SyRI: identification of syntenic and rearranged regions from whole-genome assemblies

Manish Goel¹, Hequan Sun¹, Wen-Biao Jiao¹, Korbinian Schneeberger*¹

¹ Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany

* To whom correspondence should be addressed

Email addresses:

Manish Goel: goel@mpipz.mpg.de
Hequan Sun: sun@mpipz.mpg.de
Wen-Biao Jiao: jiao@mpipz.mpg.de
Korbinian Schneeberger: schneeberger@mpipz.mpg.de

Running head: Synteny and rearrangement identification (SyRI)
Abstract

Here, we present SyRI, an efficient tool for genome-wide structural rearrangement identification from genome graphs, which are build up from pair-wise whole-genome alignments. Instead of searching for differences, SyRI starts by finding all co-linear regions between the genomes. As all remaining regions are SRs by definition, they just have to be classified as inversions, translocations, or duplications based on their positions in convoluted networks of repetitive alignments. Finally, SyRI reports local variations like SNPs and indels within syntenic and rearranged regions. We show SyRI’s broad applicability to multiple species and genetically validate the presence of ~100 translocations identified in Arabidopsis.

Keywords

Structural rearrangements, structural variations, variant calling, genome alignments, genetics, genome assembly
Background

Haploid genomes of the same species typically show high similarity in their genome structures including extensive co-linear (syntenic) regions. However, these co-linear regions can be interrupted by structural rearrangements (SRs), which are genomic regions characterised by different orientation and/or location in different haplotypes. SRs can be classified into inversions, translocations, and duplications. Despite being severe genomic differences, SR were found to be implicated in various traits like disease phenotypes [1], reproductive strategies [2–4] or life cycle differences [5].

Many of the existing SR prediction methods utilize short or long read alignments against reference sequences. Though, local differences (like SNPs and small indels) can be found with high accuracy, accurate prediction of complex SRs remains challenging using read alignments alone. In contrast, the comparison of high quality genome assemblies is more powerful for accurate SR identification as the assembled contigs or scaffolds are typically much longer and of higher quality as compared to raw sequence reads [6]. However, despite of significant technological improvements supporting the generation of de-novo whole-genome assemblies within the recent years [7], there are only a few tools which use whole-genome alignments (WGA) as the basis for the identification of genomic differences [8]. Available tools, for example, include AsmVar, which compares individual scaffolds of a de novo assembly against the reference sequence and analyses alignment breakpoints to identify inversions and translocations [9] and Assemblytics, which utilizes contigs with uniquely aligned regions to a reference sequence and uses them to identify various different genomic differences including large indels or differences in local repeats [10].
Here, we introduce SyRI (Synteny and Rearrangement Identifier), a method to identify structural genomic between two related genomes (usually from the same species) using genome graphs generated from pair-wise WGA. SyRI starts by identifying all syntenic regions between homologous chromosomes of the two genomes. Since all other regions are SRs by definition (or otherwise they would be part of the syntenic regions), this transforms the problem of SR identification to SR classification. SyRI classifies non-syntenic regions into inversions, translocations and duplications. SyRI performs concurrent analysis of rearranged regions across the entire genomes and annotates SRs globally to optimise the annotation of genomic differences. Even though, it is common to distinguish between translocations and transpositions, we will refer to both types as translocations. Additionally, translocations and duplications will be collectively referred to as TDs.

Finally, SyRI identifies local variation across the entire genome including rearranged as well as non-rearranged regions. It is important to note that local variations and structural rearrangements are not distinguished by their size or complexity, as local variations include can also include large structural variations like long deletions or insertions. Instead, local variation can be found within syntenic as well as in structurally rearranged regions. This introduce a hierarchy the variation and – for example – allows to distinguish between SNPs in co-linear regions as compared to SNPs in rearranged regions. This distinction is important, as rearranged regions (and the local variation in them) will not follow Mendelian segregation patterns in the offspring of the respective organisms, but can even lead to changes in their copy number (Figure 1).
We used SyRI to analyse divergent genomes of five model species and genetically validated translocations found in two *A. thaliana* strains by analysing Illumina whole-genome sequencing data of 50 F2 recombinant genomes.

Results

Identifying genomic difference using SyRI. SyRI generates *genome graphs* from pairwise WGAAs (here we used MUMmer3 toolbox to perform WGA [11,12]) to identify genomic differences between any two haploid genomes (Additional File 1: Note 1). For an overview of the analysis workflow see Figure 2, and for algorithmic details see Figure 3.

Ideally, both of the haploid assemblies are at chromosome-level. If one or both of the assemblies are at scaffold-level, SyRI can generate pseudo-chromosomes using homology between assemblies themselves or homology to a reference sequence (Additional File 1: Note 2, preprint [13]). Even though many of the local alignments between two genomes are redundant as they result from repeats, the genomes do not need to be repeat-masked as SyRI can distinguish between repetitive and original alignments. Once done, SyRI outputs tab-separated and standard variant call format (VCF) files including all information on SR and local variation as well as the clustering of local variation in SRs.

Syntenic path identification. SyRI selects all forward alignments between a pair of homologous chromosomes and generates a genome graph in the form of a directed acyclic graph (DAG) (Figure 3a). For each of the alignments a node is created with a score equal to the alignment score. Any pair of nodes is then connected by an edge if the two underlying alignments are co-
Alignments are defined as colinear if the underlying regions are non-rearranged to each other and if no other co-linear alignment is between them.

After all nodes and edges are added to the genome graph, two additional 0-score nodes, called S (start) and E (end), are added to the genome graph. Edges are added from node S to all other nodes without any in-edge; similarly, edges are added from all nodes without any out-edge to node E. We identify the maximal syntenic path (i.e. the optimal set of non-conflicting, co-linear regions) by selecting the highest scoring path between node S and E using dynamic programming. This approach resembles an algorithms for the identification of conserved regions as seeds during whole-genome alignments as implemented in MUMmer [14,15]. This process is repeated for each pair of homologous chromosomes.

Inversion identification. Here, we define an inversion as a set of inverted alignments corresponding to one structural rearrangement event and which is in-between two syntenic alignments (Additional File 1: Figure S1). To identify them, SyRI selects all inverted alignments between a pair of corresponding chromosomes and then reverse complements one of the chromosomes. Then analogous to the syntenic path identification, SyRI again builds up a genome graph now using this set of alignments based on reverse complemented regions. Start (S) and end (E) nodes are added and connected to all other nodes in the graph (Figure 3b (i)). In this graph, every path from S to E corresponds to a candidate inversion. For each candidate, SyRI calculates an *inversion score* which is defined as the difference between the sum of the node scores in the candidate inversion and the node scores of all syntenic alignments that would need to be removed in case the inversion is selected, since some inversions might cross syntenic
alignments (see Additional File 1: Figure S1 for example). Candidate inversions with negative score are removed.

The remaining candidate inversions can overlap and/or contradict with each other (Figure 3b (ii)). To resolve such conflicts, SyRI generates a second DAG where each node is a candidate inversion with the inversion score as node-score and each edge connects inversions which do not conflict (i.e. do not overlap or intersect). Similar to the syntenic path identification, additional start(S) and end(E) nodes and corresponding edges are added, and dynamic programming is used to select the highest-scoring path from S to E. Thus, SyRI identifies the best set of non-conflicting inversions which maximises the total alignment score from inversions and the syntenic path simultaneously.

Translocation and duplication (TD) identification. Since syntenic and inverted regions are already annotated, all remaining alignments are either involved in TDs or are of repetitive nature and need to be filtered out. For this, SyRI again starts by generating a third genome graph, this time using only the so-far unannotated alignments, where again each node corresponds to an alignment and an edge implies co-linearity between the respective alignments (Additional File 1: Figure S2). Nodes corresponding to alignments which are separated by any other annotated region (syntenic or inverted) are not connected by an edge (Additional File 1: Figure S3). Additional start (S) and end (E) nodes and edges from these nodes to all other nodes are added. In this graph, each path from S to E corresponds to a candidate TD. Each candidate TD is given a score based on its alignment length and gap length between consecutive alignments (Methods).
Low scoring candidates and those that are overlapping with syntenic or inverted regions are filtered out.

Like inversions, selected candidate TDs can overlap with each other. To resolve these conflicts, SyRI first clusters overlapping candidate TDs, generating a network of co-aligned regions (Additional File 1: Note 3). These networks are processed using progressive elimination which involves iterative selection of candidates which align uniquely to a region (Figure 3c). A unique alignment implies that these candidate TDs are necessary for annotating these genomic regions as there are no alternative alignments which could annotate these regions. In contrast, candidates which align to annotated regions within both of the genomes are removed as they are redundant alignments. This procedure, however, can result in deadlocks, which refers to cases when it is not clear which candidate should be selected next during progressive elimination.

To break such deadlocks, SyRI uses progressive elimination in conjunction with brute-force (for small networks) and randomized-greedy algorithms (for large networks). In the brute-force approach, all possible sets of non-conflicting candidate TDs within a network are generated. The score of each set (sum of candidate TD scores) is calculated and the set with the highest score is selected. In the randomized-greedy algorithm, deadlocks are resolved by selecting one of the highest scoring candidates at random with its probability weighed to its alignment score followed again by progressive elimination. This is repeated until all candidates are either annotated as TD or removed as redundant. After SyRI identifies all intra-chromosomal TDs, inter-chromosomal TDs are annotated in the same way.
Grouping of alignments to generate annotation block. SyRI combines annotated alignments to generate annotation blocks where a block corresponds to genomic region (alignments and the unaligned space within it) which constitute a structural event. For example, a syntenic block would contain all consecutive uninterrupted co-linear alignments and the unaligned regions between these alignments. Inversion (or TD) blocks would include all alignments which together form the extent of one inversion (or one TD).

Local variation identification. Local, small variations (like SNPs and small indels) are parsed out from individual alignments using MUMmer or corresponding CIGAR strings [12]. Local, large variations (structural variations like long indels) lead to alignment discontinuity. SyRI compares the overlaps and gaps present between all consecutive alignments within each of the annotation blocks and annotates indels, highly divergent regions (HDRs) and CNVs/tandem repeats (Additional File 1: Figure S4) similar to the structural variation predictions of Assemblytics [10]. Finally, SyRI reports all un-aligned regions which are not part of any annotation block. These regions reside between neighboured annotation blocks and are not classified further.

Validating SyRI using genetics and a simulation study

We used SyRI to predict genomic differences between two of the best described A. thaliana accessions, Col-0 and Ler. Col-0 is the standard lab strain, which was used for the generation of a high-quality reference sequence [16]. The Ler genome was recently assembled using a combination of different genomics technologies [17]. Both genomes are highly inbred and are considered as fully homozygous. Here, we generated a new chromosome-level de novo assembly
of the homozygous Ler genome using PacBio reads and homology to the reference sequence.

CN50 and CL50 (which are chromosome-number corrected metrics for the commonly used C50 and L50 values) were 12.6Mb and 1, respectively [18]. (Additional File 2: Table S1, Methods).

Based on a MUMmer WGA of these two assemblies, SyRI predicted 1,979 syntenic blocks (104.5Mb, 88.5%), 4,630 SR blocks (9.7Mb, 8.2%) as well as 2,237 non-aligned regions (3.9Mb, 3.3%) (values are with respect to the Ler genome; similar values for Col-0; Figure 4a). Syntenic blocks were much larger (median length of ~22 kb) as compared to SR blocks with a median length of 1.2 kb (Figure 4b). SRs were not randomly distributed in the genome, but clustered in specific regions. An example for a highly rearranged region affected the location of several genes, and how SyRI annotates the individual SR in this region can be found in Figure 4c. More than half of the predicted SRs reside within the peri-centromeres, which are known to be structurally diverse, repeat rich and low in gene density [16]. Overall, 4,095 (88.5%) of the SR blocks were at least partially overlapping with transposable elements, while 2,238 (48%) of them were found entirely within transposable elements. A summary of the local variations can be found in Additional File 1: Figure S5.

To validate some of the predicted rearrangements we used a genetic approach which was based on the assumption that recombinant genomes should have different copy numbers of translocated DNA as compared to the parental genomes (Figure 1; 5a): The copy number of translocated DNA in a recombinant genome should rely on the genotypes at the two insertion sites of the translocation. For example, translocated DNA should be duplicated if the two loci of translocated DNA are combined into one recombinant chromosome. In contrast, non-SR regions should not vary in copy-number, irrespective of any recombination in the genome.
We used available whole-genome sequencing data of a set of 50 F$_2$ recombinant plants, which were generated by crossing Col-0 and Ler, followed by self-pollination of the resulting F$_1$ hybrids (preprint [19]). We aligned the short reads (~5x genome coverage/sample) to the Col-0 reference sequence and used the genotypes at ~500k SNP [17] markers to reconstruct the parental haplotypes using TIGER [20] (Figure 5b). As expected, almost all of the crossing-over sites (99.5%) overlapped with syntenic regions.

For each predicted translocation, we estimated a copy number in each sample using this haplotype information and used three different metrics to test for its existence. The first two were based on the assumption that all reads from a translocated region align to the same loci in the reference genome independent of the location of actual allele(s) in the sequenced sample (Figure 5b, [21]). Accordingly, it should be possible to estimate the copy-number of a translocation using changes in read coverage. For the first test, we analysed the absence of reads in translocated regions in recombinant genomes, which were predicted to feature no copy of the translocated region (Figure 5c) (using 0.2x read coverage as a cut-off to distinguish between absence or presence of a translocations). For the second test, we assessed the goodness-of-fit between expected copy-number and observed copy-number for a translocation across all recombinants (as estimated from the normalized read counts in the translocation regions; Figure 5d; Methods). Third, we tested for allele count differences, where allele count refers to the number of reads having the Col-0 (or Ler) alleles at SNP markers within a translocated region and that allow to distinguish the two alleles of the translocation. Depending on the copy number of the different alleles of a translocation, the allele count should also vary. In consequence, samples with the same genotypes at the two loci of a translocation should have similar allele counts.
Clustering the samples based on their allele count values should therefore result in a clustering of the samples according to their genotypes at the loci associated with translocations (Figure 5e). In contrast, the allele counts of falsely predicted translocations would be independent of the genotype and as a result, samples with the same genotypes should not cluster together (Methods).

We selected 135 translocations (intra- and inter- chromosomal), which were larger than 1kb and were not part of the peri-centromeres for validation. We tested all translocations with at least one of the tests described above, of which 92% (124) could be confirmed by at least one test, while 39% (52/135) were even confirmed by two or three tests (Figure 5f). We manually checked the read alignments in the regions of the eleven translocations that could not be confirmed and found support for the existence of each of the translocations, which however had not been strong enough to be identified by any of the three automated genetic tests.

In addition, we performed a simulation analysis where we randomly introduced non-overlapping SRs in the Col-0 reference sequence (Methods) and compared these modified genomes against the original assembly using SyRI. For this, we simulated 100 genomes each of the four classes: inversions, translocations, duplications, and translocations with duplications. SyRI was able to consistently identify correct SRs and obtained >95% of sensitivity and precision values across all samples (Additional File 1: Figure S6). False results were usually a consequence of SRs in repeat regions where alternate annotations were equally likely.
Comparing human, yeast, fruit fly, and maize genomes

To test and demonstrate SyRI’s usefulness and scalability regarding genome size and repetitiveness, we searched for intra-species genomic differences in four different model organisms: human, yeast, fruit fly, and maize (Additional File 2: Table S1). For its application to human genomes, we compared two assemblies, which included the extensively studied sample NA12878 [22] and an adult Yoruban female genome (NA19240, [23]) against the reference genome GRCh38.p12 [24]. For yeast, we compared the de novo assembly of strain YJM1447 [25] against the reference genome from strain S288C [26]. For fruit fly (D. melanogaster), the de novo assembly of strain A4 [27] was compared to the reference genome [28]. For maize, we compared the de novo assembly of PH207 [29] against the B73 reference genome [30]. To limit computational requirements, we masked the highly repetitive maize genome while all other genomes were analysed without masking [31].

SyRI was used to predict syntenic regions, SRs, and local variations in all genomes (Table 1, Additional File 1: Figure S7–S11). In each comparison, including human, at least 5% of the assembled genomes were found to be structurally different. Runtime and memory usage were dependent on genome complexity (including repetitiveness). The CPU runtime for the smaller and simpler yeast genomes was 43 seconds, whereas for the two human genomes SyRI took ~10 minutes, while memory usage was less than 1 GB for each of the comparisons (Table 1) (without considering SNPs and small indel parsing). The exception was the comparison of the repetitive maize genomes, which took ~1hr of CPU time and ~7GB of RAM. Since SyRI considers all alignment combinations, the runtime and memory usage can be high in such repetitive genomes (see Additional File 1: Note 4 and Figure S12 for more information), however, the number of
alignments can be drastically reduced by reducing the WGA sensitivity (i.e. omitting small, 10-100s bp alignments), which in turn decreases runtime and memory consumption of SyRI.

Discussion

We introduced SyRI, a tool that identifies genomic differences using pair-wise comparisons of whole genome assemblies. However, instead of identifying differences directly, SyRI starts by identifying all syntenic (co-linear) regions between the genomes. As all non-syntenic regions must result from rearrangements, identifying syntenic regions implies identification of rearranged regions as well. This transforms the challenge of SR identification to the comparatively easier challenge of SR classification.

SyRI is based on a genome graph and uses optimisation methods to identify the syntenic path between the corresponding chromosomes and select alignments (nodes) which represent structural rearrangements between all pairs of chromosomes while maximising the total alignment score. This allows SyRI to annotate even highly complex and repeat rich regions.

In addition, SyRI identifies local genomic variations residing either in syntenic or rearranged regions. The identification of local variations in rearranged regions introduces a hierarchy of genomic variations (e.g., SNPs in translocated regions). It is important to distinguish between the different types of SNPs, as SNPs in rearranged regions are differently inherited as compared to SNPs in syntenic regions. The genotypes at rearranged SNPs can confound the interpretation of genomic patterns during selection screens, genome-wide association or recombination analysis as they can show unexpected genotypes [32,33]. SyRI now offers a straight-forward solution to find SNPs in syntenic regions assuming whole-genome assemblies are available.
Finally, though implemented in a genome graph that is build up from local alignments generated by a WGA, our algorithm can be easily adapted for SR identification in other types of genome graphs as well [34,35].

Conclusions

We have developed SyRI which, to our knowledge, is the first tool to identify all classes of structural rearrangements between two genome assemblies following the identification of syntenic regions. This novel approach of SR identification is highly efficient and also identifies all local genomic difference in their genomic context (i.e. whether local variation resides in syntenic or rearranged regions). Using SyRI, we identified SRs and local variations in humans, *A. thaliana*, fruit fly, yeast, and maize genomes. Further, using the individual genomes of a population of recombinant individuals generated by crossing two *A. thaliana* accessions allowed us to validate the predicted translocations. SyRI is available as an open source tool and is being actively developed and improved.

Methods

Long read sequencing of the genome of *A. thaliana Ler*

A. thaliana Ler plants were grown in the greenhouse at the Max Planck Institute for Plant Breeding Research. DNA was extracted using the NucleoSpin® Plant II Maxi Kit from Macherey-Nagel. We used the PacBio template prep kit > 20 kb for Sequel systems (SMRTbell Template Prep Kit 1.0-SPv3) with damage repair (SMRTbell Damage Repair Kit -SPv3) and BluePippin size...
Selection for fragments > 9/10 kb. Sequencing of two SMRT cells was done with the Sequel Sequencing Plate 1.2 and the Sequel Binding Kit 1.0. Movie Time 360 min.

Assembly generation

Raw reads were filtered to remove small and low-quality reads (length<50bp and QV<80), corrected and *de novo* assembled using Falcon [36], followed by polishing with Arrow in the SMRTLink5 package, and finally corrected using Illumina short read alignments with reads from an earlier project [17]. The contigs from organellar DNA sequences were removed, all others were anchored into pseudo-chromosome based on homology with the reference sequence.

Adjacent contigs were connected with a stretch of 500 “N” characters.

Whole genome alignments

All assemblies used in this work were filtered to select only chromosome-representing contigs (unplaced scaffolds were removed) (Additional File 2: S2). We used the *nucmer* alignment tool from the MUMmer toolbox [12] to perform WGAs. Nucmer was run with --maxmatch to get all alignments between two genomes including -c, -b, and -l parameters which were selected to balance alignment resolution and runtime based on genome size and number of repeat regions (full commands are available in Additional File 2: Table S2). Alignments were filtered using the *delta-filter* tool and the filtered delta files were converted to the tab-delimited files using the *show-coords* command. Before whole-genome alignments, both maize genomes were masked using RepeatMasker v4.0.6 [37].

TD candidates score
Each selected candidate TD was given a score based on the length of alignments in it and the gap length between the alignments; TD score = \(\min \left(\frac{\text{genA_aligned_length} - \text{genA_gap_length}}{\text{genA_aligned_length}}, \frac{\text{genB_aligned_length} - \text{genB_gap_length}}{\text{genB_aligned_length}} \right) \).

Data extraction and transformation of the 50 recombinant genomes

We used whole-genome sequencing data of 50 F2 recombinant plants that were generated in the course of a different project (preprint [19]) for validating SR predictions. We extracted allele count information from consensus call files generated by SHORE [38]. For each predicted translocation, we estimated its copy number as the ratio between average read-coverage for the translocated region and the average read-coverage across the entire genome of the respective sample. Translocations in the centromeric regions and for which more than 25% of the translocated sequence had at least 10% reads with Ns were filtered out. For allele count analysis, we selected high-confidence (25bp conserved in both directions) SNPs in translocated regions as markers. Translocated regions (and corresponding SNP markers) were classified according to the genotypes (as predicted by TIGER) in individual samples at the two associated loci.

Validation of translocation: Absence of reads (Test 1)

We selected F2 samples which, according to predicted genotypes, should have lost the translocated DNA and thus should not give rise to any reads from the translocated region. Only translocations for which at least two samples that had lost the translocated regions were tested. And only those translocations for which all tested samples had no reads were considered validated.

Validation of translocation: Expected vs. observed copy number (Test 2)
For each translocation, we selected samples which had different genotypes at the two associated loci for the translocation. This removes some of the samples with two copies, and helps to remove a bias towards genomes with a copy number of two, which can affect this test. We further only selected translocations for which we found samples with at least three different copy-number values predicted. A linear model was fit using the \textit{lm} function in R. \textit{P}-values for the model-fit were adjusted for multiple testing using the \textit{BH}-method [39], and translocations for which adjusted \textit{p}-values were less than 10^{-6} and slope more than 0.75 were considered as valid.

Validation of translocation: Genotype clustering (Test 3)

Allele count values at the SNP markers were normalized and outliers (markers having very high allele counts) were removed. Translocations were tested only when they had at least two different classes of samples (genotypes) with each class having at least three samples, and at least three SNP markers in the translocated regions. Translocations for which alternate allele counts did not change across the samples (variance < 1) were also filtered out.

Cluster fit calculation: First, the distance between two samples was defined as the Euclidean distance between their reference allele counts and alternate allele counts. Then, the \textit{closeness_score} was calculated as the sum of ratios of the average distance between the samples belonging to a genotype to the average distance to samples of other genotypes.

Simulating distributions: Background distributions for the \textit{closeness_score} were simulated by generating random clusters. For each sample, allele counts (reference and alternate) were sampled using a Poisson distribution. For true translocations, the \textit{closeness_score} would be low as samples from same genotype would be much closer to each other (leading to smaller numerator), whereas samples from different genotypes would be far (leading to large numerator).
denominator). For each translocation, we calculated lower-tail p-value of getting corresponding
closeness_score. P-values were adjusted for multiple testing using BH-method, and
translocations with p-value < 0.05 were considered valid.

Simulation analysis

We simulated SRs in the *A. thaliana* reference genome using *R* package RSVSim [40]. We
simulated 40, 436, 1241, and 836 events for inversions, translocations, duplications, and
translocations with duplications respectively. The number of rearrangements and their
corresponding sizes were sampled after real differences found between the Col-0 vs Ler
genomes. The simulated genomes were aligned back to the unmodified reference genome and
SRs were identified using SyRI. A predicted SR was considered to match an original SR if the end
points for the predicted SR were within ±150bp of the end points of the original SR.

Declarations

Availability of data and materials

The assembly of the Ler genome has been submitted to the European Nucleotide Archive
(http://www.ebi.ac.uk) and will be made publicly available upon publication under the accession
number GCA_900660825. All other assemblies are publicly available at NCBI
(https://www.ncbi.nlm.nih.gov/), and their accession numbers are GCA_000001735.3 [16],
GCA_000001405.27 [24], GCA_002077035.3 [22], GCA_001524155.4 [23], GCA_000146045.2 [26],
GCA_000977955.2 [25], GCA_000001215.4 [28], GCA_002300595.1 [27], GCA_000005005.6 [30],
GCA_002237485.1 [29]. Further details about the assemblies are in Additional File 2: Table S1. BAM
files for the 50 F$_2$ recombinant genomes are available at European Nucleotide Archive under the
project ID PRJEB29265 (preprint [19]). SyRI is freely available under MIT license and is available online [41]. SyRI is developed using Python3 and is platform independent.

Competing interests

The authors declare that they have no competing interests.

Funding

This work was supported by the German Federal Ministry of Education and Research in the frame of RECONSTRUCT (FKZ 031B0200A-E).

Authors' contributions

Project was conceived by KS and WBJ. MG and KS developed the algorithms and methods. MG implemented SyRI and performed analysis. HS processed recombinant genome sequencing data and identified crossing-over sites. WBJ generated the Ler assembly. Manuscript was written by MG and KS with inputs from HS and WBJ. All authors read and approved the final manuscript.

Acknowledgements

The authors would like to thank Ulrike Hümann for help with plant work and Detlef Weigel for his helpful comments on the manuscript. We would also like to thank the researchers at the The Genome Institute at Washington University School of Medicine who shared the assemblies for the NA12878 and NA19240 genomes.

References

1. Weischenfeldt J, Symmons O, Spitz F, Korbel JO. Phenotypic impact of genomic structural variation: insights from and for human disease. Nat Rev Genet. 2013; 14(2):125–38.
2. Tuttle EM, Bergland AO, Korody ML, Brewer MS, Newhouse DJ, Minx P, et al. Divergence and Functional Degradation of a Sex Chromosome-like Supergene. Curr Biol. 2016; 26(3):344–50.

3. Küpper C, Stocks M, Risse JE, dos Remedios N, Farrell LL, McRae SB, et al. A supergene determines highly divergent male reproductive morphs in the ruff. Nat Genet. 2016; 48(1):79–83.

4. Lamichhaney S, Fan G, Widemo F, Gunnarsson U, Thalmann DS, Hoeppner MP, et al. Structural genomic changes underlie alternative reproductive strategies in the ruff (Philomachus pugnax). Nat Genet. 2016; 48(1):84–8.

5. Lowry DB, Willis JH. A Widespread Chromosomal Inversion Polymorphism Contributes to a Major Life-History Transition, Local Adaptation, and Reproductive Isolation. Barton NH, editor. PLoS Biol. 2010; 8(9):e1000500.

6. Simpson JT, Pop M. The Theory and Practice of Genome Sequence Assembly. Annu Rev Genomics Hum Genet. 2015; 16(1):153–72.

7. Jiao W-B. The impact of third generation genomic technologies on plant genome assembly. Curr Opin Plant Biol. 2017; 36:64–70.

8. Sedlazeck FJ, Lee H, Darby CA, Schatz MC. Piercing the dark matter: Bioinformatics of long-range sequencing and mapping. Nat Rev Genet. 2018; 19(6):329–46.

9. Liu S, Huang S, Rao J, Ye W, Krogh A, Wang J. Discovery, genotyping and characterization of structural variation and novel sequence at single nucleotide resolution from de novo genome assemblies on a population scale. Gigascience. 2015; 4(1).

10. Nattestad M, Schatz MC. Assemblytics: a web analytics tool for the detection of variants
from an assembly. Bioinformatics. 2016; 32(19):3021–3.

11. Marçais G, Delcher AL, Phillippy AM, Coston R, Salzberg SL, Zimin A. MUMmer4: A fast and versatile genome alignment system. Darling AE, editor. PLOS Comput Biol. 2018; 14(1):e1005944.

12. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, et al. Versatile and open software for comparing large genomes. Genome Biol. 2004; 5(2):R12.

13. Alonge M, Soyk S, Ramakrishnan S, Wang X, Goodwin S, Sedlazeck FJ, et al. Fast and accurate reference-guided scaffolding of draft genomes. bioRxiv. 2019; :519637.

14. Delcher AL, Phillippy A, Carlton J, Salzberg SL. Fast algorithms for large-scale genome alignment and comparison. Nucleic Acids Res. 2002; 30(11):2478–83.

15. Delcher AL, Kasif S, Fleischmann RD, Peterson J, White O, Salzberg SL. Alignment of whole genomes. Nucleic Acids Res. 1999; 27(11):2369–76.

16. Initiative TAG. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 2000; 408(6814):796–815.

17. Zapata L, Ding J, Willing E-M, Hartwig B, Bezdan D, Jiao W-B, et al. Chromosome-level assembly of Arabidopsis thaliana L er reveals the extent of translocation and inversion polymorphisms. Proc Natl Acad Sci. 2016; 113(28):E4052–60.

18. Jiao W-B, Accinelli GG, Hartwig B, Kiefer C, Baker D, Severing E, et al. Improving and correcting the contiguity of long-read genome assemblies of three plant species using optical mapping and chromosome conformation capture data. Genome Res. 2017; 27(5):778–86.

19. Sun H, Rowan BA, Flood PJ, Brandt R, Fuss J, Hancock AM, et al. Linked-read sequencing of
gametes allows efficient genome-wide analysis of meiotic recombination. bioRxiv. 2018; :484022.

20. Rowan BA, Patel V, Weigel D, Schneeberger K. Rapid and Inexpensive Whole-Genome Genotyping-by-Sequencing for Crossover Localization and Fine-Scale Genetic Mapping. G3 Genes, Genomes, Genet. 2015; 5(3):385–98.

21. Imprialou M, Kahles A, Steffen JG, Osborne EJ, Gan X, Lempe J, et al. Genomic Rearrangements in Arabidopsis Considered as Quantitative Traits. Genetics. 2017; 205(4):1425–41.

22. The Genome Institute at Washington University School of Medicine. NA12878_prelim_3.0. https://www.ncbi.nlm.nih.gov/assembly/GCA_00207703. 2018.

23. The Genome Institute at Washington University School of Medicine. NA19240_prelim_3.0. https://www.ncbi.nlm.nih.gov/assembly/GCA_001524155.4. 2017.

24. Human Genome Sequencing Consortium I. Finishing the euchromatic sequence of the human genome. Nature. 2004; 431(7011):931–45.

25. Strope PK, Skelly DA, Kozmin SG, Mahadevan G, Stone EA, Magwene PM, et al. The 100-genomes strains, an S. cerevisiae resource that illuminates its natural phenotypic and genotypic variation and emergence as an opportunistic pathogen. Genome Res. 2015; 25(5):762–74.

26. Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, et al. Life with 6000 Genes. Science (80-). 1996; 274(5287):546–67.

27. Chakraborty M, VanKuren NW, Zhao R, Zhang X, Kalsow S, Emerson JJ. Hidden genetic variation shapes the structure of functional elements in Drosophila. Nat Genet. 2018;
28. Hoskins RA, Carlson JW, Wan KH, Park S, Mendez I, Galle SE, et al. The Release 6 reference sequence of the *Drosophila melanogaster* genome. Genome Res. 2015; 25(3):445–58.

29. Hirsch CN, Hirsch CD, Brohammer AB, Bowman MJ, Soifer I, Barad O, et al. Draft Assembly of Elite Inbred Line PH207 Provides Insights into Genomic and Transcriptome Diversity in Maize. Plant Cell. 2016; 28(11):2700–14.

30. Jiao Y, Peluso P, Shi J, Liang T, Stitzer MC, Wang B, et al. Improved maize reference genome with single-molecule technologies. Nature. 2017; 546(7659):524.

31. Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, et al. The B73 maize genome: complexity, diversity, and dynamics. Science. 2009; 326(5956):1112–5.

32. Wijnker E, Velikkakam James G, Ding J, Becker F, Klasen JR, Rawat V, et al. The genomic landscape of meiotic crossovers and gene conversions in *Arabidopsis thaliana*. Elife. 2013; 2.

33. Qi J, Chen Y, Copenhaver GP, Ma H. Detection of genomic variations and DNA polymorphisms and impact on analysis of meiotic recombination and genetic mapping. Proc Natl Acad Sci U S A. 2014; 111(27):10007–12.

34. Paten B, Novak AM, Eizenga JM, Garrison E. Genome graphs and the evolution of genome inference. Genome Res. 2017; 27(5):665–76.

35. Consortium TCP. Computational pan-genomics: status, promises and challenges. Brief Bioinform. 2016; (August):bbw089.

36. Chin C-S, Peluso P, Sedlazeck FJ, Nattestad M, Concepcion GT, Clum A, et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nat Methods. 2016;
37. Smit, AFA, Hubley, R & Green P. RepeatMasker Open-4.0. http://www.repeatmasker.org.

38. Ossowski S, Schneeberger K, Clark RM, Lanz C, Warthmann N, Weigel D. Sequencing of natural strains of Arabidopsis thaliana with short reads. Genome Res. 2008; 18(12):2024–33.

39. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B. 1995; 57(1):289–300.

40. Bartenhagen C, Dugas M. RSVSim: an R/Bioconductor package for the simulation of structural variations. Bioinformatics. 2013; 29(13):1679–81.

41. Goel M, Schneeberger K. SyRI: identification of syntenic and rearranged regions from whole-genome assemblies. https://schneebergerlab.github.io/syri/. 2019; .
List of Additional Files:

File name	File format	Title of data	Description of data
Additional File 1	.pdf	Additional notes and figures	Additional notes describing method and figures explaining the tool and give additional results
Additional File 2	.xlsx	Additional tables	Information about methodology and data used
Table 1: Structural differences identified by SyRI and corresponding computation resources

Species	Sample	Assembly Size (in Mb)	CPU runtime (in secs)	Memory Usage (in MB)	Syntenic Regions size (in Gb)	Structural Rearrangements
					Inversion % genome	Translocation number
Human	NA12878	3.03 Gb	505.7	722	2.77 Gb	0.2 Mb
					91.1	67
	NA19240	3.04 Gb	278.3	528	2.79 Gb	3.8 Mb
					91.8	69
Yeast	YJM1447	12.1 Mb	43.38	3	11.2 Mb	1.8 Kb
					92.5	3
Fruit Fly	A4	135.5 Mb	545.6	242	124.9 Mb	131.6 Kb
					92.2	16
Maize	PH207	2.06 Gb	3400	6934	1.3 Gb	83 Mb
					63.7	195
Figure legends

Figure 1: Hierarchy of genomic differences and their propagation. a) Local variations like SNPs/indels can occur in syntenic regions as well as in regions which are structurally rearranged (translocated in this example). b) A diploid cell containing such haplotypes. Following meiosis, gametes with copy-number variation for the translocated regions.

Figure 2: Workflow for the identification of genomic differences. SyRI takes WGA as input. A WGA consists of local alignments, where each local alignment (grey polygon) connects a specific region in one genome to a specific region in the other genome. Step 1: SyRI identifies the highest scoring syntenic path between the corresponding genomes (blue alignments). The syntenic path represents all co-linear regions between two genomes. Step 2 (a-c): The remaining alignments are separated into structural rearrangements and redundant alignments. Structural rearrangements (green alignments) are further classified into inversions, intra-chromosomal translocations and duplications, and finally inter-chromosomal rearrangements. Step 3: Local variations are identified in those regions that were annotated in Step 1 and 2. SNPs and small indels are parsed directly from the local alignments, whereas more complex variation (e.g. like large indels and CNVs) are identified in the overlaps and gaps between consecutive local alignments. Finally, all un-aligned regions in between syntenic and rearranged are reported for completeness.
Figure 3: Overview of the different algorithms implemented in SyRI. (a) Syntenic region identification. A WGA between genomes A and B is converted to a genome graph where nodes represent local alignments and edges are introduced if the corresponding alignments are co-linear (like alignments ‘a’ and ‘e’). Nodes corresponding to overlapping (like ‘b’ and ‘e’) or inter-crossing (like ‘g’ and ‘i’) alignments are not connected. Additional start and end (S/E, white) nodes are added and connected to the nodes without in-going (S) or out-going (E) edges. The longest path from S to E is identified (blue line) and the corresponding alignments represent syntenic path (blue outline). (b) Inversion identification is performed in two steps. First the (i) alignments based on reverse complemented regions (grey) are converted to a genome graph, where each node is an alignment and an edge is added between two nodes if they can be part of the same inversion. Start (S) and end (E) nodes are added and edges are introduced to all other nodes. Each path from S to E corresponds to a candidate inversion. (ii) Here, seven inversions are possible. SyRI then generates a second graph (again including S and E nodes) where nodes are candidate inversions and edges illustrate that these inversions can co-exist. The longest path from S to E (green line) corresponds to the highest scoring set of inversions that can co-exist (alignments with green outline). (C) Translocation and duplication identification. (i) Each set of overlapping alignments (orange alignments) are analyzed individually. Within such a network of alignments, (ii) SyRI selects necessary alignments (which are present in regions where no other alignments can be found, green outline), and (iii) removes redundant alignments (white). (iv) Deadlocks occur when no further alignments can be classified and are solved using brute-force and randomized-greedy methods.
Figure 4: Genomic differences between Col-0 and Ler accessions of *A. thaliana*. (a) Total length and number of syntenic, SR, and un-aligned regions identified between the Col-0 and Ler genomes (syn: syntenic regions, inv: inversions, tl: translocations, dup: duplications, cx: cross-chromosomal exchange, notal: un-aligned). (b) Length distribution of all annotation types. (c) Example of a highly rearranged region at chromosome 5. Two large inversions, a translocation, and a duplication occur together. Multiple genes (black lines) are present in this region. Smaller SRs in this region have been filtered for cleaner representation.

Figure 5: Recombination can cause copy-number variation of translocated regions. (a) Recombination can lead to differences in copy number. (b) This can be observed by aligning short-read sequencing data from recombinant genomes between Col-0 and Ler to the reference genome. (c-e) Three different tests to assess the validity of the predicted translocations have been applied. These included (c) testing for the absence of reads in samples with no copy of the translocated DNA, (d) goodness-of-fit between expected copy number and observed copy-number, and (e) clustering of samples with the same genotypes at the translocation. (f) In the heatmap, columns correspond to individual translocations and rows correspond to the three different tests, while the color of a cell represents whether a translocation was validated (green), was selected but could not be validated (dark grey), or was filtered out as the test was not applicable (grey).
Meiosis: recombination and karyotype reduction

Haploid gametes

Diploid cell

Copy number

SNPs

Translocation
Input: whole genome alignment

Step 1: annotate syntenic regions

Step 2: annotate structural rearrangements

2a: annotate inversions
2b: annotate translocations, duplications, and remove redundant alignments
2c: annotate inter-chromosomal structural rearrangements

Step 3: annotate local variations in syntenic and rearranged regions

3a: identify SNPs and indels within aligned regions
3b: identify structural variations between aligned regions
3c: not aligned regions are reported separately
a Syntenic path identification

b Inversion identification

i)

ii)

Translocation and duplication identification

i)

ii)

iii)

iv)
Translocation

Copy number changes in recombinant genomes

Col-0: 2; Ler: 0
Col-0: 1; Ler: 0
Col-0: 0; Ler: 0
Col-0: 0; Ler: 2
Col-0: 0; Ler: 1
Col-0: 2; Ler: 2

Copy number

Reads from upper chromosome
Recombinant genome
Reads from lower chromosome
Reference genome

Test 1: Absence of reads
Predicted translocation
Recombinant genome with no copy
No reads from translocated region

Coverage

Test 2: Copy number variation
Predicted translocation
Sample with four copies
Sample with one copy
Read count depends on copy number

Test 3: Genotype clustering
Allele frequency
Col-0 Ler
High High
High Low
Low Low

Translocations
Test 1
Test 2
Test 3

Validated
Selected for test
Test not applicable