Interparticle Correlations in the Simple Cubic Lattice of Ferroparticles: Theory and Computer Simulations

Anna Yu. Solovyova,1 Andrey A. Kuznetsov,1,2 and Ekaterina A. Elfimova1,*

1Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenin Avenue, Ekaterinburg 620000, Russia
2Perm State University, 15 Bukireva St., Perm 614990, Russia
(Dated: February 6, 2020)

Anisotropic interparticle correlations in the simple cubic lattice of single-domain ferroparticles (SCLF) are studied using both theory and computer simulation. The theory is based on the Helmholtz free energy expansion like classical virial series up to the second virial coefficient. The analytical formula for the Helmholtz free energy is incorporated in a logarithmic form to minimize the effects of series truncation. The new theoretical approach, including discrete summation over lattice nodes coordinates, is compared critically against the classical virial expansion of the Helmholtz free energy for the dipolar hard sphere fluid; the main differences between the Helmholtz free energy of SCLF and dipolar hard sphere fluid are discussed. The theoretical results for the Helmholtz free energy, the magnetization, and the initial magnetic susceptibility of the SCLF are compared against Molecular Dynamic simulation data. In all cases, theoretical predictions using logarithmic form of the Helmholtz free energy are seen to be superior, but they only have an applicability range of the effective dipolar coupling constant \(\lambda_e < 1.5 \). For highest values of \(\lambda_e \), the structural transition of the magnetic dipoles in SCLF is observed in Molecular Dynamic simulation. It has been shown that for \(\lambda_e \geq 2 \), an antiferromagnetic order appears in the system.

I. INTRODUCTION

More than 50 years ago, Resler and Rosensweig [1] reported the first synthesis of a stable suspension of magnetic nanoparticles in a magnetico-passive carrier liquid, nowadays known as a ferrofluid or magnetic fluid. This was the first step in designing soft magnetic materials which respond to external magnetic fields. The first attempts to describe ferrofluid properties theoretically [2, 3] were based on the theory of an ideal (noninteracting) paramagnetic gas [4, 5], according to which the fractional (scalar) magnetization \(M_L \) and initial magnetic susceptibility \(\chi_L \) of ferrofluids are determined by a simple and convenient Langevin law:

\[
M_L = \coth \alpha - \frac{1}{\alpha}, \quad \chi_L = \frac{\rho m^2}{3k_B T},
\]

where \(\rho \) is the magnetic particle number concentration and \(\alpha = mH/k_BT \) is the Langevin parameter (the relation of the Zeeman interaction energy of the particle magnetic moment \(m \) with the external magnetic field \(H \) to the thermal energy \(k_BT = \beta^{-1} \)).

Since then ferrofluids have been the subject of intense scrutiny, with regard to their structure, phase behavior, and dynamics [6–12]. It became clear that a theory based on a single-particle approximation, like expressions (1), is only valid for an infinitely diluted suspension, when the interparticle magnetic interactions can be neglected. It was proved that interparticle magnetic correlations greatly increase the static magnetic susceptibility of ferrofluids [13–16], change the spectrum of its dynamic susceptibility [11, 17, 18], and lead to the self-assembly of ferroparticles into chains, rings, branched structures, and three-dimensional percolating networks [19, 20]. A vast range of theoretical models has been developed to link the macroscopic properties of ferrofluids to their internal microscopic structure and the interactions between the magnetic nanoparticles. Examples include Weiss’s mean-field theory [21, 22], the mean-spherical approximation closure of the Ornstein-Zernike equation [23, 24], the high-temperature approximation [25], first-order [26] and second-order modified mean-field theories [27], and the Born-Mayer cluster-expansion theories [28, 29].

Today, the design of soft magnetic materials has steadily progressed: it is now possible to embed magnetic particles into polymer matrices, creating magnetoresponsive elastomers and ferrogels. These materials can be remotely aligned and guided under external fields [30–33], which has opened up broad opportunities for their applications in biomedicine and technology [34–37]. Current experimental techniques offer different strategies for the synthesis of magnetoresponsive elastomers and ferrogels. Usually, in ferrogels the polymer matrix is only weakly cross-linked; therefore, magnetic particles can diffuse through the network and build some agglomerates. Magnetoresponsive elastomers typically consist of a highly cross-linked matrix which is so compact that translations of particles dispersed in the matrix might be hindered, especially when the particles are large.

Improving the synthesis technology and developing methods for using magnetoresponsive elastomers and ferrogels requires solving fundamental problems related to predicting the behavior of ensembles of magnetic particles in a polymer matrix. Because of the complex microstructure of these systems, their full explicit atomistic modeling is unfeasible. Considerable simplifications at the microscopic level should be chosen very carefully in or-
order to attain a proper representation of the experimental system. Computer simulation models usually represent the embedded magnetic particles as beads with point magnetic dipoles, whereas particle-particle and particle-polymer matrix interactions are modeled with different levels of detail [38–43]. Obviously, the more naturally the microscopic details are presented in a simulation model, the more expensive becomes the cost of computations. Another way to study the behavior of the ensembles of magnetic particles in a polymer matrix is the continuum-mechanics approach, which is based on the numerical solution of balance laws in different formulations and Maxwell’s equation for magnetic field [44, 45].

Theories resulting in explicit analytical expressions characterizing accurately the response of the magnetic particle ensemble in a polymer matrix on the external magnetic field still represent a challenge. The development of these theories is based on two main strategies dealing with the description of the internal structure of these systems. The first takes into account only particle-matrix interactions, using, for example, the effective Jeffrey’s model [46, 47], the Kelvin model [48], or assuming that the particles in the matrix are completely immobilized [49]. In the latter case, the reaction of the magnetic moment to an external field occurs only according to the Neel mechanism. The second strategy includes accounting for particle-particle dipolar interactions. These models were developed only for ensembles of immobilized magnetic particles, that correspond to systems with a sufficiently hard polymer matrix. In particular, the explicit expressions for the static magnetization and initial magnetic susceptibility of ensembles of immobilized superparamagnetic spherical particles were determined in [50, 51]; the dynamic magnetic susceptibility of an ensemble of immobilized superparamagnetic particles in a weak, linearly polarized ac magnetic field was studied in [52], where the particles’ easy magnetization axes were aligned with some given angle to the ac field. In these studies, it was assumed that particles were randomly distributed and fixed in the matrix; therefore, the discrete material properties were not taken into account. The interparticle dipole-dipole interaction was taken into account based on the first order modified mean-field model, in the framework of which the orientation of the magnetic moment of a randomly chosen particle is influenced by an external magnetic field and by the total dipolar field produced by all other magnetic moments.

In this paper, we study the effect of dipole-dipole interparticle interactions on the static thermodynamic and magnetic properties of an ensemble of magnetic particles embedded in a polymer matrix, taking their microscopic discrete structure explicitly into account. We assume that magnetic particles are embedded on the nodes of the regular cubic lattice and can rotate at lattice nodes under the influence of an external magnetic field and as a result of interparticle dipole-dipole interactions; however, particle translational degrees of freedom are turned off. This model will be studied theoretically based on rigorous methods of statistical physics as well as with help of computer simulation.

This article is organized as follows. In section II, the model system is described, the analytical results for the Helmholtz free energy expansion are derived, and simulation details are summarized. The results of a comparison of the theoretical predictions with simulation data are presented in section III. Section IV concludes the article.

II. MODEL AND METHODS

A. Model

A monodisperse system of N immobilized single-domain spherical ferroparticles placed at the nodes of a simple cubic lattice is considered. Throughout this article, the model system is named as SCLF. Each ferroparticle has diameter σ and magnetic moment $m = \pi \alpha^3 M_s / 6$, where M_s is the bulk saturation magnetization. The simple cubic lattice has the period a, which allows us to write the volume V of the SCLF as $V = Na^3$. Thus, the number concentration of ferroparticles is defined as $\rho = a^{-3}$. A schematic representation of the SCLF is given in Fig. 1.

There are no demagnetization fields in both theory and computer simulation. In theory, it is assumed that the system occupies the volume V, which has a long cylindrical shape elongated in the direction of external magnetic field \mathbf{H}. In the simulation, “metallic” periodic boundary conditions are applied [53]. Each particle i is characterized by the position vector

$$\mathbf{r}_i = r_i \hat{\mathbf{r}}_i = r_i (\sin \theta_i \cos \phi_i, \sin \theta_i \sin \phi_i, \cos \theta_i)$$

(2)

and magnetic moment

$$\mathbf{m}_i = m_i \Omega_i = m_i (\sin \omega_i \cos \xi_i, \sin \omega_i \sin \xi_i, \cos \omega_i).$$

(3)

FIG. 1. Monodisperse system of immobilized single-domain spherical ferroparticles placed at the nodes of a simple cubic lattice.
The magnetic interaction between particles i and j is defined by the anisotropic dipole-dipole interaction U_d

$$U_d(ij) = \frac{(m_i \cdot m_j)}{r_{ij}^3} - 3 \frac{(m_i \cdot r_{ij})(m_j \cdot r_{ij})}{r_{ij}^5},$$ \hspace{1cm} (4)

where $r_{ij} = r_j - r_i$ is the interparticle separation vector and $r_{ij} = |r_{ij}|$. Since the distance between particles i and j can be no smaller than the lattice period $a \geq \sigma$, it is convenient to introduce the effective dipolar coupling constant λ_e for cubic lattice as follows

$$\lambda_e = \frac{m^2 \beta}{a^3},$$ \hspace{1cm} (5)

which measures the importance of the magnetic interaction of two particles as compared to the thermal energy.

In a uniform external magnetic field H, the total interaction energy can be written in units of the thermal energy as

$$\beta U = \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \beta U_d(ij) - \sum_{i=1}^{N} \alpha \cos \omega_i,$$ \hspace{1cm} (6)

where the Langevin parameter $\alpha = \beta m H$ shows the relation of the Zeeman interaction to the thermal energy.

B. Theory

1. **The Helmholtz free energy expansion of the SCLF in an applied field**

The Helmholtz free energy F of the SCLF at external magnetic field can be presented as the sum of the Helmholtz free energy of an ideal paramagnetic system of non-interacting particles F_{id} and the configurational part ΔF, which takes into account dipole-dipole interparticle interactions

$$\beta F = \beta F_{id} + \beta \Delta F = -N \ln \left(\frac{\sinh \alpha}{\alpha} \right) + \beta \Delta F.$$ \hspace{1cm} (7)

The last term ΔF is defined via the ratio of the configurational integral of the SCLF, including dipole-dipole interaction Z and the configurational integral of an ideal paramagnetic system of non-interacting particles Z_{id}

$$\beta \Delta F = -\ln \left(\frac{Z}{Z_{id}} \right),$$ \hspace{1cm} (8)

$$\frac{Z}{Z_{id}} = \prod_{k=1}^{N} \int p(r_k) d\Omega_k \int p(r_i) d\Omega_i \exp \left(\sum_{j=1}^{N} \alpha \cos \omega_j \right) \times \exp \left(-\beta \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} U_d(ij) + \sum_{j=1}^{N} \alpha \cos \omega_j \right),$$ \hspace{1cm} (9)

where $p(r_i)$ is the probability distribution function (PDF) of the position of particle i. It should be noted that, with this definition, it does not matter if the model system is a fluid or a solid. For a fluid, the PDF is

$$p(r_i) = \frac{1}{V},$$ \hspace{1cm} (12)

while for a solid

$$p(r_i) = \delta(r_i - r_{i(0)}),$$ \hspace{1cm} (13)

where $r_{i(0)}$ is the 'lattice position' of particle i. This lattice position can be in a crystalline lattice, or in a random configuration. In all cases, the normalization condition is as follows

$$\int p(r_i) dr_i = 1.$$ \hspace{1cm} (14)

In the denominator of Eq. (9), the integrand function depends only on the orientation of magnetic moments. This allows us to obtain the result of integration

$$\prod_{i=1}^{N} \int p(r_i) dr_i d\Omega_i \exp (\alpha \cos \omega_i) = \left(\frac{\sinh \alpha}{\alpha} \right)^N.$$ \hspace{1cm} (15)

Using the Boltzmann-weighted integration over the orientation of particle i

$$d\Psi_i = \left(\frac{\alpha}{\sinh \alpha} \right) \exp (\alpha \cos \omega_i) d\Omega_i,$$ \hspace{1cm} (16)

it is possible to reduce definition (9) as

$$\frac{Z}{Z_{id}} = \prod_{k=1}^{N} \int p(r_k) dr_k d\Psi_k \prod_{i<j} \left(1 + f_{ij} \right),$$ \hspace{1cm} (17)

$$f_{ij} = \exp (-\beta U_d(ij)) - 1,$$ \hspace{1cm} (18)

where f_{ij} is the Mayer function. In this article, we will take into account only interparticle interactions in all ferroparticle pairs that corresponds with the second virial coefficient level. This means that the product of Mayer functions in Eq. (17) should be expanded as the following sum

$$\frac{Z}{Z_{id}} = \prod_{k=1}^{N} \int p(r_k) dr_k d\Psi_k \times \left(1 + \sum_{i<j} f_{ij} \right)$$

$$= 1 + \sum_{i<j} \int p(r_i) dr_i d\Psi_i \int p(r_j) dr_j d\Psi_j f_{ij},$$ \hspace{1cm} (19)

Using the definition of PDF (13), one can obtain for the SCLF

$$\frac{Z}{Z_{id}} = 1 + \sum_{i<j} \int d\Psi_i d\Psi_j f_{ij}^{(0)} = 1 + \sum_{i<j} \langle f_{ij}^{(0)} \rangle,$$ \hspace{1cm} (20)

where $f_{ij}^{(0)} = \int p(r_i) dr_i \int p(r_j) dr_j f_{ij}$ is the Mayer function in the 'lattice position' of particles i and j and the angle brackets $\langle \ldots \rangle$ mean a Boltzmann-weighted average (16) over the orientation of each particles involved.
The configurational part of the Helmholtz free energy in approximation by the linear term of the logarithm expansion looks like

\[
\frac{\beta \Delta F}{N} = -\frac{1}{N} \ln \left(1 + \sum_{i<j} \langle f_{ij}^{(0)} \rangle \right)
\approx -\frac{1}{N} \sum_{i<j} \langle f_{ij}^{(0)} \rangle.
\]

The right-hand side of Eq. (21) needs some discussion: for each value of \(i \), the sum \(\sum_{i<j} \langle f_{ij}^{(0)} \rangle \) will be finite; and dividing the sum over \(i \) by \(N \) gives a number that does not depend on \(N \):

\[
\frac{1}{N} \sum_{i<j} \langle f_{ij}^{(0)} \rangle = \frac{1}{2N} \sum_{i=1}^{N} \sum_{j=1}^{N} \langle f_{ij}^{(0)} \rangle = \frac{1}{2} \sum_{j=2}^{N} \langle f_{1j}^{(0)} \rangle.
\]

The final results for \(\Delta F \) of the SCLF is

\[
\frac{\beta \Delta F}{N} = -\frac{1}{2} \sum_{j=2}^{N} \langle f_{1j}^{(0)} \rangle.
\]

The absence of the numerical concentration \(\rho \) in Eq. (23) means that the properties of the SCLF with a regular cubic lattice scale in a simple way with the volume.

For a ferrofluid, which is modeled by the system of moving dipolar hard spheres (DHS), it is possible to write the configurational part of the Helmholtz free energy on the second virial coefficient level in the following form [54]

\[
\frac{\beta \Delta F^{\text{DHS}}}{N} = \rho P_2^{\text{DHS}},
\]

where hard-sphere condition \(r_{12} \geq \sigma \) is assumed. Representation of the integral in Eq. (25) via the integral sum over cubic lattice nodes with \(\Delta V = a^3 \) and substitution of \(\rho = a^{-3} \) into Eq. (24) give a result coinciding with (23).

2. Discrete position averaging for the SCLF

In this article, we will consider the expansion of the Mayer function into a series over the powers of dipolar energy up to \(U_d^3 \)

\[
f_{1j}^{(0)} = -\beta U_d(1j) + \frac{1}{2!} \left[-\beta U_d(1j) \right]^2
+ \frac{1}{3!} \left[-\beta U_d(1j) \right]^3.
\]

Dipole-dipole potential \(U_d \) depends on the radius vector \(\mathbf{r}_{1j} \) of particles 1 and \(j \) and the magnetic moments \(\mathbf{m}_1 \) and \(\mathbf{m}_j \). After the Boltzmann-weighted averaging over the orientation of magnetic moments \(\mathbf{m}_1 \) and \(\mathbf{m}_j \), one can write \(\Delta F \) in the following way

\[
\frac{\beta \Delta F}{N} = -\frac{1}{2} \left(b_1 \lambda_e + b_2 \lambda_e^2 + b_3 \lambda_e^3 \right),
\]

\[
b_1 = \sum_{j=2}^{N} \langle -\beta U_d(1j) \rangle = 2L^2(\alpha) \gamma_{12},
\]

\[
b_2 = \sum_{j=2}^{N} \left\langle \frac{1}{2!} \left[-\beta U_d(1j) \right]^2 \right\rangle = \frac{36}{35} L_3^2(\alpha) \gamma_{24},
\]

\[
+ \frac{2}{3} L_3(\alpha) \left(1 - \frac{L_3(\alpha)}{7} \right) \gamma_{22} + \frac{1}{3} \left(1 + \frac{L_3^2(\alpha)}{5} \right) \gamma_{20},
\]

\[
b_3 = \sum_{j=2}^{N} \left\langle \frac{1}{3!} \left[-\beta U_d(1j) \right]^3 \right\rangle
= \frac{24}{17} \left(L_2^2(\alpha) - 10 \frac{L_2(\alpha) L_2(\alpha)}{\alpha} + \frac{25}{2} \frac{L_2^2(\alpha)}{\alpha^2} \right) \gamma_{36}
+ \frac{72}{385} \left(2L_2^2(\alpha) - 9 \frac{L_2(\alpha) L_2(\alpha)}{\alpha} - 5 \frac{L_2^2(\alpha)}{\alpha^2} \right) \gamma_{34}
+ \frac{4}{7} \left(L_2^2(\alpha) - \frac{L(\alpha) L_2(\alpha)}{\alpha} + \frac{L_2^2(\alpha)}{\alpha^2} \right) \gamma_{32}
+ \frac{2}{105} \left(4L_2^2(\alpha) + 2 \frac{L(\alpha) L_2(\alpha)}{\alpha} - 5 \frac{L_2^2(\alpha)}{\alpha^2} \right) \gamma_{30},
\]

\[
\gamma_{12} = \sum_{j=2}^{N} \frac{1}{r_{1j}^3} P_2 \left(\frac{\tilde{z}_{1j}}{r_{1j}} \right),
\gamma_{24} = \sum_{j=2}^{N} \frac{1}{r_{1j}^3} P_4 \left(\frac{\tilde{z}_{1j}}{r_{1j}} \right),
\gamma_{22} = \sum_{j=2}^{N} \frac{1}{r_{1j}^3} P_2 \left(\frac{\tilde{z}_{1j}}{r_{1j}} \right),
\gamma_{20} = \sum_{j=2}^{N} \frac{1}{r_{1j}^3} P_0 \left(\frac{\tilde{z}_{1j}}{r_{1j}} \right),
\]

\[
L(\alpha) = \coth \alpha - \frac{1}{\alpha},
\]

\[
L_3(\alpha) = 1 - \frac{3}{\alpha} L(\alpha),
\]

where \(L(\alpha) \) is the Langevin function, \(P_q \) (\(q = 0, 2, 4, 6 \)) are the Legendre polynomials, \(\tilde{r}_{ij} = \mathbf{r}_{ij}/\alpha \) is a dimensionless center-center vector, \(\tilde{z}_{ij} \) is \(z \)-component of vector \(\tilde{r}_{ij} \) in a coordinate system, where \(Ox \) axis is selected parallel to the direction of the external magnetic field \(\mathbf{H} \). The details of the Boltzmann-weighted averaging of the powers of dipolar energy over the orientation of magnetic moments \(\mathbf{m}_1 \) and \(\mathbf{m}_j \) can be found in supplemental materials of Ref. [29].

To calculate the numbers \(\gamma_{pq} \), it is necessary to perform summation by substituting the specific coordinates of particles 1 and \(j \). Let us fix particle 1 at the origin of the laboratory coordinate system, meaning \(\left(\tilde{z}_1, \tilde{y}_1, \tilde{z}_1 \right) \equiv (0, 0, 0) \). The coordinates of particle \(j \) in this case can be located in all the other nodes of the cubic lattice, limited
TABLE I. The results of the calculation of numbers γ_{pq} for the SCLF. R is the dimensionless radius of the cylinder; h is the factor describing the cylinder elongation so that the total cylinder height is $H = 2hR$; N is the number of ferroparticles.

γ_{pq}	$R = 1$	$R = 2$	$R = 10$	$R = 20$				
	$h = 10$	$h = 500$						
	$N = 105$	$N = 5005$	$N = 533$	$N = 26013$	$N = 63717$	$N = 3107317$	$N = 504057$	$N = 25141257$
γ_{12}	2.0683	2.1131	2.0639	2.0946	2.0632	2.0944	2.0634	2.0944
γ_{24}	3.1458	3.1458	3.2182	3.2182	3.2257	3.2257	3.2257	3.2257
γ_{22}	0.3385	0.3385	0.0761	0.0761	0.0006	0.0006	0.0001	0.0001
γ_{20}	7.1090	7.1091	8.0978	8.0978	8.3995	8.3995	8.4016	8.4016
γ_{36}	0.7000	0.7000	0.6557	0.6557	0.6553	0.6553	0.6553	0.6553
γ_{34}	3.3616	3.3616	3.4068	3.4068	3.4081	3.4081	3.4081	3.4081
γ_{32}	0.0967	0.0967	0.0048	0.0048	0.0000	0.0000	0.0000	0.0000
γ_{30}	6.3636	6.3636	6.6144	6.6144	6.6289	6.6289	6.6289	6.6289

by cylinder size:

\[-R \leq \tilde{x}_j \leq R,\]
\[-R \leq \tilde{y}_j \leq R,\]
\[-hR \leq \tilde{z}_j \leq hR,\]
\[(\tilde{x}_j)^2 + (\tilde{y}_j)^2 \leq R^2,\]
\[(\tilde{x}_j)^2 + (\tilde{y}_j)^2 + (\tilde{z}_j)^2 > 0,\]

where R is the dimensionless radius of the cylinder and h is the factor describing the cylinder elongation. First, let us to show the convergence of the series in numbers γ_{pq}. Each γ_{pq} contains the Legendre polynomial P_q, the argument of which is limited as

\[
\left| \frac{\tilde{z}_{1j}}{r_{1j}} \right| \leq 1.
\]

(28)

Thus, each Legendre polynomial obeys the following relation

\[
\left| P_q \left(\frac{\tilde{z}_{1j}}{r_{1j}} \right) \right| \leq 1
\]

(29)

and numbers γ_{pq} can be estimated as

\[
|\gamma_{pq}| \leq \sum_{j=2}^{N} \frac{1}{r_{1j}^p} \leq \sum_{j=2}^{N} \frac{1}{|\tilde{z}_{1j}|^p} \leq 2R^2 \sum_{n=1}^{hR} \frac{1}{n^3p}.
\]

(30)

The thermodynamic limit in our model means that at the constant radius of cylinder R, its elongation $h \rightarrow \infty$; therefore, in this case one can obtain

\[
|\gamma_{pq}| \leq 2R^2 \sum_{n=1}^{\infty} \frac{1}{n^3p} = 2R^2 \zeta(3p),
\]

where $\zeta(s)$-function converges absolutely and evenly for $s \geq 1 + \varepsilon$, $\varepsilon > 0$. Several different systems were considered to show how the numbers γ_{pq} depend on the cylinder size and form. The results are summarized in Table I. One can note some dependence of γ_{12} on the cylinder elongation, while the other numbers γ_{pq} demonstrate the same values for $h = 10$ and $h = 500$. This means that the long-range contribution $\gamma_{12} \sim r_{1j}^{-3}$ is sensitive to demagnetization effects due to the lowest rate of decrease with distance, unlike other values γ_{pq}. A similar fact has already been discussed in [29], which is devoted to the thermodynamics of ferrofluids in applied magnetic fields. Data from Table I show that the averaging of the second Legendre polynomial in numbers γ_{22} and γ_{32} gives zero results. Since values of γ_{pq} for the system with $R = 10$ and $R = 20$ are very close, it is assumed that the biggest system, with $N = 25141257$ particles, is enough for numerical calculation of γ_{pq}.

The final analytical expression for the ΔF expansion can be presented as

\[
\frac{\beta \Delta F}{N} = -\frac{\pi}{6} \left[4\lambda_e L^2(\alpha) + \lambda_e^2 \left(2.674 + 3.703 L_3^2(\alpha) \right) \right.
\]

\[
+ \lambda_e^3 \left(1.895 L^2(\alpha) - \frac{7.187 L(\alpha)L_3(\alpha)}{\alpha} \right)
\]

\[
+ \frac{1.230 L_3^2(\alpha)}{\alpha^2} \right].
\]

(32)

Formula (32) will be referred to as the Virial free energy (VFE) theory. To avoid the strong dependence of the Helmholtz free energy on the effects of truncation at the low order in λ_e-expansion, it is useful to apply the logarithmic transformation of ΔF according to the initial definition (8):

\[
\frac{\beta \Delta F}{N} = -\ln \left[1 + \frac{\pi}{6} \left[4\lambda_e L^2(\alpha) + \lambda_e^2 \left(2.674 + 3.703 L_3^2(\alpha) \right) \right.
\]

\[
+ \lambda_e^3 \left(1.895 L^2(\alpha) - \frac{7.187 L(\alpha)L_3(\alpha)}{\alpha} \right)
\]

\[
+ \frac{1.230 L_3^2(\alpha)}{\alpha^2} \right].
\]

(33)

The obtained expression (33) will be referred to as the Logarithmic free energy (LFE) theory. In Refs.
it was shown that this method of the Helmholtz free energy logarithmic transformation is capable of considerably expanding the theory’s applicability range over concentration and intensity of interparticle dipole-dipole interactions for describing thermodynamic and magnetic properties of dipolar hard spheres fluids.

3. Comparing the SCLF and the DHS theories

In this section, the analytical results for both the SCLF and the DHS models are compared with each other. Fluid of DHSs is described by two basic parameters: the numerical concentration of ferroparticles ρ and the dipolar coupling constant

$$\lambda = \frac{m^2 \beta}{\sigma^3}. \quad (34)$$

The virial expansion of the Helmholtz free energy expansion for the DHS model up to the second virial coefficient in an external magnetic field has the following form [29]:

$$\frac{\beta}{N} \Delta F^{\text{DHS}} = -\frac{\rho \pi \sigma^3}{6} \left[4 \lambda L^2(\alpha) + \frac{4 \lambda^2}{3} \left(1 + \frac{L^2(\alpha)}{5} \right) \right. \left. + \frac{4 \lambda^3}{105} \left(4L^2(\alpha) + \frac{2L(\alpha)L_3(\alpha)}{\alpha} - \frac{5L^2(\alpha)}{\alpha^2} \right) \right]. \quad (35)$$

If we set the same numerical concentration $\rho = a^{-3}$ as with SCLF, then the configurational part of the Helmholtz free energy of a ferrofluid in notation λ_c (5) can be presented as:

$$\frac{\beta}{N} \Delta F^{\text{DHS}} = -\frac{\pi}{6} \left[4 \lambda_c L^2(\alpha) \right.$$ \left. + \frac{4 \lambda^2}{3} \left(\frac{a^3}{\sigma^3} \right)^2 \left(1 + \frac{L^2(\alpha)}{5} \right) \right. \left. + \frac{4 \lambda^3}{105} \left(\frac{a^3}{\sigma^3} \right)^2 \left(4L^2(\alpha) \right. \right.$$

\left. \left. + \frac{2L(\alpha)L_3(\alpha)}{\alpha} - \frac{5L^2(\alpha)}{\alpha^2} \right) \right]. \quad (36)

This formula depends on two parameters: the effective dipolar coupling constant defined especially for the SCLF model in (5), and the relation a^3/σ^3. The latter occurs due to the transition from the usual definition of the dipolar coupling constant λ (34) in the DHS model to the new notation of λ_c (5). When using the SCLF theory (32), it is not necessary to know the lattice period a or particle diameter σ separately. Hence for each value of λ_c, there is no unique way to define the value of a^3/σ^3, which is necessary for comparing the two models. To determine the value a^3/σ^3, it is convenient to study the weak field behavior of ΔF for the SCLF and the DHS models

$$\frac{\beta}{N} \Delta F^{\text{DHS}}(\alpha \to 0) = -\frac{\pi}{6} \frac{4}{3} \left(\frac{a^3}{\sigma^3} \right) \lambda_c^2$$

$$= -0.22 \pi \lambda_c^2 \left(\frac{a^3}{\sigma^3} \right), \quad (37)$$

$$\frac{\beta}{N} \Delta F^{\text{SCLF}}(\alpha \to 0) = -\frac{\pi}{6} \left(\frac{2.674 \lambda_c^2}{\sigma^3} \right)$$

$$= -0.446 \pi \lambda_c^2, \quad (38)$$

where ΔF^{SCLF} is from VFE theory (32) and ΔF^{DHS} is from (36). To obtain the equality of $\Delta F^{\text{SCLF}} \approx \Delta F^{\text{DHS}}$ at $\alpha \approx 0$, one can define the relation $a^3/\sigma^3 \approx 2$: this means $a \approx 1.26 \sigma$. Volume concentration $\varphi = \pi \rho a^3/6$ in this system is equal to $\varphi = 0.262$, that corresponds to very dense DHS fluid. Next, the lattice period will be fixed as $a \approx 1.26 \sigma$, and we will change either the Langevin parameter α or thermal energy included in λ_c. In this case, the asymptotes for an infinitely strong field are

$$\frac{\beta}{N} \Delta F^{\text{DHS}}(\alpha \to \infty) = -\frac{\pi}{6} \left(\frac{4 \lambda_c + 1.6 \lambda_c^2 + 0.61 \lambda_c^3}{\sigma^3} \right), \quad (39)$$

$$\frac{\beta}{N} \Delta F^{\text{SCLF}}(\alpha \to \infty) = -\frac{\pi}{6} \left(\frac{4 \lambda_c + 6.378 \lambda_c^2}{\sigma^3} \right.$$ $$\left. + 1.895 \lambda_c^3 \right). \quad (40)$$

This shows that coefficients in λ_c-expansion of ΔF^{DHS} decrease faster than those of ΔF^{SCLF}. One can conclude from the analytical results that the DHS system is less sensitive to cooling inside a system under strong external magnetic field, while the SCLF is more responsive to the same. As was shown in [29], the logarithmic form of free energy

$$\frac{\beta}{N} \Delta F^{\text{DHS}} =$$

$$-\ln \left\{ 1 + \frac{\pi}{6} \left[4 \lambda_c L^2(\alpha) + \frac{8 \lambda^2}{3} \left(1 + \frac{L^2(\alpha)}{5} \right) \right.$$

$$\left. + \frac{16 \lambda^3}{105} \left(4L^2(\alpha) + \frac{2L(\alpha)L_3(\alpha)}{\alpha} - \frac{5L^2(\alpha)}{\alpha^2} \right) \right) \right\}, \quad (41)$$

is better for describing the thermodynamic properties of ferrofluids. In Eq. (41), the notations of this paper are used and $a \approx 1.26 \sigma$ is assumed. The relative difference of ΔF for two models

$$D = \left| \frac{\beta}{N} \Delta F^{\text{SCLF}} - \frac{\beta}{N} \Delta F^{\text{DHS}} \right| \quad (42)$$

as function of λ_c is presented in Fig. 2. Fig. 2 (a) shows the relative difference of virial expansions of free energy for the SCLF (32) and ferrofluids (36) at the various values of the Langevin parameter. Note that $D = 0$ at $\alpha = 0$ due to the assumption $a \approx 1.26 \sigma$. As α increases, the relative difference D goes up. In a weak field $\alpha < 2$, this difference is not significantly pronounced, but in a medium field $2 < \alpha < 6$, D rapidly increases. With a further increase of α, the value of D grows more slowly. Fig.
FIG. 2. The value of D as a function of dipolar coupling constant λ_e using (a) VFE theory and (b) LFE theory. Lines correspond to $\alpha = 2$, $\alpha = 4$, $\alpha = 6$ and $\alpha = 8$ from bottom to top.

2 (b) shows the relative difference of the logarithmic form of free energy for the SCLF (33) and ferrofluids (41). It should be noted that the scale on the second graph is ten times larger than the same on the first graph. This is because the virial series on Fig. 2 (a) is more sensitive to changing of coefficients in terms. It is seen that at $\alpha = 2$ and $\lambda_e \sim 1.5$, the relative difference D reaches a plateau: it no longer changes its value. For $\alpha > 2$, the value of D slows the rate of increase at large values of $\lambda_e > 2$.

Now let us compare the magnetization of the SCLF and the DHS systems. In theory, the fractional (scalar) magnetization can be defined via the Helmholtz free energy as

$$M = -\frac{1}{\beta} \frac{\partial}{\partial \alpha} \left(\frac{\beta F}{N} \right) = M_L - \frac{1}{\beta} \frac{\partial}{\partial \alpha} \left(\frac{\beta \Delta F}{N} \right).$$

(43)

In Fig. 3, the magnetization curves for both the SCLF and DHS models are given from the LFE theory. It should be noted that the DHS magnetization curve is higher than that of the SCLF system in a weak field $\alpha < 0.5$, and lower in moderate and strong magnetic fields. Additional increases to the magnetization of the DHS fluid in a weak magnetic field can be explained by the formation of dimers or chains aligned in the magnetic field’s direction due to the dipole-dipole interaction [57], while the appearance of dimers in the SCLF system with immobilized particles is impossible. For $\alpha > 0.5$ in the DHS fluid with strong and moderate dipole-dipole interactions, one can observe the formation of correlation structures in which particle magnetic moments can compensate for each other. This leads to lower growth in magnetization compared to the SCLF model.

C. Molecular dynamics simulations

To test the accuracy and application limits of the developed SCLF theories, we thoroughly tested their predictions against molecular dynamics (MD) simulations. The modeled system consists of N identical ferroparticles rigidly fixed at the lattice nodes inside a cubic simulation cell with 3D periodic boundary conditions imposed. The rotational dynamics of the i-th particle is governed by the Langevin equation

$$\mathcal{I} \frac{dW_i}{dt} = -\mathbf{\Omega}_i \times \frac{\partial U}{\partial \mathbf{\Omega}_i} - \Gamma W_i + \eta_i,$$

(44)

where \mathcal{I} is the particle moment of inertia, $\mathbf{\Omega}_i$ is the unit vector directed along the magnetic moment (3), W_i is the particle angular velocity, i.e., $d\mathbf{\Omega}_i/dt = \mathbf{W}_i \times \mathbf{\Omega}_i$, Γ is the friction coefficient, η_i is the thermal noise torque, which has a zero mean value $\eta_i(t) = 0$ and satisfies the fluctuation-dissipation relationship $\eta_{i,k}(t_1)\eta_{j,l}(t_2) = 2\beta^{-1}\Gamma \delta_{i,j} \delta_{k,l} \delta(t_1-t_2)$, k and l are Cartesian indices, $\delta_{i,j}$ is the Kronecker delta, $\delta(t)$ is the Dirac delta function, and overline means the average over noise realizations. The simulations were performed using the ESPResSo 4.0 package [58]. In actual simulations, only dimensionless
quantities were used, and I, σ and β were chosen as units. The input simulation parameters are the reduced friction coefficient $\Gamma^* = \Gamma \sqrt{\beta/\mathcal{L}}$, the reduced lattice period $a^* = a/\sigma$, the dipolar coupling constant λ_c and the Langevin parameter α. Typically, $\Gamma^* = 1$ and $a^* = 1$, while λ_c and α can vary within broad ranges. The dimensionless time step is $\Delta t^* = \Delta t/\sqrt{\beta \mathcal{L}} = 0.001$. The torques due to long-range dipole-dipole interactions are computed using the dipolar PM algorithm with “metallic” boundary conditions [53]. Initial orientations of magnetic moments are random. A typical simulation consisted of 5×10^4 equilibration time steps, followed by a production run of at least 2.5×10^5 time steps.

Assuming that the external magnetic field is directed along the Oz axis, the fractional magnetization can be calculated in the simulation simply as

$$M = \frac{1}{N} \left\langle \sum_{i=1}^N \cos \omega_i \right\rangle_t,$$ \hspace{1cm} (45)

where $\langle \ldots \rangle_t$ means the average over simulation time. Magnetization values given in Sec. III are calculated for $N = 1000$ (i.e., for $10 \times 10 \times 10$ lattice). Initial magnetic susceptibility can be calculated at $\alpha = 0$ as [59]:

$$\chi = \chi_L \left(\left\langle \sum_{i=1}^N \Omega_i \right\rangle_t \right)^2 \frac{1}{N}.$$ \hspace{1cm} (46)

Possibility of spontaneous orientational ordering at $\alpha = 0$ was investigated by means of the scalar order parameter

$$S \equiv \langle \text{Tr} Q^2 \rangle = \frac{3}{2} \left\langle \frac{1}{N^2} \sum_{i,j} (\Omega_i \cdot \Omega_j)^2 - \frac{1}{3} \right\rangle_t,$$ \hspace{1cm} (47)

where Tr means trace and Q is the orientation tensor, which is well known in the physics of liquid crystals [60]:

$$Q_{kl} = \sqrt{\frac{3}{2}} \left\langle \frac{1}{N} \sum_{i=1}^N \Omega_{i,k} \Omega_{i,l} - \frac{1}{3} \delta_{kl} \right\rangle_t,$$ \hspace{1cm} (48)

where $\Omega_{i,k}$ is the k-th component of Ω_i. According to Ref. [61], $S = 1$ corresponds to a completely ordered state, in which all moments are directed along or against a common direction, while in the isotropic disoriented state S is of the order of N^{-1}. The numerical results for χ and S given in Sec. III are obtained for $N = 512$ (i.e., for $8 \times 8 \times 8$ lattice). Presented values of χ and S were averaged over four independent simulation runs.

III. RESULTS

A. Comparison between theory and simulation

Fig. 4 shows scalar magnetization M as a function of Langevin parameter α for model system with $\lambda_c = 0.5$, 1, 1.5 and 2, from MD simulations and theories. The Langevin magnetization M_L (1) does not take into account the interparticle dipole-dipole interaction, since it can be obtained from Eq. (43) by setting $\Delta F \equiv 0$. However, the MD simulation results demonstrate clearly that ignoring interparticle interactions leads to a great underestimation of magnetization even for the system with the low dipolar coupling constant. On the other hand, the VFE theory greatly overestimates the MD results, because only pair correlations were taking into account in the virial expansion of the Helmholtz free energy. As was shown earlier, at zero magnetic field a second virial coefficient is positive: this leads to increases in the initial slope of the magnetization curve compared to the Langevin model. Although at $\lambda_c = 0.5$, the VFE magnetization curve behaves normally, for $\lambda_c \geq 1$ the VFE theory is much greater than 1, which indicates the non-physical nature of this approach in this parameter range. The LFE theory is in a good agreement with simulation data in all considered range of parameters due to the fixed logarithmic form of the free energy used for the calculation of the magnetization curve. However, in a weak field $\alpha \leq 1$ for $\lambda_c = 2$ some disagreement of the LFE theory with the MD results is observed.

Numerical magnetization results can be used to estimate the configurational part of the Helmholtz free energy in the following way:

$$\frac{\beta \Delta F}{N} = \int_0^\alpha [L(\alpha) - M] d\alpha + \frac{\beta \Delta F(\alpha = 0)}{N}.$$ \hspace{1cm} (49)

However, the numerical value of $\Delta F(\alpha = 0)$ is unknown; therefore, only the relative increase of ΔF can be considered as

$$\frac{\beta \Delta F_\alpha}{N} = \left| \frac{\beta \Delta F - \beta \Delta F(\alpha = 0)}{N} \right|.$$ \hspace{1cm} (50)

Fig. 5 shows theoretical and numerical results for the value of ΔF_α as a function of Langevin parameter α. In all cases, the LFE theory looks better than the VFE theory, which is in a good agreement with numerical data only in the weak field $\alpha \leq 1$ for $\lambda_c = 0.5$. For $\lambda_c = 2$, which corresponds to the strong dipole-dipole interactions in the model system, neither theory works well. It should be noted that numerical results for ΔF_α at $\lambda_c = 2$ turned out lower than for $\lambda_c = 1.5$, although both theories increase with the growth of λ_c. The considered theoretical method is not allowed to take into account some structural magnetic affects in system, which could be the reason for the behavior of ΔF_α.

The theoretical initial magnetic susceptibility χ can be expressed via the Helmholtz free energy as

$$\chi = -\frac{1}{V} \frac{\partial^2 F}{\partial H^2} \bigg|_{H=0}.$$ \hspace{1cm} (51)
FIG. 4. The fractional magnetization M as a function of Langevin parameter α for a model system with (a) $\lambda_e = 0.5$, (b) $\lambda_e = 1$, (c) $\lambda_e = 1.5$ and (d) $\lambda_e = 2$. Points are from MD simulations, solid lines are from LFE theory (33), dashed lines are from VFE theory (32), and dash dotted lines are from the Langevin model [Eq. (1)].

FIG. 5. The value of ΔF_α as a function of Langevin parameter α for the SCLF with (a) $\lambda_e = 0.5$, (b) $\lambda_e = 1$, (c) $\lambda_e = 1.5$ and (d) $\lambda_e = 2$. Points are from MD simulations, solid lines are from LFE theory (33), and dashed lines are from VFE theory (32).

In the used notation, the Langevin susceptibility looks like $\chi_L = \lambda_e/3$. The VFE theory allows us to represent
the initial magnetic susceptibility as a series over powers of χ_L

$$\chi = \chi_L \left[1 + \frac{4\pi \chi_L}{3} \left(1 + 0.1266 \lambda_e^2 \right) \right].$$

(52)

The LFE theory gives

$$\chi = \chi_L \left[1 + \frac{4\pi \chi_L}{3} \left(1 + 0.1266 \lambda_e^2 \right) \right].$$

(53)

Comparison between the theoretical susceptibility curves and the MD simulation data is given in Fig. 6. The Langevin susceptibility totally neglects the dipolar interactions between ferroparticles; therefore, it greatly underestimates MD results even for a system with a low dipolar coupling constant. The VFE theory has the applicability range $\lambda_e \leq 0.5$, while the LFE theory allows to accurately describe the MD results up to $\lambda_e = 1.25$. After this, the nonmonotonic behavior of χ is observed in the MD simulation, although the analytical curves demonstrate ordinary increases to the initial magnetic susceptibility with growth in λ_e. To understand the reason for the observed phenomenon, it is necessary to investigate the properties of the SCLF with the strong dipole-dipole interactions in more detail via computer simulation techniques.

B. Ordering of magnetic moments in the SCLF

Nonmonotonic temperature dependence of the initial susceptibility is a common sign of phase or structural transformations in magnetic systems. An obvious example is the “paramagnetic – antiferromagnetic” phase transition in metals and alloys with a negative exchange coupling [62, 63]. At high temperatures, the susceptibility of these media increases with decreasing temperature, according to the standard Curie-Weiss law. Below some critical temperature, known as the Curie or Néel point, the spontaneous spin alignment takes place. Within the simplest theoretical description, an antiferromagnet can be modeled as a combination of two sublattices. The spins of each sublattice are aligned with the same preferable direction (easy axis), but the magnetization of the two sublattices are antiparallel and cancel each other out, so the net magnetization is zero. If the temperature decreases below the Néel point, the susceptibility of such an antiferromagnet along the easy axis also decreases and vanishes at $T = 0$. Another notable example is the initial susceptibility of a low-concentrated DHS fluid with intensive dipole-dipole interactions. It was shown in Ref. [64], both theoretically and via Monte Carlo simulations, that with decreasing temperature DHSs in such fluid first form linear chains, which are highly responsive to an external field and thus lead to an anomalous increase in susceptibility. However, as the temperature progressively decreases, it becomes energetically favorable for a chain to close into a ring. Rings are magnetically inert and, with their number growing, the fluid’s susceptibility decreases.

To investigate the reasons behind the nonmonotonic dependence of χ on λ_e in the SCLF, we first calculated its orientational order parameter S in zero field [Eq. (47)]. The results are shown in Fig. 7. It is seen that at $\lambda_e \gtrsim 1.5$ (i.e., in the same range, where the susceptibility decreases in Fig. 6), S starts to increase rapidly, marking the emergence of a preferable direction in the orientation of magnetic moments. At the same time, the overall magnetization of the simulated system is close to zero, regardless of how large the dipolar coupling constant is. The specific nature of the orientational ordering in the SCLF can be best understood from a visual examination of the simulation snapshots given in Fig. 8. At a large value of λ_e, all dipoles tend to align in long chains spanning across the simulation box. Chains are parallel or antiparallel to some common direction, let us call it \mathbf{n}. \mathbf{n} always coincides with one of the lattice axes ([100], [010] or [001] in crystallographic terms). A particular choice of \mathbf{n} in a
given simulation run is evidently arbitrary and depends on the initial orientation distribution. Any chain parallel to \(\mathbf{n} \) has four antiparallel nearest neighbors, so that a checkerboard pattern is observed in the plane perpendicular to \(\mathbf{n} \). One can also put it this way: any particle has six nearest neighbors, among which, two tend to adopt the most favorable “head-to-tail” orientation and the other four tend to adopt the second most favorable “side-by-side” orientation. Inducing a nonzero net magnetization in the system requires breaking this energetically efficient arrangement, which explains why the susceptibility decreases in the ordered state. Actually, it is natural to expect that the susceptibilities along (\(\chi_{||} \)) and perpendicular (\(\chi_{\perp} \)) to the direction \(\mathbf{n} \) are not identical [63, 65]. If this is the case, then the quantity \(\chi \) calculated via Eq. 46 and presented in Fig. 6 simply has the meaning of an average value, \(\chi = \chi_{||}/3 + 2\chi_{\perp}/3 \).

Our simulation predictions for the magnetic ordering in the SCLF are in full agreement with the well-known results of Refs. [66, 67], where it was shown that the ground state of a simple cubic lattice of dipoles in a zero field is a system of “ferromagnetic rows (...) arranged antiferromagnetically in the plane perpendicular to it”.

IV. CONCLUSION

A new thermodynamic theory of interacting single-domain ferroparticles embedded in a simple cubic lattice has been derived from the rigorous methods of statistical physics. Accounting for pairwise dipole-dipole interactions, an explicit analytical expression for the Helmholtz free energy was obtained in the virial form (VFE-theory) Eq. (32) and the logarithmic form (LFE-theory) Eq. (33). This level of accuracy corresponds to taking into account only the second virial coefficient in the classical virial expansion, well known from textbooks and developed for a liquid (ensemble of moving particles).

The new theory has been compared against MD computer simulation results. A comparison has been made in terms of the Helmholtz free energy, the static magnetization, and the initial magnetic susceptibility for the effective dipolar coupling constants \(\lambda_e \leq 2 \). The VFE theory greatly overestimates the MD results; moreover, at rather high values of the effective dipolar coupling constant (\(\lambda_e \geq 1 \)), the limitation with only a certain number of terms of \(\lambda_e \) and the use of the finite polynomial instead of an infinite virial series results in nonphysical dependence of the thermodynamic functions on the coupling constant and the Langevin parameter (for example, Fig. 4 (b)-(d)). To overcome this problem, we used the LFE theory, which turns out to be in good agreement with simulation data. For \(\lambda_e \leq 1.5 \), the agreement between the LFE theory and simulation results is excellent, while for \(\lambda_e = 2 \), the deviations are due to the truncation of the Helmholtz free energy expansion in \(\lambda_e \). From a practical point of view, the LFE theory is extremely simple: any thermodynamic function can be determined using standard relations from the Helmholtz free energy expression (33) for an ensemble of interacting single-domain ferroparticles embedded in a simple cubic lattice.

![Simulation snapshots of the SCLF at \(\alpha = 0 \). \(\lambda_e = 1 \) (a), 2 (b) and 3 (c). Different arrow colors correspond to different orientations of magnetic moments.](image)
weak magnetic field ($\alpha \lesssim 0.5$), the magnetization of the DHS system is higher than the magnetization of SCLF, while the opposite tendency is observed in stronger fields. The reasons for this behavior are quite clear. In a weak magnetic field, the dipole-dipole interaction plays a main role in the system and leads to the formation of dimers in DHSs, that increases the magnetization. In the SCLF system, where particles do not have translational degrees of freedom, the appearance of dimers is impossible; therefore, the magnetization of the SCLF system is less than in a DHS fluid. In strong and moderate magnetic fields with strong and moderate dipole-dipole interactions, a competition between the energy of interparticle dipole-dipole interaction and the field-magnetic moment interaction energy occurs. Balance is achieved by the formation of correlation structures in which particle magnetic moments can compensate for each other. In the SCLF, the correlation structures begin to form at $\lambda_c > 1.5$ even in the absence of a field (Fig. 8). In the DHS fluid, particles can be located at distances shorter than the lattice size a up to the particle contact σ, that is, the intensity of interparticle interaction in DHS fluid is determined by the parameter $\lambda = \lambda_c a^3/\sigma^3$, which exceeds the value of λ_c. This leads to the fact that the formation of the correlation structure with compensating magnetic moments in the DHS fluid occurs at much lower values of λ_c.

Using the methods of MD computer simulation, the internal structure of SCLF has been analyzed for large values of λ_c. It has been shown that for $\lambda_c \gtrsim 2$, an antiferromagnetic order appears in the system.

Overall, the LFE theory provides a reliable means of predicting thermodynamic properties of the SCLF. The current investigation represents essential information in the design and synthesis of new functional materials.

ACKNOWLEDGEMENTS

The reported study was funded by RFBR, project number 20-02-00358. AYS and EAE acknowledged Prof. Philip Camp for his advice and useful discussions.

[1] E. L. Resler and R. E. Rosensweig, “Magnetocaloric power,” AIAA Journal 2, 1418–1422 (1964).
[2] M I Shliomis, ”Magnetic liquids,” Soviet Physics Uspekhi 17, 153–169 (1974).
[3] R. E. Rosensweig, Ferrohydrodynamics (Dover Publications, 1997) p. 344.
[4] P. Langevin, ”Sur la théorie du magnétisme,” J. Phys. Theor. Appl. 4, 678–693 (1905).
[5] W. C. Elmore, ”The magnetization of ferromagnetic colloids,” Physical Review 54, 1092–1095 (1938).
[6] S. (Ed.) Odenbach, Ferrofluids, Magnetically Controllable Fluids and Their Applications (Lect. Notes Phys., Springer, 2002) p. 255.
[7] C. Holm and J. Weis, ”The structure of ferrofluids: A status report,” Current Opinion in Colloid and Interface Science 10, 133–140 (2005).
[8] A. S. Ivanov, ”Anomalous interfacial tension temperature dependence of condensed phase drops in magnetic fluids,” Physics of Fluids 30, 052001 (2018).
[9] P. J. Camp, ”Structure, dynamics, and thermodynamics of ferrofluids,” in Springer Proceedings in Physics, Vol. 197 (2018) pp. 185–204.
[10] A. A. Kuznetsov, ”Equilibrium magnetization of a quasispherical cluster of single-domain particles,” Physical Review B 98 (2018).
[11] A. V. Lebedev, V. I. Stepanov, A. A. Kuznetsov, A. O. Ivanov, and A. F. Pshenichnikov, ”Dynamic susceptibility of a concentrated ferrofluid: The role of interparticle interactions,” Physical Review E 100, 032605 (2019).
[12] G. L. Klimchitskaya, V. M. Mostepanenko, and E. N. Velichko, ”Effect of agglomeration of magnetic nanoparticles on the casimir pressure through a ferrofluid,” Physical Review B 100 (2019).
[13] A. F. Pshenichnikov and A. V. Lebedev, ”Magnetic susceptibility of concentrated ferrocolloids,” Colloid Journal 67, 189–200 (2005).
[14] I. Szalai, S. Nagy, and S. Dietrich, ”Linear and nonlinear magnetic properties of ferrofluids,” Physical Review E 92, 042314 (2015).
[15] A. Y. Solovyova, O. A. Goldina, A. O. Ivanov, A. V. Lebedev, and E. A. Elfmova, ”The initial magnetic susceptibility of polydisperse ferrofluids: A comparison between experiment and theory over a wide range of concentration,” Journal of Chemical Physics 145, 084909 (2016).
[16] A. Y. Solovyova, E. A. Elfmova, A. O. Ivanov, and P. J. Camp, ”Modified mean-field theory of the magnetic properties of concentrated, high-susceptibility, polydisperse ferrofluids,” Physical Review E 96, 052609 (2017).
[17] J. O. Sindt, P. J. Camp, S. S. Kantorovich, E. A. Elfmova, and A. O. Ivanov, ”Influence of dipolar interactions on the magnetic susceptibility spectra of ferrofluids,” Physical Review E 93, 063117 (2016).
[18] A. O. Ivanov, V. S. Zverev, and S. S. Kantorovich, ”Revealing the signature of dipolar interactions in dynamic spectra of polydisperse magnetic nanoparticles,” Soft Matter 12, 3507–3513 (2016).
[19] Weijia Wen, F. Kun, K. F. Pål, D. W. Zheng, and K. N. Tu, ”Aggregation kinetics and stability of structures formed by magnetic microspheres,” Physical Review E 59, R4758–R4761 (1999).
[20] V. Mendelev and A. Ivanov, ”Magnetic properties of ferrofluids: An influence of chain aggregates,” Journal of Magnetism and Magnetic Materials 289, 211–214 (2005).
[21] P. Weiss, ”L’hypothése du champ moléculaire et la propriété ferromagnétique,” J. Phys. Theor. Appl. 6, 661–690 (1907).
[22] A. O. Tsebers, ”Thermodynamic stability of magnetofluids,” Magnetohydrodynamics 18, 137–142 (1982).
[23] M. S. Wertheim, ”Exact solution of the mean spherical model for fluids of hard spheres with permanent electric dipole moments,” The Journal of Chemical Physics 55, 4291–4298 (1971).
ids in magnetic fields,” Journal of Chemical Physics 136, 194502 (2012).

[58] F. Weik, K. Weeber, R. and Szuttor, K. Breitsprecher, J. de Graaf, M. Kuron, J. Landgesell, H. Menke, D. Sean, and C. Holm, “Espresso 4.0—an extensible software package for simulating soft matter systems,” The European Physical Journal Special Topics 227, 1789–1816 (2019).

[59] SW De Leeuw, John W Perram, and ER Smith, “Computer simulation of the static dielectric constant of systems with permanent electric dipoles,” Annual review of physical chemistry 37, 245–270 (1986).

[60] Pierre-Gilles De Gennes and Jacques Prost, The physics of liquid crystals, 2nd ed. (Oxford University Press, 1993).

[61] J. Vieillard-Baron, “The equation of state of a system of hard spherocylinders,” Molecular Physics 28, 809–818 (1974).

[62] J. H. Van Vleck, “Recent developments in the theory of antiferromagnetism,” Journal de Physique et le Radium 12, 262–274 (1951).

[63] T. Nagamiya, K. Yosida, and R. F. Kubo, “Antiferromagnetism,” Advances in Physics 4, 1–112 (1955).

[64] S. Kantorovich, A. O Ivanov, L. Rovigatti, J. M. Tavares, and F. Sciortino, “Nonmonotonic magnetic susceptibility of dipolar hard-spheres at low temperature and density,” Physical Review Letters 110, 148306 (2013).

[65] L. D. Landau and E. M. Lifshitz, Electrodynamics of continuous media, 2nd ed., Course of Theoretical Physics, Vol. 8 (Pergamon Press, Oxford, 1984).

[66] J. M. Luttinger and L. Tisza, “Theory of dipole interaction in crystals,” Physical Review 70, 954 (1946).

[67] R. Kretschmer and K. Binder, “Ordering and phase transitions in ising systems with competing short range and dipolar interactions,” Zeitschrift für Physik B Condensed Matter 34, 375–392 (1979).