1. Introduction and statements of results

The number of examples of $C^*$-algebras for which the semi-group of extensions by the compact operators is not a group was only slowly increasing during the first decades following the first example of J. Anderson, [A], but recently the pace has picked up, cf. [HT], [HS], [HLSW] and [Se], and there are now whole series of $C^*$-algebras $A$ for which it is known that there are non-invertible extensions of $A$ by the $C^*$-algebra of compact operators $K$. Furthermore, by considering extensions by general stable $C^*$-algebras the stock of examples of non-invertible extensions grows considerably. Indeed, a non-invertible extension of a $C^*$-algebra $A$ by $K$ gives rise to a non-invertible extension of $A$ by $B \otimes K$ for any unital $C^*$-algebra $B$.

In a different direction the authors have shown that many of the non-invertible extensions are invertible in a slightly weaker sense, called semi-invertibility. Recall that an extension of a $C^*$-algebra $A$ by a stable $C^*$-algebra $B$ is invertible when there is another extension, the inverse, with the property that the direct sum extension of the two is a split extension. Semi-invertibility requires only that the sum is asymptotically split, in the sense that there is an asymptotic homomorphism as defined by Connes and Higson, [CH], consisting of right-inverses of the quotient map. It turns out that extensions of a suspended or a contractible $C^*$-algebra are always semi-invertible, [MT3], [MT1], and in [ST] it was shown that the extensions of the reduced group $C^*$-algebra of a free product of amenable groups are all semi-invertible. The main purpose of the present paper is to prolonge this list of $C^*$-algebras for which all the extensions by a separable stable $C^*$-algebra are semi-invertible.

To explain why semi-invertibility is a natural notion which can be considered as the best alternative when invertibility fails, we recall first the central definitions. Let $A$ and $B$ be separable $C^*$-algebras. The multiplier algebra of $B$ will be denoted by $M(B)$, the generalized Calkin algebra of $B$ by $Q(B)$ and $q_B : M(B) \to Q(B)$ is then the canonical surjection. We let Ext$(A, B)$ denote the semi-group of unitary equivalence classes of extensions of $A$ by $B$. Thus elements of Ext$(A, B)$ are represented by $*$-homomorphisms $\varphi : A \to Q(B)$ and two extensions $\varphi, \psi : A \to Q(B)$ are unitarily equivalent when there is a unitary $u \in M(B)$ such that $\text{Ad} q_B(u) \circ \varphi = \psi$. The addition $\varphi \oplus \psi$ of two extensions is defined from a choice of isometries $V_1, V_2 \in M(B)$ such that $V_1V_1^* + V_2V_2^* = 1$ to be the extension

$$(\varphi \oplus \psi)(a) = q_B(V_1)\varphi(a)q_B(V_1)^* + q_B(V_2)\psi(a)q_B(V_2)^*.$$ 

Version: May 13, 2010.

1Tensor the non-invertible extension with $B$ using the maximal tensor-product, and pull back along the unital inclusion $A \subseteq A \otimes_{\text{max}} B$. It is easy to see that the resulting extension of $A$ by $B \otimes K$ does not have a completely positive section for the quotient map because the original extension does not.
An extension $\varphi : A \to Q(B)$ is split when there is a $*$-homomorphism $\pi : A \to M(B)$ such that $\varphi = q_B \circ \pi$ and asymptotically split when there is an asymptotic homomorphism $\pi_t : A \to M(B), t \in [1, \infty)$, such that $q_B \circ \pi_t = \varphi$ for all $t$. We say that $\text{Ext}(A, B)$ is a group when every extension $\varphi : A \to Q(B)$ has an inverse, meaning that there is another extension $\varphi' : A \to Q(B)$, the inverse of $\varphi$, such that $\varphi \oplus \varphi'$ is split. An extension $\varphi : A \to Q(B)$ is semi-invertible when there is another extension $\varphi' : A \to Q(B)$ such that $\varphi \oplus \varphi'$ is asymptotically split.

When the theory of $C^*$-extensions was first introduced, in the work of Brown, Douglas and Fillmore, [BDF1], [BDF1], the authors had very good (operator theoretic) reasons for wanting to trivialize the split extensions. However, there are other reasons why split extensions must be trivialized in order to get a group from the semi-group $\text{Ext}(A, B)$. For a split extension $\psi$ it makes sense to define the direct sum $\psi^\infty$ of a countably infinite collection of copies of $\psi$. Since $\psi \oplus \psi^\infty \oplus 0 = \psi^\infty \oplus 0$ in $\text{Ext}(A, B)$ this shows that split extensions are trivial in any group-quotient of $\text{Ext}(A, B)$. It is not difficult to show that $\psi^\infty$ can also be defined when the extension $\psi$ is asymptotically split. In fact, this is possible as soon as the extension splits via a discrete asymptotic homomorphism, e.g. when it is quasi-diagonal. But by using the real parameter for the asymptotic section it can also be arranged that $\psi \oplus \psi^\infty \oplus 0$ becomes unitarily equivalent to $\psi^\infty \oplus 0$. It follows that also asymptotically split extensions must vanish in a group-quotient of $\text{Ext}(A, B)$. In fact, any group-quotient of $\text{Ext}(A, B)$ must factor through the cancellation semi-group of $\text{Ext}(A, B)$. In retrospect it seems therefore not particularly surprising that it is not generally enough to trivialize only the split extensions to get a group, or even the asymptotically split extensions, as demonstrated in [MT4]. In fact, seen through the right looking-glasses it seems more surprising that $\text{Ext}(A, B)$ actually is a group in so many cases, and that semi-invertibility prevails in many cases where invertibility fails.

Complementing on the cases covered by the results in [MT3], [MT1], [M], [Th4] and [ST] we shall show in this paper that all extensions in $\text{Ext}(A, B)$ are semi-invertible when

a) $A$ is the reduced group $C^*$-algebra $C^*_r(G)$ and the group $G$ is an amalgamated free product $G = G_1 *_F G_2$ with $F$ finite, $G_2$ is amenable and $G_1$ abelian, and when

b) $A$ is the amalgamated free product of $C^*$-algebras, $A = A_1 *_{D_i} A_2$, when $D_i$ is nuclear and all extensions of $A_i$ by $B$ are semi-invertible, $i = 1, 2$.

The result concerning a) is actually slightly more general and involves a KK-theory condition which is automatically fulfilled when $G_1$ is abelian. Furthermore we establish a few permanence properties for semi-invertibility: If all extensions of $A$ and $A'$ by $B$ are semi-invertible then so are all extensions of $A \oplus A'$ by $B$, all extensions of $C(T) \otimes A$ by $B$ and all extensions of $\mathbb{K} \otimes A$ by $B$. It follows from this that all extensions of $A$ by $B$ are semi-invertible when

a') $A = C^*_r(G')$ provided $G' = \mathbb{Z}^k \times H \times G$ where $H$ is a finite group and $G$ is an amalgamated free product as in a) above, and when

---

2They also had good reasons for restricting the attention to essential extensions, but that’s another story.
b’) A is the full group $C^*$-algebra $C^*(\mathbb{Z}^k \times H \times G'')$ where $H$ is a finite group and $G''$ is obtained through successive amalgamations

$$G'' = (\cdots ((G_1 *_{H_1} G_2) *_{H_2} G_3) *_{H_3} \cdots ) *_{H_{n-1}} G_n,$$

provided all the groups $H_1, H_2, \ldots, H_{n-1}$ are amenable, and all extensions of $C^*(G_i)$ by $B$ are semi-invertible, $i = 1, 2, \ldots, n$.

While we know from [HS], [HLSW] and [Sc] that there are non-invertible extensions of $A$ by $B$ in many of the cases dealt with in a), our ignorance concerning invertibility of the extensions handled by b’) is complete: There is no known example of an extension of a full group $C^*$-algebra by a stable $C^*$-algebra which is not invertible.

The proof of a) above is an elaboration of the ideas developed in [M], [Th4] and [ST]. In particular, the argument uses the notion of strong homotopy of extensions and depends on Lemma 4.3 in [MT1]. In contrast the method of proof of b) is new and does not use strong homotopy of extensions. Instead a key step uses methods devised for the classification of $C^*$-algebras by Lin, Dadarlat and Eilers.

This difference in the proofs has consequences for the conclusions we obtain; in case a) the inverse (for semi-invertibility) can be chosen to be invertible while we do not know if this is so in case b).

Acknowledgement. The main part of this work was done during a stay of both authors at the Mathematische Forschungsinstitut in Oberwolfach in January 2010 in the framework of the ‘Research in Pairs’ programme. We want to thank the MFO for the perfect working conditions.

2. The reduced group $C^*$-algebra of free products with amalgamation over a finite subgroup

Throughout $A$ and $B$ are separable $C^*$-algebras and $B$ is stable. Two extensions $\varphi, \varphi' : A \to Q(B)$ are strongly homotopic when there is a path $\psi_t, t \in [0, 1]$, of extensions $\psi_t : A \to Q(B)$ such that

1) $t \mapsto \psi_t(a)$ is continuous for all $a \in A$, and

2) $\psi_0 = \varphi$ and $\psi_1 = \varphi'$.

By Lemma 4.3 of [MT1] we have the following

**Theorem 2.1.** Assume that two extensions $\varphi, \varphi' : A \to Q(B)$ are strongly homotopic. Then $\varphi$ is asymptotically split if and only if $\varphi'$ is asymptotically split.

In some of the cases we deal with below we show that for any extension $\varphi : A \to Q(B)$ there is an extension $\psi : A \to Q(B)$ such that $\varphi \oplus \psi$ is strongly homotopic to a split extension. This will be expressed by saying that $\varphi$ is strongly homotopy invertible. Thanks to Theorem 2.1 this implies that $\varphi$ is semi-invertible. In some cases it turns out that $\psi$ can be taken to be invertible. We express this by saying that $\varphi$ is strongly homotopy invertible with an invertible inverse.

**Lemma 2.2.** Let $G_i, i = 1, 2$, be discrete countable amenable groups with a common finite subgroup $H \subseteq G_i, i = 1, 2$. Let $G_1 *_{H} G_2$ be the amalgamated free product group. Let $\mu : C^*(G_1 *_{H} G_2) \to C^*(G_1 *_{H} G_2)$ be the canonical surjection and let $h_r : C^*(G_1 *_{H} G_2) \to \mathbb{C}$ be the character corresponding to the trivial one-dimensional representation of $G_1 *_{H} G_2$. There are then a separable infinite-dimensional Hilbert space $\mathbb{H}$, *-homomorphisms $\sigma, \sigma_0 : C^*(G_1 *_{H} G_2) \to B(\mathbb{H})$, and a path $\zeta_s : C^*(G_1 *_{H} G_2) \to B(\mathbb{H}), s \in [0, 1]$,
of unital $*$-homomorphisms such that

a) $\zeta_0 = \sigma \circ \mu$;

b) $\zeta_1 = h_\tau \oplus \sigma_0 \circ \mu$;

c) $\zeta_s(a) - \zeta_0(a) \in \mathbb{K}$, $s \in [0, 1]$, and

d) $s \mapsto \zeta_s(a)$ is continuous for all $a \in C^*(G_1 \ast_H G_2)$.

**Proof.** Set $G = G_1 \ast_H G_2$. Being amenable $G_1$ has the Haagerup Property. See the discussion in 1.2.6 of [CCJJV]. It follows then from Propositions 6.1.1 and 6.2.3 of [CCJJV] that also $G$ has the Haagerup Property. Since the Haagerup Property implies $K$-amenability by [Tu] (or Theorem 1.2 in [HK]) we conclude that $G$ is $K$-amenable. We can therefore find a separable infinite-dimensional Hilbert space $\mathbb{H}$ and $*$-homomorphisms $\sigma, \sigma_0 : C^*_r(G) \to B(\mathbb{H})$ such that $\sigma$ and $h_\tau \oplus \sigma_0$ are both unital and

1) $\sigma \circ \mu(x) - (h_\tau \oplus \sigma_0 \circ \mu)(x) \in \mathbb{K}$, $x \in C^*(G)$, and

2) $[\sigma \circ \mu, h_\tau \oplus \sigma_0 \circ \mu] = 0$ in $KK(C^*(G), \mathbb{K})$, cf. [C]. By adding the same unital and injective $*$-homomorphism to $\sigma$ and $\sigma_0$ we can arrange that both $\sigma$ and $\sigma_0$ are injective and have no non-zero compact operator in their range. Since $\mu|_{C^*_r(G_1)} : C^*_r(G_1) \to C^*_r(G_1)$ is injective because $G_1$ is amenable, it follows that $\sigma \circ \mu|_{C^*_r(G_1)}$ and $(h_\tau \oplus \sigma_0 \circ \mu)|_{C^*_r(G_1)}$ are admissible in the sense of Section 3 of [DE] for each $i$. Thus Theorem 3.12 of [DE] applies to show that there is a norm-continuous path $u^i_s$, $s \in [1, \infty)$, of unitaries in $1 + \mathbb{K}$ such that

$$
\lim_{s \to \infty} \|\sigma \circ \mu|_{C^*_r(G_1)}(a) - u^i_s \circ (h_\tau \oplus \sigma_0 \circ \mu)|_{C^*_r(G_1)}(a)\|_{C^*_r(G_1)} = 0
$$

(2.1)

for all $a \in C^*_r(G_1)$ and

$$
\sigma \circ \mu|_{C^*_r(G_1)}(a) - u^i_s \circ (h_\tau \oplus \sigma_0 \circ \mu)|_{C^*_r(G_1)}(a) u^i_s^* \in \mathbb{K}
$$

(2.2)

for all $a \in C^*_r(G_1)$ and all $s \in [1, \infty)$. Set

$$
F = (h_\tau \oplus \sigma_0 \circ \mu)(C^*(H))
$$

which is a finite dimensional unital $C^*$-subalgebra of $B(\mathbb{H})$, and let $P : B(\mathbb{H}) \to F' \cap B(\mathbb{H})$ be the conditional expectation given by

$$
P(x) = \int_{U(F)} u x u^* du,
$$

where we integrate with respect to the Haar-measure on the unitary group $U(F)$ of $F$. Note that $P(1 + \mathbb{K}) \subseteq 1 + \mathbb{K}$. It follows from (2.1) that $u^2_s u^1_s$ asymptotically commutes with elements of $F$ and hence also that

$$
\lim_{s \to \infty} \|P(u^2_s u^1_s) - u^2_s u^1_s\| = 0. \quad (2.3)
$$

Standard $C^*$-algebra techniques provide us then with a norm-continuous path $v_t$, $t \in [1, \infty)$, of unitaries in $F' \cap (1 + \mathbb{K})$ such that $\lim_{s \to \infty} \|v_s - P(u^2_s u^1_s)\| = 0$, which combined with (2.3) implies that

$$
\lim_{s \to \infty} \|u^2_s v_s - u^1_s\| = 0.
$$

It follows that we can work with $u^2_s v_s$ in the place of $u^1_s$ to arrange that besides (2.1) and (2.2) we have also that

$$
\text{Ad} u^1_s \circ (h_\tau \oplus \sigma_0 \circ \mu)|_{C^*(H)} = \text{Ad} u^2_s \circ (h_\tau \oplus \sigma_0 \circ \mu)|_{C^*(H)}
$$
for all $s$. It follows that the $*$-homomorphisms

$$
\psi'_s = (\text{Ad} u^1_s \circ (h_0 + \sigma_0 \circ \mu)) * C(A) (\text{Ad} u^2_s \circ (h_0 + \sigma_0 \circ \mu))
$$

are all defined and give us a norm-continuous path of unital $*$-homomorphisms

$$
\eta_s : C^*(G) \to B(\mathbb{H}), \ s \in [0, 1], \text{ such that }
$$

a') $\eta_0 = (\text{Ad} u^1_0 \circ (h_0 + \sigma_0 \circ \mu)) * C(A) (\text{Ad} u^2_0 \circ (h_0 + \sigma_0 \circ \mu))$;

b') $\eta_1 = \sigma \circ \mu$;

c') $\eta_s(a) - \eta_0(a) \in \mathbb{K}$, $a \in C^*(G), s \in [0, 1]$.

The unitary group of $F' \cap (\mathbb{C}^1 + \mathbb{K})$ is norm-connected; a fact which can be seen either from the spectral theory of compact operators or by observing that the algebra is AF. By using first a continuous path of unitaries connecting $u^1_s u^1_1$ to 1 in $F' \cap (1 + \mathbb{K})$ and then a continuous path of unitaries connecting $u^2_1$ to 1 in the unitary group of $1 + \mathbb{K}$, we obtain continuous paths $w^1_s$ and $w^2_s$, $s \in [0, 1]$, of unitaries in $1 + \mathbb{K}$ such that $w^1_0 = w^2_0 = 1$, $w^1_1 = u^1_1$, $w^2_1 = u^2_1$ and $\text{Ad} w^1_s \circ (h_0 + \sigma_0 \circ \mu) | C^*(G) = \text{Ad} w^2_s \circ (h_0 + \sigma_0 \circ \mu) | C^*(G)$ for all $s \in [0, 1]$. It follows that the $*$-homomorphisms

$$
\eta'_s = (\text{Ad} w^1_s \circ (h_0 + \sigma_0 \circ \mu)) * C(A) (\text{Ad} w^2_s \circ (h_0 + \sigma_0 \circ \mu))
$$

are all defined and give us a norm-continuous path of unital $*$-homomorphisms

$$
\eta'_s : C^*(G) \to B(\mathbb{H}), \ s \in [0, 1], \text{ such that }
$$

a') $\eta'_0 = h_0 + \sigma_0 \circ \mu$;

b') $\eta'_1 = (\text{Ad} u^1_0 \circ (h_0 + \sigma_0 \circ \mu)) * C(A) (\text{Ad} u^2_0 \circ (h_0 + \sigma_0 \circ \mu))$;

c') $\eta'_s(a) - \eta'_0(a) \in \mathbb{K}$, $a \in C^*(G), s \in [0, 1]$.

The desired path $\zeta$ is then obtained by concatenation of the paths, $\eta$ and $\eta'$.

\begin{proof}
Let $G_i, i = 1, 2$, be discrete countable amenable groups with a common finite subgroup $H \subseteq G_i, i = 1, 2$, and let $B$ be a separable stable $C^*$-algebra. Let $G_1 *_H G_2$ be the amalgamated free product group. Assume that the map

$$
i^*_1 - i^*_2 : KK(C^*(G_1), B) \to KK(C^*(G_2), B) \to KK(C^*(H), B),
$$

induced by the inclusions $i_j : C^*(H) \to C^*(G_j), j = 1, 2$, is rationally surjective, i.e. for every $x \in KK(C^*(H), B)$ there is an $n \in \mathbb{N} \setminus \{0\}$ such that $nx$ is in the range of $i^*_1 - i^*_2$.

It follows that every extension of $C^*_r(G_1 *_H G_2)$ by $B$ is strongly homotopy invertible with an invertible inverse.

\begin{proof}
Set $G = G_1 *_H G_2$ and consider an extension $\varphi : C^*_r(G_1 *_H G_2) \to Q(B)$. Since $C^*(G) \simeq C^*(G_1) * C^*(H) C^*(G_2)$ it follows from Proposition 2.8 of \cite{Th2} that every extension of $C^*(G)$ by $B$ is invertible. As observed in the proof of Lemma 2.2 in $G$ is $K$-amenable and it follows therefore from \cite{C} that $\mu^* : \text{Ext}^{-1}(C^*(G), B) \to \text{Ext}^{-1}(C^*(G), B)$ is an isomorphism. In particular the inverse of $\varphi \circ \mu$ is in the range of $\mu^*$, which means that there is an invertible extension $\varphi'' : C^*_r(G) \to Q(B)$ such that

$$
[\varphi \circ \mu \oplus \varphi'' \circ \mu] = 0 \quad (2.4)
$$

in $\text{Ext}^{-1}(C^*(G), B)$. Let $\beta_0 : C^*_r(G) \to M(B)$ be an absorbing homomorphism, whose existence is guaranteed by \cite{Th1} and set $\varphi' = \varphi \oplus q_0 \circ \beta_0$. By Lemma 2.2 of \cite{Th2} $\beta_0 | C^*(G_i) : C^*_r(G_i) \to M(B)$ is absorbing for each $i = 1, 2$. Since $G_i$ is amenable $\mu_i | C^*(G_i) : C^*(G_i) \to C^*(G_i)$ is a $*$-isomorphism and it follows therefore from (2.4) that $(\varphi' \circ \mu \oplus \varphi'' \circ \mu) | C^*(G_i)$ is a split extension for each $i$. In other words, there
are $*$-homomorphisms $\pi_i : C^*(G_i) \to M(B)$ such that $(\varphi' \circ \mu \oplus \varphi'' \circ \mu) |_{C^*(G_i)} = q_B \circ \pi_i, i = 1, 2$. Note that

$$\pi_1(x) - \pi_2(x) \in B$$

for all $x \in C^*(H)$ so that $(\pi_1, \pi_2)$ represents an element of $KK(C^*(H), B)$. We need to change the situation to a case where this pair represents 0 in $KK(C^*(H), B)$. This is done as follows:

$$\beta_0|_{C^*(G_i)}, i = 1, 2,$$ are both absorbing so after adding $q_B \circ \beta_0$ to $\varphi''$ we get a situation where there are unitaries $u_i \in M(B)$ such that $\Ad u_i \circ \pi_i(y) - \beta_0(y) \in B$ for all $y \in C^*(G_i), i = 1, 2$. Then

$$\varphi' \circ \mu \oplus \varphi'' \circ \mu = \Ad q_B(u_2^*) \circ \left( (q_B \circ \Ad u_2 u_1^* \circ \beta_0|_{C^*(G_1)}) *_{C^*(H)} (q_B \circ \beta_0|_{C^*(G_2)}) \right).$$

It follows that we can choose the lifts, $\pi_1, \pi_2$, above such that $[\pi_1|_{C^*(H)}, \pi_2|_{C^*(H)}] = [\Ad w, \beta_0|_{C^*(H)}, \beta_0|_{C^*(H)}] \in KK(C^*(H), B)$ where $w = u_2 u_1^*$. To proceed we need a description of the KK-groups obtained in $\textbf{Th1}$ and $\textbf{Th3}$: When $A$ is a separable $C^*$-algebra and $\alpha : A \to M(B)$ is an absorbing $*$-homomorphism, there is an isomorphism between $K_1(D_\alpha(A))$ and $KK(A, B)$, where

$$D_\alpha(A) = \{m \in M(B) : \alpha(a)m - ma(a) \in B \forall a \in A\}.$$ (2.5)

The isomorphism sends a unitary $u \in D_\alpha(A)$ to $[\Ad u \circ \alpha, \alpha]$. Ignoring the passage to matrices in $K_1$ our assumption implies, in this picture of KK-theory, that there is an $n > 0$ and a norm-continuous path of unitaries in $D_{\beta_0}(C^*(H))$ connecting $w^n$ to a product $w_1^* w_1$, where $w_i \in D_{\beta_0}(C^*(G_i)), i = 1, 2$. Then $[\Ad w^n, \beta_0|_{C^*(H)}, \beta_0|_{C^*(H)}] = [\Ad w_1 \circ \beta_0|_{C^*(H)}, \Ad w_2 \circ \beta_0|_{C^*(H)}] \in KK(C^*(H), B)$. Note that

$$q_B \circ \beta_0 \circ \mu = \left( q_B \circ \Ad u_1^* \circ \beta_0 |_{C^*(G_1)} \right) *_{C^*(H)} \left( q_B \circ \Ad w_2^* \circ \beta_0 |_{C^*(G_2)} \right).$$

After adding

$$\underbrace{(\varphi' \oplus \varphi'' \oplus \cdots \oplus (\varphi' \oplus \varphi'')}_{n-1 \text{ times}} \oplus q_B \circ \beta_0$$

to $\varphi''$ we come in a position where the pair $(\pi_1, \pi_2)$ can be chosen such that $[\pi_1, \pi_2] = 0$ in $KK(C^*(H), B)$. (If we take the passage to matrices in $K_1$ into account in the previous argument, it may be necessary to add a finite direct sum of copies of $q_B \circ \beta_0$ instead of a single copy.)

We can then proceed as follows: Set $\beta = q_B \circ \beta_0^\infty$ where $\beta_0^\infty$ is the direct sum of a sequence of copies of $\beta_0$. By adding $\beta$ to $\varphi''$ we come then in a situation where Theorem 3.8 of $\textbf{DE}$ applies to give us a continuous path $u_t, t \in [1, \infty)$, of unitaries in $1 + B$ such that

$$\lim_{t \to \infty} \Ad u_t \circ \pi_1(x) = \pi_2(x)$$

for all $x \in C^*(H)$. Since $C^*(H)$ is finite dimensional we have that for $t$ large enough there is a unitary $v \in 1 + B$ such that $vu_t \pi_1(x) u_t^* v^* = \pi_2(x)$ for all $x \in C^*(H)$. Hence, by exchanging $\pi_1$ with $\Ad vu_t \circ \pi_1$ we conclude that $\varphi' \circ \mu \oplus \varphi'' \circ \mu$ is split.

By a standard argument, based on Kasparov’s stabilization theorem, we may add a split extension to arrange that $\varphi' \circ \mu \oplus \varphi'' \circ \mu = q_B \circ \chi \oplus 0$ where $\chi : C^*(G) \to M(B)$ is a unital $*$-homomorphism. Let $\gamma : G \to M(B)$ be the unitary representation of $G$ defined by $\chi$ and let $\zeta_s$ be the continuous path of $*$-homomorphisms from Lemma 2.2 and $\nu_s$ the corresponding unitary representations. Let $h_{\gamma \circ \nu_s}$ be the
a strong homotopy of extensions of \( C^* (G) \) by \( B \). By the argument used in the proof of Theorem 2.3 of [Th3] and again in the proof of Theorem 2.2 in [ST] the properties of \( \{ \zeta_n \} \) ensure that this homotopy factors through \( C^* (G) \) and gives us a strong homotopy, as well as split extensions \( \psi, \psi' \) of \( C^* (G) \) by \( B \) connecting 
\[ \varphi \oplus q_B \circ \beta_0 \oplus \varphi'' \oplus \psi = \varphi' \oplus \varphi'' \oplus \psi \to \psi'. \]
Since \( q_B \circ \beta_0 \oplus \varphi'' \oplus \psi \) is invertible, this completes the proof.

As in [ST] the fact that the strong homotopy inverse is invertible implies that the group \( \text{Ext}^{-1/2}(C^* (G_1 *_H G_2), B) \) of extensions modulo asymptotically split extensions agrees with the corresponding KK-theory group and can be calculated from the universal coefficient theorem. The proof is the same as in [ST] and we omit it here.

The KK-condition of Theorem 2.3 is satisfied when \( G_1 \) is abelian since in this case already the map

\[ i_1^* : KK(C^* (G_1), B) \to KK(C^* (H), B) \]

is surjective. This follows because there is in this case a \( * \)-homomorphism \( p : C^* (G_1) \to C^* (H) \) which is a left-inverse for \( i_1 \). We get in this way the following corollary.

**Corollary 2.4.** Let \( G_1 \) and \( G_2 \) be countable discrete amenable groups with a common finite subgroup \( H \subseteq G_i, i = 1, 2 \), and \( B \) a separable stable \( C^* \)-algebra. Let \( G_1 *_H G_2 \) be the amalgamated free product group. Assume that \( G_1 \) is abelian. It follows that every extension of \( C^*_r (G_1 *_H G_2) \) by \( B \) is strongly homotopy invertible with an invertible inverse.

**Example 2.5.** It is known that

\[ \text{Sl}_2(\mathbb{Z}) \cong \mathbb{Z}_4 *_{\mathbb{Z}_2} \mathbb{Z}_6, \]

cf. p. 11 in [S]. Hence Corollary 2.3 applies. (As the generator of \( \mathbb{Z}_4 \) one can use \( (0 \ -1) \), and \( (1 \ 0) \) can serve as the generator of \( \mathbb{Z}_6 \). The amalgamation is over the subgroup \( \pm 1 \).) It has been shown by Hadwin and Shen in Corollary 4.4 of [HS] that one can get an example of an non-invertible extension of \( C^*_r (\text{Sl}_2(\mathbb{Z})) \) by \( \mathbb{K} \), starting from the non-invertible extension of \( C^*_r (\mathbb{F}_2) \) found by Haagerup and Thorbjørnsen in [HT]. This means that concerning invertibility of extensions of \( C^*_r (\text{Sl}_2(\mathbb{Z})) \) the situation is as for \( C^*_r (\mathbb{F}_2) \): For every stabilization \( B \) of a unital separable \( C^* \)-algebra there are non-invertible extensions of \( C^*_r (\text{Sl}_2(\mathbb{Z})) \) by \( B \), but all are semi-invertible. And the inverse (for semi-invertibility) can be taken to be invertible.

For the full group \( C^* \)-algebra \( C^* (\text{Sl}_2(\mathbb{Z})) \) the situation is also as for \( \mathbb{F}_2 \), namely that all extensions by \( C^* (\text{Sl}_2(\mathbb{Z})) \) are invertible. This follows from [Br] when the ideal is \( \mathbb{K} \) and from [Th2] when it is an arbitrary separable stable \( C^* \)-algebra.

**Remark 2.6.** The KK-condition of Theorem 2.3 can fail even when \( G_1 \) and \( G_2 \) are finite and equal, and \( H \) is abelian. Here is the simplest example. Let \( \alpha \) be the unique non-trivial automorphism of \( \mathbb{Z}_3 \) which has order 2 and let \( G_1 = \mathbb{Z}_3 \rtimes_\alpha \mathbb{Z}_2 \) be the semidirect product by this automorphism. Thus \( G_1 \) is a copy of the symmetric group \( S_3 \). Set \( H = \mathbb{Z}_3 \subset G_1 \). Let \( B = \mathbb{K} \). Then \( KK(C^*_r (G), B) \cong R(G) \) for any finite group \( G \), where \( R(G) \) denotes the Grothendieck group of the semigroup generated by
irreducible (necessarily finite dimensional) representations of $G$. The functorial map $KK(C^*(G_1), B) \to KK(C^*(H), B)$ becomes the restriction map $R(G_1) \to R(H)$ after the above identification. The abelian group $R(H)$ is freely generated by the three one-dimensional representations, $\rho_0$, $\rho_1$ and $\rho_2$, that send a fixed generator of $H$ to 1, $e^{2\pi i/3}$ and $e^{-2\pi i/3}$, respectively. As the number of irreducible representations equals the number of conjugacy classes by the Burnside theorem, and as the group order equals the sum of squares of the dimensions of these representations, it follows that $G_1$ has three irreducible representations: two, $\sigma_0$ and $\sigma_1$, of dimension 1 and one, $\tau$, of dimension 2. Thus, $R(G_1)$ is freely generated by three representations, $\sigma_0$, $\sigma_1$ and $\tau$. One of the one-dimensional representations, $\sigma_0$, is the identity one, and the other, $\sigma_1$, maps $H$ to 1 and $G_1 \setminus H$ to $-1$. Restrictions of both to $H$ equal the trivial representation $\rho_0$ of $H$. The two-dimensional representation $\tau$ is the orthogonal complement to the constant functions in the obvious representation of $G_1$ on $l^2(H) \cong \mathbb{C}^3$. Then it is easy to see that $\tau|_H = \rho_1 \oplus \rho_2$. Thus, the restriction map $R(G_1) \to R(H)$ is not surjective.

This example goes only to show that the KK-condition of Theorem 2.3 is not vacuous. For all we know the conclusion of Theorem 2.3 may very well be true without this condition.

3. Amalgamated free product $C^*$-algebras

In this section we consider free products of $C^*$-algebras with amalgamation. The first result is an application of the relative K-homology developed by the authors in [MT2].

**Theorem 3.1.** Let $A_1$, $A_2$ and $B$ be separable $C^*$-algebras, $B$ stable. Let $D$ be a common $C^*$-subalgebra of $A_1$ and $A_2$, i.e. $D \subseteq A_1$ and $D \subseteq A_2$. Assume that

1) there is a $*$-homomorphism $\alpha_0 : A_1 \ast_D A_2 \to M(B)$ such that also $\alpha_0|_{A_1}$, $\alpha_0|_{A_2}$ and $\alpha_0|_{D}$ are absorbing, and assume that

2) $\text{Ext}(A_1, B)$ and $\text{Ext}(A_2, B)$ are both groups.

It follows that every extension of $A_1 \ast_D A_2$ by $B$ is strongly homotopy invertible.

**Proof.** Set $\alpha = q_B \circ \alpha_0$ and consider an extension $\varphi : A_1 \ast_D A_2 \to Q(B)$. By assumption 2) there is an extension $\psi_i : A_i \to Q(B)$ representing the inverse of $\varphi|_{A_i}$ in $\text{Ext}(A_i, B)$ both for $i = 1$ and $i = 2$. Then $\psi_1|_D$ and $\psi_2|_D$ represent the same element in $\text{Ext}(D, B)$, namely the inverse of the element represented by $\varphi|_D$. After addition of $\alpha_0|_{A_1}$ to $\varphi|_{A_1}$, we therefore assume that $\psi_1|_D$ and $\psi_2|_D$ are unitarily equivalent. Thus, after conjugating $\psi_2$ by a unitary, we can arrange that $\psi_1|_D = \psi_2|_D$. Then $\psi = \psi_1 \ast_D \psi_2 : A_1 \ast_D A_2 \to Q(B)$ is defined. Set $\Phi = \varphi \oplus \psi$. By adding a copy of $\alpha$ to $\Phi$ both extensions $\Phi|_{A_i} : A_i \to Q(B)$, $i = 1, 2$, become split, i.e. there are $*$-homomorphisms $\Phi_i : A_i \to M(B)$ such that $q_B \circ \Phi_i = \Phi|_{A_i}$, $i = 1, 2$. By passing to a unitarily equivalent extension, i.e. by conjugating $\Phi$ by a unitary of the form $q_B(u)$, we can arrange that in addition $q_B \circ \Phi_2 = \alpha|_{A_2}$ and that $\Phi_2 = \alpha_0|_{A_2}$. Then $q_B \circ \Phi_1$ represents an element of the relative extension semi-group $\text{Ext}_{D,\alpha|_{A_1}}(A_1, B)$, cf. [MT2]. In fact, it follows from Lemma 3.2 of [MT2] and assumption 2) that $q_B \circ \Phi_1$ is invertible in this semi-group, i.e. $q_B \circ \Phi_1 \in \text{Ext}_{D,\alpha|_{A_1}}^{-1}(A_1, B)$. Let $\Phi'_i : A_1 \to Q(B)$ represent the inverse of $q_B \circ \Phi_1$ in $\text{Ext}_{D,\alpha|_{A_1}}^{-1}(A_1, B)$ and note that $\Phi'_1 \ast_D \alpha|_{A_2} : A_1 \ast_D A_2 \to Q(B)$ is then defined. After addition by this extension to $\Phi$ we can assume that $\Phi_1$ represents 0 in $\text{Ext}_{D,\alpha|_{A_1}}^{-1}(A_1, B)$. By definition of
Ext_{D,\alpha|_{A_1}}(A_1, B)$ this means that there is a unitary $u$ in the connected component of 1 in the relative commutant of $\alpha(D)$ in $Q(B)$ such that $\text{Ad} u \circ q_B \circ \Phi_1 = \alpha|_{A_1}$. Let $u_t, t \in [0, 1]$, be a continuous path of unitaries in $\alpha(D)' \cap Q(B)$ such that $u_0 = 1$ and $u_1 = u$. Then

$$\psi_t = (\text{Ad} u_t \circ q_B \circ \Phi_1) \ast_D (q_B \circ \Phi_2)$$

is defined for every $t \in [0, 1]$, and $\psi_t, t \in [0, 1]$, is a strong homotopy of extensions connecting $\Phi = \psi_0$ to $\psi_1 = q_B \circ \alpha$. This completes the proof. □

Condition 1) of Theorem 3.1 is always satisfied when $D$ is nuclear or is the range of a conditional expectation $A_i \to D$ for both $i = 1$ and $i = 2$, but it can fail in general. See [Th2]. Condition 2) is satisfied when $A_1$ and $A_2$ are nuclear so Theorem 3.1 has the following corollary.

**Corollary 3.2.** Let $A_1, A_2$ and $B$ be separable C*-algebras, $B$ stable. Let $D$ be a common C*-subalgebra of $A_1$ and $A_2$, i.e. $D \subseteq A_1$ and $D \subseteq A_2$. If $A_1, A_2$ and $D$ are all nuclear it follows that every extension of $A_1 \ast_D A_2$ by $B$ is strongly homotopy invertible.

The next theorem shows that condition 2) of Theorem 3.1 can be weakened when $D$ is nuclear, at the price of a slightly weaker conclusion.

**Theorem 3.3.** Let $A_1, A_2$ and $B$ be separable C*-algebras, $B$ stable. Let $D$ be a common C*-subalgebra of $A_1$ and $A_2$, i.e. $D \subseteq A_1$ and $D \subseteq A_2$. Assume that

1) there is a *-homomorphism $\beta : A_1 \ast_D A_2 \to M(B)$ such that $\beta|_D : D \to M(B)$ is absorbing,

2) that $\text{Ext}(D, B)$ and $\text{Ext}(D, C_0([1, \infty), B))$ are both groups, and

3) that all extensions of $A_1$ by $B$ and all extensions of $A_2$ by $B$ are semi-invertible.

It follows that all extensions of $A_1 \ast_D A_2$ by $B$ are semi-invertible.

**Proof.** By adding units to $A_1$, $A_2$ and $D$ if necessary, we may assume that $D$ is unital.

1. step: (Finding the first candidate for the inverse.)

Let $\varphi : A_1 \ast_D A_2 \to Q(B)$ be an extension. By assumption 2) there are extensions $\psi_i : A_i \to Q(B)$ such that $\varphi|_{A_i} \oplus \psi_i : A_i \to Q(B)$ are asymptotically split, $i = 1, 2$. By assumption 2) $\text{Ext}(D, B)$ is a group and hence $[\psi_1|_D] = [\psi_2|_D] = -[\varphi|_D]$ in $\text{Ext}(D, B)$. (There are various ways to see this; it follows for example from Lemma 4.7 of [MT1]). Furthermore, by assumption 1) there is a *-homomorphism $\beta : A_1 \ast_D A_2 \to M(B)$ such that $\beta|_D$ is absorbing. So after adding by $q_B \circ \beta|_{A_1}$ to $\psi_1$ and $q_B \circ \beta|_{A_2}$ to $\psi_2$ we may assume that $\psi_1|_D$ and $\psi_2|_D$ are unitarily equivalent, and hence without loss of generality that $\psi_1|_D = \psi_2|_D$. Then we have a candidate for a semi-inverse to $\varphi$, namely $\psi_1 \ast_D \psi_2$. We will show that after addition by additional extensions (some of which may be non-trivial), $\varphi \oplus (\psi_1 \ast_D \psi_2)$ becomes asymptotically split.

2. step: (Removing a KK-obstruction.)

First note that $\varphi \oplus (\psi_1 \ast_D \psi_2)$ is split over $D$. Hence, by adding a copy of $q_B \circ \beta$ to $\varphi$ and conjugating by a unitary we can arrange that

$$\varphi \oplus (\psi_1 \ast_D \psi_2)|_D = q_B \circ \beta|_D. \quad (3.1)$$
Let $\xi^i : A_i \to M(B)$, be equi-continuous asymptotic homomorphisms such that $q_B \circ \xi^i = \varphi|_{A_i} \oplus \psi_i$ for all $t, i = 1, 2$. Note that by (3.1) we have that

$$\xi^i_t(d) - \beta(d) \in B$$

for all $t \in [1, \infty), d \in D, i = 1, 2$. Let $\beta^\infty$ denote the direct sum of a countable infinite number of copies of $\beta$ and set $\pi = 1_{C_0[1, \infty)} \otimes \beta^\infty$; i.e. $1_{C_0[1, \infty)}$ is the unit in the multiplier algebra $M(C_0[1, \infty))$ and $\pi(x) = 1_{C_0[1, \infty)} \otimes \beta^\infty(x) \in M(C_0[1, \infty), B)$. Then $\pi : D \to M(C_0[1, \infty), B)$ is absorbing by Lemma 2.3 of \cite{Th3}. Since $\text{Ext}(D, C_0[1, \infty), B)$ is the trivial group by assumption 2), this implies that there is a strictly continuous path $U_t, t \in [1, \infty)$, of unitaries in $M(B)$ such that

$$t \mapsto U_t (\xi^1_t(d) \oplus \beta^\infty(d)) U^*_t - (\xi^2_t(d) \oplus \beta^\infty(d))$$

(3.3)

is in $C_0[1, \infty), B)$ for all $d \in D$. For each $n \in \mathbb{N}, U_t, t \in [1, n], \text{defines a unitary } W_n \text{ in } M(C_n \otimes B)$ in the natural way. Set $\pi_n = 1_{C[1, n]} \otimes \beta^\infty |_D$ and $\beta_n = 1_{C[1, n]} \otimes \beta |_D$. Then (3.3) and (3.2) imply that

$$W_n (\beta_n \oplus \pi_n) (d) W^*_n - (\beta_n \oplus \pi_n) (d) \in C[1, n] \otimes B$$

(3.4)

for all $d \in D$, i.e. $W_n$ is a unitary in the $C^*$-algebra $D_{\beta_n \oplus \pi_n}(D)$, cf. \cite{Th3}. Note that $\beta_n \oplus \pi_n$ is absorbing, again by Lemma 2.3 of \cite{Th3}, so that $K_1(D_{\beta_n \oplus \pi_n}(D)) = KK(D, C[1, n] \otimes B)$ by (3.2) of \cite{Th3}. Identifying $KK(D, C[1, n] \otimes B)$ and $KK(D, B)$ we can say that

$$[\text{Ad } W_n \circ (\beta_n \oplus \pi_n), (\beta_n \oplus \pi_n)] = [\text{Ad } U_1 \circ (\beta |_D \oplus \beta^\infty |_D), (\beta |_D \oplus \beta^\infty |_D)].$$

(3.5)

in $KK(D, C[1, n] \otimes B)$. Add then the extension

$$(q_B \circ \text{Ad } U_1 \circ (\beta \oplus \beta^\infty)|_{A_1}) *_D (q_B \circ (\beta \oplus \beta^\infty)|_{A_1})$$

to $\varphi \oplus (\psi_1 *_D \psi_2)$. We can then exchange $\xi^1_t$ by $\xi^1_t \oplus \text{Ad } U_1 \circ (\beta \oplus \beta^\infty)|_{A_1}$, $\xi^2_t$ by $\xi^2_t \oplus (\beta \oplus \beta^\infty)|_{A_2}$, and $U_t$ by $U_t \oplus U^*_t$. We may therefore return to the previous notation and conclude from (3.5) that

$$[\text{Ad } W_n \circ (\beta_n \oplus \pi_n), (\beta_n \oplus \pi_n)] = 0$$

in $KK(D, C[1, n] \otimes B)$ for all $n$. It follows therefore that $\text{diag}(W_n, 1, \ldots, 1)$ is in the connected component of 1 in the unitary group of $M_{k_n}(D_{\beta_n \oplus \pi_n}(D))$ for some $k_n \in \mathbb{N}, k_n \geq 2$. Since $\beta_n \oplus \pi_n$ is absorbing, there is an isomorphism from $M_{k_n}(D_{\beta_n \oplus \pi_n}(D))$ onto $M_2(D_{\beta_n \oplus \pi_n}(D))$ which takes $\text{diag}(W_n, 1, \ldots, 1)$ to $\text{diag}(W_n, 1)$. It follows that $\text{diag}(W_n, 1)$ is in the connected component of 1 in the unitary group of $M_2(D_{\beta_n \oplus \pi_n}(D))$ for each $n$. After addition by the split extension $\beta^\infty$ so that we can substitute $W_n + 1$ for $W_n$, we may therefore assume that $W_n$ is in the connected component of 1 in the unitary group of $D_{\beta_n \oplus \pi_n}(D)$ for each $n \in \mathbb{N}$.

3. step: (The tricky part. This is an elaboration on ideas developed by Lin, Dadarlat and Eilers, in \cite{L}, \cite{DE}, and a very similar argument was used to prove Theorem 4.1 in \cite{Th3}.)

Let $E_n$ denote the $C^*$-subalgebra of $M(C[1, n] \otimes B))$ generated by the unit $1_{C[0, 1] \otimes B}$, $C[1, n] \otimes B$ and $(\beta_n \oplus \pi_n) (D)$. It follows from (3.4) that $\text{Ad } W_n$ defines an automorphism $\alpha_n$ of $E_n$, and the path of unitaries in $D_{\beta_n \oplus \pi_n}(D)$ connecting $W_n$ to 1 gives us a uniform norm-continuous path of automorphisms in $\text{Aut } E_n$ connecting $\alpha_n$ to the identity in $\text{Aut } E_n$. Since $E_n$ is separable, it follows from 8.7.8 and 8.6.12 in \cite{P}, cf. Proposition 2.15 of \cite{DE}, that $\alpha_n$ is asymptotically inner, i.e. there is a continuous
path $V^n_s$, $s \in [1, \infty)$, of unitaries in $E_n$ such that $\alpha_n(x) = \lim_{s \to \infty} V^n_s x V^n_s^*$ for all $x \in E_n$.

Let $F_1 \subseteq F_2 \subseteq F_3 \subseteq \cdots$ be a sequence of finite subsets with dense union in $D$. Since
\[
\lim_{s \to \infty} \sup_{t \in [1, n]} \| V^n_s(t) (\xi^1_t \oplus \beta^\infty|_D) (d) V^n_s(t)^* - U_t (\xi^1_t \oplus \beta^\infty|_D) (d) U_t^* \| = 0
\]
for all $d \in D$, we can find an $s_n \in [1, \infty)$ so big that
\[
\| V^n_s(t) (\xi^1_t \oplus \beta^\infty|_D) (d) V^n_s(t)^* - U_t (\xi^1_t \oplus \beta^\infty|_D) (d) U_t^* \| \leq \frac{1}{n}
\]
(3.6) for all $s \geq s_n$, all $t \in [1, n]$ and all $d \in F_n$. Note that
\[
\lim_{s \to \infty} V^{n+1}_s(n) V^n_s(n) x_s V^{n+1}_s(n) = x
\]
(3.7) for all $x \in B \cup (\xi^1_t \oplus \beta^\infty)(D)$, $t \in [1, n]$. To simplify notation, set $\Delta^k_s = V^{k+1}_s(k)^* V^k_s(k)$.

It follows from (3.7) that if we increase $s_n$ we can arrange that
\[
\| \Delta^k_s (\xi^1_t \oplus \beta^\infty|_D) (d) \Delta^{k*}_s - (\xi^1_t \oplus \beta^\infty|_D) (d) \| \leq \frac{1}{n^2}
\]
(3.8) for all $d \in F_n$, $t \in [1, n]$, and all $k = 2, 3, \ldots, n$, when $s \geq s_n$. Proceeding inductively we can arrange that $s_n < s_{n+1}$ for all $n$. Let $s : [1, \infty) \to [1, \infty)$ be a continuous increasing function such that $s(n) = s_{n+1}, n = 1, 2, 3, \ldots$. Define a norm-continuous path $W_t, t \in [1, \infty)$, in
\[
E = C^* (1_B, (\xi^1_t \oplus \beta^\infty|_D)(D), B) = C^* (1_B, (\beta \oplus \beta^\infty|_D)(D), B)
\]
such that $W_t = V^2_{s(t)}(t), t \in [1, 2]$, and $W_t = V^{k+1}_{s(t)}(t) \Delta^k_{s(t)} \cdots \Delta_{s(t)} \Delta^3_{s(t)} \Delta^2_{s(t)}$, $t \in [k, k+1]$, $k \geq 2$. Let $d \in F_n$ and consider $t \in [k, k+1]$, where $k \geq n$. Since $s(t) \geq s_{k+1}$ and $d \in F_{k+1}$, it follows from (3.8) that
\[
W_t (\xi^1_t \oplus \beta^\infty|_D)(d) W_t^* \sim_{k+1} V^{k+1}_{s(t)}(t) (\xi^1_t \oplus \beta^\infty|_D)(d) V^{k+1}_{s(t)}(t)^*,
\]
(3.9) where $\sim_{k+1}$ means that the distance between the two elements is at most $\delta$. Furthermore, it follows from (3.6) that
\[
V^{k+1}_{s(t)}(t) (\xi^1_t \oplus \beta^\infty|_D)(d) V^{k+1}_{s(t)}(t)^* \sim_{1/k} U_t (\xi^1_t \oplus \beta^\infty|_D)(d) U_t^*.
\]
It follows from (3.10), (3.9) and (3.3) that
\[
\lim_{t \to \infty} W_t (\xi^1_t \oplus \beta^\infty|_D)(d) W_t^* - (\xi^2_t \oplus \beta^\infty|_D)(d) = 0,
\]
(3.11) first when $d \in F_n$, and then for all $d \in D$ since $n$ was arbitrary and $\{\xi^1_t\}_{t \in [1, \infty)}$ equi-continuous.

Recall that $D$ is unital. For each $t$ there are unique elements $x_t \in D, \lambda_t \in \mathbb{C}$ and $b_t \in B$ such that
\[
W_t = (\xi^1_t \oplus \beta^\infty|_D)(x_t) + \lambda_t (\xi^1_t \oplus \beta^\infty|_D)(1)^\perp + b_t.
\]
Since $q_B \circ (\xi^1_t \oplus \beta^\infty|_D) = q_B \circ (\xi^1_t \oplus \beta^\infty|_D)$ is injective we find that $\{x_t\}$ must be a continuous path of unitaries in $D$ such that $\lim_{t \to \infty} x_t d x_t^* = d$ for all $d \in D$. Set
\[
U_t = W_t (\xi^1_t \oplus \beta^\infty|_D)(x_t)^* + W_t \overline{\lambda_t} (\xi^1_t \oplus \beta^\infty|_D)(1)^\perp.
\]
Then $U_t, t \in [1, \infty)$, is a continuous path of unitaries $1 + B$ such that
\[
\lim_{t \to \infty} \sup_{t \in [1, n]} \| U_t (\xi^1_t \oplus \beta^\infty|_D)(d) U_t^* - (\xi^2_t \oplus \beta^\infty|_D)(d) \| = 0
\]
for all $d \in D$.

4. step: (Conclusion.)

By adding the split extension $q_B \circ \beta^\infty$ we can now return to the notation in the 1. step and assume that $U_t, t \in [1, \infty)$, is a continuous path of unitaries $1 + B$ such that

$$
\lim_{t \to \infty} U_t \xi^1_t(d)U^*_t - \xi^2_t(d) = 0
$$

(3.12)

for all $d \in D$. Set

$$
A = \{ f \in C_b([1, \infty), M(B)) : f(1) - f(t) \in B \forall t \in [1, \infty) \}
$$

and note that $C_0([1, \infty), B)$ is an ideal in $A$. Let

$$
p : A \to A/C_0([1, \infty), B)
$$

be the quotient map. Define $*$-homomorphisms $\kappa_1 : A_1 \to A$ and $\kappa_2 : A_2 \to A$ such that $\kappa_1(a)(t) = U_t \xi^1_t(a)U^*_t$ and $\kappa_2(a)(t) = \xi^2_t(a)$, respectively. Since $U_t \xi^1_t(d)U^*_t - \xi^2_t(d) \in D$ for all $t$ and $d \in D$, it follows from (3.12) that

$$(p \circ \kappa_1) *_D (p \circ \kappa_2) : A_1 *_D A_2 \to A/C_0([1, \infty), B)$$

is defined. By composing this $*$-homomorphism with a continuous right-inverse for $p$, whose existence follows from the Bartle-Graves selection theorem, we get an asymptotic homomorphism $\Phi : A_1 *_D A_2 \to M(B)$ such that $q_B \circ \Phi_t = \varphi \oplus (\psi_1 *_D \psi_2)$ for all $t$.

**Corollary 3.4.** Let $A_1, A_2$ and $B$ be separable $C^*$-algebras, $B$ stable. Let $D$ be a common $C^*$-subalgebra of $A_1$ and $A_2$, i.e. $D \subseteq A_1$ and $D \subseteq A_2$. Assume that

1) $D$ is nuclear, and

2) that all extensions of $A_1$ by $B$ and all extensions of $A_2$ by $B$ are semi-invertible.

It follows that all extensions of $A_1 *_D A_2$ by $B$ are semi-invertible.

**Proof.** It is well-known that condition 2) of Theorem 3.3 is fulfilled when $D$ is nuclear. That condition 1) also holds follows from Lemma 2.2 of [Th2].

One important virtue of Theorem 3.3 and Corollary 3.4 when compared with Theorem 3.1 is the improved symmetry between assumptions and conclusions which allows to use it iteratively, for example to reach the following conclusion: Let $A_1, A_2, A_3, A_4$ be separable $C^*$-algebras, $D_1 \subseteq A_1$, $D_1 \subseteq A_2$, and $D_2 \subseteq A_3$, $D_2 \subseteq A_4$ common $C^*$-algebras. Assume that the $A_i$’s and $D_i$’s are all nuclear, and let $E$ be a common nuclear $C^*$-subalgebra of $A_1 *_{D_1} A_2$ and $A_3 *_{D_2} A_4$. It follows that all extensions of

$$(A_1 *_{D_1} A_2) *_E (A_3 *_{D_2} A_4)$$

by a separable stable $C^*$-algebra $B$ are semi-invertible.

4. **Full group $C^*$-algebras**

In this section we collect some consequences of Theorem 3.1 and Theorem 3.3 for the semi-invertibility of extensions by full group $C^*$-algebras.

**Proposition 4.1.** Let $G_1, G_2$ be countable discrete groups and $H \subseteq G_i$, $i = 1, 2$, a common subgroup. Set $G = G_1 *_H G_2$ and let $B$ be a separable stable $C^*$-algebra. Assume that $\text{Ext}(C^*(G_i), B), i = 1, 2$, are both groups. It follows that every extension of $C^*(G)$ by $B$ is strongly homotopy invertible.
Proof. We can apply Theorem 3.1 because \( C^*(G) = C^*(G_1) \ast_{C^*(H)} C^*(G_2) \). Indeed, there are canonical conditional expectations \( C^*(G) \to C^*(H) \) and \( C^*(G) \to C^*(G_i), i = 1, 2 \), so any absorbing \(*\)-homomorphism \( \alpha_0 : C^*(G) \to M(B) \), whose existence is guaranteed by [Th1], will meet the requirements in 1) of Theorem 3.1 by Lemma 2.1 of [Th2]. The conclusion of the corollary follows therefore from Theorem 3.1.

Similarly, Theorem 3.3 implies the following

**Proposition 4.2.** Let \( G_i, i = 1, 2 \), be discrete countable groups with a common subgroup \( H \subseteq G_i, i = 1, 2 \), and \( B \) a separable stable \( C^* \)-algebra. Let \( G_1 *_H G_2 \) be the amalgamated free product group and let \( B \) be a separable stable \( C^* \)-algebra. Assume that

1) \( \text{Ext}(C^*(H), B) \) and \( \text{Ext}(C^*(H), C_0[1, \infty) \otimes B) \) are both group, and
2) for both \( i = 1 \) and \( i = 2 \) every extension of \( C^*(G_i) \) by \( B \) is semi-invertible.

It follows that every extension of \( C^*(G_1 *_H G_2) \) by \( B \) is semi-invertible.

As is well known, condition 1) in Proposition 4.2 is satisfied when \( H \) is amenable, but it is also satisfied for certain non-amenable groups, e.g. free groups or an amalgamated free product of amenable groups over a finite subgroup.

We shall finish this paper by showing that the conclusions of Propositions 4.1 and 4.2 and partly also the conclusion of Theorem 2.3 are preserved by taking the product of the group with a group of the form \( \mathbb{Z}^k \ast H \), with \( H \) finite.

**Lemma 4.3.** Let \( A \) and \( B \) be separable \( C^* \)-algebras, \( B \) stable. There are semi-group homomorphisms \( \mu : \text{Ext}(A, B) \to \text{Ext}(A \otimes \mathbb{K}, B) \) and \( \nu : \text{Ext}(A \otimes \mathbb{K}, B) \to \text{Ext}(A, B) \) such that \( \mu \circ \nu(x) \oplus 0 = x \oplus 0 \) for all \( x \in \text{Ext}(A \otimes \mathbb{K}, B) \) and \( \nu \circ \mu(y) \oplus 0 = y \oplus 0 \) for all \( \text{Ext}(A, B) \).

Proof. Since \( B \) is stable we can identify \( B \) and \( \mathbb{K} \otimes B \). Let \( e \) be a minimal projection in \( \mathbb{K} \) and let \( V \in M(\mathbb{K} \otimes \mathbb{K} \otimes B) \) be an isometry such that \( VV^* = e \otimes 1 \otimes B \). Then \( \alpha(x) = V^*(e \otimes x) V \) is an isomorphism \( \alpha : \mathbb{K} \otimes B \to \mathbb{K} \otimes \mathbb{K} \otimes B \), giving us isomorphisms \( M(\mathbb{K} \otimes B) \to M(\mathbb{K} \otimes \mathbb{K} \otimes B) \) and \( Q(\mathbb{K} \otimes B) \to Q(\mathbb{K} \otimes \mathbb{K} \otimes B) \) which we also denote by \( \alpha \). Let \( s : A \to \mathbb{K} \otimes A \) be the \(*\)-homomorphism \( s(a) = e \otimes a \).

We can then define a map

\[
\text{Ext}(\mathbb{K} \otimes A, \mathbb{K} \otimes \mathbb{K} \otimes B) \to \text{Ext}(A, \mathbb{K} \otimes B) \tag{4.1}
\]

by \( \varphi \mapsto \alpha^{-1} \circ \varphi \circ s \). To get a map in the other direction note that the canonical embedding \( \mathbb{K} \otimes M(\mathbb{K} \otimes B) \subseteq M(\mathbb{K} \otimes \mathbb{K} \otimes B) \) induce a \(*\)-homomorphism \( L : \mathbb{K} \otimes Q(\mathbb{K} \otimes B) \to Q(\mathbb{K} \otimes \mathbb{K} \otimes B) \) which we can use to define a map

\[
\text{Ext}(A, \mathbb{K} \otimes B) \to \text{Ext}(\mathbb{K} \otimes A, \mathbb{K} \otimes \mathbb{K} \otimes B) \tag{4.2}
\]

by \( \varphi \mapsto L \circ (\text{id}_\mathbb{K} \otimes \varphi) \). Then \( \alpha^{-1} \circ (L \circ (\text{id}_\mathbb{K} \otimes \varphi)) \circ s = \text{Ad} q_{\mathbb{K} \otimes B}(W) \circ \varphi \) for some isometry \( W \in M(\mathbb{K} \otimes B) \), showing that

\[
[(\alpha^{-1} \circ (L \circ (\text{id}_\mathbb{K} \otimes \varphi)) \circ s) \oplus 0] = [\varphi \oplus 0]
\]

in \( \text{Ext}(A, \mathbb{K} \otimes B) \).

Consider next an extension \( \varphi : \mathbb{K} \otimes A \to Q(\mathbb{K} \otimes \mathbb{K} \otimes B) \). Note that

\[
L \circ (\text{id}_\mathbb{K} \otimes (\alpha^{-1} \circ \varphi \circ s)) (k \otimes a) = L (k \otimes \alpha^{-1}(\varphi(e \otimes a)))
\]
on simple tensors, $k \in \mathbb{K}, a \in A$. Since the automorphism of $Q(\mathbb{K} \otimes \mathbb{K} \otimes A)$ which interchange the two copies of $\mathbb{K}$ is given by a unitary in $M(\mathbb{K} \otimes \mathbb{K} \otimes B)$, the extension $L \circ (id_\mathbb{K} \otimes (\alpha^{-1} \circ \varphi \circ s))$ is unitarily equivalent to an extension $\psi : \mathbb{K} \otimes A \to Q(\mathbb{K} \otimes \mathbb{K} \otimes B)$ such that

$$\psi(k \otimes a) = L(e \otimes \alpha^{-1}(\varphi(k \otimes a)))$$

on simple tensors. Since $L(e \otimes \alpha^{-1}(\varphi(k \otimes a))) = Ad_q(\mathbb{K} \otimes B)(V)(\varphi(k \otimes a))$, we see that the two maps, (4.1) and (4.2) are inverses of each other, up to addition by 0. Since both maps clearly are semi-group homomorphisms, the proof is complete. □

**Corollary 4.4.** Let $A$ and $B$ be separable $C^*$-algebras, $B$ stable. Then all extensions of $A$ by $B$ are semi-invertible or strongly homotopy invertible if and only if the same is true for all extensions of $M_n(A)$ by $B$, for any $n \in \mathbb{N}$.

**Lemma 4.5.** Let $A_1, A_2$ and $B$ be separable $C^*$-algebras, $B$ stable. Assume that all extensions of $A_i$ by $B$ are semi-invertible or are strongly homotopy invertible (with an invertible inverse), $i = 1, 2$. It follows that all extensions of $A_1 \oplus A_2$ by $B$ have the same property.

**Proof.** Let $p_i : A_1 \oplus A_2 \to A_i \subseteq A_1 \oplus A_2, i = 1, 2,$ be the canonical projections, and consider an extension $\varphi : A_1 \oplus A_2 \to Q(B)$. By a standard rotation argument $\varphi \oplus 0$ is strongly homotopic to the sum $(\varphi \circ p_1) \oplus (\varphi \circ p_2)$. The conclusion follows from this by use of Theorem 2.1. □

By combining Corollary 4.4 and Lemma 4.5 we get the following.

**Corollary 4.6.** Let $A, F$ and $B$ be separable $C^*$-algebras, $B$ stable, $F$ finite dimensional. Assume that all extensions of $A$ by $B$ are semi-invertible or are strongly homotopy invertible (with an invertible inverse). It follows that all extensions of $F \otimes A$ by $B$ have the same property.

In particular, it follows that if $G$ is a countable discrete group with the property that all extensions of $C^*_r(G)$ by $B$ are semi-invertible or strongly homotopy invertible (with an invertible inverse), then the same is true for $C^*_r(H \times G)$ for any finite group $H$.

**Lemma 4.7.** Let $A$ and $B$ be separable $C^*$-algebras, $B$ stable. Assume that all extensions of $A$ by $B$ are semi-invertible or strongly homotopy invertible. It follows that all extensions of $C(\mathbb{T}) \otimes A$ by $B$ have the same property.

**Proof.** Let $\chi$ be the automorphism of $C(\mathbb{T}) \otimes A$ such that $\chi(f)(z) = f(\overline{z})$ and let $ev : C(\mathbb{T}) \otimes A \to A$ be evaluation at 1 $\in \mathbb{T}$. As is wellknown the $*$-homomorphism $C(\mathbb{T}) \otimes A \to M_2(C(\mathbb{T}) \otimes A)$ defined such that

$$f \mapsto \left( \begin{array}{cc} f & 0 \\ 0 & \overline{f} \end{array} \right) \chi(f)$$

is homotopic to a $*$-homomorphism which factorizes through $ev$. It follows that for any extension $\varphi : C(\mathbb{T}) \otimes A \to Q(B)$ the extension $\varphi \oplus \varphi \circ \chi$ is strongly homotopic to an extension of the form $\psi \circ ev$, where $\psi : A \to Q(B)$ is an extension of $A$ by $B$. By assumption there is an extension $\psi'$ of $A$ by $B$ such that $\psi \oplus \psi'$ is either asymptotically split or strongly homotopic to a split extension. It follows that $\varphi \oplus \varphi \circ \chi \oplus \psi' \circ ev$ has the same property by Theorem 2.1. Hence $\varphi$ is semi-invertible or strongly homotopy invertible, as the case may be. □
Proposition 4.8. Let $G$ be a countable discrete group, $H$ a finite group and $k \in \mathbb{N}$. Let $\mathcal{B}$ be a separable stable $C^*$-algebra and assume that all extensions of $C^*_r(G)$, (resp. $C^*(G)$), by $\mathcal{B}$ are semi-invertible or strongly homotopy invertible. It follows that all extensions of $C^*_r(\mathbb{Z}^k \times H \times G)$, (resp. $C^*(\mathbb{Z}^k \times H \times G)$), by $\mathcal{B}$ have the same property.

Proof. Note that $C^*_r(\mathbb{Z}^k \times H \times G) \cong C(\mathbb{T}^k) \otimes C^*(H) \otimes C^*_r(G)$, and that $C^*(H)$ is finite dimensional. It follows then from Corollary 4.6 and Lemma 4.7 that all extensions of $C^*_r(\mathbb{Z}^k \times H \times G)$ by $\mathcal{B}$ are semi-invertible or strongly homotopy invertible if $C^*_r(G)$ has this property. The same argument works for the full group $C^*$-algebra. □

Finally, we observe that it is also possible to use Theorem 3.1 and Theorem 3.3 to prove semi-invertibility for extensions of the full group $C^*$-algebra of certain HNN-extensions by using the realization obtained by Ueda in [U] of such group $C^*$-algebras as amalgamated free products.

References

[A] J. Anderson, A $C^*$-algebra for which Ext$(A)$ is not a group, Ann. of Math. 107 (1978), 455–458.

[BDF1] L.G. Brown, R.G. Douglas and P.A. Fillmore, Unitary equivalence modulo the compact operators and extensions of $C^*$-algebras, Proc. Conf. on Operator Theory, Lecture Notes in Mathematics 345, Springer Verlag (1973), 58–128.

[BDF1] Extensions of $C^*$-algebras and $K$-theory, Ann. of Math. 105 (1977), 265–324.

[Br] L. Brown, Ext of certain free product $C^*$-algebras, J. Operator Th. 6 (1981), 135-141.

[CCJJV] P-A. Cherix, M. Cowling, P. Jolissaint, P. Julg and A. Valette, Groups with the Haagerup Property, Birkhäuser Verlag, (2001).

[CH] A. Connes and N. Higson, Déformations, morphismes asymptotiques et $K$-théories bivariante, C.R. Acad. Sci. Paris Sér I Math. 311 (1990), 101-106.

[C] J. Cuntz, $K$-theoretic amenability for discrete groups, J. Reine u. Angew. Math. 344 (1983), 180-195.

[DE] M. Dadarlat and S. Eilers, Asymptotic Unitary Equivalence in $KK$-theory, K-theory 23 (2001), 305-322.

[HT] U. Haagerup and S. Thorbjornsen, A new application of random matrices: Ext$(C^*_r(F_2))$ is not a group, Ann. of Math. 162 (2005), 711-775.

[HS] D. Hadwin and J. Shen, Some examples of Blackadar and Kirchberg’s $MF$ algebras, Preprint, arXiv:0806.4712.

[HLSW] D. Hadwin, J. Li, J. Shen, J. Wang, Reduced free products of unital AH algebras and Blackadar and Kirchberg’s $MF$ algebras, Preprint, arXiv:0812.0189v1.

[HK] N. Higson and G. Kasparov, $E$-theory and $KK$-theory for groups which act properly and isometrically on Hilbert space, Invent. Math. 144 (2001), 23-74.

[K] G. Kasparov, Equivariant $KK$-theory and the Novikov conjecture, Invent. Math. 91 (1988), 513-572.

[L] H. Lin, Stable approximate unitary equivalence of homomorphisms, J. Oper. Theory 47 (2002), 343-378.

[M] V. Manuilov, Asymptotic representations of the reduced $C^*$-algebra of a free group: an example, Bull. London Math. Soc. 40 (2008), 838-844.

[MT1] V. Manuilov and K. Thomsen, $E$-theory is a special case of $KK$-theory, Proc. London Math. Soc. 88 (2004), 455-478.

[MT2] Relative $K$-homology and normal operators, J. Operator Th. 62 (2009), 249-279.

[MT3] The Connes-Higson construction is an isomorphism, J. Func. Anal. 213 (2004), 154-175.

[MT4] On the lack of inverses to $C^*$-extensions related to property $T$ groups, Can. Math. Bull. 50 (2007), 268-283.
[P] G. K. Pedersen, *C*-algebras and their automorphisms group, Academic Press, New York, 1979.

[Se] J.A. Seebach, *On the Reduced Amalgamated Free Products of C*-algebras and the MF-Property*, [arXiv:1004.3721](https://arxiv.org/abs/1004.3721)

[S] J.-P. Serre, *Trees*, Springer Verlag, Berlin, 1977.

[ST] J. A. Seebach and K. Thomsen, *Extensions of the reduced group C*-algebra of a free product of amenable groups*, Adv. Math. **223** (2010), 1845-1854.

[Th1] K. Thomsen, *On absorbing extensions*, Proc. Amer. Math. Soc. **129** (2001), 1409-1417.

[Th2] K. Thomsen, *On the KK-theory and the E-theory of amalgamated free products of C*-algebras*, J. Funct. Anal. **201** (2003), 30-56.

[Th3] K. Thomsen, *Homotopy invariance in E-theory*, Homology, homotopy and applications **8** (2006), 29-49.

[Th4] K. Thomsen, *All extensions of C*(Fn) are semi-invertible*, Math. Ann. **342** (2008), 273-277.

[Tu] J.L. Tu, *La conjecture de Baum-Connes pour les feuilletages moyennables*, K-theory **17** (1999), 215-264.

[U] Y. Ueda, *Remarks on HNN extensions in operator algebras*, Illinois J. Math. **52** (2008), 705-725.

E-mail address: matkt@imf.au.dk

Dept. of Mech. and Math., Moscow State University, Moscow, 119899, Russia

Institut for matematiske fag, Ny Munkegade, 8000 Aarhus C, Denmark