Spin-polarized neutron matter at different orders of chiral effective field theory

F. Sammarruca, R. Machleidt, and N. Kaiser

Department of Physics, University of Idaho, Moscow, ID 83844, USA
Physik Department, Technische Universität München, D-85747 Garching, Germany

(Dated: October 19, 2015)

Abstract

Spin-polarized neutron matter is studied using chiral two- and three-body forces. We focus, in particular, on predictions of the energy per particle in ferromagnetic neutron matter at different orders of chiral effective field theory and for different choices of the resolution scale. We discuss the convergence pattern of the predictions and their cutoff dependence. We explore to which extent fully polarized neutron matter behaves (nearly) like a free Fermi gas. We also consider the more general case of partial polarization in neutron matter as well as the presence of a small proton fraction. In other words, in our calculations, we vary both spin and isospin asymmetries. Confirming the findings of other microscopic calculations performed with different approaches, we report no evidence for a transition to a polarized phase of neutron matter.

*Electronic address: fsammarr@uidaho.edu
I. INTRODUCTION

The equation of state (EoS) of highly neutron-rich matter is a topic of current interest because of its many applications ranging from the physics of rare isotopes to the properties of neutron stars. In spite of recent and fast-growing effort, the density dependence of the symmetry energy, which plays a chief role for the understanding of those systems, is not sufficiently constrained and, at the same time, theoretical predictions show considerable model dependence.

Polarization properties of neutron/nuclear matter have been studied extensively with a variety of theoretical methods [1-25], often with contradictory conclusions. In the study in Ref. [24], for instance, the possibility of phase transitions into spin ordered states of symmetric nuclear matter was explored based on the Gogny interaction [5] and the Fermi liquid formalism. In that paper, the appearance of an antiferromagnetic state (with opposite spins for neutrons and protons) was predicted, whereas the transition to a ferromagnetic state was not indicated. This is in contrast to predictions based on Skyrme forces [25].

The properties of polarized neutron matter (NM) have gathered much attention lately, in conjunction with the issue of ferromagnetic instabilities together with the possibility of strong magnetic fields in the interior of rotating neutron stars. The presence of polarization would impact neutrino cross sections and luminosities, resulting into a very different scenario for neutron star cooling.

There are also other, equally important, motivations to undertake studies of polarized matter. In Ref. [26], for instance, we focussed on the spin degrees of freedom of symmetric nuclear matter (SNM), having in mind a terrestrial scenario as a possible “laboratory”. We paid particular attention to the spin-dependent symmetry potential, namely the gradient between the single-nucleon potentials for upward and downward polarized nucleons in SNM. The interest around this quantity arises because of its natural interpretation as a spin dependent nuclear optical potential, defined in perfect formal analogy to the Lane potential [27] for the isospin degree of freedom in isospin-asymmetric nuclear matter (IANM).

Whether one is interested in rapidly rotating pulsars or, more conventional, laboratory nuclear physics, it is important to consider both spin and isospin asymmetries. First, neutron star matter contains a non-negligible proton fraction. Concerning laboratory nuclear physics, one way to access information related to the spin dependence of the nuclear inter-
action in nuclear matter is the study of collective modes such as giant resonances. Because a spin unsaturated system is usually also isospin asymmetric, both degrees of freedom need to be taken into account. For those reasons, in previous calculations [29], we extended our predictions [26, 28] to include matter with different concentrations of neutrons and protons where each nucleon species can have definite spin polarization. Our framework was based on the Dirac-Brueckner-Hartree-Fock (DBHF) approach to nuclear matter together with a realistic meson-theoretic potential. Our findings did not show evidence of a phase transition to a ferromagnetic (FM) or antiferromagnetic (AFM) state. This conclusion appears to be shared by predictions of all microscopic models, such as those based on conventional Brueckner-Hartree-Fock theory [16]. On the other hand, calculations based on various parametrizations of Skyrme forces result in different conclusions. For instance, with the SLy_4 and SLy_5 forces and the Fermi liquid formalism a phase transition to the AFM state is predicted in asymmetric matter at a critical density equal to about 2-3 times normal density [24]. Qualitative disagreement is also encountered with other non-microscopic approaches such as relativistic Hartree-Fock models based on effective meson-nucleon Lagrangians. For instance, in Ref. [9] it was reported that the onset of a ferromagnetic transition in neutron matter, and its critical density, are crucially determined by the inclusion of isovector mesons and the nature of their couplings.

The brief review given above summarizes many useful and valid calculations. However, the problem common to all of them, including microscopic approaches, is that it is essentially impossible to estimate, in a statistically meaningful way, the uncertainties associated with a particular prediction, or to quantify the error related to the approximations applied in a particular model.

Effective field theories (EFT) have shown the way out of this problem. Chiral effective field theory is a low-energy realization of QCD [30, 31] which fits unresolved nuclear dynamics at short distances to the properties of two- and few-nucleon systems. Together with a power counting, chiral EFT provides a framework where two and few-nucleon forces are generated on an equal footing in a systematic and controlled hierarchy.

Estimates of theoretical uncertainties [32] for calculations of the equation of state of nuclear and neutron matter have largely focused on varying the low-energy constants and resolution scale at which nuclear dynamics are probed [33–38]. In a recent work [40], we laid the foundations for order-by-order calculations of nuclear many-body systems by presenting
consistent NLO and \(N^2 \text{LO} \) chiral nuclear forces whose relevant short-range three-nucleon forces (3NF) are fit to \(A = 3 \) binding energies and the lifetime of the triton \(^{39}\). We then assessed the accuracy with which infinite nuclear and neutron matter properties and the isospin asymmetry energy can be predicted from order-by-order calculations in chiral effective field theory. In this paper, we apply the same philosophy to study the equation of state of polarized neutron matter.

Based on the literature mentioned above, a phase transition to a polarized phase (at least up to normal densities) seems unlikely, although the validity of such conclusion must be assessed in the context of EFT errors. Furthermore, polarized neutron matter is a very interesting system for several reasons. Because of the large neutron-neutron scattering length, NM displays behaviors similar to those of a unitary Fermi gas. In fact, up to nearly normal density, (unpolarized) neutron matter is found to display the behavior of an \(S \)-wave superfluid \(^{41, 42}\). The possibility of simulating low-density NM with ultracold atoms near a Feshbach resonance \(^{43}\) has also been discussed. When the system is totally polarized, it has been observed to behave like a weakly interacting Fermi gas \(^{44}\). Here, we wish to explore to which extent and up to which densities we are in agreement with such conclusions, and how this and other observations depend on the chiral order and the resolution scale.

In comparison with the calculations of Ref. \(^{44}\) (where 3NFs and 4NFs up to \(N^3 \text{LO} \) were included), our present work contains the following novelties:

- We consider both cutoff dependence and truncation error for the purpose of uncertainty quantification of chiral EFT. Although incomplete in the 3NF at \(N^3 \text{LO} \), our calculations are a substantial step in that direction. We note, further, that the contribution from the 3NF at \(N^3 \text{LO} \) was found to be very small in neutron matter for the potentials in our perview \(^{36}\), about -0.5 MeV at normal density. Here, we consider neutron matter or highly neutron-rich matter.

- For the first time, we present results for both spin and isospin asymmetries within the framework of chiral forces. As discussed in Section \(^{III}\) these tools are necessary to assess, for instance, the sensitivity of the results (particularly, the potential onset of a phase transition) to the presence of a proton fraction.

This paper is organized as follows: In the next section, we present the formal aspects of the self-consistent calculation of the energy per particle, in general, applicable to infinite
matter with any degree of isospin and spin asymmetry. We also describe our approach to two- and three-body chiral forces. We provide expressions for the in-medium effective three-body force suitable for the most general case of different proton and neutron concentrations where each species can be polarized to a different degree. To the best of our knowledge, this has not been reported before in the literature within the framework of chiral forces. Results for polarized and partially polarized NM, as well as for polarized neutron-rich matter in the presence of a small proton fraction, are discussed in Section III. Conclusions and future plans are summarized in Section IV.

II. FORMALISM

A. General aspects

In a spin-polarized and isospin asymmetric system with fixed total density, \(\rho \), the partial densities of each species are

\[
\rho_n = \rho_{nu} + \rho_{nd}, \quad \rho_p = \rho_{pu} + \rho_{pd}, \quad \rho = \rho_n + \rho_p,
\]

where \(u \) and \(d \) refer to up and down spin-polarizations, respectively, of protons (\(p \)) or neutrons (\(n \)). The isospin and spin asymmetries, \(\alpha \), \(\beta_n \), and \(\beta_p \), are defined in a natural way:

\[
\alpha = \frac{\rho_n - \rho_p}{\rho}, \quad \beta_n = \frac{\rho_{nu} - \rho_{nd}}{\rho_n}, \quad \beta_p = \frac{\rho_{pu} - \rho_{pd}}{\rho_p}.
\]

The density of each individual component can be related to the total density by

\[
\rho_{nu} = (1+\beta_n)(1+\alpha)\frac{\rho}{4}, \quad \rho_{nd} = (1-\beta_n)(1+\alpha)\frac{\rho}{4}, \quad \rho_{pu} = (1+\beta_p)(1-\alpha)\frac{\rho}{4}, \quad \rho_{pd} = (1-\beta_p)(1-\alpha)\frac{\rho}{4},
\]

where each partial density is related to the corresponding Fermi momentum through \(\rho_{\tau\sigma} = (k_F^{\tau\sigma})^3/(6\pi^2) \). The average Fermi momentum and the total density are related in the usual way as \(\rho = (2k_F^3)/(3\pi^2) \).

The single-particle potential of a nucleon in a particular \(\tau\sigma \) state, \(U_{\tau\sigma} \), is the solution of a set of four coupled equations,

\[
U_{nu} = U_{nu,nu} + U_{nu,nd} + U_{nu,pu} + U_{nu,pu}
\]

\[
U_{nd} = U_{nd,nu} + U_{nd,nd} + U_{nd,pu} + U_{nd,pu}
\]
to be solved self-consistently along with the effective interaction, the G-matrix. (The latter will be discussed in the next two subsections.) In the above equations, each $U_{\tau\sigma,\tau'\sigma'}$ term on the right-hand side contains the appropriate (spin and isospin dependent) part of the interaction, $G_{\tau\sigma,\tau'\sigma'}$. More specifically,

$$U_{\tau\sigma,\tau'\sigma'}(\vec{k}) = \sum_{q \leq k_{F}^{\tau\sigma'}} \langle \tau\sigma, \tau'\sigma'|G(\vec{k},\vec{q})|\tau\sigma, \tau'\sigma'\rangle,$$

where the summation indicates integration over the Fermi seas of protons and neutrons with spin-up and spin-down, and

$$\langle \tau\sigma, \tau'\sigma'|G(\vec{k},\vec{q})|\tau\sigma, \tau'\sigma'\rangle = \sum_{L,L',S,J,M,M_L,T} |<\frac{1}{2}\sigma; \frac{1}{2}\sigma'|S(\sigma + \sigma')|^{2} <\frac{1}{2}\tau; \frac{1}{2}\tau'|T(\tau + \tau')|^{2} \times <LM_{L}; S(\sigma + \sigma')|JM > <L'M_{L}; S(\sigma + \sigma')|JM > \times i^{L'-L}Y_{L,M_{L}}^{*}(\hat{k}_{rel})Y_{L',M_{L}}(\hat{k}_{rel}) <LSJ|G(k_{rel}, K_{c.m.})|L'SJ > .$$

The G-matrix which appears in the formulas above is constructed from the two-nucleon potential and the effective density-dependent 3NF as explained later.

The need to separate the interaction by spin components brings along angular dependence, with the result that the single-particle potential depends also on the direction of the momentum, although such dependence was found to be weak [28]. The G-matrix equation is solved using partial wave decomposition and the matrix elements are then summed as in Eq. (9) to provide the new matrix elements in the representation needed for Eq. (8), namely with spin and isospin components explicitly projected out. Furthermore, the scattering equation is solved using relative and center-of-mass coordinates, k_{rel} and $K_{c.m.}$, since the former is a natural coordinate for the evaluation of the nuclear potential. Those are then easily related to the momenta of the two particles, k and q, in order to perform the integration indicated in Eq. (8). Notice that solving the G-matrix equation requires knowledge of the single-particle potential, which in turn requires knowledge of the effective interaction. Hence, Eqs. (4-7) together with the G-matrix equation constitute a rather lengthy self-consistency problem, the solution of which yields the single-nucleon potentials in each $\tau\sigma$ channel.
The kernel of the G-matrix equation contains the Pauli operator for scattering of two particles with two different Fermi momenta, $k_F^{\tau\sigma}$ and $k_F^{\tau'\sigma'}$, which is defined in analogy with the one for isospin-asymmetric matter \[45\],

$$Q_{\tau\sigma,\tau'\sigma'}(k, q, k_F^{\tau\sigma}, k_F^{\tau'\sigma'}) = \begin{cases}
1 & \text{if } p > k_F^{\tau\sigma} \text{ and } q > k_F^{\tau'\sigma'} \\
0 & \text{otherwise.}
\end{cases}$$ (10)

The Pauli operator is expressed in terms of k_{rel} and $K_{\text{c.m.}}$ and angle-averaged in the usual way. We then proceed with the calculation of the energy per nucleon in the particle-particle ladder approximation, namely the leading-order contribution in the hole-line expansion. (See Ref. \[40\] and references therein for a discussion of the uncertainty associated with this approximation.)

Once a self-consistent solution for Eqs. \[44, 47\] has been obtained, the average potential energy for a given $\tau\sigma$ component can be calculated. A final average over all $\tau\sigma$ components provides, along with the kinetic energy $K_{\tau\sigma}$, the average energy per particle in spin-polarized isospin-asymmetric nuclear matter. Specifically,

$$\frac{E}{A} = \frac{1}{A} \sum_{\sigma=\nu,d} \sum_{\tau=n,p} \sum_{k \leq k_F^{\tau\sigma}} \left(K_{\tau\sigma}(k) + \frac{1}{2} U_{\tau\sigma}(k) \right),$$ (11)

where E/A is a function of ρ, α, β_n, and β_p, with $\alpha=1$ in the present case. All calculations are conducted including values of the total angular momentum J from 0 to 15.

B. Chiral two-body potentials

In this section we discuss in some detail the features of the nucleon-nucleon (NN) potentials we use for these calculations.

All low-momentum interactions are limited in calculations of the EoS to densities where the characteristic momentum scale (on the order of the Fermi momentum) is below the scale set by the momentum-space cutoff Λ in the NN potential regulating function, which for chiral NN forces typically has the form:

$$f(p', p) = \exp\left[-(p'/\Lambda)^{2n} - (p/\Lambda)^{2n}\right],$$ (12)

where $\Lambda \lesssim 500\text{ MeV}$ is associated with the onset of favorable perturbative properties \[37, 38\].
Although designed to reproduce similar NN scattering phase shifts, NN potentials with different regulator functions will yield different predictions in the nuclear many-body problem due to their different off-shell behavior. On the other hand, appropriate re-adjustment of the low-energy constants that appear in the nuclear many-body forces is expected to reduce the dependence on the regulator function [37].

In the present investigation we consider NN potentials at order $(q/\Lambda_\chi)^2$, $(q/\Lambda_\chi)^3$ and $(q/\Lambda_\chi)^4$ in the chiral power counting, where q denotes the small scale set by external nucleon momenta or the pion mass and Λ_χ is the chiral symmetry breaking scale. Chiral NN potentials at NLO and N^2LO, corresponding to $(q/\Lambda_\chi)^2$ and $(q/\Lambda_\chi)^3$, have been constructed previously in Ref. [47] for cutoffs ranging from $\Lambda = 450$ MeV to about 800 MeV. With varying chiral order and cutoff scale, the low-energy constants in the two-nucleon sector are refitted to elastic NN scattering phase shifts and properties of the deuteron. The low-energy constants $c_{1,3,4}$ associated with the $\pi\pi NN$ contact couplings of the $\mathcal{L}_{\pi NN}^{(2)}$ chiral Lagrangian are given in Table I. We note that the c_i can be extracted from πN or NN scattering data. The potentials we use here [46, 48] follow the second path. At N^2LO, taking the

NLO	Λ (MeV)	n	c_1	c_3	c_4
	450	2			
	500	2			
	600	2			

N^2LO	Λ (MeV)	n	c_1	c_3	c_4
	450	3	-0.81	-3.40	3.40
	500	3	-0.81	-3.40	3.40
	600	3	-0.81	-3.40	3.40

N^3LO	Λ (MeV)	n	c_1	c_3	c_4
	450	3	-0.81	-3.40	3.40
	500	2	-0.81	-3.20	5.40
	600	2	-0.81	-3.20	5.40

TABLE I: Values of n and low-energy constants of the dimension-two πN Lagrangian, $c_{1,3,4}$, at each order and for each type of cutoff in the regulator function given in Eq. (12). None of the c_i’s appears at NLO. The low-energy constants are given in units of GeV$^{-1}$.
range determined in analyses of elastic πN scattering as a starting point, values were chosen to best reproduce NN data at that order. At N^3LO, high-precision required a stronger adjustment of c_4 depending on the regulator function and cutoff. The fitting procedure is discussed in Ref. [46], where it is noted that the larger value for c_4 has, overall, a very small impact but lowers the 3F_2 phase shift for a better agreement with the phase shift analysis.

In Ref. [47], it was found that the two-body scattering phase shifts can be described well at NLO up to a laboratory energy of about 100 MeV, while the N^2LO potential fits the data up to 200 MeV. Interestingly, in the latter case the χ^2/datum was found to be essentially cutoff independent for variations of Λ between 450 and approximately 800 MeV. Finally, we also use NN potentials constructed at next-to-next-to-next-to-leading order (N^3LO) [46,48], with low-energy constants $c_{1,3,4}$ as displayed in Table I.

Although N^2LO calculations can achieve sufficient accuracy in selected partial wave channels up to $E_{\text{lab}} = 200$ MeV, only the N^3LO interactions achieve the level of high-precision potentials, characterized by a χ^2/datum ~ 1.

At the two-body level, each time the chiral order is increased, the NN contact terms and/or the two-pion-exchange contributions proportional to the low-energy constants $c_{1,3,4}$ are refitted. We recall that at N^2LO no new NN contact terms are generated, and therefore improved cutoff independence in the NN phase shifts [40] is due to changes in the two-pion-exchange contributions. At N^2LO, subleading $\pi\pi NN$ vertices enter into the chiral NN potential. These terms encode the important physics of correlated two-pion-exchange and the excitation of intermediate $\Delta(1232)$ isobar states. Therefore, at this order it is possible to obtain a realistic description of the NN interaction at intermediate range, traditionally generated through the exchange of a fictitious σ meson of medium mass. At N^3LO in the chiral power counting, 15 additional NN contact terms (bringing the total number to 24 at N^3LO) result in a much improved description of NN scattering phase shifts.

C. The three-nucleon force

The leading three-nucleon force makes its appearance at third order in the chiral power counting and contains three contributions: the long-range two-pion-exchange part with $\pi\pi NN$ vertex proportional to the low-energy constants c_1, c_3, c_4, the medium-range one-pion exchange diagram proportional to the low-energy constant c_D, and finally the short-range
contact term proportional to c_E. The corresponding diagrams are shown in Fig. 1 labeled as (a), (b), (c), respectively. Diagrams (b) and (c) vanish in neutron matter, while all three terms contribute in symmetric nuclear matter [50, 51].

Although efforts are in progress to incorporate potentially important N^3LO 3NF contributions [52–54] both in the neutron and nuclear equations of state and the fitting of the relevant low-energy constants, the “N^3LO” study reported in this paper is limited to the inclusion of the N^2LO three-body force together with the N^3LO two-body force, an approximation that is commonly used in the literature. The associated uncertainties for neutron matter have been investigated in Ref. [40].

To facilitate the inclusion of 3NFs in the particle-particle ladder calculation, we employ the density-dependent NN interaction derived in Refs. [49, 50] from the N^2LO chiral three-body force. This effective interaction is obtained by summing one particle line over the occupied states in the Fermi sea. Neglecting small contributions [51] from terms depending on the center-of-mass momentum, the resulting NN interaction can be expressed in analytical form with operator structures identical to those of free-space NN interactions, and are therefore included on the same footing as two-body forces. The small uncertainty associated with the use of these effective density-dependent 3NFs was discussed in Ref. [40].

For the case of polarized isospin-asymmetric matter, the expressions from Ref. [50] are to be extended to include four different Fermi momenta, namely those of upward(downward) polarized neutrons(protons), as described below.

Using the notation established above to indicate the Fermi momenta of spin-up and spin-down neutrons or protons, the neutron and proton densities are given by $\rho_n = \left((k_F^n)^3 +$
Concerning kinematics, we consider elastic scattering process $N_1(\vec{p}) + N_2(-\vec{p}) \rightarrow N_1(\vec{p} + \vec{q}) + N_2(-\vec{p} - \vec{q})$ in the center-of-mass frame.

Following the notation of Ref. [50], we can distinguish between six effective density-dependent NN interactions, denoted by diagram (1) to (6) in Fig. 2. They are:

The Pauli blocked pion-selfenergy (diagram (1)):

$$V_{NN}^{med,1} = \frac{g_A^2}{2f^4_\pi} \tau_1 \cdot \tau_2 \frac{\vec{\sigma}_1 \cdot \vec{q} \vec{\sigma}_2 \cdot \vec{q}}{(m^2_\pi + q^2)^2} (2c_1m^2_\pi + c_3q^2)(\rho_p + \rho_n), \quad (13)$$

The Pauli blocked vertex correction (diagram (2)):

$$V_{NN}^{med,2} = \frac{g_A^2}{16\pi^2 f^4_\pi} \tau_1 \cdot \tau_2 \frac{\vec{\sigma}_1 \cdot \vec{q} \vec{\sigma}_2 \cdot \vec{q}}{m^2_\pi + q^2} \left\{ -4c_1m^2_\pi \left[\Gamma^+_0(p) + \Gamma^+_1(p) \right] - (c_3 + c_4) \right\} \times \left\{ q^2 \left(\Gamma^+_0(p) + 2\Gamma^+_1(p) + \Gamma^+_3(p) \right) + 4\Gamma^+_2(p) \right\} + 4c_4 \left[2\pi^2(\rho_p + \rho_n) - m^2_\pi \Gamma^+_0(p) \right]$$

$$+ \frac{g_A^2}{32\pi^2 f^4_\pi} (\tau^3 + \tau^3_2) \frac{\vec{\sigma}_1 \cdot \vec{q} \vec{\sigma}_2 \cdot \vec{q}}{m^2_\pi + q^2} \left\{ -4c_1m^2_\pi \left[\Gamma^-_0(p) + \Gamma^-_1(p) \right] + (c_4 - c_3) \right\} \times \left\{ q^2 \left(\Gamma^-_0(p) + 2\Gamma^-_1(p) + \Gamma^-_3(p) \right) + 4\Gamma^-_2(p) \right\} + 4c_4 \left[2\pi^2(\rho_n - \rho_p) + m^2_\pi \Gamma^-_0(p) \right]$$

$$+ \frac{g_A^2}{16\pi^2 f^4_\pi} (\tau^3 - \tau^3_2) i(\vec{\sigma}_1 - \vec{\sigma}_2) \cdot (\vec{p} \times \vec{q}) \frac{1}{m^2_\pi + 4p^2 - q^2}.$$

FIG. 2: Diagrams for the in-medium NN interactions corresponding to $V_{NN}^{med,i}$ ($i=1,...,6$) given in the text.
\[\times\left\{4c_1m_n^2\left[\Gamma_0^-(p) + \Gamma_1^-(p)\right] + c_3(4p^2 - q^2)\left[\Gamma_0^-(p) + 2\Gamma_1^-(p) + \Gamma_3^-(p)\right]\right\}, \quad (14)\]

The last contribution, proportional to \((\tau_1^3 - \tau_2^3)\), leads to spin-singlet and spin-triplet mixing in the medium. It has been Fierz-transformed to bring it into the form of the anti-symmetric spin-orbit operator \(i(\vec{\sigma}_1 - \vec{\sigma}_2) \cdot (\vec{p} \times \vec{q})\). Terms which break rotational invariance in momentum-space due to the spin-polarization of the nuclear medium in \(z\)-direction have been discarded.

Next, we give the expression for the Pauli blocked two-pion exchange (diagram (3)):

\[
V_{\text{med.3}}^{\text{NN}} = \frac{g_A^2}{32\pi^2 f_\pi^4} \left\{-12c_1m_n^2\left[2\Gamma_0^+(p) - (2m_n^2 + q^2)\Gamma_0^+(p, q)\right] - 3c_3\left[8\pi^2(\rho_p + \rho_n) - 4(2m_n^2 + q^2)\Gamma_0^+(p) - 2q^2\Gamma_1^+(p) + (2m_n^2 + q^2)^2\Gamma_0^+(p, q)\right] \right.
\]
\[
+ 4c_1\vec{\tau}_1 \cdot \vec{\tau}_2\left(\vec{\sigma}_1 \cdot \vec{q} q^2 - \vec{\sigma}_1 \cdot \vec{q} \vec{\sigma}_2 \cdot \vec{q}\right)\Gamma_2^+(p, q)
\]
\[
- (3c_3 + c_4\vec{\tau}_1 \cdot \vec{\tau}_2) i(\vec{\sigma}_1 + \vec{\sigma}_2) \cdot (\vec{q} \times \vec{p})\left[2\Gamma_0^+(p) + 2\Gamma_1^+(p) - (2m_n^2 + q^2)\right]
\]
\[
\times \left(\Gamma_0^+(p, q) + 2\Gamma_1^+(p, q)\right)\right\} - 12c_1m_n^2 i(\vec{\sigma}_1 + \vec{\sigma}_2) \cdot (\vec{q} \times \vec{p})\left[\Gamma_0^+(p, q) + 2\Gamma_1^+(p, q)\right]
\]
\[
+ 4c_1\vec{\tau}_1 \cdot \vec{\tau}_2\vec{\sigma}_1 \cdot (\vec{q} \times \vec{p}) \vec{\sigma}_2 \cdot (\vec{q} \times \vec{p})\left[\Gamma_0^+(p, q) + 4\Gamma_1^+(p, q) + 4\Gamma_3^+(p, q)\right]\right\}
\[
+ \frac{g_A^2}{64\pi^2 f_\pi^4}(\tau_1^2 + \tau_2^2) \left\{4c_1m_n^2\left[2\Gamma_0^-(p) - (2m_n^2 + q^2)\Gamma_0^-(p, q)\right] + c_3\left[8\pi^2(\rho_p - \rho_n) - 4(2m_n^2 + q^2)\Gamma_0^-(p) - 2q^2\Gamma_1^-(p) + (2m_n^2 + q^2)^2\Gamma_0^-(p, q)\right] \right.
\]
\[
- 4c_1(\vec{\sigma}_1 \cdot \vec{\sigma}_2 q^2 - \vec{\sigma}_1 \cdot \vec{q} \vec{\sigma}_2 \cdot \vec{q})\Gamma_2^-(p, q)
\]
\[
+(c_3 + c_4) i(\vec{\sigma}_1 + \vec{\sigma}_2) \cdot (\vec{q} \times \vec{p})\left[2\Gamma_0^-(p) + 2\Gamma_1^-(p) - (2m_n^2 + q^2)\right]
\]
\[
\times \left(\Gamma_0^-(p, q) + 2\Gamma_1^-(p, q)\right)\right\} + 4c_1m_n^2 i(\vec{\sigma}_1 + \vec{\sigma}_2) \cdot (\vec{q} \times \vec{p})\left[\Gamma_0^-(p, q) + 2\Gamma_1^-(p, q)\right]
\]
\[
- 4c_1\vec{\sigma}_1 \cdot (\vec{q} \times \vec{p})\vec{\sigma}_2 \cdot (\vec{q} \times \vec{p})\left[\Gamma_0^-(p, q) + 4\Gamma_1^-(p, q) + 4\Gamma_3^-(p, q)\right]\right\}. \quad (15)\]

The loop functions \(\Gamma_j^\pm(p)\) and \(G_j^\pm(p, q)\) with a superscript + or − are given by:

\[
\Gamma_j^\pm(p) = \frac{1}{2}\left[\Gamma_j(p, k_{\rho u}) + \Gamma_j(p, k_{\rho d})\right] \pm \frac{1}{2}\left[\Gamma_j(p, k_{\nu u}) + \Gamma_j(p, k_{\nu d})\right], \quad (16)
\]
\[
G_j^\pm(p, q) = \frac{1}{2}\left[G_j(p, q, k_{\rho u}) + G_j(p, q, k_{\rho d})\right] \pm \frac{1}{2}\left[G_j(p, q, k_{\nu u}) + G_j(p, q, k_{\nu d})\right], \quad (17)
\]

where \(\Gamma_j(p, k_f)\) and \(G(p, q, k_f)\) are defined in Eqs. (13-16) and Eqs. (18-22) of Ref. [50].

Now we present the contributions from the 1π-exchange 3NF proportional to the low-energy constant \(c_D\). The vertex correction to 1π-exchange linear in proton and neutron densities is (diagram (4)):

\[
V_{\text{med.4}}^{\text{NN}} = \frac{g_{A\text{CD}}}{16f_\pi^2\Lambda_\chi}\left[-2\vec{\tau}_1 \cdot \vec{\tau}_2(\rho_p + \rho_n) + (\tau_1^3 + \tau_2^3)(\rho_p - \rho_n)\right]\left(\vec{\sigma}_1 \cdot \vec{q} \vec{\sigma}_2 \cdot \vec{q}\right)/\left(m_n^2 + q^2\right). \quad (18)\]
Pauli-blocking, diagram (5), contributes:

\begin{equation}
V_{NN}^{\text{med,5}} = \frac{g_{ACD}}{32\pi^2 f^4_\pi \Lambda_\chi} \left\{ \tilde{\tau}_1 \cdot \tilde{\tau}_2 \left[2\tilde{\sigma}_1 \cdot \tilde{\sigma}_2 \Gamma_2^+(p) + \left(\tilde{\sigma}_1 \cdot \tilde{\sigma}_2 \right) \left(2p^2 - \frac{q^2}{2} \right) + \tilde{\sigma}_1 \cdot \tilde{q} \tilde{\sigma}_2 \cdot \tilde{q} \right] \times \left(1 - \frac{2p^2}{q^2} \right) - \frac{2}{q^2} \tilde{\sigma}_1 \cdot (\tilde{q} \times \tilde{p}) \tilde{\sigma}_2 \cdot (\tilde{q} \times \tilde{p}) \right] \left[\Gamma_0^+(p) + 2\Gamma_1^+(p) + \Gamma_3^+(p) \right] \right. \\
\left. + 12\pi^2 (\rho_p + \rho_n) - 6m^2_\pi \Gamma_0^+(p) \right\} \\
+ \frac{g_{ACD}}{64\pi^2 f^4_\pi \Lambda_\chi} \left(\tau_1^3 + \tau_2^3 \right) \left\{ 2\tilde{\sigma}_1 \cdot \tilde{\sigma}_2 \Gamma_2^-(p) + \left[\tilde{\sigma}_1 \cdot \tilde{\sigma}_2 \left(2p^2 - \frac{q^2}{2} \right) + \tilde{\sigma}_1 \cdot \tilde{q} \tilde{\sigma}_2 \cdot \tilde{q} \right] \times \left(1 - \frac{2p^2}{q^2} \right) - \frac{2}{q^2} \tilde{\sigma}_1 \cdot (\tilde{q} \times \tilde{p}) \tilde{\sigma}_2 \cdot (\tilde{q} \times \tilde{p}) \right] \left[\Gamma_0^-(p) + 2\Gamma_1^-(p) + \Gamma_3^-(p) \right] \right. \\
\left. + 4\pi^2 (\rho_n - \rho_p) + 2m^2_\pi \Gamma_0^-(p) \right\}.
\end{equation}

The contribution from the contact 3NF proportional to the low-energy constant c_E is (diagram (6)):

\begin{equation}
V_{NN}^{\text{med,6}} = \frac{3c_E}{4f^4_\pi \Lambda_\chi} \left[-2(\rho_p + \rho_n) + (\rho_p - \rho_n)(\tau_1^3 + \tau_2^3) \right].
\end{equation}

Partial wave matrix elements with $J \geq 1$ of the antisymmetric spin-orbit term, which occur in Eq. (14), mix spin-singlet and spin-triplet states and these can be calculated for on-shell kinematics in the center-of-mass frame as:

\begin{equation}
\langle J0J|e^{\tilde{\sigma}_1 - \tilde{\sigma}_2} \cdot (\tilde{p} \times \tilde{q}) F(q^2)|J1J \rangle = \langle J1J|e^{i(\tilde{\sigma}_1 - \tilde{\sigma}_2)} \cdot (\tilde{p} \times \tilde{q}) F(p^2, q^2)|J0J \rangle = \sqrt{\frac{J(J+1)}{2J+1}} \int_{-1}^{1} dz p^2 F(p^2, 2p^2(1-z)) \left[P_{J-1}(z) - P_{J+1}(z) \right].
\end{equation}

However, because of the small size of this contribution, particularly for small proton fractions, we neglect this term in the present calculations.

\section{III. RESULTS AND DISCUSSION}

We show in Fig. 3 the energy per particle in fully polarized neutron matter as a function of density. The yellow and red bands represent the predictions of complete calculations at second and third order, respectively, of chiral effective field theory, while the blue band shows the predictions obtained with the exploratory N^3LO calculation as described above. For each band, the width is obtained by changing the cutoff between 450 MeV and 600 MeV.

At N^2LO and N^3LO, cutoff dependence is generally moderate up to saturation density. At NLO, the cutoff dependence is practically negligible throughout. In unpolarized neutron
matter, on the other hand, the largest cutoff dependence was seen at NLO [40]. This suggests
that, in unpolarized NM, the larger cutoff sensitivity at NLO is mostly due to singlet states,
particularly 1S_0, which are absent from the polarized system. At the same time, 3NFs do
not appear at NLO, implying that most of the cutoff dependence in polarized NM at N^2LO
and N^3LO is caused by the 3NF contributions.

Clearly, the variations associated with changing the cutoff are not a good indicator of
the uncertainty at a given order of chiral effective field theory, as the results from one order
to the other do not overlap. Furthermore, the predictions do not show a good convergence
pattern, although some indication of slow convergence can be seen when moving from N^2LO
to our N^3LO calculation.

As can be concluded from Table II, the predictions from the N^3LO calculation are close
to the free Fermi gas energy, at least up to saturation densities. Our results with the N^3LO
($\Lambda=500$ MeV) potential are in good agreement with those from Ref. [44], using the same
potential as well as three- and four-nucleon forces at N^3LO. With regard to the similarity
with the free Fermi gas, it is interesting to include some additional considerations. As
mentioned in the Introduction, many-fermion systems with large scattering lengths offer the
opportunity to model low-density neutron matter. In the unitary limit (that is, when the
system can support a bound state at zero energy), the scattering length approaches infinity.
The system then becomes scale-independent and the ground-state energy is determined by a
single universal parameter, known as the Bertsch parameter, ξ. The latter is defined as the
ratio of the energy per particle of the unitary gas to that of the free Fermi gas. In Ref. [55],
using a simple ansatz for the interaction, it is shown that ξ increases from approximately
0.5 to 1.0 as the spin asymmetry of neutron matter, β_n, is increased from 0 (unpolarized)
to 1 (fully polarized).

In Fig. [4] for our N^3LO calculation, we compare predictions (along with their cutoff
variations) of the energy per neutron in: unpolarized NM (green band), partially polarized
NM (pink band), and fully polarized NM (blue band). For the partially polarized case, the
value of β_n (see Eq. (2)) is equal to 0.5, corresponding to 75% of the neutrons being polarized
in one direction and 25% in the opposite direction, see Eqs. (3-4). Clearly, a lesser degree of
spin asymmetry (as compared to the ferromagnetic case) yields considerably less repulsion.
There is definitely no sign of a phase transition, particularly to a ferromagnetic state, nor
an indication that such transition may occur at higher densities. This is consistent with
TABLE II: Ratio of the energy per particle of a free Fermi gas to the energy per particle of polarized neutron matter around saturation density at N³LO (as described in the text) and for different values of the cutoff.

Density (fm$^{-3}$)	Λ (MeV)	E_{FFG}/E_0
0.15	450	0.95
	500	0.92
	600	0.95
0.17	450	0.95
	500	0.91
	600	0.93

what we observed earlier [29] with meson-theoretic interactions.

As a baseline comparison, we also include, for the unpolarized case, predictions based on a different approach, shown by the black dotted line in Fig. 4. These are taken from Ref. [56] and are based on the Argonne v_{18} two-nucleon interaction plus the Urbana IX three body-force, using variational methods. The predictions are overall in reasonable agreement with our green band, although those from Ref. [56] show more repulsion as compared to the softer chiral interactions.

Most typically, models which do predict spin instability of neutron matter find the phase transition to occur at densities a few times normal density. Such high densities are outside the domain of chiral perturbation theory. With some effective forces, though, it was found [17] that a small fraction of protons can significantly reduce the onset of the threshold density for a phase transition to a spin-polarized state of neutron-rich matter. We explored this scenario by adding a small fraction of protons to fully polarized or unpolarized neutrons. From Eqs. 1-3, a proton fraction of 10% is obtained with $\alpha=0.8$. The results are displayed in Fig. 5 where a crossing of the bands labeled with “0.8, 1.0” and “0.8, 0.0”, respectively, would indicate a phase transition. Thus we conclude that such transition is not predicted with chiral forces. By extrapolation, a transition to a polarized state would also appear very unlikely at higher densities.
FIG. 3: (color online) Energy per neutron in fully polarized neutron matter as a function of density. The yellow and red bands represent the uncertainties due to cutoff variations obtained in the complete calculations at NLO and N^2LO, respectively. The blue band is the result of the same cutoff variations applied to our exploratory N^3LO calculation, see text for details. The dotted curve shows the energy of the free Fermi gas.

IV. CONCLUSIONS AND OUTLOOK

We have calculated the equation of state of (fully and partially) polarized neutron-rich matter. We performed complete calculations at second and third order of chiral effective field theory and calculations employing the N^3LO 2NF plus the leading 3NF. Results with both spin and isospin asymmetries are presented for the first time with chiral forces.

In all calculations, the cutoff dependence is moderate and definitely underestimates the uncertainty of each order. Concerning the latter, we do not see a satisfactory convergence pattern. The missing 3NFs are most likely not the main cause of uncertainty at N^3LO, since
FIG. 4: (color online) Energy per neutron in pure neutron matter as a function of density at N³LO. From lowest to highest curve: unpolarized NM; partially polarized NM, with $\beta_n=0.5$; fully polarized NM ($\beta_n=1$). The width of each band shows the uncertainty from varying the cutoff between 450 and 600 MeV. The black dotted line shows the predictions for the equation of state of unpolarized neutron matter from Ref. [56].

Ref. [44] has demonstrated that large cancelations take place between the 2π-exchange 3NF and the π-ring 3NF at N³LO, while other 3NF contributions are very small (about 0.1-0.2 MeV). Clearly a calculation at N⁴LO is absolutely necessary to get a realistic indication of the EFT error at N³LO. Such effort is in progress. If such calculation displays a reasonable convergence pattern, it will be strong evidence that polarized neutron matter, indeed, behaves nearly like a free Fermi gas, at least up to normal densities.

In our N³LO calculation, the energies of the unpolarized system at normal density are close to 16 MeV for all cutoffs, whereas those in the polarized case are approximately 60 MeV. Thus, even in the presence of the large uncertainties discussed above, a phase transition to
FIG. 5: (color online) Energy per nucleon in neutron-rich matter as a function of density at N^3LO and different conditions of isospin and spin polarization. The (brighter blue) band labeled as “0.8, 1.0” displays the results for neutron-rich matter with a proton fraction equal to 10% (α=0.8) and fully polarized neutron (β_n=1.0). The (brighter green) band labeled as “0.8, 0.0” refers to neutron-rich matter with the same proton fraction and no polarization (β_n=0.0). The protons are unpolarized. For comparison, we also include the bands (darker blue and darker green) already shown in the previous figure, which refer to pure neutron matter (α=1) with fully polarized (β_n=1) or unpolarized (β_n=0) neutrons. The bands are obtained varying the cutoff between 450 and 600 MeV.

a ferromagnetic state can be excluded. This conclusion remaind valid in the presence of a small proton fraction.
Acknowledgments

This work was supported in part by the U.S. Department of Energy Office of Science, Office of Basic Energy Science, under Award No. DE-FG02-03ER41270 (F.S. and R.M.), and by DFG and NSFC (CRC110) (N.K.).

[1] J.M. Pearson and G. Saunier, Phys. Rev. Lett. 24, 325 (1970).
[2] V.R. Pandharipande, V.K. Garde, and J.K. Srivastava, Phys. Lett. 38B, 485 (1972).
[3] S.O. Bäckmann and C.G. Källman, Phys. Lett. 43B, 263 (1973).
[4] P. Haensel, Phys. Rev. C 11, 1822 (1975).
[5] J. Decharge and D. Gogny, Phys. Rev. C 21 1568 (1980).
[6] J. Dabrowski, Can. J. Phys. 62, 400 (1984).
[7] M. Kutshera and W. Wojcik, Phys. Lett. B 223, 11 (1989).
[8] A. Vidaurre, J. Navarro, and J. Bernabéu, Astron. Astrophys. 135, 361 (1984).
[9] S. Marcos, R. Niembro, M.L. Quelle, and J. Navarro, Phys. Lett. B 271, 277 (1991).
[10] M. Kutshera and W. Wojcik, Phys. Lett. B 325, 271 (1994).
[11] P. Bernardos, S. Marcos, R. Niembro, M.L. Quelle, Phys. Lett. B 356, 175 (1995).
[12] V. S. Uma Maheswari, D. N. Basu, J. N. De, and S. K. Samaddar, Nucl. Phys. A 615, 516-536 (1997).
[13] S. Fantoni, A. Sarsa, and K.E. Schmidt, Phys. Lett. 87, 181101 (2001).
[14] T. Frick, H. Müther, and A. Sedrakian, Phys. Rev. C 65, 061303 (2002).
[15] I. Vidaña, A. Polls, and A. Ramos, Phys. Rev. C 65, 035804 (2002).
[16] I. Vidaña and Ignazio Bombaci, Phys. Rev. C 66, 045801 (2002).
[17] A.A. Isayev and J. Yang, Phys. Rev. C 69, 025801 (2004).
[18] Fabio L. Braghin, Phys. Rev. C 71, 064303 (2005).
[19] N. Kaiser, Phys. Rev. C 70, 054001 (2004).
[20] A. Rios, A. Polls, and I. Vidaña, Phys. Rev. C 71, 055802 (2005).
[21] I. Bombaci, A. Polls, A. Ramos, A. Rios, and I. Vidaña, Phys. Lett. B 632, 638-643 (2006).
[22] W. Zuo, U. Lombardo, and C. W. Shen, in Quark-Gluon Plasma and Heavy Ion Collisions, edited by W. M. Alberico et. al. (World Scientific, Singapore, 2002), p. 192; nucl-th/0204056.
[23] W. Zuo, Caiwan Shen, and U. Lombardo, Phys. Rev. C 67, 037301 (2003).
[24] A.A. Isayev and J. Yang, Phys. Rev. C 70, 064310 (2004).
[25] A.A. Isayev, JETP Lett. 77, 251 (2003).
[26] F. Sammarruca, Phys. Rev. C 82, 027307 (2010).
[27] A.M. Lane, Nucl. Phys. 35, 676 (1962).
[28] F. Sammarruca and P. Krastev, Phys. Rev. C 75, 034315 (2007).
[29] F. Sammarruca, Phys. Rev. C 83, 064304 (2011).
[30] S. Weinberg, Phys. Rev. 166, 1568 (1968).
[31] S. Weinberg, Physica 96A, 327 (1979).
[32] R. J. Furnstahl, D. R. Phillips, and S. Wesolowski, J. Phys. G 42, 034028 (2015).
[33] S. K. Bogner, A. Schwenk, R. J. Furnstahl, and A. Nogga, Nucl. Phys. A 763, 59 (2005).
[34] K. Hebeler, S. K. Bogner, R. J. Furnstahl, A. Nogga, and A. Schwenk, Phys. Rev. C 83, 031301 (2011).
[35] A. Gezerlis, I. Tews, E. Epelbaum, S. Gandolfi, K. Hebeler, A. Nogga, and A. Schwenk, Phys. Rev. Lett. 111, 032501 (2013).
[36] T. Krüger, I. Tews, K. Hebeler, and A. Schwenk, Phys. Rev. C 88, 025802 (2013).
[37] L. Coraggio, J. W. Holt, N. Itaco, R. Machleidt and F. Sammarruca, Phys. Rev. C 87, 014322 (2013).
[38] L. Coraggio, J. W. Holt, N. Itaco, R. Machleidt, L. E. Marcucci, and F. Sammarruca, Phys. Rev. C 89, 044321 (2014).
[39] L.E. Marcucci, A. Kievsky, S. Rosati, R. Schiavilla, and M. Viviani, Phys. Rev. Lett. 108, 052502 (2012).
[40] F. Sammarruca, L. Coraggio, J.W. Holt, N. Itaco, R. Machleidt, and L.E. Marcucci, Phys. Rev. C 91, 054311 (2015).
[41] J. Carlson, S.-Y. Chang, V.R. Pandharipande, and K.E. Schmidt, Phys. Rev. Lett. 91, 050401 (2003).
[42] J. Carlson, S. Gandolfi, and A. Gezerlis, PTEP 2012 01A209 (2012).
[43] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885 (2008).
[44] T. Krüger, K. Hebeler, and A. Schwenk, Phys. Lett. B 744, 18 (2014), and references therein.
[45] D. Alonso and F. Sammarruca, Phys. Rev. C 67, 054301 (2003).
[46] R. Machleidt and D.R. Entem, Phys. Rep. 503, 1 (2011).
[47] E. Marji, A. Canul, Q. MacPherson, R. Winzer, Ch. Zeoli, D.R. Entem, and R. Machleidt, Phys. Rev. C 88, 054002 (2013).
[48] D.R. Entem and R. Machleidt, Phys. Rev. C 68, 041001 (2003).
[49] J. W. Holt, N. Kaiser, and W. Weise, Phys. Rev. C 79, 054331 (2009).
[50] J. W. Holt, N. Kaiser, and W. Weise, Phys. Rev. C 81, 024002 (2010).
[51] K. Hebeler and A. Schwenk, Phys. Rev. C 82, 014314 (2010).
[52] S. Ishikawa and M. R. Robilotta, Phys. Rev. C 76, 014006 (2007).
[53] V. Bernard, E. Epelbaum, H. Krebs, and U.-G. Meissner, Phys. Rev. C 77, 064004 (2008).
[54] V. Bernard, E. Epelbaum, H. Krebs, and U.-G. Meissner, Phys. Rev. C 84, 054001 (2011).
[55] N. Kaiser, Eur. Phys. J. A 48, 148 (2012).
[56] A. Akmal, V.R. Pandharipande, and D.G. Ravenhall, Phys. Rev. C 59, 1804 (1998).