O excesso de peso modifica a composição nutricional do leite materno? uma revisão sistemática

Overweight modifies the nutritional composition of human milk? A systematic review

Resumo

O objetivo deste artigo é identificar a associação entre excesso de peso e composição nutricional do leite materno. Foi realizada revisão sistemática nas bases de dados PubMed, Biblioteca Virtual de Saúde (BVS), EMBASE, Web of Science e SCOPUS. As buscas foram realizadas de maio a junho de 2018, usando os descritores: “Human Milk” AND “Overweight” OR “Obesity” OR “Body Mass Index”. A busca bibliográfica resultou em 435 artigos após remoção das duplicatas. Desse total, 12 foram selecionados para leitura dos resumos e nove foram inseridos para compor a presente revisão sistemática. Oito artigos mostraram que o excesso de peso acarretou aumento da concentração total de lipídeos e/ou glicose e/ou frações de macronutrientes, e apenas um estudo não observou associação entre o excesso de peso e a composição nutricional do leite humano. A maior parte dos artigos selecionados evidenciou que a obesidade modificou a concentração total de lipídeos e suas frações. Portanto, recomendamos que o peso e a estatura da mulher sejam avaliados na consulta pré-concepcional, contribuindo para a adequação do peso antes da gravidez e auxiliando na produção de leite com conteúdo nutricional adequado.

Palavras-chave

Overweight, Human milk, Nutritional Composition, Systematic Review

Abstract

This paper aims to identify the association between overweight and the nutritional composition of human milk. A systematic review was performed by searching on PubMed, Virtual Health Library (BVS), EMBASE, Web of Science, and SCOPUS databases, from May to June 2018, using keywords “Human Milk” AND “Overweight” OR “Obesity” OR “Body Mass Index”. The bibliographic search returned 435 papers after the duplicates were removed. Of this total, 12 papers were selected for abstract reading, and nine works were incorporated into this systematic review. Eight papers showed that overweight increased the total concentration of lipids or glucose or macronutrient fractions, and only one study found no association between overweight and the nutritional composition of human milk. Most works selected evidenced that obesity changed the total concentration of lipids and their fractions. Thus, we recommend that women’s weight and height be evaluated in the pregestational visit to identify and monitor nutritional deviations, contributing to weight adequacy before pregnancy and assisting in the production of milk with adequate nutritional composition.

Key words

Overweight, Human milk, Nutritional Composition, Systematic Review

DOI: 10.1590/1413-812320202510.29902018

Elissa Oliveira (http://orcid.org/0000-0002-7771-658X) 1
Daniele Marano (https://orcid.org/0000-0001-6985-941X) 2
Yasmin Notarbartolo di Villarosa do Amaral (https://orcid.org/0000-0001-8159-0564) 2
Andrea Abranches (https://orcid.org/0000-0002-9323-3297) 2
Fernanda Valente Mendes Soares (https://orcid.org/0000-0001-5720-0482) 2
Maria Elisabeth Lopes Moreira (https://orcid.org/0000-0002-2034-0294) 2

1 Fundação Oswaldo Cruz. Av. Brasil 4365, Manguinhos, 21040-900 Rio de Janeiro RJ Brasil.
elissa.c.oliveira@gmail.com
2 Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira. Rio de Janeiro RJ Brasil.
Introdução

O leite materno é um fluido biológico complexo que possui quantidades adequadas de componentes essenciais para a saúde, crescimento e desenvolvimento da criança, tais como nutrientes, fatores imunológicos, tróficos, hormônios e bactérias importantes para modulação da microbiota intestinal do recém-nascido. A amamentação fornece, a curto e longo prazo, vantagens econômicas e ambientais em relação à saúde das crianças, mulheres e sociedade.

O aleitamento materno é recomendado em regime exclusivo, como única fonte de nutrientes nos seis primeiros meses de vida. Após esse período, recomenda-se a introdução alimentar, porém tendo ainda como base o aleitamento que deve ser mantido por dois anos ou mais da criança.

Diversos estudos sugerem que a composição nutricional do leite materno pode ser modificada por diferentes fatores como a idade materna, o estilo de vida, a ingestão alimentar materna, o estágio da lactação, o tipo de parto, as desordens maternas (hipertensão arterial e diabetes mellitus), entre outros.

Além desses fatores, o excesso de peso da mulher tem sido considerado uma condição capaz de modificar a composição nutricional do leite materno. No entanto, ainda não há um consenso entre os estudos que buscaram avaliar essa associação.

Portanto, a presente revisão sistemática tem como objetivo identificar a associação entre o excesso de peso e a composição nutricional do leite materno.

Métodos

Foi realizada revisão sistemática da literatura que consistiu na busca de artigos científicos que avaliaram a associação entre o excesso de peso e a composição nutricional do leite materno. Os artigos foram selecionados através das seguintes bases de dados: PubMed, Biblioteca Virtual de Saúde (BVS), EMBASE, Web of Science e SCOPUS.

Para estratégia de busca foram empregados os descritores “Milk Human” and “Obesity” ou “Overweight” or “Body Mass Index”. A busca dos artigos foi realizada entre 18 de maio e 04 de junho de 2018 por dois pesquisadores de forma independente. As listas de referências dos artigos selecionados também foram examinadas para identificar publicações elegíveis.

Foram selecionadas para leitura na íntegra todas as publicações potencialmente elegíveis. A extração de dados e classificação final quanto à inclusão na revisão foram realizadas de forma independente, sendo os resultados comparados e as discordâncias solucionadas por consenso entre os dois revisores.

Os artigos foram considerados sobre os seguintes critérios de inclusão: estudos observacionais que avaliaram a associação entre o excesso de peso e a composição nutricional do leite materno (carboídrato e/ou gordura e/ou proteína e/ou frações dos macronutrientes e/ou energia).

Não houve delimitação de período de publicação ou restrição por idioma. Foram excluídos os artigos realizados com ratos, com desfechos dispares ao estabelecido para esta revisão, que avaliaram alterações na microbiota, na composição hormonal e artigos que foram realizados com mães de bebês pré-termo ou com qualquer tipo de malformação.

Na tabela de extração dos dados foram registrados: ano de publicação, tipo de estudo, país de origem, tamanho da amostra, perdas, idade das participantes, grupos étnicos, indicadores de avaliação antropométrica, critérios de elegibilidade, critérios de exclusão, conteúdo nutricional analisado, método utilizado para avaliar a composição nutricional do leite materno, período que o leite foi avaliado, tipo de leite avaliado (colostro, transição, maduro), fatores de confusão controlados na análise e principais resultados.

Foi utilizado o checklist baseado na diretriz Preferred Reporting Items for Systematic Reviews (PRISMA) que auxilia os autores a aperfeiçoarem os relatos de revisões sistemáticas. O resumo dos estágios do processo de seleção dos artigos presentes nesta revisão sistemática está disposto no fluxograma abaixo (Figura 1).

Resultados

Segundo a estratégia estabelecida, a busca bibliográfica resultou em 435 artigos após remoção das duplicatas. Desse total, 12 artigos foram selecionados para leitura dos resumos e nove foram inseridos para compor a presente revisão sistemática. Não foram acrescidos artigos advindos das listas de referências dos artigos lidos.

A Tabela 1 apresenta as principais características dos nove artigos incluídos, em ordem crescente do período de publicação do estudo. Embora não tenha sido delimitado período de publicação, os artigos selecionados foram publicados entre os anos de 2005 e 2017.
Figura 1. Fluxograma do processo de seleção dos estudos incluídos na revisão sistemática sobre excesso de peso e alterações na composição nutricional do leite materno.

Em relação ao tipo de desenho, seis estudos foram seccionais e três foram coorte. Quanto ao local dos estudos, observou-se que um foi realizado na Ásia, dois na América do Sul, quatro na Europa e dois na América do Norte.

Em relação a avaliação antropométrica das mulheres, apenas um estudo mediu o peso e a estatura para o cálculo do índice de massa corporal (IMC), dois estudos utilizaram dados autorreferidos e seis, não informaram o método utilizado para o cálculo do IMC. Quanto ao momento da avaliação antropométrica, seis estudos avaliaram o IMC no período pré-gestacional e os demais não pontuaram o momento que foi realizada a avaliação antropométrica.

A Tabela 2 apresenta as principais características do leite, fatores de confusão controlados e principais resultados. Quanto ao tipo de leite materno analisado (colostrato, maduro e/ou transição), um estudo observou apenas o colostrato, seis analisaram apenas o leite maduro e dois avaliaram diferentes fases da lactação. Não houve um padrão em relação ao método utilizado para avaliação da composição de macronutrientes, apresentando padrão apenas para análise de ácidos graxos.
Autor	Ano	Tipo de estudo	País	Amostra n total e n por grupo	Perdas de seguimento	Idade (anos)	Grupos étnicos	Indicadores de avaliação antropométrica	Média do índice de massa corporal pré-gestacional (Kg/m²)	Critério de elegibilidade	Critério de exclusão	
Marín et al.	2005	Transversal	Argentina	46	Não houve perda	16-39	NI	Peso, altura, IMC	NI	Mulheres que deram à luz a bebês saudáveis a termo (38-42 semanas de idade gestacional)	NI	
Storck Lindholm et al.	2013	Coorte/ intervenção	Suécia	82	Não houve perda	Eutróficas: 32.07 ± 4.1	NI	IMC pré-gestacional e durante gestação (32 e 36 semanas)	Eutróficas: 22 ± 1.8	NI	Parto prematuro (< 37 semanas), gestação múltipla e/ou bebês com grandes malformações	NI
Mäkelä et al.	2013	Transversal	Finlândia	163	Não houve perda	Eutróficas: 29.7 (3.6)	NI	IMC pré-gestacional	Eutróficas: 20.9 (2.1)	NI	NI	NI
Linderborg et al.	2014	Transversal	Finlândia	40 Eutróficas com escolhas alimentares recomendadas	Não houve perda	Eutróficas: 30.01 ± 3.96	NI	IMC pré-gestacional	Eutróficas com escolhas alimentares adequadas: 20.81 ± 1.69	NI	NI	NI
Autor	Ano	Tipo de estudo	País	Amostra n total e n por grupo	Perdas de seguimento	Idade (anos)	Grupos étnicos	Indicadores de avaliação antropométrica	Média do índice de massa corporal pré-gestacional (Kg/m²)	Critério de elegibilidade	Critério de exclusão	
-----------------	-----	----------------	-----------	------------------------------	----------------------	--------------	---------------	---------------------------------------	---	---	--	
Fujimori et al.	2015	Transversal	Brasil	68	Não houve perda	Eutróficas: 25.0 (18-37)	NI	IMC pré-gestacional	Eutróficas: 21,4 (18,4 - 24,4)	Mulheres com seios sem fissuras nos mamilos ou mastite; que estavam amamentando exclusivamente seus bebês	Gestações múltiplas, malformação fetal e nascimentos antes da 37a semana gestacional	
Panagos et al.	2016	Coorte	EUA	42	Não houve perda para avaliação da composição nutricional do leite	Eutróficas: 31 ± 3,7	Multiétnico (Hispânicas, caucasianas, americanas africanas, asiáticas)	Peso, altura e IMC pré-gestacional	Eutróficas: 22 (1,9) Obesas: 35 (4,0)	Recrutadas no Centro Médico Tufts Visite entre 34 e 40 semanas de idade gestacional. As mulheres que planejavam oferecer leite materno como a principal forma de nutrição para seus bebês e estavam dispostas a fornecer uma amostra de leite materno em uma visita de estudo entre 4 a 10 semanas pós-parto	Parto antes de 35 semanas de idade gestacional, gestação múltipla, uso de tabaco, restrição de crescimento intrauterino, anomalias fetais, natimorto.	
De Luca et al.	2016	Transversal	França	100	Não houve perda	Eutróficas: 30.1 ± 4,2	NI	Peso, altura e IMC	Eutróficas: 21,6 ± 1,4 Obesas: 34,3 ± 3,9	Amamentação contínua até 1 mês	Doença crônica ou gestacional preexistente, tabagismo durante a gravidez, gravidez gemelar, prematuridade, baixo peso ao nascer ou hospitalização no período neonatal	continuaba
Tabela 1. Características dos estudos selecionados sobre o impacto do excesso de peso na composição nutricional do leite materno, 2005-2017.

Autor	Ano	Tipo de estudo	País	Amostra e n por grupo	Perdas de seguimento	Idade (anos)	Grupos étnicos	Indicadores de avaliação antropométrica	Média do índice de massa corporal pré-gestacional (Kg/m²)	Critério de elegibilidade	Critério de exclusão	
Young et al.3	2017	Coorte	Estados Unidos	48	Não houve perda	Eutróficas 30.8 ± 2.6	30.3 ± 3.9	NI	IMC pré-gestacional	Eutróficas: 21.4 ± 2.0 Obesas: 30.4 ± 4.2	Idade materna de 21 a 36 anos, com IMC pré-gestacional de 17,0 a 39,9 kg/m², feto único, planejando amamentar exclusivamente durante pelo menos quatro meses, saudáveis, parto no hospital do estudo	Mulheres com doenças médicas crônicas que exigem tratamento, como doença cardiopulmonar, reumatológica ou renal ou diabetes pré-existente, diabetes gestacional, pré-eclâmpsia ou parto prematuro
Hahn et al.20	2017	Transversal	Coreia do Sul	80	NI	Eutróficas > 20 e < 30	Obesas > 30	NI	IMC		Mães que amamentavam exclusivamente, deram à luz a um bebê saudável, sem quaisquer doenças da mama incluindo doenças inflamatórias, começaram a lactar desde o primeiro dia do parto e de crianças com peso normal ao nascer, perímetro cefálico e altura de nascimento	Mães com alguma doença incluindo diabetes mellitus gestacional e doenças hipertensivas

1Dados de média; 2Dados de mediana; NI= Não informado.
Autor	Conteúdo nutricional analisado	Método utilizado para avaliar a composição do leite materno	Período que o leite foi avaliado	Momento de avaliação do leite materno (colostró, transição, maduro)	Fatores de confusão controlados na análise	Principais resultados
Marín et al.15	Lipídeo (ácidos graxos) e proteína	Lipídeo total: Folch	1 e 3 meses	Maduro³	NI	A proteína no leite materno não foi modificada pelo estado nutricional da mulher. Houve maior concentração de lipídeos totais, ácido linoléico, ácidos graxos poliinsaturados (ômega 6) entre as puérperas obesas.
		Ácidos graxos: cromatografia gasosa				
		Proteína: Lowry et al				
Storck Lindholm et al.19	Lipídeo (ácidos graxos)	Lipídeo: cromatografia gasosa e líquida	3 dias, 10 dias, 1 mês e 2 meses	Colostro¹, Transição² e Maduro³ (posterior)	NI	As concentrações de ômega 6 no leite materno foram superiores nas eutróficas no terceiro dia após o nascimento e de ômega 3 foi inferior nas obesas sem intervenção. A proporção de ômega 6/ômega 3 foi maior no leite das obesas sem intervenção em comparação com os outros dois grupos. As mães obesas que tiveram acompanhamento dietético tiveram concentrações de ácidos graxos poliinsaturados próximas em relação às eutróficas.
Mäkelä et al.16	Lipídeo (ácidos graxos)	Ácidos graxos: cromatografia gasosa	3 meses	Maduro³	Dieta materna	As mulheres com excesso de peso tiveram uma quantidade significativamente maior de ácidos graxos saturados e menor quantidade de ômega 3 quando comparadas às puérperas eutróficas. Além disso, a proporção de ácidos graxos insaturados e saturados foi significativamente menor e a proporção de ômega 6 para ômega 3 foi maior em mulheres com excesso de peso.
Linderborg et al.17	Lipídeo (ácidos graxos e triglicerídeos)	Ácidos graxos: cromatografia gasosa	3 meses	Maduro³	NI	As puérperas eutróficas com escolhas alimentares recomendadas tinham mais ácido linolênico e menos fragmentos de diacilglicerol no leite em relação às mães eutróficas sem escolhas alimentares não recomendadas
Fujimori et al.2	Lipídeo (colesterol, triglicerídeos), glicose e proteína	Lipídeo total: Método colorimétrico enzimático Glicose: Sistema enzimático Proteína: Método colorimétrico de Biuret	48-72 horas pós-parto	Colostro¹	Idade materna, idade gestacional no momento do parto. tabagismo, hipertensão arterial, índice de massa corporal pré-gestacional, diabetes pré-gestacional e diabetes gestacional	Foi encontrado aumento da caloria, gordura, glicose no colostro de mulheres obesas. A concentração de proteína foi similar entre os grupos

continua
Autor	Conteúdo nutricional analisado	Método utilizado para avaliar a composição do leite materno	Período que o leite foi avaliado	Momento de avaliação do leite materno (colostró, transição, maduro)	Fatores de confusão controlados na análise	Principais resultados
Panagos et al.¹⁸	Lipídeo, lactose, proteína	Lipídeo total, Lactose e Proteína: equipamento Julie Z7 Automatic MilkoScope por técnica de ultrassom	2 meses	Maduro³	NI	O leite maduro de puérperas obesas conterá quantidade inferior de ômega 3, entretanto não houve associação entre o IMC pré-gestacional, densidade calórica e macronutrientes do leite materno
De Luca et al.³	Proteína (aminoácidos)	Aminoácidos livres: cromatografia líquida de ultraperformance e espectrometria de massa em tandem	1 mês	Maduro³	NI	A quantidade de aminoácidos de cadeia ramificada foi 20% superior no leite maduro de puérperas obesas e 30% em relação a tirosina
Young et al.³	Lipídeo; lactose; proteína;	Lipídeo: crematócrito; Lactose: digestão enzimática	2 semanas, 1, 2, 3, 4 meses	Transição² e Maduro³ (Anterior e posterior)	NI	Não houve associação entre o IMC pré-gestacional e a concentração de lipídeo, lactose e proteína
Hahn et al.²⁰	caloria	Proteína: versão modificada do método de Bradford				A interação entre a idade materna e o IMC modificou os macronutrientes do leite de diferentes maneiras, de acordo com os diferentes subgrupos

¹Colostro: Até 5 dias após o parto; ²Transição: 6 até 15 dias após o parto; ³Maduro: > 15 dias após o parto. NI - não informado.
Em relação aos fatores de confusão controlados na análise, observou-se que três artigos realizaram ajustes nas análises.

Quanto à associação entre excesso de peso e conteúdo nutricional do leite materno, dos nove artigos selecionados, cinco encontraram que o excesso de peso da mulher alterou a concentração das frações lipídicas (redução da quantidade de ômega 316-19 e aumento da quantidade de ômega 615,16,19 e triglicerídeos17). Além da alteração que o excesso de peso acarretou nas frações lipídicas, também foi observado em três estudos aumento do excesso de peso acarretou nas frações lipídicas, porém durante a coleta não houve extração da composição corporal da mulher.

Discussão

O excesso de peso é considerado um problema mundial que ocorre tanto nos países desenvolvidos como nos em desenvolvimento. Essa questão precisa ser enfrentada em todas as fases da vida, particularmente em mulheres no período reprodutivo22 e gestacional23 devido às inúmeras consequências negativas que essa condição pode acarretar para o binômio materno-infantil23. Os estudos conduzidos por Fujimori et al.2 e por Young et al.3 não observaram diferenças estatisticamente significativas na concentração de lipídeos no leite de mulheres com excesso de peso em relação às eutróficas. O estudo de Fujimori et al.2 se diferenciou dos demais em relação ao tipo de lipídeo avaliado (triglicerídeos), ao método utilizado para avaliar a composição do leite materno (colorimétrico enzimático) e ao tipo de leite (colostrum). Já a coorte conduzida por Young et al.3, analisou a concentração de gordura presente no leite de transição e maduro utilizando o cromatócrito, porém durante a coleta não houve extração completa do leite, o que consequentemente pode ter interferido na concentração de gordura, visto que existe diferença na quantidade de lipídeos no leite anterior e posterior24.

Hahn et al.26, em um estudo transversal com 80 puérperas, analisaram a concentração de lipídeo presente no leite maduro utilizando o Miris que é um equipamento já validado para análise do leite materno25. Os autores observaram que a idade materna e o estado nutricional modificaram a composição de lipídeo no leite materno. Segundo os autores, as mulheres com excesso de peso e entre os 30 anos tiveram uma concentração de lipídeo superior em relação às eutróficas com a mesma idade. Não houve esclarecimentos por parte dos autores em relação aos achados encontrados. Argov-Argaman et al.26 tiveram como objetivo avaliar se a idade materna era um fator associado às mudanças nas concentrações de ácidos graxos no leite materno. Os autores observaram que o conteúdo lipídico foi maior entre as mulheres acima de 37 anos. Lubetzyk et al.27 observaram que a concentração de lipídeo no leite materno de recém-nascidos e uma análise transversal para obtenção da composição nutricional do leite humano de 42 mulheres aos dois meses de vida da criança. Os autores observaram que não houve diferença na quantidade de ácidos graxos saturados, monoinsaturados e poliinsaturados do tipo ômega 6 no leite maduro de obesas utilizando o método de Folch modificado. No entanto, o resultado desse artigo foi semelhante aos demais citados em relação ao conteúdo inferior de ômega 3 no leite maduro dessas mulheres. Ressalta-se que esses achados corroboram com inúmeros estudos que já demonstraram que o excesso de peso gera um estado inflamatório marcado pelo aumento da quantidade de ômega 6 e redução de ômega 316,17,19.

Diferente dos estudos citados acima, os estudos conduzidos por Fujimori et al.2 e por Young et al.3 não observaram diferenças estatisticamente significativas na concentração de lipídeos no leite de mulheres com excesso de peso em relação às eutróficas. O estudo de Fujimori et al.2 se diferenciou dos demais em relação ao tipo de lipídeo avaliado (triglicerídeos), ao método utilizado para avaliar a composição do leite materno (colorimétrico enzimático) e ao tipo de leite (colostrum). Já a coorte conduzida por Young et al.3, analisou a concentração de gordura presente no leite de transição e maduro utilizando o cromatócrito, porém durante a coleta não houve extração completa do leite, o que consequentemente pode ter interferido na concentração de gordura, visto que existe diferença na quantidade de lipídeos no leite anterior e posterior24.

Hahn et al.26, em um estudo transversal com 80 puérperas, analisaram a concentração de lipídeo presente no leite maduro utilizando o Miris que é um equipamento já validado para análise do leite materno25. Os autores observaram que a idade materna e o estado nutricional modificaram a composição de lipídeo no leite materno. Segundo os autores, as mulheres com excesso de peso e entre os 30 anos tiveram uma concentração lipídica superior em relação às eutróficas com a mesma idade. Não houve esclarecimentos por parte dos autores em relação aos achados encontrados. Argov-Argaman et al.26 tiveram como objetivo avaliar se a idade materna era um fator associado às mudanças nas concentrações de ácidos graxos no leite materno. Os autores observaram que o conteúdo lipídico foi maior entre as mulheres acima de 37 anos. Lubetzyk et al.27 observaram que a concentração de lipídeo no leite materno.
te de transição é maior em mulheres acima de 35 anos. Todavia, ambos destacaram que o mecanismo e a plausibilidade biológica para tais achados são desconhecidos.

Em relação aos carboidratos, a lactose foi o dissacarídeo mais abordado entre os estudos possivelmente por ser a fração glicídica mais expressiva no leite materno2,18,20. Contudo, Fujimori et al.2 foi o único estudo que avaliou a concentração de glicose no colostro. Os autores observaram que a quantidade desse monossacarídeo foi superior entre as puérperas obesas. Todavia, os autores não elucidaram os achados encontrados. Os demais estudos não observaram diferenças na quantidade de carboidratos no leite materno de mulheres com excesso de peso2,18,20.

Em relação à proteína presente no leite materno, observou-se que o excesso de peso da mulher não modificou a quantidade desse macronutriente2,18,20. Todavia, os resultados são diferentes quando os aminoácidos são avaliados. De Luca et al.21 observaram que o leite maduro de mulheres obesas continha 20% a mais de aminoácidos de cadeia ramificada e 30% a mais de tirosina em relação ao leite materno das eutróficas. Destaca-se que o aumento da quantidade de aminoácidos de cadeia ramificada pode modificar a secreção e sensibilidade da insulina acarretando desfechos negativos para a mulher e bebê28.

Em relação à avaliação antropométrica da mulher para realização do diagnóstico nutricional, a maioria dos artigos selecionados utilizaram o peso e a estatura pré-gestacional para o cálculo do IMC. Embora esta medida seja utilizada para a realização do diagnóstico nutricional em todas as fases do curso da vida20, sabe-se que esse índice não é adequado para quantificar a gordura corporal1. Logo, para o diagnóstico do estado nutricional é importante que seja realizada, além do cálculo do IMC, a avaliação da composição corporal50.

Em relação ao controle de potenciais variáveis confundidoras, com exceção do estudo conduzido por Fujimori et al.2, Mäkelä et al.16 e Hahn et al.20, os demais estudos selecionados não se detiveram no controle de potenciais fatores associados à composição nutricional do leite materno. Esse dado deve ser levado em consideração, visto que esse desfecho pode ser modificado por outros fatores para além do estado nutricional da mulher21,12. Exemplificando o efeito que o fumo e o consumo alimentar podem acarretar sobre o perfil nutricional do leite materno, Mäkelä et al.16 observaram que o fumo diminuiu a quantidade de ômega 3 e aumentou, de ômega 6 no leite materno. Em relação ao consumo alimentar, apenas dois avaliaram a influência dessa variável sobre a quantidade lipídica no leite materno. Ressalta-se que a alimentação da puérpera é apontada por diversos estudos como um fator associado às alterações nas concentrações lipídicas e no perfil de ácidos graxos poliinsaturados de cadeia longa no leite materno31,32 ratificando a necessidade de ajuste dessas e de outras importantes variáveis nas análises.

Em relação às perdas de seguimento, apenas dois artigos selecionados para compor essa revisão sistemática tiveram perdas em suas amostras16,21 e a coorte conduzida por Marin et al.15 não informou o quantitativo de perdas. Portanto, as estimativas de associação podem estar comprometidas pela presença das perdas de seguimento e/ou por não terem realizado o controle de importantes fatores de confusão.

Mesmo que as estimativas dos estudos selecionados possam estar comprometidas, ainda continua sendo de suma importância a vigilância nutricional antes da ocorrência da gestação, de preferência na consulta pré-concepcional, para que a mulher inicie a gestação com peso adequado favorecendo, dentre outros inúmeros aspectos, a produção de leite com perfil nutricional adequado.

Colaboradores

Todas as autoras fizeram contribuições substanciais com a concepção e desenho do estudo, obtenção, análise e interpretação dos dados, elaboração do artigo e todos aprovaram a versão final a ser apresentada.
Referências

1. Gidrewicz DA, Fenton TR. A systematic review and meta-analysis of the nutrient content of preterm and term breast milk. *BMCMediatr* 2014; 14:216.

2. Fujimori M, França EL, Fiorin V, Morais TC, Honorio-França AC, Abreu LC. Changes in the biochemical and immunological components of serum and colostrum of overweight and obese mothers. *BMCPregnancy Childbirth* 2015; 15:166-174.

3. Young BE, Patinkin Z, Palmer C, de la Houssaye B, Barbour LA, Hernandez T, Friedman JE, Krebs NF. Human Milk Insulin is Related to Maternal Plasma Insulin and BMI - But other Components of Human Milk do not Differ by BMI. *Eur J Clin Nutr* 2017; 71(9):1094-1100.

4. De Luca A, Frasquet-Darrieux M, Gaud M-A, Chris- tin P, Boquien C-Y, Millet C, Herviou M, Darmoun D, Robins RJ, Ingrand P, Hankard R. Higher Leptin but Not Human Milk Macronutrient Concentration Distinguishes Normal-Weight from Obese Mothers at 1-Month Postpartum. *PLoS One* 2016; 11(12):e0168568.

5. Kugananthan S, Gridneva Z, Ching TL, Hepworth AR, Mark PJ, Kakulas F, Geddes DT. Associations between Maternal Body Composition and Appetite Hormones and Macronutrients in Human Milk. *Nutrients*. 2017; 9:252.

6. García Mantrana I, Collado MC. Obesity and over- weight: Impact on maternal and milk microbiome and their role for infant health and nutrition. *Mol Nutr Food Res* 2016; 60(8):1865-1875.

7. Rollins NC, Lutter CK, Bhandari N, Hajeebhoy N, Horton S, Martines JC, Pioz EG, Richter LM, Victoria CG. Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. *Lancet* 2016; 387(10017):475-490.

8. World Health Organization (WHO). *Guideline: protecting, promoting and supporting breastfeeding in facilities providing maternity and newborn services*. Geneva: WHO; 2017.

9. Alvarez AT, Cluet RI, Rossell PM, Valbuena E, Ugueto E, Skouroliakou M. The impact of maternal and neonatal associated factors on human milk’s macronutrients and energy. *J Matern Fetal Neonat Med* 2016; 2:1-7.

10. Costa AGV, Sabarense CM. Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. *J Matern Fetal Neonat Med* 2017; 30(1):34-37.

11. Cabrera-Rubio R, Collado MC, Laitinen K, Salminen S, Isolauri E, Mira A. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. *Am J Clin Nutr* 2012; 96(3):544-551.

12. Massmann PF, França EL, Souza EG, Souza MS, Brune MFSS, Honorio-França AC. Maternal hypertension induces alterations in immunological factors of colos- trum and human milk. *Front Life Sci* 2013; 7:153-163.

13. Dritsakou K, Liolis G, Valsami G, Polychronopouls E, Skouroliakou M. The impact of maternal and neonatal associated factors on human milk’s macronutrients and energy. *J Matern Fetal Neonat Med* 2016; 2:1-7.

14. Fujimori M. *Relação do sobrepeso e obesidade materna sobre parâmetros imunológicos, bioquímicos e hormonais do sangue e colostro humano* [tese]. São Paulo: Universidade de São Paulo; 2016.

15. Marin MC, Sanjurjo A, Rodrigo MA, Alaniz Ml. Long-chain polyunsaturated fatty acids in breast milk in La Plata, Argentina: relationship with maternal nutritional status. *Prostaglandins Leukot Essent Fatty Acids* 2005; 73(5):355-360.

16. Makela J, Linderborg K, Niinikoski H, Yang B, Lag- ström H. Breast milk fatty acid composition differs between overweight and normal weight women: the STEPS Study. *Eur J Nutr* 2013; 52(2):727-735.

17. Linderborg KM, Kalpio M, Makela J, Niinikoski H, Kallio HP, Lagström H. Tandem mass spectrometric analysis of human milk triacylglycerols from normal weight and overweight mothers on different diets. *Food Chem* 2014; 146:583-590.

18. Panagos PG, Vishwanathan R, Penfield-Cyr A, Mathan NR, Shivappa N, Wirth MD, Hebert JR, Sen S. Breastmilk from obese mothers has pro-inflammatory properties and decreased neuroprotective factors. *J Perinatol* 2016; 36(4):284-290.

19. Storck Lindholm E, Strandvik B, Altman D, Möller A, Palmé Kilander C. Different fatty acid pattern in breast milk of obese compared to normal-weight mothers. *Prostaglandins Leukot Essent Fatty Acids* 2013; 88(3):211-217.

20. Hahn W-H, Jeong T, Park S, Song S, Kang NM. Content fat and calorie of human milk is affected by interactions between maternal age and body mass index. *J Matern Fetal Neonatal Med* 2018; 31(10):1385-1388.

21. De Luca A, Hankard R, Alexandre-Gouabau M-C, Ferchaud-Roucher V, Darmoun D, Boquien C-Y. Higher concentrations of branched-chain amino acids in breast milk of obese mothers. *Nutrition* 2016; 31:1295-1298.

22. Corrêa LL, Silveira DMJ, Silva AC, Campos JS, Machado MM, Rocha HAL, Cunha AJLA, Lindsay AC. Prevalência e determinantes de obesidade e sobrepe- so em mulheres em idade reprodutiva residentes na região semiárida do Brasil. *Cienc Saúde Colet* 2011; 16(1):133-145.

23. Heerman WJ, Bian A, Shintani A, Barkin SL. Interaction between maternal prepregnancy body mass index and gestational weight gain shapes infant growth. *Acad Pediatr* 2014; 14(5):463-470.

24. Ballard O, Morrow AL. Human milk composition, nutrients and bioactive factors. *Pediatr Clin N Am* 2013; 60:49-74.

25. García-Lara NR, Escuder-Vieco D, García-Algar O, De la Cruz J, Lora D, Pallás-Alonso C. Effect of Freezing Time on Macronutrients and Energy Content of Breastmilk. *Breastfeed Med* 2012; 7:293-301.

26. Argov-Argaman N, Mandel D, Lubetzky R, Kedem MH, Cohen BH, Berkovitz Z, Reifen R. Human Milk Fatty acids composition is affected by maternal age. *J Matern Fetal Neonatal Med* 2017; 30(1):34-37.

27. Lubetzky R, Sever O, Miroumi FB, Mandel D. Human Milk Macronutrients Content: Effect of Advanced Maternal Age. *Breastfeed Med* 2015; 10(9):433-406.
28. McCormack SE, Shaham O, McCarthy MA, Deik AA, Wang TJ, Gerszten RE, Clish CB, Mootha VK, Grinspoon SK, Fleischman A. Circulating branched-chain amino acid concentrations are associated with obesity and future insulin resistance in children and adolescents. *Pediatr Obes* 2013; 8(1):52-61.

29. Brasil. Ministério da Saúde (MS). *Vigilância alimentar e nutricional - SISVAN: orientações básicas para a coleta, processamento, análise de dados e informação em serviços de saúde*. Brasília: MS; 2004.

30. Marshall NE, Murphy EJ, King JC, Haas KE, Lim JY, Wiedrick J, Thornburg KL, Purnell JQ. Comparison of multiple methods to measure maternal fat mass in late gestation. *Am J Clin Nutr* 2016; 103(4):1055-1063.

31. Nyuar KB, Min Y, Ghebremeskel K, Khalil AK, Elbashir MI, Cawford MA. Milk of northern Sudanese mothers whose traditional diet is high in carbohydrate contains low docosahexaenoic acid. *Acta Paediatr* 2010; 99:1824-1827.

32. Valentine CJ, Morrow G, Fernandez S, Gulati P, Bartholomew D, Long D, Welty SE, Morrow AL, Rogers LK. Docosahexaenoic Acid and Amino Acid Contents in Pasteurized Donor Milk are Low for Preterm Infants. *J Pediatrics* 2010; 157(6):906-910.