Lack of association between the protein tyrosine phosphatase non-receptor type 22 R263Q and R620W functional genetic variants and endogenous non-anterior uveitis

Maria Carmen Cénit,1 Ana Márquez,1 Miguel Cordero-Coma,2 Alejandro Fonollosa,3 Victor Llorenç,4 Joseba Artaraz,5 David Díaz Valle,6 Ricardo Blanco,7 Joaquín Cañal,7 David Salom,8 José Luis García Serrano,9 Enrique de Ramón,10 María José del Río,11 Marina Begoña Gorroño-Echebarria,12 José Manuel Martín-Villa,13 Blanca Molins,14 Norberto Ortego-Centeno,15 Javier Martín1

(The first two authors contributed equally to this work.)

Objective: Endogenous uveitis is a major cause of visual loss mediated by the immune system. The protein tyrosine phosphatase non-receptor type 22 (PTPN22) gene encodes a lymphoid-specific phosphatase that plays a key role in T-cell receptor (TCR) signaling. Two independent functional missense single nucleotide polymorphisms (SNPs) located within the PTPN22 gene (R263Q and R620W) have been associated with different autoimmune disorders. We aimed to analyze for the first time the influence of these PTPN22 genetic variants on endogenous non-anterior uveitis susceptibility.

Methods: We performed a case-control study of 217 patients with endogenous non-anterior uveitis and 718 healthy controls from a Spanish population. The PTPN22 polymorphisms (rs33996649 and rs2476601) were genotyped using TaqMan allelic discrimination assays. The allele, genotype, carriers, and allelic combination frequencies were compared between cases and controls with χ² analysis or Fisher’s exact test.

Results: Our results showed no influence of the studied SNPs in the global susceptibility analysis (rs33996649: allelic \(P_{\text{value}} = 0.92 \), odds ratio=0.97, 95% confidence interval=0.54–1.75; rs2476601: allelic \(P_{\text{value}} = 0.86 \), odds ratio=1.04, 95% confidence interval=0.68–1.59). Similarly, the allelic combination analysis did not provide additional information.

Conclusions: Our results suggest that the studied polymorphisms of the PTPN22 gene do not play an important role in the pathophysiology of endogenous non-anterior uveitis.

Uveitis is a phenotypically heterogeneous group made up of different clinical entities that have intraocular inflammation in common. This inflammatory condition mainly affects the uveal tract of the eye, located between the sclera, the conjunctiva, and the anterior chamber on the outside and the retina on the inside [1]. Furthermore, this disorder, which usually affects young adults, is classified depending on the anatomic part of the eye affected as anterior uveitis (AU), intermediate uveitis (IU), posterior uveitis (PU), and panuveitis (PAN) [2], and may be triggered by exogenous or endogenous agents. Uveitis can occur either as an isolated condition or as part of a systemic inflammatory disease [3]. In fact, around one third of patients present this condition in association with various systemic disorders such as psoriatic arthritis, reactive arthritis, and Behcet’s disease, among others. AU is the most common clinical form of the disease and is usually associated with HLA-B27-associated seronegative spondyloarthopathies [3]. However, the etiology of IU, PU, and PAN is frequently idiopathic, and these uveitis subtypes typically carry worse outcomes of the disease. Moreover, whereas AU patients generally respond to topical treatment, patients with non-anterior uveitis require systemic treatment [4]. In any case, uveitis is an important system...
socioeconomic problem accounting for about 10% of legal blindness and is the fourth leading cause of blindness worldwide [5,6].

The etiology of autoimmune uveitis is not completely understood, but genetic [7], environmental [8], and immunological factors [9] are involved in the appearance and progression of this trait highlighting in the latter the role of T lymphocytes. Thus far, different genetic variants located within several genes, including genes positioned in the major histocompatibility complex region and the non-major histocompatibility complex region, have been involved in the uveitis predisposition [10-13]. However, the overall genetic component of uveitis, mainly the non-anterior uveitis genetic component, remains unknown. In addition, to date, few studies have been conducted to identify the non-anterior genetic background.

The pathogenesis of endogenous uveitis is essentially mediated by a T cell–driven cellular immune response as in other autoimmune diseases, such as inflammatory bowel disease and type 1 diabetes, among others. In fact, experimental autoimmune uveitis (EAU) induction is characterized by polarization of early T-helpers toward Th1, a T helper cell, while EAU resistance is associated with polarization toward a Th2 pathway [8]. The protein tyrosine phosphatase non-receptor type 22 (PTPN22) gene, located within the chromosome region 1p13, encodes a 110-kDa lymphoid-specific phosphatase (Lyp) [14]. Lyp plays a key role as a potent negative downregulator and critical gatekeeper of T-cell receptor (TCR) signaling [15]. Interestingly, the PTPN22 gene has emerged as an important genetic risk factor for human autoimmunity by multiple mechanisms, including altered thymic selection, reduced T-helper activity, and decreased number or function of regulatory T cells [16-21]. Previously, the possible influence of the PTPN22 gene in anterior uveitis, the most common form of uveitis, has been investigated [22], but to our knowledge, no previous studies evaluated the possible implication of the functional variants R263Q and R620W of the PTPN22 gene specifically in non-anterior uveitis.

Two missense single nucleotide polymorphisms (SNPs) have been associated with autoimmune disorders. The R620W (C1858T, rs2476601) polymorphism in PTPN22 exon 14 was first associated with type 1 diabetes [18] and subsequently with other autoimmune disorders such as rheumatoid arthritis, systemic lupus erythematosus, and systemic sclerosis [19-21]. This substitution occurs within a protein–protein interaction domain. Studies have yielded conflicting results, and the precise effect of the R620W functional genetic variant is not still fully understood. Nevertheless, a clear regulatory role for Lyp in the immune system has been established, and the R620W polymorphism seems to modify the Lyp function in one way or another and consequently to alter the immune response [23,24]. In addition, the R263Q (G788A; rs33996649) polymorphism located within PTPN22 exon 10 has also been associated with autoimmunity. This polymorphism is located within the catalytic domain of the enzyme, and data have suggested that the minor allele A, a protective factor associated with systemic lupus erythematosus [25], encodes for a loss-of-function variant of Lyp [25]. Taking into account this evidence, in the current study we evaluated the influence of the PTPN22 R263Q and R620W polymorphisms in the genetic background of endogenous non-anterior uveitis.

METHODS

Five to ten ml of EDTA-treated peripheral blood samples or saliva was collected of each individual and genomic DNA was isolated from peripheral white blood cells or saliva following standard procedures such as Qiagen and Orangene DNA purification kits. DNA was quantified using NanoDrop spectrophotometer and DNA solutions were stored at -80°C until required. DNA dilutions at 10 ng/ul concentration were stored at -20°C until use for PCR reaction. The SNPs were genotyped using a predesigned TaqMan allelic discrimination assay for the rs2476601 polymorphism (IDs: C__16021387_20) and a custom TaqMan allelic discrimination assay for the rs33996649 genetic variant in a 7900HT Real-Time PCR System from Applied Biosystems (Foster City, CA).

217 uveitis samples were recruited from different hospitals from Spain: Hospital Clínico San Cecilio, Granada; Hospital Clinic, Barcelona; Hospital Marqués de Valdecilla, Santander; Hospital de Cruces, Bilbao; Hospital Carlos Haya, Málaga; Hospital Clínico San Carlos, Madrid; Hospital de León, León; Hospital Universitario La Fe, Valencia and Hospital Príncipe de Asturias, Alcalá de Henáres. Healthy controls samples were provided by Banco Nacional de ADN from Salamanca and Biobanco Vasco from Bizkaia. The breakdown mean of uveitis patients was 46.3 years and 52.1% of uveitis patients were females. At the time of recruitment all uveitis patients did not have other associated autoimmune diseases. On the other hand, none of the controls had ocular disease. We genotyped the rs33996649 and rs2476601 polymorphisms in a total of 217 patients with endogenous uveitis, excluding the exclusively anterior uveitis forms and uveitis associated with systemic immune-mediated diseases except Vogt-Koyanagi-Harada syndrome, and 718 ethnically matched healthy controls, all from a Spanish population. Written informed consent and approval of the local ethical
committees were obtained. The research followed the tenets of the Declaration of Helsinki.

In addition, to examine whether the selected SNPs might influence the different clinical manifestations of the disease, patients with uveitis were subdivided according to the characteristics included in Table 1. The intraocular inflammation seen in patients included intermediate uveitis (17.5%), posterior uveitis (47.9%), and panuveitis (25.8%).

We performed a case-control study using PLINK (v1.07). The genotype, allele, and carrier frequencies were compared between the patients, patient subgroups, and controls with the χ² test and/or Fisher’s exact test when necessary (when the expected frequencies were lower than 5). Odds ratios (ORs) and 95% confidence intervals (CIs) were obtained according to Woolf’s method. Odds ratios (ORs) and 95% confidence intervals (CIs) were obtained according to Woolf’s method. Woolf’s method is based on the weight of each stratum giving the most weight to the stratum that have the smallest variance. P values lower than 0.05 were considered statistically significant. However, the effect of the studied genetic variants was analyzed either in isolation or in combination with the conferred effect for the other polymorphism by allelic combination analysis.

RESULTS
The two studied polymorphisms conformed to Hardy–Weinberg expectations in the control subgroup, and the control allelic frequencies were similar to those previously reported in the European Caucasian population [21]. The genotyping success rate was higher than 95% for both analyzed SNPs. Table 1 summarizes the main features of the patients with uveitis included in the study population, and the genotypic and allelic frequencies in overall patients with uveitis, patients with uveitis stratified according to the anatomic classification [2], and controls are shown in Table 2.

No statistical significant differences were observed in the genotype, allele, and carrier frequencies for the rs33996649 and rs2476601 polymorphisms between the patients with uveitis and the controls (rs33996649; allelic P value=0.92, OR=0.97, 95% CI=0.54–1.75; rs2476601 allelic P value=0.86, OR=1.04, 95% CI=0.68–1.59). Moreover, no statistically significant differences were apparent when we compared the different subgroups of patients stratified according to the different general characteristics shown in Table 1 for the analyzed polymorphisms.

We also studied the possible additive effect of the two studied polymorphisms in the global disease with allelic combination analysis in the patients with uveitis and the controls. When we inferred the allelic combinations, we observed only three combinations with a frequency >0.01 in the healthy controls and patients (263C–620A [frequency in healthy controls 0.068], 263C–620G [0.897], and 263T–620G [0.036]), and the comparisons of the different detected allelic combinations between the patients with uveitis and the controls did not show significant results (Table 3).

DISCUSSION
Endogenous uveitis is an inflammatory response mediated by the immune system driven by a loss of tolerance against ocular antigens. Although the etiology of uveitis remains unclear, humoral and cellular components of the immune response trigger a cascade of events that ultimately lead to the tissue damage detected in this condition [1].

Different genetic factors are shared among the different autoimmune disorders, suggesting that some pathologies may be influenced by common molecular pathways [26]. Recent data have supported that uveitis seems to share different
genetic risk factors with other autoimmune diseases, and consequently some of the pathogenic mechanisms involved [7]. Lyp, encoded by the \(\text{PTPN22} \) gene, is a master regulator of autoimmunity important in the negative control activation and development of T-cells [15,27].

The analyzed functional missense polymorphisms in this study have been associated with different autoimmune conditions [16,18-21], although some studies have demonstrated a lack of association of these variants with other autoimmune diseases, such as multiple sclerosis among others [17,28]. One difference between \(\text{PTPN22} \)-associated and non-associated diseases could be the involvement of the humoral component, which appears to be less prominent in the latter. In fact, all diseases associated with the \(\text{PTPN22}^{*} \text{W620} \) variant are well characterized by the presence of autoantibodies frequently involved in the onset and progression of the disease [29]. In this study, we found no significant association between these two genetic variants and endogenous non-anterior uveitis. The lack of association between the \(\text{PTPN22} \) gene and this disorder suggests that the \(\text{PTPN22} \)-associated diseases share a common underlying mechanism that may not be important in the uveitis pathogenesis. Therefore, the lack of evidence of an association between the \(\text{PTPN22} \) gene and non-anterior uveitis might suggest the low involvement of the humoral component in non-anterior uveitis although further studies are needed.

This study represents the first attempt to evaluate the possible implication of the functional variants R263Q and R620W of the \(\text{PTPN22} \) gene in the pathophysiology of endogenous non-anterior uveitis in a well-defined cohort. In addition, since the two analyzed polymorphisms are independent and both are separately relevant for the \(\text{PTPN22} \) function, uveitis can be either the consequence of mutations present simultaneously in both genetic positions or, alternatively, in only one. Therefore, the effect of the R263Q variant on uveitis was analyzed in isolation and in combination with the effect of the other analyzed genetic variant (R620W). However, these genetic variants did not seem to modify the uveitis predisposition either in isolation or in allelic combination.

Previously, the possible influence of the \(\text{PTPN22} \) gene in anterior uveitis susceptibility was investigated without evidence of association [22]. Different studies have suggested that \(\text{PTPN22} \) is a genetic risk factor for Behcet’s disease [30,31], a disorder that usually presents ocular damage as a major manifestation, although another study found that this gene does not seem to influence the ocular manifestation of this disease [32]. Therefore, our results agree with previously published results and could indicate that the \(\text{PTPN22} \) gene

Table 2. Allelic and genotype frequencies of \(\text{PTPN22} \) genetic variants in overall uveitis patients, uveitis patients stratified according to the anatomic classification and healthy controls from Spanish population.

SNP	Subgroup (n)	GG	GA	AA	MAF (%)	Allelic P-value	OR (95% CI)
rs2476601	Controls (n=721)	628 (87.10)	89 (12.34)	4 (0.55)	110 (6.75)	1.04 (0.68–1.59)	
	Uveitis (n=215)	186 (86.51)	28 (13.02)	1 (0.47)	30 (6.98)	0.86	1.16 (0.67–2.00)
	IU (n=37)	30 (81.08)	7 (19.92)	0 (0.00)	7 (9.46)	0.61	0.36 (0.26–1.63)
	PU (n=104)	88 (84.62)	16 (15.38)	0 (0.00)	16 (7.69)	0.35	0.65 (0.26–1.63)
	PAN (n=56)	52 (92.86)	3 (5.36)	1 (1.78)	5 (4.46)	0.58	0.36 (0.26–1.63)
rs33996649	Controls (n=718)	668 (93.04)	49 (6.82)	1 (0.14)	51 (3.55)	0.97 (0.54–1.75)	
	Uveitis (n=217)	202 (93.09)	15 (6.91)	0 (0.00)	15 (7.16)	0.58	0.36 (0.26–1.63)
	IU (n=38)	37 (97.37)	1 (2.63)	0 (0.00)	1 (1.31)	0.12	0.36 (0.26–1.63)
	PU (n=104)	95 (91.35)	9 (8.65)	0 (0.00)	9 (4.33)	0.58	0.36 (0.26–1.63)
	PAN (n=56)	52 (92.86)	4 (7.14)	0 (0.00)	4 (3.57)	0.99	0.36 (0.26–1.63)

Table 3. \(\text{PTPN22} \) allelic combinations (rs2476601-rs33996649) in uveitis patients and healthy controls from Spanish population.

Allelic combination	Uveitis, n (%)	Controls, n (%)	P value	OR [95% CI]
GC	381 (89.4)	1288 (89.7)	0.88	0.97 (0.67–1.41)
AC	30 (7.1)	97 (6.8)	0.84	1.05 (0.67–1.63)
GT	15 (3.5)	51 (3.6)	0.98	0.99 (0.53–1.84)
does not play an important role in the pathophysiology of the different clinical forms of uveitis.

As a limitation, our study presents limited statistical power due to the low incidence of endogenous non-anterior uveitis and the low minor allele frequencies of the analyzed polymorphisms. Therefore, this lack of association of the PTPN22 polymorphisms with uveitis should be interpreted carefully. In the present study, slight effects may not been uncovered, and therefore, our results do not completely rule out the possibility of an association with non-anterior uveitis. A minor effect of the PTPN22 gene cannot be discarded, and additional studies are required to draw stronger conclusions about the exact role of the R263Q and R620W polymorphisms in the susceptibility and clinical spectrum of non-anterior uveitis.

ACKNOWLEDGMENTS

The authors thank Sofía Vargas, Sonia Rodríguez and Gema Robledo (from Instituto de Parasitología y Biomedicina ‘López-Neyra’, CSIC, Spain) for their excellent technical assistance, and all the patients and healthy controls for kindly accepting their essential collaboration. Banco Nacional de ADN (University of Salamanca, Spain) and Biobanco Vasco para la Investigación (Fundación Vasca de Innovación e Investigación Sanitarias, Bizkaia, Spain) are thanked for supplying part of the samples.

REFERENCES

1. Commodaro AG, Bueno V, Belfort R Jr, Rizzo LV. Autoimmune uveitis: the associated proinflammatory molecules and the search for immunoregulation. Autoimmun Rev 2011; 10:205-9. [PMID: 20959149].

2. Deschenes J, Murray P, Rao NA, Nussenblatt RB. International Uveitis Study Group (IUSG): clinical classification of uveitis. Ocul Immunol Inflamm 2008; 16:1-2. [PMID: 18379933].

3. Ehrenfeld M. Geoepidemiology: the environment and spondyloarthropathies. Autoimmun Rev 2010; 9:A325-9. [PMID: 20026258].

4. Simonini G, Cantarini L, Bresci C, Lorusso M, Galeazzi M, Cimaz R. Current therapeutic approaches to autoimmune chronic uveitis in children. Autoimmun Rev 2010; 9:674-83. [PMID: 20553975].

5. Nussenblatt RB. The natural history of uveitis. Int Ophthalmol 1990; 14:303-8. [PMID: 22499097].

6. Rothova A, Suttorp-van Schulten MS, Frits Trefers W, Kijistra A. Causes and frequency of blindness in patients with intraocular inflammatory disease. Br J Ophthalmol 1996; 80:332-6. [PMID: 8703885].

7. Mattapallil MJ, Sahin A, Silver PB, Sun SH, Chan CC, Remmers EF, Hjeitmanick JF, Caspi RR. Common genetic determinants of uveitis shared with other autoimmune disorders. J Immunol 2008; 180:6751-9. [PMID: 18453595].

8. Caspi RR. Th1 and Th2 responses in pathogenesis and regulation of experimental autoimmune uveoretinitis. Int Rev Immunol 2002; 21:197-208. [PMID: 12424843].

9. Zhou R, Horai R, Mattapallil MJ, Caspi RR. A new look at immune privilege of the eye: dual role for the vision-related molecule retinoic acid. J Immunol 2011; 187:269-74. [PMID: 21918194].

10. Martin TM, Zhang G, Luo J, Jin L, Doyle TM, Rajksa BM, Coffman JE, Smith JR, Becker MD, Mackensen F, Khan MA, Levinson RD, Schumacher HR, Wade NK, Rosenbaum JT, Reveille JD. A locus on chromosome 9p predisposes to a specific disease manifestation, acute anterior uveitis, in ankylosing spondylitis, a genetically complex, multisystem, inflammatory disease. Arthritis Rheum 2005; 52:269-74. [PMID: 15640141].

11. Fei Y, Webb R, Cobb BL, Direskeneli H, Saruhan-Direskeneli G, Sawalha AH. Identification of novel genetic susceptibility loci for Behcet’s disease using a genome-wide association study. Arthritis Res Ther 2009; 11:R66. [PMID: 19442274].

12. LeHoang P, Ozdemir N, Benhamou A, Tabary T, Edelson C, Betuel H, Semriglia R, Cohen JH. HLA-A29.2 subtype associated with birdshot retinochoroidopathy. Am J Ophthalmol 1992; 113:33-5. [PMID: 1728143].

13. Oruc S, Duffy BF, Mohanakumar T, Kaplan HJ. The association of HLA class II with pars planitis. Am J Ophthalmol 2001; 131:657-9. [PMID: 11336946].

14. Cohen S, Dadi H, Shaoul E, Sharfe N, Roifman CM. Cloning and characterization of a lymphoid-specific, inducible human protein tyrosine phosphatase. Lymphoid Blood 1999; 93:2013-24. [PMID: 10068674].

15. Cloutier JF, Veillette A. Cooperative inhibition of T-cell antigen receptor signaling by a complex between a kinase and a phosphatase. J Exp Med 1999; 189:111-21. [PMID: 9874568].

16. Begovich AB, Carlton VE, Honigberg LA, Schrodi SJ, Chokkalingam AP, Alexander HC, Ardlie KG, Huang Q, Smith AM, Spoerke JM, Conn MT, Chang M, Chang SY, Saiki RK, Catanese JJ, Leong DU, Garcia VE, McAllister LB, Jeffery DA, Lee AT, Batliwalla F, Remmers E, Criswell LA, Seldin MF, Kastner DL, Amos CI, Sninsky JJ, Gregersen PK. A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am J Hum Genet 2004; 75:330-7. [PMID: 15208781].
17. De Jager PL, Sawcer S, Waliszewska A, Farwell L, Wild G, Cohen A, Langelier D, Bitton A, Compston A, Hafler DA, Rioux JD. Evaluating the role of the 620W allele of protein tyrosine phosphatase PTPN22 in Crohn's disease and multiple sclerosis. Eur J Hum Genet 2006; 14:317-21. [PMID: 16391555].

18. Bottini N, Musumeci L, Alonso A, Rahmouni S, Nika K, Rostamkhani M, MacMurray J, Meloni GF, Lucarelli P, Pellecchia M, Eisenbarth GS, Comings D, Mustelin T. A functional variant of lymphoid tyrosine phosphatase is associated with type 1 diabetes. Nat Genet 2004; 36:337-8. [PMID: 15040560].

19. Orozco G, Sanchez E, Gonzalez-Gay MA, Lopez-Navot MA, Torres B, Caliz R, Ortego-Centeno N, Jimenez-Alonso J, Pascual-Salcedo D, Balsa A, de Pablo R, Nunez-Roldan A, Gonzalez-Escribano MF, Martin J. Association of a functional single-nucleotide polymorphism of PTPN22, encoding lymphoid protein phosphatase, with rheumatoid arthritis and systemic lupus erythematosus. Arthritis Rheum 2005; 52:219-24. [PMID: 15641066].

20. Kyogoku C, Langeland CD, Ortmann WA, Lee A, Selby S, Carlton VE, Chang M, Ramos P, Baechler EC, Batiwalla FM, Novitzke J, Williams AH, Gillett C, Rodine P, Graham RR, Ardlie KG, Gaffney PM, Moser KL, Petri M, Begovich AB, Gregersen PK, Behrens TW. Genetic association of the R620W polymorphism of protein tyrosine phosphatase PTPN22 with human SLE. Am J Hum Genet 2004; 75:504-7. [PMID: 15279344].

21. Diaz-Gallo LM, Gourp P, Broen J, Simeon C, Fonollosa V, Ortego-Centeno N, Agarwal S, Vonk MC, Coenen M, Riemekasten G, Hunzelmann N, Hesselstrand R, Tan FK, Reveille JD, Assassi S, Garcia-Hernandez FJ, Carreira P, Camps MT, Fernandez-Nebro A, de la Pena PG, Nearney T, Hilda D, Gonzalez-Gay MA, Airo P, Beretta L, Scorza R, Herrick A, Worthington J, Pros A, Gomez-Gracia I, Trapiella Hilda D, Gonzalez-Gay MA, Airo P, Beretta L, Scorza R, Herrick A, Worthington J, Pros A, Gomez-Gracia I, Trapiella A, Martin J, Rueda B. Analysis of the influence of PTPN22 gene polymorphisms on rheumatoid arthritis in a European American population. Arthritis Rheum 2004; 50:772-8. [PMID: 15322342].

22. Martin TM, Bye L, Modin N, Stanford MR, Vaughan R, Smith JR, Wade NK, Mackensen F, Suhler EB, Rosenbaum JT, Wallace GR. Genotype analysis of polymorphisms in autoimmune susceptibility genes, CTLA-4 and PTPN22, in an acute anterior uveitis cohort. Mol Vis 2009; 15:208-12. [PMID: 19180256].

23. Vang T, Congia M, Macis MD, Musumeci L, Orru V, Zavattari P, Nika K, Tautz L, Tasken K, Cucca F, Mustelin T, Bottini N. Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant. Nat Genet 2005; 37:1317-9. [PMID: 16273109].

24. Zhang J, Zahir N, Jiang Q, Miliotis H, Heyraud S, Meng X, Dong B, Xie G, Qiu F, Hao Z, McCulloch CA, Keystone EC, Peterson AC, Siminovich KA. The autoimmunity disease-associated PTPN22 variant promotes calpain-mediated Lyn/Pep degradation associated with lymphocyte and dendritic cell hyperresponsiveness. Nat Genet 2011; 43:902-7. [PMID: 21841778].

25. Orru V, Tsai SJ, Rueda B, Fiorillo E, Stanford SM, Dasgupta J, Hartiala J, Zhao L, Ortego-Centeno N, D’Alfonso S, Arnett FC, Wu H, Gonzalez-Gay MA, Tsao BP, Pons-Estel B, Alarcon-Riquelme ME, He Y, Zhang ZY, Allayee H, Chen XS, Martin J, Bottini N. A loss-of-function variant of PTPN22 is associated with reduced risk of systemic lupus erythematosus. Hum Mol Genet 2009; 18:569-79. [PMID: 18981062].

26. Cho JH, Gregersen PK. Genomics and the multifactorial nature of human autoimmune disease. N Engl J Med 2011; 365:1612-23. [PMID: 22029983].

27. Wu J, Katrekar A, Honigberg LA, Smith AM, Conn MT, Tang J, Jeffery D, Mortara K, Sampang J, Williams SR, Buggy J, Clark JM. Identification of substrates of human protein-tyrosine phosphatase PTPN22. J Biol Chem 2006; 281:11002-10. [PMID: 16461343].

28. Matessanz F, Rueda B, Orozco G, Fernandez O, Leyva L, Alcina A, Martin J. Protein tyrosine phosphatase gene (PTPN22) polymorphism in multiple sclerosis. J Neurol Sci 2005; 239:99-5. [PMID: 15765267].

29. Lee AT, Li W, Liew A, Bombardier C, Weisman M, Massaro J, Kent J, Wolfe F, Begovich AB, Gregersen PK. The PTPN22 R620W polymorphism associates with RF positive rheumatoid arthritis in a dose-dependent manner but not with HLA-SE status. Genes Immun 2005; 6:129-33. [PMID: 15674368].

30. Baranathan V, Stanford MR, Vaughan RW, Kondeatis E, Graham E, Fortune F, Madanat W, Kanawati C, Ghabra M, Murray PI, Wallace GR. The association of the PTPN22 620W polymorphism with Behcet’s disease. Ann Rheum Dis 2007; 66:1531-3. [PMID: 17660222].

31. Sahin N, Bicakcigil M, Atagunduz P, Direskeneli H, Saruhan-Direskeneli G. PTPN22 gene polymorphism in Behcet’s disease. Tissue Antigens 2007; 70:432-4. [PMID: 17868256].

32. Zhang Q, Hou S, Jiang Z, Du L, Li F, Xiao X, Kaijstra A, Yang P. No association of PTPN22 polymorphisms with susceptibility to ocular Behcet’s disease in two Chinese Han populations. PLoS ONE 2012; 7:e31230. [PMID: 22396730].