Split learning for health: Distributed deep learning without sharing raw patient data

Praneeth Vepakomma∗
Massachusetts Institute of Technology
Cambridge, MA 02139

Otkrist Gupta
Massachusetts Institute of Technology
Cambridge, MA 02139

Tristan Swedish
Massachusetts Institute of Technology
Cambridge, MA 02139

Ramesh Raskar
Massachusetts Institute of Technology
Cambridge, MA 02139

Abstract

Can health entities collaboratively train deep learning models without sharing sensitive raw data? This paper proposes several configurations of a distributed deep learning method called SplitNN to facilitate such collaborations. SplitNN does not share raw data or model details with collaborating institutions. The proposed configurations of splitNN cater to practical settings of i) entities holding different modalities of patient data, ii) centralized and local health entities collaborating on multiple tasks and iii) learning without sharing labels. We compare performance and resource efficiency trade-offs of splitNN and other distributed deep learning methods like federated learning, large batch synchronous stochastic gradient descent and show highly encouraging results for splitNN.

1 Introduction

Collaboration in health is heavily impeded by lack of trust, data sharing regulations such as HIPAA and limited consent of patients. In settings where different institutions hold different modalities of patient data in the form of electronic health records (EHR), picture archiving and communication systems (PACS) for radiology and other imaging data, pathology test results, or other sensitive data such as genetic markers for disease, collaborative training of distributed machine learning models without any data sharing is desired. Deep learning methods in general have found a pervasive suite of applications in biology, clinical medicine, genomics and public health as surveyed in. Training of distributed deep learning models without sharing model architectures and parameters in addition to not sharing raw data is needed to prevent undesirable scrutiny by other entities. As a concrete health example, consider the use case of training a deep learning model for patient diagnosis via collaboration of two entities holding pathology test results and radiology data respectively. These entities are unable to share their raw data with each other due to the concerns noted above. That said, diagnostic performance of the distributed deep learning model is highly contingent on being able to use data from both the institutions for its training. In addition to such multi-modal settings, this problem also manifests in settings with entities holding data of the same modality as shown in Fig 1 below. As illustrated, local hospitals or tele-health screening centers do not acquire an enormous number of diagnostic images on their own. These entities may also be limited by diagnostic manpower. A distributed machine learning method for diagnosis in this setting would enable each individual center to contribute data to an aggregate model without sharing any raw data. This configuration can achieve high accuracy while using significantly lower

∗Corresponding author, e-mail: vepakom@mit.edu

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.
computational resources and communication bandwidth than previously proposed approaches. This enables smaller hospitals to effectively serve those in need while also benefiting the distributed training network as a whole. In this paper, we build upon splitNN introduced in [32] to propose specific configurations that cater to practical health settings such as these and furthermore as described in the sections below.

1.1 Related work:

In addition to splitNN [32], techniques of federated deep learning [1] and large batch synchronous stochastic gradient descent (SGD) [19] are currently available approaches for distributed deep learning. There has been no work as yet on federated deep learning and large batch synchronous SGD methods with regards to their applicability to useful non-vanilla settings of distributed deep learning studied in rest of this paper such as a) distributed deep learning with vertically partitioned data, b) distributed deep learning without label sharing, c) distributed semi-supervised learning and d) distributed multi-task learning. That said, with regards to non-neural network based federated learning techniques, the work in [27] shows their applicability to vertically partitioned distributed data [33, 34, 26, 35] shows applicability to multi-task learning in distributed settings. We now propose configurations of splitNN for all these useful settings in the rest of this paper.

2 SplitNN configurations for health

In this section we propose several configurations of splitNN for various practical health settings:

Simple vanilla configuration for split learning: This is the simplest of splitNN configurations as shown in Fig 2a. In this setting each client, (for example, radiology center) trains a partial deep network up to a specific layer known as the cut layer. The outputs at the cut layer are sent to a server which completes the rest of the training without looking at raw data (radiology images) from clients. This completes a round of forward propagation without sharing raw data. The gradients are now back propagated at the server from its last layer until the cut layer. The gradients at the cut layer (and only these gradients) are sent back to radiology client centers. The rest of back propagation is now completed at the radiology client centers. This process is continued until the distributed split learning network is trained without looking at each others raw data.

U-shaped configurations for split learning without label sharing: The other two configurations described in this section involve sharing of labels although they do not share any raw input data with each other. We can completely mitigate this problem by a U-shaped configuration that does not require any label sharing by clients. In this setup we wrap the network around at end layers of servers network and send the outputs back to client entities as seen in Fig.2b. While the server still retains a majority of its layers, the clients generate the gradients from the end layers and use
Figure 2: Split learning configurations for health shows raw data is not transferred between the client and server health entities for training and inference of distributed deep learning models with SplitNN.

them for backpropagation without sharing the corresponding labels. In cases where labels include highly sensitive information like the disease status of patients, this setup is ideal for distributed deep learning.

Vertically partitioned data for split learning: This configuration allows for multiple institutions holding different modalities of patient data \([27, 33, 34]\) to learn distributed models without data sharing. In Fig. 2c, we show an example configurations of splitNN suitable for such multi-modal multi-institutional collaboration. As a concrete example we walkthrough the case where radiology centers collaborate with pathology test centers and a server for disease diagnosis. As shown in Fig. 2c radiology centers holding imaging data modalities train a partial model upto the cut layer. In the same way the pathology test center having patient test results trains a partial model upto its own cut layer. The outputs at the cut layer from both these centers are then concatenated and sent to the disease diagnosis server that trains the rest of the model. This process is continued back and forth to complete the forward and backward propagations in order to train the distributed deep learning model without sharing each others raw data. We would like to note that although these example configurations show some versatile applications for splitNN, they are by no means the only possible configurations.

3 Results about resource efficiency

We share a comparison from \([32]\) of validation accuracy and required client computational resources in Figure 3 for the three techniques of federated learning, large batch synchronous SGD and splitNN as they are tailored for distributed deep learning. As seen in this figure, the comparisons were done on the CIFAR 10 and CIFAR 100 datasets using VGG and Resnet-50 architectures for 100 and 500 client based setups respectively. In this distributed learning experiment we clearly see that SplitNN outperforms the techniques of federated learning and large batch synchronous SGD in terms of higher accuracies with drastically lower computational requirements on the side of clients. In tables 1 and 2 we share more comparisons from \([32]\) on computing resources in TFlops and communication bandwidth in GB required by these techniques. SplitNN again has a drastic improvement of computational resource efficiency on the client side. In the case with a relatively smaller number of clients the communication bandwidth required by federated learning is less than splitNN. These improvements on the client side resource efficiency are even more dramatic due to the presence of a smaller number of parameters in earlier layers of convolutional neural networks (CNNs) like VGG and Resnet in addition to the fact that computation is split due to the cut layers. This uneven distri-
Figure 3: We show dramatic reduction in computational burden (in tflops) while maintaining higher accuracies when training over large number of clients with splitNN. Blue line denotes distributed deep learning using splitNN, red line indicate federated averaging and green line indicates large batch SGD.

Table 1: Computation resources consumed per client when training CIFAR 10 over VGG (in teraflops) are drastically lower for SplitNN than Large Batch SGD and Federated Learning.

Method	100 Clients	500 Clients
Large Batch SGD	29.4 TFlops	5.89 TFlops
Federated Learning	29.4 TFlops	5.89 TFlops
SplitNN	0.1548 TFlops	0.03 TFlops

Table 2: Computation bandwidth required per client when training CIFAR 100 over ResNet (in gigabytes) is lower for splitNN than large batch SGD and federated learning with a large number of clients. For setups with a smaller number of clients, federated learning requires a lower bandwidth than splitNN. Large batch SGD methods popular in data centers use a heavy bandwidth in both settings.

Method	100 Clients	500 Clients
Large Batch SGD	13 GB	14 GB
Federated Learning	3 GB	2.4 GB
SplitNN	6 GB	1.2 GB

4 Conclusion and future work

Simple configurations of distributed deep learning do not suffice for various practical setups of collaboration across health entities. We propose novel configurations of a recently proposed distributed deep learning technique called splitNN that is dramatically resource efficient in comparison to currently available distributed deep learning methods of federated learning and large batch synchronous SGD. SplitNN is versatile in allowing for many plug and play configurations based on the required application. Generation of such novel configurations in health and beyond is a good avenue for future work.
work. SplitNN is also scalable to large-scale settings and can use any state of the art deep learning architectures. In addition, the boundaries of resource efficiency can be pushed further in distributed deep learning by combining splitNN with neural network compression methods \cite{36,37,38} for seamless distributed learning with edge devices.

5 Supplementary material:

5.1 Additional configurations

In this supplementary section we propose some more split learning configurations of splitNN for versatile collaborations in health to train and infer from distributed deep learning models without sharing raw patient data.

Extended vanilla split learning: As shown in Fig. 4a we give another modification of vanilla split learning where the result of concatenated outputs is further processed at another client before passing it to the server.

Configurations for multi-task split learning: As shown in Fig. 4b, in this configuration multi-modal data from different clients is used to train partial networks up to their corresponding cut layers. The outputs from each of these cut layers are concatenated and then sent over to multiple servers. These are used by each server to train multiple models that solve different supervised learning tasks.

Tor [28] like configuration for multi-hop split learning: This configuration is an analogous extension of the vanilla configuration. In this setting multiple clients train partial networks in sequence where each client trains up to a cut layer and transfers its outputs to the next client. This process is continued as shown in Fig. 4c as the final client sends its activations from its cut layer to a server to complete the training.

![Split learning configurations](image)

(a) Extended vanilla split learning (b) Split learning for multi-task output with vertically partitioned input (c) Tor[28] like multi-hop split learning

Figure 4: Split learning configurations for health shows raw data is not transferred between the client and server health entities for training and inference of distributed deep learning models with SplitNN.

References

[1] McMahan, H. B., Moore, E., Ramage, D., Hampson, S. and Aguera y Arcas, B., Communication-efficient learning of deep networks from decentralized data, 20'th International Conference on Artificial Intelligence and Statistics (AISTATS), 2017.

[2] Swedish, T. and Raskar, R., Deep Visual Teach and Repeat on Path Networks, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2018.
[3] Annas, George J., HIPAA regulations—a new era of medical-record privacy?, New England Journal of Medicine, Vol. 348 (15), pp. 1486–1490, 2003.

[4] U.S. Centers for Disease Control and Prevention, HIPAA privacy rule and public health. Guidance from CDC and the US Department of Health and Human Services, MMWR: Morbidity and mortality weekly report, Vol. 52 (1), pp. 1–17, 2003.

[5] Merceri, Rebecca T., The HIPAA-potamus in health care data security, Communications of the ACM, Vol. 47 (7), pp. 25–28, 2004.

[6] Gostin, Lawrence O., Levit, Laura A. and Nass, Sharyl J., Beyond the HIPAA privacy rule: enhancing privacy, improving health through research, National Academies Press, 2009.

[7] Luxton, David D and Kayl, Robert A and Mishkind, Matthew C., mHealth data security: The need for HIPAA-compliant standardization, Telemedicine and e-Health, Vol. 18(4), pp. 284–288, 2012.

[8] Konečný, Jakub and McMahan, H Brendan and Yu, Felix X and Richtárik, Peter and Suresh, Ananda Theertha and Bacon, D., Federated learning: Strategies for improving communication efficiency, arXiv preprint arXiv:1610.05492, 2016.

[9] Hynes, Nick and Cheng, Raymond and Song, Dawn, Efficient Deep Learning on Multi-Source Private Data, arXiv preprint [arXiv:1807.06689], 2018.

[10] Abadi, Martin and Chu, Andy and Goodfellow, Ian and McMahan, H Brendan and Mironov, Ilya and Talwar, Kunal and Zhang, Li, Deep learning with differential privacy, Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 308–318, 2016.

[11] Shokri, Reza and Shmatikov, Vitaly, Privacy-preserving deep learning, Proceedings of the 22nd ACM SIGSAC conference on computer and communications security, pp. 1310–1321, 2015.

[12] Papernot, Nicolas and Abadi, Martin and Erlingsson, Ulfar and Goodfellow, Ian and Talwar, Kunal, Semi-supervised knowledge transfer for deep learning from private training data, arXiv preprint arXiv:1610.05755, 2016.

[13] Geyer, Robin C and Klein, Tassilo and Nabi, Moin, Differentially private federated learning: A client level perspective, arXiv preprint arXiv:1712.07557, 2017.

[14] Rouhani, Bita Darvish and Riazi, M Sadegh and Koushanfar, Farinaz, Deepsecure: Scalable provably-secure deep learning, arXiv preprint arXiv:1705.08963, 2017.

[15] Rouhani, Bita Darvish and Riazi, M Sadegh and Koushanfar, Farinaz, SecureML: A system for scalable privacy-preserving machine learning, 38th IEEE Symposium on Security and Privacy (SP), 2017.

[16] Hesamifard, Ehsan and Takabi, Hassan and Ghasemi, Mehdi, CryptoDL: Deep Neural Networks over Encrypted Data, arXiv preprint arXiv:1711.05189, 2017.

[17] Hardy, Stephen and Henecka, Wilko and Ivey-Law, Hamish and Nock, Richard and Patrini, Giorgio and Smith, Guillaume and Thorne, Brian, Private federated learning on vertically partitioned data via entity resolution and additively homomorphic encryption, arXiv preprint arXiv:1711.10677, 2017.

[18] Aono, Yoshinori and Hayashi, Takuya and Wang, Lihua and Moriai, Shiho, Privacy-preserving deep learning via additively homomorphic encryption, IEEE Transactions on Information Forensics and Security, Vol. 13(5), pp. 1333–1345, arXiv preprint arXiv:1711.10677, 2018.

[19] Chen, Jianmin and Pan, Xinghao and Monga, Rajat and Bengio, Samy and Jouzel, Rafal, Revisiting distributed synchronous SGD, IEEE Transactions on Information Forensics and Security, Vol. 13(5), arXiv preprint arXiv:1604.00981, 2016.

[20] Bonawitz, Keith and Ivanov, Vladimir and Kreuter, Ben and Marcedone, Antonio and McMahan, H Brendan and Patel, Sarvar and Ramage, Daniel and Segal, Aaron and Seth, Karn, Practical secure aggregation for privacy-preserving machine learning, Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 1175–1191, 2017.

[21] Bonawitz, Keith and Ivanov, Vladimir and Kreuter, Ben and Marcedone, Antonio and McMahan, H Brendan and Patel, Sarvar and Ramage, Daniel and Segal, Aaron and Seth, Karn, Practical secure aggregation for privacy-preserving machine learning, Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 1175–1191, 2017.
[22] Ben-Nun, Tal and Hoefler, Torsten, Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis, arXiv preprint [arXiv:1802.09941], 2018.

[23] Shickel, Benjamin and Tighe, Patrick James and Bihorac, Azra and Rashidi, Parisa, Deep EHR: A survey of recent advances in deep learning techniques for electronic health record (EHR) analysis, IEEE journal of biomedical and health informatics, Vol.22(5) pp.1589–1604, 2018.

[24] Ching, Travers and Himmelstein, Daniel S and Beaulieu-Jones, Brett K and Kalinin, Alexandr A and Do, Brian T and Way, Gregory P and Ferrero, Enrico and Agapow, Paul-Michael and Zietz, Michael and Hoffmann, Michael M, Opportunities and obstacles for deep learning in biology and medicine, Journal of The Royal Society Interface, Vol.15(141), 2018.

[25] Miotto, Riccardo and Wang, Fei and Wang, Shuang and Jiang, Xiaojian and Dudley, Joel T., Deep learning for healthcare: review, opportunities and challenges, Briefings in bioinformatics, 2017.

[26] Smith, Virginia and Chiang, Chao-Kai and Sanjabi, Maziar and Talwalkar, Ameet S., Advances in Neural Information Processing Systems, pp.4424–4434, 2017.

[27] Hardy, Stephen and Henecka, Wilko and Ivey-Law, Hamish and Nock, Richard and Patrini, Giorgio and Smith, Guillaume and Thorne, Brian, Private federated learning on vertically partitioned data via entity resolution and additively homomorphic encryption, arXiv preprint [arXiv:1711.10677], 2017.

[28] Syverson, Paul and Dingledine, R and Mathewson, N, Tor: The second generation onion router, Usenix Security, 2004.

[29] Ravi, Daniele and Wong, Charence and Deligianni, Fani and Berthelot, Melissa and Andreu-Perez, Javier and Lo, Benny and Yang, Guang-Zhong, Deep learning for health informatics, IEEE journal of biomedical and health informatics, Vol.21(1), pp.4–21, 2017.

[30] Alipanahi, Babak and Delong, Andrew and Weirauch, Matthew T and Frey, Brendan J, Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning, Nature biotechnology, Vol.33(8), 2015.

[31] Litjens, Geert and Kooi, Thijs and Bejnordi, Babak Eheshami and Setio, Arnaud Arindra Adiyoso and Ciompi, Francesco and Ghafoorian, Mohsen and van der Laak, Jeroen AWM and Van Ginneken, Bram and Sánchez, Clara I, A survey on deep learning in medical image analysis, Medical image analysis, Vol.42, pp.60–88, 2017.

[32] Gupta, Otkrist and Raskar, Ramesh, Distributed learning of deep neural network over multiple agents, Journal of Network and Computer Applications, Vol.116, pp.1–8, 2018.

[33] Navathe, Shamkant and Ceri, Stefano and Wiederhold, Gio and Dou, Jinglie, Vertical partitioning algorithms for database design, ACM Transactions on Database Systems (TODS), Vol.9(4), pp.680–710, 1984.

[34] Agrawal, Sanjay and Narasayya, Vivek and Yang, Beverly, Integrating vertical and horizontal partitioning into automated physical database design, Proceedings of the 2004 ACM SIGMOD international conference on Management of data, pp.359–370, 2004.

[35] Abadi, Daniel J and Marcus, Adam and Madden, Samuel R and Hollenbach, Kate, Scalable semantic web data management using vertical partitioning, Proceedings of the 33rd international conference on Very large data bases, pp.411–422, 2007.

[36] Lin, Yujun and Han, Song and Mao, Huizi and Wang, Yu and Dally, William J, Deep gradient compression: Reducing the communication bandwidth for distributed training, arXiv preprint [arXiv:1712.01887], 2017.

[37] Louizos, Christos and Ullrich, Karen and Welling, Max, Bayesian compression for deep learning, Advances in Neural Information Processing Systems, pp.3288–3298, 2017.

[38] Han, Song and Mao, Huizi and Dally, William J, Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding, arXiv preprint [arXiv:1510.00149], 2015.

[39] Fung, Clement and Yoon, Chris JM and Beschastnikh, Ivan, Mitigating Sybils in Federated Learning Poisoning, arXiv preprint [arXiv:1808.04866], 2018.