The type 2C Ser/Thr phosphatase PP2Cγ is a pre-mRNA splicing factor

Michael V. Murray, Ryuji Kobayashi, and Adrian R. Krainer
Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 USA

To identify activities involved in human pre-mRNA splicing, we have developed a procedure to separate HeLa cell nuclear extract into five complementing fractions. An activity called SCF1 was purified from one of these fractions by assaying for reconstitution of splicing in the presence of the remaining four fractions. A component of SCF1 is shown to be PP2Cγ, a type 2C Ser/Thr phosphatase of previously unknown function. Previous work suggested that dephosphorylation of splicing factors may be important for catalysis after spliceosome assembly, although the identities of the specific phosphatases involved remain unclear. Here we show that human PP2Cγ is physically associated with the spliceosome in vitro throughout the splicing reaction, but is first required during the early stages of spliceosome assembly for efficient formation of the A complex. The phosphatase activity is required for the splicing function of PP2Cγ, as an active site mutant does not support spliceosome assembly. The requirement for PP2Cγ is highly specific, as the closely related phosphatase PP2Cα cannot substitute for PP2Cγ. Consistent with a role in splicing, PP2Cγ localizes to the nucleus in vivo. We conclude that at least one specific dephosphorylation event catalyzed by PP2Cγ is required for formation of the spliceosome.

[Key Words: PP2Cγ, phosphatase; splicing, pre-mRNA processing; spliceosome]

Pre-mRNA splicing is a complex reaction that requires five small nuclear ribonucleoprotein particles (snRNPs) and numerous non-snRNP protein factors that assemble into a spliceosome (for review, see Krämer 1996; Will and Lührmann 1997). Spliceosome assembly is an ordered process that involves sequential formation of complexes E → A → B → C (for review, see Reed and Palan djian 1997). The E, A, and B complexes are precursors to the spliceosome, and the C complex is the functional spliceosome.

A large number of components required for mammalian splicing have yet to be identified. One successful method to identify factors is complementation of either fractionated or deficient extracts. An important advantage of this approach is that the complementation assay used to isolate a factor can also be used for further mechanistic studies. For example, the human protein SF2/ASF was purified as an essential factor that complements splicing in an inactive cytoplasmic S100 extract (Krainer et al. 1990). SF2/ASF has since been shown to be a member of a family of structurally and functionally related splicing factors, the SR proteins, named after a domain rich in arginine and serine dipeptides (for review, see Fu 1995). SR proteins have multiple functions in splicing, and the S100 complementation assay was an important tool in determining these functions. Three other factors were identified by fractionation of nuclear extracts: SF1 (Krämer 1992), SF3a, and SF3b (Brosi et al. 1993). SF1, also called mBBP, is involved in branch site recognition (Berglund et al. 1997), and SF3a and SF3b participate in the binding of U2 snRNP to the branch site (Gozani et al. 1996).

In this work we describe a new procedure for separating HeLa nuclear extract into five complementing fractions that are competent for in vitro splicing when combined. By use of four of these crude fractions for biochemical complementation assays, an activity in the remaining fraction has been identified and named SCF1 (Splicing Complementing Factor 1). Purification and characterization of this activity showed that a component of SCF1 is the type 2C Ser/Thr protein phosphatase PP2Cγ (Travis and Welsh 1997).

Ser/Thr phosphatases can be divided into four major classes [PP1, PP2A, PP2B, and PP2C] on the basis of their substrate specificity, metal ion requirements, and inhibitor sensitivity (for review, see Shenolikar 1994). Type 2C phosphatases require metal ions for activity and are resistant to okadaic acid, an inhibitor of the PP1 and PP2A enzymes. Previous studies with phosphatase inhibitors showed that type 1 and type 2A activities are required for splicing in vitro (Mermoud et al. 1992, Tazi et al. 1992). However, type 1 and type 2A phosphatases are a highly diverse group, as multiple catalytic and regulatory subunits can associate with one another to dictate substrate specificity (Shenolikar 1994). Which specific forms of...
these phosphatases are involved in splicing is not known. The role of type 2C Ser/Thr protein phosphatases was not addressed, as specific inhibitors are not available. The protein phosphatase PPI has also been shown to affect alternative splice-site choice (Cardinali et al. 1994) and the subnuclear localization of splicing factors (Misteli and Spector 1996).

Multiple cycles of phosphorylation and dephosphorylation may be required for splicing. A number of mammalian kinases have been implicated in splicing, including SRPK1 and SRPK2 (Gui et al. 1994; Kuroyanagi et al. 1998; Wang et al. 1998b), Clk/Sty (Colwill et al. 1996), DNA topoisomerase I (Rossi et al. 1996), a CaMK II-like kinase [Parker and Steitz 1997], and cyclin E–cdk2 (Seghezzi et al. 1998). In vitro, most of these kinases phosphorylate the carboxy-terminal RS domains of SR proteins, which are extensively phosphorylated in vivo (for review, see Fu 1995). Phosphorylation of the RS domain appears to be required for some functions of SR proteins [Mermoud et al. 1994; Roscigno and Garcia-Blanco 1995; Cao et al. 1997; Tacke et al. 1997; Xiao and Manley 1997] and for their localization [Misteli and Spector 1998]. In addition, experiments with thiophosphorylated U1-70K protein and SF2/ASF suggested that a specific dephosphorylation event(s) is required for splicing [Tazi et al. 1993; Cao et al. 1997]. Although these studies have established that phosphorylation and dephosphorylation are important for splicing, the specific substrates and enzymes involved, as well as the mechanistic consequences of these modifications, are poorly understood.

Results

Establishment of a reconstituted system

Selective precipitation by ammonium sulfate was chosen as a first step in fractionating nuclear extract into complementing fractions. Two fractions were generated at a given ammonium sulfate concentration, and the corresponding high and low ammonium sulfate fractions were tested for splicing activity with β-globin pre-mRNA. The low ammonium sulfate fraction did not have significant splicing activity, unless the corresponding high ammonium sulfate fraction was added [Fig. 1, cf. lanes 1 and 3, 4 and 6, 7 and 9]. As SR proteins are soluble in high concentrations of ammonium sulfate [Krainer et al. 1990; Zahler et al. 1992], the activity present in the high ammonium sulfate fraction could be due to SR proteins. To test this possibility, purified SR proteins were added to the low ammonium sulfate fractions and splicing activity was assayed. SR proteins were able to complement the 20%–45% and 20%–50% saturation fractions [lanes 7 and 11] but not the 20%–40% fraction [lane 3]. This result shows that the 40%–90% ammonium sulfate fraction contains one or more splicing factors, in addition to SR proteins, which are needed to complement the 20%–40% fraction. Therefore, to purify the activity present in the high ammonium sulfate fraction, the 20%–40% cut was chosen as a complementing fraction. Further characterization showed that the 20%–

Figure 1. Fractionation of nuclear extract and reconstitution by ammonium sulfate precipitation. Nuclear extract was fractionated into high and low ammonium sulfate fractions, which were tested alone or in combination for pre-mRNA splicing. β-globin pre-mRNA was incubated with the indicated fractions for 2 hr. Three sets of fractionation experiments are shown, representing three different cuts, 20%–40%, 20%–45%, and 20%–50% saturation. Either purified HeLa SR proteins or the corresponding high ammonium sulfate cut was added to each of these fractions. The positions of the pre-mRNA, mRNA, lariat–exon 2, lariat intron, and debranched intron are shown.

40% fraction contained the vast majority of the abundant spliceosomal snRNPs [data not shown]. The initial 0%–20% step removed large aggregates and improved the signal-to-background ratio in the splicing reaction [data not shown].

To assay for factors in the high ammonium sulfate fraction other than SR proteins, splicing assays were carried out in the presence of the 20%–40% fraction and purified SR proteins. In addition, purified human creatine kinase was added to ensure that ATP levels remained constant in the splicing reactions throughout the fractionation procedure. To purify the high ammonium sulfate activity, we found it necessary to separate this fraction on a CsCl equilibrium density gradient [Fig. 2A]. This step served multiple purposes. First, nucleic acids sediment at the bottom of the gradient, whereas proteins remain near the top. The removal of nucleic acids improved the subsequent ion-exchange chromatography step. Second, an enrichment of splicing activity was ob-
tained. By Bradford assay, the majority of the protein was found in the top five fractions, whereas splicing activity was found in fractions 4–9. Under these conditions, some separation of proteins was obtained, as SDS-PAGE confirmed that the protein distribution is not uniform throughout the upper ten fractions (data not shown). Finally, a splicing inhibitor was detected in the top three to four fractions, as assayed by inhibition of β-globin splicing on addition to nuclear extract (data not shown). The identity of this inhibitor is presently unknown. Removal of the inhibitory activity and nucleic acid greatly aided further purification of the high ammonium sulfate activity.

Pooled CsCl fractions were loaded onto a Poros 20 HQ column, and the bound proteins were eluted by stepwise salt washes [Fig. 2B]. Three of the four fractions [HQFT, HQ1M, and HQ2M] were required to reconstitute efficient splicing. The HQFT plus the HQ1M fractions were unable to complement the 20%–40% fraction plus SR proteins for splicing activity. If, in addition to the HQFT and HQ1M fractions, the HQ2M fraction was also included, splicing activity was restored [Fig. 2C]. In this complementation assay, the most abundant RNA species are lariat–exon 2 and free exon 1 from the first catalytic step of splicing, perhaps because a factor required for the second step of splicing was partially depleted. The HQ2M fraction had <2% of the total protein recovered and had the lowest protein complexity by SDS-PAGE compared with the other HQ fractions [Fig. 2D]. Therefore, the activity in this fraction, named SCF1, was chosen for further purification.

At this point in the procedure, five complementing fractions from nuclear extracts have been generated: 20%–40% ammonium sulfate, SR proteins, HQFT, HQ1M, and HQ2M (SCF1). In summary, the HQ2M fraction defines an activity required for in vitro splicing, called SCF1, which can be assayed in a reconstituted system containing the other four complementing fractions.

Purification of SCF1

SCF1 was further purified from the HQ2M fraction, as shown in Figure 2B. By gel-filtration chromatography, SCF1 eluted at an apparent native molecular mass of 150 kD [data not shown]. The pool from this step was separated into multiple peaks by hydrophobic interaction chromatography [Fig. 3A]. A peak of SCF1 was detected in fraction 29, trailing into fractions 30–31 and, to a lesser extent, fractions 32–33 (Fig. 3B). Three major protein bands, of 76, 40, and 20 kD, and four minor bands, of 48, 30, 25, and 23 kD, cochromatographed with splicing activity [Fig. 3C]. Fractions 29 and 30 were combined, and peptide sequence was obtained individually for all seven bands. All of the sequenced peptides belong to a single protein, the type 2C Ser/Thr phosphatase PP2Cγ (Travis and Welsh 1997). No other bands cochromatographed with SCF1 activity, although some bands trailed into the active fractions. The multiple bands of PP2Cγ resulted from proteolytic cleavages during purification, which apparently did not lead to dissociation of the resulting fragments. In a later purification of SCF1, in which protease inhibitor concentrations were increased and the slow gel-filtration step was omitted, only a 76-kD band was observed to cochromatograph with SCF1 [data not shown]. However, the data in Figure 3C correspond to the actual fractions used to determine the peptide sequences.

PP2Cγ

Type 2C phosphatases share sequence homology, which was the basis for the identification of PP2Cγ from the
human EST database (Travis and Welsh 1997). As shown in Figure 4, PP2Cg shares significant homology in the amino- and carboxy-terminal thirds with other type 2C phosphatases, including PP2Ca, whose crystal structure has been solved (Das et al. 1996). PP2Ca is a metalloenzyme, and the specific amino acids shown to coordinate two Mn\(^{2+}\) ions in the active site of PP2Ca are also conserved in PP2Cg, as well in other PP2C phosphatases. A unique feature of PP2Cg is a region of \(\sim\)200 amino acids rich in acidic residues, which interrupts the conserved PP2C phosphatase domains. A predicted ORF from Caenorhabditis elegans encoding a PP2C phosphatase also

Figure 3. Hydrophobic interaction chromatography. (A) Column profile. SCF1 from the Sephacryl S-300 chromatography step was loaded onto a Poros 20 PH column equilibrated in high salt, and the proteins were eluted by a reverse salt gradient. The \(A_{280}\) and conductivity tracing are shown. The splicing activity detected in B is indicated. (B) Splicing activity with \(\beta\)-globin pre-mRNA. Fractions from the gradient and flow-through were assayed in a reaction that contained 20%–40% fraction, SR proteins, HQ1M, and HQFT fractions. As the concentration of protein in the fractions is very low, activity is weaker than in previous steps. (C) Fractions at or flanking the peak of splicing activity were analyzed on a 10% SDS–polyacrylamide gel stained with a fluorescent protein stain, Sypro Orange (Molecular Probes). (*) Bands that comigrated with splicing activity.

Figure 4. Homology of PP2Cg with other 2C Ser/Thr phosphatases. The amino acid sequence of human PP2Ca (GenBank accession no. Y13936) was compared with those of human PP2Ca (S87759), S. cerevisiae PTC3 (U72346), and an ORF from C. elegans (U00051) by the PILEUP program (GCG) and manual adjustment. Identities are indicated by black shading and similarities by gray shading. PP2Cg has an acidic domain from residues 117–319, and a similar domain is found in the C. elegans ORF. In this region, homology is not indicated, but the acidic residues are boxed. The crystal structure of PP2Ca showed that six highly conserved amino acids are involved in coordinating two active site metal ions. (●) Five of the six residues involved in metal ion coordination; (●) the sixth residue, Asp496, which was mutated to Ala to make the active site mutant D496A.

Murray et al.
has an acidic domain at the same position (Fig. 4). It is not clear that these acidic domains have equivalent functions, because they only show 27% identity and 35% similarity, compared with 44% and 60% identity for the flanking amino- and carboxy-terminal domains, respectively. However, the conservation of the position, composition, and size of the acidic domains suggests that these two proteins are orthologs.

Copurification of PP2C activity with SCF1

If PP2Cγ were simply a contaminant in the fractions of the Poros 20 PH column, then it would be likely to partially separate from splicing activity at some other point in the purification. A bovine ortholog of PP2Cγ, called MCPP, was detected in brain homogenates by assaying for a phosphatase that requires Mn2+ or Mg2+, is resistant to okadaic acid, and is inhibited by Ca2+ (Wang et al. 1995). We used the same assay conditions with myelin basic protein (MBP) to follow this activity in fractions generated during purification of human SCF1. Under these conditions, type 1, 2A, and 2B phosphatase activities are not measured. Type 2C activity cofractionated with SCF1 splicing activity during the initial ammonium sulfate fractionation (data not shown), the CsCl step (Fig. 5A,B), and the Poros 20 HQ separation (Fig. 5C). The precise copurification of type 2C phosphatase activity with SCF1 over multiple steps strongly suggests that PP2Cγ is not a contaminant in the final purification step.

Splicing activity of recombinant PP2Cγ

Recombinant forms of PP2Cγ were expressed in Escherichia coli or baculovirus-infected Sf9 cells as soluble proteins, and were purified to homogeneity (Fig. 6A). Both the E. coli and Sf9-derived rPP2Cγ had phosphatase activity (Fig. 6B). A mutant of rPP2Cγ was also prepared, with an active-site mutation, D496A, on the basis of the crystal structure of PP2Ca, a related phosphatase (Das et al. 1996). This substitution is predicted to disrupt the coordination of one of two active-site metal ions. The mutation reduced the specific activity of rPP2Cγ for phosphorylated MBP by 1500-fold (Fig. 6B). These proteins were tested for activity in splicing by use of two different assays.

Recombinant proteins were tested in an in vitro splicing assay that demands that catalysis occur. When all of the complementing fractions except the HQ2M fraction were added to a splicing reaction, only a very low level of splicing was observed. On addition of the HQ2M fraction, which defines SCF1 activity, splicing was restored (Fig. 6C). When rPP2Cγ from Sf9 cells was added to this assay in place of the HQ2M fraction, a weak but detectable increase in splicing was observed (Fig. 6, cf. lane 1 with lanes 4–9), although it was considerably less than observed with the HQ2M fraction (Fig. 6, cf. lanes 2–3 with 4–9). However, the Poros 20 PH fractions from the final step of SCF1 purification also had weak activity (see Fig. 3B). Mutant rPP2Cγ did not have any detectable splicing activity (data not shown). Adding less rPP2Cγ than shown did not increase the amount of splicing observed, and preincubation of rPP2Cγ in nuclear extract did not improve the splicing activity (data not shown). These results suggest that either another factor in addition to PP2Cγ, or a modification of PP2Cγ, is required for the level of activity seen in the HQ2M fraction. An inhibitory effect on splicing was observed at high levels of rPP2Cγ, which may be due to nonspecific effects (e.g., nonspecific dephosphorylation of splicing factors).

To further characterize SCF1, the requirement for spliceosome assembly was investigated. Splicing reactions containing either nuclear extract or the complementing fractions were analyzed by native gel electrophoresis (Konarska 1989). In whole nuclear extract, the A, B, and C splicing complexes were resolved (Fig. 6D, lane 17). The A and B complexes are prespliceosomal complexes, whereas the C complex is the functional spliceosome [for review, see Reed and Pandaljian 1997]. With complementing fractions, but without the HQ2M fraction, only a small amount of A complex formation was observed, which was greatly stimulated on addition of the HQ2M fraction.
assembly. The catalytically inactive form of rPP2C
not required for A complex, and probably B complex,
probably counted for by PP2C
A complex formation activity of SCF1 can be fully ac-
moud et al. 1992; Tazi et al. 1992). We conclude that the
activities are not required for A complex assembly (Mer-
sufficient for SCF1 activity. In addition, PP1 and PP2A
with MBP (Fig. 6B), phosphatase activity alone is not
14–16). As this protein has in vitro phosphatase activity
and was actually somewhat inhibitory (Fig. 6D, lanes
A

Figure 6. Phosphatase and splicing activity of recombinant PP2Cγ. (A) Coomassie-stained SDS gel of recombinant proteins. Mutant PP2Cγ has an alanine substitution for a highly conserved aspartate at position 496 (D496A). (B) Specific phosphatase activity of recombinant protein with 32P-labeled MBP as a substrate. The D496A mutation results in a nearly inactive form of the phosphatase. (C) rPP2Cγ was assayed for splicing with β-globin pre-mRNA in a reaction that contained the 20%–40% fraction, SR proteins, and HQFT and HQ1M fractions. Lanes 2 and 3 contain 1 and 2 µl, respectively, of the HQ2M fraction, which contains 0.1 U/µl of phosphatase activity [1 unit = 1 nmole/min]. rPP2Cγ was added in lane 4 [50 ng, 0.02 unit], lane 5 [100 ng], lane 6 [200 ng], lane 7 [500 ng], lane 8 [1000 ng], and lane 9 [2000 ng]. (D) Native gel analysis of spliceosomal complexes formed on β-globin pre-mRNA. The indicated combinations of fractions were incubated for 1 hr under splicing conditions and analyzed by native gel electrophoresis. Reactions contained either 0.4, 1, and 2 µl of the HQ2M fraction or 20, 50, and 100 ng of the indicated recombinant proteins. As a control, the complexes formed in a 30-min incubation with nuclear extract are also shown.

fraction [lanes 1–4]. Stimulation of B complex was also observed, whereas detectable C complex did not accumulate. These data show that SCF1 is required for effi-
cient A complex formation.

To determine whether the A complex stimulation by SCF1 is due to PP2Cγ, recombinant proteins were tested in the spliceosome assembly assay. rPP2Cγ had full SCF1 activity in this assay, and recombinant proteins expressed in Sf9 cells or E. coli showed equivalent ac-
activities [Fig. 6D, lanes 5–10]. Any additional factor or
modification of PP2Cγ required for splicing catalysis is not required for A complex, and probably B complex,
assembly. The catalytically inactive form of rPP2Cγ, D496A, was unable to substitute for SCF1 [lanes 11–13], showing that phosphatase activity is required. Another
type 2C phosphatase was tested for SCF1 activity in the
complex assembly assay. PP2Cα is homologous to
PP2Cγ, except that it lacks an acidic domain (Fig. 4).
Although related at the sequence and biochemical level,
PP2Cα was unable to stimulate A complex formation, and was actually somewhat inhibitory [Fig. 6D, lanes
14–16]. As this protein has in vitro phosphatase activity
with MBP [Fig. 6B], phosphatase activity alone is not sufficient for SCF1 activity. In addition, PP1 and PP2A
activities are not required for A complex assembly [Mer-
moud et al. 1992; Tazi et al. 1992]. We conclude that the
A complex formation activity of SCF1 can be fully ac-
counted for by PP2Cγ, requires phosphatase activity, and
is specific for PP2Cγ.

Association of PP2Cγ with the spliceosome
Monoclonal antibodies were raised to recombinant
PP2Cγ. A Western blot of HeLa nuclear extract probed
with three different monoclonal antibodies detected a
single band of 76 kD [Fig. 7A]. This size is consistent with the observed mobility of rPP2Cγ and the reported
mobilities of bovine and mouse PP2Cγ [Wang et al. 1995;
Guthridge et al. 1997]. Although the antibodies recog-
nized at least some of the proteolytic fragments in puri-
fied preparations of PP2Cγ [data not shown], only the
full-length protein was detected in nuclear extract, con-
firming that the multiple bands observed in the final
purification of SCF1 [Fig. 3C] arose from proteolysis
during purification.

To determine whether PP2Cγ is physically associated
with the spliceosome, immunoprecipitations were car-
died out from in vitro splicing reactions containing ra-
dioabeled pre-mRNA. RNA was recovered from the
immunoprecipitates and analyzed by denaturing PAGE.
The anti-PP2Cγ monoclonal antibody efficiently immu-
oprecipitated the precursor, intermediates, and prod-
ucts of splicing, showing that PP2Cγ is stably associated
with the spliceosome at multiple steps [Fig. 7B].

The amount of RNA in the anti-PP2Cγ immunoprecipitate is comparable with that of two control antibodies against
snRNPs [Sm and trimethyl G]. As a negative control, a
monoclonal antibody directed against E. coli maltose-
binding protein (MalE) was used, and in this case no ra-
diolaeled RNAs were immunoprecipitated. This experi-
ment does not reveal whether the interaction between
PP2Cγ and RNA is direct or indirect. UV-cross-linking/
immunoprecipitation experiments did not reveal a direct
association of PP2Cγ with RNA [data not shown].

Subcellular localization of PP2Cγ
If PP2Cγ is involved in splicing in vivo, then at least
nuclear extract. SCF1 was purified, and one of its components is the Ser/Thr phosphatase PP2Cγ. Monoclonal antibodies were used to show that PP2Cγ is a nuclear phosphatase and is physically associated with the spliceosome in vitro. SCF1 is required for efficient A complex assembly, an early event in the splicing pathway. The spliceosome assembly activity is clearly attributable to PP2Cγ, as recombinant PP2Cγ can fully substitute for a partially purified fraction that defines SCF1.

Although SCF1 is required for the first step of splicing, recombinant PP2Cγ only weakly promoted catalysis when substituted for a more active, partially purified SCF1 fraction. Therefore, full activity in splicing catalysis must require another component, in addition to PP2Cγ, or a necessary modification of PP2Cγ is lacking in the recombinant protein. We cannot presently distinguish between these possibilities. This presumptive factor or modification is not required for A complex assembly, but it is required at a later step prior to, or coinciding with, the catalytic steps of splicing. If a factor in addition to PP2Cγ is required for catalysis, then it is likely that such a factor was only partially separated from PP2Cγ at the final purification step but did not cochromatograph with SCF1. We attempted to remove PP2Cγ from nuclear extract by immunodepletion. Although extensive depletion could be obtained, as determined by Western blotting, no effect on splicing was observed (data not shown). However, complete removal of a catalytic activity from an extract is difficult, and a low level of PP2Cγ may be sufficient for splicing.

PP2Cγ and other type 2C Ser/Thr protein phosphatases

The PP2C family is a diverse group of proteins, and type 2C phosphatases contain additional motifs such as EF hands, kinase-interacting, and membrane-spanning domains (see Das et al. 1996). Consistent with this structural diversity, type 2C phosphatases have been shown to be involved in diverse biological processes in both prokaryotes and eukaryotes. In mammals, two other PP2C enzymes have been identified, PP2Cα and PP2Cβ, which lack discernible motifs other than the PP2C homology (Tamura et al. 1989; Mann et al. 1992; Wenk et al. 1992). Although these two phosphatases have been characterized biochemically (e.g., see Marley et al. 1996; Kusuda et al. 1998), little is known about their roles in biological processes. There is evidence that PP2Cα negatively regulates the JNK MAPK pathway (Takekawa et al. 1998), the activity of the cystic fibrosis transmembrane conductance regulator (Travis et al. 1997), and the AMP-activated protein kinase (Moore et al. 1991; Davies et al. 1995).

Mammalian PP2Cγ differs from other type 2C phosphatases by the presence of a large internal domain of acidic character. Characterization of bovine PP2Cγ showed that the substrate specificity in vitro is broad but that it has a preference for basic proteins (Wang et al. 1995). This preference suggests that electrostatic interactions mediated by the acidic domain may be involved in substrate specificity. The mouse ortholog of PP2Cγ,
The role of phosphatases in splicing

PP2Cγ catalyzes at least one specific dephosphorylation event required for A complex formation during spliceosome assembly. In contrast, general inhibitors of PP1 and PP2A activities block the catalytic steps of splicing, but not assembly of the A, B, and C complexes (Mermoud et al. 1992; Tazi et al. 1992). As the inhibitors used do not affect type 2C phosphatases, earlier studies could not address the role of these phosphatases in splicing. Specific inhibitors of type 2C phosphatases have not been described, but PP2Cγ is inhibited by calcium (Wang et al. 1995). The same concentration of calcium that inhibits the phosphatase activity of PP2Cγ also inhibits in vitro splicing in unfractionated nuclear extract (data not shown). This observation is consistent with the requirement for PP2Cγ in splicing.

In addition to phosphatase inhibitor studies, the catalytic steps of splicing, but not spliceosome assembly, are blocked when either of two proteins, the U1 snRNP protein U1-70K and the splicing factor SF2/ASF, are made phosphatase resistant by thio phosphorylation (Tazi et al. 1993; Cao et al. 1997). These data suggested that these factors must be dephosphorylated after formation of the spliceosome but before the first catalytic step. However, this approach did not permit assignment of the dephosphorylation activity to a particular Ser/Thr phosphatase. Even though PP2Cγ has a role in A complex formation early in spliceosome assembly, it may have an additional role later in the splicing reaction. In fact, mammalian splicing experiments show that PP2Cγ is associated with the spliceosome at all detectable stages, suggesting that PP2Cγ may have a function at later stages of splicing.

Phosphorylation may also play a role in the regulation of alternative splicing, which is affected by the activity and/or levels of general splicing factors, such as SR proteins and hnRNP proteins (Wang et al. 1997). Overexpression of the Clk/Sty kinase, which can phosphorylate SR proteins, changes the alternative splicing of its own pre-mRNA and of an adenovirus pre-mRNA (Duncan et al. 1997). Addition of exogenous PP1 to nuclear extracts changes alternative 5' splice site use in HeLa nuclear extracts (Cardinall et al. 1994). A splicing silencer within an adenovirus intron can be regulated by the phosphorylation state of SR proteins, and in adenovirus-infected cells, SR protein phosphorylation may be controlled by PP2A and the viral PP2A-regulatory subunit E4-ORF4 (Kanopka et al. 1998). We do not know if PP2Cγ regulates alternative splicing, but it is interesting that the levels of mouse PP2Cγ can be upregulated by the growth factor FGF-4 (Guthridge et al. 1996). The levels of PP2Cγ could either modulate the intrinsic activity of a splicing factor or affect its intracellular location, and hence its local concentration or availability. For example, there is evidence that phosphorylation/dephosphorylation regulates the localization of splicing factors within the subnuclear speckle domain (Gui et al. 1994; Colwill et al. 1996; Misteli and Spector 1996), the recruitment of SR proteins to transcriptionally active sites (Misteli et al. 1998), and the shuttling of SR proteins (Cáceres et al. 1998).

Potential targets of PP2Cγ

Although the targets of PP2Cγ action are not presently known, several of the known mammalian splicing factors are phosphoproteins, and hence, potential substrates of PP2Cγ. In particular, splicing factors known to be required for A complex assembly (see Reed and Palandjian 1997) are good candidates. Among these are the SR proteins, which are essential splicing factors containing serine/threonine dipeptides (for review, see Fu 1995). Phosphorylation of SR proteins appears to be required for splicing in vitro (Mermoud et al. 1994; Cao et al. 1997; Xiao and Manley 1997), and in particular for recruitment of the U4/U6 · U5 tri-snRNP to the A complex (Roscigno and Garcia-Blanco 1995). In addition, the interaction between another phosphoprotein, U1-70K, and the SR protein SF2/ASF, is phosphorylation dependent (Xiao and Manley 1997). This interaction is required for stimulation of U1 snRNP binding to a 5' splice site by SF2/ASF, which occurs prior to A complex formation (Kohtz et al. 1994). However, the fact that thio phosphorylation of SF2/ASF inhibits catalysis but not spliceosome assembly (Cao et al. 1997) suggests that PP2Cγ does not dephosphorylate SF2/ASF during A complex formation. Another phosphorylated splicing factor required for A complex assembly is SAP155, a component of the 17S U2 snRNP [Wang et al. 1998a]. SAP155 has homology to PP2A regulatory subunits, and is phosphorylated after the first catalytic step of splicing. Recently, SAP155 has been shown to interact with the cyclin E-cdk2 kinase (Seghezzi et al. 1998).

The physiological substrate specificity of PP2Cγ is unlikely to be solely an inherent property of its active site. Specificity will also depend on the subcellular localization of the enzyme, its physical association with the spliceosome, and other protein–protein interactions. The fact that PP2Cα cannot function in place of PP2Cγ, despite their similar biochemical properties and strong sequence homology, suggests that the unique acidic domain of PP2Cγ plays a crucial role in determining substrate specificity. Thus, a meaningful assessment of the
substrate specificity of PP2Cγ in splicing will likely require the full context of the spliceosome.

Materials and methods

Preparation of HeLa nuclear extract and ammonium sulfate fractionation

HeLa nuclear extracts were prepared as described (Mayeda and Krainer 1999b). For ammonium sulfate fractionation, 2 vol of buffer E [20 mM HEPES-KOH (pH 8), 0.2 mM EDTA, 1 mM DTT] and 0.75 vol of buffer E-AS (saturated with ammonium sulfate at 0°C) was added. The suspension was rocked for 30 min and spun at 14,460gmax for 15 min. The supernatant was diluted with 0.33 vol of buffer E-AS. The suspension was rocked for 30 min and spun as above. The pellet was resuspended in 40% saturated ammonium sulfate in buffer E and respun for 30 min. The pellet was redissolved in half of the volume of the starting nuclear extract in buffer D [buffer E + 100 mM KCl, 0.5 mM PMSF, 5% (vol/vol) glycerol] and dialyzed against buffer D. The supernatant from the initial 40% cut was adjusted to 90% saturation by the addition of dry ammonium sulfate (0.335 grams/ml solution). The suspension was rocked for 30 min and spun for 15 min. The pellet was resuspended in buffer D and dialyzed against buffer D. All fractions were stored at ~70°C.

Purification of SCF1

Frozen HeLa or 293 cells (100 liters) were thawed and collected as described (Krainer et al. 1990). The washed cell pellet was resuspended in an equal volume of buffer A + PI [10 mM HEPES–KOH (pH 8), 0.2 mM EDTA, 1 mM DTT] and 0.75 vol of buffer E-AS (saturated with ammonium sulfate at 0°C) was added. The suspension was rocked for 30 min and spun at 14,460gmax for 15 min. The supernatant was diluted with 0.33 vol of buffer E-AS. The suspension was rocked for 30 min and spun as above. The pellet was resuspended in 40% saturated ammonium sulfate in buffer E and respun for 30 min. The pellet was redissolved in half of the volume of the starting nuclear extract in buffer D [buffer E + 100 mM KCl, 0.5 mM PMSF, 5% (vol/vol) glycerol] and dialyzed against buffer D. The supernatant from the initial 40% cut was adjusted to 90% saturation by the addition of dry ammonium sulfate (0.335 grams/ml solution). The suspension was rocked for 30 min and spun for 15 min. The pellet was resuspended in buffer D and dialyzed against buffer D. All fractions were stored at ~70°C.

Splicing assays

In vitro splicing assays were done as described [Mayeda and Krainer 1999a]. To assay for SCF1, the following mixture was prepared [amount/reaction]: 2 µl of the 20%–40% ammonium sulfate fraction, 0.05 unit of human creatine kinase (1.9 U/µl), 1 µl of purified HeLa SR proteins (0.62 mg/ml), 1 µl of HQFT, 1 µl of HQ1M. To 5 µl of this mixture, up to 4 µl of the fraction to be assayed for SCF1 was added, the volume was adjusted to 9 µl with buffer D, and 6 µl of a splicing premix was added. The reactions were incubated for 2 hr.

Native splicing complex assays were done as described (Kornarska 1989), with 0.1 mg/ml heparin.

Immunoprecipitations of splicing reactions were done as described (Blencowe et al. 1994), except that 0.5 mg/ml tRNA was included in the washes.

Peptide sequencing

Fractions 29 and 30 from the Poros 20 PH column were pooled and separated by SDS-PAGE. After Coomassie G staining, the protein bands were excised and subjected to in-gel digestion with Lys-C endopeptidase. The resulting peptides were separated by HPLC and sequenced by automated Edman degradation as described previously [Wang et al. 1996].

Recombinant proteins/antibodies

PP2Cγ was PCR amplified from a human EST clone (IMAGE clone 531667, Research Genetics) using Pfu polymerase (Stratagene) and the primers GTGGATCCCATATGGGTGCTACCTCTCTC and CAGGATCCATGACTCCCTTG. The PCR product was digested with Ndel and BamHI and subcloned into pET-19b. The resulting E. coli expression plasmid, pNTPPP2Cγ, encodes full-length PP2Cγ with an amino-terminal His tag. The mutant D496A was made from pNTPPP2Cγ as described [Deng and Nickoloff 1992] with the primers GGTCAATGTTGGAACACCCGGTACCATCCC and CTTCCTTTTTCGATATCATG for ampicillin-resistance. Lysis and elution buffers contained protease inhibitors (see above) and lacked MnCl2 and EGTA. Cells were resuspended in 5 ml of lysis buffer and sonicated five times for 5 sec with 1 min rests. Cleared lysate was added to 0.25 ml NINTA agarose.
To raise monoclonal antibodies, BALB/c mice were immunized with rPP2C\textsubscript{y} from \textit{E. coli}. Hybridomas were generated and screened by dot blotting at the Cold Spring Harbor Monoclonal Antibody Facility by standard procedures (Harlow and Lane 1988).

Phosphatase assays

Type 2C phosphatase activity was assayed as described (Wang et al. 1995) by use of radiolabeled MBP phosphorylated with protein kinase A.

Immunofluorescence

Immunofluorescence experiments were carried out as described (Misteli and Spector 1996).

Acknowledgments

We thank D.S. Horowitz and T. Misteli for critical reading of the manuscript, C. Bautista and M. Fälkow for technical assistance in the production of monoclonal antibodies, L. Shao for help in constructing mutant rPP2C\textsubscript{y}, D. Barford for the generous gift of rPP2C\textsubscript{y}, and members of the laboratory for helpful advice. This work was supported by National Institutes of Health grant GM42699 to A.R.K. and National Cancer Institute Training Grant T32-CA09311 to M.V.M.

The publication costs of this article were defrayed in part by payment of page charges. This article must therefore be hereby marked ‘advertisement’ in accordance with 18 USC section 1734 solely to indicate this fact.

References

Berglund, J.A., K. Chua, N. Abovich, R. Reed, and M. Rosbash. 1997. The splicing factor BBP interacts specifically with the pre-mRNA branchpoint sequence UACUAAC. \textit{Cell} \textbf{89}: 781–787.

Blencowe, B.J., J.A. Nickerson, R. Issner, S. Penman, and P.A. Sharp. 1994. Association of nuclear matrix antigens with exon-containing splicing complexes. \textit{J. Cell Biol.} \textbf{127}: 593–607.

Brosi, R., H.P. Hauri, and A. Krämer. 1993. Separation of splicing factor SF3 into two components and purification of SF3a activity. \textit{J. Biol. Chem.} \textbf{268}: 17640–17646.

Cáceres, J.F., G.R. Screaton, and A.R. Krainer. 1998. A specific subset of SR proteins shuttles continuously between the nucleus and the cytoplasm. \textit{Genes & Dev.} \textbf{12}: 55–66.

Cao, W., S.F. Jamison, and M.A. Garcia-Blanco. 1997. Both phosphorylation and dephosphorylation of ASF/SF2 are required for pre-mRNA splicing in vitro. \textit{RNA} \textbf{3}: 1456–1467.

Cardinali, B., P.T. Cohen, and A.I. Lamond. 1994. Protein phosphatase 1 can modulate alternative 5' splice site selection in a HeLa splicing extract. \textit{FEBS Lett.} \textbf{352}: 276–280.

Colwill, K., T. Pawson, B. Andrews, J. Prasad, J.L. Manley, J.C. Bell, and P.I. Duncan. 1996. The Clk/Sty protein kinase phosphorylates SR splicing factors and regulates their intranuclear distribution. \textit{EMBO J.} \textbf{15}: 265–275.

Das, A.K., N.R. Helps, P.T. Cohen, and D. Barford. 1996. Crystal structure of the protein serine/threonine phosphatase 2C at 2.0 Å resolution. \textit{EMBO J.} \textbf{15}: 6798–6809.

Davies, S.P., N.R. Helps, P.T. Cohen, and D.G. Hardie. 1995. 5'-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2C alpha and native bovine protein phosphatase-2A. \textit{FEBS Lett.} \textbf{377}: 421–425.

Deng, W.P. and J.A. Nickoloff. 1992. Site-directed mutagenesis of virtually any plasmid by eliminating a unique site. \textit{Anal. Biochem.} \textbf{206}: 81–88.

Duncan, P.I., D.F. Stojdl, R.M. Marius, and J.C. Bell. 1997. In vivo regulation of alternative pre-mRNA splicing by the Clk1 protein kinase. \textit{Mol. Cell. Biol.} \textbf{17}: 5996–6001.

Fu, X.D. 1995. The superfamily of arginine/serine-rich splicing factors. \textit{RNA} \textbf{1}: 663–680.

Fu, X.D. and T. Maniatis. 1990. Factor required for mammalian spliceosome assembly is localized to discrete regions in the nucleus. \textit{Nature} \textbf{343}: 437–441.

Gozani, O., R. Feld, and R. Reed. 1996. Evidence that sequence-independent binding of highly conserved U2 snRNP proteins upstream of the branch site is required for assembly of splicingosomal complex A. \textit{Genes & Dev.} \textbf{10}: 233–243.

Gui, J.F., W.S. Lane, and X.D. Fu. 1994. A serum kinase regulates intracellular localization of splicing factors in the cell cycle. \textit{Nature} \textbf{369}: 678–682.

Guthridge, M.A., M. Seldin, and C. Basilico. 1996. Induction of expression of growth-related genes by FGF-4 in mouse fibroblasts. \textit{Oncogene} \textbf{12}: 1267–1278.

Guthridge, M.A., P. Bellosta, N. Tavoloni, and C. Basilico. 1997. FIN13, a novel growth factor-inducible serine-threonine phosphatase which can inhibit cell cycle progression. \textit{Mol. Cell. Biol.} \textbf{17}: 5485–5498.

Harlow, E. and D. Lane. 1988. \textit{Antibodies: A laboratory manual}. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

Kanopka, A., O. Mühlemann, S. Petersen-Mahrt, C. Estmer, C. Öhrmalm, and G. Aküsjärvi. 1998. Regulation of adenovirus alternative RNA splicing by dephosphorylation of SR proteins. \textit{Nature} \textbf{393}: 185–187.

Kohitz, J.D., S.F. Jamison, C.L. Will, P. Zuo, R. Lührmann, M.A. Garcia-Blanco, and J.L. Manley. 1994. Protein–protein interactions and 5’ splice-site recognition in mammalian mRNA precursors. \textit{Nature} \textbf{368}: 119–124.

Konarska, M.M. 1989. Analysis of splicing complexes and small nuclear ribonucleoprotein particles by native gel electrophoresis. \textit{Methods Enzymol.} \textbf{180}: 442–453.

Krainer, A.R., G.C. Conway, and D. Kozak. 1990. Purification and characterization of pre-mRNA splicing factor SF2 from HeLa cells. \textit{Genes & Dev.} \textbf{4}: 1158–1171.

Krämer, A. 1992. Purification of splicing factor SF1, a heat-stable protein that functions in the assembly of a presplicing complex. \textit{Mol. Cell. Biol.} \textbf{12}: 4545–4552.

———. 1996. The structure and function of proteins involved in mammalian pre-mRNA splicing. \textit{Annu. Rev. Biochem.} \textbf{65}: 367–409.

Kuroyanagi, R., H. Ono, T. Wakabayashi, and M. Hagiwara. 1998. Novel SR-protein-specific kinase, SRPK2, disassembles nuclear speckles. \textit{Biochem. Biophys. Res. Commun.} \textbf{242}: 357–364.

Kusuda, K., T. Kobayashi, S. Ikeda, M. Ohnishi, N. Chida, Y. Yanagawa, R. Shineha, T. Nishihira, S. Satomi, A. Hiraga, and S. Tamura. 1998. Mutational analysis of the domain upstream of the branch site is required for assembly of splicing factor SF2 from HeLa cells. \textit{Genes & Dev.} \textbf{4}: 1158–1171.

Kusuda, K., T. Kobayashi, S. Ikeda, M. Ohnishi, N. Chida, Y. Yanagawa, R. Shineha, T. Nishihira, S. Satomi, A. Hiraga, and S. Tamura. 1998. Mutational analysis of the domain upstream of the branch site is required for assembly of splicing factor SF2 from HeLa cells. \textit{Genes & Dev.} \textbf{4}: 1158–1171.

Lambert, J.F., G.A. Gibson, and J.L. Manley. 1993. Mapping of the 5’ splice site recognition sequence in the human pre-mRNA. \textit{EMBO J.} \textbf{12}: 357–364.

(

Mann, D.J., D.G. Campbell, C.H. McGowan, and P.T. Cohen. 1992. Mammalian protein serine/threonine phosphatase 2C: cDNA cloning and comparative analysis of amino acid sequences. \textit{Biochem. Biophys. Acta} \textbf{1130}: 100–104.

Marley, A.E., J.E. Sullivan, D. Carling, W.M. Abbott, G.J. Smith,
I.W. Taylor, F. Carey, and R.K. Beri. 1996. Biochemical characterization and deletion analysis of recombinant human protein phosphatase 2Ca. *Biochem. J.* **320**: 801–806.

Mayeda, A. and A.R. Krainer. 1999a. Mammalian in vitro splicing assays. In *Methods in molecular biology: RNA-protein interaction protocols* (ed. S.R. Haynes). Humana Press, Totowa, NJ. [In press.]

———. 1999b. Preparation of Hela cell nuclear and cytosolic S100 extracts for in vitro splicing. In *Methods in molecular biology: RNA-protein interaction protocols* (ed. S.R. Haynes). Humana Press, Totowa, NJ. [In press.]

Mermoud, J.E., P.T. Cohen, and A.I. Lamond. 1992. Set/Thr-specific protein phosphatases are required for both catalytic steps of pre-mRNA splicing. *Nucleic Acids Res.* **20**: 5263–5269.

Mermoud, J.E., P.T. Cohen, and A.I. Lamond. 1994. Regulation of mammalian spliceosome assembly by a protein phosphorylation mechanism. *EMBO J.* **13**: 5679–5688.

Misteli, T. and D.L. Spector. 1996. Serine/threonine phosphatase 1 modulates the subnuclear distribution of pre-mRNA splicing factors. *Mol. Biol. Cell* **7**: 1559–1572.

———. 1998. The cellular organization of gene expression. *Curr. Opin. Cell Biol.* **10**: 323–331.

Misteli, T., J.F. Cáceres, J.Q. Clement, A.R. Krainer, M.F. Wilkinson, and D.L. Spector. 1998. Serine phosphorylation of SR proteins is required for their recruitment to sites of transcription in vivo. *J. Cell Biol.* **143**: 297–307.

Moore, F., J. Weekes, and D.G. Hardie. 1991. Evidence that AMP triggers phosphorylation as well as direct allosteric activation of rat liver AMP-activated protein kinase. A sensitive mechanism to protect the cell against ATP depletion. *Eur. J. Biochem.* **199**: 691–697.

Parker, A.R. and J.A. Steitz. 1997. Inhibition of mammalian spliceosome assembly and pre-mRNA splicing by peptide inhibitors of protein kinases. *RNA* **3**: 1301–1312.

Reed, R. and L. Palandjian. 1997. Spliceosome assembly. In *Eukaryotic mRNA processing* (ed. A.R. Krainer), pp. 130–173. Oxford University Press, New York, NY.

Roscigno, R.F. and M.A. Garcia-Blanco. 1995. SR proteins escort the U4/U6.U5 tri-snRNP to the spliceosome. *RNA* **1**: 706.

Rossi, F., E. Labourier, T. Forne, G. Divita, J. Derancourt, J.F. Riou, E. Antoine, G. Cathala, C. Brunel, and J. Tazi. 1996. Specific phosphorylation of SR proteins by mammalian DNA topoisomerase I. *Nature* **381**: 80–82.

Seghezzi, W., K. Chua, F. Shanahan, O. Gozani, R. Reed, and E. Lees. 1998. Cyclin E associates with components of the premRNA splicing machinery in mammalian cells. *Mol. Cell. Biol.* **18**: 4526–4536.

Shenolikar, S. 1994. Protein serine/threonine phosphatases—new avenues for cell regulation. *Annu. Rev. Cell Biol.* **10**: 55–86.

Tacke, R., Y. Chen, and J.L. Manley. 1997. Sequence-specific RNA binding by an SR protein requires RS domain phosphorylation: Creation of an SRp40-specific splicing enhancer. *Proc. Natl. Acad. Sci.* **94**: 1148–1153.

Takekawa, M., T. Maeda, and H. Saito. 1998. Protein phosphatase 2Ca inhibits the human stress-responsive p38 and JNK MAPK pathways. *EMBO J.* **17**: 4744–4752.

Tamura, S., K.R. Lynch, J. Larner, J. Fox, A. Yasui, K. Kikuchi, Y. Suzuki, and S. Tsuiki. 1989. Molecular cloning of rat type 2C (IA) protein phosphatase mRNA. *Proc. Natl. Acad. Sci.* **86**: 1796–1800.

Tazi, J., M.C. Daugeron, G. Cathala, C. Brunel, and P. Jeanneur. 1992. Adenosine phosphorothioates [ATP a S and ATP + S] differentially affect the two steps of mammalian pre-mRNA splicing. *J. Biol. Chem.* **267**: 4322–4326.

Tazi, J., U. Kornstadt, F. Rossi, P. Jeanteur, G. Cathala, C. Brunel, and R. Lührmann. 1993. Thiophosphorylation of U1-70K protein inhibits pre-mRNA splicing. *Nature* **363**: 283–286.

Travis, S.M. and M.J. Welsh. 1997. PP2Cγ: A human protein phosphatase with a unique acidic domain. *FEBS Lett.* **412**: 415–419.

Travis, S.M., H.A. Berger, and M.J. Welsh. 1997. Protein phosphatase 2C dephosphorylates and inactivates cystic fibrosis transmembrane conductance regulator. *Proc. Natl. Acad. Sci.* **94**: 11055–11060.

Wang, C., K. Chua, W. Seghezzi, E. Lees, O. Gozani, and R. Reed. 1998a. Phosphorylation of splicingosomal protein SAP 155 coupled with splicing catalysis. *Genes & Dev.* **12**: 1409–1414.

Wang, H.Y., W. Lin, J.A. Dyck, J.M. Yeakley, Z. Songyang, L.C. Cantley, and X.D. Fu. 1998b. SRPK2: A differentially expressed SR protein-specific kinase involved in mediating the interaction and localization of pre-mRNA splicing factors in mammalian cells. *J. Cell Biol.* **140**: 737–750.

Wang, R., R. Kohayashi, and J.M. Bishop. 1996. Cellular adherence elicits ligand-independent activation of the Met cell-surface receptor. *Proc. Natl. Acad. Sci.* **93**: 8425–8430.

Wang, Y., F. Santini, K. Qin, and C.Y. Huang. 1995. A Mg2+-dependent, Ca2+-inhibitable serine/threonine protein phosphatase from bovine brain. *J. Biol. Chem.* **270**: 25607–25612.

Wang, Y.-C., M. Selvakumar, and D.H. Helfman. 1997. Alternative pre-mRNA splicing. In *Eukaryotic mRNA processing* (ed. A.R. Krainer), pp. 242–279. Oxford University Press, New York, NY.

Wenk, J., H.I. Trompeter, K.G. Pettrich, P.T. Cohen, D.G. Campbell, and G. Mieskes. 1992. Molecular cloning and primary structure of a protein phosphatase 2C isoform. *FEBS Lett.* **297**: 135–138.

Will, C.L. and R. Lührmann. 1997. snRNP structure and function. In *Eukaryotic mRNA processing* (ed. A.R. Krainer), pp. 130–173. Oxford University Press, New York, NY.

Xiao, S.H. and J.L. Manley. 1997. Phosphorylation of the ASF/SF2 RS domain affects both protein–protein and protein–RNA interactions and is necessary for splicing. *Genes & Dev.* **11**: 334–344.

Zahler, A.M., W.S. Lance, J.A. Stolk, and M.B. Roth. 1992. SR proteins: A conserved family of pre-mRNA splicing factors. *Genes & Dev.* **6**: 837–847.
The type 2C Ser/Thr phosphatase PP2Cγ is a pre-mRNA splicing factor

Michael V. Murray, Ryuji Kobayashi and Adrian R. Krainer

Genes Dev. 1999. 13:
Access the most recent version at doi:10.1101/gad.13.1.87

References
This article cites 50 articles, 25 of which can be accessed free at:
http://genesdev.cshlp.org/content/13/1/87.full.html#ref-list-1

License

Email Alerting Service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or [click here](http://genesdev.cshlp.org/content/13/1/87.full.html#ref-list-1).