Nanosecond-time-scale delayed fluorescence molecule for deep-blue OLEDs with small efficiency rolloff

Jong Uk Kim1,2, In Seob Park1, Chin-Yiu Chan1, Masaki Tanaka1, Youichi Tsuchiya1, Hajime Nakanotani1,2,3 & Chihaya Adachi1,2,3

Aromatic organic deep-blue emitters that exhibit thermally activated delayed fluorescence (TADF) can harvest all excitons in electrically generated singlets and triplets as light emission. However, blue TADF emitters generally have long exciton lifetimes, leading to severe efficiency decrease, i.e., rolloff, at high current density and luminance by exciton annihilations in organic light-emitting diodes (OLEDs). Here, we report a deep-blue TADF emitter employing simple molecular design, in which an activation energy as well as spin–orbit coupling between excited states with different spin multiplicities, were simultaneously controlled. An extremely fast exciton lifetime of 750 ns was realized in a donor–acceptor-type molecular structure without heavy metal elements. An OLED utilizing this TADF emitter displayed deep-blue electroluminescence (EL) with CIE chromaticity coordinates of (0.14, 0.18) and a high maximum EL quantum efficiency of 20.7%. Further, the high maximum efficiency were retained to be 20.2% and 17.4% even at high luminance.
Organic light-emitting diodes (OLEDs) have been commercialized in flat panel displays and solid-state lighting applications, and significant efforts are still devoted to enhancing OLED performance. In OLEDs, the most important parameter is the internal quantum efficiency (η_{int}), which is theoretically limited to 25% in traditional fluorescence-based OLEDs, as only singlet excitons can be harvested under electrical excitation. On the other hand, the utilization of phosphorescent emitters containing heavy metals such as Ir, Pt, Os, and Au enhanced intersystem crossing by the strong spin–orbit coupling (SOC), and these phosphorescent emitters can harvest not only singlet excitons but also triplet excitons, leading to an ideal η_{int} of nearly 100% in OLEDs. However, the weak metal–ligand coordination bonds result in a limited device lifetime in blue OLEDs. As an alternative approach, highly efficient thermally activated delayed fluorescence (TADF)-based OLEDs have recently been realized using simple aromatic compounds as an emitter. In this system, triplet excitons are efficiently upconverted from a lowest triplet state (T_1) to the lowest excited singlet state (S_1) by a reverse intersystem crossing (RISC) process, governed by a small energy gap (ΔE_{ST}) between the S_1 and T_1 states, resulting in a maximum η_{int} of close to 100%. Eventually, high external quantum efficiencies (η_{exc}) of over 20% have been achieved for TADF-OLEDs.

Nevertheless, blue TADF-OLEDs suffer from severe efficiency rolloff compared to their green and red counterparts because relatively long-lived triplet excitons in blue TADF molecules directly affect the operational stability and efficiency rolloff characteristics of TADF-OLEDs. These effects are observed because of the increase of exciton deactivation processes at high current density, including triplet–triplet annihilation (TTA) and singlet–triplet annihilation (STA). Advanced blue TADF molecules with ideally short exciton lifetimes (<1 ps) are thus essentially required for future OLED applications. To realize short exciton lifetimes in pure organic TADF molecules, a rate constant affecting the rate constants of a TADF molecule. As a result, we designed a donor–acceptor (D–A) type TADF molecule, TMCz-BO (Fig. 1), by introducing 1,3,6,8-tetramethyl-9H-carbazole (TMCz) as a donor unit and 5,9-dioxia-13b-boranaphtho[3,2,1-de]anthracene (BO) as an acceptor unit. Both units have ideally high T_1 energies (TMCz and BO: $E_g = 3.00$ eV, Supplementary Fig. 1), which are similar to ^1CT of previously reported D–A-type deep-blue TADF emitters. To validate our concept, we obtained an ideal nano-second-scale exciton lifetime of 750 ns in a deep-blue TADF molecule, which can drastically minimize efficiency rolloff in TADF-OLEDs.

Results

Molecular design and synthesis. To validate our concept, we designed a donor–acceptor (D–A) type TADF molecule, TMCz-BO (Fig. 1), by introducing 1,3,6,8-tetramethyl-9H-carbazole (TMCz) as a donor unit and 5,9-dioxia-13b-boranaphtho[3,2,1-de]anthracene (BO) as an acceptor unit. Both units have ideally high T_1 energies (TMCz and BO: $E_g = 3.00$ eV, Supplementary Fig. 1), which are similar to ^1CT of previously reported D–A type deep-blue TADF emitters. Therefore, we expect to attain ideal $^1\text{CT} \approx ^3\text{LE}$. Moreover, the small spatial overlap of this molecule between the HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) in TMCz and BO, respectively, induced the CT character in both S_1 and T_1 states, resulting in a small calculated ΔE_{ST} of 0.01 eV (i.e., $^1\text{CT} \approx ^3\text{CT}$). This analysis was performed using time-dependent density functional theory (TDDFT) at the PBE0/6-31G(d) level in the gas phase (Supplementary Table 1). To control the ^3LE state of an acceptor unit, we also designed a model molecule, TMCz-3P, consisting of 3,11-diphenyl-5,9-dioxia-13b-boranaphtho[3,2,1-de]anthracene (3P) as an acceptor,

![Fig. 1 Molecular structures and energy levels. HOMO and LUMO of TMCz-BO and TMCz-3P characterized by DFT calculations at the PBE0/6-31G(d) level of theory and TD-DFT in T_1 state.](https://example.com/fig1.png)
which had a lower E_T (2.76 eV) than that of BO because additional phenylenes lead to longer π-conjugation, thereby decreasing E_T. Although this molecule has a similarly small frontier orbital overlap, relatively strong LE character was observed rather than the CT character in its T_1 state according to triplet spin density distribution (TSDD) simulations using the optimized ground-state geometry. In addition, TSDD simulations revealed that TMCz-BO has a strong CT rather than LE character in its T_1 state because the TSDD of TMCz-BO resided throughout the entire D–A molecule, whereas TSDD was only displayed in TMCz-3P on its acceptor unit (3P, Fig. 1).

Figure 2 shows the synthetic routes used to produce the boron-based compounds. The intermediates 3 and 4 were prepared from 1 and 2 using the Buchwald–Hartwig amination with high yields of 80%. The final compounds were obtained using the cyclization reactions of 3 (for TMCz-BO) or 4 (for TMCz-3P) in the presence of n-butyllithium (n-BuLi) and boron tribromide (BBr$_3$). These final products were purified using temperature-gradient vacuum sublimation. The chemical structures of these compounds were characterized using 1H and 13C nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS), and elemental analysis. The detailed synthetic procedures and characterization data are provided in the Methods section and Supplementary Methods.

Photophysical properties. The fundamental photophysical properties of TMCz-BO and TMCz-3P were first studied in toluene solution at a concentration of 10^{-3} M (Table 1 and Supplementary Figs. 2, 3). As shown in Fig. 3a, two clear absorption bands in the ultraviolet–visible (UV–vis) absorption spectra were observed for both materials. The shorter wavelength is attributed to the π–π^* transition of the acceptor and donor units, whereas the other one at longer wavelength (>370 nm) corresponds to an intramolecular CT transition from the donor to acceptor units. To attain a deeper understanding of their excited-state properties, we also investigated the solvatochromic effects of TMCz-BO and TMCz-3P in various solvents (Supplementary Fig. 2). Fluorescence spectra with large bathochromic shifts were observed when the solvent polarity was changed from non-polar cyclohexane to polar dichloromethane. The maximum peak wavelength (λ_{PL}) of TMCz-BO was ~407 nm in cyclohexane and 503 nm in dichloromethane, whereas λ_{PL} of TMCz-3P was 416 nm in cyclohexane and 517 nm in dichloromethane. Owing to increased solvent polarity, there was a large difference in the emission peak wavelength ($\Delta\lambda_{max}$ = 96 nm for TMCz-BO and $\Delta\lambda_{max}$ = 101 nm for TMCz-3P), indicating pronounced positive solvatochromism, which confirmed the strong CT character of TMCz-BO and TMCz-3P in their S_1 states.

For further investigation of the photophysical and TADF properties, doped films of both emitters in an amorphous host matrix (i.e., PPF: 2,8-bis(diphenylphosphoryl)dibenzo[b,d]furan, E_T = 3.1 eV)44 were prepared to avoid concentration quenching. Here, we selected PPF as a host since it can provide both efficient triplet confinement and electron transport abilities. As observed in Fig. 3, the 30 wt% doped films of TMCz-BO and TMCz-3P exhibited blue emission with peaks at λ_{PL} = 467 and 477 nm,

![Fig. 2 Synthetic scheme. Synthetic routes for TMCz-BO and TMCz-3P.](image)

Table 1 Photophysical characteristics of TMCz-BO and TMCz-3P.

Compound	λ_{abs} (nm)	λ_{PL} (nm)	Φ_{PL} (%)	τ_p (ns)a/τ_d (µs)b	HOMO (eV)c	LUMO (eV)f	E_S/E_T (eV)g	ΔE_{ST} (meV)h	E_a (meV)i
TMCz-BO	282,377	446/467	81/98	38/0.75	−5.93	−2.77	2.95/2.93	20.0	13.4
TMCz-3P	298,386	455/477	56/76	29/14.5	−5.97	−2.89	2.88/2.74	134	39.8

a Measured in oxygen-free toluene at room temperature (298 K).

b 30 wt% doped thin film in a host matrix (host = PPF).

c Absolute PLQY evaluated using an integrating sphere under a nitrogen atmosphere.

d PL lifetimes of prompt (τ_p) and delayed (τ_d) decay components for 30 wt% doped film at 298 K.

e Determined by photoelectron yield spectroscopy in pure neat films.

f Deduced from the HOMO and optical energy gap (E_t).

g Singlet (E_S) and triplet (E_T) energies estimated from onsets of the emission spectra at 298 and 77 K in 30 wt% doped films, respectively.

h $\Delta E_{ST} = E_T - E_S$.

i Activation energies of RISC in 30 wt% doped films.
corresponding to Commission Internationale de l’Éclairage (CIE) chromaticity coordinates of (0.15, 0.18) and (0.16, 0.25), respectively. We note that the red-shifted emission maxima of the doped films were observed compared to those of their toluene solution ($\lambda_{PL} = 446$ nm for TMCz-BO and $\lambda_{PL} = 455$ nm for TMCz-3P), which should be primarily associated with a stronger dipole moment of PPF (5.8 D) than that of toluene (0.36 D)\(^2\). Such a phenomenon is an additional evidence that these molecules possess a strong CT character.

From the transient PL characteristics of the doped films at 300 K, we observed a clear nano-second-scale prompt component and a microsecond-scale delayed PL component, which were fitted using the biexponential model. As shown in Fig. 3c, TMCz-BO has an extremely fast delayed emission lifetime (τ_d) of 750 ns (fractional delayed PL quantum yield: $\Phi_d = 32\%$) with a prompt emission lifetime (τ_p) of 38 ns (fractional prompt PL quantum yield: $\Phi_p = 66\%$) in N$_2$, whereas a relatively long τ_d of 14.5 μs ($\Phi_d = 11\%$) with similar τ_p of 29 ns ($\Phi_p = 65\%$) was observed in the TMCz-3P-based doped film (Fig. 3d). The rate constants, that is, k_r, k_{RISC}, and k_{RISC} were also estimated for both doped films using the reported method and summarized in Supplementary Table S\(^2\). Although similar k_r and k_{RISC} values were determined from both doped films (TMCz-BO: $k_r = 1.7 \times 10^7$ s\(^{-1}\), $k_{RISC} = 0.9 \times 10^7$ s\(^{-1}\) and TMCz-3P: $k_r = 2.3 \times 10^7$ s\(^{-1}\), $k_{RISC} = 1.2 \times 10^7$ s\(^{-1}\)), TMCz-BO has a large k_{RISC} of 1.9×10^8 s\(^{-1}\), which is two orders of magnitude higher than that of TMCz-3P (3.3 $\times 10^4$ s\(^{-1}\)).

To understand the exciton dynamics in the excited states of TMCz-BO and TMCz-3P, we first measured the phosphorescence (77 K) spectra of 5–30 wt% doped films in the PPF host matrix with fluorescence (298 K) to determine whether they exhibited CT or LE character in their T\(_2\) states. The phosphorescence spectra of 5–30 wt% TMCz-BO-doped films contained broad and structureless characteristics (i.e., CT character) without the vibrational mode, similar to the 3^LE of both the donor (TMCz) and acceptor (3P) units (Fig. 4a). Furthermore, E_T (2.93 eV) of TMCz-BO, which was estimated from the onset of the phosphorescence spectrum of the 30 wt% doped film, was quite close to those of both TMCz and BO ($3\text{LE} = 3.00$ eV). In contrast, TMCz-3P was observed to have a similar E_T (2.76 eV) as that of the acceptor (3P, $3\text{LE} = 2.76$ eV) (Fig. 4b). The phosphorescence spectra of TMCz-3P coincided well with that of the acceptor (3P) unit with appreciable redshift to the onset of the fluorescence. In addition, LE character with vibrational mode was observed in the phosphorescence spectra of 5–20 wt% TMCz-3P-based doped films, even though the phosphorescence spectrum appeared to indicate CT character in the 30 wt% doped film. As a next step, we also analyzed the temperature dependences of k_{RISC} (Fig. 4c) using the 30 wt% doped films. According to the classical Arrhenius equation, k_{RISC} is given as $k_{RISC} = A\exp(-E_a/k_BT)$, where A is the frequency factor involving the SOC constant. From the Arrhenius plots of k_{RISC}, similarly small E_a values were experimentally estimated to be 13.4 meV for TMCz-BO and 39.8 meV for TMCz-3P. Moreover, small E_a values for 5–20 wt% doped films were also analyzed in the range of 13.7–14.5 meV for TMCz-BO and 24.0–34.0 meV for TMCz-3P (Supplementary Fig. 4 and Table 2). These results indicated that the large difference in k_{RISC} values between TMCz-BO and TMCz-3P is strongly associated with SOC in contrast with common TADF systems.

To obtain additional insight into the spin–flip RISC process, we carefully analyzed the relationship between the SOC and E_a values with consideration of their ΔE_{ST} values. Although TMCz-BO has a similarly small ΔE_{ST} of 20 meV with its E_a, ΔE_{ST} of TMCz-3P was estimated to be quite large (134 meV), which is three times larger than its E_a. These experimentally obtained k_{RISC}, E_a, and ΔE_{ST} suggest that different spin-flip processes should be involved in TMCz-BO and TMCz-3P. As suggested by the energy level diagram in Fig. 5a, the efficient RISC spin-flip process for TMCz-BO should be involved in $3\text{CT} \rightarrow 3\text{LE} \rightarrow 1\text{CT}$ because energetically close-lying excited states induce efficient H_{VC} from the 3CT
molecule to occur along the same pathway as that for \(\text{Ĥ} \) in addition, it is difficult for the spin-flip process in the TMCz-3P molecule to occur along the same pathway as that for TMCz-BO, even though it has a similarly large \(< 1CT|H_{SOC}\rangle \approx 0.128 \text{ cm}^{-1} \), because its experimental \(\Delta E_{CT} \) is much larger than the thermal energy (\(k_B T = 25.9 \text{ meV} \)) at 300 K as well as its \(E_g \). Experimental data thus suggest that the \(3CT \rightarrow 1CT \) spin-flip process (i.e., hyperfine coupling) \({ }^{13}50,46\) should occur after efficient \(^{1}V_{CE} \) from \(3LE \) to energetically close-lying higher \(3CT \) states, leading to relatively small \(k_{RISC} \) because of the negligible \(< 1CT|H_{SOC}|^{3}CT \rangle \) of 0.001 cm\(^{-1}\). Therefore, energetically closely-lying excited states (i.e., \(1CT \sim 3CT \sim 3LE \)) with suitably large SOC between \(1CT \) and \(3LE \) should be realized to ensure extremely fast emission lifetime in TADF molecules.

Device characterization and performance

Employing TMCz-BO and TMCz-3P as emitters, two multi-layered OLEDs were fabricated using the following device architecture: indium tin oxide (ITO, 50 nm)/HAT-CN (2,3,6,7,10,11-hexacyanobenzene (HAT-CN) (50 nm)/CCP (9-phenyl-3,9’-bicyclobazol) (10 nm)/EML (20 nm)/PPF (10 nm)/BusPyPB (1,3-bis(3,5-di(pyridine-3-yl)phenyl) benzene) (30 nm)/LiQ (8-hydroxyquinoline lithium) (1 nm)/Al (100 nm), in which HAT-CN and LiQ were used as hole injection and electron injection layers, respectively. The materials TAPC and B3PyPB were used as hole transport and electron transport layers, respectively. Thin layers of CCP and PPF with a high T1 energy \(\Delta E_{SOC} \) were inserted to suppress triplet exciton quenching at the neighboring interfaces and to confine the excitons inside the emitting layers \(\{14,16,17,21–24,28–30,32,47\} \).

HOMO, LUMO, and thermal properties of TMCz-BO and TMCz-3P are summarized in Supplementary Figs. 5–7a. The EL characteristics of both devices are depicted in Fig. 6, and the key device parameters are summarized in Table 2. As shown in Fig. 6a, the devices based on TMCz-BO and TMCz-3P exhibited blue EL emission with peaks (\(\lambda_{EL} \)) at 471 nm (deep blue) and 479 nm (blue) with corresponding CIE chromaticity coordinates of (0.14, 0.18) and (0.14, 0.26), respectively, which were consistent with their corresponding PL spectra. It is noteworthy that the

![Fig. 5 Schematic illustration of plausible TADF mechanisms.](image)

Fig. 5 Schematic illustration of plausible TADF mechanisms. **a** Decay and upconversion processes in TMCz-BO and **b** TMCz-3P. The energy levels and rate constants were estimated using 30 wt% doped films.

Table 2 EL performance of blue TADF-OLEDs.

TADF emitter	\(\lambda_{EL} \) (nm)	\(\lambda_{FWHM} \) (nm)	\(E_{FWHM} \) (eV)	\(V_{opt} \) (V)	\(L_{max} \) (cd m\(^{-2}\))	\(\eta_{ext} \) (%)	\(\eta_{c} \) (lm W\(^{-1}\))	\(\eta_{p} \) (cd A\(^{-1}\))	CIE (x, y)
TMCz-BO	471	59	0.327	3.0	5900	20.7/20.2/17.4	29.8	31.2	(0.14, 0.18)
TMCz-3P	479	59	0.324	2.8	6500	20.4/18.3/12.8	37.8	40.3	(0.14, 0.26)

Note: \(\lambda_{EL} \) emission maximum, \(\lambda_{FWHM} \) and \(E_{FWHM} \) full-width at half-maximum, \(V_{opt} \) turn-on voltage at 1 cd m\(^{-2}\), \(L_{max} \) maximum luminance, \(\eta_{ext} \) external EL quantum efficiency, \(\eta_{c} \) maximum current efficiency, \(\eta_{p} \) maximum power efficiency, CIE (x, y) Commission International de l’Éclairage colorimetric coordinates measured at 10 mA cm\(^{-2}\).
devices displayed a rather narrow full-width at half-maximum (FWHM, \(\lambda_{FWHM} \)) of 59 nm \((\lambda_{FWHM} = 0.327 \text{ eV}) \) for TMCz-BO and 61 nm \((\lambda_{FWHM} = 0.324 \text{ eV}) \) for TMCz-3P, resulting from minimizing molecular vibrations using the rigid acceptor structure and minimizing molecular conformation changes in their ground and S1 states using the peri-position dimethyl groups in TMCz\(^2\). Figure 6b, c shows the current density–voltage–luminance (J–V–L) and external EL quantum efficiency versus current density \((\eta_{ext}) \) plots. Both devices exhibited rather low turn-on voltages \((V_{on}) \) in the range of 2.8–3.0 V and achieved high maximum \(\eta_{ext} \) exceeding 20\% (20.7\% for TMCz-BO and 20.4\% for TMCz-3P). This high efficiency of the TMCz-3P-based device drastically decreased with increasing current density and luminance, which is similar to the trend observed for most reported blue TADF-OLEDs. As a result, low \(\eta_{ext} \) values (18.3\% at 100 cd m\(^{-2}\) and 12.8\% at 1000 cd m\(^{-2}\)) were obtained from the TMCz-3P-based device. However, the TMCz-BO-based device retained high \(\eta_{ext} \) values of 20.2\% at 100 cd m\(^{-2}\) and 17.4\% at 1000 cd m\(^{-2}\), corresponding to a 2.4\% and 15.9\% decrease in \(\eta_{ext} \) respectively. Low-efficiency rolloff is primarily attributed to its nano-second-order emission lifetime, which efficiently suppresses the accumulation of triplet excitons within TMCz-BO; hence, TTA and/or STA could be minimized in the device. To the best of our knowledge, the efficiency decrease in the TMCz-BO-based device is the small of those reported for TADF molecules for deep-blue OLEDs (CIE\(\approx 0.20 \)) to date (Supplementary Table 4). 14, 16, 17, 21–24, 28–30, 32, 47. We note that the recently some sophisticated devices showed rather relaxed rolloff behavior even with the TADF emitters with microsecond-order delayed lifetimes. Probably wide recombination and exciton formation width may contribute it. Thus, it should be considered to improve total device performance from the aspect of comprehensive control of delayed lifetime, charge carrier transport, and recombination characteristics.15

Figure 6a shows the normalized EL spectra, current density–voltage–luminance (J–V–L) characteristics, and external EL quantum efficiency (\(\eta_{ext} \)) versus luminance plots of TMCz-BO- and TMCz-3P-based OLEDs.

Methods

General. All reagents and anhydrous solvents were purchased from commercial sources and used without further purification. The detailed synthetic procedures and characterization data for the intermediates are given in Supplementary Figs. 8–11. The two final products investigated in this paper were synthesized by following the procedures described below and then purified using temperature-gradient vacuum sublimation with a P-100 system (ALS Technology). \(^1\)H and \(^{13}\)C NMR spectra were recorded on a Bruker Avance III 300 spectrometer. Chemical shifts of \(^1\)H and \(^{13}\)C NMR signals were quoted to tetramethylsilane (\(\delta = 0.00 \)) and CDCl\(_3\) (\(\delta = 77.0 \)), as internal standards. Mass spectra were measured in positive-ion atmospheric-pressure chemical ionization mode on a Waters 3100 mass detector. Elemental analyses were performed using a Yanaco MT-5 analyzer. For thin films and OLED fabrication, CCM18 and PPE19 were synthesized following the reported procedures and were then purified using temperature-gradient vacuum sublimation. Other OLED materials were purchased from Luminescence Technology Corporation.

Synthesis of TMCz-BO. A solution of n-BuLi in hexane (3.11 mL, 2.5 M, 7.77 mmol) was added slowly to a solution of 2 (3.0 g, 6.47 mmol) in tert-butylbenzene (30 mL) at \(-20^\circ\text{C}\) under a nitrogen atmosphere. After stirring at \(50^\circ\text{C}\) for 4 h, hexane was distilled off at \(100^\circ\text{C}\) under a continuous flow of nitrogen. BrBr, in dichloromethane (9.71 mL, 1.0 M, 9.71 mmol) was added slowly at \(-20^\circ\text{C}\). The reaction mixture was then allowed to warm to room temperature for 1 h and then stirred at \(40^\circ\text{C}\) for 1 h. After 10% of the solvent had been removed in vacuo, N,N-dioctopropylethylamine (DIPPEA, 1.67 g, 12.9 mmol) was added at 0 °C. After stirring...
at 120 °C for 5 h, methanol was added to the reaction mixture at room temperature. The reaction mixture was then filtered with a pad of Florisil. The crude product was washed with methanol to afford TMCz-BO (0.48 g, 15% yield) as a light-yellow solid. H NMR (500 MHz, CDCl3, δ): 7.77 (dd, J = 8.1, 1.5 Hz, 4H), 7.58 (dd, J = 7.8, 0.6 Hz, 2H), 7.46 (td, J = 7.4 Hz, 0.9 Hz, 2H), 7.40 (s, 2H), 6.95 (s, 2H), 2.51 (s, 6H), 1.97 (s, 6H) (Supplementary Fig. 12); 13C NMR (125 MHz, CDCl3, δ): 145.79, 140.54, 138.52, 134.04, 129.28, 128.26 128.01, 127.36, 126.34, 123.37, 120.39, 112.01, 21.11, 19.33. (Supplementary Fig. 13); MS (ESI) m/z: [M]+ calcld 493.39; found, 492.17. Anal. calcd (%) for C34H26BNO2: C 83.10, H 5.33, N 2.85; found: C 83.09, H 5.36, N 2.85.

Synthesis of TMCz-3P. TMCz-3P was synthesized using the same procedure described above for the synthesis of TMCz-BO, except that 4 (3.0 g, 4.72 mmol), n-Buli (2.26 mL, 5.66 mmol), BBr3 (7.08 mL, 7.08 mmol), and DIPEA (1.22 g, 9.44 mmol) were used as the reagents, giving TMCz-3P (0.46 g, 15% yield) as a light-yellow solid. H NMR (500 MHz, CDCl3, δ): 3.74 (d, J = 8.1 Hz, 2H), 7.70 (td, J = 7.6, 1.4 Hz, 4H), 7.64 (dd, J = 8.0, 1.7 Hz, 2H), 7.46 (td, J = 7.6, 4.8 Hz, 4H), 7.38 (tt, J = 7.35, 3.0 Hz, 2H), 7.34 (s, 2H), 6.90 (s, 2H), 6.87 (s, 2H), 2.42 (s, 6H), 1.90 (s, 6H) (Supplementary Fig. 14); 13C NMR (125 MHz, CDCl3, δ): 160.07, 155.98, 147.48, 145.79, 138.52, 134.04, 129.28, 128.26 128.01, 127.36, 126.34, 123.37, 123.39, 116.78, 115.58, 111.10, 20.09, 18.33 (Supplementary Fig. 15); MS (APSA) m/z: [M]+ calcld 463.58; found, 463.23. Anal. calcld (%) for C45H28BNO2: C 85.85, H 5.32, N 2.18; found: C 85.22, H 5.37, N 2.13.

Quantum chemical calculations. Quantum chemical calculations were performed using the Gaussian 16 program package. The molecular geometries in the ground state were optimized using the PBE0 functional with the 6-31G(d) basis set in the Gaussian 16 program package50 following the literature method27. Quantum chemical calculations were performed using the optimized structures with TDDFT at the same state were optimized using the PBE0 functional with the 6-31G(d) basis set in the Gaussian 16 program package. The molecular geometries in the ground state were optimized using the Gaussian 16 program package.

Photophysical measurements. Thin-film samples (40 nm) were deposited on quartz glass substrates by vacuum evaporation to study their exciton confinement properties in the film state. UV–vis absorption and PL spectra were recorded using a PerkinElmer Lambda 950 KPA spectrophotometer and JASCO FP-6500 fluorescence spectrophotometer, respectively. The absolute PL quantum yields were measured on a Quantum-YSQ measurement system (C11347-11, Hamamatsu Photonics) under nitrogen flow, and all the samples were excited at 360 nm. The transient PL decay characteristics were recorded using a Quantum-Tau fluorescence lifetime measurement system (C1367-03, Hamamatsu Photonics). The HOMO energy levels were determined using the onset of a photoelectron yield spectroscopy (AC-3, Riken-Keiki) in neat films, and then the LUMO energy levels were estimated by subtracting the optical energy gap (Eg) from the measured HOMO energies. In the case of the Eg values were determined from the onset of the PL spectra of neat films.

Device fabrication and measurements. Pre-patterned ITO (50 nm)-coated glass substrates were cleaned with detergent, deionized water, acetone, and isopropanol. The substrates were then exposed to UV–ozone treatment for 15 min before being loaded into an ALS Technology E-200 vacuum evaporation system. The organic layers and cathode Al layer were thermally evaporated on the substrates under vacuum (<6 × 10−3 Pa) at a deposition rate of <0.2 nm s−1 through a shadow mask, defining a pixel size of 0.04 µm2. The thickness and deposition rate were monitored in situ during deposition by an oscillating quartz thickness monitor. The current density–voltage–luminance (J–V–L) characteristics of the fabricated OLEDs were measured using a Keithley 2400 source meter and a CS-2000 spectroradiometer (Konica Minolta).

Received: 30 October 2019; Accepted: 18 March 2020; Published online: 14 April 2020

References

1. Rothberg, L. J. & Lovinger, A. J. Status of and prospects for organic electroluminescence. J. Mater. Res. 11, 3174–3187 (1996).
2. Baldo, M. A. et al. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395, 151–154 (1998).
3. Adachi, C., Baldo, M. A., Forrest, S. R. & Thompson, M. E. Nearly 100% internal phosphorescence efficiency in an organic light-emitting device. J. Appl. Phys. 90, 5048–5051 (2001).
4. Segal, M., Baldo, A., Holmes, J., Forrest, R. & Soos, G. Excitonic singlet-triplet ratios in molecular and polymeric organic materials. Phys. Rev. B 68, 07511 (2003).
5. Adachi, C., Baldo, M. A., Thompson, M. E. & Forrest, S. R. Nearly 100% internal phosphorescence efficiency in an organic light-emitting device. J. Appl. Phys. 90, 5048–5051 (2001).
6. Baldo, M. A., Adachi, C. & Forrest, S. R. Transient analysis of organic electrophosphorescence. II. Transient analysis of triplet–triplet annihilation. Phys. Rev. B 62, 10967–10977 (2000).
7. Uyama, H., Goushi, K., Shizu, K., Nomura, H. & Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234–238 (2012).
8. Yu, Y. et al. Thermally activated delayed fluorescence materials towards the breakthrough of organoelectronics. Adv. Mater. 26, 7931–7958 (2014).
9. Yang, Z. et al. Recent advances in organic thermally activated delayed fluorescence materials. Chem. Soc. Rev. 46, 915–1016 (2017).
10. Wong, M. Y. & Zysman-Colman, E. Purely organic thermally activated delayed fluorescence materials for organic light-emitting diodes. Adv. Mater. 29, 1605444 (2017).
11. Cai, X. & Su, S.-J. Marching toward highly efficient, pure-blue, and stable thermally activated delayed fluorescent organic light-emitting diodes. Adv. Funct. Mater. 28, 1802538 (2018).
12. Hirata, S. et al. Highly efficient blue electroluminescence based on thermally activated delayed fluorescence. Nat. Mater. 14, 330–336 (2014).
13. Lee, D. R. et al. Design strategy for 25% external quantum efficiency in green and blue thermally activated delayed fluorescence organic light-emitting diodes. Adv. Mater. 27, 5861–5867 (2015).
15. Kaji, H. et al. Purely organic electroluminescent material realizing 100% conversion from electricity to light. Nat. Commun. 6, 8476 (2015).

16. Numata, M., Yasuda, T. & Adachi, C. High efficiency pure blue thermally activated delayed fluorescence molecules having 10H-phenoxazinoborin and acridin units. Chem. Commun. 51, 9443–9446 (2015).

17. Sun, J. W. et al. Thermally activated delayed fluorescence from azasiline based intramolecular charge-transfer emitter (DTPDIA) and a highly efficient blue light emitting diode. Adv. Mater. 28, 6976–6983 (2016).

18. Lin, T.-A. et al. Sky-blue organic light emitting diode with 37% external quantum efficiency using thermally activated delayed fluorescence from spiroacridine-triazine hybrid. Adv. Mater. 28, 6976–6983 (2016).

19. Park, I. S., Lee, J. & Yasuda, T. High-performance blue organic light-emitting diodes with 20% external electroluminescence quantum efficiency based on pyridimine-containing thermally activated delayed fluorescence emitters. J. Mater. Chem. C 4, 7911–7916 (2016).

20. Zhang, D., Cai, M., Zhang, Y., Zhang, D. & Duan, L. Sterically shielded blue thermally activated delayed fluorescence emitters with improved efficiency and stability. Mater. Horiz. 3, 145–151 (2016).

21. Rajamalli, P. et al. New molecular design concurrently providing superior pure blue, thermally activated delayed fluorescence and optical out-coupling efficiencies. J. Am. Chem. Soc. 139, 10948–10951 (2017).

22. Park, I. S., Komiyama, H. & Yasuda, T. Pyridimine-based twisted donor–acceptor delayed fluorescence molecules: a new universal platform for highly efficient blue electroluminescence. Chem. Sci. 8, 953–960 (2017).

23. Liu, M. et al. Horizontally orientated sticklike emitters: enhancement of intrinsic out-coupling factor and electroluminescence performance. Chem. Mater. 29, 8630–8636 (2017).

24. Lee, Y. H. et al. High-efficiency sky blue to ultradark blue thermally activated delayed fluorescent diodes based on ortho-carbazole-appended triarylobenzonitrile emitters: ab initio above 32% quantum efficiency in blue devices. Adv. Opt. Mater. 6, 1800385 (2018).

25. Furse, R. et al. Highly efficient red-orange delayed fluorescence emitters based on strong π-accepting dibenzophenazine and dibenzquinocinaline cores: toward a rational pure-red OLED design. Adv. Opt. Mater. 6, 1701147 (2018).

26. Wu, T.-L. et al. Diboron compound-based organic light-emitting diodes with high efficiency and reduced efficiency roll-off. Nat. Photonics 12, 235–240 (2018).

27. Park, I. S., Matsuo, K., Aizawa, N. & Yasuda, T. High-performance dibenzoheteroboran-based thermally activated delayed fluorescence emitters: molecular architectonics for concurrently achieving narrowband emission and efficient triple–singlet spin conversion. Adv. Funct. Mater. 28, 1802031 (2018).

28. Ahn, D. H. et al. Highly efficient blue thermally activated delayed fluorescence emitters based on symmetrical and rigid oxygen-bridged boron acceptors. Nat. Photonics 24, 540–546 (2019).

29. Cheng, Z. et al. Achieving efficient blue delayed electroluminescence by shielding acceptors with carbazole units. ACS Appl. Mater. Interfaces 11, 28096–28105 (2019).

30. Woo, S. J., Kim, Y., Kwon, S. K., Kim, Y. H. & Kim, J. I. Phenazasilene-spiroacridine donor combined with methyl-substituted linkers for efficient deep blue thermally activated delayed fluorescence Emitters. ACS Appl. Mater. Interfaces 11, 7199–7207 (2019).

31. Kondo, Y. et al. Narrowband deep-blue organic light-emitting diode featuring an organosboron-based emitter. Nat. Photonics 13, 678–682 (2019).

32. Zhang, Q. et al. Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence. Nat. Photonics 8, 326–332 (2014).

33. Murawski, C., Lee, K. & Gatter, M. C. Efficiency roll-off in organic light-emitting diodes. Adv. Mater. 25, 6801–6827 (2013).

34. Masui, K., Nakatani, H. & Adachi, C. Analysis of exciton annihilation in high-efficiency sky-blue organic light-emitting diodes with thermally activated delayed fluorescence. Org. Electron. 13, 2721–2726 (2013).

35. Brédas, J.-L., Beljonne, D., Coropceanu, V. & Cornill, J. Charge-transfer and energy-transfer processes in π-conjugated oligomers and polymers: a molecular picture. Chem. Rev. 104, 4971–5004 (2004).

36. Schmidt, K. et al. Intersystem crossing processes in nonplanar aromatic molecules. J. Phys. Chem. A 111, 9314–9319 (2011).

37. Lim, B. T., Okajima, S., Chandra, A. K. & Lim, E. C. Radiationless transitions in electron donor–acceptor complexes: selection rules for S1 → T1 intersystem crossing and efficiency of S1 → 50 internal conversion. Chem. Phys. Lett. 79, 22–27 (1981).

38. Baba, M. Intersystem crossing in the ππ* and ππ* states. J. Phys. Chem. A 115, 9314–9319 (2011).

39. Samanta, P. K., Kim, D., Coropceanu, V. & Brédas, J.-L. Up-conversion intersystem crossing rates in organic emitters for thermally activated delayed fluorescence: impact of the nature of singlet vs triplet excited states. J. Am. Chem. Soc. 139, 4042–4051 (2017).

40. Gibson, J., Monkmam, A. P. & Penfold, T. J. The importance of vibronic coupling for efficient reverse intersystem crossing in thermally activated delayed fluorescence molecules. ChemPhysChem 17, 2956–2961 (2016).

41. Etherington, M. K., Gibson, J., Higginbotham, H. F., Penfold, T. J. & Monkmam, A. P. Revealing the spin–vibronic coupling mechanism of thermally activated delayed fluorescence. Nat. Commun. 7, 13680 (2016).

42. Noda, H. et al. Critical role of intermediate electronic states for spin-flip processes in charge-transfer-type organic molecules with multiple donors and acceptors. Nat. Mater. 18, 1084–1090 (2019).

43. Hirai, H. et al. One-step borylation of 1,3-diarylosybenzenes towards efficient materials for organic light-emitting diodes. Angew. Chem. - Int. Ed. 54, 13581–13585 (2015).

44. Vecchi, P. A., Padmepurna, A. B., Qiao, H., Sapochak, J. S. & Burrows, P. E. A dibenzo[b,f][1,4]benzobisoxepin-based host material for blue electrophosphorescence. Org. Lett. 8, 4211–4214 (2006).

45. Ogwara, T., Wakahara, Y. & Ikoma, T. Mechanism of intersystem crossing of thermally activated delayed fluorescence molecules. J. Phys. Chem. A 119, 3415–3418 (2015).

46. Dias, F. B. et al. The role of local triplet excited states and D–A relative orientation in thermally activated delayed fluorescence: photophysics and devices. Adv. Sci. 3, 1600800 (2016).

47. Hatakeyama, T. et al. Ultrapure blue thermally activated delayed fluorescence molecules: efficient HOMO-LUMO separation by the multiple resonance effect. Adv. Mater. 28, 2777–2781 (2016).

48. Stachelek, P. et al. Molecular design strategies for color tuning of blue TADF emitters. ACS Appl. Mater. Interfaces 11, 27125–27133 (2019).

49. Wada, Y., Nakagawa, S., Matsumoto, S., Wakisaka, Y. & Kaji, H. Molecular design realizing very fast intersystem crossing in purely organic emitter. ChemRxiv https://doi.org/10.26434/chemrxiv.9745289 (2018).

50. ADF. SCM. Theoretical Chemistry (Vrije University, Amsterdam, 2018).