Classification of strongly positive representations of even general unitary groups.

Yeansu Kim and Ivan Matić

May 31, 2019

Abstract

We explicitly construct the structure of Jacquet modules of parabolically induced representations of even unitary groups and even general unitary groups over a p-adic field F of characteristic different than two. As an application, we obtain a classification of strongly positive discrete series representations of those groups.

1 Introduction

The first purpose of this paper is to explicitly construct the Tadić’s structure formula for the even unitary groups and the even general unitary groups. The Tadić’s structure formula explores the Jacquet modules of parabolically induced representations. In the case of general linear groups, the Jacquet modules of parabolically induced representations are studied in [2, 17]. The case of classical groups is of different nature due to difference of its Weyl groups and its action on the Levi subgroups. In [14], Tadić explicitly describe the structure of Jacquet modules in the cases of Sp_{2n}, GSp_{2n}, and SO_{2n+1}, later it is generalized to the cases of SO_{2n}, metaplectic group, and $GSpin$ groups in [13–6]. Using of the Tadić’s structure formula, one can determine all Jacquet modules of certain classes of representations [9, 10].

The Tadić’s structure formula also happens to be extremely useful for the study of reducibility and composition series of certain induced representations.

MSC2000: 20C11, 11F70

Keywords: Tadić’s structure formula, strongly positive representations
which happen to be important for understanding of the unitary dual, such as standard representations and generalized principal series.

As an application of Tadić's structure formula, the second purpose of this paper is to obtain a classification of strongly positive representations of even unitary groups and even general unitary groups. We note that the strongly positive representations serve as basic building blocks in the classification of discrete series of classical groups, including unitary ones, obtained in [11,12], and in the classification of discrete series representations of odd $GSpin$ groups, recently provided in [7].

This paper is organized as follows: In Section 2 we outline standard notation. In Section 3 we obtain the Tadić's structure formula for even general unitary groups, which describes the explicit structure of the Jacquet modules of the parabolically induced representations of general unitary groups. In Section 4 we obtain a classification of strongly positive representations of even general unitary groups. In the appendix, we also discuss the even unitary group case.

First author has been supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2017R1C1B2010081).

Second author has been supported by Croatian Science Foundation under the project 9364.

2 Notation and preliminaries

2.1 Notation

Let F be a non-Archimedean local field of characteristic different than two and let E/F be a quadratic extension of fields of characteristic different than two. Let $\Gamma = \text{Gal}(E/F)$ and we let $x \to \bar{x}$ be its non-trivial element. Choose an element $\beta \in E$ such that $E = F(\beta)$ and $\bar{\beta} = -\beta$. To define the unitary groups, we set

$$J_n = \begin{pmatrix} \beta I_n & \beta I_n \\ -\beta I_n & \beta I_n \end{pmatrix}.$$

We let $H_n = \text{GU}(n,n)$ be the quasi-split general unitary group in $2n$ variables defined with respect to E/F and J_n. Its F-points are

$$H_n(F) = \{ g \in GL_{2n}(E) | \bar{g}J_ng = \lambda J_n, \lambda \in E^\times \}$$
We fix λ throughout the paper.

Let s and M_s be as in Remark 3.1. For a parabolic subgroup $P_s = M_sN_s$ of H_n, we denote the induced representation $\text{Ind}^{H_n}_{P_s}(\rho_1 \otimes \cdots \otimes \rho_k \otimes \tau)$ by

$$\rho_1 \times \cdots \times \rho_k \times \tau$$

where each ρ_i (resp. τ) is a representation of some $\text{GL}_{n_i}(E)$ (resp. $H_{n-n'}(F)$). In particular, $\text{Ind}^{H_n}_{P_s}$ is a functor from admissible representations of $M_s(F)$ to admissible representations of $H_n(F)$ that sends unitary representations to unitary representations. We also denote the normalized Jacquet module with respect to P_s by $r_s(\tau)$. In particular, r_s is a functor from admissible representations of $H_n(F)$ to admissible representations of $M_s(F)$.

The Grothendieck group of the category of all admissible representations of finite length of $H_n(F)$, i.e., a free abelian group over the set of all irreducible representations of $H_n(F)$ (resp. $\text{GL}_n(E)$) is denoted by $R_{\text{GU}}(n)$ (resp. $R_{\text{GU}}(n)$) and set $R_{\text{GU}} = \bigoplus_{n \geq 0} R_{\text{GU}}(n), R_{\text{GL}} = \bigoplus_{n \geq 0} R_{\text{GL}}(n)$.

In the case of GL, we denote the induced representation $\text{Ind}^{\text{GL}_n}_{P'}(\rho_1 \otimes \cdots \otimes \rho_k)$ by

$$\rho_1 \times \cdots \times \rho_k$$

such that $P' = M'N'$ is the standard parabolic subgroup of GL_n where $M' \cong \text{GL}_{n_1} \times \text{GL}_{n_2} \times \cdots \times \text{GL}_{n_k}$ and each ρ_i is a representation of $\text{GL}_{n_i}(E)$ for $i = 1, \ldots, k$. We also follow the notation in [2]. Let ρ be an irreducible unitary cuspidal representation of some $\text{GL}_p(E)$. We define the segment, $\Delta := [\nu^a \rho, \nu^{a+k} \rho] = \{\nu^a \rho, \nu^{a+1} \rho, \ldots, \nu^{a+k} \rho\}$ where $a \in \mathbb{R}$ and $k \in \mathbb{Z}_{\geq 0}$. If $a > 0$, we call the segment Δ strongly positive.

3 The Tadić’s structure formula: general unitary groups

We fix the F-Borel subgroup B of upper triangular matrices in H_n. Then $B = TU$, where T is a maximal torus of diagonal elements in H_n and let A_0
be the maximal F-split subtorus of T. Then,

$$T(F) = \left\{ \left(\begin{array}{cccc}
x_1 \\
\vdots \\
x_n \\
\lambda x_1^{-1} \\
\vdots \\
\lambda x_n^{-1}
\end{array} \right) \in \mathbb{A}^n \mid x_i \in E^\times, \lambda \in F^\times \right\}$$

and

$$A_0(F) = \left\{ \left(\begin{array}{cccc}
x_1 \\
\vdots \\
x_n \\
\lambda x_1^{-1} \\
\vdots \\
\lambda x_n^{-1}
\end{array} \right) \in \mathbb{A}^n \mid x_i, \lambda \in F^\times \right\}$$

For simplicity, we let $a(x_1, \cdots, x_n; \lambda)$ be an element of the form $\text{diag}(x_1, \cdots, x_n, \lambda x_1^{-1}, \cdots, \lambda x_n^{-1})$ in $A_0(F)$. Let $\Phi(H_n(F), A_0(F))$ be the restricted roots of $H_n(F)$ with respect to $A_0(F)$ and let $\Delta := \{\alpha_i\}_{i=1}^n$ be the set of simple roots, where $\alpha_i = e_i - e_{i+1}, 1 \leq i \leq n - 1$, $\alpha_n = 2e_n - e_0$.

The Weyl group $W(H_n(F)/A_0(F))$ is isomorphic to $S_n \rtimes \{\pm 1\}^n$, where S_n is the permutation group of n letters. More precisely, for $(ij) \in S_n$,

$$(ij) \cdot a(x_1, \cdots, x_n; \lambda) = a(x_1, \cdots, x_i, x_j, x_{i+1}, \cdots, x_{j-1}, x_i, x_{j+1}, \cdots, x_n; \lambda)$$

and for $\epsilon = (\epsilon_1, \cdots, \epsilon_n) \in \{\pm 1\}^n$,

$$\epsilon_i \cdot a(x_1, \cdots, x_n; \lambda) = a(x_1, \cdots, x_{i-1}, \lambda x_i^{\epsilon_i}, x_{i+1}, \cdots, x_n; \lambda).$$

Remark 3.1. Let $s = (n_1, n_2, \ldots, n_k)$ be an ordered partition of some n' such that $n' \leq n$ and let $\Theta = \Delta \setminus \{\alpha_{n_1}, \alpha_{n_1+n_2}, \cdots, \alpha_{n_1+\cdots+n_k}\}$. Let A_s be the subtorus of A_0 that corresponds to Θ and let M_s be the centralizer of A_s.

4
Then, its F-points is of the form

$$M_s(F) = \left\{ \begin{pmatrix} g_1 & & & \\ & \ddots & & \\ & & g_k & \\ & & & \lambda^t g^{-1}_1 \\ & & & \ddots \\ & & & & \lambda^t g^{-1}_n \end{pmatrix} \mid g_i \in GL_{n_i}(E), g \in H_{n-n'}(F), \lambda \in F^\times \right\}. $$

Therefore, $M_s(F) \cong GL_{n_1}(E) \times GL_{n_2}(E) \times \cdots \times GL_{n_k}(E) \times H_{n-n'}(F)$ and for simplicity, the element $\text{diag}(g_1, g_2, \cdots, g_k, g, \lambda^t g_1^{-1}, \lambda^t g_2^{-1}, \cdots, \lambda^t g_k^{-1})$ in $M_s(F)$ is denoted by $(g_1, g_2, \cdots, g_k, g)$.

Then, for an element $(g_1, g_2, \cdots, g_k, g) \in M_s(F)$, the Weyl group $W(H_n(F)/A_s(F))$ is a subgroup of $S_k \times \{\pm 1\}^k$. In particular, for $(ij) \in W(H_n(F)/A_s(F)) \subset S_k$,

$$(ij) \cdot (g_1, g_2, \cdots, g_k, g) = (g_1, \cdots, g_{i-1}, g_j, g_{i+1}, \cdots, g_{j-1}, g_i, g_{j+1}, \cdots, g_k, g),$$

and for $\epsilon = (\epsilon_1, \cdots, \epsilon_k) \in \{\pm 1\}^k \subset W(H_n(F)/A_s(F))$ with $\epsilon_i = -1, \epsilon_k = 1$ for $k \neq i$,

$$\epsilon \cdot (g_1, \cdots, g_i, \cdots, g_k, g) = (g_1, \cdots, \lambda^t g_i^{-1}, \cdots, g_k, g). \quad (1)$$

Therefore, the Weyl group action on the maximal F-split torus $A_0(F)$ and Levi subgroup $M_s(F)$ of H_n is similar to that for general symplectic groups (Note that the main difference is the Weyl group action on the Levi subgroup). In [13] Section 4, Tadić characterizes the representative element of the set $[W_{\Delta, \alpha} \backslash W/W_{\Delta, \beta}]$ and its explicit action on the simple roots for GSp_{2n}. We also get the same results, i.e., from Lemmas 4.1 through 4.8 of [14] in the case of even general unitary groups, since those lemmas only depend on the simple roots, Weyl group and its action on the simple roots and we also know that simple roots for H_n is same as those for GSp_{2n}.

We now explain the Tadić’s structure formula for H_n and follow the notation in [14] for simplicity. Let i_1, i_2 be integers which satisfy $1 \leq i_1, i_2 \leq n$. Take an integer d such that $0 \leq d \leq \min\{i_1, i_2\}$. Suppose that an integer k satisfies $\max\{0,(i_1 + i_2 - n) - d\} \leq k \leq \min\{i_1, i_2\} - d$. Let $p_n(d, k)_{i_1, i_2} \in S_n$ be defined by
Let $q_n(d, k)_{i_1, i_2}$ be $(p_n(d, k)_{i_1, i_2}, (1_{i_2-d}, -1_d, 1_{n-i_2}))$ where $1_i = 1, \ldots, 1$ (1 appears i times). Let $w = q_n(d, k)_{i_1, i_2}$. Then, for $(g_1, g_2, g_3, g_4, h) \in \text{GL}_k(E) \times \text{GL}_{i_2-d-k}(E) \times \text{GL}_d(E) \times \text{GL}_{i_1-d-k}(E) \times H_{n-i_1-i_2+d+k}(F)$, we have $w \cdot (g_1, g_2, g_3, g_4, h) = (g_1, g_4, \lambda^t g_3^{-1}, g_2, h)$.

Let π_i be an irreducible smooth representation of $\text{GL}_{n_i}(E)$ for $i = 1, 2, 3, 4$ and let σ be an irreducible smooth representation of H_m. We have,

$$w^{-1} \cdot (\pi_1 \otimes \pi_2 \otimes \pi_3 \otimes \pi_4 \otimes \sigma) = \pi_1 \otimes \pi_4 \otimes \tilde{\pi}_3 \otimes \pi_2 \otimes \omega_{\pi_3} \sigma. \quad (2)$$

where $\tilde{\pi}(g) := \pi(t^* g^{-1})$.

Set

$$(\pi_1 \otimes \pi_2 \otimes \pi_3) \tilde{\times}(\pi_4 \otimes \sigma) = \pi_1 \times \pi_2 \times \pi_4 \otimes \pi_3 \times \omega_{\pi_3} \sigma. \quad (3)$$

Applying (2) and (3), we get

Theorem 3.2 (Tadić’s structure formula for general unitary groups.). For $\pi \in R_{GL}(i)$ and $\sigma \in R_{GU}(n-i)$, the following structure formula holds

$$\mu^*(\pi \times \sigma) = \mathcal{M}^*(\pi) \tilde{\times} \mu^*(\sigma).$$

Lemma 3.3. Let ρ be an irreducible cuspidal representation of $\text{GL}_k(E)$ and $a, b \in \mathbb{R}$ be such that $b - a \in \mathbb{Z}_{\geq 0}$. Let σ be an admissible representation of finite length of $H_n(F)$. Write $\mu^*(\sigma) = \sum_{\pi' \otimes \sigma'} \pi' \otimes \sigma'$. Then $\mathcal{M}^*(\delta([\nu^a \rho, \nu^b \rho])) = \sum_{i=a-1}^{b} \sum_{j=i}^{b} \delta([\nu^a \rho, \nu^j \rho]) \otimes \delta([\nu^{i+1} \rho, \nu^b \rho]) \otimes \delta([\nu^{i+1} \rho, \nu^{j} \rho])$ and $\mu^*(\delta([\nu^a \rho, \nu^b \rho]) \times \sigma) = \sum_{i=a-1}^{b} \sum_{j=i}^{b} \delta([\nu^{-i} t \rho^{-1}, \nu^{-a} t \rho^{-1}]) \times \delta([\nu^{i+1} \rho, \nu^b \rho]) \times \pi' \otimes \delta([\nu^{i+1} \rho, \nu^{j} \rho]) \times \omega' \sigma$. We omit $\delta([\nu^x \rho, \nu^y \rho])$ if $x > y$.

We recall the definition of the strongly positive representations of $GSpin$ groups.
Definition 3.4. An irreducible representation σ of $H_n(F)$ is called strongly positive if for every embedding

$$\sigma \hookrightarrow \nu^{\rho_1} \rho_1 \times \nu^{\rho_2} \rho_2 \times \cdots \times \nu^{\rho_k} \rho_k \rtimes \sigma_{\text{cusp}}$$

where $\rho_i, i = 1, 2, \ldots, k$ are irreducible unitary cuspidal representations of GL, σ_{cusp} is an irreducible cuspidal representation of $H_n'(F)$ and $s_i \in \mathbb{R}, i = 1, 2, \ldots, k$, then we have $s_i > 0$ for each i.

The following lemma is also useful when we explicitly calculate Jacquet modules:

Lemma 3.5. Let ρ be a cuspidal representation of $GL_k(E)$ and let σ_{cusp} be a cuspidal representation of $H_n(F)$. Write $\rho = \nu^{e(\rho)} \rho^u$, where $e(\rho) \in \mathbb{R}$ and ρ^u is a unitary cuspidal representation. If $\rho \rtimes \sigma_{\text{cusp}}$ has a strongly positive discrete series subrepresentation, then we have

(i) $\tilde{\rho}^u \cong \bar{\rho}^u$, i.e., ρ^u is conjugate self-dual.

(ii) $\omega_{\rho} \sigma_{\text{cusp}} \cong \sigma_{\text{cusp}}$.

Proof. Let σ be a strongly positive subrepresentation of $\nu^{e(\rho)} \rho^u \rtimes \sigma_{\text{cusp}}$. Then, $e(\rho) > 0$ since σ is strongly positive. If (i) or (ii) does not hold, then due to Lemma 2.1 in [10], $\nu^{\rho} \rho^u \rtimes \sigma_{\text{cusp}}$ is irreducible for every α. Then we have the following embedding:

$$\sigma \hookrightarrow \nu^{e(\rho)} \rho^u \rtimes \sigma_{\text{cusp}} \cong \nu^{-e(\rho)} \tilde{\rho}^u \rtimes \sigma_{\text{cusp}}.$$

Since $-e(\rho) < 0$, this contradicts the strong positivity of σ.

4 Classification of strongly positive representation of even general unitary groups

In this section, we classify the strongly positive representation of even general unitary groups. We mostly follow the arguments in [8] and appendix to [5] and generalize those to our case.
4.1 Construction of the map

In this section, we construct the map from the set of strongly positive representations into certain induced representations. We consider the induced representations of the following form

$$\delta(\Delta_1) \times \delta(\Delta_2) \times \cdots \times \delta(\Delta_k) \rtimes \sigma_{cusp}$$

(4)

where $\Delta_1, \Delta_2, \ldots, \Delta_k$ is a sequence of strongly positive segments (See Notation 2.1 for the definition of strongly positive segments) satisfying $0 < e(\Delta_1) \leq e(\Delta_2) \leq \cdots \leq e(\Delta_k)$ (we allow $k = 0$ here), σ_{cusp} an irreducible cuspidal representation of $H_m(F)$.

Then, we show that

Theorem 4.1.

(i) The induced representation $\delta(\Delta_1) \times \delta(\Delta_2) \times \cdots \times \delta(\Delta_k) \rtimes \sigma_{cusp}$ of the form (4) has a unique irreducible subrepresentation which we denote by $\delta(\Delta_1, \ldots, \Delta_k; \sigma_{cusp})$.

(ii) The strongly positive representation can be embedded into induced representation of the form (4).

Proof. (i) and (ii) are GU analogue of Theorem 3.3 and Theorem 3.4 in [8], respectively. Since the idea of their proofs depends on the behavior of GL parts of Jacquet modules, we apply those in [8] to the case of even general unitary groups and we do not repeat here.

4.2 Classification of strongly positive representations: $D(\rho; \sigma_{cusp})$

Let ρ be a conjugate self-dual irreducible cuspidal representation of $GL_{n_{\rho}}(E)$ and σ_{cusp} be an irreducible cuspidal representation of $H_m(F)$. Let $D(\rho; \sigma_{cusp})$ be the set of strongly positive representations whose cuspidal supports are the representation σ_{cusp} and twists of the representation ρ by positive valued characters. Let $a \geq 0$ be the unique non-negative real number such that $\nu^a \rho \rtimes \sigma_{cusp}$ reduces [13]. Furthermore, we assume that this reducibility point a is in $\frac{1}{2}Z$ (see (HI) of [12], page 771). Let k_{ρ} denote $[a]$, the smallest integer which is not smaller than a. In this section, we obtain the classification of strongly positive representations in $D(\rho; \sigma_{cusp})$.

8
In a previous section, Theorem 4.1 implies that every strongly positive representation can be viewed as the unique irreducible subrepresentation of induced representation of the form (4). Therefore, there exists a mapping from the set of strongly positive representations of $H_n(F)$ into the set of induced representations of the form (4).

Now we further refine the image of this mapping when we restrict the mapping to $D(\rho; \sigma_{cusp})$.

Theorem 4.2. Let σ_{sp} be an irreducible strongly positive representation in $D(\rho; \sigma_{cusp})$ and consider it as the unique irreducible subrepresentation of induced representation of the form (4). Write $\Delta_i = [\nu^{a_i} \rho, \nu^{b_i} \rho]$. Then,

$$a_i = a - k + i, \quad b_1 < \ldots < b_k \text{ and } k \leq \lceil a \rceil.$$

Proof. We only consider the Theorem when $a > 0$. We use induction as in [8]. The cases $k = 0$ and $k = 1$ are exactly as in [8] and we skip the proof.

We now consider the case when $k = 2$. Now we have

$$\sigma_{sp} \hookrightarrow \delta([\nu^{a_1} \rho, \nu^{b_1} \rho]) \times \delta([\nu^{a_2} \rho, \nu^{b_2} \rho]) \rtimes \sigma_{cusp}$$

As in the case $k = 1$, we easily show that $a_2 = a$. Since σ_{sp} is the unique irreducible subrepresentation of $\delta([\nu^{a_1} \rho, \nu^{b_1} \rho]) \times \delta([\nu^{a_2} \rho, \nu^{b_2} \rho]) \rtimes \sigma_{cusp}$ we also have $\sigma_{sp} \hookrightarrow \delta([\nu^{a_1} \rho, \nu^{b_1} \rho]) \rtimes \delta([\nu^{a} \rho, \nu^{b_2} \rho]; \sigma_{cusp})$. This embedding gives us the following embedding

$$\sigma_{sp} \hookrightarrow \delta([\nu^{a_1+1} \rho, \nu^{b_1} \rho]) \times \nu^{a_1} \rho \rtimes \delta([\nu^{a} \rho, \nu^{b_2} \rho]; \sigma_{cusp})$$

If $\nu^{a_1} \rho \rtimes \delta([\nu^{a} \rho, \nu^{b_2} \rho]; \sigma_{cusp})$ is irreducible, we have the embedding $\sigma_{sp} \hookrightarrow \delta([\nu^{a_1+1} \rho, \nu^{b_1} \rho]) \times \nu^{a_1} \rho \rtimes \delta([\nu^{a} \rho, \nu^{b_2} \rho]; \sigma_{cusp})$ and this contradicts the strong positivity of σ_{sp}. Therefore, $\nu^{a_1} \rho \rtimes \delta([\nu^{a} \rho, \nu^{b_2} \rho]; \sigma_{cusp})$ is reducible.

GU analogue of Proposition 4.3 [5] implies that $a_1 \in \{a - 1, a, b_2 + 1\}$.

Let us first consider the case when $a_1 = a > 1/2$. Similarly as in Proposition 3.1 in [14], we use the following calculation of Jacquet modules:

$$r_{GL}(\nu^{a} \rho \rtimes \delta([\nu^{a} \rho, \nu^{b_2} \rho]; \sigma_{cusp})) = \nu^{-a} \tilde{\rho} \rtimes \delta([\nu^{a} \rho, \nu^{b_2} \rho]) \otimes \sigma_{cusp}$$

$$+ \nu^{a} \rho \rtimes \delta([\nu^{a} \rho, \nu^{b_2} \rho]) \otimes \sigma_{cusp} \quad (5)$$

$$\mu^*(\nu^{a} \rho \rtimes \delta([\nu^{a} \rho, \nu^{b_2} \rho]; \sigma_{cusp})) \geq \delta([\nu^{a+1} \rho, \nu^{b_2} \rho]) \otimes \nu^{a} \rho \rtimes \delta(\nu^{a} \rho, \sigma_{cusp}) \quad (6)$$
Due to GU analogue of Lemma 4.1 in [5], $\nu^a \rho \rtimes \delta(\nu^a \rho, \sigma_{cusp})$ is irreducible. Therefore, the irreducible subquotient of $\nu^a \rho \rtimes \delta([\nu^a \rho, \nu^{b_2} \rho]; \sigma_{cusp})$ that contains right hand side of (6) in its Jacquet modules must also contain both terms in (5). This implies that $\nu^a \rho \rtimes \delta([\nu^a \rho, \nu^{b_2} \rho]; \sigma_{cusp})$ is irreducible, which is a contradiction. Now we consider $a_1 = a = 1/2$. In this case, GU analogue of Appendix of [5] (or Lemma 5.7 of [5]) implies that irreducible subrepresentation of $\delta([\nu^{1/2} \rho, \nu^{b_1} \rho]) \times \delta([\nu^{1/2} \rho, \nu^{b_2} \rho]) \rtimes \sigma_{cusp}$ is not strongly positive, which is a contradiction. Similarly as in [8], we have a contradiction in the case $a_1 = b_2 + 1$. The remaining case is when $a_1 = a - 1$, which is possible only if $a > 1$. In that case, we also have $b_1 < b_2$. Completing argument of induction on k is also exactly as in [8] and we skip the proof.

We also show that the mapping from $D(\rho; \sigma_{cusp})$ to the set of induced representations of the form (4) is well defined in the following theorem:

Theorem 4.3. Let σ_{sp} be an irreducible strongly positive representation in $D(\rho; \sigma_{cusp})$. Then, there exist a unique set of strongly positive segments $\Delta_1, \Delta_2, \ldots, \Delta_k$, with $0 < e(\Delta_1) < e(\Delta_2) < \cdots < e(\Delta_k)$, and a unique irreducible cuspidal representation $\sigma' \in R$ such that $\sigma_{sp} \simeq \delta(\Delta_1, \Delta_2, \ldots, \Delta_k; \sigma')$.

Proof. The proof is similar to [8] and we, therefore, omit the proof in this case since we constructed all the tools that we need in Section 3.

In Theorem 4.2 and Theorem 4.3, we construct an injective mapping from $D(\rho; \sigma_{cusp})$ into the set of induced representations of the form (4) with refinement on the unitary exponents as in Theorem 4.2. More precisely, let $Jord(\rho,a)$ stand for the set of all increasing sequences b_1, b_2, \ldots, b_k, where $b_i \in \mathbb{R}, b_i - a + k_\rho - i \in \mathbb{Z}_{\geq 0}$ for $i = 1, \ldots, k_\rho$ and $-1 < b_1 < b_2 < \cdots < b_k$. So far, we construct the following injective mapping:

$$D(\rho; \sigma_{cusp}) \hookrightarrow Jord(\rho,a)$$

Now, it remains to show that this map is surjective. Let b_1, b_2, \ldots, b_k denote an increasing sequence appearing in $Jord(\rho,a)$. We showed in Section 4.4 that the induced representation

$$\delta([\nu^{a-k_\rho+1} \rho, \nu^{b_1} \rho]) \times \delta([\nu^{a-k_\rho+2} \rho, \nu^{b_2} \rho]) \times \cdots \times \delta([\nu^a \rho, \nu^{b_k} \rho]) \rtimes \sigma_{cusp}$$

has a unique irreducible subrepresentation, which we denote by $\sigma(b_1, \ldots, b_k; a)$.

10
We apply the induction argument in [8] to show that the above subrepresentation is strongly positive and we do not repeat the argument here.

Theorem 4.4. The representation $\sigma(b_1, \ldots, b_k; a)$ is strongly positive.

4.3 Classification of strongly positive representations

Let ρ_i be a conjugate self-dual irreducible cuspidal representation of $GL_{n_{\rho_i}}(E)$ for $i = 1, \ldots, k$ and σ_{cusp} is an irreducible cuspidal representation of $H_m(F)$. Let $D(\rho_1, \rho_2, \ldots, \rho_k; \sigma_{\text{cusp}})$ be the set of strongly positive representations whose cuspidal supports are the representation σ_{cusp} and the twists of the representations ρ_i by positive valued characters for $i = 1, \ldots, k$. Let $a_{\rho_i} \geq 0$ be the unique non-negative real number such that $\nu^{a_{\rho_i}} \rho_i \rtimes \sigma_{\text{cusp}}$ reduces for each $i = 1, \ldots, k$ [13]. Furthermore, we assume that this reducibility point a_{ρ_i} is in $\frac{1}{2}\mathbb{Z}$ (see (HI) of [12], page 771).

With Theorem 4.1, we use induction to prove the following two theorems as in [8]:

Theorem 4.5. Let σ_{sp} be a strongly positive representation in $D(\rho_1, \rho_2, \ldots, \rho_k; \sigma_{\text{cusp}})$. Then σ_{sp} can be considered the unique irreducible subrepresentation of the following induced representation:

$$
\left(\prod_{i=1}^{k} \prod_{j=1}^{k_i} \delta([\nu^{a_{\rho_i}} - k_i + j \rho_i, \nu^{b_{j}^{(i)}} \rho_i]) \rtimes \sigma_{\text{cusp}},
\right)
$$

where $k_i \in \mathbb{Z}_{\geq 0}$, $k_i \leq \lfloor a_{\rho_i} \rfloor$, $b_{j}^{(i)} > 0$ such that $b_{j}^{(i)} - a_{\rho_i} \in \mathbb{Z}_{\geq 0}$, for $i = 1, \ldots, k$, $j = 1, \ldots, k_i$. Also, $b_{j}^{(i)} < b_{j+1}^{(i)}$ for $1 \leq j < k_i - 1$.

Theorem 4.5 implies that we construct the mapping from $D(\rho_1, \rho_2, \ldots, \rho_k; \sigma_{\text{cusp}})$ to the set of induced representations of the form (4). We now show that this mapping is well defined and injective.

Theorem 4.6. Suppose that the representation $\sigma_{\text{sp}} \in D(\rho_1, \rho_2, \ldots, \rho_k; \sigma_{\text{cusp}})$ can be embedded as the unique irreducible subrepresentations of both representations

$$
\left(\prod_{i=1}^{k} \prod_{j=1}^{k_i} \delta([\nu^{a_{\rho_i}} - k_i + j \rho_i, \nu^{b_{j}^{(i)}} \rho_i]) \rtimes \sigma_{\text{cusp}},
\right)
$$

and

$$
\left(\prod_{i=1}^{k'} \prod_{j=1}^{k'_i} \delta([\nu^{a'_{\rho_i}} - k'_i + j' \rho_i', \nu^{b'_{j}^{(i)}} \rho_i']) \rtimes \sigma'_{\text{cusp}},
\right)
$$

Then we have $k = k'$, $\sigma_{\text{cusp}} \simeq \sigma'_{\text{cusp}}$ and
\[
\{ \prod_{j=1}^{k_i} \delta([\nu^{\alpha_{\rho_i,j}}, \nu^{i(j)}_{\rho_i}]) | i = 1, \ldots, k \} \text{ is a permutation of } \{ \prod_{j=1}^{k'_i} \delta([\nu^{\alpha'_{\rho'_i,j}}, \nu^{i(j')}_{\rho'_i}]) | i = 1, \ldots, k' \}.
\]

Proof. Since \(\sigma_{sp} \in D(\rho_1, \rho_2, \ldots, \rho_k; \sigma_{cusp}) \), \(\sigma'_{cusp} \cong \sigma_{cusp} \) and \(\{ \rho'_i | i = 1, \ldots, k' \} \subset \{ \rho_i | i = 1, \ldots, k \} \). Then, comparing the Jacquet modules, we easily see that \(k = k' \) and \(\prod_{j=1}^{k_i} \delta([\nu^{\alpha_{\rho_i,j}}, \nu^{i(j)}_{\rho_i}]) | i = 1, \ldots, k \) is a permutation of \(\prod_{j=1}^{k'_i} \delta([\nu^{\alpha'_{\rho'_i,j}}, \nu^{i(j')}_{\rho'_i}]) | i = 1, \ldots, k' \). \(\square \)

Now we extend the above mapping to the set of all strongly positive representations of \(H(F) \). We first show the uniqueness of partial cuspidal support of strongly positive representation.

Proposition 4.7. Let \(\sigma_{sp} \) denote a strongly positive representation of \(H_n(F) \). Then there is a unique, up to isomorphism, cuspidal representation \(\sigma_{cusp} \) of \(H_m(F) \) such that \(\sigma_{sp} \) is a subrepresentation of \(\pi \times \sigma_{cusp} \), for an irreducible representation \(\pi \) of \(GL_{n-m}(E) \).

Proof. Suppose that there are non-isomorphic irreducible cuspidal representations \(\sigma_1 \) of \(H_{m_1}(F) \) and \(\sigma_2 \) of \(H_{m_2}(F) \), such that \(\sigma_{sp} \hookrightarrow \pi_1 \times \sigma_1 \) and \(\sigma_{sp} \hookrightarrow \pi_2 \times \sigma_2 \) for appropriate irreducible representations \(\pi_1 \) and \(\pi_2 \).

Thus, there are cuspidal representations \(\rho_1, \rho_2, \ldots, \rho_k \) of general linear groups such that

\[
\sigma_{sp} \hookrightarrow \nu^{x_1} \rho_1 \times \nu^{x_2} \rho_2 \times \cdots \times \nu^{x_k} \rho_k \times \sigma_1.
\]

Strong positivity of \(\sigma_{sp} \) implies \(x_i > 0 \) for all \(i \).

Also, Frobenius reciprocity implies \(\mu^*(\sigma_{sp}) \geq \pi_2 \otimes \sigma_2 \), which implies that

\[
\mu^*(\nu^{x_1} \rho_1 \times \nu^{x_2} \rho_2 \times \cdots \times \nu^{x_k} \rho_k \times \sigma_1) \geq \pi_2 \otimes \sigma_2.
\]

Repeated application of Lemma 3.3 implies that \(\pi_2 \) is an irreducible subquotient of \(\rho'_1 \times \rho'_2 \times \cdots \times \rho'_k \), where \(\rho'_i \in \{ \nu^{x_i} \rho_i, \nu^{-x_i} \rho_i^{-1} \} \), for \(i = 1, 2, \ldots, k \). Since \(\sigma_1 \) is not isomorphic to \(\sigma_2 \), using Lemma 4.2 with obtain that there is an \(i \in \{ 1, 2, \ldots, k \} \) such that \(\rho'_i \cong \nu^{-x_i} \rho_i^{-1} \). Since \(x_i > 0 \), this contradicts strong positivity of \(\sigma_{sp} \) and the proposition is proved. \(\square \)
Furthermore, by comparing Jacquet modules as in the proof of Theorem 4.6, we also show the uniqueness of GL cuspidal supports of strongly positive representation. Therefore, for any strongly positive representation σ_{sp} of $H(F)$, there exists unique set of $\rho_1, \rho_2, \ldots, \rho_k$ and σ_{cusp} such that σ_{sp} can be considered to be the element in $D(\rho_1, \rho_2, \ldots, \rho_k; \sigma_{cusp})$.

Let SP be the set of all strongly positive representations of $H(F)$. To see this mapping explicitly, let us collect the data from the induced representations of the form (8). Let LJ be the set of $(Jord, \sigma')$ where $Jord = \bigcup_{i=1}^{k} \bigcup_{j=1}^{k_i} \{(\rho_i, b_j^{(i)})\}$ and σ' be an irreducible cuspidal representation in R such that

(i) $\{\rho_1, \rho_2, \ldots, \rho_k\}$ is a (possibly empty) set of mutually non-isomorphic irreducible conjugate self-dual cuspidal unitary representations of GL such that $\nu_{a_{\rho_i}} \rho_i \rtimes \sigma'$ reduces for $a_{\rho_i} > 0$ (this defines a_{ρ_i}'),

(ii) $k_i = \lceil a_{\rho_i}' \rceil$,

(iii) for each $i = 1, 2, \ldots, k, b_1^{(i)}, b_2^{(i)}, \ldots, b_{k_i}^{(i)}$ is a sequence of real numbers such that $a_{\rho_i}' - b_j^{(i)} \in \mathbb{Z}$, for $j = 1, 2, \ldots, k_i$, and $-1 < b_1^{(i)} < b_2^{(i)} < \cdots < b_{k_i}^{(i)}$.

Now, the last step is to show that this mapping is surjective onto LJ. Following [8], we have

Theorem 4.8. The maps described above give a bijective correspondence between the sets SP and LJ.

5 Appendix: Even unitary case

We were unable to find an appropriate reference for the structural formula for unitary groups other than [12], where the authors, in Section 15, wrote an appropriate modification needed. Here, we shortly derive it for the purpose of obtaining a classification of strongly positive representation of even unitary groups following the same approach as in the previous sections. We emphasize that the classification of strongly positive representation of even unitary groups is also established in Sections 7 and 15 of [12], using a different approach.
5.1 Notation for even unitary groups

We let $G_n = \text{U}(n, n)$ be the quasi-split unitary group in $2n$ variables defined with respect to E/F and J_n and let $R_U(n)$ be the Grothendieck group of the category of all admissible representations of finite length of $G_n(F)$ and set $R_U = \bigoplus_{n \geq 0} R_U(n)$. As in the even general unitary groups. Let also $B = TU, A_0, T$ for G_n be defined as in Section 3.

Then,

$$T(F) = \left\{ \begin{pmatrix} x_1 \\ \vdots \\ x_n \\ \bar{x}_1^{-1} \\ \cdots \\ \bar{x}_n^{-1} \end{pmatrix} \middle| x_i \in E^\times \right\}$$

and

$$A_0(F) = \left\{ \begin{pmatrix} x_1 \\ \vdots \\ x_n \\ x_1^{-1} \\ \cdots \\ x_n^{-1} \end{pmatrix} \middle| x_i \in F^\times \right\}$$

The F-points of Levi subgroups in G_n that corresponds to $s = (n_1, n_2, \ldots, n_k)$ is of the form

$$M_s(F) = \left\{ \begin{pmatrix} g_1 \\ \vdots \\ g_k \\ \bar{g}_1^{-1} \\ \cdots \\ \bar{g}_n^{-1} \end{pmatrix} \middle| g_i \in \text{GL}_{n_i}(E), g \in G_{n-n'}(F) \right\}.$$
5.2 Tadić’s structure formula for unitary groups

Note that the Weyl group for unitary groups is isomorphic to general unitary groups. Therefore, we use the same notation for $g_n(d, k)_{i_1, i_2} (= \omega)$ as in the general unitary group case. Then, for $(g_1, g_2, g_3, g_4, h) \in GL_k(E) \times GL_{d-k}(E) \times GL_{i_1-d-k}(E) \times G_{n-i_1-i_2+d+k}(F)$, we have $w \cdot (g_1, g_2, g_3, g_4, h) = (g_1, g_4, t^{-1} g_3^{-1}, g_2, h)$.

Let π_i be an irreducible smooth representation of $GL_{n_i}(E)$ for $i = 1, 2, 3, 4$ and let σ be an irreducible smooth representation of G_m. By our previous calculation,

$$w^{-1} \cdot (\pi_1 \otimes \pi_2 \otimes \pi_3 \otimes \pi_4 \otimes \sigma) = \pi_1 \otimes \pi_4 \otimes \tilde{\pi}_3 \otimes \pi_2 \otimes \sigma. \quad (9)$$

Set

$$(\pi_1 \otimes \pi_2 \otimes \pi_3) \tilde{\times}' (\pi_4 \otimes \sigma) = \tilde{\pi}_1 \times \pi_2 \times \pi_4 \otimes \pi_3 \rtimes \sigma. \quad (10)$$

We follow argument in Section 3 by replacing (3) by (10), we have

Theorem 5.1 (Tadić’s structure formula for unitary groups.). For $\pi \in R_{GL}(i)$ and $\sigma \in R_{U}(n-i)$, the following structure formula holds

$$\mu^*(\pi \rtimes \sigma) = \mathcal{M}^*(\pi) \tilde{\times}' \mu^*(\sigma).$$

5.3 Strongly positive representation for even unitary groups

With Tadić’s structure formula for unitary groups (Section 5.2), we apply the arguments as in Section 4 to obtain the analogous results for even unitary groups. In this subsection, we only state the main result for even unitary groups and skip the proof since we already go through the similar arguments in Section 4.

Let SP' be the set of all strongly positive representations of $G(F)$ and LJ' be the set of $(Jord, \sigma')$ where σ' be an irreducible cuspidal representation in R_U and $Jord$ be exactly as in the case of even general unitary groups. Then, one can repeat the same arguments as before to obtain the bijective correspondence between SP' and LJ'.

15
Acknowledgement

The first author would like to thank the organizers of the workshop on Representation theory of p-adic groups at IISER Pune, Professors Anne-Marie Aubert, Manish Mishra, Alan Roche, Steven Spallone for their invitation and hospitality.

References

[1] Ban, D.: Parabolic induction and Jacquet modules of representations of $O(2n, F)$. Glas. Mat. Ser. III 34(54) 2, 147-185 (1999)

[2] Bernstein, J. and Zelevinsky, A.V.: Induced representations of reductive p-adic groups I. Ann. Sci. École Norm. Sup. 10, 441-472 (1977)

[3] Hanzer, M. and Muić, G.: Parabolic induction and Jacquet functors for metaplectic groups. J. Algebra 323, 241-260 (2010)

[4] Jantzen, C.: Jacquet modules of induced representations for p-adic special orthogonal groups. J. Algebra 305, 802-819 (2006)

[5] Kim, Y.: Strongly positive representations of $GSpin_{2n+1}$ and the Jacquet module method. with an appendix, “Strongly positive representations in an exceptional rank-one reducibility case” by Ivan Matić. Math. Z. 279, 271-296 (2015)

[6] Kim, Y.: Strongly positive representations of even $GSpin$ groups. Pacific J. Math. 280, 69-88 (2016)

[7] Kim, Y. and Matić, I.: Discrete series of odd $GSpin$ groups. Preprint, available at arXiv 1706.01111

[8] Matić, I.: Strongly positive representations of metaplectic groups. J. Algebra 334, 255-274 (2011)

[9] Matić, I.: Jacquet modules of strongly positive representations of the metaplectic groups. Trans. Amer. Math. Soc. 365, No. 5, 2755-2788 (2013)

[10] Matič, I. and Tadić, M.: On Jacquet modules of representations segment type. Manuscripta Math. 147, 437-476 (2015)
[11] Mœglin, C.: *Sur la classification des séries discrètes des groupes classiques p-adiques: paramètres de Langlands et exhaustivité*. J. Eur. Math. Soc. **4**, 143-200 (2002)

[12] Mœglin, C. and Tadić, M.: *Construction of discrete series for classical groups*. J. Am. Math. Soc. **15**, 715-786 (2002)

[13] Silberger, A.: *Special representations of reductive p-adic groups are not integrable*. Ann. of Math. **111**, 571-587 (1980)

[14] Tadić, M.: *Structure arising from induction and Jacquet modules of representations of classical p-adic groups*. J. Algebra **177**, 1-33, (1995)

[15] Tadić, M.: *On reducibility of parabolic induction*. Israel J. Math. **107**, 29-91 (1998)

[16] Tadić, M.: *On regular square integrable representations of p-adic groups*. Amer. J. Math. **120**, 159-210 (1998).

[17] Zelevinsky, A.V.: *Induced representations of reductive p-adic groups. II. On irreducible representations of GL(n)*. Ann. Sci. École Norm. Sup. (4)(13), 165-210 (1980)

Yeansu Kim
Department of Mathematics education, Chonnam National University
77 Yongbong-ro, Buk-gu, Gangju city, South Korea
E-mail: ykim@jnu.ac.kr

Ivan Matić
Department of Mathematics, University of Osijek
Trg Ljudevita Gaja 6, Osijek, Croatia
E-mail: imatic@mathos.hr