Comparison between rosuvastatin and atorvastatin for the prevention of contrast-induced nephropathy in patients with STEMI undergoing primary percutaneous coronary intervention

Ata Firouzi, Ali Kazem Moussavi, Ahmad Mohebbi, Mohammad Javad Alemzadeh-Ansari*, Reza Kiani, Hamid Reza Sanati, Bahram Mohebbi, Farshad Shakerian, Ali Zahedmehr, Mohammad Mostafa Ansari-Ramandi, Saeed Oni Heris, Bahar Ghaleshi, Fatemeh Ghorbani

Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran

Introduction
The leading cause of mortality worldwide, coronary artery disease is on the rise owing to higher sanitary levels, urbanization, and aging populations.1-3 Coronary artery disease is responsible for 6.4 deaths per 10000 Iranian population, and 35% of all mortalities are due to cardiac diseases.4,5 Coronary artery bypass grafting and percutaneous coronary interventions (PCI) are the principal revascularization approaches.6-8 Early PCI is the method of choice for myocardial infarction with ST-segment elevation undergoing primary percutaneous coronary intervention (PCI) in a training referral hospital in 2015. Patients were randomly assigned to receive either atorvastatin 80 mg at admission and daily or rosuvastatin 40 mg at admission and daily. CIN was defined based on serum creatinine elevation after 48 hours from the PCI.

Results: The incidence of CIN was observed in 63 patients (21.4%) After 48 hours from primary PCI. Of those, 17% (n = 50) were grade 1 CIN, while 4.4% (n = 13) were grade 2 CIN. There was no significant difference between rosuvastatin group compared with atorvastatin group, regarding the CIN grading (P = 0.14).

Conclusion: Our results indicate that atorvastatin and rosuvastatin have similar efficacy for the prevention of CIN.

Abstract
Introduction: There is some controversy over the efficacy of statins for the prevention of contrast-induced nephropathy (CIN). There have also been reports on varying efficacies of different statins. Hence, in this study the efficacy of atorvastatin and rosuvastatin for the prevention of CIN was assessed.

Methods: This single-blind randomized clinical trial was performed on 495 random patients with myocardial infarction with ST-segment elevation undergoing primary percutaneous coronary intervention (PCI) in a training referral hospital in 2015. Patients were randomly assigned to receive either atorvastatin 80 mg at admission and daily or rosuvastatin 40 mg at admission and daily. CIN was defined based on serum creatinine elevation after 48 hours from the PCI.

Results: The incidence of CIN was observed in 63 patients (21.4%) After 48 hours from primary PCI. Of those, 17% (n = 50) were grade 1 CIN, while 4.4% (n = 13) were grade 2 CIN. There was no significant difference between rosuvastatin group compared with atorvastatin group, regarding the CIN grading (P = 0.14).

Conclusion: Our results indicate that atorvastatin and rosuvastatin have similar efficacy for the prevention of CIN.

Please cite this article as: Firouzi A, Moussavi AK, Mohebbi A, Alemzadeh-Ansari MJ, Kiani R, Sanati HR, Mohebbi B, Shakerian F, Zahedmehr A, Ansari-Ramandi MM, Oni Heris S, Ghaleshi B, Ghorbani F. Comparison between rosuvastatin and atorvastatin for the prevention of contrast-induced nephropathy in patients with STEMI undergoing primary percutaneous coronary intervention. J Cardiovasc Thorac Res 2018;10(3):149-152. doi: 10.15171/jcvtr.2018.24.
on varying efficacies of various statins. Accordingly, in this study the efficacy of atorvastatin and rosvastatin for the prevention of CIN was assessed among patients undergoing primary PCI.

Materials and Methods

This single-blind randomized clinical trial was performed on 302 random patients with myocardial infarction with ST-segment elevation undergoing primary PCI in a training referral hospital in 2015. The patients with known hypersensitivity to statins, those with cardiogenic shock status, pregnant and lactating females, and those who had received a contrast agent within the preceding week were excluded from the study.

The patients were randomly assigned to receive either atorvastatin (n = 150) or rosvastatin (n = 152). Unfortunately, 7 patients died before 48 hours from presentation. Thus, 144 patients in atorvastatin group and 151 patients in rosvastatin were evaluated. Atorvastatin dose was 80 mg at admission and daily up to 48 hours later, and rosvastatin dose was 40 mg at admission and daily up to 48 hours after the procedure. Before the PCI procedure, hemoglobin, lipid profile, baseline blood urea nitrogen (BUN), creatinine, and glomerular filtration rate (GFR) were assessed. The Mehran CIN-Risk score was calculated based on Mehran et al study. Thereafter, BUN, creatinine, and GFR were assessed for 48 hours. The prediction of creatinine clearance (in mL/min) by the Cockcroft-Gault formula was calculated as
\[
(140 – \text{age}) \times \frac{\text{body weight}}{\text{serum creatinine}} \times 72 \times (0.85 \text{ if female})
\]

Statistical Analysis

The continuous variables are expressed as mean ± standard deviation, and they were compared using the Student t-test or the Mann-Whitney U-test, as appropriate. The categorical variables are expressed as frequencies and percentages, and they were compared between the aforementioned groups applying the χ² test or the Fisher exact test. All \(P \) values <0.05 were considered statistically significant. All the data analyses were conducted using SPSS (version 19.0) (Chicago, Illinois, US).

Results

A total of 295 patients with ST-segment elevation myocardial infarction (STEMI) undergoing primary PCI were enrolled in the study. The patients were randomized to 80 mg atorvastatin (n = 144) or 40 mg rosvastatin (n = 151), respectively, prior to primary PCI. The baseline characteristics were not difference between 2 groups (Table 1). Also, Mehran’s CIN risk score was not different

Variables	Drugs	Atorvastatin (n = 144)	p value	
Age > 75 years old, No. (%)	Rosuvastatin (n = 151)	15 (9.9%)	8 (5.6%)	0.161
Male gender, No. (%)	130 (86.1%)	118 (81.9%)	0.330	
Cigarette smoking, No. (%)	65 (43.0%)	75 (52.1%)	0.120	
Diabetes mellitus, No. (%)	42 (27.8%)	38 (26.4%)	0.783	
Hypertension, No. (%)	60 (39.7%)	72 (50.0%)	0.076	
Hypercholesterolemia, No. (%)	8 (5.3%)	14 (9.7%)	0.148	
Prior CABG, No. (%)	13 (8.6%)	7 (4.9%)	0.201	
Prior PCI, No. (%)	25 (16.6%)	18 (12.5%)	0.324	
Total cholesterol	166.4 ± 42.4	168.8 ± 42.0	0.638	
Low-density lipoprotein	104.2 ± 76.2	102.0 ± 33.6	0.372	
High-density lipoprotein	42.4 ± 8.9	40.7 ± 7.9	0.117	
Triglycerides	123.6 ± 56.7	136.2 ± 77.0	0.342	
Hemoglobin	14.5 ± 1.6	14.4 ± 1.5	0.567	
Angiotensin-converting enzyme-inhibitor, No. (%)	103 (68.2%)	94 (65.3%)	0.593	
Angiotensin II receptor blocker use, No. (%)	27 (17.9%)	33 (22.9%)	0.283	
Beta-blocker use, No. (%)	118 (78.1%)	115 (79.9%)	0.718	
Diuretic use, No. (%)	55 (36.4%)	50 (34.7%)	0.760	
Calcium channel blocker, No. (%)	11 (7.3%)	11 (7.6%)	0.908	
Angiography data, No. (%)				
Multi-vessel	85 (56.3%)	81 (56.3%)	0.994	
Single-vessel	65 (43.0%)	61 (42.4%)	0.905	
Ejection fraction < 30%	36 (23.8%)	31 (21.5%)	0.635	
Mehran’s contrast-induced nephropathy risk score, No. (%)				
≤5	57 (37.7%)	58 (40.3%)		
6–10	67 (44.4%)	62 (43.1%)	0.966	
11–16	23 (15.2%)	21 (14.6%)		
≥ 16	4 (2.6%)	3 (2.1%)		
between statin groups.

Totally, 36 patients (12.2%) had eGFR lower than 60 mL/min/1.73 m², which was not different between groups (P value: 0.36). After 48 hours from primary PCI, the CIN were observed in 63 patients (21.4%). Of those, 17% (n = 50) were grade 1 CIN, while 4.4% (n = 13) were grade 2 CIN. There was no significant between statin groups regarding the CIN grading (P value: 0.14) (Table 2; Figure 1).

Discussion

The present study revealed that high doses rosuvastatin in setting of STEMI patients who underwent primary PCI on preventing CIN is effective compared with high dose atorvastatin. Muñoz et al compared the efficacy of simvastatin and pravastatin for CIN prophylaxis among 261 patients and reported rates of 17.9% and 8.6% in the simvastatin and pravastatin groups, respectively, with the difference constituting statistical significance. There was no dialysis-requiring case in their study, similar to our study. However, the authors found that 14.5% and 6.9% of their patients in the simvastatin and pravastatin groups, correspondingly, had acute renal failure - with a significant difference. Totally, they concluded that pravastatin had better efficacy for CIN prophylaxis.

Leoncini et al had 2 groups of patients with and without rosuvastatin and reported that 15.1% and 6.7% had CIN in the control and drugs groups, respectively, showing a statistically significant difference. In addition, their rosuvastatin group experienced lower death and re-infarction rates.

Toso et al compared 2 groups of patients with and without atorvastatin and reported that 11% in the control group and 10% in the drugs group had CIN, showing no statistically significant difference. The investigators concluded that atorvastatin had no effect on CIN prevention. Pappy et al revealed in their meta-analysis that statins were effective drugs for CIN prophylaxis, which is concordant with our results. The results of our study are reliable because of the use of group matching and reduction of the effects of confounding factors.

Figure 1. The frequency of CIN was not significant difference found between statin treatment groups.

Table 2. Baseline and 48 hour laboratory data and frequency of CIN between groups

	Rosuvastatin (n=151)	Atorvastatin (n=144)	P value
Baseline creatinine (mg/dL)	1.02±0.41	0.93±0.42	<0.001
Baseline BUN (mg/dL)	18.5±8.02	16.9±8.3	0.002
Baseline eGFR (mL/min/1.73 m²)	94.06±33.1	107±39.01	0.002
Baseline eGFR <60 mL/min/1.73 m², No. (%)	21 (13.9)	15 (10.4)	0.362
48 hours creatinine (mg/dL)	1.08±0.54	1.03±0.57	0.009
48 hours BUN (mg/dL)	21.2±10.5	20.4±13.1	0.028
48 hours eGFR (mL/min/1.73 m²)	90.2±33.6	98.9±40.0	0.053
Creatinine, ∆ (from baseline to 48 hours) (mg/dL)	0.07±0.28	0.11±0.34	0.300
Contrast induced nephropathy, No. (%)	125 (19.4)	107 (74.3)	
Grade 1	22 (14.6)	28 (19.4)	
Grade 2	4 (2.6)	9 (6.3)	0.144

Ethical approval

Informed consent was received from all the patients, and the Helsinki Declaration was observed throughout the study. The local ethics committee of the center approved this study.

Competing interests

None.
References

1. Gaziano T, Bitton A, Anand S, Abrahams-Gessel S, Murphy A. Growing epidemic of coronary heart disease in low-and middle-income countries. *Curr Probl Cardiol* 2010;35:72–115.

2. Yusuf S, Islam S, Chow CK, Rangarajan S, Dagenais G, Diaz R, et al. Use of secondary prevention drugs for cardiovascular disease in the community in high-income, middle-income, and low-income countries (the PURE Study): a prospective epidemiological survey. *Lancet* 2011;378:1231–43. doi:10.1016/S0140-6736(11)61215-4.

3. Sattelmair J, Pertman J, Ding EL, Kohl HW, Haskell W, Lee I-M. Dose Response Between Physical Activity and Risk of Coronary Heart Disease: A Meta-Analysis. *Circulation* 2011;124:789–95. doi:10.1161/CIRCULATIONAHA.110.010710.

4. Heidenreich PA, Trogdon JG, Khayjou OA, Butler J, Dracup K, Ezekowitz MD, et al. Forecasting the Future of Cardiovascular Disease in the United States: A Policy Statement From the American Heart Association. *Circulation* 2011;123:933–44. doi:10.1161/CIR.0b013e31820a55f5.

5. Centers for Disease Control and Prevention (CDC). Prevalence of coronary heart disease--United States, 2006-2010. *MMWR Morb Mortal Wkly Rep* 2011;60:1377–81.

6. Serruys PW, Mortice M-C, Kappetein AP, Colombo A, Holmes DR, Mack MJ, et al. Percutaneous Coronary Intervention versus Coronary-Artery Bypass Grafting for Severe Coronary Artery Disease. *N Engl J Med* 2009;360:961–72. doi:10.1056/NEJMoa084626.

7. Menees DS, Peterson ED, Wang Y, Curtis JP, Messenger JC, Rumsfeld JS, et al. Door-to-Balloon Time and Mortality among Patients Undergoing Primary PCI. *N Engl J Med* 2013;369:901–9. doi:10.1056/NEJMoa1208200.

8. Armstrong PW, Gershlick AH, Goldstein P, Wilcox R, Danays T, Lambert Y, et al. Fibrinolysis or Primary PCI in ST-Segment Elevation Myocardial Infarction. *N Engl J Med* 2013;368:1379–87. doi:10.1056/NEJMoa1301092.

9. Steg PG, van ’t Hof A, Hamm CW, Clemmensen P, Lapostolle F, Coste P, et al. Bivalirudin Started during Emergency Transport for Primary PCI. *N Engl J Med* 2013;369:2207–17. doi:10.1056/NEJMoa1311096.

10. Marenzi G, Lauri G, Assanelli E, Campodonico J, De Metrio M, Marana I, et al. Contrast-induced nephropathy in patients undergoing primary angioplasty for acute myocardial infarction. *J Am Coll Cardiol* 2004;44:1780–5. doi:10.1016/j.jacc.2004.07.043.

11. Shaker O, El-Shehaby A, El-Khatib M. Early Diagnostic Markers for Contrast Nephropathy in Patients Undergoing Coronary Angiography. *Angiology* 2010;61:731–6. doi:10.1177/0003319710373093.

12. Au TH, Bruckner A, Mohiuddin SM, Hilleman DE. The Prevention of Contrast-Induced Nephropathy. *Ann Pharmacother* 2014;48:1332–42.

13. From AM, Al Badarin FJ, McDonald FS, Bartholmai BJ, Cha SS, Rihal CS. Iodixanol Versus Low-Osmolar Contrast Media for Prevention of Contrast Induced Nephropathy: Meta-analysis of Randomized, Controlled Trials. *Circ Cardiovasc Inter* 2010;3:351–8. doi:10.1161/CIRCINTERVENTIONS.109.917070.

14. Desai CS, Martin SS, Blumenthal RS. Non-cardiovascular effects associated with statins. *BMJ* 2014;349:g3743.

15. Han Y, Zhu G, Han L, Hou F, Huang W, Liu H, et al. Short-Term Rosuvastatin Therapy for Prevention of Contrast-Induced Acute Kidney Injury in Patients With Diabetes and Chronic Kidney Disease. *J Am Coll Cardiol* 2014;63:62–70. doi:10.1016/j.jacc.2013.09.017.

16. Leonini M, Toso A, Maioli M, Tropeano F, Villani S, Bellandi F. Early High-Dose Rosuvastatin for Contrast-Induced Nephropathy Prevention in Acute Coronary Syndrome. *J Am Coll Cardiol* 2014;63:71–9. doi:10.1016/j.jacc.2013.04.105.

17. Muñoz MA, Maxwell PR, Green K, Hughes DW, Talbert RL. Pravastatin versus simvastatin for prevention of contrast-induced nephropathy. *J Cardiovasc Pharmacol* 2010;56:72–9. doi:10.1097/01.cjp.0000374841.03943.62.

18. Kaya A, Kurt M, Tanboğa IH, Işık T, Ekinci M, Akşakal E, et al. Rosuvastatin versus atorvastatin to prevent contrast induced nephropathy in patients undergoing primary percutaneous coronary intervention (ROSA-cIN trial). *Acta Cardiol* 2013;68:489–94. doi:10.2143/AC.68.5.2994472.

19. Toso A, Maioli M, Leoncini M, Gallipin M, Tedeschi D, Micheletti C, et al. Usefulness of atorvastatin (80 mg) in prevention of contrast-induced nephropathy in patients with chronic renal disease. *Am J Cardiol* 2010;105:288–92. doi:10.1016/j.amjcard.2009.09.026.

20. Pappy R, Stavrakis S, Henneby TA, Abu-Fadel MS. Effect of statin therapy on contrast-induced nephropathy after coronary angiography: A meta-analysis. *Int J Cardiol* 2011;151:348–53. doi:10.1016/j.ijcard.2011.05.045.

21. Patti G, Ricottini E, Nusca A, Colonna G, Pasceri V, D’Ambrosio A, et al. Short-term, high-dose Atorvastatin pretreatment to prevent contrast-induced nephropathy in patients with acute coronary syndromes undergoing percutaneous coronary intervention (from the ARMYDA-CIN [atorvastatin for reduction of myocardial damage during angioplasty–contrast-induced nephropathy] trial). *Am J Cardiol* 2011;108:1–7. doi:10.1016/j.amjcard.2011.03.001.

22. Mehran R, Aymong ED, Nikolsky E, Laks I, Iakovou I, Fahy M, et al. A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: development and initial validation. *J Am Coll Cardiol* 2004;44:1393–9. doi:10.1016/j.jacc.2004.06.068.

23. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. *Nephron* 1976;16:31–41.