Varieties of Modules for $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$

Paul Levy
Ecole Polytechnique Fédérale de Lausanne
EPFL SB IGAT
Bâtiment BCH
1015 Lausanne
Switzerland
paul.levy@epfl.ch

February 17, 2022

Abstract

Let k be an algebraically closed field of characteristic 2. We prove that the restricted nilpotent commuting variety C, that is the set of pairs of $(n \times n)$-matrices (A, B) such that $A^2 = B^2 = [A, B] = 0$, is equidimensional. C can be identified with the ‘variety of n-dimensional modules’ for $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, or equivalently, for $k[X, Y]/(X^2, Y^2)$. On the other hand, we provide an example showing that the restricted nilpotent commuting variety is not equidimensional for fields of characteristic > 2. We also prove that if $e^2 = 0$ then the set of elements of the centralizer of e whose square is zero is equidimensional. Finally, we express each irreducible component of C as a direct sum of indecomposable components of varieties of $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$-modules.

0 Introduction

Let $G = \text{GL}(n, k)$, where k is an algebraically closed field of characteristic $p > 0$, and let \mathfrak{g} be the Lie algebra of G. We denote the p-th power of matrices on \mathfrak{g} by $x \mapsto x^{[p]}$, and its iteration m times by $x \mapsto x^{[p]^m}$. (This is the standard notation in the theory of restricted Lie algebras.) Clearly x is nilpotent if and only if $x^{[p]^N} = 0$ for $N \gg 0$. Denote by \mathcal{N} the set of nilpotent elements of \mathfrak{g} and by \mathcal{N}_1 the subset of elements satisfying $x^{[p]} = 0$ (the restricted nullcone). It was proved in [10] that \mathcal{N}_1 is irreducible. (An explicit description was given in [1].) In [15], Premet proved that the nilpotent commuting variety $C_{\text{nil}}(\mathfrak{g}) := \{(x, y) \in \mathfrak{g} \times \mathfrak{g} \mid x, y \in \mathcal{N}, [x, y] = 0\}$ is irreducible and of dimension $(n^2 - 1)$. More specifically, $C_{\text{nil}}(\mathfrak{g}) = G \cdot (e, u)$ where e is a regular nilpotent element of \mathfrak{g} and $u = ke \oplus ke^2 \oplus \ldots \oplus ke^{n-1}$.

(Here and in what follows we use the dot to denote the action of G by conjugation on \mathfrak{g} or the induced diagonal action on $\mathfrak{g} \times \mathfrak{g}$, and the notation \overline{V} for the Zariski closure of a subset V of an arbitrary affine vector space, where the context is clear.) In fact, Premet proved
that the nilpotent commuting variety of $\text{Lie}(G)$ is equidimensional for any reductive group G over an algebraically closed field of good characteristic.

The nilpotent commuting variety, or more accurately the restricted nilpotent commuting variety $C^\text{nil}_1(g) = \{(x, y) \in N_1 \times N_1 : [x, y] = 0\}$ is related to the cohomology of G by work of Suslin, Friedlander & Bendel. It was proved in [17] that $C^\text{nil}_1(g)$ is homeomorphic to the spectrum of the cohomology ring $\oplus_{i \geq 0} H^2i(G_2, k)$, where G_2 is the second Frobenius kernel of G. More generally, the restricted nullcone N_1 plays an important role in the representation theory of g due to the theory of support varieties of (reduced enveloping algebras of) restricted Lie algebras (studied for the restricted enveloping algebra in [4, 5, 9] and for general reduced enveloping algebras in [6]; see also [13, 14]).

Another perspective is that of varieties of modules (see for example [2]): $C^\text{nil}_1(g)$ can be identified with the variety of n-dimensional modules for the truncated polynomial ring $k[X, Y]/(X^p, Y^p)$. There is an isomorphism $k[X, Y]/(X^p, Y^p) \rightarrow k\Gamma$, where $\Gamma = \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$. Specifically, if σ (resp. τ) is a generator for the first (resp. second) copy of $\mathbb{Z}/p\mathbb{Z}$ in Γ, then $X + 1 \mapsto \sigma$ and $Y + 1 \mapsto \tau$.

This paper began as a preliminary investigation of the restricted nilpotent commuting variety in the simplest possible case: hence we assume $p = 2$. In Section 1 we show that projection onto the first coordinate maps any irreducible component of $C^\text{nil}_1(g)$ onto N_1 (that is, the components are ‘determined’ by the dense orbit in N_1). Equidimensionality then follows by equidimensionality of $\mathfrak{g}(e) \cap N_1$, which we prove for any $e \in N_1$.

Proposition. Let k be of characteristic 2 and let C^nil_1 be the restricted nilpotent commuting variety.

(a) If $n = 2m$, then C^nil_1 has $[m/2] + 1$ irreducible components, each of dimension $3m^2$.
(b) If $n = 2m + 1$, then C^nil_1 has $(m + 1)$ irreducible components, each of dimension $3m(m + 1)$.

This result for C^nil_1 might be expected to indicate that the restricted nilpotent commuting variety is equidimensional for general p. However, we show that this is not the case (Remark 2.4). On the other hand, we observe that $\mathfrak{g}(e) \cap N_1$ is equidimensional for many choices of G and e. We conjecture that this is true for reductive G in good characteristic. We remark that the intersection $\mathfrak{g}(e) \cap N_1$ can be identified with the support variety $V_{\mathfrak{g}(e)}(k)$, where k is the trivial $\mathfrak{g}(e)$-module. In the final section we express each irreducible component of $C^\text{nil}_1(g)$ as a direct sum of indecomposable components of modules.

Our method for obtaining the above results is a rather crude direct approach. Such a strategy will clearly be inappropriate in general.

Notation. We denote by $\text{Mat}_{r \times s}$ the vector space of all $r \times s$ matrices over k. If $x \in g$ then the centralizer of x in g (resp. G) will be denoted $\mathfrak{z}(e)$ (resp. $Z_G(e)$). We will sometimes abuse notation and use N_1 to refer to the set of p-nilpotent elements in an arbitrary Lie algebra. This will cause no confusion. We denote by e_{ij} the matrix with 1 in the (i, j)-th position, and zeros everywhere else. (The dimension of e_{ij} will always be specified or clear from the context.) Our convention is that all modules are left modules. We denote by $[m/r]$ the integer part of the fraction m/r.

2
1 Centralizers

Let $G = \text{GL}(n, k)$, let $\mathfrak{g} = \text{Lie}(G)$ and let e_0, e_1, \ldots, e_m be a set of representatives for the orbits in $\mathcal{N}_1 = \mathcal{N}_1(\mathfrak{g})$. Clearly $\mathcal{C}^{\text{nil}}_i = \bigcup_{i=0}^m G \cdot (e_i, \mathfrak{z}_\mathfrak{g}(e_i)) \cap \mathcal{N}_1$. In general the set $\mathfrak{z}_\mathfrak{g}(e_i) \cap \mathcal{N}_1$ is not irreducible. For each i let $V_i^{(1)}, V_i^{(2)}, \ldots, V_i^{(r_i)}$ be the irreducible components of $\mathfrak{z}_\mathfrak{g}(e_i) \cap \mathcal{N}_1$. The following Lemma is adapted from [15, Prop. 2.1]. The argument works for arbitrary G and p. (The only requirement is that the number of orbits in \mathcal{N}_1 is finite. This is well-known if p is good (see [16]) but is true even if p is bad [7].)

Lemma 1.1. Let X be an irreducible component of $\mathcal{C}^{\text{nil}}_1$. Then there is some i, $0 \leq i \leq m$, and some j, $1 \leq j \leq r_i$, such that $X = G \cdot (e_i, V_i^{(j)})$. Moreover, $V_i^{(j)} \subseteq G \cdot e_i$.

Proof. Since there are finitely many of the sets $G \cdot (e_i, V_i^{(j)})$ and they cover $\mathcal{C}^{\text{nil}}_1$, the first statement is obvious. For the second statement, define an action of $\text{GL}(2)$ on $\mathfrak{g} \times \mathfrak{g}$ by the morphism $\text{GL}(2) \times (\mathfrak{g} \times \mathfrak{g}) \to \mathfrak{g} \times \mathfrak{g}$, $\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}, (x, y) \right) \mapsto (ax + by, cx + dy)$. Clearly any element of $\text{GL}(2)$ preserves $\mathcal{C}^{\text{nil}}_1$. Hence $\text{GL}(2)$ preserves each irreducible component of $\mathcal{C}^{\text{nil}}_1$. In particular, $\tau(X) = X$, where $\tau : (x, y) \mapsto (y, x)$. Suppose therefore that $X = G \cdot (e_i, V_i^{(j)})$ is an irreducible component of $\mathcal{C}^{\text{nil}}_1$. Let $\pi : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ denote the first projection. Then $
abla(X) = G \cdot e_i$. But $X = \tau(X)$, hence $V_i^{(j)} \subseteq \pi(X)$.

Suppose from now on that $p = 2$. For each i, $0 \leq i \leq m = [n/2]$, let $e_i = \begin{pmatrix} 0 & 0 & I_i \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in \mathfrak{g}$, where I_i is the $i \times i$ identity matrix. Here the top left, top right, bottom left and bottom right submatrices are $i \times i$, the top middle and bottom middle submatrices are $i \times (n - 2i)$, the centre left and centre right submatrices are $(n - 2i) \times n$, and the central submatrix is $(n - 2i) \times (n - 2i)$. Then $\{e_0, e_1, \ldots, e_m\}$ is a set of representatives for the conjugacy classes in \mathcal{N}_1. It is easy to see, with the standard description of nilpotent orbits via partitions of n, that e_i corresponds to the partition $2^i \cdot 1^{n-2i}$. Moreover, we have the following inclusions: $\{0\} = G \cdot e_0 \subseteq G \cdot e_1 \subseteq \cdots \subseteq G \cdot e_M = \mathcal{N}_1$. The condition $V_i^{(j)} \subseteq G \cdot e_i$ is clearly equivalent to the inequality: $\text{rk}(y) \leq i$ for all $y \in V_i^{(j)}$.

Fix i until further notice and let x be an element of the centralizer $\mathfrak{z}_\mathfrak{g}(e_i)$, which must have the form

$$
\begin{pmatrix}
A & B & C \\
0 & E & F \\
0 & 0 & A
\end{pmatrix} : A, C \in \text{Mat}_{i \times i}, E \in \text{Mat}_{(n-2i) \times (n-2i)}, B \in \text{Mat}_{i \times (n-2i)}, F \in \text{Mat}_{(n-2i) \times i}.
$$

The requirement $x \in \mathcal{N}_1$ is equivalent, with this notation, to the conditions $A^2 = BF + [A, C] = 0$, $E^2 = 0$, $AB = BE$ and $EF = FA$. We will frequently use A, B, C, E, F to refer to these submatrices of (an arbitrary) $x \in \mathfrak{z}_\mathfrak{g}(e_i)$ where the element x is clear from the context. Assume for the rest of this section that $n - 2i \geq 2$, and let V be an irreducible component of $\mathfrak{z}_\mathfrak{g}(e_i) \cap \mathcal{N}_1$. We shall prove that $V \nsubseteq G \cdot e_i$. We begin with the following lemma.
Lemma 1.2. Suppose there is some element \(x \in V \) such that \(E \neq 0 \). Then \(V \) is not contained in \(G \cdot e_1 \).

Proof. Let the one-dimensional torus \(\lambda : k^\times \to G, t \mapsto \begin{pmatrix} tI_i & 0 & 0 \\ 0 & I_{n-2i} & 0 \\ 0 & 0 & t^{-1}I_i \end{pmatrix} \) act on \(g \) by conjugation. Since \(\lambda(t)e_i \lambda(t^{-1}) = t^2 e_i \), \(\lambda(k^\times) \) preserves \(z_0(e_i) \), and therefore preserves each irreducible component of \(z_0(e_i) \cap \mathcal{N}_1 \). Thus if \(x \in V \) then \(x_0 = \lim_{t \to 0} (\text{Ad} \, \lambda(t)) x = \begin{pmatrix} A & 0 & 0 \\ 0 & E & 0 \\ 0 & 0 & F \end{pmatrix} \in V \). For any \(y \in z_0(e) \cap \mathcal{N}_1, y + ke_i \subset z_0(e_i) \cap \mathcal{N}_1 \); hence there is an action of the additive group \(\mathbb{G}_a \) on \(z_0(e_i) \cap \mathcal{N}_1 \) by \(\xi \cdot y = y + \xi e_i \). It follows that each irreducible component of \(z_0(e_i) \cap \mathcal{N}_1 \) is stable under this action of \(\mathbb{G}_a \), hence that \(x_0 + e_i \in V \). But \(\text{rk}(x_0 + e_i) = i + \text{rk}(E) > i \) if \(E \) is non-zero.

We therefore consider the subset \(Y \) of \(z_0(e_i) \cap \mathcal{N}_1 \) consisting of all \(x \) with \(E = 0 \). The conditions for \(x \in \mathcal{N}_1 \) then reduce to: \(A^2 = [A, C] + BF = 0, AB = 0, FA = 0 \). For each \(j, 0 \leq j < [i/2] \), let \(A_j \) be the \((i \times i)\) matrix \(\begin{pmatrix} 0 & 0 & I_j \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \), where the top left, top right, bottom left and bottom right submatrices are \(j \times j \), the top middle and bottom middle submatrices are \(j \times (i-2j) \), the centre left and centre right submatrices are \((i-2j) \times i\), and the central submatrix is \((i-2j) \times (i-2j)\). Since \(Z_G(e_i) \) contains all elements of the form \(\begin{pmatrix} g & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & g \end{pmatrix} \) with \(g \in GL(i) \), it is clear that \(Y = \bigcup Y_j \), where

\[
Y_j = Z_G(e_i) \cdot \left\{ \begin{pmatrix} A_j & B & C \\ 0 & 0 & F \\ 0 & 0 & A_j \end{pmatrix} : A_jB = 0, FA_j = 0, [A_j, C] + BF = 0 \right\}.
\]

Moreover, since this is a finite union, each irreducible component of \(Y \) is an irreducible component of one of the \(Y_j \). Clearly the conditions \(A_jB = FA_j = 0 \) imply that \(B \) and \(F \) can be written respectively as \(\begin{pmatrix} B_1 \\ B_2 \\ 0 \end{pmatrix} \) and \(\begin{pmatrix} 0 & F_2 & F_3 \end{pmatrix} \) (where \(B_1 \) (resp. \(B_2 \)) has \(j \) (resp. \(i-2j \)) rows and \(F_2 \) (resp. \(F_3 \)) has \((i-2j) \) (resp. \(j \)) columns). But \(A_j \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_3 \\ 0 \\ 0 \end{pmatrix} \), hence if \(x = \begin{pmatrix} 0 \\ 0 \\ B_1 \end{pmatrix} \) then:

\[
\begin{pmatrix} I & x & 0 \\ 0 & I & 0 \\ 0 & 0 & I \end{pmatrix} \begin{pmatrix} A_j & B & C \\ 0 & 0 & F \\ 0 & 0 & A_j \end{pmatrix} \begin{pmatrix} I & x & 0 \\ 0 & I & 0 \\ 0 & 0 & I \end{pmatrix} = \begin{pmatrix} A_j & B + A_jx & C + xF \\ 0 & 0 & F \\ 0 & 0 & A_j \end{pmatrix}
\]

4
and \(B + A_j x = \begin{pmatrix} 0 \\ B_2 \\ 0 \end{pmatrix} \).

Similarly, \((y_1 \ y_2 \ y_3 \) A_j = \begin{pmatrix} 0 & 0 & y_1 \end{pmatrix} \). Hence after a further conjugation we may assume in addition that \(F_3 = 0 \). In other words, any element of \(Y_j \) is \(Z_G(e_i) \)-conjugate to one of the form \(\begin{pmatrix} A_j & B & C \\ 0 & 0 & F \\ 0 & 0 & A_j \end{pmatrix} \) such that \(B = \begin{pmatrix} 0 \\ B_2 \\ 0 \end{pmatrix} \) and \(F = \begin{pmatrix} 0 & F_2 & 0 \end{pmatrix} \). The equality

\[
[A_j, C] + BF = 0
\]

now implies that \([A_j, C] = 0, B_2 F_2 = 0 \). But if

\[
C = \begin{pmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{pmatrix}
\]

where \(C_{11}, C_{13}, C_{31} \) and \(C_{33} \) (resp. \(C_{12} \) and \(C_{32} \)) are \(j \times j \) (resp. \(j \times (i-2j) \)), \((i-2j) \times j, (i-2j) \times (i-2j))\), then \([A_j, C] = \begin{pmatrix} C_{31} & C_{32} & C_{11} + C_{33} \\ 0 & 0 & C_{21} \\ 0 & 0 & C_{31} \end{pmatrix} \). Hence, conjugating further by \(\begin{pmatrix} I_i & 0 & z \\ 0 & I_{n-2i} & 0 \\ 0 & 0 & I_i \end{pmatrix} \), where \(z = \begin{pmatrix} C_{13} & 0 & 0 \\ C_{23} & 0 & 0 \\ C_{11} & C_{12} & 0 \end{pmatrix} \), we may assume that \(C \) is of the form \(\begin{pmatrix} 0 & 0 & 0 \\ 0 & C_{22} & 0 \\ 0 & 0 & 0 \end{pmatrix} \).

We therefore introduce the subset \(Y_j' \) of \(Y_j \) consisting of all \(x \) of the form \(\begin{pmatrix} A_j & B & C \\ 0 & 0 & F \\ 0 & 0 & A_j \end{pmatrix} \) with \(B = \begin{pmatrix} 0 \\ B_2 \\ 0 \end{pmatrix} \), \(F = \begin{pmatrix} 0 & F_2 & 0 \end{pmatrix} \), \(C = \begin{pmatrix} 0 & 0 & 0 \\ 0 & C_{22} & 0 \\ 0 & 0 & 0 \end{pmatrix} \), and \(B_2 F_2 = 0 \). We have proved that \(Z_G(e_i) \cdot Y_j = Z_G(e_i) \cdot Y_j' \). Note that the \((n-4j) \times (n-4j)\) matrix \(\begin{pmatrix} 0 & B_2 & C_{22} \\ 0 & 0 & F_2 \\ 0 & 0 & 0 \end{pmatrix} \) is an element of \(\mathcal{N}_1(\mathfrak{gl}(n-4j)) \) which commutes with \(\begin{pmatrix} 0 & 0 & I_j \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \).

Remark 1.3. If we consider pairs \((x, y) \in \mathcal{C}_{n_1}^{n_1} \) as modules for \(k[X, Y]/(X^2, Y^2) \), then we have shown that for any \(y \in Y_j \) the module \(M \) corresponding to \((e_i, y)\) can be expressed as \(M = W \oplus M' \), where \(W \) is a free \(k[X, Y]/(X^2, Y^2) \)-module of rank \(j \) and \(M' \) is a submodule of \(M \) which is annihilated by \(XY \).

Lemma 1.4. Each irreducible component of \(Y \) is properly contained in a closed irreducible subset of \(\mathfrak{g}(e_i) \cap \mathcal{N}_1 \).

Proof. We prove the lemma by induction on \(n \). There is nothing to prove if \(n = 2 \) or \(n = 3 \) (since we assume \(n-2i \geq 2 \)). By the above remarks, each component of \(Y \) is contained in one of the sets \(\overline{Y}_j \).
We note that $Y_0 = u \cap \mathcal{N}_1$, where u is the Lie algebra of the unipotent radical of $Z_G(e_i)$. (Hence Y_0 is already closed.) On the other hand let $j > 0$. Let e' be a nilpotent element of $\mathfrak{gl}(n - 4j)$ of partition type $2^{i-2j}.1^{n-2i}$ (in a form as described after Lemma 1.1), let u' be the Lie algebra of the unipotent radical of $Z_{\mathfrak{gl}(n-4j)}(e')$ and let $a = \begin{pmatrix} A_j & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & A_j \end{pmatrix} \in \mathfrak{z}_\mathfrak{gl}(e_i)$.

We define an injective homomorphism of restricted Lie algebras $\mu : \mathfrak{z}_\mathfrak{gl}(n-4j)(e') \to \mathfrak{z}_\mathfrak{gl}(e)$ by $\begin{pmatrix} A' & B' & C' \\ 0 & E' & F' \\ 0 & 0 & A' \end{pmatrix} \mapsto \begin{pmatrix} A & B & C \\ 0 & E & F \\ 0 & 0 & A \end{pmatrix}$, where $A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, $C = \begin{pmatrix} 0 & C' & 0 \\ 0 & 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & B' \\ 0 \end{pmatrix}$ and $F = \begin{pmatrix} 0 & F' & 0 \end{pmatrix}$. Here the zero submatrices on the top left, top right, bottom left and bottom right (resp. top middle and bottom middle, centre left and centre middle) in A and C are $j \times j$ (resp. $j \times (i-2j)$, $(i-2j) \times j$); those on the top and bottom in B are $j \times (n-2i)$; and those on the left and right in F are $(n-2i) \times j$. Clearly a commutes with the image of μ and by the remarks above $a + \mu(u' \cap \mathcal{N}_1) = Y'_j$. But the lemma now follows for Y'_j (and therefore for $\mathfrak{Y} = \mathfrak{Z}_G(e_i) \cdot \mathfrak{Y}_j$) by the induction hypothesis. Hence we have only to prove that the statement of the lemma is true for Y_0.

Note that Y_0 is the set of $x \in \mathfrak{z}_\mathfrak{gl}(e_i)$ such that $A = 0$, $E = 0$ and $BF = 0$. For each l with $0 \leq l \leq \min{i, n-2i}$, let b_l be the $i \times (n-2i)$ matrix of the form $\begin{pmatrix} I_l & 0 \\ 0 & 0 \end{pmatrix}$. Here the left (resp. right) column is of width l (resp. $n-2i-l$), and the top (resp. bottom) row is of height l (resp. $i-l$). Since $Z_G(e_i)$ contains all elements of the form $\begin{pmatrix} g & 0 & 0 \\ 0 & h & 0 \\ 0 & 0 & g \end{pmatrix}$, it is easy to see that $Y_0 = \bigcup_l \mathfrak{Z}_G(e_i) \cdot Z_l$, where

$$Z_l = \left\{ \begin{pmatrix} 0 & b_l & C \\ 0 & 0 & F \\ 0 & 0 & 0 \end{pmatrix} : b_l F = 0 \right\}.$$

Moreover, the sets $\mathfrak{Z}_G(e_i) \cdot Z_l$ are clearly irreducible closed subsets of Y_0, and $b_l F = 0$ if and only if F can be written in the form $\begin{pmatrix} 0 \\ f \end{pmatrix}$, where the top part has l rows, and the bottom has $(n-2i-l)$ rows.

Hence it will be enough to prove that, for each l, there is a closed irreducible subset of $\mathfrak{z}_\mathfrak{gl}(e_i) \cap \mathcal{N}_1$ which contains Z_l and is not contained in Y. Suppose $0 < l < n-2i$, and let E_0 be the $(n-2i) \times (n-2i)$ matrix with 1 in the $((n-2i),1)$ position and 0 elsewhere. Then $b_l E_0 = 0$ and $E_0 \begin{pmatrix} 0 \\ f \end{pmatrix} = 0$, hence the set $\left\{ \begin{pmatrix} 0 & b_l & C \\ 0 & \xi E_0 & F \\ 0 & 0 & 0 \end{pmatrix} : \xi \in k, b_l F = 0 \right\}$ is a closed irreducible subset of $\mathfrak{z}_\mathfrak{gl}(e_i) \cap \mathcal{N}_1$ which properly contains Z_l. This proves the lemma in this
case. Let \(\theta \) be the automorphism of \(\mathfrak{g} \) given by \(x \mapsto -J(x)J^{-1} \), where \(J \) is the element of \(\text{GL}(n, k) \) with 1 on the antidiagonal, and 0 elsewhere. Then \(\theta(e) = -e \) (hence \(\theta \) stabilizes \(\mathfrak{g}(e) \cap \mathcal{N}_1 \)) and \(\theta \) sends \(\mathbb{Z}_G(e) \cdot Z_0 \) into \(\mathbb{Z}_G(e) \cdot Z_r \), where \(r = \min\{n - 2i, i\} \). Hence we have only to prove the statement of the lemma for \(Z_{n-2i} \) (assuming therefore that \(n - 2i \leq i \)).

Let \(b = b_{n-2i} \); we note that left matrix multiplication by \(b \) is injective. Consider the set \(U \) of all \(x \in \mathfrak{g}(e_i) \cap \mathcal{N}_1 \) of the form \(\begin{pmatrix} A & b & C \\ 0 & E & F \\ 0 & 0 & A \end{pmatrix} \). Then the conditions for \(x \) to be in \(\mathcal{N}_1 \) can be written as: \(A^2 = [A, C] + bF = 0, \ E^2 = 0, \ Ab = bE, \) and \(EF = FA \). But if \(Ab = bE \) then \(EF = FA \) if and only if \(AbF = bFA \). Since \((\text{ad} A)^2 = \text{ad}(A^2) \) it follows that the condition \(EF = FA \) is redundant.

If \(Ab = bE \) then we can write \(A \) in the form \(\begin{pmatrix} E & A_{12} \\ 0 & A_{22} \end{pmatrix} \), where \(A_{12} \in \text{Mat}((n - 2i) \times (3i - n)) \) and \(A_{22} \in \text{Mat}(3i - n) \times (3i - n) \). Write \(C \) and \(F \) respectively in the following forms:

\[
C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}, \quad F = \begin{pmatrix} F_1 & F_2 \\ 0 & 0 \end{pmatrix}
\]

where the left- (resp. right-) hand columns are of width \((n - 2i)\) (resp. \((3i - n)\)) and the top (resp. bottom) row of \(C \) is of height \((n - 2i)\) (resp. \((3i - n)\)). Then \(x \in \mathcal{N}_1 \) if and only if \(E^2 = 0, \ A_{22}^2 = 0, \ EA_{12} = A_{12}A_{22} \) and

\[
\begin{pmatrix} F_1 & F_2 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} [E, C_{11}] + A_{12}C_{21} & EC_{12} + C_{12}A_{22} + A_{12}C_{22} + C_{11}A_{12} \\ A_{22}C_{21} + C_{21}E & [A_{22}, C_{22}] + C_{21}A_{12} \end{pmatrix}
\]

These equalities can be restated as an expression for \(F \) in terms of \(A, C, E \) together with the conditions:

\[
A_{22}^2 = [A_{22}, C_{22}] + C_{21}A_{12} = 0, \ A_{22}C_{21} + C_{21}E = 0, \ E = 0, \ EA_{12} + A_{12}A_{22} = 0
\]

But these conditions are equivalent to:

\[
\begin{pmatrix} A_{22} & C_{21} & C_{22} \\ 0 & E & A_{12} \\ 0 & 0 & A_{22} \end{pmatrix}^2 = 0.
\]

Let \(e' \) be a nilpotent element of \(\mathfrak{gl}(4i - n) \) of type \(2^{4i-n}1^{n-2i} \), in the form described after Lemma [1.1]. Then we have proved that there is an isomorphism of affine varieties \(U \rightarrow (\mathfrak{g}(4i - n)(e') \cap \mathcal{N}_1) \times \text{Mat}_{(n-2i)\times i} \). Specifically, an element \(x \) of the above form is sent to the pair

\[
\begin{pmatrix} A_{22} & C_{21} & C_{22} \\ 0 & E & A_{12} \\ 0 & 0 & A_{22} \end{pmatrix}, \begin{pmatrix} C_{11} & C_{12} \end{pmatrix}.
\]

Notice that \(4i - n < n \), and that \((4i - n) - 2(3i - n) = n - 2i \geq 2 \). Hence it follows by the induction hypothesis that each irreducible component of \(\mathfrak{g}(4i - n)(e') \cap \mathcal{N}_1 \) contains an element such that \(E \neq 0 \). Thus the same is true for each irreducible component of \(U \). But \(Z_{n-2i} \) is clearly contained in some irreducible component of \(U \). This completes the proof of the lemma.

\[\Box\]
We therefore have the required result of this section:

Lemma 1.5. The condition $V_i^{(j)} \subseteq \overline{G \cdot e_i}$ holds if and only if $i = [n/2]$, that is, if and only if $G \cdot e_i = \mathcal{N}_1$.

Proof. This follows immediately from Lemmas [1.2] and [1.4] \hfill \square

2 Equidimensionality

We proved in the previous section that $C^{nil}_1 = \overline{G \cdot \mathfrak{g}(e_m)} \cap \mathcal{N}_1$, where $m = [n/2]$. In this section we will show that $\mathfrak{z}_0(e) \cap \mathcal{N}_1$ is equidimensional, hence so is C^{nil}_1. In fact, we prove equidimensionality of $\mathfrak{z}_0(e) \cap \mathcal{N}_1$ for an arbitrary $e \in \mathcal{N}_1$.

Lemma 2.1. Let $e \in \mathcal{N}_1$ be of partition type $2^t. 1^{n-t}$.

(a) If n is even then $\mathfrak{z}_0(e) \cap \mathcal{N}_1$ has $([i/2] + 1)$ irreducible components, each of dimension $(n^2 + (n - 2i)^2)/4 = \dim \mathfrak{z}_0(e)/2$.

(b) If n is odd, then $\mathfrak{z}_0(e) \cap \mathcal{N}_1$ has $(i + 1)$ irreducible components, each of dimension $(n^2 + (n - 2i)^2 - 2)/4 = (\dim \mathfrak{z}_0(e) - 1)/2$.

Proof. As in Sect. 1 we choose $e = \begin{pmatrix} 0 & 0 & I_i \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, where the top and bottom rows are of height i, the left and right columns are of width i, and the central row (resp. middle column) is of height (resp. width) $(n - 2i)$. For $0 \leq j \leq [i/2]$ let A_j be the $i \times i$ matrix of the form $\begin{pmatrix} 0 & 0 & I_j \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, where the top left, top right, bottom left and bottom right (resp. top middle and bottom middle, centre left and centre right, central) submatrices are $j \times j$ (resp. $j \times (i - 2j)$, $(i - 2j) \times j$, $(i - 2j) \times (i - 2j)$). Similarly, for $0 \leq l \leq [(n - 2i)/2]$, let E_l be the matrix of the form $\begin{pmatrix} 0 & 0 & I_l \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, where the top left, top right, bottom left and bottom right (resp. top middle and bottom middle, centre left and centre right, central) submatrices are $l \times l$ (resp. $l \times (n - 2(i + l))$, $(n - 2(i + l)) \times l$, $(n - 2(i + l)) \times (n - 2(i + l))$).

We denote by $V_{j,l}$ ($0 \leq j \leq [i/2], 0 \leq l \leq [(n - 2i)/2]$) the set of all $x \in \mathfrak{z}_0(e) \cap \mathcal{N}_1$ of the form $\begin{pmatrix} A_j & B & C \\ 0 & E_l & F \\ 0 & 0 & A_j \end{pmatrix}$. Clearly $\mathfrak{z}_0(e) \cap \mathcal{N}_1 = \bigcup_{j,l} \overline{Z_G(e) \cdot V_{j,l}}$, hence each irreducible component of $\mathfrak{z}_0(e) \cap \mathcal{N}_1$ is equal to $\overline{Z_G(e) \cdot V_{j,l}^{nil}}$ for some irreducible component $V_{j,l}^{nil}$ of (some) $V_{j,l}$. We claim that if $(n - 2i) - 2l \geq 2$ then no such set $\overline{Z_G(e) \cdot V_{j,l}^{nil}}$ is an irreducible component.

Let $x = \begin{pmatrix} A_j & B & C \\ 0 & E_l & F \\ 0 & 0 & A_j \end{pmatrix} \in V_{j,l}$, that is, we assume $A_jB = BE_l$, $E_lF = FA_j$ and
\[[A_j, C] = BF. \] Write \(B \) as \(\begin{pmatrix} B_{11} & B_{12} & B_{13} \\ B_{21} & B_{22} & B_{23} \\ B_{31} & B_{32} & B_{33} \end{pmatrix} \), where \(B_{11}, B_{13}, B_{31} \) and \(B_{33} \) (resp. \(B_{12} \) and \(B_{21}, B_{23}, B_{22} \)) are \(j \times l \) (resp. \(j \times (n-2(i+l)), (i-2j) \times l, (i-2j) \times (n-2(i+l)) \)) matrices. Then \(A_j B = \begin{pmatrix} B_{11} & 0 & 0 \\ B_{21} & 0 & 0 \\ B_{31} & 0 & 0 \end{pmatrix} \) and \(B E_l = \begin{pmatrix} 0 & 0 & B_{11} \\ 0 & 0 & B_{31} \end{pmatrix} \). Hence \(A_j B = B E_l \) if and only if \(B = \begin{pmatrix} B_{11} & B_{12} & B_{13} \\ 0 & B_{22} & B_{23} \\ 0 & 0 & B_{11} \end{pmatrix} \). Similarly, \(F = \begin{pmatrix} F_{11} & F_{12} & F_{13} \\ 0 & F_{22} & F_{23} \\ 0 & 0 & F_{11} \end{pmatrix} \), where \(F_{ij} \) has the same dimensions as \(B_{ij}^t \).

But

\[
\begin{pmatrix} I & y & 0 \\ 0 & I & 0 \\ 0 & 0 & I \end{pmatrix} \begin{pmatrix} A_j & B & C \\ 0 & E_l & F \\ 0 & 0 & A_j \end{pmatrix} \begin{pmatrix} I & y & 0 \\ 0 & I & 0 \\ 0 & 0 & I \end{pmatrix} = \begin{pmatrix} A_j & B + A_j y + y E_l & C + y F \\ 0 & E_l & F \\ 0 & 0 & A_j \end{pmatrix}.
\]

Setting \(y = \begin{pmatrix} B_{13} & 0 & 0 \\ B_{23} & 0 & 0 \\ B_{11} & B_{12} & 0 \end{pmatrix} \), we see that after conjugating by a suitable element of \(Z_G(e) \) we may assume that \(B \) is of the form \(\begin{pmatrix} 0 & 0 & 0 \\ 0 & B_{22} & 0 \\ 0 & 0 & 0 \end{pmatrix} \). Similarly, conjugating further by a suitable element of the form \(\begin{pmatrix} I & 0 & 0 \\ 0 & I & y \\ 0 & 0 & I \end{pmatrix} \) we may assume that \(F = \begin{pmatrix} 0 & 0 & 0 \\ 0 & F_{22} & 0 \\ 0 & 0 & 0 \end{pmatrix} \). Under these assumptions it is clear that the condition \([A_j, C] = BF \) implies that \(B_{22} F_{22} = 0 \) and \([A_j, C] = 0 \). Finally, conjugating further by an element of the form \(\begin{pmatrix} I & 0 & y \\ 0 & I & 0 \\ 0 & 0 & I \end{pmatrix} \), we may assume that \(C = \begin{pmatrix} 0 & 0 & 0 \\ 0 & C_{22} & 0 \\ 0 & 0 & 0 \end{pmatrix} \), where the zero submatrices on the top left, top right, bottom left and bottom right (resp. top middle and bottom middle, centre left and centre right) are \(j \times j \) (resp. \(j \times (i-2j), (i-2j) \times j \)), and \(C_{22} \) is \((i-2j) \times (i-2j) \). Let \(U_{j,l} \) be the set of all \(x \in \mathfrak{g}(e) \cap \mathcal{N}_1 \) with \(B, F, \) and \(C \) of this form. Then we have proved that \(Z_G(e) \cdot V_{j,l} = Z_G(e) \cdot U_{j,l} \).

Let \(a = \begin{pmatrix} A_j & E_l \\ E_l & A_j \end{pmatrix} \in \mathfrak{gl}(n, k) \) and let \(e' \) be a nilpotent element of \(\mathfrak{gl}(n - 4j) \) of type \(2^{i-2j}1^{n-2i} \), in a form analogous to the \(e_i \) defined after Lemma 1.4. Let \(u' \) be the Lie algebra of the unipotent radical of \(Z_{GL(n-4j)}(e') \). There is an injective restricted Lie algebra

9
homomorphism $\mu : \mathfrak{gl}(n-4j)(e') \to \mathfrak{gl}(e)$ given by
\[
\begin{pmatrix}
A' & B' & C' \\
0 & E' & F' \\
0 & 0 & A'
\end{pmatrix}
\mapsto
\begin{pmatrix}
A & B & C \\
0 & E & F \\
0 & 0 & A
\end{pmatrix},
\]

where $A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & A' & 0 \\ 0 & 0 & 0 \end{pmatrix}$ such that the zero submatrices on the top left, top right, bottom left and bottom right (resp. top middle and bottom middle, centre left and centre right) are $j \times j$ (resp. $j \times (i - 2j)$, $(i - 2j) \times j$), and similarly for B, C, E, F. (The dimensions for the corresponding submatrices of B are $j \times l$, $j \times (n - 2(i + l))$ and $(i - 2j) \times l$; for C are the same as for A; for E are $l \times l$, $l \times (n - 2(i + l))$ and $(n - 2(i + l)) \times l$; and for F are $l \times j$, $l \times (i - 2j)$ and $(n - 2(i + l)) \times j$.)

Clearly a commutes with the image of μ, $a + \mu(\mathfrak{gl}(n-4j)(e') \cap \mathcal{N}_1) \subset \mathfrak{gl}(e) \cap \mathcal{N}_1$ and $a + u' \cap \mathcal{N}_1 = U_{j,l}$. But by Lemma [1.4] $u' \cap \mathcal{N}_1$ is properly contained in a closed irreducible subset of $\mathfrak{gl}(n-4j)(e') \cap \mathcal{N}_1$. It follows that $U_{j,l}$ is not an irreducible component of $\mathfrak{gl}(e) \cap \mathcal{N}_1$ unless $l = [(n - 2i)/2]$.

We can now prove equidimensionality. If e is of type $2^i.1^2(m-i)$ then the only sets $Z_G(e) \cdot V_{j,l}^0$ which can be irreducible components of $\mathfrak{gl}(e) \cap \mathcal{N}_1$ are those with $l = (m - i)$. But now, with the above description of $x \in V_{j,l}$ the possible B and F are:

\[
B = \begin{pmatrix}
B_{11} & B_{13} \\
0 & B_{23} \\
0 & 0 \\
\end{pmatrix},
\quad F = \begin{pmatrix}
F_{11} & F_{12} & F_{13} \\
0 & 0 & F_{11} \\
\end{pmatrix}.
\]

Here B_{11} and B_{13} are $j \times (m - i)$ matrices, B_{23} is $(i - 2j) \times (m - i)$, F_{11} and F_{13} are $(m - i) \times j$, and F_{12} is $(m - i) \times (i - 2j)$. The condition $BF = [A_j, C]$ then simply specifies a unique possible C modulo $\mathfrak{gl}(i)(A_j)$. It follows that $V_{j,(m-i)}$ is irreducible of dimension $2i(m - i) + \dim \mathfrak{gl}(i)(A_j)$. Let $W_{j,(m-i)} = Z_G(e) \cdot V_{j,(m-i)}$ and consider the morphism $\pi : W_{j,(m-i)} \to \mathfrak{gl}(i) \times \mathfrak{gl}(n-2i)$ given by

\[
\begin{pmatrix}
A & B & C \\
0 & E & F \\
0 & 0 & A
\end{pmatrix} \mapsto (A, E).
\]

It is easy to see that the image of π is $\text{GL}(i) \cdot A_j \times \mathcal{N}_1(\mathfrak{gl}(n-2i))$. Moreover, $(\text{GL}(i) \cdot A_j) \times (\text{GL}(n-2i) \cdot E_{m-i})$ is an open subset of $\pi(W_{j,(m-i)})$ and the fibre over each such point is isomorphic to (in fact, conjugate to) $V_{j,(m-i)}$. It follows by the standard theorem on dimensions (see for example [8, Thm. 4.3]) that $\dim W_{j,(m-i)} = i^2 - \dim \mathfrak{gl}(i)(A_j) + 2(m - i)^2 + 2i(m - i) + \dim \mathfrak{gl}(i)(A_j) = 2m^2 - 2mi + i^2$.

Since this dimension is independent of j, the sets $W_{j,(m-i)}$, $0 \leq j \leq |i/2|$ are the irreducible components of $\mathfrak{gl}(e) \cap \mathcal{N}_1$. Moreover, $\{0\} = \text{GL}(i) \cdot A_0 \subset \text{GL}(i) \cdot A_1 \subset \ldots \subset \text{GL}(i) \cdot A_{|i/2|}$, hence $W_{j,(m-i)}$ cannot be contained in $W_{j',(m-i)}$ for $j' < j$. By equality of dimensions, the $W_{j,(m-i)}$ are distinct.

Similarly, if e is of type $2^j.1^2(m-i)+1$ then any irreducible component is of the form $Z_G(e) \cdot V_{j,(m-i)}^0$ for some j and some irreducible component $V_{j,(m-i)}^0$ of $V_{j,(m-i)}$. If $2j < i$ then the possible B, F are of the form:
\[
B = \begin{pmatrix}
B_{11} & b_1 & B_{13} \\
0 & b_2 & B_{23} \\
0 & 0 & B_{11}
\end{pmatrix}, \\
F = \begin{pmatrix}
F_{11} & F_{12} & F_{13} \\
0 & f_2 & f_3 \\
0 & 0 & F_{11}
\end{pmatrix}
\]

where \(B_{11}\) and \(B_{13}\) are \(j \times (m - i)\) matrices, \(F_{11}\) and \(F_{13}\) are \((m - i) \times j\) matrices, \(b_1\) (resp. \(b_2\)) is a column vector of dimension \(j\) (resp. \(i - 2j\)), \(f_2\) (resp. \(f_3\)) is a row vector of dimension \(i - 2j\) (resp. \(j\)), \(B_{23}\) is an \((i - 2j) \times (m - i)\) matrix, and \(F_{12}\) is \((m - i) \times (i - 2j)\).

In this case the condition \(BF = [A_j, C]\) specifies a unique value of \(C\) modulo \(\mathfrak{g}(i, j)\), and in addition the requirement that \(b_2f_3 = 0\). But \(b_2\) is a column vector and \(f_2\) a row vector, hence \(b_2f_2 = 0\) implies that either \(b_2 = 0\) or \(f_2 = 0\). It follows that \(V_{j, (m-i)}^+\) has two irreducible components of equal dimension. Denote by \(V_{j, (m-i)}^+\) the irreducible component defined by \(f_3 = 0\), and by \(V_{j, (m-i)}^-\) the irreducible component satisfying \(b_2 = 0\). Therefore, \(\dim V_{j, (m-i)}^+ = \dim V_{j, (m-i)}^- = 2i(m-i) + i + \dim \mathfrak{g}(i, j)\).

Let \(W_{j, (m-i)}^+ = Z_G(e) \cdot V_{j, (m-i)}^+\) and let \(W_{j, (m-i)}^- = Z_G(e) \cdot V_{j, (m-i)}^-\). Then by the argument used above, \(W_{j, (m-i)}^+\) and \(W_{j, (m-i)}^-\) are (irreducible) of dimension \(2m^2 - 2mi + i^2 + 2m - i = (\dim \mathfrak{g}(e) - 1)/2\). If \(i\) is even and \(j = i/2\), then the possible \(B, F\) are of the form:

\[
B = \begin{pmatrix}
B_{11} & b_1 & B_{13} \\
0 & b_2 & B_{23} \\
0 & 0 & B_{11}
\end{pmatrix}, \\
F = \begin{pmatrix}
F_{11} & F_{12} & F_{13} \\
0 & f_2 & f_3 \\
0 & 0 & F_{11}
\end{pmatrix}
\]

where \(B_{11}\) and \(B_{13}\) are \(j \times (m - i)\) matrices, \(F_{11}\) and \(F_{13}\) are \((m - i) \times j\) matrices, and \(b_1\) (resp. \(f_3\)) is a column (resp. row) vector of dimension \(j\). Here the condition \(BF = [A_j, C]\) merely specifies a unique value of \(C\) modulo \(\mathfrak{g}(i, j)\). It follows that \(V_{j, (m-i)}^+\) is irreducible of dimension \(2i(m-i) + i + \dim \mathfrak{g}(i, j)\).

Let \(W_{i/2, (m-i)}^+ = Z_G(e) \cdot V_{j, (m-i)}^+\). Then, by exactly the same argument used for the case \(j < i/2\), we can see that \(\dim W_{i/2, (m-i)}^+\) is irreducible of dimension \((\dim \mathfrak{g}(e) - 1)/2\).

By equality of dimensions, each irreducible component of \(\mathfrak{g}(e) \cap N_i\) is equal to one of the \(W_{j, (m-i)}^+\) \((0 \leq j \leq (i-1)/2)\) if \(i\) is odd (resp. one of the \(W_{j, (m-i)}^-\) \((0 \leq j \leq i/2 - 1)\) or \(W_{i/2, (m-i)}^-\) if \(i\) is even). Note that there are \((i+1)\) possible choices in either case. The argument used above for the case where \(n\) is even shows that we cannot have \(W_{j, (m-i)}^+ = W_{j, (m-i)}^-\) if \(j \neq j'\).

Similarly, if \(i\) is even then \(W_{i/2, (m-i)}^- \neq W_{j, (m-i)}^+\) for \(j < i/2\). Hence it remains to show that \(W_{j, (m-i)}^+ \neq W_{j, (m-i)}^-\). By definition \(W_{j, (m-i)}^+ = Z_G(e) \cdot V_{j, (m-i)}^+\). It is easy to see that \(W_{j, (m-i)}^+ = W_{j, (m-i)}^-\) is equivalent to: \(V_{j, (m-i)}^+ \subset Z_G(e) \cdot V_{j, (m-i)}^+\). Let \(x \in V_{j, (m-i)}^+\) and suppose that \(g \in Z_G(e)\) satisfies \(g x g^{-1} \in V_{j, (m-i)}^+\). Then clearly \(g\) is of the form \(\begin{pmatrix} h_1 & y_1 & y_2 \\ 0 & h_2 & y_3 \\ 0 & 0 & h_1 \end{pmatrix}\) for some \(h_1 \in Z_{GL(i, j)}\) and \(h_2 \in Z_{GL(2(m-i)+1)}\). Moreover, any \(g\) of this form normalizes \(V_{j, (m-i)}\). Let \(L\) be the subgroup of \(Z_{GL(e)}\) of all elements of this form: \(L\) is isomorphic to a product \(Z_{GL(i, j)} \times Z_{GL(2m-i)+1}\). But therefore \(L\) is connected, and hence preserves \(V_{j, (m-i)}^+\). It follows that \(W_{j, (m-i)}^+ \neq W_{j, (m-i)}^-\).

This completes the proof. \(\square\)
Remark 2.2. Note that for any irreducible component \(V \) of \(\mathfrak{z}_g(e) \cap \mathcal{N}_1 \) the intersection with the open orbit in \(\mathcal{N}_1 \) is non-empty, therefore open. This is not true for general \(p \).

We now have our result.

Proposition 2.3. Let \(k \) be an algebraically closed field of characteristic 2 and let \(g = \mathfrak{gl}(n, k) \). Then the restricted nilpotent commuting variety \(\mathcal{C} \) of \(g \) is equidimensional.

(a) If \(n = 2m \) then there are \([m/2] + 1\) irreducible components of \(\mathcal{C} \) of dimension \(3m^2 \).

(b) If \(n = 2m + 1 \) then there are \((m + 1)\) irreducible components of \(\mathcal{C} \) of dimension \(3m(m + 1) \).

Proof. By Lemma 1.5 each irreducible component of \(\mathcal{C} \) is of the form \(\mathcal{C}(e, V) \) where \(V \) is an irreducible component of \(\mathfrak{z}_g(e) \cap \mathcal{N}_1 \). Let \(V \) be such an irreducible component, let \(X = \mathcal{C}(e, V) \) and let \(\pi : X \to \mathcal{N}_1 \) be the restriction to \(X \) of the first projection. Since \(g \cdot (e, V) \) contains an open subset of its closure, there is an open subset \(U \) of \(\mathcal{N}_1 \) such that \(\dim \pi^{-1}(x) = \dim V \) for any \(x \in U \). It follows by the standard theorem on dimensions [8, Thm. 4.3] that \(\dim X = \dim \mathcal{N}_1 + \dim V = \dim g - r \), where \(r \) is the codimension of \(X \) in \(\mathfrak{z}_g(e) \). By Lemma 2.1, \(\mathfrak{z}_g(e) \cap \mathcal{N}_1 \) is equidimensional of dimension \(m^2 \) (resp. \(m^2 + m \)) if \(n = 2m \) (resp. \(n = 2m + 1 \)). But hence each of the sets \(G \cdot (e, V) \) is an irreducible component of \(\mathcal{C} \), and is of the dimension stated in the proposition. Moreover, if \(X_1 = \mathcal{C}(e, V_1) = G \cdot (e, V_2) = X_2 \) then, since \(G \cdot (e, V_1) \) contains an open subset of \(X_1 \), \(Z_G(e) \cdot V_1 \) contains an open subset of \(V_2 \), and therefore \(V_1 = V_2 \). This completes the proof of the proposition.

For later use we now label the components of \(\mathcal{C} \). Recall from the proof of Lemma 2.1 that if \(n = 2m \) (resp. \(n = 2m + 1 \)) then the irreducible components of \(\mathfrak{z}_g(e) \) are the sets of the form \(Z_G(e) \cdot V_{j,0} \) (resp. \(Z_G(e) \cdot V_{j,0}^+ \) and \(Z_G(e) \cdot V_{m/2,0} \)) if \(m \) is even) for \(0 \leq j \leq [m/2] \) (resp. \(0 \leq j < m/2 \)). If \(n = 2m \) then let \(X_j = G \cdot (e, V_j) \). If \(n = 2m + 1 \) then let \(X_j^+ = G \cdot (e, V_{j,0}^+) \), \(X_j^- = G \cdot (e, V_{j,0}^-) \) and \(X_{m/2} = G \cdot (e, V_{m/2,0}) \) if \(m \) is even.

Remark 2.4. One might ask whether Lemma 1.5 or Prop. 2.3 is true for fields of arbitrary characteristic. In fact they both fail. For example, let \(k \) be of characteristic 7 and let \(g = \mathfrak{gl}(14) \). Let \(e \) be a nilpotent element of \(g \) of type \(7^2 \). Hence \(G \cdot e = \mathcal{N}_1(\mathfrak{g}) \). It is easy to see that \(\mathfrak{z}_g(e) \equiv \mathfrak{gl}(2, k[t]/(t^7)) \). Identify \(\mathfrak{z}_g(e) \) with \(\mathfrak{gl}(2, k[t]/(t^7)) \) and write an element \(A \in \mathfrak{z}_g(e) \) as \(A_0 + A_1 t + \ldots + A_6 t^6 \) where \(A_i \in \mathfrak{gl}(2, k) \). We have \(\sum_{i=0}^6 A_i t^i \) is the sum of all ordered monomials \(A_{i_1} A_{i_2} \ldots A_{i_j} \) such that \(i_1 + i_2 + \ldots + i_j = i \). Clearly \(x^7 = 0 \) if \(A_0 = 0 \). Hence \(t \mathfrak{gl}(2, k[t]/(t^7)) \) is a closed irreducible subset of \(\mathfrak{z}_g(e) \cap \mathcal{N}_1 \) of dimension 24.

On the other hand, if \(A_0 \neq 0 \), then up to conjugacy there is only one possibility such that \(A_0^7 = 0 \), namely \(A_0 = e_{12} \). Suppose therefore that \(A_0 = e_{12} \). We will determine the conditions on the matrices \(A_i \) such that \(A^7 = 0 \). We remark first of all that \(A_0^7 = 0 \), from which it follows that \(p_1(A) = A_0^6 A_1 + \ldots + A_1 A_0^6 = 0 \), and \(p_2(A) = A_0^6 A_2 + \ldots + A_2 A_0^6 + A_0^6 A_2^4 + \ldots + A_1^2 A_0^4 = 0 \). The expression for \(p_3(A) \) reduces to \((A_0 A_1)^3 A_0 \). It follows that \(A_1 = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \) for some \(a, b, d \in k \). Hence \(A_0 A_1^j A_0 = 0 \) for any \(j \geq 0 \). Inspection of
the possible non-zero terms of p_4 reveals that $p_4(A) = 0$. Similarly, $p_5(A)$ reduces easily to $A_6^3 A_2 A_2 + \ldots + A_2 A_2 A_6 + A_6 A_2^3 + \ldots + A_2 A_2 A_6$. But each term here either contains A_6^3 or it contains $A_2 A_2 A_6$. Therefore $p_5(A) = 0$ also. Finally, we have $p_6(A) = (A_0 A_2)^5 A_0 + A_6^3 A_2 A_2 + \ldots + A_2 A_2 A_6^3 + A_6 A_2^3 A_2 + \ldots + A_2 A_2 A_6$. Hence the set U of $A \in \mathfrak{z}_{\mathfrak{g}}(e) \cap \mathcal{N}_1$ such that $A_0 = e_{12}$ is an irreducible Zariski closed subset of $\mathfrak{z}_{\mathfrak{g}}(e)$ of dimension 22. Thus (by the standard theorem on dimensions) $\mathbb{Z}_G(e) \cdot \bar{U}$ is an irreducible subset of $\mathfrak{z}_{\mathfrak{g}}(e) \cap \mathcal{N}_1$ of dimension 24. We have proved that $\mathfrak{z}_{\mathfrak{g}}(e) \cap \mathcal{N}_1$ has two irreducible components V_1 and V_2, both of codimension 4 in $\mathfrak{z}_{\mathfrak{g}}(e)$. We deduce that the closures $G \cdot (e; V_1)$ and $G \cdot (e; V_2)$ are irreducible components of $C_{\mathfrak{z}_{\mathfrak{g}}(e)}(\mathfrak{g})$ (since $G \cdot e$ is not contained in the closure of any other orbit in \mathcal{N}_1) and are of dimension $(\dim \mathfrak{g} - 4) = 192$.

On the other hand, let e' be an element of $\mathcal{N}_1(\mathfrak{g})$ of type $7^1.5^1.2^1$, which we may choose to be in Jordan normal form. Let T be the group of invertible diagonal matrices in G and let $\lambda : k^\times \to T$ be the cocharacter such that $e' \in \mathfrak{g}(2; \lambda)$ and the component of $\lambda(t)$ in each Jordan block has determinant 1. (Hence λ is an associated cocharacter for e' in the sense of Pommereunen [11, 12].) In particular, $\mathfrak{z}_{\mathfrak{g}}(e') \subset \sum_{i \geq 0} \mathfrak{g}(i; \lambda_i).$ Let $\mathfrak{g}(i) = \mathfrak{g}(i; \lambda)$ for each $i \in \mathbb{Z}$. Recall that a *toral algebra* \mathfrak{h} is a commutative restricted Lie algebra which has a basis $\{h_1, \ldots, h_s\}$ of elements such that $h_i h_j = h_j h_i$. It is easily seen that $\mathfrak{z}_{\mathfrak{g}}(e') \cap \mathfrak{g}(0)$ is a toral algebra of dimension 3 and that $\mathfrak{z}_{\mathfrak{g}}(e') \cap \sum_{i > 0} \mathfrak{g}(i) \subset \sum_{i \geq 2} \mathfrak{g}(i)$. Hence $\mathfrak{z}_{\mathfrak{g}}(e') \cap \mathcal{N}_1 = \mathfrak{z}_{\mathfrak{g}}(e') \cap \sum_{i \geq 0} \mathfrak{g}(i)$ is irreducible of codimension 3 in $\mathfrak{z}_{\mathfrak{g}}(e')$. It follows that $G \cdot (e', \mathfrak{z}_{\mathfrak{g}}(e') \cap \mathcal{N}_1)$ is irreducible of dimension $\dim \mathfrak{g} - 3 = 193$. In particular, it is not contained in either irreducible component of $G \cdot (e, \mathfrak{z}_{\mathfrak{g}}(e) \cap \mathcal{N}_1)$ (and vice versa, neither irreducible component of $G \cdot (e, \mathfrak{z}_{\mathfrak{g}}(e) \cap \mathcal{N}_1)$ is contained in $G \cdot (e', \mathfrak{z}_{\mathfrak{g}}(e') \cap \mathcal{N}_1)$). Hence in this case neither Lemma 1.5 nor equidimensionality of $C_{\mathfrak{z}_{\mathfrak{g}}(e)}(\mathfrak{g})$ hold.

Although Lemma 1.4 and Prop. 2.3 fail in the above example, we note that the intersection $\mathfrak{z}_{\mathfrak{g}}(e) \cap \mathcal{N}_1$ is nevertheless equidimensional. Indeed, this result appears to be true in general.

Conjecture. Let G be a reductive group over k, and suppose the characteristic of k is good for G. Let $e \in \mathcal{N}_1$. Then $\mathfrak{z}_{\mathfrak{g}}(e) \cap \mathcal{N}_1$ is equidimensional.

Some laborious but generally straightforward case-checking establishes that the conjecture is true for the cases $G = \text{GL}(4), \text{GL}(5), \text{SO}(5), \text{GL}(6)$. To illustrate the conjecture and the apparent unpredictability of the number of irreducible components of the intersection $\mathfrak{z}_{\mathfrak{g}}(e) \cap \mathcal{N}_1$, we give a few examples. To determine the irreducible components directly one can use a similar approach to that employed above, that is, consider case-by-case the orbits in $\mathfrak{z}_{\mathfrak{g}}(e) \cap \mathfrak{g}(0) \cap \mathcal{N}_1$ where $\mathfrak{g} = \bigoplus_{i \in \mathbb{Z}} \mathfrak{g}(i)$ is the grading of \mathfrak{g} induced by an associated cocharacter for e.

(a) $G = \text{GL}(5, k), p = 3$.

(i) e of type $3^1.2^1$. Here $\dim \mathfrak{z}_{\mathfrak{g}}(e) = 9$. There are two irreducible components, both of dimension 6.
(ii) e of type $3^1,1^2$. Then $\dim \mathfrak{z}(e) = 11$, and $\mathfrak{z}(e) \cap \mathcal{N}_1$ has two irreducible components, both of dimension 7.

(iii) e of type $2^2,1^1$. Then $\dim \mathfrak{z}(e) = 13$, and the intersection with \mathcal{N}_1 has three components of dimension 8.

(iv) e of type $2^1,1^3$. Then $\dim \mathfrak{z}(e) = 17$, and $\mathfrak{z}(e) \cap \mathcal{N}_1$ is irreducible of dimension 11.

(b) $G = \text{GL}(6, k)$, $p = 3$.

(i) e of type 3^2. Then $\dim \mathfrak{z}(e) = 12$ and $\mathfrak{z}(e) \cap \mathcal{N}_1$ has two components of dimension 8.

(ii) e of type $3^1,2^1,1^1$. Then $\dim \mathfrak{z}(e) = 14$ and $\mathfrak{z}(e) \cap \mathcal{N}_1$ has five irreducible components of dimension 12.

(iii) e of type $3^1,1^3$. Then $\dim \mathfrak{z}(e) = 18$ and the intersection with \mathcal{N}_1 is irreducible of dimension 12.

(iv) e of type 2^3. Then $\dim \mathfrak{z}(e) = 18$ and $\mathfrak{z}(e) \cap \mathcal{N}_1$ has two irreducible components of dimension 12.

For the remaining cases $\mathfrak{z}(e) \cap \mathcal{N}_1$ is irreducible.

(c) $G = \text{Sp}(8, k)$, $p = 3$.

(i) e of type $3^2,2^2$. Then $\dim \mathfrak{z}(e) = 12$ and $\mathfrak{z}(e) \cap \mathcal{N}_1$ is irreducible of dimension 9.

(ii) e of type $3^1,1^2$. Then $\dim \mathfrak{z}(e) = 14$ and $\mathfrak{z}(e) \cap \mathcal{N}_1$ is irreducible of dimension 10.

(iii) e of type 2^4. In this case $\dim \mathfrak{z}(e) = 16$ and $\mathfrak{z}(e) \cap \mathcal{N}_1$ is irreducible of dimension 11.

(iv) e of type $2^3,1^2$. In this case $\dim \mathfrak{z}(e) = 18$ and $\mathfrak{z}(e) \cap \mathcal{N}_1$ has two irreducible components, both of dimension 12.

(v) e of type $2^2,1^2$. Then $\mathfrak{z}(e)$ is of dimension 22 and $\mathfrak{z}(e) \cap \mathcal{N}_1$ has two irreducible components, both of dimension 15.

(vi) e of type $2^1,1^6$. Then $\mathfrak{z}(e)$ is of dimension 28 and $\mathfrak{z}(e) \cap \mathcal{N}_1$ is irreducible of dimension 19.

Remark 2.5. This conjecture is not true if the characteristic is bad. Indeed, if k is of characteristic 2, G is simply-connected of type B_2 and $e = e_{\alpha_1 + \alpha_2}$ (where $\{\alpha_1, \alpha_2\}$ is a basis for the root system of G), then $\mathfrak{z}(e) \cap \mathcal{N}_1$ has one irreducible component of dimension 3 and one of dimension 4. On the other hand, the intersection $\text{Lie}(\mathcal{Z}(e)) \cap \mathcal{N}_1$ is in this case irreducible. Finally, we remark that the conjecture is not true for arbitrary nilpotent elements. For example, if $p = 2$ and e is an element of $\mathfrak{sl}(6)$ of type 3^2, then $\mathfrak{z}(e) \cap \mathcal{N}_1$ has two components, one of dimension 8 and one of dimension 6.

3 Indecomposable components

We remarked in the introduction that the variety $C = C_{\text{nil}}^n$ can be considered as the variety of n-dimensional modules for the group algebra $k\Gamma$, where Γ is a product of two cyclic groups of order 2. More generally, let A be any finitely generated associative algebra. To give an r-dimensional vector space V the structure of an A-module is simply to give a homomorphism $A \to \text{End}(V)$. Such a homomorphism is determined by the values on a set of generators for A. Hence, on choosing a basis for V, the set $\text{mod}_A^r(k)$ of possible A-module structures on
k^r embeds as a Zariski closed subset of the product of a finite number of copies of $\text{Mat}_r(k)$. The general linear group $\text{GL}(r,k)$ acts on $\text{mod}^r_A(k)$ by simultaneous conjugation on the coordinates. It is clear that two points of $\text{mod}^r_A(k)$ are $\text{GL}(r,k)$-conjugate if and only if the corresponding modules are isomorphic.

An irreducible component of $\text{mod}^r_A(k)$ is called **indecomposable** if all points in an open subset correspond to indecomposable modules. A version of the Krull-Remak-Schmidt Theorem holds for irreducible components of $\text{mod}^r_A(k)$. Let $C_i : 1 \leq i \leq l$ be irreducible components of varieties of A-modules $\text{mod}^r_A(k)$ and assume that $r_1 + r_2 + \ldots + r_l = r$. There is a morphism $\text{GL}(r,k) \times C_1 \times C_2 \times \ldots \times C_l \to \text{mod}^r_A(k)$. Denote the closure of the image by $\overline{C_1 + C_2 + \ldots + C_l}$. Then any irreducible component of $\text{mod}^r_A(k)$ can be expressed in an essentially unique way as a direct sum $\overline{C_1 + C_2 + \ldots + C_l}$ of indecomposable components C_i of module varieties $\text{mod}^r_A(k)$ (originally proved in [3]; see also [2]. Such a direct sum is not always an irreducible component for arbitrary C_i; see [2] Thm. 1.2.) Here we express each component of C as a direct sum of indecomposable components.

Recall that the irreducible components of C are labelled X_j if $n = 2m$ with $0 \leq j \leq [m/2]$ (resp. X_j^\pm $(0 \leq j < m/2)$ if $n = 2m + 1$ and m is odd, X_j^\pm $(0 \leq j < m/2)$ and $X_m/2$ if m is even). For arbitrary r, we denote by $X_j(g(r))$ or $X_j^\pm(g(r))$ the irreducible components of $C^{\text{nil}}_1(g(r))$ described in this way. Let W be the irreducible component of $C^{\text{nil}}_1(g(4))$ given by $W = \text{GL}(4) \cdot (e_{12} + e_{34}, e_{13} + e_{24})$ (the “free component of rank 1”), and let U be the irreducible component of $C^{\text{nil}}_1(g(2))$ given by $U = \{(ae, be) : e[2] = 0, a, b \in k\}$. It is easy to see that W (resp. U) is an indecomposable component of $C^{\text{nil}}_1(g(4))$ (resp. $C^{\text{nil}}_1(g(2))$).

If $A = kT$ for some group T and M is any left A-module, then the dual vector space M^* has the structure of a left A-module with $g \in T$ acting via $(g \cdot \chi)(m) = \chi(g^{-1} \cdot m)$ for each $\chi \in M^*, m \in M$. In these circumstances, if V is an irreducible component of mod^r_A, then we denote by V^* the dual component $\{M^* : M \in V\}$. Let $\text{triv} = C^{\text{nil}}_1(g(1))$ denote the variety of one-dimensional A-modules. Clearly triv clearly consists of a single point. We have the following:

Proposition 3.1. (a) Suppose $n = 2m$. Then $X_j \cong W_j \oplus U^{n-4j}$ and $X_j^* = X_j$.

(b) Suppose $n = 2m + 1$. Then X_j^\pm are indecomposable components of C. Moreover, $X_j^+ = W_j \oplus X_0^+(g(n - 4j)), X_j^- = W_j \oplus X_0^-(g(n - 4j))$ and $(X_j^\pm)^* = X_j^-$. If m is even, then $X_m/2 = W^{m/2} \oplus \text{triv}$. Moreover, $X_m^* = X_m/2$.

Proof. Let $e = e_m$ and let θ be the automorphism of g given by $x \mapsto -J^t(x)J^{-1}$, where J is the matrix with 1 on the anti-diagonal, and 0 elsewhere. Let G (resp. θ) act diagonally on $g \times g$, hence on each irreducible component of C. Since θ is a restricted Lie algebra automorphism of g, its induced action on C permutes the irreducible components of C. Clearly $\theta(X_j) = X_j^\pm$ (resp. $\theta(X_j^\pm) = (X_j^\pm)^*$). If n is even, recall that $X_j = G \cdot (e, V_{j,0})$, where $V_{j,0}$ is the set defined in the proof of Lemma 2.1. Since the zero here is superfluous, we will write V_j for $V_{j,0}$. Similarly, we will write V_j^\pm for $V_{j,0}^\pm$ in the case n odd below and $V_m/2$ for $V_{m/2,0}$ if m is even. Clearly $\theta(e) = -e$ and $\theta(\text{diag}(A_1, A_2)) = -\text{diag}(A_1, A_2)$. It is easy to choose g such that $\text{Ad} g(e) = -e$ and $\text{Ad} g(\text{diag}(A_1, A_2)) = -\text{diag}(A_1, A_2)$. Hence $\text{Ad} g \circ \theta(X_j) = X_j$, and thus $X_j^* = X_j$. This proves the second statement of (a). We proved
in Lemma 2.1 that $Z_G(e) \cdot V_j = Z_G(e) \cdot U_j$, where U_j is the set of elements of $\mathfrak{z}_G(e)$ of the form
\[
\begin{pmatrix}
 A_j & B \\
 0 & A_j
\end{pmatrix}, \quad B = \begin{pmatrix}
 0 & 0 & 0 \\
 0 & B_{22} & 0 \\
 0 & 0 & 0
\end{pmatrix}.
\]
Here the zero submatrices on the top left, top right, bottom left and bottom right (resp. top middle and bottom middle, centre left and centre right) of B are $j \times j$ (resp. $j \times (m-2j)$, $(m-2j) \times j$) and $B_{22} = (m-2j) \times (m-2j)$. It follows at once that $X_j = W^j \oplus X_0(\mathfrak{gl}(n-4j))$. Hence we have only to prove (a) for the case $j = 0$. Thus consider $V_0 = \left\{ \begin{pmatrix}
 0 & B \\
 0 & 0
\end{pmatrix} : B \in \text{Mat}_{m \times m}(k) \right\}$. The set of semisimple elements is dense in $\mathfrak{gl}(m)$, hence the subset of V_0 of elements such that B is semisimple is dense. But any such element is $Z_G(e)$-conjugate to one such that B is diagonal. Hence X_0 is the closure of $G \cdot \left\{ \begin{pmatrix}
 0 & I \\
 0 & 0
\end{pmatrix}, \begin{pmatrix}
 0 & B \\
 0 & 0
\end{pmatrix} : B \text{ diagonal} \right\}$. This proves (a).

For (b), suppose first of all that m is even. Recall from the proof of Lemma 2.1 that $X_{m/2} = Z_G(e) \cdot U_{m/2}$, where $U_{m/2}$ is the set of $x \in \mathfrak{z}_G(e)$ of the form
\[
\begin{pmatrix}
 A_j & 0 & 0 \\
 0 & 0 & 0 \\
 0 & 0 & A_j
\end{pmatrix}.
\]
Here the top and bottom (resp. middle) rows are of height m (resp. 1) and the left and right (resp. central) columns are of width m (resp. 1). But then clearly $X_{m/2} = W^m \oplus \text{triv}$. Since $W = W^*$ and clearly $\text{triv} = \text{triv}^*$, we have also that $X_{m/2} = X_{m/2}^*$.

Consider therefore the components X_j^+ (for arbitrary m). It is easy to see that
\[
\theta(e) = -e \quad \text{and} \quad \theta\left(\begin{pmatrix}
 A_j & b & C \\
 0 & 0 & f \\
 0 & 0 & A_j
\end{pmatrix} \right) = \begin{pmatrix}
 -A_j & -J(t, f) & -J(C, J) \\
 0 & 0 & -bJ \\
 0 & 0 & -A_j
\end{pmatrix}.
\]
We recall from the proof of Lemma 2.1 that $Z_G(e) \cdot V_j^+ = Z_G(e) \cdot U_j^+$, where U_j^+ is the set of all $x \in \mathfrak{z}_G(e)$ of the form
\[
\begin{pmatrix}
 A_j & b & C \\
 0 & 0 & f \\
 0 & 0 & A_j
\end{pmatrix} : b \text{ is a column vector such that the first } j \text{ and the last } j \text{ entries are zero,}
\]
and C is of the form
\[
\begin{pmatrix}
 0 & 0 & 0 \\
 0 & C_{22} & 0 \\
 0 & 0 & 0
\end{pmatrix}, \text{ where zero submatrices at the top left, top right, bottom left and bottom right (resp. top middle and bottom middle, centre left and centre right) are of dimension } j \times j \text{ (resp. } (i - 2j) \times j, (i - 2j) \times (i - 2j) \text{) and } C_{22} \text{ is } (i - 2j) \times (i - 2j).
\]
Similarly,
\[
Z_G(e) \cdot V_j^- = Z_G(e) \cdot U_j^-, \text{ where } U_j^- \text{ is the set of all } x \in \mathfrak{z}_G(e) \text{ of the form } \begin{pmatrix}
 A_j & 0 & C \\
 0 & 0 & f \\
 0 & 0 & A_j
\end{pmatrix}.
\]
Here f is a row vector of dimension i such that the first and last j entries are zero. Hence, after applying conjugation by a suitably chosen element g, $\text{Ad}_g \circ \theta(V_j^+) = V_j^-$. It follows that $(X_j^+)^* = X_j^-$ and $(X_j^-)^* = X_j^+$. As above, the argument in the proof of Lemma 2.1 shows that $X_j^+ = W^j \oplus X_0^+(\mathfrak{gl}(n-4j))$, and similarly for X_j^-. Hence we have only to prove that X_0^- is indecomposable (since the result for X_0^+ follows on taking the dual).

Let $x = e_{1,m+1} + e_{2,m+2} + \ldots + e_{m,2m}$. Clearly $x \in V_0^+$. Moreover, $Z_G(x) \cap Z_G(e)$ is the set
of all elements of the form $\begin{pmatrix} aI_m & y & z \\ 0 & a & 0 \\ 0 & 0 & aI_m \end{pmatrix}$. In particular, $\dim Z_G(x) \cap Z_G(e) = m^2 + m + 1$. It follows that $\dim G \cdot (e, x) = 3(m^2 + m) = \dim X_0^+$, hence $G \cdot (e, x) = X_0^+$. To show that X_0^+ is indecomposable, it will therefore suffice to show that the module corresponding to (e, x) is indecomposable. But $Z_G(e) \cap Z_G(x)$ contains no non-trivial idempotents. This completes the proof.

References

[1] Carlson, J.F., Lin, Z., Nakano, D.K. and Parshall, B.J.: The restricted nullcone. Contemp. Math. 325 51–75 (2003)
[2] Crawley-Boevey, W. and Schroer, J.: Irreducible components of varieties of modules. J. Reine Angew. Math. 553, 201–220 (2002)
[3] de la Peña, J.A.: Tame algebras: Some fundamental notions. Universität Bielefeld, SFB 343, Preprint E95-010
[4] Friedlander, E. and Parshall, B.: Geometry of p-unipotent Lie algebras. J. Alg. 109 (1987) 25–45
[5] Friedlander, E. and Parshall, B.: Support varieties for restricted Lie algebras. Invent. Math. 86 (1986) 553–562
[6] Friedlander, E. and Parshall, B.: Modular representation theory of Lie algebras. Amer. J. Math. 110 (1988) 1055–1094
[7] Holt, D.F. and Spaltenstein, N.: Nilpotent orbits of exceptional Lie algebras over algebraically closed fields of bad characteristic. J. Austral. Math. Soc. 38 (1985) 330–350
[8] Humphreys, J.: Linear Algebraic Groups. Springer-Verlag, New York (1975)
[9] Jantzen, J.C.: Kohomologie von p-Lie-Algebren und Nilpotente Elemente. Abh. Math. Sem. Univ. Hamburg 56 (1986) 191–219
[10] Nakano, D.K., Parshall, B.J. and Vella, D.C.: Support varieties for algebraic groups. J. Reine. Angew. Math. 547 (2002) 15–49
[11] Pommerening, K.: Über die unipotenten Klassen reduktiver Gruppen I. J. Algebra 49, 525–536 (1977)
[12] Pommerening, K.: Über die unipotenten Klassen reduktiver Gruppen II. J. Algebra 65, 373–398 (1980)
[13] Premet, A.: Supported varieties of non-restricted modules over Lie algebras of reductive groups. J. London. Math. Soc. (2) 55 (1997) 236–250

17
[14] Premet, A.: Complexity of Lie algebras representations and nilpotent elements of the stabilizers of linear forms. Math. Z. 228 (1998) 255–282

[15] Premet, A.: Nilpotent commuting varieties of reductive Lie algebras. Invent. math. 154 653–683 (2003)

[16] Richardson, R.W.: Conjugacy classes in Lie algebras and algebraic groups. Ann. of Math. 86 (1967) 1–15

[17] Suslin, A., Friedlander, E., Bendel, C.: Infinitesimal 1-parameter subgroups and cohomology. J. Amer. Math. Soc. 10 (1997) 693–728