Effect of co-doping with calcium and transition metals on the infrared emissivity of La$_2$(Zr$_{0.7}$Ce$_{0.3}$)$_2$O$_7$ ceramics for high-temperature thermal protection applications

Shijie FENG1,2,†, Donghai SUN1,4,††, Hongying YU4, Wenrui WANG2,3,†††, Lu XIE3,†††, Fei ZHAO1,2, Fuhai LIU1,2 and Qi WANG4

1National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China
2Key Laboratory of Fluid Interaction with Material, Ministry of Education, University of Science and Technology Beijing, Beijing 100083, China
3School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
4Sun Yat-sen University, Guangzhou 510275, China

The La$_2$(Zr$_{0.7}$Ce$_{0.3}$)$_2$O$_7$ (LZ7C3) ceramics co-doped with Ca$^{2+}$ and different transition metal cations (Fe$^{3+}$, Cr$^{3+}$) were fabricated by the pressureless-sintering method. The influence of doping on the phase structure, microstructure and infrared emissivity (0.75–2.5, 3–5, 8–14 μm) was investigated. The infrared emissivity of LZ7C3 in the wavelength range 0.75–2.5 and 3–5 μm was significantly enhanced by co-doping, especially with Ca$^{2+}$ and Cr$^{3+}$. The infrared emissivity in the wavelength range 0.75–2.5 μm could be improved from 0.069 (LZ7C3) to 0.876 at room temperature, and from 0.463 (LZ7C3) to 0.877 in 3–5 μm at 300 °C, by co-doping with Ca$^{2+}$ and Cr$^{3+}$. On the other hand, doping had an insignificant effect on the infrared emissivity of LZ7C3 in the 8–14 μm range at 300 °C due to its high emissivity value (0.962) in the 8–14 μm range.

Key-words : Ceramics, Microstructure, La$_2$(Zr$_{0.7}$Ce$_{0.3}$)$_2$O$_7$, Infrared emissivity, Doping

©2020 The Ceramic Society of Japan. All rights reserved.

[Received April 5, 2020; Accepted May 19, 2020]
ceramics with fluorite structure with same oxygen vacancy as pyrochlore structure, such as Sm₃Hf₂O₁₁, have also been observed to exhibit high infrared radiation performance by transition metal cation doping. LZ7C3 with both pyrochlore and fluorite structures has the potential to demonstrate high radiation performance by appropriate ion doping.

In this study, LZ7C3 ceramics co-doped with Ca²⁺ and different transition metal cations (Fe³⁺, Cr³⁺) were fabricated by the pressureless sintering method, and the influence of different co-doping ions on their phase, microstructure and infrared radiation performance in near- and mid-infrared regions (0.75–2.5, 3–5, 8–14 µm) was studied.

In the present study, high purity (≥99.99%) La₂O₃, ZrO₂, CeO₂, CaO, Fe₂O₃ and Cr₂O₃ with particle size of 500 nm were used as raw materials. Firstly, the raw powders were heat-treated at 1000 °C for 2 h in a box furnace before weighing. Subsequently, for each composition, the weighed powders were mixed by using a planetary mill with zirconia balls in alcohol for 6 h, followed by rotary drying to obtain uniform powder samples. The dried powder mixtures were subsequently compacted into φ40 mm disks under uniaxial pressure of 30 MPa followed by the cold isostatic pressing at 250 MPa. Finally, the bulk materials were pressureless-sintered into samples about 5 mm thick at 1550 °C for 10 h in air.

The phase structure of the as-synthesized ceramics was characterized by X-ray diffraction (XRD) using a STOE&structurystar STOE/2 X-ray diffractometer operating at a current and voltage of 40 mA and 40 kV respectively. The microstructure of the samples was observed using a HitachiRegulus8100 Scanning Electron Microscope (SEM) at an operating voltage of 20 kV. The near-infrared optical absorption spectra of the samples were obtained by the reflection method using a ultraviolet visible near infrared (UV–VIS–NIR) spectrometer (Lambda 950, PerkinElmer, America) equipped with an internal integrating sphere at room temperature. The infrared emissivity in the wavelength ranges 3–5 and 8–14 µm at 300 °C was directly determined using a reflection method by employing a dual-band IR emissivity meter (IR-2, Shanghai Institute of Technological Physics, China). Surfaces for all measurements were as-synthesized without artificial processing.

The XRD patterns of LZ7C3, La₁₋₀₉Ca₀₋₁₀(Z₀₇Ce₀₃)₀₋₁₋₀₉Fe₀₋₁₀O₀₋₀₉ (LZ7C3Fe) and La₁₋₀₉Ca₀₋₁₀(Z₀₇Ce₀₃)₀₋₁₋₀₉Cr₀₋₁₀O₀₋₀₉ (LZ7C3Cr) ceramics are shown in Figure 1. As can be observed, LZ7C3 and LZ7C3Fe display a mixture of pyrochlore and fluorite structures. Compared with LZ7C3, LZ7C3Fe has a weaker fluorite peak which indicates a lower extent of the fluorite phase. Instead, LZ7C3Cr ceramic displays a single pyrochlore structure.

Figure 2 shows the SEM micrographs and images of the as-synthesized ceramics. As shown in Figure 2(a), the microstructure of LZ7C3 shows numerous pores due to the low sintering temperature. However, the microstructures of LZ7C3Fe [Figs. 2(c) and 2(d)] and LZ7C3Cr [Figs. 2(e) and 2(f)] display a dense structure. Obviously, the ion-doping ceramics are easier to sinter than LZ7C3 owing to the doping ions acting as sintering aid.¹⁶)

According to the Kirchhoff’s law, the high emissivity corresponds to the high absorptivity.⁹ Figure 3 shows the near-infrared absorptivity of the as-synthesized ceramics. The near-infrared absorptivity is noted to be significantly enhanced by co-doping with Ca²⁺ and transition metal cations (Fe³⁺, Cr³⁺) from 0.069 (LZ7C3) to 0.619 (LZ7C3Fe) and 0.876 (LZ7C3Cr). In addition, LZ7C3Cr has a higher absorptivity than LZ7C3Fe. The 3 d orbit of Fe³⁺, Cr³⁺ in the octahedral coordination generally split and produce d-d transitions, and the absorption generated by the d-d transitions of Fe³⁺ and Fe⁴⁺ as well as Cr³⁺ and Cr⁴⁺ generally corresponds to the visible range, verified by the evident increase in the spectral absorption in the 200–800 nm range, as shown in Figure 4.⁸

According to the UV–Vis absorption spectra, the band gap energy E₉ of the samples can be empirically determined by the relation (αhv)² = A(hv − Eg),¹⁷),¹⁸) where α is the absorbance of the sample, A is the constant related to the material, h is the Planck’s constant, and v is the photon frequency. Figure 5 shows the relationship of hν and (αhv)². In case Ca²⁺ and the transition metal cations (Fe⁴⁺, Cr⁴⁺) were co-doped in LZ7C3, the Ca²⁺ ions would occupy A site of La³⁺, and the transition metal cations (Fe³⁺, Cr³⁺) at B site would transform to the tetravalent ions (Fe⁴⁺, Cr⁴⁺) by electron transition in this case (high oxygen pressure) for charge compensation.¹⁷),¹⁸) Thus, the concentration of the tetravalent ions (Fe⁴⁺, Cr⁴⁺) in the samples was increased by co-doping with Ca²⁺ and the transition metal cations (Fe³⁺, Cr³⁺). It consequently resulted in the introduction of the impurity energy level and a decrease in the band gap energy E₉ from 2.512 eV (LZ7C3) to 1.750 eV (LZ7C3Fe) and 1.651 eV (LZ7C3Cr), as seen in Figure 5. The observed phenomenon could increase the concentration of the free carriers, thus, resulting in enhanced free carrier absorption.¹⁷),¹⁸) Cr³⁺ was more effective than Fe³⁺ in decreasing the band gap energy E₉.
resulting in more free carriers and superior near-infrared emissivity property.

The free carrier absorption as well as lattice absorption contribute mainly to the absorptivity of the material in the wavelength ranges 1–6 and 6–15 μm, respectively. The near-infrared emissivity (0.75–2.5 μm) was significantly enhanced by co-doping with Ca$^{2+}$ and the transition metal cations (Fe$^{3+}$, Cr$^{3+}$), as studied above. With same emissivity mechanism as 0.75–2.5 μm, the emissivity for 3–5 μm range was also significantly enhanced from 0.463 (LZ7C3) to 0.660 (LZ7C3Fe) and 0.877 (LZ7C3Cr) at 300 °C, as seen in Table 1. Instead, doping had an insignificant effect on the infrared emissivity of LZ7C3 in the wavelength range of 8–14 μm at 300 °C, which might be attributed to the high emissivity value of LZ7C3 (0.962) in the 8–14 μm range.

Fig. 2. SEM images and photographs of the as-synthesized ceramics: (a, b) LZ7C3; (c, d) LZ7C3Fe; (e, f) LZ7C3Cr.

Fig. 3. Near-infrared emissivity of the as-synthesized ceramics.

Fig. 4. The UV–VIS absorptivity spectra of the as-synthesized ceramics.
In summary, LZ7C3 ceramics co-doped with Ca$^{2+}$ and different transition metal cations (Fe$^{3+}$, Cr$^{3+}$) were fabricated by the pressureless-sintering method. LZ7C3 and LZ7C3Fe exhibited a mixture of pyrochlore and fluorite structures, whereas LZ7C3Cr ceramic displayed a single pyrochlore structure. The infrared emissivity of LZ7C3 in the wavelength range 0.75–2.5 and 3–14 μm was significantly enhanced by co-doping, especially with Ca$^{2+}$ and Cr$^{3+}$. The infrared emissivity in the wavelength range 0.75–2.5 μm could be improved from 0.069 (LZ7C3) to 0.876 at room temperature, and from 0.463 (LZ7C3) to 0.877 in 3–5 μm at 300 °C, by co-doping with Ca$^{2+}$ and Cr$^{3+}$. On the other hand, doping had an insignificant effect on the infrared emissivity of LZ7C3 in the wavelength range of 8–14 μm at 300 °C owing to its high emissivity value (0.962).

References
1) H. Z. Liu, J. H. Ouyang and Z. G. Liu, Appl. Surf. Sci., 271, 52–59 (2013).
2) Y. H. Ma, Z. G. Liu and J. H. Ouyang, Ceram. Int., 42, 14749–14753 (2016).
3) R. Ma, Z. Li and F. Liu, Ceram. Int., 45, 16130–16137 (2019).
4) X. Zhou, T. Chen and J. Yuan, J. Am. Ceram. Soc., 102, 6357–6371 (2019).
5) D. M. Van Wie, D. G. Drewry and D. E. King, J. Mater. Sci., 39, 5915–5924 (2004).
6) H. Z. Liu, Z. G. Liu and J. H. Ouyang, Appl. Phys. Lett., 101, 161903 (2012).
7) H. Z. Liu, J. H. Ouyang and Z. G. Liu, J. Am. Ceram. Soc., 94, 3195–3197 (2011).
8) Y. Su, X. Li and H. Ji, Ceram. Int., 44, 20427–20431 (2018).
9) Z. Xin, J. Wang and J. Yuan, J. Eur. Ceram. Soc., 38, 1897–1907 (2018).
10) S. Chen, J. Xiang and J. Huang, Appl. Surf. Sci., 340, 173–181 (2015).
11) X. Zhou, L. He and X. Cao, Corros. Sci., 115, 143–151 (2017).
12) Y. Yin, W. Ma and X. Jin, J. Alloy. Compd., 689, 123–129 (2016).
13) X. Zhou, B. Zou and L. He, Corros. Sci., 100, 566–578 (2015).
14) X. Cao, J. Li and X. Zhong, Mater. Lett., 62, 2667–2669 (2008).
15) S. Zhao, Y. Zhao and B. Zou, J. Alloy. Compd., 592, 109–114 (2014).
16) Z. Han, X. Li and J. Ye, J. Am. Ceram. Soc., 98, 2336–2339 (2015).
17) J. Ye, C. Bu and Z. Han, J. Eur. Ceram. Soc., 35, 3111–3118 (2015).
18) B. U. Cong-Hao, H. E. Gang and Y. E. Jian-Ke, J. Ceram. Soc. Jpn., 124, 768–773 (2016).