Ischemia-like oxygen and glucose deprivation mediates down-regulation of cell surface γ-aminobutyric acidB receptors via the endoplasmic reticulum (ER) stress-induced transcription factor CCAAT/enhancer-binding protein (C/EBP)-homologous protein (CHOP)

Maier, Patrick J; Zemoura, Khaled; Acuña, Mario A; Yévenes, Gonzalo E; Zeilhofer, Hanns Ulrich; Benke, Dietmar

Abstract: Cerebral ischemia frequently leads to long-term disability and death. Excitotoxicity is believed to be the main cause for ischemia-induced neuronal death. Although a role of glutamate receptors in this process has been firmly established, the contribution of metabotropic GABAB receptors, which control excitatory neurotransmission, is less clear. A prominent characteristic of ischemic insults is endoplasmic reticulum (ER) stress associated with the up-regulation of the transcription factor CCAAT/enhancer-binding protein-homologous protein (CHOP). After inducing ER stress in cultured cortical neurons by sustained Ca(2+) release from intracellular stores or by a brief episode of oxygen and glucose deprivation (in vitro model of cerebral ischemia), we observed an increased expression of CHOP accompanied by a strong reduction of cell surface GABAB receptors. Our results indicate that down-regulation of cell surface GABAB receptors is caused by the interaction of the receptors with CHOP in the ER. Binding of CHOP prevented heterodimerization of the receptor subunits GABAB1 and GABAB2 and subsequent forward trafficking of the receptors to the cell surface. The reduced level of cell surface receptors diminished GABAB receptor signaling and, thus, neuronal inhibition. These findings indicate that ischemia-mediated up-regulation of CHOP down-regulates cell surface GABAB receptors by preventing their trafficking from the ER to the plasma membrane. This mechanism leads to diminished neuronal inhibition and may contribute to excitotoxicity in cerebral ischemia.

DOI: https://doi.org/10.1074/jbc.M114.550517

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-97767
Accepted Version

Originally published at:
Maier, Patrick J; Zemoura, Khaled; Acuña, Mario A; Yévenes, Gonzalo E; Zeilhofer, Hanns Ulrich; Benke, Dietmar (2014). Ischemia-like oxygen and glucose deprivation mediates down-regulation of cell surface γ-aminobutyric acidB receptors via the endoplasmic reticulum (ER) stress-induced transcription factor CCAAT/enhancer-binding protein (C/EBP)-homologous protein (CHOP). Journal of Biological Chemistry, 289(18):12896-12907.
DOI: https://doi.org/10.1074/jbc.M114.550517
Ischemia-Like Oxygen and Glucose Deprivation Mediates Down-regulation of Cell Surface γ-Aminobutyric Acid\nReceptors via the ER Stress-Induced Transcription Factor CHOP

Patrick J. Maier1,2, Khaled Zemoura1,2, Mario A. Acuña1,2, Gonzalo E. Yévenes1, Hanns Ulrich Zeilhofer1,2,3 and Dietmar Benke1,2

1From the Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
2Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
3Institute of Pharmaceutical Sciences, ETH Zurich, 8093 Zurich, Switzerland

Running title: CHOP-induced down-regulation of cell surface GABA\nB receptors

To whom the correspondence should be addressed: Dietmar Benke, Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland, Tel.: 41-44-635-5930, Fax.: 41-44-635-6874, E-mail: benke@pharma.uzh.ch

Keywords: Cell surface, cerebral ischemia, CHOP, endoplasmic reticulum (ER), endoplasmic reticulum stress, GABA receptor, G protein coupled receptors, neurons, trafficking.

Background: ER-stress associated with cerebral ischemia induces the expression of the transcription factor CHOP.
Results: Interaction with CHOP downregulates cell surface GABA\textsubscript{B} receptors and thus GABA\textsubscript{B} receptor-mediated neuronal inhibition.
Conclusion: Interaction of CHOP with GABA\textsubscript{B} receptors in the ER prevents forward trafficking of the receptors.
Significance: This mechanism is expected to contribute to excitotoxicity in cerebral ischemia.

ABSTRACT
Cerebral ischemia frequently leads to long-term disability and death. Excitotoxicity is believed to be the main cause for ischemia-induced neuronal death. Although a role of glutamate receptors in this process has been firmly established, the contribution of metabotropic GABA\textsubscript{B} receptors, which control excitatory neurotransmission, is less clear. A prominent characteristic of ischemic insults is endoplasmic reticulum (ER) stress associated with the up-regulation of the transcription factor CHOP. After inducing ER stress in cultured cortical neurons by sustained Ca2+-release from intracellular stores or by a brief episode of oxygen and glucose deprivation (OGD, \textit{in vitro} model of cerebral ischemia), we observed an increased expression of CHOP accompanied by a strong reduction of cell surface GABA\textsubscript{B} receptors. Our results indicate that down-regulation of cell surface GABA\textsubscript{B} receptors is caused by the interaction of the receptors with CHOP in the ER. Binding of CHOP prevented heterodimerization of the receptor subunits GABA\textsubscript{B1} and GABA\textsubscript{B2} and subsequent forward trafficking of the receptors to the cell surface. The reduced level of cell surface receptors diminished GABA\textsubscript{B} receptor signaling and thus neuronal inhibition. These findings indicate that ischemia-mediated up-regulation of CHOP downregulates cell surface GABA\textsubscript{B} receptors by preventing their trafficking from the ER to the plasma membrane. This mechanism leads to diminished neuronal inhibition and may contribute to excitotoxicity in cerebral ischemia.

GABA\textsubscript{B} receptors are G\textsubscript{i/o} protein coupled receptors composed of the two obligatory and functionally distinct subunits GABA\textsubscript{B1} and GABA\textsubscript{B2}. GABA\textsubscript{B1} harbors the binding site for orthosteric ligands while GABA\textsubscript{B2} contains a binding site for allosteric modulators, recruits the
G protein and is required for trafficking of the receptors from the endoplasmic reticulum (ER) to the plasma membrane (reviewed in (1)). GABA$_{B1}$ contains an ER retention signal in the C-terminal domain, which retains unassembled GABA$_{B1}$ in the ER. Heterodimerization with GABA$_{B2}$ masks the ER retention signal and permits ER export of the receptor heterodimers (2-4). GABA$_B$ receptors are abundantly expressed throughout the mammalian central nervous system where they mediate slow and persistent inhibition. According to their prominent role in regulating neuronal excitability, GABA$_B$ receptors have been implicated in a variety of neurological disorders including cerebral ischemia.

In cerebral ischemia, excessive glutamatergic neurotransmission eventually leads to neuronal death (5). Decreased GABAergic activity appears to contribute to neuronal overexcitation (6) and there are indications that GABA$_B$ receptors are down-regulated under ischemic conditions (7-10). This suggests that impaired GABA$_B$ receptor signaling contributes to excitotoxicity. In line with these findings, enhancing GABA$_B$ receptor activity during ischemic insults by application of the receptor agonist baclofen has been reported to be neuroprotective in vitro and in vivo (10-19).

Cerebral ischemia induces ER stress, which is characterized by the accumulation of proteins in the ER, leading to the activation of several pathways to restore normal ER function (20). If, however, ER function is severely impaired and cellular homeostasis cannot be restored, apoptosis of the neuron is induced. ER stress triggers the activation and expression of a number of proteins, including up-regulation of the transcription factor CHOP (C/EBP-homologous protein, also known as C/EBP$_C$, growth arrest- and DNA damage-inducible gene 153 [GADD153] or DNA-damage inducible transcript 3 [DDIT3]). CHOP belongs to the C/EBP transcription factor family and has been shown to trigger apoptosis (21).

Besides its function as a transcription factor, there is evidence that CHOP interacts with GABA$_B$ receptors to regulate their cell surface expression. We previously showed that CHOP interacts with its C-terminal leucine zipper with the leucine zipper present in the C-terminal domain of GABA$_{B2}$ and with its N-terminal domain with an as yet unidentified site in GABA$_{B1}$ (22). Upon coexpression in HEK 293 cells, CHOP induced the intracellular accumulation of GABA$_B$ receptors and a significant reduction of cell surface receptors (22). However, the mechanism behind this down-regulation of cell surface receptors as well as its physiological role remained unclear. Because ischemic conditions cause ER stress and upregulates CHOP we aimed in the present study at elucidating the mechanism of CHOP-induced down-regulation of cell surface GABA$_B$ receptors in neurons and its putative role in cerebral ischemia. We found that ER stress-induced CHOP interacts with GABA$_B$ receptors in the ER to disrupt GABA$_B$ receptor heterodimerization. This prevents forward trafficking of the receptors to the plasma membrane and thus leads to the down-regulation of cell surface receptors and reduced GABA$_B$ receptor signaling. This mechanism is operative in an in vitro model of cerebral ischemia.

EXPERIMENTAL PROCEDURES

Antibodies – The following primary antibodies were used: rabbit GABA$_{B1a,b}$ directed against the C-terminus of GABA$_{B1}$ and rabbit GABA$_{B1b}$ directed against the N-terminus of GABA$_{B1b}$ (affinity-purified, 1:200 for immunofluorescence, 1:40 for in situ PLA; custom made by GenScript) (23) as well as rabbit GABA$_{B2}$ directed against the N-terminus of GABA$_{B2}$ (24) (affinity-purified, 1:500 for immunofluorescence, 1:40 for in situ PLA; custom made by GenScript), guinea pig GABA$_{B2}$ (1:50; Chemicon International, # AB5394), rabbit GABA$_A$ receptor a1 subunit (25) (affinity purified 1:100 for in situ PLA), mouse GABA$_A$ receptor b2/3 subunits (25) (1:500 for in situ PLA). mouse GADD153/CHOP (1:100, Santa Cruz Biotechnology, # sc-7351), mouse GADD153/CHOP (1:100 for immunofluorescence, 1:30 for in situ PLA; Cell Signaling Technology, # 2895), rabbit Anti-MAP Kinase (ERK-1, ERK-2, 1:500; Sigma Aldrich, # M5670), mouse Anti-MAP Kinase Activated (diphosphorylated ERK-1&2, 1:250; Sigma Aldrich, # M9692), rabbit NeuN (1:500; Millipore AG, # ABN78), goat PDI (1:150; Santa Cruz Biotechnology, # sc-17222), mouse GM130 (1:1500; Abcam, # ab32337), rabbit HA (1:200; Santa Cruz Biotechnology, # sc-805), rabbit c-myc (1:500; Santa Cruz Biotechnology, # sc-789). Secondary antibodies were either coupled to Alexa Fluor 488 (1:1000,
Invitrogen), Cy-3 (1:500, Jackson ImmunoResearch) or Cy-5 (1:300, Jackson ImmunoResearch).

Plasmids – Plasmids containing full-length cDNA of human CHOP and deletion mutants of CHOP (C-terminal deletion (ΔLZ) and N-terminal deletion (AN)) were described previously (22). Plasmids containing wild type and mutant rat GABA_{B1} and rat GABA_{B2} were kindly provided by Bernhard Bettler (University of Basel, Switzerland) and described in (3).

Drugs – The following drugs were used: thapsigargin (1 µM; Sigma Aldrich), (R)-baclofen (100 µM; Tocris Bioscience), CPG 56999A (10 µM; gift from Novartis, Basel, Switzerland).

Cell culture – Primary cortical neurons were prepared from E18 embryos of time-pregnant Wistar rats as described previously (26). Briefly, minced E8 cortex was incubated for 15 min with papain solution (0.5 mg/ml PBS, 1 mg/ml BSA, 10 mM glucose, 10 µg/ml DNaseI), washed with Dulbecco’s modified Eagle’s Medium containing 10% fetal calf serum and titrated using a Pasteur pipette. Neurons were plated at a density of 120,000 cells onto poly-L lysine coverslips (12 mm) in 24-well plates and kept in culture at 37°C and 5% CO₂ for 11-15 days. Neurons in neuron-glia co-cultures were transfected with plasmids using magnetofection exactly as described in (27). 60,000 cells were plated on 18 mm coverslips and kept in culture for 11-15 days at 37°C and 5% CO₂. Magnetofection was performed for 30 min on a pre-warmed magnetic plate.

Immunocytochemistry and Confocal Laser Scanning Microscopy – Multiplex-labeling immunocytochemistry was performed as described previously (26). For the visualization of cell surface GABA_B receptors, living neurons were incubated with primary antibodies for 2 h at 4°C in ACSF (2 mM CaCl₂, 2 mM MgCl₂, 30 mM L-glucose, 5 mM KCl, 119 mM NaCl, 25 mM HEPES, pH 7.4) containing 10% NGS (Normal Goat Serum). For staining of intracellular localized proteins, neurons were subsequently fixed with 4% paraformaldehyde for 15 min at room temperature and permeabilized for 6 min with 0.2 % Triton X-100. Neurons were then incubated with primary antibodies for 1 h (in PBS/10% NGS) at room temperature, washed four times for 5 min with PBS and incubated with secondary antibodies for 1 h. After four washes with PBS neurons were mounted in fluorescence mounting medium and analyzed by confocal laser scanning microscopy (LSM510 Meta; Zeiss). Images were acquired using a Zeiss 100x plan apochromat oil differential interference contrast objective (1.4 NA) at 512x512 pixel resolution for fluorescence intensity measurements or 1024x1024 pixel resolution for colocalization studies. For each neuron, 5 optical sections spaced by 0.4 µm were taken.

Fluorescence intensity measurements were performed using the Mac Biophotonics ImageJ software (version 1.41n). For analysis of cell surface protein expression, cells were carefully outlined and mean fluorescence intensity of the soma was subtracted. For total protein expression analysis, somata of neurons were carefully outlined and the mean intensity of the fluorescence signals was measured. An area of each image containing no specific signals was selected for determining background staining and was subtracted from the image.

Colocalization studies were performed using Imaris (version 7.1.1, Bitplane, Zurich, Switzerland). Images were smoothed using the median filter tool (filter size: 3x3x1) and further processed by setting threshold cutoffs for each channel to exclude background staining. Colocalization channels were built (colocalization intensity 255, constant value) and protein clusters (>15 pixels) as well as colocalized clusters were counted within a randomly selected 30 µm² area of the somata.

Gene expression assays – GABA_{B1}, GABA_{B2} and CHOP RNA levels were determined in cortical primary neurons using real-time PCR. Total RNA was extracted from neurons using the GenElute Mammalian Total RNA Miniprep Kit (Sigma Aldrich) according to the manufacturers recommendations. Reverse transcription was performed with the QuantiTec Reverse Transcription Kit (Quiaigen). Quantitative real-time PCR (7900HT Fast Real-Time PCR System; Applied Biosciences) was done using the prepared cDNA and TaqMan Gene Expression Assays (Applied Biosciences) for GABA_{B1} (Gabra1, Assay ID Rn00578911_m1), GABA_{B2} (Gabra2, Assay ID Rn00582550_m1), CHOP (Ddit3, Assay ID Rn00492098_g1) and β-actin (Actb, Assay ID Mm00607939_s1) as a control. Quantification of RNA levels was done using the ΔΔCt method.
Baclofen-Induced ERK\(_{1/2}\) Phosphorylation – GABA\(_B\) receptor activity was indirectly determined by measuring the levels of baclofen-induced ERK\(_{1/2}\) phosphorylation (28-31). Cortical neurons were incubated with the GABA\(_B\) receptor agonist baclofen for 10 min at 37 °C, 5% CO\(_2\) or were left untreated for controls. Subsequently, the cultures were placed on ice, fixed with 4% paraformaldehyde for 15 min at 4°C and permeabilized with 0.2% Triton X-100 for 6 min. For determination of ERK\(_{1/2}\) phosphorylation, cultures were incubated overnight at 4°C with antibodies directed against total ERK\(_{1/2}\) as well as with antibodies against diphosphorylated ERK\(_{1/2}\). After washing with PBS, secondary antibodies were added for 1h at room temperature and neurons were analyzed by measuring fluorescence intensities of total and diphosphorylated ERK\(_{1/2}\) levels using confocal laser scanning microscopy. Levels of phosphorylated ERK\(_{1/2}\) were normalized to total ERK\(_{1/2}\) levels. Specificity of the baclofen-induced ERK\(_{1/2}\) phosphorylation was determined using the GABA\(_B\) receptor antagonist CPG 56999A.

In situ proximity ligation assay (in situ PLA) – The in situ PLA is a highly sensitive antibody-based method for the visualization of protein-protein interactions and posttranslational modification in cultured cells and tissue section (32,33). This method employs two primary antibodies detecting the proteins of interest raised in different species and corresponding secondary antibodies (PLA probes) tagged with oligonucleotides. Only when the proteins of interest are in close proximity (<30 nm) specific connector oligonucleotides can be hybridized and ligated to the oligonucleotides attached to the secondary antibodies forming a circular oligonucleotide. Rolling circle amplification then creates a large DNA strand to which numerous fluorophor-labeled oligonucleotides (detection probes) are hybridized. This generates a bright fluorescent spot that can be easily detected by microscopy. Quantification is done by counting the number of spots.

Here we used in situ PLA for analyzing the interaction of CHOP with GABA\(_B\) receptors and the heterodimerization of GABA\(_B_1\) and GABA\(_B_2\). *In situ PLA* was performed using the Duolink Kit (Olink Bioscience) according to the manufacturers protocol as described previously (34). The specificity of the PLA signal was verified for both pairs of antibodies in HEK 293 cells expressing or not expressing one of the interaction partners. Furthermore, leaving out one of the primary antibodies completely prevented PLA signals. For *in situ* PLA neurons were fixed and permeabilized as described above and incubated with primary antibodies (in PBS/10% NGS) overnight at 4°C. After *in situ* PLA, neurons were analyzed by confocal laser scanning microscopy as described above. Protein-protein interactions were quantified by counting signal dots using the ImageJ software. Image-stacks (5 optical sections spaced by 0.4 μm) of individual neurons were merged visualizing maximum intensities and number of maxima per area was determined.

Forward trafficking assay – For visualization of the amount of GABA\(_B\) receptors inserted into the plasma membrane within a time period of 16 h, neurons were incubated in culture medium with antibodies directed against GABA\(_B_2\) for 2 h at 37°C. Following washes with ACSF to remove unbound primary antibody, cells were incubated for 2 h with a large excess of Alexa 488 conjugated secondary antibody to label (i.e. mask) the existing pool of cell surface receptors. After washing, the neurons were further incubated in culture medium for 16 h at 37°C to allow neosynthesis of GABA\(_B\) receptors and forward trafficking of receptors to the plasma membrane. Neurons were then placed on ice and stained at 4°C for receptors newly inserted into the plasma membrane using antibodies directed against GABA\(_B_2\) and Cy3-conjugated secondary antibodies. Neurons were then processed for confocal laser scanning microscopy. Controls for judging the efficiency of labeling (i.e. masking) the pool of cell surface receptors were treated in exactly the same but kept at 4°C for the 16 h incubation period.

Electrophysiology – Neurons of thapsigargin-treated or untreated control cultures were recorded in the whole-cell voltage-clamp configuration at room temperature. Spontaneously occurring postsynaptic currents (sPSCs) were recorded before, during and after the application of 50 μM baclofen at a holding potential of -60 mV. Patch electrodes were pulled from borosilicate glass and were filled with 120 mM CsCl, 10 mM EGTA, 10 mM HEPES (pH 7.4), 4 mM MgCl\(_2\), 0.5 mM GTP and 2 mM ATP. The external solution contained...
140 mM NaCl, 10 mM KCl, 2 mM CaCl$_2$, 1 mM MgCl$_2$, 10 mM HEPES pH 7.4 and 10 mM glucose. Recordings were performed with a HEKA EPC-7 amplifier and Patch Master v2.11 software (HEKA Elektronik, Germany). Baclofen (50 μM) was locally applied using an outlet tube (200 μm ID) of a custom-designed gravity-fed micro-perfusion system positioned 50-100 μm of the recorded neuron. All the synaptic events displaying amplitudes above the background noise (5–12 pA) were identified and analyzed off-line using the MiniAnalysis 6.0.7 software (Synaptosoft). Mean amplitudes and frequency values were obtained from 1 min-long recordings for each experimental condition and normalized.

Oxygen glucose deprivation (OGD) model of ischemia – Primary cortical neurons were washed twice with DMEM without glucose or with DMEM containing glucose for controls. For OGD, neurons were incubated for 10 min at 37°C in 95% N$_2$/5% CO$_2$ pre-bubbled glucose-free DMEM in an airtight box filled with 95% N$_2$/5% CO$_2$. Control cultures were incubated in DMEM containing glucose at 37°C in a physiological oxygen-containing environment. Subsequently, cells were washed twice with DMEM containing glucose and incubated for 24 h in their original culture medium.

RESULTS

CHOP Interacts with GABA$_B$ Receptors and Downregulates Cell Surface Receptors in Neurons – We had previously shown that the stress-induced transcription factor CHOP, which is only marginally expressed under normal physiological condition, interacts with GABA$_B$ receptors by binding to the coiled-coil motif in the C-terminal domain of GABA$_B_2$ and with a so far unidentified site in GABA$_B_1$ (22). Upon overexpression in HEK 293 cells, interaction of CHOP with GABA$_B$ receptors resulted in the intracellular accumulation and a reduced cell surface expression of the receptors by an as yet unknown mechanism (22). To confirm an interaction of GABA$_B$ receptors with CHOP in neurons, we overexpressed CHOP in cultured cortical neurons and tested for an interaction with GABA$_B$ receptors using the in situ proximity ligation assay (in situ PLA, (32,33)). In non-transfected neurons only very few PLA dots were detected, being in line with a low expression level of CHOP under normal physiological conditions. However, overexpression of CHOP dramatically increased PLA signals, indicating numerous GABA$_B$ receptor-CHOP interactions (Fig. 1A).

Because ER stress-induced up-regulation of CHOP has been shown to play an important role in ischemia-induced neuronal death (35-42) we then analyzed the mechanism of CHOP-induced down-regulation of cell surface GABA$_B$ receptors by exposing cultured cortical neurons to ER stress. ER stress was induced by treating neurons for 2 h with the sarco/endoplasmic reticulum Ca$^{2+}$-ATPase blocker thapsigargin. After a 16 h recovery period, neurons were analyzed for CHOP and GABA$_B$ receptor interaction using in situ PLA. Under control conditions, i.e. in untreated neurons, only few interactions were observed (Fig. 1B). However, upon up-regulation of CHOP with thapsigargin, numerous interactions with GABA$_B$ receptors were detected (454 ± 53% of control, n=30, p < 0.001, Fig. 1B). Thus, up-regulation of CHOP by ER stress resulted in an interaction with GABA$_B$ receptors. Under these conditions, no in situ PLA signals were generated using CHOP and GABA$_A$ receptor antibodies, documenting the specificity of the CHOP-GABA$_B$ receptor interaction (Fig. 1C).

An analysis of the protein expression levels revealed that CHOP was vastly up-regulated in thapsigargin-treated neurons (706 ± 65% of control, n=57, p < 0.001; Fig. 2A), whereas the cell surface staining of GABA$_B_1$ and GABA$_B_2$ was significantly decreased (GABA$_B_1$: 67 ± 4%, GABA$_B_2$: 50 ± 3% of control, n=50-55, p < 0.001; Fig. 2A). No colocalization of CHOP with cell surface GABA$_B$ receptors was detected. In contrast to cell surface receptors, total GABA$_B_1$ and GABA$_B_2$ expression levels remained unchanged in thapsigargin-treated neurons (Fig. 2B). These findings suggest that the interaction of CHOP with GABA$_B$ receptors caused a down-regulation of the receptors from the cell surface and their intracellular accumulation.

To verify that the loss of cell surface receptors was caused by the interaction of CHOP with GABA$_B$ receptors, neurons were transfected with mutant forms of CHOP that are unable to interact with GABA$_B_1$ (CHOPAN, N-terminal deletion (22)) or GABA$_B_2$ (CHOPΔLZ, deletion of C-terminal leucine zipper motif (22)). Neurons overexpressing wild type CHOP displayed a
work significantly reduced level of cell surface GABA$_{B2}$ compared to control neurons transfected with EGFP (63 ± 4%, n=82, p < 0.001; Fig. 2C). However, overexpressing either of the CHOP mutants did not affect cell surface expression of GABA$_B$ receptors (CHOPΔLZ: 92 ± 5%, p > 0.05, n=79; CHOPΔN: 103 ± 5%, n=101, p > 0.05), suggesting that down-regulation of cell surface receptors was based on its interaction with CHOP.

To rule out that up-regulation of CHOP affects transcription of GABA$_{B1}$ and GABA$_{B2}$, their mRNA levels were quantified in neurons treated with thapsigargin using real-time PCR (Fig. 2D). CHOP mRNA levels were drastically increased in thapsigargin-treated neurons (432 ± 54% of control, n=4, p < 0.001) but GABA$_{B1}$ and GABA$_{B2}$ mRNA levels remained unchanged (GABA$_{B1}$: 113 ± 6% of control, n=5, p > 0.05; GABA$_{B2}$: 94 ± 12% of control, n=5, p > 0.05). Thus, CHOP does not regulate GABA$_B$ receptor expression at the transcriptional level.

CHOP-Mediated Down-regulation of Cell Surface Receptors Reduces GABA$_B$ Receptor Signaling — It is well established that GABA$_B$ receptors activate extracellular-signal-regulated kinase 1/2 (ERK1/2) in neurons (28-31). To analyze the functional consequences of CHOP-mediated down-regulation of GABA$_B$ receptors, receptor activity was assayed based on baclofen-induced ERK1/2 phosphorylation. Activation of GABA$_B$ receptors with 100 μM baclofen in control neurons significantly increased ERK1/2 phosphorylation (159 ± 10%, n=26, p < 0.001; Fig. 3A), which was abolished by preincubation of neurons with the GABA$_B$ receptor antagonist CPG 56999A (106 ± 10%, n=26, p > 0.05; Fig. 3A). However, in thapsigargin-treated neurons no increase of ERK1/2 phosphorylation was observed (108 ± 8% of control, n=28, p > 0.05; Fig. 3A), indicating that CHOP-mediated down-regulation of cell surface GABA$_B$ receptors inhibits downstream signaling.

To test whether CHOP-induced down-regulation of GABA$_B$ receptors affects GABA$_B$ receptor-mediated neuronal inhibition, spontaneous synaptic activity was measured in electrophysiological experiments using the whole-cell voltage-clamp configuration. In untreated control neurons, application of baclofen considerably decreased the amplitude (66 ± 6% of control, n=9) and the frequency (38 ± 8% of control, n=5) of spontaneous postsynaptic currents (sPSCs) (Fig. 3B). However, after up-regulation of CHOP by treating cultures with thapsigargin, baclofen-induced inhibition of sPSCs was strongly reduced (amplitude: 87 ± 6% of control n=9, p < 0.05, frequency: 65 ± 9% of control, n=5, p < 0.05; Fig. 3B). This finding is consistent with an up-regulation of CHOP and subsequently reduced levels of functional GABA$_B$ receptors available for neuronal inhibition.

CHOP Interacts with GABA$_B$ Receptors in the ER and Interferes with Receptor Heterodimerization — Next, we investigated the mechanism of CHOP-mediated down-regulation of cell surface GABA$_B$ receptors. We envisioned two scenarios: 1) CHOP disrupts functional GABA$_B$ receptor heterodimers on the cell surface, which would lead to their internalization and degradation, or 2) CHOP interacts with GABA$_B$ receptors in the ER, inhibits receptor heterodimerization and consequently forward transport to the cell surface. To test these two scenarios, we analyzed the colocalization of CHOP and GABA$_B$ receptor subunits in different cellular compartments in untreated control neurons and neurons treated with thapsigargin to upregulate CHOP. In thapsigargin-treated neurons, GABA$_B$ receptors accumulated in the ER as indicated by an increased colocalization of GABA$_{B1}$ (control: 10 ± 0.7 clusters, n=20, thapsigargin: 15 ± 0.8 clusters, n=21, p < 0.001) and GABA$_{B2}$ (control: 7 ± 0.7 clusters, n=32, thapsigargin: 13 ± 0.7 clusters, n=32, p < 0.001) with the ER marker protein disulfide isomerase (PDI, Fig. 4A, B). Hardly any CHOP was observed in the ER under control conditions, whereas CHOP accumulated in the ER after thapsigargin treatment (GABA$_{B1}$ stained neurons, control: 2 ± 0.4 clusters, n=20, thapsigargin: 9 ± 0.9 clusters, n=21, p < 0.001; Fig. 4A; GABA$_{B2}$ stained neurons, control: 1.5 ± 0.4 clusters, n=32, thapsigargin: 9 ± 0.6 clusters, n=32, p < 0.001; Fig. 4B). Triple-colocalization of GABA$_{B}$-CHOP-PDI was basically absent under control conditions but significantly increased after up-regulation of CHOP by thapsigargin (Fig. 4A, B; GABA$_{B1}$-CHOP-PDI, control: 1.4 ± 0.3 clusters, n=20, thapsigargin: 6 ± 0.7 clusters, n=21, p < 0.01; GABA$_{B2}$-CHOP-PDI, control: 0.7 ± 0.3 clusters, n=32, thapsigargin: 6 ± 0.5 clusters, n=32, p < 0.001). These findings indicate that GABA$_B$ receptors interact with CHOP in the ER, which
leads to the accumulation of GABA$_{B1}$ and GABA$_{B2}$ in the ER.

In contrast, GABA$_B$ receptors did not display increased colocalization with the Golgi apparatus marker (GM) GM130 in thapsigargin-treated neurons (control: 27 ± 3 clusters, n=19, thapsigargin: 30 ± 3 clusters, p > 0.05, n=19; Fig. 4C), indicating no accumulation of GABA$_B$ receptors in the Golgi after up-regulation of CHOP. In line with this finding, there was no statistically significant increase in CHOP-GM colocalization control: 3 ± 1 clusters, n=19; thapsigargin: 7 ± 2 clusters, p > 0.05, n=19; Fig. 4C), indicating marginal interactions between CHOP and GABA$_B$ receptors in the Golgi after thapsigargin-induced up-regulation of CHOP.

In addition, there was no significant colocalization of CHOP with GABA$_B$ receptors at the cell surface (control: 1.3 ± 0.2 clusters, n=45; thapsigargin: 2.3 ± 0.5 clusters, n=44, p > 0.05; Fig. 4D), indicating that GABA$_B$ receptors do not interact with CHOP in the plasma membrane.

To demonstrate that the accumulation of GABA$_B$ receptors in the ER is mediated by direct interaction with CHOP, we expressed in neurons a mutant form of GABA$_{B2}$ lacking its leucine zipper (GABA$_{B2}\Delta LZ$), and thus its CHOP interaction site, together with GABA$_{B1}$ containing a mutated ER retention signal (GABA$_{B1}\mathrm{ASA}$) to ensure forward trafficking of the receptors. GABA$_{B1}\mathrm{ASA}$ was required because deletion of the GABA$_{B2}$ leucine zipper un masks the ER retention signal in the C-terminus of GABA$_{B1}$ and therefore prevents forward trafficking of the receptors. To verify normal trafficking behavior of the GABA$_{B1}\mathrm{ASA}/GABA_{B2}\Delta LZ$ heterodimers we analyzed the colocalization of GABA$_{B1}\mathrm{ASA}$ and GABA$_{B2}\Delta LZ$ with PDI and CHOP in thapsigargin-treated and untreated neurons. In thapsigargin-treated neurons, GABA$_{B1}\mathrm{ASA}$ (control: 10 ± 3 clusters, n=12; thapsigargin: 15 ± 5 clusters, n=19, p < 0.01, Fig. 5A), GABA$_{B2}$ (control: 13 ± 5 clusters, n=17; thapsigargin: 17 ± 4 clusters, n=15, p < 0.01, Fig. 5B) and CHOP (Fig. 5A, control: 1.3 ± 1.4 clusters, n=13, thapsigargin: 11 ± 5 clusters, n=20, p < 0.001; Fig. 5B, control: 1.4 ± 1.8 clusters, n=17, thapsigargin: 11 ± 5 clusters, n=16, p < 0.001) showed increased colocalization with the ER marker PDI. Also, increased colocalization of GABA$_{B1}$ or GABA$_{B2}$ with CHOP and PDI (GABA$_{B1}$/CHOP/PDI and GABA$_{B2}$/CHOP/PDI) was detected in thapsigargin-treated neurons (GABA$_{B1}$/ASA, control: 0.7 ± 1.1 clusters, n=13, thapsigargin: 7 ± 4 clusters, n=20, p < 0.001; GABA$_{B2}$, control: 0.8 ± 1.1 clusters, n=17, thapsigargin: 6 ± 3 clusters, n=16, p < 0.001; Fig. 5A, B). The identical colocalization patterns of GABA$_{B1}$/ASA/GABA$_{B2}$ receptors and endogenous GABA$_B$ receptors indicate normal trafficking capabilities of the mutant receptors.

However, transfection of neurons with GABA$_{B1}$/ASA/GABA$_{B2}\Delta LZ$ receptors, which lack the CHOP interaction site in GABA$_{B2}$, fully abolished the increased colocalization of GABA$_{B1}$/PDI (control: 13 ± 4 clusters, n=14; thapsigargin: 10 ± 4 clusters, n=20, p > 0.05), GABA$_{B2}$/PDI (control: 12 ± 5 clusters, n=14; thapsigargin: 9 ± 3 clusters, n=11, p > 0.05) as well as GABA$_{B1}$/CHOP-PDI (control: 0.5 ± 1.1 clusters, n=15; thapsigargin: 1.5 ± 1.5 clusters, n=22, p > 0.05) and GABA$_{B2}$/CHOP-PDI (control: 0.3 ± 0.8 clusters, n=14; thapsigargin: 1.3 ± 1.2 clusters, n=12, p > 0.05; Fig. 5A, B) after induction of CHOP with thapsigargin. This result verified that CHOP directly interacts with GABA$_B$ receptors to induce their accumulation in the ER.

Because GABA$_{B1}$ and GABA$_{B2}$ interact via the leucine zippers in their C-terminal domains, binding of CHOP to GABA$_{B2}$ may prevent GABA$_B$ receptor heterodimerization and thus inhibit forward trafficking of the receptors. Therefore, we tested whether up-regulation of CHOP interferes with heterodimerization of GABA$_{B1}$ and GABA$_{B2}$ using in situ PLA. In thapsigargin-treated neurons we observed a significant reduction of in situ PLA signals (64 ± 5% of control, n=32, p < 0.001; Fig. 5C), indicating the presence of considerably less GABA$_{B1}$/GABA$_{B2}$ heterodimers as compared to untreated control neurons. This result suggests that interaction of CHOP with GABA$_B$ receptors disrupts or prevents heterodimerization of GABA$_{B1}$ and GABA$_{B2}$.

These findings suggest a mechanism, in which CHOP interacts with GABA$_B$ receptors in the ER after cellular stress to prevent heterodimerization of GABA$_{B1}$ and GABA$_{B2}$. Because only heterodimerized GABA$_B$ receptors can leave the ER (2-4), this mechanism is expected to impede
forward trafficking of newly synthesized receptors to the plasma membrane.

Up-regulation of CHOP Prevents Forward Trafficking of GABA_B Receptors to the Cell Surface – To test whether up-regulation of CHOP impairs forward trafficking of GABA_B receptors to the cell surface we transfected neurons with HA-tagged GABA_{B2} and CHOP. Twenty-four hours after transfection newly synthesized HA-tagged receptors inserted into the plasma membrane were detected using an anti-HA antibody. In control neurons only transfected with HA-GABA_{B2} strong cell surface expression of HA-tagged GABA_{B2} was detected (Fig. 6A). However, in neurons transfected with CHOP staining for cell surface HA-GABA_{B2} was strongly reduced (36 ± 4% of control, n=25, p < 0.001; Fig. 6A). This reduction of cell surface HA-GABA_{B2} was not observed in neurons expressing a mutant of CHOP (CHOPΔLZ) that is unable to bind to GABA_{B2} (80 ± 7% of control, n=25, p > 0.05; Fig. 6A). These results suggest that the interaction of CHOP with GABA_{B2} impairs forward trafficking of GABA_B receptors to the cell surface.

This result was confirmed for native GABA_B receptors with an immunofluorescence-based forward trafficking assay using untreated control neurons and thapsigargin-treated neurons. After masking the existing receptor pool on the cell surface with primary and secondary antibodies, the insertion of new receptors into the plasma membrane was tested after 16 h. Membrane insertion of new receptors into the plasma surface with primary and secondary antibodies, the masking the existing receptor pool on the cell surface and thapsigargin-treated neurons. After forward trafficking assay using untreated control receptors with an immunofluorescence-based This result was confirmed for native GABA_B receptors with an immunofluorescence-based forward trafficking assay using untreated control neurons and thapsigargin-treated neurons. After masking the existing receptor pool on the cell surface with primary and secondary antibodies, the insertion of new receptors into the plasma membrane was tested after 16 h. Membrane insertion of new receptors into the plasma surface with primary and secondary antibodies, the masking the existing receptor pool on the cell surface and thapsigargin-treated neurons. After forward trafficking assay using untreated control receptors with an immunofluorescence-based

DISCUSSION

GABA_B receptor-mediated neuronal inhibition critically depends on the availability of receptors in the plasma membrane. Receptor numbers might be altered under pathological conditions and a loss of receptors resulting in diminished neuronal inhibition is expected to contribute to the disease state. We previously showed that the ER stress-induced transcription factor CHOP interacts with GABA_B receptors, causing their down-regulation from the plasma surface upon coexpression in HEK 293 (22). This finding suggests that CHOP, besides its function as transcription factor, may regulate GABA_B receptor-mediated neuronal inhibition by affecting the availability of cell surface receptors. Because CHOP is expressed at very low levels under normal physiological conditions but is highly up-regulated after induction of ER-stress (21,43-45), CHOP-induced down-regulation of cell surface GABA_B receptors may be a contributing factor to neurological disease states associated with ER stress, such as stroke, Alzheimer’s and Parkinson’s disease or bipolar disorders (20).

In the present study, we verified that ER stress-induced CHOP expression down-regulates cell
surface GABA_B receptors also in neurons and disclosed the mechanism underlying this effect. An *in vitro* model of ischemia suggests that this mechanism is operative in cerebral ischemia.

We induced up-regulation of CHOP in cultured neurons by inhibition of the sarco/endoplasmic reticulum Ca^{2+}-ATPase with thapsigargin, which leads to the depletion of Ca^{2+} from the ER thereby causing ER stress (46). Thapsigargin up-regulated CHOP in neurons and considerably down-regulated GABA_B receptors from the cell surface. The reduced level of cell surface receptors consequently affected downstream signaling of GABA_B receptors as shown by impaired ERK$_{1,2}$ phosphorylation and reduced baclofen-induced inhibition of spontaneous neuronal activity.

Down-regulation of cell surface GABA_B receptors was mediated by the interaction of the receptors with CHOP since overexpression in neurons of mutant forms either lacking the site binding to GABA_B_1 or the site binding to GABA_B_2 prevented down-regulation of the receptors. Most importantly, up-regulation of CHOP did not affect the mRNA levels of GABA_B_1 and GABA_B_2, ruling out a contribution of impaired subunit transcription (Fig. 2D).

Up-regulated CHOP selectively accumulates together with GABA_B receptors in the ER, suggesting that interaction with CHOP retains GABA_B receptors in the ER and prevents their forward trafficking to the cell surface. This conclusion is supported by the finding that mutant GABA_B receptors not containing the CHOP binding site in GABA_B_2 do not accumulate in the ER and that the insertion of new receptors into the plasma membrane is strongly reduced upon up-regulation of CHOP. The mechanism that interferes with forward trafficking of the receptors appears to involve prevention or disruption of receptor heterodimerization as indicated by our *in situ* PLA experiments. It is currently not clear whether CHOP prevents heterodimerization of newly synthesized GABA_B_1 and GABA_B_2 by binding to GABA_B_1 and GABA_B_2 or directly disrupts already existing heterodimers. In either case, preventing heterodimerization exposes the ER retention signal in the C-terminal domain of GABA_B_1, which prohibits ER exit of GABA_B_1 (2-4). In addition, GABA_B_2 contains a C-terminal sequence (amino acids 841-862) which is important for forward trafficking (47). Binding of CHOP to the leucine-zipper domain of GABA_B_2, upstream of this motif, might sterically interfere with the function of this motif and prevent ER export of GABA_B_2.

The mechanism of CHOP-induced down-regulation of cell surface receptors appears to be operative under ischemic conditions. This is not surprising because cerebral ischemia has been shown to be associated with ER stress and the profound up-regulation of CHOP (35-42). Using the OGD *in vitro* model of ischemia, we found that up-regulated CHOP mediates down-regulation cell surface GABA_B receptors, which depended on the interaction of CHOP with the receptors.

So far, the effect of cerebral ischemia on GABA_B receptor expression levels has been rarely investigated and the results are difficult to correlate because different animal species and experimental conditions were used. *In vivo* models of ischemia demonstrated a loss of GABA_B receptors 1-4 days after the insult (7-9). Because considerable ischemia-induced neuronal death occurs during this time period, the loss of GABA_B receptors might be due, at least in part, to a loss of GABA_B receptor expressing neurons. A recent *in vitro* study on cultured hippocampal slices using a similar OGD paradigm as in this study detected down-regulation of total GABA_B but no effect on the expression of total GABA_B_1 (10). In the present study, we detected down-regulation of both GABA_B_1 and GABA_B_2 selectively from the cell surface but did not observe changes in total receptor expression. The reason for this discrepancy is not clear yet but it may be caused by different experimental conditions used (organotypic hippocampal slices, 45 min OGD versus cultured cortical neurons, 10 min OGD).

Cerebral ischemia is associated with excessive glutamate release and overstimulation of glutamate receptors triggers a signaling cascade leading to neuronal death (48). The enhanced neuronal activity also increases extracellular levels of GABA (6), which in turn should activate GABA_B receptors located at glutamatergic synapses to counteract, at least partially, the increased neuronal excitation to reduce excitotoxicity. The down-regulation of functional GABA_B receptors from the cell surface might therefore be one factor that fosters excitotoxicity. It is well established that sustained activation of GABA_B receptors (by application of baclofen) under ischemic conditions...
reduces neuronal cell death (10-19). In this regard, it is conceivable that restoring normal cell surface expression of GABA$_B$ receptors under ischemic conditions would also reduce excitotoxicity. This view is supported by a recent study showing that mild hypothermia reverses down-regulation of total GABA$_{B1}$ after cerebral ischemia by an unknown mechanism and reduces neuronal death (8).

One opportunity to restore normal cell surface GABA$_B$ receptor levels would be the application of small synthetic peptides interfering with the CHOP-GABA$_B$ receptor interaction. Further experiments are required to identify small peptide sequences that inhibit the interaction of CHOP with GABA$_B$ receptors but do not interfere with receptor heterodimerization. This approach provides the opportunity to unambiguously test the hypothesis whether CHOP-induced down-regulation of cell surface GABA$_B$ receptors promotes excitotoxicity. If this is the case small interfering peptides may be of potential therapeutic use to limit neuronal death under ischemic conditions. Such an intervention would be highly specific because CHOP is significantly expressed only upon ER stress and it targets a specific protein-protein interaction in response to the ischemic insult and is thus expected to be associated with low risk of side effects.

REFERENCES

1. Bettler, B., Kaupmann, K., Mosbacher, J., and Gassmann, M. (2004) Molecular structure and physiological functions of GABA$_B$ receptors. *Physiol. Rev.* 84, 835-867.
2. Margeta-Mitrovic, M., Jan, Y. N., and Jan, L. Y. (2000) A trafficking checkpoint controls GABA$_B$ receptor heterodimerization. *Neuron* 27, 97-106.
3. Pagano, A., Rovelli, G., Mosbacher, J., Lohmann, T., Duthey, B., Stauffer, D., Ristig, D., Schuler, V., Meigel, I., Lampert, C., Stein, T., Prezeau, L., Blahos, J., Pin, J. P., Froestl, W., Kuhn, R., Heid, J., Kaupmann, K., and Bettler, B. (2001) C-terminal interaction is essential for surface trafficking but not for heteromeric assembly of GABA$_B$ receptors. *J. Neurosci.* 21, 1189-1202.
4. Calver, A. R., Robbins, M. J., Cosio, C., Rice, S. Q. J., Babbs, A. J., Hirst, W. D., Boyfield, I., Wood, M. D., Russell, R. B., Price, G. W., Couve, A., Moss, S. J., and Pangalos, M. N. (2001) The C-terminal domains of the GABA$_B$ receptor subunits mediate intracellular trafficking but are not required for receptor signaling. *J. Neurosci.* 21, 1203-1210.
5. Lipton, P. (1999) Ischemic cell death in brain neurons. *Physiol. Rev.* 79, 1431-1568.
6. Schwartz-Bloom, R. D., and Sah, R. (2001) γ-Aminobutyric acid(A) neurotransmission and cerebral ischemia. *J. Neurochem.* 77, 353-371.
7. Vollenweider, F., Bendfeldt, K., Maetzler, W., Otten, U., and Nitsch, C. (2006) GABA$_B$ receptor expression and cellular localization in gerbil hippocampus after transient global ischemia. *Neurosci. Lett.* 395, 118-123.
8. Kim, J. Y., Kim, N., Yenari, M. A., and Chang, W. (2011) Mild hypothermia suppresses calcium-sensing receptor (CaSR) induction following forebrain ischemia while increasing GABA$_B$ receptor 1 (GABA$_B$-R1) expression. *Transl. Stroke Res.* 2, 195-201.
9. Francis, J., Zhang, Y., Ho, W., Wallace, M. C., Zhang, L., and Eubanks, J. H. (1999) Decreased hippocampal expression, but not functionality, of GABA$_B$ receptors after transient cerebral ischemia in rats. *J. Neurochem.* 72, 87-94.
10. Cimarosti, H., Kantamneni, S., and Henley, J. M. (2009) Ischaemia differentially regulates GABA$_B$ receptor subunits in organotypic hippocampal slice cultures. *Neuropharmacology* 56, 1088-1096.
11. Babcock, A. M., Everingham, A., Paden, C. M., and Kimura, M. (2002) Baclofen is neuroprotective and prevents loss of calcium/calmodulin-dependent protein kinase II immunoreactivity in the ischemic gerbil hippocampus. *J. Neurosci. Res.* 67, 804-811.
12. Dave, K. R., Lange-Asschenfeldt, C., Raval, A. P., Prado, R., Busto, R., Saul, I., and Perez-Pinzon, M. A. (2005) Ischemic preconditioning ameliorates excitotoxicity by shifting glutamate/γ-aminobutyric acid release and biosynthesis. *J. Neurosci. Res.* **82**, 665-673
13. Jackson-Friedman, C., Lyden, P. D., Nunez, S., Jin, A., and Zweifler, R. (1997) High dose baclofen is neuroprotective but also causes intracerebral hemorrhage: a quantal bioassay study using the intraluminal suture occlusion method. *Exp. Neurol.* **147**, 346-352
14. Kulinskii, V. I., and Mikhel’son, G. V. (2000) Additivity and independence of neuroprotective effects of GABA_\text{A} and GABA_\text{B} receptor agonists in complete global cerebral ischemia. *Bull Exp. Biol. Med.* **130**, 772-774
15. Han, D., Zhang, Q. G., Yong, L., Li, C., Zong, Y. Y., Yu, C. Z., Wang, W., Yan, J. Z., and Zhang, G. Y. (2008) Co-activation of GABA receptors inhibits the JNK3 apoptotic pathway via the disassembly of the GluR6-PSD95-MLK3 signaling module in cerebral ischemic-reperfusion. *FEBS Lett.* **582**, 1298-1306
16. Lal, S., Shuaib, A., and Ijaz, S. (1995) Baclofen is cytoprotective to cerebral ischemia in gerbils. *Neurochem. Res.* **20**, 115-119
17. Xu, J., Li, C., Yin, X. H., and Zhang, G. Y. (2008) Additive neuroprotection of GABA_\text{A} and GABA_\text{B} receptor agonists in cerebral ischemic injury via PI-3K/Akt pathway inhibiting the ASK1-JNK cascade. *Neuropharmacology* **54**, 1029-1040
18. Zhou, C., Li, C., Yu, H. M., Zhang, F., Han, D., and Zhang, G. Y. (2008) Neuroprotection of γ-aminobutyric acid receptor agonists via enhancing neuronal nitric oxide synthase (Ser847) phosphorylation through increased neuronal nitric oxide synthase and PSD95 interaction and inhibited protein phosphatase activity in cerebral ischemia. *J. Neurosci.* **36**, 2973-2983
19. Zhang, F., Li, C., Wang, R., Han, D., Zhang, Q. G., Zhou, C., Yu, H. M., and Zhang, G. Y. (2007) Activation of GABA receptors attenuates neuronal apoptosis through inhibiting the tyrosine phosphorylation of NR2A by Src after cerebral ischemia and reperfusion. *Neuroscience* **150**, 938-949
20. Kim, I., Xu, W., and Reed, J. C. (2008) Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. *Nat. Rev. Drug. Discov.* **7**, 1013-1030
21. Oyadomari, S., and Mori, M. (2004) Roles of CHOP/GADD153 in endoplasmic reticulum stress. *Cell Death Differ.* **11**, 381-389
22. Sauter, K., Grampp, T., Fritschy, J. M., Kaupmann, K., Bettler, B., Mohler, H., and Benke, D. (2005) Subtype-selective interaction with the transcription factor CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) regulates cell surface expression of GABA_\text{B} receptors. *J. Biol. Chem.* **280**, 33566-33572
23. Benke, D., Homer, M., Michel, C., Bettler, B., and Mohler, H. (1999) γ-aminobutyric acid type B receptor splice variant proteins GBR1a and GBR1b are both associated with GBR2 in situ and display differential regional and subcellular distribution. *J. Biol. Chem.* **274**, 27323-27330
24. Benke, D., Michel, C., and Mohler, H. (2002) Structure of GABA_\text{B} receptors in rat retina. *J. Recept. Signal Transduc.** **22**, 253-266
25. Benke, D., Mertens, S., Trzeciak, A., Gillessen, D., and Mohler, H. (1991) GABA_\text{A} receptors display association of γ 2-subunit with α1- and β2/3-subunits. *J. Biol. Chem.* **266**, 4478-4483
26. Grampp, T., Notz, V., Broll, I., Fischer, N., and Benke, D. (2008) Constitutive, agonist-accelerated, recycling and lysosomal degradation of GABA_\text{B} receptors in cortical neurons. *Mol. Cell. Neurosci.* **39**, 628-637
27. Buerli, T., Pellegrino, C., Baer, K., Lardi-Studler, B., Chudotvorova, I., Fritschy, J. M., Medina, I., and Fuhrer, C. (2007) Efficient transfection of DNA or shRNA vectors into neurons using magnetofection. *Nat. Protoc.* **2**, 3090-3101
28. Vanhoose, A. M., Emery, M., Jimenez, L., and Winder, D. G. (2002) ERK activation by G-protein-coupled receptors in mouse brain is receptor identity-specific. *J. Biol. Chem.* **277**, 9049-9053
29. Ren, X., and Mody, I. (2003) Gamma-hydroxybutyrate reduces mitogen-activated protein kinase phosphorylation via GABA_B receptor activation in mouse frontal cortex and hippocampus. *J. Biol. Chem.* **278**, 42006-42011

30. Tu, H., Rondard, P., Xu, C., Bertaso, F., Cao, F., Zhang, X., Pin, J. P., and Liu, J. (2007) Dominant role of GABA_{B2} and G_{Bγ} for GABA_B receptor-mediated-ERK1/2/CREB pathway in cerebellar neurons. *Cell Signal.* **19**, 1996-2002

31. Im, B. H., and Rhim, H. (2012) GABA_B receptor-mediated ERK1/2 phosphorylation via a direct interaction with Ca_{V1.3} channels. *Neurosci. Lett.* **513**, 89-94

32. Soderberg, O., Gullberg, M., Jarvius, M., Ridderstrale, K., Leuchowius, K. J., Jarvius, J., Wester, K., Hydbring, P., Bahram, F., Larsson, L. G., and Landegren, U. (2006) Direct observation of individual endogenous protein complexes in situ by proximity ligation. *Nat. Methods* **3**, 995-1000

33. Zemoura, K., and Benke, D. (2014) Proteasomal degradation of γ-aminobutyric acid_B receptors is mediated by the interaction of the GABA_{B2} C terminus with the proteasomal ATPase Rtp6 and regulated by neuronal activity. *J. Biol. Chem.* (Epub ahead of print, doi: 10.1074/jbc.M113.541987)

35. Hossmann, K. A. (1993) Disturbances of cerebral protein synthesis and ischemic cell death. *Prog. Brain Res.* **96**, 161-177

36. Paschen, W., and Doutheil, J. (1999) Disturbance of endoplasmic reticulum functions: a key mechanism underling cell damage? *Acta Neurochir.* **73**, 1-5

37. Osada, N., Kosuge, Y., Kihara, T., Ishige, K., and Ito, Y. (2009) Apolipoprotein E-deficient mice are more vulnerable to ER stress after transient forebrain ischemia. *Neurochem. Int.* **54**, 403-409

38. Osada, N., Kosuge, Y., Ishige, K., and Ito, Y. (2010) Characterization of neuronal and astroglial responses to ER stress in the hippocampal CA1 area in mice following transient forebrain ischemia. *Neurochem. Int.* **57**, 1-7

39. Tajiri, S., Oyadomari, S., Yano, S., Morioka, M., Gotoh, T., Hamada, J.-I., Ushio, Y., and Mori, M. (2004) Ischemia-induced neuronal cell death is mediated by the endoplasmic reticulum stress pathway involving CHOP. *Cell Death Diff.* **11**, 403-415

40. Paschen, W., Gissel, C., Linden, T., Althausen, S., and Doutheil, J. (1998) Activation of gadd153 expression through transient cerebral ischemia: evidence that ischemia causes endoplasmic reticulum dysfunction. *Mol. Brain Res.* **60**, 115-122

41. Oida, Y., Shimazawa, M., Imaizumi, K., and Hara, H. (2008) Involvement of endoplasmic reticulum stress in the neuronal death induced by transient forebrain ischemia in gerbil. *Neuroscience* **151**, 111-119

42. Morimoto, N., Oida, Y., Shimazawa, M., Miura, M., Kudo, T., Imaizumi, K., and Hara, H. (2007) Involvement of endoplasmic reticulum stress after middle cerebral artery occlusion in mice. *Neuroscience* **147**, 957-967

43. Fornace, A. J., Jr., Alamo, I. Jr., and Hollander, M. C. (1988) DNA damage-inducible transcripts in mammalian cells. *Proc. Natl. Acad. Sci. USA* **85**, 8800-8804

44. Oyadomari, S., Araki, E., and Mori, M. (2002) Endoplasmic reticulum stress-mediated apoptosis in pancreatic β-cells. *Apoptosis* **7**, 335-345

45. Zinszner, H., Kuroda, M., Wang, X., Batchvarova, N., Lightfoot, R. T., Remotti, H., Stevens, J. L., and Ron, D. (1998) CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. *Genes Dev.* **12**, 982-995

46. Lytton, J., Westlin, M., and Hanley, M. R. (1991) Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca-ATPase family of calcium pumps. *J. Biol. Chem.* **266**, 17067-17071
47. Pooler, A. M., Gray, A. G., and McIlhinney, R. A. (2009) Identification of a novel region of the GABA$_{B2}$ C-terminus that regulates surface expression and neuronal targeting of the GABA$_B$ receptor. Eur. J. Neurosci. 29, 869-878

48. Kostandy, B. B. (2012) The role of glutamate in neuronal ischemic injury: the role of spark in fire. Neurol. Sci. 33, 223-237

FOOTNOTES
This study was supported by the Swiss National Science Foundation (grants 31003A_121963 and 31003A_138382 to D. B.). We thank Dr. J.-M. Fritschy for his continuous support in confocal microscopy and for providing E18 rat cortex, C. Sidler and G. Bosshard for preparation of E18 rat cortex and T. Grampp for technical assistance. We are grateful to L. Scheurer for his help with real-time PCR.

The abbreviations used are: ER, endoplasmic reticulum; ERAD, ER-associated degradation; GABA, γ-aminobutyric acid; OGD, oxygen and glucose deprivation; PLA, proximity ligation assay; sPSCs, spontaneous postsynaptic currents.

FIGURE LEGENDS

Figure 1. Up-regulated CHOP interacts with GABA$_B$ receptors in neurons.
A, CHOP over-expressed in neurons interact with GABA$_B$ receptors. Cortical neurons were left non-transfected (-CHOP) or were transfected with CHOP (+CHOP) and analyzed for interaction with GABA$_B$ receptors by in situ PLA using antibodies directed against CHOP and GABA$_{B2}$. Because under normal physiological conditions CHOP expression is low, only few interactions (white dots in representative images) were detected. However, overexpression of CHOP resulted in numerous CHOP-GABA$_B$ receptor interactions. The images represent merged Z-stack reconstructions of 5 optical section spaced by 0.4 μm. Scale bar: 5 μm.

B, Thapsigargin-induced CHOP interacts with GABA$_B$ receptors. Cortical neurons were incubated with 2 μM thapsigargin for 2 h and were allowed to recover in their original culture medium for 16 h. The interaction of CHOP with GABA$_B$ receptors was determined by in situ PLA using antibodies directed against CHOP and GABA$_{B2}$ (white dots in representative images, left; scale bar: 5 μm). Right: quantification of in situ PLA signals. Means ± S.E.M., 30 neurons from four experiments. ***, p<0.001, t-test.

C, CHOP does not interact with GABA$_A$ receptors. Cortical neurons were treated (TG) or not (Ctrl) with 2 μg thapsigargin for 2 h and were allowed to recover in their original culture medium for 16 h. The interaction of CHOP with GABA$_A$ receptors was determined by in situ PLA using antibodies directed against CHOP and the α1 subunit of GABA$_A$ receptors. No interactions were observed (right panels). As a positive control, the interaction of the GABA$_A$ receptor subunits α1 and β2/3 was tested. Numerous interactions were detected in untreated neurons (white dots in representative image, left panel). The images represent merged Z-stack reconstructions of 5 optical section spaced by 0.4 μm. Scale bar: 5 μm.

Figure 2. Up-regulated CHOP in neurons mediate down-regulation of cell surface GABA$_B$ receptors.
A, Up-regulation of CHOP down-regulates cell surface GABA$_B$ receptors. Neurons were treated with thapsigargin and stained for surface GABA$_{B1}$ and GABA$_{B2}$ (green). Subsequently cells were fixed, permeabilized and stained for CHOP (red). Neurons not treated with thapsigargin served as controls. Left: representative images; scale bar: 7 μm. Right: quantification of cell surface GABA$_{B1}$, GABA$_{B2}$ and CHOP. Means ± S.E.M., 50-55 neurons from five experiments. ***, p<0.001, t-test.

A, Up-regulation of CHOP does not affect total GABA$_B$ receptor expression levels. Neurons were treated with thapsigargin and stained for total GABA$_{B1}$ and GABA$_{B2}$ (green) and CHOP (red). Neurons not treated with thapsigargin served as controls (Ctrl). Scale bar: 10 μm. Bar graphs show quantification of
total expression levels of GABA_{B1} and GABA_{B2}. Means ± S.E.M., 30 neurons from three experiments. n.s., p>0.05, t-test.

C. Mutant forms of CHOP that cannot bind to GABA_B receptors do not mediate down-regulation of cell surface receptors. Neurons were cotransfected with EGFP and CHOP or mutant forms of CHOP lacking its interaction site with GABA_{B2} (CHOPΔLZ) or its interaction site with GABA_{B1} (CHOPΔN). After 48 h, transfected neurons were stained for cell surface GABA_{B2} (green) and for CHOP (red). Left: representative images; scale bar: 10 μm. Right: quantification of cell surface GABA_{B2} levels in neurons expressing either CHOP, CHOPΔLZ or CHOPΔN. Means ± S.E.M., 82 (EGFP and CHOP), 79 (CHOPΔLZ) and 101 (CHOPΔN) neurons from three experiments. ***, p<0.001, one way ANOVA, Bonferroni's multiple comparison test.

D. CHOP does not regulate GABA_B receptor mRNA levels. Total mRNA was isolated from neuronal cultures treated or not treated (controls) with thapsigargin. CHOP, GABA_{B1} and GABA_{B2} mRNA was quantified using real-time PCR. Means ± S.E.M., 4 (CHOP) and 5 (GABA_{B1} and GABA_{B2}) individual cultures were analyzed. ***, p<0.001, n.s.: not significant (p>0.05), t-test.

Figure 3. CHOP-mediated down-regulation of cell surface GABA_B receptors impairs GABA_B receptor-mediated downstream signaling.

A. GABA_B receptor-induced phosphorylation of ERK_{1/2} was prevented by the GABA_B receptor antagonist CPG 56999A and by thapsigargin-induced up-regulation of CHOP. Neurons were treated with thapsigargin (+TG) to upregulate CHOP while control cultures remained untreated. Subsequently, neurons were incubated for 10 min with 100 μM baclofen in the presence or absence of 10 μM CPG 56999A (+CGP, GABA_B receptor antagonist). After fixation and permeabilization neurons were stained for total ERK_{1/2} (ERK, green) and diphosphorylated ERK_{1/2} (pERK, red). Left: representative images; scale bar: 5 μm. Right: quantification of pERK levels. Means ± S.E.M., 26 (baclofen, baclofen + CPG) and 28 (baclofen + TG) neurons from three experiments. ***, p<0.001, one way ANOVA, Bonferroni's multiple comparison test.

B. Up-regulation of CHOP diminished baclofen-induced inhibition of spontaneous postsynaptic currents (sPSCs). Left: Representative current traces depicting spontaneous sPSCs recorded from untreated control neurons (n=9) or from neurons treated with thapsigargin for up-regulation of CHOP (n=5). Right: Normalized amplitude and frequency values of the sPSCs. Mean amplitudes and frequency values were normalized to the control condition of the individual neuron. Con.: control, bac.: baclofen, TG.: thapsigargin. Mean ± S.E.M., *, p < 0.05, t-test.

Figure 4. Up-regulated CHOP colocalize with GABA_B receptors in the ER and induces their intracellular accumulation.

A. B. GABA_B receptors accumulate in the ER and colocalize with CHOP. Neurons were treated with thapsigargin to upregulate CHOP and stained for GABA_{B1} (A) or GABA_{B2} (B) (green), CHOP (red) and the ER marker PDI (blue). Cultures not treated with thapsigargin served as controls. Left: representative images depicting GABA_{B1}/B2−CHOP-PDI colocalization (white dots marked with arrows, scale bar: 5 μm). Right: quantification of colocalization. Means ± S.D., 20-32 neurons per colocalization from three experiments. ***, p<0.001, t-test.

C. GABA_B receptors do not accumulate or colocalize with CHOP in the Golgi apparatus. Neurons were treated with thapsigargin to upregulate CHOP and stained for GABA_{B2} (green), CHOP (red) and the Golgi marker GM130 (blue). Cultures not treated with thapsigargin served as controls. Left: representative images, scale bar: 5 μm. Right: quantification of colocalization. Means ± S.D., 19 neurons per colocalization from three experiments. n.s.: not significant (p>0.05), t-test.

D. GABA_B receptors do not colocalize with CHOP on the cell surface. Neurons were treated with thapsigargin to upregulate CHOP and were then stained for cell surface GABA_{B2} (green) as well as for CHOP (red). Cultures not treated with thapsigargin served as controls. Left: representative images, scale
bar: 5 μm. Right: quantification of colocalization. Means ± S.D., 44 (control) and 45 (thapsigargin) neurons from four experiments. n.s.: not significant (p>0.05), t-test.

Figure 5. Accumulation of GABA_B receptors in the ER is mediated by interaction with CHOP.
A, B, Neurons were transfected with EGFP in combination with GABA_{B1}ASA/GABA_{B2} or GABA_{B1}ASA/GABA_{B2}ΔLZ. After 48h, neurons were treated with thapsigargin to upregulate CHOP and then stained for GABA_{B1}ASA (A) or GABA_{B2}ΔLZ (B), CHOP and the ER marker PDI. Cultures not treated with thapsigargin served as controls. Left: representative images depicting colocalization of GABA_{B1}-CHOP-PDI and GABA_{B2}-CHOP-PDI (white dots, scale bar: 5 μm). Right: quantification of colocalization. Means ± S.D., 11-22 neurons per colocalization from two experiments. **, p<0.01;***, p<0.001, n.s.: not significant (p>0.05), t-test.

C, Up-regulation of CHOP interferes with GABA_B receptor heterodimerization. Neurons were treated with thapsigargin to upregulate CHOP and tested for GABA_{B1}/GABA_{B2} heterodimerization by in situ PLA using antibodies directed against GABA_{B1} and GABA_{B2} (white dots in representative images, left; scale bar: 5 μm). Cultures not treated with thapsigargin served as controls. The images represent merged Z-stack reconstructions of 5 optical section spaced by 0.4 μm. Right: quantification of in situ PLA signals. Means ± S.E.M., 32 neurons from three experiments. ***, p<0.001, t-test.

Figure 6. Up-regulated CHOP impairs forward trafficking of GABA_B receptors.
A, Neurons were transfected with either EGFP and HA-tagged GABA_{B2} (control), EGFP, HA-GABA_{B2} and CHOP (Chop) or EGFP HA-GABA_{B2} and CHOPΔLZ (CHOPΔLZ). Twenty-four hours after transfection, GABA_B receptors newly inserted into the plasma membrane were visualized by staining with HA-antibodies. Left: representative images, scale bar: 5 μm. Right: quantification of GABA_B receptor membrane insertion. Means ± S.E.M., 25 neurons per condition from three experiments. *** p<0.001, one way ANOVA, Dunnett’s post-hoc test.

B, Neurons were treated with thapsigargin to upregulate CHOP and subjected to an immunofluorescence-based forward trafficking assay to determine the amounts of GABA_B receptors inserted into the plasma membrane within a time period of 16 h (red clusters in representative images, scale bar: 5 μm). CHOP expression is depicted in blue. Cultures not treated with thapsigargin served as controls. Right: quantification of GABA_B receptor membrane insertion. Means ± S.E.M., 38 (control) and 33 (thapsigargin) neurons from three experiments. ***, p<0.001, t-test.

Figure 7. CHOP is up-regulated and GABA_B receptors are down-regulated in the OGD model of cerebral ischemia.
A, Oxygen and glucose deprivation (OGD) in neurons upregulates CHOP. Neurons were subjected to OGD for 10 min, followed by a recovery period of 24 h. Subsequently, neurons were stained for CHOP (green) and for NeuN to visualize the neurons (red). CHOP expression in neurons is depicted in yellow. Cultures not subjected to OGD served as controls. Left: representative images, scale bar: 30 μm. Right: quantification of CHOP expression in neurons. Means ± S.E.M., 271 (control) and 311 (thapsigargin) neurons from three experiments. *** p<0.001, t-test.

B, Cell surface GABA_B receptors are down-regulated following OGD. Neurons were subjected to OGD for 10 min, followed by a recovery period of 24 h and were then stained for cell surface GABA_{B2} (green) and CHOP (red). Cultures not subjected to OGD served as controls. Left: representative images, scale bar: 5 μm. Right: quantification of cell surface GABA_B receptor expression. Means ± S.E.M., 30 (control) and 49 (thapsigargin) neurons from three experiments. *** p<0.001, t-test.

Figure 8. Interaction of CHOP with GABA_B receptors is responsible for OGD-induced down-regulation of cell surface receptors.
Neurons were transfected with a CHOP mutant that is not able to interact with GABA_{B2} (CHOPΔLZ) and EGFP. After 24 h, neurons were subjected to OGD for 10 min, followed by a recovery period of 24 h.
Subsequently, neurons were stained for cell surface GABA_B receptors (blue) and endogenous CHOP (red). CHOPΔLZ overexpressing neurons were selected by means of EGFP expression. Cultures not subjected to OGD served as controls. Top: representative images, scale bar: 5 µm. Bottom: quantification of cell surface GABA_B receptors. Means ± S.E.M., 38 (control, non-transfected), 27 (OGD, non-transfected), 36 (control, transfected) and 45 (OGD, transfected) neurons from three experiments. **, p<0.01, n.s.: not significant (p>0.05), t-test.
Fig. 1
Fig. 2
Fig. 3

A

Control Baclofen Baclofen + CPG Baclofen + TG

pERK

ERK

B

Untreated neuron Thapsigargin neuron

Control Baclofen Wash

Amplitude

Frequency

Normalized (%)
Fig. 4
Fig. 5
Fig. 6

A

Control | CHOP | CHOPALZ

Cell surface GABA2 (%)

B

Control | Thapsigargin

GABA2 membrane insertion (%)
Fig. 7
Fig. 8
Neurobiology:
Ischemia-Like Oxygen and Glucose Deprivation Mediates Down-regulation of Cell Surface γ-Aminobutyric AcidB Receptors via the ER Stress-Induced Transcription Factor CHOP

Patrick J. Maier, Khaled Zemoura, Mario A. Acuña, Gonzalo E. Yévenes, Hanns Ulrich Zeilhofer and Dietmar Benke
J. Biol. Chem. published online March 25, 2014

Access the most updated version of this article at doi: 10.1074/jbc.M114.550517

Find articles, minireviews, Reflections and Classics on similar topics on the JBC Affinity Sites.

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 0 references, 0 of which can be accessed free at http://www.jbc.org/content/early/2014/03/25/jbc.M114.550517.full.html#ref-list-1