Analysis of gender differences in genetic risk: association of TNFAIP3 polymorphism with male childhood-onset systemic lupus erythematosus in the Japanese population

小児期発症のSLEにおける疾患感受性遺伝子についての検討
（日本人における小児期発症SLEとTNFAIP3との関連）

Keisuke Kadota
門田 景介

Department of Pediatrics
Yokohama City University Graduate School of Medicine
（Doctoral Supervisor: Shumpei Yokota, Professor）
学位論文の要約

Analysis of gender differences in genetic risk: association of TNFAIP3 polymorphism with male childhood-onset systemic lupus erythematosus in the Japanese population

小児期発症のSLEにおける疾患感受性遺伝子についての検討
（日本人における小児期発症SLEとTNFAIP3との関連）

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0072551

1. 序論

全身性エリテマトーデス（Systemic lupus erythematosus：以下SLE）は、多彩な自己抗体の産生により全身の多臓器を傷害する炎症性疾患である。SLEの病因と発症機序はいまだに不明であるが、遺伝的素因、ホルモン、ウイルス感染、環境などの多因子の関与が指摘されている。遺伝的素因としては、民族間で罹患率が違うことや、家族集積性が高く、双生児を比較した研究では二卵性双生児に比べ、一卵性双生児の方が高いと報告されており、SLEの発症に遺伝因子が関与していることが示唆される。

近年ゲノムワイド関連解析が行われ、多数のSLE感受性遺伝子が次々に同定された。SLEにおいて報告された疾患感受性遺伝子の多くは、免疫系で機能する遺伝子である。また、アジア系集団とヨーロッパ系集団と比較すると、疾患の発症における遺伝的寄与度に違いを認める遺伝子もあり、人種間でのSLEの有病率、臨床症状の違いなどに影響を与えている可能性がある。

小児期発症のSLEと、成人期に達してから発症したSLEとの比較では、小児期発症SLEの方で疾患活動性が高く、障害臓器数も多い傾向がある（Mina and Brunner 2010, Tucker et al. 2008）。また、複数のSLE感受性遺伝子におけるリスクアリル数の累計を調べた研究では、小児期発症SLE患者のリスクアリル数の累計は、成人期に発症したSLE患者と比較して有意に多いことなどから、成人期発症のSLEに比べて、小児期発症では発症に対してより遺伝的な影響を受けていると考えられる（Webb et al. 2011）。

SLEの男性患者と、女性患者との比較では、罹患は女性に圧倒的に多く、臨床症状の特徴にも違いを認める（Yacoub Wasef 2004）。男女比（男：女）は小児で1：3、成人で1：7～15、高齢者では1：8であり（Chakravarty et al. 2007, Lahita 1999）、女性の発症のピークが出産可能な年齢であることから、ホルモンの促進的な役割が示唆されている（Costenbader et al. 2007, Cooper et al. 1998）。男性SLE患者のリスクアリル数の累計と女性SLE患者の累計を比較した研究では、男性患者の方がリスクアリル数の累計が有意に多く、SLE発症における遺伝要因は、男性患者により強く考えられる（Hughes et al. 2012）。
今回、発症に遺伝的な影響が大きいと思われる小児期発症のSLEを対象とし、臨床症状や男女間での違い等を比較することで、SLEにおける感受性遺伝子の及ぼす影響を検討した。

2. 実験材料と方法

2007年12月から2010年12月に横浜市立大学附属病院小児科を受診し、SLEと診断された18歳以下の小児期発症患者75名と、膠原病発症の既往歴のない成人190名のコントロール群を対象とした。

成人発症も含めた研究で、SLEとの疾患感受性を指摘されている遺伝子多型の中でSTAT4（rs7574865）、BLK（rs13277113）、IRF5（rs41298401）、TNFAIP3（rs2230926）、TNIP1（rs7708392）、ETS1（rs4937333）、SPP1（rs9138）を対象とした（Tsuchiya, Ohashi and Tokunaga 2002, Kawasaki et al. 2008b, Kawasaki et al. 2008a, Ito et al. 2009, Kawasaki et al. 2010a, Kawasaki et al. 2010b, Zhong et al. 2011, Han et al. 2008）。それぞれの遺伝子多型とSLEとの疾患感受性、個々の臨床症状との関連、男女差の検討はLogistic回帰にて解析し、多重比較となる解析にはBonferroni法による補正を行った。リスクアリル数の累計の検討は、7つの遺伝子多型におけるリスクアリル数を累計し、Wilcoxon rank sum試験にて解析した。

3. 結果

STAT4のrs7574865TとSPP1のrs9138Aにおいて、小児期発症のSLEとコントロール群との間に有意な疾患感受性を認めた（STAT4 allele association: Odds Ratio (OR)=1.77, 95% Confidence Interval (95%CI)=1.20-2.62, 補正P=0.027）(SPP1 Recessive model: OR=3.31, 95%CI=1.67-6.56, 補正P=4.3×10⁻³)（表1）。TNFAIP3のrs2230926Gは男児SLEと男性コントロール群の間で有意な疾患感受性を認めた（OR=6.17, 95%CI=2.10-18.09, 補正P=6.4×10⁻³）。今回の研究ではIRF5、BLK、TNIP1、ETS1は補正後で明らかな有意差を認めなかった。リスクアリル数の累計は、小児期発症のSLEの方がコントロール群に比べて有意にリスクアリル数が多かったが（P=4.1×10⁻⁶）、小児期発症のSLEの男女間では有意な差を認めなかった（P=0.085）。SLEの臨床症状における男女差の比較では、蛋白尿が男児に有意に多く認めた（P=0.026 Fisher's exact p value）。

それぞれの遺伝子多型のSLE発症における男女差の検討では、TNFAIP3のみが弱いただけに有意な差を認め、女児のSLEに比べ男児のSLEにより強い関連が検出された（OR=4.05, 95%CI=1.46-11.23, 補正P<0.05）。

4. 考察

若年性SLEは小児リウマチ性疾患・膠原病の中では、若年性特発性関節炎について2番目に頻度が高い慢性炎症性疾患である。小児期発症SLEでは成人発症に比べて疾患の
活動性が高く、臓器障害（特に腎臓）が起こりやすい。成人における SLE の発症に女性ホルモンの影響が指摘されているが、月経発来前に SLE と診断された群と、発来後に診断された群を比較すると、前者の方が障害臓器数は多く、予後不良との報告がある（Pluchinotta et al. 2007）。小児期発症の SLE では遺伝的要因が強く関与していると予想されるため、SLE 発症に遺伝的影響を受けた場合、より重症となる可能性が考えられる。

今回、日本人の成人も含めた検討で指摘されている SLE 感受性遺伝子の中でも、STAT4 や SPP1、TNFAIP3 で SLE 発症に対する関連を認めた。SLE 発症の遺伝要因として、これらの遺伝子がより強く関与している可能性がある。

また男性内での比較（男児 SLE vs 男性 control 群）で、SLE 発症と TNFAIP3 との関連がみられ、男児 SLE と女児 SLE の間でも男児 SLE で有意に強い疾患感受性を認めたことから、男児の SLE 発症に TNFAIP3 がより関連している可能性があるが、男児 SLE は 15 人と少数であるため、より大規模な症例数での検討が必要であると考える。
Genotype/Allele	Case (n=75)	Control (n=190)						
IRF5								
rs41298401C	CC	56 (74.7)	139 (73.2)	CC	51 (26.8)	107 (56.3)	CC	51 (26.8)
	CG	18 (24.0)	41 (21.6)	CG	32 (16.6)	74 (38.9)	CG	32 (16.6)
	GG	1 (1.3)	10 (5.3)	GG	8 (4.0)	9 (4.7)	GG	8 (4.0)
	C	130 (86.7)	319 (83.9)	C	140 (73.7)	288 (75.8)	C	140 (73.7)
BLK								
rs13277113A	AA	43 (57.3)	84 (44.2)	AA	34 (17.7)	68 (35.3)	AA	34 (17.7)
	AG	28 (37.3)	40 (21.1)	AG	37 (19.5)	70 (36.8)	AG	37 (19.5)
	GG	4 (5.3)	16 (8.4)	GG	7 (3.6)	12 (6.2)	GG	7 (3.6)
	A	114 (76.0)	258 (67.9)	A	124 (64.7)	231 (121.4)	A	124 (64.7)
STAT4								
rs7574865T	TT	16 (21.3)	81 (42.6)	TT	21 (10.6)	114 (59.4)	TT	21 (10.6)
	TG	39 (52.0)	86 (45.3)	TG	34 (17.7)	68 (35.3)	TG	34 (17.7)
	GG	20 (26.7)	127 (63.4)	GG	37 (19.5)	70 (36.8)	GG	37 (19.5)
	T	71 (47.3)	47 (24.5)	T	20 (10.5)	114 (59.4)	T	20 (10.5)
TNFAIP3								
rs2230926G	GG	3 (4.0)	23 (12.1)	GG	2 (1.0)	12 (6.2)	GG	2 (1.0)
	GT	121 (16.0)	21 (11.1)	GT	12 (6.2)	70 (36.8)	GT	12 (6.2)
	TT	60 (80.0)	167 (87.9)	TT	20 (10.5)	114 (59.4)	TT	20 (10.5)
	G	18 (12.0)	23 (12.1)	G	12 (6.2)	70 (36.8)	G	12 (6.2)
SPP1								
rs9138A	AA	21 (28.0)	20 (10.5)	AA	17 (8.9)	107 (56.3)	AA	17 (8.9)
	AC	29 (38.7)	96 (50.5)	AC	25 (12.9)	47 (24.5)	AC	25 (12.9)
	CC	25 (33.3)	74 (38.9)	CC	25 (12.9)	47 (24.5)	CC	25 (12.9)
	C	71 (47.3)	136 (71.0)	C	25 (12.9)	47 (24.5)	C	25 (12.9)
TNIP1								
rs7018312C	CC	40 (53.3)	107 (56.3)	CC	24 (12.0)	88 (46.8)	CC	24 (12.0)
	CG	35 (46.7)	74 (38.9)	CG	36 (18.5)	127 (63.4)	CG	36 (18.5)
	GG	0 (0.0)	9 (4.7)	GG	0 (0.0)	5 (2.6)	GG	0 (0.0)
	C	115 (76.7)	288 (75.8)	C	25 (12.9)	127 (63.4)	C	25 (12.9)
ETS1								
rs4937333T	TT	24 (32.0)	51 (26.8)	TT	24 (12.0)	88 (46.8)	TT	24 (12.0)
	TC	40 (53.3)	89 (46.8)	TC	36 (18.5)	127 (63.4)	TC	36 (18.5)
	CC	11 (14.7)	50 (25.3)	CC	0 (0.0)	5 (2.6)	CC	0 (0.0)
	T	88 (58.7)	191 (95.0)	T	25 (12.9)	127 (63.4)	T	25 (12.9)

P values calculated by logistic regression analysis and then corrected by the Bonferroni criterion. *infinity
Genotype and allele frequencies are shown in parentheses (%).

n.s., not significant

PLoS One. 2013 Aug 30;8(8):e72551より引用
Chakravarty, E. F., T. M. Bush, S. Manzi, A. E. Clarke & M. M. Ward (2007) Prevalence of adult systemic lupus erythematosus in California and Pennsylvania in 2000: estimates obtained using hospitalization data. *Arthritis Rheum*, 56, 2092-4.

Cooper, G. S., M. A. Dooley, E. L. Treadwell, E. W. St Clair, C. G. Parks & G. S. Gilkeson (1998) Hormonal, environmental, and infectious risk factors for developing systemic lupus erythematosus. *Arthritis Rheum*, 41, 1714-24.

Costenbader, K. H., D. Feskanich, M. J. Stampfer & E. W. Karlson (2007) Reproductive and menopausal factors and risk of systemic lupus erythematosus in women. *Arthritis Rheum*, 56, 1251-62.

Han, S., J. M. Guthridge, I. T. Harley, A. L. Sestak, X. Kim-Howard, K. M. Kaufman, B. Namjou, H. Deshmukh, G. Bruner, L. R. Espinoza, G. S. Gilkeson, J. B. Harley, J. A. James & S. K. Nath (2008) Osteopontin and systemic lupus erythematosus association: a probable gene-gender interaction. *PLoS One*, 3, e0001757.

Hughes, T., A. Adler, J. T. Merrill, J. A. Kelly, K. M. Kaufman, A. Williams, C. D. Langefeld, G. S. Gilkeson, E. Sanchez, J. Martin, S. A. Boackle, A. M. Stevens, G. S. Alarcon, T. B. Niewold, E. E. Brown, R. P. Kimberly, J. C. Edberg, R. Ramsey-Goldman, M. Petri, J. D. Reveille, L. A. Criswell, L. M. Vila, C. O. Jacob, P. M. Gaffney, K. L. Moser, T. J. Vyse, M. E. Alarcon-Riquelme, J. A. James, B. P. Tsao, R. H. Scofield, J. B. Harley, B. C. Richardson & A. H. Sawalha (2012) Analysis of autosomal genes reveals gene-sex interactions and higher total genetic risk in men with systemic lupus erythematosus. *Ann Rheum Dis*, 71, 694-9.

Ito, I., A. Kawasaki, S. Ito, T. Hayashi, D. Goto, I. Matsumoto, A. Tsutsumi, G. Hom, R. R. Graham, Y. Takasaki, H. Hashimoto, J. Ohashi, T. W. Behrens, T. Sumida & N. Tsuchiya (2009) Replication of the association between the C8orf13-BLK region and systemic lupus erythematosus in a Japanese population. *Arthritis Rheum*, 60, 553-8.

Kawasaki, A., I. Ito, K. Hikami, J. Ohashi, T. Hayashi, D. Goto, I. Matsumoto, S. Ito, A. Tsutsumi, M. Koga, T. Arinami, R. R. Graham, G. Hom, Y. Takasaki, H. Hashimoto, T. W. Behrens, T. Sumida & N. Tsuchiya (2008a) Role of STAT4 polymorphisms in systemic lupus erythematosus in a Japanese population: a case-control association study of the STAT1-STAT4 region. *Arthritis Res Ther*, 10, R113.
Kawasaki, A., I. Ito, S. Ito, T. Hayashi, D. Goto, I. Matsumoto, Y. Takasaki, H. Hashimoto, T. Sumida & N. Tsuchiya (2010a) Association of TNFAIP3 polymorphism with susceptibility to systemic lupus erythematosus in a Japanese population. *J Biomed Biotechnol*, 2010, 207578.

Kawasaki, A., S. Ito, H. Furukawa, T. Hayashi, D. Goto, I. Matsumoto, M. Kusaoi, J. Ohashi, R. R. Graham, K. Matsuta, T. W. Behrens, S. Tohma, Y. Takasaki, H. Hashimoto, T. Sumida & N. Tsuchiya (2010b) Association of TNFAIP3 interacting protein 1, TNIP1 with systemic lupus erythematosus in a Japanese population: a case-control association study. *Arthritis Res Ther*, 12, R174.

Kawasaki, A., C. Kyogoku, J. Ohashi, R. Miyashita, K. Hikami, M. Kusaoi, K. Tokunaga, Y. Takasaki, H. Hashimoto, T. W. Behrens & N. Tsuchiya (2008b) Association of IRF5 polymorphisms with systemic lupus erythematosus in a Japanese population: support for a crucial role of intron 1 polymorphisms. *Arthritis Rheum*, 58, 826-34.

Lahita, R. G. (1999) The role of sex hormones in systemic lupus erythematosus. *Curr Opin Rheumatol*, 11, 352-6.

Mina, R. & H. I. Brunner (2010) Pediatric lupus—are there differences in presentation, genetics, response to therapy, and damage accrual compared with adult lupus? *Rheum Dis Clin North Am*, 36, 53-80, vii-viii.

Pluchinotta, F. R., B. Schiavo, F. Vittadello, G. Martini, G. Perilongo & F. Zulian (2007) Distinctive clinical features of pediatric systemic lupus erythematosus in three different age classes. *Lupus*, 16, 550-5.

Tsuchiya, N., J. Ohashi & K. Tokunaga (2002) Variations in immune response genes and their associations with multifactorial immune disorders. *Immunol Rev*, 190, 169-81.

Tucker, L. B., A. G. Uribe, M. Fernandez, L. M. Vila, G. McGwin, M. Apte, B. J. Fessler, H. M. Bastian, J. D. Reveille & G. S. Alarcon (2008) Adolescent onset of lupus results in more aggressive disease and worse outcomes: results of a nested matched case-control study within LUMINA, a multiethnic US cohort (LUMINA LVII). *Lupus*, 17, 314-22.

Webb, R., J. A. Kelly, E. C. Somers, T. Hughes, K. M. Kaufman, E. Sanchez, S. K. Nath, G. Bruner, M. E. Alarcon-Riquelme, G. S. Gilkeson, D. L. Kamen, B. C. Richardson, J. B. Harley & A. H. Sawalha (2011) Early disease onset is predicted by a higher genetic risk for lupus and is associated with a more severe phenotype in lupus patients. *Ann Rheum*
Dis, 70, 151-6.

Yacoub Wasef, S. Z. (2004) Gender differences in systemic lupus erythematosus. Gend Med, 1, 12-7.

Zhong, H., X. L. Li, M. Li, L. X. Hao, R. W. Chen, K. Xiang, X. B. Qi, R. Z. Ma & B. Su (2011) Replicated associations of TNFAIP3, TNIP1 and ETS1 with systemic lupus erythematosus in a southwestern Chinese population. Arthritis Res Ther, 13, R186.
I 主論文
Analysis of gender differences in genetic risk: association of TNFAIP3 polymorphism with male childhood-onset systemic lupus erythematosus in the Japanese population

Keisuke Kadota, Masaaki Mori, Masakatsu Yanagimachi, Takako Miyamae, Takuma Hara, Taichi Kanetaka, Tomo Nozawa, Masako Kikuchi, Ryoki Hara, Tomoyuki Imagawa, Tetsuji Kaneko and Shumpei Yokota
PLoS One. 2013 Aug 30;8(8):e72551. doi: 10.1371/journal.pone.0072551.

II 副論文

III 参考論文
Association of IRF5 polymorphisms with susceptibility to hemophagocytic lymphohistiocytosis in children.

Yanagimachi Masakatsu, Goto Hiroaki, Miyamae Takako, Kadota Keisuke, Imagawa Tomoyuki, Mori Masaaki, Sato Hidenori, Yanagisawa Ryu, Kaneko Tetsuji, Morita Satoshi, Ishii Eiichi, Yokota Shumpei.
J Clin Immunol. 2011 Dec;31(6):946-51. doi: 10.1007/s10875-011-9583-x. Epub 2011 Sep 4.