Extension of Operators from Weak*-closed Subspaces of ℓ_1
into $C(K)$ Spaces

W.B. Johnson*† and M. Zippin†‡

Abstract

It is proved that every operator from a weak*-closed subspace of ℓ_1 into a space $C(K)$
of continuous functions on a compact Hausdorff space K can be extended to an operator
from ℓ_1 to $C(K)$.

Mathematics Subject Classification. Primary 46E15, 46E30; Secondary 46B15.

*Supported in part by NSF DMS-9306376.
$†$Supported in part by a grant of the U.S.-Israel Binational Science Foundation.
$‡$Participant at Workshop in Linear Analysis and Probability, NSF DMS-9311902
1. Introduction.

This work is part of an effort to characterize those subspaces E of a Banach space X for which the pair (E, X) has the following:

Extension Property. *(E.P., in short): Every (bounded, linear) operator T from E into any $C(K)$ space Y has an extension $T: X \rightarrow Y$.*

There is a quantitative version of the E.P.: for any $\lambda \geq 1$ we say that the pair (E, P) has the λ-EP if for every $T: E \rightarrow Y$ there is an extension $T: X \rightarrow Y$ with $\|T\| \leq \lambda\|T\|$. It is easy to see that if (E, X) has the E.P., then it has the λ-E.P. for some λ.

It is known [Zip] that for each $1 < p < \infty$ and every subspace E of ℓ_p, (E, ℓ_p) has the 1-E.P., while for $F \subset c_0$, (F, c_0) has the $(1 + \varepsilon)$-E.P. for every $\varepsilon > 0$ [LP]. However, there is a subspace F of c_0 for which (F, c_0) does not have the 1-E.P. [JZ2]. If E itself is a $C(K)$ space then, clearly, (E, X) has the E.P. if and only if E is complemented in X. It follows from [Ami] that $C(K)$ has a subspace E for which $(E, C(K))$ does not have the E.P. if K is any compact metric space whose ω-th derived set is nonempty (which is equivalent [BePe] to saying that $C(K)$ is not isomorphic to c_0).

Since every separable Banach space is a quotient of ℓ_1, the following fact demonstrates the important rôle of the space ℓ_1 in extension problems.

Proposition 1.1. Let E be a subspace of a Banach space X and let Q be an operator from Z onto X so that $\|Q\| = 1$ and Q Ball $Z \supset \delta$ Ball X. If $(Q^{-1}E, \ell_1)$ has the λ-E.P. then (E, X) has the λ/δ-E.P.

Proof. Let T be an operator from E into any $C(K)$ space Y. Consider the operator $S = TQ$: $Q^{-1}E \rightarrow Z$. If $S: Z \rightarrow Y$ extends S then since S vanishes on $\ker Q$, S induces an operator \tilde{S} from $X \sim Z/$ker Q into Y so that $\tilde{S}Q = S$ and $\|\tilde{S}\| \leq \|S\|/\delta$. □

An immediate consequence of Proposition 1 is that ℓ_1 contains a subspace F for which (F, ℓ_1) does not have the E.P. Indeed, if E denotes an uncomplemented subspace of $C[0, 1]$ which is isomorphic to $C[0, 1]$ ([Ami]) and if Q: $\ell_1 \rightarrow C[0, 1]$ is a quotient map and $F = Q^{-1}E$, then (F, ℓ_1) does not have the E.P. The main purpose of this paper is to prove the following.
Theorem. Let $\{X_n\}_{n=1}^{\infty}$ be finite dimensional and let E be a weak*-closed subspace of $X = (\sum X_n)_1$, regarded as the dual of $X^* = (\sum X^*_n)_{c_0}$. Then (E, X) has the E.P. Moreover, if E has the approximation property, then E has the $(1 + \varepsilon)$-E.P. for every $\varepsilon > 0$.

We know very little about the extension problem for general pairs (E, X). However, the theorem makes the following small contribution in the general case.

Corollary 1.1. Let E be a subspace of the separable space X. Assume that there is a weak*-closed subspace F of ℓ_1 such that X/E is isomorphic to ℓ_1/F. Then (E, X) has the E.P.

Proof. Let $Q: \ell_1 \to X$ and $S: X \to X/E$ be quotient maps. Theorem 2 of [LR] implies that there is an automorphism of ℓ_1 which maps $Q^{-1}E = \ker(SQ)$ onto F. Since (F, ℓ_1) has the E.P. by the theorem, so does the pair $(Q^{-1}E, \ell_1)$. It follows from Proposition 1 that (E, X) has the E.P. ■

We use standard Banach space theory notation and terminology, as may be found in [LT1], [LT2].
2. Preliminaries.

Let E be a subspace of X, $\lambda \geq 1$, and $0 < \varepsilon < 1$. Given an operator $S: E \to Y$ we say that the operator $T: X \to Y$ is a $$(\lambda, \varepsilon)$$-approximate extension of S if $\|T\| \leq \lambda\|S\|$ and

$$\|S - T|_E\| \leq \varepsilon\|S\|.$$

Our first observation is that the existence of approximate extensions implies the existence of extensions.

Lemma 2.1. Let E be a subspace of X and assume that each operator $S: E \to Y$ has a $$(\lambda, \varepsilon)$$-approximate extension. Then the pair (E, X) has the μ-E.P. with $\mu \leq \lambda(1 - \varepsilon)^{-1}$.

Proof. Put $S_1 = S$ and let T_1 be a $$(\lambda, \varepsilon)$$-approximate extension of S_1. Then $\|T_1\| \leq \lambda\|S_1\| = \lambda\|S\|$ and $\|S_1 - T_1|_E\| \leq \varepsilon\|S\|$. Construct by induction sequences of operators $\{S_n\}_{n=1}^\infty$ from E into Y and $\{T_n\}_{n=1}^\infty$ from X into Y such that for each $n \geq 1$ $S_{n+1} = S_n - T_n|_E$ and T_{n+1} is a $$(\lambda, \varepsilon)$$-approximate extension of S_{n+1}. Then, by definition, $\|T_n\| \leq \lambda\|S_n\|$ and $\|S_{n+1}\| \leq \varepsilon\|S_n\|$ for every $n \geq 1$. It follows that $\|S - \sum_{i=1}^n T_i|_E\| \leq \varepsilon^n\|S\|$ and $\|T_n\| \leq \lambda\varepsilon^{n-1}\|S\|$ for all $n \geq 1$. Hence the operator $T = \sum_{i=1}^\infty T_i$ extends S and $\|T\| \leq \lambda(1 - \varepsilon)^{-1}\|S\|$.

Given a finite dimensional decomposition (FDD, in short) $\{Z_n\}_{n=1}^\infty$ of a space Z, we will be interested in subspaces of Z with FDD’s which are particularly well-positioned with respect to $\{Z_n\}_{n=1}^\infty$.

Definition. Let $F \subset Z$ and let $\{F_n\}_{n=1}^\infty$ be an FDD for F. We say that $\{F_n\}_{n=1}^\infty$ is **alternately disjointly supported** with respect to $\{Z_n\}_{n=1}^\infty$ if there exist integers $1 = k(1) < k(2) < \cdots$ such that for each $n \geq 1$, $F_n \subset Z_{k(n)} + Z_{k(n)+1} + \cdots + Z_{k(n+2)-1}$.

An important property of an alternatively disjointly supported FDD is that if $\{n(j)\}_{j=1}^\infty$ is any increasing sequence of integers and if we drop $\{F_{n(j)}\}_{j=1}^\infty$, then the remaining F_n’s can be grouped into blocks $\widetilde{F}_j = \sum_{i=n(j)+1}^{n(j+1)-1} F_i$ which form an FDD that is disjointly supported on the $\{Z_n\}_{n=1}^\infty$; more precisely, with the above notation,

$$\widetilde{F}_j \subset \sum_{m=k(n(j)+1)}^{k(n(j)+1)+1} Z_m \quad \text{for all } j \geq 1.$$
We will show that for certain subspaces of a dual space with an FDD, a given FDD can be replaced by one which is alternately disjointly supported.

We first need the following main tool:

Proposition 2.1. Let \(\{X_n\}_{n=1}^{\infty} \) be a shrinking FDD for \(X \), let \(Q \) be a quotient mapping of \(X \) onto \(Y \) and suppose that \(\{\tilde{E}_n\}_{n=1}^{\infty} \) is an FDD for \(Y \). Then there are a blocking \(\{E'_n\}_{n=1}^{\infty} \) of \(\{\tilde{E}_n\}_{n=1}^{\infty} \), an FDD \(\{W_n\}_{n=1}^{\infty} \) of \(X \) which is equivalent to \(\{X_n\}_{n=1}^{\infty} \), and \(1 = k(1) < k(2) < \cdots \) so that for each \(n \) and each \(k(n) \leq j < k(n + 1) \), \(QW_j \subset E'_n + E'_{n+1} \). Moreover, given \(\varepsilon > 0 \), \(\{E'_n\}_{n=1}^{\infty} \) and \(\{W_n\}_{n=1}^{\infty} \) can be chosen so that there is an automorphism \(T \) on \(X \) with \(\|I - T\| < \varepsilon \) and \(TX_n = W_n \) for all \(n \).

Proof. In order to avoid complicated notation we shall prove the statement for the case where, for every \(n \geq 1 \), \(X_n \) (and hence also \(W_n \)) is one dimensional. The same arguments, with only obvious modifications yield the FDD case. (Actually, in the proof of the theorem, only the basis case of Proposition 2 is needed. Indeed, in Step 3 of the proof of the theorem, one can replace \(E \) by \(E_1 \equiv E \oplus_1 (\sum G_n)_1 \) and \(X \) by \(X_1 = X \oplus_1 (\sum G_n)_1 \), where \(\{G_n\}_{n=1}^{\infty} \) is a sequence which is dense in the sense of the Banach-Mazur distance in the set of all finite dimensional spaces, and use the fact [JRZ], [Pel] that \(E_1 \) has a basis. In fact, this trick is used in a different way for the proof of the “moreover” statement in the theorem.)

So assume that \(X \) has a normalized shrinking basis \(\{x_n\}_{n=1}^{\infty} \) with biorthogonal functionals \(\{f_n\}_{n=1}^{\infty} \); we are looking for an equivalent basis \(\{w_n\}_{n=1}^{\infty} \) of \(X \) for which the statement holds. First we perturb the basis for \(X \) to get another basis whose images under \(Q \) are supported on finitely many of the \(\tilde{E}_n \)'s. This step does not require the hypothesis that \(\{x_n\}_{n=1}^{\infty} \) be shrinking.

For each \(n \geq 1 \) let \(\tilde{Q}_n \) be the FDD’s natural projection from \(Y \) onto \(\tilde{E}_1 + \tilde{E}_2 + \cdots + \tilde{E}_n \). Let \(1 > \varepsilon > 0 \) and set \(C = \sup_n \|f_n\| \). Choose \(p_1 < p_2 < \cdots \) so that for each \(n \), \(\|Qx_n - \tilde{Q}_{p_n}Qx_n\| < \varepsilon C^{-1}2^{-n} \). Since \(Q \) is a quotient mapping, there is for each \(n \) a vector \(z_n \) in \(X \) with \(\|z_n\| < \varepsilon C^{-1}2^{-n} \) and \(Qz_n = Qx_n - \tilde{Q}_{p_n}Qx_n \). Let \(y_n = x_n - z_n \), so that \(Qy_n \) is in \(\tilde{E}_1 + \cdots + \tilde{E}_{p_n} \). It is standard to check that \(\{y_n\}_{n=1}^{\infty} \) is equivalent to \(\{x_n\}_{n=1}^{\infty} \). Indeed, define an operator \(S \) on \(X \) by \(Sx = \sum_{n=1}^{\infty} f_n(x)z_n \). Then \(\|S\| < \varepsilon \) and \(Sx_n = z_n \), so \(I - S \) is an isomorphism from \(X \) onto \(X \) which maps \(x_n \) to \(y_n \).
Define a blocking \(\{ E_n \}_{n=1}^{\infty} \) of \(\{ \tilde{E}_n \}_{n=1}^{\infty} \) by \(E_n = \tilde{E}_{p_n-1} + \cdots + \tilde{E}_{p_n} \) (where \(p_0 \equiv 0 \)). Then for each \(n \), \(Qy_n \) is in \(E_1 + \cdots + E_n \).

Let \(Q_n \) be the basis projection from \(Y \) onto \(E_1 + \cdots + E_n \), \(P_n \) the basis projection from \(X \) onto \(\text{span} \{ y_1, \ldots, y_n \} \), and set \(C_1 = \sup_n \| P_n \| \). Since \(\{ y_n \}_{n=1}^{\infty} \) is shrinking, \(\lim_{n \to \infty} \| Q_n Q(I - P_n) \| = 0 \). Since \(Q \) is a quotient mapping, for each \(n \) there exists a mapping \(T_n \) from \(E_1 + \cdots + E_n \) into \(X \) so that \(QT_n \) is the identity on \(E_1 + \cdots + E_n \). Set \(M_n = \| T_n \| \), let \(1 > \epsilon > 0 \), and recursively choose \(0 = k(0) < k(1) < k(2) < \cdots \) so that for each \(n \), \(\| Q_{k(n)} Q(I - P_{k(n+1)-1}) \| < (2C_1 M_{k(n)})^{-1} 2^{-n} \epsilon \). Setting \(w_j = y_j - T_{k(n)} Q_{k(n)} Q y_j \) for \(k(n+1) \leq j < k(n+2) \), we see that \(Q w_j \) is in \(E_{k(n)+1} + \cdots + E_{k(n+2)} \) when \(k(n+1) \leq j < k(n+2) \).

The desired blocking of \(\{ \tilde{E}_n \}_{n=1}^{\infty} \) is defined by \(E'_n = E_{k(n)-1+1} + E_{k(n)-1+2} + \cdots + E_{k(n)} \), but it remains to be seen that \(\{ w_n \}_{n=1}^{\infty} \) is a suitably small perturbation of \(\{ y_n \}_{n=1}^{\infty} \).

The inequality \(\| Q_{k(n)} Q(I - P_{k(n+1)-1}) \| < (2C_1 M_{k(n)})^{-1} 2^{-n} \epsilon \) implies, by composing on the right with \(P_{k(n+2)-1} \), that \(\| Q_{k(n)} (P_{k(n)} - P_{k(n+1) - 1}) \| < (2M_{k(n)})^{-1} 2^{-n} \epsilon \). Thus if we define an operator \(V \) on \(X \) by \(V x = \sum_{n=0}^{\infty} T_{k(n)} Q_{k(n)} Q (P_{k(n+2)-1} - P_{k(n+1)-1}) x \), we see that \(\| V \| < \epsilon \) and hence \(T \equiv I - V \) is invertible. But for \(k(n+1) \leq j < k(n+2) \), \(V y_j = T_{k(n)} Q_{k(n)} Q x_j \); that is, \(T y_j = w_j \).

Using a duality argument we get from Proposition 2.1 the following.

Corollary 2.1. Let \(\{ Z_n \}_{n=1}^{\infty} \) be an \(\ell_1 \)-FDD for a space \(Z \). Regard \(Z \) as the dual of the space \(Z_* = (\sum Z_n^*)_{c_0} \) and let \(F \) be a weak*-closed subspace of \(Z \) with an FDD. Then \(Z \) and \(F \) have \(\ell_1 \)-FDD’s \(\{ V_n \}_{n=1}^{\infty} \) and \(\{ U_n \}_{n=1}^{\infty} \), respectively, so that \(\{ U_n \}_{n=1}^{\infty} \) is alternately disjointly supported with respect to \(\{ V_n \}_{n=1}^{\infty} \). Moreover, given \(\epsilon > 0 \), \(\{ V_n \}_{n=1}^{\infty} \) can be chosen so that for some blocking \(\{ Z'_n \}_{n=1}^{\infty} \) of \(\{ Z_n \}_{n=1}^{\infty} \), there is an automorphism \(T \) of \(Z_* \) with \(\| I - T \| < \epsilon \) and \(T Z'_n = V_n \) for all \(n \geq 1 \).

Proof. Being weak*-closed, \(F \) has a predual \(F_* = Z_* / F_\perp \) which is a quotient space of \(Z_* \). By [JRZ], \(F_* \) has a shrinking FDD and consequently, by Theorem 1 of [JZ2], \(F_* \) has a shrinking \(c_0 \)-FDD \(\{ \tilde{E}_n \}_{n=1}^{\infty} \). Let \(Q \): \(Z_* \to F_* \) be the quotient mapping. By Proposition 2.1 there are a blocking \(\{ E'_n \}_{n=1}^{\infty} \) of \(\{ \tilde{E}_n \}_{n=1}^{\infty} \), an FDD \(\{ W_n \}_{n=1}^{\infty} \) of \(Z_* \) which is equivalent to \(\{ Z'_n \}_{n=1}^{\infty} \), even the image of \(\{ Z'_n \}_{n=1}^{\infty} \) under some automorphism on \(Z_* \) which is arbitrarily
close to \(I_{Z_*} \), and 1 = \(k(1) < k(2) < \cdots \) so that for each \(n \) and \(k(n) \leq j < k(n + 1) \), \(QW_j \subset E'_n + E'_{n+1} \). The equivalence implies that \(\{W_n\}_{n=1}^\infty \) is a \(c_0 \)-FDD and, being a blocking of a \(c_0 \)-FDD, \(\{E'_n\}_{n=1}^\infty \) is a \(c_0 \)-FDD. Let \(\{V_n\}_{n=1}^\infty \) (resp. \(\{U_n\}_{n=1}^\infty \)) be the dual FDD of \(\{W_n\}_{n=1}^\infty \) (resp. \(\{E'_n\}_{n=1}^\infty \)) for \(Z \) (resp. \(F \)). Then \(\{V_n\}_{n=1}^\infty \) is an \(\ell_1 \)-FDD for \(Z \) and \(\{U_n\}_{n=1}^\infty \) is an \(\ell_1 \)-FDD for \(F \). Moreover, suppose that \(u \) is in \(U_n \) and \(w_j \) is in \(W_j \), where either \(j < k(n) \) or \(j \geq k(n + 2) \). Let \(m \) be the integer for which \(k(m) \leq j < k(m + 1) \). Then either \(m < n \) or \(m > n + 1 \) hence \(n \neq m \) and \(n \neq m + 1 \). Then \(Qw_j \in E'_m + E'_{m+1} \), hence \(u(w_j) = \langle u, Qw_j \rangle = 0 \). This proves that \(U_n \) is supported on \(\sum_{j=k(n)}^{k(n+2)-1} V_j \). \(\blacksquare \)
3. Proof of the Theorem.

The proof consists of four parts, the first three of which are essentially simple special cases of the theorem.

Step 1. E has an FDD $\{E_n\}_{n=1}^{\infty}$ with $E_n \subset X_n$ for all n.

Proof. Let $Y = C(K)$ and let $S: E \to Y$ be any operator. Using the $L_{\infty,1+\varepsilon}$-property of Y (or see Theorem 6.1 of [Lin]), one sees that the finite rank operator $S|_{E_n}$ has an extension $S_n: X_n \to Y$ with $\|S_n\| \leq (1 + \varepsilon)\|S_n\|$. Define the extension S of S by $S\left(\sum_{n=1}^{\infty} x_n\right) = \sum_{n=1}^{\infty} S_n x_n$. Since $\{X_n\}_{n=1}^{\infty}$ is an exact ℓ_1-decomposition, it follows that $\|S\| \leq (1 + \varepsilon)\|S\|$.

Step 2. E has an ℓ_1-FDD $\{E_n\}_{n=1}^{\infty}$ which is alternately disjointly supported with respect to $\{X_n\}_{n=1}^{\infty}$.

Proof. Given $\delta > 0$, let $1 < (1 + \varepsilon)(1 - \varepsilon)^{-1} < 1 + \delta$ and choose an integer $N > (1 + \varepsilon)M\varepsilon^{-1}$ where M is the constant of the ℓ_1-FDD $\{E_n\}_{n=1}^{\infty}$; that is, the constant of equivalence of $\{E_n\}_{n=1}^{\infty}$ to the natural ℓ_1-FDD for $(\sum E_n)_1$. Let $Y = C(K)$ and let $S: E \to Y$ be an operator with $\|S\| = 1$. For each $1 \leq j \leq N$ let

$$Z_j = \text{span}\{E_i : i \neq kN + j, k = 0, 1, 2, \ldots\}.$$

Each subspace Z_j has a natural ℓ_1-FDD which is disjointly supported with respect to $\{X_n\}_{n=1}^{\infty}$ because $\{E_n\}_{n=1}^{\infty}$ is alternately disjointly supported with respect to $\{X_n\}_{n=1}^{\infty}$. By Step 1, $S|_{Z_j}$ has an extension $T_j: X \to Y$ with

$$\|T_j\| \leq (1 + \varepsilon)\|S_j\| \leq (1 + \varepsilon)\|S\| = 1 + \varepsilon.$$

Define $T: Z \to Y$ by $T = N^{-1}\sum_{j=1}^{N} T_j$. Then $\|T\| \leq (1 + \varepsilon)\|S\| = 1 + \varepsilon$. Moreover, if $e \in E_i$ and $i = kN + h$ for some $1 \leq h \leq N$, then $T_h e = S_j e = S e$ for all $j \neq h$ hence T is “almost” an extension of S. Indeed, $\|Te - Se\| = \frac{1}{N}\|T_h e - Se\| \leq \frac{2+\varepsilon}{N}\|e\|$ whenever $e \in E_i$ for some i. Recalling that the ℓ_1-FDD $\{E_n\}_{n=1}^{\infty}$ has constant M, we have that

$$\|T|_E - S\| \leq M \sup_n \|T|_{E_n} - S|_{E_n}\| \leq \frac{M(2 + \varepsilon)}{N} < \varepsilon.$$

This proves that T is an $(1 + \varepsilon, \varepsilon)$-approximate extension of S and therefore, by Lemma 2.1, (E, Z) has the $(1 + \varepsilon)(1 - \varepsilon)^{-1}$-E.P.
Step 3. E has an FDD.

Proof. By Corollary 2.1, X and E have ℓ_1-FDD’s $\{Z_n\}_{n=1}^\infty$ and $\{E_n\}_{n=1}^\infty$, respectively, with $\{E_n\}_{n=1}^\infty$ is alternately disjointly supported with respect to $\{Z_n\}_{n=1}^\infty$, and, by Remark 2.1, $\{Z_n\}_{n=1}^\infty$ has constant of equivalence to $(\sum Z_n)_1$ arbitrarily close to one. Hence, by Step 2, (E, X) has the $(1 + \delta)$-E.P. for every $\delta > 0$.

This gives the “moreover” statement when E has an FDD. When E just has the approximation property, we enlarge X to $X_1 \equiv X \oplus_1 C_1$, where $C_1 = (\sum G_n)_1$ and $\{G_n\}_{n=1}^\infty$ is a sequence of finite dimensional spaces which is dense (in the sense of the Banach-Mazur distance) in the set of all finite dimensional spaces; and we enlarge E to $E_1 \equiv E \oplus_1 C_1$. X_1 is again an exact ℓ_1-sum of finite dimensional spaces and E_1 is weak*-closed in X_1. Moreover, since E is a dual space which has the approximation property, E has the metric approximation property [LT1], and hence by [Joh], E_1 is a π-space, whence, since E_1 is a dual space, E_1 has an FDD by [JRZ]. Thus by Step 3, (E_1, X_1) has the $(1 + \delta)$-E.P. for each $\delta > 0$, and, therefore, so does (E, X).

Step 4. The general case.

We start with a lemma.

Lemma 3.1. Let Z be a Banach space and let E be a subspace of Z. Suppose that E has a subspace F such that (F, Z) has the λ-E.P. and $(E/F, Z/F)$ has the μ-E.P. Then (E, Z) has the $(\lambda + \mu(1 + \lambda))$-E.P.

Proof. Let $Y = C(K)$ and let $S: E \to Y$ be any operator. Let $S_1: Z \to Y$ be an extension of $S|_F$ with $\|S_1\| \leq \lambda\|S\|$. The operator $W = S - S_1|_E$ from E into Y vanishes on F and so induces an operator $\widetilde{W}: E/F \to Y$ in the usual way, and $\|\widetilde{W}\| = \|W\| \leq \|S\| + \|S_1\| \leq (1 + \lambda)\|S\|$. By our assumptions, \widetilde{W} extends to an operator $W_1: Z/F \to Y$ with $\|W_1\| \leq \mu\|\widetilde{W}\| \leq \mu(1 + \lambda)\|S\|$. Let $Q: Z \to Z/F$ denote the quotient map. Then $T = S_1 + W_1Q$ is the desired extension of S. Indeed, for every $e \in E$

$$Te = S_1e + W_1Qe = S_1e + We = S_1e + (S - S_1)e = Se$$

and $\|T\| \leq \|S_1\| + \|W_1\| \leq (\lambda + \mu(1 + \lambda))\|S\|$.

\blacksquare
Let us now return to the proof of the general case. Being a weak*-closed subspace of ℓ_1, E is the dual of the quotient space $E_* = (\sum X_n^*)_c/E$. Our main tool in this part of the proof is Theorem IV.4 of [JR] and its proof. This theorem states that E_* has a subspace V so that both V and E_*/V have shrinking FDD’s. Under these circumstances, Theorem 1 of [JZ1] implies that both V and E_*/V have c_0-FDD’s. In order to prove the theorem it suffices, in view of Lemma 3.1, to show that both pairs (V_\perp, X) and $(E/V_\perp, X/V_\perp)$ have the E.P. Now (V_\perp, X) has the $(1+\delta)$-E.P. for all $\delta > 0$ by Step 3, so it remains to discuss the pair $(E/V_\perp, X/V_\perp)$. This discussion requires some preparation and some minor modification in the proof of Theorem IV.4. of [JR].

We first need a known perturbation lemma:

Lemma 3.2. Suppose E, F are subspaces of X^* with F norm dense in X^* and X^* is separable. Then for each $\varepsilon > 0$ there is an automorphism T on X so that $\|I - T\| < \varepsilon$ and $T^* E \cap F$ is norm dense in $T^* E$.

Proof. Let (x_n, x_n^*) be a biorthogonal sequence in $X \times E$ with $\text{span } x_n^* = E$ (see, e.g., [Mac]) and take $y_n^* \in F$ so that $\sum \|x_n^* - y_n^*\| \|x_n\| < \varepsilon$. Define $T: X \to X$ by

$$Tx = x - \sum_{n=1}^{\infty} (x_n^* - y_n^*)x_n.$$

Returning to the proof of the theorem, we may assume, in view of Lemma 3.2, that $E \cap \text{span } \bigcup_{n=1}^{\infty} X_n$ is norm dense in E. The standard back-and-forth technique [Mac] for producing biorthogonal sequences yields a biorthogonal sequence $\{(x_n, x_n^*)\}_{n=1}^{\infty} \subset X^* \times E$ with $\text{span } \{Qx_n\}_{n=1}^{\infty} = \text{span } \bigcup_{n=1}^{\infty} QX_n^*$, $\text{span } \{x_n^*\}_{n=1}^{\infty} = E \cap \text{span } \bigcup_{n=1}^{\infty} X_n$, and where Q is the quotient mapping from the predual $X_* = (\sum X_n^*)_c$ of X onto the predual E_* of E.

This means that for any N, x_j^* is in $\text{span } \bigcup_{n=N}^{\infty} X_n$ if j is sufficiently large.

We now refer to the construction in Theorem IV.4 of [JR] and the finite sets $\Delta_1 \subset \Delta_2 \subset \cdots$ of natural numbers defined there. From that construction, it is clear that, having defined Δ_n, the smallest element, $k(n)$, in $\Delta_{n+1} \setminus \Delta_n$ can be as large as we desire. In particular, if $\{x_j^*\}_{j=1}^{\max \Delta_n}$ is a subset of $\text{span } \bigcup_{n=1}^{m(n)} X_i$, then we choose $k(n)$ large enough so that for $j \geq k(n)$, x_j^* is in $\text{span } \bigcup_{i=1}^{\infty} X_i$. Thus setting

$$Z_n = \text{span } \{x_j^*: j \in \Delta_n \setminus \Delta_{n+1}\}$$

10
(where $\Delta_0 \equiv \emptyset$), we have that $\{Z_n\}_{n=1}^{\infty}$ is disjointly supported relative to $\{X_n\}_{n=1}^{\infty}$. (In the notation above and setting $m(0) = 0$, we have for each n that

\[
(*) \quad Z_n \subset \text{span}\{X_j\}_{j=m(n^{-1})+1}^{m(n)}.
\]

The subspace V of E_* is defined to be the annihilator of $\left\{ x_j^*: j \in \bigcup_{n=1}^{\infty} \Delta_n \right\}$ and, as mentioned earlier, it follows from [JR] and [JZ1] that V has a c_0-FDD and thus $V^* = E/V^\perp$ has an ℓ_1-FDD. It is also proved in [JR], but is obvious from the “extra” we have added here, that $\overline{\text{span}}\{Z_j\}_{j=1}^{\infty}$ is weak*-closed and hence equals V^\perp. It is also obvious from (*) that X/V^\perp has an ℓ_1-FDD. Therefore, by Step 3 (E_*/V^\perp, X/V^\perp) has the E.P. \[\blacksquare\]

Remark. Under the hypotheses of the theorem, we do not know whether (E, X) has the $(1 + \varepsilon)$-E.P. for every $\varepsilon > 0$ when E fails the approximation property. The proof we gave yields only that (E, X) has the $(3 + \varepsilon)$-E.P. for all $\varepsilon > 0$.

11
4. Concluding Remarks and Problems.

Very little is known about the Extension Property, so there is no shortage of problems.

Problem 4.1. If E is a subspace of X and X is reflexive, does (E, X) have the E.P.? What if X is superreflexive? What if X is L_p, $1 < p \neq 2 < \infty$?

Problem 4.2. If E is a reflexive subspace of X, does (E, X) have the E.P.? What if E is just isomorphic to a conjugate space? In the latter case, what if, in addition, X is ℓ_1?

If E is a subspace of c_0, then (E, c_0) has the $(1 + \varepsilon)$-E.P. for every $\varepsilon > 0$ [LP] but need not have the 1-E.P. [JZ2]. We do not know if this phenomenon can occur in the setting of reflexive spaces:

Problem 4.3. If X is reflexive and (E, X) has the $(1 + \varepsilon)$-E.P. for every $\varepsilon > 0$, does (E, X) have the 1-E.P.?

The following observation gives an affirmative answer to Problem 4.3 in a special case.

Proposition 4.1. If X is uniformly smooth and (E, X) has the $(1 + \varepsilon)$-E.P. for every $\varepsilon > 0$, then (E, X) has the 1-E.P.

Proof. In preparation for the proof, we recall Proposition 2 of [Zip], which says:

(E, X) has the λ-E.P. if and only if there exists a weak*-continuous extension mapping from Ball E^* to λBall X^*; that is, a continuous mapping $\phi : (\text{Ball } E^*, \text{weak }^*) \to (\lambda \text{Ball } X^*, \text{weak }^*)$ for which $(\phi e^*)|_E = e^*$ for every e^* in Ball E^*.

Since X is uniformly smooth, given $\varepsilon > 0$ there exists $\delta > 0$ so that if x^*, y^* in X^* and x in X satisfy $\|x^*\| = \|x\| = 1 = \langle x^*, x \rangle = \langle y^*, x \rangle$ with $\|y^*\| < 1 + \delta$, then $\|x^* - y^*\| < \varepsilon$. Letting $\phi_n : \text{Ball } E^* \to (1 + \frac{1}{n})\text{Ball } X^*$ be a weakly continuous extension mapping and letting $f : \text{Sphere } E^* \to \text{Sphere } X^*$ be the (uniquely defined, by smoothness) Hahn-Banach extension mapping, we conclude that

$$\lim_{n \to \infty} \sup \{\|\phi_n(x^*) - f(x^*)\| : x^* \in \text{Sphere } E^*\} = 0.$$

That is, $\{\phi_n|_{\text{Sphere } E^*}\}_{n=1}^\infty$ is uniformly convergent to $f|_{\text{Sphere } E^*}$. Since each ϕ_n is weakly continuous, so is $f|_{\text{Sphere } E^*}$.

12
If E is finite dimensional, then clearly the positively homogeneous extension of f to a mapping from $\text{Ball } E^*$ into $\text{Ball } X^*$ is a weakly continuous extension mapping. So assume that E has infinite dimension. But then $\text{Sphere } E^*$ is weakly dense in $\text{Ball } E^*$, so by the weak continuity of the ϕ_n’s and the weak lower semicontinuity of the norm, we have

$$\sup \{ \| \phi_n(x^*) - \phi_m(x^*) \| : x^* \in \text{Ball } E^* \} = \sup \{ \| \phi_n(x^*) - \phi_m(x^*) \| : x^* \in \text{Sphere } E^* \}$$

which we saw tends to zero as n, m tend to infinity. That is, $\{ \phi_n \}_{n=1}^\infty$ is a uniformly Cauchy sequence of weakly continuous functions and hence its limit is also weakly continuous.

It is apparent from the proof of Proposition 4.1 that the 1-E. P. is fairly easy to study in a smooth reflexive space X because every extension mapping from $\text{Ball } E^*$ to $\text{Ball } X^*$ is, on the unit sphere of E^*, the unique Hahn-Banach extension mapping. Let us examine this situation a bit more in the general case. Suppose E is a subspace of X and let $A(E)$ be the collection of all norm one functionals in E^* which attain their norm at a point of $\text{Ball } E^*$. The Bishop-Phelps theorem [BP], [Die] says that $A(E)$ is norm dense in $\text{Sphere } E^*$, hence, if E has infinite dimension, $A(E)$ is weak* dense in $\text{Ball } E^*$. Therefore (E, X) has the 1-E.P. if and only if there is a weak* continuous Hahn-Banach selection mapping $\phi : A(E) \to \text{Ball } X^*$ which has a weak* continuous extension to a mapping ϕ from $\overline{A(E)}^{w^*} = \text{Ball } E^*$ to $\text{Ball } X^*$, since clearly ϕ will then be an extension mapping. The existence of ϕ is equivalent to saying that whenever $\{x^*_\alpha\}$ is a net in $A(E)$ which weak* converges in E^*, then $\{\phi x^*_\alpha\}$ weak* converges in X^* (see, for example, [Bou I.8.5]). Now when X is smooth, there is only one mapping ϕ to consider, and in this case the above discussion yields the next proposition when $\dim E = \infty$ (when $\dim E < \infty$ one extends from $\overline{\text{Sphere } E^*} = \overline{A(E)}^{w^*}$ to $\text{Ball } E^*$ by homogeneity).

Proposition 4.2. Let E be a subspace of the smooth space X. The pair (E, X) fails the 1-E.P. if and only if there are nets $\{x^*_\alpha\}, \{y^*_\alpha\}$ of functionals in $\text{Sphere } X^*$ which attain their norm at points of $\overline{\text{Sphere } E}$ and which weak* converge to distinct points x^* and y^*, respectively, which satisfy $x^*|_E = y^*|_E$.

An immediate, but surprising to us, corollary to Proposition 4.2 is:

Corollary 4.1. Let E be a subspace of the smooth space X. If the pair (E, X) fails
the 1-E.P., then there is a subspace \(F \) of \(X \) of codimension one which contains \(E \) so that \((F, X) \) fails the 1-E.P.

Proof. Get \(x^*, y^* \) from Proposition 4.2 and set \(F = \text{span} \, E \cup (\ker x^* \cap \ker y^*) \).

Problem 4.4. Is Corollary 4.1 true for a general space \(X \)?

Corollary 4.2. For \(1 < p \neq 2 < \infty \), \(L_p \) has a subspace \(E \) for which \((E, L_p) \) fails the 1-E.P.

Proof. We regard \(L_p \) as \(L_p(0, 2) \) and make the identifications \(L_p^* = L_q = L_q(0, 2) \), where \(q = \frac{p}{p-1} \) is the conjugate index to \(p \). Let

\[
 f = 1_{(0, \frac{1}{2})} - 1_{(\frac{1}{2}, 1)}, \quad g = -2 \cdot 1_{(\frac{1}{2}, 1)} - 1_{(1, 2)},
\]

regarded as elements of \(L_q \), and define

\[
 E = (f - g)^\perp = \{ x \in L_p(0, 2) : \int_0^2 x = 0 \}.
\]

Notice that \(|f|^q - 1 \text{sign } f\) is in \(E \), which implies that \(1 = \|f\|_q = \|f\|_{L_p^*} = \|f|_E\|_{E^*} \). So \(f \) and \(g \) induce the same linear functional on \(E \) (we write \(f|_E = g|_E \)), and \(f \) is the unique Hahn-Banach extension of this functional to a functional in \(L_p^* = L_q \).

Claim. There exists \(h \) in \(L_q \) supported on \([0, \frac{1}{2}]\) so that \(\int_0^2 h = 0 = \int_0^2 |g+h|^q - 1 \text{sign } (g+h) \).

Assume the claim. Set \(\lambda = \|g + h\|_q \) and let \(\{h_n\}_{n=1}^\infty \) be a sequence of functions which have the same distribution as \(h \), are supported on \([0, \frac{1}{2}]\), and are probabilistically independent as random variables on \([0, \frac{1}{2}]\) with normalized Lebesgue measure. Then \(g_n \equiv \lambda^{-1}(g + h_n) \) defines a sequence on the unit sphere of \(L_q(0, 2) \) which converges weakly to \(\lambda^{-1}g \). Moreover, \(|g_n|^q - 1 \text{sign } g_n\) is in \(E \), which means that as a linear functional on \(L_p \), \(g_n \) attains its norm at a point on the unit sphere of \(E \). In view of Proposition 4.2, to complete the proof it suffices to find a sequence \(\{f_n\}_{n=1}^\infty \) on the unit sphere of \(L_q \) which converges weakly in \(L_q \) to \(\lambda^{-1}f \) so that \(|f_n|^q - 1 \text{sign } f_n\) is in \(E \). This is easy: take \(w \) supported on \([1, 2]\) so that

\[
 \int_0^2 w = 0 = \int_0^2 |w|^q - 1 \text{sign } w \left(= \int_0^2 |f + w|^q - 1 \text{sign } (f + w) \right)
\]
and \(\|f + w\|_q^q = 1 = 1 + \|w\|_q^q = \lambda^q \) (so \(w \) can be a multiple of \(\mathbf{1}_{(1, \frac{3}{2})} - \mathbf{1}_{(\frac{3}{2}, 2)} \)). Let \(\{w_n\}_{n=1}^\infty \) be a sequence of functions which have the same distribution as \(w \), are supported on \([1, 2]\), and are probabilistically independent as random variables on \([1, 2]\). Now set \(f_n = \lambda^{-1}(f + w_n) \).

We turn to the proof of the claim. Fix any \(0 < \varepsilon < \frac{1}{4} \). For appropriate \(d \), the choice

\[
h = d(4\varepsilon \mathbf{1}_{(0, \frac{1}{4})} - \mathbf{1}_{(\frac{1}{4} - \varepsilon, \frac{1}{4})})
\]

works. Indeed, \(\int_0^2 h = 0 \) no matter what \(d \) is, and \(gh = 0 \), so we need choose \(d \) to satisfy

\[
-\int_0^2 |g|^{q-1}\text{sign } g = \int_0^2 |h|^{q-1}\text{sign } h.
\]

The left side of (*) is \(2^{q-1} + 1 > 0 \), while the right side is \(|d|^{q-1}\text{sign } g \varepsilon^{q-1}[(\frac{1}{4})^{2-q} - \varepsilon^{2-q}] \), so such a choice of \(d \) is possible for \(p \neq 2 \).

\[\blacksquare\]

Problem 4.5. If \(E \) is a weak*-closed subspace of \(\ell_1 \), does \((E, \ell_1)\) have the \(1 + \varepsilon \)-E.P. for every \(\varepsilon > 0 \)?

A negative answer to Problem 4.5 would be particularly interesting, because it would justify the weird approach we used to prove the Theorem. However, we do not even know a counterexample to:

Problem 4.6. If \(E \) is a weak*-closed subspace of \(\ell_1 \), does \((E, \ell_1)\) have the 1-E.P.?

The answer to Problem 4.6 is known to be yes for finite dimensional \(E \), [Sam1], [Sam2].
References

[Ami] D. Amir, *Continuous function spaces with the separable projection property*, Bull. Res. Council Israel **10F** (1962), 163–164.

[BePe] C. Bessaga and A. Pełczyński, *Spaces of continuous functions IV*, Studia Math. **19** (1960), 53–62.

[BP] E. Bishop and R. R. Phelps, *A proof that every Banach space is subreflexive*, Bull. AMS **67** (1961), 97–98.

[Bou] N. Bourbaki, *General Topology, Part 1*, Addison-Wesley (1966).

[Die] J. Diestel, *Geometry of Banach spaces-selected topics*, Lecture Notes in Math. **485** Springer-Verlag (1975).

[Joh] W. B. Johnson, *Factoring compact operators*, Israel J. Math. **9** (1971), 337–345.

[JR] W. B. Johnson and H. P. Rosenthal, *On w^*-basic sequences and their applications to the study of Banach spaces*, Studia Math. **43** (1972), 77–92.

[JRZ] W. B. Johnson, H. P. Rosenthal, and M. Zippin, *On bases, finite dimensional decompositions, and weaker structures in Banach spaces*, Israel J. Math. **9** (1971), 488–506.

[JZ1] W. B. Johnson and M. Zippin, *On subspaces of quotients of $(\Sigma G)_\ell_p$ and $(\Sigma G)_{c_0}$*, Israel J. Math. **13 nos. 3 and 4** (1972), 311–316.

[JZ2] W. B. Johnson and M. Zippin, *Extension of operators from subspaces of $c_0(\gamma)$ into $C(K)$ spaces*, Proc. AMS **107 no. 3** (1989), 751–754.

[Lin] J. Lindenstrauss, *Extension of compact operators*, Memoirs AMS **48** (1964).

[LP] J. Lindenstrauss and A. Pełczyński, *Contributions to the theory of the classical Banach spaces*, J. Functional Analysis **8** (1971), 225–249.

[LR] J. Lindenstrauss and H. P. Rosenthal, *Automorphisms in c_0, ℓ_1, and m*, Israel J. Math. **7** (1969), 227–239.

[LT1] J. Lindenstrauss and L. Tzafriri, *Classical Banach spaces I, Sequence spaces*, Springer-Verlag, (1977).

[LT2] J. Lindenstrauss and L. Tzafriri, *Classical Banach spaces II, Function spaces*, Springer-Verlag, (1979).

[Mac] G. Mackey, *Note on a theorem of Murray*, Bull. AMS **52** (1046), 322-325.
[Sam1] D. Samet, *Vector measures are open maps*, Math. Oper. Res. 9 (1984), 471–474.

[Sam2] D. Samet, *Continuous selections for vector measures*, Math. Oper. Res. 12 (1987), 536–543.

[Zip] M. Zippin, *A global approach to certain operator extension problems*, Longhorn Notes, Lecture Notes in Math. 1470 Springer-Verlag (1991), 78–84.

Department of Mathematics, Texas A&M University, College Station TX 77843, U.S.A.
Email address: johnson@math.tamu.edu

Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem, Israel
Email address: zippin@math.huji.ac.il