On Closed and Exact Grad grad- and div Div-Complexes, Corresponding Compact Embeddings for Tensor Rotations, and a Related Decomposition Result for Biharmonic Problems in 3D

Dirk Pauly
Fakultät für Mathematik, Universität Duisburg-Essen
Campus Essen, Germany

Walter Zulehner
Institute of Computational Mathematics, Johannes Kepler University
Altenberger Str. 69, 4040 Linz, Austria

NuMa-Report No. 2016-09

November 2016
Technical Reports before 1998:

1995

95-1 Hedwig Brandstetter
Was ist neu in Fortran 90?
March 1995

95-2 G. Haase, B. Heise, M. Kuhn, U. Langer
Adaptive Domain Decomposition Methods for Finite and Boundary Element Equations.
August 1995

95-3 Joachim Schöberl
An Automatic Mesh Generator Using Geometric Rules for Two and Three Space Dimensions.
August 1995

1996

96-1 Ferdinand Kickinger
Automatic Mesh Generation for 3D Objects.
February 1996

96-2 Mario Goppold, Gundolf Haase, Bodo Heise und Michael Kuhn
Preprocessing in BE/FE Domain Decomposition Methods.
February 1996

96-3 Bodo Heise
A Mixed Variational Formulation for 3D Magnetostatics and its Finite Element Discretisation.
February 1996

96-4 Bodo Heise und Michael Jung
Robust Parallel Newton-Multilevel Methods.
February 1996

96-5 Ferdinand Kickinger
Algebraic Multigrid for Discrete Elliptic Second Order Problems.
February 1996

96-6 Bodo Heise
A Mixed Variational Formulation for 3D Magnetostatics and its Finite Element Discretisation.
May 1996

96-7 Michael Kuhn
Benchmarking for Boundary Element Methods.
June 1996

1997

97-1 Bodo Heise, Michael Kuhn and Ulrich Langer
A Mixed Variational Formulation for 3D Magnetostatics in the Space $H(\text{rot}) \cap H(\text{div})$
February 1997

97-2 Joachim Schöberl
Robust Multigrid Preconditioning for Parameter Dependent Problems I: The Stokes-type Case.
June 1997

97-3 Ferdinand Kickinger, Sergei V. Nepomnyaschikh, Ralf Pfau, Joachim Schöberl
Numerical Estimates of Inequalities in H^1_2.
August 1997

97-4 Joachim Schöberl
Programmbeschreibung NAOMI 2D und Algebraic Multigrid.
September 1997

From 1998 to 2008 technical reports were published by SFB013. Please see http://www.sfb013.uni-linz.ac.at/index.php?id=reports

From 2004 on reports were also published by RICAM. Please see http://www.ricam.oeaw.ac.at/publications/list/

For a complete list of NuMa reports see http://www.numa.uni-linz.ac.at/Publications/List/
On Closed and Exact Grad grad- and div Div-Complexes, Corresponding Compact Embeddings for Tensor Rotations, and a Related Decomposition Result for Biharmonic Problems in 3D

DIRK PAULY AND WALTER ZULEHNER

ABSTRACT. It is shown that the first biharmonic boundary value problem on a topologically trivial domain in 3D is equivalent to three (consecutively to solve) second-order problems. This decomposition result is based on a Helmholtz-like decomposition of an involved non-standard Sobolev space of tensor fields and a proper characterization of the operator div Div acting on this space. Similar results for biharmonic problems in 2D and their impact on the construction and analysis of finite element methods have been recently published in [14]. The discussion of the kernel of div Div leads to (de Rham-like) closed and exact Hilbert complexes, the div Div-complex and its adjoint the Grad grad-complex, involving spaces of trace-free and symmetric tensor fields. For these tensor fields we show Helmholtz type decompositions and, most importantly, new compact embedding results. Almost all our results hold and are formulated for general bounded strong Lipschitz domains of arbitrary topology. There is no reasonable doubt that our results extend to strong Lipschitz domains in \(\mathbb{R}^N \).

CONTENTS

1. Introduction 1
2. Preliminaries 3
 2.1. Functional Analysis Toolbox 3
 2.2. Sobolev Spaces 7
 2.3. General Assumptions 7
 2.4. Vector Analysis 8
3. The Grad grad- and div Div-Complexes 14
 3.1. Topologically Trivial Domains 19
 3.2. General Bounded Strong Lipschitz Domains 25
4. Application to Biharmonic Problems 32
References 37
Appendix A. Proofs of Some Useful Identities 38

1. INTRODUCTION

In [14] it was shown that the fourth-order biharmonic boundary value problem

\[
\Delta^2 u = f \quad \text{in } \Omega, \quad u = \partial_n u = 0 \quad \text{on } \Gamma,
\]

where \(\Omega \) is a bounded and simply connected domain in \(\mathbb{R}^2 \) with a (strong) Lipschitz boundary \(\Gamma \), can be decomposed into three second-order problems. The first problem is a Poisson problem for an auxiliary scalar field \(p \)

\[
\Delta p = f \quad \text{in } \Omega, \quad p = 0 \quad \text{on } \Gamma,
\]

\(\Delta \) Date: November 24, 2016.
1991 Mathematics Subject Classification. 35G15, 58A14.
Key words and phrases. biharmonic equations, Helmholtz decomposition, Hilbert complexes.
The research of the second author was supported by the Austrian Science Fund (FWF): project S11702-N23.
the second problem is a linear elasticity problem for an auxiliary vector field \(V \)

\[- \text{Div} \varepsilon(V) = - \text{Div}(\text{sym Grad} \, V) = \text{grad} \, p \quad \text{in} \Omega, \quad (\text{sym Grad} \, V) \, n = -pn = 0 \quad \text{on} \Gamma,\]
i.e.,

\[\text{Div}(\text{sym Grad} \, V + pI) = 0 \quad \text{in} \Omega, \quad (\text{sym Grad} \, V + pI) \, n = 0 \quad \text{on} \Gamma,\]

and, finally, the third problem is a Poisson problem for the original scalar field \(u \)

\[\Delta u = 2p + \text{div} \, V \quad \text{in} \Omega, \quad u = 0 \quad \text{on} \Gamma.\]

Here \(f \) is a given right-hand side, \(\Delta, \, n, \) and \(\partial_n \) denote the Laplace operator, the outward normal vector to the boundary, and the derivative in this direction, respectively. The differential operators grad, div, and (for later use) rot denote the gradient of a scalar field and the divergence and rotation of a vector field, the corresponding capitalized differential operators Grad, Div, and Rot denote the row-wise application of grad to a vector field, div and rot to a tensor field. The prefix sym is used for the symmetric part of a matrix, for the skew-symmetric part we use the prefix skw. This decomposition is of triangular structure, i.e., the first problem is a well-posed second-order problem in \(p \), the second problem is a well-posed second-order problem in \(V \) for given \(p \), and the third problem is a well-posed second-order problem in \(u \) for given \(p \) and \(V \). This allows to solve them consecutively analytically or numerically by means of techniques for second-order problems.

This is - in the first place - a new analytic result for fourth-order problems. But it also has interesting implications for discretization methods applied to \((1.1)\). It allows to re-interpret known finite element methods as well as to construct new discretization methods for \((1.1)\) by exploiting the decomposable structure of the problem. In particular, it was shown in [14] that the Hellan-Herrmann-Johnson mixed method (see [8, 9, 13]) for \((1.1)\) allows a similar decomposition as the continuous problem, which leads to a new and simpler assembling procedure for the discretization matrix and to more efficient solution techniques for the discretized problem. Moreover, a novel conforming variant of the Hellan-Herrmann-Johnson mixed method was found based on the decomposition.

The aim of this paper is to derive a similar decomposition result for biharmonic problems on bounded and topologically trivial three-dimensional domains \(\Omega \) with a (strong) Lipschitz boundary \(\Gamma \). For this we proceed as in [14] and reformulate \((1.1)\) using \(\Delta^2 = \text{div} \, \text{Div} \, \text{Grad} \, \text{grad} \) as a mixed problem by introducing the (negative) Hessian of the original scalar field \(u \) as an auxiliary tensor field

\[(1.2) \quad M = -\text{Grad} \, \text{grad} \, u.\]

Then the biharmonic differential equation reads

\[(1.3) \quad -\text{div} \, \text{Div} \, M = f \quad \text{in} \, \Omega.\]

For an appropriate non-standard Sobolev space for \(M \) it can be shown that the mixed problem in \(M \) and \(u \) is well-posed. Then the decomposition of the biharmonic problem follows from a regular decomposition of this non-standard Sobolev space. This part of the analysis carries over completely from the two-dimensional case to the three-dimensional case and is shortly recalled in Section 4. To efficiently utilize this regular decomposition for the decomposition of the biharmonic problem an appropriate characterization of the kernel of the operator \(\text{div} \, \text{Div} \) is required, which is well understood for the two-dimensional case, see, e.g., [3, 11, 14]. Its extension to the three-dimensional case is the central topic of this paper. We expect - as in the two-dimensional case - similar interesting implications for the study of appropriate discretization methods for fourth-order problems in the three-dimensional case.

The paper is organized as follows. After some preliminaries in Section 2 and introducing our general functional analytical setting, we will discuss the relevant unbounded linear operators, show closed and exact Hilbert complex properties, and present a suitable representation of the kernel of \(\text{div} \, \text{Div} \) for the three-dimensional case in Section 3.1 for topologically trivial domains. In Section 3.2 we extend the results to (strong) Lipschitz domains based on two new and crucial compact embeddings. Based on the representation of the kernel of \(\text{div} \, \text{Div} \) a decomposition of the three-dimensional biharmonic problem into three (consecutively to solve) second-order problems will be derived in Section 4. The proofs of some useful identities are presented in an appendix.
2. Preliminaries

We start by recalling some basic concepts and abstract results from functional analysis concerning Helmholtz decompositions, closed ranges, Friedrichs/Poincaré type estimates, and bounded or even compact inverse operators. Since we will need both the Banach space setting for bounded linear operators as well as the Hilbert space setting for (possibly unbounded) closed and densely defined linear operators, we will shortly recall these two variants.

2.1. Functional Analysis Toolbox. Let X and Y be real Banach spaces. With $BL(X,Y)$ we introduce the space of bounded linear mappings from X to Y. The dual spaces of X and Y are denoted by $X' := BL(X,\mathbb{R})$ and $Y' := BL(Y,\mathbb{R})$. For a given $A \in BL(X,Y)$ we write $A' \in BL(Y',X')$ for its Banach space dual or adjoint operator defined by $A'y(x) := y(Ax)$ for all $y' \in Y'$ and all $x \in X$. Norms and duality in X resp. X' are denoted by $|\cdot|_X$, $|\cdot|_{X'}$, and $(\cdot, \cdot)_{X'}$.

Suppose H_1 and H_2 are Hilbert spaces. For a (possibly unbounded) densely defined linear operator $A : D(A) \subset H_1 \to H_2$ we recall that its Hilbert space dual or adjoint $A^* : D(A^*) \subset H_2 \to H_1$ can be defined via its Banach space adjoint A^* and the Riesz isomorphisms of H_1 and H_2 or directly as follows: $y \in D(A^*)$ if and only if $y \in H_2$ and

$$\exists f \in H_1 \quad \forall x \in D(A) \quad \langle Ax, y \rangle_{H_2} = \langle x, f \rangle_{H_1}.$$

In this case we define $A^* y := f$. We note that A^* has maximal domain of definition and that A^* is characterized by

$$\forall x \in D(A) \quad \forall y \in D(A^*) \quad \langle Ax, y \rangle_{H_2} = \langle x, A^* y \rangle_{H_1}. $$

Here $(\cdot, \cdot)_{H}$ denotes the scalar product in a Hilbert space H and D is used for the domain of definition of a linear operator. Additionally, we introduce the notation N for the kernel or null space and R for the range of a linear operator.

Let $A : D(A) \subset H_1 \to H_2$ be a (possibly unbounded) closed and densely defined linear operator on two Hilbert spaces H_1 and H_2 with adjoint $A^* : D(A^*) \subset H_2 \to H_1$. Note $(A^*)^* = X = A$, i.e., (A,A^*) is a dual pair. By the projection theorem the Helmholtz type decompositions

$$H_1 = N(A) \oplus_{H_1} R(A^*), \quad H_2 = N(A^*) \oplus_{H_2} R(A)$$

hold and we can define the reduced operators

$$\mathcal{A} := A|_{R(A^*)} : D(A) \subset R(A^*) \to R(A), \quad D(A) := D(A) \cap N(A)^{1/2} = D(A) \cap R(A^*),$$

$$\mathcal{A}^* := A^*|_{R(A)} : D(A^*) \subset R(A) \to R(A^*), \quad D(A^*) := D(A^*) \cap N(A^*)^{1/2} = D(A^*) \cap R(A),$$

which are also closed and densely defined linear operators. We note that \mathcal{A} and \mathcal{A}^* are indeed adjoint to each other, i.e., $(\mathcal{A}, \mathcal{A}^*)$ is a dual pair as well. Now the inverse operators

$$\mathcal{A}^{-1} : R(A) \to D(A), \quad (\mathcal{A}^*)^{-1} : R(A^*) \to D(A^*)$$

exist and they are bijective, since \mathcal{A} and \mathcal{A}^* are injective by definition. Furthermore, by (2.1) we have the refined Helmholtz type decompositions

$$D(A) = N(A) \oplus_{H_1} D(A), \quad D(A^*) = N(A^*) \oplus_{H_2} D(A^*)$$

and thus we obtain for the ranges

$$R(A) = R(\mathcal{A}), \quad R(A^*) = R(\mathcal{A}^*).$$

By the closed range theorem and the closed graph theorem we get immediately the following.

Lemma 2.1. The following assertions are equivalent:

(i) $\exists c_A \in (0,\infty) \quad \forall x \in D(A) \quad |x|_{H_1} \leq c_A |Ax|_{H_2}$

(ii) $\exists c_{A^*} \in (0,\infty) \quad \forall y \in D(A^*) \quad |y|_{H_2} \leq c_{A^*} |A^*y|_{H_1}$

(iii) $\mathcal{A}^{-1} : R(A) \to D(A)$ is continuous and bijective with norm bounded by $(1 + c_A^2)^{1/2}$.

(iii*) $\mathcal{A}^*^{-1} : R(A^*) \to D(\mathcal{A}^*)$ is continuous and bijective with norm bounded by $(1 + c_{A^*}^2)^{1/2}$.
In case that one of the assertions of Lemma 2.1 is true, e.g., \(R(A) \) is closed, we have

\[
\begin{align*}
H_1 &= N(A) \oplus_{H_1} R(A^\ast), & H_2 &= N(A^\ast) \oplus_{H_2} R(A), \\
D(A) &= N(A) \oplus_{H_1} D(A), & D(A^\ast) &= N(A^\ast) \oplus_{H_2} D(A^\ast), \\
D(A) &= D(A) \cap R(A^\ast), & D(A^\ast) &= D(A^\ast) \cap R(A).
\end{align*}
\]

For the “best” constants \(c_A, c_{A^\ast} \) we have the following lemma.

Lemma 2.2. The Rayleigh quotients

\[
\frac{1}{c_A} := \inf_{0 \neq x \in D(A)} \frac{|A x|_{H_2}}{|x|_{H_1}} = \inf_{0 \neq y \in D(A^\ast)} \frac{|A^\ast y|_{H_1}}{|y|_{H_2}} =: \frac{1}{c_{A^\ast}}
\]

coincide, i.e., \(c_A = c_{A^\ast} \), if either \(c_A \) or \(c_{A^\ast} \) exists in \((0, \infty)\). Otherwise they also coincide, i.e., it holds \(c_A = c_{A^\ast} = \infty \).

From now on and throughout this paper, we always pick the best possible constants in the various Friedrichs/Poincaré type estimates.

A standard indirect argument shows the following.

Lemma 2.3. Let \(D(A) = D(A) \cap \overline{R(A^\ast)} \hookrightarrow H_1 \) be compact. Then the assertions of Lemma 2.1 hold. Moreover, the inverse operators

\[
A^{-1} : R(A) \to R(A^\ast), \quad (A^\ast)^{-1} : R(A^\ast) \to R(A)
\]

are compact with norms \(|A^{-1}|_{R(A), R(A^\ast)} = |(A^\ast)^{-1}|_{R(A^\ast), R(A)} = c_A \).

Moreover, we have

Lemma 2.4. \(D(A) \hookrightarrow H_1 \) is compact, if and only if \(D(A^\ast) \hookrightarrow H_2 \) is compact.

Now, let \(A_0 : D(A_0) \subset H_0 \to H_1 \) and \(A_1 : D(A_1) \subset H_1 \to H_2 \) be (possibly unbounded) closed and densely defined linear operators on three Hilbert spaces \(H_0, H_1 \) and \(H_2 \) with adjoints \(A_0^\ast : D(A_0^\ast) \subset H_1 \to H_0 \) and \(A_1^\ast : D(A_1^\ast) \subset H_2 \to H_1 \) as well as reduced operators \(A_0, A_0^\ast, \) and \(A_1, A_1^\ast \). Furthermore, we assume the sequence or complex property of \(A_0 \) and \(A_1 \), that is, \(A_1 A_0 = 0 \), i.e.,

\[
(2.4) \quad R(A_0) \subset N(A_1).
\]

Then also \(A_0^\ast A_1^\ast = 0 \), i.e., \(R(A_1^\ast) \subset N(A_0^\ast) \). The Helmholtz type decompositions of (2.1) for \(A = A_1 \) and \(A = A_0 \) read

\[
(2.5) \quad H_1 = N(A_1) \oplus_{H_1} \overline{R(A_1^\ast)}, \quad H_1 = N(A_0^\ast) \oplus_{H_1} \overline{R(A_0)}
\]

and by (2.4) we see

\[
(2.6) \quad N(A_0^\ast) = N_{0,1} \oplus_{H_1} \overline{R(A_1^\ast)}, \quad N(A_1) = N_{0,1} \oplus_{H_1} \overline{R(A_0)}, \quad N_{0,1} := N(A_1) \cap N(A_0^\ast)
\]

yielding the refined Helmholtz type decomposition

\[
(2.7) \quad H_1 = \overline{R(A_0)} \oplus_{H_1} N_{0,1} \oplus_{H_1} \overline{R(A_1^\ast)}, \quad R(A_0) = R(A_0), \quad R(A_1^\ast) = R(A_1^\ast)
\]

The previous results of this section imply immediately the following.

Lemma 2.5. Let \(A_0, A_1 \) be as introduced before with \(A_1 A_0 = 0 \), i.e., (2.4). Moreover, let \(R(A_0) \) and \(R(A_1) \) be closed. Then, the assertions of Lemma 2.1 and Lemma 2.2 hold for \(A_0 \) and \(A_1 \). Moreover, the refined Helmholtz type decompositions

\[
\begin{align*}
H_1 &= R(A_0) \oplus_{H_1} N_{0,1} \oplus_{H_1} R(A_1^\ast), & N_{0,1} &= N(A_1) \cap N(A_0^\ast), \\
N(A_1) &= R(A_0) \oplus_{H_1} N_{0,1}, & N(A_0^\ast) &= N_{0,1} \oplus_{H_1} R(A_1^\ast), \\
D(A_1) &= R(A_0) \oplus_{H_1} N_{0,1} \oplus_{H_1} D(A_1), & D(A_0^\ast) &= D(A_0^\ast) \oplus_{H_1} N_{0,1} \oplus_{H_1} R(A_1^\ast), \\
D(A_1) \cap D(A_0^\ast) &= D(A_0^\ast) \oplus_{H_1} N_{0,1} \oplus_{H_1} D(A_1).
\end{align*}
\]
hold. Especially, \(R(A_0) \), \(R(A_0^*) \), \(R(A_1) \), and \(R(A_1^*) \) are closed, the respective inverse operators, i.e.,

\[
A_0^{-1} : R(A_0) \to D(A_0), \quad A_1^{-1} : R(A_1) \to D(A_1),
\]

\[
(A_0^*)^{-1} : R(A_0^*) \to D(A_0^*), \quad (A_1^*)^{-1} : R(A_1^*) \to D(A_1^*),
\]

are continuous, and there exist positive constants \(c_{A_0}, c_{A_1} \), such that the Friedrichs/Poincaré type estimates

\[
\forall x \in D(A_0) \quad |x|_{H_0} \leq c_{A_0} |A_0 x|_{H_1}, \quad \forall y \in D(A_1) \quad |y|_{H_1} \leq c_{A_1} |A_1 y|_{H_2},
\]

\[
\forall y \in D(A_0^*) \quad |y|_{H_1} \leq c_{A_0} |A_0^* y|_{H_0}, \quad \forall z \in D(A_1^*) \quad |z|_{H_2} \leq c_{A_1} |A_1^* z|_{H_1}
\]

hold.

Remark 2.6. Note that \(R(A_0) \) resp. \(R(A_1) \) is closed, if e.g. \(D(A_0) \hookrightarrow H_0 \) resp. \(D(A_1) \hookrightarrow H_1 \) is compact. In this case, the respective inverse operators, i.e.,

\[
A_0^{-1} : R(A_0) \to R(A_0^*), \quad A_1^{-1} : R(A_1) \to R(A_1^*),
\]

\[
(A_0^*)^{-1} : R(A_0^*) \to R(A_0), \quad (A_1^*)^{-1} : R(A_1^*) \to R(A_1),
\]

are compact.

Observe \(D(A_1) = D(A_1) \cap \overline{R(A_0^*)} \subset D(A_1) \cap \overline{N(A_0^*)} \subset D(A_1) \cap D(A_0^*) \). Utilizing the Helmholtz type decompositions of Lemma 2.5 we immediately have:

Lemma 2.7. The embeddings \(D(A_0) \hookrightarrow H_0 \), \(D(A_1) \hookrightarrow H_1 \), and \(N_{0,1} \hookrightarrow H_1 \) are compact, if and only if the embedding \(D(A_1) \cap D(A_0^*) \hookrightarrow H_1 \) is compact. In this case \(N_{0,1} \) has finite dimension.

Remark 2.8. The assumptions in Lemma 2.5 on \(A_0 \) and \(A_1 \) are equivalent to the assumption that

\[
D(A_0) \subset H_0 \xrightarrow{\Lambda_0} D(A_1) \subset H_1 \xrightarrow{\Lambda_1} H_2
\]

is a closed Hilbert complex, meaning that the ranges are closed. As a result of the previous lemmas, the adjoint complex

\[
H_0 \leftarrow \Lambda_0^* \quad D(A_0^*) \subset H_1 \leftarrow \Lambda_1^* \quad D(A_1^*) \subset H_2.
\]

is a closed Hilbert complex as well.

We can summarize.

Theorem 2.9. Let \(A_0, A_1 \) be as introduced before, i.e., having the complex property \(A_1 A_0 = 0 \), i.e., \(R(A_0) \subset N(A_1) \). Moreover, let \(D(A_1) \cap D(A_0^*) \hookrightarrow H_1 \) be compact. Then the assertions of Lemma 2.5 hold, \(N_{0,1} \) is finite dimensional and the corresponding inverse operators are continuous resp. compact. Especially, all ranges are closed and the corresponding Friedrichs/Poincaré type estimates hold.

A special situation is the following.

Lemma 2.10. Let \(A_0, A_1 \) be as introduced before with \(R(A_0) = N(A_1) \) and \(R(A_1) \) closed in \(H_2 \). Then \(R(A_0^*) \) and \(R(A_1^*) \) are closed as well, and the simplified Helmholtz type decompositions

\[
H_1 = R(A_0) \oplus_{H_1} R(A_1^*), \quad N_{0,1} = \{0\},
\]

\[
N(A_1) = R(A_0) = R(A_0^*), \quad N(A_1^*) = R(A_1^*) = R(A_1^*),
\]

\[
D(A_1) = R(A_0) \oplus_{H_1} D(A_1), \quad D(A_0^*) = D(A_0^*) \oplus_{H_1} R(A_1^*),
\]

\[
D(A_1) \cap D(A_0^*) = D(A_0^*) \oplus_{H_1} D(A_1)
\]

are valid. Moreover, the respective inverse operators are continuous and the corresponding Friedrichs/Poincaré type estimates hold.

Remark 2.11. Note that \(R(A_1^*) = N(A_0^*) \) and \(R(A_0^*) \) closed are equivalent assumptions for Lemma 2.10 to hold.
Lemma 2.12. Let \(A_0, A_1 \) be as introduced before with the sequence property (2.4), i.e., \(R(A_0) \subset N(A_1) \). If the embedding \(D(A_1) \cap D(A_0^*) \hookrightarrow H_1 \) is compact and \(N_{0,1} = \{ 0 \} \), then the assumptions of Lemma 2.10 are satisfied.

Remark 2.13. The assumptions in Lemma 2.10 on \(A_0 \) and \(A_1 \) are equivalent to the assumption that

\[
D(A_0) \subset H_0 \xrightarrow{A_0} D(A_1) \subset H_1 \xrightarrow{A_1} H_2
\]

is a closed and exact Hilbert complex. By Lemma 2.10 the adjoint complex

\[
H_0 \xleftarrow{A_0^*} D(A_0^*) \subset H_1 \xleftarrow{A_1^*} D(A_1^*) \subset H_2.
\]

is a closed and exact Hilbert complex as well.

Parts of Lemma 2.10 hold also in the Banach space setting. As a direct consequence of the closed range theorem and the closed graph theorem the following abstract result holds.

Lemma 2.14. Let \(X_0, X_1, X_2 \) be Banach spaces and suppose \(A_0 \in \text{BL}(X_0, X_1) \), \(A_1 \in \text{BL}(X_1, X_2) \) with \(R(A_0) = N(A_1) \) and that \(R(A_1) \) is closed in \(X_2 \). Then \(R(A_0') \) is closed in \(X_0' \) and \(R(A_1') = N(A_0') \). Moreover, \((A_1')^{-1} \in \text{BL}(R(A_1), R(A_1)^*) \).

Note that in the latter context we consider the operators

\[
A_1 : X_1 \to R(A_1), \quad A_1' : R(A_1)^* \to R(A_1') \quad (A_1')^{-1} : R(A_1') \to R(A_1),
\]

with \(N(A_1') = R(A_1)^* = \{ 0 \} \).

Remark 2.15. The conditions on \(A_0 \) and \(A_1 \) in Lemma 2.14 are identical to the assumption that

\[
X_0 \xrightarrow{A_0} X_1 \xrightarrow{A_1} X_2
\]

is a closed and exact complex of Banach spaces. The consequences of Lemma 2.14 can be rephrased as follows. The adjoint complex of Banach spaces

\[
X_0' \xleftarrow{A_0'} X_1' \xleftarrow{A_1'} X_2'
\]

is closed and exact as well.

Lemma 2.16. \((A_1')^{-1} \in \text{BL}(R(A_1'), R(A_1))^* \) is equivalent to

\[
\exists c_{A_1'} > 0 \quad \forall y' \in R(A_1') \quad |y'|_{R(A_1')} \leq c_{A_1'} |A_1' y'|_{X_1'}.
\]

For the best constant \(c_{A_1'} \), (2.8) is equivalent to the general inf-sup-condition

\[
0 < \frac{1}{c_{A_1'}} = \inf_{0 \neq y' \in R(A_1')} \sup_{0 \neq x \in X_1} \frac{\langle y', A_1 x \rangle_{R(A_1)'}}{|y'|_{R(A_1')} |x|_{X_1}}.
\]

In the special case that \(X_2 = H_2 \) is a Hilbert space the closed subspace \(R(A_1) \) is isometrically isomorphic to \(R(A_1)^* \) and we obtain the following form of the inf-sup-condition

\[
0 < \frac{1}{c_{A_1'}} = \inf_{0 \neq y \in R(A_1)} \sup_{0 \neq x \in X_1} \frac{\langle y, A_1 x \rangle_{H_2}}{|y|_{H_2} |x|_{X_1}}.
\]

The results collected in this section are well-known in functional analysis. We refer to [1] for a presentation of some results of this section from a numerical analysis perspective.
2.2. Sobolev Spaces. Next we introduce our notations for several classes of Sobolev spaces on a bounded domain $\Omega \subset \mathbb{R}^3$. Let $m \in \mathbb{N}_0$. We denote by $L^2(\Omega)$ and $H^m(\Omega)$ the standard Lebesgue and Sobolev spaces and write $H^0(\Omega) = L^2(\Omega)$. Our notation of spaces will not indicate whether the elements are scalar functions or vector fields. For the rotation and divergence we define the Sobolev spaces

\[R(\Omega) := \{ V \in L^2(\Omega) : \text{rot} \, V \in L^2(\Omega) \}, \quad D(\Omega) := \{ V \in L^2(\Omega) : \text{div} \, V \in L^2(\Omega) \} \]

with the respective graph norms, where rot and div have to be understood in the distributional or weak sense. We introduce spaces with boundary conditions in the natural way by

\[\hat{H}^m(\Omega) := C^\infty(\Omega) \quad , \quad \tilde{R}(\Omega) := \tilde{C}^\infty(\Omega) \quad , \quad \tilde{D}(\Omega) := \tilde{C}^\infty(\Omega) \]

i.e., as closures of test functions or fields under the respective graph norms, which generalizes homogeneous scalar, tangential and normal boundary conditions, respectively. We also introduce the well known dual spaces

\[H^{-m}(\Omega) := (\hat{H}^m(\Omega))^\prime \]

with the standard dual or operator norm defined by

\[|u|_{H^{-m}(\Omega)} := \sup_{\phi \neq \tilde{\phi} \in H^m(\Omega)} \frac{\langle u, \phi \rangle_{H^{-m}(\Omega)}}{|\phi|_{H^m(\Omega)}} \quad \text{for } u \in H^{-m}(\Omega), \]

where we recall the duality pairing $\langle \cdot, \cdot \rangle_{H^{-m}(\Omega)}$ in $(H^{-m}(\Omega), \hat{H}^m(\Omega))$. Moreover, we define with respective graph norms

\[R^{-m}(\Omega) := \{ V \in H^{-m}(\Omega) : \text{rot} \, V \in H^{-m}(\Omega) \}, \]

\[D^{-m}(\Omega) := \{ V \in H^{-m}(\Omega) : \text{div} \, V \in H^{-m}(\Omega) \}. \]

A vanishing differential operator will be indicated by a zero at the lower right corner of the spaces, e.g.,

\[R_0(\Omega) = \{ V \in R(\Omega) : \text{rot} \, V = 0 \}, \quad \tilde{D}_0(\Omega) = \{ V \in \tilde{D}(\Omega) : \text{div} \, V = 0 \}, \]

\[R_0^{-m}(\Omega) = \{ V \in R^{-m}(\Omega) : \text{rot} \, V = 0 \}, \quad \tilde{D}_0^{-1}(\Omega) = \{ V \in \tilde{D}^{-1}(\Omega) : \text{div} \, V = 0 \}. \]

Let us also introduce

\[L^2_0(\Omega) := \{ u \in L^2(\Omega) : u \perp L^2(\Omega) \mathbb{R} \} = \{ u \in L^2(\Omega) : \int_\Omega u = 0 \}, \]

where \perp denotes orthogonality in $L^2(\Omega)$.

Remark 2.17. Other widely used notations for the spaces $R(\Omega), \tilde{R}(\Omega), R^{-m}(\Omega), R_0(\Omega), \ldots$ are $H_0(\text{rot} \, \Omega), H^{-m}(\text{rot} \, \Omega), H(\text{rot} \, 0, \Omega), \ldots$, respectively. Similarly, alternative notations for $D(\Omega), \tilde{D}(\Omega), D^{-m}(\Omega), D_0(\Omega), \ldots$ are $H(\text{div} \, \Omega), H_0(\text{div} \, \Omega), H^{-m}(\text{div} \, \Omega), H(\text{div} \, 0, \Omega), \ldots$, respectively.

2.3. General Assumptions. We will impose the following regularity and topology assumptions on our domain Ω.

Definition 2.18. Let Ω be an open subset of \mathbb{R}^3 with boundary $\Gamma := \partial \Omega$. We will call Ω

(i) strong Lipschitz, if Γ is locally a graph of a Lipschitz function $\psi : U \subset \mathbb{R}^2 \rightarrow \mathbb{R},$

(ii) topologically trivial, if Ω is simply connected with connected boundary Γ.

General Assumption 2.19. From now on and throughout this paper it is assumed that $\Omega \subset \mathbb{R}^3$ is a bounded strong Lipschitz domain.

If the domain Ω has to be topologically trivial, we will always indicate this in the respective result. Note that several results will hold for arbitrary open subsets Ω of \mathbb{R}^3. All results are valid for bounded and topologically trivial strong Lipschitz domains $\Omega \subset \mathbb{R}^3$. Nevertheless, most of the results will remain true for bounded strong Lipschitz domains $\Omega \subset \mathbb{R}^3$.
2.4. Vector Analysis. In this last part of the preliminary section we summarize and prove several
ergebnisse related to scalar and vector potentials of various smoothness, corresponding Friedrichs/Poincaré-
type estimates, and related Helmholtz decompositions of $L^2(\Omega)$ and other Hilbert and Sobolev spaces.

This is a first application of the functional analysis toolbox Section 2.1 for the operators grad, rot, div,
and their adjoints $-\text{div, rot, - grad.}$ Although these are well known facts, we recall and collect them
here, as we will use later similar techniques to obtain related results for the more complicated operators
$\text{Grad, Rot}_{\mathbb{S}}, \text{Div}_{\mathbb{T}},$ and their adjoints $\text{div Div}_{\mathbb{S}}, \text{sym Rot}_{\mathbb{T}}, -\text{dev Grad.}$ Let

\[
A_0 := \text{grad} : \tilde{H}^1(\Omega) \subset L^2(\Omega) \rightarrow L^2(\Omega), \\
A_1 := \text{rot} : \tilde{R}(\Omega) \subset L^2(\Omega) \rightarrow L^2(\Omega), \\
A_2 := \text{div} : \tilde{D}(\Omega) \subset L^2(\Omega) \rightarrow L^2(\Omega).
\]

Then $A_0, A_1, \text{and } A_2$ are unbounded, densely defined, and closed linear operators with adjoints

\[
A_0^* = \text{grad}^* = - \text{div} : D(\Omega) \subset L^2(\Omega) \rightarrow L^2(\Omega), \\
A_1^* = \text{rot}^* = \text{rot} : R(\Omega) \subset L^2(\Omega) \rightarrow L^2(\Omega), \\
A_2^* = \text{div}^* = \text{grad} : H^1(\Omega) \subset L^2(\Omega) \rightarrow L^2(\Omega)
\]

and the sequence or complex properties

\[
R(A_0) = \text{grad} \tilde{H}^1(\Omega) \subset \tilde{R}_{0}(\Omega) = N(A_1), \\
R(A_1) = \text{rot} \tilde{R}(\Omega) \subset D_0(\Omega) = N(A_0), \\
R(A_2) = \text{grad} \tilde{H}^1(\Omega) \subset \tilde{R}_{0}(\Omega) = N(A_1)
\]

hold. Note $N(A_0) = \{0\}$ and $N(A_1) = \mathbb{R}.$ Moreover, the embeddings

\[
D(A_1) \cap D(A_0) = \tilde{R}(\Omega) \cap \tilde{D}(\Omega) \hookrightarrow L^2(\Omega), \\
D(A_2) \cap D(A_1) = \tilde{D}(\Omega) \cap \tilde{R}(\Omega) \hookrightarrow L^2(\Omega)
\]

are compact. The latter compact embeddings are called Maxwell compactness properties or Weck’s
selection theorems. The first proof for strong Lipschitz domains (uniform cone like domains) avoiding
smoothness of Γ was given by Weck in [27]. Generally, Weck’s selection theorems hold e.g. for weak
Lipschitz domains, see [22], or even for more general domains with p-cusps or antennas, see [28, 23]. See
also [26] for a different proof in the case of a strong Lipschitz domain. Weck’s selection theorem for mixed
boundary conditions has been proved in [12] for strong Lipschitz domains and recently in [2] for weak
Lipschitz domains. Similar to Rellich’s selection theorem, i.e., the compact embedding of $\tilde{H}^1(\Omega)$ resp.
$H^1(\Omega)$ into $L^2(\Omega)$, it is crucial that the domain Ω is bounded. Finally, the kernels

\[
N(A_1) \cap N(A_0^*) = \tilde{R}_{0}(\Omega) \cap D_0(\Omega) =: \mathcal{H}_0(\Omega) \text{ resp. } N(A_2) \cap N(A_1^*) = \tilde{D}_0(\Omega) \cap \tilde{R}_{0}(\Omega) =: \mathcal{H}_0(\Omega)
\]

are finite dimensional, as the unit balls are compact, i.e., the spaces of Dirichlet or Neumann fields are
finite dimensional. More precisely, the dimension of the Dirichlet resp. Neumann fields depends on the
topology or cohomology of Ω, i.e., second resp. first Betti number, see e.g. [20, 21]. Especially we have

\[
\mathcal{H}_0(\Omega) = \{0\}, \text{ if } \Gamma \text{ is connected, } \quad \mathcal{H}_0(\Omega) = \{0\}, \text{ if } \Omega \text{ is simply connected.}
\]

Remark 2.20. Our general assumption on Ω to be bounded and strong Lipschitz ensures that Weck’s
selection theorems (and thus also Rellich’s) hold. The additional assumption that Ω is also topologically
trivial excludes the existence of non-trivial Dirichlet or Neumann fields, as Ω is simply connected with a
connected boundary Γ.

By the results of the functional analysis toolbox Section 2.1 we see that all ranges are closed with

\[
R(A_0) = R(A_0), \quad R(A_1) = R(A_1), \quad R(A_2) = R(A_2), \\
R(A_0^*) = R(A_0^*), \quad R(A_1^*) = R(A_1^*), \quad R(A_2^*) = R(A_2^*)
\]
i.e., the ranges
\[
\begin{align*}
\text{grad } H^1(\Omega), & \quad \text{grad } H^1(\Omega) = \text{grad } (H^1(\Omega) \cap L^2_0(\Omega)), \\
\text{rot } R(\Omega) & = \text{rot } (\hat{R}(\Omega) \cap \text{rot } R(\Omega)), \\
\text{div } D(\Omega) & = \text{div } (\hat{D}(\Omega) \cap \text{grad } H^1(\Omega)), \\
\end{align*}
\]
are closed, and the reduced operators are
\[
\begin{align*}
A_0 & = \text{grad } : \hat{H}^1(\Omega) \subset L^2(\Omega) \to \text{grad } \hat{H}^1(\Omega), \\
A_1 & = \text{rot } : \hat{R}(\Omega) \cap \text{rot } R(\Omega) \subset \text{rot } R(\Omega) \to \text{rot } \hat{R}(\Omega), \\
A_2 & = \text{div } : \hat{D}(\Omega) \cap \text{grad } H^1(\Omega) \subset \text{grad } H^1(\Omega) \to L^2_0(\Omega), \\
A_0' & = - \text{div } : D(\Omega) \cap \text{grad } \hat{H}^1(\Omega) \subset \text{grad } \hat{H}^1(\Omega) \to L^2(\Omega), \\
A_1' & = \text{rot } : R(\Omega) \cap \text{rot } \hat{R}(\Omega) \subset \text{rot } \hat{R}(\Omega) \to \text{rot } R(\Omega), \\
A_2' & = - \text{grad } : H^1(\Omega) \cap L^2_0(\Omega) \subset L^2_0(\Omega) \to \text{grad } H^1(\Omega).
\end{align*}
\]

Moreover, we have the following well known Helmholtz decompositions of L^2-vector fields into irrotational and solenoidal vector fields, corresponding Friedrichs/Poincaré type estimates and continuous or compact inverse operators.

Lemma 2.21. The Helmholtz decompositions
\[
\begin{align*}
L^2(\Omega) & = \text{div } D(\Omega) \oplus_{L^2(\Omega)} \mathbb{R}, & \text{div } \hat{D}(\Omega) & = L^2_0(\Omega), \\
L^2(\Omega) & = \text{div } D(\Omega), & L^2(\Omega) & = \text{grad } H^1(\Omega) \oplus_{L^2(\Omega)} D_0(\Omega) \\
& = \hat{R}_0(\Omega) \oplus_{L^2(\Omega)} \text{rot } R(\Omega) \\
& = \text{grad } H^1(\Omega) \oplus_{L^2(\Omega)} H_D(\Omega) \oplus_{L^2(\Omega)} \text{rot } R(\Omega), \\
L^2(\Omega) & = \text{grad } H^1(\Omega) \oplus_{L^2(\Omega)} D_0(\Omega) \\
& = R_0(\Omega) \oplus_{L^2(\Omega)} \text{rot } \hat{R}(\Omega) \\
& = \text{grad } H^1(\Omega) \oplus_{L^2(\Omega)} H_N(\Omega) \oplus_{L^2(\Omega)} \text{rot } \hat{R}(\Omega)
\end{align*}
\]
hold. Moreover, (2.11) is true for the respective ranges and the “better” potentials in (2.11) are uniquely determined and depend continuously in the right hand sides. If Γ is connected, it holds $H_D(\Omega) = \{0\}$ and, e.g.,
\[
L^2(\Omega) = \hat{R}_0(\Omega) \oplus D_0(\Omega) \quad \text{and} \quad \hat{R}_0(\Omega) = \text{grad } \hat{H}^1(\Omega), \quad D_0(\Omega) = \text{rot } R(\Omega) = \text{rot } (R(\Omega) \cap D_0(\Omega)).
\]
If Ω is simply connected, it holds $H_N(\Omega) = \{0\}$ and, e.g.,
\[
L^2(\Omega) = R_0(\Omega) \oplus \hat{D}_0(\Omega) \quad \text{and} \quad R_0(\Omega) = \text{grad } H^1(\Omega), \quad \hat{D}_0(\Omega) = \text{rot } \hat{R}(\Omega) = \text{rot } (\hat{R}(\Omega) \cap D_0(\Omega)).
\]

Lemma 2.22. The following Friedrichs/Poincaré type estimates hold. There exist positive constants c_ε, c_τ, c_4, such that
\[
\forall u \in \hat{H}^1(\Omega) \quad \quad \quad |u|_{L^2(\Omega)} \leq c_\varepsilon \text{ grad } u|_{L^2(\Omega)},
\]
Moreover, the reduced versions of the operators have continuous resp. compact inverse operators

\[
\begin{align*}
\text{grad}^{-1} &: \text{grad} \hat{H}^1(\Omega) \to \hat{H}^1(\Omega), \\
\text{div}^{-1} &: L^2(\Omega) \to D(\Omega) \cap \text{grad} \hat{H}^1(\Omega), \\
\text{rot}^{-1} &: \text{rot} \hat{R}(\Omega) \to \hat{R}(\Omega) \cap \text{rot} R(\Omega), \\
\text{div}^{-1} &: L^2_0(\Omega) \to \hat{D}(\Omega) \cap \text{grad} H^1(\Omega), \\
\text{grad}^{-1} &: \text{grad} H^1(\Omega) \to H^1(\Omega) \cap L^2_0(\Omega),
\end{align*}
\]

with norms \((1 + c_8^2)^{1/2}, (1 + c_7^2)^{1/2}, (1 + c_6^2)^{1/2}\) resp. \(c_8, c_7, c_6\). In other words, the operators

\[
\begin{align*}
\circ \text{grad} &: \hat{H}^1(\Omega) \to \hat{H}^1(\Omega), \\
\circ \text{div} &: D(\Omega) \cap \text{grad} \hat{H}^1(\Omega) \to L^2(\Omega), \\
\circ \text{rot} &: \hat{R}(\Omega) \cap \text{rot} R(\Omega) \to \hat{R}(\Omega) \cap \text{rot} R(\Omega), \\
\circ \text{div} &: \hat{D}(\Omega) \cap \text{grad} H^1(\Omega) \to L^2_0(\Omega), \\
\circ \text{grad} &: H^1(\Omega) \cap L^2_0(\Omega) \to \text{grad} H^1(\Omega),
\end{align*}
\]

are topological isomorphisms. If \(\Omega\) is topologically trivial, then

\[
\begin{align*}
\circ \text{grad} &: \hat{H}^1(\Omega) \to \hat{R}_0(\Omega), \\
\circ \text{div} &: D(\Omega) \cap \hat{R}_0(\Omega) \to L^2(\Omega), \\
\circ \text{rot} &: \hat{R}(\Omega) \cap \hat{D}_0(\Omega) \to \hat{D}_0(\Omega), \\
\circ \text{div} &: \hat{D}(\Omega) \cap R_0(\Omega) \to L^2_0(\Omega), \\
\circ \text{grad} &: H^1(\Omega) \cap L^2_0(\Omega) \to R_0(\Omega),
\end{align*}
\]

are topological isomorphisms.

Remark 2.23. Recently it has been shown in [17, 18, 19], that for bounded and convex \(\Omega \subset \mathbb{R}^3\) it holds

\[c_r \leq c_d \leq \frac{\text{diam} \Omega}{\pi},\]

i.e., the Maxwell constant \(c_r\) can be estimates from above by the Friedrichs/Poincaré constant.
Remark 2.24. Some of the previous results can be formulated equivalently in terms of complexes: The sequence
\[
\{0\} \xrightarrow{0} \overset{\circ}{H}^1(\Omega) \xrightarrow{\circ \text{grad}} \overset{\circ}{R}(\Omega) \xrightarrow{\circ \text{rot}} \overset{\circ}{D}(\Omega) \xrightarrow{\circ \text{div}} L^2(\Omega) \xrightarrow{\pi_R} \mathbb{R}
\]
and thus also its dual or adjoint sequence
\[
\{0\} \leftarrow \overset{\circ}{L}^2(\Omega) \leftarrow \text{div} \overset{\circ}{D}(\Omega) \leftarrow \text{rot} \overset{\circ}{R}(\Omega) \leftarrow \text{grad} \overset{\circ}{H}^1(\Omega) \leftarrow \text{in} \mathbb{R}
\]
are closed Hilbert complexes. Here \(\pi_R : L^2(\Omega) \to \mathbb{R}\) denotes the orthogonal projector onto \(\mathbb{R}\) with adjoint \(\pi_R^* : \mathbb{R} \to L^2(\Omega)\), the canonical embedding. If \(\Omega\) is additionally topologically trivial, then the complexes are also exact. These complexes are widely known as de Rham complexes.

Let \(\Omega\) be additionally topologically trivial. For irrotational vector fields in \(\overset{\circ}{H}^m(\Omega)\) resp. \(H^m(\Omega)\) we have smooth potentials, which follows immediately by \(\overset{\circ}{R}_0(\Omega) = \text{grad} \overset{\circ}{H}^1(\Omega)\) resp. \(R_0(\Omega) = \text{grad} H^1(\Omega)\) from the previous lemma.

Lemma 2.25. Let \(\Omega\) be additionally topologically trivial and \(m \in \mathbb{N}_0\). Then

\[
\overset{\circ}{H}^m(\Omega) \cap \overset{\circ}{R}_0(\Omega) = \text{grad} \overset{\circ}{H}^{m+1}(\Omega), \quad H^m(\Omega) \cap R_0(\Omega) = \text{grad} H^{m+1}(\Omega)
\]
hold with linear and continuous potential operators \(P_{\text{grad}}\), \(P_{\text{grad}}\).

So, for each \(V \in \overset{\circ}{H}^m(\Omega) \cap \overset{\circ}{R}_0(\Omega)\), we have \(V = \text{grad} u\) for the potential \(u = P_{\text{grad}} V \in \overset{\circ}{H}^{m+1}(\Omega)\) and, analogously, for each \(V \in H^m(\Omega) \cap R(\Omega)\), it holds \(V = \text{grad} u\) for the potential \(u = P_{\text{grad}} V \in H^{m+1}(\Omega)\). Note that the potential in \(H^{m+1}(\Omega)\) is uniquely determined only up to a constant.

For solenoidal vector fields in \(\overset{\circ}{H}^m(\Omega)\) resp. \(H^m(\Omega)\) we have smooth potentials, too.

Lemma 2.26. Let \(\Omega\) be additionally topologically trivial and \(m \in \mathbb{N}_0\). Then

\[
\overset{\circ}{H}^m(\Omega) \cap \overset{\circ}{D}_0(\Omega) = \text{rot} \overset{\circ}{H}^{m+1}(\Omega), \quad H^m(\Omega) \cap D_0(\Omega) = \text{rot} H^{m+1}(\Omega)
\]
hold with linear and continuous potential operators \(P_{\text{rot}}\), \(P_{\text{rot}}\).

For a proof see, e.g., [6, Corollary 4.7] or with slight modifications the generalized lifting lemma [10, Corollary 5.4] for the case \(d = 3, k = m, l = 2\). Moreover, the potential in \(H^{m+1}(\Omega)\) resp. \(H^{m+1}(\Omega)\) is no longer uniquely determined.

For the divergence operator we have the following result.

Lemma 2.27. Let \(m \in \mathbb{N}_0\). Then

\[
\overset{\circ}{H}^m(\Omega) \cap L^2_0(\Omega) = \text{div} \overset{\circ}{H}^{m+1}(\Omega), \quad H^m(\Omega) \cap D_0(\Omega) = \text{div} H^{m+1}(\Omega)
\]
hold with linear and continuous potential operators \(P_{\text{div}}\), \(P_{\text{div}}\).

Again, the potential in \(\overset{\circ}{H}^{m+1}(\Omega)\) resp. \(H^{m+1}(\Omega)\) is no longer uniquely determined. Also Lemma 2.25 resp. Lemma 2.27 has been proved in [6, Corollary 4.7(b)] and in [10, Corollary 5.4] for the case \(d = 3, k = m, l = 1\) resp. \(d = 3, k = m, l = 3\).

Remark 2.28. Lemma 2.27, which shows a classical result on the solvability and on the properties of the solution operator of the divergence equation, is an important tool in fluid dynamics, i.e., in the theory of Stokes or Navier-Stokes equations. The potential operator is often called Bogovski˘i operator, see [4, 5] for the original works and also [7, p. 179, Theorem III.3.3], [25, Lemma 2.1.1]. Moreover, there are also versions of Lemma 2.25 and Lemma 2.26, if \(\Omega\) is not topologically trivial, which we will not need in the paper at hand.

Remark 2.29. A closer inspection of Lemma 2.25 and Lemma 2.26 and their proofs shows, that these results extend to general topologies as well. More precisely we have:
\[(i) \text{ It holds } \]
\[\mathring{H}^m(\Omega) \cap \text{grad} \mathring{H}^1(\Omega) = \mathring{H}^m(\Omega) \cap \mathring{R}_0(\Omega) \cap \mathcal{H}_D(\Omega) = \text{grad} \mathring{H}^{m+1}(\Omega), \]
\[\mathring{H}^m(\Omega) \cap \text{grad} \mathring{H}^1(\Omega) = \mathring{H}^m(\Omega) \cap \mathring{R}_0(\Omega) \cap \mathcal{H}_N(\Omega) = \text{grad} \mathring{H}^{m+1}(\Omega) \]
with linear and continuous potential operators \(P_{\text{grad}}, P_{\text{rot}} \).

\[(ii) \text{ It holds } \]
\[\mathring{H}^m(\Omega) \cap \text{rot} \mathring{R}(\Omega) = \mathring{H}^m(\Omega) \cap \mathring{D}_0(\Omega) \cap \mathcal{H}_N(\Omega) = \text{rot} \mathring{H}^{m+1}(\Omega), \]
\[\mathring{H}^m(\Omega) \cap \text{rot} \mathring{R}(\Omega) = \mathring{H}^m(\Omega) \cap \mathring{D}_0(\Omega) \cap \mathcal{H}_D(\Omega) = \text{rot} \mathring{H}^{m+1}(\Omega) \]
with linear and continuous potential operators \(P_{\text{rot}}, P_{\text{rot}} \).

Using the latter three results and Lemma 2.14, irrotational and solenoidal vector fields in \(\mathring{H}^{-m}(\Omega) \) can be characterized.

Corollary 2.30. Let \(\Omega \) be additionally topologically trivial and \(m \in \mathbb{N} \). Then
\[\mathring{R}_0^{-m}(\Omega) = \text{grad} \mathring{H}^{-m+1}(\Omega) = \text{grad} \left(\mathring{H}^{m-1}(\Omega) \cap \mathcal{L}_2^m(\Omega) \right)’ \]
is closed in \(\mathring{H}^{-m}(\Omega) \) with continuous inverse, i.e., \(\text{grad}^{-1} \in BL(\mathring{R}_0^{-m}(\Omega), (\mathring{H}^{m-1}(\Omega) \cap \mathcal{L}_2^m(\Omega))’) \). Especially for \(m = 1 \),
\[\mathring{R}_0^{-1}(\Omega) = \text{grad} \mathring{L}^2(\Omega) = \text{grad} \mathcal{L}_2(\Omega) \]
is closed in \(\mathring{H}^{-1}(\Omega) \) with continuous inverse \(\text{grad}^{-1} \in BL(\mathring{R}_0^{-1}(\Omega), \mathcal{L}_2(\Omega)) \) and uniquely determined potential in \(\mathcal{L}_2(\Omega) \). Moreover,
\[\exists c_{k,-1} > 0 \quad \forall u \in \mathcal{L}_2^1(\Omega) \quad |u|_{\mathcal{L}_2^1(\Omega)} \leq c_{k,-1} |\text{grad} u|_{\mathring{H}^{-1}(\Omega)} \leq \sqrt{3} c_{k,-1} |u|_{\mathcal{L}_2^1(\Omega)} \]
and the inf-sup-condition
\[0 < \frac{1}{c_{k,-1}} = \inf_{0 \neq u \in \mathcal{L}_2^1(\Omega)} \frac{|\text{grad} u|_{\mathring{H}^{-1}(\Omega)}}{|u|_{\mathcal{L}_2^1(\Omega)}} \leq \inf_{0 \neq u \in \mathcal{L}_2^1(\Omega)} \sup_{0 \neq V \in \mathring{H}^{1}(\Omega)} \frac{\langle u, \text{div} V \rangle_{\mathcal{L}_2^1(\Omega)}}{|u|_{\mathcal{L}_2^1(\Omega)}} \]
holds.

Proof. Let \(X_0 := \mathring{H}^{m+1}(\Omega), X_1 := \mathring{H}^m(\Omega), X_2 := \mathring{H}^{m-1}(\Omega) \) and
\[A_0 := \text{rot} : \mathring{H}^{m+1}(\Omega) \to \mathring{H}^m(\Omega), \quad A_1 := -\text{div} : \mathring{H}^m(\Omega) \to \mathring{H}^{m-1}(\Omega). \]
These linear operators are bounded, \(R(A_0) = \text{rot} \mathring{H}^{m+1}(\Omega) = \mathring{H}^m(\Omega) \cap \mathring{D}_0(\Omega) = N(A_1) \) by Lemma 2.26, and \(R(A_1) = \text{div} \mathring{H}^m(\Omega) = \mathring{H}^{m-1}(\Omega) \cap \mathcal{L}_2^m(\Omega) \) by Lemma 2.27. Therefore, \(R(A_1) \) is closed. For the adjoint operators we get
\[A_0' = \text{rot} : H^{-m}(\Omega) \to H^{-m-1}(\Omega), \quad A_1' = \text{grad} = -\text{div} : H^{-m+1}(\Omega) \to H^{-m}(\Omega) \]
and obtain from Lemma 2.14 that
\[R_0^{-m}(\Omega) = N(A_0') = R(A_1') = \text{grad} \mathring{H}^{-m+1}(\Omega) \]
is closed and
\[\text{grad}^{-1} = (A_1')^{-1} \in BL(R(A_1'), R(A_1)'), BL(R_0^{-m}(\Omega), (\mathring{H}^{m-1}(\Omega) \cap \mathcal{L}_2^m(\Omega))'), \]
which completes the proof for general \(m \). If \(m = 1 \), we get the assertions about the Friedrichs/Poincaré/Nečas inequality and inf-sup-condition by Lemma 2.16, i.e., (2.8) and (2.10). \(\square \)
Corollary 2.31. Let \(\Omega \) be additionally topologically trivial and \(m \in \mathbb{N} \). Then
\[
D_0^{-m}(\Omega) = \text{rot} H^{-m+1}(\Omega) = \text{rot} (\mathcal{H}^{m-1}(\Omega) \cap \mathcal{D}_0(\Omega))'
\]
is closed in \(H^{-m}(\Omega) \) with continuous inverse, i.e., \(\text{rot}^{-1} \in BL(D_0^{-m}(\Omega), (\mathcal{H}^{m-1}(\Omega) \cap \mathcal{D}_0(\Omega))') \). Especially for \(m = 1 \),
\[
D_0^{-1}(\Omega) = \text{rot} L^2(\Omega) = \text{rot} \mathcal{D}_0(\Omega)
\]
is closed in \(H^{-1}(\Omega) \) with continuous inverse \(\text{rot}^{-1} \in BL(D_0^{-1}(\Omega), \mathcal{D}_0(\Omega)) \) and uniquely determined potential in \(\mathcal{D}_0(\Omega) \). Moreover,
\[
\exists c_{r, -1} > 0 \quad \forall V \in \mathcal{D}_0(\Omega) \quad |V|_{L^2(\Omega)} \leq c_{r, -1} |\text{rot} V|_{H^{-1}(\Omega)} \leq \sqrt{2} c_{r, -1} |V|_{L^2(\Omega)}
\]
and the inf-sup-condition
\[
0 < \frac{1}{c_{r, -1}} = \inf_{0 \neq V \in \mathcal{D}_0(\Omega)} \frac{|\text{rot} V|_{H^{-1}(\Omega)}}{|V|_{L^2(\Omega)}} = \inf_{0 \neq V \in \mathcal{D}_0(\Omega)} \sup_{0 \neq V \in H^1(\Omega)} \frac{\langle V, \text{rot} H \rangle_{L^2(\Omega)}}{|V|_{L^2(\Omega)} |\text{Grad} H|_{L^2(\Omega)}}
\]
holds.

Proof. Let \(X_0 := \mathcal{H}^{m+1}(\Omega), X_1 := \mathcal{H}^m(\Omega), X_2 := \mathcal{H}^{m-1}(\Omega) \) and
\[
A_0 := \text{grad} : \mathcal{H}^{m+1}(\Omega) \to \mathcal{H}^m(\Omega), \quad A_1 := \text{rot} : \mathcal{H}^m(\Omega) \to \mathcal{H}^{m-1}(\Omega).
\]
These linear operators are bounded, \(R(A_0) = \text{grad} \mathcal{H}^{m+1}(\Omega) = \mathcal{H}^m(\Omega) \cap \mathcal{R}_0(\Omega) = N(A_1) \) by Lemma 2.25, and \(R(A_1) = \text{rot} \mathcal{H}^m(\Omega) = \mathcal{H}^{m-1}(\Omega) \cap \mathcal{D}_0(\Omega) \) by Lemma 2.26. Therefore, \(R(A_1) \) is closed. For the adjoint operators we get
\[
A_0' = - \text{div} = \text{grad}' : \mathcal{H}^{-m}(\Omega) \to \mathcal{H}^{-m-1}(\Omega), \quad A_1' = \text{rot} = \text{rot}' : \mathcal{H}^{-m+1}(\Omega) \to \mathcal{H}^{-m}(\Omega)
\]
and obtain from Lemma 2.14 that
\[
D_0^{-m}(\Omega) = N(A_0') = R(A_1') = \text{rot} H^{-m+1}(\Omega)
\]
is closed and
\[
\text{rot}^{-1} = (A_1')^{-1} \in BL(R(A_1'), R(A_1)') = BL(D_0^{-m}(\Omega), (\mathcal{H}^{m-1}(\Omega) \cap \mathcal{D}_0(\Omega))'),
\]
which completes the proof for general \(m \). If \(m = 1 \), we get the assertions about the Friedrichs/Poincaré/Nečas inequality and inf-sup-condition by Lemma 2.16, i.e., (2.8) and (2.10).

Let us present the corresponding result for the divergence as well.

Corollary 2.32. Let \(\Omega \) be additionally topologically trivial and \(m \in \mathbb{N} \). Then
\[
H^{-m}(\Omega) = \text{div} H^{-m+1}(\Omega) = \text{div} (\mathcal{H}^{m-1}(\Omega) \cap \mathcal{R}_0(\Omega))'
\]
(is closed in \(H^{-m}(\Omega) \)) with continuous inverse, i.e., \(\text{div}^{-1} \in BL(H^{-m}(\Omega), (\mathcal{H}^{m-1}(\Omega) \cap \mathcal{R}_0(\Omega))') \). Especially for \(m = 1 \),
\[
H^{-1}(\Omega) = \text{div} L^2(\Omega) = \text{div} \mathcal{R}_0(\Omega)
\]
(is closed in \(H^{-1}(\Omega) \)) with continuous inverse \(\text{div}^{-1} \in BL(H^{-1}(\Omega), \mathcal{R}_0(\Omega)) \) and uniquely determined potential in \(\mathcal{R}_0(\Omega) \). Moreover,
\[
\exists c_{d, -1} > 0 \quad \forall V \in \mathcal{R}_0(\Omega) \quad |V|_{L^2(\Omega)} \leq c_{d, -1} |\text{div} V|_{H^{-1}(\Omega)} \leq c_{d, -1} |V|_{L^2(\Omega)}
\]
and the inf-sup-condition

\[0 < \frac{1}{c_{d,-1}} = \inf_{0 \neq V \in \mathcal{R}(\Omega)} \frac{\| \text{div } V \|_{L^2(\Omega)}}{\| V \|_{L^2(\Omega)}} = \inf_{0 \neq V \in \mathcal{D}(\Omega)} \sup_{0 \neq u \in H^1(\Omega)} \frac{\langle V, \text{grad } u \rangle_{L^2(\Omega)}}{\| \text{grad } u \|_{L^2(\Omega)}}. \]

holds.

Proof. Let \(X_1 := \overset{\circ}{H}^m(\Omega) \), \(X_2 := \overset{\circ}{H}^{m-1}(\Omega) \) and \(A_1 := -\text{grad} : \overset{\circ}{H}^m(\Omega) \to \overset{\circ}{H}^{m-1}(\Omega) \). \(A_1 \) is linear and bounded with \(R(A_1) = \text{grad} \overset{\circ}{H}^m(\Omega) = \overset{\circ}{H}^{m-1}(\Omega) \cap \overset{\circ}{R}_0(\Omega) \) by Lemma 2.25. Therefore, \(R(A_1) \) is closed. The adjoint is \(A_1' = \text{div} = -\text{grad}' : \overset{\circ}{H}^{-m+1}(\Omega) \to \overset{\circ}{H}^{-m}(\Omega) \) with closed range \(R(A_1') = \text{div} \overset{\circ}{H}^{-m+1}(\Omega) \) by the closed range theorem. Moreover, \(N(A_1) = \{0\} \). Hence \(A_1' \) is surjective as \(A_1 \) is injective, i.e.,

\[\overset{\circ}{H}^{-m}(\Omega) = N(A_1)^o = R(A_1') = \text{div} \overset{\circ}{H}^{-m+1}(\Omega). \]

As \(A_1 \) is also surjective onto its range, \(A_1' = \text{div} : \overset{\circ}{H}^{-m+1}(\Omega) \to R(A_1') \) is bijective. By the bounded inverse theorem we get

\[\text{div}^{-1} = (A_1')^{-1} = BL(R(A_1'), R(A_1'))' = BL(\overset{\circ}{H}^{-m}(\Omega), (\overset{\circ}{H}^{m-1}(\Omega) \cap \overset{\circ}{R}_0(\Omega))'), \]

which completes the proof for general \(m \). If \(m = 1 \), we get the assertions about the Friedrichs/Poincaré/Nečas inequality and inf-sup-condition by Lemma 2.16, i.e., (2.8) and (2.10).

Remark 2.33. The results of the latter three lemmas and corollaries can be formulated equivalently in terms of complexes: Let \(\Omega \) be additionally topologically trivial. Then the sequence

\[\overset{\circ}{H}^m(\Omega) \xrightarrow{\text{grad}} \overset{\circ}{H}^{m-1}(\Omega) \xrightarrow{\text{rot}} \overset{\circ}{H}^{m-2}(\Omega) \]

and thus also its dual or adjoint sequence

\[\overset{\circ}{H}^{-m}(\Omega) \xleftarrow{\text{div}} \overset{\circ}{H}^{-m+1}(\Omega) \xleftarrow{\text{rot}} \overset{\circ}{H}^{-m+2}(\Omega) \]

are closed and exact Banach complexes.

3. The \(\text{Grad grad- and div Div-Complexes} \)

We will use the following standard notations from linear algebra. For vectors \(a, b \in \mathbb{R}^3 \) and matrices \(A, B \in \mathbb{R}^{3 \times 3} \) the expressions \(a \cdot b \) and \(A : B \) denote the inner product of vectors and the Frobenius inner product of matrices, respectively. For a vector \(a \in \mathbb{R}^3 \) with components \(a_i \) for \(i = 1, 2, 3 \) the matrix \(\text{spn } a \in \mathbb{R}^{3 \times 3} \) is defined by

\[\text{spn } a = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix}. \]

Observe that \((\text{spn } a)b = a \times b \) for \(a, b \in \mathbb{R}^3 \), where \(a \times b \) denotes the exterior product of vectors. The exterior product \(a \times B \) of a vector \(a \in \mathbb{R}^3 \) and a matrix \(B \in \mathbb{R}^{3 \times 3} \) is defined as the matrix which is obtained by applying the exterior product row-wise. Note that \(\text{spn} \) is a bijective mapping from \(\mathbb{R}^3 \) to the set of skew-symmetric matrices in \(\mathbb{R}^{3 \times 3} \) with the inverse mapping \(\text{spn}^{-1} \). In addition to \(\text{sym } A \) and \(\text{skw } A \) for the symmetric part and the skew-symmetric part of a matrix \(A \), we use \(\text{dev } A \) and \(\text{tr } A \) for denoting the deviatoric part and the trace of a matrix \(A \). Finally, the set of symmetric matrices in \(\mathbb{R}^{3 \times 3} \) is denoted by \(\mathbb{S} \), the set of matrices in \(\mathbb{R}^{3 \times 3} \) with vanishing trace is denoted by \(\mathbb{T} \).

In this section we need several spaces of tensor fields. The spaces

\[\overset{\circ}{C}^\infty(\Omega), \overset{\circ}{L}^2(\Omega), \overset{\circ}{H}^1(\Omega), \overset{\circ}{H}^1(\Omega), \overset{\circ}{D}(\Omega), \overset{\circ}{D}(\Omega), \overset{\circ}{R}_0(\Omega), \ldots \]

are introduced as those spaces of tensor fields, whose rows are in the corresponding spaces of vector fields \(\overset{\circ}{C}^\infty(\Omega), L^2(\Omega), H^1(\Omega), H^1(\Omega), D(\Omega), D(\Omega), R_0(\Omega), \ldots \), respectively. Additionally, we will need spaces allowing for a deviatoric gradient, a symmetric rotation, and a double divergence, i.e.,

\[G_{\text{dev}}(\Omega) := \{ V \in L^2(\Omega) : \text{dev Grad } V \in L^2(\Omega) \}, \]
\[G_{\text{dev},0}(\Omega) := \{ V \in L^2(\Omega) : \text{dev Grad } V = 0 \}, \]
Let us also mention that $\delta^2 \Phi_l \in \mathcal{C}^\infty(\mathbb{R}^3)$ be a vector field. We want to express the second derivatives of Φ by the derivatives of the deviatoric part of the Jacobian, i.e., of $\text{dev} \text{Grad} \Phi$. Recall that we have $\text{dev} \text{Grad} \Phi$ coincides with $\text{Grad} \Phi$ outside the diagonal entries, i.e., we have $\text{dev} \text{Grad} \Phi_{ij} = (\text{dev} \text{Grad} \Phi)_{ij}$ for $i \neq j$. Hence, looking at second derivatives, we see immediately

$$
\partial_k \partial_j \Phi_l = \partial_k (\text{Grad} \Phi)_{ij} = \partial_k (\text{dev} \text{Grad} \Phi)_{ij} \quad \text{for } i \neq j,
$$

$$
\partial_k \partial_j \Phi_l = \partial_j (\text{Grad} \Phi)_{ik} = \partial_j (\text{dev} \text{Grad} \Phi)_{ik} \quad \text{for } i \neq k.
$$

Thus it remains to represent $\partial^2 \Phi$, by the derivatives of $\text{dev} \text{Grad} \Phi$. By

$$
\partial^2 \Phi_l = \partial_l (\text{Grad} \Phi)_{ii} = \partial_l (\text{dev} \text{Grad} \Phi)_{ii} + \frac{1}{3} \partial_l \text{div} \Phi,
$$

we get

$$
\frac{2}{3} \partial^2 \Phi_l = \partial_l (\text{dev} \text{Grad} \Phi)_{ii} + \frac{1}{3} \sum_{i \neq j} \partial_i \partial_j \Phi_l = \partial_l (\text{dev} \text{Grad} \Phi)_{ii} + \frac{1}{3} \sum_{i \neq j} \partial_l (\text{dev} \text{Grad} \Phi)_{ii},
$$

yielding the stated result for test vector fields. Testing extends the formulas to distributions, which finishes the proof. \qed
We note that the latter trick is similar to the well known fact that second derivatives of a vector field can always be written as derivatives of the symmetric gradient of the vector field, leading by Nečas estimate to Korn’s second and first inequalities. We will now do the same for the operator dev Grad.

Lemma 3.2. It holds:

(i) There exists \(c > 0 \), such that for all vector fields \(V \in H^1(\Omega) \)

\[
|\text{Grad} V|_{L^2(\Omega)} \leq c \left(|V|_{L^2(\Omega)} + |\text{dev Grad} V|_{L^2(\Omega)} \right).
\]

(ii) \(\mathcal{G}_{\text{dev}}(\Omega) = H^1(\Omega) \).

(iii) For dev Grad : \(\mathcal{G}_{\text{dev}}(\Omega) \subset L^2(\Omega) \rightarrow L^2(\Omega, \mathbb{T}) \) it holds \(D(\text{dev Grad}) = \mathcal{G}_{\text{dev}}(\Omega) = H^1(\Omega) \), and the kernel of dev Grad equals the space of (global) shape functions of the lowest order Raviart-Thomas elements, i.e.,

\[
N(\text{dev Grad}) = \mathcal{G}_{\text{dev},0}(\Omega) = RT_0 := \{ P : P(x) = a \cdot x + b, a \in \mathbb{R}, b \in \mathbb{R}^3 \},
\]

which dimension is \(\dim RT_0 = 4 \).

(iv) There exists \(c > 0 \), such that for all vector fields \(V \in H^1(\Omega) \cap RT_0^{1/2}(\Omega) \)

\[
|V|_{H^1(\Omega)} \leq c |\text{dev Grad} V|_{L^2(\Omega)}.
\]

Proof. Let \(V \in H^1(\Omega) \). By the latter lemma and Nečas estimate, i.e.,

\[
\exists c > 0 \quad \forall u \in L^2(\Omega) \quad c |u|_{L^2(\Omega)} \leq |\text{grad} u|_{H^{-1}(\Omega)} + |u|_{H^{-1}(\Omega)} \leq (\sqrt{3} + 1)|u|_{L^2(\Omega)},
\]

we get

\[
|\text{Grad} V|_{L^2(\Omega)} \leq c \left(\sum_{k=1}^{3} |\partial_k \text{Grad} V|_{H^{-1}(\Omega)} + |\text{Grad} V|_{H^{-1}(\Omega)} \right)
\]

\[
\leq c \left(\sum_{k=1}^{3} |\partial_k \text{dev Grad} V|_{H^{-1}(\Omega)} + |\text{Grad} V|_{H^{-1}(\Omega)} \right)
\]

\[
\leq c \left(|\text{dev Grad} V|_{L^2(\Omega)} + |V|_{L^2(\Omega)} \right),
\]

which shows (i). As \(\Omega \) has the segment property and by standard mollification we obtain that restrictions of \(\tilde{C}^\infty(\mathbb{R}^3) \)-vector fields are dense in \(\mathcal{G}_{\text{dev}}(\Omega) \). Especially \(H^1(\Omega) \) is dense in \(\mathcal{G}_{\text{dev}}(\Omega) \). Let \(V \in \mathcal{G}_{\text{dev}}(\Omega) \) and \((V_n) \subset H^1(\Omega) \) with \(V_n \rightarrow V \) in \(\mathcal{G}_{\text{dev}}(\Omega) \). By (i) \((V_n) \) is a Cauchy sequence in \(H^1(\Omega) \) converging to \(V \) in \(H^1(\Omega) \), which proves \(V \in H^1(\Omega) \) and hence (ii). For \(P \in RT_0 \) it holds dev Grad \(P = a \text{dev I} = 0 \). Let dev Grad \(V = 0 \) for some vector field \(V \in \mathcal{G}_{\text{dev}}(\Omega) = H^1(\Omega) \). By Lemma 3.1 we get \(\partial_k \text{Grad} V = 0 \) for all \(k = 1, \ldots, 3 \), and therefore \(V(x) = A \cdot x + b \) for some matrix \(A \in \mathbb{R}^{3 \times 3} \) and vector \(b \in \mathbb{R}^3 \). Then \(0 = \text{dev Grad} V = \text{dev A} \), if and only if \(A = \frac{1}{3}(\text{tr } A) \text{I} \), which shows (iii). If (iv) was wrong, there exists a sequence \((V_n) \subset H^1(\Omega) \cap RT_0^{1/2}(\Omega) \) with \(|V_n|_{H^1(\Omega)} = 1 \) and dev Grad \(V_n \rightarrow 0 \). As \((V_n) \) is bounded in \(H^1(\Omega) \), by Rellich’s selection theorem there exists a subsequence, again denoted by \((V_n) \), and some \(V \in L^2(\Omega) \) with \(V_n \rightarrow V \) in \(L^2(\Omega) \). By (i), \((V_n) \) is a Cauchy sequence in \(H^1(\Omega) \). Hence \(V_n \rightarrow V \) in \(H^1(\Omega) \) and \(V \in H^1(\Omega) \cap RT_0^{1/2}(\Omega) \). As \(0 = \text{dev Grad} V_n \rightarrow \text{dev Grad} V \), we have by (iii) \(V \in RT_0 \cap RT_0^{1/2}(\Omega) = \{ 0 \} \), a contradiction to \(1 = |V_n|_{H^1(\Omega)} \rightarrow 0 \). The proof is complete. \(\square \)

We recall the following well-known result.

Lemma 3.3. Let \(\mathcal{G}G(\Omega) := \{ u \in L^2(\Omega) : \text{Grad grad } u \in L^2(\Omega) \} \) and \(\mathcal{G}G_0(\Omega) := \mathcal{C}^\infty(\Omega) \). Then

\[
\mathcal{G}G(\Omega) = \mathcal{G}^2(\Omega), \quad \mathcal{G}G_0(\Omega) = \{ 0 \},
\]
and there exists $c > 0$ such that for all $u \in \mathring{H}^2(\Omega)$
\[|u|_{H^2(\Omega)} \leq c \, |\text{Grad grad} u|_{L^2(\Omega)} = c \, |\Delta u|_{L^2(\Omega)}.
\]
It holds
\[c \leq \sqrt{1 + c^2 \frac{1}{6}(1 + c^2)} \leq 1 + c^2.
\]
By straightforward calculations and standard arguments for distributions, see the Appendix, we get the following.

Lemma 3.4. It holds:

1. $\text{skw Grad grad} H^2(\Omega) = 0$, i.e., Hessians are symmetric.
2. $\text{tr Rot} \, \mathfrak{R}(\Omega, S) = 0$, i.e., rotations of symmetric tensors are trace free.

These formulas extend to distributions as well.

With Lemma 3.3 and Lemma 3.4 let us now consider the linear operators

(i) $A_0 := \text{Grad grad} : \mathcal{G}(\Omega) \rightarrow \mathcal{L}(\Omega) \rightarrow L^2(\Omega, S)$, $u \mapsto \text{Grad grad} u$,

(ii) $A_1 := \text{Rot}_{\mathfrak{S}} : \hat{\mathfrak{R}}(\Omega, S) \subset L^2(\Omega, S) \rightarrow L^2(\Omega, T)$, $M \mapsto \text{Rot} M$,

(iii) $A_2 := \text{Div}_{\mathfrak{T}} : \hat{\mathfrak{D}}(\Omega, T) \subset L^2(\Omega, T) \rightarrow L^2(\Omega)$, $E \mapsto \text{Div} E$.

These are well and densely defined and closed. Closedness is clear. For densely defined we look e.g. at $\text{Rot}_{\mathfrak{S}}$. For $M \in L^2(\Omega, S)$ pick $\Phi_n \in C^{\infty}(\Omega)$ with $\Phi_n \rightarrow M$ in $L^2(\Omega)$. Then
\[|M - \text{sym} \Phi_n|^2_{L^2(\Omega)} + |\text{skw} \Phi_n|^2_{L^2(\Omega)} = |M - \Phi_n|^2_{L^2(\Omega)} \rightarrow 0,
\]
showing $(\text{sym} \Phi_n) \subset C^{\infty}(\Omega) \cap L^2(\Omega, S) \subset \mathfrak{R}(\Omega, S)$ and $\text{sym} \Phi_n \rightarrow M$ in $L^2(\Omega, S)$. By Lemma 3.3 the kernels are
\[N(\text{Grad grad}) = \{0\}, \quad N(\text{Rot}_{\mathfrak{S}}) = \hat{\mathfrak{R}}_0(\Omega, S), \quad N(\text{Div}_{\mathfrak{T}}) = \hat{\mathfrak{D}}_0(\Omega, T).
\]

Lemma 3.5. The adjoints of (3.1), (3.2), (3.3) are
\[A_0^* = (\text{Grad grad})^* = \text{div Div}_{\mathfrak{S}} : \mathcal{D}(\Omega, S) \subset L^2(\Omega, S) \rightarrow L^2(\Omega), \quad M \mapsto \text{div Div} M,
\]
\[A_1^* = (\text{Rot}_{\mathfrak{S}})^* = \text{sym Rot}_{\mathfrak{T}} : \mathcal{R}_{\text{sym}}(\Omega, T) \subset L^2(\Omega, T) \rightarrow L^2(\Omega, S), \quad E \mapsto \text{sym Rot} E,
\]
\[A_2^* = (\text{Div}_{\mathfrak{T}})^* = - \text{div Grad} : \mathcal{G}_{\text{dev}}(\Omega) \rightarrow L^2(\Omega) \rightarrow L^2(\Omega, T), \quad V \mapsto - \text{div Grad} V.
\]

with kernels
\[N(\text{div Div}_{\mathfrak{S}}) = \mathcal{D}D_0(\Omega, S), \quad N(\text{sym Rot}_{\mathfrak{T}}) = \mathcal{R}_{\text{sym}, 0}(\Omega, T), \quad N(\text{dev Grad}) = \mathcal{R}T_0.
\]

Proof. We have $M \in D((\text{Grad grad})^*) \subset L^2(\Omega, S)$ and $(\text{Grad grad})^* M = u \in L^2(\Omega)$, if and only if $M \in L^2(\Omega, S)$ and there exists $u \in L^2(\Omega)$, such that
\[\forall \varphi \in D((\text{Grad grad})^*) \subset H^2(\Omega) \quad (\text{Grad grad} \varphi, M)_{L^2(\Omega, S)} = \langle \varphi, u \rangle_{L^2(\Omega)}
\]
\[\Leftrightarrow \quad \forall \varphi \in C^{\infty}(\Omega) \quad (\text{Grad grad} \varphi, M)_{L^2(\Omega)} = \langle \varphi, u \rangle_{L^2(\Omega)},
\]
if and only if $M \in DD(\Omega) \cap L^2(\Omega, S) = \mathcal{D}D(\Omega, S)$ and $\text{div Div} M = u$. Moreover, we observe that $E \in D((\text{Rot}_{\mathfrak{S}})^*) \subset L^2(\Omega, T)$ and $(\text{Rot}_{\mathfrak{S}})^* E = M \in L^2(\Omega, S)$, if and only if $E \in L^2(\Omega, T)$ and there exists $M \in L^2(\Omega, S)$, such that (note $\text{sym}^2 = \text{sym}$)
\[\forall \Phi \in D(\text{Rot}_{\mathfrak{S}}) \subset \hat{\mathfrak{R}}(\Omega, S) \quad (\text{Rot} \Phi, E)_{L^2(\Omega, T)} = \langle \Phi, M \rangle_{L^2(\Omega, S)}
\]
\[\Leftrightarrow \quad \forall \Phi \in C^{\infty}(\Omega) \cap L^2(\Omega, S) \quad (\text{Rot} \Phi, E)_{L^2(\Omega)} = \langle \text{sym} \Phi, M \rangle_{L^2(\Omega)}
\]
\[\forall \Phi \in \mathcal{C}^\infty(\Omega) \quad \langle \text{Rot sym } \Phi, E \rangle_{L^2(\Omega)} = \langle \text{sym } \Phi, M \rangle_{L^2(\Omega)}\]

\[\forall \Phi \in \mathcal{C}^\infty(\Omega) \quad \langle \text{Rot sym } \Phi, E \rangle_{L^2(\Omega)} = \langle \Phi, M \rangle_{L^2(\Omega)},\]

if and only if \(E \in \mathbb{R}_{\text{sym}}(\Omega) \cap L^2(\Omega, T) = \mathbb{R}_{\text{sym}}(\Omega, T) \) and \(\text{sym Rot } E = M \). Similarly, we see that \(V \in D((\text{Div}_T)^*) \subset L^2(\Omega) \) and \((\text{Div}_T)^*V = E \in L^2(\Omega, T) \), if and only if \(V \in L^2(\Omega) \) and there exists \(E \in L^2(\Omega, T) \), such that (note \(\text{dev}^2 = \text{dev} \))

\[\forall \Phi \in D(\text{Div}_T) = \tilde{B}(\Omega, T) \quad \langle \text{Div } \Phi, V \rangle_{L^2(\Omega, T)} = \langle \Phi, E \rangle_{L^2(\Omega, T)}\]

\[\forall \Phi \in \mathcal{C}^\infty(\Omega) \cap L^2(\Omega, T) \quad \langle \text{Div } \Phi, V \rangle_{L^2(\Omega)} = \langle \text{dev } \Phi, E \rangle_{L^2(\Omega)}\]

\[\forall \Phi \in \mathcal{C}^\infty(\Omega) \quad \langle \text{Div } \Phi, V \rangle_{L^2(\Omega)} = \langle \text{dev } \Phi, E \rangle_{L^2(\Omega)}\]

\[\forall \Phi \in \mathcal{C}^\infty(\Omega) \quad \langle \text{Div } \Phi, V \rangle_{L^2(\Omega)} = \langle \Phi, E \rangle_{L^2(\Omega)},\]

if and only if \(V \in \mathbb{G}_{\text{dev}}(\Omega) = H^1(\Omega) \) and \(-\text{grad } V = E \) using Lemma 3.2. Lemma 3.2 also shows \(N(\text{grad } V) = \mathbb{G}_{\text{dev}}(\Omega) = \mathbb{R}_{\text{dev}}, \) completing the proof. \(\square \)

Remark 3.6. Note that, e.g., the second order operator \(\text{Grad} \circ \text{grad} \) is “one” operator and not a composition of the two first order operators \(\text{Grad} \) and \(\circ \text{grad} \). Similarly the operator \(\text{div } \text{Div}_S \), \(\text{sym Rot}_T \), resp. \(\text{dev } \text{grad} \) has to be understood as “one” operator.

We observe the following complex properties for \(A_0, A_1, A_2, \) and \(A_0^*, A_1^*, A_2^* \).

Lemma 3.7. It holds

\[\text{Rot}_S \circ \text{Grad} \circ \text{grad} = 0, \quad \text{Div}_T \circ \text{Rot}_S = 0, \quad \text{div } \text{Div}_S \circ \text{sym Rot}_T = 0, \quad \text{sym Rot}_T \circ \text{dev } \text{grad} = 0,\]

i.e.,

\[R(\text{Grad} \circ \text{grad}) \subset N(\text{Rot}_S), \quad R(\text{sym Rot}_T) \subset N(\text{div } \text{Div}_S), \quad R(\text{Rot}_S) \subset N(\text{Div}_T), \quad R(\text{dev } \text{grad}) \subset N(\text{sym Rot}_T).\]

Proof. For \(E = \text{Rot } M \in R(\text{Rot}_S) \) with \(M \in D(\text{Rot}_S) \) there exists a sequence \((M_n) \subset \mathcal{C}^\infty(\Omega) \cap L^2(\Omega, S) \) such that \(M_n \to M \) in the graph norm of \(D(\text{Rot}_S) \). As

\[\text{Rot } (\mathcal{C}^\infty(\Omega) \cap L^2(\Omega, S)) \subset \mathcal{C}^\infty(\Omega) \cap L^2(\Omega, T) \cap D_0(\Omega) \subset N(\text{Div}_T)\]

we have \(E \in N(\text{Div}_T) \) since \(E \leftarrow \text{Rot } M_n \in N(\text{Div}_T) \). Hence \(R(\text{Rot}_S) \subset N(\text{Div}_T) \), i.e., \(\text{Div}_T \circ \text{Rot}_S = 0 \) and for the adjoints we have \(\text{sym Rot}_T \circ \text{dev } \text{grad} = 0 \). Analogously we see the other two inclusions. \(\square \)

Remark 3.8. The latter considerations show that the sequence

\[
\begin{align*}
0 & \rightarrow H^2(\Omega) \xrightarrow{\text{Grad } \circ \text{grad}} \mathbb{R}(\Omega; S) \xrightarrow{\text{Rot}_S} \mathbb{B}(\Omega, T) \xrightarrow{\text{Div}_T} L^2(\Omega) \xrightarrow{\pi_{\mathbb{RT}_0}} \mathbb{R}_{\mathbb{T}_0} \\
0 & \leftarrow L^2(\Omega) \xrightarrow{\text{div } \text{Div}_S} D_0(\Omega, S) \xrightarrow{\text{sym Rot}_T} \mathbb{R}(\Omega, T) \xrightarrow{\text{dev } \text{grad}} H^1(\Omega) \xrightarrow{\pi_{\mathbb{RT}_0}} \mathbb{R}_{\mathbb{T}_0}
\end{align*}
\]

are Hilbert complexes. Here \(\pi_{\mathbb{RT}_0} : L^2(\Omega) \to \mathbb{RT}_0 \) denotes the orthogonal projector onto \(\mathbb{RT}_0 \) with adjoint \(\pi_{\mathbb{RT}_0}^* : \mathbb{RT}_0 \to L^2(\Omega) \), the canonical embedding. The first complex might be called \(\text{Grad } \circ \text{grad} \)-complex and the second one \(\text{div } \text{Div} \)-complex.
3.1. **Topologically Trivial Domains.** We start with a useful lemma, which will be shown in the Appendix, collecting a few differential identities, which will be utilized in the proof of the subsequent main theorem.

Lemma 3.9. Let $u, V,$ and E be distributional scalar, vector, and tensor fields. Then

1. $2\text{skw \ Grad \ } V = \text{spn \ rot \ } V$,
2. $\text{Rot \ spn \ } V = (\text{div \ } V) \mathbf{I} - (\text{Grad \ } V)^\top$ and, as a consequence, $\text{tr \ Rot \ spn \ } V = 2\text{div \ } V$,
3. $\text{Div}(u \mathbf{I}) = \text{grad \ } u$ and $\text{Rot}(u \mathbf{I}) = -\text{spn \ grad \ } u$,
4. $2\text{grad \ div \ } V = 3\text{Div} (\text{dev \ } (\text{Grad \ } V)^\top)$,
5. $\text{skw \ Rot \ } E = \text{spn \ } H$ and $\text{Div} (\text{sym \ Rot \ } E) = \text{rot \ } H$ with $2H = \text{Div \ } E^\top - \text{grad \ } (\text{tr \ } E)$,
6. $\text{Div}(\text{spn \ } V) = -\text{rot \ } V$.

Observe that we already know that $N(\text{Grad \ } \text{grad}) = \{0\}$ and $N(\text{dev \ } \text{grad}) = \text{RT}_0$. If the topology of the underlying domain is trivial, we will now characterize the remaining kernels and the ranges of the linear operators Grad grad, Rot$_S$, Div$_T$, and dev Grad, sym Rot$_T$, div Div$_S$.

Theorem 3.10. Let Ω be additionally topologically trivial. Then

1. $\text{R}_0(\Omega, S) = N(\text{Rot}_S) = R(\text{Grad \ } \text{grad}) = \text{Grad \ } \text{grad \ } \text{H}^2(\Omega)$,
2. $\text{D}_0(\Omega, T) = N(\text{Div}_T) = R(\text{Rot}_S) = \text{Rot \ } \text{H}^1(\Omega, S)$,
3. $\text{RT}_0(\Omega, T) = N(\text{sym \ Rot}_T) = R(\text{dev \ } \text{Grad}) = \text{dev \ } \text{Grad \ } \text{H}^1(\Omega, T)$,
4. $\text{R}_{\text{sym}, 0}(\Omega, T) = N(\text{sym \ Rot}_T) = R(\text{dev \ } \text{Grad}) = \text{dev \ } \text{Grad \ } \text{H}^1(\Omega, T)$,
5. $\text{DD}_0(\Omega, S) = N(\text{div \ Div}_S) = R(\text{sym \ Rot}_T) = \text{sym \ Rot \ } \text{H}^1(\Omega, T)$,
6. $L^2(\Omega) = N(0) = R(\text{div \ Div}_S) = \text{div \ Div \ } \text{H}^2(\Omega, S)$.

The corresponding linear and continuous (regular) potential operators are given by

$$P_{\text{Grad \ grad}} = P_{\text{grad \ Grad}} : \text{R}_0(\Omega, S) \rightarrow \text{H}^2(\Omega),$$

$$P_{\text{Rot}_S} = \text{sym} \left(1 - 2 \text{Grad} P_{\text{rot \ spn \ skw}} \right) P_{\text{Rot}} : \text{D}_0(\Omega, T) \rightarrow \text{H}^1(\Omega, S),$$

$$P_{\text{Div}_T} = \text{dev} \left(1 + \frac{1}{2} \text{Grad} \right) P_{\text{div \ tr}} P_{\text{Div}} : \text{RT}_0(\Omega, T) \rightarrow \text{H}^1(\Omega, T),$$

$$P_{\text{dev \ Grad}} = \text{Grad}^{-1} \left(1 + \frac{1}{2} (\text{grad}^{-1} \text{Div} (\cdot)^\top) \mathbf{I} \right) : \text{R}_{\text{sym}, 0}(\Omega, T) \rightarrow \text{H}^1(\Omega),$$

$$P_{\text{sym \ Rot}_T} = \text{dev} P_{\text{Rot}} \left(1 + \text{spn \ rot}^{-1} \text{Div} \right) : \text{DD}_0(\Omega, S) \rightarrow \text{H}^1(\Omega, T),$$

$$P_{\text{div \ Div}_S} = \text{sym} P_{\text{div \ Div}} : L^2(\Omega) \rightarrow \text{H}^2(\Omega, S).$$

Remark 3.11. We note that

$$\text{H}^1(\Omega, S) = \text{sym \ } \text{H}^1(\Omega), \quad \text{H}^1(\Omega, T) = \text{dev \ } \text{H}^1(\Omega), \quad \text{H}^1(\Omega, S) = \text{sym \ } \text{H}^1(\Omega), \quad \text{H}^1(\Omega, T) = \text{dev \ } \text{H}^1(\Omega)$$

as, e.g., \text{dev \ } \text{H}^1(\Omega) \subset \text{H}^1(\Omega, T) \subset \text{dev \ } \text{H}^1(\Omega). The same holds for the corresponding spaces of skew-symmetric tensor fields as well. Moreover:

1. **Theorem 3.10 holds also for the other set of canonical boundary conditions, which follows directly from the proof.**
2. **A closer inspection shows, that for (ii) and (vi), i.e., P_{Div_T} and $P_{\text{div \ Div}_S}$, only the potential operators corresponding to the divergence, i.e., $P_{\text{div \ Div}_S} \supset P_{\text{Div}}, P_{\text{div}}$, are involved. As Lemma 2.27 does not need any topological assumptions, (iii) and (vi), together with the representations of the potential operators, hold for general topologies as well.**
Proof of Theorem 3.10. Note that by Lemma 3.2 (iii), Lemma 3.3, and Lemma 3.7 all inclusions of the type $R(\ldots) \subset N(\ldots)$ easily follow. Therefore it suffices to show that $N(\ldots)$ is included in the corresponding space appearing at the end of each line in (i) - (vi), which itself is obviously included in $R(\ldots)$. Throughout the proof we will frequently use the formulas of Lemma 3.9.

ad (i): Let $M \in \mathcal{R}_0(\Omega, S) = N(\text{Rot}_S)$. Applying Lemma 2.25 for $m = 0$ row-wise, there is a vector field $V := P_{\text{grad}}^r M \in \tilde{H}^2(\Omega)$ with $M = \text{Grad} V$. Since $\text{skw} M = 0$ and $2\text{skw} \text{Grad} V = \text{spn} \text{rot} V$, it follows that $\text{rot} V = 0$. By Lemma 2.25 for $m = 1$ there is a function $u := P_{\text{grad}}^s V \in \tilde{H}^2(\Omega)$ with $V = \text{grad} u$.

Hence $M = \text{Grad} V = \text{Grad} \text{grad} u \in \text{Grad} \text{grad} \tilde{H}^2(\Omega)$. So $\mathcal{R}_0(\Omega, S) \subset \text{Grad} \text{grad} \tilde{H}^2(\Omega)$, which completes the proof of (i). Note that

$$P_{\text{grad}}^r M := u = P_{\text{grad}}^s P_{\text{grad}}^r M \in \tilde{H}^2(\Omega),$$

from which it directly follows that P_{grad}^r is linear and bounded.

ad (ii): Let $E \in \mathcal{D}_0(\Omega, \mathbb{T}) = N(\text{Div}_T)$. Then there is a tensor field $N := P_{\text{Rot}}^r E \in \tilde{H}^1(\Omega)$ with $E = \text{Rot} N$, see Lemma 2.26 for $m = 0$ applied row-wise. Since $\text{tr} E = 0$ and $\text{tr} \text{Rot} \text{sym} N = 0$, it follows that $\text{tr} \text{Rot} \text{skw} N = 0$. Now let $V := \text{spn}^{-1} \text{skw} N \in \tilde{H}^1(\Omega)$, i.e., $\text{skw} N = \text{spn} V$. Since $\text{tr} \text{Rot} \text{spn} V = 2 \text{div} V$, it follows that $\text{div} V = 0$. Therefore, there is a vector field $H := P_{\text{rot}}^r V \in \tilde{H}^2(\Omega)$ such that $V = \text{rot} H$, see Lemma 2.26 for $m = 1$. So we have

$$\text{Rot} \text{skw} N = \text{Rot} \text{spn} \text{rot} H = 2 \text{Rot} \text{grad} \text{grad} H = -2 \text{Rot} \text{sym} \text{grad} H.$$

Hence

$$E = \text{Rot} N = \text{Rot} \text{sym} N + \text{Rot} \text{skw} N = \text{Rot} M, \quad M := \text{sym} N - 2 \text{sym} \text{grad} H \in \tilde{H}^1(\Omega, S),$$

So $\mathcal{D}_0(\Omega, \mathbb{T}) \subset \text{Rot} \tilde{H}^1(\Omega, S)$, which completes the proof of (ii). Note that

$$P_{\text{Rot}}^r E := M = \text{sym} P_{\text{Rot}}^r E - 2 \text{sym} \text{Grad} \left(P_{\text{rot}}^r \text{spn}^{-1} \text{skw} P_{\text{rot}}^r E \right)$$

$$= \text{sym} \left(1 - 2 \text{Grad} P_{\text{rot}}^r \text{spn}^{-1} \text{skw} \right) P_{\text{Rot}}^r E \in \tilde{H}^1(\Omega, S),$$

from which it directly follows that P_{Rot}^r is linear and bounded.

ad (iii): Let $V \in \mathcal{R}_0^{1,2}(\Omega) = N(\pi_{\text{RT}_0})$. As $V \in (\mathbb{R}^3)^{1,2}(\Omega)$, there is a tensor field $F = P_{\text{Div}}^r V \in \tilde{H}^1(\Omega)$ with $V = \text{Div} F$, see Lemma 2.27 for $m = 0$ applied row-wise. We have $\text{Div} F \in \mathcal{R}_0^{1,2}(\Omega)$ as well as $\text{Div} \text{dev} F \in \mathcal{R}_0^{1,2}(\Omega)$. Hence $\text{grad}(\text{tr} F) = \text{Div}(\text{tr} F) \mathbb{I} \in \mathcal{R}_0^{3,2}(\Omega)$, which implies $\text{tr} F \in \tilde{H}^1(\Omega) \cap L_0^2(\Omega)$. Therefore, there is a vector field $H := P_{\text{div}}^r \text{tr} F \in \tilde{H}^2(\Omega)$ with $\text{tr} F = \text{div} H$, see Lemma 2.27 for $m = 1$. Thus

$$\text{Div}(\text{tr} F) \mathbb{I} = \text{grad} \text{div} H = \frac{3}{2} \text{Div} \left(\text{dev} (\text{Grad} H) \right).$$

Hence

$$V = \text{Div} F = \text{Div} \text{dev} F + \frac{1}{3} \text{Div}(\text{tr} F) \mathbb{I} = \text{Div} E, \quad E := \text{dev} \left(F + \frac{1}{2} (\text{Grad} H) \right) \in \tilde{H}^1(\Omega, \mathbb{T}).$$

So $\mathcal{R}_0^{1,2}(\Omega) \subset \text{Div} \tilde{H}^1(\Omega, \mathbb{T})$, which completes the proof of (iii). Note that

$$P_{\text{Div}}^r V := E = \text{dev} \left(P_{\text{Div}}^r V + \frac{1}{2} (\text{Grad} P_{\text{div}}^r \text{tr} P_{\text{Div}}^r V) \right)$$

$$= \text{dev} \left(1 + \frac{1}{2} \text{Grad}^T P_{\text{div}}^r \text{tr} \right) P_{\text{Div}}^r V \in \tilde{H}^1(\Omega, \mathbb{T}),$$

from which it directly follows that P_{Div}^r is linear and bounded.
Lemma 2.27 for m from which it directly follows that the proof of (v). Note that see Corollary 2.30 for m as $\text{dev} F$ with $3 u = \text{tr} \text{Grad} V = \text{div} V$ leading to $E = \text{grad} V - u I$.

Moreover, by (3.4)

$$\text{skw} \text{Rot} F = \text{skw} \text{Rot} E + \text{skw} \text{Rot}(u I) = \text{spn} H - \text{spn} \text{grad} u = 0.$$

Hence $F \in R^0_0(\Omega)$. Therefore, there is a unique vector field $V := \text{Grad}^{-1} F \in H^1(\Omega) \cap L^2_0(\Omega)$, such that $F = \text{Grad} V$, see Lemma 2.25 for $m = 0$. So we have $E = \text{Grad} V - u I$.

Using the additional condition $\text{tr} E = 0$ and Corollary 2.30 it follows that $3 u = \text{tr} \text{Grad} V = \text{div} V$ leading to $E = \text{div} \text{Grad} V, \quad V \in H^1(\Omega)$.

So $R^0_{0,0}(\Omega, T) \subset \text{dev} \text{Grad} H^1(\Omega)$, which completes the proof of (iv). Note that

$$P_{\text{dev} \text{Grad}} E := V = \text{Grad}^{-1} (E + \frac{1}{2} (\text{grad}^{-1} \text{Div} E^T) I)$$

$$= \text{Grad}^{-1} (1 + \frac{1}{2} (\text{grad}^{-1} \text{Div}(\cdot)^T I)) E \in H^1(\Omega),$$

from which it directly follows that $P_{\text{dev} \text{Grad}}$ is linear and bounded.

ad (v): Let $M \in D_0^0(\Omega, S) = N(\text{div} \text{Div}_S)$. So $\text{Div} M \in D_0^{-1}(\Omega)$ and there is a unique vector field $V := \text{rot}^{-1} \text{Div} M \in \hat{D}_0^0(\Omega)$, such that

$$\text{Div} M = \text{rot} V = - \text{Div} (\text{spn} V),$$

see Corollary 2.31 for $m = 1$. Hence $\text{Div}(M + \text{spn} V) = 0$, i.e., $M + \text{spn} V \in D_0^0(\Omega)$, and by Lemma 2.26 there is a tensor field $F := P_{\text{Rot}}(M + \text{spn} V) \in H^1(\Omega)$, such that $M + \text{spn} V = \text{Rot} F$.

Observe that M is symmetric and $\text{spn} V$ is skew-symmetric. Thus

$$M = \text{sym} \text{Rot} F \quad \text{and} \quad \text{spn} V = \text{skw} \text{Rot} F, \quad F \in H^1(\Omega),$$

and hence

$$M = \text{sym} \text{Rot} F = \text{sym} \text{Rot} E \quad \text{with} \quad E := \text{dev} F \in H^1(\Omega, T),$$

as $\text{dev} F = F - \frac{1}{2} (\text{tr} F) I$ and $\text{sym} \text{Rot}((\text{tr} F) I) = 0$. So $\widetilde{D}_0(\Omega, S) \subset \text{sym} \text{Rot} H^1(\Omega, T)$, which completes the proof of (v). Note that

$$P_{\text{sym} \text{Rot}} M := E = \text{dev} P_{\text{Rot}} (M + \text{spn} \text{rot}^{-1} \text{Div} M)$$

$$= \text{dev} P_{\text{Rot}} (1 + \text{spn} \text{rot}^{-1} \text{Div}) M \in H^1(\Omega, T),$$

from which it directly follows that $P_{\text{sym} \text{Rot}}$ is linear and bounded.

ad (vi): Let $u \in L^2(\Omega) = N(0)$. Then there is a vector field $V = P_{\text{Div} u} F \in H^1(\Omega)$ with $u = \text{Div} V$, see Lemma 2.27 for $m = 0$, and a tensor field $N = P_{\text{Div}} V \in H^2(\Omega)$ such that $V = \text{Div} N$, see Lemma 2.27 for $m = 1$ applied row-wise. Since $\text{div} \text{skw} N = 0$, it follows that $u = \text{div} \text{Div} N = \text{div} \text{Div} M \quad \text{with} \quad M := \text{sym} N \in H^2(\Omega, S)$.

Grad-grad- and div-Div-Complexes and Applications
So $L^2(\Omega) \subset \text{div } H^2(\Omega, S)$, which completes the proof of (vi). Note that

$$P_{\text{div } \text{Div}_2} u := \mathbf{M} = \text{sym } P_{\text{div}} P_{\text{div } \text{Div}_2} u \in H^2(\Omega, S),$$

from which it directly follows that $P_{\text{div } \text{Div}_2}$ is linear and bounded.

Provided that the domain Ω has trivial topology, Theorem 3.10 implies that the densely defined, closed and unbounded linear operators $\text{Grad} \circ \text{grad}$, Rot_S, Div_T, and their adjoints $\text{div } \text{Div}_2$, $\text{sym } \text{Rot}_T$, $\text{dev } \text{Grad}$ have closed ranges and that all relevant cohomology groups are trivial, as

$$N(\text{Grad } \circ \text{grad}) \cap N(0) = \{0\} \cap L^2(\Omega) = \{0\},$$

$$N(\text{Rot}_S) \cap N(\text{div } \text{Div}_2) = \hat{\mathbf{R}}_0(\Omega, S) \cap \text{DD}_0(\Omega, S) = \hat{\mathbf{R}}_0(\Omega, S) \cap \text{sym } \text{Rot} H^1(\Omega, T),$$

$$= N(\text{Rot}_S) \cap R(\text{sym } \text{Rot}_T) = \{0\},$$

$$N(\text{Div}_T) \cap N(\text{sym } \text{Rot}_T) = \hat{\mathbf{D}}_0(\Omega, T) \cap \mathbf{R}_{\text{sym}, 0}(\Omega, T) = \hat{\mathbf{D}}_0(\Omega, T) \cap \text{dev } \text{Grad} H^1(\Omega)$$

$$= N(\text{Div}_T) \cap R(\text{dev } \text{Grad}) = \{0\},$$

$$N(\pi_{\text{RT}_0}) \cap N(\text{dev } \text{Grad}) = RT_0^{L^2(\Omega)} = \{0\}.$$

In this case, the reduced operators are

$$\mathcal{A}_0 = \text{Grad } \circ \text{grad} : H^2(\Omega) \subset L^2(\Omega) \longrightarrow \hat{\mathbf{R}}_0(\Omega, S),$$

$$\mathcal{A}_1 = \text{Rot}_S : \hat{\mathbf{R}}(\Omega, S) \cap \text{DD}_0(\Omega, S) \subset \text{DD}_0(\Omega, S) \longrightarrow \hat{\mathbf{D}}_0(\Omega, T),$$

$$\mathcal{A}_2 = \text{Div}_T : \hat{\mathbf{D}}(\Omega, T) \cap \mathbf{R}_{\text{sym}, 0}(\Omega, T) \subset \mathbf{R}_{\text{sym}, 0}(\Omega, T) \longrightarrow RT_0^{L^2(\Omega)},$$

$$\mathcal{A}_0' = \text{div } \text{Div}_2 : \text{DD}(\Omega, S) \cap \hat{\mathbf{R}}_0(\Omega, S) \subset \hat{\mathbf{R}}_0(\Omega, S) \longrightarrow L^2(\Omega),$$

$$\mathcal{A}_1' = \text{sym } \text{Rot}_T : \mathbf{R}_{\text{sym}}(\Omega, T) \cap \hat{\mathbf{D}}_0(\Omega, T) \subset \hat{\mathbf{D}}_0(\Omega, T) \longrightarrow \text{DD}_0(\Omega, S),$$

$$\mathcal{A}_2' = - \text{dev } \text{Grad} : H^1(\Omega) \cap RT_0^{L^2(\Omega)} \subset RT_0^{L^2(\Omega)} \longrightarrow \mathbf{R}_{\text{sym}, 0}(\Omega, T)$$

as

$$R(\text{div } \text{Div}_2) = L^2(\Omega), \quad R(\text{Div}_T) = RT_0^{L^2(\Omega)}.$$

The functional analysis toolbox Section 2.1, e.g., Lemma 2.10, immediately lead to the following implications about Helmholtz type decompositions, Friedrichs/Poincaré type estimates and continuous inverse operators.

Theorem 3.12. Let Ω be additionally topologically trivial. Then all occurring ranges are closed and all related cohomology groups are trivial. Moreover, the Helmholtz type decompositions

$$L^2(\Omega, S) = \hat{\mathbf{R}}_0(\Omega, S) \oplus L^2(\Omega, S) \text{DD}_0(\Omega, S), \quad L^2(\Omega, T) = \hat{\mathbf{D}}_0(\Omega, T) \oplus L^2(\Omega, T) \mathbf{R}_{\text{sym}, 0}(\Omega, T)$$

hold. The kernels can be represented by the following closed ranges

$$\hat{\mathbf{R}}_0(\Omega, S) = \text{Grad } \circ \text{grad} \hat{H}^2(\Omega),$$

$$\text{sym } \text{Rot } H^1(\Omega, T) = \text{DD}_0(\Omega, S) = \text{sym } \text{Rot } \mathbf{R}_{\text{sym}}(\Omega, T) = \text{sym } \text{Rot } (\mathbf{R}_{\text{sym}}(\Omega, T) \cap \hat{\mathbf{D}}_0(\Omega, T)),\)$$

$$\text{Rot } \hat{H}^1(\Omega, S) = \hat{\mathbf{D}}_0(\Omega, T) = \text{Rot } \hat{\mathbf{R}}(\Omega, S) = \text{Rot } (\hat{\mathbf{R}}(\Omega, S) \cap \text{DD}_0(\Omega, S)),\)$$

$$\mathbf{R}_{\text{sym}, 0}(\Omega, T) = \text{dev } \text{Grad } H^1(\Omega) = \text{dev } \text{Grad } (H^1(\Omega) \cap RT_0^{L^2(\Omega)}),\)$$

and it holds

$$\text{div } \text{Div } H^2(\Omega, S) = L^2(\Omega) = \text{div } \text{Div } \text{DD}(\Omega, S) = \text{div } \text{Div } (\text{DD}(\Omega, S) \cap \hat{\mathbf{R}}_0(\Omega, S)).$$
\[
\text{Div} \hat{\mathbf{H}}^1(\Omega, \mathbb{T}) = RT_0^{1,2(\Omega)} = N(\pi_{\mathbb{T}0}) = \text{Div} \hat{\mathbf{D}}(\Omega, \mathbb{T}) = \text{Div} (\hat{\mathbf{D}}(\Omega, \mathbb{T}) \cap \mathbf{R}_{\text{sym},0}(\Omega, \mathbb{T})).
\]

All potentials depend continuously on the data. The potentials on the very right hand sides are uniquely determined. There exist positive constants \(c_{\text{Ge}}, c_{\text{D}}, c_{\text{R}}\) such that the Friedrichs/Poincaré type estimates hold. Moreover, the reduced versions of the operators

\[
\begin{align*}
\forall u & \in \hat{\mathbf{H}}^2(\Omega) \quad |u|_{L^2(\Omega)} \leq c_{\text{Ge}} |\text{Grad grad} u|_{L^2(\Omega)}, \\
\forall M & \in \mathbf{D} \mathbf{D}(\Omega, S) \cap \hat{\mathbf{R}}_0(\Omega, S) \quad |M|_{L^2(\Omega)} \leq c_{\text{Ge}} |\text{div}\ \text{Div} M|_{L^2(\Omega)}, \\
\forall E & \in \hat{\mathbf{D}}(\Omega, \mathbb{T}) \cap \mathbf{R}_{\text{sym},0}(\Omega, \mathbb{T}) \quad |E|_{L^2(\Omega)} \leq c_{\text{D}} |\text{Div E}|_{L^2(\Omega)}, \\
\forall V & \in H^1(\Omega) \cap RT_0^{1,2(\Omega)} \quad |V|_{L^2(\Omega)} \leq c_{\text{D}} |\text{dev grad} V|_{L^2(\Omega)}, \\
\forall M & \in \hat{\mathbf{R}}(\Omega, S) \cap \mathbf{D} \mathbf{D}_0(\Omega, S) \quad |M|_{L^2(\Omega)} \leq c_{\text{R}} |\text{Rot} M|_{L^2(\Omega)}, \\
\forall E & \in \mathbf{R}_{\text{sym}}(\Omega, \mathbb{T}) \cap \hat{\mathbf{D}}_0(\Omega, \mathbb{T}) \quad |E|_{L^2(\Omega)} \leq c_{\text{R}} |\text{sym Rot} E|_{L^2(\Omega)}
\end{align*}
\]

hold. Moreover, the reduced versions of the operators

\[
\hat{\text{Grad grad}}, \ \hat{\text{div Div}}, \ \hat{\text{Div}}, \ \hat{\text{dev Grad}}, \ \hat{\text{Rot}}, \ \hat{\text{sym Rot}}
\]

have continuous inverse operators

\[
\begin{align*}
(\text{Grad grad})^{-1} : \hat{\mathbf{R}}_0(\Omega, S) & \to \hat{\mathbf{H}}^2(\Omega), \\
(\text{div Div})^{-1} : L^2(\Omega) & \to \mathbf{D} \mathbf{D}(\Omega, S) \cap \hat{\mathbf{R}}_0(\Omega, S), \\
(\text{Div})^{-1} : RT_0^{1,2(\Omega)} & \to \hat{\mathbf{D}}(\Omega, \mathbb{T}) \cap \mathbf{R}_{\text{sym},0}(\Omega, \mathbb{T}), \\
(\text{dev Grad})^{-1} : \mathbf{R}_{\text{sym},0}(\Omega, \mathbb{T}) & \to H^1(\Omega) \cap RT_0^{1,2(\Omega)}, \\
(\text{Rot})^{-1} : \hat{\mathbf{R}}_0(\Omega, \mathbb{T}) & \to \hat{\mathbf{R}}(\Omega, S) \cap \mathbf{D} \mathbf{D}_0(\Omega, S), \\
(\text{sym Rot})^{-1} : \mathbf{D} \mathbf{D}_0(\Omega, \mathbb{T}) & \to \mathbf{R}_{\text{sym}}(\Omega, \mathbb{T}) \cap \hat{\mathbf{D}}_0(\Omega, \mathbb{T})
\end{align*}
\]

with norms \((1 + \rho^2_{\text{Ge}})^{1/2}, (1 + \rho^2_{\text{D}})^{1/2}\), resp. \((1 + \rho^2_{\text{R}})^{1/2}\).

Remark 3.13. Let \(\Omega\) be additionally topologically trivial. The Friedrichs/Poincaré type estimate for Rot \(M\) in the latter theorem can be slightly sharpened. Utilizing Lemma 3.4 we observe \(\text{tr Rot} M = 0\) and thus \(\text{dev Rot} M = \text{Rot} M\) for \(M \in \mathbf{R}(\Omega, S)\). Hence

\[
\forall M \in \hat{\mathbf{R}}(\Omega, S) \cap \mathbf{D} \mathbf{D}_0(\Omega, S) \quad |M|_{L^2(\Omega)} \leq c_{\text{R}} |\text{dev Rot} M|_{L^2(\Omega)}.
\]

Similarly and trivially we see

\[
\forall u \in \hat{\mathbf{H}}^2(\Omega) \quad |u|_{L^2(\Omega)} \leq c_{\text{Ge}} |\text{sym Grad grad} u|_{L^2(\Omega)}.
\]

Recalling Remark 3.8 we have the following result.

Remark 3.14. Let \(\Omega\) be additionally topologically trivial. Theorem 3.10 and Theorem 3.12 easily lead to the following results in terms of complexes: The sequence

\[
\begin{align*}
\{0\} & \xrightarrow{\hat{\text{Grad grad}}} \hat{\mathbf{H}}^2(\Omega) \xrightarrow{\hat{\text{Rot}}} \hat{\mathbf{R}}(\Omega, S) \xrightarrow{\hat{\text{Div}}} \hat{\mathbf{D}}(\Omega, \mathbb{T}) \xrightarrow{\pi_{\mathbb{T}0}} RT_0 \\
\{0\} & \xleftarrow{\text{div Div}} L^2(\Omega) \xleftarrow{\text{sym Rot}} \mathbf{R}_{\text{sym}}(\Omega, \mathbb{T}) \xleftarrow{\text{dev Grad}} H^1(\Omega) \xleftarrow{\pi_{\mathbb{T}0}} RT_0
\end{align*}
\]

are closed and exact Hilbert complexes.
Remark 3.15. The part

\[
\begin{array}{c}
\{0\} \xrightarrow{0} \hat{H}^2(\Omega) \\
\xrightarrow{\text{Grad} \text{grad}} \hat{R}(\Omega; \mathcal{S}) \\
\xrightarrow{\text{Rot}_\Omega} \hat{L}^2(\Omega)
\end{array}
\]

of the Hilbert complex from above and the related adjoint complex

\[
\begin{array}{c}
\{0\} \xleftarrow{0} L^2(\Omega) \\
\xleftarrow{\text{div} \text{Div}_2} \hat{D}(\Omega; \mathcal{S}) \\
\xleftarrow{\text{sym} \text{Rot}_\Omega} \hat{R}_\text{sym}(\Omega, T)
\end{array}
\]

have been discussed in [24] for problems in general relativity.

Remark 3.16. In 2D and under similar assumptions we obtain by completely analogous but much simpler arguments that the Hilbert complexes

\[
\begin{array}{c}
\{0\} \xrightarrow{0} \hat{H}^2(\Omega) \\
\xrightarrow{\text{Grad} \text{grad}} \hat{R}(\Omega; \mathcal{S}) \\
\xrightarrow{\text{Rot}_\Omega} L^2(\Omega) \\
\end{array}
\]

are dual to each other, closed and exact. Contrary to the 3D case, the operator \(\text{Rot}_\Omega\) maps a tensor field to a vector field and the operator \(\text{sym} \text{Rot}\) is applied row-wise to a vector field and maps this vector field to a tensor field. The associated Helmholtz decomposition is

\[
\hat{L}^2(\Omega, \mathcal{S}) = \hat{R}_0(\Omega, \mathcal{S}) \oplus \hat{D}_0(\Omega, \mathcal{S})
\]

with

\[
\hat{R}_0(\Omega, \mathcal{S}) = \text{Grad} \text{grad} \hat{H}^2(\Omega), \quad \hat{D}_0(\Omega, \mathcal{S}) = \text{sym} \text{Rot} \hat{H}^1(\Omega).
\]

Theorem 3.10 leads to the following so called regular decompositions.

Theorem 3.17. Let \(\Omega\) be additionally topologically trivial. Then

\[
\begin{array}{c}
\hat{R}(\Omega, \mathcal{S}) = \hat{H}^1(\Omega, \mathcal{S}) + \hat{R}_0(\Omega, \mathcal{S}), \\
\hat{D}(\Omega, T) = \hat{H}^1(\Omega, T) + \hat{D}_0(\Omega, T), \\
\hat{R}_\text{sym}(\Omega, T) = \hat{H}^1(\Omega, T) + \hat{R}_\text{sym,0}(\Omega, T), \\
\hat{D}_0(\Omega, \mathcal{S}) = \text{sym} \text{Rot} \hat{H}^1(\Omega, T)
\end{array}
\]

with linear and continuous decomposition resp. potential operators

\[
\begin{array}{c}
P_{\hat{R}(\Omega, \mathcal{S}), \hat{H}^1(\Omega, \mathcal{S})} : \hat{R}(\Omega, \mathcal{S}) \rightarrow \hat{H}^1(\Omega, \mathcal{S}), \\
P_{\hat{D}(\Omega, T), \hat{H}^1(\Omega, T)} : \hat{D}(\Omega, T) \rightarrow \hat{H}^1(\Omega, T), \\
P_{\hat{R}_\text{sym}(\Omega, T), \hat{H}^1(\Omega, T)} : \hat{R}_\text{sym}(\Omega, T) \rightarrow \hat{H}^1(\Omega, T), \\
P_{\hat{D}_0(\Omega, \mathcal{S}), \hat{H}^1(\Omega, \mathcal{S})} : \hat{D}_0(\Omega, \mathcal{S}) \rightarrow \hat{H}^1(\Omega, \mathcal{S}), \\
P_{\hat{R}_\text{sym,0}(\Omega, T), \hat{H}^1(\Omega, T)} : \hat{R}_\text{sym,0}(\Omega, T) \rightarrow \hat{H}^1(\Omega, T), \\
P_{\hat{D}_0(\Omega, \mathcal{S}), \hat{H}^1(\Omega, T)} : \hat{D}_0(\Omega, \mathcal{S}) \rightarrow \hat{H}^1(\Omega, T).
\end{array}
\]

Proof. Let, e.g., \(E \in \hat{R}_\text{sym}(\Omega, T)\). Then

\[
\text{sym} \text{Rot} E \in \hat{D}_0(\Omega, \mathcal{S}) = \text{sym} \text{Rot} \hat{H}^1(\Omega, T)
\]

with linear and continuous potential operator \(P_{\text{sym} \text{Rot}_\mathcal{T}} : \hat{D}_0(\Omega, \mathcal{S}) \rightarrow \hat{H}^1(\Omega, T)\) by Theorem 3.10. Thus, there is \(E \in \hat{H}^1(\Omega, T)\) depending linearly and continuously on \(E\) with \(\text{sym} \text{Rot} \tilde{E} = \text{sym} \text{Rot} E\). Hence,

\[
E - \tilde{E} \in \hat{R}_\text{sym,0}(\Omega, T) = \text{dev} \text{Grad} \hat{H}^1(\Omega)
\]

with linear and continuous potential operator \(P_{\text{dev} \text{Grad}} : \hat{R}_\text{sym,0}(\Omega, T) \rightarrow \hat{H}^1(\Omega)\) by Theorem 3.10. Hence, there exists \(V \in \hat{H}^1(\Omega)\) with \(E - \tilde{E} = \text{dev} \text{Grad} V\) and \(V\) depends linearly and continuously on \(E\). The other assertions are proved analogously. \(\square\)
3.2 General Bounded Strong Lipschitz Domains. In this section we consider bounded strong Lipschitz domains Ω of general topology and will extend results of the previous section as follows. The Grad- and the Div-div-complexes remain closed and all associated cohomology groups are finite-dimensional. Moreover, the respective inverse operators are continuous resp. compact, and corresponding Friedrichs/Poincaré type estimates hold. We will show this by verifying the compactness properties of Lemma 2.7 for the various linear operators of the complexes. Then Lemma 2.5, Remark 2.6, and Theorem 2.9 immediately lead to the desired results. Using Rellich’s selection theorem we have the following compact embeddings

\[D(\text{Grad}) \cap D(0) = \overset{\text{cpt}}{H^2(\Omega)} \subseteq L^2(\Omega), \]
\[D(\pi_{RT}) \cap D(\text{dev Grad}) = H^1(\Omega) \subseteq L^2(\Omega). \]

The two missing compactness results that would immediately lead to the desired results are

\[D(\text{Rot}_E) \cap D(\text{div Div}_E) = \overset{\text{cpt}}{R(\Omega, S) \cap D(\text{DD}(\Omega, S))} \subseteq L^2(\Omega, S), \]
\[D(\text{Div}_T) \cap D(\text{sym Rot}) = \overset{\text{cpt}}{D(\Omega, T) \cap D(\text{sym Rot}(\Omega, T))} \subseteq L^2(\Omega, T). \]

The main aim of this section is to show the compactness of the two crucial embeddings (3.5)-(3.6). As a first step we consider a trivial topology.

Lemma 3.18. Let Ω be additionally topologically trivial. Then the embeddings (3.5) and (3.6), i.e.,

\[\overset{\text{cpt}}{R(\Omega, S) \cap D(\text{DD}(\Omega, S))} \hookrightarrow L^2(\Omega, S), \quad \overset{\text{cpt}}{D(\text{sym Rot}(\Omega, T))} \hookrightarrow L^2(\Omega, T), \]

are compact.

Proof. Let \((M_n) \) be a bounded sequence in \(\overset{\text{cpt}}{R(\Omega, S) \cap D(\text{DD}(\Omega, S))} \). By Theorem 3.12 and Theorem 3.10 we have

\[\overset{\text{cpt}}{R(\Omega, S) \cap D(\text{DD}(\Omega, S))} \ni M_n = M_{n,r} + M_{n,d} \in (\overset{\text{cpt}}{R(\Omega, S) \cap D(\text{DD}(\Omega, S))}) \]

with linear and continuous potential operators. Therefore, we can decompose

\[\overset{\text{cpt}}{R(\Omega, S) \cap D(\text{DD}(\Omega, S))} \ni M_n \ni M_{n,r} + M_{n,d} \in (\overset{\text{cpt}}{R(\Omega, S) \cap D(\text{DD}(\Omega, S))}) \]

with \(M_{n,r} \in \text{Grad grad } H^2(\Omega) \cap D(\text{DD}(\Omega, S), \text{Rot } M_{n,d} = \text{Rot } M_{n,d} \cap \text{Grad grad } H^2(\Omega), \text{div Div } M_{n,r} = \text{div Div } M_{n,r} \ni M_{n,d} = \text{sym Rot } M_{n,d} \ni E_n \ni H^1(\Omega, T), \) and both \(u_n \) and \(E_n \) depend continuously on \(M_n \), i.e.,

\[|u_n|_{H^1(\Omega)} \leq c |M_{n,r}|_{L^2(\Omega)} \leq c |M_{n,d}|_{L^2(\Omega)} \quad \text{and} \quad |E_n|_{H^1(\Omega)} \leq c |M_{n,d}|_{L^2(\Omega)} \leq c |M_{n,d}|_{L^2(\Omega)}. \]

By Rellich’s selection theorem, there exist subsequences, again denoted by \((u_n) \) and \((E_n) \), such that \((u_n) \) converges in \(H^1(\Omega) \) and \((E_n) \) converges in \(L^2(\Omega) \). Thus with \(M_{n,m} := M_n - M_{n,m} \), and similarly for \(M_{n,m,r}, M_{n,m,d}, u_{n,m}, E_{n,m}, \) we see

\[|M_{n,m,r}|^2_{L^2(\Omega)} = |M_{n,m,r}|_{L^2(\Omega)}^2 \leq c |M_{n,m}|_{L^2(\Omega)}, \]
\[|M_{n,m,d}|^2_{L^2(\Omega)} = |M_{n,m,d}|_{L^2(\Omega)}^2 \leq c |M_{n,m}|_{L^2(\Omega)} \]
\[\text{and} \]
\[(\text{div Div } M_{n,m,r}, u_{n,m})_{L^2(\Omega)} \leq c |u_{n,m}|_{L^2(\Omega)}, \]
Hence, \((M_n)\) is a Cauchy sequence in \(L^2(\Omega, \mathbb{S})\). So
\[
\hat{R}(\Omega, \mathbb{S}) \cap DD(\Omega, \mathbb{S}) \hookrightarrow L^2(\Omega, \mathbb{S})
\]
is compact. To show the second compact embedding, let \((E_n) \subset R_{sym}(\Omega, T) \cap \hat{D}(\Omega, T)\) be a bounded sequence. By Theorem 3.12 and Theorem 3.10 we have
\[
R_{sym}(\Omega, T) \cap \hat{D}(\Omega, T) = (R_{sym,0}(\Omega, T) \cap \hat{D}(\Omega, T)) \oplus L^2(\Omega, T) (R_{sym}(\Omega, T) \cap \hat{D}(\Omega, T)),
\]
with linear and continuous potential operators. Therefore, we can decompose
\[
R_{sym}(\Omega, T) \cap \hat{D}(\Omega, T) \ni E_n = E_{n,r} + E_{n,d} \in (R_{sym,0}(\Omega, T) \cap \hat{D}(\Omega, T)) \oplus L^2(\Omega, T) (R_{sym}(\Omega, T) \cap \hat{D}(\Omega, T))
\]
with \(E_{n,r} \in \text{dev Grad} H^1(\Omega) \cap \hat{D}(\Omega, T), \text{sym Rot} E_{n,d} = \text{sym Rot} E_{n}, E_{n,r} = \text{dev Grad} V_n, V_n \in H^1(\Omega), \) as well as \(E_{n,d} \in R_{sym}(\Omega, T) \cap \text{Rot} H^1(\Omega, \mathbb{S}), \text{Div} E_{n,r} = \text{Div} E_{n}, \text{and} E_{n,d} = \text{Rot} M_n, M_n \in H^1(\Omega, \mathbb{S}), \) and both \(V_n\) and \(M_n\) depend continuously on \(E_n\), i.e.,
\[
|V_n|_{L^2(\Omega)} \leq c |E_{n,r}|_{L^2(\Omega)}, \quad |M_n|_{H^1(\Omega)} \leq c |E_{n,d}|_{L^2(\Omega)}.
\]
By Rellich’s selection theorem, there exist subsequences, again denoted by \((V_n)\) and \((M_n)\), such that \((V_n)\) converges in \(L^2(\Omega)\) and \((M_n)\) converges in \(L^2(\Omega)\). Thus with \(E_{n,m} := E_n - E_m, \) and similarly for \(E_{n,m,r}, E_{n,m,d}, V_{n,m}, M_{n,m}, \) we see
\[
|E_{n,m,r}|_{L^2(\Omega)}^2 = (E_{n,m,r}, \text{dev Grad} V_{n,m})_{L^2(\Omega)} = \langle \text{Div} E_{n,m,r}, V_{n,m} \rangle_{L^2(\Omega)} \leq c |V_{n,m}|_{L^2(\Omega)},
\]
\[
|E_{n,m,d}|_{L^2(\Omega)}^2 = (E_{n,m,d}, \text{rot} M_{n,m})_{L^2(\Omega)} = \langle \text{sym Rot} E_{n,m,d}, M_{n,m} \rangle_{L^2(\Omega)} \leq c |M_{n,m}|_{L^2(\Omega)}.
\]
Note, that here the symmetry of \(M_{n,m}\) is crucial. Finally, \((E_n)\) is a Cauchy sequence in \(L^2(\Omega, T)\). So
\[
R_{sym}(\Omega, T) \cap \hat{D}(\Omega, T) \hookrightarrow L^2(\Omega, T)
\]
is compact. \(\square\)

For general topologies we will use a partition of unity argument. The next lemma, which we will prove in the Appendix, provides the necessary tools for this.

Lemma 3.19. Let \(\varphi \in C^\infty(\mathbb{R}^3)\).

(i) If \(M \in \hat{R}(\Omega)\) resp. \(\hat{R}(\Omega, \mathbb{S})\) resp. \(\hat{R}(\Omega, T)\), then \(\varphi M \in \hat{R}(\Omega)\) resp. \(\hat{R}(\Omega, \mathbb{S})\) resp. \(\hat{R}(\Omega, T)\) and
\[
(3.7) \quad \text{Rot}(\varphi M) = \varphi \text{Rot} M + \text{grad} \varphi \times M.
\]

(ii) If \(M \in R(\Omega)\) resp. \(R(\Omega, \mathbb{S})\) resp. \(R(\Omega, T)\), then \(\varphi M \in R(\Omega)\) resp. \(R(\Omega, \mathbb{S})\) resp. \(R(\Omega, T)\) and
\[
(3.7) \quad \text{Rot}(\varphi M) = \varphi \text{Rot} M + \text{grad} \varphi \times M.
\]

(iii) If \(E \in \hat{D}(\Omega)\) resp. \(\hat{D}(\Omega, T)\) resp. \(\hat{D}(\Omega, \mathbb{S})\), then \(\varphi E \in \hat{D}(\Omega)\) resp. \(\hat{D}(\Omega, T)\) resp. \(\hat{D}(\Omega, \mathbb{S})\) and
\[
(3.8) \quad \text{Div}(\varphi E) = \varphi \text{Div} E + \text{grad} \varphi \cdot E.
\]

(iv) If \(E \in D(\Omega)\) resp. \(D(\Omega, T)\) resp. \(D(\Omega, \mathbb{S})\), then \(\varphi E \in D(\Omega)\) resp. \(D(\Omega, T)\) resp. \(D(\Omega, \mathbb{S})\) and
\[
(3.8) \quad \text{Div}(\varphi E) = \varphi \text{Div} E + \text{grad} \varphi \cdot E.
\]

(v) If \(E \in R_{sym}(\Omega, T)\), then \(\varphi E \in R_{sym}(\Omega, T)\) and
\[
\text{sym Rot}(\varphi E) = \varphi \text{sym Rot} E + \text{sym (grad} \varphi \times E).}
\]
(vi) If $M \in DD(\Omega, S)$, then $\varphi M \in DD^{0,-1}(\Omega, S)$ and
\[
\text{div Div}(\varphi M) = \varphi \text{div Div} M + 2 \text{grad} \varphi \cdot \text{Div} M + \text{tr}(\text{Grad} \text{grad} \varphi \cdot M).
\]
By mollifying these formulas extend to $\varphi \in C^{0,1}(\mathbb{R}^3)$ resp. $\varphi \in C^{1,1}(\mathbb{R}^3)$.

Here grad $\varphi \times$ resp. grad $\varphi \cdot$ is applied row-wise to a tensor M and we see grad $\varphi \cdot M = M \text{grad} \varphi$. Moreover, we introduce
\[
DD^{0,-1}(\Omega, S) = \{ M \in L^2(\Omega, S) : \text{div Div} M \in H^{-1}(\Omega) \}.
\]
Another auxiliary result required for the compactness proof is contained in the next lemma.

Lemma 3.20. The regular (type) decomposition
\[
DD^{0,-1}(\Omega, S) = H^1(\Omega) \cdot I + DD_0(\Omega, S)
\]
holds, where $+$ denotes the direct sum. More precisely, for each $M \in DD^{0,-1}(\Omega, S)$ there are unique $u \in H^1(\Omega)$ and $M_0 \in DD_0(\Omega, S)$ such that $M = u I + M_0$. The scalar function $u \in H^1(\Omega)$ is given as the unique solution of the Dirichlet-Poisson problem
\[
\langle \text{grad} u, \text{grad} \varphi \rangle_{L^2(\Omega)} = - \langle \text{div Div} M, \varphi \rangle_{H^{-1}(\Omega)} \quad \text{for all} \quad \varphi \in H^1(\Omega),
\]
and the decomposition is continuous, more precisely there exists $c > 0$, such that
\[
|u|_{H^1(\Omega)} \leq c |\text{div Div} M|_{H^{-1}(\Omega)} \quad \text{and} \quad |M - u I|_{L^2(\Omega)} \leq c |M|_{DD^{0,-1}(\Omega, S)}.
\]

Proof. The unique solution $u \in H^1(\Omega)$ satisfies
\[
H^{-1}(\Omega) \ni \text{div Div} u I = \text{div grad} u = \text{div Div} M,
\]
i.e., $M_0 := M - u I \in DD_0(\Omega, S)$, which shows the decomposition. Moreover,
\[
|u|_{H^1(\Omega)} \leq (1 + c_0^2) |\text{div Div} M|_{H^{-1}(\Omega)}
\]
shows that u depends continuously on M and hence also M_0 since
\[
|M_0|_{L^2(\Omega)} \leq |M|_{L^2(\Omega)} + |u|_{L^2(\Omega)} \leq \sqrt{2} (1 + c_0^2) |M|_{DD^{0,-1}(\Omega, S)}.
\]
Let $u I \in DD_0(\Omega, S)$ with $u \in H^1(\Omega)$. Then $0 = \text{div Div} u I = \text{div grad} u = \Delta u$, yielding $u = 0$. Hence, the decomposition is direct, completing the proof.

Lemma 3.21. The embeddings (3.5)-(3.6), i.e.,
\[
\hat{R}(\Omega, S) \cap DD(\Omega, S) \hookrightarrow L^2(\Omega, S), \quad R_{\text{sym}}(\Omega, T) \cap \hat{D}(\Omega, T) \hookrightarrow L^2(\Omega, T),
\]
are compact.

Proof. Let (U_i) be an open covering of Ω, such that $\Omega_i := \Omega \cap U_i$ is topologically trivial for all i. As Ω is compact, there is a finite subcovering denoted by $(U_i)_{i=1,\ldots,I}$ with $I \in \mathbb{N}$. Let (φ_i) with $\varphi_i \in C^\infty(U_i)$ be a partition of unity subordinate to (U_i). Suppose $(E_n) \subset R_{\text{sym}}(\Omega, T) \cap \hat{D}(\Omega, T)$ is a bounded sequence. Then $E_n = \sum_{i=1}^I \varphi_i E_n$ and $(\varphi_i E_n) \subset R_{\text{sym}}(\Omega, \mathbb{T}) \cap \hat{D}(\Omega_i, \mathbb{T})$ is a bounded sequence for all i by Lemma 3.19. As Ω_i is topologically trivial, there exists a subsequence, again denoted by $(\varphi_i E_n)$, which is a Cauchy sequence in $L^2(\Omega_i)$ by Lemma 3.18. Picking successively subsequences yields that $(\varphi_i E_n)$ is a Cauchy sequence in $L^2(\Omega_i)$ for all i. Hence (E_n) is a Cauchy sequence in $L^2(\Omega)$. So the second embedding of the lemma is compact. Let $(M_n) \subset \hat{R}(\Omega, S) \cap DD(\Omega, S)$ be a bounded sequence. Then
Theorem 3.22. It holds:

(i) The ranges

\[R(\text{Grad grad}) = \text{Grad grad} \mathring{H}^2(\Omega), \]
\[L^2(\Omega) = R(\text{div Div}_2) = \text{div div DD}(\Omega, S) = \text{div div } (\mathring{D}\mathring{D}(\Omega, S) \cap \text{Grad grad} \mathring{H}^2(\Omega)), \]
\[R(\text{Rot}_{\mathcal{S}}) = \text{Rot} \mathring{R}(\Omega, S) = \text{Rot} (\mathring{R}(\Omega, S) \cap \text{sym Rot} \mathring{R}_{\text{sym}}(\Omega, T)), \]
\[R(\text{sym Rot}_{\mathcal{T}}) = \text{sym Rot} \mathring{R}_{\text{sym}}(\Omega, T) = \text{sym Rot} (\mathring{R}_{\text{sym}}(\Omega, T) \cap \text{Rot} \mathring{R}(\Omega, S)), \]
\[R(\text{dev Grad}) = \text{dev Grad} \mathring{H}^1(\Omega) = \text{dev Grad} (\mathring{H}^1(\Omega) \cap \text{RT}_0^{1,2(\Omega)}). \]

These ranges are closed. The more regular potentials on the right hand sides are uniquely determined and depend linearly and continuously on the data, see (v).

(ii) The cohomology groups

\[\mathcal{H}_0(\Omega, S) := \mathring{R}(\Omega, S) \cap \mathring{D}\mathring{D}_0(\Omega, S), \quad \mathcal{H}_N(\Omega, T) := \mathring{D}_0(\Omega, T) \cap \mathring{R}_{\text{sym}, 0}(\Omega, T) \]

are finite dimensional and may be called Dirichlet resp. Neumann tensor fields.
(iii) The Hilbert complexes from Remark 3.8, i.e.,

\[
\begin{align*}
\{0\} & \xrightarrow{0} \mathring{H}^2(\Omega) \xrightarrow{\text{Grad grad}} \mathring{\mathcal{R}}(\Omega; S) \xrightarrow{\text{Rot}_S} \mathring{\mathbb{D}}(\Omega, T) \xrightarrow{\text{Div}_S} L^2(\Omega) \xrightarrow{\tau_{RT_0}} RT_0 \\
\text{and its adjoint} & \\
\{0\} & \leftarrow \xleftarrow{0} L^2(\Omega) \leftarrow \xleftarrow{\text{div Div}_S} \mathbb{D}(\Omega, S) \xleftarrow{\text{sym Rot}} \mathcal{R}_\text{sym}(\Omega, T) \leftarrow \text{dev Grad} H^1(\Omega) \xleftarrow{\text{dev Rot}_S} RT_0,
\end{align*}
\]

are closed. They are also exact, if and only if \(\mathcal{H}_D(\Omega, S) = \{0\}, \mathcal{H}_N(\Omega, T) = \{0\}\). The latter holds, if \(\Omega\) is topologically trivial.

(iv) The Helmholtz type decompositions

\[
\begin{align*}
\mathbb{L}^2(\Omega, S) &= \text{Grad grad} \mathring{\mathring{H}}^2(\Omega) \oplus L^2(\Omega, S) \mathbb{D}_0(\Omega, S) \\
&= \mathring{\mathcal{R}}_0(\Omega, S) \oplus L^2(\Omega, S) \text{sym Rot} \mathcal{R}_\text{sym}(\Omega, T) \\
&= \text{Grad grad} \mathring{\mathring{H}}^2(\Omega) \oplus L^2(\Omega, S) \mathcal{H}_D(\Omega, S) \oplus L^2(\Omega, S) \text{sym Rot} \mathcal{R}_\text{sym}(\Omega, T), \\
\mathbb{L}^2(\Omega, T) &= \text{Rot} \mathring{\mathcal{R}}(\Omega, S) \oplus L^2(\Omega, T) \mathcal{R}_\text{sym,0}(\Omega, T) \\
&= \mathring{\mathbb{D}}_0(\Omega, T) \oplus L^2(\Omega, T) \text{dev Grad} H^1(\Omega) \\
&= \text{Rot} \mathring{\mathcal{R}}(\Omega, S) \oplus L^2(\Omega, T) \mathcal{H}_N(\Omega, T) \oplus L^2(\Omega, T) \text{dev Grad} H^1(\Omega)
\end{align*}
\]

are valid.

(v) There exist positive constants \(c_{\mathcal{G}_S}, c_D, c_R\), such that the Friedrichs/Poincaré type estimates

\[
\begin{align*}
\forall u \in \mathring{\mathcal{H}}^2(\Omega) & \hspace{1cm} |u|_{L^2(\Omega)} \leq c_{\mathcal{G}_S} |\text{Grad grad } u|_{L^2(\Omega)}^2, \\
\forall M \in \mathbb{D}(\Omega, S) \cap \text{Grad grad } \mathring{\mathring{H}}^2(\Omega) & \hspace{1cm} |M|_{L^2(\Omega)} \leq c_{\mathcal{G}_S} |\text{Div } M|_{L^2(\Omega)}^2, \\
\forall E \in \mathbb{D}(\Omega, T) \cap \text{dev Grad } H^1(\Omega) & \hspace{1cm} |E|_{L^2(\Omega)} \leq c_D |\text{Div } E|_{L^2(\Omega)}^2, \\
\forall V \in H^1(\Omega) \cap RT_0^{\dagger L^2(\Omega)} & \hspace{1cm} |V|_{L^2(\Omega)} \leq c_D |\text{dev Grad } V|_{L^2(\Omega)}^2, \\
\forall M \in \mathring{\mathcal{R}}(\Omega, S) \cap \text{sym Rot } \mathcal{R}_\text{sym}(\Omega, T) & \hspace{1cm} |M|_{L^2(\Omega)} \leq c_R |\text{Rot } M|_{L^2(\Omega)}^2, \\
\forall E \in \mathcal{R}_\text{sym}(\Omega, T) \cap \text{Rot } \mathring{\mathcal{R}}(\Omega, S) & \hspace{1cm} |E|_{L^2(\Omega)} \leq c_R |\text{sym Rot } E|_{L^2(\Omega)}^2
\end{align*}
\]

hold.

(vi) The inverse operators

\[
\begin{align*}
(\text{Grad grad})^{-1} : \text{Grad grad } \mathring{\mathring{H}}^2(\Omega) & \rightarrow \mathring{\mathring{H}}^2(\Omega), \\
(\text{div Div}_S)^{-1} : L^2(\Omega) & \rightarrow \mathbb{D}(\Omega, S) \cap \text{Grad grad } \mathring{\mathring{H}}^2(\Omega), \\
(\text{Div}_S)^{-1} : RT_0^{\dagger L^2(\Omega)} & \rightarrow \mathring{\mathbb{D}}(\Omega, T) \cap \text{dev Grad } H^1(\Omega), \\
(\text{dev Grad})^{-1} : \text{dev Grad } H^1(\Omega) & \rightarrow H^1(\Omega) \cap RT_0^{\dagger L^2(\Omega)}, \\
(\text{Rot}_S)^{-1} : \text{Rot } \mathring{\mathcal{R}}(\Omega, S) & \rightarrow \mathring{\mathcal{R}}(\Omega, S) \cap \text{sym Rot } \mathcal{R}_\text{sym}(\Omega, T),
\end{align*}
\]

\[\text{Note Rot } M = \text{dev Rot } M \text{ for } M \in \mathring{\mathcal{R}}(\Omega, S) \text{ and thus for all } M \in \mathring{\mathcal{R}}(\Omega, S) \cap \text{sym Rot } \mathcal{R}_\text{sym}(\Omega, T)\]

\[|M|_{L^2(\Omega)} \leq c_R |\text{Rot } M|_{L^2(\Omega)} \leq c_R |\text{dev Rot } M|_{L^2(\Omega)}^2.\]
\[(\text{sym Rot}_T)^{-1}: \text{sym Rot} \mathcal{R}_{\text{sym}}(\Omega, \mathbb{T}) \rightarrow \mathcal{R}_{\text{sym}}(\Omega, \mathbb{T}) \cap \text{Rot} \mathcal{R}(\Omega, \mathbb{S})\]

are continuous with norms \((1 + c_{Gg}^2)^{1/2}\) resp. \((1 + c_{Gd}^2)^{1/2}\), resp. \((1 + c_{R}^2)^{1/2}\), and their modifications

\[\begin{align*}
(\text{Grad grad})^{-1}: \text{Grad grad} \mathcal{H}^2(\Omega) & \rightarrow \mathcal{H}^1(\Omega) \subset L^2(\Omega), \\
(\text{div Div})^{-1}: L^2(\Omega) & \rightarrow \text{Grad grad} \mathcal{H}^2(\Omega) \subset L^2(\Omega, \mathbb{S}), \\
(\text{Div}_T)^{-1}: \text{RT}_0^1(\Omega) & \rightarrow \text{dev Grad} \mathcal{H}^1(\Omega) \subset L^2(\Omega, \mathbb{T}), \\
(\text{Rot}_S)^{-1}: \text{Rot} \mathcal{R}(\Omega, \mathbb{S}) & \rightarrow \text{sym Rot} \mathcal{R}_{\text{sym}}(\Omega, \mathbb{T}) \subset L^2(\Omega, \mathbb{S}), \\
(\text{sym Rot}_T)^{-1}: \text{sym Rot} \mathcal{R}_{\text{sym}}(\Omega, \mathbb{T}) & \rightarrow \text{Rot} \mathcal{R}(\Omega, \mathbb{S}) \subset L^2(\Omega, \mathbb{T})
\end{align*}\]

are compact with norms \(c_{Gg}, c_{Gd}, \) resp. \(c_{R}\).

We note

\[\begin{align*}
\mathcal{R}_0(\Omega, \mathbb{S}) & = \text{Grad grad} \mathcal{H}^2(\Omega) \oplus_{L^2(\Omega, \mathbb{S})} \mathcal{H}_D(\Omega, \mathbb{S}), \\
\mathcal{D}_D(\Omega, \mathbb{S}) & = \text{sym Rot} \mathcal{R}_{\text{sym}}(\Omega, \mathbb{T}) \oplus_{L^2(\Omega, \mathbb{S})} \mathcal{H}_D(\Omega, \mathbb{S}), \\
\mathcal{D}_D(\Omega, \mathbb{T}) & = \text{Rot} \mathcal{R}(\Omega, \mathbb{S}) \oplus_{L^2(\Omega, \mathbb{T})} \mathcal{H}_N(\Omega, \mathbb{T}), \\
\mathcal{R}_{\text{sym}, 0}(\Omega, \mathbb{T}) & = \text{dev Grad} \mathcal{H}^1(\Omega) \oplus_{L^2(\Omega, \mathbb{T})} \mathcal{H}_N(\Omega, \mathbb{T}).
\end{align*}\]

Finally, even parts of Theorem 3.10 and Theorem 3.17 extend to the general case, i.e., we have regular potentials and regular decompositions for bounded strong Lipschitz domains as well.

Theorem 3.23. The regular decompositions

\[(i) \quad \mathcal{R}(\Omega, \mathbb{S}) = \mathcal{H}^1(\Omega, \mathbb{S}) + \text{Grad grad} \mathcal{H}^2(\Omega), \\
(ii) \quad \mathcal{D}(\Omega, \mathbb{T}) = \mathcal{H}^1(\Omega, \mathbb{T}) + \text{Rot} \mathcal{H}^1(\Omega, \mathbb{S}), \\
(iii) \quad \mathcal{R}_{\text{sym}}(\Omega, \mathbb{T}) = \mathcal{H}^1(\Omega, \mathbb{T}) + \text{dev Grad} \mathcal{H}^1(\Omega), \\
(iv) \quad \mathcal{D}_D(\Omega, \mathbb{S}) = \mathcal{H}^2(\Omega, \mathbb{S}) + \mathcal{D}_D(\Omega, \mathbb{S})\]

hold with linear and continuous (regular) potential operators.

Proof. As in the proof of Lemma 3.21, let \((U_i)\) be an open covering of \(\Omega\), such that \(\Omega_i := \Omega \cap U_i\) is topologically trivial for all \(i\). As \(\Omega\) is compact, there is a finite subcovering denoted by \((U_{i_1}, ..., U_{i_r})\) with \(r \in \mathbb{N}\). Let \((\varphi_i)\) with \(\varphi_i \in \check{C}^\infty(\Omega_i)\) be a partition of unity subordinate to \((U_i)\) and let additionally \(\phi_i \in \check{C}^\infty(\Omega_i)\) with \(\phi_i|\text{supp} \varphi_i = 1\). To prove (i), suppose \(M \in \mathcal{R}(\Omega, \mathbb{S})\). By Lemma 3.19 and Theorem 3.17 we have

\[\varphi_i M \in \check{\mathcal{R}}(\Omega_i, \mathbb{S}) = \mathcal{H}^1(\Omega_i, \mathbb{S}) + \check{\mathcal{R}}(\Omega_i, \mathbb{S}) = \mathcal{H}^1(\Omega_i, \mathbb{S}) + \text{Grad grad} \mathcal{H}^2(\Omega_i).\]

Hence, \(\varphi_i M = M_i + \text{Grad grad} u_i\) with \(M_i \in \mathcal{H}^1(\Omega_i, \mathbb{S})\) and \(u_i \in \check{\mathcal{H}}^2(\Omega_i)\). Let \(M_i\) and \(u_i\) denote the extensions by zero of \(M_i\) and \(u_i\). Then \(M_i \in \check{\mathcal{H}}^1(\Omega, \mathbb{S})\) and \(u_i \in \check{\mathcal{H}}^2(\Omega)\). Thus

\[M = \sum_i \varphi_i M = \sum_i M_i + \text{Grad grad} \sum_i u_i \in \mathcal{H}^1(\Omega, \mathbb{S}) + \text{Grad grad} \mathcal{H}^2(\Omega),\]

and all applied operations are continuous. Similarly we proof (ii). To show (iii), let \(E \in \mathcal{R}_{\text{sym}}(\Omega, \mathbb{T})\). By Lemma 3.19 and Theorem 3.17 we have

\[\varphi_i E \in \mathcal{R}_{\text{sym}}(\Omega_i, \mathbb{T}) = \mathcal{H}^1(\Omega_i, \mathbb{T}) + \mathcal{R}_{\text{sym}, 0}(\Omega_i, \mathbb{T}) = \mathcal{H}^1(\Omega_i, \mathbb{T}) + \text{dev Grad} \mathcal{H}^1(\Omega_i).\]
Hence, \(\varphi_i \mathbf{E} = \mathbf{E}_i + \text{dev Grad } V_i \) with \(\mathbf{E}_i \in \mathbf{H}^1(\Omega_i, \mathbb{T}) \) and \(V_i \in \mathbf{H}^1(\Omega_i) \). In \(\Omega_i \) we observe
\[
\varphi_i \mathbf{E} = \phi_i \varphi_i \mathbf{E} = \phi_i \mathbf{E}_i + \phi_i \text{dev Grad } V_i \\
= \phi_i \mathbf{E}_i - \text{dev} (V_i \cdot \text{grad}^\top \phi_i) + \text{dev Grad} (\phi_i V_i) \in \mathbf{H}^1(\Omega_i, \mathbb{T}) + \text{dev Grad } \mathbf{H}^1(\Omega_i).
\]

Let \(\hat{\mathbf{E}}_i \) and \(\hat{V}_i \) denote the extensions by zero of \(\phi_i \mathbf{E}_i - \text{dev} (V_i \cdot \text{grad}^\top \phi_i) \) and \(\phi_i V_i \). Then \(\hat{\mathbf{E}}_i \in \mathbf{H}^1(\Omega, \mathbb{T}) \) and \(\hat{V}_i \in \mathbf{H}^1(\Omega) \). Thus
\[
\mathbf{E} = \sum_i \varphi_i \mathbf{E} = \sum_i \hat{\mathbf{E}}_i + \text{dev Grad} \sum_i \hat{V}_i \in \mathbf{H}^1(\Omega, \mathbb{T}) + \text{dev Grad } \mathbf{H}^1(\Omega),
\]
and all applied operations are continuous. To show (iv), let \(\mathbf{M} \in \mathbf{DD}(\Omega, \mathcal{S}) \). Then \(\text{div Div } \mathbf{M} \in L^2(\Omega) \) and by Theorem 3.10 and Remark 3.11 (ii) there is some \(\hat{\mathbf{M}} \in \mathbf{H}^2(\Omega, \mathcal{S}) \), together with a linear and continuous potential operator, with \(\text{div Div } \hat{\mathbf{M}} = \text{div Div } \mathbf{M} \). Therefore, we have \(\mathbf{M} - \hat{\mathbf{M}} \in \mathbf{DD}_0(\Omega, \mathcal{S}) \), completing the proof. \(\square \)

Applying \(\circ \text{Rot}_S, \circ \text{Div}_T, \) and \(\circ \text{sym Rot}_T, \) \(\circ \text{div Div}_S \) to the latter regular decompositions we get the following regular potentials.

Theorem 3.24. It holds
\[
\begin{align*}
(\text{i}) & \quad R(\circ \text{Rot}_S) = \text{Rot } \hat{\mathbf{R}}(\Omega, \mathcal{S}) = \text{Rot } \hat{\mathbf{H}}^1(\Omega, \mathcal{S}), \\
(\text{ii}) & \quad R(\hat{\text{Rot}}_T) = \text{Div } \hat{\mathbf{D}}(\Omega, \mathbb{T}) = \text{Div } \hat{\mathbf{H}}^1(\Omega, \mathbb{T}), \\
(\text{iii}) & \quad R(\circ \text{sym Rot}_T) = \text{sym Rot } \hat{\mathbf{R}}_\text{sym}(\Omega, \mathbb{T}) = \text{sym Rot } \hat{\mathbf{H}}^1(\Omega, \mathbb{T}), \\
(\text{iv}) & \quad L^2(\Omega) = R(\circ \text{div Div}_S) = \text{div Div } \mathbf{D}(\Omega, \mathcal{S}) = \text{div Div } \mathbf{H}^2(\Omega, \mathcal{S})
\end{align*}
\]
with corresponding linear and continuous (regular) potential operators (on the right hand sides).

Remark 3.25. While the results about the regular potentials in Theorem 3.24 hold in full generality for all operators, one may wonder that the regular decompositions from Theorem 3.23 hold in full generality only for (i)-(iii), but not for (iv), i.e., we just have in (iv)
\[
\mathbf{DD}(\Omega, \mathcal{S}) = \mathbf{H}^2(\Omega, \mathcal{S}) + \mathbf{DD}_0(\Omega, \mathcal{S}) \supset \mathbf{H}^2(\Omega, \mathcal{S}) + \text{sym Rot } \mathbf{H}^1(\Omega, \mathbb{T}).
\]

The reason for the failure of the partition of unity argument from the proof of Theorem 3.23 is the following: Let \(\mathbf{M} \in \mathbf{DD}(\Omega, \mathcal{S}) \). By Lemma 3.19 (vi) we just get \(\varphi_i \mathbf{M} \in \mathbf{DD}^0(\Omega_i, \mathcal{S}) \), see also the proof of Lemma 3.21. Using Lemma 3.30 and Theorem 3.17 we can decompose
\[
\varphi_i \mathbf{M} = u_i \mathbf{I} + \text{sym Rot } \mathbf{E}_i \in \mathbf{H}^1(\Omega_i) \cdot \mathbf{I} + \text{sym Rot } \mathbf{H}^1(\Omega_i, \mathbb{T})
\]
as \(\mathbf{DD}_0(\Omega_i, \mathcal{S}) = \text{sym Rot } \mathbf{H}^1(\Omega_i, \mathbb{T}) \). In \(\Omega_i \) we observe
\[
\varphi_i \mathbf{M} = \phi_i \varphi_i \mathbf{M} = \phi_i u_i \mathbf{I} + \phi_i \text{sym Rot } \mathbf{E}_i \\
= \phi_i u_i \mathbf{I} - \text{sym (grad } \phi_i \times \mathbf{E}_i) + \text{sym Rot} (\phi_i \mathbf{E}_i) \in \mathbf{H}^1(\Omega_i, \mathcal{S}) + \text{sym Rot } \mathbf{H}^1(\Omega_i, \mathbb{T}).
\]

Let \(\hat{\mathbf{M}}_i \) and \(\hat{\mathbf{E}}_i \) denote the extensions by zero of \(\phi_i u_i \mathbf{I} - \text{sym (grad } \phi_i \times \mathbf{E}_i) \) and \(\phi_i \mathbf{E}_i \). Then \(\hat{\mathbf{M}}_i \in \mathbf{H}^1(\Omega, \mathcal{S}) \) and \(\hat{\mathbf{E}}_i \in \mathbf{H}^1(\Omega, \mathbb{T}) \) and thus
\[
\mathbf{M} = \sum_i \varphi_i \mathbf{M} = \sum_i \hat{\mathbf{M}}_i + \text{sym Rot} \sum_i \hat{\mathbf{E}}_i \in \mathbf{H}^1(\Omega, \mathcal{S}) + \text{sym Rot } \mathbf{H}^1(\Omega, \mathbb{T}),
\]
and all applied operations are continuous. Therefore, we obtain
\[
\mathbf{H}^2(\Omega, \mathcal{S}) + \text{sym Rot } \mathbf{H}^1(\Omega, \mathbb{T}) \subset \mathbf{H}^2(\Omega, \mathcal{S}) + \mathbf{DD}_0(\Omega, \mathcal{S}) = \mathbf{DD}(\Omega, \mathcal{S}) \subset \mathbf{H}^1(\Omega, \mathcal{S}) + \text{sym Rot } \mathbf{H}^1(\Omega, \mathbb{T}).
\]
So we have lost one Sobolev order in the summand \(\mathbf{H}^1(\Omega, \mathcal{S}) \).
4. Application to Biharmonic Problems

By $\Delta^2 = \text{div} \text{Div} \text{grad} \text{grad}$, a standard (primal) variational formulation of (1.1) in \mathbb{R}^3 reads as follows:

For given $f \in H^{-2}(\Omega)$, find $u \in \overset{\circ}{H}^2(\Omega)$ such that

\begin{equation}
(\text{Grad} \text{grad} u, \text{Grad} \text{grad} \phi)_{L^2(\Omega)} = (f, \phi)_{H^{-2}(\Omega)} \quad \text{for all } \phi \in \overset{\circ}{H}^2(\Omega).
\end{equation}

Existence, uniqueness, and continuous dependence on f of a solution to (4.1) is guaranteed by the theorem of Lax-Milgram, see, e.g., [16, 15] or Lemma 3.3. Note that then

\[
\mathbf{M} := \text{Grad} \text{grad} u \in \mathcal{R}_0(\Omega, S) \oplus_{L^2(\Omega, S)} \mathcal{H}_\mathbf{D}(\Omega, S) \subset L^2(\Omega, S).
\]

with $\text{div} \mathbf{M} = f \in H^{-2}(\Omega)$. In other words the operator

\[
(4.2) \quad \text{div} \text{Div} : L^2(\Omega, S) \to H^{-2}(\Omega)
\]

is surjective and

\[
(4.3) \quad \text{div} \text{Div} : \mathcal{R}_0(\Omega, S) \oplus_{L^2(\Omega, S)} \mathcal{H}_\mathbf{D}(\Omega, S) \to H^{-2}(\Omega)
\]

is bijective and even a topological isomorphism by the bounded inverse theorem. For our decomposition result we need the following variant of the Hilbert complex from Theorem 3.22.

\[
\begin{array}{cccc}
\mathcal{R}_0 & \text{sym} & \text{symRot} & \mathcal{DD}^0\mathcal{H} \to H^{-1}(\Omega) \\
\text{div} \text{Grad} & \to & \mathcal{D}_\mathbf{D} & \to \{0\},
\end{array}
\]

where we recall $\mathcal{DD}^0(\Omega, S)$ from Lemma 3.20. This is obviously also a closed Hilbert complex as $\text{div} \text{Div} : \mathcal{DD}^0(\Omega, S) \to H^{-1}(\Omega)$ is surjective as well by (4.2). Observe that

\[
H^1(\Omega, S) \subset \mathcal{DD}^0(\Omega, S) \subset L^2(\Omega, S).
\]

For right-hand sides $f \in H^{-1}(\Omega)$ we consider the following mixed variational problem for u and the Hessian \mathbf{M} of u: Find $\mathbf{M} \in \mathcal{DD}^0(\Omega, S)$ and $u \in \overset{\circ}{H}^1(\Omega)$ such that

\[
\begin{align}
(4.4) \quad & (\mathbf{M}, \Psi)_{L^2(\Omega)} + \langle u, \text{div} \Psi \rangle_{H^{-1}(\Omega)} = 0 \quad \text{for all } \Psi \in \mathcal{DD}^0(\Omega, S), \\
(4.5) \quad & \langle \text{div} \mathbf{M}, \psi \rangle_{H^{-1}(\Omega)} = -\langle f, \psi \rangle_{H^{-1}(\Omega)} \quad \text{for all } \psi \in \overset{\circ}{H}^1(\Omega).
\end{align}
\]

The first row and the second row of this mixed problem are variational formulations of (1.2) and (1.3), respectively. We recall the following two results related to these mixed problems from [14].

Theorem 4.1. Let $f \in H^{-1}(\Omega)$. Then:

(i) Problem (4.4)-(4.5) is a well-posed saddle point problem.

(ii) The variational problems (4.1) and (4.4)-(4.5) are equivalent, i.e., if $u \in \overset{\circ}{H}^2(\Omega)$ solves (4.1), then $\mathbf{M} = -\text{Grad} \text{grad} u$ lies in $\mathcal{DD}^0(\Omega, S)$ and (\mathbf{M}, u) solves (4.4)-(4.5). And, vice versa, if $(\mathbf{M}, u) \in \mathcal{DD}^0(\Omega, S) \times \overset{\circ}{H}^1(\Omega)$ solves (4.4)-(4.5), then $u \in \overset{\circ}{H}^2(\Omega)$ with $\text{Grad} \text{grad} u = -\mathbf{M}$ and u solves (4.1).

Although only two-dimensional biharmonic problems were considered in [14], the proof of the latter theorem is completely identical for the three-dimensional case. The same holds for Lemma 3.20.

Proof. To show (i), we first note that $(\Phi, \Psi) \mapsto (\Phi, \Psi)_{L^2(\Omega)}$ is coercive over the kernel of (4.5), i.e., for $\Phi \in \mathcal{DD}^0(\Omega, S)$ we have $(\Phi, \Phi)_{L^2(\Omega)} = |\Phi|^2_{L^2(\Omega)} = |\Phi|^2_{\mathcal{DD}^0(\Omega, S)}$. Moreover, the inf-sup-condition holds, as

\[
\begin{aligned}
\inf_{0 \neq \varphi \in H^1(\Omega)} \sup_{0 \neq \Phi \in \mathcal{DD}^0(\Omega, S)} & \frac{\langle \varphi, \text{div} \Phi \rangle_{H^{-1}(\Omega)}}{|\text{grad} \varphi|_{L^2(\Omega)} |\Phi|_{\mathcal{DD}^0(\Omega, S)}} \\
& \geq C > 0.
\end{aligned}
\]
Then to show the first part of (ii) only. The reverse direction follows then automatically. Let u

Note that both the primal problem (4.1) and the mixed problem (4.4)-(4.5) are well-posed. So, it suffices

Thus (4.5) holds. Moreover, for $\Phi \in D^{0,-1}(\Omega, S)$ we see

by choosing $\Phi := -\varphi I \in \dot{H}^1(\Omega) \cdot I \subset D^{0,-1}(\Omega, S)$ and observing

Remark 4.2. For convenience of the reader, we give additionally a proof of the other direction as well:

If (M, u) in $D^{0,-1}(\Omega, S) \times \dot{H}^1(\Omega)$ solves (4.4)-(4.5), then $\operatorname{div} M = -f$ in $H^{-2}(\Omega)$ and (4.4) holds. Especially, (4.4) holds for $\Psi \in H^2(\Omega, S) \subset H^1(\Omega, S) \subset D^{0,-1}(\Omega, S)$, i.e.,

But then (4.6) holds for all $\Psi \in H^2(\Omega)$ as $\operatorname{sym} \Psi \in H^2(\Omega, S)$ and

since $\operatorname{div} \operatorname{skw} \Psi = 0$ by

for all $\phi \in \hat{C}^\infty(\Omega)$. (4.7) yields that $u \in \check{H}^2(\Omega)$ with $\operatorname{Grad} u = -M$. Finally, for all $\phi \in \hat{H}^2(\Omega)$

showing that $u \in \hat{H}^2(\Omega)$ solves (4.1).

We note that the decomposition of $D^{0,-1}(\Omega, S)$ in Lemma 3.20 is different to the Helmholtz type decomposition of the larger space $L^2(\Omega, S)$ in Theorem 3.12 and Theorem 3.22 and does not involve the Hessian of scalar functions in $\check{H}^2(\Omega)$. Using the decomposition of $D^{0,-1}(\Omega, S)$ in Lemma 3.20, we have the following decomposition result for the biharmonic problem. Let $(M, u) \in D^{0,-1}(\Omega, S) \times \dot{H}^1(\Omega)$ be the unique solution of (4.4)-(4.5). Using Lemma 3.20 we have the following direct decompositions for $M, \Psi \in D^{0,-1}(\Omega, S)$

$$M = p I + M_0, \quad \Psi = \varphi I + \Psi_0, \quad p, \varphi \in \dot{H}^1(\Omega), \quad M_0, \Psi_0 \in D_0(\Omega, S).$$
This allows to rewrite (4.4)-(4.5) equivalently in terms of \((p, M_0, u)\) and for all \((\varphi, \Psi_0, \psi)\), i.e.,
\[
\langle p, \varphi I \rangle_{L^2(\Omega)} + \langle M_0, \Psi_0 \rangle_{L^2(\Omega)} + \langle p, \varphi \rangle_{L^2(\Omega)} + \langle M_0, \varphi \rangle_{L^2(\Omega)} + \langle u, \text{div} \, \text{Div}(\varphi I) \rangle_{H^{-1}(\Omega)} = 0,
\]
or equivalently
\[
\langle \text{grad} u, \text{grad} \varphi \rangle_{L^2(\Omega)} + 3\langle p, \varphi \rangle_{L^2(\Omega)} + \langle M_0, \varphi \rangle_{L^2(\Omega)} = 0,
\]
which leads to the equivalent system
\[
\langle \text{grad} u, \text{grad} \varphi \rangle_{L^2(\Omega)} + 3\langle p, \varphi \rangle_{L^2(\Omega)} + \langle \text{tr} M_0, \varphi \rangle_{L^2(\Omega)} = 0,
\]
\[
\langle M_0, \Psi_0 \rangle_{L^2(\Omega)} + \langle \text{tr} \Psi_0 \rangle_{L^2(\Omega)} = 0,
\]
\[
\langle \text{grad} p, \text{grad} \psi \rangle_{L^2(\Omega)} = -\langle f, \psi \rangle_{H^{-1}(\Omega)}.
\]

Theorem 4.3. The variational problem (4.4)-(4.5) is equivalent to the following well-posed and uniquely solvable variational problem. For \(f \in H^{-1}(\Omega)\) find \(p \in \hat{H}^1(\Omega),\ M_0 \in \mathcal{DD}_0(\Omega, S),\) and \(u \in \hat{H}^1(\Omega)\) such that
\[
\langle \text{grad} u, \text{grad} \varphi \rangle_{L^2(\Omega)} + \langle \text{tr} M_0, \varphi \rangle_{L^2(\Omega)} + 3\langle p, \varphi \rangle_{L^2(\Omega)} = 0,
\]
\[
\langle M_0, \Psi_0 \rangle_{L^2(\Omega)} + \langle \text{tr} \Psi_0 \rangle_{L^2(\Omega)} = 0,
\]
\[
\langle \text{grad} p, \text{grad} \psi \rangle_{L^2(\Omega)} = -\langle f, \psi \rangle_{H^{-1}(\Omega)}
\]
for all \(\varphi \in \hat{H}^1(\Omega),\ \Psi_0 \in \mathcal{DD}_0(\Omega, S),\) and \(\varphi \in \hat{H}^1(\Omega).\) Moreover, the unique solution \((M, u)\) of (4.4)-(4.5) is given by \(M := p I + M_0\) and \(u\) for the unique solution \((p, M_0, u)\) of (4.11)-(4.13).

If \(\Omega\) is additionally topologically trivial, then by Theorem 3.12 or Theorem 3.22
\[
\mathcal{DD}_0(\Omega, S) = \text{sym Rot} \mathcal{R}_{\text{sym}}(\Omega, \mathbb{T}) = \text{sym Rot} (\mathcal{R}_{\text{sym}}(\Omega, \mathbb{T}) \cap \mathcal{D}_0(\Omega, \mathbb{T}))
\]
and we obtain the following result.

Theorem 4.4. Let \(\Omega\) be additionally topologically trivial. The variational problem (4.4)-(4.5) is equivalent to the following well-posed and uniquely solvable variational problem. For \(f \in H^{-1}(\Omega)\) find \(p \in \hat{H}^1(\Omega),\ \Phi \in \mathcal{R}_{\text{sym}}(\Omega, \mathbb{T}) \cap \mathcal{D}_0(\Omega, \mathbb{T}),\) and \(u \in \hat{H}^1(\Omega)\) such that
\[
\langle \text{grad} u, \text{grad} \varphi \rangle_{L^2(\Omega)} + \langle \text{tr} \text{Rot} \, \Phi, \varphi \rangle_{L^2(\Omega)} + 3\langle p, \varphi \rangle_{L^2(\Omega)} = 0,
\]
\[
\langle \text{sym Rot} \, \Phi, \text{sym Rot} \, \Phi \rangle_{L^2(\Omega)} + \langle p, \text{tr} \text{Rot} \, \Phi \rangle_{L^2(\Omega)} = 0,
\]
\[
\langle \text{grad} p, \text{grad} \psi \rangle_{L^2(\Omega)} = -\langle f, \psi \rangle_{H^{-1}(\Omega)}
\]
for all \(\varphi \in \hat{H}^1(\Omega),\ \Phi \in \mathcal{R}_{\text{sym}}(\Omega, \mathbb{T}) \cap \mathcal{D}_0(\Omega, \mathbb{T}),\) and \(\varphi \in \hat{H}^1(\Omega).\) Moreover, the unique solution \((M, u)\) of (4.4)-(4.5) is given by \(M := p I + \text{sym Rot} \, \Phi\) and \(u\) for the unique solution \((p, \Phi, u)\) of (4.11)-(4.13).

Note that, e.g., \(\langle \text{tr} \text{Rot} \, \Phi, \varphi \rangle_{L^2(\Omega)} = \langle \text{sym Rot} \, \Phi, \varphi \rangle_{L^2(\Omega)}\) and \(3\langle p, \varphi \rangle_{L^2(\Omega)} = \langle p I, \varphi \rangle_{L^2(\Omega)}\).

Proof. (4.4)-(4.5) is equivalent to (4.8)-(4.10) and hence also to (4.11)-(4.13), if the latter system is well-posed. By Theorem 3.12 or Theorem 3.22 the bilinear form \(\langle \text{sym Rot} \cdot, \text{sym Rot} \cdot \rangle_{L^2(\Omega)}\) is coercive over \(\mathcal{R}_{\text{sym}}(\Omega, \mathbb{T}) \cap \mathcal{D}_0(\Omega, \mathbb{T}),\) which shows the consecutive unique solvability of (4.11)-(4.13). \(\square\)

The three problems in the previous theorem are weak formulations of the following three second-order problems in strong form. A homogeneous Dirichlet Poisson problem for the auxiliary scalar function \(p\)
\[
\Delta p = f \quad \text{in} \ \Omega, \quad p = 0 \quad \text{on} \ \Gamma,
\]
a second-order inhomogeneous Neumann type Rot sym Rot-Div-system for the auxiliary tensor field \(E \)

\[
\begin{align*}
\text{tr} E &= 0, & \text{Rot sym Rot } E &= - \text{Rot}(p I) = \text{sym grad } p, & \text{Div } E &= 0 & \text{in } \Omega, \\
 n \times \text{sym Rot } E &= - n \times p I = p \text{sym } n = 0, & E n &= 0 & \text{on } \Gamma,
\end{align*}
\]

and, finally, a homogeneous Dirichlet Poisson problem for the original scalar function \(u \)

\[
\Delta u = 3 p + \text{tr sym Rot } E = \text{tr}(p I + \text{sym Rot } E) \quad \text{in } \Omega, \quad u = 0 \quad \text{on } \Gamma.
\]

In other words, the system (4.11)-(4.13) has triangular structure

\[
\begin{bmatrix}
3 & \text{tr sym Rot}_T \\
\text{Rot}_T(\cdot I) & \text{Rot}_T \text{sym Rot}_T
\end{bmatrix}
\begin{bmatrix}
p \\ E
\end{bmatrix}
= \begin{bmatrix}
0 \\ 0
\end{bmatrix}
\]

with \((\text{tr sym Rot}_T)^* = \text{Rot}_T(\cdot I)\). Indeed we see that \(E \in R_{\text{sym}}(\Omega, T) \cap \hat{D}_0(\Omega, T) \) with

\[
\langle \text{sym Rot } E, \text{sym Rot } \Phi \rangle_{L^2(\Omega)} + \langle p, \text{tr sym Rot } \Phi \rangle_{L^2(\Omega)} = 0
\]

for all \(\Phi \in R_{\text{sym}}(\Omega, T) \) is equivalent to \(E \in R_{\text{sym}}(\Omega, T) \cap \hat{D}_0(\Omega, T) \) and

\[
\langle \text{sym Rot } E + p I, \text{sym Rot } \Phi \rangle_{L^2(\Omega)} = 0
\]

for all \(\Phi \in R_{\text{sym}}(\Omega, T) \) as by Theorem 3.12

\[
\text{sym Rot } \left(R_{\text{sym}}(\Omega, T) \cap \hat{D}_0(\Omega, T) \right) = \text{sym Rot } R_{\text{sym}}(\Omega, T).
\]

Now (4.14) shows that

\[
\text{sym Rot } E + p I \in D(\text{sym Rot}_T) = D(\text{Rot}_T) = R(\Omega, S)
\]

with \(\text{Rot(} \text{sym Rot } E + p I) = 0 \).

Finally, we want to get rid of the complicated space \(R_{\text{sym}}(\Omega, T) \cap \hat{D}_0(\Omega, T) \) in the variational formulation in Theorem 4.4, which might be very complicated to implement in forthcoming numerical applications using finite elements due to the solenoidal and homogeneous normal boundary conditions. For given \(p \in H^1(\Omega) \) the part (4.12), i.e., find \(E \in R_{\text{sym}}(\Omega, T) \cap \hat{D}_0(\Omega, T) \) such that

\[
\langle \text{sym Rot } E, \text{sym Rot } \Phi \rangle_{L^2(\Omega)} + \langle p, \text{tr sym Rot } \Phi \rangle_{L^2(\Omega)} = 0
\]

for all \(\Phi \in R_{\text{sym}}(\Omega, T) \) and \(\Phi \in H^1(\Omega) \cap RT_0^{1/2} \). Observe that

\[
(E, V) := (E, 0) \in R_{\text{sym}}(\Omega, T) \times (H^1(\Omega) \cap RT_0^{1/2})
\]

solves the modified variational system

\[
\langle \text{sym Rot } E, \text{sym Rot } \Phi \rangle_{L^2(\Omega)} + \langle \Phi, \text{dev Grad } V \rangle_{L^2(\Omega)} = -\langle p, \text{tr sym Rot } \Phi \rangle_{L^2(\Omega)},
\]

\[
\langle E, \text{dev Grad } \Phi \rangle_{L^2(\Omega)} = 0
\]
for all $\Phi \in R_{\text{sym}}(\Omega, T)$ and $\Phi \in H^1(\Omega) \cap RT_0^{1/2}$. On the other hand, any solution

$$(E, V) \in R_{\text{sym}}(\Omega, T) \times (H^1(\Omega) \cap RT_0^{1/2})$$

obtained from (4.21)-(4.22) satisfies $V = 0$, as (4.19) tested with

$$\Phi := \text{dev Grad} V \in \text{dev Grad} H^1(\Omega) = R_{\text{sym},0}(\Omega, T)$$

shows $\text{dev Grad} V = 0$ and thus $V \in RT_0$ by Lemma 3.2 yielding $V = 0$. Note that (4.19)-(4.20) has the saddle point structure

$$\begin{bmatrix}
\text{Rot}_{\Sigma} \text{sym Rot}_T & \text{dev Grad} \\
-\text{Div}_T & 0
\end{bmatrix}
\begin{bmatrix}
E \\
V
\end{bmatrix} =
\begin{bmatrix}
-\text{Rot}_{\Sigma}(v \cdot I) \\
0
\end{bmatrix}, \quad (\text{dev Grad})^* = -\text{Div}_T.$$

We obtain the following theorem.

Theorem 4.5. Let Ω be additionally topologically trivial. The variational problem (4.11)-(4.13) is equivalent to the following well-posed and uniquely solvable variational system. For $f \in H^{-1}(\Omega)$ find $p \in \tilde{H}^1(\Omega)$, $E \in R_{\text{sym}}(\Omega, T)$, $V \in H^1(\Omega) \cap RT_0^{1/2}$, and $u \in H^1(\Omega)$ such that

$$(4.21) \quad \langle \text{grad} u, \text{grad} \varphi \rangle_{L^2(\Omega)} + \langle \text{tr} \text{sym Rot} E, \varphi \rangle_{L^2(\Omega)} + 3 \langle p, \varphi \rangle_{L^2(\Omega)} = 0,$$

$$(4.22) \quad \langle \text{sym Rot} E, \text{sym Rot} \Phi \rangle_{L^2(\Omega)} + \langle \Phi, \text{dev Grad} V \rangle_{L^2(\Omega)} + \langle p, \text{tr} \text{sym Rot} \Phi \rangle_{L^2(\Omega)} = 0,$$

$$(4.23) \quad (E, \text{dev Grad} \Phi)_{L^2(\Omega)} = 0,$$

$$(4.24) \quad (\text{grad} p, \text{grad} \psi)_{L^2(\Omega)} = -\langle f, \psi \rangle_{H^{-1}(\Omega)}$$

for all $\psi \in \tilde{H}^1(\Omega)$. $\Phi \in R_{\text{sym}}(\Omega, T)$, $\Phi \in H^1(\Omega) \cap RT_0^{1/2}$, and $\varphi \in \tilde{H}^1(\Omega)$. Moreover, the unique solution (p, E, V, u) of (4.21)-(4.24) satisfies $V = 0$ and (p, E, u) is the unique solution of (4.11)-(4.13).

Note that the system (4.21)-(4.24) has the block triangular saddle point structure

$$\begin{bmatrix}
3 & \text{tr} \text{sym Rot}_T & 0 & -\Delta \\
\text{Rot}_{\Sigma}(\cdot) & \text{sym Rot}_T & \text{dev Grad} & 0 \\
0 & -\text{Div}_T & 0 & 0 \\
-\Delta & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
p \\
E \\
V \\
u
\end{bmatrix} =
\begin{bmatrix}
0 \\
0 \\
f
\end{bmatrix},$$

with $(\text{tr} \text{sym Rot}_T)^* = \text{Rot}_{\Sigma}(\cdot)I$ and $(\text{dev Grad})^* = -\text{Div}_T$.

Proof. We only have to show well-posedness of the partial system (4.22)-(4.23). First note that by Theorem 3.12 the bilinear form $\langle \text{sym Rot} \cdot, \text{sym Rot} \cdot \rangle_{L^2(\Omega)}$ is coercive over $R_{\text{sym}}(\Omega, T) \cap \tilde{D}_0(\Omega, T)$, which equals the kernel of (4.23). Indeed it follows from (4.23) that

$$E \in \text{dev Grad} \left(H^1(\Omega) \cap RT_0^{1/2} \right) \cap \tilde{D}_0(\Omega, T).$$

Moreover, the inf-sup-condition is satisfied as by picking for fixed $0 \neq \Phi \in H^1(\Omega) \cap RT_0^{1/2}$ the tensor

$$\Phi := \text{dev Grad} \Phi \in \text{dev Grad} H^1(\Omega) = R_{\text{sym},0}(\Omega, T)$$

we have

$$\inf_{0 \neq \Phi \in H^1(\Omega)} \sup_{\Phi \in R_{\text{sym}}(\Omega, T)} \langle \Phi, \text{dev Grad} \Phi \rangle_{L^2(\Omega)} \geq \inf_{0 \neq \Phi \in H^1(\Omega)} |\text{dev Grad} \Phi|_{L^2(\Omega)} \geq \frac{1}{c}$$

by Lemma 3.2 (iv).
Remark 4.6. The corresponding result for the two-dimensional case is completely analogous with the exception that the tensor potential $E \in R_{\text{sym}}^1(\Omega) \cap \hat{D}_V(\Omega)$ is to be replaced by a much simpler vector potential $N \in H^1(\Omega)$. Furthermore, observe that

$$\langle \text{sym Rot } N, \text{sym Rot } \Phi \rangle_{L^2(\Omega)} = \langle \text{sym Grad } N, \text{sym Grad } \Phi \rangle_{L^2(\Omega)}$$

holds for vector fields $N, \Phi \in H^1(\Omega)$. Here the superscript \perp denotes the rotation of a vector field by 90°. Note that the complicated second-order inhomogeneous Neumann type Rot sym Rot-Div-system for the auxiliary tensor field E is replaced in 2D by a much simpler inhomogeneous Neumann linear elasticity problem, where the standard Sobolev space $H^1(\Omega)$ resp. $H^1(\Omega) \cap RM^{-2}(\Omega)$ can be used. Here RM denotes the space of rigid motions. This yields the decomposition result in [14] for the two-dimensional case, which was shortly mentioned in the introduction.

REFERENCES

[1] Douglas N. Arnold, Richard S. Falk, and Ragnar Winther. Finite element exterior calculus, homological techniques, and applications. Acta Numerica, 15:1–155, 2006.
[2] S. Bauer, D. Pauly, and M. Schomburg. The Maxwell compactness property in bounded weak Lipschitz domains with mixed boundary conditions. SIAM J. Math. Anal., 48(4):2912–2943, 2016.
[3] L. Beirão da Veiga, J. Niiranen, and R. Stenberg. A posteriori error estimates for the Morley plate bending element. Numer. Math., 106(2):165–179, 2007.
[4] M.E. Bogovskii. Solution of the first boundary value problem for an equation of continuity of an incompressible medium (russian). Dokl. Akad. Nauk SSSR, 248(5):1037–1040, 1979.
[5] M.E. Bogovskii. Solutions of some problems of vector analysis, associated with the operators div and grad. (russian) theory of cubature formulas and the application of functional analysis to problems of mathematical physics. Akad. Nauk SSSR Sibirsk. Otdel., Inst. Mat., Novosibirsk, 1:5–40, 1980.
[6] M. Costabel and A. McIntosh. On Bogovski and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains. Math. Z., 265(2):297–320, 2010.
[7] G.P. Galdi. An introduction to the mathematical theory of the Navier-Stokes equations. Steady-state problems. Springer Monographs in Mathematics, New York, second edition, 1986.
[8] K. Hellan. Analysis of elastic plates in flexure by a simplified finite element method. Acta Polytech. Scand. CI 46, 1967.
[9] L. Herrmann. Finite element bending analysis for plates. Acta Polytech. Scand. CI 46, 1967.
[10] R. Hiptmair, J. Li, and J. Zou. Universal extension for Sobolev spaces of differential forms and applications. J. Funct. Anal., 263(2):364–382, 2012.
[11] J. Huang, X. Huang, and Y. Xu. Convergence of an adaptive mixed finite element method for Kirchhoff plate bending problems. SIAM J. Numer. Anal., 49(2):574–607, 2011.
[12] F. Jochmann. A compactness result for vector fields with divergence and curl in $L^p(\Omega)$ involving mixed boundary conditions. Appl. Anal., 66:189–203, 1997.
[13] C. Johnson. On the convergence of a mixed finite-element method for plate bending problems. Numer. Math., 21:43–62, 1973.
[14] Wolfgang Krendl, Katharina Rafetseder, and Walter Zulehner. A decomposition result for biharmonic problems and the Hellan-Herrmann-Johnson method. ETNA, Electron. Trans. Numer. Anal., 45:257–292, 2016.
[15] J.-L. Lions and E. Magenes. Non-Homogeneous Boundary Value Problems and Applications. Vol. I. Springer-Verlag, New York-Heidelberg, 1972. Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181.
[16] J. Nečas. Direct Methods in the Theory of Elliptic Equations. Springer Monographs in Mathematics. Springer, Heidelberg, 2012. Translated from the 1967 French original by Gerard Tronel and Alois Kufner.
[17] D. Pauly. On constants in Maxwell inequalities for bounded and convex domains. Zapiski POMI, 435:46-54, 2014, 435:46-54, 2014, 69:210(6):787–792, 2015.
[18] D. Pauly. On Maxwell’s and Poincaré’s constants. Discrete Contin. Dyn. Syst. Ser. S, 8(3):607–618, 2015.
[19] D. Pauly. On the Maxwell constants in 3D. Math. Methods Appl. Sci., 2016.
[20] R. Picard. Zur Theorie der harmonicen Differentialformen. Manuscripta Math., 1:31–45, 1979.
[21] R. Picard. On the boundary value problems of electro- and magnetostatics. Proc. Roy. Soc. Edinburgh Sect. A, 92:165–174, 1982.
[22] R. Picard. An elementary proof for a compact imbedding result in generalized electromagnetic theory. Math. Z., 187:151–164, 1984.
[23] R. Picard, N. Weck, and K.-J. Witsch. Time-harmonic Maxwell equations in the exterior of perfectly conducting, irregular obstacles. Analysis (Munich), 21:231–263, 2001.
[24] Vincent Quenneville-Bélair. A New Approach to Finite Element Simulation of General Relativity. APAM, Columbia University. PhD thesis, University of Minnesota, Minneapolis, USA, 2015.
Appendix A. Proofs of Some Useful Identities

Note that for \(a, b \in \mathbb{R}^3\) and \(A \in \mathbb{R}^{3 \times 3}\)

\[
\text{spn } a : \text{spn } b = 2 \, a \cdot b, \quad \text{skw } A = \frac{1}{2} \text{spn } \begin{bmatrix} A_{32} - A_{23} \\ A_{13} - A_{31} \\ A_{21} - A_{12} \end{bmatrix}
\]

hold and hence for skew-symmetric \(A\)

\[
\text{spn } a : A = \text{spn } a : \text{spn } \text{spn }^{-1} A = 2 \, a \cdot \text{spn }^{-1} A,
\]
i.e., \(\text{spn}^{-1} = 2 \, \text{spn}^{-1}\). Moreover, we have for two matrices \(A, B\)

\[
A^\top : B = \text{tr}(AB) = \text{tr}(BA) = B^\top : A = A : B^\top.
\]

The assertions of Lemma 3.4 and Lemma 3.9 are contained in the assertions of the following lemma.

Lemma A.1. For smooth functions, vector fields and tensor fields we have

(i) \(\text{skw } \text{Grad } \text{grad } u = 0\),
(ii) \(\text{div } \text{Div } M = 0\), if \(M\) is skew-symmetric,
(iii) \(\text{Rot}(u \mathbf{I}) = - \text{spn } \text{grad } u\),
(iv) \(\text{tr } \text{Rot } M = 2 \, \text{div } (\text{spn }^{-1} \text{skw } M)\),
\(\text{especially } \text{tr } \text{Rot } M = 0\), if \(M\) is symmetric,
(v) \(\text{Div}(u \mathbf{I}) = \text{grad } u\),
(vi) \(\text{tr } \text{Grad } V = \text{div } V\),
(vii) \(\text{Div}(\text{spn } V) = - \text{rot } V\),
\(\text{especially } \text{Div}(\text{skw } M) = - \text{rot } V \text{ for } V = \text{spn }^{-1} \text{skw } M\),
(viii) \(\text{Rot}(\text{spn } V) = (\text{div } V) \mathbf{I} - (\text{Grad } V)^\top\),
\(\text{especially } \text{Rot } \text{skw } M = (\text{div } V) \mathbf{I} - (\text{Grad } V)^\top \text{ for } V = \text{spn }^{-1} \text{skw } M\),
(ix) \(\text{skw } \text{Grad } V = \frac{1}{2} \text{spn } \text{rot } V \text{ and } \text{Rot}(\text{sym } \text{Grad } V) = - \text{Rot}(\text{skw } \text{Grad } V) = - \frac{1}{2} \text{Rot}(\text{spn } \text{rot } V)\),
(x) \(\text{skw } \text{Rot } M = \text{spn } V \text{ and } \text{Div}(\text{sym } \text{Rot } M) = - \text{Div}(\text{skw } \text{Rot } M) = \text{rot } V\)
\(\text{with } V = \frac{1}{2} (\text{Div } M^\top - \text{grad } (\text{tr } M))\),
\(\text{especially } \text{Div}(\text{sym } \text{Rot } M) = - \text{Div}(\text{skw } \text{Rot } M) = \frac{1}{2} \text{rot } \text{Div } M^\top, \text{ if } \text{tr } M = 0\),
(xi) \(\text{grad } \text{div } V = \frac{2}{3} \text{Div } (\text{grad } V)^\top\).

These formulas hold for distributions as well.

Proof. (i)-(ix) and the first identity in (x) follow by elementary calculations. For the second identity in (x) observe that \(0 = \text{Div } \text{Rot } M = \text{Div}(\text{sym } \text{Rot } M) + \text{Div}(\text{skw } \text{Rot } M)\) for \(M \in \mathcal{C}_c^\infty(\mathbb{R}^3)\) and hence, using the first identity in (x) and (vii), we obtain

\[
\text{Div}(\text{sym } \text{Rot } M) = - \text{Div}(\text{skw } \text{Rot } M) = - \text{Div}(\text{spn } V) = \text{rot } V.
\]

To see (xi) we compute

\[
0 = \text{Div } \text{Rot } \text{spn } V = \text{Div } ((\text{div } V) \mathbf{I} - \text{Div } (\text{Grad } V)^\top
\]
\[
= \text{Div } ((\text{div } V) \mathbf{I}) - \text{Div } (\text{div } (\text{Grad } V)^\top) - \frac{1}{3} \text{Div } ((\text{tr } (\text{Grad } V)^\top) \mathbf{I})
\]
\[
= \frac{2}{3} \text{Div } ((\text{div } V) \mathbf{I}) - \text{Div } (\text{div } (\text{Grad } V)^\top) = \frac{2}{3} \text{grad } V - \text{Div } (\text{div } (\text{Grad } V)^\top).
\]
Therefore, the stated formulas hold in the smooth case. By density these formulas extend to \(u, V, \) and \(\mathbf{M} \) in respective Sobolev spaces. Let us give proofs for distributions as well. For this, let \(m \in \mathbb{N}_0 \) and \(u \in H^{-m}(\Omega), \ V \in H^{-m}(\Omega), \ \mathbf{M} \in \mathbf{H}^{-m}(\Omega) \) and \(\varphi \in \overset{\circ}{C}^\infty(\Omega), \ \Phi \in \overset{\circ}{C}^\infty(\Omega), \) and \(\Phi \in \overset{\circ}{C}^\infty(\Omega). \) By
\[
\langle u, \partial_i \partial_j \varphi \rangle_{H^{-m}(\Omega)} = \langle u, \partial_i \partial_j \varphi \rangle_{H^{-m}(\Omega)}, \quad \text{or with (ii)} \quad \langle u, \text{div div } \Phi \rangle_{H^{-m}(\Omega)} = 0
\]
we see that \(\text{Grad grad } u \in H^{-m-2}(\Omega) \) is symmetric and hence (i). Note that the formal adjoint is \((\text{skw Grad grad})^* = \text{div Div skw} \). If \(\mathbf{M} \) is skew-symmetric we have \(\langle \mathbf{M}, \text{Grad grad } \varphi \rangle_{H^{-m}(\Omega)} = 0, \) i.e., (ii).

We compute with (iv)
\[
\langle u \mathbf{I}, \text{Rot } \Phi \rangle_{H^{-m}(\Omega)} = \langle u, \text{tr(Rot } \Phi \text{) } \rangle_{H^{-m}(\Omega)} = 2 \langle u, \text{div (spn}^{-1} \text{ skw } \Phi) \rangle_{H^{-m}(\Omega)}
\]
\[
= -\langle \text{spn grad } u, \text{skw } \Phi \rangle_{H^{-m-1}(\Omega)} = -\langle \text{spn grad } u, \Phi \rangle_{H^{-m-1}(\Omega)},
\]
showing (iii). Formally, \((\text{tr Rot})^* = \text{Rot (} \cdot \mathbf{I} \text{).} \) Hence by (iii)
\[
\langle \mathbf{M}, \text{Rot(} \varphi \mathbf{I} \text{) } \rangle_{H^{-m}(\Omega)} = -\langle \mathbf{M}, \text{spn grad } \varphi \rangle_{H^{-m}(\Omega)} = -\langle \text{skw } \mathbf{M}, \text{spn grad } \varphi \rangle_{H^{-m}(\Omega)}
\]
\[
= -2 \langle \text{spn}^{-1} \text{ skw } \mathbf{M}, \text{grad } \varphi \rangle_{H^{-m}(\Omega)} = 2 \langle \text{div spn}^{-1} \text{ skw } \mathbf{M}, \varphi \rangle_{H^{-m-1}(\Omega)},
\]
yielding (iv). (v) follows by
\[
-\langle u \mathbf{I}, \text{Grad } \Phi \rangle_{H^{-m}(\Omega)} = -\langle u, \text{tr(Grad } \Phi) \rangle_{H^{-m}(\Omega)} = -\langle u, \text{div } \Phi \rangle_{H^{-m-1}(\Omega)}.
\]
Formally, \((\text{tr Grad})^* = -\text{Div} (\cdot \mathbf{I}). \) Thus by (v)
\[
-\langle V, \text{Div(} \varphi \mathbf{I} \text{) } \rangle_{H^{-m}(\Omega)} = -\langle V, \text{grad } \varphi \rangle_{H^{-m}(\Omega)} = \langle \text{div } V, \varphi \rangle_{H^{-m-1}(\Omega)},
\]
yielding (vi). We have the formal adjoint \((\text{Div spn})^* = (\text{Div skw spn})^* = -2 \text{ spn}^{-1} \text{ skw Grad} \), and by the formula \(2 \text{ skw Grad } \Phi = \text{spn rot } \Phi \) from (ix), we obtain (vii), i.e.,
\[
-2 \langle V, \text{spn}^{-1} \text{ skw Grad } \Phi \rangle_{H^{-m}(\Omega)} = -\langle V, \text{rot } \Phi \rangle_{H^{-m}(\Omega)}.
\]
Using the formal adjoint \((\text{Rot spn})^* = 2 \text{ spn}^{-1} \text{ skw Rot} \) we calculate with (x)
\[
2 \langle V, \text{spn}^{-1} \text{ skw Rot } \Phi \rangle_{H^{-m}(\Omega)} = \langle V, \text{Div } \Phi^\top - \text{grad(} \text{tr } \Phi) \rangle_{H^{-m}(\Omega)}
\]
\[
= -\langle \text{Grad } V, \Phi^\top \rangle_{H^{-m-1}(\Omega)} + \langle \text{div } V, \text{tr } \Phi \rangle_{H^{-m-1}(\Omega)},
\]
i.e., (viii) holds. Formally \((\text{skw Grad})^* = -\text{Div skw}. \) Using (vii) we see
\[
-\langle V, \text{Div skw } \Phi \rangle_{H^{-m}(\Omega)} = \langle V, \text{rot spn}^{-1} \text{ skw } \Phi \rangle_{H^{-m}(\Omega)} = -\frac{1}{2} \langle \text{spn rot } V, \text{skw } \Phi \rangle_{H^{-m-1}(\Omega)},
\]
which proves (ix). We compute by (viii)
\[
\langle \mathbf{M}, \text{Rot skw } \Phi \rangle_{H^{-m}(\Omega)} = \langle \text{tr } \mathbf{M}, \text{div(} \text{spn}^{-1} \text{ skw } \Phi) \rangle_{H^{-m}(\Omega)} - \langle \mathbf{M}^\top, \text{Grad(} \text{spn}^{-1} \text{ skw } \Phi) \rangle_{H^{-m}(\Omega)}
\]
\[
= -\langle \text{grad(} \text{tr } \mathbf{M}) \text{, spn}^{-1} \text{ skw } \Phi \rangle_{H^{-m-1}(\Omega)} + \langle \text{Div } \mathbf{M}^\top \text{, spn}^{-1} \text{ skw } \Phi \rangle_{H^{-m-1}(\Omega)}
\]
\[
= -\frac{1}{2} \langle \text{spn(} \text{grad tr } \mathbf{M}) \text{, skw } \Phi \rangle_{H^{-m-1}(\Omega)} + \frac{1}{2} \langle \text{spn Div } \mathbf{M}^\top \text{, skw } \Phi \rangle_{H^{-m-1}(\Omega)},
\]
showing the first formula in (x) and the second one follows by \(\text{Div Rot } = 0 \) and (vii). To prove (x) we observe
\[
\langle V, \text{Div(} \text{dev Grad } \Phi)^\top \rangle_{H^{-m}(\Omega)} = \langle V, \text{Div } \text{dev(Grad } \Phi)^\top \rangle_{H^{-m}(\Omega)} = \frac{2}{3} \langle V, \text{grad div } \Phi \rangle_{H^{-m}(\Omega)},
\]
completing the proof. \(\square \)
Proof of Lemma 3.19. For $\mathbf{M} \in \overset{\circ}{\mathbf{R}}(\Omega, S)$ there exists a sequence $(\Phi_n) \subset C^\infty(\Omega) \cap L^2(\Omega, S)$ with $\Phi_n \to \mathbf{M}$ in $\mathbf{R}(\Omega)$. But then $(\varphi \Phi_n) \subset C^\infty(\Omega) \cap L^2(\Omega, S)$ with $\varphi \Phi_n \to \varphi \mathbf{M}$ in $\mathbf{R}(\Omega)$, proving $\varphi \mathbf{M} \in \overset{\circ}{\mathbf{R}}(\Omega, S)$, as we have $\text{Rot}(\varphi \Phi_n) = \varphi \text{Rot} \Phi_n + \text{grad} \varphi \times \Phi_n$. This formula also shows for $\Psi \in C^\infty(\Omega)$ (note $\varphi \Psi \in C^\infty(\Omega)$)

$$
\langle \varphi \mathbf{M}, \text{Rot} \Psi \rangle_{L^2(\Omega)} = \langle \mathbf{M}, \varphi \text{Rot} \Psi \rangle_{L^2(\Omega)} = \langle \mathbf{M}, \text{Rot}(\varphi \Psi) \rangle_{L^2(\Omega)} - \langle \mathbf{M}, \text{grad} \varphi \times \Psi \rangle_{L^2(\Omega)}
$$

(A.3)

and thus $\text{Rot}(\varphi \mathbf{M}) = \varphi \text{Rot} \mathbf{M} + \text{grad} \varphi \times \mathbf{M}$. Analogously we prove the other cases of (i). Similarly we show (iii) using the formula $D(\varphi \Phi_n) = \varphi D \Phi_n + \text{grad} \varphi \cdot \Phi_n$. To show (ii), let $\mathbf{M} \in \mathbf{R}(\Omega, S)$. Then $\varphi \mathbf{M} \in L^2(\Omega, S)$ and (A.3) shows $\varphi \mathbf{M} \in \overset{\circ}{\mathbf{R}}(\Omega, S)$ with the desired formula. Analogously the other cases of (ii) follow. Similarly we prove (iv). Let $\mathbf{E} \in \mathbf{R}_{\text{sym}}(\Omega, T)$ and $\Phi \in C^\infty(\Omega)$. Then $\varphi \mathbf{E} \in L^2(\Omega, T)$ and with $\Phi \in C^\infty(\Omega)$ we get

$$
\langle \varphi \mathbf{E}, \text{Rot} \text{sym} \Phi \rangle_{L^2(\Omega)} = \langle \mathbf{E}, \text{Rot} \text{sym} \Phi \rangle_{L^2(\Omega)} = \langle \mathbf{E}, \text{sym} \text{Rot} \Phi \rangle_{L^2(\Omega)} = \langle \text{sym} \text{Rot} \mathbf{E}, \Phi \rangle_{L^2(\Omega)} + \langle \text{grad} \varphi \times \mathbf{E}, \text{sym} \Phi \rangle_{L^2(\Omega)}
$$

which shows $\varphi \mathbf{E} \in \mathbf{R}_{\text{sym}}(\Omega, T)$ and $\text{sym} \text{Rot}(\varphi \mathbf{E}) = \varphi \text{sym} \text{Rot} \mathbf{E} + \text{sym} \text{grad} \varphi \times \mathbf{E}$ and hence (v). To prove (vi), let $\mathbf{M} \in \mathbf{D}(\Omega, S)$ and $\phi \in C^\infty(\Omega)$. Then $\varphi \mathbf{M} \in L^2(\Omega, S)$ and we compute by

$$
\text{grad} \varphi \text{grad} \phi = \text{grad} \varphi \text{grad} \phi + \phi \text{grad} \varphi \text{grad} \phi + 2 \text{sym} \text{grad} \varphi \text{grad} \phi
$$

the identity

$$
\text{grad} \varphi \text{grad} \phi = \text{grad} \varphi \text{grad} \phi + \phi \text{grad} \varphi \text{grad} \phi + 2 \text{sym} \text{grad} \varphi \text{grad} \phi
$$

Finally with $\phi \in C^\infty(\Omega)$ we get

$$
\langle \varphi \mathbf{M}, \text{grad} \varphi \text{grad} \phi \rangle_{L^2(\Omega)} = \langle \mathbf{M}, \text{grad} \varphi \text{grad} \phi \rangle_{L^2(\Omega)}
$$

$$
= \langle \mathbf{M}, \text{grad} \varphi \text{grad} \phi \rangle_{L^2(\Omega)} + \langle \mathbf{M}, \phi \text{grad} \varphi \text{grad} \phi \rangle_{L^2(\Omega)} - 2 \langle \mathbf{M}, \text{sym} \text{grad} \varphi \text{grad} \phi \rangle_{L^2(\Omega)}
$$

$$
= \langle \text{div} \text{Div} \mathbf{M}, \phi \text{grad} \varphi \text{grad} \phi \rangle_{L^2(\Omega)} + \langle \text{Div} \mathbf{M}, \phi \text{grad} \varphi \text{grad} \phi \rangle_{L^2(\Omega)} - 2 \langle \mathbf{M}, \text{grad} \phi \text{grad} \phi \rangle_{L^2(\Omega)}
$$

$$
= \langle \phi \text{div} \text{Div} \mathbf{M}, \phi \text{grad} \varphi \text{grad} \phi \rangle_{L^2(\Omega)} + \langle \text{tr} \text{Grad} \varphi \text{grad} \phi, \phi \rangle_{L^2(\Omega)} + 2 \langle \text{Div} \mathbf{M}, \phi \text{grad} \varphi \phi \rangle_{H^{-1}(\Omega)}
$$

$$
= \langle \text{Div} \mathbf{M}, \phi \phi \text{grad} \varphi \rangle_{H^{-1}(\Omega)}
$$

which shows (vi), i.e., $\varphi \mathbf{M} \in \mathbf{D}(\Omega, S)$ and

$$
\text{div} \text{Div}(\varphi \mathbf{M}) = \varphi \text{div} \text{Div} \mathbf{M} + 2 \text{grad} \varphi \cdot \text{Div} \mathbf{M} + \text{tr} \text{Grad} \varphi \cdot \mathbf{M}
$$

The proof is finished. \qed
Latest Reports in this series

2009 - 2014

[...]

2015

[...]

2015-08 Clemens Hofreither, Bert Jüttler, Gabor Kiss and Walter Zulehner
Multigrid Methods for Isogeometric Analysis with THB-Splines
June 2015

2015-09 Peter Gangl, Samuel Amstutz and Ulrich Langer
Topology Optimization of Electric Motor Using Topological Derivative for Non-linear Magnetostatics
June 2015

2015-10 Clemens Hofreither, Stefan Takacs and Walter Zulehner
A Robust Multigrid Method for Isogeometric Analysis using Boundary Correction
July 2015

2015-11 Ulrich Langer, Stephen E. Moore and Martin Neumüller
Space-time Isogeometric Analysis of Parabolic Evolution Equations
September 2015

2015-12 Helmut Gfrerer and Jiří V. Outrata
On Lipschitzian Properties of Implicit Multifunctions
Dezember 2015

2016

2016-01 Matúš Benko and Helmut Gfrerer
On Estimating the Regular Normal Cone to Constraint Systems and Stationarity Conditions
May 2016

2016-02 Clemens Hofreither and Stefan Takacs
Robust Multigrid for Isogeometric Analysis Based on Stable Splittings of Spline Spaces
June 2016

2016-03 Helmut Gfrerer and Boris S. Mordukhovich
Robinson Stability of Parametric Constraint Systems via Variational Analysis
August 2016

2016-04 Helmut Gfrerer and Jane J. Ye
New Constraint Qualifications for Mathematical Programs with Equilibrium Constraints via Variational Analysis
August 2016

2016-05 Matúš Benko and Helmut Gfrerer
An SQP Method for Mathematical Programs with Vanishing Constraints with Strong Convergence Properties
August 2016

2016-06 Peter Gangl and Ulrich Langer
A Local Mesh Modification Strategy for Interface Problems with Application to Shape and Topology Optimization
September 2016

2016-07 Bernhard Endtmayer and Thomas Wick
A Partition-of-Unity Dual-Weighted Residual Approach for Multi-Objective Goal Functional Error Estimation Applied to Elliptic Problems
October 2016

2016-08 Matúš Benko and Helmut Gfrerer
New Verifiable Stationarity Concepts for a Class of Mathematical Programs with Disjunctive Constraints
November 2016

2016-09 Dirk Pauly and Walter Zulehner
On Closed and Exact Grad grad- and div Div-Complexes, Corresponding Compact Embeddings for Tensor Rotations, and a Related Decomposition Result for Biharmonic Problems in 3D
November 2016

From 1998 to 2008 reports were published by SFB013. Please see http://www.sfb013.uni-linz.ac.at/index.php?id=reports

From 2004 on reports were also published by RICAM. Please see http://www.ricam.oeaw.ac.at/publications/list/

For a complete list of NuMa reports see http://www.numa.uni-linz.ac.at/Publications/List/