Cross Coupled Contour Error Compensation Technology

Wanjun Zhang1,2,3,a, Shimin Mao1,b, Feng Zhang1,c, Jingxuan Zhang1,d & Jingyi Zhang2,e, Jingyan Zhang2,f

1Quanzhou Institute of Information Engineering, 362000, China
2School of Mechanical Engineering, Xian Jiaotong University, 710049, China
3Lanzhou Industry and Equipment Co, Ltd, Lanzhou 730050, China

gszwj_40@163.com, bzhanganjun40@163.com, c116543048@qq.com,
d116543048@qq.com, ezhangwanj40@163.com, ftszhangwj40@163.com

Abstract. In order to improve the machining precision of multi axis CNC machine tool, contour error reduced by mechanical transmission and electric control factors, servo multi axis CNC machine adopted cross coupling parameter selection problem, stability is not strong and so on, this paper proposed a control method of cross coupled contour error compensation, control method of cross coupled contour error compensation based on a cross coupled contour error compensation the model, X axis, Y axis and Z axis of the simulation platform, Simulation results show that the simulation and experimental results show that control contour error compensation algorithm based on ross coupling error compensation method calculation process is simple, the contour error, the accuracy of interpolation control improved, meet the real-time, high-speed, efficient CNC system interpolation requirements, as well as NC interpolation in high reference significance.

1. Introduction

Motion control means in complex conditions, the control scheme and the predetermined instructions into the desired mechanical planning. The control of motion control system of the controlled mechanical movement to achieve precise position control, speed control, acceleration control, torque or force, as well as the mechanical quantity is controlled in the integrated control of [1-20]. CNC multi axis the motion control system, position closed-loop CNC system according to the interpolation results a position control instruction of each axis independently control the driving mechanical transmission mechanism corresponding to the final contour feed movement accurately. But in the actual process of NC system, interpolation according to the input data to calculate the value of each coordinate axis position command track, precision motion control system is often affected by the two aspects of mechanical and electrical control, contour error will inevitably exist [21-26]. The contour error is always the 3 error is the result of comprehensive effect. This paper from the perspective of geometry study and NC contour error analysis, analysis line contour, different curvature and arc contour curve contour error, and to explore the relationship between the tracking error and contour error.

Based on the contour error analysis of multi axis CNC machining machine tool, method of cross coupled contour error compensation is given a multi axis CNC system, through the establishment of CNC linkage machine contour error model. Finally, simulation results show that the control of contour error compensation algorithm using cross coupling error compensation algorithm, can greatly reduce
the contour error, improve the accuracy of interpolation control, also reduce the vibration of single axis CNC interpolation system, also has the reference significance in the process of NC interpolation in the other.

2. CNC multi axis machine tool profile control system

CNC multi axis machine tool usually contains two (including more than two) of the feed shaft, the movement of the feed shaft to produce the actual contour of the trajectory. The feed shaft includes servo system, mechanical drive, drive system and motion control system. Fig.1 is a single axis servo drive system with coupled contour control of the machine tool.

![Fig 1. Single axis servo drive coupled contour control machine tool](image)

Machine multi axis control non coupling profile CNC, is based on the single axis servo drive coupling machine contour control based gain link of each feed axis and feedback system and the error signal to control independently, to achieve control of contour accuracy.

Fig. 2 is a typical single axis servo drive coupled contour control machine tool block, formed by the feedback system.

![Fig 2. Control block diagram of the single axis servo drive](image)

The position loop gain K_p is the gain of the speed loop; the gain of the servo motor K_s is the initial position of the input signal K_m quantity; the position P_m of feedback signal y_{out} quantity; the torque coefficient of the motor S_n is a constant.

$$\phi(s) = \frac{V^*(s)}{U(s)} = \frac{K_vK_m/S_n}{s^2 + (1/S_n)s + (K_vK_m/S_n)}$$
Supposed,
\[\omega_m^2 = K_n K_m / S_n, \quad \xi = 1/2 \ X_n S_n \] Then:

\[\xi \text{ is damping coefficient, } \omega_m \text{ is natural frequency.} \]

Analysis of the characteristics of three coordinate contour system:

\[\phi(s) = \frac{\omega_n^2}{s^2 + 2\xi \omega_n s + \omega_m^2} \]

When \(K1 = K_n = 0.1, K_m = 0.25, S_n = 0.1 \),
\(\omega_m = \sqrt{K_n K_m / S_n} = 0.5 \)

Make two contour curves \(K1 = K_n = 0.1 \) and \(K2 = K_n = 0.25 \), as shown in Fig. 3.

![Fig 3. Comparison of k1=0.1 and k2 = 0.25 curve contour](image-url)

3. Experiment simulation and analysis

The tracking error curve of Fig. 4 ~ 6 x, y, z axis, tracking errors are within the range of 10 \(\mu \text{m} \), that single axis control strategy used in this study has good tracking accuracy. Figure 9 is the three axis platform before and after the improvement of spatial linear trajectory contour error curve; Figure 10 is 10 s with 100 N disturbance after the linear trajectory curve contour error of three axis platform.

![Fig 4. Contour error map](image-url)
In order to ensure the chord error and normal acceleration is controlled within the allowable range of circumstances, only to feed acceleration constraints that feed speed with maximum feed speed and interpolation, the proposed algorithm can perform the interpolation with the maximum feed rate, achieve optimal interpolation accuracy and speed, thereby improving the interpolation precision and efficiency.

4. Summary
This paper discusses NURBS curve and its character and calculating methods of correlation parameter. A new NURBS interpolation algorithm is developed. Some calculating missions which can be completed in the pretreatment phase. The determination of constrained feed step length based on chord error controlling and feed acceleration controlling can be adjusted automatically. It can control interpolation error and feed rate in the allowable range at the same time, achieve maximum feed speed under the condition that the interpolation accuracy and impact on machine tool are all in controlling range, acquire optimization between interpolation accuracy and feed rate. The simulation results show that the algorithm is correct; it is consistent with a NURBS curve interpolation requirements.

Acknowledgements
The authors thank the financial supports from National Natural Science Foundation of China(Grant no. 51165024) and Science and Technology Major Project of “High-grade NC Machine Tools and Basic Manufacturing Equipment” (2010ZX040001-181).

References
[1] Zha Xi-mei, Guo Qing-cling. High precision control based on zero phase error tracking controller and cross-coupled controller for direct drive XY table [J]. Modular Machine Tool & Automatic Manufacturing Technique, 2011 (2): 83-85.
[2] Ouyang P R, Pano V, Acob J. Contour tracking control for multi-DOF robotic manipulators [J]. Journal of Pharmacy & Pharmacology, 2013, 33 (2): 1491-1496.
[3] Kim K S, Zou Q. A modeling-free inversion-based iterative feed forward control for precision output tracking of linear time-invariant systems [J]. IEE/ASME Transactions on Mechatronics, 2013, 18 (6): 1767-1777.
[4] Zhang Wan-Jun, Hu Chi-Bing, Zhang Feng, et al. Honing machine motion control card three B-spline curve method of interpolation arithmetic for CNC system [J]. Chinese Journal of Manufacturing Technology & Machine Tool, 8 (8), pp. 40-43, August 2012.
[5] Zhang Wan-Jun, HU Chi-bing, WU Zai-xin, et al. Research on modification algorithm of Three B Spline curve interpolation technology [J]. Chinese Journal of Manufacturing Technology & Machine Tool, 2 pp. 141-143, February 2013.
[6] Zhang Wan-Jun, Zhang Feng, Zhang Guo-hua. Research on a algorithm of adaptive interpolation for NURBS curve. [J]. Applied Mechanics and Materials, Vol. 687-691, pp. 1600-1603, December 2014.
[7] Zhang Wanjun, Zhang, Gao Shanping, Zhang Sujia. Modification algorithm of NURBS curve interpolation. [J]. Advances in Engineering Research, 2016, 12, Vol. 83. 507-512.
[8] Zhang Wanjun, Zhang, Gao Shanping, Zhang Sujia. Modification algorithm of Cubic B-spline curve interpolation. [J]. Advances in Engineering Research, 2016, 12, Vol. 83. 513-518.
[9] Zhang Wanjun, Zhang, Gao Shanping, Zhang Sujia. Modification algorithm of NURBS curve interpolation. [J]. 2016 4th International conference on Machinery, materials and Information Technology Applications, 2016, 12, Vol.71. 507-512.
[10] Zhang Wanjun, Zhang, Gao Shanping, Zhang Sujia. Modification algorithm of Cubic B-spline curve interpolation. [J]. 2016 4th International conference on Machinery, materials and Information Technology Applications, 2016, 12, Vol.71. 513-518.
[11] Zhang Wanjun, Zhang, Gao Shanping, Zhang Sujia. A improved algorithm of three B-spline
curve interpolation and simulation. [J]. Advances in Materials, 2017, 2, Vol. 1820. 08004-1-08004-6.

[12] Zhang Wanjun, Zhang, Gao Shanping, Zhang Sujia. Innovation research on Taylor’s iteration algorithm of NURBS curve and simulation. [J]. Advances in Materials, 2017, 2, Vol. 1820. 080014-1-080014-8.

[13] Zhang Wanjun, Zhang, Gao Shanping, Zhang Sujia. M NURBS curve method Taylor's launch type of interpolation arithmetic. [J]. Advances in Engineering Research, 2016, 12, Vol. 118. 43-52.

[14] Zhang Wanjun, Zhang, Gao Shanping, Zhang Sujia. A Novel of Improved algorithm adaptive of NURBS curve. [J]. Advances in Engineering Research, 2016, 12, Vol. 118. 53-60.

[15] Rahalnan M, Seethaler R, Ye Uowley I, et al. A new approach to contour error control in high speed machining [J]. International Journal of Machine Tools & Manufacture, 2015, 88: 42-50.

[16] Zhang Wanjun, Zhang, Gao Shanping, Zhang Sujia. A novel on high-grade CNC machines tools for B-Spline curve method of High-speed interpolation arithmetic. [J]. 2016 International Conference on Automotive Engineering, Mechanical and Electrical Engineering, 2017, 3, Vol. 118. 53-60.

[17] Zhang Wanjun, Zhang, Gao Shanping, Zhang Sujia. Study on Embedded CNC system for NURBS curves method of interpolation arithmetic. [J]. advances in Engineering Research, 2017, 3, Vol. 118. 53-60.

[18] Zhang Wan-Jun, Zhang, Feng, Zhang Guo-hua. Research on modification algorithm of Cubic B-spline curve interpolation technology. [J]. Applied Mechanics and Materials, Vol. 687-691, pp.1596-1599, December 2014.

[19] Zhang Wan-Jun, Zhang, Feng, Zhang Wan-Liang. Research on a NURBS curve of timing / interrupt interpolation algorithm for CNC system [J]. Chinese Journal of Manufacturing Technology & Machine Tool, 4 (4), pp.183-187, April 2015.

[20] Kong Fan-Guo, Hao Shang-Hua, Zhong Yan-Zhi. NURBS curve interpolation algorithm to achieve the VC [J]. China new technology and new products, 17, pp.8-9, 2009.

[21] Ye Bo-Sheng, Yang Shu-Zi. CNC system in cubic B-Spline curve interpolation method [J]. China Mechanical Engineering, 9 (3), pp. 42-43, 1998.

[22] Li He-Cheng, Wang Yu-Ping, An interpolation based genetic algorithm for sloving nonlinear bilevel programming problems. Chinese Journal of Computers, 31 (6), pp.910-918, June 2008.

[23] Yeh S S, Hsu P L. A new approach to biaxial cross-coupled control C 1//IEEE International Conference on Control Applications, Alaska, USA, 2000: 168-173.

[24] Yeh S S, Hsu P L. Simulation of the contouring error vector for the cross-coupled control design[J]. IEEE/ASME Transactions on Mechatronics, 2002.7 (1): 44-51.

[25] KOREN Y. Cross-coupled biaxial computer control for manufacturing Systems [J]. Journal of Dynamic Systems, Measurement and Control, 1980, 102 (4): 265-272.

[26] MUSTAFAMM, YAACOBNR, MOHAMED N A Nik. Adaptive zero-phrase error-tracking controllers with advance learning [J]. Control and Intelligent Systems, 2004, 32 (2): 116-125.