GATA2 mediates thyrotropin-releasing hormone-induced transcriptional activation of the thyrotropin β gene.

メタデータ	言語: jpn		
出版者:			
公開日: 2013-05-15			
キーワード (Ja):			
キーワード (En):			
作成者: 大場, 健司			
メールアドレス:			
所属:			
URL	http://hdl.handle.net/10271/2670		
学位記番号	医博論第 493号	学位授与年月日	平成23年12月9日
----------	---------------	---------------	-----------------
氏名	大場 健司		
論文題目	GATA2 mediates thyrotropin-releasing hormone-induced transcriptional activation of the thyrotropin β gene.		
（GATA2はTRHによるTSHβ遺伝子の転写活性化を調節する） | | |
論文の意図

Thyrotropin-releasing hormone (TRH)による thyrotropin (TSH)の産生促進、および甲状腺ホルモン(T3)と甲状腺ホルモン受容体(TR)による抑制は、視床下部−下垂体−甲状腺系の中心的機構である。TSHはα鎖(TSHα)とβ鎖(TSHβ)より構成されるがTSHの特異性を規定するのはTSHβであり、TRH刺激はTSH分泌を増加させるほかTSHαとTSHβの遺伝子発現も促進する。

転写因子GATA2は下垂体特異的転写因子Pit1とともにTSH産生細胞への分化における決定因子であり、TSHβ遺伝子発現にも必須とされる。しかし、TRH刺激によるTSHβ遺伝子発現の活性化に関しては、Pit1、TSHβに存在する抑制性のT3応答領域(nTRE)、T3の結合していないTRなどの関与が報告されているが、GATA2に関する報告はない。一方、TRH以下のシグナル伝達に関しては、蛋白キナーゼC(PKC)、蛋白キナーゼA(PKA)あるいはMAPキナーゼ(MAPK)などの関与が報告されているが、GATA2を考慮した実験系での検討はない。そこで、TRH刺激によるTSHβ遺伝子の転写活性化をGATA2とTRH以下のシグナル伝達を中心に検討した。

材料ならびに方法

TSHβ、プロラクチン(PRL)、エンドセリン-1(ET-1)、TSHαの各プロモーターを持つchloramphenicol acetyltransferase(CAT)あるいはRenillaルシフェラーゼ遺伝子をPit1、GATA2、TRH受容体(TRH-R)、TRなどの発現プラスミドとともに腎由来CV1細胞、GH産生細胞GH3、TSHβ産生細胞TaT1ヘリン酸カルシウム法ないしリポフェクション法で遺伝子導入し、TRH、PKC活性化剤tetradecanoylphorbol acetate(TPA)、PKA活性化剤forskolin、種々のPKCあるいはMAPK阻害剤の刺激下で転写活性を調べた。またGATA2を発現したCV1細胞の核抽出液を用い、32Pで標識したTSHβ遺伝子のGATA応答領域(GATA-RE)との結合を、電気泳動移動度シフト法(EMSA)にて解析した。

結果

(1)CV1細胞にPit1とGATA2を共発現することでTSHβプロモーターをもつCATレポータ遺伝子(TSHβ-CAT)は著明に活性化し、TRH-Rを共発現して100nMのTRHを添加するとその転写活性は更に2倍に増強した。同様の結果をTPA添加時にも認めたがforskolin添加時には認めなかった。またnTREを破壊してもTRH刺激による転写活性化は認められた。

(2)TSHβプロモーターのGATA-REの直下に存在する抑制性の配列を欠失すると、GATA2単独で基質の転写活性を維持できることが報告されている。この転写活性はGATA2発現下でTRH刺激により2倍程度に増強した。またGATA-REを持つET-1およびTSHαプロモー
ターの転写も、GATA2を共発現することでTRH刺激により活性化した。一方、DNA結合能を破壊したGATA2変異体を共発現した場合には、TRH刺激による転写活性化を認めなかった。(3)T3非存在下ではTRのみを過剰発現してもTRHによるTSHβ-CATの転写活性化を認めなかった。一方、T3存在下のTRはGATA2と十分量のTRHで活性化されたTSHβ-CATを基礎転写レベルまで抑制した。(4)欠失解析の結果、TRHおよびTPAによる転写活性化にはGATA2のZnフィンガー(Zf)領域が重要であることが示された。(5)GATA2はZf領域でTSHβのGATA-REを認識することが報告されている。EMSAによる検討で、GATA2のDNA結合はTRHおよびTPA刺激により増強された。(6)内因性にPit1、TRH-R、Ets、PRLを発現するGH3細胞にGATA2を共発現したところ、TRH刺激によるTSHβの転写活性化が再現された。しかし主に転写因子Etsを介して活性化するPRLプロモーターと異なり、MAPK阻害薬による影響を受けなかった。(7)TSH産生細胞として樹立されているTaT1をウエスタンプロットで検討したところ、意外な事にGATA2の発現は不十分だった。GATA2を共発現しない条件ではTRH刺激によりTSHβ転写は活性化しなかったが、GATA2の共発現によりTSHβの転写活性化が再現された。

【考察】
TRH刺激によるTSHβ遺伝子の転写活性化を媒介する標的はGATA2であることが示された。nTREあるいはT3の結合していないTRは不要であり、条件を選べばPit1も必須でないことが判明した。既報の多くはGATA2がほとんど発現していない実験系を用いているため、異なる結果に至ったと考えられた。一方、T3存在下ではTRによってTSHβの転写は抑制され、TRHによる転写活性化よりも優位であった。以上の結果はTR、TRH、TRH-R、PAX8あるいは下垂体特異的GATA2のノックアウトマウスの報告を矛盾なく説明するものであった。

TRH以下のシグナル伝達に関しては、TSHβの転写活性化はPKCを介することが示された。PRLと異なりMAPKの関与は否定的であり、異なる転写因子(GATA2とEts)の関与によりシグナル伝達の相違が生じていると推察された。

【結論】
GATA2はTRHによるTSHβの転写活性化とT3による抑制において、共通の標的因子として機能する。

論文審査の結果の要旨

今までの研究から、甲状腺刺激ホルモン産生細胞Thyrotropeでは、この細胞特異的にTSHが発現しており、転写因子GATA2は転写活性化に働き、また転写因子Pit1は活性化と脱抑制により転写を活性化することが判明している。

申請者は甲状腺ホルモン放出因子（TRH）がTSHβ遺伝子を誘導する分子メカニズムを明らかにすることにした。適当なThyrotrope細胞株がないので、実験系には、CV1細胞にPit1とGATA2発現ベクター、そしてTSHβ-CATレポーターを共遺伝子導入して、CAT活性を測定する方法を用いた。CV1細胞でTRHに対する作用を見るために、TRH受容体TRH-R発現ベクターも同時に遺伝子導入した。上記4DNAを遺伝子導入した後、メディウムにTRH
を添加すると濃度依存的に CAT 活性が上昇した。メディウムに TPA を添加しても同じく CAT 活性が上昇するが、forskolin では無変化であった。この反応は、TSH プロモーターから Weintraub らが言う nTRE を欠失したコンストラクトを用いても、同じ結果であった。次に、申請者グループが見出した抑制領域 SR を欠失した DNA を用いて TRH 添加による転写活性化を検討した。Pit1 発現ベクター単独ではほとんど影響がないが、GATA2 発現ベクター単独では著明な活性化が認められた。しかし、GATA2 の zinc finger の一つを変異させた変異 GATA2 発現ベクターでは TRH による活性化は認められなかった。また、TRH 刺激により GATA2 蛋白は変化しないが、標的 DNA の結合が増加することを明らかにした。さらに、Pit1 により活性化する DNA 領域に変異を入れたコンストラクトで検討しても TRH による TSHβ プロモーターの活性化は失われなかった。これらのことは、TRH による転写活性化は GATA2 を介して行われることを意味している。審査委員会は、TRH による転写活性化は GATA2 によることを明らかにしたことを高く評価した。

以上により、本論文は博士（医学）の学位の授与にふさわしいと審査員全員一致で評価した。

論文審査担当者 主査 三浦 直行
副査 渕藤 光利 副査 緒方 勤