Transcriptional profiling of *Actinobacillus pleuropneumoniae* under iron-restricted conditions

Vincent Deslandes¹,⁴, John HE Nash²,⁴, Josée Harel¹,⁴, James W Coulton³,⁴ and Mario Jacques*¹,⁴

Address: ¹Groupe de Recherche sur les Maladies Infectieuses du Porc, Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec, J2S 7C6, Canada, ²Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, K1A 0R6, Canada, ³Department of Microbiology and Immunology, McGill University, Montréal, Québec, H3A 2B4, Canada and ⁴Canadian Research Network on Bacterial Pathogens of Swine (SIDNet), St-Hyacinthe, Québec, Canada

Email: Vincent Deslandes - vincent.deslandes@umontreal.ca; John HE Nash - john.nash@nrc-cnrc.gc.ca; Josée Harel - josee.harel@umontreal.ca; James W Coulton - james.coulton@mcgill.ca; Mario Jacques* - mario.jacques@umontreal.ca

* Corresponding author

Abstract

Background: To better understand effects of iron restriction on *Actinobacillus pleuropneumoniae* and to identify new potential vaccine targets, we conducted transcript profiling studies using a DNA microarray containing all 2025 ORFs of the genome of *A. pleuropneumoniae* serotype 5b strain L20. This is the first study involving the use of microarray technology to monitor the transcriptome of *A. pleuropneumoniae* grown under iron restriction.

Results: Upon comparing growth of this pathogen in iron-sufficient versus iron-depleted medium, 210 genes were identified as being differentially expressed. Some genes (92) were identified as being up-regulated; many have confirmed or putative roles in iron acquisition, such as the genes coding for two TonB energy-transducing proteins and the hemoglobin receptor HgbA. Transcript profiling also led to identification of some new iron acquisition systems of *A. pleuropneumoniae*. Genes coding for a possible Yfe system (*yfeABCD*), implicated in the acquisition of chelated iron, were detected, as well as genes coding for a putative enterobactin-type siderophore receptor system. ORFs for homologs of the HmbR system of *Neisseria meningitidis* involved in iron acquisition from hemoglobin were significantly up-regulated. Down-regulated genes included many that encode proteins containing Fe-S clusters or that use heme as a cofactor. Supplementation of the culture medium with exogenous iron re-established the expression level of these genes.

Conclusion: We have used transcriptional profiling to generate a list of genes showing differential expression during iron restriction. This strategy enabled us to gain a better understanding of the metabolic changes occurring in response to this stress. Many new potential iron acquisition systems were identified, and further studies will have to be conducted to establish their role during iron restriction.
Background

Actinobacillus pleuropneumoniae, etiological agent of porcine pleuropneumonia, causes great commercial losses to the swine industry worldwide [1]. Transmission of this highly contagious disease that affects pigs of all ages occurs mostly by aerosol and close contact with infected animals [2]. During 24 to 48 hours of the acute phase of the disease, formation of extensive and fibrinohemorrhagic lung lesions is often fatal. Animals that survive the disease may become asymptomatic carriers of the bacteria, developing localized and necrotizing lesions associated with pleuritis [3]. Based on differences of capsular polysaccharides, fifteen serotypes have been identified: serotypes 1 to 12 and 15 belong to biotype 1, which is NAD-dependent; serotypes 13 and 14 are classified in the biotype 2, which is NAD-independent [4]. In North America, serotypes 1, 5 and 7 are prevalent, while serotypes 2 and 9 are most commonly found in Europe.

Despite many years of research, the total complement of bacterial components that are involved in infection by *A. pleuropneumoniae* has yet to be identified. Several virulence factors have been proposed: capsular polysaccharides, lipopolysaccharides (LPS), Apx toxins and various iron acquisitions systems [2]. However, the overall contribution of each component to the infection process remains unclear. Although less virulent, an acapsular mutant was still serum-resistant, showed higher adhesion to piglet tracheal frozen sections and could still be re-isolated from lungs of infected animals [5]. LPS apparently plays a role in adhesion in *vivo*, as these molecules show in *vitro* adhesion to many biological components [4]. The Apx toxins contribute to development of lesions typically associated with the disease [6] and mutants missing Apx toxins are avirulent in pigs and mice [7]. However, different *A. pleuropneumoniae* serotypes secrete different sets of Apx toxins, and the relative contribution of the four different Apx toxins (Apx1 to IV) is still not clear.

Low availability of iron in the host represents a major stress for bacterial pathogens and is considered a signal that leads to significant changes in cell processes. Iron atoms are often linked with sulphur in Fe-S clusters in the catalytic core of enzymes involved in diverse functions such as respiration, ATP generation, and DNA replication and repair, which might account for this phenomenon. Iron is an essential element for almost every living organism. However in the host, molecules such as transferrin, lactoferrin, haptoglobin and hemoglobin in extra-cellular fluids bind free iron and iron-containing molecules very tightly [8]. While bacteria generally need free iron concentrations of about 10^{-7} M, its concentration may be 10^{-24} M in the mammalian host [9]. To counteract the effect of these iron-withholding mechanisms of the host, bacteria have evolved different iron acquisition systems, often relying on the secretion of siderophores, small (<1000 Da) molecules with high affinity for iron, or on surface receptors specific for iron-containing host proteins [10]. Studies in our laboratory have led to the identification, expression and characterization of the *A. pleuropneumoniae* hydroxamate siderophore receptor FhuA [11,12] and a hemoglobin binding receptor HgbA [13]. *A. pleuropneumoniae* also possesses a transferrin receptor complex composed of two outer membrane (OM) proteins: a 100 kDa TbpA may form a transmembrane channel enabling transport of iron across the OM; a 60 kDa lipoprotein TbpB acts as an auxiliary molecule [2,14,15]. Energization of these OM transporters relies on the transduction of the proton motive force from the cytoplasmic membrane (CM) by the TonB-ExbB-ExbD complex [16] that is anchored in the CM and spans the periplasm. In *A. pleuropneumoniae*, two different TonB systems have been identified: genes *tonB1-exbB1-exbD1* are transcriptionally linked to the *tbpA-tbpB* genes [17]; and a second system with genes *tonB-exbB2-exbD2* was also identified [18]. Transport of iron across the CM is apparently accomplished by the AfuABC ABC transporter [19]. It has also been shown that *A. pleuropneumoniae* can use exogenous siderophores and may be able to secrete an iron chelator in response to iron stress [20].

The ferric uptake regulator Fur protein has been identified in many pathogenic bacteria, including *A. pleuropneumoniae* [21]. Using Fe^{2+} as a cofactor, the Fur protein can interact with a specific sequence termed the Fur box in the promoter region of genes implicated in iron acquisition processes, thereby repressing transcription. When iron becomes scarce, the Fur protein loses its cofactor and becomes inactive. The fact that transcription of some genes seems to be under positive control of active Fur protein [22,23] was recently explained by the discovery of RyhB, a small non-coding RNA which belongs to the Fur regulon [24]. When transcribed, the RyhB RNA down-regulates the mRNA level of those genes that seemed to be positively regulated by Fur.

To better understand the mechanisms used by *A. pleuropneumoniae* that address iron restriction and to gain insights into strategies used by this pathogen under conditions mimicking the *vivo* environment, we evaluated gene expression profiles of *A. pleuropneumoniae* grown under iron restriction. Our study identified 210 differentially expressed genes, of which 92 are up-regulated. Within the latter set, components of previously unrecognized iron acquisition systems were identified: a putative enterochelin-like siderophore receptor, a potential Yfe system for the acquisition of chelated iron, a putative hemoglobin acquisition system homologous to the *N. meningitidis* HmbR system, and a putative Fe^{2+}-specific porin system.
Results and Discussion

Microarray analysis of mRNA levels during growth of A. pleuropneumoniae under iron-restricted conditions
To assess the response of A. pleuropneumoniae to iron restriction, the reference strain S4074 was grown in BHI broth containing 50 μg/ml EDDHA, a concentration sufficient to cause iron restriction [11]. This strain was chosen because it is the strain that has been the most studied over time, but also because major problems were encountered with RNA extraction from strain L20. Preliminary CGH studies conducted in our lab showed that 95% of the genes of the A. pleuropneumoniae 5b L20 genome are conserved between both strains. Growth curves established the optimum growth phase for RNA extraction (data not shown). At 50 μg/ml of EDDHA, bacterial growth is almost completely inhibited within an hour of addition. By adding the iron chelator at an optical density of 0.1, iron-restricted cultures and iron-rich cultures were harvested concurrently at an optical density of 0.3. Under these growth conditions, we identified 210 differentially expressed genes, with an estimated false discovery rate (FDR) of 3.22%: 118 were down-regulated (Table 1) and 92 were up-regulated (Table 2). In order to confirm that these variations were not caused by the chelator, control experiments where iron was supplemented to the restricted medium were conducted. Exogenous iron, in the form of FeCl₃, was added to a final concentration of 50 μg/ml to the iron-depleted medium. Growth curves indicated that this concentration of FeCl₃ was sufficient to promote growth at a similar level as in the BHI broth. Under these conditions, the expression pattern was highly similar to that seen in BHI broth: we identified only 30 differentially expressed genes, out of 2025, with an estimated FDR of 2.5%, 26 of which were up-regulated, while only 4 were down-regulated (data not shown). Only 12 genes significantly differentially expressed in the iron-supplemented medium were identified as such in the iron-depleted versus BHI broth experiment, but with reversed levels of variation. Gene illdD (ap2032), which was up-regulated in the iron-depleted medium, was down-regulated in the iron-supplemented medium. Conversely, 11 genes that were down-regulated in the iron-depleted medium were up-regulated in the iron-supplemented medium. This indicates that the results obtained in the iron-depleted versus BHI broth experiment can be attributed to iron restriction, and not to another effect of the chelator.

Validation of microarray results by qRT-PCR
Seventeen genes, representing a wide range of log₂ ratio values, were selected for transcript level analysis using qRT-PCR. Seven genes were overexpressed during iron restriction (tonB1, hgbA, omp64, fetB2, apxIC, PM0741, NMB1668); eight genes were repressed (nrfA, nrfC, nrfE, ompW, dcaB2, dmsA, torA, ccmC); two genes were not affected (pedD, ap1465). We also investigated the transcript level of the exbB1, exbD1 and tbpA genes, all known to be transcriptionally linked to tonB1 [17] and previously used as positive controls to assess iron restriction [12]. However, they were not present on the AppChip1 as this region of the genome was in one of the few unsequenced areas when the microarrays were designed. In all cases, genes that had been identified as up- or down-regulated with the microarrays were confirmed by the qRT-PCR experiments. The exbB1, exbD1 and tbpA genes were also up-regulated. Genes not affected showed low level of variation during qRT-PCR analysis, and show good correlation with other results (Fig. 1). Overall, there was good correlation between the log₂ ratios measured by microarray and log₂ ratios from qRT-PCR data (R² = 0.87). The log₂ ratios observed with qRT-PCR were usually superior to those observed with the microarray. This outcome has been observed before [25,26] and probably reflects the detection limit of microarrays as well as the complex normalization methods that are used prior to the analysis.

Genes expressed differentially under iron restriction
To evaluate the effect of iron restriction on the porcine pathogen A. pleuropneumoniae, we performed microarray hybridization experiments. Given that iron plays a vital role in metabolic pathways through its presence in the structure of numerous enzymes [27] and its implication in the regulation of genes associated with virulence [28], we recorded important changes in the transcriptome of the bacteria under iron-restricted conditions. A total of 210 genes showed differential expression and the functional classification of these genes provides a significant overview of changes occurring in the bacteria. Numerous microarray studies have investigated effects of iron restriction in many different pathogens, including E. coli [29], H. pylori [30], H. parasuis [31], N. gonorrhoeae [25], N. meningitidis [32], as well as Pasteurella multocida [33], a well known animal pathogen closely related to A. pleuropneumoniae. Many genes that were identified as being iron-regulated in the P. multocida study were homologs of some genes that were also identified in our study (Table 3), thus emphasizing the importance of their regulation during iron restriction. A common feature in all these studies is the high induction of genes related to iron acquisition as the products of these genes are essential for survival of the bacteria.

(i) Down-regulated genes
Down-regulated genes (Fig. 2) mostly belong to the functional class termed “Energy Metabolism”; 42 of the 118 repressed genes (35%) belong to this group, and they are amongst the most highly repressed. Almost all these genes encode proteins with Fe-S clusters, that use heme molecules as cofactors, or that are activated by Fe²⁺ or other divalent cations. These include genes coding for the different subunits of formate dehydrogenase (bisC, hybA, fahE),
Table 1: A. pleuropneumoniae genes which are down-regulated during iron restriction

Gene ID	Gene	Description	Fold Change
ap0497	engA	putative GTP binding protein	-2.27
ap0491	glnE	Unknown	-1.98
ap1365	smrB	uncharacterized conserved protein	-1.85
ap1538	traC	conserved hypothetical protein	-1.72
ap0677	nfnB	putative nitroreductase, FMN-dependent	-1.70
ap1779	mscL	conserved hypothetical protein	-1.69
ap0802	der	conserved hypothetical protein, distant homolog of PhoU	-1.58
ap0787	cdsA	putative transcriptional regulator	-1.54
ap0685	mic	protein of unknown function	-1.53
ap1297*	sspA	predicted iron-dependent peroxidase	-1.53
ap0973	abgB	possible metal dependent peptidase, unclassified	-1.48
ap1405	nth	possible sodium/sulphate transporter	-1.41
ap1725	mviN	uncharacterized membrane protein, putative virulence factor	-1.38
ap0622	dxr	conserved hypothetical protein, distant homolog of PhoU	-1.53
ap0787	engA	putative GTP binding protein	-2.27
ap1624	menA	1,4-dihydroxy-2-naphthoate octaphenyltransferase	-1.57
ap1131	hemC	porphobilinogen deaminase	-1.47
ap0447	hemA	glutamyl-tRNA reductase	-1.40
ap1080	hemN	oxygen-independent corrinoid porphyrinogen III oxidase	-1.40
ap2005	menB	naphthoate synthase	-1.39
ap1684	spH	hydroxymethylbutenyl pyrophosphate reductase	-1.37
ap2023	-	4-hydroxybenzoate synthetase	-1.31

Biosynthesis of cofactors

Gene ID	Gene	Description	Fold Change
ap0684	boAD	probable dethiobiotin synthetase	-3.49
ap1624	menA	1,4-dihydroxy-2-naphthoate octaphenyltransferase	-1.57
ap1131	hemC	porphobilinogen deaminase	-1.47
ap0447	hemA	glutamyl-tRNA reductase	-1.40
ap1080	hemN	oxygen-independent corrinoid porphyrinogen III oxidase	-1.40
ap2005	menB	naphthoate synthase	-1.39
ap1684	spH	hydroxymethylbutenyl pyrophosphate reductase	-1.37
ap2023	-	4-hydroxybenzoate synthetase	-1.31

Energy Metabolism

Gene ID	Gene	Description	Fold Change
ap0108*	nrfA	nitrate reductase cytochrome c552	-10.48
ap1694*	frdA	fumarate reductase flavoprotein subunit	-9.20
ap1693*	frdB	fumarate reductase iron-sulfur protein	-7.86
ap1536	ccr	cytochrome C peroxidase	-6.61
ap0764*	torY	nitrate/TMAO reductase, tetraheme cytochrome C subunit	-6.27
ap0996*	bisC	nitrate-inducible formate dehydrogenase-N subunit	-5.68
ap0997*	bisC	nitrate-inducible formate dehydrogenase-N subunit	-5.40
ap0762*	torZ	trimethylamine-N-oxide reductase 2	-5.23
ap0998*	hybA	formate dehydrogenase β subunit	-5.23
ap0498*	ykgF	putative Fe-S electron transport protein	-4.78
ap1692*	frdC	fumarate reductase 15 kD hydrophobic protein	-4.67
ap1937	fumC	fumarate hydratase class II	-4.45
ap0499*	ykgE	conserved putative dehydrogenase, Fe-S oxidoreductase	-4.38
ap1132*	adhZ2	alcool dehydrogenase 2 dehydrogenase	-3.36
ap1163*	pflB	formate acetyltransferase	-3.01
ap1221	aspA	aspartate ammonia-lyase	-2.78
ap1848*	dmaA	dimethyl sulfoxide reductase	-2.73
ap1222	aspA	aspartate ammonia-lyase	-2.69
ap0110*	nrfC	nitrate reductase, Fe-S protein	-2.63
ap0380	gplB	1,4-β-glucan branching enzyme	-2.55
Table 1: *A. pleuropneumoniae* genes which are down-regulated during iron restriction (Continued)

Gene	Description	Log2 Ratio
ap0414	gkpK, putative glycerol kinase	-2.29
ap109*	nrfB, nitrate reductase, cytochrome C-type protein	-2.25
ap1255	pfaA, Phosphofructokinase	-2.20
ap1486*	hyaA, Ni-Fe hydrogenase I small subunit	-2.09
ap1525*	ccmF, cytochrome C-type biogenesis protein	-1.98
ap1181*	nfeE, cytochrome c-type biogenesis protein	-1.88
ap0418*	glbA, anaerobic glycerol-3-phosphate dehydrogenase, subunit A	-1.76
ap0958*	sdaA, L-serine dehydrogenase	-1.75
ap0420*	glbC, anaerobic glycerol-3-phosphate dehydrogenase, subunit C	-1.72
ap1979	torA, trimethylamine oxidoreductase precursor	-1.70
ap1528*	ccmC, cytochrome C-type biogenesis protein	-1.69
ap1000*	fdhE, formate dehydrogenase formation protein	-1.62
ap0328*	cydB, cytochrome D ubiquinol oxidase subunit I	-1.61
ap1588*	napF, ferredoxin-type protein	-1.55
ap1402	pbg, phosphoglycerate kinase	-1.55
ap1585*	tarC, nitrate/TMAO reductase, tetraheme cytochrome C subunit	-1.53
ap0089	dAK1, dihydroxyacetone kinase	-1.51
ap0541	maeA, malate oxidoreductase	-1.46
ap0326*	cydA, cytochrome D ubiquinol oxidase subunit I	-1.45
ap0484	gapA, glyceraldehyde-3-phosphate dehydrogenase	-1.35
ap1822	atpH, ATP synthase δ chain	-1.28
ap1116	gapK, Galactokinase	-1.26

Transport and binding proteins: cations and iron

Gene	Description	Log2 Ratio
ap0169*	aopA, NADH-ubiquinone oxidoreductase, Na⁺-translocating A subunit (nqrA)	-2.38
ap0354	nhaB, Na⁺/H⁺ antiporter protein	-2.14
ap0170*	nqrB, NADH dehydrogenase, Na⁺-translocating B subunit	-2.09
ap0172*	nqrD, NADH-ubiquinone oxidoreductase, Na⁺-translocating D subunit	-2.05
ap0171*	nqrC, NADH-ubiquinone oxidoreductase, Na⁺-translocating C subunit	-2.02
ap1972	nodR, putative periplasmic binding protein, ABC metal ion uptake	-1.61
ap0173*	nqrE, NADH-ubiquinone oxidoreductase, Na⁺-translocating E subunit	-1.52

Transport and binding proteins: others

Gene	Description	Log2 Ratio
ap1470	dcuB2, anaerobic C4-dicarboxylate membrane transporter	-5.81
ap0416	glbT, glycerol-3-phosphate transporter	-4.71
ap1835	manX, PTS system enzyme IIAB, mannose specific	-2.28
ap1548	mMT1, PTS system mannose-specific EIiAB component	-1.83
ap1473	ptsB, PTS system, sucrose-specific IIIBC component,	-1.67
ap1477	ptsH, PTS system phosphocarrier protein HPr	-1.65
ap1620	gglF, glycerol uptake facilitator	-1.56
ap1164	focA, probable formate transporter	-1.54
ap0924	cydC, ABC transporter involved in cytochrome bd biosynthesis	-1.51
ap1833	hss, PTS system component IID, mannose specific	-1.48
ap1580	rhsB, galactose ABC transporter, periplasmic binding protein	-1.48
ap0886	sapC, peptide transport system permease protein	-1.39
ap1698	dcuB1, anaerobic C4-dicarboxylate transporter	-1.38
ap2065	mscS, small-conductance mechanosensitive channel	-1.37
ap1367	PM0514, permease of unknown function	-1.34
ap1478	ptsI, phosphoenolpyruvate PTS system enzyme I	-1.32
ap1463	proP, permease of the major facilitator superfamily	-1.32
ap1507	artQ, arginine transport system permease protein	-1.22
Table 1: *A. pleuropneumoniae* genes which are down-regulated during iron restriction (Continued)

Purines, pyrimidines, nucleosides and nucleotides	ap2022	udp	uridine phosphorylase	-2.21
	ap1237	purT	phosphoribosylglycinamide formyltransferase 2	-1.67
	ap0154	pyrG	CTP synthase	-1.54
	ap1922	cdpC	2’,3’-cyclic-nucleotide 2’-phosphodiesterase	-1.46
	ap0862	pyrD	dihydroorotate dehydrogenase	-1.42
	ap1204	purA	adenylsuccinate synthetase	-1.37
	ap0863	prsA	ribose-phosphate pyrophosphokinase	-1.34
	ap0729	purE	phosphoribosylaminomimidazole carboxylase catalytic subunit	-1.33

Regulatory functions	ap1392	ansB	probable carbon starvation protein A, membrane bound	-2.59
	ap1803	glpR	transcriptional regulator of sugars metabolism	-1.51
	ap1048	baeS	sensory transduction histidine kinase	-1.36

Protein fate	ap1485*	hypF	Ni-Fe hydrogenase maturation protein	-2.39
	ap2081	lgt	prolipoprotein diacylglycerol transferase	-1.58
	ap0428	pepB	peptidase B	-1.38

Protein synthesis	ap0241	thrS	threonyl-tRNA synthetase	-1.40

Cellular processes	ap0725	uspA	universal stress protein A	-1.59
	ap0333	tolB	colicin tolerance protein	-1.29

Cell envelope	ap1215	ompW	outer membrane protein W	-10.00
	ap1156	rplK	COGS039: exopolysaccharide biosynthesis protein	-1.32
	ap0021	HII139	UDP-N-acetylmuramate-alanine ligase (murC)	-1.23
	ap1154	ushA	glycosyltransferase involved in LPS biosynthesis	-1.19

Fatty acids and phospholipids metabolism	ap2049	accC	biotin carboxylase	-1.24
Amino acids biosynthesis	ap0351	OBI054	putative methionine synthase	-1.55

DNA metabolism	ap1336	-	putative hsdR, type I site-specific restriction-modification system, R subunit	-1.54
	ap0703	aIA-hsdM	type I restriction-modification system methylase subunit	-1.41
	ap1247	recQ	ATP-dependent DNA helicase	-1.21

Central intermediary metabolism	ap1787	ureC	urease α subunit	-1.45
	ap1785	ureE	metallochaperone for urease	-1.22

* Genes coding for iron-containing proteins or proteins using Fe^{2+} as a cofactor.
Table 2: *A. pleuropneumoniae* genes which are up-regulated during iron restriction

Gene ID	Gene Description	Fold Change
Hypothetical/Unclassified/Unknown		
ap2147+	possible N-methylhydantoinase B/acetone carboxylase, α subunit	6.22
ap0740 -	predicted iron-dependent peroxidase	3.56
ap2196 PM151S	protein of unknown function	3.40
ap0741+	predicted high-affinity Fe2+/Pb2+ permease	3.06
ap2146 -	possible N-methylhydantoinase B/acetone carboxylase, α subunit	2.88
ap0739+ ccrA1	predicted periplasmic protein involved in iron transport	2.69
ap2014 rpmJ1	conserved hypothetical protein	2.01
ap0286 nagB	conserved hypothetical protein	1.85
ap1686 aroJ	conserved hypothetical protein	1.84
ap2182 rpsU	conserved hypothetical protein	1.83
ap2207 PM1452	protein of unknown function	1.63
ap0035 -	hypothetical protein	1.62
ap1927 -	outer membrane lipoprotein A	1.59
ap1436 NMA1782	conserved hypothetical protein	1.57
ap0755 aroA	conserved hypothetical protein	1.55
ap0874 -	hypothetical protein	1.54
ap0143 rplI	HIT-like protein	1.51
ap0056 typA	predicted membrane GTPase involved in stress response	1.51
ap1364 add	conserved hypothetical protein	1.49
ap1252 icc	conserved putative lipoprotein	1.45
ap0371 yrbK	conserved hypothetical protein	1.43
ap0478 H10719	conserved hypothetical protein	1.43
ap1444 fimD	conserved hypothetical protein	1.43
ap1598 slyD	hypothetical protein	1.41
ap0907 H1126S	conserved hypothetical protein	1.41
ap0375 firA	conserved hypothetical protein	1.39
ap0079 comF	conserved glutaredoxin-like protein	1.37
ap0329 mlc	conserved hypothetical protein	1.36
ap1664 H11720	conserved hypothetical protein	1.34
ap0059 dnaQ	uncharacterized stress-induced protein	1.30
ap1172 PM1281	predicted permease	1.30
ap0324 ureF	conserved hypothetical protein	1.16

Biosynthesis of cofactors

Gene ID	Gene Description	Fold Change
ap0423 ribB	riboflavin synthase α subunit	1.59
ap0422 ribG	riboflavin-specific deaminase	1.43
ap0947 lcA	putative oxygen-independent coproporphyrinogen III oxidase (HemN)	1.37
ap1036 fdx2	ferredoxin	1.35
Table 2: *A. pleuropneumoniae* genes which are up-regulated during iron restriction (Continued)

Energy metabolism

Gene	Description	Log2 Ratio	
ap2032	IdhD	l-lactate dehydrogenase	4.98
ap1733	xylB	probable L-xylulose kinase (L-xylulokinase)	3.04
ap1424	ndh	NADH dehydrogenase	1.86
ap1363	ffdA	flavodoxin	1.61

Transport and binding proteins: cations and iron

Gene	Description	Log2 Ratio	
ap1740*	tonB1	energy transducing protein	8.71
ap2142*	PM0741	outer membrane protein, Fe transport, hemoglobin	6.15
ap1175*	hgbA	hemoglobin-binding protein precursor	5.89
ap1176*	hgbA	hemoglobin-binding protein precursor	5.45
ap2144*	NMB1668	hemoglobin receptor	4.78
ap1177+	hugZ	heme utilization protein	4.14
ap0295*	yfeA	iron (chelated) ABC transporter, periplasmic-binding protein	3.88
ap2143*	PM0741	outer membrane protein, Fe transport, haemoglobin	3.66
ap0296*	yfeA	iron (chelated) ABC transporter, periplasmic-binding protein	3.55
ap1453*	omp64	outer membrane protein, TonB dependent receptor	3.09
ap0294*	yfeB	iron (chelated) transporter, ATP-binding protein	2.98
ap2145*	NMB1668	hemoglobin receptor	2.85
ap0300*	omp64	outer membrane protein, TonB dependent receptor	2.07
ap0301*	omp64	outer membrane protein, TonB dependent receptor	1.93
ap0797*	fetB2	putative ferric enterobactin transporter binding protein	1.76
ap0796*	fetB2	putative ferric enterobactin transporter binding protein	1.60
ap0082*	tonB2	energy transducing protein	1.57
ap0801*	NMB1993	iron(III) ABC transporter, ATP-binding protein	1.49
ap0144*	yfeD	iron (chelated) transport system, membrane protein	1.47
ap0145*	yfeC	iron (chelated) transport system, membrane protein	1.38

Transport and binding proteins: others

Gene	Description	Log2 Ratio	
ap1437	NMA0994	putative periplasmic protein	1.58

Regulatory functions

Gene	Description	Log2 Ratio	
ap0726	hlyX	FNR-like transcriptional regulator	2.63
ap0652	HI0893	transcriptional repressor Bm3R1	1.24

Protein fate

Gene	Description	Log2 Ratio	
ap0399	ssa1	subtilisin-like serine protease	2.36
ap0400	ssa1	subtilisin-like serine protease	2.22
ap0401	ssa1	subtilisin-like serine protease	2.01
ap1887	def	peptide deformylase	1.64
ap1432	clpP	ATP-dependent Clp protease	1.54
Table 2: A. pleuropneumoniae genes which are up-regulated during iron restriction (Continued)

Gene	Function	Log2 Ratio
ap1160	prIC oligopeptidase A	1.39
ap1134	mopB heat-shock 10 protein GroES	1.36
ap1431	clpX ATP-dependent Clp protease, ATP-binding ClpX subunit	1.20

Protein synthesis

Gene	Function	Log2 Ratio
ap0337	tdk probable tRNA-dihydrouridine synthase C	1.95
ap1295	posDI probable pseudo-uridine synthase	1.35
ap1895	rplK 50S ribosomal protein L11	1.32
ap1305	rplL 50S ribosomal protein L9	1.31
ap1253	nuD pseudo-uridine synthase	1.24
ap1666	valS valyl-tRNA synthetase	1.22

Cellular processes

Gene	Function	Log2 Ratio
ap0168	napC transformation locus protein OrfG	1.62
ap1505	HI1275 tellurite resistance protein TehB	1.61
ap1606	apxIC RTX-1 toxin determinant	1.57
ap0688	ftsK cell division protein FtsK	1.27
ap0025	ftsA cell division protein FtsA	1.22

Cell envelope

Gene	Function	Log2 Ratio
ap0466	mreB similar to rod shape-determining protein MreB	1.33
ap0507	lapB putative membrane protein, virK family member	1.30

Fatty acids and phospholipids metabolism

Gene	Function	Log2 Ratio
ap1649	accA acetyl-CoA carboxylase carboxyl transferase α subunit	1.38

Amino acids biosynthesis

Gene	Function	Log2 Ratio
ap2037	ilvC ketol-acid reductoisomerase	2.38
ap1566	gshA putative glutathione biosynthesis bifunctionnal protein	1.51
ap0466	argG argininosuccinate synthetase	1.24

DNA metabolism

Gene	Function	Log2 Ratio
ap2148	mutL DNA mismatch repair protein MutL	1.34
ap2202	srmB ATP-dependent RNA helicase	1.19

Central intermediary metabolism

Gene	Function	Log2 Ratio
ap1688	HI0111 Glutathione transferase	1.24

* Genes coding for proteins involved in iron transport
fumarate reductase (frdABC), nitrate reductase (nfrABC), nitrate/trimethylamine oxidoreductase (TMAO) I and III (torAC and torYZ), dimethyl sulfoxide reductase (dmsA) and glycerol-3-phosphate dehydrogenase (glpAC). These enzymes as well as numerous others that encode either cytochrome components or functional partners (cydAB, ccp), cytochrome maturation proteins (ccmCF, nfrE) or iron-sulfur electron transport proteins (napF, hyaA, ykgF), are all implicated in the electron transport respiratory chain, either as electron donor or acceptor during aerobic and anaerobic respiration. Other genes in this category are involved in pathways of sugar metabolism such as fermentation (pflB, adh2), glycolysis or gluconeogenesis (pgk, pfkA, gapA) and the TCA cycle (fumC, maeA).

Many genes that are assigned to this category have been demonstrated or proposed to be members of the FNR regulon. The E. coli FNR transcriptional regulator is an oxygen-responsive activator implicated in the switch from aerobic to anaerobic metabolism in facultative anaerobes [34]. The oxygen-sensing domain of the FNR protein contains a Fe-S cluster, which is likely oxidized under aerobic conditions, thereby inactivating the FNR protein. Genes coding for fumarate and nitrate reductase are known to be influenced by FNR [35], as well as genes coding for anaerobic enzymes involved in the utilization of alternative terminal electron acceptors such as TMAO [36]. Sequence analysis in H. influenzae has identified conserved FNR binding motifs upstream of the cydAB genes [37]. These genes are usually considered to be up-regulated by the presence of the FNR protein, but FNR has also been implicated in the down-regulation of genes involved in aerobic respiration, such as genes coding for aerobic enzymes like NADH dehydrogenase and cytochrome oxidase [36]. In our study, although the A. pleuropneumoniae FNR homolog HlyX was observed to be up-regulated, all other putative members of the FNR regulon were shown to be down-regulated. In recent studies, genes aspA, coding for aspartate ammonia lyase, and dmsA, encoding a dimethyl sulfoxide reductase, were shown to be important for the virulence of A. pleuropneumoniae [38,39]. Both these genes, which are apparently under HlyX regulation [40],

Figure 1
Validation of microarray results by qRT-PCR. Seven up-regulated genes, eight down-regulated genes and two genes that did not show significant variation in the microarray experiments are presented. Mean log₂ ratios obtained during qRT-PCR experiments are plotted against the mean log₂ ratios obtained with the microarrays. Numbers on the graph refer to the gene numbers in Table 4.
also showed down-regulation in our experiments. These results might indicate that another factor could interfere with HlyX regulation, or counter-balance the HlyX-inducing effect during iron restriction. The fact that most of the affected genes code for enzymes containing an Fe-S cluster in their structures or use iron as an activator [41] could explain this effect. Since studies have shown that the A. pleuropneumoniae FNR homolog may be involved in the activation of genes coding for virulence factors [42] and is essential for full virulence [40], the observed up-regulation of HlyX is not unexpected. Precise characterisation of the HlyX regulon in A. pleuropneumoniae will provide a better view of its role in pleuropneumonia.

In E. coli, a second regulatory system, the ArcA/ArcB two component system, has also been shown to sense oxygen levels [43]. In our system, the baeS gene product, which has 51% identity with the P. multocida Pm70 ArcB protein, was also down-regulated, indicating that this system might be affected during iron restriction.

The overall picture of down-regulated genes shows that A. pleuropneumoniae has adopted strategies of economy for iron and energy. The principal components of the aerobic respiratory chain were all repressed, as well as key alternative final electron acceptors, probably since these processes implied extensive use of iron-containing enzymes. Genes involved in the synthesis of heme cofactors (bioD1, hemA, hemC and hemN) or quinones and menaquinones (menA, menB and ispH), which are important elements of the respiratory chain, showed down-regulation because lack of iron compromises these processes. Many components of the sugar phosphotransferase systems (PTSs) (manX, hisS, ptsBHI), which enable simultaneous transport and phosphorylation of sugars from phosphoe-
nolpyruvate, as well as other genes involved in sugar transport (dcbB1, dcbB2, rbsB, glpF, glpT) were down-regulated under our experimental conditions. This outcome could hamper sugar uptake by the bacteria. Repression of the various PTSs might be caused by the repression of the pfkA gene, which codes for phosphofructokinase, a key enzyme in the pathway responsible for the conversion of glucose to phosphoenolpyruvate, and which serves as the primary source of phosphate for activation of PTSs [44]. The product of the mlc gene, which shows 70% homology with a probable Haemophilus ducreyi sugar metabolism repressor and which was also down-regulated, might be implicated in this down-regulation of PTSs. This repressor has been shown to repress the transcription of many PTSs, and is subject to a negative auto-regulation [44].

Considering these metabolic deficiencies, it is significant that some enzymes with ATPase activity as well as others involved in processes that are not of primary importance in adapting to iron restriction were down-regulated. As an example, four genes purA, purT, pyrD, pyrG for enzymes with ATPase activity that belong to the "Purine, Pyrimidines, Nucleosides and Nucleotides" functional class were down-regulated. Since bacteria are growing in a stressful environment and their metabolism seems highly compromised, expression of genes involved in the biosynthesis of molecules useful for replication is not essential.

(ii) Up-Regulated Genes
Many genes involved in cell metabolism were observed to be down-regulated by iron restriction, but cell metabolism was not highly represented in our set of up-regulated genes. Two genes showing high up-regulation during iron restriction were assigned to this category. The lldD gene showed a five-fold induction, and codes for L-lactate dehydrogenase, an enzyme required for conversion of lactic acid produced by fermentation to pyruvate. To compensate for defects of the respiratory chain, A. pleuropneumoniae might have started to rely on fermentation during iron restriction. The gene encoding the XylB xylose kinase involved in the degradation of xylose was also up-regulated. Considering that many PTSs were down-regulated, the use of this alternative sugar, for which PTS systems have seldom been implicated [45] may be reconciled. Several genes of the "Protein Fate" functional class also showed up-regulation. The two subunits of the Clp protease showed higher expression during iron restriction; this cytoplasmic protease is often involved in stress responses and protein quality control [46]. The genes priC and def, encoding respectively an oligopepti-
dase and a peptide deformylase responsible for the hydrolysis of the N-formyl group of nascent polypeptide chains [47], were also up-regulated. This might indicate a higher turnover rate for native proteins requiring iron molecules in their structure, which might be unable to fold correctly in the absence of iron. The last gene of the “Protein Fate” functional class to be up-regulated was mopB, which codes for co-chaperonin GroES. This co-chaperonin, essential for full function of GroEL, facilitates non-native protein folding [48]. Again, the absence of iron might cause the accumulation of incorrectly folded native oligopeptide chains, thereby leading to higher expression of the GroES co-chaperonin.

The major response of *A. pleuropneumoniae* to iron restriction was the induction of genes involved in iron transport, probably to counter-balance effects of EDDHA. Most genes with known functions, identified as up-regulated during iron restriction, were shown to be involved in iron acquisition and transport. The *tonB1* gene showed the highest level of up-regulation, and genes *exbB1*, *exbD1* and *tbpA* which are transcriptionally linked to *tonB1* were shown by qRT-PCR analysis to be also up-regulated. The *hgbA* gene was over-expressed, as well as the *hugZ* heme utilization protein which is located immediately upstream of *hgbA* [13]. Among other known *A. pleuropneumoniae* iron acquisition-related genes, *tonB2* also showed up-regulation, while genes of the *flu* operon did not show any significant change in expression, in agreement with previous work done in our laboratory; expression of *fluA* is not regulated by iron [12].

Previously unreported iron acquisition systems were also revealed by our experiments. We identified a gene cluster, composed of ORFs PM0741 and NMB1668, showing 43% identity with the HmbR hemoglobin receptor from *N. meningitidis*. The HmbR receptor was shown in *N. meningitidis* to be important for survival in an infant rat infection model [49]. HmbR binds hemoglobin with high affinity, is able to strip heme from hemoglobin and then transport it to the periplasm. In *N. meningitidis*, HmbR is subject to phase variation via frameshift mutations [50], and about half of all clinical isolates express HmbR [51]. In *A. pleuropneumoniae*, the HgbA receptor has been shown to be responsible for iron acquisition from hemoglobin, and a mutant strain with an internal *hgbA* deletion could not grow in an iron-restricted medium supplemented with hemoglobin, albeit from different species [13]. Apparently HgbA is the sole hemoglobin receptor in *A. pleuropneumoniae* serotype 1, but it is not the sole hemoglobin binding protein that was identified in *A. pleuropneumoniae*. In the same study that lead to the identification of HgbA, a 75 kDa protein that could bind hemoglobin and hemin was also isolated [52]. The putative *A. pleuropneumoniae* HmbR has an estimated molecular weight of 76.7 kDa, and it is therefore tempting to speculate that those two proteins might share identity. In *N. meningitidis*, the *hmbR* gene is located downstream of *hmoO* gene that codes for a heme oxygenase and that is considered essential for heme utilization by pathogenic *Neisseriae* [53]. No HemO homolog was found in the *A. pleuropneumoniae* genome, which might explain the apparent lack of iron acquisition from hemoglobin from other putative OM receptors than HgbA in *A. pleuropneumoniae*. Two other genes, located immediately downstream of the last NMB1668 ORF, and transcribed in the opposite direction, also showed up-regulation: *ap2146* and *ap2147*; see Fig. 3. ORF *ap2146* is predicted to code for the α subunit of a N-methylhydantoinase B/acetone carboxylase, while ORF *ap2147* shares some region of homology with the periplasmic energy transducing protein TonB. Implication of the products of these ORFs in a potential iron-acquisition process involving the HmbR homolog remains to be assessed.

Our identification of a putative Yfe system was also of seminal interest. The Yfe system was first identified in *Y. pestis* and shown to allow chelated iron utilization in an *E. coli* mutant lacking enterobactin [54]. Two different operons encode the Yfe system, carrying genes *yfeBCD* and *yfeE* respectively; both operons were Fur-responsive. Later studies showed that the *yfeBCD* genes code for a periplasmic binding protein-dependent transport system belonging to the superfamily of ABC transporters [55], implicated in iron and manganese acquisition, and independent of TonB [56]. In *A. pleuropneumoniae*, homologs of components YfeABC, showing respectively 63%, 76%, 75% and 66% homology with their counterparts in *P. multocida*, showed up-regulation during iron restriction, but were not present on the same operon. Gene *yfeB* can be found immediately downstream of the *yfeA* gene, in the same area as two other ORFs that were up-regulated during iron restriction and that could be implicated in iron acquisition. These ORFs, which are annotated as *omp64*, show good homology (32%) to the *Moraxella catarrhalis* CopB OM protein. Meanwhile, the *yfeCD* genes are located 160 kb downstream of the last *omp64* ORF, and also show high homology with the corresponding *Y. pestis* Yfe proteins. The CopB protein has been implicated in iron acquisition from lactoferrin and transferrin; a mutant strain showed reduced ability to uptake iron from these proteins, with the more marked effect on transferrin-bound iron acquisition [57]. In *A. pleuropneumoniae*, proteins responsible for the utilization of transferrin-bound iron were first identified by affinity methods [58]. Later studies showed that the *tbpAB* genes from *A. pleuropneumoniae* are transcriptionally linked to genes *tonB1*, *exbB1* and *exbD1*, and these *exb* genes are essential for iron acquisition from transferrin [17]. It was also shown that both *tbp* genes are essential for iron acquisition from
Figure 3

Genetic organization of some gene clusters identified during this study. a) Genomic region of the A. pleuropneumoniae 5b strain L20 genome surrounding ORFs encoding for genes PM0741 and NMB1668. ORFs ap2146 and ap2147 are located 260 bp downstream of the NMB1668 ORF, and are transcribed in the opposite direction. b) yfeAB and omp64 genes are separated by three ORFs that did not show differential expression. c) Genetic organization of a possible operon coding for a putative enterobactin-type ABC transporter system. The two ORFs separating fetB2 and NMB1993 are the putative cytoplasmic components of this hypothetical system. d) The Fe^{2+}/Pb^{2+} high affinity permease locus.
transferrin [59], and another recent study showed that a
tonB1 mutant cannot use porcine transferrin, but is not
attenuated in vivo [18]. As with the A. pleuropneumoniae
HmbR homolog, it would be interesting to examine the
presence of the CopB homolog in vitro and in vivo, and
possible effects of mutations in this gene. Although the
best amino acid homology was with the CopB protein, the
overall alignment of the A. pleuropneumoniae omp64 gene
product with the M. catharralis CopB protein is not strong,
implying that Omp64 might have a role to play in iron
acquisition, but its target might not be transferrin or lacto-
ferrin. Another ORF (ap1453) also annotated omp64
showed up-regulation in our experiments. This second
Omp64 also shows homology with the CopB OM protein
(57%), but the overall alignment with CopB seems supe-
rior to that of the other Omp64 (ap0300 – ap0301). The
ap1453 Omp64 also shows homology with the H. influen-
zae heme-hemopexin utilization protein C (41%). We
advocate that the YfeABCD-Omp64 (ap0300-ap0301)
proteins are components of a new iron acquisition system
in A. pleuropneumoniae that are located in the OM
(Omp64) and in the CM (YfeBCD), as determined by the
PSORT algorithm [60]. The exact location of YfeA could
not be determined precisely, but it is predicted not to be
cytoplasmic.

Another cluster of genes was particularly interesting with
regards to iron acquisition. Two ORFs, annotated fetB2,
seem to encode a unique protein presenting similarities
with members of the TroA superfamily of periplasmic
metal binding proteins. Sequence analysis reveals homol-
ogies with other known or putative periplasmic binding
proteins, some of which are involved in iron transport.
Downstream, three putative genes appear to code for the
components of an ABC transport system. One gene of this
putative ABC transport system was also up-regulated: the
NMB1993 gene coding for a putative ATPase component.
These components show homology with the Ceu system
(Campylobacter Enterochelin Utilization), and prediction
of localization with PSORT indicates that fetB2 localizes
to the periplasm, NMB1993 to the CM and/or cytoplasm;
the two other components, which are not over-expressed
in our system, were predicted to be in the CM. We demon-
strated [20,61] that A. pleuropneumoniae uses different
exogenous siderophores, including a catechol-type
siderophore like enterochelin. Up to now, in A. pleurop-
neumoniae, the only identified siderophore OM receptor is
FhuA, specific for ferric hydroxamates [11]. It is premature
to conclude that the fetB2 and NMB1993 genes are part of
this unidentified catechol-type siderophore acquisition
system.

Three other up-regulated ORFs were identified as having a
putative role in iron acquisition. ORFs cctA1, ap0740 and
ap0741 were classified as proteins of unknown function,
but share homologies respectively with a family of peri-
plasmic lipoproteins involved in iron transport, a family
of iron-dependent peroxidase and a family of high affinity
Fe2+/Pb2+ permease. Since no clear homology with any
known or characterized protein was established, hypothe-
ses concerning their function and roles in iron acquisition
have to be formulated with great care. Recently, Cowart
showed [62] that bacterial reductases, by changing the
state of free iron from Fe3+ to Fe2+, could play a major role
in iron acquisition. The presence of a possible Fe2+ per-
mease could indicate the existence of such a mechanism
in A. pleuropneumoniae.

Considering that iron restriction conditions are encoun-
tered in vivo, we further examined the expression of
known or putative virulence factors of A. pleuropneumoniae
under such conditions. Aside from different iron acquisi-
tion systems, the Apx toxins are often regarded as essential
for virulence of A. pleuropneumoniae. The Apx toxins are
members of the RTX (Repeat in Toxin) family, and the
genetic organization of the genes that are essential for the
synthesis and secretion of the toxin generally follows the
same order: apxC, apxA, apxB and apxD, which code
respectively for the pretoxin activator, the pretoxin struc-
ture and the secretion apparatus [63]. These genes can be
transcribed from two different transcripts: a major 3.5 kb
transcript containing genes apxICA, and a minor 7.5 kb
transcript with genes apxCABD [64]. During iron restric-
tion, the first gene of the apxI operon, apxIC, showed
slight up-regulation, but the three other genes were not
over-expressed. The A. pleuropneumoniae strain used in this
study possesses genes coding for the ApxI, II and IV toxins.
Very little is known about the transcriptional regulation of
the apxI operon, but it has been shown to be at least regu-
lated by the combined activity of the Fur protein and cal-
cium [21]. Under high calcium concentration, Fur seemed
to act as an activator of the apxI operon, while it seemed
to act as a repressor under low calcium concentration.
Under our experimental conditions, it seems that Fur acts
as a repressor since the apxIC gene was identified as being
slightly up-regulated during iron-restriction, i.e. in the
absence of Fur. The fact that it was the only gene of the
apxI operon to show significant up-regulation might
reflect the stringency of our analysis, but might also point
towards the existence of fine post-transcriptional tuning
of the apxI operon. The existence of such mechanisms of
regulation could also explain why apxA does not seem to
be up-regulated, even though it is located on the same
transcript as apxIC.

The A. pleuropneumoniae ureC has been implicated as a
possible virulence factor, with a putative role in persist-
ence of bacteria in vivo [65]. In our study, the ureC gene
was identified as being down-regulated during iron
restriction. Since it was shown that this gene might have
more effect in the late stage of the disease, it seems clear
that other in vivo factors, as with hlyX, may influence the
regulation of the ureC gene.

Three ORFs which had approximately two-fold induction
during iron deficiency also warrant attention. The Ssa1
protein (Serotype 1-Specific Antigen) was first identified in
Mannheimia haemolytica and was associated with the
serotype switch occurring in the upper respiratory tract of
bovines following stressful events, potentially leading to
development of disease [66]. The protein was shown to
localize to the OM [67]. Sequence homolog research on
the A. pleuropneumoniae Ssa1 protein led to identification
of an autotransporter domain at the C-terminal extremity
of the protein; the A. pleuropneumoniae Ssa1 was also clas-
sified in the family of subtilisin-like serine proteases,
although no experimental evidence of this activity could
be found. Recently, autotransporter proteins such as Ig
proteases have been implicated in virulence [68].
Autotransporter proteins belonging to the serine protease
family have been identified in various Gram-negative bact-
eria. H. influenzae, a close relative of A. pleuropneumoniae,
possesses at least two: an IgA1 protease and the Hap protein
which has been shown to be involved in adhesion.
Little is known about the Ssa1 protease but its implication
in virulence in M. haemolytica suggests that it could play a
similar role in A. pleuropneumoniae.

Genes ftsK and ftsA, essential in the first steps of cell divi-
sion, also showed higher expression during iron restric-
tion. Considering that some genes involved in the
"Purine, Pyrimidines, Nucleosides and Nucleotides" were
down-regulated, this result was unexpected. However, it
has been shown that the transcription of the ftsZ gene is
subjected to regulation by antisense transcription of a
490-bp segment spanning the junction between the ftsA
and ftsZ genes [69], which could probably explain the
apparent overproduction of the ftsA mRNA. As for ftsK,
although the protein is implicated in cell division, other
functions have been suggested for this protein [70], and
the observed up-regulation might not be linked with cell
division.

Conclusion
In summary, the evaluation of differential gene expression
in A. pleuropneumoniae during growth in an iron-restricted
medium enabled us to gain a better understanding of the
metabolic changes occurring in response to this stress.
Transcript profiling using DNA microarrays is a powerful
tool to determine the exact composition of the bacterial
transcriptome in defined conditions, therefore leading to
the putative identification of components that are essen-
tial during these conditions. It can also help identify com-
ponents which are likely to be expressed during the
infection process in the host, and that might be interesting
targets for vaccines.

In the course of our study, many new potential iron acqui-
sition systems were highlighted. Clearly, iron acquisition
in A. pleuropneumoniae might rely on more systems that
what was previously thought, and further studies will be
necessary to evaluate the impact of these systems during
the course of infection by A. pleuropneumonia.

Methods

Bacterial strains and growth conditions
Actinobacillus pleuropneumoniae serotype 1 strain S4074
was routinely grown on BHI medium supplemented with
either 15 μg/ml (agar) or 5 μg/ml (broth) of NAD. For the
microarray experiments, two flasks of BHI broth were
inoculated with 50 μl of an overnight culture of A. pleu-
ropneumoniae serotype 1 strain S4074 and grown at 37°C
in an orbital shaker until an optical density of 0.1 was
reached. To initiate iron restriction in one of the two cul-
tures, EDDHA was added to a final concentration of 50
μg/ml. In the iron supplementation experiments, FeCl₃
was added to the iron depleted culture 5 min. after the
addition of EDDHA to a final concentration of 50 μg/ml.
The cultures were then re-incubated until they reached a
final optical density of 0.3.

RNA extraction
RNA was harvested from cells at an optical density of 0.3.
Ice-cold RNA degradation stop solution (95% ethanol,
5% buffer-saturated phenol), shown to effectively prevent
RNA degradation and therefore preserve the integrity of
the transcriptome [71], was added to the bacterial culture
at a ratio of 1:10 (vol/vol). The sample was mixed by
inversion, incubated on ice for 5 min, and then spun at
5000 g for 10 min to pellet the cells. Bacterial RNA iso-
lation was then carried out using the QIAGEN RNeasy Mini-
Kit. During the extraction, samples were subjected to an
on-column DNase treatment, as suggested by the manu-
facturer. The RNA concentration, quality and integrity
were assessed spectrophotometrically and by gel analyses.

Construction of the A. pleuropneumoniae 5b strain L20
microarray (AppChip I)
The draft genome sequence of A. pleuropneumoniae sero-
type 5b strain L20 [GenBank: CP0000569] was used as a
source of the genes used in this study. ORFs were identi-
fied using the Glimmer software package [72], and used to
search for homologs among the bacterial gene subset of
Genbank [73] using the BLASTP program [74]. PCR prim-
ers were designed for each of the 2025 ORFs of the
genome of A. pleuropneumoniae using the Primer3 pro-
gram [75] controlled by an automated script as described
previously [76]. Primer-selection parameters were stan-
dardized and included a similar predicted melting temper-
ature (60 ± 3°C), uniform length (25 nt), and a minimum amplicon size of 160 bp. Generation of PCR amplicons and fabrication of DNA microarrays were as described [76]. Details on the construction of this microarray (AppChip1) are available on the Institute for Biological Sciences website [77].

Microarray hybridizations
cDNA synthesis and microarray hybridizations were performed as described [78]. Briefly, equal amounts (15 μg) of test RNA and control RNA were used to set up a standard reverse transcription reaction using random octamers (BioCorp), SuperScript II (Invitrogen) and aminoallyldUTP (Sigma), and the resulting cDNA was indirectly labelled using a monofunctional NHS-ester Cy3 or Cy5 dye (Amersham). The labelling efficiency was assessed spectrophotometrically. Labelled samples were then combined and added to the A. pleuropneumoniae 5b strain L20 microarray. Nine hybridizations were performed for the iron-restriction experiments, including three pairs of microarrays for which Cy3 and Cy5 dyes were swapped, while 4 hybridizations were conducted for the iron-supplementation experiments. Data were submitted to the Gene Expression Omnibus [79] [GEO:GSE4674 and GSE6366]. All slides were scanned using a Perkin-Elmer ScanArray Express scanner.

Microarray analysis and bioinformatics
The TM4 suite of software from The Institute of Genomic Research was used for the whole microarray analysis [80]. First, raw data were generated using SpotFinder v.3.0.0 beta. The integrated intensities of each spot, equivalent to the sum of intensities of all unsaturated pixels in a spot, were quantified and the integrated intensity of the local background was subtracted for each spot. The same operation was performed with the median spot intensities. The spot detection threshold was set so that spots for which the integrated intensity was less than one standard deviation above the background median intensity were set to zero. Raw spot data were converted from integrated intensities to median spot intensities using TIGR’s Express Converter software, the latter being less influenced by outlier values than integrated intensities.

Data were normalized with TIGR’s MIDAS software tool using locally weighted linear regression (loess) [81-83]. Spots with median intensities lower than 1000 were removed from the normalized data set. Intensities for duplicate spots were merged to generate the final normalized data set, subsequently analyzed using TIGR’s TMEV microarray analysis tool. The Significance Analysis of Microarray (SAM) algorithm [84], which is implemented in TMEV, was used to generate a list of differentially expressed genes. During SAM analysis, a false discovery rate of 3.22% was estimated for the iron-depleted versus BHI broth experiment, while a FDR of 2.51% was estimated for the iron-supplemented versus BHI broth experiment; this value estimates the proportion of genes likely to have been identified by chance. Functional classification of these genes was conducted using TIGR’s Comprehensive Microbial Resource (CMR) [85]. Proteins were assigned to their corresponding pathways using the MetaCyc Metabolic Pathway Database [41]. Homologies were assessed using Blast tools [86] hosted on the NCBI and TIGR servers. Additional subcellular localization was determined with PSORTb [60]. Protein sequence alignments were performed using the ClustalW multiple sequence alignment algorithm [87].

Real-Time quantitative RT-PCR
Microarray results were verified by real-time quantitative RT-PCR (qRT-PCR), using the Quantitect® SYBR® Green RT-PCR Kit (Qiagen). Reactions were performed with a 16-place Cepheid Smart Cycler® System in a total volume of 25 μl. Oligonucleotide primers (Table 4) were designed using Primer3 software [75]. To ensure that amplification with these primers resulted in single amplicon of the anticipated size, they were PCR tested before proceeding to qRT-PCR analysis. Primer pairs which amplified fragments of 195 to 205 bp with a melting temperature of 60°C were selected. Seventeen genes (7 up-regulated, 8 down-regulated, 2 non-significant) were selected for analysis. Relative expression of each gene as determined by qRT-PCR was normalized to that of the ackA gene which showed a stable level of expression throughout the different microarray experiments (data not shown). Prior to the qRT-PCR, the RNA samples were subjected to a DNase treatment with TURBO DNase (Ambion, Austin, TX) to avoid DNA contamination in the samples. Quantitative measures were obtained using the $2^{-\Delta\Delta CT}$ method [88].

List of abbreviations
BHI : Brain Heart Infusion, CGH : Comparative Genomic Hybridization, EDDHA : ethylenediamine dihydroxyphosphyl acetic acid, Fe-S : iron-sulfur, NAD : Nicotinamide Adenosine Dinucleotide, Ig : Immunoglobulin, ORF : Open Reading Frame, TCA : Tricarboxylic Acid.

Authors’ contributions
VD designed the transcript profiling experiments, carried out downstream data analysis, and drafted the manuscript. JHEN designed the AppChip1 and helped with the downstream data analysis. JWC and JH participated in the study design and revised the manuscript. MJ participated in the conception and supervised the design of the study and revised the manuscript. All authors read and approved the final manuscript.
Table 4: Oligonucleotide primers used for microarray results validation with qRT-PCR

#	Gene	Forward Primer	Reverse Primer
1	ackA	CCTAAAAACCCGTCGGACTGGGAA	ACCGGTACCGACCCGATACCTGG
2	ap1465	CGTTAGCCGCTTCCGAATTA	AACCGGCGATTTGTGCTGCG
3	apxIC	TGTTATGCGCAAGTTTCTGCC	CAACTAGCGGCTACCATCAC
4	ccmC	ATACGGGTCTATGGCCGTTG	AAACCAACCACAAAGGCAGAC
5	dcmA	GCCGTTTGAAGGCTTAACG	GCCCGTTAATGGTGTGCCTT
6	exbB1	AACTGGTGATCGCTGTTGCC	AAAGTGAAGGCGACGGAAT
7	exbD1	CGGATTATTAGGTGTTATTGG	TGAGTCGAAAAAGCAGCTTTTTGG
8	fetB2	CCGCTTTGATTAGTTAGG	TCCCAAAGCGTTTGTTGTAGG
9	hgbA	TGAATTTTCCGGCAATATTGA	TCCGCTTTTTCCGGCACTTAC
10	NMB1668	AAGCCGTTTTCCGGCAATAC	CGTAGCGGCCATACCCGCA
11	nrfA	GCACCCGTAGAGACTCTGTCG	ATGTTGACGTTGACGTTG
12	nrfC	CGTGGTATGCGGATTTCTGCC	ATGCGGTATGCGGATTTCTGCC
13	omp64	GGCAGAAGTGGCGTTGAAA	AACACCTAAATTGGTGCAGTC
14	ompW	GGCGGCTAGCTGGAGAACC	TTTGTCGATGAGTTGGAACC
15	pepD	GGCGCAAAAGTAGCGTTCC	AATACGCGGATACCGGC
16	PM0741	GGCCTCGATCCTTTGTTTCC	AAAGTGCAGCGGAGAAAAAGCAGGC
17	tonB1	CTCCTCGTTGGTGTTTTGAG	GACACTAAAGCGTGACGTTG
18	torA	GAATTTTCCTGTGTTGGAG	GCTTGGCGGTATACCAAGCC

Acknowledgements

Research was supported by a Discovery Grant (DGIPN0003428-01 to M.J,) and a Strategic Grant (STPGP30670-04 to J.W.C. and M.J) from the Natural Sciences and Engineering Research Council of Canada, and by the National Research Council (NRC) of Canada Genomics and Health Research Program (Phase II) to J.H.E.N. V.D. is a recipient of a FQRNT scholarship. The authors would also like to thank the following people from the NRC in Ottawa: Brian Agnew produced the array; Simon Foote and Anne Bouevitch conducted genome DNA sequencing; Chris Luebbert and Oksana Mykytczuk provided the array methodology; Wendy Findlay performed bioinformatics.

References

1. Taylor DJ: Actinobacillus pleuropneumoniae. In Diseases of Swine 8th edition. Edited by: Straw BE. Ames , Iowa State University Press; 1999.
2. Bosse JT, Janson H, Sheehan BJ, Beddek AJ, Rycroft AN, Kroll JS, Langford PR: Actinobacillus pleuropneumoniae: pathobiology and pathogenesis of infection. Microbes Infect 2002, 4(2):225-235.
3. Dubreuil JD, Jacques M, Mittal KR, Gottschalk M: Actinobacillus pleuropneumoniae surface polysaccharides: their role in diagnosis and immunogenicity. Anim Health Res Rev 2000, 1(2):73-93.
4. Jacques M: Surface polysaccharides and iron-uptake systems of Actinobacillus pleuropneumoniae. Can J Vet Res 2004, 68(2):81-85.
5. Rioux S, Galanenau C, Harel J, Kobisch M, Frey J, Gottschall M, Jacques M: Isolation and characterization of a capsule-deficient mutant of Actinobacillus pleuropneumoniae serotype 1. Microb Pathog 2000, 28(5):279-289.
6. Kump EM, Stockhofe-Zurwieden N, van Leengoed LA, Smits MA: Endobronchial inoculation with Apx toxins of Actinobacillus pleuropneumoniae leads to pleuropneumonia in pigs. Infect Immun 1997, 65(10):4350-4354.
7. Tasson Rf, Vazquez-Boland JA, Gutierrez-Martin CB, Rodriguez-Barbosa I, Rodriguez-Ferri EF: The RTX haemolysins ApxI and ApxII are major virulence factors of the swine pathogen Actinobacillus pleuropneumoniae: evidence from mutational analysis. Mol Microbiol 1994, 14(2):207-216.
8. Wandersman C, Stojilkovic I: Bacterial heme sources: the role of heme, hemoprotein receptors and hemorphes. Curr Opin Microbiol 2000, 3(2):15-22.
9. Braun V: Iron uptake mechanisms and their regulation in pathogenic bacteria. Int J Med Microbiol 2001, 291(2):67-79.
10. Wandersman C, Delepeaire P: Bacterial iron sources: from siderophores to hemorphes. Annu Rev Microbiol 2004, 58:611-647.
11. Mikael LG, Pawelek PD, Labrie J, Sirois M, Coulton JW, Jacques M: Molecular cloning and characterization of the ferric hydroxamate uptake (fhu) operon in Actinobacillus pleuropneumoniae. Microbiology 2002, 148(Pt 9):2869-2882.
12. Mikael LG, Srikumar R, Coulton JW, Jacques M: FlhA of Actinobacillus pleuropneumoniae encodes a ferrichrome receptor but is not regulated by iron. Infect Immun 2003, 71(5):2911-2915.
13. Srikumar R, Mikael LG, Pawelek PD, Khamessan A, Gilboa B, Jacques M, Coulton JW: Molecular cloning of haemoglobin-binding protein HgbA in the outer membrane of Actinobacillus pleuropneumoniae. Microbiology 2004, 150(Pt 6):1723-1734.
14. Gerlach GF, Anderson C, Potter AA, Klashinsky S, Willson P: Cloning and expression of a transferrin-binding protein from Actinobacillus pleuropneumoniae. Infect Immun 1992, 60(3):892-898.
15. Gonzalez GC, Yu RH, Rosteck PR Jr, Schryvers AB: Sequence, genetic analysis, and expression of Actinobacillus pleuropneumoniae transferrin receptor genes. Microbiology 1995, 141 (Pt 10):2405-2416.
16. Larsen RA, Myers PS, Skare JT, Seachord CL, Darveau RP, Postle K: Identification of TonB homologs in the family Enterobacteriaceae and evidence for conservation of TonB-dependent energy transduction complexes. J Bacteriol 1996, 178(5):1361-1373.
17. Tonpitak W, Thiede S, Oswald W, Baltes N, Gerlach GF: Actinobacillus pleuropneumoniae iron transport: a set of exbBD genes is transcriptionally linked to the tbpB gene and required for utilization of transferrin-bound iron. Infect Immun 2000, 68(3):1164-1170.
18. Beddek AJ, Sheehan BJ, Bosse JT, Rycroft AN, Kroll JS, Langford PR: Two TonB systems in Actinobacillus pleuropneumoniae: their roles in iron acquisition and virulence. Infect Immun 2004, 72(2):701-708.
19. Chin N, Frey J, Chang CF, Chang YF. Identification of a locus involved in the utilization of iron by Actinobacillus pleuropneumoniae. FEMS Microbiol Lett. 1996, 143(1):1-6.

20. Diarra MS, Dolence JA, Dolence EK, Darwin I, Miller MJ, Malouin F, Jacques M. Growth of Actinobacillus pleuropneumoniae is promoted by exogenous hydroxamate and catechol siderophores. Appl Environ Microbiol. 1996, 62(3):853-859.

21. Fagioli E, Chin CF, Chang YF. Cloning and characterization of the Actinobacillus pleuropneumoniae fur gene and its role in regulation of Apxl and AfuABC expression. DNA Seq 2003, 14(3):169-181.

22. Dubrac S, Toutou D. Fur positive regulation of iron superoxide dismutase expression in Escherichia coli: functional analysis of the sodB promoter. J Bacteriol 2000, 182(13):3802-3808.

23. Gruj M, Guest JR. Two genetically-distinct and differentially-regulated aconitases (AcnA and AcnB) in Escherichia coli. Microbiology 1994, 140 (Pt 10):2531-2541.

24. Iuchi S, Lin EC. Peptide deformylase as a target for new generation, broad spectrum antimicrobial agents. Mol Microbiol 2000, 36(6):1197-1203.

25. Lamendella R, Ortego JD, Bernal L, Dumas R, Corthesy T, Hansen EJ. Identification and preliminary characterization of a 75-kDa hemin- and hemoglobin-binding outer membrane protein of Actinobacillus pleuropneumoniae. J Bacteriol 1999, 181(21):6629-6638.

26. Tan K, Moreno-Hagelsieb G, Collado Vides J, Stormo GD. Modular, multipurpose structures. Science 1997, 277(5326):653-659.

27. Utsumi CM, Caldwood SB. Role of iron in regulation of virulence genes. Clin Microbiol Rev 2001, 14(2):410-422.

28. Krieger CJ, Zhang P, Mueller LA, Wang A, Paley S, Arnaud M, Pick J, Pouwels PJ, Rhee SY, Karp PD: MetaCyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acids Res 2004, 32(Database issue):D438-42.

29. Tan K, Moreno-Hagelsieb G, Collado Vides J, Stormo GD. Identification and preliminary characterization of the Actinobacillus pleuropneumoniae Fur gene and its role in regulation of Apxl and AfuABC expression. DNA Seq 2003, 14(3):169-181.

30. Iuchi S, Lin EC. Adaptation of Escherichia coli to redox environments by gene expression. Mol Microbiol 1993, 9(1):9-15.

31. Britum PM. Regulation of gene expression in the PTS in Escherichia coli: the role and interactions of Mlc. Curr Opin Microbiol 2002, 5(2):187-193.

32. Martin SA. Nutrient transport by ruminal bacteria: a review. Annu Rev Microbiol 1994, 48(1):3019-3031.

33. Bearden SW. Proteolytic, adhesin, repressor, adaptor, catch me a catch. Curr Biol 2004, 14(21):R924-6.

34. Salmon K, Hung SP, Mekjian K, Baldi P, Hatfield GW, Gunsalus RP. Identification and preliminary characterization of the Actinobacillus pleuropneumoniae fur gene and its role in iron utilization and virulence. Mol Microbiol 1995, 15(3):351-354.

35. Lewis LA, Gipson M, Hartman K, Ownbey T, Vaughn J, Dyer DW. Phase variation of HpuAB and HmbR, two distinct hemoglobin receptors of Neisseria meningitidis. Proc Natl Acad Sci U S A 2004, 101(16):5835-5839.

36. Archambault M, Labrie J, Rioux CR, Dumas F, Thibault P, Ecker C, Jacques M. Identification and preliminary characterization of a small RNA regulates the expression of regulated aconitases (AcnA and AcnB) in Escherichia coli. Mol Microbiol 2000, 72(11):2531-2541.

37. Bearden SW, Perry RD. Regulation of iron transport by Moraxella catarrhalis is regulated by iron and affects iron acquisition from transferrin and lactoferrin. Infect Immun 1996, 64(6):2024-2030.

38. Baltes N, Hennig-Pauka I, Gerlach GF. Both transferrin binding proteins are virulence factors in Actinobacillus pleuropneumoniae serotype 7 infection. FEMS Microbiol Lett 2002, 209(2):283-289.

39. Gardy JL, Laird MR, Chen F, Rey S, Walsh CJ, Ester M, Brinkman FS. PSORTb v.2.0: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis. Bioinformatics 2005, 21(5):617-623.
62. Cowart RE: Reduction of iron by extracellular iron reductases: implications for microbial iron acquisition. Arch Biochem Biophys 2002, 397(2):273-281.

63. Frey J: Virulence in Actinobacillus pleuropneumoniae and RTX toxins. Trends Microbiol 1995, 3(7):257-261.

64. Frey J, Haldimann A, Nicolet J, Boffini A, Prentki P: Sequence analysis and transcription of the apxl operon (hemolysin J) from Actinobacillus pleuropneumoniae. Gene 1994, 142(1):97-102.

65. Baltes N, Tongtak W, Gerlach GF, Hennig-Pauka I, Hoffmann-Moujahid A, Ganter M, Rothkotter HJ: Actinobacillus pleuropneumoniae iron transport and urease activity: effects on bacterial virulence and host immune response. Infect Immun 2000, 69(1):472-478.

66. Gonzalez CT, Maheswaran SK, Murtuza MP: Pasteurella haemolytica serotype 2 contains the gene for a noncapsular serotype 1-specific antigen. Infect Immun 1995, 63(4):1340-1348.

67. Lo RY, Strathdee CA, Shewen PE, Cooney BJ: Molecular studies of Ssa1, a serotype-specific antigen of Pasteurella haemolytica A1. Infect Immun 1999, 67(10):3398-3406.

68. Henderson IR, Nataro JP: Virulence functions of autotransporter proteins. Infect Immun 2001, 69(3):1231-1243.

69. Dewar SJ, Donachie WD: Antisense transcription of the ftsZ-ftsA gene junction inhibits cell division in Escherichia coli. J Bacteriol 1993, 175(21):7097-7101.

70. Donachie WD: FtsK: Maxwell’s Demon? Mol Cell 2002, 9(2):206-207.

71. Bernstein JA, Khodursky AB, Lin PH, Lin-Chao S, Cohen SN: Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays. Proc Natl Acad Sci U S A 2002, 99(15):9697-9702.

72. Delcher AL, Harmon D, Kasif S, White O, Salzberg SL: Improved microbial gene identification with GLIMMER. Nucleic Acids Res 1999, 27(23):4636-4641.

73. National Center For Biotechnology Information’s Prokaryotic Genomes Database: [http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi] [http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi]

74. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25(17):3389-3402.

75. Peterson JD, Umayam LA, Dickinson T, Hickey EK, White O: The Comprehensive Microbial Resource. Nucleic Acids Res 2001, 29(1):123-125.

76. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215(3):403-410.

77. Chennra R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DJ: Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 2003, 31(13):3497-3500.

78. Livak KJ, Schmittgen TD: Analysis of relative gene expression using real-time quantitative PCR and the 2-DDCT Method. Methods 2001, 25(4):402-408.