Title	Ectopic expression of O antigen in Bordetella pertussis by a novel genomic integration system
Author(s)	石垣，佳祐
Citation	
Issue Date	
Text Version	none
URL	http://hdl.handle.net/11094/69454
DOI	
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/repo/ouka/all/

Osaka University
論文審査の結果の要旨及び担当者

(申請者氏名) 石垣 佳祐

論文審査担当者	職	氏名
主 委	大阪大学教授	田口 安
副 委	大阪大学教授	藤原 薫
副 委	人院大学教授	古川 東雄

論文審査の結果の要旨

ポルデテラ属の病原細菌である百日咳菌と気管支敗血症菌は、前者がヒトののみを宿主としするのに対し、後者は様々な動物に呼吸器感染症を引き起こす。このように感染症の病状が大きく異なる二種類であるが、遺伝学的に近縁で既知の病原因子の多くを共有しているため、どのような因子が宿主特異性の違いを決定するのかは全く明らかにされていない。過去の比較ゲノム解析の結果から、現在の百日咳菌は気管支敗血症菌に近い祖先から発生したの欠失や転位を経て進化してきた可能性が示唆されている。そこで本論文では、気管支敗血症菌の遺伝子の導入により百日咳菌の宿主域を拡大できるのではないかと考え、研究の初段階として病菌人工染色体とファージの組換え機構を組み合わせた新規ゲノム補補システムを開発した。システムは、最大約50 kbpの気管支敗血症菌の染色体ゲノム断片の百日咳菌への導入が可能である。百日咳菌が進化的過程で欠失した、6抗原発現に関わるwbb遺伝子領域（約32 kbp）をこのシステムによって導入したところ、6抗原発現をさせた菌の作成に成功した。作成した6抗原発現百日咳菌の性状解析の結果、6抗原が気管支敗血症菌の病態を規定する因子の一つである可能性が示唆された。またこのシステムは、今後ポルデテラ属菌の宿主特異性関連因子をスクリーニングする上で有用なツールとなり得る。以上の結果を踏まえ、本論文は学位の授業に供すると考えられる。
論文内容の要旨

Synopsis of Thesis

氏名 Name
石垣 佳祐

論文題名 Title
Ectopic expression of O antigen in Bordetella pertussis by a novel genomic integration system（新規ゲノム相補システムを用いたO抗原発現白日咳菌の作出と解析）

論文内容の要旨

目的（Purpose）

ボルデテラ属の病原細菌である白日咳菌と気管支敗血症菌は、白日咳菌がトモを宿主として自発的に引き起こす一方で、気管支敗血症菌は様々な動物ににおける呼吸器感染症の原因となる。その感染菌株特異性が明らかに異なることが知られている。これらにこの2つの機能的、形質的に相違を生じるため、発酵種の病原子の多くを共有している。現在までこのような宿主特異性の違いを規定する因子は明らかになっていない。過去の比較ゲノム解析の結果、現在の白日咳菌は、気管支敗血症菌に比べたプラ 종が遺伝子の欠失や転位を繰り返しながら進化し、この過程での新たな遺伝子の獲得は少ないことが示唆されている。そこで我々は気管支敗血症菌の遺伝子を白日咳菌に相補することで、本来とは別にしか感染しない白日咳菌の宿主細胞を拡大できるのではないかと考えた。本研究の初段階として、気管支敗血症菌の長鎖のゲノム断片を白日咳菌に導入するための新規ゲノム相補システムの開発を目指した。次に、白日咳菌はその進化の過程で、O抗原の合成に必要なwbn遺伝子領域を欠失し、O抗原を発現しないことに注目し、気管支敗血症菌のwbn領域を相補して得られたO抗原発現白日咳菌の病原細胞の性状を解析した。

方法ならびに成果（Methods/Results）

気管支敗血症菌の長鎖のゲノム断片を白日咳菌染色体中に安定に導入するために、細菌人工染色体（Bacterial artificial chromosome: BAC）とノーヅェージの組換え機構を組み合わせることで、新規ゲノム相補システムを構築した。本システムではファージの組換え酵素が認識するアタッチメントサイトを、BACと白日咳菌染色体上にそれぞれ導入した。これによりファージの組換え酵素存在下で、BACが白日咳菌染色体に組み込まれることを確認した。バルスフィールドゲル電気泳動により分離した気管支敗血症菌の長鎖ゲノム断片をBACにクローニングすることで、核再構築で最大50 kbpの気管支敗血症菌ゲノム断片が白日咳菌染色体中に導入されることを確認している。このシステムを用いて、wbn遺伝子から成り、約32 kbpに及び気管支敗血症菌のwbn領域を白日咳菌染色体中に相補した。得られた組換え白日咳菌のロボメタ（1PS）を熱変性化法により抽出し、Tricine-SDS-PAGEに透析した結果、本来のO抗原を発現する菌株と敗血症菌のLPSと類似したバンドを確認した。また組換え白日咳菌のLPSには、気管支敗血症菌のLPSを用いたウエスタンプロット法によって検出されるバンドが存在したことから、気管支敗血症菌のO抗原が発現していることが明らかになった。O抗原発現白日咳菌の表現型を検証するため、ラット血清または抗病葉ポリミシンB存在下で培養し、ペクターコントロール株と生存率を比較した。その結果、O抗原発現白日咳菌は、ラット血清とポリミシンBの両方に対して、コントロール株に比べ高い抵抗性を示した。O抗原発現白日咳菌とコントロール株の混合菌液をラットに投与し、感染8日、14日に後、鼻中隔、気管、肺を回収し、肺器内生菌数を測定した。その結果、鼻中隔からは菌数の菌が回収されたが、気管、肺の検査ではO抗原発現白日咳菌が優勢に回収された。

総括（Conclusion）

我々は本研究で開発した新規ゲノム相補システムを用いたことで、長鎖のゲノム断片を白日咳菌に導入し、その表現型変化させることに成功した。O抗原を発現した白日咳菌は、マウス下部気道においてコントロール株よりも有意に多くの生存率を示した。O抗原が気管支敗血症菌の多くの宿主特異性を規定する因子の一つである可能性が示唆された。本システムは今後、ボルデテラ属の宿主特異性に関する因子のスクリーニングにおいて、有用なツールとなり得る。