Upper limit on the diffuse flux of UHE tau neutrinos from the Pierre Auger Observatory

May 29, 2008

The Pierre Auger Collaboration

J. Abraham^{14}, P. Abreu^{69}, M. Aglietta^{55}, C. Aguirre^{17}, D. Allard^{33}, I. Allekotte^{7}, J. Allen^{89}, P. Allison^{91}, J. Alvarez-Muñiz^{76}, M. Ambrosio^{58}, L. Anchordoqui^{103, 90}, S. Andringa^{69}, A. Anzalone^{54}, C. Aramo^{58}, S. Argirò^{52}, K. Arisaka^{94}, E. Armengaud^{33}, F. Arneodo^{56}, F. Arqueros^{73}, T. Asch^{91}, H. Asorey^{5}, P. Assis^{69}, B.S. Atulugama^{92}, J. Aublin^{45}, M. Ave^{95}, G. Avila^{13}, T. Bäcker^{43}, D. Badagnani^{10}, A.F. Barbosa^{19}, D. Barnhill^{94}, S.L.C. Barroso^{25}, P. Bauleo^{63}, J.J. Beatty^{91}, T. Beau^{35, 19}, R. Bonino^{55}, M. Boratav^{35}, J. Brack^{83, 96}, P. Brogueira^{69}, W.C. Brown^{84}, P. Buchholz^{43}, A. Bueno^{75}, R.E. Burton^{81}, N.G. Buscà^{33}, K.S. Caballero-Mora^{42}, B. Cai^{98}, D.V. Camin^{47}, L. Caramele^{40}, R. Caruso^{54}, W. Carvalho^{21}, A. Castellina^{55}, O. Catalano^{54}, G. Cataldi^{48}, L. Cazon^{95}, R. Cester^{32}, J. Chauvin^{36}, A. Chiavassa^{55}, J.A. Chinellato^{23}, A. Chou^{89}, R. Chye^{68}, P.D.J. Clark^{78}, R.W. Clay^{16}, E. Colombo^{2}, R. Conceição^{69}, B. Connolly^{100}, F. Contreras^{12}, J. Coppens^{63, 65}, A. Cordier^{34}, U. Cotti^{61}, S. Couto^{92}, C.E. Covault^{81}, A. Creusot^{71}, A. Criss^{92}, J. Cronin^{95}, A. Curutiu^{40}, S. Dagoret-Campagne^{34}, K. Daumiller^{38}, B.R. Dawson^{16}, R.M. de Almeida^{23}, C. De Donato^{47}, S.J. de Jong^{63}, G. De La Vega^{15}, W.J.M. de Mello Junior^{21}, J.R.T. de Mello Neto^{99, 26}, I. De Mitri^{84}, V. de Souza^{82}, L. del Peral^{74}, O. Deligny^{32}, A. Della Selva^{49}, C. Delle Fratte^{60}, H. Dembinski^{41}, C. Di Giulio^{50}, J.C. Diaz^{86}, C. Dobrigkeit^{23}, J.C. D’Olivo^{62}, A. Dornic^{32}, A. Dorofeev^{87}, J.C. dos Anjos^{19}, M.T. Dova^{10}, D. D’Urso^{19}, I. Dutan^{40}, M.A. DuVernois^{97, 98}, R. Engel^{98}, L. Epele^{10}, M. Erdmann^{31}, C.O. Escobar^{23}, A. Etchezgoyen^{1}, P. Facal San Luis^{76}, H. Falcè^{63, 66}, G. Farrar^{69}, A.C. Fauth^{23}, N. Fazzini^{56}, F. Ferrer^{81}, S. Ferry^{71}, B. Fick^{58}, A. Filevich^{2}, A. Filipić^{70}, I. Fleck^{43}, R. Fonte^{51}, C.E. Fracchiolla^{20}, W. Fulgione^{55}, B. García^{14}, D. García Gámez^{75}, D. García-Pinto^{73}, X. Garrido^{34}, H. Geenen^{47}, G. Gelmini^{94}, H. Gemmecke^{39}, P.L. Ghia^{32, 55}, M. Giller^{68}, H. Glass^{86}, M.S. Gold^{100}, G. Golup^{6}, F. Gomez Albarracin^{10}, M. Gómez Berisso^{6}, R. Gómez Herrero^{74}, P. Gonçalves^{69}, M. Gonçalves do Amaral^{29}, D. Gonzalez^{42}, J.G. Gonzalez^{87}, M. González^{60}, D. Góra^{42, 67}, A. Gorgi^{55}, P. Gouffon^{21}, V. Grassi^{47}, A.F. Grillo^{56}, C. Grunfeld^{10}, Y. Guardincerri^{6}, F. Guarino^{49}, G.P. Guedes^{24}, J. Gutierrez^{74}, J.D. Hague^{100}, J.C. Hamilton^{33}, P. Hansen^{76}, D. Harari^{6}, S. Harmsma^{64}, J.L. Harton^{82, 83},
H. Wilczyński, C. Wileman, M.G. Winnick, H. Wu, B. Wundheiler, T. Yamamoto, P. Younk, E. Zas, D. Zavrtanik, M. Zavrtanik, A. Zech, A. Zepeda, M. Ziolkowski

1 Centro de Investigaciones en Láseres y Aplicaciones, CITEFA and CONICET, Argentina
2 Centro Atómico Constituyentes, CNEA, Buenos Aires, Argentina
3 Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica and CONICET, Argentina
4 Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica and UTN-FRBA, Argentina
5 Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, San Carlos de Bariloche, Argentina
6 Departamento de Física, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica and CONICET, Argentina
7 Centro Atómico Bariloche, Comisión Nacional de Energía Atómica and Instituto Balseiro (CNEA-UNC), San Carlos de Bariloche, Argentina
8 Departamento de Física, FCEyN, Universidad de Buenos Aires and CONICET, Argentina
9 Departamento de Física, Universidad Nacional de La Plata and Fundación Universidad Tecnológica Nacional, Argentina
10 IFLP, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
11 Instituto de Astronomía y Física del Espacio (CONICET), Buenos Aires, Argentina
12 Pierre Auger Southern Observatory, Malargüe, Argentina
13 Pierre Auger Southern Observatory and Comisión Nacional de Energía Atómica, Malargüe, Argentina
14 Universidad Tecnológica Nacional, FR-Mendoza, Argentina
15 Universidad Tecnológica Nacional, FR-Mendoza and Fundación Universidad Tecnológica Nacional, Argentina
16 University of Adelaide, Adelaide, S.A., Australia
17 Universidad Catolica de Bolivia, La Paz, Bolivia
18 Universidad Mayor de San Andrés, Bolivia
19 Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, RJ, Brazil
20 Pontificia Universidade Católica, Rio de Janeiro, RJ, Brazil
21 Universidade de Sao Paulo, Inst. de Física, Sao Paulo, SP, Brazil
22 Universidade Estadual de Campinas, IFGW, Campinas, SP, Brazil
23 Univ. Estadual de Feira de Santana, Brazil
24 Universidade Estadual do Sudoeste da Bahia, Vitoria da Conquista, BA, Brazil
25 Universidade Federal da Bahia, Salvador, BA, Brazil
26 Universidade Federal do ABC, Santo André, SP, Brazil
27 Universidade Federal do ABC, Santo André, SP, Brazil
28 Univ. Federal do Rio de Janeiro, Instituto de Física, Rio de Janeiro, RJ, Brazil
29 Univ. Federal Fluminense, Inst. de Física, Niterói, RJ, Brazil
30 Charles University, Institute of Particle & Nuclear Physics, Prague, Czech Republic
31 Institute of Physics of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
32 Institut de Physique Nucléaire, Université Paris-Sud, IN2P3/CNRS, Orsay, France
33 Laboratoire AstroParticule et Cosmologie, Université Paris 7, IN2P3/CNRS, Paris, France
34 Laboratoire de l’Accélérateur Linéaire, Université Paris-Sud, IN2P3/CNRS, Orsay, France
35 Laboratoire de Physique Nucléaire et de Hautes Energies, Universités Paris 6 & 7, IN2P3/CNRS, Paris Cedex 05, France
36 Laboratoire de Physique Subatomique et de Cosmologie, IN2P3/CNRS, Université Grenoble 1 et INPG, Grenoble, France
37 Bergische Universität Wuppertal, Wuppertal, Germany
38 Forschungszentrum Karlsruhe, Institut für Kernphysik, Karlsruhe, Germany
39 Forschungszentrum Karlsruhe, Institut für Prozessdatenverarbeitung und Elektronik, Germany
40 Max-Planck-Institut für Radioastronomie, Bonn, Germany
41 RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
42 Universität Karlsruhe (TH), Institut für Experimentelle Kernphysik (IEKP), Karlsruhe, Germany
43 Universität Siegen, Siegen, Germany
44 Università de l’Aquila and Sezione INFN, Aquila, Italy
45 Università di Milano and Sezione INFN, Milan, Italy
46 Università del Salento and Sezione INFN, Lecce, Italy
47 Università di Napoli “Federico II” and Sezione INFN, Napoli, Italy
48 Università di Roma II “Tor Vergata” and Sezione INFN, Roma, Italy
49 Università di Catania and Sezione INFN, Catania, Italy
50 Università di Torino and Sezione INFN, Torino, Italy
51 Università del Salento and Sezione INFN, Lecce, Italy
52 Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo (INAF), Palermo, Italy
53 Istituto di Fisica dello Spazio Interplanetario (INAF), Università di Torino and Sezione INFN, Torino, Italy
54 INFN, Laboratori Nazionali del Gran Sasso, Assergi (L’Aquila), Italy
55 Osservatorio Astrofisico di Arcetri, Florence, Italy
56 Sezione INFN di Napoli, Napoli, Italy
57 Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
58 Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), México, D.F., Mexico
59 Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Michoacan, Mexico
60 Universidad Nacional Autonoma de Mexico, Mexico, D.F., Mexico
61 IMAPP, Radboud University, Nijmegen, Netherlands
62 Kernfysisch Versneller Instituut, University of Groningen, Groningen, Netherlands
63 NIKHEF, Amsterdam, Netherlands
64 ASTRON, Dwingeloo, Netherlands
65 Institute of Nuclear Physics PAN, Krakow, Poland
66 University of Łódź, Łódź, Poland
67 LIP and Instituto Superior Técnico, Lisboa, Portugal
68 J. Stefan Institute, Ljubljana, Slovenia
69 Laboratorty for Astroparticle Physics, University of Nova Gorica, Slovenia
70 Instituto de Física Corpuscular, CSIC-Universitat de València, Valencia, Spain
Universidad Complutense de Madrid, Madrid, Spain
Universidad de Alcalá, Alcalá de Henares (Madrid), Spain
Universidad de Granada & C.A.F.E., Granada, Spain
Universidad de Santiago de Compostela, Spain
Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, United Kingdom
Institute of Integrated Information Systems, University of Leeds, United Kingdom
School of Physics and Astronomy, University of Leeds, United Kingdom
Argonne National Laboratory, Argonne, IL, USA
Case Western Reserve University, Cleveland, OH, USA
Colorado School of Mines, Golden, CO, USA
Colorado State University, Fort Collins, CO, USA
Colorado State University, Pueblo, CO, USA
Fermilab, Batavia, IL, USA
Louisiana State University, Baton Rouge, LA, USA
Michigan Technological University, Houghton, MI, USA
New York University, New York, NY, USA
Northeastern University, Boston, MA, USA
Ohio State University, Columbus, OH, USA
Pennsylvania State University, University Park, PA, USA
Southern University, Baton Rouge, LA, USA
University of California, Los Angeles, CA, USA
University of Chicago, Enrico Fermi Institute, Chicago, IL, USA
University of Colorado, Boulder, CO, USA
University of Hawaii, Honolulu, HI, USA
University of Minnesota, Minneapolis, MN, USA
University of Nebraska, Lincoln, NE, USA
University of New Mexico, Albuquerque, NM, USA
University of Pennsylvania, Philadelphia, PA, USA
University of Utah, Salt Lake City, UT, USA
University of Wisconsin, Madison, WI, USA
University of Wisconsin, Milwaukee, WI, USA
Institute for Nuclear Science and Technology, Hanoi, Vietnam
Abstract

The surface detector array of the Pierre Auger Observatory is sensitive to Earth-skimming tau-neutrinos ν_τ that interact in the Earth’s crust. Tau leptons from ν_τ charged-current interactions can emerge and decay in the atmosphere to produce a nearly horizontal shower with a significant electromagnetic component. The data collected between 1 January 2004 and 31 August 2007 are used to place an upper limit on the diffuse flux of ν_τ at EeV energies. Assuming an E_{ν}^{-2} differential energy spectrum the limit set at 90 % C.L. is $E_{\nu}^2 \frac{dN_{\nu}}{dE_{\nu}} < 1.3 \times 10^{-7}$ GeV cm$^{-2}$ s$^{-1}$ sr$^{-1}$ in the energy range 2×10^{17} eV < E_{ν} < 2×10^{19} eV.

The detection of Ultra High Energy (UHE) cosmic neutrinos at EeV (1 EeV \equiv 10^{18} eV) energies and above is a long standing experimental challenge. Many experiments are searching for such neutrinos, and there are several ongoing efforts to construct dedicated experiments to detect them [Halzen et al.(2002), Halzen(2007), Falcke et al.(2004)]. Their discovery would open a new window to the universe [Becker(2007)], and provide an unique opportunity to test fundamental particle physics at energies well beyond current or planned accelerators. The observation of UHE Cosmic Rays (UHECRs) requires that there exist UHE cosmic neutrinos, even though the nature of the UHECR particles and their production mechanisms are still uncertain. All models of UHECR origin predict neutrino fluxes from the decay of charged pions which are produced either in interactions of the cosmic rays in their sources, or in their subsequent interactions with background radiation fields. For example, UHECR protons interacting with the Cosmic Microwave Background (CMB) give rise to the so-called ‘cosmogenic’ or GZK neutrinos [Berezinsky et al.(1969)]. The recently reported suppression of the cosmic ray flux above $\sim 4 \times 10^{19}$ eV [Abbasi et al.(2007), Yamamoto(2007), Pierre Auger Collaboration(2007a)] as well as the observed correlation of the highest energy cosmic rays with relatively nearby extragalactic objects [Pierre Auger Collaboration(2007b)] both point to UHECR interactions on the infrared or microwave backgrounds during extragalactic propagation. These interactions must result in UHE neutrinos although their flux is somewhat uncertain since this depends on the primary UHECR composition and on the nature and cosmological evolution of the sources as well as on their spatial distribution [Engel et al.(2001), Allard et al.(2006)].

Tau neutrinos are suppressed in such production processes relative to ν_e or ν_μ, because they are not an end product of the charged pion decay chain and far fewer are made through the production and decay of heavy flavours such as charm. Nevertheless, because of neutrino flavour mixing, the usual 1:2 ratio of ν_e to ν_μ at production is altered to approximately equal fluxes for all flavours after travelling cosmological distances [Learned et al.(1995)]. Soon after the discovery of neutrino oscillations [Fukuda et al.(1998)] it was shown that ν_τ entering the Earth just below the horizon (Earth-skimming) [Fargion(2002), Letessier-Selvon(2001), Feng et al.(2002)] can undergo charged-current interactions and produce τ leptons. Since a τ lepton can travel tens of kilometers in the Earth at EeV energies, it can emerge into the atmosphere and decay in flight producing an nearly horizontal extensive air shower (EAS) above the detector. In this way the effective target volume for neutrinos can be rather large.

The Pierre Auger Observatory [Abraham et al.(2004)] has been designed to measure UHECRs with unprecedented precision. Detection of UHECRs is being achieved
exploiting the two available techniques to detect EAS, namely, arrays of surface particle
detectors and telescopes that detect fluorescence radiation. UHE particles such as pro-
tons or heavier nuclei interact high in the atmosphere, producing showers that contain
muons and an electromagnetic component of electrons, positrons and photons. This
latter component reaches a maximum at an atmospheric depth of order 800 g cm$^{-2}$,
after which it is gradually attenuated. Inclined showers that reach the ground after
travelling through 2000 g cm$^{-2}$ or more of the atmosphere are dominated by muons
arriving at the detector in a thin and flat shower front.

The surface detector (SD) array of the Pierre Auger Observatory can be used to
identify neutrino-induced showers \cite{Capelle98,Bertou02,Zas05}. The fluorescence detectors can also be used for neutrino searches \cite{Aramo05,Miele06} but the nominal 10\% duty cycle of the fluorescence technique re-
duces the sensitivity. The electromagnetic component of neutrino-induced showers
might reach the ground if the shower develops close enough to the detector, producing
a signal which has a longer time duration than for an inclined shower initiated
by a nucleonic primary. Thus close examination of inclined showers enables showers
developing near to the ground and those produced early in the atmosphere to be distin-
guished. This allows the clean identification of showers induced by neutrinos, and in
particular those induced by ν_τ, with the SD \cite{Billoir07,Blanch07,Alvarez07}.

Here we present the result of a search for deep, inclined, showers in the data col-
clected with the SD of the Pierre Auger Observatory. Identification criteria have been
developed to find EAS that are generated by τ leptons emerging from the Earth. No
candidates have been found in the data collected between 1 January 2004 and 31 Au-
gust 2007 — equivalent to roughly one year of operation of the planned full array.

The construction of the Southern Pierre Auger Observatory in Mendoza, Argentina,
is currently close to being completed. It consists of an array of water Cherenkov tanks
arranged in a hexagonal grid of 1.5 km covering an area of 3000 km2 that is overlooked
by 24 fluorescence telescopes located at four sites around the perimeter. The array com-
prises 1600 cylindrical tanks of 10 m2 surface containing purified water, 1.2 m deep,
each instrumented with 3 x 9” photomultiplier tubes sampled by 40 MHz Flash Analog
Digital Converters (FADCs) \cite{Abraham04}. Each tank is regularly monitored
and calibrated in units of Vertical Equivalent Muon (VEM) corresponding to the signal
produced by a μ traversing the tank vertically \cite{Bertou06}.

The procedure devised to identify neutrino candidate events within the data set is
based on an end-to-end simulation of the whole process, from the interaction of the
ν_τ inside the Earth to the detection of the signals in the tanks. The first step is the
calculation of the τ flux emerging from the Earth. This is done using a simulation of
the coupled interplay between the τ and the ν_τ fluxes through charged-current weak-
interactions and τ decay, taking into account also the energy losses due to neutral
current interactions for both particles, and bremsstrahlung, pair production and nuclear
interactions for the τ lepton. The emerging τ flux can be folded with the τ decay probability to give the differential probability of τ decaying in the atmosphere as a
function of its energy and decay altitude, $d^2p_\tau/dE_\tau dh_c$.

Modelling of the showers from τ decays in the atmosphere is performed using
the AIRES code \cite{Sciutto02}. The TAUOLA package \cite{Jadach93} is used
to simulate τ decay and obtain the secondary particles and their energies. Showers induced by the products of decaying τs with energies between 10^{17} to 3×10^{20} eV are simulated at zenith angles ranging between 90.1° and 95.9° and at an altitude of the decay point above the Pierre Auger Observatory in the range 0 – 2500 m. Finally, to evaluate the response of the SD to such events, the particles reaching the ground in the simulation are stored and injected into a detailed simulation of the SD [Ghia(2007)].

A set of conditions has been designed and optimized to select showers induced by Earth-skimming ν_τ, rejecting those induced by UHECR. The 25 ns time resolution of the FADC traces allows unambiguous distinction between the narrow signals induced by muons and the broad signals induced by the electromagnetic component (Figure 1). For this purpose we tag the tanks for which the main segment of the FADC trace has 13 or more neighbouring bins over a threshold of 0.2 VEM, and for which the ratio of the integrated signal over the peak height exceeds 1.4. A neutrino candidate is required to have over 60% of the triggered tanks satisfying these “young shower” conditions as well as fulfilling the central trigger condition [Abraham et al.(2004)] with these tanks. In addition the triggered tanks are required to have elongated patterns on the ground.
Figure 2: Distribution of discriminating variables for showers initiated by \(\tau_s\) decaying in the atmosphere, generated by \(\nu_\tau\)s with energies sampled from an \(E_{\nu}^{-2}\) flux (histogram), and for real events passing the “young shower” selection (points). Left: length/width ratio of the footprint of the shower on the ground; middle: average speed between pairs of stations; right: r.m.s. scatter of the speeds. See text for details.

defining the azimuthal arrival direction (as expected for inclined events) by assigning a length and a width to the pattern and restricting its ratio (length/width > 5). Finally, we calculate the apparent speed of the signal moving across the ground along the azimuthal direction, using the arrival times of the signals at ground and the projected distances between tanks. The average speed, as measured between pairs of triggered stations, is required to be compatible with that expected for an event traveling close to the horizontal direction by requiring it to be very close to the speed of light, in the range \((0.29, 0.31) \text{ m ns}^{-1}\) with an r.m.s. scatter below \(0.08 \text{ m ns}^{-1}\). These conditions are found to retain about 80% of the simulated \(\tau\) showers triggering the SD. The final sample is expected to be free of background from UHECR-induced showers. In Figure 2, we show the distributions of these discriminating variables for real events and simulated \(\tau\) showers.

Over the period analyzed, no candidate events were found that fulfilled the selection criteria. Based on this, the Pierre Auger Observatory data can be used to place a limit on the diffuse flux of UHE \(\nu_\tau\). For this purpose the exposure of the detector must be evaluated. The total exposure is the time integral of the instantaneous aperture which has changed as the detector has grown while it was being constructed and set into operation.

Calculation of the effective aperture for a fixed neutrino energy \(E_\nu\) involves folding the aperture with the conversion probability and the identification efficiency. The identification efficiency \(\epsilon_{\text{ff}}\) depends on the \(\tau\) energy \(E_\tau\), the altitude above ground of the central part of the shower \(h_c\) (defined at 10 km after the decay point [Bertou et al. (2002)]), the position \((x, y)\) of the shower in the surface \(S\) covered by the array, and the time \(t\) through the instantaneous configuration of the array. The expression for the exposure can be written as:

\[
\text{Exp} = \int_{\Omega} d\Omega \int_{0}^{E_\nu} dE_\nu \int_{0}^{\infty} dh_c \frac{d^2 p_\tau}{dE_\tau dh_c} B_{\tau},
\]

where

\[
B_{\tau}(E_\tau, h_c) = \int T dt \int_S dx dy \cos \theta \epsilon_{\text{ff}}[E_\tau, h_c, x, y, t]
\]

where \(\theta\) and \(\Omega\) are the zenith and solid angles.
The exposure is calculated using standard Monte Carlo techniques (MC) in two steps. The first integral deals with the detector-dependent part, including the time evolution of the array over the period T considered (eq.2). The integral in E_τ and h_c involves only the differential conversion probability and B_τ (eq[1]). The estimated statistical uncertainty for the exposure is below 3%.

The MC simulations require some physical quantities that have not been experimentally measured in the relevant energy range, namely the ν interaction cross-section, the τ energy loss, and the τ polarisation. The main uncertainty in these comes from the QCD structure functions in the relevant kinematic range. We estimate the uncertainty in the exposure due to the ν cross-section to be 15% based on the allowed range explored in [Anchordoqui et al.(2006)]. The uncertainties in the τ energy losses are dominated by the τ photonuclear cross section. The 40% difference among existing calculations for the τ energy losses [Bugaev et al.(2004), Dutta et al.(2005), Aramo et al.(2005)], which use different structure functions, is used as the systematic uncertainty. The two extreme cases of polarization give 30% difference in exposure and we take this as the corresponding uncertainty. The relevant range of the structure functions includes regions of Bjorken-x and squared 4-momentum transfer, Q^2, where no experimental data exist. Only extrapolations that follow the behaviour observed in the regions with experimental data have been considered.

We also take into account uncertainties coming from neglecting the topography around the site of the Pierre Auger Observatory [Gora et al.(2007)] (18%). We adopt a 25% systematic uncertainty due to MC simulations of the EAS and the detector, dominated by differences between hadronic models (QGSJET [Kalmykov et al.(1997)] and SIBYLL [Engel et al.(1999)]).

Assuming a $f(E_\nu) \propto E_\nu^{-2}$ differential flux of ν_τ we have obtained a 90% C.L. limit on the diffuse flux of UHE ν_τ, whose level at 10^{18} eV is representative for any smooth spectral shape:

$$E_\nu^2 f(E_\nu) < 1.0^{+0.3}_{-0.5} \times 10^{-7} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1} \quad (3)$$

The central value is computed using the ν cross-section from Ref. [Anchordoqui et al.(2006)], the parametrisation of the energy losses from Ref. [Dutta et al.(2005)] and an uniform random distribution for the τ polarisation. The uncertainties correspond to the combinations of systematic uncertainties in the exposure as given above that lead to the highest/lowest neutrino event rate. The limit is applicable in the energy range $2 \times 10^{17} - 2 \times 10^{19}$ eV, with a systematic uncertainty of about 15%, over which 90% of the events are expected for $f(E_\nu) \propto E_\nu^{-2}$. In Figure 3 we show our limit adopting the most pessimistic scenario for systematic uncertainties. It improves by a factor ~ 3 for the most optimistic one. For energies above 10^{20} eV, limits are usually quoted as $2.3/\text{Exp} \times E_\nu$ for different energy values (differential format), while at lower energies they are usually given assuming an E^{-2} flux (integrated format). We plot the differential format to demonstrate explicitly that the sensitivity of the Pierre Auger Observatory to Earth-skimming ν_τ peaks in a narrow energy range close to where the GZK neutrinos are expected.

The Earth-skimming technique used with data collected at the surface detector array of the Southern Pierre Auger Observatory, provide at present the most sensitive...
Figure 3: Limits at 90% C.L. for a diffuse flux of ν_τ from the Pierre Auger Observatory. Limits from other experiments [Achterberg(2007), Ackermann et al.(2007), Martens(2007), Aynutdinov et al.(2006), Kravchenko et al. (2006), Barwick et al.(2006), Gorham et al.(2004), Lehtinen et al.(2004)] are converted to a single flavour assuming a 1 : 1 : 1 ratio of the 3 neutrino flavours and scaled to 90% C.L. where needed. Two different formats are used: differential (squares) and integrated (constant lines). The shaded curve shows the range of expected fluxes of GZK neutrinos from Ref. [Engel et al.(2001), Allard et al.(2006)], although predictions almost 1 order of magnitude lower and higher exist.

bound on neutrinos at EeV energies. This is the most relevant energy to explore the predicted fluxes of GZK neutrinos. The Pierre Auger Observatory will continue to take data for about 20 years over which time the limit should improve by over an order of magnitude if no neutrino candidate is found.

Acknowledgments

The successful installation and commissioning of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and administrative staff in Malargüe.

We are very grateful to the following agencies and organizations for financial support: Comisión Nacional de Energía Atómica, Fundación Antorchas, Gobierno De La Provincia de Mendoza, Municipalidad de Malargüe, NDM Holdings and Valle Las Leñas, in gratitude for their continuing cooperation over land access, Argentina; the Australian Research Council; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundação de Amparo à Pesquisa do Estado de Rio de Janeiro (FAPERJ), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Ministério de Ciência e Tecnologia (MCT), Brazil; Ministry of Education, Youth and Sports of the Czech Republic; Centre
References

[Halzen et al.(2002)] F. Halzen et al., Rept.Prog.Phys. 65, 1025 (2002).

[Halzen(2007)] F. Halzen, Science 315, 66 (2007).

[Falcke et al.(2004)] H. Falcke et al., New Astron.Rev. 48, 1487 (2004).

[Becker(2007)] J. K. Becker (2007), [arXiv:0710.1557[astro-ph]]

[Berezinsky et al.(1969)] V. S. Berezinsky et al., Phys.Lett.B 28, 423 (1969).

[Abbasi et al.(2007)] R. Abbasi et al. (HiRes), Submitted to Phys.Rev.Lett. (2007), [arXiv:0703099[astro-ph]]

[Yamamoto(2007)] T. Yamamoto (Pierre Auger), 30th ICRC (2007), [arXiv:0707.2638[astro-ph]]

[Pierre Auger Collaboration(2007a)] Pierre Auger Collaboration, to be submitted to Phys.Rev.Lett. (2007a).

[Pierre Auger Collaboration(2007b)] Pierre Auger Collaboration, Science 318, 938 (2007b).

[Engel et al.(2001)] R. Engel et al., Phys.Rev. D64, 093010 (2001).

[Allard et al.(2006)] D. Allard et al., JCAP 0609, 005 (2006).
[Learned et al.(1995)] J. G. Learned et al., Astropart.Phys. 3, 267 (1995).

[Fukuda et al.(1998)] Y. Fukuda et al. (Super-Kamiokande), Phys.Rev.Lett. 81, 1562 (1998).

[Fargion(2002)] D. Fargion, Astrophys.J. 570, 909 (2002).

[Letessier-Selvon(2001)] A. Letessier-Selvon, AIP Conf.Proc. 566, 157 (2001).

[Feng et al.(2002)] J. L. Feng et al., Phys.Rev.Lett. 88, 161102 (2002).

[Abraham et al.(2004)] J. Abraham et al. (Pierre Auger), Nucl.Instrum.Meth. A523, 50 (2004).

[Capelle et al.(1998)] K. S. Capelle et al., Astropart.Phys. 8, 321 (1998).

[Bertou et al.(2002)] X. Bertou et al., Astropart.Phys. 17, 183 (2002).

[Zas(2005)] E. Zas, New J.Phys. 7, 130 (2005).

[Aramo et al.(2005)] C. Aramo et al., Astropart.Phys. 23, 65 (2005).

[Miele et al.(2006)] G. Miele et al., Phys.Lett. B634, 137 (2006).

[Billoir et al.(2007)] P. Billoir et al. (Pierre Auger), Nucl.Phys.Proc.Suppl. 168, 225 (2007).

[Blanch Bigas(2007)] O. Blanch Bigas (Pierre Auger), 30th ICRC (2007), arXiv:0707.1658[astro-ph]

[Alvarez-Muñiz(2007)] J. Alvarez-Muñiz (Pierre Auger), 30th ICRC (2007).

[Bertou et al.(2006)] X. Bertou et al. (Pierre Auger), Nucl.Instrum.Meth. A568, 839 (2006).

[Sciutto(2002)] S. Sciutto, http://www.fisica.unlo.edu.ar/auger/aires/, version 2.6.0 (2002).

[Jadach et al.(1993)] S. Jadach et al., Comput.Phys.Commun. 76, 361 (1993).

[Ghia(2007)] P. L. Ghia (Pierre Auger), 30th ICRC (2007), arXiv:0706.1212[astro-ph]

[Anchordoqui et al.(2006)] L. A. Anchordoqui et al., Phys.Rev. D74, 043008 (2006).

[Bugaev et al.(2004)] E. Bugaev et al., Astropart.Phys. 21, 491 (2004).

[Dutta et al.(2005)] S. I. Dutta et al., Phys.Rev. D72, 013005 (2005).

[Gora et al.(2007)] D. Gora et al., Astropart.Phys. 26, 402 (2007).

[Kalmykov et al.(1997)] N. N. Kalmykov et al., Nucl.Phys.Proc.Suppl. 52B, 17 (1997).
[Engel et al.(1999)] R. Engel et al., 26th ICRC 1, 415 (1999).

[Achterberg(2007)] A. Achterberg (IceCube), Phys.Rev. D76, 042008 (2007).

[Ackermann et al.(2007)] M. Ackermann et al. (IceCube) (2007), arXiv:0711.3022[astro-ph]

[Martens(2007)] K. Martens (HiRes) (2007), arXiv:0707.4417[astro-ph]

[Aynutdinov et al.(2006)] V. Aynutdinov et al. (BAIKAL), Astropart.Phys. 25, 140 (2006).

[Kravchenko et al.(2006)] I. Kravchenko et al., Phys.Rev. D73, 082002 (2006).

[Barwick et al.(2006)] S. W. Barwick et al. (ANITA), Phys.Rev.Lett. 96, 171101 (2006).

[Gorham et al.(2004)] P. W. Gorham et al., Phys.Rev.Lett. 93, 041101 (2004).

[Lehtinen et al.(2004)] N. G. Lehtinen et al., Phys.Rev. D69, 013008 (2004).