Quantum dimer phases in a frustrated spin ladder: Effective field theory approach and exact diagonalization

Temo Vekua1,2 and Andreas Honecker3,4

1Université Louis Pasteur, Laboratoire de Physique Théorique, 67084 Strasbourg, France
2Andronikashvili Institute of Physics, Tamarashvili 6, 0177 Tbilisi, Georgia
3TU Braunschweig, Institut für Theoretische Physik, 38106 Braunschweig, Germany
4Institut für Theoretische Physik, Universität Göttingen, 37077 Göttingen, Germany

(Dated: January 24, 2006; revised April 25, 2006)

The phase diagram of a frustrated $S = 1/2$ antiferromagnetic spin ladder with additional next-nearest neighbor exchanges, both diagonal and inchain, is studied by a weak-coupling effective field theory approach combined with exact diagonalization for finite systems. In addition to two known phases with rung-singlet and Haldane-type ground states, we observe two new phases with dimerization along the chains. Furthermore, the transitions between the different phases are studied and shown to be either first order or to belong to the universality class of the two-dimensional Ising model. The nature of elementary excitations is discussed briefly.

PACS numbers: 75.10.Pq, 75.40.Cx, 75.30.Kz, 75.40.Mg

I. INTRODUCTION

During the past few decades, strongly correlated electron systems have received a lot of attention, e.g. due to unconventional superconductors. In particular, during the early days of high-T_c superconductivity, Anderson had already proposed a mechanism based on a so-called ‘resonating valence-bond’ (RVB) picture. Nevertheless, the search for a spin liquid in two dimensions remains a long standing problem. In this context, much attention was devoted to the study of geometrically frustrated magnetic systems (for recent reviews see e.g. Refs. [2]).

Among the different proposed models to capture Anderson’s RVB scenario is the one of Nersesyan and Tsvelik based on a spatially anisotropic $J_1 - J_2$ square lattice with stronger exchanges along one particular ‘chain’ direction to allow for generalizing results obtained previously in one dimension. However, it turned out that even the one-dimensional picture was not completely under control in weak coupling it is impossible to fine-tune rung and diagonal exchanges of two-leg spin ladders to eliminate all relevant interchain couplings at all orders. In particular it was argued in Ref. that at weak coupling there is no direct first-order phase transition from two phases with unique ground states, namely a Haldane phase and a rung-singlet phase, rather an intermediate, spontaneously dimerized phase was predicted. However, previous numerical calculations have not detected this intermediate phase. The numerically determined phase diagram suggested a direct phase transition from the Haldane to the rung-singlet phase which at weak interchain coupling seemed to be of second order and become first order at stronger couplings. While the latter topology of the phase diagram agrees with the earlier bosonization prediction the order of the phase transitions disagrees at weak coupling. We will argue that the intermediate phase in the spin ladder can be revealed by adding further exchanges.

In this work we study an $S = 1/2$ antiferromagnetic two-leg spin ladder with additional next-nearest neighbor exchanges and discuss the interplay between two distinct scales, one set by inchain frustration and the other one by interchain interactions. In the spirit of Ref. this model can also be regarded as a strip of the extensively studied $J_1 - J_2 - J_3$ square lattice. The latter model illustrates that frustrated interactions in quantum spin systems give rise to ‘unpredictable’ phases which are very difficult to analyze theoretically because of the presence of competing interactions. The study of the effect of additional next-nearest neighbor exchanges in spin ladder systems therefore also is an interesting theoretical problem in its own right. The bosonization approach is an unbiased and powerful method for studying frustrated systems in particular in one dimension. Using this method, we will show that a rich phase diagram and intriguing nature of elementary excitations result from the competing interactions in the frustrated spin ladder. Furthermore, numerical analysis of finite systems confirms the presence of the phases obtained within the weak-coupling effective field theory, also at larger couplings.

II. MODEL

We consider the $S = 1/2$ antiferromagnetic Heisenberg spin ladder with additional next-nearest neighbor exchanges which are represented by ladder diagonal and inchain next-nearest neighbor interactions. The geometry of our model is depicted in Fig. The lattice Hamiltonian reads:

$$H = H_{\text{leg}}^1 + H_{\text{leg}}^2 + H_{\text{int}},$$

(1)

where the Hamiltonian for leg $l = 1, 2$ is

$$H_{\text{leg}}^l = \sum_{j=1}^{N} (J S_{l,j} \cdot S_{l,j+1} + J_2 S_{l,j} \cdot S_{l,j+2})$$

(2)
and the interleg coupling contains both the rung and the diagonal exchanges:

\[H_{int} = \sum_{j=1}^{N} \left[J_{\perp} S_{1,j} \cdot S_{2,j} + J_{\times} (S_{1,j} \cdot S_{2,j+1} + S_{1,j+1} \cdot S_{2,j}) \right]. \]

Above \(S_{i,j} \) represent spin \(S = 1/2 \) operators on the \(j \)-th rung, \(l \)-th leg, and periodic boundary conditions are assumed \(S_{i,N+1} = S_{i,1} \). In order to avoid additional frustration by the boundary conditions, we will consider only even chain lengths \(N \).

The above Hamiltonian (3) with \(J_2 = 0 \) has already been investigated in detail. In particular the case \(J_\times = J, J_2 = 0 \) serves as a good illustration of two possible phases since in this case the total spins on all rungs are good quantum numbers. Then the ground state consists of local singlets \(S_\text{rung} = 0 \) for sufficiently large \(J_\perp \) with a clear gap to all excitations. On the other hand, for small \(J_\perp \), total spin \(S_\text{rung} = 1 \) is formed on each rung and the low-energy physics is governed by an effective spin-one chain. In the latter case, the ground state is the famous ‘Haldane’ state which is also gapped (see e.g. Ref. [14] for a recent review of spin-chain models). These two phases extend to \(J_\times \neq J, J_2 \neq 0 \) and we refer to them as ‘rung-singlet’ and ‘Haldane’ phase, respectively.

III. WEAK-COUPLING APPROACH, BOSONIZATION

In this section we perform the weak-coupling analysis of our system. We will follow the usual way and start from a continuous field theory description of the individual spin chain and treat the interchain interactions perturbatively. We note that one can construct two equivalent weak-coupling formulations. One can start from decoupled chain limits where chains run either along the ladder legs, or along the ladder diagonals. These two cases are connected to each other by a ‘duality transformation’ exchanging the spins on every second rung. For definiteness we start from two decoupled frustrated chains running along the ladder legs: \(J_\times, J_\perp \ll J \). Spin operators on each chain are decomposed in their smooth and staggered parts:

\[S_{i,j} / a_0 = S_i(x = j a_0) = J_i(x) + \bar{J}_i(x) + (-1)^x n_i(x) \]

with lattice constant \(a_0 \). \(J_i \) and \(\bar{J}_i \) are left and right \(SU(2) \) currents of the \(l \)-th chain and have conformal weights \((1,0)\) and \((0,1)\) respectively. Staggered spin densities are represented by more relevant operators, indicating an inherent instability towards doubling of the unit cell in antiferromagnetic chains:

\[n_i(x) \sim \text{Tr}(\sigma^i g_i(x)). \]

Here \(g_i(x) \) stands for the basic \(2 \times 2 \) matrix field of the Wess-Zumino model and has conformal weights \((1/4,1/4)\). \(\sigma^i \) are the Pauli matrices. The scalar quantity which is represented in the continuum limit by an operator of the same dimension as the staggered part of the magnetization is the dimerization operator:

\[S_i(x)S_i(x+a_0) = (-1)^x \epsilon_i(x) + \text{less relevant smooth part}. \]

In terms of the basic Wess-Zumino matrix field the following representation holds for the dimerization operator:

\[\epsilon_i(x) \sim \text{Tr} g_i(x). \]

The effective quantum field theory in the continuum limit of a single chain is that of a critical \(SU(2) \) Wess-Zumino model perturbed by a marginal current-current interaction:

\[H_I = 2\pi u / 3 (:\mathbf{J}_i: + :\bar{\mathbf{J}}_i:) + \gamma \mathbf{J}_i \bar{\mathbf{J}}_i \] with the following notations:

\[u = J a_0 \pi / 2 \quad \text{and} \quad \gamma = J_2 - J_2,c, \]

where \(J_2,c \approx 0.24,0.17,0.18 \). If \(\gamma < 0 \) the perturbation is marginally irrelevant, but when \(\gamma > 0 \) the interaction flows towards strong coupling and the system dimerizes spontaneously with a dynamically generated gap in the excitation spectrum. In Abelian bosonization representation we can rewrite (5) as:

\[H_I = \frac{u}{2} \left[(\theta_i(x))^2 + (\phi_i(x))^2 \right] - \frac{\gamma}{2\pi^2} \cos \sqrt{8\pi} \phi_i + \frac{\gamma}{\pi} \partial_x \phi_{i,R} \partial_x \phi_{i,L} \]

with compactified dual bosonic fields \(\theta \) and \(\phi \). The following representations hold for the staggered spin density and dimerization operators:

\[n_i(x) \sim \left(\cos \sqrt{2\pi} \theta_i(x), \sin \sqrt{2\pi} \theta_i(x), \sin \sqrt{2\pi} \phi_i(x) \right), \]

\[\epsilon_i(x) \sim \cos \sqrt{2\pi} \phi_i(x). \]
For further analyses, treating interchain coupling perturbatively, it will be convenient to pass to symmetric and antisymmetric combinations of the bosonic fields

\[\phi_{\pm}(x) = \frac{\phi_1(x) \pm \phi_2(x)}{\sqrt{2}} \quad (11) \]

and define the continuum limit expressions of order parameters for columnar and staggered dimerizations of the two chains:

\[\begin{align*}
\epsilon_+ &= \epsilon_1 + \epsilon_2 \sim \cos \sqrt{\pi} \phi_+ \cos \sqrt{\pi} \phi_-, \\
\epsilon_- &= \epsilon_1 - \epsilon_2 \sim \sin \sqrt{\pi} \phi_+ \sin \sqrt{\pi} \phi_-.
\end{align*} \quad (12) \]

The Hamiltonian in the symmetric and antisymmetric sectors will contain a marginally relevant intersector coupling which promotes dimerization within the chains:

\[\begin{align*}
-\frac{\gamma}{\pi} \partial_x \phi_{+,R} \partial_x \phi_{+,L} + \frac{\gamma}{\pi} \partial_x \phi_{-,R} \partial_x \phi_{-,L} \\
- \frac{\gamma}{\pi^2} \cos \sqrt{4\pi} \phi_+ \cos \sqrt{4\pi} \phi_-.
\end{align*} \quad (13) \]

The intersector interactions \[\text{(13)} \] show that the vacuum configurations of the symmetric and antisymmetric sectors are degenerate:

\[\begin{align*}
a : \quad \cos \sqrt{4\pi} \phi_+ = \cos \sqrt{4\pi} \phi_- = 1 \\
b : \quad \cos \sqrt{4\pi} \phi_+ = \cos \sqrt{4\pi} \phi_- = -1.
\end{align*} \quad (14) \]

This includes the two-leg ladder dimerized in different patterns, namely a: with long-range ordered columnar b: staggered dimerizations, respectively.

The expressions of spin operators in terms of the bosonic fields are valid as long as the dimerization is very weak. We can then add interchain interactions to the frustrated decoupled chains. We classify interchain couplings according to their scaling dimension:

\[H_{\text{int}} \sim (J_1 + 2J_\perp) (J_2(x) + \bar{J}_2(x)) (J_1(x) + \bar{J}_1(x)) + (J_\perp - 2J_\times) n_1(x) n_2(x). \quad (15) \]

The product of the smooth parts of the spin operators is translated into marginal operators, whereas the product of the staggered parts is represented by relevant operators in the effective field theory.

\[H = H^+ + H^- \]

\[\begin{align*}
H^+ &= \frac{u_+}{2} \left[(\partial_x \theta_+)^2 + (\partial_x \phi_+)^2 \right] - \frac{\tilde{J}_\perp}{\pi^2} \cos \sqrt{4\pi} \phi_+(x) \\
H^- &= \frac{u_-}{2} \left[(\partial_x \theta_-)^2 + (\partial_x \phi_-)^2 \right] + \frac{\tilde{J}_\perp}{\pi^2} \cos \sqrt{4\pi} \phi_-(x),
\end{align*} \quad (16) \]

where \[\tilde{J}_\perp = J_\perp - 2J_\times, \]

in weak coupling.

Now we add \(\gamma > 0 \) and look at the limit \(J_\perp, J_\times \ll \gamma \ll J \), which allows to assume stability of the massive dimerized phases of the individual chains against infinitesimal interchain perturbation. For \(J_\perp = J_\times = 0 \) the chains dimerize in columnar and staggered patterns which corresponds to pinning of the symmetric and antisymmetric fields in degenerate vacua with non-zero averages of \(\cos \sqrt{4\pi} \phi_\pm \). One may assume that these averages will be non-zero in a finite region of the parameter space after inclusion of interchain coupling such that we may substitute finite averages for \(\cos \sqrt{4\pi} \phi_\pm \) in \[\text{(13)}. \] In the antisymmetric sector the Hamiltonian density contains a relevant \emph{cosine} of the bosonic field \(\phi_- \) as well as its dual \(\theta_- \), see \[\text{(16)}. \] By contrast, the dual field cannot appear in the symmetric sector for symmetry reasons. The classical vacuum configuration of the symmetric field is pinned unambiguously according to the sign of interchain coupling and thus any small interchain coupling (which is relevant) removes immediately the degeneracy of the ground state of decoupled dimerized chains \[\text{(14)}. \] The picture is as follows: addition of infinitesimally small relevant interchain coupling confines the massive spinons of the individual chains into magnons. At the same time, the ground-state degeneracy is lifted and one of the long-range ordered dimerization patterns (columnar or staggered) is selected. Once the symmetric field \(\phi_+ \) is pinned, we can perform a mean-field decoupling of the interaction term stemming from \(\gamma \). Note that this procedure does not depend on the sign of \(J_\perp - 2J_\times \neq 0 \), the crucial assumption is that a relevant interchain coupling is present, which provides a confining potential to spinons of the individual dimerized chains and selects one of the two long-range ordered dimerization patterns.

At the mean-field level we are left with the following
Hamiltonian:

\[H_{MF} = H_0 + \frac{J_1 c^2}{2\pi^2} \cos 4\pi\theta_-(x) \]
\[- \left(\frac{J_1 c^2}{2\pi^2} + \frac{\gamma}{\pi^2} \left\langle \cos 4\pi\phi_-(x) \right\rangle \right) \cos 4\pi\phi_+(x) \]
\[+ \left(\frac{J_1 c^2}{2\pi^2} - \frac{\gamma}{\pi^2} \left\langle \cos 4\pi\phi_+(x) \right\rangle \right) \cos 4\pi\phi_-(x), \]

(17)

where \(H_0 \) stands for the sum of the Gaussian parts of the symmetric and antisymmetric sectors. This particular form of the mean-field Hamiltonian is convenient for passing to Majorana fermions, but let us first discuss artifacts of the mean-field separation: the mean-field separation in (17) breaks the underlying \(SU(2) \) symmetry of the ladder model to \(U(1) \otimes \mathbb{Z}^2 \). This is verified directly by noting that the very form of the mean-field Hamiltonian (17) coincides with the Hamiltonian of a ladder where the next-nearest inchain frustrating coupling is substituted by the product of dimerization operators of the two chains and interchain coupling is of easy-plane type:

\[(A + B)\epsilon_1(x)\epsilon_2(x) + (A - B)n_1^zn_2^z \]

(18)

with

\[A = -\frac{\gamma}{\pi^2} \left\langle \cos 4\pi\phi_+(x) \right\rangle, \]
\[B = -\frac{\gamma}{\pi^2} \left\langle \cos 4\pi\phi_-(x) \right\rangle. \]

While the product of dimerization operators respects \(SU(2) \) symmetry, the appearance of an effective anisotropy in interchain coupling is clearly an artifact of the mean-field separation and should not be taken physically (e.g. splitting of the triplet of Majorana fermions into doublet and singlet). With increasing interchain exchange in (17) we observe a phase transition represented by a self-dual point in the antisymmetric sector:

\[\frac{J_1 c^2}{2\pi^2} \frac{\gamma}{\pi^2} \left\langle \cos 4\pi\phi_+(x) \right\rangle = -\frac{J_1 c^2}{\pi^2}. \]

(19)

Since our approach is a weak coupling one (starting from decoupled chains) we are dealing with a fixed-point Hamiltonian which is described in terms of two copies of the \(SU(2)_1 \) Wess-Zumino-Witten (WZW) model that is equivalent to an \(SO(4) \) WZW model. The \(SO(4) \) WZW model admits a representation of its generators in terms of four real Majorana fermions. To clarify the symmetries of the stabilized dimerization pattern and to unveil the nature of the self-dual point in the antisymmetric sector we pass to these Majorana fermions and subsequently to Ising variables.

The mean-field Hamiltonian (17) takes the following form in Majorana fermions:

\[H = -\int dx \left[\frac{i\psi^a}{2} (\rho_R \partial_x \psi_R - \rho_L \partial_x \psi_L) + im_\rho \rho_R \rho_L \right] \]
\[- \sum_{a=1}^3 \int dx \left[\frac{i\psi^a}{2} (\psi_R \partial_x \psi_R^a - \psi_L \partial_x \psi_L^a) + im_a \psi_R^a \psi_L^a \right] \]

(20)

where

\[m_\rho \approx (J_\perp - 2J_x) + \text{sign}(J_\perp - 2J_x) \tilde{\gamma}, \]
\[m_a \approx -3(J_\perp - 2J_x) + \text{sign}(J_\perp - 2J_x) \tilde{\gamma} \]

(21)

and \(\tilde{\gamma} \sim \exp (-2\pi/\gamma) > 0 \) in weak coupling. The appearance of the sign function in the expressions for the masses of the Majorana fermions is the most important result of the mean-field treatment. Eq. (21) shows that only the singlet among the Majorana fermions can soften by varying interchain interactions. Note that the triplet and singlet Majorana fermions can be interpreted as follows in the limit of strong rung coupling: the triplet \(\psi^a \) corresponds to a rung magnon (a triplet excitation on a rung), while the singlet \(\rho \) corresponds to the singlet bound state of two magnons. Indeed, we will argue soon that in the context of the effective field theory the singlet Majorana fermion softens at Ising phase transitions. On the other hand, we will show in section IV C that the same Ising phase transitions can be traced to the softening of a singlet bound state of two magnons in our exact diagonalization data.

It is well-known that a Majorana fermion describes the long-distance properties of the two-dimensional Ising model, with the mass of the fermion proportional to the deviation from criticality \(m \sim (T - T_c)/T_c \), meaning in particular that positive mass corresponds to the disordered phase of the Ising model. The following local representations hold in Ising variables for the order parameters of the columnar and staggered dimerized phases \(\epsilon_{\pm} \):

\[\epsilon_+ \approx \mu_1 \mu_2 \mu_3 \mu_4, \quad \epsilon_- \approx \sigma_1 \sigma_2 \sigma_3 \sigma_4, \]

(22)

where \(\mu_i \) and \(\sigma_i \) are disorder and order variables of the \(i \)-th replica of the two-dimensional Ising model respectively.

From the above formulas we read off the following picture: if we add to decoupled dimerized chains a relevant coupling with positive relevant exchange, \(J_\perp - 2J_x > 0 \), then four copies of the Ising model will be in the disordered state, meaning that the ground state will have columnar dimer order. In the case of \(J_\perp - 2J_x < 0 \), a staggered dimerized ground state will be selected. This analysis is supported by the following topological arguments: the ground state of the ordinary antiferromagnetic ladder is parity symmetric, \(\langle \epsilon_\pm \rangle = 0 \). A typical configuration in the resonating valence bond state of the antiferromagnetic ladder is depicted in Fig. 2 with rectangular boxes indicating singlets formed between the
nearest-neighbor spins and the zigzag line representing an effective $S=1$ spin formed across the ladder diagonal.

One can introduce even and odd topological (‘string’) order parameters, as described in Refs. 25, 26. These string order parameters have a simple geometric interpretation: they count the number of valence bonds crossed by an arbitrary vertical line such that the even string order parameter is non-zero if the number of crossed bonds is even and the odd one is non-zero if this number is odd. A nice feature of the two-leg ladder systems is that short-range valence-bond configurations have definite parity string order parameter.\(^{27}\)

In the rung-singlet phase the even string order parameter is non-zero. Since γ does not introduce coupling between the chains both patterns of dimerization (columnar and staggered) are energetically equally favorable at this level, and from Fig. 2 it is clear that the columnar dimer configuration will be long-range ordered after adding relevant interchain coupling with $J_z - 2J_x > 0$. Similar arguments apply to the case $J_z - 2J_x < 0$. From the topology of typical configurations of the RVB state one can see in this case that singlets formed along the ladder diagonals coexist with staggered dimer configurations.\(^{25, 27}\)

The string order parameter is odd and upon increasing interchain frustration the staggered dimer phase will be selected for the ground state. Crossing the surface which at weak couplings reads $J_z - 2J_x \sim 0$, the string order parameter jumps from even to odd by a first-order phase transition. These findings are summarized by the qualitative weak-coupling phase diagram Fig. 3.

Eq. (21) also shows that gaps open linearly as one deviates from the Ising transition lines either in the rung singlet or in the Haldane phase directions.

Let us summarize the mean-field scenario presented above and the supporting topological arguments: when two dimerized chains are coupled in such a way that relevant interchain coupling is present (in the model which we consider it is always present at weak coupling)\(^{28}\) it provides a confining potential between the gapped spinons of the individual chains and the four-fold degeneracy of the ground state is reduced to two fold. But what can we say when interchain coupling is itself frustrated, i.e. when no relevant terms stem from interchain exchange and no confining potential is supplied for deconfined gapped spinons (for example, if we add additional four-spin interactions)? We answer these issues in the next section where we derive a new quantum phase transition when both competing interactions (inchain as well as interchain) are marginal.

B. Mapping to the Gross-Neveu model

In this section we fine-tune interchain exchange to cancel relevant contributions. As recently discussed by Starykh et al.,\(^{5}\) in the simple model\(^{11}\) interchain exchange cannot be fine-tuned to yield only marginal interactions unless we add four-spin counter terms\(^{28}\). In real systems small four-spin interactions are always present e.g. represented by the cyclic ring exchange. So we can assume that we start from the line $J_z - 2J_x = 0$ and relevant terms generated in second order are compensated with small four-spin counter terms. In that case the low-energy degrees of freedom of our fine-tuned model will be described by the triplet and singlet massless Majorana fermions coupled by marginal four-Fermi interactions alone:

$$H_{\text{marg}} = J a_0 \int dx \left[(\lambda + \gamma) \langle \psi_R^\dagger \psi_L^\dagger \psi_R^2 \psi_L^2 \rangle + \psi_R^2 \psi_L^2 \psi_R^3 \psi_L^3 + \psi_R^1 \psi_L^1 \psi_R^3 \psi_L^3 \right] - (\lambda - \gamma) \langle \psi_R^1 \psi_L^1 + \psi_R^2 \psi_L^2 + \psi_R^3 \psi_L^3 \rangle \rho_R \rho_L ,$$

where $\lambda = J_z + 2J_x = 2J_z$. As long as $\gamma < \lambda$, including negative γ we can repeat the analysis by Allen et al.\(^{28}\) where neglecting the anisotropy a mapping to the $O(4)$ Gross-Neveu model\(^{29}\) was used. Based on the one-loop RG equations one can check that negative γ flows to zero at low energies and neglecting the anisotropy will not affect the ground-state properties of the model, neither will the excitation spectrum be modified qualitatively. With increasing γ to zero the mapping to the $O(4)$ Gross-Neveu
model becomes only a better approximation and exactly when \(\gamma = 0 \) the \(O(4) \) Gross-Neveu model is the exact low-energy effective field theory describing chains coupled by frustrated interchain interaction. Further increasing interchain frustration, telescoping (23) shows that at the point where

\[
\gamma = \lambda = 2 J_\perp
\]

a new quantum phase transition takes place where the zeroth Majorana fermion decouples from the rest of the triplet. Low-energy excitations at this quantum critical point are governed by a free massless Majorana fermion plus an \(O(3) \) Gross-Neveu model with dynamically generated mass. The sign of the mass defines the dimerization pattern of the model. Elementary excitations are deconfined massive spinons which interpolate between the four-fold degenerate vacua of the lattice model. This theory describes a first-order phase transition line between the columnar dimer and staggered dimer phases.

IV. NUMERICAL RESULTS

In order to test numerically the predictions for the phase diagram and the nature of phase transitions we start from the Majumdar-Ghosh point \(J_2 = J/2 \) in the decoupled chains.\(^{20}\) Each of the decoupled chains then has two degenerate dimerized ground states with a gap to the excitations. This behavior is generic in the vicinity of the Majumdar-Ghosh point, but the correlation length is minimal exactly at \(J_2 = J/2 \).\(^{20}\) Such a short correlation length is advantageous for numerical calculations since it minimizes finite-size effects.

For two weakly coupled dimerized chains, there will be four states which are well separated from higher excitations. We then need to clarify which ground state is formed depending on the coupling between the chains. In this context, it is interesting to note that for the particular choice \(J_\perp = 2 J_\times \) of interchain coupling at \(J_2 = J/2 \), the two staggered dimer arrangements remain exact eigenstates. Indeed, it is straightforward to check that interchain coupling terms cancel on the staggered dimer states. On the other hand, columnar dimer states cease to be exact eigenstates of the full ladder Hamiltonian, thus they can lower their energy by fluctuations. Therefore, we expect that two chains with \(J_2 = J/2 \) weakly coupled by \(J_\perp = 2 J_\times \) will have a columnar dimer pattern in the ground state.

To determine the ground state phase diagram, we have performed exact diagonalization of ladders with up to \(N = 16 \) rungs (32 spins) using a standard Lanczos method, exploiting the conservation of total \(S^z \) and spatial symmetries. We impose periodic boundary conditions along the chains in order to have translational symmetry. Furthermore, there is an exchange symmetry of the chains. Important information about the ground state is provided by the associated quantum numbers, in particular momentum \(k \) for translation along the chains, and \(k_y \) for the ‘momentum’ corresponding to an exchange of the chains. On a finite system, the two staggered and columnar dimer states both combine to a ground state with \(k = 0 \), \(k_y = 0 \). However, the value of \(k_y \) in the first excited state distinguishes between the two cases: a combination of staggered dimer states gives rise to \(k = 0 \), \(k_y = 0 \), while one obtains \(k = \pi, k_y = 0 \) from the columnar dimer states.

Extrapolations to the thermodynamic limit \(N \to \infty \) will be performed using the Vanden-Broeck-Schwartz (VBS) algorithm\(^{32,33}\) (with the parameter \(\alpha = -1 \) of the algorithm).

A. Low-lying levels

To illustrate the generic behavior, we will first discuss a cut through the phase diagram at \(J_\perp = 0.2 J \). The lines in Fig. 4 show the excitation energy relative to the ground state for the lowest levels with \(k = \pi, k_y = 0 \) and \(\pi \) on a finite system with \(N = 16 \) rungs. On the left side of Fig. 4 all excitations are gapped, consistent with a rung-singlet phase. For \(0 \lesssim J_\times \lesssim 0.18 J \), the \(k = \pi, k_y = 0 \) level approaches the ground state, as is expected in a columnar dimer phase. Note that the point \(J_\perp = 0.2 J, J_\times = 0.1 J \) lies inside the columnar dimer phase, as is expected since it belongs to the line \(J_\perp = 2 J_\times \) discussed above. On the other hand, for \(J_\times \approx 0.2 J \), it is the level
with $k = \pi$, $k_y = \pi$ which is approaching the ground state. This behavior is consistent with a staggered dimer phase around $J_x \approx 0.2J$. Finally, on the right side of Fig. 4 all excitations are again gapped, consistent with a Haldane phase.

The locations of the phase transitions shown by the three big filled triangles in Fig. 4 are determined as follows. For intermediate J_x, the levels shown in Fig. 4 are the only low-lying excitations, implying a direct first-order transition from the columnar dimer to the staggered dimer phase. We take the crossing of these two excited levels on a ladder with N rungs as an estimate for the transition point. We then extrapolate the crossing points with $6 \leq N \leq 16$ rungs using the VBS algorithm. This extrapolation leads to the middle triangle in Fig. 4. Since the dependence on N is only weak, this extrapolated point is very close to the finite-size estimate for $N = 16$.

The transitions to the rung-singlet phase and the Haldane phase at the left and right boundaries are expected to be second-order phase transitions. Such transitions can be accurately estimated using the phenomenological renormalization group method. The critical couplings $\{J\}$ are determined by the condition that the levels for two different system sizes N_1, N_2 satisfy

$$N_1 \Delta E_{k=\pi,k_y}(N_1, \{J\}) = N_2 \Delta E_{k=\pi,k_y}(N_2, \{J\}).$$

Here, one should choose $k_y = 0$ and π for the transitions into the columnar and staggered dimer phases, respectively. Application of (25) to $N_1 = 14$ and $N_2 = 16$ yields the two remaining filled triangles in Fig. 4 (we neglect the dependence on N_1 and N_2 since in this case it is only weak).

Finally, the open circles and triangles in Fig. 4 show an extrapolation to the thermodynamic limit of the $k_y = 0$ and the $k_y = \pi$ levels, respectively. This extrapolation has been performed with system sizes starting at $N = 4$ rungs using the VBS algorithm. Errors of the extrapolation are difficult to estimate, but should not exceed the size of the symbols. In some cases, no convergence can be seen in the finite-size data for the higher-lying level such that no extrapolation can be performed for that level. However, in these regions of J_x, the energy of the higher level shows a tendency to increase with N for the accessible system sizes. Thus, the higher-lying level can safely be assumed to stay at high energies in those regions where we cannot extrapolate it.

The behavior of the extrapolated gaps is essentially linear approaching the two second-order phase transitions from the outside. This is consistent with a critical exponent $\nu = 1$, characteristic of the two-dimensional Ising universality class35,36 predicted above.

B. Phase diagram

Now we apply the results of the preceding subsection to determine the full phase diagram for $0 \leq J_x \leq J$, $0 \leq J_\perp$ in the plane $J_2 = J/2$. Numerical scans were performed for $N \leq 14$ rungs since they require diagonalizations for a large set of data points (we have performed computations for approximately 4000 different pairs of J_x and J_\parallel at $N = 14$). In selected regions we performed additional computations for $N = 16$, Fig. 5 summarizes our results. One can distinguish four different gapped phases. A rung-singlet and a Haldane phase appear at large J_\perp and J_x, respectively. Previous results35,36 for the point $J_x = 0$, $J_\perp = J$, $J_2 = J/2$ are consistent with our conclusion that this lies well inside the rung-singlet phase. The rung-singlet and the Haldane phases have a non-degenerate ground state for a system with periodic boundary conditions. Between these two phases there exist two dimerized phases for small values of J_x and J_\perp namely a staggered and a columnar dimer phase. The latter phases have a two-fold degenerate ground state with a spontaneously broken translational symmetry in the thermodynamic limit $N \to \infty$.

The transition between the staggered and columnar dimer phase is of first order and was determined as described in subsection IV A. Level crossings were first determined for fixed $6 \leq N \leq 14$ (16 close to P1) and then...
The transitions between the rung-singlet and Haldane symbols. According to the phenomenological renormalization group condition (25) crossings of levels for different N are estimates for the boundaries of the columnar dimer phase.

extrapolated to $N \to \infty$ using the VBS algorithm. The error of this extrapolation is at most on the order of the width of the line. This transition line passes through the origin, as is expected by consideration of two decoupled dimerized chains.

The transitions from the dimerized phases to the rung-singlet or Haldane phases were determined by the phenomenological renormalization group method (25) with $N_1 = 12$, $N_2 = 14$ (lines) and $N_1 = 14$, $N_2 = 16$ (crosses). This is certainly justified for the transition between the columnar dimer and rung-singlet phase as well as the transition between the staggered dimer and Haldane phase, since these should be second-order transitions belonging to the two-dimensional Ising universality class. The transition between the columnar dimer and Haldane phase was also estimated by the phenomenological renormalization group method, although this may actually be a first-order transition. Nevertheless, finite-size effects are small (see e.g. right side of Fig. 6). Therefore, our estimates for the transition between the columnar dimer and Haldane phase are probably quite accurate, even if we may not have used the most appropriate method.

The intermediate dimerized phases disappear (at least according to the $N_1 = 12$, $N_2 = 14$ estimates) for large interchain couplings at points P1 and P2, respectively. Beyond the point P2, one expects a direct first-order transition from the Haldane to the rung-singlet phase, like in the case $J_2 = 0$. As in Ref. 7, we determine the location of this first-order transition from a cusp in the ground-state energy, using the data for $N = 14$ rungs. The transitions between the rung-singlet and Haldane phase at $J_2 = 0$ and $J_2 = J/2$ probably belong to the same universal surface of first-order transitions.

Finite-size effects of the transition lines are small in most regions of Fig. 5 as can be seen by comparison of the results for $N_1 = 12$, $N_2 = 14$ and $N_1 = 14$, $N_2 = 16$. This applies in particular to the neighborhood of P1 whose location can therefore be considered accurate. However, close to P2, we observe finite-size effects of the boundaries of the columnar dimer phase. In order to discuss this in more detail, Fig. 6 shows scaled energies of the $k = \pi$, $k_y = 0$ excited level for $J_2 = 0.9 J$, $J_2 = J/2$ as a function of J_x. Lines connect actual numerical results which are shown by symbols. According to the phenomenological renormalization group condition (25). Unfortunately there is no systematic dependence of the crossings points on N_1, N_2 such that an extrapolation is not possible. Most crossings for the transition to the rung singlet phase (left side of Fig. 6) lie between the $N_1 = 14$, $N_2 = 16$ crossing at $J_\perp \approx 0.642 J$ and the $N_1 = 12$, $N_2 = 14$ crossing at $J_\perp \approx 0.704 J$. Furthermore, linear extrapolation of the levels for fixed N suggests a closing of the gap and thus a phase transition around $J_\perp \approx 0.66 J$. Overall, it seems likely that the $N_1 = 12$, $N_2 = 14$ data underestimate the stability region of the columnar dimer phase, while $N_1 = 14$, $N_2 = 16$ may overestimate it. Thus, the location of the termination point P2 is probably at larger J_x, J_\perp in the thermodynamic limit than the estimate in Fig. 5. Still one can argue that the columnar dimer phase has to terminate. Firstly, it cannot extend beyond $J_x = J$, since the duality transformation mentioned at the beginning of section 11 maps the columnar dimer phase which we observe for $J_x < J$ to a different phase with dimers on the diagonals for $J' = J > J' = J_x$, $J' = J_\perp$. Secondly, the region where J_\perp is much bigger than all other exchange constants obviously belongs to the rung-singlet phase. Therefore, the columnar dimer phase has to terminate either at a point P2 located in the region $J_x < J$, or on the line $J_x = J$. If the latter situation is realized we cannot exclude the possibility that the rung-singlet and Haldane phase are separated by a Gaussian quantum critical point located at $J_x = J$.

Finally, we discuss the relation of the numerical phase diagram to the picture obtained by the mapping to the Gross-Neveu model presented in subsection 1113. Numerically we see that the columnar dimer phase extends to stronger interchain couplings than the staggered dimer phase. This gives further support to the observation that additional interactions such as ring exchange are necessary to fine-tune all relevant interchain couplings to zero. Indeed, it was found that ring exchange stabilizes staggered dimer order (38,39). Therefore, ring exchange will cause the points P1 and P2 in Fig. 5 to move towards each other. P1 and P2 will merge when all relevant interchain couplings are fine-tuned to zero. For the latter situation the effective theory of the multi-critical point will be described by one gapless Majorana fermion decoupled from the rest of the gapped $O(3)$ Gross-Neveu model as presented in subsection 1112. Since the effective field theory describing long wavelength fluctuations of our model has a form similar to the one considered.
in Ref. the same conclusion concerning the need to include additional four-spin interactions in order to suppress all relevant interchain couplings applies to the case $J_2 = 0$ considered in Ref. 4.

C. Softening of a bound state

In this last subsection we will comment on the nature of the elementary excitations. For this purpose we start from strong J_\perp where one naturally obtains a rung-singlet phase and approach the transition to the columnar dimer phase along the line $J_x = 0$. Since we just wish to make a qualitative point, we restrict to $N = 12$ rungs in this section. Fig. 7 shows numerical results at $J_x = 0$, $J_2 = J/2$ for the lowest excited levels in the sectors with total spin $S = 0$, 1, and 2. At strong J_\perp the lowest excitation is a propagating triplet around $\Delta E = J_\perp$ above a non-degenerate ground state. On the other hand, the singlet excitation which softens at the transition to a columnar dimer state at $J_\perp \approx 0.29 J$ can be traced to the lower boundary the $S = 2$ continuum which starts at $\Delta E = 2 J_\perp$ for $J_\perp \to \infty$. This implies that the singlet which at small J_\perp is a low-energy excitation originates from a bound state of two triplets at strong J_\perp. For the parameters of Fig. 7 this bound state has lower energy than the fundamental triplet for $J_\perp \lesssim 0.8 J$ and finally softens at the Ising transition while states with non-zero total spin remain at a finite energy. Similarly, the transition from the Haldane phase to the staggered dimer phase should occur via softening of an $S = 0$ two-magnon bound state while a single magnon remains gapped at the transition.

It is straightforward to analyze the one-triplet and the bound-state problem of two triplets by perturbation theory at strong J_\perp. In fact, formation of bound states has been observed for ladders with $J_2 = J_x = 0$ (see e.g. Ref. 40). However, in this case none of the bound states has lower energy than the lowest edge of the two-triplet continuum. Two things happen when one turns on J_2 or J_x. Firstly, the minimum of the single-triplet dispersion generally shifts to incommensurate wave vectors. Secondly, now a bound state can appear at strong coupling which has an energy below the lowest edge of the two-particle continuum (see also Ref. 41 for $J_2 = 0$). However, it is necessary to go to high orders to obtain quantitative agreement with numerical data. Therefore we do not pursue this further here.

Finally, we would like to mention that the bound-state nature of the lowest excitation leads to unusual finite-size effects close to the phase transitions and thus explains the difficulties with the extrapolations encountered in the previous subsections.

V. CONCLUSIONS

We have studied the ground-state phase diagram and the nature of elementary excitations of a frustrated spin ladder. The effect of relevant and marginal interchain exchanges has been analyzed by an effective field theory approach. Particular attention was paid to the interplay between two clearly separate scales set by inchain frustration and interchain couplings. First, a rung-singlet and a Haldane phase are known to appear for $J_2 = 0$, $J_\perp < J$ and for $J_2 > J_\perp$, see Fig. 5. The staggered dimer phase was found to terminate first at a point P_1 while the columnar dimer phase extends to stronger interchain coupling, terminating at P_2. Beyond P_2 there is a direct first-order transition from the rung-singlet to the Haldane phase if P_2 is located at $J_x < J$, like for $J_2 = 0.7 \frac{J}{2}$ Should P_2 be located at $J_x = J_\perp \frac{J}{2}$, the rung-singlet and Haldane phases might be separated by a second-order phase transition point.

The part of the phase diagram with $J_x > J$ is obtained from the one with $J_x < J$ by a duality-type argument. In particular, the columnar and staggered dimer phases map to two different dimerized phases with dimers on the diagonals.

Finally, we have observed an interesting phenomenon when approaching the columnar or staggered dimer phase from the rung-singlet or Haldane phase, respectively. Namely, a singlet bound state forms below the two-triplet scattering continuum. This singlet bound state crosses the fundamental triplet excitation and finally softens at

FIG. 7: (Color online) The lowest excited levels with total spin $S = 0$, 1, and 2 on a ladder with $N = 12$ rungs for $J_x = 0$, $J_2 = J/2$ as a function of J_\perp on a semi-logarithmic scale.
the Ising phase transition.

Since all phases are gapped, they will be stable under weak higher-dimensional coupling between the ladders. If one approaches the $J_1 - J_2 - J_3$ frustrated square lattice\cite{9,10} by such inter-ladder coupling, the rung singlet phase will be adjacent to a Néel phase, and the Haldane phase will share a boundary with a phase where spins are ordered antiferromagnetically along one ‘ladder’ direction and ferromagnetically along the other direction. Our results show that in such a generalized phase diagram there will be further dimerized phases, in particular some with two-dimensional columnar and staggered dimer patterns. We therefore hope that our results will also be useful to elucidate the phase diagram of the $J_1 - J_2 - J_3$ frustrated spin-1/2 Heisenberg antiferromagnet on the square lattice\cite{9,10}.

Acknowledgments

This work was initiated at the Institut für Theoretische Physik (ITP), University of Hannover. Both authors would like to thank the ITP for the hospitality extended to them during this period. We are particularly grateful to H.-J. Mikeska for valuable discussions. Furthermore, A.H. would like to acknowledge the Laboratoire de Physique Théorique, ULP Strasbourg for hospitality during the final stages of this work. Parts of the numerical computations have been performed on COMPAQ ES45 and SGI Altix 350 compute servers at the TU Braunschweig and ULP Strasbourg, respectively.

1. P. W. Anderson, Science 235, 1196 (1987).
2. G. Misguich and C. Lhuillier, in “Frustrated spin systems”, Ed. H. T. Diep, World-Scientific, Singapore (2005).
3. J. Richter, J. Schellenburg, and A. Honecker, Lect. Notes Phys. 645, 85-153 (2004).
4. A. A. Nersesyan and A. M. Tsvelik, Phys. Rev. B 67, 024422 (2003).
5. D. Allen, F. H. L. Essler, and A. A. Nersesyan, Phys. Rev. B 61, 8871 (2000).
6. O. A. Starykh and L. Balents, Phys. Rev. Lett. 93, 127202 (2004).
7. X. Wang, Mod. Phys. Lett. B 14, 327 (2000).
8. L. Capriotti, D. J. Scalapino, and S. R. White, Phys. Rev. Lett. 93, 177004 (2004).
9. S. Sachdev and R. N. Bhatt, Phys. Rev. B 41, 9323 (1990); A. Chubukov, Phys. Rev. B 44, 392 (1991); I. G. Gogol, Phys. Rev. B 51, 16421 (1995); L. Capriotti and S. Sachdev, Phys. Rev. Lett. 93, 257206 (2004).
10. M. P. Gelfand, R. R. Singh, and D. A. Huse, Phys. Rev. B 40, 10801 (1989); P. W. Leung and N. W. Lam, Phys. Rev. B 53, 2213 (1996).
11. A. O. Gogolin, A. A. Nersesyan, and A. M. Tsvelik, Bosonization and Strongly Correlated Systems, Cambridge University Press (1999).
12. M. P. Gelfand, Phys. Rev. B 43, 8644 (1991); I. Bose and S. Gayen, Phys. Rev. B 48, R10653 (1993); Y. Xian, Phys. Rev. B 52, 12485 (1995); H. Kitatani and T. Oguchi, J. Phys. Soc. Jpn. 65, 1387 (1996); A. Honecker, F. Mila, and M. Troyer, Eur. Phys. J. B 15, 227 (2000).
13. Zheng Weinhard, V. Kotov, and J. Oitmaa, Phys. Rev. B 57, 11439 (1998).
14. H.-J. Mikeska and A. K. Kozelhuk, Lect. Notes Phys. 645, 1-83 (2004).
15. I. Affleck, in Fields, strings and critical phenomena, Eds. E. Brézin and J. Zinn-Justin, Elsevier, Amsterdam (1990).
16. D. C. Cabra and P. Pujol, Lect. Notes Phys. 645, 253 (2004).
17. K. Okamoto and K. Nomura, Phys. Lett. A 169, 433 (1992).
18. S. Eggert, Phys. Rev. B 54, R9612 (1996).
19. F. D. M. Haldane, Phys. Rev. B 25, R4925 (1982).
20. K. Totsuka and M. Suzuki, J. Phys.: Condensed Matter 7, 6079 (1995).
21. D. G. Shelton, A. A. Nersesyan, and A. M. Tsvelik, Phys. Rev. B 53, 8521 (1996).
22. D. Allen and D. Sénéchal, Phys. Rev. B 55, 299 (1997).
23. C. Itzykson and J.-M. Drouffe, Statistical Field Theory, Cambridge University Press (1989), v. 1.
24. L. P. Kadanoff and H. Ceva, Phys. Rev. B 3, 3918 (1971).
25. S. R. White, Phys. Rev. B 53, 52 (1996).
26. E. H. Kim, G. Fáth, J. Sólyom, and D. J. Scalapino, Phys. Rev. B 62, 14965 (2000).
27. S. R. White, R. M. Noack, and D. J. Scalapino, Phys. Rev. Lett. 73, 886 (1994).
28. A. M. Tsvelik, Phys. Rev. B 70, 134412 (2004).
29. D. Gross and A. Neveu, Phys. Rev. D 10, 3235 (1974).
30. C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, 1399 (1969).
31. S. R. White and I. Affleck, Phys. Rev. B 54, 9862 (1996).
32. J.-M. vanden Broeck and L. W. Schwartz, Siam. J. Math. Anal. 10, 658 (1979).
33. M. Henkel and G. Schütz, J. Phys. A 21, 2617 (1988).
34. H. H. Romany and H. W. Wyld, Phys. Rev. D 21, 3341 (1980).
35. L. Onsager, Phys. Rev. 65, 117 (1944).
36. M. E. Fisher and R. J. Burford, Phys. Rev. 156, 583 (1967).
37. T. Barnes, E. Dagotto, J. Riera, and E. S. Swanson, Phys. Rev. B 47, 3196 (1993).
38. M. Müller, T. Vekua, and H.-J. Mikeska, Phys. Rev. B 66, 134423 (2002).
39. A. Läuchli, G. Schmid, and M. Troyer, Phys. Rev. B 67, 100409(R) (2003).
40. O. P. Sushkov and V. N. Kotov, Phys. Rev. Lett. 81, 1941 (1998).
41. V. N. Kotov, O. P. Sushkov, and R. Eder, Phys. Rev. B 59, 6266 (1999).
42. S. Trebst, H. Monien, C. J. Hamer, Zheng Wei, and R. R. P. Singh, Phys. Rev. Lett. 85, 4373 (2000).
43. Duality arguments show that $P2$ cannot be located in the region $J_x > J$.

This work was initiated at the Institut für Theoretische Physik (ITP), University of Hannover. Both authors would like to thank the ITP for the hospitality extended to them during this period. We are particularly grateful to H.-J. Mikeska for valuable discussions. Furthermore, A.H. would like to acknowledge the Laboratoire de Physique Théorique, ULP Strasbourg for hospitality during the final stages of this work. Parts of the numerical computations have been performed on COMPAQ ES45 and SGI Altix 350 compute servers at the TU Braunschweig and ULP Strasbourg, respectively.