B\(^+\) and B\(^0\) Mean Lifetime Measurements*

Fritz DeJongh†
Fermilab
P.O. Box 500, Batavia IL 60510, USA

Abstract

We review B\(^+\) and B\(^0\) mean lifetime measurements, including direct measurements and determination of the lifetime ratio via measurements of the ratio of branching ratios. We present world averages.

1. Introduction

The most precise determination of the CKM matrix element V\(_{cb}\) is obtained by comparing measurements of the rate of exclusive b \(\rightarrow cl\nu\) decays, extrapolated to a particular kinematic point, with theoretical predictions. The mean lifetime of the particular B hadron for the exclusive decay is needed to convert experimental measurements of branching ratios into decay rates.

The mean lifetime of the D\(^+\) is 2.5 times that of the D\(^0\). The difference in the B system is expected to be smaller, with the mean B\(^+\) lifetime as much as 7% larger than that of the B\(^0\).

We present herein results from direct measurements, as well as results from measurements of ratios of branching ratios. The numerical values of all results, and the world averages, are presented in Fig. 1. References to a specific charge state imply the charge-conjugate state as well. For the direct measurements, the decay length \(L\) of the B meson is measured with a silicon vertex detector, and the boost \(\beta\gamma\) is measured with tracking in a magnetic field, and calorimetry. The proper lifetime \(c\tau\) is simply the ratio \(L/\beta\gamma\). We present results from CDF, from the reaction \(p\bar{p}(\sqrt{s} = 1.8\text{ TeV}) \rightarrow b\bar{b} + X\), and results from ALEPH, DELPHI, OPAL, from the reaction \(e^+e^- \rightarrow Z \rightarrow b\bar{b}\).

If a B\(^+\) decay mode is related to a B\(^0\) decay mode by a single isospin amplitude, the ratio of branching ratios is equivalent to the ratio of mean lifetimes. We present such results using inclusive semileptonic decays from CLEO, and \(J/\psi K\) decays from CDF.

2. Fully reconstructed decays

In the case where the B hadron is fully reconstructed, the B hadron type, \(\beta\gamma\), and \(L\) are all unambiguously measured, and the systematic uncertainties are minimal. CDF has reconstructed:

- \(B^+ \rightarrow J/\psi K^+, J/\psi K^{*+}, \psi(2S)K^+, \psi(2S)K^{*+}\)
- \(B^0 \rightarrow J/\psi K_S, J/\psi K^{*0}, \psi(2S)K_S, \psi(2S)K^{*0}\)

The decay \(J/\psi \rightarrow \mu^+\mu^-\) triggers the event. Without the trigger restriction, ALEPH has reconstructed:

- \(B^+ \rightarrow J/\psi K^+, \bar{D}^0\pi^+, \bar{D}^0\rho^+, \bar{D}^0a_1^+\)
- \(B^0 \rightarrow D^-\pi^+, D^{*-}\pi^+\)

3. Partial reconstruction of \(B \rightarrow \bar{D}^{(*)}\ell\nu X\)

In this method, one reconstructs the charmed meson and the lepton from a semileptonic decay. Events with \(D^{*-} \rightarrow \bar{D}^0\pi^-\) are dominantly from B\(^0\) decay, events with D\(^0\), excluding D\(^{-}\) candidates, are dominantly from B\(^+\) decay, and events with D\(^-\) are dominantly from B\(^0\) decay since \(\bar{D}^{*0}\) does not decay to D\(^-\).
Some complications are that the decay is not fully reconstructed, so it is necessary to estimate the boost of the B based on the boost of the lepton and charm. This can be done with about 15% resolution. Systematic uncertainties in the average boost lead to systematic uncertainties in the mean lifetime. Also, approximately 30% of semileptonic decays are through the chain $B \to D^{*+} \nu, D^{**} \to D^0 \pi$ or D^π. This, along with an imperfect efficiency for reconstructing the soft pion from the D^{*-} decay chain, mixes the B^+ / B^0 composition of the samples. This mix needs to be understood in order to obtain individual B lifetimes.

There are results from ALEPH [6], DELPHI [7], OPAL [8], and CDF [9]. For the purposes of the world average, we assume that systematic uncertainties in background shape and sample composition are correlated among all experiments. The boost estimate depends on the B production and decay spectra, therefore we assume that systematic uncertainties from this source are correlated among the LEP experiments only.

4. Topological Reconstruction

The DELPHI collaboration has selected 1816 secondary vertex candidates [10] for which all tracks in a jet are unambiguously assigned to either the primary or secondary vertex. The charge of the B hadron candidate is simply the sum of the charges of the tracks assigned to the secondary vertex. The B purity is 90%, and the charged/neutral assignment is 80% correct for the charged sample, and 57% correct for the neutral sample. The proper lifetime for an event is taken relative to the secondary vertex. The multiplicity of the untagged B is simply the sum of the charges of the tracks assigned to either the primary or secondary vertex candidates [10] for which all tracks in a jet are unambiguously assigned to either the primary or secondary vertex. The charge of the B hadron candidate is simply the sum of the charges of the tracks assigned to the secondary vertex. The B purity is 90%, and the charged/neutral assignment is 80% correct for the charged sample, and 57% correct for the neutral sample. Therefore, tagging the charge, cuts. This provides most of the tags for the neutral sample.

- Reconstruct only the “fast” and “slow” pions in the decay chain $B^0 \to D^{*-} \pi^+_\text{fast}, D^+ \to D^0 \pi^-_\text{slow}$. The major systematic uncertainties are from the uncertainty in the lepton spectrum, and from a dependence of the efficiency of the tag selection on the multiplicity of the untagged B.

CDF has reconstructed $B^+ \to \psi K^+$ and $B^0 \to \psi K_s$. Assuming the production cross-section for B^+ and B^0 are equal, CDF derives the ratio of branching ratios.

6. Conclusions

The world average is calculated grouping systematic uncertainties into correlated sets as stated above. The results are shown in Fig. 1. We conclude that the B^+ lifetime is consistent with being the same as the B^0 lifetime. The uncertainty on the world average is similar to the largest theoretically expected difference. Many experiments can add additional channels, and all experiments cited herein continue to take data, so we can expect continued improvements in precision in the near future.

7. Acknowledgements

Thanks to Kay Kinoshita, Robert Kowalewski, Vivek Sharma, Fumi Ukegawa, and Wilbur Venus for providing information on the latest results. Thanks to Tim Hessing for the use of a program to calculate averages with correlated systematic uncertainties.

References

[1] CLEO collaboration, contribution to this conference, ICHEP94 Ref. 0251; ALEPH collaboration, contribution to this conference, ICHEP94 Ref. 0605.
[2] M. Shifman, contribution to this conference, ICHEP94 Ref. 0823; M. Neubert, contribution to this conference, ICHEP94 Ref. 0935.
[3] I.I. Bigi and N.G. Uraltsev, Phys. Lett. B280 (1992) 271.
[4] F. Abe et al., Phys. Rev. Lett. 71 (1994) 3456.
[5] ALEPH collaboration, contribution to this conference, ICHEP94 Ref. 0602.
[6] ALEPH collaboration, contribution to this conference, ICHEP94 Ref. 0579.
[7] P. Abreu et al., Zeit. Phys. C57 (1993) 181.
[8] OPAL collaboration, contribution to this conference, ICHEP94 Ref. 0533.
[9] CDF collaboration, contribution to this conference, ICHEP94 Ref. 0655.
[10] DELPHI collaboration, contribution to this conference, ICHEP94 Ref. 0165.
[11] M. Athanas et al., CLEO 94-16.
[12] J. Gonzalez, Proc. of the Workshop on B Phys. at Hadron Accelerators 1993, p. 285; Eds. P. McBride and C.S. Mishra.
Figure 1. Summary of B^+ and B^0 mean lifetime measurements.