Dendrimer-based contrast agents for PET imaging

Lingzhou Zhaoa, Xiangyang Shib,c and Jinhua Zhaoa

aDepartment of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China; bCollege of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, People’s Republic of China; cCQM-Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal

Abstract

Positron emission tomography (PET) imaging offers physiological and biological information through the in vivo distribution of PET agents for disease diagnosis, therapy monitoring and prognosis evaluation. Due to the unique structural characteristics allowing for facile modification of targeting ligands and radionuclides, dendrimers can be served as a versatile scaffold to build up various PET imaging agents, and significant breakthroughs have been made in this field over the past decades. This review focuses on the recent advances in dendrimer-based contrast agents for PET imaging of cancer, cardiovascular and other diseases. In particular, radiolabeling strategies for different PET isotopes are described in detail. Several challenges involved in clinical translation of radiolabeled dendrimers are also discussed.

Introduction

Molecular imaging can be described as in vivo real-time visualization, characterization and measurement of biological processes at the molecular and cellular levels (Weissleder, 2006; Chen & Chen, 2010; Bao et al., 2013). As a remarkable progress in medical imaging, various molecular imaging modalities have been developed, including magnetic resonance (MR) imaging (Cai et al., 2013; Li et al., 2013, 2014, 2016; Huang et al., 2015), optical imaging (Shen et al., 2013; Phillips et al., 2014; Etrych et al., 2016; van Brussel et al., 2016), positron emission tomography (PET) (Xiao et al., 2012; Xing et al., 2014; Chakravarty et al., 2015; Dimitrakopoulou-Strauss, 2015; Maurer et al., 2016; Lau et al., 2017) and single photon emission computed tomography (SPECT) (Gomes et al., 2011; Bailey & Willowsen, 2013; de Smet et al., 2013; Li et al., 2016). Different from traditional imaging to visualize the ultimate states of a disease, molecular imaging is expected to detect abnormality with more precision in an early stage, in which the required molecular imaging agents play a key role (Hellebus & Richards-Kortum, 2012; Huang & Tsourkas, 2013; Gnanasegaran & Ballinger, 2014; Qiao & Shi, 2015). According to the detected signals of molecular imaging agents, particular targets or pathways can be imaged.

The imaging signals can be produced from metal oxides, fluorescent molecules or radionuclides to meet the requirements of different imaging modalities (James & Gambhir, 2010, 2011; Kunjachan et al., 2015; Qiao & Shi, 2015). Among these, molecular imaging agents labeled with positron-emitting radionuclides offer an opportunity to noninvasively monitor their biodistribution and pharmacokinetics in vivo by PET. Due to its advantage of high sensitivity and quantitative analysis, PET has gained a wide acceptance as a powerful clinical tool in disease diagnosis, prognosis evaluation and therapy monitoring during the last decade (Tomasi & Rosso, 2012; Groheux et al., 2013; Kikuchi et al., 2013; Nogami et al., 2014; Schüle et al., 2016). Furthermore, the intrinsic weakness of PET imaging is the relatively poor spatial resolution (Drzegz et al., 2012; Luehmann et al., 2016), which can be compensated by other imaging modalities with high anatomical resolution. The formed hybrid imaging techniques, such as PET/CT and PET/MR imaging, strongly drive the development of molecular imaging in more aspects (Hillner et al., 2015; Ohno et al., 2015; Botsikas et al., 2016). However, few new molecular imaging agents, especially multifunctional contrast agents for hybrid imaging, have been approved for clinical applications during the last decade (Hall et al., 2010; Lahooti et al., 2016). Therefore, to meet the growing demands from molecular imaging with improved imaging quality and detection specificity, it is essential to exploit novel PET imaging agents for this powerful technique.

The continuous advances in nanotechnology have shown that various nanoparticles (NPs) can be exploited as PET imaging agents, including but not limited to liposomes (Silindir et al., 2012; Abou et al., 2013; Emmetiere et al., 2013; Rokka et al., 2016; Malinge et al., 2017), micelles (Xiao et al., 2012; Luk & Zhang, 2014; Elsabahy et al., 2015; Ma et al., 2016), gold NPs (Xiao et al., 2012; Karmani et al., 2014), and radionuclides, dendrimers can be served...
metal oxide NPs (Penelope et al., 2012; Pellico et al., 2016; Sun et al., 2016) and dendrimers (Ghobril et al., 2012; Ren et al., 2016; Pant et al., 2017; Smith & Gambhir, 2017). Several radiolabeled nanoparticles have entered preclinical and clinical settings (Stockhofe et al., 2014; Choi et al., 2016). Among these developed nanomaterials, dendrimers (Lee et al., 2005), a class of highly branched, monodispersed, synthetic macromolecules with well-defined architecture and composition and highly controllable size and surface properties have attracted a great deal of attention. Compared to other type of nanostructures, dendrimers offer several key advantages: (1) precise molecular structures and exact number of terminal groups; (2) multiple sites of attachment for various conjugation methods; (3) excellent stability and small size with favorable biocompatibility, for example, the size of the most studied generation five dendrimers is only 5.4 nm which enables the direct elimination by renal system without degradation in vivo. These unique features enable dendrimers to be conveniently used for construction of nanoscale contrast agents (Lee et al., 2005; Mintzer & Grinstaff, 2011; Peng et al., 2012; Wen et al., 2013; Zhao et al., 2015; Luo et al., 2016), in particular nanoprobe using different positron-emitting nuclides. Furthermore, the physical size and structure of dendrimers are frequently utilized to adjust their in vivo excretion behavior and circulation time and to obtain a suitable visualization of passive targeting behavior through enhanced permeability and retention (EPR) effect in specific areas (Kobayashi et al., 2003; Lei et al., 2008; Tang et al., 2013), like tumors. Another approach to increase targeting efficiency in tumors is to build dendrimer-based NPs functionalized with multiple targeting ligands (Liu et al., 2013; Sunqrot et al., 2014; He et al., 2015). So these ligand-modified dendrimers can have higher probability to target specific receptors overexpressed in tumor cells. Besides, through appropriate surface modification, dendrimers are able to obtain desired water solubility and biocompatibility (Shi et al., 2007; Cheng et al., 2011), which may impart the dendrimer-based PET imaging agents a wide range of applications in clinical practice.

The unique characteristics of dendrimers allow the generation of many PET imaging agents. It has to be emphasized that several key issues have to be considered, such as appropriate isotopes, efficient radiolabeling strategies and beneficial pharmacokinetic profiles, in order to achieve expected objectives. In this review, we describe various radiolabeling strategies for different PET isotopes, and summarize recent advances in the development of dendrimer-based contrast agents for PET imaging. Some challenges and future outlooks related to this area of research are also briefly discussed.

PET isotopes

Up to date, a great variety of positron-emitting isotopes become available for PET imaging (Decristoforo, 2012; Jodal et al., 2014). Generally, they can be produced by medical cyclotrons or obtained from specific generators and classified into two categories according to their physical half-lives. Short-lived positron emitters include 15O, 13N, 11C, 18F and 68Ga with half-lives from 2 min to 110 min (Mirshojaei et al., 2016), which is compatible for measurements within an initial time frame. Long-lived positron emitters with half-lives of several hours or days (Stockhofe et al., 2014), such as 64Cu, 76Br 89Zr, 124I and 74As, can be applicable for relatively slow processes and certain effects, like EPR effect. The typical radionuclides for PET imaging and their common production methods are summarized in Table 1.

Table 1. Representative radioisotopes for PET imaging and their production methods.

Radioisotopes	Half-life	$eta^+$ properties (%)	E_{max} (MeV)	Production methods
15O	2.0 min	99.8	0.96	Cyclotron
13N	10.0 min	99.8	1.199	Cyclotron
15O	2.0 min	99.9	1.732	Cyclotron
18F	109.8 min	97.0	0.635	Cyclotron
64Cu	12.7 h	17.8	0.653	Cyclotron
68Ga	67.8 min	89	1.899	Generator
76Br	16.2 h	55	3.94	Cyclotron
89Zr	78.4 h	22.7	1.81	Cyclotron
124I	4.2 d	23	0.91	Cyclotron
74As	17.8 d	29	1.54	Cyclotron

Considering the crucial role of physical half-life in PET imaging, appropriate PET isotopes and their efficient radiolabeling strategies must be carefully taken into consideration in order to obtain optimal results (Sun et al., 2007; Stockhofe et al., 2014). Distinctly different from the normal chemical reaction, the radiolabeling synthesis is usually time-constrained; therefore, fast reaction time and simple procedure for purification are indispensable, especially for those short half-life isotopes. At the same time, only a trace amount of radioactive isotopes is added to label with excess precursors; on one hand, the synthesis can benefit from the abundant precursors to increase the radiolabeling yield; on the other hand, the radiolabeling reaction becomes very sensitive and prone to be slowed down or even stopped by a tiny amount of impurities or other reactive functional groups in precursors. In general, as to the very short-lived isotopes 15O (t$_{1/2}$=2.0 min) and 13N (t$_{1/2}$=10.0 min), they are mainly used in simple forms such as 15O$_2$, 13N$_2$, 15O$_2$, 13NH$_3$, to determine blood flow and volume distribution (Danad et al., 2013; Hori et al., 2014; Kim et al., 2015). In comparison to 15O and 13N, 11C (t$_{1/2}$=20.4 min) has a relatively longer half-life with a wide range of applications. 11C can be introduced into an organic structure by methylation which is often achieved using 11C-iodomethane. By replacing a nonradioactive 12C atom, 11C can be easily labeled with biological molecules, including but not limited to amino acids, nucleic acids, choline and dopamine (Okada et al., 2011; Villemagne et al., 2012; Umbehrr et al., 2013; D’Souza et al., 2014). Thanks to the same structure before and after labeling, the chemical and biological properties of biological molecules are not changed, which can faithfully reflect their distribution, metabolism and excretion in the body. Nevertheless, due to the limitation of their short half-lives, only a very few of 13N- and 11C-labeled NPs have been reported (Pérez-Campaña et al., 2013; Sharma et al., 2013).

Currently, 18F is the most commonly used PET isotope with a modest half-life (109.8 min), while the addition of

18F to complex molecules is still challenging. Usually, the 18F radiolabeling is carried out through the nucleophilic substitution of some excellent leaving groups in precursors such as mesylate, tosylate or triflate. Despite many 18F-labeling methods have been proposed, most of them suffer from harsh reaction conditions, multistep protocols and low radiochemical yields, which is also a major obstacle of 18F-labeled NPs (Devaraj et al., 2009; Liu & Welch, 2012). For covalent binding of 18F onto NPs, either direct or prosthetic group radiolabeling is often impossible or provides only poor overall yields. Consequently, alternative labeling strategies have been developed for fast, stable and high yielding of radiosynthesis. Taking click chemistry as an example (Zeng et al., 2013; Meyer et al., 2016), through the copper-catalyzed azide-alkyne cycloaddition reaction, 18F can be efficiently and mildly conjugated to azide-modified NPs. Radiohalogens, such as 76Br and 124I, have half-lives of 16.2 h and 4.2 days, respectively, which allows a prolonged time frame for scanning. In contrast to 18F, radiolabeling of NPs with 76Br or 124I can be convenient and efficient via Chloramine T method (Sundin et al., 1999; Taldone et al., 2016), for instance, by the introduction of tyrosine into NPs. It is well known that the first-in-human clinical study of radiolabeled nanoparticles for cancer imaging was done with 124I-labeled ultrasmall inorganic hybrid nanoparticles (Phillips et al., 2014).

It is worth noting that 64Cu and 68Ga have been the most extensively researched radionuclides in the construction of radiolabeled NPs because of latent chemical properties, favorable decay half-life, and commercial availability (Zeng et al., 2012; Banerjee et al., 2014). conveniently, 68Ga and 64Cu can be conjugated on the surface of NPs through coordination chemistry. Since NPs do not have any metal binding sites, bifunctional chelators (BFCs) are indispensable, which forms stable complexes with these radionuclides. As the well-established coordination chemistry, a wide range of BFCs have been designed and synthesized, which greatly facilitates the development of various radiometal-labeled NPs for PET-imaging applications (Wadas et al., 2010). 1, 4, 7, 10-Tetraazacyclododecane-1, 4, 7, 10-tetraacetic acid (DOTA) as a typical representative of macrocyclic chelating agents, a widely used chelator, has been often connected with dendrimers to chelate nonradioactive Gd(III) for MR imaging (Chen et al., 2015; Mustafa et al., 2016). This chelating system allows simultaneous coupling of different types of imaging elements in one NPs for multimodal imaging applications (e.g. PET/MR) (Park et al., 2010; Pellico et al., 2016). Furthermore, via substituting the diagnostic radionuclide with a therapeutic one, whereas the chelator and the nanodimensional structure remain, it is possible to build various theranostic nanoplatforms (Weineisen et al., 2015; Petersen et al., 2016).

Dendrimer-based PET imaging agents

18F is regarded as an ideal positron emitter for PET imaging, due to its high positron intensity (97%) and optimal positron emission energy (0.635 MeV). This means a short positron linear range in tissue that enables high-resolution PET imaging (Conti & Eriksson, 2016). Besides, the proper half-life (109.8 min) is favorable for imaging quality and radiation safety. Thanks to these benefits, abundant 18F-labeled agents have been developed for different clinical applications in the past decades; however, 18F is mostly used in the form of 18F-fluorodeoxyglucose (18F-FDG) for tumor imaging (Hall et al., 2010; Kurihara et al., 2012). In the meantime, with the popularization of PET imaging and daily production through cyclotrons in most major hospitals, 18F becomes the most readily available PET isotope, which greatly boosts the research of 18F-radiolabeled NPs (Stockhofe et al., 2014; Xing et al., 2014).

Trembleau et al. first showed that dendrimers could be labeled with 18F-fluorinatable groups at room temperature (Trembleau et al., 2011). The dendrimers used in this study possessed a disulfide linker, which could subsequently generate two dendrons with thiol groups for conjugation with biotin. To facilitate 18F-fluorination at room temperature in aqueous solvent, trifluoro-boroaryl moieties were attached to the terminal NH$_2$ groups of dendrimers. After incubation of the boroaryl functionalized dendrons with 18F-fluoride in glacial acetic acid, the radiochemical yield could be up to 55%. This rate was similar for dendrons with 4, 8 and 16 branches. These 18F-dendron-biotins displayed targeting specificities to HER-2 expressing cells pretargeted with avidin-trastuzumab in vitro. Unexpectedly, the cell-associated activity of 18F-dendron-biotin decreased significantly with increasing dendron size, suggesting that larger dendrons might sterically hinder binding of avidin with biotin. Although the developed radiolabeling method might be suitable for the temperature-sensitive nanomaterials, there remains challenges to seek appropriate linkers for the conjugation of targeting molecules to improve specificity.

76Br

76Br is known to be a positron emitter with 57% positron emission and 43% electron capture with relatively long half-life (16.2 h), which has been used to label antibody and small molecules for PET imaging (Jagoda et al., 2012; Hanaoka et al., 2015). 76Br can be labeled with high radiolabeling yield at room temperature in a short time. Almutairi et al. reported a unique approach to build up 76Br-labeled biodegradable dendrimers for PET imaging of angiogenesis (Figure 1) (Almutairi et al., 2009). The developed nanoprobe was manufactured using pentaerythritol as the dendritic core to functionalize with tyrosine groups for 77Br labeling and heterobifunctional polyethylene oxide chains (PEO) forming protective shells to prevent dehalogenation in vivo. Radiolabeling was achieved using Chloramine-T method and the 76Br-labeled dendrimers displayed excellent stability in PBS and mouse serum within 48 h. Moreover, the pharmacokinetics could be modulated through appropriate level of dendritic branching and PEO length. RGD peptides were modified with lysine and could be further installed at the ends of the PEO chains. The targeted nanoparticles exhibited a 50-fold enhancement in binding affinity over the mono-RGD
peptide and 6-fold increase in αvβ3 receptor-mediated endocytosis compared with nontargeted nanoprobe. Highly specific accumulation of 76Br-labeled dendritic nanoprobe was found in a murine hindlimb ischemia model and the potential of dendritic nanoprobe as a PET-imaging agent of angiogenesis was verified in vivo. Remarkably, the design of protective shells in this study could be potentially used to improve radiostability of radioiodine-labeled nanoprobes that are more vulnerable to dehalogenation in vivo.

\[^{64}\text{Cu} \]

\(^{64}\text{Cu}\) can be conceptually used for both imaging and potential therapy in nuclear medicine field, due to its specific nuclear properties, such as a favorable half-life (12.7 h) and attractive decay characteristics (\(\beta^+\), 17.8%; \(\beta^-\), 38.4%; EC, 43.8%) (Conti & Eriksson, 2016). As a radiometal, \(^{64}\text{Cu}\) requires a BFC for attaching it to NPs. Apart from DOTA, 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) and 1,4,8,11-tetraazacyclotetradecane-N,N’N”,N”'-tetraacetic acid
(TETA) are additional macrocyclic chelators (Stockhofe et al., 2014). Normally, the radiolabeling protocols share similar reaction conditions and purification methods. Through a 64Ni(p,n)64Cu nuclear reaction in cyclotron accelerator, 64CuCl$_2$ is provided in a hydrochloric acid solution, and then mixed with the NPs dissolved in nearly neutral or weakly acidic buffer solution. The mixture is incubated at room temperature or heated to higher temperatures for one half to several hours. The crude products can be purified by adding another chelating agent (e.g. DTPA), gel filtration chromatography (e.g. PD-10 desalting column) or centrifuged filtration to remove free 64Cu.

Wang et al. developed an anti-HER2 Affibody-based dual imaging probe using PAMAM generation 0 (PAMAM G0) as a platform to assemble 64Cu and Cy5.5 for dual-modality imaging of ovarian cancer (Figure 2) (Wang et al., 2014). The PAMAM G0 molecule contained four peripheral amines and could be readily coupled with Cy5.5-NHS and DOTA-NHS via the formation of acylamide. The anti-HER2 Affibody was then connected with PAMAM through a bifunctional linker, sulfo-succinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate (Sulfo-SMCC), which could react with the amine terminal groups of G0 and coupled with the cysteine in anti-HER2 Affibody. The developed dendrimer conjugates could effectively chelate with 64Cu, but the 64Cu-labeled complexes were not very stable in vivo. The main reason of instability is considered to be the reduction of Cu(ll) to Cu(I) in the 64Cu-DOTA moiety, while DOTA is unsuitable for the chelation of Cu(I), generating transchelation between 64Cu-DOTA and some proteins such as serum albumin and superoxide dismutase. Nevertheless, both NIRF and PET imaging exhibited high tumor uptake with unusual contrast effects at 1 h post injection, and excellent tumor imaging results were observed within 20 h, which attributed to favorable pharmacokinetic properties. Interestingly, tumor fluorescence signals gradually increased during the period investigated, whereas a radioactivity peak from PET were found at 4 h after injection. This difference might be explained by the fact that NIRF and PET followed the fate of Cy5.5 and 64Cu moieties, respectively. Biodistribution studies showed that this dendrimer-based dual-modality imaging probe is accumulated prominently in liver and kidneys, suggesting the excretion through both hepatobiliary and kidney systems.

In another study, Li et al. developed smart and versatile telodendrimers consisting of various imaging and therapeutic functions such as NIRF, PET and MR imaging, photothermal therapy (PTT), photodynamic therapy (PDT), as well as image-guided drug delivery (Li et al., 2014). This multifunctional nanoplatform was synthesized by the self-assembly of hybrid amphiphilic polymers comprising linear polyethylene glycol (PEG), dendritic oligomers of pyropheophorbide-a (a porphyrin analog, Por) and cholic acid (CA). In order to improve the structural stability of NPs in blood circulation, four cysteines were introduced to the oligolysine backbone of the telodendrimers and then crosslinked via disulfide bond. Due to the structure feature of porphyrin components, the self-assembled telodendrimers possessed an intrinsic ability to chelate 64Cu for PET imaging or Gd(III) for MR imaging (Figure 3). Notably, the radiolabeling strategy was very simple and fast. Only after incubation of telodendrimers with 64CuCl$_2$ solution for 30 min at room temperature, the radiochemical yields could be up to 96.5%. When excited at 405 nm, the telodendrimers displayed a weak red-fluorescence emission at 680 nm, but very strong fluorescence in the presence of sodium dodecyl sulfate (SDS). Similar to the fluorescence property, the telodendrimers also possessed the ability of photodynamic transduction. After laser irradiation, telodendrimers could convert energy in the form of heat in PBS, while fluorescence and singlet oxygen generation with the addition of SDS. Furthermore, chemotherapeutic drugs could be efficiently encapsulated inside the telodendrimers as programmable releasing nanocarriers for drug delivery.
These properties enabled telodendrimers as theranostic agents for NIRF imaging, PTT, PDT and chemotherapy, which had been demonstrated in both ovarian cancer xenograft model and murine transgenic breast cancer model in vivo.

The development of PET nanoprobes is vulnerable to be restricted by the contradiction between intrinsic pharmacokinetics (PKs) of NPs and limited half-lives of positron-emitting isotopes. To this issue, the pretargeted imaging strategy may be one of the promising solutions (Zeglis et al., 2013; van Duijnhoven et al., 2015; Hou et al., 2016). In an ideal pretargeted PET-imaging system, the tumor-targeting agents should preferentially accumulate in tumors within a reasonable time frame. Then, radiolabeled ligands can effectively distribute to whole body and irreversibly combine the tumor-targeting agents previously accumulated in tumor sites. In parallel, uncombined radioligands were cleared rapidly throughout the body, as revealed by high-contrast tumor PET imaging. In a recent study, Hou et al. reported tumor-targeting supramolecular NPs (TCO\textsubscript{C-SNPs}) for pretargeted PET imaging (Figure 4) (Hou et al., 2016). TCO\textsubscript{C-SNPs} were self-assembled by cyclodextrin-polyethylenimine polymer (CD-PEI), trans-cyclooctene modified CD-PEI (TCO/CD-PEI), adamantane-grafted polyamidoamine (Ad-PAMAM) and Ad-grafted polyethylene glycol (Ad-PEG). The 64Cu labeling of TCO\textsubscript{C-SNPs} was designed via Diels-Alder reaction between TCO and tetrazine-DOTA-64Cu (64Cu-Tz). 64Cu-Tz could be prepared with high radiochemical yield and its stability was up to 95% with 8 h both in PBS and serum. TCO groups were encapsulated into supramolecular NPs to be protected from potential degradation in vivo. When preferential accumulation of TCO\textsubscript{C-SNPs} in tumor through EPR effect occurred, TCO/CD-PEI could be released from the inside of TCO\textsubscript{C-SNPs} and reacted with 64Cu-Tz to retain radioactivity in tumor. After the quick clearance of the unreacted 64Cu-Tz from the body, high-contrast tumor PET imaging were achieved. In contrast to traditional nanoparticle-based imaging platforms with faint tumor uptake and excessive liver distribution, the pretargeted approach showed approximately equivalent uptake in tumor and liver.

Aside from cancer imaging, PET imaging of cardiovascular and inflammatory diseases are gaining importance in the field of molecular imaging (Ratib et al., 2013; Hess et al., 2014; LaForest et al., 2016; Chen et al., 2017). Seo et al. reported a 64Cu-labeled dendrimer for PET imaging of atherosclerotic plaque (Seo et al., 2014). They demonstrated that LyP-1, a cyclic 9-amino acid peptide, was able to bind to p32...
protein, a biomarker in the progression of atherosclerosis, but the binding affinity of LyP-1 was relatively low in aorta (Hamzah et al., 2011). To improve the accumulation efficacy in atherosclerosis, a dendritic form of LyP-1 was designed and synthesized using lysine as a core structural element. 6-BAT (an analog of TETA) was attached to the dendrimer via free thiol groups of C-terminal cysteine for labeling of 64Cu, and the decay corrected radiochemical yield was $80 \pm 5.7\%$ ($n = 3$). The 64Cu-labeled dendritic peptide showed significantly enhanced accumulation in atherosclerotic plaque and

Figure 4. Schematic representation of a new approach for pretargeted PET imaging that leverages the utilities of supramolecular nanoparticles (SNPs) and bioorthogonal chemistry: (a) Supramolecular synthetic strategy is employed for preparing the tumor-targeting agent (TCO-SNPs); (b) after intravenous injection, the tumor EPR effect drives preferential accumulation of TCO-SNPs in tumor; (c) after TCO-SNPs have accumulated in tumor, TCO-SNPs disassemble to release a TCO-grafted molecular building block, TCO/CD-PEI; (d) a radiolabeled reporter (64Cu-Tz) is then injected for bioorthogonal reaction with tumor-retained TCO/CD-PEI; (e) the unreacted 64Cu-Tz was cleared quickly from the body; (f) the resulting dihydropyrazine (DHP) conjugation adduct (64Cu-DHP/CD-PEI) confines radioactivity in tumor, resulting in high-contrast tumor PET imaging. (g) Chemical structures of the bioorthogonal reactions between TCO/CD-PEI and 64Cu-Tz (adapted from Hou et al., 2016).
higher aorta/blood ratio as compared with both the mono-
mer and control peptide through in vivo PET imaging. In
another study, Pant et al. exploited 64Cu-labeled dendritic
polyglycerol sulfates (dPGS) as inflammation-specific agents
for PET imaging (Pant et al., 2015). It was noted that through
facile modification of 1,4-bis(2-pyridinylimethyl)-1,4,7-triazacy-
clononane (DMPTACN) with isothiocyanate or maleimide
groups, two novel types of copper(II)-chelating ligands could
directly couple with amino or sulfhydryl groups of dPGS. The
formed dPGS-DMPTACN could be effectively labeled with
64Cu with a yield of 99% and displayed excellent radioactivity
in vitro within 24 h. However, PET imaging and biodistri-
bution studies of the 64Cu-labeled dPGs were only carried
out in healthy rats, and further evaluations of these potential
inflammation-specific agents in inflammatory models have
not been investigated.

68Ga

As a nonphysiologic metallic positron emitter, 68Ga has
attracted considerable attention because of the availability
from 68Ge/68Ga generator, low production cost and conveni-
ent labeling strategy (Fani et al., 2008). Furthermore, in terms
of decay characteristics, 68Ga (β+, 89%; EC, 11%) shows sig-
nificant superiority over 64Cu (β+, 17.8%; β−, 38.4%; EC,
43.8%) to gain improved image quality in theory for PET
imaging and more suitable half-life of 67.8 min for clinical
applications (Conti & Eriksson, 2016). Similar to 64Cu, 68Ga
can be chelated with DOTA and NOTA. Even when the same
chelators are used, the 68Ga-labeling methods quite varied
due to the diverse labeled structures. Recently, Ghai et al.
described the optimal radiolabeling of 68Ga with PAMAM G4
dendrimer-DOTA conjugate (Ghai et al., 2015). The best radiol-
abeling efficiency of 96.8% was achieved at pH 4.0, 30 min
of incubation time and reaction temperature between 90
and 100°C. The radiolabeled dendrimers remained stable
(with radiolabeling efficiency of 96.0%) for up to 4 h in vitro
and serum, and the plasma protein binding was observed to
be 21.0±3.4%. PET imaging showed that this 68Ga-labeled
dendrimers could be efficiently retained in tumor tissues
through EPR effect and excreted primarily through kidneys.

Tanaka et al. reported PET imaging of dendrimer-type
asparagine-linked oligosaccharide (N-glycan) clusters to visu-
alize their dynamics and biodistributions in vivo (Tanaka
et al., 2010). In this work, different generations of glycoluc-
sters consisting of 4, 8 and 16 molecules of N-glycan deriva-
tives, were prepared (Figure 5). The hexadeca-glycoclusters
(16-mers) had three kind of structures due to the composed
different N-Glycans, bis-Neua(2-6)Gal-containing glycans (a),
asialo glycans (b) and bis-Neua(2-3)Gal-glycan (c), respectively,
while bis-Neua(2-6)Gal-containing glycans was only used in
tetra-glycocluster (4-mer) and octa-glycocluster (8-mer). DOTA
could be linked with terminal amine group of lysine in these
glycoclusters for 68Ga labeling. The PET results in nor-
mal mice showed differences in the clearance properties
between the 4-mer, 8-mer and 16-mers, probably due to
their molecular size. Smaller glycoclusters of 4-mer and 8-mer
could be rapidly and almost completely cleared through
kidney, but 16-mer-a was eliminated from urinary bladder
and gallbladder with a slow rate. In addition, difference in
the biodistribution between 16-mer-b and 16-mer-c were
also observed. Unlike the case of 16-mer-a, glycocluster
16-mer-b was cleared through the kidney to the bladder
with some accumulation in the liver, and 16-mer-c was rap-
idly cleared through the kidney/urinary bladder. These results
implied that the Neu(2-6)Gal linkage in glycoclusters played
an important role in the circulatory residence of N-glycans
and varied remarkably in the clearance pathway from those
of glycoclusters of 16-mer-b and 16-mer-c, which were
cleared through a biofiltration pathway in the kidney.

Radiolabeled arginine–glycine–aspartic acid (RGD) peptide
that can target αvβ3 integrin receptors has been widely used
in the fields of cancer and cardiovascular diseases (Dijkgraaf
et al., 2011; Zhu et al., 2012; Wang et al., 2015; Zhai et al.,
2015; Chen et al., 2016; Singh et al., 2016). In comparison
with monomers, RGD multimers present an enhanced bind-
ing rate and stability in vivo, which promotes the develop-
ment of multimeric RGD peptide radiopharmaceuticals for
noninvasive imaging. Several groups have synthesized radio-
labeled tetrameric RGD peptides and verified their higher
binding affinity and specificity than dimers to tumor cells by
PET imaging (Wu et al., 2005, 2007; Dijkgraaf et al., 2011).
Then, a further improved integrin-binding affinity with higher
initial uptake and longer tumor retention was obtained from
a RGD-peptide octamer, which reinforced the theory of the
multivalency effect (Li et al., 2007). Nevertheless, the purifica-
tion of multimers becomes increasingly difficult with the
increase in the number of RGD moieties. To work out the
synthetic limits of multimerization, Wängler et al. used
PAMAM dendrimers as scaffold to manufacture RGD peptide
multimers (Wängler et al., 2010). Three different types of click
chemistry reactions were employed to determine the most
efficient multimerization approach. Since oxime formation
and 1,3-dipolar cycloaddition did not permit the achievement
of high multimeric probes, a series of RGD multimers were
successfully synthesized by Michael addition of thiols to mal-
eimides, including mono-, di-, tetra-, octa- and, for the first
time, hexadecimers. The obtained multimers were conjugated
to a DOTA derivative and PEG spacer for accessible 68Ga
radiolabeling. These cRGD multimers could easily be labeled
with 68Ga in radiochemical yields between 95% and 98% and
radiochemical purities between 96-99%. As expected, binding
avidities of RGD multimers constantly was amplified with
an increasing number of RGD moieties in the in vitro studies,
as a result, hexadecimers showed a very high avidity to αvβ3
integrin and integrin-expressing U87MG cells, 131 and 124
times higher than in the case of the corresponding mono-
mer, respectively.

This synthesis approach using dendritic structures as
scaffolds for multimerization of bioactive molecules was
broadened in a following work (Fischer et al., 2014;
Lindner et al., 2014). Due to tolerable in vivo stability and
reasonable tumor uptake, PESIN peptide is regard as one of
the most promising ligands to gastrin releasing peptide
receptor (GRPR), which is overexpressed on several tumor
types. Lindner et al. synthesized a series of PESIN mono-
mers, dimers, tetramers and octamers comprising PEG
linkers of different lengths, followed by conjugation with PAMAM dendrimers and efficient radiolabeling of 68Ga. The labeled dendrimers could be obtained in high radiochemical yields and purities of 96–99% with excellent stability. The shortest linker within each group (monomers to octamers) resulting in minimal distances between the peptide moieties showed the highest binding affinities in vitro. However, the effect of binding affinities increasing proportionally to the number of peptide moieties was not observed in the case of these PESIN multimers. The dimers presented the optimized binding affinity, namely a 2.5-fold avidity enhancement compared to the monomeric peptides, which was further validated by the result that PET study of 68Ga-labeled dimers displayed a twice higher tumor uptake in tumor-bearing mice. Interestingly, benefiting from the much faster blood clearance, the dimer also showed twofold high tumor-to-background ratios than the respective monomers.

Figure 5. Generation and structure of N-glycan (bis-Neua(2-6)Galglycan (a), bis-Neua(2-6)Gal-asialo glycan (b) and bis-Neua(2-3)Galglycan (c)) clusters labeled with 68Ga-DOTA (adapted from van Gobril et al., 2012).
Conclusions and outlooks

In summary, dendrimer-based PET imaging agents are reviewed. The typical examples presented in this review demonstrate that positron isotope-labeled dendrimers have a great potential for PET imaging of cancer, cardiovascular and other diseases through targeting ligands (e.g. RGD peptides) or EPR effect. The unique structural characteristics of dendrimers have offered opportunities to incorporate various molecular imaging modalities in a single system for multimodal imaging, such as PET/MR and PET/NIRF imaging. More importantly, therapeutic capabilities are able to be introduced into multifunctional dendrimers as well for theranostic applications. On the other hand, appropriate isotopes and efficient radiolabeling strategies must be carefully considered in the construction of dendrimer-based contrast agents for PET imaging. Interestingly, pretargeted strategy can provide a great deal of flexibility of imaging time, especially for the short-lived isotopes. Several radiolabeling approaches for different PET isotopes have been developed with satisfactory results.

Although positron isotope-labeled dendrimers have shown a great promise in the field of molecular imaging, quite a number of problems need to be solved in their clinical translation (Stylianopoulos & Jain, 2015). The major obstacle is insufficient specificity in target tissues and redundant accumulation in the mononuclear phagocytic system (MPS). One of the promising approaches to increase targeting specificity is to build dendrimer platforms functionalized with monoclonal antibodies, peptides or other targeting ligands that can recognize specific receptors or antigens in vivo. In addition, the physical properties of NPs, such as size, shape and surface charge, significantly determine their in vivo biodistribution behavior; therefore, dendrimers with optimal surface modifications can prolong circulation time, decrease MPS uptake and have the potential to increase the target-to-background ratio as compared to the uncoated counterparts. Further, the construction of smart and versatile dendrimers for molecular imaging still remains an open area of investigation, for instance, exploring new synthetic techniques specific to dendrimer-based molecular imaging contrast agents. Thus, in order to fulfill PET applications, novel radiolabeling strategies with sufficient radiochemical yields and in vivo stabilities must be developed. It should be noted that click chemistry in recent years has shown significant benefits over traditional synthetic methods for the clean, high yielding and rapid preparation of imaging agents labeled with PET radionuclides such as ^{18}F, ^{64}Cu and ^{68}Ga. However, the application of click techniques to radiolabeled dendrimer-based NPs is still in an early stage and much more effort is needed in this field. In the aspect of safety, the long-term toxicity of dendrimer-based contrast agents is still confusing, especially the large systems with lack of complete clearance from the body. To resolve this issue, the biodegradable dendrimers will be a better choice. Lastly, due to that fact that dendrimers are able to be loaded with various drugs, genes and therapeutic radionuclides, more types of dendrimer-based theranostic systems could be developed in order to expand the scope of molecular imaging applications, in particular PET image-guided drug delivery (Chakravarty et al., 2014).

Disclosure statement

The authors have declared that they have no conflicts of interest.

Funding

This research is financially supported by the The National Natural Science Foundation of China (81671712, 81401440, 81761148028 and 21773028), the Science and Technology Commission of Shanghai Municipality (17540712000), and the Fundamental Research Funds for the Central Universities. L. Zhao thanks the support from the Shanghai Sailing Program (16YF1409300). X. Shi also acknowledges the support by FCT-Fundação para a Ciência e a Tecnologia (project PEst-OE/QUI/UI0674/2013, CQM, Portuguese Government funds) and by ARDITI-Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação through the project M1420-01-0145-FEDER-000005-Centro de Química da Madeira-CQM + (Madeira 14-20).

References

Abou DS, Thorek DLJ, Ramos NN, et al. (2013). ^{89}Zr-labeled paramagnetic octreotide-liposomes for PET-MR imaging of cancer. Pharm Res 30:878–88.
Allmeroth M, Moderegger D, Gündel D, et al. (2013). PEGylation of HPMA-based block copolymers enhances tumor accumulation in vivo: a quantitative study using radiolabeling and positron emission tomography. J Control Release 172:77–85.
Almutairi A, Rossin R, Shokeen M, et al. (2009). Biodegradable dendritic positron-emitting nanoprobes for the noninvasive imaging of angiogenesis. Proc Natl Acad Sci USA 106:685–90.
Bailey DL, Willowson KP. (2013). An evidence-based review of quantitative SPECT imaging and potential clinical applications. J Nucl Med 54:83–9.
Banerjee SR, Pullambhatla M, Foss CA, et al. (2014). ^{64}Cu-labeled inhibitors of prostate-specific membrane antigen for PET imaging of prostate cancer. J Med Chem 57:2657–69.
Bao G, Mitragotri S, Tong S. (2013). Multifunctional nanoparticles for drug delivery and molecular imaging. Annu Rev Biomed Eng 15:253–82.
Botšikas D, Kalovidouri A, Becker M, et al. (2016). Clinical utility of ^{18}F-FDG-PET/MR for preoperative breast cancer staging. Eur Radiol 26:2297–307.
Cai H, An X, Cui J, et al. (2013). Facile hydrothermal synthesis and surface functionalization of polyethyleneimine-coated iron oxide nanoparticles for biomedical applications. ACS Appl Mater Interfaces 5:1722–31.
Chakravarty R, Goel S, Hong H, et al. (2015). Hollow mesoporous silica nanoparticles for tumor vasculature targeting and PET image-guided drug delivery. Nanomedicine (Lond) 10:1233–46.
Chakravarty R, Hong H, Cai W. (2014). Positron emission tomography image-guided drug delivery: current status and future perspectives. Mol Pharm 11:3777–97.
Chen DL, Schiebler ML, Goo JM, et al. (2017). PET imaging approaches for inflammatory lung diseases: current concepts and future directions. Eur J Radiol 86:371–6.
Chen H, Niu G, Wu H, et al. (2016). Clinical application of radiolabeled RGD peptides for PET imaging of integrin $\alpha_v\beta_3$. Theranostics 6:78–92.
Chen K, Chen X. (2010). Design and development of molecular imaging probes. Curr Top Med Chem 10:1227–36.
Chen Q, Wang H, Liu H, et al. (2015). Multifunctional dendrimer-entrapped gold nanoparticles modified with RGD peptide for targeted computed tomography/magnetic resonance dual-modal imaging of tumors. Anal Chem 87:3949–56.
Cheng Y, Zhao L, Li Y, et al. (2011). Design of biocompatible dendrimers for cancer diagnosis and therapy: current status and future perspectives. Chem Soc Rev 40:2673–703.
Choi H, Lee Y-S, Hwang DW, et al. (2016). Translational radionanomedicine: a clinical perspective. Eur J Nanomed 8:71–90.

Conti M, Eriksson L. (2016). Physics of pure and non-pure positron emitters for PET: a review and a discussion. EJNMMI Phys 3:8.

Danad I, Rajmakers PG, Appelman YE, et al. (2013). Hybrid imaging using quantitative 18F/FDG PET and CT-based coronary angiography for the detection of coronary artery disease. J Nucl Med 54:55–63.

De Smet M, Langereis S, Van Den Bosch S, et al. (2013). SPECT/CT imaging of temperature-sensitive liposomes for MR-image guided drug delivery with high intensity focused ultrasound. J Control Release 169:82–90.

Decristoforo C. (2012). Gallium-68 – a new opportunity for PET available from a long shelf-life generator - automation and applications. Curr Radiopharm 5:212–20.

Devaraj NK, Kelhier EJ, Thurber GM, et al. (2009). 18F-labeled nanoparticles for in vivo PET/CT imaging. Bioconjug Chem 20:397–401.

Dijkstra I, Yim C, Franssen GM, et al. (2011). PET imaging of 68Ga-labelled mono-, di- and tetrameric RGD peptides. Eur J Nucl Med Mol Imaging 38:128–37.

Dimitrakopoulou-Strauss A. (2015). PET-based molecular imaging in pericyte growth factor receptor met using the 1-armed antibody onartuzumab. J Nucl Med 53:1592–600.

Dijkgraaf I, Yim C, Franssen GM, et al. (2011). PET imaging of 68Ga-labelled dendrons applicable as scaffolds for radiolabeled bioorthogonal liposomes for in vivo targeting. Bioconjug Chem 22:1726–894.

Drzezga A, Souvatzoglou M, Elber M, et al. (2012). First clinical experience with integrated whole-body PET/MR: comparison to PET/CT in patients with oncologic diagnoses. J Nucl Med 53:845–55.

D’ouza MM, Sharma P, Jaimini A, et al. (2014). 18-F-MET PET/CT and advanced MRI in the evaluation of tumor recurrence in high-grade gliomas. Clin Nucl Med 39:791–8.

Elsbahy M, Heo GS, Lim SM, et al. (2015). Polymeric nanostructures for imaging and therapy. Chem Rev 115:10967–1011.

Emmetiere F, Irwin C, Viola-Villegas NT, et al. (2013). (18)F-labeled biorthogonal liposomes for in vivo targeting. Bioconjug Chem 24:1726–894.

Etrich T, Lucas H, Janoušková O, et al. (2016). Fluorescence optical imaging in anticancer drug delivery. J Control Release 226:168–81.

Fani M, André JP, Maecke HR. (2008). 68Ga-PET: a powerful generator-based alternative to cyclotron-based PET radiopharmaceuticals. Contrast Media Mol Imaging 3:53–63.

Fischer G, Wängler B, Wängler C. (2014). Optimized solid phase-assisted synthesis of dendrons applicable as scaffolds for radiolabeled bioactive multivalent compounds intended for molecular imaging. Molecules 19:6952–74.

Ghai A, Singh B, Panwar Hazari P, et al. (2015). Radiolabeling optimization and characterization of 68Ga labeled DOTApolyamido-amine dendrimer conjugate: animal biodistribution and PET imaging results. Appl Radiat Isotopes 105:40–64.

Gobril C, Lamanna G, Kueny-Stotz M, et al. (2012). Dendrimers in nuclear medical imaging. New J Chem 36:310–23.

Gnanasegaran G, Ballinger JR. (2014). Molecular imaging agents for SPECT (and SPECT/CT). Eur J Nucl Med Mol Imaging 41:266–388.

Ghobril C, Lamanna G, Kueny-Stotz M, et al. (2012). Dendrimers in nuclear medical imaging. New J Chem 36:310–23.

Gupta R, Rao U, Kompella B, et al. (2014). Validation of using a 3-dimensional PET scanner during inhalation of 133Xe-labeled oxygen for quantitative assessment of regional metabolic rate of oxygen in man. Phys Med Biol 59:5593–609.

Hou S, Choi J, Garcia MA, et al. (2016). Pretargeted positron emission tomography imaging that employs supramolecular nanoparticles with in vivo bioorthogonal chemistry. ACS Nano 10:1417–24.

Huang C, Tsourkas A. (2013). Gd-based macromolecules and nanoparticles as magnetic resonance contrast agents for molecular imaging. Curr Top Med Chem 13:411–21.

Huang L, Ao L, Wang W, et al. (2015). Multifunctional magnetic silica nanotubes for MR imaging and targeted drug delivery. Chem Commun (Camb) 51:3923–6.

Jagoda EM, Lang L, Bhadraessety V, et al. (2012). Immuno-PET of the hepatocyte growth factor receptor met using the 1-armed antibody onartuzumab. J Nucl Med 53:1592–600.

James ML, Gambhir SS. (2012). A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev 92:989–965.

Jadai L, Loire CL, Champion C. (2014). Positron in PET imaging: non-conventional isotopes. Phys Med Biol 59:7419–934.

Karmann L, Bouchat V, Bouzin C, et al. (2014). 89Zr-labeled anti-endoglin antibody-conjugated gold nanoparticles for imaging cancer: implications for future cancer therapy. Nanomedicine (Lond) 9:1923–37.

Kikuchi M, Nakamoto Y, Shinohara S, et al. (2013). Early evaluation of neoadjuvant chemotherapy response using FDG-PET/CT predicts survival prognosis in patients with head and neck squamous cell carcinoma. Int J Clin Oncol 18:402–10.

Kim DY, Kim HS, Reder S, et al. (2015). Comparison of 18F-fluorobenzoylphosphonium cations with 13N-NH3 for PET myocardial perfusion imaging. J Nucl Med 56:1581–6.

Kobayashi H, Kawamoto S, Jo S, et al. (2003). Macromolecular MRI contrast agents with small dendrimers: pharmacokinetic differences between sizes and cores. Bioconjug Chem 14:388–94.

Kunjachan S, Ehling J, Storm G, et al. (2015). Noninvasive imaging of nanomedicines and nanotheranostics: principles, progress, and prospects. Chem Rev 115:10907–37.

Kurihara H, Honda N, Kono Y, et al. (2012). Radiolabelled agents for PET imaging of tumor hypoxia. Curr Med Chem 19:3282–9.

Laforest R, Woodard PK, Gropler RJ. (2016). Cardiovascular PET/MRI: challenges and opportunities. Cardiol Clin 34:25–35.

Lahooti A, Sarkar S, Laurent S, et al. (2016). Dual nano-sized contrast agents in PET/MRI: a systematic review. Contrast Media Mol Imaging 11:428–47.

Lau JMC, Laforest R, Sotoudeh H, et al. (2017). Evaluation of attenuation correction in cardiac PET using PET/MR. J Nucl Cardiol 24:839–46.

Lee CC, Mackay JA, Frechet JMJ, et al. (2005). Designing dendrimers for biological applications. Nat Biotechnol 23:1517–26.

Lee J, Lee TS, Ryu J, et al. (2013). RGD peptide-conjugated multimodal NaGdF4/Yb3+/Er3+ nanoparticles for upconversion luminescence, MR, and PET imaging of tumor angiogenesis. J Nucl Med 54:96–103.

Lei X, Jockusch S, Turro NJ, et al. (2008). EPR characterization of gadolinium(III)-containing-PAMAM-dendrimers in the absence and in the presence of paramagnetic probes. J Colloid Interface Sci 322:457–64.

Li J, Shi X, Shen M. (2014). Hydrothermal synthesis and functionalization of iron oxide nanoparticles for MR imaging applications. Part Part Syst Charact 31:1223–37.

Li J, Zheng L, Cai H, et al. (2013). Polyethyleneimine-mediated synthesis of folic acid-targeted iron oxide nanoparticles for in vivo tumor MR imaging. Biomaterials 34:8382–92.

Li L, Gao F, Jiang W, et al. (2016). Folic acid-conjugated superparamagnetic iron oxide nanoparticles for tumor-targeting MR imaging. Drug Deliv 23:1726–33.
Tanaka K, Siwu ERO, Minami K, et al. (2010). Noninvasive imaging of dendrimer-type N-glycan clusters: in vivo dynamics dependence on oligosaccharide structure. Angew Chem Int Ed Engl 49:8195–200.

Tang J, Sheng Y, Hu H, et al. (2013). Macromolecular MRI contrast agents: structures, properties and applications. Prog Polym Sci 38:462–502.

Tomasi G, Rosso L. (2012). PET imaging: Implications for the future of therapy monitoring with PET/CT in oncology. Curr Opin Pharmacol 12:569–75.

Trembleau L, Simpson M, Cheyne RW, et al. (2011). Development of 18F-fluorinatable dendrons and their application to cancer cell targeting. New J Chem 35:2496–502.

Umbehr MH, Müntener M, Hany T, et al. (2013). The role of 11C-choline and 18F-fluorocholine positron emission tomography (PET) and PET/CT in prostate cancer: a systematic review and meta-analysis. Eur Urol 64:106–17.

Van Brussel ASA, Adams A, Oliveira S, et al. (2016). Hypoxia-targeting fluorescent nanobodies for optical molecular imaging of pre-invasive breast cancer. Mol Imaging Biol 18:535–44.

Van Duijnhoven SMJ, Rossin R, Van Den Bosch SM, et al. (2015). Diabody pretargeting with click chemistry in vivo. J Nucl Med 56:1422–8.

Wadas TJ, Wong EH, Weisman GR, et al. (2010). Coordinating radiometals of copper, gallium, indium, yttrium, and zirconium for PET and SPECT imaging of disease. Chem Rev 110:2858–902.

Wang K, Zhang X, Zhang L, et al. (2015). Development of biodegradable polymeric implants of RGD-modified PEG-PAMAM-DOX conjugates for long-term intratumoral release. Drug Deliv 22:389–99.

Wang Y, Miao Z, Ren G, et al. (2014). A novel affibody bioconjugate for dual-modality imaging of ovarian cancer. Chem Commun (Camb) 50:12832–5.

Xiao Y, Hong H, Matson VZ, et al. (2012). Gold nanorods conjugated with doxorubicin and cRGD for combined anticancer drug delivery and PET imaging. Theranostics 2:757–68.

Xing Y, Zhao J, Conti PS, et al. (2014). Radiolabeled nanoparticles for multimodality tumor imaging. Theranostics 4:290–306.

Zeglis BM, Sevak KK, Reiner T, et al. (2013). A pretargeted PET imaging strategy based on bioorthogonal Diels-Alder click chemistry. J Nucl Med 54:1389–96.

Zeng D, Lee NS, Liu Y, et al. (2012). 64Cu core-labeled nanoparticles with high specific activity via metal-free click chemistry. ACS Nano 6:5209–19.

Zeng D, Zeglis BM, Lewis JS, et al. (2013). The growing impact of bioorthogonal click chemistry on the development of radiopharmaceuticals. J Nucl Med 54:829–32.

Zhai C, Summer D, Rangger C, et al. (2015). Novel bifunctional cyclic chelator for (89)Zr labeling-radiolabeling and targeting properties of RGD conjugates. Mol Pharm 12:2142–50.

Zhao L, Zhu J, Cheng Y, et al. (2015). Chlorotoxin-conjugated multifunctional dendrimers labeled with radionuclide 131I for single photon emission computed tomography imaging and radiotherapy of gliomas. ACS Appl Mater Interfaces 7:19798–808.

Zhu Z, Miao W, Li Q, et al. (2012). 99mTc-3PRGD2 for integrin receptor imaging of lung cancer: a multicenter study. J Nucl Med 53:716–22.

Weissleder R. (2006). Molecular imaging in cancer. Science 312:1168–71.

Wen S, Li K, Cai H, et al. (2013). Multifunctional dendrimer-entrapped gold nanoparticles for dual mode CT/MR imaging applications. Biomaterials 34:1570–80.

Wu Y, Zhang X, Xiong Z, et al. (2005). microPET imaging of glioma integrin (alpha)4(beta)3 expression using (64)Cu-labeled tetrameric RGD peptide. J Nucl Med 46:1707–18.

Wu Z, Li Z, Chen K, et al. (2007). microPET of tumor integrin alphavbeta3 expression using 18F-labeled PEGylated tetrameric RGD peptide (18F-FPRGD4). J Nucl Med 48:1536–44.

Xiao Y, Hong H, Javadi A, et al. (2012). Multifunctional unimolecular micelles for cancer-targeted drug delivery and positron emission tomography imaging. Biomaterials 33:3071–82.

Xiao Y, Hong H, Matson VZ, et al. (2012). Gold nanorods conjugated with doxorubicin and cRGD for combined anticancer drug delivery and PET imaging. Theranostics 2:757–68.