Rediscovery of *Angiopteris tonkinensis* (Marattiaceae) after 100 years, and its revision

Ting Wang¹²³, Bo Xiao⁴, En-De Liu⁵, Khang Sinh Nguyen⁶, Jie-Qiu Duan²⁷, Kang-Lin Wang⁸, Yue-Hong Yan³, Jian-Ying Xiang¹²

¹ Southwest Forestry University, College of Biodiversity Conservation, Kunming 650224, China ² Southwest Forestry University, Yunnan Academy of Biodiversity, Kunming 650224, China ³ Shanghai Chenshan Plant Science Research Centre, Chinese Academy of Sciences, Chenshan Botanical Garden, Shanghai 201602, China ⁴ Forest Bureau of Malipo County, Malipo 663600, China ⁵ Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China ⁶ Institute of Ecology and Biological Resources, Vietnam Academy of Sciences and Technology, 18 Hoang Quoc Viet, Nghia Do, Cau Giay, Hanoi, 100000, Vietnam ⁷ Southwest Forestry University, College of Life Science, Kunming 650224, China ⁸ Southwest Forestry University, Green Development Institute, Kunming 650224, China

Corresponding author: Jian-Ying Xiang (jy_xiang@hotmail.com)

Academic editor: Thais Almeida | Received 1 June 2020 | Accepted 19 August 2020 | Published 15 September 2020

Citation: Wang T, Xiao B, Liu E-D, Nguyen KS, Duan J-Q, Wang K-L, Yan Y-H, Xiang J-Y (2020) Rediscovery of *Angiopteris tonkinensis* (Marattiaceae) after 100 years, and its revision. PhytoKeys 161: 1–9. https://doi.org/10.3897/phytokeys.161.54912

Abstract

The border area between south-eastern Yunnan, China and northern Vietnam is one of the regions with richest biological diversity including that of the fern genus *Angiopteris* (Marattiaceae). Based on the analysis of morphology and DNA sequences of multiple chloroplast regions (*atpB, rbcL, rps4-trnS spacer* and *trnL-F spacer*), we revised *Angiopteris tonkinensis* (Hayata) J.M.Camus and proposed a new combination *Archangiopteris tamdaoensis* (Hayata) J.Y.Xiang & T.Wang, comb. nov., which was previously regarded as a synonym of *A. tonkinensis*. We found support for a monophyletic *Angiopteris* including *Protomarattia*. This discovery adds two new distribution sites of *A. tonkinensis*, one in China (Malipo, Yunnan) and one in Vietnam (Quan Ba, Ha Giang). We suggest *A. tonkinensis* should be categorised as Critically Endangered (CR) species according to the criteria of IUCN.

Keywords

Archangiopteris tamdaoensis, fern phylogeny, morphology, *Protomarattia tonkinensis*, taxonomy
Introduction

The fern genus *Angiopteris* Hoffmann (1796) comprises about 30–40 species in the world and 28 species (17 endemic) in China (He and Christenhusz 2013). The border area between south-eastern Yunnan, China and northern Vietnam is one of the regions with the richest biological diversity including that of *Angiopteris*. According to He and Christenhusz (2013), there are 16 species (five endemic) in this area. The endemic species in this area include *Angiopteris bipinnata* (Ching) J.M.Camus (Camus 1989), *A. dianyuecola* Z.R.He & W.M.Chu (He and Chu 2006), *A. latipinna* (Ching) Z.R.He, W.M.Chu & Christenh. (He and Christenhusz 2013), *A. sparsisora* Ching (Ching 1982) and *A. subrotundata* (Ching) Z.R.He & Christenhusz (He and Christenhusz 2013).

During our fieldwork in Malipo (south-western China) on 18 May 2018 and Quan Ba (northern Vietnam) on 10 Oct 2019, two small populations of ferns caught our attention (Fig. 1). We identified them as *Protomarattia tonkinensis* Hayata (1919), a very rare species known only from the type specimen collected in Monte Tamdao (Tonkin) of Vietnam and that had never been recorded again since 1919.

Protomarattia Hayata (1919), a monotypic genus of Marattiaceae endemic to the Vietnam, was described based on *Protomarattia tonkinensis*. The author pointed out that it differs from its morphologically-similar species, *Archantiopteris tamdaensis* Hayata (1919) by elongated linear synangia. Based on the morphological study on the isotype of *Protomarattia tonkinensis*, Christensen and Tardieu-Blot (1935) suggested that ‘the sori are young, pressed against each other, compressed, but not fused into ‘synangia’’ and treated *P. tonkinensis* as a synonym of *Ar. tamdaensis*. Later, Ching (1958) treated *P. tonkinensis* and *Ar. tamdaensis* as synonyms of *Ar. tonkinensis* (Hayata) Ching (1958). Based on previous studies and her own morphological study, Camus (1989) merged *Protomarattia* and *Archantiopteris* into *Angiopteris* and transferred *Ar. tonkinensis* to *Angiopteris* under the new combination *Angiopteris tonkinensis*.

![Figure 1. Distribution records of *Protomarattia tonkinensis* Hayata noted by Hayata (1919, green star) and new records in China and Vietnam (red stars).](image-url)
Rediscovery of *Angiopteris tonkinensis* after 100 years, and its revision

In the modern phylogenetic era, Camus’ (1989) treatment has generally been accepted by many researchers (Murdock 2008a, b; He and Christenhusz 2013; Yan and Zhou 2018; Tropicos (www.tropicos.org)).

In this study, we aimed to explore the identity of the materials collected from Malipo, Yunnan, China and Quan Ba, Ha Giang, Vietnam by means of morphological and phylogenetic studies. We inferred the phylogeny of *Protomarattia tonkinensis* and *Archangiopteris tamdaoensis* based on four chloroplast regions (*atpB*, *rbcL*, *rps4-trnS* and *trnL-F*), then we revised their taxonomic status.

Material and methods

Morphological analysis

The Voucher specimens were deposited at Southwest Forestry University (SWFU), the herbarium of Institute of Ecology and Biological Resources, Hanoi, Vietnam (HN) and Shanghai Chenshan Botanical Garden Herbarium (CSH). For morphological comparisons, primary literature (Hayata 1919) and the specimens were critically checked. Petiole scales were observed with a Nikon ECLIPES E100 biological microscope. Sporangia and venation of *Protomarattia tonkinensis* were observed with a LEICA M165 FC stereoscopic fluorescence microscope. The ornamentation of spores was observed with a ZEISS electron scanning microscope.

Phylogenetic analysis

We analysed 19 samples of Marattiaceae with DNA sequences of four chloroplast regions (*atpB*, *rbcL*, *rps4-trnS* spacer and *trnL-F* spacer). Fourteen sequences of seven species were newly generated for this study and their voucher information and GenBank accession numbers are presented in Table 1. Additional sequences of five species were downloaded from GenBank and their GenBank accession numbers are presented in Table 2.

Total genomic DNA was extracted from silica-gel dried leaves using the TSINGKE plant DNA extraction kit (generic). The sequences were amplified using the primers designed by previous studies: primers e and f for *trnL-F* gene (Li and Lu 2006), F1 and R4 for *rbcL* gene (Murdock 2008a), rps5’ (Nadot et al. 1994) and *trnS* R (Smith and Cranfill 2002) for *rps4-trnS*, atpB-F1 (Murdock 2008a) and atpE 384R (Wolf 1997) for *atpB*. Sequencing was performed using the ABI 3730XL DNA analyser (Applied Biological Systems, Foster City, CA, USA).

Sequences were assembled and edited with SeqMan (Burland 1999) and then aligned and manually adjusted on Mega7.0 (Kumar et al. 2016). To estimate phylogenetic relationships, we applied Maximum Likelihood (ML) analysis with concatenated DNA datasets. PartitionFinder2 (Lanfear et al. 2016) was used to select a subset scheme and substitution models as assessed by the Bayesian Information Criterion (BIC). The best-fit scheme proposed two subsets: (*rps4-trnS, trnL-F*) and (*atpB, rbcL*). The best-fit
Maximum Likelihood analyses were performed using IQ-TREE v.1.6.8 (Nguyen et al. 2015) with 1000 thorough bootstrap replicates. Bootstrap values were labelled on the tree branches.

Endangered categories analysis

Following the Red List Categories and Criteria (IUCN 2001), we used the GEOCAT tool (http://geocat.kew.org/; Bachman et al. 2011) to assess the current status of *Poromarattia tonkinensis*.

Results

The spores of *Protomarattia tonkinensis* were roundish-oblong. The ornamentation of the external perispore was coarsely echinate with spines occasionally forked at their apices and fused at their bases. Scales peltate, reddish-brown lanceolate, margin entire to sparsely denticulate, apex acuminate and scale cells elongate (Fig. 2). *Protomarattia tonkinensis* is morphologically quite similar to *Archangiopteris tamdaoensis* Hayata (Table 3), especially the horizontal dorsiventral rhizomes and simply pinnate fronds, but the former has submarginal synangia, ca. 4–6 mm, sporangia fully fused into synangia which lack pedicels, whereas the latter has medial sori, ca. 7–10 mm, sporangia respectively fused at base into receptacles (Hayata 1919; He and Christenhusz 2013).
Rediscovery of *Angiopteris tonkinensis* after 100 years, and its revision

The combined data matrix included up to 2788 nucleotides for each of the 19 sequences of 12 species. The phylogenetic analyses (ML) resolved eight accessions of *Protomarattia tonkinensis* in a clade clearly separated from *Archangiopteris tamdaoensis* (Fig. 3). *Angiopteris, Archangiopteris* and *Protomarattia* form a monophyletic group with high support value, which proved that they were more closely related than with *Ptisana*.

Discussion

In the field, the populations of *Protomarattia tonkinensis* have eight mature individuals in Malipo and seven mature individuals (clones of the same individual excluded) in Quan Ba. Before our study, the species had not been recorded since its publication about 100 years ago. The assessment result shows that *P. tonkinensis* should be assessed as Critically Endangered (CR). More fieldwork is needed in similar forest regions in south-western China, Myanmar and Vietnam to confirm its distribution and conservation status.

There have been a number of controversies surrounding *Protomarattia tonkinensis* since its publication. Some suggested that it should be treated as a synonym of *Archangiopteris tamdaoensis* (Christensen and Tardieu-Blot 1935; Copeland 1947; Ching 1958; Ching 1959; Chen 1964; Camus 1989; He and Christenhusz 2013), while others regarded *P. tonkinensis* as a “good” species and argued that *Protomarattia* should be treated as a different genus (Pichi-Sermolli 1968, 1972).

Table 2. Details of material downloaded from GenBank and their accession numbers.

Species	Genbank accession number
Marattia alata Sw.	EU439108, EU439060, EU439082
Ptisana fraxinea (Sm.) Murdock.	EU439131, EU439067, EU439088
Ptisana purpurascens (de Vriese) Murdock	EU439132, EU439068, EU439089
Ptisana melanestica (Kuhn) Murdock	EU439134, EU439069, EU439090
Ptisana salicina (Sm.) Murdock	EU439113, EU439063, EU439085

Table 3. Morphological comparison of *Protomarattia tonkinensis* and *Archangiopteris tamdaoensis*.

Characters	*Protomarattia tonkinensis* Hayata (BX19001 and AT1-2)	*Archangiopteris tamdaoensis* Hayata (SG2765; Hayata 1919; He and Christenhusz 2013)
Frond	20–30 cm	10–40 cm
Stipe	30–40 cm	40–45 cm
Rhizome	Long creeping	Long creeping
Scales of stipe	Reddish-brown lanceolate scales, with teeth on the edge.	Brown lanceolate scales, with teeth on the edge.
Pulvinus of stipe	1	1
Laminae	Once pinnate; pinnae 2 or 3 opposite or alternate pairs, elliptic. 25–28 cm × 5–6 cm.	Once pinnate; pinnae 2–4 alternate pairs, elliptic. 20–25 cm × 4–5 cm.
Veins	Obvious	Obvious
Sori	Synangium; locules have numerous sori; 3–5 mm from margin, ca. 4–6 mm.	Sporangia are independent of each other; medial between the costa and margin, 0.7–1 cm.
Exospores	Coarsely echinate	Rod-like ornamentation

The combined data matrix included up to 2788 nucleotides for each of the 19 sequences of 12 species. The phylogenetic analyses (ML) resolved eight accessions of *Protomarattia tonkinensis* in a clade clearly separated from *Archangiopteris tamdaoensis* (Fig. 3). *Angiopteris, Archangiopteris* and *Protomarattia* form a monophyletic group with high support value, which proved that they were more closely related than with *Ptisana*.
Figure 2. Morphological observation. Protomarattia tonkinensis (BX19001): A habit B frond C, E, F, G, H, M, O sporangia D rhizome N scale of stipe P exospores. Protomarattia tonkinensis (AT1-2): I whole plant J rhizome K stipe L sporangia. Archangiopteris tamdaoensis (SG2765): Q, U whole plant R frond S, T sporangia; Archangiopteris tamdaoensis (Ching 1958): V whole plant W, X1 sporangia X2 exospores X3 scale.

Millay 1976). Based on morphological and phylogenetic analysis, we are supporting the decision by Camus (1989) to transfer *P. tonkinensis* to *Angiopteris tonkinensis* (Hayata) J.M.Camus. *Protomarattia tonkinensis*, however, is distinguishable from *Ar. tamdaoensis*, previously subsumed under *Angiopteris tonkinensis* by Camus (1989). We hereby propose a new combination *Angiopteris tamdaoensis* (Hayata) J.Y.Xiang & T.Wang, comb. nov.
Rediscovery of *Angiopteris tonkinensis* after 100 years, and its revision

Taxonomic treatment

Angiopteris tonkinensis (Hayata) J.M.Camus

Protomarattia tonkinensis Hayata, Bot. Gaz. 67: 88. 1919; Archangiopteris tonkinensis (Hayata) Ching, Ic. Fil. Sinic. V (1958) t. 209. Basionym

Type. Vietnam. Tonkin, 30 July 1917, Bunzo Hayata s.n. (*Holotype*, K001057735!)

Additional specimens examined. China. Yunnan: Zhuang-miao Autonomous Prefecture of Wenshan, Malipo, Hua mountain, Chouryang river, 850 m alt., 18 May 2018, J. Y. Xiang, T. Wang, M. F. Long, *BX19001* (SWFU); Vietnam. Ha Giang: Quan Ba, Thai An Commune, Seo Lung, 925 m alt., 10 October 2019, L. Averyanov, Nguyen Sinh Khang, T. Maisak, *AT1* (SWFU, HN).

Distribution. Yunnan, China and Northern Vietnam.

Angiopteris tamdaoensis (Hayata) J.Y.Xiang & T.Wang, comb. nov. urn:lsid:ipni.org:names:77211596-1

Archangiopteris tamdaoensis Hayata, Bot. Gaz. 67: 88. 1919; Protangiopteris tamdaoensis (Hayata) Hayata, Bot. Mag. Tokyo 42(498): 309. 1928. Basionym

Type. Vietnam Tonkin, August 1917, Bunzo Hayata, s.n.

Distribution. Hainan, China and Northern Vietnam.

![Figure 3](image-url). Maximum Likelihood phylogeny derived from the combined data (atpB+rbcL+rps4-trnS+trnL-F). Numbers on branches are support values of ML, * means 100%.
Acknowledgements

We thank Ming-Feng Long for help in our fieldwork. Thanks go to Hui Shang, Jiang-Ping Shu and Hong-Jin Wei for their help in providing the materials of *Angiopteris tamdaoensis*, as well as Rrgengaowa Mo and Zuo-Ying Wei for their help in analysis. We are grateful to Samuli Lehtonen, Andrew Murdock, Thais Almeida and Li-Bing Zhang for their valuable comments.

References

Bachman S, Moat J, Hill AW, de la Torre J, Scott B (2011) Supporting Red List threat assessments with GeoCAT: Geospatial conservation assessment tool. ZooKeys 150: 117–126. https://doi.org/10.3897/zookeys.150.2109

Burland TG (1999) Dnastar’s lasergene sequence analysis software. Bioinformatics Methods and Protocols 132: 71–91. https://doi.org/10.1385/1-59259-192-2:71

Camus JM (1989) The limits and affinities of Marattialean fern genera in China and the west Pacific. Proceedings of the International Symposium on Systematic Pteridology, 34–35.

Chen HY (1964) Flora of Hainan. Vol. 1. Science Press, Beijing.

Ching RC (1958) Icones Filicarum Sinicarum. Vol. 5. Science Press, Beijing.

Ching RC (1959) *Pteridophyta*. In: Qian SC, Chen HY (Eds) Flora of China, Vol 2. Science Press, Beijing.

Ching RC (1982) *Angiopteris sparsisora* Ching, sp. nov. – a putative bigeneric hybrid. Zhiwu Fenlei Xuebao 20(3): 347.

Christensen C, Tardieu-Blot M (1935) Notulæ Systematicæ Vol. 5. Les Fougeres de l’Indochine IV: Marattiaceae, Paris.

Copeland EB (1947) Genera Filicum – the genera of ferns. Chronica Botanica Company, Waltham.

Hayata B (1919) *Protomarattia*, A New Genus of Marattiaceae, and *Archangiopteris*. Botanical Gazette (Chicago, Ill.) 67(1): 84–92. https://doi.org/10.1086/332399

He ZR, Christenhusz MJM (2013) *Angiopteris Hoffmann*. In: Wu ZY, Raven PH, Hong DY (Eds) Flora of China, Vol 2–3 (Pteridophytes). Science Press, Beijing and Missouri Botanical Garden Press.

He ZR, Chu WM (2006) *Angiopteris Hoffmann*. In: Kunming Institute of Botany, Chinese Academy of Sciences (Eds) Flora of Yunnanica, Vol 20 (Pteridophytes). Science Press, Beijing.

Hoffmann GF (1796) *Angiopteris evecta* (G.Forst.) Hoffm. Commentationes Societatis Regiae Scientiarum Gottingensis 12: 29.

IUCN (2001) IUCN Red List Categories and Criteria: Version 3.1. IUCN Species Survival Commission. IUCN, Gland, Switzerland and Cambridge, UK, 30 pp.

Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33(7): 1870–1874. https://doi.org/10.1093/molbev/msw054

Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B (2016) PartitionFinder 2: New Methods for Selecting Partitioned Models of Evolution for Molecular and Morphologi-
Rediscovery of *Angiopteris tonkinensis* after 100 years, and its revision

Li CX, Lu SG (2006) Phylogenetic and origin time of Chinese *Angiopteris*: Evidence from chloroplast *rbcL* and *trnL-F* sequences. Chinese Science Bulletin 23: 2761–2766.

Millay MA (1976) Synangia of north American Pennsylvanian petrified marattialeans. Ph. D. Thesis, Univ. Illinois.

Murdock AG (2008a) Phylogeny of marattioid ferns (Marattiaceae) inferring a root in the absence of a closely related outgroup. American Journal of Botany 95(5): 626–641. https://doi.org/10.3732/ajb.2007308

Murdock AG (2008b) A taxonomic revision of the eusporangiate fern family Marattiaceae, with description of a new genus *Ptisana*. Taxon 57(3): 737–755. https://doi.org/10.1002/tax.573007

Nadot S, Bajon R, Lejeune B (1994) The chloroplast gene *rps4* as a tool for the study of Poaceae phylogeny. Plant Systematics and Evolution 191(1–2): 27–38. https://doi.org/10.1007/BF00985340

Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Molecular Biology and Evolution 32(1): 268–274. https://doi.org/10.1093/molbev/msu300

Pichi-Sermolli REG (1968) The fern-genus *Protomarattia* Hayata. Webbia 23(1): 153–158. https://doi.org/10.1080/00837792.1968.10669883

Smith AR, Cranfill RB (2002) Intrafamilial relationships of the thelypteroid ferns (Thelypteridaceae). American Fern Journal 92(2): 131–149. https://doi.org/10.1640/0002-8444(2002)092[0131:IROTTF]2.0.CO;2

Wolf PG (1997) Evaluation of *atpB* nucleotide sequences for phylogenetic studies of ferns and other pteridophytes. American Journal of Botany 84(10): 1429–1440. https://doi.org/10.2307/2446141

Yan YH, Zhou XL (2018) Fern of Hainan. China Forestry Publishing, Beijing.