Detection of foot-and-mouth disease virus in raw milk in Menofia Governorate and its effect on reproductive hormones and physiochemical properties of milk

Ashraf Khamees Shaban*, Ragab Hassan Mohamed†, Asem Mohammed Zakaria‡, and Eman Mohamed Baheeg§

1. Shebeen El-Kome Branch, Animal Health Research Institute (AHRI), Agricultural Research Center, Dokki, Giza, Egypt; 2. Department of Theriogenology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt; 3. Department of Food Hygiene, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt; 4. ELISA Unite and Viral Strain Bank, Animal Health Research Institute (AHRI), Agricultural Research Center, Dokki, Giza, Egypt.

Corresponding author: Asem Mohammed Zakaria, e-mail: asemzakaria@yahoo.com

Co-authors: AK: ashraf_khameis@yahoo.com, RHM: ragabhasan2016@gmail.com, EMB: ahmmedrafaat@gmail.com

Received: 08-05-2022, Accepted: 04-08-2022, Published online: 16-09-2022

doi: www.doi.org/10.14202/vetworld.2022.2202-2209

Abstract

Background and Aim: Foot-and-mouth disease (FMD) is an extremely contagious viral disease that affects domestic and wild cloven-hoofed animals. In Egypt, FMD has been enzootic since the 1950s and caused great economic losses in cattle and buffalos over the past few years. This study aimed to detect FMD virus (FMDV) in serum and raw milk samples collected from infected and adjacent cattle and buffalos from different localities in El Menofia Governorate, Egypt.

Materials and Methods: Blood and milk samples were collected from apparently diseased and adjacent 100 cows and 100 buffalos. Serum samples were prepared and used for the detection of FMDV using a non-structural protein enzyme-linked immunosorbent assay, while real-time reverse transcription-polymerase chain reaction (rRT-PCR) was used for the detection of FMDV in milk samples. Reproductive hormones were estimated using radioimmunoassay kits. Milk constituents were determined by Lactoscan.

Results: Of the 200 examined serum samples (100 cows and 100 buffalos), 56% and 44% were seropositive for FMDV non-structural protein antibodies in cattle and buffalo, respectively. Real-time reverse transcription-polymerase chain reaction results confirmed that all examined milk samples collected from seropositive animals were positive for FMDV. Estrogen and progesterone levels in the serum of seropositive and seronegative animals were measured, and FMDV was proven to significantly elevate estrogen and reduce progesterone levels in both non-pregnant and pregnant animals during different stages of pregnancy. The effect of the virus on milk composition and somatic cell count (SCC) was also studied, revealing that FMDV infection significantly decreased the level of milk fat, protein, and lactose but did not significantly affect minerals, pH, and conductivity. Moreover, it significantly increased the SCC.

Conclusion: Data recorded in this study indicates a widespread occurrence of FMDV in cattle and buffalo all over Menofia Governorate, Egypt. Infected raw milk is of poor quality and, if put for commercial sale, may have health risks for consumers and play a significant role in spreading the virus. Moreover, FMDV may disturb some reproductive hormones, which could adversely affect cattle and buffalo productivity. Therefore, preventive programs and accurate diagnosis are essential for successful disease control.

Keywords: Foot-and-mouth disease, physiochemical properties of milk, raw milk, reproductive hormones.

Introduction

Foot-and-mouth disease (FMD), the first animal pathogen identified as a virus, was initially described in the 16th century [1, 2]. According to Office International des Epizooties, it is one of the most significant diseases threatening the international trade of animals and their products [1]. The first outbreak of FMD in Egypt was caused by SAT2 in 1950 and by strain A in 1952, 1956, and 1958. Several foci were detected from 1961 until 2006 with strains O and O1 until the appearance of strain A in the FMD epidemic that occurred between January and June 2006 [3, 4]. In 2012, there was a dramatic upsurge in FMD outbreaks in Egypt related to the SAT2 strain [5]. The disease is caused by FMD virus (FMDV), which is a small non-enveloped, icosahedral virus that belongs to the genus Aphthovirus of the family Picornaviridae [2]. Foot-and-mouth disease virus possesses a positive sense, single-stranded linear RNA genome of approximately 8.5 kb in length (with a poly (A) sequence at the 3'-end) that codes for 12 proteins, four of which are structural proteins (VP1–4) that make up the capsid of the virus, and eight of which are non-structural proteins (non-structural proteins [NSPs]; 2A, 3A, 2B,
cows and 100 buffalos) from different localities all collected from 200 infected and adjacent animals (100

Study period and location

The study was approved by Egyptian Medical Ethical approval Materials and Methods

Egypt, and to study its effects on reproductive hor

Foot-and-mouth disease. This is an unrelated and usu

Foot-and-mouth disease virus NSP ELISA

Milk sampling

Milk and milk products are very important com

Materials and Methods

Ethical approval

The study was approved by Egyptian Medical Research Ethics Committee (no. 14 – 126).

Study period and location

This study was conducted from September 2021 to February 2022. Blood and milk samples were col

Animals

Some animals were in different stages of preg

Blood sampling

Two hundred blood samples (10 mL each) were collected from clinically suspected and adjacent cat

Foot-and-mouth disease virus reference strain

The FMDV strain was kindly provided by the Virology Department of the Animal Health Research Institute in Dokki, Giza, Egypt.

Foot-and-mouth disease virus NSP ELISA

ELISA was carried out in the Virology Department of the Animal Health Research Institute in Dokki, Giza, Egypt. Commercial ELISA kits were obtained from Svanova Biotech AB, Sweden) to detect antibodies against FMDV NSP serum samples following the method of Dodet and Vicari [13].

Real-time polymerase chain reaction

The QIAamp® Viral RNA Mini Kit obtained from Qiagen (Germany) was used to extract viral RNA from positively isolated samples’ supernatants following the mini spin protocol according to the manufacturer’s instructions and eluted in 50 μL of elution buffer.
Primers and probes used for rRT-PCR

The oligonucleotide primers used for common FMDV were designed (Metabion International, Germany) to share maximum homology with all seven serotypes of FMDV (universal primers for FMDV), according to Armson et al. [14], as shown in Table-1.

One-step RT-PCR

The real-time reaction combined with the reverse transcription in routine RT-PCR was applied in the Biotechnology Research Department of the Animal Health Research Institute in Dokki, Giza, Egypt. The real-time cycler program is shown in Table-2.

Statistical analysis

Data were analyzed with IBM Statistical Package for the Social Sciences Statistics for Windows, Version 20.0. (IBM Corp., Armonk, NY, USA). Data were entered as numerical or categorical, as appropriate. Quantitative data were presented as mean ± standard deviation. An independent sample t-test was used to measure the significance between two parametrically distributed quantitative variables. p < 0.05 was considered statistically significant.

Results

According to the results shown in Table-3, 56% and 44% of the cattle and buffalo samples were seropositive, respectively. Real-time reverse transcription-polymerase chain reactions was used to detect FMDV in milk samples, and all milk samples collected from seropositive animals were FMD positive, as shown in Figure-1. The effects of FMDV on milk composition during different stages of pregnancy and in non-pregnant cattle and buffalo are reported in Tables-4–6, showing that milk components differed according to stage of pregnancy and that FMDV had a significant effect (p < 0.05) on the reduction of milk fat, protein, and lactose levels, while SCCs were increased. Minerals, pH, and conductivity were not significantly affected (p > 0.05).

The effect of the FMDV on serum estrogen and progesterone levels in cattle and buffalos was also studied, and the results reported in Figures-2–5 show that it had a significant effect (p < 0.05) on the elevation of estrogen and reduction of progesterone levels in non-pregnant and pregnant animals during different stages of pregnancy. The mean estrogen levels of seronegative cows in the first, second, and third stages of pregnancy were 45.13 ± 0.23, 39.18 ± 1.68, and 32.28 ± 1.35 pg/mL, respectively, and 50.75 ± 0.23, 52.28 ± 0.35, and 55.28 ± 0.28 pg/mL in seropositive cows, respectively. Meanwhile, the mean estrogen levels in seropositive cows were 30.31 ± 0.67, 27.58 ± 0.60, and 22.18 ± 1.20 pg/mL, respectively, and 34.96 ± 0.17, 37.66 ± 0.69, and 37.92 ± 0.58 pg/mL, respectively, in seropositive buffalos (Figure-2). The mean progesterone levels in seronegative cows during the first, second, and third stages of pregnancy were 6.90 ± 0.13, 7.33 ± 0.10, and 7.50 ± 0.03 ng/mL, respectively, and 6.63 ± 0.20, 6.93 ± 0.08, and 6.00 ± 0.10 ng/mL, respectively, in the seropositive cows (Figure-3). Meanwhile, in seronegative buffalos, they were 3.52 ± 0.15, 4.83 ± 0.15, and 5.65 ± 0.45 ng/mL, respectively, and 3.87 ± 0.14, 3.93 ± 0.08, and 3.37 ± 0.14 ng/mL, respectively, in seropositive buffalos.

Table-1: Primers and probes used in rRT-PCR for the detection of FMDV.

| FMD serotype | Primer         | Sequences 5’-3’                                    | Position |
|--------------|----------------|---------------------------------------------------|----------|
| Common       | Callahan 3DF   | ACT GGG TTT TAC AAA CCT GTG A                     | 3D       |
|              | Callahan 3DR   | GCG AGT CCT GCC ACG GA                            | 3D       |
|              | Callahan 3DP probe | FAM- TCC TTT GCA CGC CGT GGG AC - TAMRA         | 3D       |

rRT-PCR=Real-time reverse transcription-polymerase chain reaction, FMD=Foot-and-mouth disease, FMDV=Foot-and-mouth disease virus

Figure-1: Amplification curves of sensitivity test of common foot-and-mouth disease virus using real-time polymerase chain reaction that shows positive results for examined samples and negative control sample. Positive computed tomography (CT) values ranged from 30 to 35 cycle and negative CT value considered 40 cycles.
Table-2: Real-time cycler program.

| Step                          | Time | Temperature |
|-------------------------------|------|-------------|
| Reverse transcription         | 30 min | 50°C        |
| PCR initial activation step   | 15 min | 95°C        |
| 2-step cycling: Denaturation  | 15 s  | 94°C        |
| Combined annealing/extension  | 60 s  | 60°C        |

Number of cycles=50

Table-3: Results of Svanovir FMD-ELISA for the detection of FMDV non-structural protein antibodies in collected serum samples.

| Animals     | No. of examined samples | No. of+ve samples | % of+ve samples |
|-------------|-------------------------|-------------------|-----------------|
| Cattle      | 100                     | 56                | 56              |
| Buffalo     | 100                     | 44                | 44              |

FMD-ELISA=Foot-and-mouth disease enzyme-linked immunosorbent assay, FMDV=Foot-and-mouth disease virus

Table-4: Effect of FMD virus on cow milk composition during different stages of pregnancy.

| Milk parameters | Stage of pregnancy | 1st stage | 2nd stage | 3rd stage |
|-----------------|--------------------|-----------|-----------|-----------|
|                 | Sero -ve (n = 8)   | Sero+ve (n = 8) | p-value | Sero -ve (n = 8) | Sero+ve (n = 8) | p-value | Sero -ve (n = 8) | Sero+ve (n = 8) | p-value |
| Fat             | 3.42 ± 0.31        | 3.13 ± 0.24    | 0.002    | 3.53 ± 0.27      | 3.18 ± 0.21    | 0.0001   | 3.61 ± 0.29      | 3.21 ± 0.19    | 0.0001   |
| Protein        | 3.47 ± 0.23        | 3.13 ± 0.18    | 0.0001   | 3.32 ± 0.19      | 2.94 ± 0.16    | 0.0001   | 3.25 ± 0.21      | 2.87 ± 0.17    | 0.0001   |
| Lactose        | 4.82 ± 0.14        | 4.39 ± 0.13    | 0.0001   | 4.65 ± 0.13      | 4.32 ± 0.16    | 0.0001   | 4.74 ± 0.16      | 4.36 ± 0.12    | 0.0001   |
| Minerals       | 0.72 ± 0.07        | 0.71 ± 0.06    | 0.059    | 0.74 ± 0.05      | 0.72 ± 0.07    | 0.305    | 0.74 ± 0.07      | 0.73 ± 0.09    | 0.697    |
| pH             | 6.72 ± 0.12        | 6.59 ± 0.10    | 0.570    | 6.59 ± 0.09      | 6.60 ± 0.06    | 0.681    | 6.61 ± 0.11      | 6.58 ± 0.08    | 0.330    |
| Conductivity   | 4.19 ± 0.03        | 4.18 ± 0.06    | 0.509    | 4.20 ± 0.08      | 4.19 ± 0.04    | 0.620    | 4.21 ± 0.05      | 4.20 ± 0.06    | 0.570    |
| SCC (×10⁶)     | 149.46 ± 7.4       | 175.54 ± 6.3   | 0.0001   | 152.35 ± 4.6     | 179.64 ± 5.2   | 0.0001   | 146.73 ± 5.2     | 183.14 ± 4.9   | 0.0001   |

FMD=Foot-and-mouth disease, SCC=Somatic cell count

Table-5: Effect of FMD virus on buffalo milk composition during different stages of pregnancy.

| Milk parameters | Stage of pregnancy | 1st stage | 2nd stage | 3rd stage |
|-----------------|--------------------|-----------|-----------|-----------|
|                 | Sero -ve (n = 8)   | Sero+ve (n = 8) | p-value | Sero -ve (n = 8) | Sero+ve (n = 8) | p-value | Sero -ve (n = 8) | Sero+ve (n = 8) | p-value |
| Fat             | 6.89 ± 0.79        | 6.22 ± 0.64  | 0.005    | 7.58 ± 0.69      | 7.15 ± 0.42    | 0.022    | 7.72 ± 0.71      | 7.31 ± 0.52    | 0.044    |
| Protein        | 3.67 ± 0.17        | 3.29 ± 0.13  | 0.0001   | 3.42 ± 0.19      | 3.14 ± 0.13    | 0.0001   | 3.31 ± 0.15      | 2.97 ± 0.18    | 0.0001   |
| Lactose        | 5.33 ± 0.12        | 5.14 ± 0.11  | 0.0001   | 4.96 ± 0.19      | 4.37 ± 0.15    | 0.0001   | 5.31 ± 0.16      | 4.95 ± 0.14    | 0.0001   |
| Minerals       | 0.71 ± 0.03        | 0.72 ± 0.07  | 0.560    | 0.72 ± 0.03      | 0.73 ± 0.06    | 0.509    | 0.74 ± 0.04      | 0.75 ± 0.06    | 0.538    |
| pH             | 6.63 ± 0.09        | 6.61 ± 0.08  | 0.462    | 6.63 ± 0.11      | 6.60 ± 0.12    | 0.415    | 6.64 ± 0.13      | 6.62 ± 0.06    | 0.535    |
| Conductivity   | 4.23 ± 0.06        | 4.22 ± 0.04  | 0.538    | 4.25 ± 0.05      | 4.24 ± 0.03    | 0.447    | 4.24 ± 0.02      | 4.23 ± 0.05    | 0.411    |
| SCC (×10⁶)     | 172.32 ± 5.3       | 193.18 ± 4.6 | 0.0001   | 169.46 ± 6.5     | 187.59 ± 5.1   | 0.0001   | 171.36 ± 4.3     | 195.48 ± 5.4   | 0.0001   |

FMD=Foot-and-mouth disease, SCC=Somatic cell count

Table-6: Effect of FMD virus on milk composition of non-pregnant cow and buffalo.

| Milk parameters | Cow | Sero -ve (n = 8) | Sero+ve (n = 8) | p-value | Sero -ve (n = 8) | Sero+ve (n = 8) | p-value |
|-----------------|-----|-----------------|-----------------|---------|-----------------|-----------------|---------|
| Fat             | 3.59 ± 0.24 | 3.15 ± 0.23    | 0.0001   | 6.76 ± 0.19      | 6.34 ± 0.75    | 0.020    |
| Protein        | 3.36 ± 0.22 | 2.97 ± 0.26    | 0.0001   | 3.59 ± 0.19      | 3.16 ± 0.17    | 0.0001   |
| Lactose        | 4.77 ± 0.20 | 4.41 ± 0.17    | 0.0001   | 5.19 ± 0.13      | 4.85 ± 0.16    | 0.0001   |
| Minerals       | 0.67 ± 0.05 | 0.69 ± 0.08    | 0.349    | 0.72 ± 0.05      | 0.74 ± 0.06    | 0.259    |
| pH             | 6.58 ± 0.08 | 6.53 ± 0.07    | 0.042    | 6.61 ± 0.11      | 6.64 ± 0.08    | 0.330    |
| Conductivity   | 4.21 ± 0.06 | 4.20 ± 0.04    | 0.538    | 4.22 ± 0.05      | 4.21 ± 0.04    | 0.489    |
| SCC (×10⁶)     | 151.62 ± 6.3 | 181.43 ± 5.7  | 0.0001   | 168.51 ± 5.7     | 191.73 ± 4.3   | 0.0001   |

FMD=Foot-and-mouth disease, SCC=Somatic cell count

Discussion

Foot-and-mouth disease is one of the most clinically significant viral diseases affecting cattle, buffalos, and other cloven-hoofed animals [2]. It causes severe economic losses due to its high morbidity, decreases meat and milk yields, and leads to other secondary complications [15]. Therefore, early detection...
and serotyping of the virus using a sensitive and rapid method for diagnosis is essential for disease control, which can be carried out through an appropriate emergency vaccine, and to help track the origin and spread of an outbreak [11]. In this study, Svanovir FMD-ELISA was used to detect FMD NSP antibodies in cattle and buffalos to differentiate between vaccinated and infected animals. The data reported in Table-3 show that of 100 cattle and 100 buffalo serum samples examined, 56 and 44 samples were found to be 

**Figure-2:** Effect of foot-and-mouth disease virus on estrogen level in cow and buffalo during different stages of pregnancy that showing elevation of estrogen level in seropositive animals.

| Stage | Cow | Buffalo |
|---|---|---|
| Sero–ve | 45.13 | 50.75 |
| Sero+ve | 50.18 | 55.28 |

**Figure-3:** Effect of foot-and-mouth disease virus on progesterone level in cow and buffalo during different stages of pregnancy that showing reduction of progesterone level in seropositive animals.

| Stage | Cow | Buffalo |
|---|---|---|
| Sero–ve | 6.9 | 6.6 |
| Sero+ve | 7.33 | 6.93 |

**Figure-4:** Effect of foot-and-mouth disease virus on estrogen level of non-pregnant cow and buffalo that showing elevation of estrogen level in seropositive animals.

| Stage | Cow | Buffalo |
|---|---|---|
| Sero–ve | 60.98 | 30.66 |
| Sero+ve | 66.71 | 35.43 |

**Figure-5:** Effect of foot-and-mouth disease virus on progesterone level of non-pregnant cow and buffalo that showing reduction of progesterone level in seropositive animals.

| Stage | Cow | Buffalo |
|---|---|---|
| Sero–ve | 0.23 | 0.21 |
| Sero+ve | 0.06 | 0.1 |

Foot-and-mouth disease diagnosis in the field is dependent on clinical recognition followed by confirmation by objective tests that are usually carried out in specialized laboratories. During FMD viral replication in cattle and buffalos, different populations of antibodies are elicited and directed against the NSPs 2A, 2B, 2C, 3AB, 3C, and 3D, regardless of whether the animal exhibits symptoms of the disease or not [16]. Detection of antibodies to structural proteins alone is not suitable to differentiate between infected and vaccinated animals. Differentiating between these two categories of animals is important during serological surveys to detect evidence of infection in vaccinated animals [17]. Lower results of FMD detection were reported by El-Rhman et al. [11] and a nearly similar result was reported by Salem et al. [18], while higher results were reported by Ibrahim1 et al. [19] and Zeedan et al. [20] who used FMD-3ABC to distinguish FMDV-infected or carrier animals from vaccinated animals in Egypt.

Foot-and-mouth disease virus-infected animals usually shed the virus in their milk several days before clinical signs appear, so screening raw milk for FMDV can likely detect its presence sooner than farmers reporting clinical signs. Thus, this method should be suitable for national, regional, and global FMD surveillance. Moreover, milk is considered a good medium for laboratory diagnosis and surveillance of FMD in dairy herds, as it is available in plentiful quantities and can easily be collected [21]. Recently, rRT-PCR assays were developed that can detect FMDV in a variety of sample matrices. These assays have high specificity and sensitivity [22]. In this study, rRT-PCR was used to detect FMDV in raw milk samples collected from clinically infected and adjacent cattle and buffalos using oligonucleotide universal primers and probe to amplify highly conserved sequences among all seven FMDV serotypes. The result confirmed that all examined seropositive animals had FMDV in their milk, with a cycle threshold value ranged from 20 to 35 cycles (Figure-1). This result is in accordance with those of Das et al. [21], Ahmed et al. [23], and Mohamed et al. [24], who used RT-PCR assays for FMD diagnosis with high diagnostic and analytical sensitivity. The FMDV replicates in the mammary gland after infection, and the shed virus is incorporated into fat droplets and casein micelles within 2 days before the appearance of clinical signs, fat droplets and casein micelles aid the virus to be protected from environmental inactivants [24]. Foot-and-mouth disease virus can persist in milk and dairy products for a long time at refrigeration temperatures; it can survive in raw milk for 6 days at 18°C and for 15 days at 4°C [25]. The temperature-time conditions used for pasteurization in the dairy industry are carefully chosen to ensure milk safety but retain the quality and flavor of the milk [26]. The double set pasteurization (72°C for 30 s) and UHT (135°C for 1 s) are proven and reliable methods for inactivating the virus in raw milk [27]. In addition to the danger of FMDV transmission through milk, the virus can significantly reduce milk yields and animal productivity. This negative effect of FMDV on milk yield has been reported in many previous studies, which confirmed that the decrease in milk production began before the detection of the clinical signs and occurrence of an outbreak, with recovery usually taking 2 months after the end of the outbreak [9, 28, 29]. In general, and to the best of our knowledge, the impact of FMDV on milk composition and SCC has not yet been sufficiently studied. Therefore, in this study, milk samples were collected from both non-pregnant and pregnant seropositive and seronegative cattle and buffalos to measure the levels of different milk constituents and SCCs. The results recorded in Tables 4–6 show that FMD infection significantly reduced (p < 0.05) milk fat, protein, and lactose levels and increased SCC, while minerals, pH, and conductivity were not significantly affected. Foot-and-mouth disease causes fever, anorexia, ulcers, vesicles, and erosions on lips, dental pad, tongue, and gum, leading to food avoidance due to pain [29]. It may also cause mastitis and subclinical mastitis in dairy animals [30], and all these symptoms may be the cause of milk yield reduction and defects in milk components. Nearly identical results to ours were reported by Ansari-Lari et al. [31], who found that FMDV decreases the level of fat and protein in cow’s milk.

There are many factors affecting the level of reproductive hormones in blood, such as age, species, breed, malnutrition, illness, season, reproductive status, management systems, and nutrition [32]. In this study, the effect of FMDV on estrogen and progesterone levels in non-pregnant and pregnant cattle and buffalo in different stages of pregnancy was studied. FMDV has a significant effect on the elevation of estrogen and reduction of progesterone levels in the blood (Figures 2–5). A nearly identical result was reported by El-Deen et al. [33], who found that FMDV significantly reduces progesterone levels in blood. Therefore, we can confidently state that FMDV disturbs various endocrine functions of the reproductive organs, thereby adversely affect cattle and buffalo.
productivity. Considering the aforementioned results, biosecurity measures should be implemented to prevent the spread of FMDV through raw milk. These measures include careful handling of raw milk during milking, transportation, and storage. Milk samples should be taken regularly from raw market milk to be tested for the presence of FMDV, especially during outbreaks, and only pasteurized milk and dairy products should be consumed.

**Conclusion**

The presence of FMDV in 56% and 44% of the tested cattle and buffaloes, respectively, indicates the widespread occurrence of FMDV all over Menofia Governorate, Egypt. Milk obtained from infected animals is of poor quality and may cause health risks to consumers. Foot-and-mouth disease virus has a negative effect on milk composition and quality and may disturb some reproductive hormones, which could adversely affect cattle and buffalo productivity. Therefore, accurate diagnosis and effective preventative programs are essential for successful disease control. Milk is an ideal medium for the laboratory diagnosis of FMD and may be particularly appropriate for the surveillance of the disease in dairy herds because it is readily available and easy to collect.

**Authors’ Contributions**

AK, RHM, AMZ, and EMB: Prepared conception and design of the study and performed data cura-
tion and interpretation. RHM and AMZ: Drafted the manuscript and statistically analyzed the data. AK, RHM, AMZ, and EMB: Collected and analyzed the samples. AK and EMB: Carried out the final writing, critical review, and revision. All authors have read and approved the final manuscript.

**Acknowledgments**

The authors are thankful to the animals’ owners for their excellent cooperation and all members in the Department of Food Hygiene, Faculty of Veterinary Medicine, Aswan University and ELISA unite and viral strain bank, Animal Health Research Institute (AHRI), Agricultural Research Center, Dokki, Giza, Egypt, for their cooperation and advice. The authors did not receive any funds for this study.

**Competing Interests**

The authors declare that they have no competing interests.

**Publisher’s Note**

Veterinary World remains neutral with regard to jurisdictional claims in published institutional affiliation.

**References**

1. O’Donnell, V., Pacheco, J., LaRocca, M., Burraga, T., Jackson, W., Rodriguez, L., Borca, M. and Baxt, B. (2011) Foot-and-mouth disease virus utilizes an autophagic pathway during viral replication. *Virology*, 410(1): 142–150.
2. Sobhy, N.M., Mor, S.K., Mohammed, M.E.M., Bastawecy, I.M., Fakhry, H.M., Youssef, C.R.B. and Goyal, S.M. (2014) Phylogenetic analysis of Egyptian foot and mouth disease virus endemic strains. *J. Am. Sci.*, 10(9): 133–138.
3. Sultan, M.A., Ngeimaldin, A.H., El-Diasty, M.M., Mansour, S.M.G., Elbadry, M.A. and Wilkes, R.P. (2017) Molecular characterization of circulating foot and mouth disease virus (FMDV) serotype O topotype EA-3 and sero-
type A (African topotype) genotype IV in Egypt, 2016. *Vet. Microbiol.*, 208: 89–93.
4. Valdazo-González, B., Kim, J.T., Soubeyrand, S., Wadsworth, J., Knowles, N.J., Haydon, D. and King, D.P. (2015) The impact of within-herd genetic variation upon inferred transmission trees for foot-and-mouth disease virus. *Infect. Genet. Evol.*, 32(1): 440–448.
5. Lloyd-Jones, K., Mahapatra, M., Upadhyaya, S., Paton, D.J., Babu, A., Hutchings, G. and Parida, S. (2017) Genetic and antigenic characterization of serotype O FMD viruses from East Africa for the selection of suitable vaccine strain. *Vaccine*, 35(49): 6842–6849.
6. Diab, E., Bazid, A.I., Fawzy, M., El-Ashmawy, W.R., Fayad, A.A. and El-Sayed, M.M. (2019) Foot and mouth disease outbreaks in Egypt during 2013–2014: Molecular characterization of serotypes A, O, and SAT2. *Vet. World*, 12(2): 190–197.
7. Zakaria, A.M., Ombarak, R.A. and ElKamishy, M.M. (2018) Incidence of some food-borne pathogens, heavy metal residues and aflatoxin M1 in imported skimmed milk powder. *Food Nutr. Open Access*, 11(1): 107.
8. Luther, K. (1997) Foot-and-mouth disease as zoonosis. *Arch. Virol.*, Suppl. 13: 95–97.
9. Amro, A.M. and Adel, H.E.G. (2016) Foot and mouth dis-
ease as an emerging zoonotic disease of livestock with special reference to its public health hazards in Egypt (a review article). *Mansoura Vet. Med. J.*, 17(2): 1–10.
10. El-Rihan, M.M.A., El-Hassan, D.G.A., Awad, W.S. and Saalem, S.A. (2020) Serological evaluation for the current epidemic situation of foot and mouth disease among cattle and buffaloes in Egypt. *Vet. World*, 13(1): 1–9.
11. Mohamed, R.H., Zakaria, A.M., Keshta, H.G. and Ghallab, R.S. (2019) Milk composition, ovarian hormones and serum biochemical profile of apparently healthy female dromedary camels during early lactation. *Biosci. Res.*, 16(S1–2): 15–21.
12. Dodet, B. and Vicari, M. (2005) Foot-and-mouth disease: Control strategies. Proceedings of an international symposi-
mum organized by the merieux foundation, the international association for biologicals and the Office International des Epizooties, 2–5 June 2002, Lyons, France, Elsevier, 2003, p. 390, E75 (soft), *Vet. J.*, 170: 144–146.
13. Armson, B., Miotou, V., Doel, C., Madi, M., Parida, S., Lemire, K.A. and King, D.P. (2018) Detection of foot-and-mouth disease virus in milk samples by real-time reverse transcription polymerase chain reaction: Optimisation and evaluation of a high-throughput screening method with potential for disease surveillance. *Vet. Microbiol.*, 223: 189–194.
14. Lyons, N.A., Ludi, A.B., Wilsden, G., Hamblin, P., Qasim, I.A., Gubbins, S., and King, D.P. (2017) Evaluation of a polyvalent foot-and-mouth disease virus vaccine containing A Saudi-95 against field challenge on large-scale dairy farms in Saudi Arabia with the emerging A/ASIA/G- VII viral lineage. *Vaccine*, 35(49): 6850–6857.
15. O’Donnell, V., Pacheco, J., LaRocca, M., Burraga, T., Jackson, W., Rodriguez, L., Borca, M. and Baxt, B. (2011) Foot-and-mouth disease virus utilizes an autophagic pathway during viral replication. *Virology*, 410(1): 142–150.
16. Food and Agriculture Organization. (2016) Foot and Mouth Disease Situation, Monthly Report. Food and Agriculture Organization, Italy. Available from: https://www.fao.org/fileadmin/user_upload/eufmd/docs/
17. Hosamani, M., Basagoudanavar, S.H., Selvan, R.P.T., Das, V., Ngangom, P., Sreenivasa, B.P., Hegde, R. and Venkataramanan, R. (2015) A multi-species indirect ELISA for detection of non-structural protein 3ABC specific antibodies to foot-and-mouth disease virus. *Arch. Virol.*, 160(4): 937–944.

18. Salem, S.A., Bazid, A.H.I. and Abo El-Hassan, D.J. (2021) Molecular and serological typing of foot-and-mouth disease virus serotypes currently circulating in Egypt. *Iraqi. J. Vet. Sci.*, 35(3): 581–588.

19. Ibrahim, M.S., Ahmed, L.A., Kasem, S. and Hodhod, A.A. (2015) Molecular study on foot and mouth disease virus in Beheira Governorate, Egypt during 2014. *Alex. J. Vet. Sci.*, 45: 151–160.

20. Zeedan, G.S.G., Mahmoud, A.H., Abdalhamed, A.M. and Khaafagi, M.H. (2020) Diagnosis of foot and mouth disease in cattle and buffaloes in different governorates of Egypt. *World Vet. J.*, 10(1): 43–52.

21. Das, L., Sharma, K., Borah, P. and Hussain, I. (2022) Detection of foot and mouth disease virus serotype O in milk samples of cattle using RT-PCR and detection of antibody against non-structural protein using DIVA ELISA. *Asian J. Microbiol. Biotechnol. Environ. Sci.*, 23(1): 192–197.

22. Willems, T., Lefebvrea, D., Neytsb, J. and De Clercqa, K. (2011) Diagnostic performance and application of two commercial cell viability assays in foot-and-mouth disease research. *J. Virol. Methods*, 173(1): 108–114.

23. Ahmed, H.A., Salem, S., Habashi, A., Arafa, A., Aggour, M., Salem, G., Gaber, A.S., Selem, O., Abdelkader, S.H., Knowles, N., Madi, M., Valdez-Gonzalez, B., Wadsworth, J., Hutchings, G., Miolet, V., Hammond, J. and King, D. (2012) Emergence of foot-and-mouth disease virus SAT 2 in Egypt during 2012. *Transbound. Emerg. Dis.*, 59(6): 476–481.

24. Mohamed, H.A., Abdoua, A.M., Adel, E.M., Salemb, S.A. and El-Hassanine, M.I. (2013) Detection of foot and mouth disease virus in raw milk of suspected dairy animals during an outbreak in El-Gharabia Governorate. *BVMJ*, 24(1): 72–78.

25. Spickler, A.R. and Roth, J.A. (2012) Inactivation of Foot-and-mouth Disease Virus in Milk Products. In: Veterinary Microbiology and Preventive Medicine Reports Paper, 3., Available from: https://www.cfsph.iastate.edu/pdf/inactivation-of-foot-and-mouth-disease-virus-in-milk-products. Retrieved on 01-09-2022.

26. Ryan, E., Mackay, D. and Donaldson, A. (2008) Foot-and-mouth disease virus concentrations in products of animal origin. *Transbound. Emerg. Dis.*, 55(2): 89–98.

27. Salem, S.A., Bazid, A.H.I. and Abo El-Hassan, D.J. (2021) Molecular study on foot and mouth disease virus in Beheira Governorate, Egypt during 2014. *Alex. J. Vet. Sci.*, 35(3): 581–588.

28. Lyons, N.A., Alexander, N., Stärk, K.D., Dula, T.D., Sumption, K.J., James, A.D. and Fine, P.E. (2015) Impact of foot-and-mouth disease on milk production on a large-scale dairy farm in Kenya. *Prev. Vet. Med.*, 120(2): 177–186.

29. Kamal, E., Salama, M. and Abou Heikal, N. (2018) Alterations in some biochemical parameters in cattle affected with foot and mouth disease in Dakahila Governorate, Egypt. *Mansoura Vet. Med. J.*, 19(1): 49–59.

30. Vyas, S., Shukla, V. and Doshi, N. (2019) FMD and mastitis disease detection in cows using Internet of Things (IOT). *Proc. Comput. Sci.*, 160: 728–733.

31. Ansari-Lari, M., Mohebbi-Fani, M., Lyons, N.A. and Azizi, N. (2017) Impact of FMD outbreak on milk production and heifers’ growth on a dairy herd in southern Iran. *Prev. Vet. Med.*, 144: 117–122.

32. Zakaria, A.M. and Mohamed, R.H. (2021) Effect of calf gender on milk composition, reproductive hormones and serum biochemical parameters of female dromedary camel. *Int. J. Vet. Sci.*, 10(1): 47–50.

33. El-Deen, N.A.N., Fnemat-Allah, A.N., Rizk, L.G. and Fareed, R.S.G. (2017) Serological, hematological, biochemical and oxidative markers during foot and mouth disease serotype ‘O’infection, Egypt. *Bull. UASVM Vet. Med.*, 74(2): 218–226.