PDGFRA gene
platelet derived growth factor receptor alpha

Normal Function

The *PDGFRA* gene provides instructions for making a protein called platelet-derived growth factor receptor alpha (PDGFRA), which is part of a family of proteins called receptor tyrosine kinases (RTKs). Receptor tyrosine kinases transmit signals from the cell surface into the cell through a process called signal transduction. The PDGFRA protein is found in the cell membrane of certain cell types where a specific protein, called platelet-derived growth factor, attaches (binds) to it. This binding turns on (activates) the PDGFRA protein, which then activates other proteins inside the cell by adding a cluster of oxygen and phosphorus atoms (a phosphate group) at specific positions (a process called phosphorylation). This process leads to the activation of a series of proteins in multiple signaling pathways.

The signaling pathways stimulated by the PDGFRA protein control many important cellular processes such as cell growth and division (proliferation) and cell survival. PDGFRA protein signaling is important for the development of many types of cells throughout the body.

Health Conditions Related to Genetic Changes

**PDGFRA-associated chronic eosinophilic leukemia**

Genetic abnormalities that involve the *PDGFRA* gene cause a type of blood cell cancer called *PDGFRA*-associated chronic eosinophilic leukemia. This condition is characterized by an increased number of eosinophils, a type of white blood cell involved in allergic reactions. These genetic abnormalities are somatic mutations, which are mutations acquired during a person's lifetime that are present only in certain cells. The most common of these genetic abnormalities is a deletion of genetic material from chromosome 4 that brings together parts of two genes, *FIP1L1* and *PDGFRA*, creating the *FIP1L1-PDGFRA* fusion gene. Occasionally, genes other than *FIP1L1* are fused with the *PDGFRA* gene. Mutations that change single DNA building blocks in the *PDGFRA* gene (point mutations) can also cause this condition, although these mutations are seen very rarely.

The protein produced from the *FIP1L1-PDGFRA* fusion gene (as well as other *PDGFRA* fusion genes) has the function of the PDGFRA protein. However, unlike the normal PDGFRA protein, the fusion protein does not require binding of the platelet-derived growth factor protein to be activated. Similarly, point mutations in the *PDGFRA* gene can result in a PDGFRA protein that is activated without ligand binding. As a result, the signaling pathways are constantly turned on (constitutively
activated), which increases the proliferation and survival of cells. When the \textit{FIP1L1-PDGFRA} fusion gene mutation or point mutations in the \textit{PDGFRA} gene occur in early blood cells, the growth of eosinophils (and occasionally other blood cells) is poorly controlled, leading to \textit{PDGFRA}-associated chronic eosinophilic leukemia. It is unclear why eosinophils are preferentially affected by this genetic change.

**Gastrointestinal stromal tumor**

Mutations in the \textit{PDGFRA} gene are associated with gastrointestinal stromal tumors (GISTs). GISTs are a type of tumor that occurs in the gastrointestinal tract, most commonly in the stomach or small intestine. The majority of GISTs associated with a mutation in the \textit{PDGFRA} gene occur in the stomach. In most cases, the genetic changes are acquired during a person's lifetime and are called somatic mutations. Somatic mutations, which lead to sporadic GISTs, are present only in the tumor cells and are not inherited. Less commonly, \textit{PDGFRA} gene mutations that increase the risk of developing GISTs are inherited from a parent, which can lead to familial GISTs.

\textit{PDGFRA} gene mutations associated with GISTs create a protein that no longer requires binding of the platelet-derived growth factor protein to be activated. As a result, the PDGFRA protein and the signaling pathways are constitutively activated, which increases cell proliferation and survival, leading to tumor formation.

**Other disorders**

\textit{PDGFRA} gene mutations that lead to a constitutively active PDGFRA protein are also associated with inflammatory fibroid polyps, which are small, noncancerous (benign) tumors that form in the gastrointestinal tract. These tumors are made up of fibrous tissue and usually contain cells known to cause inflammation (inflammatory cells). As in GISTs, the constitutively active PDGFRA protein leads to the overgrowth of cells and formation of tumors.

**Chromosomal Location**

Cytogenetic Location: 4q12, which is the long (q) arm of chromosome 4 at position 12

Molecular Location: base pairs 54,229,127 to 54,298,247 on chromosome 4 (\textit{Homo sapiens Updated Annotation Release 109.20200522, GRCh38.p13}) (NCBI)

Credit: Genome Decoration Page/NCBI
Other Names for This Gene

- CD140 antigen-like family member A
- CD140A
- CD140a antigen
- GAS9
- PDGFR-alpha
- PDGFR2
- PGFRA_HUMAN
- platelet-derived growth factor receptor 2
- platelet-derived growth factor receptor alpha
- platelet-derived growth factor receptor, alpha polypeptide

Additional Information & Resources

Educational Resources

- Developmental Biology (sixth edition, 2000): The RTK Pathway
  https://www.ncbi.nlm.nih.gov/books/NBK10043/#A1053

Scientific Articles on PubMed

- PubMed
  https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28PDGFRA%5BTI%5D%29+OR+%28platelet-derived+growth+factor+receptor+alpha%5BTI%5D%29+AND+%28Genes%5BMH%5D+OR+Genetic+Phenomena%5BMH%5D+OR+human%5Bmh%5D +%22last+720+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

- PLATELET-DERIVED GROWTH FACTOR RECEPTOR, ALPHA
  http://omim.org/entry/173490

Research Resources

- Atlas of Genetics and Cytogenetics in Oncology and Haematology
  http://atlasgeneticsoncology.org/Genes/PDGFRAILD143ch4q12.html
- ClinVar
  https://www.ncbi.nlm.nih.gov/clinvar?term=PDGFRA%5Bgene%5D
- HGNC Gene Symbol Report
  https://www.genenames.org/data/gene-symbol-report/#/hgnc_id/HGNC:8803
- Monarch Initiative
  https://monarchinitiative.org/gene/NCBIGene:5156
Sources for This Summary

- Bain BJ. Relationship between idiopathic hypereosinophilic syndrome, eosinophilic leukemia, and systemic mastocytosis. Am J Hematol. 2004 Sep;77(1):82-5. Review. 
  Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15307112
- Buitenhuis M, Verhagen LP, Cools J, Coffer PJ. Molecular mechanisms underlying FIP1L1-PDGFRα-mediated myeloproliferation. Cancer Res. 2007 Apr 15;67(8):3759-66. 
  Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17440089
- Cools J, DeAngelo DJ, Gotlib J, Stover EH, Legare RD, Cortes J, Kutok J, Clark J, Galinsky I, Griffin JD, Cross NC, Tefferi A, Malone J, Alam R, Schrier SL, Schmid J, Rose M, Vandenbergh P, Verhoef G, Boogaerts M, Wlodarska I, Kantarjian H, Marynen P, Coutre SE, Stone R, Gilliland DG. A tyrosine kinase created by fusion of the PDGFRα and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med. 2003 Mar 27;348(13):1201-14. 
  Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12660384
- Elling C, Erben P, Walz C, Frickenhaus M, Schemionek M, Stehling M, Serve H, Cross NC, Hochhaus A, Hofmann WK, Berdel WE, Müller-Tidow C, Reiter A, Koschmieder S. Novel imatinib-sensitive PDGFRα-activating point mutations in hypereosinophilic syndrome induce growth factor independence and leukemia-like disease. Blood. 2011 Mar 10;117(10):2935-43. doi: 10.1182/blood-2010-05-286757. Epub 2011 Jan 11. 
  Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21224473
- Fukushima K, Matsumura I, Ezoe S, Tokunaga M, Yasumi M, Satoh Y, Shibayama H, Tanaka H, Iwama A, Kanakura Y. FIP1L1-PDGFRα imposes eosinophil lineage commitment on hematopoietic stem/progenitor cells. J Biol Chem. 2009 Mar 20;284(12):7719-32. doi: 10.1074/jbc.M807489200. Epub 2009 Jan 14. 
  Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19147501
  Free article on Pubmed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658066/
- Heinrich MC, Corless CL, Duensing A, McGreevey L, Chen CJ, Joseph N, Singer S, Griffith DJ, Haley A, Town A, Demetri GD, Fletcher CD, Fletcher JA. PDGFRα activating mutations in gastrointestinal stromal tumors. Science. 2003 Jan 31;299(5607):708-10. Epub 2003 Jan 9. 
  Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12522257
- Hirota S, Ohashi A, Nishida T, Isozaki K, Kinoshita K, Shinomura Y, Kitamura Y. Gain-of-function mutations of platelet-derived growth factor receptor alpha gene in gastrointestinal stromal tumors. Gastroenterology. 2003 Sep;125(3):660-7. 
  Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12949711
- Lasota J, Wang ZF, Sobin LH, Miettinen M. Gain-of-function PDGFRα mutations, earlier reported in gastrointestinal stromal tumors, are common in small intestinal inflammatory fibroid polyps. A study of 60 cases. Mod Pathol. 2009 Aug;22(8):1049-56. doi: 10.1038/modpathol.2009.62. Epub 2009 May 15. 
  Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19448595
- OMIM: PLATELET-DERIVED GROWTH FACTOR RECEPTOR, ALPHA 
  http://omim.org/entry/173490
• Roufosse FE, Goldman M, Cogan E. Hypereosinophilic syndromes. Orphanet J Rare Dis. 2007 Sep 11;2:37. Review.
  Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17848188
  Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2045078/

• Schildhaus HU, Cavlar T, Binot E, Büttner R, Wardelmann E, Merkelbach-Bruse S. Inflammatory fibroid polyps harbour mutations in the platelet-derived growth factor receptor alpha (PDGFRA) gene. J Pathol. 2008 Oct;216(2):176-82. doi: 10.1002/path.2393.
  Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18686281

Reprinted from Genetics Home Reference:
  https://ghr.nlm.nih.gov/gene/PDGFRA

Reviewed: September 2014
Published: August 17, 2020

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services