A Review on *Chenopodium botrys* L.: traditional uses, chemical composition and biological activities

Katayoun Morteza-Semnani

Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran

Received: Oct 25, 2014, Revised: 22 Dec 2014, Accepted: Jan 3, 2015

Abstract

Chenopodium botrys L. is native to Europe and Asia and adventive in much of North America. The plant has been used traditionally for medicinal purposes; generally, these therapeutic uses and health benefits of *C. botrys* are largely based on folklore rather than on scientific substantiation, making it a good candidate to gather documentations, including the phytochemical content, *in vitro* experiments, animal models and human studies available in the scientific studies. The herb contains flavonoids, alkaloids and several terpenoids. *C. botrys* of different origins yielded 0.08-2% essential oil. Pharmacological reports support medicinal potential of *C. botrys* for developing new drugs. Different isomers of ascaridole were identified in *C. botrys* oil from different origins. In some reports, these compounds were major constituents of the essential oil. Ascaridole has various properties including anthelmintic, antifungal, sedative and pain-relieving. Ascaridole also showed activity against different tumor cell lines *in vitro*. These data suggest that *C. botrys* may be an interesting novel candidate plant for cancer treatment, but many studies are needed to confirm this possibility.

Keywords: *Chenopodium botrys* L., traditional uses, chemical composition, biological activity

Introduction

According to the WHO, about three-quarters of the world population relies upon traditional remedies (mainly herbs) for the health care of its people. In fact, plants are the oldest friends of mankind. They not only provided food and shelter but also served the humanity to cure different ailments (1). The WHO is encouraging, promoting and facilitating the effective countries for herbal health programs. The potential of higher plants as a source of new drugs is still largely unexplored (2). The family Chenopodiaceae is a large family comprising about 102 genera and 1400 species (1). The genus *Chenopodium* (Family-Chenopodiaceae) includes varieties of weedy herbs (more than 200 species) native to much of Europe, Asia, India, China and both North and South America (3). In Ayurveda *Chenopodium L.* is well-known for its applications in the treatment of various ailments like pectoral complaints, cough, abdominal pain, pulmonary obstruction and in nervous affections (4). The genus *Chenopodium* comprises 5 species, which have been widely distributed in Iran (5). *Chenopodium botrys* L. has been found in Azerbaijan,
Hamedan, Khorasan, Mazandaran, Sistan & Bluchestan and Tehran provinces of Iran (6). This plant is an annual or biennial herb (7) and has various uses in traditional medicine (6). Since there is not a review article on C. botrys, so we decided to summarize the studies on this plant. *Ambrosia mexicana* Hort is a scientific (Latin) synonym for this plant (Fig. 1) (8); the other synonyms are *Dysphania botrys* (L.) Mosyakin & Clemants, *Ambrina botrys* (L.) Moq.; *Ambrina botrys* Moq.; *Atriplex botrys* (L.) Crantz; *Botrydium botrys* (L.) Small; *Neobotrydium botrys* (L.) Moldenke; *Roubieva botrys* (L.) Fuss; *Roubieva botrys* Fuss; *Teloxys botrys* (L.) W.A.Weber; *Vulvaria botrys* (L.) Bubani; *Vulvaria botrys* Bubani (7). *Dysphania* was formerly included in the genus *Chenopodium* (9).

English names for this plant are Ambrosia, sticky goosefoot, feather geranium, Jerusalem oak, Jerusalem oak goosefoot, turnpike goosefoot (8). *C. botrys* is a sticky, strongly aromatic annual with an incense-like odour and characteristically lobed, oak-like leaves (10) and with taproots (11). The young leaves of *C. botrys* look like miniature versions of those of the oak (12). The stems are usually heavily branched, erect to ascending, covered with stalked glandular hairs and attain a height of 15-60 cm. Minute, green flowers are clustered in numerous, short, axillary cymes forming large, terminal, pyramidal panicles, often reddening in the fruiting stage. The seeds are almost round, 0.5-0.75 mm in diameter, black and shiny. These plants grow in cultivated fields, on ruderal sites in towns and villages and on disturbed soil patches in steppes and semi-deserts, preferring loose, sandy soil (10). *C. botrys* is sometimes cultivated as a garden plant, particularly for its intensely fragrant foliage, and for its arching stems and flowers, valued in dried flower arrangements (8). *C. botrys* can grow in some heavy metal contaminated soils and is a high accumulator plant species for Cu and moderately accumulator plant species for Fe, Mn, and Zn (13). *C. botrys* accumulated Cu and Mn in its root and shoot (14).

This review summarizes some of the main reports on the traditional uses, chemical composition and biological activities of *Chenopodium botrys* from the data in the literatures.

Traditional uses

Plant extract given in catarrh and asthma, also used as anthelmintic. Leaves analgesic, anthelmintic, for headache, colds, influenza (7). In Iranian herbal medicine, *C. botrys* is used as expectorant, anticonvulsant and tonic

Figure1 Chenopodium botrys
A Review on Chenopodium botrys L

Pharm Biomed Res 2015; 1 (2): 3

and for treatment of asthma (6). In France and Southern Europe, C. botrys (feather Geranium) is used in catarrh and humoral asthma and said to be a good substitute for C. ambrosioides (4). In Serbian traditional medicine, dried aerial parts are used for preparing infusions or liquid extracts as remedies with diuretic, antispasmodic, carminative and antidiarrhoeic properties; sometimes as a spice (15). In Skardu valley of Pakistan, whole plant infusion is used orally for treatment of stomachache, liver complaints and headache; it is also known as laxative and diuretic (16). Young leaves and branches of C. botrys are used for healing of wounds in Kohistan valley, Khyber Pukhtunkhwa, Pakistan (17). In India, C. botrys is known as stimulant, diuretic, carminative, antispasmodic, emmenagogue, pectoral; it is also used in asthma, catarrh; diseases of the stomach and liver (18). In Lahul, a province of the Punjab of India, C. botrys is used as a popular flavoring for a soup of meat, cheese and barley (10, 19). In Ladakh, India, C. botrys is considered to be anthelmintic, diuretic and laxative (10). In Jaunsar-Bawar hills, Uttar Pradesh of India, leaf juice dropped into the nostrils of cattle to expel leeches (20). In Lahaul-Spiti region of Indian western Himalaya, vegetable prepared from tender shoots and leaves of C. botrys is found effective to cure severe headache (21). Seeds are considered toxic (18). An ethnomedicinal survey reports that in the Kashmir Himalays a decoction of the seeds is ingested in cases of tapeworm infestation, especially in children (10). This plant is a vermifuge, for example, the prescription from Alabama: for worms, one teaspoonful of the seed or the stalk tea mixed with syrup, three times a day. There is, too, a remedy, using the inner bark of this plant, boiled and mixed with molasses to make a candy. It also seems to have been used in some way for tuberculosis (12). Dioscorides said that botrys (old World Chenopodium) was mainly used to place in clothing because its odor repelled clothes moth (22). In Germany still in the 19th cent. frequently cultivated against moths and as a medicinal plant (23). In Spain, C. botrys, known as té de Valladolid (Valladolid tea), has been used to treat coughs and probably for digestive disorders; it is also antihelminthic (24). Fernald et al. recommend that C. botrys not be consumed as a potherb (8). This plant contains pharmacologically active principles. It is suggested that its consumption be avoided, or at least highly limited (8). Traditional uses of C. botrys in different countries are summarized in Table 1.

Chemical composition
The herb contains flavonoids, alkaloids and several terpenoids. C. botrys of different origins yielded 0.08-2% essential oil. According to several studies, the essential oil varied in amount and composition (10, 18, 25-28). Bicyclic sesquiterpenoids were found in C. botrys (1). The characteristic odour of the plant is due to monoterpenes and sesquiterpenes (10). The headspace of C. botrys was analyzed; monoterpenes (camphor, δ-3-carene, fenchone, linalool, menthone, nerol, β-pinene, pulegone, terpineol-4 and thujone) and sesquiterpenes (β-elemene, elemol and β-eudesmol) were found to be responsible for the aromatic, herbaceous, earthy, dull, heavy and pine-like odor of slimy anserine (29). Early studies on the essential oil refer to ascaridole as a compound (10, 30). Ascaridole is a bicyclic monoterpene that has an unusual bridging peroxide functional group (3). Indian oil is reported to be devoid of ascaridole, the anthelmintic principle (18). Studies on benzene and hexane extracts of Spanish plant samples led to the isolation of numerous elemane, eudesmane and guaiane type sesquiterpenes; chenopodic acid, a terpenoid, was also identified as a constituent of the essential
oil (10, 31, 32). *C. botrys* growing in Saudi Arabia was rich in essential oil (2% v/w); the sesquiterpenes α- and β-eudesmol were found to be the major compounds (26). Both sesquiterpenes, α- and β-eudesmol, also occur in the essential oil of Egyptian origin (10). The major components of *C. botrys* oil from North America include α- and β-cheno-podiol (36%), eudesma-3,11-dien-6-α-ol (9.4%), botrydiol (9.0%), elemol (6.5%), elemol acetate (5.5%), γ-eudesmol (5.4%), and α- and β-eudesmol (3.7%); guaia-3,9-dien-11-ol, a new sesquiterpene alcohol, accounted for 7.4% of the oil (33). The main components of *C. botrys* oil from two different localities of Iran (east of Tehran, Khojir Park and Khalkhal, province of Ardebil) were juniper camphor (16.5% and 25.7%), elemol (14.3% and 13.4%) and α-cadinol (8.2% and 11.6%), respectively (27). Essential oil from aerial parts of *C. botrys* collected from Khoy county, West Azerbaijan province of Iran was obtained by two methods, hydro-distillation and solvent extraction using *n*-hexane. In the first oil, the major constituents were α-eudesmol (15.2%), *epi*-α-murolol (11.1%) and cubenol (10.2%); in the second oil, α-cheno-podiol acetate (35.0%) and eudesma-3,11-dien-6-α-ol (18.9%) were identified as the main compounds (34). The main components of the essential oil of *C. botrys* collected from the suburb of Sari (Mazandaran province, North of Iran) were γ-terpineol (52.8%), *p*-cymene (19.0%) and *iso*-ascaridole (7.0%) (28). The oil of *C. botrys* from Greece comprised mainly

| Table 1 Traditional uses of *Chenopodium botrys* in different countries |
|-----------------------------|---------------------------------|---------------------------------|---|
| **Origin** | **Parts used/Formulation** | **Applications** | **Ref.** |
| Iran | flowering aerial Parts | expectorant anticonvulsant, | 6 |
| | - | tonic and in asthma | |
| France and Southern Europe | - | as remedies with diuretic, | 4 |
| | | antispasmodic, carminative | |
| | | and antidiarrhoic properties, | |
| | | sometimes as a spice | |
| Serbia | dried aerial parts, infusions | treatment of stomachache, | 15|
| | or liquid extracts | liver complaints and | |
| | | headache, as laxative and | |
| | | diuretic | |
| Pakistan, Skardu valley | whole plant, oral infusion | | 16|
| Pakistan, Kohranvalley, | young leaves and branches | | 17|
| Khobey Pakhtunkhwa | | | |
| India | - | stimulant, diuretic, carminative, | 18 |
| | | antispasmodic, emmenagogue, | |
| | | pectoral, in asthma, catarrh, | |
| | | diseases of the stomach and | |
| | | liver | |
| India, Ladakh | - | a popular flavoring for a soup| 10,1|
| | | of meat, cheese and barley | |
| India, Jaursar-Bawar hills, | leaf juice, drop into the | to expel leeches | 9 |
| Uttar Pradesh | nostrils of cattle | | |
| India, Lahaul-Spiti region | vegetable prepared from tender | to cure severe headache | 20|
| | shoots and leaves | | |
| India, Kashmir Himalays | decoction of the seeds | tapeworm infestation | 10|
| USA, Alabama | seed or the stalk tea mixed | vermiculug in some way for | 12|
| | with syrup | tuberculosis | |
| Germany | - | against moths and as a medicinal plant | 23|
| | | | |
| Spain | - | antihelminthic, to treat | 24|
| | | coughs and probably for | |
| | | digestive disorders | |

*: It has not been explained.
sesquiterpenes with elemol acetate (16.3%), elemol (14.1%), botrydiol (11.1%), α-chenopodiol (9.5%), β-eudesmol (7.0%) and selina-3,11-dien-6α-ol (6.1%) being the major components (35). Ascaridole (7.5% and 40%) was reported in essential oils of *C. botrys* collected from Spain and Slovakia, respectively (3). α-Terpinene (21.4%), p-cymene (15.2%), E-caryophyllene (6.5%) and limonene (61%) were identified as major compounds in the essential oil of *C. botrys* from the East Mediterranean; in addition, β-myrcene was also found in *C. botrys* oil (3). 2,3-dehydro-4-oxo-β-Ionone (22.4%), (+)-7-epi-amiteol (11.5%) were found as the major components of the oil of *C. botrys* collected from suburb of Kashan, Iran (36). 2-(4α,8-dimethyl-1,2,3,4,4α,5,6,7-octahydro-naphthalen-2-yl)-prop-2-en-l-ol was identified as the main compound in the essential oil of sticky goosefoot, *C. botrys*, growing in Turkey (37). Reported major compounds of *C. botrys* oil from different origins are outlined in Table 2.

Studies on the flavonoid content of the plant led to the isolation of flavonols; chrysoeriol, quercetin, quercetin-3-O-β-D-glucopyranoside and quercetin-3-O-β-(D-glucopyranosyl-6-β-D-glucopyranoside); flavones: hispidulin, salvigenin, 5-methylsalvigenin, 7-methylupatulin, sinensetin and jaceosidin (10, 38-41). The plant contains alkaloids e.g. betaine has been isolated (42, 43). Betaine is found in all parts of the plant (18). Some species of chenopods had previously been investigated for the presence of phytoecdysteroids; these compounds are plant steroidal analogues of invertebrate steroid hormones (ecdysteroids). Phytoecdysteroids were not found in seeds of *C. botrys* (44).

Biological activities

Antimicrobial, Giardicidal and Nematicidal activities

The essential oil (0.43% w/w) isolated from aerial parts of *C. botrys* collected from locus typicus near the town of Vlasotince (Southern Serbia) exhibited significant

Table 2. Major essential oil components (>5%) of Chenopodium botrys from different origins

Compounds	Origin	Ref.
ascaridole	Kazakhstan	10,30
α- and β-eudesmol	Saudi Arabia	26
α- and β-chenopodiol, eudesma-3,11-dien-6α-ol,	Egypt	10
botrydiol, elemol, elemol acetate, γ-eudesmol,		
guaia-3,9-dien-11-ol	North America	33
juniper camphor, elemol, α-cadinol	Iran, east of Tehran, Khojir Park	27
juniper camphor, elemol, α-cadinol	Iran, Ardebil province, Khalkhal	27
α-eudesmol, epi-α-muurololo, cubenol (by hydro-distillation method)	Iran, West Azerbajian province, Khoy county	34
α-chenopodiol acetate, eudesma-3, 11-dien-6-α-ol (by solvent extraction method using n-hexane)		
α-terpinol, p-cymene, iso-ascaridole	Iran, Mazandaran province, suburb of Sari	28
elemol acetat, elemol, botrydiol, α-chenopodiol,		
β-eudesmol, selina-3,11-dien-6α-ol	Greece	35
ascaridole	Spain	3
ascaridole	Slovakia	3
α-terpinene, p-cymene, E-caryophyllene, limonene	East Mediterranean area	3
2,3-dehydro-4-oxo-β-Ionone, (+)-7-epi-amiteol	Iran, suburb of Kashan	36
2-(4α,8-dimethyl-1,2,3,4,4α,5,6,7-octahydro-naphthalen-2-yl)-prop-2-en-l-ol	Turkey	37

Pharm Biomed Res 2015; 1 (2): 5
bactericidal and fungicidal activity against selected strains of microorganisms, viz. Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Aspergillus niger, Candida albicans, Saccharomyces cerevisiae, Salmonella enteridis and Shigella flexneri (15). The oil of C. botrys growing in Saudi Arabia showed the antimicrobial activity (26). The results of antimicrobial activity of the essential oil from aerial parts of C. botrys growing in Greece were also reported (35). C. botrys oil exhibited significant antibacterial activity against Salmonella aureus and Bacillus cereus; the residual water solution showed a good activity against Salmonella enteridis and Bacillus cereus (1, 45). The essential oil of C. botrys collected from suburb of Kashan (Iran) showed strong antimicrobial activity against Staphylococcus saprophyticus followed by Klebsiella pneumoniae, Bacillus cereus, Staphylococcus epidermidis, Streptococcus mutans, Listeria monocytogenes and Salmonella typhimurium (1); the oil had slight effect on Candida albicans and showed inhibitory effect on Aspergillus species and Bacillus subtilis (36). The essential oil obtained from C. botrys showed a strong activity against the tested dermatophytes, e.g., Trichophyton mentagrophytes, Epidermophyton floccosum and Microsporum canis; the oil possessed bactericidal but not bacteriostatic effects (1). The aqueous extracts of C. botrys collected from Guba region of Azerbaijan showed the high fungistatic activity (46). Both alcoholic and aqueous extracts of C. botrys collected from suburb of Birjand (Iran) have in-vitro giardicidal effect on Giardia lamblia cysts. The highest giardicidal effect of alcoholic and aqueous extracts of C. botrys at 37°C, in 20 mg/ml and 5 hour after experiment were 100% and 66.1% respectively. Giardicidal effect of both extracts of C. botrys significantly increased by rising the concentration, time and temperature (P < 0.0001). The ethanol extracts of this plant have more giardicidal effect (47). Ayazpour et al. reported that the leaf extract of C. botrys was effective on citrus nematode control in Fars province, Iran (48).

Anti-inflammatory and allergenic activities
The aerial parts of C. botrys have anti-inflammatory activity (49, 50). Amjad studied pollen extracts allergenicity of C. album and C. botrys collected from area of Tehran, Karaj city and around Kandovan (Iran). Pollens were extracted using phosphate-buffered saline, pH 7.4. Male guinea pigs were sensitized and treated with C. album and C. botrys pollen extracts and skin prick tests were performed on guinea pigs and quantified on the basis of wheal diameter. During the skin prick test, the allergenic sensitivity was observed for C. album pollen grains, with an average wheal diameter of about 4 cm and for C. botrys pollen grains, with an average wheal diameter of about 2.5 cm. The presence of blood eosinophilia, an increase in neutrophilia number with the presence of the other factors which have been reported as allergic indicators proved the allergenicity of C. album and C. botrys pollen grains. Moreover, the observations suggest that C. album pollen grains are more allergenic than C. botrys pollens (51).

Effects on cardiovascular and respiratory system
Alkaloids extracted of C. botrys by Et₂O-H₂SO₄, when applied in doses of 0.005-0.01 g/kg caused temporal excitation of respiration and increase of the arterial pressure by 10-40 mm Hg. Tartrates from the petroleum ether extract had an analogous
A Review on Chenopodium botrys L

Pharm Biomed Res 2015; 1 (2): 9

Effect in doses of 0.002-0.03 g/kg. On the other hand tartrates from the CHCl₃ extract caused a marked decrease in the arterial pressure and respiration, when applied in doses of 0.001-0.009 g/kg. Doses of 0.01-0.015 g/kg led to a complete loss of the pressure and caused a block in respiration (1).

Mitochondrial-mediated toxicity
Approximately 50% of the drugs with FDA Black Box Warnings for hepatoxicity and cardiovascular toxicity are known to interfere with mitochondrial function. Nagle et al. evaluated extracts from more than 350 species of plants and other organisms used in traditional Chinese, Indian, African, and Western herbal medicine for their ability to disrupt mitochondrial function. Several species, including C. botrys, possess compounds that have been demonstrated to interfere with mitochondrial function (52).

Conclusion
This article briefly reviews the traditional uses, chemical composition and biological activities of Chenopodium botrys that is a rich source of organic compounds and varying structural patterns. Pharmacological reports support medicinal potential of C. botrys for developing new drugs. Different isomers of ascaridole were identified in C. botrys oil from different origins (10, 28, 30). In some reports, these compounds were major constituents of the essential oil (3, 10, 28, 30). Ascaridole apparently undergoes partial thermal isomerization to isoascaridole (53). Ascaridole has anthelmintic properties (18). Ascaridole has been documented with sedative and pain-relieving properties as well as antifungal effects. Ascaridole was found to be a potent inhibitor in vitro development of Plasmodium falciparum, Trypanosoma cruzi, and Leishmania amazonensis (3, 54). Ascaridole also showed activity against different tumor cell lines in vitro (CCRF-CEM, HL60, MDA-MB-231) (3). Ascaridole was cited as having carcinogenic activity by Van Duuren. However, ascaridole, extracted from wormseed oil, exhibited cytotoxic activity towards two human leukemia cell lines (HL60 and CCRF-CEM), one human breast cancer cell line (MDA-MB-231) and their multidrug-resistant counterparts MDR1, MRP1 and BCRP. Ascaridole was cytotoxic to human cell lines for colon cancer and leukemia, and inhibited connective tissue cancer in mice at 10 or 20 mg/kg, with little damage to normal tissue. It is generally regarded as highly toxic, and is more toxic to humans than rodents. It may be anticarcinogenic (53). These data suggest that C. botrys may be an interesting novel candidate plant for cancer treatment, but many studies are needed to confirm this possibility.

Conflict of interest statement
The authors declared no potential conflict of interest with respect to the authorship, and/or publication of this study.

References
1. Kokanova-Nedialkova Z, Nedialkov PT, Nikolov SD. The genus Chenopodium: Phytochemistry, Ethnopharmacology and Pharmacology. Phcog Rev 2009;3:280-306.
2. Singh KP, Dwevedi AK, Dhakre G. Evaluation of antibacterial activities of Chenopodium album. JABPT 2011;2:398-401.
3. Dembitsky V, Shikrob I, Hanus L. O. Ascaridole and related peroxides from the genus Chenopodium. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2008;152:209-15.
4. Yadav N, Vasudeva N, Singh S, Sharma SK. Medicinal properties of genus Chenopodium Linn. Nat Prod Radiance 2007;6:131-4.
5. Mozaffarian V. A Dictionary of Iranian Plant Names. Farhang Moaser Publishers, Tehran, Iran, 2008, p.121.
6. Zargar A. Medicinal Plants. Tehran University Publications, Tehran, Iran, 1993, vol. 4, pp. 218-9.
7. Quattrocchi U. CRC World Dictionary of Medicinal and Poisonous Plants, CRC Press. 2012, p. 1504.
A Review on Chenopodium botrys L.

8. Small E. Culinary Herbs. 2nd ed. Canadian Science Publishing (NRC Research Press). 2006, pp. 298-9.

9. Rhoads AF, Block TA. The Plants of Pennsylvania: An Illustrated Manual. 2nd ed. University of Pennsylvania Press. 2007, pp. 475-6.

10. Kletter C, Krichbaum M. Tibetan Medicinal Plants. Medpharm Scientific Publishers. 2001, 241-6.

11. Mohlenbrock RH. The Illustrated Flora of Illinois: Flowering Plants. Southern Illinois University Press. 2001, p. 53.

12. Watts DC. Elsevier's Dictionary of Plant Lore. Elsevier Inc. 2007, p. 214.

13. Yousefi N, Chehregani A, Malayeri B, Lorestani B, Cheraghi M. Investigating the effect of heavy metals on developmental stages of anther and pollen in Chenopodium botrys L. (Chenopodiaceae). Biol Trace Elem Res 2011;140:368-76.

14. Nouri J, Khorsanis N, Lorestani B, Karami M, Hassani AH, Yousefi N. Accumulation of heavy metals in soil and uptake by plant species with phytoremediation potential. Environ Earth Sci 2009;59:315-23.

15. Maksimović ZA, Đorđević S, Mraović M. Antimicrobial activity of Chenopodium botrys Essential Oil. Fitoterapia 2005;76:112-4.

16. Bano A, Ahmad M, Ben Hadda T, Saboor A, Sultana S, Zafar M, Khan MP, Arshad M, Ashraf MA. Quantitative ethnomedicinal study of plants used in the Skardu valley at high altitude of Karakoram-Himalayan range. Pakistan J Ethnobiol Ethnomed 2014;10:43.

17. Hazrat A, Nisar M, Shah J, Ahmad M. Ethnobotanical study of some elite plants belonging to Dir, Kohistan valley, Khyber Pakhtunkhwa, Pakistan. Pak J Bot 2011;43:787-95.

18. Khare CP. Indian Medicinal Plants: An illustrated dictionary. Springer. 2007, p. 142.

19. Koelz WN. Notes on the Ethnobotany of Lahul, a province of the Punjab. Quart J. Crude Drug Res 1979;17:1-56.

20. Jain SP, Puri HS. Ethnomedicinal plants of Jaunsar-Bawar hills, Uttar Pradesh, India. J Ethnopharmacol 1984;12:213-22.

21. Singh KN. Traditional knowledge on ethnobotanical uses of plant biodiversity: a detailed study from the Indian Western Himalaya. Biodiv Res Conserv 2012;28:63-77.

22. Artschwager M. Healing with Plants in the American and Mexican West. 1st ed. University of Arizona Press. 1996, p. 133.

23. Hanelt P. Mansfeld’s Encyclopedia of Agricultural and Horticultural Crops. 1st ed. Springer-Verlag Publishers. Berlin. 2001, p. 248.

24. Pardo de Santayana M, Blanco E, Morales R. Plants known as té in Spain: an ethno-pharmaco-botanical review. J Ethnopharmacol 2005;98:1-19.

25. Gallego F, Siatropolk-Mirska I, Vallejo E. Contribution to the study of Chenopodium botrys L. in relation to its essential oil. Farmacognosia 1965;25:69-87.

26. El-Sayed AM, Al-Yahya MA., Hassan MMA. Chemical composition and antibacterial activity of the essential oil of Chenopodium botrys growing in Saudi Arabia. Int. J. Crude Drug Res 1989;27:185-8.

27. Feizbaksh A, Sedaghat S, Tehran MS, Rustaiyan A, Masoudi S. Chemical composition of the essential oils of Chenopodium botrys L. from two different locations in Iran. J Essent Oil Res 2003;15:193-4.

28. Morteza-Semnani K, Babanezhad E. Essential oil composition of Chenopodium botrys L. from Iran. Jepop 2007;10:314-7.

29. Buchbauer G, Jarovetz L, Wasicky M, Walter J, Nikiforov A. Headspace volatiles of Chenopodium botrys (Chenopodiaceae). J Essent Oil Res 1995;7:305-8.

30. Rustembekova GB, Goryaev MI, Krotova GI, Dembitski AD. Substances added to the composition of essential oils, 60 oxygen containing compounds of Chenopodium botrys essential oil. Izv Akad Nauk kaz SSR Ser Chim 1975;25:32-4.

31. De Pascual TJ, Sanchez IB, Sanchez MG. Chenopodiaceae components I. sesquieterpenoids from Chenopodium botrys L. An Quim 1978;74:91-6.

32. De Pascual TJ, Bellido IS, González MS. Chenopodiaceae components: polyoxigenated sesquiterpenes from C. botrys. Tetrahedron 1980;36:371-6.

33. Bedrossian AG, Beauchamp PS, Bernichi B, Dev V, Kitaw KZ, Richtshaffen H, et al. Analysis of north American Chenopodium botrys essential oil isolation and structure of two new sesquiterpene alcohols. J Essent Oil Res 2001;13:393-400.

34. Chalabian F, Monfared A, Larjani K, Saldoosi S. Comparison of the essential oils of Chenopodium botrys L., Feradago subvelatina Rech.F., Rosa gallica L. and Antimicrobial activity of the oils against some microbes. Iranian J Med Aromatic Plant 2006;22:146-54.

35. Tzakou O, Pizzimenti A, Pizzimenti FC, Sdrafkakis V, Galati M. Chemical composition and fumigant toxicity of some essential oils of Chenopodium botrys L. essential oil from Greece. J Essent Oil Res 2007;19:292-4.

36. Mahboubi M, Ghazian Bidgoli F, Farzin N. Chemical composition and antimicrobial activity of Chenopodium botrys L. essential oil. J Essent Oil-Bearing Plant 2011; 14: 498-503.

37. Karabörklü S, Ayvaz A, Yilmaz S, Abdkhul M. Chemical composition and fumigant toxicity of some essential oils against Ephestia kaehtella. J Econ Entomol 2011;104: 1212-9.

38. Rustembekova GB, Goryaev MI, Nezhinskaya GA. Flavonoids of Chenopodium botrys. Chem Nat Compd 1974; 10:406.

39. De Pascual TJ, González MS, Vicente S, Bellido IS. Flavonoids from Chenopodium botrys. Planta Med 1981; 41: 389-91.

40. Bahram N, Jay M, Gorenflot R. Contribution to the chemosystematic knowledge of some species of the genus Chenopodium L. Lett Bot 1985; 2: 107-13.

41. Gawlik-DzikI U, Swieca M, Sulkowski M, Dziki D, Baranik B, Czyż J. Antioxidant and anticancer activities of Chenopodium quinoa leaves extracts - in vitro study. Food Chem Toxicol 2013;57:154-60.

42. Kivalivábo SB. Pharmacology of Jerusalem oak (Chenopodium botrys) Alkaloids. Tr Alma-At Zootekh-Vet Inst. 1968;15:21-3.

43. Rustembeková GB, Goryaev MI, Gladyshev PP. Isolation of betaine from Chenopodium botrys. Chem Nat Compd 1973;9:543.

44. Dinan L, Whiting P, Scott AJ. Taxonomic Distribution of phytocysteroiids in seeds of members of the Chenopodiaceae. Biochem Syst Ecol 1998;26:553-76.

Pharm Biomed Res 2015; 1 (2): 9
A Review on Chenopodium botrys L.

45. Lyubenova M, Geneva Y, Chiptska L, Hadjieva P, Chanev Chr. Biological active components of Chenopodium botrys L. Phytomaiss. J Balkan Ecol 2006;9:289-95.
46. Zeynalova SA, Mehtiyeva NP, Mustafayeva SD, Ismailov EI, Bakshaliyeva KF. Biological peculiarities of some medicinal and aromatic plant species, their anti-fungal activity. Traditional Medicine 2009;3:40-7.
47. Rezaeeanesh M, Shurbazoo Sh, Pouryaghoub N. In vitro giardicidal effects of aqueous and alcoholic extracts of Chenopodium botrys L. on Giardia Lamblia cysts. Journal of Torbat Heydariyeh University of Medical Sciences 2013;1:19-30.
48. Ayazpour K, Hasanzadeh H, Arabzadegan MS. Evaluation of the control of Citrus nematode (Tylenchulus semipenetrans) by leaf extracts of many plants and their effects on plant growth. Afr J Agric Res 2010;5: 1876-80.
49. Ivanovska N, Philipov S, Istatkova R. Evaluation of antiinflammatory activity of plants used in Bulgarian folk medicine. Fitoterapia 1997;68:417-22.
50. Okoli CO, Akah PA, Nwafor SV. Anti-inflammatory activity of plants. J Nat Remedies 2003;3:1-30.
51. Amjad L. Comparative study of pollen extracts allergenicity of Chenopodium album L. and Chenopodium botrys L. an in vivo study. International Conference on Bioscience, Biochemistry and Bioinformatics; IPCBEE, IACSIT Press, Singapore. 2011;5:338-41.
52. Nagle DG, Mahdi F, Datta S, Li J, Du L, Smilie TJ, Khan IA, Jekabsons MB, Zhou YD. Assessing the potential mitochondrial-mediated toxicity of herbal dietary supplements. 10th Annual Oxford International Conference on the Science of Botanicals (ICBS). Oxford, Mississippi, 11th-14th April 2011. Planta Med 2011;77: S11.
53. Tisserand R, Young R. Essential Oil Safety. 2nd ed. Churchill Livingstone Elsevier. 2014, pp. 471, 494-5.
54. Rai M, Carpinella MC. Advances in Phytomedicine, 1st ed. Elsevier. 2006, vol. 3, pp. 337-8.