Design and evaluation of traffic delays in toll plaza using combination of queueing and simulation

S Punitha
Department of Mathematics, V.M.K.V. Engineering College, Vinayaka Missions Research Foundation (Deemed to be University), Salem, Tamilnadu, India.
E. Mail: puni.jeeju80@gmail.com

Abstract. In this paper, the Simulation approach is used to evaluate the toll plaza performance measures for four different types of vehicle categories F1, F2, F3 and F4 Simultaneously. Here we propose an alternate approach for studying toll plaza queueing system by employing Monte Carlo Simulation. It is a quite effective way for analyzing the performance measures for the queueing system and also we compare these simulation results with analytic method.

Key words: Arrival distribution, service distribution, arrival rate, service rate, Monte Carlo simulation, queueing model, queue length, queue time, system length, system time.

1. Introduction
Queueing Theory is the study of waiting line theory and the origin of Queueing theory started in the beginning of the 20th century, when Erlang (1909) [2] published his fundamental paper on congestion in telephone traffic. Queue analysis presents an adequate service for analyzing a system and it is not an optimization technique, which helps to find out the performance procedures for analyzing queues. Queueing system having a service facility to provide service for arrivals (vehicles) that enters into the system in order to get service with always a first-come first-served policy [3].

Simulation is a numerical technique for conducting experiment for random events to describe the behavior of a complex real world system (Ravindran A. Philips (1987)) [6] and also its mimic the behavior of a real system. The term simulation is defined as, to imitating an existing system without disturbing its actual process for predicting their future behavior. So that, the administration can takes a necessary action that will help to improve the system performance in an effective manner. But, due to the uncertainty in the real world system for future prediction is based on the probability distribution. Monte Carlo simulation is a common technique for analyzing the uncertainty based on the various aspects of a system for predicting their future behavior. Monte Carlo means using random numbers in scientific computing that is, using random numbers as a tool to compare something that is not random. The important feature of Monte Carlo method is, the management makes most happy is that simple, clever idea can lead to enormous practical improvement in system performance. This method is based on the generation of multiple trials to determine the expected value of a random variable and it is helpful for obtaining numerical solutions to the real world problems.
which are too complicated to solve analytically. It was named by S. Ulam, who in 1946 [5] became the first mathematician to distinguish this approach and Nicolas Metropolis also made important contributions for the development of this method.

This research focused on a single server analysis of a toll plaza as a case study [4] and exhibits the performance measures for four types of vehicles queue simultaneously. In addition to this, this research shows simulation techniques gives the opportunity for calculating performance measures and addresses the issue of how queues formed in the toll plaza system. In this paper, we continued our ongoing examination of a single server queue with four types of vehicles category and it is relatively a next step of the previous work with the comparison of analytic performance measures for a toll plaza system. In toll plaza analysis, both queueing and discrete event simulation models are used extensively, but compared with queueing models, discrete event simulation is more flexible for modeling the vehicle flows in a system [1].

In stochastic queueing process is to analyze steady-state conditions are

1. L_S = Average number of vehicles in toll plaza queueing system or System length
2. L_q = Queue length
3. W_S = System time
4. W_q = Queue time

2. Data collection and analysis

We investigate the collected data for four types of vehicles category at the toll plaza for example, F1 (car/jeep), F2 (Light commercial vehicles-LCV), F3 (Truck/Bus) and F4 (Multi Axel vehicles-MAV) also time punch for each vehicle were also part of the data. At this toll plaza, the toll way is a dual carriage way with four lanes in each direction and we analyze the entering lanes only for computing the performance measures. A vehicle may enter the toll plaza system and to pay the toll fee through the toll gate in charge, if the server is busy, the customer (vehicle) should wait in the system; this is the service request time in our simulation model. The study purpose of this paper is to test different types of vehicle flow at each tollgate and observing the effect on queue length, arrival times and service times, which are followed on Markovian distributions, these are calculated numerically from a collected data. In this simulation, we have used 100 trials for the analysis of a toll plaza system, because more trials will lead to a higher accuracy.

We presented a single server based simulation model for F1 (car/jeep), F2 (Light commercial vehicles-LCV), F3 (Truck/Bus) and F4 (Multi Axel vehicles-MAV) individually. Next, we proposed the comparative study for the analysis of toll plaza performance in both single and multiserver model for F1 (car/jeep) using simulation methods. Then we discussed the comparison study for the analysis of toll plaza performance in both single and multiserver models for F2 (Light commercial vehicles-LCV) using simulation methods. Also, we visualized [8] F1 (car/jeep) & F2 (Light commercial vehicles-LCV) simultaneously with the performance measures on both crisp and Monte Carlo simulation methods. Next we presented the simulation study of the single server queueing model in toll plaza by considering vehicle type [7]. Now in this paper, we analyze the simulation as well as with analytical method for each lane according to the vehicles arrive.
Consider the arrival distribution for F1, F2, F3 & F4 in following tables 1, 2, 3, & 4.

Table 2.1. Arrival distribution for F1

S. No.	Inter Arrival Time (min)	No. of Vehicles	Prob.	Cum. Prob.	Tag Nos.
1	0-1	85	0.425	0.425	000 – 424
2	1-2	46	0.23	0.655	425 – 654
3	2-3	27	0.135	0.79	655 – 789
4	3-4	14	0.07	0.86	790 – 859
5	4-5	10	0.05	0.91	860 – 909
6	5-6	4	0.02	0.93	910 -929
7	6-7	5	0.025	0.955	930 – 954
8	7-8	1	0.005	0.96	955 – 959
9	8-9	1	0.005	0.965	960-964
10	9-10	2	0.01	0.975	965 – 974
11	10-11	0	-	-	-
12	11-12	0	-	-	-
13	12-13	1	0.005	0.98	975 – 979
14	13-14	0	-	-	-
15	14-15	1	0.005	0.985	980 – 984
16	15-16	0	-	-	-
17	16-17	0	-	-	-
18	17-18	1	0.005	0.99	985 -989
19	18-19	1	0.005	0.995	990 -994
20	19-20	0	-	-	-
21	20-21	0	-	-	-
22	21-22	0	-	-	-
23	22-23	0	-	-	-
24	23-24	1	0.005	1	995 -999
25	24-25	0	-	-	-
26	25-26	0	-	-	-
27	26-27	0	-	-	-
28	27-28	0	-	-	-
29	28-29	0	-	-	-
30	29-30	0	-	-	-

TOTAL 200
Sl. No	Inter Arrival Time (min)	No. of Vehicles	Prob.	Cum. Prob.	Tag Nos.
1	0-1	27	0.216	0.216	000 - 215
2	1-2	27	0.216	0.432	216 - 431
3	2-3	25	0.2	0.632	432 - 631
4	3-4	8	0.064	0.696	632 - 695
5	4-5	12	0.096	0.792	696 - 791
6	5-6	6	0.048	0.84	792 - 839
7	6-7	9	0.072	0.912	840 - 911
8	7-8	2	0.016	0.928	912 - 927
9	8-9	3	0.024	0.952	928 - 951
10	9-10	1	0.008	0.96	952 - 959
11	10-11	0	-	-	-
12	11-12	0	-	-	-
13	12-13	1	0.008	0.968	960 - 967
14	13-14	0	-	-	-
15	14-15	0	-	-	-
16	15-16	0	-	-	-
17	16-17	2	0.016	0.984	968-983
18	17-18	0	-	-	-
19	18-19	0	-	-	-
20	19-20	1	0.008	0.992	984 - 991
21	20-21	0	-	-	-
22	21-22	0	-	-	-
23	22-23	0	-	-	-
24	23-24	0	-	-	-
25	24-25	0	-	-	-
26	25-26	0	-	-	-
27	26-27	0	-	-	-
28	27-28	0	-	-	-
29	28-29	0	-	-	-
30	29-30	1	0.008	1	992 - 999

| | **Total** | 125 | | | |

Table 2.2. Arrival distribution for F2
Table 2.3. Arrival distribution for F3

Sl. No	Inter Arrival Time (min)	No. of Vehicles	Prob.	Cum. Prob.	Tag Nos.
1	0-1	23	0.211	0.211	000 - 210
2	1-2	25	0.229	0.44	211 - 439
3	2-3	12	0.11	0.55	440 - 549
4	3-4	12	0.11	0.66	550 - 659
5	4-5	11	0.101	0.761	660 - 760
6	5-6	8	0.073	0.834	761 - 833
7	6-7	6	0.056	0.89	834 - 889
8	7-8	2	0.018	0.908	890 - 907
9	8-9	1	0.009	0.917	908 - 916
10	9-10	2	0.018	0.935	917 - 934
11	10-11	0	-	-	-
12	11-12	2	0.018	0.953	935 - 952
13	12-13	0	-	-	-
14	13-14	0	-	-	-
15	14-15	1	0.01	0.963	953 - 962
16	15-16	0	-	-	-
17	16-17	0	-	-	-
18	17-18	0	-	-	-
19	18-19	1	0.009	0.972	963 - 971
20	19-20	1	0.009	0.981	972 - 980
21	20-21	0	-	-	-
22	21-22	0	-	-	-
23	22-23	0	-	-	-
24	23-24	0	-	-	-
25	24-25	0	-	-	-
26	25-26	0	-	-	-
27	26-27	1	0.01	0.991	981 - 990
28	27-28	1	0.009	1	991 - 999
29	28-29	0	-	-	-
30	29-30	0	-	-	-
	Total	109			
Table 2.4. Arrival distribution for F4

Sl. No	Inter Arrival Time (min)	No. of Vehicles	Prob.	Cum. Prob.	Tag Nos.
1	0-1	12	0.15	0.15	000 – 149
2	1-2	11	0.138	0.288	150 – 287
3	2-3	9	0.112	0.4	288 – 399
4	3-4	12	0.15	0.55	400 – 549
5	4-5	7	0.088	0.638	550 – 637
6	5-6	7	0.088	0.726	638 – 725
7	6-7	7	0.088	0.814	726 – 813
8	7-8	3	0.037	0.851	814 – 850
9	8-9	1	0.013	0.864	851 – 863
10	9-10	0	-	-	-
11	10-11	0	-	-	-
12	11-12	2	0.025	0.889	864 – 888
13	12-13	2	0.024	0.913	889 – 912
14	13-14	0	-	-	-
15	14-15	0	-	-	-
16	15-16	0	-	-	-
17	16-17	0	-	-	-
18	17-18	3	0.037	0.95	913 – 949
19	18-19	0	-	-	-
20	19-20	1	0.013	0.963	950 – 962
21	20-21	0	-	-	-
22	21-22	1	0.012	0.975	963 – 974
23	22-23	0	-	-	-
24	23-24	1	0.013	0.988	975 – 987
25	24-25	0	-	-	-
26	25-26	0	-	-	-
27	26-27	1	0.012	1	988 – 999
28	27-28	0	-	-	-
29	28-29	0	-	-	-
30	29-30	0	-	-	-
Total		**80**			
The following tables are shows the service distribution for F1, F2, F3 & F4.

Table 2.5. Service distribution for F1

S. No.	Service time (min)	No. of Vehicles	Prob.	Cum. Prob.	Tag Nos.
1	1.00	92	0.46	0.46	000 – 459
2	1.50	46	0.23	0.69	460 – 689
3	2.00	26	0.13	0.82	690 – 819
4	2.50	20	0.1	0.92	820 – 919
5	3.00	16	0.08	1.00	920 – 999
Total		**200**			

Table 2.6. Service distribution for F2

S. No.	Service time (min)	No. of Vehicles	Prob.	Cum. Prob.	Tag Nos.
1	1.00	41	0.328	0.328	000 – 327
2	1.50	32	0.256	0.584	328 – 583
3	2.00	22	0.176	0.76	584 – 759
4	2.50	14	0.112	0.872	760 – 871
5	3.00	16	0.128	1.00	872 – 999
Total		**125**			

Table 2.7. Service distribution for F3

S. No.	Service time (min)	No. of Vehicles	Prob.	Cum. Prob.	Tag Nos.
1	1.00	34	0.312	0.312	000 – 311
2	1.50	26	0.239	0.551	312 – 550
3	2.00	20	0.183	0.734	551 – 733
4	2.50	11	0.101	0.835	734 – 834
5	3.00	18	0.165	1.00	835 – 999
Total		**109**			

Table 2.8. Service distribution for F4

S. No.	Service time (min)	No. of Vehicles	Prob.	Cum. Prob.	Tag Nos.
1	1.00	26	0.325	0.325	000 – 324
2	1.50	14	0.175	0.5	325 – 449
3	2.00	10	0.125	0.625	500 – 624
4	2.50	22	0.275	0.9	625 – 899
5	3.00	8	0.1	1.00	900 – 999
Total		**80**			
3. Results and discussions
From this study, we conclude that toll plaza can be described as the queueing system with time and state dependent arrival rates, and general service time distributions because discrete-time modelling approach can deal successfully with time-dependent arrival rates and general service time distribution in the most promising method.

3.1 Analytic Results:
The main performance measures in the analytic method are in terms of the following:

Performance measures	F1	F2	F3	F4
Average arrival time in minutes	2.245	3.476	3.918	4.584
Average service time in minutes	1.555	1.728	1.784	1.825
Arrival rate per minute	0.445	0.288	0.255	0.218
Service rate per minute	0.643	0.579	0.561	0.548
Queue Length	1.555	0.491	0.380	0.262
System Length	2.247	0.988	0.835	0.661
Queue time in minutes	3.494	1.704	1.492	1.207
System time in minutes	5.049	3.431	3.275	3.032

3.2 Simulation Results:
In simulation analysis, we used the random numbers for arrival times and service times and shown the calculated performance measures in the following table.

Performance measures	F1	F2	F3	F4
Average arrival time in minutes	2.400	3.550	4.070	5.330
Average service time in minutes	1.540	1.775	1.820	1.895
Queue Length	0.480	0.320	0.310	0.220
System Length	1.123	0.821	0.758	0.576
Queue time in minutes	0.865	0.360	0.365	0.235
System time in minutes	2.405	2.135	2.185	2.130

4. Conclusion
This paper presents a simple and efficient traffic monitoring behaviour in the tollgate system analysis. The computation performance measures are based on the knowledge of simulation generated by the Monte Carlo method and compared with analytic method. These comparison study shows that simulation results are coincide with analytic results. The advantage of this work is most favorable in monitoring traffic intensity at tollgates and these results can help to design the toll gate system, although additional practical constraints must be considered in any real-life implementation.
3.3 Comparative study for Analytic and Simulation results:

Table 3.3.1. Comparative study for Analytic and Simulation results

Performance Measures	F1 Analytic	F1 Simulation	F2 Analytic	F2 Simulation	F3 Analytic	F3 Simulation	F4 Analytic	F4 Simulation
Average arrival time in minutes	2.245	2.400	3.476	3.550	3.918	4.070	4.584	5.330
Average service time in minutes	1.555	1.540	1.728	1.775	1.784	1.820	1.825	1.895
Queue Length	1.555	0.480	0.491	0.320	0.380	0.310	0.262	0.220
System Length	2.247	1.123	0.988	0.821	0.835	0.758	0.661	0.576
Queue time in minutes	3.494	0.865	1.704	0.360	1.492	0.365	1.207	0.235
System time in minutes	5.049	2.405	3.431	2.135	3.275	2.185	3.032	2.130

Acknowledgments

I wish to thank to the MVR toll plaza management for the help to provide the data.

References

[1] Banks, Carson J S, Nelson B L and Nicol D M 2001 *Discrete-Event System Simulation* Prentice Hall international series, third editio, pp 24-37
[2] Erlang A K 1909 The theory of probabilities and telephone conversations *Nyt Jindsskriift Mathematics B20* pp 33-39
[3] Gross D and Harris C M 1998 *Fundamentals of Queueing Theory* Third Edition Wiley, New York
[4] Ito T 2005 Process simulation approach to design and evaluation of toll plaza with ETC gates *International journal of simulation* 6(5)
[5] Metropolis, Nicholas and Stanislaw Ulam 1949 The Monte Carlo Method *Journal of the American Statistical Association* 44(247) pp 335-341
[6] Ravindran A, Philips D T and Solberg J J 1987 *Operations Research: Principles and Practices* Second edition John Wiley & Sons New York
[7] S Shanmugasundaram and S Punitha 2016 The Simulation Study of M/M/1 Queueing Model in Toll Plaza By Considering Vehicle Type *International Journal of Applied Engineering Research* ISSN 0973-4562 11(1)
[8] Shanmugasundaram and S Punitha, 2015 Future Behavior of Toll plaza using Monte Carlo simulation *Global journal of Pure and Applied Mathematics (GJPAM)*, ISBN0973-1768, 11(1) pp 33-38