Structure Peculiarities of Micro- and Nanocrystalline Perovskite Ferrites La$_{1-x}$Sm$_x$FeO$_3$

O. B. Pavlovska1, L. O. Vasylechko1*, I. V. Lutsyuk2, N. M. Koval3, Ya A. Zhydachevskii1,4 and A. Pieniżek4

Abstract

Micro- and nanocrystalline lanthanum-samarium ferrites La$_{1-x}$Sm$_x$FeO$_3$ with orthorhombic perovskite structure were obtained by using both solid state reactions ($x = 0.2, 0.4, 0.6$ and 0.8) and sol-gel synthesis ($x = 0.5$) techniques. Obtained structural parameters of both series of La$_{1-x}$Sm$_x$FeO$_3$ are in excellent agreement with the "pure" LaFeO$_3$ and SmFeO$_3$ compounds, thus proving formation of continuous solid solution in the LaFeO$_3$–SmFeO$_3$ system. Peculiarity of La$_{1-x}$Sm$_x$FeO$_3$ solid solution is divergence behaviour of unit cell dimensions with increasing x: systematic decrease of the a and c lattice parameters is accompanied with increasing b parameter. Such behaviour of the unit cell dimensions in La$_{1-x}$Sm$_x$FeO$_3$ series led to crossover of the a and c perovskite lattice parameters and formation of dimensionally tetragonal structure near $x = 0.04$. Linear decrease of the unit cell volume of La$_{1-x}$Sm$_x$FeO$_3$ with decreasing x according with the Vegard’s rule indicate absence of short-range ordering of R-cations in the LaFeO$_3$–SmFeO$_3$ system.

Keywords: Mixed rare earth ferrites, Perovskites, Crystal structure, Solid solution, Lattice crossover

Background

The interest in the rare earth ferrites RFeO$_3$ (R = rare earths) is stimulated by their unique properties, such as high electrical conductivity, specific magnetic properties including spin reorientation phenomena, as well as significant electrochemical and catalytic activity. RFeO$_3$-based materials are used as electrode materials in solid oxide fuel cells [1, 2], as membranes for gases separation, sensory materials and catalysts [3–6], and as magnetic and multiferroic materials [7–10].

Among RFeO$_3$ compounds, lanthanum and samarium orthoferrites are two of the most studied materials because of combination of several intrigue properties [10–13]. At the ambient conditions, both LaFeO$_3$ and SmFeO$_3$ display the orthorhombic perovskite structure isotypic with GdFeO$_3$ [14, 15]. In situ high-resolution X-ray synchrotron and neutron powder diffraction examination revealed no structural changes in SmFeO$_3$ in the temperature range of 300–1173 K [16], whereas LaFeO$_3$ undergoes the first-order orthorhombic-to-rhombohedral structural phase transition at 1253–1260 K [17–19]. Lattice expansion of LaFeO$_3$ and SmFeO$_3$ shows non-linear and strongly anisotropic thermal behaviour: in both compounds relative expansion in b-direction is much lower than in a- and c-directions [16, 18–20]. As a result, lattice parameter crossovers occur in LaFeO$_3$ at 750–950 K [18–20]. Subtle anomalies in the lattice expansion detected in LaFeO$_3$ and SmFeO$_3$ are associated with antiferromagnetic— to paramagnetic phase transition occurred in these compounds at 735 and 670 K, respectively [11, 12, 16, 21]. In LaFeO$_3$, such anomalies are reflected in non-linear lattice expansion across the magnetic phase transition at the Néel temperature 735 K [18] and in the step of dilatometric thermal expansion coefficient at 723 ± 50 K. In SmFeO$_3$, the b parameter exhibits a small anomalous kink around 670 K that is indicative for magnetoelastic coupling at the magnetic ordering temperature T_N [16]. Similar sign of magnetoelastic coupling was recently detected in the mixed ferrite system Sm$_x$FeO$_3$–PrFeO$_3$, in which subtle maxima at the thermal expansion curves were observed in Sm$_{0.5}$Pr$_{0.5}$FeO$_3$ at around 670 K [22].
The aim of the present work is synthesis of phase pure micro- and nanocrystalline powders of lanthanum-samarium orthoferrites La$_{1-x}$Sm$_x$FeO$_3$ and their detailed structural investigation in whole concentration range.

Methods

Micro- and nanocrystalline samples of the mixed lanthanum-samarium ferrites were prepared by two different experimental routes. Samples with nominal compositions La$_{1-x}$Sm$_x$FeO$_3$ ($x = 0.2, 0.4, 0.6$ and 0.8) were obtained by solid state reactions technique. Precursor oxides La$_2$O$_3$, Sm$_2$O$_3$ and Fe$_2$O$_3$ were ball-milled in ethanol for 5 h, dried, pressed into pellets and annealed in air at 1473 K for 4 h with one intermediate regrinding. The synthesis of La$_{1-x}$Sm$_x$FeO$_3$ can be presented by following reaction scheme:

$$(1-x)La_2O_3 + xSm_2O_3 + Fe_2O_3 \rightarrow 2La_{1-x}Sm_xFeO_3$$

For a preparation of nanocrystalline powders of nominal composition, La$_{0.5}$Sm$_{0.5}$FeO$_3$ sol-gel citrate method was used. Crystalline salts La(NO$_3$)$_3$·6H$_2$O (99.99%, Alfa Aesar), Sm(NO$_3$)$_3$·6H$_2$O (ACS, Alfa Aesar) and Fe(NO$_3$)$_3$·9H$_2$O (ACS, Alfa Aesar) and citric acid (CC) were dissolved in water and mixed in the molar ratio of n(La$^{3+}$):n(Sm$^{2+}$):n(Fe$^{3+}$):n(CC) = 1:0.5:0.5:4 according to the nominal composition of the sample. Prepared solution was gelled at ~90 °C and heat treated at 1073 K for 2 h. After X-ray diffraction (XRD) examination, the part of the powder was additionally annealed at 1173 K for 2 h and then at 1473 K for 4 h. Thus three La$_{0.5}$Sm$_{0.5}$FeO$_3$ specimens, synthesized at different conditions, were obtained.

X-ray phase and structural characterization of the samples were performed by using Huber imaging plate Guinier camera G670 (Cu $K_{α1}$ radiation, $\lambda = 1.54056$ Å). Spot-check examination of the cationic composition was performed by energy dispersive X-ray fluorescence (EDXRF) analysis by using XRF Analyzer Expert 3L. Based on the experimental powder diffraction data, the unit cell dimensions and positional and displacement parameters of atoms in the La$_{1-x}$Sm$_x$FeO$_3$ structures were derived by full profile Rietveld refinement technique using software package WinCSD [23]. This programme package was also used for the evaluation of microstructural parameters of La$_{0.5}$Sm$_{0.5}$FeO$_3$ powders from angular dependence of the Bragg’s maxima broadening. Average grain size, D_{ave} and microstrains $\langle \varepsilon \rangle = <\Delta d>/d$ were derived both by full profile Rietveld refinement and by using Williamson-Hall analysis, which allows to separate the effect of size and strain broadening due to their different dependence on the scattering angle. In both cases, LaB$_6$ external standard was used for the correction of instrumental broadening. The morphology of sol-gel derived La$_{0.5}$Sm$_{0.5}$FeO$_3$ samples synthesized at different conditions was investigated by means of Hitachi SU-70 scanning electron microscope.

Results and Discussion

X-ray phase and structural analysis revealed that all La$_{1-x}$Sm$_x$FeO$_3$ samples synthesized by solid state method at 1473 K for 40 h adopt orthorhombic perovskite structure isotopic with GdFeO$_3$. No additional crystalline phases were found. Full profile Rietveld refinement, performed in space group $Pnma$, shows excellent agreement between experimental and calculated diffraction patterns (Fig. 1) thus proving phase purity and crystal structure of the samples.

X-ray powder diffraction examination of sol-gel derived La$_{0.5}$Sm$_{0.5}$FeO$_3$ sample shows that even short-term heat treatment of the dried xerogel at 1073 K for 2 h led to formation of pure perovskite structure, without any traces of precursor components or other parasitic phases (Fig. 2). Substantial broadening of the diffraction maxima observed at the XRD pattern of La$_{0.5}$Sm$_{0.5}$FeO$_3$@1073 sample clearly indicates the nanoscale particle size of the as-obtained product.

Indeed, evaluation of microstructural parameters of the La$_{0.5}$Sm$_{0.5}$FeO$_3$@1073 sample from the analysis of the XRD profile broadening by full profile Rietveld technique lead to the average grain size $D_{\text{ave}} = 78$ nm and microstrains $\langle \varepsilon \rangle = <\Delta d>/d = 0.17\%$. Additional heat treatment of the sample at 1173 and 1473 K does not affects on the phase composition and crystal structure parameters of the sample; the main changes occurs in the microstructural parameters, as it is evidenced from the significant narrowing of the Bragg’s maxima, especially pronounced in La$_{0.5}$Sm$_{0.5}$FeO$_3$@1473 sample (Fig. 2). Evolution of the average grain sizes and microstrains in La$_{0.5}$Sm$_{0.5}$FeO$_3$ specimens vs synthesis temperature (Fig. 2, inset) clearly shows systematic increase of the average grain sizes, D_{ave} accompanied with simultaneous reducing of the lattice strains. The D_{ave} values increases weakly from 78 to 103 nm after additional annealing at 1173 K for 2 h, whereas further heat treatment of the sample at 1473 K for 4 h lead to the drastic increase of the crystallite size up to >2000 nm. Similar evolution of the microstructural parameters of La$_{0.5}$Sm$_{0.5}$FeO$_3$ was obtained from the Williamson-Hall analysis (Fig 3). No obvious selective hkl-dependent peak broadening was observed for the samples heat treated at different temperatures.

Scanning electronic microscopy of the pristine La$_{0.5}$Sm$_{0.5}$FeO$_3$, obtained at 1073 K, revealed sheets-like morphology of the powder consisting of the particles of irregular form with linear dimensions 200–500 nm (Fig. 4a). Taking into account that average grain size of La$_{0.5}$Sm$_{0.5}$FeO$_3$@1073 sample derived from XRD data is 51–73 nm, it is evident that the particles observed at SEM picture of the sample
consist of several smaller crystallites. SEM examination also confirms the temperature evolution of microstructural parameters of La$_{0.5}$Sm$_{0.5}$FeO$_3$, derived from the X-ray powder diffraction data. As it is evidenced from Fig. 4b, additional heat treatment of the La$_{0.5}$Sm$_{0.5}$FeO$_3$ sample at 1173 K for 2 h leads to the particle agglomeration and formation of 1–5 μm agglomerates, consisting of several submicron particles. Finally, further heat treatment of the sample at 1473 K for 4 h lead to coalescence of small grains and particles and formation of 10–50 μm crystallites with clear signs of the facet growth (Fig. 4c, d).

Refined values of unit cell dimensions and positional and displacement parameters of atoms for sol-gel-derived La$_{0.5}$Sm$_{0.5}$FeO$_3$ samples, heat treated at 1073 and 1473 K, as well as the La$_{1-x}$Sm$_x$FeO$_3$ specimens with $x = 0.2, 0.4, 0.6$ and 0.8, obtained by traditional ceramic technology are presented in Table 1.

Structural parameters of the mixed ferrites La$_{1-x}$Sm$_x$FeO$_3$ synthesized by different experimental techniques agree well with the parent LaFeO$_3$ and SmFeO$_3$ compounds [14, 15], as well as with the lattice parameters for Sm-doped LaFeO$_3$ recently reported [24]. An analysis of the concentration dependence of unit cell dimensions in La$_{1-x}$Sm$_x$FeO$_3$ series clearly proves the formation of continuous solid solution in the LaFeO$_3$–SmFeO$_3$ pseudo-binary system. The lattice parameters of La$_{1-x}$Sm$_x$FeO$_3$ change systematically between LaFeO$_3$ and SmFeO$_3$ showing divergence behaviour with increasing x: gradual decrease of the a- and c-parameters is accompanied with detectable increasing b parameter (Fig. 5).
Table 1 Lattice parameters, coordinates and displacement parameters of atoms in La\(_{1-x}\)Sm\(_x\)FeO\(_3\) structures

Atoms, sites	Parameters, residuals	\(x = 0.2\)	\(x = 0.4\)	\(x = 0.5^a, 1073\) K	\(x = 0.5^a, 1473\) K	\(x = 0.6\)	\(x = 0.8\)
\(a\), Å		5.5284(8)	5.4921(5)	5.477(1)	5.4750(3)	5.4618(3)	5.4319(9)
\(b\), Å		5.5694(8)	5.5795(5)	5.565(1)	5.5731(3)	5.5839(3)	5.5914(9)
\(c\), Å		7.833(1)	7.8000(7)	7.782(2)	7.7825(4)	7.7717(4)	7.742(2)
\(V\), \(Å^3\)		241.19(8)	238.86(7)	237.2(2)	237.46(4)	237.02(4)	235.1(2)
La/Sm, 4c	\(x\)	–0.0087(3)	–0.0096(3)	–0.0032(10)	–0.0095(3)	–0.0105(2)	–0.0105(4)
	\(y\)	0.0354(2)	0.0432(1)	0.0421(2)	0.0448(1)	0.0481(1)	0.0523(2)
	\(z\)	1/4	1/4	1/4	1/4	1/4	1/4
	\(B_{iso}, Å^2\)	0.53(2)	0.51(2)	0.68(3)	0.54(2)	0.71(2)	0.71(3)
Fe, 4b	\(x\)	0	0	0	0	0	0
	\(y\)	1/2	1/2	1/2	1/2	1/2	1/2
	\(z\)	0	0	0	0	0	0
	\(B_{iso}, Å^2\)	1.15(4)	1.27(4)	1.38(6)	0.81(4)	0.99(3)	0.89(6)
O1, 4c	\(x\)	0.051(3)	0.080(2)	0.080(3)	0.0820(15)	0.0943(12)	0.087(2)
	\(y\)	0.5028(13)	0.4703(14)	0.466(2)	0.4764(13)	0.4632(11)	0.468(2)
	\(z\)	1/4	1/4	1/4	1/4	1/4	1/4
	\(B_{iso}, Å^2\)	0.9(4)	2.4(3)	0.6(2)	2.4(2)	1.8(2)	0.5(3)
O2, 8d	\(x\)	–0.314(2)	–0.3047(12)	–0.315(2)	–0.2908(12)	–0.2837(9)	–0.3078(15)
	\(y\)	0.284(2)	0.2753(13)	0.274(2)	0.2865(12)	0.2863(9)	0.284(2)
	\(z\)	0.0392(15)	0.0475(9)	0.054(2)	0.0467(8)	0.0543(6)	0.0519(11)
	\(B_{iso}, Å^2\)	2.1(3)	1.5(2)	0.6(2)	1.5(2)	0.89(13)	0.6(3)
	\(R_{I}\)	0.071	0.056	0.104	0.046	0.053	0.089
	\(R_{P}\)	0.144	0.116	0.183	0.124	0.106	0.181

*Synthesized by sol-gel method
LaFeO₃ and SmFeO₃. In spite of both compounds belong to the same GdFeO₃-type of crystal structure (space group Pbnm), they show different order of the perovskite cell parameters: \(b_p > a_p > c_p \) for LaFeO₃ and \(b_p > c_p > a_p \) for SmFeO₃. Consequently, a crossover of \(a_p \)- and \(c_p \)-parameters and formation of dimensionally tetragonal structure occurs in La$_{1-x}$Sm$_x$FeO$_3$ series near \(x = 0.04 \) (Fig. 4). Similar phenomena of the lattice parameters crossover were earlier observed in the mixed cobaltite-ferrites PrCo$_{1-x}$FeO$_3$ and NdCoO$_1$-FeO$_3$ [25, 26], as well as in the related rare earth aluminates and gallates R$_1$-R$_2$AlO$_3$ and R$_1$-R$_2$GaO$_3$ [27–30], in which the end members of the systems show different relations of the lattice parameters. In spite of the observed peculiarities lattice parameters behaviour, the unit cell volume in La$_{1-x}$Sm$_x$FeO$_3$ series decreases almost linearly with decreasing \(R \)-cation radii according to the Vegard’s rule. This observation indicates statistical distribution of La and Sm species over positions of \(R \)-cations in La$_{1-x}$Sm$_x$FeO$_3$ perovskite lattice and absence of short-range ordering in LaFeO₃–SmFeO₃ system.

Conclusions

Single-phase micro- and nanocrystalline ferrites La$_{1-x}$Sm$_x$FeO$_3$ with orthorhombic perovskite structure were prepared by solid state reactions (\(x = 0.2, 0.4, 0.6 \) and 0.8) and sol-gel citrate route (\(x = 0.5 \)). The lattice parameters and coordinates and displacement parameters of atoms in La$_{1-x}$Sm$_x$FeO$_3$ structures, as well as microstructural parameters of La$_{0.5}$Sm$_{0.5}$FeO$_3$ nanopolycrystals were derived from X-ray powder diffraction data by full profile Rietveld refinement technique. Obtained structural parameters of both solid state and sol-gel synthesized ferrites La$_{1-x}$Sm$_x$FeO$_3$ agree well and prove the formation of continuous solid solution in LaFeO₃–SmFeO₃ pseudo-binary system. Peculiarity of La$_{1-x}$Sm$_x$FeO$_3$ solid solution is divergence behaviour of unit cell dimensions with increasing samarium content and crossover of the \(a \) and \(c \) perovskite lattice parameters near \(x = 0.04 \). In comparison with a traditional energy- and time-consuming high-temperature ceramic technique, the low-temperature sol-gel citrate method is very promising tool for a synthesis of fine powders of the mixed perovskite oxide materials, free of contamination of parasitic phases.

Acknowledgements

The work was supported in parts by the Ukrainian Ministry of Education and Sciences (Project “R2E”), ICD TIGR-in-Aid program and by the Polish National Science Center (Project 2015/17/B/ST5/01658).

Authors’ Contributions

OP synthesized the samples by solid state reactions technique, contributed to the data evaluation and wrote the manuscript. LV performed the laboratory X-ray powder diffraction measurements, made the structural characterization of the samples and contributed to the manuscript writing. IL performed the sol-gel synthesis of the samples. NK performed the examination of the cationic composition of the samples by energy dispersive X-ray fluorescence (EDXRF) analysis. YZ and AP performed the scanning electron microscopy measurements and contributed to the manuscript writing. All authors read and approved the final manuscript.

Competing Interests

The authors declare that they have no competing interests.

Author details

1. Semiconductor Electronics Department of Lviv Polytechnic National University, 12 Bandera Street, 79013 Lviv, Ukraine.
2. Department of Chemical Technology of Silicates of Lviv Polytechnic National University, 12 Bandera Street, 79013 Lviv, Ukraine.
3. Department of Ecological Safety and Nature Protection Activity of Lviv Polytechnic National University, 12 Bandera Street, 79013 Lviv, Ukraine.
4. Institute of Physics, Polish Academy of Sciences, Al. Lotnikówn 32/46, 02-668 Warsaw, Poland.

Received: 25 January 2017 Accepted: 22 February 2017

References

1. Sun C, Hui R, Roller J (2010) Cathode materials for solid oxide fuel cells: a review. J Solid State Electrochem 14:1125–1144
2. Bäkhar SM, Giorgi JB (2012) Chemically stable and coke resistant Sm$_{1-x}$Ce$_x$FeO$_{3-δ}$ perovskites for low temperature solid oxide fuel cell anode applications. J Power Sources 198:51–58
3. Itagaki Y, Mori M, Hosoya Y, Aono H, Sadaoka Y (2007) O$_3$ and NO$_2$ sensing properties of SmFe$_{1-x}$Co$_x$O$_3$ perovskite oxides. Sens Actuator B 12:315–320
4. Goldwasser MR, Rivas ME, Lugo ML, Pietri E, Perez-Zurita J, Cubeiro ML et al (2005) Combined methane reforming in presence of CO$_2$ and O$_2$ over La$_{1-x}$Co$_x$O$_3$ mixed-oxide perovskites as catalysts precursors. Catal Today 107–108:106–113
5. Wang Y, Yang X, Lu L, Wang X (2006) Experimental study on preparation of La$_{0.5}$Mn$_{0.5}$Fe$_2$O$_4$ Ni nanocrystals and their catalytic activity. J Catalytic Acta 443:225–230
6. Ding J, Liu X, Shu H, Xie J, Zhang H (2010) Microwave-assisted synthesis of SmFeO$_3$ and La$_{1-x}$Sm$_x$FeO$_3$ by solid state reactions technique. J Mater Sci Eng B 171:31–34
