Validation of ISO 9920 clothing item insulation summation method based on an ambulance personnel clothing system

Kalev KUKLANE1, 2* and Róbert TOMA3

1Institute for Safety (IFV), The Netherlands
2Department of Design Sciences, Division of Ergonomics and Aerosol Technology, Lund University, Sweden
3Energy Institute, Brno University of Technology, Czech Republic

Received October 6, 2020 and accepted November 11, 2020
Published online in J-STAGE November 14, 2020

Abstract: This study aimed to validate the summation methods suggested by ISO 9920. Twenty seven items from an ambulance personnel clothing system were selected for testing. The basic insulation of each garment item \(I_{clu} \) was calculated based on the thermal manikin tests. More than 100 realistic clothing combinations were compiled and basic insulation \(I_{cl} \) of these ensembles was calculated according to ISO 9920. These were ranked after the calculated insulation, and 14 sets covering insulation from 0.63 to 3.33 clo were measured on the thermal manikin for acquiring the basic clothing insulation \(I_{cl} \). Regression analysis was used to compare the summed and measured \(I_{cl} \) values. The difference between values varied from −18 to 12%. The highest percentual difference was for the lightest clothing sets, while the absolute differences were similar over the whole insulation range ranging between −0.17 to 0.18 clo with an average difference of 0.02 clo (−0.16%). All basic insulation values stayed very close to the line of identity \(R^2=0.98 \). The summation equation gave, in the case of this ambulance clothing system, very close results to the measured values. This encourages evaluating and selecting protective clothing combinations for thermal comfort based on individual item measurements.

Key words: Standard method, Basic insulation, Garment item, Modelling, Thermal comfort, Optimal clothing selection, Protective clothing

Introduction

Clothing insulation is one of the basic parameters that affects human heat exchange with the environment. It is used as a common behavioural thermoregulatory measure and is a powerful means to maintain thermal comfort in a wide range of temperatures1). The two most important clothing properties that affect human heat exchange with the environment, are thermal insulation and evaporative resistance. Commonly, these are not evenly distributed over the body surface due to the material choice, clothing design, layering, fit etc. Clothing parameters for body regions can be measured, and the change due to walking and wind can be estimated2–4). Local values can be used in advanced physiological models for exposure evaluation5, 6) and as a feedback for clothing manufacturers to improve their products, or for industries to select the clothing provided to their employees.

There are several methods available to measure or estimate clothing items’ or their combinations’ insulation,
e.g. ASTM F1291, ISO 15831, ISO 9920. ISO 9920 presents databases of clothing ensembles allowing us to sum individual items and presents possibilities to calculate effect of wind and motion. However, it does not account for many effects that occur when dressing the clothing combination and related to clothing fit etc., while some of these effects may counterbalance or amplify each other. The standard has earlier not considered much different clothing styles than western clothing, and corrections are commonly based on workwear, while recent publication cover that gap. Also, modern western clothing has been measured and detailed thermal properties have been reported in literature.

It may be quite laborious to test all the possible clothing combinations that people may wear, and therefore a summation method can be very useful in adding up individual items’ insulation into the insulation of the whole ensemble. Such an outcome can be utilized in standards on evaluation of human thermal environments, e.g. ISO 11079 (IREQ: insulation required for cold environments), ISO 7933 (PHS: predicted heat strain for heat exposure), ISO 7730 (PMV: predicted mean vote; PPD: predicted percentage of dissatisfied for indoor climate range), that require clothing insulation as input for the evaluation of the protection, stress, comfort or thermal climate. These standards allow exposure evaluation by combining environmental and clothing parameters and human activity levels on thermo-physiological basis to predict thermal stress and estimate exposure, or allow their use in mobile apps for decision support to plan for and cope with unfavourable climate conditions. Even the recent version of ISO 7243 (WBGT: wet bulb globe temperature index for work in hot climates) includes a limited table with clothing examples for adjustment of the calculated exposure limits.

However, prediction accuracy depends on the accuracy of its components. A 5% deviation, for example, is accepted for manikin tests by ISO 15831. It counts, for example, for the differences that may occur during dressing of the manikin. To counterbalance the focus on percentual differences then a rough estimation by experience has shown that a measured insulation difference of less than 0.02 m²K/W can hardly be noticed by a user as other factors including fit and dressing habits etc. do influence the outcome more. Thus, for predictions of clothing insulation we can assume that the difference from the true insulation value of less than ±10% can be acceptable. The very same presentation showed, that for various available data sets the summation method could allow for differences far above 20% depending on clothing, confirming the conclusions of Kakitsuba on the influence of many other factors on clothing thermal parameters.

The aim of this study was to validate the summation method suggested by ISO 9920 based on the example of an available ambulance personnel clothing system from the same manufacturer, where various items were meant to work together and fulfill their protective/comfort function.

Methods

Twenty seven items from the Taiga AB (Sweden) ambulance personnel clothing system, shoes and gloves were selected for this study (Table 1). All items were tested individually on the thermal manikin Tore at Lund University according to ISO 15831 following ISO 9920 recommendation (low air velocity), and basic insulation of each garment item (I_{cl}) was calculated. During testing, there was a small difference from suggested air velocity as the chamber air motion could not be set below 0.2 m/s due to the influence on vertical temperature distribution and function of the regulation system. Air velocity in the chamber stayed in average at 0.22 ± 0.08 m/s. Air layer insulation (I_A) was measured in the same conditions.

Based on 27 clothing items over 100 realistic clothing combinations were compiled and basic insulation (I_{cl}) of these clothing ensembles was calculated according to the summation equation given in ISO 9920:

$$I_{cl} = 0.161 + 0.835 \times \sum I_{clu} (1)$$

Also, the simplified equation was used for comparison:

$$I_{cl} = \sum I_{clu} (2)$$

The ensembles were sorted based on the calculated insulation, and 14 sets were selected to reasonably cover the range of insulation values from 0.63 to 3.33 clo. Basic insulation (I_{cl}) of the selected sets were calculated based on thermal manikin measurements. Photographic method based on 2 photos was used to estimate clothing area factor (f_{cl}) of the individual garments and the ensembles. The front and the side photos were used. The f_{cl} estimation and calculation analysis for these particular clothing-sets is described in detail a separate paper.

Simple t-test for paired two sample for means and regression analysis were used to evaluate and compare the estimated and measured basic clothing insulation values.
Results and Discussion

Table 2 shows the insulation of all single items and lists the finally selected combinations’ composition. The evaporative resistances of the selected combinations are available and analysed in Toma et al26).

The difference between measured and estimated basic insulation values varied from −18 to 12% for equation 1 (Table 3), and from −18 to 9% for equation 2 (Table 3). Correlation between measured and calculated insulation values is shown in Fig. 1. Correlation for these randomly picked and measured clothing ensembles was good for both equations.

For equation 1 the differences were commonly less than 10% that was defined by Kuklane and Havenith21) as an aim to be reached for reasonable predictions when used in thermal models. In spite of high difference (over 10–15%) in light clothing (Table 3) the absolute difference in measured and summed insulation values of the tested
sets, according to equation 1, was not higher than in more insulating clothes—the absolute differences were similar and ranged between −0.17 to 0.18 clo (−0.028 m²K/W) with an average difference of 0.02 clo (−0.16%, Table 3). Such difference occurs during manikin testing and may depend on the measuring accuracy of the system, chamber regulation stability and accuracy and consistency of manikin dressing. Measuring standards, e.g. ISO 15831, commonly allow differences up to 5% between individual determinations. At the same time, the human thermal responses will largely be related to the absolute values. I.e. for evaluation of the results the relative difference (%) cannot be the only criteria, but it is important to consider the absolute value depending on clothing insulation. For equation 1 two-tailed t-test between measured and calculated values did not show significant differences (p=0.61), and all basic insulation values for equation 1 stayed very close to the line of identity (R²=0.98, Fig. 1).

The calculated insulation values according to equation 2 were commonly higher than the measured values and absolute differences increased with increasing insulation (Table 3 and Fig. 1). Although the correlation was good (R²=0.98, Fig. 1), then the absolute values differed and the two-tailed t-test between measured and calculated values did show significant differences (p<0.01). Still, as it can be seen from Fig. 1 the equation 2 did provide quite close results for the clothing ensembles up to about 2 clo.

In addition to the extensive ISO 9920 database (originates from McCullough et al.27) and the databases of modern clothing combinations11, 12, there is a need for more information on modern individual garments’ properties. However, it must be remembered, that the tested clothes in this study were the modern western type of industrial style clothing, that have been relatively well studied. Items influenced by modern fashion ideas or from traditional clothing of the other world regions may not get as good

Table 2. Individual clothing items’ insulation and their presence in tested combinations

Item/Ensemble	I_B (m²K/W)	f_B	I_Clu (clo)	T1	T2	T3	T4	T5	T6	T7	T8	T9	T10	T11	T12	T13	T14
Air layer insulation	0.094	1.00		X	X	X	X										
Hopedale sock	0.097	1.02	0.03	X	X	X											
Swede sneakers	0.097	1.04	0.05	X	X	X	X	X	X	X							
Bylot sock	0.102	1.01	0.06							X	X	X	X	X			
Kodiak sock	0.109	1.02	0.11									X	X	X			
Winter shoes	0.105	1.07	0.12									X	X	X	X		
Hestra fleece gloves	0.096	1.01	0.02										X	X	X		
Grizzly mitten 2.0	0.101	1.02	0.06											X			
Hillside cap 3.0	0.095	1.00	0.01														
Biwak cap	0.097	1.01	0.03							X	X	X	X	X			
Hawk boxer shorts	0.104	1.02	0.08							X	X	X	X	X	X		
Eagle PW trousers	0.114	1.03	0.15							X	X						
Hawk shirt	0.120	1.07	0.21										X	X			
Eagle PW sweater	0.131	1.09	0.29												X	X	
Power trouser	0.125	1.11	0.26										X	X	X	X	
Sitka trouser lining	0.137	1.21	0.38													X	
Pike Polo shirt	0.125	1.10	0.26														X
Wilmore AMB sweater shirt	0.139	1.08	0.34														
Power sweater 2.0	0.144	1.04	0.35														
Ruby AMB softshell	0.142	1.13	0.38														
Denver lining	0.153	1.15	0.46														
Thule base jacket 2.0	0.167	1.17	0.56														
Riverside shorts	0.111	1.07	0.15														
Trader trousers 2.0	0.126	1.14	0.28														
Alarm trousers	0.132	1.18	0.34														
Emergency WP trousers	0.142	1.20	0.41														
Alarm jacket	0.153	1.17	0.47														
Emergency WP reflex jacket	0.158	1.22	0.52														
match between measured and calculated values. More research is needed to validate the relationship or develop new ones based on clothing design, that considers draping, overlap, length and number of the layers, material stiffness, material compressibility etc. The recent studies in the field have started to fill this gap.

Conclusion

The equation 1 to estimate basic clothing insulation \(I_{cl} \) from individual items’ insulation \(I_{clu} \) gave, in the case of this modern ambulance personnel clothing system with a relatively even insulation distribution over the whole body surface, very close results to the measured values (root mean square deviation 0.12 clo) and placed the trendline practically overlapping the line of identity (inclination 0.99 and intercept 0.04, \(R^2=0.98 \)). This encourages evaluating and selecting protective clothing for ambulance personnel based on individual item measurements. It also allows to assume, that the calculations work for other modern workwear systems, at least from this manufacturer’s assortment. For clothing insulation up to 2 clo, it can be assumed that simplified method (equation 2) works reasonably well, too. Considering that many manufacturers follow the modern, sporty workwear design based on layer-by-layer principle and use similar materials, then it can be assumed that the tested items’ insulation values are relevant even for other manufacturers’ products and could help to estimate basic insulation of various clothing ensembles for estimating exposure limits and thermal load in human thermal environments.

Disclaimer

The opinions or assertions contained herein are the private views of the authors and are not to be construed as official or as reflecting the views of their respective organizations.

Acknowledgements

The study was partly supported financially by the ClimApp project (Translating climate service information into personalized adaptation strategies to cope with thermal climate stress, http://www.jpi-climate.eu/nl/25223441-ClimApp.html), which is a part of ERA4CS, an ERA-NET initiated by JPI Climate, and funded by FORMAS (SE, grant 2017-01739), IFD (DK, case 7110-00003B), NWO (NL, grant 438.17.806) with co-funding by the European Union (Grant 690462). This research was also supported...
by two projects (RV9080000301, FSI-S-17_4444) at the Brno University of Technology, Czech Republic. The authors thank Taiga AB for providing the clothing items of their ambulance personnel clothing system.

References

1) Parsons K (2014) Human Thermal Environments, 3rd Ed. CRC Press, Boca Raton.
2) Lu Y, Wang F, Wan X, Song G, Zhang C, Shi W (2015) Clothing resultant thermal insulation determined on a movable thermal manikin. Part II: effects of wind and body movement on local insulation. Int J Biometeorol 59, 1487–98. [Medline] [CrossRef]
3) Veselá S, Psikuta A, Frijns AJH (2018) Local clothing thermal properties of typical office ensembles under realistic static and dynamic conditions. Int J Biometeorol 62, 2215–29. [Medline] [CrossRef]
4) Wang F, del Ferraro S, Lin LY, Sotto Mayor T, Molinaro V, Ribeiro M, Gao C, Kuklane K, Holmér I (2012) Localised boundary air layer and clothing evaporative resistances for individual body segments. Ergonomics 55, 799–812. [Medline] [CrossRef]
5) Fojtlín M, Psikuta A, Fišer J, Toma R, Annaheim S, Jícha M (2019) Local clothing properties for thermo-physiological modelling: comparison of methods and body positions. Build Environ 155, 376–88. [CrossRef]
6) Havenith G, Fiala D (2015) Thermal indices and thermophysiological modeling for heat stress. Compr Physiol 6, 255–302. [Medline] [CrossRef]
7) ASTM F1291-16 (2016) Standard Test Method for Measuring the Thermal Insulation of Clothing Using a Heated Manikin. American Society of Testing and Materials International (ASTM), Philadelphia.
8) ISO 15831:2004 (2004) Clothing—Physiological effects—measurement of thermal insulation by means of a thermal manikin. International Organisation for Standardisation, Geneva.
9) ISO 9920:2009 (2009) Ergonomics of the thermal environment—estimation of the thermal insulation and evaporative resistance of a clothing ensemble. International Organisation for Standardisation, Geneva.
10) Al-ajmi FF, Loveday DL, Bedwell KH, Havenith G (2008) Thermal insulation and clothing area factors of typical Arabian Gulf clothing ensembles for males and females: measurements using thermal manikins. Appl Ergon 39, 407–14. [Medline] [CrossRef]
11) Havenith G, Kuklane K, Fan J, Hodder S, Ouzzahra Y, Lundgren K, Au Y, Loveday D (2015) A database of static clothing thermal insulation and vapor permeability values of non-western ensembles for use in ASHRAE standard 55, ISO 7730, and ISO 9920. ASHRAE Trans 121, 197–215.
12) Smallcombe J, Hodder S, Loveday D, Kuklane K, Mlynarczyk M, Halder A, Petersson J, Havenith G (2021) Updated database of clothing thermal insulation and vapor permeability values of western ensembles for use in ASHRAE standard 55, ISO 7730 and ISO 9920; results of ASHRAE RP-1760. ASHRAE Trans, 126.
13) ISO 11079:2007 (2007) Ergonomics of the thermal environment—determination and interpretation of cold stress when using required clothing insulation (IREQ) and local cooling effects, International Organisation for Standardisation, Geneva.
14) ISO 7933:2004 (2004) Ergonomics of the thermal environment—analytical determination and interpretation of heat stress using calculation of the predicted heat strain. International Organisation for Standardisation, Geneva.
15) ISO 7730:2005 (2005) Ergonomics of the thermal environment—analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. International Organisation for Standardisation, Geneva.
16) Holmér I (1988) Assessment of cold stress in terms of required clothing insulation—IREQ. Int J Ind Ergon 3, 159–66. [CrossRef]
17) Kuklane K, Toma R, Lucas RA (2020) Insulation and evaporative resistance of clothing for sugarcane harvesters and chemical sprayers, and their application in PHS model-based exposure predictions. Int J Environ Res Public Health 17, 3074. [Medline] [CrossRef]
18) Malchaire J, Kampmann B, Mehnett P, Gebhardt H, Piette A, Havenith G, Holmér I, Parsons K, Alfano G, Griefahn B (2002) Assessment of the risk of heat disorders encountered during work in hot conditions. Int Arch Occup Environ Health 75, 153–62. [Medline] [CrossRef]
19) Petersson J, Kuklane K, Gao C (2019) Is there a need to integrate human thermal models with weather forecasts to predict thermal stress? Int J Environ Res Public Health 16, 4586. [Medline] [CrossRef]
20) ISO 7243:2017 (2017) Ergonomics of the thermal environment—assessment of heat stress using the WBGT (wet bulb globe temperature) index. International Organisation for Standardisation, Geneva.
21) Kuklane K, Havenith G (2017) Clothing design parameters that affect estimation of clothing insulation change due to posture and motion. ICEE2017, Environmental Ergonomics XVII. Editors: Local organising committee. International Society for Environmental Ergonomics, November 12–18, 2017, Kobe.
22) Kakitsuba N (2004) Investigation into clothing area factors for tight and loose fitting clothing in three different body positions. J Hum Environ Syst 7, 75–81. [CrossRef]
23) Hänel SE (1983) A joint Nordic project to develop an improved thermal manikin for modeling and measuring human heat exchange. In: Paper Presented at the Medical and Biophysical Aspects on Protective Clothing, Lyon, 280–282.
24) Kuklane K, Heidmets S, Johansson T (2006) Improving thermal comfort in an orthopaedic aid: Better Boston
Brace for scoliosis patients. In: Proceedings of the Paper Presented at the 6th International Meeting on Manikins and Modelling (6I3M), October 16–18, 2006, The Hong Kong Polytechnic University, Hong Kong, 343–351.

25) Kuklane K, Toma R (2021) Common clothing area factor estimation equations are inaccurate for highly insulating (Icl>2 clo) and non-western loose-fitting clothing ensembles. Industrial Health (accepted).

26) Toma R, Kuklane K, Fišer J, Jícha M (2019) Evaporative resistance calculations analysis based on prewetted thermal manikin measurements. ICEE2019, Environmental Ergonomics XVIII. Editors: Local organising committee. International Society for Environmental Ergonomics, July 7–12, 2019, Amsterdam.

27) McCullough EA, Jones BW, Huck J (1985) A comprehensive data base for estimating clothing insulation. ASHRAE Trans 91, 29–47.

28) Mert E, Psikuta A, Bueno MA, Rossi RM (2017) The effect of body postures on the distribution of air gap thickness and contact area. Int J Biometeorol 61, 363–75. [Medline] [CrossRef]