Micro-structures and magnetic properties of Mg-Al substituted in barium hexa-ferrite prepared by co-precipitation method

Martha Rianna¹, Timbangen Sembiring¹*, Marhaposan Situmorang¹, Anggito P. Tetuko², Eko Arief Setiadi¹, Masno Ginting², Perdamean Sebayang²

¹Department of Physics, Universitas Sumatera Utara, Medan 20155, Indonesia
²Research Center for Physics, Indonesian Institute of Sciences (LIPI), Tangerang Selatan, Banten 15314, Indonesia
*timbangen@usu.ac.id

Abstract. In this study, Mg-Al substituted barium hexa-ferrite of BaFe₁₂₋₂ₓMgxAlₓO₁₉ (x=0-0.2) materials using co-precipitation method at a calcination temperature of 1200°C for 2 hours were carried out. The precursor concentrations of the mixture were varied to identify the optimum sample. The final powder was characterized by using XRD, FE-SEM, and VSM. The XRD shows that the Mg-Al substitution was not change the micro-structures of barium hexa-ferrite. FE-SEM observation was carried out on the surface of hexagonal shape of barium hexa-ferrite. The magnetic properties shows that the decreases saturation (Ms), remanence (Mr) and coercivity (Hc).

1. Introduction

Barium hexa-ferrite (BaFe₁₂O₁₉) is one of hard magnetic materials with high magnetic saturation and coercivity, excellent corrosion resistance and chemical stability [1–4]. Many reports are available for the synthesis and characterization of the barium hexaferrite substituted with various cations such as: Mn, Al, Mg, Co, Ni, Ti, Zn for Fe [5-12].

Previous study on the barium hexa-ferrite doped Al and Mn (0.12, 0.24; and 0.42 wt%) sintered at 1000 and 1100 °C for 2 hours [13]. The results suggested that show decrease of the magnetic flux, saturation, and remanence values as the additive concentration increases. Shaayan et al. [14], reported that the synthesis of BaFe₁₂₋ₓAlₓO₁₉ at a calcination temperature of 1100 °C for 9 h using a mechanical alloying method, resulted that the decrease of the saturation magnetization in addition of Al. Kumar et al. [15] reported that the synthesis of BaMgₓFe₁₂₋ₓO₁₉ using the sol gel method with calcination temperature at 1100°C for 2 hours. The results confirmed that, Mg has been substitution in BaFe₁₂O₁₉ with single phase hexagonal structure.

In this study, Mg-Al substituted barium hexa-ferrite of BaFe₁₂₋₂ₓMgxAlₓO₁₉ (x=0-0.2) materials using co-precipitation method at a calcination temperature of 1200°C for 2 hours were carried out.

2. Experimental Method

Barium hexa-ferrite with doping materials of Mg-Al (x=0-0.2) were synthesized using a co-precipitation method where barium chloride (BaCl₂), iron chloride (FeCl₃), magnesium chloride (MgCl₂), and aluminium chloride (AlCl₃) were used as the raw materials. The materials were dissolved in 25 ml of HCl (37%) and magnetically stirred for 30 minutes at room temperature. The solution was then mixed with aquadest of 50 ml in a beaker glass and...
was stirred using a magnetic stirrer at 500 rpm until homogeneous solution is obtained. The solution was washed 10 times using distilled water until a neutral pH of 7 is obtained and was dried in the oven for 15 hours at a temperature of 100 °C. Then, the powder was calcinated at a temperature of 1200°C for 2 hours and at a heating rate of 10 °C/minutes. The final powder of barium hexa-ferrite material were analysed using X-ray Diffraction (Rigaku Smartlab), Field Emission Scanning Electron Microscopy (JEOL), Vibrating Sample Magnetometer (VSM250 Dexiong Magnet Ltd).

3. Result and Discussion

Figure 1 shows the XRD pattern of Mg-Al substituted barium hexa-ferrite calcinated at a temperature of 1200°C. The samples with substituted of Mg-Al have single phase of BaFe$_{12}$O$_{19}$ with hexagonal crystal structure. In addition, the additive is likely occur as the ions, where Mg-Al ions replace Fe ions [16].

![Figure 1](image1.png)

Figure 1. The XRD Patterns: BaFe$_{12-2x}$Mg$_x$Al$_x$O$_{19}$ powder samples (x=0 - 0.2)

Figure 2 shows that the FE-SEM images of BaFe$_{12-2x}$Mg$_x$Al$_x$O$_{19}$ powder samples (x=0 - 0.2) prepared by co-precipitation method after temperature calcination at 1200°C for 2 hours in the air atmosphere. From Figures 2 for all FE-SEM images, it can be seen that the particle inside the sample was grown with relatively uniform shape. The particles were nearly hexagonal shape with average 5 µm.
Table 1. Magnetic Properties of BaFe$_{12-2x}$Mg$_x$Al$_x$O$_{19}$ (x=0-0.2)

Sample	Ms (emu g$^{-1}$)	Mr (emu g$^{-1}$)	Hc (Oe)
0	38.42	20.39	1736
0.1	34.25	18.07	2576
0.2	29.28	15.33	1259

Figure 2. FE-SEM image of BaFe$_{12-2x}$Mg$_x$Al$_x$O$_{19}$ (a) x=0 (b) x=0.2

Figure 3. Hysteresis Curve of BaFe$_{12-2x}$Mg$_x$Al$_x$O$_{19}$ Powder (x= 0 - 0.2)
Figure 3 represents that the hysteresis curves of BaFe$_{12-2x}$Mg$_x$Al$_x$O$_{19}$ (x=0-0.2). The characteristic magnetic parameters of BaFe$_{12-2x}$Co$_x$Ni$_x$O$_{19}$ (x=0-0.2) are listed in Table 1. It can be seen that the substitution of the Mg-Al ions caused decrease the values of Saturation (M_s), Remanent (M_r), Coercivity (H_c). The decreases in magnetic parameters were due to the net alignment of grain magnetization. Considering the above results, Mg and Al have paramagnetic of magnetic properties, then Fe is ferromagnetic [16].

4. Conclusion

Mg-Al substituted barium hexa-ferrite of BaFe$_{12-2x}$Mg$_x$Al$_x$O$_{19}$ (x=0-0.2) materials using co-precipitation method at a calcination temperature of 1200°C for 2 hours were carried out. The XRD shows that the Mg-Al substitution was not change the micro-structures of barium hexa-ferrite. FE-SEM observation was carried out on the surface of hexagonal shape of barium hexa-ferrite. The magnetic properties shows that the decreases saturation (M_s), remanence (M_r) and coercivity (H_c). The optimum condition was obtained on x=0.2 with M_s= 29.28 emu/g, M_r= 15.33 emu/g, H_c= 1259 Oe, and is suitable as an absorber of microwave material.

References

[1] Y. Y. Meng et al., “Synthesis of barium ferrite ultrafine powders by a sol-gel combustion method using glycine gels,” J. Alloys Compd., vol. 583, pp. 220–225, 2014.
[2] S. Budiawanti, B. Soegijono, and I. Mudzakir, “Influence of calcinations on structural and magnetic properties of BaFe12O19 thin films prepared by chemical solution deposition,” in AIP Conference Proceedings, 2018, vol. 2023.
[3] Y. Lin, Y. Liu, J. Dai, L. Wang, and H. Yang, “Synthesis and microwave absorption properties of plate-like BaFe12O19@Fe3O4core-shell composite,” J. Alloys Compd., vol. 739, pp. 202–210, 2018.
[4] L. H. Shao, S. Y. Shen, H. Zheng, P. Zheng, Q. Wu, and L. Zheng, “Effect of Powder Grain Size on Microstructure and Magnetic Properties of Hexagonal Barium Ferrite Ceramic,” J. Electron. Mater., vol. 47, no. 7, pp. 4085–4089, 2018.
[5] V. V. Soman, V. M. Nanoti, and D. K. Kulkarni, “Dielectric and magnetic properties of Mg-Ti substituted barium hexaferrite,” Ceram. Int., vol. 39, no. 5, pp. 5713–5723, 2013.
[6] T. Ben Ghzaiel, W. Dhaoui, F. Schoenstein, P. Talbot, and F. Mazaleyrat, “Substitution effect of Me = Al, Bi, Cr and Mn to the microwave properties of polyaniline/BaMeFe11O19for absorbing electromagnetic waves,” J. Alloys Compd., vol. 692, pp. 774–786, 2017.
[7] S. Singhal, K. Kaur, S. Jauhar, S. Bhukal, and S. Bansal, “Structural and Magnetic Properties of BaCoFe12-xO19 (x = 0.2, 0.4, 0.6, &1.0) Nanoferrites Synthesized Via Citrate Sol-Gel Method,” World J. Condens. Matter Phys., vol. 1, no. 3, pp. 101–104, 2011.
[8] A. Y. Sari, C. H. Safira, E. A. Setiadi, S. Simbolon, C. Kurniawan, and P. Sebayang, “EFEK ADITIF FeMo DAN PROSES KALSINASI PADA SERBUK MAGNETIK BaFe12O19,” J. Sains Mater. Indones., vol. 18, no. 3, p. 95, 2018.
[9] P. Sebayang, A. Y. Sari, D. Ginting, Y. Allan, M. N. Nasruddin, and K. Sebayang, “Characteristics of B2O3 and Fe added into BaFe12O19 permanent magnets prepared at different milling time and sintering temperature,” in AIP Conference Proceedings,
2016, vol. 1711.

[10] M. Rianna et al., “Microstructure and magnetic properties of BaFe12-2xMgxAlxO19 for microwave absorbing materials,” Int. J. Appl. Eng. Res., vol. 12, no. 17, pp. 6586–6590, 2017.

[11] G. Mendoza-Suárez, L. P. Rivas-Vázquez, J. C. Corral-Huacuz, A. F. Fuentes, and J. I. Escalante-García, “Magnetic properties and microstructure of BaFe<inf>11.6-2x</inf>Ti<inf>x</inf>M<inf>x</inf>O<inf>19</inf>(M = Co, Zn, Sn) compounds,” Phys. B Condens. Matter, vol. 339, no. 2–3, 2003.

[12] V. S. Salvi and V. H. Joshi, “Effect of dopants on barium hexaferrite,” Indian J. Pure Appl. Phys., vol. 47, no. 4, pp. 277–281, 2009.

[13] E. A. Setiadi, C. Kurniawan, P. Sebayang, and M. Ginting, “Microstructures, physical and magnetic properties of BaFe 12 O 19 permanent magnets with the addition of Al 2 O 3-MnO ,” J. Phys. Conf. Ser., vol. 817, p. 12054, 2017.

[14] A. Shayan, M. Abdellahi, F. Shahmohammadian, S. Jabbarzare, A. Khandan, and H. Ghayour, “Mechanochemically aided sintering process for the synthesis of barium ferrite: Effect of aluminum substitution on microstructure, magnetic properties and microwave absorption,” J. Alloys Compd., vol. 708, pp. 538–546, 2017.

[15] A. Kumar, V. Agarwala, and D. Singh, “Effect of Mg Substitution on Microwave Absorption of BaFe12O19,” Adv. Mater. Res., vol. 585, pp. 62–66, 2012.

[16] M. Rianna et al., “Effect of calcination temperature on Microstructures, magnetic properties, and microwave absorption on BaFe 11.6 Mg 0.2 Al 0.2 O 19 synthesized from natural iron sand,” Case Stud. Therm. Eng., vol. 13, 2019.