by establishing large international biomarker cohorts is another priority.\textsuperscript{5} Accuracy of early clinical diagnosis is still an issue, with a high frequency of misdiagnosis particularly in the early stages of disease. Clinical criteria that were last revised more than 10 years ago are still in use. The need to revise these criteria to enable accurate diagnosis early in the disease course has been identified, and a revision is planned.\textsuperscript{6}

Levin and colleagues’ study showed that these unresolved issues could be crucial hurdles on the way to identification of a neuroprotective treatment for multiple system atrophy. Despite the positive aspects and gains of their trial, an efficacious treatment for patients with this devastating disease is still not available.

Maria Stamelou
Parkinson’s disease and Movement Disorders Department, HYGEIA Hospital, Erythrou Stavrou 9, 15123, Athens, Greece; First Department of Neurology, Aigirneion Hospital, University of Athens, Athens, Greece; and Neurology Clinic, Philippus-Universitat Marburg, Marburg, Germany
mstamelou@hygeia.gr
I declare no competing interests.

1 Krismer F, Wenning GK. Multiple system atrophy: insights into a rare and debilitating movement disorder. Nat Rev Neurol 2017; 13: 222–43.
2 Levin J, Maasli S, Schubert M, et al. Safety and efficacy of epigallocatechin gallate in multiple system atrophy (PROMESA): a randomised, double-blind, placebo-controlled trial. Lancet Neurol 2019; 18: 724–25.
3 Wenning GK, Geser F, Krismer F, et al. The natural history of multiple system atrophy: a prospective European cohort study. Lancet Neurol 2013; 12: 264–74.
4 Krismer F, Seppi K, Wenning GK, et al. Minimally clinically important decline in the parkinsonian variant of multiple system atrophy. Mov Disord 2015; 31: 1577–81.
5 Walsh RR, Krismer F, Galpern WR, et al. Recommendations of the Global Multiple System Atrophy Research Roadmap Meeting. Neurology 2018; 90: 74–82.
6 Stankovic I, Quinn N, Vignatelli L, et al. A critique of the second consensus criteria for multiple system atrophy. Mov Disord 2019; published online Apr 29. DOI:10.1002/mds.27701.

Restoring function in progressive multiple sclerosis

The use of frames and tilt tables to support passive standing for people with lower limb paralysis has been part of the entry-level training of physiotherapists for more than 60 years. In 1955, Marjorie Farnbach\textsuperscript{1} described such practice of passive standing in patients with poliomyelitis, stating that “the length of time spent in this standing frame varies from a few minutes at first with increasing periods as they can be tolerated up to several hours daily.” In a paper published in the preceding year, Willhite and colleagues outlined the development of an apparatus used to place the patient “in the standing position for weight-bearing purposes”, to “prevent demineralisation” of bone and obtain “better postural control alignment”. But, despite the many reports of the advantages of supported standing, research examining this approach in people with chronic neurological conditions has been inconclusive, with some studies suggesting that the intervention provided no meaningful benefits to mobility or lower extremity range of motion.\textsuperscript{3,4}

In The Lancet Neurology, the Standing Up in People with Progressive Multiple Sclerosis (SUMS) study done by Jennifer Freeman and colleagues,\textsuperscript{5} with a randomised controlled trial design, provides the first high-quality evidence that using a standing frame for 20 weeks at home can reduce lower extremity contracture and enhance mobility in people with disability related to severe multiple sclerosis.\textsuperscript{6} In the trial, participants had two home-based physiotherapy sessions to set up the standing frame and six follow-up telephone calls. Participants were asked to stand for 30 min, three times per week over 20 weeks, and encouraged to continue in the longer term, but without further physiotherapy support provided. Participants who used the standing frame (n=71) had a significant increase in Amended Motor Club Assessment (AMCA) score compared with that in participants who had usual care alone (n=69), with a fully adjusted between-group difference in AMCA score at 36 weeks of 4.7 points (95% CI 1.9–7.5; p=0.001). The frequency of short-term musculoskeletal pain was higher in the standing frame group than in the usual care group (486 [41%] of 1188 adverse events vs 160 [22%] of 736 adverse events), which was potentially related to the intervention.

This positive outcome begs the question: “how does the intervention provided in Freeman and colleagues’ study differ from other supported standing programmes described in previous research”? The following are probably some of the features that made a difference in the supported standing intervention provided in the SUMS trial.
First, the SUMS trials included specific instructions provided to participants regarding how to incorporate upper-limb exercises, balance activities, and stretching within the frame. The exercises, along with instruction on how to progress and intensify the programme, were available online. In fact, several of the exercise activities were subcomponents of the functional tasks that were tested in the primary outcome, AMCA score, such as reaching and standing balance.

Second, patients were extensively supervised by experienced physiotherapists who implemented behavioural change methods. Interestingly, the subjective lessening of the physical and psychological effect of multiple sclerosis reported by participants in the standing frame group at 20 weeks was lost at 36 weeks, once therapist contact was discontinued. We could surmise that the therapist’s interaction during the active treatment phase might have contributed to participants’ more positive outlook and, perhaps, their willingness to adhere to the standing programme.

Third, the target dose of the standing intervention in the SUMS trial, lasting 1800 min over 20 weeks, was double the dose provided in a negative trial of tiltable standing in people after traumatic brain injury. In the SUMS trial, mobility benefits were most robust in participants who achieved more than 1152 min of standing over a 20-week period. However, participants who increased the standing time beyond this level (>2304 min over 32 weeks) had similar outcomes to those achieving half that amount (1152 min). This finding suggests there is probably a plateau or ceiling effect whereby standing beyond 1200 min over 20 weeks provides no further enhancement of mobility.

Fourth, an optimal responder group was potentially chosen. Several trials of supported standing in patients after stroke suggested that the method does not accelerate recovery of standing and walking in people with acute paralysis. Freeman and colleagues recruited participants who were long-term users of gait aids or wheelchairs, and many of them had lower limb contracture and muscle weakness in the legs—two of the main targets of the SUMS intervention. Therefore, supported standing has the potential to overcome some of the learned non-use of the lower limbs. Because of the severity and chronicity of disability, it was perhaps not surprising that participants in the standing group had some musculoskeletal pain.

In summary, the SUMS trial is an important guidepost in rehabilitation research. Not only were benefits sustained over time (16 weeks after cessation of the trial), but also the restoration of function was observed in patients with a chronic progressive neurological disease in whom worsening, rather than improvement, would be expected. The findings support that some of the impairment and functional losses observed in people with progressive multiple sclerosis are indeed reversible, and rehabilitation interventions, such as home-based standing, can stabilise or even restore lost abilities.

Michelle Ploughman
Physical Medicine & Rehabilitation Faculty of Medicine, Memorial University of Newfoundland, St John’s, NL A1A 1E5, Canada
michelle.ploughman@med.mun.ca

I declare no competing interests.

Copyright © 2019 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.

1. Fambach M. Physiotherapy for poliomyelitis patients in Victoria. Aust J Physiother 1955; 1: 182–87.
2. Willhite CS, Russey JC, Bons E. The quadriplegic standing frame. Arch Phys Med Rehabil 1954; 35: 235–39.
3. Biering-Sorensen F, Hansen B, Lee BS. Non-pharmacological treatment and prevention of bone loss after spinal cord injury: a systematic review. Spinal Cord 2009; 47: 508–18.
4. Horn KK, Allen DD, Gibson-Horn C, Widener GL. Effects of tonso-weighting on standing balance and falls during the sensory organization test in people with multiple sclerosis. Int J MS Care 2018; 20: 68–75.
5. Paleg G, Livingstone R. Systematic review and clinical recommendations for dosage of supported home-based standing programs for adults with stroke, spinal cord injury and other neurological conditions. BMC Musculoskelet Disord 2015; 16: 358.
6. Leung J, Harvey LA, Moseley AM, Whiteside B, Simpson M, Stroud K. Standing with electrical stimulation and splinting is no better than standing alone for management of ankle plantarflexion contractures in people with traumatic brain injury: a randomised trial. J Physiother 2014; 60: 201–08.
7. Freeman J, Hendrie W, Jarrett L, et al. Assessment of a home-based standing frame programme in people with progressive multiple sclerosis (SUMS): a pragmatic, multi-centre, randomised, controlled trial and cost-effectiveness analysis. Lancet Neurol 2019; 18: 736–47.
8. Freeman JA, Hendrie W, Creanor S, et al. Standing up in multiple sclerosis (SUMS): protocol for a multi-centre randomised controlled trial evaluating the clinical and cost effectiveness of a home-based self-management standing frame programme in people with progressive multiple sclerosis. BMC Neurol 2016; 16: 62.
9. Bagley P, Hudson M, Forster A, Smith J, Young J. A randomized trial evaluation of the Oswestry Standing Frame for patients after stroke. Clin Rehabil 2005; 19: 354–64.
10. Lee JB, Kim SB, Lee KW, Lee JH, Park JG, Lee SJ. Combined therapy with functional electrical stimulation and standing frame in stroke patients. Ann Rehabil Med 2019; 43: 96–105.