E. coli isolates were common among \(\beta \)-lactam resistant \(E. coli \) from US hospitals. These isolates were significantly more resistant than their counterparts, despite the elevated resistance rates of the overall WGS collection. ST131 and ST131-O25b isolates had the potential to present a challenge for antimicrobial treatment. Specific therapies that are effective against these isolates should be investigated.

Disclosures. Mariana Castanheira, PhD, AbbVie (formerly Allergan) (Research Grant or Support)Bravos Biosciences (Research Grant or Support)Cidara Therapeutics, Inc. (Research Grant or Support)Cipla Therapeutics (Research Grant or Support)Cipla USA Inc. (Research Grant or Support)GlaxoSmithKline (Research Grant or Support)Melia Therapeutics, Inc. (Research Grant or Support)Melia Therapeutics, LLC (Research Grant or Support)Pfizer, Inc. (Research Grant or Support)Qpex Biopharma (Research Grant or Support)Spero Therapeutics (Research Grant or Support)Shionogi (Research Grant or Support)Spero Therapeutics (Research Grant or Support)Mariana Castanheira, PhD, Affinity Biosensors (Individual(s) Involved: Self) Research Grant or Support; Allergan (Individual(s) Involved: Self) Research Grant or Support; Amicrobe, Inc (Individual(s) Involved: Self) Research Grant or Support; Ampyx Pharma (Individual(s) Involved: Self) Research Grant or Support; Artugen Therapeutics USA, Inc. (Individual(s) Involved: Self) Research Grant or Support; Astellas (Individual(s) Involved: Self) Research Grant or Support; Basilea (Individual(s) Involved: Self) Research Grant or Support; Bethesda Israel Deaconess Medical Center (Individual(s) Involved: Self) Research Grant or Support; BIDMC (Individual(s) Involved: Self) Research Grant or Support; bioMerieux Inc. (Individual(s) Involved: Self) Research Grant or Support; BioVersys Ag (Individual(s) Involved: Self) Research Grant or Support; Bugworks (Individual(s) Involved: Self) Research Grant or Support; Cidara (Individual(s) Involved: Self) Research Grant or Support; Contrafect (Individual(s) Involved: Self) Research Grant or Support; Cormedix (Individual(s) Involved: Self) Research Grant or Support; Crestone, Inc. (Individual(s) Involved: Self) Research Grant or Support; Curza (Individual(s) Involved: Self) Research Grant or Support; CXC7 (Individual(s) Involved: Self) Research Grant or Support; Entasis (Individual(s) Involved: Self) Research Grant or Support; Fedora Pharmaceutical (Individual(s) Involved: Self) Research Grant or Support; Fimbrion Therapeutics (Individual(s) Involved: Self) Research Grant or Support; Fox Chase (Individual(s) Involved: Self) Research Grant or Support; GlaxoSmithKline (Individual(s) Involved: Self) Research Grant or Support; Guardant Therapeutics (Individual(s) Involved: Self) Research Grant or Support; Hardy Diagnostics (Individual(s) Involved: Self) Research Grant or Support; HMFA (Individual(s) Involved: Self) Research Grant or Support; Janssen Research &
229. A Novel ‘One Health’ Approach to Understanding the Relationship of Antimicrobial Resistance Characteristics Among Humans, Bovines, and Canines

Laurel Legenza, PharmD, MS1; John D. Lee, PhD2; Brooke J. Olson, BS2; Song Gao, PhD3; Kyle McNair, MS4; Ethan Lucas, BS in Geography1; Jessica L. Hite, PhD5; Thomas R. Fritsche, MD, PhD3; 1University of Wisconsin–Madison, Madison, Wisconsin; 2Marshfield Clinic Research Institute, Marshfield, Wisconsin; 3Marshfield Clinic Health System, Marshfield, Wisconsin; 4University of Wisconsin–Wisconsin; 5Marshfield Clinic Research Institute, Marshfield, Wisconsin

Background. ‘One Health’ recognizes the interconnectedness of humans with their production and companion animals, and the environment. Emergence and transmission of antimicrobial resistance (AMR) within and between these compartments is a recognized global threat that requires further understanding to design interventions protecting both human and animal health. In this study we identified resistance gene targets and clonotypes of Escherichia coli recovered from human, canine and bovine hosts and applied non-linear dimensionality reduction and visualization techniques to identify genetic relationships that may otherwise be unobservable within the data.

Methods. Non-duplicative E. coli isolates (N=3,398; see Figure captions) were collected from humans, canines, bovines from the Midwest USA. We identified beta-lactamase gene targets for third-generation cephem multidrug resistant isolates and performed clonotype analysis on each. Uniform Manifold Approximation (UMAP) was used to create a two-dimensional "map" of the high dimensional space of the genetic results to identify genetic relationships that may otherwise be unobservable within the data.

Results. The resulting "map" highlights similarities in: 1) genetic patterns of AMR among animals and humans, and 2) links between isolates that are infecting and colonizing isolates, and between susceptible and resistant isolates in humans and animals in the study region (see Figure captions).

Conclusions. The results support that UMAP is a valuable tool for visualizing genetic AMR links across species. Human-animal transmission is likely for disparate and common clonotypes.

Disclosures. All Authors: No reported disclosures

Figure 2. Distribution of resistant and susceptible isolates shows the resistant cases are distributed in small clusters surrounding a large cluster of predominantly susceptible cases.

Figure 3. The proportion of cases from each cluster in four adjoining counties varies considerably.