Dataset on infrared spectroscopy and X-ray diffraction patterns of Mg–Al layered double hydroxides by the electrocoagulation technique

Marena Molano-Mendoza a, Dayana Donneys-Victoria a, Nilson Marriaga-Cabrales a, Miguel Angel Mueses b, Gianluca Li Pumac, Fiderman Machuca-Martínez a, *

a Escuela de Ingeniería Química, Universidad del Valle, A.A. 25360 Cali, Colombia
b Department of Chemical Engineering, Universidad de Cartagena, A.A. 1382, Postal 195, Cartagena, Colombia
c Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, United Kingdom

Article info
Article history:
Received 6 July 2019
Received in revised form 26 August 2019
Accepted 19 September 2019
Available online 25 September 2019

Keywords:
Layered double hydroxides
Al and AZ31 magnesium alloy electrodes
Electrochemical synthesis
Electrocoagulation

Abstract
The XRD profiles and FTIR analysis of sludge aggregates, Mg–Al layered double hydroxides, produced during electrocoagulation processes are presented. The data describes the composition of materials (LDH) produced at different operations conditions (atmospheric conditions and Mg²⁺/Al³⁺ ratio). The data show the diffraction peaks of (003), (006), (018) and (110) crystal planes for hydrotalcite structure.

© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Data

The electrochemical method for the synthesis of Layered Double Hydroxides (LDHs) by electrocoagulation is used as an alternative procedure [1]. The LDHs are a class of anionic clays which have observed increasing attention due to their applications in many research areas [2]. Therefore, physicochemical properties of HDL materials, mainly explored from X-ray diffraction and FTIR analysis,
disclose their more specific applications. The dataset presents LDH characteristics prepared by electrocoagulation varying atmospheric conditions and Mg²⁺/Al³⁺ ratio. Figs. 1–6 show the diffraction peaks of (003), (006), (018) and (110) crystal planes for hydrotalcite structure. Tables 1–6 describe information on the phases and hkl-diffraction planes. Table 7 shows the band positions in the FTIR spectra. Figs. 7–12 displays the functional groups and bonding information. Table 8 exhibits the LDH-material specifications.

1.1. X-ray diffraction

X-ray diffraction (XRD) patterns of the materials were measured using a X’pert PRO—PANalytical diffractometer under the following conditions: 45 kV, 40 mA, monochromatic CuKα radiation (λ = 0.1542 nm) over a in the 2θ range from of 4° to -90°. The FTIR spectra was recorded with a JASCO FT/IR-4100 over a frequency in a range of 500–4000 cm⁻¹. The samples were prepared by mixing the powdered solids with KBr.

1.2. Infrared spectroscopy

The FTIR analysis was carried out in the spectral range (500–4000) cm⁻¹ by a Jasco FTIR-4100 spectrometer with a resolution of 4 cm⁻¹. The Figs. 7–12 represent the FTIR spectrum of composites and different vibrations attribution of the composites are represented in Table 7.
Fig. 1. XRD pattern of the AZ31-AZ31-1 material.

Fig. 2. XRD pattern of the AZ31-Al-N2-1 material.

Fig. 3. XRD pattern of the AZ31-Al-N2-3 material.

Fig. 4. XRD pattern of the HTX3-1 material.
Electrocoagulation experiments were conducted in a batch mode, using synthetic chloride solutions as supporting electrolyte. A 5.000 mg L⁻¹ of Sodium Chloride solution was prepared by the dissolution of Sodium Chloride (AR grade) in deionized water giving an overall final conductivity of 8.4 μS cm⁻¹. This solution was left to dissolve for 10 min. For nitrogen experiments, the beaker was covered and stirred with a speed of 100-rpm for 3.15 h. The sample was dried in a conventional oven for 2 h at 110 °C. The dried samples were then crushed into a fine powder using a ceramic mortar/bowl.

The electrocoagulation unit consisted on two plates that worked as anodes and cathodes, AZ31 magnesium alloy, Mg or aluminum, with an immersed area of 46.6 cm² each. The distance between electrodes was 5 mm, and the solution was mixing at 100 rpm using a hot magnetic plate mixer machine. Electrodes were connected to a DC power supply and the appropriate amount of the trivalent and divalent cations were carefully added to the beaker by a manual polarity inverter unit at an applied current of 0.36 and 0.15 mA. The Mg²⁺/Al³⁺ ratio and the operating time were calculated based on Faraday’s law, assuming that electro-dissolution only occurs at the anode. Before testing, electrodes were subjected to dry abrasion with emery paper No. 600 and then with abrasive paper No. 1000. Afterwards, the electrodes were rinsed with distilled water for approximately 5 min to remove traces (Table 8 describes the experimental conditions).

The following units were obtained beforehand and thoroughly cleaned:

- Digital scale
- Glass beaker (size: 1000 ml)
- Magnetic hotplate stirrer
Table 1
X-ray diffraction planes related to the AZ31-AZ31(1)_MMH material.

Magnesium Aluminium Hydroxide Carbonate Hydrate (0.5%)	Hydrotalcite (0.5%)	Carbon (97.6%)	Magnesite (1.2%)	Doyleite (0.2%)	
JCPDS: 98-004-0937	JCPDS: 98-000-6183	JCPDS: 98-003-1976	JCPDS: 98-006-6643	JCPDS: 98-004-9607	
Lattice parameters (Å):	Lattice parameters (Å):	Lattice parameters (Å):	Lattice parameters (Å):	Lattice parameters (Å):	
a 3.0810	a 3.054 a 14.26 a 4.314	a 4.983	b 3.0810	b 3.054 b 14.26 b 4.314	b 5.000
c 23.784	c 22.81 c 14.26 c 12.775	c 5.168			
2 Theta degree	hkl				
11.154 0 0 3	11.630 0 0 3	10.737 1 1 1	37.00 1 0 4	18.560 0 0 1	0 1
22.409 0 0 6	23.382 0 0 6	17.578 0 2 2	47.192 1 1 3	20.731 1 0 0	1 0
34.419 0 1 2	34.098 1 0 1	20.643 1 1 3	61.105 1 1 6	21.263 1 0 0	1 0
36.892 1 0 4	34.792 0 1 2	21.570 2 2 2	63.276 0 1 8	21.723 0 1 0	2 3
38.657 0 1 5	35.390 0 0 9	35.583 0 4 4	22.926 0 1 1	23.779 0 1 0	0 0
45.651 0 1 8	37.455 1 0 4	37.273 1 3 5	35.526 1 1 1	36.002 0 1 2	1 2 1
45.738 0 0 12	39.343 0 1 5	37.825 0 0 6	37.114 1 2 1	37.637 0 0 2	0 2
61.243 1 1 3	46.811 0 1 8	39.956 0 2 6	38.766 2 1 -1	38.956 2 0 -3	2 0 -3
61.393 1 0 13	60.593 1 1 0	45.382 1 1 7	46.031 1 2 2	46.242 1 1 2	1 2
61.933 1 1 3	60.868 0 0 15	45.850 0 4 6	60.163 2 2 2	60.163 2 2 2	2 2 2
63.596 1 0 13	60.893 4 6 6	62.033 1 3 9	61.920 2 0 3	63.865 1 1 3	1 1 3
Table 2
X-ray diffraction planes related to the Al-AZ31_N2 material.

Component	JCPDS: 98-000-4494 Lattice parameters (Å):	JCPDS: 98-004-0936 Lattice parameters (Å):	JCPDS: 98-000-7431 Lattice parameters (Å):	JCPDS: 98-007-4545 Lattice parameters (Å):	JCPDS: 98-005-6296 Lattice parameters (Å):	JCPDS: 98-006-6646 Lattice parameters (Å):
Carbon dioxide (0.2%)	a 5.624 a 3.046 a 5.67	A 14.025	A 6.756	a 4.278	b 6.756	b 4.278
Hydrotalcite (0.3%)	b 5.624 b 3.046 b 5.67	B 14.083	B 6.756	b 4.278	c 6.756	c 12.546
Nitrogen oxide (0.2%)	c 5.624 c 22.77 c 5.67	C 14.486	C 6.756	c 12.546		
Magnesium zinc (98.3%)						
Magnesium carbonate (0.3%)						
Sodium carbide (0.3%)						
Magnesite (0.7%)						
Table 3
X-ray diffraction planes related to the AZ31-Al-N23 material.

Hydrotalcite (20.4%)	Carbon dioxide (15.0%)	Brucite (1.1%)	Sodium Carbonate (15.4%)	Magnesite (48.1%)
JCPDS: 98-000-6183	JCPDS: 98-001-3442	JCPDS: 98-004-4736	JCPDS: 98-003-6631	JCPDS: 98-006-6646
Lattice parameters (Å):				
a	b	c	a	b
3.054	3.054	22.810	5.63	5.63

2 Theta degree hkl 2 Theta degree Hkl

11.630 0 0 3 27.414 1 1 18.549 0 0 1 27.619 0 0 2 27.947 0 1 2
23.382 0 0 6 35.628 0 2 1 37.614 0 0 2 34.137 0 0 2 37.540 0 1 4
34.098 1 0 1 39.160 1 1 2 37.967 0 1 1 34.413 1 1 0 47.716 1 1 3
35.3900 0 0 9 61.588 1 2 3 62.027 1 1 1 39.945 0 2 0 62.015 1 1 6
46.811 0 1 8 46.746 0 1 3 64.469 0 1 8
60.593 1 1 0 49.252 0 2 2
60.868 0 0 15 60.936 0 1 4
61.933 1 1 3 61.468 1 2 2

Table 4
X-ray diffraction planes related to the HTX3_1 material.

Hydrotalcite (12.7%)	Halite (12.5%)	Brucite (0.7%)	Gibbsite (74.1%)								
JCPDS: 98-000-6183	JCPDS: 98-001-6223	JCPDS: 98-003-4961	JCPDS: 98-008-2783								
Lattice parameters (Å):	Lattice parameters (Å):	Lattice parameters (Å):	Lattice parameters (Å):								
a	b	c	a	b	c	a	b	c	a	b	c
3.054	3.054	22.810	5.653	5.653	5.653	3.148	3.148	4.779	3.052	3.052	4.779

2 Theta degree Hkl 2 Theta degree Hkl

11.630 0 0 3 27.303 1 1 1 18.577 0 0 1 18.675 0 2 0
23.382 0 0 6 31.632 0 0 2 37.671 0 0 2 22.393 1 1 1
34.792 0 1 2 45.341 0 2 2 37.979 0 1 1 27.736 1 2 1
37.455 0 1 4 62.040 1 1 1 27.736 1 2 1
39.343 0 1 5 28.669 1 1 2
46.811 0 1 8 34.984 1 2 1
47.810 0 0 12 35.509 2 0 0
60.593 1 1 0 36.989 1 1 3
60.868 0 0 15 37.871 0 4 0
61.933 1 1 3 38.269 1 1 6

- Spatula
- Al, Mg and AZ31 alloy electrode plates
- Sodium Chloride, AR grade
- Nitrogen (N₂) gas pipeline
- DI water
- Ceramic mortar/bowl
- Emery paper No. 600 and abrasive paper No. 1000
Table 5
X-ray diffraction planes related to the MgHP-1 material.

Zinc Aluminium Hydroxide Chloride Hydrate (7.6%)	Magnesite (12.3%)	Diamond (2.3%)	Sodium carbide (40.0%)	Hydrotalcite (5.2%)	Gibbsite (32.4%)
JCPDS: 98-005-8141	JCPDS: 98-006-6646	JCPDS: 98-005-4252	JCPDS: 98-005-6291	JCPDS: 98-000-6183	JCPDS: 98-011-2963
Lattice parameters (Å):	Lattice parameters (Å):	Lattice parameters (Å):	Lattice parameters (Å):	Lattice parameters (Å):	Lattice parameters (Å):
a 3.083	a 4.278	a 4.591	a 6.778	a 3.054	a 8.675
b 3.083	b 4.278	b 4.591	b 6.778	b 3.054	b 5.069
c 23.47	c 12.546	c 4.591	c 12.74	c 22.81	c 12.508
2 Theta degree	hkl	2 Theta degree	Hkl	2 Theta degree	Hkl
11.3 0 0 3	27.947	0 1 2	39.212	0 02	23.206
22.711 0 0 6	37.540	1 0 4	48.536	112	27.991
34.363 0 0 9	47.716	1 1 3	36.387	1 2 3	34.792
38.772 0 1 5	62.015	1 1 6	37.501	2 2 0	35.390
45.920 0 1 8	64.469	0 1 8	38.766	0 2 4	37.455
58.983 0 0 15	46.758	1 1 6	39.343	0 1 5	37.486
62.002 1 0 13	47.439	2 2 4	46.811	0 1 8	28.714
48.939 2 3 1	47.810	0 0 12	31.649	3 0 2	35.159
50.697 0 2 6	60.593	1 1 0	35.159	1 1 4	35.385
61.093 2 4 0	60.868	0 0 15	35.385	0 2 0	35.809
61.224 2 3 5	61.933	1 1 3	35.809	3 1 3	38.327
61.412 1 3 6	63.586	1 0 13	38.327	1 2 2	40.117
61.983 0 4 4	40.117	0 2 2	40.249	2 1 5	45.440
64.610 0 2 8	47.175	1 0 4	47.287	4 1 5	50.512
47.175 1 0 4	47.287	4 1 5	50.512	3 1 1	58.612
50.512 3 1 1	50.512	3 1 1	58.612	2 3 2	60.468
58.612 2 3 2	60.468	4 2 6	64.616	6 0 6	72.237
64.616 6 0 6	72.237	1 1 8			
Table 6

X-ray diffraction planes related to the MgHP-Al_2 material.

JCPDS: 98-007-4545	Lattice parameters (Å):	2 Theta degree	Hkl							
Magnesium Zinc (98.5%)	Magnesium Aluminium Hydroxide Carbonate Hydrate (0.3%)	a 14.025	12.210	0 0 2	11.684	0 0 3	11.630	0 0 3	23.415	2 0 -1
Sodium Carbonate (0.9%)	JCPDS: 98-003-6621	b 14.083	12.562	0 2 0	23.492	0 0 6	23.382	0 0 6	23.762	1 1 -1
JCPDS: 98-004-0937	Lattice parameters (Å):	c 14.48	17.835	2 2 0	34.205	1 0 1	34.098	1 0 1	27.897	0 0 2
JCPDS: 98-00-61-83	Lattice parameters (Å):	JCPDS: 98-00-61-83	JCPDS: 98-00-61-83	JCPDS: 98-00-61-83	JCPDS: 98-00-61-83					
a 3.045	23.201	1 2 3	39.486	0 1 5	35.390	0 0 9	35.464	2 0 2		
a 3.054	23.223	2 1 3	39.486	0 1 5	35.390	0 0 9	35.464	2 0 2		
a 9.015	23.492	3 1 2	48.058	0 0 12	37.455	1 0 4	36.557	3 1 -1		
b 5.209	27.675	0 2 4	60.786	1 1 0	39.343	0 1 5	38.070	3 1 1		
b 5.209	28.413	4 2 0	61.193	0 0 15	47.810	0 0 12	47.893	4 0 -2		
b 5.209	34.741	1 5 2	62.140	1 1 3	60.593	1 1 0	50.244	2 2 2		
b 5.209	40.633	6 2 0	72.053	2 0 2	60.868	0 0 15	55.692	0 2 -3		
b 5.209	45.335	4 5 3	61.933	1 1 3	58.6	2 2 -3				
b 5.209	46.523	4 6 0	72.160	1 1 9	60.730	2 2 3				
b 5.209	47.310	1 7 2	71.203	1 3 3						
b 5.209	48.359	6 4 2								
b 5.209	50.238	5 1 6								

Table 7

Positions of the bands (in cm⁻¹) in the IR spectra (Figs. 7–12) [4,5].

Vibration/Assignmet	Material	AZ31-AZ31-1	AZ31-Al-N2	AZ31AIN2-3	HTX3-1	MgHP-1	MgHP-2	
Water and hydroxyl groups	OH stretching	3459.67	3443.28	3443.28	3450.99	3216.68	3465.46	
	Bending	Ad sorbed water	1641.13	1639.2	1639.2	1641.13	1646.91	1642.09
Nitrogen	N–H stretching	2095.28	2095.28	2095.28	2098.17	2100.1	2101.06	
Carbonates	C = O	1475.28	1501.31	1501.31	1508.06			
	v3 asymmetric stretching	1364.39	1363.43	1363.2	1364.39	1360.53	1365.35	
	v1 symmetrical stretching	1267	675.93					
Others	Al–O and Mg–O deformation	1032.69	1069.33	1069.33	1073.19	1087.66	1075.12	
	Mg–O	1188.9	639.2					
	Mg–O	557.33	598.80	589.15	544.79			
	Mg–O	447.40	452.22	452.22	412.692			
	Mg–O	378.94	367.37					

Fig. 7. IR Spectrum of the AZ31-AZ31-1 material.
Fig. 8. IR Spectrum of the AZ31-AL-N2-1 material.

Fig. 9. IR Spectrum of the AZ31-AL-N2-3 material.

Fig. 10. IR Spectrum of the HTX3-1 material.

Fig. 11. IR Spectrum of the MgHP-1 material.
Acknowledgements

The authors would like to acknowledge the Universidad del Valle (Colombia) for supporting the study under Grant No. 2863: Electrocoagulation of textile industrial effluents using magnesium ‘Case study of indigo carmine solutions’. The Royal Academy of Engineering –Newton Caldas Fund (United Kingdom) and Loughborough University (United Kingdom) for the financial support for the development of this research, framed in the project: Treatment of petroleum production wastewater by combined adsorption and oxidation process using double layer hydrotalcites under Grant No. IAPP1617-70.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1] M. Molano-Mendoza, D. Donneys-Victoria, N. Marriaga-Cabales, M.A. Mueses, G. Li Puma, F. Machuca-Martínez, Synthesis of Mg-Al layered double hydroxides by electrocoagulation, MethodsX 5 (2018) 915–923.
[2] T. Hibino, A. Tsunashima, Characterization of repeatedly reconstructed Mg-Al hydrotalcite-like compounds: gradual segregation of aluminum from the structure, Chem. Mater. 20 (1998) 4055–4061.
[3] T. Degen, M. Sadki, E. Bron, U. König, G. Nenert, The HighScore suite, Powder Diffr. 29 (Supplement S2) (2014) S13–S18.
[4] F. Cavani, F. Trifiro, A. Vaccari, Hydrotalcite-type anionic clays: preparation, properties and applications, Catal. Today 11 (1991) 173–301.
[5] J. Pérez-Ramirez, G. Mul, F. Kapteijn, J.A. Moulijn, A spectroscopic study of the effect of the trivalent cation on the thermal decomposition behaviour of Co-based hydrotalcites, J. Mater. Chem. 11 (2001) 2529–2536.