Breakup of the Fermi surface near the Mott transition in low-dimensional systems

C. Berthod and T. Giamarchi

DPMC, Université de Genève, 24 quai Ernest-Ansermet, 1211 Genève 4, Switzerland

S. Biermann and A. Georges
Centre de Physique Théorique, CNRS-UMR 7644, Ecole Polytechnique, 91128 Palaiseau Cedex, France

(Dated: February 27, 2017)

We investigate the Mott transition in weakly-coupled one-dimensional (1d) fermionic chains. Using a generalization of Dynamic Mean Field Theory, we show that the Mott gap is suppressed at some critical hopping t_0^c. The transition from the 1d insulator to a 2d metal proceeds through an intermediate phase where the Fermi surface is broken into electron and hole pockets. The quasiparticle spectral weight is strongly anisotropic along the Fermi surface, both in the intermediate and metallic phases. We argue that such pockets would look like ‘arcs’ in photoemission experiments.

The formation of a pseudogap phase near the Mott transition in strongly correlated electron system is a long-standing question in condensed matter physics. Since the observation of a pseudogap state in high-T_c copper-oxide superconductors by a variety of experimental techniques \[1\], the nature and origin of this phase lies at the core of a heated debate. Several related issues, such as the possible breakup of the Fermi surface (FS) into arcs or pockets \[2, 3\] and the concomitant appearance of ‘hot spots’ in the quasiparticle spectrum, have also attracted much attention in recent years. The theoretical description of the Mott transition in two spatial dimensions has proven to be difficult \[4\], however, and a consensus on the nature and properties of the pseudogap has not yet emerged. The central question concerns the way the FS is destroyed when entering the Mott state, either at zero temperature as a function of some control parameter, or with decreasing temperature from a high-T metallic phase.

For solving these questions one has to resort to approximate or numerical approaches. Among those methods, the Dynamic Mean Field Theory (DMFT) \[5, 6\] has proven to be very fruitful to tackle the question of Mott transitions and strong correlations in high dimensional systems. However, since in the standard implementation of this method one reduces the problem to a single site, the momentum dependence of the self energy is lost, which makes it unable to describe the FS anisotropies, and answer the above questions. To overcome this limitation, various cluster-DMFT schemes have been used to approach the 2d problem \[7, 8, 9, 10\]. One difficulty with these approaches which, for small clusters, can affect physical predictions, lies in a certain degree of arbitrariness in converting the cluster results into physical quantities on the lattice.

In addition to high-T_c superconductors, these questions related to the approach of the Mott transition are directly relevant to other systems in which interactions are deemed to be important such as the organic superconductors, made of weakly-coupled one-dimensional chains \[11\]. Such systems exhibit a deconfinement transition between a one-dimensional Mott insulator and a three dimensional metal. For such systems of coupled chains, FS pockets were found when the inter-chain coupling is treated within the RPA approximation \[12\]. In that model the pockets form when the inter-chain bandwidth exceeds the 1d Mott gap of the chains. However the RPA approximation neglects the feedback of the inter-chain hopping on the 1d Mott gap, and more generally on the self-energy. Depending on the evolution of the Mott gap with inter-chain coupling, the FS pockets may or may not form. To go beyond this approximation, we have proposed a generalization of the one-site DMFT to one-dimensional chains embedded in a self-consistent bath \[13\]. This ch-DMFT scheme was successfully applied to study the deconfinement transition in quasi-1d fermionic lattices, and is the ideal tool to investigate the Mott transition in this type of systems \[14, 15, 16\]. This method has the advantage of having no arbitrariness in the definition of the cluster, since here the cluster corresponds to a physically well-defined entity (a single chain).

In the present paper, we use this method to study a two-dimensional lattice of spinless fermions made of weakly coupled one-dimensional chains. Contrarily to the 1d Hubbard model, the 1d spinless model has a Mott transition for a finite value of the interaction. Furthermore, the effects of the interaction are stronger in the spinless case than in the spin-$\frac{1}{2}$ case, as illustrated by the lower value of the Luttinger coefficient which can be reached in the former. This makes the spinless model very well suited to tackle these issues. The spinless model can also be viewed as a caricature of a spin-$\frac{1}{2}$ model at quarter filling with a very strong local repulsion. Using the ch-DMFT method we show that FS pockets exist in this model close to the metal-insulator transition. However, due to the very strong anisotropy of the spectral function and of the spectral weight along the Fermi surface, these pockets would appear as Fermi-surface arcs in experiments. We note that Stanescu and Kotliar \[14\] and Kuchinskii et. al. \[15\] have discussed similar effects using...
extensions of DMFT including momentum dependence.

Our model has two parameters, \(t_\perp \) and \(V \), which control the inter-chain hopping and the interaction \(\mathcal{H}_{\text{int}} = V \sum_n n_n n_{n+1} \) within the chains, respectively, relative to the in-chain hopping \(t \). In the 1d limit \((t_\perp = 0)\) this model has a phase transition between a Luttinger liquid at \(V < 2t \) and a Mott insulator at \(V > 2t \). Here we focus on the region \(V > 2t \), and we investigate the destruction of the Mott insulator with increasing \(t_\perp \). Within ch-DMFT the 2d problem is mapped onto an effective 1d problem described by the action

\[
S_{\text{eff}} = -\sum_{r,r'} \int_0^\beta d\tau d\tau' c^\dagger_r(\tau) \mathcal{G}_0^{-1}(\tau-r',\tau-r') c_{r'}(\tau') + \int_0^\beta d\tau \mathcal{H}_{\text{int}}.
\]

The inverse propagator \(\mathcal{G}_0^{-1} \) in Eq. (1) plays the role of a long-range, time-dependent hopping amplitude. It must be determined from the requirement that the in-chain Green’s function \(\mathcal{G} \) calculated from \(S_{\text{eff}} \) coincides with the \(k_\perp \)-summed Green’s function of the original 2d model \[\text{Eq. (2)}. \]

This requirement implies

\[
\mathcal{G}_0(k,\omega) = \frac{1}{\omega - \xi_k + \mathcal{G}^{-1}(k,\omega) - R(\mathcal{G}(k,\omega))},
\]

with \(k \) the in-chain momentum, \(\xi_k = -2t \cos k - \mu \) the bare dispersion, and \(R(z) = \text{sign}(\text{Re}(z))\sqrt{1/z^2 + (2t_\perp)^2} \) resulting from the integration over the transverse energy \(\varepsilon_\perp = -2t_\perp \cos(k_\perp) \). Eqs. (1) and (2) can be readily derived from the assumption that the lattice self-energy does not depend on transverse momentum \(k_\perp \), and is given by the effective in-chain self-energy:

\[
\Sigma(k,\omega) = \mathcal{G}_0^{-1}(k,\omega) - \mathcal{G}^{-1}(k,\omega).
\]

\(\Sigma(k,\omega) \) will be our main concern here. In order to evaluate the self-energy we compute the space-time Green’s function \(\mathcal{G}(r,\tau) = -(c_c(r,\tau) c^\dagger_c(0)) \) of the action Eq. (1) by quantum Monte-Carlo on a discrete imaginary-time mesh \(\tau = \beta/L \), using the Hirsch-Fye algorithm \[\text{Eq. (3)}. \] From the Fourier transform \(\mathcal{G}(k,\omega) \) we construct a new propagator \(\mathcal{G}_0 \) according to Eq. (2), which is fed back into Eq. (1) until self-consistency is achieved.

We consider a half-filled 32-sites chain closed with antiperiodic boundary conditions. These boundary conditions were adopted for two reasons: (i) in short 1d chains we observed that the convergence of the Monte-Carlo toward exact-diagonalization results is much faster with antiperiodic than with periodic boundary conditions; (ii) for a given system size, the antiperiodic boundary conditions improve the resolution near \(k = \pi/2 \), which is an advantage for the investigation of the FS properties. Indeed, the shape of the FS is controlled by the real part of the self-energy through the equation

\[
\xi_k - 2t_\perp \cos(k_\perp) = -\text{Re} \Sigma(k, i0^+)
\]

which must be solved at zero temperature near \(k = \pi/2 \). At finite temperature the FS loses its identity, although sharp signatures may persist in the zero-energy spectral function \(A(k, k_\perp, \omega = 0) \), which is accessible through photoemission experiments. We will first discuss the FS topology and properties implied by Eq. (1) and our ch-DMFT results for \(\Sigma(k,\omega) \), before addressing some issues related to the experimental measurement of the FS.

For evaluating Eq. (1) one needs a procedure to continue the ch-DMFT self-energy from the lowest Matsubara frequency \(i\omega_0 = i\pi T \) down to \(\omega = i0^+ \) along the imaginary-frequency axis. This is a delicate endeavor, which in general requires some assumption about the analytical behavior of \(\Sigma(k,\omega) \) near \(\omega = 0 \). We performed the continuation by fitting the self-energy to an analytical function. The prominent feature in the Mott phase is the spectral gap which can be crudely represented by a self-energy of the form \(\Sigma_{\Delta}(k,\omega) = (\lambda - 1)\xi_k + (\Delta/2)^2/(\omega + \lambda \xi_k) \), where \(\Delta \) is the gap width and \(\lambda \) accounts for the dispersion renormalization due to exchange. A similar Ansatz was recently proposed to describe high-\(T_c \) cuprate superconductors \[\text{Eq. (4)}. \] This simple form is not sufficient to reproduce our QMC results, however, even in the pure Mott phase at \(t_\perp = 0 \). We obtained a much better agreement with our data by taking into account residual interactions. Specifically, the self-energy to which we fit the QMC results takes the form \(\Sigma(k,\omega) = \Sigma_{\Delta}(k,\omega) + \Sigma_{\text{int}}(k,\omega) \), where \(\Sigma_{\text{int}} \) contains all diagrams—evaluated using the gapped electron propagator \(G_0(k,\omega) = [\omega - \xi_k - \Sigma_{\Delta}(k,\omega)]^{-1} \)—and an effective interaction strength \(V^* \)—up to second order in perturbation theory \[\text{Eq. (5)}. \] A comparison of the QMC and
model self-energies is displayed in Fig. 1. One can see that the model has enough freedom to fit the QMC results in great detail, especially in the low-frequency region we are mostly interested in. Furthermore, it turns out that the model fits the QMC data in the whole range of temperature and \(t_\perp \) values which we have investigated. We can therefore use this fit to track the closing of the Mott gap and the formation of the Fermi surface as \(t_\perp \) is increased. A few additional illustrations of the fit performance can be seen in Fig. 2.

In Fig. 2 we display our results for \(-\text{Re} \Sigma(k, i\omega_0)\) at \(V = 2.5t \) and different values of \(t_\perp \), together with the fit results evaluated at \(i\omega_0 \) and \(i0^+ \). The main trend with increasing \(t_\perp \) is that the drop of the QMC self-energy across \(k_F \) diminishes (Fig. 2b). Correspondingly the fitted spectral gap \(\Delta \) decreases and eventually vanishes at \(t_\perp^2 \approx 0.5t \), together with the disappearance of the singularity in the self-energy (Fig. 2d).

Fig. 2 provides the graphical solution of Eq. 4, and illustrates the formation of the Fermi-surface pockets in this model. When \(t_\perp \) is small, the transverse dispersion is not sufficient to overcome the gap in the self-energy, and the system remains insulating. At high \(t_\perp \), on the contrary, there is no gap in the self-energy and Eq. 4 has a solution for all \(k_\perp \), leading to a continuous Fermi surface. The latter has practically the same shape as the non-interacting FS, but is strongly renormalized to a much smaller extent. The transverse dispersion is captured by the model self-energy evaluated at \(T = 0 \) (blue line). At finite frequency and/or temperature the singularity is regularized as shown by the red line. With increasing \(t_\perp \) the drop of the QMC self-energy across \(k_F \) diminishes (Fig. 2b). Correspondingly the fitted spectral gap \(\Delta \) decreases and eventually vanishes at \(t_\perp^2 \approx 0.5t \), together with the disappearance of the singularity in the self-energy (Fig. 2d).

According to Luttinger’s theorem, the area of the Brillouin zone where \(\text{Re} \mathcal{G}(k, k_\perp, 0) > 0 \) equals the electron density and is thus conserved [12, 23]. In the Mott phase \(\text{Re} \mathcal{G}(k, k_\perp, 0) \) changes sign at \(k = \pm \pi/2 \) due to the divergence of \(\text{Re} \Sigma(k, 0) \) (Fig. 2b), and is positive in the domain \(|k| < \pi/2\), leading to a density \(n = 1/2 \) as expected. Because the singularity of \(\text{Re} \Sigma(\pm\pi/2, 0) \) subsists as long as \(\Delta > 0 \), the line of zeros of \(\text{Re} \mathcal{G}(k, 0) \) at \(k = \pm \pi/2 \) is still present when FS pockets develop, as indicated in Fig. 2b'. On the other hand, owing to particle-hole symmetry—which reduces at \(\omega = 0 \) to an inversion about the point \((k, k_\perp) = (\pi/2, \pi/2)\)—the electron and hole pockets have identical volumes, so that Luttinger theorem is trivially obeyed in our results.

The mechanisms of FS pockets formation in the present study and in the RPA approach of Ref. 12 are similar, although there is one important difference. In the RPA approximation the spectral gap keeps its 1d value at all \(t_\perp \): pockets form when \(t_\perp > t_\perp^1 \sim \Delta_{1d} \), and they never merge into a connected Fermi surface as \(t_\perp \) continues increasing. Within ch-DMFT, in contrast, the closing of the Mott gap with increasing \(t_\perp \) is correctly captured; as a result the pockets form at lower \(t_\perp \) values—thus they are very thin—and eventually they disappear at \(t_\perp^2 \) where \(\Delta = 0 \).

The quasiparticle properties are strongly anisotropic along the Fermi-surface pockets. It is already clear from Fig. 2 that the spectral weight is much smaller on the vertical parts of the pockets closest to \(k = \pi/2 \), due to the diverging self-energy in this region; as a result the pockets would most likely look like ‘arcs’ in photoemission experiments (see below). Fig. 3a shows the evolution of the quasiparticle residue along the Fermi surface. The residue was evaluated as \(Z = \left[1 - d\text{Re} \Sigma(k, \omega)/d\omega|_{\omega=0}\right]^{-1} \) using the model self-energy and an interpolation of the
parameters fitted to the ch-DMFT data in the whole range of \(t_\perp\) values (Fig. 3). In the intermediate phase the residue on the vertical parts of the pockets decreases from \(Z \sim 0.15\) to \(Z \sim 0\) with increasing \(t_\perp\). On the ‘cold’ side of the pockets the behavior is inverted, and the residue increases from \(Z \sim 0.35\) to \(Z \sim 0.5\). Strikingly, a hot spot around \(k = k_\perp = \pi/2\) subsists at \(t_\perp > t_\perp^c\). Here again the evolution of \(Z\) with \(t_\perp\) is different at the cold and hot spots: while \(Z\) steadily approaches one in the cold region, it remains close to \(Z \sim 0.4\) at the hot spots.

It’s worth stressing the role of residual interactions in the results of Figs. 2 and 5. At the qualitative level, the self-energy \(\Sigma_\Lambda(k, \omega)\) (with \(\lambda = 1\)) is sufficient to understand the formation of FS pockets with anisotropic residues. Indeed, using \(\Sigma = \Sigma_\Lambda\) in Eq. (1) one finds that pockets form for \(0 < \Delta < 2t_\perp\), and that the residue varies on such pockets. However the pockets obtained in this way are considerably wider than in Fig. 2 and the residue in the cold regions is \(Z \sim 1\) when \(\Delta\) approaches zero instead of \(Z \sim 0.5\) as in Fig. 3. Thus the residual interactions are important for the quantitative understanding of the FS properties. Meanwhile, the fact that our model self-energy fits the ch-DMFT data at \(t_\perp > t_\perp^c\) with \(V^* \sim V\) (Fig. 3) indicates that second-order perturbation theory is a good approximation in this region, as expected in a Fermi liquid.

We now turn to the question of the experimental observation of FS pockets. There are several limitations which could make the observation of such pockets by ARPES challenging, such as the finite energy and momentum resolutions, the finite temperature at which experiments are performed, as well as the necessity to integrate the ARPES intensity on some energy window in order to improve the signal to noise ratio. Ideally, ARPES would measure the occupied spectrum \(A(k, \omega)f(\omega)\). In practice, however, due to the above limitations, the measured intensity at the Fermi energy would be \(I(k) \propto \int_{-\infty}^{\infty} d\omega \int \delta \omega d\mathbf{q} A(q, \varepsilon)f(\varepsilon)g(k - q, \omega - \varepsilon)\).
[5] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).
[6] G. Kotliar and D. Vollhardt, Physics Today 57, 53 (2004).
[7] T. Maier, M. Jarrell, T. Pruschke, and M. H. Hettler, cond-mat/0404055 (2004).
[8] A.-M. S. Tremblay, B. Kyung, and D. Sénéchal, cond-mat/0511334 (2005).
[9] G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet, and C. A. Marianetti, cond-mat/0511085 (2005).
[10] O. Parcollet, G. Biroli, and G. Kotliar, Phys. Rev. Lett. 92, 226402 (2004).
[11] T. Giamarchi, Chem. Rev. 104, 5565 (2004).
[12] F. H. L. Essler and A. M. Tsvelik, Phys. Rev. B 65, 115117 (2002); Phys. Rev. B 71, 195116 (2005).
[13] A. Georges, T. Giamarchi, and N. Sandler, Phys. Rev. B 61, 16393 (2000).
[14] S. Biermann, A. Georges, A. Lichtenstein, and T. Giamarchi, Phys. Rev. Lett. 87, 276405 (2001).
[15] S. Biermann, A. Georges, T. Giamarchi, and A. Lichtenstein, in Strongly Correlated Fermions and Bosons in Low Dimensional Disordered Systems, edited by I. V. Lerner et al. (Kluwer Academic Publishers, Dordrecht, 2002), p. 81.
[16] T. Giamarchi, S. Biermann, A. Georges, and A. Lichtenstein, J. Phys. IV 114, 23 (2004).
[17] T. D. Stanescu and G. Kotliar, cond-mat/0508302 (2005).
[18] E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, cond-mat/0510376 (2005).
[19] J. E. Hirsch and R. M. Fye, Phys. Rev. Lett. 56, 2521 (1986).
[20] K.-Y. Yang, T. M. Rice, and F.-C. Zhang, cond-mat/0602164 (2006).
[21] The parameter λ is not needed in principle since the exchange renormalization is already taken into account up to second order in Σ_{int}. We nevertheless kept λ as a free parameter for the fit, which leads to a slight improvement, even though the fitted value of λ is always close to unity (Fig. 3b).
[22] T. D. Stanescu, P. W. Phillips, and T.-P. Choy, cond-mat/0602280 (2006).
[23] I. Dzyaloshinskii, Phys. Rev. B 68, 085113 (2003).