STUDY ON VITAMIN D3 AND LIPID PROFILE LEVELS IN OBESE POPULATION OF NORTH INDIA
Singh Saran Pal¹, Garg Shirin², Garg Ramneesh³

HOW TO CITE THIS ARTICLE:
Singh Saran Pal, Garg Shirin, Garg Ramneesh. “Study on Vitamin D3 and Lipid Profile Levels in Obese Population of North India”. Journal of Evolution of Medical and Dental Sciences 2015; Vol. 4, Issue 08, January 26; Page: 1332-1337, DOI: 10.14260/jemds/2015/187

ABSTRACT: There has been a worldwide increase in the prevalence of obesity and a parallel resurgence of vitamin D deficiency. Vitamin D deficiency and low calcium intakes are important risk factors for osteoporosis. The present study was done to find out the prevalence of Vitamin D and Lipid profile derangements in obese population of North India. 50 obese individuals (25M & 25 F) with WHR >0.85 and BMI> 30 were taken in study group in age group ranging from 25 to 60 years. Equal numbers of healthy subjects were taken (26M & 24F) and these patients were screened at Adesh Medical College Bathinda, Punjab, India. We observed significantly increased levels of Cholesterol (p<0.006), Triglycerides (p <0.001), S.L.D.L (p <0.001), S.V.L.D.L (p <0.001) & S.A.L.P (p <0.001) levels in obese Individuals as compared to normal individuals.

KEYWORDS: Lipid, Obese, Vitamin D.

INTRODUCTION: Vitamin D, a fat-soluble vitamin, is naturally present in a few food items like cod liver, fish oil, egg yolk etc. It is also produced endogenously from ultraviolet rays from sunlight. Recently there has been a worldwide increase in the prevalence of obesity and a parallel resurgence of vitamin D deficiency.[1] Vitamin D deficiency has been noted in both pale skin individuals as well as in pigmented ones.[2] Overweight/obese people commonly have a poorer vitamin D status than those with less body fat.[3] Vitamin D adequacy during adolescence helps to reduce the risk of osteoporosis later in the life. Vitamin D deficiency and low calcium intakes are important risk factors for osteoporosis. Inadequate intake of vitamin D makes its status worse in obese /overweight individuals thus showing low serum levels. As altered lipid levels are noted for increased risk for cardiovascular diseases and cerebrovascular diseases.[4] The present study was done to find out the prevalence of Vitamin D and Lipid profile derangements in obese population of North India.

MATERIAL AND METHODS: 50 obese individuals (25M & 25 F) with WHR >0.85 and BMI> 30 were taken in study group in age group ranging from 25 to 60 years. Equal number of healthy subjects were taken (26M & 24F). Patients were screened at Adesh Medical College Bathinda, which is a tertiary care institute in state of Punjab (North India).

Patients with diabetes mellitus, hypothyroidism, renal failure, hepatic diseases, acute illnesses, recurrent myocardial infarction, unstable angina & those not on any weight lose treatment were excluded from the study. The ethical committee approved the study and patients were well informed about the nature of study. The waist circumference and the hip circumference were measured and the WHR was calculated. Body weight was recorded in kg and height was recorded in meter square and BMI was calculated accordingly.
LAB ASSAYS: Blood samples were collected under aseptic conditions after overnight fasting of 12 hrs. Blood samples were allowed to clot at 37 c and serum was withdrawn after centrifugation at 3000rpm. The separated serum was analyzed for the following biochemical parameters:

1. Total Serum Cholesterol: Serum cholesterol level was assayed as per the method given by Allain et al. 1974.[5]
2. S. Triglycerides: Serum triglyceride level was estimated by using enzymatic GPOPAP method given by Mcgowan et al.1983.[6]
3. HDL Cholesterol: HDL-C was determined by the method given by Burstein. et al. 1970.[7]
4. LDL Cholesterol: LDL-Cholesterol was analyzed by applying the method of Batesand Warren. 1989.[8]
5. VLDL- Cholesterol: VLDL-C was estimated by using the method of Lowenstein and Varrier. 1984.[9]
6. Vitamin D3 Estimations: estimated by ELISA from kit by EUROIMMUNE (Germany).
7. Serum alkaline phosphate was estimated by method of IFCC.[10]

The data was expressed as Mean ± SD. By using the Students unpaired 't'-test, the statistical analysis was carried out to assess whether the differences between the Obese individuals and the controls were significant and P values of <0.05 were considered as statistically significant.

RESULTS: The present study was done to find out Vitamin D3 and lipid levels in obese population of North India. There were equal number of males (25 M) and females (25F) in obesity group and their mean age was (41± 5.2). In comparison, in the normal individual group, there were 26 males and 24 females and their mean age was (42.5±6.4). (Table1). In this study, we found significantly raised levels of waist to hip ratio (p <0.001) and Body Mass Index (p <0.001) in obese individuals as compared to normal individuals (Table 2).

We observed significantly increased levels of Cholesterol (p<0.006), Triglycerides (p <0.001), S.L.D.L (p <0.001), S.V.L.D.L (p <0.001) & S.A.L.P (p <0.001) levels in obes Individuals as compared to normal individuals (Table 3). Whereas significantly decreased levels of S.H.D.L (p <0.02) and Vitamin D3 (p <0.02) levels were present in obese individuals as compared to normal individuals (Table 3).

DISCUSSION: In present study we observed significantly low levels of vitamin D3 as compared to normal individuals. Low levels of vitamin D3 have also been found earlier in obese individuals as compared to normal individuals. Obesity associated Vitamin D3 deficiency can be due to decreased bioavailability of Vitamin D3 as it is stored in body fat compartments.[11] It was unclear which fat compartments were involved. The low levels of vitamin D3 in obesity have also been attributed to factors like decreased exposure to sunlight, limited mobility, increased pollution and genetic predisposition.[12]

Slightly darker color of Indian population may decrease Vitamin D3 production due increased melanin by absorbing UV rays.[13] Vitamin D3 is a key factor for the absorption of calcium from our diet.[14] Increased activity of enzyme alkaline phosphatase in obese individuals can be due to increased expression of parathormone in response to decrease in Vitamin D3 activity.[15] Thus our results are consistent with literature suggesting decreased levels of Vitamin D3 associated with increased bone turnover thus having high alkaline phosphatase levels.[16]
In present study, values of serum cholesterol and LDL-C were found increased along with deficiency of Vitamin D3 in obese individuals as compared to controls; these results are consistent with Karhapää et al(17) who related association of increased cholesterol levels with hypo vitamin D3. Auwerx et al reported similar results in Finnish people,(18) Martin et al noted similar association in blacks and Mexican Americans.(19) Photo metabolism may be the mechanism involved for this as the absence of sunlight causes squalene exposed skin to divert for cholesterol formation instead of forming 7 dehydro cholesterol and vitamin D. (20)

We observed decreased levels of serum HDL-C along with decreased levels in Vitamin D 3; these findings are supported by Choi et al who reported this association starting very early in life. (21) Similar findings were observed in Russian(22) and Spanish children. (23) High level of serum triglycerides and VLDL-C and decreased Vitamin D3, observed in our study, is found consistent with studies by Cigolini et al.[24] Hyponnen et al[25] and Botella-Carretero et al.[26] Possible mechanism of increased level of serum triglycerides associated with hypo vitamin D3 levels could be that, Vitamin D3 leads to increase in levels of serum calcium by increasing its intestinal absorption. This raised calcium decreases hepatic triglyceride formation and secretion, ultimately decreasing their levels in blood. Insulin resistance is also known to be present in Vitamin D3 deficiency, which leads to raised levels of serum triglycerides and VLDL-C. (27)

Suppressive effect of VitaminD3 on parathyroid hormone is also known to decrease serum triglycerides by decreasing plasma post heparin lipolytic activity. (28)

Low serum 25 hydroxy Vitamin D3 (Vitamin D3) is known to perturb cellular function in many tissues, including the endocrine pancreas, which is involved in obesity and type II diabetes mellitus (TIIDM). As obese individuals are already at increased risk of developing diabetes mellitus, autoimmune disorders, cardio vascular disease, osteoporosis, and some types of cancer and an inadequate vitamin D status in obese individuals can worsen the situation. (29)

CONCLUSION: In present study obese individuals are associated with increased levels of serum triglycerides and VLDL-C along with low levels of HDL-C and vitamin D3 levels leading to increased risk of various diseases and morbidity associated with them.

SEX	NORMAL CONTROLS	OBESE INDIVIDUAL
MALE	26	25
FEMALE	24	25

Table 1: SEX DISTRIBUTION IN NORMAL AND OBESE INDIVIDUALS

PARAMETERS	NORMAL CONTROLS	OBESE INDIVIDUAL
WHR	0.86±0.038	0.95±0.046
		P< 0.001
BMI	24.85±0.48	34±0.40
		P<0.001

TABLE 2: CHANGES IN WHR AND BMI IN OBESE INDIVIDUALS AND NORMAL CONTROLS
PARAMETERS	NORMAL CONTROL	OBESE INDIVIDUAL	P VALUE
S. CHOLESTEROL mg/dl | 140.88±28.92 | 158.7±34.57 | 0.006
S.TRIGLYCERIDES mg/dl | 104.45±18.65 | 156.96±24.62 | 0.001
S.LDL-C mg/dl | 94.85±15.4 | 109.5±20.6 | 0.001
S.HDL-C mg/dl | 45.8±14.6 | 38±18.7 | 0.022
S.VLDL.C mg/dl | 21.1±11.4 | 31.8±14.65 | 0.001
VITAMIN D 3 ng/ml | 24.5±15.6 | 17.9±14.2 | 0.024
S.A.L.P IU/L | 84.5±20.2 | 99.6±18.9 | 0.001

TABLE 3: CHANGES IN LIPID PROFILE AND VITAMIN D3 IN NORMAL CONTROLS AND OBESE INDIVIDUALS

BIBLIOGRAPHY:
1. Rajakumar K, Greenspan SL, Thomas SB, Holick MF: SOLAR ultraviolet radiation and vitamin D: a historical perspective. Am J Public Health, 97(10):1746-1754, 2007.
2. Tangpricha V, Pearce EN, Chen TC, Holick MF: Vitamin D insufficiency among free-living healthy young adults. Am J Med, 112(8):659-662, 2002.
3. Grundy SM: Obesity, Metabolic Syndrome, and Cardiovascular Disease. J Clin Endocrinol Metab, 89(6):2595-2600, 2004.
4. D. S. Grimes, E. Hindle, and T. Dyer, “Sunlight, cholesterol and coronary heart disease”. Monthly Journal of the Association of Physicians, vol. 89, no. 8, pp. 579–589, 1996.
5. Allain CC, Poon S, Chan CSG, Richmond S, Fu PC. An enzymatic method for estimating serum cholesterol. Clin Chem, 20: 470-74, 1974.
6. Mcgowan MW, Artiss JD, Standbergh DR, Zark B. A peroxidase coupled method for the colorimetric determination of serum triglycerides. Clin Chem, 29: 538-42, 1983.
7. Brustein M, Scolink K, Morfin R. Estimation of HDL-C. J Lipid Res, 19:583-93, 1970.
8. Bates CM, Warren GSC. Estimation of low-density lipoprotein cholesterol. South Med J, 582:570-74, 1989.
9. Lowenstein S, Varrier AG. Very low density lipoprotein cholesterol (VLDC-C). J Am Med Assoc 1984; 276: 285-92.
10. IFCC primary reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 C. Part 9. Reference procedure for the measurement of catalytic concentration of alkaline phosphatase. Clin Chem Lab Med 2011; 49: 1439-1446.
11. V. Londhey, ”Vitamin D deficiency: indian scenario,” Journal of Association of Physicians of India 2011; 59(11): 695-696.
12. M. F. Holick, “Vitamin D: a millennium perspective,” Journal of Cellular Biochemistry 2003; 88 (2): 296-307.
13. K. C. Maki, M. R. Rubin, L. G. Wong et al., “Serum 25-hydroxyvitamin D is independently associated with high-density lipoprotein cholesterol and the metabolic syndrome in men and women,” Journal of Clinical Lipidology 2009; 3(4): 289-296.
14. Z. Kashi, F. S. Saedidian, O. Akha, M. A. H. Gorgi, S. F. Emadi, and H. Zakeri, “Vitamin D deficiency prevalence in summer compared to winter in a city with high humidity and a sultry climate,” Endokrynologia Polska 2011; 62(3): 249-251.
15. M. J. McKenna, R. Freaney, A. Meade, and F. P. Muldowney, “Hypovitaminosis D and elevated serum alkaline phosphatase in elderly Irish people,” American Journal of Clinical Nutrition 1985; 41(1): 101-109.
16. P. Karhapää, J. Pihlajamäki, I. Pörsti et al., “Diverse associations of 25-hydroxyvitamin D and 1, 25-dihydroxy-vitamin D with dyslipidaemias,” Journal of Internal Medicine 2010; 268(6): 604-610.
17. J. Auwerx, R. Bouillon, and H. Kesteloot, “Relation between 25-hydroxyvitamin D3, apolipoprotein A-I, and high density lipoprotein cholesterol,” Arteriosclerosis and Thrombosis 1992; 12 (6): 671–674.
18. D. Martins, M. Wolf, D. Pan et al., “Prevalence of cardiovascular risk factors and the serum levels of 25-hydroxyvitamin D in the United States: data from the Third National Health and Nutrition Examination Survey,” Archives of Internal Medicine 2007; 167(11): 1159-1165.
19. D. S. Grimes, E. Hindle, and T. Dyer, “Sunlight, cholesterol and coronary heart disease,” Monthly Journal of the Association of Physicians 1996; 89(8): 579-589.
20. H. S. Choi, K-A. Kim, C-Y. Lim et al., “Low serum vitamin D is associated with high risk of diabetes in Korean adults,” Journal of Nutrition 2011; 141(8): 1524-1528.
21. L. V. Antonenko, I. D. Kholodova, L. I. Apukhovskaja, P. A. Vozian, E. V. Solodova, and L. V. Kvashnina, “Structural-functional changes in plasma lipoproteins during vitamin D-deficient rickets in children,” Ukrainskii biokhimicheskii zhurnal 1990; 62(3): 54-59.
22. E. Rodríguez-Rodríguez, R. M. Ortega, L. G. González-Rodríguez, and A. M. López- Sobaler, “Vitamin D deficiency is an independent predictor of elevated triglycerides in Spanish school children,” European Journal of Nutrition 2011; 50(45): 373-378.
23. M. Cigolini, M. P. Lagulli, V. Miconi, M. Galiotto, S. Lombardi, and G. Targher, “Serum 25-hydroxyvitamin D3 concentrations and prevalence of cardiovascular disease among type 2 diabetic patients,” Diabetes Care 2006; 29(3): 722-724.
24. E. Hyppönen, B. J. Boucher, D. J. Berry, and C. Power, “25-hydroxyvitamin D, IGF-1, and metabolic syndrome at 45 years of age A cross-sectional study in the 1958 British birth cohort,” Diabetes 2008; 57(2) 298-305.
25. J. I. Botella-Carretero, F. Alvarez-Blasco, J. J. Villafruela, J. A. Balsa, C. Vázquez, and H. F. Escobar-Morreale, “Vitamin D deficiency is associated with the metabolic syndrome in morbid obesity,” Clinical Nutrition 2007; 26(5) 573-580.
26. H. N. Ginsberg, Y.-L. Zhang, and A. Hernandez-Ono, “Regulation of plasma triglycerides in insulin resistance and diabetes,” Archives of Medical Research 2005; 36(3) 232-240.
27. B. Lacour, C. Basile, T. Druke, and J. L. Funk-Brentano, “Parathyroid function and lipid metabolism in the rat”. Mineral and Electrolyte Metabolism 1982; 7(3): 157–165.
28. Pittas AG, Dawson-Hughes B, Li T, Dam RMV: Vitamin D and Calcium Intake in Relation to Type 2 Diabetes in Women. Diabetes Care 2006; 29(3): 650-657.

29. Lytras A, Tolis G: Assessment of endocrine and nutritional status in age-related catabolic states of muscle and bone. Curr Opin Clin Nutr Metab Care 2007; 10(5): 604-610.

AUTHORS:
1. Singh Saran Pal
2. Garg Shirin
3. Garg Ramneesh

PARTICULARS OF CONTRIBUTORS:
1. Associate Professor, Department of Biochemistry, Adesh Institute of Medical Sciences & Research, Bhathinda, Punjab.
2. Consultant, Department of Onco Gynecology, Mohan Dai Oswal Cancer Hospital, Ludhiana, Punjab.
3. Assistant Professor, Department of Plastic Surgery, Dayanand Medical College & Hospital, Ludhiana, Punjab.

NAME ADDRESS EMAIL ID OF THE CORRESPONDING AUTHOR:
Dr. Ramneesh Garg,
House No. 183-A,
Sarabha Nagar,
Ludhiana-141001,
Punjab, India.
E-mail: ramneeshgarg@yahoo.com

Date of Submission: 30/12/2014.
Date of Peer Review: 31/12/2014.
Date of Acceptance: 16/01/2015.
Date of Publishing: 23/01/2015.