We present the full three-loop β-functions for the MSSM generalised to include additional matter multiplets in 5, 10 representations of SU(5). We analyse the effect of three-loop running on the sparticle spectrum for the MSSM Snowmass Benchmark Points. We also consider the effect on these spectra of additional matter multiplets (the semi-perturbative unification scenario).
1. Introduction

The LHC will soon resolve the question as to whether low energy supersymmetry is the solution to the hierarchy problem; and if it is, moreover, the LHC and a future e^+e^- linear collider (LC) will lead to very precise measurements of the sparticle spectrum and couplings. The success of gauge unification in the MSSM suggests a Desert, the existence of which would mean that extrapolation of the MSSM couplings and masses to high scales will lead to immediate information about the underlying theory; for example regarding the commonly assumed universality of soft scalar masses, gaugino masses and cubic scalar interactions.

One component of this analysis is the running of masses and couplings between the weak and gauge unification scales, which is governed by the renormalisation group β-functions. In this paper we compare the results for this process using one, two and three-loop β-functions. In each case we generally use the same one-loop corrections for the relationship between running and pole masses for the various particles, with some use of two-loop results such as for the top quark mass. We anticipate that by the time sparticles are discovered complete two-loop threshold corrections will be available; the effect of these we would expect to be of the same order of magnitude as the effect of using the three-loop (as opposed to two-loop) β-functions, which, as we shall see, is surprisingly large for squarks.

The plan of this paper is as follows. In section 2 we review the exact results that relate the β-functions for the soft masses and interactions\cite{1}–\cite{3} to the β-functions of the dimensionless gauge and Yukawa couplings \cite{4}–\cite{6}, which we then give through three loops for the MSSM generalised to incorporate n_5 and n_{10} sets of $SU_5 5(5)$ and $10(10)$ representations respectively. (A motive for grouping additional matter in this way is that complete SU_5 representations do not (at one loop) change the prediction of $\sin^2 \theta_W$ (or alternatively of $g_3^2(M_Z)$) that follows from imposing $g_{1,2,3}$ gauge unification. Also unchanged at one loop is the gauge unification scale, M_X; but at higher loops this scale increases and can approach the string scale.) We also give a simplified example of a three-loop soft β-function; general results for all the β-functions are available at Ref. \cite{7}.

In section 3 we present and discuss our results for the sparticle spectrum for a set of Snowmass Benchmark Points\cite{8}, all corresponding to the standard universal boundary conditions at unification, except for one case with non-universal gaugino masses. We compare our results with the useful website Ref. \cite{9} (see also Refs. \cite{10}, \cite{11}).
In section 4 we consider the effect of additional matter fields in SU_5 representations, as discussed in Refs. [12], [13] (for earlier work see for example Refs. [14]) and by ourselves in a previous paper [15]. We give some further examples of the effect on the sparticle spectrum of such matter. Finally section 5 contains our conclusions.

2. The Soft Beta functions

For a general $N = 1$ supersymmetric gauge theory with superpotential

$$W(\phi) = \frac{1}{2} \mu^{ij} \phi_i \phi_j + \frac{1}{6} Y^{ijk} \phi_i \phi_j \phi_k,$$

the standard soft supersymmetry-breaking scalar terms are as follows

$$V_{\text{soft}} = \left(\frac{1}{2} b^{ij} \phi_i \phi_j + \frac{1}{6} h^{ijk} \phi_i \phi_j \phi_k + \text{c.c.} \right) + (m^2)^{ij} \phi_i \phi_j,$$

where we denote $\phi^i \equiv \phi^*_i$ etc. (For the generalisation to the case when V_{soft} includes a term linear in ϕ see [16].)

The complete exact results for the soft β-functions are given by:

$$\beta_M = 2 \mathcal{O} \left[\frac{\beta_g}{g} \right],$$

$$\beta_h^{ij} = h^{l(kj)\gamma^i} - 2 Y^{l(jk)\gamma^i},$$

$$\beta_b^{ij} = b^{l(i\gamma^j)} - 2 \mu^{(i\gamma^j)},$$

$$(\beta_m^2)^{ij} = \Delta \gamma^{ij},$$

where γ is the matter multiplet anomalous dimension, and

$$\mathcal{O} = M g^2 \frac{\partial}{\partial g^2} - h^{lmn} \frac{\partial}{\partial Y^{lmn}},$$

$$(\gamma_1)^{ij} = \mathcal{O} \gamma^{ij},$$

$$\Delta = 2 \mathcal{O} \mathcal{O}^* + 2 M M^* g^2 \frac{\partial}{\partial g^2} + \left[\tilde{Y}^{lmn} \frac{\partial}{\partial Y^{lmn}} + \text{c.c.} \right] + X \frac{\partial}{\partial g}.$$ (2.4c)

Here M is the gaugino mass and $\tilde{Y}^{ijk} = (m^2)^i_l Y^{jkl} + (m^2)^j_l Y^{ikl} + (m^2)^k_l Y^{ijl}$. Eq. (2.3) holds in a class of renormalisation schemes that includes the DRED’-one [17], which we will use throughout.

Finally the X function above is given (in the NSVZ scheme [18]) by

$$X_{\text{NSVZ}} = -2 \frac{g^3}{16 \pi^2} \frac{S}{1 - 2g^2 C(G)(16\pi^2)^{-1}}$$

(2.5)
where

\[S = r^{-1} \text{tr}[m^2 C(R)] - MM^* C(G), \]

(2.6)

\(C(R), C(G) \) being the quadratic Casimirs for the matter and adjoint representations respectively. There is no corresponding exact form for \(X \) in the DRED’ scheme\[17\]; we will require the leading and sub-leading contributions, which are given by\[19\]:

\[16\pi^2 X^{\text{DRED}'}(1) = -2g^3 S \]

(2.7)

and

\[(16\pi^2)^2 X^{\text{DRED}'}(2) = (2r)^{-1} g^3 \text{tr}[WC(R)] - 4g^5 C(G)S - 2g^5 C(G)QMM^*, \]

(2.8)

where

\[W^j_i = \frac{1}{2} Y_{ipq} Y^{pqn}(m^2)^j n + \frac{1}{2} Y_{ipq} Y^{pqn}(m^2)^i n + 2Y_{ipq} Y^{jpr}(m^2)^q r \]

+ \(h_{ipq} h^{jpr} - 8g^2 MM^* C(R)^j_i. \)

(2.9)

and \(Q = T(R) - 3C(G) \), and \(r T(R) = \text{tr}[C(R)] \), \(r \) being the number of group generators.

We now present the results for the gauge \(\beta \)-functions and anomalous dimensions. These results are valid in the DRED’ scheme\[17\] (or indeed the DRED one\[20\], which differs from DRED’ only when we come to the soft \(\beta \)-functions). The MSSM superpotential is:

\[W = H_2 QY_t \tau^c + H_1 QY_b \tau^c + H_1 L Y_\tau \tau^c + \mu H_1 H_2 \]

(2.10)

where \(Y_t, Y_b, Y_\tau \) are \(n_g \times n_g \) Yukawa matrices\[3\], and we define

\[T = Y_t Y_t^\dagger, B = Y_b Y_b^\dagger, E = Y_\tau Y_\tau^\dagger, \tilde{T} = Y_t^\dagger Y_t, \tilde{B} = Y_b^\dagger Y_b, \tilde{E} = Y_\tau^\dagger Y_\tau \].

(2.11)

The \(SU_3 \otimes SU_2 \otimes U_1 \) gauge \(\beta \)-functions are as follows:

\[\beta_{g_i} = (16\pi^2)^{-1} b_1 g_i^3 + (16\pi^2)^{-2} g_i^3 \left(\sum_j b_{ij} g_j^2 - a_i \right) + (16\pi^2)^{-3} \beta_{g_i}^{(3)} + \cdots \]

(2.12)

where

\[b_1 = \frac{1}{2} n_5 + \frac{3}{2} n_{10} + \frac{33}{2}, \quad b_2 = \frac{1}{2} n_5 + \frac{3}{2} n_{10} + 1, \quad b_3 = \frac{1}{2} n_5 + \frac{3}{2} n_{10} - 3 \]

\[a_1 = \frac{26}{5} \text{tr}T + \frac{14}{5} \text{tr}B + \frac{18}{5} \text{tr}E, \quad a_2 = 6\text{tr}T + 6\text{tr}B + 2\text{tr}E, \quad a_3 = 4\text{tr}T + 4\text{tr}B \]

(2.13)

\[^2 \text{Y}_{t,b,\tau} \text{ here are the transposes of the Yukawa matrices used in Ref.}\[3\].\]
\[
\begin{pmatrix}
\frac{199}{25} + \frac{7}{30} n_5 + \frac{23}{10} n_{10} & \frac{27}{5} + \frac{9}{10} n_5 + \frac{3}{10} n_{10} & \frac{88}{5} + \frac{16}{5} n_5 + \frac{24}{5} n_{10} \\
\frac{9}{5} + \frac{3}{10} n_5 + \frac{1}{10} n_{10} & 25 + \frac{7}{2} n_5 + \frac{21}{2} n_{10} & 24 + 8 n_{10} \\
\frac{11}{5} + \frac{2}{15} n_5 + \frac{3}{5} n_{10} & 9 + 3 n_{10} & 14 + \frac{17}{3} n_5 + 17 n_{10}
\end{pmatrix}.
\]

(2.14)

For the anomalous dimensions of the chiral superfields we have at one loop:

\[
\begin{align*}
16\pi^2\gamma_t^{(1)} &= 2\tilde{T} - \frac{8}{3} g_2^2 - \frac{8}{15} g_1^2, \\
16\pi^2\gamma_b^{(1)} &= 2\tilde{B} - \frac{8}{3} g_3^2 - \frac{2}{15} g_1^2, \\
16\pi^2\gamma_Q^{(1)} &= B + T - \frac{8}{3} g_3^2 - \frac{3}{2} g_2^2 - \frac{1}{30} g_1^2, \\
16\pi^2\gamma_H^{(1)} &= 3\text{tr}T - \frac{3}{2} g_2^2 - \frac{3}{10} g_1^2, \\
16\pi^2\gamma_H^{(1)} &= \text{tr}E + 3\text{tr}B - \frac{3}{2} g_2^2 - \frac{3}{10} g_1^2, \\
16\pi^2\gamma_L^{(1)} &= E - \frac{3}{2} g_2^2 - \frac{3}{10} g_1^2, \\
16\pi^2\gamma_{r}^{(1)} &= 2\tilde{E} - \frac{6}{5} g_1^2,
\end{align*}
\]

and at two loops[21]:

\[
\begin{align*}
(16\pi^2)^2\gamma_t^{(2)} &= -2\tilde{T}^2 - 6(\text{tr}T)\tilde{T} - 2\tilde{Y}_t^\dagger BY_t + (6g_2^2 - \frac{2}{3} g_1^2)\tilde{T} \\
&+ \left(\frac{8}{15} b_1 + \frac{64}{225}\right) g_1^4 + \frac{128}{45} g_2^2 g_3^2 + \left(\frac{8}{3} b_3 + \frac{64}{9}\right) g_3^4, \\
(16\pi^2)^2\gamma_b^{(2)} &= -2\tilde{B}^2 - 6(\text{tr}B)\tilde{B} - 2\tilde{Y}_b^\dagger TY_b - 2(\text{tr}E)\tilde{B} + (6g_2^2 + \frac{2}{3} g_1^2)\tilde{B} \\
&+ \left(\frac{2}{15} b_1 + \frac{4}{225}\right) g_1^4 + \frac{32}{15} g_2^2 g_3^2 + \left(\frac{8}{3} b_3 + \frac{64}{9}\right) g_3^4, \\
(16\pi^2)^2\gamma_Q^{(2)} &= -2T^2 - 3(\text{tr}T)T - 2B^2 - 3(\text{tr}B)B \\
&- (\text{tr}E)B + g_2^2 \left(\frac{4}{7} T + \frac{2}{7} B\right) + \frac{1}{10} g_1^2 g_2^2 + 8g_3^2 g_2^2 + \frac{8}{15} g_1 g_3 g_2^2 \\
&+ \left(\frac{8}{3} b_3 + \frac{64}{9}\right) g_3^4 + \left(\frac{3}{2} b_2 + \frac{9}{4}\right) g_2^4 + \left(\frac{1}{30} b_1 + \frac{1}{900}\right) g_1^4, \\
(16\pi^2)^2\gamma_{H_2}^{(2)} &= -9\text{tr}T^2 - 3\text{tr}BT + (16g_3^2 + \frac{4}{3} g_1^2) \text{tr}T + (\frac{3}{2} b_2 + \frac{9}{4}) g_2^4 \\
&+ \left(\frac{9}{10} g_1^2 g_2^2 + \left(\frac{3}{2} b_2 + \frac{9}{4}\right) g_2^4 + \left(\frac{1}{10} b_1 + \frac{9}{100}\right) g_1^4, \\
(16\pi^2)^2\gamma_{H_4}^{(2)} &= -9\text{tr}B^2 - 3\text{tr}BT - 3(\text{tr}E^2) + (16g_3^2 - \frac{2}{5} g_1^2) \text{tr}B + \frac{6}{5} g_1^2 \text{tr}E \\
&+ \left(\frac{3}{2} b_2 + \frac{9}{4}\right) g_1^4 + \frac{1}{10} g_1^2 g_2^2 + \left(\frac{3}{10} b_1 + \frac{9}{100}\right) g_1^4, \\
(16\pi^2)^2\gamma_L^{(2)} &= -2E^2 - E(3\text{tr}B + \text{tr}E - \frac{6}{5} g_1^2) + \left(\frac{3}{2} b_2 + \frac{9}{4}\right) g_2^4 \\
&+ \left(\frac{9}{10} g_1^2 g_2^2 + \left(\frac{3}{2} b_2 + \frac{9}{4}\right) g_2^4 + \left(\frac{1}{10} b_1 + \frac{9}{100}\right) g_1^4, \\
(16\pi^2)^2\gamma_{r}^{(2)} &= -2\tilde{E}^2 - \tilde{E}(6\text{tr}B + 2\text{tr}E - 6g_2^2 + \frac{6}{5} g_1^2) + \left(\frac{6}{5} b_1 + \frac{36}{25}\right) g_1^4.
\end{align*}
\]
The three-loop gauge β-function terms are (henceforth we suppress $(16\pi^2)^{-L}$ factors).

\[
\beta_{g_1}^{(3)} = g_1^3 \left[\frac{84}{5} \text{tr}T^2 + 18(\text{tr}T)^2 + \frac{54}{5} \text{tr}B^2 + \frac{36}{5} (\text{tr}B)^2 + \frac{58}{5} \text{tr}TB + \frac{54}{5} \text{tr}E^2 + \frac{24}{5} (\text{tr}E)^2
\right.
\]
\[
+ \frac{84}{5} \text{tr}E \text{tr}B - \left(\frac{169}{75} g_1^2 + \frac{87}{75} g_2^2 + \frac{352}{75} g_3^2 \right) \text{tr}T - \left(\frac{49}{75} g_1^2 + \frac{33}{75} g_2^2 + \frac{256}{75} g_3^2 \right) \text{tr}B
\]
\[
- \left(\frac{81}{25} g_1^2 + \frac{63}{25} g_2^2 \right) \text{tr}E + \left(\frac{484}{15} - \frac{4}{5} n_5^2 - \frac{506}{45} + 6n_{10} \right) n_5 - \frac{154}{5} n_{10} - \frac{54}{5} n_{10}^2 \right] \text{tr}E
\]
\[
- \left[\left(\frac{24}{5} + \frac{8}{5} n_{10} \right) g_2^2 + \left(\frac{64}{225} n_5 + \frac{344}{75} n_{10} + \frac{1096}{75} \right) g_1^2 g_3^2
\]
\[
- \left(\frac{27}{40} n_5^2 + \left(\frac{27}{4} + \frac{9}{4} n_{10} \right) n_5 + \frac{81}{5} + \frac{261}{40} n_{10} + \frac{27}{40} n_{10}^2 \right) g_4^2 - \left(\frac{1}{50} n_{10} + \frac{27}{50} n_{10} + \frac{69}{25} \right) g_1^2 g_2
\]
\[
- \left(\frac{7}{40} n_5^2 + \left(\frac{7507}{900} + \frac{9}{4} n_{10} \right) n_5 + \frac{12859}{300} n_{10} + \frac{207}{40} n_{10}^2 + \frac{32117}{375} \right) g_1^4 \right].
\]

\[
(2.17a)
\]

\[
\beta_{g_2}^{(3)} = g_2^3 \left[24(\text{tr}T^2 + \text{tr}B^2) + 18[(\text{tr}T)^2 + (\text{tr}B)^2] + 12 \text{tr}BT + 12 \text{tr}B \text{tr}E + 8 \text{tr}E^2
\right.
\]
\[
+ 2(\text{tr}E)^2 - (32g_3^2 + 33g_2^2)(\text{tr}T + \text{tr}B) - g_1^2 \left(\frac{29}{5} \text{tr}T + \frac{11}{5} \text{tr}B \right) - (11g_2^2 + \frac{21}{5} g_1^2) \text{tr}E
\]
\[
- \left[(6n_{10} + 18) n_5 + \frac{118}{3} n_{10} + 18n_{10}^2 - 44 \right] g_3^4 + \left[\left(8n_{10} + 24 \right) g_2^2 - \left(\frac{8}{15} n_{10} + \frac{4}{5} \right) g_1^2 \right] g_3^2
\]
\[
- \left(\frac{13}{8} n_5^2 + \left(\frac{33}{4} + \frac{39}{4} n_{10} \right) n_5 + \frac{99}{4} n_{10} + \frac{117}{8} n_{10}^2 - 35 \right) g_2^4 + \left(\frac{1}{10} n_{10} + \frac{9}{5} + \frac{3}{10} n_{10} \right) g_1^2 g_2
\]
\[
- \left(\frac{7}{40} n_5^2 + \left(\frac{3}{4} n_{10} + \frac{441}{100} \right) n_5 + \frac{9}{40} n_{10}^2 + \frac{457}{25} + \frac{1513}{300} n_{10} \right) g_1^4 \right],
\]

\[
(2.17b)
\]

\[
\beta_{g_3}^{(3)} = g_3^3 \left[18(\text{tr}T)^2 + 12 \text{tr}T^2 + 8 \text{tr}BT + 18(\text{tr}B)^2 + 12 \text{tr}B^2 + 6 \text{tr}E \text{tr}B
\right.
\]
\[
- \left(\frac{104}{3} g_3^2 + 12g_2^2 \right) (\text{tr}T + \text{tr}B) - g_1^2 \left(\frac{44}{15} \text{tr}T + \frac{32}{15} \text{tr}B \right)
\]
\[
+ \left(\frac{347}{3} + \frac{215}{3} n_{10} - \frac{11}{3} n_5^2 + \left(\frac{215}{9} - \frac{33}{2} n_{10} \right) n_5 - \frac{99}{4} n_{10}^2 \right) g_3^4
\]
\[
+ \left[(2n_{10} + 6) g_2^2 + \left(\frac{3}{5} n_{10} + \frac{4}{15} n_5 + \frac{22}{15} \right) g_1^2 \right] g_3^2
\]
\[
- \left[\left(\frac{27}{4} + \frac{9}{4} n_{10} \right) n_5 + \frac{27}{4} n_{10}^2 + \frac{117}{4} n_{10} + 27 \right] g_2^4 - \left(\frac{1}{5} n_{10} + \frac{3}{5} \right) g_1^2 g_2
\]
\[
- \left(\frac{1}{10} n_5^2 + \left(\frac{2689}{900} + \frac{3}{4} n_{10} \right) n_5 + \frac{27}{20} n_{10}^2 + \frac{1702}{75} + \frac{3353}{300} n_{10} \right) g_1^4 \right].
\]

\[
(2.17c)
\]

The three-loop results for the anomalous dimensions are as follows:

6
\(\gamma^{(3)}_Q = k(T^3 + B^3) + 4BTD + 4TB^2 + 6T^2trT + B^2(6trB + 2trE) \\
+ B[6tr(TB) - 9(trB)^2 - 6trBtrE + 18tr(B^2) - (trE)^2 + 6tr(E^2)] \\
- 9T(trT)^2 + 18Ttr(T^2) + 6Ttr(TB) + g_1^2[T^2(\frac{11}{3} - k) + B^2(\frac{7}{15} - \frac{1}{5}k)] \\
+ [(3k - 3)g_2^2 + \frac{54}{3}g_3^2](T^2 + B^2) + [(2 - \frac{4}{5}k)g_1^2 + 18g_2^2 + (8k - 8)g_3^2]TtrT \\
+ g_1^2B[(\frac{16}{5} - \frac{4}{5}k)trB + (\frac{3}{5}k - \frac{8}{5})trE] + g_2^2B(18trB + 6trE) \\
+ 8g_3^2B[(k - 1)trB + trE] + g_1^4T(\frac{143}{900}k - \frac{3767}{300} - \frac{51}{20}n_10 - \frac{17}{20}n_5) \\
+ g_1^4B(\frac{7}{180}k - \frac{633}{100} - \frac{27}{20}n_10 - \frac{9}{20}n_5) - (\frac{13}{30}trT + \frac{7}{30}trB + \frac{3}{10}trE)g_1^4 \\
+ (\frac{3}{2}k - \frac{54}{10}g_1^2g_2^2T + (\frac{3}{10}k - \frac{41}{10})g_1^2g_2^2B + g_1^2g_2^2T(\frac{64}{15}k - \frac{68}{10}) + g_1^2g_3^2B(\frac{64}{15}k - \frac{76}{15}) \\
- g_2^4[(T + B)(\frac{45}{10} + \frac{24}{5}k + \frac{27}{5}n_10 + \frac{9}{4}n_5) + \frac{45}{2}(trT + trB) + \frac{15}{2}trE] \\
- 4g_2^4g_3^3(T + B) + g_4^4[(T + B)(\frac{8}{5} - \frac{23}{10}k - 12n_10 - 4n_5) - \frac{80}{5}(trT + trB)] \\
+ (\frac{25}{4} - \frac{3}{40}kn_10 - \frac{9}{40}kn_5 - \frac{27}{20}n_10 + \frac{3}{10}n_5 + \frac{11}{10}n_5)g_1^2g_2^4 - \frac{8}{5}g_1^2g_2^2g_3^2 \\
+ g_4^6(\frac{28457}{14100} - k(\frac{23}{600}n_10 + \frac{7}{1800}n_5 + \frac{199}{1500}) + (\frac{1}{20}n_5 + \frac{17}{20} + \frac{3}{10}n_10)n_10 + \frac{43}{180}n_5 + \frac{1}{120}n_5^2) \\
+ g_1^4g_2^2(\frac{11}{100} - \frac{1}{200}kn_10 - \frac{3}{10}kn_5 - \frac{9}{100}k - \frac{1}{10}n_10 + \frac{1}{20}n_5) \\
+ g_1^4g_3^2(\frac{134}{225} - \frac{2}{15}kn_10 - \frac{4}{225}kn_5 - \frac{22}{75}k + \frac{4}{15}n_10 + \frac{2}{15}n_5) \\
+ g_1^4g_3^2(\frac{608}{45} - \frac{4}{5}kn_10 - \frac{8}{45}kn_5 - \frac{44}{15}k + \frac{58}{15}n_10 + \frac{38}{45}n_5) \\
+ g_2^4g_3^2(50 - 6kn_10 - 18k + 24n_10 - 2n_5) + g_2^4g_3^2(8 - 4kn_10 - 12k + 14n_10 - 2n_5) \\
+ g_2^6(\frac{345}{4} + \frac{45}{8}kn_10 + \frac{15}{16}kn_5 + \frac{105}{4}k + \frac{9}{4}n_10n_5 + \frac{81}{4}n_10 + \frac{27}{2}n_10 + \frac{27}{2}n_5 + \frac{3}{8}n_5^2) \\
+ g_3^6(\frac{2720}{27} + k(\frac{40}{3}n_10 + \frac{40}{9}n_5 + \frac{160}{3}) + n_10(4n_5 + \frac{236}{3} + 6n_10) + \frac{236}{9}n_5 + \frac{2}{7}n_5^2) \\
(2.18) \\

\gamma^{(3)}_L = kE^3 + E^2(6trB + 2trE) \\
+ E[6tr(TB) - 9(trB)^2 - 6trBtrE + 18tr(B^2) - (trE)^2 + 6tr(E^2)] \\
+ g_1^2E^2(9 - \frac{9}{5}k) + (8 - 2k)g_1^2EtrB + (3k - 3)g_2^2E^2 + g_2^2E(18trB + 6trE) \\
+ (8k - 32)g_3^2EtrB + g_1^4E(-\frac{549}{20} + \frac{27}{100}k - \frac{99}{20}n_10 - \frac{33}{20}n_5) \\
+ g_1^4E(-\frac{39}{10}trT - \frac{21}{10}trB - \frac{27}{10}trE) \\
+ g_2^2g_3^2E(-\frac{81}{10} + \frac{27}{10}k) + g_2^4E(-\frac{45}{4} - \frac{21}{4}k - \frac{27}{4}n_10 - \frac{9}{4}n_5) \\
+ g_4^4(-\frac{45}{2}trT - \frac{45}{2}trB - \frac{15}{2}trE) + \Xi \\
(2.19)
\[
\gamma^{(3)}_t = (6 + 2k)\bar{T}^3 + 6\bar{T}^2trT - 2Y_t^\dagger BY_t - 2Y_t^\dagger TBY_t + 6Y_t^\dagger B^2Y_t \\
+ \bar{T}(36tr(T^2) + 12tr(TB) - 18(trT)^2) + Y_t^\dagger BY_t(-6trT + 12trB + 4trE) \\
+ g_t^2\left[\bar{T}^2(-\frac{1}{3} + k) + 7(1 + \frac{k}{5})\bar{T}tr(T) + Y_t^\dagger BY_t(\frac{10}{15} + \frac{2}{5}k)\right] \\
+ g_t^2\left[(9 - 3k)\bar{T}^2 + (27 - 9k)\bar{T}trT + (9 - 3k)Y_t^\dagger BY_t\right] \\
+ g_t^2\left[16(k - 1)\bar{T}trT + \frac{64}{3}(\bar{T}^2 + Y_t^\dagger BY_t)\right] \\
+ g_t^2\left[\bar{T}(\frac{-799}{36} - \frac{247}{456}k - \frac{18}{5}n_{10} - \frac{6}{5}n_5) - \frac{104}{15}trT - \frac{56}{15}trB - \frac{24}{5}trE\right] \\
+ g_t^2g_t^2\bar{T}(\frac{-8}{15} - \frac{112}{45}k) + g_t^2g_t^2\bar{T}(\frac{-67}{5} + \frac{13}{5}k) \\
+ g_t^2\bar{T}(\frac{-87}{2} - \frac{3}{k} - 18n_{10} - 6n_5) + g_t^2g_t^2\bar{T}(-88 + 16k) \\
+ g_t^3\left[\bar{T}(\frac{16}{3} - \frac{272}{9}k - 24n_{10} - 8n_5) - \frac{80}{3}trT - \frac{80}{3}trB\right] \\
+ g_t^2g_t^2\left(-\frac{172}{15} - \frac{4}{5}kn_{10} - \frac{8}{25}kn_5 - \frac{44}{15}k + \frac{28}{15}n_{10} + \frac{8}{5}n_5\right) \\
+ g_t^2g_t^2\left(\frac{36}{5} - \frac{2}{25}kn_{10} - \frac{6}{25}kn_5 - \frac{36}{25}k + \frac{8}{5}n_{10} + \frac{6}{5}n_5\right) \\
+ g_t^2g_t^2\left(\frac{2144}{225} - \frac{32}{25}kn_{10} - \frac{64}{225}kn_5 - \frac{352}{75}k + \frac{64}{15}n_{10} + \frac{32}{15}n_5\right) \\
+ g_t^2\left(\frac{272}{27} + \frac{40}{9}kn_{10} + \frac{40}{9}kn_5 + \frac{160}{3}k + 4n_{10}n_5 + \frac{236}{3}n_{10} + 6n_1^2 + \frac{236}{9}n_5 + \frac{2}{3}n_5^2\right) \\
+ g_t^3\left(-\frac{106868}{3375} - k(\frac{46}{7}n_{10} + \frac{14}{225}n_5 + \frac{796}{375}) + n_{10}(\frac{4}{5}n_5 + \frac{66}{5} + \frac{6}{5}n_10) + \frac{166}{45}n_5 + \frac{2}{15}n_5^2\right) \\
+ g_t^2g_t^2\left(60 - 4kn_{10} - 12k + 20n_{10}\right)
\]

(2.20)

\[
\gamma^{(3)}_{H_1} = (k + 1)\left[3tr(B^3) + tr(E^3)\right] + 9tr(T^2B) + 18trTr(TB) \\
+ 6(trE + 3trB)\left[tr(E^2) + 3tr(B^2)\right] + (24 - 8k)g_t^2[tr(TB) + 3tr(B^2)] \\
+ g_t^2[18tr(TB) + (9k + 9)tr(B^2) + (3k + 3)tr(E^2)] \\
+ g_t^2[-\frac{12}{5}tr(TB) + \frac{7}{5}tr(B) + 3tr(B^2) + \frac{9}{5}ktr(B^2) + 9tr(E^2) - \frac{7}{9}tr(E^2)] \\
+ g_t^2[-\frac{30}{10}trT - trB(\frac{77}{50}k + \frac{77}{300}k + \frac{57}{10}n_{10} + \frac{19}{20}n_5) + trE(\frac{27}{100}k - \frac{603}{20} - \frac{99}{20}n_{10} - \frac{33}{20}n_5)] + g_t^2[\frac{2}{3}trB - \frac{3}{5}ktrB - \frac{8}{15}trE + \frac{27}{10}ktrE] \\
+ trB[g_t^2g_t^2(\frac{284}{15} + \frac{56}{15}k) + g_t^2g_t^2(-132 + 24k)] + g_t^2[-\frac{45}{2}trT \\
- trB(\frac{225}{4} + \frac{63}{4}k + \frac{81}{4}n_{10} + \frac{27}{4}n_5) - trE(\frac{75}{4} + \frac{21}{4}k + \frac{27}{4}n_{10} + \frac{9}{4}n_5)] \\
- g_t^4trB(\frac{160}{3} + \frac{8}{3}k + 48n_{10} + 16n_5) + \Xi
\]

(2.21)
\[\gamma_b^{(3)} = (2k + 6)\bar{B}^3 + 6Y_b^\dagger T^2 Y_b - 2Y_b^\dagger B T Y_b + Y_b^\dagger T Y_b (12\text{tr} T - 6\text{tr} B - 2\text{tr} E) - 2Y_b^\dagger T B Y_b + \bar{B}^2 (6\text{tr} B + 2\text{tr} E) + \bar{B}[12\text{tr} (T B) - 18(\text{tr} B)^2 - 12\text{tr} B \text{tr} E + 36\text{tr} (B^2) - 2(\text{tr} E)^2 + 12(\text{tr} E^2)] + g_1^2 Y_b^\dagger T Y_b (-\frac{29}{15} + \frac{3}{5} k) + g_1^2 \bar{B}^2 (-\frac{1}{3} + \frac{1}{5} k) + g_1^2 \bar{B}[(7 - k)\text{tr} B + (k - 3)\text{tr} E] + g_2^2 Y_b^\dagger T Y_b (9 - 3k) + g_2^2 \bar{B}^2 (9 - 3k) + g_2^2 \bar{B}[(27 - 9k)\text{tr} B + (9 - 3k)\text{tr} E] + \frac{64}{3} g_3^2 Y_b^\dagger T Y_b + \frac{64}{3} g_3^2 \bar{B}^2 + g_3^2 \bar{B}[(16k - 16)\text{tr} B + 16\text{tr} E] + g_1^4 \bar{B}(-\frac{87}{2} - \frac{3}{2} k - 18n_{10} - 6n_5) + g_2^4 \bar{B}(-\frac{87}{2} - \frac{3}{2} k - 18n_{10} - 6n_5) + g_3^4 \bar{B}(\frac{15}{6} - \frac{27}{9} k - 24n_{10} - 8n_5) - \frac{80}{3} \text{tr} T - \frac{80}{3} \text{tr} B] + g_3^6 (\frac{2720}{27} + \frac{40}{9} k n_{10} + \frac{40}{9} k n_5 + \frac{160}{9} k + 4n_{10} n_5 + \frac{236}{9} n_{10} + 6n_{10} n_5 + \frac{7}{5} n_5^2) + g_1^6 (\frac{5629}{675} - k (\frac{23}{150} n_{10} + \frac{7}{150} n_5 + \frac{199}{375}) + n_{10} (\frac{1}{5} n_5 + \frac{160}{50} + \frac{3}{10} n_5) + \frac{427}{450} n_5 + \frac{1}{30} n_5^2) + g_4^6 (\frac{9}{5} - \frac{1}{5} k n_{10} - \frac{3}{50} k n_5 - \frac{9}{25} k + \frac{1}{10} n_{10} + \frac{3}{10} n_5) + g_1^6 (\frac{728}{225} - \frac{8}{25} k n_{10} - \frac{16}{225} k n_5 - \frac{88}{75} k + \frac{16}{15} n_{10} + \frac{8}{45} n_5) + g_1^6 (\frac{452}{45} - \frac{4}{5} k n_{10} - \frac{16}{45} k n_5 - \frac{44}{15} k + \frac{52}{15} n_{10} + \frac{32}{45} n_5) + g_2^6 (60 - 4k n_{10} - 12k + 20n_{10}) \]
\[\gamma^{(3)}_{\tau} = (6 + 2k)\tilde{E}^3 + (6trB + 2trE)\tilde{E}^2 \]
\[+ \tilde{E}(12tr(TB) - 18(trB)^2 - 12trBtrE + 36tr(B^2) - 2(trE)^2 + 12tr(E^2)) \]
\[+ g_2^2\tilde{E}^2(\frac{9}{5} + \frac{9}{5}k) + g_2^2\tilde{E}^2(9 - 3k) + g_2^2\tilde{E}(\frac{107}{10} - \frac{7}{5}k)trB + \frac{2}{5}k(trE) \]
\[+ g_2^2\tilde{E}trB(16k - 64) + g_2^2\tilde{E}(trB(27 - 9k) + trE(9 - 3k)) \]
\[+ g_1^4\tilde{E}(-\frac{1503}{90} - 27\frac{1}{k} - \frac{36}{5}n_{10} - \frac{12}{5}n_5) + g_1^2g_2^2\tilde{E}(-27 + \frac{27}{5}k) \]
\[+ g_1^4(-\frac{78}{5}trT - \frac{42}{5}trB + \frac{54}{5}trE) + g_1^4\tilde{E}(-\frac{87}{2} - \frac{3}{2}k - 18n_{10} - 6n_5) \]
\[+ g_1^6(\frac{7899}{125} - \frac{69}{50}kn_{10} - \frac{7}{50}kn_5 - \frac{597}{125}k + \frac{9}{5}n_{10}n_5 + \frac{27}{2}n_{10}^2 + \frac{77}{10}n_5 + \frac{3}{10}n_5^2) \]
\[+ g_1^4g_2^2(\frac{81}{5} - \frac{9}{50}kn_{10} - \frac{27}{50}kn_5 - \frac{81}{25}k + \frac{9}{10}n_{10} + \frac{27}{10}n_5) \]
\[+ g_1^4g_3(\frac{264}{5} - \frac{72}{25}kn_{10} - \frac{16}{25}kn_5 - \frac{264}{25}k + \frac{72}{5}n_{10} + \frac{16}{5}n_5) \]
\[+ \Xi = g_2^6(\frac{345}{4} + k(\frac{45}{8}n_{10} + \frac{15}{8}n_5 + \frac{105}{4}) + n_{10}(\frac{9}{4}n_5 + \frac{81}{2} + \frac{27}{8}n_{10} + \frac{27}{2}n_5 + \frac{3}{8}n_5^2) \]
\[+ g_1^6(\frac{1839}{100} - k(\frac{69}{200}kn_{10} + \frac{7}{200}kn_5 + \frac{597}{500}) + n_{10}(\frac{9}{20}n_5 + \frac{753}{100} + \frac{27}{40}n_{10} + \frac{211}{100}n_5 + \frac{3}{40}n_5^2) \]
\[+ g_1^4g_2^2(\frac{27}{100} - \frac{9}{200}kn_{10} - \frac{27}{200}kn_5 - \frac{81}{100}k - \frac{9}{20}n_{10} + \frac{9}{20}n_5) \]
\[+ g_1^4g_3(\frac{66}{5} - \frac{18}{25}kn_{10} - \frac{4}{25}kn_5 - \frac{66}{25}k + \frac{18}{5}n_{10} + \frac{4}{5}n_5) \]
\[+ g_2^2g_4^2(\frac{9}{4} - \frac{3}{40}kn_{10} - \frac{27}{40}kn_5 - \frac{27}{30}k - \frac{3}{10}n_{10} + \frac{9}{10}n_5) \]
\[+ g_2^4g_3^2(90 - 6kn_{10} - 18k + 30n_{10}) \]
\[(2.24) \]

where \(k = 6\zeta(3) \), and

\[\Xi = g_2^6(\frac{345}{4} + k(\frac{45}{8}n_{10} + \frac{15}{8}n_5 + \frac{105}{4}) + n_{10}(\frac{9}{4}n_5 + \frac{81}{2} + \frac{27}{8}n_{10} + \frac{27}{2}n_5 + \frac{3}{8}n_5^2) \]
\[+ g_1^6(\frac{1839}{100} - k(\frac{69}{200}kn_{10} + \frac{7}{200}kn_5 + \frac{597}{500}) + n_{10}(\frac{9}{20}n_5 + \frac{753}{100} + \frac{27}{40}n_{10} + \frac{211}{100}n_5 + \frac{3}{40}n_5^2) \]
\[+ g_1^4g_2^2(\frac{27}{100} - \frac{9}{200}kn_{10} - \frac{27}{200}kn_5 - \frac{81}{100}k - \frac{9}{20}n_{10} + \frac{9}{20}n_5) \]
\[+ g_1^4g_3(\frac{66}{5} - \frac{18}{25}kn_{10} - \frac{4}{25}kn_5 - \frac{66}{25}k + \frac{18}{5}n_{10} + \frac{4}{5}n_5) \]
\[+ g_2^2g_4^2(\frac{9}{4} - \frac{3}{40}kn_{10} - \frac{27}{40}kn_5 - \frac{27}{30}k - \frac{3}{10}n_{10} + \frac{9}{10}n_5) \]
\[+ g_2^4g_3^2(90 - 6kn_{10} - 18k + 30n_{10}) \]
\[(2.25) \]

In terms of the anomalous dimensions, the Yukawa \(\beta \)-functions are:

\[\beta_{Y_1} = \gamma_QY_1 + Y_1(\gamma_t + \gamma_{H_2}), \quad \beta_{Y_6} = \gamma_QY_6 + Y_6(\gamma_b + \gamma_{H_1}), \quad \beta_{Y_7} = \gamma_LY_7 + Y_7(\gamma_{\tau} + \gamma_{H_1}), \]
\[(2.26) \]

and the \(\beta \)-function for the Higgs \(\mu \)-term is

\[\beta_{\mu} = \mu(\gamma_{H_2} + \gamma_{H_1}). \]
\[(2.27) \]

We will also require the anomalous dimensions of the constituents of the extra 5 and 10 representations, which are easily obtained by setting \(T = B = E = 0 \), except retaining terms that contain \(T, B, E \) only inside traces; such terms occur for the first time at three loops.
From the above expressions for β_{g_i} and γ we have calculated the three-loop soft β-functions using Eq. (2.3) and FORM. The resulting expressions are very unwieldy; as an example we give the one, two and three-loop results for $\beta_{m_Q^2}$, in the approximation that we retain only g_3^2 and the top quark Yukawa coupling λ_t (in what follows we denote the third generation squarks as Q_t, t^c, b^c, and the first or second generation squarks as Q_u, u^c, d^c):

$$\beta_{m_Q^2}^{(1)} = 2\lambda_t^2 (\Sigma_t + A_t^2) - 8\left(\frac{1}{10}g_1^2M_1^2 + \frac{2}{3}g_2^2M_2^2 + \frac{4}{3}g_3^2M_3^2\right)$$

$$\beta_{m_Q^2}^{(2)} = -20\lambda_t^4 (\Sigma_t + 2A_t^2) + 16g_3^4M_3^2(n_5 + 3n_{10} - \frac{5}{3})$$
$$+ \frac{16}{3}g_3^4(2m_{Q_u}^2 + m_{t^c}^2 + m_{b^c}^2 + (n_{10} + 2)(m_{u^c}^2 + 2m_{Q_u}^2) + (n_5 + 2)m_{d^c}^2)$$

$$\beta_{m_Q^2}^{(3)} = [(1280k + \frac{20512}{9}) + 16n_5^2 + \left(\frac{6224}{9} + \frac{330}{3}k\right)(n_5 + 3n_{10})$$
$$+ 96n_{10}n_5 + 144n_{10}^2)M_3^2 + \left(\frac{330}{3} - \frac{16}{3}(n_5 + 3n_{10})\right)(m_{t^c}^2 + m_{b^c}^2 + 2m_{Q_u}^2)$$
$$+ (2m_{Q_u}^2 + m_{u^c}^2)\left(\frac{640}{9} - \frac{32}{3}n_5 + \frac{32}{9}n_{10} - \frac{16}{3}n_5n_{10} - 16n_{10}^2\right)$$
$$+ n_{10}^2\left(\frac{640}{9} + \frac{224}{9}n_5 - 32n_{10} - 16n_5n_{10} - \frac{16}{3}n_{10}^2\right)M_3^2$$
$$- \left[(288 + \frac{544}{3}k + 48(n_5 + 3n_{10}))M_3^2 - (192 + \frac{1088}{9}k + 32(n_5 + 3n_{10}))A_tM_3\right.$$
3. The Snowmass Benchmark Points

In this section we examine the effect of the three-loop corrections on the standard running analysis, that is for $n_5 = n_{10} = 0$. We will focus on the standard treatment with universal boundary conditions at gauge unification, often termed CMSSM or MSUGRA. Thus we assume that at M_X we have universal soft scalar masses (m_0), gaugino masses (m_1) and A-parameters (A), and work in the third-generation-only Yukawa coupling approximation. This is for ease of comparison with existing results rather than because we find the scenario particularly compelling. We will present results for the set of MSUGRA Snowmass Benchmark Points shown in Table 1:

Point	$\tan \beta$	m_1	m_0	A	sign μ
SPS1a	10	250GeV	100GeV	-100GeV	+
SPS1b	30	400GeV	200GeV	0	+
SPS2	10	300GeV	1450GeV	0	+
SPS3	10	400GeV	90GeV	0	+
SPS4	50	300GeV	400GeV	0	+
SPS5	5	300GeV	150GeV	-1TeV	+
SPS6	10	see footnote3	150GeV	0	+

Table 1: Input parameters for the SPS Benchmark Points

Other input parameters are shown in Table 2:

m_t^{pole}	m_b^{pole}	m_{τ}^{pole}	$\alpha_3(M_Z)$	$\alpha_2(M_Z)$	$\alpha_1(M_Z)$
178GeV	4.9GeV	1.777GeV	0.1172	0.033823	0.016943

Table 2: Input parameters for the running analysis

In Table 2 the input couplings $\alpha_{1..3}$ correspond to the Standard Model \overline{MS} results; we calculate the appropriate dimensionless coupling input values for the running analysis by an iterative procedure involving the sparticle spectrum. We define gauge unification

3 except for the SPS6 point. The SPS6 point corresponds to non-unified gaugino masses, $M_1 = 480$GeV, $M_2 = M_3 = 300$GeV.
to be the scale where α_2 and α_1 meet; we speed up the determination of this by (at each iteration) adjusting the unification scale using the solution of the one-loop β-functions for the gauge couplings from the previous value of the scale. We employ one-loop radiative corrections as detailed in Ref. \[24]\; thus we run up from M_Z using the full supersymmetric β-functions. For most particles we evaluate the pole mass at a renormalisation scale equal to the pole mass itself, and determine this value by iteration; the exception being the light CP-even Higgs, where we use a scale equal to the average squark mass.

3.1. Benchmark point SPS 1a

This point is a “typical” point in MSUGRA parameter space. In Table 3 we compare our results for a selection of sparticle masses (at $n_5 = n_{10} = 0$) with the spread of results taken from Ref. \[9]\, denoted AKP (note our convention that the predominantly right-handed top squark is \tilde{t}_2).

\[4\] In the first line of Eq. 37 of Ref. \[24]\, the first term in the square bracket should read $-(m_{\tilde{t}_1}^2 + m_{\tilde{t}_2}^2)B_0(m_{\tilde{t}_2}, m_{\tilde{t}_1}, 0)$: i.e. it should have a minus sign. The corresponding exact result in Eq. D49 is correct, however.
Sparticle	1loop	2loops	3loops	AKP
\tilde{g}	628	613	611	604 − 612
\tilde{t}_1	594	590	583	577 − 588
\tilde{t}_2	400	399	391	396 − 401
\tilde{u}_L	573	565	557	565 − 569
\tilde{u}_R	552	548	539	547 − 549
\tilde{b}_1	520	514	507	514 − 518
\tilde{b}_2	551	548	540	539 − 548
\tilde{d}_L	579	571	563	571 − 574
\tilde{d}_R	551	548	539	546 − 548
$\tilde{\tau}_1$	212	207	206	208 − 211
$\tilde{\tau}_2$	139	135	135	134 − 136
\tilde{e}_L	209	202	202	204 − 207
\tilde{e}_R	147	144	144	143 − 146
$\tilde{\nu}_e$	192	186	185	186 − 191
$\tilde{\nu}_\tau$	191	185	184	185 − 191
χ_1	104	97	97	95.6 − 97.4
χ_2	193	180	179	181 − 182
χ_3	351	369	364	362 − 371
χ_4	376	388	384	381 − 390
χ_1^\pm	193	179	178	180 − 182
χ_2^\pm	376	388	384	380 − 390
h	114	114	114	112 − 115
H	392	403	399	403 − 407
A	391	403	399	400 − 406
H^\pm	400	412	408	410 − 415

Table 3: Sparticle masses (in GeV) for the SPS1a point

We would expect our two-loop results to correspond most closely to AKP and we see that they are indeed broadly consistent, typically being within the range defined by the other programs or within a GeV of it. The effect of inclusion of three-loop running is never greater than 2%; note, however, that the shift caused by three-loop running effects is comparable for \tilde{u}_L and larger for \tilde{t}_2, \tilde{u}_R than that produced by two-loop running effects.
3.2. Benchmark point SPS 1b

This is another “typical” point but with a higher value of tan β. Our results are given in Table 4.

Mass	1 loop	2 loops	3 loops	AKP
\tilde{g}	967	946	943	$933 - 943$
\tilde{t}_1	848	841	832	$836 - 839$
\tilde{t}_2	657	656	646	$652 - 661$
\tilde{u}_L	891	878	868	$878 - 882$
\tilde{u}_R	854	849	837	$848 - 850$
\tilde{b}_1	781	773	763	$773 - 778$
\tilde{b}_2	831	827	816	$819 - 828$
\tilde{d}_L	895	882	872	$882 - 885$
\tilde{d}_R	851	847	835	$844 - 848$
$\tilde{\tau}_1$	353	347	346	$347 - 349$
$\tilde{\tau}_2$	208	199	200	$196 - 202$
\tilde{e}_L	348	339	338	$341 - 342$
\tilde{e}_R	258	254	254	$253 - 256$
$\tilde{\nu}_e$	338	329	328	$329 - 332$
$\tilde{\nu}_\tau$	328	318	318	$319 - 322$
χ_1	173	162	162	$159 - 163$
χ_2	327	305	304	$308 - 308$
χ_3	507	532	526	$521 - 534$
χ_4	526	546	541	$534 - 546$
χ_1^\pm	327	305	304	$307 - 308$
χ_2^\pm	526	547	541	$535 - 547$
h	118	118	118	$117 - 119$
H	528	544	539	$540 - 544$
A	529	545	540	$538 - 544$
H^\pm	535	551	547	$547 - 551$

Table 4: Sparticle masses (in GeV) for the SPS1b point
3.3. Benchmark point SPS 2

This is a “focus point region” point [23], characterised by the large value of m_0. Our results are given in Table 5.

mass	1loop	2loops	3loops	AKP
\tilde{g}	835	816	814	778 – 805
\tilde{t}_1	1322	1292	1287	1291 – 1318
\tilde{t}_2	942	921	913	913 – 942
\tilde{u}_L	1597	1562	1558	1566 – 1591
\tilde{u}_R	1584	1556	1552	1556 – 1581
\tilde{b}_1	1303	1273	1268	1280 – 1309
\tilde{b}_2	1571	1544	1540	1527 – 1568
\tilde{d}_L	1600	1564	1560	1567 – 1593
\tilde{d}_R	1584	1556	1553	1555 – 1580
$\tilde{\tau}_1$	1463	1454	1454	1455 – 1460
$\tilde{\tau}_2$	1444	1440	1441	1439 – 1443
\tilde{e}_L	1468	1459	1459	1460 – 1465
\tilde{e}_R	1457	1453	1453	1453 – 1455
$\tilde{\nu}_e$	1465	1456	1456	1457 – 1463
$\tilde{\nu}_\tau$	1459	1450	1450	1451 – 1457
χ_1	132	123	123	121 – 124
χ_2	257	237	237	240 – 241
χ_3	562	579	582	528 – 596
χ_4	574	589	592	539 – 605
χ_1^\pm	257	237	237	240 – 241
χ_2^\pm	574	590	592	539 – 605
h	119	119	119	117 – 117
H	1548	1545	1546	1542 – 1555
A	1548	1545	1546	1532 – 1555
H^\pm	1550	1547	1548	1544 – 1557

Table 5: Sparticle masses (in GeV) for the SPS2 point
3.4. Benchmark point SPS 3

This is a “co-annihilation region” point, its distinctive feature being a light stau not much heavier than the neutralino LSP. Our results are given in Table 6.

mass	1loop	2loops	3loops	AKP
˜g	964	943	940	930 – 940
˜t_1	851	845	835	836 – 843
˜t_2	645	644	634	640 – 650
˜u_L	872	860	849	861 – 863
˜u_R	835	830	818	828 – 831
˜b_1	794	787	776	786 – 793
˜b_2	830	826	814	816 – 825
˜d_L	876	864	853	864 – 867
˜d_R	831	828	816	825 – 829
˜τ_1	300	291	290	293 – 294
˜τ_2	180	173	173	172 – 176
˜e_L	299	288	288	291 – 293
˜e_R	186	181	181	179 – 183
˜ν_e	287	277	276	277 – 281
˜ν_τ	286	276	275	276 – 280
χ_1	172	161	161	158 – 162
χ_2	325	302	301	305 – 306
χ_3	512	538	531	528 – 540
χ_4	533	554	548	543 – 555
χ_1^±	324	302	301	304 – 306
χ_2^±	533	554	548	542 – 555
h	117	118	117	116 – 118
H	579	597	591	593 – 600
A	579	597	591	589 – 600
H^±	585	603	597	598 – 605

Table 6: Sparticle masses (in GeV) for the SPS3 point
This is a point with large tan β. Our results are given in Table 7.

mass	1loop	2loops	3loops	AKP
\tilde{g}	759	743	741	729 - 738
\tilde{t}_1	705	700	693	693 - 697
\tilde{t}_2	544	541	533	540 - 544
\tilde{u}_L	777	764	757	766 - 772
\tilde{u}_R	755	747	739	747 - 751
\tilde{b}_1	624	619	611	614 - 619
\tilde{b}_2	693	690	683	679 - 692
\tilde{d}_L	782	769	761	770 - 776
\tilde{d}_R	753	746	738	746 - 749
$\tilde{\tau}_1$	423	420	420	414 - 421
$\tilde{\tau}_2$	272	268	268	253 - 269
\tilde{e}_L	455	450	449	451 - 452
\tilde{e}_R	419	417	418	417 - 419
$\tilde{\nu}_e$	447	441	441	442 - 445
$\tilde{\nu}_\tau$	395	390	390	387 - 393
χ_1	128	120	120	119 - 121
χ_2	242	226	225	228 - 228
χ_3	400	419	415	406 - 420
χ_4	420	435	431	422 - 436
χ_{1}^{\pm}	242	226	225	227 - 228
χ_{2}^{\pm}	421	436	432	422 - 436
h	116	116	116	114 - 116
H	370	386	385	355 - 367
A	371	388	387	355 - 367
H^\pm	381	397	396	366 - 379

Table 7: Sparticle masses (in GeV) for the SPS4 point
3.6. Benchmark point SPS 5

mass	1loop	2loops	3loops	AKP
\(\tilde{g} \)	743	729	727	719 – 729
\(\tilde{t}_1 \)	653	654	646	629 – 651
\(\tilde{t}_2 \)	265	278	263	258 – 280
\(\tilde{u}_L \)	684	677	668	676 – 685
\(\tilde{u}_R \)	658	656	646	655 – 660
\(\tilde{b}_1 \)	563	563	554	554 – 567
\(\tilde{b}_2 \)	654	653	643	630 – 656
\(\tilde{d}_L \)	688	681	673	681 – 689
\(\tilde{d}_R \)	656	655	645	653 – 658
\(\tilde{\tau}_1 \)	264	259	258	259 – 262
\(\tilde{\tau}_2 \)	186	182	183	182 – 184
\(\tilde{e}_L \)	263	257	257	258 – 261
\(\tilde{e}_R \)	195	192	193	192 – 194
\(\tilde{\nu}_e \)	251	245	245	246 – 249
\(\tilde{\nu}_\tau \)	249	243	243	244 – 247
\(\chi_1 \)	128	120	120	119 – 120
\(\chi_2 \)	247	229	228	230 – 236
\(\chi_3 \)	608	626	621	626 – 631
\(\chi_4 \)	621	637	632	637 – 641
\(\chi_1^\pm \)	247	229	228	230 – 236
\(\chi_2^\pm \)	620	637	632	636 – 641
\(h \)	117	118	118	116 – 122
\(H \)	667	682	676	681 – 694
\(A \)	667	682	677	682 – 690
\(H^\pm \)	672	687	681	687 – 698

Table 8: Sparticle masses (in GeV) for the SPS5 point with \(m_t = 178 \)GeV

This point differs from the previous ones in having a large value of the \(A \)-parameter. The contributions of \(\mu, A \) to the off-diagonal term in the stop mass matrix have the same sign, and the magnitude of \(A \) is large, resulting in a light stop. For this point we have
calculated both using in Table 8 $m_t = 178\text{GeV}$ (as for the previous tables) and for comparison in Table 9 with $m_t = 174.3\text{GeV}$. This illustrates the sensitivity to the input m_t, with the light stop changing over 20GeV due to this small change in m_t.

mass	1loop	2loops	3loops	AKP
\tilde{g}	743	729	727	718−728
\tilde{t}_1	652	653	645	628−649
\tilde{t}_2	243	257	240	232−258
\tilde{u}_L	684	677	668	676−684
\tilde{u}_R	658	656	646	653−660
\tilde{b}_1	561	560	551	551−564
\tilde{b}_2	654	653	643	629−655
\tilde{d}_L	689	681	673	680−689
\tilde{d}_R	656	655	645	651−658
$\tilde{\tau}_1$	264	259	258	258−262
$\tilde{\tau}_2$	186	182	182	182−184
\tilde{e}_L	263	257	257	258−260
\tilde{e}_R	195	192	192	192−194
$\tilde{\nu}_e$	251	245	245	246−249
$\tilde{\nu}_\tau$	249	243	243	244−246
χ_1	128	120	120	119−121
χ_2	247	229	228	230−236
χ_3	615	632	628	632−637
χ_4	628	644	639	643−646
χ_{1}^{\pm}	247	229	228	230−236
χ_{2}^{\pm}	627	643	639	643−646
h	115	115	115	112−119
H	674	688	683	687−693
A	674	688	683	689−693
H^{\pm}	679	692	687	694−702

Table 9: Sparticle masses (in GeV) for the SPS5 point with $m_t = 174.3\text{GeV}
3.7. Benchmark point SPS6

This is a point with un-unified gaugino masses so we are unable to compare with Ref. [9]. We instead use the paper by Ghodbane and Martyn (GM), Ref. [11], which also compares the results for various programs (Isajet, Susygen and Pythia). The results for these three programs are reasonably consistent with each other; this is due to some extent, however, to the fact that the Isajet gauge unification outputs are used as inputs for the other two programs; in our table we show only the Isajet predictions. Agreement with our results is less impressive; however we should notice that Ref. [11] uses an earlier version of Isajet (7.58) than Ref. [9]. Thus if we return to SPS1a and compare the Isajet 7.58 prediction for the gluino mass (595GeV) with the Isajet 7.69 one of 612GeV obtained from Ref. [9], we can anticipate that for SPS6 the more recent Isajet would give results more consistent with our (two-loop) ones, making the reasonable assumption that the newer version will give, for example, a higher gluino mass prediction for SPS6 as well. Our results for SPS6 are given in Table 10.
A clear feature of the results is that the corrections due to two and three-loop running can be quite large for squarks, but are typically smaller for weakly-interacting particles. In particular the light CP-even Higgs mass is very stable. The large three-loop α_3 corrections stem mainly from the M_3^2 contributions to the three-loop m^2 β-functions; note that for

mass	1loop	2loops	3loops	GM
\tilde{g}	744	726	724	708
\tilde{t}_1	686	681	673	661
\tilde{t}_2	498	496	488	476
\tilde{u}_L	684	674	665	639
\tilde{u}_R	665	659	650	628
\tilde{b}_1	620	613	605	589
\tilde{b}_2	657	652	643	624
\tilde{d}_L	689	679	670	644
\tilde{d}_R	658	653	644	622
$\tilde{\tau}_1$	278	271	271	270
$\tilde{\tau}_2$	235	229	229	228
$\tilde{\nu}_L$	274	266	266	265
$\tilde{\nu}_R$	243	238	238	237
ν_e	261	253	253	252
ν_τ	260	252	252	252
χ_1	201	190	190	189
χ_2	239	222	221	218
χ_3	399	419	414	399
χ_4	425	439	435	420
χ_1^\pm	237	220	219	215
χ_2^\pm	423	438	434	419
h	115	115	115	115
H	469	481	477	464
A	469	481	477	463
H^\pm	477	489	484	470

Table 10: Sparticle masses (in GeV) for the SPS6 point

3.8. Discussion

A clear feature of the results is that the corrections due to two and three-loop running can be quite large for squarks, but are typically smaller for weakly-interacting particles. In particular the light CP-even Higgs mass is very stable. The large three-loop α_3 corrections stem mainly from the M_3^2 contributions to the three-loop m^2 β-functions; note that for
the only MSUGRA point such that $m_0 > m_{\frac{1}{2}}$, i.e. SPS2, the three-loop correction to the squark masses is *smaller* than the two-loop one.

Generally speaking we would anticipate that for regions of parameter space where the three-loop corrections are comparable to or exceed the two-loop ones, the four-loop ones will be at least as large. This suggests that we are already at three loops approaching the asymptotic region for the β-functions. So it appears that squark mass predictions with an accuracy greater than a few per cent will not be possible using perturbation theory.

Overall our results agree reasonably well with those of existing programs [9]. One place where we have a significant difference is for the H, A, H^\pm results for SPS4. This is a large tan β point; however our results for the b-squark and d-squark masses (which one would expect to be sensitive to large tan β) agree quite well, so for the moment we have no explanation for this discrepancy.

4. The Semi-perturbative Region

The addition of additional matter representations in complete SU_5 multiplets does not affect gauge unification (and the unification scale) at one loop. Beyond one loop this is no longer the case, and increasing the amount of matter relevant to the running analysis requires the presumption of larger threshold corrections at the unification scale in order to restore gauge unification; one is thus forced to argue that the success of gauge unification in the MSSM is coincidental [3].

Historically gauge unification was implemented by using $\alpha_3(M_Z)$ as an input and computing $\sin^2 \theta_W$, although the latter was more accurately measured, because $\sin^2 \theta_W$ varies very slowly with $\alpha_3(M_Z)$, and conversely (of course) $\alpha_3(M_Z)$ varies rapidly as a function of $\sin^2 \theta_W$. The current experimental results for $\alpha_3(M_Z)$ already require us to suppose the existence of *some* high scale radiative corrections in the MSSM; but the fact remains that things get worse as we add more matter [13].
In Fig. 1 we show the evolution of the gauge couplings $\alpha_i = g_i^2/(4\pi)$ for $n_{10} = 1.7$, using three-loop β-functions for all couplings. (As remarked in Ref. [12], the mass scale of these additional multiplets being unknown it makes sense to parametrise their effects by taking n_5, n_{10} to be continuous variables.) The couplings are plotted against $\tau = \frac{1}{2\pi} \ln(Q/M_Z)$; evidently we are still in the perturbative regime. The input parameters at M_Z correspond to a typical supersymmetric mass spectrum; specifically, the Benchmark point SPS1a. One sees clearly the need for large corrections to restore gauge unification.

We gave a number of examples of the effect of additional matter on the sparticle spectrum predictions in a previous paper[13]; here we contrast the effect on the first and third generation squark masses. Thus in Fig 2 we plot, for the SPS5 point, the ratio of the \tilde{u}_L and gluino masses against n_{10} for $n_5 = 0$; as already noted in Ref. [12], the mass increases with n_{10}. It is interesting that the effect of the three-loop correction to this ratio almost precisely cancels the two-loop correction, for all n_{10}. We contrast this with Fig 3
where we show the behaviour of the light stop mass for the same SPS point; in this case the ratio decreases smoothly, and the three-loop correction only cancels the two-loop one at $n_{10} = 0$. For the SPS5 point the electroweak vacuum fails around $n_{10} = 0.48$. (The change in this value and in Fig. 3 from our previous paper [15] is due to the change in the input top pole mass, and to an improved treatment of the Higgs potential minimisation.)

In Fig. 4 we plot the light CP-even Higgs mass for SPS1a as a function of n_{10} (for $n_5 = 0$). We see that it is fairly stable both with respect to loop corrections and the addition of extra matter. In the case of SPS1a the electroweak vacuum fails at around $n_{10} = 1.8$.

![Graph of u_L/gluino mass ratio vs n_{10} for SPS5. Solid, dashed and dotted lines correspond to one, two and three-loop running respectively.](image)

Fig. 2: Plot of the u_L/gluino mass ratio against n_{10} for SPS5. Solid, dashed and dotted lines correspond to one, two and three-loop running respectively.
Fig.3: Plot of the light stop/gluino mass ratio against n_{10} for SPS5. Solid, dashed and dotted lines correspond to one, two and three-loop running respectively.

Fig.4: Plot of the light CP-even Higgs mass against n_{10} for SPS1a. Solid, dashed and dotted lines correspond to one, two and three-loop running respectively.
5. Conclusions

We have extended typical detailed running coupling analyses for the MSUGRA MSSM SPS benchmark points to incorporate three-loop β-function corrections for the running masses and couplings. We compare our results to those obtained by existing programs using two-loop running. The spread in the results from these programs is probably due to a mixture of program errors and genuine theoretical uncertainties such as the choice of scale appropriate for the evaluation of the pole mass. Presumably over time the results used by these programs will converge; we would argue that a more reliable estimate of the ultimate theoretical error in these spectrum calculations is currently provided by the difference between our two and three-loop calculations, as opposed to the spread in the various available two-loop results.

Generally speaking the effect of the three-loop running corrections is small for weakly-interacting particles but larger for the squark masses. For the light stop mass at the SPS5 point, we see an 8% effect, but more typically the effect is between 1% and 2%. This appears to us to represent a fundamental limit on the theoretical precision of squark mass theoretical predictions.

Finally we show how additional matter in SU_5 multiplets can affect the sparticle spectrum; more dramatically as the “semi-perturbative unification” regime [12] is approached.

Acknowledgements

DRTJ was supported by a PPARC Senior Fellowship, and a CERN Research Associate-ship, and was visiting CERN while most of this work was done. AK was supported by an Iranian Government Studentship. We thank Ben Allanach, Jon Bagger, Ruth Browne, John Gracey, Tilman Plehn and Graham Ross for conversations.
References

[1] I. Jack and D.R.T. Jones Phys. Lett. B415 (1997) 383
[2] I. Jack, D.R.T. Jones and A. Pickering, Phys. Lett. B432 (1997) 114
[3] L.V. Avdeev, D.I. Kazakov and I.N. Kondrashuk, Nucl. Phys. B510 (1998) 289
[4] I. Jack, D.R.T. Jones and C.G. North, Nucl. Phys. B473 (1996) 308
[5] I. Jack, D.R.T. Jones and C.G. North, Nucl. Phys. B486 (1997) 479
[6] P.M. Ferreira, I. Jack and D.R.T. Jones, Phys. Lett. B387 (1996) 80
[7] http//www.liv.ac.uk/~dij/betas
[8] B.C. Allanach et al., Eur. Phys. J. C 25 (2002) 113
[9] http://kraml.home.cern.ch/kraml/comparison
[10] B.C. Allanach, S. Kraml and W. Porod, JHEP 016 (2003) 0303
[11] N. Ghodbane and H.U. Martyn, hep-ph/0201233.
[12] C.F. Kolda and J. March-Russell, Phys. Rev. D 55 (1997) 4252
[13] D. Ghilencea, M. Lanzagorta and G.G. Ross, Phys. Lett. B415 (1997) 253 ; Nucl. Phys. B511 (1998) 3; G. Amelino-Camelia, D. Ghilencea and G.G. Ross, Nucl. Phys. B528 (1998) 35
[14] B. Brahmachari, U. Sarkar and K. Sridhar, Mod. Phys. Lett. A 8 (1993) 3349; R. Hempfling, Phys. Lett. B351 (1995) 206; K.S. Babu and J.C. Pati, Phys. Lett. B384 (1996) 140
[15] I. Jack, D.R.T. Jones and A.F. Kord, Phys. Lett. B579 (2004) 180
[16] I. Jack, D.R.T. Jones and R. Wild, Phys. Lett. B509 131 (2001)
[17] I. Jack, D.R.T Jones, S.P. Martin, M.T. Vaughn and Y. Yamada, Phys. Rev. D 50, 5481 (1994)
[18] D.R.T. Jones, Phys. Lett. B123 (1983) 45 ; V. Novikov et al, Nucl. Phys. B229 (1983) 381 ; V. Novikov et al, Phys. Lett. B166 (1986) 329 ; M. Shifman and A. Vainstein, Nucl. Phys. B277 (1986) 456
[19] I. Jack, D.R.T. Jones and A. Pickering, Phys. Lett. B432 (1998) 114
[20] W. Siegel, Phys. Lett. B84 (1979) 193; D.M. Capper, D.R.T. Jones and P. van Nieuwenhuizen, Nucl. Phys. B167 (1980) 479
[21] J.E. Björkman and D.R.T. Jones, Nucl. Phys. B259 (1985) 533
[22] D.I. Kazakov, hep-ph/0208200
[23] I. Jack and D.R.T. Jones, Phys. Lett. B473 (2000) 102; I. Jack, D.R.T. Jones and S. Parsons, Phys. Rev. D62 (2000) 125022; I. Jack and D.R.T. Jones, Phys. Rev. D63 (2001) 075010
[24] D.M. Pierce, J.A. Bagger, K.T. Matchev and R.J. Zhang, Nucl. Phys. B491 (1997) 3
[25] J.L. Feng, K.T. Matchev and T. Moroi, Phys. Rev. D61 (2000) 075005