Global Well-Posedness of 2D Compressible Navier–Stokes Equations with Large Data and Vacuum

Quansen Jiu, Yi Wang, and Zhouping Xin

Communicated by I. M. Gamba

Abstract. In this paper, we study the global well-posedness of the 2D compressible Navier–Stokes equations with large initial data and vacuum. It is proved that if the shear viscosity \(\mu \) is a positive constant and the bulk viscosity \(\lambda \) is the power function of the density, that is, \(\lambda(\rho) = \rho^\beta \) with \(\beta > 3 \), then the 2D compressible Navier–Stokes equations with the periodic boundary conditions on the torus \(T^2 \) admit a unique global classical solution \((\rho, u)\) which may contain vacuums in an open set of \(T^2 \). Note that the initial data can be arbitrarily large to contain vacuum states.

Keywords. Compressible Navier–Stokes equations, density-dependent viscosity, global well-posedness, vacuum.

1. Introduction

In this paper, we consider the following compressible and isentropic Navier–Stokes equations with density-dependent viscosities

\[
\begin{aligned}
\rho_t + \text{div}(\rho u) &= 0, \\
\rho u_t + \text{div}(\rho u \otimes u) + \nabla P(\rho) &= \mu \Delta u + \nabla((\mu + \lambda(\rho))\text{div}u), & \quad x \in T^2, t > 0,
\end{aligned}
\]

where \(\rho(t, x) \geq 0 \), \(u(t, x) = (u_1, u_2)(t, x) \) represent the density and the velocity of the fluid, respectively. And \(T^2 \) is the 2-dimensional torus \([0,1] \times [0,1]\) and \(t \in [0, T] \) for any fixed \(T > 0 \). We denote the right hand side of (1.1) by \(\mathcal{L}_\rho u = \mu \Delta u + \nabla((\mu + \lambda(\rho))\text{div}u) \).

Here, it is assumed that

\[
\mu = \text{const.} > 0, \quad \lambda(\rho) = \rho^\beta, \quad \beta > 3,
\]

such that the operator \(\mathcal{L}_\rho \) is strictly elliptic.

Q. Jiu’s research is partially supported by National Natural Sciences Foundation of China (No. 11171229 and No. 11231006), Hong Kong RGC Earmarked Research Grant CUHK-4048/13P, a project of Beijing Chang Cheng Xue Zhe and a grant from the Croucher Foundation.

Y. Wang’s research is partially supported by Hong Kong RGC Earmarked Research Grant CUHK4042/08P, CUHK4041/11P and National Natural Sciences Foundation of China (No. 11171326 and No. 11322106).

Z. Xin’s research is partially supported by Zheng Ge Ru Funds, Hong Kong RGC Earmarked Research Grant CUHK4042/08P, CUHK4041/11P and CUHK-4048/13P, a grant from the Croucher Foundation and a Focus Area Grant at The Chinese University of Hong Kong.
Let the pressure function be given by

\[P(\rho) = A\rho^\gamma, \quad (1.3) \]

where \(\gamma > 1 \) denotes the adiabatic exponent and \(A > 0 \) is the constant. Without loss of generality, \(A \) is normalized to be 1. The initial values are given by

\[(\rho, u)(t = 0, x) = (\rho_0, u_0)(x). \quad (1.4) \]

Here the periodic boundary conditions on the unit torus \(\mathbb{T}^2 \) on \((\rho, u)(t, x) \) are imposed to the system (1.1). This model problem, (1.1)–(1.4), was first proposed by Vaigant–Kazhikhov in [52] where they showed the well-posedness of the classical solution to this problem provided the initial density is uniformly away from vacuum. In this paper, we study the global well-posedness of the classical solution to this problem (1.1)–(1.4) with general nonnegative initial densities.

There are extensive studies on global well-posedness of the compressible Navier–Stokes equations in the case that both the shear and the bulk viscosity are positive constants satisfying the physical restrictions. In particular, the one-dimensional theory is rather satisfactory, see [21,34,35,39] and the references therein. In multi-dimensional case, the local well-posedness theory of classical solutions to both initial-value and initial-boundary-value problems was established by Nash [45], Itaya [27] and Tani [51] in the absence of vacuum. The short time well-posedness of either strong or classical solutions containing vacuum was studied recently by Cho-Kim [8] and Luo [41] in 3D and 2D case, respectively. In particular, Cho-Kim [8] obtained the short existence and uniqueness of the classical solution to the Cauchy problem for the isentropic CNS with general nonnegative initial density under the assumption that the initial data satisfies a natural compatibility condition [8]. One of the fundamental questions is whether these local (in time) solutions can be extended globally in time. The first pioneering work along this line is the well-known theory of Matsumura–Nishida [42], where they obtained a unique global classical solution to the CNS in \(H^s(\mathbb{R}^3) \) (\(s \geq 3 \)) for initial data close to its far field state which is a non-vacuum equilibrium state, and furthermore, the solution behaves diffusively toward the far field state. The proof in [42] consists of elaborate energy estimates based on the dissipative structure of the CNS and spectrum analysis for the linearized of CNS at the non-vacuum far field state. This theory has been generalized to data with discontinuities by Hoff [19] and data in Besov spaces by Danchin in [9]. It should be noted that this theory [9,19,42] requires that the solution has small oscillations from the uniform non-vacuum far field state so that the density is strictly away from the vacuum uniformly in time. A natural and important long standing open problem is whether a similar theory holds for the initial data containing vacuums. In this direction, the major breakthrough is due to Lions [38], where he obtained the existence of a renormalized weak solution with finite energy and large initial data which can contain vacuums for the isentropic CNS when the exponent \(\gamma \) is suitably large, see also the refinements and generalizations in [15,30]. However, little is known on the structure, regularity, and uniqueness of such a weak solution except the partial regularity estimates for 2-dimensional periodic problems in Desjardins [10] where a stronger estimate is obtained under the assumption of uniform boundedness of the density. Recently, under some additional assumptions on the viscosity coefficients, and the far fields state is a non-vacuum state, Hoff [19,20] obtained a new type of global weak solution with small total energy for the isentropic CNS, which have extra structure and regularity information (such as Lagrangian structure in the non-vacuum region) compared with the renormalized weak solutions in [15,30,38]. However, the uniqueness and regularity of those weak solutions whose existence has been proved in [15,30,38] remain completely open in general. By the weak-strong uniqueness of P. L. Lions [38], this is equivalent to the problem of global (in time) well-posedness of classical solution in the presence of vacuum. It should be pointed out that this important question is a very difficult and subtle issue since, in general, one would not expect a positive answer to this question due to the finite time blow-up results of Xin in [53], where it is shown that in the case that the initial density has compact support, any smooth solution to the Cauchy problem of the CNS without heat conduction blows up in finite time for any space dimension, see also the recent generalizations to the case for non-compact but rapidly decreasing (at far fields) initial density [47]. The mechanism for such a blow-up has also been investigated recently and various blow-up
criteria have been derived in [13, 14, 23, 24, 26, 49, 50]. More recently, Huang et al. [25] proved the global well-posedness of classical solutions with small energy but large oscillations which can contain vacuums to 3D isentropic compressible Navier–Stokes equations. See also the recent generalizations to 3D full compressible Navier–Stokes equations [22], the isentropic Navier–Stokes equations with potential forces [36], and 1D or spherically symmetric isentropic Navier–Stokes equations with large initial data [11, 12].

The case that the viscosity coefficients depend on the density and vanish at the vacuum has received a lot attention recently, see [2–5, 9, 18, 28–33, 37, 40, 43, 44, 48, 54–56] and the references therein. Liu et al. first proposed in [40] some models of the compressible Navier–Stokes equations with density-dependent viscosities to investigate the dynamics of the vacuum. On the other hand, when deriving by Chapman–Enskog expansions from the Boltzmann equation, the viscosity of the compressible Navier–Stokes equations depends on the temperature and thus on the density for isentropic flows. Also, the viscous Saint-Venant system for the shallow water, derived from the incompressible Navier–Stokes equations with a moving free surface, is expressed exactly as in (1.1) \(N = 2 \), \(\mu = \rho, \lambda = 0 \), and \(\gamma = 2 \) (see [17]). For the special case, (1.2), the global well-posedness result of Vaigant–Kazhikhov [52] is the first important surprising result for general large initial data with the only constraint that it is initially away from vacuum. However, in the presence of vacuum, there appear new mathematical challenges in dealing with such systems. In particular, these systems become highly degenerate. The velocity cannot even be defined in the presence of vacuum and hence it is difficult to get uniform estimates for the velocity near vacuum. Substantial achievements have been made for the one-dimensional case, such as both short time and long time existence and uniqueness for the problem of a compact of viscous fluid expands into vacuum. However, in the presence of vacuum, there appear new mathematical challenges in dealing with such systems. In particular, these systems become highly degenerate. The velocity cannot even be defined in the presence of vacuum and hence it is difficult to get uniform estimates for the velocity near vacuum. Substantial achievements have been made for the one-dimensional case, such as both short time and long time existence and uniqueness for the problem of a compact of viscous fluid expands into vacuum with either stress free condition or continuity condition have been established with \(\alpha \geq 1 \) estimates of the density and

In this paper, we investigate the global existence of the classical solution to 2-dimensional Vaigant–Kazhikhov model [52], that is, CNS system (1.1)–(1.4) with periodic boundary condition and general nonnegative initial density. It should be noted that for the 2-dimensional problem, the basic reformulation of Vaigant–Kazhikhov [52] and the formulation in terms of the material derivative used in [19, 25] are equivalent (see (2.1)). The new ingredient of this paper is that we are able to derive the uniform upper bound of the density under the assumptions that the initial density is nonnegative. In our proof, we will approximate the initial data in an appropriate way such that the approximate initial density is away from the vacuum and the approximate initial velocity is constructed by solving an elliptic problem with periodic boundary condition uniquely (see (3.2)) to keep up the compatibility conditions (1.6). Based on [52], there exists an unique and smooth approximate solution to (1.1) with the approximate initial data. To get the uniform upper bound of the density, we first obtain the uniform \(L^k (k \geq 1) \) estimates of the density.
first order derivative estimates of the velocity, following the approaches of Vaigant–Kazhikhov [52]. Then, in the second order derivative estimates of the velocity, the compatibility will be crucially applied. As pointed out in [6–8] and [25], the compatibility conditions are necessary and sufficient conditions when we consider the classical solutions and if the initial data are permitted to include vacuum. We observe that the imposed conditions on the initial data in Vaigant–Kazhikhov [52] in the estimates of the second order derivative of the velocity are consistent with the compatibility conditions while we deal with the vacuum problem, see Step 5 in Sect. 3. Finally, in this paper, we derive the higher order estimates to the solution to guarantee the existence of the global classical solution.

Now we give some comments about the condition \(\beta > 3 \) in (1.2) which is crucially needed in Vaigant–Kazhikhov [52] and in the present paper. In fact, when obtaining the \(L^k(k \geq 1) \) integrability of the density (Lemma 3.4), we only require that \(\beta > 1 \). The condition \(\beta > 3 \) is essentially used in Step 4 in Sect. 3 to get the first-order derivative estimates of the velocity. More precisely, when estimating the first-order derivative estimates of the velocity, we obtain an ODE inequality with a little bit supercritical power which can not be dealt with by usual Gronwall inequality (see (3.60)). However, by directly solving this ODE inequality, we obtain the expected estimates under the restriction \(\beta > 3 \). And it would be interesting to relax this restriction in future works.

Then the main results of the present paper can be stated in the following.

Theorem 1.1. If the initial values \((\rho_0, u_0)(x)\) satisfy that

\[
0 \leq (\rho_0(x), P(\rho_0)(x)) \in W^{2,q}(\mathbb{T}^2) \times W^{2,q}(\mathbb{T}^2), \quad u_0(x) \in H^2(\mathbb{T}^2), \quad \int_{\mathbb{T}^2} \rho_0(x) \, dx > 0 \tag{1.5}
\]

for some \(q > 2 \) and the compatibility condition

\[
\mathcal{L}_{\rho_0} u_0 - \nabla P(\rho_0) = \sqrt{\rho_0} g(x) \tag{1.6}
\]

with some \(g \in L^2(\mathbb{T}^2) \), then there exists a unique global classical solution \((\rho, u)(t, x)\) to the compressible Navier–Stokes equations (1.1)–(1.4) with

\[
0 \leq \rho(t, x) \leq C, \quad \forall (t, x) \in [0, T] \times \mathbb{T}^2, \quad (\rho, P(\rho))(t, x) \in C([0, T]; W^{2,q}(\mathbb{T}^2)),
\]

\[
u \in C([0, T]; H^2(\mathbb{T}^2)) \cap L^2(0, T; H^3(\mathbb{T}^2)), \quad \sqrt{t} u \in L^\infty(0, T; H^3(\mathbb{T}^2)),
\]

\[
u u \in L^\infty(0, T; W^{3,q}(\mathbb{T}^2)), \quad u_t \in L^2(0, T; H^1(\mathbb{T}^2)),
\]

\[
u u_{tt} \in L^2(0, T; H^1(\mathbb{T}^2)), \quad u_{tt} \in L^\infty(0, T; H^2(\mathbb{T}^2)), \quad t \nabla u_{tt} \in L^\infty(0, T; L^2(\mathbb{T}^2)),
\]

\[
u u_{tt} \in L^2(0, T; L^2(\mathbb{T}^2)), \quad t \nabla u_{tt} \in L^2(0, T; L^2(\mathbb{T}^2)). \tag{1.7}
\]

Remark 1.1. From the regularity of the solution \((\rho, u)(t, x)\), it can be shown that \((\rho, u)\) is a classical solution of the system (1.1) in \([0, T] \times \mathbb{T}^2\) (see the details in Section 5).

Remark 1.2. If the initial data contains vacuum, then it is natural to impose the compatibility (1.6) as the case of constant viscosity coefficients in [8].

Remark 1.3. In Theorem 1.1, it is not clear whether or not \(u_{tt} \in L^2(0, T; L^2(\mathbb{T}^2)) \) even though one has the regularity \(t \nabla u_{tt} \in L^2(0, T; L^2(\mathbb{T}^2)) \).

Remark 1.4. It is as yet open to get the similar theory to the Dirichlet problem to the 2D compressible Navier–Stokes equations (1.1).

Remark 1.5. Note that Gamba–Morawetz [16] constructed a steady solution for potential (irrotational) flows under a broad set of boundary conditions by taking a limit of the corresponding viscous steady solution. It would be very interesting to study the existence and regularity of steady state solutions to the current system with periodic boundary conditions and steady periodic forcing. Other boundary conditions involving non-slip boundary conditions should bring more difficulties. Some new ideas are needed to handle these cases. This will be left for future studies.
If the initial values are much more regular, based on Theorem 1.1, we can prove

Theorem 1.2. If the initial values \((\rho_0, u_0)(x)\) satisfy that

\[
0 \leq (\rho_0(x), P(\rho_0)(x)) \in H^3(\mathbb{T}^2) \times H^3(\mathbb{T}^2), \quad u_0(x) \in H^3(\mathbb{T}^2), \quad \int_{\mathbb{T}^2} \rho_0(x) \, dx > 0 \tag{1.8}
\]

and the compatibility condition (1.6), then there exists a unique global classical solution \((\rho, u)\) to the compressible Navier–Stokes equations (1.1)–(1.4) satisfying all the properties listed in (1.7) in Theorem 1.1 with any \(2 < q < \infty\). Furthermore, it holds that

\[
u \in L^2(0, T; H^4(\mathbb{T}^2)), \quad (\rho, P(\rho)) \in C([0, T]; H^3(\mathbb{T}^2)),
\]

\[
ho u \in C([0, T]; H^2(\mathbb{T}^2)), \quad \sqrt{\rho} \nabla u \in C([0, T]; L^2(\mathbb{T}^2)).
\tag{1.9}
\]

Remark 1.6. In fact, the conditions on the initial velocity \(u_0\) can be weakened to \(u_0 \in H^2(\mathbb{T}^2)\) and \(\sqrt{\rho} \nabla u_0 \in L^2(\mathbb{T}^2)\) to get (1.9).

Remark 1.7. In Theorem 1.2, it is not clear whether or not \(u \in C([0, T]; H^3(\mathbb{T}^2))\) even though one has \(\rho u \in C([0, T]; H^2(\mathbb{T}^2))\).

Remark 1.8. It is noted that in Theorem 1.2, the compatibility condition (1.6) is exactly same as in Theorem 1.1.

Notations. Throughout this paper, positive generic constants are denoted by \(c\) and \(C\), which are independent of \(\delta, m\) and \(t \in [0, T]\), without confusion, and \(C(\cdot)\) stands for some generic constant(s) depending only on the quantity listed in the parenthesis. For function spaces, \(L^p(\mathbb{T}^2), 1 \leq p \leq \infty\), denote the usual Lebesgue spaces on \(\mathbb{T}^2\) and \(\| \cdot \|_p\) denotes its \(L^p\) norm. \(W^{k,p}(\mathbb{T}^2)\) denotes the \(k^{th}\) order Sobolev space and \(H^k(\mathbb{T}^2):= W^{k,2}(\mathbb{T}^2)\).

2. Preliminaries

As in [52], we introduce the following variables. First denote the effective viscous flux by

\[
F = (2\mu + \lambda(\rho))\text{div} u - P(\rho),
\]

and the vorticity by

\[
\omega = \partial_{x_1} u_2 - \partial_{x_2} u_1.
\]

Also, we define that

\[
H = \frac{1}{\rho}(\mu \omega_{x_1} + F_{x_2}), \quad L = \frac{1}{\rho}(-\mu \omega_{x_2} + F_{x_1}).
\]

Then the momentum equation (1.1) can be rewritten as

\[
\begin{aligned}
u_{tt} + u \cdot \nabla u_1 &= \frac{1}{\rho}(-\mu \omega_{x_2} + F_{x_1}) = L, \\
u_{tt} + u \cdot \nabla u_2 &= \frac{1}{\rho}(-\mu \omega_{x_1} + F_{x_2}) = H.
\end{aligned}
\tag{2.1}
\]

Then the effective viscous flux \(F\) and the vorticity \(\omega\) solve the following system:

\[
\begin{aligned}
(\omega + u \cdot \nabla \omega + \omega \text{div} u) &= H_{x_1} - L_{x_2}, \\
\left(F + \frac{P(\rho)}{2\mu + \lambda(\rho)}\right)_{t} + u \cdot \nabla \left(F + \frac{P(\rho)}{2\mu + \lambda(\rho)}\right) + (u_{1x_1})^2 + 2u_{1x_2}u_{2x_1} + (u_{2x_2})^2 &= H_{x_2} + L_{x_1}.
\end{aligned}
\tag{2.2}
\]

Due to the continuity equation (1.1), it holds that

\[
\begin{aligned}
\omega + u \cdot \nabla \omega + \omega \text{div} u &= H_{x_1} - L_{x_2}, \\
F_1 + u \cdot \nabla F - \rho(2\mu + \lambda(\rho)) \left[F \left(\frac{1}{2\mu + \lambda(\rho)} \right) + \left(\frac{P(\rho)}{2\mu + \lambda(\rho)} \right) \right] \text{div} u \\
+ (2\mu + \lambda(\rho)) \left[(u_{1x_1})^2 + 2u_{1x_2}u_{2x_1} + (u_{2x_2})^2 \right] &= (2\mu + \lambda(\rho))(H_{x_2} + L_{x_1}).
\end{aligned}
\tag{2.3}
\]
Furthermore, the system for \((H, L)\) can be derived as
\[
\begin{aligned}
\rho H_t + \rho u \cdot \nabla H - \rho H \mathrm{div} u + u_{x_2} \cdot \nabla F + \mu u_{x_1} \cdot \nabla \omega + \mu(\omega \text{div} u)_{x_1}
\end{aligned}
\]
\[
- \left\{ \rho(2\mu + \lambda(\rho))\left[F\left(\frac{1}{2\mu+\lambda(\rho)}\right) \right]_{x_2}
\right.
+ \left\{ (2\mu + \lambda(\rho))(2u_{1x_1})_x^2 + 2u_{1x_2}u_{2x_1} + (u_{2x_2})_x^2 \right\}_{x_2}
= [(2\mu + \lambda(\rho))(H_{x_2} + L_{x_1})]_{x_2} + \mu(H_{x_1} - L_{x_2})_{x_1},
\end{aligned}
\]
\[
\rho L_t + \rho u \cdot \nabla L - \rho L \mathrm{div} u + u_{x_2} \cdot \nabla F - \mu u_{x_2} \cdot \nabla \omega - \mu(\omega \text{div} u)_{x_2}
\]
\[
- \left\{ \rho(2\mu + \lambda(\rho))\left[F\left(\frac{1}{2\mu+\lambda(\rho)}\right) \right]_{x_1}
\right.
+ \left\{ (2\mu + \lambda(\rho))(2u_{1x_1})_x^2 + 2u_{1x_2}u_{2x_1} + (u_{2x_2})_x^2 \right\}_{x_1}
= [(2\mu + \lambda(\rho))(H_{x_2} + L_{x_1})]_{x_1} - \mu(H_{x_1} - L_{x_2})_{x_1}.
\end{aligned}
\]
\[
(2.4)
\]
In the following, we will utilize the above systems in different steps. Note that these systems are equivalent to each other for the smooth solution to the original system (1.1).

Several elementary Lemmas are needed later. The first one is the Gagliardo-Nirenberg inequality which can be found in [46].

Lemma 2.1. \(\forall h \in W^{1, m}_0(T^2)\) or \(h \in W^{1, m}(T^2)\) with \(\int_{T^2} h \, dx = 0\), it holds that
\[
\|h\|_q \leq C\|\nabla h\|_m^\alpha \|h\|_r^{1-\alpha},
\]
where \(\alpha = (1 - \frac{1}{q})(\frac{1}{r} - \frac{1}{m} + \frac{1}{2})^{-1}\), and if \(m < 2\), then \(q\) is between \(r\) and \(\frac{2m}{2-m}\), that is, \(q \in [r, \frac{2m}{2-m}]\). If \(r < \frac{2m}{2-m}\), \(q \in \left[\frac{2m}{2-m}, r\right]\) if \(r \geq \frac{2m}{2-m}\), if \(m = 2\), then \(q \in [r, +\infty)\), if \(m > 2\), then \(q \in [r, +\infty)\).

Consequently, \(\forall h \in W^{1, m}(T^2)\), one has
\[
\|h\|_q \leq C(\|h\|_1 + \|\nabla h\|_m^\alpha \|h\|_r^{1-\alpha}),
\]
where \(C\) is a constant which may depend on \(q\).

The following Lemma is the Poincare inequality.

Lemma 2.2. \(\forall h \in W^{1, m}_0(T^2)\) or \(h \in W^{1, m}(T^2)\) with \(\int_{T^2} h \, dx = 0\), if \(1 \leq m < 2\), then
\[
\|h\|_{\frac{2m}{2-m}} \leq C(2 - m)^{-\frac{1}{2}} \|\nabla h\|_m,
\]
where the positive constant \(C\) is independent of \(m\).

The following Lemma follows from Lemma 2.2, of which proof can be found in [52].

Lemma 2.3. \(\forall h \in W^{1, \frac{2m}{m+\eta}}(T^2)\) with \(m \geq 2\) and \(0 < \eta \leq 1\), we have
\[
\|h\|_{2m} \leq C(\|h\|_1 + m^{\frac{1}{2}} \|h\|^{s}_{2(1-\varepsilon)} \|\nabla h\|^{1-s}_{\frac{2m}{m+\eta}}),
\]
where \(\varepsilon \in [0, \frac{1}{2}], s = \frac{(1-\varepsilon)(1-\eta)}{m-\eta(1-\varepsilon)}\) and the positive constant \(C\) is independent of \(m\).

3. Approximate Solutions

In this section, we construct a sequence of approximate solutions by making use of the theory of Vaigant–Kazhikhov [52] and derive some uniform a-priori estimates which are necessary to prove Theorem 1.1. To this end, we need a careful approximation of the initial data.

Step 1. Approximation of initial data: To apply the theory of Vaigant–Kazhikhov [52], we approximate of the initial data in (1.8) as follows. First, the initial density and pressure can be approximated as
\[
\rho_{0}^\delta = \rho_{0} + \delta, \quad P_{0}^\delta = P(\rho_{0}) + \delta,
\]
(3.1)
for any small positive constant \(\delta > 0 \). To approximate the initial velocity, we define \(u_0^\delta \) to be the unique solution to the following elliptic problem

\[
\mathcal{L}_{\rho_0} u_0^\delta = \nabla P_0^\delta + \sqrt{\rho_0} g
\]

with the periodic boundary conditions on \(T^2 \) and \(\int_{T^2} u_0^\delta \, dx = \int_{T^2} u_0 \, dx := \bar{u}_0 \). It should be noted that \(u_0^\delta \) is uniquely determined due to the compatibility condition (1.6).

It follows from (3.2) that

\[
\mathcal{L}_{\rho_0} u_0^\delta = -\nabla \left[(\lambda(\rho_0^\delta) - \lambda(\rho_0)) \text{div} u_0^\delta \right] + \nabla P_0^\delta + \sqrt{\rho_0} g.
\]

By the elliptic regularity, it holds that

\[
\| u_0^\delta - \bar{u}_0 \|_{H^2(T^2)} \leq C \left[\| \lambda(\rho_0^\delta) - \lambda(\rho_0) \|_{L^\infty(T^2)} + \| \nabla (\lambda(\rho_0^\delta) - \lambda(\rho_0)) \|_{L^\infty(T^2)} \| \text{div} u_0^\delta \|_{L^2(T^2)} \right]
\]

where the generic positive constant \(C \) is independent of \(\delta > 0 \).

Therefore, if \(\delta \ll 1 \), then (3.4) yields that

\[
\| u_0^\delta \|_{H^2(T^2)} \leq C
\]

where the positive constant \(C \) is independent of \(0 < \delta \ll 1 \).

Due to the compatibility condition (1.6) and (3.2), it holds that

\[
\mathcal{L}_{\rho_0} (u_0^\delta - u_0) = -\nabla \left[(\lambda(\rho_0^\delta) - \lambda(\rho_0)) \text{div} u_0^\delta \right] := \Theta^\delta.
\]

Therefore, by the elliptic regularity, (3.1) and (3.5), one can get that

\[
\| u_0^\delta - u_0 \|_{H^2(T^2)} \leq C \| \Theta^\delta \|_{L^2(T^2)} \leq C \| \lambda(\rho_0^\delta) - \lambda(\rho_0) \|_{L^\infty(T^2)} + \| \nabla (\lambda(\rho_0^\delta) - \lambda(\rho_0)) \|_{L^\infty(T^2)} \| \text{div} u_0^\delta \|_{L^2(T^2)}
\]

where \(\Theta^\delta \rightarrow 0 \), as \(\delta \rightarrow 0 \).

For the initial data \((\rho_0^\delta, P_0^\delta, u_0^\delta)\) constructed above for each fixed \(\delta > 0 \), it is proved in [52] that the compressible Navier–Stokes equations (1.1) with \(\beta > 3 \) has a unique global strong solution \((\rho^\delta, u^\delta)\) such that \(c_\delta \leq \rho^\delta \leq C_\delta \) for some positive constants \(c_\delta, C_\delta \) depending on \(\delta \). In the following, we will derive the uniform bound to \((\rho^\delta, u^\delta)\) with respect to \(\delta \) and then pass the limit \(\delta \rightarrow 0 \) to get the classical solution which may contain vacuum states in an open set of \(T^2 \). It should be noted that in comparison with estimates presented in [52], we will obtain uniform estimates with respect to the lower bound of the density such that vacuum is permitted in these estimates. To this end, the compatibility condition (1.6) will be crucial.

For simplicity of notations, we will omit the superscript \(\delta \) of \((\rho^\delta, u^\delta)\) in the following in the case of no confusions.

Step 2. Elementary energy estimates:

Lemma 3.1. There exists a positive constant \(C \) depending on \((\rho_0, u_0)\), such that

\[
\sup_{t \in [0, T]} \left(\| \sqrt{\rho} u \|_2^2 + \| \rho \|_1^2 \right) + \int_0^T \left(\| \nabla u \|_2^2 + \| \omega \|_2^2 + \| (2\mu + \lambda(\rho))^\frac{1}{2} \text{div} u \|_2^2 \right) \, dt \leq C.
\]

Proof. Multiplying the equation (2.1)\(_i\) by \(\rho u_i \), \(i = 1, 2 \), summing the resulting equations and then integrating over \(T^2 \) and using the continuity equation (1.1)\(_1\), it holds that
\[
\frac{d}{dt} \int \rho |u|^2 \, dx + \int (\mu \omega^2 + (2\mu + \lambda(\rho))(\text{div} u)^2) \, dx + \int u \cdot \nabla P \, dx = 0.
\]

Multiplying the continuity equation \((1.1)_1\) by \(\frac{\gamma}{\gamma-1} \rho^{\gamma-1}\) and then integrating over \(T^2\) yield that
\[
\frac{d}{dt} \int \rho^\gamma \, dx + \int P \text{div} u \, dx = 0.
\]

Therefore, combining the above two estimates and then integrating over \([0,t]\) with respect to \(t\), we obtain
\[
\int \left(\frac{1}{2} \rho |u|^2 + \frac{1}{\gamma-1} \rho^{\gamma} \right) \, dx + \int_0^T \int (\mu \omega^2 + (2\mu + \lambda(\rho))(\text{div} u)^2) \, dx \, dt
\]
\[
= \int \left(\frac{1}{2} \rho_0^\gamma |u_0|^2 + \frac{1}{\gamma-1} (\rho_0^\gamma) \right) \, dx \leq C \left[\|\rho_0^\gamma\|_{W^{2,q}(T^2)} \|u_0^\gamma\|_{H^2(T^2)} + \|\rho_0^\gamma\|_{W^{2,q}(T^2)} \right] \leq C. \quad (3.9)
\]

Denote
\[
\phi(t) = \int (\mu \omega^2 + (2\mu + \lambda(\rho))(\text{div} u)^2) \, dx, \quad t \in [0,T].
\]

Then
\[
\|\nabla u\|_2^2(t) \leq C \left[\|\omega\|_2^2(t) + \|\text{div} u\|_2^2(t) \right] \leq C \phi(t) \in L^1(0,T).
\]

Thus the proof of Lemma 3.1 is completed.

\[\square\]

Step 3. Density estimates: Applying the operator \(\text{div}\) to the momentum equation \((1.1)_2\), we have
\[
|\text{div}(\rho u)|_1 + |\text{div}(\rho \mu u)| = \Delta F. \quad (3.11)
\]

Consider the following two elliptic problems:
\[
\begin{align*}
\Delta \xi &= \text{div}(\rho u), \quad \int \xi \, dx = 0, \\
\Delta \eta &= \text{div}(\rho \mu u), \quad \int \eta \, dx = 0,
\end{align*}
\]
both with the periodic boundary condition on the torus \(T^2\).

By the elliptic estimates and Hölder inequality, it holds that

Lemma 3.2.
\[
\begin{align*}
(1) \quad &\|\nabla \xi\|_{2m} \leq C m \|\rho\|_{\frac{2m+1}{2}} \|u\|_{2mk}, \text{ for any } k > 1, m \geq 1; \\
(2) \quad &\|\nabla \xi\|_{2r} \leq C \|\sqrt{\rho u}\|_2 \|\rho\|_{\frac{1}{2}-r}, \text{ for any } 0 < r < 1; \\
(3) \quad &\|\eta\|_{2m} \leq C m \|\rho\|_{\frac{2m+1}{2}} \|u\|_{4mk}, \text{ for any } k > 1, m \geq 1;
\end{align*}
\]

where \(C\) are positive constants independent of \(m, k\) and \(r\).

Proof. (1) By the elliptic estimates to Eq. \((3.12)\) and then using the Hölder inequality, we have for any \(k > 1, m \geq 1,\)
\[
\|\nabla \xi\|_{2m} \leq C m \|\rho u\|_{2m} \leq C m \|\rho\|_{\frac{2m+1}{2}} \|u\|_{2mk}.
\]

Similarly, the statements (2) and (3) can be proved. \[\square\]

Based on Lemmas 2.1, 2.3 and 3.2, it holds that

Lemma 3.3.
\[
\begin{align*}
(1) \quad &\|\xi\|_{2m} \leq C m^{\frac{k}{2}} \|\nabla \xi\|_{\frac{2m+1}{m+1}} \leq C m^{\frac{k}{2}} \|\rho\|_{\frac{3}{2}}, \text{ for any } m \geq 2; \\
(2) \quad &\|u\|_{2m} \leq C \left[m^{\frac{k}{2}} \|\nabla u\|_2 + 1 \right], \text{ for any } m \geq 2; \\
(3) \quad &\|\nabla \xi\|_{2m} \leq C \left[m^{\frac{k}{2}} \|\rho\|_{\frac{2m+1}{2m+1}} \phi(t) + m \|\rho\|_{\frac{2m+1}{2}} \right], \text{ for any } k > 1, m \geq 1; \\
(4) \quad &\|\eta\|_{2m} \leq C \left[m^2 k \|\rho\|_{\frac{2m+1}{2m+1}} \phi(t) + m \|\rho\|_{\frac{2m+1}{2}} \right], \text{ for any } k > 1, m \geq 1;
\end{align*}
\]

where \(C\) are positive constants independent of \(m, k\).
Proof. (1) By Lemmas 2.2 and 3.2 (2), it holds that
\[
\|\xi\|_{2m} \leq C m^{\frac{1}{2}} \|\nabla \xi\|_{\frac{2m}{m+1}} \leq C m^{\frac{1}{2}} \|\sqrt{\rho} u\|_{2} \|\rho\|_{\frac{1}{m}}^{\frac{1}{2}} \leq C m^{\frac{1}{2}} \|\rho\|_{\frac{1}{m}},
\]
where in the last inequality one has used the elementary energy estimates (3.9).

(2). From the conservative form of the compressible Navier–Stokes equations (1.1) and the periodic boundary conditions, we have
\[
\frac{d}{dt} \int \rho(t, x) \, dx = \frac{d}{dt} \int \rho u(t, x) \, dx = 0,
\]
that is,
\[
\int \rho(t, x) \, dx = \int \rho_0(x) \, dx, \quad \int \rho u(t, x) \, dx = \int \rho_0 u_0(x) \, dx, \quad \forall t \in [0, T].
\]
By Lemma 2.2, it follows that
\[
\|u\|_{2m} \leq \|u - \bar{u}\|_{2m} + \|\bar{u}\|_{2m} \leq C m^{\frac{1}{2}} \|\nabla u\|_{\frac{2m}{m+1}} + |\bar{u}|,
\]
where \(m > 2\) and \(\bar{u} = \bar{u}(t) = \int u(t, x) \, dx\).

On the other hand, we have
\[
\left|\int \rho(u - \bar{u}) \, dx\right| \leq \|\rho\|_{\gamma} \|u - \bar{u}\|_{\frac{2m}{m+1}} \leq C \|\nabla u\|_{2},
\]
where in the last inequality we have used the elementary energy estimates (3.9) and the Poincare inequality.

Note that
\[
\left|\int \rho(u - \bar{u}) \, dx\right| = \left|\int \rho_0 u_0 \, dx - \bar{u} \int \rho_0(x) \, dx\right| \geq |\bar{u}| \int \rho_0 \, dx - \left|\int \rho_0 u_0 \, dx\right|.
\]
Combining (3.15) with (3.16) implies that
\[
|\bar{u}| \leq \frac{|\int \rho_0 u_0 \, dx|}{\int \rho_0 \, dx} + C \frac{\|\nabla u\|_{2}}{\int \rho_0 \, dx}.
\]
Substituting (3.17) into (3.14) completes the proof of Lemma 3.3 (2).

The assertions (3) and (4) in Lemma 3.3 are direct consequences of Lemma 3.3 (2) and Lemma 3.2 (1), (3), respectively. Thus the proof of Lemma 3.3 is completed. □

Substituting (3.12) and (3.13) into (3.11) yields that
\[
\Delta \left(\xi_t + \eta - F + \int F(t, x) \, dx\right) = 0.
\]

Thus, it holds that
\[
\xi_t + \eta - F + \int F(t, x) \, dx = 0.
\]

It follows from the definition of the effective viscous flux \(F\) that
\[
\xi_t - (2\mu + \lambda(\rho))\text{div} u + P(\rho) + \eta + \int F(t, x) \, dx = 0.
\]

Then the continuity equation (1.1) yields that
\[
\xi_t + \frac{2\mu + \lambda(\rho)}{\rho}(\rho_t + u \cdot \nabla \rho) + P(\rho) + \eta + \int F(t, x) \, dx = 0.
\]
Define
\[\theta(\rho) = \int_{1}^{\rho} \frac{2\mu + \lambda(s)}{s} ds = 2\mu \ln \rho + \frac{1}{\beta}(\rho^{\beta} - 1). \] (3.22)

Then we obtain the following transport equation
\[(\xi + \theta(\rho))_t + u \cdot \nabla (\xi + \theta(\rho)) + P(\rho) + \eta - u \cdot \nabla \xi + \int F(t, x) \, dx = 0. \] (3.23)

Lemma 3.4. For any \(k \geq 1 \) and \(\beta > 1 \), it holds that
\[\sup_{t \in [0,T]} \|\rho(t, \cdot)\|_k \leq C k^{\frac{2}{\beta-1}}. \] (3.24)

Proof. Multiplying Eq. (3.23) by \(\rho[(\xi + \theta(\rho))_+]^{2m-1} \) with \(m \geq 4 \) being integer, here and in what follows, the notation \((\cdot)_+\) denotes the positive part of \((\cdot)\), one can get that
\[
\frac{1}{2m} \frac{d}{dt} \int \rho[(\xi + \theta(\rho))_+]^{2m} \, dx + \int \rho P(\rho)[(\xi + \theta(\rho))_+]^{2m-1} \, dx = -\int \rho \eta[(\xi + \theta(\rho))_+]^{2m-1} \, dx + \int \rho u \cdot \nabla [(\xi + \theta(\rho))_+]^{2m-1} \, dx - \int F(t, x) \, dx \int \rho[(\xi + \theta(\rho))_+]^{2m-1} \, dx.
\] (3.25)

Denote
\[f(t) = \left\{ \int \rho[(\xi + \theta(\rho))_+]^{2m} \, dx \right\}^{\frac{1}{2m}}, \quad t \in [0,T]. \] (3.26)

Now we estimate the terms on the right hand side of (3.25). First,
\[
\left| -\int \rho \eta[(\xi + \theta(\rho))_+]^{2m-1} \, dx \right| \leq \int \rho^{\frac{1}{2m}}|\eta| \left[\rho(\xi + \theta(\rho))_+^{2m} \right]^{\frac{2m-1}{2m}} \, dx
\leq \|\rho\|^{\frac{1}{2m\beta+1}}_{2m\beta+1} \|\eta\|^{\frac{1}{2m+2}}_{2m+2} \|\rho(\xi + \theta(\rho))_+^{2m} \|^{\frac{2m-1}{2m}}_{2m}
\leq C \|\rho\|^{\frac{1}{2m\beta+1}}_{2m\beta+1} \left[(m + \frac{1}{2\beta})^2 k_1^2 \rho ||2(m+\frac{1}{k-1})^k \phi(t) + (m + \frac{1}{2\beta})\|_{2(m+\frac{1}{k-1})^k} \right] f(t)^{2m-1}
\leq C \|\rho\|^{1+\frac{1}{2m\beta+1}}_{2m\beta+1} f(t)^{2m-1} \left[m^2 \phi(t) + m \right],
\] (3.27)

where \(\phi(t) \) is defined as in (3.10) and in the last inequality we have taken \(k = \frac{\beta}{\beta-1} \).

Next, for \(\frac{1}{2m\beta+1} + \frac{1}{p} + \frac{1}{q} = 1 \) with \(p, q \geq 1 \), one has
\[
\left| \int \rho u \cdot \nabla [(\xi + \theta(\rho))_+]^{2m-1} \, dx \right| \leq \int \rho^{\frac{1}{2m}}|u||\nabla \xi| \left[\rho(\xi + \theta(\rho))_+^{2m} \right]^{\frac{2m-1}{2m}} \, dx
\leq \|\rho\|^{\frac{1}{2m\beta+1}}_{2m\beta+1} \|u\|^{\frac{1}{2mp}}_{2mp} \|\nabla \xi\|^{\frac{1}{2mq}}_{2mq} ||\rho(\xi + \theta(\rho))_+^{2m} \|^{\frac{2m-1}{2m}}_{1}
\leq C \|\rho\|^{\frac{1}{2m\beta+1}}_{2m\beta+1} \left[(mp)^{\frac{1}{2}} \|u\|_2 ||2m\rho \phi(t) + m \|_{2m\rho} \right] f(t)^{2m-1}
\leq C \|\rho\|^{1+\frac{1}{2m\beta+1}}_{2m\beta+1} f(t)^{2m-1} \left[m^{\frac{1}{2}} \rho \phi(t) + m \right],
\] (3.28)

where in the third inequality one has chosen \(p = q = \frac{2m\beta+1}{m\beta} \) and \(k = \frac{\beta}{\beta-1} \).
Then it follows that
\[
\left| - \int F(t,x) \, dx \int \rho(\xi + \theta(t)) \, dx \right|^{2m-1} \, dx
\]
\[
\leq \int \left| (2\mu + \lambda(\rho)) \, du - P(\rho) \right| \, dx \int \rho^{\frac{1}{2m}} \, [\rho(\xi + \theta(t))^{2m}]^{\frac{2m-1}{2m}} \, dx
\]
\[
\leq \left[\int (2\mu + \lambda(\rho)) (du)^2 \, dx \right]^{\frac{1}{2}} \left[\int (2\mu + \lambda(\rho)) \, dx \right]^{\frac{1}{2}} + \int P(\rho) \, dx \right] \rho_1 \frac{1}{\rho} \left| \rho(\xi + \theta(t))^{2m} \right|^{\frac{2m-1}{2m}} \, dx
\]
\[
\leq C \left[\phi(t)^{\frac{1}{2}} + \phi(t)^{\frac{1}{4}} \int \rho^\beta \, dx \right]^{\frac{1}{2}} f(t)^{2m-1} \leq C \left[\phi(t)^{\frac{1}{2}} + \phi(t)^{\frac{1}{4}} \right] f(t)^{2m-1}. \tag{3.29}
\]

Substituting (3.27), (3.28) and (3.29) into (3.25) yields that
\[
\frac{1}{2m} \frac{d}{dt} (f^{2m}(t)) + \int \rho P(\rho)(\xi + \theta(t)) \, dx \leq C\rho\|_{1+\frac{1}{2m\beta+1}} f(t)^{2m-1} \left[m^2 \phi(t) + m \right] + C \left[\phi(t)^{\frac{1}{2}} + \phi(t)^{\frac{1}{4}} \right] \| \rho \|_{1+\frac{1}{2m\beta+1}} f(t)^{2m-1}. \tag{3.30}
\]

Then it holds that
\[
\frac{d}{dt} f(t) \leq C \left[1 + \phi(t)^{\frac{1}{2}} + \phi(t)^{\frac{1}{4}} \| \rho \|_{1+\frac{1}{2m\beta+1}} + m^2 \phi(t) + m \right] \| \rho \|_{1+\frac{1}{2m\beta+1}}. \tag{3.31}
\]

Integrating the above inequality over \([0,t]\) gives that
\[
f(t) \leq f(0) + C \left[1 + \int_0^t \phi(\tau)^{\frac{1}{2}} \| \rho \|_{1+\frac{1}{2m\beta+1}} \, d\tau + \int_0^t \left(m^2 \phi(\tau) + m \right) \| \rho \|_{1+\frac{1}{2m\beta+1}} \, d\tau \right]. \tag{3.32}
\]

Now we calculate the quantity
\[
f(0) = \left(\int \rho_0^\delta (\xi_0^\delta + \theta(\rho_0^\delta)) \, dx \right)^{\frac{1}{2m}}.
\]

By Lemma 3.2 (1) with \(t = 0\), we can easily get
\[
\| \xi_0^\delta \|_{L^\infty} \leq C.
\]

Furthermore, by the definition of \(\theta(\rho_0^\delta) = 2\mu \ln \rho_0^\delta + \frac{1}{\beta} (\rho_0^\delta)^\beta - 1\), we have
\[
\xi_0^\delta + \theta(\rho_0^\delta) \to -\infty, \quad \text{as} \quad \rho_0^\delta \to 0 +.
\]

Thus there exists a positive constant \(\sigma\), such that if \(0 \leq \rho_0^\delta \leq \sigma\), then
\[
(\xi_0^\delta + \theta(\rho_0^\delta))_+ \equiv 0.
\]

Now one has
\[
f(0) = \left[\int_{[0 \leq \rho_0 \leq \sigma]} \int_{[\sigma \leq \rho_0 \leq M]} \rho_0^\delta (\xi_0^\delta + \theta(\rho_0^\delta))^{2m} \, dx \right]^{\frac{1}{2m}}
\]
\[
= \left[\int_{[\sigma \leq \rho_0 \leq M]} \rho_0^\delta (\xi_0^\delta + \theta(\rho_0^\delta))^{2m} \, dx \right]^{\frac{1}{2m}} \leq C(\sigma, M),
\]

where the positive constant \(C(\sigma, M)\) is independent of \(\delta\) and \(m\).
It follows from (3.32) and (3.33) that
\[
f(t) \leq C \left[1 + \int_0^t \phi(\tau)^\frac{3}{2} \|\rho\|_{2m+1}^2(\tau) d\tau + \int_0^t \left(m^2 \phi(\tau) + m \right) \|\rho\|_{2m+1}^{\frac{1}{m}}(\tau) d\tau \right].
\] (3.34)

Set \(\Omega_1(t) = \{ x \in \mathbb{T}^2 | \rho(t, x) > 2 \} \) and \(\Omega_2(t) = \{ x \in \Omega_1(t)| \xi(t, x) + \theta(\rho)(t, x) > 0 \} \). Then one has
\[
\|\rho\|_{2m+1}^\beta(t) = \left(\int_{\Omega_1(t)} \rho^{2m+1} d\tau \right)^{\frac{\beta}{2m+1}} + C \leq C \left(\int_{\Omega_1(t)} \rho\theta(\rho)^{2m} d\tau \right) + C
\]
\[
= C \left(\int_{\Omega_2(t)} \rho\theta(\rho) + \xi - \xi^2 m d\tau + \int_{\Omega_1(t) \setminus \Omega_2(t)} \rho\theta(\rho)^{2m} d\tau \right) + C
\]
\[
\leq C \left(\int_{\Omega_2(t)} \rho\theta(\rho) + \xi d\tau + \int_{\Omega_1(t) \setminus \Omega_2(t)} \rho\theta(\rho)^{2m} d\tau \right) + C
\]
\[
\leq C \left[\int_{\mathbb{T}^2} f(t)^{2m} + \int_{\mathbb{T}^2} \rho|\xi|^{2m} d\tau \right]^\frac{\beta}{2m+1} + C \leq C \left[f(t) + \left(\int_{\mathbb{T}^2} \rho|\xi|^{2m} d\tau \right) + 1 \right].
\] (3.35)

Note that
\[
\left(\int_{\mathbb{T}^2} \rho|\xi|^{2m} d\tau \right)^\frac{\beta}{2m+1} \leq \|\rho\|_2^{\frac{\beta}{2m+1}} \|\xi\|_2^{2m} = \|\rho\|_2^{\frac{\beta}{2m+1}} \|\xi\|_2^{2m} \leq \|\rho\|_2^{\frac{\beta}{2m+1}} \left[C \left(m + \frac{1}{2} \right)^\frac{1}{2} \|\xi\|_2 \right]^{2m} \leq C m^{\frac{\beta}{2m+1}}. (3.36)
\]

Then one can get
\[
\|\rho\|_{2m+1}^\beta \leq C \left[1 + f(t) + m^\frac{1}{2} \|\rho\|_{2m+1}^\beta(t) \right] \]
\[
\leq \frac{1}{2} \|\rho\|_{2m+1}^\beta(t) + C \left(1 + f(t) + m^\frac{1}{2} \right). (3.37)
\]

Thus it holds that
\[
\|\rho\|_{2m+1}^\beta(t) \leq C \left[f(t) + m^\frac{\beta}{2m+1} \right]
\]
\[
\leq C \left[m^\frac{\beta}{2m+1} + \int_0^t \phi(\tau)^\frac{1}{2} \|\rho\|_{2m+1}^\beta(\tau) d\tau + \int_0^t \left(m^2 \phi(\tau) + m \right) \|\rho\|_{2m+1}^{\frac{1}{m}}(\tau) d\tau \right]
\]
\[
\leq C \left[m^\frac{\beta}{2m+1} + \int_0^t \|\rho\|_{2m+1}^\beta(\tau) d\tau + \int_0^t \left(m^2 \phi(\tau) + m \right) \|\rho\|_{2m+1}^{\frac{1}{m}}(\tau) d\tau \right]. (3.38)
\]
Applying Gronwall’s inequality yields that
\[\| \rho \|_{2m\beta+1(t)} \leq C \left[m^{\frac{\beta}{2m-1}} + \int_0^t \left(m^2 \phi(\tau) + m \right) \| \rho \|_{2m\beta+1}^{1+\frac{1}{2m}} d\tau \right]. \tag{3.39} \]

Denote
\[y(t) = m^{-\frac{\beta}{2m-1}} \| \rho \|_{2m\beta+1(t)}. \]

Then it holds that
\[y^\beta(t) \leq C \left[m^{\frac{\beta(1-\beta)}{2m-1}} + m^{\frac{1}{2m-1}} \int_0^t \phi(\tau) y(\tau)^{1+\frac{1}{2m}} d\tau + m^{\frac{1}{2m-1}-1} \int_0^t y(\tau)^{1+\frac{1}{2m}} d\tau \right] \]
\[\leq C \left[1 + \int_0^t (\phi(\tau) + 1) y^\beta(\tau) d\tau \right]. \]

So applying the Gronwall’s inequality again yields that
\[y(t) \leq C, \quad \forall t \in [0, T], \]
that is,
\[\| \rho \|_{2m\beta+1(t)} \leq C m^{\frac{\beta}{2m-1}}, \quad \forall t \in [0, T]. \]

Equivalently, (3.24) holds. Thus Lemma 3.4 is proved. \[\square \]

Step 4: First-order derivative estimates of the velocity.

Lemma 3.5. There exists a positive constant \(C \), such that
\[\sup_{t \in [0, T]} \int \left(\frac{\mu \omega^2}{2\mu + \lambda(\rho)} + \frac{F^2}{2\mu + \lambda(\rho)} \right) dx + \int_0^T \rho(H^2 + L^2) dx dt \leq C. \tag{3.40} \]

Proof. Multiplying Eq. (2.3)\(_1\) by \(\mu \omega \), Eq. (2.3)\(_2\) by \(\frac{F}{2\mu + \lambda(\rho)} \), respectively, and then summing the resulted equations together, one has
\[\frac{1}{2} \frac{d}{dt} \int \left(\frac{\mu \omega^2}{2\mu + \lambda(\rho)} + \frac{F^2}{2\mu + \lambda(\rho)} \right) dx + \frac{\mu}{2} \int \omega^2 \text{div} u dx - \frac{1}{2} \int \mu F^2 \left(\frac{1}{2\mu + \lambda(\rho)} \right) \text{div} u dx \]
\[= - \int \rho(H^2 + L^2) dx. \tag{3.41} \]

Notice that
\[(u_{1x_1})^2 + 2u_{1x_1}u_{2x_1} + (u_{2x_2})^2 = (u_{1x_1} + u_{2x_2})^2 + 2(u_{1x_2}u_{2x_1} - u_{1x_1}u_{2x_2}) \]
\[= (\text{div} u)^2 + 2(u_{1x_2}u_{2x_1} - u_{1x_1}u_{2x_2}) \]
\[= (\text{div} u) \left(\frac{F}{2\mu + \lambda(\rho)} + \frac{P(\rho)}{2\mu + \lambda(\rho)} \right) + 2(u_{1x_2}u_{2x_1} - u_{1x_1}u_{2x_2}), \]
then one has
\[
\frac{1}{2} \frac{d}{dt} \int \left(\mu \omega^2 + \frac{F^2}{2\mu + \lambda(\rho)} \right) \, dx + \int \rho (H^2 + L^2) \, dx = -\frac{\mu}{2} \int \omega^2 \text{div} \, u \, dx \\
+ \frac{1}{2} \int F^2 \text{div} u \left[\rho \left(\frac{1}{2\mu + \lambda(\rho)} \right)' - \frac{1}{2\mu + \lambda(\rho)} \right] \, dx + \int F \text{div} u \left[\rho \left(\frac{P(\rho)}{2\mu + \lambda(\rho)} \right)' - \frac{P(\rho)}{2\mu + \lambda(\rho)} \right] \, dx \\
- \int 2F(u_{1x_2}u_{2x_1} - u_{1x_1}u_{2x_2}) \, dx.
\]

(3.42)

Set
\[
Z^2(t) = \int \left(\mu \omega^2 + \frac{F^2}{2\mu + \lambda(\rho)} \right) \, dx,
\]
and
\[
\varphi^2(t) = \int \rho (H^2 + L^2) \, dx = \int \frac{1}{\rho} \left[(\mu \omega_x + F_x)^2 + (-\mu \omega_x + F_x)^2 \right] \, dx.
\]

Then it follows that for \(0 < r \leq \frac{1}{2}\),
\[
\| \nabla (F, \omega) \|_{L^2 \{1-r\}} \leq C \varphi(t) \rho \frac{1}{r} \leq C \varphi(t) \left(\frac{1-r}{r} \right)^{\frac{1}{r}} \leq C \varphi(t) r^{\frac{1}{r}},
\]
and
\[
\| \nabla u \|_2 + \| \omega \|_2 + \| \text{div} u \|_2 + \| (2\mu + \lambda(\rho))^{\frac{1}{2}} \text{div} u \|_2 \\
\leq C \left[Z(t) + \left(\int \frac{P(\rho)^2}{2\mu + \lambda(\rho)} \, dx \right)^{\frac{1}{2}} \right] \leq C(Z(t) + 1).
\]

(3.44)

Now we estimate the four terms on the right hand side of (3.42). First, by the interpolation inequality and Lemma 2.2, (3.43) and (3.44), for \(0 < \varepsilon < \frac{1}{2}\), it holds that
\[
-\frac{\mu}{2} \int \omega^2 \text{div} \, u \, dx \leq \| \text{div} u \|_2 \| \omega \|_4^2 \leq C(Z(t) + 1) \| \omega \|_2 \left(\frac{1-3\varepsilon}{2} \right)^{\frac{1-3\varepsilon}{2}} \| \nabla \omega \|_{L^2(1-\varepsilon)}^{\frac{1-\varepsilon}{1+\varepsilon}}
\]
\[
\leq C(Z(t) + 1) \left(Z(t) \right)^{\frac{1-3\varepsilon}{2}} \left(\varphi(t) \right)^{\frac{1-3\varepsilon}{2}} \left(1 - \varepsilon \right)^{\frac{1-3\varepsilon}{2} - \frac{1-\varepsilon}{1+\varepsilon}}
\]
\[
\leq \alpha \varphi^2(t) + C\alpha Z(t)^2 (Z(t) + 1)^{\frac{2(1-2\varepsilon)}{1+\varepsilon} - \frac{1-\varepsilon}{1+\varepsilon}}
\]
\[
\leq \alpha \varphi^2(t) + C\alpha (Z(t)^2 + 1)^{\frac{2+3\varepsilon}{2} - \frac{1+\varepsilon}{2+3\varepsilon}},
\]
where and in the sequel \(\alpha > 0\) is a small positive constant to be determined and \(C_\alpha\) is a positive constant depending on \(\alpha\).

Next, one has
\[
\left| \frac{1}{2} \int F^2 \text{div} u \left[\rho \left(\frac{1}{2\mu + \lambda(\rho)} \right)' - \frac{1}{2\mu + \lambda(\rho)} \right] \, dx \right|
\]
\[
= \left| \frac{1}{2} \int F^2 \left(\frac{F}{2\mu + \lambda(\rho)} + \frac{P(\rho)}{2\mu + \lambda(\rho)} \right) \frac{2\mu + \lambda(\rho) + \rho \lambda'(\rho)}{(2\mu + \lambda(\rho))^2} \, dx \right|
\]
\[
\leq C \int |F|^2 \left(\frac{|F|}{2\mu + \lambda(\rho)} + \frac{P(\rho)}{2\mu + \lambda(\rho)} \right) \, dx \leq C \left(1 + \int \frac{|F|^3}{2\mu + \lambda(\rho)} \, dx \right),
\]

(3.46)
By the density estimate \(3.24\) in Lemma 3.4, one can get
\[
\left| \frac{1}{2} \int F \partial \left[\rho \left(\frac{P(\rho)}{2\mu + \lambda(\rho)} \right)^{1} - \frac{P(\rho)}{2\mu + \lambda(\rho)} \right] \right| \leq C \int \left| F \left(\frac{F}{2\mu + \lambda(\rho)} \right) \right| \frac{P(\rho)(2\mu + \lambda(\rho)) + \rho\lambda(\rho)P(\rho) - \rho P'(\rho)(2\mu + \lambda(\rho))}{(2\mu + \lambda(\rho))^2} \ dx.
\]
On the other hand, it holds that
\[
\int |F||\nabla u|^2 \ dx \leq C \int |F|^2 \ dx.
\]
Substituting (3.45)–(3.48) into (3.42) yields that
\[
1 \frac{d}{dt} Z^2(t) + \varphi(t)^2 \leq \alpha \varphi(t)^2 + C_\alpha (Z(t)^2 + 1)^{2+\frac{1}{m+\varepsilon} \varepsilon^{-\frac{1}{2}} + \frac{1}{2}} + C \left[1 + \int |F|^3 \ dx + \int |F| |\nabla u|^2 \ dx \right].
\]
Now it remains to estimate the terms \(\int \frac{|F|^3}{2\mu + \lambda(\rho)} \ dx \) and \(\int |F| |\nabla u|^2 \ dx \) on the right hand side of (3.49). By Lemma 2.3, for \(\varepsilon \in [0, \frac{1}{2}] \) and \(\eta = \varepsilon \), it holds that
\[
\|F\|_{2m} \leq C \left[\|F\|_1 + m^{\frac{1}{2}} \|\nabla F\|^\beta_1 \|F\|_{2(1-\varepsilon)} \right],
\]
where \(s = \frac{(1-\varepsilon)^2}{m-\varepsilon(1-\varepsilon)} \) and the positive constant \(C \) is independent of \(m \) and \(\varepsilon \).
Choose the positive constant \(\varepsilon = 2^{-m} \) with \(m > 2 \) being integer in the inequalities (3.49) and (3.50).
By the density estimate (3.24) in Lemma 3.4, one can get
\[
\|F\|_1 = \int (2\mu + \lambda(\rho))^{-\frac{1}{2}} |F|(2\mu + \lambda(\rho))^{\frac{1}{2}} \ dx \leq \left(\int |F|^2 \ dx \right)^{\frac{1}{2}} \int (2\mu + \lambda(\rho)) \ dx \leq CZ(t),
\]
and
\[
\|F\|_{2(1-\varepsilon)}^s = \left(\int (2\mu + \lambda(\rho))^{-(1-\varepsilon)} |F|^2 (2\mu + \lambda(\rho))^{1-\varepsilon} \ dx \right)^{\frac{s}{2(1-\varepsilon)}} \leq \left(\int |F|^2 \ dx \right)^{\frac{s}{2(1-\varepsilon)}} \left(\int (2\mu + \lambda(\rho))^{1-\varepsilon} \ dx \right)^{\frac{1}{2(1-\varepsilon)}} \leq CZ(t)^s \left(\frac{\beta(1-\varepsilon)}{\varepsilon} \right)^{\frac{s}{2(1-\varepsilon)}} + 1 \leq CZ(t)^s \left(2^{\frac{m+\varepsilon}{2(1-\varepsilon)}} + 1 \right) \leq CZ(t)^s,
\]
where in the last inequality one has used the fact that \(ms = \frac{m(1-\varepsilon)^2}{m-\varepsilon(1-\varepsilon)} \to 1 \) as \(m \to +\infty \).
Substituting (3.43) with \(r = \frac{\varepsilon}{m+\varepsilon} \), (3.51) and (3.52) into (3.50) yields that
\[
\|F\|_{2m} \leq C \left[Z(t) + m^{\frac{1}{2}} \|\nabla F\|^\beta_1 Z(t)^s \right] \leq C \left[Z(t) + m^{\frac{1}{2}} \left(\frac{m+\varepsilon}{\varepsilon} \right)^{\frac{1-\varepsilon}{2(1-\varepsilon)}} \varphi(t)^{1-s} Z(t)^s \right].
\]
Thus it follows that

\[\int \frac{|F|^3}{2\mu + \lambda(\rho)} \, dx = \int \frac{|F|^{2-\frac{1}{2m-1}}}{(2\mu + \lambda(\rho))^{\frac{1}{2m-1}}} \left(\frac{1}{2\mu + \lambda(\rho)} \right)^{\frac{1}{2m-1}} |F|^{1+\frac{1}{2m-1}} \, dx \]

\[\leq \int \left(\frac{|F|^2}{2\mu + \lambda(\rho)} \right)^{\frac{2m-3}{2m-1}} \left(\int |F|^{2m} \, dx \right)^{\frac{1}{2m-1}} \]

\[\leq \left(\int \frac{|F|^2}{2\mu + \lambda(\rho)} \, dx \right)^{\frac{2m-3}{2m-1}} \left(\int |F|^{2m} \, dx \right)^{\frac{1}{2m-1}} \]

\[\leq Z(t)^{\frac{2m-3}{m-1}} \|F\|_{2m}^{\frac{m}{2m-1}} \leq CZ(t)^{\frac{2m-3}{m-1}} \left[Z(t) + m^\frac{1}{2} \left(\frac{m}{\varepsilon} \right)^{\frac{1}{(1-\varepsilon)}(1-s)} \varphi(t)^{1-s} Z(t)^s \right] \]

\[\leq C \left[Z(t)^3 + m^\frac{m}{m(1+s)-2} \left(\frac{m}{\varepsilon} \right)^{\frac{2(1-\varepsilon)m}{(1-\varepsilon)(m(1+s)-2)}} \varphi(t)^{1-\varepsilon} Z(t)^{\frac{2(1+\varepsilon)m-3}{m(1+s)-2}} \right] \]

\[\leq \alpha \varphi(t)^2 + C_\alpha \left[(1 + Z(t)^2)^2 + m^\frac{m}{m(1+s)-2} \left(\frac{m}{\varepsilon} \right)^{\frac{2}{1+\varepsilon}} (1 + Z(t)^2)^{2+\frac{1-\varepsilon}{m(1+s)-2}} \right] \]

where in the last inequality one has used the fact that \(ms = \frac{m(1-\varepsilon)^2}{m-\varepsilon} \to 1 \) with \(\varepsilon = 2^{-m} \) as \(m \to +\infty \).

Furthermore, it holds that

\[\int |F| \|\nabla u\|^2 \, dx \leq \|F\|_{2m} \|\nabla u\|_{2m}^{2m} \leq C \|F\|_{2m} \left(\|\nabla u\|_{2m}^{2m} + \|\omega\|_{2m}^{2m} \right) \leq C \|F\|_{2m} \left(\|F\|_{2m}^{2m} + \|\omega\|_{2m}^{2m} + 1 \right). \]

(3.55)

Note that

\[\left\| \frac{F}{2\mu + \lambda(\rho)} \right\|_{2m}^{2m-1} = \left(\int \frac{|F|^{2m-1}}{(2\mu + \lambda(\rho))^{\frac{2m-1}{2m}}} \, dx \right)^{\frac{2m-1}{2m}} \]

\[= \left(\int \frac{|F|^2}{(2\mu + \lambda(\rho))^{\frac{2m-3}{2m}}} \left(\frac{|F|^{2m-1}}{(2\mu + \lambda(\rho))^{\frac{2m-3}{2m}}} \right) \, dx \right)^{\frac{2m-3}{2m}} \]

\[\leq \|F\|_{2m} \left(\int \frac{|F|^2}{(2\mu + \lambda(\rho))^{\frac{2m-3}{2m}}} \, dx \right)^{\frac{2m-3}{2m}} \leq C \|F\|_{2m} \left(\int \frac{|F|^2}{2\mu + \lambda(\rho)} \, dx \right)^{\frac{1}{2m-1}} Z(t)^{\frac{2m-3}{m-1}}, \]

and from \(\int \omega \, dx = 0 \), Lemma 2.2 and (3.43), one has

\[\left\| \omega \right\|_{2m}^{2m-1} \leq C \left\| \omega \right\|_{1}^{2-\frac{1-\varepsilon}{m(1-\varepsilon)}} \|\nabla \omega\|_{2(1-\varepsilon)}^{\frac{1-\varepsilon}{m(1-\varepsilon)}} \leq CZ(t)^{2-\frac{1-\varepsilon}{m(1-\varepsilon)}} \left[\left(\frac{1}{1-\varepsilon} \right) \varphi(t) \right]^{\frac{1-\varepsilon}{m(1-\varepsilon)}} \leq C \left(Z(t)^{2-\frac{1-\varepsilon}{m(1-\varepsilon)}} \varphi(t) \right)^{\frac{1-\varepsilon}{m(1-\varepsilon)}}. \]

(3.57)
Now substituting (3.53), (3.56) and (3.57) into (3.55) gives that
\[
\int |F| |\nabla u| \, dx \leq C \left[Z(t) + m^{\frac{1}{2}} \left(\frac{m}{\varepsilon} \right)^{\frac{1-s}{\pi^2}} \varphi(t)^{1-s} Z(t)^s \right] \left[1 + Z(t)^{2-\frac{1-s}{m(1-2\varepsilon)}} \varphi(t)^{\frac{1-s}{m(1-2\varepsilon)}} \right] \\
+ C \left[Z(t) + m^{\frac{1}{2}} \left(\frac{m}{\varepsilon} \right)^{\frac{1-s}{\pi^2}} \varphi(t)^{1-s} Z(t)^s \right]^{1+\frac{1-m}{m-1}} Z(t)^{2m-\frac{3}{m-1}} \\
\leq C \left[Z(t) + Z(t)^3 + Z(t)^{3-\frac{1}{m(1-2\varepsilon)}} \varphi(t)^{\frac{1-s}{m(1-2\varepsilon)}} + m^{\frac{1}{2}} \left(\frac{m}{\varepsilon} \right)^{\frac{1-s}{\pi^2}} \varphi(t)^{1-s} Z(t)^s \right] \\
+ m^{\frac{1}{2}} \left(\frac{m}{\varepsilon} \right)^{\frac{1-s}{\pi^2}} \varphi(t)^{1-s} + m^{\frac{1}{2+\varepsilon}} Z(t)^2 s^{\frac{1-s}{m(1-2\varepsilon)}} + m^{\frac{1}{2}} \left(\frac{m}{\varepsilon} \right)^{\frac{(1-s)m}{m(1-2\varepsilon)}} \varphi(t)^{\frac{(1-s)m}{m(1-2\varepsilon)}} \left(1 + Z(t)^{2-\frac{1-s}{m(1-2\varepsilon)}} \varphi(t)^{\frac{1-s}{m(1-2\varepsilon)}} \right) \\
\leq \alpha \varphi(t)^2 + C\alpha \left[(1 + Z^2(t))^2 + m \left(\frac{m}{\varepsilon} \right)^{\frac{1}{\pi^2}} Z(t)^s \right]^{\frac{2}{\pi^2}} \\
+ \left(m^{\frac{1}{2}} \left(\frac{m}{\varepsilon} \right)^{\frac{1-s}{\pi^2}} Z(t)^{2+s-\frac{1}{m(1-2\varepsilon)}} \right)^{1+\frac{1-m}{m-1}} \left(\frac{m}{\varepsilon} \right)^{\frac{(1-s)m}{m(1-2\varepsilon)}} Z(t)^{2+\frac{m-s-1}{m-1}} \\
\leq \alpha \varphi(t)^2 + C\alpha \left[(1 + Z^2(t))^2 + m \left(\frac{m}{\varepsilon} \right)^{\frac{2}{\pi^2}} (1 + Z(t)^2) \right] \\
+ m \left(\frac{m}{\varepsilon} \right)^{\frac{2}{\pi^2}} (1 + Z(t)^2)^{2+\frac{1}{m(1+s)} m^{\frac{1-s}{m(1-2\varepsilon)}}} + m \left(\frac{m}{\varepsilon} \right)^{\frac{2}{\pi^2}} (1 + Z(t)^2)^{2+\frac{1}{m(1+s)} m^{\frac{1-s}{m(1-2\varepsilon)}}} \right].
\] (3.58)

Substituting (3.54) and (3.58) into (3.49) and choosing \(\alpha \) sufficiently small yield that
\[
\frac{1}{2} \frac{d}{dt} (Z^2(t)) + \frac{1}{2} \varphi(t)^2 \leq C(1 + Z(t)^2) + 1^{2+\frac{1-s}{\pi^2}} \varepsilon^{1-2\varepsilon} + C \left[(1 + Z^2(t))^2 + m \left(\frac{m}{\varepsilon} \right)^{\frac{2}{\pi^2}} (1 + Z(t)^2) \right] \\
+ m \left(\frac{m}{\varepsilon} \right)^{\frac{2}{\pi^2}} (1 + Z(t)^2)^{2+\frac{1}{m(1+s)} m^{\frac{1-s}{m(1-2\varepsilon)}}} + m \left(\frac{m}{\varepsilon} \right)^{\frac{2}{\pi^2}} (1 + Z(t)^2)^{2+\frac{1}{m(1+s)} m^{\frac{1-s}{m(1-2\varepsilon)}}} .
\] (3.59)

Note that \(\lim_{m \to +\infty} [2^m (1 - ms)] = 2 \), and so \(1 - ms \sim 2\varepsilon \) as \(m \to +\infty \). Thus for \(m \) sufficiently large, one has
\[
\frac{1 - ms}{m(1 + s) - 2} \sim \frac{2\varepsilon}{1 - 2\varepsilon + m - 2} = \frac{2\varepsilon}{m - 1 - 2\varepsilon} \leq 4\varepsilon,
\]
and
\[
\frac{1 - ms + (2ms - 1)\varepsilon}{(1 + s)m(1 - 2\varepsilon) - 1 + \varepsilon} = \frac{(1 - ms)(1 - 2\varepsilon) + \varepsilon}{(1 + s)m(1 - 2\varepsilon) - 1 + \varepsilon} \sim \frac{3\varepsilon - 4\varepsilon^2}{(m + 1 - 2\varepsilon)(1 - 2\varepsilon) - 1 + \varepsilon} \leq 4\varepsilon.
\]
Then (3.59) yields the following inequality for suitably large \(m \),
\[
\frac{1}{2} \frac{d}{dt} (Z^2(t)) + \frac{1}{2} \varphi(t)^2 \leq Cm \left(\frac{m}{\varepsilon} \right)^{\frac{2}{\pi^2}} (1 + Z(t)^2)^{2+4\varepsilon}.
\] (3.60)

Note that
\[
Z^2(t) = \int \left[\mu \omega^2 + \frac{F^2}{2\mu + \lambda(\rho)} \right] dx \leq C \int \left[\mu \omega^2 + (2\mu + \lambda(\rho))(\text{div}u)^2 + \frac{P^2(\rho)}{2\mu + \lambda(\rho)} \right] dx \\
\leq C \left(\phi(t) + \int P^2(\rho) \, dx \right) \in L^1(0, T).
\] (3.61)

Solving (3.60) and using (3.61) show that
\[
\frac{1}{(1 + Z^2(t))^{4\varepsilon}} - \frac{1}{(1 + Z^2(0))^{4\varepsilon}} + Cm\varepsilon \left(\frac{m}{\varepsilon} \right)^{\frac{2}{\pi^2}} \geq 0.
\] (3.62)
Then we have the inequality
\[
\frac{1}{(1 + Z^2(t))^{4\varepsilon}} \geq \frac{1}{2(1 + Z^2(0))^{4\varepsilon}},
\] (3.63)
provided that
\[
Cm^2 \left(\frac{m}{\varepsilon} \right)^{\frac{2}{\varepsilon - 1}} \leq \frac{1}{2(1 + Z^2(0))^{4\varepsilon}}.
\] (3.64)
This condition, (3.64), is satisfied if
\[
Cm^{1+\frac{2}{\varepsilon - 1}}2^{-m(1-\frac{2}{\varepsilon - 1})} \leq \frac{1}{2},
\] (3.65)
since
\[
Z^2(0) = \int \left[\mu(\omega_0^2) + \frac{(F_0^2)^2}{2\mu + \lambda(\rho_0^4)} \right] dx
\leq C \left[\|v_0^2\|_{H^2(T^2)} + \|\rho_0\|_{W^{2,q}(T^2)} \|v_0^2\|_{H^2(T^2)} + \|\rho_0\|_{W^{2,q}(T^2)} \right] \leq C.
\]
Now if \(\beta > 3 \), that is, \(1 - \frac{2}{\varepsilon - 1} > 0 \), then we can choose sufficiently large \(m > 2 \) to guarantee the condition (3.65). Consequently, the inequality (3.63) is satisfied with \(\beta > 3 \) and sufficiently large \(m > 2 \). Then
\[
Z^2(t) \leq 2^{2m-1}(1 + Z^2(0)) - 1 \leq C,
\] (3.66)
and
\[
\int_0^T \varphi(t) dt \leq C.
\] (3.67)
Thus the proof of Lemma 3.5 is completed. \(\square \)

Step 5: Second order derivative estimates for the velocity:

Lemma 3.6. There exists a positive constant \(C \) independent of \(\delta \), such that
\[
\sup_{t \in [0, T]} \int \rho(H^2 + L^2) dx + \int_0^T \int \mu(H_{x_1} - L_{x_2})^2 + (2\mu + \lambda(\rho))(H_{x_2} + L_{x_1})^2 dx dt \leq C.
\] (3.68)

Proof. Multiplying Eqs., (2.4)_1 and (2.4)_2, by \(H \) and \(L \), respectively, summing the resulted equations together, and integrating with respect to \(x \) over \(\mathbb{T}^2 \) lead to
\[
\frac{1}{2} \frac{d}{dt} \int \rho(H^2 + L^2) dx + \int \mu(H_{x_1} - L_{x_2})^2 + (2\mu + \lambda(\rho))(H_{x_2} + L_{x_1})^2 dx dx
= \int \rho(H^2 + L^2) div u - \int \mu \omega div(L_{x_2} - H_{x_1}) dx
- \int \rho(2\mu + \lambda(\rho)) \left[F \left(\frac{1}{2\mu + \lambda(\rho)} \right) + \left(\frac{P(\rho)}{2\mu + \lambda(\rho)} \right)^\prime \right] div u dx
- \int [H(u_{x_2} \cdot \nabla F + \mu u_{x_1} \cdot \nabla \omega) + L(u_{x_1} \cdot \nabla F - \mu u_{x_2} \cdot \nabla \omega)] dx
+ \int (2\mu + \lambda(\rho))(u_{1x_1})^2 + 2u_{1x_2}u_{2x_1} + (u_{2x_2})^2(H_{x_2} + L_{x_1}) dx.
\] (3.69)
Set
\[
Y(t) = \left(\int \rho(H^2 + L^2) dx \right)^\frac{1}{2},
\] (3.70)
and
\[
\psi(t) = \left(\int \mu(H_{x_1} - L_{x_2})^2 + (2\mu + \lambda(\rho))(H_{x_2} + L_{x_1})^2 dx \right)^\frac{1}{2}.
\] (3.71)
Note that
\[
\int (|\nabla H|^2 + |\nabla L|^2) \, dx = \int (H_x^2 + H_z^2 + L_x^2 + L_z^2) \, dx = \int \left[(H_{x1} - L_{x2})^2 + (H_{x2} + L_{x1})^2 \right] \, dx \leq \frac{1}{\mu} \psi^2(t).
\]
Thus it holds that
\[
\|\nabla (H, L)\|_2(t) \leq C\psi(t), \quad \forall t \in [0, T].
\] (3.72)

Then it follows from the elliptic system
\[
\mu \omega_{x1} + F_{x2} = \rho H, \quad -\mu \omega_{x2} + F_{x1} = \rho L,
\]
that
\[
\|\nabla (F, \omega)\|_p \leq C\|\rho (H, L)\|_p, \quad \forall 1 < p < +\infty.
\] (3.73)

Furthermore, since \(\int (\mu \omega_{x1} + F_{x2}) \, dx = 0 \), by the mean value theorem, there exists a point \(x_0 \in \mathbb{T} \), such that \((\mu \omega_{x1} + F_{x2})(x_0, t) = 0 \), and so \(H(x_0, t) = 0 \). Similarly, there exists a point \(x_0^* \), such that \(L(x_0^*, t) = 0 \). Therefore, by the Poincare inequality, it holds that
\[
\| (H, L)\|_p \leq C\|\nabla (H, L)\|_2, \quad \forall 1 \leq p < +\infty,
\] (3.74)
where \(C \) may depend on \(p \).

Now we estimate the right hand side of (3.69) term by term. First, by the H"older inequality, (3.74) and the density estimate (3.24), it holds that
\[
\left| \int \rho (H^2 + L^2) \text{div} u \, dx \right| = \left| \int \rho (H^2 + L^2) \frac{F + P(\rho)}{2\mu + \lambda(\rho)} \, dx \right|
\leq \| \sqrt{\rho (H, L)} \|_2 \| (H, L)\|_4 \| \sqrt{\frac{F + P(\rho)}{2\mu + \lambda(\rho)}} \|_4 \leq CY(t)\psi(t)(1 + \| F \|_4).
\] (3.75)

Note that
\[
\| (F, \omega)\|_4 \leq C(\|\nabla (F, \omega)\|_2 + \| (F, \omega)\|_1)
\leq C \left[\|\nabla (F, \omega)\|_2 + \left(\int \frac{F^2}{2\mu + \lambda(\rho)} \, dx \right)^{\frac{1}{2}} \left(\int (2\mu + \lambda(\rho)) \, dx \right)^{\frac{1}{2}} + \| \omega \|_2 \right] \leq C [Y(t) + 1],
\] (3.76)
where in the last inequality one has used the estimate (3.43) with \(r = \frac{1}{4} \) and the estimate (3.66).

Substituting (3.76) into (3.75) yields that
\[
\left| \int \rho (H^2 + L^2) \text{div} u \, dx \right| \leq CY(t)\psi(t)(Y(t) + 1) \leq \alpha \psi^2(t) + C_\alpha (Y(t) + 1)^4.
\] (3.77)

Second, direct estimates give
\[
\left| -\int \mu \omega \text{div}(L_{x2} - H_{x1}) \, dx \right| \leq \mu \left(\int (L_{x2} - H_{x1})^2 \, dx \right)^{\frac{1}{2}} \left(\int \omega^2 (\text{div} u)^2 \, dx \right)^{\frac{1}{2}}
\leq \alpha \psi^2(t) + C_\alpha \int \omega^2 (\text{div} u)^2 \, dx \leq \alpha \psi^2(t) + C_\alpha \| \omega \|_4^2 \| \frac{F + P(\rho)}{2\mu + \lambda(\rho)} \|_4^2
\leq \alpha \psi^2(t) + C_\alpha \| \omega \|_4^2 (1 + \| F \|_4^2) \leq \alpha \psi^2(t) + C_\alpha (Y(t) + 1)^4.
\] (3.78)
Similarly, one has
\[
\left| - \int \rho(2\mu + \lambda(\rho)) \left[F \left(\frac{1}{2\mu + \lambda(\rho)} \right) + \left(\frac{P(\rho)}{2\mu + \lambda(\rho)} \right)^\gamma \right] \text{div}(H_{x_2} + L_{x_1}) \, dx \right| \\
\leq \alpha \int (2\mu + \lambda(\rho))(H_{x_2} + L_{x_1})^2 \, dx \\
+ C_\alpha \int \rho^2(2\mu + \lambda(\rho)) \left[F \left(\frac{1}{2\mu + \lambda(\rho)} \right) + \left(\frac{P(\rho)}{2\mu + \lambda(\rho)} \right)^\gamma \right]^2 (\text{divu})^2 \, dx \\
\leq \alpha \psi^2(t) + C_\alpha \int \rho^2 \left[F \left(\frac{1}{2\mu + \lambda(\rho)} \right) + \left(\frac{P(\rho)}{2\mu + \lambda(\rho)} \right)^\gamma \right]^2 \left| F \right|^2 + P^2(\rho) \, dx \\
\leq \alpha \psi^2(t) + C_\alpha(1 + \|F\|_4^4) \leq \alpha \psi^2(t) + C_\alpha(Y(t) + 1)^4.
\] (3.79)

Next,
\[
\left| - \int [H(u_{x_2} \cdot \nabla F + \mu u_{x_1} \cdot \nabla \omega) + L(u_{x_1} \cdot \nabla F - \mu u_{x_2} \cdot \nabla \omega)] \, dx \right| \\
\leq C \int \|H, L\|_8 \|\nabla u\|_2 \|\nabla F, \omega\|_2 \, dx \\
\leq C \|H, L\|_8 \|\nabla u\|_2 \|\nabla F, \omega\|_2 \leq C \|\nabla (H, L)\|_2 \|\rho(H, L)\|_\frac{8}{3}, \tag{3.80}
\]
where one has used the fact that
\[
\|\nabla u\|_2 \leq C(\|\text{divu}\|_2 + \|\omega\|_2) \leq C \left(\|F + P(\rho)\|_2 + \|\omega\|_2 \right) \leq C.
\]

Note that
\[
\|\rho(H, L)\|_\frac{8}{3} = \left(\int \rho^{\frac{8}{3}} \|H, L\|^{\frac{8}{3}} \, dx \right)^{\frac{3}{8}} = \left(\int \sqrt[3]{\rho} \|H, L\| \|H, L\|^{\frac{8}{26}} \rho^{\frac{14}{26}} \, dx \right)^{\frac{1}{8}} \\
\leq \|\sqrt[3]{\rho} \|_\frac{8}{26} \|H, L\|_\frac{8}{3} \|\rho\|_\frac{14}{26} \leq CY(t)^{\frac{8}{3}} \|\nabla (H, L)\|_\frac{8}{3}. \tag{3.81}
\]
It follows from (3.80) and (3.81) that
\[
\left| - \int [H(u_{x_2} \cdot \nabla F + \mu u_{x_1} \cdot \nabla \omega) + L(u_{x_1} \cdot \nabla F - \mu u_{x_2} \cdot \nabla \omega)] \, dx \right| \\
\leq CY(t)^{\frac{8}{3}} \|\nabla (H, L)\|_\frac{8}{2} \leq CY(t)^{\frac{8}{3}} \psi(t)^{\frac{3}{8}} \leq \alpha \psi^2(t) + C_\alpha Y(t)^2. \tag{3.82}
\]

Moreover,
\[
\int (2\mu + \lambda(\rho))((u_{x_1})^2 + 2u_{1x_2}u_{2x_1} + (u_{2x_2})^2)(H_{x_2} + L_{x_1}) \, dx \\
\leq \alpha \psi(t)^2 + C_\alpha \int (2\mu + \lambda(\rho))((u_{x_1})^2 + 2u_{1x_2}u_{2x_1} + (u_{2x_2})^2)^2 \, dx \\
\leq \alpha \psi(t)^2 + C_\alpha \|2\mu + \lambda(\rho)\|_2 \|\nabla u\|_4^4 \\
\leq \alpha \psi(t)^2 + C_\alpha (\|\text{divu}\|_4^4 + \|\omega\|_4^4) \leq \alpha \psi(t)^2 + C_\alpha (\|F, \omega\|_4^4 + 1) \\
\leq \alpha \psi(t)^2 + C_\alpha (\|\nabla (F, \omega)\|_4^4 + 1) \leq \alpha \psi(t)^2 + C_\alpha (1 + Y(t))^4. \tag{3.83}
\]
Substituting the estimates (3.77)–(3.79), (3.82) and (3.83) into (3.69), one can arrive at
\[
\frac{1}{2} \frac{d}{dt}(Y^2(t)) + \psi^2(t) \leq 5\alpha \psi^2(t) + C_\alpha (1 + Y^2(t))^2. \tag{3.84}
\]
Choosing $5\alpha = \frac{1}{2}$, noting that $Y^2(t) = \varphi^2(t) \in L^1(0, T)$, and then using Gronwall's inequality yield that

$$Y^2(t) + \int_0^T \psi^2(t) \, dt \leq Y^2(0) + C.$$ \hspace{1cm} (3.85)

Now we calculate the initial values $Y^2(0)$. By the approximate compatibility condition (3.2), one has

$$\mathcal{L}_{\rho^0} u_0^\delta - \nabla P_0^\delta = \sqrt{\rho_0} g, \text{ with } g \in L^2(\mathbb{T}^2).$$

On the other hand, it holds that

$$\mathcal{L}_{\rho^0} u_0^\delta = \mu \Delta u_0^\delta + \nabla ((\mu + \lambda(\rho_0^\delta)) \text{div} u_0^\delta) = \mu \Delta u_0^\delta + \nabla (F_0^\delta - \mu \text{div} u_0^\delta + P_0^\delta)$$

where $F_0^\delta = (2\mu + \lambda(\rho_0^\delta)) \text{div} u_0^\delta - P_0^\delta$ and similarly one can define $\omega_0^\delta, L_0^\delta, H_0^\delta, \nabla \times$ denotes the 3-dimensional curl operator, and

$$\nabla \times (\nabla \times u_0^\delta) = (\partial_{x_2} \omega_0^\delta, -\partial_{x_1} \omega_0^\delta, 0)$$

is regarded as the 2-dimensional vector $(\partial_{x_2} \omega_0^\delta, -\partial_{x_1} \omega_0^\delta)^t$.

Thus

$$\mathcal{L}_{\rho_0^\delta} u_0^\delta - \nabla P_0^\delta = \nabla F_0^\delta - \mu (\partial_{x_2} \omega_0^\delta, -\partial_{x_1} \omega_0^\delta)^t$$

$$= (F_{0x_1}^\delta - \mu \partial_{x_2} \omega_0^\delta, F_{0x_2}^\delta + \mu \partial_{x_1} \omega_0^\delta)^t = \rho_0^\delta (L_0^\delta, H_0^\delta)^t.$$ \hspace{1cm} (3.87)

Therefore

$$\sqrt{\rho_0} g = \rho_0^\delta (L_0^\delta, H_0^\delta)^t.$$ \hspace{1cm} (3.88)

Consequently, it holds that

$$Y^2(0) = \left\| \sqrt{\rho_0^\delta} (L_0^\delta, H_0^\delta)^t \right\|_{L^2}^2 \leq C.$$ \hspace{1cm} (3.89)

This, together with (3.85), shows that

$$Y^2(t) + \int_0^T \psi^2(t) \, dt \leq C.$$ \hspace{1cm} (3.90)

This completes the proof of Lemma 3.6.

\[\Box \]

Remark 3.1. Similar to the derivation of (3.87), one can get that for any $t \in [0, T]$,

$$\mathcal{L}_{\rho} u - \nabla P(\rho) = \rho (L, H)^t.$$ \hspace{1cm} (3.91)

Then it follows from the momentum equation (1.1) that

$$u_t = (L, H)^t - u \cdot \nabla u.$$ \hspace{1cm} (3.91)

The above identity can also be obtained directly from (2.1).

Step 6. Upper bound of the density: We are now ready to derive the upper bound for the density in the super-norm independent of δ, which is crucial for the proof of Theorem 1.1 as in [23,24,26]. First, we have

Lemma 3.7. It holds that

$$\int_0^T \| (F, \omega) \|^3_{L^\infty} \, dt \leq C.$$ \hspace{1cm} (3.92)
Proof. By (3.73) with $p = 3$, one has
\begin{align*}
\int_0^T \|\nabla (F, \omega)\|_3^3 \, dt &\leq C \int_0^T \|\rho(H, L)\|_3^3 \, dt = C \int \rho^3 \|H, L\|_3^3 \, dx \, dt \\
&= C \int \sqrt{\rho} \|H, L\|_2 \|H, L\|_2^2 \rho \, \frac{\beta}{70} \, dt \\
&\leq C \int \|\nabla (H, L)\|_2^2 \, dt \leq C \int_0^T \psi^2(t) \leq C,
\end{align*}
which, combined with the estimates in Lemma 2.3, yields that
\begin{equation}
\int_0^T \|\rho^{(F, \omega)}\|_3^3 \, dt \leq \int_0^T \|\rho^{(F, \omega)}\|_{W^{1,3}(T^2)}^3 \, dt \leq C. \tag{3.94}
\end{equation}

The proof of Lemma 3.7 is finished. □

With Lemma 3.7 in hand, we can obtain the uniform upper bound for the density.

Lemma 3.8. It holds that
\begin{equation}
\rho(t, x) \leq C, \quad \forall (t, x) \in [0, T] \times T^2. \tag{3.95}
\end{equation}

Proof. From the continuity equation (1.1), we have
\begin{equation}
\rho_t + u \cdot \nabla \rho + P(\rho) + F = 0, \tag{3.96}
\end{equation}
where $\theta(\rho)$ is defined in (3.22).

Along the particle path $\bar{X}(\tau; t, x)$ through the point $(t, x) \in [0, T] \times T^2$ defined by
\begin{equation}
\begin{cases}
\frac{dX(\tau; t, x)}{d\tau} = u(\tau, \bar{X}(\tau; t, x)) \\
X(\tau; t, x)|_{\tau = t} = x,
\end{cases} \tag{3.97}
\end{equation}
there holds the following ODE
\begin{equation}
\frac{d}{d\tau} \rho(\tau, \bar{X}(\tau; t, x)) = -P(\rho)(\tau, \bar{X}(\tau; t, x)) - F(\tau, \bar{X}(\tau; t, x)), \tag{3.98}
\end{equation}
which is integrated over $[0, t]$ to yield that
\begin{equation}
\rho(\tau; t, x) - \rho(\bar{X}_0) = -\int_{0}^{t} (P(\rho) + F)(\tau, \bar{X}(\tau; t, x)) \, d\tau, \tag{3.99}
\end{equation}
with $\bar{X}_0 = \bar{X}(\tau; t, x)|_{\tau = 0}$.

It follows from (3.99) that
\begin{equation}
2\mu \ln \frac{\rho(t, x)}{\rho_{0}(\bar{X}_0)} + \frac{1}{\beta} \rho^\beta(t, x) + \int_{0}^{t} P(\rho)(\tau, \bar{X}(\tau; t, x)) \, d\tau = \frac{1}{\beta} \rho_{0}(\bar{X}_0)^\beta - \int_{0}^{t} F(\tau, \bar{X}(\tau; t, x)) \, d\tau. \tag{3.100}
\end{equation}
So
\begin{equation}
2\mu \ln \frac{\rho(t, x)}{\rho_{0}(\bar{X}_0)} \leq \frac{1}{\beta} \rho_{0}^{\beta} + \int_{0}^{t} \|F(\tau, \cdot)\|_{\infty} \, d\tau \leq C, \tag{3.101}
\end{equation}
which implies that \[\frac{\rho(t, x)}{\rho_0(X_0)} \leq C. \]

Therefore, we have

\[\rho(t, x) \leq C, \quad \forall (t, x) \in [0, T] \times T^2. \] (3.102)

Hence the Lemma is proved. \(\square \)

As an immediate consequence of the upper bound of the density, one has

Lemma 3.9. It holds that for any \(1 < p < \infty \),

\[\int_0^T \left(\| \text{div} u \|_\infty^3 + \| \nabla (F, \omega) \|_p^2 \right) dt \leq C. \] (3.103)

Proof. First, note that

\[\int_0^T \| \text{div} u \|_\infty^3 dt \leq C \int_0^T \left(\| F \|_\infty^3 + \| P(\rho) \|_\infty^3 \right) dt \leq C. \] (3.104)

Then for any \(1 < p < \infty \),

\[\int_0^T \| \nabla (F, \omega) \|_p^2 dt \leq C \int_0^T \| \rho(H, L) \|_p^2 dt \]

\[\leq C \int_0^T \| (H, L) \|_p^2 dt \leq C \int_0^T \| \nabla (H, L) \|_2^2 dt \leq C. \] (3.105)

Thus Lemma 3.9 is proved. \(\square \)

4. Higher Order Estimates

With the approximate solutions and basic estimates at hand, we can derive some uniform estimates on their higher order derivatives easily as in [23,24,26]. We start with estimates on first order derivatives.

Lemma 4.1. It holds that for any \(1 \leq p < +\infty \),

\[\sup_{t \in [0, T]} \| (\nabla \rho, \nabla P(\rho)) \|_p + \int_0^T \| \nabla u \|_\infty^2 dt \leq C. \] (4.1)

Proof. Applying the operator \(\nabla \) to the continuity equation (1.1), one has

\[(\nabla \rho)_t + \nabla u \cdot \nabla \rho + u \cdot \nabla (\nabla \rho) + \nabla \rho \text{div} u + \rho \nabla (\text{div} u) = 0. \] (4.2)

Multiplying Eq. (4.2) by \(p|\nabla \rho|^{p-2} \nabla \rho \) with \(p \geq 2 \) implies that

\[(|\nabla \rho|^{p})_t + \text{div} (u|\nabla \rho|^{p}) + (p - 1)|\nabla \rho|^{p-1} \text{div} u + p|\nabla \rho|^{p-2} \nabla \rho \cdot (\nabla u \cdot \nabla \rho) + pp|\nabla \rho|^{p-2} \nabla \rho \cdot \nabla (\text{div} u) = 0. \] (4.3)

Integrating over \(T^2 \) gives

\[\frac{d}{dt} \| \nabla \rho \|_p^p = -(p - 1) \int |\nabla u|^{p} \text{div} u \ dx - p \int |\nabla \rho|^{p-2} \nabla \rho \cdot (\nabla u \cdot \nabla \rho) \ dx - p \int \rho|\nabla \rho|^{p-2} \nabla \rho \cdot \nabla (\text{div} u) \ dx \]

\[\leq (p - 1)\| \text{div} u \|_\infty \| \nabla \rho \|_p^p + p\| \nabla u \|_\infty \| \nabla \rho \|_p^p + p\| \rho \|_\infty \| \nabla \rho \|_p^{p-1} \| \text{div} u \|_p. \] (4.4)
This implies that
\[
\frac{d}{dt} \| \nabla \rho \|_p \leq C \left(\| \nabla u \|_\infty \| \nabla \rho \|_p + \| \nabla \text{div} u \|_p \right)
\]
\[
\leq C \left(\| \nabla u \|_\infty \| \nabla \rho \|_p + \| \nabla \left(\frac{F + P(\rho)}{2\mu + \lambda(\rho)} \right) \|_p \right)
\]
\[
\leq C \left(\| \nabla u \|_\infty + \| F \|_\infty + 1 \right) \| \nabla \rho \|_p + \| \nabla F \|_p .
\] (4.5)

By Remark 3.1, one has
\[
\mathcal{L}_\rho u = \nabla P(\rho) + \rho(L, H)^t .
\] (4.6)

Thus the elliptic estimates and (3.74) yields that for any \(1 < p < \infty\),
\[
\| \nabla^2 u \|_p \leq C \left[\| \nabla P(\rho) \|_p + \| \rho(L, H) \|_p \right]
\]
\[
\leq C \left(\| \nabla \rho \|_p + \| (L, H) \|_p \right) \leq C \left(\| \nabla \rho \|_p + \| \nabla (L, H) \|_2 \right). (4.7)
\]

By Beal–Kato–Majda type inequality (see [24–26] or [52]), it holds that
\[
\| \nabla u \|_\infty \leq C \left(\| \text{div} u \|_\infty + \| \omega \|_\infty \right) \ln(e + \| \nabla^2 u \|_3)
\]
\[
\leq C \left(\| \text{div} u \|_\infty + \| \omega \|_\infty \right) \ln(e + \| \nabla \rho \|_3) + C \left(\| \text{div} u \|_\infty + \| \omega \|_\infty \right) \ln(e + \| \nabla(H, L) \|_2). (4.8)
\]

The combination of (4.5) with \(p = 3\) and (4.8) yields that
\[
\frac{d}{dt} \| \nabla \rho \|_3 \leq C \left(\| \nabla \rho \|_3 + \| \nabla(H, L) \|_2 + \| F \|_\infty + 1 \right) \| \nabla \rho \|_3
\]
\[
+ C \left(\| \nabla \rho \|_3 + \| \omega \|_\infty \right) \| \nabla \rho \|_3 \ln(e + \| \nabla \rho \|_3) + C \| \nabla F \|_3 . (4.9)
\]

By the estimates (3.94), (3.104), (3.105) and the Gronwall’s inequality, it holds that
\[
\sup_{t \in [0, T]} \| \nabla \rho \|_3 \leq C ,
\] (4.10)

which, together with (3.94), (3.104), (4.7) and (4.8), yields that
\[
\int_0^T \| \nabla u \|_\infty^2 dt \leq C .
\] (4.11)

Therefore, by (4.11), Lemmas 3.7, 3.9 and Gronwall inequality, one can derive from (4.5) that
\[
\sup_{t \in [0, T]} \| \nabla \rho \|_p \leq C (\| \nabla \rho_0 \|_p + 1), \quad \forall p \in [1, +\infty). (4.12)
\]

Thus the proof of Lemma 4.1 is completed. \hfill \Box

Lemma 4.2. It holds that for any \(1 \leq p < +\infty\),
\[
\sup_{t \in [0, T]} \left[\| \nabla u(t,) \|_\infty + \| \nabla u \|_p + \| (\rho_t, P_t) \|_p + \| (\rho_t, P(\rho_t)) \|_{H^1} + \| (\rho, u) \|_{H^2} \right] + \int_0^T \| u \|_{H^3}^2 dt \leq C .
\] (4.13)

Proof. By \(L^2\)-estimates to the elliptic system (4.6), one has
\[
\sup_{t \in [0, T]} \| u \|_{H^2} \leq C \sup_{t \in [0, T]} \left(\| \nabla P(\rho) \|_2 + \| \rho(H, L) \|_2 \right)
\]
\[
\leq C \sup_{t \in [0, T]} \left(\| \nabla P(\rho) \|_2 + \| \sqrt{\rho}(H, L) \|_2 \right) \leq C .
\] (4.14)

It follows from the Sobolev embedding theorem that
\[
\sup_{[0, T] \times \mathbb{T}^2} | u(t, x) | \leq C , \quad \sup_{t \in [0, T]} \| \nabla u \|_p \leq C , \quad \forall 1 \leq p < +\infty .
\] (4.15)
Due to (1.1), one can get $\rho_t = -u \cdot \nabla \rho - \rho \text{div} u$ and $P_t = -u \cdot \nabla P - \rho P'(\rho) \text{div} u$, which, together with the uniform upper bound of the density and the estimates in Lemma 4.1 and (4.15), yields that

$$\sup_{t \in [0, T]} \| (\rho_t, P_t) \|_p \leq C, \quad \forall p \in [1, +\infty). \quad (4.16)$$

Applying ∇^2 to the continuity equation (1.1), then multiplying the resulted equation by $\nabla^2 \rho$, and then integrating over the torus \mathbb{T}^2, one can get that

$$\frac{d}{dt} \| \nabla^2 \rho \|_2^2 \leq C \left[\| \nabla u \|_{\infty} \| \nabla^2 \rho \|_2^2 + \| \nabla \rho \|_4 \| \nabla^2 \rho \|_2 \| \nabla^2 u \|_4 + \| \rho \|_{\infty} \| \nabla^2 \rho \|_2 \| \nabla^3 u \|_2 \right]$$

$$\leq C \left[\| \nabla u \|_{\infty} + 1 \right] \| \nabla^2 \rho \|_2^2 + \| \nabla^3 u \|_2^2 \tag{4.17}$$

Similarly,

$$\frac{d}{dt} \| \nabla^2 P(\rho) \|_2^2 \leq C \left[\| \nabla u \|_{\infty} + 1 \right] \| \nabla^2 P(\rho) \|_2^2 + \| \nabla^3 u \|_2^2 \tag{4.18}$$

Note that (4.6) implies that

$$\mathcal{L}_\rho(\nabla u) = \nabla^2 P(\rho) + \nabla [\rho(H, L)] + \nabla (\nabla \lambda(\rho) \text{div} u) := \Phi.$$

Then the standard elliptic estimates give that

$$\| u \|_{H^3} \leq C \left[\| u \|_{H^1} + \| \Phi \|_2 \right]$$

$$\leq C \left[\| u \|_{H^1} + \| \nabla^2 P(\rho) \|_2 + \| \rho \|_{\infty} \| \nabla (H, L) \|_2 + \| \nabla \rho \|_4 \| (H, L) \|_4 + \| \nabla^2 \rho \|_2 \| \text{div} u \|_{\infty} + \| \nabla \rho \|_4 \| \nabla^2 u \|_4 \right], \tag{4.19}$$

and

$$\| \nabla^2 u \|_4 \leq C \| \nabla P(\rho) \|_4 + \| \rho (L, H) \|_4 \leq C (1 + \| (H, L) \|_2).$$

Consequently,

$$\| u \|_{H^3} \leq C \left[1 + \| \nabla^2 P(\rho) \|_2 + \| \nabla (H, L) \|_2 + \| \nabla \rho \|_2 \| \text{div} u \|_{\infty} \right]. \tag{4.20}$$

Substituting (4.19) into (4.17) and (4.18) yields that

$$\frac{d}{dt} \| (\nabla^2 \rho, \nabla^2 P(\rho)) \|_2^2 \leq C \left[\| \nabla u \|_{\infty}^2 + 1 \right] \| (\nabla^2 \rho, \nabla^2 P(\rho)) \|_2^2 + \| \nabla (H, L) \|_2^2 \tag{4.21}$$

Then the Gronwall’s inequality yields that

$$\| (\nabla^2 \rho, \nabla^2 P(\rho)) \|_2^2(t) \leq \left(\| (\nabla^2 \rho_0, \nabla^2 P_0) \|_2^2 + C \int_0^T (\| (\nabla (H, L) \|_2^2 + 1) \) dt \right) e^{C \int_0^T (\| \nabla u \|_{\infty}^2 + 1) \) dt \tag{4.22}$$

which also implies that

$$\sup_{t \in [0, T]} \| (\rho, P(\rho)) \|_{H^2} + \| (\rho_t, P(\rho)_t) \|_{H^1} + \int_0^T \| u \|_{H^3}^2 \) dt \leq C. \tag{4.23}$$

The proof of Lemma 4.2 is completed.

\[\square\]

Lemma 4.3. It holds that

$$\sup_{t \in [0, T]} \| \sqrt{\rho} u_t \|_2^2(t) + \int_0^T \| u_t \|_{H^1} \) dt \leq C. \tag{4.24}$$
Proof. The momentum equation (1.1) can be written as
\[
\rho u_t + \rho u \cdot \nabla u + \nabla P(\rho) = \mathcal{L}_\rho u := \mu \Delta u + \nabla((\mu + \lambda(\rho))\text{div}u). \tag{4.25}
\]
Applying ∂_t to the above equation gives that
\[
\rho u_{tt} + \rho u \cdot \nabla u_t + \nabla P(\rho)_t = \mu \Delta u_t + \nabla((\mu + \lambda(\rho))\text{div}u_t) - \rho_t u_t - \rho_t u \cdot \nabla u - \rho u_t \cdot \nabla u + \nabla(\lambda(\rho)\text{div}u). \tag{4.26}
\]
Multiplying Eq. (4.26) by u_t and integrating the resulting equation with respect to x over \mathbb{T}^2 imply that
\[
\frac{1}{2} \frac{d}{dt} \int \rho |u_t|^2 \, dx + \int (\mu |\nabla u_t|^2 + (\mu + \lambda(\rho))|\text{div}u_t|^2) \, dx
= - \int \nabla P(\rho)_t : u_t \, dx - \int \rho_t |u_t|^2 \, dx - \int \rho_t (u \cdot \nabla u) \cdot u_t \, dx
- \int \rho_t (u_t \cdot \nabla u) \cdot u_t \, dx + \int \nabla(\lambda(\rho)\text{div}u) \cdot u_t \, dx. \tag{4.27}
\]
Notice that
\[
- \int \nabla P(\rho)_t : u_t \, dx = \int P(\rho)_t \text{div}u_t \, dx
\leq \frac{\mu}{4} \int |\text{div}u_t|^2 \, dx + C \int |P_t|^2 \, dx \leq \frac{\mu}{4} \int |\text{div}u_t|^2 \, dx + C, \tag{4.28}
\]
\[
- \int \rho_t |u_t|^2 \, dx = \int \text{div}(\rho u) |u_t|^2 \, dx - 2 \int \rho (u \cdot \nabla u_t) \cdot u_t \, dx
\leq \frac{\mu}{8} \int |\nabla u_t|^2 \, dx + C \|u\|_\infty^2 \|\sqrt{\rho}\|_\infty^2 \|\sqrt{\rho u_t}\|_2^2 \leq \frac{\mu}{4} \int |\nabla u_t|^2 \, dx + C \|\sqrt{\rho u_t}\|_2^2, \tag{4.29}
\]
\[
- \int \rho_t (u \cdot \nabla u) \cdot u_t \, dx = \int \text{div}(\mu u \cdot \nabla u) \cdot u_t \, dx = \int \rho (u \cdot \nabla (u - u_t) \cdot u) \, dx
\leq \|\rho\|_\infty \|u\|_\infty^2 \|\nabla u_t\|_2 \|\nabla u\|_2 + \|u\|_\infty \|\sqrt{\rho}\|_\infty \|\sqrt{\rho u_t}\|_2 \left(\|\nabla u\|_2^2 + \|u\|_\infty \|\nabla^2 u\|_2 \right)
\leq \frac{\mu}{4} \int |\nabla u_t|^2 \, dx + C \left(\|\sqrt{\rho u_t}\|_2^2 + \||\nabla u, \nabla^2 u\|_2^2 + \|\nabla u\|_2^4 \right)
\leq \frac{\mu}{4} \int |\nabla u_t|^2 \, dx + C \left(\|\sqrt{\rho u_t}\|_2^2 + 1 \right), \tag{4.30}
\]
and
\[
\int \nabla(\lambda(\rho)\text{div}u) \cdot u_t \, dx = - \int \lambda(\rho) \text{div}u \text{div}u_t \, dx
\leq \frac{\mu}{4} \int |\text{div}u_t|^2 \, dx + C \|\lambda(\rho)\|_2 \|\text{div}u\|_2^2 \leq \frac{\mu}{4} \int |\text{div}u_t|^2 \, dx + C. \tag{4.32}
\]
Substituting the above estimates into (4.27) and then integrating with respect to t over $[0, t]$ yield that
\[
\|\sqrt{\rho u_t}\|_2^2(t) + \int_0^t \|\nabla u_t\|_2^2 \, dt \leq \|\sqrt{\rho_0^4 u_0^4}\|_2^2 + C \int_0^t (\|\nabla u\|_\infty + 1) \|\sqrt{\rho u_t}\|_2^2 \, dt + C. \tag{4.33}
\]
By the compatibility condition (3.2), it holds that
\[
\sqrt{\rho_0^4 u_0^4}(0) = \frac{\sqrt{\rho_0}}{\sqrt{\rho_0^4}} g - \sqrt{\rho_0^4 u_0^4} \cdot \nabla u_0^\delta,
\]
thus we have

\[
\left\| \sqrt{\rho_0^\delta u_0^\delta(0)} \right\|_2^2 \leq \left\| \frac{\sqrt{\rho_0^\delta}}{\sqrt{\rho_0}} g \right\|_2^2 + \|\rho_0^\delta\|_\infty \|u_0^\delta\|_\infty \|\nabla u_0^\delta\|_2 \leq C,
\]

which, together with (4.33) and the Gronwall’s inequality, yields that

\[
\sup_{t \in [0,T]} \|\sqrt{\rho} u_t\|_2^2 + \int_0^T \|\nabla u_t\|_2^2 dt \leq C. \tag{4.34}
\]

By (3.91), for any \(1 \leq p < +\infty\),

\[
\int_0^T \|u_t\|_p^2 dt \leq \int_0^T \left(\|\nabla (H, L)\|_p^2 + \|u\|_\infty^2 \|\nabla u\|_p^2 \right) dt \leq \int_0^T \left(\|\nabla (H, L)\|_2^2 + \|u\|_\infty^2 \|\nabla u\|_p^2 \right) dt \leq C.
\]

Therefore, one can arrive at

\[
\int_0^T \|u_t\|_{H^1}^2 dt \leq C.
\]

Thus the proof of Lemma 4.3 is completed. \(\square\)

Lemma 4.4. It holds that

\[
\sup_{t \in [0,T]} \|\rho_t, P(\rho)_t, \lambda(\rho)_t\|_{H^1}(t) + \int_0^T \|\rho_{tt}, P(\rho)_{tt}, \lambda(\rho)_{tt}\|_2^2 dt \leq C. \tag{4.35}
\]

Proof. From the continuity equation, it holds that \(\rho_t = -u \cdot \nabla \rho - \rho \text{div} u\) and \(\rho_{tt} = -u_t \cdot \nabla \rho - u \cdot \nabla \rho_t - \rho_t \text{div} u - \rho \text{div} u_t\), and thus

\[
\sup_{t \in [0,T]} \|\nabla \rho_t\|_2(t) \leq \sup_{t \in [0,T]} \left[\|\nabla \rho\|_4 \|\nabla u\|_4 + \|\rho\|_\infty \|\nabla^2 \rho\|_2 + \|\rho\|_\infty \|\nabla^2 u\|_2 \right] \leq C. \tag{4.36}
\]

and

\[
\int_0^T \|\rho_{tt}\|_2^2 dt \leq \int_0^T \left[\|u_t\|_2^2 \|\nabla \rho\|_2^2 + \|\rho_t\|_2^2 \|\nabla \rho_t\|_2^2 + \|\rho_t\|_2^2 \|\nabla u\|_2^2 + \|\rho\|_\infty^2 \|\nabla u_t\|_2^2 \right] dt \leq C \int_0^T \left(\|u_t\|_{H^1}^2 + 1 \right) dt \leq C. \tag{4.37}
\]

Similarly, we have

\[
\sup_{t \in [0,T]} \|\nabla (P(\rho)_t, \lambda(\rho)_t)\|_2(t) + \int_0^T \|(P(\rho)_{tt}, \lambda(\rho)_{tt})\|_2^2 dt \leq C. \tag{4.38}
\]

Thus the proof of Lemma 4.4 is completed. \(\square\)
Lemma 4.5. It holds that

$$\sup_{t \in [0,T]} \left[t\|u_t\|_{H^1}^2 + t\|u\|_{H^2}^2 + t\| (\rho_{tt}, P(\rho)_{tt}, \lambda(\rho)_{tt}) \|_{2}^2 + \| (\rho, P(\rho)) \|_{W^{2,2}} \right]$$

$$+ \int_0^T \left[\| \sqrt{\rho} u_t \|_{2}^2(t) + \| u_t \|_{H^2}^2(t) + \| u \|_{H^4}^2 \right] dt \leq C. \quad (4.39)$$

Proof. Now multiplying Eq. (4.26) by u_{tt} and then integrating with respect to x over \mathbb{T}^2 yield that

$$\| \sqrt{\rho} u_{tt} \|_{2}^2(t) + \frac{d}{dt} \int (\mu |\nabla u|^2 + (\mu + \lambda) |\nabla u|^2) \, dx = \frac{1}{2} \int \lambda(\rho)_t |\nabla u|^2 \, dx$$

$$- \int (\nabla P_t + \rho_t u_t + \rho_t u \cdot \nabla u + \rho u \cdot \nabla u_t + \rho u_t \cdot \nabla u) \cdot u_{tt} \, dx + \int \nabla(\lambda(\rho)_t |\nabla u|) \cdot u_{tt} \, dx. \quad (4.40)$$

Note that

$$\int \nabla(\lambda(\rho)_t |\nabla u|) \cdot u_{tt} \, dx = - \int \lambda(\rho)_t \nabla u \cdot u_{tt} \, dx$$

$$= - \frac{d}{dt} \int \lambda(\rho)_t |\nabla u| \, dx + \int (\lambda(\rho)_t |\nabla u| + \lambda(\rho)_{tt} |\nabla u|) \, dx.$$

Substituting the above identity into (4.40) yields that

$$\| \sqrt{\rho} u_{tt} \|_{2}^2(t) + \frac{d}{dt} \int (\mu |\nabla u|^2 + (\mu + \lambda) |\nabla u|^2 + \lambda(\rho)_t |\nabla u|^2) \, dx = \frac{3}{2} \int \lambda(\rho)_t |\nabla u|^2 \, dx$$

$$- \int (\nabla P_t + \rho_t u_t + \rho_t u \cdot \nabla u + \rho u \cdot \nabla u_t + \rho u_t \cdot \nabla u) \cdot u_{tt} \, dx + \int \lambda(\rho)_{tt} |\nabla u| \, dx. \quad (4.41)$$

Note that $\lambda(\rho)$ satisfies the transport equation $\lambda(\rho)_t = - u \cdot \nabla \lambda(\rho) - \rho \lambda'(\rho) \nabla u$, and then it holds that

$$\left| \frac{3}{2} \int \lambda(\rho)_t |\nabla u| \, dx \right| = \left| \frac{3}{2} \int u \cdot \nabla \lambda(\rho)_t |\nabla u| \, dx - \frac{3}{2} \int \rho \lambda'(\rho) \nabla u \cdot u_{tt} \, dx \right|$$

$$= \frac{3}{2} \int \lambda(\rho) \nabla u_t \cdot \nabla u \, dx + \frac{3}{2} \int (\lambda(\rho) - \rho \lambda'(\rho)) \nabla u \cdot u_{tt} \, dx$$

$$\leq C \| \lambda(\rho) \|_{\infty} \| u \|_{2} \| \nabla u \|_{2} \| \nabla(\nabla u) \|_{2} + C \| \lambda(\rho) \|_{\infty} \| \nabla u \|_{\infty} \| \nabla u \|_{2}^2 \leq C \| \nabla u \|_{2} \| \nabla(\nabla u) \|_{2} + C \| \nabla u \|_{\infty} \| \nabla u \|_{2}^2. \quad (4.42)$$

It follows from (4.26) that

$$\mathcal{L}_\rho u_t = \rho u_{tt} + \rho_t u_t + (\rho u_t \cdot \nabla u)_t + \nabla P(\rho)_t + \nabla(\lambda(\rho)_t |\nabla u|).$$

Then the standard elliptic estimates show that

$$\| \nabla^2 u_t \|_{2} \leq C \left(\| \sqrt{\rho} \|_{\infty} \| \sqrt{\rho} u_{tt} \|_{2} + \| \rho_t \|_{4} \| u_t \|_{4} + \| \rho_t \|_{4} \| u \|_{\infty} \| \nabla u \|_{4} + \| \rho \|_{\infty} \| u_t \|_{4} \| \nabla u \|_{4}
$$

$$+ \| pu \|_{\infty} \| \nabla u \|_{2} + \| \nabla P(\rho) \|_{2} \| \nabla u \|_{2} + \| \nabla \lambda(\rho) \|_{2} \| \nabla u \|_{\infty} + \| \lambda(\rho) \|_{4} \| \nabla^2 u \|_{4} \right)$$

$$\leq C \left(\| \sqrt{\rho} u_{tt} \|_{2} + \| u_t \|_{4} + \| \nabla u_t \|_{2} + \| \nabla u \|_{\infty} + \| \nabla^2 u \|_{4} \right)$$

$$\leq C \left(\| \sqrt{\rho} u_{tt} \|_{2} + \| u_t \|_{4} + \| \nabla u_t \|_{2} + \| \nabla u \|_{\infty} + \| \nabla^3 u \|_{2} \right). \quad (4.43)$$

Substituting (4.43) into (4.42) yields that

$$\left| \frac{3}{2} \int \lambda(\rho)_t |\nabla u| \, dx \right| \leq \frac{1}{8} \| \sqrt{\rho} u_{tt} \|_{2}^2 + C(\| \nabla u \|_{\infty} + 1) \| \nabla u_t \|_{2}^2 + C \left(\| u_t \|_{4}^2 + \| \nabla^3 u \|_{2} + \| \nabla u \|_{\infty} \right). \quad (4.44)$$
Collecting all the above estimates and substituting them into (4.41) yield that

\[
- \int \nabla P(\rho)_t \cdot u_{tt} \, dx = \int P(\rho)_t \text{div} u_{tt} \, dx - \int P(\rho)_t \text{div} u_t \, dx - \int P(\rho)_t \text{div} u_t \, dx
\]

while

\[
- \int \rho_t u_t \cdot u_{tt} \, dx = \int \rho_t \left(\frac{|u_t|^2}{2} \right)_t \, dx - \int \rho_t u_t \cdot u_{tt} \, dx.
\]

Moreover, it follows that

\[
- \int \rho_t u \cdot \nabla u \cdot u_{tt} \, dx
\]

\[
= \frac{d}{dt} \int \rho u \cdot \nabla u \cdot u_t \, dx + \int \rho u_t \cdot \nabla u \cdot u_t \, dx + \int \rho u_t \cdot \nabla u \cdot u_t \, dx
\]

\[
\leq \frac{d}{dt} \int \rho u \cdot \nabla u \cdot u_t \, dx + \int \rho u \cdot \nabla u \cdot u_t \, dx + \int \rho u \cdot \nabla u \cdot u_t \, dx
\]

\[
\leq \int \rho u \cdot \nabla u \cdot u_t \, dx + C \left[\|\rho u_t\|_2 \|u_t\|_4 + \|u\|_\infty \|\rho_t\|_4 \|u_t\|_4 \|\nabla u_t\|_2 \right]
\]

\[
\leq C \left[\|\rho u_t\|_2 \|u_t\|_4 + \|u\|_\infty \|\rho_t\|_4 \|u_t\|_4 \|\nabla u_t\|_2 \right]
\]

\[
\leq \frac{1}{8} \|\sqrt{\rho} u_{tt}\|_2^2 + C \left[\|\rho u_t\|_4^2 + \|\nabla u_t\|_4 \right] \}.
\]

Collecting all the above estimates and substituting them into (4.41) yield that

\[
\frac{1}{2} \|\sqrt{\rho} u_{tt}\|_2^2(t) + \frac{d}{dt} G(t)
\]

\[
\leq C \left[\|\rho u_{tt}, P(\rho), \lambda(\rho)\|_2^2 + \|u_t\|_4^2 + \|\nabla u\|_\infty^2 + \|\nabla u\|_\infty^2 + 1 \right] \left(\|\nabla u_t\|_2^2 + 1 \right)
\]

where

\[
G(t) = \int \left(\mu |\nabla u_t|^2 + (\mu + \lambda(\rho)) \text{div} u_t \right. + \lambda(\rho) \text{div} u_t \left. - P(\rho) \text{div} u_t + \rho_t \frac{|u_t|^2}{2} + \rho_t u \cdot \nabla u \cdot u_t \right) \, dx.
\]
Note that
\[\left| \int \lambda(\rho) \mathrm{div} \mathrm{div} u_t \, dx \right| \leq \| \lambda(\rho) \|_4 \| \mathrm{div} u \|_4 \| \mathrm{div} u_t \|_2 \]
\[\leq \frac{\mu}{8} \| \nabla u_t \|_2^2 + C \| \lambda(\rho) \|_4^2 \| \mathrm{div} u \|_4^2 \leq \frac{\mu}{8} \| \nabla u_t \|_2^2 + C, \]
\[- \int P(\rho) \mathrm{div} u_t \, dx \leq \frac{\mu}{8} \| \nabla u_t \|_2^2 + C \| P(\rho) \|_2^2 \leq \frac{\mu}{8} \| \nabla u_t \|_2^2 + C, \]
\[\int \rho_t \frac{|u_t|^2}{2} \, dx = \int \mathrm{div}(\rho u) \frac{|u_t|^2}{2} \, dx = \int \rho u_t \cdot \nabla u_t \cdot u_t \, dx \]
\[\leq \| \sqrt{\rho u_t} \|_2 \| \sqrt{\rho u} \|_\infty \| \nabla u_t \|_2 \| \nabla u \|_2 \]
and
\[\left| \int \rho u_t \cdot \nabla u \cdot u_t \, dx \right| = \left| \int \mathrm{div}(\rho u) (u \cdot \nabla u \cdot u_t) \, dx \right| = \left| \int \rho u \cdot \nabla (u \cdot \nabla u \cdot u_t) \, dx \right| \]
\[\leq \frac{\mu}{8} \| \nabla u_t \|_2 \| \nabla u \|_\infty \| \nabla u_t \|_2 \| \nabla u \|_2 \]
Therefore, it holds that
\[C_1 \| \nabla u_t \|_2^2 - 1 \leq G(t) \leq C (\| \nabla u_t \|_2^2 + 1), \quad (4.54) \]
for some positive constants \(C, C_1 \).

Now from (6.9), we can arrive at
\[\frac{1}{2} \| \sqrt{\rho u_t} \|_2^2(t) + \frac{d}{dt} G(t) \]
\[\leq C \left[\| (\rho_{tt}, P(\rho)_{tt}, \lambda(\rho)_{tt}) \|_2^2 + \| u_t \|_4^2 + \| \nabla^3 u \|_2^2 + (\| \nabla u \|_\infty^2 + 1) (G(t) + 1) \right]. \quad (4.55) \]
Multiplying the above inequality by \(t \) and then integrating the resulting inequality with respect to \(t \) over the interval \([\tau, t_1] \) with \(\tau, t_1 \in [0, T] \) give that
\[\int_{\tau}^{t_1} t \| \sqrt{\rho u_t} \|_2^2(t) \, dt + t_1 G(t_1) \leq C \tau G(\tau) + C \int_{\tau}^{t_1} \left[\| \nabla u \|_\infty^2 + 1 \right] (tG(t) + 1) \, dt \]
\[+ C \int_{\tau}^{t_1} \left[\| (\rho_{tt}, P(\rho)_{tt}, \lambda(\rho)_{tt}) \|_2^2 + \| u_t \|_4^2 + \| \nabla^3 u \|_2^2 + G(t) \right] \, dt. \quad (4.56) \]
It follows from Lemma 4.3 and (4.54) that \(G(t) \in L^1(0, T) \). Thus, due to (6), there exists a subsequence \(\tau_k \) such that
\[\tau_k \to 0, \quad \tau_k G(\tau_k) \to 0, \quad \text{as} \ k \to +\infty. \quad (4.57) \]
Taking \(\tau = \tau_k \) in (4.56), then \(k \to +\infty \) and using the Gronwall's inequality, one gets that
\[\sup_{t \in [0, T]} \left[t \| \nabla u_t \|_2^2(t) \right] + \int_0^T t \| \sqrt{\rho u_t} \|_2^2(t) \, dt \leq C. \quad (4.58) \]
Note that (4.43) implies that
\[\sup_{t \in [0, T]} \left[t \| (\rho_{tt}, P(\rho)_{tt}, \lambda(\rho)_{tt}) \|_2^2(t) \right] + \int_0^T t \| \nabla^2 u_t \|_2^2(t) \, dt \leq C. \quad (4.59) \]
It follows from (3.91) that
\[\nabla (L, H)^t = \nabla u_t - (u \cdot \nabla u). \]
Consequently, it holds that
\[
\sup_{t \in [0,T]} \left[t \| \nabla (L,H)^t \|_{L^2}^2 (t) \right] \leq C,
\] (4.60)
which, together with (3.74), implies that
\[
\sup_{t \in [0,T]} \left[t \| (L,H)^t \|_{L^2}^2 (t) \right] \leq C \sup_{t \in [0,T]} \left[t \| \nabla (L,H)^t \|_{L^2}^2 (t) \right] \leq C.
\] (4.61)
Therefore, it follows that
\[
\sup_{t \in [0,T]} \left[t \| u_t \|_{L^2}^2 (t) \right] \leq C \sup_{t \in [0,T]} \left[t \| (L,H)^t \|_{L^2}^2 (t) + t \| \nabla u \|_{L^2}^2 (t) \right] \leq C.
\] (4.62)
So one can infer further that
\[
\sup_{t \in [0,T]} \left[t \| u_t \|_{H^1}^2 (t) \right] + \int_0^T \| u_t \|_{H^2}^2 (t) dt \leq C.
\] (4.63)
Applying \(\partial_{x_j x_k} \), \(j,k = 1,2 \), to (1.1) gives
\[
(\rho_{x_j x_k})_t + u \cdot \nabla (\rho_{x_j x_k}) + u_{x_j x_k} \cdot \nabla \rho + u_{x_j} \cdot \nabla \rho_{x_j} + u_{x_k} \cdot \nabla \rho_{x_k} + \rho_{x_j x_k} \nabla \rho + u_{x_j} \cdot \nabla \rho_{x_k} + u_{x_k} \cdot \nabla \rho_{x_j} + \rho_{x_k} (\nabla u)_x_{x_j} + \rho (\nabla u)_{x_j x_k} = 0.
\]
Multiplying the above equation by \(q |\nabla^2 \rho|^{q-2} \rho_{x_j x_k} \) with \(q > 2 \) given in Theorem 1.1 and summing over \(j,k = 1,2 \) give that
\[
(\| \nabla^2 \rho \|_{L^q}^q)_t + \text{div}(u \nabla^2 \rho)^{q} + (q-1) \| \nabla^2 \rho \|_{L^q}^q \text{div}u + q |\nabla^2 \rho|^{q-2} \rho_{x_j x_k} \left[u_{x_j x_k} \cdot \nabla \rho + u_{x_j} \cdot \nabla \rho_{x_k} + u_{x_k} \cdot \nabla \rho_{x_j} + \rho_{x_k} (\nabla u)_x_{x_j} + \rho (\nabla u)_{x_j x_k} = 0.
\]
Integrating the above equality with respect to \(x \) over \(\mathbb{T}^2 \) leads to that
\[
\frac{d}{dt} \| \nabla^2 \rho \|_{L^q}^q \leq (q-1) \| \text{div}u \|_\infty \| \nabla^2 \rho \|_{L^q}^q + C q \| \nabla^2 \rho \|_{L^q}^{q-1} \left[\| \nabla \rho \|_{L^q} \| \nabla^2 u \|_{L^q} + \| \nabla u \|_\infty \| \nabla^2 \rho \|_q + \| \rho \|_\infty \| \nabla^3 u \|_q \right] .
\]
Thus one can get
\[
\frac{d}{dt} \| \nabla^2 \rho \|_q \leq C \left[\| \nabla u \|_\infty \| \nabla^2 \rho \|_q + \| \nabla \rho \|_{L^q} \| \nabla^2 u \|_{L^q} + \| \rho \|_\infty \| \nabla^3 u \|_q \right] \leq C \left[\| \nabla u \|_\infty \| \nabla^2 \rho \|_q + \| \nabla^2 u \|_{W^{1,q}} \right],
\] (4.64)
where \(q > 2 \). Similarly, one can obtain
\[
\frac{d}{dt} \| \nabla^2 P \|_q \leq C \left[\| \nabla u \|_\infty \| \nabla^2 P \|_q + \| \nabla^2 u \|_{W^{1,q}} \right].
\] (4.65)
Apply \(\partial_{x_i} \) with \(i = 1,2 \) to the elliptic system \(\mathcal{L}_\rho u = \rho u_t + \rho u \cdot \nabla u + \nabla P(\rho) \) to get
\[
\mathcal{L}_\rho u_{x_i} = -\nabla (\lambda(\rho)_{x_i} \text{div}u) + \rho_{x_i} u_t + \rho u_{x_i t} + \rho_{x_j} \nabla u + \rho u_{x_i} \cdot \nabla u + \rho u \cdot \nabla u_{x_i} + \nabla P(\rho)_{x_j} := \Psi.
\]
Then the standard elliptic regularity estimates imply that
\[
\| \nabla u \|_{W^{2,\alpha}} \leq C \left[\| \nabla u \|_q + \| \Psi \|_q \right] \leq C \left[1 + (\| \nabla u \|_\infty + 1) \| \nabla^2 \rho \|_{L^q} + \| \nabla \rho \|_{L^q} + \| u_t \|_{W^{1,q}} \right] \leq C \left[1 + (\| \nabla u \|_\infty + 1) \| \nabla^2 \rho \|_{L^q} + \| u_t \|_{W^{1,q}} \right].
\] (4.66)
Thus it follows from (4.64), (4.65) and (4.66) that
\[
\frac{d}{dt} \| \nabla^2 \rho, \nabla^2 P \|_q \leq C \left[1 + (\| \nabla u \|_\infty + 1) \| \nabla^2 \rho \|_{L^q} + \| u \|_{H^3} + \| u_t \|_{H^1} + \| \nabla u_t \|_q \right].
\] (4.67)
Note that Lemma 2.2 implies that
\[
\int_0^T \|\nabla u_t\|_q(t) dt \leq C \int_0^T \|\nabla u_t\|_2^{\frac{2}{3}} \|\nabla^2 u_t\|^{1-\frac{2}{3}}(t) dt \\
\leq C \sup_{t \in [0,T]} \left(\sqrt{T} \|\nabla u_t\|_2(t) \right)^{\frac{2}{3}} \int_0^T \left(\sqrt{T} \|\nabla^2 u_t\|_2(t) \right)^{1-\frac{2}{3}} t^{-\frac{2}{3}} dt \\
\leq C \left[\int_0^T t \|\nabla^2 u_t\|_2^2(t) dt + \int_0^T t^{-\frac{2}{3}} dt \right] \leq C.
\]

Therefore, it follows from (4.67) and the Gronwall’s inequality that
\[
\|(\nabla^2 \rho, \nabla^2 P(\rho))\|_q(t) \leq \left(\|(\nabla^2 \rho_0, \nabla^2 P(\rho_0))\|_q \right) e^{C \int_0^t \|\nabla u\|_\infty(s) + 1) ds} \leq C,
\]
which then gives
\[
\sup_{t \in [0,T]} \|(\rho, P(\rho))\|_{W^{2,q}(T^2)} \leq C. \tag{4.69}
\]
So the proof of Lemma 4.5 is completed. \qed

Lemma 4.6. It holds that
\[
\sup_{t \in [0,T]} \left[t^2 \|\sqrt{\rho} u_{tt}\|_2^2(t) + t^2 \|u_t\|_{H^2}^2 + t^2 \|u\|_{W^{3,q}}^2 \right] + \int_0^T t^2 \|\nabla u_{tt}\|_2^2(t) dt \leq C. \tag{4.70}
\]

Proof. Applying \(\partial_t \) to Eq. (4.26) gives that
\[
\rho u_{tt} + \rho u \cdot \nabla u_{tt} - \mathcal{L}_\rho u_{tt} = -\nabla p_{tt} - \rho_{tt}(u_t + u \cdot \nabla u) - 2\rho_t(u_{tt} + u_t \cdot \nabla u + u \cdot \nabla u_t) \\
- 2\rho u_t \cdot \nabla u_t - \rho_{tt} \cdot \nabla u + 2\nabla(\lambda(\rho)_{tt}(\text{div} u_t) + \nabla(\lambda(\rho)_{tt}(\text{div} u)). \tag{4.71}
\]

Multiplying Eq. (4.71) by \(u_{tt} \) and integrating the resulting equation with respect to \(x \) over \(T^2 \) yield that
\[
\frac{1}{2} \frac{d}{dt} \left(t^2 \|\rho u_{tt}\|_2^2 \right) + \int \mu |\nabla u_{tt}|^2 + \left(\mu + \lambda(\rho) \right)(\text{div} u_{tt})^2 dx = \int p_{tt} \text{div} u_{tt} dx \\
- \int \rho_{tt}(u_t + u \cdot \nabla u) \cdot u_{tt} dx - 2 \int \rho_t(u_{tt} + u_t \cdot \nabla u + u \cdot \nabla u_t) \cdot u_{tt} dx - 2 \int \rho u_t \cdot \nabla u_t \cdot u_{tt} dx \\
- \int \rho_{tt} \cdot \nabla u \cdot u_{tt} dx - 2 \int \lambda(\rho)_{tt} \text{div} \lambda(\rho) \text{div} u_{tt} dx - \int \lambda(\rho)_{tt} \text{div} \lambda(\rho) \text{div} u_{tt} dx.
\]

Multiply the above equality by \(t^2 \) to get that
\[
\frac{1}{2} \frac{d}{dt} \left(t^2 \|\rho u_{tt}\|_2^2 \right) - t \int \rho |u_{tt}|^2 dt + t^2 \int \mu |\nabla u_{tt}|^2 + \left(\mu + \lambda(\rho) \right)(\text{div} u_{tt})^2 dt = t^2 \int p_{tt} \text{div} u_{tt} dx \\
- t^2 \rho_{tt}(u_t + u \cdot \nabla u) \cdot u_{tt} dx - 2t^2 \int \rho_t(u_{tt} + u_t \cdot \nabla u + u \cdot \nabla u_t) \cdot u_{tt} dx - 2t^2 \int \rho u_t \cdot \nabla u_t \cdot u_{tt} dx \\
- t^2 \int \rho_{tt} \cdot \nabla u \cdot u_{tt} dx - 2t^2 \int \lambda(\rho)_{tt} \text{div} \lambda(\rho) \text{div} u_{tt} dx - t^2 \int \lambda(\rho)_{tt} \text{div} \lambda(\rho) \text{div} u_{tt} dx := \sum_{i=1}^7 I_i. \tag{4.72}
\]
Clearly,
\[
|I_1| \leq \alpha t^2 \|\text{div} u_{tt}\|_2^2 + C \alpha t^2 \|P_{tt}\|_2^2.
\]
Now we estimate \(I_2 \), which is a little more delicate due to the absence of estimates for \(u_{tt} \). First, rewrite \(I_2 \) as

\[
I_2 = t^2 \int \text{div}(\rho u) t(L, H)^t \cdot u_{tt} \, dx = -t^2 \int (\rho u) t \cdot \nabla [(L, H)^t \cdot u_{tt}] \, dx
= -t^2 \int \rho u t \cdot \nabla [(L, H)^t \cdot u_{tt}] \, dx - t^2 \int \rho u \cdot \nabla u_{tt} \cdot (L, H)^t \cdot u_{tt} \, dx
= -t^2 \int \rho u t \cdot \nabla [(L, H)^t \cdot u_{tt}] \, dx - t^2 \int \rho u \cdot \nabla u_{tt} \cdot (L, H)^t \cdot u_{tt} \, dx
- t^2 \int \rho u \cdot \nabla [u \cdot \nabla (L, H)^t \cdot u_{tt}] \, dx := I_{21} + I_{22} + I_{23}
\]

where the superscript \(^t \) means the transpose of the vector \((L, H) \).

Now, direct estimates yields that

\[
|I_{21}| \leq t^2 \|\sqrt{\rho u_{tt}}\|_2 \|\sqrt{\rho}\|_\infty \|u_t\|_\infty \|\nabla (L, H)^t\|_2 + t^2 \|\rho\|_\infty \|\nabla u_{tt}\|_2 \|u_t\|_4 \|\nabla (L, H)^t\|_4
\leq Ct^2 \left[\|\sqrt{\rho u_{tt}}\|_2 \|u_t\|_H^2 \|\nabla (L, H)^t\|_2 + \|\nabla u_{tt}\|_2 \|u_t\|_{H^1} \|\nabla (L, H)^t\|_2 \right]
\leq \alpha t^2 \|\nabla u_{tt}\|_2^2 + C\alpha t^2 \left[\|\sqrt{\rho u_{tt}}\|_2^2 \|\nabla (L, H)^t\|_2^2 + \|u_t\|_{H^2}^2 + \|\nabla (L, H)^t\|_2^2 \right]
\leq \alpha t^2 \|\nabla u_{tt}\|_2^2 + C\alpha \left[t^2 \|\sqrt{\rho u_{tt}}\|_2^2 \|\nabla (L, H)^t\|_2^2 + t^2 \|u_t\|_{H^2}^2 + \|\nabla (L, H)^t\|_2^2 \right]
\]

(4.73)

where in the last inequality one has used Lemma 4.5.

Similarly, one can obtain

\[
|I_{22}| \leq t^2 \|\nabla u_{tt}\|_2 \|u_t\|_\infty \|\rho t\|_4 \|\nabla (L, H)^t\|_4 \leq \alpha t^2 \|\nabla u_{tt}\|_2^2 + C\alpha t^2 \|\rho t\|_{H^1} \|\nabla (L, H)^t\|_2^2 \leq \alpha t^2 \|\nabla u_{tt}\|_2^2 + C\alpha \|\nabla (L, H)^t\|_2^2
\]

(4.74)

and

\[
|I_{23}| \leq t^2 \left[\|\sqrt{\rho u_{tt}}\|_2 \|\sqrt{\rho u}_{\infty} \| \|u\|_\infty \|\nabla (L, H)^t\|_2 \right]
\leq \alpha t^2 \|\nabla u_{tt}\|_2^2 + C\alpha \left[t^2 \|\sqrt{\rho u_{tt}}\|_2^2 \|\nabla (L, H)^t\|_2^2 + t^2 \|u_t\|_{H^2}^2 + \|\nabla (L, H)^t\|_2^2 \right]
\]

(4.75)

Continuing, using the lemmas obtained so far, one can get that

\[
|I_3| \leq t^2 \left[\|\sqrt{\rho u}\|_{\infty} \|\nabla u_{tt}\|_2 \|\sqrt{\rho u}_{\infty} \| \|u_t\|_{\infty} \|\nabla u_{tt}\|_2 (\|u_t \cdot \nabla u\|_2 + \|u \cdot \nabla u_t\|_2)
\right.
\leq \alpha t^2 \|\nabla u_{tt}\|_2^2 + C\alpha \left[t^2 \|\sqrt{\rho u_{tt}}\|_2^2 + t^2 \|u_t\|_{H^1}^2 (\|\nabla^3 u\|_2^2 + 1) + \|u_t\|_{H^2}^2 \right],
\]

(4.76)

\[
|I_4| \leq t^2 \|\sqrt{\rho u_{tt}}\|_2 \|\nabla u_t\|_H \|\nabla u\|_4
\leq Ct^2 \|\sqrt{\rho u_{tt}}\|_2 \|u_t\|_H \|\nabla u\|_4 \leq Ct^2 \|\sqrt{\rho u_{tt}}\|_2^2 + C\alpha t^2 \|\nabla^2 u\|_2^2,
\]

(4.77)

\[
|I_5| \leq Ct^2 \|\sqrt{\rho u_{tt}}\|_2^2 \|\nabla u_t\|_H
\]

(4.78)

and

\[
|I_6| \leq t^2 \|\text{div} u_{tt}\|_2 \|\lambda (\rho t)\|_4 \|\nabla u_t\|_4 \leq \alpha t^2 \|\text{div} u_{tt}\|_2^2 + C\alpha t^2 \|\nabla^2 u\|_2^2
\]

(4.79)

\[
|I_7| \leq t^2 \|\text{div} u_{tt}\|_2 \|\lambda (\rho t)\|_2 \|\nabla u\|_\infty \leq C\alpha t^2 \|\nabla u_{tt}\|_2^2 + C\alpha t^2 \|\lambda (\rho t)\|_2^2 \|u\|_{H^3}^2.
\]

(4.80)

Substituting the above estimates on \(I_i \) (\(i = 1, 2, \ldots, 7 \)) into (4.72) and then integrating the resulting inequality with respect \(\tau \) over \([\tau, t_1]\) with \(\tau, t_1 \in [0, T] \) give that

\[
t^2 \|\sqrt{\rho u_{tt}}(t_1)\|_2^2 + \int_\tau^{t_1} t^2 \|\nabla u_{tt}\|_2^2 \, dt \leq C + C\tau^2 \|\sqrt{\rho u_{tt}}(\tau)\|_2^2.
\]

(4.81)
Since \(t\sqrt{\rho_{tt}} \in L^2([0, T] \times \mathbb{T}^2) \) due to Lemma 4.5, there exists a subsequence \(\tau_k \) such that
\[
\tau_k \to 0, \quad \tau_k^2 \| \sqrt{\rho_{tt}}(\tau_k) \|^2 \to 0, \quad \text{as } k \to +\infty.
\] (4.82)
Letting \(\tau = \tau_k \) in (4.81) and \(k \to +\infty \), one gets that
\[
t^2 \| \sqrt{\rho_{tt}}(t) \|^2 + \int_0^t s^2 \| \nabla u_{tt}(s) \|^2 dt \leq C.
\] (4.83)
By (4.43), it holds that
\[
\sup_{t \in [0, T]} \left[t^2 \| \nabla^2 u_t \|^2(t) \right] \leq C \sup_{t \in [0, T]} \left[t^2 \| \sqrt{\rho_{tt}} \|^2(t) + t^2 \| u_t \|^2_{H^1} + t^2 \| u_t \|^2_{H^3} + 1 \right] \leq C.
\] (4.84)
Finally, by (4.66), we can obtain
\[
\sup_{t \in [0, T]} \left[t^2 \| \nabla u_t \|^2_{W^{2, q}(t)} \right] \leq C \sup_{t \in [0, T]} \left[t^2 \| u_t \|^2_{H^1} + t^2 \| u_t \|^2_{H^3} + 1 \right] \leq C.
\] (4.85)
So the proof of Lemma 4.6 is completed.

\[\square \]

5. The Proof of Theorem 1.1

With the uniform-in-\(\delta \) bounds of the solution \((\rho^\delta, u^\delta) \) in Lemmas 3.1–3.7 and Lemma 4.1–4.6, one can prove the convergence of the sequence \((\rho^\delta, u^\delta) \) to a limit \((\rho, u) \) satisfying the same bounds as \((\rho^\delta, u^\delta) \) as \(\delta \) tends to zero and the limit \((\rho, u) \) is a unique solution to the original problem (1.1)–(1.4). The details are omitted for brevity and one can refer to Cho and Kim [7] for the routine proofs. In the following, we will show that \((\rho, u) \) satisfy the bounds in Theorem 1.1 and \((\rho, u) \) is a classical solution to (1.1). Since \(u \in L^2(0, T; H^3(\mathbb{T}^2)) \) and \(u_t \in L^2(0, T; H^1(\mathbb{T}^2)) \), so the Sobolev’s embedding theorem implies that
\[
u \in C([0, T]; H^1(\mathbb{T}^2)) \hookrightarrow C([0, T] \times \mathbb{T}^2).
\]
Then it follows from \(\rho, P(\rho) \in L^\infty(0, T; W^{2, q}(\mathbb{T}^2)) \) and \(\rho, P(\rho) \in L^\infty(0, T; H^1(\mathbb{T}^2)) \) that \((\rho, P(\rho)) \in C([0, T]; W^{1, q}(\mathbb{T}^2)) \cap C([0, T]; W^{2, q}(\mathbb{T}^2) – \text{weak}) \). This and (4.68) then imply that
\[
(\rho, P(\rho)) \in C([0, T]; W^{2, q}(\mathbb{T}^2)).
\]
Since for any \(\tau \in (0, T) \),
\[
(\nabla u, \nabla^2 u) \in L^\infty(\tau, T; W^{1, q}(\mathbb{T}^2)), \quad (\nabla u_t, \nabla^2 u_t) \in L^\infty(\tau, T; L^2(\mathbb{T}^2)).
\]
Therefore,
\[
(\nabla u, \nabla^2 u) \in C([\tau, T] \times \mathbb{T}^2),
\]
Due to the fact that
\[
(\nabla(\rho, P(\rho)) \in C([0, T]; W^{1, q}(\mathbb{T}^2)) \hookrightarrow C([0, T] \times \mathbb{T}^2)
\]
and the continuity equation (1.1)_1, it holds that
\[
\rho_t = u \cdot \nabla \rho + \rho \text{div} u \in C([\tau, T] \times \mathbb{T}^2).
\]

It follows from the momentum equation (1.1)_2 that
\[
(\rho u)_t = L_\rho u - \text{div}(\rho u \otimes u) - \nabla P(\rho)
= \mu \Delta u + (\mu + \lambda(\rho)) \nabla(\text{div} u) + (\text{div} u) \nabla \lambda(\rho) + \rho u \cdot \nabla u + \rho \text{div} u + (u \cdot \nabla \rho) u - \nabla P(\rho)
\in C([\tau, T] \times \mathbb{T}^2).
\]
Thus we completed the proof of Theorem 1.1.
6. The Proof of Theorem 1.2

Based on Theorem 1.1, one can prove Theorem 1.2 easily as follows. Since
\[\rho_0 \in H^3(\mathbb{T}^2) \hookrightarrow W^{2,q}(\mathbb{T}^2) \]
for any \(2 < q < +\infty \), it follows that under the conditions of Theorem 1.2, Theorem 1.1 holds for any \(2 < q < +\infty \). Thus, we need only to prove the higher order regularity presented in Theorem 1.2.

Lemma 6.1. It holds that
\[\sup_{t \in [0, T]} \left[\| \sqrt{\rho} \nabla^3 u \|_2(t) + \| (\rho, P(\rho), \xi(\rho)) \|_{H^2}(t) \right] + \int_0^T \| u \|_{H^4}^2 \, dt \leq C. \]

Proof. Applying \(\partial_{x_j x_k} \), \(j, k = 1, 2 \), to (4.25) yields that
\[\rho u_{x_j x_k} + \rho u \cdot \nabla u_{x_j x_k} + \rho u_{x_j} u_{x_k} + \rho u_{x_j t} + \rho u_{x_k} u_{x_j} + \rho u_{x_k} u \cdot \nabla u = \rho u_{x_k} \cdot \nabla u_{x_j x_k} \]
\[+ \nabla P(\rho) \cdot u_{x_j x_k} = \mu \Delta u_{x_j x_k} \]
\[+ \nabla ((\mu + \lambda(\rho)) \div u)_{x_j x_k}. \] (6.1)

Then multiplying (6.1) by \(\Delta u_{x_j x_k} \) and integrating with respect to \(x \) over \(\mathbb{T}^2 \) imply that
\[\int \left[\| \Delta u_{x_j x_k} \|^2 + \nabla ((\mu + \lambda(\rho)) \div u)_{x_j x_k} \cdot \Delta u_{x_j x_k} \right] \, dx = \int \left[\rho u_{x_j x_k} + \rho u \cdot \nabla u_{x_j x_k} \right] \cdot \Delta u_{x_j x_k} \, dx \]
\[+ \int \left[\rho u_{x_j x_k} + \rho u_{x_k} u_{x_j} + \rho u_{x_j} u_{x_k} + \rho u_{x_j t} + \rho u_{x_k} u \cdot \nabla u = \rho u_{x_k} \cdot \nabla u_{x_j x_k} \right] \cdot \Delta u_{x_j x_k} \, dx. \] (6.2)

Integrations by part several times yield
\[\int \left[\rho u_{x_j x_k} + \rho u \cdot \nabla u_{x_j x_k} \right] \cdot \Delta u_{x_j x_k} \, dx \]
\[= - \int \left[\rho \left(\frac{\nabla u_{x_j x_k}}{2} \right)_t + \rho u \cdot \nabla \left(\frac{\nabla u_{x_j x_k}}{2} \right) \right] \, dx \]
\[+ 2 \int \left[\rho_{x_j} u_{x_k} \cdot \nabla u_{x_j x_k} + \rho_{x_k} u_{x_j} \cdot \nabla u_{x_j x_k} \right] \, dx \] (6.3)

and
\[\int \nabla ((\mu + \lambda(\rho)) \div u)_{x_j x_k} \cdot \Delta u_{x_j x_k} \, dx \]
\[= \int \left[(\mu + \lambda(\rho)) \nabla (\div u)_{x_j x_k} + \lambda(\rho)_{x_j} \nabla (\div u)_{x_k} + \lambda(\rho)_{x_k} \nabla (\div u)_{x_j} \right] \, dx. \] (6.4)

Then substituting (6.3) and (6.4) into (6.2), summing over \(j, k = 1, 2 \) and using the Cauchy and Young inequalities and the estimates in Sects. 3 and 4, one has
\[\frac{d}{dt} \| \sqrt{\rho} \nabla^2 u \|_2^2 + 2\mu \| \nabla^2 u \|_2^2(t) \leq C \left[\| u \|_{H^3}^2 + 1 \right] \left[\| \sqrt{\rho} \nabla^3 P(\rho), \nabla^3 \lambda(\rho) \|_2^2 + 1 \right]. \] (6.5)
Next, applying \(\partial_{x_i,x_j,x_k}, i, j, k = 1, 2 \), to (1.1) gives

\[
\rho_{x_i,x_j,x_k} + \partial_{x_i,x_j,x_k} (\text{div}(pu)) = 0. \tag{6.6}
\]

Multiplying (6.6) by \(\rho_{x_i,x_j,x_k} \) and summing over \(i, j, k = 1, 2 \) and then integrating with respect to \(x \) over \(\mathbb{T}^2 \), one gets that

\[
\frac{d}{dt} \| \nabla^3 \rho \|^2 \leq C \| \nabla^3 \rho \|^2 \left[\| \nabla \rho \|_{\infty} \| \nabla^3 u \|^2 + \| \nabla^2 u \|_4 \| \nabla^2 \rho \|_4 + \| \nabla u \|_{\infty} \| \nabla^3 \rho \|^2 + \| \rho \|_{\infty} \| \nabla^4 u \|^2 \right]
\leq C \| \nabla^3 \rho \|^2 \left[\| \nabla^3 u \|^2 + \| \nabla u \|_{\infty} \| \nabla^3 \rho \|^2 + \| \rho \|_{\infty} \| \nabla^2 \Delta u \|_2 \right]
\leq \alpha \| \nabla^2 \Delta u \|^2 + C_{\alpha} (\| u \|_{H^3} + 1) \| \nabla^2 \rho \|^2, \tag{6.7}
\]

where \(\alpha > 0 \) is a constant to be determined. Similarly, one can obtain

\[
\frac{d}{dt} \| (\nabla^3 P(\rho), \nabla^3 \lambda(\rho)) \|^2 \leq \alpha \| \nabla^2 \Delta u \|^2 + C_{\alpha} (\| u \|_{H^3} + 1) \| (\nabla^3 P(\rho), \nabla^3 \lambda(\rho)) \|^2. \tag{6.8}
\]

Let \(\alpha = \frac{\mu}{3} \). It follows from inequalities (6.5), (6.7) and (6.8), that

\[
\frac{d}{dt} \| (\sqrt{\rho} \nabla^3 u, \nabla^3 (P(\rho), \nabla^3 \lambda(\rho))) \|^2 \left[(\| u \|^2_{H^3} + 1) \| (\nabla^3 P(\rho), \nabla^3 \lambda(\rho)) \|^2 + 1 \right]. \tag{6.9}
\]

Then integrating (6.9) over \([0,t]\) and using the Gronwall’s inequality lead to that

\[
\sup_{t \in [0,T]} \left[\| \sqrt{\rho} \nabla^3 u \|^2 + \| \nabla^3 (P(\rho), \lambda(\rho)) \|^2 \right] + \int_0^T \| \nabla^2 \Delta u \|^2 dt \leq C.
\]

So the proof of Lemma 6.1 is completed.

Now we prove other higher regularities presented in (1.9) of Theorem 1.2. It follows easily from (6.9) and (1.7) that for any \(t_1, t_2 \in [0,T] \),

\[
\| \sqrt{\rho} \nabla^3 u \|^2(t_1) - \| \sqrt{\rho} \nabla^3 u \|^2(t_2) \to 0, \tag{6.10}
\]

as \(t_1 \to t_2 \).

Thanks to Theorem 1.1, one has

\[
\rho \in C([0,T]; H^2(\mathbb{T}^2)) \to C([0,T] \times \mathbb{T}^2). \tag{6.11}
\]

It holds that

\[
\left\| \rho \nabla^3 u \right\|^2(t_1) - \left\| \rho \nabla^3 u \right\|^2(t_2) = \int \rho^2 |\nabla^3 u|^2(t_1, x) dx - \int \rho^2 |\nabla^3 u|^2(t_2, x) dx
\leq \left| \int \rho(t_1, x) \left[\rho \nabla^2 u^2(t_1, x) - \rho \nabla^2 u^2(t_2, x) \right] dx \right| + \left| \int \rho \nabla^3 u^2(t_2, x) \left[\rho(t_1, x) - \rho(t_2, x) \right] dx \right|
\leq \sup_{[0,T] \times \mathbb{T}^2} \rho(t, x) \left| \int \left[\rho \nabla^3 u^2(t_1, x) - \rho \nabla^3 u^2(t_2, x) \right] dx \right|
\leq C \left[\int \rho \left| \nabla^3 u^2(t_1, x) dx - \int \rho \left| \nabla^3 u^2(t_2, x) dx \right| + \sup_{x \in \mathbb{T}^2} |\rho(t_1, x) - \rho(t_2, x)| \right]
\to 0, \text{ as } t_1 \to t_2,
\]

where one has used (6.10) and (6.11).

Moreover, due to the facts that \(\rho \nabla^3 u \in L^\infty([0,T]; L^2(\mathbb{T}^2)), \rho \in C([0,T]; H^2(\mathbb{T}^2)) \) and \(u \in C([0,T]; H^3(\mathbb{T}^2)) \), it follows that \(pu \in C([0,T]; H^3 - w) \) which means that \(pu \) is weakly continuous with values in \(H^3(\mathbb{T}^2) \). This, together with (6.12), leads to

\[
\rho \nabla^3 u \in C([0,T]; L^2(\mathbb{T}^2)). \tag{6.13}
\]
In a similar way, one can prove that

\[(\rho, P(\rho)) \in C([0, T]; H^3(\mathbb{T}^2)) \hookrightarrow C([0, T]; C^1(\mathbb{T}^2)).\] (6.14)

Moreover, since \(u \in C([0, T]; H^3(\mathbb{T}^2))\) by Theorem 1.1 and \(\rho \in C([0, T]; H^3(\mathbb{T}^2))\) by (6.14), one can prove that for any \(t_1, t_2 \in [0, T]\),

\[\|\nabla^3 \rho u(t_1, \cdot) - \nabla^3 \rho u(t_2, \cdot)\|_2^2 \to 0,\] (6.15)

\[\|\nabla \rho \nabla^2 u(t_1, \cdot) - \nabla \rho \nabla^2 u(t_2, \cdot)\|_2^2 \to 0,\] (6.16)

\[\|\nabla^2 \rho \nabla u(t_1, \cdot) - \nabla^2 \rho \nabla u(t_2, \cdot)\|_2^2 \to 0\] (6.17)

respectively as \(t_1 \to t_2\). In fact, to prove (6.17), one has

\[
\int |\nabla^2 \rho \nabla u(t_1, x) - \nabla^2 \rho \nabla u(t_2, x)|^2 \, dx
\leq \int |\nabla^2 \rho(t_1, x) - \nabla^2 \rho(t_2, x)|^2 |\nabla u(t_1, x)|^2 \, dx + \int |\nabla^2 \rho(t_2, x)|^2 |\nabla u(t_1, x) - \nabla u(t_2, x)|^2 \, dx
\leq C(\|\nabla^2 \rho(t_1, \cdot) - \nabla^2 \rho(t_2, \cdot)\|^2_2 + \|\nabla^2 \rho\|^2_4 \|\nabla u(t_1, \cdot) - \nabla u(t_2, \cdot)\|^2_4)
\leq C(\|\nabla^2 \rho(t_1, \cdot) - \nabla^2 \rho(t_2, \cdot)\|^2_2 + \|\nabla^2 u(t_1, \cdot) - \nabla^2 u(t_2, \cdot)\|^2_2) \to 0,
\]

as \(t_1 \to t_2\). Similarly, (6.15) and (6.16) can be proved. In view of (6.13) and (6.15)–(6.17), we have proved that

\[\rho u \in C([0, T]; H^3(\mathbb{T}^2)).\] (6.18)

The proof of Theorem 1.2 is completed.

Acknowledgments. Parts of this work were done when Y. Wang was a postdoctoral fellow at the IMS of Chinese University of Hong Kong during the academic year 2010-2011; Q.S. Jiu was visiting the IMS of The Chinese University of Hong Kong, and when Q.S. Jiu and Z.P. Xin were visiting the IMS of National University of Singapore. The authors would like to thank these institutions for their supports and hospitality.

References

[1] Beal, J., Kato, T., Majda, A.: Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Commun. Math. Phys. 94, 61–66 (1984)

[2] Bresch, D., Desjardins, B.: Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model. Commun. Math. Phys. 238(1-2), 211–223 (2003)

[3] Bresch, D., Desjardins, B., Lin, C.-K.: On some compressible fluid models: Korteweg, lubrication, and shallow water systems. Commun. Partial Differ. Equ. 28(3-4), 843–868 (2003)

[4] Bresch, D., Desjardins, B.: On the construction of approximate solutions for the 2D viscous shallow water model and for compressible Navier–Stokes models. J. Math. Pures Appl. 86, 362–368 (2006)

[5] Bresch, D., Desjardins, B., Gerard-Varet, D.: On compressible Navier–Stokes equations with density dependent viscosities in bounded domains. J. Math. Pures Appl. 87(2), 227–235 (2007)

[6] Cho, Y., Choe, H.J., Kim, H.: Unique solvability of the initial boundary value problems for compressible viscous fluid. J. Math. Pures Appl. 83, 243–275 (2004)

[7] Choe, H., Kim, H.: Existence results for viscous polytropic fluids with vacuum. J. Differ. Equ. 228, 377–411 (2006)

[8] Cho, Y., Kim, H.: On classical solutions of the compressible Navier–Stokes equations with nonnegative initial densities. Manuscr. Math. 120, 91–129 (2006)

[9] Danchin, R.: Global existence in critical spaces for compressible Navier–Stokes equations. Invent. Math. 141, 579–614 (2000)

[10] Desjardins, B.: Regularity of weak solutions of the compressible isentropic Navier–Stokes equations. Commun. Partial Differ. Equ. 22, 977–1008 (1997)

[11] Ding, S.J., Wen, H.Y., Zhu, C.J.: Global classical large solutions to 1D compressible NavierStokes equations with density-dependent viscosity and vacuum. J. Differ. Equ. 251, 1696–1725 (2011)

[12] Ding, S.J., Wen, H.Y., Yao, L., Zhu, C.J.: Global classical spherically symmetric solution to compressible Navier–Stokes equations with large initial data and vacuum. http://arxiv.org/abs/1103.1429
[13] Fan, J., Jiang, S.: Blow-up criteria for the Navier–Stokes equations of compressible fluids. J. Hyper. Differ. Equ. 5(1), 167–185 (2008)
[14] Fang, D.Y., Zi, R.Z., Zhang, T.: A blow-up criterion for two dimensional compressible viscous heat-conductive flows. http://arxiv.org/abs/1107.4663
[15] Feireisl, E.: Dynamics of Viscous Compressible Fluids. Oxford University Press, Oxford (2004)
[16] Gamba, I.M., Morawetz, C.S.: A viscous approximation for a 2D steady semiconductor or transonic gas dynamic flow: Existence theorem for potential flow. Commun. Pure Appl. Math. 49(10), 999–1049 (1996)
[17] Gerbeau, J.F., Perthame, B.: Derivation of viscous Saint-Venant system for laminar shallow water; numerical validation. Discrete Contin. Dyn. Syst. (Ser. B) 1, 89–102 (2001)
[18] Guo, Z.H., Jiu, Q.S., Xin, Z.P.: Spherically symmetric isentropic compressible flows with density-dependent viscosity coefficients. SIAM J. Math. Anal. 39(5), 1402–1427 (2008)
[19] Hoff, D.: Discontinuous solution of the Navier–Stokes equations for multi-dimensional heat-conducting fluids. Arch. Ration. Mech. Anal. 193, 303–354 (1997)
[20] Hoff, D.: Compressible flow in a half-space with Navier boundary conditions. J. Math. Fluid Mech. 7(3), 315–338 (2005)
[21] Hoff, D., Smoller, J.: Non-formation of vacuum states for compressible Navier–Stokes equations. Commun. Math. Phys. 216(2), 255–276 (2001)
[22] Huang, X.D., Li, J.: Global classical and weak solutions to the three-dimensional full compressible Navier–Stokes system with vacuum and large oscillations. http://arxiv.org/abs/1107.4655
[23] Huang, X.D., Li, J., Xin, Z.P.: Blowup criterion for viscous barotropic flows with vacuum states. Commun. Math. Phys. 301(1), 23–35 (2011)
[24] Huang, X.D., Li, J., Xin, Z.P.: Serrin type criterion for the three-dimensional compressible flows. SIAM. J. Math. Anal. 43, 1872–1886 (2011)
[25] Huang, X.D., Li, J., Xin, Z.P.: Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier–Stokes equations. Commun. Pure Appl. Math. 65, 549–585 (2012)
[26] Huang, X.D., Xin, Z.P.: A blow-up criterion for classical solutions to the compressible Navier–Stokes equations. Sci. China 53(3), 671–686 (2010)
[27] Itaya, N.: On the Cauchy problem for the system of fundamental equations describing the movement of compressible viscous fluids. Kodai Math. Sem. Rep. 23, 60–120 (1971)
[28] Jiang, S.: Global smooth solutions of the equations of a viscous, heat-conducting one-dimensional gas with density-dependent viscosity. Math. Nachr. 190, 169–183 (1998)
[29] Jiang, S., Xin, Z.P., Zhang, P.: Global weak solutions to 1D compressible isentropy Navier–Stokes with density-dependent viscosity. Methods Appl. Anal. 12(3), 239–252 (2005)
[30] Jiang, S., Zhang, P.: Global spherically symmetric solutions of the compressible isentropic Navier–Stokes equations. Commun. Math. Phys. 215, 559–581 (2001)
[31] Jiu, Q.S., Wang, Y., Xin, Z.P.: Stability of rarefaction waves to the 1D compressible Navier–Stokes equations with density-dependent viscosity. Commun. Partial Differ. Equ. 36, 602–634 (2011)
[32] Jiu, Q.S., Wang, Y., Xin, Z.P.: Vaccum behaviors around the rarefaction waves to the 1D compressible Navier–Stokes equations with density-dependent viscosity. SIAM J. Math. Anal. 45, 3194–3228 (2013)
[33] Jiu, Q.S., Xin, Z.P.: The Cauchy problem for 1D compressible flows with density-dependent viscosity coefficients. Kinet. Relat. Models 1(2), 313–330 (2008)
[34] Kanel, J.I.: A model system of equations for the one-dimensional motion of a gas (in Russian). Differ. Ugv. 4, 721–734 (1968)
[35] Kazhikhov, A.V., Shelukhin, V.V.: Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas. J. Appl. Math. Mech. 41, 273–282 (1977) [translated from Prikl. Mat. Mech. 41, 282–291 (1977)]
[36] Li, J., Zhang, J.W., Zhao, J.N.: On the motion of three-dimensional compressible isentropic Navier–Stokes equations. Commun. Pure Appl. Math. 61, 89–102 (2008)
[37] Lions, P.L.: Mathematical Topics in Fluid Dynamics, vol. 2, Compressible Models. Oxford Science Publication, Oxford (1998)
[38] Lions, P.L.: Mathematical Topics in Fluid Dynamics, vol. 2, Compressible Models. Oxford Science Publication, Oxford (1998)
[39] Liu, T.P., Smoller, J.: On the vacuum state for the isentropic gas dynamics equations. Adv. Appl. Math. 1(4), 345–359 (1980)
[40] Liu, T.P., Xin, Z.P., Yang, T.: Vacuum states of compressible flow. Discrete Contin. Dyn. Syst. 4, 1–32 (1998)
[41] Luo, Z.: Local existence of classical solutions to the two-dimensional viscous compressible flows with vacuum. Commun. Math. Sci. (2011, to appear)
[42] Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20, 67–104 (1980)
[43] Mellet, A., Vasseur, A.: On the barotropic compressible Navier–Stokes equation. Commun. Partial Differ. Equ. 32(3), 431–452 (2007)
[44] Mellet, A., Vasseur, A.: Existence and uniqueness of global strong solutions for one-dimensional compressible Navier–Stokes equations. SIAM J. Math. Anal. 39(4), 1344–1365 (2008)
[45] Nash, J.: Le problème de Cauchy pour les équations différentielles d’un fluide général. Bull. Soc. Math. Fr. 99, 487–497 (1962)
Novotny, A., Straškraba, I.: Introduction to the mathematical theory of compressible flow, Oxford Lecture Ser. Math. Appl., vol. 27. Oxford University Press, Oxford (2004)

Rozanova, O.: Blow up of smooth solutions to the compressible Navier–Stokes equations with the data highly decreasing at infinity. J. Differ. Equ. 245, 1762–1774 (2008)

Stráskraba, I., Zlotnik, A.: Global properties of solutions to 1D viscous compressible barotropic fluid equations with density dependent viscosity. Z. Angew. Math. Phys. 54(4), 593–607 (2003)

Sun, Y.Z., Wang, C., Zhang, Z.F.: A Beale-Kato-Majda blow-up criterion for the 3-D compressible Navier–Stokes equations. J. Math. Pures Appl. 95, 36–47 (2011)

Sun, Y.Z., Wang, C., Zhang, Z.F.: A Beale–Kato–Majda criterion for three dimensional compressible viscous heat-conductive flows. Arch. Ration. Mech. Anal. 201(2), 727–742 (2011)

Tani, A.: On the first initial-boundary value problem of compressible viscous fluid motion. Publ. Res. Inst. Math. Sci. Kytt Univ. 13, 193–253 (1971)

Vaigant, V.A., Kazhikhov, A.V.: On the existence of global solutions of two-dimensional Navier–Stokes equations of a compressible viscous fluid. (Russian) Sibirsk. Mat. Zh., 36 (1995), no. 6, 1283–1316, ii; translation in Siberian Math. J., 36, no. 6, 1108-1141 (1995)

Xin, Z.P.: Blow-up of smooth solution to the compressible Navier–Stokes equations with compact density. Commun. Pure Appl. Math. 51, 229–240 (1998)

Yang, T., Yao, Z.A., Zhu, C.J.: Compressible Navier–Stokes equations with density-dependent viscosity and vacuum. Commun. Partial Differ. Equ. 26(5–6), 965–981 (2001)

Yang, T., Zhu, C.J.: Compressible Navier–Stokes equations with degenerate viscosity coefficient and vacuum. Commun. Math. Phys. 230(2), 329–363 (2002)

Zhang, T., Fang, D.Y.: Compressible flows with a density-dependent viscosity coefficient. SIAM J. Math. Anal. 41(6), 2453–2488 (2009/2010)

Quansen Jiu
School of Mathematical Sciences
Capital Normal University and Beijing Center of Mathematics and Information Sciences
Beijing 100048, People’s Republic of China
e-mail: jiuqs@mail.cnu.edu.cn

Zhouping Xin
The Institute of Mathematical Sciences
Chinese University of Hong Kong
Shatin, N. T., Hong Kong
e-mail: zpxin@ims.cuhk.edu.hk

Yi Wang
Institute of Applied Mathematics
AMSS, CAS, Beijing 100190
People’s Republic of China
and
Beijing Center of Mathematics and Information Sciences
Beijing 100048, People’s Republic of China
e-mail: wangyi@amss.ac.cn

(accepted: February 17, 2014; published online: March 23, 2014)