The Calderón–Zygmund Theorem with an L^1 Mean Hörmander Condition

Soichiro Suzuki

Received: 5 August 2020 / Revised: 4 December 2020 / Accepted: 30 December 2020 / Published online: 2 March 2021
© The Author(s) 2021

Abstract

In 2019, Grafakos and Stockdale introduced an L^q mean Hörmander condition and proved a “limited-range” Calderón–Zygmund theorem. Comparing their theorem with the classical one, it requires weaker assumptions and implies the L^p boundedness for the “limited-range” instead of $1 < p < \infty$. However, in this paper, we show that the L^q mean Hörmander condition is actually enough to obtain the L^p boundedness for all $1 < p < \infty$ even in the worst case $q = 1$. We use a similar method to that used by Fefferman (Acta Math 124:9–36, 1970): form the Calderón–Zygmund decomposition with the bounded overlap property and approximate the bad part. Also we give a criterion of the L^2 boundedness for convolution type singular integral operators under the L^1 mean Hörmander condition.

Keywords Singular integrals · Calderón–Zygmund theory · Fourier analysis

Mathematics Subject Classification 42B20

1 Introduction

The Calderón–Zygmund theorem is a well-known tool to investigate the L^p boundedness of singular integral operators. It was originally developed by Calderón and Zygmund [2] and later improved by Hörmander [6]. Today it is usually stated as follows:
Theorem A Let T be a singular integral operator with a kernel K. Suppose that T is bounded from $L^{p_0}(\mathbb{R}^d)$ to $L^{p_0,\infty}(\mathbb{R}^d)$ for some $1 < p_0 < \infty$ and its kernel K satisfies the Hörmander condition;

$$[K]_H := \sup_{B \subset \mathbb{R}^d} \sup_{y \in B} \int_{x \in \mathbb{R}^d \setminus 2B} |K(x, y) - K(x, c(B))| \, dx < \infty, \quad (1.1)$$

where the supremum $\sup_{B \subset \mathbb{R}^d}$ is taken over all balls B in \mathbb{R}^d, $c(B)$ is the center of B, $2B$ denotes the ball with the same center as B and whose radius is twice as long. Then T is bounded from $L^1(\mathbb{R}^d)$ to $L^{1,\infty}(\mathbb{R}^d)$. It follows that T is bounded on $L^p(\mathbb{R}^d)$ for all $1 < p < p_0$. In 2019, Grafakos and Stockdale [5] introduced an L^q mean Hörmander condition (H_q condition for short);

$$[K]_{H_q} := \sup_{B \subset \mathbb{R}^d} \left(\frac{1}{|B|} \int_{y \in B} \left(\int_{x \in \mathbb{R}^d \setminus 2B} |K(x, y) - K(x, c(B))| \, dx \right)^q \, dy \right)^{1/q} < \infty \quad (1.2)$$

and proved the following:

Theorem B [5] Let T be a singular integral with a kernel K. Suppose that T is bounded from $L^{p_0}(\mathbb{R}^d)$ to $L^{p_0,\infty}(\mathbb{R}^d)$ for some $1 < p_0 < \infty$ and its kernel K satisfies the $H_{q'}$ condition for some $1 \leq q < p_0$ where q' denotes the Hölder conjugate of q. Then T is bounded from $L^q(\mathbb{R}^d)$ to $L^{q,\infty}(\mathbb{R}^d)$. It follows that T is bounded on $L^p(\mathbb{R}^d)$ for all $q < p < p_0$. Note that $[K]_{H_1} \leq [K]_{H_2}$ if $1 \leq q_1 \leq q_2 \leq \infty$ and the H_∞ condition is the same as the classical Hörmander condition (1.1). They named Theorem B ‘limited-range Calderón–Zygmund theorem’ because it implies the L^p boundedness not for all $1 < p < p_0$ but for the ‘limited-range’: $q < p < p_0$. However, as stated in [5], they did not find any operators that satisfy the assumption of Theorem B and not bounded on L^q. In this sense, there is no evidence that it is truly a limited-range theorem. In this paper, we show that it is not actually limited-ranged. In fact, the H_q condition is enough for the $L^1 \rightarrow L^{1,\infty}$ boundedness even in the worst case $q = 1$.

Theorem 1 Let T be a singular integral operator with a kernel K. Suppose that T is bounded from $L^{p_0}(\mathbb{R}^d)$ to $L^{p_0,\infty}(\mathbb{R}^d)$ for some $1 < p_0 < \infty$ and its kernel K satisfies the H_1 condition;

$$[K]_{H_1} = \sup_{B \subset \mathbb{R}^d} \frac{1}{|B|} \int_{y \in B} \int_{x \in \mathbb{R}^d \setminus 2B} |K(x, y) - K(x, c(B))| \, dx \, dy < \infty. \quad (1.3)$$

Then T is bounded from $L^1(\mathbb{R}^d)$ to $L^{1,\infty}(\mathbb{R}^d)$ with a constant proportional to $\|T\|_{L^{p_0} \rightarrow L^{p_0,\infty}} + [K]_{H_1}$.

© Birkhäuser
Our proof is motivated by Fefferman’s proof of the $L^1 \to L^{1,\infty}$ boundedness of strongly singular integral operators (see [4, Theorem 2']). In the proof, we form the Calderón–Zygmund decomposition of f: $f = g + b$, and approximate the bad part b by a certain function \tilde{b}.

Also we will give a criterion of the L^2 boundedness for convolution type singular integral operators under the H_1 condition.

Theorem 2 Let $K \in \mathcal{S}'(\mathbb{R}^d) \cap L^1_{loc}(\mathbb{R}^d \setminus \{0\})$ be such that

$$A := \sup_{0 < a < b < \infty} \left| \int_{a < |x| < b} K(x) \, dx \right| < \infty,$$

$$B := \sup_{a > 0} \frac{1}{a} \int_{|x| < a} |x||K(x)| \, dx < \infty,$$

$$[K]_{H_1} := \sup_{r > 0} \frac{1}{V_d r^d} \int_{|y| \leq r} \int_{|x| \geq 2r} |K(x - y) - K(x)| \, dx \, dy < \infty,$$

where V_d denotes the volume of the d dimensional unit ball, and define $K_{\varepsilon,R} := K \chi_{\{\varepsilon < |x| < R\}}$ for any $0 < \varepsilon < R < \infty$. Then $K_{\varepsilon,R}$ satisfies

$$\sup_{0 < \varepsilon < R < \infty} \sup_{\xi \in \mathbb{R}^d} |\hat{K}_{\varepsilon,R}(\xi)| < \infty$$

with a constant proportional to $A + B + [K]_{H_1}$.

This is a natural generalization of the classical result stated by using the H_∞ condition (see [1, Theorem 3], [3, Proposition 5.5]).

Note that it remains an open question: is the H_1 condition actually weaker than the classical one? As of this writing, we have no examples of K such that $[K]_{H_\infty} = \infty$ but $[K]_{H_1} < \infty$.

This paper is organized as follows. We prove Theorem 1 in Sect. 2 and Theorem 2 in Sect. 3. In Sect. 4, we will remark on the $H^1 \to L^1$ boundedness under the assumption of Theorem 1.

2 Proof of Theorem 1

We use the following lemma:

Lemma A [4, Decomposition Lemma] Let $f \in L^1(\mathbb{R}^d)$ and $\lambda > 0$. Then there exists a family of disjoint dyadic cubes $(Q_j)_j$ such that

$$|f(x)| \leq \lambda \text{ a.e. } x \in \mathbb{R}^d \setminus \Omega,$$

$$\frac{1}{|B_j|} \int_{B_j} |f(x)| \, dx \leq 9^d \lambda,$$

$$|\Omega^*| \leq d^{d/2} V_d |\Omega| \leq C_d d^{d/2} V_d \frac{\|f\|_1}{\lambda}.$$

(2.1)
\[\sum_j \chi_{2B_j} \leq (33\sqrt{d}/2)^d V_d, \quad (2.2) \]

where
- \(C_d \) denotes a constant which depends only on the dimension \(d \),
- \(B_j \) denotes the smallest ball circumscribing \(Q_j \),
- \(\Omega := \bigcup_j Q_j \),
- \(\Omega^* := \bigcup_j 2B_j \).

Furthermore, if we define

\[
g := f \chi_{\mathbb{R}^d \setminus \Omega}, \quad (2.3)
\]

\[
b_j := f \chi_{Q_j}, \quad b := f \chi_\Omega = \sum_j b_j, \quad (2.4)
\]

then immediately it follows that

\[
\|g\|_{L^p_0} \leq \lambda^{p_0 - 1} \|f\|_1, \quad (2.5)
\]

\[
\frac{1}{|B_j|} \|b_j\|_1 \leq 9^d \lambda, \quad (2.6)
\]

\[
\|b\|_1 = \sum_j \|b_j\|_1 \leq \|f\|_1. \quad (2.7)
\]

Lemma A is essentially the Whitney decomposition of \(\{ x \in \mathbb{R}^d : Mf(x) > \lambda \} \), where \(M \) is the Hardy–Littlewood maximal function with uncentered balls.\(^1\)

Note that our good part \(g \) (2.3) and bad part \(b \) (2.4) are different from usual ones. Ordinarily, they are defined by

\[
g := f \chi_{\mathbb{R}^d \setminus \Omega} + \sum_j \left(\frac{1}{|Q_j|} \int_{Q_j} f \right) \chi_{Q_j},
\]

\[
b_j := \left(f - \frac{1}{|Q_j|} \int_{Q_j} f \right) \chi_{Q_j}, \quad b := \sum_j b_j
\]

to guarantee the zero mean condition \(\int b_j = 0 \). However, our proof does not require it, hence we use our simpler definition.

Now we are going to give the proof of Theorem 1.

Proof of Theorem 1 Fix \(f \in L^1(\mathbb{R}^d) \cap L^\infty(\mathbb{R}^d) \), \(t, \lambda > 0 \) and form the Calderón–Zygmund decomposition of \(f \) at height \(t\lambda \) (where \(t \) is given later to set appropriate estimates). In addition, fix \(\varphi \in C_c^\infty(\mathbb{R}^d) \) such that

\[
\text{supp} \varphi \subset B(0, 1), \quad \int \varphi = 1, \quad \varphi \geq 0 \quad (2.8)
\]

\(^1\) The constant \(C_d \) in Lemma A is the \(L^1(\mathbb{R}^d) \to L^{1,\infty}(\mathbb{R}^d) \) bound of \(M \), hence it can be taken to be \(3^d \).
and write $\varphi_j(x) := s_j^{-d} \varphi(s_j^{-1} x)$ where r_j is the radius of B_j and $s_j := r_j/2$. We approximate b_j by $\tilde{b}_j := b_j \ast \varphi_j$ and b by $\tilde{b} := \sum_j \tilde{b}_j$.

Now we have $f = g - (\tilde{b} - b) + \tilde{b}$ and it suffices to show the following inequalities.

$$\lambda |\{ x \in \mathbb{R}^d : |Tg(x)| > \lambda \} | \lesssim \| f \|_1, \quad (2.9)$$

$$\lambda |\{ x \in \mathbb{R}^d : |T(\tilde{b} - b)(x)| > \lambda \} | \lesssim \| f \|_1, \quad (2.10)$$

$$\lambda |\{ x \in \mathbb{R}^d : |T\tilde{b}(x)| > \lambda \} | \lesssim \| f \|_1. \quad (2.11)$$

Proof of (2.9) Since T is bounded from $L^{p_0}(\mathbb{R}^d)$ to $L^{p_0,\infty}(\mathbb{R}^d)$, it follows that

$$\lambda |\{ x \in \mathbb{R}^d : |Tg(x)| > \lambda \} | = \frac{1}{\lambda^{p_0-1}} \lambda^{p_0} |\{ x \in \mathbb{R}^d : |Tg(x)| > \lambda \} |$$

$$\leq \frac{1}{\lambda^{p_0-1}} \| Tg \|_{L^{p_0,\infty}}$$

$$\leq \frac{1}{\lambda^{p_0-1}} \| T \|_{L^{p_0} \to L^{p_0,\infty}} \| g \|_{L^{p_0}}$$

$$\leq (2.5) \frac{1}{\lambda^{p_0-1}} \| T \|_{L^{p_0} \to L^{p_0,\infty}} (t\lambda)^{p_0-1} \| f \|_1$$

$$= t^{p_0-1} \| T \|_{L^{p_0} \to L^{p_0,\infty}} \| f \|_1.$$

Proof of (2.10) Since

$$\{ x \in \mathbb{R}^d : |T(\tilde{b} - b)(x)| > \lambda \} \subset \Omega^* \cup \{ x \in \mathbb{R}^d \setminus \Omega^* : |T(\tilde{b} - b)(x)| > \lambda \},$$

it follows that

$$\lambda |\{ x \in \mathbb{R}^d : |T(\tilde{b} - b)(x)| > \lambda \} |$$

$$\leq \lambda |\Omega^*| + \lambda |\{ x \in \mathbb{R}^d \setminus \Omega^* : |T(\tilde{b} - b)(x)| > \lambda \} |$$

$$\leq t^{-1} C_d d^{d/2} V_d \| f \|_1 + \| T(\tilde{b} - b) \|_{L^1(\mathbb{R}^d \setminus \Omega^*)}.$$
\[
T \tilde{b}_j (x) = \int_{y \in \mathbb{R}^d} K (x, y) \tilde{b}_j (y) \, dy \\
= \int_{y \in \mathbb{R}^d} K (x, y) \int_{z \in B(0, s_j)} b_j (y - z) \varphi_j (z) \, dz \, dy \\
= \int_{z \in B(0, s_j)} \int_{y \in \mathbb{R}^d} K (x, y) b_j (y - z) \, dy \varphi_j (z) \, dz \\
= \int_{z \in B(0, s_j)} \left(\int_{y \in B_j} K (x, y + z) \, dy \right) \varphi_j (z) \, dz
\]

since \(T \) is a singular integral operator with a kernel \(K \). Therefore, for each \(j \), we have

\[
\| T (\tilde{b}_j - b_j) \|_{L^1 (\mathbb{R}^d \setminus \Omega^*)} \\
\leq \int_{x \in \mathbb{R}^d \setminus 2B_j} | T \tilde{b}_j (x) - T b_j (x) | \, dx \\
= \int_{x \in \mathbb{R}^d \setminus 2B_j} \left| \int_{z \in B(0, s_j)} \left(\int_{y \in B_j} (K (x, y + z) - K (x, y)) b_j (y) \, dy \right) \varphi_j (z) \, dz \right| \, dx \\
\leq \int_{y \in B_j} \left(\int_{z \in B(0, s_j)} \int_{x \in \mathbb{R}^d \setminus 2B_j} | K (x, y + z) - K (x, y) | \, dx \varphi_j (z) \, dz \right) | b_j (y) | \, dy \\
\leq \| \varphi_j \|_{\infty} \int_{y \in B_j} \left(\int_{z \in B(0, s_j)} \int_{x \in \mathbb{R}^d \setminus B(\gamma, r_j)} | K (x, y + z) - K (x, y) | \, dx \, dz \right) | b_j (y) | \, dy \\
= V_d \| \varphi \|_{\infty} \int_{y \in B_j} | [K]_{H_1} | b_j (y) | \, dy \\
= V_d \| \varphi \|_{\infty} [K]_{H_1} \| b_j \|_1.
\]

It follows that

\[
\| T (\tilde{b} - b) \|_{L^1 (\mathbb{R}^d \setminus \Omega^*)} \leq \sum_j \| T (\tilde{b}_j - b_j) \|_{L^1 (\mathbb{R}^d \setminus \Omega^*)} \leq V_d \| \varphi \|_{\infty} [K]_{H_1} \| f \|_1.
\]

Proof of (2.11) By the same argument as in the proof of (2.9), we have

\[
\lambda | \{ x \in \mathbb{R}^d : | T \tilde{b} (x) | > \lambda \} | = \frac{1}{\lambda} \| T \|_{L^p_0 \rightarrow L^{p_0} \infty} \| \tilde{b} \|_{p_0} \\
\leq \frac{1}{\lambda^{p_0-1}} \| T \|_{L^p_0 \rightarrow L^{p_0} \infty} \| \tilde{b} \|_{p_0}^{-1} \| \tilde{b} \|_1.
\]
Since it is obvious that
\[\|\tilde{b}\|_1 \leq \sum_j \|b_j \ast \varphi_j\|_1 \leq \sum_j \|b_j\|_1 \leq (2.7) \|f\|_1, \]
it is enough to show that \(\|\tilde{b}\|_\infty \lesssim \lambda \). For each \(j \), we have
\[\|b_j \ast \varphi_j\|_\infty \leq \|b_j\|_1 \|\varphi_j\|_\infty = \|\varphi\|_\infty \frac{\|b_j\|_1}{s_j} \leq (2.6) 18^d V_d \|\varphi\|_\infty t \lambda. \]
Therefore, it follows from the bounded overlap property (2.2),
\[\|\tilde{b}\|_\infty \leq 297 d \|\varphi\|_\infty t \lambda. \]
Hence we conclude that
\[\lambda \{|x \in \mathbb{R}^d : |T\tilde{b}(x)| > \lambda\} \leq t^{p_0-1} (297^d d^{d/2} V_d^2 \|\varphi\|_\infty)^{p_0-1} \|T\|_{L^{p_0} \rightarrow L^{p_0, \infty}} \|f\|_1. \]
\[\square \]
Combining estimates above, we obtain
\[\|Tf\|_{1, \infty} \leq 3 (t^{p_0-1} \|T\|_{L^{p_0} \rightarrow L^{p_0, \infty}} + (t^{-1} C d d^{d/2} V_d + V_d \|\varphi\|_\infty [K]_{H_1}) + t^{p_0-1} (297^d d^{d/2} V_d^2 \|\varphi\|_\infty)^{p_0-1} \|T\|_{L^{p_0} \rightarrow L^{p_0, \infty}} \|f\|_1. \]
Finally, remember that \(t \) and \(\varphi \) are arbitrary. Since \(\inf_{\varphi} \) satisfies (2.8), \(\|\varphi\|_\infty = V_d^{-1} \), we conclude that
\[\|T\|_{L^1 \rightarrow L^{1, \infty}} \leq 3 \inf_{t > 0} (t^{-1} C d d^{d/2} V_d + [K]_{H_1} + t^{p_0-1} (1 + (297^d d^{d/2} V_d)^{p_0-1}) \|T\|_{L^{p_0} \rightarrow L^{p_0, \infty}} \|T\|_{L^{p_0} \rightarrow L^{p_0, \infty}} + \inf_{\varphi} \|\varphi\|_\infty [K]_{H_1}) \]
\[\square \]
\section{The Proof of Theorem 2}
We use the following lemma:

Lemma 1 If \(K \in L^1_{loc}(\mathbb{R}^d \setminus \{0\}) \) satisfies (1.5) and (1.6), then
\[\sup_{0 < \varepsilon < R < \infty} [K_{\varepsilon, R}]_{H_1} \leq [K]_{H_1} + 7B. \] (3.1)
Proof of Lemma 1} It is obvious that
\[
\begin{align*}
\frac{1}{V_{d}r^{d}} \int_{|y| \leq r} \int_{|x| \geq 2r} |K_{\varepsilon, R}(x - y) - K_{\varepsilon, R}(x)| \, dx \, dy \\
= \frac{1}{V_{d}r^{d}} \int_{|y| \leq r} \int_{|x| \geq 2r, \varepsilon < |x - y| < R, \varepsilon < |x| < R} |K(x - y) - K(x)| \, dx \, dy \\
+ \frac{1}{V_{d}r^{d}} \int_{|y| \leq r} \int_{|x| \geq 2r, \varepsilon < |x - y| < R, |x| \leq \varepsilon} |K(x - y)| \, dx \, dy \\
+ \frac{1}{V_{d}r^{d}} \int_{|y| \leq r} \int_{|x| \geq 2r, \varepsilon < |x - y| < R, |x| \geq R} |K(x - y)| \, dx \, dy \\
+ \frac{1}{V_{d}r^{d}} \int_{|y| \leq r} \int_{|x| \geq 2r, |x - y| \leq \varepsilon, \varepsilon < |x| < R} |K(x)| \, dx \, dy \\
+ \frac{1}{V_{d}r^{d}} \int_{|y| \leq r} \int_{|x| \geq 2r, |x - y| \geq R, \varepsilon < |x| < R} |K(x)| \, dx \, dy
\end{align*}
\]
and the first term is bounded by $[K]_{H_{1}}$. To estimate other terms, note that (1.5) implies
\[
\sup_{a > 0} \int_{a < |x| < ca} |K(x)| \, dx \leq \sup_{a > 0} \int_{a < |x| < ca} \frac{|x|}{a} |K(x)| \, dx \leq cB
\]
for any $c > 1$. Since we have
\[
\begin{align*}
\varepsilon < |x - y| < R, |x| \leq \varepsilon &\quad \Rightarrow \quad |x - y| \leq |x| + |y| \leq 3|x| / 2 \leq 3\varepsilon / 2, \\
\varepsilon < |x - y| < R, |x| \geq R &\quad \Rightarrow \quad |x - y| \geq |x| - |y| \geq |x| / 2 \geq R / 2, \\
|x - y| \leq \varepsilon, \varepsilon < |x| < R &\quad \Rightarrow \quad |x| \leq 2(|x - y| + |y|) - |x| \leq 2|x - y| < 2\varepsilon, \\
|x - y| \geq R, \varepsilon < |x| < R &\quad \Rightarrow \quad |x| \geq 2(|x - y| - |y|) / 3 + |x| / 3 \geq 2|x - y| / 3 \geq 2R / 3
\end{align*}
\]
under the condition $2|y| \leq 2r \leq |x|$, the second and fifth terms are bounded by $3B / 2$, the third and fourth terms are bounded by $2B$.

\textbf{Proof of Theorem 2} Fix $0 < \varepsilon < R < \infty$ and $\xi \in \mathbb{R}^{d}$. Since it is obvious that
\[
|\hat{K}_{\varepsilon, R}(0)| = \left| \int_{|x| < \varepsilon} K(x) \, dx \right| \leq A,
\]
we assume $\xi \neq 0$ and write $s := |\xi|^{-1}$. If we decompose $\hat{K}_{\varepsilon, R}(\xi)$ as
\[
\hat{K}_{\varepsilon, R}(\xi) = \int_{x \in \mathbb{R}^{d}} K_{\varepsilon, R}(x) e^{-2\pi i x \cdot \xi} \, dx
\]
\[
= \int_{|x| < 2s} K_{\varepsilon, R}(x)(e^{-2\pi i x \cdot \xi} - 1) \, dx + \int_{|x| < 2s} K_{\varepsilon, R}(x) \, dx + \int_{2s \leq |x|} K_{\varepsilon, R}(x) e^{-2\pi i x \cdot \xi} \, dx
\]
\[
=: I_{1} + I_{2} + I_{3},
\]

\textcopyright Birkhäuser
then we easily get

\[|I_1| \leq \int_{|x|<2s} |K_{\varepsilon,R}(x)||e^{-2\pi ix\cdot \xi} - 1| \, dx \leq 4\pi \frac{1}{2s} \int_{|x|<2s} |x||K_{\varepsilon,R}(x)| \, dx \leq 4\pi B, \tag{1.5} \]

\[|I_2| = \left| \int_{\varepsilon < |x| < 2s} K_{\varepsilon,R}(x) \, dx \right| \leq A. \tag{1.4} \]

To estimate \(I_3 \), fix a radial function \(\varphi \in C^\infty_c(\mathbb{R}^d) \) such that

\[\text{supp} \varphi \subset B(0,1), \quad \int \varphi = 1, \quad \varphi \geq 0, \quad |\hat{\varphi}(1)| < 1 \]

and define \(\varphi_s(x) := s^{-d} \varphi(s^{-1} x) \). Moreover, rewrite

\[I_3 = \int_{|x| \geq 2s} \int_{|y| \leq s} K_{\varepsilon,R}(x)\varphi_s(y) \, dy \, e^{-2\pi ix\cdot \xi} \, dx \tag{3.2} \]

and introduce

\[I_4 := \int_{|x| \geq 2s} \int_{|y| \leq s} K_{\varepsilon,R}(x-y)\varphi_s(y) \, dy \, e^{-2\pi ix\cdot \xi} \, dx, \tag{3.3} \]

\[I_5 := \int_{|x| < 2s} \int_{|y| \leq s} K_{\varepsilon,R}(x-y)\varphi_s(y) \, dy \, e^{-2\pi ix\cdot \xi} \, dx \tag{3.4} \]

\[= \int_{|x| < 2s} \int_{|x-y| \leq s} K_{\varepsilon,R}(y)\varphi_s(x-y) \, dy \, e^{-2\pi ix\cdot \xi} \, dx \tag{3.5} \]

\[I_6 := \int_{|x| < 2s} \int_{|y| \leq 3s} K_{\varepsilon,R}(y)\varphi_s(x) \, dy \, e^{-2\pi ix\cdot \xi} \, dx \tag{3.6} \]

\[= \hat{\varphi}_s(\xi) \int_{|y| \leq 3s} K_{\varepsilon,R}(y) \, dy. \tag{3.7} \]

We decompose \(I_3 \) into \((I_3 - I_4) + (I_4 + I_5) - (I_5 - I_6) - I_6\). By (3.2), (3.3) and Lemma 1, we get
\[|I_4 - I_3| \]
\[
\leq (3.2), (3.3) \left| \int_{|x| \geq 2s} \int_{|y| \leq s} (K_{\xi, R}(x - y) - K_{\xi, R}(x)) \varphi_s(y) e^{-2\pi i x \cdot \xi} \, dy \, dx \right|
\]
\[
\leq \int_{|y| \leq s} \int_{|x| \geq 2s} |K_{\xi, R}(x - y) - K_{\xi, R}(x)| \varphi_s(y) \, dy \, dx
\]
\[
\leq V_d \|\varphi\|_{\infty} \frac{1}{V_d s^d} \int_{|y| \leq s} \int_{|x| < 2s} |K_{\xi, R}(x - y) - K_{\xi, R}(x)| \, dx \, dy
\]
\[
\leq V_d \|\varphi\|_{\infty} [K_{\xi, R}]_{H_1}
\]
\[
\leq V_d \|\varphi\|_{\infty} ([K]_{H_1} + 7B).
\]

For \(I_5 - I_6 \), use (3.5), (3.6) and the mean value theorem to obtain

\[
|I_5 - I_6| \]
\[
= (3.5), (3.6) \left| \int_{|x| < 2s} \int_{|y| \leq 3s} K_{\xi, R}(y)(\varphi_s(x - y) - \varphi_s(x)) e^{-2\pi i x \cdot \xi} \, dy \, dx \right|
\]
\[
\leq \int_{|x| < 2s} \int_{|y| \leq 3s} |K_{\xi, R}(y)| |\varphi_s(x - y) - \varphi_s(x)| \, dy \, dx
\]
\[
\leq \int_{|x| < 2s} \int_{|y| \leq 3s} |K_{\xi, R}(y)| s^{-d-1} |y| \|\nabla \varphi\|_{\infty} \, dy \, dx
\]
\[
= 3s^{-d} \|\nabla \varphi\|_{\infty} \int_{|x| < 2s} \left(\frac{1}{3s} \int_{|y| \leq 3s} |y| |K_{\xi, R}(y)| \, dy \right) \, dx
\]
\[
\leq (1.5) \left(3s^{-d} \|\nabla \varphi\|_{\infty} \int_{|x| \leq 2s} B \, dx \right)
\]
\[
= 3 \cdot 2^d V_d \|\nabla \varphi\|_{\infty} B.
\]

For \(I_4 + I_5 \) and \(I_6 \), remark that \(\hat{\varphi}_s(\xi) = \hat{\varphi}(s \xi) = \hat{\varphi}(1) \) because \(\varphi \) is radial and \(s = |\xi|^{-1} \). Then it follows immediately that

\[I_4 + I_5 \]
\[
(3.3), (3.4) K_{\xi, R} * \varphi_s(\xi) = \hat{\varphi}(1) \widehat{K_{\xi, R}(\xi)},
\]
\[
|I_6| \]
\[
(3.7) |\hat{\varphi}_s(\xi) \int_{|x| \leq 3s} K_{\xi, R}(y) \, dy| \leq (1.4) |\hat{\varphi}(1)| A.
\]

Now we have

\[
|\widehat{K_{\xi, R}(\xi)}|
\]
\[
\leq |I_1| + |I_2| + |I_3 - I_4| + |I_4 + I_5| + |I_5 - I_6| + |I_6|
\]
\[
\leq 4\pi B + A + V_d \|\varphi\|_{\infty} ([K]_{H_1} + 7B) + |\hat{\varphi}(1)| |\widehat{K_{\xi, R}(\xi)}|
\]
\[
+ 3 \cdot 2^d V_d \|\nabla \varphi\|_{\infty} B + |\hat{\varphi}(1)| A
\]
for any $\xi \in \mathbb{R}^d$ (it is still valid in the case $\xi = 0$). Finally, remember $|\hat{\varphi}(1)| < 1$ to conclude that

$$|\hat{K}_{\varepsilon, R}(\xi)| \leq \frac{(1 + |\hat{\varphi}(1)|)A + (4\pi + V_d(7\|\varphi\|_{\infty} + 3\cdot2^d\|\nabla\varphi\|_{\infty}))B + V_d\|\varphi\|_{\infty}[K]_{H_1}}{1 - |\hat{\varphi}(1)|}. $$

\[\square\]

4 Remark

We can also obtain the $H^1 \to L^1$ boundedness under the assumption of Theorem 1.

Theorem 3 Let T be a singular integral operator with a kernel K. Suppose that T is bounded from $L^{p_0}(\mathbb{R}^d)$ to $L^{p_0, \infty}(\mathbb{R}^d)$ for some $1 < p_0 < \infty$ and its kernel K satisfies the H_1 condition. Then T is bounded from $H^1(\mathbb{R}^d)$ to $L^1(\mathbb{R}^d)$.

To see this, note that Theorem 1 implies that T is bounded on $L^p(\mathbb{R}^d)$ for any $1 < p < p_0$. Hence we assume that T is bounded on $L^{p_0}(\mathbb{R}^d)$ for some $1 < p_0 < \infty$ without loss of generality. Now we can show the $H^1(\mathbb{R}^d) \to L^1(\mathbb{R}^d)$ boundedness. We do not prove it here because its proof is the almost same as that of the classical theorem (see [3, Proposition 6.2, Corollary 6.3]).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Benedek, A., Calderón, A.P., Panzone, R.: Convolution operators with Banach-space valued functions. Proc. Natl. Acad. Sci. USA 48, 356–365 (1962). https://doi.org/10.1073/pnas.48.3.356
2. Calderón, A.P., Zygmund, A.: On the existence of certain singular integrals. Acta Math. 88, 85–139 (1952). https://doi.org/10.1007/BF02392130
3. Duoandikoetxea, J.: Fourier Analysis (translated and revised by D. Cruz-Uribe). American Mathematical Society, Providence (2001). https://doi.org/10.1090/gsm/029
4. Fefferman, C.: Inequalities for strongly singular convolution operators. Acta Math. 124, 9–36 (1970). https://doi.org/10.1007/BF02394567
5. Grafakos, L., Stockdale, C.B.: A limited-range Calderón–Zygmund theorem. Bull. Hellenic Math. Soc. 63, 54–63 (2019). http://bulletin.math.uoc.gr/bulletin/vol/63/63-54-63.pdf
6. Hörmander, L.: Estimates for translation invariant operators in L^p-spaces. Acta Math. 104, 93–140 (1960). https://doi.org/10.1007/BF02547187

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.