MOTIVES OF DERIVED EQUIVALENT K3 SURFACES

D. HUYBRECHTS

Abstract. We observe that derived equivalent K3 surfaces have isomorphic Chow motives.

There are many examples of non-isomorphic K3 surfaces S and S' (over a field k) with equivalent derived categories $\text{D}^b(S) \simeq \text{D}^b(S')$ of coherent sheaves. It is known that in this case S' is isomorphic to a moduli space of slope-stable bundles on S and vice versa, cf. [10, 21, 22]. However, the precise relation between S and S' still eludes us and many basic questions are hard to answer. For example, one could ask whether S' contains infinitely many rational curves, expected for all K3 surfaces, if this is known already for S. Or, if k is a number field, does potential density for S imply potential density for S'?

As a direct geometric approach to these questions seems difficult, one may wonder whether S and S' can be compared at least motivically. This could mean various things, e.g. one could study their classes $[S]$ and $[S']$ in the Grothendieck ring of varieties $K_0(\text{Var}(k))$ or their associated motives $h(S)$ and $h(S')$ in the category of Chow motives $\text{Mot}(k)$. In the recent articles [7, 14, 16], examples in degree 8 and 12 have been studied for which $[S] - [S']$ in $K_0(\text{Var}(k))$ is annihilated by $\ell := [\mathbb{A}^1]$. The question whether the Chow motives $h(S)$ and $h(S')$ in $\text{Mot}(k)$ are isomorphic was first addressed and answered affirmatively in special cases in [23]. Assuming finite-dimensionality of the motives the question was settled in [3].

In this short note we point out that the available techniques in the theory of motives are enough to show that two derived equivalent K3 surfaces have indeed isomorphic Chow motives.

Theorem 0.1. Let S and S' be K3 surfaces over an algebraically closed field k. Assume that there exists an exact k-linear equivalence $\text{D}^b(S) \simeq \text{D}^b(S')$ between their bounded derived categories of coherent sheaves. Then there is an isomorphism

$$h(S) \simeq h(S')$$

in the category of Chow motives $\text{Mot}(k)$.

The assumption on the field k can be weakened, it suffices to assume that $\rho(S) = \rho(S'_{\bar{k}})$.

The author is supported by the SFB/TR 45 ‘Periods, Moduli Spaces and Arithmetic of Algebraic Varieties’ of the DFG (German Research Foundation).
We had originally expected that the invariance of the Beauville–Voisin ring as proved in [11, 12] would be central to the argument. However, it turns out to have no bearing on the problem, but it implies that a distinguished decomposition of the motives in their algebraic and transcendental parts is preserved under derived equivalence.

Acknowledgements: I am very grateful to Charles Vial for answering my questions and to him and Andrey Soldatenkov for comments on a first version and helpful suggestions.

1. From derived categories to Chow motives

We follow the convention and notation in [1, 21] and denote by Mot(k) the pseudo-abelian category of Chow motives. Objects of this category are triples $M = (X, p, m)$, where X is a smooth projective k-variety of dimension d_X, $p \in \text{CH}^{d_X}(X \times X) \otimes \mathbb{Q}$ with $p \circ p = p$, and $m \in \mathbb{Z}$. Morphisms $f: M = (X, p, m) \to N = (Y, q, n)$ are elements $\alpha \in \text{CH}^{d_X+n-m}(X \times Y) \otimes \mathbb{Q}$ such that $q \circ \alpha = \alpha = \alpha \circ p$.

The Chow motive of a smooth projective variety X is denoted $\mathfrak{h}(X) := (X, [\Delta_X]) := (X, [\Delta_X], 0)$. The Lefschetz motive $\mathbb{L} := ([\mathbb{P}^1], [\mathbb{P}^1 \times \text{pt}], 0) \simeq (\text{Spec}(k), \text{id}, -1)$ plays a distinguished role, e.g. the Chow groups of a motive $M = (X, p, m)$ are defined to be $\text{CH}^d_Q(M) := \text{Mor}(\mathbb{L}^\otimes, M) = p \circ \text{CH}^d(M) \otimes \mathbb{Q}$.

1.1. The following result combines [4, Lem. 1] and [25, Lem. 3.2], cf. [24, Lem. 4.3].

Lemma 1.1. Let $f: M \to N$ be a morphism in the category Mot(k) of Chow motives over a field k. Then f is an isomorphism if and only if for all field extensions K/k the map $f_{K*}: \text{CH}^i_Q(M_K) \to \text{CH}^i_Q(N_K)$ induced by the base change $f_K: M_K \to N_K$ is bijective. \hfill \square

One direction is obvious and for the other one use Manin’s identity principle and induction over the dimension.

1.2. We start by describing Orlov’s approach [22]. Let $\Phi: \text{D}^b(S) \to \text{D}^b(S')$ be an exact k-linear equivalence between the bounded derived categories of coherent sheaves on two K3 surfaces S and S'. Then Φ is a Fourier–Mukai functor, i.e. $\Phi \simeq \Phi_\mathcal{E}: F \to p_*(q^*F \otimes \mathcal{E})$ for some $\mathcal{E} \in \text{D}^b(S \times S')$ (unique up to isomorphism), see [23]. The Mukai vector

$$v(\mathcal{E}) := \text{ch}(\mathcal{E}), \sqrt{\text{td}(S \times S')} \in \text{CH}^*(S \times S') \otimes \mathbb{Q}$$

induces an (ungraded) isomorphism $v(\mathcal{E})_*: \text{CH}^*(S) \to \text{CH}^*(S')$, cf. [13, Ch. 16].

The inverse of Φ can be described as $\Phi^{-1} \simeq \Phi_{\mathcal{E}^*}[2]$, where \mathcal{E}^* is the derived dual of \mathcal{E}. In particular, $v(\mathcal{E}^*) \circ v(\mathcal{E}) = [\Delta_S]$ and $v(\mathcal{E}) \circ v(\mathcal{E}^*) = [\Delta_{S'}]$. Thus, if $v(\mathcal{E})$ is purely of degree two,

1For K3 surfaces the isomorphism is indeed between integral Chow groups, but this is not true for other types of varieties.
i.e. \(v(\mathcal{E}) = v_2(\mathcal{E}) \in \text{CH}^2(S \times S') \otimes \mathbb{Q} \), then \(v(\mathcal{E}) \) can be considered as a morphism in \(\text{Mot}(k) \) and defines an isomorphism

\[v(\mathcal{E}) : h(S) \xrightarrow{\sim} h(S'). \]

However, a priori there is no reason why for two derived equivalent K3 surfaces \(S \) and \(S' \) there should always exist an equivalence \(\Phi_\mathcal{E} : \text{D}^b(S) \xrightarrow{\sim} \text{D}^b(S') \) with \(v(\mathcal{E}) = v_2(\mathcal{E}) \). In fact, when \(S' \) is viewed as a moduli space of slope-stable bundles the universal family \(\mathcal{E} \) will certainly not have this property, for \(v_0(\mathcal{E}) = \text{rk}(\mathcal{E}) \).

Next, one could try to just work with the degree two part \(v_2(\mathcal{E}) \in \text{CH}^2(S \times S') \otimes \mathbb{Q} \) of \(v(\mathcal{E}) \). It defines a morphism \(h(S) \rightarrow h(S') \) in \(\text{Mot}(k) \), which, however, will usually not be an isomorphism, for the induced action on cohomology \(v^H_2 : H^*(S) \rightarrow H^*(S') \) is often not bijective.

1.3. Instead of producing an isomorphism \(h(S) \xrightarrow{\sim} h(S') \) directly, we shall first decompose both motives with respect to their degree. The decompositions depend on the choice of additional cycles of degree one \(c \in \text{CH}^2(S) \otimes \mathbb{Q} \) and \(c' \in \text{CH}^2(S') \), respectively, cf. \[1\] \[2\]. For \(S \) it reads

\[(1.1) \quad h(S) \simeq h^0(S) \oplus h^2(S) \oplus h^4(S), \]

where \(h^0(S) := (S, p_0 = [c \times S]), h^4(S) := (S, p_4 = [S \times c]) \), and \(h^2(S) := (S, p_2 := [\Delta_S] - p_0 - p_4) \).

Note that \(h^0(S) \simeq h(\text{Spec}(k)) \simeq \mathbb{L}^0 \) and \(h^4(S) \simeq \mathbb{L}^2 \). Furthermore,

\[\text{CH}_2^q(h^0(S)) = \text{CH}^0(S) \otimes \mathbb{Q}, \quad \text{CH}_2^q(h^4(S)) = \mathbb{Q} \cdot c \subset \text{CH}^2(S) \otimes \mathbb{Q}, \]

\[\text{CH}_2^q(h^2(S)) = (\text{CH}^1(S) \oplus \text{CH}^2(S_0)) \otimes \mathbb{Q}, \]

where \(\text{CH}^2(S)_0 := \text{Ker}(\text{deg} : \text{CH}^2(S) \rightarrow \mathbb{Z}) \).

Following \[1\], the degree two part \(h^2(S) \) can be further decomposed into its algebraic and transcendental parts

\[(1.2) \quad h^2(S) \simeq h^2_{\text{alg}}(S) \oplus h^2_{\text{tr}}(S). \]

Here, \(h^2_{\text{alg}}(S) = (S, p_{2\text{alg}}) \) and \(h^2_{\text{tr}}(S) = (S, p_{\text{tr}}) \) with \(p_{2\text{alg}} := \sum 1/(\ell_i^2\ell_i) \times \ell_i \), for an orthogonal basis \(\{\ell_i\} \) of \(\text{NS}(S) \otimes \mathbb{Q} \), and \(p_{\text{tr}} := 1 - p_{2\text{alg}} - p_0 - p_4 \). Note that

\[\text{CH}_2^q(h^2_{\text{tr}}(S)) = \text{CH}^2(S)_0 \otimes \mathbb{Q} \quad \text{and} \quad \text{CH}_2^q(h^2_{\text{alg}}(S)) = \text{CH}^1(S) \otimes \mathbb{Q} \simeq \text{NS}(S) \otimes \mathbb{Q} \]

and, in fact, \(h^2_{\text{alg}}(S) \simeq \mathbb{L}^{2\rho(S)} \).

We shall call \(h_{\text{alg}}(S) := h^0(S) \oplus h^2_{\text{alg}}(S) \oplus h^4(S) = (S, p_{\text{alg}} := p_0 + p_4 + p_{2\text{alg}}) \) the algebraic motive of \(S \). Then

\[(1.3) \quad h_{\text{alg}}(S) \simeq \mathbb{L}^0 \oplus \mathbb{L}^{2\rho(S)} \oplus \mathbb{L}^2 \]

and

\[h(S) \simeq h_{\text{alg}}(S) \oplus h^2_{\text{tr}}(S). \]

Next, under a field extension \(K/k \) satisfying \(\rho(S) = \rho(S_K) \), one has \(h_{\text{alg}}(S)_K \simeq h_{\text{alg}}(S_K) \) and, therefore, \(h^2_{\text{tr}}(S)_K \simeq h^2_{\text{tr}}(S_K) \). In particular, \(\text{CH}^*(h^2_{\text{tr}}(S)_K) = \text{CH}^2(S_K)_0 \otimes \mathbb{Q} \).
1.4. As derived equivalent K3 surfaces have equal Picard numbers, by \cite{13} their algebraic motives are abstractly (i.e. without choosing an actual equivalence) isomorphic:

\[D^b(S) \simeq D^b(S') \Rightarrow h_{\text{alg}}(S) \simeq h_{\text{alg}}(S'). \]

Thus, in order to prove Theorem 0.1 it suffices to show the following.

Proposition 1.2. If \(S \) and \(S' \) are derived equivalent K3 surfaces, then there exists an isomorphism

\[h^2_{\text{tr}}(S) \xrightarrow{\sim} h^2_{\text{tr}}(S'). \]

Proof. Pick an equivalence \(\Phi_\mathcal{E} : D^b(S) \xrightarrow{\sim} D^b(S') \) and consider the Mukai vector \(v := v(\mathcal{E}) = \oplus v_1(\mathcal{E}) \in \bigoplus \text{CH}^2(S \times S') \otimes \mathbb{Q} \) of its kernel. The degree two part \(v_2(\mathcal{E}) \) induces a morphism \(f : h(S) \rightarrow h(S') \), which decomposes as

\[f = \begin{pmatrix} f_{\text{tr}} & f_{\text{alg}}^* \\ f_{\text{alg}} & f_{\text{alg}} \end{pmatrix} : h^2_{\text{tr}}(S) \oplus h_{\text{alg}}(S) \rightarrow h^2_{\text{tr}}(S') \oplus h_{\text{alg}}(S'). \]

We show that \(f_{\text{tr}}^* : h^2_{\text{tr}}(S) \rightarrow h^2_{\text{tr}}(S') \) is an isomorphism. According to Lemma 1.1 it suffices to show that for all field extensions \(K/k \) the induced map \(f_{\text{tr}}^{K*} : \text{CH}^*(h^2_{\text{tr}}(S)_K) \rightarrow \text{CH}^*(h^2_{\text{tr}}(S')_K) \) is bijective. The two sides are the cohomologically trivial parts of \(\text{CH}^*(S) \otimes \mathbb{Q} \) and \(\text{CH}^*(S') \otimes \mathbb{Q} \), respectively, and hence \(f_{\text{tr}}^{K*} = f_{K*} = v_2(\mathcal{E}_K)_* \). However, as the cohomologically trivial part of the Chow ring of a K3 surface is concentrated in degree two, the action of \(v_2(\mathcal{E}_K) \) on \(\text{CH}^2(S_K)_0 \) coincides with the action of \(v(\mathcal{E}_K) \) on it. As \(\mathcal{E}_K \) is the base change of the Fourier–Mukai kernel of an equivalence, it again describes an equivalence and, therefore, induces an ungraded isomorphism \(\text{CH}^*(S_K) \otimes \mathbb{Q} \rightarrow \text{CH}^*(S'_K) \otimes \mathbb{Q} \). This shows the bijectivity of \(f_{\text{tr}}^{K*} \).

Remark 1.3. Assume the classes \(c \in \text{CH}^2(S) \otimes \mathbb{Q} \) and \(c' \in \text{CH}^2(S') \otimes \mathbb{Q} \) are the Beauville–Voisin classes of \(S \) and \(S' \), respectively. Then, using \cite{13}, we know that \(v(\mathcal{E}) \) induces an ungraded isomorphism \(R(S) \simeq R(S') \) of groups between the Beauville–Voisin rings. Here, \(R(S) \subset \text{CH}^*(S) \otimes \mathbb{Q} \) is the \(\mathbb{Q} \)-subalgebra generated by \(\text{CH}^1(S) \). We show that this implies that \(f \) is in fact diagonal

\[f = \begin{pmatrix} f_{\text{tr}} & 0 \\ 0 & f_{\text{alg}} \end{pmatrix}, \]

i.e. \(f_{\text{tr}}^* = 0 = f_{\text{alg}}^* \). Clearly, \(f_{\text{tr}}^{K*} : \text{CH}^*(S_K)_0 \otimes \mathbb{Q} \rightarrow R(S'_K)' = R(S')' \) is trivial and, using \cite{13}, also \(f_{\text{alg}}^{K*} : R(S) \rightarrow \text{CH}^2(S_K)_0 \) vanishes. However, to conclude one needs to show that \(p_{\text{alg}}' \circ v_2 \circ p_{\text{tr}} = 0 = p_{\text{tr}}' \circ v_2 \circ p_{\text{alg}} \) and both are implied by \(p_{\text{alg}}' \circ v_2 = v_2 \circ p_{\text{alg}} \). The latter holds in \(\text{H}^*(S \times S') \) and as both sides are contained in \(R(S) \otimes R(S') \) which injects into \(\text{H}^*(S \times S') \), this suffices to conclude.
2. APPLICATIONS AND FURTHER COMMENTS

We conclude by a few consequences and possible generalizations of the result.

2.1. Assume the two derived equivalent K3 surfaces S and S' are defined over a finite field \mathbb{F}_q. Then due to [13], using crystalline cohomology, and to [13, Prop. 16.4.6], using étale cohomology, the Zeta functions of S and S' are shown to coincide, $Z(S, t) = Z(S', t)$. In particular,

$$\mathbb{D}^b(S) \simeq \mathbb{D}^b(S') \Rightarrow |S(\mathbb{F}_q)| = |S'(\mathbb{F}_q)|.$$

This can now also be seen as a consequence of Theorem 0.1.

2.2. Another approach to capture the motivic nature of a K3 surface S is to consider its class $[S] \in K_0(\text{Var}(k))$ in the Grothendieck ring of varieties. To compare $[S]$ with the Chow motive $h(S) \in \text{Mot}(k)$ or its class $[h(S)]$ in the Grothendieck ring

$$K(\text{Mot}(k)) := \mathbb{Z}[\text{Mot}(k)] / ([M \oplus N] - [M] - [N]),$$

one uses the motivic Euler characteristic with compact support χ^c_{mot}, see [5, 6] or [2] for a much easier proof in characteristic zero. This is a ring homomorphism

$$\chi^c_{\text{mot}} : K_0(\text{Var}(k)) \longrightarrow K(\text{Mot}(k)),$$

satisfying $\chi^c_{\text{mot}}([X]) = [h(X)]$ for any smooth projective variety X and $\chi^c_{\text{mot}}(\ell) = [L]$, where $\ell := [A^1]$.

Theorem 0.1 shows that $h(S) \simeq h(S')$ in $\text{Mot}(k)$ for derived equivalent K3 surfaces S and S' and, therefore, $[h(S)] = [h(S')]$ in $K(\text{Mot}(k))$. This immediately yields

Corollary 2.1. Let S and S' be two derived equivalent K3 surfaces and let $[S]$ and $[S']$ be their classes in $K_0(\text{Var}(k))$. Then

$$\chi^c_{\text{mot}}([S]) = \chi^c_{\text{mot}}([S']) \in K(\text{Mot}(k)).$$

As χ^c_{mot} factorizes via the localization $K_0(\text{Var}(k))[\ell^{-1}]$, the corollary would also follow from $[S] = [S']$ in $K_0(\text{Var}(k))[\ell^{-1}]$, i.e. $([S] - [S']) \cdot \ell^n = 0$ in $K_0(\text{Var}(k))$ for some $n > 0$. In fact, in the examples studied in [7,14,16], dealing with K3 surfaces of degree 8 and 12, $([S] - [S']) \cdot \ell = 0$. Note that $[S] = [S']$ in $K_0(\text{Var}(k))$ if and only if $S \simeq S'$, see [19]. In particular, the kernel of

$$K_0(\text{Var}(k)) \longrightarrow K(\text{Mot}(k))$$

is certainly non-trivial. However, to the best of my knowledge, nothing is known about the kernel of

$$K_0(\text{Var}(k))[\ell^{-1}] \longrightarrow K(\text{Mot}(k)).$$

or, weaker, in $K_0(\text{Var}(k))/\ell$ which in characteristic zero is isomorphic to the Grothendieck ring of stable birational classes of smooth projective varieties $\mathbb{Z}[\text{SB}(k)]$, see [17].
2.3. Theorem 0.1 clearly implies that for two derived equivalent K3 surfaces S and S', one is finite-dimensional (in the sense of Kimura–O'Sullivan) if and only if the other one is. This was already observed in [3, Prop. 1.5]. In fact, in this paper Theorem 0.1 was shown assuming finite-dimensionality of $h(S)$, which however is only known in very few cases.

2.4. As Charles Vial explained to me, Theorem 0.1 can be generalized to arbitrary surfaces. Indeed, it can be shown that the odd degree part $h^1 \oplus h^3$ is a derived invariant. For details see [8] and the forthcoming paper of Achter, Casalaina-Martin, and Vial, where the more complicated situation of derived equivalences of threefolds is studied.

He also explained to me that Lemma 1.1 can be avoided by showing that the isomorphism of ungraded Chow motives induced by $v(E)$ necessarily maps $h^1_{tr}(S)$ into $h^1_{tr}(S')$. The inverse is then given by $v(E^*)$.

REFERENCES

[1] Y. André Une introduction aux motifs (motifs purs, motifs mixtes, périodes). Panoramas et Synthèses 17, SMF Paris, 2004.
[2] F. Bittner, The universal Euler characteristic for varieties of characteristic zero. Compos. Math. 140 (2004), 1011–1032.
[3] A. Del Padrone, C. Pedrini Derived categories of coherent sheaves and motives of K3 surfaces. Regulators, Contemp. Math. 571, AMS (2012), 219–232.
[4] S. Gorchinskiy, V. Guletskii Motives and representability of algebraic cycles on threefolds over a field. J. Alg. Geom. 21 (2012), 347–373.
[5] H. Gillet, C. Soule Descent, motives and K-theory. Crelle J. Reine Angew. Math. 478 (1996), 127–176.
[6] F. Guillén, V. Navarro Aznar Un critère d’extension des foncteurs définis sur les schémas lisses. Publ. Math. IHES 95 (2002), 1–91.
[7] B. Hassett, K.-W. Lai Cremona transformations and derived equivalences of K3 surfaces. arXiv:1612.07751.
[8] K. Honigs, J. Achter, S. Casalaina-Martin, C. Vial Derived equivalence, Albanese varieties, and the zeta functions of 3-dimensional varieties. arXiv:1604.00042.
[9] D. Huybrechts Fourier–Mukai transforms in algebraic geometry. Oxford Mathematical Monographs (2006).
[10] D. Huybrechts Derived and abelian equivalence of K3 surfaces. J. Alg. Geom. 17 (2008), 375–400.
[11] D. Huybrechts Chow groups of K3 surfaces and spherical objects. JEMS 12 (2010), 1533–1551.
[12] D. Huybrechts Chow groups and derived categories of K3 surfaces. Current developments in algebraic geometry, MSRI Publ. 59, (2012), 177–195.
[13] D. Huybrechts Lectures on K3 surfaces. Cambridge University Press, 2016. http://www.math.uni-bonn.de/people/huybrech/K3.html
[14] A. Ito, M. Miura, S. Okawa, K. Ueda The class of the affine line is a zero divisor in the Grothendieck ring: via K3 surfaces of degree 12. 1612.08497.
[15] B. Kahn, J. Murre, C. Pedrini On the transcendental part of the motive of a surface. In Algebraic cycles and motives, LMS Series 344, Cambridge University Press (2007), 143–202.
[16] A. Kuznetsov, E. Shinder Grothendieck ring of varieties, D- and L-equivalence, and families of quadrics. arXiv:1612.07193.
[17] M. Larsen, V. Lunts Motivic measures and stable birational geometry. Mosc. Math. J. 3 (2003), 85–95.
[18] M. Lieblich, M. Olsson Fourier–Mukai partners of K3 surfaces in positive characteristic. Ann. Sci. ENS 48 (2015), 1001–1033.

[19] Q. Liu, J. Sebag The Grothendieck ring of varieties and piecewise isomorphisms. Math. Z. 265 (2010), 321–342.

[20] S. Mukai On the moduli space of bundles on K3 surfaces, I. In: Vector Bundles on Algebraic Varieties, Bombay (1984), 341–413.

[21] J. Murre, J. Nagel, C. Peters Lectures on the theory of pure motives. University Lecture Series 61, AMS, 2013.

[22] D. Orlov On equivalences of derived categories and K3 surfaces. J. Math. Sci. (New York) 84 (1997), 1361–1381.

[23] D. Orlov Derived categories of coherent sheaves, and motives. Russian Math. Surveys 60 (2005), 1242–1244.

[24] C. Pedrini On the rationality and the finite dimensionality of a cubic fourfold. arXiv:1701.05743.

[25] C. Vial Remarks on motives of abelian type. to appear in Tohoku Math. J. arXiv:1112.1080.

Mathematisches Institut, Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany
E-mail address: huybrech@math.uni-bonn.de