The critical role of plasma membrane H\(^{+}\)-ATPase activity in cephalosporin C biosynthesis of *Acremonium chrysogenum*

**Alexander Zhgun\(^{1}\)*, Mariya Dumina\(^{1}\), Ayrat Valiakhmetov\(^{2}\), Mikhail Eldarov\(^{1}\)

1 Research Center of Biotechnology RAS, Moscow, Russia, 2 Skryabin Institute of Biophysics and Physiology of Microorganisms, RAS, Pushchino, Russia

* zzhgun@mail.ru

Abstract

The filamentous fungus *Acremonium chrysogenum* is the main industrial producer of cephalosporin C (CPC), one of the major precursors for manufacturing of cephalosporin antibiotics. The plasma membrane H\(^{+}\)-ATPase (PMA) plays a key role in numerous fungal physiological processes. Previously we observed a decrease of PMA activity in *A. chrysogenum* overproducing strain RNCM 408D (HY) as compared to the level the wild-type strain *A. chrysogenum* ATCC 11550. Here we report the relationship between PMA activity and CPC biosynthesis in *A. chrysogenum* strains. The elevation of PMA activity in HY strain through overexpression of *PMA1* from *Saccharomyces cerevisiae*, under the control of the constitutive gpdA promoter from *Aspergillus nidulans*, results in a 1.2 to 10-fold decrease in CPC production, shift in beta-lactam intermediates content, and is accompanied by the decrease in *cef* genes expression in the fermentation process; the characteristic colony morphology on agar media is also changed. The level of PMA activity in *A. chrysogenum* HY OE::*PMA1* strains has been increased by 50–100%, up to the level observed in WT strain, and was interrelated with ATP consumption; the more PMA activity is elevated, the more ATP level is depleted. The reduced PMA activity in *A. chrysogenum* HY strain may be one of the selected events during classical strain improvement, aimed at elevating the ATP content available for CPC production.

Introduction

Cephalosporins are a class of beta-lactam antibiotics with potent bactericidal action, low toxicity, and wide therapeutic range [1]. Numerous derivatives represent chemical modifications of the parent molecule cephalosporin C (CPC) produced by filamentous fungi *A. chrysogenum* [2]. During recent decades, significant progress has been made in the development of high-yielding (HY) CPC strains of *A. chrysogenum* after classical strain improvement (CSI) programs, as well as in the determination of CPC biochemical pathway, identification of the genes, responsible for beta-lactams biosynthesis, transport and transcriptional regulation [3]. These so-called *cef* genes are organized in two clusters on *A. chrysogenum* chromosomes and
differ in the temporal expression patterns in the course of antibiotic biosynthesis. The “early” cluster (chromosome VI) contains genes for the first steps in CPC biosynthesis, \(pchAB \) (encodes \(\delta-(L-\alpha\text{-aminoadipyl})-L\text{-cysteinyl-D-valine} \) synthetase for ACV tripeptide production), \(pchC \) (encodes isopenicillin N synthase for conversion of ACV tripeptide to isopenicillin N; IPN), \(cefD1 \) (encodes isopenicillin N-CoA synthetase), and \(cefD2 \) (encodes isopenicillin N epimerase) for sequential conversion IPN to penicillin N (PenN). The “early” cluster also contains genes for proteins involved in pathway-specific transcriptional regulation (\(cefR \)) or transport of CPC biosynthesis intermediates between subcellular compartments (\(cefM \), \(cefP \)) and out of the fungal cell (\(cefT \)). The “late cluster” (chromosome I) encodes two genes for the final steps of CPC biosynthesis, \(cefEF \) (encodes deacetoxycephalosporin C synthetase/hydroxylase) and \(cefG \) (encodes deacetylcephalosporin-C acetyltransferase), responsible for three enzymatic activities with the sequential conversion of PenN to deacetoxycephalosporin C (DAOC), then deacetylcphalosporin C (DAC) and finally to CPC [4,5]. A number of different factors and processes which can also significantly affect CPC biosynthesis in \(A. chrysogenum \) were investigated, such as reactive oxygen species [6], autophagy [7–9], sulfur biosynthesis and endogenous S-adenosylmethionine content [10,11], transcription factors [12–15], etc. These achievements, together with the development of methods for genetic manipulation and “omics” technologies applied to \(A. chrysogenum \) [16,17], opened new opportunities for improvement of industrial strains [18,19].

Several strategies of genetic manipulation can be used to enhance the level of the target secondary metabolites (SM) production or modify the important strains parameters such as productivity, product export, the concentration of by-products, stress-strain characteristics, morphology and so on [19,20]. Targets for such manipulation are transcription factors, transmembrane transporters, proteins that regulate secretion, signal transduction pathways, cell surface receptors, and enzymes of primary and secondary metabolism [21]. The biosynthesis of CPC in \(A. chrysogenum \) is a complicated process involving enzymatic reactions, complex regulation and specific membrane transport steps. It was shown that transporters involved in the translocation of biosynthetic intermediates between subcellular compartments, as some specific reactions compartmentalized within the fungal cell, are essential for CPC production. They significantly contribute to the overall level of CPC production, affecting the ratio of the target product and its intermediates in the course of fermentation [22].

\(A. chrysogenum \) \(cef \) genes for beta-lactam transporters are localized in the “early” biosynthetic cluster [23,24]. It was assumed that CPC export to the culture medium is directed by CefT belonging to the major facilitator superfamily (MFS) antiporters [25], however, this observation was questioned in further studies [26]. The MFS transporters use the electrochemical gradient generated by the plasma membrane \(H^+\text{-ATPase} \) (PMA) [27]. PMAs are major regulators of cytoplasmic pH and plasma membrane (PM) potential in eukaryotic cells, they generate proton motive force from ATP hydrolysis for the driving a lot of crucial transport processes, including nutrient uptake and export of secondary metabolites (SM) [28].

Previously we demonstrated the decreased PMA activity in \(A. chrysogenum \) HY strain [29,30]. This strain typically produces 9–12 grams of CPC during laboratory fermentation in shake flasks, 200–300 times higher than WT strains [29]. We have previously shown that the overproduction phenotype correlates with upregulation of \(cef \) genes [31], chromosomal rearrangements [5], as well as alterations in polyamine metabolism [32], in cell wall structure [33], in size of filamentous hyphae and conidia formation [34], in colony size and coloration [26], and has other physiological changes. The PMA1 defect may be one of the reasons for reduced strain growth rate and overall fitness, diminished resistance to abiotic stress and proficiency in nutrients [30]. So, the question arises as to whether such deficiency in PMA activity can affect the transport of target antibiotics, namely lowering of CPC export and/or decreasing nutrients,.
uptake from the culture medium, thus influencing the strain growth rate. Here we report the results of correction this deficiency through the introduction of the plasma membrane H⁺-ATPase from *Saccharomyces cerevisiae* (PMA₁sc) into *A. chrysogenum* HY strain. The choice of *S. cerevisiae* PMA₁ gene as a target for this replacement was motivated by extensive studies of biochemistry, genetics, physiology, trafficking, and assembly of PMA₁sc[35]. It was shown that its fusions with fluorescent proteins retain functionality[36] and heterologous PMA₁ proteins are functional in yeast cells[37]. The introduction of exogenous PMA₁ gene into *A. chrysogenum* cells also gave the possibility to independently monitor the expression of endogenous and foreign genes and to easily distinguish the relative contribution of endogenous and exogenous genes for PMA activity of recombinant strains.

Materials and methods

Strains of microorganisms

A. chrysogenum ATCC 11550 (WT, wild type Brotzu isolate, [38]) and *A. chrysogenum* RNCM 408D (HY, high yielding CPC producer, derived from the WT, [29]) were used for functional analysis, comparative gene expression and genetic transformation procedures. *E.coli* XL1-blue was used for plasmids construction. *S. cerevisiae* SY4, *S. cerevisiae* YPH857[39]—were used as recipients for the study of membrane topology and functional properties of the PMA₁-TagYFP fusion protein. *Agrobacterium tumefaciens* AGL0 was used a donor for transferring the PMA₁-TagYFP expression cassette into *A. chrysogenum* RNCM 408D. The genotypes of the strains used are given in Table 1.

Strain	Genotype	Source
Acremonium chrysogenum ATCC 11550 (WT)	Wild type, cephalosporin C producer	ATCC, USA, [38]
A. chrysogenum RNCM 408D (HY)	High yielding cephalosporin C producer, ATCC 11550: CSI program	Laboratory collection, [29]
Agrobacterium tumefaciens AGL0	EHA101 pTiBo542AT-region Mop*	[40]
Escherichia coli XL1-Blue	recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [F'proAB lacIqZAM15 (TetR)]	“Stratagene”, USA
Saccharomyces cerevisiae S288C	Mata SUC2 gal2 mal2 flol flo1-1 hap1 ho bio1 bio6	[41]
S. cerevisiae YPH857	MATa, ura3-52, lys2-801, ade2-101, trp1A63, his3Δ200, leu2Δ1, cyh2R	[42]
S. cerevisiae SY4	MATa, ura3-52, leu2−3,112, his4−619, sec6−4ts GAL2, pma1::YipGAL-PMA1	[43]
S. cerevisiae SY4/ pZEN36-H	MATa, ura3-52, leu2−3,112, his4−619, sec6−4ts GAL2, pma1::YipGAL-PMA1, pZEN36-H	This study
S. cerevisiae YPH857/ pZEN36b	MATa, ura3-52, lys2-801, ade2-101, trp1A63, his3Δ200, leu2Δ1, cyh2R, pZEN36b	This study
AcPS2	RNCM 408D hyg rec:pTrpC-hph-t35S:pgpDA-PMA1sc-taqYFP-tPGK (pZEN36c, TFO event 2)	This study
AcPS4	RNCM 408D hyg rec:pTrpC-hph-t35S:pgpDA-PMA1sc-taqYFP-tPGK (pZEN36c, TFO event 4)	This study
AcPS6	RNCM 408D hyg rec:pTrpC-hph-t35S:pgpDA-PMA1sc-taqYFP-tPGK (pZEN36c, TFO event 6)	This study
AcPS10	RNCM 408D hyg rec:pTrpC-hph-t35S:pgpDA-PMA1sc-taqYFP-tPGK (pZEN36c, TFO event 10)	This study
AcPS11	RNCM 408D hyg rec:pTrpC-hph-t35S:pgpDA-PMA1sc-taqYFP-tPGK (pZEN36c, TFO event 11)	This study
AcPS20	RNCM 408D hyg rec:pTrpC-hph-t35S:pgpDA-PMA1sc-taqYFP-tPGK (pZEN36c, TFO event 20)	This study
AcCefT6	RNCM 408D hyg rec:pTrpC-hph-t35S:pgpDA-cefT-taqCFP-tPGK (pZEN33, TFO event 6)	[26]

Table 1. Strains of microorganisms used in the study.

https://doi.org/10.1371/journal.pone.0238452.t001
Plasmids construction

For the expression of PMA1-TagYFP fusion protein in *S. cerevisiae* two plasmids were obtained, starting from YCp2HSE-PMA1 vector [43] with PMA1 from *S. cerevisiae* X2180 [44,45]. PMA1 coding sequence was amplified from YCp2HSE-PMA1 using primers PMA_H3_F/ PMA_Age-R (Table 2), the fragment was treated with *Hind*III/ *Age*I restriction enzymes and cloned into the *Hind*III/ *Age*I treated vector pTaqYFP-N (“Evrogen”, Russia). The resulting pZEN17 intermediate construct encodes PMA1-TagYFP C-terminal fusion with a 13 amino acids linker sequence GAGAGAGAGPVAT. The pZEN36-H vector for the expression PMA1-TagYFP in *S. cerevisiae* under the control of thermos-inducible 2HSE promoter was obtained by cloning of the 2053 bp KpnI/ SspI fragment from pZEN17 (with 3’-terminal coding sequence of Pma1-tagYFP) into KpnI/ Ecl236I cut vector YCp2HSE-PMA1. The pZEN36b vector for constitutive PMA1-TagYFP expression was obtained by replacement of 2HSE promoter with the TEF1 promoter from *Ashbya gossypii*. For this end the 415 bp PCR fragment obtained on the template of pZEM5 plasmid [34] with primers Tef1_Xho_up/ Tef1_Hind_dw (Table 2) was cloned into XhoI/ *Hind*III cut vector pZEN36-H. For heterologous expression of PMA1-TagYFP in *A. chrysogenum* the binary pZEN36c vector was constructed. For this purpose the fragment containing the PMA1-TagYFP and SV40 polyA sequences was obtained from pZEN36b as a *Spe*I-“blunt”/ *Hind*III 4036 bp DNA fragment and inserted into the *Pme*I/ *Hind*III site of pZEN33 [26]. The description of used plasmids is given in Table 3.

The identification of *A. chrysogenum* Pma1

Total RNA was extracted from *A. chrysogenum* WT and HY strains after 120 h of fermentation, as described previously [31], mRNA fraction was obtained with oligo (dT)$_{30}$ magnetic particles (“Sileks”, Russia), cDNA was obtained by M-MLV reverse transcriptase with oligo (dT)$_{15}$ primers kit (“Sileks”) according to recommendation of manufacturer. PMA1 was amplified from cDNA with primers PMAac_F/ PMAac_R and sequenced with primers PMAac_seq01 – PMAac_seq07 (Table 2). The nucleotide sequence of PMA1 from *A. chrysogenum* HY is available from GenBank under accession number MK641804.1; the corresponding amino acid sequence accession number –QDF45217.1. Sequences of fungal plasma membrane ATPases were aligned using VectorNTI software v.8.0 [47]. Genbank accession numbers for analyzed sequences are provided in Table 4.

Genetic transformations of fungal cells

The *S. cerevisiae* SY-4 and YPH857 strains were transformed using lithium acetate method [53]. Transformation of *A. chrysogenum* cells was performed by *Agrobacterium tumefaciens*-mediated transformation (ATMT) [54]. The electroporation of *A. tumefaciens* AGL0 with pZEN36c binary vector, cocultivation of *A. chrysogenum* RNCM 408D with *A. tumefaciens* AGL0/ pZEN36c cells, transferring on Hybond N membrane (“GE Healthcare”, USA) and selection of transformants on hygromycin B- supplemented agar were done as described before [26,34].

Analysis of *A. chrysogenum* transformants

Hygromycin-resistant *A. chrysogenum* clones obtained by ATMT procedure were subjected for PCR-screening to verify the presence of the expression cassette (with pairs of primers PMAsc_q3/ GKF1, or PMAsc_q3/ PMAsc_q4, or Hyg1/ Hyg2, or GKR1_N/ GKF1_N); absence of agrobacterial contamination (primers Vir1 /Vir2) and absence of pZEN36c vector contamination (primers Npt3F/ Npt3R –to amplify the sequence, corresponding to
Table 2. Oligonucleotides used in this study.

Oligonucleotide	Sequence (5’→3’)	Purpose	Source
PMA_H3_F	GTAAGCTTAATGACTGATACATCATCCTCTTCTCATCA	fusion of PMA1sc and tagYFP sequences in pZEN17	pYcp2HSE-PMA1, [43,45]; pTagYFP-N
PMA_Age_R	GCCCGGCGGACACAGGACCACCCCGGCTCGTTCTGCTGTTGATGAG	introducing of TEF1 promoter from A. gossypii (instead of 2HSE) for PMA1sc expression in pZEN36	pZEN5, [34]
Tef1_Xho_up	CTGGCTAGAGTATCCCGGTTAATTTAGGCGG	sequencing of pma1 from cDNA of A. chrysogenum ATCC 11550 and RNCM 408D	Genbank JPKY0100044.1
Tef1_Hind_dw	CGAGAAGCTTGGTTATGATGAGTGGTGA	isolation of PMA1 from cDNA of A. chrysogenum ATCC 11550 and RNCM 408D	Genbank JPN836733; [26]
Pma1ac_F	ATGGCTGACAACAAGGCTGCCGGG	isolation of pma1 from cDNA of A. chrysogenum ATCC 11550 and RNCM 408D	Genbank Genban k JPN836733; [26]
Pma1ac_R	TTGGCACCCTTCTGATGAGTGGTGA	isolation of pma1 from cDNA of A. chrysogenum ATCC 11550 and RNCM 408D	Genbank Genban k JPN836733; [26]
Npt3F	CGATATCCTCCTCTTATGACCGGCTGGAGCAG	PCR screening of A. chrysogenum transformants for absence of pZEN36c (for npt3 gene of aminoglycoside phosphotransferase for kanamycin resistance)	Genbank pZEN16, [34,46]
Npt3R	GCCGATGTGGATTGCGAAAACTGGGAAGAA	PCR screening of A. chrysogenum transformants for absence of A. tumefaciens (for vir-genes)	Genbank AB027257.1; [34]
Vir1	GGCTAATCGAAGACGTATGGAAGT	PCR screening of A. chrysogenum transformants for absence of A. tumefaciens (for vir-genes)	Genbank pTaYFP-N; [26]
Vir2	GACTTACGATGTTACGATGTGAC	PCR screening of A. chrysogenum transformants for absence of A. tumefaciens (for vir-genes)	Genbank pTaYFP-N; [26]
Hyg1	GCAACATCCTGGGCCACAG	PCR screening of A. chrysogenum transformants for hygB	Genbank pZEN16, [46]
Hyg2	CGGAGTCTGATGCTATGATGAGTGGTGA	PCR screening of A. chrysogenum transformants for hygB	Genbank pZEN16, [46]
GKR1	GCAACATCCTGGGCCACAG	PCR screening of A. chrysogenum transformants for PMA1sc-tagYFP	Genbank pZEN16, [46]
GKF1	CGGATACGATGTTACGATGTGAC	PCR screening of A. chrysogenum transformants for PMA1sc-tagYFP	Genbank AB027257.1; [34]
actq1	CGGAGTCTGATGCTATGATGAGTGGTGA	PCR screening of A. chrysogenum transformants for hygB	Genbank pZEN16, [46]
actq2	TGCTCAATGAGGCTGGAGCAG	PCR screening of A. chrysogenum transformants for hygB	Genbank pZEN16, [46]
pcbABq3	AGGCATGTCGATGCTATGATGAGTGGTGA	qPCR of pcbAB for A. chrysogenum L-δ-(L-α-aminoacyl)-L-cysteinyl-D-valine synthetase	Genbank E05192, [31]
pcbABq4	CGGAGGAGGCCATACACAT	qPCR of pcbAB for A. chrysogenum L-δ-(L-α-aminoacyl)-L-cysteinyl-D-valine synthetase	Genbank E05192, [31]
pcbCq1	CTAGGTCGCCAGACAGGACTCTCT	qPCR of pcbC for A. chrysogenum isopenicillin N synthase	Genbank M35522, [31]
pcbCq2	CACGTCGCCAGGACTCTCT	qPCR of pcbC for A. chrysogenum isopenicillin N synthase	Genbank M35522, [31]
cefD1q1	GTGACGAGGCCGTCCTCGGAGA	qPCR of cefD1 for A. chrysogenum isopenicillin N-CoA synthetase	Genbank AJ507632, [31]
cefD1q2	AGTACGAGGCCGTCCTCGGAGA	qPCR of cefD1 for A. chrysogenum isopenicillin N-CoA synthetase	Genbank AJ507632, [31]
cefEfq3	CTCCTACTTGGACGAGG GCCGCCGCCGCC	qPCR of cefEF for A. chrysogenum deacetoxycephalosporin C synthetase/ hydroxylase	Genbank AJ404737, [31]
cefEfq4	TAGTCCGAGTACTTGGACGAGG GCCGCCGCCGCC	qPCR of cefEF for A. chrysogenum deacetoxycephalosporin C synthetase/ hydroxylase	Genbank AJ404737, [31]
cefGq3	CTGCCGAGCAGCATGAGG GCCGCCGCCGCC	qPCR of cefG for A. chrysogenum deacetyldihydroxycephalosporin-C acetyltranferase	Genbank M91649, [31]
cefGq4	GGGCGAGGAGGATGGTTGAGG GCCGCCGCCGCC	qPCR of cefG for A. chrysogenum deacetyldihydroxycephalosporin-C acetyltranferase	Genbank M91649, [31]
cefRq1	GGGCTGGCGAGGATGGTTGAGG GCCGCCGCCGCC	qPCR of cefR for A. chrysogenum regulator of CPC biosynthesis	Genbank HM230824, [31]
cefRq2	GGGCGAGGAGGATGGTTGAGG GCCGCCGCCGCC	qPCR of cefR for A. chrysogenum regulator of CPC biosynthesis	Genbank HM230824, [31]
cefTq3	TGGGTCGCTTAGGTTGAGG GCCGCCGCCGCC	qPCR of cefT for A. chrysogenum MSF transporter	Genbank AJ487683; [26]
cefTq4	TGGGTCGCTTAGGTTGAGG GCCGCCGCCGCC	qPCR of cefT for A. chrysogenum MSF transporter	Genbank AJ487683; [26]
cefMq1	TGGGTCGCTTAGGTTGAGG GCCGCCGCCGCC	qPCR of cefM for A. chrysogenum MSF transporter of penicillin N	Genbank AM231815, [31]
cefMq2	TGGGTCGCTTAGGTTGAGG GCCGCCGCCGCC	qPCR of cefM for A. chrysogenum MSF transporter of penicillin N	Genbank AM231815, [31]
cefPq1	TGGGTCGCTTAGGTTGAGG GCCGCCGCCGCC	qPCR of cefP for A. chrysogenum MSF transporter of isopenicillin N	Genbank AM231816, [31]
cefPq2	TGGGTCGCTTAGGTTGAGG GCCGCCGCCGCC	qPCR of cefP for A. chrysogenum MSF transporter of isopenicillin N	Genbank AM231816, [31]

(Continued)
Table 2. (Continued)

Oligonucleotide	Sequence (5' → 3')	Purpose	Source
PMAsc_q1	CAGCTGCGTACCACCACTATGGGC GCC	qPCR of PMA1sc for S. cerevisiae plasma membrane H+-ATPase	pYCP2HSE-PMA1, [43]
PMAsc_q2	GCCAACAAAGCACTCAACATCGTC GTGGAG	PCR screening of A. chrysogenum transformants for PMA1sc-taqYFP and qPCR PMA1sc-taqYFP	pZEN36
PMAsc_q3	AGAGTGTCGAAGACCTCATG GCTGA CTA		
PMAsc_q4	ACCGTAACCTGTGGCC GGTGACGT		

Table 3. Plasmids used in this study.

Plasmid	Description	Source
pTagYFP-N	Source of tagYFP coding sequence	“Evrogen”, Russia
pYCP2HSE-PMA1	Yeast centromere plasmid for PMA1 expression under the control of thermostable promoter 2HSE	[43]
pZEM5	The binary vector for apf1 expression in fungi cells under the control of TEF1 promoter from A. gossypii	[34]
pZEN17	Vector for PMA1 and tagYFP fusion	This study
pZEN33	The binary vector for cefT from A. chrysogenum expression under the control of gpdA promoter from A. nidulans in fungi cells	[26]
pZEN36-H	Yeast centromere plasmid for with 2HSE-pma1-taqYFP-Sv40polyA expression cassette	This study
pZEN36b	Yeast centromere plasmid for with PTEF1apm1-taqYFP-Sv40polyA expression cassette	This study
pZEN36c	The binary vector for PMA1sc transferring and expression under the control of gpdA promoter from A. nidulans in fungi cells	This study

non-transferring part of binary vector) (Table 2). Selected “positive” clones were analyzed by Southern blot hybridization. Genomic DNA isolated according to the protocol [55], treated with the AsI A1, separated in 1% agarose and transferred to the Amersham Hybond-XL membrane (“GE Healthcare”, USA) under alkaline transfer conditions. The DNA fragment with PMA1sc-taqYFP sequence was obtained after PCR of pZEN36c with primers GKR1_N/GKF1_N, labeled with DecaLabel DNA Labeling Kit (“Fermentas”, Lithuania) and used in hybridization procedure. Visualization was performed with Typhoon Trio+ Imager (“GE Healthcare”, USA), as described previously [5].

Culture media and growth conditions for A. chrysogenum

Preparation of A. chrysogenum seed cultures and fermentation of the selected strain in the defined production media were carried out using the media and conditions described in Table 4.

Table 4. Fungal plasma membrane H+-ATPases.

Fungi, H+-ATPase	Amino acids	% Similarity	% Identity	GenBank accession no.
A. chrysogenum ATCC 11550, PMA1	929	100	100	KFH44673.1, [16]
A. chrysogenum BKM F4081D, PMA1	929	100	100	QDF45217.1, This study
Neurospora crassa, PMA1	920	91.6	85.0	J02602, [48]
S. cerevisiae X2180, PMA1	918	83.7	74.5	X03534.1, [45]
Schizosaccharomyces pombe, PMA1	919	83.0	71.8	J03498, [49]
Candida albicans, PMA1	895	82.0	73.3	M74075, [50]
Aspergillus fumigatus, PMA1	988	60.0	45.0	AY040608, [51]
Aspergillus nidulans, PMAA	990	59.7	44.9	AF036763, [52]

https://doi.org/10.1371/journal.pone.0238452.t0103
previously [31]. Samples were taken at the following time points 0 (start of fermentation), 48 and 120 h of fermentation and further used for fluorescence microscopy, HPLC analysis, proteomic analysis, determination of intracellular ATP content, plasma membrane H\(^+\)-ATPase activity and isolation of total RNA.

Fluorescence microscopy of *S. cerevisiae* and *A. chrysogenum* cells

Micrographs of *A. chrysogenum* RNCM 408D/ PMA1-TagYFP cells were obtained using an Olympus BX2 microscope (“Olympus”, Japan) with the set of fluorescent filters UMNIBA3 (excitation 470–495 nm; dichroic mirror 505 nm, emission 510–550 nm).

HPLC analysis of beta-lactams

Concentration of CPC and beta-lactam biosynthesis intermediates in the culture broth were determined in the CTAB/ acetonitrile/ orthophosphoric acid/ water mobile phase on a YMC-Pack ODS-A chromatographic column (“YMC CO.”, Japan) with a particle diameter of 5 \(\mu\)m at a flow rate of 1.0 ml/ min of the mobile phase, detection 254 nm.

Measurements of intracellular ATP levels and H\(^+\)-ATPase activity

ATP extraction from *A. chrysogenum* cells and ATP quantification was performed using luciferin-luciferase ATP bioluminescence assay kit («Merck», USA) and LKB 1250 Luminometer («LKB», Sweden) as described in [56]. H\(^+\)-ATPase activity in PM preparations of *A. chrysogenum* was measured as previously described in the presence and in the absence of 100 \(\mu\)M sodium orthovanadate, a specific inhibitor of H\(^+\)-ATPase activity of PM [30,57]. 100 mM deoxyglucose was added to the test samples as a negative control of the source of carbon during the preincubation of cells [57].

RNA extraction, cDNA preparation and qPCR analysis

Isolation of total RNA from *A. chrysogenum* cells after different stages of fermentation, cDNA synthesis, qPCR reactions, data processing and normalization was performed as described previously [26,31]. Primer sequences used to evaluate expression levels of *pma1* and *cef* genes are given in Table 2.

Results

Identification of the gene encoding the plasma membrane H\(^+\)-ATPase in *A. chrysogenum*

To reveal the phenomenon of the decreased PMA1 activity in *A. chrysogenum* HY strain [30] we identified the gene encoding main plasma membrane H\(^+\)-ATPase (*AcPma1*) in this organism. Based on predicted gene encoding the PMA1-like protein in *A. chrysogenum* ATCC 11550 (GenBank: JPKY0100044.1, region 69388–72840, [16]) we amplified from cDNA, isolated from WT and HY strains, the full-length copies corresponding to the sequences of spliced mRNA. The cDNA sequencing showed the correct joining of all three predicted exons (GenBank: JPKY1000044.1 join complememt: 69388..69434, 69490..71824, 72433..72840, [16]). The *AcPma1* cDNA sequence from WT strain was 100% identical to the CDS predicted from the annotated genomic sequence; the *AcPma1* sequence from HY strain (GenBank: MK641804.1) had a single silent mismatch T1740C, that does not change 555Gly. As a result, *AcPma1* genes from WT and HY strains encode identical proteins (GenBank: KFH44673.1 and QDF45217.1, respectively). We also demonstrated that these sequences encode the main plasma membrane H\(^+\)-ATPase in *A. chrysogenum*, after performing proteomic analysis by
tandem mass spectrometry for *A. chrysogenum* WT and HY strains. Description of the proteomic analysis for *A. chrysogenum* WT and HY strains is provided in S1 File; the proteomic data for the *A. chrysogenum* WT strain are given in S1 Table, the proteomic data for *A. chrysogenum* HY strain are given in S2 Table. For both strains, the protein products with molecular weight of 101363 that completely corresponded to the GenBank sequences: KFH44673.1 and QDF45217.1, respectively, were found. The genome of *A. chrysogenum* ATCC11550 is predicted to encode another PMA-like protein (Genebank: KFH43902.1). Our proteomic analysis did not reveal the presence of peptides derived from this protein. Thus, KFH43902.1 is a probable orthologue of *S. cerevisiae* PMA2 gene, encoding a minor nonessential plasma membrane H⁺-ATPase, highly homologous to PMA1, but expressed at a very low level and only during the haploid cycle or under stress conditions [58]. The alignment of AcPMA1 amino acid sequence with fungal plasma membrane H⁺-ATPases revealed the highest level of homology with model PMA1 enzymes from *Neurospora crassa* (85% of identity, 91.6% similarity) and *S. cerevisiae* (74.5% of identity, 83% similarity). The identity above 70% was observed with PMA1 from *S. pombe* and *C. albicans*, while *Aspergillus* PMA1 orthologues showed the lowest levels of homology (Table 4).

AcPma1 expression in A. chrysogenum WT and HY strains

Since the primary sequence of PMA1 is unchanged in the HY strain, the decrease in H⁺-ATPase activity [30] should be due to trans-acting factors. To establish a possible change in regulation at the transcription level, *pma1* expression was studied during the fermentation of *A. chrysogenum* WT and HY strains (Fig 1). It turned out that in both strains, there was an increase in the *pma1* expression throughout the entire fermentation period. At the same time, RNA levels were lower for HY at each analyzed point. At the beginning of fermentation, downregulation was 10 times or more, then, the difference decreased, but remained significant, 2–5 times. The detected downregulation of *pma1* in the HY strain may be the principal factor for decreasing the PMA activity in HY strain.

A. chrysogenum HY/PMA1(sc)-TaqYFP transformants

To study the possible relationship between the H⁺-ATPase activity of the plasma membrane and CPC biosynthesis in *A. chrysogenum*, the PMA1 from *S. cerevisiae*, the most studied fungal P type H⁺-ATPase, was used as a genetic engineering tool. This enzyme has been comprehensively characterized by numerous studies [43,45]. Earlier, we have shown that our variant of PMA1(sc)-TaqYFP fusion protein with a long flexible spacer is correctly targeted to the plasma membrane in *S. cerevisiae* cells and efficiently couples with CefT, MFS transporter of beta-lactams from *A. chrysogenum* [26]. In the current study, we measured the PMA activity in *S. cerevisiae*/PMA1(sc)-TaqYFP strains under the control of constitutive (YPH857/pZEN36b) and heat-inducible (SY4/pZEN36-H) promoters (S3 Table). The PMA activity in YPH857 recombinant clones with constitutive expression of PMA1-TaqYFP under the control of TEF1 promoter from *A. gossypii* was increased 1.3–1.5 fold (S3 Table), which could be related to simultaneous expression with the chromosomal PMA1 copy. The PMA activity in SY4/pZEN36-H strain (under glucose inactivation of the chromosomal copy of PMA1 and heat-shock activation of 2HSE-PMA1-TaqYFP) was very close to PMA activity in recipient SY4 strain (S3 Table). That means the PMA1 C-end fusion through GAGAGAGAGPVAT linker with TaqYFP did not influence the PMA activity and may be used as a genetic engineering tool. This is important, as it has been previously shown that PMA1-GFP fusion has a 3 fold reduced PMA activity [57]. The possibility of efficient heterologous expression of Pma1 from...
filamentous fungi in *S. cerevisiae* cells was previously demonstrated [59]; however, in our experiments, we did not obtain an efficient expression for *AcPma1* in *S. cerevisiae* cells.

For heterologous expression in *A. chrysogenum* cells we constructed pZEN36c vector with target *PMA1*-*tagYFP* gene under the control of gpdA promoter from *A. nidulans*, inserted into the T-DNA region of the binary vector pZEN16 [46], and *hygR* gene under the control TrpC promoter from *Aspergillus niger* for the selection of transformants. After the ATMT procedure, optimized for HY strain previously [26], the 126 HygB-resistant transformants were obtained, 36 transformants were further verified by PCR screening for the presence of target *PMA1*-*tagYFP* gene, absence of bacterial contamination with the donor *A. tumefaciens* strain and absence of non-transferring part of pZEN36c binary vector. Six selected transformants were also characterized by Southern blotting with the probe specific to *PMA1*-*tagYFP* gene (Fig 2A). All six transformants have different patterns and apparently arose due to independent transformation events; three among them carried a single copy of *PMA1*-*tagYFP* insertion (AcPS4, AcPS6, and AcPS10), while another 3 contained two copies of inserted expression cassette (AcPS2, AcPS11, and AcPS20).

Fig 1. Expression dynamics of *AcPma1* gene in *A. chrysogenum* WT and HY strains. 0, 48 and 120 h of fermentation. Data are means ± SD, n = 3.

https://doi.org/10.1371/journal.pone.0238452.g001
All selected transformants demonstrated characteristic morphological changes on agar medium (Fig 3). Transformed colonies showed a reduction of surface roughness and formed one major groove instead of many small and tortuous grooves that are typical for 1-week colonies of recipient strain HY; the colony size was not changed. Such phenotype did not depend on inserted copy numbers of $PMA1_{sc}$ and was detected for all AcPS strains.

We also determined the subcellular localization of $PMA1_{sc}$-TagYFP in selected transformants (Fig 4). The $PMA1_{sc}$ fused with TagYFP correctly incorporated into plasma membrane of $A.\ chrysogenum$ HY. Fluorescent microscopy of the hyphal cells for AcPS strains revealed PM specific fluorescence, similar to that detected in $N.\ crassa$ cells, expressing $PMA1$ fused with GFP from C-terminal [60]. $PMA1_{sc}$-TagYFP in $A.\ chrysogenum$ also localized at the PM at distal regions of mycelium and in completely developed septa, but not at the tips, in apical regions (Fig 4B and 4C).

PMA activity, CPC production and ATP content in $A.\ chrysogenum$ strains

We measured the PMA activity, CPC production, and ATP content in $A.\ chrysogenum$ WT, HY, AcPS2, 4, 6, 10, 11, 20, and AcCefT6 strains (Fig 5). All $PMA1_{sc}$-recombinants of HY strain demonstrated the increased PMA activity, up to its level in WT strain (Fig 5A). This
The overall balance of beta-lactam cephems (CPC and DAC) in HY and its recombinants is shown in Fig 6A. According to the ratio of cephems, all strains can be divided into three groups, with CPC/ DAC ratio of 80–90% (HY, AcPS2, AcPS6, AcPS20, and AcCefT6), equal CPC/ DAC production (AcPS4) and with CPC/ DAC ratio of 10–20% (AcPS10, AcPS11). The reduction of beta-lactam production in the AcCefT6 strain was previously discussed [26].
The CPC biosynthesis is an ATP consuming process. At the first stage of this pathway the enzyme ACV synthetase utilizes 3 ATP molecules to sequentially activate the three amino-acid substrates to formaminoacyl-adenylates, in NRPS synthesis of ACV tripeptide (Fig 7A) [61]. But under unfavorable reaction conditions more than 20 mol of ATP are consumed per 1 mol of tripeptide formed. This increase has been attributed to the hydrolysis of intermediates, such as adenylates or amino acid thioesters [61]. The final stage of the CPC biosynthetic pathway is rate-limiting and estimated as a “bottleneck” for CPC biosynthesis [62] (Fig 6B). It is catalyzed by the enzyme CefG, uses DAC and acetyl coenzyme A (acetyl-CoA) as substrates, and occurs

Fig 4. Fluorescent analysis of PMA1-TagYFP expression in A. chrysogenum AcPS6 strain. 48 h of fermentation, 24˚C. (A) Photograph made in transmitted light. (B) Fluorescent analysis. (C) Superimposition of the cell structure in transmitted light (A) and fluorescence (B). Scale bar = 5 μm.

https://doi.org/10.1371/journal.pone.0238452.g004
Fig 5. PMA activity, ATP content and CPC production of *A. chrysogenum* strains. 120 h of fermentation. (A) PMA activity. (B) ATP content. (C) CPC production. Dashed lines indicate levels corresponding to the HY strain.

https://doi.org/10.1371/journal.pone.0238452.g005
in the cytoplasm [4]. There are two potential sources of cytoplasmic acetyl-CoA in filamentous fungi: from citrate via ATP-citrate lyase (ACL; EC 2.3.3.8), which depends on citrate entering the cytoplasm from the mitochondrion, or from acetate via acetyl-CoA synthetase (ACS; EC 6.2.1.13) [63] (Fig 6C). In both reactions, one ATP molecule is consumed to produce one acetyl-CoA molecule (Figs 6C and 7A). The high levels of DAC are accumulated in many CPC-producing strains [64]. The total yield of CPC in industrial strains is limited, mainly, by the efficiency of the CefG-catalyzed reaction (EC 2.3.1.175) (Fig 6C). If this process is not effective, the DAC precursor is accumulated, and CPC yield falls. Various improved \textit{A. chrysogenum} strains have a DAC/ CPC ration of 30–35% or more [62]. Since \textit{cefG} overexpression in...
recombinant strains leads to the decreasing of DAC content and increasing in CPC yield, one of the limiting factors is inefficient cefG expression [62]. However, in A. chrysogenum HY strain, the amount of DAC did not exceed 10–15% of CPC yield [29]. This was achieved due to the random mutagenesis and selection for the decrease in DAC/ CPC ratio [29] and resulted
in significant \textit{cefG} upregulation \cite{31}. Since two substrates (DAC and acetyl-CoA) are required for the \textit{CefG} reaction, its efficiency is dependent on three factors: 1) DAC content, 2) acetyl-CoA content and 3) \textit{CefG} amount (Fig 6C). Obviously, in improved \textit{A. chrysogenum HY} strain, with effective DAC to CPC conversion, none of these factors limit the reaction. The depletion of ATP content in \textit{A. chrysogenum HY OE::PMA1} strains (Fig 5B) leads to shift in \textit{CPC}/\textit{DAC} ratio (Fig 6A) and has a downtrend with an increase in PMA activity (Fig 7B). The higher the PMA activity, the more the ATP content is depleted, the more \textit{CPC}/\textit{DAC} ratio decreases (Figs 5 and 6A). Thus, in AcPS10 strain with the highest PMA1 activity, the ATP content is most severely depleted, and \textit{CPC}/\textit{DAC} ratio in the most severely reduced (Figs 2D, 5 and 6A). Moreover, in all recombinants with significant depletion of the ATP content (AcPS4, AcPS10, and AcPS11) the main product of beta-lactams biosynthesis converts from CPC to DAC (Figs 5B and 6A). The total cephems (DAC + CPC) production depends on DAC biosynthetic stages (Fig 7A) and decreases with the depletion of ATP content (Fig 7C). The CPC production includes, in addition to DAC biosynthetic stages, one more ATP-consuming final stage (Fig 7A) and decreases more significantly with the depletion of ATP content (Fig 7D).

The depletion of the ATP content can influence the decrease in cytoplasmic acetyl-CoA content, by lowering the activity of ATP-consuming enzymes for cytoplasmic acetyl-CoA synthesis (ACL and ACS) (Fig 6C) and by shifting acetyl-CoA metabolism in mitochondria from acetyl-CoA biosynthesis to its oxidation for ATP synthesis \cite{65}. That leads to the decrease in the DAC acetylation in \textit{CefG}-catalyzed reaction and reduction in yield of target metabolite, CPC (Fig 6C). Obviously, there is a minimum threshold level of ATP content, after which the efficiency of the final stage rapidly falls (Fig 7E). For recombinants with 60–65% ATP content (AcPS2, AcPS4, and AcPS20 strains), DAC is converted to CPC at the level of HY strain. A drop in the ATP content to 50% leads to a 2-fold decrease in DAC to CPC conversion (Fig 7E, AcPS6). A further decrease in the ATP content leads to a sharp drop in reaction efficiency. The decrease to 45% leads to a 5.5-fold decrease in DAC to CPC conversion (AcPS11), the decrease in AcPS11 strain to 33% leads to a 7.5-fold decrease in DAC to CPC conversion (Fig 7E). It can be assumed that the threshold minimum of ATP content for efficient DAC to CPC conversion is very close to 60% from ATP content in \textit{A. chrysogenum HY} strain (Fig 7E). The presence of a threshold concentration of ATP content for the \textit{CefG}-catalyzed reaction explains such a large spread in the CPC production in HY/ PMA1 recombinants, the 1.2–10 fold (Fig 5C). The production of cephems drops by 45–80% and is in the trend with ATP content depletion, by 35–67% (Fig 7C). The reaction of DAC to CPC conversion has a threshold for ATP content depletion; the 35–40% of ATP content depletion does not influence \textit{CefG}-catalyzed reaction, further depletion (up to 67%) has a downtrend of 2–7.5 folds decreasing in DAC to CPC conversion.

Expression levels of homo- and heterologous \textit{PMA1} and \textit{cef} genes in \textit{A chrysogenum} strains

The analysis of the dynamics of \textit{cef} genes expression for two chosen AcPS clones showed variable trends at studied fermentation timepoints (Fig 8). For the AcPS6 clone, all genes were downregulated 2–10 fold as compared to parent HY strain at the start, middle and end of fermentation period (0, 48 and 120 h). For the AcPS20 at all timepoints we observed upregulation of the \textit{pcbC} (1.5–2.0 fold); downregulation of \textit{cefG} and \textit{cefR} (1.5–3 fold). Levels of \textit{pcbAB}, \textit{cefD1}, and \textit{cefEF} mRNAs changed 1.5–2 folds in both directions and did not differ significantly from the levels observed for HY strain. The expression pattern of genes encoding MFS proteins with clearly different transport functions in the CPC pathway, such as translocation of the
early intermediates between subcellular compartments and final antibiotic secretion from the cell, differed from that of the biosynthetic cef genes. CefM, cefP, and cefT were steadily upregulated with maximum expression levels observed at the start of fermentation.

The endogenous AcPma1 gene expression levels were the same at the three timepoints (Fig 8). In contrast, expression of the heterologous PMA1_{ac}-TaqYFP gradually increased towards the end of the fermentation period (Fig 9). A similar expression pattern was observed before in our recombinant _A. chrysogenum_ clones, expressing the cefT-taqCFP fusion gene under the

Fig 8. Relative expression of cef genes and Pma1_{ac} in _A. chrysogenum_ HY/PMA1_{ac} strains. 0, 48, and 120 h fermentation of _A. chrysogenum_. (A) AcPS6/ HY. (B) AcPS20/ HY. The dashed lines show a comparative level of gene expression in the HY strain. Data are means ± SD, n = 3.

https://doi.org/10.1371/journal.pone.0238452.g008
control of the same gpdA promoter and may reflect a specific pattern of regulation of this promoter in HY strain in fermentation conditions optimal for CPC production [26].

Discussion

Industrial primary and secondary metabolite overproducing strains obtained through CSI programs often contain unwanted side mutations and "bottlenecks", negatively affecting strain fitness, robustness, productivity, and adaptation to harsh fermentation conditions [66,67]. Whenever possible, these defects may be identified and corrected using modern "omics" techniques, systems biology and synthetic biology approaches, metabolic modeling, genome editing, reverse genetics etc [68,69]. Successful examples of the application of this strategy towards metabolic engineering of industrial beta-lactam producing strains include overexpression of cefG gene [62], introduction of a truncated gene copy for PacC transcription factor, modulation of strain morphology through manipulation with Acatg1 [9] and Acthi1 [10] genes, enhancing oxygen uptake by expression of bacterial hemoglobin gene [19].

P-type plasma membrane H⁺-ATPase plays an essential role in the physiology of fungal cells [28]. This proton pump generates the electrochemical proton-motive force across the membrane that drives the energy-dependent uptake of amino acids, sugars, nucleosides and inorganic ions [27], as well as the export of SM. In addition, H⁺ transport, mediated by this enzyme, contributes to the regulation of intracellular pH and surface pH along the hyphae [70]. The activity of beta-lactam transporters also depends on the transmembrane proton potential generated by proton translocating H⁺-PMA1 ATPase [71].
We demonstrated previously that CPC overproducing *A. chrysogenum* HY strain had reduced PMA activity [30]. The observed physiological changes in this strain are associated with generally reduced fitness, and stress-resistance, including marked growth rate reduction on solid and liquid medium [31,32] and may be due to the reduced PMA1 activity [72]. What is the molecular mechanism of this phenomenon? It could be caused by various factors such as direct inhibition of the enzyme, decrease in the amount of the enzyme, or by the several combinations of factors. In recent work, we showed that HY strain has increased intracellular content of polyamines (PAs) [32]. PAs can modulate ATPase pump activity, from inhibitory effects [73,74] to its activation [75]. In some organisms, different polyamines have the opposite effect. For instance, in pea roots, higher PA spermine inhibits H+-ATPase activity, whereas lower PA putrescine activates it [76]. In the HY strain, the putrescine content is extremely low (which is close to the putrescine content in WT strain), spermidine content is increased in 5.1 fold, the spermine content is increased in 4.5 fold [32]. Such a shift in PAs content could be the reason for decreasing PMA activity in CPC overproducing strain. From the other side, our proteomic analysis data shows that the total amount of PMA1 in HY strain is 45% lower than in the WT strain (S1 and S2 Tables). This data correlates with the downregulation of *AcPma1* in HY strain (Fig 1). The total decrease in PMA activity, measured in HY strain vs. WT strain (Fig 5A and S3 Table), may be associated simultaneously with reducing the total amount of the enzyme and its inhibition by PAs.

In WT strain, the PMA activity is about 5,5 nmol Pi/min/mg total cell protein, ATP content is ~3,5 μmol/ g dry biomass, CPC production is ~35 μg/ ml (and DAC production is 50–100 μg/ ml). In HY strain PMA activity decreased to 50%, ATP content is depleted about three fold (up to 30% of WT strain), CPC production increased 260 fold and DAC/ CPC ratio is about 10–15% (Fig 10A and 10B). The upregulation of cef genes (20–400 fold) in HY strain [31] occurred without duplication of beta-lactam biosynthetic clusters [5]. In HY OE::*PMA1* strains the PMA activity shifted to 80–110%, the ATP content is depleted to 10–20%, CPC production increased 30–250 fold, cef genes upregulated 8–200 fold (all values are relative the levels in WT strain) (Fig 10C and 10D). In AcPS2 strain the PMA activity is decreased to 85% relative WT strain, but increased 1.7 fold relative HY strain-recipient; ATP content is depleted to 20% from WT strain ATP content and to 1.7 fold relative HY strain; the CPC production increased 210 fold to the yield in WT strain, but drop 1.2 fold to the yield in HY strain (Fig 10C). DAC/ CPC ratio was very close to such ration in HY strain. In AcPS10 strain the PMA activity is increased to 110% relative WT and 1.7 fold relative HY strain; ATP content was depleted to 10% from WT strain ATP content and to 3 fold relative HY strain; the CPC production increased 15 fold to the yield in WT strain, but drop more than 10 fold to the yield in HY strain (Fig 10D). DAC/ CPC ratio shifted to 88.5% from 13.5% for HY strain. Our results showed that introducing *PMA1* sc gene under the control of gpdA promotor from *A. nidulans* into *A. chrysogenum* HY strain leads to the increasing of PMA activity (Fig 5A). Also there was a downward trend between an increase in PMA activity and ATP content in different HY/ *PMA1* sc recombinants (Fig 7B).

PMA1 is the major membrane protein in fungal cells. It is known that fungal PMA1 makes up 5–10% of the total membrane protein, occupying about one-third of the surface of the cytoplasmic membrane [60,77] and is the main consumer of cell’s ATP. The consumption is about 20% in yeast cells and 20–50% cell ATP in mycelial fungi [28] with up to 38–52% ATP consumed by *N. crassa* PMA1 [78]. At the same time, when PMA1 is inhibited by various drugs, unused ATP can accumulate in the cell [79]. It has also been shown that in PMA1 mutants with a weakened level of H+-ATPase activity, the level of intracellular ATP also increases [80]. It can be assumed that increasing the PMA activity leads to depletion of the ATP content in HY strain, which initially has a reduced ATP content (Fig 5B). Also, the CPC production is an
ATP consuming process (Fig 7A) and there is a relationship between a decrease in ATP content and a decrease in the yield of CPC (Fig 7C and 7D). In addition, the content of the CPC biosynthetic precursor, DAC, was determined in recombinants with different PMA activity. It was shown that at the last stage, the drop in the ATP content was critical (Fig 7E). Exhaustion of endogenous ATP levels may be just one of the factors inhibiting CPC productions in PMA1-sc-overexpressing strains and downregulation of genes for CPC biosynthesis, transport and regulation encoded by the “early” and “late”–clusters, namely pcbAB, pcbC, cefD1, cefEF, cefG, cefP, cefM, and cefR.

Another possible observation for the inhibition of CPC biosynthesis by excessive PMA activity and in particular, accumulation of DAC, may be also explained in part by indirect effects of reduced ATP pools on cytosolic acetyl-CoA levels produced by ACS and ACL (Fig 6C). Diminished acetyl-CoA content may reduce the availability of co-substrate for CefG—the last enzyme in CPC biosynthesis pathway (Fig 7E). The increased PMA activity on gene expression may be due to alteration of intracellular pH and subsequent modulation of pH-dependent transcription of cef genes known to be regulated by pH-responsive PacC transcription factor [3]. PMA1 is also one of the known effectors of fungal morphology, regulating
through transmembrane pH and electrical gradient the assembly of cytoskeletal components required for hyphal extension and polarized growth [70]. In this respect, it is noteworthy that all obtained transformants had typical alteration of colony morphology (Fig 3), similar to the polyamine-increased PMA1 activity during yeast to hyphae transition of Yarrowia lipolytica [75]. Since exogenous PAs influence the production of target SM in filamentous fungi, such as beta-lactam productions in P. chrysogenum [81] and A. chrysogenum [82], or lovastatin production in Aspergillus terreus [83,84], the effect of polyamines on SM biosynthesis may be also mediated through PMA1 activity.

Conclusions

In summary, our data demonstrated the interrelationship of H⁺-ATPase activity of PMA1 and cephalosporin C (CPC) production in A. chrysogenum. In CPC high-yielding (HY) strain, the H⁺-ATPase activity is decreased, related to WT strain. The elevation of H⁺-ATPase activity in HY/PMA1_sc recombinants to the level of PMA activity in WT strain leads to the downregulation of cef genes and decreases the CPC production by 1.2–10 fold. The reduced PMA activity in A. chrysogenum HY strain may be one of the selected events during CSI, elevating the ATP content for CPC production.

Supporting information

S1 Table. The data after MALDI–TOF and LC–MS/MS analysis of proteome from A. chrysogenum WT strain after 120 h of fermentation. * Line 255. KFH44673.1 Plasma membrane ATPase-like protein [annotated by Acremonium chrysogenum ATCC 11550] is filled with yellow. (XLSX)

S2 Table. The data after MALDI–TOF and LC–MS/MS analysis of proteome from A. chrysogenum HY strain after 120 h of fermentation. * Line 212. KFH44673.1 Plasma membrane ATPase-like protein [annotated by Acremonium chrysogenum ATCC 11550] is filled with yellow. (XLSX)

S3 Table. Pma1 activity in situ (nmol Pi/ min/ mg total cell protein) after incubation of fungi cells with 100 mM deoxyglucose, 15 min. * Data are means ± SD, n = 3. (DOCX)

S1 File. Materials and methods. Proteomic analysis for A. chrysogenum WT and HY strains. (DOCX)

S1 Raw images. (PDF)

Acknowledgments

We are very grateful to Fedor F. Severin and Dmitry A. Knorre from Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia for the fluorescent imaging of PMA1_sc-tagYFP localization in recombinant fungi cells. We are also grateful to Arthur T. Kopylov and Victor G. Zgoda from Institute of Biomedical Chemistry, Moscow, Russia for proteomic analysis of A. chrysogenum WT and HY strains. Sequencing of AcPma1 was performed by Core Facility "Bioengineering" (Research Center of Biotechnology, RAS).
Author Contributions

Conceptualization: Alexander Zhgun, Ayrat Valiakhmetov, Mikhail Eldarov.

Data curation: Alexander Zhgun, Ayrat Valiakhmetov, Mikhail Eldarov.

Formal analysis: Alexander Zhgun, Ayrat Valiakhmetov.

Funding acquisition: Ayrat Valiakhmetov, Mikhail Eldarov.

Investigation: Alexander Zhgun, Mariya Dumina, Ayrat Valiakhmetov.

Methodology: Alexander Zhgun, Mariya Dumina, Ayrat Valiakhmetov.

Project administration: Ayrat Valiakhmetov, Mikhail Eldarov.

Resources: Ayrat Valiakhmetov, Mikhail Eldarov.

Software: Alexander Zhgun.

Supervision: Ayrat Valiakhmetov, Mikhail Eldarov.

Validation: Alexander Zhgun.

Visualization: Alexander Zhgun, Mariya Dumina.

Writing – original draft: Alexander Zhgun, Mariya Dumina, Mikhail Eldarov.

Writing – review & editing: Alexander Zhgun, Mikhail Eldarov.

References

1. Demain AL, Blander RP. The β-lactam antibiotics: Past, present, and future [Internet]. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology. Antonie Van Leeuwenhoek; 1999. pp. 5–19. https://doi.org/10.1023/A:10017388923146

2. Elander RP. Industrial production of beta-lactam antibiotics. Appl Microbiol Biotechnol. 2003; 61: 385–92. https://doi.org/10.1007/s00253-003-1274-y PMID: 12679848

3. Schmitt EK, Hoff B, Kücker U. Regulation of cephalosporin biosynthesis. [Internet]. Advances in biochemical engineering/biotechnology. Adv Biochem Eng Biotechnol; 2004. pp. 1–43.

4. Martin JF. Transport systems, intracellular traffic of intermediates and secretion of β-lactam antibiotics in fungi. Fungal Biol Biotechnol. 2020; 7: 6. https://doi.org/10.1186/s40694-020-00096-y PMID: 32351700

5. Dumina MV, Zhgun AA, Domračeva AG, Novak MI, El’darov MA. Chromosomal polymorphism of Acremonium chrysogenum strains producing cephalosporin C. Russ J Genet. 2012; 48: 778–784. https://doi.org/10.1134/S1022795412050067

6. Bibián ME, Pérez-Sánchez A, Mejía A, Barrios-González J. Penicillin and cephalosporin biosyntheses are also regulated by reactive oxygen species. Appl Microbiol Biotechnol. 2020; 104: 1773–1783. https://doi.org/10.1007/s00253-019-10330-2 PMID: 31900551

7. Chen C, He J, Gao W, Wei Y, Liu G. Identification and Characterization of an Autophagy-Related Gene Acatg12 in Acremonium chrysogenum. Curr Microbiol. 2019; 76: 545–551. https://doi.org/10.1007/s00284-019-01650-7 PMID: 30899986

8. Li H, Hu P, Wang Y, Pan Y, Liu G. Enhancing the production of cephalosporin C through modulating the autophagic process of Acremonium chrysogenum. Microb Cell Fact. 2018; 17: 175. https://doi.org/10.1186/s12934-018-1021-9 PMID: 30424777

9. Wang H, Pan Y, Hu P, Zhu Y, Li J, Jiang X, et al. The autophagy-related gene Acatg1 is involved in condensation and cephalosporin production in Acremonium chrysogenum. Fungal Genet Biol. 2014; 69: 65–74. https://doi.org/10.1016/j.fgb.2014.06.004 PMID: 24963594

10. Liu Y, Zhang W, Xie L, Liu H, Gong G, Zhu B, et al. Acti, a thiazole biosynthesis enzyme, is essential for thiamine biosynthesis and CPC production in Acremonium chrysogenum. Microb Cell Fact. 2015; 14: 50. https://doi.org/10.1186/s12934-015-0235-3 PMID: 25866533

11. Liu J, Gao W, Pan Y, Liu G. Metabolic engineering of Acremonium chrysogenum for improving cephalosporin C production independent of methionine stimulation. Microb Cell Fact. 2018; 17: 87. https://doi.org/10.1186/s12934-018-0936-5 PMID: 29879990
12. Wang Y, Hu P, Li H, Wang Y, Long L, Li K, et al. A Myb transcription factor represses conidiation and cephalosporin C production in Acremonium chrysogenum. Fungal Genet Biol. 2018; 118: 1–9. https://doi.org/10.1016/j.fgb.2018.05.006 PMID: 29870835

13. Kluge J, Kück U. AcAxI2 and AcMst1 regulate arthrospore development and stress resistance in the cephalosporin C producer Acremonium chrysogenum. Curr Genet. 2018; 64: 713–727. https://doi.org/10.1007/s00294-017-0790-8 PMID: 29209784

14. Guan F, Pan Y, Li J, Liu G. A GATA-type transcription factor AcAREB for nitrogen metabolism is involved in regulation of cephalosporin biosynthesis in Acremonium chrysogenum. Sci China Life Sci. 2017; 60: 958–967. https://doi.org/10.1007/s11427-017-9118-9 PMID: 28812298

15. Hu P, Wang Y, Zhou J, Pan Y, Liu G. AcStuA, which encodes an APSES transcription regulator, is involved in conidiation, cephalosporin biosynthesis and cell wall integrity of Acremonium chrysogenum. Fungal Genet Biol. 2015; 83: 26–40. https://doi.org/10.1016/j.fgb.2015.08.003 PMID: 26283234

16. Terfehr D, Dahlmann TA, Specht T, Zadra I, Kürnsteiner H, Kück U. Genome Sequence and Annotation of Acremonium chrysogenum C10 encodes a putative multidrug efflux pump protein that significantly increases cephalosporin C production. Mol Genet genomics MGG. 2002; 267: 673–683. https://doi.org/10.1007/s00438-002-0702-5 PMID: 12172807

17. Teijeira F, Ullán R V, Liu G, Casqueiro J, Gutierrez S, Baruelos O, Martín JF. The cefT gene of Acremonium chrysogenum and Penicillium chrysogenum: Velvet-regulated genes are major targets during conventional strain improvement programs. BMC Genomics. 2017; 18: 272. https://doi.org/10.1186/s12864-017-3663-0 PMID: 28359302

18. Thykraer J, Nielsen J. Metabolic engineering of beta-lactam production. Metab Eng. 2003; 5: 56–69. https://doi.org/10.1016/s1096-7176(03)00003-x PMID: 12749845

19. Hu Y, Zhu B. Study on genetic engineering of Acremonium chrysogenum, the cephalosporin C producer. Synth Syst Biotechnol. 2016; 1: 143–149. https://doi.org/10.1016/j.synbio.2016.09.002 PMID: 29062938

20. Weber SS, Bovenberg RAL, Driessen AJM. Biosynthetic concepts for the production of beta-lactam antibiotics in Penicillium chrysogenum. Biotechnol J. 2012; 7: 225–36. https://doi.org/10.1002/biot.201100065 PMID: 22057844

21. Bloemendal S, Lüper D, Terfehr D, Kopke K, Kluge J, Teichert I, et al. Tools for advanced and targeted genetic manipulation of the β-lactam antibiotic producer Acremonium chrysogenum. J Biotechnol. 2014; 169: 51–62. https://doi.org/10.1016/j.jbiotec.2013.10.036 PMID: 24216541

22. Evers ME, Triph H, Van Den Berg MA, Bovenberg RAL, Driessen AJM. Compartmentalization and transport in beta-lactam antibiotics biosynthesis. Adv Biochem Eng. 2004; 88: 113–135. https://doi.org/10.1007/b99259 PMID: 15719554

23. Ullán R V, Liu G, Casqueiro J, Gutiérrez S, Baruelos O, Martín JF. The cefT gene of Acremonium chrysogenum C10 encodes a putative multidrug efflux pump protein that significantly increases cephalosporin C production. Mol Genet genomics MGG. 2002; 267: 673–683. https://doi.org/10.1007/s00438-002-0702-5 PMID: 12172807

24. Teijeira F, Ullán R V, Guerra SM, García-Estrada C, Vaca I, Martín JF. The transporter CefM involved in translocation of biosynthetic intermediates is essential for cephalosporin production. Biochem J. 2009; 418: 113–124. https://doi.org/10.1042/BJ20081180 PMID: 18940096

25. Nyland JG, Kovalchuk A, van den Berg M a, Bovenberg R a L, Driessen AJM. Expression of the transporter encoded by the cefT gene of Acremonium chrysogenum increases cephalosporin production in Penicillium chrysogenum. Fungal Genet Biol. 2008; 45: 1415–21. https://doi.org/10.1016/j.fgb.2008.07.008 PMID: 18691664

26. Dumina M V, Zhgun AA, Kerpinchikov I V, Domracheva AG, Novak MI, Valiakhmetov AY, et al. Functional analysis of MFS protein CefT involved in the transport of beta-lactam antibiotics in Acremonium chrysogenum and Saccharomyces cerevisiae. Appl Biochem Microbiol. 2013; 49: 368–377. https://doi.org/10.1134/S0003683813040042

27. Ambesi A, Miranda M, Petrov V V, Slayman CW. Biogenesis and function of the yeast plasma-membrane H(+)-ATPase. J Exp Biol. 2000; 203: 155–160. PMID: 10600864

28. Burgstaller W. Transport of Small Ions and Molecules through the Plasma Membrane of Filamentous Fungi. Crit Rev Microbiol. 1997; 23: 1–46. https://doi.org/10.3109/10408419709115129 PMID: 9097013

29. Patent RU2426793 C12P36/06, C07D501/02, C12R1/75. Method of cephalosporin C biosynthesis by using new Acremonium chrysogenum strain. 2011.

30. Valiakhmetov AY, Trilisenko L V, Vagabov VM, Bartoshevich YE, Kulaev IS, Novak MI, et al. The concentration dynamics of inorganic phosphates during the cephalosporin C synthesis by Acremonium chrysogenum. Appl Biochem Microbiol. 2010; 46: 184–190. https://doi.org/10.1134/S0003683810020109
31. Dumina M V, Zhgun AA, Novak MI, Domratcheva AG, Petukhov D V, Dzhavakhiya V V, et al. Comparative gene expression profiling reveals key changes in expression levels of cefalosporin C biosynthesis and transport genes between low and high-producing strains of Acremonium chrysogenum. World J Microbiol Biotechnol. 2014; 30: 2933–41. https://doi.org/10.1007/s11274-014-1721-1 PMID: 25164956

32. Hyvönen MT, Keinänen TA, Nuraeva GK, Yanvariev D V., Khomutov M, Khurs EN, et al. Hydroxylamine analogue of agmatine: Magic bullet for arginine decarboxylase. Biomolecules. 2020; 10: 1–16. https://doi.org/10.3390/biom10030406 PMID: 32155745

33. Kalebina TS, Selyakh IO, Gorkovskii AA, Bezsonov EE, El'darov MA, Novak MI, et al. Structure peculiarities of cell walls of Acremonium chrysogenum an autotroph of cefalosporin C. Appl Biochem Microbiol. 2010; 46: 614–619. https://doi.org/10.1134/S0003683810060098

34. Zhgun AA, Ivanova MA, Domracheva AG, Novak MI, Elidarov MA, Skryabin KG, et al. Genetic transformation of the mycelium fungi Acremonium chrysogenum. Appl Biochem Microbiol. 2008; 44: 600–607. https://doi.org/10.1134/S0003683808060070

35. Palmgren M, Morosomme P. The plasma membrane H+ATPase, a simple polypeptide with a long history. Yeast. 2019; 36: 201–210. https://doi.org/10.1002/yea.3365 PMID: 30447028

36. Malinská K, Malínský J, Opekarová M, Tanner W. Visualization of protein compartmentation within the plasma membrane of living yeast cells. Mol Biol Cell. 2003; 14: 4427–36. https://doi.org/10.1091/mbc.e03-04-0221 PMID: 14551254

37. Saliba E, Evangelinos M, Gournas C, Corrillon F, Georis I, André B. The yeast H+ATPase Pma1 promotes Rag/Gtr-dependent TORC1 activation in response to H+-coupled nutrient uptake. Elife. 2018; 7. https://doi.org/10.7554/eLife.31981 PMID: 29500501

38. Newton GG, Abraham EP. Isolation of cefalosporin C, a penicillin-like antibiotic containing D-alpha-aminoadipic acid. Biochem J. 1956; 62: 651–658. https://doi.org/10.1042/bj0620651 PMID: 13315229

39. Sikorski RS, Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989; 122: 19–27. PMID: 2659436

40. Lazo GR, Stein PA, Ludwig RA. A DNA Transformation–Competent Arabidopsis Genomic Library in Agrobacterium. Bio/Technology. 1991; 9: 963–967. https://doi.org/10.1038/ntb1091-963 PMID: 1368724

41. Mortimer RK, Johnston JR. Genealogy of principal strains of the yeast genetic stock center. Genetics. 1986; 113: 35–43. Available: http://www.ncbi.nlm.nih.gov/pubmed/3519363 PMID: 3519363

42. Spencer F, Hugerat Y, Simchen G, Hurko O, Connelly C, Hieter P. Yeast kar1 Mutants Provide an Effective Method for YAC Transfer to New Hosts. Genomics. 1994; 22: 118–126. https://doi.org/10.1006/geno.1994.1352 PMID: 7959757

43. Nakamoto RK, Rao R, Slayman CW. Expression of the yeast plasma membrane [H+]ATPase in secretory vesicles. A new strategy for directed mutagenesis. J Biol Chem. 1991; 266: 7940–9. Available: http://www.ncbi.nlm.nih.gov/pubmed/1826908 PMID: 1826908

44. Young RA, Davis RW. Yeast RNA polymerase II genes: isolation with antibody probes. Science. 1983; 222: 778–82. https://doi.org/10.1126/science.6356359 PMID: 6356359

45. Serrano R, Kielland-Brandt MC, Fink GR. Yeast plasma membrane ATPase is essential for growth and has homology with (Na+ + K+), K+- and Ca2+-ATPases. Nature. 1986; 319: 689–693. https://doi.org/10.1038/319689a0 PMID: 3005867

46. Patent RU 2434944 C12N15/63, C12N15/80. Recombinant plasmid DNA p2EN16 for transferring and expressing genes in filamentous fungi Acremonium chrysogenum. 2011.

47. Lu G, Moriyama EN. Vector NTI, a balanced all-in-one sequence analysis suite. Brief Bioinform. 2004; 5: 378–88. https://doi.org/10.1093/bib/5.4.378 PMID: 15606974

48. Addison R. Primary structure of the Neurospora plasma membrane H+-ATPase deduced from the gene sequence. Homology to Na+K+-, Ca2+-, and K+-ATPase. J Biol Chem. 1986; 261: 14896–901. Available: http://www.ncbi.nlm.nih.gov/pubmed/2876992 PMID: 2876992

49. Ghislain M, Schlessner A, Goffeau A. Mutation of a conserved glycine residue modifies the vanadate sensitivity of the plasma membrane H+-ATPase from Schizosaccharomyces pombe. J Biol Chem. 1987; 262: 17549–55. Available: http://www.ncbi.nlm.nih.gov/pubmed/2891694 PMID: 2891694

50. Monk BC, Kurtz MB, Marrinan JA, Perlin DS. Cloning and characterization of the plasma membrane H (+)-ATPase from Candida albicans. J Bacteriol. 1991; 173: 6826–36. https://doi.org/10.1128/jb.173.21.6826-6836.1991 PMID: 1834633

51. Burghoom HP, Soteropoulos P, Paderu P, Kashiwazaki R, Perlin DS. Molecular evaluation of the plasma membrane proton pump from Aspergillus fumigatus. Antimicrob Agents Chemother. 2002; 46: 615–24. https://doi.org/10.1128/aac.46.3.615-624.2002 PMID: 11850239
52. Reoyo E, Espeso EA, Peñalva MA, Suárez T. The Essential Aspergillus nidulans Gene pmaA Encodes an Homologue of Fungal Plasma Membrane H+-ATPases. Fungal Genet Biol. 1998; 23: 286–299. https://doi.org/10.1006/fgb.1998.1039 PMID: 9680959

53. Gietz RD, Schiestl RH. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc. 2007; 2: 31–34. https://doi.org/10.1038/nprot.2007.13 PMID: 17401334

54. Idnurm A, Bailey AM, Cairns TC, Elliott CE, Foster GD, Ianiri G, et al. A silver bullet in a golden age of functional genomics: the impact of Agrobacterium-mediated transformation of fungi. Fungal Biol Biotechnol. 2017; https://doi.org/10.1186/s40694-017-0035-0 PMID: 28955474

55. Zhgun A, Avdanina D, Shumikhin K, Volkov I, et al. Detection of potential biodeterioration risks for tempera painting in 16th century exhibits from State Tretyakov Gallery. PLoS One. 2020; 15: e0230591. https://doi.org/10.1371/journal.pone.0230591 PMID: 32240187

56. Puchkov EO, Wiese A, Seydel U, Kulakovskaya TV. Cytoplasmic membrane of a sensitive yeast is a primary target for Cryptococcus humicola mycocidal compound (microcin). Biochim Biophys Acta. 2001; 1512: 239–50. https://doi.org/10.1016/s0005-2736(01)00325-x PMID: 11406101

57. Permjakov S, Suzina N, Valiakhmetov A. Activation of H+-ATPase of the Plasma Membrane of Saccharomyces cerevisiae by Glucose: The Role of Sphingolipid and Lateral Enzyme Mobility. van Veen HW, editor. PLoS One. 2012; 7: e30966. https://doi.org/10.1371/journal.pone.0030966 PMID: 22359558

58. Supply P, Wach A, Goffeau A. Enzymatic properties of the PMA2 plasma membrane-bound H (+)-ATPase of Saccharomyces cerevisiae. J Biol Chem. 1993; 268: 19753–9. Available: http://www.ncbi.nlm.nih.gov/pubmed/8396147 PMID: 8396147

59. Mahanty SK, Rao US, Nicholas RA, Scarbo rough GA. High yield expression of the Acremonium chrysogenum H+-ATPase in yeast. J Biol Chem. 1994; 269: 17705–12. Available: http://www.ncbi.nlm.nih.gov/pubmed/8021283 PMID: 8021283

60. Fajardo-Somera RA, Bowman B, Riquelme M. The plasma membrane proton pump PMA-1 is incorporated into distal parts of the hyphae independently of the Spitzenkörper in Neurospora crassa. Eukaryot Cell. 2013; 12: 1097–105. https://doi.org/10.1128/EC.00328-12 PMID: 23729384

61. Kallow W, Von Döhren H, Kleinkauf H. Penicillin biosynthesis: energy requirement for tripeptide precursor formation by delta-(L-alpha-aminoacidyl)-L-cysteinyl-D-valine synthetase from Acremonium chrysogenum. Biochemistry. 1998; 37: 5947–5952. https://doi.org/10.1021/bi971741o PMID: 9558329

62. Gutierrez S, Velasco J, Marcos AT, Fernández FJ, Fierro F, Barredo JL, et al. Expression of the cefG gene is limiting for cephalosporin biosynthesis in Acremonium chrysogenum. Appl Microbiol Biotechnol. 1997; 48: 606–614. https://doi.org/10.1007/s002530051103 PMID: 9421924

63. Hynes MJ, Murray SL. ATP-citrate lyase is required for production of cytosolic acetyl coenzyme A and development in Aspergillus nidulans. Eukaryot Cell. 2010; 9: 1039–1048. https://doi.org/10.1128/EC.00080-10 PMID: 20495057

64. Fujisawa Y, Shirafuji H, Kida M, Nara K, Yoneda M, Kanzaki T. New findings on cephalosporin C biosynthesis [Internet]. Nature New Biology. Nat New Biol; 1973. pp. 154–155. https://doi.org/10.1038/newbio246154a0 PMID: 4519146

65. Shi L, Tu BP. Acetyl-CoA and the regulation of metabolism: mechanisms and consequences. Curr Opin Cell Biol. 2015; 33: 125–131. https://doi.org/10.1016/j.celbi.2015.02.003 PMID: 25703630

66. Adrio JL, Demain AL. Genetic improvement of processes yielding microbial products. FEMS Microbiol Rev. 2006; 30: 187–214. https://doi.org/10.1111/j.1574-6976.2005.00009.x PMID: 16472304

67. Salo OV, Ries M, Medema MH, Lanhorst PP, Vreenkamp RJ, Bovenberg RAL, et al. Genomic mutational analysis of the impact of the classical strain improvement program on β-lactam producing Penicillium chrysogenum. BMC Genomics. 2015; 16: 937. https://doi.org/10.1186/s12864-015-2154-4 PMID: 26572918

68. Zeilinger S, García-Estrada C, Martín J-F. Fungal Secondary Metabolites in the “OMICS” Era. Springer, New York, NY; 2015. pp. 1–12.

69. Pinu FR, Beale DJ, Paten AM, Kouremenos K, Schwarz S, Schirrmeister H, et al. Systems Biology and Multi-Omics Integration: Viewpoints from the Metabolomics Research Community. Metabolites. 2019; 9: 76. https://doi.org/10.3390/metabo9040076 PMID: 31003499

70. Kane PM. Proton Transport and pH Control in Fungi. Adv Exp Med Biol. 2016; 892: 33–68. https://doi.org/10.1007/978-3-319-25304-6_3 PMID: 26721270

71. Palmgren M, Morssomme P. The plasma membrane H+ -ATPase, a simple polypeptide with a long history. Yeast. 2018; yea.3365. https://doi.org/10.1002/yea.3365 PMID: 30447028

72. McCusker JH, Perlin DS, Haber JE. Pleiotropic plasma membrane ATPase mutations of Saccharomyces cerevisiae. Mol Cell Biol. 1987; 7: 4082–4088. https://doi.org/10.1128/mcb.7.11.4082 PMID: 2963211
73. Lucena MN, Garçon DP, Fontes CFL, McNamara JC, Leone FA. Polyamines regulate phosphorylation–dephosphorylation kinetics in a crustacean gill (Na+, K+)-ATPase. Mol Cell Biochem. 2017; 429: 187–198. https://doi.org/10.1007/s11010-017-2946-8 PMID: 28190171

74. Silva ECC, Masui DC, Furriel RPM, Mantelatto FLM, McNamara JC, Barrabin H, et al. Regulation by the exogenous polyamine spermidine of Na,K-ATPase activity from the gills of the euryhaline swimming crab Callinectes danae (Brachyura, Portunidae). Comp Biochem Physiol—B Biochem Mol Biol. 2008; 149: 622–629. https://doi.org/10.1016/j.cbpb.2007.12.010 PMID: 18272416

75. Dorighettó Cogo AJ, Dutra Ferreira K dos R, Okorokov LA, Ramos AC, Façanha AR, Okorokova-Façanha AL. Spermine modulates fungal morphogenesis and activates plasma membrane H+-ATPase during yeast to hyphae transition. Biol Open. 2018; 7: bio029660. https://doi.org/10.1242/bio.029660 PMID: 29361612

76. Pottosin I, María Velarde-Buedia A, Bose J, Fuglsang AT, Shabala S. Polyamines cause plasma membrane depolarization, activate Ca 2+-, and modulate H-þATPase pump activity in pea roots. J Exp Bot. 2014; 65: 2463–2472. https://doi.org/10.1093/jxb/eru133 PMID: 24723394

77. Bowman BJ, Blasco F, Slayman CW. Purification and characterization of the plasma membrane ATPase of Neurospora crassa. J Biol Chem. 1981; 256: 12343–9. Available: https://pubmed.ncbi.nlm.nih.gov//6457834/ PMID: 6457834

78. Gradmann D, Hansen U-P, Long WS, Slayman CL, Warncke J. Current-voltage relationships for the plasma membrane and its principal electrogenic pump in Neurospora crassa: I. Steady-state conditions. J Membr Biol. 1978; 39: 333–367. https://doi.org/10.1007/BF01869898 PMID: 25343

79. Kjellérup L, Gordon S, Cohrt KO, Brown WD, Fuglsang AT, Winther A-ML. Identification of Antifungal H+-ATPase Inhibitors with Effect on Plasma Membrane Potential. Antimicrob Agents Chemother. 2017; 61: 1. https://doi.org/10.1128/AAC.00032-17 PMID: 28438931

80. Stevens HC, Nichols JW. The Proton Electrochemical Gradient across the Plasma Membrane of Yeast Is Necessary for Phospholipid Flip. J Biol Chem. 2007; 282: 17563–17567. https://doi.org/10.1074/jbc.M700454200 PMID: 17452326

81. Martín J, García-Estrada C, Kosalková K, Ullán R V, Albillos SM, Martín J-F. The inducers 1,3-diaminopropane and spermidine produce a drastic increase in the expression of the penicillin biosynthetic genes for prolonged time, mediated by the laeA regulator. Fungal Genet Biol. 2012; 49: 1004–13. https://doi.org/10.1016/j.fgb.2012.10.001 PMID: 23089625

82. Zhgun AA, Kalinin SG, Novak MI, Domratcheva aG, Petukhov DV, Dzhavakhiya VV, et al. The influence of polyamines on cephalosporine C biosynthesis in Acremonium chrysogenum strains. Izv Vuzov Prikl Khim i Biotech. 2015; 14: 47–54.

83. Zhgun AA, Nuraeva GK, Dumina MV, Voinova TM, Dzhavakhiya VV, Eldarov MA. 1,3-Diaminopropane and spermidine upregulate lovastatin production and expression of lovastatin biosynthetic genes in Aspergillus terreus via LaeA regulation. Appl Biochem Microbiol. 2018; 55: 244–255. https://doi.org/10.1134/S0003683819020170

84. Zhgun AA, Nuraeva GK, Eldarov M. The Role of LaeA and LovE Regulators in Lovastatin Biosynthesis with Exogenous Polyamines in Aspergillus terreus. Appl Biochem Microbiol. 2019; 55: 626–635. https://doi.org/10.1134/S0003683819060176