Hypoxia activates tumor suppressor p53 by inducing ATR-Chk1 kinase cascade-mediated phosphorylation and consequent 14-3-3γ inactivation of MDMX protein

Jun-Ho Lee,‡§1,‡¶1,‡¶1 Yetao Jin,‡1,‡‡,1,‡2 Guifen He,‡1 Shelya X. Zeng,‡ Yuyunran V. Wang,‡ Geoffrey M. Wahl,‡§3,4 and Hua Lu‡§4

From the ‡Department of Biochemistry and Molecular Biology and Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202; the ‡Department of Biochemistry and Molecular Biology and Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana 70112; ‡The Laboratory of Gene Expression, Salk Institute, La Jolla, California 72037, and the ‡‡Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul 110-799, Korea

Received for publication, December 24, 2011, and in revised form, May 2, 2012. Published, JBC Papers in Press, May 3, 2012, DOI 10.1074/jbc.M111.336875

Background: It remains unclear how the hypoxia-ATR-Chk1 pathway induces p53.

Results: Hypoxia suppresses MDMX activity via ATR/Chk1 phosphorylation of Ser-367 and subsequent MDMX-14-3-3 interaction, leading to p53 activation.

Conclusion: Induction of MDMX-14-3-3 binding accounts for p53 activation by hypoxia.

Significance: Our study elucidates a molecular mechanism underlying hypoxia-induced p53 activation.

Low oxygen tension or hypoxia is an inevitable pathophysiological status during solid tumor progression. It occurs due to the lack of blood supply in rapidly growing solid tumors, which possess anoxic (0%) or hypoxic (<8% of oxygen) regions with poor prognosis (1, 2). In response to these anoxic or hypoxic conditions, cancerous cells produce several important proteins that either favor or prevent their survival and advanced progression. Among those, although HIF1α (hypoxia-inducible factor 1α) is induced to promote angiogenesis and anaerobic metabolism as a tumor-promoting factor (2, 3), the tumor suppressor p53 is often activated as well to stop tumor growth and progression in wild type p53 containing cancer cells (4) by inducing apoptosis and/or cell cycle arrest and repressing angiogenesis (5, 6).

During the past decade, a number of studies have been reported to elucidate how hypoxia might induce p53. The first candidate molecule that was proposed to mediate p53 induction by hypoxia is HIF1α (7, 8). HIF1α was shown to directly associate with p53 and to stabilize it in response to hypoxia. However, this notion was challenged by a kinetic study showing that HIF1α and p53 were induced at distinct hypoxia stages (9). p53 was stabilized in more stringent hypoxic conditions than HIF1α and inversely proportional to HIF1α levels with repression of HIF1α activity in response to hypoxia (9–12). It seems that HIF1α is insufficient to up-regulate p53 (6) and less likely responsible for extremely low oxygen-triggered p53 induction through direct interaction. Instead, ATR (ATM and Rad3-like serine/threonine kinase) and/or Chk1, a DNA damage checkpoint kinase as a downstream target of ATR, have been proposed as the responsible molecules in response to hypoxia (9, 13–16). ATR was found to phosphorylate p53 at serine 15 in response to hypoxia, whereas ATM could not (9, 14). It was shown previously that serine 15 phosphorylation by UV-activated ATR or γ irradiation-activated ATM and/or DNA-dependent protein kinase (DNAPK) can partially stimulate p53 transcripational activity (17–20). However, serine 15 phosphorylation could not account for the full scale of p53 induction by hypoxia, as mutation of this residue could only partially affect p53 activity in response to ionizing irradiation in animals and does not seem to affect p53 stability (21, 22). Chk1 also was thought to have a role in hypoxia-responsive p53 induction (9, 15, 16). It is unclear whether Chk1 directly phosphorylates p53 or other components such as MDM2 or MDMX that in turn...
Hypoxia Activation of p53 via Inactivation of MDMX

affects p53 stability. Hence, the exact mechanism of how ATR and Chk1 induce p53 activation in response to hypoxia still remains elusive. The tight regulation of p53 has been mainly attributed to the MDM2-DMMX-p53 loop, whose direct or indirect interferences lead to p53 activation by various cellular stresses, including DNA damage stress (23).

Although MDM2 has been described to be a prime negative feedback regulator of p53 (24–27), another crucial regulator of stresses, including DNA damage stress (23). Although MDM2 can also function independently of MDM2 (30). Like MDM2, MDMX is indispensable for p53 inactivation, as knocking out the TP53 gene also rescues the lethality of mdmx null mice (31, 32). Recently, in vivo studies by either deleting the C-terminal RING domain of MDMX (MDM4) or generating the C462A mutation, both of which disrupt MDM2-DMMX binding, in mice demonstrate that the MDM2-DMMX binding is essential for negating p53 function in the animals (33, 34) These results are consistent with the previous reports showing that MDM2 and MDMX can form a heterocomplex in vitro and in cells (35–37). Nonetheless, surprisingly, no direct connection has been unambiguously built between this loop and hypoxia-caused stress.

Several members of the 14-3-3 family, including 14-3-3-γ, have been reported to bind primarily to phosphorylated MDMX at serine 367 residue in response to stress signals such as DNA damage stimuli (38–40). Previously, we also demonstrated that UV-mediated Chk1 activation induces phosphorylation of MDMX at Ser-367 and enhances the interaction between MDMX and 14-3-3-γ, leading to p53 activation (41). This phenomenon was also demonstrated in a mouse study by knocking-in triple mutations (S341A, S367A, and S402A) at MDMX phosphorylation sites (42). Thus, we speculated that hypoxia might activate p53 by blocking the activity of MDMX via the ATR-Chk1 kinase cascade, which leads to MDMX phosphorylation at Ser-367 and promotes MDMX interaction with 14-3-3, suppressing MDMX activity. Here, in this study, we tested this hypothesis and verified this hypoxia-ATR-Chk1-DMMX-14-3-3-p53 pathway.

EXPERIMENTAL PROCEDURES

Cell Culture and Hypoxia Treatment—Human osteosarcoma U2OS cells and human embryonic kidney (HEK) epithelial 293 cells were cultured in DMEM supplemented with 10% FBS, 10 units/ml penicillin, and 0.1 mg/ml streptomycin at 37 °C in a 5% CO2 humidified atmosphere. Mouse embryonic fibroblast (MEF)5 wild type (WT) or MDMX triple mutant (3SA) MEF cells (37) were cultured in DMEM supplemented with 15% FBS, 10 units/ml penicillin, 0.1 mg/ml streptomycin, 1× nonessential amino acids (Cellgro), and 1× β-mercaptoethanol (Millipore). Prior to exposure to hypoxic conditions, cells were cultured and incubated at 5% CO2/37 °C for 24–48 h with ~50% confluence. Hypoxia was established by incubating cells in an anaerobic system (Thermo Forma), which reduces O2 levels less than ~0.1% close to anoxic condition. The O2 levels were also monitored by a methylene blue indicator strip during the incubation of cells inside the hypoxia chamber with the time periods indicated in figure legends. Corresponding normoxic control cells were incubated under a normal culture condition.

Plasmids, Reagents, and Antibodies—Plasmids utilized here, including Myc-DMMX and FLAG-14-3-3γ, were described previously (41, 43). Myc-DMMX single mutant plasmids were generated from wild type Myc-DMMX by site-directed mutagenesis. UCN-01 was used as described previously (41). Monoclonal anti-FLAG, anti-α-tubulin, and anti-β-actin antibodies were purchased from Sigma. Monoclonal anti-p53 antibody (DO-1, Santa Cruz Biotechnology; 1C12, Cell Signaling) or polyclonal anti-p53 antibody (FL393, Santa Cruz Biotechnology), monoclonal anti-p21 (F-5, Santa Cruz Biotechnology) or polyclonal anti-p21 (M19, Santa Cruz Biotechnology), monoclonal anti-c-Myc (9E10, Santa Cruz Biotechnology), polyclonal anti-DMMX (Bethyl Laboratories; and H130, Santa Cruz Biotechnology) or monoclonal anti-DMMX (DMMX-82, Sigma and 8C6), polyclonal anti-14-3-3γ (C16, Santa Cruz Biotechnology), goat polyclonal anti-ATR (N19, Santa Cruz Biotechnology) and monoclonal anti-Chk1 (G-4, Santa Cruz Biotechnology) antibodies were also purchased. Monoclonal anti-phospho-DMMX Ser-367 was generated and purified from our laboratory and monoclonal anti-DMMX (2A10 and 4B11) antibodies were described previously (44, 45).

Transfection, Western Blot, and Co-immunoprecipitation Analyses—Cells were transfected with plasmids as indicated in figure legends using TransFectin reagents (Bio-Rad), following the manufacturer’s instructions. Cells were harvested at 36–48 h post-transfection and lysed in cell lysis buffer consisting of 50 mM Tris/HCl (pH 8.0), 1 mM EDTA, 150 mM NaCl, 0.5% Nonidet P-40 (Nonidet P-40), 2 mM phenylmethylsulfonyl fluoride (PMSF), 1 mM dithiothreitol (DTT) in addition to protease inhibitor mixture (Sigma). Western blot (WB) and co-immunoprecipitation (co-IP) analyses were performed as described previously (43).

RNA Interference—siRNA duplex specific to human ATR or Chk1 were synthesized by Dharmacon. The target sequences, which were also utilized in the previous studies (46, 47) are as follows: ATR, 5′-AAGCCCAAGACAAATTCTGTGT-3′ and Chk1, 5′-AAGCGTGCCGTAGACTGTCCA-3′. U2OS cells were transfected with 20 nM (final concentration) ATR or Chk1 siRNA duplex or scrambled RNA duplex using siLentFect lipid reagent (Bio-Rad), and the following day, the cells were transfected once again. Approximately 24 h after the second transfection, cells were subjected to hypoxic conditions and incubated for indicated time periods in figure legends followed by WB and/or co-IP analyses. In some cases for ATR knockdown, U2OS cells were transfected with shRNA or infected by lentivirus encoding shRNA and incubated for ~48 h prior to hypoxia treatment.

Cell Cycle Analysis—U2OS cells were double-transfected with scramble, ATR, or Chk1 siRNAs, and ~24 h after the second transfection, cells were subjected to normoxic or hypoxic conditions. Wild type or 3SA MEF cells were split the day before hypoxia treatment. Then, cells were harvested at indicated time points and fixed with 70% EtOH (final concentra-

5 The abbreviations used are: MEF, mouse embryonic fibroblast; WB, Western blot; co-IP, co-immunoprecipitation.
Hypoxia Activation of p53 via Inactivation of MDMX

To verify and work out the condition for the effect of hypoxia on p53 activation, U2OS cells were incubated under very low-oxygen condition (< 0.1% O2) up to 16 h. The result showed that, indeed, p53 and its targets p21 and Puma were induced in a time-dependent manner under this condition (Fig. 1, A and B). Hypoxia-mediated p53 activation could be also extended by 18 – 24 h in various cancer cells, including U2OS cells (supplemental Fig. S1A) (9, 14). In addition, the treatment of CoCl2, a hypoxia mimetic compound, which can induce biochemical and molecular responses similar to those elicited by hypoxia (8), induced p53 in MEF cells at 16 h and U2OS cells in a time-dependent manner up to 24 h under hypoxia as well (supplemental Fig. S1B). These results confirm that hypoxia indeed induces p53 independently of cell types. Interestingly, hypoxia led to the phosphorylation of serine 367 residue of MDMX (Ser-367-MDMX), which is known to be the major phosphorylation site of MDMX for the binding of 14-3-3 protein(s) in response to stress signals, such as DNA damage stimuli (38–41). As expected, this phosphorylation enhanced the binding of 14-3-3 to MDMX, leading to p53 activation (Fig. 1C). These results suggest that hypoxia can induce phosphorylation of MDMX at Ser-367 and subsequent induction of MDMX binding to 14-3-3 proteins in response to hypoxia (Fig. 1C). Therefore, Chk1 plays an important role in hypoxic stress (9, 13, 14) but phosphorylates MDMX in this experiment.

Because DNA damage stimuli such as UV irradiation can induce p53 activation through phosphorylation of MDMX at Ser-367 by Chk1 (41) and ATR-Chk1 kinase cascade plays an important role in hypoxic stress (9, 13, 14), we deduced that hypoxia-mediated MDMX phosphorylation might employ the same ATR-Chk1 signaling pathway to activate p53. To test our speculation, we utilized a Chk1 inhibitor, UCN-01 (48) to determine whether it affects the phosphorylation of endogenous MDMX at Ser-367 in response to hypoxia. When U2OS cells were subjected to hypoxia, as expected, MDMX phosphorylation at Ser-367 was considerably reduced by UCN-01 treatment (Fig. 2A). In comparison, UCN-01 inhibits hypoxia-induced MDMX Ser-367 phosphorylation. U2OS cells were cultured under conditions as mentioned above. Cell pellets were lysed for SDS-PAGE and WB analyses using antibodies as indicated on the left. B, hypoxia-enhanced interaction of exogenous MDMX and 14-3-3-γ is inhibited by UCN-01 treatment. HEK293 cells were transfected with Myc-MDMX and FLAG-14-3-3 plasmids and treated with dimethyl sulfoxide or UCN-01 and incubated under hypoxic condition for 6 h followed by preparation of cell lysates. 300 µg of each lysate were immunoprecipitated with monoclonal anti-FLAG antibody. 40 µg of each lysate were loaded for WB analysis. C, UCN-01 treatment attenuates hypoxia-induced endogenous MDMX-14-3-3 interaction. U2OS cells were treated with dimethyl sulfoxide or UCN-01 and cultured in a hypoxia chamber for 6 h. Samples were harvested and lysed for WB (40 µg) or co-IP (300 µg) with polyclonal anti-14-3-3-γ antibodies. Proteins of interest were detected by corresponding antibodies as listed on the left.

RESULTS AND DISCUSSION

To verify and work out the condition for the effect of hypoxia on p53 activation, U2OS cells were incubated under very low-oxygen condition (< 0.1% O2) up to 16 h. The result showed that, indeed, p53 and its targets p21 and Puma were induced in a time-dependent manner under this condition (Fig. 1, A and B). Hypoxia-mediated p53 activation could be also extended by 18 – 24 h in various cancer cells, including U2OS cells (supplemental Fig. S1A) (9, 14). In addition, the treatment of CoCl2, a hypoxia mimetic compound, which can induce biochemical and molecular responses similar to those elicited by hypoxia (8), induced p53 in MEF cells at 16 h and U2OS cells in a time-dependent manner up to 24 h under hypoxia as well (supplemental Fig. S1B). These results confirm that hypoxia indeed induces p53 independently of cell types. Interestingly, hypoxia led to the phosphorylation of serine 367 residue of MDMX (Ser-367-MDMX), which is known to be the major phosphorylation site of MDMX for the binding of 14-3-3 protein(s) in response to stress signals, such as DNA damage stimuli (38–41). As expected, this phosphorylation enhanced the binding of 14-3-3 to MDMX, leading to p53 activation (Fig. 1C). These results suggest that hypoxia can induce phosphorylation of MDMX at Ser-367 and subsequent induction of MDMX binding to 14-3-3, leading to suppression of MDMX activity toward p53 and consequent p53 activation.

Because DNA damage stimuli such as UV irradiation can induce p53 activation through phosphorylation of MDMX at Ser-367 by Chk1 (41) and ATR-Chk1 kinase cascade plays an important role in hypoxic stress (9, 13, 14), we deduced that hypoxia-mediated MDMX phosphorylation might employ the same ATR-Chk1 signaling pathway to activate p53. To test our speculation, we utilized a Chk1 inhibitor, UCN-01 (48) to determine whether it affects the phosphorylation of endogenous MDMX at Ser-367 in response to hypoxia. When U2OS cells were subjected to hypoxia, as expected, MDMX phosphorylation was induced at Ser-367; however, when treated with UCN-01 under the same hypoxic condition, MDMX phosphorylation at this site was reduced dramatically, although the total amount of MDMX was comparable (Fig. 2A). Subsequently, the hypoxia-enhanced interaction between exogenous Myc-MDMX and FLAG-14-3-3 was considerably reduced by UCN-01 treatment (Fig. 2B). Consistently, UCN-01 treatment also reduced hypoxia-induced endogenous MDMX phosphorylation at Ser-367 and weakened the interaction between endogenous MDMX and 14-3-3, correlated well with a significant decrease in p53 activation (Fig. 2C). Thus, Chk1 plays an important role in hypoxic response as reported previously (9, 13, 14) but phosphorylates MDMX in this experiment.
To confirm this observation and to demonstrate the involvement of the ATR-Chk1 kinase cascade in MDMX phosphorylation and MDMX-14-3-3 binding, we introduced si- or shRNAs for Chk1 and ATR into U2OS cells. First, knockdown of Chk1 under hypoxic condition abolished MDMX phosphorylation at Ser-367 as well as the interaction between endogenous MDMX and 14-3-3-γ (Fig. 3A). To exclude the possibility that hypoxia might activate Chk1 by inducing DNA damage, we checked whether knockdown of Chk1 would impair DNA damage by assessing γ-H2AX focus formation. Surprisingly, knockdown of Chk1, similar to hydroxyurea treatment, also caused DNA damage (supplemental Fig. S2). This result indicates that hypoxia-induced MDMX Ser-367 phosphorylation is catalyzed by Chk1 that is activated in response to hypoxia rather than DNA damage signals. If not, knockdown of Chk1 would still induce Ser-367 phosphorylation, as the deactivation of this kinase also caused DNA damage (supplemental Fig. S2). However, this was not the case (Fig. 3). Next, we also performed a similar set of experiments by knocking down ATR, the upstream kinase of Chk1. The result demonstrated that the depletion of ATR also weakens the endogenous MDMX phosphorylation at Ser-367 as well as MDMX interaction with 14-3-3-γ (Fig. 3B).

If MDMX phosphorylation necessary for 14-3-3-γ binding is essential for hypoxia-induced p53 activation, mutations in MDMX phosphorylation sites where 14-3-3 can bind should be expected to abolish p53 activation in response to hypoxia. Although Ser-367 is a key phosphorylation site of MDMX for the binding of 14-3-3 proteins, including 14-3-3-γ, phosphorylation at Ser-342 of MDMX was also reported to involve the interaction between 14-3-3 and MDMX (40, 49). To test this idea, we first employed MDMX 3SA MEF cells, which harbor a knock-in MDMX mutant with S341A (S342 in human), S367A, and S402A (S403 in human) mutations, for our experiments under hypoxic stress. When wild type MEF cells were subjected to hypoxia for 18 h, as expected, p53 was activated with the induction of its direct downstream target protein p21 (Fig. 4A). Increased endogenous 14-3-3-γ binding to MDMX was also detected in these cells in response to hypoxia (Fig. 4A). However, 3SA MEF cells failed to show significant induction of p53 and its target protein in response to hypoxia (Fig. 4A), similar to the previous study in which p53 activity also was considerably hampered in 3SA MEF cells compared with wild type MEF cells in response to DNA damage (42). In addition, 3SA MEF cells were unable to show enhanced interaction between MDMX and 14-3-3-γ after hypoxia treatment (Fig. 4A). This result could rule out the possibilities such that ATR-Chk1-mediated direct p53 activation by N-terminal phosphorylation of p53 or hypoxia-mediated MDM2 phosphorylation, which promotes MDM2 autodegradation, as only triple mutations of MDMX are involved in this occasion. Next, wild type and 3SA MEF cells were cultured under a normoxic or hypoxic condition followed by FACS analysis. Although wild type MEF cells showed >15% increase in G1 phase cells after hypoxia treatment, 3SA MEF cells were unable to demonstrate any significant increase in G1 arrest (Fig. 4B). This difference between WT and mutant MDMX-containing MEF cells should be due to the phosphorylation of MDMX at these three sites followed by p53 activation. Because 3SA MDMX in MEF cells possesses three serine mutations, to determine which serine is more critical for hypoxia-induced interaction between MDMX and 14-3-3-γ, we dissected and evaluated the outcome derived from individual single mutations of these MDMX phosphorylation sites in the perspective of interaction between two proteins. Co-immunoprecipitation after ectopic expression of FLAG-14-3-3-γ and Myc-tagged MDMX with respective single alanine mutations at Ser-342, Ser-367, or Ser-403 residues showed that the S367A mutation of MDMX completely abolished the interaction between 14-3-3-γ and MDMX regardless of oxygen status (Fig. 4C). Also, although the S402A mutation hampered this interaction, hypoxia treatment was still able to enhance the interaction between S402A-MDMX and 14-3-3-γ, relatively to a less degree compared with that for wild type MDMX (Fig. 4C). In contrast, the S403A-MDMX mutation did not hinder the binding of 14-3-3-γ to MDMX, compared with the corresponding wild type MDMX control before and after hypoxia (Fig. 4C). These results, similar to the previous observations in response to DNA damage (38–42), again firmly support the phosphorylation of MDMX at Ser-367 is the most essen-
tial and responsible event for the interaction between MDMX and 14-3-3 in response to hypoxia. Also, nearby Ser-342 appears to possess the potential to facilitate and preserve their intact interaction.

Our study as presented here unambiguously demonstrates that MDMX phosphorylation at Ser-367 is vital to hypoxia-induced p53 activation in addition to DNA damage responses. Moreover, Ser-342 phosphorylation of MDMX seems to function as a favorable factor conducive to Ser-367 phosphorylation and/or 14-3-3 binding to MDMX in the course of hypoxia-mediated p53 activation. Although here we have utilized and scrutinized the function of 14-3-3 as a binding partner of MDMX in hypoxia-mediated p53 activation, it would not be surprising if other 14-3-3 family members, such as 14-3-3 or 14-3-3, but not 14-3-3, may play a role in hypoxia-caused p53 activation as well. It is likely that MDMX phosphorylation-enhanced interaction with 14-3-3 protein(s) might be a common mechanism that accounts for p53 activation via inactivation of MDMX by a number of stress signals.

In summary, our results strongly support the notion that hypoxia-mediated p53 activation is through the ATR-Chk1-MDMX-14-3-3 signaling pathway. Specifically, hypoxia activates ATR and then Chk1, which in turn phosphorylates MDMX at Ser-367 and induces MDMX-14-3-3 binding, consequently suppressing MDMX activity and activating p53 (Fig. 4D). Thus, this study illuminates a new role of 14-3-3 as a functional link between the ATR-Chk1 kinase cascade and the MDMX-p53 pathway in response to hypoxia.

Acknowledgments—We thank Dr. Zaocheng Xu for use of the hypoxia chamber and the members of the Lu laboratory for active discussion.

REFERENCES

1. Vaupel, P., Schlenger, K., Knoop, C., and Höckel, M. (1991) Oxygenation of human tumors: Evaluation of tissue oxygen distribution in breast cancers by computerized O2 tension measurements. Cancer Res. 51, 3316–3322
2. Hammond, E. M., and Giaccia, A. J. (2005) The role of p53 in hypoxia-induced apoptosis. Biochem. Biophys. Res. Commun. 331, 718–725
3. Semenza, G. L. (2000) HIF-1 and human disease: One highly involved factor. Genes Dev. 14, 1983–1991
4. Graeber, T. G., Osmanian, C., Jacks, T., Housman, D. E., Koch, C. J., Lowe, S. W., and Giaccia, A. J. (1996) Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumors. Nature 379, 88–91
5. Schmaltz, C., Hardenbergh, P. H., Wells, A., and Fisher, D. E. (1998) Regulation of proliferation-survival decisions during tumor cell hypoxia. Mol. Cell Biol. 18, 2845–2854
6. Wenger, R. H., Cadenas, G., Desbaillets, L., Chilov, D., and Gassmann, M. (1998) Up-regulation of hypoxia-inducible factor-1α is not sufficient for hypoxic/anoxic p53 induction. Cancer Res. 58, 5678–5680
7. Carmeliet, P., Dor, Y., Herbert, J. M., Fukumura, D., Brusselmann, K., Dewerchin, M., Neeman, M., Bono, F., Abramovitch, R., Maxwell, P., Koch, C. J., Ratcliffe, P., Moons, L., Jain, R. K., Collen, D., and Keshet, E. (1998) Role of HIF-1α in hypoxia-mediated apoptosis, cell proliferation, and tumor angiogenesis. Nature 394, 485–490
8. An, W. G., Kanekal, M., Simon, M. C., Maltepe, E., Blagosklonny, M. V., and Neckers, L. M. (1998) Stabilization of wild type p53 by hypoxia-induc-
Hypoxia Activation of p53 via Inactivation of MDMX

9. Hammond, E. M., Denko, N. C., Dorie, M. J., Abraham, R. T., and Giaccia, A. J. (2002) Hypoxia links ATM and p53 through replication arrest. Mol. Cell Biol. 22, 1834–1843

10. Sano, M., Minamino, T., Toku, H., Miyaiuchi, H., Orimo, M., Qiu, Y., Akazawa, H., Taten, K., Yamaya, H., Harada, M., Shimizu, I., Ashara, T., Hamada, H., Tomita, S., Molkentin, J. D., Zou, Y., and Komuro, I. (2007) p53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload. Nature 446, 444–448

11. Blagosklonny, M. V., An, W. G., Romanova, L. Y., Trepel, J., Fojo, T., and Neckers, L. (1998) p53 inhibits hypoxia-inducible factor-stimulated transcription. J. Biol. Chem. 273, 11995–11998

12. Hammond, E. M., and Giaccia, A. J. (2004) The role of ATM and ATR in the cellular response to hypoxia and re-oxygenation. DNA Repair 3, 1117–1122

13. Hammond, E. M., Dorie, M. J., and Giaccia, A. J. (2003) ATM targets are phosphorylated by ATR in response to hypoxia and ATM in response to reoxygenation. J. Biol. Chem. 278, 12207–12213

14. Hammond, E. M., Dorie, M. J., and Giaccia, A. J. (2004) Inhibition of ATR leads to increased sensitivity to hypoxia/reoxygenation. Cancer Res. 64, 6556–6562

15. Hammond, E. M., Freiberg, R. A., and Giaccia, A. J. (2006) The roles of Chk 1 and Chk 2 in hypoxia and reoxygenation. Cancer Lett. 238, 161–167

16. Hammond, E. M., Dorie, M. J., and Giaccia, A. J. (2003) ATM/ATR targets are phosphorylated by ATR in response to hypoxia and ATM in response to reoxygenation. J. Biol. Chem. 278, 12070–12121

17. Hammond, E. M., Dorie, M. J., and Giaccia, A. J. (2004) ATM/ATR phosphorylation of p53 serves as a checkpoint for DNA damage. Science 281, 1674–1677

18. Chao, C., Saito, S., Anderson, C. W., Appella, E., and Xu, Y. (2000) Phosphorylation of murine p53 at Ser-18 regulates the p53 responses to DNA damage. Proc. Natl. Acad. Sci. U.S.A. 97, 11936–11941

19. Chen, J., Marechal, V., and Levine, A. J. (1999) Mapping of the p53 and mdm-2 interaction domains. Mol. Cell Biol. 13, 4107–4114

20. Oliner, J. D., Pietenpol, J. A., Thiagalingam, S., Gyuris, J., Kinzler, K. W., and Vogelstein, B. (1993) Oncoprotein MDM2 conceals the activation domain of tumor suppressor p53. Nature 362, 857–860

21. Iwakuma, T., and Lozano, G. (2003) MDMP, an introduction. Mol. Cancer Res. 1, 993–1000

22. Wu, X., Bayle, J. H., Olson, D., and Levine, A. J. (1993) The p53-mdm-2 autoregulatory feedback loop. Genes Dev. 7, 1126–1132

23. Sharp, D. A., Kato, S., Sank, M. J., and George, D. L. (1999) Stabilization of the MDMP oncprotein by interaction with the structurally related MDMX protein. J. Biol. Chem. 274, 38189–38196

24. Stad, R., Little, N. A., Xirodimas, D. P., Frenk, R., van der Eb, A. J., Lane, D. P., Saville, M. K., and Joehemsan, A. G. (2001) Mdmx stabilizes p53 and Mdm2 via two distinct mechanisms. EMBO Rep. 2, 1029–1034

25. Marine, J. C., and Joehemsan, A. G. (2004) Mdmx and Mdm2: Brothers in arms? Cell Cycle 3, 900–904

26. Migliorini, D., Lazzerini Denchi, E., Danovi, D., Johansen, A., Capillo, M., Gobbi, A., Helin, K., Pelcici, P. G., and Marine, J. C. (2002) Mdm4 (MDMX) regulates p53-induced growth arrest and neuronal cell death during early embryonic mouse development. Mol. Cell Biol. 22, 5527–5538

27. Parant, J., Chavez-Reyes, A., Little, N. A., Yau, W., Reinko, V., Johansen, A. G., and Lomanzo, G. (2001) Rescue of embryonic lethality in Mdmx-null mice by loss of Trp53 suggests a nonoverlapping pathway with Mdm2 to regulate p53. Nat. Genet. 29, 92–95

28. Huang, L., Yan, Z., Xiao, L., Li, Y., Yang, J., Wang, Z. G., Zuo, Y., Kawai, H., Shafdan, M., Ganapathy, S., and Yuan, Z. M. (2011) The p53 inhibitors MDM2/MDMX complex is required for p53 activation in vivo. Proc. Natl. Acad. Sci. U.S.A. 108, 12001–12006

29. Pant, X., Vicino, S., Iwakuma, T., Quintas-Cardama, A., and Lozano, G. (2011) Heterodimerization of Mdm2 and Mdmx is critical for regulating p53 activity during embryogenesis but dispensable for p53 and Mdm2 stability. Proc. Natl. Acad. Sci. U.S.A. 108, 11995–12000

30. Kawai, H., Lopez-Pajares, V., Kim, M. M., Wiederschain, D., and Yuan, Z. M. (2007) RING domain-mediated interaction is a requirement for MDM2’s E3 ligase activity. Cancer Res. 67, 6026–6030

31. Hammond, E. M., and Joehemsan, A. G. (2003) ATM/ATR phosphorylation of p53 serves as a checkpoint for DNA damage. Science 281, 1674–1677

32. Zeng, X., Chen, L., Jost, C. A., Maya, R., Keller, D., Wang, X., Kaelin, W. G., Buscemi, G., Okamoto, K., Taya, Y., Shiloh, Y., and Joehemsan, A. G. (2006) Differential roles of ATM- and Chk2-mediated phosphorylations of MDMX in response to DNA damage. Mol. Cell Biol. 25, 9608–9620

33. Shadfan, M., Ganapathy, S., and Yuan, Z. M. (2009) Increased radioresistance and accelerated B cell lymphomas in mice with Mdmx mutations that prevent modifications by DNA damage-activated kinases. Cancer Cell 16, 33–43

34. Jin, Y., Dai, M. S., Lu, S. Z., Xu, Y., Luo, Z., Zhao, Y., and Lu, H. (2006) 14-3-3 binds to MDMX that is phosphorylated by UV-activated Chk1, resulting in p53 activation. EMBO J. 25, 1207–1218

35. Wang, Y. V., Leblanc, M., Wade, M., Johansen, A. G., and Wahl, G. M. (2009) Increased radioreistance and accelerated B cell lymphomas in mice with Mdmx mutations that prevent modifications by DNA damage-activated kinases. Cancer Cell 16, 33–43

36. Jin, Y., Zeng, S. X., Sun, X. X., Lee, H., Blattner, C., Xiao, Z., and Lu, H. (2008) MDMX promotes proteasomal turnover of p21 at G1 and early S phases independent of, but in cooperation with, MDM2. Mol. Cell Biol. 28, 1218–1229

37. Zeng, X., Chen, L., Jost, C. A., Maya, R., Keller, D., Wang, X., Kaelin, W. G., Jr., Oren, M., Chen, J., and Lu, H. (1999) MDM2 suppresses p73 function without promoting p73 degradation. Mol. Cell Biol. 19, 3257–3266

38. Dai, M. S., and Lu, H. (2004) Inhibition of MDMX-mediated p53 ubiquitination and degradation by ribosomal protein L5. J. Biol. Chem. 279, 44475–44482

39. Andressen, P. R., D’Andrea, A. D., and Taniguchi, T. (2004) ATR couples FANCDD2 monoubiquitination to the DNA damage response. Genes Dev. 18, 1588–1963

40. Yang, X. H., Shiota, B., Classen, M., and Zou, L. (2008) Chk1 and Claspin potentiate PCNA ubiquitination. Genes Dev. 22, 1147–1152

41. Zhao, B., Bower, M. J., McDevitt, P. J., Zhao, H., Davis, S. T., Johanson, K. O., Green, S. M., Concha, N. O., and Zhou, B. B. (2002) Structural basis for Chk1 inhibition by UCN-01. J. Biol. Chem. 277, 46609–46615

42. Mancini, F., Di Conza, G., and Moretti, F. (2009) MDM4 (MDMX) and its transcript variants. Curr. Genomics 10, 42–50