Хирургическое лечение пациентов с болезнью Шпренгеля под нейрофизиологическим контролем: анализ 7-летней когорты

C.O. Рябых, D.M. Савин, M.S. Сайфутдинов, P.V. Очирова, A.V. Губин, E.Yu. Филатов, G.E. Ульрих, A.A. Скрипников

1Федеральное государственное бюджетное учреждение «Российский научный центр “Восстановительная травматология и ортопедия” имени академика Г. А. Илизарова» Министерства здравоохранения Российской Федерации, г. Курган, Россия,
2Санкт-Петербургский государственный педиатрический медицинский университет» Минздрава России, г. Санкт-Петербург, Россия

DOI 10.18019/1028-4427-2019-25-4-550-554

ВВЕДЕНИЕ

Болезнь Шпренгеля – врожденный порок развития плечевого пояса, основным проявлением которого является высокое стояние лопатки [1]. Оперативное лечение при данном заболевании направлено на устранение косметического дефекта путем перемещения и фиксации лопатки в физиологическом ложе [2]. В настоящее время разработаны и внедрены около 30 хирургических методик [3] коррекции положения лопатки. Однако данные литературы указывают на вероятность развития различных осложнений в 12,5–58,7 % случаев, среди которых одним из наиболее значимых является парез верхней конечности в связи с пlexуспатией плечевого сплетения [4].

Цель. Улучшение исходов хирургического лечения пациентов с болезнью Шпренгеля.

Дизайн: ретроспективное моноцентровое когортное исследование.

Уровень доказательности: 4 (по UK Oxford, версия 2009).

МАТЕРИАЛЫ И МЕТОДЫ

Период набора пациентов – 2014–2018 гг. За указанный период в клинике патологии позвоночника и редких заболеваний «Российского научного центра «Восстановительная травматология и ортопедия» им. акад. Г.А. Илизарова» пролечено 18 пациентов с болезнью Шпренгеля в возрасте от 2 лет 5 мес. до 14 лет (ср. 7,0 лет). Гендерное распределение составило 15 девочек и 3 мальчика. У 9 человек высокое стояние лопатки отмечено справа, у 8 – слева.
ва. У двух пациентов выявлено наличие омовертебральной кости. Двусторонняя форма была у одного ребенка.

У всех пациентов данное заболевание сочеталось с врожденными аномалиями развития позвоночника и грудной клетки (нарушение формирования и сегментации позвонков шейного (синдром Клиппеля-Фейля), грудного отдела позвоночника, агенезии, конкременции и т. д.).

Из методов исследования использовали клинический, лучевой (двухпроекционный рентгенотелерезонографический позвоночника, КТ грудной клетки, грудного отдела позвоночника и плечевого пояса), функциональный (электронейромиография (ЭНМГ) верхних конечностей, данные интраоперационного нейрофизиологического мониторинга – ИОНМ), а также тестирование по шкале SRS-24. Учитывая малочисленность когорты пациентов, применялись только методы описательной статистики.

Критерии оценки до и после операции:
- клиническая оценка уровня положения угла лопатки по Cavendish;
- рентгенологическая оценка краианального смещения по Rigault с определением торсии лопатки, в °; гипоплаэзии, в см; баланса плеч, в см (все рентгенометрические измерения выполнялись в программе Surgimap);
- объем отведения плеча;
- наличие аномалии позвонков в виде их асимметричной формы;
- «средняя амплитуда» суммарной ЭНМГ;
- динамика базовых МВП по данным ИОНМ во время операции.

Минимальный отдаленный период наблюдения составил 8 месяцев, максимальный – 48 (ср. – 28 мес.).

Техника операции
Всем пациентам произведено низведение лопатки по методу Woodward [5] под контролем нейромониторинга. После линейного разреза кожи и мягких тканей по линии остистых отростков от С4 до Т9 позвонков выполнялась сепарация мягких тканей с выделением медиального, верхнего и нижнего краев лопатки. Затем производилось пересечение m. levator scapulae, m. trapezius, а также фиброзных тяжей, фиксирующих лопатку. В отличие от технологии «Green's scapula procedure» [6], m. latissimus dorsi и m. trapezius отсекались не на уровне медиального края лопатки, а на расстоянии 2–3 см от него. При наличии омовертебральной кости или фиброзного тяжа последние также иссекались. Лопатка мобилизовалась, ротировалась во фронтальной плоскости и перемещалась в каудальном направлении за счет транспозиции m. latissimus dorsi и m. trapezius. Ориентировочное нормопозиция являлась контралатеральной лопаткой, за исключением случая двусторонней патологии. При этом варианте угол лопатки перемещали до 7–8 межреберья. Затем лопатку фиксировали и ушивали в кармане указанных мышц нерезорбируемыми швами.

Послеоперационный период в объеме: наложение Mayfield head clamp; корригирующая задняя вертебротомия на уровне С4-C5 по зонам (условно). Коррекция деформации позвоночника системой Synaps 3,5 мм. Задний спондилюдез аутовекскетом, низведение лопатки по Woodward

Протокол нейрофизиологического мониторинга
С целью профилактики ятрогенного повреждения структур плечевого сплетения и развития послеоперационного неврологического дефицита проводился нейрофизиологический мониторинг: Тестирование проводникововых свойств коротких и длинных ветвей плечевого сплетения осуществляли с помощью диагностического комплекса «ISIS» (Inomed Medizintechnik GmbH, Германия). Моторные вызванные потенциалы (МВП) получали посредством транскраниальной электrostимуляции через спиравидные игольчатые электроды, установленные на скалы в проекции корковых моторных зон мышц-индикаторов, что соответствовало отведением С5–С4 по международной системе отведения ЭЭГ (10–20). В качестве мышц-индикаторов были выбраны m. deltoideus, m. biceps brachii, m. triceps brachii, m. extensor digitorum, mm. thenar, mm. hypothenar. МВП регистрировали с помощью игольчатых электродов монополярно (отведение типа «belli-tendon»). Стимуляцию осуществляли пачками стимулов, каждая из которых состояла из пяти импульсов. Продолжительность пачки стимулов – 1 мсек., интервал между пачками – 4 мсек., частота 1 Гц и интенсивность 80–150 мА. В качестве критериев опасности на основании анализа литературы [9] рассматривали снижение амплитуды МВП более чем на 50 % и увеличение их латентных периодов более чем на 10 %.

Рис. 1. КТ 3D VRT малыши 6 лет 7 месяцев с сочетанием врожденной аномалии развития позвоночника на фоне нарушения сегментации и формирования позвонков С0-Т3 и высоким стоянием левой лопатки: a – КТ 3D VRT, вентральная проекция; b – КТ 3D VRT, дорсальная проекция после оперативного лечения в объеме: наложение Mayfield head clamp; корригирующая задняя вертебротомия на уровне С2-C5 позвонков (условно). Коррекция деформации позвоночника системой Synaps 3,5 мм. Задний спондилюдез аутовекскетом, низведение лопатки по Woodward.
РЕЗУЛЬТАТЫ

При поступлении все пациенты предъявили жалобы на косметические нарушения в области плечевого пояса и шеи, ограничение функции отведения верхней конечности. При осмотре у всех пациентов была выявлена асимметрия надплечий и воротниковой зоны, выстояние одной из лопаток (в одном случае дополнено на тorsiей во фронтальной плоскости) и ограничение отведения верхней конечности до 120°.

Исходная оценка по классификации Cavendish показала превалирование асимметрии положения лопаток в пределах 2–5 см и поворот относительно горизонтальной плоскости. После операции была отмечена нормализация положения плеч во всех случаях, у 16 пациентов (88,9 %) достигнуто хорошее клиническое соотношение и симметрия верхнечелюстного и нижнего углов лопаток, в 2 случаях (11,1 %) сохранялась асимметрия верхнечелюстных углов лопаток без клинически выраженной асимметрии надплечий (табл. 1, рис. 2).

Таблица 1

Тип по Cavendish classification	До операции	После операции
Grade I	1	16
Grade II	10	2
Grade III	6	0
Grade IV	1	0

Рентгенологическая оценка степени краниального смещения лопатки по Rigault [11]

Тип по Rigault P.	До операции	После операции
Grade I	8	18
Grade II	9	0
Grade III	1	0

По данным электронейромиографии (показатель “средняя амплитуда” суммарной ЭНМГ в условиях выполнения пробы “максимальное произвольное напряжение”) у всех пациентов было выявлено умеренное снижение функциональных возможностей мышц верхних конечностей (8 наиболее крупных мышц плеча, предплечья и кисти), выраженное в равной степени билиатерально: в одном случае снижение анализируемого показателя составило в среднем 55,9 ± 2,7 %, в другом – 50,8 ± 3,6 %. При этом, проведение возбуждения по моторным волокнам нервных стволов существенно не сказывалось. После завершения доступа к зоне хирургического интереса, когда прекращалось действие миорелаксантов (используемых во время вводного наркоза), были получены базовые МВП, представляющие собой полифазные ответы различной амплитуды (до 3 мВ) с латентностью около 20 мсек. В процессе оперативного вмешательства производилось периодическое тестирование моторной фракции нервных стволов верхней конечности. Далее характеристики текущих МВП сравнивались с исходными (базовыми) потенциалами. За время проведения оперативного вмешательства в обоих рассматриваемых случаях негативных изменений характеристик анализируемых ответов зафиксировано не было, что свидетельствовало об отсутствии агрессивных воздействий на проводниковые структуры, находящиеся вблизи хирургических манипуляций (рис. 3).

В послеоперационном периоде неврологических расстройств со стороны заинтересованной конечности у пациентов не наблюдалось.

Рис. 2. Фото и рентгенография пациентки 9 лет с болезнью Шпренгеля до операции (звамечение правой лопатки по методу Woodward, дополненное остеотомией правой ключицы) (a) и через 2 года после операции (b)

Рис. 3. Моторные ответы мышц верхней конечности пациента 9 лет с болезнью Шпренгеля справа (a – m. deltoid. ac., b – m. biceps br., с – m. extensor dig., d – mm. thenar, e – mm. hypothenar), фиолетовая линия – базовый МВП, тонкая линия МВП в ответ на текущий тестовый сигнал

Вопросы вертебрологии
ОБСУЖДЕНИЕ

Leibovic S.J. с соавторами [12] описывают на основании анализа 18 пациентов улучшение внешнего вида во всех случаях, однако результат был сопряжен с ограничением отведения плеча в среднем 148 до 91°. Неврологических осложнений авторы не отмечают. У нескольких пациентов в отдаленном периоде через два года выявлен частичный рецидив, который в двух случаях потребовал реоперации.

Andrault G. с соавторами [13] проанализировали результаты восьми детей с различными антами ребер. В общем, в группе увеличение отведения плеча составило 21°. В группе с малыми антами ребер или без них прирост составил 28°, а со сложными антами ребер всего 10°. Послеоперационных неврологических осложнений не было.

Вероятность развития брахиоплексопатии [4] на стороне оперативного вмешательства прямо пропорциональна степени (величине) низведения лопатки. Исходное функциональное состояние моторной системы пациента, оцененное методом ЭНМГ, позволяет предвидеть повышенный риск появления неврологических признаков опасности во время операции [15, 16]. Это подтверждено тем, что интраоперационный нейромониторинг оставался единственным методом оценки неврологического статуса во время операции, что дает хирургу возможность проводить мобилизацию и перемещение лопатки до необходимого уровня с минимальным риском развития неврологических осложнений.

ЗАКЛЮЧЕНИЕ

Анализ исходов показал эффективность применения наиболее валидных методик низведения лопатки под контролем нейромониторинга. Это подтверждено результатами клинической и рентгенологической оценки степени краниального смещения после выполнения необходимой коррекции, а также отсутствием неврологических осложнений в раннем послеоперационном и в отдаленном периоде. Рецидивов дислокации лопатки в отдаленном периоде также не наблюдалось.

Комментарии. Нельзя не отметить, что между всеми оперирующими хирургами (4 автора: 1, 2, 4, 5) отмечено высокое межэкспертное согласование относительно более «комфортного» и «контролируемого» выполнения хирургической процедуры перемещения лопатки. Это, безусловно, выходит за рамки статьи и требует дальнейшего исследования.

ЛИТЕРАТУРА

1. Калчич Д.В. Ранняя диагностика врожденного высокого стояния лопатки // Хирургия позвоночника. 2009. № 1. С. 69-75.
2. Жылды Н.Г. Хирургическое моделирование правильной формы грудной клетки у детей и подростков при врожденных и приобретенных деформациях. Хабаровск: Изд-во ДВГМУ, 2002. 223 с.
3. Поздеев А.А. Оперативное лечение тяжелых форм врожденного высокого стояния лопатки у детей // Вестник хирургии им. И.И. Гекова. 2006. Т. 165, № 1. С. 56-61.
4. Фишкоц Н.Я. Врожденное высокое стояние лопатки // Альманах клинической медицины. 2005. № 8-1. С. 351-355.
5. Woodward J.W. Congenital elevation of the scapula correction by release and transplantation of muscle origins. A preliminary report // J. Bone Joint Surg. Br. 1993. Vol. 75, No 3. P. 395-408.
6. Green W.T. The surgical correction of congenital elevation of the scapula (Sprengel's deformity) // J. Bone Joint Surg. Am. 1957. Vol. 39A. P. 1439-1448.
7. Рябых С.О., Савин Д.М. Клинический случай оперативного лечения тяжелого врожденного кифосколиоза у ребенка 11 лет // Гений Ортопедии. 2017. Т. 23, № 2. С. 216-219. DOI: 10.18019/1028-4427-2017-23-2-216-219.
8. Рябых С.О., Филатов Е.Ю., Савин Д.М. Трехколонные вертебротомии вне апикальной зоны как способ коррекции деформаций шейно-грудного отдела позвоночника. Хабаровск: Изд-во ДВГМУ, 2002, 223 с.
9. Методические проблемы развития интраоперационного нейромониторинга при оперативной коррекции деформаций позвоночника (обзор литературы) // Российский физиологический журнал им. И.М. Сеченова. 2016. Т. 102, № 1. С. 1495-1504.
10. Cavendish M.E. Congenital elevation of the scapula // J. Bone Joint Surg. Br. 1972. Vol. 54, No 3. P. 395-408.
11. Leibovic S.J., Rana M.N., Savenko D.J. Sprengel's deformity // J. Bone Joint Surg. Am. 1990. Vol. 72, No 2. P. 192-197.
12. Cavendish M.E. Congenital elevation of the scapula // J. Bone Joint Surg. Br. 1972. Vol. 54, No 3. P. 395-408.
13. Green W.T. The surgical correction of congenital elevation of the scapula (Sprengel's deformity) // J. Bone Joint Surg. Am. 1957. Vol. 39A. P. 1439-1448.
14. Guyonvarch, G. and Zujovic, J. // Rev. Chir. Orthop. Reparatrice Appar. Mot. 1976. Vol. 62, No 1. P. 5-26.
15. Agarwal A. with co-authors // J. Bone Joint Surg. 2009. Vol. 91, No 5. P. 330-335. DOI: 10.1016/j.jbjs.2009.04.015.
16. Contentions. The paper presents results of a retrospective analysis of a large cohort of patients with congenital high scapula syndrome and a review of the literature. The authors discuss the effectiveness of the surgical correction of congenital high scapula and the potential complications of this procedure. The paper concludes with a discussion of the future directions in the treatment of this condition. The paper is supported by comprehensive references from the field of orthopedics and neurosurgery.
3. Pozdeev A.A. Operativnoe lechenie tiazhelekh form vrozhdennoho voskogo stoiania lopatki u detei [Surgical treatment of severe shapes of congenital high scapula in children]. Vestnik Khirurgii im. I.I. Grekova, 2006, vol. 165, no. 1, pp. 56-61. (in Russian)

4. Fishchenko P.A. Vrozhdennoe voskoko stoianie lopatki [Congenital high scapula]. Almanakh Klinicheskoi Meditsiny, 2005, no. 8-1, pp. 351-355. (in Russian)

5. Woodward J.W. Congenital elevation of the scapula correction by release and transplantation of muscle origins. A preliminary report. J. Bone Joint Surg. Am., 1961, vol. 43, pp. 219-228.

6. Green W.T. The surgical correction of congenital elevation of the scapula (Sprengel's deformity). Genii Ortopedii, 1957, vol. 39A, pp. 1439-1448.

7. Riabykh S.O., Savin D.M., Filatov E.Iu. Klinicheskii sluchai operativnogo lecheniia tiazhelogo vrozhdennogo kifoskolioza u rebenka 11 let [Clinical case of surgical treatment of severe congenital kyphoscoliosis in an 11-year-old child]. Genii Ortopedii, 2017, vol. 25, no. 2, pp. 216-219. (in Russian) DOI: 10.18019/1028-4427-2017-25-2-216-219.

8. Riabykh S.O., Filatov E.Iu., Savin D.M. Trekhkolonnye vertebrorotii vne apikalnoi zony kak sposob korrektsii deformatsii sheino-grudnogo perekhoda: analiz klinicheskoi serii i dannikh literatury [Three-column vertebrorotomies outside the apical zone as a way to correct deformities of the cervicothoracic transition: analysis of the clinical series and data of the literature]. Khirurgia Pozvonochnika, 2017, vol. 14, no. 5, pp. 15-22. DOI: 10.14531/ss2017.3.15-22.

9. Saifutdinov M.S., Skripnikov A.A., Savin D.M., Ochirova P.V., Tretjakova A.N. Metodicheskie problemy razvitiia intraoperatsionnoho neiromonitoringa pri operativnoi korrektsii deformatsii pozvonochnika (obzor literatury) [Methodological problems of intraoperative neuromonitoring during operative correction of spinal deformity (literature review)]. Genii Ortopedii, 2017, vol. 25, no. 1, pp. 102-110. (in Russian) DOI: 10.18019/1028-4427-2017-23-1-102-110.

10. Cavendish M.E. Congenital elevation of the scapula. J. Bone Joint Surg. Br., 1972, vol. 54, no. 3, pp. 395-408.

11. Rigault P., Puoliquen I.C., Guyonvarch G., Zuivotic I. Von prehensory surgery to the scapula: a case report. J. Bone Joint Surg. Am., 1961, vol. 43, pp. 219-228. DOI: 10.1016/j.jotsr.2009.04.015.

12. Leibovic S.J., Ehrlich M.G., Zaleske D.J. Sprengel deformity. J. Bone Joint Surg. Am., 1990, vol. 72, no. 2, pp. 192-197.

13. Andreault G., Salmeron F., Laville J.M. Green's surgical procedure in Sprengel's deformity: cosmetic and functional results. Int. Orthop., 2018, vol. 42, no. 9, pp. 2191-2197. DOI: 10.1007/s00264-018-3887-x.

14. Shein A.P., Krivoruchko G.A., Riabykh S.O. Reaktivnost i rezistentnost spinno-mozgovykh struktur pri vyvolchenii instrumentalnoi korrektsii deformatsii poezvonochnika (obzor literatury) [Reactivity and resistance of cerebrospinal structures when performing instrumental correction of the spine deformities]. Rossiiskii Fiziologicheskii Zhurnal im. I.M. Sechenova, 2016, vol. 102, no. 12, pp. 1495-1504. (in Russian)

15. Saifutdinov M.S., Riabykh S.O. Neirofiziologicheskii kontrol' funktsionalnogo sostoyaniia piramidnoi sistemy v protsesse lecheniia bolnykh s deformatsiei pozvonochnika [Neurophysiological control of the pyramidal system functional condition in the process of treating patients with the spine deformity]. Nevrologicheskii Zhurnal, 2018, vol. 23, no. 5, pp. 248-258. (in Russian)

Information about the authors:
1. Sergey O. Ryabykh, M.D., Ph.D., Russian Ilizarov Scientific Center for Restorative Traumatology and Orthopaedics, Kurgan, Russian Federation, Email: rso@mail.ru
2. Dmitry M. Savin, M.D., Ph.D., Russian Ilizarov Scientific Center for Restorative Traumatology and Orthopaedics, Kurgan, Russian Federation
3. Marat S. Saifutdinov, Ph.D. of Biological Sci., Russian Ilizarov Scientific Center for Restorative Traumatology and Orthopaedics, Kurgan, Russian Federation
4. Polina V. Ochirova, M.D., Ph.D., Russian Ilizarov Scientific Center for Restorative Traumatology and Orthopaedics, Kurgan, Russian Federation
5. Alexander V. Gubin, M.D., Ph.D., Russian Ilizarov Scientific Center for Restorative Traumatology and Orthopaedics, Kurgan, Russian Federation
6. Egor Yu. Filatov, M.D., Russian Ilizarov Scientific Center for Restorative Traumatology and Orthopaedics, Kurgan, Russian Federation
7. Gleb E. Ulrikh, M.D., Ph.D., Professor, Saint-Petersburg State Pediatric Medical University, Saint-Petersburg, Russian Federation, Email: gleb.ulrikh@yandex.ru
8. Alexander A. Skripnikov, M.D., Ph.D., Russian Ilizarov Scientific Center for Restorative Traumatology and Orthopaedics, Kurgan, Russian Federation, Email: skripnikov2007@mail.ru

Сведения об авторах:
1. Рябых Сергей Олегович, д. м. н., Email: rso@mail.ru
2. Дмитрий Михайлович Савин, д. м. н., Email: rso_hospital@yandex.ru
3. Полина В. Охирова, к. м. н., Email: rso_@mail.ru
4. Егор Ю. Филатов, к. м. н., Email: gleb1456@yandex.ru
5. Александр Александрович Антоньович, к. м. н., Email: skripnikov2007@mail.ru

Рукопись поступила 29.07.2019