Impacto da hipertensão na rigidez arterial e modulação autonômica cardíaca em pacientes com doença arterial periférica: um estudo transversal

Breno Quintella Farah1, Gabriel Grizzo Cucato2, Aluísio Andrade-Lima3, Antonio Henrique Germano Soares4, Nelson Wolosker5, Raphael Mendes Ritti-Dias6, Marília de Almeida Correia6

1 Universidade Federal Rural de Pernambuco, Recife, PE, Brasil.
2 Northumbria University, Newcastle upon Tyne, United Kingdom.
3 Universidade Federal de Sergipe, Aracajú, SE, Brasil.
4 Universidade de Pernambuco, Recife, PE, Brasil.
5 Hospital Israelita Albert Einstein, São Paulo, SP, Brasil.
6 Universidade Nove de Julho, São Paulo, SP, Brasil.

DOI: 10.31744/einstein_journal/2021AO6100

RESUMO

Objetivo: Analisar a influência da hipertensão na saúde cardiovascular em pacientes com doença arterial periférica sintomática, e identificar fatores associados à hipertensão arterial não controlada.

Métodos: Neste estudo transversal foram incluídos 251 pacientes com doença arterial periférica (63,9% homens e média de idade 67±10 anos). Hipertensão foi diagnosticada e pressão arterial foi avaliada para determinar o controle da hipertensão. Foram avaliadas rigidez arterial (velocidade da onda pulso carótida-femoral) e modulação autonômica cardíaca (balanço simpatovagal).

Resultados: Hipertensão foi associada com maior velocidade da onda pulso carótida-femoral, independentemente do sexo, idade, índice tornozelo-braço, índice de massa corpórea, capacidade de deambulação, frequência cardíaca, ou comorbidades (β=2,59±0,76m/s, b=0,318, p=0,003). Pacientes com pressão arterial sistólica ≥120mmHg tiveram maior velocidade da onda pulso carótida-femoral do que normotensos, e pacientes hipertensos com pressão arterial sistólica ≤119mmHg (normotensos: 7,6±2,4m/s≤119mmHg: 8,1±2,2m/s 120-129mmHg: 9,8±2,6m/s ≥130mmHg: 9,9±2,9m/s, p<0,005). Balanço simpatovagal não foi associado à hipertensão. Conclusão: Pacientes hipertensos com doença arterial periférica sintomática apresentam maior rigidez arterial. Em pacientes com pressão arterial não controlada, a rigidez arterial é ainda mais elevada.

Descritores: Claudicação intermitente; Doença arterial periférica; Comorbidade; Sistema cardiovascular; Rigidez vascular; Hipertensão

ABSTRACT

Objective: To examine the impact of hypertension on cardiovascular health in patients with symptomatic peripheral artery disease and to identify factors associated with uncontrolled hypertension.

Methods: A cross-sectional study including 251 patients with symptomatic peripheral artery disease (63.9% males, mean age 67±10 years). Following hypertension diagnosis, blood pressure was measured to determine control of hypertension. Arterial stiffness (carotid-femoral pulse wave velocity) and cardiac autonomic modulation (sympathovagal balance)
were assessed. **Results:** Hypertension was associated with higher carotid-femoral pulse wave velocity, regardless of sex, age, ankle-brachial index, body mass index, walking capacity, heart rate, or comorbidities (B = 2.59 ± 0.76 m/s, b = 0.318, p = 0.003). Patients with systolic blood pressure ≥120 mmHg had higher carotid-femoral pulse wave velocity values than normotensive individuals, and hypertensive patients with systolic blood pressure of ≤119 mmHg (normotensive: 7.6 ± 2.4 m/s; ≤119 mmHg: 8.1 ± 2.2 m/s; 120-129 mmHg: 9.8 ± 2.6 m/s; ≥130 mmHg: 9.9 ± 2.9 m/s, p < 0.005). Sympathovagal balance was not associated with hypertension (p > 0.05). **Conclusion:** Hypertensive patients with symptomatic peripheral artery disease have increased arterial stiffness. Arterial stiffness is even greater in patients with uncontrolled high blood pressure.

Keywords: Intermittent claudication; Peripheral arterial disease; Comorbidity; Cardiovascular system; Vascular stiffness; Hypertension

INTRODUÇÃO

A doença arterial periférica (DAP) afeta mais de 200 milhões de indivíduos em todo o mundo. A hipertensão é um dos fatores de risco mais prevalentes para a DAP, e acarreta aproximadamente 80% dos pacientes. Está diretamente relacionada a eventos cardiovasculares fatais e não fatais nestes pacientes. A contorno do controle da pressão arterial (ou seja, pressão arterial sistólica <140 mmHg e pressão arterial diastólica <90 mmHg) é considerado essencial no tratamento da hipertensão. De fato, estudo anterior mostrou que o controle da pressão arterial pode reduzir a incidência de doenças cardiovasculares em 33% (de 3,85% para 2,59% por ano), e a mortalidade total em 32% (de 2,63% para 1,78% por ano). Entretanto, não se sabe se o controle da hipertensão está associado à função cardiovascular em pacientes com DAP.

Maior compreensão do impacto da hipertensão controlada e não controlada sobre a saúde cardiovascular em pacientes com DAP e os fatores associados com a hipertensão não controlada.

OBJETIVO

Analisar a influência da hipertensão na saúde cardiovascular em pacientes com doença arterial periférica sintomática, e identificar os fatores associados com a hipertensão não controlada em pacientes com DAP.

MÉTODOS

Recurrimento e pacientes

Este estudo transversal segue a lista de verificação **Epidemiology (STROBE)**. Pacientes com DAP foram recrutados em unidades vasculares em São Paulo, SP, Brasil. Os critérios de inclusão foram pacientes com 40-90 anos de idade com DAP sintomático (índice tornozelo-braço ≤ 0,90) em uma ou ambas as pernas, e ausência de isquemia crítica de membros, dor ao repouso, vasos não compressíveis, sem membros amputados, ou úlceras. O cumprimento dos critérios de estudo foi verificado por avaliações preliminares.

Este estudo foi aprovado pelo Comitês de Ética em Pesquisa em Humanos do Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), protocolo 3.986.124, CAAE: 42379015.3.3002.0068, e do Hospital Albert Einstein (HIAE), protocolo 3.959.548, CAAE: 42379015.3.0000.0071. Cada paciente foi informado dos riscos e benefícios envolvidos no estudo e assinou o termo de consentimento livre e informado para participação. A coleta de dados foi realizada entre setembro de 2015 e dezembro de 2017.

Mensurações cardiovasculares

Todas as mensurações foram feitas em um ambiente silencioso. A pressão arterial foi verificada com paciente sentado, e a rigidez arterial, na posição supina. Os pacientes foram instruídos a evitar atividade física moderada a vigorosa por, pelo menos, 24 horas antes da visita, e a evitar o fumo, álcool e ingestão de cafeína por, pelo menos, 12 horas antes das mensurações. Os dados foram coletados por pesquisadores cegos para a análise.

Hipertensão (preditores)

Os pacientes hipertensos foram definidos como aqueles em uso de antihipertensivos e com pressão arterial sistólica de ≥140 mmHg ou pressão arterial diastólica de ≥90 mmHg. A pressão arterial foi avaliada usando um dispositivo automático HEM-742-E (Omron Corporation, Quioto, Japão). A pressão arterial foi medida três vezes, em ambos os braços, com um intervalo de um minuto entre cada medida, como descrito anteriormente. Para fins do presente estudo, foi utilizada a pressão de braço mais alta. Os pacientes com pressão arterial sistólica <140 mmHg e diastólica <90 mmHg foram designados para o grupo controlado, enquanto aqueles com valores de PA acima dos indicados para o grupo controle foram classificados para o grupo não controlado. O coeficiente de correlação intraclass foi 0,85 e 0,92 para pressão arterial sistólica e diastólica, respectivamente.

Rigidez arterial (resultado)

A rigidez arterial foi avaliada através da medição da velocidade da onda de pulso carotídeo-femoral (cfPWV...
Modulação autonômica cardíaca (resultado)

A avaliação da modulação autonômica cardíaca foi obtida através da análise da variabilidade da frequência cardíaca, seguindo os procedimentos descritos anteriormente. [9] Os intervalos inter-batimentos (RR) foram obtidos usando um monitor de frequência cardíaca (V800, Polar® Electro, Oulu, Finlândia); pelo menos cinco minutos de dados de intervalo RR estacionário foram usados. As variáveis de domínio de frequência foram calculadas usando o método autoregressivo. Sinais operando em frequências entre 0,04 e 0,4Hz foram considerados fisiologicamente significativos. Os componentes de baixa frequência (LF - low frequency) foi representado por oscilações entre 0,04 e 0,15Hz, e o componente de alta frequência (HF - high frequency), entre 0,15 e 0,4Hz. A relação LF/HF foi definida como o equilíbrio simpatovagal cardíaco. Todas as análises foram realizadas utilizando o programa Kubios HRV (Biosignal Analysis and Medical Imaging Group, Joensuu, Finlândia) e seguiram as recomendações da Task Force for Heart Rate Variability. [13]

Covariáveis

Dados demográficos (idade e sexo), índice tornozelo-braço, comorbididades (diabetes, doença arterial coronariana, insuficiência cardíaca, doença renal crônica, doença cerebrovascular e dislipidemia), capacidade de deambulação, frequência cardíaca, e índice de massa corporal foram avaliados no início do estudo, utilizando procedimentos previamente descritos. [9,14] A diferença de pressão sanguínea entre braços >10mmHg foi considerada indicativa de DAP dos membros superiores. [15]

Análise estatística

A normalidade e a homogeneidade foram verificadas utilizando os testes de Kolmogorov-Smirnov e Levene, respectivamente. Para a estatística descritiva, as variáveis contínuas foram apresentadas como média e desvio padrão, enquanto as variáveis categóricas como frequência relativa. Os modelos de regressão linear foram utilizados para analisar a associação entre variáveis cardiovasculares (rigidez arterial e modulação autonômica cardíaca) e hipertensão arterial. As análises brutas foram realizadas primeiro e depois ajustadas para as variáveis clássicas de confusão. Foi realizada análise de resíduos residual, sendo a homoscedasticidade analisada pelo gráfico (scatterplot). Foi realizada uma análise de multicolinearidade, assumindo fatores de inflação de variância inferiores a 5, e tolerância abaixo de 0,20.

A comparação de cfPWV entre normotensos e hipertensos (<119mmHg; 120-129mmHg e ≥130mmHg) foi avaliada com a ANOVA one-way. A regressão logística múltipla foi usada para identificar fatores associados à hipertensão arterial não controlada em pacientes com DAP. Para este fim, todas as variáveis com p<0,30 na análise bivariada foram incluídas no modelo, mas os critérios para permanecer no modelo final foram variáveis com p<0,10. O teste Hosmer-Lemeshow foi utilizado para avaliar a adequação do modelo.

O coeficiente de correlação de Pearson foi utilizado para analisar a relação entre a pressão arterial sistólica e o cfPWV. O valor de p<0,05 foi considerado estatisticamente significativo.

I RESULTADOS

Dos 261 pacientes inscritos no presente estudo, 10 foram excluídos por não possuírem medida de pressão arterial. A análise final consistiu de dados de 251 pacientes com DAP. Todos os pacientes tinham DAP moderada, e 24,8% tinham indicação de DAP nos membros superiores. O índice de massa corporal médio foi 27,4±6,3kg/m². Hipertensão foi diagnosticada em 89,6% dos pacientes, dos quais 50,2% tinham hipertensão controlada e não controlada. Observou-se maior uso de inibidores enzima conversora de angiotensina (ECA), idade mais avançada, e pressão arterial sistólica e diastólica mais alta entre os com hipertensão não controlada do que entre aqueles com hipertensão controlada (p<0,05) (Tabela 1).

A tabela 2 mostra a associação das características clínicas entre os pacientes com hipertensão controlada e não controlada. Na população geral, 89,6% dos pacientes tinham hipertensão arterial. A análise final consistiu de dados de 251 pacientes com DAP. Todos os pacientes tinham DAP moderada, e 24,8% tinham indicação de DAP nos membros superiores. O índice de massa corporal médio foi 27,4±6,3kg/m². Hipertensão foi diagnosticada em 89,6% dos pacientes, dos quais 50,2% tinham hipertensão não controlada. A tabela 1 mostra a comparação das características clínicas entre os pacientes com hipertensão controlada e não controlada. A tabela 2 mostra a associação da hipertensão com as variáveis cardiovasculares. A hipertensão foi associada com o maior cfPWV, independentemente de sexo, idade, índice tornozelo-braço, índice de massa corpórea, capacidade de deambulação, frequência cardíaca, ou comorbidades (p<0,05). Hipertensão não estava associada à modulação autonômica cardíaca (p>0,05).

Foi observada uma correlação positiva entre pressão arterial sistólica, pressão arterial diastólica, pressão arterial média, frequência cardíaca e pressão de pulso com cfPWV (Figuras 1A-1E). Os pacientes com DAP e pressão arterial sistólica ≥120mmHg apresentaram cfPWV mais alta que pacientes normotensos ou hi-
DISCUSSÃO

Neste estudo, hipertensão estava associada à maior rigidez arterial entre os pacientes com DAP, independente do sexo, idade, índice tornozelo-braço, índice de massa corpórea, capacidade de deambulação, frequência cardíaca e comorbidades. Rigidez arterial também foi maior em pacientes hipertensos com DAP e pressão arterial sistólica ≥120mmHg, do que em pacientes nor-

Tabela 1. Comparação das características gerais da doença arterial periférica com a hipertensão controlada e não controlada

Variáveis	Hipertensão controlada	Hipertensão não controlada	Valor de p
Variáveis clínicas e demográficas			
Sexo masculino (%)	(53,6)	(46,4)	0,130
Idade (anos)	65±10	69±8	0,001
Índice tornozelo-braço	0,60±0,19	0,57±0,16	0,245
Índice de massa corpórea (kg/m²)	28,0±4,9	27,4±4,7	0,342
Distância de claudicação (m)	133±85	125±68	0,465
Teste de caminhada de 6 minutos (m)	326±91	318±68	0,531
Distância de caminhada (m)	121±12	158±15	<0,001
Pressão arterial sistólica (mmHg)	69±10	78±10	<0,001
Comorbidade			
Fumante atual (%)	(42,9)	(67,1)	0,334
Diabetes (%)	(46,4)	(51,6)	0,633
Dislipidemia (%)	(53,2)	(46,8)	0,056
Obesidade (%)	(52,6)	(47,4)	0,642
Doença coronariana (%)	(55,6)	(44,4)	0,241
AVC (%)	(56,1)	(43,9)	0,806
Medicamentos			
Antiplaquetários (%)	(51,2)	(48,8)	0,949
Inibidor da ECA (%)	(64,9)	(35,1)	0,018
Antagonista do receptor de angiotensina (%)	(48,4)	(51,6)	0,579
Diurético (%)	(47,5)	(52,5)	0,481
Diurético (%)	(45,5)	(54,5)	0,152
Beta bloqueador (%)	(51,6)	(48,4)	0,924
Estatinas (%)	(53,2)	(46,8)	0,137
Hipoglicêmico (%)	(47,7)	(52,3)	0,371
Vasodilatador periférico (%)	(58,5)	(41,5)	0,219
Inibidor da ECA + diurético + bloqueador canais cálcio (%)	(53,8)	(46,2)	0,904

Os valores são apresentados em mediana±intervalo interquartil e frequência. AVC: acidente vascular cerebral; ECA: enzima conversora de angiotensina.

Tabela 2. Associação entre hipertensão arterial e variáveis cardiovasculares em pacientes com doença arterial periférica sintomática

Variável independente	β (EP)	cPWV (m/s)	LF/HF	
	β(SE)	B	β(SE)	b
Hipertensão (não=0, sim=1)				
Bruta	1,61 (0,66)	0,184*	-0,70 (0,29)	-0,157
Ajustada	2,37 (0,67)	0,248*	0,13 (0,85)	0,014

* p<0,05. Modelo para cPWV: ajustado para sexo, idade, índice tornozelo-braço, índice de massa corpórea, teste de caminhada de seis minutos, frequência cardíaca, diabetes, obesidade, doença arterial coronariana, índice de massa corporal e dislipidemia. Modelo para LF/HF: ajustado para sexo, idade, índice tornozelo-braço, índice de massa corporal, teste de caminhada de seis minutos, diabetes, obesidade, doença arterial coronariana, índice de massa corporal e dislipidemia. cPWV: velocidade de onda de pulso carótide-femoral; LF: baixa frequência; HF: alta frequência; EP: erro-padrão; b: padding coeficientes beta.
Impacto da hipertensão na rigidez arterial e modulação autonômica cardíaca em pacientes com doença arterial periférica

motensos e hipertensos com DAP e pressão arterial sistólica de <119mmHg. Idade avançada, menor índice tornozelo-braço, e não uso de iECA foram associados com hipertensão não controlada em pacientes com DAP.

Estudos anteriores mostraram que a hipertensão é a comorbidade mais prevalente entre os pacientes com DAP.(2-4) Esta análise mostrou achados semelhantes. A prevalência da hipertensão foi associada a maior rigidez arterial, mesmo após o ajuste para fatores de confusão; como descrito em outros estudos envolvendo pacientes com hipertensão e diabetes.(16,17) Esses achados são relevantes do ponto de vista clínico, pois o aumento da rigidez arterial está associado a piores resultados cardiovasculares, independente dos fatores de risco tradicionais.

A rigidez arterial tem um papel essencial na fisiopatologia da hipertensão,(18,19) e se relaciona fortemente ao desenvolvimento da aterosclerose e, portanto, deve ser considerada um marcador clínico importante em pacientes com DAP.(20,21) O valor mediano de cfPWV foi 2,4m/s maior em hipertensos do que em normotensos com DAP. Isto se traduz em um risco cardiovascular maior, dado que um aumento de 1m/s no cfPWV está associado a um aumento de 14% na probabilidade de ter um evento cardiovascular, e de 15% na mortalidade cardiovascular.(22)

Os pacientes com hipertensão controlada tinham valores menores de cfPWV que aqueles com hipertensão não controlada, sugerindo que intervenções para reduzir a cfPWV poderiam ser benéficas para os pacientes com DAP. Por exemplo, a escolha de medicamentos já conhecidos por diminuir a rigidez arterial, particularmente iECA e bloqueadores dos canais de cálcio,(23) têm um efeito positivo sobre a rigidez aórtica. Além do tratamento medicamentoso, devem ser recomendadas modificações no estilo de vida, como exercícios físicos, para reduzir a pressão sanguínea.

Demonstramos que o equilíbrio simpatovagal em pacientes com DAP era 2,0, e indicando modulação autonômica cardíaca em direção a maior modulação simpática e menor modulação parassimpática. Achados semelhantes foram descritos em estudos anteriores.(24,25) O aumento da modulação simpática e a redução da modulação parassimpática do coração foram considerados como importantes preditores de eventos cardíacos fatais e não fatais.(26) Os dados do estudo não mostraram uma relação entre hipertensão e equilíbrio simpático. Esta falta de relação pode parecer estranha no início, já que os pacientes com hipertensão têm disfunção autonômica.(13) Entretanto, metade dos pacientes estava tomando beta bloqueadores. Beta bloqueadores regulam positivamente o comportamento fractal da modulação autonômica cardíaca em pacientes com doenças cardiovasculares,(27,28) permitindo um melhor controle cardiovascular.

No estudo atual, idade mais avançada, menor índice tornozelo-braço, e não uso de iECA foram associados à hipertensão não controlada em pacientes com DAP. Da mesma forma, estudos anteriores mostraram menor índice tornozelo-braço, maior dificuldade na capacidade de deambulação,(29) pior forma física,(29) baixos níveis de atividade física,(30,33) e mais barreiras à atividade física, em pacientes mais velhos.(31,32) Estas variáveis são preditores clássicos de boa saúde cardiovascular.(33) Além disso, foi observado que pacientes que não usavam iECA tinham uma menor probabilidade de hipertensão não controlada. Um estudo de revisão(34) demonstrou que o uso de bloqueadores do sistema renina-angiotensina, especialmente os iECA, pode ser eficaz na redução do risco de eventos isquêmicos cardiovasculares em pacientes com DAP.

Os resultados do presente estudo têm importantes implicações práticas. Por exemplo, pressão arterial sistólica <140mmHg e a diastólica <90mmHg (por exemplo, pressão arterial controlada) são consideradas fundamentais no tratamento de pacientes hipertensos.(6) A hipertensão, independente de sexo, idade, índice tornozelo-braço, índice de massa corpórea, capacidade de deambulação, frequência cardíaca, ou comorbidades, foram associadas à maior rigidez arterial. Entretanto, observamos que pacientes hipertensos com pressão arterial sistólica ≤119mmHg tinham melhor saúde vascular (por exemplo, menor rigidez arterial). Portanto, estes valores devem ser considerados ao estabelecer os objetivos terapêuticos, como sugerido pelas diretrizes americanas,(35) embora com divergências em relação às diretrizes do Brasil(6) e europeias.(36)

Este estudo tem limitações. Primeiro, desenho transversal de estudo não deixa inferir sobre causalidade. Portanto, estudos longitudinais são necessários para investigar os mecanismos responsáveis pelas associações observadas. Segundo, incluímos apenas pacientes com DAP sintomática; assim, os resultados não podem ser extrapolados para pacientes com outros estágios da doença. Terceiro, o tamanho da amostra era pequeno, e os pacientes estavam usando diferentes medicamentos; isto pode ter influenciado nas variáveis cardiovasculares, e não foi possível fazer análises estratificadas por medicamentos. Finalmente, os biomarcadores não foram medidos, e isso limita a compreensão dos mecanismos que levam às associações observadas, assim como a extrapolação dos resultados para outros pacientes.
CONCLUSÃO

A hipertensão estava associada à maior rigidez arterial em pacientes com doença arterial periférica. Pacientes com hipertensão não controlada tinham maior rigidez arterial. Estes resultados demonstram a importância do controle da pressão arterial nesses pacientes.

AGRADECIMENTOS

Gabriel Grizzo Cucato tem uma bolsa do Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq número 409707/2016-3). Raphael Mendes Ritti-Dias tem uma bolsa de produtividade de pesquisador (PQ-1D) concedido pelo CNPq. Agradecemos também à Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

CONTRIBUIÇÃO DOS AUTORES

Breno Quintella Farah: planejamento e desenho do estudo, análise dos dados, início da escrita. Marilia de Almeida Correia, Raphael Mendes Ritti-Dias e Gabriel Grizzo Cucato: desenho da coleta de dados, coordenação e supervisão dos dados, revisão do manuscrito. Nelson Wolosker: contribuiu para interpretação dos dados, coordenação e supervisão das coletas e revisor do manuscrito. Aluísio Andrade-Lima: coleta de dados, coordenação e supervisão dos dados, revisão do manuscrito. Almeida Correia, Raphael Mendes Ritti-Dias e Gabriel Grizzo Cucato têm uma bolsa do Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq número 409707/2016-3). Raphael Mendes Ritti-Dias tem uma bolsa de produtividade de pesquisador (PQ-1D) concedido pelo CNPq. Agradecemos também à Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

INFORMAÇÃO DOS AUTORES

Farah BQ: http://orcid.org/0000-0003-2286-5892
Cucato GG: http://orcid.org/0000-0002-2060-8852
Andrade-Lima A: http://orcid.org/0000-0002-8559-7752
Soares AH: http://orcid.org/0000-0003-0327-4739
Wolosker N: http://orcid.org/0000-0003-1991-3507
Ritti-Dias RM: http://orcid.org/0000-0001-7883-6746
Correia MA: http://orcid.org/0000-0002-8983-3433

REFERÊNCIAS

1. Fowkes FG, Rudan D, Rudan I, Aboyans V, Denenberg JD, McDermott MM, et al. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis. Lancet. 2013;382(9891):1329-40. Review.

2. Farah BQ, Ritti-Dias RM, Cucato GG, Montgomery PS, Gardner AW. Factors associated with sedentary behavior in patients with intermittent claudication. Eur J Vasc Endovasc Surg. 2016;52(6):809-14.

3. Cavalcante BR, Farah BQ, Barbosa JP, Cucato GG, Chehuen MR, Santana FS, et al. Are the barriers for physical activity practice equal for all peripheral artery disease patients? Arch Phys Med Rehabil. 2015;96(2):248-52.

4. Farah BQ, Ritti-Dias RM, Cucato GG, Chehuen MR, Barbosa JP, Zeratti AE, et al. Effects of clustered comorbid conditions on walking capacity in patients with peripheral artery disease. Ann Vasc Surg. 2014;28(2):279-83.

5. Hackl G, Jud P, Avan A, Gary T, Deutschmann H, Seinost G, et al. COPART risk score, endothelial dysfunction, and arterial hypertension are independent risk factors for mortality in claudicants. Eur J Vasc Endovasc Surg. 2016;52(2):211-7.

6. Barroso WK, Rodrigues CL, Bortolotto LA, Mota-Gomes MA, Brandão AA, Feitosa AD, et al. Brazilian Guidelines of Hypertension - 2020. Arq Bras Cardiol. 2021;116(3):516-658.

7. Williamson JD, Supiano MA, Applegate WB, Berlowitz DR, Campbell RC, Chertoff Fine LJ, Haley WE, Hawfield AT, Ix JH, Kitzman DW, Kostis JB, Krousel-Wood MA, Launer LJ, Oparil S, Rodriguez CJ, Roubin CL, Shorr RI, Sink KM, Wadley VG, Whelton PK, Whittle J, Woolard NF, Wright JT Jr, Pajewski NM; SPRINT Research Group. Intensive vs standard blood pressure control and cardiovascular disease outcomes in adults aged 45-75 years: a randomized clinical trial. JAMA. 2016;315(24):2673-82.

8. von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke J; STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet. 2007;370(9596):1453-7.

9. Farah BQ, Rigoni VL, Correia MA, Wolosker N, Puech-Leao P, Cucato GG, et al. Influence of smoking on physical function, physical activity, and cardiovascular health parameters in patients with symptomatic peripheral arterial disease: a cross-sectional study. J Vasc Nurs. 2018;37(2):106-12.

10. Gerage AM, Benedetti TR, Farah BQ, Santana FS, Ohara D, Andersen LB, et al. Sedentary behavior and light physical activity are associated with brachial and central blood pressure in hypertensive patients. PLoS One. 2015;10(12):e0146078.

11. Van Bortel LM, Duplez D, Starmans-Kool MJ, Safar ME, Giannattasio C, Cockcroft JR, et al. Clinical applications of arterial stiffness, Task Force III: recommendations for user procedures. Am J Hypertens. 2002;15(5):445-52. Review.

12. Townsend RR, Wilkinson JB, Schifflin EL, Chirinos JA, Cockcroft JR, Heffeman KS, Lukatta EG, McEniry CM, Mitchell GE, Najjar SS, Nichols WW, Urbina EM, Weber T, American Heart Association Council on Hypertension. Recommendations for improving and standardizing vascular research on arterial stiffness: a scientific statement from the American Heart Association. Hypertension. 2015;66(3):699-722.

13. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur Heart J. 1996;17(3):354-81.

14. de Sousa AS, Correia MA, Farah BQ, Saes G, Zerati AE, Puech-Leao P, et al. Barriers and levels of physical activity in patients with symptomatic peripheral artery disease: comparison between women and men. J Aging Phys Act. 2019;27(5):719-24.

15. Santini L, Almeida Correia M, Oliveira PL, Puech-Leao P, Wolosker N, Cucato GG, et al. Functional and cardiovascular parameters in peripheral artery disease patients with interarm blood pressure difference. Ann Vasc Surg. 2021;70:355-61.

16. Smulyan H, Lieber A, Saffar ME. Hypertension, diabetes type ii, and their association: role of arterial stiffness. Am J Hypertens. 2016;29(12):e0146078.

17. Maruhashi T, Kinoshita Y, Kajikawa M, Kishimoto S, Matsui S, Hashimoto H, Takao K, Iwata Y; Hiroshima NOCTURNE Research Group. Relationship between home blood pressure and vascular function in patients receiving antihypertensive drug treatment. Hypertens Res. 2019;42(8):1175-85.

18. Laurens G, Boutronie J, Asmar R, Gauthier I, Laloux B, Guize L, et al. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension. 2001;37(5):1236-41.

19. Lin J, Pearman ME, Park W, Alkatan M, Machin DR, Tanaka H. Impact of blood pressure perturbations on arterial stiffness. Am J Physiol Regul Integr Comp Physiol. 2015;309(12):R1540-5.

20. Husmann M, Jacomella V, Thalhammer C, Amann-Vesti BR. Markers of arterial stiffness in peripheral arterial disease. Vasa. 2015;44(5):341-8. Review.
21. Palombo C, Kozakova M. Arterial stiffness, atherosclerosis and cardiovascular risk: Pathophysiologic mechanisms and emerging clinical indications. Vascul Pharmacol. 2016;77:1-7. Review.

22. Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol. 2010;55(13):1318-27. Review.

23. Protogerou AD, Papaioannou TG, Lekakis JP, Blacher J, Safar ME. The effect of antihypertensive drugs on central blood pressure beyond peripheral blood pressure. Part I: (Patho)-physiology, rationale and perspective on pulse pressure amplification. Curr Pharm Des. 2009;15(3):267-71. Review.

24. Andrade-Lima AH, Farah BQ, Rodrigues LB, Miranda AS, Rodrigues SL, Correia MA, et al. Low-intensity resistance exercise does not affect cardiac autonomic modulation in patients with peripheral artery disease. Clinics (Sao Paulo). 2013;68(5):632-7.

25. Andrade-Lima AH, Soares AH, Cucato GG, Leicht AS, Franco FG, Wolosker N, et al. Walking capacity is positively related with heart rate variability in symptomatic peripheral artery disease. Eur J Vasc Endovasc Surg. 2016;52(1):267-71. Review.

26. Tsuji H, Larson MG, Venditti FJ Jr, Manders ES, Evans JC, Feldman CL, et al. Impact of reduced heart rate variability on risk for cardiac events. The Framingham Heart Study. Circulation. 1996;94(11):2850-5.

27. Lin LY, Lin JL, Du CC, Lai LP, Tseng YZ, Huang SK. Reversal of deteriorated fractal behavior of heart rate variability by beta-blocker therapy in patients with advanced congestive heart failure. J Cardiovasc Electrophysiol. 2001;12(1):26-32.

28. Lampert R, Ickovics JR, Viscoli CJ, Horwitz RI, Lee FA. Effects of propranolol on recovery of heart rate variability following acute myocardial infarction and relation to outcome in the Beta-Blocker Heart Attack Trial. Am J Cardiol. 2003;91(2):137-42.

29. Gardner AW. Sex differences in claudication pain in subjects with peripheral arterial disease. Med Sci Sports Exerc. 2002;34(11):1695-8.

30. Gerge AM, Correia MA, Oliveira PM, Palmeira AC, Domingues WJ, Zeratti AE, et al. Physical activity levels in peripheral artery disease patients. Arq Bras Cardiol. 2019;113(3):410-6.

31. Barbosa JR, Farah BQ, Chehuen M, Cucato GG, Farias Júnior JC, Wolosker N, et al. Barriers to physical activity in patients with intermittent claudication. Int J Behav Med. 2015;22(1):70-6.

32. Sousa AS, Correia MA, Farah BQ, Saes G, Zeratti AE, Puech-Leao P, et al. Barriers and levels of physical activity in symptomatic peripheral artery disease patients: comparison between women and men. J Aging Phys Act. 2019;27(5):719-24.

33. Emrich IE, Böhm M, Mahfoud F. The 2018 ESC/ESH guidelines for the management of arterial hypertension: a German point of view. Eur Heart J. 2019;40(23):1830-1.

34. Tsoulfas C, Andrakou I, Siasos G, Filis K, Toussoulis D. Anti-hypertensive treatment in peripheral artery disease. Curr Opin Pharmacol. 2018;39:35-42. Review.

35. Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, DePalma SM, Gidding S, Jamerson KA, Jones DW, MacLaughlin EJ, Muntner P, Oviangele B, Smith SC Jr, Stafford RS, Talier J, Williams KA Sr, Williamson JD, Wright JT Jr. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2018;138(17):e426-e83.

36. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, Clement D, Coca A, De Simone G, Dominiczak A, Kahan T, Mahfoud F, Redon J, Ruitope L, Zanchetti A, Kerins M, Kjeldsen S, Kreutz R, Laurent S, Lip GY, McManus R, Narkiewicz K, Ruschitzka F, Schneider R, Shlyakhto E, Tsoufis K, Aboyans V, Desormais I; List of authors/Task Force members: 2018 Practice guidelines for the management of arterial hypertension of the European Society of Hypertension and the European Society of Cardiology: ESH/ESC task force for the management of arterial hypertension. J Hypertens. 2018;36(12):2284-309. Erratum in: J Hypertens. 2019;37(2):456.