The Number of Different Binary Functions
Generated by NK-Kauffman Networks
and the Emergence of Genetic Robustness

David Romero and Federico Zertuche

Instituto de Matemáticas, Unidad Cuernavaca
Universidad Nacional Autónoma de México
A.P. 273-3, 62251 Cuernavaca, Mor., México.
davidr@matcuer.unam.mx zertuche@matcuer.unam.mx

Abstract

We determine the average number $\vartheta(N, K)$, of NK-Kauffman networks that give rise to the same binary function. We show that, for $N \gg 1$, there exists a connectivity critical value K_c such that $\vartheta(N, K) \approx e^{\varphi N}$ ($\varphi > 0$) for $K < K_c$ and $\vartheta(N, K) \approx 1$ for $K > K_c$. We find that K_c is not a constant, but scales very slowly with N, as $K_c \approx \log_2 \log_2 (2N/\ln 2)$. The problem of genetic robustness emerges as a statistical property of the ensemble of NK-Kauffman networks and impose tight constraints in the average number of epistatic interactions that the genotype-phenotype map can have.

Short title: NK-Kauffman networks and Genetic Robustness

Keywords: Cellular automata, functional graphs, binary functions, epistatic gene interactions, redundant genetic material, genetic robustness.

PACS numbers: 05.65.+b, 87.10.+e, 87.14.Gg, 89.75.Fb
1. Introduction

NK-Kauffman networks, also known as NK-Kauffman cellular automata, were proposed in 1969 as models for the study of gene regulation. Since then, their rich dynamical behavior has motivated many studies, and as very general models with few parameters their applications have been extended to several complex systems. Of particular interest in this work is their application for modeling the genotype-phenotype map. For an excellent review on several applications see also Ref. 4.

An NK-Kauffman network consists of N Boolean variables (or bits) $S_i(t) \in \{0, 1\}$, with $i = 1, \ldots, N$, that evolve deterministically in discretized time $t = 0, 1, 2, \ldots$ according to Boolean functions on K of these variables (the inputs) at the previous time $t - 1$. For every S_i, a Boolean function f_i is chosen at random and independently from a given distribution in all the possible Boolean functions with K inputs. Also, for every S_i, K inputs are randomly selected from a uniform distribution among the N Boolean variables of the network. The selection process may be done with allowed repetitions; this is to say, some inputs might be identical and K could be bigger than N. Or without repetitions; namely, all inputs are different and $K \leq N$. In this work we adopt the latter alternative, because it is more natural from the biological point of view, and it suits better for our calculation purposes. It is important to bear in mind this distinction (repetition vs. no repetition) when contrasting our results with those from other approaches.

Once the K inputs and the function f_i for each of the N variables have been selected, a particular NK-Kauffman network has been constructed, and evolves deterministically in discrete time t according to the rules

$$S_i(t + 1) = f_i(S_{i_1}(t), S_{i_2}(t), \ldots, S_{i_K}(t)), \quad i = 1, \ldots, N,$$

(1)

where $i_\alpha \neq i_\beta$, for all $\alpha, \beta = 1, 2, \ldots, K$, with $\alpha \neq \beta$, because all the inputs, while random, are different.

Let's denote L_{NK}^N the set of different NK-Kauffman networks that might be built up with the aforementioned process, for given N and K. Since each element of L_{NK}^N is a deterministic dynamical system evolving in a finite phase space, with 2^N states, its dynamics eventually settles into a cycle. One can think the system as composed of attraction valleys, each with one cycle (or attractor), whose number might go from just 1 to 2^N, and with cycle lengths varying from 1 for a punctual attractor, to 2^N when a single cycle traverses the whole phase space. The behavior of a typical NK-Kauffman network is in between these two extreme cases.

Determining the distribution in L_{NK}^N of the number of attractors and their size for general N and K, is a difficult and challenging problem. Several
numerical simulations and analytical methods have been used to approach it \(^5\)–\(^10\). However, significant advances have been obtained only for the so-called \textit{random map model}; i.e., when the Boolean functions are taken from a uniform distribution and \(K = N\) \((K = \infty\) in Ref. \(5\), since they permit repetition in the inputs). The first results obtained from this model go as far as the 50’s, when accurate formulas were found for the distribution of attractors in the context of \textit{random functional graphs} \(^{11}\). Decades later, Derrida and Flyvbjerg studied it in the context of statistical mechanics with an interest on its applications to cellular automata \(^5\). We recently have founded an asymptotic formula for the statistical distribution of the number of connected components in the random map model, deriving it from a new combinatorial expression \(^{12}\). In Ref. \(13\) we also, furnished both: exact and asymptotic formulas, for several measures that help to understand the connectivity of random functional graphs; such as cycle and trajectory lengths, expected number and size of attraction valleys, and the like.

The general case \(K < N\) were treated by mean field analysis taking \(N \to \infty\) \(^{10}\). The results indicate that when the Boolean functions are extracted from a distribution such that \(f_i\) is 1 or 0 with probability \(p\) or \(1 - p\), respectively, there is a bifurcation of the dynamics of the elements of \(\mathcal{L}_K^N\) at the critical connectivity value

\[
K^* = \frac{1}{2p(1 - p)},
\]

(2)

with \(p = 1/2\) corresponding to the uniform distribution considered in this paper. For \(K < K^*\); there is an ordered phase, where small perturbations die out. When \(K > K^*\), the phase is chaotic and small perturbations spread exponentially through the network. While, in the critical case \(K = K^*\), the evolution is mainly governed by fluctuations and has been qualified of being neither ordered, nor chaotic \(^4\).

The extreme cases \(K = 1\) and \(K = 2\) have been approached analytically for \(p = 1/2\). The former was first studied by Flyvbjerg and Kjaer \(^6\), and it has been recently founded that, when the constant functions \textit{tautology} and \textit{contradiction} are excluded from consideration, the number of attractors and their length grow super polynomially (faster than any power law) in \(N\) \(^7\). In the case of \(K = 2\) a super polynomial behavior for the number of attractors was also founded \(^8\).

In this work we calculate; for given \(N\) and \(K\), the exact value of the average number \(\vartheta(N, K)\) of different \(NK\)-Kauffman networks that give rise to the same binary function. For that scope, we define the function \(\Psi: \mathcal{L}_K^N \to \mathcal{G}_{2^N}\); where \(\mathcal{G}_{2^N}\) is the set of binary functions in \(N\) binary variables. Then, we calculate the values of the cardinalities \(#\mathcal{L}_K^N\) and \(#\Psi(\mathcal{L}_K^N)\); of \(\mathcal{L}_K^N\) and the set of binary functions, \(\Psi(\mathcal{L}_K^N) \subseteq \mathcal{G}_{2^N}\) that they generate, respectively.
Our findings, show that, for \(N \gg 1 \) the asymptotic formula for \(\vartheta(N, K) \), behaves so that there exists a critical value \(K_c \) of the connectivity, such that: \(\vartheta(N, K) \approx e^{\varphi(K)N} \) for \(K < K_c \), with \(\varphi(K) > 0 \); so that many \(NK \)-Kauffman networks generate the same binary function. And, \(\vartheta(N, K) \approx 1 \) for \(K > K_c \), indicating that almost any binary function is generated by a different \(NK \)-Kauffman network. Furthermore, the value of \(K_c \) turns out to be not a constant, but to grow very slowly as the double logarithm of \(N \). Important to remark, is the fact that, \(K_c \) does not signal a transition from a regular to a chaotic behavior for the elements of \(L_N^N \); as \(K^* \) given by (2) does. Instead, it shows an abrupt change in the injectivity of the map \(\Psi : L_N^K \rightarrow \Psi (L_N^K) \subseteq G_{2N} \).

\(NK \)-Kauffman networks play an important roll in applications to genetics for modeling the genotype-phenotype map, represented by \(\Psi \). The genotype, carries all the necessary information to create a living organism; the phenotype. The genotype is mainly composed of DNA that is a double chain of base-pares (Adenine-Thymine and Cytosine-Guanine) which in turn constitutes the genes. In this context, an \(NK \)-Kauffman network, represents the genotype, while their attractors in \(\Psi (L_N^K) \); the phenotype of the alternative cells types. A conspicuous observation in the theory of natural selection is the robustness of the phenotype against mutations in the genotype. Natural radiation in the environment changes the genotype by making mutations on DNA-bases. Random mutations and recombination of the genotype by mating, constitute the essential engine of species evolution. The effect of random mutations range from having no effect at all, to complete damage in the phenotype. The reasons of this phenomena are still not completely understood. One hypothesis is that it provides selective advantages to the phenotype since an organism with a damaging mutation will be at disadvantage in evolution. So, natural selection must have favored organisms with a mechanism that prevents mutations from accumulating in the gene, ensuring that useful genes remain in the genome.

A mechanism proposed to explain genetic robustness is due to the finding of the existence of genetic redundant material. This implies that not all genes are essential. Experiments to estimate how many genes are actually essential were carried out by induced mutations. The results varied among the different organisms under study, but in all cases; the estimates showed that more than 50% of the genes are not essential. However, recent studies on gene-deletion at genome-scale, revealed that thousands of genes whose deletions had no detectable effect in the phenotype were single-copy i.e. they had no duplicate in the genome. Other mechanism is the discovery by modern genetics of the epistatic effects. This refers to effects that a gene may have on the phenotype, that strongly depend on the levels of expression of other unrelated genes in the genotype. For example, studies in yeast...
revealed that up to 50% of mutations, almost do not affect their fitness due to the epistatic compensations. Today there is some agreement that genetic robustness, emerges as a mixture, between genetic redundancy and epistatic buffering.

As we shall see, our mathematical findings show that genetic robustness emerges in the genotype-phenotype map modeled by NK-Kauffman networks, as a consequence of their statistical properties: with the \(K \) connections playing the role of the average number of epistatic interactions among the genes. Our calculations impose tight restrictions on the values that \(K \) may have when \(N \) attains values in the range of the known number of genes that living organisms have.

The paper is organized as follows: In Sec. 2 we establish a mathematical correspondence between binary functions and functional graphs through a bijection \(\phi_N \). This allows us to define the function \(\Psi \) and show that \(\vartheta(N, K) = \#L_N^K/\#\Psi(L_N^K) \). The exact computations of the cardinalities \(\#L_N^K \), and \(\#\Psi(L_N^K) \); are carried out by combinatorial methods in Sec. 3. In Sec. 4 the asymptotic behavior of \(\vartheta(N, K) \) is studied and expressions for \(K_c(N) \) and \(\Delta K_c(N) \) (the width of the transition) are found. Finally, in Sec. 5 we set our conclusions showing that: the asymptotic behavior of \(\vartheta(N, K) \) imposes the restriction \(K \leq 3 \), in the average number of epistatic interactions, in order that, genetic robustness emerges in the ensemble of NK-Kauffman networks.

2. Mapping NK-Kauffman Networks into Binary Functions

Binary functions can be represented by means of functional graphs. For a given positive integer \(n \), an \(n \)-functional graph is composed: by the set \(P_n = \{1, \ldots, n\} \), whose elements are called nodes or vertices, and a function \(g : P_n \to P_n \).

Functional graphs can be represented graphically, and it is this graphical representation that helps to understand many of their properties. Each node is indicated by a point, and an arrow from node \(i \) to node \(j \) is drawn whenever \(g(i) = j \). As an example, Figure 1 shows a 12-functional graph with three connected components (i.e., three attractors). For clarity, nodes are depicted here as small disks.
Figure 1: A 12-functional graph with three connected components.

Note that, in an n-functional graph, although exactly one arrow goes out from each of its nodes, several arrows might be directed towards any of them. Denote G_n the set of all possible n-functional graphs; its cardinality is well known and given by $\# G_n = n^n$. The problem of determining in G_n the distribution of cycle lengths and number of connected components (number of attractors) has been undertaken by several authors since the early 50’s.

Let $\Omega_N = \{ S = (S_1, \ldots, S_N) \mid S_i = 0, 1, \text{ for } i = 1, \ldots, N \}$ be the set of 2^N binary vectors with N components which is mapped by NK-Kauffman networks $(f : \Omega_N \rightarrow \Omega_N)$ through (1). There is a well-known bijection $\phi_N : \Omega_N \rightarrow P_{2^N}$ given by:

$$\phi_N (S) = 1 + \sum_{i=1}^{N} 2^{i-1} S_i.$$ \hspace{1cm} (3)

Clearly, S is nothing else than the binary decomposition of $\phi_N (S) \in P_{2^N}$. Now, the following diagram commutes:

$$\begin{array}{ccc}
\Omega_N & \xrightarrow{f} & \Omega_N \\
\downarrow{\phi_N} & & \downarrow{\phi_N} \\
P_{2^N} & \xrightarrow{g} & P_{2^N}
\end{array}$$

and assigns to each binary function f the functional graph $g = \phi_N \circ f \circ \phi_N^{-1}$. This defines the function

$$\Psi : \mathcal{L}_K^N \longrightarrow \Psi (\mathcal{L}_K^N) \subseteq G_{2^N}.$$ \hspace{1cm} (4)
In the case $K = N$ we get from (1) that \mathcal{L}_N^N coincides with the set of all possible binary functions from $\Omega_N \to \Omega_N$. So, from the commuting diagram it happens that $\mathcal{L}_N^N \cong \mathcal{G}_{2N}$.

The average number of NK-Kauffman networks that Ψ maps to the same binary function is directly expressed in terms of the cardinalities of the inverse image sets $\Psi^{-1}(g) = \{ f \in \mathcal{L}_K^N \mid \Psi(f) = g \}$ as

$$\vartheta(N, K) = \frac{1}{\# \Psi(\mathcal{L}_K^N)} \sum_{g \in \Psi(\mathcal{L}_K^N)} \# \Psi^{-1}(g),$$

(5)

where

$$\Psi^{-1}(g) \cap \Psi^{-1}(g') = \emptyset \quad \forall \ g \neq g'.$$

(6)

Furthermore \mathcal{L}_K^N may be decomposed as

$$\mathcal{L}_K^N = \bigcup_{g \in \Psi(\mathcal{L}_K^N)} \Psi^{-1}(g)$$

so that, due to (6)

$$\# \mathcal{L}_K^N = \sum_{g \in \Psi(\mathcal{L}_K^N)} \# \Psi^{-1}(g).$$

Substituting back into (5) we obtain

$$\vartheta(N, K) = \frac{\# \mathcal{L}_K^N}{\# \Psi(\mathcal{L}_K^N)},$$

(7)

for the average number of NK-Kauffman networks that give rise to the same binary function.

3. The Cardinalities of \mathcal{L}_K^N and $\Psi(\mathcal{L}_K^N)$

For each of the N Boolean variables there are 2^{2K} different Boolean functions with K connections; moreover, as there are $\binom{N}{K}$ different ways to make the connections without replacement, the total number of NK-Kauffman networks is

$$\# \mathcal{L}_K^N = \left[2^{2K} \binom{N}{K} \right]^N.$$

(8)
Now, let $A_K = \{A_K(m, i)\}$ denote the $2^K \times K$ binary matrix whose m-th row encodes the binary decomposition of $m \in P_{2^K}$, that is,

$$m = 1 + \sum_{i=1}^K A_K(m, i) 2^{i-1}.$$

As an example, A_3 is shown in Figure 2, at left.

$$A_3 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

$$T^{(11)}_2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

$$T^{(12)}_2 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

$$T^{(13)}_2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Figure 2.

There are $\binom{N}{K}$ possible K-connection sets

$$C^{(\alpha)}_K = \{i_1, i_2, \ldots, i_K\} \subseteq P_N, \text{ with } \alpha = 1, \ldots, \binom{N}{K} \tag{9}$$

and hence without loss of generality we can take $i_1 < i_2 < \cdots < i_K$. To each $C^{(\alpha)}_K$ we associate a K-connection map $C^{(\alpha)}_K : \Omega_N \to \Omega_K$, such that

$$C^{(\alpha)}_K(S) = C^{(\alpha)}_K(S_1, \ldots, S_N) = (S_{i_1}, \ldots, S_{i_K}). \tag{10}$$

A K-Boolean function

$$b_K : \Omega_K \to \Omega_1, \tag{11}$$

is completely determined by a K-truth table T_K, that consists of a $2^K \times (K + 1)$ binary matrix of the form

$$T_K = [A_K \ b_K], \tag{12}$$
where the vector
\[b_K = [\sigma_1, \sigma_2, \ldots, \sigma_{2^K}] \] (13)
is expressed in column form in (12), and its entries correspond to the \(2^K\) images of the function (11).

As any \(K\)-truth table (12) has \(2^K\) rows there are as much as \(2^{2^K}\) possible \(K\)-truth tables, i.e., the total quantity of binary vectors (13). The Boolean functions (11) have been classified by Wolfram's notation according to their decimal number \(\mu\) given by
\[\mu = 1 + \sum_{s=1}^{2^K} 2^{s-1} \sigma_s. \] (14)

Let us number the vectors (13) as well as the \(K\)-truth tables (12) according to (14) by adding the superscript \((\mu)\), i.e., \(b^{(\mu)}_K\) and \(T^{(\mu)}_K\), with \(\mu = 1, \ldots, 2^K\). Thus, for instance, the 2-truth tables \(T^{(11)}_2\), \(T^{(12)}_2\), and \(T^{(13)}_2\) in Figure 2.

The connection function (10) projects \(\Omega_N\) on \(\Omega_K\), enabling us to define projected \(N\)-Boolean functions \(b^{(\mu)(\alpha)}_N = b^{(\mu)}_K \circ C^{(\alpha)}_K\), that are completely defined through their \(N\)-truth tables
\[T^{(\mu)(\alpha)}_N = \left[A_N \ b^{(\mu)}_K \circ C^{(\alpha)}_K \right]. \] (15)

Within this notation, an \(NK\)-Kauffman network consists of a set
\[\left\{ T^{(\mu_i)(\alpha_i)}_N \right\}_{i=1}^N, \]
and an evolution rule (equivalent to (1)):
\[S_i (t + 1) = b^{(\mu_i)}_K \circ C^{(\alpha_i)}_K (S(t)), \]
where some of the indexes \(\alpha_i\) and \(\mu_i\) may be the same for different values of \(i\); and a \(2^N\)-functional graph \(g \in \mathcal{G}_{2^N}\) is associated through \(\Psi\) in (4).

An example is in point. Let \(N = 3, K = 2\), and consider the 2-connection sets \(C^{(1)}_2 = \{1, 2\}, C^{(2)}_2 = \{1, 3\}, C^{(3)}_2 = \{2, 3\}\), and the 2-truth tables \(T^{(11)}_2\),
We can construct an NK-Kauffman network consisting of the projected tables $\{T_{2}^{(11)(1)}, T_{3}^{(12)(2)}, T_{3}^{(11)(3)}\}$, that gives rise to an 8-functional graph with two connected components as in Figure 3. Note that taking the projected tables $\{T_{3}^{(13)(3)}, T_{3}^{(12)(2)}, T_{3}^{(11)(2)}\}$ the same 8-functional graph appears.

Figure 3. The nodes are labelled here in binary form, according to (3).

Now, for $\alpha = 1, \ldots, \binom{N}{K}$, let $B_{N}^{K}(\alpha)$ denote the $2^{N} \times 2^{2K}$ binary matrix whose μ-th column results from the application of the projected N-truth table $T_{N}^{((\mu)(\alpha))}$ given by (15), that is:

$$B_{N}^{K}(\alpha) = \left[b_{K}^{(1)} \circ C_{K}^{*}(\alpha) \quad b_{K}^{(2)} \circ C_{K}^{*}(\alpha) \quad \ldots \quad b_{K}^{(2^{2K})} \circ C_{K}^{*}(\alpha) \right].$$

To clarify how matrices $B_{N}^{K}(\alpha)$ are built up, consider for example $N = 3$ and $K = 2$. There are $2^{4} = 16$ truth tables, numbered according to (14), and shown below in compact form.

| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|
| 00| 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
| 01| 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 |
| 10| 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
| 11| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |

Moreover, there are $\binom{3}{2} = 3$ possible ways to choose two columns of A_{3}. Thus, assuming that columns 1 and 2 of A_{3} form the connection set number 1 we get $B_{2}^{3}(1)$:
Taking columns 1 and 3 of A_3 as the connection set number 2 yields matrix $B_3^2(2)$:

\[
\begin{array}{cccccccccccccccc}
A_3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
000 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
001 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
010 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\
011 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \\
100 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
101 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
110 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
111 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\end{array}
\]

Finally, matrix $B_3^3(3)$ results from columns 2 and 3 of A_3:

\[
\begin{array}{cccccccccccccccc}
A_3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
000 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
001 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
010 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
011 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
100 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
101 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
110 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
111 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\end{array}
\]

Let

\[\Xi_K^N = \{B_K^N(\alpha)\}_{\alpha=1,...,\binom{N}{K}}.\]

The number $\#\Psi\left(\mathcal{L}_K^N\right)$ of different functional graphs that can be generated by the NK-Kauffman networks, equals the N-th power of the number
c of different columns belonging to the matrices of Ξ^N_K. Moreover,
\[c = 2^{2^K} \binom{N}{K} - r, \] (16)
where r is the number of ‘redundant’ columns (that is, the ones that are repeated) in the elements of Ξ^N_K. As no two columns of A_N are the same, redundant columns arise solely from the following functions:

- The tautology: $b_K(C^*_K(S)) = 1$, for any $S \in \Omega_N$. As there is one tautology (column 16 in the last example) in each of the $\binom{N}{K}$ matrices, we get as much as $\binom{N}{K} - 1$ redundant columns.

- The contradiction: $b_K(C^*_K(S)) = 0$, for any $S \in \Omega_N$. With one contradiction (column 1 in the last example) in each matrix, we come also to $\binom{N}{K} - 1$ redundant columns.

- The identity: $b_K(S_{i_1}, \ldots, S_{i_K}) = S_{i_l}$, for $l = 1, \ldots, K$. Observe that no two columns of A_N are the same. Hence, for each $j = 1, \ldots, N$, one replica of column j of A_N can be found in precisely $\binom{N-1}{K-1}$ matrices, yielding $\binom{N-1}{K-1} - 1$ redundant columns. Hence there is a total of $N \left[\binom{N-1}{K-1} - 1 \right]$ redundant columns accounting for the identity function, (in the last example, columns 11 of $B_2^3(1)$ and 13 of $B_2^3(3)$ replicate column 2 of A_3).

- The negation: $b_K(S_{i_1}, \ldots, S_{i_K}) = 1 - S_{i_l}$, for $l = 1, \ldots, K$. This function leads also to $N \left[\binom{N-1}{K-1} - 1 \right]$ redundant columns, because one complement of column j of A_N can be found in each of $\binom{N-1}{K-1}$ matrices.

Summing up we get
\[r = 2 \binom{N}{K} - 2 + 2N \binom{N-1}{K-1} - 2N, \]

as the total number of redundant columns in Ξ^N_K. Substituting in (16) and using the identity $\binom{N-1}{K-1} = \frac{N}{K} \binom{N}{K}$, yields $c = \left(2^{2^K} - 2 (K + 1)\right) \binom{N}{K} + 2 (N + 1)$. Thus, the number of different functional graphs generated by N-K-Kauffman networks amounts to
\[\#\Psi(L^N_K) = \left[\left(2^{2^K} - 2 (K + 1)\right) \binom{N}{K} + 2 (N + 1) \right]^N. \] (17)
4. The Asymptotic Expansion of $\vartheta(N, K)$

From equations (7), (8) and (17) we get for the reciprocal of $\vartheta(N, K)$ that:

$$\vartheta^{-1}(N, K) = \{1 - \varphi(K)[1 - \xi_N(K)]\}^N,$$

where

$$\varphi(K) \equiv \frac{K + 1}{2^{2K-1}},$$

and

$$\xi_N(K) \equiv \frac{N + 1}{K + 1} \binom{N}{K}^{-1}.$$

The function $\xi_N(K)$ is unimodal on the interval $1 \leq K \leq N$, where it attains its maximum at $K = N$, yielding $\xi_N(N) = 1$, and its minimum at $K = N/2$, where $\xi_N(N/2) \sim \mathcal{O}\left(\sqrt{N/2}\right)$.

For fixed N, though $N \gg 1$, we obtain the following:

By means of Stirling’s approximation in the factorials involved in $\binom{N}{K}^{-1}$, it happens that $\xi_N(K) \sim \mathcal{O}(1/N^{K-1})$ for $K \sim \mathcal{O}(1)$, and $\xi_N(N - m) \sim \mathcal{O}(1/N^m)$ for $m \sim \mathcal{O}(1)$. Thus, $\xi_N(K) \sim o(1)$ over $1 < K < N$. Hence, since $\varphi(K) \ll 1$ for $K > 1$, $\vartheta^{-1}(N, K)$ exhibits the following asymptotic behavior

$$\vartheta^{-1}(N, K) \approx \{1 - \varphi(K)\}^N \approx e^{-N\varphi(K)}.$$ \hfill (20)

Figure 4 shows an excellent agreement for the functions (18) and (20) for just $N = 10$. There are two main asymptotic regimes:

i) $\vartheta^{-1}(N, K) \approx 1$ for $N\varphi(K) \ll 1$, \hfill (21.a)

and

ii) $\vartheta^{-1}(N, K) \approx 0$ for $N\varphi(K) \gg 1$, \hfill (21.b)

The critical point K_c defining the transition region, where the regime changes is given by setting $\vartheta^{-1}(N, K_c) = 1/2$ in (20), yielding the transcendental equation

$$2^{K_c} \ln 2 - \ln(K_c + 1) = \ln\left(\frac{2N}{\ln 2}\right),$$

with solution

$$K_c \approx \log_2 \log_2 \left(\frac{2N}{\ln 2}\right) + \mathcal{O}\left(\frac{\ln \ln N}{\ln N}\right).$$

13
Figure 4: The graph of $\vartheta^{-1}(N,K)$ as a function of K and its asymptotic approximation (dashed); for $N = 10$.

The leading term corresponds to the solution obtained by neglecting the second term in the left hand side of (22). Equation (23) gives K_c as a very slowly growing function on N. To estimate the width of the transition region let us expand $\vartheta^{-1}(N,K)$ in Taylor series up to the first order in $K - K_c$. From (20) we obtain:

$$\vartheta^{-1}(N,K) \approx \frac{1}{2} \left[1 - N \varphi'(K_c) (K - K_c) \right], \quad \text{for} \quad |K - K_c| \ll 1. \quad (24)$$

The width ΔK_c of the transition region is then given by:

$$\Delta K_c \equiv K_1 - K_0 = \frac{2}{N \varphi'(K_c)},$$

where K_0 and K_1 are such that $\vartheta^{-1}(N,K_0) = 0$ and $\vartheta^{-1}(N,K_1) = 1$, in (24). From (19) we get

$$\Delta K_c = \frac{2 (K_c + 1)}{2^{K_c} (K_c + 1) (\ln 2)^2 - 1} \ln 2 \sim \mathcal{O} \left(\frac{1}{\ln N} \right), \quad (25)$$
that is smaller than the absolute error in (23).

Summing up the results from (20) and (21) we have, for the asymptotic regimes outside of the transition region (of width ΔK_c), that:

$$\vartheta (N, K) \approx \begin{cases} e^{\varphi(K)N} \gg 1 & \text{for } K < K_c - \Delta K_c \\ 1 + \varphi(K)N \approx 1 & \text{for } K > K_c + \Delta K_c \end{cases}.$$ \hspace{1cm} (26)

5. Conclusion

We have calculated an exact formula (18) for the average number $\vartheta (N, K)$ of NK-Kauffman networks, that are mapped by Ψ [defined by (4)] onto the same binary function. The asymptotic expression (26) for $\vartheta (N, K)$ shows an abrupt change of regime at the critical value K_c (23), that grows with N as a double logarithm. The width of the transition ΔK_c (25), becomes small as $O (1/ \ln N)$.

In genetics $\Psi : \mathcal{L}_K^N \rightarrow \Psi (\mathcal{L}_K^N) \subseteq \mathcal{G}_{2^N}$ may be used for modeling the genotype-phenotype map 3. The genotype is represented by a NK-Kauffman network with N Boolean variables; $S_i (t)$ representing the expression of the i-th gene at time t within some developmental process. While a gene’s expression, could be much more complex than just to be described by binary values; NK-Kauffman networks have enough mathematical richness for a first approximation to the problem 2,16. The binary values $+1$ and 0 correspond to an expressed or not expressed gene, respectively. Boolean functions f_i, and the K-connection sets $C_K^{(\alpha)}$ (9) represent the epistatic interactions among the genes 6. The phenotype and/or its metabolic regulation is represented by the different attractors, that the dynamics of the NK-Kauffman network generates, each of them, playing the role of an alternative cell in the organism. So, the different states in the attractor represent the metabolic process 1,2,15.

Changes in the f_i and the $C_K^{(\alpha)}$ mimic random biological mutations, and so, $\vartheta (N, K)$ represents the average number of genotypes giving rise to the same metabolic process in the phenotype by means of mutations. From the asymptotic formula (26) for $\vartheta (N, K)$, it follows that, in order that Ψ represents a robust genotype-phenotype map; it must be a many-to-one map, which implies that $K < K_c - \Delta K_c$. The number of genes that living organisms have, ranges from 6×10^3 in yeast, to less than 4×10^4 for the $H. sapiens$ 14. Substitution of these figures in (23) and (25) shows that, in both cases: for NK-Kauffman networks, to exhibit genetic robustness; it must happen that $K \leq 3$ for the average number of epistatic interactions.
Our results are in well concordance with the fact that, the existence of an ordered phase representing cycles on cells, requires the emergence of attractors whose length grows not faster than a power of \(N \); otherwise the cycle length will be too long to represent a metabolic process\(^2\). From the mean field analysis result (2) for \(K^* \), done by Derrida et. al.; that happens for \(K \leq 2 \) (in the case \(p = 1/2 \))\(^4,10\). To remark also, is that since the 70’s, the case \(K = 2 \) has been used as a model for cell differentiation\(^1,22\) and the mitotic cycle\(^23\).

Acknowledgments

This work is supported in part by CONACyT project number 059869. The second author (FZ) thanks: Fabio Benatti, Adolfo Guillot and Alberto Verjovksy for fruitful mathematical discussions, Thalía Figueras for patient advise in genetics and encouragement along the elaboration of the article, Adela Iglesias for a careful and critic reading of the manuscript, Mamed Atakishiyev for computational advice and Pilar López Rico for accurate services on informatics.

References

1. Kauffman, S.A., *Metabolic Stability and Epigenesis in Randomly Connected Nets*. J. Theoret. Biol. 22 (1969) 437.

2. Kauffman, S.A., *The Origins of Order: Self-Organization and Selection in Evolution*. Oxford University Press (1993).

3. Vargas, J.M., Waelbroeck, H., Stephens, C.R., and Zertuche, F., *Symmetry Breaking and Adaptation: Evidence from a “Toy Model” of a Virus*. BioSystems. 51 (1999) 1-14.

4. Aldana, M., Coppersmith, S. and Kadanoff, L., *Boolean Dynamics with Random Couplings*. In: Perspectives and Problems in Nonlinear Science, 23–89. Springer Verlag, New York (2003).

5. Derrida, B., and Flyvbjerg, H., *The Random Map Model: a Disordered Model with Deterministic Dynamics*. J. Physique 48 (1987) 971.

6. Flyvbjerg, H., and Kjaer, N.J., *Exact Solution of Kauffman’s Model with Connectivity One*. J. Phys. A: Math. Gen. 21 (1988) 1695.
7 Drossel, B., Mihaljev, T., and Greil, F., Number and Length of Attractors in a Critical Kauffman Model with Connectivity One. Phys. Rev. Lett. 94 (2005) 088701.

8 Samuelsson B., and Troein, C., Superpolynomial Growth in the Number of Attractors in Kauffman Networks. Phys. Rev. Lett. 90 (2003) 098701.

9 Socolar, J.E.S., and Kauffman, S.A., Scaling in Ordered and Critical Random Boolean Networks. Phys. Rev. Lett. 90 (2003) 068702.

10 Derrida, B., and Pomeau, Y., Random Networks of Automata: A Simple Annealed Approximation. Europhys. Lett. 1 (1986) 45; Derrida, B., and Stauffer, D., Phase Transitions in Two-Dimensional Kauffman Cellular Automata. Europhys. Lett. 2 (1986) 739.

11 Kruskal, M.D., The Expected Number of Components under a Random Mapping Function. Am. Math. Monthly 61 (1954) 392; Rubin, H., and Sitgreaves, R., Probability Distributions Related to Random Transformations on a Finite Set. Tech. Rep. No. 19A, Applied Mathematics and Statistics Laboratory, Stanford University (1954). Unpublished; Folkert, J.E., The Distribution of the Number of Components of a Random Mapping Function. Unpublished Ph. D. dissertation, Michigan State University, U.S.A. (1955); Harris, B., Probability Distributions Related to Random Mappings. Ann. Math. Stat. 31 (1960) 1045.

12 Romero, D., and Zertuche, F., The Asymptotic Number of Attractors in the Random Map Model. J. Phys. A: Math. Gen. 36 (2003) 3691.

13 Romero, D., and Zertuche, F., Grasping the Connectivity of Random Functional Graphs. Stud. Sci. Math. Hung. 42 (2005) 1.

14 Lewin, B., GENES VIII. Pearson Prentice Hall (2004).

15 Kauffman, S.A. The Large-Scale Structure and Dynamics of Gene Control Circuits: An Ensemble Approach. J. Theoret. Biol. 44 (1974) 167; Developmental Logic and its Evolution. BioEssays 6 (1986) 82; A Framework to Think about Regulatory Systems. In: Integrating Scientific Disciplines. (Ed. W. Bechte) (1986) Martinus Nijhoff, Dordrecht.

16 Wagner A., Does Evolutionary Plasticity Evolve? Evolution 50 (1996) 1008-1023.

17 Wagner, A., Robustness and Evolvability in Living Systems. Princeton University Press (2005).
18 de Visser J.A.G.M., et al., Perspective: Evolution and Detection of Genetic Robustness. Evolution 57 (2003) 1959-1972.

19 Goebel, M.G. and Petes, T.D., Most of the Yeast Genomic Sequences are not Essential for Cell Growth and Division. Cell 46 (1986) 983-992; Hutchison, C.A. et. al., Global Transposon Mutagenesis and a Minimal Mycoplasma Genome. Science 286 (1999) 2165-2169; Giaver, G. et. al., Functional profiling of the S. cerevisiae genome. Nature 418 (2002) 387-391.

20 Thatcher, J.W., Shaw, J.M., and Dickinson, W.J. Marginal Fitness Contributions of Nonessential Genes in Yeast. Proc. Natl. Acad. Sci. USA 95 (1998) 253-257.

21 Weisbuch, G., Complex Systems Dynamics. Addison Wesley, Redwood City, CA (1991); Wolfram, S., Universality and Complexity in Cellular Automata. Physica D 10 (1984) 1.

22 Kauffman, S.A., Gene Regulation Networks: A Theory for their Global Structure and Behavior. Current Topics in Dev. Biol. 6 (1971) 145; Cellular Homeostasis, Epigenesis and Replication in Randomly Aggregated Macromolecular Systems. J. Cybernetics 1 (1971) 71; Differentiation of Malignant to Benign Cells. J. Theoret. Biol. 31 (1971) 429; The Large Scale Structure and Dynamics of Gene Control Circuits: An Ensemble Approach. J. Theoret. Biol. 44 (1974) 167.

23 Kauffman, S.A., and Wille, J.J. The Mitotic Oscillator in Physarum polycephalum. J. Theoret. Biol. 55 (1975) 47; Shymko, R.S., Klevecz, R.R., and Kauffman, S.A. The Cell Cycle as an Oscillatory System. In: Cell Cycle Clocks (Ed. L.N. Edmunds Jr.) (1984) Marcel Dekker, New York; Winfree, A.T. The Geometry of Biological Time. Lecture Notes in Biomathematics, vol. 8 (1980) Springer, New York; Winfree, A.T. When Time Breaks Down. Princeton University Press (1987) Princeton N.J.