On Transiso Graphs of Groups of Order Less Than 32

L. K. Mishra* and B. K. Sharma
Department of Mathematics
University of Allahabad, Allahabad – 211002, India.
Email: lkmp02@gmail.com, brajeshsharma72@gmail.com

(Received March 18, 2016)

Abstract: For a finite group G and a divisor d of $|G|$, the transiso graph $\Gamma_d(G)$ is a graph whose vertices are subgroups of G of order d and two distinct vertices H_1 and H_2 are adjacent if and only if there exist normalized right transversals S_1 and S_2 of H_1 and H_2 respectively in G such that $S_1 \equiv S_2$ with respect to the right loop structure induced on them. In the present paper, we have determined some finite groups G for which the graphs $\Gamma_d(G)$ are complete for each divisor d of $|G|$. We have also discussed the completeness of transiso graphs for groups of order less than 32.

Keywords: Right loop, Normalized right transversal, Transiso graph, t-group.

2010 AMS Classification No.: 05C25, 20N05.

1. Introduction

Let G be a finite group and H be a subgroup of G. A normalized right transversal (NRT) S of H in G is a subset of G obtained by selecting one and only one element from each right coset of H in G and $1 \in S$. An NRT S has an induced binary operation \circ given by \(\{x \circ y\} = S \cap H_{xy} \), with respect to which S is a right loop with identity 1 (Smith¹, p.42, Lal²). Conversely, every right loop can be embedded as an NRT in a group with some universal property (Lal², p.76). Let $\langle S \rangle$ be the subgroup of G generated by S and H_S be the subgroup $H \cap \langle S \rangle$. Then, $H_S = \{xy(x \circ y)^{-1} | x, y \in S\}$ and $H_S S = \langle S \rangle$. Identifying S with the set $H \setminus G$ of all right cosets of H in G, we get a

*Author is supported by University Grants Commission, India
transitive permutation representation \(\chi_S : G \rightarrow \text{Sym}(S) \) defined by \(\{ \chi_S(g)(x) = S \cap Hxg : g \in G, x \in S \} \). The kernel \(\ker \chi_S \) of this action is \(\text{Core}_G(H) \), the core of \(H \) in \(G \). The group \(G_S = \chi_S(H_S) \) is known as the group torsion of the right loop \(S \) (Lal\(^2\), p. 75) which depends only on the right loop structure \(\circ \) on \(S \) and not on the subgroup \(H \). Since \(\chi_S \) is injective on \(S \) and if we identify \(S \) with \(\chi(S) \), then \(\chi(S_S \circ S_H) \) is known as the group torsion of the right loop structure on \(S \) and \(S \) is an NRT of \(G_S \) in \(G_S S \). One can also verify that the identity map on \(S \) is \(\chi_S \) and \(\chi_S \) is \(\chi(S_S \circ S_H) \) which also depends only on the right loop structure on \(S \) and \(S \) is an NRT of \(G_S \) in \(G_S S \). Also \((S, \circ) \) is a group if and only if \(G_S \) is trivial.

Let \(\mathcal{T}(G,H) \) denote the set of all normalized right transversals (NRTs) of \(H \) in \(G \). Two NRTs \(S, T \in \mathcal{T}(G,H) \) are said to be isomorphic (denoted by \(S \cong T \)), if their induced right loop structures are isomorphic. A subgroup \(H \) is normal in \(G \) if and only if all NRTs of \(H \) in \(G \) are isomorphic to the quotient group \(G/H \) (Cameron\(^3\)).

Throughout the paper, we will assume that \(G \) is a finite group and \(d \) is a divisor of the order \(|G|\) of the group \(G \). Let \(V_d(G) \) be the set of all subgroups of \(G \) of order \(d \). We define a graph \(\Gamma_d(G) = (V_d(G), E_d(G)) \) with \(\{H_1, H_2\} \in E_d(G) \) if and only if there exists \(S_i \in \mathcal{T}(G,H_i) \) \((i=1,2)\) such that \(S_1 \cong S_2 \) with respect to the right loop structure induced on \(S_i \). We will call this graph a transiso graph (Kakkar and Mishra\(^4\)). If \(G \) has no subgroup of order \(d \), then \(\Gamma_d(G) \) is a null graph (a graph having empty vertex set and empty edge set). If \(G \) has unique subgroup of order \(d \), then \(\Gamma_d(G) \) is an empty graph (a graph having empty edge set). We will denote transiso graph \(\Gamma_d(G) \) by \(\Gamma_d \) if there is no confusion about \(G \). A group \(G \) is called a t-group if \(\Gamma_d(G) \) is a complete graph for each divisor \(d \) of \(|G|\).

In this paper, we have determined all t-groups of the order less than 32. In the Section 2, we have recalled some preliminary results related to transiso graph from Kakkar and Mishra\(^4\). We have also discussed about the relation of adjacency and proved that the direct product of two t-groups of co-prime order is a t-group. In the Section 3, we have discussed about the
transiso graphs of some non-abelian groups like dicyclic groups, quasidihedral groups and the groups of the order $pq, 4p, 2pq$ and $2p^2$ for distinct odd prime p and q. We have classified all the t-groups of order less than 32 in the Section 4.

2. Preliminaries

We first recall the following results of Kakkar and Mishra⁴ and prove some elementary results which will be used in the present paper.

Proposition 1: A subgroup of a group G is always adjacent with its automorphic images in $\Gamma_d(G)$ for any divisor d of $|G|$.

Proposition 2: Let H_1 and H_2 be corefree subgroups of G. Let $S_i \in \mathcal{I}(G, H_i) \ (i=1,2)$ such that $S_1 \cong S_2$ and $\langle S_i \rangle = G$. Then, an isomorphism between S_1 and S_2 can be extended to an automorphism of G which sends H_1 onto H_2.

Proposition 3: A finite abelian group G is a t-group if and only if each Sylow subgroup of G is either elementary abelian or cyclic.

Corollary 1: An elementary abelian group is a t-group.

Proposition 4: The dihedral group D_{2n} of order $2n$ is a t-group.

One can easily observe that the number of vertices in the graph $\Gamma_d(G)$ is equal to the number of subgroups of order d and is given by

$$|V_d(D_{2n})| = \begin{cases}
1 & \text{if } d \text{ is odd.} \\
\frac{2n}{d} & \text{if } d \text{ is even and does not divide } n. \\
\frac{2n}{d} + 1 & \text{if } d \text{ is even and divides } n.
\end{cases}$$

Proposition 5: Let G be a non p-central finite p-group. Then, $\Gamma_d(G)$ is complete if and only if whenever H is a non-normal subgroup of G of order p, $G \cong H \times K$ for some subgroup K of G with $G/L \cong K$ for any normal subgroup L of G of order p.

Proposition 6: Let \(p \) be an odd prime and \(G \) be a non-abelian group. Then,

1. If the group \(G \) is a t-group and \(|G| = p^3 \), then \(G \) is of exponent \(P \) (and hence \(G \cong C_{p^2} \times C_p \)).

2. If \(|G| = p^4 \), then \(\Gamma_p(G) \) is not a complete graph.

3. If \(|G| = p^5 \), then \(\Gamma_p(G) \) is not complete unless \(\Phi(G) = Z(G) = G' \cong C_p^2 \).

Let \(G \) be a finite group and \(d \) be a divisor of \(|G| \). Let us define a relation \(\sim_d \) on the set \(V_d(G) \) of all subgroups of the group \(G \) of order \(d \) such that two subgroups \(H_1 \) and \(H_2 \) are related by the relation \(\sim_d \) if either \(H_1 = H_2 \) or \(H_1 \) and \(H_2 \) are adjacent in the graph \(\Gamma_p(G) \). We call this relation \(\sim_d \) the relation of adjacency in the graph \(\Gamma_p(G) \). It is trivial that the relation \(\sim_d \) is reflexive and symmetric on \(V_d(G) \).

Proposition 2.1: If the relation \(\sim_d \) defined above is a transitive relation on \(V_d(G) \), then \(\Gamma_p(G) \) is either a complete graph or a disjoint union of complete graphs.

Proof: Assume that the relation \(\sim_d \) is a transitive relation on \(V_d(G) \). Then, it is an equivalence relation on \(V_d(G) \) and hence it gives a partition of \(V_d(G) \) and each component of this partition corresponds to a complete graph.

Lemma 2.1: Let \(H_i \) and \(K_i \) (\(i = 1, 2 \)) be subgroups of the groups \(G_i \) such that there exist NRTs \(S_i \in \mathcal{T}(G, H_i) \) and \(T_i \in \mathcal{T}(G, H_i) \) with \(S_i \cong T_i \). Then, \(S_1 \times S_2 \cong T_1 \times T_2 \).

Proof: One can easily observe that \(S_1 \times S_2 \in \mathcal{T}(G_1 \times G_2, H_1 \times H_2) \), for an element \((g_1, g_2) \in G_1 \times G_2 \) can be expressed as \((h_1, h_2)(s_1, s_2) \), where \(h_i \in H_i \) and \(s_i \in S_i \) (\(i = 1, 2 \)). Similarly, \(T_1 \times T_2 \in \mathcal{T}(G_1 \times G_2, K_1 \times K_2) \). Then, the map \(f \times g : S_1 \times S_2 \to T_1 \times T_2 \) given
by \((s_1,s_2)\in(f(s_1),g(s_2))\), is a right loop isomorphism where \(f : S_1 \rightarrow T_1\)
and \(g : S_2 \rightarrow T_2\) are right loop isomorphisms.

Proposition 2.2: The direct product of two t-groups of co-prime order is a t-group.

Proof: Let \(G_1\) and \(G_2\) be two t-groups of co-prime order. Let \(G = G_1 \times G_2\) and \(H, K\) be subgroups of \(G\) of same order. Then by [Suzuki, p. 141], \(H = H_1 \times H_2\) and \(K = K_1 \times K_2\) for some subgroups \(H_1, K_1 \in G_1\) and \(H_2, K_2 \in G_2\) such that \(|H_1| = |K_1| = d_1\) and \(|H_2| = |K_2| = d_2\). Since \(G_1\) and \(G_2\) are t-groups, \(H_1 \sim_{d_1} K_1\) and \(H_2 \sim_{d_2} K_2\). Therefore by Lemma 2.1, the subgroups \(H\) and \(K\) are adjacent in the corresponding transiso graph. Hence the group \(G\) is also a t-group.

Lemma 2.2: Let \(G\) be a finite group and \(H\) be a non-normal subgroup of prime order. Then, an NRT \(S\) of \(H\) in \(G\) is either a subgroup of \(G\) or \(S \cong H\).

Proof: Let \(S\) be an NRT of \(H\) in \(G\). Then, either \(H_S = \{1\}\) or \(H_S = H\). If \(H_S = \{1\}\), then \(S\) is a subgroup of \(G\). Now, assume that \(H_S = H\). Since \(H\) is core-free, \(G_S \cong H_S\). We also observe that \(S\) is not a group in this case.

3. Transiso Graphs for Some Non-Abelian Groups

In this section, we have determined transiso graphs for some non-abelian groups like dicyclic groups, quasidihedral groups and the groups of the order \(pq, 4p, 2pq\) and \(2p^2\) for distinct odd primes \(p\) and \(q\). The dicyclic group (or binary dihedral group) \(Q_{4n} = \langle a, b | a^{2n}, a^n b^2, abab^{-1} \rangle\) is a group of order \(4n\) for \(n \geq 1\) (Roman, p. 347). It is a non-abelian group for \(n > 1\) and it is a cyclic group for \(n = 1\) (that is, \(Q_4 \cong C_4\)). A generalized quaternion group is a special case of the dicyclic group \(Q_{4n}\) when \(n = 2^k\) for some positive integer \(k\).

In order to prove the Proposition 3.1, we need the following elementary lemma.
Lemma 3.1: A subgroup of the dicyclic group Q_{4n} is either cyclic or dicyclic. Moreover, if d is a divisor of $4n$, then

1. there is unique subgroup (namely $\left\langle a^{\frac{2n}{d}} \right\rangle$) of Q_{4n} of order d if 4 does not divide d,

2. there are i subgroups $\left\langle a^i b \right\rangle, 0 \leq j < i$ of order d conjugate to each other if 4 divides d and $i = \frac{4n}{d}$ is odd,

3. a subgroup of order d is either $\left\langle a^i \right\rangle$ or conjugate to one of $\left\langle a^i, b \right\rangle$ or $\left\langle a^i, ab \right\rangle$ if 4 divides d and $i = \frac{4n}{d}$ is even.

Proof: Let H be a nontrivial proper subgroup of Q_{4n} of order d. Clearly $\langle a \rangle$ is maximal cyclic subgroup of Q_{4n} of index 2. The composite homomorphism $H \rightarrow Q_{4n} \rightarrow Q_{4n}/\langle a \rangle$ is either trivial or onto with the kernel $H \cap \langle a \rangle = \left\langle a^i \right\rangle$ for unique divisor i of $2n$. If the homomorphism is trivial, then $H \cap \langle a \rangle = \left\langle a^i \right\rangle$ for unique divisor $i = \frac{4n}{d}$ of $2n$. Therefore the subgroup H is cyclic in this case.

Now, if the homomorphism is onto, then $H / \left\langle a^i \right\rangle \cong Q_{4n} / \langle a \rangle \cong C_2$. Since $H \not\subseteq \langle a \rangle$, H has an element $a^i b$ and $a^n \subseteq \left\langle a^i \right\rangle$ for $\left(a^i b \right)^2 = a^n \in H$.

Therefore $H \cap \langle a \rangle = \left\langle a^i \right\rangle$ for unique divisor $i = \frac{4n}{d}$ of n. Now, we have an appropriate element $a^i b \in H \setminus \langle a \rangle$ where $0 \leq j < i$, such that $H = \left\langle a^i, a^j b \right\rangle$.

Clearly H is a dicyclic group \[\text{precisely } H \cong Q_{\frac{4n}{d}} \] for \(\left(a^i \right)^{\frac{4n}{d}} = 1, \left(a^i \right)^{\frac{4n}{d}} = \left(a^j b \right)^2 \) and \(\left(a^j b \right) a^i \left(a^j b \right)^{-1} = \left(a^i \right)^{-1} \).

Now, we prove the next part of the lemma.

Let H be a subgroup of Q_{4n} of order d and $i = \frac{4n}{d}$. If d is not a multiple of 4, then there is no subgroup of Q_{4n} of order d which is dicyclic.
and so $H = \langle a^i \rangle$ is a cyclic subgroup. If d is a multiple of 4, then there are two cases.

If $d \nmid 2n$ i.e. i is odd, then H cannot be contained in $\langle a \rangle$ so H is dicyclic subgroup of the form $\langle a', a'b \rangle$. If $i \leq j$, then we can find l such that $0 \leq l < i$ and $H = \langle a', a'b \rangle$. Thus we conclude that $0 \leq j < i$ and hence there are i subgroups of order d which are conjugates.

If $d \mid 2n$ i.e., i is even, then H is either $\langle a^i \rangle$ or of the form $\langle a', a'b \rangle$.

Using above arguments, we see that there are $\frac{i}{2}$ subgroups conjugate to $\langle a', b \rangle$ and $\frac{i}{2}$ subgroups conjugate to $\langle a', ab \rangle$.

One can easily observe that an abelian normal subgroup of the group Q_{4n} is cyclic subgroup contained in the maximal cyclic subgroup and a non-abelian normal subgroup of Q_{4n} has index less than or equal to 2.

Proposition 3.1: The dicyclic group $Q_{4n} = \langle a, b \mid a^{2n}, a^i b^2, abab^{-1} \rangle$ of order $4n$ is a t-group.

Proof: Let d be a divisor of $4n$ and $i = \frac{4n}{d}$.

First assume that $4 \nmid d$. Then by Lemma 3.1, there is unique subgroup of Q_{4n} of order d and so $\Gamma_d(Q_{4n})$ is trivially a complete graph.

Now assume that $4 \mid d$ and i is odd. Then by Lemma 3.1, there are i subgroups of order d conjugate to $\langle a', b \rangle$ and so $\Gamma_d(Q_{4n})$ is a complete graph.

Finally assume that $4 \mid d$ and i is even. Then, a subgroup of order d is either $H_1 = \langle a^i \rangle$ or conjugate to exactly one of $H_2 = \langle a', b \rangle$ or $H_3 = \langle a', ab \rangle$. Note that H_1 is a normal subgroup of Q_{4n} and so its all NRTs are isomorphic to $Q_{4n}/H_1 \cong D_{\frac{4n}{2}}$.

Now, choose \(S_2 = \left\{ a^{2j+k}b^k \mid 0 \leq j < \frac{i}{2}, k = 0,1 \right\} \) in \(\mathcal{T}(Q_{4n}, H_2) \) and \(S_3 = \left\{ a^{2j}b^k \mid 0 \leq j < \frac{i}{2}, k = 0,1 \right\} \) in \(\mathcal{T}(Q_{4n}, H_3) \). Note that \(\langle S_2 \rangle = \langle a^2, ab \rangle \) and \(\langle S_3 \rangle = \langle a^2, b \rangle \). Then, \(H_{S_2} = \langle S_2 \rangle \cap H_2 = \langle d' \rangle \leq \langle S_2 \rangle \) and \(H_{S_3} = \langle S_3 \rangle \cap H_3 = \langle d' \rangle \leq \langle S_3 \rangle \). Therefore \(G_{S_2} = G_{S_3} = \{1\} \) and hence \(S_2 \) and \(S_3 \) are groups.

Let \(\circ_2 \) denote the induced binary operation on \(S_2 \) as described in the Section 1. One can observe that, \((a^2)^{\frac{i}{2}} = (ab)^2 = (ab \circ_2 a^2)^2 = 1 \). This implies that \(S_2 \cong D_{2^n} \). One can similarly observe that \(S_3 \cong D_{2^n} \). This shows that the graph \(\Gamma_{d}(Q_{4n}) \) is complete.

It follows from the Lemma 3.1 that the number of vertices in the graph \(\Gamma_{d}(Q_{4n}) \) is given by

\[
|V_d(Q_{4n})| = \begin{cases}
1 & \text{if 4 does not divide } d. \\
\frac{4n}{d} & \text{if 4 divides } d \text{ and } \frac{4n}{d} \text{ is odd.} \\
\frac{4n}{d} + 1 & \text{if 4 divides } d \text{ and } \frac{4n}{d} \text{ is even.}
\end{cases}
\]

The quasidihedral (or semidihedral) group \(QD_{2^n} = \langle a,b \mid a^{2^{n-1}}, b^2, bab^{-1}a^{2^{n-2}+1} \rangle \) is a non-abelian group of order \(2^n \) where \(n > 4 \) (Gorenstein\(^7\), p. 191). Its subgroup structure can be given by the following lemma.

Lemma 3.2: A proper nontrivial subgroup of the quasidihedral group \(QD_{2^n} \) is either cyclic or dihedral or generalized quaternion.

Proof: The proof is similar to that of the Lemma 3.1. From theorem 4.10 of Gorenstein\(^7\) (p. 199), it follows that an abelian normal subgroup of the quasidihedral group \(QD_{2^n} \) of order \(d = 2^m \) is cyclic (precisely \(\left\langle a^{2^{n-m-1}} \right\rangle \)) and a non-abelian normal subgroup of \(QD_{2^n} \) has index less than or equal to 2.
Now, we have the following proposition from which it follows that the quasidihedral group QD_{2^n} is not a t-group.

Proposition 3.2: Let G be the quasidihedral group QD_{2^n} and $d = 2^m$ be a divisor of 2^n. Then, the graph $\Gamma_d(G)$ is complete if and only if $d \neq 2$.

Proof: First assume that $d \neq 2$. Then by Lemma 3.2, a subgroup of G of order $d = 2^m$ is either $H_1 = \langle a^{2^{n-m-1}} \rangle \cong C_{2^m}$ or conjugate to exactly one of $H_2 = \langle a^{2^{n-m}}, b \rangle$ or $H_3 = \langle a^{2^{n-m}}, ab \rangle$. Note that H_1 is a normal subgroup of QD_{2^n} and so its all NRTs are isomorphic to $QD_{2^n}/H_1 \cong D_{2^{n-m}}$.

Now choose $S_2 = \{a^{2^{j+k}}b^k \mid 0 \leq j < 2^{n-m-1}, k = 0, 1\}$ in $\mathcal{T}(QD_{2^n}, H_2)$ and $S_3 = \{a^{2^{j+k}}b^k \mid 0 \leq j < 2^{n-m-1}, k = 0, 1\}$ in $\mathcal{T}(QD_{2^n}, H_2)$. Note that $\langle S_2 \rangle = \langle a^2, ab \rangle$ and $\langle S_3 \rangle = \langle a^2, b \rangle$. Then, $H_{S_2} = \langle S_2 \rangle \cap H_2 = \langle a^{2^{n-m}} \rangle \leq \langle S_2 \rangle$ and $H_{S_3} = \langle S_3 \rangle \cap H_3 = \langle a^{2^{n-m}} \rangle \leq \langle S_3 \rangle$. Therefore $G_{S_2} = G_{S_3} = \{1\}$ and hence S_2 and S_3 are groups.

Let \circ_2 denote the induced binary operation on S_2 as described in the Section 1. One can observe that, $(a^2)^{2^{n-m-1}} = (ab)^2 = (ab \circ_2 a^2)^2 = 1$. This implies that $S_2 \cong D_{2^{n-m}}$. One can similarly observe that $S_3 \cong D_{2^{n-m}}$. This shows that the graph $\Gamma_d(QD_{2^n})$ is complete.

Finally assume that $d = 2$. Then, a subgroup of G of order 2 is either $H_1 = \langle a^{2^{n-2}} \rangle$ or a conjugate to $H_2 = \langle b \rangle$. Since $H_1 \not\leq G$, every NRT of H_1 in G is isomorphic to $G/H_1 \cong D_{2^{n-1}}$.

Let H be a non-normal subgroup of QD_{2^n} of order 2. Then, H is contained in $\langle a^2, b \rangle \cong D_{2^{n-1}}$ and H is a conjugate to the subgroup $\langle b \rangle$. Clearly the core $Core_G(H)$ of H in QD_{2^n} is trivial. Now let S be an NRT of H in QD_{2^n}. Then, the order of $H_S = H \cap \langle S \rangle$ is less than or equal to 2.
If $|H_S|=1$, then $S=\langle S \rangle$ is a subgroup of QD_{2^n}. Therefore S is equal to either $<a>$ or $\langle a^2, ab \rangle \cong Q_{2^{n-1}}$.

Finally if $|H_S|=2$, then $H_S=H$ and $\langle S \rangle=G$. Therefore, $G_S \cong H_S/\text{Core}_{H_S}(H_S) = H / \text{Core}_G(H) \cong H$. Since G_S is nontrivial, S is not a group. Hence $S \not\cong D_{2^{n-1}}$.

It can be trivially observed that the number of vertices in the graph $\Gamma_d(QD_{2^n})$ is equal to the number of subgroups of QD_{2^n} of order d and is given by

$$V_d(QD_{2^n}) = \begin{cases}
1 & \text{if } d=1 \text{ or } d=2^n. \\
2^{n-2}+1 & \text{if } d=2. \\
2^{n-m}+1 & \text{if } d=2^m \text{ with } 0 < m < n.
\end{cases}$$

Proposition 3.3: Let p and q be distinct odd primes. Then, a group of order either pq or $4p$ or $2pq$ is t-group.

Proof: Observe that a nontrivial proper subgroup of a group of order pq is a Sylow subgroup. Hence any two subgroups of same order are adjacent in corresponding transiso graph.

By classification of groups of order $4p$ (Burnside\(^8\), p.132-137), a non-abelian group of order $4p$ is isomorphic to exactly one of D_{4n}, Q_{4n}, the alternating group $Alt(4)$ (for $p=3$), $C_p \times C_4$ (for $p \equiv 1 \pmod{4}$). The groups D_{4n} and Q_{4n} are t-groups from the propositions 4 and 3.1. Since any two subgroups of the group $Alt(4)$ of equal order are conjugate therefore the group $Alt(4)$ is also a t-group.

Let H_1 and H_2 be two distinct subgroups of $C_p \times C_4$ of order 2. Then, there exist unique Sylow 2-subgroup K_i of $C_p \times C_4$ containing H_i where $i=1,2$. Since K_1 and K_2 are conjugate, the subgroups H_1 and H_2 are conjugate. So H_1 and H_2 are adjacent in $\Gamma_2(C_p \times C_4)$.

A non-abelian group of order $2pq$ is isomorphic to exactly one of the groups D_{2pq}, $D_q \times C_p$, $D_p \times C_q$ and $C_2 \times (C_q \times C_p)$, $(C_q \times C_p) \times C_2$ (when
On Transiso Graphs of Groups of Order Less Than 32

103

\(p \) divides \(q - 1 \) (Ghorbani and Larki\(^8\), p. 50). \(D_{2q} \times C_p, D_{2p} \times C_q \) and \(C_2 \times (C_q \times C_p) \) are t-groups due to the Proposition 2.2. Order of the normalizer \(N_G(H) \) of a Sylow \(p \) -subgroup \(H \) of \((C_q \times C_p) \times C_2 \) is \(2p \) and \(H \) is unique Sylow \(p \) -subgroup of \(N_G(H) \). Since all Sylow \(p \) -subgroups are conjugate; therefore their normalizers are also conjugate.

Proposition 3.4: Let \(G \) be a non-abelian group of order \(2p^2 \) for some odd prime \(p \). Then, the group \(G \) is t-group if and only if \(G \) is isomorphic to either the dihedral group \(D_{2p^2} \) or \((C_p)^2 \times C_2\).

Proof: It is well known that a non-abelian group of order \(2p^2 \) is isomorphic to exactly one of the groups \(D_{2p^2}, (C_p)^2 \times C_2 \) and \(C_p \times D_{2p} \) (Burnside\(^8\), p.132-137).

Let \(G = \langle a, b, c | a^p, b^p, c^2, [a, b], (ac)^2, (bc)^2 \rangle \cong (C_p)^2 \times C_2 \). Then, all subgroups of \(\langle a, b \rangle \cong (C_p)^2 \) are normal in \(G \) and their quotients are dihedral groups \(D_{2p} \). Hence \(\Gamma_p(G) \) is a complete graph. Now \(\Gamma_{2p}(G) \) is also complete as there are several NRTs of a subgroup \(H \) of \(G \) order \(2p \) which are isomorphic to the cyclic group of order \(p \). So \(G \) is a t-group.

Now, let \(G \cong C_p \times D_{2p} = \langle a, b, c | a^p, b^p, c^2, [a, b], [a, c], (bc)^2 \rangle \). Then, it is obvious that \(< a > \) and \(< b > \) are normal subgroups of \(G \) of order \(p \) such that \(G/ < a > \cong D_{2p} \) and \(G/ < b > \cong C_{2p} \). Hence \(\Gamma_p(G) \) is not a complete graph.

4. Classification of T-Groups of Order Less Than 32

Abelian t-groups are already determined by Proposition 3 which tells that a finite abelian group \(G \) is a t-group if and only if it is isomorphic to the direct sum of a cyclic group \(C \) and a direct sum \(A \) of some elementary abelian groups, where \(|A|\) and \(|C|\) are co-prime.

Non-abelian groups of the order 12, 20, 21, 28 and 30 are t-groups by Proposition 3.3 and a non-abelian t-group of the order 18 can be determined by Proposition 3.4. By Propositions 3.1 and 4, it is clear that the non-abelian
groups of order 8 and $2p$ (for odd prime $p \leq 13$) are t-groups. In Propositions 4.1 and 4.2, we have determined non-abelian t-groups of the order 16 and 24 respectively. We recall that a finite p-group P is p-central if each subgroup of P of order p is contained in the center $Z(P)$.

Proposition 4.1: Let G be a non-abelian group of order 16. Then, the group G is a t-group if and only if G is isomorphic to either dihedral group D_{16} or dicyclic group Q_{16}.

Proof: If G is a 2-central group, then it is isomorphic to one of the groups $Q_8, C_4 \rtimes C_4$ and $C_2 \times Q_8$ (Wild). By Proposition 3.1, Q_{16} is a t-group. The group $C_4 \rtimes C_4 = \langle a, b \mid a^4, b^4, abab^{-1} \rangle$ has three normal subgroups $\langle a^2 \rangle, \langle b^2 \rangle$ and $\langle a^2 b^2 \rangle$ of order 2 with quotient groups isomorphic to the groups $C_4 \times C_2, D_8$ and Q_8 respectively. Therefore the graph $\Gamma_2(C_4 \rtimes C_4)$ is not complete and hence $C_4 \rtimes C_4$ is not a t-group. The group $C_2 \times Q_8 = \langle a, b, c \mid a^2, b^4, b^2 c^2, [a, b], [a, c], bcbc^{-1} \rangle$ is not a t-group, for it has three normal subgroups $\langle a \rangle, \langle b^2 \rangle$ and $\langle ab \rangle$ of order 2 with quotient groups isomorphic to the groups $Q_8, (C_2)^3$ and Q_8 respectively. Therefore $C_4 \rtimes C_4$ is not a t-group.

If G is a non 2-central group which is also a t-group, then $\Gamma_2(G)$ is a complete graph and hence by Proposition 5, G should be isomorphic to a nontrivial semidirect product $H \rtimes K$ of a non-normal subgroup H of G of order 2 and a normal subgroup K of G of order 8 such that for any normal subgroup L of G of order 2, K is isomorphic to G/L. From a result of Wild we observe that there are five groups $(C_4 \times C_2) \rtimes_1 C_2, C_8 \rtimes C_2, QD_{16} = C_8 \rtimes_1 C_2, D_{16} = D_8 \rtimes C_2$ and $(C_4 \times C_2) \rtimes_2 C_2$ of required semidirect product type. Proposition 4 asserts that the group D_{16} is a t-group and the group QD_{16} is not a t-group by Proposition 3.2. The groups $(C_4 \times C_2) \rtimes_1 C_2, C_8 \rtimes C_2$ and $(C_4 \times C_2) \rtimes_2 C_2$ have normal subgroups of order 2 such that corresponding quotient groups are isomorphic to $D_8, C_4 \times C_2$ and $(C_2)^3$ respectively. Therefore these groups are not t-groups.
Lemma 4.1: Let \(G \) be the group \(C_2 \times \text{Alt}(4) \). Then, the graph \(\Gamma_2(G) \) is not a complete graph.

Proof: First note that \(N = C_2 \times \{1\} \) is a normal subgroup of \(G = C_2 \times \text{Alt}(4) \) of order 2, where \(I \) is the identity element of \(\text{Alt}(4) \) and every NRT of \(N \) in \(G \) is isomorphic to \(G/N \cong \text{Alt}(4) \).

Now, choose a non-normal subgroup \(H \) of \(G \) of order 2 which is contained the subgroup \(C_2 \times \text{Alt}(4) \) of \(G \).

Let \(S \) be an NRT of \(H \) in \(G \). Note that \(S' = S \cap (C_2 \times \text{Alt}(4)) \) is an NRT of \(H \) in \(C_2 \times \text{Alt}(4) \) and \(\langle S' \rangle = C_2 \times \text{Alt}(4) \). Hence by Lemma 2.2, \(S \) can not be a group. Thus, the subgroups \(H \) and \(N \) are not adjacent in the graph \(\Gamma_2(G) \), that is, the graph \(\Gamma_2(G) \) is not complete.

Proposition 4.2: Let \(G \) be a non-abelian group of order 24. Then, the group \(G \) is a t-group if and only if \(G \) is isomorphic to a semidirect product of two t-groups of co-prime order except the groups \(C_2 \times \text{Alt}(4) \) and \((C_2 \times C_6) \times C_2 \).

Proof: We know that there are 12 non isomorphic non-abelian groups of order 24 (Burnside\(^8\), p.101-104) and 9 of them are semidirect product of two t-groups of co-prime order.

It is obvious that the groups \(C_3 \times C_8 \) and \(SL(2,3) \) are t-groups, for any two subgroups of respective groups of equal order are conjugate. The groups \(Q_{24} \) and \(D_{24} \) are also t-groups by Propositions 3.1 and 4 respectively. By Proposition 2.2, we see that the groups \(C_3 \times D_8, \ C_3 \times Q_8 \) and \(C_2 \times D_{12} \cong (C_2)^2 \times D_6 \) are t-groups. It is clear from example 2.2 of Kakkar and Mishra\(^4\) that the symmetric group \(\text{Sym}(4) \) is not a t-group. One can observe that \(\langle a^2 \rangle \times \text{Alt}(3) \cong C_6 \) and \(\{1\} \times \text{Sym}(3) \) are normal subgroups of the group \(<a> \times \text{Sym}(3) \cong C_4 \times D_6 \) such that their quotient groups are \((C_2)^2 \) and \(C_4 \) respectively. So \(\Gamma_6(C_4 \times D_6) \) is not a complete graph and hence the group \(C_4 \times D_6 \) is not a t-group. Similarly \(C_2 \times D_{12} \) is not a t-group since there are two normal subgroups \(C_2 \times \{1\} \) and \(\{1\} \times Z(D_{12}) \) of order 2 such that their quotient groups are \(D_{12} \) and \(Q_{12} \).
Now, consider $G = (C_2 \times C_6) \times C_2$. It has a normal subgroup H of order 2 such that $G / H \cong D_{12}$. Let K be a subgroup of G of order 2 contained in the subgroup isomorphic to D_{12}. Then, there is no NRT $S \in \mathcal{T}(G,H)$ such that $S = D_{12}$, for otherwise $S = \langle S \rangle$ and $S \cap H = H$ which contradicts the fact that S is an NRT. Therefore the group $(C_2 \times C_6) \times C_2$ is not a t-group. Finally by Lemma 2.2, the group $C_2 \times \text{Alt}(4)$ is not a t-group.

Acknowledgement

Authors are thankful to Prof. R. P. Shukla, Department of Mathematics, University of Allahabad, India and Dr. Vipul Kakkar, School of Mathematics, Harish-Chandra Research Institute, Allahabad, India for suggesting this problem and their valuable discussions.

References

1. J. D. H. Smith, An Introduction to Quasigroups and Their Representations, Boca Raton, FL: Chapman and Hall/CRC, 2007.
2. R. Lal, Transversals in Groups, J. Algebra, 181 (1996) 70-81.
3. P. J. Cameron, Generating a Group by a Transversal, preprint available at http://www.maths.qmul.ac.uk/~pjc/preprints/transgenic.pdf.
4. V. Kakkar and L. K. Mishra, On Transiso Graph, Asian European Journal of Mathematics, 8(4) (2015)1550070 (11 pages).
5. M. Suzuki, Group Theory I, Springer-Verlag, New York, 1982.
6. S. Roman, Fundamentals of Group Theory: An Advanced Approach, Birkhauser, New York, 2012.
7. D. Gorenstein, Finite groups, AMS Chelsea Publishing, 2007.
8. W. Burnside, Theory of Groups of Finite Order, Cambridge University Press, 1897.
9. M. Ghorbani and F. N. Larki, Automorphism Group of Groups of Order pqr, Algebraic Structures and Their Applications (ASTA), 1(1) (2014) 49-56.
10. M. Wild, The groups of order sixteen made easy, The American Mathematical Monthly, 112 (2005) 20-31.
11. The GAP Group, GAP-Groups, Algorithms and Programming, Version 4.7.4, 2014, http://www.gap-system.org.