Evaluation of the Antistaphylococcic Activity of *Terminalia macroptera* Guill et Perr (*Combretaceae*) Stem Bark Extracts

Traore Youssouf¹, *, Ouattara Karamoko¹, Ouattara Abou¹,², Méité Souleymane³, Bagré Issa¹, Konan Kouadio Fernique¹, Coulibaly Adama¹, Nathalie Kouadio Guessennd³

¹Pharmacodynamics of Laboratoire-Biochemical-Unit Training and Research in Biosciences, University Félix Houphouët-Boigny in Abidjan 22, Ivory Coast
²UFR Agroforestry, Department of Biochemistry, Microbiology, University Jean Guede Lorougnon, Daloa, Ivory Coast
³Faculty of Medical Sciences, Felix Houphouët-Boigny University Côte d’Ivoire, Surveillance Unit of Resistance of Micro-organisms for Anti-Infective (ASSURMI), Department of Bacteriology Virology of the Pasteur Institute, Ivory Coast

Email address: Youl75youl@yahoo.fr (T. Youssouf)

To cite this article: Traore Youssouf, Ouattara Karamoko, Ouattara Abou, Méité Souleymane, Bagré Issa, Konan Kouadio Fernique, Coulibaly Adama, Nathalie Kouadio Guessennd. Evaluation of the Antistaphylococcic Activity of *Terminalia macroptera* Guill et Perr (*Combretaceae*) Stem Bark Extracts. *American Journal of BioScience*. Vol. 3, No. 6, 2015, pp. 221-225. doi: 10.11648/j.ajbio.20150306.14

Abstract: Antibacterial activity of ethanolic 70% and aqueous extracts of *Terminalia macroptera* were carried out against five different strains of *Staphylococcus aureus* Meti-R (S. aureus Meti-R 1541; S. aureus Meti-R 235; S. aureus Meti-R 466; S. aureus Meti-R 485; S. aureus Meti-R 246) and reference strains S. aureus ATCC 25923. Two methods have been used: the method of wells in the agar was used to test the sensibility of bacterial strains while the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) were determined by the dilution method in liquid medium. Among all the tested strains, ethanolic 70% extract has given the inhibition diameters included between 20 and 24 mm whereas the aqueous extract has varied from 12.67 to 19.33 mm. The values obtained with the Minimum Inhibitory Concentration of (MIC) are between 6.25 and 50 mg/ml and those of Minimum Bactericidal Concentration (MBC) are between 6.25 and 50 mg/ml. Moreover the ethanolic 70% extract has shown the best bactericidal activity against all the tested.

Keywords: *Terminalia macroptera*, *Staphylococcus aureus* Meti-R, Aqueous Extract, Ethanolic 70% Extract

1. Introduction

Staphylococcus aureus is responsible for many infections as respiratory tract diseases (pneumoniae, bronchitis), wounded mucous infections, sinusitis, endocarditis, food poisoning and carbuncles. They are also the germs frequently met during surgical wound infections which are often provoked by the use of intravascular catchers or by the spread of bacteria from another source of infection [1].

Presently, the sequencing has allowed counting many species of strains belonging to the *Staphylococcus* family [2]. Most of these species is part of commensal human flora so they live harmony with the host organism. For immunodepressed and generally when the conditions because unfavorable, these species become quickly pathogenic. So for populations at risk especially the drug addicts, the HIV positive and even the former prisoners the rate of *S. aureus* resistant to methicillin is very high [3, 4, 5]. Also *Staphylococcus aureus* is the most pathogenic among all the species of *Staphylococcus* and it is responsible for almost 25% of septicemias met in hospitals [6], and the Treatment is long then expensive [7].

Many scientific researchers have allowed to bring out the therapeutic properties of some naturals substances from plants in the prevention and the treatment of pathologies caused by the microorganisms resistant to antibiotics commonly used [8, 9]. That makes the medicinal plants some potential sources of new molecules to explore. It’s in this context, that our team of research was interested to *Terminalia macroptera* (*combretaceae*), a plant species of the savanna that can be also found in the tropical forests of Africa (Many authors have reported to use the leaves, the stem barks and the roots of *T. macroptera* in the treatment of...
many diseases caused by infections in African traditional medicine [10, 11].

The present study was undertaken to evaluate the activities of two extracts of *Terminalia macroptera* on the growth in vitro of five strains of *Staphylococcus aureus* Meti-R and a reference strains.

2. Materials and Methods

2.1. Plant Material

It consists of bark *Terminalia macroptera* Guill. et Perr. (*combretaceae*). These barks were collected in April 2012 in Niakara (north of Ivory Cost). Their authentication was performed by professor Ake-Assi of National Center Floristic (NCF), University Felix Houphouet Boigny of Cocody-Abidjan where a sample is retained.

2.2. Bacterial Strains

The bacteria used for the biological tests are *Staphylococcus aureus* resitants to meticillin (*S. aureus* meti-R 1541; *S. aureus* Meti-R 235; *S. aureus* meti-R 466; *S. aureus* meti-R 485; *S. aureus* meti-R 246) provided by pleural liquid, suppuration and probe button and *S. aureus* ATCC 25923 (reference strain). All the bacteria strains were provided by the department of bacteriology and virology, Institute Pasteur of Ivory Cost. (I.P.I.C).

2.3. Preparation of Plants Extracts

The stem barks of *T. macroptera* collected were washed cut and has been dried shade powder by a type IKAMAG-RCT grinder. According to the methods described by [12, 13], 100 g of plant powder have been macerated in 1 L of distilled water then homogenized under magnetic agitation for 24 hours at 25°C with a IKAMAG-RCT type agitator. Distilled water then homogenized under magnetic agitation once through whattman paper n°2. The volume of filtrate two times through hydrophilic cotton (cotton wool) then 13], 100 g of plant powder have been macerated in 1 L of RCT grinder. According to the methods described by [12, 13].

2.4. Study of the Antibacterial Activity of Different Extracts

For each bacterial strain, inoculums was prepared by homogenizing 0.1 ml of a suspension opalescent 3 hours in to 10 ml of Muller-Hinton broth concentrate twice in order to obtain a bacterial load estimated at 5.10⁶ CFU/ml and constitute the dilution 10⁰.

2.5. Determining Zones of Inhibition of Growth

The susceptibility test have been carried out on Muller-Hinton agar (Bio-Rad, France) by using wells [15] so, like in the case of classic anti-biogram realization, each well or hole of 6 mm in diameter has been filled with 80 µl of extract concentration 200 mg/ml. Taking care to separate two holes at least 20 mm. A control well was carried out for each bacterial strain with 80 µl of the solution mixture of DMSO/Sterile distilled water V/V [16, 17]. After a pre-release of 45 minutes at room temperature under the hood, the whole was incubated in an even at 37° C for 18 to 24 hours. Meanwhile, the oxacillin (5 µg) and cefoxitin (30 µg) were used as positive controls. After incubation; the action of extracts is determined by measuring an area of growth inhibition (lack of colonies) around the well.

2.6. Determination of Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC)

Dilution method in liquid medium was used to determine these antimicrobials parameters [18]. This, in a series of 8 hemolytic tubes numbered C1 to C8 was introduced 1 ml of the bacterial inoculums estemeed to 5.10⁶ UFC. Then 1 ml of a plant extract with a known concentration according to the range of prepared concentration has added in the same tubes. This distribution of plant extract is made so that 1 ml of plant extract 200 mg/ml is transferred to the tube C1, that of 100 mg/ml to the tube C2 and so on until to C9 which receive 1 ml of plant extract of 3.125 mg/ml. The C0 receive, instead of plant extract, 1 ml of DMSO/distilled water (1/9, V/V) was used as control. This distribution of plant extract concentration is well known to each tube containing 1 ml of inoculums already reduced the concentration of the plant extract in the middle half. So the tube C1 concentration increased from 200 mg/ml to 100 mg/ml, 100 mg/ml to 50 mg/ml for C2 so on until a concentration of 3.125 mg/ml for T7. This experiment was performed identically for each extract tested. The eight (8) first tubes (C1 to C8) are collected “experimental tubes” and the last tube C9 is rated “growth control tube or Tc”.

3. Results and Discussion

The diameters of zone inhibition have varied from 12.67 to 19.33 mm (aqueous extract) and 20.00 to 24.67 mm (ethanolic extract) table 1. Aqueous and ethanolic extracts have proved an activity against all the tested microorganisms. On the basis of these inhibition diameters, ethanolic extracts have been proved as the more active of the two extracts studied with all diameters superior 20 mm for all strains of *S.
aureus studies. Besides any inhibition zone proved by the oxacillin (5 µg) and the cefoxitin (30 µg) can be observed against S. aureus Meti-R (235; 466; 485 and 246). From the analyses of these results, aqueous and ethanolic extracts are active on the whole tested bacterial strains because they have induced some inhibition diameters superior to 10 mm [19]. We can notice that in spite of the inefficacy of the commercialized antibiotic against S. aureus Meti-R 235; 466; 485 and 246 (0 mm), they have been more active against the two other strains S.aureus Meti-R 1541 and S.aureus ATCC 25923.

Table 1. Inhibition diameters (mm) of plant extracts and antibiotic against Staphylococcus strains.

Bacterial strains	Plant extracts	Antibiotics		
	Aq	Eeth70	OX	FOX
S. aureus Meti-R 1541	19.33 ± 1.53	20.33 ± 2.89	18.63 ± 1.25	21.00 ± 1.73
S. aureus Meti-R 235	19.00 ± 1.00	21.00 ± 1.73	0.00	0.00
S. aureus Meti-R 466	16.67 ± 1.53	21.67 ± 1.53	0.00	0.00
S. aureus Meti-R 485	18.00 ± 1.73	20.00 ± 1.00	0.00	0.00
S. aureus Meti-R 246	12.67 ± 1.25	24.33 ± 1.00	0.00	0.00
S. aureus ATCC25923	18.00 ± 2.00	24.67 ± 1.53	20.33 ± 1.73	19.67 ± 1.00

Results are given by (m±sd); Eaq(aqueous extract); Eeth70(ethanolic extract70%); OX (oxacillin 5µg); FOX (céfoxitin 30µg)

The antimicrobial parameters of the aqueous extract on the tested germs are presented in table 2. MBC has advanced 6.25 to 50mg/ml. S. aureus meti-R; S. aureus 1541 and S. aureus-R 235 recorded a MBC equal to 6.25 mg/ml. As for the other strains, they presented a MBC equal to 50 mg/ml. The determination of antibacterial effect of some active substances depends on the ratio MBC/MIC [20]. According those authors, when this ratio is inferior or equal to 3, the substance is considered bactericidal and bacteriostatic if the ratio is superior to or equal to 3. Thus, aqueous extract was bactericidal against S. aureus meti-R 1541; 235 and ATCC 25923 strain for ratio of MBC/MIC equal to 1. Besides, the ratio was equal to 4 for the over bacteria studied, showing bacteriostatic activity on these strains. These results corroborate with those of Toty [21]. Indeed, these authors determined a ratio CMB/MIC equal to 1, showing that aqueous extract of bark Harungana madagascariensis had a bactericidal activity on S. aureus ATCC25923 and S. aureus meti-R 926. These results can be compared to the results [22]. These authors have found MBC equal to 1600mg/ml of aqueous extract of plant against S. aureus meti-R. Seen that value, we can say our results are better.

Table 2. Antibiostatic activity of aqueous extract of Terminalia macroptera.

Bacterial strains	Antimicrobial parameters (mg/ml)			
	MIC	MBC	MBC/MIC	Interpretation
S. aureus Meti-R 1541	6.25	6.25	1	Bactericidal
S. aureus Meti-R 235	6.25	6.25	1	Bactericidal
S. aureus Meti-R 466	12.50	50	4	Bacteriostatic
S. aureus Meti-R 485	12.50	50	4	Bacteriostatic
S. aureus Meti-R 246	12.50	50	4	Bacteriostatic
S. aureus ATCC25923	50	50	1	Bactericidal

MIC: Minimum Inhibition Concentration; MBC: Minimum Bactericidal Concentration

MBC of the ethanol extract were ranged enter 6.25 and 25 mg/ml (table 3). Strains of S. aureus meti-R1541; 235; 246 and S. aureus ATCC 25923 showed the smallest MBC (6.25 mg / ml). Also the largest MBC (25 mg/ml) was observed on S. aureus meti-R 466 and S. aureus meti-R 485. Unlike the aqueous extract, ethanolic70% extract was bactericidal against all strains studied. Indeed, the ratio MBC / MIC was between 1 and 2. Alone, strains of S. aureus meti-R 246 and S. aureus ATCC25923 have shown MBC which are the MIC double. For other strains, MBC were equal to 1. Others studies showed bactericidal activity on S. aureus ATCC 25923 and S. aureus meti-R like the case of [23]. Indeed, these authors studying activity of ethanolic70% extract of Vitex donania against S. aureus ATCC25923 and S. aureus meti-R found a ratio MBC/MIC equal to 2, showed that ethanolic70% extract has a bactericidal power against these strains.

Table 3. Antibacterial activity of ethanolic extracts t of T. macroptera.

Bacterial strains	Antibacterial parameters (mg/mL)			
	MIC	MBC	MBC/MIC	Interpretation
S. aureus Meti-R 1541	6.25	6.25	1	Bactericidal
S. aureus Meti-R 235	6.25	6.25	1	Bactericidal
S. aureus Meti-R 466	25	25	1	Bactericidal
S. aureus Meti-R 485	25	25	1	Bactericidal
S. aureus Meti-R 246	3.12	6.25	2	Bactericidal
S. aureus ATCC25923	3.12	6.25	2	Bactericidal

MIC: Minimum Inhibition Concentration; MBC: Minimum Bactericidal Concentration.

In comparison, aqueous and ethanolic extracts showed the same MBC equal to 6.25 mg/ml for S. aureus meti-R 1541 and S. aureus méti-R 235. But, for S. aureus meti-R 466 and S. aureus 485, MBC of ethanolic extract was the half of that aqueous extract (MBC_{eth}/MBC_{Aq}=2). Also we can observe that ethanolic extract amelior eight times the effect of aqueous extract for S. aureus meti-R 246 and S. aureus ATCC 25923 (figure 1). In other studies, similar results have been obtained with some aqueous and ethanolic extract of Myrcoglossa pyrifolia by [14], (2003).In fact, these authors have proved that ethanolic extract ameliorate 100 times the
effect of aqueous extract showing a ratio ($\text{MBC}_{\text{aq}} / \text{MBC}_{\text{Eth70%}} = 100$).

![Fig. 1. Compared effect of aqueous and ethanolic 70% extracts of *T. macroptera*](image)

4. Conclusion

This study has allowed to demonstrate that *Terminalia macroptera* stem barks have some bactericidal activities against the strains of *S. aureus* Meti-R.

Ethanolic 70% extract has shown the best activity on the whole tested strains. The concentration to which this extract remains active allows us to say that plant could be used against *Staphylococcus* infections. This work is a contribution for a better knowledge of some medicinal plants in Ivory Coast, which can become a new source of antibacterial agent, then it’s can be explored by determining the potential secondary metabolites susceptible the origin of antibacterial activity. Also it would be interesting to undertake studies of toxicity of the extracts which are fund to be active and to consider the development of improved traditional medicine (ITM) after purification.

References

[1] Myllo J., Mc Derric et., Spooner J. A., Prospective study of 114 consecutive episodes of *Staphylococcus aureus* bacteremia. Reviews Infectious diseases, 1987; 9: 891-907.

[2] Landolo J, Worrell V, Groisher HK., Qian y, Tian YR, Kenton S. Comparative analysis of the genomes of the temperate bacteriophages phi 11, 12 and phi 13 of *Staphylococcus aureus* 8525, Gene 289, 2002; 109-118.

[3] Cosgrove SE, Qi Y, KS, Harbarth S, Karchmer AW, Carmeli Y. The impact of methicillin resistance in *staphylococcus aureus* bacteremia on patient outcomes: mortality, length of stay, and hospital charges. Infection control hospital Epidemiology, 2005; 26: 166-74.

[4] Bader SM. *Staphylococcus aureus* bacteremia in older adults: predictors of 7 days mortality and infection with a methicillin resistant strain; infection control hospital Epidemiology, 2006; 27: 1219-25.

[5] Skiest JD, Brown k, Hester J, Moore T, Crosby C, Mussa HR, Hoffman-Robert H, Cooper T. Community-onset methicillin-resistant *Staphylococcus aureus* in an urban HIV clinic, HIV Medecine, 2006, 7: 561-8.

[6] Moyen G, Nkoua JL, Mbempa AB, Foucarie - pauty V, Nzingoula S. Septicémie à *Staphylococcus aureus* de l’enfant à propos de 12 cas. Medecine d’Afrique noire, 1993, 40(6).

[7] Berche P. *Les staphylocoques*. In: Berche P, Gaillard L, Simonet M, eds. Bactériologie: les bactéries des infections humaines. Paris: Flammarion, 1988; 267-77.

[8] Toure A, Bahi C, Ouattara K, Djaman AJ, Coulibaly A; Phychochemical screening and *in vitro* antifungal activities of extracts of leaves of *Morinda morindaoides* (Morinda, Rubiaceae), Journal of Medicinal plants Research, 2011; 5(31): 6780-86.

[9] Ouattara K, Doumbia I, Coulibaly FA, Kouakou KS, N’guessan JD, Djaman AJ. Et Coulibaly A; Influence of thomningia sanguinea (THOS) sur la productivité d’un élevage de poules pondeuses, International journal of Biology and Chemical Sciences, 2012; 6(5); 1960-1969.

[10] Berhaut. J. Flore illustrée du Senegal, T il clairafrique, Dakar 1974: 39-410.

[11] Ace-Assi L. Quelques plantes utilisées dans le traitement des maladies cardiaques en Côte d’Ivoire, 1988, Bull. Med. Trad., 2, 96-100.

[12] Guédé – Guina F, Kra AM, Bonga GM, Vangah-Manda M, de Souza C; Inhibition by MISCA-F3 of the croissance de *Aspergillus fumigatus*, Candida albicans and pycryptococcos neoflamans, 3 germes fongiques opportunistes du SIDA, Journal Afrique Biomedical, 1997, 2: 11-16.

[13] Bagré I, Bahi C, Ouattara K, Zirih G, Guedé GN, N’guessan JD, Djaman AJ, Coulibaly A, N’guessan JD; Etude botanique et exploration de l’activité antifongique de *Morinda morindaoides* (BAKER) MilRedh, sur la croissance in vitro de *Crytococcus neoflamans*, phytothérapi, 2011,9: 136-141.

[14] Zihiri G. N et Kra A. K. M, Evolution de l’activité antifongique de *microglosa pririfolia* (LARMARCK) O. Kuntze (Asteraceae) «PYMI» sur la croissance invitro de Candido albicons. Rev. Ref. Pharm. Af., (2003), 17, P11-19.

[15] Perez C, Pauli A, Bazerque P; An antibiotic assay by agar-well diffusion method, Acta. Biol. Med. Exp, 1990; 15: 113-115.

[16] Kuetev, Penlap BV, Etao FX, Modjo SL, Bogne P, Assob JC et Lontsi D; Activités antimicrobiennes de l’extrait total et des fractions de jus de fruit de citrus medica Lin. (Ru taceae). Phytochimical screening and *in vitro* antifongical activities of *Staphylococcus aureus* bacteremia. Reviews Infectious diseases, 1987; 9: 891-907.

[17] Guédé – Guina F, Kra AM, Bonga GM, Vangah-Manda M, de Souza C; Inhibition by MISCA-F3 of the croissance de *Aspergillus fumigatus*, Candida albicans and pycryptococcos neoflamans, 3 germes fongiques opportunistes du SIDA, Journal Afrique Biomedical, 1997, 2: 11-16.

[18] Bssabibis F, Gmira N, et Meziane M; Activité antibactériennes de Dittrichia viscoa (L.) GW. Reuter. Rev. Microbiol. Ind. San et Environ, (2009), 3(1), 44-45.

[19] Ouattara K, Djaman AJ, Coulibaly A, N’guessan JD, Djaman AJ. Et Coulibaly A; Influence of thomningia sanguinea (THOS) sur S. entericaser Ente ritidis à propos de 12 cas. Medecine d’Afrique noire, 1993, 40(6).

[20] Berche P. *Les staphylocoques*. In: Berche P, Gaillard L, Simonet M, eds. Bactériologie: les bactéries des infections humaines. Paris: Flammarion, 1988; 267-77.

[21] Perez C, Pauli A, Bazerque P; An antibiotic assay by agar-well diffusion method, Acta. Biol. Med. Exp, 1990; 15: 113-115.

[22] Kuetev, Penlap BV, Etao FX, Modjo SL, Bogne P, Assob JC et Lontsi D; Activités antimicrobiennes de l’extrait total et des fractions de jus de fruit de citrus medica Lin. (Ru taceae). Phytochimical screening and *in vitro* antifongical activities of *Staphylococcus aureus* bacteremia. Reviews Infectious diseases, 1987; 9: 891-907.
[20] Toty A A., Guessemd N., Bahi C., Kra A. M., Otokore D. A., Dosso M; Evaluation in-vitro de l’activité antibactérienne de l’extrait aqueux de l’ecorce de tronc de harungana madagascariensis sur la croissance de souches multi résistantes, Bulletin de la société royale des sciences de Liège, 2013, V82, p 12-21.

[21] Ejekeme N, Herietta; Antimicrobial activities of leafs of Vitex doniana and Cajanus-cajanon on some bacteria. Researchetr; 2010; 2: 37-47.

[22] Ouattara K, Kone T, Yeo D, Coulibaly A; Antifungal activity of aqueous and ethanolic extracts of Thonningia sanguinea, Vahl,(Balanophoraceae). Journal of Drug Delivery& Therapeutics, 2013, 3(1): 29-32.