Potential prevention effects of *Rubus occidentalis* seed on UVB-induced MMP-1 production and procollagen degradation in CCD-986sk cells

Dong-Hee Kim\(^1\) · Tae-Soon Park\(^1\) · Jun-Ho Son\(^1\)

Received: 6 July 2016 / Accepted: 31 August 2016 / Published Online: 31 December 2016
© The Korean Society for Applied Biological Chemistry 2016

Abstract UV exposure induces matrix metalloproteinases (MMPs) and extracellular matrix-degrading enzymes expression. We studied the protective effect of *Rubus occidentalis* seed against UVB-generated skin photoaging using human fibroblast cells (CCD-986sk). We used an ELISA kit to measure the supernatents of procollagen type I and MMP-1 in CCD-986sk cells after they were exposed to UVB irradiation. The CCD-986sk cells that were treated with RC-E/E after the UVB irradiation caused higher levels of type I procollagen and lesser levels of MMP-1 compared with the control group. Furthermore, the RC-E/E treated group showed lesser MMP-1 levels and higher procollagen type I levels than the untreated counterpart. Therefore, it can be concluded that *Rubus occidentalis* seed can prevent from skin photoaging.

Keywords Anti-wrinkle · CCD-986sk · MMP-1 · Procollagen · *Rubus occidentalis* seed

Introduction

The skin aging process consists of the intrinsic (chronologic) aging that internal organs and the extrinsic (photoaging) aging that is induced by exposure to environmental factors. Exposure to ultraviolet (UV) irradiation from the sun causes extrinsic aging, which can induce photoaging (Bae et al. 2008); however, photoaging is mainly due to UVB irradiation exposure and is characterized by an altered pigmentation, inflammation and collagen degradation (Bennett 2008; Ahn et al. 2013). Chronic exposure of skin to UVB irradiation also causes the production of matrix metalloproteinases (MMPs), resulting in the alteration of collagenous skin tissues (Ahn et al. 2013). MMPs are a family of extracellular matrix (ECM)-degrading enzymes and are generated from different types of cells including fibroblasts and endothelial cells, as well as immune cells. MMPs play a key role in the dynamic remodeling of the ECM and are comprised of functional subclassified groups including membrane-type MMPs, and other nonclassified MMPs (Visse and Nagase 2003); in particular, collagenase-1 (MMP-1) production is significantly enhanced in late passage skin fibroblasts (Tsuji et al. 2001; Tsukahara et al. 2001; Varani et al. 2002; Brennan et al. 2003). Collagenase can cleave the interstitial collagenases that are found in the skin such as type I collagen (Lee et al. 2008). Type I collagen accounts for 70 to 90% of total collagen (Kerrigan et al. 2000) and the functional characteristic of skin rely on the preservation of dermal collagen. The metabolic control of type I collagen may therefore be useful for a diversity of cosmetic materials.

The fruits of *Rubus occidentalis* Miq. (R. occidentalis), a member of the Rosaceae family, have long been used as part of traditional Korean folk medicines to treat asthma and allergic diseases (Shin et al. 2014). Phenolic acid, organic acid, triterpenoids, flavonoids, and ellagitannin are the reported compounds of *Rubus occidentalis* Miq. fruits (Ju et al. 2009). The fruits are mostly used to make traditional wine through the fermentation and maturation of perfectly matured fruits that are harvested in June and July; therefore, we especially focused on the usage of wine-processing leftovers. The *R. occidentalis* seed, which is rich in unsaturated fatty acids and α-linoleic acids, is used in S. Korea for the prevention of gingivitis, rashes, eczema, and other skin lesions (Poupart et al. 1973). We determined the effects of *R. occidentalis* seed on UVB-induced MMP-1 production levels and type I procollagen contents in human skin fibroblast (CCD-986sk) cells.
Materials and Methods

Materials
All of the cell-culture reagents that were used in the present study were obtained from Gibco BRL Co. (Rockville, NE, USA), while 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) was obtained from Sigma Chemical Co. (St. Louis, MO, USA). The productions of MMP-1 (Abcam, Cambridge, MA, USA) and type I procollagen (Takara Co., Otsu, Japan) were measured using commercial ELISA- and EIA-kit antibodies, and the MMP-1 and type I procollagen were purchased from Santa Cruz (Santa Cruz, CA, USA).

Preparation of R. occidentalis seeds extract
The R. occidentalis seeds were obtained from the “Sam do bong Farm” company that is located in Kimecheon, Gyeongbuk, Korea. A 100 g of the R. occidentalis seed was measured and the seeds were soaked in 70 % ethyl alcohol (EtOH) for 24 h at room temperature (RT). The mixture was filtered with Whatman No. 2 (Sigma Chemical Co.) and the procedure was repeated two more times. The total extract was then evaporated and 5.4 g of EtOH extract was obtained. The aqueous phase of EtOH extract was suspended again, mixed with an same volume of n-hexane, and separated by a separating funnel. A hexane extract was evaporated and 0.5 mg was obtained. These procedures were repeated with other solventsethyl acetate (EtOAc) and butyl alcohol (BuOH) sequentially. In terms of powder samples, 0.8, 1.4, and 2.0 g were obtained from the EtOAc, BuOH, and final aqueous layer, respectively.

Cell culture
After the CCD-986sk human skin fibroblast cell line was got from the American Type Culture Collection ATCC (Manassas, VA, USA), it was commonly cultured in a Dulbecco’s modified Eagle medium (Hyclone Laboratories, Logan, UT, USA) added with 10 % (v/v) FBS and 1 % (v/v) penicillin-streptomycin, while under temperatures (RT). The mixture was filtered with Whatman No. 2 (Sigma Chemical Co.) and the procedure was repeated two more times. The total extract was then evaporated and 5.4 g of EtOH extract was obtained. The aqueous phase of EtOH extract was suspended again, mixed with an same volume of n-hexane, and separated by a separating funnel. A hexane extract was evaporated and 0.5 mg was obtained. These procedures were repeated with other solventsethyl acetate (EtOAc) and butyl alcohol (BuOH) sequentially. In terms of powder samples, 0.8, 1.4, and 2.0 g were obtained from the EtOAc, BuOH, and final aqueous layer, respectively.

Determination of cell viability
The cell toxicity of the R. occidentalis seeds extract (RCE) and RCE fractions were determined by measuring the reduction of tetrazolium in accordance with a modified version of Shin et al.’s protocol (Shin et al. 2014). Briefly, the cells were seeded at a consistency of 5×10^4 cells/well in 96-well plates. After 24 h storage, the CDD-986sk cell was exposed to UVB for 20 ml/cm², followed by indicated concentrations of the RCE; then, 10 μL of the extract was added to the fibroblast cells while the equal volume of dilution solution was added to the control. After 48 h of incubation, MTT solution (5 mg/mL) was added to 4 h incubation period. After the MTT solution was removed, 100 μL of DMSO was added followed by a further 10 min incubation period. The wavelength was set at 540 nm and the cell toxicity was measured using the Sunrise ELISA plate reader (Tecan Austria GmbBH, Grödig/Salzburg, Austria).

MMP-1 inhibition and type I procollagen synthesis assay
The cells were seeded at a consistency of 5×10^4 in 12-well plates and, after 24 h of incubation, they were treated with the RCE and RCE fractions for 48 h. To determine the production levels of the MMP-1 and type I procollagen, the medium was measured using commercially available ELISA kits in accordance with the manufacture’s instructions (Abcam and Takara). The absorbances were measured at 450 nm measuring an ELISA plate reader.

cDNA synthesis and RT-PCR
The cells were incubated in the RCE-E treatment for 48 h. The total RNA was extracted using Trizol (Invitrogen, Carlsbad, CA, USA) following themanufacture’s directions. Two μg of RNA were used for the 1 h cDNA synthesis that involved the use of oligo (dt) primer and reverse transcriptase (Promega, WI, USA) at 42 °C. A PCR was performed with the cDNA to analyze the transcript expressions of MMP-1, MMP-2, and MMP-3, where by a 55 °C annealing temperature was applied for 30 sec and 72 °C was applied for a 1 min extension; the total for the PCR is 30 cycles. The transcripts were separated in a 1.5 % agarose gel and stained with Redsafe (iNtRON Biotechnology Inc., Sungnam, Gyeonggi, Korea), followed by the use of a LAS4000 (Fujifilm, Tokyo, Japan) image analyzer for the confirmation.

Western blot analysis
Shortly, the cells were seeded in 100 mm culture dish and grown for 24 h, followed byRCE-E treatment for 48 h.After the RCE-E treatment, the cells were, then, washed twice with cold PBS and lysed for 5 min on ice in a 1 mL buffer of radio immuno-precipitation assay with protease inhibitor cocktails (100 X). The lysates were clarified by centrifugation at 12,000 rpm for 20 min at 4 °C, and the total protein concentrations were measured using a BSA kit. A western blot analysis was conducted to investigate the protein expressions of MMP-1 and type I collagen. First, 15 μg of each protein was separated using 10 % sodium dodecyl sulfate polyacrylamide gel electrophoresis and they were then transferred onto PVDF membranes; the membranes were incubated for 1 h in 5 % skim milk with TBST followed by their incubation with the designated primary antibodies (1:1000) the membranes were then washed and incubated with secondary HRP-labeled antibodies (1:1000) for 2 h at RT. Chemiluminescent images of the blots were detected using the SuperSignal West Pico chemiluminescent substrate (Pierce, Rockford, IL, USA) under an LAS 4000 image analyzer (Fuji Film Life Science, Tokyo, Japan). The membranes were then stripped and reprobed with β-actin antibody serving as the loading control.

Data analysis
This study was conducted in triplicate. An analysis of variance
was run using the raw data, and the mean values and standard
deviations were analyzed using the ANOVA system. Differences
among the means were determined by a t-test, and significance
occurs at *p < 0.05 and **p < 0.005.

Results and Discussion

Effects of RCE on cell viability of UVB-induced CCD-986sk
cells
Before investigating the preventive effect of the RCE and RCE-
fracti0ns on UVB-induced MMP-1 production and type I procollagen
decline, we first verified the cytotoxicity of the RCE in the CCD-
986sk cells using an MTT assay. Result in Fig. 1, the cells were
treated with indicated concentrations of the RCE and RCE-
fracti0ns; the extract did not show any toxic effects up to 20 μg/
ml. For the investigation of the effect of RCE on UVB-induced
MMP-1 production and type I pro-collagen decline, we used
concentrations between 5 and 20 μg/mL in the subsequent
experiments.

Effect of RCE on MMP-1 inhibition and type I pro-collagen
synthesis
MMPs are directly responsible enzymes for the degradation of
ECM components, and they specifically denatured collagens (Kim
et al. 2011) therefore, UV irradiation degrades ECM by increasing
the MMPs production in the skin. We demonstrated the effects of
the RCE and RCE-fractions on UVB-induced MMP-1 expression
in CCD-986sk cells (Fig. 2). The cells were treated with 5, 10 and
20 μg/mL concentrations of RCE and RCE-fractions for 48 h and
the MMP-1 concentration was determined using an ELISA kit.
The RCE and RCE-fractions suppressed MMP-1 expression
in those cells exposed to UVB; in particular, the RC-E/E fraction
reduced MMP-1 expression by 12 % at 5 μg/mL and 22 % at 10
μg/mL. The highest concentration of the RC-E/E fraction prevented
the expression of MMP-1 up to 50 % in a dose-dependent manner.
Previous reports have shown that UVB exposure stimulates
collagen degradation and the inhibition of type I procollagen
production in fibroblasts (Fisher et al. 1996) therefore, we
investigated the protective effect of the RCE extracts against
UVB. As shown in Fig. 3, the extract of RC-E/E significantly
increased type I procollagen synthesis with restorations of 8 and
17 % at 10 and 20 μg/mL, respectively. Overall, the RC-E/E
extract suppressed the expressions of UVB-induced MMP-1 and
type I collagen protein in the human fibroblast cell (CCD-986sk).

RCE decreased expressions of type I procollagen and
inhibition of MMP-1 protein in CCD-986sk cells
We next examined the effects of the RC-E/E fraction on the
decrease of type I procollagen and the increase of MMP-1 protein
that are induced by UV. As depicted in Fig. 4, the reductions of
the expressions of type I procollagen and inhibition of MMP-1
protein were significantly induced at 48 h in those fibroblasts
exposed to UVB, as expected. Pretreatment with the RC-E/E
extract significantly restored the suppuration of the type I
procollagen protein expression and also inhibited MMP-1 protein
expression in those fibroblasts exposed to UVB, there by showing
a pattern alike to the regulation of mRNA expression. All of these
results suggest that RC-E/E pretreatment prevents UV-induced
changes of type I procollagen and MMP-1 expression at the
transcriptional level.

Fig. 1 Cell viability of fibroblast CCD-986sk cells after treatment with Rubus occidentalis-seed extract. The fibroblast cells were exposed to UVB for
20 mJ/cm² and treated with varying concentrations of 70 % EtOH and fraction extracts obtained from the R. occidentalis-seed. Cell viability was
measured using an MTT assay. Error bar indicates average mean of triple replicates. RC-E: 70 % EtOH extracts; RC-E/H: Hexane fraction of
R. occidentalis-seed extracts, RC-E/E: Ethyl acetate fraction of R. occidentalis-seed extracts; RC-E/B: Butanol fraction of R. occidentalis-seed extracts;
RC-E/W: Water fraction of R. occidentalis-seed extracts
Preventive effects of the RC-E/E on UVB-suppressed type I procollagen and MMP-1 mRNA expression

When epidermis of human and experimental animal is penetrated by UVB wavelengths it induces photoaging (Debacq-Chainiaux et al. 2005). In addition, UVB irradiation decreases type I procollagen synthesis rate in human fibroblasts. It has also been reported that UVB irradiation leads to the activation of MMP expression and collagen degradation in the human dermis (Chen et al. 2011). We therefore confirmed in our study that UVB exposure promotes the induction of MMP-1 mRNA expression and the inhibition of type I procollagen mRNA expression in CCD-986sk cells. To determine the protective effect of RC-E/E on MMP-1 and type I procollagen mRNA expression, the mRNA level was measured by the RT-PCR, as described in manufacture’s manual. As shown in Fig. 5, the UVB-induced increased mRNA level of MMP-1 was inhibited by the RC-E/E in a dose-dependent manner. Further, we also confirmed the effect of the RC-E/E on UVB-reduced type I procollagen expression, identifying that the RC-E/E restored the contraction of type I procollagen that is caused by UVB exposure. These data suggest that the RC-E/E prevents MMP-1 mRNA expression.
expression and the reduction of UVB-induced type I procollagen mRNA expression in CCD-986sk cells. The effects of the RC-E/E fraction on UVB-stimulated MMP-1 production and type I procollagen degradation in the CCD-986sk cells.

Fig. 4 Expressions of MMP-1 and type I procollagen evaluated by protein level in CCD-986sk fibroblasts after EtOAc-fraction treatment. CCD-986sk cells (5×10⁴) were grown and exposed to UVB for 20 mJ/cm²; the cells were then subjected to 5, 10, and 20 µg/mL of the EtOAc-fraction treatment. The mRNA levels were normalized using Image Quant software.

Fig. 5 Expression of MMP-1 and type I procollagen evaluated by mRNA level in CCD-986sk fibroblasts after EtOAc-fraction treatment. The CCD-986sk cells (5×10⁴) were grown and exposed to UVB for 20 mJ/cm²; the cells were then subjected to 5, 10, and 20 µg/mL of EtOAc-fraction treatment. The protein levels were normalized using Image Quant software.

References

Ahn BN, Kim JA, Kong CS, Seo Y, Kim SK (2013) Photo protective effect of libanoridin isolated from Corydalis heterocarpa on UVB stressed human keratinocyte cells. Exp Dermatol 22: 155–157
Bae JY, Choi JS, Choi YJ, Shin SY, Kang SW, Han SJ, Kang YH (2008) Epigallocatechin gallate hampers collagen destruction and collagenase activation in ultraviolet-B-irradiated human dermal fibroblasts: involvement of mitogen-activated protein kinase. Food Chem Toxicol 46: 1298–1307

Bennett DC (2008) Ultraviolet wavebands and melanoma initiation. Pigm Cell Melanoma Res 21: 520–524

Brennan M, Bhatti H, Nerusu KC, Bhagavathula N, Kang S, Fisher GJ, Varani J, Voorhees JJ (2003) Matrix metalloproteinase-1 is the major collagenolytic enzyme responsible for collagen damage in UV-irradiated human skin. Photoderm Dermatol 78: 43–48

Chen CL, Liou SF, Chen SJ, Shih MF (2011) Protective effects of Chlorella-derived peptide on UVB-induced production of MMP-1 and degradation of procollagen genes in human skin fibroblasts. Regul Toxicol Pharmacol 60:112–119

Debacq-Chainiaux F, Borlon C, Pascal T, Royer V, Eliaers F, Ninane N, Carrard G, Friguet B, de Longueville F, Boffe S, Remacle J, Toussaint O (2005) Repeated exposure of human skin fibroblasts to UVB at subcytotoxic level triggers premature senescence through the TGF-beta1 signaling pathway. J Cell Sci 118:743–758

Fisher NC, Tutt A, Sim E, Scarpello JH, Green JR (1996) Collagenous colitis responsive to octreotide therapy. J Clin Gastroenterol 23: 300–301

Ju HK, Cho EJ, Jang MH, Lee YY, Hong SS, Park JH, Kwon SW (2009) Characterization of increased phenolic compounds from fermented Bobunja (Rubus coreanusMiq.) and related antioxidant activity. J Pharm Biomed Anal 49: 820–827

Kerrigan JI, Mansell JP, Sandy JR (2000) Matrix turnover. J Orthod 27: 227–233

Kim J, Lee CW, Kim EK, Lee SJ, Park NH, Kim HS, Kim HK, Char K, Jang YP, Kim JW (2011) Inhibition effect of Gynurarprocumbens extract on UV-B-induced matrix-metalloproteinase expression in human dermal fibroblasts. J Ethnopharmacol 137: 427–433

Lee CH, Liu SY, Lin MH, Chiang WF, Chen TC, Huang WF, Chou DS, Chiu CT, Liu YC (2008) Upregulation of matrix metalloproteinase-1 (MMP-1) expression in oral carcinomas of betel quid (BQ) users: roles of BQ ingredients in the acceleration of tumour cell motility through MMP-1. Arch Oral Biol 53: 810–818

Pourrat A, Pourrat H, Potier P (1973) On the composition of Poterium spinosum L. (Rosaceae). Ann Pharm Fr 31: 321–324

Shin JS, Cho EJ, Choi HE, Soo JH, An HJ, Park HJ, Cho YW, Lee KT (2014) Anti-inflammatory effect of a standardized triterpenoid-rich fraction isolated from Rubuscoreanus on dextran sodium sulfate-induced acute colitis in mice and LPS-induced macrophages. J Ethnopharmacol 158: 291–300

Tsuji N, Moriwaki S, Suzuki Y, Takema Y, Imokawa G (2001) The role of elastases secreted by fibroblasts in wrinkle formation: implication through selective inhibition of elastase activity. Photochem Photobiol 74: 283–290

Tsukahara K, Takema Y, Moriwaki S, Tsuji N, Suzuki Y, Fujimura T, Imokawa G (2001) Selective inhibition of skin fibroblast elastase elicits a concentration-dependent prevention of ultraviolet B-induced wrinkle formation. J Invest Dermatol 117:671–677

Varani J, Perone P, Fligiel SE, Fisher GJ, Voorhees JJ (2002) Inhibition of type I procollagen production in photodamage: correlation between presence of high molecular weight collagen fragments and reduced procollagen synthesis. J Invest Dermatol 119: 122–129

Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 92: 827–839