Mean Width of a Regular Simplex

STEVEN R. FINCH

November 21, 2011

Abstract. The mean width is a measure on \(n \)-dimensional convex bodies. An integral formula for the mean width of a regular \(n \)-simplex appeared in the electrical engineering literature in 1997. As a consequence, expressions for the expected range of a sample of \(n + 1 \) normally distributed variables, for \(n \leq 6 \), carry over to widths of regular \(n \)-simplices. As another consequence, precise asymptotics for the mean width become available as \(n \to \infty \).

Let \(C \) be a convex body in \(\mathbb{R}^n \). A width is the distance between a pair of parallel \(C \)-supporting planes (linear varieties of dimension \(n - 1 \)). Every unit vector \(u \in \mathbb{R}^n \) determines a unique such pair of planes orthogonal to \(u \) and hence a width \(w(u) \). Let \(u \) be uniformly distributed on the unit sphere \(S^{n-1} \subset \mathbb{R}^n \). Then \(w \) is a random variable and

\[
\mathbb{E}(w_3) = \frac{3}{2\pi} \arccos \left(-\frac{1}{3} \right)
\]

for \(C = \) the regular 3-simplex (tetrahedron) in \(\mathbb{R}^3 \) with edges of unit length and

\[
\mathbb{E}(w_4) = \frac{10}{3\pi^2} \left[3 \arccos \left(-\frac{1}{3} \right) - \pi \right]
\]

for \(C = \) the regular 4-simplex in \(\mathbb{R}^4 \) with edges of unit length. Our contribution is to extend the preceding mean width results to regular \(n \)-simplices in \(\mathbb{R}^n \) for \(n \leq 6 \). We similarly extend the following mean square width result:

\[
\mathbb{E}(w_3^2) = \frac{1}{3} \left(1 + \frac{3 + \sqrt{3}}{\pi} \right)
\]

which, as far as is known, first appeared in [3].

The key observation underlying our work is due to Sun [4], which in turn draws upon material in [5, 6]. It does not seem to have been acknowledged in the mathematics literature. After most of this paper was written, we found [7], which assigns priority to to Hadwiger [8] and to Ruben [9] for closely related ideas.

\[\text{Copyright © 2011 by Steven R. Finch. All rights reserved.}\]
1. Order Statistics

Let \(X_1, X_2, \ldots, X_n \) denote a random sample from a Normal \((0, 1)\) distribution, that is, with density function \(f \) and cumulative distribution \(F \):

\[
f(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right), \quad F(x) = \int_{-\infty}^{x} f(\xi) d\xi = \frac{1}{2} \text{erf}\left(\frac{x}{\sqrt{2}}\right) + \frac{1}{2}.
\]

The first two moments of the range

\[
r_n = \max\{X_1, X_2, \ldots, X_n\} - \min\{X_1, X_2, \ldots, X_n\}
\]

are given by [10, 11]

\[
\mu_n = \mathbb{E}(r_n) = \int_{-\infty}^{\infty} \{1 - F(x)^n - [1 - F(x)]^n\} \, dx,
\]

\[
\nu_n = \mathbb{E}(r_n^2) = 2 \int_{-\infty}^{\infty} \int_{-\infty}^{y} \{1 - F(y)^n - [1 - F(x)]^n + [F(y) - F(x)]^n\} \, dx \, dy.
\]

For small \(n \), exact expressions are possible [12, 13, 14]:

\[
\mu_2 = \frac{2}{\sqrt{\pi}} = 1.128..., \quad \mu_3 = \frac{3}{\sqrt{\pi}} = 1.692..., \quad \mu_4 = \frac{6}{\sqrt{\pi}} (1 - 2S_2) = 2.058..., \quad \mu_5 = \frac{10}{\sqrt{\pi}} (1 - 3S_2) = 2.325..., \quad \mu_6 = \frac{15}{\sqrt{\pi}} (1 - 4S_2 + 2T_2) = 2.534..., \quad \mu_7 = \frac{21}{\sqrt{\pi}} (1 - 5S_2 + 5T_2) = 2.704..., \quad \mu_8 = \frac{28}{\sqrt{\pi}} (1 - 6S_2 + 7T_2) = 2.871..., \quad \mu_9 = \frac{36}{\sqrt{\pi}} (1 - 7S_2 + 9T_2) = 3.050..., \quad \mu_{10} = \frac{45}{\sqrt{\pi}} (1 - 8S_2 + 10T_2) = 3.238..., \quad \mu_{11} = \frac{55}{\sqrt{\pi}} (1 - 9S_2 + 12T_2) = 3.436...
\]

where

\[
S_k = \frac{\sqrt{k}}{\pi} \int_{0}^{\pi/4} \frac{dx}{\sqrt{k + \sec(x)^2}} = \frac{1}{2\pi} \text{arcsec} \left(k + 1 \right),
\]

\[
T_k = \frac{\sqrt{k}}{\pi^2} \int_{0}^{\pi/4} \int_{0}^{\pi/4} \frac{dx \, dy}{\sqrt{k + \sec(x)^2 + \sec(y)^2}} = \frac{1}{2\pi^2} \int_{0}^{\pi} \text{arcsec} \left(1 + \frac{k(k + 1)}{k - \tan(z)^2} \right) \, dz,
\]

\[

\]
Mean Width of a Regular Simplex

\[U = \frac{1}{\pi^2} \int_0^1 \frac{\text{arcsec} \left(\frac{2t^2 + 4}{2t^2 + 1} \right)}{\sqrt{2t^2 + 3}} dt, \quad V = \frac{1}{\pi^2} \int_0^1 \frac{\text{arcsec} \left(\frac{t^2 + 5}{t^2 + 2} \right)}{\sqrt{t^2 + 4}} dt. \]

The preceding table complements an analogous table in [15] for first and second moments of \(\max\{X_1, X_2, \ldots, X_n\} \). Similar expressions for \(\mu_8 = 2.847... \) and \(\nu_8 = 8.778... \) remain to be found.

2. Key Observation

Let us rescale length so that the circumradius of the \(n \)-simplex is 1. Adjusted width will be denoted by \(\tilde{w}_n \). Using optimality properties of the \(n \)-simplex, Sun [4] deduced a formula for mean half width:

\[
\frac{1}{2} \mathbb{E} (\tilde{w}_n) = \frac{n + 1}{2} \sqrt{\frac{(n + 1)n}{2\pi}} \frac{\Gamma \left(\frac{n}{2} \right)}{\Gamma \left(\frac{n + 1}{2} \right)} \int_{-\infty}^{\infty} F \left(\frac{x}{\sqrt{2}} \right)^{n-1} f(x) \, dx
\]

\[
= \frac{(n + 1)^{3/2}}{\sqrt{2n}} \frac{\Gamma \left(\frac{n}{2} \right)}{\Gamma \left(\frac{n + 1}{2} \right)} \int_{-\infty}^{\infty} x F(x)^n f(x) \, dx
\]

(see Corollary 2 on p. 1581 and its proof on p. 1585; his \(M \) is the same as our \(n + 1 \)). We recognize the latter integral as \(\mu_{n+1}/(2(n + 1)) \); hence

\[
\mathbb{E} (\tilde{w}_n) = \sqrt{\frac{n + 1}{2n}} \frac{\Gamma \left(\frac{n}{2} \right)}{\Gamma \left(\frac{n + 1}{2} \right)} \mu_{n+1}
\]

and therefore

\[
\mathbb{E} (\tilde{w}_n) = \frac{1}{2} \frac{\Gamma \left(\frac{n}{2} \right)}{\Gamma \left(\frac{n + 1}{2} \right)} \mu_{n+1}
\]

because, in our original scaling, the circumradius is \(\sqrt{n/(2(n + 1))} \).

No similar integral expression for \(\mathbb{E} (\tilde{w}_n^2) \) appears in [4]. We circumvent this difficulty by noticing that the formula [16][17]

\[
\mathbb{E} \left(\sqrt{\sum_{k=1}^{n} X_k^2} \right) = \sqrt{2} \frac{\Gamma \left(\frac{n + 1}{2} \right)}{\Gamma \left(\frac{n}{2} \right)}
\]

bears some resemblance to the coefficient of \(\mu_{n+1} \) in our expression for \(\mathbb{E} (\tilde{w}_n) \). The square version

\[
\mathbb{E} \left(\sum_{k=1}^{n} X_k^2 \right) = n
\]
Mean Width of a Regular Simplex

is trivial and leads us to conjecture that

$$E\left(\frac{w^2}{n}\right) = \frac{1}{2n}\nu_{n+1}$$

by analogy. Numerical confirmation for \(n \leq 6\) is possible via the computer algebra technique described in [3].

In summary, we have mean width results

$$E(w_2) = \frac{3}{\pi} = 0.954929658551372..., \quad E(w_3) = \frac{3}{2}(1 - 2S_2) = 0.912260171954089..., \quad E(w_4) = \frac{20}{3\pi}(1 - 3S_2) = 0.874843256085440..., \quad E(w_5) = \frac{45}{16}(1 - 4S_2 + 2T_2) = 0.842274297659162..., \quad E(w_6) = \frac{56}{5\pi}(1 - 5S_2 + 5T_2) = 0.813743951590337...,$$

and mean square width results

$$E\left(\frac{w^2}{2}\right) = \frac{1}{2}\left(1 + \frac{3\sqrt{3}}{2\pi}\right) = 0.913496671566344..., \quad E\left(\frac{w^2}{3}\right) = \frac{1}{3}\left(1 + \frac{3 + \sqrt{3}}{\pi}\right) = 0.835419517991054..., \quad E\left(\frac{w^2}{4}\right) = \frac{1}{4}\left(1 + \frac{5\sqrt{3}}{2\pi} + \frac{30}{\pi}S_{1/2} - \frac{5\sqrt{3}}{\pi}S_3\right) = 0.769572883591771..., \quad E\left(\frac{w^2}{5}\right) = \frac{1}{5}\left(1 + \frac{5(9 + 2\sqrt{3})}{2\pi} - \frac{90}{\pi}S_2 - \frac{15\sqrt{3}}{\pi}S_3\right) = 0.714241915072694..., \quad E\left(\frac{w^2}{6}\right) = \frac{1}{6}\left(1 + \frac{35\sqrt{3}}{4\pi} + \frac{210}{\pi}S_{1/2} - \frac{105}{\pi}S_2 - \frac{35\sqrt{3}}{\pi}S_3 + \frac{35\sqrt{3}}{2\pi}T_3 + \frac{210}{\pi}U - \frac{420}{\pi}V\right) = 0.667314714095430...,
3. Asymptotics

We turn now to the asymptotic distribution of \(r_n \) as \(n \to \infty \). Define \(a_n \) to be the positive solution of the equation \([12, 18]\)

\[
2\pi a_n^2 \exp \left(a_n^2 \right) = n^2,
\]

that is,

\[
a_n = \sqrt{W \left(\frac{n^2}{2\pi} \right)} \sim \sqrt{2 \ln(n) - \frac{1}{2} \ln(\ln(n)) - \ln(4\pi)} \sqrt{\frac{2 \ln(n)}{n}}
\]

in terms of the Lambert \(W \) function \([19]\). It can be proved that the required density is a convolution \([20, 21]\):

\[
\lim_{n \to \infty} \frac{d}{dy} \mathbb{P} \left(\sqrt{2 \ln(n)} (r_n - 2a_n) < y \right) = \int_{-\infty}^{\infty} \exp(-x - e^{-x}) \exp(-(y - x) - e^{-(y-x)}) dx
\]

\[
= 2 e^{-y} K_0 \left(2 e^{-y/2} \right)
\]

where \(K_0 \) is the modified Bessel function of the second kind \([22]\). A random variable \(Y \), distributed as such, satisfies

\[
\mathbb{E}(Y) = 2\gamma, \quad \mathbb{E}(Y^2) = \frac{\pi^2}{3} + 4\gamma^2
\]

where \(\gamma \) is the Euler-Mascheroni constant \([23]\). This implies that

\[
\mu_n \sim 2 \left(a_n + \frac{\gamma}{\sqrt{2 \ln(n)}} \right) \sim 2\sqrt{2 \ln(n)} - \frac{\ln(\ln(n)) + \ln(4\pi) - 2\gamma}{\sqrt{2 \ln(n)}}
\]

and hence

\[
\mathbb{E}(w_n) = \frac{1}{2} \frac{\Gamma \left(\frac{n+1}{2} \right)}{\Gamma \left(\frac{n+1}{2} \right)} \mu_{n+1} = \frac{1}{2} \frac{\Gamma \left(\frac{n}{2} \right)}{\Gamma \left(\frac{n+1}{2} \right)} \cdot \frac{\mu_{n+1}}{\mu_n} \cdot \mu_n
\]

\[
\sim \frac{1}{\sqrt{2n}} \left(1 + \frac{1}{4n} \right) \cdot \left(1 + \frac{1}{2n \ln(n)} \right) \cdot 2 \left(a_n + \frac{\gamma}{\sqrt{2 \ln(n)}} \right)
\]

\[
\sim 2 \sqrt{\frac{\ln(n)}{n}} - \frac{\ln(\ln(n)) + \ln(4\pi) - 2\gamma}{2\sqrt{n \ln(n)}}.
\]

More terms in the asymptotic expansion are possible.
If we rescale length so that the inradius of the \(n\)-simplex is 1 and denote adjusted width by \(\tilde{w}_n\), then

\[
E(\tilde{w}_n) \sim \sqrt{2n \cdot 2\sqrt{\frac{\ln(n)}{n}}} \sim 2\sqrt{2n \ln(n)}
\]

because, in our original scaling, the inradius is \(\sqrt{1/(2n(n+1))}\). This first-order approximation is consistent with \([2]\).

4. Regular Octahedron

As an aside, we return to the setting of \(\mathbb{R}^3\) and review our computational methods for \(C = \) the regular octahedron with edges of unit length.

For simplicity, let \(\mathcal{O}\) be the octahedron with vertices

\[
\begin{align*}
 v_1 &= (1, 0, 0), & v_2 &= (-1, 0, 0), & v_3 &= (0, 1, 0), \\
 v_4 &= (0, -1, 0), & v_5 &= (0, 0, 1), & v_6 &= (0, 0, -1).
\end{align*}
\]

At the end, it will be necessary to normalize by \(\sqrt{2}\), the edge-length of \(\mathcal{O}\).

Also let \(\mathcal{O}'\) be the union of six overlapping balls of radius \(1/2\) centered at \(v_1/2, v_2/2, v_3/2, v_4/2, v_5/2, v_6/2\). Clearly \(\mathcal{O} \subset \mathcal{O}'\) and \(\mathcal{O}'\) has centroid \((0, 0, 0)\). A diameter of \(\mathcal{O}'\) is the length of the intersection between \(\mathcal{O}'\) and a line passing through the origin.

Computing all widths of \(\mathcal{O}\) is equivalent to computing all diameters of \(\mathcal{O}'\). The latter is achieved as follows. Fix a point \((a, b, c)\) on the unit sphere. The line \(L\) passing through \((0, 0, 0)\) and \((a, b, c)\) has parametric representation

\[
x = ta, \quad y = tb, \quad z = tc, \quad t \in \mathbb{R}
\]

and hence \(y = (b/a)x, z = (c/a)x\) assuming \(a \neq 0\). The nontrivial intersection between first sphere and \(L\) satisfies

\[
(x - \frac{1}{2})^2 + \left(\frac{b}{a}x\right)^2 + \left(\frac{c}{a}x\right)^2 = \frac{1}{4}
\]

thus \(x_1 = a^2\) since \(a^2 + b^2 + c^2 = 1\); the nontrivial intersection between second sphere and \(L\) satisfies

\[
(x + \frac{1}{2})^2 + \left(\frac{b}{a}x\right)^2 + \left(\frac{c}{a}x\right)^2 = \frac{1}{4}
\]

thus \(x_2 = -a^2\). The nontrivial intersection between third/fourth sphere and \(L\) satisfies

\[
x^2 + \left(\frac{b}{a}x \mp \frac{1}{2}\right)^2 + \left(\frac{c}{a}x\right)^2 = \frac{1}{4}
\]

thus \(x_3 = ab, x_4 = -ab\). The nontrivial intersection between fifth/sixth sphere and \(L\) satisfies

\[
x^2 + \left(\frac{b}{a}x\right)^2 + \left(\frac{c}{a}x \mp \frac{1}{2}\right)^2 = \frac{1}{4}
\]
thus \(x_5 = a \cdot c \), \(x_6 = -a \cdot c \).

We now examine all pairwise distances, squared, between the six intersection points:

\[
(x_i - x_j)^2 + \left(\frac{b}{a} x_i - \frac{b}{a} x_j \right)^2 + \left(\frac{c}{a} x_i - \frac{c}{a} x_j \right)^2
\]

\[
= \begin{cases}
4a^2 & \text{if } i = 1, j = 2 \\
1 - 2ab - c^2 & \text{if } i = 1, j = 3 \text{ or } i = 2, j = 4 \\
1 + 2ab - c^2 & \text{if } i = 1, j = 4 \text{ or } i = 2, j = 3 \\
1 - 2ac - b^2 & \text{if } i = 1, j = 5 \text{ or } i = 2, j = 6 \\
1 + 2ac - b^2 & \text{if } i = 1, j = 6 \text{ or } i = 2, j = 5 \\
4b^2 & \text{if } i = 3, j = 4 \\
(b - c)^2 & \text{if } i = 3, j = 5 \text{ or } i = 4, j = 6 \\
(b + c)^2 & \text{if } i = 3, j = 6 \text{ or } i = 4, j = 5 \\
4c^2 & \text{if } i = 5, j = 6
\end{cases}
\]

and define

\[
g(a, b) = \max \{ 4a^2, 1 - 2ab - c^2, 1 + 2ab - c^2, 1 - 2ac - b^2, 1 + 2ac - b^2, 4b^2, (b - c)^2, (b + c)^2, 4c^2 \}.
\]

The mean width for \(C \) is

\[
\frac{1}{\sqrt{2}} \frac{1}{4\pi} \int_0^{2\pi} \int_0^{\pi} \sqrt{g(\cos \theta \sin \varphi, \sin \theta \sin \varphi, \cos \varphi)} \sin \varphi \, d\varphi \, d\theta = \frac{3}{\pi} \arccos \left(\frac{1}{3} \right)
\]

and the mean square width is

\[
\frac{1}{2} \frac{1}{4\pi} \int_0^{2\pi} \int_0^{\pi} g(\cos \theta \sin \varphi, \sin \theta \sin \varphi, \cos \varphi) \sin \varphi \, d\varphi \, d\theta = \frac{2}{3} \left(1 + \frac{2\sqrt{3}}{\pi} \right).
\]

Here are details on the final integral. A plot of the surface

\[
(\theta, \varphi) \mapsto \sqrt{g(\cos \theta \sin \varphi, \sin \theta \sin \varphi, \cos \varphi)}
\]

appears in Figure 1, where \(0 \leq \theta \leq 2\pi \) and \(0 \leq \varphi \leq \pi \). Figure 2 contains the same surface, but viewed from above. Our focus will be on the part of the surface to the right of the bottom center, specifically \(0 \leq \theta \leq \pi/4 \) and \(\pi/2 \leq \varphi \leq 9/4 \). The volume under this part is \(1/24 \text{th} \) of the volume under the full surface.
We need to find the precise upper bound on φ as a function of θ. Recall the formula for g as a maximum over nine terms; let g_{ℓ} denote the ℓ^{th} term, where $1 \leq \ell \leq 9$. Then the upper bound on φ is found by solving the equation

$$g_1(\cos \theta \sin \varphi, \sin \theta \sin \varphi, \cos \varphi) = g_9(\cos \theta \sin \varphi, \sin \theta \sin \varphi, \cos \varphi)$$

for φ. We obtain $\varphi(\theta) = 2 \arctan(h(\theta))$, where

$$h(\theta) = \cos \theta + \sqrt{\frac{3 + \cos(2\theta)}{2}}$$

and, in particular,

$$\varphi(0) = 2 \arctan \left(1 + \sqrt{2} \right) \approx 2.3562,$$

$$\varphi(\pi/4) = 2 \arctan \left(\left(1 + \sqrt{3} \right) / \sqrt{2} \right) \approx 2.1862.$$

It follows that $g = g_1$ for $0 \leq \theta \leq \pi/4$ and $\pi/2 \leq \varphi \leq 2 \arctan(h)$. Now we have

$$\frac{1}{48\pi} \int \frac{g_1(\cos \theta \sin \varphi, \sin \theta \sin \varphi, \cos \varphi) \sin \varphi \, d\varphi}{(1 + \cos(2\theta))(\cos(3\varphi) - 9 \cos(\varphi))}$$

and

$$\cos(3\varphi)|_{\pi/2}^{2\arctan(h)} = \frac{(1 + 4h + h^2)(1 - 4h + h^2)(1 - h^2)}{(1 + h^2)^3},$$

$$\cos(\varphi)|_{\pi/2}^{2\arctan(h)} = \frac{1 - h^2}{1 + h^2},$$

therefore

$$\frac{1}{24\pi} \int_{\pi/2}^{2\arctan(h)} g_1(\cos \theta \sin \varphi, \sin \theta \sin \varphi, \cos \varphi) \sin \varphi \, d\varphi$$

$$= \frac{(h^4 + 4h^2 + 1)(h^4 - 1)(1 + \cos(2\theta))}{6\pi(1 + h^2)^3}.$$

Integrating this expression from 0 to $\pi/4$ gives the desired formula for $E(w_{\text{octa}}^2)$.

5. n-Cubes

After having written the preceding, we discovered [7], which gives the mean width for a regular n-simplex in \mathbb{R}^n as

$$E(w_n) = \frac{n(n + 1)}{\sqrt{2\pi}} \frac{\Gamma \left(\frac{n}{2} \right)}{\Gamma \left(\frac{n + 1}{2} \right)} \int_{-\infty}^{\infty} e^{-2x^2} \left(1 + \text{erf}(x) \right)^{n-1} \, dx.$$
Consistency is readily established; nothing is said in [7] about the connection between $\mathbb{E}(w_n)$ and order statistics from a normal distribution (more precisely, the expected range μ_{n+1}).

By contrast, the mean width for an n-cube with edges of unit length is elementary:

$$\mathbb{E}(w_{n\text{-cube}}) = \frac{n}{\sqrt{\pi}} \frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n+1}{2}\right)}$$

and we conjecture that

$$\mathbb{E}(w_{n\text{-cube}}^2) = 1 + \frac{2(n-1)}{\pi}.$$

6. n-CROSSPOLYTOPES

A regular n-crosspolytope with edges of unit length has mean width [7, 24]

$$\mathbb{E}(w_{n\text{-crosspolytope}}) = \frac{2\sqrt{2n(n-1)}}{\pi} \frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n+1}{2}\right)} \int_0^{\infty} e^{-2x^2} \text{erf}(x)^{n-2} dx;$$

the case $n = 3$ corresponds to the octahedron discussed earlier. It is not surprising that a connection exists with order statistics from a half-normal (folded) distribution. We will examine this later, as well as relevant expressions from [25]. An appropriate mean square conjecture also needs to be formulated in this scenario.

References

[1] K. Böröczky, About the mean width of simplices, *Period. Polytech. Mech. Engrg.* 36 (1992) 291–297; MR1269513 (95b:52024).

[2] K. Böröczky and R. Schneider, Circumscribed simplices of minimal mean width, *Beiträge Algebra Geom.* 48 (2007) 217–224; MR2326411 (2008j:52005).

[3] S. R. Finch, Width distributions for convex regular polyhedra, [arXiv:1110.0671](http://arxiv.org/abs/1110.0671).

[4] Y. Sun, Stochastic iterative algorithms for signal set design for Gaussian channels and optimality of the L2 signal set, *IEEE Trans. Inform. Theory* 43 (1997) 1574–1587; MR1476788 (99a:94064).

[5] C. L. Weber, *Elements of Detection and Signal Design*, Springer-Verlag, 1987, pp. 149–214.

[6] A. V. Balakrishnan, A contribution to the sphere-packing problem of communication theory, *J. Math. Anal. Appl.* 3 (1961) 485–506; MR0219340 (36 #2423).
[7] M. Henk, J. Richter-Gebert and G. M. Ziegler, Basic properties of convex polytopes, *Handbook of Discrete and Computational Geometry*, CRC Press, 1997, 243–270; MR1730169.

[8] H. Hadwiger, Gitterpunktanzahl im Simplex und Wills’sche Vermutung, *Math. Annalen* 239 (1979) 271–288; MR0522784 (80d:52015).

[9] H. Ruben, On the geometrical moments of skew-regular simplices in hyperspherical space, with some applications in geometry and mathematical statistics, *Acta Math.* 103 (1960) 1–23; MR0121713 (22 #12447).

[10] L. H. C. Tippett, On the extreme individuals and the range of samples taken from a normal population, *Biometrika* 17 (1925) 364–387.

[11] K. V. Mardia, Tippett’s formulas and other results on sample range and extremes, *Annals Inst. Statist. Math.* 17 (1965) 85–91; MR0178522 (31 #2779).

[12] H. A. David, *Order Statistics*, 2nd ed., Wiley, 1981, pp. 38–43, 53, 258–269; MR0099101 (20 #5545).

[13] H. Ruben, On the moments of the range and product moments of extreme order statistics in normal samples, *Biometrika* 43 (1956) 458-460; MR0082769 (18,607d).

[14] Y. Watanabe, M. Isida, S. Taga, Y. Ichijo, T. Kawase, G. Niside, Y. Takeda, A. Horisuzi, and I. Kuriyama, Some contributions to order statistics, *J. Gakugei, Tokushima Univ.* 8 (1957) 41-90; MR0099101 (20 #5545).

[15] S. R. Finch, Extreme value constants, *Mathematical Constants*, Cambridge Univ. Press, 2003, pp. 363–367; MR2003519 (2004i:00001).

[16] I. Ben Yaacov, Continuous and random Vapnik-Chervonenkis classes, *Israel J. Math.* 173 (2009) 309–333; MR2570671 (2011j:03072); [arXiv:0802.0068](https://arxiv.org/abs/0802.0068).

[17] H. O. Lancaster, Chi distribution, *Encyclopedia of Statistical Sciences*, v. 1, ed. S. Kotz, N. L. Johnson and C. B. Read, Wiley, 1982, p. 439; MR0646617 (83j:62001a).

[18] P. Hall, On the rate of convergence of normal extremes, *J. Appl. Probab.* 16 (1979) 433–439; MR0531778 (80d:60025).

[19] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey and D. E. Knuth, On the Lambert W function, *Adv. Comput. Math.* 5 (1996) 329–359; MR1414285 (98j:33015).
[20] E. J. Gumbel, The distribution of the range, *Annals of Math. Statistics* 18 (1947) 384–412; MR0022331 (9,195a).

[21] D. R. Cox, A note on the asymptotic distribution of range, *Biometrika* 35 (1948) 310–315; MR0028562 (10,466b).

[22] F. W. J. Olver, Bessel functions of integer order, *Handbook of Mathematical Functions*, ed. M. Abramowitz and I. A. Stegun, Dover, 1992, pp. 374–377; MR1225604 (94b:00012).

[23] S. R. Finch, Euler-Mascheroni constant, *Mathematical Constants*, Cambridge Univ. Press, 2003, pp. 28–40; MR2003519 (2004i:00001).

[24] U. Betke and M. Henk, Intrinsic volumes and lattice points of crosspolytopes, *Monatsh. Math.* 115 (1993) 27–33; MR1223242 (94g:52010).

[25] Z. Govindarajulu, Exact lower moments of order statistics in samples from the chi-distribution (1 d.f.), *Annals Math. Statist.* 33 (1962) 1292–1305; MR0141179 (25 #4590).

[26] S. R. Finch, Simulations in R involving colliding dice and mean widths, http://algo.inria.fr/csolve/rsimul.html

Steven R. Finch
Dept. of Statistics
Harvard University
Cambridge, MA, USA
Steven.Finch@inria.fr
Figure 1: Surface plot of $\sqrt{g/2}$, where $0 \leq \theta \leq 2\pi$ and $0 \leq \varphi \leq \pi$.

Figure 2: Another view of $\sqrt{g/2}$, with contours of intersection.
This figure "Figure01.jpg" is available in "jpg" format from:

http://arxiv.org/ps/1111.4976v1
This figure "Figure02.jpg" is available in "jpg" format from:

http://arxiv.org/ps/1111.4976v1