New Class of Algebraic Fuzzy Systems Using Cubic Soft Sets with their Applications

Shuker Mahmood Khalil, Ahmed Naji Hassan

1 Department of Mathematics, College of Science, University of Basrah, Basrah 61004
2 ahmed.naji874@yahoo.com

Abstract:
In this paper, we stratify the connotation of cubic soft sets to \(\rho - \) algebras, and introduce the new class of cubic soft algebras like \(\mathcal{R}(\mathcal{SACSe}) \) and \(\mathcal{R}(\mathcal{SACS}) \). We show that the \(R - \) union of two cubic soft \(\rho - \) sualgebras might not be cubic soft \(\rho - \) sualgebra. Furthermore, we show the sufficient condition to satisfy that the \(R - \) union of two cubic soft \(\rho - \) sualgebras is cubic soft \(\rho - \) sualgebra. Moreover, some of their basic characteristics are given.

Keywords: soft sets, cubic sets, fuzzy sets, \(\rho - \) algebra, \(\rho - \) subalgebra.

1. Introduction

An addition of the connotation of a fuzzy set (FS) is shown by Zadeh [1] to consider the interval-valued fuzzy sets (IVFSs). Next, the general ideas of algebraic fuzzy system (AFS) are brightened up by inserting the notion of a fuzzy subsets. Jun et al. [2] studied some operations such as P/R-union, P/R-intersection on cubic sets. They display several related distinctive to find the solutions for intricate problems in engineering, economics, and environment. Sometimes it is not easy to use traditional methods to get good results, because of different uncertainties model for those problems. Therefore, we need to deal with non-classical mathematical tools, so some non-classical sets are studied and their applications are given like fuzzy sets, intuitionistic fuzzy sets, cubic sets, permutation sets, vague sets, soft sets and rough sets see([3]-[15]).

In 2017, the connotations of \(\rho - \) algebra/subalgebra/ideal, \(\overline{\rho} - \) ideal and permutation topological \(\rho - \) algebra were first fixed by Mahmood and Abud Alradha [16], they applied the connotation of soft sets to consider the soft \(\rho - \) algebra and soft edge \(\rho - \) algebra [17]. In 2020 [18], Mahmood and Hameed introduced some concepts of fuzzy algebras like fuzzy \(\rho - \) subalgebra (\(F_{\rho} - \mathcal{S} \)), fuzzy \(\rho - \) ideal...
The mathematical idea of soft sets is a fresh notion was studied by D. Molodtsov [19]. This theory is applied in many directions such as fuzzy sets theory, algebra, Riemann integration, topologies and so on, see ([20]-[28]). The connotation of soft BCK / BCL – algebras is fixed by Jun and others see [29].

In this work, new connotation of cubic soft algebras like \((A,SAC_S)\) and \((A,SACS)\) are shown. We explained that the \(R\)-union of two cubic soft \(\rho\) – saulgebras might not be cubic soft \(\rho\) – saulgebra. Moreover, the sufficient condition is given to satisfy that the \(R\)-union of two cubic soft \(\rho\) – saulgebras is cubic soft \(\rho\) – saulgebra. Also, some of their basic characteristics are given.

2. Preliminary

We will include in this section some definitions that are necessary for our work.

Definition 2.1: ([16]) A \(\rho\) – algebra \((\rho - A, (\Gamma, \rho, \ell))\) is a constant \(\ell\) in \(\Gamma\) with binary operation \(\circ\) such that:

i) \(\omega \circ \omega = \ell\),

ii) \(\ell \circ \omega = \ell\),

iii) \(\omega \circ \varnothing = \ell = \varnothing \circ \omega\) imply that \(\varnothing = \omega\),

iv) \(\omega \circ \varnothing = \varnothing \circ \omega = \ell, \forall \varnothing \neq \omega \in \Gamma - \{\ell\}\).

A non-empty subset \(I\) of \((\rho - A)\) \(\Gamma\) is called \(\rho\) – subalgebra \((\rho - SA)\) of \(\Gamma\) if \(\varnothing \circ \omega \in I\) whenever \(\varnothing, \omega \in I\).

Definition 2.2: ([1]) Let \(\Gamma\) be non-empty set. A fuzzy set (FS) \(\zeta\) of the set \(\Gamma\) is a mapping \(\zeta : \Gamma \rightarrow [0,1]\). The set of all (FSs) in \(\Gamma\) is referred as \(I^\Gamma\). Define a relation \(\leq\) on \(I^\Gamma\) as follows:

\(\varphi \leq \eta, \forall \varphi, \eta \in I^\Gamma\) \(\iff (\varphi(\omega) \leq \eta(\omega), \forall \omega \in \Gamma)\) (1)

The operations \((\vee)\) and \((\wedge)\) are defined on \(I^\Gamma\) by:

\((\varphi \vee \eta)(\omega) = \max\{\varphi(\omega), \eta(\omega)\}, \quad (2)\)

\((\varphi \wedge \eta)(\omega) = \min\{\varphi(\omega), \eta(\omega)\}, \forall \omega \in \Gamma\)

For any \(\varphi \in I^\Gamma\) it’s complement is referred by \(\varphi^c\) and it is defined by

\(\varphi^c(\omega) = 1 - \varphi(\omega), \forall \omega \in \Gamma\) (3)

Also, if \(\{\varphi_i \mid i \in \Psi\}\) is a family of (FSs), where \(\Psi\) is an index set. Then we can define \((\vee)\) and \((\wedge)\) by:

\((\vee_{i \in \Omega} \varphi)(\omega) = \sup\{\varphi_i(\omega) \mid i \in \Psi\}, \quad (4)\)
\((\bigwedge_{i \in I} \varphi_i)(\omega) = \inf\{\varphi_i(\omega) \mid i \in I\}, \forall \omega \in \Gamma\)

Definition 2.3 ([30])

A closed subinterval \(\hat{I} = [\hat{0}^-, \hat{0}^+]\) of \(I = [0,1]\) is called an interval number (IN), where \(0 \leq \hat{0}^- \leq \hat{0}^+ \leq 1\). The set of all interval numbers (INs) is refereed as \([I]\).

Now, we show the definitions of two operations on \([I]\) which are refined minimum and refined maximum (briefly, \(r\) min and \(r\) max). We also show the definitions of the symbols \(\geq^\prime\), \(\leq^\prime\) and \(=^\prime\) on \([I]\) as follows:

\[
\begin{align*}
 r \min\{\hat{0}, \hat{\nu}\} &= [\min\{\nu^-, \nu^\prime\}, \min\{\nu^+, \nu^\prime\}], \\
 r \max\{\hat{0}, \hat{\nu}\} &= [\max\{\nu^-, \nu^\prime\}, \max\{\nu^+, \nu^\prime\}], \tag{5}
\end{align*}
\]

\(\hat{0} \geq^\prime \hat{\nu} \iff \nu^- \geq \nu^\prime\) and \(\nu^+ \geq \nu^\prime\),

Also, we say \(\hat{0} >^\prime \hat{\nu}\) (resp., \(\hat{0} <^\prime \hat{\nu}\)), that means \(\hat{0} \geq^\prime \hat{\nu}\) and \(\hat{0} \neq \hat{\nu}\) (resp., \(\hat{0} \leq^\prime \hat{\nu}\) and \(\hat{0} \neq \hat{\nu}\)). If \(\{\hat{\nu}_\alpha \in [I] \mid \alpha \in \Psi\}\) is a family of (INs). We define

\[
\begin{align*}
 r \min_{r \text{ inf} \Psi} \hat{\nu}_\alpha &= [\inf_{r \text{ inf} \Psi} \nu^\prime_\alpha, \inf_{r \text{ inf} \Psi} \nu^\prime_\alpha], \\
 r \max_{r \text{ sup} \Psi} \hat{\nu}_\alpha &= [\sup_{r \text{ sup} \Psi} \nu^\prime_\alpha, \sup_{r \text{ sup} \Psi} \nu^\prime_\alpha]. \tag{6}
\end{align*}
\]

The complement of any \(\hat{\nu} \in [I]\) is symbolized by \(\hat{\nu}^\prime\) and defined as:

\[
\hat{\nu}^\prime = [1 - \nu^+, 1 - \nu^-]. \tag{7}
\]

If \(\Gamma \neq \Phi\), we say \(\hat{\varphi} : \Gamma \to [I]\) is an interval-valued fuzzy set (IVFS) in \(\Gamma\). The set of all interval-valued fuzzy sets (IVFSs) in \(\Gamma\) is symbolized by \([I]^{\Gamma}\). Also, for each \(\hat{\varphi} \in [I]^{\Gamma}\) and \(\omega \in \Gamma\), we say \(\hat{\varphi}(\omega) = [\hat{\varphi}_+^\prime(\omega), \hat{\varphi}_-^\prime(\omega)]\) is the degree of membership of \(\omega\) to \(\Gamma\), where \(\hat{\varphi}_-^\prime : \Gamma \to I\) and \(\hat{\varphi}_+^\prime : \Gamma \to I\) are (FSs) in \(\Gamma\) and they are called a lower fuzzy set (LFS) and an upper fuzzy set (UFS) in \(\Gamma\), respectively. For easy it can be written as \(\hat{\varphi} = [\hat{\varphi}_-^\prime, \hat{\varphi}_+^\prime]\). We also show the definitions of the symbols \(\leq^\prime\) and \(=^\prime\) on any \(\hat{\varphi}_1, \hat{\varphi}_2 \in [I]^{\Gamma}\) as follows:

\[
\begin{align*}
 \hat{\varphi}_1 \leq \hat{\varphi}_2 \iff \hat{\varphi}_1(\omega) \leq \hat{\varphi}_2(\omega), \forall \omega \in \Gamma, \\
 \hat{\varphi}_1 = \hat{\varphi}_2 \iff \hat{\varphi}_1(\omega) = \hat{\varphi}_2(\omega), \forall \omega \in \Gamma. \tag{8}
\end{align*}
\]

The complement of any \(\hat{\varphi} \in [I]^{\Gamma}\) is symbolized by \(\hat{\varphi}^\prime\) and defined as:

\[
\hat{\varphi}^\prime(\omega) = \hat{\varphi}(\omega)^\prime, \forall \omega \in \Gamma. \text{ That means } \hat{\varphi}^\prime(\omega) = [1 - \hat{\varphi}_+^\prime(\omega), 1 - \hat{\varphi}_-^\prime(\omega)], \forall \omega \in \Gamma. \tag{9}
\]
If \(\{ \hat{C}_a \in [I] \mid \alpha \in \Psi \} \) is a family of (IVFs). We define “\(\cup \) ” and “\(\cap \)” on \([I] \) as follows:

\[
(\bigcup_{a \in \Psi} \hat{C}_a)(\omega) = r \sup_{a \in \Psi} \hat{C}_a(\omega), \forall \omega \in \Gamma, \quad (10)
\]

\[
(\bigcap_{a \in \Psi} \hat{C}_a)(\omega) = r \inf_{a \in \Psi} \hat{C}_a(\omega), \forall \omega \in \Gamma.
\]

Definition 2.4: ([19]) Assume \(\Gamma \) is an initial universe set and \(\Omega \) is a set of parameters. We say \((\beta, \theta)\) is a soft set (over \(\Gamma \)) where \(\beta \) is a multivalued function \(\beta : \theta \rightarrow P(\Gamma) \), where \(P(\Gamma) \) is the power set of \(\Gamma \) and \(\theta \subseteq \Omega \).

Definition 2.5: ([2]) A cubic set \(\lambda \) (CS) in universe set \(\Gamma \) is defined as:

\[
\lambda = \{ \langle \omega, \nu(\omega), \eta(\omega) \rangle / \omega \in \Gamma \} \quad (11)
\]

where \(\nu \) and \(\eta \) are (IVFS) and (FS), respectively. For easy we can symbolize \(\lambda \) as \(\langle \nu, \eta \rangle \).

Definition 2.6: ([2]). Assume \(\lambda_1 = \langle \nu, \gamma \rangle \) and \(\lambda_2 = \langle \nu, \eta \rangle \) are cubic sets (CSs) in a universe \(\Gamma \). We define “\(\subseteq_p \)”, “\(\subseteq_R \)” and “=” as follows:

(i) \((P\text{-order}) \lambda_1 \subseteq_p \lambda_2 \Leftrightarrow \nu \subseteq \nu \) and \(\gamma \leq \eta \).

(ii) \((R\text{-order}) \lambda_1 \subseteq_R \lambda_2 \Leftrightarrow \nu \subseteq \nu \) and \(\gamma \geq \eta \).

(iii) \((Equality) \lambda_1 = \lambda_2 \Leftrightarrow \nu = \nu \) and \(\gamma = \eta \).

Definition 2.7: ([2]). Let \(\{ \lambda_a = \{ \langle \omega, \nu_a(\omega), \eta_a(\omega) \rangle / \omega \in \Gamma \} \}_{a \in \Psi} \) be a family of (CSs) in \(\Gamma \). The symbol “\(\bigcup_p \)” (resp., “\(\bigcap_p \)”, “\(\bigcup_R \)” and “\(\bigcap_R \)”) is called \((P\text{-union}) \) (resp., \(P\text{-intersection}, R\text{-union} \) and \(R\text{-intersection} \)) and defined as follows:

\[
(1) \quad \bigcup_{a \in \Psi} \lambda_a = \{ \langle \omega, \bigcup_{a \in \Psi} \nu_a(\omega), \bigvee_{a \in \Psi} \eta_a(\omega) \rangle / \omega \in \Gamma \},
\]

\[
(2) \quad \bigcap_{a \in \Psi} \lambda_a = \{ \langle \omega, \bigcap_{a \in \Psi} \nu_a(\omega), \bigwedge_{a \in \Psi} \eta_a(\omega) \rangle / \omega \in \Gamma \},
\]

\[
(3) \quad \bigcup_{a \in \Psi} \lambda_a = \{ \langle \omega, \bigcup_{a \in \Psi} \nu_a(\omega), \bigwedge_{a \in \Psi} \eta_a(\omega) \rangle / \omega \in \Gamma \},
\]

\[
(4) \quad \bigcap_{a \in \Psi} \lambda_a = \{ \langle \omega, \bigcap_{a \in \Psi} \nu_a(\omega), \bigvee_{a \in \Psi} \eta_a(\omega) \rangle / \omega \in \Gamma \}.
\]

Remarks 2.8: ([31])

(1) The complement of \(\lambda = \langle \nu, \eta \rangle \) is defined as:

\[
\lambda^c = \{ \langle \omega, \nu(\omega)^c, 1 - \eta(\omega) \rangle / \omega \in \Gamma \}. \quad (12)
\]
\begin{equation}
(\mathcal{L}^c)^c = \mathcal{L}.
\end{equation}

(3) Let \(\{ \mathcal{L}_a = \{ (\omega, \delta_a(\omega), \sigma_a(\omega)) / \omega \in \Gamma \} \}_{a \in \mathcal{C}} \) be a family of (CSs) in \(\Gamma \). We have:
\[
\left(\bigcup_{a \in \mathcal{C}} \mathcal{L}_a \right)^c = \bigcup_{a \in \mathcal{C}} (\mathcal{L}_a)^c, \quad \left(\bigcap_{a \in \mathcal{C}} \mathcal{L}_a \right)^c = \bigcap_{a \in \mathcal{C}} (\mathcal{L}_a)^c, \quad \left(\bigcup_{a \in \mathcal{C}} (\mathcal{L}_a)^c \right)^c = \bigcap_{a \in \mathcal{C}} (\mathcal{L}_a)^c
\]
and \(\left(\bigcap_{a \in \mathcal{C}} (\mathcal{L}_a)^c \right)^c = \bigcup_{a \in \mathcal{C}} \mathcal{L}_a \).

In what follows, a (CS) \(\mathcal{L} = \{ (\omega, \bar{\delta}_a(\omega), \bar{\sigma}_a(\omega)) / \omega \in \Gamma \} \) is clearly referred as \(\mathcal{L} = (\bar{\delta}, \bar{\sigma}) \). The set of all (CSs) in \(\Gamma \) is symbolized by \(\mathcal{L}^\Gamma \).

Definition 2.9: ([31]) Assume \(\Gamma \) is an initial universe set and \(\Omega \) is a set of parameters. We say \((\Theta, T) \) is a cubic soft set (CSS) over \(\Gamma \), where \(\Theta : T \rightarrow \mathcal{L}^\Gamma \) is a mapping and \(T \subseteq \Omega \). Also, \((\Theta, T) \) can be written as:
\[
(\Theta, T) = \{ (\Theta(e) / e \in T) \}, \text{ where } \Theta(e) = (\bar{\delta}_e(e), \bar{\sigma}_e(e)).
\]

The set of all cubic soft sets (CSSs) is symbolized by \(\mathcal{L}^\Gamma \).

Definition 2.10: ([31]) Let \((\Theta, T), (L, H) \in \mathcal{L}^\Gamma \). The R-union of \((\Theta, T) \) and \((L, H) \) is a (CSS) \((N, Z) \) and is symbolized by \((N, Z) = (\Theta, T) \cup^R (L, H) \), where \(Z = T \cup H \) and
\[
N(e) = \begin{cases}
\Theta(e), & \text{if } e \in T \setminus H \\
L(e), & \text{if } e \in H \setminus T, \quad \forall e \in Z \\
\Theta(e) \cup^R L(e), & \text{if } e \in T \cap H
\end{cases}
\]

Definition 2.11: ([31]) Let \((\Theta, T), (L, H) \in \mathcal{L}^\Gamma \). The P-union of \((\Theta, T) \) and \((L, H) \) is a (CSS) \((N, Z) \) and is symbolized by \((N, Z) = (\Theta, T) \cup^P (L, H) \), where \(Z = T \cup H \) and
\[
N(e) = \begin{cases}
\Theta(e), & \text{if } e \in T \setminus H \\
L(e), & \text{if } e \in H \setminus T, \quad \forall e \in Z \\
\Theta(e) \cup^P L(e), & \text{if } e \in T \cap H
\end{cases}
\]

Definition 2.12: ([31]) Let \((\Theta, T), (L, H) \in \mathcal{L}^\Gamma \). The P-intersection of \((\Theta, T) \) and \((L, H) \) is a (CSS) \((N, Z) \) and is symbolized by \((N, Z) = (\Theta, T) \cap^P (L, H) \), where \(Z = T \cup H \) and
\[
N(e) = \begin{cases}
\Theta(e), & \text{if } e \in T \setminus H \\
L(e), & \text{if } e \in H \setminus T, \quad \forall e \in Z \\
\Theta(e) \cap^P L(e), & \text{if } e \in T \cap H
\end{cases}
\]
Definition 2.13: ([31]) Let \((\Theta,T),(L,H) \in \Omega\Gamma\). We say \((\Theta,T)\) is an R-cubic soft subset of \((L,H)\) if

1. \(T \subseteq H\),
2. \(\Theta(e) \subseteq_{R} L(e), \forall e \in T\) \hspace{1cm} (19)

Definition 2.14: ([31]) Let \((\Theta,T),(L,H) \in \Omega\Gamma\). We say \((\Theta,T)\) is a P-cubic soft subset of \((L,H)\) if

1. \(T \subseteq H\),
2. \(\Theta(e) \subseteq_{P} L(e), \forall e \in T\) \hspace{1cm} (20)

3. Cubic Soft \(\rho\) – Subalgebras in \(\rho\) – Algebras

Definition 3.1: Assume \((\Gamma,\circ, \ell)\) is \((\rho – A)\) and \((\Theta,T)\) is \((CSS)\) over \(\Gamma\). We say \((\Theta,T)\) is a cubic soft \(\rho\)-subalgebra over \(\Gamma\) based on a parameter \(e\) [briefly, \(\rho – CS\rho – SA\) over \(\Gamma\)] if there exists a parameter \(e \in \Theta\) such that

\[
\hat{\epsilon}_{\Theta(e)}(\omega \circ \emptyset) \geq r \min\{\hat{\epsilon}_{\Theta(e)}(\omega), \hat{\epsilon}_{\Theta(e)}(\emptyset)\}, \forall \omega, \emptyset \in \Gamma. \hspace{1cm} (21)
\]

\[
\eta_{\Theta(e)}(\omega \circ \emptyset) \leq \max\{\eta_{\Theta(e)}(\omega), \eta_{\Theta(e)}(\emptyset)\}, \forall \omega, \emptyset \in \Gamma. \hspace{1cm} (22)
\]

If \((\Theta,T)\) is an \(\rho – CS\rho – SA\) over \(\Gamma\), \(\forall e \in T\), we say \((\Theta,T)\) is a cubic soft \(\rho\)-subalgebra \(\rho – CS\rho – SA\) over \(\Gamma\).

Theorem 3.2: Suppose that \((\Theta,T)\) and \((L,H)\) are \((CS\rho – SA)\) over \(\Gamma\). Then the R-union of \((\Theta,T)\) and \((L,H)\) is a \((CS\rho – SA)\) over \(\Gamma\), if \(T\) and \(H\) are disjoint.

Proof. From Definition (2.10), we have \((N,Z) = (\Theta,T) \bigcup_{R} (L,H)\), where \(Z = T \cup H\) and

\[
N(e) = \begin{cases}
\Theta(e), & \text{if } e \in T \setminus H \\
L(e), & \text{if } e \in H \setminus T, \forall e \in Z \\
\Theta(e) \cup_{R} L(e), & \text{if } e \in T \cap H
\end{cases} \hspace{1cm} (23)
\]

Therefore, either \(e \in T \setminus H\) or \(e \in H \setminus T\), \(\forall e \in Z\) (since \(T \cap H = \emptyset\)). If \(e \in T \setminus H\), then \(N(e) = \Theta(e)\) is a \(CS\rho\)-subalgebra over \(\Gamma\). Also, if \(e \in H \setminus T\), then \(N(e) = L(e)\) is a \((CS\rho – SA)\) over \(\Gamma\). So \((N,Z) = (\Theta,T) \bigcup_{R} (L,H)\) is a \((CS\rho – SA)\) over \(\Gamma\).

Remark 3.3: If \(T\) and \(H\) are not disjoint, then above theorem is not valid in general.

Example 3.4: Let \(\Gamma = \{h_1, h_2, h_3, h_4, h_5\}\) be a universe set of houses and \(\circ\) be defined as Table (1):
Then, \((\Gamma, \rho, \ h_1)\) is a \(\rho\)–algebra. Now, let \(\Omega = \{Cheap \ (e_1), \ Old \ (e_2), \ Modern \ (e_3), \ Big \ (e_4), \ with \ Garden \ (e_5)\}\) be a set of parameters. That each member in \(\Omega\) give us the description for these houses that somebody want to buy one of them based on his opinion of what he like of these descriptions. Take \(T = \{e_1, e_2, e_3, e_4\}\) and \(H = \{e_3, e_4, e_5\}\), then from Table (2) and Table (3) we consider that \((\Theta, T)\) and \(CS\rho - \Gamma\), respectively.

Table 1: \((\Gamma, \rho, \ h_1)\) is a \(\rho\)–algebra
\(\circ\)
\(h_1\)
\(h_2\)
\(h_3\)
\(h_4\)
\(h_5\)

Table 2: \((\Theta, T)\) is \((CS\rho - S4)\)
\(e_1\)
\(h_1\)
\(h_2\)
\(h_3\)
\(h_4\)
\(h_5\)

Table 3: \((L, H)\) is \((CS\rho - S4)\)
\(e_1\)
\(h_1\)
\(h_2\)
\(h_3\)
\(h_4\)
Here T and H are not disjoint. Also, the R-union $(N,Z) = (\Theta,T) \cup_R (L,H)$, of (Θ,T) and (L,H) is
given by Table (4).

h_5	$[(0.4, 0.7], 0.4)$	$[(0.5, 0.8], 0.6)$	$[(0.3, 0.2], 0.8)$	$[(0.3, 0.2], 0.3)$

Table 4: (N,Z) is (CSS)

e_1	e_2	e_3	e_4	e_5	
h_1	$[(0.6, 0.7], 0.2)$	$[(0.6, 0.9], 0.6)$	$[(0.6, 0.5], 0.1)$	$[(0.4, 0.5], 0.3)$	$[(0.5, 0.8], 0.5)$
h_2	$[(0.7, 0.7], 0.5)$	$[(0.4, 0.8], 0.6)$	$[(0.5, 0.4], 0.3)$	$[(0.3, 0.1], 0.5)$	$[(0.3, 0.8], 0.7)$
h_3	$[(0.3, 0.6], 0.8)$	$[(0.6, 0.8], 0.7)$	$[(0.5, 0.4], 0.6)$	$[(0.4, 0.3], 0.4)$	$[(0.5, 0.7], 0.9)$
h_4	$[(0.3, 0.4], 0.5)$	$[(0.3, 0.5], 0.7)$	$[(0.5, 0.3], 0.6)$	$[(0.1, 0.4], 0.8)$	$[(0.2, 0.4], 0.6)$
h_5	$[(0.3, 0.7], 0.3)$	$[(0.5, 0.8], 0.6)$	$[(0.3, 0.4], 0.8)$	$[(0.3, 0.2], 0.3)$	$[(0.5, 0.7], 0.5)$

We have $\bar{\tau}_{N(e_5)}(h_2 \circ h_3) = \bar{\tau}_{N(e_5)}(h_5) = [0.3, 0.4] \subset [0.5, 0.4]$ = $r \min \{[(0.5, 0.4), (0.5, 0.4)\} =$

$r \min \{\bar{\tau}_{N(e_5)}(h_4), \bar{\tau}_{N(e_5)}(h_3)\}$ \hspace{1cm} (24)

and/or

$\eta_{N(e_5)}(h_2 \circ h_3) = \eta_{N(e_5)}(h_5) = 0.8 > 0.6 = \max(\eta_{N(e_5)}(h_2), \eta_{N(e_5)}(h_3))$ \hspace{1cm} (25)

Theorem 3.5: Assume (Γ, σ, ℓ) is $(\rho - A), (\Theta,T) \in \Omega [\Gamma \Gamma]$ and $e \in T$. Then (Θ,T) is $(e - CS\rho - SA)$

over Γ if and only if the sets $\bar{\tau}_{\theta(e)}[\delta_1, \delta_2] = \{\omega \in \Gamma / \bar{\tau}_{\theta(e)}(\omega) \bar{\geq} [\delta_1, \delta_2]\}, \eta_{\theta(e)}(\sigma) = \{\omega \in \Gamma /

$\eta_{\theta(e)}(\omega) \leq \sigma\} \hspace{1cm} (26)
are ρ-subalgebras of Γ, \(\forall[\delta_1, \delta_2] \in [I] \) and \(\sigma \in [0, 1] \).

Proof. Assume that a (CSS) \((\Theta, T)\) is \((e - CS\rho - SA)\) over Γ, let \(\omega, \vartheta \in \Gamma \). If \(\omega, \vartheta \in \overline{\tau_{\Theta(c)}}[\delta_1, \delta_2] \), \(\forall[\delta_1, \delta_2] \), then \(\tau_{\Theta(c)}(\omega) \geq [\delta_1, \delta_2] \) and \(\tau_{\Theta(c)}(\vartheta) \geq [\delta_1, \delta_2] \). It follows from (21) that

\[
\hat{\tau}_{\Theta(c)}(\omega \circ \vartheta) \geq r \min \{\hat{\tau}_{\Theta(c)}(\omega), \hat{\tau}_{\Theta(c)}(\vartheta)\} \geq r \min \{[\delta_1, \delta_2], [\delta_1, \delta_2]\} = [\delta_1, \delta_2]
\]

(27)

Thus \(\omega \circ \vartheta \in \overline{\tau_{\Theta(c)}}[\delta_1, \delta_2] \). Also, if \(\omega, \vartheta \in \overline{\eta_{\Theta(c)}}(\sigma) \) \(\forall \sigma \in [0, 1] \), so \(\eta_{\Theta(c)}(\omega) \leq \sigma \) and \(\eta_{\Theta(c)}(\vartheta) \leq \sigma \).

By (22), we have \(\eta_{\Theta(c)}(\omega \circ \vartheta) \leq \max\{\eta_{\Theta(c)}(\omega), \eta_{\Theta(c)}(\vartheta)\} \leq \sigma \), and hence \(\omega \circ \vartheta \in \overline{\eta_{\Theta(c)}}(\sigma) \).

Hence \(\overline{\tau_{\Theta(c)}}[\delta_1, \delta_2] \text{ and } \overline{\eta_{\Theta(c)}}(\sigma) \) are \(\rho \)-subalgebras of Γ.

Conversely, assume \(\overline{\tau_{\Theta(c)}}[\delta_1, \delta_2] \text{ and } \overline{\eta_{\Theta(c)}}(\sigma) \) are \(\rho \)-subalgebras of Γ, \(\forall[\delta_1, \delta_2] \in [I] \) and \(\sigma \in [0, 1] \) If for some \(\omega, \vartheta \in \Gamma \) satisfy:

\[
\hat{\tau}_{\Theta(c)}(\omega \circ \vartheta) < r \min \{\hat{\tau}_{\Theta(c)}(\omega), \hat{\tau}_{\Theta(c)}(\vartheta)\}
\]

(28)

Let \(\hat{\tau}_{\Theta(c)}(\omega) = [q_1, q_2], \hat{\tau}_{\Theta(c)}(\vartheta) = [u_1, u_2] \) and \(\hat{\tau}_{\Theta(c)}(\omega \circ \vartheta) = [\delta_1, \delta_2] \). Hence

\[
[\delta_1, \delta_2] < r \min \{[q_1, q_2], [u_1, u_2]\} = [\min \{q_1, u_1\}, \min \{q_2, u_2\}]
\]

(29)

Therefore, \(\delta_1 < \min \{q_1, u_1\} \) and \(\delta_2 < \min \{q_2, u_2\} \). Take

\[
[f_1, f_2] = \frac{1}{2} \left[\hat{\tau}_{\Theta(c)}(\omega \circ \vartheta) + r \min \{\hat{\tau}_{\Theta(c)}(\omega), \hat{\tau}_{\Theta(c)}(\vartheta)\} \right]
\]

(30)

Hence, we have:

\[
[f_1, f_2] = \frac{1}{2} \left[\delta_1, \delta_2 \right] + \left[\min \{q_1, u_1\}, \min \{q_2, u_2\} \right] = \frac{1}{2} (\delta_1 + \min \{q_1, u_1\}) \quad \frac{1}{2} (\delta_2 + \min \{q_2, u_2\})
\]

Also, we consider the following:

\[
\min \{q_1, u_1\} > f_1 = \frac{1}{2} (\delta_1 + \min \{q_1, u_1\}) > \delta_1,
\]

\[
\min \{q_2, u_2\} > f_2 = \frac{1}{2} (\delta_2 + \min \{q_2, u_2\}) > \delta_2.
\]

(31)

Thus, we have:

\[
\left[\min \{q_1, u_1\}, \min \{q_2, u_2\} \right] \supseteq [f_1, f_2] \supseteq [\delta_1, \delta_2] = \hat{\tau}_{\Theta(c)}(\omega \circ \vartheta).
\]

(32)

And hence \(\omega \circ \vartheta \not\in \overline{\tau_{\Theta(c)}}[f_1, f_2] \). In other side, we have
\(\hat{\xi}_{\Theta(e)}(\omega) = \{q_1, q_2\} \supseteq \min \{q_1, u_1\}, \min \{q_2, u_2\} \supseteq [f_1, f_2] \)

(33)

\(\hat{\xi}_{\Theta(e)}(\vartheta) = \{u_1, u_2\} \supseteq \min \{q_1, u_1\}, \min \{q_2, u_2\} \supseteq [f_1, f_2] \)

Then \(\omega \circ \vartheta \in \hat{\xi}_{\Theta(e)}[f_1, f_2] \). But this contradiction, therefore we get that:

\(\hat{\xi}_{\Theta(e)}(\omega \circ \vartheta) \supseteq r \min \{\hat{\xi}_{\Theta(e)}(\omega), \hat{\xi}_{\Theta(e)}(\vartheta)\}, \forall \omega, \vartheta \in \Gamma \)

(34)

Now, if \(\eta_{\Theta(e)}(\omega \circ \vartheta) > \max \{\eta_{\Theta(e)}(\omega), \eta_{\Theta(e)}(\vartheta)\} \) for some \(\omega, \vartheta \in \Gamma \). Hence, \(\exists h \in (0, 1) \) satisfies the following:

\(\eta_{\Theta(e)}(\omega \circ \vartheta) > h \supseteq \max \{\eta_{\Theta(e)}(\omega), \eta_{\Theta(e)}(\vartheta)\} \).

(35)

Then \(\omega, \vartheta \in \overline{\eta_{\Theta(e)}}(h) \), however \(\omega \circ \vartheta \notin \overline{\eta_{\Theta(e)}}(h) \). But this contradiction, so we get that:

\(\eta_{\Theta(e)}(\omega \circ \vartheta) \leq \max \{\eta_{\Theta(e)}(\omega), \eta_{\Theta(e)}(\vartheta)\}, \forall \omega, \vartheta \in \Gamma \)

(36)

Hence \((\Theta, T) \) is \((e - \text{CS} \rho - \text{SA}) \) over \(\Gamma \).

Proposition 3.6: Assume \((\Gamma, \Theta, \ell) \) is \((\rho - A), (\Theta, T) \in \ell \Gamma \) and \(e \in T \). If \((\Theta, T) \) is \((e - \text{CS} \rho - \text{SA}) \) over \(\Gamma \), then \(\hat{\xi}_{\Theta(e)}(\ell) \supseteq \hat{\xi}_{\Theta(e)}(\omega) \) and \(\eta_{\Theta(e)}(\ell) \leq \eta_{\Theta(e)}(\omega), \forall \omega \in \Gamma \).

Proof: \(\forall \omega \in \Gamma \); we consider that:

\[
\hat{\xi}_{\Theta(e)}(\ell) = \hat{\xi}_{\Theta(e)}(\omega \circ \omega) \supseteq r \min \{\hat{\xi}_{\Theta(e)}(\omega), \hat{\xi}_{\Theta(e)}(\omega)\} = r \min \{[\hat{\xi}_{\Theta(e)}(\omega)^{-}, \hat{\xi}_{\Theta(e)}(\omega)^{+}]\}
\]

\[
[\hat{\xi}_{\Theta(e)}(\omega)^{-}, \hat{\xi}_{\Theta(e)}(\omega)^{+}] = [\hat{\xi}_{\Theta(e)}(\omega)^{-}, \hat{\xi}_{\Theta(e)}(\omega)^{+}] = \hat{\xi}_{\Theta(e)}(\omega)
\]

(37)

and \(\eta_{\Theta(e)}(\ell) = \eta_{\Theta(e)}(\omega \circ \omega) \leq \max \{\eta_{\Theta(e)}(\omega), \eta_{\Theta(e)}(\omega)\} = \eta_{\Theta(e)}(\omega) \).

Theorem 3.7: Let \((\Gamma, \Theta, \ell) \) be \((\rho - A) \) and \((\Theta, T) \) be \((e - \text{CS} \rho - \text{SA}) \) over \(\Gamma \). If \(\lim_{\omega \to \omega_{n}} \hat{\xi}_{\Theta(e)}(\omega) = [1, 1] \) and \(\lim_{\omega \to \omega_{n}} \eta_{\Theta(e)}(\omega) = 0 \), then \(\hat{\xi}_{\Theta(e)}(\ell) = [1, 1] \) and \(\eta_{\Theta(e)}(\ell) = 0 \).

Proof: Since \(\hat{\xi}_{\Theta(e)}(\ell) \supseteq \hat{\xi}_{\Theta(e)}(\omega_{n}), \forall n \in N \), and \(\eta_{\Theta(e)}(\ell) \leq \eta_{\Theta(e)}(\omega_{n}), \forall n \in N \), we have

\(\hat{\xi}_{\Theta(e)}(\ell) \supseteq \hat{\xi}_{\Theta(e)}(\omega_{n}), \forall n \in N \),

(38)

\(\eta_{\Theta(e)}(\ell) \leq \eta_{\Theta(e)}(\omega_{n}), \forall n \in N \).
However, \([1,1] \geq \hat{\varepsilon}_{\Theta(e)}(\ell) \geq \lim_{n \to \infty} \hat{\varepsilon}_{\Theta(e)}(\omega_n) = [1,1] \). Also, \(0 \leq \eta_{\Theta(e)}(\ell) \leq \lim_{n \to \infty} \eta_{\Theta(e)}(\omega_n) = 0 \).

Therefore \(\hat{\varepsilon}_{\Theta(e)}(\ell) = [1,1] \) and \(\eta_{\Theta(e)}(\ell) = 0 \).

Theorem 3.8: Let \((\Gamma, e, \ell) \) be \((p-A), (\Theta, T) \in \Omega \) and \(e \in T \). If \((\Theta, T) \) is \((e-CSP - S)\) over \(\Gamma \), then \(\tilde{\varepsilon}_{\Theta(e)}(\omega) = \hat{\varepsilon}_{\Theta(e)}(\ell) \) and \(\tilde{\eta}_{\Theta(e)}(\omega) = \hat{\eta}_{\Theta(e)}(\ell) \) are \(\rho \)– subalgebras of \(\Gamma \).

Proof: Assume \(\omega, \theta \in \Gamma \) and \(\omega, \theta \in \tilde{\varepsilon}_{\Theta(e)}(\omega) \), then \(\tilde{\varepsilon}_{\Theta(e)}(\omega) = \hat{\varepsilon}_{\Theta(e)}(\ell) = \tilde{\varepsilon}_{\Theta(e)}(\theta) \). Hence,\(\tilde{\varepsilon}_{\Theta(e)}(\omega \circ \theta) \geq r \min \{ \tilde{\varepsilon}_{\Theta(e)}(\omega), \tilde{\varepsilon}_{\Theta(e)}(\theta) \} = r \min \{ \tilde{\varepsilon}_{\Theta(e)}(\ell), \tilde{\varepsilon}_{\Theta(e)}(\ell) \} = \tilde{\varepsilon}_{\Theta(e)}(\ell). \)

Also, let \(\omega, \theta \in \tilde{\eta}_{\Theta(e)}(\omega) \). Then we have \(\tilde{\eta}_{\Theta(e)}(\omega \circ \theta) \leq \max \{ \tilde{\eta}_{\Theta(e)}(\omega), \tilde{\eta}_{\Theta(e)}(\theta) \} = \max \{ \tilde{\eta}_{\Theta(e)}(\ell), \tilde{\eta}_{\Theta(e)}(\ell) \}. \)

By Proposition (3.7), we get \(\tilde{\varepsilon}_{\Theta(e)}(\omega \circ \theta) = \tilde{\eta}_{\Theta(e)}(\omega \circ \theta) \). Therefore \(\omega \circ \theta \in \tilde{\varepsilon}_{\Theta(e)}(\omega \circ \theta) \). Then \(\tilde{\varepsilon}_{\Theta(e)}(\omega \circ \theta) \) and \(\tilde{\eta}_{\Theta(e)}(\omega \circ \theta) \) are \(\rho \)– subalgebras of \(\Gamma \).

Corollary 3.9: If \((\Theta, T) \) is \((e-CSP - S)\) over \(\Gamma \), then the set \(\tilde{\varepsilon}_{\Theta(e)}(\omega) \cap \tilde{\eta}_{\Theta(e)}(\omega) \) is a \(\rho \)– subalgebra of \(\Gamma \).

Proof: The proof is straightforward.

Theorem 3.10: Let \((\Theta, T), (L, H) \in \Omega \) be a \((CSP - S)\). Then the \(R\)-intersection of \((\Theta, T)\) and \((L, H) \) is \((CSP - S)\) over \(\Gamma \).

Proof: Assume \((\Theta, T), (L, H) \in \Omega \) are \((CSP - S)\) and \((N, Z) = (\Theta, T) \cap_{R} (L, H), \) where \(Z = T \cup H \) and \(N(e) = \begin{cases} \Theta(e), & \text{if } e \in T \setminus H \\ L(e), & \text{if } e \in H \setminus T \\ \Theta(e) \cap \bigcup_{e \in Z} L(e), & \text{if } e \in T \cap H \end{cases} \)

Now, \(\forall e \in Z \), There are three cases: (i) \(e \in T \setminus H \), (ii) \(e \in H \setminus T \), (iii) \(e \in T \cap H \).

In case (i), we have

\[\hat{\varepsilon}_{\Theta(e)}(\omega \circ \theta) = \hat{\varepsilon}_{\Theta(e)}(\omega \circ \theta) \geq r \min \{ \hat{\varepsilon}_{\Theta(e)}(\omega), \hat{\varepsilon}_{\Theta(e)}(\theta) \} = r \min \{ \hat{\varepsilon}_{\Theta(e)}(\omega), \hat{\varepsilon}_{\Theta(e)}(\theta) \}. \]
\[\eta_{N(e)}(\omega \circ \mathcal{G}) = \eta_{\Theta(e)}(\omega \circ \mathcal{G}) \leq \max\{ \eta_{\Theta(e)}(\omega), \eta_{\Theta(e)}(\mathcal{G}) \} = \max\{ \eta_{N(e)}(\omega), \eta_{N(e)}(\mathcal{G}) \}, \forall \omega, \mathcal{G} \in \Gamma. \]

In case (ii), we have
\[\hat{\eta}_{N(e)}(\omega \circ \mathcal{G}) = \hat{\eta}_{L(e)}(\omega \circ \mathcal{G}) \geq r \min\{ \hat{\eta}_{\Theta(e)}(\omega), \hat{\eta}_{L(e)}(\mathcal{G}) \} = r \min\{ \hat{\eta}_{N(e)}(\omega), \hat{\eta}_{N(e)}(\mathcal{G}) \}, \quad (43) \]
\[\eta_{N(e)}(\omega \circ \mathcal{G}) = \eta_{L(e)}(\omega \circ \mathcal{G}) \leq \max\{ \eta_{L(e)}(\omega), \eta_{L(e)}(\mathcal{G}) \} = \max\{ \eta_{N(e)}(\omega), \eta_{N(e)}(\mathcal{G}) \}, \forall \omega, \mathcal{G} \in \Gamma. \]

In case (iii), we have
\[\hat{\eta}_{N(e)}(\omega \circ \mathcal{G}) = (\hat{\eta}_{\Theta(e)} \cap_{R} \hat{\eta}_{L(e)})(\omega \circ \mathcal{G}) = r \min\{ \hat{\eta}_{\Theta(e)}(\omega), \hat{\eta}_{L(e)}(\mathcal{G}) \} \]
\[= r \min\{ r \min\{ \hat{\eta}_{\Theta(e)}(\omega), \hat{\eta}_{L(e)}(\mathcal{G}) \}, \hat{\eta}_{L(e)}(\mathcal{G}) \} \]
\[= r \min\{ \hat{\eta}_{\Theta(e)}(\omega), \hat{\eta}_{L(e)}(\mathcal{G}) \} \]
\[= r \min\{ \hat{\eta}_{\Theta(e)}(\omega), \hat{\eta}_{L(e)}(\mathcal{G}) \}. \quad (44) \]
\[\eta_{N(e)}(\omega \circ \mathcal{G}) = (\eta_{\Theta(e)} \cap_{R} \eta_{L(e)})(\omega \circ \mathcal{G}) = \eta_{\Theta(e)}(\omega \circ \mathcal{G}) \lor \eta_{L(e)}(\omega \circ \mathcal{G}) \]
\[= \max\{ \eta_{\Theta(e)}(\omega), \eta_{L(e)}(\mathcal{G}) \} \]
\[\leq \max\{ \max\{ \eta_{\Theta(e)}(\omega), \eta_{L(e)}(\mathcal{G}) \}, \max\{ \eta_{L(e)}(\omega), \eta_{L(e)}(\mathcal{G}) \} \} \quad (45) \]
\[= \max\{ \max\{ \eta_{\Theta(e)}(\omega), \eta_{L(e)}(\mathcal{G}) \}, \max\{ \eta_{L(e)}(\omega), \eta_{L(e)}(\mathcal{G}) \} \}
\[= \max\{ \eta_{N(e)}(\omega), \eta_{N(e)}(\mathcal{G}) \}, \forall \omega, \mathcal{G} \in \Gamma. \]

Hence \((N, Z) = (\Theta, T) \cap_{R} (L, H)\) is a \((\text{CSP} - \text{SA})\) over \(\Gamma\).

Corollary 3.11: Let \(\mathcal{M} = \{(L, H)_{\alpha} \in \Omega \mid \alpha \in \Psi\}\) be a collection of cubic soft \(\rho - \)subalgebras over \(\Gamma\).

Then the \(R\)-intersection \(\cap_{R} \{(L, H)_{\alpha} \}_{\alpha \in \Psi}\) is a \((\text{CSP} - \text{SA})\) over \(\Gamma\).

Proof: The proof is straightforward from (2.7) and (3.10).

4. **Conclusion and Future Work:**

In this paper, we investigated new notions of cubic soft subalgebras like \((e - \text{CSP} - \text{SA})\) and \((\text{CSP} - \text{SA})\). Moreover, some of their basic characteristics are given. In future work, we will ask and discuss some questions of our notions as following:

1. Let \((\Theta, T)\) be a \((\text{CSP} - \text{SA})\) and \((L, H)\) is an \(R\)-cubic soft subset of \((\Theta, T)\), is \((L, H)\) a \((\text{CSP} - \text{SA})\) ?

2. Let \((\Theta, T)\) be a \((\text{CSP} - \text{SA})\) and \((L, H)\) is an \(P\)-cubic soft subset of \((\Theta, T)\), is \((L, H)\) a \((\text{CSP} - \text{SA})\) ?

3. Is the \(P\)-union (resp. \(P\)-intersection) of two a cubic soft \(\rho - \)subalgebras is \((\text{CSP} - \text{SA})\)?
Funding
Not applicable.

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
All authors read and approved the final manuscript.

References
1. A. L. Zadeh, Fuzzy sets, Information and Control, 8, (1965), 338-353.
2. Y. B. Jun, C. S. Kim, and K. O. Yang, “Cubic sets,” Annals of Fuzzy Mathematics and Informatics, 4(1), (2012), 83–98.
3. N. Yaqoob, S. M. Mostafa and M. A. Ansari, On Cubic KU-Ideals of KU-Algebras, ISRN Algebra, Volume 2013, Article ID 935905, 10 pages.
4. N. Yaqoob, M. M. Aslam, K. Hila, Rough Fuzzy Hyperideals in Ternary Semihypergroups, Advances in Fuzzy Systems, Volume 2012, Article ID 595687, 9 pages.
5. P. K. Maji, R. Biswas, and A. R. Roy, Intuitionistic fuzzy soft sets, Journal of Fuzzy Mathematics, 9(2001), 677-692.
6. S. Mahmood, M. H. Hasab, Decision Making Using New Distances of Intuitionistic Fuzzy Sets and Study Their Application in The Universities, INFUS, (2020), to appear.
7. S. Mahmood and A. Rajah, Solving the Class Equation $x^d = \beta$ in an Alternating Group for each $\beta \in H \cap c^a$ and $n \neq \theta$, Journal of the Association of Arab Universities for Basic and Applied Sciences, 10(2011), 42-50.
8. S. Mahmood and A. Rajah, Solving Class Equation $x^d = \beta$ in an Alternating Group for all $n \in \theta$ $\& \beta \in H \cap c^a$, Journal of the Association of Arab Universities for Basic and Applied Sciences, 16 (2014), 38–45.
9. N. M. A. Abbas and S. Mahmood, On $\alpha * \omega$. Open Sets in Topological Spaces, IOP Conference Series: Materials Science and Engineering, 571 (2019) 012021, doi:10.1088/1757-899X/571/1/012021.
10. S. Mahmood and N. M. A. Abbas, On Nano with Their Applications in Medical Field, AIP, (2020) to appear.
11. S. Mahmood, New category of the fuzzy d-algebras, Journal of Taibah University for Science, 12(2), (2018), 143-149.
12. S. Mahmood and N. M. A. Abbas, Characteristics of the Number of Conjugacy Classes and P-Regular Classes in Finite Symmetric Groups, IOP Conference Series: Materials Science and Engineering, 571 (2019) 012007, doi:10.1088/1757-899X/571/1/012007.
13. M. M. Torki and S. Mahmood, New Types of Finite Groups and Generated Algorithm to Determine the Integer Factorization by Excel, AIP, (2020) to appear.
14. S. Mahmood and N. M. Abbas, Applications on New Category of the Symmetric Groups, AIP, (2020) to appear.
15. S. Mahmood, and F. Hameed, Applications on Cyclic Soft Symmetric, IOP Conf. Series: Journal of Physics, 1530 (2020) 012046, doi:10.1088/1742-6596/1530/1/012046.
16. S. Mahmood and M. Abud Alradha, Characterizations of $\rho-$algebra and Generation Permutation Topological $\rho-$algebra Using Permutation in Symmetric Group, American Journal of Mathematics and Statistics, 7(4), (2017), 152 – 159.
17. S. Mahmood and M. Abud Alradha, Soft Edge $\rho-$Algebras of the power sets, International Journal of Applications of Fuzzy Sets and Artificial Intelligence, 7, (2017), 231 -243.
18. S. Mahmood, F. Hameed, Applications of fuzzy $\rho-$ideals in $\rho-$algrbas, Soft Computing, (2020), doi.org/10.1007/s00500-020-04773-3.
19. D. Molodtsov, “Soft set theory - First results,” Computers and Mathematics with Applications, 37, (4-5), (1999), 19–31.
20. P. K. Maji, A. R. Roy, R. Biswas, An application of soft sets in a decision making problem, Comput. Math. Appl. 44 , (2002), 1077-1083.
21. Y. B. Jun, K. J. Lee, C. H. Park, Soft set theory applied to ideals in d-algebras, Comput. Math. Appl. 57, (2009), 367-378.
22. S. A. Abdul-Ghani, S. Mahmood, M. Abd Ulrazaq, and A. F. Al-Musawi, New Branch of Intuitionistic Fuzzification in Algebras with Their Applications, International Journal of Mathematics and Mathematical Sciences, Volume 2018, Article ID 5712676, 6 pages.
23. S. Mahmood, Decision making using algebraic operations on soft effect matrix as new category of similarity measures and study their application in medical diagnosis problems, Journal of Intelligent & Fuzzy Systems, 37, (2019), 1865-1877. DOI:10.3233/JIFS-179249.
24. A. Firas Muhamad Al–Musawi, S. Mahmood, M. Abd Ulrazaq, Soft (1,2)-Strongly Open Maps in Bi-Topological Spaces, IOP Conference Series: Materials Science and Engineering, 571 (2019) 012002, doi:10.1088/1757-899X/571/1/012002.
25. S. Mahmood, S. A. Abdul-Ghani, Soft M-Ideals and Soft S-Ideals in Soft S-Algebras, J. Phys.: Conf. Ser., 1234 (2019) 012100, doi:10.1088/1742-6596/1234/1/012100.
26. S. Mahmood and F. Hameed, An algorithm for generating permutations in symmetric groups using soft spaces with general study and basic properties of permutations spaces. J Theor Appl Inform Technol, 96(9), (2018), 2445-2457.
27. S. Mahmood Khalil, M. Ulrazaq, S. Abdul-Ghani, Abu Firas Al-Musawi, $\sigma-$Algebra and $\sigma-$Baire in Fuzzy Soft Setting, Advances in Fuzzy Systems, Volume 2018, Article ID 5731682, 10 pages.
28. S. Mahmood, F. Hameed, An algorithm for generating permutation algebras using soft spaces, Journal of Taibah University for Science, 12(3), (2018), 299-308.
29. Y. B. Jun, Soft BCK/BCI-algebras, Comput. Math. Appl. 56, (2008), 1408-1413.
30. M. B. Gorzałczany, “A method of inference in approximate reasoning based on interval-valued fuzzy sets,” Fuzzy Sets and Systems, 21(1), (1987), 1–17.
31. G.Muhiuddin and A.M. Al-roqi, “Cubic soft sets with applications in BCK/BCI-algebras,” Annals of Fuzzy Mathematics and Informatics. 8 (2), (2014), 291–304.