On maximal weakly separated set-systems

Vladimir I. Danilov, Alexander V. Karzanov, Gleb A. Koshevoy

Abstract. For a permutation $\omega \in S_n$, Leclerc and Zelevinsky introduced a concept of ω-chamber weakly separated collection of subsets of $\{1,2,\ldots,n\}$ and conjectured that all inclusion-wise maximal collections of this sort have the same cardinality $\ell(\omega) + n + 1$, where $\ell(\omega)$ is the length of ω. We answer affirmatively this conjecture and present a generalization and additional results.

Keywords: weakly separated sets, rhombus tiling, generalized tiling, weak Bruhat order

AMS Subject Classification 05C75, 05E99

1 Introduction

For a positive integer n, let $[n]$ denote the ordered set of elements $1,2,\ldots,n$. We deal with two binary relations on subsets of $[n]$.

(1.1) For $A, B \subseteq [n]$, we write:

(i) $A \lessdot B$ (saying that A is below B) if $B - A$ is nonempty and $i < j$ holds for any $i \in A - B$ and $j \in B - A$ (where $A' - B'$ stands for the set difference $\{i' : A' \ni i' \notin B'\}$);

(ii) $A \triangleright B$ (saying that A splits B) if both $A - B$ and $B - A$ are nonempty and $B - A$ can be (uniquely) expressed as a disjoint union $B' \sqcup B''$ of nonempty subsets so that $B' \lessdot A - B \lessdot B''$.

Note that these relations need not be transitive in general. For example, $13 \lessdot 23 \lessdot 24$ but $13 \not\lessdot 24$; similarly, $346 \triangleright 256 \triangleright 157$ but $346 \not\triangleright 157$, where for brevity we write $i \ldots j$ instead of $\{i\} \cup \ldots \cup \{j\}$.

Definition 1 Sets $A, B \subseteq [n]$ are called weakly separated (from each other) if either $A \lessdot B$, or $B \lessdot A$, or $A \triangleright B$ and $|A| \geq B$, or $B \triangleright A$ and $|B| \geq |A|$, or $A = B$. A collection $C \subseteq 2^{[n]}$ is called weakly separated if any two of its members are weakly separated.

We will usually abbreviate the term “weakly separated collection” to “ws-collection”.

Definition 2 Let ω be a permutation on $[n]$. A subset $X \subseteq [n]$ is called an ω-chamber set if for each $i \in X$, X contains all elements $j \in [n]$ such that $j < i$ and $\omega(j) < \omega(i)$. A ws-collection $C \subseteq 2^{[n]}$ is called an ω-chamber ws-collection if all members of C are ω-chamber sets.

2Central Institute of Economics and Mathematics of the RAS, 47, Nakhimovskii Prospect, 117418 Moscow, Russia; emails: danilov@cemc.rssi.ru (V.I. Danilov); koshevoy@cemc.rssi.ru (G.A. Koshevoy).

3Institute for System Analysis of the RAS, 9, Prospect 60 Let Oktyabrya, 117312 Moscow, Russia; email: sasha@cs.isa.ru.
These notions were introduced by Leclerc and Zelevinsky in [8] where their importance is demonstrated, in particular, in connection with the problem of characterizing quasicommuting quantum flag minors of a generic q-matrix. (Note that [8] deals with a relation \prec which is somewhat different from \preceq; nevertheless, Definition 1 is consistent with the corresponding definition in [8]. The term “ω-chamber” for a set X is motivated by the fact that such an X corresponds to a face, or chamber, in a pseudo-line arrangement related to ω; see [1].)

Let $\ell(\omega)$ denote the length of ω, i.e., the number of pairs $i < j$ such that $\omega(j) < \omega(i)$ (inversions) for it. It is shown in [8] that the cardinality $|C|$ of any ω-chamber ws-collection $C \subseteq 2^{[n]}$ does not exceed $\ell(\omega) + n + 1$ and is conjectured (Conjecture 1.5 there) that this bound is achieved by any (inclusion-wise) maximal collection among these:

(C) For any permutation ω on $[n]$, $|C| = \ell(\omega) + n + 1$ holds for all maximal ω-chamber ws-collections $C \subseteq 2^{[n]}$.

The main purpose of this paper is to answer this conjecture.

Theorem A (C) is valid.

The longest permutation ω_0 on $[n]$ (defined by $i \mapsto n - i + 1$) is of especial interest, many results in [8] are devoted just to this case, and (C) with $\omega = \omega_0$ has been open so far as well. Since $\omega_0(j) > \omega_0(i)$ for any $j < i$, no “chamber conditions” are imposed in this case in essence, i.e., the set of ω_0-chamber ws-collections consists of all ws-collections. The length of ω_0 equals $\binom{n}{2}$, so the above upper bound turns into $\binom{n+1}{2} + 1$. Then the assertion in the above theorem is specified as follows.

Theorem B All maximal ws-collections in $2^{[n]}$ have the same cardinality $\binom{n+1}{2} + 1$.

We refer to a ws-collection of this cardinality as a largest one and denote the set of these collections by W_n. An important instance of largest ws-collections is the set I_n of all intervals $[p..q] := \{p, p + 1, \ldots, q\}$ in $[n]$, including the “empty interval” \emptyset. One can see that for a ws-collection C, the collection $\{[n] - X : X \in C\}$ is weakly separated as well; it is called the complementary ws-collection of C and denoted by C. Therefore, $C(I_n)$, the set of co-intervals in $[n]$, is also a largest ws-collection. In [8] it is shown that W_n preserves under so-called weak raising flips (which transform one collection into another) and is conjectured (Conjecture 1.8 there) that in the poset structure on W_n induced by such flips, I_n and $C(I_n)$ are the unique minimal and unique maximal elements, respectively. That conjecture was affirmatively answered in [3].

We will show that Theorem A can be obtained relatively simply from Theorem B. In the proof of the latter theorem, which is more involved and constitutes the main content of this paper in essence, we will rely on results and constructions from [3].

The main result in [8] shows the coincidence of four classes of collections: (i) the set of semi-normal bases of tropical Plücker functions on $2^{[n]}$; (ii) the set of spectra of certain collections of n curves on a disc in the plane, called proper wirings; (iii) the set ST_n of spectra of so-called generalized tilings on an n-zonogon (a $2n$-gon representable as the Minkowsky sum of n generic line-segments in the plane); and (iv) the set W_n.
Objects mentioned in (i) and (ii) are beyond our consideration in this paper (for definitions, see [3]), but we will extensively use the generalized tiling model and rely on the equality $ST_n = W_n$. Our goal is to show that any ws-collection can be extended to the spectrum of some generalized tiling, whence Theorem B will immediately follow.

A generalized tiling, briefly called a g-tiling, arises as a certain generalization of the notion of a rhombus tiling. While the latter is a subdivision of an n-zonogon Z into rhombi, the former is a cover of Z with rhombi that may overlap in a certain way. (An important property of rhombus tilings is that their spectra turn out to be exactly the maximal strongly separated collections, where $C \subseteq 2^{[n]}$ is called strongly separated if any two members of C obey relation \prec as above; such collections are studied in [8] in parallel with ws-collections. For related topics, see also [1, 2, 4, 5, 9, 7].)

This paper is organized as follows. Section 2 explains how to reduce Theorem A to Theorem B. Then we start proving the latter theorem. Section 3 recalls the definitions of g-tilings and their spectra and gives a review of properties of these objects established in [3] and important for us. Section 4 describes one more construction, which is crucial in the proof of Theorem B. Here we associate to a g-tiling T a certain acyclic directed graph Γ_T whose vertex set is the spectrum G_T of T (forming a largest ws-collection) and claim, in Theorem 4.1, validity of two properties: (a) the partial order induced by Γ_T coincides with the partial order on G_T defined by $(A \ll B \& |A| \leq |B|)$, and (b) this partial order is a lattice. In Section 5 we prove Theorem B relying on these properties, which, in their turn, are proved later, in Section 6. The concluding Section 7 presents additional results and completes with a generalization of Theorem A. This generalization (Theorem A') deals with two permutations ω', ω on $[n]$ such that each inversion of ω' is an inversion of ω (the weak Bruhat relation on (ω', ω)) and asserts that all maximal ws-collections whose members X are ω-chamber sets and simultaneously satisfy the condition: $i \in X \& j > i \& \omega'(j) < \omega'(i) \implies j \in X$, have the same cardinality, namely, $\ell(\omega) - \ell(\omega') + n + 1$. When ω' is the identical permutation $i \mapsto i$, this turns into Theorem A.

In what follows, for a set $X \subseteq [n]$, distinct elements $i, \ldots, j \in [n] - X$ and an element $k \in X$, we usually abbreviate $X \cup \{i\} \cup \ldots \cup \{j\}$ as $Xi\ldots j$, and $X - \{k\}$ as $X - k$.

2 Maximal ω-chamber ws-collections

In this section we explain how to obtain Theorem A from Theorem B. Let ω be a permutation on $[n]$. For brevity, when a set X is weakly separated from a set Y (from all sets in a collection C'), we write $X \overset{ws}{\prec} Y$ (resp. $X \overset{ws}{\succ} C'$).

For $k = 0, \ldots, n$, let I^k_ω denote the set $\omega^{-1}[k] = \{i: \omega(i) \in [k]\}$, called k-th ideal for ω (it is an ideal of the linear order on $[n]$ given by: $i < j$ if $\omega(i) < \omega(j)$). We will use the following auxiliary collection

$$C^0 = C^0_\omega := \{I^k_\omega \cap [j..n]: 1 \leq j \leq \omega^{-1}(k), 0 \leq k \leq n\}, \quad (2.1)$$

where possible repeated sets are ignored and where $I^0_\omega := \emptyset$. The role of this collection is emphasized by the following
Theorem 2.1 Let $X \subset [n]$ and $X \not\subset C^0$. The following are equivalent:

(i) $X \in \text{WS} C^0$;

(ii) X is an ω-chamber set.

In view of this property, we call $C^0 = C^0_\omega$ the (canonical) ω-checker. (We will explain in Section 7 that C^0 is the spectrum of a special tiling and that there are other tilings whose spectra can be taken in place of C^0 in Theorem 2.1; see Corollary 7.2.) It is easy to verify that: (a) C^0 is a ws-collection; (b) its subcollection

$$\mathcal{I}_\omega := \{I^0_\omega, I^1_\omega, \ldots, I^n_\omega\}$$ (2.2)

consists of ω-chamber sets; and (c) any member of $C^0 - \mathcal{I}_\omega$ is not an ω-chamber set.

Relying on Theorems B and 2.1 we can prove Theorem A as follows. Given an ω-chamber ws-collection $C \subset 2^{[n]}$, consider $C' := C \cup C^0$. By Theorem 2.1 C' is a ws-collection. Also $C \cap C^0 \subseteq \mathcal{I}_\omega$, in view of (c) above. Extend C' to a largest ws-collection D, which is possible by Theorem B. Let $D' := (D - C^0) \cup \mathcal{I}_\omega$. Then D' includes C and is an ω-chamber ws-collection by Theorem 2.1. Since the cardinality of D' is always the same (as it is equal to $\binom{n+1}{2} + 1 - |C^0 - \mathcal{I}_\omega|$), D' is a largest ω-chamber ws-collection, and Theorem A follows.

The rest of this section is devoted to proving Theorem 2.1. (This proof is direct and relatively short, though rather technical. A more transparent proof, appealing to properties of tilings, will be seen in Section 7.) The proof of implication (i)\rightarrow(ii) falls into three lemmas. Let $X \subset [n]$ be such that $X \not\subset C^0$ and $X \in \text{WS} C^0$, and let $k := |X|$ and $Y := I^k_\omega$.

Lemma 2.2 Neither $Y < X$ nor $Y > X$ can take place.

Proof Suppose $Y < X$ or $Y > X$. Let k' be the maximum number such that either $Y' < X$ or $Y' > X$. Then $k \leq k'$ and $Y \subseteq Y'$. Define

$$\Delta := Y' - X \quad \text{and} \quad \Delta' := \{i \in X - Y': \Delta \leq \{i\}\}.$$

Then $\Delta, \Delta' \neq \emptyset$ and $|\Delta| \geq |\Delta'|$. The maximality of k' implies that $|\Delta'| = 1$ and that the unique element of Δ', say, a, is exactly $\omega^{-1}(k' + 1)$ (in all other cases either $k' + 1$ fits as well, or X is not weakly separated from I^{k+1}_ω).

Let b be the maximal element in Δ. Then $a > b$ and the element $\tilde{k} := \omega(b)$ is at most k'. We assert that there is no $d \in X$ such that $d < b$. To see this, consider the sets I^b_ω and $Z := I^b_\omega \cap [b..n]$. Then $Z \subset C^0$ and $Z \subseteq I^k_\omega \subseteq Y'$. Therefore, $a \in X - Z$. Also $b \in Z - X$. Moreover, $Z - X = \{b\}$, by the maximality of b. Now if X contains an element $d < b$, then we have $|X| > |Z|$ (in view of $a, d \in X - Z$ and $|Z - X| = 1$) and $Z > X$ (in view of $d < b < a$), which contradicts $X \in \text{WS} C^0$.

Thus, all elements of X are greater than b. This and $X - Y' = \{a\}$ imply that the set $U := Y' \cap [b..n]$ satisfies $X - U = \{a\}$ and $U - X = \{b\}$. Then X coincides with the set $I^{k+1}_\omega \cap [b+1..n]$. But the latter set belongs to C^0 (since $\omega^{-1}(k' + 1) = a > b$). So X is a member of C^0; a contradiction.

Lemma 2.3 $X \triangleright Y$ cannot take place.

Proof Suppose $X \triangleright Y$. Take the maximal k' such that the set $Y' := I_{ω}^{k'}$ satisfies $X - Y' \neq \emptyset$. Then $k' \geq k$ and $|X - Y'| = 1$. Since $k \leq k'$ implies $Y \subseteq Y'$, we have $X \triangleright Y$. Also $|Y' - X| \geq |Y - X| \geq 2$. Then $|X| < |Y'|$, contradicting $X(WS) Y'$.

In view of $X(WS) Y$, Lemmas 2.2 and 2.3 imply that only the case $X \lhd Y$ is possible.

Lemma 2.4 Let $X \ll Y$. Then X is an $ω$-chamber set.

Proof Suppose that there exist $i \in X$ and $j \notin X$ such that $j < i$ and $ω(j) < ω(i)$. Consider possible cases.

Case 1: $i \in Y$. Then $ω(j) < ω(i)$ implies that $j \in Y$. Take $d \in X - Y$. Then $d < j$ (since $X \ll Y$ and $j \notin Y - X$). Let $Y' := I_{ω}^{k}(j)$. We have $j \in Y'$, $i \notin Y'$ and $d \notin Y'$. This together with $X(WS) Y'$ and $d < j < i$ implies $Y' \triangleright X$. But $|X| = |Y| > |Y'|$ (in view of $ω(j) < ω(i) \leq k$); a contradiction.

Case 2: $i, j \notin Y$. Then $ω(i), ω(j) > k$. Take $a \in Y - X$. Since $X \ll Y$, we have $a > i$. Also $ω(a) \leq k$. Let $Y' := I_{ω}^{k}(j)$. Then $|Y'| > |Y|$ (in view of $ω(j) > k$). Also $a, j \in Y' - X$ and $i \in X - Y'$. Therefore, $X \triangleright Y'$, contradicting $|X| = |Y| < |Y'|$.

Finally, the case with $i \notin Y$ and $j \in Y$ is impossible since $i > j$ and $X \ll Y$.

Thus, (i)→(ii) in Theorem 2.1 is proven. Now we show the converse implication.

Lemma 2.5 Let $X \subset [n]$ be an $ω$-chamber set. Then $X(WS) C^0$.

Proof Consider an arbitrary set $Y = I_{ω}^{k} \cap [j..n]$ in C^0 (where $j \leq ω^{-1}(k)$). One may assume that both $X - Y$ and $Y - X$ are nonempty. Let $a \in Y - X$ and $b \in X - Y$. We assert that $a > b$ (whence $X \ll Y$ follows).

Indeed, $a \in Y$ implies $ω(a) \leq k$. If $b \notin I_{ω}^{k}$, then $ω(b) > k \geq ω(a)$. In case $a < b$ we would have $a \in X$, by the $ω$-chamberness of X. Therefore, $a > b$, as required.

Now suppose $b \in I_{ω}^{k}$. Then $b \in I_{ω}^{k} - [j..n]$, and therefore, $b < j$. Since $j \leq a$, we again obtain $a > b$.

This completes the proof of Theorem 2.1 reducing Theorem A to Theorem B.

3 Generalized tilings and their properties

As mentioned in the Introduction, the proof of Theorem B will essentially rely on results on generalized tilings from [3]. This section starts with definitions of such objects and their spectra. Then we review properties of generalized tilings that will be important for us later: Subsection 3.2 describes rather easy consequences from the defining axioms and Subsection 3.3 is devoted to less trivial properties.
3.1 Generalized tilings

Tiling diagrams that we deal with live within a zonogon, which is defined as follows.

In the upper half-plane $\mathbb{R} \times \mathbb{R}_+$, take n non-collinear vectors ξ_1, \ldots, ξ_n so that:

(i) ξ_1, \ldots, ξ_n follow in this order clockwise around $(0,0)$, and

(ii) all integer combinations of these vectors are different.

Then the set

$$Z = Z_n := \{ \lambda_1 \xi_1 + \ldots + \lambda_n \xi_n : \lambda_i \in \mathbb{R}, \ 0 \leq \lambda_i \leq 1, \ i = 1, \ldots, n \}$$

is a $2n$-gone. Moreover, Z is a zonogon, as it is the sum of n line-segments $\{ \lambda \xi_i : 1 \leq \lambda \leq 1 \}$, $i = 1, \ldots, n$. Also it is the image by a linear projection π of the solid cube $\text{conv}(2^{[n]})$ into the plane \mathbb{R}^2, defined by $\pi(x) := x_1 \xi_1 + \ldots + x_n \xi_n$. The boundary $bd(Z)$ of Z consists of two parts: the left boundary $\text{ldb}(Z)$ formed by the points (vertices) $z^i := \xi_1 + \ldots + \xi_i$ ($i = 0, \ldots, n$) connected by the line-segments $z^i_{i-1}z^i_i := z^i_{i-1} + \{ \lambda \xi_i : 0 \leq \lambda \leq 1 \}$, and the right boundary $\text{rdb}(Z)$ formed by the points $z^i_r := \xi_{i+1} + \ldots + \xi_n$ ($i = 0, \ldots, n$) connected by the line-segments $z^i_rz^i_{i-1}$. So $z^n_r = z^n_0$ is the minimal vertex of Z, denoted as z_0, and $z^n_i = z^n_r$ is the maximal vertex, denoted as z_n. We direct each segment $z^i_{i-1}z^i_i$ from z^i_{i-1} to z^i_i and direct each segment $z^i_rz^i_{i-1}$ from z^i_r to z^i_{i-1}.

When it is not confusing, a subset $X \subseteq [n]$ is identified with the corresponding vertex of the n-cube and with the point $\sum_{i \in X} \xi_i$ in the zonogon Z (and we will usually use capital letters to emphasize that a vertex (or a point) is considered as a set). Due to (3.1)(ii), all such points in Z are different.

Assuming that the vectors ξ_i have the same Euclidean norm, a rhombus tiling diagram is a subdivision T of Z into rhombi of the form $x + \{ \lambda \xi_i + \lambda' \xi_j : 0 \leq \lambda, \lambda' \leq 1 \}$ for some $i < j$ and some point x in Z, i.e., the rhombi are pairwise non-overlapping (have no common interior points) and their union is Z. It is easy to see that for each rhombus in T determined by x, i, j as above, x represents a subset in $[n] - \{i,j\}$. We associate to T the directed planar graph G_T whose vertices and edges are, respectively, the points and line-segments occurring as vertices and sides in the rhombi in T (not counting multiplicities). An edge connecting X and X_i is directed from the former to the latter; such an edge (parallel to ξ_i) is called an edge of color i, or an i-edge.

In fact, it makes no difference whether we take vectors ξ_1, \ldots, ξ_n with equal or arbitrary norms (subject to (3.1)); to simplify technical details and visualization, we further assume that these vectors have unit height, i.e., each ξ_i is of the form $(a,1)$. This leads to a subdivision T of Z into parallelograms of height 2, and for convenience refer to T as a (pure) tiling and to its elements as tiles. A tile τ determined by X, i, j, where $X \subseteq [n]$ and $i < j$, is called an ij-tile at X and denoted by $\tau(X; i, j)$. According to a natural visualization of τ, its vertices X, Xi, Xj, Xij are called the bottom, left, right, top vertices of τ and denoted by $b(\tau)$, $l(\tau)$, $r(\tau)$, $t(\tau)$, respectively. The edge from $b(\tau)$ to $l(\tau)$ is denoted by $bl(\tau)$, and the other three edges of τ are denoted as $br(\tau), lt(\tau), rt(\tau)$ in a similar way. Also we say that: a point (subset) $Y \subseteq [n]$ is of height $|Y|$; the set of vertices of tiles in T of height h forms h-th level; and a point Y lies on the right from a point Y' if Y, Y' are of the same height and $\sum_{i \in Y} \xi_i \geq \sum_{i \in Y'} \xi_i$.
In a *generalized tiling*, or a *g-tiling* for short, some tiles may overlap. It is a collection T of tiles $\tau(X;i, j)$ which is partitioned into two subcollections T^w and T^b, of *white* and *black* tiles, respectively, obeying axioms (T1)–(T4) below. When $T^b = \emptyset$, we will obtain a pure tiling. As before, we associate to T the directed graph $G_T = (V_T, E_T)$, where V_T and E_T are the sets of vertices and edges, respectively, occurring in tiles of T. For a vertex $v \in V_T$, the set of edges incident with v is denoted by $E_T(v)$, and the set of tiles having a vertex at v is denoted by $F_T(v)$.

(T1) Each boundary edge of Z belongs to exactly one tile. Each edge in E_T not contained in $bd(Z)$ belongs to exactly two tiles. All tiles in T are different, in the sense that no two coincide in the plane.

(T2) Any two white tiles having a common edge do not overlap, i.e., they have no common interior point. If a white tile and a black tile share an edge, then these tiles do overlap. No two black tiles share an edge.

See the picture; here all edges are directed up and the black tiles are drawn in bold.

(T3) Let τ be a black tile. None of $b(\tau), t(\tau)$ is a vertex of another black tile. All edges in $E_T(b(\tau))$ leave $b(\tau)$, i.e., they are directed from $b(\tau)$. All edges in $E_T(t(\tau))$ enter $t(\tau)$, i.e., they are directed to $t(\tau)$.

We refer to a vertex $v \in V_T$ as *terminal* if v is the bottom or top vertex of some black tile. A nonterminal vertex v is called *ordinary* if all tiles in $F_T(v)$ are white, and *mixed* otherwise (i.e. v is the left or right vertex of some black tile). Note that a mixed vertex may belong, as the left or right vertex, to several black tiles.

Each tile $\tau \in T$ corresponds to a square in the solid cube $conv(2^{[n]})$, denoted by $\sigma(\tau)$: if $\tau = \tau(X;i, j)$ then $\sigma(\tau)$ is the convex hull of the points X, Xi, Xj, Xij in the cube (so $\pi(\sigma(\tau)) = \tau$). (T1) implies that the interiors of these squares are pairwise disjoint and that $\bigcup(\sigma(\tau): \tau \in T)$ forms a 2-dimensional surface, denoted by D_T, whose boundary is the preimage by π of the boundary of Z. The last axiom is:

(T4) D_T is a disc, in the sense that it is homeomorphic to $\{x \in \mathbb{R}^2: x_1^2 + x_2^2 \leq 1\}$.

The *reversed* g-tiling T^{rev} of a g-tiling T is formed by replacing each tile $\tau(X;i, j)$ of T by the tile $\tau([n] - Xij; i, j)$ (or, roughly speaking, by changing the orientation of all edges in E_T, in particular, in $bd(Z)$). Clearly (T1)–(T4) remain valid for T^{rev}.

The *spectrum* of a g-tiling T is the collection \mathcal{S}_T of (the subsets of $[n]$ represented by) *nonterminal* vertices in G_T. Figure 1 illustrates an example of g-tilings; here the unique black tile is drawn by thick lines and the terminal vertices are indicated by black rhombi.

The following result on g-tilings is of most importance for us.
Theorem 3.1 \[3\] The spectrum \(\mathcal{S}_T \) of any generalized tiling \(T \) forms a largest ws-collection. Conversely, for any largest ws-collection \(\mathcal{C} \subseteq 2^{[n]} \), there exists a generalized tiling \(T \) on \(Z_n \) such that \(\mathcal{S}_T = \mathcal{C} \). (Moreover, such a \(T \) is unique and there is an efficient procedure that constructs \(T \) from \(\mathcal{C} \).)

In what follows, when it is not confusing, we may speak of a vertex or edge of \(G_T \) as a vertex or edge of \(T \). The map \(\sigma \) of the tiles in \(T \) to squares in \(\text{conv}(2^{[n]}) \) is extended, in a natural way, to the vertices, edges, subgraphs or other objects in \(G_T \). Note that the embedding of \(\sigma(G_T) \) in the disc \(D_T \) is planar (unlike \(G_T \) and \(Z \), in general), i.e., any two edges of \(\sigma(G_T) \) can intersect only at their end points. It is convenient to assume that the clockwise orientations on \(Z \) and \(D_T \) are agreeable, in the sense that the image by \(\sigma \) of the boundary cycle \((z_0, z_1^r, \ldots, z_n^r, z_1^l, \ldots, z_n^l = z_0)\) is oriented clockwise around the interior of \(D_T \). Then the orientations on a tile \(\tau \in T \) and on the square \(\sigma(\tau) \) are consistent when \(\tau \) is white, and different when \(\tau \) is black.

3.2 Elementary properties of generalized tilings

The properties of g-tilings reviewed in this subsection can be obtained rather easily from the above axioms; see [3] for more explanations. Let \(T \) be a g-tiling on \(Z = Z_n \).

1. Let us say that the edges of \(T \) occurring in black tiles (as side edges) are black, and the other edges of \(T \) are white. For a vertex \(v \) and two edges \(e, e' \in E_T(v) \), let \(\Theta(e, e') \) denote the cone (with angle < \(\pi \)) in the plane pointed at \(v \) and generated by these edges (ignoring their directions). When another edge \(e'' \in E_T(v) \) (a tile \(\tau \in F_T(v) \)) is contained in \(\Theta(e, e') \), we say that \(e'' \) (resp. \(\tau \)) lies between \(e \) and \(e'' \). When these \(e, e' \) are edges of a tile \(\tau \), we also write \(\Theta(\tau; v) \) for \(\Theta(e, e') \) (the conic hull of \(\tau \) at \(v \)), and denote by \(\theta(\tau, v) \) the angle of this cone taken with sign + if \(\tau \) is white, and sign − if \(\tau \) is black. The sum \(\sum \theta(\tau, v) : \tau \in F_T(v) \) is denoted by \(\rho(v) \) and called the full angle at \(v \). Terminal vertices of \(T \) behave as follows.

Corollary 3.2 Let \(v \) be a terminal vertex belonging to a black \(ij \)-tile \(\tau \). Then:

(i) \(v \) is not connected by edge with any other terminal vertex of \(T \) (so \(E_T(v) \) contains exactly two black edges, namely, those belonging to \(\tau \));

(ii) \(E_T(v) \) contains at least one white edge and all such edges \(e \), as well as all tiles in \(F_T(v) \), lie between the two black edges in \(E_T(v) \) (so \(e \) is a \(q \)-edge with \(i < q < j \));

\[\mathcal{S}_T = \{ \emptyset, 1, 4, 12, 14, 23, 24, 34, 123, 234, 1234 \} \]
(iii) $\rho(v) = 0$;
(iv) v does not belong to the boundary of Z (so each boundary edge e of Z, as well as the tile containing e, is white).

Note that (ii) implies that

(3.2) if a black tile τ and a white tile τ' share an edge and if v is their common nonterminal vertex (which is either left or right in both τ, τ'), then τ is contained in $\Theta(\tau', v)$.

Using this and applying Euler formula to the planar graph $\sigma(G_T)$ on D_T, one can specify the full angles at nonterminal vertices.

Corollary 3.3 Let $v \in V_T$ be a nonterminal vertex.

(i) If v belongs to $\text{bd}(Z)$, then $\rho(v)$ is equal to the (positive) angle between the boundary edges incident to v.

(ii) If v is inner (i.e., not in $\text{bd}(Z)$), then $\rho(v) = 2\pi$.

2. Using (3.2) and Corollary 3.3, one can obtain the following useful (though rather lengthy) description of the local structure of edges and tiles at nonterminal vertices.

Corollary 3.4 Let v be a nonterminal (ordinary or mixed) vertex of T different from z_0, z_n. Let e_1, \ldots, e_p be the sequence of edges leaving v and ordered clockwise around v (or by increasing their colors), and $e'_1, \ldots, e'_{p'}$ the sequence of edges entering v and ordered counterclockwise around v (or by decreasing their colors). Then there are integers $r, r' \geq 0$ such that:

(i) $r + r' < \min\{p, p'\}$, the edges $e_{r+1}, \ldots, e_{p-r'}$ and $e'_{r+1}, \ldots, e'_{p'-r'}$ are white, the other edges in $E_T(v)$ are black, $r = 0$ if $v \in \ell \text{bd}(Z)$, and $r' = 0$ if $v \in r \text{bd}(Z)$;

(ii) for $q = r + 1, \ldots, p - r' - 1$, the edges e_q, e_{q+1} are spanned by a white tile (so such tiles have the top at v and lie between e_{r+1} and $e_{p-r'}$);

(iii) for $q = r + 1, \ldots, p' - r' - 1$, the edges e'_q, e'_{q+1} are spanned by a white tile τ (so such tiles have the top at v and lie between e'_{r+1} and $e'_{p'-r'}$);

(iv) unless $v \in \ell \text{bd}(Z)$, each of the pairs $\{e_1, e'_{r+1}\}, \{e_2, e'_1\}, \ldots, \{e_{r+1}, e'_1\}$ is spanned by a white tile, and each of the pairs $\{e_1, e'_1\}, \{e_2, e'_{r-1}\}, \ldots, \{e_r, e'_1\}$ is spanned by a black tile (all tiles have the right vertex at v);

(v) unless $v \in r \text{bd}(Z)$, each of the pairs $\{e_p, e'_{p'-r'}\}, \{e_{p-1}, e'_{p'-r'+1}\}, \ldots, \{e_{p-r'}, e'_{p'}\}$ is spanned by a white tile, and each of the pairs $\{e_p, e'_{p'-r'+1}\}, \{e_{p-1}, e'_{p'-r'+2}\}, \ldots, \{e_{p-r'+1}, e'_{p'}\}$ is spanned by a black tile (all tiles have the left vertex at v).

In particular, (a) there is at least one white edge leaving v and at least one white edge entering v; (b) the tiles in (ii)–(v) give a full list of tiles in $F_T(v)$; and (c) any two tiles $\tau, \tau' \in F_T(v)$ with $r(\tau) = \ell(\tau') = v$ do not overlap (have no common interior point).

Also: for $v = z_0, z_n$, all edges in $E_T(v)$ are white and consecutive pairs of these edges are spanned by white tiles.
(When \(v \) is ordinary, we have \(r = r' = 0 \).) The case with \(p = 4, p' = 5, r = 2, r' = 1 \) is illustrated in the picture; here the black edges are drawn in bold and the thin (bold) arcs indicate the pairs of edges spanned by white (resp. black) tiles.

3. In view of (3.1) (ii), the graph \(G_T = (V_T, E_T) \) is graded for each color \(i \in [n] \), which means that for any closed path \(P \) in \(G_T \), the amounts of forward \(i \)-edges and backward \(i \)-edges in \(P \) are equal. In particular, this easily implies that (3.3) if four vertices and four edges of \(G_T \) form a (non-directed) cycle, then they are the vertices and edges of a tile (not necessarily contained in \(T \)).

Hereinafter, a path in a directed graph is meant to be a sequence \(P = (\tilde{v}_0, \tilde{e}_1, \tilde{v}_1, \ldots, \tilde{e}_r, \tilde{v}_r) \) in which each \(\tilde{e}_p \) is an edge connecting vertices \(\tilde{v}_{p-1}, \tilde{v}_p \); an edge \(\tilde{e}_p \) is called forward if it is directed from \(\tilde{v}_{p-1} \) to \(\tilde{v}_p \) (denoted as \(\tilde{e}_p = (\tilde{v}_{p-1}, \tilde{v}_p) \)), and backward otherwise (when \(\tilde{e}_p = (\tilde{v}_p, \tilde{v}_{p-1}) \)). When \(v_0 = v_r \) and \(r > 0 \), \(P \) is a cycle. The path \(P \) is called directed if all its edges are forward, and simple if all vertices \(v_0, \ldots, v_r \) are different. \(P^{\text{rev}} \) denotes the reversed path \((\tilde{v}_r, \tilde{e}_r, \tilde{v}_{r-1}, \ldots, \tilde{e}_1, \tilde{v}_0) \). Sometimes we will denote a path without explicitly indicating its edges: \(P = (\tilde{v}_0, \tilde{v}_1, \ldots, \tilde{v}_r) \). A directed graph is called acyclic if it has no directed cycles.

3.3 Strips, contractions, expansions, and others

In this subsection we describe additional, more involved, results and constructions concerning g-tilings that are given in [3] and will be needed to us to prove Theorem B. They are exposed in Propositions 3.5-3.11 below.

A. Strips in \(T \).

Definition 3 Let \(i \in [n] \). An \(i \)-strip (or a dual \(i \)-path) in \(T \) is a maximal alternating sequence \(Q = (e_0, \tau_1, e_1, \ldots, \tau_r, e_r) \) of edges and tiles in it such that: (a) \(\tau_1, \ldots, \tau_r \) are different tiles, each being an \(ij \)- or \(ji \)-tile for some \(j \), and (b) for \(p = 1, \ldots, r \), \(e_p \) are the opposite \(i \)-edges of \(\tau_p \).

(Recall that speaking of an \(i'j' \)-tile, we assume that \(i' < j' \).) In view of axiom (T1), \(Q \) is determined uniquely (up to reversing it, and up to shifting cyclically when \(e_0 = e_r \)) by any of its edges or tiles. For \(p = 1, \ldots, r \), let \(e_p = (v_p, v'_p) \). Define the right boundary of \(Q \) to be the (not necessarily directed) path \(R_Q = (v_0, a_1, v_1, \ldots, a_r, v_r) \), where \(a_p \) is the edge of \(\tau_p \) connecting \(v_{p-1} \) and \(v_p \). Similarly, the left boundary of \(Q \) is the path \(L_Q = (v'_0, a'_1, v'_1, \ldots, a'_r, v'_r) \), where \(a'_p \) is the edge of \(\tau_p \) connecting \(v'_{p-1} \) and \(v'_p \). Then \(a_p, a'_p \) have the same color. Considering \(R_Q \) and using the fact that \(G_T \) is graded, one shows that
(3.4) Q cannot be cyclic, i.e., the edges e_0 and e_r are different.

In view of the maximality of Q, (3.4) implies that one of e_0, e_r belongs to the left boundary, and the other to the right boundary of the zonogon Z; we assume that Q is directed so that $e_0 \in \ellbd(Z)$. Properties of strips are exposed in the following

Proposition 3.5 For each $i \in [n]$, there is exactly one i-strip, Q_i, say. It contains all i-edges of T, begins with the edge $z_{i-1}^i z_i^i$ of $\ellbd(Z)$ and ends with the edge $z_i^i z_{i-1}^i$ of $rbd(Z)$. Furthermore, each of R_{Q_i} and L_{Q_i} is a simple path, L_{Q_i} is disjoint from R_{Q_i}, and is obtained by shifting R_{Q_i} by the vector ξ_i. An edge of R_{Q_i} is forward if and only if it belongs to either a white i-tile or a black i-tile in Q_i, and similarly for the edges of L_{Q_i}.

B. Strip contractions.

Let $i \in [n]$. Partition T into three subsets T^0_i, T^-_i, T^+_i, where T^0_i consists of all i- and \ast-tiles, T^-_i consists of the tiles $\tau(X; i', j')$ with $i' \neq i$ and $i \notin X$, and T^+_i consists of the tiles $\tau(X; i', j')$ with $i', j' \neq i$ and $i \in X$. Then T^0_i is the set of tiles occurring in the i-strip Q_i, and the tiles in T^-_i are vertex disjoint from those in T^+_i.

Definition 4 The i-contraction of T is the collection T/i of tiles obtained by removing T^0_i, keeping the members of T^-_i, and replacing each $\tau(X; i', j') \in T^+_i$ by $\tau(X - i; i', j')$. The black/white coloring of tiles in T/i is inherited from T.

So the tiles of T/i live within the zonogon generated by the vectors ξ_q for $q \in [n] - i$. Clearly if we remove from the disc D_T the interiors of the edges and squares in $\sigma(Q_i)$, then we obtain two closed simply connected regions, one containing the squares $\sigma(\tau)$ for all $\tau \in T^-_i$, denoted as $D^-_{T_i}$, and the other containing $\sigma(\tau)$ for all $\tau \in T^+_i$, denoted as $D^+_{T_i}$. Then $D_{T/i}$ is the union of $D^-_{T_i}$ and $D^+_{T_i} - \epsilon_i$, where ϵ_i is i-th unit base vector in $\mathbb{R}^{|n|}$. In other words, $D^+_{T_i}$ is shifted by $-\epsilon_i$ and the path $\sigma(L_{Q_i})$ in it (the left boundary of $\sigma(Q_i)$) merges with the path $\sigma(R_{Q_i})$ in $D^-_{T_i}$. In general, $D^-_{T_i}$ and $D^+_{T_i} - \epsilon_i$ may intersect at some other points, and for this reason, $D_{T/i}$ need not be a disc. Nevertheless, $D_{T/i}$ is shown to be a disc in two important special cases: $i = n$ and $i = 1$; moreover, the following property takes place.

Proposition 3.6 The n-contraction T/n of T is a (feasible) g-tiling on the zonogon Z_{n-1} generated by the vectors ξ_1, \ldots, ξ_{n-1}. Similarly, the 1-contraction $T/1$ is a g-tiling on the $(n - 1)$-zonogon generated by the vectors ξ_2, \ldots, ξ_n.

(If wished, colors $2, \ldots, n$ for $T/1$ can be renumbered as $1', \ldots, (n - 1)'$.) We will use the n- and 1-contraction operations in Section 5 and 6.

C. Legal paths and strip expansions.

Next we describe the n-expansion and 1-expansion operations; they are converse, in a sense, to the n-contraction and 1-contraction ones, respectively. We start with the operation for n.

The n-expansion operation applies to a g-tiling T on the zonogon $Z = Z_{n-1}$ generated by ξ_1, \ldots, ξ_{n-1} and to a simple (not necessarily directed) path P in the graph G_T.
beginning at the minimal vertex \(z_0 \) and ending at the maximal vertex \(z_{n-1} \) of \(Z \). Then \(\sigma(P) \) subdivides the disc \(D_T \) into two simply connected closed regions \(D', D'' \) such that: \(D' \cup D'' = D_T, \ D' \cap D'' = \sigma(P), \ D' \) contains \(\sigma(lbd(Z)) \), and \(D'' \) contains \(\sigma(rbd(Z)) \). Let \(T' := \{ \tau \in T : \sigma(\tau) \subset D' \} \) and \(T'' := T - T' \). We disconnect \(D', D'' \) along \(\sigma(P) \) by shifting \(D'' \) by the vector \(\epsilon_n \), and then connect them by adding the corresponding strip of \(*n\)-tiles.

More precisely, we construct a collection \(\tilde{T} \) of tiles on the zonogon \(Z_n \), called the \(n\)-expansion of \(T \) along \(P \), as follows. The tiles of \(T' \) are keeping and each tile \(\tau(X; i, j) \in T'' \) is replaced by \(\tau(Xn; i, j) \); the white/black coloring on these tiles is inherited. For each edge \(e = (X, Xi) \) of \(P \), we add tile \(\tau(X; i, n) \), making it white if \(e \) is forward, and black if \(e \) is backward in \(P \). The resulting \(\tilde{T} \) need not be a \(g\)-tiling in general; for this reason, we impose additional conditions on \(P \).

Definition 5 \(P \) as above is called an \(n\)-legal path if it satisfies the following three conditions:

(i) all vertices of \(P \) are nonterminal;

(ii) \(P \) contains no pair of consecutive backward edges;

(iii) for an \(i\)-edge \(e \) and a \(j\)-edge \(e' \) such that \(e, e' \) are consecutive edges occurring in this order in \(P \); if \(e \) is forward and \(e' \) is backward in \(P \), then \(i > j \), and if \(e \) is backward and \(e' \) is forward, then \(i < j \).

In view of (ii), \(P \) is represented as the concatenation of \(P_1, \ldots, P_{n-1} \), where \(P_h \) is the maximal subpath of \(P \) whose edges connect levels \(h - 1 \) and \(h \) (i.e., are of the form \((X, Xi) \) with \(|X| = h - 1 \)). In view of (iii), each path \(P_h \) has planar embedding in \(Z \); it either contains only one edge, or is viewed as a zigzag path going from left to right. The first and last vertices of these subpaths are called critical vertices of \(P \). The importance of legal paths is seen from the following

Proposition 3.7 The \(n\)-expansion of \(T \) along \(P \) is a (feasible) \(g\)-tiling on the zonogon \(Z_n \) if and only if \(P \) is an \(n\)-legal path.

Under the \(n\)-expansion operation, the path \(P \) generates the \(n\)-strip \(Q_n \) of the resulting \(g\)-tiling \(\tilde{T} \); more precisely, the right boundary of \(Q_n \) is the reversed path \(P^{rev} \) to \(P \), and the left boundary of \(Q_n \) is obtained by shifting \(P^{rev} \) by \(\xi_n \). A possible fragment of \(P \) consisting of three consecutive edges \(e, e', e'' \) forming a zigzag and the corresponding fragment in \(Q_n \) (with two white tiles created from \(e, e'' \) and one black tile created from \(e' \)) are illustrated in the picture; here the shifted \(e, e', e'' \) are indicated with tildes.

The \(n\)-contraction operation applied to \(\tilde{T} \) returns the initial \(T \). A relationship between \(n\)-contractions and \(n\)-expansions is expressed in the following
Proposition 3.8 The correspondence \((T, P) \mapsto \tilde{T}\), where \(T\) is a g-tiling on \(Z_{n-1}\), \(P\) is an \(n\)-legal path for \(T\), and \(\tilde{T}\) is the \(n\)-expansion of \(T\) along \(P\), gives a bijection between the set of such pairs \((T, P)\) and the set of g-tilings on \(Z_n\).

In its turn, the \(1\)-expansion operation applies to a g-tiling \(T\) on the zonogon \(Z\) generated by the vectors \(\xi_2, \ldots, \xi_n\) (so we deal with colors \(2, \ldots, n\)) and to a simple path \(P\) in \(G_T\) from the minimal vertex to the maximal vertex of \(Z\); it produces a g-tiling \(\tilde{T}\) on \(Z_n\). This is equivalent to applying the \(n\)-expansion operation in the mirror-reflected situation: when color \(i\) is renamed as color \(n - i + 1\) (and accordingly a tile \(\tau(X; i, j)\) in \(T\) is replaced by the tile \(\tau(\{k: n - k + 1 \in X\}; n - j + 1, n - i + 1)\), preserving the basic vectors \(\xi_1, \ldots, \xi_n\)). The corresponding "1-analogs" of the above results on \(n\)-expansions are as follows.

Proposition 3.9 (i) The \(1\)-expansion \(\tilde{T}\) of \(T\) along \(P\) is a g-tiling on \(Z_n\) if and only if \(P\) is a 1-legal path, which is defined as in Definition 5 with the only difference that each subpath \(P_h\) of \(P\) (formed by the edges connecting levels \(h-1\) and \(h\)) either contains only one edge, or is a zigzag path going from right to left.

(ii) The \(1\)-contraction operation applied to \(\tilde{T}\) returns the initial \(T\).

(iii) The correspondence \((T, P) \mapsto \tilde{T}\), where \(T\) is a g-tiling on the zonogon generated by \(\xi_2, \ldots, \xi_n\), \(P\) is a 1-legal path for \(T\), and \(\tilde{T}\) is the \(1\)-expansion of \(T\) along \(P\), gives a bijection between the set of such pairs \((T, P)\) and the set of g-tilings on \(Z_n\).

D. Principal trees.

Let \(T\) be a g-tiling on \(Z = Z_n\). We distinguish between two sorts of white edges \(e\) of \(G_T\) by saying that \(e\) is fully white if both of its end vertices are nonterminal, and semi-white if one end vertex is terminal. (Recall that an edge \(e\) of \(G_T\) is called white if no black tile contains \(e\) as a side edge); the case when both ends of \(e\) are terminal is impossible, cf. Corollary 3.2(i).) In particular, all boundary edges of \(Z\) are fully white.

The following result on structural features of the set of white edges can be obtained by using Corollary 3.4.

Proposition 3.10 For \(h = 1, \ldots, n\), let \(H_h\) denote the subgraph of \(G_T\) induced by the set of white edges connecting levels \(h-1\) and \(h\) (i.e., of the form \((X, X_i)\) with \(|X| = h - 1\)). Then \(H_h\) is a forest. Furthermore:

(i) there exists a component (a maximal tree) \(K_h\) of \(H_h\) that contains all fully white edges of \(H_p\) (in particular, the boundary edges \(z_{h-1}^k z_h^k\) and \(z_{n-h+1}^r z_{n-h}^r\)) and no other edges; moreover, \(K_h\) has planar embedding in \(Z\);

(ii) any other component \(K'\) of \(H_h\) contains exactly one terminal vertex \(v\); this \(K'\) is a star at \(v\) whose edge set consists of the (semi-)white edges incident to \(v\).

It follows that the subgraph \(G_T^{fw} = G_T^{fw}\) of \(G_T\) induced by the fully white edges has planar embedding in \(Z\). We refer to \(K_h\) in (i) of the proposition as the principal tree in \(H_h\). The common vertices of two neighboring principal trees \(K_h, K_{h+1}\) will play an important role later; we call them critical vertices for \(T\) in level \(h\).

E. Two more useful facts (whose proofs are nontrivial) concern relations between vertices and edges in \(G_T\) and tiles in \(T\).
Proposition 3.11 (i) Any two nonterminal vertices of the form \(X, X_i\) in \(G_T\) are connected by edge. (Such an edge need not exist when one of \(X, X_i\) is terminal.)

(ii) If four nonterminal vertices are connected by four edges forming a cycle in \(G_T\), then there is a tile in \(T\) having these vertices and edges. (Cf. (3.3).)

4 The auxiliary graph

In this section we consider a g-tiling \(T\) on the zonogon \(Z_n\), introduce two partial orders on its spectrum \(\mathcal{S}_T\), and claim that these partial orders are equal. This claim will be the crucial ingredient in the proof of Theorem B in Section 5.

The first partial order is a restriction of the relation \(<\) in (1.1). It is based on the following simple, but important, property established in [8], which describes a situation when the relation becomes transitive:

(4.1) for sets \(A, A', A'' \subseteq [n]\), if \(A < A' < A''\), then \(A \lesssim A''\).

This and the fact that \(\mathcal{S}_T\) is a ws-collection (by Theorem 3.1) lead to partial order \(\prec^*\) on \(\mathcal{S}_T\), where

(4.2) for \(A, B \in \mathcal{S}_T\), we write \(A \prec^* B\) if \(|A| \leq |B|\) and \(A \lesssim B\).

The second partial order is determined by a certain acyclic directed graph, called the auxiliary graph for \(T\) and denoted by \(\Gamma = \Gamma_T\). This graph is different from the graph \(G_T\) (defined in the previous section) and is constructed as follows.

Construction of \(\Gamma\): The vertex set of \(\Gamma\) is \(\mathcal{S}_T\). The edge set of \(\Gamma\) consists of two subsets: the set \(E^{as}\) of fully white edges of \(G_T\), and the set \(E^{hor}\) of edges corresponding to the “horizontal diagonals” of white tiles: for each \(\tau \in T^w\), assign edge \(e_\tau\) going from \(\ell(\tau)\) to \(r(\tau)\). An edge in \(E^{as}\) is called ascending (as it goes from some level \(h\) to the next level \(h+1\), having the form \((X, X_i)\) with \(|X| = h\), and an edge in \(E^{hor}\) is called horizontal (as it connects vertices of the same level).

In particular, \(\Gamma\) contains \(bd(Z_n)\) (since all boundary edges are fully white, cf. Corollary 3.2(iv)). Figure 2 compares the graph \(G_T\) drawn in Fig. 1 and the graph \(\Gamma_T\) for the same \(T\); here the ascending edges of \(\Gamma\) are indicated by ordinary lines (which should be directed up), and the horizontal edges by double lines or arcs (which should be directed from left to right).

We write \(\prec_G\) for the natural partial order on the vertices of an acyclic directed graph \(G'\), i.e., \(x \prec_G y\) if vertices \(x, y\) are connected in \(G'\) by a directed path from \(x\) to \(y\). The role of the graph \(\Gamma\) is emphasized by the following theorem whose proof takes some efforts and will be given in Section 6.

Theorem 4.1 (Auxiliary Theorem) For a g-tiling \(T\) on \(Z_n\), the partial orders on \(\mathcal{S}_T\) given by \(\prec^*\) and by \(\prec_\Gamma\) are equal. Furthermore, \((\mathcal{S}_T, \prec_\Gamma)\) is a lattice in which \(\emptyset\) and \([n]\) are the (unique) minimal and maximal elements, respectively.
5 Proof of Theorem B

In this section we explain how to obtain Theorem B by use of Auxiliary Theorem of the previous section. We need two lemmas (where we write $X \preceq Y$ if either $X \lessdot Y$ or $X = Y$).

Lemma 5.1 (i) Let $A \preceq C$ and $B \preceq C$. Then either $C \subset A \cup B$ or $A \cup B \preceq C$.

(ii) Let $C \preceq A$ and $C \preceq B$. Then $C \preceq A \cup B$.

Proof (i) If $C \subset A \cup B$ or $A \cup B \preceq C$, we are done. So assume that both $C - (A \cup B)$ and $(A \cup B) - C$ are nonempty and consider an element c in the former and an element x in the latter of these sets. One may assume that $x \in A$. Since $x \notin C$, $c \notin A$, and $A \preceq C$, we have $x < c$. This implies $A \cup B \preceq C$.

(ii) If $C \preceq A \cup B$, we are done. So assume this is not the case, and let $c \in C - (A \cup B)$. Let x be an element of the set $(A \cup B) - C$ (which is, obviously, nonempty). One may assume that $x \in A - C$. Then $c \in C - A$ and $C \preceq A$ imply $c < x$, as required. □

Definition 6 Let L, $R \subseteq 2^{[n']}$. We call (L, R) a left-right pair, or, briefly, an lr-pair, if $L \cup R$ is a ws-collection and

$$(LR): \quad L \preceq R \text{ holds for any } L \in L \text{ and } R \in R \text{ with } |L| \leq |R|.$$

Lemma 5.2 Let (L, R) be an lr-pair in $2^{[n']}$.

(i) Suppose that there are $X \subseteq [n']$ and $i, j, k \in X$ such that: $i < j < k$, the sets $X - k, X - j$ belong to L, and the sets $X - j, X - i$ belong to R. Then $(L \cup \{X\}, R)$ is an lr-pair as well.

(ii) Symmetrically, suppose that there are $X \subseteq [n']$ and $i, j, k \notin X$ such that: $i < j < k$, the sets X_i, X_j belong to L, and the sets X_j, X_k belong to R. Then $(L, R \cup \{X\})$ is an lr-pair as well.

Proof To see (i), we first show that X is weakly separated from any member Y of $L \cup R$.

Suppose that $|X| = |Y| + 1$. If $Y \in L$, we argue as follows. Since $X - i, X - j \in R$ and $|X - i| = |X - j| = |Y|$, we have $Y \preceq X - i$ and $Y \preceq X - j$. By (ii) in Lemma 5.1

Figure 2: Graphs G_T and Γ_T
we obtain that \(Y \subseteq (X - i) \cup (X - j) = X. \) In case \(Y \in \mathcal{R}, \) we have \(X - j, X - k \subseteq Y, \) and now (i) in Lemma 5.1 implies that either \(Y \subseteq X \) or \(X \subseteq Y. \)

Now suppose that \(X \) is not weakly separated from some \(Y \in \mathcal{L} \cup \mathcal{R} \) with \(|X| \neq |Y| + 1. \) Three cases are possible.

1) Let \(|X| < |Y|. \) Then one easily shows that there are \(a, c \in Y - X \) and \(b \in X - Y \) such that \(a < b < c; \) cf. Lemma 3.8 in [8]. The element \(b \) belongs to some set \(X' \) among \(X - i, X - j, X - k. \) Then \(b \in X' - Y \) and \(a, c \in Y - X', \) implying \(X' \supset Y \) (since \(X' \subseteq Y \)). But \(|X'| < |Y|; \) a contradiction.

2) Let \(|X| = |Y|. \) Then there are \(a, c \in Y - X \) and \(b, d \in X - Y \) such that either \(a < b < c < d \) or \(a > b > c > d, \) by the same lemma in [8]. But both \(b, d \) belong to at least one set \(X' \) among \(X - i, X - j, X - k. \) So \(X', Y \) are not weakly separated; a contradiction.

3) Let \(|X| > |Y| + 1. \) Then \(a < b < c \) for some \(a, c \in X - Y \) and \(b \in Y - X. \) Both \(a, c \) belong to some set \(X' \) among \(X - i, X - j, X - k. \) Then \(Y \supset X'. \) But \(|X'| = |X| - 1 > |Y|; \) a contradiction.

Thus, \(\mathcal{L} \cup \mathcal{R} \cup \{X\} \) is a ws-collection. It remains to check that \(X \subseteq R \) for any \(R \in \mathcal{R} \) with \(|R| \geq |X| \) (then \(\mathcal{L} \cup \{X\}, \mathcal{R} \) is an lr-pair). Since \(X - j \in \mathcal{L} \) and \(|X - j| < |R|, \) we have \(X - j \subseteq R. \) Similarly, \(X - k \subseteq R. \) So, by Lemma 5.1(i), \(X \subseteq R, \) as required. (The case \(R \subset X \) is impossible since \(|R| \geq |X|.)\) This yields (i).

Validity of (ii) follows from (i) applied to the complementary lr-pair \(\{\{n'\} - R \in R \in \mathcal{R} \} \cup \{\{n'\} - L \in L \in \mathcal{L}\}. \)

Now we start proving Theorem B. Let \(\mathcal{C} \subseteq 2^{[n]} \) be a ws-collection. The goal is to show that \(\mathcal{C} \) is contained in a largest ws-collection in \(2^{[n]} \). We use induction on \(n. \)

Form the collections \(\mathcal{L} := \{X \subseteq [n - 1]: X \in \mathcal{C}\} \) and \(\mathcal{R} := \{X \subseteq [n - 1]: Xn \in \mathcal{C}\}. \) By easy observations in [8] Section 3, \(\mathcal{L} \cup \mathcal{R} \) is a ws-collection and, furthermore, \((\mathcal{L}, \mathcal{R}) \) is an lr-pair. Let us extend \((\mathcal{L}, \mathcal{R}) \) to a maximal lr-pair \((\overline{\mathcal{L}}, \overline{\mathcal{R}}) \) in \(2^{[n - 1]} \), i.e., \(\mathcal{L} \subseteq \overline{\mathcal{L}}, \mathcal{R} \subseteq \overline{\mathcal{R}}, \) and neither \(\overline{\mathcal{L}} \) nor \(\overline{\mathcal{R}} \) can be further extended. In particular, \(\overline{\mathcal{L}} \) contains the intervals \([i]\) and \(\overline{\mathcal{R}} \) contains the intervals \([i..n - 1]\) for each \(i \) (including \(\emptyset). \)

By induction, there exists a largest ws-collection \(\mathcal{C}' \subseteq 2^{[n - 1]} \) containing \(\overline{\mathcal{L}} \cup \overline{\mathcal{R}}. \) By Theorem 3.1 \(\mathcal{C}' \) is the spectrum of some g-tiling \(T \) on the zonogon \(Z_{n - 1}. \) By Auxiliary Theorem, for the graph \(\Gamma' := \Gamma_T, \) relations \(\prec^* \) and \(\prec_{\Gamma'} \) give the same partial order \(\mathcal{P} \) on \(\mathcal{C}' \) and, moreover, \(\mathcal{P} \) is a lattice.

For \(h = 0, \ldots, n - 1, \) let \(C_h, \overline{C}_h, \overline{C}_h \) consist of the sets \(X \) with \(|X| = h \) in \(\mathcal{C'}, \overline{\mathcal{L}}, \overline{\mathcal{R}}, \) respectively. Let \(C_h \in \mathcal{C'} \) be a maximal element in \(\mathcal{P} \) provided that

\begin{equation}
(5.1) \ C_h \preceq^* R \text{ for all } R \in \overline{\mathcal{L}}_h \cup \ldots \cup \overline{\mathcal{R}}_{n - 1}.
\end{equation}

Since \(\mathcal{P} \) is a lattice, \(C_h \) exists and is unique, and we have:

\begin{equation}
(5.2) \text{ (i) } L \preceq^* C_h \text{ for all } L \in \overline{\mathcal{L}}_0 \cup \ldots \cup \overline{\mathcal{L}}_h; \\
\text{ (ii) } C_0 \preceq^* C_1 \preceq^* \ldots \preceq^* C_n,
\end{equation}

where (i) follows from condition (LR) in the definition of lr-pairs. Note that for each \(h, \) both sets \(\overline{C}_h \) and \(\overline{C}_h \) are nonempty, as the former contains the interval \([h]\) (viz. the
vertex \(z'_{h} \) of \(\Gamma' \) and the latter contains \([n - h..n - 1]\) (viz. the vertex \(z'_{n-h} \)). Also for any \(L \in \overline{L}_{h} \) and \(R \in \overline{R}_{h} \), the expression \(L \preceq_{\Gamma'} C_{h} \preceq_{\Gamma'} R \) (cf. (5.1), (5.2)) implies that \(C_{h} \) belongs to a horizontal directed path from \(L \) to \(R \) in \(\Gamma' \). In particular, \(C_{h} \in C'_{h} \).

If \(X \in C'_{h} \) and \(X \prec^{*} C_{h} \) (resp. \(C_{h} \prec^{*} X \)), then \(X \) must belong to \(\overline{L} \) (resp. \(\overline{R} \)); this follows from the maximality of \((\overline{L}, \overline{R})\) and relations (5.1) and (5.2)(i) (in view of the transitivity of \(\prec^{*} \)). Also the maximality of \((\overline{L}, \overline{R})\) implies that \(C_{h} \) belongs to both \(\overline{L}_{h} \) and \(\overline{R}_{h} \). We assert that \(C_{h} \) is a critical vertex (in level \(h \)) of the graph \(G_{\Gamma'} \), for each \(h \); see the definition in Subsection 3.3 part D.

To see this, take a white edge \(e \) leaving the vertex \(C_{h} \) in \(G_{\Gamma'} \) (unless \(h = n - 1 \)); it exists by Corollary 3.4. Suppose that the end vertex \(X \) of \(e \) is terminal. Then \(X \) is the top vertex \(t(\tau) \) of some black tile \(\tau \in \Gamma' \); in particular, \(X \) is not in \(\mathcal{G}_{\Gamma'} = C' \).

Since \(e \) is white, there are white tiles \(\tau', \tau'' \in F_{\tau}(X) \) with \(r(\tau') = \ell(\tau'') = C_{h} \). Then: (a) the vertices \(X' := \ell(\tau') \), \(C_{h} \) and \(X'' := r(\tau'') \) are of the form \(X - k, X - j, X - i \), respectively, for some \(i < j < k \); (b) \(X' \) belongs to \(\overline{L}_{h} \) (since \(X' \) is nonterminal and, obviously, \(X' \prec_{\Gamma'} C_{h} \)); and (c) \(X'' \) belongs to \(\overline{R}_{h} \) (since \(C_{h} \prec_{\Gamma'} X'' \)). But then, by Lemma 5.2(ii), \(\overline{L} \) can be increased by adding the new element \(X \), contrary to the maximality of \((\overline{L}, \overline{R})\). So the edge \(e \) is fully white. In a similar fashion (using (ii) in Lemma 5.2), one shows that \(C_{h} \) has an entering fully white edge (unless \(h = 0 \)). Thus, \(C_{h} \) is critical, as required.

Finally, by Proposition 3.10, each pair of critical vertices \(C_{h-1}, C_{h} \) is connected by a path \(P_{h} \) in the principal tree \(K_{h} \). Moreover, due to the planarity of \(K_{h} \) on \(Z_{n-1} \) and relation \(C_{h-1} \prec_{\Gamma'} C_{h} \) (by (5.2)(ii)), \(P_{h} \) is a zigzag path going from left to right (unless \(P_{h} \) has only one edge). It follows that the concatenation of the paths \(P_{1}, \ldots, P_{n-1} \) gives an \(n \)-legal path \(P \) in \(G_{\Gamma'} \) (defined in Subsection 3.3 part C). By Proposition 3.7, the \(n \)-expansion of \(T' \) along \(P \) is a feasible g-tiling \(T \) on the zonogon \(Z_{n} \), and now it is straightforward to check that the initial collection \(C \) is contained in the spectrum \(\mathcal{G}_{T} \) of \(T \) (which is a largest ws-collection, by Theorem 3.1).

This completes the proof of Theorem B (provided validity of Theorem 4.1).

6 Proof of Auxiliary Theorem

To complete the whole proof of the main results of this paper, it remains to prove Theorem 4.1 on the auxiliary graph \(\Gamma = \Gamma_{T} \). This is given throughout this section. We keep notation from Section 4.

The fact that \(\prec_{\Gamma} \) implies \(\prec^{*} \) is easy. Indeed, since each edge \(e = (A, B) \) of \(\Gamma \) is of the form either \((X, Xi)\) (when \(e \) is ascending) or \((Xi, Xj)\) with \(i < j \) (when \(e \) is horizontal), we have \(A \preceq B \) and \(|A| \leq |B| \), whence \(A \prec^{*} B \). Then for any \(C, D \in \mathcal{G}_{T} \) satisfying \(C \prec_{\Gamma} D \), the relation \(C \prec^{*} D \) is obtained by considering a directed path from \(C \) to \(D \) in \(\Gamma \) and using (4.1).

The proof of the remaining assertions in Theorem 4.1 is more intricate.
6.1 Lattice property of \(\Gamma \).

In this subsection we prove that \(\Gamma \) determines a lattice on \(\mathcal{G}_T \) (the last assertion in Theorem 5.11). We will rely on the following property of acyclic planar graphs (which is rather easy to prove and may be known in literature).

Lemma 6.1 Let \(G' = (V', E') \) be an acyclic directed graph with a planar embedding in the plane. Suppose that the partial order \(\mathcal{P} = (V', \prec_{G'}) \) has a unique minimal element \(s \) and a unique maximal element \(t \) and that both \(s, t \) are contained in (the boundary of) the same face of \(G' \). Then \(\mathcal{P} \) is a lattice.

Proof Let \(\prec \) stand for \(\prec_{G'} \). One may assume that both \(s, t \) belong to the outer (unbounded) face of \(G' \).

Consider two vertices \(x, y \in V' \). Let \(L \) be the set of maximal elements in \(\{ v \in V' : v \preceq x, y \} \), and \(U \) the set of minimal elements in \(\{ v \in V' : v \succeq x, y \} \). Since \(\mathcal{P} \) has unique minimal and maximal elements, both \(L, U \) are nonempty. We have to show that \(|L| = |U| = 1 \). Below by a path we mean a directed path.

Suppose, for a contradiction, that \(L \) contains two distinct elements \(a, b \). Take four paths in \(G' \) connecting \(a, b \) to \(x, y \): a path \(P_x \) from \(a \) to \(x \), a path \(P_y \) from \(a \) to \(y \), a path \(P'_x \) from \(b \) to \(x \), and a path \(P'_y \) from \(b \) to \(y \). Then \(P_x \) meets \(P_y \) only at the vertex \(a \) and is disjoint from \(P'_y \) (otherwise at least one of the lower bounds \(a, b \) for \(x, y \) is not maximal). Similarly, \(P'_x \) meets \(P'_y \) only at \(b \) and is disjoint from \(P_y \). Also we may assume that \(P_x \cap P'_x = \{ x \} \) (otherwise we could replace \(x \) by another common point \(x' \) of \(P_x, P'_x \); then \(a, b \in L(x', y) \) and \(x' \) is “closer” to \(a, b \) than \(x \)). Similarly, we may assume that \(P_y \cap P'_y = \{ y \} \). Let \(R \) be the closed region (homeomorphic to a disc) surrounded by \(P_x, P_y, P'_x, P'_y \). The fact that \(s, t \) belong to the outer face easily implies that they lie outside \(R \).

Take a path \(Q_a \) from \(s \) to \(a \) and a path \(Q_b \) from \(s \) to \(b \). For any vertex \(v \neq a \) of \(Q_a \), relation \(v \prec a \) implies that \(v \) belongs to neither \(P_x \cup P_y \) (otherwise \(a \prec v \) would take place) nor \(P'_x \cup P'_y \) (otherwise \(b \preceq v \prec a \) would take place). Therefore, \(Q_a \) meets \(R \) only at \(a \). Similarly, \(Q_b \cap R = \{ b \} \).

Let \(v \) be the last common vertex of \(Q_a \) and \(Q_b \). Take the part \(Q' \) of \(Q_a \) from \(v \) to \(a \), and the part \(Q'' \) of \(Q_b \) from \(v \) to \(b \). Then \(Q' \cap Q'' = \{ v \} \). Observe that \(R \) is contained either in the closed region \(R_1 \) surrounded by \(Q', Q'', P_x, P'_x \), or in the closed region \(R_2 \) surrounded by \(Q', Q'', P_y, P'_y \). One may assume that \(R \subset R_1 \) (this case is illustrated in the picture below). Then \(y \) is an interior point in \(R_1 \). Obviously, \(t \not\in R_1 \). Now since \(y \prec t \), there is a path from \(y \) to \(t \) in \(G' \). This path meets the boundary of \(R_1 \) at some vertex \(z \). But if \(z \) occurs in \(P_x \cup P'_x \), then \(y \prec z \preceq x \), and if \(z \) occurs in \(Q' \) (in \(Q'' \)), then \(y \prec z \preceq a \) (resp. \(y \prec z \preceq b \)); a contradiction.
Thus, \(|L| = 1\). The equality \(|U| = 1\) is obtained by reversing the edges of \(G'\).

Now we argue as follows. Consider the image \(\sigma(\Gamma)\) of \(\Gamma\) on the disc \(D_T\), where the image \(\sigma(e)\) of the horizontal edge \(e\) drawn in a white tile \(\tau\) is naturally defined to be the corresponding directed diagonal of the square \(\sigma(\tau)\). Since the embedding of \(\sigma(G_T)\) in \(D_T\) is planar, so is the embedding of \(\sigma(\Gamma)\). Also: (i) \(\sigma(bd(Z))\) is the boundary of \(D_T\); (ii) each boundary vertex of \(Z\) is contained in a directed path from \(z_0\) to \(z_n\) in \(G_T\), which belongs to \(\Gamma\) as well; and (iii) \(\Gamma\) is acyclic (since each edge in it is directed either upward or from left to right). Next, if a nonterminal vertex of \(T\) does not belong to the left (right) boundary of \(Z\), then \(v\) is the right (resp. left) vertex of some white tile, as is seen from (iv) (resp. (v)) in Corollary 3.4. This implies that

(6.1) for \(v \in S_T\), if \(v\) is not in \(\ell bd(Z)\) (not in \(r bd(Z)\)), then there exists a horizontal edge in \(\Gamma\) entering (resp. leaving) \(v\).

Thus, \(z_0\) and \(z_n\) are the unique minimal and maximal vertices in \(\Gamma\). Applying Lemma 6.1 to \(\sigma(\Gamma)\), we conclude that \(\Gamma\) determines a lattice, as claimed in Theorem 4.1.

6.2 Proof of “≺∗ implies ≺T”.

It remains to show the following

Proposition 6.2 For a g-tiling \(T\) on \(Z = Z_n\), let two sets (nonterminal vertices) \(A, B \in S_T\) satisfy \(A ≺∗ B\). Then \(A ≺_T B\), i.e., the graph \(\Gamma = \Gamma_T\) contains a directed path from \(A\) to \(B\).

This is the key and longest part of the proof of Theorem 4.1; it appeals to results on contractions and expansions mentioned in Subsection 3.3(C,D) and involves a refined description of structural features of the graphs \(G_T\) and \(\Gamma\), given in parts I–III below.

I. We start with one fact which immediately follows from the planarity of principal trees \(K_h\) defined in part D of Subsection 3.3.

(6.2) the edges of \(K_h\) can be (uniquely) ordered as \(e_1, \ldots, e_p\) so that for \(1 \leq q < q' \leq p\), the edge \(e_q\) lies on the right from \(e_q\) (in particular, \(e_1 = z_{h-1}^r z_h^l\) and \(e_p = z_{n-h+1}^r z_{n-h}^l\)); equivalently, consecutive edges \(e_q, e_{q+1}\), with colors \(i_q, i_{q+1}\), respectively, either leave a common vertex and satisfy \(i_q < i_{q+1}\), or enter a common vertex and satisfy \(i_q > i_{q+1}\).

We denote the sequence of edges of \(K_h\) in this order by \(E_h\). Also we denote the sequence of vertices of \(K_h\) occurring in level \(h - 1\) (level \(h\)) and ordered from left to right by \(V_{h}^{low}\) (resp. \(V_{h}^{up}\)).

Recall that the common vertices of two neighboring principal trees \(K_h, K_{h+1}\) are called critical vertices in level \(h\). Let \(U_h\) denote the sequence of these vertices ordered from left to right:

\[U_h := V_{h}^{up} \cap V_{h+1}^{low}.\]

The picture below illustrates an example of neighboring principal trees \(K_h, K_{h+1}\); here the critical vertices in level \(h\) are indicated by circles.
We need to explore the structure of G_T and Γ in a neighborhood of level h in more details. For vertices x, y of K_h, let $P_h(x, y)$ denote the (unique) path from x to y in K_h; in this path the vertices in levels $h - 1$ and h alternate. When two consecutive edges of $P_h(x, y)$ enter their common vertex, say, w (so w is in level h), we call w a \wedge-vertex in this path; otherwise (when e, e' leave w) we call w a \forall-vertex. Also we denote by $K_h(x, y)$ the minimal subtree of K_h containing x, y and all edges incident to intermediate vertices of $P_h(x, y)$.

Consider two consecutive critical vertices u, v in level h, where v is the immediate successor of u in U_h. Then the subtrees $K_h(u, v)$ and $K_{h+1}(u, v)$ intersect exactly at the vertices u, v. In particular, the concatenation of $P_{h+1}(u, v)$ and $P_{h-1}^{rev}(u, v)$ forms a simple cycle, denoted by $C(u, v) = C_h(u, v)$, in the graph G^{fw} induced by the fully white edges. Define:

- $\Omega(u, v) = \Omega_h(u, v)$ to be the closed region in Z surrounded by $C(u, v)$;
- $\Omega^*(u, v) = \Omega^*_h(u, v)$ to be the closed region in the disc D_T surrounded by $\sigma(C(u, v))$;
- $T(u, v) = T_h(u, v)$ to be the set of tiles $\tau \in T$ such that $\sigma(\tau)$ lies in $\Omega^*(u, v)$.

(For example, in the graph G_T drawn in Figures 12 the vertices 12 and 24 are consecutive critical vertices in level 2 and the cycle $C(12, 24)$ passes 12, 123, 23, 234, 24, 4, 14, 1, 12.) Clearly each tile in T belongs to exactly one set $T_h(u, v)$.

Let C be the set of cycles $C_h(u, v)$ among all h, u, v as above, and let \tilde{G} be the subgraph of G^{fw} that is the union of these cycles; this subgraph has planar embedding in Z because G^{fw} does so. Observe that each boundary edge of Z belongs to exactly one cycle in C and that any other edge of \tilde{G} belongs to exactly two such cycles. This implies that

(6.3) the regions $\Omega(\cdot, \cdot)$ give a subdivision of Z and are exactly the faces of the graph \tilde{G};
- similarly, the regions $\Omega^*(\cdot, \cdot)$ give a subdivision of D_T and are the faces of $\sigma(\tilde{G})$;
- the face structures of the planar graphs \tilde{G} and $\sigma(\tilde{G})$ are isomorphic (and the restriction of σ to \tilde{G} can be extended to a homeomorphism of Z to D_T, mapping each $\Omega_h(u, v)$ onto $\Omega^*_h(u, v)$)

(taking into account that both $\Omega_h(u, v)$ and $\Omega^*_h(u, v)$ are discs). Hereinafter, speaking of a face of a planar graph, we always mean an inner (bounded) face.

Any vertex v of a cycle $C(u, v) = C_h(u, v)$ belongs to level $h - 1, h$ or $h + 1$, and we call v a peak in $C(u, v)$ if it has height $\neq n$, i.e., when v is either a \forall-vertex of $P_h(u, v)$ or a \wedge-vertex of $P_{h+1}(u, v)$. Also we distinguish between two sorts of edges e in $(K_h(u, v) \cup K_{h+1}(u, v)) - C(u, v)$, by saying that e is an inward pendant edge w.r.t. $C(u, v)$ if it lies in $\Omega(u, v)$, and an outward pendant edge otherwise. See the picture where the peaks are indicated by symbol \otimes, the inward pendant edges by i, and the outward pendant edges by o.

20
Clearly each edge in $G^f - \tilde{G}$ is an inward pendant edge of exactly one cycle in C.

Let $\mathcal{G}(u, v)$ be the set of nonterminal vertices x such that $\sigma(x) \in \Omega^*(u, v)$ and x is not a peak in $C(u, v)$. The following lemma exhibits a number of important properties.

Lemma 6.3 For h, u, v as above:

(i) the fully white edges e such that $e \notin C(u, v)$ and $\sigma(e) \subset \Omega^*(u, v)$ are exactly the inward pendant edges for $C(u, v)$;

(ii) all tiles in $T(u, v)$ are of the same height h.

(iii) $\mathcal{G}(u, v)$ is exactly the set of vertices that are contained in directed paths from u to v in Γ^h.

Proof Let Q be the graph whose vertices are the tiles in T and whose edges correspond to the pairs τ, τ' of tiles that have a common edge not in \tilde{G}. The fact that each cycle in C is simple implies that any two tiles in the same set $T_h(u, v)$ are connected by a path in Q. On the other hand, if two tiles occur in different sets $T_h(u, v)$ and $T_{h'}(u', v')$, then, obviously, these tiles cannot be connected by a path in Q. Therefore, the connected components of Q are determined by the sets $T_h(u, v)$. Considering a pair e, e' of consecutive edges in a cycle $C(u, v)$ (which are fully white) and applying Corollary 3.4 to the common vertex w of e, e', one can see that the set $F_T(w)$ of tiles at w is partitioned into two subsets $F_1(w), F_2(w)$ such that: (a) the interior of each tile τ in $F_1(w)$ meets $\Omega(u, v)$ (in particular, τ lies between e and e' when w is a peak in $C(u, v)$), whereas the interior of each tile in $F_2(w)$ is disjoint from $\Omega(u, v)$; (b) the tiles in $F_1(w)$ are contained in a path in Q; and (c) each inward pendant edge at w w.r.t. $C(u, v)$ (if any) belongs to some tile in $F_1(w)$. It follows that all tiles in the set $F := \cup(F_1(w): w \in C(u, v))$ belong to the same component in Q. Then all squares in $\sigma(F)$ are contained in one face of $\sigma(\tilde{G})$, and at the same time, they cover the cycle $\sigma(C(u, v))$. This is possible only if $F \subseteq T(u, v)$, and (i) follows.

Next, a simple observation is that for any vertex w in $C(u, v)$, the set $F_1(w)$ as above contains a tile of height h. Therefore, in order to obtain (ii), it suffices to show that any two tiles $\tau, \tau' \in T(u, v)$ sharing an edge e have the same height. This is obvious when τ, τ' have either the same top or the same bottom (in particular, when one of these tiles is black). Suppose this is not the case. Then both tiles are white, and the edge e connects the left or right vertex of one of these tiles to the right or left vertex of the other. So both ends of e are nonterminal and e is fully white. By (i), e is an inward pendant edge for $C(u, v)$ and one end x of e is a peak. Therefore, both τ, τ' belong to the set $F_1(x)$ and lie between the two edges of $C(u, v)$ incident to x. But both edges either enter x or leave x (since x is a peak), implying that x must be either the top or the bottom of both τ, τ'; a contradiction. Thus, (ii) is valid.
Finally, to see (iii), consider a vertex $x \in \mathcal{S}(u, v)$ different from u. Then x is not in $\ellbd(Z)$; for otherwise we would have $u = z_h$ and $x \in \{z_{h-1}, z_{h+1}\}$, implying that x is a peak in $C(u, v)$. Therefore (cf. Corollary 3.4(iv)), there exists a white tile τ such that $r(\tau) = x$. Both x, τ have the same height. Suppose that $\tau \notin T(u, v)$. Then $x \in C(u, v)$ and x is of height h (since x is not a peak in $C(u, v)$). So τ is of height h as well, and in view of (ii), τ belongs to some collection $T_h(u', v') \neq T_h(u, v)$. One can see that the latter is possible only if $v' = u$, implying $x = u$; a contradiction.

Hence, τ belongs to $T(u, v)$ and has height h. Take the vertex $y := \ell(\tau)$. Then y is nonterminal, $\sigma(y) \in \Omega^*(u, v)$, and there is a horizontal edge from y to x in Γ. Also y is not a peak in $C(u, v)$ (since y is of height h). So $y \in \mathcal{S}(u, v)$. Apply a similar procedure to y, and so on. Eventually, we reach the vertex u, obtaining a directed path from u to the initial vertex x in Γ^h. A directed path from x to v in Γ^h is constructed in a similar way.

Conversely, let P be a directed path from u to v in Γ^h. The fact that all vertices of P belong to $\mathcal{S}(u, v)$ is easily shown by considering the sequence of white tiles corresponding to the edges of P and using the fact that all these tiles have height h.

Thus, (iii) is valid and the lemma is proven.

Let the sequence U_h consist of (critical) vertices $u_0 = z^r_h, u_1, \ldots, u_{r-1}, u_r = z^r_{n-h}$. We abbreviate $T_h(u_{p-1}, u_p)$ as $T_h(p)$, and denote by $G^h(p)$ the subgraph of G_T whose image by σ lies in $\Omega^*_h(u_{p-1}, u_p)$. By (ii) in Lemma 6.3, $T_h(1), \ldots, T_h(r)$ give a partition of the set of tiles in level h.

In its turn, (iii) in this lemma shows that the graph Γ^h is represented as the concatenation of $\Gamma^h(1), \ldots, \Gamma^h(r)$, where each graph $\Gamma^h(p)$ is the union of (horizontal) directed paths from u_{p-1} to u_p in Γ. We refer to $\Gamma^h(p)$ as p-th hammock of Γ^h (or in level h) beginning at u_{p-1} and ending at u_p, and similarly for the subgraph $\sigma(\Gamma^h(p))$ of $\sigma(\Gamma^h)$. The fact that $\sigma(\Gamma^h(p))$ is the union of directed paths from $\sigma(u_{p-1})$ to $\sigma(u_p)$ easily implies that

\begin{equation}
(6.4) \text{the boundary of each face F of the hammock } \sigma(\Gamma^h(p)) \text{ is formed by two directed paths with the same beginning x and the same end y;}
\end{equation}

we say that the face F begins at x and ends at y. The extended hammock $\overline{T}^h(p)$ is constructed by adding to Γ^h the cycle $C(u_{p-1}, u_p)$ and the inward pendant edges for it (all added edges are ascending in Γ); this is just the subgraph of Γ whose image by σ is contained in $\Omega^*_h(u_{p-1}, u_p)$.

Applying Lemma 6.1 to the planar graph $\sigma(\Gamma^h)$, we obtain that

\begin{equation}
(6.5) \text{the partial order } (\mathcal{S}^h, \prec_{\Gamma^h}), \text{ where } \mathcal{S}^h := \{X \in \mathcal{S}_T: |X| = h\}, \text{ is a lattice}
\end{equation}

with the minimal element z_h^r and the maximal element z_{n-h}^r; similarly, for each $p = 1, \ldots, r$, $\sigma(u_{p-1}, u_p), \prec_{\Gamma^h(p)}$ is a lattice with the minimal element u_{p-1} and the maximal element u_p.

An example of $\sigma(\Gamma^h)$ with $r = 5$ is drawn in the picture; here all edges are directed from left to right.
We call a hammock $\Gamma^h(p)$ trivial if it has only one edge (which goes from u_{p-1} to u_p). In this case $T_h(p)$ consists of a single white tile τ such that both $b(\tau), t(\tau)$ are nonterminal, $\ell(\tau) = u_{p-1}$ and $r(\tau) = u_p$ (so $\Gamma^h(p)$ is formed by the four edges of τ and the horizontal edge from $\ell(\tau)$ to $r(\tau)$).

II. Next we describe the structure of a nontrivial hammock $\Gamma^h(p)$. For a white tile in $T_h(p)$ (which, obviously, exists), at least one of its bottom and top vertices is terminal (for otherwise all edges of this tile are fully white, implying that its left and right vertices are critical). So $|T_h(p)| \geq 2$ and the set $T_h^b(p)$ of black tiles in $T_h(p)$ is nonempty. We are going to show a one-to-one correspondence between the black tiles and the faces of $\sigma(\Gamma^h(p))$.

Given a black tile $\tau \in T_h^b(p)$, consider the sequence x_0, \ldots, x_k of the end vertices of the edges e_0, \ldots, e_k leaving $b(\tau)$ and ordered from left to right (i.e., by increasing their colors), and the sequence $y_0, \ldots, y_{k'}$ of the beginning vertices of the edges e'_0, \ldots, e'_k, entering $t(\tau)$ and ordered from left to right. Then e_0, e_k, e'_0, e'_k are the edges of τ, the other edges e_q, e'_q are semi-white, $x_0 = y_0 = \ell(\tau)$ and $x_k = y_{k'} = r(\tau)$. Also each pair e_{q-1}, e_q belongs to a white tile τ_q, each pair e'_{q-1}, e'_q belongs to a white tile τ'_q, and there are no other tiles having a vertex at $b(\tau)$ or $t(\tau)$, except for τ. For two consecutive tiles τ_q, τ_{q+1} (resp. τ'_q, τ'_{q+1}), we have $r(\tau_q) = \ell(\tau_{q+1}) = x_q$ (resp. $r(\tau'_q) = \ell(\tau'_{q+1}) = y_q$). Therefore, the sequence (x_0, \ldots, x_k) gives a directed path in Γ, denoted by γ_τ, and similarly, $(y_0, \ldots, y_{k'})$ gives a directed path in Γ, denoted by β_τ. Both paths go from $\ell(\tau)$ to $r(\tau)$ and have no other common vertices (since $x_q = y_q$, for some $0 < q < k$ and $0 < q' < k'$ would imply that the vertices $x_q, t(\tau), r(\tau)$ induce a cycle in G_T, which is impossible by (3.3)).

We denote $\beta_\tau \cup \gamma_\tau$ by ζ_τ, regarding it both as a graph and as the simple cycle in which the edges of γ_τ are forward. The closed region in D_T surrounded by $\sigma(\zeta_\tau)$ (which is a disc) is denoted by ρ_τ. We call β_τ and γ_τ the lower and upper paths in ζ_τ, respectively, and similarly for the paths $\sigma(\gamma_\tau)$ and $\sigma(\beta_\tau)$ in $\sigma(\zeta_\tau)$ (a motivation will be clearer later).

Since any white tile in $T_h(p)$ has its bottom or top in common with some black tile, the graph $\Gamma^h(p)$ is exactly the union of cycles ζ_τ over $\tau \in T_h^b(p)$. Moreover, each edge e of $\Gamma^h(p)$ with $\sigma(e)$ not in the boundary of $\sigma(\Gamma^h(p))$ belongs to two cycles as above (since such an e is the diagonal of a white tile in which both the bottom and top vertices are terminal). These facts are strengthened as follows.

Lemma 6.4 The regions ρ_τ, $\tau \in T_h^b(p)$, are exactly the faces of the graph $\sigma(\Gamma^h(p))$.

Proof For such a τ, form the region R_τ in D_T to be the union of the square $\sigma(\tau)$, the triangles (half-squares) with the vertices $\sigma(\ell(\tau')), \sigma(r(\tau')), \sigma(b(\tau'))$ over all white tiles $\tau' \in T$ such that $b(\tau') = b(\tau)$, and the triangles (half-squares) with the vertices $\sigma(\ell(\tau')), \sigma(r(\tau')), \sigma(t(\tau'))$ over all white tiles $\tau' \in T$ such that $t(\tau') = t(\tau)$. One can
see that R_{τ} is a disc and its boundary is just $\sigma(\zeta_{\tau})$. So $R_{\tau} = \rho_{\tau}$. Obviously, the regions R_{τ}, $\tau \in T_{h}^{b}(p)$, have pairwise disjoint interiors.

Thus, the faces of $\sigma(\Gamma^{h}(p))$ are generated by the black tiles in $T_{h}(p)$; each face ρ_{τ} contains $\sigma(\tau)$, begins at $\ell(\tau)$ and ends at $r(\tau)$. Figure 3 illustrates an example with two black tiles: the subgraph $G^{h}(p)$ of G_{T} and the extended hammock for it.

Figure 3: On the left: an instance of $G^{h}(p)$. Here $T_{h}(p)$ consists of two black tiles τ, τ' and seven white tiles. The corresponding cycle $C(u_{p-1}, u_{p})$ contains all nonterminal vertices (there is no inward pendant edge). On the right: the extended hammock $\sigma(\Gamma^{h}(p))$. Here the hammock $\sigma(\Gamma^{h}(p))$ is indicated by double lines (the edges should be directed to the right), and for a nonterminal vertex $*$ of G_{T}, we write $\hat{*}$ for $\sigma(*)$.

A further refinement shows that the pairwise intersections of cycles ζ_{τ} are poor.

Lemma 6.5 For distinct $\tau, \tau' \in T_{h}^{b}(p)$, let $\zeta_{\tau} \cap \zeta_{\tau'} \neq \emptyset$. Then the intersection of these cycles is contained in the upper path of one of them and in the lower path of the other, and it consists of a single vertex or a single edge.

Proof Suppose that γ_{τ} and $\gamma_{\tau'}$ have a common vertex w and this vertex is intermediate in both paths. Assuming that the color of the edge $(b(\tau), w)$ is smaller than the color of the edge $(b(\tau'), w)$, take the tile $\tilde{\tau} \in F_{T}(b(\tau))$ with $r(\tilde{\tau}) = w$ and the tile $\tilde{\tau}' \in F_{T}(b(\tau'))$ with $\ell(\tilde{\tau}') = w$ (which exist since $w \neq \ell(\tau)$ and $w \neq r(\tau')$). Then $\tilde{\tau}$ and $\tilde{\tau}'$ overlap, contrary to Corollary 3.4(c). Similarly, β_{τ} and $\beta_{\tau'}$ cannot intersect at an intermediate vertex of both paths.

Now suppose that $\gamma_{\tau} \cap \beta_{\tau'}$ contains two vertices w, w'. Then $w, w', b(\tau), t(\tau')$ are connected by the four edges $e := (b(\tau), w)$, $e' := (b(\tau), w')$, $f := (w, t(\tau'))$, and $f' := (w', t(\tau'))$. By 3.3, these edges are spanned by a tile $\tilde{\tau}$. We assert that $\tilde{\tau}$ is a white tile in T (whence w, w' are connected by a horizontal edge in Γ).

Indeed, if this is not so, then the edges e, e' are not consecutive in $E_{T}(b(\tau))$ and f, f' are not consecutive in $E_{T}(t(\tau'))$. Note that at least one of the edges e, e', say, e, is white (for otherwise $\tilde{\tau} = \tau$, implying that the black tiles τ, τ' have a common terminal vertex, namely, $t(\tau) = t(\tau')$). Since f, f are not consecutive, there is a (unique) white tile $\tilde{\tau} \in F_{T}(t(\tau'))$ lying between f and f' and containing f but not f'. Since e, f' are parallel, the white edge e lies between f and the edge of $\tilde{\tau}$ connecting $b(\tilde{\tau})$ and w (all edges are incident to w). This leads to a contradiction with Corollary 3.4.

Thus, $\tilde{\tau}$ is a white tile in T, and now the lemma easily follows.

III. Our final step in preparation to proving Proposition 6.2 is to explain how the graph Γ changes under the n- and 1-contraction operations. We use terminology and
notation from Subsection 3.3. A majority of our analysis is devoted to the n-contraction operation that reduces a g-tiling T on $Z = Z_n$ to the g-tiling $T' := T/n$ on Z_{n-1}.

It is more convenient to consider the reversed n-strip $Q = (e_0, \tau_1, e_1, \ldots, \tau_r, e_r)$, i.e., e_0 is the n-edge $z^r_n z^r_{n-1}$ on $rbd(Z)$ and e_r is the n-edge $z^r_{n-1} z^r_n$ on $lbd(Z)$. Let $R_Q = (v_0, a_1, v_1, \ldots, a_r, v_r)$ be the right boundary, and $L_Q = (v'_0, a'_1, v'_1, \ldots, a'_r, v'_r)$ the left boundary of Q, i.e., $v'_0 = z_0$, $v_r = z_n$, and $e_q = (v'_q, v_q)$ for each q.

Since n is the maximal color, if an n-edge e belongs to a tile τ, then e is either $br(\tau)$ or $\ell t(\tau)$. This implies (in view of $e_0 = br(\tau_1)$) that for consecutive tiles τ_q, τ_{q+1} in Q, one holds: if both tiles are white then $e_q = \ell t(\tau_q) = br(\tau_{q+1})$; if τ_q is black then $e_q = br(\tau_q) = br(\tau_{q+1})$; and if τ_{q+1} is black then $e_q = \ell t(\tau_q) = \ell t(\tau_{q+1})$. So the height of τ_{q+1} is greater by one than the height of τ_q if both tiles are white, and the heights are equal otherwise; in particular, the tile height is weakly increasing along Q and grows from 1 to $n - 1$. For $h = 1, \ldots, n - 1$, let $Q^h = (e_{d(h)-1}, \tau_{d(h)}, e_{d(h)}, \ldots, \tau_{f(h)}, e_{f(h)})$ be the maximal part of Q with all tiles of height h; we call it h-th fragment of Q.

Recall that from the viewpoint of D_T, the n-contraction operation consists in the following. The interior of $\sigma(Q)$ (i.e., the interiors of all edges $\sigma(e_q)$ and all squares $\sigma(\tau_q)$) is removed from D_T, resulting in two closed simply connected regions D^r, D^t, where D^r (the “right” region) contains $\sigma(R_Q)$ and the rest of $\sigma(rbd(Z))$, and D^t (the “left” region) contains $\sigma(L_Q)$ and the rest of $\sigma(lbd(Z))$. The region D^r is shifted by $-e_n$ (where e_n is n-th unit base vector in $\mathbb{R}^{[d]}$) and the path $\sigma(R_Q) - e_n$ merges with $\sigma(L_Q)$. From the viewpoint of Z, the tiles occurring in Q vanish and the tiles $\tau \in T$ with $\sigma(\tau) \subset D^r$ are shifted by $-\xi_n$; in other words, each vertex X (regarded as a set) containing the element n turns into the vertex $X - n$ of the resulting tiling T' on Z_{n-1}. (Recall that X contains n if and only if $\sigma(X)$ is in D^r.) Each vertex v_q of R_Q merges with the vertex v'_q of L_Q. The path L_Q no longer contains terminal vertices (so all edges in it are now fully white) and becomes an n-legal path for T', in which any zigzag subpath goes from left to right, and

\[(6.6) \text{ for } h = 1, \ldots, n - 2, \quad v'_{f(h)} = d(h+1)-1 \text{ is the critical vertex of } L_Q \text{ in level } h \text{ for } T'.\]

Consider h-th fragment $Q^h = (e_{d-1}, \tau_d, e_d, \ldots, \tau_f, e_f)$ (letting $d := d(h)$ and $f := f(h)$). It produces $(f - d)/2 + 1$ horizontal and four ascending edges in $\Gamma = \Gamma_T$ (note that $f - d$ is even). More precisely, each tile τ_q with $q - d$ even is white and its diagonal makes the horizontal edge $g_q := (v'_q, v_{q-1})$ in Γ. Also τ_d contributes the ascending edges $e_{d-1} = br(\tau_d) = (v'_{d-1}, v_{d-1})$ and $d'_d = b\ell(\tau_d) = (v'_{d-1}, v'_d)$, and τ_f contributes the ascending edges $e_f = \ell t(\tau_f) = (v'_f, v_f)$ and $f'_t = \ell t(\tau_f) = (v_{f-1}, v_f)$. Let E^h be the set of edges in Γ produced by Q^h. Then $E^h \cap \mathcal{E}^{h+1} = \{e_f\}$.

Under the n-contraction operation, Γ is transformed into the graph $\Gamma' := \Gamma_{T'}$. The transformation concerns only the sets E^h and is obvious: all horizontal edges in E^h disappear (as all tiles in Q^h vanish) and the four ascending edges are replaced by (the edges of) the subpath L_Q^h of L_Q from v'_{d-1} to v'_f, in which all edges connect levels $h - 1$ and h (using indices as above). In particular, when $d = f$ (i.e., when Q^h has only one (white) tile), the five edges of E^h shrink into one edge $d'_d = (v'_{d-1}, v'_d)$.

When $\Delta := f - d > 0$, the transformation needs to be explored more carefully. The $\Delta/2 + 1$ white tiles and the $\Delta/2$ black tiles in Q^h alternate. The horizontal edges
let $g_{d}, g_{d+2}, \ldots, g_{f}$ in \mathcal{E}^{h} belong to the same nontrivial hammock in Γ^{h}, say, $\Gamma^{h}(p)$. More precisely, for $q = d+1, d+3, \ldots, f-1$, the edges $g_{q-1} = (v'_{q-1}, v_{q-2})$ and $g_{q+1} = (v'_{q+1}, v_{q})$ are contained in the cycle ζ_{q} related to the black tile τ_{q}. Also τ_{q-1} is the leftmost white tile in $F_{T}(t(\tau_{q}))$ and τ_{q+1} is the rightmost white tile in $F_{T}(b(\tau_{q}))$. Therefore, g_{q-1} is the first edge in the lower path β_{q-1} and g_{q+1} is the last edge in the upper path γ_{q+1} in ζ_{q}. Then, unless $q = f-1$, g_{q+1} is simultaneously, the first edge in β_{q+1}.

This and Lemma 6.5 imply that if we take the union of cycles ζ_{q} for $q = d + 1, d + 3, \ldots, f - 1$ and delete from it the horizontal edges in \mathcal{E}^{h}, then we obtain two directed horizontal paths in level h of Γ: path P_{1}^{h} from v'_{d} to v'_{f} which passes the vertices $v'_{d}, v'_{d+2}, \ldots, v'_{f}$ in this order, and path P_{2}^{h} from v_{d-1} to v_{f-1} which passes the vertices $v_{d-1}, v_{d+1}, \ldots, v_{f-1}$ in this order (other vertices in these paths are possible as well.) When $f = d$, these paths consist of a single vertex each.

In the new graph Γ', the path P_{1}^{h} preserves and continues to be a horizontal path in level h, whereas P_{2}^{h} is shifted by $-\zeta_{n}$ and turns into the directed horizontal path, denoted by P_{2}^{h}, that passes the vertices $v'_{d-1}, v'_{d+1}, \ldots, v'_{f-1}$ in level $h - 1$. These paths are connected in Γ' by the (zigzag) path $Z^{h} := (v'_{d-1}, v'_{d}, v'_{d+1}, \ldots, v'_{f})$ whose edges connect levels $h - 1$ and h. (Under the transformation, the hammock $\Gamma^{h}(p)$ becomes split into two hammocks, one (in level h) containing the path P_{1}^{h}, and the other (in level $h - 1$) containing the image P_{2}^{h} of P_{2}^{h}.) In view of (6.6), (6.7) the last vertex v'_{f} of P_{1}^{h} (which is simultaneously the first vertex of P_{2}^{h}) when $h < n - 1$) and the first vertex v'_{d-1} of P_{2}^{h} (which is simultaneously the last vertex of P_{1}^{h} when $h > 1$) are critical for T' in levels h and $h - 1$, respectively.

The transformation of $\sigma(\Gamma)$ into $\sigma(\Gamma')$ concerning fragment Q^{h} with $d < f$ is illustrated in the picture; here for brevity we write ρ_{q} instead of $\rho_{\zeta_{q}}$, and omit σ in notation for vertices, edges and paths.

\begin{center}
\begin{tikzpicture}
\begin{scope}
\draw (0,0) -- (6,0) -- (6,4) -- (0,4) -- cycle;
\draw (1,1) -- (5,1) -- (5,3) -- (1,3) -- cycle;
\draw (2,2) -- (4,2) -- (4,2.5) -- (2,2.5) -- cycle;
\draw (3,3) -- (3,3.5) -- (3.5,3.5) -- (3.5,3) -- cycle;
\node at (0,0) {$Y = u_{p-1}$};
\node at (6,0) {$Y = u_{p}$};
\node at (0,4) {$X = u_{p-1}$};
\node at (6,4) {$X = u_{p}$};
\node at (1,1) {v'_{d}};
\node at (5,1) {v'_{d+2}};
\node at (2,2) {v'_{d+1}};
\node at (4,2) {v_{d+1}};
\node at (3,3) {v'_{d-1}};
\node at (3,3.5) {v_{d-1}};
\node at (3.5,3) {v'_{d-2}};
\node at (3.5,3.5) {v_{d-2}};
\node at (2,2.5) {P_{1}^{h}};
\node at (4,2.5) {P_{2}^{h}};
\node at (1,3) {P_{1}^{h-1}};
\node at (5,3) {P_{2}^{h-1}};
\node at (0.5,0.5) {ζ_{n}};
\node at (5.5,0.5) {ζ_{n-1}};
\end{scope}
\end{tikzpicture}
\end{center}

Notice that the paths P_{1}^{h-1} and P_{1}^{h} are connected in Γ by an ascending edge (namely, $a'_{d(h)}$) going from the end $v'_{f(h-1)=d(h)-1}$ of the former path to the beginning $v'_{d(h)}$ of the latter one; we call it the bridge between these paths and denote by b'_{h}. Similarly, there is an ascending edge (namely, $a_{d(h)-1}$) going from the end $v_{d(h)-2}$ of P_{2}^{h-1} to the beginning $v_{d(h)-1}$ of P_{2}^{h}, the bridge between these paths, denoted by b_{h}. Under the transformation, b_{h} is shifted and becomes the last edge $(v'_{d(h)-2}, v'_{d(h)})$ of the (zigzag) path Z^{h-1} and the beginning of P_{2}^{h} merges with the end of P_{1}^{h-1}. (Cf. (6.7).)

Thus, concatenating the paths $P_{1}^{h}, \ldots, P_{1}^{h-1}$ and the bridges $b_{1}, b_{2}, \ldots, b_{n-1}$ (where $b'_{1} := a'_{1}$), we obtain a directed path from z_{0} to z'_{n-1} in both Γ and Γ', denoted by P_{1}.

26
Accordingly, we construct directed paths \(P_2 \) (in \(\Gamma \)) and \(P_2' \) (in \(\Gamma' \)) by concatenating, in a natural way, the paths \(P_2^h \) with the bridges \(b_h \), and the paths \(P_2'^h \) with the shifts of these bridges, respectively.

Let \(\Gamma_1 \) and \(\Gamma_2 \) be the subgraphs of \(\Gamma \) whose images by \(\sigma \) lie in the regions \(D^\ell \) and \(D^r \) of \(D_T \), respectively. Let \(\Gamma_2' \) be the subgraph of \(\Gamma' \) whose image by \(\sigma \) lies in \(D^r - \epsilon_n \). We observe that:

(6.8) (i) the common vertices of \(P_1 \) and \(P_2' \) are exactly the critical vertices (indicated in (6.6)) of the path \(L_Q \) in \(G_{T'} \);

(ii) if a vertex \(y \) of \(\Gamma_2' \) is reachable in \(\Gamma' \) by a directed path from a vertex \(x \) of \(\Gamma_1 \), then this path contains a critical vertex \(v \) of \(L_Q \); moreover, there exist a directed path \(P' \) from \(x \) to \(v \) in \(\Gamma_1 \) and a directed path \(P'' \) from \(v \) to \(y \) in \(\Gamma_2' \).

Here (ii) follows from the facts that both \(P_1 \), \(P_2' \) are directed paths and that all edges not in \(P_1 \cap P_2' \) that connect \(\Gamma_1 \) and \(\Gamma_2' \) go from vertices of \(P_2' \) to vertices of \(P_1 \) (as they are ascending edges forming the paths \(E^h \)).

The 1-contraction operation acts symmetrically, in a sense; below we give a shorter description than in the \(n \)-contraction case, emphasizing the moments where the behavior is different.

Let \(Q = (e_0, \tau_1, e_1, \ldots, \tau_r, e_r) \) be the 1-strip in \(T \), \(R_Q = (v_0, a_1, v_1, \ldots, a_r, v_r) \) the right boundary of \(Q \), and \(L_Q = (v'_0, a'_1, v'_1, \ldots, a'_r, v'_r) \) the left boundary of \(Q \). So \(e_0 = (v_0, v'_0) = z_0 z'_1 \) and \(e_r = (v_r, v'_r) = z_{n-1} z_n \).

Since 1 is the minimal color in \([n]\), if a 1-edge \(e \) belongs to a tile \(\tau \in T \), then either \(e = bl(\tau) \) or \(e = rl(\tau) \). For consecutive tiles \(\tau_q, \tau_{q+1} \) in \(Q \); if both tiles are white, then the height of \(\tau_{q+1} \) is greater by one than the height of \(\tau_q \), and the heights are equal if one of these tiles is black. Like the previous case, for \(h = 1, \ldots, n \), define \(h \)-th fragment of \(Q \) to be the maximal part \(Q^h = (e_{d(h)-1}, \tau_{d(h)}, e_{d(h)}, \ldots, \tau_{f(h)}, e_{f(h)}) \) of \(Q \) with all tiles of height \(h \).

The fragment \(Q^h \) produces \((f - d)/2\) horizontal and four ascending edges in \(\Gamma \), where \(d := d(h) \) and \(f := f(h) \). Each tile \(\tau_q \) with \(q - d \) even is white and produces the horizontal edge \(g_q := (v'_q - 1, v_q) \) in \(\Gamma^h \). Also \(\tau_d \) contributes the ascending edges \(e_{d-1} = bl(\tau_d) = (v_{d-1}, v'_{d-1}) \) and \(a_{d-1} = br(\tau_d) = (v_{d-1}, v_d) \), and \(\tau_f \) contributes the ascending edges \(e_f = rl(\tau_f) = (v_f, v'_f) \) and \(a_f = rl(\tau_f) = (v'_{f-1}, v'_f) \). Let \(E^h \) be the set of edges in \(\Gamma \) produced by \(Q^h \).

Under the 1-contraction operation, \(\Gamma \) is transformed into \(\tilde{\Gamma}' := \Gamma_{T'/1} \) as follows: for each \(h \), the horizontal edges in \(E^h \) disappear and the four ascending edges are replaced by the subpath \(R_Q^h \) of \(R_Q \) from \(v_{d-1} \) to \(v_f \) (using indices as above) in which all edges connect levels \(h - 1 \) and \(h \). When \(d = f \), \(E^h \) shrinks into one edge \(a_d = (v_{d-1}, v_d) \).

When \(\Delta := f - d > 0 \), the horizontal edges \(g_d, g_{d+2}, \ldots, g_f \) in \(E^h \) belong to the same nontrivial hammock, \(\Gamma^h(p) \) say. On the other hand, for \(q = d + 1, d + 3, \ldots, f - 1 \), the edges \(g_{q-1} \) and \(g_{q+1} \) belong to the cycle \(\zeta_{\tau_q} \) related to the black tile \(\tau_q \). Also \(\tau_{q-1} \) is the rightmost white tile in \(F_T(t(\tau_q)) \) and \(\tau_{q+1} \) is the leftmost white tile in \(F_T(b(\tau_q)) \). Therefore, \(g_{q-1} \) is the last edge in the lower path \(\gamma_{\tau_q} \) and \(g_{q+1} \) is the first edge in the upper path \(\beta_{\tau_q} \). So, unless \(q = f - 1 \), \(g_{q+1} \) is simultaneously the last edge in
\(\gamma_{\tau_{q+2}} \). In view of Lemma 6.5, this implies that if we take the union of cycles \(\zeta_q \) and then delete from it the horizontal edges in \(E^h \), then we obtain two horizontal paths in \(\Gamma^h(p) \): path \(\tilde{P}_1^h \) from \(v_f' \) to \(v_{d-1} \) which passes the vertices \(v_{f-1}', v_{f-3}', \ldots, v_{d-1} \) in this order, and path \(\tilde{P}_2^h \) from \(v_f \) to \(v_d \) which passes the vertices \(v_f, v_{f-2}, \ldots, v_d \) in this order. (So, both paths are directed by decreasing the vertex indices, in contrast to the direction of the corresponding paths in the \(n \)-contraction case.)

For our further purposes, it will be sufficient to examine the transformation of \(\Gamma \) only within its part related to a single fragment \(Q^h \). In the new graph \(\tilde{\Gamma}' \), the path \(\tilde{P}_2^h \) preserves and continues to be a horizontal path in level \(h \), whereas \(\tilde{P}_1^h \) is shifted by \(-\xi_1 \) and turns into a horizontal path in level \(h - 1 \), denoted by \(\tilde{P}_1^h \), which passes the vertices \(v_{f-1}, v_{f-3}, \ldots, v_{d-1} \). These paths are connected in \(\tilde{\Gamma}' \) by the zigzag path \(\tilde{Z}^h = (v_f, v_{f-1}, \ldots, v_d, v_{d-1}) \) whose edges are ascending and connect levels \(h - 1 \) and \(h \).

The picture illustrates the transformation \(\sigma(\Gamma) \rightarrow \sigma(\tilde{\Gamma}') \) concerning fragment \(Q^h \).

One can see that the first vertex \(v_f \) of \(\tilde{P}_2^h \) and the last vertex \(v_{d-1} \) of \(\tilde{P}_1^h \) are critical vertices for \(\tilde{T}' := T/1 \) in levels \(h \) and \(h - 1 \), respectively (and they are the only critical vertices for \(\tilde{T}' \) occurring in these paths). Under the transformation, the hammock \(\Gamma^h(p) \) (concerning \(Q^h \)) becomes split into two hammocks in \(\tilde{\Gamma}' \): hammock \(H_1 \) in level \(h - 1 \) that contains the path \(\tilde{P}_1^h \), and hammock \(H_2 \) in level \(h \) that contains \(\tilde{P}_2^h \). Comparing the part of \(\Gamma^h(p) \) between \(\tilde{P}_1^h \) and \(\tilde{P}_2^h \) with the zigzag path \(\tilde{Z}^h \), one can conclude that

(6.9) if a vertex \(x \) of \(H_1 \) and a vertex \(y \) of \(H_2 \) are connected in \(\tilde{\Gamma}' \) by a directed path from \(x \) to \(y \), then there exists a directed path from \(x + \xi_1 \) to \(y \) in \(\Gamma \).

IV. Based on the above explanations, we are now ready to prove Proposition 6.2.

We use induction on the number of edge colors of a g-tiling and apply the \(n \)- and 1-contraction operations.

Let \(A, B \in \mathcal{G}_T \), \(A \neq B \) and \(A \prec^* B \). We have to show the existence of a directed path from the vertex \(A \) to the vertex \(B \) in the graph \(\Gamma = \Gamma_T \).

First we consider the case \(|A| < |B| \). Let \(A' := A - \{n\} \) and \(B' := B - \{n\} \). Then \(A', B' \in \mathcal{G}_T' \), where \(T' \) is the \(n \)-contraction \(T/n \) of \(T \). Also \(|A'| \leq |B'| \). Therefore, \(A \prec^* B \) implies \(A' \prec^* B' \), and by induction the graph \(\Gamma' := \Gamma_{T'} \) contains a directed path \(P \) from \(A' \) to \(B' \). Note that \(n \in A \) would imply \(n \in B \). So either \(n \notin A, B \), or \(n \in A, B \), or \(n \notin A \) and \(n \in B \). Consider these cases, keeping notation from part III.

Case 1: \(n \notin A, B \). Then \(A' = A, B' = B \), and both \(A', B' \) belong to the graph \(\Gamma_T \). Since the path \(P \) in the boundary of \(\Gamma_T \) is directed, \(P \) as above can be chosen so as
to be entirely contained in Γ_1. (For if P meets \mathcal{P}_1, take the first and last vertices of P that occur in \mathcal{P}_1, say, x, y (respectively), and replace in P its subpath from x to y by the subpath of \mathcal{P}_1 connecting x and y, which must be directed from x to y since Γ' is acyclic.) Then P is a directed path from A to B in Γ, as required.

Case 2: $n \in A, B$. Then both A', B' belong to the graph Γ'_2. Like the previous case, one may assume that P is entirely contained in Γ'_2. Since $\Gamma'_2 + \xi_n$ is a subgraph of Γ, $P + \xi_n$ is the desired path from A to B in Γ.

Case 3: $n \not\in A$ and $n \in B$. Then $A' = A$ is in Γ_1 and B' is in Γ'_2. By (6.8), there exist a directed path P' from A to v in Γ_1 and a directed path P'' from v to B' in Γ'_2, where v is a critical vertex $v_{f(h)}$ in $\mathcal{P}_1 \cap \mathcal{P}_2'$. Concatenating P', the (fully white) ascending edge $e_f(h) = (v_{f(h)}, v_{f(h)})$, and the path $P'' + \xi_n$ (going from $v_f(h)$ to $B'n = B$), we obtain a directed path from A to B in Γ, as required.

Now consider the case $|A| = |B| =: h$. Note that the reduction by color n as above does not work when the element n is contained in B but not in A (in this case $|B - \{n\}|$ becomes less than $|A - \{n\}|$ and we cannot apply induction). Nevertheless, we can use the 1-contraction operation (which, in its turn, would lead to some difficulties when handling the case $|A| < |B|$, since the concatenation of the paths $\tilde{\mathcal{P}}_2'$ and the corresponding bridges is not a directed path). Let $A' := A - \{1\}$ and $B' := B - \{1\}$; then $|A'| \leq |B'|$ (since $1 \in B$ would imply $1 \in A$, in view of $A < B$). The vertices A, B belong to the horizontal subgraph Γ^h of Γ, say, to p-th and p'-th hammocks in it, respectively, and the existence of a directed path from A to B is not seen immediately only when $p = p'$ and, moreover, when the 1-strip for T “splits” the hammock $\Gamma^h(p)$. (Note that $p > p'$ is impossible; otherwise there exists a directed path from B to A, implying $B < A$.) Let H_1, H_2 be the hammocks in $\tilde{\Gamma}^v$ created from $\Gamma^h(p)$ by the 1-contraction operation as described above. If both A', B' belong to the same H_i, then the existence (by induction) of a directed path from A' to B' in $\tilde{\Gamma}^v$ (and therefore, in H_i) immediately yields the result. Let $A' \in H_1$ and $B' \in H_2$ (the case $A' \in H_2$ and $B' \in H_1$ is impossible). Then the existence of a directed path from A to B in Γ follows from (6.3).

Thus, $A \prec_{\Gamma} B$ is valid in all cases, as required. This completes the proof of Proposition 6.2, yielding Theorem 4.1 and completing the proof of Theorem B.

7 Additional results and a generalization

In this concluding section we gather in an additional harvest from results and methods described in previous sections; in particular, we generalize Theorem A to the case of two permutations. Sometimes the description below will be given in a sketched form and we leave the details to the reader.

We start with associating to a permutation ω on $[n]$ the directed path P_ω on the zonogon Z_ω in which the vertices are the points $v^i_{\omega} := \sum (\xi_j: j \in \omega^{-1}[i])$, $i = 0, \ldots, n$, and the edges are the directed line segments e^i_{ω} from v^{i-1}_{ω} to v^i_{ω}. So P_ω begins at $v^0_{\omega} = z_0$, ends at $v^n_{\omega} = z_n$, and each edge e^i_{ω} is a parallel translation of the vector $\xi_{\omega^{-1}(i)}$. Also a vertex v^i_{ω} represents i-th ideal $I^i_{\omega} = \omega^{-1}[i]$ for ω (cf. Section 2). Note that if
the spectrum of a g-tiling \(T \) on \(Z_n \) contains all sets \(I_{\omega}^j \), then the graph \(G_T \) contains the path \(P_\omega \); in view of Proposition 3.11(i). When \(\omega \) is the longest permutation \(\omega_0 \) on \([n]\), \(P_\omega \) becomes the right boundary \(rbd(Z_n) \) of \(Z_n \), and when \(\omega \) is the identical permutation, denoted as \(id \), \(P_\omega \) becomes the left boundary \(bd(Z_n) \).

Consider two permutations \(\omega', \omega \) on \([n]\) and assume that the pair \((\omega', \omega) \) satisfies the condition:

\[
\text{(7.1) for any } i, j \in [n], \text{ either } I_{\omega'}^i \subset I_\omega^j \text{ or } I_{\omega'}^i \supset I_\omega^j.
\]

In particular, this implies that \(P_\omega \) lies on the right from \(P_{\omega'} \), i.e., each point \(v_{\omega}^i \) lies on the right from \(v_{\omega'}^i \) in the corresponding horizontal line, with possibly \(v_{\omega}^i = v_{\omega'}^i \).

For the closed region \(Z(\omega', \omega) \) bounded by \(P_{\omega'} \) (the left boundary) and \(P_\omega \) (the right boundary), we can consider a g-tiling \(T \). It is defined by axioms (T2),(T3) as before and slightly modified axioms (T1),(T4), where (cf. Subsection 3.1): in (T1), the first condition is replaced by the requirement that each edge in \((P_{\omega'} \cup P_\omega) - (P_{\omega'} \cap P_\omega) \) belong to exactly one tile; and in (T4), it is now required that \(D_T \cup \sigma(P_{\omega'} \cap P_\omega) \) be simply connected. Also we should include in the graph \(G_T = (V_T, E_T) \) all common vertices and edges of \(P_{\omega'}, P_\omega \). Note that such a \(T \) possesses the following properties:

\[
\text{(7.2) (i) the union of tiles in } T \text{ and the edges in } P_{\omega'} \cap P_\omega \text{ is exactly } Z(\omega', \omega); \text{ and (ii) all vertices in } bd(Z(\omega', \omega)) = P_{\omega'} \cup P_\omega \text{ are nonterminal.}
\]

This is seen as follows. Let an edge \(e \) of height \(h \) belong to two tiles \(\tau, \tau' \) (where the height of an edge is the half-sum of the heights of its ends). Suppose \(\tau \cup \tau' \) contains no edge of height \(h \) lying on the right from \(e \). Then one of these tiles, say, \(\tau \), is black and either \(e = br(\tau) \) or \(e = rt(\tau) \). Assuming \(e = br(\tau) \) (the other case is similar), take the white tile \(\tau'' \) with \(rt(\tau'') = rt(\tau) \). Then the edge \(br(\tau'') \) has height \(h \) and lies on the right from \(e \). So \(e \) cannot belong to the “right boundary” of \(\cup(\tau \in T) \). By similar reasonings, \(e \) cannot belong to the “left boundary” of \(\cup(\tau \in T) \). This yields (i). Property (ii) for the vertices \(z_0, z_n \) easily follows from (i), and is trivial for the other vertices.

In view of (7.2)(i), we may speak of \(T \) as a g-tiling on \(Z(\omega', \omega) \). We proceed with a number of observations.

(i) When \(\omega', \omega \) obey (7.1), at least one g-tiling, even a pure tiling, on \(Z(\omega', \omega) \) does exist (assuming \(\omega \neq \omega' \)). (This generalizes a result in 3 where \(\omega' = id \) and \(\omega \) is arbitrary; in this case (7.1) is obvious.) It can be constructed by the following procedure, that we call stripping \(Z(\omega', \omega) \) along \(P_\omega \) from below. At the first iteration of this procedure, we take the minimum \(i \) such that the edges \(e_{\omega'}^k, e_{\omega}^i \) are different, and take the edge \(e_{\omega}^k \) such that \(\omega'^{-1}(i) = \omega^{-1}(k) =: c \). Then \(k > i \). Let \(P' \) be the part of \(P_\omega \) from \(v_{\omega'}^{i-1} = v_{\omega}^{-i-1} \) to \(v_{\omega}^{k-1} \). Using (7.1) for this \(i \) and \(j = i, \ldots, k - 1 \), one can see that the color \(\omega^{-1}(j) =: c_j \) of each edge \(e_{\omega}^j \) of \(P' \) is greater than \(c \). So we can form the \(cc_j \)-tiles \(\tau_j \) with \(br(\tau_j) = e_{\omega}^j \). Then \(b(\tau_i) = e_{\omega'}^i \) and \(rt(\tau_{k-1}) = e_{\omega}^k \). Therefore, these tiles determine \(c \)-strip \(Q \) connecting the edge \(e_{\omega}^k \) to the edge \(e_{\omega'}^k \). Replace in \(P_\omega \) the subpath \(P' \) followed by the edge \(e_{\omega'}^k \) by the edge \(e_{\omega'}^k \) followed by the left boundary of \(Q \) (beginning at \(v_{\omega'}^i \) and ending at \(v_{\omega}^k \)). The obtained path \(\tilde{P} \) determines the permutation \(\omega'' \) (i.e., \(\tilde{P} = P_{\omega''} \)) for which the set \(I_{\omega''}^j \) is expressed as \(I_{\omega'}^{j-1} \cup \{c\} \) for \(j = i, \ldots, k \), and
is equal to \(I'_{\beta} \) otherwise. Using this, one can check that \([7.1]\) continues to hold when we replace \(\omega \) by \(\omega'' \). At the second iteration, we handle the pair \((\omega', \omega'')\) (for which \(|P_{\omega'} \cap P_{\omega''}| > |P_{\omega'} \cap P_{\omega''}|\) in a similar way, and so on until the current “right” path turns into \(P_{\omega'} \). The tiles constructed during the procedure give a pure tiling \(T \) on \(Z(\omega', \omega) \), as required.

(ii) Conversely, let \(\omega', \omega \) be two permutations on \([n]\) such that \(P_{\omega} \) lies on the right from \(P_{\omega'} \). Suppose that there exists a pure tiling \(T \) on \(Z(\omega', \omega) \). Let \(i, j \in [n] \). Then \(I'_{\omega'} \) is the set of edge colors in the subpath \(P' \) of \(P_{\omega} \) from its beginning to \(v_j \), and \(I'_{\omega} \) is the set of edge colors in the subpath \(P \) of \(P_{\omega} \) from its beginning to \(v_i \). Take arbitrary elements \(a \in I'_{\omega'} \) and \(b \in I'_{\omega} \), and consider the \(a \)-strip \(Q_a \) and the \(b \)-strip \(Q_b \) for \(T \) having the first edge on \(P_{\omega'} \) and the last edge on \(P_{\omega} \). So \(Q_a \) begins with an edge in \(P' \), and if it ends with an edge in \(P \), then \(a \) is a common element of \(I'_{\omega'}, I'_{\omega} \). In its turn, \(Q_b \) ends in \(P \), and if it begins in \(P' \), then \(b \in I'_{\omega'} \cap I'_{\omega} \). And if \(Q_a \) ends in \(P_{\omega'} - P \) and \(Q_b \) begins in \(P_{\omega} - P' \), then these strips must cross at some tile \(\tau \in T \). Moreover, since \(T \) is a pure tiling, such a \(\tau \) is unique, and it is clear that \(Q_a \) contains the edge \(b \ell(\tau) \), and \(Q_b \) contains \(br(\tau) \). Hence, \(a < b \). This implies validity of \([7.1]\).

(iii) One more useful observation is that, for permutations \(\omega' \neq \omega \), the existence of a pure tiling on \(Z(\omega', \omega) \) (subject to the requirement that \(P_{\omega} \) lie on the right from \(P_{\omega'} \)) is equivalent to satisfying the weak Bruhat relation \(\omega' \prec \omega \), which means that \(\text{Inv}(\omega') \subset \text{Inv}(\omega) \), where \(\text{Inv}(\omega'') \) denotes the set of inversions for a permutation \(\omega'' \).

This can be seen as follows. Let \(P_{\omega} \) lie on the right from \(P_{\omega'} \) and let \(T \) be a pure tiling on \(Z(\omega', \omega) \). It is easy to see that there exist two consecutive edges \(e_{\omega'}, e_{\omega'}+1 \) in \(P_{\omega'} \) that are not contained in \(P_{\omega} \) and belong to some tile \(\tau \in T \). Then \(e_{\omega'}^0 = b \ell(\tau), e_{\omega'}^1 = b \ell(\tau) \), and the color \(c := \omega'^{-1}(i) \) is less than the color \(c' := \omega'^{-1}(i+1) \). Therefore, \((c, c') \notin \text{Inv}(\omega') \).

Remove \(\tau \) from \(T \), obtaining a pure tiling on \(Z(\omega'', \omega) \), where \(\omega'' \) is formed from \(\omega' \) by swapping \(c \) and \(c' \), i.e., \(\omega''(c) = i+1 \) and \(\omega''(c') = i \). Then \(\text{Inv}(\omega'') = \text{Inv}(\omega') \cup \{(c, c')\} \).

Repeat the procedure for \(\omega'' \). Eventually, when the current left path turns into \(P_{\omega} \), we reach \(\omega \). This yields \(\text{Inv}(\omega') \subset \text{Inv}(\omega) \). Note that the number \(|T|\) of steps in the procedure is equal to \(|\text{Inv}(\omega) - \text{Inv}(\omega')|\), implying \(|S_T| = \ell(\omega) - \ell(\omega') + n + 1\).

(iv) Conversely, let \(\omega' \prec \omega \). Take a pair \((c, c')\) in \(\text{Inv}(\omega) - \text{Inv}(\omega') \), and let \(i := \omega'(c) \) and \(k := \omega'(c') \). Then \(i < k \). If \(k = i + 1 \), take \(j \) such that \(i < j < k \). Let \(\omega'' := \omega'^{-1}(j) \). It is easy to check that exactly one of the pairs \((c, c''), (c'', c')\) belongs to \(\text{Inv}(\omega) - \text{Inv}(\omega') \). This ensures the existence of a pair \((\bar{c}, \bar{c}') \in \text{Inv}(\omega) - \text{Inv}(\omega') \) such that \(\omega'(\bar{c}) = q \) and \(\omega'(\bar{c}') = q + 1 \) for some \(q \). Form the tile \(\tau \) with \(b \ell(\tau) = e_{\omega'}^q \) and \(\ell \ell(\tau) = e_{\omega'}^{q+1} \) (taking into account that \(\bar{c} < \bar{c}' \)). Replacing \(e_{\omega'}^q, e_{\omega'}^{q+1} \) by the other two edges of \(\tau \) determines the permutation \(\omega'' \) such that \(\text{Inv}(\omega'') = \text{Inv}(\omega') \cup \{\bar{c}, \bar{c}'\} \).

Repeating the procedure step by step, we eventually reach \(\omega \), and the tiles constructed in the process give the desired pure tiling on \(Z(\omega', \omega) \).

(v) Using flip techniques elaborated in [3], one can show the existence of a pure tiling on \(Z(\omega', \omega) \) provided that a g-tiling \(T \) on it exists. More precisely, extend \(T \) to a g-tiling \(T' \) on \(Z_n \) by adding a pure tiling on \(Z(id, \omega') \) and a pure tiling on \(Z(\omega, \omega_0) \). If \(T \) has a black tile (contained in \(T \)), then, as is shown in [3] (Proposition 5.1), one can choose a black tile \(\tau \) with the following properties: (a) there are nonterminal vertices \(Xi, Xk, Xi j, Xik, Xjk \) (in set notation) such that \(i < j < k \); the vertices \(Xi j, Xik, Xjk \)
are connected by edges to \(t(\tau) \) (lying in the cone of \(\tau \) at \(t(\tau) \)); and (b) replacing \(X \) by \(X_j \) (the lowering flip w.r.t. the above quintuple) makes the spectrum of some other g-tiling \(\tilde{T}' \) on \(Z_n \). Moreover, the transformation \(\tilde{T} \mapsto \tilde{T}' \) is local and involves only tiles having a vertex at \(X_{ik} \) (and the new tiles have a vertex at \(X_j \)). This implies that the tiles of \(\tilde{T}' \) contained in \(Z(\omega', \omega) \) form a g-tiling \(T' \) on it, whereas the other tiles (lying in \(Z(id, \omega') \cup Z(\omega, \omega_0) \)) are exactly the same as in \(\tilde{T} \). Since the flip decreases (by one) the total size of sets in the spectrum, we can conclude that a pure tiling for \(Z(\omega', \omega) \) does exist.

(vi) Suppose that the path \(P_\omega \) lie on the right from \(P_{\omega'} \) and that the sets \(I^i_\omega, I^i_{\omega'}; \) \(i = 1, \ldots, n \), form a ws-collection. By Theorem B, \(C \) is extendable to a largest ws-collection \(C' \), and by Theorem 3.1 there exists a g-tiling \(T \) on \(Z_n \) with \(\mathcal{S}_T = C' \). All sets in \(C \) are nonterminal vertices of \(T \), and by Proposition 3.1(i), all edges in \(P_{\omega'} \) and \(P_\omega \) are edges of \(T \). Let \(T' \) be the set of tiles \(\tau \in T \) such that \(\sigma(\tau) \) lies in the simply connected region in \(D_T \) bounded by \(\sigma(P_{\omega'}) \) and \(\sigma(P_\omega) \). Then \(T' \) is a g-tiling on \(Z(\omega', \omega) \).

Summing up the above observations, we obtain the following

Theorem 7.1 For distinct permutations \(\omega', \omega \) on \([n] \), the following are equivalent:

(i) \(\omega', \omega \) satisfy (7.2);

(ii) \(\omega', \omega \) satisfy the weak Bruhat relation \(\omega' < \omega \);

(iii) \(P_\omega \) lies on the right from \(P_{\omega'} \) and \(Z(\omega', \omega) \) admits a pure tiling;

(iv) \(P_\omega \) lies on the right from \(P_{\omega'} \) and \(Z(\omega', \omega) \) admits a generalized tiling;

(v) \(P_\omega \) lies on the right from \(P_{\omega'} \) and \(\{I^i_\omega, I^i_{\omega'}; i = 1, \ldots, n \} \) is a ws-collection.

Now return to the case of one permutation \(\omega \). Let us apply the procedure of stripping \(Z(\omega, \omega_0) \) along \(rbd(Z_n) \) from above (cf. the procedure in part (i)). One can check that the pure tiling \(T'' \) on \(Z(\omega, \omega_0) \) obtained in this way is such that its spectrum \(\mathcal{S}_{T''} \) is exactly the \(\omega \)-checker \(C^0_\omega \) defined in Section 2. Such a \(T'' \) for \(n = 5 \) and \(\omega = 31524 \) is illustrated in the picture.

![Diagram](image)

Remark. We refer to \(T'' \) as above as the standard tiling on \(Z(\omega, \omega_0) \). This adopts, to the \(\omega \) case, terminology from [3] where a similar tiling for \(\omega = id \) is called the standard tiling on the zonogon \(Z_n \); its spectrum consists of all intervals in \([n] \), which is just the collection of \(X \cap Y \) over all vertices \(X \) in \(rbd(Z_n) \) (i.e., the ideals for \(id \)) and all vertices \(Y \) in \(rbd(Z_n) \) (i.e., the ideals for \(\omega_0 \)). The spectrum of \(T'' \) possesses a similar property: it is the collection \(\{I^i_\omega \cap I^j_{\omega_0}; i, j \in [n] \} \) (with repeated sets ignored). (Cf. (2.1) where the term \([j..n] \) is just \(j \)-th ideal for \(\omega_0 \). One can see that withdrawal of the condition \(j \leq \omega^{-1}(k) \) results in the same collection \(C^0_\omega \).) Also one can check that the same tiling
is obtained if we apply stripping $Z(\omega, \omega_0)$ along P_ω from above. It turns out that a similar phenomenon takes place for any permutations ω', ω obeying (7.1): one can show that stripping $Z(\omega', \omega)$ along P_ω (or along $P_{\omega'}$) from above results in a pure tiling on $Z(\omega', \omega)$ whose spectrum consists of all (different) sets of the form $I'_\omega \cap I'_\omega$, $i, j \in [n]$; we may refer to it as the standard tiling for ω', ω.

By reasonings in Section 2 for any maximal ω-chamber ws-collection \mathcal{C}, the collection $\mathcal{D} := \mathcal{C} \cup \mathcal{C}_0^\omega$ is a largest ws-collection. So, by Theorem 3.1 $\mathcal{D} = \mathcal{S}_T$ for some g-tiling T on Z_n. In view of Proposition 3.11, T must contain the subtiling T'' as above. Then each edge in $(P_{id} \cup P_\omega) - (P_{id} \cap P_\omega)$ belongs to exactly one tile in $T' := T - T''$; this implies that T' is a g-tiling on $Z(id, \omega)$, and we can conclude that $\mathcal{C} = \mathcal{S}_{T'}$. Conversely (in view of Theorem 2.1), for any g-tiling T' on $Z(id, \omega)$, $\mathcal{S}_{T'}$ is a maximal ω-chamber collection. One can see that the role of ω-checker can be played, in essence, by the spectrum of any pure, or even generalized, tiling T'' on $Z(\omega, \omega_0)$ (i.e., Theorem 2.1 remains valid if we take $\mathcal{S}_{T''}$ in place of \mathcal{C}_0^ω). Thus, we obtain the following

Corollary 7.2 (a) Any maximal ω-chamber ws-collection in $2^{[n]}$ is the spectrum of some g-tiling on $Z(id, \omega)$, and vice versa. In particular, any ω-chamber set X lies on the left from the path P_ω (regarding X as a point).

(b) For any fixed g-tiling T'' on $Z(\omega, \omega_0)$, $X \subseteq [n]$ is an ω-chamber set if and only if $X \notin \mathcal{S}_{T''} - \mathcal{I}_\omega$ and $X(\omega_{[n]}) \subseteq \mathcal{S}_{T''}$, where $\mathcal{I}_\omega := \{I_0^\omega, \ldots, I_n^\omega\}$.

(c) $X \subseteq [n]$ is an ω-chamber set if and only if $X(\omega_{[n]}) \subseteq \mathcal{I}_\omega$ and $X \leq I^X_\omega$.

(Note that $X(\omega_{[n]}) \subseteq \mathcal{I}_\omega$ and $X < I^X_\omega$ easily imply that for each i, either $X < I^i_\omega$ or $X \geq I^i_\omega$.) In light of (a) in this corollary, it is not confusing to refer to an ω-chamber set X lying on the right from P_ω (i.e., when X belongs to the spectrum of some g-tiling on the right region $Z(\omega, \omega_0)$ for ω). To do this, suppose we turn the zonogon at 180° and reverse the edges. Then the path P_ω reverses and becomes the path $P_{\omega'}$ for $\omega' := \omega_{[n]} \omega$, each set $X \subseteq [n]$ is replaced by $[n] - X$, and $Z(\omega, \omega_0)$ turns into the region $Z(id, \omega')$ lying on the left from $P_{\omega'}$. The spectrum of any g-tiling on $Z(id, \omega')$ is formed by left sets $[n] - X$ for ω', and when going back to the original X (thus lying in the region $Z(\omega, \omega_0)$), we observe that X is characterized by the condition:

(7.3) for each $i \in X$, X contains all $j \in [n]$ such that $j > i$ and $\omega'(j) > \omega'(i)$; equivalently: X contains all j such that $j > i$ but $\omega(j) < \omega(i)$.

We refer to such an X as a **right set** for ω.

Finally, consider again two permutations ω', ω and let $\omega' < \omega$. Representing the middle region $Z(\omega', \omega)$ as the intersection of $Z(id, \omega)$ and $Z(\omega', \omega_0)$ and relying on the analysis above, we can conclude with the following generalization of Theorem A.

Theorem A’ Let ω, ω' be two permutations on $[n]$ satisfying $\omega' < \omega$. Then all maximal ws-collections $\mathcal{C} \subseteq 2^{[n]}$ whose members X are simultaneously left sets for ω and right sets for ω' have the same cardinality; namely, $|\mathcal{C}| = \ell(\omega) - \ell(\omega') + n + 1$. These collections \mathcal{C} are precisely the spectra of g-tilings on $Z(\omega', \omega)$.
The sets \(X \) figured in this theorem can be alternatively characterized by the condition: for \(i, j \in [n] \), if \(\omega'(i) \prec \omega'(j) \), \(\omega(i) \prec \omega(j) \) and \(j \in X \), then \(i \in X \), i.e., \(X \) is an ideal of the partial order on \([n]\) that is the intersection of two linear orders, one being generated by the path \(P_{\omega'} \), and the other by \(P_{\omega} \).

References

[1] A. Berenstein, S. Fomin, and A. Zelevinsky, Parametrizations of canonical bases and totally positive matrices, Adv. Math. 122 (1996), 49–149.

[2] V. Danilov, A. Karzanov and G. Koshevoy, On bases of tropical Plücker functions, ArXiv:0712.3996[math.CO].

[3] V. Danilov, A. Karzanov and G. Koshevoy, Plücker environments, wiring and tiling diagrams, and weakly separated set-systems, ArXiv:0902.3362v3[math.CO].

[4] S. Elnitsky, Rhombic tilings of polygons and classes of reduced words in Coxeter groups, J. Comb. Theory, Ser. A, 77 (1997) 193–221.

[5] C.K. Fan, A. Hecke algebra quotient and some combinatorial applications, J. Alg. Combin. 5 (1996) 175–189.

[6] A. Henriques and D.E. Speyer, The multidimensional cube recurrence, ArXiv:0708.2478v1[math.CO], 2007.

[7] D.E. Knuth, Axioms and hulls, Lecture Notes in Computer Science, vol. 606, 1992.

[8] B. Leclerc and A. Zelevinsky: Quasicommuting families of quantum Plücker coordinates, Amer. Math. Soc. Trans., Ser. 2 181 (1998), 85–108.

[9] J. Stembridge, On the fully commutative elements of Coxeter groups, J. Alg. Combin. 5 (1996) 353–385.