmacological properties we describe a novel 1,2,3-triazol-α-α-d-galactopyranoside-2-(substituted)-1,4-benzothiazin-3-one
The structures of compounds isolated have been identified on the basis of 1H NMR and 13C NMR spectral data. The 1H NMR spectrum of the compounds 4–6 in DMSO-d_6 shows signals for the propargyl group as a doublet at 4.74, 4.90 and 4.86 ppm, respectively and a triplet centered at 2.20 (2.21) and 3.31 ppm corresponding to methylene groups bonded to the nitrogen atom and acetylenic HCC=C-proton, respectively. The 13C NMR spectrum showed the signal of hydrogenated acetylenic carbon at 75.0, 75.5 and 75.47 ppm, respectively. The structures of compounds 5 and 6 were confirmed by a crystallographic studies [22, 23] (Fig. 2).

The crystallographic study confirms that compounds 5, 6 have Z configuration about the exocyclic double bond. This result will allow to assign the Z configuration to all compounds coming from the products 5, 6 in future ulterior cycloaddition reactions the dipolarophiles 4–6 are then involved in cycloaddition reactions with the dipoles given above leading to new benzothiazine derivatives containing various 1,2,3-triazole moieties able to modulate their biological activities [24, 25].

Results and discussion

Synthesis of dipolarophiles 4–6

Dipolarophiles 4–6 have been prepared with good yields (88–92%) via alkylation reactions of compounds 1–3 by propargyl bromide under phase transfer catalysis conditions using tetra-n-butylammonium bromide (TBAB) as catalyst and potassium carbonate as base in dimethylformamide at room temperature (Scheme 1).

The literature reports several studies concerning the synthesis of 1,4 or 1,5-disubstituted 1,2,3-triazoles according to the Huisgen method under thermal conditions [26]. Due to the importance of the 1,2,3-triazole moiety in the biological and therapeutic areas, it seems interesting to include this backbone in the 1,4-benzothiazine derivatives. Thus, we have studied the reaction between azides F, G and H and compounds 4–6. The reaction was conducted in hot ethanol leading to the formation of products 7–12 related in each case to two regioisomers (7a–12a and 7b–12b) using azides F, G and H and compounds 4–6. The reaction was conducted in hot ethanol leading to the formation of products 7–12 related in each case to two regioisomers (7a–12a and 7b–12b) using azides F, G and H. The yields are between 17 and 21% for 1,5-disubstituted 1,2,3-triazole-regioisomers (7b–12b) and between 61 and 65% for 1,4-disubstituted regioisomers (7a–12a). These results are in agreement with those described in the literature [27–30]. The two 1,4 and 1,5 disubstituted 1,2,3-triazole isomers have been separated by chromatography.

Synthesis of new 1,2,3-triazolymethyl-2H-1,4-benzothiazin-3(4H)-one derivatives

The literature reports several studies concerning the synthesis of 1,4 or 1,5-disubstituted 1,2,3-triazoles according to the Huisgen method under thermal conditions [26]. Due to the importance of the 1,2,3-triazole moiety in the biological and therapeutic areas, it seems interesting to include this backbone in the 1,4-benzothiazine derivatives. Thus, we have studied the reaction between azides F, G and H and compounds 4–6. The reaction was conducted in hot ethanol leading to the formation of products 7–12 related in each case to two regioisomers (7a–12a and 7b–12b) using azides F, G and H. The yields are between 17 and 21% for 1,5-disubstituted 1,2,3-triazole-regioisomers (7b–12b) and between 61 and 65% for 1,4-disubstituted regioisomers (7a–12a). These results are in agreement with those described in the literature [27–30]. The two 1,4 and 1,5 disubstituted 1,2,3-triazole isomers have been separated by chromatography.
on silica gel column [eluent: ethyl acetate/hexane (1/9)] (Scheme 2).

In order to report an unequivocal synthesis of the 1,4-regioisomers 7a–12a and confirm the structures of the two regioisomers obtained previously in thermal conditions (Huisgen reactions), the method click chemistry [Copper-Catalyzed Azide-Alkyne Cycloaddition (CuAAC)] described in the literature [31–34] has been used in the condensation of dipolarophiles 4–6 with azides F and G in the presence of copper (II) sulfate (CuSO4), sodium ascorbate as a reducing agent in water and ethanol mixture (1:1). Thus the 1,4-disubstituted 1,2,3-triazole derivatives 7a–12a have been obtained exclusively in 86 to 90% yields. All the products are fully characterized by 1H and 13C NMR (see “Experimental part”). 1H NMR spectra in DMSO d6 of compounds 7a–12a present in particular signals: as singlets at 4.33(7a), 4.49(8a), 4.55(9a), 4.37(10a), 4.34(11a) and 4.37(12a) ppm related to the two protons of the methylene group linked to the nitrogen atom of 1,4-benzothiazine moiety and a signals as singlets at 7.93(7a), 8.01(8a), 7.99(9a), 8.35(10a), 8.37(11a) and 8.39(12a) ppm corresponding to the proton in position 5 of the 1,2,3-triazole ring. The 1H NMR spectra of 1,5-disubstituted regioisomers 7b–12b exhibit particularly signals as singlets at 4.54(7b), 4.39(8b), 4.42(9b), 4.37(10b), 4.34(11b) and 4.34(12b) ppm due to the two protons of the methylene groups linked to the nitrogen atom in position 1 of the 1,4-benzothiazine ring and signals as singlets at 8.31(7b), 8.29(8b), 8.25(9b), 7.63(10b), 7.62(11b) and 7.61(12b) ppm related to the proton in position 4 of the 1,2,3-triazole moiety. The 13C NMR spectra of compounds 7a–12a highlight in particular the signals of the two methylene groups linked to the nitrogen atom in position 3 of the bicyclic system at 40.78(7a), 41.57(8a), 41.42(9a), 41.84(10a), 41.51(11a) and 40.99 (12a) ppm, and for compounds 7b–12b the signals at 41.00(7b), 39.77(8b), 39.23(9b), 41.84(10b), 41.84(11b) and 41.74(12b) ppm. These results are in good agreement with those observed in the literature which show that the proton signal at position 5 of the 1,2,3-triazole ring is more deshielded than the one for the proton at position 4 of 1,2,3-triazole for compounds 7b–12b [27–30].

It should be noted that when compounds 4–6 reacted with azide H it has allowed us to isolate in each case only one isomer 13–15 (Scheme 3) with yields between 77 and 83%. For compounds 13–15 the 1H NMR in DMSO d6 exhibit in particular signals as singlets at 5.16(13), 4.86(14) and 4.85(15) ppm related to the two protons of methylene group linked to the nitrogen atom at position 4 and a singlets at 7.40(13), 7.54(14) and 7.53(15) ppm corresponding to the proton in position 5 of the 1,2,3-triazole moiety. The 13C NMR spectra highlight in particular the presence of signals related to the methylene groups at 40.32(13), 35.47(14) and 35.01(15) ppm.

The crystallographic analysis of compound 13 indicates that the triazole nitrogen atom is unsubstituted and confirms the structures of compounds 13–15 (Figs. 3 and 4). It is interesting to note that compound 13 crystallizes in monoclinic system (P21/c). The crystallographic data have been assigned to the deposition number. CCDC 1564624.

The formation of compounds 13–15 suggests that the reaction operates via a traditional mechanism of 1,3-dipolar cycloaddition of azide H with alkynes 4–6, followed by transesterification. The nucleophilic substitution of triazole unit by ethanol leads to compounds 13–15 next to the glycine derivative 16, Scheme 4.

Biological evaluation in vitro antibacterial evaluation

The compounds tested showed an average antibacterial activity and the results of the assessments are shown in Fig. 5 and Table 1.

The results are presented in the form of antibiograms below:

The newly synthesized compounds 7a(7b), 8a(8b), 10a(10b) and 11a(11b), have been tested for their antibacterial activity in vitro against two Gram-positive bacteria: *Staphylococcus aureus* ATCC 25923 and *Staphylococcus aureus* MLSB and six Gram-negative bacteria: *Escherichia coli* (E. coli) ATCC 25922, *Pseudomonas aeruginosa* (PA) ATCC 27853, *Acinetobacter* (Acin) ATCC 17978, *Escherichia coli* ESB, *Klebsiella pneumonia* (KP) ESB and *Acinetobacter ESB*. The compounds were tested at a concentration of 500 µg/ml, using disc
Scheme 2 Preparation of new 1,2,3-triazolymethyl-2H-1,4-benzothiazin-3-one derivatives
diffusion method [35], the minimum inhibitory concentration (MIC) was measured in µg/ml and compared with that of chloramphenicol as reference standard. The strains used in this work are widely encountered in various pathologies in humans, were obtained from the Department of Microbiology, National Institute of Hygiene, Rabat, Morocco.

The results obtained in the antibacterial activity of the compounds 1–2, 4–5, 7a(7b), 8a(8b), 10a(10b) and 11a(11b) showed better activity vis-a-vis the eight tested bacteria (Table 1). This study determined the MIC of some synthesized derivatives of 1,4-benzothiazine. The results of the antibacterial activity of the products tested showed the absence of growth inhibition for compound 1 in the three bacterial strains: *Escherichia coli* (ATCC), *Pseudomonas aeruginosa* (ATCC) and *Staphylococcus aureus* (ATCC) and an activity MIC = 31.25 µg/ml for *Acinetobacter* (BLSE), MIC = 62.5 µg/ml for *Acinetobacter* (ATCC) and MIC = 250 µg/ml for *Escherichia coli* (BLSE), *Staphylococcus aureus* (MLSb) and *Klebsiella pneumoniae* (BLSE). By against the compound 2 obtained by substituting the compound 1 by the benzylidene group in position 2 has caused an activity MIC = 125 µg/ml for *Pseudomonas aeruginosa* (ATCC), *Staphylococcus aureus* (ATCC) and a MIC = 250 µg/ml *Escherichia coli* (ATCC) and *Acinetobacter* (BLSE) with absence of growth inhibition for compound 2 in four bacterial strains *Acinetobacter* (ATCC), *Escherichia coli* (ESBL), *Staphylococcus aureus* (MLSb) and *Klebsiella pneumoniae* (BLSE). In order to increase the inhibitory activity of compounds 1 and 2 we alkylated those compounds with propargyl bromide. It is deducible that the presence of a prop-1-yn hydrogen bonds (blue dotted lines) and their association through C–H–O hydrogen bonds (black dotted lines) of compound 13

![Scheme 3](image)

Scheme 3 Preparation of new 1,2,3-triazoles monosubstituted 13–15

![Fig. 3](image)

Fig. 3 Molecular structure of the compound 13 with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability ellipsoids (CCDC 1564624)

![Fig. 4](image)

Fig. 4 Packing showing portions of the chains formed by N–H–N hydrogen bonds (blue dotted lines) and their association through C–H–O hydrogen bonds (black dotted lines) of compound 13.
Acinetobacter (ESBL), with lack of growth inhibition in the two bacterial strains tested: Pseudomonas aeruginosa (ATCC), Acinetobacter (ATCC), Escherichia coli (ESBL), Staphylococcus aureus (MLSB) and Klebsiella pneumoniae (BLSE). On the other hand, the compound 5 has no activity against four bacterial strains tested: Acinetobacter (ATCC), Escherichia coli (ESBL), Staphylococcus aureus (MLSB) and Klebsiella pneumoniae (BLSE). However, the compound 5 also presents activity with MIC of the order of 125 μg/ml for Escherichia coli (ATCC) and 250 μg/ml for Pseudomonas aeruginosa (ATCC), Staphylococcus aureus (ATCC) and Acinetobacter (BLSE).

Also, for the eight products triazole 7a(7b), 8a(8b), 10a(10b) and 11a(11b) obtained by cycloaddition reactions, it is worthy to note that compound 8a obtained by cycloaddition with azide F possess a strong inhibitory activity during the treatment of different bacteria: CMI = 62.5 μg/ml for Escherichia coli (ESBL), Pseudomonas aeruginosa (ATCC), Acinetobacter (ESBL) and CMI = 125 μg/ml for Acinetobacter (ATCC), Escherichia coli (ESBL), Klebsiella pneumoniae (ESBL).

Finally, the compound 10b obtained by cycloaddition with azide G the results of the antibacterial activity of the products tested showed the absence of growth inhibition for compound 10b towards all tested bacteria. In general, the molecular specifications of the 1,2,3-triazoles can also be used as a linker and show bioisosteric effects on peptide linkage, aromatic ring, double bonds. Some unique features like hydrogen bond formation, dipole–dipole and π stacking interactions of triazole compounds have increased their importance in the field of medicinal chemistry as they bind with the biological target with high affinity due to their improved solubility. This study is expected to take anti-inflammatory tests, antifungal, antiparasitic and anti-cancer, because the literature gives a lot of interesting results on these topics. Also, other bacteria should be selected to expand the investigation [36–38]. The 1,2,3-triazole based heterocycles have been well exploited for the generation of many medicinal scaffolds exhibiting anti-HIV, anticancer, antibacterial activities.

Conclusion

In conclusion, in the development of this work, the synthesis of the new heterocyclic systems derived from 1,2,3-triazolyl-1,4-benzothiazin-3-one was carried out in satisfactory yields by cycloaddition reactions under thermal and catalytic conditions (Cu I). The results showed a periselectivity and regioselectivity as a function of the dipole (azides F, G and H) employed. In addition, the
Fig. 5 Results of the antibacterial activity of the synthesized compounds 1, 2, 4, 5, 7a, 7b, 8a, 8b, 10a, 10b, 11a and 11b vis-a-vis bacteria tested (Escherichia coli ATCC, Pseudomonas aeruginosa ATCC, Staphylococcus aureus ATCC, Acinetobacter ATCC, Escherichia coli BLSE, Acinetobacter BLSE, Staphylococcus aureus MLSB and Klebsiella pneumonia BLSE). Chlor chloramphenicol (30 µg/ml), DMSO dimethylsulfoxide (1%)
obtained results highlight an original synthesis reaction of 1,2,3-triazoles monosubstituted by the action of azide-glycine (H) on dipolarophiles 4–6 under thermal conditions. The heterocyclic systems obtained were identified by 1H NMR, 13C NMR, and confirmed for product 13 by X-ray diffraction. The synthesized products were subjected to the evaluation of antibacterial activity. Several compounds tested showed significant activity.

Experimental part

General: Column chromatography was performed on silica gel 60 (Merck 230–400 mesh). Nuclear magnetic resonance spectra were recorded on a Varian Unity Plus spectrometer 1H NMR at 300 MHz; the chemical shifts (d) are expressed in parts per million (ppm) and the coupling constants (J) in Hertz (Hz). DMSO was used as the solvent and SiMe4 as the reference.

General procedure of synthesis compounds 4, 5 and 6

To a solution of (6.05 mmol) of 2-substituted)-1,4-benzothiazin-3-one 1 (2 or 3) in 15 ml of DMF, were added 11.3 mmol of potassium carbonate. The reaction mixture was stirred magnetically for 5 min then added 0.6 mmol of bromide tetra-n-butylammonium (BTBA) and 7.26 mmol of propargyl bromide, then the mixture was stirred magnetically for 24 h. After removal of salts by filtration, the solution was evaporated under reduced pressure, and the residue obtained is dissolved in dichloromethane. The remaining salts are extracted with distilled water, and the mixture obtained was chromatographed on silica gel column [eluent: ethyl acetate/hexane (1/9)].

4-(Prop-2-ynyl)-3,4-dihydro-2H-1,4-benzo-thiazin-3-one 4

Yield: 92%; mp = 492 K; 1H-NMR (DMSO-d6, 300 MHz) δ [ppm]: 7.42–7.04 (m, 4H, Harom), 4.74 (d, 2H, J = 1.9 Hz NCH2), 3.55 (s, 2H, S-CH2), 2.20 (t, 1H, J = 1.9 Hz ≡CH); 13C-NMR (DMSO-d6, 62.5 MHz) δ [ppm]: 165.2 (C=O), 139.0, 123.4, 79.8 (Cq), 128.6, 128.0, 124.1, 118.5 (CHarom), 75.0 (≡CH), 33.8 (NCH2), 30.6 (S-CH2).

(2Z)-2-Benzylidene-4-(prop-2-ynyl)-3,4-dihydro-2H-1,4-benzo-thiazin-3-one 5

Yield: 90%; mp = 403 K; 1H-NMR (DMSO-d6, 300 MHz) δ [ppm]: 7.84 (s, 1H, CHvinyl), 7.66–7.09 (m, 9H, Harom), 4.90 (d, 2H, J = 1.8 Hz, NCH2), 2.20 (t, 1H, J = 1.8 Hz ≡CH); 13C-NMR (DMSO-d6 62.5 MHz) δ [ppm]: 161.0 (C=O), 135.8, 134.4, 134.3, 118.4, 79.6 (Cq), 130.6, 129.8, 129.1, 128.1, 126.8, 124.5, 117.8 (CHarom), 75.0 (≡CH), 33.8 (NCH2), 30.6 (S-CH2).

(Z)-2-(4-Chlorobenzylidene)-4-(prop-2-ynyl)-2H-1,4-benzo-thiazin-3-one 6

Yield: 88%; mp = 385 K; 1H-NMR (DMSO-d6 300 MHz) δ [ppm]: 7.83 (s, 1H, CHvinyl), 7.69–7.09 (m, 9H, Harom), 4.86 (d, 2H, J = 1.9 Hz, NCH2), 3.31 (t, 1H, J = 1.9 Hz ≡CH); 13C-NMR (DMSO-d6 62.5 MHz) δ [ppm]: 161.0 (C=O), 135.77, 134.4, 134.3, 118.4, 79.6 (Cq), 130.6, 129.8, 129.1, 128.1, 126.8, 124.5, 117.8 (CHarom), 75.0 (≡CH), 35.02 (NCH2).

Table 1 Results of the in vitro antibacterial activity (MIC values µg/ml) of the synthesized compounds 1, 2, 4, 5, 7a, 7b, 8a, 8b, 10a, 10b, 11a and 11b vis-à-vis bacteria tested (Escherichia coli ATCC, Pseudomonas aeruginosa ATCC, Staphylococcus aureus ATCC, Acinetobacter ATCC, Escherichia coli BLSE, Acinetobacter BLSE, Staphylococcus aureus MLSB and Klebsiella pneumonia BLSE)

E. coli ATCC	PA ATCC	SA ATCC	Acin ATCC	E. coli ESBL	Acin ESBL	SA MLSB	KP ESBL
1	–	–	62.5	250	31.25	250	250
2	250	125	125	–	250	–	–
4	125	–	250	–	250	–	–
5	125	250	250	–	250	–	–
7a	–	–	250	125	62.5	–	62.5
7b	125	–	125	62.5	–	62.5	–
8a	62.5	62.5	–	125	62.5	–	125
8b	–	–	–	–	–	125	–
10a	125	125	125	–	62.5	–	–
10b	–	–	–	–	–	–	–
11a	–	125	125	62.5	–	62.5	–
11b	–	–	250	62.5	125	–	62.5
DMSO	–	–	–	–	–	–	–
Chlor	4	7.5	2.5	–	5	–	3
General procedure for the synthesis of compounds 7a–12a, 7b–12b and 13–15 via Huisgen 1,3-dipolar cycloaddition reactions
To a solution of dipolarophile 4 (5 or 6) (8 mmol) in absolute ethanol (20 ml) was added azide F (G or H) (16 mmol). The reaction mixture was stirred at reflux and the reaction monitored by thin layer chromatography (TLC). After concentration under reduced pressure, the residue was purified by column chromatography on silica gel using a mixture [ethyl acetate/hexane (1:9)] as eluent.

General procedure for the synthesis of compounds 7a–12a by click chemistry: [Copper-Catalyzed Azide-Alkyne Cycloaddition (CuAAC)]
To a solution of 1 mmol of compound 4 (5 or 6) and 2 mmol of azide F (G) in 15 ml of ethanol were added 0.5 mmol of CuSO4 and 1 mmol of sodium ascorbate dissolved in 7 ml of distilled water. The reaction mixture was stirred for 24 h at room temperature. The reaction was monitored by TLC. After filtration and concentration of the solution under reduced pressure the residue obtained was chromatographed on silica gel column using as eluent ethyl acetate/hexane (1:9). The compounds have been obtained with yields ranging from 86 to 90%.

4-[(1’4’,2’3’,3’’4’’-Di-O-isopropylidene-a-D-galactopyranosid-6-yl)-1’2,3’-triazol-4’-yl)methyl]-2H-1,4-benzothiazin-3-one 7a
Yield: 63%; brown oil; 1H-NMR (DMSO-d6, 300 MHz) δ [ppm]: 1.40, 1.31, 1.30, 1.23 (s, 12H, 4CH3), 3.52 (s, 2H, CH2–S), 4.69, 4.53, 4.39, 4.22 (m, 4H, 4CH2, H2, H3, H4), 4.35 (d, 2H, CH2–N), 5.32 (d, 2H, CH2–N, H6), 5.47 (d, 1H, CH, H1), 7.55–7.03 (m, 4H, H arom), 8.31 (s, 1H, CHtriazole); 13C-NMR (DMSO-d6 62.5 MHz) δ [ppm]: 164.04 (CO), 142.78, 140.17, 123.50, 109.62, 108.29 (Cq), 128.89 (CHtriazole), 127.93, 124.69, 124.23, 119.00 (CHarom), 97.01, 71.74, 70.75, 69.96, 66.97 (5CH, C1, C2, C3, C4, C5), 50.26, 41.00 (CH2–N), 31.23 (CH2–S), 26.34, 25.81, 25.27, 24.95 (4CH3); 161.44 (CO), 136.06, 134.68, 134.51, 132.47, 130.61, 129.72, 129.08, 128.95, 128.49, 118.06 (CHarom), 96.12, 70.90, 70.62, 70.22, 68.37 (5CH, C1, C2, C3, C4, C5), 48.56, 39.77 (CH2–N), 26.43, 26.13, 25.27, 24.85 (4CH3).

(2Z)-2-Benzylidene-4-[(1’1’,2’3’,3’’4’’-di-O-isopropylidene-a-D-galactopyranosid-6-yl)-1’2,3’-triazol-4’-yl)methyl]-2H-1,4-benzothiazin-3-one 8a
Yield: 65%; brown oil; 1H-NMR (DMSO-d6, 300 MHz) δ [ppm]: 1.41, 1.33, 1.31, 1.25 (s, 12H, 4CH3), 4.67, 4.39, 4.38, 4.36 (m, 4H, 4CH2, H2, H3, H4, H5), 4.39 (d, 2H, CH2–N), 5.47 (d, 2H, CH2–N, H6), 5.32 (d, 1H, CH, H1), 7.67–7.06 (m, 4H, H arom), 7.85 (s, 1H, CHvinyl), 8.29 (s, 1H, CHtriazole); 13C-NMR (DMSO-d6 62.5 MHz) δ [ppm]: 161.44 (CO), 136.06, 134.68, 134.51, 132.47, 130.61, 129.72, 129.08, 128.95, 128.49, 118.06 (CHarom), 96.12, 70.90, 70.62, 70.22, 68.37 (5CH, C1, C2, C3, C4, C5), 48.56, 39.77 (CH2–N), 26.43, 26.13, 25.27, 24.85 (4CH3).

4-[(1’1’,2’3’,3’’4’’-Di-O-isopropylidene-a-D-galactopyranosid-6-yl)-1’2,3’-triazol-5’-yl)methyl]-2H-1,4-benzothiazin-3-one 9a
Yield: 20%; brown oil; 1H-NMR (DMSO-d6, 300 MHz) δ [ppm]: 1.37, 1.27, 1.26, 1.17 (s, 12H, 4CH3), 4.63, 4.60, 4.49, 4.31 (m, 4H, 4CH2, H2, H3, H4, H5), 4.49 (d, 2H, CH2–N), 5.26 (d, 2H, CH2–N, H6), 5.37 (d, 1H, CH, H1), 7.49–7.06 (m, 4H, H arom), 7.81 (s, 1H, CHvinyl), 8.01 (s, 1H, CHtriazole); 13C-NMR (DMSO-d6 62.5 MHz) δ [ppm]: 161.10 (CO), 143.16, 136.53, 134.47, 120.63, 118.22, 109.33, 108.59 (Cq), 134.72 (CHvinyl), 130.47 (CHtriazole), 129.69, 129.12, 127.96, 126.68, 124.75, 124.29, 117.99 (CHarom), 95.94, 71.04, 70.56, 70.15, 67.26 (5CH, C1, C2, C3, C4, C5), 50.64, 41.57 (CH2–N), 26.34, 25.98, 25.26, 24.69 (4CH3).

(2Z)-2-Benzylidene-4-[(1’1’,2’3’,3’’4’’-di-O-isopropylidene-a-D-galactopyranosid-6-yl)-1’2,3’-triazol-4’-yl)methyl]-2H-1,4-benzothiazin-3-one 8b
Yield: 20%; brown oil; 1H-NMR (DMSO-d6, 300 MHz) δ [ppm]: 1.40, 1.31, 1.30, 1.23 (s, 12H, 4CH3), 4.69, 4.40, 4.34, 4.24 (m, 4H, 4CH2, H2, H3, H4, H5), 4.42 (d, 2H, CH2–N), 5.55 (d, 2H, CH2–N, H6), 5.26 (d, 1H, CH, H1), 7.50–7.00 (m, 4H, H arom), 7.93 (s, 1H, CHtriazole); 13C-NMR (DMSO-d6 62.5 MHz) δ [ppm]: 165.24 (CO), 143.56, 139.84, 123.27, 109.31, 108.60 (Cq), 128.46 (CHtriazole), 127.76, 124.49, 123.91, 118.63 (CHarom), 95.96, 71.04, 70.59, 70.16, 67.26 (5CH, C1, C2, C3, C4, C5), 50.58, 40.78 (CH2–N), 30.79 (CH2–S), 26.34, 26.05, 25.27, 24.70 (4CH3).
(2Z)-2-(4-Chlorobenzylidene)-4-[(1′,2′,3′,4′,6′-di-O-isopropylidene-a-D-galactopyranosid-6′-yl)-1’,2’,3’-tri-azol-5′-yl)methyl]-2H-1,4-benzo-thiazin-3-one 9b
Yield: 17%; brown oil; 1H-NMR (DMSO-d6, 300 MHz) δ [ppm]: 1.39, 1.30, 1.26, 1.18 (s, 12H, 4CH3), 4.62, 4.39, 4.28, 4.15 (m, 4H, 4CH, H2, H3, H4, H5), 4.55 (d, 2H, CH2−N), 5.37 (d, 2H, CH2−O, H6), 5.30 (d, 1H, CH, H1), 7.63−7.04 (m, 4H, Harom), 7.82 (s, 1H, CHvinyl), 7.99 (s, 1H, CHtriazole); 13C-NMR (DMSO-d6, 62.5 MHz) δ [ppm]: 160.82 (CO), 143.06, 136.80, 134.58, 125.30, 120.81, 117.99, 109.90, 108.09 (Cq), 135.03 (CHvinyl), 130.06 (CHtriazole), 129.91, 129.38, 128.50, 126.88, 124.43, 118.22 (Cq), 96.50, 71.42, 70.90, 70.15, 67.62 (5CH, C1, C2, C3, C4, C5), 50.93, 41.42 (CH2−N), 26.05, 25.71, 24.98 (4CH3).

(2Z)-2-Benzylidene-4-[(1′,2′,3′,4′,6′-tetro-O-acetyl-(o)-glucopyranos-1′-yl)-1’,2’,3’-tri-azol-5′-yl)methyl]-2H-1,4-benzo-thiazin-3-one 11b
Yield: 20%; brown oil; 1H-NMR (DMSO-d6, 300 MHz) δ [ppm]: 2.01, 1.97, 1.92, 1.72 (s, 12H, 4CH3), 5.64, 5.54, 5.21, 4.09 (m, 5H, 4CH, H2, H3, H4, H5), 4.37 (d, 2H, CH2−N), 5.30 (d, 2H, CH2−O, H6), 6.34 (d, 1H, CH, H1), 7.84 (s, 1H, CHvinyl), 7.65−7.03 (m, 4H, Harom), 7.62 (s, 1H, CHtriazole); 13C-NMR (DMSO-d6, 62.5 MHz) δ [ppm]: 170.52, 170.24, 169.88, 168.88, 161.52 (5C=O), 144.03, 136.66, 134.56, 120.78, 118.44 (Cq), 130.17 (CHtriazole), 134.73 (CHvinyl), 129.65, 129.29, 127.80, 126.66, 124.43, 123.67, 118.12 (CHarom), 84.40, 73.89, 72.59, 70.70, 68.21 (5CH, C1, C2, C3, C4, C5), 62.45 (CH2−O), 41.84 (CH2−N), 21.07, 20.82, 20.68, 20.40 (4CH3).

(2Z)-2-(4-Chlorobenzylidene)-4-[(1′,2′,3′,4′,6′-tetro-O-acetyl-(o)-glucopyranos-1′-yl)-1’,2’,3’-tri-azol-5′-yl)methyl]-2H-1,4-benzo-thiazin-3-one 12a
Yield: 63%; brown oil; 1H-NMR (DMSO-d6, 300 MHz) δ [ppm]: 2.01, 1.97, 1.95, 1.72 (s, 12H, 4CH3), 5.68, 5.55, 5.21, 4.09 (m, 5H, 4CH, H2, H3, H4, H5), 4.37 (d, 2H, CH2−N), 5.32 (d, 2H, CH2−O, H6), 6.37 (d, 1H, CH, H1), 7.51−7.03 (m, 4H, Harom), 7.63 (s, 1H, CHtriazole); 13C-NMR (DMSO-d6, 62.5 MHz) δ [ppm]: 170.24, 170.03, 169.75, 168.55, 161.13 (5C=O), 144.23, 136.66, 134.48, 120.78 (Cq), 130.61 (CHtriazole), 129.29, 128.07, 124.43, 118.13 (CHarom), 84.64, 73.81, 72.59, 70.70, 68.21 (5CH, C1, C2, C3, C4, C5), 62.45 (CH2−O), 41.84 (CH2−N), 30.50 (CH2−S), 21.10, 20.72, 20.68, 20.15 (4CH3).

(2Z)-2-(4-Chlorobenzylidene)-4-[(1′,2′,3′,4′,6′-tetro-O-acetyl-(o)-glucopyranos-1′-yl)-1’,2’,3’-tri-azol-5′-yl)methyl]-2H-1,4-benzo-thiazin-3-one 12b
Yield: 19%; brown oil; 1H-NMR (DMSO-d6, 300 MHz) δ [ppm]: 2.00, 1.95, 1.92, 1.73 (s, 12H, 4CH3), 5.62, 5.48, 5.14, 4.08 (m, 5H, 4CH, H2, H3, H4, H5), 4.34 (d, 2H, CH2−N), 5.27 (d, 2H, CH2−O, H6), 6.34 (d, 1H, CH, H1), 7.84 (s, 1H, CHvinyl), 7.65−7.05 (m, 4H, Harom), 7.61 (s, 1H, CHtriazole); 13C-NMR (DMSO-d6, 62.5 MHz) δ [ppm]: 170.24, 170.03, 169.46, 168.55, 161.13 (5C=O), 144.55,
Yield: 78%; mp = 352 K; 1H-NMR (DMSO-d6 300 MHz) δ [ppm]: 7.84 (s, 1H, CHtriazole), 7.37–7.00 (m, 4H, Harom), 5.16 (d, 2H, CH2–N), 3.56 (s, 2H, CH2–S); 13C-NMR (DMSO-d6 62.5 MHz); 160.79 (CO), 136.01, 134.38, 133.51, 121.18, 118.42 (Cq), 134.28 (CHvinyl), 128.40 (CHtriazole), 134.28, 132.55, 129.12, 128.40, 126.95, 124.73, 118.05 (CHarom), 35.47 (C–N).

(2Z)-2-Benzylidene-4-[1,2,3-triazolymethyl]-2H-1,4-benzothiazin-3-one 14

Yield: 81%; brown oil; 1H-NMR (DMSO-d6 300 MHz) δ [ppm]: 7.7–8.7 (m, 9H, Htriazole), 5.62 (d, 1H, CH2–O), 3.57 (q, 2H, CH2–O), 1.19, 1.13 (t, 6H, 2CH3); 13C-NMR (DMSO-d6 62.5 MHz); 165.49 (CO), 143.56, 139.75, 132.44 (Cq), 128.50 (CHtriazole), 129.11, 127.72, 123.93, 118.65 (CHarom), 40.32 (C–N), 30.76 (C–S).

(2Z)-2-[4-Chlorobenzylidene]-4-[1,2,3-triazolymethyl]-2H-1,4-benzothiazin-3-one 15

Yield: 77%; mp = 352 K; 1H-NMR (DMSO-d6 300 MHz) δ [ppm]: 7.83 (s, 1H, CHvinyl), 7.67–7.10 (m, 8H, Harom), 7.53 (s, 1H, CHtriazole), 4.85 (d, 2H, CH2–N); 13C-NMR (DMSO-d6 62.5 MHz); 160.68 (CO), 135.77, 134.28, 133.31, 132.29, 121.05, 118.05 (Cq), 134.15 (CHvinyl), 128.14 (CHtriazole) 132.30, 129.12, 128.40, 126.95, 124.73, 118.05 (CHarom), 35.47 (C–N).

Ethyl-N-(benzoyl)-2-ethoxylglycinate 16

Yield: 78%; mp = 369. 1H-NMR (DMSO-d6 300 MHz) δ [ppm]: 9.42 (d, 1H, N–H, J = 9.41), 7.92–7.44 (m, 5H, H arom), 5.62 (d, 1H, CH, J = 5.61), 4.13 (q, 2H, CH2–O), 3.57 (q, 2H, CH 2–O), 1.19, 1.13 (t, 6H, 2CH3); 13 C-NMR (DMSO-d6, 62.5 MHz); 168.47, 167.12 (2 CO), 133.54, 132.48, 128.87, 128.27 (CHarom), 77.94 (CH), 63.70, 61.62 (2CH3), 15.38, 14.46 (2CH3).

Authors’ contributions

The main idea for the work was thought up by NKS and EE. ME, IF and YO performed the synthesis. Antibacterial activities were performed by ZM and RC. X-ray analysis was performed by JTM. MU and EEE analyzed the results. All authors performed the synthesis. Antibacterial activities were performed by ZM and RC.

Author details

1 Laboratoire de Chimie Organique Hétérocyclique, Centre de Recherche des Sciences des Médicaments, Pôle de Compétences Pharmacoehimie, Faculté des Sciences, Mohamed V University in Rabat, Av. Ibn Battouta, BP 1014, Rabat, Morocco. 2 Laboratoire de Chimie Organique Appliquée, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdallah, Route Immouzer, Fès, Morocco. 3 Département de bactériologie, Institut national d’hygiène, Avenue Ibn Batouta, Agdal, B.P. 769, 11000 Rabat, Morocco. 4 Department of Chemistry, Tulane University, New Orleans, LA 70118, USA. 5 CNRS, LCC (Laboratoire de Chimie de Coordination), 205, Route de Naarbonne, 31077 Toulouse, France. 6 UPS, INPT, LCC, Université de Toulouse, 31077 Toulouse, France. 7 Laboratoire de Chimie Bioorganique Appliquée, Faculté des Sciences, Université Ibn Zohr, Agadir, Morocco. 8 Moroccan Foundation for Advanced Science, Innovation and Research (MASCIR), Rabat, Morocco.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 20 December 2017 Accepted: 19 November 2018

References

1. Trapani G, Reho A, Morlaccì F, Latrofa A, Marchini P, Venturi F, Cantalamessa F (1985) Synthesis and antiinflammatory activity of various 1,4-benzothiazine derivatives. Farmaco Ed Sci 40(5):369–376
2. Gowda J, Khader AMA, Kallurya B, Shee P, Shabaraya AR (2011) Synthesis, characterization and pharmacological activity of 4-[1-substituted aminomethyl-4-arylidenemino-5-sulfanyl-4,5-dihydro-1H-1,2,4-triazol-3-yl] methyl-2H-1,4-benzothiazin-3(4H)ones. Eur J Med Chem 46:4100
3. Warren BK, Kraus EE (1987) Pyridine and reduced pyridine analogues of 10H-pyrido[3,4-b][1,3]benzothiazines with analgesic activity. Eur J Med Chem 22:411–415
4. Arméndiz D, Muraglia M, Florio MA, Laurentis ND, Rosato A, Carriero A, Corbo F, Franchini C (2012) 4H-1,4-Benzothiazine, dihydro-1,4-benzothiazinones and 2-amino-5-fluorobenzenedithiol derivatives: ciprofloxacin-treated mammalian cells. Mol Pharmacol 50:1178–1188
5. Rathore BS, Kumar M (2006) Synthesis of 7-chloro-5-trifluoromethyl-7-fluoro/7-trifluormethyl-4H-1,4-benzothiazines as antimicrobial agents. Bioorg Med Chem 14:5678–5682
6. Sabatini S, Kazt GW, Rossolini GM, Brandim D, Fravolini A, Rossolini GM, Brandini D, Fravolini A (2008) From phenothiazine to 3-phenyl-1,4-benzothiazine derivatives as inhibitors of the Staphylococcus aureus NorA multidrug efflux pump. J Med Chem 51:4321–4330
7. Fringuelli R, Schiaffella F, Bistoni F, Pitzura L, Vecchiarelli A (1998) Azole derivatives of 1,4-benzothiazine as antifungal agents. Bioorg Med Chem 6:103–108
8. Malagu K, Boustie J, David M, Sauleau J, Amoros M, Girre RL, Sauleau A (1998) Synthesis and antiviral activity of new 1,4-benzothiazines: sulphoxides and sulphone derivatives. Pharm Pharcol Commun 4:57–60
9. Takemoto I, Yamazaki K, Kamioka H (1994) Synthesis of a fluorobenzoxazine derivative and its analogues. Biosci Biotechnol Biochem 58(4):788–789
10. Gupta RR, Kumar R (1986) Synthesis of 6-trifluoromethyl-4H-1,4-benzothiazines as possible anticancer agents. J Fluorine Chem 31(1):19–24
11. Gupta V, Gupta RR (1991) Single step synthesis of fluorinated 4H-1,4-benzothiazines as possible anticancer agents. J Prakt Chem 333(1):153–156
12. Gupta RR, Kumar R, Gautam RK (1985) Synthesis of new fluorinated 4H-1,4-benzothiazines as possible anticancer agents. J Fluorine Chem 28(4):381–385
13. Jacquot Y, Bermont L, Giorgi H, Refouvelet B, Adessi GL, Daubresse E, Xicluana A (2001) Substituted benzopyranobenzothiazine derivatives as inhibitors of the NorA multidrug efflux pump. J Med Chem 51:4321–4330
14. Zia-ur-Rehman M, Choudary JA, Elsegood MRJ, Siddiqui HL, Khan KM (2009) A facile synthesis of novel biologically active 4-hydroxy-N'-(benzylidene)-2-hexenyl]-1,2]thiazine-3-carboxylic acid, 1-dioxides. Eur J Med Chem 44(3):1311–1316
15. Vidal A, Madelemond JC, Mouenotou EA (2006) Simple and efficient synthesis of methyl 3,4-dihydro-2-methyl-2H-1,2-benzothiazine-3-carboxylate 1,1-dioxide from saccharin sodium salt. Synthesis 4:591–594
16. Tawadi H, Sugiyama Y, Ikeda H, Yamamoto T, Meguro K (1990) Studies on anti-diabetic agents. IX. A new aldose reductase inhibitor, AD-5467, and related 1,4-benzoazone and 1,4-benzothiazine derivatives: synthesis and biological activity. Chem Pharm Bull 38:1238
17. Elouz M, Sebbar NK, Elmsellem H, Bellan J, Lamandé LCR (2000) Synthèse de 2-pyrazolinyl, isoxazolinyl et 1,2,3-triazolyl méthyldmercaptopo-1-pyrrozolyl benzimidazole. Acad Sci Paris Série IIc 3:313–319
18. Ellouz M, Elmsellem H, Sebbar NK, Al Mamari K, Nadeem A, Ouzidan Y, Essassi EM, Abdel-Rahaman I (2016) Inhibitory properties and quantum chemical studies of 1,4-benzothiazine derivatives on mild steel corrosion in acidic medium. J Mater Environ Sci 7(3):2806–2819
19. McDouall JJW, Robb MA, Niazi U, Bernardi F, Schlegel HB (1987) An MCSCF study of the mechanisms for 1,3 dipolar cycloadditions. J Am Chem Soc 109:4642–4648
20. Ahabchane NH, Essassi EM, Al Mamari KA, Essassi EM, Abdel-Rahaman I (2016) Inhibitive properties and quantum chemical studies of 1,4-benzothiazine derivatives on mild steel corrosion in 1 M HCl solution: experimental and theoretical studies. J Mater Environ Sci 7(7):2482–2497
21. McDouall JJW, Robb MA, Niazi U, Bernardi F, Schlegel HB (1987) An MCSCF study of the mechanisms for 1,3 dipolar cycloadditions. J Am Chem Soc 109:4642–4648
22. Ahabchane NH, Essassi EM, Lopez J, Bellan J, Lamancé LCR (2000) Synthèse de 2-pyrazolyl, isoxazolyl, 1,2,3-triazolyl et 1,3,4-oxadiazolyl methylmercaptao-1-pyrrozolyl benzimidazole. Acad Sci Paris Série IIc 3:313–319
23. Ellouz M, Sebbar NK, Elmsellem H, Al Mamari K, Nadeem A, Ouzidan Y, Essassi EM, Abdel-Rahaman I, Hristov P (2016) Anti-corrosive properties of benzothiazine derivatives on mild steel corrosion in 1 M HCl solution: experimental and theoretical studies. J Mater Environ Sci 7(3):2806–2819
24. Da Silva FDC, De Souza MCBV, Frugulhetti IIP, Castro HC, Souza SLDO, De Souza TML, Rodrigues DQ, Souza AMT, Abreu PA, Passamani F, Rodrigues CR, Ferreira VF (2009) Synthesis, HIV-RT inhibitory activity and SAR of 1-benzyl-1H-1,2,3-triazole derivatives of carbohydrates. Eur J Med Chem 44:373–383
25. Griffen BJ, Heaslet H, Brik A, Lin YC, Cauvi G, Wong C-H, McRee DE, Elder JH, Stout CD, Torbet BE (2008) A copper(I)-catalyzed 1,2,3-triazole azide alkyne click compound is a potent inhibitor of a multidrug-resistant HIV-1 protease variant. J Med Chem 51:6263–6270
26. Gülevich AV, Dudińk AŚ, Chernyak N, Gevorgyan V (2013) Transition metal-mediated synthesis of monocyclic aromatic heterocycles. Chem Rev 113(3):3084–3213
27. Dardouri R, Rodi YK, Haoudi A, Mazzah A, Skalli MK, Essassi EM, Ouazzani CF (2012) Synthèse et modélisation de nouveaux systèmes hétérocycliques obtenus par cycloaddition 1,3-dipolaire dérivant de la 1,5-benzodiazépine-2,4-dione. J Mar Chim Heterocycl 11:53
28. Ahabchane NH, Keita A, Essassi EM (1999) Synthèse des 1-pyrazolyl, isoxazolyl et 1,2,3-triazolylmethyl-1,5-benzodiazépine par cycloaddition dipolaire-1,3. C Acad Sci Paris Série IIc 591
29. Alaoui IC, Rodi YK, Keita A, Sabir S, Skalli MK, El Hadrami EM, Essassi EM (2008) Synthesis of new heterocyclic systems by 1,3-dipolar cycloaddition from the 1,5-benzodiazépine-2,4-dione. Phys Chem News 39:98–103
30. Sebbar NK, Melkhzoum MEM, Essassi EM, Zerzouf A, Talbaoui A, Bakri Y, Saadi M, Ammari LE (2016) Novel 1,4-benzothiazine derivatives: synthesis, crystal structure, and anti-bacterial properties. Res Chem Intermed 42(9):6845–6862
31. Wang Q, Chan TR, Hilgraf R, Fokin VV, Scharpless KB, Finn M (2003) Bioconjugation by copper(I)-catalyzed azide-alkyne [3+2] cycloaddition. J Am Chem Soc 125:3192–3193
32. Bock VD, Hiemstra H, Van Maarseveen JH (2006) CuI-catalyzed alkyne–azide click cycloadditions from a mechanistic and synthetic perspective. Eur J Org Chem 1:51–68. https://doi.org/10.1002/ejoc.200500483
33. Tomnè CW, Christensen M, Meldal M (2002) Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 67:3057–3064
34. Himo F, Lovell T, Hilgraf R, Rostovtsev VV, Noodleman L, Sharpless KB, Fokin VV (2005) Copper(I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates. J Am Chem Soc 127:210–216
35. Zaidan MRS, Noor Rain A, Badrul AR, Adlin A, Norazah A, Zakiah I (2005) In vitro screening of five local medicinal plants for antibacterial activity using disc diffusion method. Trop Biomed 22(2):165–170
36. Brik A, Alexandratos J, Lin YC, Elder JH, Olson AJ, Wlodawer A, Goodsell DS, Wong C-H (2005) 1,2,3-Triazole as a peptide surrogate in the rapid synthesis of HIV-1 protease inhibitors. ChemBioChem 6:1167–1169
37. Fichtali I, Chraibi M, Aroussi FE, Ben-Tama A, Hadrami EME, Benbrahim KF, Stríba SE (2016) Synthesis of some 1,2,3-triazoles derivatives and evaluation of their antimicrobial activity. Der Pharma Chem 8:236–242
38. Abdel-Wahab BF, Mohamed HA, Awad GEA (2015) Synthesis and biological activity of some new 1,2,3-triazole hydrazine derivatives. Eur J Bull 4:106–109

Ready to submit your research? Choose BMC and benefit from:

• fast, convenient online submission
• thorough peer review by experienced researchers in your field
• rapid publication on acceptance
• support for research data, including large and complex data types
• gold Open Access which fosters wider collaboration and increased citations
• maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions