Selection Rule for Enhanced Dark Matter Annihilation

Anirban Das* and Basudeb Dasgupta†

Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, 400005, India. (Dated: June 29, 2017)

We point out a selection rule for enhancement (suppression) of odd (even) partial waves of dark matter coannihilation or annihilation using Sommerfeld effect. Using this, the usually velocity-suppressed p-wave annihilation can dominate the annihilation signals in the present Universe. The selection mechanism is a manifestation of the exchange symmetry of identical incoming particles, and generic for multi-state DM with off-diagonal long-range interactions. As a consequence, the relic and late-time annihilation rates are parametrically different and a distinctive phenomenology, with large but strongly velocity-dependent annihilation rates, is predicted.

PACS numbers: 95.35.+d

1. Introduction. – If DM is a thermal relic of the early Universe, then its cosmological abundance provides a measure of its “annihilation rate” $\langle \sigma v \rangle$ [1–3]. This annihilation rate has contributions from various partial waves of the scattering amplitude, each with its characteristic dependence on the relative velocity v of the colliding particles,

$$\langle \sigma v \rangle = \frac{a}{\langle \sigma v \rangle_s} + \frac{b v^2}{\langle \sigma v \rangle_p} + \ldots$$ \hspace{1cm} (1)

The first term on the right, $\langle \sigma v \rangle_s$, represents the velocity-independent s-wave contribution and the second term, $\langle \sigma v \rangle_p$, which scales as v^2, has the p-wave contribution. Omitted terms appear with higher powers of v^2, and for nonrelativistic DM, the contribution of these higher partial waves are small. In the simplest models, the s-wave contribution dominates and the annihilation rate is $\langle \sigma v \rangle^{\text{relic}} \approx 2.2 \times 10^{-26} \text{ cm}^3\text{s}^{-1}$ [4], to produce the observed DM abundance, practically independent of v.

Detection of a non-s-wave DM annihilation rate, e.g., $\langle \sigma v \rangle \propto v^2$, would reveal a crucial clue to the nature of DM. However, it is believed to be highly challenging. To the best of our knowledge, annihilations of very dense or very fast DM are the only avenues that have interesting sensitivity to p-wave annihilations [5–8]. Unfortunately, even these become inefficient for heavy DM.

Sommerfeld effect induces further nontrivial velocity-dependence of the annihilation rate [9, 10]. Long-range interactions of DM distort the wave-functions of incoming particles and change the annihilation rate, $\langle \sigma v \rangle \rightarrow S(\sigma v)$, by the velocity-dependent Sommerfeld factor S. This effect has been studied extensively in recent years [11–20], after it was initially invoked [21–23] to explain the cosmic-ray positron excesses [24, 25] using a large DM annihilation rate. As this enhancement occurs for small v, again models with dominantly s-wave annihilations are popular. Therein, the enhancement is always larger for smaller v and as a result a large annihilation rate is predicted around recombination, which leaves an imprint on the Cosmic Microwave Background (CMB) [26, 27].

In this Letter, we point out a selection mechanism that allows enhanced p-wave DM annihilation, with no enhancement but rather a possible suppression of the s-wave rate. Models employing the mechanism are testable and predict a distinctive, large but strongly velocity-dependent, annihilation rate: highest at intermediate velocities, e.g., $v \approx 10^{-3}–10^{-4}$ in galaxies, while being lower at both larger and smaller velocities, e.g., in galaxy clusters and at recombination, respectively. In the following, we explain this mechanism, provide a concrete model, discuss the main signatures and constraints, and finally conclude.

2. Mechanism. – The basic idea is that, for coannihilations or annihilations of multi-level DM, the effective one-level interaction potential can be attractive or repulsive, depending on the angular momentum of the incoming state, and leads to enhancement or suppression, respectively. We now explain this selection mechanism in more detail, for coannihilations or annihilations of two DM fermions A and B.

Let Ψ_i be the wave-function of an incoming two-body state, i.e., $|AB\rangle$ or $|BA\rangle$ for co-annihilation and $|AA\rangle$ or $|BB\rangle$ for annihilation, with the state labeled by $i \in \{1, 2\}$ in each case. Its long-distance distortion is governed by the two-level Schrödinger equation

$$-\frac{1}{2\mu_i} \frac{d\Psi_i^2}{dr^2} + \frac{\ell(\ell + 1)}{2\mu_i r^2} \Psi_i + V_{ij}(r) \Psi_j = \frac{k_i^2}{2\mu_i} \Psi_i,$$ \hspace{1cm} (2)

where $k_i = \mu_i v$, with μ_i being the reduced mass of the i-th two-body state, ℓ is the angular momentum, and

$$V = \begin{pmatrix} V_{11} & V_{12} \\ V_{21} & V_{22} \end{pmatrix},$$ \hspace{1cm} (3)

the potential energy matrix dependent on interactions. The Sommerfeld factor for coannihilation or annihilation channel i and partial wave ℓ is given by [14]

$$S^{(i)}_\ell = \left(\frac{(2\ell - 1)!!}{k_i^\ell} \right)^2 \left(\frac{T^T \Gamma \Gamma T}{(\Gamma \Gamma)_{ii}} \right)^{\mu_i} \text{ (no sum)}.$$ \hspace{1cm} (4)
The matrix $T_{ij} = \Psi^*_i \Psi_j e^{-ik \cdot r} |_{r \to \infty}$ consists of the amplitudes of asymptotic wavevectors to eq. (2). The Γ-matrix contains the a, b, \ldots coefficients of coannihilation or annihilation rates, calculable in the framework of non-relativistic effective theory of the DM model [28–30].

Equivalent One-level Problem.—For co-annihilation, physically there is no distinction between the two states, $|AB\rangle$ and $|BA\rangle$, as 1, one expects these states to be identical up to an overall phase,

$$|BA\rangle = (-1)^{\ell + s}|AB\rangle,$$

where ℓ, s are the angular momentum and spin of the two-body state [28]. A factor of $(-1)^{\ell}$ comes from the change in relative phase, $(-1)^{s+1}$ from exchange of spins, and a (-1) from the Wick exchange of fermion fields. Clearly, the potentials must satisfy $V_{11} = V_{22}$ and $V_{12} = V_{21}$. Plugging eq. (5) in eq. (2), reduces eq. (2) to its one-level-equivalent with the effective potential

$$V_{\text{eff}} = V_{11} + (-1)^{\ell + s} V_{12} + \frac{\ell(\ell + 1)}{2 \mu \rho^2}.$$

The effective potential V_{eff} leads to selective Sommerfeld enhancement of odd or even partial waves. Consider, for example, the potentials V_{ij} are attractive and that the incoming state has $s = 1$. For even-integer values of ℓ, e.g., s-wave, the effective interaction $V_{11} - V_{12}$ vanishes if $V_{12} \approx V_{11}$ or become repulsive if $V_{12} \gg |V_{11}|$. Thus one expects no enhancement or perhaps even a suppression of the s-wave rate. On the other hand, for odd-integer values of ℓ, e.g., p-wave, the potential is $V_{\text{eff}} = V_{11} + V_{12} + \ell(\ell + 1)/(2 \mu \rho^2)$, which can be attractive if $V_{11} + V_{12}$ falls off slower than $1/\rho^2$ in the relevant range. A minimum in the potential then develops at finite nonzero ρ, where higher ℓ wave-functions peak, and leads to an enhancement. As a result, one has $S_{\ell=0} \lesssim 1$ and $S_{\ell=odd} \gg 1$. If $|V_{12}| \ll |V_{11}|$, this mechanism is not as effective, V_{eff} being dominated by the diagonal potential that does not switch its sign. The general lesson here is that a strong off-diagonal long-range interaction of multi-level DM can enforce a spin/angular-momentum-dependent selection rule on Sommerfeld enhancement.

Figure 1 shows a typical manifestation of this selection mechanism. At high velocities, $v \approx 1$, the Sommerfeld factors are close to 1, not appreciably affecting relic annihilation. At smaller velocities, s-wave rates are suppressed but the p-wave rates are enhanced, i.e., $S_s \lesssim 1$ and $S_p \gg 1$. Specifically for $v \lesssim 10^{-3}$–10^{-4}, the p-wave Sommerfeld factors $S_p^{co,ann}$ saturate to large constant values, rising roughly as $\sim 1/v^3$ in the intermediate region. This stronger velocity dependence for intermediate v can overcome the v^2 suppression in $\langle \sigma v \rangle_p$ and produces a unique phenomenology.

For annihilation, where the states $|AA\rangle$ and $|BB\rangle$ are not obviously related, the one-level-equivalent does not exist. Yet, as we see in Fig. 1, the p-wave annihilation also shows a large enhancement. We will show that this is a consequence of an approximate $|AA\rangle \leftrightarrow |BB\rangle$ exchange symmetry, which when exact makes $|AA\rangle$ and $|BB\rangle$ identical to each other. Then, the preceding argument applies for annihilation as well, with small corrections proportional to the breaking of this symmetry.

3. **Model.**—The above selection mechanism or its variants will crop up in many existing DM models. For example, multiple DM fermions universally coupled to a boson in the Standard Model (SM) naturally exhibit the selection mechanism. Here, we discuss a simple model that presents an interesting version of the selection mechanism, where the late-time signal can be due to a purely p-wave process.

Consider a Dirac fermion χ and a complex scalar ϕ, with charges $+1$ and -2, respectively, under an explicitly broken global dark U(1) symmetry [31–33],

$$\mathcal{L} \supset \partial^\mu \phi^\dagger \partial_\mu \phi + \mu^2 |\phi|^2 - \lambda |\phi|^4 + \mathcal{L}_{U(1) - \text{breaking}} + i \overline{\chi} \partial_\mu \chi - M \overline{\chi} \chi - \left(\frac{f}{\sqrt{2}} \phi \chi^c + h.c. \right).$$

(ϕ develops a vacuum expectation value v_ϕ, to give $\phi = (v_\phi + \rho + i \eta)/\sqrt{2}$) and splits χ into two pseudo-Dirac DM particles $\chi_1 = (\chi - \chi^c)/(\sqrt{2})$ and $\chi_2 = (\chi + \chi^c)/\sqrt{2}$ with masses $M \mp \Delta/2$. Taking $\mathcal{L}_{U(1) - \text{breaking}} = -\frac{1}{2} m^2_{\eta} \eta^2$ keeps the residual Z_2-symmetry, which stabilizes the lighter χ_1 of mass m_{χ} and makes it a good DM candidate while η becomes a pseudo-Nambu-Goldstone boson of mass m_{η}.

Figure 1. Sommerfeld factors for s-wave and p-wave coannihilation or annihilation processes at velocities v. At smaller velocities the p-wave coannihilation or annihilation processes are strongly enhanced but s-wave co-annihilation is suppressed. The $\sim 1/v^3$-rise of S_p at intermediate velocities predicts that $\langle \sigma v \rangle \simeq S_p \langle \sigma v \rangle_p$ peaks for v at the edge of the saturation plateau at low v. Typical DM velocities in different sources/epochs are annotated. See text for details of the model.
The fermion interactions are $-\frac{\mu}{2\hbar}(\chi_1\chi_{1} - \chi_2\chi_2) - \frac{\eta}{2}(\chi_1\chi_2 + \chi_2\chi_1)$, i.e., η only mediates between different fermions, while μ mediates between alike fermions. The interaction potentials are then given by $V_{11} = -ae^{-m_\rho r}/r$, $V_{12} = V_{21} = -ae^{-m_\rho r}/r$, $V_{22} = -ae^{-m_\rho r}/r + 2\Delta$ for co-annihilation and $V_{12} = -ae^{-m_\rho r}/r + 2\Delta$ for annihilation, with the dark fine-structure constant $\alpha \equiv f^2/(4\pi)$. A chiral fermion χ_L instead of χ in eq. (7) [34], would have led to a spin-dependent singular potential mediated by η and the Sommerfeld effects would be very different [35, 36]. This problem does not arise here. We will be interested in the parameter space where $m_\eta/m_\rho, \Delta \ll m_\chi$.

4. Methods & Results. – The co-annihilation process has both s-wave and p-wave amplitudes, while for annihilation the s-wave process is forbidden by having identical Majorana fermions in the initial state [31–34]. To compute the Sommerfeld factors for $\langle \chi_1 \rangle$, following refs. [28–30] we first computed Γ_ℓ

$$
\begin{align*}
\Gamma_{s,\text{co-ann}} &= \frac{\pi \alpha^2}{3m_\chi^2} \begin{pmatrix} +1 & -1 \\ -1 & +1 \end{pmatrix}, \\
\Gamma_{p,\text{co-ann}} &= \frac{\pi \alpha^2 m_\rho^2}{4m_\chi^4 \Delta^2} \begin{pmatrix} +1 & +1 \\ +1 & +1 \end{pmatrix}, \\
\Gamma_{p,\text{ann}} &= \frac{6\pi \alpha^2}{m_\chi^2} \begin{pmatrix} +1 & +1 \\ +1 & +1 \end{pmatrix},
\end{align*}
$$

for the one-level problem directly. However, in the limit $\Delta \ll m_\chi$ one has $V_{11} = V_{22}$ and $\langle \chi_1 \rangle \leftrightarrow \langle \chi_2 \rangle$, and only the linear combination $\langle \chi_1 \rangle - \langle \chi_2 \rangle$ is physically relevant. For this linear combination, V_{eff} is the same as in eq. (11) and one gets $S_p^{\text{ann}} \gg 1$, i.e., p-wave annihilation is also strongly Sommerfeld-enhanced; the physical origin of the enhancement being the approximate exchange symmetry at $\Delta \to 0$.

As χ_2 may decay to χ_1, we focus on annihilations at late time. Figure 2 illustrates the dependence of S_p^{ann} on the strength and range of the interaction. Here, $S_p^{\text{ann}} \gg 1$, when $\alpha \gtrsim 10^{-3}$ and $m_\rho/m_\chi \lesssim \text{few} \times 10^{-2}$. For small α there is no significant enhancement, whereas larger enhancements are possible when the momentum in the first Bohr orbit, $\sim m_\chi$, becomes larger than the relative momentum of incoming particles $\sim m_\chi v$ [40]. For large m_ρ, the Yukawa potential is negligible and $S_p^{\text{ann}} \to 1$, whereas in the small m_ρ limit, the potential and the solution become independent of m_ρ. For intermediate values of $m_\rho \approx 6\alpha m_\chi/(\pi^2 n^2 + 2)$, with $n = 0, 1, 2, \ldots$ [13, 14], the particles form zero-energy bound states and exhibit resonances. The Δ-dependence is weak.

5. Signatures & Constraints. – What are the robust signatures of models employing this selection mechanism? The primary signal is a velocity-dependent annihilation rate, but that in itself is not unique to this mechanism. The smoking-gun is that the velocity-dependence is non-monotonic: growing as $1/v$ at intermediate v, through the competition of v^2-suppression of the bare p-wave rate and the $\sim 1/v^3$ Sommerfeld enhancement, and falling off as v^2 elsewhere. This means that the constraints from reionization of the CMB should be easily
The late-time annihilation rate scales as $\pi \alpha$ is model-dependent and parametrized in the branch-similar to that in dwarfs, both being in the saturated S regime, but the annihilation rate is suppressed by $\nu^2_{\text{CMB}}/\nu^2_{\text{dSph}} \simeq 10^{-8}$.

Observation of DM annihilation requires a connection between the dark sector and the visible sector. This is model-dependent and parametrized in the branching ratio BR of the annihilation rate to the specific SM particles. As always, indirect detection constrains $BR \times \langle \sigma v \rangle$. For these models, constraints obtained using one source do not directly apply to another, thanks to the non-monotonic velocity-dependence. Naturally, velocity-resolved multi-source indirect detection of the annihilation signal is of key importance here [41–45]. We compare the predicted rate in each source-class with the limits obtained for that source-class. In Fig. 3, a 100% branching ratio to $\mu^+\mu^-$ is ruled out within the gray vertical bands, due to H.E.S.S. observations of the Milky Way (red shaded region) [46]. Constraints from observations of dwarf galaxies, e.g., by Fermi-LAT [47] (blue shaded region) and AMS-02 [48, 49], also independently constrain resonant slivers within these bands. Improvements in IceCube observations of the Virgo cluster (green shaded region) [50–52] and Fermi-LAT observations of the Fornax Cluster may be interesting for $m_\chi \simeq (2-4)$ TeV [53]. CMB data are significantly less constraining (not shown), than for s-wave models. Surprisingly, a purely p-wave late-time annihilation rate can be larger than $\langle \sigma v \rangle^{\text{relic}}$ and is eminently detectable.

DM has long-range interactions in these models, and constraints on small-scale structure, e.g., from Bullet Cluster, may apply [54–59]. For the model parameters considered here, they happen to be weak. Specific models may also be constrained using collider limits on dark-visible mixing [60, 61]. A rather generic prediction of these models is dark radiation $\Delta N_{\text{eff}} \gtrsim 0.13$ [33], due to the presence of light mediators or their decay into light SM particles, that will be detectable via future CMB observations [62, 63].

6. Summary & Outlook.— We have pointed out a selection mechanism that leads to large and possibly observable p-wave annihilation rates in the present Universe, without enhancing s-wave rates. The smoking gun of this mechanism is the signature velocity-dependence and source-dependence of $\langle \sigma v \rangle$, with the possibility of it exceeding $\langle \sigma v \rangle^{\text{relic}}$. These features are distinctive of large p-wave annihilation of degenerate multi-level DM.

We then discussed a concrete model implementing the selection mechanism and showed that large portions of its parameter space are already probed by existing experiments. The exact constraints are model-dependent, but in general multi-source indirect DM detection, cosmological searches for dark radiation, and small-scale DM structure are the main avenues for testing this mechanism. Collider searches can pin down the dark-to-visible sector connection.

This mechanism opens a new area for model-building and phenomenology, allowing enhanced DM annihilations in specific sources where DM has velocities in an optimal range. As further work, one may also consider the several variations on this theme: more than two DM particles in the dark sector, even- or incoming states, repulsive interactions, multiple mediators, etc.
these possibilities may also turn out to be theoretically interesting and find phenomenological application.

Acknowledgements.– This work was partially funded through a Ramanujan Fellowship of the Dept. of Science and Technology, Government of India, and the Max-Planck-Partnergroup “Astroparticle Physics” of the Max-Planck-Gesellschaft awarded to B.D. We acknowledge use of the FEYNCALC package [64] and invaluable help from Vladyslav Shtabovenko. We thank Ranjan Laha and Kenny C. Y. Ng for their many useful comments on the manuscript.

* anirbandas@theory.tifr.res.in
† bdasgupta@theory.tifr.res.in

[1] Gary Steigman and Michael S. Turner, “Cosmological Constraints on the Properties of Weakly Interacting Massive Particles,” Nucl. Phys. B253, 375-386 (1985).
[2] Gerard Jungman, Marc Kamionkowski, and Kim Griest, “Supersymmetric dark matter,” Phys. Rept. 267, 195–373 (1996), arXiv:hep-ph/9506380 [hep-ph].
[3] Gianfranco Bertone, Dan Hooper, and Joseph Silk, “Particle dark matter: Evidence, candidates and constraints,” Phys. Rept. 405, 279–390 (2005), arXiv:hep-ph/0404175 [hep-ph].
[4] Gary Steigman, Basudeb Dasgupta, and John F. Beacom, “Precise Relic WIMP Abundance and its Impact on Searches for Dark Matter Annihilation,” Phys. Rev. D86, 023506 (2012), arXiv:1204.3622 [hep-ph].
[5] Roberta Diamanti, Laura Lopez-Honorez, Olga Mena, Sergio Palomares-Ruiz, and Aaron C. Vincent, “Constraining Dark Matter Late-Time Energy Injection: Decays and P-Wave Annihilations,” JCAP 1402, 017 (2014), arXiv:1308.2578 [astro-ph.CO].
[6] Rouven Essig, Eric Kuflik, Samuel D. McDermott, Tomer Volansky, and Kathryn M. Zurek, “Constraining Light Dark Matter with Diffuse X-Ray and Gamma-Ray Observations,” JHEP 11, 193 (2013), arXiv:1309.4091 [hep-ph].
[7] Alex Drlica-Wagner, German A. Gomez-Vargas, John W. Hewitt, Tim Linden, and Luigi Tibaldo, “Searching for Dark Matter Annihilation in the Smith High-Velocity Cloud,” Astrophys. J. 790, 24 (2014), arXiv:1405.1030 [astro-ph.CO].
[8] Jessie Shelton, Stuart L. Shapiro, and Brian D. Fields, “Black hole window into p-wave dark matter annihilation,” Phys. Rev. Lett. 115, 231302 (2015), arXiv:1506.04143 [astro-ph.HE].
[9] A. Sommerfeld, “Über die Beugung und Bremsung der Elektronen.” Annalen der Physik 403, 257–330 (1931).
[10] Junji Hisano, Shigeki Matsumoto, and Mihoko M. Nojiri, “Explosive dark matter annihilation,” Phys. Rev. Lett. 92, 031303 (2004), arXiv:hep-ph/0307216 [hep-ph].
[11] Masahiro Ibe, Hitoshi Murayama, and T. T. Yanagida, “Breit-Wigner Enhancement of Dark Matter Annihilation,” Phys. Rev. D79, 095009 (2009), arXiv:0812.0072 [hep-ph].
[12] Roberto Iengo, “Sommerfeld enhancement: General results from field theory diagrams,” JHEP 05, 024 (2009), arXiv:0902.0688 [hep-ph].
[13] S. Cassel, “Sommerfeld factor for arbitrary par-
relativistic pair annihilation of nearly mass degenerate neutralinos and charginos III. Computation of the Sommerfeld enhancements,” JHEP 05, 115 (2015), arXiv:1411.6924 [hep-ph].

[31] Steven Weinberg, “Goldstone Bosons as Fractional Cosmic Neutrinos,” Phys. Rev. Lett. 110, 241301 (2013), arXiv:1305.1971 [astro-ph.CO].

[32] Camilo Garcia-Cely, Alejandro Ibarra, and Emiliano Molinaro, “Dark matter production from Goldstone boson interactions and implications for direct searches and dark radiation,” JCAP 1311, 061 (2013), arXiv:1310.6256 [hep-ph].

[33] Xiaoyong Chu and Basudeb Dasgupta, “Dark Radiation Alleviates Problems with Dark Matter Halos,” Phys. Rev. Lett. 113, 161301 (2014), arXiv:1404.6127 [hep-ph].

[34] Camilo Garcia-Cely, Alejandro Ibarra, and Emiliano Molinaro, “Cosmological and astrophysical signatures of dark matter annihilations into pseudo-Goldstone bosons,” JCAP 1402, 032 (2014), arXiv:1312.3578 [hep-ph].

[35] Paulo F. Bedaque and Basudeb Dasgupta, “Effective theory of self-interacting dark matter,” Phys. Rev. D88, 064308 (2013), arXiv:1307.1129 [hep-ph].

[36] Anirban Das and Basudeb Dasgupta, “Calculation of the Γ-matrix,” FEYNCALC code available on request.

[37] S. N. Ershov, J. S. Vagen, and M. V. Zhukov, “Modified variable phase method for the solution of coupled radial Schrodinger equations,” Phys. Rev. C84, 064308 (2011).

[38] Maria Archidiacono, Steen Hannestad, Rasmus Sloth Hansen, and Thomas Tram, “Cosmology with self-interacting sterile neutrinos and dark matter - A pseudoscalar model,” Phys. Rev. D91, 065021 (2015), arXiv:1404.5915 [astro-ph.CO].

[39] Paul Hoyer, “Bound states – from QED to QCD,” (2014) arXiv:1402.5005 [hep-ph].

[40] Sheldon Campbell and Bhaskar Dutta, “Effects of P-wave Annihilation on the Angular Power Spectrum of Extragalactic Gamma-rays from Dark Matter Annihilation,” Phys. Rev. D84, 075004 (2011), arXiv:1106.4621 [astro-ph.HE].

[41] Kenny C. Y. Ng, Ranjan Laha, Sheldon Campbell, Shunsaku Horiiuchi, Basudeb Dasgupta, Kohta Murase, and John F. Beacom, “Resolving small-scale dark matter structures using multiverse indirect detection,” Phys. Rev. D89, 083001 (2014), arXiv:1310.1915 [astro-ph.CO].

[42] Eric G. Speckhard, Kenny C. Y. Ng, John F. Beacom, and Ranjan Laha, “Dark Matter Velocity Spectroscopy,” Phys. Rev. Lett. 116, 031301 (2016), arXiv:1507.04744 [astro-ph.CO].

[43] Jeremie Choquette, James M. Cline, and Jonathan M. Cornell, “p-wave Annihilating Dark Matter from a Decaying Predecessor and the Galactic Center Excess,” Phys. Rev. D94, 015018 (2016), arXiv:1604.01039 [hep-ph].

[44] Devon Powell, Ranjan Laha, Kenny C. Y. Ng, and Tom Abel, “The Doppler effect on indirect detection of dark matter using dark matter only simulations,” (2016), arXiv:1611.02714 [astro-ph.CO].

[45] H. Abdallah et al. (HESS), “Search for dark matter annihilations towards the inner Galactic halo from 10 years of observations with H.E.S.S.,” Phys. Rev. Lett. 117, 111301 (2016), arXiv:1607.08142 [astro-ph.HE].

[46] M. Ackermann et al. (Fermi-LAT), “Searching for Dark Matter Annihilation from Milky Way Dwarf Spherical Galaxies with Six Years of Fermi Large Area Telescope Data,” Phys. Rev. Lett. 115, 231301 (2015), arXiv:1503.02641 [astro-ph.HE].

[47] Masahiro Ibe, Shigeki Matsumoto, Satoshi Shirai, and Tsutomu T. Yanagida, “Wino Dark Matter in light of the AMS-02 2015 Data,” Phys. Rev. D91, 111701 (2015), arXiv:1504.05554 [hep-ph].

[48] M. Aguilar et al. (AMS), “Antiproton Flux, Antiproton-to-Proton Flux Ratio, and Properties of Elementary Particle Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station,” Phys. Rev. Lett. 117, 091103 (2016).

[49] Basudeb Dasgupta and Ranjan Laha, “Neutrinos in IceCube/KM3NeT as probes of Dark Matter Substructures in Galaxy Clusters,” Phys. Rev. D86, 093001 (2012), arXiv:1206.1322 [hep-ph].

[50] Kohta Murase and John F. Beacom, “Galaxy Clusters as Reservoirs of Heavy Dark Matter and High-Energy Cosmic Rays: Constraints from Neutrino Observations,” JCAP 1302, 028 (2013), arXiv:1209.0225 [astro-ph.HE].

[51] M. G. Aartsen et al. (IceCube), “IceCube Search for Dark Matter Annihilation in nearby Galaxies and Galaxy Clusters,” Phys. Rev. D88, 122001 (2013), arXiv:1307.3473 [astro-ph.HE].

[52] M. Ackermann et al., “Constraints on Dark Matter Annihilation in Clusters of Galaxies with the Fermi Large Area Telescope,” JCAP 1005, 025 (2010), arXiv:1002.2239 [astro-ph.CO].

[53] Douglas Close, Marusa Bradac, Anthony H. Gonzalez, Maxim Markevitch, Scott W. Randall, Christine Jones, and Dennis Zaritsky, “A direct empirical proof of the existence of dark matter,” Astrophys J. 648, L109–L113 (2006), arXiv:astro-ph/0608407 [astro-ph].

[54] Matthew R. Buckley and Patrick J. Fox, “Dark Matter Self-Interactions and Light Force Carriers,” Phys. Rev. D81, 083522 (2010), arXiv:0911.3898 [hep-ph].

[55] Annika H. G. Peter, Miguel Rocha, James S. Bullock, and Manoj Kaplinghat, “Cosmological Simulations with Self-Interacting Dark Matter II: Halo Shapes vs. Observations,” Mon. Not. Roy. Astron. Soc. 430, 105 (2013), arXiv:1208.3026 [astro-ph.CO].

[56] Matteo Viel, George D. Becker, James S. Bolton, and Martin G. Haehnelt, “Warm dark matter as a solution to the small scale crisis: New constraints from high redshift Lyman-alpha forest data,” Phys. Rev. D88, 043502 (2013), arXiv:1306.2314 [astro-ph.CO].

[57] Aurel Schneider, Donnino Anderhalden, Andrea Maccio, and Juerg Diemand, “Warm dark matter does not do better than cold dark matter in solving small-scale inconsistencies,” Mon. Not. Roy. Astron. Soc. 441, 6 (2014), arXiv:1309.5960 [astro-ph.CO].

[58] Stacy Y. Kim, Annika H. G. Peter, and David Wittman, “In the Wake of Dark Giants: New Signatures of Dark Matter Self Interactions in Equal Mass Mergers of Galaxy Clusters,” Mon. Not. Roy. Astron. Soc. 469, 1414 (2017), arXiv:1608.08830 [astro-ph.CO].

[59] G. Belanger, B. Dumont, U. Ellwanger, J.F. Gunion, and S. Kraml, “Status of invisible higgs decays,” Physics Letters B 723, 340–347 (2013).
[61] Pier Paolo Giardino, Kristjan Kannike, Isabella Masina, Martti Raidal, and Alessandro Strumia, “The universal higgs fit,” Journal of High Energy Physics 2014, 46 (2014).

[62] K. N. Abazajian et al. (Topical Conveners: K.N. Abazajian, J.E. Carlstrom, A.T. Lee), “Neutrino Physics from the Cosmic Microwave Background and Large Scale Structure,” Astropart. Phys. 63, 66–80 (2015), arXiv:1309.5383 [astro-ph.CO].

[63] W. L. K. Wu, J. Errard, C. Dvorkin, C. L. Kuo, A. T. Lee, P. McDonald, A. Slosar, and O. Zahn, “A Guide to Designing Future Ground-based Cosmic Microwave Background Experiments,” Astrophys. J. 788, 138 (2014), arXiv:1402.4108 [astro-ph.CO].

[64] Vladyslav Shtabovenko, Rolf Mertig, and Frederik Orellana, “New Developments in FeynCalc 9.0,” Comput. Phys. Commun. 207, 432–444 (2016), arXiv:1601.01167 [hep-ph].