Photocatalytic esterification under Mitsunobu reaction conditions mediated by flavin and visible light†

M. März,a J. Chudoba,b M. Kohouta and R. Cibulka*a

The usefulness of flavin-based aerial photooxidation in esterification under Mitsunobu reaction conditions was demonstrated, providing aerial dialkyl azodicarboxylate recycling/generation from the corresponding dialkyl hydrazine dicarboxylate. Simultaneously, activation of triphenylphosphine (Ph₃P) by photoinduced electron transfer from flavin allows azo-reagent-free esterification. An optimized system with 3-methylriboflavin tetraacetate (10%), oxygen (terminal oxidant), visible light (450 nm), Ph₃P, and dialkyl hydrazine dicarboxylate (10%) has been shown to provide efficient and stereoselective coupling of various alcohols and acids to esters with retention of configuration.

A system of triphenylphosphine (Ph₃P) or a related phosphine activated by an oxidant allow efficient esterification under mild conditions.1 In the Mitsunobu reaction,2,3 PPh₃ is oxidized by a dialkyl azodicarboxylate (usually DEAD [1a] or DIAD [1b]) to form a betain species, which facilitates transformation of an alcohol to a reactive alkoxyphosphonium intermediate (Scheme 1). The latter undergoes SN₂ substitution with carboxylate giving an ester with inversion of configuration. There are a few cases in which an acyloxyphosphonium intermediate predominates under Mitsunobu reaction conditions, subsequent SN₂c substitution of which gives the product with retention of configuration.4–6

The Mitsunobu reaction has become an extremely useful tool in organic synthesis.3b,7 However, its further expansion, in particular towards large-scale applications, is limited by the need for a stoichiometric amount of oxidant, azodicarboxylate 1, which is toxic and unstable and the use of which generates dialkyl hydrazine dicarboxylate 2 as a waste by-product. An attempt to solve this problem led to recent pioneering studies on catalytic Mitsunobu reaction.10 Toy and co-workers applied a stoichiometric amount of the oxidant PhI(OAc)₂ to convert the generated hydrazine 2a back to azo compound 1a, allowing only 10 mol% 1a to be used.8 Taniguchi, et al. developed and optimized catalytic Mitsunobu reaction using ethyl N-aryl-azocarboxylates 1e (10 mol%) instead of 1a or 1b, in conjunction with a catalytic amount (10 mol%) of Fe(II)-phthalocyanine (Fe[Pc]), which re-oxidized arylhydrazine, being simultaneously re-generated by air oxygen.9 Notably, Fe[Pc] was not able to recycle original Mitsunobu reagents, DEAD or DIAD, due to high oxidation potential of corresponding hydrazines 2. Another approach is to use a procedure free from azo reagent 1 in which PPh₃ is activated by aerial oxidation catalyzed by Fe[Pc]. This esterification occurs via an acylphosphonium intermediate giving an ester with retention of configuration.10 Another problem of the Mitsunobu type reactions is bulk production of phosphine oxide. O’Brien11 and later Aldrich and Buonomo12 showed that phosphine oxide can be reduced in situ with...
phenylsilane, thus allowing use of the phosphate reagent in a catalytic amount.\(^\text{13}\)

We surmise that, due to their redox character, Mitsunobu-type reactions represent a typical challenge for photoredox catalysis,\(^\text{14}\) which have undergone rapid development in recent years. Upon excitation, molecules become stronger oxidizing agents compared to their ground-state forms, which considerably extends the possibilities for regeneration of Mitsunobu reagents or alternative activation of phosphines. However, to the best of our knowledge, no application of photoredox catalysis in catalytic Mitsunobu reactions or phosphate-mediated esterifications has hitherto been reported. Herein, we present a photocatalytic system (Scheme 1) based on flavin 3d (a derivative of vitamin B2 [3a]), oxygen, and visible light, which is able to regenerate commercial dialkyl azodicarboxylates 1. The system was found to simultaneously activate Ph3P by photoinduced electron-transfer, thus providing azo-reagent-free esterification.

Our original idea to regenerate azodicarboxylates 1 from the corresponding hydrazides 2 led us to flavin photocatalysts.\(^\text{15,16}\) Upon excitation with blue light (450 nm), flavins become oxidizing agents\(^\text{17}\) (\(E^\text{red}_{\text{ox}} = 1.67 \text{~V vs. SCE}\) for riboflavin tetraacetate (3b)), strong enough to oxidize 2 (a value of \(E^\text{red}_{\text{ox}} = 1.62 \text{~V vs. SCE}\) has been reported for BocNHNBoc\(^\text{18}\)) but not so strong as to mediate undesired oxidation of alcohols, even when they are activated, e.g. benzyl alcohols, which are often substrates of Mitsunobu reactions. The only exceptions are electron-rich benzyl alcohols such as 4-methoxybenzyl alcohol (\(E^\text{red}_{\text{ox}} = 1.43 \text{~V vs. SCE}\) (ref. 19)), which is a traditional substrate for testing flavins in photooxidations.\(^\text{16e,17,20}\)

Importantly, flavins can be converted back to their oxidized forms by oxygen, and thus can be applied in catalytic amounts (cf. Scheme 2).\(^\text{15}\)

Preliminary experiments confirmed that 3b oxidizes dialkyl hydrazine-dicarboxylates 2a–d to the corresponding azo compounds 1 when irradiated by light of wavelength 450 nm (see ESI†). The oxidation proceeded remarkably in acetonitrile, and thus we used this solvent in model photocatalytic esterification with 3-nitrobenzoic acid 4a and benzyl alcohol 5a using 10 mol% of 3b, 10 mol% of 1b, and 2 equivalents of PPh\(_3\) (Table 1). The reaction was performed at 25 °C under oxygen and irradiation with a blue diode (450 nm), in the presence of molecular sieves (4 Å) to remove hydrogen peroxide formed during flavin regeneration.\(^\text{20}\) To our delight, we observed formation of ester 6a in moderate conversion after 24 h (entry 1), and a positive result was found even when 2b (10 mol%) was used instead of 1b (entry 2). Only a small amount of aldehyde was formed with 3b, confirming the suitability of flavins in this reaction. Use of stronger oxidants, such as 9-mesityl-10-methylacridinium perchlorate (7; \(E^\text{red}_{\text{ox}} = 2.08 \text{~V vs. SCE}\) (ref. 14a)) or triphenylpyrylium tetrafluoroborate (8; \(E^\text{red}_{\text{ox}} = 2.45 \text{~V vs. SCE}\) (ref. 14a)) preferentially led to benzylic oxidation (entries 3 and 4). Notably, the N–H bond in flavins is sufficiently acidic for 3b to be a substrate of Mitsunobu reaction. We observed formation of N-benzyl derivative 3c, which was still active in esterification, but less than 3b (cf. entries 2 and 5). Thus, N-methylflavin 3d seemed to be a good choice of photocatalyst (entries 6 and 7).

Monitoring the reaction course showed undesired direct oxidation of Ph3P to Ph3P=O, which retarded ester formation. We assume that excited flavin participates in this oxidation by electron transfer from Ph3P (\(E^\text{ox}_{\text{red}} = 1.06 \text{~V vs. SCE}\)) (for quenching experiment, see ESI†). The formed Ph3P=O\(^\text{+}\) reacts with oxygen to form phosphine oxide, which is known to occur by several mechanisms.\(^\text{22}\) This side reaction can be suppressed by

Table 1: Optimization of protocol for photocatalytic Mitsunobu reaction with recycling/generation of 1

Entry	Catalytic system	Temp [°C]	Ester	Aldehyde
1	3b/1b	25	58	2
2	3b/2b	25	48	2
3	7/2b	25	46	31
4	8/2b	25	8	20
5	3c/2b	25	41	7
6	3d/1b	25	64	2
7	3d/2b	25	60	2
8	3d/2b	25	79	Trace
9	3d/2b	25	85	Trace
10	3d/2b	50	66	Trace
11	3d/2b	50	92	Trace
12	3d/2b	50	17	2
13	3d/2b	25	26	—
14	3d/2b	50	47	2
15	3d/2b	50	69	—

\(^a\) PPh\(_3\) added in three portions at the time 0, 4 and 8 hours. \(^b\) PhSiH\(_3\) (2 equiv.) added.
Irradiation, flavin especially at elevated temperature. Such a pathway not requiring the azo component is involved, from the corresponding hydrazine; (ii) another mechanistic reaction in both the absence and presence of PhSiH3 were observed, achieving yields of up to 92% (entries 10 and 11). It should be noted that formation of 6a was not observed in blank experiments (see ESi) in the absence of the flavin photocatalyst, light, Ph3P or molecular sieves.† On the other hand, a little 6a was formed with omission of the azo compound or its precursor, irrespective of the presence of PhSiH3 (entries 12 and 13). The amount of ester formed by the azo-free process was increased at elevated temperature (entries 14 and 15).

Taking into account conversions of ester 6a achieved in the presence and absence of 2b (cf. entries 7 vs. 12, 9 vs. 13, 10 vs. 14, and 11 vs. 15), the initial results gave evidence that: (i) after irradiation, flavin 3d can mediate a Mitsunobu reaction that is catalytic in azo reagent by virtue of its generation/recycling from the corresponding hydrazine; (ii) another mechanistic pathway not requiring the azo component is involved, especially at elevated temperature. Such a “background” reaction has been analogously observed using recycling systems with PhI(OAc)2 and Fe(II)-phthalocyanine.‡

Next, we examined the substrate scope of photocatalytic esterification alternating various alcohols 5 (Table 2) and acids 4 (Table 3) under selected conditions: (i) without PhSiH3 with 10% of 1b at 25 °C, characterized by a major contribution from the azo-compound-mediated reaction (method I, analogous to entry 6 in Table 1), and (ii) with PhSiH3 and 10% of 2b at 50 °C, whereupon the non-azo-reagent-free pathway predominated (method II, analogous to entry 11 in Table 1). In the Tables 2 and 3, the efficacy of both methods is characterized by conversions and preparative yields of esters after 24 h. Conversions of photocatalytic esterifications in the absence of azo reagent 1b or its precursor 2b are given for comparison to estimate the contribution of azo-reagent-free pathway (blank).

Method I (Table 2, odd entries) provided moderate to good conversions and yields of esters 6a–h by esterification of 3-nitrobenzoic acid (4a) with substituted benzyl alcohols regardless of the character and position of the substituent.

Octyl ester 6k (representative of esters with aliphatic alcohols) was also obtained in good yield by method I while ester 6i with 2-phenylethanol (5i) was formed in poor conversion only (entries 17 and 19). On the other hand, at elevated temperature (method II), high conversions and good to high yields of esters 6a–k were achieved with all alcohols investigated (Table 2, even entries). As could be expected, significant

Table 2 Substrate scope of photocatalytic esterification (various alcohols)

Entry	Product	Method	Conv. [%]	Yield [%]	Conv. (blank) [%]
1		I	64f	53	17
2		II	92	82	69
3		I	73	65	21
4		II	Quant.	85	80
5		I	67	60	25
6		II	Quant.	79	80
7		II	64	54	60
8		II	82	72	75
9		I	62f	54	28
10		II	76f	65	40
11		I	50f	39	39
12		II	85h	71	68
13		I	52	46	46
14		II	78	60	59
15		I	53	44	43
16		II	78	71	68
17		I	18	n.d.	10
18		II	Quant.	80	20
19		I	51	39	22
20		II	72	61	63

*Conditions for method I: n(S) = 0.15 mmol, n(4) = 0.18 mmol, n(3d) = 0.015 mmol, n(1b) = 0.015 mmol, n(PhSiH3) = 0.3 mmol, MS 4 Å (150 mg), 2 ml CH2CN, 455 nm, 25 °C, 24 h; for method II: 2b instead of 1b; additionally 0.3 mmol of PhSiH3 at 50 °C. ‡ Preparative yield. § Conversion of esterification in the absence of 1b (method I) or 2b (method II) from 1H NMR data. ¶ 80% after 72 h. ‖ 14% of aldehyde. ‡ 7% of aldehyde. § 18% of aldehyde. ‖ 15% of aldehyde.
amount of benzaldehyde (15–28%) was formed during esterification of 4-methyl- (5e) and 4-methoxybenzyl (5f) alcohols because of their low oxidation potentials (entries 9–12).19 Both methods proved to be effective for secondary alcohols, albeit requiring longer reaction times (Table 4).

Besides 4a, other aromatic acids (4-nitrobenzoic 4b and benzoic acid 4c) as well as phenylalkanoic acids (phenylacetic 4d and 3-phenylpropanoic acid 4f) gave good to high yields of esters 6l–n and 6p with 4-chlorobenzyl alcohol (5b) by method II (Table 3, even entries). For these acids, method I seemed to be less efficient giving lower yields of 6n and 6p (entries 5 and 9) and almost no ester 6m (entry 3). Interestingly, both methods afforded ester 6o with sterically hindered α,α-disubstituted acid 4e albeit in low yields and after prolonged reaction time (entries 7 and 8). Low efficacy of our protocols was shown for esterification of hexanoic acid (4g) as a representative of non-substituted aliphatic acids (entries 11 and 12). Method II was proved to be useful also for phthalimide as a representative of N-nucleophile (entry 14).

Notably, a significant contribution of azodicarboxylate 1b or its precursor 2b was observed with most substrates (Tables 2 and 3, cf. conversions of methods I or II with azo-free

Table 3 Substrate scope of photocatalytic esterification (various acids)

Entry	Product	Method\(^a \)	Conv. [%]	Yield\(^b \) [%]	Conv. (blank)\(^b \) [%]
1	I	30	19	27	
2	II	Quant.	79	80	
3	I	5	n.d.	n.d.	
4	II	58	43	5	
5	I	68	45	12	
6	II	Quant.	75	60	
7	I\(^d \)	33	25	7	
8	II\(^d \)	40	32	16	
9	I	44	32	31	
10	II	65	58	44	
11	I	8	n.d.	n.d.	
12	II	16	n.d.	11	
13	I	6	n.d.	n.d.	
14	II	66	57	20	

\(^a \) Conditions for method I: \(n(4) = 0.15 \text{ mmol}, n(3d) = 0.18 \text{ mmol}, n(1b) = 0.015 \text{ mmol}, n(PPh_3) = 0.3 \text{ mmol}, \text{MS 4 Å (150 mg), 2 mL CH}_2\text{CN, 455 nm, 25 °C, 24 h; for method II: 2b instead of 1b; additionally 0.3 mmol of PhSiH_3; 50 °C.} \(^b \) Preparative yield. \(^c \) Conversion of esterification in the absence of 1b (method I) or 2b (method II) from \(^1\text{H NMR data.} \(^d \) 72 h.

Table 4 Stereoselectivity of photocatalytic esterification

Entry	Alcohol	Product	Method\(^a \)	Conv.\(^b \) [%]	Yield\(^c \) [%]	er\(^d \)
1	I	46/7	30	98 : 2		
2	II	76/61\(^e \)	65	99 : 1		
3	I	44/7	25	99 : 1		
4	II	70/61	59	99 : 1		
5	I	48/44	39	99 : 1		
6	II	58/49	50	98 : 2		
7	I	45/44	38	97 : 3		
8	II	60/36	48	98 : 2		

\(^a \) For conditions, see Table 2; reaction time: 72 h. \(^b \) Conversion of esterification in the presence/in the absence of 1b (method I) or 2b (method II) from \(^1\text{H NMR data.} \(^c \) Preparative yields. \(^d \) From HPLC, see ESI. \(^e \) 98 : 2 was found in the absence of 2b.
pathway [blank]). This contribution became even more pronounced for esterification of some benzylic esters, e.g. 6a–6c and 6e (Table 2, entries 1, 3, 5 and 9), provided by method I or for some esterifications by method II, e.g. towards 6i (Table 2, entry 18), 6m and 9 (Table 3, entries 4 and 14). On the other hand, in some cases, especially for method II, azo-free reaction pathway predominates as indicated by high conversions of blank. The conversions of esters are indeed high under optimal conditions (method II) but not quantitative in many cases. The reason is probably bleaching of the flavin photocatalyst which was observed during esterifications. Similar photodecomposition of flavins was reported to occur also during other photocatalytic processes.\(^{15,16,20}\)

Irrespective of the method, highly stereoselective production of esters (Table 4) with retention of configuration was observed for two types of secondary alcohols, 1-phenylethanol (5l, entries 1–4) and ethyl lactate (5m, entries 5–8), indicating that our photocatalytic esterification occurs not through alkoxophosphonium 10 but through acylophosphonium species 11 (see Scheme 2). This intermediate must also predominate in the photocatalytic “Mitsunobu reaction pathway” occurring through betain intermediate 12 (Scheme 2A), as indicated by the very high stereoselectivities observed with 5l at 25 °C (method I), i.e. at the conditions where a significant contribution of the catalytic amount of 1b was detected (entries 1 and 3, cf. conversions in the presence and the absence of 1b).

Most probably, our photocatalytic esterification just met the conditions favoring acylophosphonium species 11 in the delicate acyloalkoxyphosphonium equilibrium.\(^5\) Notably, the inversion product predominated (er = 85 : 15 \(\text{cf.}\) entries 1 and 3, \(\text{cf.}\) conversions in the presence and the absence of 1b).

Based on literature data and our own experimental results, we propose a mechanism for the pathway not involving the azo compound or its hydrazine precursor (Scheme 2B). Excited flavin \(\text{Fl}^+\) oxidizes \(\text{Ph}_3\text{P}^+\) to \(\text{Ph}_3\text{P}^++\), as it is evident from the redox potentials (see above) and confirmed by the observation of efficient emission quenching (\(K_q = 22 \text{ L mol}^{-1}\); for the Stern–Volmer plot, see ESI†). The flavin radical anion (pKa of conjugated acid is 8.4, ref. 23) is immediately protonated by a carboxylic acid to form radical \(\text{FlH}^-\). \(\text{Ph}_3\text{P}^++\) then reacts with an alcohol to form (after subsequent oxidation and deprotonation) an alkoxophosphonium species 10, which is in equilibrium with the corresponding acylophosphonium species 11. Nevertheless, 11 may also be formed directly from \(\text{Ph}_3\text{P}^++\) and carboxylate.\(^\ddagger\) Finally, 11 undergoes substitution with alkoxide to form ester and the reduced flavin \(\text{FlH}^-\) is re-oxidized by oxygen in a dark procedure.\(^{17,20a,24}\) Hydrogen peroxide, formed as a by-product, is decomposed by molecular sieves.\(^9c\)

Quantum yields of ester 6a production by methods I and II was found to be 0.04 and 0.07, respectively, thus supporting closed catalytic cycle and indicating that an open radical propagation mechanism is not involved. We also not observed corresponding anhydride when monitoring the reaction mixture with 4b and 5b by \(^1\text{H NMR}.\) Nevertheless presence of this alternative by-product/intermediate\(^{38,5}\) in low concentration cannot be excluded.

Conclusions

In conclusion, we have shown for the first time that the original Mitsunobu reagents, DIAD (1b) and DEAD (1a), can be regenerated from the corresponding hydrazines by photocatalytic and/or organocatalytic system,\(^{25}\) thus allowing esterifications that are catalytic in 1. The method is based on visible light and readily available riboflavin derivative 3d, which is used in a catalytic amount, being recycled with molecular oxygen, an inexpensive and green terminal oxidant. The only drawback is side photooxidation of \(\text{Ph}_3\text{P}^+\) to \(\text{Ph}_3\text{P}^\text{O}^–\) under aerial conditions, which can be eliminated by \textit{in situ} back-reduction. We have observed a completely new esterification pathway being involved in our photocatalytic esterification that occurs without any contribution from the azo compound 1 or hydrazine 2. It proceeds through \(\text{Ph}_3\text{P}^++\) generated by photo-induced electron transfer to flavin. To the best of our knowledge, no similar synthetic application of photochemically generated \(\text{Ph}_3\text{P}^++\) has hitherto been reported. As there is still room for improvement, optimization of both concepts is currently being pursued in our laboratories.

Acknowledgements

This project was supported by the Czech Science Foundation (Grant No. 16-09436S). R. C. thanks the German National Science Foundation (GRK 1626 “Chemical Photocatalysis”).

Notes and references

\(^{\dagger}\) Notably only trace of ester was formed in stoichiometric Mitsunobu reaction in the presence of hydrogen peroxide (1 equiv.) in acetonitrile while 90% of ester was formed after addition of MS 4A thus demonstrating \(\text{H}_2\text{O}_2\)-quenching of Mitsunobu reaction. Hydrogen peroxide was not detected by iodometry after photocatalytic esterifications in the presence of MS 4A.

\(^{\ddagger}\) This value was not affected by either light or the flavin (see ESI†).

\(^{\text{†}}\) Notably analogous formation of alkoxophosphonium and acylophosphonium species was observed when \(\text{Ph}_3\text{P}^++\) was generated electrochemically, see ref. 26.

1. (a) A. Voituriez and A. N. Saleh, \textit{Tetrahedron Lett.}, 2016, 57, 4443; (b) J. An, R. M. Denton, T. H. Lambert and E. D. Nacsa, \textit{Org. Biomol. Chem.}, 2014, 12, 2993; (c) J. Otera and J. Nishikido, in \textit{Esterification}, Wiley-VCH Verlag GmbH & Co. KGaA, 2010.

2. O. Mitsunobu and Y. Masaaki, \textit{Bull. Chem. Soc. Jpn.}, 1967, 40, 2380.

3. (a) S. Fletcher, \textit{Org. Chem. Front.}, 2015, 2, 739; (b) K. C. K. Swamy, N. N. B. Kumar, E. Balaraman and K. V. P. P. Kumar, \textit{Chem. Rev.}, 2009, 109, 2551; (c) T. Y. S. But and P. H. Toy, \textit{Chem. – Asian J.}, 2007, 2, 1340.

4. (a) J. McNulty, A. Capretta, V. Laričev, J. Dyck and A. J. Robertson, \textit{Angew. Chem., Int. Ed.}, 2003, 42, 4051;
(b) G. Wang, J.-R. Ella-Menye, M. St. Martin, H. Yang and K. Williams, Org. Lett., 2008, 10, 4203; (c) A. B. Hughes and M. M. Sleeb, J. Org. Chem., 2005, 70, 3079; (d) A. B. Smith, I. G. Safonov and R. M. Corbett, J. Am. Chem. Soc., 2002, 124, 11102; (e) C. Ahn and P. DeShong, J. Org. Chem., 2002, 67, 1754.

5 S. Schenk, J. Weston and E. Anders, J. Am. Chem. Soc., 2005, 127, 12566.

6 T. Mukaiyama, Angew. Chem., Int. Ed. Engl., 1976, 15, 94.

7 A. J. Reynolds and M. Kassiou, Curr. Org. Chem., 2009, 13, 1610.

8 T. Y. S. But and P. H. Toy, J. Am. Chem. Soc., 2006, 128, 9636.

9 (a) D. Hirose, M. Gazvoda, J. Kosmrlj and T. Taniguchi, Chem. Sci., 2016, 7, 5148; (b) T. Hashimoto, D. Hirose and T. Taniguchi, Adv. Synth. Catal., 2015, 357, 3346; (c) D. Hirose, T. Taniguchi and H. Ishibashi, Angew. Chem., Int. Ed., 2013, 52, 4613.

10 T. Taniguchi, D. Hirose and H. Ishibashi, ACS Catal., 2011, 1, 1469.

11 C. J. O’Brien, PCT Int. Appl, WO2010/118042A2, 2010, 2010.

12 J. A. Buonomo and C. C. Aldrich, Angew. Chem., Int. Ed., 2015, 54, 13041.

13 Very recently, idea on system catalytic both from the point of view of aze-compound and phosphine based on the abovementioned recycling agents was introduced (ref. 12) but realization is still subject of discussion; see: D. Hirose, M. Gazvoda, J. Kosmrlj and T. Taniguchi, Org. Lett., 2016, 18, 4036.

14 (a) N. A. Romero and D. A. Nicewicz, Chem. Rev., 2016, 116, 10075; (b) D. M. Schultz and T. P. Yoon, Science, 2014, 343, 985; (c) S. Fukuzumi and K. Ohkubo, Org. Biomol. Chem., 2014, 12, 6059; (d) D. Ravelli, M. Fagnoni and A. Albini, Chem. Soc. Rev., 2013, 42, 97.

15 S. Kümmel, R. Cibulka and B. König, in Chemical Photocatalysis, ed. B. König, de Gruyter, Berlin, 2013, p. 45.

16 (a) T. Neveselý, E. Svobodová, J. Chudoba, M. Sikorski and R. Cibulka, Adv. Synth. Catal., 2016, 358, 1654; (b) B. Mühldorf and R. Wolf, Angew. Chem., Int. Ed., 2016, 55, 427; (c) J. B. Metternich and R. Gilmour, J. Am. Chem. Soc., 2016, 138, 1040; (d) T. Hartman and R. Cibulka, Org. Lett., 2016, 18, 3710; (e) B. Mühldorf and R. Wolf, Chem Commun., 2015, 51, 8425–8428.

17 S. Fukuzumi, K. Yasui, T. Suenobu, K. Ohkubo, M. Fujitsuka and O. Ito, J. Phys. Chem. A, 2001, 105, 10501.

18 G. Jürmann, O. Tsibrik, K. Tammeveski and U. Määorg, J. Chem. Res., 2005, 661.

19 M. Yasuda, M. Nakai, Y. Kawahito and T. Shiragami, Bull. Chem. Soc. Jpn., 2003, 76, 601.

20 (a) J. Daďová, S. KümmeI, C. Feldmeier, J. Cibulková, R. Pažout, J. Maixner, R. M. Gschwind, B. König and R. Cibulka, Chem. – Eur. J., 2013, 19, 1066; (b) U. Megerle, R. Lechner, B. König and E. Riedle, Photochem. Photobiol. Sci., 2010, 9, 1400; (c) J. Svoboda, H. Schmaderer and B. König, Chem. – Eur. J., 2008, 14, 1854.

21 S. Fukuzumi, K. Shimoosako, T. Suenobu and Y. Watanabe, J. Am. Chem. Soc., 2003, 125, 9074.

22 (a) S. Yasui, S. Kobayashi and M. Mishima, J. Phys. Org. Chem., 2016, 29, 443; (b) S. Tojo, S. Yasui, M. Fujitsuka and T. Majima, J. Org. Chem., 2006, 71, 8227; (c) O. Kei, N. Takashi and F. Shunichi, Bull. Chem. Soc. Jpn., 2006, 79, 1489; (d) S. Yasui, S. Tojo and T. Majima, J. Org. Chem., 2005, 70, 1276.

23 A. Ehrenberg, F. Müller and P. Hemmerich, Eur. J. Biochem., 1967, 2, 286.

24 C. Feldmeier, H. Bartling, K. Magierl and R. M. Gschwind, Angew. Chem., Int. Ed., 2015, 54, 1347.

25 Oxidation of di-tert-butyl hydrazinedicarboxylate to aza compound with Cul/O2 system was reported during preparation of the manuscript: D. Jung, M. H. Kim and J. Kim, Org. Lett., 2016, 18, 6300–6303.

26 (a) H. Maeda, T. Koide, T. Maki and H. Ohmori, Chem. Pharm. Bull., 1995, 43, 1076; (b) H. Ohmori, M. Maeda, M. Kikuoka, T. Maki and M. Masui, Tetrahedron, 1991, 47, 767.