Maximal graphs with respect to rank

H. Esmailiana,b E. Ghorbania,b,* S. Hossein Ghorbanc G.B. Khosrovshahib

aDepartment of Mathematics, K. N. Toosi University of Technology, P. O. Box 16765-3381, Tehran, Iran
bSchool of Mathematics, Institute for Research in Fundamental Sciences (IPM), P. O. Box 19395-5746, Tehran, Iran
cSchool of Computer Science, Institute for Research in Fundamental Sciences (IPM), P. O. Box 19395-5746, Tehran, Iran

\{h.esmailian, e.ghorbani, s.hosseinghorban, rezagbk\}@ipm.ir

March 21, 2019

Abstract

The rank of a graph is defined to be the rank of its adjacency matrix. A graph is called reduced if it has no isolated vertices and no two vertices with the same set of neighbors. A reduced graph \(G \) is said to be maximal if any reduced graph containing \(G \) as a proper induced subgraph has a higher rank. In this paper, we present (1) a characterization of maximal trees (that is induced trees which are not a proper subtree of a reduced tree with the same rank); (2) a construction of two new families of maximal graphs; (3) an enumeration of all maximal graphs with rank up to 9.

Keywords: Adjacency matrix, Rank, Reduced graph, Maximal graph, Maximal tree.

AMS Mathematics Subject Classification (2010): 05C50, 05C05, 15A03.

1 Introduction

Let \(G \) be a simple graph with vertex set \(\{v_1, \ldots, v_n\} \). The adjacency matrix of \(G \) is an \(n \times n \) matrix \(A(G) \) whose \((i,j)\)-entry is 1 if \(v_i \) is adjacent to \(v_j \) and 0 otherwise. The number of vertices of \(G \) is the order of \(G \). The rank of \(G \), denoted by \(\text{rank}(G) \), is the rank of \(A(G) \). We say that \(G \) is reduced if it has no isolated vertex and no two vertices with the same set of neighbors.

*Corresponding author
There are only finitely many reduced graphs of rank r since the order of such graphs are at most $2^r - 1$ (see [1, 3]). A natural question is that what is the maximum order of a reduced graph with a given rank r. Kotlov and Lovász [8] answered this question asymptotically. They proved that the maximum order of such graph is $O(2^{r/2})$. Later on, Akbari, Cameron, and Khosrovshahi [1] made the following conjecture on the exact value of the maximum order.

Conjecture 1. For every integer $r \geq 2$, the maximum order of any reduced graph of rank r is equal to

$$n(r) = \begin{cases}
2 \cdot 2^{r/2} - 2 & \text{if } r \text{ is even}, \\
5 \cdot 2^{(r-3)/2} - 2 & \text{if } r > 1 \text{ is odd}.
\end{cases}$$

Ghorbani, Mohammadian, and Tayfeh-Rezaie [5] showed that if Conjecture 1 is not true, then there would be a counterexample of rank at most 47. They also proved that the order of every reduced graph of rank r is at most $8n(r) + 14$. The maximum order of graphs with a fixed rank within the families of trees, bipartite graphs and triangle-free graphs were determined in [4, 6].

In a more general setting, in this paper we consider maximal graphs with respect to rank. A reduced graph G is called maximal if it is not a proper induced subgraph of a reduced graph with the same rank as G. In other words, G is maximal if for any reduced graph H such that G is obtained by removing a vertex form H, we have $\text{rank}(H) > \text{rank}(G)$. Note that the graphs attaining the maximum order in Conjecture 1 would be necessarily maximal.

In the classification of graphs with respect to the rank, maximal graphs are central objects, since any reduced graph of rank r is a subgraph of a maximal graph with rank r. In [4], a characterization of maximal trees (i.e. reduced trees which are maximal within the family of trees) is reported. In Section 2, we show that the characterization of [4] is not complete. In fact, there is one more construction of such trees which was missed in [4]. Ellingham [3] presented three families of maximal graphs. In Section 3, we give a construction of two new families of maximal graphs. All maximal graphs of rank up to 7 were appeared in [3] and independently in [12, 13, 10, 9]. We continue this line of work by constructing all maximal graphs of rank 8 and 9. A report on this construction is given in Section 4.

2 Maximal trees

A vertex with degree one is called pendant. A vertex adjacent to a pendant vertex is said to be pre-pendant. A tree is reduced if it has no two pendant vertices with the same neighbor. A maximal tree is a tree which is maximal within the family of trees, i.e. if it is not a proper subgraph of a reduced tree with the same rank. We denote the path graph of order n by P_n.

In [4], a characterization of maximal trees is reported as follows: every maximal tree T of rank $r \geq 4$ is obtained from a maximal tree T' of rank $r - 2$ in one of the following two ways:
(i) attaching a vertex of a P_2 to a vertex of T' of rank $r - 2$ which is neither pendant nor pre-pendant;

(ii) attaching a pendant vertex of a P_3 to a pre-pendant vertex of T' with rank $r - 2$.

We observe that the above construction is not exhaustive. To see this, consider the tree T of Figure 1. For any reals α, β, the vector shown on the vertices of T forms a null vector of $A(T)$. (Observe that the components of the given vector on the neighbors of every vertex sum up to 0.) So by Lemma 4 (below), T is a maximal tree. T cannot be obtained by (i). However, it can be obtained by attaching a pendant vertex of a P_3 to a pre-pendant vertex of some tree T', but the corresponding T' is not maximal. This means that T cannot be constructed by (i) or (ii).

In this section, we show that there is one more construction which completes the characterization of maximal trees given in [4].

The column space and the null space of a matrix M is denoted by $\text{Col}(M)$ and $\text{Nul}(M)$, respectively. A vertex v of a graph G is called a null vertex if for every $x \in \text{Nul}(A(G))$, the corresponding component to v is zero. Note that a pre-pendant vertex is always a null vertex.

If S is a subset of vertices of G, we denote graph obtained by removing the vertices of S from G by $G - S$. For simplicity, we use $G - v$ for $G - \{v\}$. We denote the degree of a vertex v in a graph G by $d_G(v)$, or by $d(v)$.

The following lemma is well-known and easy to verify.

Lemma 2. Let G be a graph and u be a pendant vertex of G with the neighbor v. Then $\text{rank}(G) = \text{rank}(G - \{u, v\}) + 2$.

The following well-known lemma can be deduced from Lemma 2 by induction.

Lemma 3. The rank of any tree is twice its matching number.

The following lemma gives a characterization of maximal trees in terms of null vertices.

Lemma 4. ([4]) A reduced tree T is maximal if and only if for every vertex v which is not pre-pendant, $\text{rank}(T) = \text{rank}(T - v)$; or equivalently, v is a null vertex if and only if it is pre-pendant.

Now, we are ready to present the main result of this section on the characterization of maximal trees.
Theorem 5. Every maximal tree \(T \) of rank \(r \geq 4 \) is obtained from a maximal tree \(T' \) of a smaller rank in one of the following three ways:

(i) attaching a vertex of a \(P_2 \) to a vertex of \(T' \) with rank \(r - 2 \) which is neither pendant nor pre-pendant;

(ii) attaching a pendant vertex of a \(P_3 \) to a pre-pendant vertex of \(T' \) with rank \(r - 2 \);

(iii) attaching a pre-pendant vertex of a \(P_3 \) to a pre-pendant vertex of \(T' \) with rank \(r - 4 \) for \(r \geq 8 \).

Proof. We first show that any tree resulting from (i)–(iii) is maximal. Let \(T' \) be a maximal tree and \(T \) is obtained by attaching a vertex \(v_1 \) of a \(P_2 \) to a vertex \(u \) of \(T' \). Let \(v_2 \) be the other vertex of \(P_2 \). In view of Lemma 2, \(\dim Nul(A(T)) = \dim Nul(A(T')) \). We see that any \(x' \in Nul(A(T')) \) can be extended to a \(x \in Nul(A(T)) \) by defining \(x(v_1) = 0 \) and \(x(v_2) = -x'(u) \). It follows that, besides \(v_1 \), all other null vertices and also pre-pendant vertices of \(T \) and of \(T' \) coincide. So by Lemma 4, \(T \) is maximal. Next, let \(T \) be obtained by (ii) from \(T' \). Suppose that \(v_1, v_2, v_3 \) are the vertices of a \(P_3 \), where \(v_1 \) is attached to a pre-pendant vertex \(u \) of \(T' \) and \(u' \) is the pendant neighbor of \(u \). From Lemma 2 it follows that \(\text{rank}(T) = \text{rank}(T') + 2 \) which means \(\dim Nul(A(T)) = \dim Nul(A(T')) + 1 \). Let \(\{x'_1, \ldots, x'_{s-1}\} \) be a basis for \(Nul(A(T')) \). We introduce a basis \(\{x_1, \ldots, x_s\} \) for \(Nul(A(T)) \) as follows. For \(1 \leq i \leq s - 1 \), we extend \(x'_i \) to \(x_i \in Nul(A(T)) \) by defining \(x_i(v_1) = x_i(v_2) = x_i(v_3) = 0 \). Further, let \(x_s \) to be zero on \(V(T' - u') \), \(x_s(u') = -x_s(v_1) = x_s(v_3) = 1 \) and \(x_s(v_2) = 0 \). In view of Lemma 4, it turns out that \(T \) is a maximal tree. The argument for (iii) is similar to (ii).

Now, let \(T \) be a maximal tree of rank \(r \geq 4 \) which is not obtained by (i). We prove that \(T \) is obtained by (ii) or (iii). Note that the only reduced tree of rank \(\geq 4 \) and diameter \(\leq 3 \) is \(P_4 \) which is not maximal. So the diameter of \(T \) is at least 4. Consider a longest path \(P \) in \(T \) and call its first five vertices from one end \(u, v, w, y, z \), respectively. So \(u \) is a pendant vertex and \(d(v) = 2 \). We claim that \(w \) is not a pre-pendant vertex. Otherwise, for any vector \(x \in Nul(A(T)) \), we have \(x(w) = 0 \). Also, since the sum of the components of \(x \) corresponding to the neighbors of \(v \) is zero, we have \(x(u) = 0 \) which is impossible by Lemma 4. This proves the claim. Furthermore, if \(d(w) \geq 3 \), then by Lemmas 2 and 4, \(T - \{u, v\} \) would be a maximal tree of rank \(r - 2 \) (because \(Nul(A(T - \{u, v\})) \) can be obtained by the restriction of the vectors of \(Nul(A(T)) \) to \(T - \{u, v\} \)) which contradicts our assumption on \(T \). Thus \(d(w) = 2 \). We show that \(T' = T - \{u, v, w\} \) is a reduced tree of rank \(r - 2 \). Applying Lemmas 2 and 4, we find that \(\text{rank}(T') = \text{rank}(T - u) - 2 = r - 2 \). In order to prove that \(T' \) is reduced, it suffices to show that \(y \) is a pre-pendant vertex in \(T \). Let \(M \) be a maximum matching of \(T \). If \(y \) is not covered by \(M \), then \(wy \notin M \). It turns out that \((M \setminus \{uw\}) \cup \{uw, wy\} \) is a matching of \(T \) with larger size than \(M \) which in turn implies that \(y \) is covered by every maximum matching of \(T \), and so by Lemma 8, \(\text{rank}(T - y) = r - 2 \). From Lemma 4, it follows that \(y \) is a pre-pendant vertex of \(T \), as desired. Hence \(T' \) is reduced. If \(T' \) is a maximal tree, then \(T \) is obtained by (ii). Now,
suppose that T' is not a maximal tree. Let p be the pendant neighbor of y. Recall that z is also a neighbor of y. We show that:

(a) p is the only null vertex of T' which is not pre-pendant;

(b) z is a pre-pendant vertex of T';

(c) $d_{T'}(y) = 2$;

(d) $T'' = T' - \{y, p\}$ is a maximal tree of rank $r - 4$.

The claimed situation is demonstrated in Figure 2. From (a)–(d) it follows that T is obtained by (iii). So the proof will be completed by verifying (a)–(d) as follows.

(a) As T' is not maximal, in view of Lemma 4, T' has at least one non-pre-pendant null vertex. Suppose that $q \neq p$ is a null vertex of T' which is not pre-pendant. Let $\{x_1', \ldots, x_{s-1}'\}$ be a basis for the null space of $A(T')$. We introduce a basis $\{x_1, \ldots, x_s\}$ for the null space of $A(T)$ as follows. For $1 \leq i \leq s - 1$, we let $x_i(u) = x_i(v) = x_i(w) = 0$. Moreover, let x_s to be zero on $V(T' - p)$, $x_s(u) = -x_s(w) = x_s(p) = 1$, and $x_s(v) = 0$. All x_1, \ldots, x_s are zero on q which means that q is a non-pre-pendant null vertex for T which is a contradiction by Lemma 4. Therefore, p is a unique non-pre-pendant null vertex of T'.

(b) We claim that all the neighbors of y excluding p are pre-pendant. To obtain a contradiction, let h be a non-pre-pendant neighbor of y. Since p is the only non-pre-pendant null vertex of T', h is not a null vertex and thus there is a vector $x \in \text{Nul}(A(T'))$ such that $x(h) \neq 0$. Let T'' be the connected component of $T' - y$ containing h. We define the vector y on $V(T)$ such that $y(a) = 2x(a)$ for $a \in V(T'')$, $y(p) = -x(h)$, and $y(b) = x(b)$ for the remaining vertices b of T'. Clearly, y belongs to $\text{Nul}(A(T'))$ with $y(p) \neq 0$. So p is not a null vertex which is a contradiction. Therefore, excluding p all the neighbors of y (including z) are pre-pendant.

(c) We establish this claim by a contradiction. Assume $d_{T'}(y) = k \geq 3$, and T'_1, \ldots, T'_k are the components of $T' - y$. If for at least two j’s, T'_j contains a vertex in distance ≥ 4 from y, then we have a path longer than P in T which is a contradiction. So, for some j, any pendant vertex q of T'_j have distance $\ell \leq 3$ from y. If $\ell = 3$, let $Q = qq_1q_2y$ be the path
between q and y. The vertex q_1 is pre-pendant and thus a null vertex. The vertex q_2 is a neighbor of y and by (b), it is pre-pendant and hence a null vertex. Now, since Q is a longest path between a vertex of T_j' and y, we have $d_T(q_1) = 2$. As the two neighbors of q are null, it follows that q is also null which is a contradiction. If $\ell = 2$, then we consider $Q = qy$. Since y is a pre-pendant vertex, y is a null vertex. Similarly, we have $d_T(q_1) = 2$. Thus q is a null vertex which is a contradiction. It turns out that $k = 2$.

(d) Lemma 2 implies that rank(T'') = $r - 4$. As y and p are null vertices of T', Nul($A(T'')$) can be obtained by the restriction of any vector of Nul($A(T')$) to T''. From (a), it follows that every non-pre-pendant vertex of T'' is not a null vertex and so by Lemma 4, T'' is a maximal tree.

The proof is now complete.

See Table 2 for an illustration of how maximal trees with rank up to 8 can be constructed by Theorem 5.

Rank	Maximal trees
2	![Tree 2]
4	![Tree 4]
6	![Tree 6]
8	![Tree 8]

Table 1: Maximal trees up to rank 8 and their recursive constructions by Theorem 5. The paths P_2, P_3 and P_5 are shown with white vertices.

3 Constructions of maximal graphs

Ellingham constructed three families of maximal graphs. In this section, we first describe his constructions and then we present two more families of maximal graphs.
Let $F = F(n)$ denote a graph with

$$
V(F) = \{a, b_1, \ldots, b_n, c_1, \ldots, c_n\},
$$

$$
E(F) = \{ab_i, ac_i, b_ic_i \mid 1 \leq i \leq n\}.
$$

This graph is called a *friendship graph*. Ellingham proved that the graph $F(n)$ is maximal if and only if n is a square-free integer.

The second family consists of graphs $L = L(m, n)$ defined as follows:

$$
V(L) = A \cup B \cup C = \{a_1, \ldots, a_m\} \cup \{b_1, \ldots, b_m\} \cup \{c_1, \ldots, c_n\},
$$

$$
E(L) = K(A) \cup K(B) \cup K(C) \cup P(A, B) \cup K(A, C) \cup K(B, C),
$$

where $K(V)$ denotes the edge set of the complete graph on V, $K(U, V)$ denotes the set of edges joining every vertex in U to every vertex in V, and for two sets $U = \{u_1, \ldots, u_k\}$ and $V = \{v_1, \ldots, v_k\}$, the set $P(U, V) = \{u_i v_i \mid 1 \leq i \leq k\}$ forms a perfect matching between U and V. If $m \geq 3$ and $n \geq 0$, then $L(m, n)$ is a maximal graph with the exceptions: $L(4, 5)$, $L(3, 7)$, $L(5, 5)$, $L(3, 8)$, $L(4, 7)$, $L(7, 4)$.

The third family consists of graphs $M(m, n)$, with $m \geq 1$ and $n \geq 2$, where $M = M(m, n)$ has vertex set and edge set

$$
V(M) = \{a\} \cup B \cup C \cup D = \{a\} \cup \{b_1, \ldots, b_m\} \cup \{c_1, \ldots, c_n\} \cup \{d_1, \ldots, d_n\},
$$

$$
E(M) = K(B) \cup K(C) \cup K(D) \cup K(\{a\}, B) \cup K(B, C) \cup K(C, D) \setminus P(C, D).
$$

Below we present two more constructions of infinite families of maximal graphs. The following lemma is useful.

Lemma 6. ([2]) Let B be a symmetric matrix and

$$
A = \begin{pmatrix}
B & y \\
y^\top & b
\end{pmatrix}.
$$

(i) If $y \not\in \text{Col}(B)$, then $\text{rank}(A) = \text{rank}(B) + 2$.

(ii) If $y \in \text{Col}(B)$ with $Bx = y$ and $b \neq y^\top x$, then $\text{rank}(A) = \text{rank}(B) + 1$.

(iii) If $y \in \text{Col}(B)$ with $Bx = y$ and $b = y^\top x$, then $\text{rank}(A) = \text{rank}(B)$.

Theorem 7. Let $U = \{u_1, \ldots, u_n\}$, $V = \{v_1, \ldots, v_n\}$, and G be the graph with

$$
V(G) = U \cup V \cup \{u, v\},
$$

$$
E(G) = \{uv, uv_1, \ldots, uv_n\} \cup K(U \cup V) \setminus P(U, V).
$$

Then G is a maximal graph.
Proof. The adjacency matrix of G is as follows:

$$A = \begin{pmatrix} J - I & J - I & 0 & 0 \\ J - I & J - I & 1 & 0 \\ 0^\top & 1^\top & 0 & 1 \\ 0^\top & 0^\top & 1 & 0 \end{pmatrix},$$

where J is the $n \times n$ matrix of all 1 and 1 is the all 1 vector of length n. We see that $\text{rank}(A) = n + 2$ and the matrix

$$B = \begin{pmatrix} J - I & 1 & 0 \\ 1^\top & 0 & 1 \\ 0^\top & 1 & 0 \end{pmatrix}, \quad (1)$$

is a full rank submatrix of A. In view of Lemma 6, in order to show that G is a maximal graph, it is sufficient to prove that if $y \in \text{Col}(A)$ is a $(0, 1)$-vector with $Ax = y$ and $x^\top Ax = 0$, then $y = 0$ or y is a column of A. So we let $x^\top Ax = 0$ and

$$y = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} \quad \text{and} \quad x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}, \quad (2)$$

where x_1, x_2, y_1, y_2 are vectors of length n. As the last $n + 2$ columns of A span $\text{Col}(A)$, with no loss of generality, we may assume that $x_1 = 0$. Hence

$$B \begin{pmatrix} x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} y_2 \\ y_3 \\ y_4 \end{pmatrix}. \quad (3)$$

It turns out that

$$\begin{pmatrix} x_2^\top \\ x_3 \\ x_4 \end{pmatrix} B \begin{pmatrix} x_2 \\ x_3 \\ x_4 \end{pmatrix} = x^\top Ax = 0,$$

and thus

$$\begin{pmatrix} y_2^\top \\ y_3 \\ y_4 \end{pmatrix} B^{-1} \begin{pmatrix} y_2 \\ y_3 \\ y_4 \end{pmatrix} = 0. \quad (4)$$

Let γ be the number of non-zero entries of y_2. Since

$$B^{-1} = \begin{pmatrix} \frac{1}{n-1}J - I & 0 & \frac{-1}{n-1}1 \\ 0 & 0 & 1 \\ \frac{-1}{n-1}1^\top & 1 & \frac{n}{n-1} \end{pmatrix},$$

by a straightforward computation we come up with the following equation:

$$\frac{1}{n-1} \gamma^2 - \frac{1}{n-1} (n - 1 + 2y_4) \gamma + \frac{1}{n-1} \left(2(n - 1)y_3y_4 + ny_4\right) = 0,$$

8
or equivalently
\[\gamma^2 - (n - 1 + 2y_4)\gamma + 2(n - 1)y_3y_4 + ny_4 = 0. \]
(3)

On the other hand, from \(Ax = y \) it follows that
\[y_1 = (J - I)x_2, \]
(4)
\[y_2 = (J - I)x_2 + x_31, \]
(5)
\[y_3 = 1^\top x_2 + x_4, \]
(6)
\[y_4 = x_3. \]
(7)

We now consider the following four cases based on the values of \(y_3 \) and \(y_4 \).

(i) \(y_3 = y_4 = 0 \). So \(\gamma^2 - (n - 1)\gamma = 0 \). Since \(y_4 = 0 \), by (7) we have \(x_3 = 0 \) and so by (1) and (5), \(y_1 = y_2 \). Therefore, if \(\gamma = 0 \), then \(y = 0 \), otherwise \(\gamma = n - 1 \) and then \(y_1 = y_2 \) is one of the columns of \(J - I \). This implies that \(y \) is \(i \)-th column of \(A \) for some \(1 \leq i \leq n \).

(ii) \(y_3 = 0, y_4 = 1 \). From (7), we have \(x_3 = 1 \) and by (4) and (5), \(y_2 = y_1 + 1 \). Since \(y_1 \) and \(y_2 \) are \((0, 1)\)-vectors, the last equality is only possible for \(y_1 = 0 \) and \(y_2 = 1 \). It turns out that \(y \) is \((2n + 1)\)-th column of \(A \).

(iii) \(y_3 = 1, y_4 = 0 \). As in Case (i), from \(y_4 = 0 \) it follows that \(y_1 = y_2 \). On the other hand, by (3), we have \(\gamma^2 - (n - 1)\gamma = 0 \). This shows that \(\gamma = 0 \) or \(\gamma = n - 1 \). If \(\gamma = 0 \), then \(y_1 = y_2 = 0 \) and so \(y \) is the last column of \(A \). If \(\gamma = n - 1 \), then \(y_1 = y_2 \) is one of the columns of \(J - I \) which implies that \(y \) is \(i \)-th column of \(A \) for some \(n + 1 \leq i \leq 2n \).

(iv) \(y_3 = y_4 = 1 \). As in Case (ii), from \(y_4 = 1 \) it follows that \(y_2 = 1 \) which means that \(\gamma = n \). But \(\gamma = n \) does not satisfy (3). This shows that this case is not possible.

The result now follows. \(\square \)

Theorem 8 as below embodies our second construction of maximal graphs.

Theorem 8. Let \(U = \{u_1, \ldots, u_n\} \), \(V = \{v_1, \ldots, v_n\} \), and \(G \) be the graph with \(V(G) = U \cup V \cup \{u, v\} \), \(E(G) = K(U) \cup K(V) \cup P(U, V) \cup \{uv, uu_1, \ldots, uu_n, vv_1, \ldots, vv_n\} \).

Then \(G \) is a maximal graph.

Proof. We have
\[
A = A(G) = \begin{pmatrix}
J - I & I & 0 & 1 \\
I & J - I & 1 & 0 \\
0^\top & 1^\top & 0 & 1 \\
1^\top & 0^\top & 1 & 0
\end{pmatrix}.
\]
We see that rank(A) = $n + 2$ and the same matrix B as given in (11) is a full rank submatrix of A. Let y be a $(0,1)$-vector in Col(A) with $Ax = y$ and that $x^T Ax = 0$. As the last $n + 2$ columns of A span Col(A), with no loss of generality, we assume that $x_1 = 0$. So we have

\begin{align*}
y_1 &= x_2 + x_4 1, \\
y_2 &= (J - I)x_2 + x_3 1, \\
y_3 &= 1^T x_2 + x_4, \\
y_4 &= x_3.
\end{align*}

Let γ be the number of non-zero entries of y_2. Then γ satisfies Equation (3). We now consider the following four cases based on the values of y_3 and y_4.

(i) $y_3 = y_4 = 0$. By (11), we have $x_3 = 0$ and by (10), $1^T x_2 = -x_4$ and so $J x_2 = -x_4 1$. From (9) it follows that $y_2 = -x_2 - x_4 1 = -y_1$. Since y_1 and y_2 are $(0,1)$-vectors, this is only possible when $y_1 = y_2 = 0$ and so $y = 0$.

(ii) $y_3 = 0$, $y_4 = 1$. By (11), we have $x_3 = 1$ and by (10), $1^T x_2 + x_4 = 0$ and so $J x_2 + x_4 1 = 0$. So $y_1 + y_2 = J x_2 + x_4 1 + 1 = 1$. On the other hand, from (8) it is clear that $\gamma = 1$ or $\gamma = n$. If $\gamma = 1$, then $y_2 = e_i$, the i-th column of the identity matrix, for some $1 \leq i \leq n$. Therefore, $y_1 = 1 - e_i$. It turns out that y is i-th column of A for some $1 \leq i \leq n$. If $\gamma = n$, then $y_2 = 1$ and $y_1 = 0$ and thus y is the $(2n + 1)$-th column of A.

(iii) $y_3 = 1$, $y_4 = 0$. From (3), we have $\gamma = 0$ or $\gamma = n - 1$. Also, from (10) and (11), we have $x_3 = 0$ and $J x_2 + x_4 1 = 1$. Therefore, by (8) and (9), we see that $y_1 + y_2 = 1$. If $\gamma = 0$, then $y_2 = 0$ and $y_1 = 1$ and so y is the last column of A. If $\gamma = n - 1$, then y is the i-th column of A for some $n + 1 \leq i \leq 2n$.

(iv) $y_3 = y_4 = 1$. As before we have $x_3 = 1$ and $J x_2 + x_4 1 = 1$. It follows that $y_1 + y_2 = J x_2 + x_4 1 + 1 = 1 + 1$. This is only possible when $y_1 = y_2 = 1$. Therefore, $\gamma = n$. But $\gamma = n$ does not satisfy (3). This shows that this case is not possible.

The proof is now complete. □

4 Maximal graphs with small rank

In this section we give some statistics of maximal graphs with small rank. We start by Table 2 in which all the maximal graphs with rank at most 5 are depicted.

The maximal graphs up to rank 7 were enumerated in [3] and independently in the series of the papers [12, 13, 10, 9]. More information on maximal graphs up to rank 7 was given in [9] from which we quote Tables 3 and 4 containing the distribution of maximal graphs with ranks 6 and 7 based on their orders.
We continue this line of work for ranks 8 and 9. This is done by implementing an algorithm for constructing all maximal graphs with a given rank from [3] (see also [1]). For a given integer \(r \), the input of the algorithm is the set of reduced graphs with both order and rank equal to \(r \) and the output of the algorithm is the set of all maximal graphs of rank \(r \). The input of the algorithm was generated by using Mckay’s database of small graphs [11]. As an outcome, we construct all maximal graphs with rank 8 and 9. We found that there are exactly 2807 maximal graphs with rank 8. Their orders run over from 8 to 30. Also, there are exactly 122511 maximal graphs with rank 9. Their orders run over from 9 to 38 with except for 33, 35, 36. In Table 5 for the sake of completion, a summary of the number of maximal graphs of rank up to 9 is given. Moreover, the distributions of maximal graphs with rank 8 and 9 based on their orders are given in Tables 6 and 7. In Table 8 we report more detailed information based on the orders and sizes (the number of edges) of maximal graphs with rank 8.
Rank	2	3	4	5	6	7	8	9
# Maximal graphs	1	1	3	8	27	183	2807	122511

Table 5: The number of maximal graphs up to rank 9.

Order	8	9	10	11	12	13	14	15	16	17	18	19
# Maximal graphs	38	52	80	78	117	98	90	254	137	81	115	243

Table 6: The distribution of maximal graphs with rank 8.

Order	9	10	11	12	13	14	15	16	17	18
# Maximal graphs	192	472	1014	786	1402	1562	2198	1963	3509	2824

Order	19	20	21	22	23	24	25	26	27	28
# Maximal graphs	3660	17229	51315	20069	8663	2941	1622	528	266	136

Order	29	30	31	32	33	34	35	36	37	38
# Maximal graphs	39	42	42	24	0	7	0	0	2	4

Table 7: The distribution of maximal graphs with rank 9.

Acknowledgements

The research of the authors was in part supported by a grant from IPM.

References

[1] S. Akbari, P.J. Cameron and G.B. Khosrovshahi, Ranks and signatures of adjacency matrices, unpublished manuscript (2004).

[2] J.H. Bevis, K.K. Blount, G.J. Davis, G.S. Domke and V.A. Miller, The rank of a graph after vertex addition, *Linear Algebra Appl.* **265** (1997), 55–69.

[3] M.N. Ellingham, Basic subgraphs and graph spectra, *Australas. J. Combin.* **8** (1993), 247–265.

[4] E. Ghorbani, A. Mohammadian and B. Tayfeh-Rezaie, Maximum order of trees and bipartite graphs with a given rank, *Discrete Math.* **312** (2012), 3498–3501.

[5] E. Ghorbani, A. Mohammadian and B. Tayfeh-Rezaie, On order and rank of graphs, *Combinatorica* **35** (2015), 655–668.
[6] E. Ghorbani, A. Mohammadian and B. Tayfeh-Rezaie, Maximum order of triangle-free graphs with a given rank, *J. Graph Theory* **79** (2015), 145–158.

[7] W.H. Haemers and M.J.P. Peeters, The maximum order of adjacency matrices with a given rank, *Des. Codes Cryptogr.* **65** (2012), 223–232.

[8] A. Kotlov and L. Lovász, The rank and size of graphs, *J. Graph Theory* **23** (1996), 185–189.

[9] M. Lazić, Maximal canonical graphs with seven nonzero eigenvalues, *Publ. Inst. Math. (Beograd) (N.S.)* **88** (2010), 77–86.

[10] M. Lepović, Maximal canonical graphs with 6 nonzero eigenvalues, *Glas. Mat. Ser. III* **25(45)** (1990), 21–24.

[11] B.D. McKay, Combinatorial Data, http://users.cecs.anu.edu.au/~bdm/data/

[12] A. Torgašev, On infinite graphs with three and four nonzero eigenvalues, *Bull. Acad. Serbe Sci. Arts Cl. Sci. Math. Natur.* **11** (1981), 39–48.

[13] A. Torgašev, On infinite graphs with five nonzero eigenvalues. *Bull. Acad. Serbe Sci. Arts Cl. Sci. Math. Natur.* **12** (1982), 31–38.
Table 8: The distribution of maximal graphs with rank 8 in terms of order \(n \) and size \(m \).