Chaotic diffusion of the fundamental frequencies
in the Solar System
(Corrigendum)

Nam H. Hoang, Federico Mogavero, and Jacques Laskar

Astronomie et Systèmes Dynamiques, Institut de Mécanique Céleste et de Calcul des Éphémérides CNRS UMR 8028, Observatoire de Paris, Université PSL, Sorbonne Université, 77 Avenue Denfert-Rochereau, 75014 Paris, France
e-mail: nam.hoang-hoa@obspm.fr
A&A, 654, A156 (2021), https://doi.org/10.1051/0004-6361/202140989

Key words. chaos – diffusion – celestial mechanics – methods: statistical – errata, addenda

There are several misprints in Table 2 of the original publication. The corrected version is given here. This correction does not affect any other elements of the paper.

The authors would like to thank Yujing Wu and Alberto Malinverno for identifying these misprints.

Table 2. Linear and power-law fits for the time evolution of the parameters (Fig. 10) of the skew Gaussian mixture model (Eq. (19)) for the fundamental frequencies of the Solar System.

	μ_0 ("yr$^{-1}$)	a ("yr$^{-1}$)2	b	α_0	μ_1 ("yr$^{-1}$)	σ_1^2 ("yr$^{-1}$)2	A_1		
g_1	5.759 + 0.006 T	3.37 \times 10^{-2}	0.52	-2.25 - 0.50 T					
g_2	7.448 - 0.004 T	4.17 \times 10^{-4}	0.70	1.38 + 0.21 T					
g_3	17.269 + 0.002 T	6.63 \times 10^{-3}	0.43						
g_4	17.896 + 0.005 T	6.88 \times 10^{-3}	0.41			17.6755	0.0034	0.110 - 0.012 T	
s_1	-5.652 - 0.032 T	2.68 \times 10^{-2}	0.83	1.12 + 0.16 T					
s_2	-6.709 + 0.030 T	1.20 \times 10^{-1}	0.76	-2.94 - 1.23 T					
s_3	-18.773 + 0.009 T	2.86 \times 10^{-2}	0.56	-3.40 - 0.08 T			-18.5256	0.0028	0.023
s_4	-17.707 + 0.013 T	1.19 \times 10^{-2}	0.68	-1.73 - 0.28 T					
g_5	4.257454 - 2.1 \times 10^{-6} T	4.63 \times 10^{-10}	0.88						
g_6	28.245226 - 1.4 \times 10^{-4} T	1.40 \times 10^{-6}	0.84						
g_7	3.087957 - 1.2 \times 10^{-6} T	4.80 \times 10^{-10}	1.11						
g_8	0.673024	9.89 \times 10^{-11}	1.49						
s_6	-26.347866 + 1.5 \times 10^{-5} T	1.21 \times 10^{-8}	0.85						
s_7	-2.992527	8.31 \times 10^{-10}	1.39						
s_8	-0.691737	2.93 \times 10^{-11}	1.47						

Notes. Column 1 contains the considered secular frequencies. In Col. 2 we show the linear fits of μ_0 that represent the center of the distribution. The power-law fit of σ_1^2 has the form $\sigma_1^2(t) = aT^b$ (Eq. (20)), where $T = t/(1 \text{ Gyr})$ and a and b are given in Cols. 3 and 4, respectively. Linear fits of the skewness parameter, α_0, are given in Col. 5. The last three columns show linear fits of the secondary mode of g_3 and s_3 (Eq. (19)). The parameter σ_1^2 is fitted from 200 Myr to 5 Gyr in the past, while all the others are fitted from 500 Myr.