Supplementary Information for

A global network of marine protected areas for food

Reniel B. Cabrala,b,c, Darcy Bradleya,b,c, Juan Mayorgaa,b,c,d, Whitney Goodelld, Alan M. Friedlanderd,e, Enric Salad, Christopher Costelloa,b,c, Steven D. Gainesa,b,c

aBren School of Environmental Science and Management, University of California, Santa Barbara, Santa Barbara, CA 93117.
bMarine Science Institute, University of California, Santa Barbara, Santa Barbara, CA 93117.
cEnvironmental Market Solutions Lab (emLab), University of California, Santa Barbara, Santa Barbara, CA 93117.
dPristine Seas, National Geographic Society, Washington DC 20036.
eHawai’i Institute of Marine Biology, University of Hawai’i, Kāne‘ohe, HI 96744.

Reniel B. Cabral
Email: rcabral@ucsb.edu

This PDF file includes:

- Supplementary text
- Figures S1 to S17
- Tables S1 to S3
- SI References
Supplementary Information Text

Food provision definition

The change in total fish catch due to an MPA network \(w \), which defines our food provision metric, is given by
\[
\Delta H_w = \sum_i H_{w,i} - \sum_i H_{bau,i},
\]
where \(\sum_i H_{w,i} \) and \(\sum_i H_{bau,i} \) represent total global catch with and without implementing additional MPAs, respectively. \(H_{w,i} \) and \(H_{bau,i} \) represent catches for stock \(i \). In the following text, we drop the index \(i \) for brevity.

Fisheries dynamics with no MPA

With no MPA, fish biomass \((B) \) is given by:
\[
B_{t+1} = (1 - E)B_t + f_t(\cdot)
\]
and fish catch \((H) \) by:
\[
H_t = E_t B_t
\]
where \(E \) is the exploitation rate, or the proportion of stock \(i \) biomass in a fishing area removed by fishing, \(f(\cdot) \) is the growth of the stock, and \(t \) is time. \(f(\cdot) \) represents the population growth both from the increase in fish weight with increasing age and growth from the addition of new individuals by reproduction. We express the growth as a logistic function:
\[
f_t(\cdot) = r B_t \left(1 - \frac{B_t}{K}\right)
\]
where \(r \) is the maximum population growth rate, i.e., population growth rate in the absence of density-dependence mechanism that regulates growth, and \(K \) is the carrying capacity. At steady-state \(B_{t+1} = B_t \), therefore, we drop the time variable in Eqns. (S1-S3):
\[
B = (1 - E)B + r B \left(1 - \frac{B}{K}\right)
\]
\[
H = EB
\]
Solving for the steady-state fish biomass and catch results in:
\[
B = \left(\frac{r - E}{r}\right) K
\]
\[
H = \left(\frac{r - E}{r}\right) EK
\]

Fisheries dynamics with an MPA

We consider the case where a fraction of the stock’s range is in a fully-protected MPA, where fishing is prohibited inside the MPA. We denote the fraction of the stock’s total \(K \) in the MPA as our parameter \(R \) (i.e., \(R \) is our MPA size parameter). The fish biomass inside \((B_{in}) \) and outside \((B_{out}) \) the MPA is given by:
\[
B_{in,t+1} = B_{in,t} + f_{in,t}(\cdot) - B_{trans,t}
\]
\[B_{out,t+1} = (1 - E_{out,t})B_{out,t} + f_{out,t}(\cdot) + B_{trans,t} \]
(S9)

where \(f_{in}(\cdot) \) and \(f_{out}(\cdot) \) are the growth equations for inside and outside the MPA, \(B_{trans} \) describes the transfer of biomass between the MPA and the fishing area, \(t \) is time, and \(E_{out} \) is the exploitation rate in the fishing area, which can depend on the MPA’s size and the stock’s management.

The growth equations, which capture both individual biomass build-up and larval contributions, are given by:

\[f_{in,t}(\cdot) = RrB_{T,t}\left(1 - \frac{B_{TL}}{K}\right) \]
(S10)

\[f_{out,t}(\cdot) = (1 - R)rB_{T,t}\left(1 - \frac{B_{TL}}{K}\right) \]
(S11)

where \(B_{T} = B_{in} + B_{out} \) or the total fish biomass. The growth equations above consider a common larval pool that contributes to the population growth inside and outside the MPA. This implies that all larval production (from MPAs and fished areas) is homogenized across the entire geographic range of the stock, and larvae settle homogeneously into fished areas and MPAs in proportion to their respective areas.

Fish catch is given by:

\[H_{t} = E_{t}B_{out,t} \]
(S12)

For a logistic model, the highest biomass growth is achieved at \(B_{out} = K/2 \). Overfished stocks, in particular those with biomass \(\ll K/2 \), will benefit from an MPA, because protection allows biomass to build-up inside the MPA and, consequently, this biomass build-up contributes to biomass growth in the fishing area.

Biomass transfer

When establishing an MPA, a fraction of the biomass inside the MPA will move to the fishing area (denoted as \(\mu \)) and a fraction of biomass in the fishing area will enter the MPA (denoted as \(\nu \)). The net transfer of biomass is given by (1):

\[B_{trans} = \mu B_{in} - \nu B_{out} \]
(S13)

We impose that the transfer of biomass is zero when the density of biomass inside and outside the MPA is equal:

\[\frac{B_{in}}{R} = \frac{B_{out}}{1 - R} \]
(S14)

where \(R \) is the fraction of a stock’s total \(K \) in the MPA. Therefore, the net transfer of biomass is given by:

\[B_{trans} = \mu \left(B_{in} - \frac{R}{1 - R} B_{out} \right) \]
(S15)
The parameter μ depends on the size of the MPA and species mobility m. We assume that μ linearly decreases with R and is scaled by species mobility, i.e., the fraction of the biomass inside the MPA that moves out linearly decreases with the MPA’s size (μ = m(1 − R)), although this parameter can take many functional forms. Thus,

\[B_{\text{trans}} = m(1-R)\left(B_{\text{in}} - \frac{R}{1-R}B_{\text{out}}\right) \] (S16)

Equation (S16) is identical to the density-dependent movement of the adult biomass model reported in Cabral et al. (2). The biomass transfer operates at the scale of the entire geographic range of the stock.

Steady-state fish catch and biomass with an MPA

At steady-state \(B_{t+1} = B_t \), therefore, we drop the time variable in Eqns. (S8-S12):

\[B_{\text{in}} = B_{\text{in}} + Rr(B_{\text{in}} + B_{\text{out}}) \left(1 - \frac{B_{\text{in}} + B_{\text{out}}}{K}\right) - \mu \left(B_{\text{in}} - \frac{R}{1-R}B_{\text{out}}\right) \] (S17)

\[B_{\text{out}} = (1-E)B_{\text{out}} + (1-R)r(B_{\text{in}} + B_{\text{out}}) \left(1 - \frac{B_{\text{in}} + B_{\text{out}}}{K}\right) + \mu \left(B_{\text{in}} - \frac{R}{1-R}B_{\text{out}}\right) \] (S18)

\[H = EB_{\text{out}} \] (S19)

Note that the biomass density inside the MPA will never reach \(K \) as long as some fishing occurs outside, because the adult biomass will move from higher fish density inside the MPA to lower fish density in the fishing area.

Solving for the steady-state fish biomass and fish catch outside the MPA, we have:

\[B_{\text{out}} = \left(\frac{mk(1-R)}{ER+m}\right)\left(1 - \frac{E(1-R)m}{(ER+m)r}\right) \] (S20)

\[H = E\left(\frac{mk(1-R)}{ER+m}\right)\left(1 - \frac{E(1-R)m}{(ER+m)r}\right) \] (S21)

When \(R=0 \), Eqns. (S20 and S21) will be equivalent to the no MPA case (Eqns. S6 and S7).

Food provision equation

The food provision potential of a given network of MPAs (\(w \)) is \(\Delta H_w = \sum_i H_{w,i} - \sum_i H_{bau,i} \).

Some stocks already have some level of protection because, at the time of writing, 2.4% of the ocean is in fully- or highly-protected MPAs (3), i.e., the current fraction of a stock’s \(K \) in the MPA (\(R_{bau} \)) is non-zero for some species. Using Eqn. (S21) summed all over the modeled stocks, the changes in catch due to the implementation of a network of MPAs (\(w \)) is given by:

\[\Delta H_w = \sum_i E_{w,i}\left(\frac{m_iK_i(1-R_{w,i})}{E_{w,i}R_{w,i} + m_i}\right)\left(1 - \frac{E_{w,i}(1-R_{w,i})m_i}{E_{w,i}R_{w,i} + m_i}r_i\right) - \sum_i E_{bau,i}\left(\frac{m_iK_i(1-R_{bau,i})}{E_{bau,i}R_{bau,i} + m_i}\right)\left(1 - \frac{E_{bau,i}(1-R_{bau,i})m_i}{E_{bau,i}R_{bau,i} + m_i}r_i\right) \] (S22)
where E_{wi} is the exploitation rate of stock i given an MPA network w and E_{baui} is the exploitation rate of stock i under a business-as-usual scenario.

Species and stock lists

We use the commercially exploited marine species in Costello *et al.* (4) for which species distribution layers from AquaMaps (5) and population growth rates (r) from FishLife (6), FishBase (7), and SeaLifeBase (8) are available. We end up with 811 matched species. For species with stock assessments, we spatially disaggregate species distributions into stock distributions with ranges determined by the spatial management area of the stock (9) (Fig. S8). We include 527 assessed stocks, resulting to a total of 1338 stocks considered in our analysis.

Planning unit

Our planning unit resolution is ~55 km x 55 km and is based on AquaMaps' species native range resolution of 0.5 by 0.5 degrees. We change the coordinate reference system of the stocks’ distribution from a half-degree WGS84 reference system to a Mollweide equal area projection using the *raster* R package (10).

Growth rate

We use FishLife (6) to derive the population growth rate (r) of most of the modeled fish species. The growth rate for invertebrates and the remaining fish species were taken from FishBase (7) and SeaLifeBase (8).

Species mobility

We incorporate species mobility into our model of MPA effects on food provisioning to account for the adult movement of biomass across MPA boundaries. We use three categorizations of mobility characteristics: sedentary and/or highly site-attached ($m=0.1$), mobile and/or habitat associated ($m=0.3$), and highly mobile, transient, and/or highly migratory ($m=0.9$) (Table S1). Our classification combines both density dependent (i.e., movement due to space limitation, territoriality, etc.) and density independent (i.e., random movement of fish via simple diffusion) movement, and we therefore use generous bounds to classify linear scales of movement. Our liberal definition of movement therefore includes relocations to new home ranges and excursions – potentially spawning migrations – by individuals with otherwise restricted home ranges (e.g., linear movements >1 km were recorded for Scarids, Acanthurids, Mullids, Epinephelins, and Lethrinds over multiple long-term tracking studies (11–14)).

The assignment of values to mobility characteristics is arbitrary, but our categorization is modeled around our ~55 km by 55 km planning unit. We define $m=0.1$ to represent species with maximum scales of movement <1 km for adults. Species in the $m=0.3$ category have maximum adult scales of movement between 1-55 km. Species in the $m=0.9$ category are wide ranging and many cross national jurisdictions, with maximum adult scales of movement >55 km.

The mobility indices were assigned using keyword matching from four databases that were searched sequentially: FishBase (7), SeaLifeBase (8), FAO (15), and the IUCN Red List of Threatened Species (16) (Table S2). Mobility indices were assigned by three unique classifiers; insufficient information in reference databases and discrepancies between mobility classifications between scorers were resolved using peer-reviewed literature. All species mobility indices, classification keywords, source information, and relevant notes are presented in Table S3.

Carrying capacity

We use the MSY estimate per species reported in Costello *et al.* (4) and the growth rate (r) per species from Thorson (6), FishBase (7), and SeaLifeBase (8) to calculate the total carrying
capacity (K) per species (Figs. S9-S11). We derive the first-ever spatially-explicit dataset of stock carrying capacity per planning unit or pixel (Fig. S9) by distributing the total K in proportion to the relative probability of occurrence of the species within its native range (5). Using this spatial information on the carrying capacity per species, we can map carrying capacities for various species categories such as total K for different species mobility characteristics (Figs. S12-S14).

Uncertainty analysis

The four curves in Figure 2, as well as the results in Figure 3, illustrate how our food provision benefit estimate changes given alternative future fishery trajectories (i.e., given different ways E could change in the future). A future with more overfished fisheries means higher MPA benefits.

We add uncertainty bounds to our food provisioning projections by incorporating the uncertainties in r and K parameters. The probability distribution of r for most fish species was derived from Thorson et al. (6), and we derive the probability distribution of r for invertebrates and other missing fish species using the reported r and its associated standard deviation from FishBase (7) and SeaLifeBase (8). We assume an uncertainty in K per species of ±15% based on the information that K is typically 9 to 12 times the MSY (our current total K estimate is 11 times our total MSY estimate) (17). Uncertainty in K per species i in our analysis is derived by a random draw from the uniform distribution with a minimum value of 0.85K and a maximum value of 1.15K, i.e., Ki = U[0.85Ki, 1.15Ki].

Effect of MPA size on catch

We test the effect of MPA size on food provisioning (ΔH) across a range of biological characteristics of the species (i.e., growth rate and mobility) and starting status of the fisheries. In particular, we test how ΔH changes at different MPA sizes for underfished fisheries (E/E_{MSY} = 0.2 and 0.6), fisheries harvested at MSY (E/E_{MSY}=1), and overfished fisheries (E/E_{MSY} = 1.4 and 1.6), where E is the exploitation rate of the fishery under the no MPA case and E_{MSY} is the exploitation rate at which MSY is achieved (Figs. S15 and S16). The exploitation rate experienced by a stock in fished area increases as MPA size increases (bottom panels). Our model suggests that only overfished fisheries can gain food benefits from MPAs (top right panels). Catch is predicted to be lower for the case where MPAs are implemented in underfished fisheries or fisheries harvested at MSY vs. the no additional MPA case.

For overfished fisheries, a smaller MPA size (relative to the stock range) is required to optimize the catch of species with low mobility compared to highly mobile species (Figs. S15 and S16). Smaller MPA size is also required to optimize the catch of fast growing (Fig. S15) species vs. slow growing species (Fig. S16). As expected, MPA benefits are higher for species with higher growth rates (Figs. S15 and S16). The more overfished the fishery, the higher the fishery’s benefits are from MPAs (Figs. S15 and S16).

Figure S17 shows the top 15 stocks that will gain the largest increases in food provisioning potential from strategically protecting an additional 5% of the global ocean. Most of the benefit comes from overfished stocks with high K and limited stock range.
Fig. S1. Average pixel-level spillover potential (ΔH) within exclusive economic zones (EEZs) vs. the high seas. Each pixel is evaluated independently. See Fig. 1.
Fig. S2. Globally optimized marine protected area (MPA) network for food using the business-as-usual “all stocks” scenario for future fisheries. The color ramp indicates the relative importance of each pixel in an optimal, globally coordinated MPA network. Green indicates positive marginal change in ΔH, and orange indicates negative marginal change in ΔH, with white marking the transition from positive to negative marginal change in ΔH. Areas in cyan represent current fully-or highly-protected MPAs.
Fig. S3. Globally optimized marine protected area (MPA) network for food using the collapse scenario for future fisheries. The color ramp indicates the relative importance of each pixel in an optimal, globally coordinated MPA network. Green indicates positive marginal change in ΔH, and orange indicates negative marginal change in ΔH, with white marking the transition from positive to negative marginal change in ΔH. Areas in cyan represent current fully- or highly-protected MPAs.
Fig. S4. Globally optimized marine protected area (MPA) network for food using the MSY scenario for future fisheries. The color ramp indicates the relative importance of each pixel in an optimal, globally coordinated MPA network. Green indicates positive marginal change in ΔH, and orange indicates negative marginal change in ΔH, with white marking the transition from positive to negative marginal change in ΔH. Areas in cyan represent current fully- or highly-protected MPAs.
Fig. S5. Optimal sizes of marine protected areas (MPAs) for overfished stocks. The size of MPAs is defined as the proportion of the stock’s range in MPAs. The median MPA size is 22.4% of the stock’s range (red dashed line) while the mean is 23.0%.
Fig. S6. Changes in the median steady-state exploitation rate (E) in fishing areas as the proportion of the global ocean in MPAs increases. The inset plots show the distribution of E at two different MPA network sizes (as indicated by the arrows): 1) Under the business-as-usual scenario where 2.4% of the global ocean is in MPAs (the median value is 2.2, indicated by the red dashed line); 2) 99.9% of the global ocean is in MPAs (the median value is 1, indicated by the red dashed line). The exploitation rate experienced by stocks in fishing areas increases as MPA size increases, because fishing effort displaces to remaining fishing areas outside MPAs.
Fig. S7. Histogram of the ratio of estimated stock biomass to carrying capacity (B/K) in 2050 for the 1338 stocks included in this analysis. Data from Costello et al. (4). The median value (red dashed line) is 0.17.
Fig. S8. Map of number of species with a stock assessment per cell (for $n=527$ managed stocks included in this analysis). Data from Free et al. (9).
Fig. S9. Carrying capacity (K in metric tons) per cell.
Fig. S10. Top 50 stocks (where a stock can represent the disaggregation of a species into multiple spatial units) with the highest carrying capacity (K) used in this analysis. The y-axis labels are the stock ID reported by AquaMaps or RAM with species name reported to the right of the bars.
Fig. S11. Top 50 species with the highest carrying capacity \((K)\) used in the analysis.
Fig. S12. Carrying capacity (K) per cell for low mobility species ($m=0.1$).
Fig. S13. Carrying capacity (K) per cell for moderate mobility species ($m=0.3$).
Fig. S14. Carrying capacity (K) per cell for high mobility species ($m=0.9$).
Fig. S15. The top panels show the change in food provisioning (ΔH) as a function of the proportion of the global ocean in an MPA (% MPA coverage). The condition of the fishery under a no MPA case is also varied, i.e., underfished fishery ($E/E_{\text{MSY}}=0.2$ and 0.6), fishery harvested at MSY ($E/E_{\text{MSY}}=1$), and overfished fishery ($E/E_{\text{MSY}}=1.4$ and 1.6). Results are shown for each level of species mobility. ΔH is only positive in overfished fisheries (top right panels) at some levels of protection; ΔH is always negative in underfished fisheries and those harvested at MSY. The bottom panels show the change in exploitation rate (E) as a function of the proportion of the global ocean in an MPA (% MPA coverage). The exploitation rate in fished area increases as the size of the MPA increases due to the transfer of effort from the MPA to the fished area. Note, the exploitation rate is insensitive to species mobility. For all simulations, growth rate $r=1$ and carrying capacity $K=100$. This figure is used to illustrate the dynamics of our model and the units are arbitrary.
Fig. S16. The top panels show the change in food provisioning (ΔH) as a function of the proportion of the global ocean in an MPA (% MPA coverage). The condition of the fishery under a no MPA case is also varied, i.e., underfished fishery ($E/E_{\text{MSY}}=0.2$ and 0.6), fishery harvested at MSY ($E/E_{\text{MSY}}=1$), and overfished fishery ($E/E_{\text{MSY}}=1.4$ and 1.6). Results are shown for each level of species mobility. ΔH is only positive in overfished fisheries (top right panels) at some levels of protection; ΔH is always negative in underfished fisheries and those harvested at MSY. The bottom panels show the change in exploitation rate (E) as a function of the proportion of the global ocean in an MPA (% MPA coverage). The exploitation rate in fished area increases as the size of the MPA increases due to the transfer of effort from the MPA to the fished area. Note, the exploitation rate is insensitive to species mobility. For all simulations, growth rate $r=0.1$ and carrying capacity $K=100$. This figure is used to illustrate the dynamics of our model and the units are arbitrary.
Fig. S17. Increase in food provisioning potential of individual fish stocks from strategically protecting an additional 5% of the global ocean. (A) Top 15 stocks that will experience the largest increase in food provisioning potential from additional protection along with the species name. (B) r and K values and (C) Stock ranges and exploitation rates of the top 15 stocks (orange) along with values for the rest of the stocks considered in our model (black).
Table S1. Mobility (m) categorization assigned to species in the analysis (note: scales of movement considered for adults only).

Mobility	Maximum linear distance		
$m=0.1$	<1 km		
$m=0.3$	1-50 km		
$m=0.9$	>50 km		
Mobility	Classification	Description	FishBase/SealifeBase/FAO/IUCN keywords
----------	----------------	-------------	--
$m=0.1$	sedentary	adults are sessile (e.g., barnacle), burrow (e.g., worms and mollusks), burrow/crawl/attached with limited movement (e.g., sea cucumber); sensu Welch (18)	"sessile"; "burrow"; "limited movement"; "sedentary"; "home ranging"
territorial		adults are territorial with limited territory size	"territorial"; "home ranging"
$m=0.3$	habitat_reef	adults are associated with reef habitat (coral reef, rocky reef); generally found in coastal waters	"coral"; "rock"; "reef"; "inshore reef"; "associated with reefs"; "reef-associated"
habitat_coastal		adults are associated with non-reef coastal waters (lagoons, estuaries, rivermouths, seagrass beds)	"coastal"; "inshore"; "lagoon"; "brackish waters"; "seagrass beds"; "continental shelf"; "pelagic inshore"
habitat_benthic		adults are associated with the benthos	"sandy bottom"; "benthic"; "mud"; "demersal"
habitat_deep		adults are associated with deep ocean habitat (>100 m)	"deep water"; "outer continental shelves and upper slopes"; "bathydemersal"; "benthipelagic"
$m=0.9$	hms	adults are highly migratory species	"highly migratory species"
migratory		adults undergo regular migrations >50 km	"strongly migratory"; "extensive migrations"; "migrant"
pelagic		adults move throughout the pelagic zone	"pelagic"; "oceanic"; "open sea"; "offshore"; "free-living"
deep		adults are transient at depths >100 m	"bottom browser"
Table S3. Growth rate (r) and mobility categorization (m) per species used in our model. The common name of the species is derived from FishBase. See Table S2 for the mobility classification. Movement sources are from FishBase (FB), SeaLifeBase (SLB), FAO, IUCN, or from other references as cited (REF).

Scientific name	Family	Common name	Growth rate (r)	Mobility	Mobility classification	Movement source	Movement information notes and references		
Pomatomus saltatrix	Scorpaenidae	Atlantic sea bass	0.200	0.7	benthic	FB: “Adults inhabit the outer shelf (180 m) and slope to at least 1,300 m depth, probably moving further from the bottom at night; often found over seamounts (Ref. 9833) and underwater ridges (Ref. 33648).”			
2	Thynnus alalunga	Scombridae	Albacore	0.139	0.9	FB	SF: “Tends to move further north and into surface waters in summer, retreating and descending in winter.”		
3	Gaidrops commersoni	Gadidae	Alaska pollock	0.268	0.3	REF	SF: “Exhibits north-south and near shore-offshore migrations.”		
4	Engraulis encrasicolus	Engraulidae	European anchovy	0.557	0.9	FB	SF: “Migrates inshore during spring and summer, and offshore into deep water wintering areas after spawning; also undertake vertical migrations (Ref. 1371).”		
5	Theragra chalcopterus	Gadidae	Alaska pollock	0.268	0.3	REF	SF: “Exhibits north-south and near shore-offshore migrations.”		
6	Atheresthes stomias	Pleuronectidae	Arrow-toothed flounder	0.193	0.3	FB	SF: “Inhabit continental shelf waters including estuaries, bays and inlets (Ref. 6380). Found between depths of 30 m (Ref. 33616) and 39 m (Ref. 58489).”		
7	Engraulis anchoita	Engraulidae	Argentine anchovy	0.639	0.9	FB	SF: “Migrates inshore during spring and summer, and offshore into deep water wintering areas after spawning; also undertake vertical migrations (Ref. 1371).”		
8	Merluccius hubbsi	Merluccidae	Argentine hake	0.227	0.9	FB	SF: “Inhabit continental shelf waters including estuaries, bays and inlets (Ref. 6380). Found between depths of 30 m (Ref. 33616) and 39 m (Ref. 58489).”		
9	Thynnus thynnus	Scombridae	Atlantic bluefin tuna	0.082	0.9	IUCN	SF: “Inhabit continental shelf waters including estuaries, bays and inlets (Ref. 6380). Found between depths of 30 m (Ref. 33616) and 39 m (Ref. 58489).”		
10	Hippoglossus hippoglossus	Pleuronectidae	Atlantic halibut	0.119	0.3	FB	SF: “Migrates inshore during spring and summer, and offshore into deep water wintering areas after spawning; also undertake vertical migrations (Ref. 1371).”		
11	Pleurogrammus monopterygius	Hexagrammidae	Atka mackerel	0.077	0.3	FB	SF: “Migrates inshore during spring and summer, and offshore into deep water wintering areas after spawning; also undertake vertical migrations (Ref. 1371).”		
12	Monopogonias undulatus	Sciaenidae	Atlantic croaker	0.874	0.3	FB	SF: “Migrates inshore during spring and summer, and offshore into deep water wintering areas after spawning; also undertake vertical migrations (Ref. 1371).”		
13	Dissostichus mawsoni	Nototheniidae	Antarctic toothfish	0.104	0.9	FB	SF: “Inhabit continental shelf waters including estuaries, bays and inlets (Ref. 6380). Found between depths of 30 m (Ref. 33616) and 39 m (Ref. 58489).”		
14	Antipr tuta	Antipidae	Australian salmon	0.286	0.3	FB	SF: “Inhabit continental shelf waters including estuaries, bays and inlets (Ref. 6380). Found between depths of 30 m (Ref. 33616) and 39 m (Ref. 58489).”		
15	Callinectes sapidus	Portunidae	Blue crab	0.6	0.3	REF	SF: “...net migratory speeds were on the order of 5 km day.” (Ref. 20)		
16	Pseudolestes elongatus	Sciaenidae	Bobo croaker	0.263	0.3	FB	SF: “Inhabit continental shelf waters including estuaries, bays and inlets (Ref. 6380). Found between depths of 30 m (Ref. 33616) and 39 m (Ref. 58489).”		
17	Macrum scraezeildae	Merluccidae	Blue grenadier	0.099	0.9	FB	SF: “Migrates southward in spring and summer and northward in winter (Ref. 1371)”		
18	Sebastes melanostomus	Sebastidae	Blackgill rockfish	0.057	0.3	FB	SF: “Found on soft bottom in deep water, but young in shallower areas (Ref. 2850)”		
19	Brachydeuterus auritus	Haemulidae	Bigeye grunt	0.674	0.3	IUCN	SF: “Inhabit continental shelf waters including estuaries, bays and inlets (Ref. 6380). Found between depths of 30 m (Ref. 33616) and 39 m (Ref. 58489).”		
20	Merluccius polli	Merluccidae	Benguela hake	0.234	0.3	FB	SF: “Inhabit continental shelf waters including estuaries, bays and inlets (Ref. 6380). Found between depths of 30 m (Ref. 33616) and 39 m (Ref. 58489).”		
21	Thynnus obesus	Scombridae	Bigeye tuna	0.236	0.9	IUCN	SF: “Inhabit continental shelf waters including estuaries, bays and inlets (Ref. 6380). Found between depths of 30 m (Ref. 33616) and 39 m (Ref. 58489).”		
22	Epigonus telescopus	Epigonidae	Black cardinal fish	0.097	0.3	FB	SF: “Inhabit continental shelf waters including estuaries, bays and inlets (Ref. 6380). Found between depths of 30 m (Ref. 33616) and 39 m (Ref. 58489).”		
23	Allocyttius niger	Oreosomatidae	Black oree	0.065	0.3	FB	SF: “Inhabit continental shelf waters including estuaries, bays and inlets (Ref. 6380). Found between depths of 30 m (Ref. 33616) and 39 m (Ref. 58489).”		
24	Sebastes melanops	Sebastidae	Black rockfish	0.085	0.3	FB	SF: “Inhabit continental shelf waters including estuaries, bays and inlets (Ref. 6380). Found between depths of 30 m (Ref. 33616) and 39 m (Ref. 58489).”		
25	Sebastes mystinus	Sebastidae	Blue rockfish	0.104	0.3	FB	SF: “Inhabit continental shelf waters including estuaries, bays and inlets (Ref. 6380). Found between depths of 30 m (Ref. 33616) and 39 m (Ref. 58489).”		
#	Common Name	Family	Scientific Name	Habitat	Reference				
----	-------------	------------------	-------------------	--------------------------------	-----------				
28	Scomber australasicus	Scombridae	Blue mackerel	0.571	0.9	hms	FB		
29	Makara nigromaculata	Istiophoridae	Blue marlin	0.268	0.9	hms	FB		
30	Sebastes rubripinnis	Sebastidae	Bank rockfish	0.086	0.3	habitat_benthic	FB		
31	Hyperoglyphus antarcticus	Centrolenidae	Bluenerose warehou	0.181	0.3	habitat_reef	FB		
32	Sebastes paucispinis	Sebastidae	Bocaccio rockfish	0.106	0.3	habitat_reef	FB		
33	Ethmalosa limbricata	Clupeidae	Borga shad	0.691	0.3	habitat_coastal	FB		
34	Centropomus tinca	Serranidae	Black seabass	0.391	0.3	habitat_reef	FB		
35	Carcharhinus limbatis	Carcharhinidae	Blacktip shark	0.099	0.9	hms	FB		
36	Pteropoma trachancus	Stromateidae	Atlantic butterfish	0.7	0.9	pelagic	FB		
37	Micromesistius puniassou	Gadidae	Blue whiting	0.265	0.9	migratory	FB		
38	Scorpaenichthyso marmoratus	Cottidae	Cabezon	0.322	0.3	habitat_benthic	FB		
39	Mallotus villosus	Osmeridae	Capelin	0.138	0.9	migratory	FB		
40	Merluccius capensis	Merluccidae	Shallow-water Cape hake	0.138	0.9	migratory	FB		
41	Sebastes goodeli	Sebastidae	Chilipepper rockfish	0.093	0.3	habitat_reef	FB		
42	Trachurus trecaei	Carangidae	Gunene horse mackerel	0.479	0.9	pelagic	FB		
43	Trachurus murphyi	Carangidae	Chilean jack mackerel	0.247	0.9	pelagic	FB		
44	Scomber japonicus	Scombridae	Chub mackerel	0.398	0.9	hms	FB		
45	Gadus morhua	Gadidae	Atlantic cod	0.369	0.9	migratory	FAO		
46	Pagrus erythrinus	Sparidae	Common pandora	0.481	0.3	habitat_reef	FB		
47	Jasus lalandii	Palinuridae	Cape rock lobster	0.425	0.3	habitat_benthic	REF		
48	Sebastes pinniger	Sebastidae	Canary rockfish	0.039	0.3	habitat_reef	FB		
49	Trachurus capensis	Carangidae	Cape horse mackerel	0.282	0.9	pelagic	FB		
50	Bronteu bromsae	Lutidae	Tusk	0.105	0.3	habitat_benthic	FB		
51	Sebastas crameri	Sebastidae	Darkblotched rockfish	0.053	0.3	habitat_benthic	FB		
52	Parapeneus longirostris	Penaeidae	Deep-water rose shrimp	1.03	0.3	habitat_benthic	SLB		
53	Micromesistius pacificus	Pleuronectidae	Dover sole	0.09	0.3	habitat_benthic	FB		
54	Sebastes vaniabilis	Sebastidae	NA	0.083	0.3	habitat_benthic	FB		
55	Hippoglossoides elassodon	Pleuronectidae	Flathead sole	0.18	0.3	habitat_benthic	FB		
56	Lepidorthomus boscal	Scophtalmaidae	Four-spot megrim	0.513	0.3	habitat_benthic	FB		
57	Canara rhonchus	Carangidae	False scad	0.043	0.3	habitat_coastal	FB		
58	Mycterocharus microlepis	Serranidae	Gag	0.177	0.3	habitat_reef	FB		
59	Rhexa solandri	Gempylidae	Silver gemfish	0.235	0.3	migratory	FB		
60	Physia blennoides	Phycidae	Greater forlhead	0.397	0.9	migratory	REF		
61	Reinhardtius hippoglossoides	Pleuronectidae	Greenland halibut	0.172	0.3	habitat_benthic	FB		
62	Sebastes carnatus	Sebastidae	Gopher rockfish	0.086	0.1	territorial	FB		
63	Sardina dumerilii	Carangidae	Greater amberjack	0.451	0.3	habitat_reef	FB		
64	Sebastes elongatus	Sebastidae	Greenspinned rockfish	0.092	0.3	habitat_benthic	FB		
65	Aristaeomorpha foliacea	Aristidae	Giant red shrimp	0.47	0.3	habitat_deep	SLB		
66	Sebastes chlorosticus	Sebastidae	Greenspotted rockfish	0.086	0.3	habitat_benthic	FB		
67	Kathelastoma unicospoda	Umbridae	Giant stargazer	0.286	0.1	sedentary	FB		
---	---	---	---	---	---				
68	Penaeus semisulcatus	Penaeidae	green tiger prawn	1.18	0.9	migratory	REF	Secondary ref: (23) “Tagging studies by previous workers indicated that adults of *P. semisulcatus* also migrate offshore to deeper water as they mature (FAO, 1980; Farmer and Al-Attar, 1981; Muhammed et al., 1981; Somers and Kirkwood, 1984)”	
69	Melanogrammus aeglefinus	Gadidae	Haddock	0.302	0.9	migratory	FB		
70	Merluccius merluccius	Merluccidae	European hake	0.31	0.3	habitat_deep	FB	FB: “Herring schools move between spawning and wintering grounds and feeding grounds in open water by following migration patterns learned from earlier year classes (Ref. 88171).”	
71	Clupea harengus	Clupeidae	Atlantic herring	0.216	0.9	migratory	FB		
72	Clupea pallasi	Clupeidae	Pacific herring	0.56	0.3	habitat_coastal	FB	FB: “Non-migratory”	
73	Trachurus trachurus	Carangidae	Atlantic horse mackerel	0.412	0.9	pelagic	FB		
74	Illex illecebrosus	Ommastrephidae	northern shortfin squid	0.76	0.9	pelagic	IUCN		
75	Engraulis japonicus	Engraulidae	Japanese anchovy	0.796	0.9	pelagic	FB		
76	Trachurus japonicus	Carangidae	Japanese jack mackerel	0.601	0.9	pelagic	FB		
77	Hexagrammos decagrammus	Hexagrammidae	Kelp greenling	0.341	0.3	habitat_reef	FB		
78	Genypterus capensis	Ophididae	Kingklip	0.182	0.3	habitat_benthic	FB		
79	Scomberomorus cavalla	Scombridae	King mackerel	0.423	0.9	hms	FB		
80	Dentex macrophthalminus	Sparidae	Large-eye dentex	0.46	0.3	habitat_coastal	FB		
81	Ophiodon elongatus	Hexagrammidae	Lingcod	0.143	0.9	migratory	FB	FB: “Both migratory and non-migratory populations exist (Ref. 6885).”	
82	Raja rhina	Rajidae	Longnose skate	0.088	0.3	habitat_benthic	FB		
83	Homarus americanus	Nephropidae	American lobster	0.57	0.3	habitat_benthic	SLB	SLB: “Migration does not occur, or only to a limited scale (Ref. 4).”	
84	Sebastodes altivelis	Sebastidae	Longspine thornyhead	0.095	0.3	habitat_deep	REF	Secondary ref: (24)	FB: “They overwinter in deeper waters but move closer to shore in spring when water temperatures range between 11° and 14°C.”
85	Scomber scombrus	Scombridae	Atlantic mackerel	0.271	0.9	hms	FB		
86	Lepidobotis whiffiagonis	Scophthalmidae	Megrim	0.443	0.3	habitat_benthic	FB		
87	Brevoorta patronus	Clupeidae	Gulf menhaden	0.843	0.3	habitat_coastal	FAO	FAO: “north/south migrations (spring and summer versus autumn) occur”	
88	Brevoorta tyrannus	Clupeidae	Atlantic menhaden	0.724	0.9	migratory	FAO		
89	Trachurus mediterraneus	Carangidae	Mediterranean horse mackerel	0.393	0.9	pelagic	FB		
90	Lophius americanus	Lophidae	American angler	0.343	0.3	habitat_benthic	FB		
91	Nemadactylus macropterus	Cheilodactylidae	Tarakihi	0.107	0.3	habitat_coastal	REF	Secondary ref: (25)	
92	Mugil cephalus	Mugilidae	Flathead grey mullet	0.277	0.3	habitat_coastal	FB		
93	Nephrops norvegicus	Nephropidae	Norway lobster	0.52	0.1	sedentary	SLB	SLB: “Sedentary (Ref. 94799). Inhabits muddy bottoms in which it digs its	
Code	Scientific Name	Family	Habitat	FAO	Notes				
------	---------------------	----------	---------	--------------	-------				
94	Trisopterus esmarkii	Gadidae	Norway	0.616 0.9 migratory	FAO: migrates for spawning between the Shetland Islands and Norway and out of the Skagerrak, the major spawning grounds being located between NW Scotland, Norway, Faeroe Islands and Iceland.				
95	Sebastes polyprion	Sebasiidae	Northern rockfish	0.05 0.3 habitat_benthic	FB: Based on parasite and trace-element analyses, orange roughy is a sedentary species with little movement between fish-management zones (Ref. 27068).				
96	Geryonotocephalus bicolor	Ophidioidei	Pink cusk-eel	0.131 0.3 habitat_benthic	FB: "Adults live in large schools in waters overlying the continental shelf and slope except during the spawning season when they are found several hundred miles seaward (Ref. 1371)."				
97	Ochotopus vulgus	Ophidiidae	common octopus	0.81 0.3 habitat_benthic	FAO: "Migrations are known to occur, especially for spawning, to coastal waters in spring and to deeper waters in winter."				
98	Paralichthys olivaceus	Psettidae	Bastard halibut	0.874 0.3 habitat_benthic	FAO: "Based on parasite and trace-element analyses, orange roughy is a sedentary species with little movement between fish-management zones (Ref. 27068)."				
99	Hoplostethus atlanticus	Trachichthyidae	Orange roughy	0.161 0.1 sedentary	FB: "Of 32 large spiny lobsters tracked with acoustic tags for 14-355 days in north-east New Zealand, 25 moved detectable distances (>0.1 km) from their tag site while undertaking migrations as extensive as the Atlantic species but moves only for short distances, such as to and from the shore, or from one bank to the other within a limited region."				
100	Thunnus orientalis	Scombridae	Pacific bluefin tuna	0.192 0.9 hms	FAO: "Pacific cod does not undertake migrations as extensive as the Atlantic species but moves only for short distances, such as to and from the shore, or from one bank to the other within a limited region."				
101	Engraulis rings	Engraulidae	Anchoveta	0.649 0.9 pelagic	FB: "Adults live in large schools in waters overlying the continental shelf and slope except during the spawning season when they are found several hundred miles seaward (Ref. 1371)."				
102	Paralichthys bogaraveo	Sebasiidae	northern shrimp	0.58 0.9 deep	REF: Secondary ref: (27)				
103	Macrurus magellanicus	Merluccidae	Patagonian grenadier	0.102 0.9 migratory	REF: Secondary ref: (28)				
104	Gadus macrocephalus	Gadidae	Pacific cod	0.255 0.3 habitat_deep	FAO: "Atlantic cod does not undertake migrations as extensive as the Atlantic species but moves only for short distances, such as to and from the shore, or from one bank to the other within a limited region."				
105	Sebastes alutus	Sebasiidae	Pacific ocean perch	0.048 0.3 habitat_benthic	FB: "Gadus macrocephalus is a migratory species with little movement between fish-management zones (Ref. 27068)."				
106	Panopea generosa	Hattellidae	Pacific geoduck	0.37 0.1 sedentary	FAO: "Migrations are known to occur, especially for spawning, to coastal waters in spring and to deeper waters in winter."				
107	Merluccius productus	Merluccidae	North Pacific hake	0.12 0.9 migratory	FB: "Adults live in large schools in waters overlying the continental shelf and slope except during the spawning season when they are found several hundred miles seaward (Ref. 1371)."				
108	Pleuronectes platessa	Pleuronectidae	European plaice	0.26 0.9 migratory	FB: "Gadus macrocephalus is a migratory species with little movement between fish-management zones (Ref. 27068)."				
109	Pollachius virens	Gadidae	Saithe	0.293 0.9 migratory	FAO: "Migrations are known to occur, especially for spawning, to coastal waters in spring and to deeper waters in winter."				
110	Lamna nasus	Lamnidae	Porbeagle	0.044 0.9 migratory	FB: "Gadus macrocephalus is a migratory species with little movement between fish-management zones (Ref. 27068)."				
111	Trisopterus minutus	Gadidae	Poor cod	0.706 0.3 habitat_benthic	FB: "Gadus macrocephalus is a migratory species with little movement between fish-management zones (Ref. 27068)."				
112	Eosynthia jordani	Pleuronectidae	Patagonian grenadier	0.113 0.3 habitat_benthic	FB: "Gadus macrocephalus is a migratory species with little movement between fish-management zones (Ref. 27068)."				
113	Dissostichus eleginoides	Nototheniidae	Patagonian toothfish	0.107 0.9 deep	FB: "Gadus macrocephalus is a migratory species with little movement between fish-management zones (Ref. 27068)."				
114	Pago major	Sparidae	Red seabream	0.389 0.3 habitat_reef	FB: "Gadus macrocephalus is a migratory species with little movement between fish-management zones (Ref. 27068)."				
115	Pagellus bogaraveo	Sparidae	Blackspot seabream	0.318 0.3 habitat_reef	FB: "Gadus macrocephalus is a migratory species with little movement between fish-management zones (Ref. 27068)."				
116	Chaceon quinquedens	Geryonidae	red deepsea crab	0.42 0.3 habitat_benthic	SLB: "Chaceon quinquedens is a burrowing species with little movement between fish-management zones (Ref. 27068)."				
117	Aristoteles antennarius	Aristidae	blue and red shrimp	0.48 0.3 habitat_benthic	SLB: "Chaceon quinquedens is a burrowing species with little movement between fish-management zones (Ref. 27068)."				
118	Glyptcephalus zachirus	Pleuronectidae	Rex sole	0.187 0.3 habitat_benthic	FB: "Gadus macrocephalus is a migratory species with little movement between fish-management zones (Ref. 27068)."				
119	Sebastes alutus	Sebasiidae	Kougheye rockfish	0.098 0.3 habitat_benthic	FB: "Gadus macrocephalus is a migratory species with little movement between fish-management zones (Ref. 27068)."				
120	Lepisosteus moro	Serranidae	Red grouper	0.215 0.3 habitat_benthic	FB: "Gadus macrocephalus is a migratory species with little movement between fish-management zones (Ref. 27068)."				
121	Mullus barbatow	Mullidae	Red mullet	0.68 0.3 habitat_benthic	FB: "Gadus macrocephalus is a migratory species with little movement between fish-management zones (Ref. 27068)."				
122	Cancer imoratus	Cancriidae	rock crab	0.46 0.1 sedimentary	SLB: "Chaceon quinquedens is a burrowing species with little movement between fish-management zones (Ref. 27068)."				
123	Pagellus bellotti	Spadidae	Red pandora	0.678 0.3 habitat_reef	FB: "Gadus macrocephalus is a migratory species with little movement between fish-management zones (Ref. 27068)."				
124	Jasus edwardsii	Palinuridae	red rock lobster	0.52 0.3 habitat_benthic	REF: Secondary ref: (29)				
Species	Family	Common Name	Length (m)	Migration Habitat	Reference				
--------------------------------	-------------------------	----------------------	------------	-------------------	-----------				
Sardinella aurita	Clupeidae	Round sardinella	0.017	0.3	IUCN: "This pelagic species				
schools in subtropical coastal									
waters from inshore to the shelf edge."									
Lutjanus campechanus	Lutjanidae	Northern red snapper	0.035	0.3	FB: "Generally localized, but				
some juveniles have been found to migrate over 2,000 miles in 6 or 7 years (Ref. 28499)."									
Lepidopsettina bilineata	Pleuronectidae	Rock sole	0.174	0.3	FB: "In the California region, pilchards make northward migrations early in summer and travel back south again in autumn. With each year of life, the migration becomes farther (Ref. 6885)."				
Anoplopoma fimbria	Anoplopomatidae	Sablefish	0.035	0.3	FAO: "Breeds at 20 to 25 m, near the shore or as much as 100 km out to sea"				
Sardinops sagax	Clupeidae	South American pilchard	0.349	0.3	FAO: "Migrates seasonally to southern Japan and adjacent waters in winter, and Hokkaido and the Kuril Islands in summer."				
Sarda pilchardus	Clupeidae	European pilchard	0.528	0.9	FAO: "In warm summers, the population of the Falkland/Malvinas current (on the Patagonian shelves of Argentina and southern Chile) migrates southward to S. Georgia, S. Shetland Islands, Elephant Island and the northern part of the Antarctic Peninsula."				
Cololabis saira	Scomberesocidae	Pacific saury	0.461	0.3	FAO: "Migrates seasonally to southern Japan and adjacent waters in winter, and Hokkaido and the Kuril Islands in summer."				
Sebastodes pondini	Sebastidae	Shortbelly rockfish	0.096	0.3	FB: "Transoceanic migrations recorded, but rare (Ref. 88864)."				
Thunnus maccoyii	Scombridae	Southern bluefin tuna	0.102	0.3	FB: "Exhibits seasonal onshore-offshore migration (Ref. 9888)."				
Micromesistus australis	Gadidae	Southern blue whiting	0.139	0.9	FAO: "Breeds at 20 to 25 m, near the shore or as much as 100 km out to sea"				
Placopecten magellanicus	Pectinidae	Deep sea scallop	0.56	0.3	SLB: "Generally localized, but				
some juveniles have been found to migrate over 2,000 miles in 6 or 7 years (Ref. 28499)."									
Smerotheres kyrillus	Sparidae	Scup	0.348	0.3	FB: "In warm summers, the population of the Falkland/Malvinas current (on the Patagonian shelves of Argentina and southern Chile) migrates southward to S. Georgia, S. Shetland Islands, Elephant Island and the northern part of the Antarctic Peninsula."				
Squalus acanthias	Squalidae	Piked dogfish	0.044	0.9	FB: "Migrates seasonally to southern Japan and adjacent waters in winter, and Hokkaido and the Kuril Islands in summer."				
Paralichthys dentatus	Paralichthyidae	Summer flounder	1.336	0.3	FB: "Migrates seasonally to southern Japan and adjacent waters in winter, and Hokkaido and the Kuril Islands in summer."				
Isturus oxyrinchus	Lamnidae	Shortfin mako	0.09	0.9	FB: "Migrates seasonally to southern Japan and adjacent waters in winter, and Hokkaido and the Kuril Islands in summer."				
Merluccius bilinearis	Merlucciidae	Silver hake	0.154	0.9	FB: "Migrates seasonally to southern Japan and adjacent waters in winter, and Hokkaido and the Kuril Islands in summer."				
Seriola punctata	Centrolophidae	Silver warehou	0.261	0.3	FB: "Migrates seasonally to southern Japan and adjacent waters in winter, and Hokkaido and the Kuril Islands in summer."				
Katsuwonus pelamis	Scombridae	Skipjack tuna	0.504	0.9	FB: "Migrates seasonally to southern Japan and adjacent waters in winter, and Hokkaido and the Kuril Islands in summer."				
Pseudoctopus maculatus	Oreosomatidae	Smooth orey dory	0.11	0.3	FB: "Migrates seasonally to southern Japan and adjacent waters in winter, and Hokkaido and the Kuril Islands in summer."				
Squilla mantis	Squillidae	Spot-tail manit	0.56	0.1	FAO: "Breeds at 20 to 25 m, near the shore or as much as 100 km out to sea"				
Mullus surmuletus	Mullidae	Surf had	0.056	0.3	IUCN: "Breeds at 20 to 25 m, near the shore or as much as 100 km out to sea"				
Ophiodon elongates	Ophiodontidae	Snow crab	0.056	0.3	FAO: "Breeds at 20 to 25 m, near the shore or as much as 100 km out to sea"				
Sebastodes diplota	Sebastidae	Splitnose rockfish	0.086	0.3	FAO: "Breeds at 20 to 25 m, near the shore or as much as 100 km out to sea"				
Solea solea	Soleidae	Common sole	0.314	0.3	FB: "Migrates seasonally to southern Japan and adjacent waters in winter, and Hokkaido and the Kuril Islands in summer."				
Merluccius australis	Merlucciidae	Southern hake	0.056	0.9	FB: "Migrates seasonally to southern Japan and adjacent waters in winter, and Hokkaido and the Kuril Islands in summer."				
Species	Common Name	Family	Habitat	Depth	Movement	Reference	
Scomberomorus maculatus	Atlantic Spanish mackerel	Scombridae	benthic	0.553	0.9	hms	FB: "Moves in large schools over great distances along the shore."
Scomberomorus niphonius	Japanese Spanish mackerel	Scombridae	benthic	0.526	0.9	hms	FB: "Undergoes a spawning migration in spring (March to June) and a feeding migration in fall (September to November) in the Inland Sea of Japan."
Merluccius gayi	South Pacific hake	Merluccidae	migratory	0.418	0.9	FB: "Some spawing almost throughout the year, near to the coast or up to 100 km out to sea"	
Sprattus sprattus	European sprat	Clupeidae	migratory	0.476	0.9	FB: "It appears to prefer water temperatures between 7 and 15°C, and often makes longitudinal and depth migrations to follow this temperature preference (Ref. 48844)."	
Squalus suckleyi	Pacific spiny dogfish	Squalidae	migratory	0.024	0.9	FB: "Secondary ref: (30) "Overall, 547 (25.5%) tagged lobsters of both sexes moved >20 km within or between sites."	

Habitat notes:

- **benthic:** Found on or near the seafloor, often in areas of silt, clay, or mud substrate.
- **sedimentary:** Found in areas with sedimentary deposits, such as sand or silt.
- **coral:** Found near or on coral formations.
- **reef:** Found near or on coral reefs.
- **coastal:** Found near the coastline, often in areas with shallow water and varied topography.
- **offshore:** Found in open ocean waters, often at greater depths.
- **bathypelagic:** Found in the deep sea, often at depths greater than 2000 meters.
- **bathydemersal:** Found in the upper part of the deep sea, often at depths of 200-500 meters.

Movement notes:

- **migratory:** Animals that move seasonally, often in response to environmental cues such as temperature or food availability.
- **sedentary:** Animals that remain in one area throughout their lives.
- **sexually sedentary:** Males remain in one area, while females may migrate.

Reference notes:

- **FB:** Field notes.
- **IUCN:** International Union for Conservation of Nature.
- **Habitat:** Refers to the type of habitat where the species is typically found.
- **Migration:** Refers to the movement patterns of the species.
- **Temperature:** Refers to the temperature preferences of the species.
- **Movement:** Refers to the movement patterns of the species.
- **Habitat:** Refers to the type of habitat where the species is typically found.
- **Migration:** Refers to the movement patterns of the species.
- **Temperature:** Refers to the temperature preferences of the species.
- **Movement:** Refers to the movement patterns of the species.
- **Habitat:** Refers to the type of habitat where the species is typically found.
- **Migration:** Refers to the movement patterns of the species.
- **Temperature:** Refers to the temperature preferences of the species.
- **Movement:** Refers to the movement patterns of the species.
- **Habitat:** Refers to the type of habitat where the species is typically found.
- **Migration:** Refers to the movement patterns of the species.
- **Temperature:** Refers to the temperature preferences of the species.
- **Movement:** Refers to the movement patterns of the species.
- **Habitat:** Refers to the type of habitat where the species is typically found.
- **Migration:** Refers to the movement patterns of the species.
- **Temperature:** Refers to the temperature preferences of the species.
- **Movement:** Refers to the movement patterns of the species.
- **Habitat:** Refers to the type of habitat where the species is typically found.
- **Migration:** Refers to the movement patterns of the species.
- **Temperature:** Refers to the temperature preferences of the species.
- **Movement:** Refers to the movement patterns of the species.
- **Habitat:** Refers to the type of habitat where the species is typically found.
- **Migration:** Refers to the movement patterns of the species.
- **Temperature:** Refers to the temperature preferences of the species.
- **Movement:** Refers to the movement patterns of the species.
- **Habitat:** Refers to the type of habitat where the species is typically found.
- **Migration:** Refers to the movement patterns of the species.
- **Temperature:** Refers to the temperature preferences of the species.
- **Movement:** Refers to the movement patterns of the species.
- **Habitat:** Refers to the type of habitat where the species is typically found.
- **Migration:** Refers to the movement patterns of the species.
- **Temperature:** Refers to the temperature preferences of the species.
- **Movement:** Refers to the movement patterns of the species.
- **Habitat:** Refers to the type of habitat where the species is typically found.
- **Migration:** Refers to the movement patterns of the species.
- **Temperature:** Refers to the temperature preferences of the species.
- **Movement:** Refers to the movement patterns of the species.
- **Habitat:** Refers to the type of habitat where the species is typically found.
- **Migration:** Refers to the movement patterns of the species.
- **Temperature:** Refers to the temperature preferences of the species.
- **Movement:** Refers to the movement patterns of the species.
- **Habitat:** Refers to the type of habitat where the species is typically found.
- **Migration:** Refers to the movement patterns of the species.
- **Temperature:** Refers to the temperature preferences of the species.
- **Movement:** Refers to the movement patterns of the species.
- **Habitat:** Refers to the type of habitat where the species is typically found.
| Species Name | Family Name | Habitat | Comment |
|-------------|-------------|---------|---------|
| Caranx hippos | Carangidae | habitat_reef | FB: "Generally in neritic habitats." |
| Auxis thazard | Scombridae | habitat_reef | FB: "Found in inshore waters but also down to 200 m depth, in areas with hard bottoms." |
| Pollachius |cbd | habitat_coastal | FB: "Appears to undergo migratory and trophic migrations along the coast (Ref. 35237)." |
| Acanthocybium solandri | Scombridae | habitat_reef | FB: "Lives close to the surface and has a migratory pattern similar to the mackerel (Ref. 35388)." |
| Crevalle jack | Carangidae | habitat_reef | FB: "Lives close to the surface and has a migratory pattern similar to the mackerel (Ref. 35388)." |
| Sebastes entomelas | Serranidae | habitat_reef | FB: "Lives close to the surface and has a migratory pattern similar to the mackerel (Ref. 35388)." |

IUCN Classification:
- FB: "Endangered" for *Liza klunzingeri*.
- FB: "Vulnerable" for *Pollachius* and *Acanthocybium solandri*.
- FB: "Least Concern" for *Crevalle jack* and *Sebastes entomelas*.
| | Species | Family | Habitat | Length | Comments | | |
|---|---|---|---|---|---|---|---|
| 220 | Cepola macrophthalmus | Cepolidae | Red bandfish | 0.663 | 0.1 | sedentary | FB: “Found on sand and mud bottom (Ref. 26999). Lives in vertical burrows but may be found swimming in midwater.” |
| 221 | Chanos chanos | Chanidae | Milkfish | 0.566 | 0.3 | habitat_reef | FB: “They occur in small to large schools near the coasts or around islands where reefs are well developed.” |
| 222 | Ctenolabrus rupestris | Labridae | Goldsinny-wrasse | 0.492 | 0.3 | habitat_reef | |
| 223 | Dicentrarchus labrax | Serranidae | European seabass | 0.531 | 0.3 | habitat_coastal | |
| 224 | Euthynnus affinis | Scombridae | Kawakawa | 0.631 | 0.9 | pelagic | IUCN |
| 225 | Eutylurus allisittatus | Scombridae | Little tunny | 0.33 | 0.9 | hms | IUCN |
| 226 | Eutrigla gurnardus | Triglidae | Grey gurnard | 0.182 | 0.3 | habitat_benthic | FB |
| 227 | Helicolenus dactylopterus | Scombridae | Blackbelly rosefish | 0.149 | 0.3 | habitat_benthic | IUCN |
| 228 | Istiophorus platypterus | Istiophoridae | Indo-Pacific sailfish | 0.466 | 0.9 | hms | FB |
| 229 | Gymnosarda unicolor | Scombridae | Dogtooth tuna | 0.597 | 0.9 | pelagic | FB |
| 230 | Lutjanus guttatus | Lutjanidae | Spotted rose snapper | 0.37 | 0.3 | habitat_reef | FB |
| 231 | Lutjanus kasmira | Lutjanidae | Common bluestripe snapper | 0.454 | 0.3 | habitat_reef | FB |
| 232 | Lutjanus malabaricus | Lutjanidae | Malabar blood snapper | 0.3 | 0.3 | habitat_reef | FB |
| 233 | Lutjanus peru | Lutjanidae | Pacific red snapper | 0.269 | 0.3 | habitat_reef | FB |
| 234 | Lutjanus quinquelineatus | Lutjanidae | Five-lined snapper | 0.327 | 0.3 | habitat_reef | FB |
| 235 | Lutjanus synagris | Lutjanidae | Lane snapper | 0.661 | 0.3 | habitat_reef | FB |
| 236 | Lutjanus vivanus | Lutjanidae | Silk snapper | 0.252 | 0.3 | habitat_reef | FB |
| 237 | Ocyurus chrysurus | Lutjanidae | Yellowtail snapper | 0.474 | 0.3 | habitat_reef | FB |
| 238 | Orhynchus unicolor | Scombridae | Plain bonito | 0.597 | 0.9 | hms | FB |
| 239 | Rastrelliger brachysoma | Scombridae | Short mackerel | 1.172 | 0.9 | pelagic | IUCN |
| 240 | Rastrelliger kanagurta | Scombridae | Indian mackerel | 1.13 | 0.9 | pelagic | FAO |
| 241 | Sarda orientalis | Scombridae | Striped bonito | 0.341 | 0.9 | pelagic | IUCN |
| 242 | Sarda sarda | Scombridae | Atlantic bonito | 0.703 | 0.9 | hms | FB |
| 243 | Scomberomorus commersoni | Scombridae | Narrow-banded Spanish mackerel | 0.543 | 0.9 | hms | FB |
| 244 | Scomberomorus guttatus | Scombridae | Indo-Pacific king mackerel | 0.5 | 0.9 | hms | FB |
| 245 | Scomberomorus lineolatus | Scombridae | Streaked seerfish | 0.298 | 0.9 | pelagic | IUCN |
| 246 | Scomberomorus regalis | Scombridae | Cero | 0.603 | 0.9 | pelagic | IUCN |
| 247 | Scomberomorus tritor | Scombridae | West African Spanish mackerel | 1.01 | 0.9 | pelagic | IUCN |
| 248 | Thunnus albacares | Scombridae | Blackfin tuna | 0.411 | 0.9 | hms | FB |
| 249 | Thunnus longissimus | Scombridae | Longtail tuna | 0.222 | 0.9 | pelagic | IUCN |
| 250 | Acanthistius brasiliensis | Serranidae | Argentine seabass | 0.393 | 0.3 | habitat_benthic | IUCN |
| 251 | Albula vulpes | Albidae | Bonefish | 0.463 | 0.3 | habitat_lagoon | FB |
| 252 | Glossanodon semifasciatus | Argentinidae | Deep-sea smelt | 0.519 | 0.9 | pelagic | FB |
| 253 | Antips georgianus | Argentinidae | Ruff | 0.388 | 0.3 | habitat_coastal | FB |

Habitat:
- **coastal:** waters over the continental shelf (Ref. 5217), from the coastline, where it is common on shallow flats, to offshore waters (Ref. 57932).
- **pelagic:** for pelagic species.
- **benthic:** for benthic species.
- **reef:** for fish associated with reefs.
- **midwater:** for midwater species.
- **shallow:** for shallow-water species.

Lengths:
- **FB:** FishBase units.
- **FAO:** FAO units.
- **IUCN:** IUCN units.
- **hms:** meters.
- **m:** meters.
- **cm:** centimeters.
- **mm:** millimeters.

Comments:
- FB: “Known to undertake lengthy long-shore migrations, but permanent resident populations also seem to exist.”
- FB: “A pelagic migratory fish inhabiting coastal waters at depths between 15-200 m.”
- FB: “Usually found inshore in bays and estuaries over seagrass beds or near areas of seaweed (e.g. kelp), on rocky reefs, and along ocean beaches. Juveniles are found in inshore coastal waters, bays and inlets (Ref. 6390).”
| | Common Name | Family | Scientific Name | Habitat | IUCN | FAO | |
|---|---|---|---|---|---|---|---|
| 254 | Conger myriaster | Congridae | White-spotted conger | 0.27 | 0.1 | |
| 255 | Boops boops | Sparidae | Bogue | 0.471 | 0.9 | pelagic |
| 256 | Boreogadus saida | Gadidae | Polar cod | 0.371 | 0.9 | migratory | FAO: also found at 50-175 km offshore in the Beaufort and Chukchi Seas, at depths of 40 to 400 m. Migration patterns are unknown, except for a pre-spawning migration to nearshore waters in late summer in the Beaufort Sea. |
| 257 | Brama brama | Bramidae | Atlantic pomfret | 0.254 | 0.9 | migratory | FB: "Seasonal migrant occurring in small schools, movements apparently temperature-related."
| 258 | Centropomus undecimalis | Centropomidae | Common snook | 0.642 | 0.3 | |
| 259 | Chloroscombrus chrysurus | Carangidae | Atlantic bumper | 0.817 | 0.3 | |
| 260 | Conger conger | Congridae | European conger | 0.208 | 0.3 | habitat_benthic |
| 261 | Conger oceanicus | Congridae | American conger | 0.27 | 0.1 | |
| 262 | Coregonus albula | Salmonidae | Vendace | 0.421 | 0.9 | |
| 263 | Decapterus russelli | Carangidae | Indian scad | 1.233 | 0.9 | pelagic |
| 264 | Dicentrarchus punctatus | Moronidae | Spotted seabass | 0.493 | 0.3 | |
| 265 | Eleginus gracilis | Gadidae | Saffron cod | 0.307 | 0.3 | |
| 266 | Eleutheronema tetratactylum | Polydactylidae | Fourfinger threadfin | 0.644 | 0.3 | |
| 267 | Harpadon nehereus | Synodontidae | Bombay-duck | 0.452 | 0.3 | |
| 268 | Isacia concepcionis | Haemulidae | Cabina grunt | 0.655 | 0.3 | |
| 269 | Lactarius lactatus | Lactidae | False trevally | 0.894 | 0.3 | |
| 270 | Latipes calcarifer | Latidae | Barnamundi | 0.707 | 0.3 | |
| 271 | Lutjanus gibbus | Lutjanidae | Humpback red snapper | 0.436 | 0.3 | |
| 272 | Lutjanus griseus | Lutjanidae | Grey snapper | 0.329 | 0.3 | |
| 273 | Lutjanus johnii | Lutjanidae | John's snapper | 0.365 | 0.3 | |
| 274 | Megalops squamatus | Carangidae | Torpedo scad | 0.855 | 0.9 | |
| 275 | Megalops cyprinoides | Megalopidae | Indo-Pacific tarpon | 0.22 | 0.3 | |
| 276 | Mene maculata | Menidae | Moonfish | 0.681 | 0.3 | |
| 277 | Menidia menidia | Athenidae | Atlantic silverside | 0.683 | 0.3 | |
| 278 | Microgadus tomcod | Gadidae | Atlantic tomcod | 0.461 | 0.3 | |
| 279 | Muraenoxo cinereus | Muraenidae | Daggettooth pike conger | 0.409 | 0.1 | |
| 280 | Nemipterus virgatus | Nemipteridae | Golden threadfin bream | 0.957 | 0.3 | |
| 281 | Oncorhynchus gorbuschus | Salmonidae | Pink salmon | 0.492 | 0.9 | |
| 282 | Oncorhynchus keta | Salmonidae | Chum salmon | 0.332 | 0.9 | |
| 283 | Oncorhynchus kisutch | Salmonidae | Coho salmon | 0.528 | 0.9 | |
| 284 | Oncorhynchus massou | Salmonidae | Masu salmon | 0.488 | 0.9 | |
| 285 | Oncorhynchus nero | Salmonidae | Sockeye salmon | 0.343 | 0.9 | |
| 286 | Oncorhynchus tschawiitscha | Salmonidae | Chinook salmon | 0.492 | 0.9 | |
| 287 | Osmerus mordax | Osmeridae | Rainbow smelt | 0.088 | 0.3 | |
| 288 | Paralabrax humeralis | Serranidae | Peruian rock seabass | 0.275 | 0.3 | |
| 289 | Parona signata | Carangidae | Parona leatherjacket | 0.935 | 0.3 | |
ID	Species	Family	Common Name	Habitat	Status	FB Notes
290	Pentanemus quinquarius	Polynemidae	Royal threadfin	habitat_coastal	IUCN	FB: "Adults prefer clear oceanic waters around islands to neritic waters (Ref. 5217). Occasionally in turbid waters (Ref. 5923). Pelagic (Ref. 58302)."
291	Plectorhinchus mediterraneus	Haemulidae	Rubberlip grunt	habitat_benthic	IUCN	
292	Polyprion americanus	Polyprionidae	Wreckfish	habitat_benthic	IUCN	
293	Pomadasys argenteus	Haemulidae	Silver grunt	habitat_coastal	FB	
294	Sallida australis	Monidae	Tadpole codling	deep	FB	
295	Sarpa salpa	Sparidae	Salema	habitat_reef	FB	
296	Selenocryptis crumenophthalmus	Carangidae	Bigeye scad	1.356 0.9	pelagic	
297	Salaria leptolepis	Carangidae	Yellowstripe scad	1.612 0.3	habitat_coastal	
298	Salmela dorsalis	Carangidae	African moonfish	0.655 0.3	habitat_coastal	
299	Salmela setapinnis	Carangidae	Atlantic moonfish	0.895 0.3	habitat_coastal	
300	Trachinotus carolinus	Carangidae	Florida pompano	0.843 0.3	habitat_coastal	
301	Trachurus decivis	Carangidae	Greenback horse mackerel	0.29 0.9	pelagic	
302	Trachurus symmetricus	Carangidae	Pacific jack mackerel	0.238 0.9	pelagic	
303	Urophycis brasiliensis	Physidae	Brazilian codling	0.375 0.3	habitat_benthic	
304	Urophycis chuss	Physidae	Red hake	0.304 0.9	migratory	REF: Secondary ref: (38) "Red hake make extensive seasonal, depth- and temperature-related migrations"
305	Zenopsis conchifer	Zeridae	Silver John dory	0.246 0.3	habitat_reef	
306	Abelines hians	Belonidae	Flat needlefish	0.581 0.3	habitat_coastal	
307	Amphicthys crypocentrus	Batrachoididae	Boccon toadfish	0.572 0.1	sedentary	FB: "Adults prefer clear oceanic waters around islands to neritic waters (Ref. 5217). Occasionally in turbid waters (Ref. 5923). Pelagic (Ref. 58302)."
308	Archosargus probatocephalus	Sparidae	Sheepshead	0.61 0.3	habitat_reef	
309	Arctoscopus japonicus	Trichodontidae	Japanese sandfish	0.63 0.3	habitat_benthic	
310	Argyrosomus spinifer	Sparidae	King soldier bream	0.494 0.3	habitat_coastal	
311	Argyrosomus hololepidotus	Sciaenidae	Southern meagre	0.228 0.3	habitat_coastal	
312	Argyrosomus regius	Sciaenidae	Meagre	0.149 0.9	migratory	FB: "Both adults and juveniles are migratory moving along shore or offshore-onshore in response to temperature change (Ref. 11025)"
313	Argyrozoa argyrozoa	Sparidae	Carpenter seabream	0.338 0.3	habitat_reef	IUCN: "Tagging studies have shown that adults are fairly resident with a small percentage of fish that disperse (Brouwer et al. 2003, Griffiths and Wilke 2002) including some nomadic behaviour involving migrations of more than 100 km (Griffiths and Mann 2000)."
314	Atractoscion aequidens	Sciaenidae	Geelbek croaker	0.312 0.3	habitat_coastal	
315	Aberouca nibe	Sciaenidae	Blackmouth croaker	0.461 0.3	habitat_coastal	
316	Austroglossus microlepis	Soleidae	West coast sole	0.186 0.3	habitat_benthic	
317	Austroglossus pectoralis	Soleidae	Mud sole	0.268 0.3	habitat_benthic	
318	Brotula barbata	Ophididae	Bearded brotula	0.276 0.3	habitat_benthic	
319	Carcharhinus brachyurus	Carcharhinidae	Copper shark	0.069 0.9	hms	
320	Carcharhinus falciformis	Carcharhinidae	Silky shark	0.067 0.9	hms	
	Species	Family	Habitat	FB or FAO	Notes	
321	Carcharhinus longimanus	Carcharhinidae	Oceanic	0.093, 0.9	hms FB	
322	Carcharhinus sorrah	Carcharhinidae	Spot-tail	0.181, 0.9	hms FB	
323	Centroprorus granulosus	Centroproridae	Gulper	0.044, 0.9	deep FB	
324	Centroprorus squamosus	Centroproridae	Leafscale	0.031, 0.9	deep FB	
325	Cephaloscyllium isabellum	Scyliorhinidae	Draughtsbo	0.188, 0.3	habitat_reef FB	
326	Ctenoglaucus edentulus	Engraulidae	Atlantic	0.508, 0.3	habitat_coastal FB	
327	Ctenoglaucus mysticetus	Engraulidae	Pacific	0.828, 0.3	habitat_coastal FB	
328	Cheineus nufar	Sparidae	Santer	0.438, 0.3	habitat_reef FB	
329	Chledonichthys kumu	Triglidae	Bluefin	0.231, 0.3	habitat_benthic FB	
330	Conodon nobilis	Haemulidae	Barred	0.655, 0.3	habitat_benthic FB	
331	Cynoconion analis	Sciaenidae	Peruvian	0.552, 0.3	habitat_coastal FB	
332	Cynoconion nebulosus	Sciaenidae	Spotted	0.437, 0.3	habitat_coastal FB	
333	Cynoconion striatus	Sciaenidae	Striped	0.562, 0.3	habitat_reef FOA	
334	Dalatias licha	Dalatidae	Kitefin	0.13, 0.9	deep FB	
335	Deniex dentex	Sparidae	Denonin	0.295, 0.3	habitat_reef FB	
336	Drepane punctata	Drepaneidae	Spotted	0.537, 0.3	habitat_coastal FB	
337	Eleognops macribinus	Eleginopsidae	Patagonian	0.185, 0.3	habitat_coastal REF	
338	Epinephelus aeneus	Serranidae	White	0.173, 0.9	migratory FB	
339	Etmopterus spinax	Etmopteridae	Velvet	0.042, 0.3	deep IUCN	
340	Galeocero cuvier	Carcharhinidae	Tiger	0.076, 0.9	hms FB	
341	Genynomon lineatus	Sciaenidae	White	0.625, 0.3	habitat_benthic IUCN	
342	Hexanchus griseus	Hexanchidae	Bluntnose	0.164, 0.9	habitat_reef FB	
343	Lepidopus caudatus	Trichuridae	Silver	0.293, 0.3	habitat_deep FB	
344	Lichia amia	Carangidae	Leefish	0.935, 0.3	habitat_coastal FB	
345	Lithognathus momynus	Sparidae	Sand	0.517, 0.3	habitat_reef FB	
346	Macodon ancyldon	Sciaenidae	King	0.617, 0.3	habitat_coastal FB	
347	Menticirrus litoralis	Sciaenidae	Gulf	0.552, 0.3	habitat_coastal FB	
348	Menticirrus saxatilis	Sciaenidae	Northern	0.498, 0.3	habitat_coastal FB	
349	Naurocrates dctor	Carangidae	Pilotfish	1.065, 0.9	pelagic FB	
350	Obiata melanura	Sparidae	Saddled	0.431, 0.3	habitat_reef FB	
351	Oxynotus centrina	Oxynotidae	Angular	0.13, 0.3	habitat_benthic FB	
352	Pagellus acme	Sparidae	Auxiliary	0.478, 0.3	habitat_reef FB	
353	Pampus argentus	Stromateidae	Silver	0.666, 0.3	habitat_coastal FB	
354	Paratoponeurus penurus	Sciaenidae	Peruvian	0.625, 0.3	habitat_coastal FB	
355	Parapercis collas	Pingueperidae	New Zealand	0.447, 0.1	habitat_coastal REF	
356	Petrus rupestris	Sparidae	Red steenbra	0.257, 0.9	migratory REF	
357	Pogonias ormis	Sciaenidae	Black	0.187, 0.3	habitat_coastal FB	
358	Proniose glauca	Carcharhinidae	Blue	0.050, 0.9	hms FB	
359	Pseneopipis anomala	Centropodidae	Pacific	0.702, 0.3	habitat_coastal FAO	
360	Pseneopipis anomala	Pseneopipidae	Indian	0.855, 0.3	habitat_benthic FB	
361	Pseudolitos senegalensis	Sciaenidae	Cassava	0.477, 0.3	habitat_coastal FB	
362	Pterogymnus	Sparidae	Panga	0.384, 0.3	habitat_reef FB	
	species	family	common_name	population	habitat	ref
---	----------------------------	------------	-------------	----------------	--------------	------
303	Menhaden	Sciaenidae	Blue drum	0.625	habitat_benthic	FB
364	Menhagonia polymorpha	Triglidae	Latchet	0.388	habitat_benthic	FB
365	Rhabdosargus milii	Sparidae	White stumprose	0.441	habitat_reef	FB
366	Scophthalmus rhombus	Scophthalmidae	Brill	0.837	habitat_benthic	FB
367	Scyliorhinus stellaris	Scyliorhinsidae	Nursehound	0.165	habitat_benthic	FB
368	Sphyra lewini	Sphynidae	Scalloped hammerhead	0.06	migratory	FB
369	Sphyra zygaena	Sphynidae	Smooth hammerhead	0.115	migratory	FB
370	Squalus argus	Squalidae	Smooth hammerhead	0.115	migratory	FB
371	Stephanolepis stellio	Monacanthidae	Threadtail filefish	0.843	habitat_coastal	IUCN
372	Taonidae	Labridae	Taildog	0.358	habitat_coastal	REF
373	Thryxostes atun	Gempylidae	Scoek	0.349	habitat_coastal	REF
374	Zoarces viviparus	Zoaridae	Elipout	0.331	sedentary	REF
375	Alosa pseudoharengus	Clupeidae	Alewife	1.843	habitat_coastal	FB
376	Alosa sapidissima	Clupeidae	American shad	1.013	pelagic	FB
377	Amblygaster smithii	Clupeidae	Spotted sardine	1.417	habitat_coastal	FB
378	Anchialo sparsus	Engraulidae	Longnose anchovy	1.297	habitat_coastal	FB
379	Anodontostoma chacunda	Clupeidae	Chacunda gizzard shad	1.401	habitat_coastal	FB
380	Anestes japonensis	Clupeidae	Alewife	1.843	habitat_coastal	FB
381	Atule mate	Carangidae	Yellowtail scad	1.255	habitat_reef	FB
382	Brevoorta aurea	Clupeidae	Brazilian menhaden	0.939	habitat_coastal	REF
383	Carangoides bjoardii	Carangidae	Orangespotted trevally	0.976	habitat_reef	FB
384	Carania crysos	Carangidae	Blue runner	0.711	habitat_coastal	FB
385	Carangoides fulvoguttatus	Carangidae	Yellowspotted trevally	1.01	habitat_reef	FB
386	Caranx ignobilis	Carangidae	Giant trevally	0.422	habitat_reef	FB
387	Caranx ruber	Carangidae	Bar jack	0.824	habitat_reef	FB
388	Chirocentrus ruber	Chirocentridae	Whitefin wolf-herring	0.27	habitat_coastal	FB
389	Clupanodon thysa	Clupeidae	Chinese gizzard shad	1.165	habitat_coastal	FB
390	Clupeonella cultriventris	Clupeidae	Black and Caspian Sea sprat	0.908	migratory	FB
391	Cynoscion acoupa	Sciaenidae	Accoupa weakfish	0.392	habitat_coastal	FB
392	Cynoscion jamaicensis	Sciaenidae	Jamaica weakfish	0.661	habitat_coastal	FB
393	Cynoscion leucarchus	Sciaenidae	Smooth weakfish	0.647	habitat_coastal	FB
394	Cynoscion virensens	Sciaenidae	Green weakfish	0.562	habitat_coastal	FB
395	Dactylopterus vittatus	Dactylopteraidae	Flying gurnard	0.639	habitat_coastal	IUCN
396	Decapterus	Carangidae	Japanese scad	1.48	pelagic	FB

FB: "Found over rough, even rocky or coraline ground, and algal-covered bottoms. Feed on bottom-living invertebrates..."

FB: "Huge schools of small migrating individuals move pole ward in the summer in certain areas (Ref. 244)."

FB: "Migrates northward in summer; young often in large aggregations of hundreds of individuals (Ref. 13562)."

FB: "Movement of schooling adults apparently restricted to coastal areas proximal to natal estuaries (Ref. 4639)."

FB: "Spends most of its life at sea, returning to freshwater streams to breed (Ref. 27547)."

FB: "Adults inhabit mangroves and coastal bays in pelagic waters (Ref. 58302). They form schools to about 50 m in inshore waters (Ref. 9884), or singly (Ref. 48635)."

FB: "Adults are common along coastal reef slopes or around large coral heads in lagoons (Ref. 48635)."

FB: "Adults common among coastal reef slopes or around large coral heads in lagoons (Ref. 48635)."

FB: "Adults inhabit mangroves and coastal bays in pelagic waters (Ref. 58302). They form schools to about 50 m in inshore waters (Ref. 9884), or singly (Ref. 48635)."

FB: "Adults inhabit mangroves and coastal bays in pelagic waters (Ref. 58302). They form schools to about 50 m in inshore waters (Ref. 9884), or singly (Ref. 48635)."

FB: "Adul..."
No.	Species Name	Family	Habitat	IUCN
397	Diplodus annularis	Serranidae	coastal	FB
398	Diplodus sargus	Serranidae	reef	FB
399	Diplodus vulgaris	Serranidae	coastal	FB
400	Euthynus maculatum	Clupeidae	coastal	FB
401	Hemiramphus brasiliensis	Hemiramphidae	coastal	REF
402	Hilsa kegle	Clupeidae	coastal	FB
403	Ilisha elongata	Porgiidae	coastal	FB
404	Isopisthus parvipinnis	Sciaenidae	coastal	FB
405	Konosirus punctatus	Clupeidae	coastal	FB
406	Lachnolaimus maximus	Labridae	reef	FB
407	Lampris guttatus	Lampridae	reef	FB
408	Lepadicyclum flavobrunneum	Gempylidae	coastal	REF
409	Lethrinus harak	Lethrinidae	reef	FB
410	Lethrinus feroxie	Lethrinidae	coastal	FB
411	Lethrinus nebulosus	Lethrinidae	coastal	FB
412	Lethrinus obtusus	Lethrinidae	coastal	FB
413	Liza aurata	Mugilidae	coastal	FB
414	Liza saliens	Mugilidae	coastal	FB
415	Lutjanus analis	Lutjanidae	reef	FB
416	Lutjanus argintiaculatus	Lutjanidae	reef	FB
417	Lutjanus argentiventris	Lutjanidae	reef	FB
418	Lutjanus bohar	Lutjanidae	reef	FB
419	Lutjanus buccanello	Lutjanidae	coastal	FB
420	Lutjanus cyanopterus	Lutjanidae	reef	FB
421	Merluccius abidus	Merluccidae	pelagic	REF
422	Microstomus kitt	Pleuronectidae	benthic	FB
423	Molva dypterygia	Lotidae	pelagic	or
424	Monolaxis grandoculis	Lethrinidae	reef	FB
425	Mora moio	Montidae	deep	FB
426	Naso unicornis	Acanthuridae	reef	
427	Nematalosa nasus	Clupeidae	coastal	FB
428	Opisthophona librite	Clupeidae	coastal	FAO
429	Opisthophona oglinum	Clupeidae	coastal	FB
430	Osmerus aperlanus	Osmeridae	coastal	FB
431	Pagonia laglioni	Sparidae	reef	FB
432	Parastromateus niger	Carangidae	coastal	FB
433	Physos physcis	Physidae	benthic	FB
434	Platichthys flesus	Pleuronectidae	benthic	IUCN
435	Sardinella brasiliensis	Clupeidae	coastal	FB
436	Sardinella gibbosa	Clupeidae	coastal	IUCN

IUCN: "It migrates into the open sea to breed from March to June, during which time it can migrate up to 300 km offshore, although it will more often migrate just 30 km."

IUCN: "Sardinella gibbosa is a marine, reef-associated species that occurs in tropical waters between depths of 10 to 70 m (Pauly et al. 1996, FAO-FIGIS 2005). This species forms schools in coastal waters; it..."
Species	Family	Habitat	IUCN	Notes		
Sardina maderensis	Clupeidae	Maderian sardina	0.811 0.9 migratory	IUCN: "Juveniles and adults show clear north-south migrations in the Gabon-Congo-Angola sector of their range and also in the Sierra Leone-Mauritania sector; each area having nurseries."		
Sardinella zunasi	Clupeidae	Japanese sardina	0.938 0.3 habitat_coastal	IUCN: "Sardinella zunasi is a coastal, marine, pelagic species that is found near shore, including semi-enclosed sea areas over sandy and mud bottom habitats (Yamada et al. 1995)."		
Saurida undosquamis	Symodontidae	Brushtooth	0.594 0.3 habitat_benthic	FB		
Scomberomorus ocellatus	Scleridae	Red drum	0.347 0.3 habitat_benthic	FB		
Scomberomorus lynn	Carangidae	Doublespotted queenfish	0.861 0.3 habitat_reef	FB		
Scomberomorus tol	Carangidae	Needleescaped queenfish	0.911 0.3 habitat_reef	FB		
Scolithina nigrofasciata	Carangidae	Blackbanded trevally	0.935 0.3 habitat_reef	FB		
Serranus caeruleus	Serranidae	Comber	0.511 0.3 habitat_benthic	FB		
Sphyraena barracuda	Sphyraenidae	Great barracuda	0.283 0.3 habitat_coastal	FB		
Sphyraena sphyraena	Sphyraenidae	European barracuda	0.489 0.3 habitat_coastal	FB		
Spondylosoma cantharus	Sparidae	Black seabream	0.395 0.3 habitat_reef	FB		
Sprattus fuesgensis	Clupeidae	Falkland sprat	0.593 0.3 habitat_coastal	FB		
Tenuolosa ilisha	Clupeidae	Hillsa shad	1.644 0.9 migratory	FB		
Tenuolosa toli	Clupeidae	Toli shad	2.002 0.3 habitat_coastal	FB		
Trachinotus blochii	Carangidae	Snubnose pompano	0.843 0.3 habitat_reef	FB		
Trisopterus lucus	Gadidae	Pouting	0.881 0.3 habitat_coastal	FB Secondary ref: (49)		
Umbrina cirrosa	Sciaenidae	Shi drum	0.434 0.3 habitat_reef	FB		
Lethrinus mahsena	Lethrinidae	Sky emperor	0.322 0.3 habitat_reef	FB		
Alopias superciliosus	Alopiidae	Bigeye thrasher	0.077 0.9 hms	FB		
Alopisus vulpinus	Alopiidae	Thresher	0.047 0.9 hms	FB		
Antimora rostrata	Moridae	Blue antilora	0.117 0.9 deep	FB		
Argentina silus	Argentinidae	Greater argentine	0.073 0.9 pelagic	FB		
Dasyatis pastinaca	Dasyatidae	Common stingray	0.527 0.3 habitat_benthic	FB		
Gingylosomos cirratum	Gingylosomatidae	Nurse shark	0.072 0.3 habitat_reef	FB		
Gymnura alvavera	Gymnuridae	Spiny butterfly ray	0.329 0.3 habitat_benthic	IUCN		
Pseudotopiscus inus	Moridae	Red codling	0.201 0.3 habitat_benthic	FB or habitat_deep		
Abracanthus nobilis	Sciaenidae	White weakfish	0.297 0.3 habitat_coastal	FB		
Caulodactalus princeps	Malacanthidae	Ocean whitefish	0.361 0.3 habitat_reef	FB		
Cathachus sortidus	Paralichthyidae	Pacific sanddab	0.949 0.3 habitat_benthic	FB		
Hyperoglype bythites	Centrolophidae	Black driftfish	0.292 0.3 habitat_coastal	IUCN		
Malacanthus plumieri	Malacanthidae	Sand tilefish	0.402 0.3 habitat_benthic	FB		
Paralichthys californicus	Paralichthyidae	California flounder	0.068 0.3 habitat_benthic	REF Secondary ref: (50)		
Rachycentron canadum	Rachycentridae	Cobia	0.444 0.9 hms	IUCN		
Semicossyphus pulcher	Labridae	California sheephead	0.707 0.3 habitat_reef	IUCN: "The fish tend to stay in the same reef and do not move around a lot, as shown by tag-recapture research (DeMartini et al. 1994)."		
Tarachichthys steindachneri	Bramidae	Sickle pomfret	0.47 0.9 hms	FB: "Highly migratory species. Annex I of the 1982 Convention on the Law of the Sea (Ref. 26139)."		
Tautogolabrus adspersus	Labridae	Cranmer	0.542 0.3 habitat_coastal	FB		
Trachipterus	Trachipteridae	Deafish	0.142 0.3 habitat_deep	FB		
Species	Family	Common Name	Maturity	Movement	Habitat	IUCN
--------------------------	-----------------	------------------------------	----------	----------	----------------------	------------
Mylioctis australis	Myliobatidae	Common eagle ray	0.238	0.3	coastal	FB
Caranx latus	Carangidae	Malabar trevally	1.169	0.3	reef	FB
Epinephelus fuscoguttatus	Serranidae	Brown-marbled grouper	0.27	0.3	reef	FB
Epinephelus lauvinus	Serranidae	Greasy grouper	0.187	0.3	reef	FB
Gnathanodon speciosus	Carangidae	Golden trevally	0.706	0.3	reef	FB
Diagonema pictum	Haemulidae	Painted sweetlips	0.515	0.3	reef	FB
Acanthopagrus bifasciatus	Sparidae	Twobar seabream	0.487	0.3	reef	FB
Sillago sihama	Sillaginidae	Silver sillago	0.713	0.3	coastal	FB
Megalops atlanticus	Megalopidae	Tarpon	0.15	0.9	migratory	IUCN
Nemipterus japonicus	Nemipteridae	Japanese threadfin bream	1.262	0.3	benthic	FB
Micropsis mitu	Scaenidae	Mi-ju croaker	0.562	0.3	coastal	FB
Xyrichtys novacula	Labridae	Pearly razorfish	0.651	0.3	coastal	FB
Lateolabrax japonica	Lateolabracidae	Japanese seabass	0.28	0.3	reef	FB
Galeorhinus galeus	Triakidae	Tope shark	0.043	0.9	mms	FB
Pomadasys jubelini	Haemulidae	Sompat grunt	0.753	0.3	coastal	FB
Acantharius sohal	Acanthuriidae	Sohal surgeonfish	0.55	0.3	reef	FB
Otolithes ruber	Scaenidae	Tigertooth croaker	0.865	0.3	coastal	FB
Plectropomus leopardus	Serranidae	Leopard coral grouper	0.262	0.3	reef	FB
Spicara maena	Centracanthidae	Blotted picarel	0.661	0.3	coastal	FB
Epinephelus gorensis	Serranidae	Dungat grouper	0.287	0.3	benthic	IUCN
Mustelus mustelus	Serranidae	Smooth-hound	0.132	0.3	coastal	FB
Pontinus kuhlii	Scorpaenidae	Offshore rockfish	0.282	0.3	deep	FB
Promethichthys prometheus	Gempylidae	Roulid escolar	0.283	0.3	deep	FB
Epinephelus morhua	Serranidae	Comet grouper	0.271	0.3	reef	FB
Varicola louti	Serranidae	Yellow-edged lyretail	0.375	0.3	reef	FB
Alosa fallax	Clupeidae	Twain shad	0.806	0.9	migratory	FB
Epinephelus areolatus	Serranidae	Areolate grouper	0.323	0.3	coastal	FB

IUCN: “Tarpon may have resident, migratory, or mixed populations (Robins et al. 1977). Tagging studies indicate that some mature tarpon may undertake substantial and alongshore migrations (Ault et al. 2005, Luo et al. 2008), while others are residents of particular locations (Guindon unpublished data, sensu Robichaud and Rose 2004). These movements may represent repeated migratory patterns, or there may be significant annual variation in the movement pattern of individuals (Ault et al. 2008). Seasonal migrations may also occur. Migrations cross state and federal boundaries, which may impact regulation.”

FB: “Occurs in small schools that are highly migratory in higher latitudes in their range (Ref. 244).”

FB: “Marine; reef-associated; non-migratory”

FB: “Amphibalanus species (Ref. 51442), schooling and strongly migratory, but apparently not penetrating far up rivers (Ref. 188, 6983). Adults are usually found in open waters along the coast (Refs. 59043, 69486).”

FB: “Usually found in seagrass beds or on fine sediment bottoms near rocky reefs, dead coral, or alcyonarians (Ref. 5222), in shallow continental shelf waters.”

40
N	Scientific Name	Family	Common Name	FB/REF	HABITAT
501	Rhyynchobatus djiddensis	Rhinobatidae	Giant guitarfish	0.205	0.3 habitat_benthic
502	Cithlodonichthys capensis	Triglidae	Cape gurnard	0.277	0.3 habitat_benthic
503	Epinephelus chlorostigma	Serranidae	Brownspotted grouper	0.315	0.3 habitat_coastal
504	Acanthopagrus berda	Sparidae	Goldsilk seabream	0.548	0.3 habitat_coastal
505	Cymatoceps nasutus	Sparidae	Black musselcracker	0.189	0.3 habitat_coastal
506	Bolbometopon muricatum	Scaridae	Green humphead parrotfish	0.237	0.3 habitat_reef
507	Mulliodichthys flavomeatus	Mullidae	Yellowstripe goatfish	0.798	0.3 habitat_reef
508	Gerres eyena	Gerreidae	Common silver-biddy	1.594	0.3 habitat_coastal
509	Pomadasys kaakan	Haemulidae	Javelin grunter	0.027	0.3 habitat_coastal
510	Acanthopagrus latius	Sparidae	Yellowfin seabream	0.419	0.3 habitat_coastal
511	Chioreactus dorab	Chioreactidae	Dorab wolf-herring	0.401	0.3 habitat_coastal
512	Pagoanus auratus	Sparidae	Silver seabream	0.213	0.3 habitat_reef
513	Aethaloperca rogaad	Serranidae	Redmouth grouper	0.393	0.3 habitat_reef
514	Cephalopholis boenak	Serranidae	Chocolate hind	0.477	0.3 habitat_reef
515	Cephalopholis hemistiktos	Serranidae	Yellowfin hind	0.369	0.1 territorial
516	Cephalopholis minuta	Serranidae	Coral hind	0.453	0.1 territorial
517	Cromleptes allivis	Serranidae	Humpback grouper	0.152	0.3 habitat_reef
518	Epinephelus marginatus	Serranidae	Duaky grouper	0.11	0.1 territorial
519	Saurida tumulur	Synodontidae	Greater lizardfish	0.476	0.3 habitat_benthic
520	Sargocentron spiniferum	Holocentridae	Sabre squirefissh	1.094	0.3 habitat_reef
521	Bathysyra ectorini	Arhynchobatidae	Eaton’s skate	0.116	0.3 habitat_benthic
522	Macrourus caninus	Macrouridae	Ridge scaled rattail	0.131	0.3 habitat_deep
523	Macrourus whitsoni	Macrouridae	Whiton’s grenadier	0.131	0.3 habitat_deep
524	Epinephelus multicinctus	Serranidae	White-bloched grouper	0.273	0.3 habitat_reef
525	Epinephelus summa	Serranidae	Summan grouper	0.287	0.3 habitat_reef
526	Micropogonas fumeri	Sciaenidae	Whitemouth croaker	0.541	0.3 habitat_coastal
527	Pleactorhinus sordidus	Haemulidae	Sordid rubberlip	0.55	0.3 habitat_reef
528	Pleactorhinus gaterini	Haemulidae	Blackspotted rubberlip	0.447	0.3 habitat_reef
529	Pleactorhinus schotaf	Haemulidae	Minstre sweetlips	0.447	0.3 habitat_reef
530	Pomadasys stenids	Haemulidae	Stripe piggy	0.779	0.3 habitat_coastal
531	Pomacanthus maculosus	Pomacanthidae	Yellowbar angelfish	0.205	0.3 habitat_reef
532	Crenidens crenidens	Sparidae	Karateen seabream	0.516	0.3 habitat_coastal
533	Pelates quadrilineatus	Terapontidae	Fourlined terapon	0.814	0.3 habitat_coastal
534	Rhodosargus haffari	Sparidae	Haffara seabream	0.561	0.3 habitat_reef
535	Odontesthes rega	Athenidae	Chilean silverside	0.646	0.3 habitat_coastal
536	Pleactorhinus picus	Haemulidae	Trout sweetlips	0.289	0.3 habitat_reef
537	Callorhinus callorynchus	Callorhinidae	Plownowe chimaera	0.167	0.3 habitat_benthic
538	Cephalopholis fulva	Serranidae	Common silver-biddy	0.433	0.3 habitat_reef
539	Patagonotothen	Nototheriidae	Longtail southern	0.471	0.9 deep
Scientific Name	Common Name	Family	Habitat	Ref.	
-----------------	-------------	--------	---------	------	
Priacanthus jacobus	Red bigeye	Priacanthidae	Benthic	FB	
Priacanthus azoum	Senegalese hail	Priacanthidae	Coastal	FB	
Cteniscops humerosus	Banded yellowfish	Cteniscidae	Benthic	FB	
Lepidoperca pulchella	Pink maomao	Lepidoperidae	Reef	FB	
Ammodites personatus	Slender tuna	Ammoditoidea	Pelagic	FB	
Aphanopus carbo	African forktail	Atherinidae	Coastal	FB	
Cyclopterus lumpus	Blackmouth	Drepaneidae	Benthic	FB	
Dentex angolensis	Angolan dentex	Sparidae	Coastal	FB	
Argentia spinthera	Kamchatka flounder	Pleuronectidae	Benthic	FB	
Caulatolius micros	Grey skate	Malacanthidae	Coastal	FB	
Champsoschatus guinari	Mackerel icefish	Lutjanidae	Coastal	REF	
Channichthys rhinoceratus	Unicorn icefish	Lutjanidae	Coastal	FB	
Coryphaenoides rupestris	Roundnose grenadier	Coryphaenidae	Deep	FB	
Cyclopseterus lumpus	Lumpfish	Cyclopetidae	Coastal	FB	
Dentex angolensis	Angolan dentex	Sparidae	Coastal	FB	
Drepane africana	African sole	Drepaneidae	Coastal	FB	
Elops saurus	Ladyfish	Elopidae	Coastal	FB	
Encrasicholina punctifera	Buccaneer anchovy	Engraulidae	Pelagic	FB	
Euthynnus lineatus	Black skipjack	Scombridae	Deep	FB	
Gadus ogac	Greenland cod	Gadidae	Coastal	FAO	
Galeus melastomus	Blackmouth catshark	Scyliidae	Deep	FB	
Guenocnemichthys melampus	Butterfly kingfish	Scombridae	Coastal	FB	
Joturus pichardi	Bobo mullet	Mugilidae	Coastal	FB	
Labrus bergylta	Ballan wrasse	Labridae	Reef	FB	
Leiostomus xanthurus	Spot croaker	Sciaenidae	Coastal	FB	
Lophius piscatorius	Angler	Lophiidae	Benthic	FB	
Macrognathus bergla	Roughhead grenadier	Macrouridae	Deep	FB	
Merluccius senegalensis	Senegalese hake	Merluccidae	Coastal	FB	
Pleuragrammus azoum	Okhotsk atka mackerel	Hexagrammidae	Benthic	FB	
Pranantis	Red bigeye	Priacanthidae	Coastal	FB	
Rank	Scientific Name	Family	Common Name	Habitat	IUCN
------	----------------------------------	-----------------	----------------------------------	---------	-------
579	Pseudupeneus prayensis	Mullidae	West African goatfish	0.897	0.3
580	Salmo salar	Salmonidae	Atlantic salmon	0.73	0.9
581	Scromberomorus brasiliensis	Scombridae	Serra Spanish mackerel	0.495	0.3
582	Scromberomorus sierra	Scombridae	Pacific sierra	0.626	0.9
583	Seriola lalandi	Carangidae	Yellowtail amberjack	0.434	0.3
584	Squalina californica	Squalidae	Pacific angelshark	0.076	0.3
585	Tetrapus pfluegeri	Istiophoridae	Longbill spearfish	0.49	0.9
586	Umbria canosai	Sciaenidae	Argentine croaker	0.681	0.3
587	Aciensia transmontanuss	Acienseridae	White sturgeon	0.086	0.3
588	Anarichas dentilicus	Anarichadidae	Northern wolffish	0.101	0.3
589	Anarichas lupus	Anarichadidae	Atlantic wolffish	0.105	0.3
590	Atherina boyeri	Atherinidae	Big-scale sand smelt	0.813	0.3
591	Beryx decadactylus	Berycidae	Alfonsino	0.159	0.3
592	Caranx melampuspyges	Carangidae	Bluefin trevally	0.562	0.3
593	Caranx sexlasciatus	Carangidae	Bigeye trevally	0.731	0.3
594	Chimaera monroso	Chimaeridae	Rabbit fish	0.116	0.9
595	Chloroscombus orbata	Carangidae	Pacific bumper	0.884	0.3
596	Cynoscias arenarius	Sciaenidae	Sand weakfish	0.76	0.3
597	Dasyatis americana	Dasyatidae	Southern stingray	0.54	0.3
598	Decapterus macroura	Carangidae	Shortfin scad	1.34	0.9
599	Dussumina acuta	Dussumieridae	Rainbow sardine	0.898	0.3
600	Dussumina etosoides	Dussumieridae	Slender rainbow sardine	0.787	0.3
601	Engraulis mords	Engraulidae	Californian anchovy	0.452	0.9
602	Etruusus whitehead	Dussumieridae	Whitehead's round herring	0.424	0.3
603	Gadicus argenteus	Gadidae	Silvery pout	0.917	0.3
604	Gasterosteus aculeatus	Gasterostidae	Three-spined stickleback	0.998	0.3
605	Hemiramphus balao	Hemiramphidae	Balao halfbeak	0.889	0.9
606	Leithrinus atlanticus	Leithinidae	Atlantic emperor	0.43	0.3
607	Leithrinus borbonicus	Leithinidae	Snubnose emperor	0.036	0.3
608	Leithrinus microdon	Leithinidae	Smalltooth emperor	0.405	0.3
609	Leithrinus xanthochilus	Leithinidae	Yellowlip emperor	0.313	0.3
610	Logius gasphysius	Lophidae	Blackfin goosefish	0.426	0.3
611	Muraena helena	Muraenidae	Mediterranean moray	0.189	0.1
612	Mysitoperca penax	Serranidae	Scamp	0.216	0.3
613	Pellona ditches	Priistigasterida	Indian pellona	0.764	0.9

FB: "Does not migrate extensively, although some seasonal movement appears to occur off Trinidad."

IUCN: "This offshore, surface dwelling species forms large schools and can be associated with pelagic Sargassum in the North Atlantic Ocean and Gulf of Mexico (Coatson-Clements et al. 1991, Collette 1999)."
No.	Scientific Name	Family	Common Name	Length (m)	Maturity	Habitat	Reference
641	Mustelus lenticulatus	Triakidae	Spotted estuary smooth-hound	0.101	migratory		FB: "Makes seasonal inshore-offshore movements (Ref. 244). Makes extensive coastal migrations, with one tagged female moving at least 1160 km (Ref. 54100)."
642	Mustelus schmitti	Triakidae	Narrownose smooth-hound	0.147	habitat_coastal		FB: "These sharks are capable of long migrations, females traveling longer distances than males (Ref. 6390). Utilized fresh for fisheries (Rhodes and Tupper 2008)."
643	Mustelus asterias	Triakidae	Starry smooth-hound	0.133	habitat_coastal		IUCN: "Individuals of both sexes appear to use reproductive migratory corridors to reach aggregation sites, which increase their vulnerability to fisheries (Rhodes and Tupper 2008)."
644	Mustelus antarcticus	Triakidae	Gummy shark	0.09	migratory		FB: "Amphialine species making important migrations. Spends its adult life in the sea for about 20-36 months, moving further offshore as it grows (Ref. 59043)."
645	Plectropomus areolatus	Serranidae	Squaretail coral grouper	0.322	migratory		FB: "Migrates far offshore (Ref. 26139). Pelagic (Ref. 5995)."
646	Cephalopholis angus	Serranidae	Peacock hind	0.453	habitat_reef		FB: "Coastal pelagic (Ref. 68964). Forms schools in coastal waters and strongly migratory."

Notes: FB refers to fisheries. **IUCN** refers to IUCN assessments.
Species	Family	Habitat	IUCN	FB
Diastobranchus capensis	Synaphobranchidae	Basketweave eel	0.368	0.3
Epinephelus polylepis	Serranidae	Smallspotted grouper	0.281	0.3
Pleuroprionus poecilus	Serranidae	Roving coral grouper	0.322	0.3
Girella tricoloritata	Kyphosidae	Porora	0.178	0.3
Sparus aurata	Sparidae	Gillhead seabream	0.38	0.3
Mullus argentinae rubiginosum	Mullidae	Argentine goatfish	0.777	0.3

Notes:
- FB: "Adults occur at depths greater than 30 m, along continental and insular margins (Ref. 37610), over rocky substrates (Ref. 37955)."
- FB: "This species is most abundant litoral species on the coast of central Chile, found in close association with the brown kelp Lessonia trabeculata."
- FB: "A pelagic species (Ref. 26340) found over lagoon and seaward reefs."
- FB: "A pelagic species (Ref. 26120) found over lagoon and seaward reefs."
- FB: "A pelagic species (Ref. 26120) found over lagoon and seaward reefs."
- FB: "A pelagic species (Ref. 26120) found over lagoon and seaward reefs."
- FB: "A pelagic species (Ref. 26120) found over lagoon and seaward reefs."
- FB: "A pelagic species (Ref. 26120) found over lagoon and seaward reefs."
- FB: "A pelagic species (Ref. 26120) found over lagoon and seaward reefs."
| ID | Scientific Name | Family | Common Name | Biovolume | Reference | Notes | | |
|---|---|---|---|---|---|---|---|---|
| 681 | Grammopeltes suppositus | Platycephalidae | Spotfin flathead | 0.421 | FB | Enzini (2008) and may be solitary or form small aggregations. |
| 682 | Panulirus argus | Stromateidae | American harvestfish | 0.911 | FB | FB: "A pelagic fish forming large schools in coastal bays, inshore waters over the continental shelf and around islands at moderate depths (50 to 70 m) where it occurs throughout the year (Ref. 53006)." |
| 683 | Homarus gammarus | Nephropidae | Lobster | 0.509 | FB | FB: "...only 2.1% of larger lobsters migrated further than 20 km." |
| 684 | Dicologlossa cuneata | Soleidae | Wedge sole | 0.219 | FB | IUCN: "In the northern hemisphere, this species migrates to coastal shallow waters in November and December and remains there until May (Guzman et al. 2008)." |
| 685 | Palinurus delagoae | Palinuridae | Natal spiny lobster | 0.22 | IUCN | Secondary ref: (57) "...1.1% of larger lobsters migrated further than 20 km." |
| 686 | Panulirus maurusianus | Palinuridae | Pink spiny lobster | 0.22 | IUCN | "Mark-recovery experiments conducted with the help of suture tags on Indian spiny lobster Panulirus homarus (Linn.) showed that their movement in the fishing ground is of a very restricted nature. Long migratory movements were not observed." |
| 687 | Panulirus cygnus | Palinuridae | Australian spiny lobster | 1.15 | IUCN | "...only 2.1% of larger lobsters migrated further than 20 km." |
| 688 | Panulirus gracilis | Palinuridae | Green spiny lobster | 1.018 | 0.9 | IUCN: "...only 2.1% of larger lobsters migrated further than 20 km." |
| 689 | Panulirus homarus | Palinuridae | Scalloped spiny lobster | 1.018 | 0.3 | FB: "...only 2.1% of larger lobsters migrated further than 20 km." |
| 690 | Peneaus longipes | Penaeidae | Longlegged spiny lobster | 1.018 | 0.3 | SLB: "...only 2.1% of larger lobsters migrated further than 20 km." |
| 691 | Peneaus monodon | Penaeidae | Giant tiger prawn | 1.19 | 0.3 | SLB: "...only 2.1% of larger lobsters migrated further than 20 km." |
| 692 | Xiphopenaeus kroyeri | Penaeidae | Atlantic seabob | 0.88 | 0.3 | SLB: "...only 2.1% of larger lobsters migrated further than 20 km." |
| 693 | Artemesia longinaris | Penaeidae | Argentine silver shrimp | 0.52 | 0.3 | SLB: "...only 2.1% of larger lobsters migrated further than 20 km." |
| 694 | Metapenaeus endeavouri | Penaeidae | Endeavour shrimp | 0.93 | 0.3 | SLB: "...only 2.1% of larger lobsters migrated further than 20 km." |
| 695 | Metapenaeus joeneri | Penaeidae | Shiba shrimp | 1.02 | 0.3 | SLB: "...only 2.1% of larger lobsters migrated further than 20 km." |
| 696 | Metapenaeus monoceros | Penaeidae | Speckled shrimp | 1.11 | 0.1 | SLB: "...only 2.1% of larger lobsters migrated further than 20 km." |
| 697 | Acetes erythraeus | Sergestidae | T surgeon shrimp | 1.19 | 0.3 | SLB: "...only 2.1% of larger lobsters migrated further than 20 km." |
| 698 | Acetes japonicus | Sergestidae | Alkami paste shrimp | 1.19 | 0.3 | SLB: "...only 2.1% of larger lobsters migrated further than 20 km." |
| 699 | Pleoticus muelleri | Solenoceridae | Argentine red shrimp | 1.19 | 0.3 | SLB: "...only 2.1% of larger lobsters migrated further than 20 km." |
| 700 | Haliporoides diomedei | Solenoceridae | Chilean knife shrimp | 0.96 | 0.3 | SLB: "...only 2.1% of larger lobsters migrated further than 20 km." |
| 701 | Haliporoides triarthus | Solenoceridae | Knife shrimp | 0.96 | 0.3 | SLB: "...only 2.1% of larger lobsters migrated further than 20 km." |
| 702 | Sicyonia brevirostris | Sicyoniidae | Brown rock shrimp | 0.81 | 0.3 | SLB: "...only 2.1% of larger lobsters migrated further than 20 km." |
| 703 | Sicyonia ingeri | Sicyoniidae | Ridgeback rock shrimp | 0.81 | 0.3 | SLB: "...only 2.1% of larger lobsters migrated further than 20 km." |
| 704 | Aristes vanidens | Aristidae | Striped rock shrimp | 0.48 | 0.3 | SLB: "...only 2.1% of larger lobsters migrated further than 20 km." |
| 705 | Nematopalaemon schmittii | Palamoniidae | Whitebelly prawn | 1.19 | 0.3 | SLB: "...only 2.1% of larger lobsters migrated further than 20 km." |
| 706 | Pandarus jordani | Pandalidae | Ocean shrimp | 0.54 | 0.3 | SLB: "...only 2.1% of larger lobsters migrated further than 20 km." |
| 707 | Pandalus hypsinotus | Pandalidae | Coonstripe shrimp | 0.56 | 0.3 | SLB: "...only 2.1% of larger lobsters migrated further than 20 km." |
| 708 | Homanus gammarus | Nephropidae | European lobster | 0.37 | 0.1 | SLB: "...only 2.1% of larger lobsters migrated further than 20 km." |
| 709 | Panulirus argus | Palinuridae | Caribbean spiny lobster | 0.55 | 0.3 | IUCN: "In the northern hemisphere, this species migrates to coastal shallow waters in November and December and remains there until May (Guzman et al. 2008)." |
| Code | Species Name | Family | Common Name | Distance to Reefs (km) | Habitats | IUCN Status |
|------|----------------------|-----------------|------------------------------------|------------------------|-------------------|-------------|
| 710 | Palinurus elephas | Palinuridae | Common spiny lobster | 0.22 | habitat_benthic | IUCN |
| 711 | Lithodes santolana | Lithodidae | Southern king crab | 0.57 | habitat_benthic | SLB |
| 712 | Nematopalaemon hastatus | Palaeonidae | estuarine prawn | 1.19 | habitat_coastal | SLB |
| 713 | Pandalus lepaslani | Pandalidae | Hokkaido shrimp | 0.56 | habitat_benthic | SLB |
| 714 | Panopea abrupta | Haetellidae | Pacific geoduck clam | 0.37 | sedimentary | SLB |
| 715 | Tivela macrolea | Veneridae | trigonal tivela | 1.18 | sedimentary | SLB |
| 716 | Penaeus penicillatus | Penaeidae | Nile shrimp | 1.083 | habitat_benthic | SLB |
| 717 | Cancer pagurus | Cancridae | ox crab | 0.46 | sedimentary | SLB |
| 718 | Chaceon affinis | Geryonidae | deep-sea red crab | 0.42 | habitat_benthic | SLB |
| 719 | Callinectes danae | Portunidae | Dana swimming crab | 0.6 | habitat_coastal | REF |
| 720 | Portunus pelagicus | Portunidae | flower crab | 1.19 | habitat_coastal | SLB |
| 721 | Cancer borealis | Cancridae | Jonah crab | 0.46 | sedimentary | SLB |
| 722 | Portunus trituberculatus | Portunidae | horse crab | 1.19 | migratory | REF |
| 723 | Scorpaena serrata | Portunidae | giant mud crab | 1.17 | habitat_coastal | SLB |
| 724 | Chaceon maritae | Geryonidae | Gulf of Mexico geryon | 0.42 | habitat_benthic | SLB |
| 725 | Chaceon fennieri | Geryonidae | Gulf of Mexico geryon | 0.42 | habitat_benthic | SLB |
| 726 | Cancer productus | Cancridae | red rock crab | 0.46 | sedimentary | SLB |
| 727 | Chiorhoccus japonicus | Ommastrephidae | red snow crab | 0.58 | habitat_benthic | SLB |
| 728 | Limulus polyphemus | Mytilidae | blue mussel | 0.54 | sedimentary | SLB |
| 729 | Censeroderma edule | Cardiidae | common edible cockle | 0.49 | sedimentary | SLB |
| 730 | Loligo vulgaris | Loliginidae | European squid | 0.34 | migratory | IUCN |
| 731 | Spisula solida | Macridae | solid surf clam | 0.47 | sedimentary | SLB |
| 732 | Mytilus edulis | Mytilidae | blue mussel | 0.54 | sedimentary | SLB |
| 733 | Mytilus gilgoviensis | Mytilidae | Mediterranean mussel | 0.5 | sedimentary | SLB |
| 734 | Eledone cirrhosa | Eledonidae | horned octopus | 0.54 | habitat_benthic | SLB |
| 735 | Illex coindetii | Ommastrephidae | shortfin squid | 0.52 | migratory | SLB |
| 736 | Todarodes sagittatus | Ommastrephidae | European flying squid | 0.38 | migratory | SLB |
| 737 | Crassostrea gigas | Ostreidae | giant cupped oyster | 0.57 | sedimentary | SLB |
| 738 | Crassostrea virginica | Ostreidae | American cupped oyster | 0.57 | sedimentary | SLB |
| 739 | Sphaeriodon opercularis | Pectinidae | queen scallop | 0.56 | sedimentary | SLB (65) |
| 740 | Pecten maximus | Pectinidae | great Atlantic scallop | 0.57 | sedimentary | SLB (65) |
| 741 | Sphaereidoides | Pectinidae | common cuttlefish | 0.56 | habitat_benthic | SLB |
| 742 | Chamelea gallina | Veneridae | striped venus clam | 0.5 | sedimentary | SLB |
| 743 | Mercenaria | Veneridae | northern quahog | 0.43 | sedimentary | SLB |
| Taxon | Family | Genus | Scientific Name | Description | Status | Location | Reference |
|-------|--------|-------|-----------------|-------------|--------|----------|-----------|
| Mercenaria mercenaria | Pectinidae | Mercenaria | Mercenaria mercenaria | Atlantic bay scallop | sedentary | SLB | |
| Octopus maya | Octopodidae | Octopus | Octopus mayo | Mexican four-eyed octopus | habitat_coastal | SLB | |
| Illex argentinus | Omastrephidae | Illex | Illex argentinus | Argentine shortfin squid | pelagic | REF | Secondary ref: (66) |
| Todanodes pacificus | Omastrephidae | Todanodes | Todanodes pacificus | Japanese flying squid | pelagic | REF | Secondary ref: (67) |
| Dosidicus gigas | Omastrephidae | Dosidicus | Dosidicus gigas | jumbo flying squid | pelagic | REF | |
| Ruditapes philippinarum | Veneridae | Ruditapes | Ruditapes philippinarum | Japanese carpet shell | sedentary | SLB | |
| Pecten novaesiwaldianus | Pectinidae | Pecten | Pecten novaesiwaldianus | scallop | sedentary | SLB | |
| Pecten jacobaeus | Pectinidae | Pecten | Pecten jacobaeus | great Mediterranean scallop | sedentary | SLB | |
| Turbo cornutus | Turbinidae | Turbo | Turbo cornutus | turned turban | sedentary | SLB | |
| Ruditapes decussatus | Veneridae | Ruditapes | Ruditapes decussatus | grooved carpet shell | sedentary | SLB | |
| Halosids rubra | Halidiidae | Halosids | Halosids rubra | blacklip abalone | sedentary | SLB | |
| Mytilus californicus | Mytilidae | Mytilus | Mytilus californicus | Far eastern mussel | sedentary | SLB | |
| Yachayalubamba curvirostris | Penaeidae | Penaeus | Yachayalubamba curvirostris | southern rough shrimp | habitat_benthic | SLB | |
| Litopenaeus setiferus | Penaeidae | Litopenaeus | Litopenaeus setiferus | northern white shrimp | habitat_benthic | SLB | |
| Pseudopleuronectes opalescens | Lophiidae | Pseudopleuronectes | Pseudopleuronectes opalescens | opalescent inshore squid | pelagic | SLB | |
| Doryteuthis gahi | Loliginidae | Doryteuthis | Doryteuthis gahi | Patagonian squid | migratory | SLB | |
| Larinichthys crocea | Sciaenidae | Larinichthys | Larinichthys crocea | Large yellow croaker | habitat_coastal | FB | |
| Liza haematocheila | Mugilidae | Liza | Liza haematocheila | So-iay mullet | habitat_coastal | FB | |
| Tegillarca granosa | Arctidae | Tegillarca | Tegillarca granosa | granular ark | sedentary | SLB | |
| Fenneropenaeus chinensis | Penaeidae | Fenneropenaeus | Fenneropenaeus chinensis | fleshy prawn | migratory | REF | Secondary ref: (68) |
| Fenneropenaeus merguiensis | Penaeidae | Fenneropenaeus | Fenneropenaeus merguiensis | banana prawn | habitat_benthic | FB | |
| Sebastes norvegicus | Sebastidae | Sebastes | Sebastes norvegicus | Golden redfish | habitat_benthic | FB | |
| Metacanthus magister | Cancridae | Metacanthus | Metacanthus magister | Dungeness crab | habitat_benthic | SLB | |
| Doryteuthis pealei | Loliginidae | Doryteuthis | Doryteuthis pealei | longfin inshore squid | migratory | IUCN | |
| Peneisquocrates quadrilobatus | Pleuronectidae | Peneisquocrates | Peneisquocrates quadrilobatus | Alaska plaice | habitat_benthic | REF | Secondary ref: (69) |
| Pseudopleuronectes herzensteinii | Pleuronectidae | Pseudopleuronectes | Pseudopleuronectes herzensteinii | Yellow striped flounder | habitat_benthic | FAO | |
| Farfantepenaes notialis | Penaeidae | Farfantepenaes | Farfantepenaes notialis | southern pink shrimp | habitat_benthic | SLB | |
| Farfantepenaes aztecus | Penaeidae | Farfantepenaes | Farfantepenaes aztecus | northern brown shrimp | habitat_benthic | SLB | |
| Scophthalmus maximus | Scophthalmidae | Scophthalmus | Scophthalmus maximus | Turbot | habitat_benthic | FB | |
| Cajika audax | Isiliophoridae | Cajika | Cajika audax | Striped marin | pelagic | FB | |
| Nemadactylus bergi | Chelidocottidae | Nemadactylus | Nemadactylus bergi | Castelaneta | habitat_benthic | REF | Secondary ref: (70) |
| Leucoraja naevus | Rajidae | Leucoraja | Leucoraja naevus | Cuckoo ray | habitat_benthic | IUCN | |
| Farfantepenaes duorarum | Penaeidae | Farfantepenaes | Farfantepenaes duorarum | pink shrimp | pelagic | REF | Secondary ref: (71) |
| Istiophorus indica | Istiophoridae | Istiophorus | Istiophorus indica | Black marlin | IUCN | |
| Melicertus kerathurus | Penaeidae | Melicertus | Melicertus kerathurus | caramote prawn | habitat_benthic | SLB | |
| Farfantepenaes californicus | Penaeidae | Farfantepenaes | Farfantepenaes californicus | yellow leg shrimp | habitat_benthic | SLB | |
| Farfantepenaes brevirostris | Penaeidae | Farfantepenaes | Farfantepenaes brevirostris | crystal shrimp | habitat_benthic | SLB | |
| Lithodes aquispinus | Lithodidae | Lithodes | Lithodes aquispinus | golden king crab | habitat_benthic | SLB | |
| Eleginus navaja | Gadidae | Eleginus | Eleginus navaja | Navaja | habitat_coastal | FB | |
| Melicertus | Penaeidae | Melicertus | Melicertus | western king | habitat_benthic | SLB | |
| Page | Line | Text |
|------|------|------|
| 49 | 785 | latissulcatus | Pleuronectidae | English sole | 0.314 | 0.9 | migratory | FB |
| 49 | 786 | Amblyraja radiata | Rajiidae | Starry ray | 0.108 | 0.9 | migratory | FB |
| 49 | 787 | Chelidonichthys cuculus | Trigidae | Red gumard | 0.231 | 0.3 | habitat_benthic | FB |
| 49 | 788 | Moolgarda seheli | Mugilidae | Bluespot mullet | 0.055 | 0.3 | habitat_coastal | FB |
| 49 | 789 | Kajikia albida | Isisthophoridae | Atlantic white marlin | 0.387 | 0.9 | hms | FB |
| 49 | 790 | Lilopenaeus occidentalis | Penaeidae | western white shrimp | 0.85 | 0.3 | habitat_benthic | SLB |
| 49 | 791 | Zenopsis nebulosa | Zeidae | Mirror sori | 0.199 | 0.9 | deep | FB |
| 49 | 792 | Netuna thalassinus | Ariidae | Giant catfish | 0.31 | 0.3 | habitat_coastal | FB |
| 49 | 793 | Lilopenaeus vannamei | Penaeidae | whiteleg shrimp | 0.7 | 0.3 | habitat_benthic | SLB |
| 49 | 794 | Meuschenia scaber | Monacanthidae | Velvet leatherjacket | 1.032 | 0.3 | habitat_coastal | FB |
| 49 | 795 | Dipitrus batis | Rajiidae | Blue skate | 0.066 | 0.3 | habitat_benthic | FB |
| 49 | 796 | Alosa immaculata | Clupeidae | Ponic shad | 0.989 | 0.9 | migratory | FB |
| 49 | 797 | Conger orbignianus | Congridae | Argentinian conger | 0.27 | 0.3 | habitat_benthic | FB |
| 49 | 798 | Acanthopagrus schlegeli | Sparidae | Blackhead seabream | 0.445 | 0.3 | habitat_coastal | FB |
| 49 | 799 | Pegusa lascaris | Soleidae | Sand sole | 0.191 | 0.3 | habitat_benthic | IUCN |
| 50 | 800 | Leucoraja circularis | Rajiidae | Sandy ray | 0.108 | 0.3 | habitat_benthic | FB |
| 50 | 801 | Botistes capracus | Balistidae | Grey triggerfish | 0.925 | 0.3 | habitat_reef | FB |
| 50 | 802 | Hyporthodus flavolimbatus | Serranidae | Yellowedge grouper | 0.175 | 0.3 | habitat_benthic | FB |
| 50 | 803 | Dipitrus oxyrinchus | Rajiidae | Longnosed skate | 0.162 | 0.3 | habitat_benthic | FB |
| 50 | 804 | Leucoraja fullonica | Rajiidae | Shagreen ray | 0.108 | 0.3 | habitat_benthic | FB |
| 50 | 805 | Hyporthodus niveatus | Serranidae | Snowy grouper | 0.166 | 0.3 | habitat_reef | FB |
| 50 | 806 | Pentaceros richardsoni | Pentacerotidae | Pelagic armourhead | 0.393 | 0.3 | habitat_benthic | FB |
| 50 | 807 | Ypigoporus lastoviza | Trigidae | Streaked gumard | 0.195 | 0.3 | habitat_benthic | FB |
| 50 | 808 | Herktioschthys quadrimaculatus | Clupeidae | Bluestripe herring | 1.74 | 0.3 | habitat_coastal | FB |
| 50 | 809 | Lepidonotothen squamifrons | Nototeniidae | Grey rockcod | 0.234 | 0.3 | habitat_benthic | REF Secondary ref: (72) |
| 50 | 810 | Hyporthodus nigritos | Serranidae | Warsaw grouper | 0.139 | 0.3 | habitat_reef | FB |
| 50 | 811 | Hyporthodus mystacinus | Serranidae | Misty grouper | 0.193 | 0.3 | habitat_deep | FB |
SI References

1. C. D. Buxton, K. Hartmann, R. Kearney, C. Gardner, When Is Spillover from Marine Reserves Likely to Benefit Fisheries? *PLoS ONE* **9**, e107032 (2014).

2. R. B. Cabral, *et al.*, Designing MPAs for food security in open-access fisheries. *Sci. Rep.* **9**, 1–10 (2019).

3. Marine Conservation Institute, Atlas of Marine Protection (2019).

4. C. Costello, *et al.*, Global fishery prospects under contrasting management regimes. *Proc. Natl. Acad. Sci. U.S.A.* **113**, 5125–5129 (2016).

5. K. Kaschner, *et al.*, AquaMaps: Predicted range maps for aquatic species. World wide web electronic publication, www.aquamaps.org version 08/2016c (2016).

6. J. T. Thorson, Predicting recruitment density dependence and intrinsic growth rate for all fishes worldwide using a data-integrated life-history model. *Fish Fish.* **21**, 237–251 (2020).

7. R. Froese, D. Pauly, FishBase. World Wide Web electronic publication. www.fishbase.org (2019).

8. D. Palomares, D. Pauly, SeaLifeBase. World Wide Web electronic publication. www.sealifebase.org (2019).

9. C. M. Free, *et al.*, Impacts of historical warming on marine fisheries production. *Science* **363**, 979–983 (2019).

10. R. J. Hijmans, *et al.*, *raster: Geographic Data Analysis and Modeling* (2020) (April 16, 2020).

11. O. Chateau, L. Wantiez, Movement patterns of four coral reef fish species in a fragmented habitat in New Caledonia: implications for the design of marine protected area networks. *ICES J. Mar. Sci.* **66**, 50–55 (2009).

12. C. G. Meyer, Y. P. Papastamatiou, T. B. Clark, Differential movement patterns and site fidelity among trophic groups of reef fishes in a Hawaiian marine protected area. *Mar. Biol.* **157**, 1499–1511 (2010).

13. K. Davis, P. M. Carlson, C. G. Lowe, R. R. Warner, J. E. Caselle, Parrotfish movement patterns vary with spatiotemporal scale. *Mar. Ecol. Prog. Ser.* **577**, 149–164 (2017).

14. R. M. Starr, E. Sala, E. Ballesteros, M. Zabala, Spatial dynamics of the Nassau grouper Epinephelus striatus in a Caribbean atoll. *Mar. Ecol. Prog. Ser.* **343**, 239–249 (2007).

15. FAO, Food and Agriculture Organization of the United Nations. www.fao.org (April 18, 2020).

16. IUCN, The IUCN Red List of Threatened Species. www.iucnredlist.org (April 18, 2020).

17. World Bank, “The Sunken Billions Revisited: Progress and Challenges in Global Marine Fisheries. Environment and Development” (World Bank, 2017).

18. W. R. Welch, Sedentary Bottom Animals. *Am. Biol. Teach.* **29**, 465–467 (1967).

19. K. M. Bailey, Shifting control of recruitment of walleye pollock Theragra chalcogramma after a major climatic and ecosystem change. *Mar. Ecol. Prog. Ser.* **198**, 215–224 (2000).
20. S. D. Carr, R. A. Tankersley, J. L. Hench, R. B. Forward, R. A. Luettich, Movement patterns and trajectories of ovigerous blue crabs Callinectes sapidus during the spawning migration. *Estuar. Coast. Shelf Sci.* **60**, 567–579 (2004).

21. L. J. Atkinson, G. M. Branch, Longshore Movements of Adult Male Jasus Lalandii: Evidence from Long-term Tag Recaptures. *Afr. J. Mar. Sci.* **25**, 387–390 (2003).

22. Cohen, D.M., Inada, T., Iwamoto, T. and Scialabba, N. 1990. FAO species catalogue. Vol. 10. Gadiform fishes of the world (Order Gadiformes). An annotated and illustrated catalogue of cods, hakes, grenadiers and other gadiform fishes known to date. FAO, Rome.

23. E. A. A. Abdulqader, E. Naylor, Bionomics and migration patterns of the green tiger prawn, Penaeus semisulcatus De Haan, in Bahrain waters. *Fish. Res.* **21**, 395–407 (1995).

24. L. D. Jacobson, R. D. Vetter, Bathymetric demography and niche separation of thornyhead rockfish: Sebastolobus alascanus and Sebastolobus altivelis. *Can. J. Fish. Aquat. Sci.* **53**, 600–609 (1996).

25. S. E. Wayte, Management implications of including a climate-induced recruitment shift in the stock assessment for jackass morwong (Nemadactylus macropterus) in south-eastern Australia. *Fish. Res.* **142**, 47–55 (2013).

26. J. Aguzzi, et al., A new tracking system for the measurement of diel locomotor rhythms in the Norway lobster, Nephrops norvegicus (L.). *J. Neurosci. Methods* **173**, 215–224 (2008).

27. Apollonio, S., Stevenson, D.K. and Dunton Jr, E.E., 1986. Effects of temperature on the biology of the northern shrimp, Pandalus borealis, in the Gulf of Maine. NOAA Technical Report NMFS 42.

28. G. Machado-Schiaffino, E. Garcia-Vazquez, Population structure of long tailed hake Macruronus magellanicus in the Pacific and Atlantic oceans: Implications for fisheries management. *Fish. Res.* **111**, 164–169 (2011).

29. S. Kelly, A. B. MacDiarmid, Movement patterns of mature spiny lobsters, Jasus edwardsii, from a marine reserve. *New Zeal. J. Mar. Fresh.* **37**, 149–158 (2003).

30. J. C. Groeneveld, G. M. Branch, Long-distance migration of South African deep-water rock lobster Palinurus gilchristi. *Mar. Ecol. Prog. Ser.* **232**, 225–238 (2002).

31. J. Musick, Seasonal Distribution Of Sibling Hakes, Urophycis-Chuss And Urophycis-Tenuis (Pisces, Gadidae) In New-England. *Fish. Bull.* **72**, 481–495 (1974).

32. A. Arkhipkin, E. Boucher, P. N. Howes, Spawning and early ontogenesis in channel bull blenny Cottoperca gobio (Notothenioidae, Perciformes) caught off the Falkland Islands and maintained in captivity. *Polar Biol.* **38**, 251–259 (2015).

33. A. J. Jaureguizar, R. Menni, C. Lasta, R. Guerrero, Fish assemblages of the northern Argentine coastal system: spatial patterns and their temporal variations. *Fish. Oceanogr.* **15**, 326–344 (2006).

34. J. P. Barreiros, T. Morato, R. S. Santos, R.S., A. E. de Borba, Interannual changes in the diet of the almaco jack Seriola rivoliana (Perciformes: Carangidae) from the Azores. *Cybium* **27**, 37–40 (2003).
35. V. Tirelli, S. Legovini, D. Borme, E. D. Poi, M. L. Mesa, Diel feeding of the transparent goby Aphia minuta (Pisces, Gobiidae) in the Northwestern Adriatic Sea in spring time. *Mar. Ecol. 37*, 920–926 (2016).

36. M. Naciri, C. Lemaire, P. Borsa, F. Bonhomme, Genetic study of the Atlantic/Mediterranean transition in sea bass (Dicentrarchus labrax). *J. Hered. 90*, 591–596 (1999).

37. Y. Kobayashi, T. Mototani, F. Murayama, T. Sakamoto, Basic reproductive biology of daggertooth pike conger, Muraenesox cinereus: A possible model for oogenesis in Anguilliformes. *Zool. Lett. 1*, 25 (2015).

38. Steimle, F.W., Morse, W.W., Berrien, P.L., Johnson, D.L. 1999. Essential fish habitat source document: Red hake, Urophycis chuss, life history and habitat characteristics. NOAA Technical Memorandum NMFS-NE-133.

39. P. Brickle, V. Laptikhovsky, A. Arkhipkin, Reproductive strategy of a primitive temperate notothenioid Eleginops maclovinus. *J. Fish Biol. 66*, 1044–1059 (2005).

40. K. L. Rodgers, S. R. Wing, Spatial structure and movement of blue cod Parapercis colias in Doubtful Sound, New Zealand, inferred from δ13C and δ15N. *Mar. Ecol. Prog. Ser. 359*, 239–248 (2008).

41. S. L. Brouwer, Movement patterns of red steenbras Petrus rupestris tagged and released in the Tsitsikamma National Park, South Africa. *Afr. J. Mar. Sci. 24*, 375–378 (2002).

42. B. L. Olla, A. J. Bejda, A. D. Martin, Daily activity, movements, feeding and seasonal occurrence in the tautog, Tautoga onitis. *Fish. Bull. 72*(1): 27-35 (1974).

43. M. H. Griffiths, Stock Structure of Snoek Thyrsites Atun in the Benguela: A New Hypothesis. *Afr. J. Mar. Sci. 25*, 383–386 (2003).

44. O. Langhamer, T. G. Dahlgren, G. Rosenqvist, Effect of an offshore wind farm on the viviparous eelpout: Biometrics, brood development and population studies in Lillgrund, Sweden. *Ecol. Indic. 84*, 1–6 (2018).

45. N. A. Lajud, *et al.*, Reproduction of Brevoortia aurea (Spix & Agassiz, 1829) (Actinopterygii: Clupeidae) in the Mar Chiquita Coastal Lagoon, Buenos Aires, Argentina. *Neotrop. Ichthyol. 14* (2016).

46. R. S. McBride, J. R. Styer, R. Hudson, Spawning cycles and habitats for ballyhoo (Hemiramphus brasiliensis) and balao (H. balao) in south Florida. *Fish. Bull. 101*, 583–590 (2003).

47. K. S. Brendtro, J. R. McDowell, J. E. Graves, Population genetic structure of escolar (Lepidocybium flavobrunneum). *Mar. Biol. 155*, 11–22 (2008).

48. M. L. Traver, L. Alade, K. A. Sosebee, Population biology of a data poor species, offshore hake (Merluccius albidos) in the northwest Atlantic, United States. *Fish. Res. 114*, 42–51 (2012).

49. S. França, C. Vinagre, M. J. Costa, H. N. Cabral, Use of the coastal areas adjacent to the Douro estuary as a nursery area for pouting, Trisopterus luscus Linnaeus, 1758. *J. Appl. Ichthyol. 20*, 99–104 (2004).
50. J. W. Tupen, Movement and growth of tagged California halibut, Paralichthys californicus, off the central coast of California. The California Halibut, Paralichthys californicus, Resource and Fisheries. Calif. Fish Game 74, 199–206 (1990).

51. P. Fierro, C. Bertran, D. Martinez, C. Valdovinos, L. Vargas-Chacoff, Ontogenetic and temporal changes in the diet of the chilean silverside odontesthes regia (atheriniidae) in southern chile (2014) (April 17, 2020).

52. J. G. Pajuelo, et al., Biological parameters of the bathyal fish black scabbardfish (Aphanopus carbo Lowe, 1839) off the Canary Islands, Central-east Atlantic. Fish. Res. 92, 140–147 (2008).

53. K. L. Kuhn, P. M. Gaffney, Preliminary assessment of population structure in the mackerel icefish (Champssocephalus gunnari). Polar Biol. 29, 927–935 (2006).

54. M. F. Landaeta, P. A. Inostroza, A. Ramirez, S. Soto-Mendoza, L. R. Castro, Distribution patterns, larval growth and hatch dates of early stages of the mote sculpin Normanichthys crockeri (Scorpaeniformes, Normanichthyidae) in the upwelling ecosystem off central Chile. Rev. Biol. Mar. Oceanogr. 45, 575–588 (2010).

55. M. R. L. Jones, B. B. Breen, Role of scavenging in a synaphobranchid eel (Diastobranchus capensis, Barnard, 1923), from northeastern Chatham Rise, New Zealand. Deep Sea Res. Part I Oceanogr. Res. Pap. 85, 118–123 (2014).

56. J. Iannacone, et al., Comunidades ectoparasitarias branquiales de la pintadilla Cheilodactylus variegatus Valenciennes 1833 (Pisces: Cheilodactylidae). Parasitol. Latinoam. 58, 59–67 (2003).

57. J. C. Groeneveld, Long-distance migration of the rock lobster Palinurus delagoae off South Africa and Mozambique. Afr. J. Mar. Sci. 24, 395–400 (2002).

58. K. H. Mohamed, M. J. George, Results of the tagging experiments on the Indian Spiny lobster, Panulirus homarus (Linnaeus) — Movement and growth. Indian J. Fish. 15, 15–26 (1968).

59. H. Kee Cha, J. Hwa Choi, C. Woong Oh, Reproductive Biology and Growth of the Shiba Shrimp, Metapenaeus Joyneri (Decapoda: Penaeidae), on the Western Coast of Korea. J. Crustacean Biol. 24, 93–100 (2004).

60. E. Moland, E. M. Olsen, K. Andvord, J. A. Knutsen, N. Chr. Stenseth, Home range of European lobster (Homarus gammarus) in a marine reserve: implications for future reserve design. Can. J. Fish. Aquat. Sci. 68, 1197–1210 (2011).

61. B. S. Sant’Anna, A. Turra, F. J. Zara, Reproductive migration and population dynamics of the blue crab Callinectes danae in an estuary in southeastern Brazil. Mar. Biol. Res. 8, 354–362 (2012).

62. M. A. Potter, W. D. Sumpton, G. S. Smith, Movement, fishery sector impact, and factors affecting the recapture rate of tagged sand crabs, Portunus pelagicus (L.), in Moreton Bay, Queensland. Mar. Freshwater Res. 42, 751–760 (1991).

63. Y. Liu, et al., Genetic differentiation between populations of swimming crab Portunus trituberculatus along the coastal waters of the East China Sea. Hydrobiologia 618, 125–137 (2009).
64. S. J. Hyland, B. J. Hill, C. P. Lee, Movement within and between different habitats by the portunid crab Scylla serrata. *Mar. Biol.* **80**, 57–61 (1984).

65. O. Le Pape, *et al.*, Habitat suitability for juvenile common sole (*Solea solea, L.*) in the Bay of Biscay (France): A quantitative description using indicators based on epibenthic fauna. *J. Sea Res.* **57**, 126–136 (2007).

66. A. Arkhipkin, Age, growth, stock structure and migratory rate of pre-spawning short-finned squid Illex argentinus based on statolith ageing investigations. *Fish. Res.* **16**, 313–338 (1993).

67. W. F. Gilly, *et al.*, Vertical and horizontal migrations by the jumbo squid Dosidicus gigas revealed by electronic tagging. *Mar. Ecol. Prog. Ser.* **324**, 1–17 (2006).

68. Q. Wang, Z. Zhuang, J. Deng, Y. Ye, Stock enhancement and translocation of the shrimp Penaeus chinensis in China. *Fish. Res.* **80**, 67–79 (2006).

69. K. M. Bailey, E. S. Brown, J. T. Duffy-Anderson, Aspects of distribution, transport and recruitment of Alaska plaice (*Pleuronectes quadrituberculatus*) in the Gulf of Alaska and eastern Bering Sea: comparison of marginal and central populations. *J. Sea Res.* **50**, 87–95 (2003).

70. O. C. Woehler, F. Sanchez, Feeding ecology of castaneta (*Cheilodactylus bergi; Pisces: Cheilodactylidae*) in the south-western Atlantic (34-47 degree S). *Mar. Freshwater Res.* **45**, 507–520 (1994).

71. B. Fry, P. L. Mumford, M. B. Robblee, Stable isotope studies of pink shrimp (*Farfantepenaeus duorarum* Burkenroad) migrations on the southwestern Florida shelf (1999) (April 17, 2020).

72. S. Gregory, J. Brown, M. Belchier, Ecology and distribution of the grey notothen, *Lepidonotothen squamifrons*, around South Georgia and Shag Rocks, Southern Ocean. *Antarct. Sci.* **26**, 239–249 (2014).