Rotating solitons and non-rotating, non-static black holes

O.Brodbeck, M.Heusler, N.Straumann and M.Volkov
Institute for Theoretical Physics, University of Zurich, CH–8057 Zurich, Switzerland

It is shown that the non-Abelian black hole solutions have stationary generalizations which are parameterized by their angular momentum and electric Yang-Mills charge. In particular, there exists a non-static class of stationary black holes with vanishing angular momentum. It is also argued that the particle-like Bartnik-McKinnon solutions admit slowly rotating, globally regular excitations. In agreement with the non-Abelian version of the staticity theorem, these non-static soliton excitations carry electric charge, although their non-rotating limit is neutral.

04.70.Bw

Introduction – In recent years it has become obvious that a variety of well-known, and rather intuitive, features of self-gravitating Maxwell fields are not shared by non-Abelian gauge fields. In particular, and in contrast to the Abelian situation, self-gravitating Yang-Mills (YM) fields can form particle-like configurations \(\mathbb{R} \). Moreover, the Einstein-Yang-Mills (EYM) equations also admit black hole solutions which are not uniquely characterized by their mass, angular momentum, and YM charges \(\mathbb{R} \). Hence, the celebrated uniqueness theorem for electrovac black hole spacetimes \(\mathbb{R} \) ceases to exist for EYM systems. In fact, not even partial results of the no-hair theorem can be restored in the non-Abelian case \(\mathbb{R} \): In addition to the circumstance that spherically symmetric black holes are, in general, no longer characterized by their mass and charges, static black holes need not even be spherically symmetric \(\mathbb{R} \). Moreover, we shall show that there exist black hole spacetimes with vanishing angular momentum which are, however, not static.

The new results presented in this letter are based on our previous investigations \(\mathbb{R} \) and \(\mathbb{R} \). In \(\mathbb{R} \) we have shown that non-Abelian black holes always have rotating counterparts. It was also conjectured, that solitons generically do not admit rotating excitations. A systematic analysis of stationary perturbations revealed that this is indeed the case, provided that the EYM system is coupled to bosonic matter fields \(\mathbb{R} \). However, as the pure EYM system comprises exclusively massless fields, the polynomial fall-off of the background configurations allows for a more general asymptotic behavior than the one considered in \(\mathbb{R} \). Hence, in the absence of bosonic fields, one gains an additional degree of freedom, which gives rise to the new features described in this letter.

More precisely, we prove the existence of slowly rotating Bartnik-McKinnon (BK) solitons \(\mathbb{R} \), and establish a two-parameter family of stationary excitations of the SU(2) black hole solutions. In addition to the charged, rotating solutions found in \(\mathbb{R} \), there also exists a branch of uncharged, rotating black holes, and a branch of charged black holes with vanishing angular momentum. As these configurations are not static, they illustrate that the assumptions entering the non-Abelian staticity theorem \(\mathbb{R} \) are optimal: According to this theorem, stationary EYM black hole solutions must be static only if they have zero angular momentum and vanishing electric YM charge. The new solutions demonstrate that the vanishing of the electric charge is, in fact, a necessary requirement for the configuration to be static. Moreover, the inversion of the non-Abelian staticity theorem also predicts that rotating excitations of the BK solitons must be charged.

Although it is, by now, mathematically clarified why slow rotations of EYM solitons are only possible in the absence of bosonic fields, we still lack a deeper physical understanding of this surprising fact. The authors of this letter could not agree on any of the heuristic proposals which came up in the discussions.

Stationary perturbations – We start by briefly recalling that the stationary perturbations of static EYM configurations are governed by a self-adjoint system of equations for a set of gauge invariant scalar amplitudes (see \(\mathbb{R} \) for details). A stationary EYM configuration (with Killing field \(\partial_t \), say) is described in terms of a stationary metric, \(g \), and a stationary non-Abelian gauge potential, \(A \),

\[
g = -\sigma (dt + a)^2 + \sigma^{-1} \mathcal{F}, \tag{1}
\]

\[
A = \phi (dt + a) + \vec{A}. \tag{2}
\]

Here, \(\sigma \) and \(a = a_i dx^i \) are a scalar field and a one-form on the three-dimensional (Riemannian) orbit space with metric \(\mathcal{F} \), respectively, and so are the Lie algebra valued quantities \(\phi \) and \(\vec{A} \), describing the electric and the magnetic part of the YM field. As we are interested in perturbations of static, purely magnetic configurations, both the electric potential and the off-diagonal part of the metric vanish for the unperturbed solutions, that is, \(\phi \equiv \delta \phi \) and \(a \equiv \delta a \).

Using the Kaluza-Klein reduction of the EYM action, we have shown in \(\mathbb{R} \) that the non-static perturbations, \(\delta a \) and \(\delta \phi \), decouple from the remaining metric and matter perturbations. Moreover, in first order perturbation theory, the latter do not contribute to the angular momentum. The rotational excitations of a static, purely magnetic EYM spacetime are, therefore, governed by the
linearized field equations for the metric perturbation δa and the electric YM perturbation $\delta \phi$.

In order to obtain a self-adjoint form of the perturbation equations, it is necessary to pass from δa to the linearized twist potential, $\delta \chi$, defined by

$$\delta \chi_{,k} = \varepsilon_{kij} \sqrt{\gamma} \left(\frac{\gamma^{ij}}{2} \delta a_{,i} + 4\sigma \text{Tr} \{ \tilde{F} \delta \phi \} \right)_{,j}. $$

(3)

Here, \tilde{F} is the field strength with respect to the magnetic potential \tilde{A}, and the spatial indices are raised with the 3-dimensional metric g. By virtue of this definition, the equations governing the non-static, stationary perturbations of the EYM system can, eventually, be cast into a formally self-adjoint system for the gauge invariant scalar quantities $\delta \chi$ and $\delta \phi$. (The existence of a generalized twist potential for the stationary EYM system follows from the fact that a enters the effective action only via the “field-strength” da; see [4] or [3] for details.)

Since the static background solutions under consideration are spherically symmetric, one can perform a multipole expansion of the perturbation amplitudes $\delta \chi$ and $\delta \phi$. Before doing so, we recall that the background metric, $g_{BG} = -\sigma dt^2 + \gamma_{ij}$, is parameterized in standard Schwarzschild coordinates by $\sigma(r)$ and $N(r)$, and the purely magnetic background gauge potential, $A_{BG} = \tilde{A}$, is given in terms of a radial function $w(r)$:

$$\sigma^{-1} \gamma = N^{-1} dr^2 + r^2 d\Omega^2, $$

(4)

$$\tilde{A} = (1 - w) (\sigma \theta \sin \theta d\phi - \tau_r d\theta), $$

(5)

where τ_θ, τ_ϕ and τ_r are the spherical generators of SU(2), normalized such that $[\tau_\theta, \tau_\phi] = \tau_r$.

The stationary perturbations $\delta \chi$ and $\delta \phi$ can now be expanded in terms of spherical “isospin” harmonics. It turns out that all axisymmetric perturbations which give rise to rotational excitations belong to the sector with total angular momentum $j = 1$. The perturbations $\delta \chi$ and $\delta \phi$ are determined by three scalar amplitudes, $\xi_1(r)$, $\xi_2(r)$ and $\xi_3(r)$ (see [3] for details),

$$\delta \chi = 2\xi_1 \cos \theta, \quad \delta \phi = \xi_2 \tau_r \cos \theta - \xi_3 \sqrt{2} \tau_\theta \sin \theta. $$

(6)

Using these expansions, the perturbation equations finally assume the form of a standard Sturm-Liouville equation for the three component real vector $\xi = (\xi_1, \xi_2, \xi_3)$. One finds

$$\left(-\frac{d}{dr} r^2 A \frac{d}{dr} + B \frac{d}{dr} - \frac{d}{dr} B^T + L + P \right) \xi = 0, $$

(7)

where the 3×3 matrices A, B, L, and P are given in terms of the background fields $w(r)$, $\sigma(r)$, and $N(r)$. The non-vanishing matrix elements of A and B are

$$A = S^{-1} \text{diag}(-\sigma^{-1}, 1, 1), \quad B_{21} = -2\sigma^{-1}(w^2 - 1), $$

(8)

where we have introduced the metric function S, defined by $S^2 = \sigma/N$. For the “angular momentum” matrix L and the effective potential P one finds

$$L = \frac{1}{NS} \left(\begin{array}{ccc} -2\sigma^{-1} & 0 & 0 \\ 0 & 2(w^2 + 1) & -2\sqrt{2} \nu \\ 0 & -2\sqrt{2} \nu & (w^2 + 1) \end{array} \right), $$

(9)

$$P = -\frac{2}{\sigma} \left(\begin{array}{ccc} 0 & 0 & \sqrt{2} \nu \\ 0 & 2S\nu^{-2}(w^2 - 1)^2 & 0 \\ \sqrt{2} \nu & 0 & 2NS\nu^2 \end{array} \right), $$

(10)

where a prime denotes differentiation with respect to r.

Soliton excitations – The existence of rotational excitations of the BK soliton solutions is now established as follows. First, one observes that the background metric equation (11) has regular singular points at $r = 0$ and $r = \infty$. This is seen by writing the perturbation equations as a six-dimensional system of first order equations, and by using the behavior of the background configurations in the vicinities of the origin and infinity. For instance, one uses

$$w = 1 - \gamma \frac{2M}{r} + \mathcal{O} \left(\frac{1}{r^2} \right), \quad N = 1 - \frac{2M}{r} \mathcal{O} \left(\frac{1}{r^2} \right), $$

(11)

and $S = 1 + \mathcal{O}(r^{-4})$, to conclude that $r = \infty$ is a regular singular point. This is, in fact, a peculiarity of the pure EYM system, for which the polynomial decay of the background fields implies that all perturbations are massless. (Here, M denotes the total mass and γ is a parameter characterizing the background configuration.) Taking advantage of the expansions (11) shows that the perturbation equations decouple in leading and in next-to-leading order. In leading order one finds a four-dimensional family of asymptotically acceptable solutions, behaving like $r^{-\lambda}$, with $\lambda = 0, 1, 2, 3$. Following the standard theory, it remains to verify that the fundamental solution belonging to $\lambda = 0$ does not exhibit logarithmic terms in next-to-leading order. In fact, it turns out that this is the case for all non-negative eigenvalues. Hence, one ends up with a four-dimensional system of asymptotically well-behaved local solutions:

$$\xi = (c_0 + \frac{c_1}{r}) \left[e_1 + \mathcal{O} \left(\frac{\ln \left(\frac{1}{r^2} \right)}{r^2} \right) \right] + \frac{c_2}{r^2} \left[e_2 + \mathcal{O} \left(\frac{1}{r^2} \right) \right] + \frac{c_3}{r^3} \left[\left(1 + \left(1 - \gamma \frac{2M}{r} \right) \right) e_3 + \mathcal{O} \left(\frac{1}{r^2} \right) \right]. $$

(12)
the vicinity of \(r = 0 \) and \(r = \infty \) admit extensions to the semi-open intervals \([0, \infty)\) and \((0, \infty)\), respectively. As the total solution-space is six-dimensional, the intersection of the regular solution-subspaces is (at least) one-dimensional. Hence, all BK soliton solutions admit stationary excitations.

Black hole excitations – As for the black hole case, one needs to investigate the behavior of solutions in the vicinity of the horizon, defined by \(N(r_H) = 0 \). In leading order the six fundamental solutions behave like \((r-r_H)\lambda\), with \(\lambda = 0, 1, 2 \). However, a next-to-leading order expansion shows that two (out of three) solutions belonging to \(\lambda = 0 \) must be rejected. Since the remaining solutions are well-behaved, the subspace of acceptable solutions in the vicinity of the horizon is four-dimensional. Again using the regularity of the background configuration for \(r_H < r < \infty \) shows that stationary excitations of static EYM black holes always exist. However, in contrast to the soliton case, the rotating black hole configurations are characterized by two parameters, rather than only one. Hence, the additional degree of freedom at the horizon implies that the intersection of the solution subspaces is now (at least) two-dimensional.

Discussion – In order to offer an interpretation of the parameters characterizing the soliton and black hole excitations, we consider the local electric YM charge and the local Komar angular momentum, defined by flux integrals over two-spheres with radius \(r \):

\[
\tau_z Q(r) = \frac{1}{4\pi} \int *F = \frac{\tau_z}{3S} \left[r^2(\xi_2 + \sqrt{2}\xi_3)' + 2w'\beta \right],
\]

\[
J(r) = \frac{1}{16\pi} \int * (dg_{\varphi\mu} \wedge dx^\mu) = -\frac{r^4}{6S} \left(\frac{\beta}{r^2} \right)',
\]

where \(\beta \) parameterizes the metric perturbation, \(\sigma \delta a = \beta(r) \sin^2 \vartheta \varphi \) [see Eq. (1)]. By virtue of the harmonic expansions \(\xi_i \) and the definition \(\xi'_i \) of the twist potential \(\delta \chi \), one obtains an expression for \(\beta \) in terms of the perturbation amplitudes \(\xi_i \),

\[
\beta = 2(w^2-1)\xi_2 + S^{-1}r^2\xi'_1. \tag{13}
\]

The electric YM charge, \(Q \), and the Komar angular momentum, \(J \), are obtained from the above local expressions in the limit \(r \to \infty \), where the asymptotic expansion \(\xi_i(r) = \xi_i + 2\xi'_i \log(r) + \text{higher order terms} \). The leading two terms in the asymptotic expansion of the electric potential \(\delta \phi \) and the metric one-form \(\delta a \) are, therefore (with \(q = Q + Mc_0(5\gamma-3)/2 \)),

\[
\delta \phi = (c_0 - \frac{Q}{r}) \tau_z, \quad \sigma \delta a = 2 \left(\frac{J}{r} + \gamma \frac{4Mq}{r^2} \right) \sin^2 \vartheta \varphi. \tag{14}
\]

For perturbations of a Schwarzschild background, the above expressions are, in fact, the exact solutions of the perturbation equations, where the second term in \(\delta \phi \) is absent, since \(\gamma = 0 \) in this case. (Note that the Schwarzschild background solution is given by \(w = 1, S = 1, \sigma = N = 1 - 2M/r \).) As \(c_0 \) does not enter the Abelian field strength, \(F = d\delta \varphi \wedge dt \), it has no physical significance and may, as usual, be set equal to zero. Hence, as expected, the stationary excitations of the Schwarzschild solution are linearized Kerr-Newman solutions, parameterized by their charge \(Q \) and their angular momentum \(J \). In particular, it is consistent to consider perturbations with either \(Q = 0 \) (Kerr) or \(J = 0 \) (Reissner-Nordström).

Returning to the stationary excitations of the non-Abelian black holes, we first emphasize that the constant \(c_0 \) now has decisive physical consequences. In fact, by virtue of the covariant derivative, \(c_0 \) enters the asymptotic expression for the field strength. (It does, however, not show up in the expression for \(Q \), since the corresponding two-form in the formula for \(*F \) is not proportional to the volume-form of the two-sphere.) As we have argued above, one obtains a two-dimensional family of excitations in the black hole case, provided that the non-trivial asymptotic degree of freedom, \(c_0 \), is taken into account. Hence one can, in particular, consider solutions with either \(Q = 0 \), \(J = 0 \) or, as in \(\xi_i \), \(c_0 = 0 \).

We start with the uncharged excitations of EYM black holes, \(Q = 0 \). Like in the Abelian case, these have a non-static metric, \(\delta \alpha \neq 0 \), and are rotating, \(J \neq 0 \). However, despite the fact that the electric YM charge vanishes, there now arises a non-vanishing electric YM field, \(E = d\delta \varphi + [A, \delta \varphi] \). Asymptotically, this becomes

\[
E = \tau_z Q \frac{Q}{r^2} dr + 2\gamma M \frac{c_0}{r} (\tau_r d \cos \vartheta - \cos \vartheta d \tau_r), \tag{15}
\]

which vanishes for \(Q = 0 \) only in the Abelian case (since \(w = 1 \), i.e., \(\gamma = 0 \)). (As already mentioned, the \(c_0 \) term is tangential to the two-sphere and does, therefore, not contribute to the electric YM charge. It is also not hard to verify that the contributions of this term to the total energy and to the action are finite.)

Even more interesting is the class of stationary excitations with \(J = 0 \). Whereas in the Abelian case \(J = 0 \) implies \(\delta a = 0 \), this is no more true for perturbations of static EYM black holes: Despite the fact that the angular momentum vanishes, the perturbed metric is not static, as is already seen from the asymptotic behavior \(\xi_i \). (Again, this effect is proportional to \(\gamma \), which vanishes for a Schwarzschild background.) This shows that there do exist EYM black hole solutions with a non-static domain of outer communications and vanishing angular momentum. It is worthwhile noticing that the local angular momentum, \(J(r) \), does not vanish when evaluated for finite values of \(r \), in particular for \(r = r_H \); see Fig. 1. Hence, these black holes have a rotating horizon, \(J(r_H) \neq 0 \), although they are non-rotating in the sense that \(J = 0 \). (In contrast to this, a Kerr-Newman black
within this approximation. However, since the metric field (that is, a region in the domain of outer communications where the Killing field ∂_t becomes space-like). This does, however, not show up in lowest order perturbation theory, since the metric field σ is a background quantity within this approximation.

The stationary excitations of EYM black hole solutions form a two-parameter family. In particular, we have presented a class of non-static black hole space-times with vanishing angular momentum. Both, the existence of a second branch of black holes and the charge-up of solitons due to rotation are typical non-Abelian features of the pure EYM system. While we have shown earlier [4] that the Abelian circularity theorem does not generalize to EYM systems in a straightforward manner, the solutions presented in this letter show that the same is true for the Abelian staticity theorem: In the non-Abelian case, stationary black hole space-times with vanishing angular momentum need not be static, unless they have vanishing electric YM charges.

![FIG. 1. The local charge $Q(r)$ and the local Komar angular momentum $J(r)$ for the non-rotating, non-static excitation of the non-Abelian background black hole with $n = 1$, $r_H = 1$.](image)

Conclusions

We have investigated stationary perturbations of static soliton and black hole solutions to the pure EYM equations. In contrast to boson stars [10] or soliton configurations with Higgs fields [7], the BK solitons do admit rotating excitations with continuous angular momentum. We have argued that this particular feature of the pure EYM system is due to the slow (polynomial) decay of the static background configurations. The stationary excitations of EYM black hole solutions form a two-parameter family. In particular, we have presented a class of non-static black hole space-times with vanishing angular momentum. Both, the existence of a second branch of black holes and the charge-up of solitons due to rotation are typical non-Abelian features of the pure EYM system. While we have shown earlier [4] that the Abelian circularity theorem does not generalize to EYM systems in a straightforward manner, the solutions presented in this letter show that the same is true for the Abelian staticity theorem: In the non-Abelian case, stationary black hole space-times with vanishing angular momentum need not be static, unless they have vanishing electric YM charges.

1. R. Bartnik and J. McKinnon, Phys. Rev. Lett. 61, 141 (1988).
2. M. S. Volkov and D. V. Gal’tsov, JETP Lett. 50, 345 (1989); H. P. Künzle, A. K. M. Masood-ul-Alam, J. Math. Phys. 31, 928 (1990); P. Bizon, Phys. Rev. Lett. 64, 2644 (1990).
3. See, e.g., M. Heusler, Black hole uniqueness theorems (Cambridge University Press, Cambridge, England, 1996); P. T. Chruściel, No-hair theorems: Folklore, conjectures, results, In: Differential geometry and mathematical physics, eds. J. Beem and K.L. Duggal (Am. Math. Soc., Providence, 1994).
4. M. Heusler, Helv. Phys. Acta. 69, 501 (1996).
5. S. A. Ridgway and E. J. Weinberg, Phys. Rev. D 52, 3440 (1995); B. Kleihaus and J. Kunz, Phys. Rev. Lett. 78, 2527 (1997).
6. M. S. Volkov and N. Straumann, Slowly rotating non-Abelian black holes, hep-th 9704026 (1997) (to appear in Phys. Rev. Lett.)
7. O. Brodbeck and M. Heusler, Stationary perturbations and infinitesimal rotations of static Einstein-Yang-Mills
configurations with bosonic matter, gr-qc 9706064 (1997) (to appear in Phys. Rev. D.)

[8] D. Sudarsky and R. M. Wald, Phys. Rev. D 47, R5209 (1993); Phys. Rev. D 46, 1453 (1992); see also P. T. Chruściel and R. M. Wald, Commun. Math. Phys. 163, 561 (1994).

[9] B. Carter, Mathematical foundations of the theory of relativistic stellar and black hole configurations, In: Gravitation in Astrophysics, eds. B. Carter and J.B. Hartle, New York, Plenum 1987.

[10] Y. Kobayashi, M. Kasai and T. Futamase, Phys. Rev. D 50, 7721 (1994); F. D. Ryan, Phys. Rev. D 55, 6081 (1997); S. Yoshida and Y. Eriguchi, Phys. Rev. D 56, 762 (1997); F. Schunck and E. Mielke, Rotating boson stars, In: Relativity and scientific computing, eds. F. Hehl, R. Puntigam and H. Ruder, Springer, Berlin 1996.