A platform for designing hyperpolarized magnetic resonance chemical probes

Hiroshi Nonaka1, Ryunosuke Hata1, Tomohiro Doura1, Tatsuya Nishihara1, Keiko Kumagai2, Mai Akakabe2, Masashi Tsuda3, Kazuhiro Ichikawa4 & Shinsuke Sando1,4

Hyperpolarization is a highly promising technique for improving the sensitivity of magnetic resonance chemical probes. Here we report \(^{15}\text{N}, \text{D}^9\)trimethylphenylammonium as a platform for designing a variety of hyperpolarized magnetic resonance chemical probes. The platform structure shows a remarkably long \(^{15}\text{N}\) spin–lattice relaxation value (816 s, 14.1 T) for retaining its hyperpolarized spin state. The extended lifetime enables the detection of the hyperpolarized \(^{15}\text{N}\) signal of the platform for several tens of minutes and thus overcomes the intrinsic short analysis time of hyperpolarized probes. Versatility of the platform is demonstrated by applying it to three types of hyperpolarized chemical probes: one each for sensing calcium ions, reactive oxygen species (hydrogen peroxide) and enzyme activity (carboxyl esterase). All of the designed probes achieve high sensitivity with rapid reactions and chemical shift changes, which are sufficient to allow sensitive and real-time monitoring of target molecules by \(^{15}\text{N}\) magnetic resonance.

1 INAMORI Frontier Research Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819 0395, Japan. 2 Science Research Center, Kochi University, Kochi 783 8506, Japan. 3 Center for Advanced Marine Core Research, Kochi University, Kochi 783 8502, Japan. 4 Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka 812 8582, Japan. Correspondence and requests for materials should be addressed to S.S. (email: ssando@ifrc.kyushu-u.ac.jp).
Considerable effort has long been dedicated to the molecular analysis of living systems. In particular, molecular analysis has recently been attempted for complex systems in cell assembly, tissue, organ and body. Magnetic resonance (MR)-based techniques—MR imaging (MRI) or MR spectroscopy—are the powerful approaches for such *in situ* molecular analysis, and various MR chemical probes (MR probes) have been designed. However, these have an intrinsic limitation for practical applications, namely their low sensitivity.

Hyperpolarization is a highly promising technique for overcoming this limitation. The hyperpolarization technique achieves polarization of nuclear spin populations, producing a large enhancement of sensitivity for MR-detectable nuclei. The technique has been applied successfully for *in vitro* or *in vivo* metabolic analyses using stable isotope-enriched natural compounds (metabolites), including N-acetylated amino acids, pyruvate, fructose, choline and glucose.

It was recently demonstrated that the hyperpolarization technique can also be applied to chemical sensors for surveying the chemical status of living systems. In practice, hyperpolarized [13C]bicarbonate, [13C]benzoylformic acid, [13C, D₆] ρ-anisidine and [13C]dehydroascorbate have been designed as sensitive MR probes for sensing pH, H₂O₂, HOCl and redox status, respectively. A universal strategy—in other words, the presence of a platform structure for designing hyperpolarized MR probes—can make it easier to develop a variety of hyperpolarized MR sensors.

The importance of a platform structure is obvious, as demonstrated in the design of optical probes. For example, in the case of fluorescent probes, some chromophores work as a platform. A good representative is fluorescein (Fig. 1a). A variety of fluorescent probes have been developed from this fluorophore platform using a well-established strategy (*vide infra*). However, corresponding structures for hyperpolarized MR probes have not yet been realized.

Here we propose [15N, D₆]trimethylphenylammonium ([15N, D₆]TMPA) as a promising platform structure for designing hyperpolarized MR probes. It achieves improved sensitivity with a remarkably long hyperpolarization lifetime (15N, T₁ = 816 s, 14.1 T). The versatile applicability of the platform structure is established by designing three types of hyperpolarized MR probes, one each targeting metal ion (Ca²⁺), reactive oxygen species (H₂O₂), and enzyme (carboxyl esterase).

Results

Design of platform structure for hyperpolarized MR probes. Typically, a platform structure in an optical imaging probe is composed of signalling, aromatic and sensing moieties (Fig. 1), where the aromatic unit works as a connector to transmit chemical events on a sensing moiety (R in Fig. 1) to a signalling moiety (Fig. 1). Derivatization of benzoic acid (the aromatic moiety) with sensing moieties enables the generation of various signal-on-type fluorescent probes, for example, Fluo-2 for Ca²⁺, DAF-2 for NO and DNAF1 for glutathione S-transferase (GST) sensing.

In the present case, the signalling moieties are MR-detectable hyperpolarized nuclei (Fig. 1b). When attempting to design a platform for hyperpolarized MR probes, one critical issue is the short lifetime of the hyperpolarized spin state of the nuclei (signalling moieties). For example, the hyperpolarization lifetime of a ¹³C MR probe is only a few tens of seconds at best, which restricts its application to the analysis of extremely fast kinetic events. Therefore, the challenge is to find a hyperpolarized nucleus or structure that affords a much longer hyperpolarization lifetime.

The hyperpolarization lifetime is related directly to the spin–lattice relaxation time (T₁). The T₁ of ¹⁵N nuclei in organic compounds is usually longer than those of ¹H and ¹³C nuclei. In addition, this spin–lattice relaxation is caused mainly by dipole–dipole interaction, spin–rotation interaction and chemical shift anisotropy. Therefore, typically, ¹⁵N nuclei, which have less neighbouring protons in small and rigid structures tend to give a longer T₁ value, achieving a longer hyperpolarization lifetime. Actually, the ¹⁵N nucleus of choline ([¹⁵N(CH₃)₃CH₂CH₂OH] has been shown to produce a long hyperpolarization lifetime. With this in mind, we designed [¹⁵N]trimethylphenylammonium ([¹⁵N]TMPA) or [¹⁵N]trimethylaniline) as a candidate for the...
platform structure (Fig. 1b). We anticipated that 15N TMPA, which has a $-^{15}$N(CH$_3$)$_3$ signalling moiety on an aromatic moiety, might serve as a suitable platform for designing hyperpolarized MR probes.

Long hyperpolarization lifetime of the platform structure. The 15N TMPA was synthesized from 15N-aniline by nucleophilic displacement with CH$_3$I. The hyperpolarization lifetime of 15N TMPA was evaluated by measuring the T_1 value (Fig. 2a). The 15N T_1 value of 15N TMPA was determined as 275 ± 11 s (14.1 T, D$_2$O, 30 °C), which was much longer than that of the practically used [1-13C]pyruvic acid (41 s, 14.1 T, D$_2$O, 30 °C). Interestingly, this value is longer than that of 15N choline (232 s, 14.1 T, D$_2$O, 30 °C). Reduced interaction with proton (less dipole–dipole interaction) or structural rigidity (less spin–rotation interaction) might serve as a suitable platform for designing hyperpolarized MR probes.

The T_1 value was further extended by deuteration of 15N TMPA. Non-proton-coupled nuclei tend to show a longer T_1 value because of the lack of dipole–dipole interactions with neighbouring protons. In this sense, deuteration is one of the most straightforward ways to increase the hyperpolarization lifetime. We prepared 15N, D$_9$ TMPA, wherein all the methyl protons were replaced with deuterium atoms using CD$_3$I instead of CH$_3$I. As a result, the 15N, D$_9$ TMPA afforded a remarkably long 15N T_1 value of 816 ± 15 s (14.1 T, D$_2$O, 30 °C; 754 ± 23 s in 90% H$_2$O; Fig. 2a), which was 19.9–3.5- and 1.3-fold longer than those of [1,13C]pyruvic acid, 15N choline and 15N, D$_5$ choline, respectively. To the best of our knowledge, this T_1 value is the longest among the 15N compounds reported to date.

The 15N, D$_9$ TMPA was efficiently hyperpolarized by dynamic nuclear polarization (DNP) using trityl radicals. The sensitivity of the hyperpolarized sample increased and allowed detection of the targeted 15N by a single scan (%P$_{15N}$ = 2.0%, T_s = 298 K, B_0 = 9.4 T, 1.5 h polarization). The high sensitivity was obvious when compared with the thermally equilibrated spectrum (Fig. 2b). As little as 10 μM of hyperpolarized 15N, D$_9$ TMPA could be detected (S/N ratio = 3) using a single-scan 15N analysis under our experimental conditions (flip angle = 90°). In addition, because of its remarkably long T_1 value, the hyperpolarized state continued after dissolution of the hyperpolarized sample (stacked spectra; Fig. 2c). These results indicate that deutерated [15N, D$_9$]TMPA has a considerable potential for use as a remarkably long-lived and sensitive hyperpolarization unit.

Hyperpolarized MR probe targeting calcium ions. With the 15N, D$_9$ TMPA platform in hand, we then demonstrated its practical utility by designing new hyperpolarized MR probes. These needed to satisfy the following prerequisites: (1) the probe should have a MR-detectable nucleus with a long T_1 for long hyperpolarization; (2) it should bind/react with the target species rapidly within the hyperpolarization lifetime; and (3) it should induce a sufficiently large chemical shift change upon reaction.

As a first choice, we aimed to develop the hyperpolarized MR probe targeting the calcium ion (Ca$^{2+}$), a biologically important metal ion. In addition to their biological importance, abnormal Ca$^{2+}$ concentrations in the blood (hyper- or hypocalcaemia) are known to be associated with some diseases, therefore, the in situ analysis and imaging of Ca$^{2+}$ concentrations in the body is potentially useful for an investigation of the mechanism or an early diagnosis of these diseases. We designed MR probe 1 (Fig. 3a), wherein the 15N, D$_9$ TMPA (aromatic and signalling moieties) has been substituted with triacetic acid as a Ca$^{2+}$-chelating group (sensing moiety). MR probe 1 was synthesized from the methyl ester of o-aminophenol-N, N, O-triacetic acid (APTRA), a known Ca$^{2+}$ chelator, in four steps (Supplementary Methods). The absorption analyses confirmed that probe 1 bound to Ca$^{2+}$ rapidly with an affinity of K_B = 490 μM (Supplementary Fig. S1a,d), with one-to-one binding stoichiometry (Supplementary Fig. S1b,c) and high selectivity over Mg$^{2+}$ or K$^+$ (Supplementary Fig. S1e).

The sensitivity of MR probe 1 was enhanced dramatically by DNP. As expected, the 15N of MR probe 1 had a long T_1 value (129 ± 22 s, 9.4 T) and the hyperpolarized state of 15N signal was observed by 15N single-scan nuclear magnetic resonance (NMR; 600 s under our experimental conditions, 10 mM of 1, Supplementary Fig. S2).

The hyperpolarized MR probe 1 worked as a chemical shift-switching Ca$^{2+}$ sensor. Figure 3b shows the single-scan 15N NMR spectra of hyperpolarized MR probe 1 (0.5 mM) in the presence of various concentrations of Ca$^{2+}$ (0–10 mM). The presence of Ca$^{2+}$ induced a 15N chemical shift change (from 49.5 to 51.0 p.p.m.; $\Delta \delta \approx \sim 1.5$ p.p.m.) in a Ca$^{2+}$ concentration-dependent manner, which was sufficient to be detected by 15N DNP–NMR analysis (Fig. 3b,c). In marked contrast, only a small chemical shift change ($\delta = 0.3$ p.p.m.) was observed in the presence of excess Mg$^{2+}$ (10 mM) (Fig. 3c).

Importantly, the hyperpolarized Ca$^{2+}$ probe worked in biological samples. In blood serum, T_1 value of MR probe 1 was not shortened (142 ± 2 s, 9.4 T, in blood serum containing 50% v/v D$_2$O). Thus, 15N signals of hyperpolarized MR probe 1 (0.5 mM) were detectable in human blood (Fig. 3d). The observed signal could be discriminated clearly from those in blood samples.
with a Ca$^{2+}$ excess (10 mM Ca$^{2+}$, added externally, top spectrum) and a Ca$^{2+}$ deficiency (10 mM EDTA, added externally, bottom spectrum). Estimated from a calibration curve in human serum (Supplementary Fig. S3), the observed 15N signal in blood corresponded to 1.04 mM of Ca$^{2+}$ (typical total Ca concentration in blood (50% v/v) = 1~1.25 mM). This value was close to that (1.15 mM) determined using a classical optical sensing method for Ca$^{2+}$. The small difference between the results from MR and optical analyses might be caused by a difference of protocols. In the case of the optical sensing of Ca$^{2+}$ concentration in blood (50% v/v) 50% v/v HEPES buffer (middle) without or (top) with 10 mM Ca$^{2+}$ (bottom) with 10 mM EDTA.

This work indicates that the hyperpolarized MR probe 1 works as an in situ Ca$^{2+}$ sensor with high sensitivity even in human blood.

Versatility of the platform. The versatility of the platform was confirmed by designing two other hyperpolarized MR probes targeting different molecules but by the same strategy. Probe 2 was designed as a hyperpolarized MR probe targeting H$_2$O$_2$ (Fig. 4a), which is one of major disease-related reactive oxygen species34,35. H$_2$O$_2$ production is associated with endothelial inflammatory responses35 and the increased production level of H$_2$O$_2$ in tumours is correlated with cancer cell growth and malignancy36. The probe has an H$_2$O$_2$-reactive boronic acid ester.
(the sensing moiety) on the 15N, D$_9$TMPA unit (Supplementary Methods). After reaction with H$_2$O$_2$, the boronic acid was expected to convert to a hydroxyl group and such functional group transformation would induce a chemical shift change of the hyperpolarized 15N to function as a chemical shift-switching MR probe. This proved to be the case. The T_1 values of probe 2 and product 2 were determined as 444 ± 11 and 486 ± 66 s (9.4 T), respectively, which were sufficiently long to be monitored by 15N DNP–NMR spectroscopy. The apparent reaction kinetics were very rapid at (4.8 ± 0.4) × 10$^{-3}$ s$^{-1}$ (Supplementary Fig. S4). As shown in the single-scan 15N NMR spectra of Fig. 4b, a new signal of product 2 (49.3 p.p.m.) was observed from single-scan after starting the 15N NMR measurement (corresponding to 50 s after mixing the hyperpolarized probe 2 with 0–6.18 mM of H$_2$O$_2$). Because of almost the same T_1 values of probe and product—that is, the same almost decay rate of hyperpolarized spin state—the signal ratio of the hyperpolarized product to the product—that is, almost the same decay rate of hyperpolarized

The carboxyl esterase is a biomarker of cancer and one of the major enzymes related to drug metabolism and pro-drug activation. For example, human carboxyl esterase 2 is commonly expressed in tumour tissues and is correlated with the activation of anticancer drugs. Therefore, detection of carboxyl esterase is biologically and medically significant. Probe 3, with a methyl ester moiety, was designed (Supplementary Methods) as a hyperpolarized MR probe for esterase activity (Fig. 4d) and incubated with a model carboxyl esterase derived from porcine liver. As with probes 1 and 2, probe 3 also showed a long T_1 value (536 ± 33 s for the probe and 486 ± 66 s for its product at 9.4 T), sufficient enhancement of signal intensity and 15N chemical shift change (1.1 p.p.m.) after reaction with esterase. A new 15N signal of product 3 (49.3 p.p.m.) appeared in the presence of carboxyl esterase (Fig. 4e), in addition to the parent peak of probe 3 (50.4 p.p.m.). This allowed us to detect the presence of carboxyl esterase from the hyperpolarized 15N chemical shift analysis.

Discussion

We propose 15N, D$_9$TMPA as a suitable platform for designing various hyperpolarized MR probes. The significance of this study can be summarized as follows. First is the proposed platform’s high performance. The 15N, D$_9$TMPA platform achieved good hyperpolarization and a remarkably long hyperpolarization lifetime with the longest T_1 value (816 s, 14.1 T, D$_9$O) among the 15N compounds reported to date. This extended lifetime enabled the detection of the hyperpolarized 15N signal of the platform for several tens of minutes under our experimental conditions, approaching the lifetimes of molecular probes used for positron emission tomography. This overcomes the intrinsic short analysis time of hyperpolarized probes. Given that existing hyperpolarized chemical probes (typically 13C-based) have much shorter T_1 values (< 60 s), this long-lived hyperpolarized chemical probe is useful because it allows easy handling, sufficient distribution through the body and long duration measurements of targeted biological events. In addition, the longer hyperpolarization can lower the probe concentration required. This is a distinct advantage of the present platform. The second important aspect of this platform is its ease of incorporation into sensors. It comprises signalling (hyperpolarized 15N) and aromatic (benzene ring) moieties. The platform can be converted to a hyperpolarized 15N MR probe by the same strategy used for designing fluorescent sensors (Fig. 1a), that is, by the simple derivatization of an aromatic moiety with an appropriate sensing moiety. As various fluorescent probes have already been designed using this strategy, the 15N, D$_9$TMPA platform has high potential to be diversified to create hyperpolarized MR sensors targeting various biochemical events. The third advantage of 15N, D$_9$TMPA is its versatility. Three different types of hyperpolarized MR probes were designed successfully from the same platform (Fig. 1b). All of the designed compounds worked as sensitive, selective and fast responsive hyperpolarized MR probes. Further, it was demonstrated that the designed hyperpolarized MR sensor could be utilized for 15N MRI of target biomolecules in blood. These findings demonstrate the considerable potential of 15N, D$_9$TMPA as a basis for designing a variety of hyperpolarized MR probes.

Although the present research showed the high potential of the platform for generating hyperpolarized MR probes, there are still aspects to be improved. Practical in vivo applications of these probes must await further studies on biostability, toxicity and distribution. However, as demonstrated for fluorescent probes, these issues could be overcome by making improvements to the probes or the platform itself. In fact, preliminary experiments showed that the cytotoxicity and inhibitory activity against acetylcholine esterase could be suppressed markedly by appropriate substitutions to the TMPA platform (probes 1 and 3 showed almost no cytotoxicity at the low mM range, Supplementary Fig. S5). In addition, efforts should be made towards development of a clinical 15N scanner, optimized for the hyperpolarized 15N sensor.

Methods

General information on synthesis. Reagents and solvents were purchased from standard suppliers and used without further purification. Gel permeation chromatography (GPC) was performed on JALGEL GS310 using a JAI Recycling Preparative HPLC LC-9201. NMR spectra were measured using a Bruker Avance III spectrometer (400 MHz for 1H). Methanol-d$_4$ (3.31 p.p.m.) or D$_2$O (4.79 p.p.m.) was used as the internal standard for 1H NMR. Methanol-d$_4$ (49.0 p.p.m.) and methanol in D$_2$O (49.5 p.p.m.) were used as the internal standard for 15C NMR. Choline chloride-15N (43.4 p.p.m.) was used as the external standard for 15N NMR. Mass spectra were measured using a JEOL JMS-HX110A fast atom bombardment (FAB).

Synthesis of 15N, D$_9$choline chloride.

Potassium carbonate (4.46 g, 32.3 mmol) and $[15$N$]$iodomethane (3.12 g, 21.5 mmol) were added to $[15$N$]$ethanolamine (334 mg, 5.38 mmol) in dry methanol (15 ml), and the mixture was stirred for 24 h. The solvent was evaporated, and the residue was washed with ethyl acetate:methanol (1:1) under nitrogen atmosphere at room temperature for 12 h. After insoluble inorganic salt was removed by filtration, the filtrate was evaporated under reduced pressure. The residue was mixed with small amount of dry methanol, filtered and the filtrate was evaporated. The residue was washed with ethyl acetate:methanol = 1:1 and the remaining solid was collected to give $[15$N$]$choline iodide as a pale yellow solid (741 mg, 59%), 1H NMR (CD$_3$OD, 400 MHz) δ = 3.59–3.63 (m, 2H), 4.04–4.07 (m, 2H); 13C NMR (CD$_3$OD, 100 MHz) δ = 55.8, 67.4; 15N NMR (CD$_3$OD, 40 MHz) δ = 43.8. Silver oxide (1.53 g, 6.59 mmol) was added to $[15$N$]$choline iodide (741.9 mg, 3.19 mmol) in dry methanol (10 ml) and the mixture was stirred for 30 min. Solids were removed by filtration. HCl aqueous solution (0.5 M) was added dropwise to the filtrate until pH became 4 and then the solvent was evaporated under reduced pressure. Dry ethanol (10 ml) was added to the residue and insoluble solids were removed by filtration. The solvent was evaporated under reduced pressure from the filtrate to give $[15$N$]$choline chloride as a pale yellow solid (334 mg, 5.38 mmol) 1H NMR (CD$_3$OD, 400 MHz) δ = 3.42–3.43 (m, 2H, d, J = 8 Hz), 5.62, 67.2; 15N NMR (CD$_3$OD, 40 MHz) δ = 43.1; HRMS (FAB): m/z calcd. for C$_5$H$_9$O15N$^+$ [M – Cl$^+$] $^+$ = 114.1611, found = 114.1611.

Synthesis of 15N]TMPA.

Iodomethane (330 µl, 5.30 mmol) was added to a solution of $[15$N$]$aniline (100 mg, 1.06 mmol) and N,N-diisopropylpropylamine (740 µl, 4.25 mmol) in dry dimethylformamide (3 ml). The mixture was stirred at room temperature overnight and evaporated under vacuum. Ethyl acetate was added to the residue resulting in a white precipitate. The resulting precipitate was filtered and purified using GPC (eluent: methanol) to give $[15$N$]$TMPA as a white powder (105 mg, 37%). 1H NMR (CD$_3$OD, 400 MHz) δ = 3.73 (d, J = 0.8 Hz, 9 H), 7.61–7.70 (m, 3H), 7.96–7.99 (m, 2H); 13C NMR (CD$_3$OD, 100 MHz) δ = 56.6 (d, J = 2 Hz, 3C), 119.8 (d, J = 11 Hz, 3C), 130.3, 130.3 (d, J = 13 Hz, 2C), 167.2 (d, J = 8 Hz); 15N NMR (CD$_3$OD, 40 MHz) δ = 53.3; HRMS (FAB): m/z calcd. for C$_{19}$H$_{29}$O15N$^+$ [M – I$^+$] $^+$ = 137.1097, found = 137.1098.
Synthesis of [15N, D9]TMPA. [D9]lodomethane (622 μl, 10.0 mmol) was added to a solution of [15N]aniline (188 mg, 2.00 mmol) and N,N-dissopropylethylamine (1.39 ml, 8.00 mmol) in dry dimethylformamide (3 ml). The mixture was stirred at room temperature overnight and then at 50 °C overnight. After evaporation under vacuum, ethyl acetate was added to the residue resulting in a white precipitate. The resulting precipitate was filtered and purified using GPC (elucent: methanol) to give [15N, D9]TMPA as a white powder (375 mg, 66%). 1H NMR (CD3OD, 400 MHz) δ = 7.60 (m, 3H), 6.58 (s, 4H); 13C NMR (CD3OD, 100 MHz) δ = 147.0 (d, J = 7 Hz), 130.3, 130.3 (d, J = 1 Hz) ppm.

References

1. Terreno, E., Castelli, D. D., Viale, A. & Aime, S. Challenges for molecular magnetic resonance imaging. Chem. Rev. 110, 3019–3042 (2010).
2. Viale, A. et al. Hyperpolarized agents for advanced MRI investigations. Q. J. Nucl. Med. Mol. Imaging 53, 604–617 (2009).
3. Viale, A. & Aime, S. Current concepts on hyperpolarized molecules in MRI. Curr. Opin. Chem. Biol. 14, 90–96 (2010).
4. Wilson, D. M. et al. Generation of hyperpolarized substrates by secondary labeling with [1,1-13C] acetic anhydride. Proc. Natl Acad. Sci. USA 106, 5503–5507 (2009).
5. Golman, K., in ’t Zandt, R. & Thaning, M. Real-time metabolic imaging. Proc. Natl Acad. Sci. USA 103, 11270–11275 (2006).
6. Keshari, K. R. et al. Hyperpolarized [2-13C]-Fructose: a hemiketal DNP substrate for in vivo metabolic imaging. J. Am. Chem. Soc. 131, 17591–17596 (2009).
7. Gabeli, C. et al. Therapeutic target metabolism observed using hyperpolarized 13N choline. J. Am. Chem. Soc. 130, 4598–4599 (2008).
8. Meier, S., Jensen, P. R. & Duus, J. Ø. Real-time detection of central carbon metabolism in living Escherichia coli and its response to perturbations. FEBS Lett. 585, 3133–3138 (2011).
9. Gallagher, E. A. et al. Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labeled bicarbonate. Nature 453, 940–943 (2008).
10. Lippert, A. R., Keshari, K. R., Kurhanewicz, J. & Chang, C. A. Hydroxyperoxide-responsive hyperpolarized 13C MRI contrast agent. J. Am. Chem. Soc. 133, 3776–3779 (2011).
11. Doura, T., Hata, R., Nonaka, H., Ichikawa, K. & Sando, S. Design of a 13C magnetic resonance probe using a deuterated methoxy group as a long-lived hyperpolarization unit. Angew. Chem. Int. Ed. 51, 10114–10117 (2012).
12. Bohndiek, S. E. et al. Hyperpolarized [1-13C]-ascorbic and dehydroascorbic acid: vitamin C as a probe for imaging redox status in vivo. J. Am. Chem. Soc. 133, 11795–11801 (2011).
13. Keshari, K. et al. Hyperpolarized 13C dehydroascorbate as an endogenous redox sensor for in vivo metabolic imaging. Proc. Natl Acad. Sci. USA 108, 18606–18611 (2011).
14. Chang, P. V. & Bertozzi, C. R. Imaging beyond the proteome. Chem. Commun. 48, 8864–8879 (2012).
15. Miura, T. et al. Rational design principle for modulating florescence properties of fluorescein-based probes by photoinduced electron transfer. J. Am. Chem. Soc. 125, 8666–8671 (2003).
16. Ueno, T. et al. Rational principles for modulating florescence properties of fluorescein. J. Am. Chem. Soc. 126, 14079–14085 (2004).
17. Minta, A., Kao, J. P. Y. & Tsien, R. Y. Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophore. J. Biol. Chem. 264, 8171–8178 (1989).
18. Kojima, H. et al. Fluorescent indicators for imaging nitric oxide production. Angew. Chem. Int. Ed. 38, 3209–3212 (1999).
19. Fukushima, Y. et al. Design and synthesis of highly sensitive fluorogenic substrates for glutathione S-transferase and application for activity imaging in living cells. J. Am. Chem. Soc. 130, 14533–14543 (2008).
20. Månsson, S. et al. 13C imaging—a new diagnostic platform. Eur. Radiol. 16, 57–67 (2006).
21. Gopinath, T. & Veglia, G. Dual acquisition magic-angle spinning solid-state nmr-spectroscopy: simultaneous acquisition of multidimensional spectra of biomacromolecules. Angew. Chem. Int. Ed. 51, 2731–2735 (2012).
22. Lippmaa, E., Salvador, T. & Laiasaar, S. Spin-lattice relaxation of 13C nuclei in organic compounds. Chem. Phys. Lett. 11, 120–123 (1971).
23. Schweitzer, D. & Spiess, H. W. Nitrogen-15 NMR of pyridine in high magnetic fields. J. Magn. Reson. 15, 529–539 (1974).
24. Levy, G. C., Holloway, C. E., Hewitt, J. M. & Bradley, C. H. Natural abundance nitrogen-15 n.m.r. spectroscopy. Spin-lattice relaxation in organic compounds. Org. Magn. Reson. 8, 643–647 (1976).
25. Allouche-Arnon, H. et al. A hyperpolarized chlorinated molecular probe for monitoring acetylcholine synthesis. Contrast Media Mol. Imaging 6, 139–147 (2011).
26. Allouche-Arnon, H., Lerche, M. H., Karlsson, M., Lenkinski, R. E. & Katz-Brull, R. Deuteration of a molecular probe for DNP hyperpolarization - a new approach and validation for choline chloride. Contrast Media Mol. Imaging 6, 499–506 (2011).
27. Sarkar, R. et al. Proton NMR of 13C-cholines metabolites enhanced by dynamic nuclear polarization. J. Am. Chem. Soc. 131, 16014–16015 (2009).
28. Kumagai, K. et al. Synthesis and hyperpolarized 13N NMR studies of 11N-choline-d4,13Tetradethanol 69, 3896–3900 (2013).
29. Ardenkjær-Larsen, J. H. et al. Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR. Proc. Natl Acad. Sci. USA 100, 10158–10163 (2003).
30. Hofer, A. M. & Brown, E. M. Extracellular calcium sensing and signalling. Nat. Rev. Mol. Cell Biol. 4, 530–538 (2003).
31. Nordenström, E., Katzman, P. & Bergenfelz, A. Biochemical diagnosis of primary hyperparathyroidism: analysis of the sensitivity of total and ionized calcium in combination with PTH. Clin. Biochem. 44, 849–852 (2011).
32. Lumachi, F., Brunello, A., Roma, A. & Basso, U. Cancer-induced Hypercalcemia. Anticancer Res. 29, 1551–1555 (2009).
33. Basaric, N. et al. Synthesis and spectroscopic characterisation of BODIPY based fluorescent off-on indicators with low affinity for calcium. Org. Biomol. Chem. 3, 2755–2761 (2005).
34. Spector, A., Ma, W. & Wang, R. The aqueous humor is capable of generating and degrading H₂O₂. Invest. Ophthalmol. Vis. Sci. 39, 1188–1197 (1998).
35. Cai, H. Hydrogen peroxide regulation of endothelial function: origins, mechanisms, and consequences. Cardiovasc. Res. 68, 26–36 (2005).
36. Van de Bittner, G. C., Dubikovskaya, E. A., Bertozzi, C. R. & Chang, C. J. In vivo imaging of hydrogen peroxide production in a murine tumor model with a chemoselective bioluminescent reporter. Proc. Natl Acad. Sci. USA 107, 21316–21321 (2010).
37. Miller, E. W., Albers, A. E., Pralle, A., Isacoff, E. Y. & Chang, C. J. Boronate-based fluorescent probes for imaging cellular hydrogen peroxide. J. Am. Chem. Soc. 127, 16652–16659 (2005).
38. Jiang, Y. L. et al. A specific molecular beacon probe for the detection of human prostate cancer cells. Bioorg. Med. Chem. Lett. 22, 3632–3638 (2012).
39. Redinbo, M. R. & Potter, P. M. Mammalian carboxylesterases: from drug targets to protein therapeutics. Drug. Discov. Today 10, 313–325 (2005).
40. Xu, G., Zhang, W., Ma, M. K. & McLeod, H. L. Human carboxylesterase 2 is commonly expressed in tumor tissue and is correlated with activation of irinotecan. Clin. Cancer Res. 8, 2605–2611 (2002).
41. Farde, L., Halldin, C., Stone-Elander, S. & Sedvall, G. PET analysis of human dopamine receptor subtypes using ¹¹C-SCH 23390 and ¹¹C-raclopride. Psychopharmacology 92, 278–284 (1987).

Acknowledgements
This work was supported by a NEXT Program from JSPS. We thank Mr T. Abe of Oxford Instruments for helpful discussions and technical assistance for the DNP experiments. We also thank the Network Joint Research Center for Materials and Devices for T₁ and FAB–MS measurements. H.N. thanks the Kato Memorial Bioscience Foundation for financial support. R.H. and T.N. thank JSPS for the fellowship. K.I. was supported by the funding programme ‘Creation of Innovation Centers for Advanced Interdisciplinary Research Areas’ from JST, commissioned by MEXT.

Author contributions
S.S. conceived the project. H.N. and S.S. designed the experiments. H.N. and R.H. performed all the experiments with the help from T.D., T.N., K.K., M.A., M.T. and K.I. on DNP and NMR measurements. The manuscript was written by H.N. and S.S. and edited by all the co-authors.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications
Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Nonaka, H. et al. A platform for designing hyperpolarized magnetic resonance chemical probes. Nat. Commun. 4:2411 doi: 10.1038/ncomms3411 (2013). This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/