CYCLIC HOMOLOGY OF BRZEZIŃSKI’S CROSSED PRODUCTS
AND OF BRAIDED HOPF CROSSED PRODUCTS

GRACIELA CARBONI, JORGE A. GUCCIONE, JUAN J. GUCCIONE,
AND CHRISTIAN VALQUI

Abstract. Let k be a field, A a unitary associative k-algebra and V a k-
vector space endowed with a distinguished element 1_V. We obtain a mixed
complex, simpler than the canonical one, that gives the Hochschild, cyclic,
negative and periodic homology of a crossed product $E := A \# fV$, in the
sense of Brzeziński. We actually work in the more general context of relative
cyclic homology. Specifically, we consider a subalgebra K of A that satisfies
suitable hypothesis and we find a mixed complex computing the Hochschild,
cyclic, negative and periodic homology of E relative to K. Then, when E is a
cleft braided Hopf crossed product, we obtain a simpler mixed complex, that
also gives the Hochschild, cyclic, negative and periodic homology of E.

Introduction

The problem of develop tools to compute the cyclic homology of smash products
algebras $A\# k[G]$, where G is a group, was considered in [F-T], [N] and [G-J].
For instance, in the first paper it was obtained a spectral sequence converging
to the cyclic homology of $A\# k[G]$. In [G-J], this result was derived from the
theory of paracyclic modules and cylindrical modules developed by the authors. The
main tool for this computation was a version for cylindrical modules of Eilenberg-
Zilber theorem. In [A-K] this theory was used to obtain a Feigin-Tsygan type spectral sequence for smash products $A\# H$, of a Hopf algebra H with an H-module
algebra A.

It is natural to try to extend this result to the general crossed products $A\# fH$
invented in [B-C-M] and [D-T], and to more general algebras such as Hopf Galois
extensions. In [J-S] the relative to A cyclic homology of a Galois H extension C/A
was studied, and the results obtained was applied to the Hopf crossed products
$A\# fH$, giving the absolute cyclic homology when A is a separable algebra. As far
as we know, [K-R] was the first work dealing with the absolute cyclic homology of a
crossed product $A\# fH$, with A non separable and f non trivial. In that paper the
authors get a Feigin-Tsygan type spectral sequence for a crossed products $A\# fH$,
under the hypothesis that H is cocommutative and f takes values in k. Finally,
the main results established in [K-R] were extended in [C-G-G] to the general
Hopf crossed products $A\# fH$ introduced in [B-C-M] and [D-T]. In particular were
constructed two spectral sequences converging to the cyclic homology of $A\# fH$.
The second one, which is valid under the hypothesis that f takes values in k,
generalize those obtained in [A-K] and [K-R].

Let k be a field. An associative and unital k-algebra E is an smash product of
two associative and unital algebras A and B if the underlying vector space of E is

2010 Mathematics Subject Classification. primary 16E40; secondary 16T05.
Key words and phrases. Crossed products, Hochschild (co)homology, Cyclic homology.
The research of G. Carboni, J. A. Guccione and J.J Guccione was supported by UBACYT 095
and PIP 112-200801-00900 (CONICET).
The research of C. Valqui was supported by PUCP-DAI-2009-0042, Lucet 90-DAI-L005 and
SFB 478 U. Münster, Konrad Adenauer Stiftung.
Let $R: B \otimes_k A \rightarrow A \otimes_k B$ be the map defined by $R(b \otimes_k a) := (1 \otimes_k b)(a \otimes_k 1)$. It is evident that each smash product E is complete determined by the map R. This justifies the notation $A \#_R B$ for E. An smash product $A \#_R B$ is called strong if R is bijective. A different generalization of the results established in [A-K] was obtained in [Z-H], where it was found a mixed complex, simpler than the canonical one, that computes the type cyclic homology groups of a strong smash product algebra. Using this the authors construct a spectral sequence that converges to the cyclic homology of $A \#_R B$. The Hochschild (co)homology of strong smash products was studied in [G-G1].

Let V be a k-vector space endowed with a distinguished element 1 and A an associative and unital k-algebra. We say that an algebra E with underlying vector space $A \otimes_k V$ is a Brzeziński’s crossed product of A with V if it is associative with unit $1 \otimes_k 1$, the map

$$A \xrightarrow{\alpha} E$$

$$a \mapsto a \otimes_k 1$$

is a morphism of algebras and the left A-module structure of $A \otimes_k V$ induced by this map is the canonical one. Brzeziński’s crossed products are a wide generalization of Hopf crossed products and smash products of algebras (the relation between smash products and Brzeziński’s crossed products of algebras is analogous to the relation between group smash products and group crossed products). The goal of this work is to present a mixed complex $(\hat{X}, \hat{d}, \hat{D})$, simpler than the canonical one, that gives the Hochschild, cyclic, negative and periodic homologies of a Brzeziński’s crossed product of A with V. This result generalizes the main results of [C-G-G, Section 2] and [Z-H]. Moreover in this case our complex also works when the smash product is not strong. We actually work in the more general context of relative cyclic homology. Specifically, we consider a subalgebra K of A that satisfies suitable conditions, and we find a mixed complex computing the Hochschild, cyclic, negative and periodic homology groups of E relative to K (which we simply call the Hochschild, cyclic, negative and periodic homology groups of the K-algebra E). Of course, when K is separable, this gives the absolute homologies. Our main result is Theorem 6.2, in which is proved that $(\hat{X}, \hat{d}, \hat{D})$ is homotopically equivalent to the canonical normalized mixed complex of E. As an application we obtain four spectral sequences converging to the cyclic homology of the K-algebra E. The first one generalizes those given in [C-G-G, Section 3.1] and [Z-H, Theorem 4.7], and the third one those of [A-K], [K-R] and [C-G-G, Section 3.2]. As far as we know, the results of the core of this paper (Sections 3, 4, 5 and 6) applies to all the up to date existent types of crossed products of algebras with braided Hopf algebras, in particular to the underlying algebras of the crossed product bialgebras considered in [B-D] and to the L-R smash products introduced in [B-G-G-S] and [B-S]. In sections 7, 8, 9, 10 and 11 we consider the left braided Hopf crossed products introduced in [G-G2]. The main result of these sections is that when E is a left braided Hopf crossed product, $(\hat{X}, \hat{d}, \hat{D})$ is isomorphic to a simpler mixed complex $(\overline{X}, \overline{d}, \overline{D})$.

Our method of proof is different from that used in [G-J], [A-K], [K-R] and [Z-H], since they are based in the results obtained in [G-G1] and the Perturbation Lemma instead of a generalization of the Eilenberg-Zilber theorem.
Finally we want to point out that in this paper we also study the Hochschild homology and cohomology of E with coefficients in an arbitrary E-bimodule M. More precisely, we obtain complexes, simpler that the canonical ones, that compute the Hochschild homology and cohomology of E with coefficients in M. Using them we get spectral sequences that generalize the Hochschild-Serre spectral sequences ([H-S]), and we get some result about the cup product of the Hochschild cohomology of E and cap product of the Hochschild homology of E with coefficients in M.

1. PRELIMINARIES

In this article we work in the category of vector spaces over a field k. Then we assume implicitly that all the maps are k-linear maps. The tensor product over k is denoted by \otimes_k. Given a k-vector space V and $n \geq 1$, sometimes we let $V \otimes_k^n$ denote the n-fold tensor product $V \otimes_k \cdots \otimes_k V$. Given k-vector spaces U,V,W and a map $f : V \to W$ we write $U \otimes_k f$ for $\text{id}_U \otimes_k f$ and $f \otimes_k U$ for $f \otimes_k \text{id}_U$. We assume that the reader is familiar with the notions of algebra, coalgebra, module and comodule. Unless otherwise explicitly established we assume that the algebras are associative unitary and the coalgebras are coassociative counitary. Given an algebra A and a coalgebra C, we let

$$\mu : A \otimes_k A \to A, \quad \eta : k \to A, \quad \Delta : C \to C \otimes_k C \quad \text{and} \quad \epsilon : C \to k$$

denote the multiplication, the unit, the comultiplication and the counit, respectively, specified with a subscript if necessary. Moreover, given k-vector spaces V and W, we let $\tau : V \otimes_k W \to W \otimes_k V$ denote the flip $\tau(v \otimes_k w) = w \otimes_k v$.

In this article we use the nowadays well known graphic calculus for monoidal and braided categories. As usual, morphisms will be composed from up to down and tensor products will be represented by horizontal concatenation in the corresponding order. The identity map of a k-vector space will be represented by a vertical line, and the flip by the diagram

$$\begin{array}{c}
\uparrow \\
\downarrow
\end{array}$$

Given an algebra A, the diagrams

$$\begin{array}{c}
\Uparrow, \\
\Downarrow
\end{array}$$

stand for the multiplication map, the unit, the action of A on a left A-module and the action of A on a right A-module, respectively. Given a coalgebra C, the comultiplication, the counit, the coaction of C on a right C-comodule and the coaction of C on a left C-comodule will be represented by the diagrams

$$\begin{array}{c}
\Downarrow, \\
\Uparrow
\end{array}$$

respectively.

Consider a k-linear map $c : V \otimes_k W \to W \otimes_k V$. If V is an algebra, then we say that c is compatible with the algebra structure of V if

$$c \circ (\eta \otimes_k W) = W \otimes_k \eta \quad \text{and} \quad c \circ (\mu \otimes_k W) = (W \otimes_k \mu) \circ (c \otimes_k V) \circ (V \otimes_k c).$$

If V is a coalgebra, then we say that c is compatible with the coalgebra structure of V if

$$(W \otimes_k c) \circ c = c \otimes_k W \quad \text{and} \quad (W \otimes_k \Delta) \circ c = (c \otimes_k V) \circ (V \otimes_k c) \circ (\Delta \otimes_k W).$$

Finally, if W is an algebra or a coalgebra, then we introduce the notion that c is compatible with the structure of W in the obvious way.
1.1. Brzeziński’s crossed products. In this subsection we recall a very general definition of crossed product, introduced in [Br], and its basic properties. For the proofs we refer to [Br] and [B-D]. Throughout this paper A is a unitary algebra and V is a k-vector space equipped with a distinguished element $1 \in V$.

Definition 1.1. Given maps $\chi : V \otimes_k A \to A \otimes_k V$ and $F : V \otimes_k V \to A \otimes_k V$, we let $A \# V$ denote the algebra (in general non associative and non unitary) whose underlying k-vector space is $A \otimes_k V$ and whose multiplication map is given by

$$
\mu_{A \# V} := (\mu_A \otimes_k V) \circ (\mu_A \otimes_k F) \circ (A \otimes_k \chi \otimes_k V).
$$

The element $a \otimes_k v$ of $A \# V$ will usually be written $a \# v$. The algebra $A \# V$ is called a crossed product if it is associative with $1 \# 1$ as identity.

Definition 1.2. Let $\chi : V \otimes_k A \to A \otimes_k V$ and $F : V \otimes_k V \to A \otimes_k V$ be maps.

1. χ is a twisting map if it is compatible with the algebra structure of A and $\chi(1 \otimes_k a) = a \otimes_k 1$.
2. F is normal if $F(1 \otimes_k v) = F(v \otimes_k 1) = 1 \otimes_k v$.
3. F is a cocycle that satisfies the twisted module condition if

$$
\begin{align*}
\chi(a \otimes_k b) &= (ab \# 1) \quad \text{and} \quad F(a \otimes_k b) = (1 \# v)(1 \# w).
\end{align*}
$$

More precisely, the first equality says that F is a cocycle and the second one says that F satisfies the twisted module condition.

Theorem 1.3 (Brzeziński). The algebra $A \# V$ is a crossed product if and only if χ is a twisting map and F is a normal cocycle that satisfies the twisted module condition.

Note that the multiplication of a crossed product have the following property:

$$
(a \# 1)(b \# v) = ab \# v.
$$

In particular $a \mapsto a \# 1$ is an injective morphism of k-algebras. We consider A as a subalgebra of $A \# V$ via this map. Conversely, each k-algebra with underlying vector space $A \otimes_k V$, whose multiplication map satisfies (1.4), is a crossed product.

The twisting map χ and the cocycle F are given by

$$
\chi(v \otimes_k a) = (1 \# v)(a \# 1) \quad \text{and} \quad F(v \otimes_k w) = (1 \# v)(1 \# w).
$$

Definition 1.4. Let $A \# V$ be a crossed product with associated twisting map χ and cocycle F, and let R be a subalgebra of A. We say that:

- R is stable under χ if $\chi(V \otimes_k R) \subseteq R \otimes_k V$.
- F takes its values in $R \otimes_k V$ if $F(V \otimes_k V) \subseteq R \otimes_k V$.

1.2. Braided Hopf crossed products. Braided bialgebras and braided Hopf algebras were introduced by Majid (see his survey [M]). In this subsection, we make a quick review of this subject following the intrinsic presentation given by Takeuchi in [T]. Then, we review the concept of braided Hopf crossed products introduced in [G-G2]. Let V be a k-vector space. Recall that a map $c \in \text{End}_k(V \otimes_k)$ is called a braiding operator of V if it satisfies the equality

$$
(c \otimes_k V) \circ (V \otimes_k c) \circ (c \otimes_k V) = (V \otimes_k c) \circ (c \otimes_k V) \circ (V \otimes_k c).
$$
Definition 1.5. A braided bialgebra is a k-vector space H, endowed with an algebra structure, a coalgebra structure and a bijective braiding operator c of H, called the braid of H, such that: c is compatible with the algebra and coalgebra structures of H, η is a coalgebra morphism, ϵ is an algebra morphism and

$$\Delta \circ \mu = (\mu \otimes_k \mu) \circ (H \otimes_k c \otimes_k H) \circ (\Delta \otimes_k \Delta).$$

Moreover, if there exists a map $S : H \to H$, which is the convolution inverse of the identity map, then we say that H is a braided Hopf algebra and we call S the antipode of H.

Usually H denotes a braided bialgebra, understanding the structure maps, and c denotes its braid.

Definition 1.6. Let H be a braided bialgebra and A an algebra. A transposition of H on A is a bijective twisting map $s : H \otimes_k A \to A \otimes_k H$ which is compatible with the algebra structure of H. That is, s is a twisting map that satisfies the equation

$$(s \otimes_k H) \circ (H \otimes_k s) \circ (c \otimes_k A) = (A \otimes_k c) \circ (s \otimes_k H) \circ (H \otimes_k s),$$

and it is compatible with the algebra and coalgebra structures of H.

Remark 1.7. It is easy to see that if s is a transposition then s^{-1} is compatible with the algebra and coalgebra structures of H, with the algebra structure of A and that

$$(H \otimes_k s^{-1}) \circ (s^{-1} \otimes_k H) \circ (A \otimes_k c^{-1}) = (c^{-1} \otimes_k H) \circ (H \otimes_k s^{-1}) \circ (s^{-1} \otimes_k H).$$

Definition 1.8. Let $s : H \otimes_k A \to A \otimes_k H$ be a transposition. A weak s-action of H on A is a map $\rho : H \otimes_k A \to A$, that satisfies:

1. $\rho \circ (H \otimes_k \mu) = \mu \circ (\rho \otimes_k \rho) \circ (H \otimes_k s \otimes_k A) \circ (\Delta \otimes_k A \otimes_k A)$,
2. $\rho(h \otimes_k 1) = c(h)1$, for all $h \in H$,
3. $\rho(1 \otimes_k a) = a$, for all $a \in A$,
4. $s \circ (H \otimes_k \rho) = (\rho \otimes_k H) \circ (H \otimes_k s) \circ (c \otimes_k A)$.

An s-action is a weak s-action which satisfies $\rho \circ (H \otimes_k \rho) = \rho \circ (\mu \otimes_k A)$.

Remark 1.9. It is easy to see that if ρ is a weak s-action of H on A, then

$$(H \otimes_k \rho) \circ (c^{-1} \otimes_k A) \circ (H \otimes_k s^{-1}) = s^{-1} \circ (\rho \otimes_k H).$$

We will use the diagrams

$$\begin{align*}
\begin{array}{c}
\otimes_i,
\end{array} & \begin{array}{c}
\otimes_i,
\end{array} & \begin{array}{c}
\otimes_i,
\end{array} & \begin{array}{c}
\otimes_i,
\end{array} & \begin{array}{c}
\rightarrow
\end{array}
\end{align*}$$

$$ (1.5)$$

to denote the braid c of H, its inverse c^{-1}, the transposition s, its inverse s^{-1}, and the weak s-action ρ, respectively.

Definition 1.10. Let $s : H \otimes_k A \to A \otimes_k H$ be a transposition, $\rho : H \otimes_k A \to A$ a weak s-action and $\epsilon : H \otimes_k H \to A$ a k-linear map. We say that ϵ is normal if $\epsilon(1 \otimes_k x) = \epsilon(x \otimes_k 1) = \epsilon(x)$ for all $x \in H$, and that ϵ is a cocycle that satisfies the twisted module condition if

$$\begin{align*}
\begin{array}{c}
\ash{1.5},
\end{array} & \begin{array}{c}
\ash{1.5},
\end{array} & \begin{array}{c}
\ash{1.5},
\end{array} & \begin{array}{c}
\ash{1.5},
\end{array} & \begin{array}{c}
\rightarrow
\end{array}
\end{align*}$$

and

$$\begin{align*}
\begin{array}{c}
\ash{1.5},
\end{array} & \begin{array}{c}
\ash{1.5},
\end{array} & \begin{array}{c}
\ash{1.5},
\end{array} & \begin{array}{c}
\ash{1.5},
\end{array} & \begin{array}{c}
\rightarrow
\end{array}
\end{align*}$$

where $\gamma = \epsilon$.
More precisely, the first equality is the **cocycle condition** and the second one is the **twisted module condition**. Finally, we say that \(f \) **is compatible with** \(s \) if

\[
(f \otimes_k H) \circ (H \otimes_k c) \circ (c \otimes_k H) = s \circ (H \otimes_k f).
\]

Definition 1.11. Let \(s: H \otimes_k A \to A \otimes_k H \) be a transposition, \(\rho: H \otimes_k A \to A \) a weak \(s \)-action, \(f: H \otimes_k H \to A \) a compatible with \(s \) normal cocycle satisfying the twisted module condition, and \(R \) a subalgebra of \(A \). We say that \(R \) is **stable under** \(s \) and \(\rho \) if \(s(H \otimes_k R) \subseteq R \otimes_k H \) and \(\rho(H \otimes_k R) \subseteq R \), and we say that \(f \) **takes its values in** \(R \) if \(f(H \otimes_k H) \subseteq R \).

Let \(H \) be a bialgebra, \(A \) and algebra, \(s: H \otimes_k A \to A \otimes_k H \) a transposition, \(\rho: H \otimes_k A \to A \) a weak \(s \)-action and \(f: H \otimes_k H \to A \) a compatible with \(s \) normal cocycle that satisfies the twisted module condition. Let \(\chi: H \otimes_k A \to A \otimes_k H \) be a **cocycle** that satisfies the twisted module condition. Let \(F: H \otimes_k H \to A \otimes_k H \) be the maps defined by

\[
\chi := (\rho \otimes_k H) \circ (H \otimes_k s) \circ (\Delta \otimes_k A) \quad \text{and} \quad F := (f \otimes_k \mu) \circ (H \otimes_k c \otimes_k H) \circ (\Delta \otimes_k \Delta).
\]

In [G-G2, Section 9] it was proven that \(\chi \) is a twisting map and \(F \) is a normal cocycle that satisfies the twisted module condition.

Let \(R \) be a subalgebra of \(A \). It is evident that if \(R \) is stable under \(s \) and \(\rho \), then it is also stable under \(\chi \), and that if \(f \) takes its values in \(R \), then \(F \) takes its values in \(R \otimes_k H \).

Definition 1.12. The **braided Hopf crossed product** \(A \# f H \) associated with \((s, \rho, f)\) is the Brzeźniński crossed product associated with \(\chi \) and \(F \).

Let \(H \otimes_k H \) be the coalgebra with underlying space \(H \otimes_k H \), comultiplication map \(\Delta_{H \otimes_k H} := (H \otimes_k c \otimes_k H) \circ (\Delta_H \otimes_k \Delta_H) \) and counit \(\epsilon_{H \otimes_k H} := \epsilon_H \otimes_k \epsilon_H \). An important class of braided Hopf crossed products are those with \(H \) a braided Hopf algebra and whose cocycle \(f: H \otimes_k H \to A \) is convolution invertible. They are named cleft. In [G-G2, Section 10] it was proven that \(E \) is cleft if and only if the map \(\gamma: H \to E \), defined by \(\gamma(h) = 1 \# h \), is convolution invertible. Moreover, in this case,

\[
\gamma^{-1} = (f^{-1} \otimes_k H) \circ (S \otimes_k H \otimes_k S) \circ (H \otimes_k c) \circ (c \otimes_k H) \circ (\Delta_H \otimes_k H) \circ \Delta_H.
\]

1.3. comodule algebras.

Definition 1.13. Let \(s: H \otimes_k A \to A \otimes_k H \) a transposition. Assume that \(A \) is a right \(H \)-comodule with cocation \(\nu \). We say that \((A, s) \) is a **right \(H \)-comodule algebra** if and only if

\[
\begin{align*}
(1) & \quad (\nu \otimes_k H) \circ s = (A \otimes_k c) \circ (s \otimes_k H) \circ (H \otimes_k \nu), \\
(2) & \quad (\mu_A \otimes_k \mu_H) \circ (A \otimes_k s \otimes_k H) \circ (\nu \otimes_k \nu) = \nu \circ \mu_A, \\
(3) & \quad \nu(1) = 1 \otimes_k 1.
\end{align*}
\]

Let \((A, s) \) and \((A', s') \) be \(H \)-comodule algebras. We say that a map \(f: A \to A' \) is a **morphism of \(H \)-comodule algebras** from \((A, s) \) to \((A', s') \), if it is a morphism of algebras, a morphism of \(H \)-comodules and \(s' \circ (H \otimes_k f) = (f \otimes_k H) \circ s \).

Example 1.14. If \(E = A \# f H \) is a braided Hopf crossed product, then the map \(\widehat{s}: H \otimes_k E \to E \otimes_k H \) defined by \(\widehat{s} := (A \otimes_k c) \circ (s \otimes_k H) \) is a transposition, and \((E, \widehat{s})\), endowed with the comultiplication \(\nu: E \to E \otimes_k H \), defined by \(\nu := A \otimes_k \Delta_H \), is an \(H \)-braided comodule algebra. In particular \((H, c)\) is an \(H \)-braided comodule algebra with comultiplication \(\Delta_H \). Moreover the map \(\gamma: H \to E \) is a morphisms of \(H \)-comodule algebras from \((H, c)\) to \((E, \widehat{s})\).

Remark 1.15. The maps \(\widehat{s} \) and \(\widehat{s}^{-1} \) will be represented by the same diagrams as the ones introduced in (1.5) for \(s \) and \(s^{-1} \), respectively.
1.4. **Mixed complexes.** In this subsection we recall briefly the notion of mixed complex. For more details about this concept we refer to [K] and [B].

A **mixed complex** \((X, b, B) \) is a graded \(k \)-vector space \((X_n)_{n \geq 0} \), endowed with morphisms \(b: X_n \to X_{n-1} \) and \(B: X_n \to X_{n+1} \), such that
\[
b \circ b = 0, \quad B \circ B = 0 \quad \text{and} \quad B \circ b + b \circ b = 0.
\]

A **morphism of mixed complexes** \(f: (X, b, B) \to (Y, d, D) \) is a family of maps \(f: X_n \to Y_n \), such that \(d \circ f = f \circ b \) and \(D \circ f = f \circ B \). Let \(u \) be a degree 2 variable. A mixed complex \(X = (X, b, B) \) determines a double complex

\[
\begin{array}{cccccc}
\cdots & B & X_3u^{-1} & B & X_2u^0 & B & X_1u^1 & B & X_0u^2 \\
& b & \downarrow & b & \downarrow & b & \downarrow & b & \downarrow \\
\cdots & B & X_2u^{-1} & B & X_1u^0 & B & X_0u \\
& b & \downarrow & b & \downarrow & b & \downarrow & b & \downarrow \\
\cdots & B & X_1u^{-1} & B & X_0u^0 \\
& b & \downarrow & b & \downarrow & b & \downarrow & b & \downarrow \\
\cdots & B & X_0u^{-1},
\end{array}
\]

where \(b(xu^i) := b(x)u^i \) and \(B(xu^i) := B(x)u^{i-1} \). By deleting the positively numbered columns we obtain a subcomplex \(BN(X) \) of \(BP(X) \). Let \(BN(X) \) be the kernel of the canonical surjection from \(BN(X) \) to \((X, b) \). The quotient double complex \(BP(X)/BN(X) \) is denoted by \(BC(X) \). The homology groups \(HC_*(X) \), \(HN_*(X) \) and \(HP_*(X) \), of the total complexes of \(BC(X) \), \(BN(X) \) and \(BP(X) \) respectively, are called the **cyclic**, **negative** and **periodic homology groups** of \(X \). The homology \(HH_*(X) \), of \((X, b) \), is called the **Hochschild homology** of \(X \). Finally, it is clear that a morphism \(f: X \to Y \) of mixed complexes induces a morphism from the double complex \(BP(X) \) to the double complex \(BP(Y) \).

Let \(C \) be a \(k \)-algebra. If \(K \) is a subalgebra of \(C \) we will say that \(C \) is a \(K \)-algebra. Throughout the paper we will use the following notations:

1. We set \(\overline{C} := C/K \). Moreover, given \(c \in C \), we also denote by \(c \) the class of \(c \) in \(\overline{C} \).
2. We use the unadorned tensor symbol \(\otimes \) to denote the tensor product \(\otimes_K \).
3. We write \(\overline{C} \otimes^l := \overline{C} \otimes \cdots \otimes \overline{C} \) (\(l \)-times).
4. Given \(c_0, \ldots, c_r \in C \) and \(i < j \), we write \(c_{ij} := c_i \otimes \cdots \otimes c_j \).
5. Given a \(K \)-bimodule \(M \), we let \(M \otimes \) denote the quotient \(M/[M, K] \), where \([M, K] \) is the \(k \)-vector subspace of \(M \) generated by all the commutators \(m\lambda - \lambda m \), with \(m \in M \) and \(\lambda \in K \). Moreover, for \(m \in M \), we let \([m] \) denote the class of \(m \) in \(M \otimes \).

By definition, the **normalized mixed complex of the \(K \)-algebra** \(C \) is the mixed complex \((C \otimes \overline{C} \otimes, b, B) \), where \(b \) is the canonical Hochschild boundary map and the Connes operator \(B \) is given by
\[
B([c_{0r}]) := \sum_{i=0}^r (-1)^r [1 \otimes c_{ir} \otimes c_{0,i-1}].
\]
The cyclic, negative, periodic and Hochschild homology groups $\text{HC}_*^C(C)$, $\text{HN}_*^K(C)$, $\text{HP}_*^C(C)$ and $\text{HH}_*^C(C)$ of C are the respective homology groups of $(C \otimes C^\otimes N \otimes b, B)$.

1.5. **The perturbation lemma.** Next, we recall the perturbation lemma. We give the version introduced in [C].

A homotopy equivalence data

$$ (Y, \partial) \xrightarrow{p} (X, d), \quad h : X_* \to X_{*+1}, $$

consists of the following:

1. Chain complexes $(Y, \partial), (X, d)$ and quasi-isomorphisms i, p between them,
2. A homotopy h from $i \circ p$ to id.

A perturbation δ of (1.6) is a map $\delta : X_* \to X_{*+1}$ such that $(d + \delta)^2 = 0$. We call it small if $\text{id} - \delta \circ h$ is invertible. In this case we write $A = (\text{id} - \delta \circ h)^{-1} \circ \delta$ and we consider

$$ (Y, \partial^1) \xrightarrow{p^1} (X, d + \delta), \quad h^1 : X_* \to X_{*+1}, $$

with

$$ \partial^1 := \partial + p \circ A \circ i, \quad i^1 := i + h \circ A \circ i, \quad p^1 := p + p \circ A \circ h, \quad h^1 := h + h \circ A \circ h. $$

A deformation retract is a homotopy equivalence data such that $p \circ i = \text{id}$. A deformation retract is called special if $h \circ i = 0, p \circ h = 0$ and $h \circ h = 0$.

In all the cases considered in this paper the map $\delta \circ h$ is locally nilpotent, and so $(\text{id} - \delta \circ h)^{-1} = \sum_{n=0}^{\infty} (\delta \circ h)^n$.

Theorem 1.16 ([C]). If δ is a small perturbation of the homotopy equivalence data (1.6), then the perturbed data (1.7) is a homotopy equivalence data. Moreover, if (1.6) is a special deformation retract, then (1.7) is also.

2. A resolution for a Brzeziński’s crossed product

Let $E := A \# V$ be a Brzeziński’s crossed product with associated twisting map χ and cocycle \mathcal{F}, and let K be a stable under χ subalgebra of A. Let Y be the family of all the epimorphisms of E-bimodules which split as (E, K)-bimodule maps. In this section we construct a Y-projective resolution (X_*, d_*), of E as an E-bimodule, simpler than the normalized bar resolution of E. Moreover we will compute comparison maps between both resolutions. Recall that for all K-algebra C we let \overline{C} and \otimes denote C/K and \otimes_K, respectively. We also will use the following notations:

1. Given $x_0, \ldots, x_r \in E$ and $i < j$, we write \overline{x}_{ij} to mean $x_i \otimes_{A} \cdots \otimes_{A} x_j$, both in $E^{\otimes (i-j+1)}$ and in $(E/A)^{\otimes (i-j+1)}$.
2. We let $i_A : A \to E$ and $i_{\overline{C}} : \overline{A} \to \overline{E}$ denote the maps defined by $i_A(a) := a \# 1$ and $i_{\overline{C}}(a) := a \# 1$, respectively.
3. We set $\overline{V} := V/\kappa$. Moreover, given $v \in V$, we also denote by v the class of v in \overline{V}.
4. We write $\overline{V}^{\otimes_k^l} := \overline{V} \otimes_k \cdots \otimes_k \overline{V}$ (l-times).
5. Given $v_0, \ldots, v_s \in V$ and $i < j$, we write $v_{ij} := v_i \otimes_k \cdots \otimes_k v_j$.

(6) We will denote by γ any of the maps

$$V \rightarrow E , \quad V \rightarrow \overline{E} , \quad V \rightarrow E / A .$$

So, $\gamma(v)$ stands for $1 \# v \in E$ or for its class in \overline{E} or E / A. More generally, given $a \in A$ and $v \in V$ we will let $a \gamma(v)$ denote $a \# v \in E$ or its class in \overline{E} or E / A.

(7) We will denote by V, V_K and V_A the image of γ in E, \overline{E} and E / A, respectively.

(8) Given $v_{1j} \in V^{\otimes k}$, we write $\gamma(v_{1j})$ to mean $\gamma(v_1) \otimes \cdots \otimes \gamma(v_j)$ both in $E^{\otimes j}$ and in $\overline{E}^{\otimes j}$.

(9) Given $v_{1j} \in V^{\otimes k}$, we write $\gamma_A(v_{ij})$ to mean $\gamma(v_1) \otimes_A \cdots \otimes_A \gamma(v_j)$ both in $E^{\otimes A}$ and in $(E / A)^{\otimes A}$.

Note that $E / A \simeq A \otimes_k \overline{V}$. We will use the following evident identifications

$$A^{\otimes r} \otimes_A E \simeq A^{\otimes r} \otimes V , \quad E \otimes A (E / A)^{\otimes A} \simeq E \otimes_k \overline{V}^{\otimes k}$$

and $E^{\otimes A} \simeq E^{\otimes A} \otimes_k V^{\otimes A}$. We consider $A^{\otimes r} \otimes_k V$, $E \otimes_k \overline{V}^{\otimes k}$ and $E^{\otimes A} \otimes_k V^{\otimes A}$ as E-bimodules via the actions obtained by translation of structure. For all $r, s \geq 0$, we let Y_s and X_{rs} denote

$$E \otimes_A (E / A)^{\otimes A} \otimes_A E \quad \text{and} \quad E \otimes A (E / A)^{\otimes A} \otimes \overline{A}^{\otimes r} \otimes E ,$$

respectively. By the above discussion

$$Y_s \simeq (E \otimes_k \overline{V}^{\otimes k}) \otimes_A E \quad \text{and} \quad X_{rs} \simeq (E \otimes_k \overline{V}^{\otimes k}) \otimes \overline{A}^{\otimes r} \otimes E .$$

Consider the diagram of E-bimodules and E-bimodule maps

$$
\begin{array}{c}
\vdots \\
- \partial_2 \\
Y_2 \xrightarrow{\nu_2} X_{02} \xrightarrow{d_{12}^r} X_{12} \xrightarrow{d_{22}^r} \cdots \\
\downarrow - \partial_2 \\
Y_1 \xrightarrow{\nu_1} X_{01} \xrightarrow{d_{11}^r} X_{11} \xrightarrow{d_{21}^r} \cdots \\
\downarrow - \partial_1 \\
Y_0 \xrightarrow{\nu_0} X_{00} \xrightarrow{d_{10}^r} X_{10} \xrightarrow{d_{20}^r} \cdots \\
\end{array}
$$

where (Y_s, ∂_s) is the normalized bar resolution of the A-algebra E, introduced in [G-S]; for each $s \geq 0$, the complex (X_{rs}, d_{rs}^0) is $(-1)^s$-times the normalized bar resolution of the K-algebra A, tensored on the left over A with $E \otimes_A (E / A)^{\otimes A}$, and on the right over A with E; and for each $s \geq 0$, the map ν_s is the canonical surjection. Each one of the rows of this diagram is contractible as a (E, K)-bimodule complex. A contracting homotopy

$$\sigma_0^0 : Y_s \rightarrow X_{0s} \quad \text{and} \quad \sigma_{r+1,s}^0 : X_{rs} \rightarrow X_{r+1,s},$$

of the s-th row, is given by

$$\sigma_0^0(\xi_{0s} \otimes_A \gamma(v)) := \xi_{0s} \otimes \gamma(v)$$

and

$$\sigma_{r+1,s}^0(\xi_{0s} \otimes a_{1r} \otimes a_{r+1} \gamma(v)) := (-1)^{r+1} \xi_{0s} \otimes a_{1r+1} \otimes \gamma(v).$$
Let $\tilde{u}: Y_0 \to E$ be the multiplication map. The complex of E-bimodules

$$E \xleftarrow{\tilde{u}} Y_0 \xleftarrow{-\partial_0} Y_1 \xleftarrow{-\partial_2} Y_2 \xleftarrow{-\partial_3} Y_3 \xleftarrow{-\partial_4} Y_4 \xleftarrow{-\partial_5} Y_5 \xleftarrow{-\partial_6} \ldots$$

is also contractible as a complex of (E,K)-bimodules. A chain contracting homotopy

$$\sigma_0^{-1}: E \to Y_0 \quad \text{and} \quad \sigma_{s+1}^{-1}: Y_s \to Y_{s+1} \quad (s \geq 0),$$

is given by $\sigma_{s+1}^{-1}(\mathbf{x}_{0,s+1}) := (-1)^s \mathbf{x}_{0,s+1} \otimes_A 1_E$.

For $r \geq 0$ and $1 \leq l \leq s$, we define E-bimodule maps $d^l_{rs}: X_{rs} \to X_{r+l-1,s-l}$ recursively on t and r, by:

$$d^l(z) := \begin{cases}
\sigma^0 \circ \partial \circ \nu(z) & \text{if } l = 1 \text{ and } r = 0, \\
-\sigma^0 \circ d^l \circ d^0(z) & \text{if } l = 1 \text{ and } r > 0, \\
-\sum_{j=1}^{l-1} \sigma^0 \circ d^{l-j} \circ d^j(z) & \text{if } 1 < l \text{ and } r = 0, \\
-\sum_{j=0}^{l-1} \sigma^0 \circ d^{l-j} \circ d^j(z) & \text{if } 1 < l \text{ and } r > 0,
\end{cases}$$

for $z \in E \otimes_A (E/A)^{[l]} \otimes \hat{A}^r \otimes K$.

Theorem 2.1. There is a T-projective resolution of E

$$(2.8) \quad E \xleftarrow{\mu} X_0 \xleftarrow{d_1} X_1 \xleftarrow{d_2} X_2 \xleftarrow{d_3} X_3 \xleftarrow{d_4} X_4 \xleftarrow{d_5} \ldots,$$

where $\mu: X_0 \to E$ is the multiplication map.

Proof. This follows immediately from [G-G3, Corollary A2]. \qed

In order to carry out our computations we also need to give an explicit contracting homotopy of the resolution (2.8). For this we define maps

$$\sigma^i_{1,s-i}: Y_s \to X_{i,s-i} \quad \text{and} \quad \sigma^i_{r+l+1,s-l}: X_{rs} \to X_{r+l+1,s-l}$$

recursively on t, by:

$$\sigma^i_{r+l+1,s-l} := -\sum_{j=0}^{l-i} \sigma^0 \circ d^{l-i} \circ \sigma^j \quad (0 < l \leq s \text{ and } r \geq -1).$$

Proposition 2.2. The family

$$\sigma_0: E \to X_0, \quad \sigma_{n+1}: X_n \to X_{n+1} \quad (n \geq 0),$$

defined by $\sigma_0 := \sigma_0^0 \circ \sigma_0^{-1}$ and

$$\sigma_{n+1} := -\sum_{l=0}^{n+1} \sigma^0_{n-l+1} \circ \sigma_{n-l+1}^{-1} \circ \nu_n + \sum_{r=0}^{n-r} \sum_{i=0}^{n-r} \sigma^i_{r+l+1,n-r-l} \quad (n \geq 0),$$

is a contracting homotopy of (2.8).

Proof. This is a direct consequence of [G-G3, Corollary A2]. \qed

Notations 2.3. We will use the following notations:

1. For $j,l \geq 1$, we let $\chi_{jl}: V \otimes_k A^{[l]} \to A \otimes_k V \otimes_k A$ denote the map recursively defined by:

$$\chi_{11} := \chi, \quad \chi_{j+1,l} := (A \otimes_k \chi) \circ (\chi_{j,l} \otimes_k A), \quad \chi_{j,l+1} := (\chi_{j,l} \otimes_k V \otimes_k A) \circ (V \otimes_k \chi_{j,l}).$$
(2) Write $X^s_{rs} := E^\otimes s+1 \otimes A^\otimes r \otimes E$. Let $u'_s \colon X^s_{rs} \rightarrow X^s_{r,s-1}$ denote the map defined by

$$u'_s(x_{0,s} \otimes a_{1r} \otimes x) := x_{0,i-1} \otimes_A x_i x_{i+1} \otimes_A x_{i+1,s} \otimes a_{1r} \otimes x$$

for $0 \leq i < s$, and

$$u'_s(x_{0,s} \otimes a_{1r} \otimes x := \sum_l x_{0,s} \otimes a_{1r} \otimes \gamma(v(l))x,$$

where $\sum a_{1r} \otimes u(l) := \chi(v \otimes a_{1r})$.

(3) Given a K-subalgebra R of A and $0 \leq u \leq r$, we let X^s_{ru} denote the E-submodule of X^s_{rs} generated by all the simple tensors $1 \otimes_A x_{1s} \otimes a_{1r} \otimes 1$, with at least u of the a_j's in R.

Theorem 2.4. The following assertions hold:

1. The map $d^l \colon X^s_{rs} \rightarrow X^s_{r,s-1}$ is induced by the map $\sum_{i=0}^s (-1)^i u'_i$.
2. Let R be a stable under χ K-subalgebra of A. If F takes its values in $R \otimes_k V$, then

$$d^l(X^s_{rs}) \subseteq X^s_{r+l-1,s-1}$$

for each $l \geq 1$.

Proof. Let $z \in E \otimes_A (E/A)^{\otimes r} \otimes E \otimes A^{\otimes s} \otimes K$. The computation of d^l_z can be obtained easily by induction on r, using that

$$d^0_z(\sigma^0_{s-1} \circ \varphi \circ v^0(z)) \quad \text{and} \quad d^1_z(\sigma^0_{s-1} \circ \varphi \circ v^0(z)) \quad \text{for } r \geq 1.$$

Item (2) follows by induction on r and l, using the recursive definition of d^l_z. \(\square \)

Remark 2.5. By item (2) of the above theorem, if F takes its values in $K \otimes_k V$, then (X^s_{rs}, d^s_{rs}) is the total complex of the double complex $(X^s_{rs}, d^0_{rs}, d^1_{rs})$.

2.1. Comparison with the normalized bar resolution

Let $(E \otimes E^{\otimes n} \otimes E, b^*_n)$ be the normalized bar resolution of the K-algebra E. As it is well known, the complex

$$E \xleftarrow{\mu} E \otimes E \xrightarrow{b^*_1} E \otimes E \otimes E \xrightarrow{b^*_2} E \otimes E \otimes E \otimes E \otimes E \otimes E \cdots$$

is contractible as a complex of (E, K)-bimodules, with contracting homotopy

$$\xi_0 \colon E \rightarrow E \otimes E, \quad \xi_{n+1} \colon E \otimes E^{\otimes n} \otimes E \rightarrow E \otimes E^{\otimes n+1} \otimes E \quad (n \geq 0),$$

given by $\xi_n(x) := (-1)^n x \otimes 1$. Let

$$\phi_n \colon (X^s_{rs}, d_s) \rightarrow (E \otimes E^{\otimes n} \otimes E, b^*_n) \quad \text{and} \quad \psi_n \colon (E \otimes E^{\otimes n} \otimes E, b^*_n) \rightarrow (X^s_{rs}, d_s)$$

be the morphisms of E-bimodule complexes, recursively defined by

$$\phi_0 := id, \quad \psi_0 := id,$$

$$\phi_{n+1}(x \otimes 1) := \xi_{n+1} \circ \phi_n \circ d_{n+1}(x \otimes 1)$$

and

$$\psi_{n+1}(x \otimes 1) := \xi_{n+1} \circ \psi_n \circ b^*_{n+1}(x \otimes 1).$$

Proposition 2.6. $\psi \circ \phi = id$ and $\phi \circ \psi$ is homotopically equivalent to the identity map. A homotopy $\omega_{n+1} \colon \phi_n \circ \psi_n \rightarrow id_{n+1}$ is recursively defined by

$$\omega_1 := 0 \quad \text{and} \quad \omega_{n+1}(x) := \xi_{n+1} \circ (\phi_n \circ \psi_n - id - \omega_n \circ b^*_{n+1})(x),$$

for $x \in E \otimes E^{\otimes n} \otimes K$.

If $x \in \mathfrak{a}$, $b)$ and $c)$ follow immediately from the definition of ϕ, σ and if $F \otimes E^{\otimes n} \otimes K$, $\omega(x \otimes 1) = \xi((\phi \circ \psi(x \otimes 1) - (1)^n \omega(x))$.

2.2. The filtrations of $(E \otimes E^{\otimes n} \otimes E, b')$ and (X_*, d_*). Let

$$\mathcal{F}^i(X_n) := \bigoplus_{0 \leq s \leq i} X_{n-s,s}$$

and let $F^i(E \otimes E^{\otimes n} \otimes E)$ be the E-subbimodule of $E \otimes E^{\otimes n} \otimes E$ generated by the tensors $1 \otimes x_{1n} \otimes 1$ such that at least $n - i$ of the x_i’s belong to A. The normalized bar resolution $(E \otimes E^{\otimes n} \otimes E, b'_i)$ and the resolution (X_*, d_*) are filtered by

$$F^0(E \otimes E^{\otimes n} \otimes E) \subseteq F^1(E \otimes E^{\otimes n} \otimes E) \subseteq F^2(E \otimes E^{\otimes n} \otimes E) \subseteq \ldots$$

and

$$F^0(X_n) \subseteq F^1(X_n) \subseteq F^2(X_n) \subseteq F^3(X_n) \subseteq F^4(X_n) \subseteq F^5(X_n) \subseteq \ldots,$$

respectively.

Proposition 2.8. The maps ϕ, ψ and ω preserve filtrations.

Proof. For ϕ this follows from Proposition A.5. Let $Q^i_j := E \otimes_A (E/A)^{\otimes i} \otimes \mathcal{A}^{\otimes j} \otimes K$. We claim that

a) $\mathfrak{F}(F^i(X_n)) \subseteq F^i(X_{n+1})$ for all $0 \leq i < n$,

b) $\mathfrak{F}(E \otimes_A (E/A)^{\otimes i} \otimes \mathcal{A}^{\otimes n-i} \otimes A) \subseteq Q_{n+1-i}^i \otimes F^{i-1}(X_{n+1})$ for all $0 \leq i \leq n$,

c) $\mathfrak{F}(X_{n+1}) \subseteq E \otimes_A (E/A)^{\otimes i} \otimes K + F^0(X_{n+1})$,

d) $\psi(F^i(E \otimes E^{\otimes n} \otimes E) \otimes E \otimes E^{\otimes n} \otimes K) \subseteq Q_{n+1-i}^i + F^{i-1}(X_n)$ for all $0 \leq i \leq n$.

In fact a), b) and c) follow immediately from the definition of \mathfrak{F}_{n+1}. Suppose d) is valid for n. Let

$$x := x_{0,n+1} \otimes 1 \in F^i(E \otimes E^{\otimes n+1} \otimes E) \cap E \otimes E^{\otimes n+1} \otimes K \quad \text{where } 0 \leq i \leq n+1.$$

Using a), b) and the inductive hypothesis, we get that for $1 \leq j \leq n$,

$$\mathfrak{F}(\psi(x_{j-1} \otimes x_j \otimes x_{j+1} \otimes x_{j+2,n+1} \otimes 1)) \subseteq \mathfrak{F}(Q_{n+1-i}^i + F^{i-1}(X_{n+1})) \subseteq Q_{n+1-i}^i + F^{i-1}(X_{n+1}).$$

Since $\psi(x) = \mathfrak{F} \circ \psi \circ b'(x)$, in order to prove d) for $n+1$ we only must check that

$$\mathfrak{F}(\psi(x_{0,n+1})) \subseteq Q_{n+1-i}^i + F^{i-1}(X_{n+1}).$$

If $x_{n+1} \in A$, then using a), b) and the inductive hypothesis, we get

$$\mathfrak{F}(\psi(x_{0,n+1})) = \mathfrak{F}(\psi(x_{0n} \otimes 1)_{x_{n+1}}) \subseteq \mathfrak{F}(E \otimes A(E/A)^{\otimes i} \otimes \mathcal{A}^{\otimes n-i} \otimes A + F^{i-1}(X_{n+1})) \subseteq Q_{n+1-i}^i + F^{i-1}(X_{n+1}),$$

and if $x_{n+1} \notin A$, then $x_{0,n+1} \in F^{i-1}(E \otimes E^{\otimes n} \otimes E)$, which together with a), c) and the inductive hypothesis, implies that

$$\mathfrak{F}(\psi(x_{0,n+1})) \subseteq \mathfrak{F}(F^{i-1}(X_{n+1})) \subseteq Q_{n+1-i}^i + F^{i-1}(X_{n+1}).$$
From d) it follows immediately that \(\psi \) preserves filtrations. Next, we prove that \(\omega \) also does it. This is trivial for \(\omega_1 \), since \(\omega_1 = 0 \). Assume that \(\omega_n \) does. Let
\[
x := x_{0n} \otimes 1 \in F^n(E \otimes E^{\otimes n} \otimes E) \cap E \otimes E^{\otimes n} \otimes E.
\]
By Remark 2.7, we know that
\[
\omega(x) = \xi \circ \phi \circ \psi(x) + (-1)^n \xi \circ \omega(x_{0n}).
\]
From d) and the fact that \(\phi \) preserves filtrations, we get
\[
\xi \circ \phi \circ \psi(x) \in \xi \circ \phi(Q_{n-i} + F^{i-1}(X_n)) \subseteq \xi(F^{i-1}(E \otimes E^{\otimes n} \otimes E)) \subseteq F^i(E \otimes E^{\otimes n} \otimes E),
\]
since \(\xi(\phi(Q_{n-i})) \subseteq \xi(E \otimes E^{\otimes n} \otimes K) = 0 \). To finish the proof it remains to check that
\[
\xi \circ \omega \circ b'(x) \subseteq F^i(E \otimes E^{\otimes n} \otimes E).
\]
Since, \(\omega(E \otimes E^{\otimes n-1} \otimes K) \subseteq E \otimes E^{\otimes n} \otimes K \) by definition, we have
\[
\xi \circ \omega \circ b'(x) = (-1)^{n-1} \xi \circ \omega(x_{0n}).
\]
Hence, if \(x_n \in A \), then
\[
\xi \circ \omega \circ b'(x) = (-1)^{n-1} \xi_{n+1}(\omega_n(x_{0,n-1} \otimes 1)x_n)/n \subseteq \xi(F^i(E \otimes E^{\otimes n} \otimes E) \cap E \otimes E^{\otimes n} \otimes A)/n \subseteq F^i(E \otimes E^{\otimes n+1} \otimes E),
\]
and if \(x_n \notin A \), then \(x_{0n} \in F^{i-1}(E \otimes E^{\otimes n-1} \otimes E) \), and so
\[
\xi \circ \omega(x_{0n}) \subseteq \xi(F^{i-1}(E \otimes E^{\otimes n} \otimes E)) \subseteq F^i(E \otimes E^{\otimes n+1} \otimes E),
\]
as we want. \(\Box \)

3. Hochschild homology of a Brzeziński’s crossed product

Let \(E := A \# V \) be a Brzeziński’s crossed product with associated twisting map \(\chi \) and cocycle \(F \), and let \(K \) be a stable under \(\chi \) subalgebra of \(A \). Recall that \(\Upsilon \) is the family of all epimorphisms of \(E \)-bimodules which split as \((E,K) \)-bimodule maps. Since \((X_s, d_s) \) is a \(\Upsilon \)-projective resolution of \(E \), the Hochschild homology of the \(K \)-algebra \(E \) with coefficients in an \(E \)-bimodule \(M \) is the homology of \(M \otimes_{E^c} (X_s, d_s) \).

For \(r,s \geq 0 \), write
\[
\hat{X}_r(M) := M \otimes_A (E/A)^{\otimes r} \otimes \overline{A}^{\otimes s} \otimes .
\]
It is easy to check that \(\hat{X}_r(M) \simeq M \otimes_{E^c} X_{rs} \) via
\[
\hat{X}_r(M) \longrightarrow M \otimes_{E^c} X_{rs} \quad [m \otimes_A \mathbf{x}_{ls} \otimes a_{1r}] \
\rightarrow m \otimes_{E^c} (1 \otimes_A \mathbf{x}_{ls} \otimes a_{1r} \otimes 1)
\]
Let \(d_{rs} : \hat{X}_{rs}(M) \rightarrow \hat{X}_{r+l-1,s-1}(M) \) be the map induced by \(\text{id}_M \otimes_{E^c} d_{rs}^1 \). Via the above identifications the complex \(M \otimes_{E^c} (X_s, d_s) \) becomes \((\hat{X}_s(M), d_s) \), where
\[
\hat{X}_n(M) := \bigoplus_{r+s=n} \hat{X}_{rs}(M) \quad \text{and} \quad \hat{d}_n := \sum_{l=1}^n \hat{d}_{0n}^l + \sum_{r=1}^{n-r} \hat{d}_{r,n-r}^l.
\]
Consequently, we have the following result:

Theorem 3.1. The Hochschild homology \(H^K_{s*}(E, M) \), of the \(K \)-algebra \(E \) with coefficients in \(M \), is the homology of \((\hat{X}_s(M), d_s)\).

Remark 3.2. If \(K \) is a separable \(k \)-algebra, then \(H^K_{s*}(E, M) \) coincide with the absolute Hochschild homology \(H_{s*}(E, M) \), of \(E \) with coefficients in \(M \).
Remark 3.3. If $K = A$, then $(\tilde{X}_s(M), \tilde{u}_s) = (\hat{X}_0(M), \hat{u}_0)$.

Remark 3.4. In order to abbreviate notations we will write \tilde{X}_{rs} and \tilde{X}_r instead of $\hat{X}_{rs}(E)$ and $\hat{X}_r(E)$, respectively.

For $r, s \geq 0$, let

$$\tilde{X}_{rs}(M) := M \otimes_A E^\otimes r \otimes A^\otimes s \otimes.$$

Similarly as for $\tilde{X}_{rs}(M)$ we have canonical identifications

$$\tilde{X}_{rs}(M) \simeq M \otimes_E X^r_s.$$

For $0 \leq i \leq s$, let

$$\tilde{u}_i : \tilde{X}_{rs}(M) \to \tilde{X}_{r,s-1}(M)$$

be the map induced by u_i. It is easy to see that

$$\tilde{u}_0([m \otimes_A \xi_{ls} \otimes a_{1r}]) = [mx_1 \otimes_A \xi_{ls} \otimes a_{1r}],$$

$$\tilde{u}_i([m \otimes_A \xi_{ls} \otimes a_{1r}]) = [m \otimes_A \xi_{ls-i-1} \otimes_A x_i x_{l+1} \otimes_A \xi_{l+1,s} \otimes a_{1r}]$$

for $0 < i < s$ and

$$\tilde{u}_s([m \otimes_A \xi_{ls-1} \otimes A \gamma(v) \otimes a_{1r}]) = \sum_{l} [\gamma(v^{(l)})m \otimes_A \xi_{ls-1} \otimes a_{1r}^{(l)}],$$

where $\sum_{l} a_{1r}^{(l)} \otimes k v^{(l)} := \chi(v \otimes k a_{1r})$.

Notations 3.5. We will use the following notations:

1. We let $\overline{W}_n \subseteq \overline{W}'_n$ denote the k-vector subspace of $M \otimes E^{\otimes n}$ generated by the classes in $M \otimes E^{\otimes n} \otimes$ of the simple tensors $m \otimes x_{1n}$ such that

$$\#(\{j : x_j \notin T \cup V_K\}) = 0 \quad \text{and} \quad \#(\{j : x_j \notin T \cup V_K\}) \leq 1,$$

respectively.

2. Given a K-subalgebra R of A, we let \overline{C}'_n^R denote the k-vector subspace of $M \otimes E^{\otimes n} \otimes$ generated by the classes in $M \otimes E^{\otimes n} \otimes$ of all the simple tensors $m \otimes x_{1n}$ with some x_i in R.

3. Given a K-subalgebra R of A and $0 \leq u \leq r$, we let $\overline{X}^R_u(M)$ denote the k-vector subspace of $\tilde{X}_{rs}(M)$ generated by the classes in $\tilde{X}_{rs}(M)$ of all the simple tensors $m \otimes_A \xi_{ls} \otimes a_{1r}$, with at least u of the a_j’s in R. Moreover, we set $\overline{X}^R_u(M) := \bigoplus_{r+s=n} \overline{X}^R_u(M)$.

4. For $j, l \geq 1$, we let

$$\overline{\chi}_{jl} : V^{\otimes l} \otimes k A^{\otimes l} \to A^{\otimes l} \otimes k V^{\otimes l}$$

denote the map induced by the map χ_{jl} introduced in Notations 2.3.

5. We let

$$\overline{\chi}_{sr} : V^{\otimes r} \otimes k A^{\otimes r} \to E^{\otimes r+s}$$

denote the map recursively define by:

- $\overline{\chi}_{sr} := \gamma^{\otimes r}$,
- $\overline{\chi}_{0r} := \chi^{\otimes r}$,
- If $r, s \geq 1$, then

$$\overline{\chi}_{sr} := \sum_{i=0}^{r} (-1)^i \left(\overline{\chi}_{s-1, i} \otimes \gamma \otimes \overline{\chi}_i \right) \circ \left(V^{\otimes r-i} \otimes \chi_{i, l} \otimes A^{\otimes i-1} \right),$$

where $\overline{\chi}_{10} := \text{id}_V$.

Theorem 2.4. The following assertions hold:

1. The morphism \(\partial^0 : \tilde{X}_{rs}(M) \to \tilde{X}_{r-1,s}(M) \) is \((-1)^{s}\)-times the boundary map of the normalized chain Hochschild complex of the \(K \)-algebra \(A \) with coefficients in \(M \otimes_A (E/A)^{\otimes \hat{s}} \), considered as an \(A \)-bimodule via the left and right canonical actions.

2. The morphism \(\bar{d}^l : \tilde{X}_{rs}(M) \to \tilde{X}_{r,s-1}(M) \) is induced by \(\sum_{i=0}^{s} (-1)^{i} \bar{u}_i \).

3. Let \(R \) be a stable under \(\chi \) \(K \)-subalgebra of \(A \). If \(F \) takes its values in \(M \otimes_k V \), then
 \[
 \bar{d}^l(\tilde{X}_{rs}(M)) \subseteq \tilde{X}_{r+l,s-1}(M)
 \]
 for each \(l \geq 1 \).

Proof. Item (1) follows easily from the definition of \(d^0 \), and Items (2) and (3), from Theorem 2.4.

Now it is convenient to note that \(A \otimes \tilde{\mathcal{A}}^{\otimes} \otimes M \) is an \(E \)-bimodule via
\[
a\gamma(v) \cdot (a_{0r} \otimes m) \cdot a' \gamma(v') := \sum_l a^{(l)}_{0r} \otimes \gamma(v(l)) m a' \gamma(v'),
\]
where \(\sum_l a^{(l)}_{0r} \otimes k v(l) := \chi(v \otimes k a_{0r}) \).

Remark 3.7. Note that
\[
H_s(\tilde{X}_{rs}(M), \tilde{d}^0_s) = H^K(\tilde{X}_{rs}(M), A, M \otimes_A (E/A)^{\otimes \hat{s}})
\]
and
\[
H_s(\tilde{X}_{rs}(M), \tilde{d}^1_s) = H^K_A(E, A \otimes \tilde{\mathcal{A}}^{\otimes} \otimes M).
\]

Remark 3.8. By item (3) of the above theorem, if \(F \) takes its values in \(K \otimes_k V \), then \((\tilde{X}_s(M), \tilde{d}_s) \) is the total complex of the double complex \((\tilde{X}_{rs}(M), \tilde{d}^0_s, \tilde{d}^1_s) \).

3.1. Comparison maps. Let \((M \otimes \mathcal{E}^{\otimes}, b_s) \) be the normalized Hochschild chain complex of the \(K \)-algebra \(E \) with coefficients in \(M \). Recall that there is a canonical identification
\[
(M \otimes \mathcal{E}^{\otimes} \otimes b_s) \simeq M \otimes_{E^s} (E \otimes \mathcal{E}^{\otimes} \otimes E, b'_s).
\]

Let
\[
\hat{\psi}_s : (\tilde{X}_s(M), \tilde{d}_s) \to (M \otimes \mathcal{E}^{\otimes} \otimes b_s) \quad \text{and} \quad \hat{\psi}_s : (M \otimes \mathcal{E}^{\otimes} \otimes b_s) \to (\tilde{X}_s(M), \tilde{d}_s)
\]
be the morphisms of complexes induced by \(\hat{\phi} \) and \(\hat{\psi} \) respectively. By Proposition 2.6 it is evident that \(\hat{\psi} \circ \hat{\phi} = \text{id} \) and \(\hat{\phi} \circ \hat{\psi} \) is homotopically equivalent to the identity map. An homotopy \(\hat{\omega}_{n+1} : \hat{\phi} \circ \hat{\psi}_n \to \text{id}_n \) is the family of maps
\[
(\hat{\omega}_n : M \otimes \mathcal{E}^{\otimes} \otimes M \otimes \mathcal{E}^{\otimes} \otimes E)_{n \geq 0},
\]
induced by \((\omega_n : E \otimes \mathcal{E}^{\otimes} \otimes E \otimes \mathcal{E}^{\otimes} \otimes E)_{n \geq 0} \).

3.2. The filtrations of \((M \otimes \mathcal{E}^{\otimes} \otimes b_s) \) and \((\tilde{X}_s(M), \tilde{d}_s) \). Let
\[
F^l(\tilde{X}_n(M)) := \bigoplus_{0 \leq s \leq l} \tilde{X}_{n-s,s}(M).
\]
The complex \((\tilde{X}_s(M), \tilde{d}_s) \) is filtered by
\[
F^0(\tilde{X}_n(M)) \subseteq F^1(\tilde{X}_n(M)) \subseteq F^2(\tilde{X}_n(M)) \subseteq F^3(\tilde{X}_n(M)) \subseteq F^4(\tilde{X}_n(M)) \subseteq \ldots
\]
Using this fact we obtain that there is a convergent spectral sequence
\[
E^s_{rs} = H^K_s(A, M \otimes_A (E/A)^{\otimes \hat{s}}) \Longrightarrow H^K_{r+s}(E, M).
\]
Let $F^i(M \otimes E^{\otimes n} \otimes)$ be the k-vector subspace of $M \otimes E^{\otimes n} \otimes$ generated by the classes in $M \otimes E^{\otimes n} \otimes$ of the simple tensors $m \otimes x_i$ such that at least $n - i$ of the x_i's belong to A. The normalized Hochschild complex $(M \otimes E^{\otimes n} \otimes, b_\ast)$ is filtered by

$$F^0(M \otimes E^{\otimes n} \otimes) \subset F^1(M \otimes E^{\otimes n} \otimes) \subset F^2(M \otimes E^{\otimes n} \otimes) \subset \ldots.$$

The spectral sequence associated to this filtration is called the homological Hochschild-Serre spectral sequence.

Proposition 3.9. The maps $\hat{\phi}$, $\hat{\psi}$ and $\hat{\omega}$ preserve filtrations.

Proof. This follows immediately from Proposition 2.8. \qed

Corollary 3.10. The homological Hochschild-Serre spectral sequence is isomorphic to the spectral sequence (3.9).

Proof. This follows immediately from Proposition 3.9 and the comments following Proof. \qed

Proposition 3.11. Let R be a stable under χ K-subalgebra of A. If F takes its values in $R \otimes_k V$, then

$$\hat{\phi}(m \otimes \gamma(v_{1i}) \otimes a_{1,n-i}) = [m \otimes \text{Sh}(v_{1i} \otimes_k a_{1,n-i})] + [m \otimes x],$$

with $[m \otimes x] \in F^{i-1}(M \otimes E^{\otimes n} \otimes) \cap \mathcal{F} \cap \mathcal{F}_R$. In particular, $\hat{\phi}$ preserve filtrations.

Proof. This follows immediately from Proposition A.5. \qed

In the next proposition we use the following notations:

$$F^j_R(\hat{X}_n(M)) := F^j(\hat{X}_n(M)) \cap \hat{X}_n^R(M).$$

Proposition 3.12. Let R be a stable under χ K-subalgebra of A such that F takes its values in $R \otimes_k V$. The following equalities hold:

1. $\hat{\psi}(m \otimes \gamma(v_{1i}) \otimes a_{i+1,n}) = [m \otimes \gamma_A(v_{1i}) \otimes a_{i+1,n}].$
2. If $x = [m \otimes x_{1n}] \in R \cap \mathcal{F}$ and there is $1 \leq j \leq n$ such that $x_j \in A$, then $\hat{\psi}(x) = 0.$
3. If $x = [m \otimes \gamma(v_{1i-1}) \otimes a_i a_{i+1,n}], then$

$$\hat{\psi}(x) \equiv [m \otimes \gamma \gamma_A(v_{1,i-1}) \otimes A a_i a_{i+1,n}] + \sum [\gamma(v_i^{(1)})m \otimes \gamma(v_{1,i-1}) \otimes a_i a_{i+1,n}],$$

modulo $F^j_R(\hat{X}_n(M))$, where $\sum a_{i+1,n} \otimes_k v_i^{(1)} := \chi(v_i \otimes_k a_{i+1,n}).$
4. If $x = [m \otimes \gamma(v_{1j}) \otimes a_j a_{j+1,n}]$ with $j < i$, then $\hat{\psi}(x) \equiv [m \otimes \gamma_A(v_{1,1-j}) \otimes A a_j a_{j+1,n}],$

modulo $F^j_R(\hat{X}_n(M))$.
5. If $x = [m \otimes \gamma(v_{1,j-1}) \otimes a_{j-1} \otimes a_j a_{j+1,n}]$ with $j > i$, then $\hat{\psi}(x) \equiv [\gamma(v_j^{(1)})m \otimes \gamma_A(v_{1,i-1}) \otimes a_j a_{j+1,n}],$

modulo $F^{i-2}_R(\hat{X}_n(M))$, where $\sum a_{j+1,n} \otimes_k v_j^{(1)} := \chi(v_j \otimes_k a_{j+1,n}).$
(6) If \(x = [m \otimes x_{1n}] \in \overline{R}_n \cap \overline{W}_n \) and there exists \(1 \leq j_1 < j_2 \leq n \) such that \(x_{1j_1} \in A \) and \(x_{1j_2} \in V_k \), then \(\psi(x) \in F^{j_2-2}(\hat{X}_n(M)) \).

Proof. This follows immediately from Proposition A.7.

Proposition 3.13. If \(x = [m \otimes x_{1n}] \in F^i(M \otimes \mathbb{E}^{n,s}) \cap \overline{W}_n \), then

\[
\hat{a}(x) = [m \otimes y] \quad \text{with} \quad [m \otimes y] \in F^i(M \otimes \mathbb{E}^{n+1,s}) \cap \overline{W}_{n+1}.
\]

Proof. This follows immediately from Proposition A.9.

4. Hochschild cohomology of a Brzeziński’s crossed product

Let \(M \) be an \(E \)-bimodule. Since \((X_*,d_*)\) is a \(\Upsilon \)-projective resolution of \(E \), the Hochschild cohomology of the \(K \)-algebra \(E \) with coefficients in \(M \) is the cohomology of the cochain complex \(\text{Hom}_{E^*}(\{X_*,d_*\},M) \).

For each \(s \geq 0 \), we let \(\text{Hom}_A((E/A)^{s\alpha}, M) \) denote the abelian group of left \(A \)-linear maps from \((E/A)^{s\alpha}\) to \(M \). Note that \(\text{Hom}_A((E/A)^{s\alpha}, M) \) is an \(A \)-bimodule via

\[
a_0(\overline{x}_{1s}) := \alpha(\overline{x}_{1s}a) \quad \text{and} \quad a_0(\overline{x}_{1s}) := \alpha(\overline{x}_{1s}a).
\]

For each \(r, s \geq 0 \), write

\[
\hat{X}^{rs}(M) := \text{Hom}_{A,K}((E/A)^{s\alpha} \otimes A^{r\alpha}, M) \simeq \text{Hom}_{K^*}(A^{r\alpha}, \text{Hom}_A((E/A)^{s\alpha}, M)).
\]

It is easy to check that the \(k \)-linear map

\[
\zeta^{rs} : \text{Hom}_{E^*}(X_{rs}, M) \to \hat{X}^{rs}(M),
\]

given by

\[
\zeta(\alpha)(\overline{x}_{1s} \otimes a_{1r}) := \alpha(1 \otimes A \overline{x}_{1s} \otimes a_{1r} \otimes 1),
\]

is an isomorphism. For each \(l \leq s \), let

\[
\hat{d}_l^{rs} : \hat{X}^{r+1-l,s-l}(M) \to \hat{X}^{rs}(M)
\]

be the map induced by \(\text{Hom}_{E^*}(d_{rs}, M) \). Via the above identifications the complex \(\text{Hom}_{E^*}(\{X_*,d_*\}, M) \)

becomes \((\hat{X}^*(M), \hat{d}^*)\), where

\[
\hat{X}^n(M) := \bigoplus_{r+s=n} \hat{X}^{rs}(M) \quad \text{and} \quad \hat{d}^n := \sum_{l=1}^{n} \hat{d}_l^{0n} + \sum_{r=1}^{n} \sum_{l=0}^{n-r} \hat{d}_l^{r,n-r}.
\]

Consequently, we have the following result:

Theorem 4.1. The Hochschild cohomology \(H^*_K(E, M) \), of the \(K \)-algebra \(E \) with coefficients in \(M \), is the cohomology of \((\hat{X}^*(M), \hat{d}^*)\).

Remark 4.2. If \(K \) is a separable \(k \)-algebra, then \(H^*_K(E, M) \) coincide with the absolute Hochschild cohomology \(H^*(E, M) \), of \(E \) with coefficients in \(M \).

Remark 4.3. If \(K = A \), then \((\hat{X}^n(M), \hat{d}^n) = (\hat{X}^0r(M), \hat{d}_0^{rs})\).

Remark 4.4. In order to abbreviate notations we will write \(\hat{X}^{rs} \) and \(\hat{X}^n \) instead of \(\hat{X}^{rs}(E) \) and \(\hat{X}^n(E) \), respectively.

For each \(s \geq 0 \), we let \(\text{Hom}_A(E^{s\alpha}, M) \) denote the abelian group of left \(A \)-linear maps from \(E^{s\alpha} \) to \(M \). Note that \(\text{Hom}_A(E^{s\alpha}, M) \) is an \(A \)-bimodule via

\[
a_0(\overline{x}_{1s}) := \alpha(\overline{x}_{1s}a) \quad \text{and} \quad a_0(\overline{x}_{1s}) := \alpha(\overline{x}_{1s}a).
\]

For \(r, s \geq 0 \), let

\[
\hat{X}^{rs}(M) := \text{Hom}_{A,K}(E^{s\alpha} \otimes A^{r\alpha}, M) \simeq \text{Hom}_{K^*}(A^{r\alpha}, \text{Hom}_A(E^{s\alpha}, M)).
\]
Similarly as for \(\tilde{X}^{rs}(M) \), we have canonical identifications
\[
\tilde{X}^{rs}(M) \simeq \text{Hom}_E(X^{rs}_i, M).
\]
For \(0 \leq i \leq s \), let
\[
\tilde{u}_i : \tilde{X}^{r,s-1}(M) \to \tilde{X}^{rs}(M)
\]
be the map induced by \(u'_i \). It is easy to see that
\[
\tilde{u}_i(\alpha)(x_1 \otimes a_{1r}) = x_1 \alpha(x_2 \otimes a_{1r}),
\]
\[
\tilde{u}_i(\alpha)(x_{1,s} \otimes a_{1r}) = \alpha(x_{1,s-1} \otimes_A x_i x_{i+1} \otimes_A x_{i+1,s} \otimes a_{1r}) \quad \text{for } 0 < i < s
\]
and
\[
\tilde{u}_s(\alpha)(x_{1,s-1} \otimes_A \gamma(v) \otimes a_{1r}) = \sum \alpha(x_{1,s-1} \otimes a_{1r}^{(l)}) \gamma(v^{(l)}),
\]
where \(\sum_l a_{1r}^{(l)} \otimes_k v^{(l)} := \chi(v \otimes_k a_{1r}) \).

Notations 4.5. We will use the following notations:

1. We let \(F'(E^{\otimes n}) \) denote the \(K \)-bimodule of \(E^{\otimes n} \) generated by the simple tensors \(x_i \) such that at least \(n - i \) of the \(x_i \)’s belong to \(A \).
2. We let \(W_n \) denote the \(K \)-subbimodule of \(E^{\otimes n} \) generated by the simple tensors \(x_i \) such that \(\#(\{ j : x_j \notin A \cup V_k \}) \neq 0 \).
3. Given a \(K \)-subalgebra \(R \) of \(A \), we let \(C_{rn} \) denote the \(K \)-subbimodule of \(E^{\otimes n} \) generated by all the simple tensors \(x_i \) with some \(x_i \) in \(\overline{F} \).
4. Given a \(K \)-subalgebra of \(A \) and \(0 \leq u \leq r \), we let \(\tilde{X}^{rs}_{ru}(M) \) denote the \(k \)-vector subspace of \(\tilde{X}^{rs}(M) \) consisting of all the \((A,K) \)-linear maps
\[
\alpha : (E/A)^{\otimes u} \otimes \overline{R}^{r-u} \to M,
\]
that factorize throughout the \((A,K) \)-subbimodule
\[
\tilde{X}^{rs}_{r+u,s-u-1}
\]
of \((E/A)^{\otimes s} \otimes \overline{R}^{s-r} \) generated by the simple tensors \(x_{1,s-1} \otimes_A a_{1,r+u} \) with at least \(u \) of the \(a_j \)’s in \(\overline{F} \).

Theorem 4.6. The following assertions hold:

1. The morphism \(\hat{d}_0 : \tilde{X}^{r-1,s}(M) \to \tilde{X}^{rs}(M) \) is \((-1)^s\)-times the coboundary map of the normalized cochain Hochschild complex of \(A \) with coefficients in \(\text{Hom}_k((E/A)^{\otimes s}, M) \), considered as an \(A \)-bimodule as at the beginning of this section.
2. The morphism \(\hat{d}_1 : \tilde{X}^{r,s-1}(M) \to \tilde{X}^{rs}(M) \) is induced by \(\sum_{i=0}^{s} (-1)^i \tilde{u}_i \).
3. Let \(R \) be a stable under \(K \)-subalgebra of \(A \). If \(F \) takes its values in \(R \otimes_k V \), then
\[
\hat{d}_l(\tilde{X}^{r+l-1,s-l}(M)) \subseteq \tilde{X}^{rs}_{r+l-1}(M),
\]
for all \(l \geq 1 \).

Proof. Item (1) follows easily from the definition of \(d^0 \), and items (2) and (3), from Theorem 2.4. \(\square \)

For each \(r \geq 0 \), we let \(\text{Hom}_K(A \otimes \overline{F}^{\otimes r}, M) \) denote the abelian group of right \(K \)-linear maps from \(\overline{F}^{\otimes r} \) to \(M \). Note that \(\text{Hom}_K(A \otimes \overline{F}^{\otimes r}, M) \) is an \(E \)-bimodule via
\[
(a \gamma(v) \cdot \alpha \cdot a' \gamma(v'))(a_{0r}) := \sum \gamma(v^{(l)}) \alpha(a a_{0r}^{(l)}) a' \gamma(v'),
\]
where \(\sum_i a_{ij}^{(l)} \otimes_k v^{(l)} := \chi(v \otimes_k a_{0l}) \).

Remark 4.7. Note that

\[
\hat{H}^s(\hat{X}^s(M), \hat{d}_0^{s\ast}) = H^s_K(A, \text{Hom}_A((E/A)^{\otimes s}, M))
\]

and

\[
\hat{H}^s(\hat{X}^{s+1}(M), \hat{d}_0^{s\ast}) = H^s_A(E, \text{Hom}_A(A \otimes T^{\otimes s}, M)).
\]

Remark 4.8. By item (3) of the above theorem, if \(F \) takes its values in \(K \otimes_k V \), then \((\hat{X}^s(M), \hat{d}^s)\) is the total complex of the double complex \((\hat{X}^{s+1}(M), \hat{d}_0^{s\ast}, \hat{d}_1^{s\ast})\).

4.1. Comparison maps.

Let \((\text{Hom}_{K^c}(E^{\otimes s}, M), b^s)\) be the normalized Hochschild cochain complex of the \(K \)-algebra \(E \) with coefficients in \(M \). Recall that there is a canonical identification

\[
\text{Hom}_{K^c}(E^{\otimes s}, M, b^s) \simeq \text{Hom}_{E^c}((E \otimes E^{\otimes s} \otimes E, b_a), M).
\]

Let

\[
\hat{\phi}^s : (\text{Hom}_{K^c}(E^{\otimes s}, M), b^s) \longrightarrow (\hat{X}^s(M), \hat{d}^s)
\]

and

\[
\hat{\psi}^s : (\hat{X}^s(M), \hat{d}^s) \longrightarrow (\text{Hom}_{K^c}(E^{\otimes s}, M), b^s)
\]

be the morphisms of complexes induced by \(\phi \) and \(\psi \) respectively. By Proposition 2.6 it is evident that \(\hat{\phi} \circ \hat{\psi} = \text{id} \) and \(\hat{\psi} \circ \hat{\phi} \) is homotopically equivalent to the identity map. An homotopy \(\hat{\omega}^{s+1} : \hat{\phi}^s \circ \hat{\psi}^s \to \text{id}^s \) is the family of maps

\[
\hat{\omega}^{s+1} : \text{Hom}_{K^c}(E^{\otimes s+1}, M) \longrightarrow \text{Hom}_{K^c}(E^{\otimes s}, M)
\]

induced by \((\omega_{n+1} : E \otimes E^{\otimes s} \otimes E \longrightarrow E \otimes E^{\otimes s+1} \otimes E)_{n \geq 0} \).

4.2. The filtrations of \((\text{Hom}_{K^c}(E^{\otimes s}, M), b^s)\) and \((\hat{X}^s(M), \hat{d}^s)\).

Let

\[
F_i(\hat{X}^s(M)) := \bigoplus_{s \geq i} \hat{X}^{s-s,i}(M).
\]

The complex \((\hat{X}^s(M), \hat{d}^s)\) is filtered by

\[
F_0(\hat{X}^s(M)) \supseteq F_1(\hat{X}^s(M)) \supseteq F_2(\hat{X}^s(M)) \supseteq F_3(\hat{X}^s(M)) \supseteq F_4(\hat{X}^s(M)) \supseteq \ldots.
\]

Using this fact we obtain that there is a convergent spectral sequence

\[
E_{i}^{s} = H^s_K(A, \text{Hom}_A((E/A)^{\otimes i}, M)) \Rightarrow H^{s+i}_K(E, M).
\]

Let \(F_i(\text{Hom}_{K^c}(E^{\otimes s}, M)) \) be the \(k \)-submodule of \(\text{Hom}_{K^c}(E^{\otimes s}, M) \) consisting of all the maps \(\alpha \in \text{Hom}_{K^c}(E^{\otimes s}, M) \), such that \(\alpha(F^s(E^{\otimes s})) = 0 \). The normalized Hochschild complex \((\text{Hom}_{K^c}(E^{\otimes s}, M), b^s)\) is filtered by

\[
F_0(\text{Hom}_{K^c}(E^{\otimes s}, M)) \supseteq F_1(\text{Hom}_{K^c}(E^{\otimes s}, M)) \supseteq \ldots.
\]

The spectral sequence associated to this filtration is called the cohomological Hochschild-Serre spectral sequence.

Proposition 4.9. The maps \(\hat{\phi} \), \(\hat{\psi} \) and \(\hat{\omega} \) preserve filtrations.

Proof. This follows immediately from Proposition 2.8. \(\square \)

Corollary 4.10. The cohomological Hochschild-Serre spectral sequence is isomorphic to the spectral sequence \((4.10)\).
Proof. This follows immediately from Proposition 4.9 and the comments following Remark 4.8. □

Corollary 4.11. When \(M = E \) the spectral sequence (4.10) is multiplicative.

Proof. This follows from the previous corollary and the fact that the filtration 4.11 satisfies \(F_m \sim F_n \subseteq F_{m+n} \), where

\[
(\beta \sim \beta')(x_{1,m+n}) := \beta(x_{1m})\beta'(x_{m+1,m+n}),
\]

for \(\beta \in \text{Hom}_{K^e}(E^{\otimes m}, E) \) and \(\beta' \in \text{Hom}_{K^e}(E^{\otimes n}, E) \). □

Proposition 4.12. Let \(R \) be a stable under \(\chi \) \(K \)-subalgebra of \(A \). Assume that \(F \)
takes its values in \(R \otimes_k V \). Then, for each \(\beta \in \text{Hom}_{K^e}(E^{\otimes m}, M) \), we have

\[
\hat{\phi}(\beta)(\gamma_A(v_{1i}) \otimes a_{1,n-i}) = \beta(\text{Sh}(v_{1i} \otimes_k a_{1,n-i})) + \beta(x),
\]

with \(x \in F_i(E^{\otimes n}) \cap W_n^i \cap C_{nr}^i \).

Proof. This follows immediately from Proposition A.5. □

In the next proposition \(R_n^i \) denotes \(F^i(E^{\otimes n}) \setminus F^{i+1}(E^{\otimes n}) \).

Proposition 4.13. For all \(\alpha \in \hat{X}^{-i,j}(M) \), the following equalities hold:

1. \(\hat{\psi}(\alpha)(\gamma(v_{1i}) \otimes a_{i+1,n}) = \alpha(\gamma(v_{1i}) \otimes a_{i+1,n}) \).

2. If \(x_{1n} \in R_n^i \cap W_n^i \) and there is \(j \leq i \) such that \(x_j \in A \), then \(\hat{\psi}(\alpha)(x_{1n}) = 0 \).

Proof. This follows immediately from items (1) and (2) of Proposition A.7. □

5. The cup and cap products for Brzeziński’s crossed products

The aim of this section is to compute the cup product of \(\text{HH}^*_K(E) \) in terms of \((\hat{X}^*, \hat{d}^*) \) and the cap product of \(\text{HH}^*_K(E, M) \) in terms of \((\hat{X}^*, \hat{d}^*) \) and \((\hat{X}_e(M), \hat{d}_e) \). First of all recall that by definition

- the cup product of \(\text{HH}^*_K(E) \) is given in terms of \((\text{Hom}_{K^e}(E^*, E), b^*) \), by

\[
(\beta \sim \beta')(x_{1,m+n}) := \beta(x_{1m})\beta'(x_{m+1,m+n}),
\]

for \(\beta \in \text{Hom}_{K^e}(E^{\otimes m}, E) \) and \(\beta' \in \text{Hom}_{K^e}(E^{\otimes n}, E) \),

- the cap product

\[
\text{HH}^*_K(E, M) \times \text{HH}^*_K(E) \rightarrow \text{HH}^*_K(E, M) \quad (m \leq n),
\]

is defined in terms of \((M \otimes E^{\otimes m}, b_u) \) and \((\text{Hom}_{K^e}(E^{\otimes m}, E), b') \), by

\[
\bar{m} \otimes x_{1m} \sim \beta := \bar{m} \beta(x_{1m}) \otimes x_{m+1,n},
\]

where \(\beta \in \text{Hom}_{K^e}(E^{\otimes m}, E) \). When \(m > n \) we set \(\bar{m} \otimes x_{1m} \sim \beta := 0 \).

Definition 5.1. For \(\alpha \in \hat{X}^r \) and \(\alpha' \in \hat{X}^r \cdot s' \) we define \(\alpha \bullet \alpha' \in \hat{X}^{r+r' \cdot s+s'} \) by

\[
(\alpha \bullet \alpha')(\gamma_A(v_{1,v'}) \otimes a_{1,v'}) := \sum (-1)^{r''} \alpha(\gamma_A(v_{1i}) \otimes a_{1i}) \alpha'(\gamma_A(v_{2i}) \otimes a_{i+1,v''}),
\]

where \(r'' = r + r', s'' = s + s' \) and \(\sum_i a_{1i} \otimes_k v_{s+1,s''}^{(i)} := (v_{s+1,s''} \otimes a_{1r}) \).
Theorem 5.2. Let $\alpha \in \widehat{X}^{rs}$, $\alpha' \in \widehat{X}^{s'}$ and $n := r + r' + s + s'$. Let R be a stable under χ K-subalgebra of A. If \mathcal{F} takes its values in $R \otimes_k V$, then

$$\hat{\varphi}(\psi(\alpha) \sim \psi(\alpha')) = \alpha \cdot \alpha' \mod \bigoplus_{i > s + s'} \widehat{X}^{n-i,i}_{R(1)},$$

where $\widehat{X}^{n-i,i}_{R(1)}$ denotes the k-vector subspace of $\widehat{X}^{n-i,i}$ consisting of all the (A,K)-linear maps

$$\alpha: (E/A)^{\otimes i} \otimes A^{\otimes n-i} \to E,$$

that factorize throughout $A \otimes (W_n^* \cap C^R_{tr})$, where W_n^* and C^R_n are as in Notation 4.5.

Proof. Let $r'', s'' \in \mathbb{N}$ such that $r'' + s'' = n$, and let $\gamma_A(v_{1s''}) \otimes a_{1r''} \in X_{r''}$. Set $T := \text{Sh}(v_{1s''} \otimes_k a_{1r''})$. By Proposition 4.12,

$$\hat{\varphi}(\psi(\alpha) \sim \psi(\alpha'))(\gamma_A(v_{1s''}) \otimes a_{1r''}) = (\hat{\varphi}(\alpha) \sim \hat{\varphi}(\alpha'))(T + x),$$

with $x \in F^{s''-1}(E^{s''}) \cap W_n^* \cap C^R_n$. Since, by Theorem 4.13,

- if $s'' \leq s + s'$, then $(\hat{\varphi}(\alpha) \sim \hat{\varphi}(\alpha'))(x) = 0,$
- if $s'' \neq s + s'$, then $(\hat{\varphi}(\alpha) \sim \hat{\varphi}(\alpha'))(T) = 0,$
- if $s'' = s + s'$, then

$$\hat{\varphi}(\psi(\alpha) \sim \psi(\alpha'))(T) = \sum_i (-1)^{s'r} \alpha(\gamma_A(v_{1s''}) \otimes a_{1(i)}) \alpha(\gamma_A(v_{i+1,s''}) \otimes a_{r+1,r''}),$$

where $\sum_i a_{1(i)} \otimes_k v_{i+1,s''} := \overline{\alpha}(v_{1,s''} \otimes a_{1r''}),$

the result follows. \thinlinebreak

Corollary 5.3. If \mathcal{F} takes its values in $K \otimes_k V$, then the cup product of $\text{HH}_K^e(E)$ is induced by the operation \bullet in $(\widehat{X}^{*,*}, \delta^*)$.

Proof. It follows from Theorem 5.2, since $\widehat{X}^{n-i,i}_{K(1)} = 0$ for all i. \thinlinebreak

Definition 5.4. Let $[m \otimes \gamma_A(v_{1s}) \otimes a_{1r}] \in \widehat{X}_r(M)$ and $\alpha \in \widehat{X}^{rs'}$. If $r' \leq r$ and $s' \leq s$, then we define $[m \otimes \gamma_A(v_{1s'}) \otimes a_{1r'}] \cdot \alpha \in \widehat{X}_{r-r',s-s'}(M)$ by

$$[m \otimes \gamma_A(v_{1s'}) \otimes a_{1r'}] \cdot \alpha := \sum_i (-1)^{s'r'} [m \alpha(\gamma_A(v_{1s'}) \otimes a_{1(i)}) \otimes \gamma_A(v_{i+s'+1,s'}) \otimes a_{r+s'+1,r'}],$$

where $s'' := s - s'$ and $\sum_i a_{1(i)} \otimes_k v_{i+s'+1,s} := \overline{\alpha}(v_{1,s'} \otimes a_{1r'}).$

Otherwise $[m \otimes \gamma_A(v_{1s}) \otimes a_{1r}] \cdot \alpha := 0.$

Theorem 5.5. Let $[m \otimes \gamma_A(v_{1s}) \otimes a_{1r}] \in \widehat{X}_r(M)$, $\alpha \in \widehat{X}^{rs'}$ and $n := r+s-r'-s'$. Let R be a stable under χ K-subalgebra of A. If \mathcal{F} takes its values in $R \otimes_k V$, then

$$\hat{\varphi}(\psi([m \otimes \gamma_A(v_{1s}) \otimes a_{1r}]) \sim \psi(\alpha)) = [m \otimes \gamma_A(v_{1s}) \otimes a_{1r}] \cdot \alpha \mod \bigoplus_{i < s + s'} \left(\widehat{X}^{R_1}_{n-i,i}(M) + M (X^{R_1}_{r'} \otimes (E/A)^{\otimes s''} \otimes A^{\otimes r'-s'})\right),$$

where $X^{R_1}_{r'}$ denotes the k-vector subspace of $(E/A)^{\otimes s''} \otimes A^{\otimes r'}$ generated by all the simple tensors $m \otimes_k \varpi_{1s'} \otimes a_{1r'},$ with at least 1 of the a_j’s in ϖ. \thinlinebreak
Proof. By Proposition 3.11,
\[
\psi\left(\hat{\phi}\left([m \otimes_\mathcal{A} \gamma_{\mathcal{A}}(\mathbf{v}_i) \otimes \mathbf{a}_{i,r}]\right) \circ \hat{\psi}(\alpha)\right) = \hat{\psi}\left(\left([m \otimes T] + [m \otimes \mathbf{x}_{1,r+1}]\right) \circ \hat{\psi}(\alpha)\right),
\]
where
\[
T := \text{Sh}(\mathbf{v}_i \otimes_k \mathbf{a}_{i,r}) \quad \text{and} \quad [m \otimes \mathbf{x}_{1,r+1}] \in F^{s-1}(M \otimes \overline{E}^{s+1} \otimes) \cap \overline{C}_{r+1}.\]
Moreover, by Proposition 4.13, we know that

- If \(s' > s \) or \(r' > r \), then \([m \otimes T] \circ \hat{\psi}(\alpha) = 0\).
- If \(s' \leq s \) and \(r' \leq r \), then
\[
[m \otimes T] \circ \hat{\psi}(\alpha) = \sum_i (-1)^{r's'} m \otimes \alpha(v_{i,s'} \otimes a_{i,s'}) \otimes \text{Sh}(v_{i,s'} \otimes a_{i,s'}),
\]
where \(\sum_i a_{i,s'} \otimes_k v_{i,s'} := \chi(v_{i,s'} \otimes_k a_{i,s'}). \)
- If \(s' \geq s \), then \([m \otimes \mathbf{x}_{1,r+1}] \circ \hat{\psi}(\alpha) = 0\).
- If \(s' < s \), then
\[
[m \otimes \mathbf{x}_{1,r+1}] \circ \hat{\psi}(\alpha) \in F^{s-s'}(M \otimes \overline{E}^{s'} \otimes) \cap \overline{C}_n \cap (\overline{C}_n + G_n),
\]
where \(G_n := M \hat{\psi}(\alpha)(\overline{C}_{r+1} \otimes \overline{E}^{s'}). \)

Now, in order to finish the proof it suffices to apply items (1) and (2) of Proposition 3.12.

\[\square\]

Corollary 5.6. If \(\mathcal{F} \) takes its values in \(K \otimes_k V \), then in terms of the complexes \((\widetilde{X}_s(M), \delta_s)\) and \((\widetilde{X}^*, \tilde{d}^*)\), the cap product
\[
H^K_n(E, M) \times \text{HH}_R^0(E) \to H^K_{n-m}(E, M),
\]
is induced by \(\bullet \).

Proof. It follows immediately from the previous theorem. \[\square\]

6. CYCLIC HOMOLOGY OF A BRZEZIŃSKI’S CROSSED PRODUCT

The aim of this section is to construct a mixed complex giving the cyclic homology of \(E \), whose underlying Hochschild complex is \((\widetilde{X}_s, \delta_s)\).

Lemma 6.1. Let \(B_* : E \otimes \overline{E}^{s'} \otimes \to E \otimes \overline{E}^{s'+1} \otimes \) be the Connes operator. The composition \(B \circ \hat{\omega} \circ B \circ \hat{\phi} \) is the zero map.

Proof. Let \(x := [x_0 \otimes_\mathcal{A} \gamma_{\mathcal{A}}(\mathbf{v}_i) \otimes \mathbf{a}_{i+1,n-i}] \in \widetilde{X}_{n-1,i}. \) By Proposition 3.11, we know that
\[
\hat{\phi}(x) \in F^i(E \otimes \overline{E}^{s'} \otimes) \cap \overline{W}_n.
\]
Hence
\[
B \circ \hat{\phi}(x) \in (K \otimes \overline{E}^{s'+1} \otimes) \cap F^{i+1}(E \otimes \overline{E}^{s'+1} \otimes) \cap \overline{W}_{n+1},
\]
and so, by Proposition 3.13
\[
\hat{\omega} \circ B \circ \hat{\phi}(x) \in (K \otimes \overline{E}^{s'+1} \otimes) \cap F^{i+1}(E \otimes \overline{E}^{s'+1} \otimes) \cap \overline{W}_{n+2} \subseteq \ker B,
\]
as desired. \[\square\]

For each \(n \geq 0 \), let \(\hat{D}_n : \widetilde{X}_n \to \widetilde{X}_{n+1} \) be the map \(\hat{D} := \hat{\psi} \circ B \circ \hat{\phi}. \)
Theorem 6.2. \((\hat{X}_n, \hat{a}_*, \hat{D}_*)\) is a mixed complex that gives the Hochschild, cyclic, negative and periodic homologies of the \(K\)-algebra \(E\). Moreover we have chain complexes maps
\[
\text{Tot}(\text{BP}(\hat{X}_*, \hat{d}_*, \hat{D}_*)) \xrightarrow{\hat{\psi}} \text{Tot}(\text{BP}(E \otimes \mathcal{E}^\infty \otimes, b_*, B_*)),
\]
given by
\[
\hat{\Phi}_n(xu^i) := \hat{\phi}(x)u^i + \hat{\omega} \circ \hat{\phi}(x)u^{i-1} \quad \text{and} \quad \hat{\Psi}_n(xu^i) := \sum_{j \geq 0} \hat{\psi} \circ (B \circ \hat{\omega})^j(x)u^{i-j}.
\]
These maps satisfy \(\hat{\psi} \circ \hat{\Phi} = \text{id} \) and \(\hat{\Phi} \circ \hat{\Psi} = \text{id} \). A homotopy \(\hat{\Omega}_{n+1} : \hat{\Phi}_n \circ \hat{\Psi}_n \to \text{id}_*\) is given by
\[
\hat{\Omega}_{n+1}(xu^i) := \sum_{j \geq 0} \hat{\omega} \circ (B \circ \hat{\omega})^j(x)u^{i-j}.
\]

Proof. This result generalizes [C-G-G, Theorem 2.4], and the proof given in that paper works in our setting. \(\square\)

Remark 6.3. If \(K\) is a separable \(k\)-algebra, then \((\hat{X}_n, \hat{a}_*, \hat{D}_*)\) is a mixed complex that gives the Hochschild, cyclic, negative and periodic absolute homologies of \(E\).

In the next proposition we use the notation \(F_R^j(\hat{X}_n) := F^j(\hat{X}_n) \cap \hat{X}_n R^1(E)\) introduced above Proposition 3.12.

Proposition 6.4. Let \(R\) be a stable under \(\chi\) \(K\)-subalgebra of \(A\) such that \(F\) takes its values in \(R \otimes_k V\). The Connes operator \(\hat{D}\) satisfies:

1. If \(x = [a_0 \gamma_A(v_0) \otimes a_{1,n-1}]\), then
\[
\hat{D}(x) = \sum_{j=0}^i \sum_{l} (-1)^{i+jl} \left[1 \otimes_A \gamma_A(v_{j+1,l}) \otimes_A a_0 \gamma_A(v_{0j}) \otimes a_{j+1,n-2} \right].
\]

module \(F_R^j(\hat{X}_{n+1})\), where \(\sum_{l} a_{j+1,n-2} \otimes_k v_{j+1,l} := \tau(v_{j+1} \otimes k a_{1,n-2})\).

2. If \(x = [a_0 \otimes_A \gamma_A(v_{1i})] \otimes a_{1,n-2}\), then
\[
\hat{D}(x) = \sum_{j=0}^{n-1} \sum_{l} (-1)^{jn+jl} \left[1 \otimes_A \gamma_A(v_{1i,j}) \otimes a_{j+1,n-2} \otimes a_0 \otimes a_{j+1} \right],
\]

module \(F_R^{j-1}(\hat{X}_{n+1})\), where \(\sum_{l} a_{j+1} \otimes_k v_{1i,j} := \tau(v_{1i} \otimes k a_{1})\).

Proof. (1) We must compute \(\hat{D}(x) = \hat{\psi} \circ B \circ \hat{\phi}(x)\). By Proposition 3.11,
\[
\hat{D}(x) = \hat{\psi} \circ B([a_0 \gamma_A(v_0) \otimes \text{Sh}(v_{1i} \otimes k a_{1,n-2}))] + \hat{\psi} \circ B([a_0 \gamma_A(v_0) \otimes x]),
\]
where \([a_0 \gamma_A(v_0) \otimes x] \in F^{i-1}(E \otimes \mathcal{E}^\infty \otimes) \cap \mathcal{W}_n \cap \mathcal{C}^R_n\). Now

- \(B([a_0 \gamma_A(v_0) \otimes \text{Sh}(v_{1i} \otimes k a_{1,n-2}))])\) is a sum of classes in \(E \otimes \mathcal{E}^{0,n+1} \otimes\) of simple tensors \(1 \otimes v_{1,n+1}\), with \(n-i\) of the \(y_i\)'s in \(i(A)\), \(i\) of the \(y_j\)'s in \(V_k\) and one \(y_j \notin i(A) \cup V_k\).

- \(B([a_0 \gamma_A(v_0) \otimes x])\) is a sum of classes in \(E \otimes \mathcal{E}^{0,n+1} \otimes\) of simple tensors \(1 \otimes z_{1,n+1}\), with at least \(n-i+1\) of the \(z_i\)'s in \(i(A)\) and exactly one \(z_j\) in \(E \setminus (i(A) \cup V_k)\).
where $|a_0 \otimes x| \in E^{i-1}(E \otimes E \otimes x) \cap \mathcal{V}_n \cap \mathcal{V}_n^R$. Now

- $B\bigl((a_0 \otimes \text{Sh}(v_{11} \otimes_k a_{1,n-1})\bigr)$ is a sum of classes in $E \otimes E^{n+1} \otimes$ of simple tensors $1 \otimes y_{1,n+1}$, with $n - i + 1$ of the y_j’s in $i(A)$ and i of the y_j’s in V_K.

- $B\bigl((a_0 \otimes x)\bigr)$ is a sum of classes in $E \otimes E^{n+1}$ of simple tensors $1 \otimes z_{1,n+1}$, with each z_j in $i(A) \cup V_K$ and at least $n - i + 2$ of the z_j’s in $i(A)$.

The result follows now easily from the definition of Sh and items (1) and (2) of Proposition 3.12.

Corollary 6.5. If $K = A$, then $(\hat{X}_s, \hat{d}_s, \hat{D}_s) = (\hat{X}_{0n}, \hat{d}_{0n}, \hat{D}_{0n})$, where

$$\hat{D}_{0n}(a_{\gamma A}(v_{0n})) = \sum_{j=0}^{n} (-1)^{n+j} [1 \otimes A_{\gamma A}(v_{j+1,n}) \otimes A a_{\gamma A}(v_{oj})].$$

6.1. The spectral sequences. The first of the following spectral sequences generalizes those obtained in [C-G-G, Section 3.1] and [Z-H, Theorem 4.7], while the third one generalizes those obtained in [A-K], [K-R] and [C-G-G, Section 3.2]. Let

$$\hat{d}_r : \hat{X}_{r,s} \to \hat{X}_{r-1,s} \text{ and } \hat{D}_r : \hat{X}_{r,s} \to \hat{X}_{r,s-1}$$

be as at the beginning of Section 3 and let

$$\hat{D}_r^0 : \hat{X}_{r,s} \to \hat{X}_{r,s+1}$$

be the map defined by

$$\hat{D}_r^0\bigl((a_{\gamma A}(v_{0n}) \otimes a_{1r})\bigr) = \sum_{j=0}^{s} (-1)^{s+j} [1 \otimes A_{\gamma A}(v_{j+1,s}) \otimes A a_{\gamma A}(v_{oj}) \otimes a_{1r}],$$

where $\sum_i a_{1r} \otimes_k v_{j+1,s} = \chi(v_{j+1,s} \otimes_k a_{1r}).$

6.1.1. The first spectral sequence. Recall from Remark 3.7 that

$$H_r(\hat{X}_{s,s}, \hat{d}^0_{s,s}) = H^K_r(A, E \otimes_A (E/A)^{\otimes s}).$$

Let

$$\hat{d}_r : H^K_r(A, E \otimes_A (E/A)^{\otimes s}) \to H^K_r(A, E \otimes_A (E/A)^{\otimes s-1})$$

and

$$\hat{D}_r : H^K_r(A, E \otimes_A (E/A)^{\otimes s}) \to H^K_r(A, E \otimes_A (E/A)^{\otimes s+1})$$

be the maps induced by \hat{d}^0 and \hat{D}^0, respectively.

Proposition 6.6. For each $r \geq 0$,

$$\tilde{H}^{K}_r(A, E \otimes_A (E/A)^{\otimes s}):= \left(H^K_r(A, E \otimes_A (E/A)^{\otimes s}), \hat{d}_r, \hat{D}_r\right)$$

is a mixed complex and there is a convergent spectral sequence

$$(\mathcal{E}_r^{\alpha}, d_r^{\alpha})_{\alpha \geq 0} \implies HC^K_{r+s}(E),$$

such that $\mathcal{E}_r^{\alpha} = HC_{s}^{\alpha} \left(\tilde{H}^{K}_r(A, E \otimes_A (E/A)^{\otimes s})\right)$ for all $r, s \geq 0$.

Proof. For each $s, n \geq 0$, let
\[
\mathcal{F}^s(\Tot(BC(\tilde{X}, \tilde{d}, \tilde{D}))) := \bigoplus_{j \geq 0} F^{s-2j}(\tilde{X}_{n-2j})u^j,
\]
where $F^{s-2j}(\tilde{X}_{n-2j})$ is the filtration introduced in Section 3.2. Consider the spectral sequence $(E^r_{sr}, d^r_{sr})_{r \geq 0}$, associated with the filtration
\[
\mathcal{F}^0(\Tot(BC(\tilde{X}, \tilde{d}, \tilde{D}))) \subseteq \mathcal{F}^1(\Tot(BC(\tilde{X}, \tilde{d}, \tilde{D}))) \subseteq \cdots
\]
of $\Tot(BC(\tilde{X}, \tilde{d}, \tilde{D}))$. A straightforward computation shows that
\[
\begin{align*}
- E^0_{sr} &= \bigoplus_{j \geq 0} \tilde{X}_{r,s-2j}u^j, \\
- d^0_{sr} : E^0_{sr} &\to E^0_{s,r-1} \text{ is } \bigoplus_{j \geq 0} \tilde{d}_{r,s-2j}u^j, \\
- E^1_{sr} &= \bigoplus_{j \geq 0} H_r(\tilde{X}_{r,s-2j}, \tilde{d}_{r,s-2j})u^j, \\
- d^1_{sr} : E^1_{sr} &\to E^1_{s-1,r} \text{ is } \bigoplus_{j \geq 0} \tilde{d}_{r,s-2j}u^j + \bigoplus_{j \geq 0} \tilde{d}_{r,s-2j}u^{j-1}.
\end{align*}
\]
From this it follows easily that $\tilde{H}^K_r(A, E \otimes_A (E/A)^{\otimes \lambda})$ is a mixed complex and
\[
E^2_{sr} = \HC_s\left(\tilde{H}^K_r(A, E \otimes_A (E/A)^{\otimes \lambda})\right).
\]
In order to finish the proof note that the filtration of $\Tot(BC(\tilde{X}, \tilde{d}, \tilde{D}))$ introduced above is canonically bounded, and so, by Theorem 6.2, the spectral sequence $(E^r_{sr}, d^r_{sr})_{r \geq 0}$ converges to the cyclic homology of the K-algebra E. \hfill \Box

6.1.2. The second spectral sequence. For each $s \geq 0$, we consider the double complex

\[
\tilde{\Xi}_s = \begin{array}{ccccccc}
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\tilde{X}_{3,s}u^0 & \tilde{d}^0 & \tilde{X}_{3,s-1}u^1 & \tilde{d}^0 & \tilde{X}_{3,s-2}u^2 & \tilde{d}^0 & \tilde{X}_{3,s-3}u^3 \\
\tilde{X}_{2,s}u^0 & \tilde{d}^0 & \tilde{X}_{2,s-1}u^1 & \tilde{d}^0 & \tilde{X}_{2,s-2}u^2 \\
\tilde{X}_{1,s}u^0 & \tilde{d}^0 & \tilde{X}_{1,s-1}u^1 \\
\tilde{X}_{0,s}u^0 & \tilde{d}^0 \\
\end{array}
\]

where the module $\tilde{X}_{0,s}u^0$ is placed in the intersection of the 0-th column and the 0-th row.

Proposition 6.7. There is a convergent spectral sequence
\[
(E^r_{sr}, \partial^r_{sr})_{r \geq 0} \Rightarrow \HC^K_{r+s}(E),
\]
such that $E^1_{sr} = H_r(\Tot(\tilde{\Xi}_s))$ for all $r, s \geq 0$.

Proof. For each $s, n \geq 0$, let
\[
F^s(\Tot(BC(\tilde{X}, \tilde{d}, \tilde{D}))) := \bigoplus_{j \geq 0} F^{s-j}(\tilde{X}_{n-2j})u^j,
\]
where $F^r_{s-j}(\hat{X}_{n-2j})$ is the filtration introduced in Section 3.2. Consider the spectral sequence $(E^r_{sr}, \partial^r_{sr})_{v \geq 0}$, associated with the filtration

$$F^0(\text{Tot}(BC(\hat{X}, \hat{d}, \hat{D}))) \subseteq F^1(\text{Tot}(BC(\hat{X}, \hat{d}, \hat{D}))) \subseteq \cdots$$

of $\text{Tot}(BC(\hat{X}, \hat{d}, \hat{D}))$. By definition

$$E^0_{sr} = \hat{X}_{rs}u^0 \oplus \hat{X}_{r-1,s-1}u \oplus \hat{X}_{r-2,s-2}u^2 \oplus \hat{X}_{r-3,s-3}u^3 \oplus \cdots$$

and the boundary map $\partial^0_{sr}: E^0_{sr} \to E^0_{s-r-1}$ is induced by $\hat{d} + \hat{D}$. Consequently, by Theorem 3.6 and item (1) of Proposition 6.4,

$$(E^0_{sr}, \partial^0_{sr}) = \text{Tot}(\hat{E}_s) \quad \text{for all } s \geq 0,$$

and so $E^1_{sr} = H_r(\text{Tot}(\hat{E}_s))$ as desired. Finally, it is clear that $(E^v_{sr}, \partial^v_{sr})_{v \geq 0}$ converges to $HC^r_{r+s}(E)$. \hfill \square

6.1.3. The third spectral sequence. Assume that \mathcal{F} takes its values in $K \otimes_k V$. Recall from Remark 3.7 that

$$H_s(\hat{X}_{rs}, \hat{d}_{rs}) = H^A_s(E, A \otimes \overline{A}^s \otimes E).$$

Let

$$\hat{d}_{rs}: H^A_s(E, A \otimes \overline{A}^s \otimes E) \longrightarrow H^A_s(E, A \otimes \overline{A}^{s-1} \otimes E)$$

and

$$\hat{D}_{rs}: H^A_s(E, A \otimes \overline{A}^s \otimes E) \longrightarrow H^A_s(E, A \otimes \overline{A}^{s+1} \otimes E)$$

be the maps induced by \hat{d}^0 and \hat{D}^0, respectively.

Proposition 6.8. For each $s \geq 0$,

$$\hat{H}^A_s(E, A \otimes \overline{A}^* \otimes E) := \left(H^A_s(E, A \otimes \overline{A}^s \otimes E), \hat{d}_{ss}, \hat{D}_{ss} \right)$$

is a mixed complex and there is a convergent spectral sequence

$$(E^v_{rs}, \partial^v_{rs})_{v \geq 0} \Rightarrow HC^r_{r+s}(E),$$

such that $E^v_{rs} = HC^r(\hat{H}^A_s(E, A \otimes \overline{A}^s \otimes E))$ for all $r, s \geq 0$.

Proof. For each $r, n \geq 0$, let

$$\mathfrak{F}^r(\text{Tot}(BC(\hat{X}, \hat{d}, \hat{D}))) := \bigoplus_{j \geq 0} \mathfrak{F}^{r-j}(\hat{X}_{n-2j})u^j,$$

where

$$\mathfrak{F}^{r-j}(\hat{X}_{n-2j}) := \bigoplus_{i \leq r-j} \hat{X}_{i,n-i-2j}.$$
From this it follows easily that \(\hat{H}^r_A(E, A \otimes A^\otimes E) \) is a mixed complex and
\[
\mathcal{E}^r_{rs} = \text{HC}_r \left(\hat{H}^r_A(E, A \otimes A^\otimes E) \right).
\]

In order to finish the proof note that the filtration of \(\text{Tot}(\text{BC}(X, \hat{d}, \hat{D})) \) introduced above is canonically bounded, and so, by Theorem 6.2, the spectral sequence \((\mathcal{E}^v_r, \partial^v_r)_{v \geq 0} \) converges to the cyclic homology of the \(K \)-algebra \(E \). \qed

6.1.4. The fourth spectral sequence. Assume that \(\mathcal{F} \) takes its values in \(K \otimes_k V \). Then the mixed complex \((\hat{X}, \hat{d}, \hat{D}) \) is filtrated by
\[
\mathcal{F}^r(\hat{X}) := \bigoplus_{i \leq r} \hat{X}_{i,n-i}.
\]
Hence, for each \(r \geq 1 \), we can consider the quotient mixed complex
\[
\hat{X}^r := \frac{\mathcal{F}^r(\hat{X})}{\mathcal{F}^{r-1}(\hat{X})}.
\]
It is easy to check that the Hochschild boundary map of \(\hat{X}^r \) is \(\hat{d}^r \) : \(\hat{X}^r_{rs} \rightarrow \hat{X}^r_{r,s+1} \) and that, by item (1) of Proposition 6.4, its Connes operator is \(\hat{D}^r_{rs} \) : \(\hat{X}^r_{rs} \rightarrow \hat{X}^r_{r,s+1} \).

Proposition 6.9. There is a convergent spectral sequence
\[
(\mathcal{E}^r_{rs}, \delta^r_{rs})_{r \geq 0} \Rightarrow \text{HC}_r^{K}(E),
\]
\(s \geq 0 \).

Proof. Let \((\mathcal{E}^v_{rs}, \delta^v_{rs})_{v \geq 0} \) be the spectral sequence associated with the filtration
\[
\mathcal{F}^r(\text{Tot}(\text{BC}(\hat{X}, \hat{d}, \hat{D}))) \subseteq \mathcal{F}^{r+1}(\text{Tot}(\text{BC}(\hat{X}, \hat{d}, \hat{D}))) \subseteq \cdots,
\]
\(r \geq 0 \). It is evident that
\[
\mathcal{F}^r(\text{Tot}(\text{BC}(\hat{X}, \hat{d}, \hat{D}))) = \bigoplus_{j \geq 0} \mathcal{F}^r(\hat{X}_{n-2j})u^j.
\]
Hence,
\[
\mathcal{E}^0_{rs} = \hat{X}^r_{rs}u^0 \oplus \hat{X}^r_{r,s-2}u^1 \oplus \hat{X}^r_{r,s-4}u^2 \oplus \hat{X}^r_{r,s-6}u^3 \oplus \cdots
\]
and \(\delta^0_{rs} : \mathcal{E}^0_{rs} \rightarrow \mathcal{E}^0_{r,s-1} \) is the map induced by \(\hat{d} + \hat{D} \). Consequently,
\[
(\mathcal{E}^0_{rs}, \delta^0_{rs}) = \text{Tot}(\text{BC}(\hat{X}^r)),
\]
and so \(\mathcal{E}^1_{rs} = \text{HC}_r(\hat{X}^r) \) as desired. Finally, it is clear that \((\mathcal{E}^v_{rs}, \delta^v_{rs})_{v \geq 0} \) converges to \(\text{HC}_r^{K}(E) \). \qed

7. Hochschild homology of a cleft braided Hopf crossed product

Let \(E := A \#_f H \) be the braided Hopf crossed product associated with a triple \((s, p, f) \), consisting of a transposition \(s : H \otimes_k A \rightarrow A \otimes_k H \), a weak action \(p \) of \(H \) on \(A \), and a compatible with \(s \) normal cocycle \(f : H \otimes_k H \rightarrow A \), that satisfies the twisted module condition. Let \(K \) be a subalgebra of \(A \) stable under \(s \) and \(p \), and let \(M \) be an \(E \)-bimodule. In this section we show that if \(H \) is a Hopf algebra and \(E \) is cleft, then the complex \((\hat{X},(M),\hat{d}) \) of Section 3 is isomorphic to a simpler complex \((\overline{X},(M),\overline{d}) \). In the sequel we will use the following notations:
(1) For \(s \geq 1 \), we let \(p_c : H^{\otimes s} \rightarrow H^{\otimes s}_r \) denote the map recursively defined by:
\[
p_c := \text{id},
\]
\[
p_r := (H \otimes k p_{s-1} \otimes_k H) \circ (H \otimes k c^{\otimes s-1} \otimes_k H).
\]

(2) For \(s \geq 1 \) we let \(H^{\otimes s}_r \) denote the coalgebra with underlying space \(H^{\otimes s} \), comultiplication \(\Delta_{H^{\otimes s}} := p_c \circ \Delta^{\otimes s} \) and counit \(\varepsilon_H := \varepsilon^{\otimes s} \). Note that \(\Delta^{\otimes s} \) induces a \(k \)-linear map from \(H^{\otimes s} \) to \(H^{\otimes s} \otimes k H^{\otimes s} \), that we will also denote with the symbol \(\Delta_{H^{\otimes s}} \). A similar remark is valid for the maps \(s_{sr} \), \(g_{cs} \), and \(c_{sr} \) introduced below.

(3) Let \(\tilde{s} : H \otimes_k E \rightarrow E \otimes_k H \) be as in Example 1.14. For each \(s \geq 1 \), we let \(\tilde{p}_s : (E \otimes H)^{\otimes s} \rightarrow E^{\otimes s} \otimes H^{\otimes s} \) denote the map recursively defined by:
\[
\tilde{p}_1 := \text{id},
\]
\[
\tilde{p}_r := (E \otimes_k \tilde{p}_{s-1} \otimes_k H) \circ (E \otimes_k \tilde{s}^{\otimes s-1} \otimes_k H).
\]

(4) For \(s, r \geq 1 \), we let \(s_{sr} : H^{\otimes s} \otimes_k A^{\otimes r} \rightarrow A^{\otimes r} \otimes_k H^{\otimes s} \) denote the map recursively defined by:
\[
s_1 := s,
\]
\[
s_{1,r+1} := (A^{\otimes r} \otimes_k s) \circ (s_1 \otimes_k A),
\]
\[
s_{s+1,r} := (s_r \otimes_k H^{\otimes s}) \circ (V \otimes_k s_{sr}).
\]

(5) For \(s \geq 2 \), we let \(g_{cs} : H^{\otimes s} \rightarrow H^{\otimes s}_r \) denote the map recursively defined by:
\[
g_{c_1} := c,
\]
\[
g_{cs+1} := (H \otimes_k g_{cs} \otimes_k H) \circ c_{s+1},
\]
where \(c_{sr} : H^{\otimes s} \otimes_k H^{\otimes r} \rightarrow H^{\otimes s} \otimes_k H^{\otimes r} \) is the map obtained mimicking the definition of \(s_{sr} \), but using \(c \) instead of \(s \).

(6) Let \([M \otimes \overline{A}^{\otimes r}, K]_H \otimes_k \overline{H}^{\otimes s} \) be the \(k \)-vector subspace of \(M \otimes \overline{A}^{\otimes r} \otimes_k \overline{H}^{\otimes s} \) generated by the commutators
\[
\lambda m \otimes a_{1r} \otimes_k h_{1s} = \sum_i m \otimes a_{1r} \lambda^{(i)} \otimes_k h_{1s}^{(i)} \quad \text{with} \quad \lambda \in K,
\]
where
\[
\sum_i \lambda^{(i)} \otimes_k h_{1s}^{(i)} := s(h_{1s} \otimes_k \lambda).
\]
Given \(m \in M \), \(a_{1r} \in \overline{A}^{\otimes r} \) and \(h_{1s} \in \overline{H}^{\otimes s} \), we let \([m \otimes a_{1r}]_H \otimes_k h_{1s} \) denote the class of \(m \otimes a_{1r} \otimes_k h_{1s} \) in
\[
\overline{X}_r s(M) := \frac{M \otimes \overline{A}^{\otimes r} \otimes_k \overline{H}^{\otimes s}}{[M \otimes \overline{A}^{\otimes r}, K]_H \otimes_k \overline{H}^{\otimes s}}.
\]

Remark 7.1. Note that:

(1) The map \(p_c \) acts over each element \((h_1 \otimes_k l_1) \otimes_k \cdots \otimes_k (h_s \otimes_k l_s) \) of \(H^{\otimes s}_r \), carrying the \(l_i \)'s to the right by means of reiterated applications of \(c \).

(2) The map \(\tilde{p}_s \) acts over each element \((a_1 \# h_1 \otimes_k l_1) \otimes_k \cdots \otimes_k (a_s \# h_s \otimes_k l_s) \) of \((E \otimes_k H)^{\otimes s} \), carrying the \(l_i \)'s to the right by means of reiterated applications of \(\tilde{s} \).

(3) The map \(s_{sr} \) acts over each element \(h_{1s} \otimes_k a_{1r} \) of \(H^{\otimes s} \otimes_k A^{\otimes r} \), carrying the \(h_i \)'s to the right by means of reiterated applications of \(s \).
(4) The map g_c acts over each element h_{1s} of H^\otimes_s, carrying the i-th factor to the $s-i+1$-place by means of reiterated applications of c.

Remark 7.2. For each $s \in \mathbb{N}$, we consider E^\otimes_s as a H^\otimes_s-comodule via

$$\nu := p_{h_{1s}}(A \otimes_k \Delta) \otimes_s^c.$$

Note that $\nu \circ \gamma_s^c = (\gamma \otimes^c k H^\otimes_s) \circ \Delta_{H^\otimes_s}$ and that ν induce a coaction

$$\nu_A : E^\otimes_s \to E^\otimes_s \otimes_k H^\otimes_s,$$

such that

$$\nu_A \circ \gamma_s^c = (\gamma \otimes^c k H^\otimes_s) \circ \Delta_{H^\otimes_s},$$

where $\gamma_s^c : H^\otimes_s \to E^\otimes_s$ is the map given by $\gamma_s^c(h_{1s}) := \gamma_A(h_{1s})$. We will also use the symbol ν_A to denote the map from $(E/A)^\otimes_s$ to $(E/A)^\otimes_s \otimes_k \overline{H}^\otimes_s$ induced by (7.13). We will use the property (7.14) freely in the sequel.

Remark 7.3. The maps $\Delta_{H^\otimes_s}, c_{sr}, c_{sr}^{-1}, s_{sr}, s_{sr}^{-1}$ and ν_A will be represented by the same diagrams as the ones introduced in (1.3) and (1.5) for Δ, c, c^{-1}, s, s^{-1} and ν.

For each $r, s \geq 0$, we define the map $\theta_{rs} : \tilde{X}_{rs}(M) \to \tilde{X}_{rs}(M)$, by

$$\theta([m \otimes_A x_{1s} \otimes a_{1r}]) := \sum_i (-1)^{rs}[m_{x_{1s}}^{(0)} \cdots x_{1s}^{(0)} \otimes a_{1r}^{(i)}] \otimes_k x_{1s}^{(i)},$$

where $x_{1s}^{(0)} \otimes_k \cdots A x_{1s}^{(0)} \otimes_k x_{1s}^{(1)} \otimes_k \cdots A x_{1s}^{(1)} := x_{1s}^{(0)} \otimes_k x_{1s}^{(1)} = \nu_A(x_{1s})$

and

$$\sum_i x_{1s}^{(0)} \otimes_k a_{1r}^{(i)} \otimes_k x_{1s}^{(1)} = x_{1s}^{(0)} \otimes_k s(x_{1s}^{(1)} \otimes_k a_{1r}).$$

Proposition 7.4. The map θ_{rs} is invertible. Its inverse is the map φ_{rs}, given by

$$\varphi(x) := \sum_{ij} (-1)^{rs}m \gamma^{-1}(h_{1s}^{(i)(1)(j)}) \cdots \gamma^{-1}(h_{1s}^{(i)(1)(j)}) \otimes_A \gamma_A(h_{1s}^{(i)(2)}) \otimes a_{1r}^{(i)},$$

where

$$x := [m \otimes a_{1r}] \otimes_k h_{1s},$$

$$\sum_i h_{1s}^{(i)(1)} \otimes_k a_{1r}^{(i)} := s^{-1}(a_{1r} \otimes_k h_{1s})$$

and

$$\sum_i \sum_j h_{1s}^{(i)(1)(j)} \otimes_k h_{1s}^{(i)(2)} \otimes a_{1r}^{(i)} := \sum_i (g_c \otimes_k H^\otimes_s) \circ \Delta_{H^\otimes_s}(h_{1s}^{(i)}) \otimes_k a_{1r}^{(i)}.$$

Proof. See Appendix B.

We will need the following generalization of the weak action ρ of H on A.

Definition 7.5. For all $r \in \mathbb{N}$, we let $\rho_r : H \otimes A^\otimes_r \to A^\otimes_r$ denote the map recursively defined by

$$\rho_1 := \rho \quad \text{and} \quad \rho_{r+1} = (\rho_r \otimes \rho_1) \circ (H \otimes_k s_{1r} \otimes A) \circ (\Delta \otimes A^\otimes_{r+1}).$$

For $h \in H$ and $a_1, \ldots, a_r \in A$, we set $h \cdot a_{1r} := \rho_r(h \otimes k a_{1r})$.

Let $d_{rs} : X_{rs}(M) \to X_{rs+1, s-r}(M)$ be the map $d_{rs} := \theta_{rs+1, s-r} \circ d_{rs} \circ \varphi_{rs}$.
Theorem 7.6. The Hochschild homology of the \(K \)-algebra \(E \) with coefficients in \(M \) is the homology of \((\overline{X}_s(M), \overline{d}_s) \), where

\[
\overline{X}_n(M) := \bigoplus_{r+s=n} X_{rs}(M) \quad \text{and} \quad \overline{d}_n := \sum_{i=1}^{n} \overline{d}_{0n} + \sum_{r=1}^{n} \sum_{l=0}^{n-r} \overline{d}_{r,n-r}.
\]

Moreover,

\[
\overline{d}^i(x) = [ma_1 \otimes a_{2r}]_H \otimes_k h_1
\]

\[
+ \sum_{i=1}^{r-1} (-1)^i [m \otimes a_{1,s-1} \otimes a_t a_{t+1} \otimes a_{t+r}]_H \otimes_k h_s
\]

\[
+ \sum_{i} (-1)^i [a_{2r}^i m \otimes a_{1,r+1}]_H \otimes_k h^{(i)}_{1,s}
\]

and

\[
\overline{d}^i(x) = (-1)^s [me(h_1) \otimes a_{1r}]_H \otimes_k h_{2s}
\]

\[
+ \sum_{j=1}^{s-1} (-1)^{s+j} [m \otimes a_{1r}]_H \otimes_k h_{1,s-1} \otimes_k h_{s+1} \otimes_k h_{s+2}
\]

\[
+ \sum_{j} (-1)^{s+j} \gamma(h_{s}^{(2)}) \gamma^{-1}(h_{s}^{(1)}(j)(l)(l)) \otimes h_{s}^{(1)}(j)(l)(2) \cdot a_{1r}^j \otimes k h_{1,s+1},
\]

where

\[
x := [m \otimes a_{1r}]_H \otimes_k h_1,
\]

\[
\sum_i h_s^{(i)} \otimes_k a_{r}^{(i)} := s^{-1}(a_r \otimes_k h_1),
\]

\[
\sum_j h_s^{(1)} \otimes_k h_{1,s-1} \otimes_k h_s^{(2)} := c(h_{1,s-1} \otimes_k h_s^{(1)}) \otimes_k h_s^{(2)}
\]

and

\[
\sum_j h_s^{(1)} \otimes_k a_{1r}^j \otimes_k h_{1,s-1} \otimes_k h_s^{(2)} := \sum_j s^{-1}(a_{1r} \otimes_k h_s^{(1)}) \otimes_k h_{1,s-1} \otimes_k h_s^{(2)}.
\]

Proof. See Appendix B. \(\Box \)

Remark 7.7. In order to abbreviate notations we will write \(\overline{X}_{rs} \) and \(\overline{X}_n \) instead of \(\overline{X}_{rs}(E) \) and \(\overline{X}_n(E) \), respectively.

Notation 7.8. Given a \(K \)-subalgebra \(R \) of \(A \) and \(0 \leq u \leq r \), we let \(\overline{X}_{rs}^R(M) \) denote the \(k \)-vector subspace of \(\overline{X}_{rs}(M) \) generated by the classes in \(\overline{X}_{rs}(M) \) of all the simple tensors \(m \otimes a_{1r} \otimes_k h_s \), with at least \(u \) of the \(a_j \)’s in \(R \). Moreover, we set \(\overline{X}^R_n(M) := \bigoplus_{r+s=n} \overline{X}^R_{rs}(M) \).

Proposition 7.9. Let \(R \) be a stable under \(s \) and \(\rho \) subalgebra of \(A \). If \(f \) takes its values in \(R \), then \(\overline{d}^i(X_{rs}(M)) \subseteq \overline{X}^{R,l-1}_{r+l-1,s-l}(M) \), for all \(l \geq 1 \).

Proof. This is an immediate consequence of item (3) of Theorem 3.6. \(\Box \)

Remark 7.10. By the previous proposition, we know that if \(f \) takes its values in \(K \), then \((\overline{X}_s(M), \overline{d}_s) \) is the total complex of the double complex \((\overline{X}_*(M), \overline{d}_*, \overline{d}_{**}) \).
7.1. The filtration of \((X_\ast (M), d_\ast)\). Let \(F^0(X_n(M)) := \bigoplus_{s \leq t} X_{n-s,s}(M)\). The chain complex \((X_\ast (M), d_\ast)\) is filtered by
\[
(7.15) \quad F^0(X_\ast (M)) \subseteq F^1(X_\ast (M)) \subseteq F^2(X_\ast (M)) \subseteq F^3(X_\ast (M)) \subseteq \ldots.
\]

Remark 7.11. By Proposition 7.4 and the definition of \((X_\ast (M), d_\ast)\), the map
\[
\theta_\ast : (\hat{X}_\ast (M), \hat{d}_\ast) \to (X_\ast (M), d_\ast),
\]
given by \(\theta_\ast = \sum_{r+s=n} \theta_{rs}\), is an isomorphism of chain complexes. It is evident that \(\theta_\ast\) preserve filtrations. Consequently, the spectral sequence introduced in (3.9) coincides with the spectral sequence associated with the filtration (7.15). Clearly the compositional inverse of \(\theta_\ast\) is the map
\[
\phi_\ast : (\hat{X}_\ast (M), \hat{d}_\ast) \to (\hat{X}_\ast (M), \hat{d}_\ast),
\]
defined by \(\phi_\ast := \bigoplus_{r+s=n} \phi_{rs}\).

7.2. Comparison maps. Let \(\overline{\phi}_\ast : (X_\ast (M), d_\ast) \to (M \otimes_k E \otimes_k, b_\ast)\) and \(\overline{\psi}_\ast : (M \otimes_k E \otimes_k, b_\ast) \to (X_\ast (M), d_\ast)\) be the morphisms of chain complexes defined by \(\overline{\phi}_\ast := \phi_\ast \circ \theta_\ast\) and \(\overline{\psi}_\ast := \theta_\ast \circ \psi_\ast\), respectively. By the comments in Subsection 3.1, we know that \(\overline{\psi}_\ast \circ \overline{\phi}_\ast = \text{id}\) and \(\overline{\psi}_\ast \circ \overline{\phi}_\ast = \overline{\phi}_\ast \circ \overline{\psi}_\ast\), homotopically equivalent to the identity. Moreover, by Proposition 3.9 and Remark 7.11, the morphisms \(\overline{\phi}_\ast\) and \(\overline{\psi}_\ast\), and the homotopy \(\hat{\omega}_{rs} : \phi_\ast \circ \psi_\ast \to \text{id}_\ast\), preserve filtrations.

8. Hochschild cohomology of a cleft Hopf crossed product

Let \(E := A \# H\), \(K\) and \(M\) be as in Section 7. In this section we show that if \(E\) is cleft, then the complex \((\hat{X}_\ast (M), \hat{d}_\ast)\) of Section 4 is isomorphic to a simpler complex \((\overline{X}_\ast (M), \overline{d}_\ast)\).

For each \(r, s \geq 0\), we consider \(\overline{E}_r \otimes_k \overline{H}_s\) as a left \(K\)-module via
\[
(\lambda_1 \otimes_k \lambda_2)(a_{1r} \otimes_k h_{1s}) = \sum_i \lambda_i a_{1r} \lambda_2^{(i)} \otimes_k h_{1s}^{(i)},
\]
where \(\sum_i \lambda_2^{(i)} \otimes_k h_{1s}^{(i)} := s(h_{1s} \otimes_k \lambda_2)\). Let
\[
\overline{X}_\ast (M) := \text{Hom}_{K\ast} (\overline{A}_\ast \otimes_k \overline{H}_\ast, M).
\]
For each \(r, s \geq 0\), we define the map \(\theta^{rs} : \overline{X}_\ast (M) \to \hat{X}^{rs}(M)\), by
\[
\theta(\beta)(x_{1s} \otimes a_{1r}) := \sum_i (-1)^{rs} x_{1s}^{(i)} \cdots x_{1s}^{(0)} \beta(a_{1r}^{(i)} \otimes_k x_{1s}^{(i)}),
\]
where
\[
x_{1s}^{(0)} \otimes_A \cdots \otimes_A x_{1s}^{(0)} \otimes_k x_{1s}^{(1)} \otimes_k \cdots \otimes_k x_{1s}^{(1)} := x_{1s}^{(0)} \otimes_k x_{1s} := \nu_3(x_{1s})
\]
and
\[
\sum_i x_{1s}^{(0)} \otimes_k a_{1r}^{(i)} \otimes_k x_{1s}^{(i)} := x_{1s}^{(0)} \otimes_k s(x_{1s}^{(i)} \otimes_k a_{1r})\).

Proposition 8.1. The map \(\theta^{rs}\) is invertible. Its inverse is the map \(\overline{\theta}^{rs}\) given by
\[
\overline{\theta}(\alpha)(a_{1r} \otimes_k h_{1s}) = \sum_{ij} (-1)^{rs} \gamma^{-1}(h_{1s}^{(i)(i)}(j)) \cdots \gamma^{-1}(h_{1s}^{(i)(i)}(j)) \alpha(\gamma_3(h_{1s}^{(j)(2)}) \otimes_k a_{1r}^{(i)}),
\]
where
\[\sum_i h^{(i)}_{ls} \otimes_k a_{ir}^{(i)} := s^{-1}(a_{ir} \otimes_k h_{ls}) \]
and
\[\sum_i \sum_j h^{(i)(j)}_{ls} \otimes_k h^{(j)(i)}_{ls} \otimes_k a_{ir}^{(i)} := \sum_i (g_{cs} \otimes_k H^s) \circ \Delta_{H^s}(h^{(i)}_{ls} \otimes_k a_{ir}^{(i)}). \]

Proof. For \(r, s \geq 0 \), consider \(X_{rs}, \tilde{X}_{rs}(E \otimes_k E) \) and \(\tilde{X}_{rs}(E \otimes_k E) \) as in Sections 2, 3 and 7, respectively. Notice that \((\tilde{X}_*(E \otimes_k E), \tilde{\pi}_1) \) and \((\tilde{X}_*(E \otimes_k E), \hat{\alpha}) \) are \(E \)-bimodule complexes via
\[
\lambda_1([a_1 \otimes_k e_2]_H \otimes_k h_{ls}) \lambda_2 := [(e_1 \otimes_k \lambda_2 \otimes_k e_2) \otimes_k a_{ir}]_H \otimes_k h_{ls}
\]
and
\[
\lambda_1([a_1 \otimes_k e_2] \otimes_k a_{ir} \otimes_k e_1) = [(e_1 \otimes_k \lambda_2 \otimes_k e_2) \otimes_k a_{ir}]_H \otimes_k h_{ls}.
\]
Let \(\varrho_{rs} : X_{rs} \rightarrow \tilde{X}_{rs}(E \otimes_k E) \) be the \(E \)-bimodule isomorphisms defined by
\[
\varrho_{rs} = (e_2 \otimes_k x_{ls} \otimes_k a_{ir}) = [(e_1 \otimes_k e_2) \otimes_k x_{ls} \otimes_k a_{ir}].
\]
and let \(\varphi_{rs} : \text{Hom}_{E^r}(\tilde{X}_{rs}(E \otimes_k E), M) \rightarrow \tilde{X}_{rs}^r(M) \) be the isomorphism given by
\[
\varphi(x) = (a_{ir} \otimes_k h_{ls}) := a ([1 \otimes_k a_{ir}]_H \otimes_k h_{ls}).
\]
It is easy to see that the diagrams
\[
\text{Hom}_{E^r}(\tilde{X}_{rs}(E \otimes_k E), M) \xrightarrow{\text{Hom}_{E^r}(\varphi_{rs}, M)} \text{Hom}_{E^r}(\tilde{X}_{rs}(E \otimes_k E), M)
\]
\[
\downarrow \varphi^{rs} \downarrow \varphi^{rs} \downarrow \varphi^{rs}
\]
\[
\tilde{X}_{rs}^r(M) \xrightarrow{\theta^{rs}} \tilde{X}_{rs}^r(M)
\]
and
\[
\text{Hom}_{E^r}(\tilde{X}_{rs}(E \otimes_k E), M) \xrightarrow{\text{Hom}_{E^r}(\varphi_{rs}, M)} \text{Hom}_{E^r}(\tilde{X}_{rs}(E \otimes_k E), M)
\]
\[
\downarrow \varphi^{rs} \downarrow \varphi^{rs} \downarrow \varphi^{rs}
\]
\[
\tilde{X}_{rs}^r(M) \xrightarrow{\theta^{rs}} \tilde{X}_{rs}^r(M),
\]
where
- \(\varphi^{rs} \) is the map introduced at the beginning of Section 4,
- \(\theta_{rs} \) and \(\varphi_{rs} \) are the morphisms introduced in Section 7,

commute. Hence \(\theta^{rs} \) is invertible an \(\varphi^{rs} \) is its inverse. \(\square \)

Let \(d^{i,s}_{l,s} : \tilde{X}^{r,s}_{l-s} \rightarrow \tilde{X}^{r,s}_{l,s} \) be the map \(d^{i,s}_{l,s} := \varphi^{rs} \circ \hat{d}^{i,s}_{l,s} \circ \theta^{r,s-l,s-l} \).
Theorem 8.2. The Hochschild cohomology of the K-algebra E with coefficients in M is the cohomology of $(\mathcal{X}(M), \overline{\tau})$, where

$$\mathcal{X}^r(M) := \bigoplus_{r+s=n} \mathcal{X}^{rs}(M) \quad \text{and} \quad \overline{\tau} := \sum_{i=1}^{n} \overline{d}_i + \sum_{r=1}^{n} \sum_{t=0}^{n-r} \overline{d}_t^{r-n}.$$

Moreover,

$$\overline{d}_0(\beta)(x) = a_1 \beta(a_2 \otimes_k h_{1s})$$

$$\sum_{i=1}^{r-1} (-1)^i \beta(a_{i-1} \otimes a_i a_{i+1} \otimes a_{i+1,r} \otimes_k h_{1s})$$

$$\sum_{r=1}^{r} \beta(a_{1,r-1} \otimes_k h_{1s}^{(i)}) a_{v}^{(i)}$$

and

$$\overline{d}_1(\beta)(x) = (-1)^{r} \epsilon(h_{1}) \beta(a_{1r} \otimes_k h_{2s})$$

$$\sum_{j=1}^{s-1} (-1)^{r+j} \beta(a_{1r} \otimes_k h_{1s-1} \otimes_k h_{2s} \otimes_k h_{1})$$

$$\sum_{j=1}^{r} (a_{1r} \otimes_k h_{1s}^{(j)}) (h_{1s}^{(j)}) \beta(h_{1s}^{(j)}) \gamma(h_{1s}^{(2)}),$$

where

$$x := a_{1r} \otimes_k h_{1s},$$

$$\sum_{i=1}^{r} h_{1s}^{(i)} \otimes_k a_{r}^{(i)} := s^{-1}(a_{r} \otimes_k h_{1s}),$$

$$\sum_{j=1}^{r} h_{1s}^{(j)} \otimes_k h_{1s-1} \otimes_k h_{2s}^{(2)} := s^{-1}(h_{1s-1} \otimes_k h_{1s}^{(1)}) \otimes_k h_{2s}^{(2)}$$

and

$$\sum_{j=1}^{r} h_{1s}^{(j)} \otimes_k a_{r}^{(j)} \otimes_k h_{1s-1} \otimes_k h_{2s}^{(2)} := s^{-1}(a_{1r} \otimes_k h_{1s}^{(j)}) \otimes_k h_{1s-1} \otimes_k h_{2s}^{(2)}.$$

Proof. We will use the same notations as in the proof of Proposition 8.1. By that proposition and the definition of $(\mathcal{X}(M), \overline{\tau})$, the map

$$\theta^* : (\mathcal{X}^r(M), \overline{\tau}) \to (\mathcal{X}^r(M), \overline{\tau}),$$

given by $\theta^n = \sum_{r+s=n} \theta^{rs}$, is an isomorphism of complexes. Hence, by the discussion at the beginning of Section 4, the cohomology of $(\mathcal{X}(M), \overline{\tau})$ is the Hochschild cohomology of the K-algebra E with coefficients in M. In order to complete the proof we must compute \overline{d}_0 and \overline{d}_1. Since, also

$$\text{Hom}_{E^*}(\theta_s, M) : \text{Hom}_{E^*}((\mathcal{X}_s(E \otimes_k E), \overline{\tau}_s), M) \to \text{Hom}_{E^*}((\mathcal{X}_s(E \otimes_k E), \overline{\tau}_s), M),$$

$$\text{Hom}_{E^*}(\vartheta_s, M) : \text{Hom}_{E^*}((\mathcal{X}_s(E \otimes_k E), \overline{\tau}_s), M) \to \text{Hom}_{E^*}((\mathcal{X}_s, d_s), M)$$

and

$$\zeta^* : \text{Hom}_{E^*}((\mathcal{X}_s, d_s), M) \to \mathcal{X}^r(M),$$

where

$$\vartheta^n := \sum_{r+s=n} \vartheta^{rs} \quad \text{and} \quad \zeta^n := \sum_{r+s=n} \zeta^{rs},$$

Cyclicity Homology of Brzeziński’s Crossed Products 33
are isomorphisms of complexes, form the commutativity of the diagram (8), it follows that
\[\varpi^* : \text{Hom}_{E^*}(\big((X^s(E \otimes_k E), \delta_{ls}), M) \rightarrow (\check{X}^*(M), \check{\delta}^*), \]
where \(\varpi^n := \sum_{r+s=n} \varpi^{rs} \), is also. Hence
\[\check{d}^r_{ls}(\beta)(a_{1r} \otimes_k h_{1s}) = \varpi^{-1}(\beta)(\check{d}^l_{rs}([1 \otimes_k 1] \otimes a_{1r} \otimes_k h_{1s})) \]
and
\[\check{d}^l_{ls}(\beta)(a_{1r} \otimes_k h_{1s}) = \varpi^{-1}(\beta)(\check{d}^r_{rs}([1 \otimes_k 1] \otimes a_{1r} \otimes_k h_{1s})). \]
Now the desired result can be immediately obtained by using Theorem 7.6. \(\square \)

Notation 8.3. Given a \(K \)-subalgebra \(R \) of \(A \) and \(0 \leq u \leq r \), we let \(\overline{X}^s_{Ru}(M) \) denote the \(k \)-vector subspace of \(\overline{X}^s(\check{X}^*(M)) \) consisting of all the \(K^e \)-linear maps
\[\beta : \overline{A}^e - \otimes_k \overline{H}^{\otimes h^e} \rightarrow M \]
that factorize throughout the \(K^e \)-subbimodule \(\overline{X}^{r+u,s-u-1} \) of \(\overline{A}^{e^e - u} \otimes_k \overline{H}^{e^e - u - r} \)
gerated by the simple tensors \(a_{1r+u} \otimes_k h_{1,s-u-1} \), with at least \(u \) of the \(a_j \)'s in \(R \).

Proposition 8.4. Let \(R \) be a stable under \(s \) and \(\rho \) subalgebra of \(A \). If \(f \) takes its values in \(R \), then
\[\overline{d}_l(\overline{X}^{r+1,s-l}(M)) \subseteq \overline{X}^s_{Ru}(M), \]
for all \(l, 1 \geq 1. \)

Proof. This is an immediate consequence of item (3) of Theorem 4.6. \(\square \)

Remark 8.5. By the above proposition, if \(f \) takes its values in \(K \), then \((\overline{X}^*(M), \overline{d}^*) \)
is the total complex of the double complex \((\overline{X}^s(\check{X}^*(M), \delta^*), \overline{d}_0, \overline{d}_1^*). \)

8.1. The filtration of \((\overline{X}^*(M), \overline{d}^*) \). Let \(F_i(\overline{X}^s(M)) := \bigoplus_{s \geq i} \overline{X}^{s-s,i}(M) \). The cochain complex \((\overline{X}^s(\check{X}^*(M), \delta^*)) \) is filtered by
\[F_0(\overline{X}^s(M)) \supseteq F_i(\overline{X}^s(M)) \supseteq F_2(\overline{X}^s(M)) \supseteq F_3(\overline{X}^s(M)) \supseteq \ldots. \]

Remark 8.6. By Proposition 8.1 and the definition of \((\overline{X}^*(M), \overline{d}^*) \), the map
\[\theta^*(\overline{X}^*(M), \overline{d}^*) \rightarrow (\check{X}^*(M), \check{d}^*), \]
given by \(\theta^n = \sum_{r+s=n} \theta^{rs} \), is an isomorphism of cochain complexes. It is evident that \(\theta^* \) preserve filtrations. Consequently, the spectral sequence introduced in (4.10) coincides with the spectral sequence associated with the filtration (8.17). Clearly the compositional inverse of \(\theta^* \) is the map
\[\check{\theta}^*(\check{X}^*(M), \check{d}^*) \rightarrow (\overline{X}^*(M), \overline{d}^*), \]
defined by \(\check{\theta}^n = \sum_{r+s=n} \check{\theta}^{rs} \).
8.2. Comparison maps. Let

$$\overline{\phi} : (\text{Hom}_{K^*}(E^{\otimes r}, M), b^r) \rightarrow (\overline{X}^*(M), \overline{\rho})$$

and

$$\overline{\psi} : (\overline{X}^*(M), \overline{\rho}) \rightarrow (\text{Hom}_{K^*}(E^{\otimes r}, M), b^r)$$

be the morphisms of cochain complexes defined by $\overline{\phi} := \theta^* \circ \phi^*$ and $\overline{\psi} := \phi^* \circ \theta^*$, respectively. By the comments in Subsection 4.1, we know that $\overline{\phi} \circ \overline{\psi} = \text{id}$ and $\overline{\psi} \circ \overline{\phi}$ is homotopically equivalent to the identity. Moreover, by Proposition 4.9 and Remark 8.6, the morphisms $\overline{\phi}$ and $\overline{\psi}$, and the homotopy $\overline{\mathcal{H}}^*: \overline{\psi} \circ \overline{\phi} \rightarrow \text{id}^*$, preserve filtrations.

9. The cup and cap products for cleft crossed products

Let $E := A \#_f H$, K and M be as in Section 7. Assume that E is cleft. The aim of this section is to compute the cup product of $\text{HH}^*_K(E)$ in terms of $(\overline{X}^*, \overline{\rho})$ and the cap product of $\text{HH}^*_K(E, M)$ in terms of $(\overline{X}^*, \overline{\rho})$ and $(\overline{X}^*(M), \overline{\rho})$. We will use the diagrams introduced in (1.1), (1.2), (1.3), (1.5) and Remark 7.3. We will need the following generalization of the maps ρ_r introduced in Definition 7.5.

Definition 9.1. For all $r, s \in \mathbb{N}$, we let $\rho_{sr}: H^{\otimes r} \otimes A^{\otimes s} \rightarrow A^{\otimes r}$ denote the map recursively defined by

$$
\rho_{1r} := \rho_r \quad \text{and} \quad \rho_{s+1,r} = \rho_{sr} \circ (H \otimes_k \rho_{sr}).
$$

For $h_1, \ldots, h_s \in H$ and $a_1, \ldots, a_r \in A$, we set $h_{1s} \cdot a_{1r} := \rho_{sr}(h_{1s} \otimes_k a_{1r})$.

Remark 9.2. The map ρ_{sr} will be represented by the same diagram as ρ.

Notations 9.3. Let B be a k-algebra. For all $n \in \mathbb{N}$ we let $\mu_n: B^{\otimes n} \rightarrow B$ denote the map recursively defined by

$$
\mu_1 := \text{id}_B \quad \text{and} \quad \mu_{n+1} := \mu_n \circ (\mu_n \otimes_k B).
$$

Definition 9.4. For $\beta \in \overline{X}^*$ and $\beta' \in \overline{X}^{s'}$ we define $\beta * \beta' \in \overline{X}^{r+s+s'}$ as $(-1)^{r'}$ times the map induced by

\[\begin{array}{c}
\begin{array}{c}
\beta \circ \beta' \\
\end{array}
\end{array} \]

where
- $D := A^{\otimes k}$, $D' := A^{\otimes k'}$, $C := H^{\otimes k}$ and $C' := H^{\otimes k'}$,
- $\beta: D \otimes_k C \rightarrow E$ and $\beta': D' \otimes_k C' \rightarrow E$ are the maps induced by β and β', respectively,
- $u := \mu_{s'} \circ \gamma^{\otimes k'}$ and $\overline{u} := \mu_{s'} \circ \overline{\gamma}^{\otimes k'} \circ \text{gc}_{s'}$, in which $\overline{\gamma}$ is the convolution inverse of γ.

\[\begin{array}{c}
\begin{array}{c}
\beta \circ \beta' \\
\end{array}
\end{array} \]
Proposition 9.5. Let \(\bullet \) be the operation introduced in Definition 5.1. For each \(\beta \in \overline{X}^s \) and \(\beta' \in \overline{X}^{s'} \),
\[
\theta(\beta \cdot \beta') = \theta(\beta) \cdot \theta(\beta').
\]

Proof. See Appendix B.

Theorem 9.6. Let \(\beta \in \overline{X}^s \), \(\beta' \in \overline{X}^{s'} \) and \(n := r + r' + s + s' \). Let \(R \) be a stable under \(s \) and \(\rho K \)-subalgebra of \(A \). If \(f \) takes its values in \(R \), then
\[
\overline{\psi}(\beta) \sim \overline{\psi}(\beta') \mod \bigoplus_{i>s+s'} \overline{X}_{R(1)},
\]
where \(\overline{X}_{R(1)} \) denotes the \(k \)-vector subspace of \(\overline{X}^{i,i} \) consisting of all the \(K \)-linear maps
\[
\beta: \overline{X}^{i,i} \otimes_k \overline{H}^{i,i} \to E,
\]
that factorize throughout \(W_n^R \cap C_n^{R_0} \), where \(W_n^R \) and \(C_n^{R_0} \) are as in Notation 4.5.

Proof. This is an immediate consequence of Proposition 9.5 and Theorem 5.2.

Corollary 9.7. If \(f \) takes its values in \(K \), then the cup product of \(HH_n^*(E) \) is induced by the operation \(\ast \) in \(\overline{X}, \overline{A} \).

Proof. It follows from Theorem 9.6, since \(\overline{X}_{K(1)} = 0 \) for all \(i \).

Definition 9.8. Let \(\beta \in \overline{X}^{r,s'} \). For \(r \geq r' \) and \(s \geq s' \) we define
\[
\overline{X}_{r,s}(M) \xrightarrow{[m \otimes a_{1r}]H \otimes_k h_{1s}} [m \otimes a_{1r}]H \otimes_k h_{1s} \ast \beta
\]
as \((-1)^{r'(s-s')}\) times the morphism induced by

\[
\begin{array}{ccc}
M & \xrightarrow{D} & D' \\
\downarrow & \searrow & \downarrow \\
C & \xrightarrow{C'} & C
\end{array}
\]
where
- \(D := A \otimes_k \cdot \), \(D' := A \otimes_k \cdot \), \(C := H \otimes_k \cdot \) and \(C' := H \otimes_k \cdot \),
- \(\overline{\beta}: D' \otimes_k C' \to E \) is the map induced by \(\beta \),
- \(u := \mu_{s'} \circ \gamma \otimes \gamma' \) and \(w := \mu_{s'} \circ \gamma \otimes \gamma' \circ g_{s'} \), in which \(\gamma \) is the convolution inverse of \(\gamma \).

If \(r < r' \) or \(s < s' \), then we set \([m \otimes a_{1r}]H \otimes_k h_{1s} \ast \beta := 0\).

Proposition 9.9. Let \(\bullet \) be the action introduced in Definition 5.4. The equality
\[
\vartheta([m \otimes a_{1r}]H \otimes_k h_{1s} \ast \beta) = \vartheta([m \otimes a_{1r}]H \otimes_k h_{1s} \bullet \theta(\beta))
\]
holds for each \([m \otimes a_{1r}]H \otimes_k h_{1s} \in \overline{X}_{r,s}(M) \) and \(\beta \in \overline{X}^{r',s'} \).

Proof. See Appendix B.
Theorem 9.10. Let $[m \otimes a_{1r}]_H \otimes_k h_{1a} \in \overline{X}_{rs}(M)$, $\beta \in \overline{X}^{rs'}$, and $n := r + s - s'$. Let R be a stable under χ K-subalgebra of A. If f takes its values in R, then

$$\overline{\psi}(\overline{\Theta}([m \otimes a_{1r}]_H \otimes_k h_{1a}) \wedge \overline{\psi}(\beta)) = ([m \otimes a_{1r}]_H \otimes_k h_{1a}) \star \beta$$

modulo

$$\bigoplus_{i < s - s'} \left(\overline{X}_{n-1,i}^{R1}(M) + M \beta(\overline{X}_{r,s'}^{Rc}) \otimes_A (E/A)^{\otimes \kappa_{s'}} \otimes \overline{H}^{s'-s'} \right),$$

where $\overline{X}_{r,s'}$ denotes the k-vector subspace of $\overline{A}^{\otimes s'} \otimes_k H^{\otimes k}$ generated by all the simple tensors $a_{1c} \otimes_k h_{1a}$, with at least 1 of the a_j’s in R.

Proof. This is an immediate consequence of Proposition 9.9 and Theorem 5.5. □

Corollary 9.11. If f takes its values in K, then in terms of $(\overline{X}_s(M), \overline{A}_\star)$ and $(\overline{X}_s, \overline{D})$, the cap product

$$H^K_n(E, M) \times \text{HH}^m_K(E) \to H_n(E, M),$$

is induced by \star.

Proof. It follows immediately from the previous theorem. □

10. Cylic homology of a cleft braided Hopf crossed product

Let $E := A \#_f H$, K and M be as in Section 7. In this section we show that if E is cleft, then the mixed complex $(\overline{X}_s, \overline{A}, \overline{D})$ of Section 6 is isomorphic to a simpler mixed complex $(\overline{X}_s, \overline{A}, \overline{D}_s)$. We will use the diagrams introduced in (1.1), (1.2), (1.3), (1.5), Remark 7.3 and Remark 9.2.

Let $\theta_s : \overline{X}_s \to \overline{X}_s$ is the map introduced in Remark 7.11 and ϑ_s is its inverse. Recall that $\theta_0 = \bigoplus_{r+s=n} \theta_{rs}$. Hence $\vartheta_n = \bigoplus_{r+s=n} \vartheta_{rs}$, where ϑ_{rs} is the inverse of θ_{rs}. For each $n \geq 0$, let $\overline{D}_n := \theta_{n+1} \circ \overline{D}_n \circ \vartheta_n$.

Theorem 10.1. $(\overline{X}_s, \overline{A}, \overline{D}_s)$ is a mixed complex that gives the Hochschild, cyclic, negative and periodic homology of the K-algebra E. More precisely, the mixed complexes $(\overline{X}_s, \overline{A}, \overline{D}_s)$ and $(E \otimes \overline{A}^{\otimes}, \overline{A}, \overline{D}_s)$ are homotopically equivalent.

Proof. Clearly $(\overline{X}_s, \overline{A}, \overline{D}_s)$ is a mixed complex and

$$\theta_s : (\overline{X}_s, \overline{A}, \overline{D}_s) \to (\overline{X}_s, \overline{A}, \overline{D}_s)$$

is an isomorphism of mixed complexes. So the result follows from Theorem 6.2. □

We are now going to give a formula for \overline{D}_n. For $0 \leq j \leq s$, let

$$\overline{\tau}_j : M \otimes \overline{A}^{\otimes} \otimes_k \overline{H}^{\otimes k} \to M \otimes \overline{A}^{\otimes} \otimes_k \overline{H}^{\otimes k+1}$$
be the map induced by

\[
\begin{align*}
D & := A^\otimes 1, \ C := H^\otimes 1\text{ and } C' := H^\otimes 1, \\
\tau \text{ denotes the map } \tau^\otimes 1, \text{ where } \tau \text{ is the convolution inverse of } \gamma, \\
\mu \text{ denotes the maps } \mu_j \text{ and } \mu_{s-j},
\end{align*}
\]

- \(\gamma \) denotes the map \(\gamma^\otimes 1 \), where \(\gamma \) is the convolution inverse of \(\gamma \),
- \(\rho \) denotes the map \(\rho^\otimes s_j \),
- \(g \) denotes the map \(g^\otimes 2_{s-2j} \) introduced in item (5) of Section 7,
- \(S \) denote the maps \(S^\otimes s_j \).

and let \(\tau_j : \mathfrak{X}_{rs} \rightarrow \mathfrak{X}_{r,s+1} \) be the map induced by \(\tilde{\tau}_j \).

In the next theorem we use the notation \(F'_R(\mathfrak{X}_{n+1}) := F^s(\mathfrak{X}_{n+1}) \cap \mathfrak{X}_{n+1}(E) \).

Theorem 10.2. Let \(R \) be a stable under \(s \) and \(\rho \) subalgebra of \(A \). If \(f \) takes its values in \(R \), then the map \(\overline{\mathcal{D}}_n : \mathfrak{X}_{rs} \rightarrow \mathfrak{X}_{n+1} \), where \(r + s = n \), is given by

\[
\overline{\mathcal{D}}_n = \sum_{j=0}^{n} (-1)^{r+s+j} \tau_j
\]

module \(F'_R(\mathfrak{X}_{n+1}) \).

Proof. See Appendix B. \(\square \)

Applying the previous theorem to the classical case (i.e. when \(H \) is an standard Hopf algebra and \(s : H \otimes_k A \rightarrow A \otimes_k H \) is the flip), we obtain an expression for \(\overline{\mathcal{D}}_n \) module \(F'_R(\mathfrak{X}_{n+1}) \), which is more convenient than the one given in [C-G-G, Theorem 3.3]. Explicitly, we have:

\[
\overline{\mathcal{D}}(x) = \sum_{j=0}^{s} (-1)^{r+s+j} \left[\gamma(h_{j+1}^{(4)}) \cdots \gamma(h_{s}^{(4)}) a_{\gamma(h_0^{(1)})} \gamma^{-1}(h_{s}^{(2)}) \cdots \gamma^{-1}(h_{j+1}) \right. \\
\otimes h_{j+1}^{(3)} \cdot \left(\cdots h_{s-1}^{(3)} \cdot (h_{s}^{(3)} \cdot a_{1r}) \cdots \right) \big] \otimes_k h_j^{(5)} \otimes_k h_0^{(2)} S(h_1^{(1)} \cdots h_s^{(1)}) \otimes_k h_{j+1}^{(2)}
\]

module \(F'_R(\mathfrak{X}_{n+1}) \), where

\[
\begin{align*}
x & := [a_{\gamma(h_0)}]_H \otimes_k h_0, \\
h_1^{(1)} \otimes_k h_1^{(2)} & \otimes_k h_{j+1,s}^{(3)} \otimes_k h_j^{(4)} \otimes_k h_{j+1,s}^{(5)} := (\text{id}_{H^\otimes s} \otimes_k \Delta^3_{H^\otimes s-2j}) \circ \Delta_{H^\otimes s}(h_1)
\end{align*}
\]
and
\[h \cdot a_r := h^{(1)} \cdot a_1 \otimes \cdots \otimes h^{(r)} \cdot a_r, \]
in which \(h \cdot a \) denotes the weak action of \(h \in H \) on \(a \in A \).

10.1. The spectral sequences. Let
\[\overline{d}^0_{rs} : X_{rs} \to X_{r-1,s} \quad \text{and} \quad \overline{d}^1_{rs} : X_{rs} \to X_{r,s-1} \]
be as above of Theorem 7.6 and let
\[\overline{D}^0_{rs} : X_{rs} \to X_{r,s+1} \]
be the map defined by \(\overline{D}^0(x) = \sum_{j=0}^{\infty} (-1)^{r+s+j} \tau_j \).

10.1.1. The first spectral sequence. Let
\[\overline{\theta}^0_r(X_{**,d_0^0}) := H_r(X_{**,d_0^0}, d_0^0), \]
and
\[\overline{\theta}^1_r(X_{**,d_0^0}) := H_r(X_{**,d_0^0}, d_0^0), \]
be the maps induced by \(\overline{d}^1 \) and \(\overline{D}^0 \), respectively. Let
\[\mathcal{F}^0(\text{Tot}(BC(X_{**}, d_0^0, D^0))) \subseteq \mathcal{F}^1(\text{Tot}(BC(X_{**}, d_0^0, D^0))) \subseteq \cdots \]
be the filtration of \(\text{Tot}(BC(X_{**}, d_0^0, D^0)) \), given by
\[\mathcal{F}^s(\text{Tot}(BC(X_{**}, d_0^0, D^0))) = \bigoplus_{j \geq 0} F^{s-2j}(X_{n-2j}) u^j, \]
where \(F^{s-2j}(X_{n-2j}) \) is the filtration introduced in Section 7.1. Since the isomorphism
\[\theta_* : (\hat{X}_*, \hat{d}_*, \hat{D}_*) \to (X_*, \overline{d}_*, \overline{D}_*), \]
satisfies
\[\theta_n(\mathcal{F}^s(\text{Tot}(BC(\hat{X}_*, \hat{d}_*, \hat{D}_*)))) = \mathcal{F}^s(\text{Tot}(BC(X_*, d_0^0, D^0))), \]
where \(\mathcal{F}^s(\text{Tot}(BC(\hat{X}_*, \hat{d}_*, \hat{D}_*)))) \) is as in the proof of Proposition 6.6, the spectral sequence introduced in that proposition coincides with the one associated with the filtration (10.18). In particular
\[\hat{H}_r(X_{**,d_0^0}) := \left(H_r(X_{**,d_0^0}, d_{rs}, D_{rs}) \right) \]
is a mixed complex and
\[\mathcal{F}^2_{sr} = HC_s \left(\hat{H}_r(X_{**,d_0^0}) \right). \]
10.1.2. The second spectral sequence. For each \(s \geq 0 \), we consider the double complex

\[
\Xi_s = \cdots \to X_{3s, u^0} \xrightarrow{\delta^0} X_{3s-1, 0} \xrightarrow{\delta^0} X_{3s-2, 0} \xrightarrow{\delta^0} \cdots \to X_{1, 0} \xrightarrow{\delta^0} X_{0, 0}
\]

where \(X_{0, 0} \) is placed in the intersection of the 0-th column and the 0-th row. Let

\[(10.19) \quad F^0(\text{Tot}(\text{BC}(\underline{X}, \underline{d}, \underline{D}))) \subseteq F^1(\text{Tot}(\text{BC}(\underline{X}, \underline{d}, \underline{D}))) \subseteq \cdots \]

be the filtration of \(\text{Tot}(\text{BC}(\underline{X}, \underline{d}, \underline{D})) \), given by

\[F^s(\text{Tot}(\text{BC}(\underline{X}, \underline{d}, \underline{D})))_n := \bigoplus_{j \geq 0} F^{s-j}(\underline{X}_{n-2j}) u^j,\]

where \(F^{s-j}(\underline{X}_{n-2j}) \) is the filtration introduced in Section 7.1. Since the isomorphism

\[\theta_s : (\tilde{X}, \tilde{d}, \tilde{D}) \to (\underline{X}, \underline{d}, \underline{D}),\]

satisfies

\[\theta_n \left(F^s(\text{Tot}(\text{BC}(\tilde{X}, \tilde{d}, \tilde{D})))_n \right) = F^s(\text{Tot}(\text{BC}(\underline{X}, \underline{d}, \underline{D})))_n,\]

where \(F^s(\text{Tot}(\text{BC}(\tilde{X}, \tilde{d}, \tilde{D})))_n \) is as in the proof of Proposition 6.7, the spectral sequence introduced in that proposition coincides with the one associated with the filtration (10.19). In particular \(\text{Tot}(\Xi_s) \simeq \text{Tot}(\Xi_s) \), and so \(E_{sr}^1 = H(\text{Tot}(\Xi_s)) \) for all \(r, s \geq 0 \).

10.1.3. The third spectral sequence. Let

\[\tilde{d}_{rs} : H_*(\underline{X}_{r, s}, \underline{d}_s) \to H_*(\underline{X}_{r-1, s}, \underline{d}_{s-1})\]

and

\[\tilde{D}_{rs} : H_*(\underline{X}_{r, s}, \underline{d}_s) \to H_*(\underline{X}_{r, s+1}, \underline{d}_{s+1})\]

be the maps induced by \(\delta^0 \) and \(\delta^0 \), respectively. Let

\[(10.20) \quad \tilde{F}^0(\text{Tot}(\text{BC}(\underline{X}, \underline{d}, \underline{D}))) \subseteq \tilde{F}^1(\text{Tot}(\text{BC}(\underline{X}, \underline{d}, \underline{D}))) \subseteq \cdots \]

be the filtration of \(\text{Tot}(\text{BC}(\underline{X}, \underline{d}, \underline{D})) \), given by

\[\tilde{F}^s(\text{Tot}(\text{BC}(\underline{X}, \underline{d}, \underline{D})))_n := \bigoplus_{j \geq 0} \tilde{F}^{s-j}(\underline{X}_{n-2j}) u^j,\]

where

\[\tilde{F}^{s-j}(\underline{X}_{n-2j}) := \bigoplus_{i \leq r-j} \underline{X}_{i, n-i-2j}.\]
Since the isomorphism
\[\theta_\ast: (\tilde{X}_\ast, \tilde{d}_\ast, \tilde{D}_\ast) \to (\tilde{X}_\ast, \tilde{d}_\ast, \tilde{D}_\ast), \]
satisfies
\[\theta_\ast \left(\tilde{\mathcal{S}}' \left(\text{Tot}(BC(\tilde{X}, \tilde{d}, \tilde{D}))_n \right) \right) = \tilde{\mathcal{S}}' \left(\text{Tot}(BC(\tilde{X}, \tilde{d}, \tilde{D}))_n \right), \]
where \(\tilde{\mathcal{S}}' \left(\text{Tot}(BC(\tilde{X}, \tilde{d}, \tilde{D}))_n \right) \) is as in the proof of Proposition 6.8, the spectral sequence introduced in that proposition coincides with the one associated with the filtration (10.20). In particular
\[H_s(\tilde{X}_\ast, \tilde{d}_\ast) := \left(H_s(\tilde{X}_\ast, \tilde{d}_\ast), d_s, \tilde{D}_s \right) \]
is a mixed complex and
\[e^2_{rs} = HC_r \left(H_s(\tilde{X}_\ast, \tilde{d}_\ast) \right). \]

10.1.4. The fourth spectral sequence. Assume that \(f \) takes its values in \(K \). Then the mixed complex \((\tilde{X}_\ast, \tilde{d}_\ast, \tilde{D}_\ast) \) is filtrated by
\[F^0(\tilde{X}_\ast, \tilde{d}_\ast, \tilde{D}_\ast) \subseteq F^1(\tilde{X}_\ast, \tilde{d}_\ast, \tilde{D}_\ast) \subseteq F^2(\tilde{X}_\ast, \tilde{d}_\ast, \tilde{D}_\ast) \subseteq \cdots, \]
where
\[F^r(\tilde{X}_n) := \bigoplus_{i \leq r} \tilde{X}_{i,n-i}. \]
Hence, for each \(r \geq 1 \), we can consider the quotient mixed complex
\[\overline{\tilde{X}} := \frac{F^r(\tilde{X}_\ast, \tilde{d}_\ast, \tilde{D}_\ast)}{F^{r-1}(\tilde{X}_\ast, \tilde{d}_\ast, \tilde{D}_\ast)}. \]
It is easy to check that the Hochschild boundary map of \(\overline{\tilde{X}} \) is \(\overline{\tilde{d}}_\ast: \overline{\tilde{X}}_{r+s} \to \overline{\tilde{X}}_{r,s-1} \), and that, by item (1) of Theorem 10.2, its Connes operator is \(\overline{\tilde{D}}_\ast: \overline{\tilde{X}}_{r+s} \to \overline{\tilde{X}}_{r,s+1} \).
Since the isomorphism
\[\theta_\ast: (\tilde{X}_\ast, \tilde{d}_\ast, \tilde{D}_\ast) \to (\tilde{X}_\ast, \tilde{d}_\ast, \tilde{D}_\ast), \]
satisfies
\[\theta_\ast \left(F^r(\tilde{X}_\ast, \tilde{d}_\ast, \tilde{D}_\ast) \right) = F^r(\tilde{X}_\ast, \tilde{d}_\ast, \tilde{D}_\ast), \]
where \(F^r(\tilde{X}_\ast, \tilde{d}_\ast, \tilde{D}_\ast) \) is as in Section 6.1.4, the spectral sequence introduced in Proposition 6.9 coincides with the one associated with the filtration (10.21). In particular \(\overline{\tilde{X}} \simeq \overline{\tilde{X}}' \) and so \(e^2_{rs} = HC_s(\overline{\tilde{X}}') \).

11. Crossed products in Yetter-Drinfeld Categories

The results established in this paper apply in particular to crossed products in the category \(\tilde{\mathcal{Y}}D \) of Yetter-Drinfeld modules over a Hopf algebra \(L \). Next we consider the case where \(L \) is a group algebra \(k[G] \), with \(k \) a field. Recall that a Yetter-Drinfeld module over \(k[G] \) is a \(k[G] \)-module \(M \), endowed with a \(G \)-gradation \(M = \bigoplus_{g \in G} M_g \) such that \(\sigma M_g = M_{\sigma g} \) for all \(\sigma, g \in G \). A morphism of Yetter-Drinfeld module over \(k[G] \) is a \(k[G] \)-linear map \(\varphi: M \to M' \) such that \(\varphi(M_g) \subseteq M'_g \) for all \(g \in G \). The category \(\mathcal{Y}D := k[\hat{G}] \mathcal{Y}D \), of Yetter-Drinfeld modules over \(k[\hat{G}] \), is a braided category. The unit object is the \(k[\hat{G}] \)-trivial module \(k \) concentrated in degree one; the tensor product \(M \otimes_k N \) of two Yetter-Drinfeld modules over \(k[G] \) is the usual tensor product over \(k \), endowed with the diagonal action and with the gradation defined by
\[(M \otimes_k N)_\sigma = \bigoplus_{r_1, r_2 \in G} M_{r_1} \otimes_k M_{r_2}. \]
the associative and unit constraints are the usual ones; and the braided
\[c_{MN} : M \otimes_k N \rightarrow N \otimes_k M, \]
is given by \(c_{MN}(m \otimes n) = \sigma n \otimes m \), for \(m \in M_\sigma \). In this section we obtain formulas for the boundary maps \(\overline{d}^0 \) and \(\overline{d}^1 \) (see Theorem 7.6) and for the coboundary maps \(\overline{d}_0 \) and \(\overline{d}_1 \) (see Theorem 8.2), when \(A \not\# H \) is a cleft crossed product in \(G^YD \), whose transposition \(s : H \otimes_k A \rightarrow A \otimes_k H \) is \(c_{HA} \). We do not give a formula for the Connes operator \(D \), because in general the computations are very involved.

We will use the following facts:

1. An (associative and unitary) algebra in \(G^YD \) is a Yetter-Drinfeld module \(A \) over \(k[G] \), endowed with and associative and unitary multiplication such that
 \[1 \in A_1, \quad A_\sigma A_\tau \subseteq A_{\sigma \tau}, \quad \sigma 1 = 1 \quad \text{and} \quad \sigma(ab) = \sigma(a)\sigma(b), \]
 for all \(\sigma, \tau \in G \) and \(a, b \in A \).

2. A (coassociative and counitary) coalgebra in \(G^YD \) is a Yetter-Drinfeld module \(C \) over \(k[G] \), endowed with and coassociative and counitary comultiplication such that
 \[\varepsilon(C_\sigma) = 0 \text{ if } \sigma \neq 1, \quad \Delta(C_\sigma) \subseteq \bigoplus_{\tau_1, \tau_2 \in G} C_{\tau_1} \otimes_k C_{\tau_2}, \]
 \[\varepsilon^{\varepsilon^c} = \varepsilon(c), \quad \varepsilon^{(c)(1)} \otimes_k \varepsilon^{(c)(2)} = \varepsilon^{(1)} \otimes_k \varepsilon^{(2)}, \]
 for all \(\sigma \in G \) and \(c \in C \). Because of the compatibility between the gradation and the comultiplication of \(C \), given \(c \in C_\sigma \), we can write
 \[\Delta(c) = \sum_{\tau_1, \tau_2 \in G} c^{(1)}_{\tau_1} \otimes_k c^{(2)}_{\tau_2}, \]
 where \(c^{(1)}_{\tau_1} \otimes_k c^{(2)}_{\tau_2} \in C_{\tau_1} \otimes_k C_{\tau_2} \) is a sum of simple tensors.

3. A Yetter-Drinfeld module \(H \) over \(k[G] \) is a bialgebra in \(G^YD \) if it is an algebra and a coalgebra in \(G^YD \), whose counit \(\varepsilon \) and comultiplication \(\Delta \) satisfy
 \[\varepsilon(1) = 1, \quad \varepsilon(hl) = \varepsilon(h)\varepsilon(l), \quad \Delta(1) = 1 \otimes 1 \]
 and
 \[(hl)_{\sigma \tau^{-1}} \otimes_k (hl)_{\tau} = \sum_{\upsilon \in \Gamma} h^{(1)}_{\sigma \upsilon^{-1}} \otimes_k h^{(2)}_{\upsilon}, \]
 for all \(h \in H_\sigma, l \in H_\upsilon \) and \(\tau \in G \).

4. A bialgebra \(H \) in \(G^YD \) is a Hopf algebra in \(G^YD \) if \(\text{id}_H \) is invertible with respect to the convolution product in \(\text{Hom}_{G^YD}(H, H) \). That is if there exists a map \(S : H \rightarrow H \) of Yetter-Drinfeld modules, called the antipode of \(H \), such that
 \[S(h^{(1)})h^{(2)} = h^{(1)}S(h^{(2)}) = \varepsilon(h)1 \quad \text{for all } h \in H. \]

5. Let \(H \) be a Hopf algebra in \(G^YD \) and let \(A \) be an algebra in \(G^YD \). In the sequel we let \(s \) denote the braid \(c_{HA} \). It is evident that \(s \) is a transposition. A weak \(s \)-action of \(H \) on \(A \) is a map of Yetter-Drinfeld modules
 \[H \otimes_k A \xrightarrow{\rho} A \]
 \[h \otimes_k a \rightarrow h \cdot a \]
such that

\[1 \cdot a = a, \]
\[h \cdot 1 = \varepsilon(h)1, \]
\[l \cdot (ab) = \sum_{\sigma, \tau \in G} (l^{(1)}_\sigma \cdot \tau a) (l^{(2)}_\tau \cdot b), \]

for \(h \in H, \ l \in H_\sigma \) and \(a, b \in A \).

(6) Let \(H \) be a Hopf algebra in \(\mathcal{GYD} \) and let \(A \) be an algebra in \(\mathcal{GYD} \). Assume

we have a weak \(s \)-action \(\rho \) of \(H \) on \(A \). A map of Yetter-Drinfeld modules

\[f: H \otimes_k H \to A \]

is a normal cocycle that satisfies the twisted module condition if

\[f(1 \otimes_k h) = f(h \otimes_k 1) = \varepsilon(h)1, \]

and

\[\sum_{\sigma_1, \sigma_2, \tau_1, \tau_2 \in G} h^{(1)}_{\sigma_1} \cdot (\sigma_2 l^{(1)}_{\tau_1} \cdot \sigma_2 \tau_2 a) f(h^{(2)}_{\sigma_2} \otimes_k l^{(2)}_{\tau_2}) \]

for \(h \in H_\sigma, \ l \in H_\tau, \ m \in M_1 \), and \(a \in A \).

(7) Let \(H \) be a Hopf algebra in \(\mathcal{GYD} \) and let \(A \) be an algebra in \(\mathcal{GYD} \). Assume

that we have a weak \(s \)-action \(\rho \) of \(H \) on \(A \) and a convolution invertible normal
cocycle \(f \) that satisfies the twisted module condition. By definition \(E := A \# f H \)

is the associative unitary \(h \)-algebra with underlying \(k \)-vector space \(A \otimes_k H \) and multiplication map

\[(a \# h)(b \# l) = \sum_{\sigma_1, \sigma_2, \tau_1, \tau_2 \in G} a h^{(1)}_{\sigma_1} \cdot \rho_{\sigma_2} \rho_{\tau_2} b f(h^{(2)}_{\sigma_2} \otimes_k \rho_{\tau_2} l^{(2)}_{\tau_2}), \]

for \(h \in H_\sigma, \ l \in H_\tau \) and \(a \in A \).

Remark 11.1. Let \(C \) be a coalgebra in \(\mathcal{GYD} \), \(\sigma, \tau \in G \) and \(c \in C_\sigma \). In relation with

item (2) above, note that

\[\sum_{\sigma_1, \nu_1, \nu_2 \in G} \tau(c^{(1)}_{\nu_1} \otimes_k \tau(c^{(2)}_{\nu_2}) = \sum_{\nu_1, \nu_2 \in G} (\tau c^{(1)}_{\nu_1 \tau^{-1}} \otimes_k \tau(c^{(2)}_{\nu_2 \tau^{-1}}). \]

To the sake of simplicity we set

\[\sum_{\sigma_1, \nu_1, \nu_2 \in G} \tau(c^{(1)}_{\nu_1} \otimes_k \tau(c^{(2)}_{\nu_2}) := \sum_{\nu_1, \nu_2 \in G} \tau(c^{(1)}_{\nu_1} \otimes_k \tau(c^{(2)}_{\nu_2}). \]

In order to give a convenient expression for the maps \(\overline{\sigma}_1 \) and \(\overline{\sigma}_1 \) in Theorems 11.2

and 11.3 respectively, we will need introduce the following notations:
Theorem 11.2. Let \(E \) be as in item (7) above and let \(M \) be an \(E \)-bimodule. Let \(K \) be a Yetter-Drinfeld subalgebra of \(A \) (that is, \(K \) is a \(G \)-graded subalgebra of \(A \), which is closed under the action of \(G \) over \(A \)). Assume that \(\rho(H \otimes_k K) \subseteq K \) and let \(\langle X, (M, \partial^i) \rangle \) be as in Theorem 7.6. Then the terms \(\partial^0 \) and \(\partial^i \) of \(\partial^i \) are given by:

\[
\partial^0 (x) = [ma_1 \otimes a_{2r}]_H \otimes_k h_{1s} + \sum_{r=1}^{\rho} (-1)^r [m \otimes a_{1,r-1} \otimes a_r]_H \otimes_k h_{1s} + (-1)^r [\tau_1^{-1} \cdots \tau_r^{-1} a_r m \otimes a_{1,r-1}]_H \otimes_k h_{1s}
\]

and

\[
\partial^i (x) = [me(h_1) \otimes a_{1r}]_H \otimes_k h_{2s} + \sum_{s=1}^{\rho} (-1)^r [m \otimes a_{1r}]_H \otimes_k h_{1,s-1} \otimes_k h_{s+2s} + \sum_{\tau_1, \tau_2, \tau_3 \in \sigma} (-1)^{r+s} [m h_1^{(3)} m \gamma^{-1} (H_{s, \tau_1}) \otimes H_{s, \tau_2} \otimes a_{1r}]_H \otimes_k h_{1,s-1},
\]

in which

\[
x := [m \otimes a_{1r}]_H \otimes_k h_{1s} \quad \text{with} \quad h_{1} \in H_{\sigma_1}, \ldots, h_{s} \in H_{\sigma_s},
\]

\[
\nu := \sigma_1 \cdots \sigma_{s-1} \quad \text{and} \quad a_{1r}' := \nu_{r-1}^{-1} a_{1r}
\]

and

\[
\sum_{\tau_1, \tau_2, \tau_3 \in \sigma} h_1^{(1)} \otimes_k h_2^{(2)} \otimes_k h_3^{(3)} := \Delta (h_{s}),
\]

with \(h_1^{(1)} \otimes_k h_2^{(2)} \otimes_k h_3^{(3)} \in H_{\tau_1} \otimes_k H_{\tau_2} \otimes_k H_{\tau_3} \).

Proof. The formula for \(\partial^0 \) follows immediately from Theorem 7.6 and the fact that

\[
s^{-1} (a \otimes_k h_{1s}) = h_{1s} \otimes_k \sigma_1^{-1} \cdots \sigma_{s-1}^{-1} a
\]

for each \(h_{1} \in H_{\sigma_1}, \ldots, h_{s} \in H_{\sigma_s} \) and \(a \in A \), while the formula for \(\partial^i \) follows from Theorem 7.6 and the fact that

\[
c(h_{1,s-1} \otimes_k h_{s-1}^{(1)}) \otimes_k h_{s-1}^{(2)} = \sum_{\tau_1, \tau_2, \tau_3 \in \sigma} \nu_{r-1}^{-1} \sum_{\tau_1, \tau_2, \tau_3 \in \sigma} h_1^{(1)} \otimes_k h_2^{(2)} \otimes_k h_3^{(3)}
\]

and

\[
\sum_{\tau_1, \tau_2, \tau_3 \in \sigma} \nu_{r-1}^{-1} \sum_{\tau_1, \tau_2, \tau_3 \in \sigma} J(a_{1r} \otimes_k h_{s, \tau_1}) \otimes_k h_{s, \tau_2},
\]

for each \(h_{1} \in H_{\sigma_1}, \ldots, h_{s} \in H_{\sigma_s} \) and \(a_{1}, \ldots, a_{r} \in A \).
Theorem 11.3. Let E, M and K be as in the previous theorem and let $(\overline{X}(M), \overline{d})$ be as in Theorem 8.2. The terms \overline{d}_0 and \overline{d}_1 of \overline{d} are given by:

$$
\overline{d}_0(\beta)(x) = a_1 \beta (a_{2r} \otimes_k h_{1s}) + \sum_{i=1}^{r-1} (-1)^i \beta (a_{1,i-1} \otimes a_i a_{i+1} \otimes a_{i+1,r} \otimes_k h_{1s}) + (-1)^r \sigma^{i-1} a_r \beta (a_{1,r-1} \otimes_k h_{1s})
$$

and

$$
\overline{d}_1(\beta)(x) = (-1)^r \epsilon(h_1) \beta (a_{1r} \otimes_k h_{2s}) + \sum_{i=1}^{s-1} (-1)^{r+1} \beta (a_{1r} \otimes_k h_{1,i-1} \otimes_k h_i h_{i+1} \otimes_k h_{i+2,s}) + \sum_{r_1, r_2, r_3 \in G \cap \sigma} (-1)^{r_1+r_2+r_3} \gamma(h_{r_1 r_2}) \beta (\overline{h}^{(2)}_{r_1 r_2} \triangleright a_{1r} \otimes_k h_{1,s-1}) \gamma^{-1}(\overline{h}^{(1)}_{r_1 r_2}),
$$

in which

$$
x := a_{1r} \otimes_k h_{1s} \quad \text{with } h_1 \in H_{\sigma_1}, \ldots, h_s \in H_{\sigma_s},
$$

$$
\overline{\sigma} := \sigma_1 \cdots \sigma_{s-1}, \quad a'_{1r} = \overline{\sigma}^{-1} a_{1r}
$$

and

$$
\sum_{r_1, r_2, r_3 \in G \cap \sigma} h^{(1)}_{r_1 r_2} \otimes_k h^{(2)}_{r_1 r_2} \otimes_k h^{(3)}_{r_1 r_2} := \Delta^2(h_s),
$$

with $h^{(1)}_{r_1 r_2} \otimes_k h^{(2)}_{r_1 r_2} \otimes_k h^{(3)}_{r_1 r_2} \in H_{r_1} \otimes_k H_{r_2} \otimes_k H_{r_3}$.

Proof. Mimic the proof of the previous theorem. □

APPENDIX A.

This appendix is devoted to prove Propositions 3.11, 3.12 and 3.13. Lemmas A.1, A.2, A.4 and A.6, and Propositions A.5, A.7 and A.9 generalize the corresponding results in [C-G-G]. Except for Propositions A.5 and A.8 we do not provide proofs, because the ones given in that paper work in our setting.

We will use the following notations:

1. We let $L_{rs} \subseteq U_{rs}$ denote the K-submodules of X_{rs} generated by the simple tensors of the form

$$
1 \otimes_A \gamma_A(v_{1s}) \otimes a_{1r} \otimes 1 \quad \text{and} \quad 1 \otimes_A \gamma_A(v_{1s}) \otimes a_{1r} \otimes \gamma(v),
$$

respectively. Moreover we set

$$
L_n := \bigoplus_{r+s=n} L_{rs} \quad \text{and} \quad U_n := \bigoplus_{r+s=n} U_{rs}.
$$

2. Given a subalgebra R of A we set

$$
X_n^{R1} := \bigoplus_{r+s=n} X_{rs}^{R1},
$$

where X_{rs}^{R1} is as in Notation 2.3.

3. We write $F_n(X_n) := F^1(X_n) \cap X_n^{R1}$.

4. We let W_n denote the K-submodule of $E \otimes E^\otimes n \otimes E$ generated by the simple tensors $1 \otimes x_{1n} \otimes 1$ such that $x_i \in \overline{A} \cup \overline{V}_K$ for all i.
(5) We let \(W_n' \) denote the \(K \)-subbimodule of \(E \otimes E^{\otimes n} \otimes E \) generated by the simple tensors \(1 \otimes x_{1n} \otimes 1 \) such that \(#\{ j : x_j \not\in A \cup V_k \} \leq 1\).

(6) Given a subalgebra \(R \) of \(A \), we let \(C_n^R \) denote the \(E \)-subbimodule of \(E \otimes E^{\otimes n} \otimes E \) generated by all the simple tensors \(1 \otimes x_{1n} \otimes 1 \) with some \(x_i \) in \(\overline{A} \).

(7) Let \(R_i \) denote \(F_i(E \otimes E^{\otimes n} \otimes E) \setminus F_i^{-1}(E \otimes E^{\otimes n} \otimes E) \).

The identification \(X_{rs} \simeq (E \otimes_k V_i^{\otimes l}) \otimes \overline{A}^{\otimes r} \otimes E \) induces identifications

\[
L_{rs} \simeq (K \otimes_k V_i^{\otimes l}) \otimes \overline{A}^{\otimes r} \otimes K \quad \text{and} \quad U_{rs} \simeq (K \otimes_k V_i^{\otimes l}) \otimes \overline{A}^{\otimes r} \otimes KV,
\]

where, as at the beginning of Section 2, \(V \) denotes the image, \(k \otimes V \), of \(\gamma : V \to E \).

Lemma A.1. We have

\[
\overline{\sigma}_{n+1} = -a_{0,n+1} \circ \sigma_{n+1} \circ \nu_n + \sum_{i=0}^{n-r} \sigma_{r+i, n-r-i}.
\]

Lemma A.2. The contracting homotopy \(\overline{\sigma} \) satisfies \(\overline{\sigma} \circ \overline{\sigma} = 0 \).

Remark A.3. The previous lemma implies that

\[
\psi(x_{0n} \otimes 1) = (-1)^n \overline{\sigma} \circ \psi(x_{0n})
\]

for all \(n \geq 1 \).

Lemma A.4. It always holds that \(d^l(L_{rs}) \subseteq U_{r+l-s-1,l} \), for each \(l \geq 2 \). Moreover

\[
d^l(L_{rs}) \subseteq EL_{r,s-1} + U_{r,s-1}.
\]

Proposition A.5. Let \(R \) be a stable under \(\chi \) subalgebra of \(A \). If \(F \) takes its values in \(R \otimes_k V \), then

\[
\phi(1 \otimes A \gamma A(v_{1i}) \otimes a_{1,n-i} \otimes 1) \equiv 1 \otimes Sh(v_{1i} \otimes k a_{1,n-i}) \otimes 1 \mod F_i^{-1}(E \otimes E^{\otimes n} \otimes E) \cap W_n \cap C_n^R.
\]

Proof. We proceed by induction on \(n \). For \(n = 1 \) this is trivial. Assume that it is true for \(n - 1 \). Let \(x := 1 \otimes A \gamma A(v_{1i}) \otimes a_{1,n-i} \otimes 1 \). By item (2) of Theorem 2.4, the fact that \(d^l(x) \in U_{n-l,i-l-1,i-l} \) (by Lemma A.4), the inductive hypothesis and the definition of \(\xi \),

\[
\xi \circ \phi \circ d^l(x) \in F_i^{-1}(E \otimes E^{\otimes n} \otimes E) \cap W_n \cap C_n^R
\]

for all \(l > 1 \).

So,

\[
\phi(x) = \xi \circ \phi \circ d^l(x) + \xi \circ \phi \circ d^l(x) \mod F_i^{-1}(E \otimes E^{\otimes n} \otimes E) \cap W_n \cap C_n^R.
\]

Moreover, by the definitions of \(d^l \), \(\phi \) and \(\xi \),

\[
\xi \circ \phi \circ d^l(x) = (-1)^n \xi \circ \phi(1 \otimes A \gamma A(v_{1i}) \otimes a_{1,n-i})
\]

and by Theorem 2.4 and the definitions of \(\phi \) and \(\xi \),

\[
\xi \circ \phi \circ d^l(x) = \sum_i (-1)^i \xi \circ \phi(1 \otimes A \gamma A(v_{1,i-1}) \otimes a_{i,n-i} \otimes (v_{i}^{(1)}))
\]

where \(\sum_i a_{i,n-i} \otimes_k v_{i}^{(1)} := \overline{\gamma}(v_{i} \otimes_k a_{1,n-i}) \). The proof can be now easily finished using the inductive hypothesis. \(\square \)

Lemma A.6. Consider a stable under \(\chi \) subalgebra \(R \) of \(A \) such that \(F \) takes its values in \(R \otimes_k V \). The following facts hold:

1. Let \(x := 1 \otimes A \gamma A(v_{1i}) \otimes a_{i+1,n} \). If \(i < n \), then

\[
\overline{\sigma}(x) = \overline{\sigma}(x) = (-1)^n \otimes A \gamma A(v_{1i}) \otimes a_{i+1,n} \otimes 1.
\]
(2) If \(z = 1 \otimes_A \gamma_A(v_{1, i-1}) \otimes a_{i, i-1} \otimes a_n \gamma(v_n) \), then \(\sigma^l(z) \in U_{n-i+i+1, 1} \) for \(l \geq 0 \) and \(\sigma^l(z) \in X^{R_1}_{n-l} \) for \(l \geq 1 \).

(3) If \(z = 1 \otimes_A \gamma_A(v_{1, i-1}) \otimes a_{i, i-1} \otimes v_n \), then \(\sigma^l(z) = 0 \) for \(l \geq 0 \).

(4) If \(z = 1 \otimes_A \gamma_A(v_{1, i-1}) \otimes a_{i, i-1} \otimes a_n \gamma(v_n) \) and \(i < n \), then \(\overline{\sigma}(z) \equiv 0 \).

Proposition A.7. Let \(R \) be a stable under \(\chi \) subalgebra of \(A \) such that \(F \) takes its values in \(R \otimes_k \mathcal{U} \). The following facts hold:

1. \(\psi(1 \otimes \gamma(\psi)(V_{1})) \otimes a_{i+1, n} \otimes 1 = 1 \otimes_A \gamma_A(V_{1}) \otimes a_{i+1, n} \otimes 1 \).
2. If \(x = 1 \otimes x_{i+1, n} \otimes 1 \in R_i \cap W_n \) and there exists \(1 \leq j \leq i \) such that \(x_j \in \mathcal{T} \), then \(\psi(x) = 0 \).
3. If \(x = 1 \otimes \gamma(\psi(1, i-1)) \otimes a_i \gamma(v_i) \otimes a_{i+1, n} \otimes 1 \), then
 \[\psi(x) \equiv 1 \otimes_A \gamma_A(V_{1, i-1}) \otimes a_{i} \gamma(v_i) \otimes a_{i+1, n} \otimes 1 + \sum_{l} 1 \otimes_A \gamma_A(V_{1, i-1}) \otimes a_{i} \otimes a_{i+1, n} \otimes 1 \]
 modulo \(F^{i-2}_{R}(X_n) \cap U_n \), where \(\sum_i a_{i+1, n} \otimes_k v^{i} := \overline{\gamma}(v_i \otimes_k a_{i+1, n}) \).
4. If \(x = 1 \otimes \gamma(v_{i+1, j-1}) \otimes a_j \gamma(v_j) \otimes a_{i+1, n} \otimes 1 \) with \(j < i \), then
 \[\psi(x) \equiv 1 \otimes_A \gamma_A(v_{i+1, j-1}) \otimes a_i \gamma(v_i) \otimes a_{i+1, n} \otimes 1 \]
 module \(F^{i-2}_{R}(X_n) \cap U_n \).
5. If \(x = 1 \otimes \gamma(v_{i, j-1}) \otimes a_j \gamma(v_j) \otimes a_{i+1, n} \otimes 1 \) with \(j > i \), then
 \[\psi(x) \equiv 1 \otimes_A \gamma_A(v_{i, j-1}) \otimes a_i \otimes a_{i+1, n} \otimes 1 \]
 modulo \(F^{i-2}_{R}(X_n) \cap U_n \), where \(\sum_i a_{i+1, n} \otimes_k v^{i} := \overline{\gamma}(v_i \otimes_k a_{i+1, n}) \).
6. If \(x = 1 \otimes x_{i+1, n} \otimes 1 \in R_i \cap W_n \) and there exists \(1 \leq j_1 < j_2 \leq n \) such that \(x_{j_1} \in \mathcal{T} \) and \(x_{j_2} \notin \mathcal{T} \), then \(\psi(x) \in F^{i-2}_{R}(X_n) \cap U_n \).

Proof. For items (1)–(5) the proofs given in [C-G-G] work. We next prove item (6). Assume first that \(x_n \notin i \mathcal{T} \cup \mathcal{U} \). Then, by Remark A.3 and item (2),
\[\psi(x) = (-1)^\nu \overline{\sigma} \circ \psi(1 \otimes x_{1, n}) = (-1)^\nu \overline{\sigma}(0) = 0. \]
Assume now that \(x_n \in \mathcal{T}. \) Then, by inductive hypothesis
\[\psi(x) = (-1)^\nu \overline{\sigma} \circ \psi(1 \otimes x_{1, n}) \in \overline{\sigma}
\left(X_{n-1}^{R_1} \cap \bigoplus_{l=0}^{i-2} U_{n-l, i-1} \mathcal{T} \right), \]
and the result follows from items (1) and (4) of Lemma A.6. Finally, assume that \(x_n \in \mathcal{U}. \) Then, by inductive hypothesis or items (3), (4) or (5),
\[\psi(x) = (-1)^\nu \overline{\sigma} \circ \psi(1 \otimes x_{1, n}) \in \overline{\sigma}
\left(AU_{n-i-1} \cap \bigoplus_{l=0}^{i-2} U_{n-l, i-1} \mathcal{V} \right), \]
and the result follows from items (4) and (7) of Lemma A.6. \(\square \)

Proposition A.8. The following facts hold:
(1) If \(x = 1 \otimes \gamma(v_{1i}) \otimes a_{1,n-i} \otimes 1 \), then
\[
\phi \circ \psi(x) \equiv 1 \otimes \text{Sh}(v_{1i} \otimes_k a_{1,n-i}) \otimes 1
\]
module \(F^{-1}(E \otimes E^{\circ \circ} \otimes E) \cap W_n \cap C_n \).

(2) If \(x = 1 \otimes x_{1n} \otimes 1 \in R_i \cap W_n \) and there exists \(1 \leq j \leq i \) such that \(x_j \in A \), then \(\phi \circ \psi(x) = 0 \).

(3) If \(x = 1 \otimes \gamma(v_{1,i-1}) \otimes a_i \gamma(v_i) \otimes a_{i+1,n} \otimes 1 \), then
\[
\phi \circ \psi(x) \equiv \sum_{l} a_{i}^{(l)} \otimes \text{Sh}(v_{1,i-1} \otimes_k v_i \otimes_k a_{i+1,n}) \otimes 1
\]
\[
+ \sum_{l} 1 \otimes \text{Sh}(v_{1,i-1} \otimes_k a_i \otimes a_{i+1,n}^{(l)}) \otimes \gamma(v_i^{(l)})
\]
module
\[
(F^{-1}(E \otimes E^{\circ \circ} \otimes E) \cap AW_n + F^{-2}(E \otimes E^{\circ \circ} \otimes E) \cap W_n V) \cap C_n^R,
\]
where
\[
\sum_{l} a_{i}^{(l)} \otimes_k v_{1,i-1}^{(l)} := \chi(v_{1,i-1} \otimes_k a_i) \quad \text{and} \quad \sum_{l} a_{i+1,n}^{(l)} \otimes_k v_{1,i}^{(l)} := \chi(v_i \otimes_k a_{i+1,n}).
\]

(4) If \(x = 1 \otimes \gamma(v_{1,j-1}) \otimes a_j \gamma(v_j) \otimes a_{j+1,n} \otimes 1 \) with \(j < i \), then
\[
\phi \circ \psi(x) \equiv \sum_{l} a_{j}^{(l)} \otimes \text{Sh}(v_{1,j-1} \otimes_k v_j \otimes_k a_{j+1,n}) \otimes 1,
\]
module
\[
(F^{-1}(E \otimes E^{\circ \circ} \otimes E) \cap AW_n + F^{-2}(E \otimes E^{\circ \circ} \otimes E) \cap W_n V) \cap C_n^R,
\]
where
\[
\sum_{l} a_{j}^{(l)} \otimes_k v_{1,j-1}^{(l)} := \chi(v_{1,j-1} \otimes_k a_j).
\]

(5) If \(x = 1 \otimes \gamma(v_{1,i-1}) \otimes a_{ij} \gamma(v_j) \otimes a_{j+1,n} \otimes 1 \) with \(j > i \), then
\[
\phi \circ \psi(x) \equiv \sum_{l} 1 \otimes \text{Sh}(v_{1,i-1} \otimes_k a_{ij} \otimes a_{j+1,n}^{(l)}) \otimes \gamma(v_j^{(l)})
\]
module \(F^{-2}(E \otimes E^{\circ \circ} \otimes E) \cap W_n V \cap C_n^R \).

(6) If \(x = 1 \otimes x_{1n} \otimes 1 \in R_i \cap W_n \) and there exists \(1 \leq j_1 < j_2 \leq n \) such that \(x_{j_1} \in \mathcal{A} \) and \(x_{j_2} \in \mathcal{V}_K \), then
\[
\phi \circ \psi(x) \in F^{-2}(E \otimes E^{\circ \circ} \otimes E) \cap W_n V \cap C_n^R.
\]

Proof. (1) This follows from item (1) of Proposition A.7 and Proposition A.5.

(2) This follows from item (2) of Proposition A.7.

(3) By item (3) of Proposition A.7,
\[
\phi \circ \psi(x) \equiv \sum_{l} \phi(a_{i}^{(l)} \otimes_A \gamma_A(v_{1,i-1} \otimes_k v_i) \otimes a_{i+1,n} \otimes 1)
\]
\[
+ \sum_{l} \phi(1 \otimes_A \gamma_A(v_{1,i-1}) \otimes a_i \otimes a_{i+1,n}^{(l)} \otimes \gamma(v_i^{(l)}))
\]
module \(\phi(F^{-2}_R(X_n) \cap U_n) \), where
\[
\sum_{l} a_{i}^{(l)} \otimes_k v_{1,i-1}^{(l)} := \chi(v_{1,i-1} \otimes_k a_i) \quad \text{and} \quad \sum_{l} a_{i+1,n}^{(l)} \otimes_k v_{i}^{(l)} := \chi(v_i \otimes_k a_{i+1,n}).
\]
The desired result follows now from Proposition A.5.
(4) By item (4) of Proposition A.7,
\[\phi \circ \psi(x) \equiv \sum_i \phi(a_i^{(l)}) \otimes_A \gamma_4 \left(v_{1,i-1} \otimes_k v_{ji} \otimes a_{i+1,n} \otimes 1 \right) \]
module $F_i^{n-2}(X_n) \cap U_n$, where $\sum_i a_i^{(l)} \otimes_k v_{1,i-1} := \chi(v_{1,i-1} \otimes_k a_i)$. To conclude the proof of this item it suffices to apply Proposition A.5.

(5) By item (5) of Proposition A.7,
\[\phi \circ \psi(x) \equiv \sum_i \phi(1 \otimes_A \gamma_4(v_{1,i-1}) \otimes \alpha_{ij} \otimes \alpha_{ij+1,n} \otimes \gamma(v_{j}^{(l)})) \]
module $\phi(F_i^{n-2}(X_n) \cap U_n)$, where $\sum_i \alpha_{ij+1,n} \otimes_k v_{j}^{(l)} := \gamma(v_j \otimes_k a_{j+1,n})$. The result follows by applying Proposition A.5.

(6) Proceed as in the proof of item (5) but using item (5) of Proposition A.7 instead of item (5).

\[\square \]

Proposition A.9. If $x = 1 \otimes x_{1n} \otimes 1 \in R_n \cap W'_n$, then
\[\omega(x) \in F^1(E \otimes \mathcal{P}^{n+1} \otimes E) \cap W_{n+1}. \]

Appendix B.

The purpose of this appendix is to prove Proposition 7.4, Theorem 7.6, Propositions 9.5 and 9.9, and Theorem 10.2. We will freely use the notations introduced in the previous sections, and the properties established in Definitions 1.6, 1.8 and 1.13, and Remarks 1.7 and 1.9. We will also use the diagrams introduced in (1.1), (1.2), (1.3), (1.5), Definition 1.2 and Remarks 1.15, 7.3 and 9.2. Actually, in this appendix we will use them with a wider meaning. Finally we let \mathcal{P} denote the convolution inverse of γ.

Let C_1 and C_2 be two coalgebras. It is easy to see that if $c \colon C_1 \otimes_k C_2 \rightarrow C_2 \otimes_k C_1$ is compatible with the coalgebra structures of C_1 and C_2, then $C_1 \otimes_k C_2$ is a coalgebra with counit $\varepsilon_{C_1} \otimes_k \varepsilon_{C_2}$, via $\Delta := (C_1 \otimes_k c \otimes_k C_2) \circ (\Delta_{C_1} \otimes_k \Delta_{C_2})$. We will denote this coalgebra by $C_1 \otimes_c C_2$.

Lemma B.1. Let E be a k-algebra. If $u \colon C_1 \rightarrow E$ and $v \colon C_2 \rightarrow E$ are convolution invertible k-linear maps, then the map $\mu_E \circ (u \otimes_k v)$ is also convolution invertible and its inverse is $\mu_E \circ (v^{-1} \otimes_k u^{-1}) \circ c$.

Proof. Set $u := u^{-1}$, $v := u^{-1}$, $f := \mu_E \circ (u \otimes_k v)$ and $g := \mu_E \circ (u \otimes_k v) \circ c$. We have
\[f \ast g = \eta \circ \epsilon_{C_1 \otimes_c C_2}, \]
as desired. Similarly $g \ast f = \eta \circ \epsilon_{C_1 \otimes_c C_2}$. \[\square \]

Let E be a k-algebra. Recall that for all $s \in \mathbb{N}$ we let $\mu_s \colon E^{\otimes k} \rightarrow E$ denote the map recursively defined by
\[\mu_1 := \text{id}_E \quad \text{and} \quad \
u_{s+1} := \mu_1 \circ (\mu_s \otimes_k E). \]
Lemma B.2. Let E be a k-algebra and let H be a braided bialgebra. If $u: H \rightarrow E$ is a convolution invertible k-linear map, then for all $s \in \mathbb{N}$, the map $\mu_s \circ u^{\otimes s}$, is also convolution invertible. Its inverse is $\mu_s \circ \pi^{\otimes s} \circ g_c$, where π is the convolution inverse of u and $g_c: H^{\otimes k} \rightarrow H^{\otimes k}$ is the map introduced at the beginning of Section 7.

Proof. We make the proof by induction on s. Case $s = 1$ is trivial. Assume that the result is valid for s. Let $C_1 := H^{\otimes k}$ and $C_2 = H$. By the previous lemma the k-linear map $\mu_E \circ ((\mu_s \circ u^{\otimes s}) \otimes_k u)$ is convolution invertible and its convolution inverse is $\mu_E \circ ((\mu_s \circ \pi^{\otimes s} \circ g_c) \otimes_k \pi) \circ c_{s1}$. But, by [G-G2, Corollary 4.21], we know that $H^{\otimes s+1} = C_1 \otimes c_{s1} C_2$ and $(\mu^{\otimes k} \circ g_c) \otimes_k \pi) \circ c_{s1} = \pi^{\otimes s+1} \circ g_{c_{s+1}}$. \hfill \Box

Proof of Proposition 7.4. Let

\[\tilde{\theta}_{rs}: M \otimes_k C \otimes_k D \rightarrow M \otimes_k D \otimes_k C \quad \text{and} \quad \tilde{\vartheta}_{rs}: M \otimes_k D \otimes_k C \rightarrow M \otimes_k C \otimes_k D, \]

be the k-linear maps diagrammatically defined by

\[
\tilde{\theta} := \begin{array}{c}
\begin{tikzpicture}
\node (1) at (0,0) {$\tilde{\theta}$};
\node (2) at (2,0) {$\tilde{\vartheta}$};
\end{tikzpicture}
\end{array}
\quad \text{and} \quad
\tilde{\vartheta} := \begin{array}{c}
\begin{tikzpicture}
\node (1) at (0,0) {$\tilde{\vartheta}$};
\end{tikzpicture}
\end{array}
\]

where

- $C := H^{\otimes k}$, $\overline{C} = E^{\otimes k}$ and $D := A^{\otimes k}$,
- $\overline{\pi}$ is the map induced by $\mu_s: E^{\otimes k} \rightarrow E$,
- $\gamma := \overline{\gamma} \otimes k$ and $\overline{\pi} := \mu_s \circ \overline{\overline{\pi}} \circ g_c$.

It is easy to see that θ_{rs} and ϑ_{rs} are induced by $(-1)^{rs} \tilde{\theta}_{rs}$ and $(-1)^{rs} \tilde{\vartheta}_{rs}$, respectively. Hence in order to finish the proof we must see that $\tilde{\vartheta}_{rs} \circ \tilde{\theta}_{rs} = \text{id}$ and $\tilde{\theta}_{rs} \circ \tilde{\vartheta}_{rs} = \text{id}$. Let

\[L: \overline{C} \rightarrow E \otimes_k C \quad \text{and} \quad \overline{L}: C \rightarrow E \otimes_A \overline{C} \]

be the k-linear maps defined by

\[L := (\overline{\overline{\pi}} \circ D \otimes_k C) \circ (\nu_A \otimes_k C) \quad \text{and} \quad \overline{L} := (\mu_s \circ \overline{\pi} \otimes_k g_c \otimes_k \gamma) \circ \Delta, \]

where ν_A is the coaction introduced in Remark 7.2. Clearly

\[\tilde{\theta} := (M \otimes_k s_{sr}) \circ (\tilde{\rho} \otimes_k C \otimes_k D) \circ (M \otimes_k L \otimes_k D) \]

and

\[\tilde{\vartheta} := (\tilde{\rho} \otimes_k C \otimes_k D) \circ (M \otimes_k L \otimes_k D) \circ (M \otimes_k s_{sr}^{-1}), \]

where $\tilde{\rho}$ denotes the right action of E on M. We will prove that $\tilde{\vartheta}_{rs} \circ \tilde{\theta}_{rs} = \text{id}$ and we leave the task to prove that $\tilde{\theta}_{rs} \circ \tilde{\vartheta}_{rs} = \text{id}$ to the reader. Let $\Gamma: M \otimes_k C \rightarrow M \otimes_k \overline{C}$ be the isomorphism given by $\Gamma(m \otimes_k h_k) = m \otimes_k \gamma_A(h_k)$. Since

\[\tilde{\vartheta}_{rs} \circ \tilde{\theta}_{rs} = (\tilde{\rho} \otimes_k C) \circ (M \otimes_k \overline{L}) \circ (\tilde{\rho} \otimes_k C) \circ (M \otimes_k L) \otimes_k D \]

and

\[(M \otimes_k L) \circ \Gamma = (M \otimes_k \mu_s \circ \overline{\gamma} \otimes_k C) \circ (M \otimes_k \Delta), \]

we have

\[\Gamma^{-1} \circ (\tilde{\rho} \otimes_k C) \circ (M \otimes_k \overline{L}) \circ (\tilde{\rho} \otimes_k C) \circ (M \otimes_k L) \circ \Gamma = \begin{array}{c}
\begin{tikzpicture}
\node (1) at (0,0) {$\tilde{\theta}$};
\node (2) at (2,0) {$\tilde{\vartheta}$};
\end{tikzpicture}
\end{array} = \begin{array}{c}
\begin{tikzpicture}
\node (1) at (0,0) {θ};
\end{tikzpicture}
\end{array} \]
where \(v := \mu_s \circ \gamma \otimes_k \) and \(\overline{v} := \mu_s \circ \gamma \otimes_k \circ gc_s \). To finish the proof it suffices to note that \(\overline{v} \) is the convolution inverse of \(v \), by Lemma B.2. \(\square \)

Lemma B.3. Let \(s, r \in \mathbb{N} \). For \(C := H^\otimes \) and \(D := A^\otimes \), the equality

\[
\begin{array}{c}
\begin{tikzpicture}
 \node (A) at (0,0) {}; \node (B) at (2,0) {}; \node (C) at (0,-1) {}; \node (D) at (2,-1) {};
 \draw (A) -- (B) -- (C) -- (D) -- (A);
\end{tikzpicture}
\end{array}
\]

is true.

Proof. When \(s = r = 1 \) the formula is true by definition. Assume that \(r > 1 \) and that the formula is valid for \(H' := A^{\otimes r-1} \). Let \(D := A^{\otimes r} \). We have

\[
\begin{array}{c}
\begin{tikzpicture}
 \node (A) at (0,0) {}; \node (B) at (2,0) {}; \node (C) at (0,-1) {}; \node (D) at (2,-1) {};
 \draw (A) -- (B) -- (C) -- (D) -- (A);
\end{tikzpicture}
\end{array}
\]

Assume finally that \(s > 1 \) and the formula is valid for \(C' := H'^{\otimes s-1} \) and \(D := A^{\otimes s} \). Then, we have

\[
\begin{array}{c}
\begin{tikzpicture}
 \node (A) at (0,0) {}; \node (B) at (2,0) {}; \node (C) at (0,-1) {}; \node (D) at (2,-1) {};
 \draw (A) -- (B) -- (C) -- (D) -- (A);
\end{tikzpicture}
\end{array}
\]

where \(C := H^{\otimes s} \). \(\square \)

Lemma B.4. Let \(s, r \in \mathbb{N} \). For \(C := H^\otimes \) and \(D := A^\otimes \), the equality

\[
\begin{array}{c}
\begin{tikzpicture}
 \node (A) at (0,0) {}; \node (B) at (2,0) {}; \node (C) at (0,-1) {}; \node (D) at (2,-1) {};
 \draw (A) -- (B) -- (C) -- (D) -- (A);
\end{tikzpicture}
\end{array}
\]

is true.

Proof. In fact, we have

\[
\begin{array}{c}
\begin{tikzpicture}
 \node (A) at (0,0) {}; \node (B) at (2,0) {}; \node (C) at (0,-1) {}; \node (D) at (2,-1) {};
 \draw (A) -- (B) -- (C) -- (D) -- (A);
\end{tikzpicture}
\end{array}
\]

where the first equality follows from Lemma B.3. \(\square \)

Proof of Theorem 7.6. By Remark 7.11, the map

\[
\theta_\cdot : (\tilde{X}_*(M), \tilde{d}_*) \to (\overline{X}_*(M), \overline{d}_*)
\]

is an isomorphism of chain complexes. Hence, by the discussion at the beginning of Section 3, the homology of \((\overline{X}_*(M), \overline{d}_*) \) is the Hochschild homology of the \(K \)-algebra \(E \) with coefficients in \(M \). In order to complete the proof we must compute \(\overline{d}^i \) and \(\overline{d}^i' \). First we consider the map \(\overline{d}^i \). Let

\[
\tilde{v}_i : M \otimes_A E^{\otimes k} \otimes_k A^{\otimes -1} \to M \otimes_A E^{\otimes k} \otimes_k A^{\otimes -1} \quad (0 \leq i \leq r)
\]
be the morphisms defined by

\[\tilde{\nu}_i(m \otimes_A x_{1,s} \otimes a_{1,r}) := \begin{cases}
 m \otimes_A x_{1,s} \otimes x_{a_1} \otimes a_{2r} & \text{if } i = 0, \\
 m \otimes_A x_{1,s} \otimes a_{1,i-1} \otimes a_{i+1} \otimes a_{i+2} & \text{if } 0 < i < r, \\
 a_{r} m \otimes_A x_{1,s} \otimes a_{1,r-1} & \text{if } i = r.
\end{cases} \]

For \(0 \leq i \leq r\), set \(\overline{\nu}_i := \tilde{\theta} \circ \tilde{\nu}_i \circ \tilde{\vartheta}\), where \(\tilde{\theta}\) and \(\tilde{\vartheta}\) are as in the proof of Proposition 7.4. By item (1) of Theorem 3.6 we know that \(\tilde{d} \circ \tilde{\nu}_i\) is induced by \(\sum_{i=0}^{r} (-1)^i \tilde{\nu}_i\). Hence, \(\tilde{d}\) is induced by \(\sum_{i=0}^{r} (-1)^i \overline{\nu}_i\). So, in order to complete the computation of \(\overline{\nu}_i\), it is enough to calculate the \(\overline{\nu}_i\)'s. We begin with the computation of \(\overline{\nu}_0\). Let \(C := H \otimes z^{-1}\), \(D := A \otimes z^{-1}\), \(\gamma := \gamma \otimes z^{-1}\), \(\mu := \mu \circ \gamma\), and \(\overline{\nu} := \mu \circ \gamma \otimes z^{-1} \circ \varphi_{c-1}\). Since, by Lemma B.2,
Now, we compute $\overline{\pi}_i$ for $0 < i < r$. Let $D_1 := A \otimes_{k}^{r-1}, D_2 := A \otimes_{k}^{r-1}, C := H \otimes_{z}$, $\gamma := \gamma \otimes_{k}, \mu := \mu_\ast, u := \mu \circ \gamma$ and $\overline{\theta} := \mu \circ \overline{\gamma} \circ gc_{s}$. By Lemma B.2

It remains to compute $\overline{\pi}_r$. Let $D := A \otimes_{k}^{r-1}, C := H \otimes_{z}, \gamma := \gamma \otimes_{k}, \mu := \mu_\ast, u := \mu \circ \gamma$ and $\overline{\theta} := \mu \circ \overline{\gamma} \circ gc_{s}$. By Lemma B.2,

We next compute \overline{d}^i. Let

$$\tilde{u}_i : M \otimes_A E \otimes_A \otimes_{k} A \otimes_{k} \to M \otimes_A E \otimes_{k} \otimes_{k} A \otimes_{k} \quad (0 \leq i \leq s)$$

be as above of Notation 3.5. We set

$$\overline{\pi}_i := \tilde{u}_i \circ \overline{\gamma} \circ \theta \quad \text{for } 0 \leq i \leq s.$$

By item (2) of Theorem 3.6 we know that \overline{d}^i is induced by $\sum_{i=0}^{s} (-1)^i \tilde{u}_i$. Hence, \overline{d}^i is induced by $\sum_{i=0}^{s} (-1)^{r^i} \overline{\pi}_i$. So, in order to complete the computation of \overline{d}^i we must calculate the $\overline{\pi}_i$'s. We begin with $\overline{\pi}_0$. Let $D := A \otimes_{k}, C := H \otimes_{z}, \mu := \mu_\ast, u := \mu \circ \gamma \otimes_{k}$ and $\overline{\theta} := \mu \circ \overline{\gamma} \circ gc_{s-1}$. Again by Lemma B.2,

Now, we compute $\overline{\pi}_i$ for $0 < i < s$. Let $C_1 := H \otimes_{z}^{r-1}$ and $C_2 := H \otimes_{z}^{r-1}$. Consider the map

$$\Phi : H \otimes_{z} \to A \otimes_{k} H \otimes_{z}^{r-1},$$
diagrammatically defined by

\[
\Phi := \begin{array}{c}
\includegraphics[width=0.4\textwidth]{diagram.png}
\end{array}
\]

where \(\gamma \) denotes both \(\gamma_k^{i-1} \) and \(\gamma_k^{s-1} \), and \(\mu \) denotes both \(\mu_{i-1} \) and \(\mu_{s-i-1} \). Since

\[
\Phi = \begin{array}{c}
\includegraphics[width=0.4\textwidth]{diagram2.png}
\end{array}
\]

where \(C := H^\otimes_k, u_s: H^\otimes_s \rightarrow H^\otimes_{s-1} \) is the map given by

\[
u_s(h_{1,s}) := h_{1,i-1} \otimes_k h_i \otimes_k h_{i+2,s}
\]

and \(u \) denotes \(\mu_{i-1} \circ \gamma^{i-1}_k, \mu_{s-i-1} \circ \gamma^{s-1}_k \) and \(\mu_k \circ \gamma^\otimes_k \), we have

\[
\Xi_i = \begin{array}{c}
\includegraphics[width=0.4\textwidth]{diagram3.png}
\end{array}
\]

where \(D := A^\otimes_k \) and \(\Xi := \mu_s \circ \gamma^\otimes_k \circ g_{c_s} \). Again by Lemma B.2. Finally, we compute \(\Xi_s \). Let \(C := H^\otimes_k, D := A^\otimes_k, u := \mu_{s-1} \circ \gamma^{s-1}_k \) and \(\Xi := \mu_{s-1} \circ \gamma^\otimes_k \circ g_{c_{s-1}} \). Again by Lemmas B.2 and B.4,
which finish the proof. □

Lemma B.5. We have

\[
\begin{array}{c}
\begin{array}{c}
C \\
\end{array}
\end{array}
= \begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}
\]

where \(C := H^\otimes s \), \(C' := H^\otimes s' \) and \(D := A^\otimes r \).

Proof. For \(s = s' = r = 1 \) the result is valid by definition. An inductive argument using

\[
\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}
\]

shows that the result is valid when \(s = r = 1 \) and \(s' \in \mathbb{N} \). A similar argument using the equality

\[
\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}
\]

shows that the result is valid when \(r = 1 \) and \(s, s' \in \mathbb{N} \). Finally, again an inductive argument using

\[
\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}
\]

completes the proof. □

Lemma B.6. The following equality holds:

\[
\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}
\]

where \(C := H^\otimes n \) and \(D := A^\otimes k \).

Proof. In fact,

\[
\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}
\]

where the first and last equalities follows from Lemma B.3. □
Lemma B.7. We have

where $C := H^\otimes_k$, $C' := H'^\otimes$ and $D := A'^\otimes_k$.

Proof. In fact, we have

where the first equality follows from Lemma B.3, and the third one follows from Lemma B.5.

Let

be the k-linear maps diagrammatically defined by

where

- $- C := \overline{H^\otimes_k}$, $C := (E/A)^\otimes$ and $D := A'^\otimes_k$,
- $\overline{\mu}$ is the map induced by $\mu_s : E^\otimes_k \to E$,
- $\gamma := \gamma^\otimes_k$ and $\overline{\gamma} := \mu_s \circ \gamma^\otimes_k \circ g c_s$.

It is easy to see that $\tilde{\sigma}^r s$ and $\tilde{\sigma}^r s$ are induced by $(-1)^r s \tilde{\sigma}^r s$ and $(-1)^r s \tilde{\sigma}^r s$, respectively.

Definition B.8. For

we define

by

where $r'' := r + r'$, $s'' := s + s'$ and $\sum_i a_{1r}^{(i)} \otimes_k v_{s+1,s''}^{(i)} := \overline{v}_{s+1,s''} \otimes a_{1r}$.

Lemma B.9. Let $C := H \otimes_e^a, C' := H' \otimes_{e'}^a, D := A \otimes_e^a$ and $D' := A' \otimes_{e'}^a$. We have

\[C \otimes C' = D \otimes D' \]

where
- γ denotes the maps $\gamma \otimes_e^a, \gamma' \otimes_{e'}^a, \gamma \otimes_{e'}^a$ and $\gamma \otimes_{e'}^a$,
- μ denotes the maps μ_s and $\mu_{s'}$,
- $u := \mu_s \circ \gamma \otimes_e^a$ and u denotes both the maps $\mu_s \circ \gamma \otimes_e^a \circ g_{e_s}$ and $\mu_{s'} \circ \gamma \otimes_{e'}^a \circ g_{e_s}$.

Proof. In fact,

\[C \otimes C' = D \otimes D' \]

where the first equality follows from the definition of $\tilde{\theta}(\tilde{\beta}) \ast \tilde{\theta}(\tilde{\beta}')$, the second one, from Lemma B.6, and the third one, from Lemma B.2.

Proof of Proposition 9.5. Let $C := H \otimes_e^a, C' := H' \otimes_{e'}^a, D := A \otimes_e^a$ and $D' := A' \otimes_{e'}^a$ and let

\[\tilde{\beta} : D \otimes_h C \to E \quad \text{and} \quad \tilde{\beta}' : D' \otimes_h C' \to E \]

be the maps induced by β and β', respectively. Let
- γ denote both the maps $\gamma \otimes_{e_s}^a$ and $\gamma \otimes_{e_{s'}}^a$,
- μ denote both the maps μ_s and $\mu_{s'}$,
- u denote the map $\mu_{s'} \circ \gamma \otimes_{e_s}^a$,
- u denote both the maps $\mu_s \circ \gamma \otimes_{e_{s'}}^a \circ g_{e_s}$ and $\mu_{s'} \circ \gamma \otimes_{e_{s'}}^a \circ g_{e_{s'}}$.

We have

\[C \otimes C' = D \otimes D' \]
where the first equality follows from Lemma B.9, the second and third ones are easy to check (and left to the reader), and the last one follows from Lemma B.7. So, in order to finish the proof it suffices to note that the first diagram represents \(\vartheta(\theta(\beta)\bullet\theta(\beta'))\) and that this map induces \((-1)^{r'}\vartheta(\theta(\beta)\bullet\theta(\beta')).\) \(\Box\)

Lemma B.10. Let \(C := H^\otimes s',\ C' := H^\otimes s'\) and \(D := A^\otimes k.\) We have:

\[
\begin{array}{c}
\begin{array}{cccc}
\alpha & \beta & \gamma & \delta \\
\downarrow & \downarrow & \downarrow & \downarrow \\
\alpha' & \beta' & \gamma' & \delta'
\end{array}
\end{array}
\]

where

- \(\gamma\) denotes the maps \(\gamma^\otimes s'\) and \(\gamma^\otimes s',\)
- \(\mu\) denotes the map \(\mu^s,\)
- \(u := \mu_{s'} \circ \gamma^\otimes s'\) and \(\overline{\mu}\) denotes both the maps \(\mu_s \circ \overline{\gamma}^\otimes k \circ \gamma^s\) and \(\mu_{s'} \circ \overline{\gamma}^\otimes k \circ \gamma^s,\)

Proof. By the definition of \(\widehat{\vartheta}\) and Lemma B.2,

\[
\begin{array}{c}
\begin{array}{cccc}
\alpha & \beta & \gamma & \delta \\
\downarrow & \downarrow & \downarrow & \downarrow \\
\alpha' & \beta' & \gamma' & \delta'
\end{array}
\end{array}
\]

as desired \(\Box\)

Definition B.11. Let \(r' \leq r\) and \(s' \leq s.\) For

\[
m \otimes_A \overline{\kappa} \otimes a_{1r} \in M \otimes_A E^\otimes k \otimes A^\otimes s'\]

and \(\alpha \in \text{Hom}_{1(A,E)}(E^\otimes k \otimes A^\otimes r', E),\)

we define

\[
(m \otimes_A \gamma(v_{1s}) \otimes a_{1r})\alpha := \sum_i \alpha m_s (\gamma(v_{1s'}) \otimes a_{1r'}) \otimes_A \gamma(v_{s'+1,s}) \otimes a_{r'+1,r},
\]

by

\[
n \otimes_A \gamma(v_{1s}) \otimes a_{1r})\alpha := \sum_i \alpha m_s (\gamma(v_{1s'}) \otimes a_{1r'}) \otimes_A \gamma(v_{s'+1,s}) \otimes a_{r'+1,r},
\]

where \(\sum_i a_{1r'} \otimes_k v_{s'+1,r} := \overline{\chi}(v_{s'+1,s} \otimes a_{1r'}).\)

Proof of Proposition 9.9. The case \(s < s'\) or \(r < r'\) is trivial. Assume that \(s' \leq s\) and \(r' \leq r.\) Let \(C := H^\otimes s,\ C' := H^\otimes s,\) \(D := A^\otimes k\) and \(D' := A^\otimes k\) and let \(\beta : D \otimes_k C \rightarrow E\)

be the map induced by \(\beta.\) Let

- \(\gamma\) denote both the maps \(\gamma^\otimes s,\) and \(\gamma^\otimes s',\)
- \(\mu\) denote the map \(\mu^s,\)
- \(u\) denote the map \(\mu_s \circ \gamma^\otimes s,\)
- \(\overline{\mu}\) denote both the maps \(\mu_s \circ \overline{\gamma}^\otimes k \circ \gamma^s\) and \(\mu_{s'} \circ \overline{\gamma}^\otimes k \circ \gamma^s,\)
A direct computation shows that

where the first equality follows from Lemma B.10, the second one from Lemma B.6, the third and fourth ones are easy to check (and left to the reader), and the last one follows from Lemma B.7. Since the first diagram represents the map

and this map induces \((-1)^{r'(s-s')}\) times the morphism

this finish the proof. \(\square\)

Lemma B.12. Let \(C := H^\otimes l\). We have

where \(\mu := \mu_j\), \(u := \mu \circ \gamma^\otimes k\) and \(\overline{\Pi} := \mu \circ \gamma^\otimes k \circ \overline{\gamma}^\otimes j\).

Proof. In fact, by Lemma B.2,
as desired. \qed

Lemma B.13. Let $C := H^\otimes_c$. We have

$$C = \begin{bmatrix} c & c' \\ h & h' \end{bmatrix},$$

where g is the map gc_{2n}, $S := S^\otimes_n$, $\mu := \mu_n$, $\nabla := \nabla^\otimes_c$ and $\Pi := \mu \circ \nabla \circ gc_n$.

Proof. We proceed by induction on n. The case $n = 1$ follows from [G-G2, Lemma 10.7(2)]. Assume $n > 1$ and let $C' := H^\otimes_{c-1}$. Then,

$$C = \begin{bmatrix} c & c' \\ h & h' \end{bmatrix},$$

where the third equality follows from inductive hypothesis and [G-G2, Lemma 10.7(2)], the fourth one follows from [G-G2, Proposition 4.3] and [G-G2, Lemma 10.7(2)], and the fifth one, from the definition of Δ_C and [G-G2, Corollary 4.21]. \qed

Proof of Theorem 10.2. For $0 \leq j \leq s$, let

$$\tau_j : E \otimes A E^\otimes_c \otimes_k A^\otimes_c \to E \otimes A E^\otimes_{c+1} \otimes_k A^\otimes_c$$

be the map defined by

$$\tau_j(a_0 \gamma_A(v_{0s}) \otimes a_{1r}) := \sum_l 1 \otimes A \gamma_A(v_{j+1,s}) \otimes A a_0 \gamma_A(v_{0j}) \otimes a_{1l},$$

where $\sum a^{(l)}_1 \otimes A v^{(l)}_{j+1,s} := X^{(l)}(v_{j+1,s} \otimes k a_{1r})$, and let $\tilde{\tau}_j : \tilde{X}_{rs} \rightarrow \tilde{X}_{r,s+1}$ be the map induced by τ_j. By Proposition 6.4 we know that

$$\tilde{D}([a_0 \gamma_A(v_{0s}) \otimes a_{1r}]) = \sum_{j=0}^s (-1)^{s+j} \tilde{\tau}_j ([a_0 \gamma_A(v_{0s}) \otimes a_{1r}])$$

module $F^\otimes_c(X_{n+1})$. Hence

$$\tilde{D}([a_0 \gamma(h_0) \otimes a_{1r}]_H \otimes k h_{1s}) = \sum_{j=0}^s (-1)^{s+j} \tilde{\tau}_j ([a_0 \gamma(h_0) \otimes a_{1r}]_H \otimes k h_{1s})$$

module $F^\otimes_c(X_{n+1})$. Now, since $\theta_{r,s+1} \circ \tilde{\tau}_j \circ \theta_{rs}$ is induced by $(-1)^{s} \tilde{\theta}_{r,s+1} \circ \tau_j \circ \theta_{rs}$, in order to finish the proof we must show that $\tilde{\tau}_j = \tilde{\theta}_{r,s+1} \circ \tau_j \circ \theta_{rs}$. In the sequel

- γ denotes the maps $\gamma^0, \gamma^0_k, \gamma^0_{k-1}$ and γ^0_{k-2}, and ∇ denotes ∇^\otimes_{c-1},
- μ denotes both the maps μ_j and μ_{s-j},
- ∇ denotes both the maps $\mu_j \circ \gamma^0$ and $\mu_{s-j} \circ \gamma^0_{k-1}$,
- Π denotes both the maps $\mu_j \circ \nabla^\otimes_k \circ gc_j$ and $\mu_{s-j} \circ \nabla^\otimes_{k-1} \circ gc_{s-j}$,
- g denotes the map gc_{2s-j} introduced in item (5) of Section 7,
- S denotes the map S^\otimes_{c-1}.
Let $D := A^k$, $C_1 := H^l$ and $C_2 := H^{l-1}$. By Lemma B.4

\[
\tau_j \circ \tilde{\vartheta}_{rs} = \quad = \quad =
\]

Consequently, by Lemmas B.12 and B.13,

\[
\tilde{\vartheta}_{r,s+1} \circ \tau_j \circ \tilde{\vartheta}_{rs} = \quad = \quad =
\]

as desired.
References

[A-K] R. Akbarpour and M. Khalkhali, *Hopf Algebra Equivariant Cyclic Homology and Cyclic Homology of Crossed Product Algebras*, J. Reine Angew. Math., vol 559, (2003) 137–152.

[B-D] Y. Bespalov and B. Drabant, *Cross products bialgebras, Part II*, Journal of Algebra, vol 240 , (2001) 445–504.

[B-C-M] R. J. Blattner, M. Cohen and S. Montgomery, *Crossed products and inner actions of Hopf algebras*, Trans. Amer. Math. Soc., vol 298, (1986) 671–711.

[B-G-G-S] P. Bonneau, M. Gerstenhaber, A. Giaquinto and D. Sternheimer, *Quantum groups and deformation quantization: Explicit approaches and implicit aspects*, J Math Phys, vol 45, (2004) 3703–3741.

[B-S] P. Bonneau and D. Sternheimer, *Topological Hopf algebras, quantum groups and deformation quantization*, Lecture Notes in Pure and Appl Math, vol 239, (2005) 55–70.

[B] D. Burghelea, *Cyclic homology and algebraic K-theory of spaces I*, Boulder Colorado 1983, Contemp. Math., vol 55, (1986) 89–115.

[Br] T. Brzeziński, *Crossed products by a coalgebra*, Communications in Algebra, vol 25, (1997) 3551–3575.

[C-G-G] G. Carboni, J. A. Guccione and J. J. Guccione, *Cyclic homology of crossed products*, Advances in Mathematics, vol 223, (2010) 840-872.

[C] M. Crainic, *On the perturbation lemma, and deformations*, arXiv:Math. AT/0403266, (2004).

[D-T] Y. Doi and M. Takeuchi, *Cleft comodule algebras by a bialgebra*, Comm. in Alg., vol 14, (1986) 801–817.

[F-T] B. L. Feigin and B. L. Tsygan, *Additive K-theory, K-theory, arithmetic and geometry*, (Moscow, 1984-1986), 67-209, Lecture Notes in Mathematics, vol 1289, Springer, Berlin, (1987).

[G-G1] J. A. Guccione and J. J. Guccione, *Hochschild homology of twisted tensor products*, K-theory, vol 18, (1999), 363–400.

[G-G2] J. A. Guccione and J. J. Guccione, *Theory of braided Hopf crossed products*, Journal of Algebra, vol 261 (1), (2003), 54–101.

[G-G3] J. A. Guccione and J. J. Guccione, *Hochschild (co)homology of Hopf crossed products*, K-Theory, vol 25, (2002), 138–169.

[G-J] E. Getzler and J. D. Jones, *The cyclic homology of crossed product algebras*, J. Reine Angew. Math., vol 445, (1993) 161-174.

[G-S] M. Gerstenhaber and S. D. Schack, *Relative Hochschild cohomology, rigid algebras and the Bockstein*, Journal of Pure and Applied Algebra, vol 43, (1986) 53–74.

[H-S] G. Hochschild and J. P. Serre, *Cohomology of group extensions*, Trans. Amer. Math. Soc., vol 74, (1953) 110–134.

[J-S] P. Jara and D. Stefan, *Hopf cyclic homology and relative cyclic homology of Hopf Galois extensions*, Proc. London Math Soc., vol 93 (3), (2006) 138–174.

[K] C. Kassel, *Cyclic homology, comodules and mixed complexes*, Journal of Algebra, vol 107, (1987) 195–216.

[K-R] M. Khalkhali and B. Rangipour, *On the Cyclic Homology of Hopf Crossed Products*, Fields Institute Communications, Vol 43, (2004) 341–351.

[M] S. Majid, *Algebras and Hopf algebras in braided categories*, Marcel Dekker L. N. in Math., vol 158, (1994) 55–105.

[N] V. Nistor, *Group cohomology and the cyclic cohomology of crossed products*, Invent. Math., vol 99, (1990) 411–424.

[T] M. Takeuchi, *Survey of braided Hopf algebras*, Contemporary Mathematics, vol 267, (2000) 301–323.

[Z-H] Jiao Zang and Naihong Hu, *Cyclic Homology of Strong Smash Product Algebras*, Preprint arXiv:1008.2504 (2010).
Cíclo Básico Común, Universidad de Buenos Aires, Ciudad Universitaria-Pabellón 3, (C1428EGA) Buenos Aires, Argentina.
E-mail address: gcarbo@dm.uba.ar

Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria-Pabellón 1, (C1428EGA) Buenos Aires, Argentina.
E-mail address: jjgucci@dm.uba.ar

Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria-Pabellón 1, (C1428EGA) Buenos Aires, Argentina.
E-mail address: jjgucci@dm.uba.ar

Pontificia Universidad Católica del Perú - Instituto de Matemática y Ciencias Afines, Sección Matemáticas, PUCP, Av. Universitaria 1801, San Miguel, Lima 32, Perú.
E-mail address: cvalqui@pucp.edu.pe