Pattern formation and phase transition in the collective dynamics of a binary mixture of polar self-propelled particles

Sagarika Adhikary and S. B. Santra

Department of Physics, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.

The collective behavior of a binary mixture of polar self-propelled particles (SPPs) with different motile properties is studied. The binary mixture consists of slow-moving SPPs (sSPPs) of fixed velocity \(v_s \) and fast-moving SPPs (fSPPs) of fixed velocity \(v_f \). These SPPs interact via a short-range interaction irrespective of their types. They move following certain position and velocity update rules similar to the Vicsek model (VM) under the influence of an external noise \(\eta \). The system is studied at different values of \(v_f \) keeping \(v_s = 0.01 \) constant for a fixed density \(\rho = 0.5 \). Different phase-separated collective patterns that appear in the system over a wide range of noise \(\eta \) are characterized. The fSPPs and the sSPPs are found to be orientationally phase-synchronized at the steady-state. We studied an orientational order-disorder transition varying the angular noise \(\eta \) and identified the critical noise \(\eta_c \) for different \(v_f \). Interestingly, both the species exhibit continuous transition for \(v_f < 100v_s \), and discontinuous transition for \(v_f > 100v_s \). A new set of critical exponents is determined for the continuous transitions. However, the binary model is found to be non-universal as the values of the critical exponents depend on the velocity. The effect of interaction radius on the system behavior is also studied.

I. INTRODUCTION

Collective pattern formation and self-organization of active or self-propelled particles (SPPs) spontaneously occur in nature at different length scales. For example, actin filaments can form different structures as micro-clusters, stripes, and traveling waves [1, 2], bacterial swarms growing in the laboratory can self-organize into high-density coherent patterns [3–7]; other examples include army ants [8], insect swarms [9, 10], spiny lobsters [11, 12], fish schools [13], flocking birds [14, 15], pedestrian flow [16, 17], artificial systems of SPPs [18, 19]. The collective behavior of polar SPPs is extensively studied following the seminal Vicsek Model (VM) [20]. In this model, a large number of polar SPPs move together with equal speed \(v_0 \), and they align their direction of motion with their neighbors through a short-range (R) alignment interaction. However, the average direction is subject to an angular noise (\(\eta \)). For a given density (\(\rho_0 \)), an orientational order-disorder transition occurs at a critical noise (\(\eta_c \)). Initially, the nature of this phase transition in the VM was found to be continuous for low velocity on small system sizes [21, 22]. However, later it is established through extensive simulations that there exists a crossover system size \(L^* (\rho_0, v_0) \) [23, 24] below which the nature of the transition is continuous, and above which it is discontinuous where dense traveling bands appear in the system. It needs to be noted that \(L^* (\rho_0, v_0) \) diverges both for low velocities (\(v_0 < 0.05 \)) and low densities (\(\rho_0 < 0.01 \)) [23]. The formation of the dense traveling band near the transition region is fluctuation-driven and occurs due to the feedback mechanism between local order and local density [22].

One of the major limitations of the VM is that all the polar SPPs have the same motile property. For example, all the SPPs have the same velocity. However, in natural systems, the velocities of particles need not be the same during collective motion. For example, there are fast-moving (active) and slow-moving (dormant) bacteria in a bacterial population or slow-moving and speedy vehicles in daily traffic. Phase-separation and static clusters were mainly observed in the study of collective dynamics of SPPs with variable speed (depending on the neighborhood’s polarization) [21, 27]. Apart from velocity, other properties of active particles are also varied to study the phase separation in different systems [28, 29]. Examples of such systems include: a mixture of active Brownian particles with different diffusion constant [30, 31], a mixture of active and passive particles [32, 33], binary active particles with different alignment interactions [34], an oppositely driven binary mixture of particles [35, 36], chiral active matter [37, 38], a mixture of polar and apolar SPPs [39] and many others.

However, the study of collective dynamics in a binary mixture of polar SPPs with different motile properties is a new area of research. This paper studies the collective dynamics of a mixture of two types of SPPs with widely different fixed velocities. The SPPs interact with local short-range interaction, and the dynamics evolve under an external noise. It is intriguing to observe whether self-organized pattern formation and phase separation occur in this binary model (BM) with a short-range interaction only. Furthermore, will there be any criticality in the system? Will the system undergo any order-disorder transition at a critical point? What would be the nature of such transition? In this study, we explore answers to all these questions. The collective dynamics and the underlying mechanism could also explain the similar pattern formation and dynamical behavior observed in other systems. In the next section, we present the model and discuss the results obtained. Herein, polar SPPs will be referred to simply as SPPs.
FIG. 1: The distribution of binary SPPs is shown on a system of size $L = 10$, where $N = \rho L^2 = 50$, $N_f = N_s = 25$. Orange and maroon colors represent fSPPs and sSPPs, respectively. The arrow associated with an SPP indicates the direction of velocity. An fSPP at the center of the circle-1 interacts with both the fSPP and sSPP present within the radius of R. Similarly, an sSPP at the center of the circle-2 interacts with both types of SPPs present within the radius R.

II. MODEL

The collective motion of a mixture of SPPs with two different motilities is modeled over a two-dimensional square box of linear size L. The different motilities of SPPs are modeled, assigning widely different fixed velocities to them. The fast-moving SPPs (fSPPs) move with a velocity v_f and the slow-moving SPPs (sSPPs) move with a velocity v_s where $v_f \gg v_s$. The two types of SPPs are taken in equal proportion. If N_f is the number of fSPPs, and N_s is the number of sSPPs, then $N_f = N_s = N/2$ where N is the total number of SPPs in the system. Initially, the position $\vec{r}_{p,i}$, $i = 1, 2, 3, \cdots, N/2$ of all the SPPs are randomly distributed over the space (off-lattice) where $p \in \{s, f\}$. The initial orientation θ_i of an SPP is randomly selected in the range $-\pi$ to π, irrespective of their type. The SPPs of both types interact within a local neighborhood $R = 1$ and determine their average orientation. There is no external force or inter-particle repulsion. Both inter-particle and intra-particle interactions are considered in estimating the average orientation. The distribution of randomly oriented 25 SPPs (in orange) and 25 sSPPs (in maroon) are shown in Fig. 1. Longer and shorter arrows show the velocities v_f and v_s, respectively.

The time evolution of the orientation θ_i of the ith SPP is determined by

$$\theta_i(t + \Delta t) = \langle \theta(t) \rangle_R + \Delta \theta$$

where $\Delta \theta$ is a random orientation chosen with a uniform probability from the interval $[-\eta\pi, +\eta\pi]$. The strength of the angular noise η varies from 0 to 1. The term $\langle \cdots \rangle_R$ is defined as

$$\langle \theta(t) \rangle_R = \arctan \left(\frac{\sin \theta}{\cos \theta} \right);$$

$$\langle \sin \theta \rangle = \frac{1}{n} \sum_{j \in \{R\}} \sin \theta_j; \quad \langle \cos \theta \rangle = \frac{1}{n} \sum_{j \in \{R\}} \cos \theta_j$$

where n is the number of SPPs in the neighbourhood region R that includes both the sSPPs and fSPPs. It should be noted that the magnitude of velocity of individual SPPs are ignored and only the orientations are taken into account in estimating $\langle \theta(t) \rangle_R$. After averaging, an SPP of type-p ($p \in \{s, f\}$) at the position $\vec{r}_{p,i}$ is thus moving with a speed v_p in the direction θ_i. Knowing the velocity $\vec{v}_{p,i}(t)$ at every time step, the position of the ith SPP $\vec{r}_{p,i}$ is updated following the forward update rule

$$\vec{r}_{p,i}(t + \Delta t) = \vec{r}_{p,i}(t) + \vec{v}_{p,i}(t)\Delta t$$

where Δt is the time between two successive updates, and it is chosen as $\Delta t = 1$. Periodic boundary conditions (PBCs) in the horizontal and vertical directions are applied in case the position vector crosses the boundary of the square box. Eq. (1) and Eq. (2) are then evolved with time and a steady state is achieved for a given noise η. The model is studied varying η over a wide range. The interaction considered in this model is purely aligning in nature and no steri or hydrodynamic interactions present in the system. In a special situation if $v_s = v_f = v_0$, the BM is equivalent to the VM with velocity v_0 for all SPPs.

For a given initial random distribution of SPPs over a square box of size L, Monte Carlo simulations are performed to study the time evolution of the binary system following Eq. (1) and Eq. (2). One Monte Carlo time step corresponds to incrementing the position and orientation of all the SPPs. The initial 7×10^5 Monte Carlo steps are neglected to achieve the steady-state. An ensemble of size 48×10^5 is taken for statistical averages (2×10^5 samples at different times for 24 different initial configurations). Simulations are performed at different velocities: keeping $v_s = 0.01$ fixed, the value of v_f is taken as $v_f = 30v_s$, $v_f = 50v_s$, $v_f = 100v_s$ and $v_f = 150v_s$. The density of SPPs is kept fixed as $\rho = 0.5$ for all simulations. Thus, the total number of SPPs is $N = \rho L^2$. The number of sSPPs (N_s) and fSPPs (N_f) are taken in equal proportions, i.e.: $N_f = N_s = N/2$.

III. COLLECTIVE PATTERNS AND ITS CHARACTERIZATION

In this section, we will describe the morphological as well as structural changes of flocks of SPPs with noise. A flock is a collection of SPPs who are within the range of interaction R from each other. For this study, we consider the velocity of sSPPs as $v_s = 0.01$ and that of fSPPs as $v_f = 30v_s$. The morphology of the binary mixture at different noises is generated on a system of size $L = 128$ (total number of SPPs $N = 8192$, $N_f = N_s = 4096$).
The morphology is shown in Fig. 2 where the orange color represents the fSPPs, and the maroon color represents the sSPPs. A variety of patterns of the flocks of sSPPs and fSPPs appear as the angular noise η varies.

For a low angular noise $\eta = 0.01$, the flocks of fSPPs are in the form of clusters and moving in a particular direction (indicated by an orange arrow). On the other hand, the flocks of sSPPs form narrow lanes in the same direction (indicated by a maroon arrow) as that of fSPPs. The situation is shown in Fig. 2(a). It seems that in the binary system of SPPs, the dynamics of sSPPs is governed by the local shear between two SPPs. Since the sSPPs are slow movers, many fSPPs interact with them at a given time. Moreover, at each time step, the fSPPs travel a much larger distance than the sSPPs, and consequently, they influence the ordering of the distant flocks of fSPPs as well as that of sSPPs. For a given initial configuration, the direction of motion of directed clusters (DS) of fSPPs or directed lanes (DL) of sSPPs, is spontaneously selected toward an arbitrary direction. Such lane formation was not observed in the VM with monodispersed SPPs. However, the formations of lanes and clumps were also observed in a model of SPPs with density-dependent motility [42]. Phase-separated bands of big and small particles oriented along the direction of the flow are also observed in a bidisperse granular system under shear flow [44].

As η is increased to 0.15, DSs of fSPPs look a little scattered, whereas the sSPPs’ form clumps (or compact clusters) that still move in the same direction as DSs as shown in Fig. 2(b). The orientation of the clumps of sSPPs remains synchronized with that of the DS of fSPPs. We call these clumps of sSPPs, directed clumps (DC). Further increase of noise to $\eta = 0.24$ induces random motion to the flocks of both fSPPs and sSPPs, shown in Fig. 2(c). We call the randomly moving clusters of fSPPs by random clusters (RS) and the randomly moving clumps of the sSPPs by random clumps (RC). Thus, the orientationally ordered phase with DS and DC goes to an orientationally disordered phase with RS and RC as the noise changes from $\eta = 0.15$ to $\eta = 0.24$. The critical behavior of such a transition will be described in Section IV. As η is increased to 0.45, RS and RC are found to dissolve into a larger number of micro-clusters (MS) of fSPPs and micro-clumps (MC) of sSPPs, respectively, as shown in Fig. 2(d). For relatively high η, a homogeneous gas-like mixture (HGM) of both types of SPPs is observed as shown in Fig. 2(e) for $\eta = 0.70$.

Similar patterns also appear in the cases of higher values of v_f keeping $v_s = 0.01$. Now we characterize the patterns considering a system of size $L = 256$ with $\rho = 0.5$. Thus, the total number of SPPs $N = 32768$, and the numbers of fSPPs and sSPPs are $N_f = N_s = 16384$.

A. Phase segregation

It is observed that the system remains phase-separated over a wide range of noise η. The system is found to be phase-separated, which means the sSPPs and fSPPs can be identified separately in space. A segregation coefficient [41, 45] is defined as

$$\frac{1}{N} \sum_{j=1}^{Q} \left| n_f^{(j)} - n_s^{(j)} \right|$$

(3)

where $\sum_{j=1}^{Q} \{ n_f^{(j)} + n_s^{(j)} \} = N$, the total number of SPPs, Q is the number of small square boxes of size $\ell \times \ell$ that cover the whole system of size $L \times L$, n_f and n_s are the number of the fSPPs and sSPPs, respectively, in a small box. We have estimated S for a wide range of η taking $\ell = 8$. Thus, $Q = L^2/\ell^2 = 1024$. As per Eq. 8 if every box is filled with either fSPPs or sSPPs (phase-separated), then $S = 1$ and if every box is filled with both fSPPs and sSPPs in equal proportion (homogeneous phase), then $S = 0$. Whereas $S = 1/2$ corresponds to the situation that, on an average, $\Delta n = \left| n_f^{(j)} - n_s^{(j)} \right| \approx 16$ in every box. We consider the system to be phase-separated if $S \geq 1/2$ and mixed if $S < 1/2$. The variation of S with η is shown in Fig. 3. It can be seen that the system remains phase-separated up to a very high noise $\eta \approx 0.36$. The value of S is greater than 0.8 for $\eta < 0.04$ at which the phase-separated DL and DS appear. The process of phase separation continues, and the system is found to be highly phase separated with $S \approx 0.9$ in the noise.
range $0.04 < \eta < 0.09$. Such a phase separation between the two species is due to the large velocity difference and the presence of noise in the system. For $\eta > 0.09$, S decreases monotonically with increasing η. This indicates a slow mixing of the two species of SPPs at high noise. Eventually, at $\eta \approx 0.70$, the phase separation disappears $S \approx 0.15$, and the two species of SPPs mix uniformly. Phase separation was also reported in a binary mixture of active Brownian particles with wide differences in the diffusion constant [30].

B. Characterization of patterns

To monitor the structural change in the patterns of the flocks, we have estimated the size (M_p) and extension (ξ_p) of the largest flock, and the number of flocks $N_{c,p}$, ($p \in \{s, f\}$) with noise η on a system of size $L = 256$. The largest flock size of p-type SPPs is given by the number of pSPPs that belong to the largest flock of that type, and the extension of a flock is just the gyration radius. To measure how the flocks of SPPs are ordered, we have estimated the full-width at half maxima σ_p of the orientation distribution $P(\theta)$ where σ_p can vary from 0 to 2π. Thus, σ_p represents the orderliness of the flocks, $\sigma_p = 0$ means they are highly ordered (moving in a particular direction), and $\sigma_p = 2\pi$ means they are completely disordered (moving in all possible directions). The variations of M_p, ξ_p, $N_{c,p}$ and σ_p against η are shown in Fig.4.

For $\eta = 0.01$, the sSPPs have the largest flock of size $M_s \approx 8000$, extension $\xi_s \approx 150$ (half of the system size) and number of flocks $N_{c,s} \approx 50$. Whereas, the fSPPs have the largest flock of size $M_f \approx 1300$ (out of $N_f = 16384$), extension $\xi_f \approx 15$ and number of flocks $N_{c,f} \approx 500$. At this noise, the flock structure of sSPPs (DL) seems to be more compact in comparison to the DS of fSPPs. It should be noted that such a dense packing of slow-moving particles occurred in the absence of an attractive force. This has happened only due to the presence of small noise and high-velocity differences between the two types. The flocks are highly ordered, $\sigma_s = \sigma_f \approx \pi/15$.

As η is increased to 0.06, a drastic change happened to the flock structure of sSPPs. The largest flock size of sSPPs is $M_s \approx 2500$, the extension is $\xi_s = 12$, and the number of flocks is $N_{c,s} \approx 70$. For fSPPs, the largest flock size is $M_f \approx 500$, the extension is $\xi_f \approx 10$ and number of flocks is $N_{c,f} \approx 1700$. The change in the system of fSPPs is remarkable in comparison to that of SPPs. It seems there is a noise-induced melting transition happening in the system. However, it needs to be characterized carefully with further studies. The orderliness of the flocks are $\sigma_s = \sigma_f \approx \pi/6$.

On further increase of η to 0.12–0.16, both sSPPs and fSPPs rebuild their largest flocks. For SPPs at $\eta = 0.12$, the largest flock size is $M_s \approx 3400$, the extension is $\xi_s \approx 12$. The number of flocks has increased to $N_{c,s} \approx 160$. The orderliness $\sigma_s \approx \pi/3$. For fSPPs at $\eta = 0.16$, the largest flock size is $M_f \approx 800$, the extension is $\xi_f \approx 12$. The number of flocks has increased to $N_{c,f} \approx 3000$. The orderliness $\sigma_f \approx \pi/2$. In the intermediate range of η, it is observed that $\sigma_f > \sigma_s$. Once again it should be noted that the aggregation of flocks is happening in absence of any attractive force. The orientation distribution $P(\theta)$ for both the SPPs are given in the inset of Fig.4(d) for $\eta = 0.16$.

The above properties are found to decrease monotonically with increasing η beyond 0.16. These parameters remain ineffective in determining the orientational order-disorder transition that occur at $\eta \approx 0.19$. However, near to the transition point ($\eta = 0.20$) the largest flock sizes are $M_s \approx 2000$, $M_f \approx 400$ and the extensions are $\xi_s \approx 9$, $\xi_f \approx 7$. The number of flocks are $N_{c,s} \approx 350$, $N_{c,f} \approx 4000$. Both the orderliness σ_s and σ_f are close to
function is measured by the velocity time auto-correlation number sSPPs and fSPPs are could be destroyed, as seen in the case of \(\eta = 0.24 \) and reducing the noise, \(g(r) \) increases as it is seen in the case of \(\eta = 0.15 \). It is important to notice that even though the interaction is short-ranged, the correlation extends up to system size.

It can be seen in Fig.5(b) that the auto-correlation \(C(t) \) is very high over a long time \(t \), irrespective of \(\eta \). The critical \(C(t) \) sustains for a long time \(t > 10^4 \). The \(C(t) \) at \(\eta_c \) is always less than \(C(t) \) for the DS+DC phase, and it is always greater than \(C(t) \) for the RS+RC as expected. The \(C(t) \) for \(\eta = 0.24 \) goes to zero at \(t = 10^4 \) whereas for \(\eta = 0.15 \), it is \(0.56 \) at \(t = 10^4 \) continues to be high beyond this \(t \). It seems that once dense flocks are formed in the system, they stay for a long time, and a strong correlation exists in the ordered phase, whereas the flocks in the disordered phase seem to be less stable due to the randomness among the SPPs.

C. Velocity correlations

The spatial correlation is measured by the two-point velocity correlation function \(g(r) \) and the temporal correlation is measured by the velocity time auto-correlation function \(C(t) \). Following Ref. [44], they are given by

\[
g(r) = \left\langle \frac{\vec{v}_i(0) \cdot \vec{v}_j(r)}{|\vec{v}_i(0)| |\vec{v}_j(r)|} \right\rangle, \quad C(t) = \left\langle \frac{\vec{v}_i(0) \cdot \vec{v}_i(t)}{|\vec{v}_i(0)| |\vec{v}_i(t)|} \right\rangle \tag{4}
\]

where \(i \) and \(j \) are particle indices, \(r \) is the time interval, \(r \) is distance between \(i \) and \(j \) and \(\langle \cdots \rangle \) stands for an ensemble average over \(1000 \) configurations. The values of \(g(r) \) versus \(r \) and \(C(t) \) versus \(t \) are estimated for three different noise values around the critical point as \(\eta = 0.15, 0.19 (\eta_c) \) and 0.24. The \(g(r) \) and \(C(t) \) values are plotted in Fig6(a) and (b) against \(r \) and \(t \) respectively in semi-logarithmic scale. The critical correlations \(g(r) \) or \(C(t) \) at \(\eta_c = 0.19 \) curves are in red, the brown curves represent the \(g(r) \) or \(C(t) \) in the ordered (DS+DC) phase and the green curves represent the \(g(r) \) or \(C(t) \) in the disordered (RS+RC) phase.

It can be seen from Fig6(a), the correlation \(g(r) \) decays faster for \(r > 10 \). In this region, the extension of the flocks (\(\xi_p \)), is found to be of the order of \(\xi_f, \xi_s \approx 10 \). As a result, the velocity orientation is correlated among the SPPs present in the same flock, and the correlation is found to be strong for \(r < 10 \). In the sub-critical regime (\(\eta < 0.19 \), shown in brown), a strong correlation \(g(r) > 0.5 \) sustains all over the system. Whereas, in the upper critical regime (\(\eta > 0.19 \), shown in green), the correlation decays very fast and goes to zero at \(r \approx 50 \). However, the critical correlation \(g(r) \) (\(\eta_c = 0.19 \)) sustains with a smaller value \(g(r) \approx 0.15 \) up to a distance of the order of system size. It is expected that, at the criticality, the correlation length should be of the order of system size. With a small increase in noise, such correlation could be destroyed, as seen in the case of \(\eta = 0.24 \), and

\[
\xi = 10 \quad \eta = 0.15 \Rightarrow N_{\text{c,}\text{f}} = N_{\text{c,}\text{s}} = 10000; \quad N_{\text{f},\text{f}} = N_{\text{f},\text{s}} = 16384. \quad \text{The orderliness of both the species is the lowest, } \sigma_f = \sigma_s = 2\pi.
\]

IV. PHASE TRANSITION

As the angular noise \(\eta \) varies, the system undergoes a transition from an orientational ordered state to an orientational disordered state. In this model, such a transition occurs when the DS+DC phase (Fig2(b)) changes to the RS+RC phase (Fig2(c)) around the critical noise \(\eta = \eta_c \). The order parameter of the transition is defined as

\[
\phi(\eta, L) = \sum_{p=f, s} \phi_p(\eta, L), \quad \phi_p(\eta, L) = \frac{1}{N_p} \sum_{i=1}^{N_p} |\vec{v}_{p,i}(t)|^4 \tag{5}
\]

where \(\phi \) represents the total order-parameter, \(\phi_p \) \((p \in \{s, f\})\) is the partial order-parameter and \(N_p \) is the number of \(p \)-type SPPs. The susceptibility \(\chi \) for the whole system and that of the partial systems \(\chi_p \) can be estimated from the fluctuation in their respective order parameters \(\phi \) and \(\phi_p \), as

\[
\chi = \chi_{\phi} + \chi_{\phi_p} = \chi_{\phi} + \chi_{\phi_p} = \frac{L^2}{\beta} \left[\langle \phi^2 \rangle - \langle \phi \rangle^2 \right] \tag{6}
\]

where \(\phi_p = \int \phi_p P(\phi) d\phi, \langle \phi_n \rangle = \int \phi_p P(\phi_p) d\phi_p, P(\phi) \text{ and } P(\phi_p) \) are the distribution functions of \(\phi \) and \(\phi_p \) respectively. Similarly, the fourth order Binder cumulant for the whole system and that of the partial systems are defined as

\[
U = 1 - \frac{\langle \phi^4 \rangle}{3 \langle \phi^2 \rangle^2}, \quad U_p = 1 - \frac{\langle \phi_p^4 \rangle}{3 \langle \phi_p^2 \rangle^2} \tag{7}
\]

where the higher order averages are obtained following the definitions of \(\langle \phi^4 \rangle \) and \(\langle \phi_p^4 \rangle \) given above.

If the orientational order-disorder transition is continuous, the finite size scaling (FSS) relations of the above parameters can be given following the equilibrium thermal critical phenomena [47, 48], as

\[
\phi(\eta, L) = L^{-\beta/\nu} \phi_0(\eta - \eta_c)^{\nu}, \quad L \to \infty \tag{8}
\]

where \(\epsilon = (\eta - \eta_c)/\eta_c \) the reduced noise, \(\beta \) is the order parameter exponent, \(\nu \) is the correlation length exponent and \(\phi_0 \) is a scaling function. At the criticality

![Fig.5: \(\eta_f = 30v_s, \eta_s = 0.01 \): (a) Plot of \(g(r) \) against \(r \). (b) Plot of \(C(t) \) against \(t \). System size is \(L = 256 \).](image-url)
\[\eta = \eta_c, \phi(\eta_c, L) \sim L^{-\beta/\nu}. \] The order parameter distribution \(P_L(\phi) \) for a given system of size \(L \) is defined as
\[P_L(\phi) = L^{\beta/\nu} \bar{P}_L = \frac{\phi L^{\beta/\nu}}{P(\phi)} \]
where \(\bar{P}_L \) is a scaling function. At the criticality, the distribution \(P_L(\phi) \) is unimodal for a continuous transition. The FSS form of the susceptibility is given by
\[\chi(\eta, L) = L^{\gamma/\nu} \chi_0(\epsilon L^{1/\nu}) \]
where \(\chi_0 \) is a scaling function, \(\gamma/\nu = d-2\beta/\nu \) and \(d=2 \) is the space-dimension. At \(\eta = \eta_c, \chi(\eta_c, L) \sim L^{\gamma/\nu} \). The FSS form of the fourth order Binder cumulant is given by
\[U(\eta, L) = U_0(\epsilon L^{1/\nu}) \]
where \(U_0 \) is a scaling function. The derivative of \(U(\eta, L) \) with respect to \(\eta \) follows a scaling relation \(49 \),
\[U'(\eta, L) = L^{1/\nu} \frac{U_0' \epsilon L^{1/\nu}}{\eta_c} \]
where the primes on \(U \) and \(U_0 \) denote their derivatives with respect to \(\eta \). For a continuous transition, the cumulant \(U \) always remain positive. At \(\eta = \eta_c \), the cumulants of different systems of size \(L \) become independent of \(L \) and \(U'(\eta_c, L) \sim L^{1/\nu} \) at the transition.

In case the orientational order-disorder transition is discontinuous, the order parameter exponent \(\beta \) should go to zero. As a consequence, the susceptibility should then scale as \(\chi \sim L^d \), where \(d \) is the space dimension. The Binder cumulant \(U \) would exhibit a sharp fall towards a negative value at the transition point. As the system exhibits the coexistence of two phases, the order parameter distribution \(P(\phi) \) would be a bimodal distribution.

Below we discuss results of three different velocity scenarios. Keeping \(v_s = 0.01 \) fixed, \(v_f = 30v_s \); \(v_f = 50v_s \); and \(v_f = 150v_s \) are taken. In all three scenarios, we study variations of order parameter \(\phi \), Binder cumulant \(U \), susceptibility \(\chi \), and order parameter distribution \(P(\phi) \) as a function of the angular noise \(\eta \) on systems of different sizes \(L \) and we discuss the results together in the discussion section.

A. Velocities: \(v_f = 30v_s \) and \(v_s = 0.01 \)

In Fig. 6 we present data for \(\phi \), \(U \), \(\chi \) and \(P(\phi) \) for \(v_f = 30v_s \) on a system of size \(L = 256 \). The values of \(\phi \) and \(\phi_p \) decrease continuously and smoothly from a positive value to zero as \(\eta \) increases. The derivatives of \(\phi \) and \(\phi_p \) with respect to \(\eta \) are plotted in the inset of Fig. 6(a). A minimum or dip at \(\eta \approx 0.19 \) is observed in the derivatives. This is the critical noise \(\eta_c = 0.19 \) at which the systems undergo a phase transition. It is evident from the configurations given in Fig. 6(b) and (c) that the system is going from an ordered phase DS+DC to a disordered phase RS+RC around \(\eta_c \approx 0.19 \). The fluctuations in order parameters \(\chi \) and \(\chi_p \) are plotted against \(\eta \) in Fig. 6(b) for \(L = 256 \). All the fluctuations diverge at \(\eta_c \approx 0.19 \). The order parameter fluctuation of the sSPPs at \(\eta_c \) is much higher than that of the ISPPs. It is similar to the observations in the VM with monodispersed SPPs.

The Binder cumulants, \(U \) and \(U_p \) are plotted against \(\eta \) in Fig. 6(c) for \(L = 256 \). It can be seen that the values of \(U \), \(U_f \), and \(U_s \) are all positive over the whole range of \(\eta \). The distributions of order parameters \(P(\phi) \) and \(P(\phi_p) \) obtained at \(\eta = \eta_c \) are presented in Fig. 6(d). All three distributions are found to be unimodal. The positive value of the Binder cumulant and unimodal distribution of \(\phi \) indicates a continuous transition.

The critical exponents are extracted for the whole system with \(v_f = 30v_s \) performing FSS analysis. Binder cumulant \(U \), order parameter \(\phi \) and susceptibility \(\chi \) are plotted against the angular noise \(\eta \) for three different systems of sizes \(L = 64, 128 \) and 256 in Fig. 6(a), (b) and (c) respectively. The plots of \(U \) versus \(\eta \) (Fig. 6(a)) for different \(L \) intersect at \(\eta_c \approx 0.19 \), the L independent critical point as expected in a continuous transition. It is marked by a cross on the \(\eta \)-axis. The corresponding \(U_c \) is identified as \(U_c \approx 0.61 \), which is close to that of a monodispersed system \[51 \]. A rough estimate of the exponents \(1/\nu, \beta/\nu, \gamma/\nu \) and \(\gamma/\nu \) are obtained from the scaling relations \(U'(\eta_c, L) \sim L^\beta, \phi(\eta_c, L) \sim L^{-\beta/\nu} \) and \(\chi(\eta_c, L) \sim L^{\gamma/\nu} \) at the criticality. The best FSS forms of the scaled parameters against the scaled noise \(\epsilon L^{1/\nu} \) are obtained, tuning these exponents further. \(U \), \(\phi L^{\beta/\nu} \) and \(\chi L^{-\gamma/\nu} \) are plotted against \(\epsilon L^{1/\nu} \) in Fig. 6(d), (e) and (f) respectively. A reasonable collapse of data in all three cases are obtained taking \(1/\nu = 0.78, \beta/\nu = 0.18 \) and \(\gamma/\nu = 1.60 \) at \(\eta_c = 0.19 \). The critical exponents satisfy
the scaling relation $\gamma/\nu+2\beta/\nu = 2$ within error bars. The values of these critical exponents are reported in Table II.

The FSS forms of U_p, ϕ_p, and χ_p for the partial systems are also verified, and the scaling relations are satisfied with the same critical exponents within error bars.

B. Velocities: $v_f = 50v_s$ and $v_s = 0.01$

The order parameters ϕ and ϕ_p are plotted against η in Fig. 8(a). The values of ϕ and ϕ_p decrease smoothly to zero as η increases. The derivatives of ϕ and ϕ_p with respect to η are plotted in the inset of Fig. 8(a) and minima of the plots at the transition noise $\eta_c \approx 0.22$ are observed. ϕ_p is also less than ϕ_s as that of $v_f = 30v_s$ situation. The respective fluctuations in order parameter, χ, and χ_p are plotted against η in Fig. 8(b). They diverge at $\eta \approx 0.22$ for all the SPPs. The morphology of the system around the transition point is presented in Fig. 8. The phase transition occurs at $\eta_c \approx 0.22$ between the DS+DC phase and the RS+RC phase. The DS+DC phase at $\eta = 0.18$ is shown in Fig. 8(c) and the RS+RC phase at $\eta = 0.26$ is shown in Fig. 8(d). The arrows indicate the direction of motions of the clusters and clumps of different phases. It can be noticed that all the clusters and clumps in DS+DC are moving in a similar direction, whereas they are random in RS+RC.

In Fig. 8(e), U and U_p are plotted against η. Both U and U_p remain positive over the whole range of η. In Fig. 8(f), the distribution of order parameters $P(\phi)$ and $P(\phi_p)$ are plotted at $\eta = \eta_c$. The distributions are unimodal. The positive Binder cumulants and unimodal distributions of order parameters indicate a continuous transition in the whole system as well as in the partial systems for the case of $v_f = 50v_s$.

Since the transitions are continuous, we perform the FSS analysis to extract the critical exponents. The values of U, ϕ and χ are plotted against η in Fig. 8(a). (b) and (c) respectively for different system sizes $L = 64$, 128 and 256. The plots of U versus η in Fig. 8(a) for different L intersect at $\eta_c \approx 0.22$, marked by a cross on the η-axis. The corresponding critical value of the cumulant is $U_c \approx 0.61$. It seems the value of U_c is independent of the velocity ratio in this model. As followed in the case of $v_f = 30v_s$, rough estimates of the exponents $1/\nu$, β/ν and γ/ν are obtained from the critical scaling relations $U(\eta_c, L) \sim L^{1/\nu}$, $\phi(\eta_c, L) \sim L^{-\beta/\nu}$ and $\chi(\eta_c, L) \sim L^{\gamma/\nu}$. The best possible FSS form of the scaled parameters against the scaled noise $\epsilon L^{1/\nu}$ are obtained tuning these exponents further. The values of U, the scaled order parameter $\phi L^{\beta/\nu}$, and the scaled susceptibility $\chi L^{-\gamma/\nu}$ are plotted against $\epsilon L^{1/\nu}$ in Fig. 8(d), (e) and (f) respectively. A reasonable collapse of data in all three cases are obtained tuning the exponents further to $1/\nu = 1.01$, $\beta/\nu = 0.18$ and $\gamma/\nu = 1.60$. The exponents satisfy the scaling relation $\gamma/\nu+2\beta/\nu = 2$ within error bars.
bars. The values of the critical exponents obtained are also given in Table I and compared with others.

![Image](https://via.placeholder.com/150)

FIG. 9: $v_f = 50v_s$, $v_s = 0.01$: (a) Plot of U vs η, (b) plot of ϕ vs η and (c) plot of χ vs η for $L = 64$, 128 and 256. The cross on the η-axis indicates η_c. (d) Plot of U vs the scaled noise $\epsilon L^{1/\nu}$. (e) Plot of $\phi L^{\beta/\nu}$ against $\epsilon L^{1/\nu}$. (f) Plot of $\chi L^{-\gamma/\nu}$ against $\epsilon L^{1/\nu}$. The values of the exponents are taken as $\beta/\nu = 0.18$, $\gamma/\nu = 1.60$ and $1/\nu = 1.01$.

Exponents	VM	BM: $v_f = 30v_s$	BM: $v_f = 50v_s$
$1/\nu$	0.62(12)	0.78(9)	1.01(5)
β/ν	0.275(5)	0.18(1)	0.18(2)
γ/ν	1.45(2)	1.60(4)	1.60(8)
$\gamma/\nu + 2\beta/\nu$	2.00(3)	1.96(4)	1.96(8)

TABLE I: Values of the critical exponents obtained for the BM at different velocities of SSPPs $v_f = 30v_s$ and $50v_s$, keeping $v_s = 0.01$. The exponents for the VM with $v_f = 0.1$ and density $p = 1/8$ to $3/4$ (taken from Ref.[53]) are presented for comparison.

C. Velocities: $v_f = 150v_s$ and $v_s = 0.01$

We now present simulation results obtained for $v_f = 150v_s$, keeping $v_s = 0.01$. The order parameters, ϕ and ϕ_p, are plotted against η in Fig[10](a). There are jumps in the values of ϕ and ϕ_p near the transition. The derivatives of ϕ and ϕ_p with respect to η are plotted in the inset of Fig[10](a) and sharp minima are observed at $\eta_c \approx 0.33$ for the whole and the partial systems. The respective fluctuations in order parameter, χ and χ_p are plotted against η in Fig[10](b). There is a sharp peak in the fluctuations at $\eta_c \approx 0.33$ for all the SPPs. In the inset of Fig[10](b), the scaled fluctuations χ/L^2 are plotted against ϵ for different systems of sizes $L = 64$, 128 and 256. The critical values (peak values) of scaled χ become almost L independent. Hence, $\chi \sim L^2$, as in the case of a discontinuous transition.

The Binder cumulants U and U_p versus η plots are shown in Fig[10](c). The cumulant for the FSPPs, U_f and that of the whole system U have sharp negative dips at the transition. However, the cumulant of the sSPPs (U_s) has a dip at the transition, but it is yet to achieve a negative value. The distributions of order parameters $P(\phi)$ and $P(\phi_p)$ at $\eta = \eta_c$ are shown in Fig[10](d). For this high velocity, all three distributions exhibit bimodal distributions. These are characteristic features of a discontinuous transition. Since discontinuous transition is known to occur at high velocities in the monodispersed SPPs [23], it is expected to occur in the case of SSPPs, but it is surprising that the sSPPs are also undergoing discontinuous transition, which is unusual for sSPPs with such a low velocity $v_s = 0.01$. At the transition, dense traveling bands of SPPs form and disappear, resulting coexistence of two phases in the system. It is then important to verify whether this is the case for the SSPPs here or not. More interestingly, what will the two phases be for the SSPPs? Below we explain the situation by studying the time evolution of the system morphology at the transition region.

The morphology of a system of size $L = 256$ at two different time instants 3×10^5 and 4×10^5 are shown in Fig[11](a) and Fig[11](b) respectively for $\eta = \eta_c$. In Fig[11](a), a dense traveling band of FSPPs and clumps of SSPPs are seen. Interestingly, the band and clumps are moving in the same direction, as indicated by the orange and maroon arrows, respectively. However, in Fig[11](b), the dense traveling band of SSPPs disappears, and the clumps of SSPPs move randomly in the system. The orientation distributions $P(\theta)$ corresponding to phases (a) and (b) are shown in Fig[11](c)-I and II respectively. In
Fig. 11: $v_f = 150v_s$, $v_s = 0.01$: Morphology at (a) $t = 3 \times 10^5$ and (b) $t = 4 \times 10^5$ for $\eta_c = 0.33$ on a system of size $L = 256$. Orange: fSPPs and maroon: sSPPs. (c) $P(\theta)$ of the morphology (a) and (b) are plotted in I and II. (d) Order-parameter dynamics at η_c.

The steady-state dynamics at $\eta = \eta_c$ of ϕ_f and ϕ_s are given in Fig. 11(d) where the values of both ϕ_f (blue) and ϕ_s (maroon) oscillate between two phases in a synchronized manner. The higher value of ϕ_f corresponds to the presence of the dense band (an ordered phase), and the lower value of ϕ_f corresponds to the disappearance of the band (a random or disordered phase). On the other hand, for the sSPPs, the higher value of ϕ_s corresponds to the ordered phase of directed clumps (DC) without forming any traveling band, and the lower value of ϕ_s corresponds to a disordered phase of random clumps (RC).

D. Discussion

In this binary model, an orientational order-disorder phase transition is found to occur at the respective η_c for different velocity cases and the transition nature is also characterized. For both the $v_f = 30v_s$ and $v_f = 50v_s$ cases, a continuous transition occurs in the system from the DS+DC phase to the RS+RC phase. However, this is quite surprising for the fSPPs, with the velocity $v_f = 50v_s = 0.5$. For the velocity $v_0 = 0.5$ and density $\rho_0 = 0.25$, it is known that the crossover system size $L^* (\rho_0, v_0) \approx 150$ to observe discontinuous transition in the VM. However, in the BM, no density bands of fSPPs with $v_f = 50v_s$ occur when mixed with the sSPPs ($v_s = 0.01$) even at a system size $L = 256$ much higher than the crossover size L^*. It seems that sSPPs have a significant influence on the non-formation of traveling bands by the fSPPs as well as on the nature of the phase transition. It is interesting to observe that both types of SPPs maintain the same nature of transition in the BM. Though the nature of transition with $v_f = 30v_s$ and $v_f = 50v_s$ remains the same as the VM at low velocities, the values of the critical exponents, however, are different (shown in Table 1). Not only are the exponents different from those in VM, but they are also velocity-dependent. Hence, the binary model is non-universal.

The $v_f = 150v_s$ case is very different from the previous two scenarios. In this case, the discontinuous transition was observed for both fSPPs and sSPPs because of phase synchronization. Such a phase synchronization occurs because of the local alignment (Eq. 1). Though the fSPPs show a discontinuous transition, they do not form any traveling density band in the system. Thus, the two different species are not able to undergo two different types of transitions, continuous or discontinuous, simultaneously in the BM because of the local inter-particle interaction.

A crossover from continuous to discontinuous transition is expected at an intermediate v_f. This could be identified by plotting the order parameter distribution $P(\phi)$. The distribution will be unimodal for continuous transition and bimodal for discontinuous transition. In Fig. 12, $P(\phi)$ is plotted for different v_fs. It starts deviating from the unimodal distribution near $v_f = 100v_s$. It is important to note that this crossover value of v_f is determined for the fixed system of size $L = 256$ and density $\rho = 0.5$.
decreases as R decreases. So far, the interaction radius R for both the SPPs was set to 1. It is important to know the effect of interaction radius R on the system with high velocity ratio $v_f = 150v_s$ among two SPPs. First, we investigate reducing the interaction radius to $R = 0.25$ for both the SPPs. The order parameters (ϕ and ϕ_p) and the Binder cumulants (U and U_p) are plotted against η in Fig.13(a) and Fig.13(b) respectively. It can be seen that all the order parameters continuously go to zero at a critical noise $\eta_c \approx 0.11$, which is much less than the $\eta_c = 0.33$ with $R = 1$. Such a behavior is also observed in the monodispersed case. Moreover, U, U_f, and U_s are all found to be positive. In the inset of Fig.13(b), $P(\phi)$ and $P(\phi_p)$ are plotted at η_c and all the three distributions are unimodal. Thus the discontinuous transition for $R = 1$ becomes continuous for $R = 0.25$ for both the SPPs with $v_f = 150v_s$, $v_s = 0.01$. Because of the reduced interaction region, very few SPPs participate in providing the average orientation to a particular SPP, so the coupling among the SPPs becomes weak. It has two effects. First, because of the weak coupling, the transition occurs at a lower value of η (\approx 0.11). Second, the fSPPs are also not able to bind the other fSPPs to form a dense band at the transition point.

As a second case, we study the same system with different interaction radii for two types of SPPs. Two different radii are taken as $R_f = 1.0$ and $R_s = 0.01$ for the fSPPs and sSPPs respectively. The order parameter ϕ and ϕ_p are plotted against η in Fig.13(c). Note that $\phi_s \approx 0$ for the whole range of η, because the interaction radius is so small that the sSPPs have almost no other particles to interact with, for this ρ. On the other hand the fSPPs having $R_f = 1.0$, undergo a discontinuous transition at $\eta_c \approx 0.32$, slightly less than the case with $R_f = R_s = 1$ and $v_f = 150v_s$, $v_s = 0.01$. In the present scenario, the sSPPs are non-interacting particles, and the fSPPs are the only active and interacting particles in the system. The system behavior is governed by the fSPPs only. The discontinuous transition is then expected at $\eta_c \approx 0.32$. The ϕ of the whole system is just the simple average of ϕ_s and ϕ_f, where ϕ_s is essentially zero. The Binder cumulants and the order parameter distributions show the characteristics of discontinuous transition as expected (shown in Fig.13(d)).

Density can also be a parameter for studying this system. The results presented above are for a fixed density $\rho = 0.5$. However, at higher densities, the traveling bands may appear at lower velocities. Thus, one expects discontinuous transitions to occur for lower velocity regimes at higher densities. Such systems are computationally expensive as they involve a large number of interacting particles.

V. EFFECT OF INTERACTION RADIUS R

The value of R essentially determines the number of neighbors (n) to interact for an SPP at every move. So n decreases as R decreases. So far, the interaction radius R for both the SPPs was set to 1. It is important to know the effect of interaction radius R on the system with high velocity ratio $v_f = 150v_s$ among two SPPs. First, we investigate reducing the interaction radius to $R = 0.25$ for both the SPPs. The order parameters (ϕ and ϕ_p) and the Binder cumulants (U and U_p) are plotted against η in Fig.13(a) and Fig.13(b) respectively. It can be seen that all the order parameters continuously go to zero at a critical noise $\eta_c \approx 0.11$, which is much less than the $\eta_c = 0.33$ with $R = 1$. Such a behavior is also observed in the monodispersed case. Moreover, U, U_f, and U_s are all found to be positive. In the inset of Fig.13(b), $P(\phi)$ and $P(\phi_p)$ are plotted at η_c and all the three distributions are unimodal. Thus the discontinuous transition for $R = 1$ becomes continuous for $R = 0.25$ for both the SPPs with $v_f = 150v_s$, $v_s = 0.01$. Because of the reduced interaction region, very few SPPs participate in providing the average orientation to a particular SPP, so the coupling among the SPPs becomes weak. It has two effects. First, because of the weak coupling, the transition occurs at a lower value of η (\approx 0.11). Second, the fSPPs are also not able to bind the other fSPPs to form a dense band at the transition point.

As a second case, we study the same system with different interaction radii for two types of SPPs. Two different radii are taken as $R_f = 1.0$ and $R_s = 0.01$ for the fSPPs and sSPPs respectively. The order parameter ϕ and ϕ_p are plotted against η in Fig.13(c). Note that $\phi_s \approx 0$ for the whole range of η, because the interaction radius is so small that the sSPPs have almost no other particles to interact with, for this ρ. On the other hand the fSPPs having $R_f = 1.0$, undergo a discontinuous transition at $\eta_c \approx 0.32$, slightly less than the case with $R_f = R_s = 1$ and $v_f = 150v_s$, $v_s = 0.01$. In the present scenario, the sSPPs are non-interacting particles, and the fSPPs are the only active and interacting particles in the system. The system behavior is governed by the fSPPs only. The discontinuous transition is then expected at $\eta_c \approx 0.32$. The ϕ of the whole system is just the simple average of ϕ_s and ϕ_f, where ϕ_s is essentially zero. The Binder cumulants and the order parameter distributions show the characteristics of discontinuous transition as expected (shown in Fig.13(d)).

Density can also be a parameter for studying this system. The results presented above are for a fixed density $\rho = 0.5$. However, at higher densities, the traveling bands may appear at lower velocities. Thus, one expects discontinuous transitions to occur for lower velocity regimes at higher densities. Such systems are computationally expensive as they involve a large number of interacting particles.

VI. CONCLUSION

A binary mixture of SPPs displays a variety of collective patterns, such as directed lanes, clusters, clumps, micro-cluster, micro-clumps, and others at different values of angular noise. The lane patterns of SPPs at a very low angular noise are supposed to be the outcome of shear between the two species of different velocities. With a small increase in noise, the lanes formed by the slow-moving species break down into clumps resulting in a drastic structural change in the system. Due to a large difference in velocities between the two species, finite phase segregation occurs in the system at low noise. In the steady-state, the two species of the system are found to be orientationally phase synchronized irrespective of their velocities. The two-point correlation function extends throughout the system below a critical noise. At the critical noise, the system undergoes a velocity-dependent orientational order-disorder transition. The nature of the transition is found to be continuous for $v_f < 100v_s$ with $v_s = 0.01$ and discontinuous above this limit. However, the continuous transitions are non-universal as their critical exponents depend on the velocities. The model results depend on the density of species and the radius of interaction among the species.

Acknowledgments

We gratefully acknowledge the computational facilities “Newton HPC” and “Param-Ishan” provided by the Department of Physics, Indian Institute of Technology Guwahati, Assam, India.
[1] V. Schaller, C. Weber, C. Semmrich, E. Frey, and A. R. Bausch, Nature 467, 73 (2010).
[2] S. Köhler, V. Schaller, and A. R. Bausch, Nature materials 10, 462 (2011).
[3] J. D. Murray, Mathematical biology II: spatial models and biomedical applications, vol. 3 (Springer, Berlin, 2001).
[4] R. Thar and M. Kühl, FEMS Microbiol. Lett. 246, 75 (2005).
[5] A. Sokolov, I. S. Aranson, J. O. Kessler, and R. E. Goldstein, Phys. Rev. Lett. 98, 158102 (2007).
[6] H. Zhang, A. Be’Er, R. S. Smith, E.-L. Florin, and H. L. Swinney, Europhys. Lett. 87, 48011 (2009).
[7] H.-P. Zhang, A. Be’er, E.-L. Florin, and H. L. Swinney, Proc. Natl. Acad. Sci. U.S.A. 107, 13626 (2010).
[8] I. D. Couzin and N. R. Franks, Proceedings of the Royal Society of London. Series B: Biological Sciences 270, 139 (2003).
[9] J. Buhl, D. J. Sumpter, I. D. Couzin, J. J. Hale, E. Dospland, E. Miller, and S. J. Simpson, Science 312, 1402 (2006).
[10] P. Romanczuk, I. D. Couzin, and L. Schimansky-Geier, Phys. Rev. Lett. 102, 010602 (2009).
[11] W. Herrnkind, Science 164, 1425 (1969).
[12] R. G. Bill and W. F. Herrnkind, Science 193, 1146 (1976).
[13] N. C. Makris, P. Ratilal, D. T. Symonds, S. Jagannathan, S. Lee, and R. W. Nero, Science 311, 660 (2006).
[14] M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, et al., Proc. Natl. Acad. Sci. U.S.A. 105, 1232 (2008).
[15] A. Cavagna, A. Cimarelli, I. Giardina, G. Parisi, R. Santagati, F. Stefanini, and M. Viale, Proc. Natl. Acad. Sci. U.S.A. 107, 11865 (2010).
[16] D. Helbing and P. Molnar, Phys. Rev. E 51, 4282 (1995).
[17] Y.-Q. Jiang, B.-K. Chen, B.-H. Wang, W.-F. Wong, and B.-Y. Cao, Frontiers of Physics 12, 124502 (2017).
[18] V. Narayan, S. Ramaswamy, and N. Menon, Science 317, 105 (2007).
[19] J. Deseigne, O. Dauchot, and H. Chaté, Phys. Rev. Lett. 105, 098001 (2010).
[20] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet, Phys. Rev. Lett. 75, 1226 (1995).
[21] M. Nagy, I. Daruka, and T. Vicsek, Physica A 373, 445 (2007).
[22] T. Vicsek and A. Zafeiris, Phys. Rep. 517, 71 (2012).
[23] H. Chaté, F. Ginelli, G. Grégoire, and F. Raynaud, Phys. Rev. E 77, 046113 (2008).
[24] S. Adhikary and S. B. Santra, Europhys. Lett. 135, 48003 (2021).
[25] F. Ginelli, Eur. Phys. J. Spec. Top. 225, 2099 (2016).
[26] S. Mishra, K. Tunstrom, I. D. Couzin, and C. Huepe, Phys. Rev. E 86, 011901 (2012).
[27] J. P. Singh and S. Mishra, Physica A 544, 123530 (2020).
[28] M. E. Cates and J. Tailleur, Annu. Rev. Condens. Matter Phys. 6, 219 (2015).
[29] C. Bechinger, R. Di Leonardo, H. Löwen, C. Reichhardt, G. Volpe, and G. Volpe, Rev. Mod. Phys. 88, 045006 (2016).
[30] S. N. Weber, C. A. Weber, and E. Frey, Phys. Rev. Lett. 116, 058301 (2016).
[31] S. Kumari, A. S. Nunes, N. A. Araújo, and M. M. Telo da Gama, The Journal of chemical physics 147, 174702 (2017).
[32] J. Stenhammar, R. Wittkowski, D. Marenduzzo, and M. E. Cates, Phys. Rev. Lett. 114, 018301 (2015).
[33] P. Dolai, A. Simha, and S. Mishra, Soft Matter 14, 6137 (2018).
[34] R. C. Maloney and C. K. Hall, Langmuir 36, 6378 (2020).
[35] S. R. McCandlish, A. Baskaran, and M. F. Hagan, Soft Matter 8, 2527 (2012).
[36] A. M. Menzel, Phys. Rev. E 85, 021912 (2012).
[37] C. Reichhardt, J. Thibault, S. Papanikolaou, and C. Reichhardt, Phys. Rev. E 98, 022603 (2018).
[38] M. Ikeda, H. Wada, and H. Hayakawa, Europhys. Lett. 99, 68005 (2012).
[39] N. Bain and D. Bartolo, Nat. commun. 8, 15069 (2017).
[40] B.-q. Ai, Z.-g. Shao, and W.-r. Zhong, Soft Matter 14, 4388 (2018).
[41] B. Liebchen and D. Levis, Phys. Rev. Lett. 119, 058002 (2017).
[42] P. B. Sampat and S. Mishra, Phys. Rev. E 104, 024130 (2021).
[43] F. Farrell, M. Marchetti, D. Marenduzzo, and J. Tailleur, Phys. Rev. Lett. 108, 248101 (2012).
[44] S. B. Santra, S. Schwarzer, and H. Herrmann, Phys. Rev. E 54, 5066 (1996).
[45] X. Yang, M. L. Manning, and M. C. Marchetti, Soft Matter 10, 6477 (2014).
[46] M. Romensky and V. Lobaskin, Eur. Phys. J. B 86, 91 (2013).
[47] K. Binder, Reports on progress in physics 50, 783 (1987).
[48] K. Christensen and N. R. Moloney, Complexity and criticality, vol. 1 (World Scientific Singapore, 2005).
[49] D. S. Cambui, A. S. de Arruda, and M. Godoy, Physica A 444, 582 (2016).
[50] G. Baglietto and E. V. Albano, Phys. Rev. E 78, 021125 (2008).