Prephase-based Equivalent Amplitude Tailoring for Low Sidelobe Levels of 1-Bit Phase-Only Control Metasurface under Plane Wave Incidence

Jiexi Yin, Member, IEEE, Qi Wu, Member, IEEE, Haiming Wang, Member, IEEE, and Zhi Ning Chen, Fellow, IEEE

Abstract—A prephase synthesis method is proposed for sidelobe level (SLL) suppression of a 1-bit phase-only control metasurface under plane wave incidence. The array factor of the metasurface with \(N \times N \) unit cells shows that controlling the number of prephases with varying values over the reflective surface can equivalently control the amplitude. Different from optimizing the prephase distribution, selection of the 0 and \(\pi/2 \) prephases in specific \(N \) regions is used to suppress the SLLs. Therefore, the number of parameters in the optimization can be dramatically reduced from \(N^2 \) to \(N \). The prephase distribution is then designed based on the optimized number of prephases and a symmetric matrix for SLL suppression in the entire space. The SLLs are further suppressed by optimizing some of the unit cell states based on similar equivalent-amplitude tailoring. Simulations and measurements of a set of 1-bit reflective metasurfaces with \(20 \times 20 \) unit cells verify that the phase-only control metasurface realizes SLL suppression to -13 dB for multiple beam directions from -30 to 30 degrees with a 10-degree step under normal plane wave incidence.

Index Terms—Single-beam, 1-bit, plane waves, reflective metasurface, sidelobe level (SLL), phase control.

I. INTRODUCTION

Beamforming and beam scanning are essential requirements for 5G millimeter wave (mmWave) communications [1], [2]. Reflective metasurfaces have a beamforming capability in which the phases of the unit cells are controlled [3], [4]. Reconfigurable reflective metasurfaces can be designed using discrete phase compensations, such as 1-bit phase compensation, to achieve beam scanning performance [5], [6].

Manuscript received Dec. 12, 2021; revised May 23, 2022; accepted June 9, 2022. Date of publication , ; date of current , . This work was supported in part by the National Natural Science Foundation of China under Grants 62001101 and 61960206006, the Science Foundation of Jiangsu Province of China under Grant BK2020349, and the Ministry of Education of Singapore under Grant R-263-000-E86-112. (Corresponding author: Haiming Wang.)

J. X. Yin was with the State Key Laboratory of Millimeter Waves and the School of Information Science and Engineering, Southeast University, Nanjing 210096, China, and is now with the Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583 (e-mail: jiexiyin@ieee.org).

Q. Wu and H. M. Wang are with the State Key Laboratory of Millimeter Waves and the School of Information Science and Engineering, Southeast University, Nanjing 210096, China, and with the Purple Mountain Laboratories, Nanjing 211111, China (e-mail: qiwu@seu.edu.cn; hmwang@seu.edu.cn).

Z. N. Chen is with the Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583 (e-mail: elezn@nus.edu.sg).

Color versions of one or more of the figures in this paper are available online at http://ieeexplore.ieee.org.

Digital object identifier

Compared with 2-bit unit cells, the 1-bit unit cell can reduce the number of switches (such as the PIN) in the unit cell design and simplify the circuit control. Therefore, the loss and cost caused by the switches and circuits can be reduced, especially in a high-frequency band, for example, the mmWave band.

For mmWave communications, systems focus electromagnetic wave energy in desired directions and suppress the energy in other directions [7]. In this case, a pencil beam with low sidelobe levels (SLLs) is preferred. Pencil beams with a high gain can be realized using reflective metasurfaces excited by spherical waves. The spherical waves introduce an intrinsic pseudorandom distribution of the phase quantization error to form a single beam [8], [9]. Furthermore, the spherical wave incidence results in a nonuniform amplitude distribution on the reflective surfaces, which helps suppress SLLs. For example, a 1-bit reflective metasurface based on a linear polarizer can achieve a fixed beam with an SLL of -14 dB [10], and a 1-bit reconfigurable reflective metasurface can achieve beam scanning with an SLL of -10 dB [11]. One-bit phase-controlled reflective metasurfaces under spherical wave incidence can usually realize single-beam patterns with SLLs from -20 to -10 dB [10]–[15].

Reflective surfaces also work under plane wave incidence [16], such as when controlling the propagation paths of electromagnetic (EM) waves for mmWave indoor and outdoor communications [17], [18]. Unlike spherical wave incidence, plane wave incidence brings a uniform amplitude distribution on the reflective surface. Moreover, the initial phases on the reflective surfaces are the same without a gradient for normal plane wave incidence. The same initial phases usually cause symmetric beams for single-beam forming when using 1-bit phase compensation. Even if oblique wave incidence brings a gradient initial phase distribution, the SLLs are usually very high because of quasiperiodic phase quantization errors [9]. Therefore, 1-bit single-beam design and SLL suppression are more challenging under plane wave incidence than under spherical wave incidence. Although 1-bit reflective metasurfaces with randomized phase quantization errors can effectively suppress symmetric beams [19], the worst SLL is larger than -8 dB for beam scanning [20]. One reason is the amplitude distribution on the reflective surfaces is uniform under the plane waves. Another reason is the fixed pseudorandom uniform prephase distribution cannot ensure SLL suppression in all beam directions.

An SLL suppression method for 1-bit single-beam reflective
Incident waves

metasurfaces under normal plane wave incidence is proposed in this work. First, a theoretical analysis proves that control of the prephase distribution can be to some degree equivalent to amplitude control. By controlling the number of two different prephases rather than optimizing the prephase distribution, the optimization can be reduced from N^2 parameters to N parameters. Next, the phase design and optimization of the metasurface are described in detail, both for the prephase distribution and the 1-bit states of unit cells. Finally, a set of 1-bit single-beam reflective metasurfaces with the same prephase distribution for different beam directions with suppressed SLLs are designed, fabricated, and measured.

Notations: Upper (Lower) bold-face letters are used to denote matrices (vectors). The (m, n)-th element of the matrix X is denoted as $X_{m,n}$, and the k-th element of the vector x is denoted as x_k.

II. THEORETICAL ANALYSIS FOR PREPHASE-BASED EQUIVALENT AMPLITUDE TAILORING

Assume that the 1-bit reflective metasurface has $N \times N$ unit cells with a uniform interelement spacing (IES) of d, as shown in Fig. 1. The unit cells are simplified as point sources. That is, only the array factor is considered in the theoretical study. The prephase is introduced to each unit cell for single beamforming [20]. Under normal plane wave incidence, all unit cells have a uniform amplitude and the same initial phase, and the array factor $AF(\theta, \varphi)$ can be derived as

$$AF(\theta, \varphi) = \sum_{s=1}^{N} \sum_{k=1}^{N} e^{j\Phi_{s,k}(\theta, \varphi)},$$ (1)

where θ and φ represent the elevation angle and the azimuth angle, respectively, and $s, k = 1, 2, \ldots, N$. The total phase of the unit cell $\Phi_{s,k}(\theta, \varphi)$ in the s-th row and k-th column is the sum of the 1-bit phase compensation $\phi_{s,k}(\theta, \varphi)$, the prephase $\psi(s,k)$, and the progressive phase $\zeta(s,k)(\theta, \varphi)$, that is,

$$\Phi_{s,k}(\theta, \varphi) = \phi_{s,k} + \psi(s,k) + \zeta(s,k)(\theta, \varphi),$$ (2)

where

$$\zeta(s,k)(\theta, \varphi) = \frac{2\pi d}{\lambda} \sin \theta ((s - 1) \cos \varphi + (k - 1) \sin \varphi),$$ (3)

and λ is the wavelength of the carrier frequency in a vacuum.

To maximize the energy in the desired beam direction, the ideal phase compensation $\phi_{s,k}'(\theta, \varphi)$ for each unit cell is usually calculated by

$$\phi_{s,k}' = -\frac{2\pi}{\lambda} \sin \theta ((s - 1) \cos \varphi + (k - 1) \sin \varphi) - \psi(s,k) + \phi_i,$$ (4)

where (θ_i, φ_i) is the designed beam direction ($i = 1, 2, 3, \ldots$) and constant ϕ_i is the reference phase [8]. Without loss of generality, the states of the unit cell can be determined:

$$\phi_{s,k} = \begin{cases} 0 & \text{mod} (\phi_{s,k}', 2\pi) \in [-\frac{\pi}{2}, \frac{\pi}{2}), \quad \text{State 0}, \\ \pi & \text{mod} (\phi_{s,k}', 2\pi) \in [\frac{\pi}{2}, \frac{3\pi}{2}), \quad \text{State 1}. \end{cases}$$ (5)

For normally incident plane waves, once the prephase distribution and designed beam direction (θ, φ_i) are given, the states of the unit cells are determined by (4) and (5). In this work will focus on single-beam in the xoz plane ($\varphi_i = 0$) and yoz plane ($\varphi_i = \pi/2$). For different i, the unit cell states usually change but with the same prephase. The SLL can be obtained from $AF(\theta, \varphi)$.

$$g(\psi_{s,k}, \phi_{s,k}) = \min(\bar{p}_1, AF(\theta_i, \varphi_i)) - \bar{p}_2,$$ (6)

where $\{\bar{p}_1, \bar{p}_2, \bar{p}_3, \ldots\}$ is a set of local maxima of $AF(\theta, \varphi)$, with $\bar{p}_1 \geq \bar{p}_2 \geq \bar{p}_3 \geq \cdots$.

The SLLs are determined by the prephase distribution $\psi_{s,k}$ and 1-bit phase compensation $\phi_{s,k}$ (states of unit cells). Because $\phi_{s,k}$ can be calculated when $\psi_{s,k}$ and the beam direction (θ_i, φ_i) are given, the optimization of $g(\psi_{s,k}, \phi_{s,k})$ can be presented as

$$\arg \max_{\psi_{s,k}} \sum_{\psi_{s,k}} g(\psi_{s,k}).$$ (7)

The SLLs are determined by the prephase distribution $\psi_{s,k}$ with N^2 parameters (assuming that the reference phase is optimal).

In the xoz plane, $\varphi = 0$, so (3) can be simplified as

$$\zeta_{s,k}(\theta, 0) = (s - 1) \frac{2\pi d}{\lambda} \sin \theta,$$ (8)

and $\zeta_{s,k}$ is the same for the same column (k) because of the orthogonality of the x-direction and y-direction. Furthermore, according to (4), the states of unit cells for the same prephase and column are the same if the desired beam is in the xoz plane.

As discussed in [20], at least two kinds of prephases should be introduced for single-beam forming, and a $\pi/2$ phase difference can achieve a noneven function of $AF(\theta, \varphi)$ and break the symmetry. Thus, 0 and $\pi/2$ are chosen as the two kinds of prephases in this study. If there are x_k $(x_k \in \{0, 1, 2, \ldots, N\})$ prephases of 0 and $(N - x_k)$ prephases of $\pi/2$ in the k-th column, the array factor at $(\theta, 0)$ can be derived as

$$AF(\theta, 0) = \sum_{k=1}^{N} (x_k e^{j(\psi_{k,0} + \pi/2 + (k - 1) \frac{2\pi d}{\lambda} \sin \theta)}) + (N - x_k) e^{j(\psi_{k,0} + (k - 1) \frac{2\pi d}{\lambda} \sin \theta)}$$ (9)

$$= \sum_{k=1}^{N} AF_k(\theta, 0).$$
where ψ_{k_1} and $\psi_{k_2} \in (0, \pi)$ represent the 1-bit phase compensation of the unit cells. The SLLs in the xz plane only depend on parameters x_k, and the optimization of (7) can be simplified as

$$\arg \max_{x_k \in \{0,1,2,...,N\}} \sum_i g_{xz}(x_k), \quad (10)$$

where $g_{xz}(x_k)$ represents the SLL in the scanning plane (xz plane) with $\varphi_i = 0$ and $\varphi = 0$.

Let $|AF_k(\theta,0)|$ represents the amplitude contribution of the k-th column and

$$|AF_k(\theta,0)| = (x_k^2 + (N-x_k)^2 + 2x_k(N-x_k)\cos(\phi_{k_1} - \phi_{k_2} - \pi/2))^{1/2}. \quad (11)$$

Considering 1-bit phase compensation, ($\phi_{k_1} - \phi_{k_2}$) can be chosen only among $-\pi$, 0, and π. Therefore, (11) can be further simplified to

$$|AF_k(\theta,0)| = (x_k^2 + (N-x_k)^2)^{1/2}, \quad (12)$$

where $|AF_k(\theta,0)|$ can range from $\sqrt{2}N/2$ to N with different x_k. Therefore, if only the 2D patterns of the xz plane are considered, the equivalent amplitudes $|AF_k(\theta,0)|$ can be controlled using different numbers of prephases of 0 and $\pi/2$. For example, when all prephases in the k-th column are the same, $|AF_k(\theta,0)|$ will obtain the maximum value; when the number of 0 prephases is the same as the number of $\pi/2$ prephases, $|AF_k(\theta,0)|$ will obtain the minimum value. That is, the SLLs can be improved by controlling the equivalent amplitudes, $|AF_k(\theta,0)|$, and the vector $x = [x_1, x_2, \cdots, x_k]$ determines the SLLs in the xz plane.

However, because of 1-bit phase compensation, in the design of the prephase distribution, suppression of symmetric beams should also be considered. The equivalent phases of $AF_k(\theta,0)$ are usually different for different k. Some classical amplitude distributions, such as the Chebyshev distribution, usually default that the unit cells can provide perfect phases (0 to 2π) and amplitudes (0 to 1). Therefore, these classical amplitude distributions may not be suitable for this design. The phase design and SLL suppression are discussed in detail in the next section.

III. SLL OPTIMIZATION FOR A PLANAR ARRAY

In the design of the phase-only control metasurface, the number of unit cells and the interelement spacing also influence the SLLs. For comparison with the results in [20], the same setup with $N = 20$ and $d = \lambda/2$ is discussed as an example. The designed scanning range is from -30 to 30 degrees with a 10-degree step, and all unit cells have a uniform amplitude.

The workflow of SLL suppression is illustrated in Fig. 2. For the desired beam scanning range, a fixed prephase distribution should be designed for different beam directions (θ_i, φ_i). Based on the theory in Section II and inspired by the concept of dimensionality reduction (DR) [21], [22], the optimization of $\psi_{s,k}$ is transformed into the optimization of x_k, and a 2D planar array is converted into a 1D linear array. The method considers the equivalent amplitude and retains the pattern messages after DR. Then, a symmetric matrix is utilized to recover the planar array from the linear array to ensure beam scanning with the suppressed SLLs in the xz and yz planes. Next, the states of the 1-bit unit cells for the desired beam directions are designed considering the gain and SLL. Finally, SLL suppression is achieved by controlling the phase distributions (prephases and states) on the reflective metasurface. The detailed principles and methods are presented as follows.

A. Prephase Optimization for a Planar Array

To obtain the maximal radar cross-section (RCS) in the desired directions, the states of the unit cells can be calculated using (4) and (5) when the prephase, reference phase and beam direction are given. For different directions, the fixed prephase distribution dramatically influences the symmetric beams and SLLs. Although a pseudorandom uniformly distributed prephase can effectively suppress symmetric beams in single-beam forming, it cannot ensure SLL suppression for each beam direction. For example, the worst SLL of a prephased planar array is -7.7 dB for scanning from -30 to 30 degrees with a 10-degree step ($N = 20$, $d = \lambda/2$), as shown in Fig. 3(a). Although reference phases can be introduced in every beam direction to improve the patterns, the worst SLL is still larger than -8.0 dB, as shown in Fig. 3(b).

For a reflective metasurface with $N \times N$ unit cells, N^2 prephases can be optimized, which may lead to considerable complexity. According to the analysis in Section II, for the patterns in the beam scanning plane (xz plane and yz plane), the control of the prephase distribution can provide equivalent amplitude tailoring, and optimization of the prephase distribution can be transformed into optimization of the number

Fig. 2. Flow diagram of the SLL optimization for a planar array.
of 0 and $\pi/2$ prephases in each column. Therefore, only N parameters are required for x_k optimization, rather than the N^2 prephases for $\psi_{x,k}$ optimization.

In other words, if the designed beams are in the xoz plane, then equivalent amplitude control can be realized when using different numbers of 0 and $\pi/2$ phases in each column. The patterns depend on the equivalent modulus and the equivalent phase of $AF_k(\theta, 0)$. Therefore, x_k is optimized first to improve the patterns in the scanning plane, i.e., the xoz plane. The k-th column contains x_k elements with 0 prephase and $(N - x_k)$ elements with $\pi/2$ prephase ($k = 1, 2, 3, \ldots, N$). Thus, only N parameters need to be optimized, and the prephase design can be simplified. According to (9), the SLLs can be obtained and optimized based on different combinations of x_k. Using the differential evolution algorithm (DEA), $x = [8, 10, 5, 10, 13, 11, 2, 13, 9, 12, 19, 6, 2, 14, 11, 10, 11, 9, 12, 9]$ is obtained for SLLs less than -13 dB in the scanning plane. Here, DEA is only used as an optimization tool. Other optimization tools can also be used to find x_k. This result approaches the theoretical SLLs of phase-controlled point source arrays with ideal phase compensation. The worst SLL is improved by nearly 5 dB compared with the random prephase distribution cases.

After optimizing x_k, the number of 0 and $\pi/2$ prephases in each column can be obtained. The main issue for the design is arranging the prephases in each column to suppress SLLs and symmetric beams in the entire space (3D patterns). A symmetric matrix is utilized for the design to solve this issue to support beam scanning in the xoz plane and yoz plane. The symmetric matrix can break the symmetry of the array factor, so the symmetrical beam can be suppressed in 3-D space. Furthermore, for a symmetric matrix, the number of 0 and $\pi/2$ prephases is the same for the k-th column and the k-th row. Therefore, the equivalent amplitude control supports beams scanning in both the xoz plane and the yoz plane.

Here, we present a method to generate a symmetric matrix.
B. 1-Bit State Optimization for Further SLL Suppression

As discussed in Section II, the states of unit cells can be calculated using (4) and (5). The principle is to obtain the maximum energy in the desired direction. In this part, we control some of the unit cell states to suppress the SLLs rather than to obtain the maximum power. Therefore, the SLLs can be further suppressed at the price of reducing the maximum RCS in the desired direction.

Theoretically, the states of all unit cells can be optimized to improve the SLL suppression but doing so is very time-consuming. Based on the priori knowledge, a taper amplitude can help improve the SLL performance, and phase control of the unit cells in a planar array realizes equivalent amplitude control for the scanning plane. So, the idea is to keep the maximize gain at center area of the metasurface and optimize the cells at four corners to sacrifice the gain for the SLL suppression. The final unit cell states for 30-degree beam direction are presented in Fig. 6. The array synthesis is used to calculate the states of the unit cells in the white area, and

Based on the x. As shown in Fig. 4, the symmetric matrix can be generated line by line. The initialized matrix P of the prephase distribution is an $N \times N$ matrix, and all elements are equal to 1. The design begins with the first row and first column ($k=1$). The details are given below:

(S1). Find maximal values (first x_k) and the corresponding indexes a_i, $i = 1, 2, \ldots, x_k$.

(S2). Let $P_{k,a_i} = P_{a_i,k} = 0$ and $x_{a_i} = x_{a_i} - 1$. Additionally, let $x_k = 0$.

(S3). If $x_{a_i} < 0$, the vector x cannot be used to generate a symmetric matrix P. Another vector x should be found.

(S4). If $x_{a_i} \geq 0$ and $k = N$, then the final P is obtained. If $x_{a_i} \geq 0$ and $k < N$, then $k = k + 1$ and return to (S1).

The result of the symmetric matrix based on x is shown in Fig. 5. Using the 1-bit phase compensation and the symmetric prephase distribution in Fig. 5, the simulated SLLs are lower than -13 dB in the scanning plane and lower than -12 dB in the entire space for the beam scanning range of -30 to 30 degrees (10-degree step).

Finally, note that the -30 to 30-degree scanning range is analyzed as an example; the method supports other scanning ranges. For a larger scanning range in the xoz and yoz planes, the prephased-based equivalent amplitude tailoring method can also suppress SLLs physically. However, the unit cell needs support phase compensation and scattering in large reflective angles for the metasurface design. Because the proposed method focuses on SLL suppression for beam scanning in the xoz and yoz planes, the designed prephase distribution can support single-beam scanning in other azimuth planes but with a bit higher SLL.
Fig. 8. Configuration of the 1-bit unit cell with $p = 4$ mm, $h_1 = 1.016$ mm, $h_2 = 0.1$ mm and $h_3 = 0.254$ mm.

Prephase	l (mm)	w (mm)	a (mm)	b (mm)
0-deg.	1.85	0.2	0.8	0
90-deg.	2.75	0.5	0.2	0.925

a genetic algorithm (GA) is used for the other states in the gray area to optimize the SLLs. The GA is only a tool for optimization and is not the only method that can be used.

The final simulated beam scanning patterns for the point source array are presented in Fig. 7. The simulated SLLs in the entire space are better than -14.95 dB for beam scanning after optimization of the states of some of the unit cells.

IV. DESIGN OF A 1-BIT PREPHASE UNIT CELL

To verify the proposed method for designing 1-bit phase-only control metasurfaces, a 1-bit prephase unit cell is designed. As shown in Fig. 8, two substrate layers of Taconic TLY with $\varepsilon_r_1 = 2.2$ are utilized, and the FR-28 laminate with $\varepsilon_r_2 = 2.8$ is used to bond them together. Vias are used for the metallic cavity design, and the unit cell is in the cavity and etched on the second substrate layer. The structure and working principle of the unit cell are similar to those in [23]. Unit cells without four small stubs are State 0, and those with four small stubs are State 1.

Similar to the physical mechanism for the structure in [23], the current distributions on the unit cells for State 0 and State 1 are opposite. Therefore, the metallic cavity reduces the influence between adjacent unit cells, especially for those with opposite states. Furthermore, the via height of the cavity is optimized. The influence between unit cells cannot be suppressed if the height is not sufficient. However, the unit cell performance deteriorates for excessive cavity heights.

Various patch sizes are utilized for the prephase design, which leads to two prephases with a nearly 90 degree phase

Fig. 9. Simulated reflective phases for the unit cell with different prephases and states.

Fig. 10. Designed 1-bit metasurface with a single-layer prephase structure: (a) 3D model; (b) middle copper layer (30-degree beam direction).
difference on the same layer. The related parameters are presented in Table I. In other words, the stubs of the unit cells control 1-bit phase compensation, and the unit cells with two different sizes realize a 90-degree prephase difference. In contrast to using the propagation phase difference to design the prephases of the metasurface [20], the proposed method enables all unit cells to be on the same layer.

Fig. 8 shows the simulated reflective phases of the 1-bit prephased unit cells. Over the frequency range from 36.5 to 38.5 GHz, the unit cells can achieve an approximately 180 degree phase difference for the same prephase and different states and a nearly 90 degree phase difference for different prephases and the same state.

V. RESULTS AND DISCUSSIONS

A. Simulation Results

A set of 1-bit prephased reflective metasurfaces with suppressed SLLs are designed according to Sections III and IV. The reflective metasurface with a 30-degree beam direction is presented in Fig. 10 as an example, and the unit cells are placed on the middle copper layer. Fig. 10(a) shows a 3D view of the metasurface, and Fig. 10(b) shows the details of the unit cells based on Figs. 5, 6 and 8. The CST simulation results are presented in Fig. 11 and Fig. 12 for patterns in the scanning plane and 3-D uv-plane, respectively. The simulated SLLs range from -13.8 dB to -12.7 dB for beam scanning from -30 to 30 degrees. One main reason why the SLLs differ from the results in Section IV is that the unit cells are not independent of each other.

B. Measurement Results and Discussion

Three metasurfaces with 10-degree, 20-degree, and 30-degree beam directions are chosen for fabrication and testing from the set of designed metasurfaces. The measurement setup is presented in Fig. 13. To obtain approximate incident plane waves, the Tx horn is placed at a distance of 2200 mm away from the sample, and the radius of the motorized rotation stage is 1700 mm. The aperture size of the metasurface is 80 x 80 mm². The horn antenna Rx is aimed at the center of

Table II: Simulated and Measured Performance of the Designed Metasurface at 37.5 GHz.

Sim./Mea. Level (dB)	Difference with PEC (dB)	SLL (dB)	
PEC	9.1/-38.1	0/0	-13.3/-13.1
-30-deg.	4.6/-	-4.5/-	-13.7/-
-20-deg.	4.6/-	-4.5/-	-12.7/-
-10-deg.	5.1/-	-4.0/-	-13.0/-
0-deg.	4.4/-	-4.7/-	-13.8/-
10-deg.	4.2/-43.3	-4.7/-	-13.6/-11.2
20-deg.	4.4/-42.6	-4.7/-	-13.7/-13.6
30-deg.	4.5/-43.7	-4.6/-	-13.1/-12.5
the metasurface and rotates around the metasurface. A vector network analyzer (VNA) is used to record the electrical field level of Rx from -80 to 80 degrees in the horizontal plane, and a control PC is utilized to operate the motion controller and record the data from the VNA.

A copper plate with the same size as the metasurface is also tested as a reference. Table II presents the simulated and measured RCSs and SLLs for different metasurfaces and the copper plate. Fig. 14 shows the simulated and measured patterns at the design frequency of 37.5 GHz. The measured patterns agree with those for the designed directions, and the measured SLLs in the beam scanning plane are suppressed to below -11 dB. This value is slightly higher than that for the simulated SLLs because of fabrication and measurement setup tolerances.

Table III compares the proposed 1-bit reflective metasurface with the reported 1-bit reflective metasurfaces. Under normal plane wave incidence, the SLLs for 1-bit phase-control metasurfaces are usually larger than -10 dB, especially for the worst SLL in the beam scanning range. Additionally, a symmetric beam usually exists in space for single beamforming. The introduction of a fixed random prephase can avoid symmetric beams but cannot suppress SLLs for every beam direction. When the prephase distribution and unit cell states are well optimized and arranged, the SLLs can be effectively suppressed for all designed beam directions. Compared with [20], the proposed SLL suppression method can achieve better SLLs in a larger scanning range. Moreover, the proposed method can significantly reduce the complexity through optimization of the prephase number (numbers of 0 and π/2 prephases in special regions) rather than directly optimizing the prephase distribution. The symmetric matrix also brings a compact prephase design for 2-D beam scanning.

VI. CONCLUSION

A prephase synthesis method for SLL suppression of 1-bit phase-only control metasurfaces under plane wave incidence has been proposed. The main idea is to design a fixed prephase distribution for the desired beam scanning range, and the critical issue is optimizing the number of 0 and π/2 prephases in special regions rather than directly optimizing the prephase distribution. Optimizing the number of the two prephases leads to equivalent and limited amplitude tailoring for the patterns in the scanning plane, and only N parameters need to be optimized for a metasurface with N × N unit cells. Then, a symmetric matrix can be used to transform the optimized results into a prephase distribution. The 1-bit states of unit cells are calculated and optimized for beamforming and SLL suppression. For the 1-bit reflective metasurface design, various sizes are used to realize a single-layer prephase structure. As a demonstration, a set of 1-bit metasurfaces with a fixed prephase distribution has been designed, fabricated, and measured. The simulation and measurement results have shown that the SLLs can be effectively suppressed by optimizing and arranging the prephases to realize equivalent amplitude tailoring. Compared with conventional 1-bit metasurfaces under plane wave incidence, the proposed metasurface can achieve lower SLLs in the designed scanning range.

TABLE III

Reference	Element Number	Incident Waves	IES (λ₀)	Frequency (GHz)	Beam	SLL (dB)
[8]	40 × 40	Plane Waves	0.5	12.5	10 deg.	-11 (sim.*)
[24]	30 × 30	Plane Waves	Not Given	10.1	1/24 beams	-8 ~ -3 (mea.)
[20]	20 × 20	Plane Waves	0.5	39.0	0 ~ 30 deg., step of 15 deg.	-10 ~ -7 (mea.)
This work	20 × 20	Plane Waves	0.5	37.5	30 ~ 30 deg., step of 10 deg.	-14 ~ -12 (sim.)
					10 ~ 30 deg., step of 10 deg.	-14 ~ -12 (mea.)

* The SLL does not include the symmetric beam.

Fig. 14. Simulated and measured patterns for 10-degree, 20-degree, and 30-degree metasurfaces under normally incident plane waves at 37.5 GHz.
[5] S. V. Hum and J. Perruisseau-Carrier, “Reconfigurable reflectarrays and array lenses for dynamic antenna beam control: A review,” IEEE Trans. Antennas Propag., vol. 62, no. 1, pp. 183–198, 2014.

[6] H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep., vol. 6, p. 35692, 2016.

[7] D. R. Smith, V. R. Goward, O. Yurusevich, S. Larouche, G. Lipworth, Y. Urzhumov, and M. S. Reynolds, “An analysis of beamed wireless power transfer in the Fresnel zone using a dynamic, metasurface aperture,” J. Appl. Phys., vol. 121, no. 1, p. 014901, 2017.

[8] H. Yang, F. Yang, S. Xu, M. Li, X. Cao, J. Gao, and Y. Zheng, “A study of phase quantization effects for reconfigurable reflectarray antennas,” IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 302–305, 2016.

[9] R. J. Mailloux, Phased array antenna handbook. Artech house, 2017.

[10] L. Li, F. Qin, L. Wan, Y. Liu, S. Zheng, and H. Zhang, “A wideband 1-bit reflective metasurface based on linear polarizer,” in Proc. 2019 Computing, Communications and IoT Applications (ComComAp), 2019, pp. 213–218.

[11] J. Han, L. Li, G. Liu, Z. Wu, and Y. Shi, “A wideband 1-bit × 12 reconfigurable beam-scanning reflectarray: Design, fabrication, and measurement,” IEEE Antennas Wireless Propag. Lett., vol. 18, no. 6, pp. 1268–1272, 2019.

[12] Z. Wang, Y. Ge, J. Pu, X. Chen, G. Li, Y. Wang, K. Liu, H. Zhang, and Z. Chen, “1-bit electronically reconfigurable folded reflectarray antenna based on p-i-n diodes for wide-angle beam-scanning applications,” IEEE Trans. Antennas Propag., vol. 68, no. 9, pp. 6806–6810, 2020.

[13] H. Yang, F. Yang, S. Xu, Y. Mao, M. Li, X. Cao, and J. Gao, “A 1-bit 10 × 10 reconfigurable reflectarray antenna: Design, optimization, and experiment,” IEEE Trans. Antennas Propag., vol. 64, no. 6, pp. 2246–2254, 2016.

[14] H. Yang, F. Yang, X. Cao, S. Xu, J. Gao, X. Chen, M. Li, and T. Li, “A 1600-element dual-frequency electronically reconfigurable reflectarray at Ku-band,” IEEE Trans. Antennas Propag., vol. 65, no. 6, pp. 3024–3032, 2017.

[15] P. Mei, S. Zhang, and G. F. Pedersen, “A low-cost, high-efficiency and full-metal reflectarray antenna with mechanically 2-D beam-steerable capabilities for 5G applications,” IEEE Trans. Antennas Propag., vol. 68, no. 10, pp. 6997–7006, 2020.

[16] W. Tang, M. Z. Chen, X. Chen, J. Y. Dai, Y. Han, M. Di Renzo, Y. Zeng, S. Jin, Q. Cheng, and T. J. Cui, “Wireless communications with reconfigurable intelligent surface: Path loss modeling and experimental measurement,” IEEE Trans. Wireless Commun., vol. 20, no. 1, pp. 421–439, 2020.

[17] I. Yildirim, A. Uyrys, and E. Basar, “Modeling and analysis of reconfigurable intelligent surfaces for indoor and outdoor applications in future wireless networks,” IEEE Trans. Commun., vol. 69, no. 2, pp. 1290–1301, 2020.

[18] X. Pei, H. Yin, L. Tan, L. Cao, Z. Li, K. Wang, K. Zhang, and E. Björnson, “Ris-aided wireless communications: Prototyping, adaptive beamforming, and indoor/outdoor field trials,” IEEE Trans. Commun., vol. 69, no. 12, pp. 8627–8640, 2021.

[19] M. Smith and Y. Guo, “A comparison of methods for randomizing phase quantization errors in phased arrays,” IEEE Trans. Antennas Propag., vol. 31, no. 6, pp. 821–828, 1983.

[20] J. Yin, Q. Wu, Q. Lou, H. Wang, Z. N. Chen, and W. Hong, “Single-beam 1-bit reflective metasurface using pre-phased unit cells for normally incident plane waves,” IEEE Trans. Antennas Propag., vol. 68, no. 7, pp. 5496–5504, 2020.

[21] O. Alter, P. O. Brown, and D. Botstein, “Singular value decomposition for genome-wide expression data processing and modeling,” Proc. Natl. Acad. Sci., vol. 97, no. 18, pp. 10101–10106, 2000.

[22] D. S. Watkins, Fundamentals of matrix computations. John Wiley & Sons, 2004, vol. 64.

[23] J. Yin, Q. Lou, H. Wang, Z. N. Chen, and W. Hong, “Broadband dual-polarized single-layer reflectarray antenna with independently controllable 1-bit dual beams,” IEEE Trans. Antennas Propag., vol. 69, no. 6, pp. 3294–3302, 2021.

[24] T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light: Sci. Appl., vol. 3, no. 10, p. e218, 2014.
Zhi Ning Chen (M’99 SM’05 F’07) received his B.Eng., M.Eng., and Ph.D. degrees all in Electrical Engineering from the Institute of Communications Engineering (ICE), China in 1985, 1988, and 1993, and his second PhD degree in 2003 from the University of Tsukuba, Japan, respectively.

During 1988-1995, he worked at ICE as a Lecturer and later a Professor, and at Southeast University, China as a Postdoctoral Fellow and later an Associate Professor. During 1995-1997, he joined the City University of Hong Kong (HK) as a Research Assistant and later a Research Fellow. During 1997-1999, he conducted his research at the University of Tsukuba, Japan with the Japan Society for the Promotion of Science (JSPS) Fellowship Award. In 2001 and 2004, he visited the University of Tsukuba twice under the JSPS Fellowship Program (senior level). In 2004, he worked at IBM T. J. Watson Research Center, Yorktown, USA as an Academic Visitor. In 2013, he visited “Laboratoire des Signaux et Systèmes”, UMR8506 CNRS-Supelec-University Paris Sud in Gif-sur-Yvette, France as a Senior DIGITEO Guest Scientist. In 2015, he visited Center for Northeast Asian Studies of Tohoku University, Japan as a Senior Visiting Professor. During 1999-2016, he worked with the Institute for Infocomm Research (Formerly Centre for Wireless Communications, National University of Singapore), Singapore as a Principal Scientist, Department Head and Manager, and Technical Advisor. In 2012, he joined the Department of Electrical and Computer Engineering, National University of Singapore as a tenured Full Professor. He is holding the appointments of Program Director (Industry) and the founding Deputy Director of Advanced Research and Technology Innovation Center. He is holding and held the concurrent guest professorships at Southeast University (Changjiang Chair Professor), Nanjing University, Tsinghua University, Shanghai Jiaotong University, Tongji University, University of Science and Technology of China, Fudan University, Dalian Maritime University, Chiba University, National Taiwan University of Science and Technology, South China University of Technology, Shanghai University, Beijing University of Posts and Telecommunications, Yunnan University, Beijing Institute of Technology, Nanyang Technologies University, University of Surrey, and City University of Hong Kong. He is currently serving as the member of the State Key Laboratory of Millimeter-waves at Southeast University and the State Key Laboratory of Tera-Hertz & Millimeter-waves at City University of Hong Kong. Also, he has served as the reviewers of local and overseas research organizations including Canada, Chile, China mainland, HK SAR, Finland, Ireland, Sweden, and UK.

Dr Chen has provided twelve local and overseas companies with technical consultancy service as Technical Advisor, Guest Professor, and Chief Scientist.

Dr Chen is the founding General Chairs of Marina Forum (Mar-For in 2021), International Workshop on Antenna Technology (iWAT in 2005), International Symposium on InfoComm & Mechatronics Technology in Bio-Medical & Healthcare Application (IS 3T-in-3A in 2010), International Microwave Forum (IMWF in 2010), and Asia-Pacific Conference on Antennas and Propagation (APCAP in 2012). He has been also involved multiple international events as General Chairs as well as Chairs and members for Program Committees and Advisory committees. He is the General Chair of the 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (the first version out of North America). He has been invited to deliver 190+ keynote, plenary, and invited speeches at international academic and industry events.

Dr Chen has published 680+ academic papers and six books entitled Broadband Planar Antennas (Wiley 2005), UWB Wireless Communication (Wiley 2006), Antennas for Portable Devices (Wiley 2007), Antennas for Base Stations in Wireless Communications (McGraw-Hill 2009), Handbook of Antenna Technologies with 76 chapters (Springer References 2016 as Editor-in-Chief), and Substrate-Integrated Millimeter-Wave Antennas for Next-generation Communications and Radars (Wiley and IEEE Press Series on Electromagnetic Wave Theory in 2021). He has also contributed the chapters to the books entitled Developments in Antenna Analysis and Design (IET 2018), UWB Antennas and Propagation for Communications, Radar, and Imaging (Wiley 2006), Antenna Engineering Handbook (McGraw-Hill 2007), Microstrip and Printed Antennas (Wiley 2010), and Electromagnetics of Body Area Networks (Wiley 2016).

Dr Chen is holding 35 granted and filed patents and completed 43+ technology licensed deals with industry. He is pioneering in developing small and wideband and ultra-wideband antennas, wearable and implanted medical antennas, package antennas, near-field antennas and coils, three-dimensional integrated LTCC arrays, microwave lens antennas, microwave metamaterial-metasurface antennas for communications, sensing, and imaging systems. Currently, Dr Chen is more interested in the translational research of electromagnetic metamaterials and the applications of characteristic mode analysis (CMA) and prior-knowledge-guided machine learning to antenna engineering.

Dr Chen is the recipients of IEEE Antennas and Propagation Society (APS) John Kraus Antenna Award in 2021 as well as International Symposium on Antennas and Propagation Best Paper Award in 2010, the CST University Publication Awards in 2008 and 2015, ASEAN Outstanding Engineering Achievement Award in 2013, Institution of Engineers Singapore Prestigious Engineering Achievement Awards in 2006, 2013 (two awards), and 2014, I2R Quarterly Best Paper Award in 2004, IEEE iWAT Best Poster Award in 2005, several technology achievement awards from China during 1990-1997 as well as more than 28 academic awards by his students.

Dr Chen was elevated the Fellow of Academy of Engineering, Singapore in 2019, the Fellow of the IEEE for the contribution to small and broadband antennas for wireless applications in 2007, and Fellow and Vice President of Asia-Pacific Artificial Intelligence Association. Currently he is serving IEEE Future Networks Initiative Technology Focus Editorial Board as a member. He has served IEEE Council on RFID as a Distinguished Lecturer since 2016 and as a founding Vice President during 2015-2020. He severed IEEE Transaction on Antennas and Propagation as an Associate Editor and IEEE APS as a Distinguished Lecturer as well as the members of Fellow Committee and New Direction Committee. He served as a Chair of IEEE Singapore MTI/AP Chapter in 2008 and the founding Chair of IEEE Singapore RFID Chapter during 2016-2017.