The genetic architecture of the network underlying flowering time variation in Arabidopsis thaliana

Eriko Sasaki†, Florian Frommlet‡ and Magnus Nordborg†,1
†Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria, ‡Medical University Vienna, Vienna, Austria

ABSTRACT Flowering time is a key adaptive trait in plants and is tightly controlled by a complex regulatory network that responds to seasonal signals. In a rapidly changing climate, understanding the genetic basis of flowering time variation is important for both agriculture and ecology. Genetic mapping has revealed many genetic variants affecting flowering time, but the effects on the gene regulatory networks in population-scale are still largely unknown. We dissected flowering time networks using multi-layered Swedish population data from Arabidopsis thaliana, consisting of flowering time and transcriptome collected under constant 10°C growth temperature in addition to full genome sequence data. Our analysis identified multiple alleles of the key flowering time gene FLOWERING LOCUS C (FLC) as the primary determinant of the network underlying flowering time variation under our condition. Genetic variation of FLC affects multiple-pathways through known flowering-time genes including FLOWERING LOCUS T (FT), and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1). We demonstrated that an extremely simple single-locus model of FLC involving allelic variation and expression explains almost a half of flowering time variation, with 60% of the effect being mediated through FLC expression. Furthermore, the accuracy of the model fitted at 10°C is almost unchanged at 16°C.

KEYWORDS Flowering time; Natural variation; FLC; Genetic architecture; Correlation network

Introduction
Timing of reproduction is a key adaptive strategy in plants. To decide when to flower, plants integrate a number of seasonal signals like day length, temperature, and humidity (SIMPSON and DEAN 2002; KIM et al. 2009; ANDRES and COUPLAND 2012). Understanding the mechanisms controlling flowering time, and the genetic architecture of variation for this trait is essential for agriculture as well as for predicting how plants will respond to climate change. It is also a model for selection on a complex, adaptive trait. The regulation of flowering is one of the best-studied developmental transitions in plants. In A. thaliana, a complex network including more than one hundred genes in several major pathways has been described: the photoperiod, ambient temperature, autonomous, integrator, gibberellin and vernalization pathways combine to regulate flowering (SIMPSON and DEAN 2002; KIM et al. 2009; WELLMER and RIECHMANN 2010; SRIRANTH and SCHMID 2011; ANDRES and COUPLAND 2012). Many mathematical and statistical models of flowering time regulation have been proposed based on genetic data (WELCH et al. 2003; SATAKE and IWASA 2012; SATAKE et al. 2013; LI et al. 2014b; WANG et al. 2014; LEAL VALENTIM et al. 2015), as well as time-course data of expression levels of known flowering time genes (SCHMID et al. 2003). In contrast, relatively little has been done in terms of modeling the pathways that lead to natural variation for flowering time. SATAKE et al. (2013) investigated the dynamics of the vernalization pathway and its variation using two individuals of A. halleri using expression levels of marker genes, but variation in the flowering network on a population scale is still poorly understood. In this study, we present a model of flowering time network variation in a population of A. thaliana. Our primary goal was to investigate how gene expression data combined with genetic variation data might help us understand the regulatory networks that connect genotypes to phenotype. To build the model, we take advantage of a multi-layered data set of A. thaliana from Sweden that contains genotypes (LONG et al. 2013), RNA-seq transcriptome data (DUBIN et al. 2015), as well as flowering time phenotypes (SASAKI et al. 2015) for 132 individuals.
We began by asking whether gene expression, as measured in whole plants (above ground only) at a few weeks of age (the nine-leaf stage) was correlated with flowering time (see Methods and Table 1). In agreement with previous work, FLC represses the floral integrator genes FD, FT, and SOC1. FT is induced by the photoperiod pathway through CONSTANS (CO), which is induced by CRYPTOCHROMEs (CRYs); the FT protein is a mobile flowering signal that works with FD to induce SOC1 and floral meristem genes including APETALA1 (AP1), FRUITFUL (FUL), and SEPALLATA (SPL3). AGL24 and SOC1 regulate each other in positive feedback loops and induce transcription of LFY. The gibberellin pathway promotes flowering by inducing SOC1 and the floral meristem-identity gene LEAFY (LFY). Results

The correlation between gene expression and flowering time

We began by asking whether gene expression, as measured in whole plants (above ground only) at a few weeks of age (the nine-leaf stage) was correlated with flowering time (see Methods and Table 1). In agreement with previous work, FLC expression was clearly most strongly correlated: the explained variance, $r^2 = 0.40$, is strikingly similar to what was seen by LEMPE et al. (2005) using a different sample under environmental conditions. The expression of the integrator loci FT and SOC1 is less strongly correlated with flowering, which is interesting given that these loci are supposed to act downstream of FLC, and are in this sense closer to the phenotype (Figure 1B; SCHMID et al. 2003; WELLMER and RIECHMANN 2010).

The correlation network connecting the genes in Table 1 with flowering (see Methods) was consistent with the known flowering-time pathways (Figure 1C). The integrator pathway connected FT and SOC1 with another strong a priori candidate, AGL24, a known inducer of SOC1 (YU et al. 2002, 2004; MICHAELS et al. 2003). The photoperiod pathway was not connected with the integrator pathway, but included CRY2 (TOTH et al. 2001) as a hub gene in a network containing 19 other genes. The vernalization pathway, via FLC, clearly plays a central role, connecting the integrator pathway and the photoperiod pathways via FT and CRY2.

The genetic basis of flowering-associated expression variation

A network based on expression correlation is inherently undirected and tells us little about causation, however some insight.
Gene ID	ρ	r²	p-value (LM)	p-value (LMM)	Description
AT5G10140	0.63	0.40	3.05E-16	9.30E-11	*FLC*
AT1G65480	-0.54	0.29	2.64E-11	3.32E-08	*FT*
AT2G45660	-0.47	0.22	1.35E-08	5.21E-05	*SOC1*
AT2G41640	-0.42	0.17	7.03E-07	4.30E-05	Glycosyltransferase
AT3G57920	-0.39	0.15	3.28E-06	2.58E-02	*SPL15*
AT1G04400	-0.38	0.15	5.24E-06	1.39E-02	*CRY2*
AT5G52310	-0.38	0.15	5.39E-06	6.72E-04	*RD29A*
AT1G69440	-0.38	0.15	5.53E-06	2.82E-03	*AGO7*
AT3G13100	-0.38	0.14	7.71E-06	1.99E-04	ATP-BINDING CASSETTE C7
AT1G23870	-0.38	0.14	8.98E-06	2.20E-03	*TPS9*
AT5G44630	-0.37	0.14	9.65E-06	2.83E-04	Terpenoid cyclases
AT3G09100	-0.37	0.14	9.74E-06	3.15E-03	protein coding
AT5G51720	0.37	0.14	9.90E-06	2.11E-01	*AT-NEET*
AT4G33040	-0.37	0.14	1.02E-05	1.14E-02	protein coding
AT3G04485	0.37	0.13	1.51E-05	9.65E-03	other RNA
AT1G77810	-0.37	0.13	1.62E-05	4.17E-04	Galactosyltransferase
AT2G13560	-0.36	0.13	1.70E-05	2.69E-02	*NAD-ME1*
AT3G09990	0.36	0.13	1.73E-05	6.09E-02	protein coding
AT1G17020	-0.36	0.13	1.78E-05	2.24E-04	*SRG1*
AT1G06160	0.36	0.13	2.26E-05	4.11E-02	*ORA59*
AT3G19860	-0.36	0.13	2.35E-05	5.81E-04	BHLH121
AT5G48400	-0.36	0.13	2.60E-05	6.83E-04	ATGLR1.2
AT3G19500	0.36	0.13	2.76E-05	6.12E-04	protein coding
AT3G05660	-0.36	0.13	2.80E-05	5.79E-02	*AIRLP33*
AT4G24540	-0.35	0.12	3.33E-05	1.38E-02	*AGL24*
AT5G25120	-0.35	0.12	3.42E-05	5.08E-03	CYP71B11
AT3G18840	-0.35	0.12	4.03E-05	9.30E-03	TPR-like superfamily protein
AT2G18196	0.35	0.12	4.67E-05	2.06E-03	protein coding
AT5G46210	-0.35	0.12	4.78E-05	2.21E-03	*ATCUL4*
AT1G35165	-0.35	0.12	5.01E-05	2.32E-04	ATMAP4K ALPHAA1
AT3G20250	-0.34	0.12	5.12E-05	1.19E-04	*APIUM*
AT5G44590	0.34	0.12	5.68E-05	2.67E-02	protein coding
AT3G55610	-0.34	0.12	6.47E-05	2.36E-04	*PS5CS2*
AT4G18130	-0.34	0.12	6.63E-05	6.13E-04	*PHYE*
AT1G78050	-0.34	0.12	6.82E-05	1.22E-03	*PGM*
AT5G10490	-0.34	0.12	6.94E-05	4.42E-04	*MSL2*
AT5G58900	0.34	0.11	7.22E-05	1.37E-01	protein coding
AT2G46500	-0.34	0.11	7.92E-05	7.57E-04	*ATPI4K*

* Genes in bold have flowering-related mutant phenotypes; *denotes genes that are also part of a more conservative list of *a priori* candidate (SRIKANTH and SCHMID 2011).
can be gained by identifying the genetic causes of the expression variation (SCHADT et al. 2005). We used variance component analysis (LIPPERT et al. 2014; MENG et al. 2016) to estimate the effect on gene expression of the local genetic variation using a 30 kb window surrounding each gene. Based on permutation tests (p-value < 0.05), almost one third of the genes in Table 1 had the property that genetic variation surrounding the gene contributed significantly to the expression of that gene (i.e., they are cis-regulated; see Figure 2 and Table S2). FLC stood out in that not only was it strongly cis-regulated, but genetic variation at the gene was also strongly associated with half of the other genes in Table 1 (Figure 2; Table S2). Thus genetic variation at FLC is causing the expression variation at these other loci, almost certainly through its effect on FLC expression. In contrast, the expression level of several genes highly correlated with flowering time, including FT, SOC1, and CRY2 showed no evidence of cis-regulation, but strong evidence for being regulated by genetic variation at FLC. This result suggests that FLC is the key determinant of flowering time under our conditions.

The genetic basis of flowering time and FLC expression variation

To gain further insight into the contribution of FLC to flowering time variation, we carried out genome-wide association studies (GWAS) for flowering time and FLC expression (Figure 3, S1). In agreement with our previous results (SASAKI et al. 2015), GWAS for flowering time identified a genome-wide significant association with a single nucleotide polymorphism (SNP) in the promoter region of FLC (Chr5: 3,180,721; p-value = 1.14E-08, MAF = 0.62) in addition to weaker associations in two other a priori candidates (Figure 3A). On the other hand, GWAS for FLC expression did not identify any significant association (Figure 3B), even within the FLC locus itself—which is surprising given the strong correlation with flowering time (Figure 3C) and the evidence for cis-regulation obtained using variance-components analysis (Figure 2).

The genetic architecture of flowering time variation

We are thus faced with a seemingly paradoxical result. How can a SNP at FLC (SNP_{FLC}) predict flowering time but not FLC expression, when FLC expression strongly predicts flowering time (Figure 3C)? A simple answer would be variation at the protein level, but there is no non-synonymous variation in this gene (Li et al. 2014a), and indeed the variance component analysis confirms that the genetic variation is cis-regulatory (Figure 2).

The obvious conclusion is that SNP_{FLC} must be associated with some aspect of FLC expression that is not captured by our expression data, and that the expression variation we measure must be partly caused by FLC variation not tagged by SNP_{FLC} (in addition to trans-acting genetic variation). The variance-components analysis supports the latter explanation: To gain insight into the former, we resorted to a statistical mediation analysis (BARON 1986; VALERI and VANDERWEELE 2013; PALMER et al. 2017). A mediation analysis is a model-based attempt to dissect mechanisms underlying an observed relationship between a factor (A: exposure), an outcome (Y), and an intermediate factor (M: mediator). The total effect of A on Y is decomposed into an indirect effect mediated by M and a residual direct effect. In the present context, we assumed that the SNP_{FLC} (A) regulates flowering time (Y) and that this effect is partly mediated through the measured expression level (M). To consider the effect of population structure on both M and Y, we implemented a linear mixed model that took genetic background into account instead of using a standard generalized linear model (Figure 4A; see also Methods and Supplemental Note).

SNP_{FLC} explained 19% of flowering time variation in our GWAS. According to the mediation model, only 59% of this effect is mediated by the measured FLC expression level, with the remaining 41% being the direct effect — which, per the argument given above, must correspond to unmeasured effects on FLC regulation. In addition, FLC expression levels also affected flowering independently of SNP_{FLC}, presumably due to a combination of cis-acting variation not captured by SNP_{FLC} and trans-acting genetic background effects not captured by the kinship matrix. This effect explained 29% of flowering time variation. In total, the full model including SNP_{FLC} and FLC expression explained a massive 48% of flowering time (Figure 4B).
To investigate the limits of our model for prediction, we first tested our model on flowering time and expression data generated for the same population, but at a higher growth temperature that prevent vernalization (DUNCAN et al. 2015), namely 16°C (DUBIN et al. 2015; SASAKI et al. 2015). We predicted flowering time using the FLC\textsubscript{10°C} model with parameters estimated using the 10°C data (Figure 4B). The effect of population structure was estimated using the 16°C FLC expression levels (see Methods).

SNP\textsubscript{FLC} was significantly associated with flowering time in these data as well (p-value = 3.31E-07; MAF = 0.72; Figure S2A-B), but the global correlation of FLC expression with flowering time decreased from $R = 0.63$ (at 10°C; Table 1) to $R=0.47$ (p-value=4.76E-12; Table S3). The correlation was observed in only early flowering lines. Regardless of this, the efficiency of the FLC\textsubscript{10°C} model changed surprisingly little, and 43% of flowering time variation was predicted by the model (Figure 5A-B, E). We also tested the model on a different population for which flowering data (at around 23°C in a greenhouse) and FLC expression data were available. In these data SNP\textsubscript{FLC} was not significantly associated with flowering time, suggesting that that trans-acting loci break the correlation under higher growth temperature (Figure S2C-D). However, FLC expression still showed a weak correlation with flowering, and the model predicted 29% of flowering time variation (Figure 5C-E).

Discussion

Our primary goal in this study was to explore how we might use transcriptome data to elucidate the genetic architecture and the regulatory network of a complex adaptive trait. Through integration analysis, we identified an extremely simple network structure that is determining flowering time in our condition (constant 10°C growth temperature in long day). Before discussing this in detail, it is worth noting that our overall results are very different from “typical” GWAS results in at least two ways. First, we find large allelic effects, and there is little “missing heritability” (MANOLOIO et al. 2009) — the genetic variance explained by kinship alone (the “SNP heritability”) is consistent with direct estimates of heritability derived by comparing within and between line variances (ATWELL et al. 2010). Using a variance component approach (SASAKI et al. 2015), we estimated that alleles of the major flowering regulator FLC jointly explain 30% of the flowering time variation at 10°C, with the rest of the genome accounting for 56%. The existence of a major allelic variation is similar to what has been seen for some other locally adaptive traits, e.g., skin and eye color in humans (BELEZA et al. 2013), and is readily explained by selection maintaining variation. The high SNP heritability is presumably due to a combination of low environmental noise and high linkage disequilibrium leading to efficient capture of background genetic effects.

Second, SNPs detected in our GWAS are massively overrepresented in experimentally verified regulatory pathways directly related to flowering (Figure 3; SASAKI et al. 2015). This is very unlike most human traits, which mostly seem to vary due to pleiotropic mutations across the genome (BOYLE et al. 2017), but more similar variation in adaptively varying traits like skin and eye color (BELEZA et al. 2013). This agrees with the simple evolutionary expectation that adaptive variation should be less pleiotropic, whereas variation that is due to mutation-selection

Figure 3 GWAS for flowering time (A) and the FLC expression (B). Gray horizontal lines indicate Bonferroni-correct 5% significance thresholds and orange arrows in panel A show a priori flowering time genes (from SASAKI et al. 2015); the arrow in B shows the SNP in the FLC region identified in A. (C) A scatter plot between flowering time and the expression level of FLC (UTBRIGHT et al. 2015; S ASAKI et al. 2015). We predicted flowering time using the FLC\textsubscript{10°C} model with parameters estimated using the 10°C data (Figure 5A-B, E). We also tested the model on a different population for which flowering data (at around 23°C in a greenhouse) and FLC expression data were available. In these data SNP\textsubscript{FLC} was not significantly associated with flowering time, suggesting that that trans-acting loci break the correlation under higher growth temperature (Figure S2C-D). However, FLC expression still showed a weak correlation with flowering, and the model predicted 29% of flowering time variation (Figure 5C-E).
Thus the reason for the lack of correlation in our study could
under negative regulation by FLC balance can affect any gene.
Indeed, not only are the GWAS hits directly related to flow-
ering time, but the expression level associations are as well. (in
agreement with several previous $A. \text{thaliana}$ studies, e.g., SUBRA-
MANIAN et al. (2005) and JIMENEZ-GOMEZ et al. (2010). Using
correlation between flowering time and transcriptome, we iden-
tified a gene list with a strong overrepresentation of known
candidates (Table 1). Interestingly, with striking exception of
FLC, there is no overlap between this list and the list of candi-
dates identified by GWAS (SASAKI et al. 2015), suggesting that
most of the genes on the former list are responding to genes on
the latter list. This is certainly true for the small cluster of FT and
$SOC1$ under negative regulation by FLC (Figure 1B; KIM et al.
2009; WELLMER and RIECHMANN 2010). While the expression
of all three genes is strongly correlated with flowering (and have
been used as markers, e.g., SATAKE et al. 2013; WANG et al. 2014;
LEAL VALENTIM et al. 2015), only FLC appears to be directly
causative, at least under this experimental condition. It is also
notable that, with the obvious exception of FLC, genes that do
harbor causative genetic variation do not show up as correlated
in expression (Table 1). For example, expression levels of $VIN3$,
a classical expression marker used in modeling (SATAKE et al.
2013), are not correlated with flowering despite $VIN3$ having an
apparent genetic effect (Fig 3A-B). Studies have shown that
$VIN3$ expression gradually increases during cold exposure, and
that the abundance after sufficient long periods of exposure does
not affect flowering time (WOLLENBERG and AMASINO 2012).
Thus the reason for the lack of correlation in our study could
be that the expression of $VIN3$ was already saturated at this
developmental stage (alternatively, genetic variation at $VIN3$
could act at the amino-acid level).
Our analysis confirms that FLC plays a major role in deter-
mining flowering behavior (SHINDO et al. 2005; LI et al. 2014a),
both in terms of being directly causative, and in terms of inte-
grating variation at other loci. Importantly, FLC remains difficult
to identify using standard, single-SNP, GWAS methods, the rea-
sons being the complex genetic architecture of the locus itself.
The situation is similar to that for the multi-allelic flowering
locus FRIGIDA (SHINDO et al. 2005; ATWELL et al. 2010), but
apparently much more complex (LI et al. 2014a). While SNP_{FLC}
alone explained 19\% of the phenotypic variation, local genetic
variation at FLC explains 28\%, and our full FLC model (includ-
ing some trans-effects mediated by FLC) explains close to 50\%. It
is also notable that our estimate of the amount of the heritability
that is attributable to expression is again much higher than in
human disease studies. (O’CONNOR et al. 2017). It may seem
paradoxical that our model, parametrized at 10°C, also works
well at 16°C — and even at 23°C in a different population where
the cis-regulatory variation at FLC is different, whereas the list of
genes correlating with flowering time changed greatly between
10°C and 16°C (Table S3). The reason for this is not entirely
clear, but likely involves the strong and locally adapted genetic
background (LI et al. 2014a) which, to a significant extent, acts
through FLC (as genotype-environment interactions). In con-
clusion, our novel mediation analysis illustrates the complexity
of the genotype-phenotype map in even an extremely simple
network dominated by a single locus (Figure 4A), but raises
hope for more mechanistic (and genuinely predictive) models of
the flowering time network (e.g., ANGEL et al. 2015).

Materials and Methods

Correlation analysis

Data sets of 132 Swedish lines grown under constant 10°C were
used for the analysis (LONG et al. 2013; DUBIN et al. (2015);
SASAKI et al. (2015); Table S1). Correlation coefficient (ρ) was

Figure 4 Network structure of flowering time regulation by FLC. (A) A mediation model of the flowering time regulation under
the control of SNP_{FLC}. Flowering time variation explained by total SNP_{FLC} and direct and indirect effect size of SNP_{FLC} are shown in blue. (B) Predicted flowering time by a $FLC_{10°C}$ full model. X is genotype of SNP_{FLC}, G
is FLC expression, Z is polygenic effects, and γ_1 is a random effect corresponding to the genetic background.
calculated between flowering time and expression levels for 20,285 genes for which more than 10% lines showed detectable expression levels. Also r^2 and p-value were calculated by a general linear regression model using lm() function in R (www.r-project.org). Next, we calculated rho and the p-values for all pairs of gene and flowering time in Table 1. Using the significance, a correlation network was visualized using Cytoscape (SHANNON et al. 2003) with threshold p-value < 0.01 with bonferroni correction (741 tests for 38 genes + flowering time).

GO analysis

Enrichment of known flowering time genes was estimated using BiNGO as a plugin of Cytoscape (MAERE et al. 2005), and Benjamini and Hochberg False Discovery Rate correction (BENJAMINI 1995) was used for the multiple testing correction. GO as “regulation of flower development” defined in the latest GO term in the Arabidopsis Information Resource (TAIR; BERARDINI et al. 2015) was used for the analysis as flowering time genes. FDR was calculated based on the GO list as described in SASAKI et al. (2015).

Linear mixed model (LMM)

All association studies were performed using LIMIX (LIPPERT et al. 2014). The following linear mixed model (LMM) was used

$$Y = X\beta + Z\gamma + \epsilon_Y$$

$$\epsilon_Y \sim \mathcal{N}(0, \sigma^2_Y I_n)$$

where X is the genotype of the SNP$_{FLC}$ and β is the parameter of the corresponding fixed effect, $Z = (X_1 \ldots X_p)$ is all other SNPs and $\gamma \sim \mathcal{N}(0, \sigma^2_Z I_p)$ is the corresponding random vector modeling the genomic background (KANG et al. 2008). Finally I_n is the $n \times n$ identity matrix.

To study the effect of gene expression with correction for
population structure, the following LMM was used

\[Y = G\theta + Z\gamma + \epsilon_G \]

\[\epsilon_G \sim \mathcal{N}(0, \sigma^2_G I_n) \]

where \(G \) is the gene expression level and \(\theta \) is the parameter for the corresponding fixed effect.

Variance component analysis

Cis-genetic effects of loci on an expression level \(Y \) was estimated using local_vs_global_mm() function in mixmogam (https://github.com/bvilhjal/mixmogam) with the model

\[
Y = U_{\text{local}} + U_{\text{global}} + \psi \\
U_{\text{local}} \sim \mathcal{N}(0, \sigma^2_{\text{local}} K_{\text{local}}) \\
U_{\text{global}} \sim \mathcal{N}(0, \sigma^2_{\text{global}} K_{\text{global}}) \\
\psi \sim (0, \sigma^2_\epsilon I)
\]

Where \(U_{\text{local}} \) and \(U_{\text{global}} \) are random effects corresponding to local and global relatedness, respectively, and \(\psi \) is noise. The local region is defined as +/- 15Kbp coding region of each gene. Significance of the variance component was estimated by permutation tests (1000 times) with maintaining the chromosomal order of all observations but shuffling the relative positions of the two variables (Figure S3).

Mediation analysis

SAS macros published in Valeri and VanderWeele (2013) were used for this analysis. We implemented a linear mixed model to correct population structure to the model described in Nakagawa and Schielzeth (2013).

Prediction of flowering time

Data sets for prediction are published flowering time and FLC expression data that were collected under constant 16°C growth temperature (Dubin et al. 2015; Sasaki et al. 2015) and an ambient temperature around 23°C in a greenhouse (Shindo et al. 2005; Atwell et al. 2010). Lines included in the Swedish genome project (Long et al. 2013) and the 1001 project (The 1001 Genomes Consortium 2016) were used for the analysis with the genotype (16°C n=153; greenhouse n=101; Table S1). The following model parameterized by the 10°C data set was used for prediction of flowering time \(Y \) including n individuals.

\[Y = X\beta + G\theta + Z\gamma \\
\gamma \sim \mathcal{N}(0, \sigma^2_\gamma I_n) \]

where \(X \) is the genotype of SNP \(FLC \) and \(G \) is the expression levels of \(FLC \) under each condition. Based on the assumption that effects of population structure on \(Y \) and \(G \) are proportional, we estimate \(\gamma \) by fitting a null model \(G = Z\gamma + \psi \) by REMI implemented in EMMA (Kang et al. 2008). Flowering time variation explained by the model was estimated by \(r^2 \) of Nakagawa and Schielzeth (2013). Significance of the variance component was estimated by permutation tests (1000 times) with maintaining the chromosomal order of all observations but shuffling the relative positions of the two variables (Figure S3).

Literature Cited

Andres, F. and G. Coupland, 2012. The genetic basis of flowering responses to seasonal cues. Nat Rev Genet 13: 627–39.

Angel, A., J. Song, H. Yang, J. I. Questa, C. Dean and M. Howard, 2015. Vernalizing cold is registered digitally at flc. Proceedings of the National Academy of Sciences of the United States of America 112: 4146–4151.

Atwell, S., Y. S. Huang, B. J. Vilhjalmsson, G. Willems, M. Horton, Y. Li, D. Meng, A. Platt, A. M. Tarone, T. T. Hu, R. Jiang, N. W. Muliyati, X. Zhang, M. A. Amer, I. Baxter, B. Brachi, J. Chory, C. Dean, M. Debieu, J. De Meaux, J. R. Ecker, N. Faure, J. M. Kniskern, J. D. Jones, T. Michael, A. Nemri, F. Roux, D. E. Salt, C. Tang, M. Todesco, M. B. Traw, D. Weigel, P. Marjoram, J. O. Borevitz, J. Bergelson and M. Nordborg, 2010. Genome-wide association study of 107 phenotypes in arabidopsis thaliana inbred lines. Nature 465: 627–31.

Baron, R.M.; Kenny, D., 1986. moderatormediator variable distinction in social psychological research: Conceptual, strategic, and statisticalconsiderations. Jornal of Personality and Social Psychology 51: 1173–1182.

Beleza, S., N. A. Johnson, S. I. Candille, D. M. Absher, M. A. Coram, J. Lopes, J. Campos, I. I. Araujo, T. M. Anderson, B. J. Vilhjalmsson, M. Nordborg, A. C. E. Silva, M. D. Shriver, J. Rocha, G. S. Barsh and H. Tang, 2013. Genetic architecture of skin and eye color in an african-european admixed population. Plos Genetics 9.

Benjamini, Y; Hochberg, Y., 1995 Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B 57: 289–300.

Berardini, T. Z., L. Reiser, D. Li, Y. Mezheritsky, R. Muller, E. Strait and E. Huala, 2015. The arabidopsis information resource: Making and mining the “gold standard” annotated reference plant genome. Genesis 53: 474–85.

Boyle, E. A., Y. I. Li and J. K. Prichard, 2017. An expanded view of complex traits: From polygenic to omnigenic. Cell 169: 1177–1186.

Dubin, M. J., P. Zhang, D. Z. Meng, M. S. Remigereau, E. J. Osborne, F. P. Casale, P. Drewe, A. Kahles, G. Jean, B. Vilhjalmsson, J. Jagoda, S. Irez, V. Voronin, Q. Song, Q. Long, G. Ratsch, O. Stegle, R. M. Clark and M. Nordborg, 2015. Dna methylation in arabidopsis has a genetic basis and shows evidence of local adaptation. Elife 4.

Duncan, S., S. Holm, J. Questa, J. Irwin, A. Grant and C. Dean, 2015. Seasonal shift in timing of vernalization as an adaptation to extreme winter. Elife 4.

Jimenez-Gomez, J. M., A. D. Wallace and J. N. Maloof, 2010. Network analysis identifies elf3 as a qtl for the shade avoidance response in arabidopsis. Plos Genetics 6.

Kang, H. M., N. A. Zaitlen, C. M. Wade, A. Kirby, D. Heckerman, M. J. Daly and E. Eskin, 2008. Efficient control of population structure in model organism association mapping. Genetics 178: 1709–23.

Kardailsky, I., V. K. Shukla, J. H. Ahn, N. Dagenais, S. K. Christensen, J. T. Nguyen, J. Chory, M. J. Harrison and D. Weigel, 1999. Activation tagging of the floral inducer ft. Science 286: 1962–5.

Kim, D. H., M. R. Doyle, S. Sung and R. M. Amasino, 2009. Vernalization: winter and the timing of flowering in plants.
Annu Rev Cell Dev Biol 25: 277–99.
KOBAYASHI, Y., H. KAYA, K. GOTO, M. IWABUCHI and T. ARAKI, 1999 A pair of related genes with antagonistic roles in mediating flowering signals. Science 286: 1960–2.
LEAL VALETIN, F., S. MOURIK, D. POSE, M. C. KIM, M. SCHMID, R. C. VAN HAM, M. BUSSCHER, G. F. SANCHEZ-PEREZ, J. MOLENAAR, G. C. ANGENENT, R. G. IMMINK and A. D. VAN DIJK, 2015 A quantitative and dynamic model of the arabidopsis flowering time gene regulatory network. PLoS One 10: e0116973.
LEMPE, J., S. BALASUBRAMANIAN, S. SURESHKUMAR, A. SINGH, M. SCHMID and D. WEIGEL, 2005 Diversity of flowering responses in wild arabidopsis thaliana strains. PLoS Genet 1: 109–18.
LI, P., D. FILIAULT, M. S. BOX, E. KERDAFFREC, C. VAN OOSTERHOUT, A. M. WILCZEK, J. SCHMITT, M. McMULLAN, J. BERGELSON, M. NORDborg and C. DEAN, 2014a Multiple fce haplotypes defined by independent cis-regulatory variation underpin life history diversity in arabidopsis thaliana. Genes Dev 28: 1635–40.
LI, Y., R. CHENG, K. A. SPOKAS, A. A. PALMER and J. O. BOREVITZ, 2014b Genetic variation for life history sensitivity to seasonal warming in arabidopsis thaliana. Genetics 196: 569–77.
LIPPERT, C., F. P. CASALE, B. RAKITSCH and O. STEGLE, 2014 Limix: genetic analysis of multiple traits. BioRxiv.
LONG, Q., F. A. RABANAL, D. Z. MENG, C. D. HUBER, A. FARMER, A. PLATZER, Q. R. ZHANG, B. J. VILHLJALMSSON, A. KORTE, V. NIZHYNSKA, V. VORONIN, P. KORTE, L. SEDMAN, T. MANDAKOVA, M. A. LYSAK, U. SEREN, I. HELLMANN and M. NORDborg, 2013 Massive genomic variation and strong selection in arabidopsis thaliana lines from sweden. Nature Genetics 45: 884–U218.
MAERE, S., K. HEYMANS and M. KUIPER, 2005 Bingo: a cytoscpe plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21: 3448–9.
MANOLIO, T. A., F. S. COLLINS, N. J. COX, D. B. GOLDSTEIN, L. A. HINDORFF, D. J. HUNTER, M. I. McCARTHY, E. M. RAMOS, L. R. CARDON, A. CHAKRAVARTI, J. H. CHO, A. E. GUTTMACHER, A. KONG, L. KRUGLYAK, E. MARDIS, C. N. ROTIMI, M. SLATKIN, D. VALLE, A. S. WHITTEMORE, M. BOEHNEKE, A. G. CLARK, E. E. EICHLER, G. GIBSON, J. L. HAINES, T. F. MACKAY, S. A. MCCARROLL and P. M. VISSCHER, 2009 Finding the missing heritability of complex diseases. Nature 461: 71–53.
MENG, D., M. DUBIN, P. ZHANG, E. J. OSBORNE, O. STEGLE, R. M. CLARK and M. NORDborg, 2016 Limited contribution of dna methylation variation to expression regulation in arabidopsis thaliana. PLoS Genet 12: e1006141.
MIKAELA, S. D., and R. M. AMASINO, 1999 Flowering locus c encodes a novel mads domain protein that acts as a repressor of flowering. Plant Cell 11: 949–56.
MIKAELA, S. D., G. DITTA, C. GUSTAFSON-BROWN, S. PELAZ, M. YANOFSKY and R. M. AMASINO, 2003 Agl24 acts as a promoter of flowering in arabidopsis and is positively regulated by vernalization. Plant Journal 33: 867–874.
NAKAGAWA, S., and H. SCHIELZETH, 2013 A general and simple method for obtaining r2 from generalized linear mixed-effects models. Methods in Ecology and Evolution 4: 133–142.
O’CONNOR, L. J., A. GUSEV, X. LIU, R. R. LOH, H. K. FINUCANE and A. L. PRICE, 2017 Estimating the proportion of disease heritability mediated by gene expression levels. BioRxiv.
PALMER, W. H., H. JARROD and O. D. J., 2017 RNA interference pathways display high rates of adaptive protein evolution across multiple invertebrates. bioRxiv.
SAMACH, A., H. ONOUCHI, S. E. GOLD, G. S. DITTA, Z. SCHWARTZ-SOMMER, M. F. YANOFSKY and G. COUPLAND, 2000 Distinct roles of constans target genes in reproductive development of arabidopsis. Science 288: 1613–1616.
SASAKI, E., P. ZHANG, S. ATWELL, D. MENG and M. NORDborg, 2015 ‘missing’ g x e variation controls flowering time in arabidopsis thaliana. PLoS Genet 11: e1005597.
SATATE, A., and Y. IWASA, 2012 A stochastic model of chromatin modification: Cell population coding of winter memory in plants. Journal of Theoretical Biology 302: 6–17.
SATATE, A., T. KAWAGOE, Y. SABURI, Y. CHIBA, G. SAKURAI and H. KUDOH, 2013 Forecasting flowering phenology under climate warming by modelling the regulatory dynamics of flowering-time genes. Nature Communications 4.
SCHADT, E. E., J. LAMB, X. YANG, J. ZHU, S. EDWARDS, D. GUHAHAKURTA, S. K. SIEBERTS, S. MONKS, M. REITMAN, C. S. ZHANG, P. Y. LUM, A. LEONARDSON, R. THIERINGER, J. M. METZGER, L. M. YANG, J. CASTLE, H. Y. ZHU, S. F. KASH, T. A. DRAKE, A. SACHS and A. J. LUSIS, 2005 An integrative genomics approach to infer causal associations between gene expression and disease. Nature genetics 37: 710–717.
SCHMID, M., N. H. UHLENHAUT, F. GODARD, M. DEMAR, R. BRESSAN, D. WEIGEL and J. U. LOHMANN, 2003 Dissection of floral induction pathways using global expression analysis. Development 130: 6001–6012.
SHANNON, P., A. MARKIEL, O. OZIER, N. S. BALIGA, J. T. WANG, D. RAMAGE, N. AMIN, B. SCHWIKOWSKI and I. T. IDEKER, 2003 Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13: 2498–504.
SHELDON, C. C., J. E. BURN, P. P. PEREZ, J. METZGER, J. A. EDWARDS, W. J. PEACOCK and E. S. DENNIS, 1999 The f7 mads box gene: a repressor of flowering in arabidopsis regulated by vernalization and methylation. Plant Cell 11: 455–58.
SHINDO, C. M., J. ARANZANA, C. LISTER, C. BAXTER, C. NICHOLLS, M. NORDborg and C. DEAN, 2005 Role of frigida and flowering locus c in determining variation in flowering time of arabidopsis. Plant Physiol 138: 1163–73.
SIMPSON, G. G., and C. DEAN, 2002 Flowering - arabidopsis, the rosetta stone of flowering time? Science 296: 285–289.
SRIKANTHI, A., and M. SCHMID, 2011 Regulation of flowering time: all roads lead to rome. Cellular and Molecular Life Sciences 68: 2013–2037.
SUBRAMANIAN, A., P. TAMAYO, V. K. MOOTA, S. MUKHERJEE, B. L. EBERT, M. A. GILLETTE, A. PAULOVICH, S. L. POMEROY, T. R. GOLUB, E. S. LANDER and J. P. MESIROV, 2005 Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102: 15545–50.
The 1001 GENOMES CONSORTIUM, 2016 1,135 genomes reveal the global pattern of polymorphism in arabidopsis thaliana. Cell 166: 481–491.
TOOTH, R., E. KEVIL, A. HALL, A. J. MILLAR, F. NAGY and L. KOZMA-BOGNAR, 2001 Circadian clock-regulated expression of phychrome and cryptochrome genes in arabidopsis. Plant Physiology 127: 1607–1616.
VALERI, L., and T. J. VANDERWEELE, 2013
Mediation analysis allowing for exposure-mediator interactions and causal interpretation: Theoretical assumptions and implementation with sas and spss macros. Psychological Methods 18: 137–150.

WANG, C. C., P. C. CHANG, K. L. NG, C. M. CHANG, P. C. SHEU and J. J. TSAI, 2014
A model comparison study of the flowering time regulatory network in arabidopsis. BMC Syst Biol 8: 15.

WELCH, S. M., J. L. ROE and Z. S. DONG, 2003
A genetic neural network model of flowering time control in arabidopsis thaliana. Agronomy Journal 95: 71–81.

WELLMER, F., and J. L. RIECHMANN, 2010
Gene networks controlling the initiation of flower development. Trends in Genetics 26: 519–527.

WOLLENBERG, A. C., and R. M. AMASINO, 2012
Natural variation in the temperature range permissive for vernalization in accessions of arabidopsis thaliana. Plant Cell and Environment 35: 2181–2191.

YU, H., T. ITO, F. WELLMER and E. M. MEYEROWITZ, 2004
Repression of agamous-like 24 is a crucial step in promoting flower development. Nature Genetics 36: 157–161.

YU, H., Y. F. XU, E. L. TAN and P. P. KUMAR, 2002
Agamous-like 24, a dosage-dependent mediator of the flowering signals. Proceedings of the National Academy of Sciences of the United States of America 99: 16336–16341.