Little galoisian modules

Chandan Singh Dalawat
Harish-Chandra Research Institute
Chhatnag Road, Jhusi, Allahabad 211019, India
dalawat@gmail.com

Abstract. Let \(p \) be a prime number, let \(K \) be a \(p \)-field (a local field with finite residue field of characteristic \(p \)), let \(L \) be a finite galoisian tamely ramified extension of \(K \), and let \(G = \text{Gal}(L|K) \). Suppose that \(L \) is split over \(K \) in the sense that the short exact sequence \(1 \to T \to G \to G/T \to 1 \) has a section, where \(T \) is the inertia subgroup of \(G \). We determine the structure of the \(F_p[G] \)-module \(L^\times/L^{\times p} \) in characteristic 0 when the \(p \)-torsion subgroup \(pL^\times \) of \(L^\times \) has order \(p \), and of the \(F_p[G] \)-modules \(L^\times/L^{\times p} \) and \(L^\times/\varphi(L^\times) \) in characteristic \(p \), where \(\varphi(x) = x^p - x \).

Let \(\bar{K} \) be a maximal galoisian extension of \(K \), let \(V \) be the maximal tamely ramified extension of \(K \) in \(\bar{K} \), let \(\Gamma = \text{Gal}(V|K) \), and let \(B \) be the maximal abelian extension of exponent \(p \) of \(V \) in \(\bar{K} \). We determine the structure of the \(F_p[\Gamma] \)-module \(\text{Gal}(B|V) \), and show how this leads in characteristic 0 to a simple proof of the fact that the profinite group \(\text{Gal}(\bar{K}|K) \) is generated by \([K:Q_p] + 3 \) elements.

1. Introduction

(1) In the first part of this Note (§2), we work with a finite field \(k \), a finite extension \(l \) of \(k \), and an injective morphism of groups \(\theta : T \to l^\times \). Let \(q = \text{Card } k \), let \(\Sigma = \text{Gal}(l|k) \), and let \(\sigma \) be the generator \(x \mapsto x^q \) \((x \in l)\) of \(\Sigma \). View \(T \) as a submodule of the \(\Sigma \)-module \(l^\times \), and let \(G = T \times_q \Sigma \) be the twisted product of \(\Sigma \) by \(T \). For every \(i \in \mathbb{Z} \), we have the \(k[G] \)-module \(l(i) \) whose underlying \(k \)-space is \(l \) and on which \(G \) acts by

\[
\sigma.x = x^q, \quad t.x = \theta(t)^i x \quad (x \in l, \ t \in T),
\]

We show that these modules are projective, and determine when two such modules are isomorphic. The main tool is a lemma of Iwasawa [5, Lemma 1, p. 449].

MSC2010 : Primary 11R23, 11S15
Keywords : Local fields, galoisian modules, tame ramification
(2) In the second and third parts (§3 and §4), we work with a local field K with finite residue field k of cardinality q and characteristic p, and a finite galoisian tamely ramified split extension L of K of residue field l and group $G = \text{Gal}(L|K)$. The inertia subgroup $T \subset G$ comes with a faithful character $\theta : T \to l^\times$ and, since L is split over K by hypothesis, G is isomorphic to $T \times_q \Sigma$, where $\Sigma = \text{Gal}(l|k)$.

Exploiting our study of the $k[G]$-modules $l(i)$ in §2, we determine the structure of the $\mathbb{F}_p[G]$-module $L^\times/L^{x\circ p}$ when K has characteristic 0 and pL^\times has order p in §3, and of the $\mathbb{F}_p[G]$-modules $L^\times/L^{x\circ p}$ and $L^+/\varphi(L^+)$, where $\varphi(x) = x^p - x$ ($x \in L$), when K has characteristic p in §4. The results are a generalisation from the much simpler case $L = K(\sqrt[p-1]{K^\times})$ treated in [3].

(3) In the fourth part (§5 and §6), we consider the maximal tamely ramified extension V of K of group $\Gamma = \text{Gal}(V|K)$ and, putting everything together, determine the structure of the $\mathbb{F}_p[[\Gamma]]$-module $V^\times/V^{x\circ p}$ in characteristic 0 and of the $\mathbb{F}_p[[\Gamma]]$-modules $V^\times/V^{x\circ p}$ and $V^+/\varphi(V^+)$ in characteristic p. As a consequence, we determine (in both cases : mixed- and equi-characteristic) the structure of the $\mathbb{F}_p[[\Gamma]]$-module $\text{Gal}(B|V)$, where B is the maximal abelian extension of V of exponent p. This is achieved by passing to the limit over the results of §3 and §4.

Finally, in §6 we take K to be a finite extension of \mathbb{Q}_p with maximal galoisian extension \tilde{K} and show how the structure theorem for the $\mathbb{F}_p[[\Gamma]]$-module $\text{Gal}(B|V)$ as proved in §5 leads to a simple proof of the fact that the profinite group $\text{Gal}(\tilde{K}|K)$ is generated by $[K : \mathbb{Q}_p] + 3$ elements.

2. Iwasawa’s lemma

(4) We recall a crucial lemma from Iwasawa [5] and simplify its proof. Let p be a prime number and let $e > 0$ be an integer $\not\equiv 0 \pmod{p}$. Let $g > 0$ be a multiple of the order of $\bar{p} \in (\mathbb{Z}/e\mathbb{Z})^\times$, so that there is a unique morphism of groups $\mathbb{Z}/g\mathbb{Z} \to (\mathbb{Z}/e\mathbb{Z})^\times$ such that $1 \mapsto \bar{p}$. Let n be a multiple of $\text{lcm}(p - 1, e)$, and write $n = c.(p - 1)$ and $n = d.e$. Let $b^{(i)}$ ($i > 0$) be the sequence of positive integers $\not\equiv 0 \pmod{p}$, namely $b^{(i)} = i + \left\lceil (i - 1)/(p - 1) \right\rceil$. For every $a, b \in \mathbb{Z}$, we denote by $[a, b]$ the set of integers between a and b.

(5) The map $[1, n] \times \mathbb{Z}/g\mathbb{Z} \to \mathbb{Z}/e\mathbb{Z}$ sending (i, j) to $b^{(i)}p^j \pmod{e}$ is surjective and every fibre has dg elements.

Proof. Consider the map $[1, cp] \times \mathbb{Z}/g\mathbb{Z} \to \mathbb{Z}/e\mathbb{Z}$ sending (r, j) to $rp^j \pmod{e}$; it is the “product” of the natural map of reduction \pmod{e} on the first factor and the map $1 \mapsto p$ discussed in (4) on the second factor,
and it is clearly surjective. View the interval \([1, cp]\) as the (disjoint) union of the successive intervals \([1, de]\) and \([n + 1, n + c]\) on the one hand, and as the (disjoint) union of the subsets \((b(i))_{i \in [1, n]}\) and \((ip)_{i \in [1, c]}\) on the other. By the contribution of a subset \(S \subset [1, cp]\) we mean the family \((t_x)_{x \in \mathbb{Z}/g\mathbb{Z}}\), where \(t_x\) is the number of antecedents of \(x\) in \(S \times \mathbb{Z}/g\mathbb{Z}\). Clearly, the contribution of \((ip)_{i \in [1, c]}\) is the same as that of \([n + 1, n + c]\), because \(j \mapsto j + 1\) is a permutation of \(\mathbb{Z}/g\mathbb{Z}\). So the contribution of \((b(i))_{i \in [1, n]}\) is the same as that of \([1, de]\), which is easy to compute: for fixed \(x \in \mathbb{Z}/e\mathbb{Z}\) and \(j \in \mathbb{Z}/g\mathbb{Z}\), there are exactly \(d\) elements \(r \in [1, de]\) such that \(rp^j \equiv x \pmod{e}\).

(6) The \(k[\Sigma]\)-module \(l\). Let \(k\) be a finite extension of \(F_p\) of cardinality \(q = p^a\). Let \(l\) be a finite extension of \(k\), and put \(f = [l : k]\), \(g = af\). Let \(\Sigma = \text{Gal}(l|k)\), and denote by \(\sigma\) the generator \(x \mapsto x^g\ (x \in l)\) of \(\Sigma\). The \(k[\Sigma]\)-module \(l\) is free of rank 1, as follows from the normal basis theorem [1, V.70]: there exists an \(\alpha \in l\) such that \((\sigma^i(\alpha))_{i \in \mathbb{Z}/f\mathbb{Z}}\) is a \(k\)-basis of \(l\).

(7) The groups \(T, G,\) and the character \(\theta : T \to l^\times\). Let \(T\) be a subgroup of \(l^\times\), \(e\) its order (so that \(q^f \equiv 1 \pmod{e}\)) and \(\theta : T \to l^\times\) the inclusion; the group \(\text{Hom}(T, l^\times)\) of characters of \(T\) is cyclic of order \(e\) and generated by \(\theta\). Identifying \(\text{Aut}(T)\) with \((\mathbb{Z}/e\mathbb{Z})^\times\), there is a unique morphism of groups \(\Sigma \to \text{Aut}(T)\) such that \(\sigma \mapsto q\); endow \(T\) with this action of \(\Sigma\) (which is the galoisian action as a subgroup of \(l^\times\)) and let \(G = T \times_q \Sigma\) be the twisted product of \(T\) by the \(\Sigma\)-module \(T\), so that \(\sigma t \sigma^{-1} = t^q\) for every \(t \in T\); we sometimes write \(G = T\Sigma\).

(8) Concretely, if we choose a generator \(\tau\) for \(T\), then the group \(G\) has the presentation \(G = \langle \sigma, \tau \mid \sigma^f = 1, \tau^e = 1, \sigma \tau \sigma^{-1} = \tau^q \rangle\), and \(\theta(\tau)\) is a primitive \(e\)-th root of 1 in \(l\). Conversely, if we choose an element \(\eta \in l^\times\) of order \(e\), then \(\theta^{-1}(\eta)\) is a generator of \(T\). In what follows, we don’t need to choose \(\tau\) or \(\eta\).

(9) The \(k[G]\)-modules \(l(r)\). For every \(r \in \mathbb{Z}\), make \(G\) act on the \(k\)-space \(l\) by the law

\[\sigma.x = x^q, \quad t.x = \theta(t)r.x, \quad (x \in l, \ t \in T)\]

and denote the resulting \(k[G]\)-module by \(l(r)\); it is clear that \(l(r)\) depends only on the image \(\bar{r} \in \mathbb{Z}/e\mathbb{Z}\), and that the \(k[G]\)-module \(l(0)\) is deduced from the \(k[\Sigma]\)-module \(l\) via the map \(k[G] \to k[\Sigma]\) coming from the projection \(G \to \Sigma\).

(10) The \(k[G]\)-module \(\bigoplus_{i \in \mathbb{Z}/e\mathbb{Z}} l(i)\) is free of rank 1.

Proof. Indeed, the \(k[\Sigma]\)-module \(l\) is free of rank 1 (6), and if \(\alpha \in l\) is a \(k[\Sigma]\)-basis of \(l\), then \(\alpha\) is a \(k[G]\)-basis of \(\bigoplus_{i \in \mathbb{Z}/e\mathbb{Z}} l(i)\), where the \(k[G]\)-module
(11) The $l[G]$-module $l(r) \otimes_{F_p[G]} l[G]$ is isomorphic to $\bigoplus_{j \in \mathbb{Z}/g\mathbb{Z}} \theta^{rp_j}$ on which σ acts by $(x_j)_{j \in \mathbb{Z}/g\mathbb{Z}} \mapsto (x_{j+a})_{j \in \mathbb{Z}/g\mathbb{Z}}$, where $a = [k : F_p]$ and $g = af$.

Proof. Here we have abused notation to make $\chi \in \text{Hom}(T, l^\times)$ stand for an l-line on which T acts via χ. By the normal basis theorem [1, V.70], there exists a $\beta \in l$ such that the $\beta_j = \beta^{p_j}$ ($j \in \mathbb{Z}/g\mathbb{Z}$) constitute an F_p-basis of l. When we fix such a β, we get a l-basis $\gamma_j = \beta_j \otimes 1$ of $l(r) \otimes_{F_p[G]} l[G]$. The l-linear actions of σ and T on the γ_j are given by

$$\sigma.\gamma_j = (\beta^{p_j})^q \otimes 1 = \beta^{rp_j+a} \otimes 1 = \gamma_{j+a}$$

and

$$t.\gamma_j = (t.\beta^{p_j} \otimes 1) = (t.\beta)^{p_j} \otimes 1 = \theta(t)^{ rp_j} \gamma_j \quad (t \in T).$$

In other words, $l(r) \otimes_{F_p[G]} l[G]$ is isomorphic to the direct sum of the characters θ^{rp_j} ($j \in \mathbb{Z}/g\mathbb{Z}$) which are permuted by σ according to $j \mapsto j + a$. \square

(12) The group $\text{Gal}(l|F_p)$ acts on the set $\text{Hom}(T, l^\times)$ of characters of $T :$ the generator $\varphi : x \mapsto x^p$ ($x \in l$) of $\text{Gal}(l|F_p)$ sends a character $\chi \in \text{Hom}(T, l^\times)$ to χ^p.

(13) The $F_p[G]$-modules $l(r)$ and $l(s)$ are isomorphic if and only if the characters $\theta^r, \theta^s \in \text{Hom}(T, l^\times)$ are in the same φ-orbit.

Proof. The $F_p[G]$-modules $l(r)$ and $l(s)$ are isomorphic if and only if the $l[G]$-modules $l(r) \otimes_{F_p[G]} l[G]$ and $l(s) \otimes_{F_p[G]} l[G]$ are isomorphic [1, V.70]. The result then follows from the explicit description (11) of the latter modules. \square

(14) Let n be a multiple of $\text{lcm}(p-1, e)$, and write $n = de$. The $F_p[G]$-module $M = \bigoplus_{i \in [1,n]} l(b^{(i)})$ is isomorphic to $k[G]^d$.

Proof. It is enough to show that the $l[G]$-modules $M \otimes_{F_p[G]} l[G]$ and $k[G]^d \otimes_{F_p[G]} l[G]$ are isomorphic [1, V.70]. This follows from the description (11) of these modules, the criterion (13) for $l(r)$ and $l(s)$ to be $F_p[G]$-isomorphic, and the numerical lemma (5). \square

(15) The $k[G]$-module (resp. $F_p[G]$-module) $l(r)$ is projective.

Proof. This follows from the fact that $l(r)$ is a direct summand (10) of the free module $k[G]$ (of rank 1 over $k[G]$) and rank a over $F_p[G]$. \square

(16) (Iwasawa, [5, p. 449]) Let n be a multiple of $\text{lcm}(p-1, e)$, and
write } n = de. Every } F_p[G] \text{-module } M \text{ endowed with a filtration }
\{0\} = M_{n+1} \subset M_n \subset \cdots \subset M_2 \subset M_1 = M
\text{ such that } M_i/M_{i+1} \text{ is isomorphic to } l(b^{(i)}) \text{ for } i \in [1, n] \text{ is isomorphic to } k[G]^d.

\text{Proof. As the } F_p[G] \text{-modules } l(r) \text{ are projective (15), the filtration on } M \text{ splits in the sense that } M \text{ is } F_p[G]-\text{isomorphic to } \bigoplus_{i \in [1, n]} l(b^{(i)}). \text{ But this module is isomorphic to } k[G]^d, \text{ as we have seen in (14).} \square

3. The mixed-characteristic case

(17) Let } K \text{ be a finite extension of } Q_p \text{ of ramification index } e_K \text{ and residual degree } f_K. \text{ Let } L \text{ be a finite tamely ramified galoisian extension of } K \text{ of ramification index } e \text{ and residual degree } f. \text{ Let } L_0 \text{ be the maximal unramified extension of } K \text{ in } L \text{ and let } \Sigma = \text{Gal}(L_0[K]), T = \text{Gal}(L[L_0]), \text{ and } G = \text{Gal}(L|K). \text{ Suppose that } L \text{ is split over } K \text{ in the sense that the short exact sequence } 1 \rightarrow T \rightarrow G \rightarrow \Sigma \rightarrow 1 \text{ has a section. Equivalently [5, 2.1], } L = L_0(\sqrt{\pi_K}) \text{ for some uniformiser } \pi_K \text{ of } K.

Let } k \text{ (resp. } l) \text{ be the residue field of } K \text{ (resp. } L). \text{ Identify } \Sigma \text{ with } \text{Gal}(l|k), \text{ and let } \sigma \text{ be the generator } x \mapsto x^q (x \in l, q = p^{f_K}) \text{ of } \Sigma, \text{ so that } \sigma = \varphi^{f_K}, \text{ in the notation of (12). The inertia group } T \text{ comes equipped with a (faithful) character } \theta : T \rightarrow l^\times \text{ giving the action of } T \text{ on the set of } e \text{-th roots of } \pi_K, \text{ where } \pi_K \text{ is any uniformiser of } K \text{ such that } L = L_0(\sqrt{\pi_K}). \text{ Thus, we are in the situation described in (7).}

(18) Assume that the } p \text{-torsion subgroup } pL^\times \text{ of } L^\times \text{ has order } p, \text{ so that the absolute ramification index } e_L \text{ of } L \text{ is divisible by } p-1; \text{ write } e_L = c.(p-1). \text{ Note that every finite tamely ramified extension of } K \text{ is contained in a finite galoisian tamely ramified split extension of } K \text{ containing a primitive } p \text{-th root of } 1.

(19) For } r > 0, \text{ denote by } \tilde{U}_L^r \text{ the } G \text{-submodule the image of } U_L^r \text{ in } \overline{L^\times} = L^\times/L^{\times p}, \text{ where } U_L^r = 1 + p_L^r \text{ and } p_L \text{ is the unique maximal ideal of the ring of integers } o_L \text{ of } L. \text{ Note that } \tilde{U}_L^1 \text{ is equal to the image } \overline{o_L^\times} \text{ of the group } o_L^\times \text{ of units of } o_L. \text{ It is known that } \tilde{U}_L^r = \{1\} \text{ for } r > cp, \text{ that } \tilde{U}_L^{cp} \text{ is } F_p[G]-\text{isomorphic to } pL^\times \text{ (but the submodule } \tilde{U}_L^{cp} \subset \overline{L^\times} \text{ is not to be confused with the submodule } pL^\times \subset L^\times \text{ nor with its image } \overline{pL^\times} \subset \overline{L^\times}), \text{ that } \tilde{U}_L^{ip} = \tilde{U}_L^{ip+1} \text{ for } i \in [1, c] \text{ and that } \tilde{U}_L^r/\tilde{U}_L^{r+1} \text{ is isomorphic to } l(r) \text{ for } r \in [1, cp], r \not\equiv 0 \text{ (mod. } p), \text{ where } l(r) \text{ is the } k[G]-\text{module } l \text{ with } \sigma \text{ acting by } x \mapsto x^q \text{ and } T \text{ acting by the character } \theta^r, \text{ as in (g). See for example [3], where we had } L = K(p^{-1}\sqrt{K^\times}) \text{ but the same proofs work without change.}
(20) Take $n = e_L$, which is a multiple of $\text{lcm}(p-1, e)$ (18), as required in (16), and note that $cp = b^{(n)} + 1$. For every $i \in [1, n]$, put $M_i = \bar{U}_L^{b^{(i)}}/U_L^{cp}$ and put $M_{n+1} = \{1\}$. This filtration on the $F_p[G]$-module $M = M_1$ has the property that M_i/M_{i+1} is isomorphic to $l(b^{(i)})$ for every $i \in [1, n]$, as we have recalled (19). It follows from Iwasawa’s lemma (16) that M is isomorphic to $k[G]^{ek}$, and hence \bar{U}_L^1 is isomorphic to $pL^x \oplus k[G]^{ek}$. In summary, we get the following result of Iwasawa [5, p. 461].

(21) Let K be a finite extension of \mathbb{Q}_p of ramification index e_K and residue field k, and let L be a finite galoisian tamely ramified split extension of K of group $G = \text{Gal}(L|K)$ such that pL^x has order p. The $F_p[G]$-module \bar{U}_L^1 is isomorphic to $pL^x \oplus k[G]^{ek}$, which is isomorphic to $pL^x \oplus F_p[G]^{[K:Q_p]}$. \hspace{1cm} \Box

(22) Let \bar{F}_p be the maximal galoisian extension of F_p. As a corollary, we deduce that the $F_p[G]$-module $M \otimes F_p[G] \bar{F}_p[G]$ is isomorphic to $F_p[G]^{[K:Q_p]}$, thereby recovering [4, Corollary 4.7]. Our method also shows that if L is a finite galoisian tamely ramified split extension of K such that pL^x is trivial but e_L is divisible by $p-1$, then the $F_p[G]$-module $\bar{U}_L^1 = \bar{a}_L^x$ is isomorphic to $k[G]^{ek}$ and to $F_p[G]^{[K:Q_p]}$, for the only difference in this case is that \bar{U}_L^{cp} is trivial.

(23) As a curiosity, the reader may wish to determine the structure of the $F_p[G]$-modules $\prod_{i>0} U_L^{b^{(i)}}/U_L^{b^{(i)}+1}$ and $\bigoplus_{i>0} p_{L}^{-b^{(i)}}/p_{L}^{-b^{(i)}+1}$, where $b^{(i)}$ is the sequence of positive integers $\not\equiv 0 \pmod{p}$, as throughout.

4. The equi-characteristic case

(24) Let K be a local field of characteristic p with finite residue field k of cardinality q, and let L be a finite galoisian tamely ramified split extension of K of ramification index $e \neq 0 \pmod{p}$ and residual degree f (so that $q^f \equiv 1 \pmod{e}$). Every finite tamely ramified extension of K is contained in such an L. Concretely, the residue field l of L is the finite extension of k of degree f and there is a uniformiser π_K of K such that $K = k((\pi_K))$ and $L = l((\sqrt[p]{\pi_K}))$. The groups $\Sigma = \text{Gal}(l|k)$, $G = \text{Gal}(L|K)$, $T = \text{Gal}(L|l((\pi_K)))$ and the character $\theta : T \to l^\times$ giving the action of T on the set of c-th roots of π_K have the properties required in (7).

(25) Let us determine the structure of the $F_p[G]$-module $L^+//\varphi(L^+)$, where $\varphi(x) = x^p - x$ ($x \in L$). It will turn out that $L^+//\varphi(L^+)$ is isomorphic to $F_p \oplus k[G]^{(N)}$, just as in the case $e = p-1$, $f = p-1$ treated in [3]. The proof combines ideas from [3] with Iwasawa’s lemma (16), and is analogous to the proof of (21).
(26) Let \(p_L \) be the unique maximal ideal of the ring of integers \(\mathfrak{o}_L = \mathbb{Z}[(\sqrt[p]{K})'] \) of \(L \). For every \(r \in \mathbb{Z} \), denote by \(\mathfrak{p}^r_L \) the \(G \)-submodule the image of \(\mathfrak{p}^r_L \) in \(\overline{L^+} = L^+ / \varphi(L^+) \). It is known that \(\overline{\mathfrak{p}^r_L} = \{0\} \) for \(r > 0 \), that \(\mathfrak{o}^+ = \mathfrak{p}^0_L \) is canonically isomorphic to \(\mathbb{F}_p \), that \(\overline{\mathfrak{p}^{i+1}_L} = \overline{\mathfrak{p}^i_L} \) for all \(i < 0 \), and that \(\overline{\mathfrak{p}^i_L}/\overline{\mathfrak{p}^{i+1}_L} \) is isomorphic to \(l(r) \) for every \(r < 0, r \not\equiv 0 \) (mod. \(p \)), in the notation of \((g)\). See for example \([2]\) for the general case and \([3]\) for the special case \(L = K(\sqrt[p]{-\sqrt[K]{K}}) \).

(27) Let \(n \) be a multiple of \(\text{lcm}(p-1, e) \) (16), write \(n = c(p-1), n = d.e \) and note that \(cp = b^{(n)} + 1 \). For \(i \in [1, n] \), put \(\lambda(i) = b^{(i)} - cp \) and define \(M_i = \mathfrak{p}^{\lambda(i)}_L / \mathfrak{p}^0_L \); also put \(M_{n+1} = \{0\} \). We thus get a filtration on the \(\mathbb{F}_p[G] \)-module \(M = M_1 \) such that \(M_i/M_{i+1} \) is isomorphic to \(l(b^{(i)} - c) \) for every \(i \in [1, n] \), since \(\lambda(i) \equiv b^{(i)} - c \) (mod. \(e \)). Replacing \(n \) by a suitable multiple of \(n \), we may assume that \(c \equiv 0 \) (mod. \(e \)) and therefore that \(M_i/M_{i+1} \) is isomorphic to \(l(b^{(i)}) \). Since \(M \) is isomorphic to \(k[G]^d \) (16), \(\overline{\mathfrak{p}^{b^{(n)}-1}_L} \) is \(\mathbb{F}_p[G] \)-isomorphic to \(\mathbb{F}_p \oplus k[G]^d \) (26).

(28) Replacing \(n \) by \(mn \) \((m > 0)\), we conclude that \(\overline{\mathfrak{p}^{b^{(mn)}-1}_L} \) is \(\mathbb{F}_p[G] \)-isomorphic to \(\mathbb{F}_p \oplus k[G]^{md} \). As \(L^+ \) is the direct limit of the \(\mathfrak{p}^{b^{(mn)}-1}_L \) when \(m \rightarrow +\infty \), we conclude that \(L^+ / \varphi(L^+) \) is isomorphic to \(\mathbb{F}_p \oplus k[G]^{(N)} \), just as in the case \(L = K(\sqrt[p]{-\sqrt[K]{K}}) \) treated earlier \([3]\). Let us summarise.

(29) Let \(K \) be a local field of characteristic \(p \) with finite residue field \(k \), let \(L \) be a finite galoisian tamely ramified split extension of \(K \), and let \(G = \text{Gal}(L/K) \). The \(\mathbb{F}_p[G] \)-module \(\overline{L^+} = L^+ / \varphi(L^+) \) is isomorphic to \(\mathbb{F}_p \oplus k[G]^{(N)} \) and to \(\mathbb{F}_p \oplus \mathbb{F}_p[G]^{(N)} \).

(30) While we are at it, we might as well determine the structure of the \(\mathbb{F}_p[G] \)-module \(\overline{U}_L^1 \), where \(\overline{U}_L^r \) \((r > 0)\) is the image of \(U^r_L = 1 + \mathfrak{p}^r_L \) in \(\mathbb{L}^{\times}/\mathbb{L}^{\times p} \). It is easy to see that \(\overline{U}_L^{ip} = \overline{U}_L^{ip+1} \) for every \(i > 0 \) and that \(\overline{U}_L^1/\overline{U}_L^{ip+1} \) is \(\mathbb{F}_p[G] \)-isomorphic to \(l(r) \) for every \(r > 0, r \not\equiv 0 \) (mod. \(p \)).

(31) Let \(n \) be a multiple of \(\text{lcm}(p-1, e) \) (14), with \(n = c(p-1), n = d.e \). For \(i \in [1, n] \), put \(M_i = \overline{U}_L^{b^{(i)}} / \overline{U}_L^{cp} \), and put \(M_{n+1} = \{1\} \). This filtration on the module \(M = M_1 \) has the properties required for applying Iwasawa's lemma (16), therefore \(\overline{U}_L^1/\overline{U}_L^{cp} \) is isomorphic to \(k[G]^{d} \). Replacing \(n \) by a multiple \(mn \), we see that \(\overline{U}_L^1/\overline{U}_L^{ncp} \) is isomorphic to \(k[G]^{md} \). Taking the projective limit as \(m \rightarrow +\infty \), we get the structure of \(\overline{U}_L^1 : \)

(32) The image \(\overline{U}_L^1 \) of \(U^1_L = 1 + \mathfrak{p}_L \) in \(\mathbb{L}^{\times}/\mathbb{L}^{\times p} \) is \(\mathbb{F}_p[G] \)-isomorphic to \(k[G]^{N} \) and to \(\mathbb{F}_p[G]^{N} \).

5. Passing to the tame limit

7
Let K be a local field with finite residue field k of characteristic p and cardinality q, V the maximal tamely ramified extension of K, and B the maximal abelian extension of V of exponent p, so that $B = V(\sqrt[p]{V^\times})$ if K has characteristic 0 and $B = V(\wp(V))$ if K has characteristic p. The pro-p-group $\text{Gal}(B|V)$ is an $F_p[[\Gamma]]$-module, where $\Gamma = \text{Gal}(V|K)$, and we would like to determine its structure. This is achieved by studying the dual $F_p[[\Gamma]]$-module, namely $V^\times/V^{\times p}$ in characteristic 0 and $V^+/\wp(V^+)$ in characteristic p.

If K has characteristic 0, there is an interesting intermediate extension B' which may be called the maximal peu ramifiée extension of V (in B): it is obtained by adjoining $\sqrt[p]{u}$ to V for every $u \in \mathfrak{o}_V^\times$, where \mathfrak{o}_V is the ring of integers of V. As $B = B'(\sqrt[p]{\pi})$ for every uniformiser π of K, the group $\text{Gal}(B'|B')$ is cyclic of order p, the short exact sequence

$$\{1\} \rightarrow \text{Gal}(B'|V) \rightarrow \text{Gal}(B'|K) \rightarrow \Gamma \rightarrow \{1\}$$

of profinite groups splits, and the resulting conjugation action of $\text{Gal}(B'|K)$ on $\text{Gal}(B'|B')$ is given by the cyclotomic character $\omega: \text{Gal}(B'|K) \rightarrow F_p^\times$. It follows from [5, Lemma 4] that the short exact sequence

$$\{1\} \rightarrow \text{Gal}(B'|V) \rightarrow \text{Gal}(B'|K) \rightarrow \Gamma \rightarrow \{1\}$$

of profinite groups also splits. As the $F_p[[\Gamma]]$-module $\text{Gal}(B'|V)$ is isomorphic to $\text{Hom}(\mathfrak{o}_V^\times/\mathfrak{o}_V^{\times p}, V^\times)$, it is sufficient to determine the structure of the $F_p[[\Gamma]]$-module $\mathfrak{o}_V^\times/\mathfrak{o}_V^{\times p}$, which we do.

Similarly, if K has characteristic p, then the short exact sequence

$$\{1\} \rightarrow \text{Gal}(B|V) \rightarrow \text{Gal}(B|K) \rightarrow \Gamma \rightarrow \{1\}$$

of profinite groups splits. As the $F_p[[\Gamma]]$-module $\text{Gal}(B|V)$ is isomorphic to $\text{Hom}(V^+/\wp(V^+), F_p)$, it is sufficient to determine the structure of $V^+/\wp(V^+)$, which is done below.

Let V_0 be the maximal unramified extensions of K (in V). For every $n > 0$, put $e_n = q^n - 1$, $K_n = K(\sqrt[n]{T})$ and $L_n = K_n(\sqrt[n]{K_n^\times})$. Note that L_n is the maximal abelian extension of K_n of exponent dividing e_n, so it is galoisian over K; put $G_n = \text{Gal}(L_n|K)$. The ramification index (resp. the residual degree) of L_n over K is e_n (resp. $n e_n$). We have

$$V_0 = \lim_{\rightarrow} K_n, \quad V = \lim_{\rightarrow} L_n, \quad \Gamma = \lim_{\leftarrow} G_n.$$
(37) Assume that K has characteristic 0. For every finite extension L of K, denote by e_L, ramification index of $L|Q_p$. As $e_{L_n} \equiv 0 \pmod{e_n}$, we have $e_{L_n} \equiv 0 \pmod{(p-1)}$, for every $n > 0$; write $e_{L_n} = c_n(p-1)$. We have seen (20) that the $F_p[G_n]$-module $M_n = \bar{U}_{L_{n}}/U_{L_{n}}^{c_n-p}$ is isomorphic to $k[G_n]^{e_k}$. Also, for every multiple m of n, the map $M_n \to M_m$ induced by the inclusion $L_n \subset L_m$ is injective. As $\sigma_{V}/\sigma_{V}^{p} = \lim M_n$, we get from (21) by passage to the limit:

(38) Let K be a finite extension of Q_p of residue field k and ramification index e_K, let V be the maximal tamely ramified extension of K, and let $\Gamma = \text{Gal}(V|K)$. The $F_p[[\Gamma]]$-module $\sigma_{V}/\sigma_{V}^{p}$ is isomorphic to $k[[\Gamma]]^{e_k}$, and the $F_p[[\Gamma]]$-module $V^{\times}/V^{\times p}$ is isomorphic to $k[[\Gamma]]^{e_k} \oplus F_p$.

(39) As for the dual $F_p[[\Gamma]]$-modules $\text{Gal}(B|V) = \text{Hom}(\sigma_{V}/\sigma_{V}^{p}, pV^{\times})$ and $\text{Gal}(B|V) = \text{Hom}(V^{\times}/V^{\times p}, pV^{\times})$, they are respectively isomorphic to $k[[\Gamma]]^{e_k}$ and to $pV^{\times} \oplus k[[\Gamma]]^{e_k}$. Note that $k[[\Gamma]]^{e_k}$ is free of rank $[K : Q_p]$ over $F_p[[\Gamma]]$.

(40) Now suppose that K has characteristic p. By an entirely similar argument, working with the modules $M_n = L_{n}/\sigma_{L_{n}}$ (resp. $L_{n}^{e_k}$, resp. $L_{n}^{e_k}$), one gets from (29) and (32) by passage to the limit:

(41) For $K = k((t))$, the $F_p[[\Gamma]]$-module $V^{\times}/\phi(V^{\times})$ is isomorphic to $\text{Gal}(B|V) = \text{Hom}(V^{\times}/\phi(V^{\times}), F_p)$, the $F_p[[\Gamma]]$-modules $\sigma_{V}/\sigma_{V}^{p}$ and $V^{\times}/V^{\times p}$ are isomorphic to $F_p[[\Gamma]]^{N}$.

(42) As a result, the $F_p[[\Gamma]]$-module $\text{Gal}(B|V) = \text{Hom}(V^{\times}/\phi(V^{\times}), F_p)$ is isomorphic to $F_p[[\Gamma]]^{N}$.

6. Coronidis loco

(43) Let K be a p-field and let \hat{K} be a maximal galoisian extension of K. It is clear that if K has characteristic p, then the profinite group $\text{Gal}(\hat{K}|K)$ cannot be finitely generated, because K has infinitely many cyclic extensions of degree p: the dimension of the F_p-space $K^{+}/\phi(K^{+})$ is infinite. It is common knowledge that if K is a finite extension of Q_p, then $\text{Gal}(\hat{K}|K)$ can be generated by $[K : Q_p] + 3$ elements, cf. [6, p. 65]. As a small gift for the reader who has made it so far, we indicate how the foregoing can be used to give a nice little proof; it relies on the following observation about profinite groups.

(44) We say that a subset S of a profinite group G generates G if G is the only closed subgroup of G containing S. A finite subset Π of a pro-p-group P generates P if and only if its image $\bar{\Pi}$ in the maximal commutative quotient \hat{P} of P of exponent dividing p generates \hat{P} (Burnside’s “basis”
(45) Consider a short exact sequence \(\{1\} \to P \to G \to \Delta \to \{1\} \) of profinite groups such that \(P \) is a pro-\(p \)-group (and a closed subgroup of \(G \)), so that \(\bar{P} \) is an \(\mathbb{F}_p[[\Delta]] \)-module. Presumably, if \(\Pi \subset P \) is a finite subset whose image in \(\bar{P} \) generates the \(\mathbb{F}_p[[\Delta]] \)-module \(\bar{P} \), and if \(D \subset G \) is a finite subset whose image in \(\Delta \) generates \(\Delta \), then their union \(\Pi \cup D \) generates \(G \). This should follow from an argument similar to the one in [6, Lemma 3.3]. In our application below, the extension \(G \) of \(\Delta \) by \(P \) splits.

(46) If this presumption is true, then (39) provides a simple proof of the fact that the profinite group \(G = \text{Gal}(\bar{K}|K) \) is generated by \([K : \mathbb{Q}_p] + 3 \) elements. Indeed, take \(P = \text{Gal}(\bar{K}|V) \), so that \(G/P = \Gamma \) and \(\bar{P} = \text{Gal}(B|V) \).

We know from Iwasawa [5, Theorem 2] that \(\Gamma \) is generated by two elements (and moreover the extension \(G \) of \(\Gamma \) by \(P \) splits). We have seen (39) that the \(\mathbb{F}_p[[\Gamma]] \)-module \(\text{Gal}(B|V) \) is generated by \([K : \mathbb{Q}_p] + 1 \) elements. Hence, if (45) holds, then \(G \) is generated by \([K : \mathbb{Q}_p] + 3 \) elements.

Bibliography

[1] Bourbaki (N). — Algèbre, Chapitres 4 à 7, Masson, Paris, 1981, 422 pp.

[2] Dalawat (C). — Further remarks on local discriminants, J. Ramanujan Math. Soc. bf 25 (2010) 4, 393–417. Cf. arXiv:0909.2541.

[3] Dalawat (C). — Serre’s “formule de masse” in prime degree, Monatshefte Math. 166 (2012) 1, 73–92. Cf. arXiv:1004.2016.

[4] Del Corso (I), Dvornicich (R) & Monge (M). — On wild extensions of a \(p \)-adic field, J. Number Theory 174 (2017), 322–342. Cf. arXiv:1601.05939.

[5] Iwasawa (K). — On Galois groups of local fields. Trans. Amer. Math. Soc. 80 (1955), 448–469.

[6] Jannsen (U). — Über Galoisgruppen lokaler Körper. Invent. Math. 70 (1982/83) 1, 53–69.

[7] Koch (H). — Galois theory of \(p \)-extensions. Springer-Verlag, Berlin, 2002, 190 pp.