Different particle alignments in $N \approx Z$ Ru isotopes studied by the shell model

M. Hasegawa1, K. Kaneko2, T. Mizusaki3,4, and S. Tazaki5

1Laboratory of Physics, Fukuoka Dental College, Fukuoka 814-0193, Japan
2Department of Physics, Kyushu Sangyo University, Fukuoka 813-8503, Japan
3Institute of Natural Sciences, Senshu University, Kawasaki, Kanagawa, 214-8580, Japan
4Institute for Solid State Physics, University of Tokyo, Kashiwanoha, Kashiwa, 277-8581, Japan
5Department of Applied Physics, Fukuoka University, Fukuoka 814-0180, Japan

(Dated: January 7, 2022)

Experimentally observed heaviest $N \approx Z$ nuclei, Ru isotopes, are investigated by the shell model on a spherical basis with the extended $P + QQ$ Hamiltonian. The energy levels of all the Ru isotopes can be explained by the shell model with a single set of force parameters. The calculations indicate enhancement of quadrupole correlations in the $N = Z$ nucleus 88Ru as compared with the other Ru isotopes, but the observed moments of inertia seem to require much more enhancement of quadrupole correlations in 88Ru. It is discussed that the particle alignment takes place at 8^+ in 90Ru but is delayed in 88Ru till 16^+ where the simultaneous alignments of proton and neutron pairs take place. The calculations present interesting predictions for 89Ru that the ground state is the $1/2^+$ state and there are three $\Delta J = 2$ bands with different particle alignments including the $T = 0$ $p - n$ pair alignment.

PACS numbers: 21.10.Hw,21.10.Re,21.60.Cs,23.20.Lv

I. INTRODUCTION

The so-called delay of alignment in the $N = Z$ even-even nuclei is observed in the $64 \leq A \leq 88$ region 1,2,3 and in the lighter nucleus 48Cr. This phenomenon is a sign of strong proton-neutron ($p - n$) correlations in the same shell 5, and the special collectivity in the $N = Z$ even-even nuclei suggests a strong collaboration of $p - p$, $n - n$ and $p - n$ correlations in the $A = 4m$ nuclei with $N = Z = 2m$ which can be called the α-like ($T = 0$) $2p - 2n$ correlations 6,7,8. A theoretical investigation of this is challenging, which belongs to the study of the properties of the $p - n$ interaction in $N = Z$ nuclei 9,10,11,12,13,14,15. The experimental study of heavy $N = Z$ nuclei has reached 88Ru 16,17. The new data have revealed that there is a remarkable difference between neighboring even-even nuclei with $N = Z$ and $N = Z + 2$ in the $1g_{9/2}$-subshell region. The qualitative difference between 88Ru and 90Ru (84Mo and 86Mo) in the backbending plots of the yrast bands is different from the conditions in lighter nuclei Zr, Sr, etc., and casts a new light on the problem of the delayed alignment.

A theoretical explanation of the delayed alignment for heavy $N = Z$ nuclei 84Mo, 88Ru etc. is presented in Refs. 4,10 with the projected shell model on the deformed basis 17,18. The projected shell model reproduces the graphs of observed moments of inertia, by adopting commonly accepted deformations for those nuclei. The adopted deformations manifest that the deformation is larger for even-even $N = Z$ nuclei when compared with $N > Z$ nuclei. In other words, the delayed alignment in 88Ru is related to the large deformation. The study with the projected shell model 4,10 suggested an enhancement of the $p - n$ quadrupole-quadrupole (QQ) interaction in the $N = Z$ nuclei. It is our interest to understand the structural difference between the $N = Z$ even-even nucleus 88Ru and neighboring isotopes in various aspects. In this paper, we make the study using the shell model calculations on the spherical basis which is free from fixing the deformation parameter.

The extended $P + QQ$ model 13,20 reproduces observed energy levels and $B(E2)$ in $N \approx Z$ $1f_{7/2}$-subshell nuclei and is capable of describing the backbending phenomena. It has successfully clarified characteristics of the structure of a heavier $N = Z$ nucleus 64Ge in the configuration space $(2p_{3/2},1f_{5/2},2p_{1/2},1g_{9/2})^8$ in a recent shell model calculation 21. The heaviest $N = Z$ nucleus experimentally observed, 88Ru, which is expected to have the approximate configuration $(2p_{3/2},1f_{5/2},2p_{1/2},1g_{9/2})^{-12}$, is a good target to study the delayed alignment using the shell model calculation. The success in 64Ge suggests that the extended $P + QQ$ model provides a reliable interaction for the study of the heavy $N \approx Z$ nuclei. We carry out shell model calculations using the extended $P + QQ$ model with a single set of force parameters fixed for 88Ru and heavier Ru isotopes. The calculations, which are carried out with the calculation code 22, have huge dimensions (maximum dimension is 165×10^6 for 88Ru) and can be regarded as realistic ones. We investigate the structure of Ru isotopes and examine whether the difference between 88Ru and 90Ru is reproduced or not by the spherical shell model, in Section III. The present shell model predicts interesting features of the odd-A isotope 89Ru between 88Ru and 90Ru. The prediction for 89Ru is shown in Section IV.

Since the delayed alignment in 88Ru seems to be related to the strong quadrupole correlations and the large quadrupole deformation 4,15, we pay our attention to the roles of the QQ force which induces the quadrupole correlations and deformation. It is interesting to see the competition between the like-nucleon ($p - p$ and $n - n$) interaction and $p - n$ interaction of the QQ force. We
also examine a possible contribution of the isovector \(QQ \) force to the properties of Ru isotopes.

II. THE MODEL HAMILTONIAN

The extended \(P + QQ \) Hamiltonian is given by

\[
H = H_{np} + H_{nc} + H_{p} + H_{P2} + H_{QQ}^{\tau=0} + H_{QQ}^{\tau=+1}
\]

\[
= \sum_{\alpha} \varepsilon_{\alpha} c_{\alpha}^\dagger c_{\alpha} + H_{nc} - \sum_{\lambda=0,2} \frac{1}{2} g_J \sum_{M} P_{JM1\kappa}^\dagger P_{JM1\kappa}
\]

\[
- \frac{1}{2} \sum_{M} \chi_2^0 : Q_{2M}^\dagger Q_{2M} : - \frac{1}{2} \sum_{M} \chi_3^0 : O_{3M} O_{3M} : .
\]

where \(\varepsilon_{\alpha} \) is a single-particle energy, \(H_{nc} \) denotes the monopole corrections, \(P_{JM\kappa} \) is the pair operator with angular momentum \(J \) and isospin \(T \), and \(Q_{2M} \) (\(O_{3M} \)) is the isoscalar quadrupole (octupole) operator (see Ref. 20)). The force strengths \(\chi_2^0 \) and \(\chi_3^0 \) are defined so as to have the dimension of energy. Following Ref. 21, we adopt the model space \((2p_{3/2}, 1f_{5/2}, 2p_{1/2}, 1g_{9/2})\) and introduce the isoscalar octupole-octupole force \(H_{QQ}^{\tau=0} \). Note that the Hamiltonian is isospin-invariant and includes the \(p-n \) pairing forces in addition to the \(p-n \) \(QQ \) force.

The isoscalar \(QQ \) force \(H_{QQ}^{\tau=0} \) can be divided into three parts, \(p-p, n-n \) and \(p-n \) parts. We shall use the notations \(\chi_{0p}, \chi_{2n}, \chi_{2n}^{2p}, \chi_{2n}^{3p}, \chi_2^{0}, \chi_2^{3p} \), \(\chi_2^{0}, \chi_2^{3p} \) for their force strengths. In terms of the pair operators \(P_{JM\kappa} \), the isoscalar \(QQ \) force is expressed as

\[
H_{QQ}^{\tau=0} = -\frac{1}{2} \sum_{\kappa} \frac{x_1^0}{b^2} \sum_{JM} W_{JT=1} P_{JM1\kappa}^\dagger P_{JM1\kappa}
\]

\[
-\frac{1}{2} \sum_{J} W_{JT=0} P_{JM00}^\dagger P_{JM00}, \quad (2)
\]

where \(x_1^0 = x_2^0 = \chi_2^0 \). The symbol \(W_{JT} \) proportional to the Racah coefficient really has four subscripts related to the four orbits of \(c_{1p} c_{3p} c_{3c} \). The first line of Eq. 2 brings about the isovector pairing interactions, where the strengths \(x_1^1, x_1^1 = -1 \) and \(x_1^0, x_1^0 = -1 \) stand for the \(n-n \), \(p-p \) and \(p-n \) interactions. The second line of Eq. 2 brings about the isoscalar \(p-n \) pairing interactions. The \(p-n \) part of \(H_{QQ}^{\tau=0} \) is enhanced by enlarging the force strength \(\chi_{2p}, \chi_{2n}, \chi_{2n}^{2p}, \chi_{2n}^{3p} \) in Refs. 4, 12, 21.

The Hamiltonian ceases to be isospin-invariant, with the isospin not being a good quantum number there.

There is a possibility of the isovector \(QQ \) force contributing to the collective motion in the heavy \(N \approx Z \) nuclei. The isovector \(QQ \) force \(H_{QQ}^{\tau=1} \) with the force strength \(\chi_2^3 \) is also rewritten in the same form as Eq. 2 with the relations \(x_2^3 = \chi_2^3 \) and \(x_2^3 = -3 \chi_2^3 \). We can write the sum of \(H_{QQ}^{\tau=0} \) and \(H_{QQ}^{\tau=1} \) in the same form as Eq. 2, where \(x_2^3 = \chi_2^0 + \chi_2^3 \) and \(x_2^3 = \chi_2^0 - 3 \chi_2^3 \). If we consider a restricted sum of \(H_{QQ}^{\tau=0} \) and \(H_{QQ}^{\tau=1} \) with the following combination of the interaction strengths

\[
\chi_2^0 = (1 + \alpha) x, \quad \chi_2^3 = -\alpha x, \quad (3)
\]

the \(QQ \) force is written as

\[
H_{QQ}^{\tau=0} + H_{QQ}^{\tau=1} = -\frac{1}{2} \sum_{\kappa} \frac{x}{b^2} \sum_{JM} W_{JT=1} P_{JM1\kappa}^\dagger P_{JM1\kappa}
\]

\[
-\frac{1}{2} \sum_{J} W_{JT=0} P_{JM00}^\dagger P_{JM00} \quad \text{Eq. 4}
\]

By changing the mixing parameter \(\alpha \), we can enhance the \(p-n \) part of the \(QQ \) force, which corresponds to the isoscalar \(p-n \) pairing interactions in the second line of Eq. 4, without violating the isospin invariance of the Hamiltonian.

III. DIFFERENCE BETWEEN \(^{92}\text{Ru}\) AND \(^{94}\text{Ru}\)

Using the extended \(P + QQ \) Hamiltonian (11), we carried out shell model calculations in the hole space \((1g_{9/2}, 2p_{1/2}^4, 1f_{5/2}, 2p_{1/2}^4)\) with the calculation code 22. The single-hole energies \(\varepsilon_n^h \) depend on \(H_{nc} \) and the force strengths as well as \(\varepsilon_n \) through the hole transformation. We treated the hole energies \(\varepsilon_n^h \) as parameters instead of the single-particle energies \(\varepsilon_n \). We tried various combinations of the parameters \(\varepsilon_n^h, H_{nc}, g_0, g_2, \chi_2^0, \chi_2^3 \), and determined these parameters so as to reproduce overall energy levels of the Ru isotopes. The adopted parameters are

\[
\varepsilon_{9/2}^h = 0.0, \quad \varepsilon_{1/2}^h = 1.1, \quad \varepsilon_{5/2}^h = 5.5, \quad \varepsilon_{3/2}^h = 6.0, \quad g_0 = 0.26(92/A), \quad g_2 = 0.12(92/A)^{5/3}.
\]

![FIG 1: Energy levels of \(^{92}\text{Ru}\) and \(^{94}\text{Ru}\). The label “A” stands for the energy levels calculated with the parameter set (5) and “exp” for the observed ones.](image-url)
\[\chi_2^0 = 0.26(92/A)^{5/3}, \quad \chi_3^0 = 0.04(92/A)^2 \] in MeV, (5) and \(H_{\text{back}} \) is fixed at zero (the \(J \)-independent isoscalar monopole term is not determined, because we do not deal with the binding energy in this paper). Changing the monopole corrections \(H_{\text{back}} \) does not significantly improve the energy levels. The relative position of \(\varepsilon_{9/2}^h \) and \(\varepsilon_{1/2}^h \) is responsible to that of the positive and negative parity states. In our trials, the values of \(\varepsilon_{9/2}^h \) and \(\varepsilon_{1/2}^h \) listed in Eq. (5) are best and the exchange of the two values does not improve the energy levels. The hole levels \(1f_{5/2}^h \) and \(2p_{3/2}^h \) seem to lie far from \(2p_{1/2}^h \). This is the reason why the subspace \((2p_{1/2}, 1g_{9/2}) \) works well for \(A > 86 \) nuclei in Refs. \[23, 24\]. The force strengths \(g_0, g_2, \chi_2^0 \) and \(\chi_3^0 \) adopted are similar to those used in the study of \(^{64}\text{Ge} \) \[21\].

The parameter set \[\text{(5)}\] reproduces well the energy levels (the patterns and order of the positive- and negative-parity levels) of Ru isotopes, not only the even-\(A \) nuclei \(^{92}\text{Ru} \) and \(^{94}\text{Ru} \) but also the odd-\(A \) nuclei \(^{91}\text{Ru} \) and \(^{93}\text{Ru} \) as shown in Figs. \[1\] and \[2\]. The agreement between theory and experiment for the odd-parity state is worse than that for the even-parity states. The calculation, however, reproduces the observed energies within the error 0.8 MeV.

![FIG. 2: Calculated and observed energy levels of \(^{91}\text{Ru}\) and \(^{93}\text{Ru}\). The spin of each state is denoted by the double number \(2J\).](image)

A. Dependence on the QQ force strengths

The energy levels obtained for \(^{88}\text{Ru}\) and \(^{90}\text{Ru}\), which are shown in the column A of Figs. \[3\] and \[4\] are consistent with the observed ones. The parameter set A describes the difference between \(^{88}\text{Ru} \) and \(^{90}\text{Ru} \) in the backbending plot (we call it “\(J - \omega \) graph”) as shown in Figs. \[5\] and \[6\]. The calculation reproduces the sharp backbending at \(J = 2j - 1 = 8 \) observed in \(^{90}\text{Ru} \) and shows no clear backbending in low-spin states of \(^{88}\text{Ru} \) in agreement with the experiment.

The backbending plots, however, reveal insufficiency for the most collective low-lying states. The results A do not reproduce the slope of the \(J - \omega \) graph up to \(J = 8 \) for \(^{88}\text{Ru} \) and up to \(J = 6 \) for \(^{90}\text{Ru} \). The slopes of the \(J - \omega \) graphs for the collective bands are considerably affected by the strength \(\chi_2^0 \) of the QQ force \(H_{\text{QQ}}^{\tau=0} \) above all other

![FIG. 3: Comparison of calculated energy levels with observed ones for \(^{88}\text{Ru} \). The calculated results are obtained with the different strengths of the QQ force, A, B, C, D and E.](image)

![FIG. 4: Comparison of calculated energy levels with observed ones for \(^{90}\text{Ru} \). The calculated results are obtained with the different strengths of the QQ force, A, B, C, D and E.](image)
force strengths. This is naturally understood, because the moment of inertia of a rotational band depends on the magnitude of deformation and the QQ force drives the quadrupole deformation. Let us try to improve the \(J - \omega \) graphs for \(^{88}\text{Ru} \) and \(^{90}\text{Ru} \) by readjusting the QQ force strength.

We first strengthen the \(p - n \) QQ interaction by adding the isovector QQ force \(H_{QQ}^{\tau=0} \) in the form \(\chi^0 \) so as to conserve the isospin invariance. The results obtained with the mixing parameter \(\alpha = 0.125 \) (see Eq. (3)) are shown by the notation B in Figs. 3 - 6. The \(J - \omega \) graph is improved for \(^{90}\text{Ru} \). For \(^{88}\text{Ru} \), the result B removes the slight backbending at \(J = 8 \) of the result A. The parameter set B reproduces quite well the overall energy levels of the Ru isotopes \(^{90}\text{Ru} \), \(^{91}\text{Ru} \), \(^{92}\text{Ru} \), \(^{93}\text{Ru} \), \(^{94}\text{Ru} \) and \(^{96}\text{Ru} \). For the high-spin states, however, the parameter set A is better than B. The change from A to B pushes up the high-spin levels higher as the spin \(J \) increases. Since the configuration \((1g_{9/2})^m \) is dominant in the high-spin states, the inadequacy for the high-spin states suggests that the enhanced \(p - n \) QQ force strength \(\chi^0 = 1.5x \) is too strong for the \(1g_{9/2} \) subshell. The remaining deviation of the calculated \(J - \omega \) graph from the experimental one for \(^{88}\text{Ru} \) indicates room for improvement in the model space and in the interactions of our model.

Results similar to those of B are obtained by strengthening the \(p - n \) part of the isoscalar QQ force \(H_{QQ}^{\tau=0} \) by enlarging \(\chi^0_{2pn} \). The results of \(\chi^0_{2pn} = 1.25 \chi^0_{2pp} \) are shown by the notation C in Figs. 3 - 6. (Note that the \(p - n \) force strength \(\chi^0_{2pn} = 1.3 \chi^0_{2pp} \) is used by Sun et al. \cite{4} to increase the particle alignment frequency for \(^{88}\text{Ru} \) and \(^{84}\text{Mo} \)). Although the high-spin levels of C are pushed up a little higher as compared with those of B, the parameter sets B and C yield similar results, not only for the energy levels but also for \(B(E2) \) values and the quadrupole moment \(Q \) with respect to the yrast bands of \(^{88}\text{Ru} \) and \(^{90}\text{Ru} \) as shown later on. We also tried to strengthen all of the \(p - p \), \(n - n \) and \(p - n \) QQ interactions. The enlargement of \(\chi^0_2 \) to \(1.1 \times \chi^0_2 \) yields results similar to those of B and C. The results are denoted by D in Figs. 3 - 6. Within the small increase of the QQ force, we have found no evidence that the \(p - n \) QQ interaction is stronger than the \(p - p \) and \(n - n \) QQ interactions, and there is no choice between the isospin-variant and -invariant enhancements of the \(p - n \) QQ interaction, as well.

It should be noted here that the strength of the \(p - n \) interaction does not directly correspond to the strength of the \(p - n \) correlations. According to the single-\(j \) shell calculation with the extended \(P + QQ \) force \cite{25}, the \(p - n \) correlation energy becomes largest at \(N = Z \) in nuclei with the same \(Z \) even though the same \(p - n \) interaction is used for those nuclei, while the \(p - p \) and \(n - n \) correlation energy does not show such a specific feature.

In Fig. 5 the discrepancy between the calculated moments of inertia (B, C and D) and observed ones is still large for \(^{88}\text{Ru} \). The calculations B, C and D cannot sufficiently reproduce the observed large angular frequency at \(J = 8 \). If we want to obtain a better slope of the \(J - \omega \) graph for \(^{88}\text{Ru} \), we must enhance the QQ force strength \(\chi^0_2 \) much more. The slope of the \(J - \omega \) graph observed in \(^{88}\text{Ru} \) cannot be well reproduced even by strengthening the \(p - n \) QQ interaction further in the way B or C. Results obtained with the isoscalar QQ force \(H_{QQ}^{\tau=0} \) strengthened by \(1.5 \ (1.5 \times \chi^0_2) \) are denoted by E in Figs. 3 - 6. The calculation E reproduces the large angular frequency and the slope (moment of inertia) of the \(J - \omega \) graph for \(^{88}\text{Ru} \) but yields rather bad results for \(^{90}\text{Ru} \). This suggests that the collectivity of the quadrupole correlations is different between \(^{88}\text{Ru} \) and \(^{90}\text{Ru} \). The observed moment of inertia and large angular frequency indicate a stable rotation of \(^{88}\text{Ru} \), while the energy levels and the sharp backbending at \(8^+ \) reveal a deviation from the rotation in \(^{90}\text{Ru} \). Our spherical shell model

FIG. 5: The \(J - \omega \) graph of Fig. 1.

FIG. 6: The \(J - \omega \) graph of Fig. 2.
calculation predicts that clear backbending does not occur up to \(J = 14 \) in \(^{88}\text{Ru}\), as predicted by the projected shell model \(^{14}\text{16}\). The present results indicate a special enhancement of the quadrupole correlations in \(^{88}\text{Ru}\) in contrast to the other Ru isotopes with \(N > Z \). This is consistent with the results obtained by the projected shell model \(^{14}\text{16}\), in which the deformation parameter is fixed to be 0.23 for \(^{88}\text{Ru}\) and 0.16 for \(^{90}\text{Ru}\) (the former is 1.4 times as large as the latter). Our spherical shell model requires the enhancement of the \(QQ \) force instead of the enlargement of the deformation for the \(N = Z \) nucleus \(^{88}\text{Ru}\). This suggests that the present model space \((2p_{3/2}, 1f_{5/2}, 2p_{1/2}, 1g_{9/2}) \) may not be sufficient and the lower orbit \(1f_{7/2} \) or the upper one \(2d_{5/2} \) should be included possibly.

B. Difference between \(^{88}\text{Ru}\) and \(^{90}\text{Ru}\) in structure

The backbending at \(J = 2j - 1 = 8 \) in the \(1g_{9/2}\)-subshell nucleus \(^{90}\text{Ru}\) is in contrast to no backbending at \(J = 2j - 1 = 6 \) in the \(1f_{7/2}\)-subshell nucleus \(^{50}\text{Cr}\), while the resistance to the backbending is common to the \(N = Z \) nuclei \(^{88}\text{Ru}\) and \(^{48}\text{Cr}\). Let us discuss the difference between \(^{88}\text{Ru}\) and \(^{90}\text{Ru}\) in the structure which appears in the \(J - \omega \) graphs of Figs. 5 and 6. In Tables II and III, we tabulate the expectation values of proton and neutron numbers \(\langle n_{a} \rangle \) in the respective orbits for the yrast states of \(^{88}\text{Ru}\) and \(^{90}\text{Ru}\). The tables show that more protons jump up from the \(pf \) subshell to the \(1g_{9/2} \) one in \(^{88}\text{Ru}\) than in \(^{90}\text{Ru}\), and the same is true for neutrons if the extra neutron pair is subtracted from the neutron number \(\langle n_{g9/2} \rangle \) for \(^{90}\text{Ru}\). Two things are characteristic in the \(N \approx Z \) Ru isotopes, which is different from the situation of the \(N \approx Z \) Cr isotopes in the \(1f_{7/2} \) subshell. First, the \(1g_{9/2} \) subshell where the Fermi level lies is just above the \(pf \) subshell and there is a considerably large degree of freedom for \(1g_{9/2} \). Secondly, the two subshells have opposite parities. These conditions permit only nucleon pairs jumping up to \(1g_{9/2} \) and induce strong \(p - p \), \(n - n \) and \(p - n \) correlations in \(1g_{9/2} \). We can suppose that the collaboration of the \(p - p \), \(n - n \) and \(p - n \) correlations results in the \(\alpha \)-like \(2p - 2n \) correlations especially in the \(1g_{9/2} \) subshell, in the \(N = Z \) nucleus \(^{88}\text{Ru}\) where the \(p - n \) correlations are enhanced.

The sharp backbending at \(8^+ \) in Fig. 5 for \(^{90}\text{Ru}\) coincides with the increase of \(\langle n_{g9/2} \rangle \) and decrease of \(\langle n_{p1/2} \rangle \) for neutron (and their decrease and increase for proton) at \(J = 8 \) in Table III. This change is explained by the alignment of a neutron pair in \(1g_{9/2} \). The results A and B in Table III suggest the following explanation: There is an extra neutron pair which cannot form a \(T = 0 \) \(2p - 2n \) quartet \(^{14}\text{16}\) \(^{20}\) in \(^{90}\text{Ru}\). The extra neutron pair has a dominant probability to be a pair with \(J = 0 \) and \(T = 1 \), and contributes to the collective \(2p - 2n \) corre-

| TABLE I: Expectation values of proton (neutron) numbers in the respective orbits for the yrast states of \(^{88}\text{Ru}\) calculated with the different strengths of the \(QQ \) force, A and B. |
|----------------|----------------|----------------|
| \(J \) | \(p_{3/2} \) | \(p_{1/2} \) |
| \(J \) | \(f_{5/2} \) | \(g_{9/2} \) | \(g_{9/2} \) |
| \(J \) | \(p_{3/2} \) | \(p_{1/2} \) |
| \(J \) | \(f_{5/2} \) | \(g_{9/2} \) | \(g_{9/2} \) |
| \(J \) | \(p_{3/2} \) | \(p_{1/2} \) |
| \(J \) | \(f_{5/2} \) | \(g_{9/2} \) | \(g_{9/2} \) |

| TABLE II: Expectation values of proton and neutron numbers in the respective orbits for the yrast states of \(^{90}\text{Ru}\) calculated with the different strengths of the \(QQ \) force, A and B. |
|----------------|----------------|----------------|
| \(J \) | \(p_{3/2} \) | \(f_{5/2} \) | \(p_{1/2} \) | \(g_{9/2} \) | \(g_{9/2} \) |
| \(J \) | \(p_{3/2} \) | \(f_{5/2} \) | \(p_{1/2} \) | \(g_{9/2} \) | \(g_{9/2} \) |
| \(J \) | \(p_{3/2} \) | \(f_{5/2} \) | \(p_{1/2} \) | \(g_{9/2} \) | \(g_{9/2} \) |
| \(J \) | \(p_{3/2} \) | \(f_{5/2} \) | \(p_{1/2} \) | \(g_{9/2} \) | \(g_{9/2} \) |

lations through the exchange with a neutron pair in the quartets. The excitation till 6^+ owes to the motion of the quartets. At 8^+, the extra neutron pair aligns the angular momentum to be $J = 9/2 + 7/2$ ($J = 8, T = 1$) in $1g_{9/2}$ and breaks away from the collective $2p - 2n$ correlations, which increases the $1g_{9/2}$ neutron number. The weakened $2p - 2n$ correlations somewhat hinder proton pairs jumping up to the $1g_{9/2}$ subshell from the pf subshell, which decreases the $1g_{9/2}$ proton number. The result A for ^{88}Ru in Table I shows a similar sign at $J = 8$, but the observed $J - \omega$ graph denies such a pair alignment in ^{88}Ru. The calculated results B, C, D and E which are better for the very collective low-lying states sweep away the sign of a structural change in (n_p) (the result B is shown in the lower part of Table I). By combining our result for ^{88}Ru with the $J - \omega$ graphs experimentally observed in other $N = Z$ nuclei, we can say that the one-pair alignment is hindered in the $N = Z$ nuclei due to the strong $2p - 2n$ correlations. This may be the reason for the durable increase of angular frequency in the $N = Z$ nuclei.

Instead, Fig. 5, in which the monopole slope after $J = 16$ stands out, suggests a structure change at 16^+ in ^{88}Ru. The projected shell model also predicts a backbending at $J = 16$ for ^{88}Ru. Moreover, the calculated result A in Table I shows the increase of $\langle n_{1f5/2} \rangle$ and the decrease of $\langle n_{g9/2} \rangle$ at $J = 16$. The same sign remains slightly in $\langle n_{g9/2} \rangle$ of the result B and the sign disappears for the strong QQ force E. As mentioned above, however, the enhanced QQ force of B, C, D and E is more or less too strong for the high-spin states. We can expect that the structural change at $J = 16$ will be observed in ^{88}Ru. This structural change seems to be caused by the simultaneous alignments of proton and neutron pairs at $J = 2 \times (9/2 + 7/2)$, since the strong $2p - 2n$ correlations resist the single alignment of proton or neutron pair. The analysis in Ref. 27, which predicts the simultaneous alignments of proton and neutron pairs at $J = 2 \times (7/2 + 5/2)$ without backbending due to the one-pair alignment in the $1f_{7/2}$ nucleus of ^{48}Cr, supports our conjecture for the $1g_{9/2}$ nucleus. This conjecture is also supported by the backbending toward $J = 16$ observed in ^{90}Ru. In Table I the increase of proton number $(n_{g9/2})$ at $J = 16$ in the results A and B for ^{90}Ru suggests the proton-pair alignment in $1g_{9/2}$ in addition to the neutron-pair alignment at $J = 8$.

C. Effect of the $2d_{5/2}$ orbit

The large deformation on the deformed basis can be interpreted by the mixing of a large number of spherical single-particle orbits. The expansion of the configuration space instead of the enhancement of the QQ force is effective in our spherical shell model. The $2d_{5/2}$ orbit could contribute to the quadrupole correlations, because it strongly couples with the $1g_{9/2}$ orbit which plays a leading role in the Ru isotopes, through the large matrix element $\langle 1g_{9/2} | Q | 2d_{5/2} \rangle$. Adding the $2d_{5/2}$ orbit to the model space $(2p_{3/2}, 1f_{5/2}, 2p_{1/2}, 1g_{9/2})$, unfortunately, makes the number of the shell model basis states too huge. Instead of this, let us examine the contribution of the $2d_{5/2}$ orbit within the truncated space $(2p_{1/2}, 1g_{9/2}, 2d_{5/2})$. This space does not cause the spurious motion of the center of mass, and is expected to work well as the truncated space $(1f_{7/2}, 2p_{3/2})$ without $(2p_{1/2}, 1f_{5/2})$ can explain the main features of the $f_{7/2}$-subshell nuclei because of the large matrix element $\langle 1f_{7/2} | Q | 2p_{3/2} \rangle$ (the Q matrix element becomes large when $\Delta l = \Delta J = 2$). We carried out the shell model calculations using the single-particle energies $\varepsilon_{1/2} = 0$, $\varepsilon_{9/2} = 1.0$ and $\varepsilon_{5/2} = 6.0$ in MeV. The inclusion of $2d_{5/2}$ allows us to use weaker force strengths than those in Eq. 5. In Fig. 6, we replaced the A-dependence $(92/A)^2$ with $(88/A)^2$ for g_0, g_2, χ_2^0 and χ_3^0 in Eq. 6. The results for ^{88}Ru and ^{90}Ru are shown by the dash lines (X) in Fig. 6.

In Fig. 7, the calculated $J - \omega$ graphs agree well with the experimental one observed for the low-lying collective states of ^{88}Ru. The agreement is better than those of B, C and D in Fig. 5. (It is notable that Fig. 7 also predicts the alignment at $J = 16$ in ^{88}Ru.) This suggests that adding the $2d_{5/2}$ orbit to $(2p_{3/2}, 1f_{5/2}, 2p_{1/2}, 1g_{9/2})$ with adjusted force strengths probably improves the calculated results for ^{88}Ru. The collectivity in the expanded space could enhance the quadrupole correlations without strengthening the QQ force. Since the large deformation causes a large admixture of the $2d_{5/2}$ spherical orbit in the deformed Nilsson basis states, the present result is consistent with the prediction of Ref. 4, 17 that the deformation of the $N = Z$ nucleus ^{88}Ru is large (0.23). In contrast to this, the inclusion of $2d_{5/2}$ ruins the $J - \omega$
TABLE III: $B(E2) : J_i \rightarrow J_f$ for the yrast states of 88Ru and 90Ru calculated with the different strengths of the QQ force, A, B, C, D and E. The last column X shows the values obtained in the model space ($2p_{1/2}, 1g_{9/2}, 2d_{5/2}$).

$J_i \rightarrow J_f$	$B(E2) : J_i \rightarrow J_f$ in e^2fm^4	A	B	C	D	E	X
88Ru 2 \rightarrow 0	460 543 536 522 612 510	460	543	536	522	612	510
4 \rightarrow 2	630 730 722 704 832 730	630	730	722	704	832	730
6 \rightarrow 4	672 790 780 758 914 582	672	790	780	758	914	582
8 \rightarrow 6	697 847 833 806 964 601	697	847	833	806	964	601
10 \rightarrow 8	771 897 884 862 999 619	771	897	884	862	999	619
12 \rightarrow 10	775 896 882 859 999 568	775	896	882	859	999	568
14 \rightarrow 12	748 880 866 844 982 532	748	880	866	844	982	532
16 \rightarrow 14	671 853 839 814 962 489	671	853	839	814	962	489
18 \rightarrow 16	622 820 806 782 931 430	622	820	806	782	931	430
20 \rightarrow 18	71 760 748 725 872 348	71	760	748	725	872	348
90Ru 2 \rightarrow 0	296 339 348 339 482 567	296	339	348	339	482	567
4 \rightarrow 2	385 451 466 456 663 793	385	451	466	456	663	793
6 \rightarrow 4	294 388 418 418 698 713	294	388	418	418	698	713
8 \rightarrow 6	235 236 234 234 654 657	235	236	234	234	654	657
10 \rightarrow 8	309 322 325 331 764 673	309	322	325	331	764	673
12 \rightarrow 10	284 290 289 270 501 621	284	290	289	270	501	621
14 \rightarrow 12	257 265 227 210 600 538	257	265	227	210	600	538
16 \rightarrow 14	238 274 296 299 396 440	238	274	296	299	396	440
18 \rightarrow 16	252 275 296 300 597 413	252	275	296	300	597	413
20 \rightarrow 18	191 199 202 205 542 335	191	199	202	205	542	335

TABLE IV: Quadrupole moment $Q(J)$ in e-fm2 for the yrast states of 88Ru and 90Ru calculated with the different strengths of the QQ force, A, B, C, D and E.

J	A	B	C	D	E
88Ru 2	1.4	8.9	8.1	6.3	28.7
4	-1.9	8.1	7.5	5.1	31.0
6	20.1	28.3	27.6	25.7	41.7
8	23.6	30.8	30.2	28.6	41.6
10	26.6	33.3	32.7	31.3	42.1
12	31.1	36.5	36.3	35.2	43.6
14	32.2	37.5	37.2	36.3	43.5
16	26.9	37.6	37.3	35.8	43.6
18	26.8	39.5	38.9	37.6	45.2
20	14.9	43.1	42.5	41.5	47.8

90Ru 2	-12.0	-16.4	-16.7	-15.8	-14.4
4	-16.6	-21.6	-22.5	-21.5	-12.8
6	12.5	5.1	4.7	3.7	15.9
8	15.5	14.3	16.5	16.9	36.0
10	11.5	9.9	11.7	12.2	38.8
12	5.6	5.0	5.6	5.7	53.7
14	-3.6	4.2	6.8	7.7	68.4
16	1.8	4.1	7.4	8.0	36.2
18	-0.7	0.9	3.6	4.5	33.5
20	-4.1	-3.9	-2.7	-2.0	35.7
adding $2d_{5/2}$ to $(2p_{3/2}, 1f_{5/2}, 2p_{1/2}, 1g_{9/2})$ can make the $B(E2)$ values larger, which could be appropriate to the enhanced quadrupole correlations in 88Ru.

The calculated quadrupole moments $Q(J)$ tabulated in Table IV show the same results as the $B(E2)$ values. From Table IV we can say as follows: The small enhancements of the $p - n$ QQ interaction (B and C) change insignificantly the structure of 88Ru and 90Ru, while the strong enhancement of the QQ force by 1.5 times (E) changes the structure of 88Ru drastically. The large and roughly constant Q moments of 88Ru suggest the quadrupole deformation. If the result E should not be adopted for 90Ru, Table IV and the energy levels insist that 90Ru does not have a large deformation.

The calculated $B(E2)$ values and Q moments in Tables III and IV testy the structural change due to the particle pair alignment at 8^+ in 90Ru, in contrast to 88Ru. The $B(E2 : 8^+ \rightarrow 6^+)$ value decreases and Q moment increases at 8^+ in 90Ru, while the two values do not show any abrupt changes at 8^+ in 88Ru. On the other hand, the simultaneous alignments of proton and neutron pairs at 16^+ leave a sign in the $B(E2)$ values and Q moment in the result A both for 88Ru and 90Ru.

IV. PREDICTION FOR 89RU

The 89Ru isotope between 88Ru and 90Ru has not experimentally been observed yet. Our model, however, predicts interesting features of 89Ru. Figure 8 shows the energy levels and relative $B(E2)$ values obtained using the parameter set A for 89Ru. The collective states connected by large $B(E2)$ values are divided into four bands. They are the yrast states except for $15/2^−$ and $31/2^+$.

TABLE V: Expectation values of proton and neutron numbers in the respective orbits for the yrast states of 89Ru calculated with the QQ force strength A. Calculated Q moments are also tabulated.

J	$p_{3/2}$	$f_{5/2}$	$g_{9/2}$	$p_{1/2}$	$f_{5/2}$	$p_{1/2}$	$g_{9/2}$	Q
1/2	3.89	5.79	0.67	5.64	3.93	5.89	1.22	5.95
3/2	3.88	5.79	0.63	5.69	3.92	5.90	1.22	5.96
5/2	3.88	5.79	0.64	5.69	3.94	5.88	1.22	5.96
7/2	3.88	5.78	0.63	5.71	3.92	5.90	1.21	5.96
9/2	3.88	5.78	0.63	5.70	3.94	5.88	1.22	5.96
11/2	3.89	5.79	0.72	5.60	3.92	5.90	1.21	5.97
13/2	3.89	5.79	0.73	5.59	3.93	5.87	1.22	5.97
15/2	3.91	5.82	0.91	5.37	3.93	5.90	1.21	5.96
17/2	3.91	5.81	0.90	5.39	3.94	5.88	1.24	5.94
19/2	3.94	5.89	1.09	5.08	3.98	5.95	1.78	5.29
21/2	3.93	5.91	1.09	5.06	3.98	5.96	1.83	5.24
23/2	3.95	5.89	1.10	5.06	3.98	5.95	1.82	5.24
25/2	3.94	5.92	1.09	5.05	3.98	5.97	1.87	5.18
27/2	3.95	5.89	1.11	5.05	3.98	5.96	1.86	5.19
29/2	3.94	5.93	1.09	5.04	3.99	5.97	1.91	5.13
31/2	3.96	5.90	1.11	5.04	3.99	5.97	1.90	5.14
33/2	3.90	5.80	0.75	5.55	3.95	5.88	1.25	5.92
35/2	3.96	5.90	1.12	5.02	3.99	5.99	1.97	5.06
37/2	3.91	5.81	0.82	5.47	3.96	5.88	1.26	5.90
39/2	3.97	5.91	1.10	5.02	3.99	5.99	1.98	5.04
41/2	3.96	5.96	1.06	5.02	3.99	5.99	1.96	5.06

FIG. 8: Energy levels predicted for 89Ru. The widths of the arrows show the relative $B(E2)$ values.
expectation values of proton and neutron numbers \(\langle n_p \rangle \) for the band-head states \(1/2^- \), \(3/2^- \), \(9/2^+ \) and \(7/2^+ \) of \(^{89}\text{Ru}\) which are tabulated in Table VI. This table shows that the \(1/2^- \) state has more protons in \(1g_{9/2} \) than the \(9/2^+ \) state. From the comparison of Table VI with Tables IV and V, the \(1/2^- \) state resembles the ground state of \(^{88}\text{Ru}\) and the \(9/2^+ \) state resembles the ground state of \(^{90}\text{Ru}\). Roughly speaking, the \(1/2^- \) state is constructed by adding one neutron to \(^{88}\text{Ru}(0^+)\), and the \(9/2^+ \) state by removing one neutron from \(^{90}\text{Ru}(0^+)\). The \(B(E2) \) values of the negative parity bands larger than those of the positive parity bands indicate the stronger collectivity of the negative parity bands. This corresponds to the result shown in Table III that the \(B(E2) \) values of \(^{88}\text{Ru}\) are larger than those of \(^{90}\text{Ru}\). From these comparisons, the difference between the \(1/2^- \) state and the \(9/2^+ \) state can be understood in terms of the \(\alpha \)-like \(2p-2n \) correlations mentioned in the interpretation of the difference between \(^{88}\text{Ru}\) and \(^{90}\text{Ru}\). The strong \(\alpha \)-like \(2p-2n \) correlations pull up more protons to \(1g_{9/2} \) in \(1/2^- \) than in \(9/2^+ \), because the disturbing extra neutron is absent in \(1g_{9/2} \) for the \(1/2^- \) state. The inversion of \(9/2^+ \) and \(1/2^- \) says that the \(\alpha \)-like \(2p-2n \) correlations give a larger energy gain to the \(1/2^- \) state and the larger correlation energy compensates the energy loss of more nucleon jumps to the \(1g_{9/2} \) subshell in \(1/2^- \).

We can expect that the \(\Delta J = 2 \) bands on the \(1/2^- \) and \(9/2^+ \) states are similar to the ground-state bands of \(^{88}\text{Ru}\) and \(^{90}\text{Ru}\), respectively. In fact, the \(J-\omega \) graphs for the two bands N1 and P1 of \(^{89}\text{Ru}\) which are shown in Figs. 9 and 10 are similar to those of \(^{88}\text{Ru}\) and \(^{90}\text{Ru}\) in Figs. 6 and 7. Figure 9 suggests no backbending at \(17/2^- (1/2^-+8) \) in the negative parity band N1, while Fig. 10 predicts a backbending phenomenon at \(25/2^+ (9/2^++8) \) in the positive parity band P1. The backbending at \(25/2^+ \) in the band P1 seems to be caused by the proton pair alignment parallel to the spin of the last odd neutron in \(1g_{9/2} \), corresponding to the neutron pair alignment at \(8^+ \) in \(^{90}\text{Ru}\). The increase of the proton number \(\langle n_{g9/2} \rangle \) at \(25/2^+ \) testifies the proton pair alignment in \(1g_{9/2} \). The small \(B(E2) \) value from \(25/2^+ \) to \(21/2^+ \) and the decrease of the calculated \(Q \) moment at \(25/2^+ \) show the structural change there. The coincident increase of the neutron number \(\langle n_{g9/2} \rangle \) at \(25/2^+ \) gives another evidence of strong \(p-n \) correlations in \(1g_{9/2} \). For the negative parity band N1, the value of \(B(E2: 17/2^- \rightarrow 13/2^-) \) does not show any sign of such a structural change and the expectation values of proton and neutron numbers show no abrupt change, which corresponds to no backbending at \(8^+ \) in \(^{88}\text{Ru}\).

Figure 9 however, predicts backbending at \(33/2^- (1/2^++16) \) in the band N1. The simultaneous increases of proton and neutron numbers \(\langle n_{g9/2} \rangle \) at \(33/2^- \) (see Table V) say that this backbending is due to the simultaneous alignments of proton and neutron pairs \((J = 16) \) in \(1g_{9/2} \), corresponding to the four nucleon alignment in \(^{88}\text{Ru}\). The small value of \(B(E2: 33/2^- \rightarrow 29/2^-) \) and the increase of the \(Q \) moment at \(33/2^- \) testify the structure change. Figure 10 shows a sign of another backbending at \(37/2^+ \) in the band P1, that is possibly the alignment of two protons and three neutrons in \(1g_{9/2} \), corresponding to the alignment at \(16^+ \) in \(^{90}\text{Ru}\). The spin of the last odd neutron is parallel to the spin of rotation or alignment in the band P1.

Figure 11 shows also the \(J-\omega \) graph for the negative parity band N2. This figure with Fig. 5 says that the low-lying collective states \(3/2^- \), \(7/2^- \), \(11/2^- \) and \((15/2)_{J}^- \) of the band N2 and \(5/2^- \), \(9/2^- \), \(13/2^- \) and \(17/2^- \) of the band N1 are the partners in the angular momentum coupling \(1/2^- \otimes J (= J \pm 1/2) \). The similar \(B(E2) \) values and similar \(Q \) moments support the picture. The most remarkable backbending in \(^{89}\text{Ru}\) takes place at the \(19/2^- \) state of the negative parity band N2. The small \(B(E2) \) values from \(19/2^- \) to \((15/2)_{1}^- \), \((15/2)_{2}^- \) and \(17/2^- \) indicate a clear structure change at \(19/2^- \). The \(Q \) moment decreases abruptly at \(19/2^- \). For the \(J \geq 19/2^- \) states

![FIG. 9: The \(J-\omega \) graph for the negative parity bands N1 and N2 of \(^{89}\text{Ru}\). The labels A and C stand for the parameter sets A and C.](image9.jpg)

![FIG. 10: The \(J-\omega \) graph for the positive parity band P1 of \(^{89}\text{Ru}\).](image10.jpg)
of the band N2, the Q moments are nearly constant and so is the slope of $J - \omega$ graph. This phenomenon cannot be explained by the nucleon pair alignment coupled to $J = 8$ ($T = 1$), because the $J = 19/2$ state cannot be constructed by the coupling $1/2 \otimes 8$. If the structure change is due to a kind of alignment, the phenomenon is attributed to the $p - n$ alignment $J = 9$ ($T = 0$).

In 89Ru, the efficient way to construct the $J = 9 p - n$ pair is one proton jump to $1g_{9/2}$. When one $p - n$ pair aligns to $J = 9$ ($T = 0$) in $1g_{9/2}$, another pair which breaks away from the α-like $2p - 2n$ correlations is still possible to join in the monopole ($J = 0$, $T = 1$) pairing correlations, and to couple with the last odd nucleon in $2p_{1/2}$ to the total isospin $T = 1/2$. The decreases of neutron and proton numbers $(n_{9/2})$ at $19/2^{-}$ testify the decline of the α-like $2p - 2n$ correlations due to the breaking away of the $J = 9 p - n$ pair from a $T = 0$ $2p - 2n$ quartet. It should be noted that the disunion of a $T = 0$ $2p - 2n$ quartet to the $T = 0$ and $T = 1$ pairs is prohibited for even-even nuclei. The $T = 0 p - n$ alignment at $19/2^{-}$ seems to be a unique phenomenon in the $1g_{9/2}$-subshell odd-A nuclei with $N = Z \pm 1$ such as 89Ru. (The $T = 0 p - n$ alignment could take place in $N = Z$ odd-odd nuclei.) In this connection, the small $E2$ values from $21/2^{-}$ to $17/2^{-}$ is notable. It suggests that the $p - n$ alignment ($J = 9$, $T = 0$) contributes to the $J \geq 21/2^{-}$ states of the band N1. Actually, the states $21/2^{-}$, $25/2^{-}$ and $29/2^{-}$ of the band N1 resemble the states $23/2^{-}$, $27/2^{-}$ and $31/2^{-}$ of the band N2, with respect to the energy levels, expectation values of nucleon numbers (n_{a}), $B(E2)$ values and Q moments. They could be members of the collective excitations coupled with the three nucleons $2p_{1/2} (1g_{9/2} 1g_{9/2}) J = 9, T = 0$.

The positive parity band P2 shows a rather complicated behavior. The very low-lying $7/2^{+}$ state is apparently related to the state of three nucleons with $J = j - 1$ in a high-spin orbit $j = 8$. The small $B(E2) : 19/2^{+} \rightarrow 15/2^{+}$ value and the abrupt decrease of the Q moment at $19/2^{-}$ testify a structure change at the $19/2^{+}$ state.

V. CONCLUSIONS

We have carried out the shell model calculations on the spherical basis using the extended $P + QQ$ Hamiltonian with a single set of parameters in the model space $(2p_{3/2}, 1f_{5/2}, 2p_{1/2}, 1g_{9/2})$. The calculations reproduce qualitatively well the overall energy levels observed in the Ru isotopes, 88Ru, 90Ru, 91Ru, 92Ru, 93Ru and 94Ru. The extended $P + QQ$ model is confirmed to be useful in the heaviest $N \approx Z$ nuclei. The results testify the enhancement of the quadrupole correlations at the $N = Z$ nucleus 88Ru as compared with the other Ru isotopes.

However, the disagreement between theory and experiment for 88Ru cannot be disregarded. The slope of the $J - \omega$ graph showing the moment of inertia and the durable increase of angular frequency are not sufficiently reproduced for 88Ru with the QQ force strength commonly fixed to all the Ru isotopes. The theoretical analysis suggests a further enhancement of the quadrupole correlations, and recommends us to use a stronger QQ force for 88Ru. We have tried to strengthen the $p - n$ QQ interaction in the two ways so as to conserve and not to conserve the isospin of eigenstates, and also to strengthen all the $p - p$, $n - n$ and $p - n$ parts of the isoscalar QQ force. Within a small enhancement, however, there is little to choose between them in the present calculations. Anyway, the present study indicates a special enhancement of the quadrupole correlations in the $N = Z$ nucleus 88Ru. This is consistent with the large deformation of 88Ru in contrast to 90Ru which is predicted by the projected shell model calculation on the deformed basis.

The requirement of the enhanced QQ force for 88Ru possibly means that the configuration space should be extended in our spherical shell model. We have investigated the contribution of the $2d_{5/2}$ orbit which is expected to mix with the $1g_{9/2}$ orbit through the large Q matrix element. The truncated space $(2p_{1/2}, 1g_{9/2}, 2d_{5/2})$ can easily reproduce the slope of $J - \omega$ graph observed in 88Ru. The result suggests that the $2d_{5/2}$ orbit contributes to the quadrupole correlations, which supports that 88Ru is deformed. Contrary to this, the same calculation requires a much smaller contribution of the $2d_{5/2}$ orbit to 90Ru. It is, therefore, likely that 88Ru is deformed while 90Ru is not largely deformed as known from the observed $J - \omega$ graphs. This situation still demands different QQ force strengths for 88Ru and 90Ru in our spherical shell model calculation. There is not a selfconsistent way to determine the QQ force strength. An additional constraint, for instance with respect to the Q moment value, is necessary for it. The condition is the same for the treatment on the deformed basis. The deformation should be selfconsistently determined there.

Our model with a single set of parameters, however, is capable of describing the difference between 88Ru and 90Ru. The calculations have presented a useful knowledge of the structure of Ru isotopes. The contrast features of 88Ru and 90Ru owe to the α-like ($T = 0$) $2p - 2n$ correlations depending on the shell structure in the $1g_{9/2}$ subshell nuclei. In the 90Ru isotope with one extra neutron pair which does not join in the α-like $2p - 2n$ correlations, the extra neutron pair aligns easily to $J = 9/2 + 7/2 = 8$ ($T = 1$) in $1g_{9/2}$. In contrast to this, the α-like ($T = 0$) $2p - 2n$ correlations hinder the single nucleon-pair alignment coupled to $J = 8$ ($T = 1$) till the simultaneous alignments of proton and neutron pairs at $J = 2 \times 8 = 0$, in the $N = Z$ even-even nucleus 88Ru.

The shell structure produces characteristic bands with opposite parities in 89Ru. The following predictions are obtained for 89Ru: The $1/2^{-}$ state is the ground state. There are three characteristic bands. The negative parity band N1 on $1/2^{-}$, which resembles the ground-state band of 88Ru, shows backbending at $33/2^{-}$ caused by the simultaneous alignments of proton and neutron pairs.
coupled to $J = 16$ in $1g_9/2$. The $J \leq 15/2^-$ states of another negative parity band $N2$ on $3/2^-$ are the partners of the $J \leq 17/2^-$ states of the band $N1$. The band $N2$ shows a unique backbending at $19/2^-$ caused by the $p-n$ pair alignment coupled to $J = 9 (T = 0)$ in $1g_9/2$. The positive parity band $P1$ on $9/2^+$, which resembles the ground-state band of ^{90}Ru, displays backbending due to the proton pair alignment $J = 8 (T = 1)$ parallel to the spin of the last odd neutron in $1g_9/2$. These predictions wait for experimental examinations.

[1] G. de Angelis et al., Phys. Lett. B 415, 217 (1997).
[2] S. M. Fischer et al., Phys. Rev. Lett 87, 132501 (2001).
[3] N. Mărginean et al., Phys. Rev. C 63, 031303(R) (2001).
[4] N. Mărginean et al., Phys. Rev. C 65, 051303(R) (2002).
[5] A. L. Goodman, Adv. Nucl. Phys. 11, 263 (1979).
[6] T. Marumori and K. Suzuki, Nucl. Phys. A 106, 610 (1968).
[7] M. Danos and V. Gillet, Phys. Lett B 34, 24 (1971); Z. Phys. 249, 294 (1972).
[8] A. Arima and V. Gillet, Ann. of Phys. 66, 117 (1971).
[9] S. Frauendorf and J.A. Sheikh, Nucl. Phys. A 645, 509 (1999); Phys.Rev C 59, 1400 (1999); Phys. Scr. T 88, 162 (2000).
[10] K. Kaneko and J.-Y. Zhang, Phys. Rev. C 57, 1732 (1998).
[11] K. Kaneko and M. Hasegawa, Phys. Rev. C 60, 024301 (1999); Prog. Theor. Phys. 106, 1179 (2001).
[12] J.A. Sheikh and R. Wyss, Phys. Rev. C 62, 051302(R) (1999).
[13] W. Satula and R. Wyss, Phys. Lett. B 393, 1 (1999).
[14] R. Wyss and W. Satula, Acta Phys. Pol. A 32, 2457 (2001).
[15] Y. Sun and J. A. Sheikh, Phys. Rev. C 64, 031302(R) (2001).
[16] Y. Sun, arXiv: nucl-th/0211043
[17] K. Hara and Y. Sun, Int. J. Mod. Phys. E 4, 637 (1995).
[18] Y. Sun and K. Hara, Comput. Phys. Commun 104, 245 (1997).
[19] M. Hasegawa and K. Kaneko, Phys. Rev. C 59, 1449 (1999).
[20] M. Hasegawa, K. Kaneko and S. Tazaki, Nucl. Phys. A 674, 411 (2000); 688, 765 (2001).
[21] K. Kaneko, M. Hasegawa and T. Mizusaki, Phys. Rev. C 66, 51306(R) (2002).
[22] T. Mizusaki, RIKEN Accel. Prog. Rep. 33, 14 (2000).
[23] F. J. D. Serduke, P. D. Lawson and D. H. Hloeckner, Nucl. Phys. A 256, 45 (1976).
[24] H. Herndl and B. A. Brown, Nucl. Phys. A 627, 35 (1997).
[25] M. Hasegawa and K. Kaneko, Phys. Rev. C 61, 037306 (2000).
[26] M. Hasegawa, S. Tazaki and R. Okamoto, Nucl. Phys. A 592, 45 (1995).
[27] K. Hara, Y. Sun and T. Mizusaki, Phys. Rev. Lett 83, 1921 (1999).
[28] G. Martinez-Pinedo, A. P. Zuker, A. Poves and E. Caurier, Phys. Rev. C 55, R187 (1997).
[29] A. P. Zuker, J. Retamosa, A. Poves and E. Caurier, Phys. Rev. C 52, R1741 (1995).
[30] A. Bohr and B. R. Mottelson., Nuclear Structure, (W. A. Benjamin INC, Reading, 1975), Vol. II, p540.