Harmful Effects of Alcohol On Essential Physiological Organs

Shahnawaz Ahmad Teli, Yogesh Joshi*
Department of Pharmaceutical Science, Shri Guru Ram Rai Institute of Technology & Science, Dehradun-248001, Uttarakhand (India)

ABSTRACT
Alcohol abuse is one of major and increasingly attributable risk factor for mortality and morbidity worldwide. The underlying purpose of this review is to promote awareness and significance in relation to the effects of alcohol on various body systems especially on cardiovascular system, liver, adipose tissue, skeletal muscle, brain, water and electrolyte metabolism and endocrine system. Alcohol when used above the normal range can results in harmful consequences on different biological organs. Average volumes consumed and patterns and frequency of drinking are three dimensions of alcohol consumption that need to be considered in efforts to reduce the burden of alcohol-related harmful effects. To reduce such harmful effects, national policies need to be developed to keep track of alcohol consumption and its consequences, and to raise awareness amongst the public. It is up to both public and concerned governments to encourage debate and formulate effective public health oriented policies and measures in order to minimize the harm caused by alcohol.

Keywords: Alcohol, consumption, harmful effects, awareness

*Corresponding Author Email: yogeshjoshi1583@rediffmail.com
Received 10 July 2018, Accepted 17 July 2018
INTRODUCTION
Alcohol or ethanol is the most commonly abused drug among youth\(^1\). Globally, adverse utilization of alcohol results in approximately 2.5 million deaths each year. Alcohol abuse is a major and increasingly attributable risk factor for mortality and morbidity worldwide. A World Health Organization (WHO) report states that per capita global consumption of alcoholic beverages in 2010 was equal to 6.2 litres of pure alcohol consumed by each individual aged 15 years or older. Approximately 2.3 million people die each year due to the adverse and harmful use of alcohol, accounting for approximately 3.8% of all deaths globally\(^2,3\).

The purpose of this review is to promote awareness and significance of a broad range of different organ injuries induced by alcohol that highlights the physiological processes of organ damage. Specifically, it focuses on the effects of alcohol on cardiovascular system, liver, adipose tissue, skeletal muscle, brain, water and electrolyte metabolism and endocrine system\(^4\).

EFFECT OF ALCOHOL ON CARDIOVASCULAR SYSTEM:
From over the last three decades, various epidemiologic studies had revealed data that showed complex associations between alcohol utilization and cardiovascular conditions such as hypertension, peripheral arterial disease, coronary heart disease, cardiomyopathy and stroke. Specifically, such associations are strongly modulated by the amount and pattern of alcohol consumption\(^5\). In contrast to high alcohol intake which has a detrimental effect on cardiovascular health, chronic low alcohol has been shown to have a beneficial effect\(^6\). Both men and women who consume 1-3 drinks a day have a 10% to 40% lower risk of coronary heart disease than those who abstain\(^7\).

Effect of alcohol on blood pressure:
Adults consuming low-to-moderate amounts of ethanol each day typically has no acute (i.e., short-term) or substantial impact on blood pressure (BP) or hemodynamics. However, data from various studies suggest that binge drinking (more than 5 standard drinks in a single occasion) is associated with temporary increase in BP that ranges from 4 to 7 mmHg for systolic BP and 4 to 6 mmHg for diastolic BP\(^5\).

The World hypertension League (WHL) supposed that the relatively greater effect of alcohol on systolic blood pressure compared with diastolic blood pressure might indicate an imbalance between central nervous system (CNS) factors influencing cardiac output and the peripheral vascular effects of alcohol. Ethanol diminishes the baro reflex by interacting with receptors in the brain stem, i.e. rostral ventrolateral medulla (RVLM) and nucleus tractus solitarii (NTS)\(^8\). Findings
from this study revealed that ethanol reduction was associated with a significant reduction in mean (95% confidence interval) systolic and diastolic blood pressures of -3.31 mmHg and -2.04 mmHg respectively9.

A study showed that the alcohol treated rats had an increased sympathetic activity as there occurred a decrease in heart rate in alcohol treated rats when compared to control rats during β-adreno-receptor blockade with propranolol. Such increased sympathetic activity is consistent with impairment of the baro-receptors that, upon activation, inhibit the sympathetic nervous system10,11,12,13.

Alcohol treated rats showed blood vessels constriction due to increased shifts in the binding of the calcium ion (Ca2+) in arteries and arteriolar smooth muscle cells results in increased sensitivity to endogenous vasoconstrictors9,14.

Alcoholic myopathy in heart and skeleton muscles:

Excessive use of alcohol affects not only the striated muscles of the myocardium, but also to the skeleton. Electromyography showed that most patients who are chronic alcoholics have some abnormality in skeletal muscle, and almost have histologic changes of varying severity. Because skeletal and cardiac muscles are similar in many respects, it is reasonable to presume that the mechanisms that underlie alcohol-induced injury are similar in both15,16.

In alcoholic myopathy and cardiomyopathy, preclinical (asymptomatic), acute (occasional binge drinking) and chronic (daily) forms are recognized. In cardiomyopathy chronic alcohol abuse on many occasions results in irreversible congestive failure and in chronic myopathy insistent weakness or recurrent acute episodes of myoglobinuria are not unusual. Histologically, the skeletal muscle and heart might exhibit necrosis of myofibers, interstitial fibrosis and acute and chronic inflammation, depending on the stage of myopathy17.

Alcohol and Peripheral artery disease (PAD):

Peripheral arterial disease is a type of an atherosclerotic disease in the lower extremities which is characterized by periodic claudication with pain at posterior cruris and discomfort. Various anomalies of smooth muscle cells, vascular endothelial cells and platelets are involved in its pathogenesis18. Data on ethanol use and atherosclerosis are scarce19. Lower extremity arterial disease (LEAD) is one of the most common complications of diabetes and might harms the peripheral arteries through multiple pathways. It was reported that alcohol consumers with PAD have a lower mortality than patients with PAD who did not consume alcohol. The prevalence of LEAD ranges from 16.9 to 23.8%. In United States approximately 10 million men and women suffer from LEAD, and in Chinese patients with diabetes older than 50 years20.
The Edinburgh Artery Study (EAS) supported the useful effect of alcohol, as there was a positive association between the amount of alcohol intake and the ankle brachial index. In the Physician’s Health Study (PHS), regular drinkers showed a 26% lower incidence of peripheral arterial disease compared with non-drinkers after adjustment for confounding factors. Similar results were also shown in the Atherosclerosis Risk in Communities (ARIC) study and Framingham Heart Study (FHS)\(^{21}\).

There is relatively little investigation on the relationship of moderate alcohol consumption with risk of Abdominal Aortic Aneurysm (AAA). In an analysis of male smokers, there was a finding of U-shaped relationship, with relative risks for AAA of 0.74 (95% CI, 0.49–1.13) among alcohol consumers of up to 15 g of alcohol per day and 0.60 (95% CI, 0.36–1.02) among consumers of 16 to 30 g of alcohol per day\(^{22}\).

EFFECT OF ALCOHOL ON BRAIN:

Alcohol-related brain damage (ARBD):

Some people continuously drink much higher amounts than the recommended limits of alcohol. For men, such excessive drinking could mean > 50 units/week, and for women, greater than 35 units/week. Drinking at these high levels not only poses high risk to someone’s health but it can increase the risk of becoming addicted. Drinking at such high levels over many years directly damages the brain tissue and in some people causing alcohol-related brain damage (ARBD)\(^{23,24}\).

ARBD is defined as chronic decline in thinking or memory caused by excessive alcohol consumption and a lack of thiamine (vitamin B1). Vitamin B1 is needed to provide energy to the body. It is especially important for brain because they use so much energy. Regular heavy alcohol consumption over time damages nerve cells because alcohol is a toxin. It also causes chemical changes and the shrinkage of brain tissue. The second way that alcohol misuse leads to ARBD is by causing vitamin B1 deficiency. Alcohol can also cause ARBD through repeated head injuries because people who misuse alcohol are more prone to falls and getting into fights. Finally, heavy consumption damages blood vessels and is linked to raise cholesterol levels, high blood pressure and an increased risk of strokes and heart attacks. All of these conditions can damage the brain. The most common form of ARBD is alcoholic dementia which may also be called alcohol-related dementia. ARBD also includes Korsakoff’s syndrome, which is also called Korsakoff’s psychosis\(^{25}\).

Effects of ethanol on GABA receptors:

Alcoholism is associated with short and long-term cognitive dysfunction including memory impairment, resulting in substantial disability and cost to society. Thus, understanding how alcohol
impairs cognition is essential for developing treatment strategies to reduce its adverse impact. Memory processing is thought to involve persistent, use-dependent changes in synaptic transmission, and alcohol alters the activity of multiple signalling molecules in synaptic processing, including modulation of the gamma-aminobutyric acid (GABA) and glutamate transmitter systems that mediate most fast inhibitory and excitatory transmission in the brain. Different combinations of subunits markedly influence pharmacological and physiological properties, and alcohol promotes the actions of GABA at some GABA_A receptors. Early studies suggested that alcoholic effects are most prominent at receptors expressing γ2L subunit that has a site for phosphorylation by protein kinase C (PKC), and mice with targeted deletions of the γ-isoform of PKC have reduced ethanol sensitivity.

Alcohol related dementia:

It is well established that prolonged and excessive use of alcohol can lead to irreversible damage to the structure and function of the brain. Present diagnostic criteria for ethanol-associated cognitive disorders focus on two main syndromes of impairment: alcohol-related dementia (ARD) and WKS (Wernicke-Korsakoff syndrome).

Autopsy evaluations showed that up to 78% of persons with diagnosed alcoholism demonstrate some degree of brain pathology. Neuropathological and Neuroimaging evidence showed prominent white matter loss (in the corpus callosum, prefrontal cortex and cerebellum) and neuronal loss in the hypothalamus, superior frontal association cortex and cerebellum. The frontal lobes of individuals with alcoholism is highly susceptible to damage, volume shrinkage, decreased neuron density and altered glucose metabolism and perfusion. Magnetic resonance imaging studies showed early reversibility of white matter shrinkage which is accompanied by clinical improvement in motor and cognitive abilities. The restoration of myelination and axonal integrity are the probable mechanism of recovery after white matter damage, but is vulnerable to repeated disruption if drinking is resumed.

Epidemiological results generally have been derived from population studies that relate patterns of alcohol consumption and dementia. Studies have showed a high prevalence of alcohol misuse in patients with dementia (9% to 22%) and high rates of dementia in alcohol abusers (10% to 24%), although most studies did not specify the type of dementia. Prevalence studies of dementia in nursing homes have reported ARD of 10% to 24% of all dementias, which is likely higher than in the general population.
Table 1 Assessment of Alcohol-Related Dementia35-37

Index	Description
High Index of Suspicion	In confused patients with alcohol abuse/disorders and/or dietary deficiency/malnourishment and co-morbid medical illness.
Thorough history taking	Specially noting the quantity, pattern, duration of alcohol use, frequency and time of last use; attempts at abstinence, number of detoxification attempts and severity of withdrawal symptoms. Detailed history of aphasia, apraxia, amnesia, visuo-spatial deficits and difficulty in daily functioning and its temporal relationship with alcohol use.
Detailed clinical examination	Eliciting dietary deficiency/malnourishment; Oculomotor abnormalities—nystagmus, diplopia, miosis, anisocoria, papilloedema, ophthalmoplegia and retinal hemorrhages; Cerebellar dysfunction (ataxia, nystagmus); Mild memory impairment or delirium; Autonomic disturbances like hypo or hyperthermia, tachycardia, hypotension. Other features like spastic paraparesis, hearing loss, seizures, or acute psychosis.
Investigations	Serum levels of folate, B12, magnesium, calcium and phosphate, complete blood counts; electrolytes; liver function tests; renal function tests; thyroid function tests; coagulation profile; blood sugar level. Raised gamma glutamyl transferase and macrocytosis are useful biological markers of alcohol use. Treatment with thiamine should be started immediately without waiting for the results. Thiamine pyrophosphate levels and erythrocyte transketolase activity may be helpful. Magnetic resonance imaging of brain may support Wernicke encephalopathy’s diagnosis.

EFFECT OF ALCOHOL ON LIVER:

Alcoholic Liver Disease (ALD) ranks among the major causes of morbidity and mortality in the world, and affects millions of patients globally each year. ALD is a broad term that includes a spectrum of phenotypes ranging from simple steatosis to steatohepatitis, cirrhosis, progressive fibrosis and hepatocellular carcinoma. Whilst the disease progression is well characterized, currently there is no FDA-approved therapy available to reverse or halt this process in humans38, 39.

Early-Stage Pathogenesis of ALD:

Steatosis is the first response of the liver in severe alcohol abusers. It is histologically defined as the deposition of fat in hepatocytes (liver cells). Alcohol increases NADH/NAD+ in hepatocytes, thereby interrupt fatty acid oxidation and leading to steatosis development (40). Innate immune signalling has a role in the early stage of ALD with simple steatosis even before the onset of inflammation. Endoplasmic reticulum (ER) stress activates interferon regulatory factor 3 (IRF3) via the adaptor molecule STRING. IRF3 is activated (phosphorylated) with a single exposure to ethanol, preceding the development of inflammation. Hepatocyte-specific IRF3 is required for the
intrinsic (mitochondrial) apoptosis pathway, while Kupffer cell IRF3 deficiency provides only marginal liver damage41.

Continuous alcohol abuse causes progression to liver cirrhosis and fibrosis, which leads to a high risk of complications (such as variceal bleeding, ascites, hepatic encephalopathy, bacterial infections and renal failure)42. Acetaldehyde advances fibrogenesis directly by accelerating the expression of collagen in hepatic stellate cells (HSC). HSCs can also be activated by damaged hepatocytes, neutrophils and activated Kupffer cells through various pro-fibrogenic mediators including interleukin (IL)-8, angiotensin II, transforming growth factor β, platelet-derived growth factor and leptin. The biological actions and activation of these mediators are largely due to reactive oxygen species (ROS)27-31.

EFFECT OF ALCOHOL ON ADIPOSE TISSUE:

When overall body mass is considered, little effect is seen at lower levels of alcohol intake, whereas most observational studies have shown increased body mass index (BMI) associated with greater ethanol consumption43-45. Adipose tissue is an organ which stores energy is also found to play a major role in ALD progression by secreting hormones and cytokines known as adipocytokines or adipokines. Alcohol affects the metabolic and innate immune activities of adipose tissue which results in alcohol-induced injury of the tissues46. Alcohol intake causes alcoholic fatty liver disease. In animal and human models, ethanol intake causes susceptibility toward non-alcoholic fatty liver disease47. Alcohol intake, even at moderate levels, affects the function of adipose tissue44. If alcohol misuse and obesity are both present, risk of liver-related mortality and morbidity is increased. Excess ethanol consumption proportionally increases the amount of visceral adipose tissue, similar to changes seen in obesity48.

Studies on rodents:

Exposure to alcohol up-regulates fatty acid transport proteins, causes accumulation of lipids in the liver, inactivates adipose protein phosphatase 1, induces insulin intolerance, and also upregulates tensin homolog (PTEN) and phosphatase and suppressor of cytokine signalling 3(SOCS3) proteins in mice. Alcohol consumption more than 14 standard drinks are shown to be related to a higher risk of metabolic syndrome46.

Chronic alcohol consumption activates lipolysis of adipose tissue and promotes the release of free fatty acids. Some circulating levels of free fatty acids might not always reflect this change as they are removed by other tissues like liver and heart. While in-vivo metabolic flux studies using radiolabeled triglycerides showed that chronic alcohol intake increases lipolysis, primary
adipocytes from chronic alcohol-fed rats has shown that basal rates of lipolysis and FFA release were not altered by ethanol feeding49-52.

EFFECT OF ALCOHOL ON WATER AND ELECTROLYTE METABOLISM:
Ethanol also displays actions on water and electrolyte metabolism. Alcohol ingestion increases urinary excretion. The increase in urine volume seems to be caused by suppression of vasopressin and the intake of fluid. The study was conducted on hypertensive patients for determining the effect of periodic alcohol intake for 1 week on the sodium excretion and urine volume. Urinary sodium excretion diminished in the early phase but increased in the late phase. On day’s 3–5 urine volume were increased but not on day 1. The mean BP also diminished in the early phase and then returned toward the baseline levels. The initial BP reduction might mask the alcohol-induced diuresis and causes sodium retention, which might be involved in subsequent BP elevation. It has also been shown that urinary potassium excretion reduces after alcohol ingestion53,54.

In another study the serum potassium level reduced after a single intake of alcohol. This alteration in serum potassium seems to be intermediated by the sympathetic nervous system, as propranolol attenuated alcohol-induced hypokalemia. Conversely, ethanol increases the urinary excretion of calcium and magnesium. It is possible that calcium and magnesium are exhausted in habitual drinkers, and the alcohol-induced alterations in these minerals may contribute to arrhythmia and BP elevation55.

EFFECT OF ALCOHOL ON THE ENDOCRINE SYSTEM:
The endocrine system ensures a correct communication between various organs of the body to maintain a stable internal environment. Chronic alcohol use disrupts the communication between nervous, immune system and endocrine and causes hormonal disturbances that lead to serious consequences at behavioural and physiological levels. It is known that ethanol increases plasma renin activity. Ethanol also stimulated the release of adrenocorticotropic hormone, and increases in plasma aldosterone and cortisol were observed after drinking56.

The level of plasma insulin increases after alcohol intake; however, the change is less than that induced by an isocaloric control drink. It has been shown that a low-to-moderate intake of alcohol enhances insulin sensitivity and reduces the risk of type-2 diabetes mellitus, whereas no risk reduction was observed in consumers of equal to or over 48 g/day57,58.

There are several reports showing evidence for the existence of hyperprolactinemia in chronic alcoholic men and women. In a study conducted by European scientists, persistent hyperprolactinemia was observed in 16 chronic alcoholic women during a 6 week treatment trial59. Alcohol-induced hyperprolactinemia has also been demonstrated in nonhuman primates and
laboratory animals. Alcoholic individuals often show dysregulations of the hypothalamic pituitary-thyroid axis. A significant reduction in T4 and T3 concentrations was observed in the alcoholic groups during withdrawal and early abstinence, compared to non-alcoholic healthy groups.

Acute and chronic alcohol exposures have both been shown to induce immunosuppression through dysregulation in all branches of the immune system. Alcohol exposure reduces neutrophil (macrophage) infiltration and migration to sites of infection as well as production of new neutrophils in response to infection and their phagocytic activity. Chronic alcohol exposure also decreases monocyte phagocytic activity even though the number of these cells is increased. Furthermore, chronic alcohol exposure decreases the number and activity of dendritic and natural-killer cell (NK-cells).

CONCLUSION:

Alcohol is not an ordinary commodity. Its use is diverse and widespread, especially in India and when used above the normal range can result in harmful consequences on different biological organs. Average volumes consumed and patterns and frequency of drinking are three dimensions of alcohol consumption that need to be considered to reduce the burden of alcohol-related harmful effects, e.g., on cardiovascular system, liver, adipose tissue, skeletal muscle, brain, water and electrolyte metabolism, endocrine system etc. Alcohol is also associated with motor vehicle accidents and a range of other detrimental effects. To reduce such harmful effects, national policies need to be developed to keep track of alcohol consumption and its consequences, and to raise awareness amongst the public. It is up to both citizens and concerned governments to encourage debate and formulate effective public health oriented policies and measures in order to minimize the harm caused by alcohol.

REFERENCES:

1. Maharjan PL, Magar KT. Prevalence of alcohol consumption and factors associated with the alcohol use among the youth of Suryabinayak municipality, Bhaktapur. Journal of Pharma Care Health System 2017; 4(1).

2. Easwaran M, Bazroy J, Jayaseelan V, Singh Z. Prevalence and determinants of alcohol consumption among adult Men in a coastal area of South India. International Journal of Medical Science and Public Health 2015; 4(3): 360-364.
3. Rathod SD, Nadkarni A, Bhana A, Shidhaye R. Epidemiological features of alcohol use in rural India: a population-based cross-sectional study. British Medical Journal 2015; 5(12): e009802.

4. Souza-Smith FM, Lang CH Laura, Nagy E, Bailey SM, Parsons LH, Murray GJ. Physiological processes underlying organ injury in alcohol abuse. American Journal of Physiology- Endocrinology and Metabolism 2016; 311(3): E605-E619.

5. Piano MR. Alcohol’s effects on the cardiovascular system. Alcohol research: current reviews 2017; 38(2).

6. Vasdev S, Gill V, Singal PK. Beneficial effect of low ethanol intake on the cardiovascular system: possible biochemical mechanisms. Vascular Health and Risk Management 2006; 2(3): 263-276.

7. Rimm EB, Williams P, Fosher K, Criqui M, Stampfer MJ. Moderate alcohol intake and lower risk of coronary heart disease: metaanalysis of effects on lipids and haemostatic factors. British Medical Journal 1999; 319: 1523-1528.

8. Husain K, Ansari RA, Ferder L. Alcohol-induced hypertension: mechanism and prevention. World Journal of Cardiology 2014; 6(5): 245-252.

9. Xin X, He J, Frontini MG, Ogden LG, Motsamai OI, Whelton PK. Effects of alcohol reduction on blood pressure -a meta-analysis of randomized controlled trials. Journal of American Heart Association 2015; 38(5): 1112-1117.

10. Abdel-Rahman AA, Wooles WR. Ethanol-induced hypertension involves impairment of baroreceptors. Hypertension 1987; 10(1): 67-73.

11. Zhang X, Abdel-Rahman AA, Wooles WR. Impairment of baroreceptor reflex control of heart rate but not sympathetic efferent discharge by central neuroadministration of ethanol. Hypertension 1989; 14(3): 282-292.

12. Grassi GM, Somers VK, Renk WS, Abboud FM, Mark AL. Effects of alcohol intake on blood pressure and sympathetic nerve activity in normotensive humans: a preliminary report. Journal of Hypertension Supplement: Official Journal of the International Society of Hypertension 1989; 7(6): S20-S21.

13. Rupp H, Brilla CG, Maisch B. Hypertension and alcohol: central and peripheral mechanisms. Herz 1996; 21(4): 258-264.

14. Altura BM, Altura BT. Microvascular and vascular smooth muscle actions of ethanol, acetaldehyde, and acetate. Federation Proceedings 1982; 41(8): 2447-2451.
15. Rubin E. Alcoholic myopathy in heart and skeletal muscles. The New England Journal of Medicine 2015; 301(1): 28-29.
16. Krenz M, Korthuis RJ. Moderate ethanol ingestion and cardiovascular protection: from epidemiologic associations to cellular mechanisms. Journal of Molecular and Cellular Cardiology 2012; 52(1): 93-104.
17. George A, Figueredo VM. Alcoholic cardiomyopathy: a review. Journal of cardiac failure 2011; 17(10): 844-849.
18. Wakabayashi I, Sotoda Y. Alcohol drinking and peripheral arterial disease of lower extremity. American Journal of Epidemiology 2014; 49(1): 13-27.
19. Vliegenthart R, Geleijnse JM, Hofman A, Meijer WT, van Rooij FJ, Grobbee DE, Witteman JC. Alcohol consumption and risk of peripheral arterial disease: the Rotterdam study. American Journal of Epidemiology 2002; 155(4): 332-338.
20. Yang S, Wang S, Yang B, Zheng J, Cai, Yang Z. Alcohol Consumption Is a Risk Factor for Lower Extremity Arterial Disease in Chinese Patients with T2DM. Journal of Diabetes Research 2017.
21. Kawano Y. Physio-pathological effects of alcohol on the cardiovascular system: its role in hypertension and cardiovascular disease. Hypertension Research 2010; 33(3): 181-191.
22. Mukamal K. Alcohol Intake and Noncoronary Cardiovascular Diseases. Annals of Epidemiology 2007; 17(5): S8-S12.
23. Harper C. The neuropathology of alcohol-related brain damage. Alcohol & Alcoholism 2009; 44(2): 136-140.
24. Zahr NM, Kaufman KL, Harper CG. Clinical and pathological features of alcohol-related brain damage. Nature Reviews Neurology 2011; 7(5): 284-294.
25. Alzheimers society United Against Dementia. What is alcohol related brain damage. Factsheet 438LP October 2015.
26. Zorumski CF, Mennerick S, Izumi Y. Acute and chronic effects of ethanol on learning related synaptic plasticity. Alcohol 2014; 48(1): 1-17.
27. Ridley NJ, Draper B, Withall A. Alcohol-related dementia: an update of the evidence. Alzheimer’s Research & Therapy 2013; 5(1): 3.
28. Goldstein G, Shelly C. Neuropsychological investigation of brain lesion localization in alcoholism. Advances in Experimental Medicine and Biology 1980; 126: 731-743.
29. Harper CM, Matsumoto I. Ethanol and brain damage. Current Opinion in Pharmacology 2005; 5(1): 73-78.
30. Sullivan EV, Harding AJ, Pentney R, Dlugos C, Martin PR, Parks MH, Desmond JE, Chen SHA, Pryor MR, De Rosa E, Pfefferbaum A. Disruption of frontocerebellar circuitry and function in alcoholism. Alcoholism: Clinical and Experimental Research 2003; 27(2): 301-309.
31. Bartsch AJ, Homola G, Biller A, Smith SM, Weijers HG, Wiesbeck GA, Jenkinson M, De Stefano N, Solymosi L, Bendszus M. Manifestations of early brain recovery associated with abstinence from alcoholism. Brain 2007; 130(1): 36-47.
32. Ritchie K, Villebrun D. Epidemiology of alcohol-related dementia. Handbook of Clinical Neurology 2008; 89: 845-850.
33. Oslin DW, Cary MS. Alcohol-related dementia: validation of diagnostic criteria. The American Journal of Geriatric Psychiatry 2003; 11(4): 441-447.
34. Carlen PL, McAndrews MP, Weiss RT, Dongier M, Hill JM, Menzano E, Farcnik K, Abarbanel J, Eastwood MR. Alcohol-related dementia in the institutionalized elderly. Alcoholism: Clinical and Experimental Research 1994; 18(8): 1330-1334.
35. Galvin R, Brathen G, Ivashynka A, Hillbom M, Tanasescu R, Leone MA, et al. EFNS guidelines for diagnosis, therapy and prevention of Wernicke encephalopathy. European Journal of Neurology 2010; 17(12): 1408-1418.
36. Caine D, Halliday GM, Kril JJ, Harper CG. Operational criteria for the classification of chronic alcoholics: identification of Wernicke’s encephalopathy. Journal of Neurology, Neurosurgery & Psychiatry 1997; 62(1): 51-60.
37. Harper CG, Giles M, Finlay-Jones R. Clinical signs in the Wernicke-Korsakoff complex: a retrospective analysis of 131 cases diagnosed at necropsy. Journal of Neurology, Neurosurgery & Psychiatry 1986; 49(4): 341-345.
38. Orman ES, Odena G, Bataller R. Alcoholic liver disease: Pathogenesis, management, and novel targets for therapy. Journal of Gastroenterology and Hepatology 2013; 28(1): 77-84.
39. Song Z. Adipose tissue dysfunction and alcoholic liver disease. Journal of Liver Research, Disorders & Therapy 2015; 1(1).
40. Baraona E, Lieber CS. Effects of ethanol on lipid metabolism. The Journal of Lipid Research 1979; 20: 289-315.
41. Petrasek J, Dolganiuc A, Csak T, et al. Interferon regulatory factor 3 and type I interferons are protective in alcoholic liver injury in mice by way of crosstalk of parenchymal and myeloid cells. Hepatology 2011; 53(2): 649-660.

42. Harper C. The neuropathology of alcohol-related brain damage. Alcohol and Alcoholism 2009; 44(2): 136-140.

43. Lahti-Koski M, Pietinen P, Heliovaara M, Vartiainen E. Associations of body mass index and obesity with physical activity, food choices, alcohol intake, and smoking in the 1982-1997 FINRISK Studies. The American Journal of Clinical Nutrition 2002; 75(5): 809-817.

44. Wannamekhe SG, Shaper AG. Alcohol, body weight, and weight gain in middle-aged men. The American Journal of Clinical Nutrition 2003; 77(5): 1312-1317.

45. Sayon-Orea C, Martinez-Gonzalez MA, Bes-Rastrollo M. Alcohol consumption and body weight: a systematic review. Nutrition Reviews 2011; 69(8): 419-431.

46. Kema VH, Mojerla NR, Khan I, Mandal P. Effect of alcohol on adipose tissue: a review on ethanol mediated adipose tissue injury. Adipocyte 2015; 4(4): 225-231.

47. Baker SS, Baker RD, Liu W, Nowak NJ, Zhu L. Role of alcohol metabolism in non-alcoholic steatohepatitis. PLoS One 2010; 5(3): e9570.

48. Molenaar EA, Massaro JM, Jacques PF, Pou KM, Ellison RC, Hoffmann U, Pencina K, Shadwick SD, Vasan RS, O'donnell CJ, Fox CS. Association of lifestyle factors with abdominal subcutaneous and visceral adiposity: the Framingham heart study. Diabetes Care 2009; 32(3): 505-510.

49. Zhong W, Zhao Y, Tang Y, Wei X, Shi X, Sun W, Sun X, Yin X, Kim S, McClain CJ, et al. Chronic alcohol exposure stimulates adipose tissue lipolysis in mice: Role of reverse triglyceride transport in the pathogenesis of alcoholic steatosis. American Journal of Pathology 2012; 180(3): 998-1007.

50. Wang M, Zhang XJ, Feng K, He C, Li P, Hu YJ, Su H, Wan JB. Dietary α-linolenic acid-rich flaxseed oil prevents against alcoholic hepatic steatosis via ameliorating lipid homeostasis at adipose tissue-liver axis in mice. Scientific Reports 2016; 6: 26826.

51. Dou X, Xia Y, Chen J, Qian Y, Li S, Zhang X, Song Z. Rectification of impaired adipose tissue methylation status and lipolytic response contributes to hepatoprotective effect of betaine in a mouse model of alcoholic liver disease. British Journal of Pharmacology 2014; 171(17): 4073-4086.

52. Steiner JL, Lang CL. Alcohol, Adipose Tissue and Lipid Dysregulation. Biomolecules 2017; 7(1): 16.
53. Wannamethee SG, Camargor CA, Manson JE, Willett WC, Rimm EB. Alcohol drinking patterns and risk of type 2 diabetes mellitus among younger women. Archives of Internal Medicine 2003; 163(11): 1329-1336.

54. Rubini ME, Kleeman CR, Lamdin E. Studies on alcohol diuresis. The effect of ethyl alcohol ingestion on water, electrolyte and acid-base metabolism. The Journal of Clinical Investigation 1955; 34(3): 439-447.

55. Kawano Y. Physio-pathological effects of alcohol on the cardiovascular system: its role in hypertension and cardiovascular disease. Hypertension Research 2010; 33(3): 181-191.

56. Rachdaoui N, Sarkar DK. Effects of alcohol on the endocrine system. Endocrinology Metabolism of North America 2013; 42(3): 593-615.

57. Terasawa E, Fernandez DL. Neurobiological mechanisms of the onset of puberty in primates. Endocrine Reviews 2001; 22(1): 111-151.

58. Ojeda SR, Lomniczi A, Sandau U, Matagne V. New concepts on the control of the onset of puberty. Endocrine Development 2010; 17: 44-51.

59. Valimaki M, Pelkonen R, Harkonen M, et al. Pituitary-gonadal hormones and adrenal androgens in non-cirrhotic female alcoholics after cessation of alcohol intake. European Journal of Clinical Investigation 1990; 20(2): 177-181.

60. Mello NK, Bree MP, Mendelson JH, Ellingboe J, King NW, Sehgal P. Alcohol self-administration disrupts reproductive function in female macaque monkeys. Science 1983; 221(4611): 677-679.

61. Mello NK, Mendelson JH, Bree MP, Skupny A. Alcohol effects on naloxone-stimulated luteinizing hormone, follicle-stimulating hormone and prolactin plasma levels in female rhesus monkeys. Journal of Pharmacology Experimental Therapeutics 1988; 245(3): 895-904.

62. Hegedus L, Rasmussen N, Ravn V, Kastrup J, Krogsgaard K, Aldershvile J. Independent effects of liver disease and chronic alcoholism on thyroid function and size: the possibility of a toxic effect of alcohol on the thyroid gland. Metabolism 1988; 37(3): 229-233.

63. Zhang P, Bagby GJ, Happel KI, Raasch CE. Alcohol abuse, immunosuppression and pulmonary infection. Current Drug Abuse Reviews 2008; 1(1): 56-67.

64. Morland H, Johnsen J, Bjorneboe A, Drevon CA. Reduced IgG Fc-receptor-mediated phagocytosis in human monocytes isolated from alcoholics. Alcoholism: Clinical and Experimental Research 1988; 12(6): 755-759.
65. Lau AH, Szabo G, Thomson AW. Antigen-presenting cells under the influence of alcohol. Trends in Immunology 2009; 30(1): 13-22.