HARISH-CHANDRA DECOMPOSITION FOR
ZONAL SPHERICAL FUNCTION OF TYPE A_n

A. Kazarnovski-Krol

Abstract. This paper is devoted to homological treatment of Harish-Chandra decomposition for zonal spherical functions of type A_n.

0. Introduction

Heckman-Opdam system of differential equations is holonomic, with regular singularities and has locally $|W|$-dimensional space of solutions (cf. corollary 3.9 of [12]), where $|W|$ is the cardinality of the Weyl group W. The system is a generalization of radial parts of Laplace-Casimir operators on symmetric Riemannian spaces of nonpositive curvature and is isomorphic to Calogero-Sutherland model in the integrable systems.

Harish-Chandra asymptotic solution is a unique solution of the system with the prescribed asymptotic behavior:

$$F_w(z) = z^{w\lambda + \rho}(1 + \ldots)$$

$(0 < |z_1| < |z_2| < \ldots < |z_{n+1}|)$. Here $w \in W$ are elements of the Weyl group. These solutions provide a basis in the space of all the solutions in the chamber $0 < |z_1| < \ldots < |z_{n+1}|$. Among all the solutions there is a distinguished one up to the constant multiplier, which admits continuation to analytic function at $z_1 = z_2 = z_3 = \ldots = z_{n+1} \neq 0$. This solution is referred to as zonal spherical function. Zonal spherical function is normalized s.t. it is equal to 1 at $z_1 = z_2 = \ldots = z_{n+1} = 1$.

Representation of the zonal spherical function as linear combination of elements of the basis (Harish-Chandra asymptotic solutions) is called Harish-Chandra decomposition.

In ref. [11] we provided an integral representation for the solutions of Heckman-Opdam system of differential equations in the case of A_n. We also described contours for integration Δ_w, integrals over them provide Harish-Chandra asymptotic solution $F_w(z)$. In ref. [34] we studied
the cycle Δ for integration for zonal spherical function. This paper is devoted to homological treatment of Harish-Chandra decomposition for zonal spherical functions of type A_n. Namely, we explicitly decompose the distinguished cycle Δ into linear combination of cycles Δ_w described in [11] and check that after normalization this turns out to be the Harish-Chandra decomposition for zonal spherical function of type A_n (theorem 2.2 and 3.1 below). The point of view that linear relations between the solutions reflect the linear relations in homology group is due to B. Riemann. He also emphasized the importance of the monodromy. In this case the corresponding homology theory is described in [2, 37]. Harish-Chandra asymptotic solutions correspond to conformal blocks in conformal field theory (WA_n-algebras) and provide a basis in the space of conformal blocks, zonal spherical function is a particular conformal block, in the case of A_2 see figs. 3a, 3b, 3c, 3d, 3e, 3f and 2 below.

0.1 Notations.

$\alpha_1, \alpha_2, \ldots, \alpha_n$ - simple roots of root system of type A_n

$\Lambda_1, \Lambda_2, \ldots, \Lambda_n$ - fundamental weights

R_+ - set of positive roots

$\delta = \frac{1}{2} \sum_{\alpha \in R_+} \alpha$ - halfsum of positive roots

k - complex parameter (‘halfmultiplicity’ of a root)

$$\rho = \frac{k}{2} \sum_{\alpha \in R_+} \alpha$$

c(λ, k)- c-function of Harish-Chandra

1. MULTIVALUED FORM

Consider the following set of variables:

$z_l, l = 1, \ldots, n+1, t_{ij}, i = 1, \ldots, j, j = 1, \ldots, n$.

Variables z_l have meaning of arguments, while variables t_{ij} are variables of integration.

It is convenient to organize variables z_l, t_{ij} in the form of a pattern, cf. fig 1.

The idea of such an organization is borrowed from Gelfand-Zetlin patterns [1].

Definition 1.1. Consider the following multivalued form $\omega(z, t)$:
HARISH-CHANDRA DECOMPOSITION FOR ZONAL SPHERICAL FUNCTION OF TYPE $A_{n,3}$

$\begin{array}{ccccccc}
z_1 & z_2 & \cdots & \cdots & z_{n+1} \\
t_{1,n} & t_{2,n} & \cdots & t_{n,n} \\
\cdots & \cdots & \cdots & \cdots \\
t_{1,2} & t_{2,2} & \cdots & t_{1,1} \\
\end{array}$

Figure 1. Variables organized in a pattern

\[
\omega(z, t) := \prod_{i=1}^{n+1} z_i^{\lambda_1 + \frac{k}{2}} \prod_{i_1 > i_2} (z_{i_1} - z_{i_2})^{1-2k} \\
\times \prod_{i=1}^{n+1} \prod_{j=1, j \neq i}^{n} (z_i - t_{i,n})^{k-1} \\
\times \prod_{j=1}^{n-1} \prod_{i_1 > i_2} (t_{ij} - t_{i_1,j+1})^{k-1} \\
\times \prod_{j=2}^{n} \prod_{i_1 > i_2} (t_{i_1,j} - t_{i_2,j})^{2-2k} \\
\times \prod_{j=1}^{n} \prod_{i=1}^{n} (t_{ij})^{\lambda_{n-j+2} - \lambda_{n-j+1} - k} \ dt_{11} dt_{12} dt_{22} \ldots dt_{nn}
\]

Remark 1.2. k is a complex parameter - ‘half-multiplicity’ of a restricted root, cf. Heckman, Opdam [12].

In [11] we proved that integrals over the form $\omega(z, t)$ over appropriate cycles provide all the solutions to Heckman-Opdam system of differential equations and described cycles Δ_w for Harish-Chandra asymptotic solutions (definition 4.3 and theorem 6.3 of [11]).

Definition 1.3. A complex number z can be represented as $z = re^{i\alpha}$, where r, α are real numbers, $r \geq 0$. r is called absolute value of z, while α is called the phase of z. When we say that the phase of a complex number z is equal to 0, we mean that $\alpha = 0$, or the number itself is real and nonnegative.
2. The distinguished cycle Δ

Assume that $z_1, z_2, \ldots, z_{n+1}$ are real and

$$0 < z_1 < z_2 < \ldots < z_{n+1}.$$

Definition 2.1. Define cycle $\Delta = \Delta(z)$ by the following inequalities:

$$t_{i,j+1} \leq t_{ij} \leq t_{i+1,j+1}$$

and

$$z_i \leq t_{i,n} \leq z_{i+1}.$$

Define form $\omega_\Delta(z, t)$ as:

$$\omega_\Delta(z, t) := \prod_{i=1}^{n+1} z_i^{\lambda_i+\frac{k}{2}} \prod_{i_1 > i_2} (z_{i_1} - z_{i_2})^{1-2k} \times \prod_{i \leq l} (z_l - t_{i,n})^{k-1} \prod_{i > l} (t_{i,n} - z_l)^{k-1} \times \prod_{j=1}^{n-1} \prod_{i_1 > i_2} (t_{i_1,j} - t_{i_2,j+1})^{k-1} \prod_{i_2 \geq i_1} (t_{i_2,j+1} - t_{i_1,j})^{k-1} \times \prod_{j=2}^{n-1} \prod_{i_1 > i_2} (t_{i_1,j} - t_{i_2,j+1})^{2-2k} \times \prod_{j=1}^{n} \prod_{i=1}^{j} (t_{i,j}^{\lambda_{i+j+2}-\lambda_{i-j+1}-k}) dt_{11} dt_{12} dt_{22} \ldots dt_{nn}.$$

It is assumed that phases of factors in the formula for $\omega_\Delta(z, t)$ are equal to zero if k and $\lambda_1, \lambda_2, \ldots, \lambda_{n+1}$ are real. For the homological meaning of the cycle Δ see fig. 2 below and theorem 5.7 of [34].

In [11] cycles $\Delta_w(z)$ and forms $\omega_w(z, t)$ were described, in the case of A_2 see figs. 3a,3b,3c,3d,3e,3f below. In the case A_n the figures are similar.
Figure 2. Zonal spherical function

The following theorem explains the relation between $\Delta(z)$ and $\Delta_w(z)$.

Theorem 2.2. *(Harish-Chandra decomposition)*

\[
\int_{\Delta(z)} \omega_{\Delta(z,t)} = \sum_{w \in S_{n+1}} b(w, \lambda, k) \int_{\Delta_w(z)} \omega_w(z),
\]

where
\[b(w, \lambda, k) = \frac{e^{2\pi i (\lambda, \delta)} e^{\pi i l(w)(k-1)}}{(2i)^{\frac{n(n+1)}{2}} \prod_{\alpha \in R_+} \sin(-\pi (w\lambda, \alpha^\vee))} \]

The theorem is an application of the two following lemmas, also section 2 of [11] is useful.

Lemma 2.3. *(Elementary decomposition)* Let \(z_1, z_2, \ldots, z_n \) be real and \(0 < z_1 < z_2 < \ldots < z_n \). Consider the following integral:

\[\int t^{a_0-1}(z_1 - t)^{a_1-1}(z_2 - t)^{a_2-1} \ldots (z_n - t)^{a_n-1} dt \]

and consider contours \(\gamma_1(t), \gamma_2(t), \gamma(t), t \in [0, 1] \) as follows.

\[\gamma(t) = tz_{i-1} + (1 - t)z_i \]

\(\gamma_1(t) \) is a loop which starts and ends at \(z_{i-1} \) and goes counterclockwise s.t. the following inequalities are fullfilled for all \(t \in [0, 1] \):

\[z_{i-2} < |\gamma_1(t)| \leq z_{i-1} \]
\(\gamma_2(t) \) is a loop which starts and ends at \(z_i \) and goes counterclockwise, s.t. the following inequalities are fulfilled for all \(t \in [0,1] \):

\[
z_{i-1} < |\gamma_2(t)| \leq z_i
\]

as indicated on fig. 4, phases of the factors should be appropriately chosen. The following is the specific choice of the phases: if all \(a_0, a_1, \ldots, a_n \) are real, then the phase of the integrand along \(\gamma_1(t), \gamma_2(t), \gamma(t) \) is chosen to be zero for small values of \(t \). Then we have the following relation between \(\gamma_1, \gamma_2 \) and \(\gamma \):

\[
\gamma = -\gamma_1 \times \frac{e^{-\pi i (a_0 + a_1 + \ldots + a_{i-1})}}{(2i) \sin \pi (a_0 + a_1 + \ldots + a_i)} + \gamma_2 \times \frac{e^{-\pi i (a_0 + a_1 + \ldots + a_i)}}{(2i) \sin \pi (a_0 + a_1 + \ldots + a_i)}
\]
Lemma 2.4. (Elimination of ‘wrong’ diagrams). Integrals of the form $\omega(z,t)$ ($\omega_w(z,t)$), such that contours for integration of t_{ij}, $t_{i,j+1}$, $t_{i+1,j+1}$ are shown on fig. 5, provided k is not an integer, are equal to zero. We suppose that t_{ij} goes from $t_{i,j+1}$ to $t_{i+1,j+1}$, $t_{i,j+1}$ goes from $t_{i+1,j+2}$ to $t_{i+1,j+2}$, and $t_{i+1,j+1}$ goes from $t_{i+1,j+2}$ to $t_{i+1,j+2}$ cf. fig. 5a. The same holds true for $t_{i-1,n-1}$, $t_{i-1,n}$, $t_{i,n}$, and z_i correspondingly, cf. fig. 5b.

By the 'wrong' diagrams we mean diagrams where the two arrows have the same target, see figs. 5 and 6 of [34].
Remark 2.5. Lemma 2.4 is equivalent to quantum Serre’s relations in the form given in [3], see also [2].

3. Normalization

Let

\[F_w(z) = \left(\prod_{\alpha \in R_+} \frac{\Gamma((-w \lambda, \alpha^\vee)) \sin(\pi (-w \lambda, \alpha^\vee))}{\Gamma((-w \lambda, \alpha^\vee) + k)} \right) \times e^{-2\pi i(\lambda, \delta)} e^{-\pi i(k-1)(l(w))} \Gamma(k) \frac{\Gamma(\frac{n+1}{2})}{\Gamma(n+2)} \int_{\Delta_w(z)} \omega_w(z, t) \]

Then

\[F_w(z) = z^{w \lambda^+ \rho} (1 + \ldots) \]

cf. [11] theorem 6.1.

Also, let

\[F_\Delta(z) = \frac{\Gamma(k) \Gamma(2k) \ldots \Gamma((n + 1)k)}{\Gamma(\frac{n+1}{2})^{(n+2)}} \int_{\Delta(z)} \omega_\Delta(z, t) \]
Then $F_\Delta(1,1,\ldots,1) = 1$, cf. [10] theorem 1.5.

After this normalization theorem 1 reads as usual Harish-Chandra decomposition cf. [12,15].

Theorem 3.1. *In the above normalization we have:*

$$F_\Delta(z) = \sum_{w \in S_{n+1}} c(w\lambda,k)F_w(z),$$

where $c(w\lambda,k)$ is a c-function of Harish-Chandra:
HARISH-CHANDRA DECOMPOSITION FOR ZONAL SPHERICAL FUNCTION OF TYPE A_n

Figure 4. Elementary decomposition.

Figure 5a. Cycles of this type are homological to zero

$$c(\omega \lambda, k) = \frac{\prod_{\alpha \in R_+} \Gamma((\rho, \alpha^\vee) + k)}{\prod_{\alpha \in R_+} \Gamma((-\omega \lambda, \alpha^\vee) + k)}$$

I.e. $F_\Delta(z)$ is identified with zonal spherical function.
Corollary 3.2. Suppose $z_1(t), z_2(t), \ldots, z_{n+1}(t), t \in [0, 1]$ are closed loops on a complex plane, i.e. $z_1(0) = z_1(1), z_2(0) = z_2(1), \ldots, z_{n+1}(0) = z_{n+1}(1)$, such that $z_i(t) \neq z_j(t)$ for $i \neq j$. Let also $Re(z_i(t)) > 0$ for each $i = 1, \ldots, n+1$. Then the homological class of the cycle Δ is preserved under the monodromy along paths $z_i(t)$.

Remark 3.3. In this approach multiplicative structure of c-function of Harish-Chandra gets a very simple explanation. Namely:

$$c(\lambda, k) = \frac{\prod_{1 \leq i < j \leq n} \frac{\Gamma((\rho, e_i - e_j) + k)}{\Gamma((\rho, e_i - e_j))}}{\prod_{1 \leq i < j \leq n} \frac{\Gamma((-\omega\lambda, e_i - e_j) + k)}{\Gamma((-\omega\lambda, e_i - e_j))}} \times \frac{\prod_{1 \leq i < n+1} \frac{\Gamma((\rho, e_i - e_{n+1}) + k)}{\Gamma((\rho, e_i - e_{n+1}))}}{\prod_{1 \leq i < n+1} \frac{\Gamma((-\omega\lambda, e_i - e_{n+1}) + k)}{\Gamma((-\omega\lambda, e_i - e_{n+1}))}}$$

Here $\{e_i - e_j | 1 \leq i < j \leq n+1\}$ are positive roots of root system of type A_n. Multiplicative properties of c-function of Harish-Chandra were observed by Bhanu-Murti in the case of $SL(n, \mathbb{R})$ and in general case by Gindikin and Karpelevich [17]. c-function of Harish-Chandra is equal to the product of elements of $6j$-symbols , see fig. 6. Multiplicative structure of c-function of Harish-Chandra amounts to simple combinatorics related to positive roots , in this case:

$$\{e_i - e_j | 1 \leq i < j \leq n+1\} = \{e_i - e_j | 1 \leq i < j \leq n\} \cup \{e_i - e_{n+1} | 1 \leq i < n\}.$$
This combinatorics is both very instructive and restrictive.

Remark 3.4. We have also checked the monodromy properties of the cycle Δ using quantum group argument, see [34].

Remark 3.5. Harish-Chandra decomposition for zonal spherical function might be considered as an analogue of Bernstein-Gelfand-Gelfand resolution.

Concluding remark. We would like to point out once more that the distinguished cycle Δ appeared in the classical calculation of Gelfand and Naimark [16] of zonal spherical function for $SL(n, \mathbb{C})$, originates in the so-called elliptic coordinates and provides a materialization of the flag manifold.
Acknowledgments. I am grateful to I. Gelfand for stimulating discussions concerning the theory of spherical functions and the theory of hypergeometric functions, to S. Lukyanov for stimulating discussions concerning conformal field theory, to V. Brazhnikov for helpful discussions.
HARISH-CHANDRA DECOMPOSITION FOR ZONAL SPHERICAL FUNCTION OF TYPE A

REFERENCES

1. Gelfand I.M., Tsetlin M.L., Finite-dimensional representations of the group of unimodular matrices, Dokl. Akad. Nauk SSSR 71 (1950), 825-828.
2. Schecthman V., Varchenko A., Quantum groups and homology of local systems., IAS preprint (1990).
3. Bouwknegt P., McCarthy J., Pilch K., Quantum group structure in the Fock space resolutions of SL(n) representations, Comm. Math. Phys. 131, 125-156.
4. Felder G., BRST approach to minimal models, Nucl. Phys. B 317 (1989), 215-236.
5. Varchenko A., The function $(t_i - t_j)^{-\alpha_{ij}}$ and the representation theory of Lie algebras and quantum groups, manuscript (1992).
6. Schecthman V., Varchenko A., Arrangements of hyperplanes and Lie algebra homology, Invent.Math 106 (1991), 139.
7. Fateev V., Lukyanov S., Vertex operators and representations of Quantum Universal enveloping algebras, preprint Kiev (1991).
8. Lukyanov S., Fateev V., Additional Symmetries and exactly soluble models in two-dimensional conformal field theory, Sov. Sci. Rev. A Phys. Vol 15 (1990), 1-17.
9. Matsuo A., Integrable connections related to zonal spherical functions, Invent. math. 110 (1992), 95-121.
10. Kazarnoski-Krol A., Value of generalized hypergeometric function at unity, preprint hep-th 9405122.
11. Kazarnoski-Krol A., Cycles for asymptotic solutions and the Weyl group, preprint hep-th 9504010.
12. Heckman G., Opdam E., Root systems and hypergeometric functions I, Comp. Math. 64 (1987), 329-352,
13. Harish-Chandra, Spherical functions on a semisimple Lie group I, Amer. J. of Math 80 (1958), 241-310.
14. Helgason S., Groups and geometric analysis, Academic Press, Inc. (1984).
15. Opdam E., An analogue of the Gauss summation formula for hypergeometric functions related to root systems, preprint (July 1991).
16. Gelfand I.M., Naimark M.A., Unitary representations of classical groups, Tr. Mat. Inst. Steklova 36 (1950), 1-288.
17. Gindikin S.G., Karpelevich F.I., Plancherel measure for Riemannian symmetric spaces of nonpositive curvature, Dokl. Akad. Nauk SSSR 145 (1962), no. 2, 252-255.
18. Aomoto K., Sur les transformation d’horisphere et les equations integrales qui s’y rattachent, J. Fac. Sci. Univ. Tokyo 14 (1967), 1-23.
19. Rosso M., An analogue of P.B.W. Theorem and the universal R-matrix for $U_q(sl(N+1))$, Comm. math. phys. 124 (1989), 307 - 318.
20. Drinfeld V.G., Quantum groups, Proc. ICM vol. 1 (Berkeley, 1986), 798-820.
21. Jimbo M., A q-analogue of $U(gl(N+1))$, Hecke algebra and Yang-Baxter equation, Lett. in Math. Phys. 11 (1986).
22. Kohno T., Quantized universal enveloping algebras and monodromy of braid groups, preprint (1988).
23. Gomez C., Sierra G., Quantum group meaning of the Coulomb gas, Phys. Lett. B 240 (1990), 149 - 157.
24. Ramirez C., Ruegg H., Ruiz-Altaba M., The Contour picture of quantum groups: Conformal field theories, Nucl. Phys. B 364 (1991), 195-233.
25. Alvarez-Gaume L., Gomez C., Sierra G., Quantum group interpretation of some conformal field theories, Phys. Lett. B (1989), 142-151.
26. Ramirez C., Ruegg H., Ruiz-Altaba M., Explicit quantum symmetries of WZNW theories, Phys. Lett. B (1990), 499-508.
27. Kirillov A.N., Reshetikhin N., q-Weyl group and a Multiplicative Formula for Universal R-Matrices, Commun. Math. Phys. 134 (1990), 421-431.
28. Feigin B., Fuchs D., Representations of the Virasoro Algebra, in Representations of infinite-dimensional Lie groups and Lie algebras (1989), 465-554.
29. Heckman G., Hecke algebras and hypergeometric functions, Invent. Math. 100 (1990), 403-417.
30. Cherednik I., Monodromy representations of generalized Knizhnik-Zamolodchikov equations and Hecke algebras, Publ.RIMS Kyoto Univ. 27 (1991), 711-726.
31. Schechtman V., Varchenko A., Hypergeometric solutions of Knizhnik-Zamolodchikov equations, Letters in Math.Phys. 20 (1990), 279-283.
32. Cherednik I., Integral solutions of trigonometric Knizhnik-Zamolodchikov equations and Kac-Moody algebras, Publ.RIMS Kyoto Univ. 27 (1991), 727-744.
33. Dotsenko Vl., Fateev V., Conformal algebra and multipoint correlation functions in 2D statistical models, Nucl. Phys. B240 (1984), 312-348.
34. Kazarnovski-Krol A., Cycle for integration for zonal spherical function of type A_n, q-alg 9511009.
35. Belavin A.A, Polyakov A.M., Zamolodchikov A.B., Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B241 (1984), 333-380.
36. Kirillov A.N., Reshetikhin N.Yu, Representations of the algebra $U_q(sl(2))$, q-orthogonal polynomials and invariants of links, in Infinite-dimensional Lie algebras and groups. Kac V.G. (ed.) (1989).
37. Finkelberg M., Schechtman V., Localization of \mathfrak{u}-modules I, Intersection cohomology of real arrangements, hep-th 9411050.
38. Kazarnovski-Krol A., A generalization of Selberg integral, preprint July 1995, q-alg 9507071.

Department of Mathematics Rutgers University New Brunswick, NJ 08854, USA