Magma ascent in planetesimals: control by grain size

Tim Lichtenberg (ETH Zurich / U Oxford)
Tobias Keller (Stanford)
Richard Katz (U Oxford)
Gregor Golabek (BGI Bayreuth)
Taras Gerya (ETH Zurich)

arXiv:1802.02157
Thermal inversions due to melt segregation?

- Early-accreting planetesimal
- Efficient volatile loss via Darcy flow
- Positively buoyant melts; achondritic crust formed
- Negatively buoyant melts; chondritic crust preserved
- CV and CM carbonaceous chondrite bodies

Progressive radiogenic heating

e.g., Wilson & Keil 17
Steady-state melt ascent scaling

Melt segregation number

\[R_{\text{seg}} = \log_{10} \left(\frac{\tau_{\text{heat}}}{\tau_{\text{segr}}} \right) = \log_{10} \left(\frac{k_\phi \Delta \rho g_0 c_p \Delta T_0}{R_P \mu H_{0,26\text{Al}}} \right) \]

Permeability:

\[k_\phi = \frac{a_0^2 \phi^n}{b (1 - \phi)^m} \]

- \(\Delta \rho \): Solid-melt density contrast
- \(\Delta T \): Temperature contrast
- \(H_{0,26\text{Al}} \): \(^{26}\text{Al} \) decay power
- \(\phi \): Melt fraction (porosity)
- \(a_0 \): Grain size
- \(c_p \): Specific heat
- \(\mu \): Melt viscosity
- \(R_P \): Planetesimal radius
- \(g_0 \): Surface gravity
- \(\phi = 0.4 \)
- \(t = 0 \)
- \(\Delta \rho = 1200 \text{ kg/m}^3 \)
- \(\Delta \rho = 120 \text{ kg/m}^3 \)
Two-phase magma dynamics + multi-component thermo-chemistry

- Split up planetesimal rock body into multiple components, follow individually

- **Two-phase, thermo-chemical** evolution in 1D column setup (*Keller & Katz 16*)

- ‘Dry’ compositional setup:
 - Olivine/\textit{olv} (~50%, refractory)
 - Pyroxene/\textit{pxn} (~35%, fertile)
 - Feldspar/\textit{fsp} (~15%, 26Al)

- Parameter study of solid-melt density contrast, grain sizes (permeability), formation time
Melt segregation regimes

\[R_{\text{seg}} = \log_{10} \left(\frac{\tau_{\text{heat}}}{\tau_{\text{segr}}} \right) \]
\[= \log_{10} \left(\frac{k_{\phi} \Delta \rho g_0 c_p \Delta T_0}{R \mu H_{0,26}\text{Al}} \right) \]

I Magma ocean
Global interior magma ocean
Chemical & isotopic equilibration
Shallow chondritic lid at surface
Adiabatic interior \(T \)

II Magma sill
Efficient magma segregation
Chemical differentiation
Shallow chondritic lid at surface
Potential \(T \) inversion

III Undifferentiated
Zero to partial silicate melts
Primordial chemical signature
Thick chondritic lid
Inside-out \(T \) decrease

Lichtenberg, Keller, Katz, Golabek, Gerya (E&PSL, in revision, arXiv:1802.02157)
Summary & Conclusions

- Two melting regimes:
 - Control: grain size, formation time, $fO_2/\Delta \rho$
 - (i) global magma ocean ($t_{\text{form}} < t_{26,\text{Al}}$)
 - (ii) magma sill ($t_{\text{form}} \sim 1 \text{ Myr} + \text{grain size} > 1 \text{ mm}$)
- Temperature inversions limited in parameter space (< 250 K)
 - Questions use of simple thermal models for age dating
- Constrains possible core formation regimes
- Consistent with/implications for:
 - Paucity of olivine on Vesta’s surface; ‘missing olivine’
 - Time gap between basalts and CAIs/youngest irons

Melt ascent in planetesimals: control by grain size
Lichtenberg, Keller, Katz, Golabek, Gerya
E&PSL, in revision, arXiv:1802.02157