Radiation-induced G_1 arrest is not defective in fibroblasts from Li-Fraumeni families without $TP53$ mutations

JM Boyle, MJ Greaves, RS Camplejohn, JM Birch, SA Roberts and JM Varley

Summary Radiation-induced G_1 arrest was studied in four classes of early passage skin fibroblasts comprising 12 normals, 12 heterozygous (mut/wt) $TP53$ mutation-carriers, two homozygous (mut/–) $TP53$ mutation-carriers and 16 strains from nine Li-Fraumeni syndrome or Li-Fraumeni-like families in which no $TP53$ mutation has been found, despite sequencing of all exons, exon–intron boundaries, 3’ and 5’ untranslated regions and promoter regions. In an assay of $p53$ allelic expression in yeast, cDNAs from these non-mutation strains behaved like wild-type $p53$. Using two different assays, we found G_1 arrest was reduced in heterozygous strains with mis-sense mutations and one truncation mutation, when compared to the range established for the normal cells. Heterozygous strains with mutations at splice sites behaved like normal cells, whilst homozygous (mut/–) strains showed either extremely reduced, or no, arrest. Strains from all nine non-mutation families gave responses within the normal range. Exceptions to the previously reported inverse correlation between G_1 arrest and clonogenic radiation resistance were observed, indicating that these phenotypes are not strictly interdependent.

Keywords: Li-Fraumeni syndrome; G_1 arrest; cell cycle; fibroblasts; radiosensitivity; $p53$

Classical Li-Fraumeni syndrome (LFS) families have a proband with sarcoma under the age of 45 years, a first-degree relative with any cancer under age 45, and a first- or second-degree relative with either a sarcoma at any age or any other cancer under age 45 years (Li and Fraumeni, 1969; Li et al., 1988). Li-Fraumeni-like (LFL) families conform to a broader definition (Birch et al., 1994) with a proband having any childhood cancer or sarcoma, brain tumour or adrenal cortical tumour diagnosed before age 45 years with one first- or second-degree relative with a typical syndromal cancer at any age, plus a first- or second-degree relative with any cancer under age 60 years. In both syndromes the predominant cancers are bone and soft tissue sarcomas and breast cancer, plus an excess of brain tumours, leukaemia and adrenocortical carcinomas diagnosed under age 45 years. We have reported germline mutations in the tumour suppressor gene, $TP53$, in 14 of 21 LFS families and four of 18 LFL families (Birch et al., 1994; Varley et al., 1997). An understanding of the consequences of the $p53$ mutations, particularly in the mesenchymal cells, could have implications for the management and counselling of these families.

Pioneering work by Little (1968, 1970) demonstrated that human cells arrest in the G_1 phase of the cell cycle following exposure to ionizing radiation. Subsequently, it was shown that radiation-sensitive fibroblasts from patients with the cancer predisposition syndrome, ataxia-telangiectasia (AT), did not show this response (Little and Nagasawa 1985; Nagasawa et al., 1985). These observations can be explained by the fact that radiation-induced stabilization of $p53$ expression in AT cells is both delayed and is reduced compared to normal cells, resulting in lower levels of transcription of the cyclin-dependent protein kinase inhibitor, $p21^{WAF1/CIP1}$, which has been strongly implicated in the permanent arrest of cells in G_1 (Di Leonardo et al., 1994; Dulic et al., 1994).

Recently, we reported that radiation-resistant fibroblasts from Li-Fraumeni (LF) individuals also show reduced G_1 arrest (Williams et al., 1997). We now report an enlarged study of G_1 arrest in which we have compared the variability in responses of 12 fibroblast strains from normal volunteers with that of 30 strains from 20 classic LFS or LFL families. We have used this material to answer the following questions:

1. Permanent G_1 arrest has been reported following irradiation of cells synchronized in G_1 (Little, 1968, 1970) and transient arrest has been reported following irradiation of asynchronous cells (Kastan et al., 1991). Li et al. (1995) questioned whether the two conditions gave the same measure of G_1 arrest, but did not answer the question directly. We have directly compared the two methods using the enlarged panel of cells.

2. Do different $TP53$ mutations produce different G_1 arrest responses?

3. How does loss of the wild-type (wt) allele affect the response?

4. What is the response in cells from LF families in which no $TP53$ mutation has been found despite exhaustive sequencing of all exons, exon–intron boundaries, 3’ and 5’ untranslated regions and the promoter region (Varley et al., 1997)?

5. To what extent is reduced G_1 arrest a predictor of clonogenic radioresistance?
MATERIALS AND METHODS

Fibroblast strains and clonogenic survival

Most fibroblast strains used here and their culture conditions have been described in detail (Boyle et al, 1998; Varley et al, 1998). The origins of additional strains are given in Table 1. Early passage cultures were used in the experiments reported. Clonogenic survival following exposure to low-dose rate (0.011 Gy per min) 60Co radiation was measured as previously described (Boyle et al, 1998).

Table 1 Donor details, allelic expression and the magnitude of radiation-induced G1 arrest in fibroblast cultures

Strains	*Family (person)	Type	Mutation	Age at biopsy	Sex	Sex	Measurement of G1 arrest
							n 0.5 Gy 4 Gy
							n 4 Gy

Group 1 – Normal controls
83MA
85MA
93MA
105MA
120MA
136MA
141MA
156MA
162MA
176MA
177MA
187MA

Group 2 – Mutation-carrier families (mut/wt strains)
FH1
163MA
131MA
138MA
124MA
109MA
110MA
168MA
179MA
191MA
193MA
194MA

Group 3 – Mutation-carrier families (mut/–strains)
161MA-F
172MA i

Group 4 – Non-mutation carriers
140MA
147MA
148MA
154MA
79MA
80MA
81MA
115MA
126MA
130MA
121MA
122MA
127MA
128MA
107MA

*Family and person numbers as listed in Varley et al (1997); *% red (mutant) colonies obtained from separate cDNA preparations with the inferred allelic expression in parentheses; *n* number of determinations; *Values are % inhibition of S phase; *Values are % reduction of labelled cells; *Parents of de novo mutation; *Uninvolved spouse; *Cancer affected (aff) or unaffected (unaff) at time of biopsy; *Barnes et al (1992); M, male; F, female.

Fibroblast strains and clonogenic survival

Most fibroblast strains used here and their culture conditions have been described in detail (Boyle et al, 1998; Varley et al, 1998). The origins of additional strains are given in Table 1. Early passage cultures were used in the experiments reported. Clonogenic survival following exposure to low-dose rate (0.011 Gy per min) 60Co radiation was measured as previously described (Boyle et al, 1998).

Measurement of G1 arrest

Radiation-induced G1 arrest was determined by two methods. Transient arrest was determined essentially as described by Kuerbitz et al (1992). Confluent cultures were subcultured by 1:3 dilution approximately 3 days before trypsinization. Asynchronous cell suspensions at 1 x 10^6 per ml were irradiated at room temperature with 0, 0.5 or 4 Gy 137Cs gamma radiation at a dose rate of 3.3 Gy per min, then 1 ml aliquots were inoculated into T150 flasks (Falcon) and incubated at 37°C for 17 h. BrdU was added to 10 μM
and incubation was continued for 4 h, when the cells were harvested by trypsinization, washed in phosphate buffered saline (PBS), resuspended and fixed in 70% ethanol. Fixed suspensions were stored at –20°C prior to staining for FACS analysis. Suspensions were treated at room temperature with 2 N hydrochloric acid for 30 min, then neutralized with borate buffer. Cells were stained by sequential adsorption of mouse anti-BrdU monoclonal antibody, clone BU20a, and rabbit anti-mouse antibody conjugated to fluorescein isothiocyanate (FITC; both from Dako A/S, Denmark). Incorporation of BrdU was analysed by FACS on a FACSCAN using Cellquest (Becton-Dickinson) software.

Permanent G₁ arrest was determined according to Williams et al (1997). Monolayer cultures were held confluent for 10–14 days prior to 48 h incubation in medium containing 0.1% fetal calf serum. The G₁ synchronized monolayers were irradiated with 0 or 4 Gy ¹³⁷Cs gamma radiation (3.3 Gy per min), trypsinized and plated at 4 × 10⁶ cells per 3 cm diameter petri dish with 1 μCi [³H]-TdR (20 Ci per mM; New England Nuclear). Five plates at each dose were fixed at intervals between 60 and 120 h post-irradiation incubation, the period corresponding to the maximum cumulative labelling index. Plates were coated with Ilford K5 photographic emulsion and stored at 4°C for about 2 weeks prior to developing and staining with Giemsa. The mean fraction of cells with labelled nuclei was determined for each set of five plates and the percentage of inhibition of S phase was calculated by comparing the labelled fractions of the irradiated and unirradiated cells.

Functional assay of alleles in yeast (FASAY)

Messenger RNA was extracted from early passage cells and cDNA was derived and used to test the ability of p53 to transactivate a target gene as previously described (Flaman et al, 1995; Lomax et al, 1997).

Statistical analysis

Statistical analysis was performed using the SPSS statistics package. Fibroblast strains were grouped as normal, LF with mutation and LF without mutation, according to their origin and TP53 status. G₁ arrest was analysed using the Mann–Whitney U-test to
compare the group means of the aggregated data of all assays. Transient and permanent arrest data were compared using Spearman’s rank correlation.

RESULTS

Experiments were performed on four groups of cells represented by 12 strains derived from normal individuals, 12 TP53 heterozygous strains from LFS and LFL families, two strains with TP53 mutations that had lost the wild-type allele and 16 strains derived from nine non-mutation families (Table 1).

Allelic expression in yeast

As an additional test for the absence of TP53 mutations in cells derived from families in which no mutations had been detected by sequencing, fibroblast-derived cDNA was used to test the ability of p53 to transactivate a target gene in yeast cells. Fibroblasts from classic LFS families having mis-sense mutations in the DNA binding region of p53 were used as positive controls (e.g. codons 180, 220) and resulted in an approximately 1:1 ratio of mutant:wt colonies (49–65% mutant; Table 1). Strain 161MA-F, which showed loss of the wild-type allele (mut–) gave virtually 100% red (mutant) colonies. Cells from normal individuals acted as negative controls and yielded a background frequency of red colonies of < 10%. A mutation affecting splicing (178MA), and a mutation in codon 209 converting it to a stop codon (193MA), were not detected as mutant in the transactivation assay. We used the assay to test p53 expression in fibroblasts from each of the nine LF families in which no mutations had been found. In no case was a 1:1 ratio of colonies observed and seven families gave < 10% red colonies indicative of wt p53. However, cells from two families, represented by 80MA and 128MA, consistently gave somewhat elevated frequencies of red colonies, but not approaching a 1:1 ratio. Also, when compared with our experience of normal cells or mis-sense LFS, there was greater variability in the range of values obtained with different cDNA preparations of these cases.

G1, checkpoint

The effect of mutations in the p53 gene on the G1 checkpoint was determined by comparing the proportion of cells in S phase following 137Cs radiation. Two independent sets of data were acquired: transient arrest in asynchronous cells was determined by FACS analysis of BrdU incorporation, permanent arrest in cells synchronized in G1 at the time of irradiation was determined by autoradiography of [3H]TdR uptake.

Transient arrest

Figure 1 shows examples of the DNA profiles and gating of the FACS analyses of a normal control (83MA), and LFS strain FH1 (R248W/wt). The percentage reduction of BrdU-labelled cells occurring as a result of prior exposure to 0.5 and 4 Gy radiation are listed for all strains tested in Table 1. Multiple repeats were performed on two normal strains (156MA and 176MA), otherwise single determinations were performed on most strains.

Permanent arrest

Table 1 also shows the radiation-induced reduction of labelled cells due to permanent arrest in the G1 phase. The data shown are a combination of those previously reported (Williams et al, 1997) and new data acquired under the same conditions in this study.

Statistical analysis of G1 arrest data

Comparison of transient and permanent arrest data obtained for all strains after 4 Gy showed a significant correlation (Spearman’s correlation coefficient = 0.768, significant at the 0.01 level). However, the significance was principally due to the strong correlation correlation (Spearman’s correlation coefficient = 0.879,
significant at the 0.001 level) found for the mut/wt strains (Group 2, Table 1). These data were linearly correlated over a wide range from approximately 20% to 90%. No significant correlations were found for groups 1 and 4 (normals and non-mutants) whose data points lay mainly at the top end of the linear response, clustered between approximately 60–90%.

Variability in the results obtained with the four groups of cells tested is shown graphically in Figure 2. Mann–Whitney U-tests were used to compare the group means (Table 2). G1 arrest, both transient and permanent, was significantly reduced in heterozygous LF cells when compared to both normal and non-mutation LF cells. In contrast, there was no significant difference between normal and non-mutant LF cells in either of the assays.

Correlations between G1 arrest and clonogenic radiosensitivity
The relative clonogenic survivals following exposure to 3 and 6 Gy of low-dose rate 60Co radiation were 34.4%–7.1% and 19.5%–10.4% for 193MA, and 45.3%–16.5% and 17.9%–4.5% for 194MA (mean percentage survivals ± 1 standard deviation of three independent experiments). Data for the majority of other strains have been reported previously (Boyle et al, 1998; Varley et al, 1998).

From a clinical perspective it may be important to identify abnormal responses for different endpoints in cells from different individuals. As a general strategy, this can be done by assigning as abnormal those responses that fall outside limits set by 2 standard deviations of the mean values of responses obtained from a panel of normal cells. We used this strategy to assess the effects of TP53 status on G1 arrest and clonogenic radiosensitivity (Table 3). We defined strains as having compromised G1 arrest if at least two of the three conditions (transient arrest after 0.5 or 4 Gy and permanent arrest after 4 Gy) showed reduced arrest. We defined as radioresistant any strain whose clonogenic survival was greater than the normal limits (41.8% or 14.0%) after exposure to either 3 Gy or 6 Gy, respectively (Boyle et al, 1998).

The effect of TP53 status on the relationship between G1 arrest and clonogenic radiosensitivity, is shown in 2 x 2 concordance tables (Table 4), from which it is apparent that there are several discordant strains in each LF group. Thus both mut/– strains (161MA-F, 172MA) have reduced G1 arrest but normal radiosensitivity. The dissociation of reduced G1 arrest and radioresistance was also seen in some heterozygous strains and some strains without p53 mutations.

Among heterozygous strains, there were two discordant strains, 110MA (E180K/wt) which had normal G1 arrest but was radioresistant, and 131MA (R248Q/wt) which had reduced G1 arrest and normal radiosensitivity. However, two of ten mutation carrying strains behaved like normal cells in their response to ionizing radiation, having normal G1 arrest and radiosensitivity, and six had reduced G1 arrest and were radioresistant, thus conforming to our original concordance (Table 4).

Of six non-mutation strains tested for both parameters, three (80MA, 81MA, 126MA) were discordant and had normal G1 responses associated with borderline survival responses (Table 3). The three concordant strains, 146MA, 154MA and 79MA, had normal G1 and survival responses. Within family 81, all three strains tested had normal G1 response, but 80MA and 81MA were slightly more resistant than 79MA and were differently categorized.

DISCUSSION

Equivalence of G1 methodologies
The two methods that we used to determine radiation-induced G1 arrest in human fibroblast cells showed a highly significant correlation for data from heterozygous LF cells with TP53 mutations (mut/wt) cells, for which there was a linear response after a wide range of values after 4 Gy exposure. However, permanent G1 arrest appears to be more reliable than transient arrest as a means of discriminating between mut/wt cells and those from families with no mutation (Table 3). Exposure to doses less than 4 Gy may improve the correlation between the two methods for normal and non-mutation groups by inducing less than saturating responses in these cells.
Effect of TP53 mutations on G₁ arrest

Among the mutation-carrying strains, those with mis-sense mutations in the DNA binding region of p53 all showed reduced G₁ arrest, although this was marginal for two strains of family 85 (109MA, 110MA) with a mutation in codon 180. Two strains heterozygous for splice site mutations (178MA, 191MA) gave responses within the normal range. This was probably not due simply to reduced gene dosage as a consequence of truncation of the product of the mutated alleles, because the stop codon mutation in strain 193MA resulted in a reduced response.

Loss of the wt p53 allele drastically reduces G₁ arrest

Two strains (161MA-F, 172MA) that had lost the wt p53 allele (mut/–) but retained mutations in codons 344 and 337, respectively, showed no arrest in the transient assay and greatly reduced arrest when measured at late times in the permanent assay. This confirms a similar finding in MDAH087, homozygous for a mutation in codon 248 (Dulic et al, 1994; Tainsky et al, 1995). Mutations in codons 344 and 337 affect the oligomerization of p53 (Davison et al, 1998). In vitro L344P prevents dimerization and binding to the p53 DNA consensus sequence, whereas R337C has

Table 3: Comparison of G₁ arrest and clonogenic radiosensitivity in LF cells compared to normals

Strain (family)	TP53 status	Transient	Permanent	*Cell survival following 3 Gy/6 Gy	
		0.5 Gy	4 Gy	4 Gy	
Group 2 – Mutation carriers					
FH1 (266)	r	r	r	R/R	
R248W/+	r	r	r	R/R	
163MA (266)	r	r	r	R/R	
131MA (222)	r	r	r	n/n	
R248Q/+	r	r	r	R/R	
138MA (83)	r	r	r	R/R	
R175H/+	r	r	r	R/R	
124MA (16)	r	r	r	R/R	
Y220C/+	r	r	r	R/R	
109MA (85)	r	n	n	n/n	
E180K/+	r	n	n	n/n	
110MA (85)	r	n	n	(0.3) R/R	
E180K/+	r	n	n	n/n	
168MA (1502)	r	n	n	nd	nd
R279H/+	n	n	n	n/n	nd
178MA (2635)	r	r	r	n/R	
spl. Don. Exon 3/+	n	n	n	nd	nd
191MA (86)	r	r	r	n/R	
spl. Acc. Intron 3/-	n	n	n	nd	nd
193MA (2612)	r	r	n	nd	nd
R209stop/+	r	r	n	R/R	
194MA (64)	r	r	n	R/R	
P152L/+	r	r	n	R/R	
Group 3 – Mut/- strains					
161MA-F (7379)	no arrest	no arrest	r	n/n	
L344P/-	no arrest	no arrest	r	n/n	
172MA	no arrest	no arrest	r	n/n	
R337/-					
Group 4 – Non-mutation families					
140MA (22)	n	r	n	nd	nd
146MA (80)	n (1.6)	r	n	n/n	nd
147MA (80)	n	n	n	nd	nd
148MA (80)	n	n	n	nd	nd
154MA (80)	n	n	n	nd	nd
79MA (81)	n	n	n	n/n	nd
80MA (81)	n	n	n	R/R	nd
81MA (81)	n (1.4)	n	n	R/R	nd
115MA (82)	nd	nd	n	nd	nd
126MA (88)	n	n	n	n/R	nd
130MA (88)	n	n	n	n/R	nd
121MA (119)	n (0.6)	r	n	nd	nd
122MA (119)	n (1.2)	r	n	nd	nd
127MA (338)	n	n	n	nd	nd
128MA (348)	n	n	n	nd	nd
107MA (353)	r (1.0)	n	n	nd	nd

*an, within normal range; r, reduced response, values in parenthesis show the percentage by which marginal cases (within 2% of the lower limit of the normal range) fall within the given class. b=, within normal range; R, resistant; nd, not determined.
a lowered thermal stability such that tetramer formation and hetero-oligomerization with wt p53 are greatly impaired at physiological temperatures. Since tetramerization is required for transactivation of p53 target genes, the reduced G1 arrest seen in 161MA-F and 172MA is consistent with a failure to induce p21WAF1/CIP1.

G1 arrest is not defective in LF families without TP53 mutations

A major observation of this study was the finding that strains from all nine families without TP53 mutations (Group 4, Table 3) showed normal checkpoint responses in at least two, and usually all, of the three conditions assayed. Direct sequencing of DNA from normal tissue from donors of these cells had failed to detect any TP53 mutations (Varley et al, 1997) but it was possible that the fibroblast cultures derived from these donors might have acquired mutations in vitro, as had been observed previously (Mirzayans et al, 1995). To check this possibility we tested cells at passage numbers comparable to those used in the G1 arrest experiments using the FASAY (Table 1) which permits detection of expressed wt and mis-sense mutant p53 alleles (Flaman et al, 1995; Lomax et al, 1997). As expected, germline mis-sense mutations yielded about 50% mutant colonies in the yeast functional assay, whereas the splice site mutation in 178MA yielded 3% mutant colonies, which was within the background frequency of ≤ 5% obtained with wild-type normal cells. Most of the strains from families without TP53 mutations gave mutant colonies at frequencies within, or close to, the normal range. However, 80MA and 128MA gave increased numbers of mutant colonies with some cDNA preparations but not others, the reason for which is unknown. The increased number of mutant colonies did not appear to be associated with reduced G1 arrest since both strains showed normal G1 arrest.

G1 arrest is not a consistent predictor of clonogenic radiation resistance in LF fibroblasts

In a previous study (Williams et al, 1997) we demonstrated an inverse correlation between the extent of G1 arrest and radiosensitivity measured after exposure to ionizing radiation given at either high- or low-dose rates. Because exposure to low-dose rate radiation provides greater discrimination of sensitive and resistant cell populations in the clonogenic assay, we used this method to expand the number of strains studied. Our original results contrasted cells from normal individuals which had, by definition, normal G1 arrest and radiosensitivity, with Li-Fraumeni cells mainly from mutation carriers, which had reduced G1 arrest and were radioresistant. However, in strains that had lost the wild-type allele (172MA, R337C/- and 161MA-F, L344P/-) there was reduced G1 arrest but normal radiosensitivity, clearly showing that the two events are dissociated in the absence of intact p53 (Table 3). The lack of G1 arrest in p53 mut/– strains mimics that of AT homozygotes (Nagasawa et al, 1985), which are deficient in p53 stabilization following irradiation (Kastan et al, 1992). A similar effect is seen in embryo (Westphal et al, 1997) and adult skin (JMB and MJG, unpublished observations) fibroblasts from ATM and p53 knockout mice. However, AT homozygotes are more sensitive to ionizing radiation whereas p53 mut/– cells have normal radiosensitivity (Boyle et al, 1998).

A caveat affecting the interpretation of the results is that our ability to make a proper classification is critically dependent on the number of strains used to define normal limits for each of the parameters studied, because the group mean will be less strongly influenced by outliers as the sample size increases. The present sample size (n = 12) is a compromise that allowed a reasonable accuracy with the available material and manpower resources. Nevertheless, these observations do appear to emphasize an apparent variability in phenotypes among Li-Fraumeni cell strains which may be controlled in part by the site of TP53 mutation and by the genetic background in which it is expressed. Where a mutation produces a strong effect (e.g. R248Q in family 266, Table 3; R175H in family 86, Boyle et al, 1998) cells from different members of the family have similar phenotypes that are sufficiently different from wild-type to place them in different categories. However, where a mutation has a weaker effect, the phenotypes may be close to wild-type and small differences in genetic background may place different individuals into different categories. This is illustrated by family 85 (E180K) where strains 109MA and 110MA both showed normal G1 arrest, but 110MA was slightly more resistant than 109MA and appeared discordant in comparison.

Cellular phenotypes and p53 involvement in non-mutation families

The nine families without TP53 mutations included both classical LFS (five families) and LFL (four families) patterns of disease. Within these families the most likely individuals to be carrying a genetic predisposition towards cancer are those affected by cancer. The majority of strains (12 of 16) used were from affected individuals, so it is highly probable that we are mainly looking at strains carrying genetic predisposition towards cancer. Our results provide no clear evidence to suggest that defective p53 expression is the cause of cancer predisposition in these families.

Recently, a number of genes have been identified that have homology with p53, e.g. p73, p53CP and KET (Bian and Sun, 1997; Jost et al, 1997; Kaghad et al, 1997; Schmale and Bamberger, 1997). Superficially, p73 is an attractive candidate since, like p53, it is a sequence-specific transactivator that probably requires oligomerization, and overexpression of p73 induces p21 and blocks cell proliferation (Kaghad et al, 1997). But, unlike p53, p73 is neither stabilized nor activated by DNA damage although in other ways it fulfills many of the functions of p53 (Oren, 1997). Expression of p73 and KET appear largely restricted to neurological and epithelial tissues, respectively. Thus, at present, there may be a possibility that cancer predisposition in p53 non-mutation families could result from mutations in these genes, or in other homologues still to be discovered, in which case...
cells from these families might be expected to show normal G1 arrest due to an intact p53 response to DNA damage, such as we have observed in these families.

ACKNOWLEDGEMENTS

We thank Mike Hughes and Jeff Barry for FACS analyses; Martine Lomax and Paula Duddy for performing the FASAY tests and Dr David Scott for critical reading of the manuscript. This study was funded by the UK Cancer Research Campaign.

REFERENCES

Barnes DM, Hanby AM, Gillett CE, Mohammed S, Hodgson S, Bobrow LG, Leigh J, Purkis T, MacGroc C, Spurr NK, Bartek J, Vojtesek B, Pickles SM and Lane DP (1992) Abnormal expression of wild-type p53 protein in normal cells of a cancer family patient. _Cancer Res_ 52: 259–263

Bian J and Sun Y (1997) p53CP, a putative p53 competing protein that specifically binds to the consensus p53 DNA binding sites: a third member of the p53 family? _Proc Natl Acad Sci USA_ 94: 14753–14758

Birch JM, Hartley AL, Tricker KJ, Prosser J, Condie A, Kelsey AM, Harris M, Morris Jones PH, Binchy A, Crowther D, Craft AW, Eden OB, Evans GR, Thompson E, Mann JR, Martin J, Mitchell ELD and Santibanez-Koref MF (1994) Prevalence and diversity of constitutional mutations in the p53 gene among 21 Li-Fraumeni families. _Cancer Res_ 54: 1298–1304

Boyle JM, Mitchell EL, Greaves MJ, Roberts SA, Tricker K, Burt E, Varley JM, Birch JM and Scott D (1998) Chromosome instability is a predominant trait of cells from these families might be expected to show normal G1 arrest due to an intact p53 response to DNA damage, such as we have observed in these families.

Kastan MB, Zhan Q, El-Deiry WS, Carrier F, Jacks T, Walsh WV, Plunkett BS, Vogelstein B and Fornace AJ Jr (1992) A mammalian cell cycle checkpoint pathway utilising p53 and GADD45 is defective in ataxia-telangiectasia. _Cell_ 71: 587–597

Kuerbitz SJ, Plunkett BS, Walsh WV and Kastan MB (1992) Wild-type p53 is a cell cycle checkpoint determinant following irradiation. _Proc Natl Acad Sci USA_ 89: 7491–7495

Li FP and Fraumeni Jr IF (1969) Soft tissue sarcomas, breast cancer, and other neoplasms: a familial syndrome? _Ann Intern Med_ 71: 747–752

Li FP, Fraumeni Jr, Mulvihill JJ, Blattner WA, Dreyfus MG, Tucker MA and Miller RW (1988) A cancer family syndrome in twenty-four kindreds. _Cancer Res_ 48: 5358–5362

Li Y-C, Nagasawa H, Dahlberg WK and Little JB (1995) Diminished capacity for p53 in mediating a radiation-induced G1 arrest in established human tumor cell lines. _Oncogene_ 11: 1885–1892

Little JB (1968) Delayed induction of DNA synthesis in irradiated human diploid cells. _Nature_ 218: 1064–1065

Little JB (1970) Irradiation of primary human amnion cell cultures: effects on DNA synthesis and progression through the cell cycle. _Radiation Res_ 44: 674–699

Little JB and Nagasawa H (1985) Effect of confluent holding on potentially lethal damage repair, cell cycle progression, and chromosomal aberrations in human normal and ataxia-telangiectasia fibroblasts. _Radiation Res_ 101: 81–93

Lomax ME, Barnes DM, Gilchrist R, Pickles SM, Varley JM and Campenohan RS (1997) Two functional assays employed to detect an unusual mutation in the oligomerisation domain of p53 in a Li-Fraumeni like family. _Oncogene_ 14: 1869–1874

Mirzayans R, Aubin RA, Bosnich W, Blattner WA and Paterson MC (1995) Abnormal pattern of post-Γγ DNA replication in radioresistant fibroblast strains from affected members of a cancer-prone family with Li-Fraumeni syndrome. _Br J Cancer_ 71: 1221–1230

Nagasawa H, Latt SA, Lalande ME and Little JB (1985) Effects of X-irradiation on cell cycle progression, induction of chromosomal aberrations and cell killing in ataxia telangiectasia (AT) fibroblasts. _Mutation Res_ 148: 71–82

Oren M (1997) Lowly no more: p53 finds its kin in a tumour suppressor haven. _Cell_ 90: 829–832

Schmale H and Bamberger C (1997) A novel protein with strong homology to the tumour suppressor p53. _Oncogene_ 15: 1363–1367

Tainsky MA, Bischoff ZZ and Strong LC (1995) Genomic instability due to germline p53 mutations drives preneoplastic progression toward cancer in human cells. _Cancer Metastasis Rev_ 14: 43–48

Varley JM, Chapman P, McGown G, Thorncroft M, White GRM, Greaves MJ, Scott D, Spedbornsborough A, Tricker KJ, Birch JM, Evans DGR, Reddel R, Campenohan RS, Burn J and Boyle JM (1998) Genetic and functional studies of a germline TP53 splicing mutation in a Li-Fraumeni family. _Oncogene_ 16: 3291–3298

Varley JM, McGown G, Thorncroft M, Santibanez-Koref MF, Kelsey AM, Tricker KJ, Evans DGR and Birch JM (1997) Germine mutations of TP53 in Li-Fraumeni families: an extended study of 39 families. _Cancer Res_ 57: 3245–3252

Westphal CH, Schmalz C, Rowan S, Elson A, Fisher DA and Leder P (1997) Genetic interactions between atm and p53 influence cellular proliferation and irradiation-induced cell cycle checkpoints. _Cancer Res_ 57: 1664–1667

Williams KJ, Boyle JM, Birch JM, Norton JD and Scott D (1997) Cell cycle arrest defect in Li-Fraumeni syndrome: a mechanism of cancer predisposition? _Oncogene_ 14: 277–282