Dietary Eicosapentaenoic Acid and Docosahexaenoic Acid Ethyl Esters Influence the Gut Microbiota and Bacterial Metabolites in Rats

Ryota Hosomi¹*, Anna Matsudo¹, Koki Sugimoto¹, Takaki Shimono², Seiji Kanda², Toshimas Nishiyama², Munehiro Yoshida¹, and Kenji Fukunaga¹

¹ Department of Life Science and Biotechnology, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka 564-8680, JAPAN
² Department of Hygiene and Public Health, Kansai Medical University, 2-5-1, Shin-machi, Hirakata, Osaka 573-1010, JAPAN

Abstract: Dietary fish oil containing eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) has been reported to affect the diversity and composition of gut microbiota and bacterial metabolites. However, few reports have focused on the effects of EPA and DHA on gut microbiota diversity and bacterial metabolites. This study evaluated the effects of dietary EPA-ethyl ester (EE) and DHA-EE on steroid metabolism, gut microbiota, and bacterial metabolites in Wistar rats. Male rats were fed the experimental diets containing 5% (w/w) soybean oil-EE (SOY diet), EPA-EE (EPA diet), and DHA-EE (DHA diet) for four weeks. The lipid contents in the serum and liver, mRNA expression levels in the liver, and the diversity, composition, and metabolites of the gut microbiota were evaluated. The EPA and DHA diets decreased serum and liver cholesterol contents compared to the SOY diet. In addition, there were no significant changes in gene expression levels related to steroid metabolism in the liver between the EPA and DHA groups. Rats fed the DHA diet had lower microbiota diversity indices, such as Simpson and Shannon indices, than rats fed the SOY and EPA diets. In addition, rats fed EPA and DHA had significant differences in the relative abundance of microbiota at the genus level, such as Phascolarctobacterium, Turicibacter, and Eubacterium. Therefore, it was concluded that EPA and DHA have different effects on the diversity and composition of gut microbiota under the experimental conditions employed herein.

Key words: eicosapentaenoic acid, docosahexaenoic acid, microbiota, cholesterol, rat

1 Introduction

Fish oil is a rich source of n-3 polyunsaturated fatty acids (PUFA), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and has health-promoting functions in humans. For example, n-3PUFA intake has proven beneficial against cardiovascular diseases, hyperlipidemia, Alzheimer’s disease, inflammation, and cancer. Accordingly, various organizations recommend the intake of n-3PUFA, especially EPA and DHA.

Most prior studies investigated the health-promoting effects of dietary n-3PUFA employed commercially available fish oil, which is a mixture of EPA and DHA. However, the molecular structures and physiological functions of EPA and DHA are different. EPA (C20:5n-3) has a shorter carbon chain (20 vs. 22) and fewer double bonds (5 vs. 6) per molecule than DHA (C22:6n-3). DHA has a greater influence on membrane fluidity and the activity of membrane proteins and ion channels. EPA and DHA are sources of bioactive metabolites with different properties, such as eicosanoids and docosanoids. In addition, DHA is preferentially retained over EPA, and EPA is more β-oxidized than DHA. Thus, the differences in the physiological functions of EPA and DHA are becoming clear.

The gut microbiota is closely related to the health of the human host. The change in gut microbiota composition has been implicated in the development of metabolic diseases, including type-2 diabetes and obesity. Recent studies have reported that dietary fish oil alters the composition and metabolites of gut microbiota. For example, n-3PUFA alters the abundance of beneficial gut bacteria, particularly the Akkermansia genus, in mice and attenuates the increase in the Firmicutes/Bacteroidetes ratio observed in mice fed a high-fat diet. Our previous study showed that the consumption of menhaden oil (EPA 14.6

*Correspondence to: Ryota Hosomi, Department of Life Science and Biotechnology, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka 564-8680, JAPAN
E-mail: hryotan@kansai-u.ac.jp ORCID ID: https://orcid.org/0000-0003-2183-1746
Accepted June 18, 2021 (received for review June 8, 2021)
Journal of Oleo Science ISSN 1345-8957 print / ISSN 1347-3352 online
http://www.jstage.jst.go.jp/browse/jos/ http://mc.manuscriptcentral.com/jocs
mol% and DHA 9.9 mol%) and tuna oil (EPA 7.3 mol% and DHA 24.3 mol%) with different EPA and DHA ratios had different effects on the composition of gut microbiota in normal rats. Therefore, EPA and DHA may have different effects on the diversity and composition of gut microbiota as the effects on gut microbiota were different when rats were fed the oils with different EPA and DHA ratios. To the best of our knowledge, the different effects of EPA and DHA on gut microbiota and bacterial metabolites have not been reported. This study sought to determine whether EPA-ethyl ester and DHA-EE have different effects on gut microbiota and bacterial metabolites in normal rats.

2 Experimental Procedures

2.1 Materials

 Soybean oil-EE (SOY-EE) was prepared from soybean oil (Merck KGaA, Darmstadt, Germany) using an NaOH–ethanol solution. EPA-EE and DHA-EE (99%; w/w) were provided by Bizen Chemical Co., Ltd. (Akaiwa, Japan). The components of the experimental diet were purchased from Oriental Yeast Co. Ltd. (Tokyo, Japan) and Fujifilm Wako Pure Chemical Co., and Nacalai Tesque, Inc. (Kyoto, Japan).

2.2 Preparation of the experimental diets

The control diet (SOY) was prepared using a modified semi-purified AIN-93G formulation containing 10% (w/w) soybean oil and 5% (w/w) SOY-EE. The experimental diets contained 10% (w/w) soybean oil and 5% EPA-EE and DHA-EE (EPA and DHA diets, respectively). The detailed diet composition is shown in Table S1.

2.3 Analysis of fatty acid composition

The fatty acids (FA) compositions of the experimental oils (SOY-EE, EPA-EE, and DHA-EE) and diets (SOY, EPA, and DHA) were determined using a gas chromatography (GC) system (GC-2014; Shimadzu Co., Kyoto, Japan) with an Omegawax® capillary GC column (cat. no. 24136; Merck KGaA) after the methylation of FA with boron-trifluoride-methanol as described in our previous report. Tables 1 and 2 show the FA compositions of the experimental diets and oils, respectively.

2.4 Animal experiment

Animal experiments were conducted according to the Guide for the Care and Use of Experimental Animals issued by the Prime Minister’s Office of Japan and reviewed and approved by the Animal Ethics Committee of Kansai University (approval no. 1704).

Four-week-old male Wistar rats obtained from Japan

Table 1 Composition of FA in the experimental diets.

Diets	SOY	EPA	DHA
C16:0	11.5	7.5	7.5
C18:0	3.8	2.4	2.4
C18:1n-9	21.8	14.0	14.0
C18:2n-6	53.6	36.3	36.3
C18:3n-6	0.6	0.3	0.3
C18:3n-3	6.5	4.4	4.4
C20:5n-3 (EPA)	33.2	0.3	0.3
C22:6n-3 (DHA)	33.0	33.0	
Others	2.3	1.8	1.7

DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; FA, fatty acids; SOY, soybean oil

SLC, Inc. (Hamamatsu, Japan) were housed in individual cages and housed at 21–23°C with a 12-hour light-dark cycle (lights on: 08:00-20:00), and allowed free access to tap water and the diets. Following an acclimatization period of seven days, rats were divided into three dietary groups (SOY, EPA, and DHA), each consisting of eight rats with similar mean body weights (BW). Food consumption and BW were recorded every two days. Before dissection, the feces were collected from each rat daily for two days and stored at -35°C. After four weeks of diet administration, rats that had not fasted were killed under isoflurane (Fujifilm Wako Pure Chemical Co.) anesthesia from 9:00 to 11:00. Blood samples were collected without anticoagulant use, and serum was obtained by centrifugation at 4°C, 1,500×g for 20 min. Rat liver, cecum, and abdominal white adipose tissue (WAT) from the epididymis, mesentery, and perinephria were quickly removed, weighed, rinsed with cold saline, frozen in liquid nitrogen, and stored at -80°C until further analyses. Aliquots of liver were stored in RNA-Later Storage Solution (Merck KGaA) for quantitative realtime PCR.

2.5 Analysis of the lipid parameters in serum and liver

Serum biochemical parameters (triacylglycerol [TAG], phospholipids [PL], total cholesterol, high-density lipoprotein [HDL]-cholesterol, non-HDL-cholesterol, and non-esterified fatty acids [NEFA]) were measured using an Olympus AU5431 automatic analyzer (Olympus Co., Tokyo, Japan) by a commercial service (Japan Medical Laboratory, Osaka, Japan). Blood glucose levels were measured via the tail vein at the time of dissection using a handheld glucometer (Gluest Neo alpha; Sanwa Kagaku Kenkyusho Co., Ltd., Nagoya, Japan).

Liver total lipids were extracted using the method described by Bligh and Dyer. Liver TAG content in liver
total lipids dissolved in 2-propanol was determined using the Triglyceride-E-Test (Fujifilm Wako Pure Chemical Co.). The liver PL content was measured using phosphorus analyses. Liver cholesterol content was determined using GC (GC-2014; Shimadzu Co.) with a DB-5 capillary GC column (cat. no. 122-5532; Agilent Technologies, Santa Clara, CA, USA) under the conditions described by Kaneda et al. Fecal FA content was evaluated after methylation on a GC system as described above, using tridecanoic acid (C13:0) as an internal standard.

2.6 Analysis of steroid composition in feces

The collected feces were weighed and ground using a conventional mill. Fecal neutral steroids (cholesterol and coprostanol) contents were analyzed by GC, applying the method shown above. Fecal bile acids (BA) content was measured using a total bile acid test kit (Fujifilm Wako Pure Chemical Co.), following the manufacturer’s protocol. Fecal total steroids content was calculated by adding fecal neutral steroids content to BA content.

2.7 Analysis of bile acids and short-chain fatty acids (SCFA) composition in cecal content

Cecum containing cecal content was suspended in cold saline. Thereafter, the cecum was removed and weighed. The BA content in cecal content was analyzed using a total bile acid test kit (Fujifilm Wako Pure Chemical Co.). The composition of SCFA in cecal contents was analyzed using GC, as described in our previous study.

2.8 RNA isolation and real-time quantitative reverse transcription PCR

Livers that had been stored in RNA-Later Storage Solution were homogenized using a bead beater-type homogenizer (MicroSmash MS-100R; TOMY SEIKO Co., Ltd., Tokyo, Japan). Total RNA was isolated and purified using TRIzol reagent (Thermo Fisher Scientific Inc., Waltham, MA, USA) following the manufacturer’s protocol. The content and purity of total RNA were determined by measuring the absorbance at wavelengths of 260 and 280 nm by UV spectrophotometry (UV-1800; Shimadzu Co.) using Hellma®TrayCell™ (Hellma Analytics, Mühlheim, Germany). cDNA was synthesized using the GoScript™ Reverse Transcription System (Promega Co., Madison, WI, USA). The mRNA expression levels were measured using a Thermal Cycler Dice® Real Time System (Takara Bio Inc., Kusatsu, Japan) and GoTaq® qPCR Master Mix (Promega Co.). The primers were designed using Primer3Plus (http://primer3plus.com/); the primer sequences are listed in Table S3. Gene expression levels were standardized to the expression level of glyceraldehyde-3-phosphate dehydrogenase (Gapdh) and expressed as the fold-change in gene expression relative to that of the SOY group (set at 100).

2.9 16S rRNA amplicon sequence and bioinformatics

Fecal genomic DNA was extracted using a Nucleospin® DNA Stool Kit (Takara Bio Inc.) according to the manufacturer’s protocol. 16S rRNA amplicon sequence analysis was performed using a next-generation sequencing (NGS) system (Ion PGM™, Thermo Fisher Scientific Inc.), as described in our previous report.

The raw sequence data were analyzed using Ion Reporter Software with the workflow of Metagenomics 16S w1.1 v5.14 (Thermo Fisher Scientific Inc.). Alpha diversity indices (Chao-1, Observed_species, Simpson, and Shannon), bacterial identification, and sequence numbers obtained at the phylum and genus levels for each sample were acquired from Ion Reporter Software based on the QIIME (v1.8.0), which used a threshold of 97% sequence identity. Beta diversity was estimated and visualized using principal component analysis (PCA) based on the relative abundance of all detected bacteria at the phylum and genus levels. Linear discriminant analysis effect size (LEFSe) was performed to identify high-dimensional biomarkers and to characterize the differences among the groups at the genus or higher taxonomy levels using Galaxy (http://huttenhower.sph.harvard.edu/galaxy/).

2.10 Statistical analysis

Data were presented as mean values and standard errors of the mean (SEM). Differences between multiple groups were evaluated using analysis of variance (ANOVA) and Tukey’s multiple comparison test. Statistical significance and tendency were set as $p<0.05$ and $0.05 \leq p<0.10$, respectively. The relationships between the relative abundance of bacteria and fecal coprostanol content were evaluated using the Pearson’s correlation coefficient test. Statistical analyses were performed on a personal computer (iMac, Apple Inc., Cupertino, CA, USA) with the macOS Mojave 10.14.6 operating system and GraphPad Prism 7 (ver. 7.0d, GraphPad Software, San Diego, CA, USA).

3 Results

3.1 Growth parameters, organ weights, and serum biochemical parameters

Table 2 shows the growth parameters, organ weights, and serum biochemical parameters. There were no significant differences in growth parameters, including initial BW, final BW, BW gain, and food intake among the groups. The relative epididymal WAT (eWAT) weight in the DHA group was significantly lower than that in the SOY group. Other relative organ weights, including liver, cecum, mesentery WAT, and perirenal WAT, were not significantly different among the groups. The EPA and DHA groups had significantly decreased serum TAG, PL, total cholesterol, HDL-
R. Hosomi, A. Matsudo, K. Sugimoto et al.

cholesterol, and non-HDL-cholesterol contents compared with the SOY group. Moreover, the EPA diet significantly reduced the serum PL and HDL-cholesterol contents compared with the DHA diet. There were no significant differences in serum NEFA and blood glucose contents among the groups.

3.2 Liver lipid composition and gene expression

Figure 1 shows the liver TAG, cholesterol, PL, and FA contents, and mRNA expression levels related to steroid metabolism. The EPA and DHA diets significantly decreased liver TAG and cholesterol contents compared to the SOY diet (Figs. 1A and 1B). Liver PL content did not significantly change among the groups (Fig. 1C). The EPA and DHA groups had significantly lower liver C14:0, C16:0, C18:1n-9, C18:1n-7, C18:2n-6, C18:3n-6, C18:3n-3, and C20:4n-6 contents than the SOY group (Fig. 1D). Moreover, the liver C20:5n-3(EPA) content in rats fed EPA-EE was significantly higher than that in rats fed SOY-EE and DHA-EE. The DHA diet significantly decreased the liver C16:1n-7 content and increased the liver C22:6n-3 content compared to the SOY diet. The EPA and DHA groups had significantly lower liver cytochrome P450 family 7 subfamily A member 1 (Cyp7a1) levels and higher liver nuclear receptor subfamily 0 group B member 2 (Nr0b2) levels than the SOY group (Fig. 1E). The liver acetyl-CoA acetyltransferase 1 (Acat1) level in the DHA group was significantly higher, and tended to be higher in the EPA group than in the SOY group ($p \leq 0.07$).

3.3 Steroid composition in feces and cecal content

Figure 2 shows the steroid composition in the feces and cecal content. The EPA and DHA groups had significantly lower fecal total steroids and BA excretions than the SOY group (Fig. 2A). There were no significant changes in fecal neutral steroids and their constituents (coprostanol and...
EPA and DHA Affect Gut Microbiota

Fig. 1 Liver lipid content, FA contents, and relative mRNA expression levels of steroid metabolism-related proteins. (A) Liver TAG content. (B) Liver cholesterol content. (C) Liver PL content. (D) Liver FA contents. (E) Liver relative mRNA expression levels of steroid metabolism-related proteins. Data are presented as mean ± SEM (n = 8). Different letters indicate significant difference at p < 0.05, using Tukey’s multiple comparison test.

3.4 Diversity and composition of fecal microbiota

As fecal microbiota composition has been reported to largely reflect that of the large intestine, we evaluated the fecal microbiota using 16S rRNA amplicon sequencing in this study. There was no significant difference in the number of valid reads among the SOY, EPA, and DHA groups after the processing of reading length and read abundance filtering using Ion Reporter (187,241 ± 11,270, 183,534 ± 10,118, and 174,421 ± 10,482, respectively). Figure 3 shows the results of alpha and beta diversity indices and the relative abundance of microbiota in feces. The rarefaction curves of Chao-1 and Observed_species

J. Oleo Sci.
respectively, while PC2 accounted for 27.6 and 14.8 of the variance for the phylum and genus levels, and 23.2 of the phylum and genus levels. PC1 accounted for 38.1 than the SOY diet significantly lower relative abundance of Bifidobacterium the EPA and DHA groups. Further, the EPA group had a shown in 3J abundances of group, the DHA group had significantly lower relative abundance of Parabacteroides Clostridium and tended to be higher 3M 3Q and higher relative abundance of 3R 3O 3P.

4 Discussion

The EPA and DHA diets increased liver EPA and DHA contents, respectively, compared with the SOY diet; these alterations reflected the FA composition of these diets (Table 1 and Fig. 1D). In addition, the EPA and DHA diets caused decreased liver TAG content compared to the SOY diet (Fig. 1A). Because of the decrease in liver TAG content in the EPA and DHA groups, the C16:0, C18:1, and C18:2n-6 contents in the liver were also decreased. The TAG-lowering effects of EPA and DHA are well known. EPA and DHA suppress FA synthesis through sterol regulatory element-binding protein-1c expression via the sympathetic nervous system. Previous study suggested that EPA and DHA intake decreased WAT weight by inducing uncoupling protein-1 expression via the sympathetic nervous system. As previously reported, relative eWAT weights were lower in the DHA group and tended to be lower in the EPA group (p = 0.07) than in the SOY group.

The EPA and DHA diets decreased the serum cholesterol-related parameters (total cholesterol, HDL-cholesterol, and non-HDL cholesterol) and liver cholesterol content compared with the SOY diet (Table 1 and Fig. 1B). Previous studies reported that fish oil decreased the plasma total cholesterol level and decreased intestinal cholesterol absorption by downregulating niemann-pick C1-like 1, a cholesterol transporter. Moreover, the EPA group had significantly lower serum HDL-cholesterol content and

indices in the EPA and DHA groups were lower than those in the SOY group (Figs. 3A and 3B). Moreover, the DHA group was lower in the rarefaction curves of the Simpson and Shannon indices than in the SOY and EPA groups (Figs. 3C and 3D). The PCA results (Figs. 3F, 3G, 3I, and 3J) revealed the primary component contribution rates at the phylum and genus levels. PC1 accounted for 38.1% and 23.2% of the variance for the phylum and genus levels, respectively, while PC2 accounted for 27.6% and 14.8%, and PC3 accounted for 19.9% and 12.7%, respectively. As shown in Fig. 3J, large distances were observed between the EPA and DHA groups. Further, the EPA group had a significantly lower relative abundance of Bifidobacterium than the SOY diet (Fig. 3P). Compared with the EPA group, the DHA group had significantly lower relative abundances of Phascolarctobacterium and Turicibacter and higher relative abundance of Eubacterium (Figs. 3N, 3Q, and 3R). In the DHA group, the relative abundance of Clostridium and Parabacteroides tended to be higher and lower, respectively, than those in the EPA group (Figs. 3M and 3O).

To investigate the effects of EPA and DHA on the key types of fecal microbiota in rats, we used LEfSe analysis to identify the phylotypes with the greatest differences among the groups (Fig. 4). At the phylum level, the Actinobacteria phylotype was more abundant in the SOY group. In contrast, the Negativicutes phylotype at the class level and Coriobacteriales phylotype at the order level were more abundant in the EPA and DHA groups, respectively.

Figure S2 shows the results of the correlation analysis between fecal coprostanol content and the relative abundance of Clostridium at the genus level. A positive correlation was found between fecal coprostanol content and the relative abundance of Clostridium (R = 0.53).
Fig. 3 The diversity and composition of fecal microbiota

(A)–(D) Bacterial rarefaction curves based on Chao-1, Observed_species, Simpson, and Shannon indices at the genus level, respectively. (E) Relative abundance of fecal microbiota at the phylum level. (F) and (G) PCA of the bacterial compositions at the phylum level. (H) Relative abundance of fecal microbiota at the genus level. (I) and (J) PCA of the bacterial compositions at the genus level. (K)–(R) Relative abundance of Bacteroides, Lactobacillus, Clostridium, Phascolarctobacterium, Parabacteroides, Bifidobacterium, Turicibacter, and Eubacterium, respectively.

Data are presented as mean ± SEM (n = 8). Different letters indicate significant difference at p < 0.05, using Tukey’s multiple comparison test.

Square brackets ([]) around a genus indicate that the name awaits appropriate action by the research community to be transferred to another genus. Graphs (E) and (H) are sorted from the higher relative abundance in SOY group, and with less than 0.5% of the relative abundance summarized as Others.

DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; PCA, principal component analysis; SEM, standard error of the mean; SOY, soybean oil.

J. Oleo Sci.
more effective at lowering serum total cholesterol content by a previous study where the EPA diet was found to be}

DHA intake was not determined.

Fig. 4 Comparisons of fecal microbiota using the LEfSe. Results (A) and cladogram (B) derived using the LEfSe method, indicating the phylogenetic distribution of microbiota associated with the experimental groups. LDA scores (log10) > 2 and p < 0.05 are listed.

DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; LDA, linear discriminant analysis; LEfSe, linear discriminant analysis effect size; SOY, soybean oil.

tended to have lower serum total cholesterol content (p = 0.09) than the DHA group. These findings were supported by a previous study where the EPA diet was found to be more effective at lowering serum total cholesterol content than the DHA diet. In a human study, the increased HDL-cholesterol level caused by DHA intake compared to EPA intake has been suggested to involve the inhibition of cholesteryl ester transfer protein (CETP) activity by DHA. However, rodents, such as rats and mice, are naturally deficient in CETP. In this study, the mechanism by which EPA intake lowers serum HDL-cholesterol content more than DHA intake was not determined.

Cholesterol 7α-hydroxylase, which is the protein for \(\text{Cyp7a1} \), is the rate-limiting enzyme in the synthesis of BA from cholesterol and plays a critical role in the control of BA and cholesterol homeostasis. The EPA and DHA groups showed decreased liver \(\text{Cyp7a1} \) expression levels even though the liver cholesterol content was lower than that in the SOY group. Liver \(\text{Cyp7a1} \) expression level is controlled by the negative feedback regulatory pathway of farnesoid X receptor (FXR)/small heterodimer partner (SHP), which is regulated by the enterohepatic circulation of BA. Therefore, the inhibition of BA reabsorption in the intestine increases liver \(\text{Cyp7a1} \) expression by suppressing the FXR/SHP pathway. In the present study, the amount of BA in the cecal content was not altered among the groups; however, fecal BA excretion was lower in the EPA and DHA groups than in the SOY group (Figs. 2A and 2B). Moreover, the EPA and DHA diets increased the expression levels of liver \(\text{Nr0b2} \), which is the gene for SHP, compared with the SOY diet (Fig. 1E). Thus, the suppression of liver \(\text{Cyp7a1} \) expression is partly due to the activation of the FXR/SHP pathway by enhancing BA reabsorption in the intestinal tract. On the other hand, the increase in the expression levels of liver \(\text{Acat1} \), which is related to the esterification of cholesterol, were increased in the DHA group and tended to increase in the EPA group compared with the SOY group (Fig. 1E). Therefore, the evident reduction in liver cholesterol content in rats fed EPA and DHA diets is considered to be a compensatory induction of \(\text{Acat1} \) expression and BA reabsorption in the intestinal tract.

The \(n-3 \)PUFA are thought to affect the gut microbiota mainly through regulation of the type and amount of bacteria in the gut, changes in the levels of inflammatory mediators such as endotoxin and interleukin, and regulation of SCFA concentrations. In this study, compared with the SOY group, the EPA and DHA groups had significantly lower the Chao-1 and Observied species indices, which are used to estimate species richness (abundance-based estimator of species richness) at the genus level (Figs. 3A and 3B). In addition, the Simpson and Shannon indices, which were used to estimate species and evenness (more weight on species evenness) in the DHA group, were lower than those in the SOY and EPA groups (Figs. 3C and 3D). Thus, the EPA group had less species than the SOY group, but the species evenness did not change, while the DHA group had both lower species and species evenness than the SOY group. The \(n-3 \)PUFA could directly modulate the diversity of the gut microbiota. Previous studies have shown that the intake of fish oil affects the diversity of the intestinal microbiota in trout and infants. In this study, the intake of EPA-EE and DHA-EE reduced the alpha diversity of fecal microbiota, which is different from that found in previous reports. In this experiment, EPA-EE and DHA-EE (both more than 99% pure) were used as \(n-3 \)PUFA sources; however, previous studies used fish oil. Dietary fish oil containing various FA, besides EPA and DHA, may have beneficial effects on the gut microbiota diversity. Under these experimental conditions, the intake of...
n-3PUFA, especially DHA, decreased the alpha diversity of the gut microbiota. The results of PCA, which is used for beta diversity, clearly showed a separation of the EPA group from the DHA group at PC1-PC3 at the genus level (Fig. 3J). The SOY group was located between the EPA and DHA groups at PC1-PC3 at the genus level. These findings suggest that the intake of EPA-EE and DHA-EE had different effects on the fecal microbiota at the genus level.

We proceeded to analyze the effects of EPA and DHA on the relative abundance of bacteria. The EPA diet caused a decrease in the relative abundance of Bifidobacterium, which is a probiotic beneficial bacterium, compared with the SOY diet, whereas the DHA diet did not result in a decrease (Fig. 3P). Compared with the EPA diet, the DHA diet caused a decrease in the relative abundance of Phascolarctobacterium and Turicibacter and tended to reduce the relative abundance of Parabacteroides (p = 0.07). In addition, the DHA group had a higher relative abundance of [Eubacterium] and tended to have a higher relative abundance of Clostridium than the EPA group (p = 0.09). A previous study showed that n-3PUFA can also increase the relative abundance of Bifidobacterium in a fat-1 transgenic mouse model, which can produce n-3PUFA from n-6PUFA. Other studies reported that fish oil intake could prevent gut microbiota dysregulation in mice with alcoholic liver disease and increase the relative abundance of lactic acid-producing bacteria (mainly lactobacilli) in the gut of mice fed a high-fat diet. Dietary fish oil decreased WAT inflammation and increased insulin sensitivity compared with dietary lard in high-fat diet fed mice. The phenotypic differences between the dietary groups (fish oil and lard diets) can be partly attributed to differences in microbiota composition, especially Akkermansia. The increased abundances of several genera, including Bifidobacterium, Roseburia, and Lactobacillus were observed with EPA and DHA interventions in healthy middle-aged volunteers. Thus, most studies have evaluated the gut microbiota of pathological animals fed fish oil, a mixture of EPA and DHA. Although there have been no studies on the effects of EPA and DHA alone on the gut microbiota in rats, we observed for the first time that EPA and DHA had different effects on fecal bacteria, including Phascolarctobacterium, Turicibacter, and [Eubacterium], in normal rats.

The metabolites produced by the gut microbiota significantly influence the host’s metabolism and health. The proportion of SCFA, produced by bacterial fermentation in the gut and exerts several effects on host metabolism and the immune system, in the cecal contents was not altered (Fig. S1). Coprostanol is converted from cholesterol by intestinal bacteria; coprostanol is not detected in tissues and is mainly found in more significant amounts in feces. Bacteria belonging to Bifidobacterium, Clostridium, Eubacterium, and Lactobacillus have been reported to reduce cholesterol to coprostanol in an in vitro study. New bacterial phylotypes from Lachnospiraceae and Ruminococcaceae families were associated with coprostanol levels in healthy humans, according to the results of a metagenomic analysis. We analyzed the relationship between the relative abundance of microbiota at the genus level and fecal coprostanol excretion and found a positive correlation between the relative abundance of Clostridium and fecal coprostanol excretion (Fig. S2). Therefore, the Clostridium genus could be involved in the conversion of cholesterol to coprostanol in this experiment.

Dietary FA is partially metabolized by anaerobic bacteria, such as bifidobacteria and lactobacilli, in the distal intestine, affecting the composition of the gut microbiota. A previous study revealed the presence of conjugated linoleic acids and conjugated linolenic acids, which are bacterial metabolites from PUFA, in the cecum and colon of mice fed sunflower oil or linseed oil. Another study showed that hydroxy FA were mainly generated from PUFA by Lactobacillus plantarum and gut bacteria. The specialized pro-resolving lipid mediators in the immune cells synthesized from EPA and DHA may play an essential role in repairing intestinal mucosal epithelial cells. Therefore, the difference in diversity and composition of fecal microbiota between the EPA and DHA groups may be partly due to the metabolites of EPA and DHA produced via the actions of bacteria. Further studies are necessary to confirm the bacterial metabolites of EPA and DHA in the intestinal tract.

5 Conclusion
In the present study, we demonstrated the impact of dietary EPA-EE and DHA-EE on steroid metabolism, gut microbiota, and bacterial metabolites in normal rats. Compared with the SOY group, the EPA group had lower species richness while the DHA group had both lower species richness and evenness. In addition, rats fed EPA and DHA had differences in microbiota composition at the genus level, such as Phascolarctobacterium, Turicibacter, and [Eubacterium]. Overall, our results provide new insights into the differential effects of EPA and DHA on the gut microbiota of normal rats.

Authors Contributions
R.H., A.M., and K.S. performed research, analyzed data, and wrote the original manuscript. T.S., S.K., and T.N., conducted the bioinformatics analysis of gut microbiota and advised in statistical analysis. M.Y. and K.F. supervised the research design and reviewed the article. All authors

J. Oleo Sci.
read and approved the article.

Acknowledgment

We thank Bizen Chemical Co., Ltd. for providing EPA-EE and DHA-EE and Ayane Nagaishi of Kansai University for their support in conducting the SCFA analysis.

Conflict of Interest

The authors declare that there are no conflicts of interest.

Supporting Information

This material is available free of charge via the Internet at doi: 10.5650/jos.ess21189

References

1) Bowen, K.J.; Harris, W.S.; Kris-Etherton, P.M. Omega-3 fatty acids and cardiovascular disease: Are there benefits? Curr. Treat. Options Cardiovasc. Med. 18, 69 (2016).

2) Eslick, G.D.; Howe, P.R.; Smith, C.; Priest, R.; Bensoussan, A. Benefits of fish oil supplementation in hyperlipidemia: a systematic review and meta-analysis. Int. J. Cardiol. 136, 4-16 (2009).

3) Freund-Levi, Y.; Eriksdotter-Jonhagen, M.; Cederholm, T.; Basun, H.; Fuxen-Irving, G.; Garlind, A.; Vedin, I.; Vessby, B.; Wahlund, L.O.; Palmblad, J. Omega-3 fatty acid treatment in 174 patients with mild to moderate Alzheimer disease: OmegAD study: a randomized double-blind trial. Arch. Neurol. 63, 1402-1408 (2006).

4) Buote Stella, A.; Gorton Cappellari, G.; Barazzoni, R.; Zanetti, M. Update on the impact of omega 3 fatty acids on inflammation, insulin resistance and sarcopenia: A review. Int. J. Mol. Sci. 19, 218 (2018).

5) Gu, Z.; Shan, K.; Chen, H.; Chen, Y.Q. n-3 Polyunsaturated fatty acids and their role in cancer chemoprevention. Curr. Pharmacoal. Rep. 1, 283-294 (2015).

6) Kris-Etherton, P.M.; Harris, W.S.; Appel, L.J. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 106, 2747-2757 (2002).

7) Hashimoto, M.; Hossain, S.; Yamasaki, H.; Yazawa, K.; Masumura, S. Effects of eicosapentaenoic acid and docosahexaenoic acid on plasma membrane fluidity of aortic endothelial cells. Lipids 34, 1297-1304 (1999).

8) Yang, R.; Chiang, N.; Oh, S.F.; Serhan, C.N. Metabolomics-lipidomics of eicosanoids and docosanoids generated by phagocytes. Curr. Protoc. Immunol. 14, 14.26 (2011).

9) Ghasemifard, S.; Hermon, K.; Turchini, G.M.; Sinclair, A.J. Metabolic fate (absorption, β-oxidation and deposition) of long-chain n-3 fatty acids is affected by sex and by the oil source (krill oil or fish oil) in the rat. Br. J. Nutr. 114, 684-692 (2015).

10) Kau, A.L.; Ahern, P.P.; Griffin, N.W.; Goodman, A.L.; Gordon, J.I. Human nutrition, the gut microbiome and the immune system. Nature 474, 327-336 (2011).

11) Le Chatelier, E.; Nielsen, T.; Qin, J.; Prifti, E.; Hildebrand, F.; Falony, G.; Almeida, M.; Arumugam, M.; Batto, J.M.; Kennedy, S.; Leonard, P.; Li, J.; Burgdorf, K.; Grarup, N.; Jorgensen, T.; Brandstlund, I.; Nielsen, H.B.; Juncker, A.S.; Bertalan, M.; Levenez, F.; Pons, N.; Rasmussen, S.; Sunagawa, S.; Tap, J.; Tims, S.; Zoetendal, E.G.; Brunak, S.; Clement, K.; Dore, J.; Kleerebezem, M.; Kristansen, K.; Renaul, P.; Sichner-Ponten, T.; de Vos, W.M.; Zucker, J.D.; Raes, J.; Hansen, T.; Bork, P.; Wang, J.; Ehrlich, S.D.; Pedersen, O. Richness of human gut microbiome correlates with metabolic markers. Nature 500, 541-546 (2013).

12) Warner, D.R.; Warner, J.B.; Hardesty, J.E.; Song, Y.L.; King, T.N.; Kang, J.X.; Chen, C.-Y.; Xie, S.; Yuan, F.; Prodh, M.A.I.; Ma, X.; Zhang, X.; Rouchika, E.C.; Maddipati, K.R.; Whitlock, J.; Li, E.C.; Wang, G.P.; McClain, C.J.; Kirpich, I.A. Decreased ω-6:ω-3 PUFA ratio attenuates ethanol-induced alterations in intestinal homeostasis, microbiota, and liver injury. J. Lipid. Res. 60, 2034-2049 (2019).

13) Ghosh, S.; Molcan, E.; DeCoffe, D.; Dai, C.; Gibson, D.L. Diets rich in n-6 PUFA induce intestinal microbial dysbiosis in aged mice. Br. J. Nutr. 110, 515-523 (2013).

14) Hosomi, R.; Matsudo, A.; Sugimoto, K.; Shimono, T.; Kanda, S.; Nishiyama, T.; Yokawa, A.L.; Ahern, P.P.; Griffin, N.W.; Goodman, A.L.; Gordon, J.I. Human nutrition, the gut microbiome and the immune system. Nature 474, 327-336 (2011).

15) Reeves, P.G.; Nielsen, F.H.; Fahey, G.C., Jr. AIN-93 purified diets for laboratory rodents: Final report of the American Institute of Nutrition ad hoc committee on the reformulation of the AIN-76A rodent diet. J. Nutr. 123, 1939-1941 (1993).

16) Fukunaga, K.; Hosomi, R.; Fukao, M.; Miyauchi, K.; Kanda, S.; Nishiyama, T.; Yoshida, M.; Fukunaga, K. Dietary fat influences the expression of genes related to sterol metabolism and the composition of cecal microbiota and its metabolites in rats. J. Oleo. Sci. 68, 1133-1147 (2019).

17) Reeves, P.G.; Nielsen, F.H.; Fahey, G.C., Jr. AIN-93 purified diets for laboratory rodents: Final report of the American Institute of Nutrition ad hoc committee on the reformulation of the AIN-76A rodent diet. J. Nutr. 123, 1939-1941 (1993).

18) Reeves, P.G.; Nielsen, F.H.; Fahey, G.C., Jr. AIN-93 purified diets for laboratory rodents: Final report of the American Institute of Nutrition ad hoc committee on the reformulation of the AIN-76A rodent diet. J. Nutr. 123, 1939-1951 (1993).

19) Fukunaga, K.; Hosomi, R.; Fukao, M.; Miyauchi, K.; Kanda, S.; Nishiyama, T.; Yoshida, M.; Fukunaga, K. Dietary fat influences the expression of genes related to sterol metabolism and the composition of cecal microbiota and its metabolites in rats. J. Oleo. Sci. 68, 1133-1147 (2019).

20) Reeves, P.G.; Nielsen, F.H.; Fahey, G.C., Jr. AIN-93 purified diets for laboratory rodents: Final report of the American Institute of Nutrition ad hoc committee on the reformulation of the AIN-76A rodent diet. J. Nutr. 123, 1939-1941 (1993).

21) Reeves, P.G.; Nielsen, F.H.; Fahey, G.C., Jr. AIN-93 purified diets for laboratory rodents: Final report of the American Institute of Nutrition ad hoc committee on the reformulation of the AIN-76A rodent diet. J. Nutr. 123, 1939-1951 (1993).
EPA and DHA Affect Gut Microbiota

lipids and determination of phospholipids by phosphorus analysis. J. Oleo Sci. 32, 575-581 (1983).

19) Kaneda, T.; Nakajima, A.; Fujimoto, K.; Kobayashi, T.; Kinumaki, T.; Shiruma, H.; Yonezawa, S. Comparative analysis of cholesterol in foods by gas-liquid chromatography. J. Nutr. Sci. Vitaminol. (Tokyo) 26, 497-505 (1980).

20) Maeda, H.; Hosomi, R.; Yokoyama, T.; Ikeda, Y.; Nishimoto, A.; Tanaka, G.; Shimono, T.; Kanda, S.; Nishioka, M.; Yoshida, M.; Fukunaga, K. Dietary Alaska pollock protein attenuates liver steatosis and alters gut microbiota in leptin-deficient ob/ob mice. J. Funct. Foods 75, 104266 (2020).

21) Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miorini, S.; Garret, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011).

22) Eckburg, P.B.; Bik, E.M.; Bernstein, C.N.; Purdom, E.; Dethlefsen, L.; Sargent, M.; Gill, S.R.; Nelson, K.E.; Relman, D.A. Diversity of the human intestinal microflora. Science 308, 1635-1638 (2005).

23) Bradberry, J.C.; Hilleman, D.E. Overview of omega-3 fatty acid therapies. P & T 38, 681-691 (2013).

24) Yoshikawa, T.; Shimano, H.; Yahagi, N.; Ide, T.; Amemiya-Kudo, M.; Matsuoka, T.; Nakakuki, M.; Tomita, S.; Okazaki, H.; Tamura, Y.; Iizuka, Y.; Ohashi, K.; Ohashi, K.; Takahashi, A.; Sone, H.; Osuga, J.; Gotoda, T.; Ishibashi, S.; Yamada, N. Polyunsaturated fatty acids suppress sterol regulatory element-binding protein 1c promoter activity by inhibition of liver X receptor (LXR) binding to LXR response elements. J. Biol. Chem. 277, 1705-1711 (2002).

25) Grygier-Górniak, B. Peroxisome proliferator-activated receptors and their ligands: Nutritional and clinical applications—a review. Nutr. J. 13, 17 (2014).

26) Kim, M.; Goto, T.; Yu, R.; Uchida, K.; Tominaga, M.; Kano, Y.; Takahashi, N.; Kawada, T. Fish oil intake induces UCPI upregulation in brown and white adipose tissue via the sympathetic nervous system. Sci. Rep. 5, 18013 (2015).

27) Morgado, N.; Rigotti, A.; Valenzuela, A. Comparative effect of fish oil feeding and other dietary fatty acids on plasma lipoproteins, biliary lipids, and hepatic expression of proteins involved in reverse cholesterol transport in the rat. Ann. Nutr. Metab. 49, 397-406 (2005).

28) Alvaro, A.; Rosales, R.; Masana, L.; Vallvé, J.C. Polyunsaturated fatty acids down-regulate in vitro expression of the key intestinal cholesterol absorption protein NPC1L1: No effect of monounsaturated nor saturated fatty acids. J. Nutr. Biochem. 21, 518-525 (2010).

29) Peng, Z.; Zhang, C.; Yan, L.; Zhang, Y.; Yang, Z.; Wang, J.; Song, C. EPA is more effective than DHA to improve depression-like behavior, gli cell dysfunction and hippocampal apoptosis signaling in a chronic stress-induced rat model of depression. Int. J. Mol. Sci. 21, 1769 (2020).

30) Jacobson, T.A.; Glickstein, S.B.; Rowe, J.D.; Soni, P.N. Effects of eicosapentaenoic acid and docosahexaenoic acid on low-density lipoprotein cholesterol and other lipids: a review. J. Clin. Lipidol. 6, 5-18 (2012).

31) Schwarz, M.; Russell, D.W.; Dietschy, J.M.; Turley, S.D. Marked reduction in bile acid synthesis in cholesterol 7alpha-hydroxylase-deficient mice does not lead to diminished tissue cholesterol turnover or to hypercholesterolemia. J. Lipid. Res. 39, 1833-1843 (1998).

32) Goodwin, B.; Jones, S.A.; Price, R.R.; Watson, M.A.; McKeel, D.D.; Moore, L.B.; Galardi, C.; Wilson, J.G.; Lewis, M.C.; Roth, M.E.; Maloney, F.R.; Willson, T.M.; Kliwer, S.A. A regulatory cascade of the nuclear receptors FXR, SHP-1, and LHR-1 represses bile acid biosynthesis. Mol. Cell. 6, 517-526 (2000).

33) Fu, Y.; Wang, Y.; Gao, H.; Li, D.; Jiang, R.; Ge, L.; Tong, C.; Xu, K. Associations among dietary omega-3 polyunsaturated fatty acids, the gut microbiota, and intestinal immunity. Mediators Inflamm. 2021, 8879227 (2021).

34) Quin, C.; Vollman, D.M.; Ghosh, S.; Haskey, N.; Estaki, M.; Pither, J.; Barnett, J.A.; Jay, M.N.; Birnie, B.W.; Gibson, D.L. Fish oil supplementation reduces maternal defensive inflammation and predicts a gut bacteria with reduced immune priming capacity in infants. ISME J. 14, 2090-2104 (2020).

35) Wijekoon, M.P.A.; Parrish, C.C.; Mansour, A. Reprint of “Effect of dietary substitution of fish oil with flaxseed or sunflower oil on muscle fatty acid composition in juvenile steelhead trout (Oncorhynchus mykiss) reared at varying temperatures”. Aquaculture 447, 108-115 (2015).

36) Kaliannan, K.; Wang, B.; Li, X.-Y.; Kim, K.-J.; Kang, J.X. A host-microbiome interaction mediates the opposing effects of omega-6 and omega-3 fatty acids on metabolic endotoxemia. Sci. Rep. 5, 11276 (2015).

37) Peng, R.; Ma, L.-J.; Wang, M.; Liu, C.; Yang, R.; Su, H.; Yang, Y.; Wan, J.-B. Oxidation of fish oil exacerbates alcoholic liver disease by enhancing intestinal dysbiosis in mice. Commun. Biol. 3, 481 (2020).

38) Mujica, J.R.; Baccan, G.C.; Gheorghie, A.; Díaz, L.E.; Marcos, A. Changes in gut microbiota due to supplemented fatty acids in diet-induced obese mice. Br. J. Nutr. 110, 711-720 (2013).

39) Caesar, R.; Tremaroli, V.; Kovatcheva-Datchary, P.; Cani, P.D.; Backhed, F. Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab. 22, 658-668 (2015).
40) Watson, H.; Mitra, S.; Croden, F.C.; Taylor, M.; Wood, H.M.; Perry, S.L.; Spencer, J.A.; Quirke, P.; Toogood, G.J.; Lawton, C.L.; Dye, L.; Loadman, P.M.; Hull, M.A. A randomised trial of the effect of omega-3 polyunsaturated fatty acid supplements on the human intestinal microbiota. *Gut* 67, 1974-1983 (2018).

41) Man, A.W.C.; Zhou, Y.; Xia, N.; Li, H. Involvement of gut microbiota, microbial metabolites and interaction with polyphenol in host immunometabolism. *Nutrients* 12, 3054 (2020).

42) Hugenholtz, F.; Mullaney, J.A.; Kleerebezem, M.; Smidt, H.; Rosendale, D.I. Modulation of the microbial fermentation in the gut by fermentable carbohydrates. *Bioact. Carbohydr. Diet. Fibre.* 2, 133-142 (2013).

43) Koppel, N.; Maini Rekdal, V.; Balskus, E.P. Chemical transformation of xenobiotics by the human gut microbiota. *Science* 356, eaag2770 (2017).

44) Lye, H.S.; Rusul, G.; Liong, M.T. Removal of cholesterol by lactobacilli via incorporation and conversion to coprostanol. *J. Dairy Sci.* 93, 1383-1392 (2010).

45) Crowther, J.S.; Drasar, B.S.; Goddard, P.; Hill, M.J.; Johnson, K. The effect of a chemically defined diet on the faecal flora and faecal steroid concentration. *Gut* 14, 790-793 (1973).

46) Snog-Kjaer, A.; Prange, I.; Dam, H. Conversion of cholesterol into coprosterol by bacteria *in vitro*. *J. Gen. Microbiol.* 14, 256-260 (1956).

47) Antharam, V.C.; McEwen, D.C.; Garrett, T.J.; Dossey, A.T.; Li, E.C.; Kozlov, A.N.; Mesbah, Z.; Wang, G.P. An integrated metabolomic and microbiome analysis identified specific gut microbiota associated with fecal cholesterol and coprostanol in *Clostridium difficile* infection. *PLoS One* 11, e0148824 (2016).

48) Lauridsen, C. Effects of dietary fatty acids on gut health and function of pigs pre- and post-weaning. *J. Anim. Sci.* 98, skaa086 (2020).

49) Druart, C.; Neyrinck, A.M.; Vlaeminck, B.; Fievez, V.; Cani, P.D.; Delzenne, N.M. Role of the lower and upper intestine in the production and absorption of gut microbiota-derived PUFA metabolites. *PLoS One* 9, e87560 (2014).

50) Hirata, A.; Kishino, S.; Park, S.-B.; Takeuchi, M.; Kita-mura, N.; Ogawa, J. A novel unsaturated fatty acid hydratase toward C16 to C22 fatty acids from *Lactobacillus acidophilus*. *J. Lipid Res.* 56, 1340-1350 (2015).

51) Quiros, M.; Nusrat, A. Saving problematic mucosae: SPMs in intestinal mucosal inflammation and repair. *Trends Mol Med.* 25, 124-135 (2019).