Directed, elliptic and higher order flow harmonics of protons, deuterons and tritons in Au+Au collisions at \(\sqrt{s_{NN}} = 2.4 \text{ GeV} \)

J. Adamczelewski-Musch, O. Arnold, C. Behnke, A. Beloumnas, A. Belyaev, J.C. Berger-Chen, A. Blanco, C. Blume, M. Böhm, P. Bordalo, S. Chernenko, L. Chlad, I. Ciepal, C. Deveaux, J. Dreyer, E. Eppler, L. Fabbietti, O. Fateev, P. Filip, P. Fonte, C. Franco, J. Friese, I. Fröhlich, T. Galatyuk, J.A. Garzón, R. Gernhäuser, O. Golosov, M. Golubeva, R. Greifenhagen, F. Guber, M. Gumberidze, S. Harabasz, T. Heinz, T. Hennino, S. Hlavac, C. Höhne, R. Holzmann, V. Wagner, N. Rathod, J. Siebenson, J. Stroth, O. Petukhov, M. Lorenz, R. Müntzer, E. Epple, M. Kohls, C. Blume, T. Scheib, A. Reshetin, C. Sturm, A. Ierusalimov, L. Silva, M. Böhmer, H. Schuldes, H. Schulke, M. Koshi, B.W. Kolb, G. Koryc, G. Kornakov, F. Kornas, R. Kotte, A. Kugler, T. Kunz, A. Kurepin, A. Kurilkin, P. Kurilkin, V. Ladygin, R. Lalik, K. Lapidus, A. Lebedev, L. Lopes, M. Lorenz, T. Mahmoud, T. Karavicheva, A. Mangiarotti, J. Markert, T. Matulewicz, S. Maurus, V. Metag, J. Michel, D.M. Mihaylov, S. Morozov, C. Müntz, R. Müntzer, L. Naumann, K. Nowakowski, Y. Parpottas, V. Pechenov, O. Petukhov, K. Piasiecki, J. Pietraszk, W. Przygoda, K. Pysz, S. Ramos, B. Ramstein, N. Rathod, A. Reshetin, P. Rodriguez-Ramos, P. Rosier, A. Rost, A. Rostamo, A. Sadovsky, P. Salabura, T. Scheib, H. Schudel, E. Schwab, F. Scozzi, F. Socol, P. Sellheim, I. Selyuzhenkov, J. Siebenson, L. Silva, U. Singh, J. Smyrski, Yu.G. Sobolev, S. Spataro, S. Spies, H. Ströbele, J. Stroth, C. Sturm, O. Svoboda, M. Szala, P. Thust, M. Traxler, H. Tsertos, E. Usenko, V. Wagner, C. Wendisch, M.G. Wiebusch, J. Wirth, D. Wójcik, Y. Zanevsky, P. Zumbach

(HADES collaboration)

1 Institute of Physics, Slovak Academy of Sciences, 84228 Bratislava, Slovakia
2 LIP-Laboratório de Instrumentação e Física Experimental de Partículas, 3004-516 Coimbra, Portugal
3 Institute of Nuclear Physics, Polish Academy of Sciences, 31342 Kraków, Poland
4 Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 31342 Kraków, Poland
5 GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
6 Technische Universität Darmstadt, 64289 Darmstadt, Germany
7 Institut für Strahlenphysik, Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden, Germany
8 Joint Institute of Nuclear Research, 141980 Dubna, Russia
9 Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany
10 Excellence Cluster ‘Origin and Structure of the Universe’, 85748 Garching, Germany
11 Physik Department E62, Technische Universität München, 85748 Garching, Germany
12 H. Physikalisches Institut, Justus Liebig Universität Giessen, 35392 Giessen, Germany
13 Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow, Russia
14 Institute of Theoretical and Experimental Physics, 117218 Moscow, Russia
15 National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
16 Department of Physics, University of Cyprus, 1678 Nicosia, Cyprus
17 Laboratoire de Physique des 2 infinis Irène Joliot-Curie, Université Paris-Saclay, CNRS-IN2P3, F-91405 Orsay, France
18 Nuclear Physics Institute, The Czech Academy of Sciences, 25068 Rez, Czech Republic
19 LabCAF. F. Física. Univ. de Santiago de Compostela, 15706 Santiago de Compostela, Spain
20 Uniwersytet Warszawski, Wydział Fizyki, Instytut Fizyki Doświadczalnej, 02-093 Warszawa, Poland
21 Dipartimento di Fisica and INFN, Università di Torino, 10125 Torino, Italy
a also at Coimbra Polytechnic - ISEC, Coimbra, Portugal
b also at Technische Universität Dresden, 01062 Dresden, Germany
c also at Frederick University, 1036 Nicosia, Cyprus
† deceased

(Dated: May 26, 2020)

Flow coefficients \(v_n \) of the orders \(n = 1 - 6 \) are measured with the High-Acceptance DiElectron Spectrometer (HADES) at GSI for protons, deuterons and tritons as a function of centrality, transverse momentum and rapidity in Au+Au collisions at \(\sqrt{s_{NN}} = 2.4 \text{ GeV} \). Combining the information from the flow coefficients of all orders allows to construct for the first time, at collision energies of a
Heavy-ion collisions in the center-of-mass energy range of $\sqrt{s_{NN}} \approx 1 - 10$ GeV provide access to the properties of strongly interacting matter at very high net-baryon densities, which also define the characteristics of astrophysical objects like neutron stars \(^1\). Important information on this form of matter, e.g. on its Equation-Of-State (EOS), can be inferred from the measurement of collective flow \(^2\)\(^-\)\(^3\). The majority of the flow studies at SIS18 and AGS energies performed up to now were restricted to the analysis of directed and elliptic flow (for a review see \(^4\)\(^-\)\(^7\) and references therein). These correspond to the first (v_1) and second (v_2) order coefficients of the Fourier decomposition \(^8\) of the azimuthal angle ϕ distribution of emitted particles with respect to the orientation of the reaction plane. The latter is defined by the beam axis \vec{z} of emitted particles with respect to the orientation of the colliding nuclei, which is given by the reaction plane angle Ψ_{RP} \(^9\): \[
E \frac{d^3N}{d^3p} = \frac{d^2N}{2\pi p_t dp_t dy} \left(1 + 2 \sum_{n=1}^{\infty} v_n(p_t, y) \cos(n(\phi - \Psi_{RP})) \right).
\] (1)

However, it has been shown that important information can be extracted from an analysis of higher order flow coefficients. For instance, a comparison of the proton v_3 measured by HADES with UrQMD transport model calculations indicates that in particular v_3 exhibits an enhanced sensitivity to the EOS of the hadronic medium \(^9\)\(^-\)\(^10\). Other transport model calculations suggest that a non-vanishing fourth order coefficient (v_4) measured at center-of-mass energies of a few GeV can constrain the nuclear mean field at high net-baryon densities \(^11\). At high energies (RHIC and LHC) the measurements of higher order flow coefficients were decisive to determine the shear viscosity over entropy density η/s of QCD matter at high temperatures \(^12\). Attempts have also been made to extract η/s for dense hadronic matter at lower energies by employing transport models \(^13\)\(^-\)\(^16\) or hydrodynamical approaches \(^17\). Since these studies did not converge on conclusive results yet, input from measurements of higher order flow coefficients at low energies will be essential to further constrain the theoretical descriptions. In particular, they help to address the question whether matter at high net-baryon density produced in heavy-ion collisions at low energies can be described by hydrodynamical models. The authors of Refs. \(^18\) and \(^19\) have argued that, if the matter reaches thermal equilibrium, the fireball evolution should be governed by the laws of fluid dynamics which in turn should reveal itself by a distinct scaling property of v_2 and v_4: \[
\frac{v_4(p_t)}{v_2^2(p_t)} = \frac{1}{2}.
\] (2)

Measurements of this ratio at RHIC \(^20\)\(^-\)\(^21\) and LHC \(^22\)\(^-\)\(^24\) have found values that are roughly p_t independent over a large interval for non-central events, but also significantly larger than the expected value of 0.5. This has been attributed to the combined effect of the initial eccentricity of the overlap zone \(^18\) and its fluctuations \(^25\). In the few GeV center-of-mass energy regime, the flow pattern is strongly affected by the presence of slow spectator nucleons. They interfere with the particle emission from the central fireball and will cause a distinct evolution of the relative contribution of odd and even flow harmonics as a function of rapidity.

In this letter we report first measurements of higher order flow harmonics (i.e. v_n with $n = 3, 4, 5$ and 6) for protons, deuterons and tritons in fixed-target Au+Au collisions at $E_{\text{beam}} = 1.23$ A GeV, corresponding to a center-of-mass energy in the nucleon-nucleon system of $\sqrt{s_{NN}} = 2.4$ GeV.

A detailed description of the HADES experiment can be found in Ref. \(^26\). The spectrometer consists of six identical detection sections located between the coils of a toroidal superconducting magnet which cover polar angles between 18° and 85°. Each sector is equipped with a Ring-Imaging Cherenkov (RICH) detector followed by four layers of Multi-Wire Drift Chambers (MDCs), two in front of and two behind the magnetic field, as well as a Time-Of-Flight detector (TOF) (44° – 85°) and Resistive Plate Chambers (RPC) (18° – 45°). Hadrons are identified using the time-of-flight measured with TOF and RPC and the energy-loss information from TOF, as well as from the MDCs. Their momenta are determined via the deflection of the tracks in the magnetic field. The event plane angle (see Eq. (4) below) is calculated from the emission angles and charges of projectile spectators as measured in the Forward Wall (FW) detector. It consists of 288 scintillator modules which are read out by photomultipliers. The FW is placed at a 7 m distance from the target and covers the polar angles $0.33^\circ < \theta < 7.17^\circ$. The minimum bias trigger is defined by a signal in a 60 μm thick mono-crystalline diamond detector (START) \(^27\), which is positioned in the beam line. In addition, online Physics Triggers (PT) are used, based on hardware thresholds on the TOF signal and correspond to at least 5 (PT2) or 20 (PT3) hits in the TOF detector.
By comparing the measured TOF+RPC hit multiplicity distribution with Glauber Model simulations it has been estimated that the PT3 trigger is selecting about 43% of the total inelastic cross section of 6.83 ± 0.43 barn \cite{23}. This multiplicity is also used for the offline centrality determination. For this analysis the event sample is divided into four centrality intervals, each corresponding to 10% of the total Au+Au cross section at \(\sqrt{s_{NN}} = 2.4 \) GeV.

Tracks are reconstructed using the hit information of the MDCs. Several quality selection criteria are applied to assure a good matching of these tracks to the hits found in TOF and RPC which is essential for a good Particle IDentification (PID) via time-of-flight. Protons, deuterons and tritons are selected within windows of 2.5 \(\cdot \) \(\sigma(p) \) width around the corresponding particle velocity \(\beta \) expected for a given momentum \(p \). The resolutions \(\sigma(p) \) also depend on \(p \) and are parameterized accordingly. To suppress contaminations to the particle sample identified via time-of-flight, in particular the \(^4\)He contribution to the deuteron sample, the energy loss (dE/dx) measurements in the MDCs are used in addition. Phase space regions with a PID purity below 85% are excluded from the analysis. In high multiplicity Au+Au collisions reconstruction efficiencies depend on the local track multiplicities. Since collective effects will cause non-isotropies in the event shape, corresponding to local variations of the track densities and thus of the reconstruction efficiencies, a data-driven correction procedure depending on the track orientation relative to the event plane is applied.

The flow coefficients \(v_n \) can be determined by employing different methods. In the analysis presented here the azimuthal distributions of particle yields relative to the reaction plane. The first order event plane angle is then given by

\[
\tan \Psi_{EP} = \frac{Q_y}{Q_x}.
\]

The flow coefficients of all orders discussed here \((n = 1 - 6) \) are all defined relative to \(\Psi_{EP} \), i.e. the first order event plane, as this measures the spectator event plane with the best resolution. The flow coefficients \(v_n^{obs} \) are obtained from the event averages

\[
v_n^{obs} = \langle \cos[n(\phi - \Psi_{EP})] \rangle.
\]

Finally, a corresponding event plane resolution correction is applied which takes the dispersion of \(\Psi_{EP} \) relative to \(\Psi_{RP} \) into account,

\[
v_n = \frac{v_n^{obs}}{R_n}.
\]

This resolution, defined as \(R_n = \langle \cos[n(\Psi_{EP} - \Psi_{RP})] \rangle \), is determined according to the procedure given in Ref. \cite{31}. Resulting values for the resolution correction of different order \(n \) as function of the centrality are shown in Fig. 1.

Systematic uncertainties of the measured flow harmonics \(v_n \) result from systematic effects in the reconstruction and selection of charged tracks, in the PID procedures, and in the corrections applied to \(v_n \). They are determined separately for each particle species \((p, d, \text{ and } t) \), the order \(n \) of the flow harmonics \(v_n \), the centrality class and as a function of \(y_{cm} \) and \(p_t \) by varying selection criteria and parameters in the efficiency correction. Azimuthal asymmetries due to non-uniform acceptance and
reconstruction efficiencies can cause additional systematic uncertainties. These are estimated by comparing the results obtained for a fully symmetric detector (i.e. six sectors) with those where different combinations of sectors are deliberately excluded from the analysis. Furthermore, the analysis is performed on data recorded with a reversed magnetic field setting and for each day of data taking separately, in order to investigate whether any systematic trends appear in the course of the data taking period. No significant effects are observed in these cross-checks. A global systematic uncertainty arises from the event plane resolution correction. This is mainly caused by so-called “non-flow” correlations which can distort the event plane measurement. The magnitude of these systematic effects was evaluated by determining the event plane resolution correction for combinations of different sub-events separated in rapidity. The systematic effects

FIG. 2. The odd flow coefficients v_1, v_3 and v_5 for protons, deuterons and tritons in semi-central (20–30 %) Au+Au collisions at $\sqrt{s_{NN}} = 2.4$ GeV. The left column displays the p_t dependence of v_1 (upper row), v_3 (middle row) and v_5 (lower row) in the rapidity interval $-0.25 < y_{cm} < -0.15$ (v_1 and v_3), respectively $-0.3 < y_{cm} < -0.1$ (v_5). In the right column the corresponding y_{cm} dependences are presented. The values are averaged over the p_t interval $1.0 < p_t < 1.5$ GeV/c (v_1 and v_3), resp. $1.0 < p_t < 2.0$ GeV/c (v_5). The dashed coloured curves represent fits to the data points (see text for details). Systematic errors are shown as open boxes. The selected p_t and y_{cm} values used for the right and left columns, respectively, are indicated by the grey areas.

FIG. 3. The even flow coefficients v_2, v_4 and v_6 for protons, deuterons and tritons in semi-central (20–30 %) Au+Au collisions at $\sqrt{s_{NN}} = 2.4$ GeV in the same representation as in Fig. 2 except that the p_t dependences are shown for the rapidity interval $|y_{cm}| < 0.05$ (v_2 and v_4), respectively $|y_{cm}| < 0.1$ (v_6).

FIG. 4. Left panel: a three-dimensional representation of the proton emission pattern, $1/(N) \left(dN/d\phi\right)$, relative to the event plane according to the flow coefficients of the orders $n = 1$ – 6, as parametrized by the mid-rapidity symmetric fit functions shown in Figs. 2 and 3 for semi-central (20–30 %) Au+Au collisions. The shape corresponds to the ϕ dependent yield normalized by the ϕ averaged value, both integrated over the p_t interval $1.0 < p_t < 2.0$ GeV/c. Right panel: slices at different forward rapidities. The thin circles display for orientation the values $1/(N) \left(dN/d\phi\right) = 0.5, 1.0$ and 1.5.
were thus estimated to be below 5% for the centralities 10 - 40%.

Figures 2 and 3 present an overview of the measured values for v_1 to v_6 for protons, deuterons and tritons. Here only the values for semi-central (20 - 30%) Au+Au collisions are shown as the event plane resolution corrections are smallest for this centrality range and the centrality dependences are weak, except for very central collisions. Shown is the p_t dependence around mid-rapidity (even flow coefficients), respectively backward rapidity (odd flow coefficients), and the Δy_{cm} dependence for values averaged over given p_t intervals. The latter has been fitted with the following functions to illustrate the symmetry of the measurements: $v_{1,3,5}(\Delta y_{cm}) = a \Delta y_{cm} + b y_{cm}^2$ and $v_{2,4,6}(\Delta y_{cm}) = c + d y_{cm}^2$. The values for odd flow coefficients (v_1, v_3 and v_5) are consistent with zero at mid-rapidity, but exhibit a strong rapidity dependence, point-symmetric around mid-rapidity $\Delta y_{cm} = 0$. v_1 develops a prominent mass dependence ($|v_1|(p) < |v_1|(d) < |v_1|(t)$) when moving away from mid-rapidity. For larger rapidity values a mass hierarchy is also observable for v_3, which is, however, inverted with respect to v_1 ($|v_3|(p) > |v_3|(d) > |v_3|(t)$). Also for v_2 around mid-rapidity a clear mass ordering can be observed ($|v_2|(p) > |v_2|(d) > |v_2|(t)$) up to $p_t = 1.5$ GeV/c, as expected for a hydrodynamical evolution of the fireball. This mass hierarchy becomes even more pronounced when moving away from mid-rapidity. A similar, though less significant, mass difference is visible for v_4 ($|v_4|(p) > |v_4|(d) > |v_4|(t)$). We note that the integrated value for v_2 as measured here for protons agrees well with the world systematics, as compiled in [5, 6]. Also, we find the same p_t dependence of v_2 at mid-rapidity as observed by FOPI [3] and KaoS [6].

The multi-differential measurement of all flow coefficients up to order 6 allows to construct a complete three-dimensional picture of the particle emission pattern relative to the event plane, as shown for the proton sample in Fig. 4. It is constructed by inserting values of v_n for a given phase space interval from the parameterizations discussed above (see Figs. 2 and 3) into the cosine of the Fourier series: $1/(N) \langle dN/d\phi \rangle = 1 + \sum v_n \cos n \phi$. At mid-rapidity, the combination of all flow coefficients results in an almost elliptical shape centered around the beam axis with the odd coefficients being consistent with zero (see Fig. 2). The long axis of the elliptical shape is oriented along the $\phi = \pi/2$ direction, corresponding to out-of-plane emission. However, moving away from mid-rapidity a more asymmetric shape appears as the contribution of the odd coefficients increases. As a result, at very forward and backward rapidities the emission pattern develops an almost triangular shape, reflecting the complicated interplay between the effect of the central fireball pressure on the emission of particles and their subsequent interaction with spectator matter.

The ratio v_4/v_2^2 at mid-rapidity is shown in the left panels of Fig. 5. For protons a p_t independent value slightly below 0.5 is observed for the three centralities intervals shown here, while for deuterons and tritons it is found to be systematically above 0.5, both also without significant p_t dependence. However, these values are only reached around mid-rapidity as illustrated in the right panels of Fig. 5, which displays the rapidity dependence of v_4/v_2^2 in the Δy_{cm} interval in which v_2 is negative and the effect of the spectator nucleons is less important. A rapid drop of the ratio is observed for the considered particle types when moving away from mid-rapidity, as the Δy_{cm} distributions of v_2 and v_4 have different widths. Within the semi-central range between 10% and 40% no strong centrality dependence of the ratio v_4/v_2^2 is observed, as shown in Fig. 5. The very central interval (0 - 10%) is omitted from this comparison, as for this centrality the values of v_2 and v_4 are too close to zero to allow for the calculation of a meaningful ratio. The observation that v_4/v_2^2 is very close to the theoretical
expectation for an ideal fluid \cite{18,19,25} raises the question whether the properties of dense baryonic matter created in heavy-ion collision at these relatively low beam energies can be understood within the framework of hydrodynamic models. While the matter at high collision energies (RHIC and LHC), dominated in early stages by quark and gluon degrees of freedom, is well described by this kind of models as a near-perfect liquid with extremely low values of shear viscosity over entropy density η/s \cite{12}, the situation at low energies is more complex. Here the degrees of freedom are hadrons, mainly baryonic resonances, and a one-fluid dynamical picture might not be fully applicable. In any case, the expected values for η/s should be much higher \cite{13,14,16,17}, such that the appropriate dynamical model would be far away from an ideal fluid scenario. It should be pointed out that other ratios of flow coefficients, e.g. $v_3/(v_1v_2)$, were studied as well, but in these cases an independence of p_t and particle type was not observed.

In summary, we report a multi-differential measurement of directed, v_1, and elliptic flow, v_2, and the first measurements of higher order flow coefficients ($v_3 - v_6$) for protons, deuterons and tritons in heavy-ion collisions in the few GeV center-of-mass energy regime. All flow coefficients are determined relative to a first order event plane measured at projectile rapidities. It is found that around mid-rapidity v_1 and v_2 have signs opposite to the one of v_3. The same sign change is observed between v_2 and v_4. Combining the flow coefficients $v_1 - v_6$ allows to construct for the first time a complete, multi-differential picture of the emission pattern of light nuclei as a function of rapidity and transverse momentum. For protons at mid-rapidity the ratio v_4/v_2^2 is found to be remarkably close to a value of 0.5, as expected in an ideal fluid scenario, while it is slightly higher for deuterons and tritons. A strong rapidity dependence of this ratio is observed for all light nuclei. Theory calculations within a hydrodynamic framework adapted to the description of baryon dominated matter are needed to investigate the question whether this kind of matter really exhibits a hydrodynamical behavior, at least in the last stages of the collision prior to freeze-out. The high precision information on higher order flow coefficients is a major step forward in constraining the EOS.

The collaboration gratefully acknowledges the support by SIP JUC Cracow, Cracow (Poland), National Science Center, 2016/23/P/ST2/04066 POLONEZ, 2017/25/N/ST2/00580, 2017/26/M/ST2/00600: TU Darmstadt, Darmstadt (Germany), VH-NG-823, DFG GRK 2128, DFG CRC-TR 211, BMBF:05P18RDFC1: Goethe-University, Frankfurt (Germany), BMBF: 06FY91001, BMBF:05P19RFCCA, GSI F&E, HIC for FAIR (LOEWE); Goethe-University, Frankfurt (Germany) and TU Darmstadt, Darmstadt (Germany), ExtreMe Matter Institute EMMI at GSI Darmstadt; TU München, Garching (Germany), MLL München, DFG EC015, 513 TMLR011316F, BMBF 05P15WOFA, SFB 1258, DFG DAB80/8-2; Russian Foundation for Basic Research (RFBR) funding within the research project no. 18-02-00086 and partial support by the NRNU MEPhI in the framework of the Russian Academic Excellence Project (contract no. 02.a03.21.0005, 27.08.2013); JLU Giessen; Giessen (Germany), BMBF:05P12RGGHM; IPN Orsay, Orsay Cedex (France), CNRS/IN2P3; NPI CAS, Rez, Rez (Czech Republic), MSMT LM2015049. OP VVV CZ.02.1.01/0.0/0.0/16 013/0001677, LTT17003.

\begin{thebibliography}{99}
\bibitem{1} J. Adamczewski-Musch et al. (HADES), Nature Phys. \textbf{15}, 1040 (2019).
\bibitem{2} P. Danielewicz, R. Lacey, and W. G. Lynch, Science \textbf{298}, 1592 (2002).
\bibitem{3} A. Le Feuvre, Y. Leifels, W. Reisdorf, J. Aichelin, and C. Hartnack, Nucl. Phys. \textbf{A945}, 112 (2016).
\bibitem{4} H. G. Ritter and R. Stock, J. Phys. \textbf{G41}, 124002 (2014).
\bibitem{5} A. Andronic, J. Lukasik, W. Reisdorf, and W. Trautmann, Eur. Phys. J. \textbf{A30}, 31 (2006).
\bibitem{6} N. Herrmann, J. P. Wessels, and T. Wienold, Ann. Rev. Nucl. Part. Sci. \textbf{49}, 581 (1999).
\bibitem{7} W. Reisdorf and H. G. Ritter, Ann. Rev. Nucl. Part. Sci. \textbf{47}, 663 (1997).
\bibitem{8} S. Voloshin and Y. Zhang, Z. Phys. \textbf{C70}, 665 (1996).
\bibitem{9} P. Hillmann, J. Steinheimer, and M. Bleicher, J. Phys. \textbf{G45}, 085101 (2018).
\bibitem{10} P. Hillmann, J. Steinheimer, T. Reichert, V. Gaebel, M. Bleicher, S. Sombun, C. Herold, and A. Limphirat, J. Phys. \textbf{G47}, 055101 (2020).
\bibitem{11} P. Danielewicz, Nucl. Phys. \textbf{A673}, 375 (2000).
\bibitem{12} U. Heinz and R. Snellings, Ann. Rev. Nucl. Part. Sci. \textbf{63}, 123 (2013).
\bibitem{13} N. Denir and S. A. Bass, Phys. Rev. Lett. \textbf{102}, 172302 (2009).
\bibitem{14} A. S. Khvorostukhin, V. D. Toneev, and D. N. Voskresensky, Nucl. Phys. \textbf{A845}, 106 (2010).
\bibitem{15} B. Barker and P. Danielewicz, Phys. Rev. \textbf{C99}, 034607 (2019).
\bibitem{16} J. B. Rose, J. M. Torres-Rincon, A. Schafer, D. R. Oliynychenko, and H. Petersen, Phys. Rev. \textbf{C97}, 055204 (2018).
\bibitem{17} Yu. B. Ivanov and A. A. Soldatov, Eur. Phys. J. \textbf{A52}, 367 (2016).
\bibitem{18} N. Borghini and J.-Y. Ollitrault, Phys. Lett. \textbf{B642}, 227 (2006).
\bibitem{19} P. F. Kolb, Phys. Rev. \textbf{C68}, 031902 (2003).
\bibitem{20} J. Adams et al. (STAR), Phys. Rev. Lett. \textbf{92}, 062301 (2004).
\bibitem{21} A. Adare et al. (PHENIX), Phys. Rev. Lett. \textbf{105}, 062301 (2010).
\bibitem{22} G. Aad et al. (ATLAS), Phys. Rev. \textbf{C86}, 014907 (2012).
\bibitem{23} S. Chatrchyan et al. (CMS), JHEP \textbf{09}, 088 (2013).
\bibitem{24} S. Acharya et al. (ALICE), JHEP \textbf{09}, 006 (2013).
\bibitem{25} C. Gombeaud and J.-Y. Ollitrault, Phys. Rev. \textbf{C81}, 014901 (2010).
\bibitem{26} G. Agakishiev et al. (HADES), Eur. Phys. J. \textbf{A41}, 243 (2009).
\bibitem{27} J. Pietraszko, T. Galatyuk, V. Grilj, W. Koenig,
[28] J. Adamczewski-Musch et al. (HADES), Eur. Phys. J. A54, 85 (2018).

[29] J.-Y. Ollitrault, Phys. Rev. D48, 1132 (1993).

[30] J.-Y. Ollitrault, Nucl. Phys. A638, 195 (1998).

[31] A. M. Poskanzer and S. A. Voloshin, Phys. Rev. C58, 1671 (1998).

[32] J. Barrette et al. (E877), Phys. Rev. C56, 3254 (1997).

[33] A. Andronic et al. (FOPI), Phys. Lett. B612, 173 (2005).

[34] W. Reisdorf et al. (FOPI), Nucl. Phys. A876, 1 (2012).

[35] D. Brill et al. (KaoS), Z. Phys. A355, 61 (1996).