Determination of allura red using composites of water-dispersible reduced graphene oxide loaded Au nanoparticles based on ionic liquid

Mingzhu Cuia, Meiling Wanga*, Bingshe Xua, Xiaohong Shib, Dan Hana, Junjie Guoa*

aKey Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, P. R. China

bState Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China

*E-mail: wmlsdym@163.com

*E-mail: guojunjie@tyut.edu.cn
Fig. S1. High-resolution TEM image of IRGO/Au.
Fig. S2. UV-Vis spectra of IRGO in water at different concentrations (a to e) of 0.05, 0.15, 0.25, 0.4 and 0.6 mg mL$^{-1}$, respectively. (B) The plot of the absorbance intensity versus the concentration. Inset: the photograph of IRGO dispersion.
Fig. S3. CV curves of allura red on the surfaces of IRGO/Au/GCE in 0.1 mol L-1 BR solutions (pH 5.0), scan rate, 100 mV s-1.

During the anodic sweep from 0.20 to 1.0 V, an oxidation peak (O1) is observed at 0.73 V (1st cycle). On the reverse scan (2nd cycle) from 1.0 V to 0.20 V, a reduction peak (R2) appears at 0.37 V. During the second anodic sweep, another oxidation peak (O2) is observed at 0.42 V, and the O1 peak obviously decreases. These phenomena indicate that the O1 peak is attributed to the direct oxidation of Allura Red, and the R2/O2 peak couple may correspond to the oxidative product [1,2].
Fig. S4. (A) SWV curves of 0.08 μM allura red for 6 assay runs; (B) SWV curves of 0.06 μM allura red at 6 dependently IRGO/Au/GCEs.
Fig. S5. The SWV curves of 0.08 μmol L$^{-1}$ allura red and the SWV curves of 0.08 μmol L$^{-1}$ allura red after addition of different concentrations of interferences.

Reference
[1] Y. Zhang, X. Zhang, X. Lu, J. Yang and K. Wu, Food Chemistry 122 (3), 909-913 (2010).
[2] M. Wang, M. Yang, Q. Sun, Y. Gao and J. Zhao, International Journal Of Environmental Analytical Chemistry 95 (11), 969-979 (2015).