Stomatal conductance influences interannual variability and long-term changes in regional cumulative plant uptake of ozone

Olivia E Clifton, Danica L Lombardozzi, Arlene M Fiore, Fabien Paulot and Larry W Horowitz

1 National Center for Atmospheric Research, Boulder, CO, United States of America
2 Department of Earth and Environmental Sciences, Columbia University, and Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, United States of America
3 Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ, United States of America
4 National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory, Princeton, NJ, United States of America

E-mail: oclifton@ucar.edu

Abstract

Ambient ozone uptake by plant stomata degrades ecosystem and crop health and alters local-to-global carbon and water cycling. Metrics for ozone plant damage are often based solely on ambient ozone concentrations, overlooking the role of variations in stomatal activity. A better metric is the cumulative stomatal uptake of ozone (CUO), which indicates the amount of ozone entering the leaf over time available to cause physiological damage. Here we apply the NOAA GFDL global earth system model to assess the importance of capturing interannual variations and 21st century changes in surface ozone versus stomatal conductance for regional mean CUO using 20-year time-slice simulations at the 2010s and 2090s for a high-warming climate and emissions scenario. The GFDL model includes chemistry-climate interactions and couples atmospheric and land components through not only carbon, water, and energy exchanges, but also reactive trace gases—in particular, ozone dry deposition simulated by the land influences surface ozone concentrations. Our 20-year time slice simulations hold anthropogenic precursor emissions, well-mixed greenhouse gases, and land use distributions fixed at either 2010 or 2090 values. We find that CUO responds much more strongly to interannual and daily variability in stomatal conductance than in ozone. On the other hand, long-term changes in ozone explain 44%–90% of the annual CUO change in regions with decreases, largely driven by the impact of 21st century anthropogenic NOx emission trends on summer surface ozone. In some regions, increases in stomatal conductance from the 2010s to 2090s counteract the influence of lower ozone on CUO. We also find that summertime stomatal closure under high carbon dioxide levels can offset the impacts of higher springtime leaf area (e.g. earlier leaf out) and associated stomatal conductance on CUO. Our findings underscore the importance of considering plant physiology in assessing ozone vegetation damage, particularly in quantifying year-to-year changes.

1. Introduction

Plant stomata control the uptake of carbon dioxide for photosynthesis and release of water vapor into the atmosphere through transpiration. Ambient ozone diffuses through open stomata and reacts quickly with fluids and tissues once inside the leaf (Laisk et al 1989, Wang et al 1995). Stomatal uptake of ozone serves as an important removal pathway of tropospheric ozone (Wesely and Hicks 2000, Fowler et al 2009, Clifton et al 2020a), which is a potent greenhouse gas, air pollutant, and a strong lever on the atmospheric oxidation capacity. Oxidation inside the leaf following stomatal ozone uptake causes cell death and decreases carbon fixation, leading to necrosis, reduced ecosystem productivity and carbon storage over time (Fiscus et al 2005, Ainsworth et al 2012), and lost crop yields (Mauzerall and Wang 2001, Morgan et al 2003, Feng et al 2008, Tai et al 2014, McGrath et al 2015). By changing local-to-global carbon cycling as well as altering energy and water exchanges, stomatal ozone uptake influences meteorology, climate, and
air quality (Sitch et al. 2007, Lombardozzi et al. 2015; Super et al. 2015, Li et al. 2016, 2018, Sadiq et al. 2017, Zhou et al. 2018).

Changes in ecosystem functioning and land-atmosphere exchanges due to ozone plant damage depend on the cumulative stomatal uptake of ozone (CUO) (e.g. Musselman et al. 2006). While the argument for including CUO in ozone plant damage metrics is decades old (Reich 1987, Musselman and Massman 1999, Matyssek et al. 2004, Paololetti and Manning 2007), damage or risk is often evaluated based solely on metrics of ambient ozone concentrations (McLaughlin et al. 2007, Hollaway et al. 2012, Sun et al. 2012, Tai et al. 2014, Lapina et al. 2014, Mills et al. 2018) given the paucity of observational constraints on CUO. Recent work, leveraging a gridded surface ozone observational product (Schnell et al. 2014) and observed water fluxes from tower sites (Pastorello et al. 2017), highlights the limitations of concentration-based metrics in capturing interannual and spatial variations in CUO across 100+ sites in the United States and Europe (Ducker et al. 2018), in agreement with the findings of work at individual sites (e.g. Gerosa et al. 2004) and modeling studies (Mills et al. 2011, De Marco et al. 2015, Anav et al. 2016).

Ozone damage to plants depends not only on CUO but also on the plants’ ability to detoxify and respond to ozone (Musselman and Massman 1999, Massman et al. 2000, Musselman et al. 2006, Paololetti and Manning 2007, Matyssek et al. 2008). For example, plants scavenge some of the ozone inside the leaf such that a certain amount of ozone does not pose a risk to the plant other than by depleting detoxification reserves. Detoxification has been shown to depend on environmental conditions and species (e.g. Musselman et al. 2006), and recently on the ratio of dry leaf mass to leaf area in woody plants (Feng et al. 2018), but is highly uncertain, especially at regional scales (Karnosky et al. 2007, Lombardozzi et al. 2015, Jolivet et al. 2016).

Parameterizations that include plant detoxification and responses to ozone in regional-to-global models are used to assess the impacts of CUO on crop yields, carbon and water cycling, climate, and air quality (Sitch et al. 2007, Lombardozzi et al. 2015, 2018, Li et al. 2016, 2018, Sadiq et al. 2017, Oliver et al. 2018, Arnold et al. 2018, Unger et al. 2020, Lei et al. 2020). Most studies employing damage parameterizations in large-scale models probe either the carbon and water cycling impacts of ‘turning on’ schemes, or the impacts of changes in either surface ozone or stomatal conductance (g_s). While some of these studies examine the impacts of changes in both ozone and g_s, they do not separate how changes in ozone versus g_s drive the changes in impacts.

Because surface ozone and g_s both influence CUO but respond to meteorology and the land surface differently, there may be individual changes in ozone and g_s that counteract and limit, or compound and amplify, changes in CUO. Indeed Ronan et al. (2020) use the Ducker et al. (2018) CUO dataset to illustrate that recent reductions in ozone air pollution at sites in the US and Europe due to NOx (= NO + NO2) emission controls do not benefit plants due to offsetting increases in g_s. Other work modeling CUO suggests counteracting changes in g_s and surface ozone on CUO at present day (Anav et al. 2019) and by the end of the 21st century (Klingberg et al. 2011) over Europe. These studies use uncoupled modeling frameworks, where meteorology from a regional climate model is fed into a regional chemical transport model and g_s used for CUO is inconsistent with g_s used for determining ambient ozone through dry deposition as well as with g_s used for energy and water exchanges. Here, we use a new version of a global earth system model with chemistry-climate interactions and self-consistent land-atmosphere exchanges of carbon, water, heat, and reactive gases including ozone (Paulot et al. 2018, Clifton et al. 2020b) to explore the roles of surface ozone versus g_s in driving interannual and long-term variability in CUO. In particular, we show a critical role for interannual variations and 21st century changes in g_s on regional mean CUO.

2. Methods

We use the NOAA GFDL global chemistry-climate model AM3, which includes stratosphere-troposphere gas-phase and aerosol chemistry (Donner et al. 2011, Naik et al. 2013). AM3 is the atmospheric component of the fully coupled atmosphere-ocean general circulation model CM3, which was used and evaluated extensively in the 5th phase of the Coupled Model Intercomparison Project (CMIP5). The underlying land surface model of AM3/CM3 is LM3 (Shevlakova et al. 2009, Milly et al. 2014), which includes water, energy, and carbon cycling, vegetation dynamics and land use and management, and is coupled to atmospheric dynamics and radiation via surface albedo, surface roughness, and exchanges of water, energy, and momentum. We use a new version of AM3 called AM3DD where the land and tropospheric chemistry are coupled through dry deposition of reactive gases like ozone (Paulot et al. 2018, Clifton et al. 2020b). Because AM3 and LM3 are fully coupled, we refer to the GFDL model as an earth system model (note that we reduce computational expense by forcing sea surface temperatures and sea ice).

We examine time-slice AM3DD simulations of RCP8.5 at the 2010s and 2090s. RCP8.5 is an emissions and climate scenario designed by CMIP5 for the IPCC Fifth Assessment Report (Moss et al. 2010, van Vuuren et al. 2011). Each AM3DD simulation contains 20 years. Well-mixed greenhouse gases are prescribed at 2010 and 2090 values for the 2010s and
2090s simulations, respectively, and sea surface temperatures and sea ice are prescribed with 2010s or 2090s decadal averages from three ensemble members of transient RCP8.5 simulations from CM3. Anthropogenic pollutant emissions are constant from year to year throughout each simulation, fixed at 2010 or 2090 levels. Soil NO emissions are prescribed and constant from year to year (Naik et al. 2013). Isoprene emissions are calculated online with a version of MEGAN (Guenther et al. 2006, Emmons et al. 2010, Rasmussen et al. 2012). Lightning NO emissions are also calculated interactively; global lightning NO emissions scale with global surface temperature (John et al. 2012).

Central to the land-atmosphere exchanges of water, energy, and reactive trace gases in AM3DD is the stomatal resistance (R_s) simulated by LM3 (note that a resistance is the inverse of a conductance). The prognostic variable R_s for water vapor (m s$^{-1}$) is calculated from net photosynthesis (A_{net}) via the Leuning (1995) model:

$$R_s = \frac{1}{LAI \cdot RT_{leaf}} \left(\frac{1 + \frac{d_l}{m}}{m} \right) \frac{c_l - \Gamma}{A_{net}}$$

The parameter R_b is the universal gas constant (1 mol air$^{-1}$ K$^{-1}$); T_{leaf} is leaf temperature (K); p_i is surface pressure (Pa); m is an empirical constant (unitless); d_l is the vapor pressure deficit (kg H$_2$O kg air$^{-1}$); d_o is an empirical constant (kg H$_2$O kg air$^{-1}$); c_l is carbon dioxide concentration internal to the leaf (mol CO$_2$ mol air$^{-1}$); Γ is carbon dioxide compensation point of assimilation in the presence of dark respiration (mol CO$_2$ mol air$^{-1}$); LAI is leaf area index (m2 m$^{-2}$). A_{net} (mol CO$_2$ m$^{-2}$ s$^{-1}$) is calculated following Farquhar et al. (1980) and Collatz et al. (1991, 1992). A_{net} is only calculated when LAI and photosynthetically active radiation at the canopy top are greater than zero.

The variable g_s is scaled by a fractional parameter that balances the water supply from the roots with demand when supply is less than demand (Milly et al. 2014). The minimum value of g_s is 0.01 mol m$^{-2}$ s$^{-1}$, and the maximum is 0.25 mol m$^{-2}$ s$^{-1}$ (both applied before conversion to m s$^{-1}$). g_s of ozone is estimated by scaling g_s by the ratio of the diffusivity of ozone by the diffusivity of water vapor.

CUO requires concurrent estimates of the effective stomatal conductance (eg_s) and ambient ozone concentrations. eg_s is the contribution of stomatal uptake to the ozone deposition velocity (v_d), a measure of the efficiency of the total ozone deposition sink irrespective of surface ozone concentration, in velocity units. Hereinafter, we will use the term g_s to represent the conductance for ozone diffusion through stomata, whereas eg_s to represent the strength of the removal of ozone by stomata. The variable v_d (m s$^{-1}$) is given by equation (2) in the dry deposition parameterization in AM3DD:

$$v_d = \left(\frac{R_a + \frac{1}{R_{b,veg} + \frac{1}{R_{stem}}} + \frac{1}{R_{cut}}} {R_a + \frac{1}{R_{b,veg} + \frac{1}{R_{stem}}} + \frac{1}{R_{cut}}} \right)^{-1}$$ (2)

This parameterization is based on a resistance network analogous to the treatment of resistances in Ohm’s law for electrical circuits. The variable R_a is the resistance to turbulent transport of ozone from the bottom of the atmospheric model to canopy height. In our big-leaf parameterization, all leaves are at canopy height. The variable $R_{b,veg}$ is the resistance to transport through the quasi-laminar boundary layer around vegetation, R_m is the resistance to ozone reactions inside the leaf, R_{cut} is the resistance to ozone uptake by leaf cuticles, R_{stem} is the resistance to ozone uptake by stems, R_{soil} is the resistance to transport through the quasi-laminar boundary layer around soil, and R_{stem} is the resistance to ozone uptake by soil. Descriptions of R_a, R_{cut}, $R_{b,veg}$, R_{stem}, R_{soil} can be found in Clifton et al (2020b).

CUO (mmol O$_3$ m$^{-2}$) should be estimated at a frequency that captures surface ozone and eg_s diel cycles. We calculate CUO for the 2010s and 2090s as the cumulative sum of hourly stomatal ozone fluxes (F_{stom,O_3}; mmol m$^{-2}$ h$^{-1}$) over a year. F_{stom,O_3} is calculated by multiplying hourly fields of ozone in mmol m$^{-3}$ and eg_s in m h$^{-1}$. F_{stom,O_3} follows Fick’s law and assumes no ozone internal to the leaf given ozone’s high reactivity with internal fluids and tissues (Laik et al 1989, Wang et al 1995, Omasa et al 2000, Sun et al 2016).

We do not employ a detoxification threshold for ozone damage here. A threshold is primarily used to
account for the plant’s ability to detoxify ozone after it enters stomata and pertains more to the estimation of plant damage from CUO than the amount of ozone actually entering the leaf. The focus of our paper is not to quantify plant damage, but instead to quantify how variability in eg, and ambient ozone concentrations affect CUO.

We quantify the influence of daily and interannual variations in surface ozone versus eg, on CUO by calculating CUO from hourly archived fields of eg, and ozone from AM3DD (Clifton 2020). We identify the impact of variations in ozone on CUO by subtracting year-specific annual CUO from annual CUO calculated with year-specific hourly-varying eg, but multiyear monthly mean diel cycles of ozone. In other words, for each year (y), the difference in annual CUO is: $\Delta \text{CUO}_{\text{y}} = \sum_{j=1}^{8760} O_3(y, h) \text{eg}_j(y, h)$ where the overbar is the multiyear monthly mean diel cycle transposed into an hourly array for all hours in a year, and h is hour. To identify the impact of variations in eg, on CUO, we subtract year-specific annual CUO from annual CUO calculated with year-specific hourly-varying ozone but multiyear monthly mean diel cycles of eg, $\Delta \text{CUO}_{\text{y}} = \sum_{j=1}^{8760} O_3(y, h) \text{eg}_j(y, h)$.

To identify how changes in eg, versus surface ozone alter CUO over the 21st century, we calculate CUO in two ways: (i) with multiyear monthly mean diel cycles of ozone from the 2010s, but multiyear monthly mean diel cycles of eg, from the 2090s ($\Delta \text{CUO}_{\text{y}}$) or annual CUO calculated with year-specific hourly-varying ozone but multiyear monthly mean diel cycles of eg, ($\Delta \text{CUO}_{\text{y}}$). Only grid cells with >50% land area are included.

3. Large role for interannual variability in stomatal uptake on CUO

CUO varies strongly from year to year, with the 2010s annual CUO relative interannual spread (coefficient of variation) ranging from 3.7% to 21.4% across regions. Meteorological variability influences both surface ozone and g_s, For example, there is a strong correlation between ozone and temperature on daily and interannual timescales largely from the influence of transport patterns (Vukovich 1995, Barnes and Fiore 2013, Porter and Heald 2019, Kerr et al 2019). Variations in ecosystem-scale evapotranspiration and gross primary productivity, observable quantities related to g_s, are influenced by meteorology on hourly-to-interannual timescales and by phenology and soil moisture, which vary more slowly, on seasonal and interannual timescales (Wilson and Baldocchi 2000, Katul et al 2001, Stoy et al 2005, Chen et al 2009, Baldocchi et al 2018).

The influence of interannual variations in eg, on annual CUO is substantially larger than the influence of interannual variations in surface ozone for most

![Figure 1.](image-url)
Figure 2. Regional multiyear mean yearly progression of CUO for the 2010s, 2090s, and sensitivity calculations. CUO_{eg},2010 is calculated with 2010s multiyear monthly mean diel cycles of effective stomatal conductance, but 2090s multiyear monthly mean diel cycles of ozone while CUO_{O₃},2010 is calculated with 2090s multiyear monthly mean diel cycles of effective stomatal conductance, but 2010s multiyear monthly mean diel cycles of ozone. Only grid cells with >50% land area are included.

regions (figure 1). Variations in <i>eg</i>, are critical for a given year’s CUO relative to variations in ozone. Neglecting the role of <i>eg</i>, variations yields over- or under-estimates in annual CUO by up to 6%–58% across regions.

Only in east Asia is there a comparatively large role for variability in surface ozone. The relative interannual spread in annual <i>eg</i>, in east Asia is weak relative to the other regions (4.1% versus 11.3%–22.8%) while the relative interannual spread in annual ozone is more within the range of other regions (1.4% versus 1.4%–2.6%) at the 2010s, suggesting that low <i>eg</i>, variability leads to the larger relative role for ozone variability there. Low <i>eg</i>, variability follows little hydroclimate variability—east Asia has high simulated summer rainfall and low relative interannual variation in rainfall relative to other regions.

While <i>eg</i>, interannual and daily variability is still more important for CUO than surface ozone interannual and daily variability at the 2090s, the absolute impact of <i>eg</i>, variability lessens for several regions at the 2090s (figure 1). The smaller role of <i>eg</i>, variability at the 2090s may be due to stomatal closure under high carbon dioxide and thus a weaker plant sensitivity to environmental stress such as drought (e.g. Field <i>et al</i> 1995, Swann <i>et al</i> 2016). Indeed, the model projects increases in regional summer mean water use efficiency (gross primary productivity divided
by transpiration) of 40%–100% depending on the region.

4. Twenty-first century changes in CUO under RCP8.5

Figure 2 shows the progression of CUO throughout the year at the 2010s and 2090s. CUO increases earlier in the year by the 2090s for all regions in our analysis. However, the 21st century change in the magnitude and sign of CUO by the end of the year varies by region, with annual decreases from the 2010s to the 2090s in CUO ranging from 2 to 24 mmol O$_3$ m$^{-2}$. Annual increases in CUO only happen in the IMW US (3 mmol O$_3$ m$^{-2}$).

Comparing 2010s and 2090s CUO with $\text{CUO}_{\text{O}_3,2010}$ and $\text{CUO}_{\text{eg},2010}$ shows eg_s drives the earlier CUO increase at the 2090s (figure 2). Earlier leaf out or higher year-round LAI at the 2090s lead to higher springtime eg_s (figures S2 and S3) (available online at stacks.iop.org/ERL/15/114059/mmedia) and thus higher springtime CUO. Rising temperatures lead to earlier leaf out (e.g. Badeck et al. 2004, Richardson et al. 2013, Melaas et al. 2018) and the long-term effects of carbon dioxide fertilization lead to higher LAI (e.g. Los et al., 2013, Zhu et al. 2016, Mao et al. 2016).

There are substantial 21st century increases in winter and sometimes early spring surface ozone under RCP8.5 over the northeast US, Midwest US, central Europe, and east Asia in our simulations (figure S1) (Clifton et al. 2020b). These ozone increases tend to occur at times with low eg_s (figure 3), and thus do not substantially impact CUO. Increases in winter and early spring surface ozone follow regional reductions in anthropogenic NO$_x$ under RCP8.5 in NO$_x$-saturated regions of the northern midlatitudes (Clifton et al. 2014). This winter/early spring ozone increase is amplified by a doubling of methane under RCP8.5 (Clifton et al. 2014). Increased stratosphere-to-troposphere ozone exchange over northern midlatitudes with climate change and stratospheric ozone recovery (Hegglin and Shepherd 2009, Kawase et al. 2011, Banerjee et al. 2016) may also contribute to higher spring surface ozone in regions like the IMW US (e.g. Fiore et al. 2015).

Large decreases in annual CUO tend to occur in regions with large decreases in summer surface ozone (compare figures 2 and S1). Summer ozone decreases under RCP8.5 from the 2010s to the 2090s in all of the regions examined here (figure S1). Decreases in summer surface ozone follow regional reductions in anthropogenic NO$_x$ emissions under RCP8.5 (Gao et al. 2013, Pfister et al. 2014, Clifton et al. 2014, Rieder et al. 2018), which are 66%–69% for 2010 to 2090 for the regions considered. The 21st century summer surface ozone decreases range from -7 ppb (east Asia) to -18 ppb (southeast US) (figure S3) (Clifton et al. 2020b). Differences in 2010 regional NO$_x$ emissions, local ambient chemistry, and dry deposition, as well as background ozone contribute to regionally varying responses to changes in regional NO$_x$ emissions.
While springtime CUO is higher for all regions by the 2090s, summertime CUO is lower for many regions because summertime e_g is lower by the 2090s (figures 2 and S3). Lower summertime CUO from changes in e_g counteracts higher springtime CUO from changes in e_g for all regions except the IMW and southwest US (compare 2010s and ozone_2010s CUO in figure 2). Similar summertime e_g at the 2010s and 2090s in the IMW and southwest US (figure S3) is likely due to offsetting between the expansion of vegetation coverage in these regions (Clifton et al 2020b) and the short-term impacts of high carbon dioxide on e_g, (i.e. stomatal closure) (e.g. Field et al 1995, Betts et al 1997, Ainsworth and Rogers 2007). Lower 2090s summer e_g in the other regions (figure S3) likely follows stomatal closure due to high carbon dioxide. The 21st century e_g changes sometimes counteract or amplify the influence of surface ozone changes on CUO (figure 2). For the IMW US, slightly higher e_g for most of the year increases CUO and lower ozone decreases CUO, yielding little 21st century CUO change by the end of the year. For most other regions, lower e_g during nonwinter months (figure S3) leads to larger reductions in annual CUO by the 2090s, relative to the CUO reductions due to changes in ozone alone. For the SW US, reductions in annual CUO mostly stem from ozone reductions. While offsetting by temporally opposing changes in e_g and/or ozone imply that 21st century changes in annual CUO in some regions may be relatively small, temporal differences in the plant sensitivity to ozone (e.g. Musselman et al 2006, Heath et al 2009) may need to be considered in assessing how these CUO changes affect ecosystems.

In general, 21st century changes in e_g are uncertain, especially with respect to the impacts of increasing carbon dioxide and how other processes may offset or amplify such impacts (Friedlingstein et al 2006, Wieder et al 2015, Terrer et al 2016, Smith et al, 2016, 2016b, Alton 2018, Humphrey et al 2018, Green et al 2019, Sulman et al 2019, Yuan et al 2019). This uncertainty implies a need to explore simulated responses of CUO to 21st century changes across different land models and individual model configurations, as well as theoretical frameworks for stomatal functioning (Katul et al 2010, Medlyn et al 2011, Wang et al 2017, 2020).

5. Conclusion

Here we probe the cumulative ozone uptake by stomata, a metric that accounts for the amount of ozone entering the leaf that can cause physiological injury. We examine the relative importance of temporal changes in surface ozone versus stomatal uptake using a new version of the GFDL global earth system model where the atmosphere and land are coupled through exchanges of carbon, water, and energy as well as dry deposition of reactive gases including ozone. We find that accurate estimates of the cumulative stomatal ozone uptake require considering interannual variations in stomatal functioning, supporting observational and modeling evidence that recent changes in cumulative stomatal ozone uptake cannot be explained by ozone changes alone (e.g. Anav et al 2019, Ronan et al 2020). We emphasize that our study is a sensitivity analysis of the influence of ozone versus stomatal conductance on the cumulative stomatal ozone uptake—an assessment of changes in ozone damage requires advanced understanding of plant detoxification ability and responses to ozone at regional scales. Decreases in water use efficiency from ozone plant damage (Lombardozzi et al 2015, Hoshika et al 2015) may increase the effect of water stress on plants and thus alter interannual variability in stomatal activity, implying a need to better understand how variability in stomatal ozone uptake feeds back on itself. Nonetheless, our results suggest that, without substantial changes in NO$_x$ emissions from year to year, the highest ozone damage may occur in highly productive (i.e. high stomatal conductance) years, rather than high-ozone years. The important role for interannual variability and 21st century changes in stomatal conductance highlighted here challenges the validity of widely used approaches employing only ambient ozone concentrations to assess ozone plant damage and protect vegetation.

Acknowledgments

This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977. Development of the NOAA GFDL model with ozone dry deposition was supported by NOAA’s Climate Program Office’s Atmospheric Chemistry, Carbon Cycle, and Climate program Grant NA14OAR4310133.

Data availability statement

The data that support the findings of this study are openly available at the following DOI: https://doi.org/10.5065/wwd5-2s62

ORCID iDs

Olivia E Clifton https://orcid.org/0000-0002-1669-9878
Danica L Lombardozzi https://orcid.org/0000-0003-3557-7929
Arlene M Fiore https://orcid.org/0000-0003-0221-2122
Fabien Paulot https://orcid.org/0000-0001-7534-4922
References

Ainsworth E A and Rogers A 2007 The response of photosynthesis and stomatal conductance to rising [CO₂]; mechanisms and environmental interactions Plant Cell Environ. 30 258–70
Ainsworth E A, Yendrek C R, Sitch, S, Collins W J and Emmerson L D 2012 The effects of tropospheric ozone on net primary productivity and implications for climate change Atmos. Rev. Plant Biol. 63 637–61
Alton P B 2018 Decadal trends in photosynthetic capacity and leaf area index inferred from satellite remote sensing for global vegetation types Agric. Forest Meteorol. 250 361–75
Anav A, De Marco A, Friedlingstein P, Savi, E, Sicard, P, Stitch, S, Vitale M and Paoletti E 2019 Growing season extension affects ozone uptake by European forests Sci. Total Environ. 669 1043–52
Anav A, De Marco A, Proietti C, Alessandri A, Dell’Aquila A, Ciommi I and Sicard P 2016 Comparing concentration-based (AOT40) and stomatal uptake (PODY) metrics for ozone risk assessment to European forests Glob. Change Biol. 22 1608–27
Arnold S R et al 2018 Simulated global climate response to tropospheric ozone-induced changes in plant transpiration Geophys. Res. Lett. 45 13070–9
Badeck F W, Bonneau A, Böttcher K, Doktor D, Lucht W, Schaber J and Stitch S 2004 Responses of spring phenology to climate change New Phytol. 162 295–309
Baldocchi D, Chi H and Reichstein M 2018 Inter-annual variability of net and gross ecosystem carbon fluxes: A review Agric. Forest Meteorol. 249 520–53
Banerjee A, Maycock A C, Archibald A T, Abraham N L, Telford P, Braesich P and Pyle J A 2016 Drivers of changes in stratospheric and tropospheric ozone between year 2000 and 2100 Atmos. Chem. Phys. 16 2727–46
Barnes E A and Fiore A M 2013 Surface ozone variability and the jet position: implications for projecting future air quality Geophys. Res. Lett. 40 2839–44
Betts R A, Cox P M, Lee S E and Woodward F J 1997 Contrasting physiological and structural vegetation feedbacks in climate change simulations Nature 387 796–9
Chen B, Black T A, Coops N C, Krishnan P, Jassal R, Bruemmer C and Nesic Z 2009 Seasonal controls on interannual variability in carbon dioxide exchange of a near-end-of-rotation Douglas-fir stand in the Pacific Northwest, 1997–2006 Glob. Change Biol. 15 1962–81
Clifton O 2020 Datasets used in ‘Stomatal conductance and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer Agric. Forest Meteorol. 269 26–36
Clifton O E et al 2020a Dry deposition of ozone over land: processes, measurement, and modeling Rev. Geophys. 58 e2019RG006070
Clifton O E et al 2020b Influence of dynamic ozone dry deposition on ozone pollution J. Geophys. Res. e2020JD032398
Clifton O E, Fiore A M, Correa G, Horowitz L W and Naik V 2014 Twenty-first century reversal of the surface ozone seasonal cycle over the northeastern United States Geophys. Res. Lett. 41 7434–30
Collatz G J, Ball J T, Grott C and Berry J A 1991 Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer Agric. Forest Meteorol. 54 107–36
Collatz G J, Ribas-Carbo M and Berry J A 1992 Coupled photosynthesis stomatal conductance model for leaves of C4 plants Funct. Plant Biol. 19 519–38
De Marco A, Sicard P, Vitale M, Carriero G, Renou C and Paoletti E 2015 Metrics of ozone risk assessment for Southern European forests: canopy moisture content as a potential plant response indicator Atmos. Environ. 120 182–90
Donner L J et al 2011 The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3 J. Clim. 24 13
Ducker J A, Holmes C D, Keenan T F, Fares S, Goldstein A H, Mammarella I, Munger J W and Schnell J I 2018 Synthetic ozone deposition and stomatal uptake at flux tower sites Biogosciences 15 5395–413
Emmons L K et al 2010 Description and evaluation of the model for ozone and related chemical tracers, version 4 (MOZART-4) Geosci. Model Dev. 3 43–67
Farquhar G D, von Caemmerer S and Berry J A 1980 A biochemical model of photosynthetic CO₂ assimilation in leaves of C3 species Planta 149 78–90
Feng Z, Bükler P, Pleijel H, Emmerson L, Carlsson P E and Uddling J 2018 A unifying explanation for variation in ozone sensitivity among woody plants Glob. Change Biol. 24 78–84
Feng Z, Kobayashi K and Ainsworth E A 2008 Impact of elevated ozone concentration on growth, physiology, and yield of wheat (Triticum aestivum L.): a meta-analysis Glob. Change Biol. 14 2096–708
Field C B, Jackson R B and Mooney H A 1995 Stomatal responses to increased CO₂: implications from the plant to the global scale Plant Cell Environ. 18 1214–25
Fiore A M, Naik V and Leibensperger E M 2015 Air quality and climate connections J. Air Waste Manage. Assoc. 65 645–85
Fiscus E L, Booker F L and Burkey K O 2005 Crop responses to ozone: modes of action, carbon assimilation and partitioning Plant Cell Environ. 28 997–1011
Fowler D 2009 Atmospheric composition change: ecosystems-atmosphere interactions Atmos. Environ. 43 5193–267
Friedlingstein P et al 2006 Climate–carbon cycle feedback analysis: results from the C3MIP model inter-comparison J. Clim. 19 5337–53
Gao Y, Fu J S, Drake J B, Lamarque J F and Liu Y 2013 The impact of emission and climate change on ozone in the United States under representative concentration pathways (RCPs) Atmos. Chem. Phys. 13 9607–21
Gerosa G, Marzuoli R, Cieslik S and Ballarin-Denti A 2004 Stomatal ozone fluxes over a barley field in Italy. ‘Effective exposure’ as a possible link between exposure-and-flux-based approaches Atmos. Environ. 38 2421–32
Green J K, Seneviratne S I, Berg A M, Findell K L, Hagemann S, Lawrence D M and Gentile P 2019 Large influence of soil moisture on long-term terrestrial carbon uptake Nature 565 476
Guenther A, Karl T, Harley P, Wiedinmyer C, Palmer P and Geron C 2006 Estimates of global terrestrial isoprene emissions using MEGAN (model of emissions of gases and aerosols from nature) Atmos. Chem. Phys. 6 3181–210
Heath R L, Lefohn A S and Musselman R C 2009 Temporal processes that contribute to nonlinearity in vegetation responses to ozone exposure and dose Atmos. Environ. 43 2919–28
Hegglin M I and Shepherd T G 2009 Large climate-induced changes in ultraviolet index and stratosphere-to-troposphere ozone flux Nat. Geosci. 2 687–91
Holloway M J, Arnold S R, Challinor A J and Emmerson L D 2012 Intertropical trans-boundary contributions to ozone-induced crop yield losses in the Northern Hemisphere Biogeosciences 9 271–92
Hoshika Y, Katata G, Deushi M, Watanabe M, Koike T and Sitch S 2015 Ozone-induced stomatal sluggishness affects ozone uptake by European forests Environ. Res. Lett. 11 4403
Humphrey V, Zechmeister-Chier, J, Ciais P, Gudmundsson L, Sitch S and Seneviratne S I 2018 Sensitivity of atmospheric CO₂ growth
rate to observed changes in terrestrial water storage Nature 560 628

John J G, Fiore A M, Naik V, Horowitz L W and Dunne J P 2012 Climate versus emission drivers of methane lifetime against loss by tropospheric oh from 1860–2100 Atmos. Chem. Phys. 12 12021–12036

Jolivet Y, Bagard M, Cabané M, Vautier M N, Gandin A, Affif D, Dizengremel P and Le Thiec D 2016 Deciphering the ozone-induced changes in cellular processes: a prerequisite for ozone risk assessment at the tree and forest levels Ann. Forest Sci. 73 923–43

Karnosky D F et al 2007 Free-air exposure systems to scale up ozone research to mature trees Plant Biol. 9 181–90

Katul G, Lai T C, Schäfer K, Vidakovic B, Albertson J, Ellsworth D and Oren R 2001 Multiscale analysis of vegetation surface fluxes: from seconds to years Adv. Water Resour. 24 1119–32

Katul G, Manzoni S, Palmroth S and Oren R 2010 A stomatal optimization theory to describe the effects of atmospheric CO2 on leaf photosynthesis and transpiration Ann. Bot. 105 431–42

Kawase H, Nagashima T, Sudo K and Nozawa T 2011 Future changes in tropospheric ozone under representative concentration pathways (RCPs) Geophys. Res. Lett. 38 L05801

Kerr G H, Wough D W, Strode S A, Steenrod S D, Oman L D and Strahan S E 2019 Disentangling the drivers of the summertime ozone-temperature relationship over the United States J. Geophys. Res. 124 10503–24

Klingberg J, Engardt M, Uddling J, Karlsson P E and Pleijel H 2011 Ozone risk for vegetation in the future climate of Europe based on stomatal ozone uptake calculations Tellus A 63 174–87

Laisk A, Kull O and Moldau H 1989 Ozone concentration in leaf intercellular air spaces is close to zero Plant Physiol. 90 1163–7

Lapina K et al 2014 Assessment of source contributions to seasonal vegetative exposure to ozone in the US J. Geophys. Res. 119 324–40

Lapina K, Henze D K, Milford J B and Travis K 2016 Impacts of foreign, domestic, and state-level emissions on ozone-induced vegetation loss in the United States Environ. Sci. Technol. 50 806–13

Lei Y, Yue X, Liao H, Gong C and Zhang L 2020 Implementation of Yale Interactive terrestrial Biosphere model v1.0 into GEOS-Chem v12.0.0: a tool for biosphere-chemistry interactions Geosci. Model Dev. 13 1137–53

Leuning R 1995 A critical appraisal of combined stomatal-photosynthesis model for C3 plants Plant Cell Environ. 18 339–55

Li J, Mahalov A and Hyde P 2016 Simulating the impacts of chronic ozone exposure on plant conductance and photosynthesis, and on the regional hydroclimate using WRF/Chem Environ. Res. Lett. 11 114017

Li J, Mahalov A and Hyde P 2018 Simulating the effects of chronic ozone exposure on hydrometeorology and crop productivity using a fully coupled crop, meteorology and air quality modeling system Agric. Forest Meteorol. 260–261 287–99

Lombardozzi D L, Bonan G B, Levis S and Lawrence D M 2018 Changes in wood biomass and crop yields in response to projected CO2, O3, nitrogen deposition, and climate J. Geophys. Res. Biogeosci. 123 3262–82

Lombardozzi D, Levis S, Bonan G, Hess P G and Sparks J P 2015 The influence of chronic ozone exposure on global carbon and water cycles J. Clim. 28 292–305

Los S O 2013 Analysis of trends in fused AVHRR and MODIS NDVI data for 1982–2006: indication for a CO2 fertilization effect in global vegetation Glob. Biogeochem. Cycles. 27 318–30

Mao J et al 2016 Human-induced greening of the northern extratropical land surface Nat. Clim. Change 6 959–63

Massman W J, Musselman R C and Lefohn A S 2000 A conceptual ozone dose-response model to develop a standard to protect vegetation Atmos. Environ. 34 745–59

Matyssek R et al 2004 Comparison between AOT40 and ozone uptake in forest trees of different species, age and site conditions Atmos. Environ. 38 2271–81

Matyssek R, Sandermann H, Wieser G, Booker F, Cieslik S, Musselman R and Ernst D 2008 The challenge of making ozone risk assessment for forest trees more mechanistic Environ. Pollut. 156 567–82

Mauzerall D L and Wang X 2001 Protecting agricultural crops from chronic ozone exposure: reconciling science and standard setting in the United States, Europe, and Asia Ann. Rev. Energy. Environ. 26 237–68

McGrath J M, Betzelberger A M, Wang S, Shook E, Zhu X G, Long S P and Ainsworth E A 2015 An analysis of ozone damage to historical maize and soybean yields in the United States Proc. Natl. Acad. Sci. 112 14390–5

McLaughlin S B, Wuichichler S D, Sun G and Nosal M 2007 Interactive effects of ozone and climate on water use, soil moisture content and streamflow in a southern Appalachian forest in the USA New Phytol. 174 125–36

Medlyn B E, Duursma R A, Eamus D, Ellsworth D S, Prentice I C, Barton C V, Crouz K Y, de Angelis P, Freeman M and Wintage I. 2011 Reconciling the optimal and empirical approaches to modelling stomatal conductance Glob. Change Biol. 17 2134–41

Melaize H K, Sulla-Menashi D and Friedli M A 2018 Multidecadal changes and interannual variation in springtime phylogeny of North American temperate and boreal deciduous forests Geophys. Res. Lett. 45 2679–87

Mills G et al 2018 Tropospheric ozone assessment report: present-day tropospheric ozone distribution and trends relevant to vegetation Elem. Sci. Anth. 6 47

Mills G, Hayes F, Simpson D, Emberson L, Norris D, Harmens H and Bürk P 2011 Evidence of widespread effects of ozone on crops and (semi-) natural vegetation in Europe (1990–2006) in relation to AOT40- and flux-based risk maps Glob. Change Biol. 17 592–613

Milly P C D et al 2014 An enhanced model of land water and energy for global hydrologic and earth-system studies J. Hydrometeorol. 15 1739–61

Morgan P B, Ainsworth E A and Long S P 2003 How does elevated ozone impact soybean? A meta-analysis of photosynthesis, growth and yield Plant Cell Environ. 26 1317–28

Moss R H et al 2010 The next generation of scenarios for climate change research and assessment Nature 463 747

Musselman R C, Lefohn A S, Massman W J and Heath R L 2006 A critical review and analysis of the use of exposure-and flux-based ozone indices for predicting vegetation effects Atmos. Environ. 40 1869–89

Musselman R C and Massman W J 1999 Ozone flux to vegetation and its relationship to plant response and ambient air quality standards Atmos. Environ. 33 65–73

Naik V, Horowitz L W, Fiore A M, Ginoux P, Mao J, Aghedo A M and Levy H 2013 Impact of preindustrial to present-day changes in short-lived pollutant emissions on atmospheric composition and climate forcing J. Geophys. Res. 118 14

Oliver R J, Mercado L M, Sitch S, Simpson D M, Medlyn B E, Lin Y and Folberth G A 2018 Large but decreasing effect of ozone on crop yields over Europe Interactive terrestrial Biosphere model v1.0 into Glob. Biogeochem. Cycles 15 4245–69

Omasa K, Tobe K, Hosomi M and Kobayashi M 2000 Absorption of ozone and seven organic pollutants by Populus nigra and Camellia Sasanqua Environ. Sci. Technol. 34 2498–500

Paoletti E and Manning W J 2007 Toward a biologically significant and usable standard for ozone that will also protect plants Environ. Pollut. 150 85–95

Pastorello G, Papale D, Chu H, Trotta C, Agarwal D, Canfora E, Balどcchi D and Torn M 2017 A new data set to keep a sharper eye on land-air exchanges Eos 98 98

Paulot F, Malyshev S, Nguyen T, Crounse J D, Shevliakova E and McElroy B 2012 Ozone flux to vegetation and usable standard for ozone that will also protect plants Atmos. Environ. 38 2271–81

Paulot F, Malyshev S, Nguyen T, Crounse J D, Shevliakova E and Horowitz L W 2018 Representing sub-grid scale variations in nitrogen deposition associated with land use in a global Earth system model: implications for present and future nitrogen deposition fluxes over North America Atmos. Chem. Phys. 18 17963–78
Pfister G G et al 2014 Projections of future summertime ozone over the US J. Geophys. Res. 119 5539–82
Porter W C and Heal C L 2019 The mechanisms and meteorological drivers of the summertime ozone–temperature relationship Atmos. Chem. Phys. 19 13367–81
Rasmussen D J, Fiore A M, Naik V, Horowitz L W, Mcginnis S J and Schultz M G 2012 Surface ozone-temperature relationships in the eastern US: A monthly climatology for evaluating chemistry-climate models Atmos. Environ. 47 142–53
Reich P B 1987 Quantifying plant response to ozone: a unifying theory Tree Physiol. 3 63–91
Richardson A D, Keenan T F, Migliavacca M, Ryu Y, Sonnentag O and Toomey M 2013 Climate change, phenology, and phenological control of vegetation feedbacks to the climate system Agric. Forest Meteorol. 169 156–73
Rieder H E, Fiore A M, Clifton O E, Correa G, Horowitz L W and Naik V 2018 Combining model projections with site-level observations to estimate changes in distributions and seasonality of ozone in surface air over the U.S.A Atmos. Environ. 193 302–15
Ronan A C, Ducker D A, Schnell J L and Holmes C D 2020 Have improvements in ozone air quality reduced ozone uptake into plants? Elem. Sci. Anth. 8 2
Sadiq M, Tai A P K, Lombardozzi D and Val Martin M 2017 Effects of ozone-vegetation coupling on surface ozone air quality via biogeochemical and meteorological feedbacks Atmos. Chem. Phys. 17 3055–66
Schnell J L, Holmes C D, Jangam A and Prather M J 2014 Skill in forecasting extreme ozone pollution episodes with a global atmospheric chemistry model Atmos. Chem. Phys. 14 7721–39
Shevlakova E et al 2009 Carbon cycling under 300 years of land use change: importance of the secondary vegetation sink Glob. Biogeochem. Cycles 23 1–16
Sitch S, Cox P M, Collins W J and Huntingford C 2007 Indirect radiative forcing of climate change through ozone effects on the land-carbon sink Nature 448 791–5
Smith N G, Malyshov S L, Shevlakova E, Kattge J and Dukes J S 2016a Foliar temperature acclimation reduces simulated carbon sensitivity to climate Nat. Clim. Change 6 607
Smith W K, Reed S C, Cleveland C C, Ballantyne A R, Anderegg W R L, Wieder W R, Liu Y Y and Running S W 2016b Large divergence of satellite and earth system model estimates of global terrestrial CO2 fertilization Nat. Clim. Change 6 306
Stoy P C, Katul G G, Siqueira M B, Juang J Y, Mccarthy H R, Kim H S, Oishi A C and Oren R 2005 Variability in net ecosystem exchange from hourly to inter-annual time scales at adjacent pine and hardwood forests: a wavelet analysis Tree Physiol. 25 887–902
Subramaniam B N, Shevlakova E, Bresnok E R, Kivelin S N, Malyshov S, Menge D N I and Zhang X 2019 Diverse mycorrhizal associations enhance terrestrial carbon storage in a global model Glob. Biogeochem. Cycles 33 4
Sun G, McLaughlin S B, Porter J H, Uddling J, Mulholland P J, Adams M B and Pederson N 2012 Interactive influences of ozone and climate on streamflow of forested watersheds Glob. Change Biol. 18 3395–409
Sun S, Moravek A, von der Heyden L, Held A, Sörgel M and Kesselmeier J 2016 Twin-cuvette measurement technique for investigation of dry deposition of O3 and PAN to plant leaves under controlled humidity conditions Atmos. Meas. Tech. 9 599–617
Super I, Vila-Guerau de Arellano J and Krol M C 2013 Cumulative ozone effect on canopy stomatal resistance and thee impact on boundary layer dynamics and CO2 assimilation at the diurnal scale: A case study for grassland in the Netherlands J. Geophys. Res. Biogeosci. 120 1348–65
Swann A L, Hoffman F M, Koven C D and Randerson J T 2016 Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity Proc. Natl. Acad. Sci. 113 10019–24
Tai A P, Martin M V and Heal C L 2014 Threat to future global food security from climate change and ozone air pollution Nat. Clim. Change 4 817
Terrer C, Vicca S, Hungate B A, Phillips R P and Prentice I C 2016 Mycorrhizal association as a primary control of the CO2 fertilization effect Science 353 72–74
Unger N, Zheng Y, Yue X and Harper K L 2020 Mitigation of ozone damage to the world’s land ecosystems by source sector Nat. Clim. Change 10 134–37
van Vuuren D P et al 2011 The representative concentration pathways: an overview Clim. Change 109 5–31
Vukovich F M 1995 Regional-scale boundary layer ozone variations in the eastern United States and their association with meteorological variations Atmos. Environ. 29 2259–73
Wang D, Hinckley T M, Cumming A B and Braatne J 1995 A comparison of measured and modeled ozone uptake into plant leaves Environ. Pollut. 89 347–254
Wang H, Prentice I C, Keenan T F, Davis T W, Wright I J, Cornwell W K, Evans B J and Peng C 2017 Towards a universal model for carbon dioxide uptake by plants Nat. Plants 3 734–41
Wang Y, Sperry J S, Anderegg W R L, Venturas M D and Trugman A T 2020 A theoretical and empirical assessment of stomatal optimization modeling New Phytol. 227 311–25
Wesely M L and Hicks B B 2000 A review of the current status of knowledge on dry deposition Atmos. Environ. 34 2261–82
Wieder W R, Cleveland C C, Smith W K and Todd-Brown K 2015 Future productivity and carbon storage limited by terrestrial nutrient availability Nat. Geosci. 8 441
Wilson K B and Baldocchi D D 2000 Seasonal and interannual variability of energy fluxes over a broadleaved temperate deciduous forest in North America Agric. Forest Meteorol. 100 1–18
Yuan W et al 2019 Increased atmospheric vapor pressure deficit reduces global vegetation growth Sci. Adv. 5 8
Zhou S S, Tai A P, Sun S, Sadiq M, Heal C L and Geddes J A 2018 Coupling between surface ozone and leaf area index in a chemical transport model: strength of feedback and implications for ozone air quality and vegetation health Atmos. Chem. Phys. 18 14133–48
Zhu Z et al 2016 Greening of the Earth and its drivers Nat. Clim. Change 6 791