Abstract: Nowadays, epoxy composites are elements of engineering materials and systems. Although they are known as versatile materials, epoxy resins suffer from high flammability. In this sense, flame retardancy analysis has been recognized as an undeniable requirement for developing future generations of epoxy-based systems. A considerable proportion of the literature on epoxy composites has been devoted to the use of phosphorus-based additives. Nevertheless, innovative flame retardants have coincidentally been under investigation to meet market requirements. This review paper attempts to give an overview of the research on flame retardant epoxy composites by classification of literature in terms of phosphorus (P), non-phosphorus (NP), and combinations of P/NP additives. A comprehensive set of data on cone calorimetry measurements applied on P-, NP-, and P/NP-incorporated epoxy systems was collected and treated. The performance of epoxy composites was qualitatively discussed as Poor, Good, and Excellent cases identified and distinguished by the use of the universal Flame Retardancy Index (FRI). Moreover, evaluations were rechecked by considering the UL-94 test data in four groups as V0, V1, V2, and nonrated (NR). The dimensionless FRI allowed for comparison between flame retardancy performances of epoxy composites. The results of this survey can pave the way for future innovations in developing flame-retardant additives for epoxy.

Keywords: epoxy; Flame Retardancy Index (FRI); fire retardancy; cone calorimetry

1. Introduction

Innovations are mainly born in a very disciplined manner, but sometimes they arise from serendipity. Regardless of the origin of innovative materials and systems, the identification and classification of systems in terms of explanatory variables requires the use of universal, well-accepted criteria. Nowadays, epoxy-based composites are elements of advanced systems [1–3]. There has been continued interest in the use of epoxy for developing a wide variety of general- and specific-purpose products such as adhesives, coatings, and medical devices thanks to the versatility of this thermosetting material [4–7]. Nevertheless, research outcomes reveal that epoxy is highly flammable, and one principally requires flame retardant materials for applications where epoxy should stand against
fire [8–12]. In general, it has been understood that careful selection of additives is the first step in development of flame retardant polymer composites, but the performance of the material may additionally depend on the type and the amount of additives used individually or simultaneously [13,14]. Particularly, flame retardant epoxy composites consisting of phosphorus flame-retardant additives were the subject of different reports [15,16]. Moreover, combination of phosphorus and nonphosphorus additives was considered in the quest of higher flame retardancy performance [17–19]. In almost all reports, however, there was a lack of a correlation between the crosslinking state of resin in the presence of additives and flame retardancy.

In a previous work, we used two dimensionless indexes to correlate cure state with corrosion inhibition and flame-retardant properties of epoxy/Fe3O4 nanocomposites [20]. By the use of dimensionless Cure Index [21] and dimensionless Flame Retardancy Index (FRI) [22], it was demonstrated that the quality of cure in epoxy composites (Poor, Good, or Excellent) can be correlated to the performance of flame retardancy (Poor, Good, or Excellent). The FRI was also powerful in exploring the complementary actions of mineral and organic additives in polymer systems in terms of the peak of HRR (pHRR), the total heat release (THR), and the time to ignition (TTI) of neat polymer and polymer composites [23]. In this work, with the aim of recognizing the future ahead of innovations in flame-retardant epoxy composites, reports on flame-retardant epoxy composites were comprehensively reviewed and then classified as a function of their flame retardancy performance by the use of the FRI criterion. Classification was performed on account of phosphorus (P)-, nonphosphorus (NP)-, and combined P/NP-incorporated epoxy composites. In each class, comprehensive master tables were provided in which the polymer matrix, the additives, the content of additives, and cone calorimetry data including TTI, THR, and pHRR and the calculated FRI values were summarized. Moreover, the available UL-94 test data were provided and plotted similar to the FRI curves, but in four groups of V0, V1, V2, and nonrated (NR).

2. Epoxy Resins Containing Phosphorus-Based Flame Retardants

According to the literature, a variety of phosphorus-based flame retardants have been used in epoxy resins. Table 1 summarizes pHRR, THR, and TTI and the FRI values of epoxy/P systems. The percentage of incorporated flame retardant (FR) as well as the results of limiting oxygen index (LOI) and UL-94 test are given.

Table 1. The flame retardancy performance of epoxy containing phosphorus-based (P) flame retardants in terms of FRI (* the name and percentage of incorporated flame retardant is given after each epoxy resin). Notes a to l on the bottom of the table are representative of composite systems containing woven or nonwoven fibers.

Epoxy Resins and Incorporated Phosphorus FR *	wt.%	TTI (s)	pHRR (kW m⁻²)	THR (MJ m⁻²)	FRI	LOI	UL94	Ref.	
N, N'-diallyl-p-phenylphosphonic diamide (FP1)	0	49	1477	118	—	27	NR	[24]	
N, N'-diallyl-p-phenylphosphonic diamide (FP1)	4	46	831	106	1.85	33	NR	[24]	
N, N'-diallyl-p-phenylphosphonic diamide (FP1)	6	42	500	115	2.59	36	V-1	[24]	
N, N'-diallyl-p-phenylphosphonic diamide (FP1)	8	40	587	109	2.22	38	V-0	[24]	
(bis(4-hydroxyphenyl) methyl) diphenylphosphine oxide (DPO-PHE)	0	31	1068	76	—	23.7	NR	[25]	
1-(bis(4-hydroxyphenyl)methyl)-9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO-PHE)	11.68	41	657	59	2.76	32.1	V-0	[25]	
Reaction between 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide & cyanuric chloride (DOPO-T)	12.03	39	956	57	1.87	30.5	V-0	[25]	
Reaction between 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide & cyanuric chloride (DOPO-T)	0	47	1208	80	—	22.5	NR	[26]	
Reaction between 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide & cyanuric chloride (DOPO-T)	2.34	38	836	69	1.35	32.5	NR	[26]	
Reaction between 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide & cyanuric chloride (DOPO-T)	4.67	36	727	62	1.64	34.6	V-1	[26]	
Reaction between 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide & cyanuric chloride (DOPO-T)	6.99	32	629	56	1.86	36.2	V-1	[26]	
Reaction between	wt.%	TTI (s)	pHRR (kW m\(^{-2}\))	THR (MJ m\(^{-2}\))	FRI	LOI	UL94	Ref.	
-----------------	------	---------	------------------------	-----------------------	-----	-----	-------	------	
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide & cyanuric chloride (DOPO-T)	9.34	30	613	54	1.86	33.4	V-0	[26]	
Aluminum ethylphenylphosphinate (AEPP)	0.13	131	495	179	—	21.3	V-2	[27]	
Aluminum ethylphenylphosphinate (AEPP)	5	119	254	131	2.41	33.3	V-2	[27]	
Aluminum ethylphenylphosphinate (AEPP)	10	105	241	124	2.37	25.7	V-1	[27]	
phenethyl-bridged	15	91	223	119	2.31	28.2	V-0	[27]	
phenethyl-bridged	0	32	827	116	—	21.8	NR	[28]	
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivative (DiDOPO)	3	41	387	104	3.05	32.7	V-0	[28]	
phenethyl-bridged	0	32	781	116	—	21.8	NR	[29]	
Aluminum ethylphenylphosphinate (AEPP)	5	119	254	131	2.41	23.3	V-2	[27]	
Aluminum ethylphenylphosphinate (AEPP)	10	105	241	124	2.37	25.7	V-1	[27]	
aluminum ethylphenylphosphinate (AEPP)	15	91	223	119	2.31	28.2	V-0	[27]	
phenethyl-bridged	0	32	827	116	—	21.8	NR	[28]	
Phenethyl-bridged	9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivative (DiDOPO)	10	38	508	83	2.35	38	V-0	[29]
phenethyl-bridged	11	43	441	96	2.65	37.4	V-0	[29]	
phenethyl-bridged	0	32	781	116	—	21.8	NR	[30]	
Phenethyl-bridged	9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivative (DiDOPO)	5	35	491	81	2.29	35.8	V-0	[31]
phenethyl-bridged	0	32	781	116	—	21.8	NR	[31]	
Phenethyl-bridged	9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivative (DiDOPO)	15	41	436	72	3.41	33.6	V-0	[32]
phenethyl-bridged	0	32	781	116	—	21.8	NR	[32]	
Phenethyl-bridged	9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivative (DiDOPO)	20	16	298	68	2.06	27.5	V-0	[32]
phenethyl-bridged	0	19	1324.6	95.7	—	19.2	HB	[33]	
Phenethyl-bridged	pentaerythritol phosphate melamine salt (PPMS)	15	20	491.6	74	3.66	22.8	V-2	[33]
Phenethyl-bridged	pentaerythritol phosphate melamine salt-functionalized Expandable graphite (PPMS-EG)	15	16	414.3	66.7	3.86	25.8	V-1	[33]
Phenethyl-bridged	Pentaerythritol phosphate melamine salt-functionalized Multiwalled carbon nanotube (PPMS-MWCNT)	5	13	1013.4	93.7	1.21	21.5	HB	[34]
Phenethyl-bridged	Pentaerythritol phosphate melamine salt-functionalized Multiwalled carbon nanotube (PPMS-MWCNT)	10	8	680.7	90.7	1.15	22.6	V-2	[34]
Phenethyl-bridged	diphenyl 1H-imidazol-1-ylphosphonate (DPIPP)	7.5	56	535.2	61.3	1.77	27.5	NR	[35]
Phenethyl-bridged	diphenyl 1H-imidazol-1-ylphosphonate (DPIPP)	0	66	793.5	86.3	—	21	NR	[35]
Phenethyl-bridged	1-(diphenylphosphinyl)-1H-imidazole oxide (DPPIO)	7.5	62	583.1	60	2.66	31.5	V-0	[35]
Phenethyl-bridged	1-(diphenylphosphinyl)-1H-imidazole oxide (DPPIO)	15	63	432.9	48.4	3.11	38	V-0	[35]
Phenethyl-bridged	1-(diphenylphosphinyl)-1H-imidazole oxide (DPPIO)	0	57	730.1	82.6	—	20.5	NR	[35]
Phenethyl-bridged	imidazolium dibenzo[c,e][1,2]oxaphosphate (IDOP)	5	65	617.5	65.8	1.78	27	NR	[36]
Phenethyl-bridged	imidazolium dibenzo[c,e][1,2]oxaphosphate (IDOP)	10	67	586.5	64.2	1.98	34.5	V-1	[36]
Phenethyl-bridged	imidazolium dibenzo[c,e][1,2]oxaphosphate (IDOP)	15	68	485.6	51.2	3.05	37	V-0	[36]
Phenethyl-bridged	polyphosphoric acid piperazine (PPAP)	5	38	511.9	92.5	0.96	30.8	V-0	[37]
Table 1. Cont.

Epoxy Resins and Incorporated Phosphorus FR	wt.%	TTI (s)	pHRR (kW m\(^{-2}\))	THR (MJ m\(^{-2}\))	FRI	LOI	UL94	Ref.
diglycidyl ether of bisphenol A epoxy resin/epoxy/hollow glass microspheres (foam)	0	17	444.92	138.2	---	21.5	NR	[38]
aluminum disubarylphosphinate (AlPBu)	10	17	272.28	113.2	1.99	26.5	NR	[38]
aluminum disubarylphosphinate (AlPBu)	12.5	17	264.98	110.8	2.09	21.2	V-1	[38]
Aluminum disubarylphosphinate (AlPBu)	15	17	260.77	109.3	2.15	20	V-0	[38]
aluminum disubarylphosphinate (AlPBu)	0	53	1484	86.4	---	26	NR	[39]
6-morpholino-6H-dibenzo[c,e][1,2]oxaphosphinine 6-oxide (MPL-DOPO)	2.5	46	1296	74.3	1.15	29.5	V-1	[39]
6-morpholino-6H-dibenzo[c,e][1,2]oxaphosphinine 6-oxide (MPL-DOPO)	5	45	1145	67.1	1.44	30.5	V-0	[39]
6,6′-((methylenebis(4,1-phenylene))bis(azanediyl))bis(6H-dibenzo[c,e][1,2]oxaphosphinine 6-oxide) (DDM-DOPO)	2.5	51	1236	76.5	1.30	30.5	V-0	[39]
6,6′-((methylenebis(4,1-phenylene))bis(azanediyl))bis(6H-dibenzo[c,e][1,2]oxaphosphinine 6-oxide) (DDM-DOPO)	5	48	999	69.7	1.66	31.5	V-0	[39]
6-(((1H-tetrazol-5-ylamino)(4-hydroxyphenyl)methyl)dibenzo[c,e][1,2]oxaphosphinine 6-oxide (ATZ)	0	71	1511.7	115.8	---	19.4	NR	[40]
6-morpholino-6H-dibenzo[c,e][1,2]oxaphosphinine 6-oxide	0	71	1205.4	77.1	---	25	NR	[41]
6,6′-((methylenebis(4,1-phenylene))bis(azanediyl))bis(6H-dibenzo[c,e][1,2]oxaphosphinine 6-oxide) (DDM-DOPO)	2.4	51	947.6	67.3	0.97	31.7	V-1	[44]
6,6′-((methylenebis(4,1-phenylene))bis(azanediyl))bis(6H-dibenzo[c,e][1,2]oxaphosphinine 6-oxide) (DDM-DOPO)	4	57	705.4	57.6	1.71	32.5	V-0	[44]
1-methyl-3-6-(6-oxidodibenzo[c,e][1,2]oxaphosphinin-6-yl)(methyl)-1H-imidazol-3-ium 4 methylbenzenesulfonate	7.5	51	767	56.2	1.44	33.9	V-0	[44]
poly(pentaerythritol phosphate phosphinic acyl piperazine) (PPAP)	0	32	1111	18.2	---	20.5	NR	[45]
poly(pentaerythritol phosphate phosphinic acyl piperazine) (PPAP)	10	38	1008	12.4	1.92	23.5	NR	[45]
poly(pentaerythritol phosphate phosphinic acyl piperazine) (PPAP)	15	40	846	12.2	2.44	24.5	V-1	[45]
poly(pentaerythritol phosphate phosphinic acyl piperazine) (PPAP)	20	41	545	12.2	3.96	26.5	V-0	[45]
melamine phenylphosphate (MPhP)	0.96	79	1426.4	75.4	0.92	31	V-1	[46]
melamine phenylphosphate (MPhP)	1.9	79	1299.5	74.2	1.06	32	V-1	[46]
melamine phenylphosphate (MPhP)	3.75	79	915.3	67.1	1.59	35.6	V-0	[46]
melamine phenylphosphate (MPhP)	7.24	67	660.7	60.2	2.11	38	V-0	[46]
melamine phenylphosphate (MPhP)	0	70	1491	81	---	19	NR	[47]
bisphenol-A bridged penta(phenoxycyclophosphazene (A-BP)	9	62	783	55.9	1.92	33.9	V-0	[48]
cage-ladder-structure, phosphorus-containing polyhedral oligomeric silsesquioxane (CLEP-DOPO-POSS) via the hydrolytic condensation of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO)-vinyl trimethoxysilane (VTMS) with 2,3,4-epoxycyclohexyl)ethyl trimethoxysilane (CLEP-DOPO-POSS)	0	95	939	98	---	23	NR	[49]
copper phenylphosphate nanoflake (Cu-PF)	10	100	531	93	2.09	23.4	NR	[49]
copper phenylphosphate nanoflake (Cu-PF)	2	80	466	83	2.00	35.5	V-1	[49]
copper phenylphosphate nanoflake (Cu-PF)	4	88	454	82	2.28	38.2	V-1	[49]
copper phenylphosphate nanoflake (Cu-PF)	6	88	448	72	2.64	37.8	V-1	[49]
copper phenylphosphate nanoflake (Cu-PF)	8	86	401	73	2.84	34.6	V-1	[49]
Table 1. Cont.

Epoxy Resins and Incorporated Phosphorus FR	wt.%	TTI (s)	pHRR (kW m⁻²)	THR (MJ m⁻²)	FRI	LOI	UL94	Ref.
reaction of 2-chloro-5,5-dimethyl-1,3,2-dioxaphosphinane-2-oxide & 2-aminothiazoline (DOP-ATZ)	0.55	1139.7	75.7	—	25.2	NR [50]		
reaction of 2-chloro-5,5-dimethyl-1,3,2-dioxaphosphinane-2-oxide & 2-aminothiazoline (DOP-ATZ)	1.75	508.9	40.6	6.48	27.5	V-0 [50]		
reaction of 2-chloro-5,5-dimethyl-1,3,2-dioxaphosphinane-2-oxide & 2-aminothiazoline (DOP-ATZ)	2.0	238.9	28	9.72	28.3	V-0 [50]		
reaction of 2-chloro-5,5-dimethyl-1,3,2-dioxaphosphinane-2-oxide & 2-aminothiazoline (DOP-ATZ)	0.11	1301	64.6	1.58	35.1	V-1 [50]		
reaction between 1,4-Phthalaldehyde & 2-benzothiazolamine & 9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (BPD)	3.38	1313	78.5	1.32	34.5	V-1 [50]		
reaction between 1,4-Phthalaldehyde & 2-benzothiazolamine & 9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (BPD)	6.71	1273	69.8	1.44	34.3	V-1 [50]		
reaction between 1,4-Phthalaldehyde & 2-benzothiazolamine & 9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (BPD)	10.04	1220	63.8	1.70	36.9	V-0 [50]		
reaction between 1,4-Phthalaldehyde & 2-benzothiazolamine & 9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (BPD)	13.41	1071	59.1	1.97	39.1	V-0 [50]		
reaction between 1,4-Phthalaldehyde & 2-benzothiazolamine & 9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (BPD)	0.11	828	61.6	1.68	34.5	V-1 [50]		
reaction between 1,4-Phthalaldehyde & 2-benzothiazolamine & 9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (BPD)	7.77	52	63.1	2.47	32.5	V-1 [50]		
reaction between 4-(hydroxymethyl)-2,6,7-trioxa-1-phosphabicyclo[2.2.2]octane & 6-(2,5-dihydroxyphenyl)-6H-dibenzo[c,e][1,2]oxaphosphinine 6-oxide (DOPO-TPMP)	2.5	1683.9	91.1	1.26	28.2	V-1 [50]		
reaction between 4-(hydroxymethyl)-2,6,7-trioxa-1-phosphabicyclo[2.2.2]octane & 6-(2,5-dihydroxyphenyl)-6H-dibenzo[c,e][1,2]oxaphosphinine 6-oxide (DOPO-TPMP)	5	1544.8	82.9	1.44	34.8	V-1 [50]		
reaction between 4-(hydroxymethyl)-2,6,7-trioxa-1-phosphabicyclo[2.2.2]octane & 6-(2,5-dihydroxyphenyl)-6H-dibenzo[c,e][1,2]oxaphosphinine 6-oxide (DOPO-TPMP)	7.5	1483.6	75.7	1.64	35.6	V-0 [50]		
reaction between 4-(hydroxymethyl)-2,6,7-trioxa-1-phosphabicyclo[2.2.2]octane & 6-(2,5-dihydroxyphenyl)-6H-dibenzo[c,e][1,2]oxaphosphinine 6-oxide (DOPO-TPMP)	10	819.3	69.2	2.84	36.1	V-0 [50]		
reaction between 4-(hydroxymethyl)-2,6,7-trioxa-1-phosphabicyclo[2.2.2]octane & 6-(2,5-dihydroxyphenyl)-6H-dibenzo[c,e][1,2]oxaphosphinine 6-oxide (DOPO-TPMP)	54	880	187	24.1	NR [54]			
reaction between 4-(hydroxymethyl)-2,6,7-trioxa-1-phosphabicyclo[2.2.2]octane & 6-(2,5-dihydroxyphenyl)-6H-dibenzo[c,e][1,2]oxaphosphinine 6-oxide (DOPO-TPMP)	2	800	162	1.52	29.3	V-0 [54]		
reaction between 4-(hydroxymethyl)-2,6,7-trioxa-1-phosphabicyclo[2.2.2]octane & 6-(2,5-dihydroxyphenyl)-6H-dibenzo[c,e][1,2]oxaphosphinine 6-oxide (DOPO-TPMP)	21	594	53	3.90	33	NR [55]		
ammonium polyphosphate (APP)	53	1121	102	—	20	NR [55]		
ethanediamine-modified ammonium polyphosphate (EDA-APP)	61	398	54	6.12	33	V-0 [55]		
hexakis(4-boronic acid-phenoxy)-cyclophosphazene (CP-6B)	45	1091	83	—	22.8	NR [56]		
N,N'-diamyl-p-phenylphosphonicdiamide (PM)	30	608	71	1.95	30.8	V-0 [56]		
N,N'-diamyl-p-phenylphosphonicdiamide (PM)	57	1108	96	1.44	34.8	V-0 [56]		
N,N'-diamyl-p-phenylphosphonicdiamide (PM-βCD)	2	905	73	1.55	26.5	NR [56]		
N,N'-diamyl-p-phenylphosphonicdiamide (PM-βCD)	50	541	68.8	2.51	26.8	NR [56]		
N,N'-diamyl-p-phenylphosphonicdiamide (PM-βCD)	43	469	66.2	—	24.7	NR [56]		
poly(4,4-diamo diphenyl sulfone	10	149	33.2	4.08	28	V-1 [58]		
poly(4,4-diamo diphenyl sulfone	26	218	21.7	7.33	31	V-0 [58]		
bisphenol A bridged penta(anilino) cyclotriphosphazene (BPA-BPP)	2	457	78.4	2.48	28.7	V-1 [59]		
9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO)	9	1291	87.2	—	23	NR [60]		
9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO)	9	1093	59.6	1.19	30.2	NR [60]		
Table 1. Cont.

Epoxy Resins and Incorporated Phosphorus FR	wt.%	TTI (s)	pHRR (kW m⁻²)	THR (MJ m⁻²)	FRI	LOI	UL94	Ref.
reaction between 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-1-oxo-4-hydroxymethyl-2,6,7-trioxa-1 phosphabicyclo[2.2.2] octane (DOPO-PEPA)	5.7	44	873	60.9	2.02	30	V-0	[60]
reaction between 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-1-oxo-4-hydroxymethyl-2,6,7-trioxa-1 phosphabicyclo[2.2.2] octane (DOPO-PEPA)	7.4	48	683	46.3	3.71	35	V-0	[60]
reaction between 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-1-oxo-4-hydroxymethyl-2,6,7-trioxa-1 phosphabicyclo[2.2.2] octane (DOPO-PEPA)	9.1	42	595	45.9	3.76	35	V-0	[60]
polycrystalline polymeric silsesquioxane containing 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO-POSS)	5.8	839	129	—	—	NR	[61]	
polycrystalline polymeric silsesquioxane containing 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO-POSS)	7.4	48	683	46.3	3.71	35	V-0	[60]
polycrystalline polymeric silsesquioxane containing 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO-POSS)	9.1	42	595	45.9	3.76	35	V-0	[60]
58	839	129	—	—	NR	[61]		
polymeric polymeric silsesquioxane containing 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO-POSS)	2.5	58	631	104	1.64	27.1	V-1	[61]
polymeric polymeric silsesquioxane containing 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO-POSS)	5	62	404	87	3.29	—	NR	[61]
polymeric polymeric silsesquioxane containing 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO-POSS)	10	61	346	79	4.16	—	NR	[61]
Hexaphenylcyclophosphazene (HPCP)	7.6	56	918	94	1.44	26.2	V-1	[62]
Hexaphenylcyclophosphazene (HPCP)	11.9	54	796	83	1.78	28	V-0	[62]
Hexaphenylcyclophosphazene (HPCP)	14.9	54	840	78	1.83	28.6	V-0	[62]
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO-PEPA)	6.97	56	947	92	1.30	25.9	V-1	[62]
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO-PEPA)	10.46	50	850	88	1.48	27.4	V-0	[62]
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO-PEPA)	13.94	46	785	81	1.60	27.8	V-1	[62]
2-(hydroxy(phenyl)methyl)-5,5-dimethyl-1,3,2-dioxaphosphinane 2-oxide (TP)	12.42	23	312.6	59	1.60	31.8	V-1	[63]
[4-(2,4,6-Tris[24]dioxaphosphinan-2-yl) hydroxymethyl]phenoxyl-1(3,5,5)-triazine (TNTP)	14.36	34	253	65.8	2.62	32.4	V-1	[63]
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO)	7	32	556	61	1.96	31.5	V-0	[65]
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO)	10	33	453	55	2.75	33.2	V-1	[65]
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO)	14.7	34	410	50	3.45	32.5	V-0	[65]
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO)	18.4	33	400	47	3.65	33.3	V-0	[64]
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO)	7	32	556	61	1.96	31.5	NR	[65]
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO)	10	33	453	55	2.75	33.2	V-1	[65]
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO)	15	34	425	54	3.08	35.6	V-0	[65]
Table 1. Cont.

Epoxy Resins and Incorporated Phosphorus FR	wt.%	TTI (s)	pHRR (kW·m⁻²)	THR (MJ·m⁻²)	FRI	LOI	UL94 Ref.	
tri(phenylenemaleimide-phenoxy)-triazine (DOPO-TMT)	13.9	53	776	60.6	1.79	36.2	V-0 [68]	
tri(phenylenemaleimide-phenoxy)-triazine (DOPO-TMT)	17.3	48	556	56.5	2.43	37.5	V-0 [68]	
hexa(4-maleimido-phenoxyl)cyclotriphosphazene (HMCP)	3.4	39	751	77	1.39	27	NR [69]	
hexa(4-maleimido-phenoxyl)cyclotriphosphazene (HMCP)	6.8	38	469	66.5	2.52	29	V-1 [69]	
hexa(4-maleimido-phenoxyl)cyclotriphosphazene (HMCP)	10.2	36	506	63	2.33	33.4	V-0 [69]	
hexa(4-maleimido-phenoxyl)cyclotriphosphazene (HMCP)	13.6	36	467	58	2.75	35	V-0 [69]	
addition reaction between DOPO and Schiff base obtained in advance by condensation of 4,4‘-diaminodiphenyl methane & 4-hydroxybenzaldehyde (DOPO-bp)	3.4	48	757.1	154.1	1.65	30.5	V-1 [70]	
addition reaction between DOPO and Schiff base obtained in advance by the condensation of 4,4‘-diaminodiphenyl methane & 4-hydroxybenzaldehyde (DOPO-bp)	6.7	47	633.9	145.2	2.05	39.7	V-0 [70]	
hexa-[4-(phosphoxyanilino-phosphaphenanthrene methyl)-phenoxyl]-cyclotriphosphazene (CTP-DOPO)	10.6	52	349.9	51.7	2.19	36.6	V-0 [71]	
polymelamine tetramethylene phosphonium sulfate (PMTMPS)	11	59	489.9	80.9	1.78	32.5	V-0 [72]	
poly(tetraethylenepropane) tetramethylene phosphonium sulfonate (PTEPS)	12	57	525.8	79.2	1.63	31.3	V-0 [73]	
aluminum poly-hexamethylenephosphinate (APHP)	2	54	742	98	2.71	29.3	NR [74]	
aluminum poly-hexamethylenephosphinate (APHP)	4	58	540	95	4.12	32.7	V-1 [74]	
aluminum poly-hexamethylenephosphinate (APHP)	6	55	603	93	3.58	33.1	V-0 [74]	
reaction between triallyl isocyanurate & 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (TAD)	4	46	1106	82	1.80	33.6	V-1 [77]	
reaction between triallyl isocyanurate & 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (TAD)	6	57	691	81.6	1.65	32.6	V-0 [78]	
reaction between triallyl isocyanurate & 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (TAD)	8	56	590	53.7	2.32	32.6	V-1 [78]	
reaction between triallyl isocyanurate & 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (TAD)	10	54	452	57.7	2.72	34.2	V-1 [78]	
reaction between triallyl isocyanurate & 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (TAD)	12	55	641	55.7	2.02	33.5	V-0 [78]	
reaction between triallyl isocyanurate & 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (TAD)	4	46	1106	82	1.80	33.6	V-1 [77]	
diethylenetriamine-modified ammonium polyphosphate (DETA-APP)	10	35	388	12.7	9.60	28.5	V-0 [80]	
diethylenetriamine-modified ammonium polyphosphate (DETA-APP)	15	32	310.5	11.4	12.23	30.5	V-0 [80]	
diethylenetriamine-modified ammonium polyphosphate (DETA-APP)	52	995	93.3	22.5	NR [81]			
reaction between triallyl isocyanurate & 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (TAD)	3	57	437.2	60.6	3.84	31.7	V-1 [81]	
reaction between triallyl isocyanurate & 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (TAD)	11.7	48	390.8	70.4	3.11	33.9	V-0 [81]	
reaction between triallyl isocyanurate & 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (TAD)	14	44	420.7	67.9	2.74	36	V-0 [81]	
reaction between triallyl isocyanurate & 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (TAD)	61	1420	144	16.4	NR [82]			
Epoxy Resins and Incorporated Phosphorus FR *	wt.%	TTI (s)	pHRR (kW m⁻²)	THR (MJ m⁻²)	FRI	LOI	UL94	Ref.
---	------	--------	---------------	-------------	-----	-----	------	------
addition reaction of 1,3,5-triglycidyl isocyanurate & 9,10-dihydro-9-oxa-10-phosphophenanthrene-10-oxide & 10-(2,3-dihydroxyphenyl)-10-H-9-oxa-10-phosphophenanthrene-10-oxide (TOD)	2	61	852	89	2.69	32.8	V-1	[82]
addition reaction of 1,3,5-triglycidyl isocyanurate & 9,10-dihydro-9-oxa-10-phosphophenanthrene-10-oxide & 10-(2,3-dihydroxyphenyl)-10-H-9-oxa-10-phosphophenanthrene-10-oxide (TOD)	4	61	830	77	3.19	35.9	V-0	[82]
addition reaction of 1,3,5-triglycidyl isocyanurate & 9,10-dihydro-9-oxa-10-phosphophenanthrene-10-oxide & 10-(2,3-dihydroxyphenyl)-10-H-9-oxa-10-phosphophenanthrene-10-oxide (TOD)	6	61	720	69	4.11	38	V-0	[82]
9,10-dihydro-9-oxa-10-phosphophenanthrene-10-oxide, 4,4-diaminodiphenyl methane (DOPO-DDM)	68	1730	110	—	—	—	NR	[83]
9,10-dihydro-9-oxa-10-phosphophenanthrene-10-oxide-4,4-diaminodiphenyl ether (DOPO-DDS)	61	893	112	—	—	—	NR	[84]
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-4,4-diaminodiphenyl methylene (DOPO-DDM)	64	433	91.1	2.66	30	V-1	[84]	
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-4,4-diaminodiphenyl sulfone (DOPO-DDE)	69	961	96	—	20	NR	[85]	
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-4,4-diaminodiphenyl ether (DOPO-DDS)	70	1000	89	21.5	—	NR	[86]	
bisphenol-S bridged 1,3,5-triazinane-2,4,6-trione (PN)	47	71	652	72	1.94	33.5	V-0	[87]
bis[2,6-dimethylphenylphenylphosphonate (BDMP)]	75	685	65	—	20.3	NR	[88]	
amine-terminated cyclophosphazene (ATCP)	57	713	64	28	V-1	[89]		
amine-terminated cyclophosphazene (ATCP)	52	610	58	1.17	34	V-0	[89]	
9,10-Dihydro-9-oxa-10-phosphophenanthrene-10-oxide (DOPO)	4.5	83	724	73	2.02	31.5	V-1	[91]
10-Dihydro-9-oxa-10-phosphophenanthrene-10-oxide & 2-amino(benzothiazole (DOPO-ABZ) reaction between 9,10-Dihydro-9-oxa-10-phosphophenanthrene-10-oxide & 2-amino(benzothiazole (DOPO-ABZ) reaction between 9,10-Dihydro-9-oxa-10-phosphophenanthrene-10-oxid								
Table 1. Cont.

Epoxy Resins and Incorporated Phosphorus FR *	wt.%	TTI (s)	pHRR (kW m⁻²)	THR (MJ m⁻²)	FRI	LOI	UL94 Ref.
aluminum poly-hexamethylenephosphatinate (APHP)	10	56	855	90	1.03	31.5	NR [95]
bisphenol-A bis(diphenyl phosphate) (BDP)	10	50	746	86	1.11	33.4	NR [95]
isopropylphenyl phosphate (FIPP)	20	47	722.7	86.7		20.5	NR [96]
tertbutylphenyl phosphate (FTBP)	20	50	361.8	61.4	2.51	30.3	V-0 [96]
phenolphosphonic di-benzothiazolyl amide (PBDAB)	10	65	966	96		22.5	NR [97]
aluminum poly-hexamethylenephosphatinate (APHP)	5	46	892	91	1.60	26.8	V-1 [98]
bisphenol-A bis(diphenyl phosphate) (BDP)	9	47	805	89	1.11	29.2	V-0 [96]
isopropylphenyl phosphate (FIPP)	9	47	805	89	1.86	33.4	V-0 [96]
phenolphosphonic di-benzothiazolyl amide (PBDAB)	15	46	602	84	2.58	31.5	V-1 [98]
polystyrene encapsulating ammonium polyphosphate (PS-APP)	2	21	1092.2	86.4	0.58	23.2	NR [99]
polystyrene encapsulating ammonium polyphosphate (PS-APP)	5	20	939.5	92.6	0.59	25.7	V-1 [99]
polystyrene encapsulating ammonium polyphosphate (PS-APP)	10	10	614.2	85.8	0.49	26.8	V-1 [99]
isopropylphenyl phosphate (FIPP)	20	25	733.7	81.7	1.09	28.7	V-1 [99]
polystyrene encapsulating ammonium polyphosphate (PS-APP)	48	58	631	104	1.64	27.1	V-1 [99]
polystyrene encapsulating ammonium polyphosphate (PS-APP)	2.5	62	404	87	3.29	26.2	V-1 [99]
polystyrene encapsulating ammonium polyphosphate (PS-APP)	10	61	346	79	4.16	24.8	NR [100]
polystyrene encapsulating ammonium polyphosphate (PS-APP)	45	58	588	92	2.28	28.5	NR [100]
polystyrene encapsulating ammonium polyphosphate (PS-APP)	76	57	393	33	8.91	30	V-0 [100]
1-oxo-4-hydroxymethyl-2,6,7-trioxa-l-phosphabicyclo[2.2.2] octane (PEPA)	5.2	53	538	78	2.43	27	NR [100]
Ammonium polyphosphate (APP)	50	860	112	23	NR		100%
ammonium polyphosphate montmorillonite nanocomposite (APP-MMT)	50	860	112	23	NR		100%

*FR = Flame Retardant
Epoxy Resins and Incorporated Phosphorus FR *	wt.%	TTI (s)	pHRR (kW m$^{-2}$)	THR (MJ m$^{-2}$)	FRI	LOI	UL94	Ref.
glycidyl methacrylate microencapsulated ammonium polyphosphate (GMA-APP)	15	68	283.09	44	18.91	38.5	V-0	[108]
ammonium polyphosphate (APP)	62	1192	184	6.97	31	V-0	[109]	
modified ammonium polyphosphate (MAPP)	12	41	200	104	6.97	31	V-0	[109]
hexa-(phosphophenanthrene)	66	893	68	32.5	V-0	[111]		
epoxy Resins and Incorporated Phosphorus FR * wt.% TTI (s)pHRR (kW m$^{-2}$) THR (MJ m$^{-2}$) FRI LOI UL94 Ref.								
9,10-dihydro-9-oxa-10-phosphophenanthrene-10-oxide units linked to the star-shaped aliphatic ground body tetra-[acyloxyloxy]ethyl] pentarythrit (DOPP)	19.6	40	1191	44.8	2.73	37.9	V-1	[113]
9,10-dihydro-9-oxa-10-phosphophenanthrene-10-oxide units linked to the star-shaped aliphatic ground body tetra-[acyloxyloxy]ethyl] isocyanurate (DOPP)	23.1	36	869	41.5	3.63	34.2	V-0	[113]
polyanion polyphosphate (APP)	5	61	283	111	5.09	27.1	V-0	[117]
cardanol derived benzoxazine monomer (CBz)	10	49	1119	80.5	1.09	31	V-1	[118]
cardanol derived benzoxazine monomer (CBz)	15	50	920	79.4	1.38	32	V-0	[118]
reaction of spirocyclic pentaerythrit bisphosphorate disphosphoryl chloride & 2,4-dihydroxybenzophenone (MFR)	10	26	402.3	53.3	1.69	29.6	V-1	[9]
reaction of spirocyclic pentaerythrit bisphosphorate disphosphoryl chloride & 2,4-dihydroxybenzophenone (MFR)	15	17	479.7	47.8	1.03	30.8	V-0	[9]
reaction of spirocyclic pentaerythrit bisphosphorate disphosphoryl chloride & 2,4-dihydroxybenzophenone (MFR)	20	22	241.6	42.3	3.00	32.2	V-0	[9]
poly (piperazine phosphophenanthrene) (DOPMPA)	4	55	658	86.9	1.33	25.3	V-1	[116]
poly (piperazine phosphophenanthrene) (DOPMPA)	13	67	285	27.4	11.26	34	V-0	[119]
poly (piperazine phosphophenanthrene) (DOPMPA)	28	673.7	56	22.3	V-0	[9]		
poly (piperazine phosphophenanthrene) (DOPMPA)	10	68	393	56.3	4.21	29	V-1	[115]
poly (piperazine phosphophenanthrene) (DOPMPA)	60	920	90.5	22.7	NR	[116]		
poly (piperazine phosphophenanthrene) (DOPMPA)	5	54	461	70	2.01	33.7	V-1	[115]
poly (piperazine phosphophenanthrene) (DOPMPA)	64	821	74.2	25	HB	[113]		
poly (piperazine phosphophenanthrene) (DOPMPA)	0.4	70.2	1295	133.4	1.30	23.5	NR	[17]
poly (piperazine phosphophenanthrene) (DOPMPA)	0.8	64	1086	125.3	1.50	24	NR	[17]
poly (piperazine phosphophenanthrene) (DOPMPA)	1.6	58.6	1227	131.1	1.16	24.5	NR	[17]
Table 1. Cont.

Epoxy Resins and Incorporated Phosphorus FR *	wt.%	TTI (s)	pHRR (kW m⁻²)	THR (MJ m⁻²)	FRI	LOI	UL94	Ref.
9,10-dihydro-9-oxa-10-phosphaherrene-10-oxide-covalent organic framework nanosheets (reaction between melamine & o-phthalaldehyde) (DOPO-COFs)	3.2	60.7	1117	110.5	1.57	25	NR	[17]
melamine coated ammonium polyphosphate (Mel-APP)	20	22	312.6	30.8	17.54	32.6	V-0	[120]
phosphorus and nitrogen-containing flame retardant (FR)	1	43	1631	69.6	1.16	22.5	NR	[121]
poly(4,4′-diamino diphenyl sulfone phenyl phosphonamide) (ArPN₂)	15.6	30	546	59.4	2.65	—	NR	[122]
ionic liquid-based metal–organic hybrid = Phosphomolybdic acid hydrate:PMA & 1-ethyl 3-(diethoxyphosphoryl)-propylimidazolium bromide:IL (PMAIL)	6	85	674.4	99	1.65	—	V-0	[123]
oligo[DOPAc-2-tris(acryloyloxy)ethyl isocyanurate] (oDOPI)	13.8	52	426	86	2.08	—	V-0	[124]
Phosphazene (PZ)	10.8	50	466	80	1.97	—	V-0	[124]
Melamine coated ammonium polyphosphate (Mel-APP)	29.7	24	261	23	18.81	—	V-0	[125]
Melamine (PAlP)	20	40	540	60	1.85	—	HB	[127]
Melamine poly(zinc phosphate) (MnPzP)	20	43	298	57.3	3.86	—	V-1	[127]
Melamine poly(magnesium phosphate) (M MPgP)	20	44	244	26.6	8.77	—	V-0	[127]
Melamine polyphosphate (MPP)	15	45	370	86	2.08	—	V-1	[127]
diethyl aluminium phosphinate (AlPi-Et)	20	41	492	55.8	2.23	—	V-0	[127]
6H-dibenzo[c,e][1,2] oxaphosphorin-6-propanoic acid, butyl ester, 6-oxide (DOPAc-Bu)	20	44	624	50.2	2.10	—	V-0	[128]
Tetraphenylphosphonium modified montmorillonite (TPP-MMT)	5	110	482	140	1.68	25	HB	[130]
Tetraphenylphosphonium modified montmorillonite (TPP-MMT)	5	53	571	138	1.92	25	HB	[130]
Tetraphenylphosphonium modified montmorillonite (TPP-MMT)	5	25	694	105	2.05	25	HB	[130]
hyperbranched poly(phosphoester) (hpPPE)	10	49	506	62	2.73	23.6	HB	[131]
hyperbranched poly(phosphoester) (hpPPE)	20	49	699	53	2.31	25	HB	[131]
polycyclotriphosphazeno-[4,4'-sulfonyldiphenol] (PZS) hybrid	3	61	586.5	91.89	1.31	28.6	—	[132]
poly(cyclotriphosphazeno-4,4′-sulfonyldiphenol) (PZS)	3	60	801.2	88.96	1.64	29.5	—	[132]
1-oxo-4-hydroxymethyl-2,6,7-trioxa-l-phosphabicyclo[2.2.2] octane modified trimellitic anhydride chloride (PEPA-TMAC) 1-oxo-4-hydroxymethyl-2,6,7-trioxa-l-phosphabicyclo[2.2.2] octane modified trimellitic anhydride chloride (PEPA-TMAC)	16.5	30.1	523.7	42	2.14	23.4	—	[133]
1-oxo-4-hydroxymethyl-2,6,7-trioxa-l-phosphabicyclo[2.2.2] octane modified trimellitic anhydride chloride (PEPA-TMAC)	33	33.9	337.2	36.9	4.27	26.9	—	[133]
1-oxo-4-hydroxymethyl-2,6,7-trioxa-l-phosphabicyclo[2.2.2] octane modified trimellitic anhydride chloride (PEPA-TMAC)	50	986	91.1	—	25	—	[134]	
polycyclotriphosphazeno-c-sulfonyldiphenol (PCPS)	1	49	979	92.1	0.97	27	—	[134]
polycyclotriphosphazeno-c-sulfonyldiphenol (PCPS)	3	44	500	85.8	1.84	29.8	—	[134]
polycyclotriphosphazeno-c-sulfonyldiphenol (PCPS)	5	43	542	78.7	1.81	30.5	—	[134]
Boron phosphate: reaction between boric acid & phosphoric acid by calcining at 300 °C (BP1)	5	53	652	31	2.80	29.6	—	[135]
Boron phosphate: reaction between boric acid & phosphoric acid by calcining at 400 °C (BP2)	5	53	654	34	2.54	29.7	—	[135]
Table 1. Cont.

Epoxy Resins and Incorporated Phosphorus FR *	wt.%	TTI (s)	pHRR (kW·m⁻²)	THR (MJ·m⁻²)	FRI	LOI	UL94	Ref.
Boron phosphate: reaction between boric acid & phosphoric acid by calcining at 500 °C (BP3)	5	54	661	33	2.57	29.6	—	[135]
Boron phosphate: reaction between boric acid & phosphoric acid by calcining at 600 °C (BP4)	5	56	710	38	2.22	29.3	—	[135]
Boron phosphate: reaction between boric acid & phosphoric acid by calcining at 700 °C (BP5)	5	56	754	38	2.09	29	—	[135]
3-((Methoxydiphenylsilyl)oxy)-9-methyl-2,4,8,10-tetraoxa-3,9-diphosphaspiro[5.5]undecane 3,9-dioxide (SDPS)	10.4	62	1378	203	0.90	28.9	—	[136]
dicyclonaphosphinolic acid modified aluminum hydroxide (AOHP-NR)	4.25	79	789	101	2.30	28	—	[137]
diallylphosphinolic acid modified aluminum hydroxide (AOHP-C1)	4.25	80	1092	107	1.59	23.4	—	[137]
bis(3-methoxy-3-oxopropyl)phosphinolic acid modified aluminum hydroxide (AOHP-C2)	4.25	58	1063	99	1.28	23.6	—	[137]
N,N-bis(2-hydroxyethyl acrylate) aminomethyl phosphonic acid diethylester (BHAAPE)	10	25	590	23.7	1.09	30	—	[136]
dibenzylphosphinolic acid modified aluminum hydroxide (AOPH-NR)	4.25	79	1378	203	0.90	28.9	—	[137]
dibenzylphosphinolic acid modified aluminum hydroxide (AOPH-C1)	4.25	80	1092	107	1.59	23.4	—	[137]
diallylphosphinolic acid modified aluminum hydroxide (AOPH-C2)	4.25	58	1063	99	1.28	23.6	—	[137]
Polyphosphazene functionalized black phosphorus nanosheets (BP-PZN)	0.5	78	1363.4	86.8	1.82	—	—	[141]
Polyphosphazene functionalized black phosphorus nanosheets (BP-PZN)	1	85	1082.1	73.5	4.84	—	—	[141]
Polyphosphazene functionalized black phosphorus nanosheets (BP-PZN)	2	81	859.5	60.8	7.02	—	—	[142]
Dimethyl methylphosphonate loaded halloysite nanotube (DMMP-HNT)	20	24	578.1	73.8	2.44	—	—	[146]
melamine poly(magnesium phosphate) (S600)	20	44	298.0	57	3.89	—	—	[147]
aluminium diethylphosphinate (AlPi)	20	41	492	56	2.23	—	—	[147]
melamine polyphosphate (MPM)	20	38	244	26	9.00	—	—	[147]
poly-(cyclophosphazene-co-4,4′-diaminodiphenyl ether) surface modified silica nanospheres (SiC8@PZM)	1	80	1363.4	86.8	1.88	—	—	[148]

*FR = flame retardant, pHRR = peak heat release rate, THR = total heat release, FRI = flame regression index, LOI = limiting oxygen index, UL94 = Underwriters Laboratories 94.
Table 1. Cont.
Epoxy Resins and Incorporated Phosphorus FR
wt.% **TTI (s)** **pHRR (kW m⁻²)** **THR (MJ m⁻²)** **FRI** **LOI** **UL94** **Ref.**
poly-(cyclophosphazene-co-4,4'-diaminodiphenyl ether) surface modified silica nanospheres-cuprous (SiO₂@PZM@Cu)
poly-(cyclophosphazene-co-4,4'-diaminodiphenyl ether) surface modified silica nanospheres-cuprous (SiO₂@PZM@Cu)
functionalized polyphosphazene nanotubes wrapped with a cross-linked DOPO-based flame retardant (FR@PZS)
functionalized polyphosphazene nanotubes wrapped with a cross-linked DOPO-based flame retardant (FR@PZS)
functionalized polyphosphazene nanotubes wrapped with a cross-linked DOPO-based flame retardant (FR@PZS)
polyphosphazene nanotube (PZS)
ammonium polyphosphate (APP)
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO-POSS)
Epoxy acrylic
ammonium polyphosphate (APP)
Co-microencapsulated ammonium polyphosphate and pentaerythritol (M(APP & PER))
Triphenylphosphate (TPP)
Triphenylphosphine oxide (TPPO)
—
poly(phenylene methyl 1phosphonate) (PMP)
Polyhedral oligomeric silsesquioxane containing 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO-POSS)
Epoxy acrylic
ammonium polyphosphate (APP)
Co-microencapsulated ammonium polyphosphate and pentaerythritol (M(APP & PER))
Triphenylphosphate (TPP)
Triphenylphosphine oxide (TPPO)
—
poly(phenylene methyl 1phosphonate) (PMP)
Polyhedral oligomeric silsesquioxane containing 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO-POSS)
Epoxy acrylic
ammonium polyphosphate (APP)
Co-microencapsulated ammonium polyphosphate and pentaerythritol (M(APP & PER))
Triphenylphosphate (TPP)
Triphenylphosphine oxide (TPPO)
—
poly(phenylene methyl 1phosphonate) (PMP)
Polyhedral oligomeric silsesquioxane containing 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO-POSS)
Epoxy acrylic
ammonium polyphosphate (APP)
Co-microencapsulated ammonium polyphosphate and pentaerythritol (M(APP & PER))
Triphenylphosphate (TPP)
Triphenylphosphine oxide (TPPO)
—
poly(phenylene methyl 1phosphonate) (PMP)
Polyhedral oligomeric silsesquioxane containing 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO-POSS)
Epoxy acrylic
ammonium polyphosphate (APP)
Co-microencapsulated ammonium polyphosphate and pentaerythritol (M(APP & PER))
Triphenylphosphate (TPP)
Triphenylphosphine oxide (TPPO)
—
A brief yet informative view of the effect of the used P family of FRs on the flame retardancy performance of epoxy resins is given in Figure 1. It is apparent from the figure that all sorts of behavior, including Poor, Good, and Excellent flame-retardant performance, are achieved. This is the characteristic of dependency of flame retardancy performance on both the type and the content of the P type of FR. It can be observed that the majority of epoxy systems contains less than 20 wt.% of phosphorus flame retardant used. Precise detection of the performance of each class of FR: contains melamine phosphate (IFR) [164]

\[\text{IFR: contains melamine phosphate (IFR)} \]

Hollow symbols are indicative of fiber-incorporated composites

\[\text{Hollow symbols are indicative of fiber-incorporated composites} \]

- Matrix: eight layers of Woven E-glass fabric reinforced epoxy; - Matrix: six layers of dry carbon fiber fabric reinforced RTM6 epoxy; - Matrix: Unidirectional carbon fiber reinforced epoxy resin; - Matrix: Carbon fibers reinforced epoxy; - Matrix: eight layers of Woven E-glass fabric reinforced epoxy; - Matrix: eight layers of Woven E-glass fabric reinforced epoxy resin; - Matrix: four fabric layers of unidirectional hemp fabric reinforced epoxy; - Matrix: eight layers of Woven E-glass fabric reinforced epoxy phenol novolak resin blend; - Matrix: eight layers of woven E-glass reinforced epoxy; - Matrix: six layers of plain weave hemp fabric-reinforced epoxy; - Matrix: six layers of plain weave Hemp fabrics treated with water glass-reinforced epoxy.

Epoxy Resins and Incorporated Phosphorus FR *	wt.%	TTI (s)	pHRR (kW m⁻²)	THR (MJ m⁻²)	FRI	LOI	UL94	Ref.
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-phosphonamidate functionalized reduced graphene oxide (DOPOph-RGNO)	2	43	1248	55	1.78	—	—	[161]
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-phosphonamidate functionalized reduced graphene oxide (DOPOP-RGNO)	3	45	1117	54	2.12	—	—	[161]
melamine coated ammonium polyphosphate (Mel-APP) *	0	21	453.5	36.2	22.1	NR	—	[120]
N, N'-diallyl-p-phenyl phosphonodicamidine (FPD) b	9.59	20	290.4	32.2	1.67	32 V-1	[120]	
N, N'-diallyl-p-phenyl phosphonodicamidine (FPD) b	0	53	387	24.3	31	NR	[24]	
polyelectrolyte complexes consisting of chitosan & ammonium polyphosphate (PEC) c	6.9	50	307.5	39.6	1.84	38 V-1	[162]	
polyelectrolyte complexes consisting of chitosan & ammonium polyphosphate (PEC) c	8.1	49	255.9	35.5	2.42	40.5 V-0	[162]	
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide units linked to the star-shaped aliphatic ground body tetra-[{acryloyloxy}ethyl] pentafuryl (DOPP) d	5.9	56	248	19.9	2.02	45 V-0	[113]	
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide units linked to the star-shaped aliphatic ground body betacyclic tris-[(acryloyloxy)ethyl] isocyanurate (DOPP) d	6.9	60	247	20	2.16	47 V-0	[113]	
Melamine coated ammonium polyphosphate (Mel-APP) *	14.6	22	231	11	5.96	—	V-1	[126]
—	42	385	21.8	27	25.0	—	163, 164	
IFR: contains melamine phosphate (IFR) e	4.7	35	278	18.3	1.37	35 V-1	[164]	
ammonium polyphosphate (APP) f	5	24	345	18.6	0.95	—	[150]	
ammonium polyphosphate (APP) h	3.15	20.3	375.3	42	2.97	—	[165]	
ammonium polyphosphate (APP) h	8.88	18.1	293.8	33	4.31	—	[165]	
ammonium polyphosphate (APP) h	16.32	21	186.7	27	9.62	—	[165]	
—	44	853	51.9	27	25	—	163, 164	
melamine phosphate (MP) g	5	38	528	48.8	1.48	—	—	[166]
9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) i	5	34	624	41.3	1.32	—	—	[166]
IFR: contains melamine phosphate (IFR) j	0	39	456	38	—	—	—	[166]
IFR: contains melamine phosphate (IFR) j	10	50	226	17.3	5.68	—	—	[166]
IFR: contains melamine phosphate (IFR) j	15	94	253	18.6	8.87	—	—	[166]
ammonium polyphosphate (APP) k	55	75	613	61.3	—	—	—	[166]
ammonium polyphosphate (APP) k	15	46	259	34.4	4.33	—	—	[166]
ammonium polyphosphate (APP) k	15	44	232	40.1	4.99	—	—	[166]

* Matrix: eight layers of Woven E-glass fabric reinforced epoxy; " Matrix: six layers of dry carbon fiber fabric reinforced RTM6 epoxy; c Matrix: Unidirectional carbon fiber reinforced epoxy resin; d Matrix: Carbon fibers reinforced epoxy; e Matrix: eight layers of Woven E-glass fabric reinforced epoxy; f Matrix: eight layers of Woven E-glass fabric reinforced film of multifunctional epoxy resin; g Matrix: carbon fiber reinforced epoxy resin; h Matrix: four fabric layers of unidirectional hemp fabric reinforced epoxy; i Matrix: eight layers of plain roving glass fabric reinforced epoxy phenol novolak resin blend; j Matrix: eight layers of woven E-glass reinforced epoxy; k Matrix: six layers of plain weave hemp fabric-reinforced epoxy; l Matrix: six layers of plain weave Hemp fabrics treated with water glass-reinforced epoxy.
A brief yet informative view of the effect of the used P family of FRs on the flame retardancy of the performance of each class of P-type FR in this table from one side and the chemical structure of the used FR from the other side should be balanced towards a high-performance FR for developing flame-retardant epoxy composites.

P-type FR	Flame Retardancy Analysis
MDOP-1.9	Excellent
MDOP-3.75	Excellent
MDOP-7.24	Excellent
AlPi-7	Excellent
MPP-7	Excellent
A-BP-9	Excellent
CLEP–DOPO–POSS-2.91	Excellent

Figure 1. Flame retardancy analysis of epoxy resins containing phosphorus flame retardants in terms of the FRI values as a function of P type and content. Symbols are indicative of different types of phosphorus flame retardant used. Hollow symbols are indicative of fiber-incorporated composites with details earlier given in the bottom of Table 1 as a to l notes. Here: ▲ FP-1, FP-1-5, FP-1-8 [24], 口 DPO-PHE-11.68, DPO-PHE-12.03 [25], ▲ DOPO-T-2.34, DOPO-T-4.67, DOPO-T-6.99, DOPO-T-9.34 [26], ♦ AEPP-5, AEPP-10, AEPP-15 [27], ▲ DiDOPO-5 [28], ▲ DiDOPO-10, DiDOPO-11 [29], ▲ DiDOPO-7 [30], ▲ DiDOPO-5, DiDOPO-10, DiDOPO-15, DiDOPO-20 [32], • PPMS-15, PPMS-EG-15 [33], • PPMS-MWCNT-5, PPMS-MWCNT-10, PPMS-MWCNT-15, PPMS-15 [34], + DPP-7.5, DPP-15, DPP-7.5, DPP-15 [35], ▲ IDOP-5, IDOP-10, IDOP-15 [36], ▲ PPAP-5 [37], ▲ AlPb-10, AlPb-11, AlPb-12 [38], ▲ MPL-DOPO-2.5, MPL-DOPO-5, DDM-DOPO-2.5, DDM-DOPO-5 [39], ▲ ATZ-6 [40], ▲ P-KC-30, DOPO-30 [41], ▲ DHPP-OH-BAC-5, DHPP-OH-BAC-10, DHPP-OH-BAC-15 [42], ▲ PPAP-5, PPAP-10, PPAP-20 [43], ▲ [Dmim]Tos-2.4, [Dmim]Tos-4, [Dmim]Tos-7.5 [44], ▲ MPhP-10, MPhP-15, MPhP-20 [45], ▲ MDOP-0.96, MDOP-1.9, MDOP-3.75, MDOP-7.24 [46], ▲ AIp-7, AIp-10, AIp-15, AIp-20 [47], ▲ A-BP-9 [48], ▲ CLEP-DOP-POSS-2.91 [19], ○ CuP-1, CuP-2, CuP-4, CuP-6, CuP-8 [49], ▲ DOP-ABZ-15, DOP-ABZ-17.5, DOP-ABZ-20 [50], ▲ DOP-7.11, BPD-3.88, BPD-6.71, BPD-10.04, BPD-13.41 [51], ▲ DOP-7.7, HPCP-8.2 [52], ▲ DOP-TM-2.5, DOP-TM-5, DOP-TM-7.5, DOP-TM-10 [53], ▲ HB-DPP-2 [54], ▲ APP-21, EDA-APP-21 [55], ▲ CP-68-3 [56], ▲ PM-2, PM-6, PM-βCD-2, PM-βCD-6 [57], ▲ PSA-10, PSA-20 [58], ▲ BPA-BP-9 [59], ▲ DOPO-9.1, DOPO-PEPA-9.1, DOPO-PEPA-5.7, DOPO-PEPA-7.4, DOPO-PEPA-9.1 [60], ▲ DOPO-POSS-2.5, DOPO-POSS-5, DOPO-POSS-10 [61], ▲ HPCTP-7.46, HPCTP-11.19, HPCTP-14.92, DOPO-6.97, DOPO-10.46, DOPO-13.94 [62], ▲ TP-12.42, TNT-14.36 [63], ▲ DOPO-7, BNP-7, BNP-11, BNP-14.7, BNP-18.4 [64], ▲ DOPO-7, DTB-7, DTB-10, DTB-15, DTB-20 [65], ▲ DOPO-7.7, HPCP-8.2 [66], ▲ DOPO-7.1 [67], ▲ DOPO-7, DOPO-7-TM-7, DOPO-TM-10.4, DOPO-TM-13.9, DOPO-TM-17.3, DOPO-TM-20.8 [68], ▲ HMP-3.4, HMP-6.8, HMP-10.2, HMP-13.6, HMP-17 [69], ▲ DOPO-bp-3.4, DOPO-bp-6.7, DOPO-bp-13.5 [70], ▲ CTP-DOPO-10.6 [71], ▲ PMTMS-11 [72], ▲
Although variation of FRI values according to the composition reflects the flame retardancy of epoxy composites from cone calorimeter angle (the most reliable test among those normally used for analysis of performance of flame retardants), other types of flame tests would give more insights into the real effect of one or complementary actions of two or more P type FR additives in epoxy. Based on available data, a brief view of the effect of the used P-based FRs on the flame retardancy performance of epoxy resins as a function of UL94 results is given in Figure 2. The distribution of data in this figure gives useful information about the efficiency of the FR system in harsh conditions. For instance, this figure suggests that V-0 performance in UL94 can be achieved even at the Poor category of flame retardancy performance in terms of FRI. It appears that it is not possible to roughly correlate the obtained results in UL94 to those obtained in cone calorimeter tests.
Although variation of FRI values according to the composition reflects the flame retardancy of epoxy composites from cone calorimetry angle (the most reliable test among those normally used for analysis of performance of flame retardants), other types of flame tests would give more insights into the real effect of one or complementary actions of two or more P type FR additives in epoxy. Based on available data, a brief view of the effect of the used P-based FRs on the flame retardancy performance of epoxy resins as a function of UL94 results is given in Figure 2. The distribution of data in this figure gives useful information about the efficiency of the FR system in harsh conditions. For instance, this figure suggests that V-0 performance in UL94 can be achieved even at the Poor category of flame retardancy performance in terms of FRI.

It appears that it is not possible to roughly correlate the obtained results in UL94 to those obtained in cone calorimetry tests.

Figure 2. Flame retardancy analysis of epoxy resins containing phosphorus flame retardants in terms of the FRI values as a function of UL-94 test results. Symbols are indicative of different types of phosphorus flame retardant used. Hollow symbols are indicative of fiber-incorporated composites with details earlier given in the bottom of Table 1 as a to l notes. The vertical variation in each category, i.e., V-0, V-1, V-2, and NR, is schematically representative of the amount of additive used. For example, among two data distinguished by different symbols having the same or very close FRI values (horizontal quantity) in a given category (e.g., V-1), which have different vertical quantity both revealed V-1 behavior in UL-94 test, but the upper was an FR used in more quantity in preparation of epoxy composites.

Another test of importance is the limiting oxygen index (LOI), which is demonstrative of flammability. A self-extinguishing behavior is expected when the LOI value is higher than 28. A brief overview of the effect of the used phosphorus-type flame retardants on the flame retardancy performance of epoxy resins as a function of LOI results is given in Figure 3. Surprisingly, the highest value obtained in LOI testing is located in the Good zone of FRI. The collection of data with FRI values below 5, where LOI% varies depending on the type of phosphorus additive and undoubtedly the content, is hidden behind these symbols.
Figure 3. Flame retardancy analysis of epoxy resins containing phosphorus flame retardants in terms of the FRI values as a function of LOI test results. Symbols are indicative of different types of phosphorus flame retardant used. Hollow symbols are indicative of fiber-incorporated composites with details earlier given in the bottom of Table 1 as a to l notes.

3. Epoxy Resins Containing Nonphosphorus Flame Retardants

According to the literature, a variety of nonphosphorus FRs have been used in epoxy resins. Table 2 summarizes pHRR, THR, and TTI and the FRI values of epoxy systems. The percentage of incorporated FR as well as the results of LOI and UL-94 test are also given for comprehensive determination of the behavior of this family of epoxy composites.

Table 2. The state of flame retardancy performance of epoxy resins containing nonphosphorus flame retardants in terms of FRI (* the name and percentage of incorporated flame retardant is given after each epoxy resin). The notes a to h on the bottom of the table are representative of composite systems containing woven or nonwoven fibers.

Epoxy Resins and Incorporated Non Phosphorus FR *	wt.%	TTI (s)	pHRR (kW·m⁻²)	THR (MJ·m⁻²)	FRI	LOI	UL94	Ref.
(2,4,6-tris(4-boronic-2-thiophene)-1,3,5-triazine (3TT-3BA))	0	11	781	142	—	21.8	V-1	[169]
graphene nanosheet (GN)	0	32	827	116	—	21.8	NR	[28]
multiwalled carbon nanotube (MWCNT)	0	32	781	107	—	21.8	NR	[29]
multiwalled carbon nanotube (MWCNT)	0.8	40	473	97	2.27	21.2	NR	[29]
multiwalled carbon nanotube (MWCNT)	0	32	781	107	—	21.8	NR	[30]
Organically modified montmorillonite (DK4:two longchain alkyl ammonium modified montmorillonite) (OMMT)	7	40	576	98	1.85	23.7	NR	[30]
organomodified magnesium aluminium layered double hydroxide (OLDH)	0	32	781	107	—	21.8	NR	[31]
organomodified magnesium aluminium layered double hydroxide (OLDH)	5	35	521	104	1.68	23.6	V-0	[31]
organomodified magnesium aluminium layered double hydroxide (OLDH)	10	49	391	106	3.08	22.1	V-0	[31]
magnesium aluminium layered double hydroxide (MgAl-LDH)	0	71	1146	56	—	21.2	NR	[170]
zeolitic imidazolate framework68 (ZIF8)	2	63	865	49	1.34	23.8	NR	[170]
zeolitic imidazolate framework68 decorated magnesium aluminium layered double hydroxide (ZIF8@MgAl-LDH)	2	58	886	41	1.44	23.3	NR	[170]
zeolitic imidazolate framework68 decorated MgAl-layered double hydroxide (ZIF8@MgAl-LDH)	0	61	1208	77.3	—	22.5	NR	[52]
triazine-based flame retardant (TAT)	20	42	1030	75.8	0.82	24.1	NR	[52]
triazine-based flame retardant (TAT)	35	106	803	80.3	—	22.9	NR	[171]
Epoxy Resins and Incorporated Non Phosphorus FR *	wt.%	TTI (s)	pHRR (kW·m$^{-2}$)	THR (MJ·m$^{-2}$)	FRI	LOI	UL94 Ref.	
--	-------	---------	---------------------	------------------	-----	-----	-----------	
2,4,6-tris-(4-boronphenoxy)-(1,3,5)-triazine (TNB)	1	23	686	68.1	1.20	26.1	V-1 [171]	
2,4,6-tris-(4-boronphenoxy)-(1,3,5)-triazine (TNB)	5	22	427	64.1	1.96	28.3	V-1 [171]	
2,4,6-tris-(4-boronphenoxy)-(1,3,5)-triazine (TNB)	10	20	324	59.3	2.54	29.4	V-1 [171]	
2,4,6-tris-(4-boronphenoxy)-(1,3,5)-triazine (TNB)	15	22	300	58.3	2.98	30.4	V-0 [171]	
2,4,6-tris-(4-boronphenoxy)-(1,3,5)-triazine (TNB)	20	22	305	58.0	3.03	31.2	V-0 [171]	
Cuprous oxide (Cu$_2$O)	21	47	1007	86.1	1.17	22.8	NR [55]	
magnesium hydroxide (MHI)	3	38	751	80.3	1.27	25.2	NR [56]	
2,4,6-tris-(4-boronphenoxy)-(1,3,5)-triazine (TNB)	20	22	305	58.0	3.03	31.2	V-0 [171]	
expandable graphite (EG)	20	22	305	58.0	3.03	31.2	V-0 [171]	
nucleophilic substitution reaction between N-(4-hydroxyphenyl) maleimide & cyanuric chloride (TMT)	8	52	1395	88.4	1.08	27	NR [67]	
organically modified montmorillonite (OMMT)	1	39	1540	87.2	1.17	22.8	NR [77]	
triallyl isocyanurate (TAIC)	10	61	966	89.9	2.04	23.6	NR [78]	
Triphenyl-1,3,5-triazine (TPT)	14	48	964	88.7	1.00	24.5	NR [172]	
Halloysite nanotube (HNT)	5	56	1170	93.3	0.83	26.1	NR [172]	
Halloysite nanotube (HNT)	10	65	1002	95.0	0.94	25.4	NR [172]	
biomimetic polydopamine nanocoating functionalized Halloysite nanotube (HNT@PDA)	5	65	1088	104	0.79	25.6	NR [172]	
biomimetic polydopamine nanocoating functionalized Halloysite nanotube (HNT@PDA)	10	67	881	91.0	1.16	25.6	NR [172]	
biomimetic polydopamine nanocoating functionalized Halloysite nanotube and ultrafine Fe(OH)$_3$ nanoparticles (HNT@PDA@Fe(OH)$_3$)	5	61	695	90.0	1.35	33.9	V-1 [172]	
biomimetic polydopamine nanocoating functionalized Halloysite nanotube and ultrafine Fe(OH)$_3$ nanoparticles (HNT@PDA@Fe(OH)$_3$)	10	58	698	88.0	1.31	33.8	NR [172]	
Montmorillonite (MMT)	6	49	792	100	1.41	26	NR [94]	
octaphenyl polyhedral oligomeric silsesquioxane (OPS)	5	60	712	103	1.74	31.1	NR [102]	
Octaphenyl silsesquioxi (OPS)	4.1	55	626	112	1.66	27.2	NR [103]	
Polyphosphorylsiloxane (OPS)	4.1	50	925	116	0.99	27.1	NR [103]	
Octaphenyl silsesquioxide (OPS)	4.1	55	626	112	1.66	27.2	NR [104]	
Octaphenyl silsesquioxi (OPS)	4.6	57	635	110	1.73	27	NR [104]	
Octaphenyl polyhedral oligomeric silsesquioxide (OPS)	10	58	698	88.0	1.31	33.8	NR [106]	
aluminum trihydroxide (ATH)	40	68	231	41.2	3.17	23.6	NR [173]	
Ulexite (U)	40	58	158	34.3	4.75	23.6	NR [173]	
boric acid (BA)	40	62	171	38.2	4.21	22.6	NR [173]	
boric oxide (BO)	40	68	132	32.1	7.97	28.5	V-0 [173]	
melamine borate (MB)	57	78	107	26.9	12.05	24.5	V-0 [173]	
guanidinium nonaborate (GB)	30	65	105	26.8	10.27	23.6	NR [173]	
polyhedral oligomeric octadiphenylsulfonylsilsequioxane (ODPSS)	5	59	417	74	2.50	24.3	NR [115]	
Magnesium-Aluminum layered double hydroxide (Mg-Al LDH)	5	40	835	89.6	0.98	24.3	NR [116]	
Trisilanolisobutyl Polyhedral oligomeric silsesquioxane (TSPSS)	10	99	774	56	2.69	20.7	NR [174]	
triglycidyl isocyanurate (TGIC)	10	86	1190	67	1.27	19.9	NR [174]	
reduced graphene oxide (RGO)	1	47	1356	67.6	1.57	23.5	NR [121]	
halloysite nano-tube (HNT)	2	20	1591	90.7	1.06	19.5	NR [120]	
layered double hydroxide (LDH)	2	21	803	87.5	2.29	20.6	NR [120]	
layered double hydroxide (LDH)	4	22	861	85.4	2.29	20.6	NR [120]	
layered double hydroxide (LDH)	6	20	791	82.9	2.34	19.7	NR [120]	
Table 2. Cont.

Epoxy Resins and Incorporated Non Phosphorus FR *	wt.%	TTI (s)	pHRR (kW·m⁻²)	THR (MJ·m⁻²)	FRI	LOI	UL94	Ref.
epoxy novolac resin	0	51	662	110	—	—	NR	[124]
Boehmite (AlO(OH))	30	69	535	88	2.15	—	V-1	[124]
activated carbon spheres (ACS)	0	50	992	91	—	—	NR	[125]
activated carbon spheres@SnO₂ hybrid (ACS@SnO₂)	2	56	898	91	1.23	—	NR	[123]
activated carbon spheres@SnO₂@NiO hybrid (ACS@SnO₂@NiO)	2	56	893	92	1.31	—	NR	[125]
activated carbon spheres@SnO₂@NiO hybrid (ACS@SnO₂@NiO)	5	50	986	91	—	—	NR	[123]
octapropylglycidylether polyhedral oligomeric silsesquioxane (OGPOSS)	15	60	1026	145	1.32	—	NR	[129]
Strontium hydroxystannate nanorod (SrSn(OH)₆)	3	55	889	92.6	1.30	28.4	—	[132]
Silica nanoparticles (SiO₂)	2	65	727	34.4	1.46	26	—	[175]
ZIF8	2	65	841	91	1.34	28	—	[175]
molybdenum disulfide decorated titanium dioxide nanotube (MoS₂-TNT)	1	63	859	43.7	1.53	25.1	—	[176]
molybdenum disulfide decorated titanium dioxide nanotube (MoS₂-TNT)	2	60	701	37.1	2.10	26.8	—	[176]
molybdenum disulfide decorated titanium dioxide nanotube (MoS₂-TNT)	3	61	627	32.1	2.76	28.1	—	[176]
Sepiolite (Sep)	0	58	1126	100	—	26.1	—	[137]
α-Manganese dioxide nanosheets (α-MnO₂)	0.5	25	1701	77	1.15	—	—	[177]
α-Manganese dioxide nanosheets (α-MnO₂)	1	24	1480	73	1.34	—	—	[179]
amorphous silicon dioxide (SiO₂)	20	49	870	65	1.28	—	—	[127]
amorphous silicon dioxide (SiO₂)	20	41	970	57.6	1.17	—	—	[127]
α-Manganese dioxide nanosheets (α-MnO₂)	0.5	25	1617	74	1.26	—	—	[180]
α-Manganese dioxide nanosheets (α-MnO₂)	1	26	1547	74	1.37	—	—	[180]
α-Manganese dioxide nanosheets (α-MnO₂)	2	27	1358	64	1.87	—	—	[180]
α-Manganese dioxide nanosheets (α-MnO₂)	1	60	2187	124	—	—	—	[140]
α-Manganese dioxide nanosheets (α-MnO₂)	2	49	1457	98	1.55	—	—	[140]
Octapropylglycidylether polyhedral oligomeric silsesquioxane (OGPOSS)	15	60	1026	145	1.32	—	NR	[129]
Expandable graphite (EG)	20	49	870	65	1.28	—	—	[127]
α-Manganese dioxide nanosheets (α-MnO₂)	54	49	616	65.5	1.28	—	—	[127]
Octapropylglycidylether polyhedral oligomeric silsesquioxane (OGPOSS)	7.2	44.3	880	83.6	1.43	—	—	[180]
Aminopropylisobutyl polyhedral oligomeric silsesquioxane (AI-POSS)	21.8	36.3	585	97.7	1.51	—	—	[180]
Aminopropylisobutyl polyhedral oligomeric silsesquioxane (AI-POSS)	54	32.2	616	65.3	1.90	—	—	[180]
Expandable graphite (EG)	0	5	986	113	—	—	—	[181]
halloysite nanotube (HNT)	0	9	152	110	13.33	—	—	[181]
Boron Nitride with D50 = 2 µm (BN 2 µm)	45	175	767	71.5	3.07	—	—	[182]
Boehmite with D50 = 2 µm (BT 2 µm)	45	140	674	72.2	2.77	—	—	[183]
Manganese dioxide (MnO₂)	2	27	1443	71	1.58	—	—	[183]
Table 2. Cont.

Epoxy Resins and Incorporated Non Phosphorus FR *	wt.%	TTI (s)	pHRR (kW·m⁻²)	THR (MJ·m⁻²)	FRI	LOI	UL94 Ref.	
Manganese dioxide@zinc hydroxyxystannate binary hybrid (MnO₂@ZHSS)	0.5	24	1487	56	1.72	—	—	[183]
Manganese dioxide@zinc hydroxyxystannate binary hybrid (MnO₂@ZHSS)	1	25	1275	49	2.40	—	—	[183]
Manganese dioxide@zinc hydroxyxystannate binary hybrid (MnO₂@ZHSS)	2	23	989	61	2.28	—	—	[183]
Diglycidyl ether of bisphenol-F epoxy	0	66	1197	82.7	—	—	—	[184]
ionic liquid flame retardant (ILFR)	5	55	753	62.5	1.75	—	—	[184]
boron nitride nanosheets (BN)	5	70	813	68.2	1.89	—	—	[184]
ionic liquid flame retardant functionalized boron nitride nanosheets (ILFR-BN)	10	104	689	51.5	4.39	—	—	[184]
thiol-functionalized mesporous silica (SH-mlSiO₂)	2	65	1117	77.8	3.14	—	—	[143]
ionic liquid flame retardant functionalized boron nitride nanosheets (ILFR-fBN)	5	104	689	51.5	4.39	—	—	[184]
thiol-functionalized mesoporous silica (SH-mlSiO₂)	2	65	1117	77.8	3.14	—	—	[143]
ionic liquid flame retardant functionalized boron nitride nanosheets (ILFR-BN)	10	104	689	51.5	4.39	—	—	[184]
amorphous hydrous TiO₂ solid spheres (AHTSS)	0.5	52	1125	84	1.75	—	—	[185]
amorphous hydrous TiO₂ solid spheres (AHTSS)	1	72	902	89	2.32	—	—	[185]
amorphous hydrous TiO₂ solid spheres (AHTSS)	2	72	902	89	2.32	—	—	[185]
amorphous hydrous TiO₂ solid spheres (AHTSS)	5	72	902	89	2.32	—	—	[185]
urchin-like mesoporous TiO₂ hollow spheres (UMTHS)	0.5	52	827	43.3	1.52	—	—	[188]
urchin-like mesoporous TiO₂ hollow spheres (UMTHS)	2	52	706	38.5	2.01	—	—	[188]
urchin-like mesoporous TiO₂ hollow spheres (UMTHS-2)	5	1592	39.7	—	—	—	—	[188]
chitosan-modified molybdenum disulfide nanosheets (CS-MoS₂)	0.5	71	1243	35.9	1.54	—	—	[189]
chitosan-modified molybdenum disulfide nanosheets (CS-MoS₂)	1	74	1107	28.6	2.27	—	—	[189]
chitosan-modified molybdenum disulfide nanosheets (CS-MoS₂)	2	75	902	33.9	2.38	—	—	[189]
molybdenum disulfide nanosheets (MoS₂)	2	72	1178	40.1	1.48	—	—	[189]
silica nanospheres (SiO₂)	1	74	1777	95.6	1.21	—	—	[148]
silica nanospheres (SiO₂)	3	74	1777	95.6	1.21	—	—	[148]
carbon nanotube (CNT)	1	26	673	53.8	1.07	—	—	[150]
chemical treatment carbon nanotube (CCT)	2	35	578	58.4	1.55	—	—	[150]
thermal treatment carbon nanotube (TCNT)	5	35	578	58.4	1.55	—	—	[150]
Hydrogenated fatty acid modified layered double hydroxide (OLDH)	5	35	578	58.4	1.55	—	—	[150]
Montmorillonite (MMT)	5	38	7177	82.6	0.98	—	—	[150]
Montmorillonite (MMT)	5	38	7177	82.6	0.98	—	—	[150]
Layered double hydroxide (LDH)	5	35	578	58.4	1.55	—	—	[150]
Layered double hydroxide (LDH)	5	35	578	58.4	1.55	—	—	[150]
Expanded graphite (EG)	5	102	1911	124	0.92	—	—	[190]
Expanded graphite (EG)	10	80	1487	113	1.02	—	—	[190]
Expanded graphite (EG)	15	102	1911	124	0.92	—	—	[190]
Expanded graphite (EG)	23	116	1992	102	1.23	—	—	[190]
Expanded graphite (EG)	50	132	1800	81	1.95	—	—	[190]
Bentonite (BT)	3	150	1094	74	0.91	—	—	[191]
Bentonite (BT)	5	158	1192	88.1	0.73	—	—	[191]
6-(4-butylphenyl)1,3,5-triazine-2,4-diamine modified bentonite (BFTDA-BT)	2	138	772	47.4	1.17	—	—	[191]
6-(4-butylphenyl)1,3,5-triazine-2,4-diamine modified bentonite (BFTDA-BT)	3	140	966	74.1	0.96	—	—	[191]
11-amino-N-(pyridine-2)-lundecanamide modified bentonite (APUA-BT)	3	138	772	47.4	1.17	—	—	[192]
11-amino-N-(pyridine-2)-lundecanamide modified bentonite (APUA-BT)	5	139	814	74.2	1.13	—	—	[192]
graphene nanosheets (GN)	2	86	980	65.1	3.87	—	—	[193]
Ni-Fe layered double hydroxide (Ni-Fe LDH)	2	80	1070	58.9	3.65	—	—	[193]
octaammonium polyhedral oligomeric silsesquioxane-modified montmorillonite (OAPOS-MMT)	2	42	1207	103	0.99	—	—	[194]
Epoxy Resins and Incorporated Non Phosphorus FR*	wt.%	TTI (s)	pHRR (kW·m$^{-2}$)	THR (MJ·m$^{-2}$)	FRI	LOI	UL94 Ref.	
---	------	---------	---------------------	------------------	-----	-----	------------	
octaammonium polyedral oligomeric silsesquioxane-modified montmorillonite (OAPOS-MMT)	4	48	1095	94	1.36	—	—	
octaammonium polyedral oligomeric silsesquioxane-modified montmorillonite (OAPOS-MMT)	6	50	982	88	1.69	—	—	
Sodium magadiite (Na-magadiite)	3	39	1283	116	2.38	—	—	
Sodium magadiite reaction with silane coupling agent (S-Na-magadiite)	3	38	1641	120	1.75	—	—	
protonated magadiite reaction with silane coupling agent (S-H-magadiite)	3	38	1416	114	2.14	—	—	
organo-modified magadiite (OM-magadiite)	3	29	1332	105	1.88	—	—	
silane grafting organo modified magadiite (S-OM-magadiite)	3	34	1273	103	2.36	—	—	
tetrabromobisphenol-A (TBBA)	17	17	1390	92	1.96	—	—	
graphene sheet (GN)	90	1653	130	—	—	—	—	
Ce-doped MnO$_2$ (Ce–MnO$_2$)	2	79	920	96.7	2.11	—	—	
Ce-doped MnO$_2$ decorated graphene sheets (Ce–MnO$_2$–GN)	2	100	765	83.8	3.72	—	—	
mesoporous silica (m-SiO$_2$)	2	107	1191	96.5	1.35	—	—	
Co–Al layered double hydroxide (Co–Al LDH)	2	103	1188	84.3	1.49	—	—	
mesoporous silica@Co–Al layered double hydroxide (m-SiO$_2$@Co–Al LDH)	2	110	894	56	3.19	—	—	
Zinc sulfide (ZnS)	2	88	1213	119	2.00	—	—	
Zinc sulfide decorated Graphene sheets (ZnS@GN)	2	70	1141	108	1.88	—	—	
hydrated pre-treated sepiolite (sep idra)	2	55	1370	101	0.91	—	—	
hydrated pre-treated sepiolite (sep idra)	5	65	1157	99.5	1.30	—	—	
dehydrated pre-treated sepiolite (sep anida)	2	65	1072	95.7	1.45	—	—	
dehydrated pre-treated sepiolite (sep idra)	5	65	1114	107	1.26	—	—	
dehydrated pre-treated sepiolite (sep idra)	10	65	958	108	1.45	—	—	
expandable graphite (EG)	5	111	463	142	2.34	—	—	
chitosan modified montmorillonite intercalation iron compounds (CTS-Fe-OMMT)	3	55	1168	91.4	1.25	—	—	
cetyltrimethylammoniumbromide modified montmorillonite intercalation iron compounds (CTAB-Fe-OMMT)	3	47	975	89.2	1.31	—	—	
aminated multiwalled carbon nanotubes supplied by the Polish company (A-MWCNT(Polish))	0.05	72.8	1161	93.6	1.29	—	—	
aminated multiwalled carbon nanotubes supplied by the Polish company (A-MWCNT(Polish))	0.1	68.8	992	93.6	1.43	—	—	
aminated multiwalled carbon nanotubes supplied by the Polish company (A-MWCNT(Polish))	0.5	74	926	96.9	1.59	—	—	
aminated multiwalled carbon nanotubes supplied by the Polish company (A-MWCNT(Polish))	1	71.9	875	92.6	1.72	—	—	
aminated multiwalled carbon nanotubes supplied by the Polish company (A-MWCNT(Polish))	5	78.3	1141	98.9	1.34	—	—	
carboxylated multiwalled carbon nanotubes supplied by the Polish company (C-MWCNT(Polish))	0.05	78.7	1080	101	1.40	—	—	
carboxylated multiwalled carbon nanotubes supplied by the Polish company (C-MWCNT(Polish))	0.1	72.6	1250	100	1.12	—	—	
carboxylated multiwalled carbon nanotubes supplied by the Polish company (C-MWCNT(Polish))	0.5	80.2	1163	98.8	1.35	—	—	
carboxylated multiwalled carbon nanotubes supplied by the Polish company (C-MWCNT(Polish))	1	81.2	945	102	1.63	—	—	
carboxylated multiwalled carbon nanotubes supplied by the Belgian company (C-MWCNT(Belgian))	0.05	76.2	919	96.3	1.66	—	—	
carboxylated multiwalled carbon nanotubes supplied by the Belgian company (C-MWCNT(Belgian))	0.5	67.4	1110	99	1.19	—	—	
carboxyammonium multiwalled carbon nanotubes supplied by the Polish company (CA-MWCNT(Polish))	0.05	83.9	1240	104	1.26	—	—	
carboxyammonium multiwalled carbon nanotubes supplied by the Polish company (CA-MWCNT(Polish))	0.1	73.8	1162	99	1.24	—	—	
carboxyammonium multiwalled carbon nanotubes supplied by the Polish company (CA-MWCNT(Polish))	0.5	76	1095	99.5	1.35	—	—	
carboxyammonium multiwalled carbon nanotubes supplied by the Polish company (CA-MWCNT(Polish))	1	67.3	1192	97.8	1.12	—	—	
carboxyammonium multiwalled carbon nanotubes supplied by the Polish company (CA-MWCNT(Polish))	5	69.7	1198	100	1.12	—	—	
From the comparison between Tables 1 and 2, one can simply infer that the NP family is less effective in terms of the flame retardancy of the composite epoxy with respect to the P family of FR.
The effect of the used NP-type FR on the flame retardancy performance of epoxy resins can be visually assessed in Figure 4. Moreover, detailed information about the type of NP additives is provided to the reader in the caption of Figure 4. The quality of epoxy composites containing NP additives suggests that even at high loading levels it is difficult to attain very high efficiencies. As an informative case, alumina Trihydrate (ATH, ●) has been used in a wide range of content in development of flame-retardant epoxy nanocomposites. It can be seen that at high loading rate (up to 30 wt.%), it gives the best results, Excellent in terms of FRI. It can be concluded that the NP class of additives are not individually responsible for high fire resistance of epoxy.

Figure 4. Flame retardancy analysis of epoxy resins containing nonphosphorus flame retardants in terms of the FRI values as a function of NP type and content. Symbols are indicative of different types of NP type of FR used. Hollow symbols are indicative of fiber-incorporated composites with details earlier given in the bottom of Table 1 as notes a to h. Here: ■ 3TT-3BA-20 [169], ● GN-3 [28], ▲ MWCNT-0.8 [29], ▼ OMMT-7 [30], ● OLDH-1, OLDH-5, OLDH-10 [31], ● MgAl-LDH-2, ZIF8-2, ZIF8@MgAl-LDH-2, ZIF67-2, ZIF67@MgAl-LDH-2 [170], ● TAT-20 [52], ● TNB-1, TNB-5, TNB-10, TNB-15, TNB-20 [171], ● CuO@2-21 [55], ● MH-3, [56], ● TN-3.42 [63], ● EG-20 [66], ▲ TMT-8 [67], ▲ TMT-7 [68], ▼ OMMT-1 [77], ● TAIC-10 [78], ● TPT-14 [81], ● HNT-5, HNT-10, HNT@PDA-5, HNT@PDA@Fe(OH)2-5, HNT@PDA@Fe(OH)2-10 [172], ● MMT-6 [94], ▼ OPS-5 [102], ● OPS-4.1, PPSQ-4.1 [103], ▼ OPS-4.1, OAPS-4.6 [104], ▼ OPS-4.1 [106], ● ATH-40, C-40, U-40, BO-40, MB-30, GB-30 [173], ● ODPSS-5 [115], ● Mg-Al LDH-4 [116], ● T8POSS-10, TGIC-10 [174], + RGO-1 [121], + HNT-2, LDH-2, LDH-4, LDH-6 [120], ● Al(OH)-30 [124], ● ACS-2, ACS@SnO2-2, ACS@SnO2@NiO-2 [125]. ▲ ACS@SnO2@NiO-5 [125], ● OGOPOSS-15 [129], • EG-15 [33], ▲ CP-10, CP-15 [130], ▲ CP-10, CP-15, CP-15 [130], ▼ CP-10, CP-15 [130], ▼ SrSn(OH)6-3 [132], ▲ SiO2-2, ZIF8-2, ZIF8@SiO2-2 [175], ▲ MoS2-2, TNT-2, MoS2-TNT-1, MoS2-TNT-2, MoS2-TNT-3 [176], ▼ Sep-2, Sep-2, Fe3O4-Sep-2, Fe3O4-Sep-4 [177], ▲ GNO-1, GNO-3, GN-Cu-1, GN-Cu-3 [178], ▼ Al(OH)-20 [147], ▲ Al(OH)-20, SiO2-20 [127], ▲ α-MnO2-0.5, α-MnO2-1, α-MnO2-2, δ-MnO2-0.5, δ-MnO2-1, δ-MnO2-2 [179], ▲ MoS2-2 [140], ▲ AI-POSS-7.2, AI-POSS-21.8, AI-POSS-54 [180], ▲ EG-9, HNT-9 [181], ▲ BN 2 μm-45, BT 2 μm-45 [182], ▲ MnO2-2, MnO2@ZHS-0.5, MnO2@ZHS-1, MnO2@ZHS-2 [183], ▲ ILFR-5, BN-5, ILFR-5BN-5 [184], ▲ SiH-MoS2-2 [143], ▲ SCF-0.5, SCF-0.7, SCF-1, SCF-1.5 [185], ▲ HNT-20 [146], • m-Cay-2.5, d-Cay-2.5 [186], ▲ LDH-3, β-FeOOH-3, LDH-β-FeOOH-3 [187], ▲ AHTSS-0.5, AHTSS-2, UMTHS-0.5, UMTHS-2 [188], ▲ CS-MoS2-0.5, CS-MoS2-1, CS-MoS2-2, MoS2-2 [189], ▲ SiO2-1 [148], ▲ CNT-1, CCNT-1, TCNT-1, LDH-5, OLDH-5,
Molecules 2019, 24, x FOR PEER REVIEW 29 of 55

A brief overview of the effect of the NP used as FR in epoxy composite preparation and on the flame retardancy performance of epoxy resins as a function of UL-94 results is given in Figure 5. Since data are limited and spread over the plot, there is no conclusion about the relationship between FRI (cone calorimetry) and UL-94 analysis to be highlighted. Nevertheless, all sorts of behavior can be seen in the plot, depending on the type and content of NP type of FRs. It is worthy of note that the NR category of UL-94 constitutes a high proportion of the results.

Figure 5. Flame retardancy analysis of epoxy resins containing nonphosphorus flame retardants in terms of the FRI values as a function of UL-94 test results. Symbols are indicative of different types of NP type of FR used in this figure. Hollow symbols are indicative of fiber-incorporated composites with details given in the bottom of Table 2 as notes a to h. The vertical variation in each category, i.e., V-0, V-1, V-2, and NR, is schematically representative of the amount of additive used. For example, among two data distinguished by different symbols having the same or very close FRI values (horizontal quantity) in a given category (e.g., V-1), which have different vertical quantity both revealed V-1 behavior in UL-94 test, but the upper was an FR used in greater quantity in preparation of epoxy composites.
A brief overview of the effect of NP-type FR on the flame retardancy performance of epoxy resins as a function of LOI results is given in Figure 6. Surprisingly, the highest value obtained in LOI testing is located in Poor zone of FRI. On the other hand, Excellent flame retardancy seen at high FRI values has LOI of about 22%. From this perspective, it can be concluded that cone calorimetry is not monotonically representative of the character of FR when used in epoxy.

![Figure 6. Flame retardancy analysis of epoxy resins containing nonphosphorus flame retardants in terms of the FRI values as a function of LOI test results. Symbols are indicative of different types of NP flame retardant used. Hollow symbols are indicative of fiber-incorporated composites with details given in the bottom of Table 2 as notes a to h.](image)

4. Epoxy Resins Containing Combinatorial Flame Retardant Systems

Assessing the flame retardancy performance of P- and NP-incorporated epoxy systems unraveled the inadequacy of using one FR additive alone when a high performance is required. The antagonism or synergism may be the result of using two or more FR systems in a given polymer matrix. In the case of epoxy, there have been some attempts towards combinatorial use of P and NP additives for the sake of higher performance. Table 3 summarizes pHRR, THR, TTI, and FRI values of epoxy/P/NP combinatorial flame-retardant systems. The percentage of incorporated FR as well as the results of LOI and UL-94 tests are also given.

Epoxy Resins and Incorporated P/NP FR *	wt.%	TTI (s)	pHRR (kW m⁻²)	THR (MJ m⁻²)	FRI	LOI	UL94	Ref.
phenethyl-bridged 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivative/graphene nanosheet (DiDOPO/GN)	0	32	827	116	—	21.8	NR	[28]
phenethyl-bridged 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivative/multiwalled carbon nanotube (DiDOPO/MWCNT)	10.8	47	352	72	4.84	38.6	V-0	[29]
phenethyl-bridged 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivative/Organically modified montmorillonite (DiDOPO/OMMT)	7	46	396	95	3.19	32.2	V-0	[30]

Notes a to i on the bottom of the table are representative of composite systems containing woven or nonwoven fibers.
Table 3. Cont.

Epoxy Resins and Incorporated P/NFR *	wt.%	TTI (s)	pHRR (kW m⁻²)	THR (MJ m⁻²)	FRI	LOI	UL94	Ref.
phenylphosphine-bridged 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivative	1	41	437	142	1.73	25.2	V-0	[31]
phenylphosphine-bridged 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivative	5	44	420	120	2.28	27.8	V-0	[31]
phenylphosphine-bridged 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivative	10	46	406	82	3.61	31.5	V-0	[31]
IFR: Ammonium polyphosphate & pentaerythritol & melamine(APP & PER & MEL/5:3:2) (IFR)	0	30	1293	86.9	19	19.2	HB	[208]
microencapsulated ammonium polyphosphate/pentaerythritol (mAPP/PER)	10	27	961	39.9	0.89	29.9	V-0	[209]
microencapsulated ammonium polyphosphate/regenerated cotton cellulose (mAPP/RC)	10	30	1055	40.5	0.89	24.1	V-0	[209]
microencapsulated ammonium polyphosphate/oxidized regenerated cotton cellulose (mAPP/ORCC)	10	29	554	20.9	3.17	29.5	V-0	[209]
2,6,7-trioxa-1-phosphacyclo[2.2.2]octane-4-methanol-trimellitic anhydride/melamine cyanurate (PEPA-TMA/MCA)	18	17	378	90.4	1.20	28.9	V-1	[210]
2,6,7-trioxa-1-phosphacyclo[2.2.2]octane-4-methanol-trimellitic anhydride/melamine cyanurate (PEPA-TMA/MCA)	24	15	221	57.6	2.84	29.8	V-0	[210]
2,6,7-trioxa-1-phosphacyclo[2.2.2]octane-4-methanol-trimellitic anhydride/melamine cyanurate (PEPA-TMA/MCA)	30	12	296	74.8	1.31	29.1	V-1	[210]
zeolitic imidazolate framework/MgAl layered double hydroxide (ZIF67/MgAl-LDH)	2	64	742	42	1.86	24	NR	[170]
zeolitic imidazolate framework/MgAl layered double hydroxide (ZIF67/MgAl-LDH)	2	65	719	41	1.99	24.2	NR	[170]
triazine-based flame retardant/9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (TAT/DOPO)	20	44	849	74.3	1.07	29.5	NR	[52]
triazine-based flame retardant/9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (TAT/DOPO)	20	44	682	64.5	1.53	34	V-1	[52]
triazine-based flame retardant/9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (TAT/DOPO)	20	47	558	56.3	2.29	36	V-0	[52]
triazine-based flame retardant/9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (TAT/DOPO)	20	41	500	48.5	2.59	38.6	V-0	[52]
triazine-based flame retardant/9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (TAT/DOPO)	20	46	774	72.3	1.26	30.1	NR	[52]
triazine-based flame retardant/9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (TAT/DOPO)	20	43	598	59.3	1.86	33.5	V-1	[52]
triazine-based flame retardant/9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (TAT/DOPO)	20	48	484	52.6	2.89	37.3	V-0	[52]
triazine-based flame retardant/9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (TAT/DOPO)	20	48	437	47.8	3.52	39.6	V-0	[52]
ethanediamine-modified ammonium polyphosphate/Cuprous oxide (EDA-APP/Cu₂O)	21	62	364	64	5.74	33.5	V-0	[55]
hexakis(4-boronic acid-phenoxy)-cyclophosphazene/magnesium hydroxide (CP-68/MH)	3.5	49	535	67	2.75	31.9	V-0	[56]
93.6	851	91.7	19.7	NR	[211]			
Epoxy Resins and Incorporated P/NP FR	wt.%	TTI (s)	pHRR (kW m⁻²)	THR (MJ m⁻²)	FRI	LOI	UL94	Ref.
--------------------------------------	------	--------	----------------	--------------	-----	-----	------	------
IFR: ammonium polyphosphate & pentaerythritol (APP & PER/3:1) (IFR)	20	42.8	266	89.7	1.50	27.3	V-1	[211]
IFR: ammonium polyphosphate & pentaerythritol (APP & PER/3:1) (IFR)	20	55.4	246	59.7	3.15	28.8	V-1	[211]
IFR: ammonium polyphosphate & pentaerythritol (APP & PER/3:1) (IFR)	20	50.6	210	59.6	3.36	29.1	V-1	[211]
IFR: ammonium polyphosphate & pentaerythritol (APP & PER/3:1) (IFR)	20	74.9	178	44.8	7.85	34.7	V-0	[211]
IFR: ammonium polyphosphate & pentaerythritol (APP & PER/3:1) (IFR)	20	51.2	215	54.3	3.67	31.4	V-0	[211]
Microencapsulated ammonium polyphosphate (APP/PSA)	29	1340	36.3	—	22.5	NR	[212]	
Microencapsulated ammonium polyphosphate & pentaerythritol (MFAPP/PER)	12.5	24	422	20.6	4.63	24.9	NR	[212]
Microencapsulated ammonium polyphosphate (corn starch) (MFAPP/ST)	12.5	24	457	15.2	5.80	30.1	V-0	[212]
Microencapsulated ammonium polyphosphate & pentaerythritol (MFAPP/OST)	12.5	22	400	13.4	6.88	29.5	V-0	[212]
Expandable graphite/9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (EG/DOPO)	48	48	236	48.4	7.05	35	V-1	[66]
Expandable graphite/9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (EG/DOPO)	48	296	48.8	5.58	38	V-0	[66]	
Expandable graphite/9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (EG/DOPO)	48	405	50	3.98	42	V-0	[66]	
Expandable graphite/exa-phenoxy-cyclotriphosphazene (EG/HPCP)	48	442	51.4	3.55	41.5	V-0	[66]	
Expandable graphite/exa-phenoxy-cyclotriphosphazene (EG/HPCP)	48	259	49.7	6.26	33.5	V-1	[66]	
Expandable graphite/exa-phenoxy-cyclotriphosphazene (EG/HPCP)	48	340	48	4.94	36	V-0	[66]	
Expandable graphite/exa-phenoxy-cyclotriphosphazene (EG/HPCP)	48	809	50.6	1.97	40.5	V-0	[66]	
Expandable graphite/exa-phenoxy-cyclotriphosphazene (EG/HPCP)	48	760	42.2	2.51	39	V-0	[66]	
Expandable graphite/exa-phenoxy-cyclotriphosphazene (EG/HPCP)	57	1557	94.5	—	24.5	NR	[67]	
Nucleophilic substitution reaction between N-(4-hydroxyphenyl) maleic & cyanuric chloride/9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (TMT/DOPO)	11	45	1210	74.7	1.29	34	V-1	[67]
Nucleophilic substitution reaction between N-(4-hydroxyphenyl) maleic & cyanuric chloride/9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (TMT/DOPO)	12.3	46	1085	70.3	1.56	36.5	V-0	[67]
Nucleophilic substitution reaction between N-(4-hydroxyphenyl) maleic & cyanuric chloride/9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (TMT/DOPO)	13.7	47	1105	70.8	1.55	38	V-0	[67]
Nucleophilic substitution reaction between N-(4-hydroxyphenyl) maleic & cyanuric chloride/9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (TMT/DOPO)	15	44	980	61	1.90	40.3	V-0	[67]
9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide/aluminum poly-hexamethylene phosphonate (DOPO/APHP)	56	1420	116	—	26.2	NR	[75]	
9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide/aluminum poly-hexamethylene phosphonate (DOPO/APHP)	6	50	539	63	4.33	39.3	V-1	[75]
9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide/aluminum poly-hexamethylene phosphonate (DOPO/APHP)	6	46	510	38	4.57	39.5	V-0	[75]
9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide/aluminum poly-hexamethylene phosphonate (DOPO/APPH)	56	1420	140	—	26	NR	[77]	
Reaction between triallyl isocyanurate & 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide organically modified montmorillonite (TAD/OMMT)	5	41	961	108	1.40	36.9	V-0	[77]
Flame retardant containing phosphorus & 4-tert-butylcalix[4]arene/ammonium polyphosphate (FR/APP)	30	92	322	108	3.11	27.4	V-1	[213]
Flame retardant containing phosphorus & 4-tert-butylcalix[4]arene/ammonium polyphosphate (FR/APP)	30	91	361	82	3.73	28.6	V-1	[213]
Flame retardant containing phosphorus & 4-tert-butylcalix[4]arene/ammonium polyphosphate (FR/APP)	30	115	229	74	8.22	29.3	V-0	[213]
Table 3. Cont.

Epoxy Resins and Incorporated P/NP FR *	wt.%	TTI (s)	pHRR (kW m⁻²)	THR (MJ m⁻²)	FRI	LOI	UL94	Ref.
flame retardant containing phosphorus & 4-tert-butylcalix[4]arene/ammonium polyphosphate (FR/APP)	30	100	203	74	8.07	30.8	V-0	[213]
amine-terminated cyclophosphazene/3-aminopropyltrimethoxy silane-functionalized rice husk ash (ATCP/FRHA)	62	840	84	—	23	V-1	[89]	
amine-terminated cyclophosphazene/3-aminopropyltrimethoxy silane-functionalized rice husk ash (ATCP/FRHA)	16	56	542	56	2.10	44	V-0	[89]
amine-terminated cyclophosphazene/3-aminopropyltrimethoxy silane-functionalized rice husk ash (ATCP/FRHA)	18	69	427	42	4.38	51	V-0	[89]
amine-terminated cyclophosphazene/3-aminopropyltrimethoxy silane-functionalized rice husk ash (ATCP/FRHA)	20	77	340	30	8.59	62	V-0	[89]
amine-terminated cyclophosphazene/3-aminopropyltrimethoxy silane-functionalized rice husk ash (ATCP/FRHA)	57	713	64	—	—	—	—	[90]
amine-terminated cyclophosphazene/3-aminopropyltrimethoxy silane-functionalized rice husk ash (ATCP/FRHA)	16	48	435	51	1.73	39	V-0	[90]
amine-terminated cyclophosphazene/3-aminopropyltrimethoxy silane-functionalized rice husk ash (ATCP/FRHA)	18	45	374	43	2.24	45	V-0	[90]
amine-terminated cyclophosphazene/3-aminopropyltrimethoxy silane-functionalized rice husk ash (ATCP/FRHA)	20	40	289	31	3.57	51	V-0	[90]
silylated modified melamine/amine-terminated cyclophosphazene (ATCP/FRHA)	10	53	524	50	3.90	28	V-0	[93]
silylated modified melamine/amine-terminated cyclophosphazene (ATCP/FRHA)	50	860	112	—	23	NR	[93]	
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide/amine-terminated cyclophosphazene (ATCP/FRHA)	5	54	603	89	2.14	29	V-1	[102]
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide/Octaphenyl silylene (DOPO/OPS)	45	855	112	—	25	NR	[103]	
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide/Octaphenyl silylene (DOPO/OPS)	5.2	51	595	97	2.05	31.1	V-0	[103]
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide/Octaphenyl silylene (DOPO/OPS)	5.2	49	895	100	1.17	31.2	V-0	[103]
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide/Octaphenyl silylene (DOPO/OPS)	45	855	112	—	25	NR	[104]	
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide/Octaphenyl silylene (DOPO/OPS)	5	54	540	82	2.52	31	V-0	[105]
octaphenyl polyhedral oligomeric silsesquioxane/octaphenyl polyhedral oligomeric silsesquioxane/9,10-di hydro-9-oxa-10-phosphaphenanthrene-10-oxide (OPS/DOPO)	5	58	860	112	—	3	3.2	[105]
Octaphenyl polyhedral oligomeric silsesquioxane/octaphenyl polyhedral oligomeric silsesquioxane/9,10-di hydro-9-oxa-10-phosphaphenanthrene-10-oxide (OPS/DOPO)	50	860	112	—	—	—	[106]	
Octaphenyl polyhedral oligomeric silsesquioxane/octaphenyl polyhedral oligomeric silsesquioxane/9,10-di hydro-9-oxa-10-phosphaphenanthrene-10-oxide (OPS/DOPO)	5	58	540	82	2.52	31	V-0	[105]
Octaphenyl polyhedral oligomeric silsesquioxane/octaphenyl polyhedral oligomeric silsesquioxane/9,10-di hydro-9-oxa-10-phosphaphenanthrene-10-oxide (OPS/DOPO)	50	860	112	—	—	—	[106]	
Octaphenyl polyhedral oligomeric silsesquioxane/octaphenyl polyhedral oligomeric silsesquioxane/9,10-di hydro-9-oxa-10-phosphaphenanthrene-10-oxide (OPS/DOPO)	5	58	540	82	2.52	31	V-0	[105]
Octaphenyl polyhedral oligomeric silsesquioxane/octaphenyl polyhedral oligomeric silsesquioxane/9,10-di hydro-9-oxa-10-phosphaphenanthrene-10-oxide (OPS/DOPO)	50	860	112	—	3	3.2	[105]	
Octaphenyl polyhedral oligomeric silsesquioxane/octaphenyl polyhedral oligomeric silsesquioxane/9,10-di hydro-9-oxa-10-phosphaphenanthrene-10-oxide (OPS/DOPO)	50	860	112	—	—	—	[106]	
Octaphenyl polyhedral oligomeric silsesquioxane/octaphenyl polyhedral oligomeric silsesquioxane/9,10-di hydro-9-oxa-10-phosphaphenanthrene-10-oxide (OPS/DOPO)	5	58	540	82	2.52	31	V-0	[105]
Octaphenyl polyhedral oligomeric silsesquioxane/octaphenyl polyhedral oligomeric silsesquioxane/9,10-di hydro-9-oxa-10-phosphaphenanthrene-10-oxide (OPS/DOPO)	50	860	112	—	3	3.2	[105]	

Cont.
| Table 3. Cont. |
|---------------------------------|---------|--------|--------|--------|--------|--------|
| Epoxy Resins and Incorporated P/NP FR * | wt.% | TTI (s) | pHRR (kW m⁻²) | THR (MJ m⁻²) | FRI | LOI | UL94 | Ref. |
| epoxy novolac resin | 0 | 51 | 682 | 110 | — | — | NR | [124] |
| oligo[DOPac-2-tris(acryloyloxy)ethyl isocyanurate]/melamine polyphosphate (oDOP/MPP) | 32.8 | 48 | 341 | 85 | 2.44 | — | V-0 | [124] |
| boehmite/oligo[DOPac-2-tris(acryloyloxy)ethyl isocyanurate] (Al(OH)₃/oDOP) | 41.1 | 71 | 319 | 74 | 4.42 | — | V-0 | [124] |
| melamine polyphosphate/phosphazene (MPP/PZ) | 16.5 | 50 | 310 | 82 | 2.89 | — | V-0 | [124] |
| boehmite/phosphazene (Al(OH)₃/PZ) | 33.1 | 66 | 435 | 79 | 2.83 | — | V-0 | [124] |
| aluminum hypophosphate/activated carbon spheres@SnO₂@NiO hybrid (APP/ACS@SnO₂@NiO) | 5 | 54 | 714 | 76 | 1.28 | — | V-0 | [125] |
| Melamine coated ammonium polyphosphate/Talc (Mel-APP)/Talc | 29.7 | 28 | 357 | 24 | 16.60 | — | V-0 | [126] |
| melamine polyphosphate/melamine poly(zinc phosphate) (MPP/MPPZnP) | 20 | 38 | 207 | 51.1 | 5.39 | — | V-1 | [127] |
| diethyl aluminum phosphinate/melamine poly(zinc phosphate) (AlPi-Et)/MPPZnP | 20 | 43 | 405 | 51.2 | 3.11 | — | HB | [127] |
| 6H-dibenz[c,e][1,2]oxaphosphorin-6-propanoic acid, butyl ester, 6-oxide/melamine poly(zinc phosphate) (DOPac-Bu/MPPZnP) | 20 | 42 | 329 | 57.6 | 3.32 | — | V-1 | [127] |
| boehmite/melamine poly(zinc phosphate) (Al(OH)₃/MPPZnP) | 20 | 43 | 438 | 57.2 | 2.57 | — | HB | [127] |
| amorphous silicon dioxide/melamine poly(zinc phosphate) (MPZnP/SiO₂) | 20 | 37 | 525 | 62.4 | 1.69 | — | HB | [127] |
| melamine polyphosphate/melamine poly(zinc phosphate) (MPPZnP)(MPPZnP) | 20 | 41 | 211 | 32.5 | 8.96 | — | V-0 | [127] |
| diethyl aluminum phosphinate/melamine poly(zinc phosphate) (AlPi-Et)/MPPZnP | 20 | 41 | 435 | 53.8 | 2.63 | — | V-1 | [127] |
| 6H-dibenz[c,e][1,2]oxaphosphorin-6-propanoic acid, butyl ester, 6-oxide/melamine poly(zinc phosphate) (DOPac-Bu/MPPZnP) | 20 | 43 | 412 | 52.1 | 2.86 | — | HB | [127] |
| boehmite/melamine poly(zinc phosphate) (Al(OH)₃/MPPZnP) | 20 | 43 | 575 | 57.9 | 1.94 | — | HB | [127] |
| amorphous silicon dioxide/melamine poly(zinc phosphate) (SiO₂/MPPZnP) | 20 | 37 | 681 | 65.6 | 1.24 | — | HB | [127] |
| hexaphenylcycloctrophosphazene/octapropylglycidyl ether polyhedral oligomeric silsesquioxane (HCCTP/OGPOSS) | 15 | 58 | 707 | 123 | 2.20 | — | V-0 | [129] |
| hexaphenylcycloctrophosphazene/octapropylglycidyl ether polyhedral oligomeric silsesquioxane (HCCTP/OGPOSS) | 15 | 56 | 581 | 110 | 2.88 | — | V-0 | [129] |
| hexaphenylcycloctrophosphazene/octapropylglycidyl ether polyhedral oligomeric silsesquioxane (HCCTP/OGPOSS) | 15 | 56 | 560 | 105 | 3.14 | — | V-0 | [129] |
| Tetraphenylphosphonium modified montmorillonite/Silicate glass (CTIP/MMT) | 15 | 101 | 353 | 112 | 2.26 | 25 | HB | [130] |
| Tetraphenylphosphonium modified montmorillonite/Silicate glass (CTIP/MMT) | 47 | 891 | 151 | — | 21 | HB | [130] |
| Tetraphenylphosphonium modified montmorillonite/Silicate glass (CTIP/MMT) | 15 | 48 | 474 | 130 | 2.23 | 25 | HB | [130] |
| Tetraphenylphosphonium modified montmorillonite/Silicate glass (CTIP/MMT) | 22 | 1196 | 147 | — | 21 | HB | [130] |
| molybdenum disulfide/titanium dioxide nanotube (MoS₂/TNT) | 2 | 56 | 742 | 38.6 | 1.78 | 26 | — | [176] |
| 47 | 1002 | 104 | — | 18 | — | [215] |
| Ammonium polyphosphate/Pentaerythritol modified halloysite tube (APP/PER-HNT) | 25 | 33 | 562 | 51.8 | 4.93 | 24.8 | — | [215] |
| melamine poly(magnesium phosphate)/aluminum diethylphosphate (M60/AlPi) | 54 | 1068 | 76 | — | 21 | — | [147] |
| melamine poly(magnesium phosphate)/boehmite (M60/Al(OH)₃) | 20 | 44 | 479 | 46 | 3.00 | 30.4 | — | [147] |
| melamine poly(magnesium phosphate)/melamine polyphosphate (M60/MPP) | 20 | 39 | 437 | 55 | 2.38 | 28.9 | — | [147] |
| melamine poly(magnesium phosphate)/melamine polyphosphate (M60/MPP) | 20 | 43 | 208 | 54 | 5.22 | 28.4 | — | [147] |
| 3-(4-Methoxyphenyl)silyl|oxy|)-9-methyl-2, 4, 8, 10-tetraoxa-3, 9-diphosphaspiro[5. 5] undecane-3, 9-dioxide/Mono (4, 6-diamino-1, 3, 5-triazin-2-aminium) (2, 4, 8, 10-tetraoxa-3, 9-diphosphaspir [5. 5] undecane-3, 9-bis (oleate) 3, 9-dioxide) (SDPS/STPD) | 10.4 | 62 | 1122 | 207 | 1.09 | 30.8 | — | [136] |
| aluminum diethyl phosphinate/Melamine polyphosphate (AlPi/MPP) | 0 | 70 | 1491 | 81 | — | 19 | NR | [47] |
| aluminum diethyl phosphinate/Melamine polyphosphate (AlPi/MPP) | 7 | 61 | 505 | 48 | 4.34 | — | — | [47] |
| aluminum diethyl phosphinate (AlPi/MPP) | 7 | 66 | 533 | 58 | 3.68 | — | — | [47] |
| ammonium polyphosphate/char sulfonic acid (APP/CSA) | 0 | 25 | 1113 | 223 | — | — | [139] |
| ammonium polyphosphate/char sulfonic acid (APP/CSA) | 10 | 24 | 672 | 127 | 2.78 | — | — | [139] |
| ammonium polyphosphate/char sulfonic acid (APP/CSA) | 10 | 23 | 665 | 107 | 3.21 | — | — | [139] |
Molecules 2019, 24, 3964

Table 3. Cont.

Epoxy Resins and Incorporated P/NFR	wt.%	TTI (s)	pHRR (kW m⁻²)	THR (MJ m⁻²)	FRI	LOI	UL94	Ref.
ammonium polyphosphate/char sulfonic acid (APP/CSA)	10	27	698	137	2.81	—	—	[139]
0	117	1184	95.3	—	—	—	[182]	
Boron Nitride with D50 = 12 µm/Boron Nitride with D50 = 2 µm	45	164	918	757.5	2.28	—	—	[182]
(BN 12 µm/BN 2 µm)	45	163	729	65.1	3.31	—	—	[182]
(BN 12 µm/BT 2 µm)	60	923	124	—	—	—	[216]	
IFR: ammonium polyphosphate & pentaerythritol (APP & PER/3:1) (IFR)	30	64	285	64.1	6.69	—	—	[216]
IFR: ammonium polyphosphate & pentaerythritol (APP & PER/3:1)/ferric phosphate (IFR/FeP)	30	46	170	56	9.23	—	—	[216]
IFR: ammonium polyphosphate & pentaerythritol (APP & PER/3:1)/ferric phosphate (IFR/FeP)	30	42	185	49.3	8.80	—	—	[216]
IFR: ammonium polyphosphate & pentaerythritol (APP & PER/3:1)/ferric phosphate (IFR/FeP)	30	39	167	39.7	11.20	—	—	[216]
IFR: ammonium polyphosphate & pentaerythritol (APP & PER/3:1)/ferric phosphate (IFR/FeP)	30	41	180	44.6	9.76	—	—	[216]
IFR: ammonium polyphosphate & pentaerythritol (APP & PER/3:1) (IFR)	30	49	260	56	7.68	—	—	[217]
IFR: ammonium polyphosphate & pentaerythritol (APP & PER/3:1) (IFR)	30	46	172	47	13.00	—	—	[217]
IFR: ammonium polyphosphate & pentaerythritol (APP & PER/3:1)/ferric phosphate (IFR/FeP)	30	53	166	36	20.20	—	—	[217]
IFR: ammonium polyphosphate & pentaerythritol (APP & PER/3:1)/ferric phosphate (IFR/FeP)	30	50	196	40	14.60	—	—	[217]
IFR: ammonium polyphosphate & pentaerythritol (APP & PER/3:1)/ferric phosphate (IFR/FeP)	30	52	217	74	7.39	—	—	[217]
IFR: ammonium polyphosphate & pentaerythritol (APP & PER/3:1) (IFR)	30	49	285	64.1	5.12	—	—	[218]
IFR: ammonium polyphosphate & pentaerythritol (APP & PER/3:1) (IFR)	30	34	167	38.3	10.20	—	—	[218]
IFR: ammonium polyphosphate & pentaerythritol (APP & PER/3:1)/ferric phosphate (IFR/FeP)	30	45	126	31	22.00	—	—	[218]
IFR: ammonium polyphosphate & pentaerythritol (APP & PER/3:1)/ferric phosphate (IFR/FeP)	30	48	124	29.3	25.20	—	—	[218]
IFR: ammonium polyphosphate & pentaerythritol (APP & PER/3:1)/ferric phosphate (IFR/FeP)	30	53	163	43.2	14.40	—	—	[218]
Ni–Fe layered double hydroxide/graphene nanosheets (Ni–Fe LDH/GN)	68	1730	113	—	—	—	—	[193]
Epoxy acrylate	2	89	678	44.2	8.55	—	—	[193]
ammonium polyphosphate/pentaerythritol (APP/PER)	32	61	223	30.8	2.77	—	—	[152]
70	934	124	—	—	—	—	[219]	
IFR: ammonium polyphosphate & pentaerythritol (APP & PER/3:1) (IFR)	30	70	282	64	6.42	—	—	[219]
IFR: ammonium polyphosphate & pentaerythritol (APP & PER/3:1)/organic-modified iron-montmorillonite (IFR–Fe–OMMT)	30	20	243	70	1.95	—	—	[219]
IFR: ammonium polyphosphate & pentaerythritol (APP & PER/3:1)/organic-modified iron-montmorillonite (IFR–Fe–OMMT)	30	15	153	54	3.00	—	—	[219]
IFR: ammonium polyphosphate & pentaerythritol (APP & PER/3:1)/organic-modified iron-montmorillonite (IFR–Fe–OMMT)	30	30	154	68	4.74	—	—	[219]
ammonium polyphosphate/onium ion modified nanoclay (APP/L30E)	30	15	194	65	1.97	—	—	[219]
41	1222	159	—	—	—	—	[160]	
ammonium polyphosphate/layered double hydroxide (Mel-APP/LDH)	23	149	363	92	21.10	—	—	[160]
0	21	454	36.2	22.1	NR	—	—	[120]
melamine coated ammonium polyphosphate/layered double hydroxide (Mel-APP/LDH)	9.55	21	259	22.6	2.81	31.7	V-1	[120]
melamine coated ammonium polyphosphate/halloysite nano-tube (Mel-APP/HNT)	9.61	22	262	18.4	3.57	31.4	V-1	[120]
24	451	37	—	—	NR	—	—	[126]
Melamine coated ammonium polyphosphate/Talc (Mel-APP/Talc)	14.8	21	169	16	5.40	—	—	[126]
42	385	21.8	—	27.5	—	—	—	[163,164]
IFR contains melamine phosphate/cellulose fibre containing poylsalicic acid (IFR/Via)	10	38	262	17.9	1.62	36.2	—	[163,164]
Table 3. Cont.

Epoxy Resins and Incorporated P/NP FR *	wt.%	TTI (s)	pHRR (kW m⁻²)	THR (MJ m⁻²)	FRI	LOI	UL94	Ref.	
IFR contains melamine phosphate/phenol-formaldehyde fibers (Kv/IFR) *	10	55	354	23.2	1.34	30.2	—	—	—
	0	33	520	29.4	0.86	—	—	—	—
Zinc borate/magnesium hydroxide (ZB/Mg(OH)₂) d	1	32	572	41.8	0.64	—	—	—	—
Zinc borate/magnesium hydroxide (ZB/Mg(OH)₂) d	7.5	37	483	37.4	0.95	—	—	—	—
Zinc borate/magnesium hydroxide (ZB/Mg(OH)₂) d	15	38	439	35.4	1.13	—	—	—	—
Zinc borate/magnesium hydroxide (ZB/Mg(OH)₂) d	25	40	380	27.2	1.79	—	—	—	—
Zinc borate/aluminum hydroxide (ZB/Al(OH)₃) d	10	33	525	35	0.83	—	—	—	—
Zinc borate/aluminum hydroxide (ZB/Al(OH)₃) d	7.5	36	480	37.4	0.93	—	—	—	—
Zinc borate/aluminum hydroxide (ZB/Al(OH)₃) d	15	27	439	37.2	0.77	—	—	—	—
Zinc borate/aluminum hydroxide (ZB/Al(OH)₃) d	25	30	409	37.7	0.90	—	—	—	—
melamine phosphate/Graphene (MP/CGN) *	5	36	483	47.9	1.57	—	—	—	—
9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide/Graphene (DOPO/CGN) *	5	32	538	36.5	1.64	—	—	—	—
Zinc borate/organic phosphate/Zinc borate (PFR/ZB) *	100	39	106	12.3	1.27	—	—	—	—
IFR contains melamine phosphate/cellulosic fibre containing polysilicic acid (IFR/Vis) *	5	49	391	20.3	2.74	—	—	—	—
IFR contains melamine phosphate/cellulosic fibre containing polysilicic acid (IFR/Vis) *	7.5	45	433	34	1.36	—	—	—	—
IFR contains melamine phosphate/cellulosic fibre containing polysilicic acid (IFR/Vis) *	10	52	488	33.2	1.43	—	—	—	—
IFR contains melamine phosphate/cellulosic fibre containing polysilicic acid (IFR/Vis) *	12.5	54	488	31.3	1.57	—	—	—	—
IFR contains melamine phosphate/cellulosic fibre containing polysilicic acid (IFR/Vis) *	15	66	451	28.4	2.29	—	—	—	—
IFR contains melamine phosphate/cellulosic fibre containing polysilicic acid (IFR/Vis) *	7.5	39	379	32.2	1.42	—	—	—	—
IFR contains melamine phosphate/cellulosic fibre containing polysilicic acid (IFR/Vis) *	10	80	408	25.5	3.42	—	—	—	—
IFR contains melamine phosphate/cellulosic fibre containing polysilicic acid (IFR/Vis) *	12.5	59	379	24.5	2.82	—	—	—	—
IFR contains melamine phosphate/cellulosic fibre containing polysilicic acid (IFR/Vis) *	15	77	434	22.9	3.44	—	—	—	—
IFR contains melamine phosphate/cellulosic fibre containing polysilicic acid (IFR/Vis) *	10	76	346	24.3	4.02	—	—	—	—
IFR contains melamine phosphate/cellulosic fibre containing polysilicic acid (IFR/Vis) *	12.5	89	342	23	5.03	—	—	—	—
IFR contains melamine phosphate/cellulosic fibre containing polysilicic acid (IFR/Vis) *	15	90	442	20.6	4.39	—	—	—	—
IFR contains melamine phosphate/cellulosic fibre containing polysilicic acid (IFR/Vis) *	12.5	67	277	22.8	4.71	—	—	—	—
IFR contains melamine phosphate/cellulosic fibre containing polysilicic acid (IFR/Vis) *	15	89	339	20.3	5.75	—	—	—	—
IFR contains melamine phosphate/cellulosic fibre containing polysilicic acid (IFR/Vis) *	15	97	226	15.9	12.00	—	—	—	—
IFR contains melamine phosphate/cellulosic fibre containing polysilicic acid (IFR/Vis) *	17.5	100	236	23.4	8.05	—	—	—	—
	125	857	50	—	—	—	—	—	—
Trisilanolsobutyl Polyhydral oligomeric silsesquioxane/triglycidyl isocyanurate (TISPSS/GCIC) b	5	114	365	32	3.17	—	—	—	—
	40	525	62	—	—	—	—	—	—
IFR contains melamine phosphate/cellulosic fibre containing polysilicic acid (IFR/Vis) *	5	24	365	67	0.80	—	—	—	—
IFR contains melamine phosphate/cellulosic fibre containing polysilicic acid (IFR/Vis) *	7.5	31	290	41	2.12	—	—	—	—
IFR contains melamine phosphate/cellulosic fibre containing polysilicic acid (IFR/Vis) *	10	28	242	36	2.62	—	—	—	—

* Matrix: eight layers of woven E-glass fabric reinforced epoxy; b Matrix: eight layers of woven E-glass reinforced film of multifunctional epoxy resin; c Matrix: eight layers of carbon fiber reinforced system HexFlow RTM6 (matrix) and HexForce G0939 (fabric); d Matrix: eight layers of woven roving glass fabric reinforced epoxy phenol novolak resin blend; e Matrix: epoxy fiber S2-glass panels; f Matrix: eight layers of woven E-glass reinforced epoxy; g Matrix: eight layers of woven glass Fiber Reinforced epoxy; h Matrix: eight ply woven roving E-glass fiber-reinforced epoxy.

To give a more meaningful overview of the effect of combined P and NP additives on flame retardancy performance of epoxy, FRI values are calculated by using calorimetric data given in Table 3 and plotted in Figure 7. In this figure, the vertical axis shows the amount of additive system used in preparation of epoxy composites. The plot also reveals that three types of flame retardancy performances are observed, depending on the type of combinatorial systems as well as the amount
of FR additives used. Attention should be paid to the fact that even at lower loading levels, careful coupling of one or more P and NP additives could lead to superiority of the FR system used, and there was a possibility for attaining higher performances compared to highly-filled systems (FR content ≥ 40). Thus, careful selection of complementary additives with disciplined loading can result in high flame retardancy performance.

Figure 7. Flame retardancy analysis of epoxy resins containing combinatorial flame retardant systems in terms of the FRI values as a function of combinatorial flame retardants systems retardant type and content. Symbols are indicative of different types of combinatorial flame retardants systems used. Hollow symbols are indicative of fiber-incorporated composites with details earlier given in the bottom of Table 1 as notes a to i. Here: ▲ DiDOPO-1.5/GN-1.5 [28], △ DiDOPO-10/MWCNT-0.8 [29], ▲ DiDOPO-3.5/OMMT-3.5 [30], △ DiDOPO-0.5/OLDH-0.5, DiDOPO-2.5/OLDH-2.5, DiDOPO-5/OLDH-5 [31], ● IFR-40, IFR-39/CES-1, IFR-38/CES-2, IFR-37/CES-3, IFR-35/CES-5 [208], ▲ DOPO-15/P-KC-15, DOPO-20/P-KC-10, DOPO-25/P-KC-5 [41], ➤ mAPP-5/P-5, mAPP-5/RCC-5, mAPP-5/ORCC-5 [209], ● PEPA-TMA-12/MCA-6, PEPA-TMA-16/MCA-8, PEPA-TMA-20/MCA-10 [210], ☺ ZIF8-1/MgAl-LDH-1, ZIF67-1/MgAl-LDH-1 [170], ● TAT-18/DOPO-2, TAT-16/DOPO-4, TAT-14/DOPO-6, TAT-12/DOPO-8, TAT-18/HPCP-2, TAT-16/HPCP-4, TAT-14/HPCP-6, TAT-12/HPCP-8 [52], ● EDA-APP-19/Cu₂O-2 [53], ☻ CP-68-3/MH-0.5 [56], ☐ IFR-20, IFR-19.5/HGM-0.5, IFR-19/HGM-1, IFR-18/HGM-2, IFR-16/HGM-4 [211], ✲ APP-5/PSA-5 [58], MFAPP-6.25/PER-6.25, MFAPP-6.25/ST-6.25, MFAPP-6.25/OST-6.25 [212], EG-16/DOPO-4, EG-16/DOPO-6, EG-12/DOPO-8, EG-10/DOPO-10, EG-16/HPCP-4, EG-14/HPCP-6, EG-12/HPCP-8, EG-10/HPCP-10 [66], □ TMT-8.3/DOPO-2.7, TMT-8.2/DOPO-4.1, TMT-8.1/DOPO-5.6, TMT-8/DOPO-7 [67], ○ DOPO-3/APHP-3, DOPO-4/APHP-2 [75], ▲ TAD-4/OMMT-1 [77], ▼ FR-20/APP-10, FR-15/APP-15, FR-12/APP-18, FR-10/APP-20 [213], ● ATCP-15/FRHA-1, ATCP-15/FRHA-3, ATCP-15/FRHA-5 [89], ☼ ATCP-15/FRHA-1, ATCP-15/FRHA-3, ATCP-15/FRHA-5 [90], ▲ APP-4/MMT-6 [93], ● DOPO-5/MMT-1 [94], BDP-6.7/PHP-3.3 [95], ▲ OPS-2.5/DOPO-2.5 [102], DOPO-3.1/OPS-2.1, DOPO-3.1/PPSQ-2.1 [103], + DOPO-3.1/OPS-2.1, DOPO-3.1/OPS-2.3 [104], ✲ OPS-2.5/DOPO-2.5 [105], OPS-2.1/PEPA-2.6, OPS-2.1/APP-1.4, OPS-2.1/DOPO-3.1 [106], ODPS-2.5/DOPO-2.5 [115], ▲ MAPP-10/PPA-10 [214], ● T8POSS-5/TGIC-5 [174], ○ APP-4.83/CoSA-0.17 [117], ○ CBz-8/BGN-2, CBz-13/BGN-2, CBz-18/BGN-2 [118], ❏ Mel-APP-18/LDH-2, Mel-APP-18/HNT-2 [120], oDOPI-17.76/MPP-15, AlO(OH)-30/oDOPI-11.05, MPP-15/PZ-1.54, AlO(OH)-30/PZ-3.08 [124], AHP-4.5/ACS@SnO2@NiO-0.5 [125], ❏ Mel-APP-19.97/Talc-9.73 [126], ● MPP-10/MPP/ZnP-10,
When looking at the UL-94 test results (considering the fact that there were some data in Table 3 for some systems to be plotted and discussed in Figure 8), it can be seen that, except for some data, the whole systems take Poor and Good labels based on FRI values. It is also interesting to note that for a given category, e.g., V-0, the amount of additive changes the FRI, and UL-94 testing does not make sense of such variations.
The more interesting outcome of this work is that LOI percent similarly detects Poor and Good behaviors, not principally Excellent performance (Figure 9). This suggests that development of innovative FR additives by combination of P and NP and using highly efficient synthesis routes is the essential step to be taken in the near future for developing flame retardant epoxy composites.

![Figure 9](image)

Figure 9. Flame retardancy analysis of epoxy resins containing combinatorial flame-retardant systems in terms of the FRI values as a function of LOI test results. Symbols are indicative of different types of combinatorial flame-retardant systems used. Hollow symbols are indicative of fiber-incorporated composites with details given in the bottom of Table 1 as notes a to i.

5. Concluding Remarks and Future Perspective

In previous sections, we categorized the flame-retardant properties of epoxy resins in terms of the universal FRI criterion and the content of flame retardants of three families. We also attempted to find possible correlations between cone calorimetry (reflected in FRI variations), UL-94, and LOI analyses. Since cone calorimetry is the best way to simulate real state combustion of polymers, here, we give a general picture of flame retardancy of epoxy resins (Figure 10). The Poor, Good, or Excellent flame retardancy cases are the result of the P, NP, or P/NP types of flame retardants used in preparation of epoxy composites as well as the FR loading. Each kind of behavior can be visualized by providing a full snapshot of the Poor, Good, and Excellent regions of the FRI to see how closely the data are collected in each zone. Overall, it can be seen that Poor and Good are the cases for majority of data, while the Excellent zone contains limited data. This highlights the difficulty of achieving high flame-retardant efficiency in epoxy composites when merely using flame retardants. Thus, development of innovative flame retardants through blending different FR families and making them reactive towards epoxy may result in a fully cured 3D network with high flame resistance. This requires the knowledge and experience of chemists and engineers who can adjust the performance of the system in a very disciplined manner. Moreover, using bio-based epoxy resins with limited environmental threats would be another solution to the question of “which FR additive(s) meet the requirements of highly flame-retardant epoxy composites?”.

* Molecules 2019, 24, x FOR PEER REVIEW 35 of 55 The more interesting outcome of this work is that LOI percent similarly detects Poor and Good behaviors, not principally Excellent performance (Figure 9). This suggests that development of innovative FR additives by combination of P and NP and using highly efficient synthesis routes is the essential step to be taken in the near future for developing flame retardant epoxy composites.

![Figure 9](image)

Figure 9. Flame retardancy analysis of epoxy resins containing combinatorial flame-retardant systems in terms of the FRI values as a function of LOI test results. Symbols are indicative of different types of combinatorial flame-retardant systems used. Hollow symbols are indicative of fiber-incorporated composites with details given in the bottom of Table 1 as notes a to i.

5. Concluding Remarks and Future Perspective

In previous sections, we categorized the flame-retardant properties of epoxy resins in terms of the universal FRI criterion and the content of flame retardants of three families. We also attempted to find possible correlations between cone calorimetry (reflected in FRI variations), UL-94, and LOI analyses. Since cone calorimetry is the best way to simulate real state combustion of polymers, here, we give a general picture of flame retardancy of epoxy resins (Figure 10). The Poor, Good, or Excellent flame retardancy cases are the result of the P, NP, or P/NP types of flame retardants used in preparation of epoxy composites as well as the FR loading. Each kind of behavior can be visualized by providing a full snapshot of the Poor, Good, and Excellent regions of the FRI to see how closely the data are collected in each zone. Overall, it can be seen that Poor and Good are the cases for majority of data, while the Excellent zone contains limited data. This highlights the difficulty of achieving high flame-retardant efficiency in epoxy composites when merely using flame retardants. Thus, development of innovative flame retardants through blending different FR families and making them reactive towards epoxy may result in a fully cured 3D network with high flame resistance. This requires the knowledge and experience of chemists and engineers who can adjust the performance of the system in a very disciplined manner. Moreover, using bio-based epoxy resins with limited environmental threats would be another solution to the question of “which FR additive(s) meet the requirements of highly flame-retardant epoxy composites?”.

* Molecules 2019, 24, x FOR PEER REVIEW 35 of 55 The more interesting outcome of this work is that LOI percent similarly detects Poor and Good behaviors, not principally Excellent performance (Figure 9). This suggests that development of innovative FR additives by combination of P and NP and using highly efficient synthesis routes is the essential step to be taken in the near future for developing flame retardant epoxy composites.

![Figure 9](image)

Figure 9. Flame retardancy analysis of epoxy resins containing combinatorial flame-retardant systems in terms of the FRI values as a function of LOI test results. Symbols are indicative of different types of combinatorial flame-retardant systems used. Hollow symbols are indicative of fiber-incorporated composites with details given in the bottom of Table 1 as notes a to i.

5. Concluding Remarks and Future Perspective

In previous sections, we categorized the flame-retardant properties of epoxy resins in terms of the universal FRI criterion and the content of flame retardants of three families. We also attempted to find possible correlations between cone calorimetry (reflected in FRI variations), UL-94, and LOI analyses. Since cone calorimetry is the best way to simulate real state combustion of polymers, here, we give a general picture of flame retardancy of epoxy resins (Figure 10). The Poor, Good, or Excellent flame retardancy cases are the result of the P, NP, or P/NP types of flame retardants used in preparation of epoxy composites as well as the FR loading. Each kind of behavior can be visualized by providing a full snapshot of the Poor, Good, and Excellent regions of the FRI to see how closely the data are collected in each zone. Overall, it can be seen that Poor and Good are the cases for majority of data, while the Excellent zone contains limited data. This highlights the difficulty of achieving high flame-retardant efficiency in epoxy composites when merely using flame retardants. Thus, development of innovative flame retardants through blending different FR families and making them reactive towards epoxy may result in a fully cured 3D network with high flame resistance. This requires the knowledge and experience of chemists and engineers who can adjust the performance of the system in a very disciplined manner. Moreover, using bio-based epoxy resins with limited environmental threats would be another solution to the question of “which FR additive(s) meet the requirements of highly flame-retardant epoxy composites?”.

* Molecules 2019, 24, x FOR PEER REVIEW 35 of 55 The more interesting outcome of this work is that LOI percent similarly detects Poor and Good behaviors, not principally Excellent performance (Figure 9). This suggests that development of innovative FR additives by combination of P and NP and using highly efficient synthesis routes is the essential step to be taken in the near future for developing flame retardant epoxy composites.

![Figure 9](image)

Figure 9. Flame retardancy analysis of epoxy resins containing combinatorial flame-retardant systems in terms of the FRI values as a function of LOI test results. Symbols are indicative of different types of combinatorial flame-retardant systems used. Hollow symbols are indicative of fiber-incorporated composites with details given in the bottom of Table 1 as notes a to i.

5. Concluding Remarks and Future Perspective

In previous sections, we categorized the flame-retardant properties of epoxy resins in terms of the universal FRI criterion and the content of flame retardants of three families. We also attempted to find possible correlations between cone calorimetry (reflected in FRI variations), UL-94, and LOI analyses. Since cone calorimetry is the best way to simulate real state combustion of polymers, here, we give a general picture of flame retardancy of epoxy resins (Figure 10). The Poor, Good, or Excellent flame retardancy cases are the result of the P, NP, or P/NP types of flame retardants used in preparation of epoxy composites as well as the FR loading. Each kind of behavior can be visualized by providing a full snapshot of the Poor, Good, and Excellent regions of the FRI to see how closely the data are collected in each zone. Overall, it can be seen that Poor and Good are the cases for majority of data, while the Excellent zone contains limited data. This highlights the difficulty of achieving high flame-retardant efficiency in epoxy composites when merely using flame retardants. Thus, development of innovative flame retardants through blending different FR families and making them reactive towards epoxy may result in a fully cured 3D network with high flame resistance. This requires the knowledge and experience of chemists and engineers who can adjust the performance of the system in a very disciplined manner. Moreover, using bio-based epoxy resins with limited environmental threats would be another solution to the question of “which FR additive(s) meet the requirements of highly flame-retardant epoxy composites?”.

* Molecules 2019, 24, x FOR PEER REVIEW 35 of 55 The more interesting outcome of this work is that LOI percent similarly detects Poor and Good behaviors, not principally Excellent performance (Figure 9). This suggests that development of innovative FR additives by combination of P and NP and using highly efficient synthesis routes is the essential step to be taken in the near future for developing flame retardant epoxy composites.

![Figure 9](image)

Figure 9. Flame retardancy analysis of epoxy resins containing combinatorial flame-retardant systems in terms of the FRI values as a function of LOI test results. Symbols are indicative of different types of combinatorial flame-retardant systems used. Hollow symbols are indicative of fiber-incorporated composites with details given in the bottom of Table 1 as notes a to i.

5. Concluding Remarks and Future Perspective

In previous sections, we categorized the flame-retardant properties of epoxy resins in terms of the universal FRI criterion and the content of flame retardants of three families. We also attempted to find possible correlations between cone calorimetry (reflected in FRI variations), UL-94, and LOI analyses. Since cone calorimetry is the best way to simulate real state combustion of polymers, here, we give a general picture of flame retardancy of epoxy resins (Figure 10). The Poor, Good, or Excellent flame retardancy cases are the result of the P, NP, or P/NP types of flame retardants used in preparation of epoxy composites as well as the FR loading. Each kind of behavior can be visualized by providing a full snapshot of the Poor, Good, and Excellent regions of the FRI to see how closely the data are collected in each zone. Overall, it can be seen that Poor and Good are the cases for majority of data, while the Excellent zone contains limited data. This highlights the difficulty of achieving high flame-retardant efficiency in epoxy composites when merely using flame retardants. Thus, development of innovative flame retardants through blending different FR families and making them reactive towards epoxy may result in a fully cured 3D network with high flame resistance. This requires the knowledge and experience of chemists and engineers who can adjust the performance of the system in a very disciplined manner. Moreover, using bio-based epoxy resins with limited environmental threats would be another solution to the question of “which FR additive(s) meet the requirements of highly flame-retardant epoxy composites?”.
Author Contributions: Conceptualization, H.V. and M.R.S.; methodology, H.V. and M.R.S.; validation, H.V. and M.R.S.; investigation, E.M., H.V. and M.R.S.; data curation, E.M.; writing—original draft preparation, H.V. and M.R.S.; visualization, H.V., S.T. and M.R.S.; supervision, H.V., S.T. and M.R.S.; writing—review and editing, H.V., S.T. and M.R.S.; funding acquisition, H.V. M.R.S.; All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Jin, F.-L.; Li, X.; Park, S.-J. Synthesis and application of epoxy resins: A review. J. Ind. Eng. Chem. 2015, 29, 1–11. [CrossRef]
2. Tan, S.; Chow, W. Biobased epoxidized vegetable oils and its greener epoxy blends: A review. Polym. Plast. Technol. Eng. 2010, 49, 1581–1590. [CrossRef]
3. Wang, X.; Hu, Y.; Song, L.; Xing, W.; Lu, H.; Lv, P.; Jie, G. Flame retardancy and thermal degradation mechanism of epoxy resin composites based on a DOPO substituted organophosphorus oligomer. Polymer 2010, 51, 2435–2445. [CrossRef]
4. Ahmadi, Z. Epoxy in nanotechnology: A short review. Prog. Org. Coat. 2019, 132, 445–448. [CrossRef]
5. Ahmadi, Z. Nanostructured epoxy adhesives: A review. Prog. Org. Coat. 2019, 135, 449–453. [CrossRef]
6. Manouchehri, S.; Bagheri, B.; Rad, S.H.; Nezhad, M.N.; Kim, Y.C.; Park, O.O.; Farokhi, M.; Jouyandeh, M.; Ganjali, M.R.; Yazdi, M.K.; et al. Electroactive bio-epoxy incorporated chitosan-oligoaniline as an advanced hydrogel coating for neural interfaces. Prog. Org. Coat. 2019, 131, 389–396. [CrossRef]
7. Wu, K.; Song, L.; Hu, Y.; Lu, H.; Kandola, B.K.; Kandare, E. Synthesis and characterization of a functional polyhedral oligomeric silsesquioxane and its flame retardancy in epoxy resin. Prog. Org. Coat. 2009, 65, 490–497. [CrossRef]
8. Levchik, S.V.; Weil, E.D. Thermal decomposition, combustion and flame-retardancy of epoxy resins—A review of the recent literature. Polym. Int. 2004, 53, 1901–1929. [CrossRef]
9. Liu, S.; Yu, B.; Feng, Y.; Yang, Z.; Yin, B. Synthesis of a multifunctional bisphosphate and its flame retardant application in epoxy resin. Polym. Degrad. Stab. 2019, 165, 92–100. [CrossRef]
30. Yan, W.; Yu, J.; Zhang, M.; Wang, T.; Li, W.; Qin, S.; Long, L. Enhanced flame retardancy of epoxy resin containing a phenethyl-bridged DOPO derivative/montmorillonite compound. J. Fire Sci. 2018, 36, 47–62. [CrossRef]

31. Yan, W.; Yu, J.; Zhang, M.; Qin, S.; Wang, T.; Huang, W.; Long, L. Flame-retardant effect of a phenethyl-bridged DOPO derivative and layered double hydroxides for epoxy resin. RSC Adv. 2017, 7, 46236–46245. [CrossRef]

32. Yan, W.; Yu, J.; Zhang, M.; Long, L.; Wang, T.; Qin, S.; Huang, W. Novel flame retardancy effect of phenethyl-bridged DOPO derivative on epoxy resin. High Perform. Polym. 2018, 30, 667–676. [CrossRef]

33. Yan, L.; Xu, Z.; Wang, X.; Deng, N.; Chu, Z. Preparation of a novel mono-component intumescent flame retardant for enhancing the flame retardancy and smoke suppression properties of epoxy resin. J. Therm. Anal. Calorim. 2018, 134, 1505–1519. [CrossRef]

34. Xu, Z.; Deng, N.; Yan, L.; Chu, Z. Functionalized multiwalled carbon nanotubes with monocomponent intumescent flame retardant for reducing the flammability and smoke emission characteristics of epoxy resins. Polym. Adv. Technol. 2018, 29, 3002–3013. [CrossRef]

35. Xu, Y.-J.; Wang, J.; Tan, Y.; Qi, M.; Chen, L.; Wang, Y.-Z. A novel and feasible approach for one-pack flame-retardant epoxy resin with long pot life and fast curing. Chem. Eng. J. 2018, 337, 30–39. [CrossRef]

36. Xu, Y.-J.; Chen, L.; Rao, W.-H.; Qi, M.; Guo, D.-M.; Liao, W.; Wang, Y.-Z. Latent curing epoxy system with excellent thermal stability, flame retardance and dielectric property. Chem. Eng. J. 2018, 347, 223–232. [CrossRef]

37. Xu, M.-J.; Xia, S.-Y.; Liu, C.; Li, B. Preparation of poly (phosphoric acid piperazine) and its application as an effective flame retardant for epoxy resin. Chin. J. Polym. Sci. 2018, 36, 655–664. [CrossRef]

38. Xiang, Y.; Wang, L.; Yang, Z.; Gao, P.; Qin, S.; Yu, J. Effect of aluminum phosphate on the flame-retardant properties of epoxy syntactic foams. J. Therm. Anal. Calorim. 2019, 137, 1645–1656. [CrossRef]

39. Wang, P.; Fu, X.; Kan, Y.; Wang, X.; Hu, Y. Two high-efficient DOPO-based phosphonamidate flame retardants for transparent epoxy resin. High Perform. Polym. 2019, 31, 249–260. [CrossRef]

40. Wang, P.; Chen, L.; Xiao, H. Flame retardant effect and mechanism of a novel DOPO based tetrazole derivative on epoxy resin. J. Anal. Appl. Pyrolysis 2019, 139, 104–113. [CrossRef]

41. Wang, N.; Teng, H.; Li, L.; Zhang, J.; Kang, P. Synthesis of phosphated K-carrageenan and Its application for flame-retardant waterborne epoxy. Polymers 2018, 10, 1268. [CrossRef] [PubMed]

42. Tian, L.; Li, X.; Wang, L.; Zhang, Y.; Cui, J.; Guo, J.; Yang, B. Synthesis and characterization of an efficient flame retardant based on aromatic ring and phosphate ester for epoxy resin. Polym. Eng. Sci. 2019, 59, E406–E413. [CrossRef]

43. Sun, Z.; Hou, Y.; Hu, Y.; Hu, W. Effect of additive phosphorus-nitrogen containing flame retardant on char formation and flame retardancy of epoxy resin. Mater. Chem. Phys. 2018, 214, 154–164. [CrossRef]

44. Shi, Y.-Q.; Fu, T.; Xu, Y.-J.; Li, D.-F.; Wang, X.-L.; Wang, Y.-Z. Novel phosphorus-containing halogen-free ionic liquid toward fire safety epoxy resin with well-balanced comprehensive performance. Chem. Eng. J. 2018, 354, 208–219. [CrossRef]

45. Shi, Y.; Wang, Z.; Zhou, J.-a. Facile synthesis of a flame retardant melamine phenylphosphate and its epoxy resin composites with simultaneously improved flame retardancy, smoke suppression and water resistance. RSC Adv. 2018, 8, 39214–39221. [CrossRef]

46. Shen, D.; Xu, Y.-J.; Long, J.-W.; Shi, X.-H.; Chen, L.; Wang, Y.-Z. Epoxy resin flame-retarded via a novel melamine-organophosphinic acid salt: Thermal stability, flame retardance and pyrolysis behavior. J. Anal. Appl. Pyrolysis 2017, 128, 54–63. [CrossRef]

47. Zhong, L.; Zhang, K.-X.; Wang, X.; Chen, M.-J.; Xin, F.; Liu, Z.-G. Synergistic effects and flame-retardant mechanism of aluminum diethyl phosphate in combination with melamine polyphosphate and aluminum oxide in epoxy resin. J. Therm. Anal. Calorim. 2018, 134, 1637–1646. [CrossRef]

48. Liang, W.-J.; Zhao, B.; Zhang, C.-Y.; Jian, R.-K.; Liu, D.-Y.; Liu, Y.-Q. Enhanced flame retardancy of DGEBA epoxy resin with a novel bisphenol-A bridged cyclotriphosphazene. Polym. Degrad. Stab. 2017, 144, 292–303. [CrossRef]

49. Kong, Q.; Wu, T.; Zhang, J.; Wang, D.-Y. Simultaneously improving flame retardancy and dynamic mechanical properties of epoxy resin nanocomposites through layered copper phenylphosphate. Compos. Sci. Technol. 2018, 154, 136–144. [CrossRef]
50. Jian, R.-K.; Ai, Y.-F.; Xia, L.; Zhao, L.-J.; Zhao, H.-B. Single component phosphamidine-based intumescent flame retardant with potential reactivity towards low flammability and smoke epoxy resins. *J. Hazard. Mater.* 2019, 371, 529–539. [CrossRef]

51. Huo, S.; Wang, J.; Yang, S.; Chen, X.; Zhang, B.; Wu, Q.; Zhang, B. Flame-retardant performance and mechanism of epoxy thermostets modified with a novel reactive flame retardant containing phosphorus, nitrogen, and sulfur. *Polym. Adv. Technol.* 2018, 29, 497–506. [CrossRef]

52. Huo, S.; Wang, J.; Yang, S.; Cai, H.; Zhang, B.; Chen, X.; Wu, Q.; Yang, L. Synergistic effect between a novel triazine-based flame retardant and DOPO/HPCP on epoxy resin. *Polym. Adv. Technol.* 2018, 29, 2774–2783. [CrossRef]

53. Gangireddy, C.S.R.; Wang, X.; Kan, Y.; Song, L.; Hu, Y. Synthesis of a novel DOPO-based polyphosphoramide with high char yield and its application in flame-retardant epoxy resins. *Polym. Int.* 2019, 68, 936–945. [CrossRef]

54. Dong, C.; Wirasaputra, A.; Luo, Q.; Liu, S.; Yuan, Y.; Zhao, J.; Fu, Y. Intrinsic flame-retardant and thermally stable epoxy endowed by a highly efficient, multifunctional curing agent. *Materials* 2016, 9, 1008. [CrossRef] [PubMed]

55. Chen, M.-J.; Wang, X.; Li, X.-L.; Liu, X.-Y.; Zhong, L.; Wang, H.-Z.; Liu, Z.-G. The synergistic effect of cuprous oxide on an intumescent flame-retardant epoxy resin system. *RSC Adv.* 2017, 7, 35619–35628. [CrossRef]

56. Ai, L.; Chen, S.; Zeng, J.; Yang, L.; Liu, P. Synergistic flame retardant effect of an intumescent flame retardant containing boron and magnesium hydroxide. *ACS Omega* 2019, 4, 3314–3321. [CrossRef]

57. Zhao, X.; Xiao, D.; Alonso, J.P.; Wang, D.-Y. Inclusion complex between beta-cyclodextrin and phenylphosphonic diamide as novel bio-based flame retardant to epoxy: Inclusion behavior, characterization and flammability. *Mater. Des.* 2017, 114, 623–632. [CrossRef]

58. Zhao, W.; Liu, J.; Peng, H.; Liao, J.; Wang, X. Synthesis of a novel PEPA-substituted polyphosphoramide with high char residues and its performance as an intumescent flame retardant for epoxy resins. *Polym. Degrad. Stab.* 2015, 118, 120–129. [CrossRef]

59. Zhao, B.; Liang, W.-J.; Wang, J.-S.; Li, F.; Liu, Y.-Q. Synthesis of a novel bridged-cyclotriphosphazene flame retardant and its application in epoxy resin. *Polym. Degrad. Stab.* 2016, 133, 162–173. [CrossRef]

60. Zhang, Y.; Yu, B.; Wang, B.; Liew, K.M.; Song, L.; Wang, C.; Hu, Y. Highly effective P–P synergy of a novel DOPO-based flame retardant for epoxy resin. *Ind. Eng. Chem. Res.* 2017, 56, 1245–1255. [CrossRef]

61. Zhang, W.; Fina, A.; Cuttica, F.; Camino, G.; Yang, R. Blowing-out effect in flame retarding epoxy resins: Insight by temperature measurements during forced combustion. *Polym. Degrad. Stab.* 2016, 131, 82–90. [CrossRef]

62. Zhang, C.; Pan, M.; Qu, L.; Sun, G. Effect of phosphorus-containing flame retardants on flame retardancy and thermal stability of tetrafunctional epoxy resin. *Polym. Adv. Technol.* 2015, 26, 1531–1536. [CrossRef]

63. You, G.; Cheng, Z.; Tang, Y.; He, H. Functional group effect on char formation, flame retardancy and mechanical properties of phosphonate-triazine-based compound as flame retardant in epoxy resin. *Ind. Eng. Chem. Res.* 2015, 54, 7309–7319. [CrossRef]

64. Yang, S.; Zhang, Q.; Hu, Y. Preparation and investigation of flame-retardant epoxy resin modified with a novel halogen-free flame retardant containing phosphapenthiophene, triazine-trione, and organoboron units. *J. Appl. Polym. Sci.* 2017, 134, 45291. [CrossRef]

65. Yang, S.; Zhang, Q.; Hu, Y. Synthesis of a novel flame retardant containing phosphorus, nitrogen and boron and its application in flame retardant epoxy resin. *Polym. Degrad. Stab.* 2016, 133, 358–366. [CrossRef]

66. Yang, S.; Wang, J.; Huo, S.; Wang, M.; Wang, J.; Zhang, B. Synergistic flame retardant effect of expandable graphite and phosphorus-containing compounds for epoxy resin: Strong bonding of different carbon residues. *Polym. Degrad. Stab.* 2016, 128, 89–98. [CrossRef]

67. Yang, S.; Wang, J.; Huo, S.; Wang, M.; Wang, J. Preparation and flame retardancy of a compounded epoxy resin system composed of phosphorus/nitrogen-containing active compounds. *Polym. Degrad. Stab.* 2015, 121, 398–406. [CrossRef]

68. Yang, S.; Wang, J.; Huo, S.; Wang, M.; Cheng, L. Synthesis of a phosphorus/nitrogen-containing additive with multifunctional groups and its flame-retardant effect in epoxy resin. *Ind. Eng. Chem. Res.* 2015, 54, 7777–7786. [CrossRef]
96. Li, Y.; Zheng, H.; Xu, M.; Li, B.; Lai, T. Synthesis of a novel phosphonate flame retardant and its application in epoxy resin. *Polym. Degrad. Stab.* 2016, 126, 9–16. [CrossRef]

97. Xu, W.; Wirasaputra, A.; Liu, S.; Yuan, Y.; Zhao, J. Highly effective flame retarded epoxy resin cured by DOPO-based co-curing agent. *Polym. Degrad. Stab.* 2015, 122, 44–51. [CrossRef]

98. Xu, M.-J.; Xu, G.-R.; Leng, Y.; Li, B. Synthesis of a novel flame retardant based on cyclotriphosphazene and DOPO groups and its application in epoxy resins. *Polym. Degrad. Stab.* 2016, 123, 105–114. [CrossRef]

99. Xu, M.-J.; Ma, Y.; Hou, M.-J.; Li, B. Synthesis of a cross-linked triazine phosphine polymer and its effect on fire retardancy, thermal degradation and moisture resistance of epoxy resins. *Polym. Degrad. Stab.* 2015, 119, 14–22. [CrossRef]

100. Xu, M.; Li, X.; Li, B. Synthesis of a novel cross-linked organophosphorus-nitrogen containing polymer and its application in flame retardant epoxy resins. *Fire Mater.* 2016, 40, 848–860. [CrossRef]

101. Yang, S.; Wang, J.; Huo, S.; Wang, J.; Tang, Y. Synthesis of a phosphorus/nitrogen-containing compound based on maleimide and cyclotriphosphazene and its flame-retardant mechanism on epoxy resin. *Polym. Degrad. Stab.* 2016, 126, 9–16. [CrossRef]
90. Krishnadevi, K.; Selvaraj, V. Development of halogen-free flame retardant phosphazene and rice husk ash incorporated benzoxazine blended epoxy composites for microelectronic applications. *New J. Chem.* 2015, 39, 6555–6567. [CrossRef]

91. Jia, R.; Wu, P.; Duan, W.; Wang, J.; Zheng, X.; Wang, J. Synthesis of a novel P/N/S-containing flame retardant and its application in epoxy resin: Thermal property, flame retardance, and pyrolysis behavior. *Ind. Eng. Chem. Res.* 2016, 55, 11520–11527. [CrossRef]

92. Deng, S.; Wang, J.; Yang, S.; Wang, J.; Zhang, B.; Zhang, B.; Shen, X.; Tang, Y. Synthesis of a novel phosphorus-nitrogen type flame retardant composed of maleimide, triazine-trione, and phosphaphenanthrene and its flame retardant effect on epoxy resin. *Polym. Degrad. Stab.* 2016, 131, 106–113. [CrossRef]

93. He, X.; Zhang, W.; Yi, D.; Yang, R. Flame retardancy of ammonium polyphosphate–montmorillonite nanocompounds on epoxy resin. *J. Fire Sci.* 2016, 34, 212–225. [CrossRef]

94. He, X.; Zhang, W.; Yang, R. The characterization of DOPO/MMT nanocompound and its effect on flame retardancy of epoxy resin. *Compos. Part A Appl. Sci. Manuf.* 2017, 98, 124–135. [CrossRef]

95. Fang, Y.; Qian, L.; Huang, Z. Synergistic barrier flame-retardant effect of aluminium poly-hexamethylenephosphinate and bisphenol-A bis (diphenyl phosphate) in epoxy resin. *Polym. Int.* 2017, 66, 719–725. [CrossRef]

96. Bereska, A.; Kafarski, P.; Bereska, B.; Tkacz, B.; Błowska, J.; Lenża, J. The application of organophosphorus flame-retardants in epoxy resin. *J. Vinyl Addit. Technol.* 2017, 23, 142–151. [CrossRef]

97. Jian, R.; Wang, P.; Duan, W.; Xia, L.; Zheng, X. A facile method to flame-retard epoxy resin with maintained mechanical properties through a novel P/N/S-containing flame retardant of tautomeration. *Mater. Lett.* 2017, 204, 77–80. [CrossRef]

98. Zhou, Y.; Feng, J.; Peng, H.; Qu, H.; Hao, J. Catalytic pyrolysis and flame retardancy of epoxy resins with solid acid boron phosphate. *Polym. Degrad. Stab.* 2014, 110, 395–404. [CrossRef]

99. Zhao, C.; Li, Y.; Xing, Y.; He, D.; Yue, J. Flame retardant and mechanical properties of epoxy composites containing AP– PST core− shell microspheres. *J. Appl. Polym. Sci.* 2014, 131, 40218. [CrossRef]

100. Zhang, W.; Li, X.; Yang, R. Blowing-out effect in epoxy composites flame retarded by DOPO-POSS and its correlation with amide curing agents. *Polym. Degrad. Stab.* 2012, 97, 1314–1324. [CrossRef]

101. Zhang, W.; Li, X.; Yang, R. Novel flame retardancy effects of DOPO-POSS on epoxy resins. *Polym. Degrad. Stab.* 2011, 96, 2167–2173. [CrossRef]

102. Zhang, W.; Li, X.; Li, L.; Yang, R. Study of the synergistic effect of silicon and phosphorus on the blowing-out effect of epoxy resin composites. *Polym. Degrad. Stab.* 2012, 97, 1041–1048. [CrossRef]

103. Zhang, W.; Li, X.; Jiang, Y.; Yang, R. Investigations of epoxy resins flame-retarded by phenyl silsesquioxanes of cage and ladder structures. *Polym. Degrad. Stab.* 2013, 98, 246–254. [CrossRef]

104. Zhang, W.; Li, X.; Fan, H.; Yang, R. Study on mechanism of phosphorus–silicon synergistic flame retardancy on epoxy resins. *Polym. Degrad. Stab.* 2012, 97, 2241–2248. [CrossRef]

105. Zhang, W.; He, X.; Song, T.; Jiao, Q.; Yang, R. Comparison of intumescence mechanism and blowing-out effect in flame-retarded epoxy resins. *Polym. Degrad. Stab.* 2015, 112, 43–51. [CrossRef]

106. Zhang, W.; He, X.; Song, T.; Jiao, Q.; Yang, R. The influence of the phosphorus-based flame retardant on the flame retardancy of the epoxy resins. *Polym. Degrad. Stab.* 2014, 109, 209–217. [CrossRef]

107. Tian, N.; Gong, J.; Wen, X.; Yao, K.; Tang, T. Synthesis and characterization of a novel organophosphorus oligomer and its application in improving flame retardancy of epoxy resin. *RSC Adv.* 2014, 4, 17607–17614. [CrossRef]

108. Tang, Q.; Wang, B.; Shi, Y.; Song, L.; Hu, Y. Microencapsulated ammonium polyphosphate with glycidyl methacrylate shell: Application to flame retardant epoxy resin. *Ind. Eng. Chem. Res.* 2013, 52, 5640–5647. [CrossRef]

109. Qu, H.; Wu, W.; Hao, J.; Wang, C.; Xu, J. Inorganic–organic hybrid coating-encapsulated ammonium polyphosphate and its flame retardancy and water resistance in epoxy resin. *Fire Mater.* 2014, 38, 312–322. [CrossRef]

110. Hongqiang, Q.; Weihong, W.; Jianwei, H.; Jianhong, S.; Jianzhong, X. Intumescent flame retardancy and thermal degradation of epoxy resin filled with ammonium polyphosphate using thermogravimetric analysis–fourier transform infrared spectroscopy and thermogravimetric analysis–mass spectrometry. *J. Macromol. Sci. Part B* 2014, 53, 278–295. [CrossRef]
111. Qian, L.-J.; Ye, L.-J.; Xu, G.-Z.; Liu, J.; Guo, J.-Q. The non-halogen flame retardant epoxy resin based on a novel compound with phosphaporphathrene and cyclotriophosphazene double functional groups. Polym. Degrad. Stab. 2011, 96, 1118–1124. [CrossRef]

112. Qian, L.; Qiu, Y.; Sun, N.; Xu, M.; Xu, G.; Xin, F.; Chen, Y. Pyrolysis route of a novel flame retardant constructed by phosphaporphathrene and triazine-trione groups and its flame-retardant effect on epoxy resin. Polym. Degrad. Stab. 2014, 107, 98–105. [CrossRef]

113. Perret, B.; Schartel, B.; Stöß, K.; Ciesielski, M.; Diederichs, J.; Döring, M.; Krämer, J.; Altstädt, V. Novel DOPO-based flame retardants in high-performance carbon fibre epoxy composites for aviation. Eur. Polym. J. 2011, 47, 1081–1089. [CrossRef]

114. Lv, Q.; Huang, J.-Q.; Chen, M.-J.; Zhao, J.; Tan, Y.; Chen, L.; Wang, Y.-Z. An effective flame retardant and smoke suppression oligomer for epoxy resin. Ind. Eng. Chem. Res. 2013, 52, 9397–9404. [CrossRef]

115. Li, Z.; Yang, R. Study of the synergistic effect of polyhedral oligomeric octa diphenylsulfonyl)ilsesquioxane and 9, 10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide on flame-retarded epoxy resins. Polym. Degrad. Stab. 2009, 94, 625–631. [CrossRef]

116. Li, C.; Wan, J.; Kalali, E.; Fan, H.; Wang, D.-Y. Synthesis and characterization of functional eugenol derivative based layered double hydroxide and its use as a nano flame retardant in epoxy resin. J. Mater. Chem. A 2015, 3, 3471–3479. [CrossRef]

117. Wang, J.-S.; Liu, Y.; Zhao, H.-B.; Liu, J.; Wang, D.-Y.; Song, Y.-P.; Wang, Y.-Z. Metal compound-enhanced flame retardancy of intumescent epoxy resins containing ammonium polyphosphate. Polym. Degrad. Stab. 2009, 94, 625–631. [CrossRef]

118. Guo, W.; Wang, X.; Gangireddy, C.S.R.; Wang, J.; Pan, Y.; Xing, W.; Song, L.; Hu, Y. Cardanol derived benzoxazine in combination with boron-doped graphene toward simultaneously improved toughening and flame retardant epoxy composites. Compos. Part A Appl. Sci. Manuf. 2019, 116, 13–23. [CrossRef]

119. Chen, R.; Hu, K.; Tang, H.; Wang, J.; Zhu, F.; Zhou, H. A novel flame retardant derived from DOPO and piperazine and its application in epoxy resin: Flame retardance, thermal stability and pyrolysis behavior. Polym. Degrad. Stab. 2019, 166, 334–343. [CrossRef]

120. Rajaei, M.; Kim, N.; Bickerton, S.; Bhattacharyya, D. A comparative study on effects of natural and synthesised nano-clays on the fire and mechanical properties of epoxy composites. Compos. Part B Eng. 2019, 165, 65–74. [CrossRef]

121. Yu, B.; Shi, Y.; Yuan, B.; Qiu, S.; Xing, W.; Hu, W.; Song, L.; Lo, S.; Hu, Y. Enhanced thermal and flame retardant properties of flame-retardant-wrapped graphene/epoxy resin nanocomposites. J. Mater. Chem. A 2015, 3, 8034–8044. [CrossRef]

122. Zhao, W.; Li, Y.; Li, Q.; Wang, Y.; Wang, G. Investigation of the structure-property effect of phosphorus-containing polysulfone on decomposition and flame retardant epoxy resin composites. Polymers 2019, 11, 380. [CrossRef] [PubMed]

123. Xiao, F.; Wu, K.; Luo, F.; Yao, S.; Lv, M.; Zou, H.; Lu, M. Influence of ionic liquid-based metal–organic hybrid on thermal degradation, flame retardancy, and smoke suppression properties of epoxy resin composites. J. Mater. Sci. 2018, 53, 10135–10146. [CrossRef]

124. Schmidt, C.; Ciesielski, M.; Greiner, L.; Döring, M. Novel organophosphorus flame retardants and their synergistic application in novolac epoxy resin. Polym. Degrad. Stab. 2018, 158, 190–201. [CrossRef]

125. Liu, H.; Wu, W.; He, S.; Song, Q.; Li, W.; Zhang, J.; Qu, H.; Xu, J. Activated carbon spheres (ACS)@SnO2@NiO with a 3D nanospherical structure and its synergistic effect with AHP on improving the flame retardancy of epoxy resin. Polym. Adv. Technol. 2019, 30, 951–962. [CrossRef]

126. Rajaei, M.; Wang, D.-Y.; Bhattacharyya, D. Combined effects of ammonium polyphosphate and talc on the fire and mechanical properties of epoxy/glass fabric composites. Compos. Part B Eng. 2017, 113, 381–390. [CrossRef]

127. Müller, P.; Schartel, B. Melamine poly (metal phosphates) as flame retardant in epoxy resin: Performance, modes of action, and synergy. J. Appl. Polym. Sci. 2016, 133, 43549. [CrossRef]

128. Pan, M.; Huang, R.; Wang, T.; Huang, D.; Mu, J.; Zhang, C. Preparation and properties of epoxy resin composites containing hexaphenoxyoctaphosphazene. High Perform. Polym. 2014, 26, 114–121. [CrossRef]

129. Pan, M.; Zhang, C.; Zhai, X.; Qu, L.; Mu, J. Effect of hexaphenoxyoctaphosphazene combined with octapropylglycidylether polyhedral oligomeric silsesquioxane on thermal stability and flame retardance of epoxy resin. High Perform. Polym. 2014, 26, 744–752. [CrossRef]
130. Wu, G.M.; Schartel, B.; Kleemeier, M.; Hartwig, A. Flammability of layered silicate epoxy nanocomposites combined with low-melting inorganic ceepeo glass. Polym. Eng. Sci. 2012, 52, 507–517. [CrossRef]

131. Täuber, K.; Marsico, F.; Wurm, F.R.; Schartel, B. Hyperbranched poly (phosphoester) s as flame retardants for technical and high performance polymers. Polym. Chem. 2014, 5, 7042–7053. [CrossRef]

132. Ma, T.; Li, L.; Liu, T.; Guo, C. Synthesis of a caged bicyclic phosphates derived anhydride and its performance as a flame-retardant curing agent for epoxy resins. Polym. Adv. Technol. 2019, 30, 1314–1324. [CrossRef]

133. Zhang, C.; Guo, X.; Ma, S.; Liu, X.; Xu, J.; Ma, H. Synthesis of an organic-inorganic hybrid strontrium hydroxystannate nanorod and application as novel flame retardant. Mater. Lett. 2018, 229, 297–300. [CrossRef]

134. Guo, X.; Wang, X.; Liu, X.; Zheng, Y.; Xu, J.; Ma, H. Synthesis and application of a dual functional P/N/S-containing microsphere with enhanced flame retardancy and mechanical strength on EP resin. Polym. Adv. Technol. 2018, 29, 2665–2673. [CrossRef]

135. Li, Y.-Y.; Wang, Y.-L.; Yang, X.-M.; Liu, X.; Yang, Y.-G.; Hao, J.-W. Acidity regulation of boron phosphate flame retardant and its catalyzing carbonization mechanism in epoxy resin. J. Therm. Anal. Calorim. 2017, 129, 1481–1494. [CrossRef]

136. Song, S.; Ma, J.; Cao, K.; Chang, G.; Huang, Y.; Yang, J. Synthesis of a novel dicyclic silicon-phosphorus hybrid and its performance on flame retardancy of epoxy resin. Polym. Degrad. Stab. 2014, 99, 43–52. [CrossRef]

137. Jiajun, M.; Junxiao, Y.; Yawen, H.; Ke, C. Aluminum–organophosphorus hybrid nanorods for simultaneously enhancing the flame retardancy and mechanical properties of epoxy resin. J. Mater. Chem. 2012, 22, 2007–2017. [CrossRef]

138. Jiang, S.; Shi, Y.; Qian, X.; Zhou, K.; Xu, H.; Lo, S.; Gui, Z.; Hu, Y. Synthesis of a novel phosphorus-and nitrogen-containing acrylate and its performance as an intumescent flame retardant for epoxy acrylate. Ind. Eng. Chem. Res. 2013, 52, 17442–17450. [CrossRef]

139. Yuan, L.; Feng, S.; Hu, Y.; Fan, Y. Effect of char sulfonic acid and ammonium polyphosphate on flame retardancy and thermal properties of epoxy resin and polyamide composites. J. Fire Sci. 2017, 35, 521–534. [CrossRef]

140. Zhou, X.; Qiu, S.; Xing, W.; Gangireddy, C.S.R.; Gui, Z.; Hu, Y. Hierarchical polyphosphazene@molybdenum disulfide hybrid structure for enhancing the flame retardancy and mechanical property of epoxy resins. ACS Appl. Mater. Interfaces 2017, 9, 29147–29156. [CrossRef]

141. Shan, X.; Jiang, K.; Li, J.; Song, Y.; Han, J.; Hu, Y. Preparation of β-cyclodextrin inclusion complex and its application as an intumescent flame retardant for epoxy. Polymers 2019, 11, 71. [CrossRef] [PubMed]

142. Qiu, S.; Zhou, Y.; Zhou, X.; Zhang, T.; Wang, C.; Yuen, R.K.; Hu, W.; Hu, Y. Air-stable polyphosphazene-functionalized faw-layer black phosphorene for flame retardancy of epoxy resins. Small 2019, 15, 1805175. [CrossRef] [PubMed]

143. Huang, Z.; Wang, D.; Zhu, Y.; Zeng, W.; Hu, Y. The influence of mesoporous silica modified with phosphorus and nitrogen-containing hyperbranched molecules on thermal stability, combustion behavior, and toxic volatiles of epoxy resin. Polym. Adv. Technol. 2018, 29, 372–383. [CrossRef]

144. Hou, Y.; Hu, W.; Gui, Z.; Hu, Y. A novel Co (II)–based metal-organic framework with phosphorus-containing structure: Build for enhancing fire safety of epoxy. Compos. Sci. Technol. 2017, 152, 231–242. [CrossRef]

145. Fu, X.-L.; Wang, X.; Xing, W.; Zhang, P.; Song, L.; Hu, Y. Two-dimensional cardanol-derived zirconium phosphate hybrid as flame retardant and smoke suppressor for epoxy resin. Polym. Degrad. Stab. 2018, 151, 172–180. [CrossRef]

146. Zheng, T.; Ni, X. Loading an organophosphorous flame retardant into halloysite nanotubes for modifying UV-curable epoxy resin. RSC Adv. 2016, 6, 57122–57130. [CrossRef]

147. Sut, A.; Greiser, S.; Jäger, C.; Schartel, B. Synergy in flame-retarded epoxy resin: Identification of chemical interactions by solid-state NMR. J. Therm. Anal. Calorim. 2016, 128, 141–153. [CrossRef]

148. Qiu, S.; Xing, W.; Feng, X.; Yu, B.; Mu, X.; Yuen, R.K.; Hu, Y. Self-standing cuprous oxide nanoparticles on silica@polyphosphazene nanospheres: 3D nanostructure for enhancing the flame retardancy and toxic effluents elimination of epoxy resins via synergistic catalytic effect. Chem. Eng. J. 2017, 309, 802–814. [CrossRef]
169. Zhang, T.; Liu, W.; Wang, M.; Liu, P.; Pan, Y.; Liu, D. Synthesis of a boron/nitrogen-containing compound based on triazine and boronic acid and its flame retardant effect on epoxy resin. High Perform. Polym. 2017, 29, 513–523. [CrossRef]

170. Li, A.; Xu, W.; Chen, R.; Liu, Y.; Li, W. Fabrication of zeolitic imidazolate frameworks on layered double hydroxide nanosheets to improve the fire safety of epoxy resin. Compos. Part A Appl. Sci. Manuf. 2018, 112, 558–571. [CrossRef]

171. Chen, S.; Ai, L.; Zhang, T.; Liu, P.; Liu, W.; Pan, Y.; Liu, D. Synthesis and application of a triazine derivative containing boron as flame retardant in epoxy resins. Arab. J. Chem. 2018. [CrossRef]

172. Li, Z.; Liu, L.; González, A.J.; Wang, D.-Y. Bioinspired polydopamine-induced assembly of ultrafine Fe (OH) 3 nanoparticles on halloysite toward highly efficient fire retardancy of epoxy resin via an action of interfacial catalysis. Polym. Chem. 2017, 8, 3926–3936. [CrossRef]

173. Unlu, S.M.; Dogan, S.D.; Dogan, M. Comparative study of boron compounds and aluminum trihydroxide as flame retardant additives in epoxy resin. Polym. Adv. Technol. 2014, 25, 769–776. [CrossRef]

174. Wu, K.; Kandola, B.K.; Kandare, E.; Hu, Y. Flame retardant effect of polyhedral oligomeric silsesquioxane and triglycidyl isocyanurate on glass fibre-reinforced epoxy composites. Polym. Compos. 2011, 32, 378–389. [CrossRef]

175. Xu, W.; Wang, G.; Liu, Y.; Chen, R.; Li, W. Zeolitic imidazolate framework-8 was coated with silica and investigated as a flame retardant to improve the flame retardancy and smoke suppression of epoxy resin. RSC Adv. 2018, 8, 2575–2585. [CrossRef]

176. Li, A.; Xu, W.; Wang, G.; Wang, X. Novel strategy for molybdenum disulfide nanosheets grown on titanate nanotubes for enhancing the flame retardancy and smoke suppression of epoxy resin. J. Appl. Polym. Sci. 2018, 135, 46064. [CrossRef]

177. Liu, Y.; Kong, Q.H.; Zhao, X.M.; Zhu, P.; Zhao, J.; Esteban-Cubillo, A.; Santarén, J.; Wang, D.Y. Effect of Fe3O4-doped sepiolite on the flammability and thermal degradation properties of epoxy composites. Polym. Adv. Technol. 2017, 28, 971–978. [CrossRef]

178. Liu, Y.; Babu, H.V.; Zhao, J.; Goñi-Urtiaga, A.; Sainz, R.; Ferritto, R.; Pita, M.; Wang, D.-Y. Effect of Cu-doped graphene on the flammability and thermal properties of epoxy composites. Compos. Part B Eng. 2016, 89, 108–116. [CrossRef]

179. Wang, W.; Kan, Y.; Liew, K.M.; Song, L.; Hu, Y. Comparative investigation on combustion property and smoke toxicity of epoxy resin filled with α-and δ-MnO2 nanosheets. Compos. Part A Appl. Sci. Manuf. 2018, 107, 39–46. [CrossRef]

180. Sharma, A.K.; Sloan, R.; Ramakrishnan, R.; Nazarenko, S.I.; Wiggins, J.S. Structure-property relationships in epoxy hybrid networks based on high mass fraction pendant POSS incorporated at molecular level. Polymer 2018, 139, 201–212. [CrossRef]

181. Saeb, M.; Vahabi, H.; Jouyandeh, M.; Movahedifar, E.; Khalili, R. Epoxy-based flame retardant nanocomposite coatings: Comparison between functions of expandable graphite and halloysite nanotubes. Prog. Color Coatings Coat. 2017, 10, 245–252.

182. Pawelski, C.; Kang, E.; Bakis, G.; Altstädt, V. Effect of filler type and particle size distribution on thermal properties of bimodal and hybrid–BN/Boehmite-filled EP-Novolac composites. AIP Conference Proceedings 2019, 2055, 050007. [CrossRef]

183. Liu, L.; Wang, W.; Shi, Y.; Fu, L.; Xu, L.; Yu, B. Electrostatic-interaction-driven assembly of binary hybrids towards fire-safe epoxy resin nanocomposites. Polymers 2019, 11, 229. [CrossRef] [PubMed]

184. Li, X.; Feng, Y.; Chen, C.; Ye, Y.; Zeng, H.; Qu, H.; Liu, J.; Zhou, X.; Long, S.; Xie, X. Highly thermally conductive flame retardant epoxy nanocomposites with multifunctional ionic liquid flame retardant-functionalized boron nitride nanosheets. J. Mater. Chem. A 2018, 6, 20500–20512. [CrossRef]

185. Chai, G.-q.; Wang, Z.; Zhang, X. Study of the flame retardant properties of short carbon fiber–reinforced epoxy composites. High Perform. Polym. 2018, 30, 1027–1035. [CrossRef]

186. Zabihi, O.; Ahmadi, M.; Khayyam, H.; Naebe, M. Fish DNA-modified clays: Towards highly flame retardant polymer nanocomposite with improved interfacial and mechanical performance. Sci. Rep. 2016, 6, 38194. [CrossRef]

187. Wang, W.; Pan, H.; Shi, Y.; Pan, Y.; Yang, W.; Liew, K.; Song, L.; Hu, Y. Fabrication of LDH nanosheets on β-FeOOH rods and applications for improving the fire safety of epoxy resin. Compos. Part A Appl. Sci. Manuf. 2016, 80, 259–269. [CrossRef]
188. Wang, W.; Kan, Y.; Pan, Y.; Yuan, Y.; Liew, K.M.; Hu, Y. Urchinlike shells of TiO2 hollow spheres for improving the fire safety of epoxy resin. Ind. Eng. Chem. Res. 2017, 56, 1341–1348. [CrossRef]

189. Wang, D.; Song, L.; Zhou, K.; Yu, X.; Hu, Y.; Wang, J. Anomalous nano-barrier effects of ultrathin molybdenum disulfide nanosheets for improving the flame retardancy of polymer nanocomposites. J. Mater. Chem. A 2015, 3, 13407–13417. [CrossRef]

190. Laachachi, A.; Burger, N.; Apaydin, K.; Sonnier, R.; Ferriol, M. Is expanded graphite acting as flame retardant in epoxy resin? Polym. Degrad. Stab. 2015, 117, 22–29. [CrossRef]

191. Benelli, T.; Mazzocchetti, L.; D’Angelo, E.; Lanzi, M.; Saraga, F.; Sambri, L.; Franchini, M.C.; Giorgini, L. New nitrogen-rich heterocycles for organo-modified bentonites as flame retardant fillers in epoxy resin nanocomposites. Polym. Eng. Sci. 2017, 57, 621–630. [CrossRef]

192. Benelli, T.; D’Angelo, E.; Mazzocchetti, L.; Saraga, F.; Sambri, L.; Franchini, M.C.; Giorgini, L. Organo-modified bentonites as new flame retardant fillers in epoxy resin nanocomposites. Aip Conf. Proc. 2016, 1736, 020142. [CrossRef]

193. Wang, D.; Song, L.; Zhou, K.; Yang, W.; Xing, W.; Hu, Y.; Gong, X. Surface modification of graphene with layered silica@ Co–Al layered double hydroxide spheres: Layer-by-layer method and their effects on the flame retardancy of epoxy resins. ACS Appl. Mater. Interfaces 2014, 6, 14076–14086. [CrossRef]

194. Jiang, S.-D.; Bai, Z.-M.; Tang, G.; Song, L.; Stec, A.A.; Hull, T.R.; Zhan, J.; Hu, Y. Fabrication of Ce-doped MnO 2 decorated graphene sheets for fire safety applications of epoxy composites: Flame retardancy, smoke suppression and mechanism. J. Mater. Chem. A 2014, 2, 17341–17351. [CrossRef]

195. Mariappan, T.; Yi, D.; Chakraborty, A.; Singha, N.K.; Wilkie, C.A. Thermal stability and fire retardancy of polyurea and epoxy nanocomposites using organically modified magadiite. J. Fire Sci. 2014, 32, 346–361. [CrossRef]

196. Jiang, S.-D.; Bai, Z.-M.; Tang, G.; Song, L.; Stec, A.A.; Hull, T.R.; Hu, Y. Fabrication of Ce-doped MnO 2 decorated graphene sheets for fire safety applications of epoxy composites: Flame retardancy, smoke suppression and mechanism. J. Mater. Chem. A 2014, 2, 17341–17351. [CrossRef]

197. Wang, D.; Zhou, K.; Yu, X.; Hu, Y.; Song, L. Synthesis of ZnS decorated graphene sheets for reducing fire hazards of epoxy composites. Ind. Eng. Chem. Res. 2014, 53, 6708–6717. [CrossRef]

198. Wladyka-Przybylak, M.; Wesolek, D.; Gieparda, W.; Boczkowska, A.; Ciecierska, E. Functionalization effect on physico-mechanical properties of multi-walled carbon nanotubes/epoxy composites. Polym. Adv. Technol. 2011, 22, 48–59. [CrossRef]

199. Wang, Z.; Tang, X.-Z.; Yu, Z.-Z.; Guo, P.; Song, H.-H.; Duc, X.-S. Dispersion of graphene oxide and its flame retardancy effect on epoxy nanocomposites. Chin. J. Polym. Sci. 2011, 29, 368–376. [CrossRef]

200. Wladyka-Przybylak, M.; Wesolek, D.; Gieparda, W.; Boczkowska, A.; Ciecierska, E. Functionalization effect on physico-mechanical properties of multi-walled carbon nanotubes/epoxy composites. Polym. Adv. Technol. 2011, 22, 48–59. [CrossRef]

201. Wang, D.; Zhou, K.; Yang, W.; Xing, W.; Hu, Y.; Gong, X. Surface modification of graphene with layered molybdenum disulfide and their synergistic reinforcement on reducing fire hazards of epoxy resins. Ind. Eng. Chem. Res. 2013, 52, 17882–17890. [CrossRef]

202. Yu, B.; Xing, W.; Guo, W.; Qiu, S.; Wang, X.; Lo, S.; Hu, Y. Thermal exfoliation of hexagonal boron nitride for effective enhancements on thermal stability, flame retardancy and smoke suppression of epoxy resin nanocomposites via sol–gel process. J. Mater. Chem. A 2016, 4, 7330–7340. [CrossRef]

203. Ngo, T.; Nguyen, Q.; Nguyen, T.; Tran, P. Effect of nanoclay on thermomechanical properties of epoxy/glass fibre composites. Arab. J. Sci. Eng. 2016, 41, 1251–1261. [CrossRef]

204. Eibl, S. Potential for the formation of respirable fibers in carbon fiber reinforced plastic materials after combustion. Fire Mater. 2017, 41, 808–816. [CrossRef]

205. Wu, Q.; Zhu, W.; Zhang, C.; Liang, Z.; Wang, B. Study of fire retardant behavior of carbon nanotube membranes and carbon nanofiber paper in carbon fiber reinforced epoxy composites. Carbon 2010, 48, 1799–1806. [CrossRef]
207. Wu, Q.; Bao, J.; Zhang, C.; Liang, R.; Wang, B. The effect of thermal stability of carbon nanotubes on the flame retardancy of epoxy and bismaleimide/carbon fiber/buckypaper composites. *J. Therm. Anal. Calorim.* 2010, 103, 237–242. [CrossRef]

208. Xu, Z.; Chu, Z.; Yan, L.; Chen, H.; Jia, H.; Tang, W. Effect of chicken eggshell on the flame-retardant and smoke suppression properties of an epoxy-based traditional APP-PER-MEL system. *Polym. Compos.* 2019, 40, 2712–2723. [CrossRef]

209. Peng, H.; Zhang, S.; Yin, Y.; Jiang, S.; Mo, W. Fabrication of C-6 position carboxyl regenerated cotton cellulose by H2O2 and its promotion in flame retardancy of epoxy resin. *Polym. Degrad. Stab.* 2017, 142, 150–159. [CrossRef]

210. Ma, T.; Li, L.; Wang, Q.; Guo, C. High-performance flame retarded paraffin/epoxy resin form-stable phase change material. *J. Mater. Sci.* 2019, 54, 875–885. [CrossRef]

211. Zhuo, J.; Xie, L.; Liu, G.; Chen, X.; Wang, Y. The synergistic effect of hollow glass microsphere in intumescent flame-retardant epoxy resin. *J. Therm. Anal. Calorim.* 2017, 129, 357–366. [CrossRef]

212. Zhang, S.; Liu, F.; Peng, H.; Peng, X.; Jiang, S.; Wang, J. Preparation of novel C-6 position carboxyl corn starch by a green method and its application in flame retardance of epoxy resin. *Ind. Eng. Chem. Res.* 2015, 54, 11944–11952. [CrossRef]

213. Lu, L.; Qian, X.; Zeng, Z.; Yang, S.; Shao, G.; Wang, H.; Jin, J.; Xu, X. Novel phosphorus-based flame retardants containing 4-tert-butylicalix [4] arene: Preparation and application for the fire safety of epoxy resins. *J. Appl. Polym. Sci.* 2017, 134, 45105. [CrossRef]

214. Gao, M.; Sun, Y. Flame retardancy and thermal degradation behaviors of epoxy resins containing bisphenol a bis (diphenyl phosphate) oligomer. *Polym. Eng. Sci.* 2015, 53, 1125–1130. [CrossRef]

215. Zheng, T.; Ni, X. Loading the polyol carbonization agent into clay nanotubes for the preparation of environmentally stable UV-cured epoxy materials. *J. Appl. Polym. Sci.* 2017, 134, 45045. [CrossRef]

216. Liu, L.; Chen, X.; Jiao, C. Influence of ferric phosphate on smoke suppression properties and combustion behavior of intumescent flame retardant epoxy composites. *Iran. Polym. J.* 2015, 24, 337–347. [CrossRef]

217. Chen, X.; Liu, L.; Jiao, C.; Qian, Y.; Li, S. Influence of ferrite yellow on combustion and smoke suppression properties in intumescent flame-retardant epoxy composites. *High Perform. Polym.* 2015, 27, 412–425. [CrossRef]

218. Chen, X.; Liu, L.; Jiao, C. Influence of iron oxide brown on smoke-suppression properties and combustion behavior of intumescent flame-retardant epoxy composites. *Adv. Polym. Technol.* 2015, 34, 21516. [CrossRef]

219. Chen, X.; Liu, L.; Zhuo, J.; Jiao, C.; Qian, Y. Influence of organic-modified iron–montmorillonite on smoke-suppression properties and combustion behavior of intumescent flame-retardant epoxy composites. *High Perform. Polym.* 2015, 27, 233–246. [CrossRef]

220. Morgan, A.B.; Galaska, M. Microcombustion calorimetry as a tool for screening flame retardancy in epoxy. *Polym. Adv. Technol.* 2008, 19, 530–546. [CrossRef]

221. Kandare, E.; Kandola, B.K.; Myler, P.; Edwards, G. Thermo-mechanical responses of fiber-reinforced epoxy composites exposed to high temperature environments. Part I: Experimental data acquisition. *J. Compos. Mater.* 2010, 44, 3093–3114. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).