Matlab code for Lyapunov exponents of fractional order systems

MARIUS-F. DANCA
Romanian Institute of Science and Technology,
400487 Cluj-Napoca, Romania,
danca@rist.ro

NIKOLAY KUZNETSOV
Dept. of Applied Cybernetics, Saint-Petersburg State University, Russia
and
Dept. of Mathematical Information Technology, University of Jyväskylä, Finland
nkuznetsov239@gmail.com

Received (to be inserted by publisher)

In this paper the Benettin-Wolf algorithm to determine all Lyapunov exponents for a class of fractional-order systems modeled by Caputo’s derivative and the corresponding Matlab code are presented. First it is proved that the considered class of fractional-order systems admits the necessary variational system necessary to find the Lyapunov exponents. The underlying numerical method to solve the extended system of fractional order, composed of the initial value problem and the variational system, is the predictor-corrector Adams-Bashforth-Moulton for fractional differential equations. The Matlab program prints and plots the Lyapunov exponents as function of time. Also, the programs to obtain Lyapunov exponents as function of the bifurcation parameter and as function of the fractional order are described. The Matlab program for Lyapunov exponents is developed from an existing Matlab program for Lyapunov exponents of integer order. To decrease the computing time, a fast Matlab program which implements the Adams-Bashforth-Moulton method, is utilized. Four representative examples are considered.

Keywords: Lyapunov exponents, Benettin-Wolf algorithm, Fractional-order dynamical system

1. Introduction

Despite a long history, the doubts that fractional-order (FO) derivatives have no clear geometrical interpretations (see e.g. [Podlubny 2002]), was one of the several reasons that fractional calculus was not used in physics or engineering. However, during the last more than 10 years, fractional calculus starts to attract increasing attention. There are nowadays more and more works on FO systems and their related applications in physics, engineering, mathematics, finance, chemistry, and so on. For the theory on the existence, uniqueness, continuous dependence on parameters and asymptotic stability of solutions of FDEs with general nonlinearities see, for example, [Oldham & Spanier 1974] [Caputo 1967], and [Diethelm & Ford 2002] [Kilbas & Trujillo 2001] [Podlubny 1999]. The Lyapunov exponents (LEs) measure the average rate of divergence or convergence of orbits starting from nearby initial points. Therefore, they can be used to analyze the stability of limits sets and to check sensitive dependence on initial conditions, that is, the presence of potential chaotic attractors. On the other side, in [Čvitanović et al. 2016] Čvitanović et al. do not recommend the evaluation
of the LFs and recommend to: “Compute stability exponents and the associated covariant vectors instead. Cost less and gets you more insight. [...] we are doubtful of their utility as means of predicting any observables of physical significance”. Moreover, we additionally note here, Perron’s counterexample Leonov & Kuznetsov 2007, which shows actually that the use of LFs, obtained via the linearization procedure, for the study of the behaviour of nonlinear system requires a rigorous justification. However, determining LFs remains the subject of many works and grown into a real software industry for modern nonlinear physics (see, e.g. Hegger et al., Barreira & Pesin 2001, Skokos, Czornik et al., Pikovsky & Politi 2016, Vallejo & Sanjuan 2017 and others). Nowadays there are two widely used definitions of the LFs: via the exponential growth rates of norms of the fundamental matrix columns (e.g., Ljapunov, Lyapunov 1892) and via the exponential growth rates of the singular values of fundamental matrix (Oseledets 1968). Corresponding approaches for the LFs computation and their difference are discussed, e.g., in Kuznetsov et al., 2018a, 2016.

Remark that in numerical experiments we can consider only finite time, and, thus, the numerically computed values of LFs can differ significantly from the limit values (e.g. if the considered trajectory belongs to a transient chaotic set), and are often referred as finite-time LFs.

Applying the statistical physics approach and assuming the ergodicity (see, e.g. Oseledets 1968), the LFs for a given dynamical system are often estimated by local LFs along a “typical” trajectory. However, in numerical experiments, the rigorous use of the ergodic theory is a challenging task (see, e.g. Cvitanović et al., 2016, p.118). If the LFs are the same for any trajectory, then Frederickson et al. (Frederickson et al., 1983, p.190) suggested to call them as absolute ones and wrote that such absolute values rarely exist. For example, substantially different values of the local LFs can be obtained along trajectories on coexisting nonsymmetric attractors in the case of multistability (see, e.g. such corresponding examples for the classical Lorenz system and Henon map Leonov et al., 2016, Kuznetsov et al. 2018b).

In order to study the chaoticity of an attractor in numerical experiments, one has to consider a grid of point covering the attractor and compute corresponding finite-time local LFs for a certain time. Remark that while the time series obtained from a physical experiment are assumed to be reliable on the whole considered time interval, the time series produced by the integration of mathematical dynamical model can be reliable on a limited time interval only due to computational errors. Taking into account the above discussion further we consider finite-time local LFs and their computation in Matlab by the analog of the Bementin-Wolf algorithm.

2. Benettin-Wolf Algorithm for LFs of FO

The determination of LFs of a system of integer or fractional order with the Benettin-Wolf algorithm, requires the numerical integration of differential equations of integer or fractional order. Because the purpose of this paper is to present a Matlab code for LFs of systems of FO, in the next subsections, only the most important steps (such as the existence of variational equations of FO) used to implement the algorithm in Matlab language are presented (theoretical details can be found in the related references).

2.1. Numerical integration of FDEs

The autonomous FO systems considered in this paper are modeled by the following Initial Value Problem (IVP) with Caputo’s derivative

\[D_q^t x = f(x), \]
\[x(0) = x_0. \]

for \(t \in [0, T] \), \(q \in (0, 1) \), \(f : \mathbb{R}^n \to \mathbb{R}^n \) and \(D_q^t \), Caputo’s differential operator of order \(q \) with starting

1. Relying on the Oseledec ergodic theorem Oseledets 1968 the above definitions often do not differ (see, e.g. Eckmann & Ruelle 1985, p.620, p.650, Wolf et al. 1985a, p.286, p.290-291, and Abarbanel et al. Abarbanel et al. 1993, p.1363, p.1364), however in general case, they may lead to different values Kuznetsov et al. 2018a, Bylov et al. 1996, p.289).

2. While trivial attractors (stable equilibrium points) can be easily found analytically or numerically, the search of all periodic and chaotic attractors for a given system is a challenging problem. See, e.g. famous 16th Hilbert problem Hilbert 1901-1902 on the number of coexisting periodic attractors in two dimensional polynomial systems, which was formulated in 1900 and is still unsolved, and its generalization for multidimensional systems with chaotic attractors Leonov & Kuznetsov 2015.

3. Based on philosophical arguments rather than a mathematical point of view, some researchers questioned the appropriateness...
Properties of the Caputo’s differential operator, $D^q_t x(t) = \frac{1}{\Gamma(1-q)} \int_0^t (t-\tau)^{-q} x'(\tau) d\tau,$ with Γ the known Euler function.

Under Lipschitz continuity of the function f, Mainardi, 1997.

Remark 2.1.

i) In the case of an integer-order dynamical system, denoting the solution of the underlying IVP as $x(t,x_0)$, one has $x_s \circ x_t = x_{t+s}$ (see e.g. Zhou, 2016). Due to the memory dependence of the derivatives, this does not hold in the case of systems modeled by FDEs. However, motivated by the numerical character of this paper, the definition of integer order dynamical systems which states that if the underlying IVP admits unique solutions existing on infinite time interval, the problem defines a dynamical system (see Stuart & Humphries, 1998, Definition 2.1.2) is adopted.

ii) Even fractional-order dynamics describe a real object more accurately than classical integer-order dynamics, systems modeled by the IVP (1) cannot have any non-constant periodic solution (see e.g. Tavazoei & Haeri, 2009). However, a solution may be asymptotically periodic [Danca et al., 2018a]. These trajectories are called numerically periodic, in the sense that the trajectory, from numerical point of view, can be an extremely-near period with respect to, e.g., Euclidean norm [Danca et al., 2018a]. A numerically periodic trajectory refers to a closed trajectory in the phase space in the sense that the closing error is within a given bound of $1E - n$, with n being a sufficiently large positive integer.

The numerical integrations required by the LEs algorithm for FO systems are performed in this paper with the predictor-corrector Adams-Bashforth-Moulton (ABM) method for FDEs, proposed Diethelm et al. [Diethelm et al., 2002] which is constructed for the fully general set of equations without any special assumptions, being easy to implement in any language.

Let us next assume that we are working on a uniform grid $\{t_j = jh : n = 0, 1, ..., N + 1\}$ with some integer N with the step size h and the case of $q \in (0,1)$. Then, the predictor form, x^P, at the point t_{j+1}, is the fractional variant of the Adams-Bashforth method

$$x^P(t_{n+1}) = x_0 + \frac{1}{\Gamma(q)} \sum_{j=0}^{n} b_{j,n+1} f(x(t_j)),$$

while the corrector formula (the fractional variant of the one-step implicit Adams Moulton method) reads

$$x(t_{n+1}) = x_0 + \frac{h^q}{\Gamma(q+2)} f(x^P(t_{n+1})) + \frac{h^q}{\Gamma(q+2)} \sum_{j=0}^{n} a_{j,n+1} f(x(t_j)),$$

where a and b are the corrector and predictor weights respectively given by the following formula

$$a_{j,n+1} = \begin{cases} n^{q+1} - (n-q)(n+1)^q & \text{if } j = 0, \\ (n-j+2)^{q+1} + (n-j)^{q+1} & \text{if } 1 \leq j \leq n, \\ -2(n-j+1)^{q+1} & \text{if } j = n+1, \end{cases}$$

and

$$b_{j,n+1} = \frac{h^q}{q} ((n+1-j)^q - (n-j)^q).$$

The predictor-corrector ABM method has an error which is roughly proportional to h^2. Thus, to obtain an error of, e.g., $1.0E - 6$, a step size close to $h = 1.0E - 3$ should be considered.

Because due to the long memory processes, the utilized ABM method as described in [Diethelm et al., 2002], is time consuming. Therefore, a fast optimized ABM method, FDE12.m [Garrappa, 2012] is used.

FDE12.m is called by the following command line:

```matlab
[t,x] = FDE12(q,fcn,t0,tf,x0,h);
```

where q represents the commensurate fractional-order, fcn.m is the file with the function to be integrated, $t0$ and tf define the time span, $x0$ are the initial conditions, and h represents the integration step-size.
For example, consider the integration of the FO Rabinovich-Fabrikant (RF) system [Danca, 2016], which has the following Matlab function, RF.m

```matlab
function dx = RF(t,x)
    dx=[x(2)*(x(3)-1+x(1)*x(1))+0.1*x(1);
        x(1)*(3*x(3)+1-x(1)*x(1))+0.1*x(2);
        -2*x(3)*(p+x(1)*x(2))];
```

with the bifurcation parameter \(p = 0.98 \).

With the following parameters, one obtains the chaotic attractor in Fig. 1 (a):

\[
[t,x]=\text{FDE12}(0.999,\text{RF},0,1500,[0.1;0.1;0.1],... 0.01);
\]

To note that FDE12.m requires the entry, \(x_0 \), as a column vector \([x_{10},x_{20},x_{30}]^T\) or, similarly, \([x_{10};x_{20};x_{30}]\). Also, the returned exit, \(x \), is a column vector.

2.2. Algorithm for LEs of the FO system

Notation 2.1. Hereafter the finite-time local LEs of FO are called LEs.

The existence of the variational equations necessary to determine LEs is ensured by the following Theorem [Li et al., 2010]

Theorem 1. System (1) has the following variational equations which define the LEs

\[
D_q^\Phi(t) = D_x f(x) \Phi(t),
\]

\[\Phi(0) = I,\]

where \(\Phi \) is the matrix solution of the system (1), \(D_x \) is the Jacobian of \(f \) and \(I \) is the identity matrix.

Further we assume that for the matrix \(\Phi(t) \) the cocycle property takes place.

Therefore, the algorithm to determine the LEs of the system (1) becomes similar to the case of integer order.

Lyapunov exponents measure the exponential growth, or decay, of infinitesimal phase-space perturbations of a chaotic dynamical system.

The algorithm for numerical evaluation of LEs utilized in this paper, has been proposed in the seminal works of Benettin et al. [Benettin et al., 1980] (see also Shimada & Nagashima[1979]), one of the the first work to propose a Gram-Schmidt orthogonalization procedure to compute LEs for continuous systems of integer order, as described in Eckmann & Ruelle [1985]), and by Wolf et al. [Wolf et al., 1985b] (see also Eckmann et al., 1986).

The algorithm to find all LEs, described as a Fortran code by Wolf et al. [Wolf et al., 1985b], and also as a Basic code in [Baker & Gollub, 1990], solves the equations of motion under perturbations and periodic orthonormalization.

To note that the accuracy and reliability of numerically determined LEs depend on initial conditions, on the selection of the perturbations, performances of the utilized integration numerical method and also on orthonormalization step size. A long-time numerical calculation of the leading Lyapunov exponent requires rescaling the distance between nearby trajectories, in order to keep the separation within the linearized flow range. To avoid overflow, one calculates the divergence of nearby trajectories for finite timesteps and renormalizes to unity after a finite number of steps (Gram-Schmidt procedure [Eckmann & Ruelle, 1985; Christiansen & Rugh, 1997]).

Therefore, the main steps to determine numerically the LEs are: numerical integration of the FO system (1) together with the variational system (2) (i.e. the extended system), Gram-Schmidt procedure and picking up the exponents during the renormalization procedure, the LEs being determined as the average of the logarithm of the stretching factor of each perturbation, steps presented in Algorithm 1.

3. The Matlab code for LEs

Consider the following general assumptions:

- The considered systems, modeled by the IVP (1), are autonomous;
- The system (1) is of commensurate order: \(q_1 = q_2 = \ldots = q_n \neq q \);
- In the case of chaotic behavior, the fractional-order has been chosen close to 1, such that chaos is significant.
- The right hand side of system (1), \(f \), is smooth enough.
- Because of the space restrictions, only the main programs code are presented, and indications on how to write the other ones.

4 The incommensurate case can be treated similarly, the only difference referring to the utilized numerical method for FDEs.
Algorithm 1: Algorithm for LEs of FO system (1)

Input:
- `ne` : number of equations
- `x_start` : initial conditions of (1)
- `t_start, t_end` : time span
- `h_norm` : Normalization step-size

\[
\text{n-it} \leftarrow \frac{(t_{\text{end}} - t_{\text{start}})}{h_{\text{norm}}}
\]

```
for i ← ne + 1 to ne(ne + 1) do
    x(i) = 1.0
end
```

```
t ← t_start
for i ← 1 to n_it do
    x ← integration of FO systems (1)-(2)
    t ← t + h_norm
    zn(1),...,zn(ne) ← Gram-Schmidt procedure
    s(1) ← 0
    for k ← 1 to ne do
        s(k) ← s(k) + log(zn(k))
        LE(k) ← s(k)/(t - t_start)
    end
end
```

Output: LE

A simple way to build in Matlab language the algorithm for FO systems, the program `FO_Lyapunov.m` (Appendix A), was to modify either some existing program, e.g., the program `lyapunov.m` [Govorukhin, 2004], which is a Matlab variant of the original LEs algorithm proposed in [Bennetin et al., 1980] or [Wolf et al., 1985b] or, similarly, to translate in Matlab the BASIC program [Baker & Golub, 1990], a close variant of the original algorithm) or, also, the Fortran code proposed by Wolf et all in [Wolf et al., 1985b], and modify it for FDEs. The program, called `FO_Lyapunov.m`, is launched with the following command line:

```
[t,LE]=FO_Lyapunov(ne,@ext_fcn,t_start,h_norm,...
    t_end,x_start,h,q,out);
```

where `ne` represents the equations (and state variables) number, `ext_fcn.m` the function containing the extended system (1)-(2), `t_start` and `t_end` the time span, `h_norm` the normalization step, `x_start` the initial condition (as column vector), `h` the step size of FDE12.m, and `out` indicates the steps number when intermediate values of time and LEs are printed (for `out`=0, no intermediate results will be printed out).

As shown in the algorithm for LEs (Algorithm 1), it is necessary to solve the extended system (1)-(2) of FO (yellow line) which is given in the function `ext_fcn.m`. In this file, beside the right hand side function `f` of the system (1), the Jacobi matrix `J` should be included (see Appendix B where the function for the RF system is presented).

The program plots the time evolutions of the LEs.

4. Numerical tests

Beyond numerical artifacts that might occur when numerically integrating a system of ODEs of integer order, notions such as “shadowing time” and “maximally effective computational time” reveal that it is possible to have reliable numerical simulations only on a relative finite-time interval (see, e.g., [Sarra & Meador, 2011; Wang et al., 2012]). The case of FO systems is even more delicate. In this paper we have considered generally \(t \in [0, 300] \) and, for the Lorenz system, \(t \in [0, 500] \).

1. Let consider the function for the RF system, `LE_RF.m`, which include the extended system (1)-(2) (Appendix B). Because `ne`=3, beside the 3 variables `x(1), x(2), x(3)` required by the numerical solution of the original system (1), the matrix solution of the system (2) requires other more `ne×ne=9` variables from...
the total of \(\text{ne}(\text{ne}+1)=12\) variables: \(x(1:12), f=\text{zeros(size}(x))=\text{zeros}(12)\), where \(f\) loads the first \(\text{ne}=3\) right-hand side expressions of system (1), and the \(\text{ne} \times \text{ne}=9\) right-hand side expressions of the variational system (2).

For example, for the RF system, with the following command line:

\[
[t,\text{LE}]=\text{FO_Lyapunov}(3,\text{@LE_RF},0,0.02,300,...
[0.1;0.1;0.1],0.005,0.999,1000);
\]

one obtains the intermediary results printed every \(\text{out}=1000\) \(\text{h_norm}\) steps, presented in Table 1 (see also Fig. 1 (a) where the dynamics of the LEs are drawn).

Time	LE1	LE2	LE3	LE4
10.00	0.1611	0.0660	-2.1614	
20.00	0.1923	0.0069	-2.0503	
30.00	0.0984	-0.7397	-1.1817	
40.00	0.0440	-0.0168	-1.9867	
50.00	0.0697	-0.0006	-2.0701	
60.00	0.0354	-0.0116	-2.0167	
70.00	0.0331	-0.0618	-1.9360	
80.00	0.0248	0.0542	-1.9761	
90.00	0.0440	-0.0168	-1.9867	
100.00	0.0697	-0.0006	-2.0701	
110.00	0.0354	-0.0116	-2.0167	
120.00	0.0331	-0.0618	-1.9360	
130.00	0.0248	0.0542	-1.9761	
140.00	0.0440	-0.0168	-1.9867	
150.00	0.0697	-0.0006	-2.0701	
160.00	0.0354	-0.0116	-2.0167	
170.00	0.0331	-0.0618	-1.9360	
180.00	0.0248	0.0542	-1.9761	
190.00	0.0440	-0.0168	-1.9867	
200.00	0.0697	-0.0006	-2.0701	
210.00	0.0354	-0.0116	-2.0167	
220.00	0.0331	-0.0618	-1.9360	
230.00	0.0248	0.0542	-1.9761	
240.00	0.0440	-0.0168	-1.9867	
250.00	0.0697	-0.0006	-2.0701	
260.00	0.0354	-0.0116	-2.0167	
270.00	0.0331	-0.0618	-1.9360	
280.00	0.0248	0.0542	-1.9761	
290.00	0.0440	-0.0168	-1.9867	
300.00	0.0697	-0.0006	-2.0701	

Table 1. For \(t \in [0,300]\), the RF system has \(\text{LE} = (0.0749, 0.0018, -2.0850)\) (last line, blue).

2. If one considers the Lorenz system

\[
\begin{align*}
D^q_t x_1 &= \sigma(x(2) - x(1)), \\
D^q_t x_2 &= -x(1)x(3) + px(1) - x(2) \quad (3) \\
D^q_t x_3 &= x(1)x(2) - \beta x(3); \\
\end{align*}
\]

with \(q = 0.985\) and the standard parameters \(\sigma = 10, \beta = 8/3\) and the bifurcation parameter \(p = 200\), after some neglected transients, one obtains an apparently stable cycle (see Fig. 2 (a) and Remark 2.1 (ii)).

To obtain the LEs one write the following command line:

\[
[t,\text{LE}]=\text{FO_Lyapunov}(3,\text{@LE_Lorenz},0,5,500,...
[0.1;0.1;0.1],0.001,0.985,10);
\]

which gives \(\text{LE}=(-0.0026, -0.0870, -1.6225)\). The function \(\text{LE_Lorenz.m}\) can be obtained similarly with \(\text{LE_RF.m}\). The time evolution of the LEs is presented in Table 2 (see also Fig. 2 (b)).

Time	LE1	LE2	LE3	LE4
50.00	0.1759	-0.1591	-1.5683	
100.00	0.0611	-0.1108	-1.6050	
150.00	0.0346	-0.0927	-1.6300	
200.00	0.0215	-0.0877	-1.6288	
250.00	0.0135	-0.0866	-1.6269	
300.00	0.0082	-0.0865	-1.6255	
350.00	0.0043	-0.0866	-1.6244	
400.00	0.0014	-0.0867	-1.6236	
450.00	-0.0008	-0.0869	-1.6230	
500.00	-0.0026	-0.0870	-1.6225	

Table 2. Time evolution of the LEs for the Lorenz system. \(\text{LE}=(-0.0026, -0.0870, -1.6225)\).

3. Consider next the non-smooth 4-dimensional system [Danca et al., 2018a]

\[
\begin{align*}
D^q_t x_1 &= -x_1 + x_2, \\
D^q_t x_2 &= -x_3 \text{sgn}(x_1) + x_4, \\
D^q_t x_3 &= |x_1| - a, \\
D^q_t x_4 &= -bx_2, \\
\end{align*}
\]

with \(a = 1, b = 0.5\) and \(q = 0.98\).

With the command line:

\[
[t,\text{LE}]=\text{FO_Lyapunov}(4,\text{@LE_4d},0,0.02,300,...
[0.1;0.1;0.1;0.1],0.005,0.985,10);
\]

one obtains \(\text{LE}=(0.1262, 0.0846, 0.0778, -1.5244)\) (Fig. 3). For this example, \(\text{ne}=4\), the number of the variables is 20 and, therefore, compared with systems with \(\text{ne}=3\), the function file, \(\text{LE_4d.m}\), must be modified accordingly (compare the red line in \(\text{LE_RF.m}\)). Also, in order to obtain the printed intermediated values of LEs, in the \(\text{FO_Lyapunov.m}\), the \texttt{fprintf} command, must be modified by adding one supplementary specifier \texttt{\%10.3f}.

Because from the four LEs, the system admits
three positive LEs, it can be considered as hyperchaotic (see Danca et al. [2018b] for a discussion about the number of positive LEs of hyperchaotic systems).

Remark 4.1. Note that because the system is not smooth and also discontinuous, the correct numerical integration required for this system cannot be done without a previous smooth approximation [Danca et al. 2018a]. Thus, like all numerical methods for FDEs which are designed for continuous dynamical systems, the integrator FDE12 cannot be utilized in this case without the mentioned approximation. Also, without a smooth approximation, the Jacobian matrix, utilized in the Benettin-Wolf algorithm, cannot be determined.

4. LEs can be also plotted as function of the bifurcation parameter \(p \) for \(p \in [p_{\text{min}}, p_{\text{max}}] \) (program run_Lyapunov_p.m, Appendix D). The program uses a slightly modified variant of FO_Lyapunov.m, which is called FO_Lyapunov_p.m. To obtain FO_Lyapunov_p.m from FO_Lyapunov.m, the following modifications have to be done:

(a) The header line of the code FO_Lyapunov.m is replaced with the following line (to note that the output \(t \) and the input \(\text{out} \) are no more necessary)

```matlab
function LE=FO_Lyapunov_p(ne,ext_fcn_p,...
  t_start,h_norm,t_end,x_start,h,q,p);
```

(b) the printing and plotting lines (*) (red color) are deleted;
(c) the rest of the lines remain the same;

The m-file containing the extended system, ext_fcn.m, for the RF system, is presented in Appendix E. Passing the parameter \(p \) between two variables: the order \(q \) (program run_Lyapunov_q.m in Appendix E). The used program FO_Lyapunov_q, is obtained from FO_Lyapunov with the following modifications:

(a) The header line of the code is replaced with the following line (to note that the input \(\text{out} \) is no more necessary):

```matlab
function [t,LE]=FO_Lyapunov_q(ne,ext_fcn,...
  t_start,h_norm,t_end,x_start,h,q);
```

(b) the printing and plotting lines (*) (red color) are deleted;
(c) the rest of the lines remain the same;

The function containing the extended system, ext_fcn.m, does not require any modification. For example, for the RF system, with the command

```matlab
run_FO_Lyapunov_q(3,@LE_RF,0,0.05,150,...
  [0.1;0.1;0.1],0.002,0.9,1000)
```

one obtains the LEs plotted in Fig. 4 (b).

Remark 4.2. The presented programs can be optimized especially in the cases of FO_Lyapunov.p.m and FO_Lyapunov_q.m. A simple improvement was to use \texttt{while} loop (instead \texttt{for}) which for these two programs reduce substantially the computational time. However, every parameter \(p \) (or order \(q \)) step, several constant parameters are shared between programs, fact which slows significantly the programs. Therefore, supplementary optimization should be done.

6. Another potential application of the proposed LEs algorithm, is to represent the LEs as function of two variables: the order \(q \) and the bifurcation parameter \(p \).

Let the Chen system

\[
\begin{align*}
D_t^q x_1 &= a(x_2 - x_1), \\
D_t^q x_2 &= (p - a)x_1 - x_1x_3 + cx_2, \\
D_t^q x_3 &= x_1x_2 - bx_3,
\end{align*}
\]

with parameters \(a = 35 \), \(b = 3 \) and \(q \) and \(p \) variables. By considering \(S_i := LE(q,c), \) for \(i = 1,2,3, \) for \(q \in [0.9,1] \) and \(p \in [20,30] \), the obtained surfaces are plotted in Fig. 5 (see Danca et al. [2018b] where the algorithm to obtain LEs as surfaces is described). One can see that there exists a unique positive LE (red surface, \(S_1 \) for
all values of the considered parameter c but only for some fractional order values q, for which S_1 is situated over the horizontal plane $LE=0$, where LEs are zero. Also, one can see that S_2, which is almost identical to S_1 when the underlying $LE_{1,2}$ are negative, becomes zero for a relative large values of q and p, when S_2 separates from S_1 and identify (with the underlying numerical error) with the plane $LE=0$.

5. Conclusion and discussion

Starting from an existing variant for integer-order system, in this paper, based on the Benettin-Wolf algorithm, we proposed a Matlab program to determine numerically finite-time local LEs for FO systems.

Due to inherent numerical errors, the algorithm should be utilized with precaution. As known, among the numerical errors, the results depend strongly on the initial conditions, time integration interval and, especially, on the renormalization step size h_{norm}.

The relative large numerical errors of the Benettin-Wolf algorithm, which for the considered examples was of order of 10^{-2}, can be observed in the cases when one knows that the system presents a numerically periodic cycle (see Remark 2.1 (ii)), when the maximum LE should be zero. For example, the Lorenz system, which for $p=200$ presents such apparently stable cycle (see Fig. 2(a)), has the maximum LE zero only with two precise decimals. Actually, in general, three precise decimals for zero LEs are extremely rare. Note that this zero value, appears only for $h_{\text{norm}}=5$ and a smaller integration step size $h=0.001$ and only for a larger time interval $[0,500]$. Therefore, if no special improvements of numerical integration are implemented, with Benettin-Wolf algorithm, for integer but also for fractional order systems, two or three decimals are the maximal expected number of decimals.

One of the most important algorithm variable, is h_{norm}, which determines the normalization moments influences the results. This dependence can be also deduced from the example of the RF system. With $h=0.005$ and $h_{\text{norm}}=0.005$ one obtains LEs=$(-0.0631, 0.0031, -2.0774)$, while with the same stepsize, $h=0.005$, but $h_{\text{norm}}=0.5$, LEs=$(-0.0643, 0.0026, -1.8254)$.

Since on our best knowledge, there is not criterion to choose precisely h_{norm}, the recommended way would be to realize several tests to choose the value for which slightly modifications does not change significantly the results.

In the case of fixed step-size integration numerical methods, like the considered FDE12, h_{norm} can be chosen as depending on the step size h. Therefore, as Fig. 6 shows, h_{norm} could be multiple of integration step size h (ε represents the perturbation between nearly two trajectories x and \bar{x}).

Regarding the Gram-Schmidt procedure, in order to speed up the code, one can use the QR decomposition based on the Householder transformation: $[Q, R] = qr(A)$. To have matrix R with positive diagonal elements, one can additionally use $Q = Q*\text{diag(sign(diag(R)))}$; $R = R*\text{diag(sign(diag(R)))}$. See also [Ramasubramanian & Sriram, 2000].

The integration step-size of FDE12, h, plays an important role. As the documentation of the program specifies, there exists the possibility to increase the performances of the numerical integration, but in time integration detriment.

Acknowledgements

The work is done within Russian Science Foundation project 14-21-00041.

References

Abarbanel, H., Brown, R., Sidorowich, J. & Tsimring, L. [1993] “The analysis of observed chaotic data in physical systems,” Reviews of Modern Physics 65, 1331–1392.

Baker, G. & Gollub, P. [1990] Chaotic Dynamics: An Introduction (Cambridge University Press, Cambridge).

Barreira, L. & Pesin, Y. [2001] “Lectures on Lyapunov exponents and smooth ergodic theory,” Proc. of Symposia in Pure Math. (AMS), pp. 3–89.

Benettin, G., Galgani, L., Giorgilli, A. & Strelcyn, J.-M. [1980] “Lyapunov characteristic exponents for smooth dynamical systems and for hamiltonian systems. A method for computing all of them. Part II: Numerical application,” Meccanica 15, 21–30.
REFERENCES

Bylov, B. E., Vinograd, R. E., Grobman, D. M. & Nemytskii, V. V. [1966] Theory of characteristic exponents and its applications to problems of stability (in Russian) (Nauka, Moscow).

Caputo, M. [1967] “Linear models of dissipation whose Q is almost frequency independent-II,” Geophysical Journal of the Royal Astronomical Society 13, 529–539.

Christiansen, F. & Rugh, H. [1997] “Computing Lyapunov spectra with continuous gram-schmidt orthonormalization,” Nonlinearity 10, 1063–1072.

Cvitanović, P., Artuso, R., Mainieri, R., Tanner, G. & Vattay, G. [2016] Chaos: Classical and Quantum (Niels Bohr Institute, Copenhagen), http://ChaosBook.org.

Czornik, A., Nawrat, A. & Niezabitowski, M. [2013] “Lyapunov exponents for discrete time-varying systems,” Studies in Computational Intelligence 440, 29–44.

Danca, M.-F. [2016] “Hidden transient chaotic attractors of Rabinovich–Fabrikant system,” Nonlinear Dynamics 86, 1263–1270.

Danca, M.-F., Fečkan, M., Kuznetsov, N. & Chen, G. [2018a] “Complex dynamics, hidden attractors and continuous approximation of a fractional-order hyperchaotic PWC system,” Nonlinear Dynamics 91, 2523–2540.

Danca, M.-F., Fečkan, M., Kuznetsov, N. V. & Chen, G. [2018b] “Fractional-order PWC systems without zero Lyapunov exponents,” Nonlinear Dynamics. doi:10.1007/s11071-018-4108-2.

Dieuthelm, K. [2014] “An extension of the well-posedness concept for fractional differential equations of caputo’s type,” Applicable Analysis 93, 2126–2135.

Dieuthelm, K. & Ford, N. [2002] “Analysis of fractional differential equations,” Journal of Mathematical Analysis and Applications 265, 229–248.

Eckmann, J. P., Kamphorst, S. O., Ruelle, D. & Ciliberto, S. [1986] “Liapunov exponents from time series,” Phys. Rev. A 34, 4971–4979.

Eckmann, J.-P. & Ruelle, D. [1985] “Ergodic theory of chaos and strange attractors,” Reviews of Modern Physics 57, 617–656.

Frederickson, P., Kaplan, J., Yorke, E. & Yorke, J. [1983] “The Liapunov dimension of strange attractors,” Journal of Differential Equations 49, 185–207.

Garrappa, R. [2012] “Predictor-corrector PECE method for fractional differential equations,” https://www.mathworks.com/matlabcentral/fileexchange/32918-predictor-corrector-pece-method-for-fractional-differential-equations?focused=5235405&tab=function.

Gorenflo, R. & Mainardi, F. [1997] “Fractional Calculus,” Fractals and Fractional Calculus in Continuum Mechanics. International Centre for Mechanical Sciences (Courses and Lectures), Vol. 8 (Springer, Vienna).

Govorukhin, V. [2004] “Calculation Lyapunov exponents for ODE,” http://www.math.rsu.ru/mexmat/kvm/matds/.

Hartley, T., Lorenzo, C., Trigeassou, J. & Maamri, N. [2013] “Equivalence of history-function based and infinite-dimensional-state initializations for fractional-order operators,” ASME. J. Comput. Nonlinear Dynam. 8, art. num. 041014.

Hegger, R., Kantz, H. & Schreiber, T. [1999] “Practical implementation of nonlinear time series methods: The TISEAN package,” Chaos 9, 413–435.

Hilbert, D. [1901-1902] “Mathematical problems,” Bull. Amer. Math. Soc., 437–479.

Kilbas, A. & Trujillo, J. [2001] “Differential equations of fractional order: methods results and problems,” Applied Analysis 78, 153–192.

Kuznetsov, N., Alexeeva, T. & Leonov, G. [2016] “Invariance of Lyapunov exponents and Lyapunov dimension for regular and irregular linearizations,” Nonlinear Dynamics 85, 195–201, doi:10.1007/s11071-016-2678-4.

Kuznetsov, N., Leonov, G., Mokaev, T., Prasad, A. & Shrimali, M. [2018a] “Finite-time Lyapunov dimension and hidden attractor of the Rabinovich system,” Nonlinear dynamics. doi.org/10.1007/s11071-018-4054-z.

Kuznetsov, N., Leonov, G., Mokaev, T., Prasad, A. & Shrimali, M. [2018b] “Finite-time Lyapunov...
punov dimension and hidden attractor of the Rabinovich system,” *Nonlinear dynamics* https://doi.org/10.1007/s11071-018-4054-z.

Leonov, G. & Kuznetsov, N. [2007] “Time-varying linearization and the Perron effects,” *International Journal of Bifurcation and Chaos* 17, 1079–1107, doi:10.1142/S0218127407017732.

Leonov, G. & Kuznetsov, N. [2015] “On differences and similarities in the analysis of Lorenz, Chen, and Lu systems,” *Applied Mathematics and Computation* 256, 334–343, doi:10.1016/j.amc.2014.12.132.

Leonov, G., Kuznetsov, N., Korzhemanova, N. & Kusakin, D. [2016] “Lyapunov dimension formula for the global attractor of the Lorenz system,” *Communications in Nonlinear Science and Numerical Simulation* 41, 84–103, doi:10.1016/j.cnsns.2016.04.032.

Li, C., Gong, Z., Qian, D. & Chen, Y. [2010] “On the bound of the Lyapunov exponents for the fractional differential systems,” *Chaos* 20, art. num. 016001CHA.

Lyapunov, A. [1892] *The General Problem of the Stability of Motion (in Russian)* (Kharkov), [English transl.: Academic Press, NY, 1966].

Oldham, K. & Spanier, J. [1974] *The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order* (Academic Press, New York).

Oseledec, V. [1968] “A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems,” *Trudy Moskovskogo Matematicheskogo Obshchestva (in Russian)* 19, 179–210.

Pikovsky, A. & Politi, A. [2016] *Lyapunov Exponents: A Tool to Explore Complex Dynamics* (Cambridge University Press).

Podlubny, I. [1999] *Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and some of their Applications*, Lecture Notes in Applied and Computational Mechanics (Academic Press, San Diego).

Podlubny, I. [2002] “Geometric and physical interpretation of fractional integration and fractional differentiation,” *Fractional Calculus and Applied Analysis* 5, 367–386.

Ramasubramanian, K. & Sriram, M. [2000] “A comparative study of computation of Lyapunov spectra with different algorithms,” *Physica D: Nonlinear Phenomena* 139, 72–86.

Sarra, S. & Meador, C. [2011] “On the numerical solution of chaotic dynamical systems using extend precision floating point arithmetic and very high order numerical methods,” *Nonlinear Analysis* 16, 340–352.

Shimada, I. & Nagashima, T. [1979] “A numerical approach to ergodic problem of dissipative dynamical systems,” *Progress of Theoretical Physics* 61, 1605–1616.

Skokos, C. [2010] “The Lyapunov characteristic exponents and their computation,” *Lecture Notes in Physics* 790, 63–135.

Stuart, A. & Humphries, A. [1998] *Dynamical Systems and Numerical Analysis* (Cambridge University Press).

Tavazoei, M. & Haeri, M. [2009] “A proof for non existence of periodic solutions in time invariant fractional order systems,” *Automatica* 45, 1886 – 1890.

Vallejo, J. & Sanjuan, M. [2017] *Predictability of Chaotic Dynamics: A Finite-time Lyapunov Exponents Approach* (Springer, Cham, Switzerland).

Wang, P., Li, J. & Li, Q. [2012] “Computational uncertainty and the application of a high-performance multiple precision scheme to obtaining the correct reference solution of lorenz equations,” *Numerical Algorithms* 59, 147–159.

Wolf, A., Swift, J. B., Swinney, H. L. & Vastano, J. A. [1985a] “Determining Lyapunov exponents from a time series,” *Physica D: Nonlinear Phenomena* 16, 285–317.

Wolf, A., Swift, J. B., Swinney, H. L. & Vastano, J. A. [1985b] “Determining Lyapunov exponents from a time series,” *Physica D: Nonlinear Phenomena* 16, 285–317.

Zhou, Y. [2016] *Fractional Evolution Equations and Inclusions: Analysis and Control* (Academic Press).
Fig. 1. (a) A chaotic attractor of the RF system of FO, for $q = 0.999$. (b) Dynamics of the LEs.

Fig. 2. (a) An apparently stable cycle of the generalized Lorenz system of FO, for $q = 0.985$. (b) Dynamics of the LEs.
REFERENCES

Fig. 3. Dynamics of the LEs of the 4-dimensional system of FO

Fig. 4. Perturbation and rescaling of a nearby trajectory, after every h_{norm} steps, considered as multiple of h (here $h_{\text{norm}} = 2h$, sketch).
Fig. 5. LEs of RF system. (a) LEs as function of q for $q \in [0.9, 1]$. (b) LEs as function of p for $p \in [1.1, 1.3]$.

Fig. 6. LEs of Chen’s system of FO represented by function of two variables: q and parameter p. Surfaces S_i, for $i = 1, 2, 3$, represents $LE(q, p)$.
A. Program for LEs of FO

```matlab
function [t,LE]=FO_Lyapunov(ne,ext_fcn,t_start,...
    h_norm,t_end,x_start,h,q,out);

    % Program to compute LEs of systems of FO.
    % The program uses a fast variant of the
    % predictor-corrector Adams-Bashforth-Moulton,
    % "FDE12.m" for FDEs, by Roberto Garrappa:
    % https://goo.gl/XScYmi
    % m-file required: FDE12 and
    % the function containing the extended system
    % (see e.g. LE_RF.m).
    % FO_Lyapunov.m was developed, by
    % modifying the program Lyapunov.m,
    % by V.N. Govorukhin:
    % https://goo.gl/wZVCtg
    % FO_Lyapunov.m, FDE12.m and LE_RF.m
    % must be in the same folder.
    % How to use it:
    % [t,LE]=FO_Lyapunov(ne,ext_fcn,t_start,...
    % h_norm,t_end,x_start,h,q,out);
    % Input:
    % ne - system dimension;
    % ext_fcn - function containing the extended
    % system;
    % t_start, t_end - time span;
    % h_norm - step for Gram-Schmidt
    % renormalization;
    % x_start - initial condition;
    % outp - printing step of LEs;
    % ioutp==0 - no print.
    % Output:
    % t - time values;
    % LE Lyapunov exponents to each time value.
    % Example of use for the RF system:
    % [t,LE]=FO_Lyapunov(3,@LE_RF,0,0.02,300,...
    % [0.1;0;1;0.1],0.005,0.999,1000);
    % The program is presented in:
    % Marius-F. Danca and N. Kuznetsov,
    % Matlab code for Lyapunov exponents of
    % fractional order systems

    % Memory allocation
    x=zeros(ne*(ne+1),1);
    x0=x;
    c=zeros(ne,1);
    gsc=c; zn=c;
    n_it = round((t_end-t_start)/h_norm);

    % Initial values
    x(1:ne)=x_start;
    i=1;
    while i<=ne
        x((ne+1)*i)=1.0;
        i=i+1;
    end
    t=t_start;
    % Main loop
    it=1;
    while it<n_it
        % Solution of extended ODE system
        [T,Y] = FDE12(q,ext_fcn,t,t+h_norm,x,h);
        t=t+h_norm;
        Y=transpose(Y);
        x=Y(size(Y,1),:); %solution at t+h_norm
        i=1;
        while i<=ne
            j=1;
            while j<=ne
                x0(ne*j+i)=x(ne*j+i);
                j=j+1;
            end
            i=i+1;
        end
        % orthonormal Gram-Schmidt basis
        zn(1)=0.0;
        j=1;
        while j<=ne
            zn(1)=zn(1)+x0(ne*j+1)*x0(ne*j+1);  %solution at t+h_norm
            j=j+1;
        end
        zn(1)=sqrt(zn(1));
        j=2;
        while j<=ne
            k=1;
            while k<=j-1
                gsc(k)=0.0;
                l=1;
                while l<=ne
                    gsc(k)=gsc(k)+x0(ne*l+j)*x0(ne*l+k);
                    l=l+1;
                end
                k=k+1;
            end
            j=j+1;
        end
    end
end
```


B. Function LE RF
m

```matlab
function f=LE_RF(t,x)
    % This function computes the Lyapunov exponent
    % of the RF system.
    % Output data must be a column vector
    f=zeros(size(x));
    % Variables allocated to the variational equations
    X=[x(4),x(7),x(10);
        x(5),x(8),x(11);
        x(6),x(9),x(12)];
    % RF equations
    f(1)=x(2)*(x(3)-1+x(1)*x(1))+0.1*x(1);
    f(2)=x(1)*(3*x(3)+1-x(1)*x(1))+0.1*x(2);
    f(3)=-2*x(3)*(0.98+x(1)*x(2));
    % Jacobian matrix
    J=[2*x(1)*x(2)+0.1, x(1)*x(1)+x(3)-1, x(2);
        -3*x(1)*x(1)+3*x(3)+1,0.1,3*x(1);
        -2*x(2)*x(3),-2*x(1)*x(3),-2*(x(1)*x(2)+0.98)];
    % Right-hand side of variational equations
    f(4:12)=J*X; % To be modified if ne>3
end
```

C. Program for LEs as function on p

```matlab
function run_Lyapunov_p(ne,ext_fcn,t_start,h_norm,t_end,x_start,h,q,p_min,p_max,n)
    hold on;
    p_step=(p_max-p_min)/n
    p=p_min;
    while p<=p_max
        LE=FO_Lyapunov_p(ne,ext_fcn,t_start,h_norm,t_end,x_start,h,q,p);
        p=p+p_step
        plot(p,LE);
    end
end
```

D. Function LE RF_p.m

```matlab
function f=LE_RF_p(t,x,p)
    % p is the parameter
    f=zeros(size(x));
    X=[x(4),x(7),x(10);
        x(5),x(8),x(11);
        x(6),x(9),x(12)];
    % RF equations
    f(1)=x(2)*(x(3)-1+x(1)*x(1))+0.1*x(1);
    f(2)=x(1)*(3*x(3)+1-x(1)*x(1))+0.1*x(2);
    f(3)=-2*x(3)*(p+x(1)*x(2));
    % Jacobian matrix
    J=[2*x(1)*x(2)+0.1, x(1)*x(1)+x(3)-1, x(2);
        -3*x(1)*x(1)+3*x(3)+1,0.1,3*x(1);
        -2*x(2)*x(3),-2*x(1)*x(3),-2*(x(1)*x(2)+p)];
    % Right-hand side of variational equations
    f(4:12)=J*X; % To be modified if ne>3
end
```
E. Program for LEs as function of q

```matlab
function run_F0_Lyapunov_q(ne,ext_fcn,t_start,
    h_norm,t_end,x_start,h,q_min,q_max,n);
    hold on;
    q_step=(q_max-q_min)/n;
    q=q_min;

while q<q_max
    [t,LE]=F0_Lyapunov_q(ne,ext_fcn,t_start,h_norm,
        t_end,x_start,h,q);
    q=q+q_step;
    fprintf('q=%10.4f
 %10.4f', q);
    plot(q,LE);
end
```

```matlab
while q<q_max
    [t,LE]=F0_Lyapunov_q(ne,ext_fcn,t_start,h_norm,
        t_end,x_start,h,q);
    q=q+q_step;
    fprintf('%q%10.4f\n %10.4f', q);
    plot(q,LE);
end
```