A Multi-Computational Exploration of Some Games of Pure Chance

Thotsaporn “Aek” THANATIPANONDA and Doron ZEILBERGER

Abstract. In the spirit of “multi-culturalism”, we use four kinds of computations: simulation, numeric, symbolic, and “conceptual”, to explore some “games of pure chance” inspired by children board games like “Snakes and Ladders” (aka “Chutes and Ladders”) and “gambler’s ruin with unlimited credit”. Even more interesting than the many computer-generated actual results described in this paper and its web-site extension, is our broad-minded, ecumenical approach, not favoring, a priori, any one of the above four kinds of computation, but showing that, a posteriori, symbolic computation is the most important one, since (except for simulation) numerics can be made more efficient with the help of symbolics (in the “downward” direction), and, (in the “upward” direction) the mere existence of certain symbolic-computational algorithms imply interesting “qualitative” results, that certain numbers are always rational, or always algebraic, and certain sequences are always polynomial, or C-recursive, or algebraic, or holonomic. This article is accompanied by four Maple packages, and numerous input and output files, that readers can use as templates for their own investigations.

The Maple packages. This article is accompanied by four Maple packages

- SnakesAndLadders.txt
- PosPileGames.txt
- GenPileGames.txt
- VGPileGames.txt

They are available, along with numerous input and output files, from the front of this article

http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/chance.html

Chapter 0: Important Background and Definitions

The three Kinds of Games

First we have TicTacToe, Checkers, Chess, and Go, that are games of no chance, i.e. you don’t need Lady Luck to help you (except the luck to be born smart).

Then we have games of some chance, combining luck and skill, like Poker, Bridge, Backgammon, and countless other games.

Finally, we have games of pure chance, where there is no skill involved, like the children board games “Snakes and Ladders”, “Candy Land”, and gambling in a casino (where at each round you always bet the same amount, independent of your capital). Also the final stage of Backgammon,
where all the pieces are in their final quarter, may be considered as a game of pure chance (assuming that both players follow a fixed bear-off strategy, like the greedy algorithm).

In this article we consider certain families of games of pure chance, to be defined later.

The four Kinds of Computation to study Games of Pure Chance

• First we have simulation (aka Monte Carlo), where you let the computer play the game many times, and to estimate the probability of winning you divide the number of games won by the total number of games, and estimate the expected length of the game by the sample average. This is very unreliable, especially, if the variance is large. Nevertheless, it is a useful check of the more accurate results obtained by other kinds of computations.

• Next we have numeric computation, whose output is a number. For example the probability that I will get 10 Heads if I toss a fair coin 20 times is the exact number \(\frac{46189}{262144} \) that equals 0.176197052... This is a numerical answer computed by a numeric computer programming language by plugging in the parameters \(n = 20 \) and \(k = 10 \), after a human coder hard-wired the human-generated (by human geniuses Pascal, Fermat, and possibly 13th century Chu) formula \(\frac{n!}{2^n k!(n-k)!} \).

• Next we have symbolic computation, where the computer generates general formulas, that are valid for symbolic parameters. Here the human coder designs general purpose algorithms that can output many such formulas (or more general schemes) that incorporate ‘infinitely many facts’. For example nowadays the formula \(\frac{n!}{2^n k!(n-k)!} \) can be gotten ab initio using the Almkvist-Zeilberger algorithm [AZ]. Just type

\[
\text{AZd}((1+x)**n/x**(k+1)/x,x,n,N)[1];
\]

in the Maple package http://sites.math.rutgers.edu/~zeilberg/tokhniot/EKHAD.txt.

Note that in some sense, numeric computation is a special case of symbolic computation, since numbers are symbols.

• Finally we have conceptual computation, that sounds like an oxymoron. In this case, we don’t compute exact numbers, or explicit symbolic expressions, but nevertheless use (often mental) “meta-computations” to assert the nature of the desired number. Is it rational? Is it algebraic? Or the nature of the desired sequence. Is our sequence polynomial?, or C-recursive?, or P-recursive?, or “none of the above”?

Before going on, let’s remind us what these mean.

The Four kinds of Numbers

• First we have positive integers, aka natural numbers (and zero), that were created by God.
The socially-constructed numbers are as follows.

- **Positive rational numbers**: that are of the form $\frac{m}{n}$ where m and n are positive integers and $n \neq 0$. Pythagoras believed that all numbers are rational.

- **Algebraic numbers**: numbers x that satisfy a polynomial equation $P(x) = 0$, where P is a polynomial with integer coefficients. For example $\sqrt{3}$ and $1 + \sqrt{5}$, that we will encounter later in this article, are algebraic numbers, since they are roots of the equations $x^2 - 3 = 0$ and $x^2 - 2x - 4 = 0$ respectively.

- **Computable numbers**, numbers x, such that for any $\epsilon > 0$, you can compute (hopefully fast) a rational number x_0 such that $|x - x_0| \leq \epsilon$.

We have no use for any other numbers. Note that the above families are ‘strictly increasing’. Every integer is rational (take $n = 1$). Every rational number is algebraic (take the degree of P to be 1). Every algebraic number is computable (using approximation algorithms like Newton-Raphson, or Horner).

We will also talk about **sequences** of numbers.

Four Kinds of Sequences

- Polynomial sequences, $a(n) = p(n)$, where $p(n)$ is a polynomial in n. For example $\{n\}$, $\{n^2\}$, $\{n^{1000}\}$.

- C-recursive (aka C-finite) sequences, $a(n)$, that satisfy a **linear recurrence equation with constant coefficients**
 \[
 a(n) = c_1 a(n - 1) + \ldots + c_L a(n - L) ,
 \]
 for some positive integer L and some constants c_1, \ldots, c_L. Equivalently, the (ordinary) **generating function**
 \[
 \sum_{n=0}^{\infty} a(n)t^n ,
 \]
 is a **rational function** of t, i.e. can be written as $P(t)/Q(t)$ for some **polynomials** $P(t), Q(t)$. The most famous C-finite sequences (that are not polynomials) are $\{2^n\}$ and the sequence of Fibonacci numbers $\{F_n\}$.

 See [Z1], [Z2] and [KP] about them. Note that any polynomial sequence is C-recursive. The denominator of its generating function is $(1 - t)^{d+1}$, where d is the degree.

- Algebraic sequences that satisfy a **non-linear** recurrence with constant coefficients. Equivalently sequences whose ordinary generating function
 \[
 f(t) := \sum_{n=0}^{\infty} a(n)t^n ,
 \]
satisfy an equation of the form
\[P(t, f(t)) = 0 \]
for some polynomial of two variables \(P(x, y) \). The most famous algebraic sequence (that is not \(C \)-recursive) is the sequence of Catalan numbers \(\frac{(2n)!}{n!(n+1)!} \), whose generating function satisfies \(f(t) = 1 + tf(t)^2 \). See [KP] chapter 6, and [Z2]. Every \(C \)-recursive sequence is algebraic, where the defining equation, \(P(t, f(t)) = 0 \), has degree one in \(f(t) \).

- \(P \)-recursive (aka [discrete] holonomic) sequences, \(a(n) \), that satisfy a linear recurrence equation with polynomial coefficients
\[
c_0(n) a(n) + c_1(n)a(n - 1) + \ldots + c_L(n)a(n - L) = 0 ,
\]
for some positive integer \(L \) and some polynomials, in the discrete variable \(n \), \(c_0(n), \ldots, c_L(n) \). Equivalently, the (ordinary) generating function
\[
\sum_{n=0}^{\infty} a(n)t^n ,
\]
is \(D \)-finite (aka [continuous] holonomic), i.e. it satisfies a linear differential equation with polynomial coefficients:
\[
d_0(t) f(t) + d_1(t)f'(t) + \ldots + d_M(t)f^{(M)}(t) = 0 ,
\]
for some positive integer \(M \) and some polynomials \(d_0(t), \ldots, d_M(t) \). Thanks to a famous theorem (see [KP], Theorem 6.1), every algebraic sequence is also \(P \)-recursive. Note that the converse is not true, e.g. \(\{ \frac{(3n)!}{n!n!} \} \).

We need to define one more kind of number.

Definition: A real number is a holonomic constant if it is the sum of a convergent power series
\[
\sum_{n=0}^{\infty} a_n ,
\]
where the sequence \(a_n \) satisfies a linear recurrence equation with polynomial coefficients (in \(n \)) whose coefficients are polynomials (in \(n \)) with integer coefficients, and the initial conditions are rational numbers. Note that, just like rational numbers and algebraic numbers, being a holonomic constant is a big deal, since there are only a countable number of them.

Chapter 1: Specific Games of Pure Chance inspired by the board game “Snakes and Ladders”

The game of “Snakes and Ladders” consists of 100 squares, and players take turns spinning a spinner (or equivalently rolling a die) with six equally likely outcomes 1, 2, 3, 4, 5, 6. If the player is currently at location \(i \), and gets \(j \), then she goes to location \(i + j \). In addition there are several
“snakes” (chutes) \([i, j]\) where \(i > j\) and if the player landed on location \(i\) he must jump down to location \(j\). There are also several “ladders” \([i, j]\) with \(i < j\), where the player jumps forward from location \(i\) to location \(j\).

To be specific, the version called “Chutes and Ladders” manufactured by Winning Moves Games, has 100 locations, with the following 10 chutes

\[
[16, 6], [47, 26], [49, 11], [56, 53], [62, 19], [64, 60], [87, 24], [93, 73], [95, 75], [98, 78]
\]

and the following 9 ladders:

\[
[1, 38], [4, 14], [9, 31], [21, 42], [28, 84], [36, 44], [51, 67], [71, 91], [80, 100]
\]

On the other hand the version called “Snakes and Ladders” manufactured by Cardinal Industries has the following 7 chutes (that are called there “snakes”)

\[
[16, 5], [50, 8], [63, 20], [57, 25], [98, 46], [98, 76], [95, 90]
\]

and the following 8 ladders

\[
[2, 44], [6, 13], [9, 31], [28, 84], [59, 61], [67, 93], [70, 73], [79, 100]
\]

All such games can be modeled in terms of a (finite) Markov process with one absorbing state.

We have a directed graph with a set of vertices \(V\), one of whose vertices is the absorbing state, \(e\). There are no edges out of \(e\), and out of each vertex \(v \in V\) there is a set of outgoing neighbors, let’s call it \(N(v)\), so that there is a directed edge from \(v\) to each member \(u \in V\), and a probability distribution on \(N(v)\), \(\{p_{vu} \mid u \in N(v)\}\), such that \(\sum_{u \in N(v)} p_{vu} = 1\).

Since this is a game of pure chance, where there is no strategy, and it is essentially a race between the players, rather than having the huge “state” space \(V \times V\), it is much more efficient to first consider the solitaire game and think of it as “racing against time”. For each \(v \in V\), let \(f_v(t)\) be the probability generating function of the random variable “number of turns” until the end, if your current location is \(v\).

In other words \(f_v(t)\) is the formal power series whose coefficient (in its MacLaurin expansion) of \(t^k\) is the probability of reaching \(e\) from \(v\) in exactly \(k\) rounds.

The most important one is \(f_1(t)\) where 1 is the initial state, but it is also useful, during the game, if you are currently at vertex \(v\), to know the probability distribution (and hence the expectation) for the duration until the end of game. Note that if our directed graph has cycles (like in the Chutes and Ladders game), the \(f_v(t)\) are not polynomials but, as we will soon see, are rational functions of \(t\).
Suppose that you are currently at \(v \). Then your next location is \(u \) for some \(u \in N(v) \), and your probability of moving there in that round is \(p_{vu} \). But by going there you have spent one round. This leads to the linear equation

\[
f_v(t) = t \sum_{u \in N(v)} p_{vu} f_u(t), \quad v \in V \backslash \{e\}.
\]

\[
f_e(t) = 1.
\]

The equation \(f_e(t) = 1 \) follows from the fact that if you are at the absorbing state, the probability of getting there in 0 steps is 1.

This gives us a system of \(|V|\) linear equations with \(|V|\) unknowns, that our computer can easily solve, for each specific game.

To see the list of length 99 whose \(i \)-th entry is the probability generating function for the duration of the “Chutes and Ladders” game (produced by Winning Moves Games, described above) see

http://sites.math.rutgers.edu/~zeilberg/tokhniot/oSnakesAndLadders1.txt.

To see the list of length 99 whose \(i \)-th entry is the probability generating function for the duration of the “Snakes and Ladders” game (produced by Cardinal Industries, described above) see

http://sites.math.rutgers.edu/~zeilberg/tokhniot/oSnakesAndLadders1a.txt.

By Cramer’s rule it follows that the probability generating functions for durations \(\{f_v(t)\} \) are all rational functions, and this leads to our first “conceptual” theorem.

Theorem 1: For any finite game of pure chance, given by a Markov process as above, the probability generating function for the random variable, “number of rounds until the end” starting at each particular location (in particular at the initial position) are all rational functions with the same denominator. Equivalently, the sequence of probabilities are all \(C \)-recursive sequences satisfying the same linear recurrence equation with constant coefficients (but of course with different initial values). Furthermore, if the transition probabilities are rational (in particular, if the spinner is fair), then the coefficients of the numerators and denominators are rational numbers.

Once you have the probability generating function \(f_v(t) \), you immediately get the important quantity called the **expectation** (average), the **variance** and any desired moments. The expectation is \(t \frac{d}{dt} f_v(t) \big|_{t=1} \), and the \(k \)-th moment is \((t \frac{d}{dt})^k f_v(t) \big|_{t=1} \). Since the derivative of a rational function is rational, and the coefficients of the numerators and denominators are still rational numbers, we get.

Corollary 1.1: For any finite game of pure chance, given by a Markov process as above, where the transition probabilities are rational numbers, the expectation, variance, and higher moments are certain specific rational numbers.
The **exact** value of the expected duration (from the starting location) for the *Winning Moves Games* version is the **rational number**

\[
\frac{887878294805352403696983059454536608342612464186714311208985}{243416111817328043604468543532599921796578664874808501948232}
\]

whose floating-point representation is 36.475739629259028643943017\ldots. So the solitaire game is expected to last that long. The variance is also a rational number, and its square-root, the **standard deviation** is 23.356479540691083914719\ldots, note that it is fairly large. For higher moments, and more details, see the output file

http://sites.math.rutgers.edu/~zeilberg/tokhniot/oSnakesAndLadders4.txt

The **exact** value of the expected duration (from the starting location) for the *Cardinal Industries* version is the **rational number**

\[
\frac{2187389648884112026248013918019557612757259881117230420982560723}{74261533674379113296972151137271925497892767961930598965112832}
\]

whose floating-point representation is 29.45521780462205595995\ldots. So the solitaire game is expected to last that long. The variance is also a rational number, and its square-root, the **standard deviation** is 16.119642155096650734294068, note that it is fairly large. For higher moments, and more details, see the output file

http://sites.math.rutgers.edu/~zeilberg/tokhniot/oSnakesAndLadders5.txt

Probability of Winning

Suppose that there are two players, where both players are currently at location \(v \). In particular, if they are at the starting position. Writing

\[
f_v(t) = \sum_{k=0}^{\infty} a_k t^k
\]

the probability of the first player winning is

\[
\sum_{1 \leq k_2 \leq k_1 < \infty} a_{k_1} a_{k_2}
\]

that is easily seen to equal

\[
\frac{1}{2} \left(1 + \sum_{k=0}^{\infty} a_k^2 \right)
\]

Since \(\sum_{k=0}^{\infty} a_k t^k \) is a rational function in the variable \(t \), it follows from elementary linear algebra (see [Z1]) that \(\sum_{k=0}^{\infty} a_k^2 t^k \) is also a rational function, and if all the transition probabilities of our
Markov process describing the game are rational numbers, the numerators and denominators are polynomials whose coefficients are rational numbers, hence we get the surprising fact that the infinite convergent sum $\sum_{k=0}^{\infty} a_k^2$ is a specific rational number.

We have demonstrated the “two-player”, “same starting position” of the following theorem. The general case can be proved similarly, and is left to the reader.

Theorem 2: For any finite game of pure chance, given by a Markov process as above, where the transition probabilities are rational numbers, and there are k players, currently all at the same location (in particular if they are at the initial position), or possibly different locations, where they take turns moving, and the player to first reach the absorbing state is the winner, the winning probability of each of the players is always a specific rational number, that can be explicitly computed.

We were too lazy to find the actual rational numbers describing the probability of the first player winning, at the very beginning of the game (it is a long computation, since the probability generating function is complicated), but their floating point approximations, for the above two versions of “Snakes and Ladders”) discussed above, are 0.5087744562 and 0.5112590928 respectively. See the above output files.

A short user’s manual for the Maple package SnakesAndLadders.txt

The material in the present chapter is implemented in the Maple package *SnakesAndLadders.txt*, available from the front of this article, or directly from

http://www.math.rutgers.edu/~zeilberg/tokhniot/SnakesAndLadders.txt .

The main procedures are:

- **GFD(P,t)**, that inputs a Markov process P and a variable t and outputs a list of rational functions in t corresponding to the functions $f_v(t)$ described above. In particular, the first entry is the probability generating function for the duration of a solitaire game starting at the beginning. First let us get a simple Markov process with the aid of the command **TMdieG**:

 M:=TMdieG([[1,1/2],[2,1/2]],7,[[[1,3]],[[4,2]]]);

you would give us the discrete Markov process

M=[[2, 1/2], [3, 1/2]], [[2, 1/2], [3, 1/2]], [[2, 1/2], [5, 1/2]], [[5, 1/2], [6, 1/2]], [[6, 1/2], [7, 1/2]], [[7, 1]] .

(This means that there are 6 states, 1, 2, 3, 4, 5, 6, and the absorbing state is 7. The probability of going from 1 to 2, and from 1 to 3 are both $\frac{1}{2}$. The probability of going from 2 to 3 is $\frac{1}{2}$, and from 2 back to 2 is also $\frac{1}{2}$ etc.).
Having gotten M, typing $R := \text{GFD}(M, t)[1]$; would give the probability generating function, R, of the duration starting at the first location, 1. It turns out to be

$$
\frac{t^3 (1 + t)}{2(4 - 2t - t^2)}
$$

- **ProbAhead(R, t)**, inputs a rational function R that is the probability generating function for the game (obtained thanks to $\text{GFD}(M, t)$), and outputs the probability of the first player winning in the two-player version. For example, calling

$\text{ProbAhead}(R, t);$

would give the nice rational number $\frac{11}{20}$. Alas, if R is very complicated, it may take a long time, so the approximate version

$\text{ProbAheadAppx}(R, R, t, K);$

gives an approximation using the first K terms, should be used for a sufficiently large K.

For more details, explore the on-line Help (invoked by ezra();).

Chapter 2: “Infinite Families” of “Snakes and Ladders” games, but with neither Snakes nor Ladders.

In the previous chapter, we studied one game at a time. We now study “infinite” families of games of pure chance of the following kind.

The input is an *arbitrary* die (with an arbitrary, but finite, number of faces) each face with a certain positive number of dots, and the die can be as loaded as one wishes. In other words, the input is an arbitrary probability distribution, let’s call it \mathcal{P}, on a finite set of positive integers. If the die (or spinner) has k faces with number of dots i_1, \ldots, i_k, whose respective probabilities are p_1, \ldots, p_k (of course $p_1 + \ldots + p_k = 1$). We denote it by

$$
\mathcal{P} = \{ [i_1, p_1], [i_2, p_2], \ldots, [i_k, p_k] \}.
$$

For example, for the familiar fair cubic die the distribution is

$$
\mathcal{P} = \{ [1, \frac{1}{6}], [2, \frac{1}{6}], [3, \frac{1}{6}], [4, \frac{1}{6}], [5, \frac{1}{6}], [6, \frac{1}{6}] \}.
$$

If you toss a loaded coin whose probability of Heads is $\frac{2}{3}$ and get one dollar if it lands on Heads, and 2 dollars if it lands on Tails, the probability distribution is

$$
\mathcal{P} = \{ [1, \frac{2}{3}], [2, \frac{1}{3}] \}.
$$
The other input is a positive integer \(n \). In the Solitaire version you keep rolling the die, accumulating capital, and end the game as soon as you have reached your goal of \(\geq n \) dollars. In the Game version the players take turns and the first person to reach the goal of \(\geq n \) dollars wins the game.

Now for each specific positive integer \(n \), this is a game similar to the one dealt with in Chapter 1, only simpler, since there are no cycles, so the probability generating functions are always polynomials, rather than rational functions.

But we want, having fixed the probability distribution \(\mathcal{P} \), to get nice closed form expressions, in terms of the symbol \(n \), for the expectation, variance, and any desired higher moment for the duration.

A rough estimate for the expected number of moves is \(n/E[\mathcal{P}] \), where \(E[\mathcal{P}] = \sum_{r=1}^{k} i_r p_r \) is the expected gain in one move, but one can do much better as follows.

We need the grand generating function, in \(x \), say
\[
\sum_{n=0}^{\infty} F_n(t)x^n,
\]
where \(F_n(t) \) is the probability generating function for the \(\mathcal{P} \)-game with \(n \) as goal. We clearly have
\[
\sum_{n=0}^{\infty} F_n(t)x^n = \frac{\sum_{r=1}^{k} t(1 + x + \ldots + x^{i_r-1})p_{i_r}}{1 - t(\sum_{r=1}^{k} p_r x^{i_r})}.
\]

We would like to have explicit expressions for the expectation, variance, and higher moments in terms of \(n \). Differentiating with respect to \(t \), and plugging-in \(t = 1 \) gives something of the form
\[
\sum_{n=0}^{\infty} F_n'(1)x^n = \frac{P(x)}{(1-x)^2Q_1(x)},
\]
for some polynomial \(P(x) \), and some polynomial \(Q_1(x) \) whose roots are all larger than 1 in absolute value. More generally
\[
\sum_{n=0}^{\infty} ((t \frac{d}{dt})^k F_n(t))|_{t=1}x^n = \frac{P(x)}{(1-x)^{k+1}Q_k(x)},
\]
for some polynomial \(P(x) \) and some polynomial \(Q_k(x) \) whose roots are all larger than 1 in absolute value. Performing a partial fraction decomposition over the complex numbers leads to something of the form
\[
\sum_{n=0}^{\infty} ((t \frac{d}{dt})^k F_n(t))|_{t=1}x^n = \frac{A_0}{1 - x} + \frac{A_2}{(1 - x)^2} + \ldots + \frac{A_k}{(1 - x)^{k+1}} + \sum_{s=1}^{m} \frac{B_s(x)}{(x - \alpha_s)^{k+1}}.
\]

Recalling that the coefficient of \(x^n \) in \(\frac{1}{(1-x)^{r+1}} \) is \(\binom{n+r}{r} \), which is a polynomial in \(n \) of degree \(r \), and the coefficient of \(x^n \) in \(\frac{1}{(x-a)^{r+1}} \), with \(|a| > 1 \) is \(o(1) \), we get our next ‘conceptual’ theorem.
Theorem 3: Given an arbitrary finite probability distribution P as above, except for exponentially small terms, the average of the random variable, “number of rounds it takes to reach n”, is a polynomial in n of degree 1. Furthermore, for the higher moments, the k-th moment of that random variable (and hence the k-th moment about the mean) is a polynomial in n of degree $\leq k$, that can be explicitly computed.

Here are some sample results.

Proposition 1: For $P = [[1, \frac{1}{2}], [2, \frac{1}{2}]]$, up to exponentially small contributions, for the random variable, ‘duration until you get $\geq n$ for the first time’, we have

- The expectation is $\frac{2}{7} n + \frac{2}{7} + o(1)$.
- The variance is $\frac{2}{21} n + \frac{2}{81} + o(1)$.
- The third moment about the mean is $\frac{2}{81} n - \frac{26}{729} + o(1)$.
- The fourth moment about the mean is $\frac{4}{243} n^2 + \frac{2}{243} n - \frac{62}{2187} + o(1)$.

For the 5-th through the 10-th moments, see the output file

http://sites.math.rutgers.edu/~zeilberg/tokhniot/oPosPileGames1.txt.

More generally, for a loaded coin, where the probability of 1 is p and the probability of 2 is $1-p$, we have the next proposition.

Proposition 2: For $P = [[1, p], [2, 1-p]]$, up to exponentially small contributions, for the random variable, ‘duration until you get $\geq n$ for the first time’, we have

- The expectation is $\frac{1}{2-p} n + \frac{1-p}{(2-p)^2} + o(1)$.
- The variance is $\frac{p(1-p)}{(2-p)^3} n - \frac{(1-p)(p^2 + p - 1)}{(2-p)^4} + o(1)$.
- The third moment about the mean is $-\frac{p(1-p)(p^2 + 2p - 2)}{(2-p)^5} n + \frac{p^2(1-p)(p^2 + 7p - 7)}{(2-p)^6} + o(1)$.
- The fourth moment about the mean is...
\[
\frac{3p^2(1-p)^2}{(2-p)^6} \cdot n^2 + \frac{p(1-p)(p^4 + 16p^3 - 6p^2 - 20p + 10)}{(2-p)^7} \cdot n \\
+ \frac{(-1+p)(p^6 + 26p^5 + 12p^4 - 75p^3 + 35p^2 + 3p - 1)}{(-2+p)^8} + o(1)
\]

For the 5-th through the 10-th moments, see the output file

\text{http://sites.math.rutgers.edu/~zeilberg/tokhniot/oPosPileGames2.txt}

Maple can easily generate such proposition for each \textit{specific} die, but what about an \textit{‘infinite’} family of dice? For the \textit{‘infinite’} family of \(k\)-faced fair dice, for each case, \(k = 2, 3, 4, \ldots\), the algorithm that we used can crank out explicit expressions, in \(n\), (up to exponentially small terms) for the expectation, variance, and any desired finite moment, but it can’t do it (at least not with the present method) for \textit{symbolic} \(k\), i.e. all \(k\) at once. But it is possible to show that these quantities for the \(k\)-faced fair die, i.e. for

\[\mathcal{P} = \left\{ [1, \frac{1}{k}], [2, \frac{1}{k}], \ldots, [k, \frac{1}{k}] \right\},\]

in addition to being polynomials in \(n\), are also \textbf{rational functions} in \(k\). Being experimental mathematicians, we collected enough data for several \(k\), and then “fitted” it with a rational function, leading to the next impressive, \textbf{computer-generated} proposition.

\textbf{Proposition 3:} For \textit{any} positive integer, and any fair \(k\)-sided die, for the random variable, ‘duration until you get \(\geq n\) for the first time’, we have, up to exponentially small terms

\begin{itemize}
 \item The expectation is
 \[\frac{2}{k+1} \cdot n + \frac{2(k-1)}{3(k+1)} + o(1)\]
 \item The variance is
 \[\frac{2(k-1)}{3(k+1)^2} \cdot n + \frac{2(k-1)^2}{9(k+1)^2} + o(1)\]
 \item The third moment about the mean is
 \[\frac{2}{3} \frac{(k-1)^2}{(k+1)^3} \cdot n + \frac{2}{135} \frac{(k-1)(k-7)(7k-1)}{(k+1)^3} + o(1)\]
 \item The fourth moment about the mean is
 \[\frac{4}{3} \frac{(k-1)^2}{(k+1)^4} \cdot n^2 + \frac{2}{15} \frac{(k-1)(13k^2 - 30k + 13)}{(k+1)^4} \cdot n + \frac{2}{135} \frac{(13k^2 - 110k + 13)(k-1)^2}{(k+1)^4} + o(1)\]
\end{itemize}

For the fifth and sixth moments, see the output file

\text{http://sites.math.rutgers.edu/~zeilberg/tokhniot/oPosPileGames4.txt}
Probability of Winning

So far we considered the solitaire game, but now let’s turn it into a two-player game, where the players take turns, and whoever reaches the goal n first, is the winner. For each specific n, we know from the previous chapter, that it is a specific rational number (provided the probabilities in \mathcal{P} are rational), but what can you say about the sequence, let’s call it $f(n)$, of the first player winning?

By Wilf-Zeilberger algorithmic proof theory [PWZ][Z3], the double sequence, let’s call it $b_{k,n}$, the coefficient of $t^k x^n$ in the grand-generating function above, is holonomic in both n and k, i.e. satisfies linear recurrence equations with polynomial coefficients in both the n and k variables. It also follows from that theory that the sum of the squares $\sum_{k=1}^{\infty} b_{k,n}^2$, let’s call it $a(n)$, is holonomic (P-recursive) in the surviving variable n, i.e. $a(n)$ satisfies some specific linear recurrence equation with polynomial coefficients, that enables a very fast computation of many terms, once that recurrence is known.

This brings us to the next ‘conceptual’ theorem.

Theorem 4: Given an arbitrary finite probability distribution \mathcal{P} as above, in the two player-game where players take turns and the first to reach n is the winner, let $f(n)$ be the probability that the first player wins. Then $f(n) = (1 + a(n))/2$, where the sequence $a(n)$ (and hence, also $f(n)$) is P-recursive, i.e. satisfies a linear recurrence equation with polynomial coefficients.

While there exist algorithms to do this *ab initio*, it is much more efficient to crank-out enough terms of the desired sequence and use *undetermined coefficients* to discover the recurrence, in the spirit of experimental mathematics.

This brings us to the next computer-generated proposition.

Proposition 4: if two players take turns tossing a fair coin and get one dollar if it is Heads and two dollars if it is Tails, and the first to reach n dollars is the winner, the probability of the player who goes first to win the game is $\frac{1}{2}(1 + a(n))$, where $a(n)$ satisfies the linear recurrence

$$a(n) = \frac{1}{2} \frac{(3n-1)(n-3)}{n(3n-7)} \cdot a(n-1) + \frac{1}{16} \frac{(21n^2 - 67n + 62)}{n(3n-7)} \cdot a(n-2)$$

$$+ \frac{1}{16} \frac{(6n^2 - 17n + 2)}{n(3n-7)} \cdot a(n-3) - \frac{1}{16} \frac{(n-4)(3n-4)}{n(3n-7)} \cdot a(n-4),$$

subject to the initial conditions

$$a(1) = 1, \ a(2) = \frac{1}{2}, \ a(3) = \frac{5}{8}, \ a(4) = \frac{15}{32}.$$

Using this recurrence it follows that the probability of the first player to reach $n = 1000$ first is $(1 + a(1000))/2 = 0.516384982 \ldots$
Comment: While for the general case it is much easier to use the ‘guessing’ way (that is easily made rigorous by invoking general theorems), in this simple case, where the probability of ending after exactly \(k \) rounds, if the goal is \(n \), is easily seen to be given by the closed-form expression

\[
b_{k,n} = \frac{(k-1)(3k-n)}{(2k-n)2^k},
\]

to get a recurrence satisfied by the sum of squares, one can use the celebrated Zeilberger algorithm (see [PWZ]), implemented in Maple. Just type:

\[
\text{ope}:=\text{SumTools}[\text{Hybergeometric}][\text{Zeilberger}]
((\text{binomial}(k-1,n-k)*(3*k-n)/(2*k-n)/2**k)**2,n,k,N)[1];
\]

Followed by (to make it look nicer)

\[
\text{add(factor(coeff(ope,N,i)/coeff(ope,N,4))*N**i,i=0..4)};
\]

that is equivalent to Proposition 4. (Recall that \(N \) is the forward shift operator in \(n \): \(Na(n) := a(n+1) \)).

For the more general case where the probability of winning a dollar is \(p \), rather than \(\frac{1}{2} \), see the output tile

http://sites.math.rutgers.edu/~zeilberg/tokhniot/oPosPileGames6.txt

The front of this article contains a few other such propositions, and readers can create their own.

Chapter 3: Games of Pure Chance Generated by Gambler’s Ruin with Unlimited Credit: The Fuss-Catalan case

In Chapter 2, we only allowed positive steps. Now we will also allow negative steps, and treat games that may be viewed as a “gambler’s ruin with infinite credit” with an arbitrary ‘die’. In the next chapter we will treat the case of a general die, while in this chapter we only consider two-faced dice, where one of the faces is marked 1 and the other marked \(-k\), and the more difficult case where one of the faces is marked \(-1\) and the other marked \(k\). We will start with their intersection, the very classical case of \(\{-1,1\}\), treated in Feller’s classic [F]. However, even in this case we will be able to go beyond Feller, since he did not use a computer.

The general set-up, to be considered in full generality in Chapter 4 is as follows.

On the discrete line, you start at the origin \(x = 0 \), and there is a fixed allowed set of steps consisting of both positive and negative integers and a probability distribution on them, let’s call it \(\mathcal{P} \). You are allowed to go as far left as possible (i.e. you can owe as much as necessary). At each round, you roll the \(\mathcal{P} \) die, and move accordingly. You win as soon as you reach a location \(\geq 1 \), or more generally when you reach a location \(\geq n \). In other words, your goal is to exit the casino with at least one dollar (or more generally, at least \(n \) dollars). In the two-player (or multi-player) version,
the players take turns rolling the \mathcal{P} die, and whoever achieves the goal first is declared the winner. As before, we will first discuss the solitaire game, where the goal is to reach it as soon as possible.

Classical Gambling: Winning a dollar or losing a dollar

Let’s start with the simplest, most classical case, of simple random walk, where you start with 0 dollars, and at each round you win a dollar with probability p and lose a dollar with probability $1-p$. The expected gain at each individual round is $p \cdot 1 + (1-p) \cdot (-1) = 2p - 1$, so if $p > \frac{1}{2}$, then sooner or later you will reach your goal of owning ≥ 1 dollars. If $p < \frac{1}{2}$, then you may never make it, sliding down to infinite debt. In the border-line case of a fair coin, $p = \frac{1}{2}$, as we will soon see, you are also guaranteed to ‘eventually’ be in possession of 1 dollar (and more generally, n dollars for each $n > 0$, as big as you wish). Alas, as we will also soon see, the expected time until that happens is infinite, and since life is finite, there is a good chance that when you will pass away, your heirs will have a huge debt.

Analyzing Gambling histories

For typographical clarity, let’s denote -1 by $\bar{1}$.

Our alphabet is $\{-1, 1\} = \{1, \bar{1}\}$. A ‘gambling history’ consists of a word that ends in 1, whose sum is 1, and whose proper partial sums are all non-positive. Obviously the length of such a game is odd.

If you are really lucky, you exit after one step, since you won a dollar right away.

If you lost a dollar at the first round, you can recover at the second round, and then win a dollar at the third round. Etc.

For the sake of clarity and concreteness, let’s list the first few ‘histories’.

Length 1: $\{1\}$. Probability $= p$.

Length 3: $\{\bar{1}11\}$. Probability $= p^2 (1-p)$.

Length 5: $\{\bar{1}1\bar{1}11, \ 1\bar{1}111\}$. Probability $2 \cdot p^3 (1-p)^2$.

Length 7:

$$\{\bar{1}1\bar{1}1\bar{1}11, \ 11\bar{1}1\bar{1}111, \ \bar{1}1\bar{1}1\bar{1}11, \ \bar{1}1\bar{1}1\bar{1}111, \ \bar{1}1\bar{1}1\bar{1}111\}$$

with probability $5 \cdot p^3 (1-p)^2$.

It is useful, for humans, to visualize such a history as a lattice path in the discrete plane starting at $(0, 0)$ where $\bar{1}$ corresponds to a step $(1,-1)$ and 1 corresponds to a step $(1,1)$. For example, the word (gambling history) $\bar{1}\bar{1}1\bar{1}11$.

15
corresponds to the walk
\[(0,0) \to (1,-1) \to (2,-2) \to (3,-1) \to (4,0) \to (5,-1) \to (6,0) \to (7,1) \].

Let’s study the anatomy of such histories, or equivalently, paths. Obviously they are all of odd length, and they all end with 1. So we can write, for any history \(W \)
\[W = U 1 \]
where \(U \) is a word that sums to 0, all whose partial sums are non-positive. Such words are called Dyck words.

Let’s analyze such a Dyck word \(U \) or rather its corresponding path from \((0,0)\) to \((2n,0)\), say. Of course, it may be the empty word, but if it is not, let \((2r,0)\) \(0 < r \leq n\) be the first time that it hits the \(x\)-axis. Then we can write
\[U = U_1 U_2 \]
where \(U_2 \) is another word of that kind (of length \(2n - 2r\)), but \(U_1 \), consisting of the first \(2r\) letters of \(U \), has the special property that all its partial sums (except the 0-th and the last) are strictly negative, or in terms of its path, except for its starting and ending points, they lie strictly below the \(x\)-axis. Such a word must necessarily start with a \(T\) and end with a 1, and may be written as \(TU_31\), where \(U_3\) is an arbitrary Dyck word. Conversely, for any Dyck word \(U_3\), \(TU_31\) corresponds to such a ‘strictly below the \(x\)-axis’ path. So we have the (context-free) grammar
\[U = \text{EmptyWord} \lor TU1U \]
\((\text{DyckGrammar})\)
where now \(U\) stands for ‘an arbitrary Dyck word’.

let \(z_1\) and \(z_{-1}\) be commuting variables.

For any word \(u = u_1 \ldots u_m\), let the weight of \(u\) be \(z_{u_1} \cdots z_{u_m}\). For example,
\[\text{weight}(TTT1111) = z_{-1}z_{-1}z_{-1}z_1z_1z_{-1}z_1z_1 = z_{-1}^4 z_1^5. \]

Let \(F(z_{-1}, z_1)\) be the weight enumerator of the set of Dyck words, i.e. the sum of all the weights of all these words, a certain formal power series in \(z_{-1}, z_1\).

Obviously the weight of the empty word is 1 (the empty product), hence applying weight to \((\text{DyckGrammar})\), we get the quadratic equation
\[F = 1 + z_{-1} F z_1 F. \]

Abbreviating \(X = z_{-1} z_1\), we get
\[F = 1 + X F^2. \]
Recalling what we learned in seventh grade (or what the Babylonians knew more than 3000 years ago), we can express F **explicitly**

$$F = \frac{1 - \sqrt{1 - 4X}}{2X}.$$

Recalling what we learned in 12-th grade (or what Isaac Newton knew more than 300 years ago) we can write

$$F = \sum_{m=0}^{\infty} \frac{(2m)!}{m!(m+1)!}X^m,$$

implying the fact that the number of Dyck paths of length $2m$ is the super-famous **Catalan** number $C_m = \frac{(2m)!}{m!(m+1)!}$, that is the subject of Richard Stanley’s modern classic [St], and the most popular sequence, A108, in the great OEIS [Sl].

The above is the standard, very boring proof of that famous fact. We know at least a dozen proofs, some of them are given in [St]. Here is one of our favorite proofs due to Aryeh Dvoretzky and Theodore Motzkin [DM].

The fact that the number of Dyck paths of length $2m$ equals the Catalan number C_m is equivalent the fact that the number of words in $\{-1, 1\}$ of length $2m+1$ whose sum is 1 and all whose proper-partial sums are non-positive is C_m. Every word of length $2m+1$ in $\{-1, 1\}$ that adds up to 1 has $m+1$ ‘1’ and m ‘−1’. There are $\binom{2m+1}{m}$ such words. The $2m+1$ cyclic shifts of each such word are all different (why?), and exactly one of them has the property that its partial sums are all non-positive (why?). Hence the number of gambling histories that we are interested in is $\frac{1}{2m+1} \cdot \binom{2m+1}{m} = C_m$.

Enter Probability

So far what we did was **enumerative combinatorics**. We found out that the weight-enumerator of the set of Dyck words is

$$\frac{1 - \sqrt{1 - 4z_{-1}z_1}}{2z_{-1}z_1},$$

and hence the weight enumerator of words in $\{-1, 1\}$ that add-up to 1, and such that all their proper partial sums are ≤ 0, is z_1 times that, i.e.

$$\frac{1 - \sqrt{1 - 4z_{-1}z_1}}{2z_{-1}}.$$

Assume that each round in the gambling game is **independent** of the other ones, and for each of them the probability of winning a dollar is p, and hence of losing a dollar is $1 - p$. Plugging-in $z_{-1} = (1-p)t$, $z_1 = pt$, in the above explicit enumerating generating function, we get the following human-generated, well-known (see [F]) proposition.

Proposition 5: The **probability generating function** of the random variable ‘number of rounds it takes until the first time you have one dollar’, if you start with 0 dollars and at each round you win a dollar with probability p and lose a dollar with probability $1 - p$, let’s call it $g(t)$, is

$$g(t) = \frac{1 - \sqrt{1 - 4(1-p)pt^2}}{2(1-p)t}.$$

17
So far all our power series were formal, but it is easy to see that if \(p \geq \frac{1}{2} \) then plugging-in \(t = 1 \) leads to a convergent series, that sums-up to 1, in agreement with the obvious fact that if \(p > \frac{1}{2} \) sooner or later you will succeed, and the slightly less obvious fact that it is still true when \(p = \frac{1}{2} \). If \(p < \frac{1}{2} \), then we must take the other sign of the square-root, leading to the classical and well-known fact that the probability of one day having one dollar in your possession is \(\frac{p}{1-p} \).

More generally, suppose that your goal in life is not just to exit the casino with one dollar, but you want to make \(n \) dollars. Since each additional dollar is yet another 1-dollar game, we immediately get.

Proposition 5’: The probability generating function of the random variable ‘number of rounds it takes until the first time you have \(n \) dollars’, if you start with 0 dollars and at each round you win a dollar with probability \(p \) and lose a dollar with probability \(1 - p \), is given by

\[
\left(\frac{1 - \sqrt{1 - 4(1-p)pt^2}}{2(1-p)t} \right)^n.
\]

From now let’s assume that \(p \geq \frac{1}{2} \). To get the expected duration we can still do it by hand, find \((g(t)^n)' = n g(t)^{n-1} g'(t) \), then compute \(g'(t) \), plug-in \(t = 1 \) and simplify, getting that the expectation is \(\frac{n}{2p-1} \).

For the \(k \)-th moment, we compute \((t^d dt)^k (g(t)^n) \), plug-in \(t = 1 \), and simplify, expressing all higher derivatives of \(g(t) \) in terms of \(g(t) \) and \(t \), followed by substituting \(t = 1 \).

An even better way, that would be the only way later on when we do the general gambling case, is to use implicit differentiation, using the relation

\[
f(t) = 1 + p \ (1-p) t^2 f(t)^2,
\]

and its implied relation for \(g(t) = p t f(t) \).

It turns out that if you use the explicit expression \(g(t) = \frac{1 - \sqrt{1 - 4(1-p)pt^2}}{2(1-p)t} \) all the radicals disappear, and if you use implicit differentiation, and then plug-in \(t = 1 \), you never have to divide 0 by 0, so either way you would get that all the moments are polynomials in \(n \) and rational functions in \(p \). In particular, if \(p \) is a rational number, then they are all also rational numbers. The expectation, is \(\frac{n}{2p-1} \).

For higher moments, We get the following computer-generated proposition.

Proposition 6: Let \(X_{n,p} \) be the random variable “Number of rounds until reaching \(n \) dollars for the first time” in a gambling game where the probability of winning a dollar is \(p \) and of losing a dollar is \(1 - p \). Assume that \(p > \frac{1}{2} \). We have

\[
E[X_{n,p}] = \frac{n}{2p-1}.
\]
\[Var[X_{n,p}] = \frac{4np(1-p)}{(2p-1)^3} . \]

The *skewness* (aka scaled third moment about the mean) is
\[\alpha_3[X_{n,p}] = (-2p^2 + 2p + 1) \left(-1 + 2p\right)^{-2} \frac{1}{\sqrt{n p (-1 + p)}} \left(-1 + 2p\right)^3 . \]

The *kurtosis* (aka scaled fourth moment about the mean) is
\[\alpha_4[X_{n,p}] = \frac{-4p^4 + (6n + 8)p^3 + (-9n + 6)p^2 + (3n - 10)p - 1}{n p (-1 + p) (-1 + 2p)} . \]

For the 5-th through 10-th scaled moments, see the output file
http://sites.math.rutgers.edu/~zeilberg/tokhniot/oGenPileGames1.txt .

The Two Player version for the \((1, -1)\) case

Using Lagrange inversion (see [Z4] for a lucid statement and proof) or otherwise, it is easy to see that the probability of reaching \(m\) dollars for the first time after exactly \(n\) rounds, in a solitaire game where the probability of winning a dollar is \(p\) and the probability of losing a dollar is \(1 - p\), let’s call it \(b_{n,m}\) is
\[b_{n,m} = \frac{m (2n + m - 1)! p^n + m (1 - p)^n}{n! (n + m)!} . \]

Suppose that two players take turns and whoever reaches \(m\) dollars first is declared the winner. As before, the probability of winning the game for the player whose turn is to move is \(a(m) = (1 + f(m))/2\), where
\[f(m) = \sum_{n=1}^{\infty} b_{n,m}^2 \ . \]

Using the Zeilberger algorithm once again we have the next computer-generated proposition.

Proposition 7: In the two player version game with a *fair* coin, i.e. the probability of winning a dollar and losing a dollar are both \(\frac{1}{2}\), the winning probability of the player whose turn is to move is \((1 + f(m))/2\) where \(f(m)\) satisfies the second-order recurrence
\[(2m^2 + 5m + 2) f(m + 2) + (-12m^2 - 24m - 10) f(m + 1) + (2m^2 + 3m) f(m) = -\frac{8}{\pi} \ , \]
subject to the initial conditions
\[f(1) = -\frac{-4 + \pi}{\pi} \ , \quad f(2) = -\frac{-16 + 5 \pi}{\pi} . \]

For the loaded case, where \(p > \frac{1}{2}\), we have the next proposition.
Proposition 8: In the two player version game with the probability of winning a dollar is p and losing a dollar is $1 - p$, provided $\frac{1}{2} < p < 1$, the winning probability of the player whose turn is to move is $(1 + f(m))/2$ where $f(m)$ satisfies the fourth-order recurrence

$$m (-1 + p)^4 (m - 3) f(m) - (-1 + p)^2 (2 m^2 - 7 m + 4) f(m - 1) + (-2 m^2 p^4 + 4 m^2 p^3 + 8 m p^4 - 2 m^2 p^2 - 16 m p^3 - 4 p^4 + 8 m p^2 + 8 p^3 + m^2 - 4 p^2 - 4 m + 4) f(m - 2) - p^2 (2 m^2 - 9 m + 8) f(m - 3) + p^4 (m - 1) (m - 4) f(m - 4) = 0,$$

subject to the appropriate initial conditions.

Winning a dollar or losing k dollars

Now let’s generalize to the gambling game where, as before, you start with a capital of 0 dollars, but now at each round you win a dollar with probability p or lose k dollars with probability $1 - p$, and the game ends as soon as you own 1 dollar. Very soon we will treat the more general case where the goal is to exit with m dollars, but for now let’s consider the case of $m = 1$.

In order to guarantee that the game ends, the expected gain of a single round, $p \cdot 1 - (1 - p) \cdot k = (k + 1) p - k$ should be positive. So we will assume that $p > \frac{k}{k + 1}$. In the border-line case $p = \frac{k}{k + 1}$ the game still ends with probability 1, but its expected duration is infinite.

Now the alphabet is $\{1, -k\}$, and we will try to adapt the above argument that worked for the classical case. Let’s abbreviate $\overline{k} := -k$. Now the steps are $(1, 1)$ and $(1, -k)$.

Let’s study the anatomy of such words (histories) or, equivalently, paths. Obviously all these words are of length $n(k + 1) + 1$, for some non-negative integer n, and they all end with 1. So we can write, for any history W,

$$W = U_1 1,$$

where U is a word that sums to 0, all whose partial sums are non-positive. we will call such words $(1, -k)$-Dyck words.

Let’s analyze such a $(1, -k)$-Dyck word U or rather its corresponding path from $(0, 0)$ to $((k+1)n, 0)$, say. Of course, it may be the empty word, but if it is not, let $(r(k + 1), 0) < r \leq n$ be the first time that it hits the x-axis. Then we can write

$$U = U_1 U_2,$$

where U_2 is another arbitrary $(1, -k)$-Dyck word, but U_1 has the special property that all its partial sums (except the 0-th and the last) are strictly negative, or in terms of its path, except for its starting and ending points, they lie strictly below the x-axis. Such a word must necessarily start with a \overline{k} and end with a 1, but to recover the ‘debt’ of k, must regain these lost k dollars, one dollar at a time, so it may be written as $\overline{k}(U_3 1)^k$, where U_3 is an arbitrary $(1, -k)$-Dyck word.
Conversely, for any such word \(U_3 \), \(k(U_3 1)^k \) is such a strictly below the \(x \)-axis word. So we have the (context-free) grammar

\[
U = \text{EmptyWord} \lor k(U 1)^k U \quad , \quad ((1, -k) - \text{DyckGrammar})
\]

where now \(U \) stands for ‘an arbitrary \((1, -k) \)-Dyck word’.

Let \(F(z_{-k}, z_1) \) be the weight-enumerator for all such words. Applying the weight operation, we get that \(F = F(z_{-k}, z_1) \) satisfies

\[
F = 1 + (z_{-k} z_1^k) F^{k+1} \quad .
\]

Abbreviating \(X := z_{-k} z_1^k \), this can be written

\[
F = 1 + X F^{k+1} \quad .
\]

When \(k = 2 \) and \(k = 3 \), we can solve these equations ‘explicitly’ using ‘radicals’, thanks to Cardano and Ferrari, but thanks to Abel, Ruffini, and Galois we know that we can not do it for \(k \geq 4 \). Even the ‘explicit’ solutions for \(k = 2 \) and \(k = 3 \) are not very useful. On the other hand, thanks to Lagrange inversion (see, e.g. [Z4]) we can find the Maclaurin expansion explicitly.

\[
F(X) = \sum_{m=0}^{\infty} \frac{(k + 1) m!}{m! (km + 1)!} X^m \quad ,
\]

featuring the Fuss-Catalan numbers \(C_{k,m} = \frac{(k+1) m!}{m! (km + 1)!} \).

It follows that the weight-enumerator of words in \(\{-k, 1\} \) that add-up to 1, and such that the proper-partial sums are all non-positive is \(F(z_{-k} z_1^k) z_1 \), since the last letter must be 1.

Equivalently (and that’s is our actual object of interest) the number of words with \(m \ ‘-k’ \) and \(mk + 1 \ ‘1’ \) whose proper-partial sums are all non-positive equals the Fuss-Catalan number \(C_{k,m} \). This can be also proved by adapting the [DM] proof. There are \(\binom{mk+1+m}{m} \) words altogether, and for each of these its \(mk + 1 + m \) cyclic shifts are all different, and exactly one of them is a ‘good’ word, hence there are \(\frac{1}{mk+1+m} \binom{mk+1+m}{m} = C_{k,m} \) such words.

Since, in order to exit with \(n \) dollars, we must gain one dollar, \(n \) times, the weight-enumerator of words that reach \(n \) for the first time is \((F(z_{-k} z_1^k) z_1)^n \).

So far we did enumerative combinatorics. To convert it to probability, we plug-in the above \(z_1 = pt \) and \(z_{-k} = (1 - p) t \). Using implicit differentiation, we can compute the expectation, variance, and higher moments. Since in this case we do not encounter 0/0, all the moments are rational functions of \(p \). In particular, if the number \(p \) is rational, all the quantities are rational numbers.

Using implicit differentiation, for symbolic \(k \) and symbolic \(p \) and symbolic \(n \), our beloved computer generated the next proposition.

Proposition 9: Suppose that at each round, you win a dollar with probability \(p \) and lose \(k \) dollars with probability \(1 - p \), and you quit as soon as you reach \(n \) dollars. If \(p > k / (k + 1) \), then, of
course, sooner or later you will reach your goal. How long should it take? Denote by $X_{n,k,p}$ the random variable, ‘number of moves until reaching n dollars’. We have the following facts.

Let $g(t)$ be the formal power series, in t, satisfying the algebraic equation

$$g(t) - 1 - p^k (1 - p) t^{k+1} g(t)^{k+1} = 0.$$

The probability generating function of $X_{n,k,p}$ is

$$(pt g(t))^n.$$

By implicit differentiation, followed by substituting $t = 1$, we can compute any desired derivative, and hence the expectation, variance, and higher moments. We have

$$E[X_{n,k,p}] = \frac{n}{(p-1)k + p},$$

[as expected (npi), since the expected gain in one move is $(p-1)k + p$]. The variance is given by

$$Var[X_{n,k,p}] = \frac{np(k+1)^2(p-1)}{((p-1)k+p)^3}.$$

The skewness (aka ‘third scaled-moment about the mean’) is

$$\alpha_3[X_{n,k,p}] = - (k+1) (kp^2 + p^2 - k - 2p) (kp - k + p)^{-2} \frac{1}{\sqrt{-np(k+1)^2(p-1)}}.$$

The kurtosis (aka ‘fourth scaled-moment about the mean’) is

$$\alpha_4[X_{n,k,p}] = - (k+1)^2 p^4 - 2(k+1)(k - \frac{3}{2} n - 3) p^3 + (6k^2 + (-6n + 6)k - 3n - 6) p^2 - 2k(k - \frac{3}{2} n + 4) p - k^2$$

$$np(p-1)(p(k+1)-k).$$

For the scaled fifth and sixth moments, see the output file

http://sites.math.rutgers.edu/zeilberg/tokhniot/oGenPileGames2.txt.

The Two Player version for the $(1,-k)$ case

Since the probability mass function is explicit, given in terms of the Fuss-Catalan numbers, we can use the Zeilberger algorithm to compute recurrences for the probability of the first player winning, for symbolic n, and symbolic p (assuming that it is larger than $\frac{k}{k+1}$). Alas, we can not do it for symbolic k, since the Fuss-Catalan numbers are not bi-holonomic in both n and k.

For the case $k=2$ we have the next proposition.
Proposition 10: In the two player version game, if the probability of winning a dollar is \(p \) and of losing two dollars is \(1 - p \), provided \(\frac{2}{3} < p < 1 \), the probability of the player whose turn is to move of reaching \(m \geq m \) dollars first is \((1 + f(m))/2\) where \(f(m) \) satisfies the sixth-order linear recurrence

\[
m(p-1)^4(m-5)f(m) - 2(p-1)^2(m^2 - 6m + 6)f(m-2) - p^2(p-1)^2(2m^2 - 13m + 12)f(m-3) + (m-3)(m-4)f(m-4) - p^2(2m^2 - 15m + 24)f(m-5) + p^4(m-2)(m-6)f(m-6) = 0,
\]
subject to the appropriate initial conditions.

For the case \(k = 3 \) we have the next proposition.

Proposition 11: In the two player version game, if the probability of winning a dollar is \(p \) and of losing three dollars is \(1 - p \), provided \(\frac{3}{4} < p < 1 \), the probability of the player whose turn is to move of reaching \(m \geq m \) dollars first is \((1 + f(m))/2\) where \(f(m) \) satisfies the eighth-order linear recurrence

\[
m(p-1)^4(m-7)f(m) - (p-1)^2(2m^2 - 17m + 24)f(m-3) - 2p^2(p-1)^2(m^2 - 9m + 12)f(m-4) + (m-4)(m-6)f(m-6) - p^2(2m^2 - 21m + 48)f(m-7) + p^4(m-3)(m-8)f(m-8) = 0,
\]
subject to the appropriate initial conditions.

For the case \(k = 4 \) we have the next proposition.

Proposition 12: In the two player version game, if the probability of winning a dollar is \(p \) and of losing four dollars is \(1 - p \), provided \(\frac{4}{5} < p < 1 \), the probability of the player whose turn is to move of reaching \(m \geq m \) dollars first is \((1 + f(m))/2\) where \(f(m) \) satisfies the tenth-order linear recurrence

\[
m(p-1)^4(m-9)f(m) - 2(p-1)^2(m^2 - 11m + 20)f(m-4) - p^2(p-1)^2(2m^2 - 23m + 40)f(m-5) + (m-5)(m-8)f(m-8) - p^2(2m^2 - 27m + 80)f(m-9) + p^4(m-4)(m-10)f(m-10) = 0,
\]
subject to the appropriate initial conditions.

For the case \(k = 5 \) we have the next proposition.

Proposition 13: In the two player version game, if the probability of winning a dollar is \(p \) and of losing five dollars is \(1 - p \), provided \(\frac{5}{6} < p < 1 \), the probability of the player whose turn is to move of reaching \(m \geq m \) dollars first is \((1 + f(m))/2\) where \(f(m) \) satisfies the 12th-order linear recurrence

\[
m(p-1)^4(m-11)f(m) - (p-1)^2(2m^2 - 27m + 60)f(m-5) - 2p^2(p-1)^2(m^2 - 14m + 30)f(m-6) + (m-6)(m-10)f(m-10) = 0,
\]
\[-p^2 (2 m^2 - 33 m + 120) f (m - 11) + p^4 (m - 5) (m - 12) f (m - 12) = 0 \]

subject to the appropriate initial conditions.

Winning k dollars or losing one dollar

This case is more complicated than the previous one, and we will have to treat one \(k\) at a time even for the expectation. Also, we only consider the case of reaching at least one dollar for the first time, rather than the more general case of reaching \(n\) dollars for the first time.

Now our **alphabet** is \(\{k, -1\}\) and, in terms of lattice paths, the atomic steps are \((1, k)\) and \((1, -1)\).

Since the last step of such a path must be \((1, k)\) it can terminate at \(y = k\), or \(y = k - 1, \ldots, y = 1\), so we are forced to consider, in addition to \(U_{0,0}\) the set of paths that start at \(y = 0\) and end at \(y = 0\) and never go above the \(x\)-axis, also \(U_{0,1}\) the set of paths that start at \(y = 0\) and end at \(y = -1\) and never go above the \(x\)-axis, all the way to \(U_{0,(k-1)}\), the set of paths that start at \(y = 0\) and end at \(y = -(k-1)\) and never go above the \(x\)-axis.

Such a word looks like

\[U_{0,0} k \lor U_{0,1} k \lor \ldots \lor U_{0,(k-1)} k\]

Let \(U := U_{0,0}\). Then the weight-enumerator of \(U\) is \(F(z_k z_{-1})\) where \(F(X)\) is as above, the solution of

\[F(X) = 1 + X F(X)^{k+1} \]

It can be seen that \(U_{0,r} = (\mathcal{T} U_{0,0})^r\), hence its weight-enumerator is \((z_{-1} F(X))^r\).

Substituting for \(z_{-1} = pt\) and \(z_k = (1-p)t\), we get the following human-generated proposition.

Proposition 14: Suppose that at each round, you lose one dollar with probability \(p\) and win \(k\) dollars with probability \(1-p\), and you quit as soon as you reach at least 1 dollar. If \(0 < p < \frac{k}{k+1}\) then, of course, sooner or later, you will reach your goal. Let \(g(t)\), be the formal power series, in \(t\), satisfying the algebraic equation

\[g(t) - 1 - p^k (1-p) t^{k+1} g(t)^{k+1} = 0 \]

The probability generating function, let’s call it \(f(t)\), for the number of rounds until having a positive capital is

\[f(t) = (1-p) t g(t) \sum_{i=0}^{k-1} (pt g(t))^i \]

If you will apply implicit differentiation to the defining equation of \(g(t)\), and then express \(f'(t)\) in terms of \(g(t)\) and \(g'(t)\) and then plug-in \(t = 1\), you will get \(0/0\). It turns out that the expressions for the expectation, variance, and higher moments are no longer rational functions of \(p\), but are
roots of **algebraic** equations. The reason is that when \(t = 1 \), 1 is a double (or higher-order) root of the defining equation for the probability itself \(f(1) = 1 \).

Since Maple knows how to differentiate, both explicitly and implicitly, our beloved computer can handle it all automatically, and get explicit algebraic equation for symbolic \(p \), or specific algebraic numbers for specific \(p < \frac{k}{k+1} \), alas only for one \(k \) at a time.

We have the following computer-generated proposition for the case \(k = 2 \), i.e. for the gambling options \(\{-1, 2\} \), with \(Pr(-1) = p \) and \(Pr(2) = 1 - p \).

Proposition 15: Let \(X \) be the random variable ‘number of rounds until you reach positive capital’ if you start at 0, and at each round, you lose 1 dollar with probability \(p \) and win 2 dollars with probability \(1 - p \). Assume that \(p < \frac{2}{3} \).

The expectation is given by

\[
E[X] = \frac{3p + \sqrt{(3p + 1)(1-p)} - 1}{2p(2 - 3p)}
\]

For the variance, and third through the sixth moment, see

http://sites.math.rutgers.edu/~zeilberg/tokhniot/0GenPileGames3.txt.

Note that for the most interesting case, \(p = \frac{1}{2} \), the expectation is the **beautiful number** \(1 + \sqrt{5} \) (twice the golden ratio). This is so nice that we will single it out.

Beautiful Corollary: If a one-dimensional random walker starts at 0 and moves **one step back** with probability \(\frac{1}{2} \) and **two steps forward** with probability \(\frac{1}{2} \) and keeps going until he is at a location \(\geq 1 \) for the first time, the expected number of steps that he takes is twice the Golden Ratio, i.e. \(1 + \sqrt{5} \).

For \(k \geq 3 \) and **symbolic** \(p \), things get too complicated to reproduce here, so let’s just mention the expectations for a few cases for the most interesting case, \(p = \frac{1}{2} \).

\(k = 3 \): The expected duration of a random walk with \(Pr(-1) = Pr(3) = \frac{1}{2} \) until reaching a location \(\geq 1 \) for the first time is the positive root of

\[
x^3 - 4x - 4 = 0
\]

that equals 2.382975767906237494 \ldots.

\(k = 4 \): The expected duration of a random walk with \(Pr(-1) = Pr(4) = \frac{1}{2} \) until reaching a location \(\geq 1 \) for the first time is the positive root of

\[
3x^4 + 4x^3 - 8x^2 - 24x - 16 = 0
\]

that equals 2.1561901553356811691 \ldots.
$k = 5$: The expected duration of a random walk with $Pr(-1) = Pr(5) = \frac{1}{2}$ until reaching a location ≥ 1 for the first time is the positive root of

$$2x^5 + 5x^4 - 20x^2 - 32x - 16 = 0$$

that equals 2.070504323944926\ldots.

$k = 6$: The expected duration of a random walk with $Pr(-1) = Pr(6) = \frac{1}{2}$ until reaching a location ≥ 1 for the first time is the positive root of

$$5x^6 + 18x^5 + 20x^4 - 40x^3 - 144x^2 - 160x - 64 = 0$$

that equals 2.033823565252879532\ldots.

$k = 7$: The expected duration of a random walk with $Pr(-1) = Pr(7) = \frac{1}{2}$ until reaching a location ≥ 1 for the first time is the positive root of

$$3x^7 + 14x^6 + 28x^5 - 112x^3 - 224x^2 - 192x - 64 = 0$$

that equals 2.0162018012796575781\ldots.

$k = 8$: The expected duration of a random walk with $Pr(-1) = Pr(8) = \frac{1}{2}$ until reaching a location ≥ 1 for the first time is the positive root of

$$7x^8 + 40x^7 + 112x^6 + 112x^5 - 224x^4 - 896x^3 - 1280x^2 - 896x - 256 = 0$$

that equals 2.00796926912597191\ldots.

Chapter 4: Games of Pure Chance Generated by Gambler’s Ruin with Unlimited Credit: The General case

We will now consider the general case where there is an arbitrary set of non-zero integers, and an arbitrary probability distribution on them, that we will call the die (or spinner), and at each round, the random walker walks (forward or backwards, as the case may be) according to the outcome of the die. He starts at 0, and the game ends as soon as he reaches a positive location, i.e. as soon as its location is ≥ 1. We will later treat the more general case where the goal is to reach a location that is $\geq m$, for any positive integer m.

The engine driving our algorithms is the powerful Buchberger algorithm, that finds Gröbner bases, and that is implemented in Maple and all the other major computer algebra systems.

It is convenient to separate the set of allowed steps into the set of positive steps, that we will call U, and the set if negative steps, $-D$, so D is a set of positive integers. For example if the set of allowed steps is $\{-2,-5,1,3,4\}$, then $U = \{1,3,4\}$ and $D = \{2,5\}$.

Let us now state precisely the input and the desired output for our algorithms.
Main Algorithm

Input:

Two sets of positive integers D and U, corresponding to allowed steps $-d$ (where $d \in D$) and u (where $u \in U$) in the 1D lattice, or equivalently, $(1, -d)$ ($d \in D$) and $(1, u)$, $u \in U$, on the two-dimensional lattice, and an assignment of probabilities $\{p_d : d \in D\}$, $\{p_u : u \in U\}$, such that $\sum_{d \in D} p_d + \sum_{u \in U} p_u = 1$ with the meaning that the random walker walks d units backward if the die landed on $d \in D$ and moves u units forward if it landed on $u \in U$. The walker starts at location 0 and ends as soon as he reaches a strictly positive location. In addition, we input two symbols (variables), t and f.

Output: A polynomial $P(f, t)$ of two variables, such that

$$P(f(t), t) \equiv 0,$$

holds, where $f(t)$ is the probability generating function of the random variable: ‘number of rounds until reaching a strictly positive location for the first time’, obeying the above random walk.

Our algorithm guarantees that such a polynomial $P(f, t)$ always exists.

As in Chapter 3, we will first do the corresponding enumerative combinatorics version, and later use it to our probability purposes. We will use the powerful algorithm described in Bryan Ek’s brilliant PhD thesis [Ek1], and also covered in [Ek2].

We will sometimes think of the ‘gambling history’ listing the outcomes, getting a dynamic word in the alphabet $U \cup (-D)$, i.e. a 1D path, but sometimes as a static entity, its graph where $d \in D$ corresponds to the down step $(1, -d)$ and $u \in U$ corresponds to an up-step $(1, u)$. So our problem is equivalent to counting such graphs whose atomic steps are as above, that start at the origin, and except for the endpoint that must be above the x-axis, is weakly below the x-axis.

As before for any word $w = w_1 \ldots w_n$, where w_i are integers, let $Weight(w) = \prod_{i=1}^n z_{w_i}$. For example $Weight(1, 2, -1, -3) = z_1 z_2 z_{-1} z_{-3}$. For any set of words S, its weight-enumerator is the sum of weights of all its members. If S is infinite (as is the case here) it is a formal power series in the set of variables

$$\{z_{-d} : d \in D\} \cup \{z_u : u \in U\}.$$

Bryan Ek’s Algorithm for the Enumeration Problem

The algorithm described in [Ek1][Ek2] does the following.

Input: Finite sets of positive integers D and U. This gives rise to the alphabet $U \cup \{-d : d \in D\}$.

Output: A polynomial $P(f; \{z_u, z_{-d}\})$ of $1 + |U| + |D|$, variables such that

$$P(f(\{z_u, z_{-d}\}); \{z_u, z_{-d}\}) \equiv 0,$$
holds, where \(f(\{z_u, z_{-d}\}) \) is the weight-enumerator of all words in the alphabet \(S \) whose sum is 0 and all whose partial sums are non-positive.

The algorithm guarantees that such a polynomial \(P(f; \{z_u, z_{-d}\}) \) always exists.

We use the same approach as in Chapter 3, but now we need the computer to ‘do the thinking’, and we humans do the ‘meta-thinking’, teaching it how to do the ‘research’.

Let’s abbreviate our desired weight-enumerator \(f(\{z_u, z_{-d}\}) \) by \(W_{0,0} \), and let \(P_{00} \) be the actual set of paths weight-enumerated by it. In other words, the set of paths starting and ending on the \(x \)-axis, where each step is either \((1, u) \ (u \in U) \) or \((1, -d) \ (d \in D) \) and that lie \textbf{weakly} below the \(x \)-axis.

As we will soon see, we will be forced to introduce more general quantities. Let \(W_{a,b} \) be the weight-enumerator of the set of paths \(P_{a,b} \), that start at the horizontal line \(y = -a \), end at the horizontal line \(y = -b \), and always stay weakly-below the \(x \)-axis.

\section*{Setting up a system of Non-Linear Equations}

\textbf{The case} \((a, b) = (0, 0)\)

Let’s look at an arbitrary member, \(w \), of \(P_{0,0} \). It may be the \textbf{empty path}, but otherwise, let \(w_1 \) be the \textbf{longest} prefix whose sum is 0, then we can write

\[w = w_1 w_2 \]

where \(w_1 \in W_{0,0} \), and \(w_2 \) is also in \(W_{0,0} \) but with the additional property that except for the endpoints, lies \textbf{strictly} below the \(x \)-axis. Let’s call this subset \(\overline{W_{0,0}} \). Obviously, the first step of \(w_2 \) must be a down step, \(-d\), for some \(d \in D \), and the last step must be an up-step, \(u \), for some \(u \in U \). For such a path (alias word), we can write (note that \(d = -d \))

\[w_2 = \overline{d} w_3 u \]

where \(w_3 \) is a path that starts at the horizontal line \(y = -d \) and ends at the horizontal \(y = -u \) but that is \textbf{strictly} below the \(x \)-\textit{axis}. Such paths are ‘isomorphic’ to paths that start at \(y = -(d-1) \) and end at \(y = -(u-1) \) and stay weakly below the \(x \)-axis, in other words paths that belong to \(W_{d-1,u-1} \).

So our desired quantity, \(W_{0,0} \), satisfies the \textbf{one} non-linear equation

\[W_{0,0} = 1 + \sum_{d \in D} \sum_{u \in U} z_{-d} W_{d-1,u-1} z_u \]

Alas, now we have to handle all the ‘\textbf{uninvited guests}’, the \(W_{a,b} \) with \((a, b) \neq (0, 0)\) that showed up.

We already handled the case \((a, b) = (0, 0)\), we have to address three more cases.
The case $a > 0$ and $b > 0$

If such a path, w, is strictly below the x-axis then it is ‘isomorphic’ to a member of $P_{a-1,b-1}$. Otherwise, sooner or later, it would meet the x-axis for the first time. Let w_1 be the sub-path leading to that event.

We can write

$$w = w_1 w_2,$$

where w_1 is a path from $y = -a$ to $y = 0$ that, except for the last point, lies strictly below the x-axis, let’s call that set $W_{-a,0}$.

On the other hand w_2 is a member of $W_{0,b}$. Conversely, every two such paths $w_1 \in T_{a,0}$ and $w_2 \in P_{0,b}$, when joined is a member of $W_{a,b}$ that touches the x-axis. Every path in $W_{-a,0}$ must obviously end with $u \in U$, and the path obtained by removing the last step belongs to $W_{-a,-u}$, that is ‘isomorphic’ to $W_{a-1,u-1}$. We thus have the equation

$$W_{a,b} = W_{a-1,b-1} + \left(\sum_{u \in U} W_{a-1,u-1} z_u \right) W_{0,b}.$$

The case $a > 0$ and $b = 0$

The above discussion is also applicable to the case $b = 0$, except that the first term on the right, $W_{a-1,b-1}$, disappears. So we have

$$W_{a,0} = \left(\sum_{u \in U} W_{a-1,u-1} z_u \right) W_{0,0}.$$

The case $a = 0$ and $b > 0$

We have $P_{0,b} = P_{00} \overline{P}_{0,b}$, so similarly

$$W_{0,b} = W_{0,0} \left(\sum_{d \in D} z_d W_{d-1,b-1} \right).$$

Symbolic Dynamical Programming

Since our primary interest is, for now, $W_{0,0}$, the other quantities $W_{a,b}$ with $(a, b) \neq (0, 0)$ are only auxiliary unknowns, that we are not interested in for their own sake, but that would hopefully enable us to find $W_{0,0}$.

We start out with the equation for $W_{0,0}$ that introduces $|D||U|$ new quantities,

$$\{W_{d-1,u-1} : d \in D, u \in U\}.$$
For each new equation that we set-up, we may get brand new quantities, $W_{a,b}$, not yet encountered, but also some of which that already showed up before. For each new quantity, we set up a new equation. A priori, it is conceivable that we would have infinite regress, getting an infinite set of non-linear equations for an infinite set of unknowns. Luckily, this does not happen! Sooner or later there are no more new ‘uninvited guests’, and we are left with a finite set of non-linear (in fact quadratic) equations with the same number of unknowns, enabling us by elimination (using, in our case the Buchberger algorithm in Maple) to get one (usually, very complicated!) equation in the one unknown, $W_{0,0}$. We can do the same thing for any of the other $W_{a,b}$ and for that matter any linear combination of $W_{a,b}$, calling that linear combination Z, introducing one more equation and one more unknown, and eliminating Z, getting an algebraic equation satisfied by Z.

Straight Enumeration

Suppose that you are interested in the actual enumerating sequence, i.e. given a set of non-negative integers, S, you want to have an “explicit” expression for $a(n)$ the number of 1D walks, starting at 0 using the steps of S, ending at 0, and always staying weakly to the left of the origin. Equivalently, given a set of integers S, our ‘alphabet’, $a(n)$ is the number of words of length n whose sum is 0 and all whose partial sums are non-positive.

By specializing $z_u = t$, $(u \in U)$; $z_d = t$, $(d \in D)$ we have our next conceptual theorem.

Theorem 5: For an arbitrary set of integers S, let $a_S(n)$ be the number of sequences of length n, whose entries are drawn from S with the property that the sum is 0 and all its partial sums are non-positive. Then the ordinary generating function, in the variable t,

$$f(t) := \sum_{n=0}^{\infty} a_S(n) t^n \ ,$$

is an algebraic formal power series, i.e. there exists a two-variable polynomial P, with integer coefficients, such that

$$P(f(t), t) \equiv 0 \ .$$

Furthermore, there exists an algorithm for finding this polynomial $P(f, t)$.

As a corollary, we know that $f(t)$ is D–finite, and hence $a(n)$ is P-recursive, and we have

Theorem 5’: For an arbitrary set of integers S, let $a_S(n)$ be the number of sequences of length n, whose entries are drawn from S with the property the sum is 0, and that all the partial sums are non-positive. The sequence $a_S(n)$ is P-recursive, i.e. there exists a positive integer L and polynomials $p_i(n)$ in n, such that

$$\sum_{i=0}^{L} p_i(n)a_S(n - i) \equiv 0 \ .$$

Furthermore, there exists an algorithm for finding this linear recurrence.
Rigorous Experimental Mathematics

Now that we have the theoretical guarantee that the polynomial \(P(f(t), t) \) and the recurrence exists, it may be more efficient, to crank out, using (the usual, not symbolic) dynamical programming, sufficiently many terms and then fit them with a recurrence. The Maple commands listtoalgeq(1,y(x)) and listtorec(1,a(n)) do just that. These two useful commands are part of the versatile Maple package gfun written by Bruno Salvy and Paul Zimmerman [SZ].

The Weight-Enumerator of 1D walks that start at 0 end at strictly positive location but otherwise stay weakly to the left of 0

Equivalently, in the two-dimensional version, our walks start at the origin, end above the \(x \)-axis, and except for the end-point are weakly below the \(x \)-axis.

Since every such walk must obviously end with an up-step, \(u \in U \), and the endpoint could be either at \(y = 1, y = 2, \ldots, y = u \), the desired weight-enumerator, let’s call it \(Z \), using the \(W_{a,b} \) above is

\[
Z = \sum_{u \in U} \left(\sum_{u' = 0}^{u-1} W_{0,u'} \right) z_u .
\]

This is our quantity \(Z \) mentioned above, and thanks for the Buchberger algorithm, we can eliminate everything except \(Z \), and get a single polynomial equation in \(Z \).

From Enumeration to Probability

Having gotten a polynomial equation satisfied by the formal power series in the set of \(|D| + |U| \) variables \(\{z_u : u \in U\} \cup \{z_d : d \in D\} \) that enumerates the above set of words, we plug-in \(z_u = p_u t, z_d = p_d t \), getting an equation of the form

\[
P(f(t), t) \equiv 0 ,
\]

satisfied by the probability generating function, \(f(t) \), for the random variable ‘duration until reaching a positive amount for the first time’ if you start at 0 dollars, at each time step (round) you win \(u \) dollars with probability \(p_u \), if \(u \in U \), and lose \(d \) dollars with probability \(p_d \), if \(d \in D \).

If the expected gain of a single step

\[
\sum_{u \in U} p_u u - \sum_{d \in D} p_d d
\]

is positive, then sooner or latter the game ends.

So far \(f(t) \) was a formal power series, but when you plug-in \(t = 1 \), you get a (numerical) convergent power series that must sum to 1, so \(f(1) = 1 \). It follows, that 1 is one of the roots of the numerical equation , in \(f(1) \).

\[
P(f(1), 1) = 0 ,
\]
This implies our next conceptual result, Theorem 6.

Theorem 6: Let \(P \) be any ‘die’ (with any number of faces, any loading, and any assignments of non-zero integers to its faces), where, at each step, you win or lose according to the outcome. Assume that the expected gain of a single round is positive. Let \(X \) be the random variable ‘number of rounds until reaching a positive amount for the first time’.

The probability generating function of \(X \),

\[
f(t) = \sum_{k=0}^{\infty} \text{Prob}(X = k) t^k ,
\]

is an algebraic formal power series, in other words, there exists a two-variable polynomial, \(P(f,t) \), such that

\[
P(f(t),t) \equiv 0 .
\]

Furthermore, there is an algorithm for finding the two-variable polynomial \(P(f,t) \).

As a corollary, we know that \(f(t) \) is \(D\)-finite, and hence \(\text{Prob}(X = k) \) is \(P\)-recursive, in \(k \).

Theorem 6’: For an arbitrary ‘die’ as in Theorem 6, and \(X \) defined there, the sequence \(a(k) = \text{Prob}(X = k) \) is \(P\)-recursive, i.e. there exists a positive integer \(L \) and polynomials \(p_i(k) \) in \(k \), such that

\[
\sum_{i=0}^{L} p_i(k) a(k - i) \equiv 0 .
\]

Furthermore, there exists an algorithm for finding this linear recurrence.

What about expectation?, using implicit differentiation, we get

\[
P_f(f(t)) f'(t) + P_t(f(t)) \equiv 0 .
\]

Eliminating \(f = f(t) \), from the two equations with three variables \(\{f, f', t\} \) (\(f' \) is short for \(f'(t) \))

\[
P_f(f(t)) f' + P_t(f(t)) = 0 , \quad P(f(t)) = 0 .
\]

we (or rather our computers) get a polynomial equation of the form \(Q(f'(t), t) = 0 \), and plugging-in \(t = 1 \), (\(f'(1) \) is a numerical convergent series), we get that the expected duration is one of the roots of the numerical equation

\[
Q(f'(1), 1) = 0 .
\]

By repeated implicit differentiation, and elimination of \((t^2 \text{d}^2 \text{d}f(t), t \text{d}d)^3 f(t), \) etc., we get algebraic equations for as many moments as desired, and hence for the variance, and higher moments about the mean. All this is implemented in procedure \(\text{Momk}(N,P,fk,k) \) in the Maple package \texttt{VGPileGames.txt}. Readers who wish to see more details are more than welcome to examine the Maple source code.
This brings us to the next ‘conceptual’ result.

Theorem 7: Consider any finite set of non-zero integers, and any probability distribution on them with positive expectation, where, at each step, you win or lose according to the outcome. Assume that the expected gain of a single round is positive. Let X be the random variable ‘number of rounds until reaching a positive amount for the first time.’ Then the expectation, variance, and any higher moments of X are algebraic numbers, whose minimal polynomial can be explicitly computed.

If the expected gain of a single round, $\sum_{u \in U} p_u u - \sum_{d \in D} p_d d$, is 0, then the expectation and higher moments are infinite. If it is negative, then the probability of exiting with a positive amount is less than 1, and $f(1)$ is one of the roots of the numerical equation $P(f(1), 1) = 0$, that is an explicit algebraic number. Then one has to talk about the ‘conditional duration’, and replace $f(t)$ by $f(t)/f(1)$, and Theorems 6 and 7 are still valid.

We will only present here one case. Quite a few similar propositions can be found in the web-page of this article, and readers are welcome to generate many more using the command

\[
\text{Paper}(N,P,k,K1,K2,f,\text{eps});
\]

in the Maple package VGPileGames.txt also available from there.

Proposition 16: Consider a 1D random walk with a set of steps $\{-1, -2, 1, 2\}$ where $Pr(-1) = \frac{1}{4}$, $Pr(-2) = \frac{1}{8}$, $Pr(1) = \frac{1}{4}$, $Pr(2) = \frac{3}{8}$, that starts at 0. Let X be the random variable:

‘number of steps until reaching a strictly positive location for the first time’.

The probability generating function of X

\[
f(t) = \sum_{k=0}^{\infty} \text{Prob}(X = k) t^k ,
\]

is a formal power series that satisfies the algebraic equation

\[
t^3 f^6 + (6 t^3 - 8 t^2) f^5 + (19 t^3 - 48 t^2) f^4 + (84 t^3 - 80 t^2 + 128 t) f^3 \\
+ (71 t^3 - 608 t^2 + 320 t) f^2 + (262 t^3 - 360 t^2 + 768 t - 512) f + 69 t^3 - 432 t^2 + 320 t = 0 .
\]

The expectation, f_1, is one of the roots of the cubic equation

\[
f_1^3 - 12 f_1^2 + 16 f_1 + 32 = 0 ,
\]

whose floating-point rendition is $2.9653919099833889 \ldots$.

The second moment, f_2, is one of the roots of the cubic equation

\[
101 f_2^3 - 14140 f_2^2 + 367216 f_2 - 273824 = 0 .
\]
whose floating-point rendition is 33.31799734943726426\ldots. It follows that the variance is 24.5244481696423327\ldots, and hence the standard-deviation is 4.9522164905870515\ldots.

The two-player version

Suppose two players take turns rolling the \(P \) die, and the one who is the first to reach a positive amount is declared the winner. Recall that the probability of the first player winning the game is \((1 + s)/2\), where

\[
s = \sum_{n=1}^{\infty} \text{Prob}(X = k)^2,
\]

it follows from Theorem 6' that \(s \) is a holonomic constant.

Playing until reaching at least \(m \) dollars for the first time

If the set of up-steps, \(U \), consists of only one dollar, i.e. if \(U = \{1\} \), then the probability generating function for the random variable “number of rounds it takes until reaching at least \(m \) dollars for the first time” is simply \(f(t)^m \), and everything goes through, and the probability of the first player winning is holonomic in \(m \). In the more general case, it is also true, but a bit more complicated, and we did not implemented it yet. The probability generating function for the ‘first time of reaching \(\geq m \)’ case can be shown to satisfy a linear recurrence equation in \(m \) whose coefficients are what we called \(\{W_{a,b}\} \) above. After differentiating with respect to \(t \), we can get recurrences for the expectation, and higher moments.

This brings us to the next theorem that we state without proof, and is not yet implemented in general.

Theorem 8: Consider any finite set of non-zero integers, and any probability distribution on them with positive expectation, where, at each step, you win or lose according to the outcome. Assume that the expected gain of a single round is positive. For any positive integer \(m \), let \(X_m \) be the random variable ‘number of rounds until reaching an amount that is \(\geq m \) for the first time.’ Then the probability generating function of \(X_m \), let’s call it \(f_m(t) \) is an (constant) algebraic formal power series, and \(f_m(t) \) satisfies a linear recurrence in \(m \) with coefficients that are algebraic formal power series.

Furthermore, \(E[X_m] \) are algebraic numbers, that satisfy a linear recurrence equation with constant coefficients (but the constants featuring in the linear recurrence are, in general, algebraic numbers).

Keeping it Simple: Numerics Driven by Symbolics

For quite a few ‘dice’, our computers were able to find the exact answer for the question

What is the probability generating function for the random variable ‘Number of rounds until reaching a positive amount for the first time’.
Of course, except for the Catalan case, it is not fully explicit, but it is as explicit as it gets, the exact polynomial equation

\[P(f(t), t) = 0 \]

satisfied by it, and that, in turn, enables us to find the exact values of the expectation, variance and higher moments, in terms of explicit algebraic numbers, i.e. numbers given by their minimal equation with integer coefficients.

But if the ‘die’, \(P \), gets larger, these algorithms are mainly of theoretical interest, i.e. for conceptual computation. To actually get answers, very fast, we recommend using the following simple-minded symbolic-numeric algorithm.

We can also do simulation, but these are very inexact. They are only useful (for our current project) as sanity checks, to make sure that we did not mess up.

Let \(h(x) \) be the probability generating function of our die

\[
h(x) = \sum_{u \in U} p_u x^u + \sum_{d \in D} p_d x^{-d} .
\]

For example, for the fair Catalan case \(h(x) = \frac{1}{2}(x + x^{-1}) \), for the Fuss-Catalan case considered in Chapter 3, with ‘one step forward, \(k \) steps backwards’, \(h(x) = px + (1 - p)x^{-k} \), and for the more difficult case ‘one step backwards, \(k \) steps forward’ case, we have \(h(x) = px^{-1} + (1 - p)x^k \).

For any Laurent polynomial, define the operator: ‘the positive part’ as follows:

\[
G[\sum_{i=c}^{d} a_ix^i] = \sum_{i=1}^{d} a_ix^i .
\]

For example,

\[
G[\frac{1}{10}x^{-3} + \frac{1}{20}x^{-2} + \frac{7}{20}x^{-1} + \frac{1}{20}x + \frac{1}{4}x^2] = \frac{1}{4}x + \frac{1}{4}x^2 .
\]

The Symbolic-Numeric Algorithm to compute the first \(K \) terms of the probability generating function of our ‘duration of the game’ random variable

Input

- A die, \(P \), whose probability generating function is the Laurent polynomial \(h(x) \).
- A positive integer \(K \).

Output

The first \(K \) terms in the Maclaurin expansion of the probability generating function of the random variable: ‘number of rounds until the player reaches a strictly positive amount for the first time’, let’s call it \(f_K(t) \).
Initialize: \(F_0(x) := 1, f_0(t) = 0. \)

For \(i \) from 1 to \(K \) do

\[
A(x) := F_{i-1}(x) h(x) , \\
F_i(x) = A(x) - G[A(x)] , \\
f_i(t) = f_{i-1}(t) + G[A(x)]|_{x=1} t^i .
\]

Intuitively, \(F_i(x) \) describes the scenarios that still did not make it to positivity by the \(i \)-th step. Multiplying by \(h(x) \) is the ‘roll of the die’, \(G[A(x)] \) describes the lucky scenarios that made it by the \(i \)-th round, and plugging in \(x = 1 \), gives the probability due to all the scenarios that made it exactly at the \(i \)-round for the first time.

If \(h'(1) > 0 \), then \(f(1) = 1 \), and to see how good \(f_K(t) \) approximates \(f(t) \), plug-in \(t = 1 \). If this is very close to 1 (usually it is!), then you are safe.

Also, **frankly**, you are **not** immortal, and even if you are, it is good to **a priori** set a limit to the number of allowed rounds, and compute everything conditioned on finishing in \(\leq K \) rounds.

The conditional expectation on finishing in \(\leq K \) rounds is \(f'_K(1)/f_K(1) \), the second moment is \((t \frac{d}{dt})^2 f_K(t)|_{t=1}/f_K(1) \) and the \(k \)-th moment is \((t \frac{d}{dt})^k f_K(t)|_{t=1}/f_K(1) \).

These give much faster, very accurate, approximations to the desired statistical quantities of our random variable.

Similarly, we can compute, very fast, the truncated Taylor series of the random variable ‘first time of having an amount \(\leq m \)’, for any desired \(m \).

This is accomplished by procedure \(\text{Ngf}(N,P,t,K) \) in the Maple package \(\text{VGPileGames.txt} \).

If you want to see many examples, look at the file

http://sites.math.rutgers.edu/~zeilberg/tokhniot/oVGPileGames2.txt

Another route to get the **exact** value of the expectation, variance, etc., is to derive numerical approximations like we did, and use Maple’s command **identify** or use the **Inverse Symbolic Calculator**,

https://isc.carma.newcastle.edu.au/ .

If you get an algebraic number, then it is most likely the right one, since we know, from the ‘conceptual part’, that it is an algebraic number.

Using this ‘experimental way’, we discovered the following **lovely** proposition.
Proposition 17: Consider a ‘two steps forward one step backwards random walk’ starting at 0, with \(\text{Prob}(-1) = \text{Prob}(2) = \frac{1}{2} \). The expected number of rounds until reaching a location \(\geq m \) for the first time, equals, exactly

\[
2m + (4 - 2\phi) + 2(F_{m+2}\phi - F_{m+3})
\]

where \(F_m \) are the Fibonacci numbers and \(\phi = \frac{1 + \sqrt{5}}{2} \) is the Golden Ratio.

Note that this makes sense, since the last term \(F_{m+2}\phi - F_{m+3} \) is exponentially small in \(m \), so this is very close to \(2m + 4 - 2\phi \), and since the expected gain of one round is \(\frac{1}{2} \) a crude approximation to the expected duration until owning \(\geq m \) dollars should be roughly \(m/\frac{1}{2} = 2m \). Also note that when \(m = 1 \) we get \(2 + 4 - 2\phi + 2(F_3\phi - F_4) = 6 - 2\phi + 2(2\phi - 3) = 2\phi \), in agreement with the result established in Chapter 3.

What about a proof of Proposition 17?

Proposition 17 was discovered *experimentally*, but we do know how to prove it. Writing it up, though, will take time and effort that we are unwilling to spend. We will be glad to furnish a proof in return to a $2000 donation to the *On-Line-Encyclopedia of Integer Sequences*.

Conclusion

In this article, using *Games of pure chance* as a *case study*, we preached the value of *computational diversity*. Purely numeric, numeric-symbolic, purely symbolic, and ‘conceptual’, as well as the *simulation*, that in our case plays a secondary role, as a *checker*. It is so easy to have bugs in your programs, or gaps in your reasoning, so it is still reassuring that you can confirm the numbers that you got are in the right ball-park. We also demonstrated a novel application of the *Buchberger algorithm*.

References

[AZ] Gert Almkvist and Doron Zeilberger, *The Method of differentiating Under The integral sign*, J. Symbolic Computation 10 (1990), 571-591. Available from http://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/duis.html.

[DM] A. Dvoretzky and Th. Motzkin, *A problem of arrangements*, Duke Math. J. 14 (1947), 305-313.

[Ek1] Bryan Ek, “Unimodal Polynomials and Lattice Walk Enumeration with Experimental Mathematics”, PhD thesis, Rutgers University, May 2018. Available from http://sites.math.rutgers.edu/~zeilberg/Theses/BryanEkThesis.pdf.

[Ek2] Bryan Ek, *Lattice Walk Enumeration*, 29 March, 2018, https://arxiv.org/abs/1803.10920.

[F] William Feller, “*An Introduction to Probability Theory and Its Application*”, volume 1, three editions. John Wiley and sons. First edition: 1950. Second edition: 1957. Third edition: 1968.
[KP] Manuel Kauers and Peter Paule, “The Concrete Tetrahedron”, Springer, 2011.

[LT] Ho-Hon Leung and Thotsaporn “Aek” Thanatipanonda, A Probabilistic Two-Pile Game, Journal of Integer Sequences, 22#4 (2019). Also available from https://arxiv.org/abs/1903.03274.

[MM] David McCune and Lori McCune, Counting your chickens with Markov chains, Mathematics Magazine 92 (2019), 162-172.

[PWZ] Marko Petkovsek, Herbert S. Wilf, and Doron Zeilberger, “A=B”, A.K. Peters, 1996. Freely available from https://www.math.upenn.edu/~wilf/AeqB.html.

[SZ] Bruno Salvy and Paul Zimmermann, GFUN: a Maple package for the manipulation of generating and holonomic functions in one variable, ACM Transactions on Mathematical Software 20(1994), 163-177.

[Sl] Neil J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, http://www.oeis.org.

[St] Richard Stanley, “Catalan Numbers”, Cambridge University Press, 2015.

[T] Thotsaporn “Aek” Thanatipanonda, A Quantitative Study on Average Number of Spins of Two-Player Dreidel, https://arxiv.org/abs/1907.11851.

[Z1] Doron Zeilberger, The C-finite Ansatz, Ramanujan J. 31(2013), 23-32. Available on-line: http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/cfinite.html

[Z2] Doron Zeilberger, An Enquiry Concerning Human (and Computer!) [Mathematical] Understanding, Appeared in: C.S. Calude, ed., “Randomness & Complexity, from Leibniz to Chaitin” World Scientific, Singapore, 2007. Available on-line: http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/enquiry.html

[Z3] Doron Zeilberger, A holonomic systems approach to special function identities, J. Computational and Applied Mathematics 32 (1990), 321-368. Available on-line: http://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/holonomic.html.

[Z4] Doron Zeilberger, Lagrange Inversion Without Tears (Analysis) (based on Henrici), The Personal Journal of Shalosh B. Ekhad and Doron Zeilberger http://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/lag.html.
Thotsaporn “Aek” Thanatipanonda, Mahidol University International College, Nakornpathom, Thailand
Email: thotsaporn at gmail dot com

Doron Zeilberger, Department of Mathematics, Rutgers University (New Brunswick), Hill Center-Busch Campus, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019, USA.
Email: DoronZeil at gmail dot com

Written: Sept. 24, 2019.