Antibody Detection and Kinetics of Antibody Production during Early Stages of Immunization with Hepatitis B Virus Vaccine

Odd Odinsen,¹ Shirley Owusu-Ofori,² Albert Dompree,³ Francis Sarkodie,² Ohene Opere-Sem,² David Parker,⁴ and Jean-Pierre Allain⁵

PlasmAcute, Bergen, Norway¹; Department of Medicine, Transfusion Medicine Unit, Komfo Anokye Teaching Hospital, Kumasi, Ghana²; Laboratory of Serology, Department of Microbiology, Komfo Anokye Teaching Hospital, Kumasi, Ghana²; Nordiag ASA, Bergen, Norway⁴; and Department of Haematology, University of Cambridge, Cambridge, United Kingdom⁵

Received 12 April 2007/Returned for modification 12 June 2007/Accepted 28 September 2007

Antibodies to influenza virus and human immunodeficiency virus are detectable in B cells during the early stages of the immune response, prior to their occurrence in plasma. To investigate similar phenomena in a model of immunization against hepatitis B virus (HBV) infection, medical students in Ghana were screened for HBV markers, HBV surface (HBs) antigen (HBsAg), and HBV core antibodies (anti-HBc). Consenting volunteers, 24 of whom were seronegative (susceptible) and 2 of whom were positive for anti-HBc (prior infection), were vaccinated on day 0, day 40, and 6 months. Two sets of 10 blood samples, sequentially collected at intervals of 2 days following each immunization on days 0 and 40, were processed into B-cell lysates and plasma. Solid-phase HBsAg coated on microtiter plates for enzyme immunoassay or nitrocellulose membranes for dot blot assay was used to detect anti-HBs activity by an indirect antiglobulin assay. A commercially procured sandwich immunoassay was used, along with an enzyme-linked immunosorbent assay and a dot blot assay, for the detection of anti-HBs in B-cell lysates and plasma. Following the first injection of vaccine, a single sample of B-cell lysate collected between 5 and 21 days revealed anti-HBs in 18/21 subjects with no plasma antibodies detectable by sandwich immunoassay. After the booster dose was injected on day 40, a single sample of B-cell lysate collected between 44 and 49 days showed anti-HBs in 16/19 subjects, and this was accompanied by plasma antibodies in 8 subjects. In contrast, between 8 and 13 days, both subjects with prior HBV infection showed anti-HBs in B-cell lysates and plasma. Thus, primary immunization with the HBV vaccine appears to transiently elicit low-affinity anti-HBs in B-cell lysates into plasma.

The enzyme-linked immunoslot assay is a well-established method for the study of the immune response and the secretion of antibodies from B lymphocytes in both natural infections and vaccine experiments (5, 6, 9, 11, 12), although the procedures are laborious and include time-consuming incubation steps. Further development based on this technology has revealed that specific antibodies can be detected after purified lymphocytes were placed in appropriately coated enzyme-linked immunosorbent assay (ELISA) wells and kept for 1 to 2 h at 37°C to allow the spontaneous secretion of antibodies, referred to here as the PlasmAcute technology (9). It has since been discovered that after the separation of the B cells from plasma and other blood components, disruption of the B cells will, surprisingly, directly release functional antibodies that can be measured in immunoassays (11). In clinical studies performed in South Africa, human immunodeficiency virus-specific antibodies were detected in B cells before PCR and before classical seroconversion (12). It has been shown that the immune response to antigenic stimulation by an influenza vaccine can be detected in B lymphocytes by the enzyme-linked immunoslot assay or the PlasmAcute technology. This response can be detected at about day 2 or 3 to day 16 or 17 following vaccination. Plasma immunoglobulin G (IgG) can usually be detected from day 12 onwards in this system (5, 6).

The synthesis and assembly of Ig molecules as a consequence of their transport through the secretory pathway of the B cell are well documented (13, 16, 17, 19). Heavy (H) and Light (L) chains are synthesized separately on different polyribosomes and are assembled in the endoplasmic reticulum. H chains are normally assembled first and are intermittently bound to the chaperon molecules or binding protein, and these act like surrogate L chains. The binding protein is later replaced by proper L chains (15). Both antibodies designated for secretion and membrane-bound antibodies are produced through similar pathways (4, 18, 20, 30). If lymphocytes were disrupted at this point and antibodies were recovered, these B-cell-associated antibodies would therefore appear to be in different stages of assembly and maturity (8, 14, 27). The transport of antibody molecules through the secretory pathway ensures that only fully assembled and correctly folded antibody molecules can be secreted from the cell. Incomplete molecules are retained in the endoplasmic reticulum (17). Most modern sandwich ELISAs for antibody detection utilize antigen on the solid phase both for capture and in the liquid phase as a conjugate for detection (Murex package insert; Abbott, Dardford, United Kingdom). These test designs require completely assembled antibodies with two binding sites, i.e., two H chains and two L chains (H₂L₂), in order to produce a detectable signal. Incomplete combinations of H and L chains, like HL or H₂L, can specifically bind to the capture antigens or conjugate

* Corresponding author. Mailing address: PlasmAcute AS, High Technology Center, Thormøhlensgate 55, 5008 Bergen, Norway. Phone: 47 55 54 39 60. Fax: 47 55 54 38 98. E-mail: odd.odinsen@chello.no.

¹ Published ahead of print on 10 October 2007.
but not both. An ELISA with a format that uses anti-human conjugate detects incompletely assembled antibodies as well as completely assembled antibodies.

Our approach in this study was to detect specific antibodies at very early stages of the immunological process following vaccine immunization, before antibodies are secreted from B cells into plasma. Immunocytochemistry of B cells has detected specific IgG within 2 to 3 days after antigenic stimulation (10).

The immune response to hepatitis B virus (HBV) infection and vaccination is well documented (2, 23, 25, 26), although early events were mostly investigated by determining the number of cultured antibody-secreting B cells. HBV vaccination was therefore used as a model for studies of the early events of intracellular antibody development and detection.

The main goal of this study was to assess the feasibility of detecting HBV surface (HBs) antigen (HBsAg)-specific antibodies in B-cell lysates as a tool to reveal the early mechanisms of vaccine-induced immunity.

MATERIALS AND METHODS

Study design. The objective of the study was to monitor at close intervals the development of the humoral immune response after the first two injections of HBV vaccine both in B cells and in the plasma of volunteers. For this purpose, volunteer medical students were first screened for HBV markers (HBsAg and HBV core antibodies [anti-HBc]), and those without markers were considered susceptible to HBV infection and were eligible for vaccination. After the collection of personal information and signature of an informed consent, 24 volunteers entered the study, which was approved by the Ethics and Publication Committee of the Kwame Nkrumah University of Science and Technology School of Medical Sciences, Kumasi, Ghana. In addition, as controls, two students with low levels of anti-HBc were vaccinated and monitored according to the protocol applied to the susceptible students. Randomization of the sampling was not feasible due to the local organization and logistics. The control group was limited to two anti-HBs (HBV core antigen)-positive subjects.

On day 0, all students were vaccinated with 0.5 ml of HBV vacPRO recombinant vaccine (Sanofi Pasteur, Lyon, France) intramuscularly. The second and third doses were administered after 40 days and 6 months, respectively. EDTA-anticoagulated blood samples (6 ml) were collected from the two groups every other day starting on day 1 and day 2, respectively, for a total of 21 or 22 days after the first vaccine injection. Forty days later, the second vaccine dose was injected and samples were collected by use of the same protocol. Whole-blood samples were stored at 4°C for no longer than 3 days until the B-cell lysate assay was performed. Plasma was then separated and kept frozen at −20°C until it was used. Testing for HBV markers. The samples were screened for HBV markers by in-house antigen sandwich EIA, and all results were negative except for those for the two anti-HBc-positive volunteers, who developed a secondary immune response detectable 7 days after vaccination (Table 1; Fig. 1). That is, all the HBV-naïve volunteers failed to seroconvert after the primary inoculation.

An indirect assay was developed in-house. That assay captured anti-HBs with coated recombinant HBsAg and detected anti-HBs with an HRPO-conjugated anti-human IgG. The assay was applied to the same B-cell lysates and plasma samples from each volunteer as described above. As shown in Table 1 and Fig. 2, evidence of anti-HBs was obtained only in B-cell lysates from 18 volunteers (S/COs ≥ 2) and not in plasma. In two more individuals the reactivity was equivocal (S/COs = 1.3 and 1.4, respectively). In all cases, only 1 of the 10 serial samples from each subject was reactive. This unique positive sample was found at different intervals after primary vaccine injection: 5 to 9 days in four cases, 10 to 15 days in seven cases, and 16 to 21 days in eight cases. In only one volunteer (vaccinee 21) a low level of anti-HBs reactivity was also found in plasma (S/CO = 2.5). The B-cell lysate at the unique peak of anti-HBs reactivity of eight samples was available for confirmatory testing by a dot blot assay (see below).

In contrast, as shown in Fig. 1, the pattern of B-cell-associated anti-HBs reactivity tested by the indirect assay was considerably modified after the second injection of the HBV vaccine. Only four B-cell lysate samples had S/COs above 2, although 15 more had some reactivity below the two times S/CO confidence limit (S/COs = 1.2 to 1.7). Of these 19 reactive lysate samples, 16 were detected 4 to 7 days after the
Vol. 14, 2007 Antibody Status During Early Stages of HBV Immunization 1625

The ability of the antigen sandwich assay to detect anti-HBs in B-cell lysates was confirmed after the primary vaccine injection and 2 dot blot positive only). The reactivity observed in the B-cell lysates was confirmed after the primary vaccine injection in 3/8 samples and after the second injection in 8/12 samples.

The abilities of the indirect and antigen sandwich EIAs to detect of anti-HBs in B-cell lysates were compared by using samples collected after the second vaccine injection (first booster). Nineteen of 20 samples were positive by the indirect assay, and 10 also reacted by the antigen sandwich assay. No samples which were positive by the antigen sandwich assay were negative by the indirect assay.

After the primary vaccine injection, no reactivity was observed in the plasma of the susceptible students (Fig. 2). In contrast, after the second vaccine injection, plasma samples from eight volunteers contained anti-HBs and the plasma of one volunteer was equivocal when it was tested by the antigen sandwich assay (Murex; Abbott). The peak of the antibody reactivity was reached between 7 and 11 days postinjection. Contrary to what was observed with the lysates, in five cases, anti-HBs became detectable at 9 days and the reactivity continued to rise, while in two cases, the antibody level initially detectable at 7 days stabilized at 9 and 11 days postinjection, respectively. The last positive case had clearly detectable anti-HBs on days 7 and 9, but it was no longer detectable on day 11.

The ability of the antigen sandwich assay to detect anti-HBs in the lysates and the ability of the antigen sandwich assay to

TABLE 1. Anti-HBs markers in B-cell lysates and plasma samples after the primary and first booster injections of HBV recombinant vaccine

Volunteer no.	Primary injection	First booster injection							
	Day^a	Lysate	S/CO	EIA of plasma	Day^b	Lysate	S/CO	EIA of plasma	
1	19	3.3	<1	<1	49	1.4	<1	<1	
2	18	2.4	6.8	<1	44	1.5	1.6	2.0 (47)	
3	15	3.1	<1	<1	47	1.9	<1	<1	
4	10	3.1	<1	<1	49	1.4	1.5	3.0	
5	11	2.7	ND^d	<1	47	2.0	2.1	>3 (51)	
6	16	2.2	1.3	<1	47	1.7	<1	<1	
7	15	2.8	<1	EIA	47	1.7	1.3	<1	
8	6	2.5	ND	<1	47	1.7	ND	1.4	
9	17	2.3	ND	<1	47	1.3	2.0	<1	
10	14	2.0	<1	<1	47	1.2	<1	2.1 (49)	
11	9	2.1	ND	<1	47	<1	<1	>3 (49)	
12	12	2.2	ND	<1	ND				
13	21	6.7	2.6	<1	47	1.5	<1	2 (51)	
14	16	2.3	<1	<1	ND				
15	NR^e	ND^e	<1	<1	ND	47	1.5	<1	<1
16	16	2.4	ND	<1	47	2.3	1.0	<1	
17	5	3.3	ND	<1	47	1.6	ND	<1	
18	18	2.4	ND	<1	47	1.6	ND	<1	
19	NR^f	<1	<1	<1	47	2.3	1.1	<1	
20	NR^f	<1	ND	<1	ND				
21	9	3.0	<1	2.5 (11)	ND	47	1.5	<1	>3 (51)
22	12	1.3	ND	<1	44	1.4	<1	<1	
23	NR^f	<1	<1	<1	49	2.3	3.2	<1	
24	NR^f	<1	ND	<1	ND	47	2.4	ND	>3 (51)
25^f	9	2.1	2.2	5.5	47	2.3	<1	2.8 (51)	
26^f	13	6.0	ND^e	<1	2.4 (51)	47	2.3	<1	2.8 (51)

^a Day after the primary injection when B-cell lysate reactivity was observed.

^b Day after the primary injection when peak anti-HBs activity was observed after the booster injection was given 40 days after the first injection.

^c The numbers in parentheses indicate the number of days after the primary injection, if it is different from the second peak of anti-HBs activity.

^d ND, not done.

^e NR, no reactivity.

^f Volunteers 25 and 26 were anti-HBc positive.
detect anti-HBs in plasma samples after the second immunizations were compared. In five cases, both types of samples were positive, but the lysate reactivity preceded the plasma reactivity by 2 to 3 days. In five cases, antibody was detectable in lysate but not in plasma at 7 days postinjection. In three cases, antibody was detectable in plasma but not in lysate, and in seven cases, antibody was not detectable in either type of sample.

DISCUSSION

This study tends to indicate that following the first injection of the HBV vaccine to volunteers, B-cell-associated anti-HBs can be detected during a brief period of time but it remains undetectable in plasma. However, by the method used here the detection of anti-HBs in the lysates of purified B cells is considerably easier than their detection in cultured B cells or peripheral blood mononuclear cell (PBMC) supernatants, as reported by others (3, 18, 24). Intra-B-cell antibodies are not yet fully processed and so lack the correct glycosylation and are incompletely assembled (1, 28). This might have caused the differences in antibody detection observed between the two assay formats used in this study, i.e., the antigen sandwich assay and the indirect assay (Table 1). Monovalent antibodies or antibodies with very low affinities are more likely to be detected by the indirect assay than by the antigen sandwich assay.

This pattern was very different from that for the two individuals who, prior to vaccination, had a serological profile of anti-HBc only. These volunteers demonstrated a clear secondary anti-HBs response, as detected by the antigen sandwich assay, 7 days after primary injection of the vaccine (Fig. 2).

After the second vaccine injection, a considerable difference in reactivity between the lysate and the plasma samples in each assay format was observed. In all but 1 volunteer the lysate samples were reactive 7 to 9 days postinjection by the indirect assay, but they were reactive in only 10/20 volunteers by the antigen sandwich assay. In contrast, among the seven individuals whose plasma samples were reactive to anti-HBs after the second vaccine injection, no difference in antibody detection was found between the two assays. The fact that no such issue was observed in secreted antibody detected after the culture of PBMCs for a few days or in plasma (7, 22, 25) suggests that special attention should be paid to the method used to detect B-cell-associated antibodies.

Whether B-cell counts would in any way correlate with the quantification of B-cell-associated anti-HBs is questionable. Shokrgozar and Shokri (25) showed that the total number of B cells was similar or slightly higher in nonresponders than in responders. A low frequency of specific B cells is therefore unlikely to be the consequence of a low B-cell count. The number of B cells in plasma remains relatively constant whether the individual is infected or not. However, there is a close correlation between specific B-cell frequency and anti-HBs titer.

The discrepancies noted between the indirect and the confirmatory dot blot anti-HBs assays should also be considered (Table 1). Although the antibody binding processes of the two assays could be considered similar, the cutoff determination was radically different, and this might have affected the sensitivities of the assays. The dot blot assay may not have been as sensitive as the indirect EIA.
Keeping in mind the caveats presented above regarding the significance of the assays used, evidence of the presence of B-cell-associated anti-HBs was observed prior to the detection of any antibody in plasma (except in volunteer 21). Specific antibody was detected in only one plasma sample 15 to 21 days after primary injection of the vaccine (Table 1; Fig. 1). The presence of anti-HBs in the lysate was confirmed by the dot blot assay in three of the eight available samples collected after 10 days or more, while the results for the two samples reactive before 10 days postvaccination were not confirmed by dot blot analysis. This timing was compatible with data obtained with volunteers who received killed cholera vaccine and who were tested for secreted antibody in the supernatants of their cultured PBMCs (25), where the peak of antitoxin IgG was observed 21 days after primary vaccination. However, in our system antibody was detectable between 14 and 24 days post-vaccination.

Following the second injection of HBV vaccine, anti-HBs was detectable in both B-cell lysate and plasma samples in 5/20 individuals, but in all cases reactivity in the lysate samples was observed after 4 to 9 days, preceding antibody detection in plasma by 2 to 4 days (Fig. 1). In five other volunteers, antibody was detected only in lysate samples, and contrary to what was observed after the primary injection, reactivity was observed 7 days postinjection in all cases. In three cases, anti-HBs was found only in plasma, and in the last seven cases, no antibody was detected in either medium. These data suggest that the antigen boost elicits the production of antibodies of better quality and in higher quantities than those elicited after primary injection and that this boost is possibly produced by plasma cells rather than lymphocytes.

These data suggest that specific antibodies can be detected in B-cell lysates before they become detectable in plasma, but the format of the assays used for the detection of intracellular antibodies needs to be carefully chosen. In addition, the HBV antigen-specific memory B cells appear to be sensitive and generalized ELISPOT system. J. Immunol. Methods 286:111–122.

Dul, J. L., and Y. Argon. 1990. A single amino acid substitution in the variable region of the light chain specifically blocks immunoglobulin secretion. Proc. Natl. Acad. Sci. USA 87:8133–8139.

El-Madhun, A. S., R. J. Cox, A. Seime, O. Sovik, and L. R. Haaheim. 1998. Systemic and local immune responses after parenteral influenza vaccination in juvenile diabetic patients and healthy controls: results from a pilot study. Vaccine 16:156–160.

El-Madhun, A. S., R. J. Cox, A. Søreide, J. Olofsson, and L. R. Haaheim. 1998. Systemic and mucosal immune responses in young children and adults after parenteral influenza vaccination. J. Infect. Dis. 178:933–939.

Haaheim, L. R., M. W. Isen, M. Skogstrand, and R. J. Cox. 2001. Antibodies from lymphocytes used as diagnostic markers: a novel approach, p. 283–289. In A. D. M. E. Oosterhaus et al. (ed.), Options for the control of influenza IV. International Congress Series 219. Elsevier Science Publishers, Amsterdam, The Netherlands.

Haaheim, L. R., V. Maseko, O. Odinsen, D. Parker, F. Radebe, and H. Koornhof. 2003. The use of B-cell-derived antibodies to detect HIV infection earlier than NAT or p24 antigen, in a high-risk cohort. Abstr. 8th World STI-AIDS Congr. 16:167–174.

Hendershot, L. D., B. L. Koster, C. J. Kearney. 1987. Assembly and secretion of heavy chains that do not associate post-translationally with Immunoglobulin heavy chain-binding protein. J. Cell Biol. 104:761–767.

Klöppel, G. H., L. Hartwell, G. B. Beck-Engeser, U. Kaysna, S. Zaharvezvit, N. R. Kliman, and H. M. Jäck. 1998. B-cell receptor-mediated selection of pre-B cells synthesizing functional µ heavy chains. J. Immunol. 161:1608–1618.

Lee, Y. K., J. W. Brewer, R. Hellman, and L. M. Hendershot. 1999. BiP and immunoglobulin light chain cooperate to control the folding of heavy chain and ensure the fidelity of immunoglobulin assembly. Mol. Biol. Cell. 10:2209–2219.

Meilhoc, E. K. D., W. Wittrup, and J. E. Bailey. 1989. Application of flow cytometric measurement of surface IgG in kinetic analysis of monoclonal antibody synthesis and secretion by murine hybridoma cells. J. Immunol. Methods 121:167–174.

Mielcz, D., C. Vetterman, M. Hampel, C. Lang, A. Avramidou, M. Karas, and H. M. Jäck. 2005. Lipid raft associates with intracellular B cell receptors and exhibit a B cell stage-specific protein composition. J. Immunol. 174:3508–3517.

Morris, L., J. M. Binley, B. A. Clas, S. Bonhoeffer, T. P. Astill, R. Kost, A. Hurley, Y. Cao, M. Markowitz, D. D. Ho, and J. P. Moore. 1998. HIV-1 antigen-specific and nonspecific B cell responses are sensitive to combination antiretroviral therapy. J. Exp. Med. 188:233–244.

Ooi, V. T., V. M. Bryan, L. A. Herzenberg, and L. A. Herzenberg. 1980. Lymphocyte membrane IgG and secreted IgG are structurally and allotypically distinct. J. Exp. Med. 151:1260–1274.

Owen, M. J., and A. M. Kissinger. 1982. Immunoglobulin G biosynthesis in a human lymphoblastoid cell line differences between membrane-bound and secretory forms of γ chains. Eur. J. Biochem. 124:79–87.

Owusu-Ofori, S., J. T. Temple, F. Sarkodie, M. Anokwa, D. Candotti, and J. P. Allan. 2005. Pre-donation screening of blood donors with rapid tests: implementation and efficacy of a novel approach to blood safety in resource-poor settings. Transfusion 45:133–140.

Reference deleted.

Robb, P. A., D. Hahn, S. Herzog-Hauf, W. O. Bocher, P. R. Gale, and H. F. Lohr. 2000. Cellular and humoral immune responses induced in intradermal or intramuscular vaccination with the major hepatitis B surface antigen. Hepatology 31:521–527.
24. Raquib, R., J. Rahman, A. K. M. Kamaluddin, S. M. M. Kemal, F. A. Banu, S. Ahmed, Z. Rahim, P. K. Bardhan, J. Andersson, and D. A. Sack. 2003. Rapid diagnosis of active tuberculosis by detecting antibodies from lymphocyte secretions. J. Infect. Dis. 188:364–370.

25. Shokrgozar, M. A., and F. Shokri. 2001. Enumeration of hepatitis B surface antigen-specific B lymphocytes in responder and non-responder normal individuals vaccinated with recombinant hepatitis B surface antigen. Immunology 104:75–79.

26. Shokrgozar, M. A., and F. Shokri. 2002. Subtype specificity of anti-HBs antibodies produced by human B-cell lines isolated from normal individuals vaccinated with recombinant hepatitis B vaccine. Vaccine 20:2215–2220.

27. Stott, D. I. 1972. Assembly of immunoglobulin G: the role of the light-chain pool. Biochem. J. 130:1151–1152.

28. Ueki, Y., I. S. Goldfarb, N. Harindranath, M. Gore, H. Koprowski, A. L. Notkins, and P. Casali. 1990. Clonal analysis of a human antibody response: quantitation of precursors of antibody-producing cells and generation and characterization of monoclonal IgM, IgG, and IgA to rabies virus. J. Exp. Med. 171:19–34.

29. Reference deleted.

30. Vitetta, E. S., and J. W. Uhr. 1974. Cell surface immunoglobulin, a new method for the study of synthesis, intracellular transport, and exteriorization in murine splenocytes. J. Exp. Med. 139:1599.