Research Article

Educational Information System Optimization for Artificial Intelligence Teaching Strategies

Taotang Liu, Zhongxin Gao, and Honghai Guan

School of Physics and Electronic Engineering, Mudanjiang Normal University, Mudanjiang, Heilongjiang 157011, China

Centre for Modern Education Technology, Mudanjiang Normal University, Mudanjiang, Heilongjiang 157011, China

School of Education Science, Mudanjiang Normal University, Mudanjiang, Heilongjiang 157011, China

Correspondence should be addressed to Taotang Liu; 2015053@mdjnu.edu.cn

Received 19 February 2021; Revised 16 April 2021; Accepted 26 April 2021; Published 7 May 2021

Academic Editor: Wei Wang

Copyright © 2021 Taotang Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Under the background of the information age, scientific research and engineering practice have developed vigorously, resulting in many complex optimization problems that are difficult to solve. How to design more effective optimization methods has become the focus of urgent solutions in many academic fields. Under the guidance of such demand, intelligent optimization algorithms have emerged. This article analyzes and optimizes the modern artificial intelligence teaching information system in detail. On the basis of determining the network architecture, a detailed demand analysis was carried out, and the overall structure optimization of the network was given; the business process and data flow of the main modules of the website (resource center module and collaborative learning module) were optimized. In order to further enhance the local search ability of the algorithm, a multiclass interactive optimization algorithm is proposed in combination with the Euclidean distance-based clustering method, which changes the teaching mode from “one-person teaching” to “multiperson teaching.” This clustering method has lower complexity and is beneficial to enhance the utilization of neighborhood information. At the same time, in order to enhance the diversity of the population and strengthen the connection between the subgroups, after the teaching phase, the worst students in each subgroup are allowed to learn from the best teachers of the population, and after the learning phase, individuals in a random subgroup are allowed to learn from other subgroups. The algorithm was tested in the experimental environment of unconstrained, constrained, and an engineering problem. From the test results, it can be seen that the algorithm is not easy to fall into the local optimum. Compared with other algorithms, the solution accuracy is higher and the stability is better. And it performed well in engineering optimization problems, thus verifying the effectiveness of the strategy.

1. Introduction

With the continuous development and maturity of artificial intelligence technology, the reform and development trend of “artificial intelligence + education” is accelerating, and the form and content of classroom teaching continue to expand and deepen, especially the construction of smart campuses and smart classrooms and classroom management for primary and secondary school teachers [1, 2]. Facing this huge challenge in practice, primary and secondary schools pay more and more attention to the classroom management ability of primary and secondary school teachers in the evolving educational reform. In the process of integrating human intelligence technology with classroom teaching and classroom management, coordination and operation from aspects such as technology provision and later improvement are needed [3]. At the same time, intelligent machines can never replace teachers, so teachers need to achieve good interaction with artificial intelligence teaching and management equipment and pay attention to interactive communication and emotional communication with students. Omissions and deficiencies in any link cannot achieve complementary advantages and complete efficient classrooms [4].

Every change in educational technology will bring opportunities and challenges to the development of teachers. Artificial intelligence technology appears and enters the classroom as a subversive change, so that it will face many
The classroom management ability of primary and middle school teachers on this basis, can the professional development of teachers be truly realized, and teachers can get rid of the fear of being replaced by artificial intelligence [6]. From the perspective of knowledge management, using various theories, strategies, tools, and techniques of knowledge management, the educational information resources collected from various forms will be professionally organized, and the content of the resources will be further processed and optimized. The system integrated with process management achieves the purpose of value-added education information resources and makes up for the shortcomings and deficiencies in the current education information resource management [7].

This article mainly analyzes and optimizes the artificial intelligence teaching information system in detail. On the basis of determining the network architecture, first, a detailed demand analysis was carried out, and the overall structure optimization of the network was given; then, the business process and data flow of the five main modules of the website were optimized; the database optimization of the website was completed. In order to improve the problem of low accuracy and poor stability of TLBO optimization, this paper introduces a clustering method based on Euclidean distance and two new learning methods on the basis of TLBO and proposes a multiclass interactive teaching optimization algorithm. The algorithm can effectively improve the local search ability of the algorithm, strengthen the information interaction between subgroups, greatly enhance the utilization of the information of the population neighborhood, and avoid the “lag” or “premature” of the subgroup in evolution. It combines the Euclidean distance-based clustering method and the advantages of TLBO, and all strategies are based on the actual teaching practice of the school, which conforms to the characteristics of the swarm intelligence optimization algorithm. Numerical experiments on 6 unconstrained and 4 constrained test functions and education information system optimization problems show that MCITLBO has improved optimization accuracy and stability compared with other algorithms, and the running times of MCITLBO and TLBO are compared, verifying the feasibility of the method proposed in this paper.

2. Related Work

With the in-depth development of the application of artificial intelligence technology in education, regardless of the reform of educational concepts, teaching models, and learning methods, teachers are urged to pay attention to the improvement and development of their professional capabilities [8]. As an important component of teachers’ professional ability, teachers’ classroom management ability affects the quality of classroom teaching and the realization of teaching goals. But in the literature search and combing, almost no scholars have conducted research on the development of classroom management ability of primary and middle-school teachers in the era of artificial intelligence [9]. In recent years, the integration of artificial intelligence and education has become more and more deep. Artificial intelligence has begun to enter the classrooms of primary and secondary schools. As a new teaching technology to assist teachers in classroom teaching and management, it has a profound impact on all aspects of classroom management. Traditional classroom management concepts and methods will undergo a fundamental change, which undoubtedly puts forward new and higher requirements on the classroom management ability of primary- and middle-school teachers [10]. Therefore, how to promote the development of teachers’ classroom management ability to adapt to the classroom teaching and management practice in the era of artificial intelligence has become a new direction for future research [11].

Although the application of artificial intelligence in education and teaching is at its preliminary stage, it also faces many technical and conceptual problems that need to be solved urgently. However, it is undeniable that the cooperative teaching model of “artificial intelligence + teacher” is already an inevitable trend of future classroom teaching. This will also have a great impact on the future classroom management to a large extent. The future classroom management will be a kind of management that is different from the management that only relies on the teaching teachers. It will undergo fundamental changes, which will also affect the teachers. The classroom management ability puts forward different requirements. However, in the existing literature, the research on teacher development in the era of artificial intelligence mainly focuses on the three aspects of teacher role change, teacher–student relationship, and teacher professional development, and most of them are theoretical studies, lacking the support of empirical data [12, 13]. Although the existing research focuses on the development of teachers in the era of artificial intelligence, it also proposes many strategies and methods to promote teacher development, but the scope of research is relatively large, the development path proposed is relatively theoretical, i.e., lacks practical operability, and it is difficult to apply in teaching practice. It is difficult to really promote the development of teachers. At the same time, it can be found that almost no researchers focus on the development of classroom management ability of primary- and middle-school teachers in the process of artificial intelligence teaching, but the classroom management ability of teachers affects the entire classroom teaching effect [14].

After combing and summarizing the methods and strategies of teachers’ classroom management ability improvement, it can be seen that teachers are mainly realized through various methods such as the transformation of teacher management concepts, preserve training, classroom environment creation, and formulation of classroom rules to prevent and solve classroom problem behaviors. Relevant scholars analyzed and discussed the current situation, existing problems, and causes of the classroom management ability of secondary vocational school teachers through sample surveys and put forward corresponding
improvement measures. Researchers believe that to improve the classroom management ability of rural teachers, it is necessary to further strengthen their training in dealing with student problem behaviors, to help teachers master problem behavior prevention and intervention skills, and to build a learning community for rural teachers and give full play to the exemplary and leading role of excellent teachers. The cultural atmosphere continuously improves the job satisfaction of rural teachers. Related scholars divide the factors that affect the formation of teachers' classroom management capabilities into internal and external constraints. Specifically, internal constraints include teachers' personal growth experience, teachers' professional qualities, and teachers' personality charm; external factors include students' personality characteristics and needs, social ideology, school management philosophy, and school management philosophy. Teachers should improve their personal classroom management ability and cultivate comprehensive classroom management awareness and management skills and methods, construct a reflective classroom management style, and meet the needs of students.

The entry of artificial intelligence into the field of education and teaching will inevitably have a certain impact on the professional development of teachers, presenting a situation where opportunities and challenges coexist. Related scholars have proposed that the application of artificial intelligence in the field of education will have an impact on teachers' teaching skills, educational thoughts, educational strategies and teaching methods, and professional qualities and affect the professional development of teachers [15]. Researchers analyzed the opportunities for teachers' professional development in the era of artificial intelligence and proposed a new mentorship education model, precision education teaching methods and ubiquitous learning teaching methods all provide new opportunities for teachers' professional development [16]. Relevant scholars have proposed that the application of artificial intelligence in teaching can liberate teachers and truly teach students in accordance with their aptitude [17]. In addition, teachers will be pressured by artificial intelligence and accept a kind of "invisible" push forward. Some scholars have conducted research on how to promote teachers' professional competence in the era of artificial intelligence [18, 19]. They are mainly divided into three ways: internal promotion by teachers themselves, external promotion by the educational environment, and internal and external collaboration. However, more scholars can learn from existing research. The first aspect is to specifically explore the professional development of artificial intelligence teachers. Relevant scholars proposed that in the "second machine age" characterized by artificial intelligence, teachers must reform existing thinking models and teaching methods, learn to cooperate with artificial intelligence, and produce more emotional interactions with students in teaching [20]. Relevant scholars pointed out that in the era of artificial intelligence, teachers who are not eliminated must achieve three important changes: from the teaching of classroom knowledge to the innovative generation of the classroom; from focusing on the current learning effectiveness of students to the cultivation of lifelong learning skills; and from students' learning. Researchers propose that under the development of artificial intelligence, vocational college teachers should explore more creative teaching activities, change traditional teaching concepts, and shift more attention to teaching practice; at the same time, they constantly update and improve their own knowledge and ability. Relevant scholars have proposed that through the establishment of a diversified mechanism for teacher selection, they pay attention to the value of teacher differences; cultivate teachers' skills in dealing with people, giving full play to their social attributes, psychological attributes, and psychological values; and cultivate teachers' ability to use resources [21].

3. Web Service Reasoning Method Based on Ontology

3.1. Web Service. Web service is an application logic unit that provides data and services for other applications [22, 23]. Applications obtain web services through standard web protocols and data formats, such as HTTP, XML, and SOAP. The implementation of each web service is completely independent. Web service has the advantages of both component-based development and web development and is the core of Microsoft's .Net program optimization model. Web service is a self-contained, self-explanatory, and modular application that can be published, located, and invoked from any location on the web. Web services can perform any function from simple requests to intricate business processes [24–26]. Once the web service is deployed, other web service applications can discover and call the deployed service.

The web service architecture is based on the interaction between three roles (service provider, service registry, and service requester). The interaction involves publishing, finding, and binding operations. These roles and operations work together on web service components: web service software modules and their descriptions. In a typical case, the service provider hosts software modules (an implementation of web services) that can be accessed over the network. The service provider defines the service description of the web service and publishes it to the service requester or service registry [27, 28]. The service requester uses the search operation to retrieve the service description from the local or service registry and then uses the service description to bind with the service provider and call the web service implementation or interact with it. The roles of service provider and service requester are logical structures, so services can exhibit two characteristics. Figure 1 shows these operations, the components that provide these operations, and their interactions.

The service registry is a searchable service description registry where service providers publish their service descriptions. During the development of static binding or the execution of dynamic binding, the service requester searches for the service and obtains the binding information of the service (in the service description). For statically bound service requesters, the service registry is an optional role in
the architecture because the service provider can send the description directly to the service requester. Similarly, service requesters can obtain service descriptions from sources other than the service registry.

A web service is an interface described by a service description, and the realization of the service description is the service. A service is a software module that is deployed on a platform provided by the service provider that can be accessed through the network. The existence of a service means to be called by or interact with the service requester. When other web services are used in the service implementation, it can also act as a requester.

The service description contains the service interface and implementation details. This includes the data type, operation, binding information, and network location of the service. It may also include categories and other metadata that can be easily discovered and utilized by service requesters. The service description can be published to the service requester or the service registry.

3.2. Semantic Web Service Reasoning Based on OWL-S Ontology. OWL-S is a web service ontology described in OWL language. It describes web services from three aspects: Service Profile, Service Model, and Service Grounding. Among them, Service Profile is similar to the yellow page of the service, which describes the functions and related attributes of the service; Service Model describes the process model of the service and describes how the service works; and Service Grounding relates the process model to the communication protocol and message format.

Since the parallel constructor has not been introduced in the dynamic description logic DDL, the control structure Split and Split+Join cannot be included in the compound process under investigation. For other forms of control structure, it can be modeled by the action constructor in the dynamic description logic. Therefore, corresponding to the process body part of the compound process, a certain action \(\pi \) with parameters can be initially constructed.

We scan the process body part and the result part of the composite process. For any pair of variable names \(x \) and \(y \) in which there is a binding relationship, if \(x \) does not appear in the input or output of the composite process currently being modeled, the variable name \(x \) in \(\pi \) is replaced with \(y \). Let \(\pi' \) be the action with parameters obtained after the above substitution, then the same variable name in \(\pi' \) reflects the binding relationship between the input and output of each process.

For any semantic web service, it is necessary to determine whether there are certain states that enable the semantic web service to be successfully scheduled for execution; if it will never be scheduled for execution, such a web service is meaningless. This reasoning problem is called the realizability problem of semantic web services. When the process of the semantic web service is an atomic process, it corresponds to the action theory, and the reasoning problem is embodied in the consistency problem of the definition of atomic action with parameters.

3.3. Establishment of Teaching and Learning Behavior Model.
In educational activities, the teacher group transmits knowledge to the student group. The student group’s acceptance of knowledge varies due to individual differences. In order to measure the student’s acceptance of knowledge, test scores are often used as a reference indicator, so in teaching activities, teachers are committed to improving students’ academic performance through teaching methods. Students will exchange learning with teachers and other students in order to improve their own scores, thereby realizing class groups optimization.

Under normal circumstances, the optimization problem can be described as follows:

3 Complexity
Min \(f(X_i), X_i = (x_1, x_2, \ldots, x_D) \rightarrow S = \sum_{j=0}^{D-1} (L_j, U_j). \) \hspace{1cm} (1)

Among them, \(X_i = (x_1, x_2, \ldots, x_D) \) is the \(i \)th \(D \)-dimensional decision vector, \(i = 1, 2, \ldots, NP \), \(NP \) is the population size, \(f(X_i) \) is the fitness function value, \(S \) is the decision space (also known as the search space), \(D \) is the dimension, \(U_j \) and \(L_j \) are the upper and lower bounds of the \(j \)th dimension variable.

The class can be expressed as follows:

\[
\begin{bmatrix}
X_1 \\
X_2 \\
\vdots \\
X_{NP}
\end{bmatrix}
= \begin{bmatrix}
f(X_1) \\
f(X_2) \\
\vdots \\
f(X_{NP})
\end{bmatrix}
= \begin{bmatrix}
x_{1,1} & x_{1,2} & \cdots & x_{1,D} \\
x_{2,1} & x_{2,2} & \cdots & x_{2,D} \\
\vdots & \vdots & \ddots & \vdots \\
x_{NP,1} & x_{NP,2} & \cdots & x_{NP,D}
\end{bmatrix}
= \begin{bmatrix}
f(X_1) \\
f(X_2) \\
\vdots \\
f(X_{NP})
\end{bmatrix}.
\]

Among them, \(X_i = (x_1, x_2, \ldots, x_D) \) represents the \(i \)th student; there are \(NP \) students in the class, \(f(X_i) \) represents the student’s performance; if there are multiple objective functions, then one-objective function represents a subject.

In the teaching stage, teachers impart knowledge to students through teaching activities, and students acquire knowledge from teachers through lectures to improve their grades. Assuming that in the \(k \)th iteration, for an individual student \(X_i \), let \(M_k \) be the average score of all students and \(T_k \) be the teacher; then,

\[
M_k = \frac{1}{NP} \left(\sum_{i=0}^{NP-1} X_{i,1}, \sum_{i=0}^{NP-1} X_{i,2}, \ldots, \sum_{i=0}^{NP-1} X_{i,D} \right), \hspace{1cm} (3)
\]

\[
T_k = \min[f(X_i) \left| i = 0, 1, 2, \ldots, NP - 1 \right]. \hspace{1cm} (4)
\]

Teachers teach knowledge based on their average grades and their own gap. The gap is given by the following formula:

\[
\text{Difference}_{\text{Mean}} = (M_k - T_k) \cdot r_i. \hspace{1cm} (5)
\]

Among them, \(r_k \rightarrow \text{rand} (0,1) \), \(T_k \) is the teaching factor.

In the teaching stage, the update method of individual students is as follows:

\[
X_{\text{new}} = X_{\text{old}} + \text{Difference}_{\text{Mean}}_{i-1}. \hspace{1cm} (6)
\]

Among them, \(X_{\text{old}} \) is the individual before the update, and \(X_{\text{new}} \) is the individual after the update. If \(X_{\text{new}} \) is better than \(X_{\text{old}} \), \(X_{\text{new}} \) is used instead of \(X_{\text{old}} \); otherwise, \(X_{\text{old}} \) remains unchanged.

The learning stage is based on the principle that students interact and complement each other after listening to the teacher’s teaching, so that students can learn from other students to improve their grades. For each student, randomly we select another student to learn and improve from that student. The update method is as follows.

For student \(X_i \), we randomly select a student \(X_j \); if \(f(X_i) < f(X_j) \), then

\[
X_{\text{new},i} = X_{\text{old},i-1} + (X_i - X_j) \cdot r_k. \hspace{1cm} (7)
\]

Otherwise,

\[
X_{\text{new},i} = X_{\text{old},i-1} + (X_j - X_i) \cdot r_k. \hspace{1cm} (8)
\]

If the updated individual \(X_{\text{new}} \) is better than the pre-updated individual \(X_{\text{old}} \), \(X_{\text{new}} \) is used instead of \(X_{\text{old}} \); otherwise, \(X_{\text{old}} \) remains unchanged.

4. Analysis and Optimization of Artificial Intelligence Teaching Information System

4.1. Architecture of Artificial Intelligence Teaching Information System. This website is developed with the browser/server three-tier structure model, making the system easy to realize distributed management. The three-tier structure of B/S means that the program is divided into several relatively independent units according to internal division of labor and logic and is generally divided into a three-tier structure of presentation layer, function layer, and data layer. Under this structure, the user interface is completely realized through the WWW browser; part of the transaction logic is realized on the front end, but the main transaction logic is realized on the server side. The architecture of artificial intelligence teaching information system is shown in Figure 2.

This website chooses Windows 2000 Server combined with Internet Information Server (IIS) as the development platform of the web server. Windows 2000 Server realizes the good integration between operating system and application, network, communication, and infrastructure services. IIS is an HTTP server in Windows server, responsible for receiving HTTP requests and sending HTTP responses.

4.2. Organizational Structure Optimization of Artificial Intelligence Teaching Information System. The artificial intelligence teaching information system provides basic knowledge teaching resources related to the profession. This part of the system summarizes the basic theoretical knowledge of the professional production and the basic methods and skills of each optimization software operation, which can be used by learners for self-study, or as an introductory learning tutorial or basic knowledge database for learners. This includes production principles, basic operations, basic examples, ASP and integrated applications, etc. This is the primary module of this website.

The resource center provides material resources for animation production, collects classic optimizations, recommends excellent website model URLs, etc., to satisfy learners’ independent exploration, learning, and use; learners can download resources for use, or upload excellent resources.

Collaborative learning provides space for learners to communicate and discuss and interact with teachers and
students. It mainly includes two communication tools: learning community and guestbook.

Online evaluation is an intensive exercise optimized for learners to allow students to self-evaluate and achieve meaning construction of knowledge. Video teaching is mainly for teachers to record the teaching process as a video and upload it to the database, so that when students encounter problems, they can solve the problem even if they query the teaching video. And through the remote control function, you can communicate with the teacher online to solve the problem in time.

4.3. Resource Center Module Optimization. Learning resources are the basis for students to study on special topics, so they are essential for the construction and organization of learning resources. Some of the resources of the artificial intelligence teaching information system are provided during the construction of the website, and some are continuously accumulated and collected by teachers and students in the process of learning, exploring and researching around the topic in the later use. Users can use all relevant resources, or upload relevant information collected by themselves to the server for other users to browse and use. The learning resource module mainly provides functions such as resource upload, resource review, resource browsing, resource search, and resource download.

The resources uploaded by students are mainly learning materials collected during the learning process. The resources uploaded by students must be reviewed before being put into the library. The resources uploaded by teachers are mainly for thematic learning lesson plans, courseware or related materials, etc. Teachers have certain professional knowledge, can make appropriate classification and description of uploaded resources, and have a certain degree of credibility, so the uploaded resources can be directly used by other users without being reviewed. In order to make it easier for users to understand the status of uploaded resources, the system provides a list of corresponding resources according to personal upload resources, warehousing resources, unhired resources, resources under review, and all uploaded resources.

The resource upload function provides a list of resources uploaded by all users and individuals, presenting a list of resources that users have been hired and not hired; teachers modify the uploaded resources' information; and administrators can manage resources. Figure 3 is a flowchart of resource upload.

The system provides several ways to browse resources. One is to search and browse one by one in the list of all resources, another is to browse by resource type, and the other is to quickly find the relevant resources to be browsed by searching keywords.

After the user enters the resource main page, the system will display a list of all resource categories. The user selects a
certain type in the list, and the page will present a list of all resources under that type. If the user is interested in a certain resource, he can click on the resource name to display the page and browse the detailed information of the resource, such as resource type and file format, file size, resource introduction, resource browsing times, etc. When it is determined that it is the resource you need, you can open or download the resource. Otherwise, you can continue to browse other resources.

In this system, the review of resources is only authorized to teachers. Teachers review resources from the aspects of technicality and normativeness of the resources, with subjective evaluation as the mainstay. When reviewing the resource, the teacher can first browse the relevant information of the resource waiting to be reviewed, such as the resource type, etc. If the resource is not hired, the system will modify the resource status in the data table (from 1 to 0) and notify the student. Otherwise, the resource status is changed to 2. In the review process, teachers can also make appropriate changes to the relevant information about the resource to be hired to make it more user-friendly. For resources that have not been hired, students can reupload them after making appropriate modifications. The user enters the keyword to be searched in the input box and submits the keyword to the server. If the keyword is empty, they search all resources; otherwise, they perform a fuzzy search on the input keyword in the resource name and resource description in the resource data table and feedback the search result to the user after the search is completed. If there is no related resource, a prompt message with a search result of 0 will be displayed. If related resources are found, all the resources found will be displayed on the page. The user can use the link of the resource name to directly browse the detailed introduction of the resource, open or download the resource.

4.4. Optimization of Collaborative Learning Modules. The collaborative learning area is a way for all users to achieve communication. It provides a platform for students and teachers to communicate with each other. It is an important part of completing the topic learning, an important tool for students to conduct collaborative learning, and it is also a way for teachers to understand students. The collaborative learning area can be realized: the teacher proposes a discussion topic for a certain topic; the students participate in the topic discussion and express their opinions; and the administrator publishes announcement information to the user.

We transform the learning objectives of this learning unit into related questions and use the questions as the core to stimulate learners’ enthusiasm and interest in learning, drive learners’ desire for knowledge, and turn learning into learners’ internal needs so as to prepare learners for active construction. On the basis of careful analysis of the learning content, the organizer uses a small amount of information to provide learners with a complex problem. This problem should be similar to the situation in the real world, which can attract learners and inspire learners. The learner can well manage the direction and speed of the learner’s learning through the formulation of learning content and goals.

Group is the basic organizational form of collaborative learning. Learners study in a well-organized collaborative group. The effect is far better than traditional class organization. Therefore, whether the study group is established properly or not will directly affect the quality and effect of learning. The basic principle of establishing a study group is to ensure that there is enough information between the groups but not too much to be unbearable for the learners and to ensure that each learner takes on the learning task in the group and has the opportunity to learn. On the one hand, learners need to complete their own work independently, and they must communicate with other learners to jointly...
achieve the overall learning goals, activity forms, and learner characteristics and form different group structures. In different periods, different grouping mechanisms must be used to maximize the efficiency of learning.

The optimization of information resources requires certain resources to help complete the learning goals. However, due to the extremely rich information resources in the network environment, the organizer must integrate and optimize the information resources and provide corresponding information resources and search methods to effectively promote learners’ knowledge construction of the building to improve learning efficiency.

The message board in the collaborative learning module is an area where users publish announcements, make suggestions, and communicate. Ordinary users can browse and publish information. In addition to browsing and publishing information, teachers can also directly reply to a user. A schematic diagram of message board business optimization is shown in Figure 4.

5. Simulation Experiment and Analysis

5.1. Unconstrained Test Function Experiment. TLBO has better global search capabilities but weak local search capabilities. In order to enhance the local search ability of TLBO, this paper introduces a clustering method based on Euclidean distance, the teaching mode is changed from "one-person teaching" to "multiperson teaching," and two new learning methods are introduced to establish connections between classes and ensure synchronous evolution among classes, so as to maintain the original exploration ability of TLBO while enhancing the algorithm development ability. In the initial stage of algorithm iteration, the diversity of the algorithm population is good, and the establishment of information interaction between the populations ensures that each class will search in the feasible region under the leadership of the best teacher of the population. The algorithm has good exploration and development capabilities. As the number of iterations gradually increases, the population gradually approaches the optimal solution, individual differences gradually shrink, and the population diversity gradually decreases. Population evolution puts forward higher requirements on the local search ability of the algorithm; due to the evolution of each class under the multiclass teaching mode, the learning method of "postponement" and random exchange of students between classes can effectively enhance the diversity of the population and improve the optimization ability of the algorithm. Thus, MCITLBO can fully maintain the balance of the two search capabilities during evolution and improve the search performance of TLBO.

We compare MCITLBO with algorithms DE, TLBO, ETLBO, and ITLBO. Suppose the number of function evaluations is 5000 times, the dimension is 30, the number of subgroups in MCITLBO is $M_1 = 5$, the number of individuals in each subgroup is $M_2 = 20$, and the population size of other algorithms is 50. The optimal value of all functions is 0 and runs independently 30 times. The specific comparison items are the average and standard deviation of the optimal solution. Figures 5–8 are the convergence graphs of each algorithm on the function f_1–f_4 when the dimension is 30. It can be seen from the figure that MCITLBO can quickly converge on the tested functions, the fitness value can drop rapidly, and the optimization accuracy is higher, which achieves the purpose of improvement.

5.2. Constraint Test Function Experiment. We choose 4 constraint test functions, namely, the problem with inequality and equality constraints g_05, the problem with only inequality constraints g_06, and the problems with only equality constraints g_{11} and g_{13}. Let $M_1 = 5$, $M_2 = 20$, and the maximum number of evaluations is 120,000. All
algorithms are run independently 30 times. We use penalty function method to constrain processing skills. The comparison results of MCITLBO and other algorithms are shown in Table 1.

It can be seen from Table 1 that all the five algorithms converged to the optimal value of g06. In g11, ETLBO, ITLBO, and MCITLBO all converged to the global optimal. In g05 and g13, MCITLBO is in the optimal value, average value, and the poor performance is better than other algorithms. It can be seen that MCITLBO performs better than other algorithms in the four constraint test functions.

5.3. Comparison of Running Time. In order to analyze the feasibility of MCITLBO in combination with actual application requirements, the standard TLBO and MCITLBO were independently run 30 times on the 6 unconstrained and 4 constraint functions and education information system optimization problems used in this article, and the average CPU consumption time was recorded, and the settings are the same as before. Let the dimensions of the unconstrained test function be 30 and 100, respectively. The algorithm operating platform conditions are as follows: the operating system is Windows 7 (x64), the CPU is Intel® Celeron® CPU B815 (1.60GHZ), and the programming language operating environment is MATLAB (2018a). The comparison result of the average running time of the standard TLBO and MCITLBO algorithms is shown in Figure 9.
Figure 7: Convergence of each algorithm on function f3.

Figure 8: Convergence of each algorithm in function f4.

Table 1: Comparison results of constraint test functions.

Function/optimum	Statistics	TLBO	ETLBO	ITLBO	MCITLBO	Jaya
g05/5126.492	Best solution	3	2.1	2.2	2	2.1
	Mean	3.1	2.41	2.52	2.61	2.51
	Standard deviation	0.22	0.31	0.28	0.19	0.23
g06/-6961.811	Best solution	3.2	2.41	2.52	2.7	2.51
	Mean	3.01	2.46	2.42	2.51	2.38
	Standard deviation	0.12	0.21	0.18	0.11	0.13
g11/0.752	Best solution	3.04	2.61	2.32	2.37	2.61
	Mean	3.01	2.31	2.62	2.31	2.21
	Standard deviation	0.32	0.41	0.25	0.18	0.21
g13/0.0539497	Best solution	3.3	2.61	2.27	2.09	2.17
	Mean	3.01	2.44	2.51	2.41	2.31
	Standard deviation	0.27	0.32	0.26	0.17	0.21
In the unconstrained test function environment, when $D = 30$, the range of the time ratio between MCITLBO and TLBO is [1.6, 1.98]; when $D = 100$, the range of the corresponding time ratio is [2.3, 2.77]. When the dimensionality of the function changes from 30 to 100, the complexity of the function problem increases accordingly, which is reflected in the increase in the running time of the algorithm, but for MCITLBO, the ratio of the time to TLBO decreases from 1.19 to 1.15; it indicates that the higher the complexity of the fitness function, the smaller the proportion of the algorithm operation operator in the entire running time; for the constraint test function, due to the larger increase in the maximum number of evaluations, the running time of the algorithm also increases accordingly. The education information system optimization problem time is further reduced than the relatively unconstrained test environment, which verifies that the running time of the time operation operator of the function evaluation is almost negligible under the high function evaluation times.

In short, compared with the standard TLBO, the running time of MCITLBO decreases as the complexity of the problem increases. When the complexity of the problem is low, although the time is relatively large, MCITLBO can obviously achieve higher solution accuracy. In summary, it can be considered that it is worthwhile to obtain so much accuracy improvement in the above test at the cost of so much running time.

From the above experimental comparison, it can be seen that whether it is an unconstrained test function, a constrained test function, or an engineering optimization problem, MCITLBO has shown good optimization accuracy and stability. The teaching process has changed from “one-person teaching” to “multiperson teaching,” which solves the problem of weak TLBO searching ability, enhances the use of population neighborhood information, and improves TLBO’s weak local search ability. The weakness of the population achieves a balance between global exploration and local development of the population. The individual
learning method of students is no longer single, which not only enriches the ways for students to acquire knowledge and enhances the diversity of the population, but also strengthens the information interaction between classes, so that all classes can make progress together. In terms of time complexity, the feasibility of MCITLBO relative to TLBO algorithm in running time is explained from the perspective of theoretical analysis and numerical experiment. To sum up, it can be considered that the improvement of MCITLBO is successful.

6. Conclusion

Students and course resources are the cornerstone of online teaching. The success of the construction of the corresponding course ontology and student ontology determines the ability of intelligent agents (machines) to recognize students and course resources. Existing research work is very vague about the construction of curriculum ontology and student ontology, so this article proposes a construction plan for curriculum ontology and student ontology. The artificial intelligence teaching information system is analyzed and optimized in detail. On the basis of determining the network architecture, a detailed demand analysis was carried out, and the overall structure optimization of the network was given; the business process and data flow of the main modules of the website were optimized, and the database optimization of the website was completed. In order to further improve the development ability of teaching optimization algorithm, a multiclass interactive teaching optimization algorithm is proposed in combination with the clustering method. The algorithm uses a new clustering method based on Euclidean distance to divide the initial population into several subgroups, thereby making greater use of the information of the population neighborhood and improving the local search ability of the population. At the same time, in order to strengthen the connection between the subgroups and ensure the synchronous evolution among the subgroups, after the teaching phase, the worst individuals among the subgroups are made to learn from the best individuals in the population, and after the learning phase, random individuals are made to learn from other subgroups. Numerical experiments on 6 unconstrained functions, 4 constraint functions, and education information system optimization problems show that the algorithm has good solution accuracy and stability compared with other algorithms, and it has outstanding performance in optimization problems.

Intelligent optimization algorithms lag far behind applied research. Although teaching optimization algorithms have better optimization capabilities, they still lack theoretical basis. So far, its convergence has not been proved theoretically. If a rigorous proof can be given in theory, it will bring broader prospects for the development and application of teaching optimization algorithms; the application of teaching optimization algorithms to multi-objective optimization problems is also one of the future research directions. Most of the problems to be solved in real life are multiobjective optimization problems, and the research on multiobjective optimization problems of teaching optimization algorithms is still in the preliminary stage. Establishing a highly feasible mechanism to solve multiobjective optimization problems can not only open up the prospects for the development of teaching optimization algorithms but also provide a new method for solving such problems.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest regarding the publication of this paper.

Acknowledgments

The study was supported by the “Study on Professional Development of Rural Teachers with the Support of Information Technology” (Grant no. BCA160055).

References

[1] E. Bell, “Cognitive automation, business process optimization, and sustainable industrial value creation in artificial intelligence data-driven internet of things systems,” Journal of Self-Governance and Management Economics, vol. 8, no. 3, pp. 9–15, 2020.
[2] N. Bhatia, H. Trivedi, N. Safdar, and M. E. Heilbrun, “Artificial intelligence in quality improvement: reviewing uses of artificial intelligence in noninterpretative processes from clinical decision support to education and feedback,” Journal of the American College of Radiology, vol. 17, no. 11, pp. 1382–1387, 2020.
[3] A. Williams, P. Suler, and J. Vrbka, “Business process optimization, cognitive decision-making algorithms, and artificial intelligence data-driven internet of things systems in sustainable smart manufacturing,” Journal of Self-Governance and Management Economics, vol. 8, no. 4, pp. 39–48, 2020.
[4] J. T. Beck, M. Rammage, G. P. Jackson et al., “Artificial intelligence tool for optimizing eligibility screening for clinical trials in a large community cancer center,” JCO Clinical Cancer Informatics, vol. 4, no. 4, pp. 50–59, 2020.
[5] D. Wang, L. Geng, Y.-J. Zhao et al., “Artificial intelligence-based multi-objective optimization protocol for protein structure refinement,” Bioinformatics, vol. 36, no. 2, pp. 437–448, 2020.
[6] M. Arican, K. Polat, and K. Polat, “Binary particle swarm optimization (BPSO) based channel selection in the EEG signals and its application to spellers systems,” Journal of Artificial Intelligence and Systems, vol. 2, no. 1, pp. 27–37, 2020.
[7] M. Jamshidi, A. Lalbakhsh, J. Talla et al., “Artificial intelligence and COVID-19: deep learning approaches for diagnosis and treatment,” IEEE Access, vol. 8, pp. 109581–109595, 2020.
[8] A. Blasiak, J. Khong, and T. Kee, “CURATE.AI: optimizing personalized medicine with artificial intelligence,” SLAS TECHNOLOGY: Translating Life Sciences Innovation, vol. 25, no. 2, pp. 95–105, 2020.
[9] A. Renz and R. Hilbig, “Prerequisites for artificial intelligence in further education: identification of drivers, barriers, and
business models of educational technology companies,” *International Journal of Educational Technology in Higher Education*, vol. 17, pp. 1–21, 2020.

[10] X. N. Bui, H. Nguyen, Y. Choi et al., “Prediction of slope failure in open-pit mines using a novel hybrid artificial intelligence model based on decision tree and evolution algorithm,” *Scientific Reports*, vol. 10, no. 1, pp. 1–17, 2020.

[11] M. Abdallah, M. Abu Talib, S. Feroz, Q. Nasir, H. Abdalla, and B. Mahfood, “Artificial intelligence applications in solid waste management: a systematic research review,” *Waste Management*, vol. 109, pp. 231–246, 2020.

[12] M. Gray-Hawkins and G. Lazăroiu, “Industrial artificial intelligence, sustainable product lifecycle management, and internet of things sensing networks in cyber-physical smart manufacturing systems,” *Journal of Self-Governance and Management Economics*, vol. 8, no. 4, pp. 19–28, 2020.

[13] Z. H. Munim, M. Dushenko, V. J. Jimenez, M. H. Shakil, and M. Imset, “Big data and artificial intelligence in the maritime industry: a bibliometric review and future research directions,” *Maritime Policy & Management*, vol. 47, no. 5, pp. 577–597, 2020.

[14] M. M. Gaheen, R. M. ElEraky, and A. A. Ewees, “Automated students Arabic essay scoring using trained neural network by e-jaya optimization to support personalized system of instruction,” *Education and Information Technologies*, vol. 26, no. 1, pp. 1165–1181, 2021.

[15] Y. Zhen, K. Zhou, H. Fan et al., “Research on hybrid artificial intelligence optimization algorithm for grain transportation,” *Journal of Computers*, vol. 31, no. 2, pp. 35–44, 2020.

[16] J. Hunsberger, C. Simon, C. Zylberberg et al., “Improving patient outcomes with regenerative medicine: how the Regenerative Medicine Manufacturing Society plans to move the needle forward in cell manufacturing, standards, 3D bioprinting, artificial intelligence-enabled automation, education, and training,” *Stem Cells Translational Medicine*, vol. 9, no. 7, pp. 728–733, 2020.

[17] A. Sukhadia, K. Upadhyay, M. Gundeti et al., “Optimization of smart traffic governance system using artificial intelligence,” *Augmented Human Research*, vol. 5, no. 1, pp. 1–14, 2020.

[18] D. A. Greenwood, F. Howell, L. Scher et al., “A framework for optimizing technology-enabled diabetes and cardiometabolic care and education: the role of the diabetes care and education specialist,” *The Diabetes Educator*, vol. 46, no. 4, pp. 315–322, 2020.

[19] M. C. Chen, S. Q. Lu, and Q. L. Liu, “Uniqueness of weak solutions to a keller-segel-navier-stokes model with a logistic source,” *Applications of Mathematics*, vol. 59, 2021.

[20] K. McCullough, T. Williams, K. Mingle, P. Jamshidi, and J. Lauterbach, “High-throughput experimentation meets artificial intelligence: a new pathway to catalyst discovery,” *Physical Chemistry Chemical Physics*, vol. 22, no. 20, pp. 11174–11196, 2020.

[21] A. T. Sahlol, P. Kollmannsberger, and A. A. Ewees, “Efficient classification of white blood cell leukemia with improved swarm optimization of deep features,” *Scientific Reports*, vol. 10, no. 1, pp. 1–11, 2020.

[22] W. Wei, M. Guzani, S. H. Ahmed, and C. Zhu, “Guest editorial: special section on integration of big data and artificial intelligence for internet of things,” *IEEE Transactions on Industrial Informatics*, vol. 16, no. 4, pp. 2562–2565, 2020.

[23] W. Wang, N. Kumar, J. Chen et al., “Realizing the potential of the internet of things for smart tourism with 5G and AI,” *IEEE Network*, vol. 34, no. 6, pp. 295–301, 2020.