Four dimensional temperature, salinity and mixed layer depth in the Gulf Stream, reconstructed from remote sensing and in-situ observations with neural networks

By E. Pauthenet et al

The paper aims at providing four-dimensional temperature, salinity, and mixed layer depth in the Gulf Stream, from sea surface satellite observations (SST and altimetry). Interpolations of surface data at depth are done with a NN trained on 67767 vertical profiles. In the operational phase, satellite data are associated with vertical profiles (Temperature, Salinity, Density and MLD) through the NN. The authors also present a procedure based on density stability to improve the MLD estimation. The subject is of scientific interest due to the lack of vertical profiles in the ocean with respect to satellite surface data. The procedure presented (OSnet) seems efficient to associate sea surface satellite data with their vertical profiles. But I found the paper difficult to read and poorly structured. It can be published after the following corrections and the rewriting of some sections.

We would like to thank Michel Crepon for his careful review of our study. It helped to improve the quality of the explanation, the paper organization and some English mistakes. We especially reorganized the method paragraph 3.3 and the last section of the discussion 5.3. We also increased the resolution and resized all the figures.

Major comments

The paper is quite long and can shorten by 30%. I suspect it presents the results of Ph.d. work of an enthusiastic student who would like to present all the details of his work and has some difficulties extracting the major conclusions.

After careful consideration, we have decided to take no special action about this unspecific comment. The main reason this paper has its length is that it presents for the first time a rather complex interpolation procedure and that it provides a thorough validation of the product as it was deemed useful for future readers. The use of neural networks in oceanography is still new and requires a detailed description of the method. In the absence of any guidance from the reviewer about which presentation he thinks unnecessary, and considering that reviewer#1 did not complain about the length of the manuscript, we have not attempted a drastic reduction in size.

The readers of Ocean Sciences are physicists and most of them are not familiar with neural networks. Section 3.1 must be rewritten with care.

Agreed, we added two sentences of general introduction to MLPs, and a reference that describes well the MLP:

—> L139 “The MLP guesses the non-linear relation between inputs and outputs, through one or more hidden layers with many neurons stacked together. The learning mechanism that allows the MLP to iteratively minimize the loss function is called backpropagation.”

—> L139 We added a citation to a more general review of MLP in atmospheric science “Gardner et al., 1998”.

However we cannot get further into detail because this would lengthen the manuscript, which the reviewer advises us against in his first remark. MLPs are widely used in many scientific fields and the literature describing the algorithm is rich.

I recommend specifying that the use of a NN can be decomposed into two phases well separated:

• a learning phase in which the weights of the neurons are estimated from a learning database.
• an operational phase consisting in retrieving the profiles from the satellite data (input data base)

Agreed, we modified the introduction of the method:

—> L129 “Finally, an operational phase uses the trained network and MLD adjustment to predict T, S and MLD on daily grids from the satellite data.”

The learning data must be described with care: mention the origin of the profiles, which is unclear in the present form.

We completed the sentence:

—> L83 “We use the in situ temperature and salinity (T-S) vertical profiles sampled by ARGO floats and ships […]”

The input data must be justified. It appears that there is some redundancy among them: are MDTs and SLAs independent data? I do not think that geostrophic currents content added information with respect to SLA. How do you compute geostrophic current anomalies? Are they seasonal anomalies or anomalies with respect to whole observation period? Information included in SLA are also included in the geostrophic currents. These remarks are comforted by section 4.4 which shows that some variables do not play an important role and can be neglected. Section 4.4 could be suppressed if the input variables are chosen adequately in section 3 by a simple physical reasoning or by doing an EOF on the input data.

Can you comment?

Regarding MDT and SLA we added this explanation in the method:

—> L99 : “MDT is calculated by merging information from altimeter data, GRACE, and GOCE gravity field and oceanographic in situ measurements (drifting buoy velocities, hydrological profiles) (Mulet et al 2021), while SLA is only issued from altimeter data. Keeping MDT and SLA separated allows to present their respective importance in the prediction (Figure 10 and 11).”

We also added how the geostrophic currents are computed:

—> L98 “We also use geostrophic surface velocities derived from the SLA product and distributed by CNES-CLS.”

Keeping the geostrophic currents as inputs gives the information of gradient at the surface that the network does not see otherwise. Even though their mean relative importance is small (Figure 10 and 11), their importance can be large for specific profiles on the edge of an eddy or in a front for example. Keeping them in the analysis is not costly and slightly improves the global prediction, by correcting profiles under large surface gradients.

Section 4.4 is an important part of this paper, as neural networks are often presented as unexplainable black boxes. We have here an innovative tool to track back how the network learns.

The procedure for improving the MLD developed in section 3.3 is an important feature of this work, but it is hard to understand. Can you reformulate it in a simpler manner? How do you estimate the parameter lambda in the K estimation?

—> L177 We restructured and simplified the presentation of section 3.3

—> L194 We reworded the explanation for the calibration of the lambda parameter : “,with \(\lambda = 0.57 \) the value of K corresponding to the MLD. The calibration of \(\lambda \) is done by a cross-validation procedure according to the estimation bias between \(\hat{T} \) at sea surface and the SST value (Fig. 5). In other words \(\lambda = 0.57 \) allows to adjust the MLD while keeping the mean of the difference between \(\hat{T} \) and SST at zero (green in Fig. 5). We expect this value to be specific to our region and of the considered NN parameterization. It would likely require a new calibration for other case-study regions.”

A simpler procedure would be to apply a median filter onto the density profiles for removing the hydrostatic instability.
Yes we can smooth the density profile but it is not possible to compute back T and S from density alone.

The significance of the sentence printed in lines 199-200 is difficult to understand.

We rewrote this sentence, we hope it is clearer now. It is a description of figure 5:

"Note that the direct prediction of temperature at the surface (Fig. 5a, blue) is more accurate compared to SST than in situ observations, because OSnet learns from SST."

I have appreciated the scientific content of appendix A which aims at removing the density inversion with a physical constrained loss function, which is an original contribution of OSnet.

Thank you.

The OSnet procedure has the characteristic of a multi-entry database. It interpolates the profiles but does not model the physical laws connecting satellite observations and the associated vertical profiles. An original procedure using hidden Markov chain, which models these physical laws has been recently developed for retrieving vertical Chl-a vertical profiles from ocean color satellite observations (Charantonis et al, 2015, Puissant et al, 2021). Can you say some words about the philosophy of these two methods, their advantages, and disadvantages?

We believe there is a confusion here, OSnet does model the link between satellite observations and the vertical profiles, similarly to Charantonis et al.. Self-organizing maps is a clustering method based on neural network that can be used for profiles retrieval too. We do not know if it would perform better or worse than our MLP. MLP are a natural method for our problem, because we don't take into account the 2D spatial information. If we used 2D patches of input data, SOM could be better suited.

"The salinity difference relatively to the SSS is too large for the adjustment to cause a significant issue (Fig. 5b). Still the adjusted salinity profiles with K predicted creates a fresh bias and the use of K^\ast corrects that (not shown)."
Section 4.2: horizontal maps of T and S (Figures 6, 7) are not very useful since the authors focus their interest on the four dimensional representation of these two variables. Besides the figures are very small. I suggest replacing them by vertical sections.

We think these maps are essential to appreciate the good horizontal coherence (eddies, Gulf Stream jet...), because the network only predicts profile by profile and still manage to predict consistent fields. Moreover we already show sections in figures 15 and 16. No action taken for that comment.

Section 4.5 is interesting. OSnet is able to reproduce the SST due to global change. It could be used to process ocean data in climate study contexts. But I do not understand the sentence (lines 313-314) “The long term…. Based on loess” What do you mean by loess?

Loess is an acronym of « LOcally Estimated Scatterplot Smoothing », it is used in statistics.

Section 5.1 justifies the use of OSnet for providing T S profiles at any location. Don’t be too modest! I would change line 353 as “One major feature of OSnet is the possibility…”. The detection by OSnet of the big warm eddy crossing the mooring is impressive.

Thank you, we replaced “convenient” by “major” as proposed.

Some problem, the position of the mooring W3 presented in the map figuring in little cartoon at the left top of figure 14 does not correspond to the coordinates mentioned in the figure legend!

We double checked and it is all correct. the W3 mooring is at 69.11W and 38.51N like plotted in the figure.

English must be corrected by a native English-speaking person:

Examples: line 91 “is shown on figure 1a”; line 2007 “is shown on figure 4”; line 299 “The figures 10 and 11……..”, instead of “Figures 10 and 11……..”.

We corrected the two occurrences on “on figure” to “in figure” and removed “The” in front of figure.

Data is a plural noun (singular: datum)

Corrected, thank you.

Conclusion

This paper is useful contribution to ocean data sampling. It can be published after the above corrections are done. I also suggest 30% concatenation of the text which is too long with unnecessary presentations.