Introduction
A great deal of interest has been expressed in the relationship between the occurrence of β-carotene and lectin in the selected species. Presence of β-carotene in the plant species such as fruits and vegetables have effective association in chemoprevention (12). Consumption of green yellow vegetables and fruits reduces cancer risk (2). Lectins are a group of proteins or glycoproteins having the capacity to combine with specific Saccharides on cell surfaces. Lectins agglutinate cells or precipitates erythrocytes (4) and the malignant cells (6-10, 13-15). The preferential binding of normal cells and malignant cells due to the presence of lectin receptors. Occurrence of lectins in vegetables and fruits of many plant species exhibited important biological roles.

The purpose of the present study is to correlate the significance and presence of β-carotene and lectin in vegetables and fruits reflecting their biological properties.

Materials and Methods
Plant samples were collected from IIHR (Indian Institute of Horticulture Research) Bangalore. Plant lectins were isolated in saline (PBS) extracts, one gram of plant material (root, bark, stem, leaf, flower, fruit and seed etc.) were finely ground in a glass mortar and pestle and was suspended overnight in 10 ml of petroleum ether to remove lipids. The suspension was centrifuged at 10,000 rpm, for 5 min. The pellet was air dried

The suspension was centrifuged on the following day at 15,000 rpm for 15 min in cold. The supernatant was collected and tested for lectin activity.

Erythroagglutination test
Human blood samples were repeatedly washed in PBS and a two percent cell suspension of erythrocytes in PBS was used to assay agglutination activity (Moore, 1980). Erythroagglutination activity was studied in glass VDRL plates, 50 µl suspension of prepared erythrocytes was added to the wells containing 50 µl of plant extracts.

The contents of the wells were mixed well and observed after 2 hrs. under the low power (10 x/10 x) of a compound microscope to visually determine the intensity of erythroagglutination. The degree of agglutination was assessed and recorded as weak (+), strong (++), and very strong (+++), in ascending order and lack of agglutination is recorded as –.

β-carotene was estimated taking 100g fresh sample of the species by solvent extraction method.

Results
The samples of the edible species are studied for the lectin and β-carotene in 40 selected species (Table-1), all the 40 samples containing specific and non specific lectins agglutinate the erythrocytes of human blood groups (A, B, AB and O). All the 40 species exhibited lectin activity and erythroagglutination enhanced in PVP. 16 Species exhibited erythroagglutination in saline (PBS) and PVP medium. Artocarpus integrifolia fruit with seed, Lab-lab purpureus pod, Morus alba fruit, Phaseolus vulgaris pod exhibited very strong agglutination (+++) in both PBS and PVP medium. Brassica oleracea var. caulerpa tuber, Lycopersicon esculentum fruit and Trichosanthes anguina fruit exhibited strong erythroagglutination (+) in PBS and PVP medium. In Momordica charantia fruit PVP enhances erythroagglutination from weak to strong in PBS and PVP medium. Macrotollyma unifolium lectin is specific to blood group A and AB. β-carotene rich species like fruits, vegetables, yellow-orange vegetables, and dark green leafy vegetables. Long storage and dehydration destroys β-carotene.

The species containing β-carotene also contains lectins in the sample taken for assay. Anti-cancer property exhibited by these species is due to the presence of secondary metabolites like β-carotene and lectin. The highest percentage of β-carotene is found in Basella rubra leaf (7,440), Beta vulgaris leaf (5,862), Dacus carota leaf (5,700), Spinacia oleracea leaf (5,580), where as lectin content is fairly less.

Discussion
β-Carotene is a natural pigment in plants, precursor of vitamin-A. β-carotene is vegetables and fruits. Where as lectin is abundant in seeds, leaves and fruits fairly in other parts of species.

The species were selected largely basing on a survey of literature and application of the criterias. β-carotene is an anti-oxidant which neutralizes the free radicals epidemiologically and biological evidences suggests that β-carotene are chemo preventive agents against cancer.

Increased consumption of yellow fruits and vegetables helped prevention of cancer (Block et al., 1992). The number of cancer related deaths can be reduced by an increased consumption of fruits and vegetables (Block et al., 1992, Watenberg 1985). Dietary β-carotene is positively associated with chemo prevention (Suzuki, 1990). Dunaliella salina a marine alga is now commercialized as a source of β-carotene.

Lectins are carbohydrate binding proteins or glycoproteins of non-immune origin, and agglutinate cells. Lectins agglutinate red blood cells reflecting blood group specificities.
Lectin binding studies are useful in examining changes of neoplastic transformation, irregular staining, is an indicator of malignant potential (Balaram et al., 1996, Beena et al., 1998).

Table-1

Distribution of lectin and b-carotene in edible species

Sl. No.	Species & samples	1 Agglutination in PBS	2 Agglutination with PVP	3 b-Carotene content					
1	Abelmoschus esculentus-pod.	+	-	-	+	+	+	+	52
2	Achras zapota – fruit	+	+	+	+	+	+	+	97
3	Allium sativum-bulb	-	-	-	+	+	+	220	
4	Anacardium occidentale – seed kernel	-	-	-	+	+	+	+	60
5	Artocarpus integrifolia fruit with seed	+++	+++	+++	+++	+++	+++	+++	175
6	Basella rubra – leaf	-	-	-	+	+	+	7440	
7	Beta vulgaris – leaf	-	-	-	+	+	+	5862	
8	Brachiaria decumbens var. botrytis cauli flower inflorescence	-	-	-	+	+	+	30	
9	Brassica oleracea var. calunara– tube	++	++	+	+	+	+	+	21
10	Cocculina indica– fruit	-	-	-	+	+	+	156	
11	Cucumis melo - fruit	-	-	-	+	+	+	169	
12	Cucurbita maxima- fruit	-	-	-	+	+	+	50	
13	Curcuma domestica- rhizome	-	-	-	+	+	+	30	
14	Cyamopsis tetragonoloba- pod	-	-	-	+	+	+	198	
15	Daucus carota –leaf	+	-	-	+	+	+	5700	
16	Ipomea batatas- root	-	-	-	+	+	+	6	
17	Lab-lab purpureus- pod	+++	+++	+++	+++	+++	+++	+++	1480
18	Luffa acutangula -fruit	+	+	+	+	+	+	33	
19	Lycopersicon esculentum- fruit	++	++	++	++	++	++	++	315
20	Macrotyloma uniflorum- pod	+	+	-	+	+	+	187	
21	Mangifera indica- fruit	-	-	-	+	+	+	2743	
22	Momordica charantia– fruit	+	+	+	+	+	+	+	126
23	Morus alba- fruit	+++	+++	+++	+++	+++	+++	+++	57
24	Phaseolus vulgaris- pod	++	+++	+++	+++	+++	+++	+++	132
25	Phoenix dactylifera– fruit	+	+	+	+	+	+	26	
26	Phyllanthus fraternus- fruit	+	+	+	+	+	+	1264	
27	Piper nigrum- seed	-	-	-	+	+	+	1080	
28	Pitaria vera- kernal	+	+	+	+	+	+	144	
29	Prunus armeniaca -fruit	-	-	-	+	+	+	2160	
30	Prunus domestica- fruit	-	-	-	+	+	+	160	
31	Spinacia oleracea- leaf	-	+	-	+	+	+	5580	
32	Syzygium cumini-fruit	+	-	-	+	+	+	48	
33	Syzygium jambolanum- fruit	+	+	-	+	+	+	141	
34	Thea sinensis- leaf	+	+	-	+	+	+	1280	
35	Triticum vulgare- fruit	++	++	+	+	+	+	64	
36	Trichosanthes anguina-fruit	++	++	++	++	++	++	96	
37	Vigna unguiculata- pod	-	-	-	+	+	+	564	
38	Vitis vinifera var.black-fruit	+	+	+	+	+	+	33	
39	Zingiber officinale- rhizome	-	-	-	+	+	+	40	
40	Zizyphus jujuba- fruit	-	-	-	+	+	+	21	

Note:
β-Carotene values given per 100 g. of edible portion.
+++ : Very strong agglutination,
++ : Strong agglutination,
+ : Weak agglutination
A,B,AB and O: Blood groups
REFERENCE

1. Balaram, P., Mollykutty, J., Rajalekshmi, T.N., Remani, P., Swapna E., Nair, M.K., and Nair, B. 1996. Lectin binding as a prognostic indicator in Gestational Trophoblastic Disease (GTD) In Vivo. 10: 607-612. | 2. Block, G., Patterson, B., Subar, A. 1992. Nutr. Cancer. 16: 1-29. | 3. Beena, T.V, Anil, S, Remani, P., Vijayakumar T. 1998. Expression of Lectin Binding in Oral submucous fibrosis. Indian Journal of Dental Research. 9: 85-90. | 4. Boyd, W.C., and Shapleigh E. 1954. Journal of Immunology 73: 226-231. | 5. Nicolson, G.L., and Blaustein J. 1972. Biochemistry Biphysics Acta, 226: 543-547. | 6. Remani, P., Joy, A., Vijayan K.K., Ravindran A, Hasena Beevi V.M., Vasudevan D, and Vijayakumar, T. 1990. Jackfruit lectin binding pattern in Carcinoma of the uterine cervix. J.experimental pathology. 5: 89-96. | 7. Remani, P., Hasena Beevi V.N., Bhattachari V.N., Beena V.T. and Vijayakumar, T. 1993. Lectin Binding patterns in Oral sub mucas fibrosis and oral cancer. J.of Indian Dental Association. 64: 169-172. | 8. Remani, P., Pillai, R.K., Hasena Beevi V.M., Anikathil R, Bhattachari, V.N., Nair, K.M. and Vijayakumar, T. 1994. Lectin Cytochemistry in the Exofoliative cytology of uterine cervix Neoplasma. 41: 39-42. | 9. Remani P, Bhattachari V.N., Bindu, L., Chandralekha, B, Nair, K.M., and Vijayakumar, T. 1997. Relation of Lectin Binding to Invasiveness of Oral cancers. Oral Oncology 33: 19-22. | 10. Remani, P., Rekha A., Nair, Jaya, P., Kumany, K.P, Bhattachari, V.N., Vijayakumar T., and Nair, K.M., 1998. Jack Fruit Binding pattern in Leukemias. Proceedings of 10th Kerala Congress, Trivuwarthalpuram, pp.312-13. | 11. Sharon N. 1976 Mitogens in immunology. | 12. Suzuki, S, Sasaki, R, Ito Y, Hamajima, N, Shibata, A, Tamakoshi A, Otani M, and Azki, K. 1990. Changes in serum concentrations of β-carotene and changes in the Dietary intake frequency of Green-Yellow vegetables among Healthy male inhabitants of Japan. Japan. J. Cancer Res. 81: 453-469. | 13. Vijayakumar T. 1985. Tissue staining properties of lectins. J.Expt. Pathology, 28: 201-203. | 14. Vijayakumar, T, Robertson, D., McIntosh D. and Forrester J.A. 1987. Tissue staining properties of lectins from the seeds of Jackfruit (Artocarpus integrifolia) and the Winged bean (Psophocarpus tetragonolobus) J. of Expt.Pathology 3: 281-292. | 15. Vijayakumar T, Leslie, M., Augustine, J., Nair M.B., Remani, P. and Aleykutty, M. 1992. Tissue binding patterns of plant lectin to benign and malignant lesions of thyroid. J. Expt. Pathol. 6: 11-12.