Potassium channel modulation by a toxin domain in matrix metalloprotease 23

Srikant Rangaraju,1,* Keith K. Khoo,2,3,* Zhi-Ping Feng,2 George Crossley,4 Daniel Nugent,4 Ilya Khaytin,4 Victor Chi,1 Cory Pham,1 Peter Calabresi,5 Michael Pennington,4# Raymond S. Norton,2# K. George Chandy1,4,X

1Department of Physiology and Biophysics and Pathology, University of California, Irvine, California; 2Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; 3Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia; 4Bachem Bioscience Inc., 3700 Horizon Dr., King of Prussia, Pennsylvania; 5Department of Neurology/Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland

Running title: MMP23 regulation of potassium channels by a toxin domain

Address correspondence to K. George Chandy, Department of Physiology and Biophysics, 291 JISH, School of Medicine, University of California Irvine, Irvine, CA 92697. FAX: 949-824-3143; e-mail: gchandy@uci.edu

SUMMARY

Peptide toxins found in a wide array of venoms block K+ channels, causing profound physiological and pathological effects. Here we describe the first functional K+ channel-blocking toxin domain in a mammalian protein. Matrix metalloprotease 23 (MMP23) contains a domain (MMP23TxD) that is evolutionarily related to peptide toxins from sea anemones. MMP23TxD shows close structural similarity to the sea anemone toxins BgK and ShK. Moreover, this domain blocks K+ channels in the nanomolar to low micromolar range (Kv1.6 > Kv1.3 > Kv1.1 = Kv3.2 > Kv1.4 in decreasing order of potency), while sparing other K+ channels (Kv1.2, Kv1.5, Kv1.7, KCa3.1). Full-length MMP23 suppresses K+ channels by co-localizing with and trapping MMP23TxD-sensitive channels in the ER. Our results provide clues to the structure and function of the vast family of proteins that contain domains related to sea anemone toxins. Evolutionary pressure to maintain a channel-modulatory function may contribute to the conservation of this domain throughout the plant and animal kingdoms.

Mechanisms that fine tune the activity of potassium channels are crucial to a cell’s

* SR and KK contributed equally to this work.
MP, RN and KGC are co-senior authors; they contributed equally to this work.
ability to integrate and respond to a plethora of internal and external signals. Peptide toxins from venomous creatures have served as vital tools to define the molecular mechanisms underlying K⁺ channel function (1,2). It has been suggested that toxins evolved from endogenous genes that function in normal cellular pathways (3,4). Indeed venomous creatures possess toxins with homology to several proteins including acetylcholinesterases (5), phospholipases (6,7) nerve growth factor (8), endothelins (9), Lynx-1 (10,11), Kunitz-type serine protease inhibitors (12), and the ion channel regulatory (ICR) domains of cysteine-rich secretory proteins (CRISP) (3,13,14). Mammalian proteins containing toxin-like domains (TxDs) that block K⁺ channels have not been characterized previously.

BgK, a 37-residue peptide toxin from the sea anemone *Bunodosoma granulifera* (15,16), and ShK, a 35-residue peptide toxin from the sea anemone *Stichodactyla helianthus* (17,18) are potent inhibitors of K⁺ channels. The Simple Modular Architecture Research Tool (SMART) (http://smart.embl-heidelberg.de) predicts the existence of a large super-family of proteins that contain domains (referred to as ShKT domains in the SMART database) resembling these two toxins (Fig. 1A). Many of these proteins (~70) are metallopeptidases while others are prolyl 4-hydroxylases, tyrosinases, peroxidases, oxidoreductases, or proteins containing EGF-like domains, thrombospondin-type repeats and trypsin-like serine protease domains (Fig. 1B). The only human protein containing a ShKT domain in the SMART database is matrix metalloprotease 23 (MMP23). MMPs belong to the metzincin superfamily and play important roles in tissue remodeling, development, and the immune response (19).

MMP23 is expressed in many tissues and exists either as a type-II transmembrane protein in ER/nuclear membranes or as a secreted form following cleavage of the RRRRY motif just N-terminal to the Zn²⁺-dependent metalloprotease domain (20-23). The ShKT domain of MMP23 (MMP23_TxD) lies between the metalloprotease domain and an immunoglobulin-cell adhesion molecule (Ig-CAM) domain (Fig. 2A). MMP23 has been implicated in prostate, brain and breast cancer (24-26). In humans, two related sequences, MMP23A (a pseudogene) and MMP23B, are co-located on chromosome 1p36 (20). We have investigated MMP23 to gain insight into the structure and physiological functions of ShKT toxin domains, and describe the solution structure of the MMP23_TxD domain, its structural similarity to the sea anemone toxins BgK and ShK, and its functional role in blocking K⁺ channels.

EXPERIMENTAL PROCEDURES

Synthesis and Purification of MMP23_TxD — We synthesized the 37-residue rat MMP23_TxD on Ramage™ resin using an automated protocol. Fmoc-amino acids (Bachem AG) included Arg(Pmc), Asp(OtBu), Cys(Trt), Gln(Trt), His(Trt), Lys(Boc), Ser(tBu), Thr(tBu), Trp(Boc) and Tyr(tBu). Stepwise assembly was carried out on 0.25 mmol scale on a Symphony automated peptide synthesizer using HBTU activation and standard Fmoc-solid phase peptide synthesis methods. Following chain assembly, 800 mg of resin was cleaved using reagent K/TFA 1:9 for 2 h at room temperature (27). Resin was filtered and the peptide was precipitated using diethyl ether. The yield was 350 mg of peptide.
The peptide was pre-purified to ca 75% using preparative RP-HPLC (Krmasil-C18 10u) and lyophilized. Purification of 250 mg yielded 40 mg of semi-pure material, which was folded by dissolving the reduced and pre-purified peptide in DMSO, and then diluting to 0.25 mg/ml with 10% DMSO/10% IPA/2M guanidine HCL and adjusting the pH to 7.6 with NH₄OH. The solution, which remained clear during the pH adjustment, was then allowed to oxidize overnight. LC-MS samples were taken at 2, 4, 6 and 24 h. Two peaks with the correct mass formed initially, but with longer reaction times, one peak became dominant. After 36 h, the folding was stopped by acidifying the solution with HCl to a pH of 4.0. The solution was diluted 50% with H₂O and filtered before prep-HPLC purification over a RPLC C18 column using a gradient of 15-45 %B in 45 min (buffers A and B were 0.1% TFA in H₂O and acetonitrile, respectively). Mass spectral analysis determined the (M+H) to be 4427, consistent with the formation of three intramolecular disulfide bonds. The final yield of 26 mg was at a purity of 95 %.

NMR spectroscopy — Synthetic MMP23TXD (6 mg) was dissolved in 600 µl H₂O containing 6% ²H₂O and the pH was adjusted to 5.0. Two-dimensional homonuclear total correlation (TOCSY) spectra with a spin-lock time of 70 ms, nuclear Overhauser enhancement (NOESY) spectra with mixing times of 250, 150 and 50 ms, and double quantum filtered correlation (DQF-COSY) spectra were acquired at 600 MHz on a Bruker DRX-600 spectrometer. Spectra were acquired at 20 °C unless otherwise stated and referenced to dioxane (3.75 ppm). TOCSY and NOESY spectra were also collected at 5 °C. The water resonance was suppressed using the WATERGATE pulse sequence (28,29). A series of 1D spectra over the temperature range 5-25 °C, at 5 °C intervals, was collected. Amide exchange rates were monitored by dissolving freeze-dried material in ²H₂O at pH 5.2 then recording a series of 1D spectra, followed by 70 ms TOCSY, 50 ms NOESY and an exclusive correlation (E-COSY) spectra, all at 5 °C. In addition, ¹H-¹³C HSQC spectra for the assignment of ¹³C chemical shifts and a ¹H-¹⁵N HSQC spectrum for the assignment of ¹⁵N chemical shifts (28,30,31) were collected at 20 °C on the Bruker DRX-600 and a Bruker Avance 500 spectrometer equipped with a TXI-cryoprobe, respectively. Diffusion measurements were performed at 5 and 20 °C using a pulsed field gradient longitudinal eddy-current delay pulse sequence (31,32) as implemented (33). Spectra were processed using TOPSPIN (Version 1.3, Bruker Biospin) and analyzed using XEASY (Version 1.3.13) (34).

Structural Constraints — ³J₃HNHA coupling constants were measured from DQF-COSY spectra at 600 MHz, and then converted to dihedral restraints as follows: ³J₃HNHA > 8 Hz, φ = -120 ± 40°; ³J₃HNHA < 6 Hz, φ = -60 ± 30°. χ₁ angles for some residues were determined based on analysis of a short mixing time (50 ms) NOESY spectrum. In addition, TALOS (35) was used to predict torsion angle (φ and ψ) restraints based on chemical shifts. Predicted φ and ψ angles of residues that gave good prediction scores (17 residues: 12-16, 22-25, 27-34) were constrained (range ± 40°) in structural calculations in XPLOR. Two χ₁ angles (Asp⁵ and Phe³⁶) were constrained in final structure calculations. The number of final dihedral angle constraints is listed in Table S1 and details have been deposited along with distance constraints in BioMagResBank (36) as entry 15900.
As disulfide bonds for MMP23TxD had not been mapped, these were not included as structural restraints in preliminary calculations. Subsequently, disulfide bond connectivities were determined based on Cys\textsubscript{A}Hα-Cys\textsubscript{B}Hβ and Cys\textsubscript{A}Hβ-Cys\textsubscript{B}Hβ inter-cysteine NOEs observed in NOESY spectra (37) as well as Cys\textsubscript{A}Cβ-Cys\textsubscript{B}Cβ and Cys\textsubscript{A}Sγ-Cys\textsubscript{B}Sγ inter-cysteine distance calculations in preliminary structures (Table S4). Disulfide bonding was determined to be Cys\textsubscript{3}-Cys\textsubscript{37}, Cys\textsubscript{10}-Cys\textsubscript{30}, Cys\textsubscript{19}-Cys\textsubscript{34}, which is the same pattern as in ShK and BgK. These were added as restraints for final structure calculations. No hydrogen bond restraints were included.

Structure Calculations — Intensities of NOE cross peaks were measured in XEASY and calibrated using the CALIBA macro of the program CYANA (version 1.0.6) (38). NOEs providing no restraint or representing fixed distances were removed. The constraint list resulting from the CALIBA macro of CYANA was used in XPLOR-NIH to calculate a family of 200 structures using the simulated annealing script (39). The 55 lowest energy structures were then subjected to energy minimization in water; during this process, a box of water with a periodic boundary of 18.856 Å was built around the peptide and the ensemble was energy minimized based on NOE and dihedral restraints and the geometry of the bonds, angles and impropers. From this set of structures, final families of 20 lowest energy structures were chosen for analysis using PROCHECK-NMR (40) and MOLMOL (41). In all cases, the final structures had no experimental distance violations > 0.2 Å or dihedral angle violations > 5°. The structures have been deposited in the Protein Data Bank (42) with id 2K72. Structural figures were prepared using the programs MOLMOL (41) and PyMOL (Delano, W.L. The PyMOL Molecular Graphics System [2002] Delano Scientific, San Carlos, CA, USA. http://www.pymol.org).

Cell lines, transfection and cell culture — Stable cell lines expressing K+ channels (43) were used for electrophysiology. Kv1.6 (in pcDNA3.1) was transiently transfected with pEGFP-C1 in COS7 cells for 24-30 h. COS7 cells were grown to 60-80% confluence in 6-well culture plates and were transfected with 0.4-1 µg DNA using Lipofectamine 2000 (Invitrogen) in OPTIMEM-I media as per manufacturer’s protocol. After 24-30 h, transfection efficiency was assessed by fluorescence microscopy (Olympus). eGFP-MMP23 was generated using the following PCR primers:

\[
\text{5'} \text{ primer: } 5'-\text{CCCAAGCTTCCATGGGATGGCGAGCTGTCTCCGTCCGGAGGCGTC-3'},
\]
\[
\text{3'} \text{ primer: } 5'-\text{GATGGATCCGAATTCTCAGCTCCTCACTCGGCCACCTCCAGGA-3'}.
\]

Two-step PCR amplification was performed using rat MMP23 cDNA as template (Open Biosystems). The 1200 bp PCR product was inserted into pEGFP-C1 (Clontech) at 5' HindIII and 3' BamHI restriction sites. The ligated product was transformed into XL1-blue E. coli. The purified construct was used for transient transfection after sequence confirmation. pEGFP-C1 or pEGFP-MMP23 along with hKv1.3 or hKv1.6 cDNA (in pcDNA3.1) were also co-transfected into COS7 cells (ratio 8:1) which were then trypsinized after 24 h, plated on coverslips, and followed by electrophysiological studies. Fluorescent cells were patch clamped for outward potassium currents. Stable cell lines expressing Kv1.2, Kv1.7, and Kv1.3 were transfected with pEGFP-C1 or pEGFP-MMP23 for suppression experiments. Expression of constructs in...
COS7 cells was confirmed by Western blot.

Electrophysiology — All experiments were conducted in the whole-cell configuration of the patch-clamp technique as described previously (1,43,44). Data acquisition and analysis was performed using pClamp software.

Immunostaining and Confocal Microscopy. COS7 cells transiently co-transfected with eGFP/eGFP-MMP23 and hKv1.3, or Kv1.2 expressing B82 cells transfected with eGFP-C1/eGFP-MMP23 were allowed to stick to poly-L-lysine (Sigma-Aldrich) coated coverslips for 1 h prior to fixing (2% Paraformaldehyde, Sigma-Aldrich) and permeibilization (0.1% Triton-X in PBS). Coverslips were blocked overnight with 5% BSA + 5% Goat serum in PBS. Cells were incubated with primary rabbit polyclonal anti-Kv1.3 antibodies (a kind gift from Dr. Hans Gunther Knaus) (1:1000) for 2 h followed by secondary anti-rabbit IgG-Alexa 647 (Molecular Probes) for 1 h. For ER co-localization experiments, COS7 cells transfected with EGFCP-C1 or eGFP-MMP23 were stained with anti-SERCA2 mAb (1:1000, Molecular Probes) and secondary anti-mouse IgG-Alexa 647 (1:1000, Molecular Probes). Non-specific rabbit IgG controls were performed for each experiment. All incubations were performed in the dark. Cells were imaged by confocal microscopy (LSM Zeiss Meta 2). Images were analyzed for co-localization using LSM 510 software (n = 3 independent experiments; 20-30 cells were imaged for quantification of co-localization).

For flow cytometric studies to determine surface Kv1.3 channels using ShK-F6CA, the MMP23 construct from pEGFP-C1 was subcloned into pDsRED-C1 Monomer (Clontech) at 5’ HindIII and 3’ BamHI restriction sites. We then co-transfected COS7 cells with human Kv1.3 and pDsRED-C1 (Clontech) or pDsRED-MMP23 for 30 h. Cells were trypsinized and incubated with 10 nM ShK-F6CA (44) in PBS + 2% goat serum for 30 min, and were then washed 3x with PBS + 2% goat serum. The intensity of ShK-F6CA staining (a measure of Kv1.3 cell surface expression) was determined by flow cytometric analysis (BD FACS Calibur flow cytometer and BD CellQuest Pro Software). The D-value, a measure of the difference in mean fluorescence intensities of stained and unstained cells, was calculated as follows:

\[
D\text{-value} = \frac{\text{MFI}_{\text{Stained cells}} - \text{MFI}_{\text{Unstained cells}}}{\text{MFI}_{\text{Unstained cells}}}
\]

RESULTS

Phylogenetic relatedness of ShKT-domain containing proteins — MMP23’s ShKT domains (henceforth referred to as MMP23\(_{\text{TxD}}\)) from humans to hydra exhibit remarkable sequence conservation with no gaps or insertions in the domain (Fig. 2A). We compared the MMP23\(_{\text{TxD}}\) sequence to that of sea anemone toxins as well as representative members of the ShKT domain family from worms, cnidarians and plants (Fig. 2B, 2C). We included in the sequence alignment a second human protein, microfibrillar associated protein MFAP2, with a ShKT domain that is not mentioned in the SMART database (45). As the ICRs of CRISPs share structural similarity with ShKT domains (46-50), we also included snake and human ICR domain sequences.

When compared to sea anemone toxins, MMP23\(_{\text{TxD}}\)s appear most similar to BgK with identical or equivalent substitutions at 14 of 36 positions (Fig. 2B). Asp\(^5\) is
conserved in all members of the ShKT domain family, but is absent in the ICRs of CRISPs (Fig. 2C). In ShK, the carboxylate of this aspartate (Asp⁵ in ShK) forms a salt bridge with the ε-ammonium group of Lys₃⁰, and this salt bridge is necessary for proper folding of the peptide (18,51,52). Lys₃₂ and Arg₃₂ at the equivalent position in MMP23TxDs from sea anemone, hydra, rat, mouse and puffer fish (Fig. 2A), could form a salt bridge with the aspartate. Other MMP23TxDs contain Ser₃₂ (Fig. 2A) and in these domains Asp⁵ may make hydrogen bonding interactions with the side-chain hydroxyl or the peptide backbone. In the multiple sequence alignment, most proteins, with the exception of the three snake CRISPs, contain a serine or threonine at position 33 (Fig. 2C). All sea anemone toxins contain a lysine residue (Lys₂⁵ in BgK, Lys₂² in ShK) that occludes the K⁺ channel pore (16,51-54). Replacement of this residue with alanine abolishes K⁺ channel-blocking activity, while replacement with shorter or longer chained positively charged residues retains activity, albeit with lower potency (51-54). Four MMP23TxDs (opossum, chicken, zebra finch, stickleback fish) contain lysine at the corresponding position, while other vertebrate MMP23TxDs contain arginine (Fig. 2A). Interestingly, ICR domains of three snake CRISPs (natrin, triflin stecrisp) possess the critical pore-occluding lysine (Fig. 2C), and natrin has been reported to block the voltage-gated Kv1.3 channel (46). The ICR domains of the four mammalian CRISP proteins contain Thr, Leu or Ala at the corresponding position (Fig. 2C), and therefore, may not block K⁺ channels. One of these, CRISP-2/Tpx-1, has been reported to block ryanodine receptors (13).

A phylogenetic tree based on the multiple sequence alignment of representative proteins from the ShKT-domain family and generated with the PHYLIP program (http://www.genebee.msu.su/genebee.html) places the MMP23TxDs, the sea anemone toxins and the ICR-CRISP domains in distinct but related clades (Fig. 3). MMP23TxDs also show phylogenetic relatedness to ShKT domains in MFAP2 (45), C. elegans proteins astacin metalloprotease NAS14, tyrosinase Tyr3, ligand-gated channel lgc22 and Mab7 (56), the hydra and jellyfish astacin metalloproteases HMP2 and PMP1 (57,58), and plant oxidoreductases (2OG-Fe[II]) and prolyl 4-hydroxylases (Fig. 3). TxDs in MMP23 and ICRs of CRISPs are each encoded by a single exon (Fig. S1) raising the possibility that an ancient exon gave rise to these domains. Sea anemones may have co-opted and modified this exon to generate potent K⁺ channel-blocking toxins.

Synthesis of MMP23TxD — We synthesized the 37-residue MMP23TxD on Ramage™ amide resin with an automated Fmoc/tBu protocol. Following cleavage and deprotection, 36h was allowed for folding and oxidative formation of three disulfide bonds under similar conditions to those used for ShK. Folding proceeded smoothly to a major product that was homogeneous by analytical RP-HPLC (Fig. 4). Electrospray ionization mass spectral analysis yielded a (M+H) of 4427.33, consistent with the theoretical value following formation of three disulfide bonds (Fig. 4).

Solution Structure of MMP23TxD — Details of the solution structure of MMP23TxD are provided in the supplemental text and Figures S2-S6. A summary of experimental constraints and structural statistics for MMP23TxD is given
in Tables S1-S4. The angular order parameters for \(\Phi \) and \(\psi \) angles in the final ensemble of 20 structures were both > 0.8 for residues 4-36. The mean pairwise RMSD over the backbone heavy atoms of residues 4-36 in this family of structures was 0.75 Å. Three short \(\alpha \)-helices encompassing residues 10-14, 23-29 and 31-34 characterize the closest-to-average structure of MMP23\textsubscript{TxD}.

Hydrogen bonds between Ala14 NH and Cys10 O, Lys16 NH and Trp13 O, Leu25 NH and Arg22 O were observed in all 20 structures. The presence of medium-range \(d_{\alpha N}(i,i+3) \) and \(d_{\alpha N}(i,i+4) \) NOEs in these regions supports the helices observed. The conserved Asp5 is close to the guanidinium group of Arg32 suggesting that a salt bridge or H-bond may form between these two residues, as it does in sea anemone toxins. A stereo view of the closest-to-average structure of MMP23\textsubscript{TxD} is presented in Fig. 5A. The family of 20 final structures superimposed over the backbone heavy atoms (N, C\(\alpha \), C') of all residues is shown in Fig. 5B.

MMP23\textsubscript{TxD} shares structural similarity with BgK and ShK — Fig. 6A compares the closest-to-average structure of MMP23\textsubscript{TxD} with those of BgK and ShK. The location of several charged side chains on the molecular surface of MMP23\textsubscript{TxD} is highlighted in Fig. 6B. The backbone heavy atoms of the final 20 structures of MMP23\textsubscript{TxD} are superimposed over the final ensembles of BgK and ShK structures in Figs. 6C and 6D, and the pairwise RMSD values over the backbone heavy atoms between the structures of MMP23\textsubscript{TxD}, BgK and ShK are shown in Table 1. MMP23\textsubscript{TxD} shares greater structural similarity with BgK (RMSD 2.28 Å) than ShK (2.77 Å). In fact, the structural similarity between MMP23\textsubscript{TxD} and BgK is greater than that of BgK and ShK (RMSD 2.78 Å). MMP23\textsubscript{TxD}, BgK and ShK have a turn involving the fifth cysteine residue (Cys30 in MMP23\textsubscript{TxD}); this is followed by a short \(\alpha \)-helix (residues 31-34) in MMP23\textsubscript{TxD} and BgK, but not in ShK. The main differences between MMP23\textsubscript{TxD} and BgK are in the length of the first two helices, with the first helix in MMP23\textsubscript{TxD} being shorter and the second longer than in BgK.

MMP23\textsubscript{TxD} exhibits greater structural similarity to BgK than the CRISP-ICR domains — We compared the structure of MMP23\textsubscript{TxD} with that of the CRISP-ICR domains (13,46-50) based on a backbone alignment of matching residues in a multiple alignment (Fig. 7, Table 1). The ICR domains of snake (Stecrisp, Natrin, Triflin, Pseudechetoxin) and human (CRISP-2/Tpx-1) CRISPs showed considerable structural similarity (Fig. 7A). Amongst the snake proteins, the pairwise RMSD values over the backbone heavy atoms ranged from 0.52 – 0.98 Å, and between the snake proteins and human CRISP-2/Tpx-1, the RMSD was 0.98-1.32 Å (Table 1). Comparing the ICR domain-structure of Stecrisp as a representative of the CRISPs to the closest-to-average structure of MMP23\textsubscript{TxD} (Fig. 7B), the main differences were in the first and third loops (corresponding to residues 4-9,24-28 of MMP23\textsubscript{TxD}), possibly because MMP23\textsubscript{TxD} has two fewer residues in the first loop and two more in the third loop (Fig. 2B,C). Compared with BgK, the backbone of MMP23\textsubscript{TxD} aligned relatively well throughout, with the exception of the N-terminal region (Fig. 7C). The pairwise RMSD values between the five ICR domains and MMP23\textsubscript{TxD} ranged from 2.98 – 3.07 Å. These ICR domains of CRISPs also showed less structural similarity to the sea anemone toxins BgK (RMSDs 2.97 – 3.09 Å) and ShK (RMSDs 3.53 –
3.79 Å) (Fig. 7, Table 1). These structural results, together with the phylogenetic data demonstrate that MMP23TxDs and sea anemone toxins share a closer relationship with each other than with ICR domains of CRISPs.

MMP23_{TxD} **blocks potassium channels** — BgK and ShK block Kv1.1, Kv1.3, Kv1.4, Kv1.6, Kv3.2 and KCa3.1 channels (15,16,51-55). We examined whether MMP23_{TxD} also blocked these channels. The human Kv1.6 channel expressed in COS7 cells was blocked by MMP23_{TxD} with a Hill coefficient approximating unity and an IC₅₀ value of 370 nM (Figs. 8A, C, D). MMP23_{TxD} also blocked Kv1.3 stably expressed in L929 fibroblasts (Figs. 8B, C, D) and the Kv1.3 channel in human T cells (data not shown) with an IC₅₀ value of 2.7 µM. A functional dyad comprised of a critical lysine and an aromatic residue separated by 5-7 Å is present in many K⁺ channel-blocking toxins (16) and the presence of Arg²⁴ and Leu²⁵ in place of this dyad in MMP23_{TxD} may contribute to its lower potency. However, the introduction of the dyad into MMP23_{TxD} (Arg²⁴Leu²⁵→Lys²⁴Tyr²⁵) did not improve potency of MMP23_{TxD} for Kv1.3 (IC₅₀ 2.7 ± 0.5 µM). MMP23_{TxD} exhibited lower affinity for Kv1.1, Kv3.2 and Kv1.4, while Kv1.5, Kv1.7 and KCa3.1 were unaffected by 100 µM of the peptide (Figs. 8B-D).

Scorpion and sea anemone peptide toxins interact with a binding site in the outer vestibule of K⁺ channels (1,2,52,53). Toxin-affinity for the binding site in Kv1.3 can be decreased either by titrating His⁴⁰⁴ at the entrance to the pore by lowering the external pH to 6.0, or by occupying the potassium-binding site in the ion selectivity filter by increasing the external K⁺ concentration (1,52,53). Both these manipulations destabilize the toxin-channel interaction via electrostatic repulsion of the pore-occluding lysine (Lys²⁷ in kaliotoxin and Lys²² in ShK) (1,52,53). We applied both these tests to MMP23_{TxD}. Increasing external K⁺ concentration or pH-titration of His⁴⁰⁴ in Kv1.3, both significantly decreased MMP23_{TxD} affinity for the channel (data not shown). These results suggest that MMP23_{TxD} interacts with Kv1.3’s external vestibule.

Full-length MMP23 suppresses K⁺ channels — Since MMP23_{TxD} lies between the metalloprotease and the IgCAM domains in MMP23, it may not be optimally positioned in the full-length protein to block K⁺ channels. To test whether MMP23_{TxD} retained K⁺ channel-blocking activity in full-length MMP23, N-terminal eGFP-tagged MMP23 (eGFP-MMP23) or eGFP was co-expressed in mammalian cells with MMP23_{TxD}-sensitive or resistant channels. Confocal microscopy and patch-clamp experiments were performed 30h later. eGFP-MMP23 co-localized with MMP23_{TxD}-sensitive Kv1.3 channels (Figs. 9A, 9B). In contrast, MMP23 did not co-localize with MMP23_{TxD}-resistant Kv1.2 channels (Fig. 9A, 9B). eGFP did not co-localize with either channel (Figs. 9A, 9B). These results suggest that MMP23_{TxD} is required for MMP23-channel co-localization, although other domains in MMP23 may also contribute.

Published cell-fractionation and confocal studies demonstrate that full-length MMP23 is an intracellular protein that is expressed primarily in ER/Golgi membranes (21,22). We verified these results in our system, by demonstrating that eGFP-MMP23, but not eGFP, co-localized with the ER membrane marker SERCA-2 (Fig. 9C). Since MMP23 is a type-II transmembrane ER protein
MMP23 will lie within the ER lumen where it has the potential to bind to the outer vestibule of TxD-sensitive channels (Figure 10A). Once compartmentalized with a MMP23 TxD-sensitive channel, MMP23’s diffusion away from the channel is likely to be constrained by the ER membrane. Such an interaction might trap MMP23 TxD-sensitive channels in the ER and thereby decrease surface channel expression. In contrast, MMP23 TxD-resistant channels should be unaffected.

We performed two types of experiments to test for ER trapping. First, we performed whole-cell patch-clamp experiments on cells co-expressing MMP23 and either MMP23 TxD-sensitive or -resistant channels. MMP23 suppressed MMP23 TxD-sensitive Kv1.6 and Kv1.3 currents, but had no effect on MMP23 TxD-resistant Kv1.2 and Kv1.7 currents (Fig. 10B). Second, we used fluoresceinated ShK (ShK-F6CA) in flow cytometry experiments to measure cell surface protein expression of Kv1.3 in COS7 cells expressing Kv1.3 and either pDSRED-MMP23 or the control pDSRED-C1 monomer. ShK-F6CA (44) is a highly-specific Kv1.3 inhibitor that blocks the channel (IC50 value 48 pM) 56,000-fold more potently than MMP23 TxD. The intensity of ShK-F6CA staining reflects the number of Kv1.3 tetramers on the cell surface since the peptide binds to the channel tetramer (44). Cell surface Kv1.3 expression was significantly lower in pDSRED-MMP23-expressing cells compared with pDSRED-C1-expressing controls (Fig. 10C). Taken together, these results suggest that MMP23 reduces surface expression of MMP23 TxD-sensitive Kv1.6 and Kv1.3 channels via intracellular trapping.

DISCUSSION

K+ channels constitute the most abundant and diverse family of ion channels, and they regulate a myriad of functions in both excitable and non-excitable cells. Peptide toxins have helped to define the molecular mechanisms underlying K+ channel function and to determine the relationship between K+ currents in native tissues and specific genes. The Cnidarian toxins ShK and BgK are potent inhibitors of voltage-gated and calcium-activated K+ channels (15,16,51-55). The Simple Modular Architecture Research Tool has identified domains in a vast number of proteins that resemble ShK and BgK (http://smart.embl-heidelberg.de). A majority of these proteins are metallopeptidases belonging to the astacin/adamalysin family in *Caenorhabditis elegans* (Fig. 1). The three-dimensional structures and biological activities of these putative channel-blocking domains have not been determined. As MMP23 is the only protein in humans identified by the SMART database to contain such a domain, we have investigated the structure and physiological function of this domain.

MMP23 TxDs from diverse species exhibit a high degree of sequence conservation (Fig. 2A). They are evolutionarily related to the sea anemone toxins and to TxDs in a number of worm, Cnidarian and plant proteins, and the ICR domains of snake and human CRISPs (Fig. 2C). Interestingly, we have found a second human protein (MFAP2), not included in the SMART database, that contains a ShKT domain phylogenetically related to MMP23 TxD. MFAP2 is a matrix protein, which like MMP23 is located on human chromosome 1p36 (45). The evolutionary relatedness of MMP23 TxDs is supported by the similarity of their three-dimensional structures. MMP23 TxD and the sea anemone toxins share greater structural
similarity to each other than to ICR domains; MMP23_TxD's structure is most similar to that of BgK (Figs. 5-7 and Table 1).

MMP23_TxDs and ICR domains are each encoded by a single exon (Fig. S1), suggesting that these two related structural motifs possibly arose from an ancient exon. In venomous creatures, this ancient module may have been modified to give rise to potent ion channel blockers, while the incorporation of this exon into plant oxidoreductases and prolyl hydroxylases, and worm astacin-like metalloproteases and trypsin-like serine proteases, produced enzymes with potential channel-modulatory activity.

A lysine residue in sea anemone toxins (BgK25, ShK22) protrudes into and plugs the K$^+$ channel pore (15,16,51-55). MMP23_TxDs in opossum, chicken, zebra finch and stickleback fish contain lysine at the corresponding position and should block K$^+$ channels. We have shown that rat MMP23_TxD containing an arginine at the equivalent position blocks Kv channels (Kv1.6 > Kv1.3 > Kv1.1 = Kv3.2 > Kv1.4 in decreasing potency) in the nanomolar to low micromolar range, but has no effect on Kv1.2, Kv1.5, Kv1.7 and KCa3.1 at 100 µM concentration. The ICR domain of the snake protein natrin contains the critical pore-plugging lysine, and natrin has been reported to block Kv1.3 (46). The ICR domains of the four mammalian CRISPs lack the pore-occluding lysine and therefore may not block K$^+$ channels; CRISP-2/Tpx-1 blocks ryanodine receptors (13).

Full-length MMP23 has been reported previously to be expressed mainly in ER/Golgi membranes (21,22). We confirmed these results by demonstrating that MMP23 co-localizes with the ER membrane marker SERCA-2 in COS7 cells. Since MMP23 is a type-II transmembrane protein, MMP23_TxD will lie within the ER lumen and could snare and trap MMP23_TxD-sensitive channels in the ER. Three lines of evidence support this idea. First, MMP23 compartmentalizes with MMP23_TxD-sensitive Kv1.3 channels, but not with MMP23_TxD-resistant Kv1.2 channels. Second, MMP23 suppresses MMP23_TxD-sensitive channels while sparing MMP23_TxD-resistant ones. These results indicate that MMP23_TxD within the full-length MMP23 protein has sufficient accessibility to bind to and block K$^+$ channels. Third, MMP23 decreases cell surface expression of MMP23_TxD-sensitive Kv1.3 channels.

It has been suggested previously that the preponderance of Kv1 channel heterotetramers in many tissues is because Kv1 homotetramers are retained in the ER by an unknown protein containing a TxD that binds to a trafficking determinant in the channel's outer vestibule (59-61). Vacher et al (61) provided support for this idea by showing that heterologously over-expressed, ER-luminal dendrotoxin competed with the TxD-containing ER protein for toxin-sensitive Kv1.1 homotetramers and allowed these channels to escape the ER and migrate to the plasma membrane. MMP23 fits the criteria for this ER protein because it contains a TxD that can trap sensitive Kv1 channels intracellularly. MMP23 is expressed in many tissues (lung, heart, uterus, placenta, ovary, testis seminiferous tubules, prostate, intestine, colon, pancreatic islets, cingulate cortex, adrenal cortex, osteoblasts, chondroblasts, cartilage, synovium, natural killer cells, dendritic cells, tenons) (20,23,63-66, http://symatlas.gnf.org) that overlap with the tissue expression of MMP23-sensitive K$^+$ channels. Therefore, there is a
reasonable likelihood that MMP23 will modulate K\(^+\) channels in vivo. Our results for MMP23 help shed light on the vast family of proteins containing ShKT domains. Most of these proteins are found in *C. elegans*, many with multiple repeats of the domain in a single protein (Fig. 1). The ShKT domain in Mab7 is required for Mab7-mediated regulation of morphogenesis of sensory rays of the male *C. elegans* (56). The rays of Mab7-deficient males are virtually all malformed (56). Full-length Mab7, but not deletion constructs lacking the ShKT domain, rescues the abnormal phenotype (56). Since the *C. elegans* genome contains almost as many K\(^+\) channel genes (~70) as humans, modulation of worm ion channels by the Mab7-ShKT domain could contribute to its role in morphogenesis. However, Mab7 lacks the critical pore-blocking positively charged residue, and a Mab7 hybrid construct containing the ShK toxin sequence in place of the TxD was not able to rescue the mutant ray phenotype (56). These findings suggest that the ShKT domain in Mab7 may not be involved in K\(^+\) channel modulation, although modulation of other types of ion channels cannot be excluded. Astacin-like metalloproteases in *Hydra vulgaris* (HMP2) and jellyfish (PMP1) possess ShKT domains that contain the critical pore-occluding lysine required for K\(^+\) channel-block, and both of these proteins play critical roles in foot morphogenesis (57,58).

In summary, we have defined a novel channel-regulatory role for a metalloprotease and characterized the first functional K\(^+\) channel-blocking toxin domain in a mammalian protein. Our results provide insight into the structure and function of the ShKT-containing protein super-family. It is tempting to speculate that the TxDs in each of these proteins regulate different types of ion channels, and that the evolutionary pressure to maintain channel-modulatory activity underlies the conservation of this domain throughout the plant and animal kingdoms.

ACKNOWLEDGMENTS

This work was supported by NIH grants NS-048252 (KGC, MWP) and NS041435 (PC, KGC); an NHMRC IRIISS grant (361646, RSN) and a Victorian State Government OIS grant (RSN). RSN acknowledges fellowship support from the National Health and Medical Research Council. We thank Dr. Michael Cahalan for valuable comments on the manuscript and Dr. Heike Wulff for the human Kv1.3 clone.

REFERENCES

1. Aiyar, J., Withka, J.M., Rizzi, J.P., Singleton, D.H., Andrews, G.C., Lin, W., Boyd, J., Hanson, D.C., Simon, M., Dethlefs, B., Gutman, G.A., Chandy, K.G. (1995) *Neuron* **15**, 1169-1181.
2. MacKinnon R, Cohen SL, Kuo A, Lee A, Chait BT. (1998) *Science* **280**, 106-109.
3. Fry, B.G. (2005) *Genome Res.* **15**, 403-420.
4. Ohno, M., Menez, R., Ogawa, T., Danse, J.M., Shimohigashi, Y., Fromen, C., Ducancel, F., Zinn-Justin, S., Le Du, M.H., Boulain, J.C., Tamiya, T., and Menez, A. (1998) *Prog. Nucleic Acids Res* **59**, 307–364.
5. Cousin, X., Bon, S., Massoulie, J., and Bon, C. (1998) *J. Biol. Chem.* **273**, 9812-9830.
6. Davidson, F.F, and Dennis, E.A. (1990) *Mol. Evol.* **31**, 228-238.
7. Kini, R.M., and Chan, Y.M. (1999) J. Mol. Evol. 48, 125–132.
8. Inoue, S., Oda, T., Koyama, J., Ikeda, K., and Hayashi, K. (1991) FEBS Lett. 279, 38-40.
9. Kochva, E., B dolah, A., and Wollberg, Z. (1993) Toxicol. 31, 541–568.
10. Ibañez-Tallon, I., Miwa, J.M., Wang, H.L., Adams, N.C., Crabtree, G.W., Sine, S.M., and Heintz, N. (2002) Neuron 33, 893-903.
11. Miwa, J.M., Ibanez-Tallon, I., Crabtree, G.W., Sánchez, R., Sali, A., Role, L.W., and Heintz, N. (1999) Neuron 23, 105-114.
12. Harvey, A.L., and Robertson, B. (2004) Curr Med Chem. 11, 3065-3072.
13. Gibbs, G.M., Scanlon, M.J., Swarbrick, J., Curtis, S., Gallant, E., Dulhunty, A.F., O'Bryan, M.K. (2006) J Biol Chem. 281, 4156-4163.
14. Fry BG, Roelants K, Champagne DE, Scheib H, Tyndall JD, King GF, Nevalainen TJ, Norman JA, Lewis RJ, Norton RS, Renjifo C, de la Vega RC. (2009) Annu Rev Genomics Hum Genet. 10, 483-511.
15. Cotton, J., Crest, M., Bouet, F., Alessandri, N., Gola, M., Forest, E., Karlsson, E., Castañeda, O., Harvey, A.L., Vita, C., and Ménez, A. (1997) Eur J Biochem. 244, 192-202.
16. Dauplais, M., Lecoq, A., Song, J., Cotton, J., Jamin, N., Gilquin, B., Roumestand, C., Vita, C., de Medeiros, C.L., Rowan, E.G., Harvey, A.L., and Ménez, A. (1997) J Biol Chem. 272, 4302-4309.
17. Castañeda, O., Sotolongo, V., Amor, A.M., Stöcklin, R., Anderson, A.J., Harvey, A.L., Engström, A., Wernstedt, C., and Karlsson, E. (1995) Toxicon. 33, 603-613.
18. Tudor, J.E., Pallaghy, P.K., Pennington, M.W., and Norton, R.S. (1996) Nat Struct Biol. 3, 317-320.
19. Page-Mccaw, A., Ewald, A.J., and Werb, Z. (2007) Nat Rev Mol Cell Biol. 8, 221-233.
20. Velasco, G., Pendás, A.M., Fueyo, A., Knüper, V., Murphy, G., and López-otín, C. (1999) J Biol Chem. 274, 4570-4576.
21. Pei, D. (1999) FEBS Lett. 457, 262-270.
22. Pei, D., Kang, T., and Qi, H. (2000) J Biol Chem. 275, 3988-3997.
23. Ohnishi, J., Ohnishi, E., Jin, M., Hirano, W., Nakane, D., Matsui, H., Kimura, A., Sawa, H., Nakayama, K., Shibuya, H., Nagashima, K., and Takahashi, T. (2001) Mol Endocrinol. 15, 747-764.
24. Riddick, A.C., Shukla, C.J., Pennington, C.J., Bass, R., Nuttall, R.K., Hogan, A., Sethia, K.K., Ellis, V., Collins, A.T., Maitland, N.J., Ball, R.Y., and Edwards, D.R. (2005) Br J Cancer. 92, 2171-2180.
25. Hegedüs L., Cho, H., Xie, X., and Eliceiri GL. (2008) J Cell Physiol. 216, 480-485.
26. Scrideli, C.A., Carlotti, C.G. Jr., Okamoto, O.K., Andrade, V.S., Cortez, M.A., Motta, F.J., Lucio-Eterovic, A.K., Neder, L., Rosemberg, S., ObA-Shinjo, S.M., Marie, S.K., and Tone, L.G. (2008) J Neurooncol. 88, 281-291.
27. King, D.S., Fields, C.G., and Fields, G.B. (1990) Int. J. Pept. Protein Res. 36, 255-266.
28. Palmer, A., Cavanagh, J., Wright PE., and Rance, M. (1991) J. Magn. Reson. 93, 151-170.
29. Piotto, M., Saudek, V., Sklenar, V. (1992) J Biomol NMR 2, 661-665.
30. Kay, L., Keifer, P., and Saarinen, T. (1992) Am. Chem. Soc. 114, 10663-10665.
31. Gibbs, S.J. (1991) J Magn Reson 93, 395-402.
32. Dingley, A.J., Mackay, J.P., Chapman, B.E., Morris, M.B., Kuchel, P.W., Hamby, B.D., and King GF. (1995) J Biomol NMR, 6, 321-328.
33. Yao S, Howlett GJ, Norton RS. (2000) J Biomol NMR 16, 109-119
34. Bartels, C., Xia, TH., Billeter, M., Güntert, P. & Wüthrich, K. (1995) J Biomol NMR 6, 1-10.
35. Cornilescu, G., Delaglio, F., and Bax, A. (1999). J Biomol NMR 13, 289-302.
36. Seavey, B.R., Farr, E.A., Westler, W.M., and Markley, J.L. (1991). J Biomol NMR 1, 217-236.
37. Klaus, W., Broger, C., Gerber, P., and Senn, H. (1993). J Mol Biol 232, 897-906.
38. Herrmann, T., Guntert, P., and Wuthrich, K. (2002). J Biomol NMR 24, 171-189.
39. Schwieters, C.D., Kuszewski, J.J., Tjandra, N., and Clore, G.M. (2003). J Magn Reson 160, 65-73.
40. Laskowski, R.A., Rullmannn, J.A., MacArthur, M.W., Kaptein, R., and Thornton, J.M. (1996). J Biomol NMR 8, 477-486.
41. Koradi, R., Billeter, M., and Wuthrich, K. (1996). J Mol Graph 14, 51-55
42. Berman, H.M., Battistuz, T., Bhat, T.N., Bluhm, W.F., Bourne, P.E., Burkhardt, K., Feng, Z., Gilliland, G.L., Ilype, L., Jain, S., et al. (2002). Acta Crystallogr D Biol Crystallogr 58, 899-907
43. Beeton, C., Smith, B.J., Sabo, J.K., Crossley, G., Nugent, D., Khaytin, I., Chi, V., Chandy, K.G., Pennington, M.W., and Norton, R.S. (2008). J Biol Chem. 283, 988-997.
44. Beeton C, Wulff H, Singh S, Bottsko S, Crossley G, Gutman GA, Cahalan MD, Pennington M, Chandy KG. (2003). J Biol Chem. 278, 9928-9937.
45. Faraco, J., Bashir, M., Rosenbloom, J., Francke U. (1995) Genomics 25, 630-637
46. Wang, F., Li, H., Liu, M.N., Song, H, Han, HM., Wang, Q.L., Yin, C.C., Zhou, Y.C., Qi, Z., Shu, Y.Y., Lin, Z.J., and Jiang T. (2006) Biochem Biophys Res Commun. 351, 443-448.
47. Guo, M., Teng, M., Niu, L., Liu, Q., Huang, Q., and Hao Q. (2005) J Biol Chem. 280, 12405-12412.
48. Shikamoto, Y., Suto, K., Yamazaki, Y., Morita, T., and Mizuno, H. (2005) J Mol Biol. 350, 735-743.
49. Suzuki, N., Yamazaki, Y., Fujimoto, Z., Morita, T., and Mizuno H. (2005) Acta Crystallogr Sect F Struct Biol Cryst Commun. 61, 750-752.
50. Wang, J., Shen, B., Guo, M., Lou, X., Duan, Y., Cheng, X.P., Teng, M., Niu, L., Liu, Q., Huang, Q., and Hao, Q. (2005) Biochemistry 44, 10145-10152.
51. Tudor, J.E., Pennington, M.W. & Norton, R.S. (1998) Eur. J. Biochem. 251, 133-141.
52. Kalman, K., Pennington, M.W., Lanigan, M.D., Nguyen, A., Rauer, H., Mahnir, V., Paschetto, K., Kem, W.R., Grissmer, S., Gutman, G.A., Christian, E.P., Cahalan, M.D, Norton, R.S., and Chandy, K.G. (1998) J Biol Chem. 273, 32697-32707.
53. Rauer, H., Pennington, M., Cahalan, M., and Chandy, K.G. (1999) J Biol Chem. 274, 21885-21892.
54. Alessandri-Haber, N., Lecoq, A., Gasparini, S., Grangier-Macmath, G., Jacquet, G., Harvey, A.L., de Medeiros, C., Rowan, E.G., Gola, M., Ménez, A., and Crest, M. (1999) J Biol Chem. 274, 35653-35661.
55. Gilquin, B., Racapé, J., Wrisc, A., Visan, V., Lecoq, A., Grissmer, S., Ménez, A., and Gasparini, S. (2002) *J Biol Chem*. **277**, 37406-37413.

56. Tsang, S.W., Nguyen, C.Q., Hall, D.H., and Chow, K.L. (2007) *Dev Biol.* **312**, 353-366.

57. Yan, L., Fei, K., Zhang, J., Dexter, S., and Sarras, M.P. Jr. (2000) *Development* **127**, 129-141.

58. Pan, T., Gröger, H., Schmid, V., and Spring, J. (1998) *Dev Genes Evol.* **208**, 259-266.

59. Manganas, L. N., Wang, Q., Scannevin, R. H., Antonucci, D. E., Rhodes, K. J., and Trimmer, J. S. (2001) *Proc Natl Acad Sci USA* **98**, 14055-14059.

60. Zhu, J., Watanabe, I., Gomez, B., and Thornhill, W. B. (2001) *J Biol Chem* **276**, 39419-39427.

61. Vacher, H., Mohapatra, D. P., Misonou, H., and Trimmer, J. S. (2007) *FASEB J* **21**, 906-914.

62. Long, S. B., Campbell, E. B., and Mackinnon, R. (2005) *Science* **309**, 897-903.

63. Fortunato SJ, Menon R. (2002) *J Assist Reprod Genet.* **19**, 483-486.

64. Clancy BM, Johnson JD, Lambert AJ, Revzvankhah S, Wong A, Resmini C, Feldman JL, Leppanen S, Pittman DD. (2003) *Bone*, **33**, 46-63.

65. Davidson RK, Waters JG, Kevorkian L, Darrah C, Cooper A, Donell ST, Clark IM. (2006) *Arthritis Res Ther.* **8**, R124.

66. Jones GC, Corps AN, Pennington CJ, Clark IM, Edwards DR, Bradley MM, Hazleman BL, Riley GP (2006) *Arthritis Rheum.* **54**, 832-842.

FIGURE LEGENDS

Figure 1. The ShKT domain protein superfamily. **A.** Distribution of ShKT domains in the plant and animal kingdoms. Viridiplantae (*Arabidopsis thaliana*, *Oryza sativa* and green alga *Ostreococcus* sp.), Protozoa (*Cryptosporidium parvum*), Cnidaria (sea anemones, hydra, jellyfish), Echinodermata (sea urchin), Mollusca (including bivalve clams and oysters), Ciona (sea squirt *Ciona intestinalis*), Actinopterygii (including zebrafish *Danio rerio* and pufferfish *Takifugu rubripes*), Caenorhabditis (*C. elegans* and *C. brigssae*), Rhabditida (rhabditid nematodes other than *Caenorhabditis* sp.), Ophidia (snakes), Xenopus (*X. tropicalis*), Aves (chicken *Gallus gallus*), Mammalia (kingdom mammals). Data generated from SMART database at the EMBL-Heidelberg (http://smart.embl-heidelberg.de). **B.** Types of proteins containing ShKT domains. These include zinc peptidases (Zn peptidase), animal peroxidases (An peroxidase), coiled-coil regions (CC), tyrosinases, Prolyl 4-hydroxylases (P4Hα), immunoglobulin-like cell adhesion molecule (IgCAM) domains, sperm-coating glycoprotein (SCP) domains, zinc metalloproteases (ZnMet), thrombospondin type-1 repeats (TSP1), trypsin-like serine proteases (TLSP), and epidermal growth factor-like (EGF) domains.

Figure 2. MMP23 aligned with sea anemone toxins, representative ShKT domains and ICRs of CRISPs. **A.** Schematic diagram of MMP23 showing MMP23$_{\text{TxD}}$ sandwiched between the metalloprotease and IgCAM domains. A multiple protein sequence alignment of MMP23$_{\text{TxD}}$ from diverse species is shown. Cysteine residues are highlighted in yellow. Identical or synonymous sequences are highlighted in grey. Arrows point to the Asp$_5$, Ser$_{32}$ and Ser$_{33}$. **B.** Protein sequence alignment of human
MMP23_{TxD} and BgK. C. Multiple sequence alignment of representative ShKT domains together with the ICR domains of CRISPs. Cysteine residues are highlighted in yellow. Identical or synonymous sequences are highlighted in grey. Sea anemone toxins include BgK (Accession #: P29186), ShK (Acc. #: P29187), AeTX-K (Acc. #: Q0EAE5), AsKS (Acc. #: Q9TWG1), AeK (Acc. #: P81897) and HmKT (Acc. #: O16846). NAS14 = nematode astacin metalloprotease NAS14 (Acc. #: Q19269). Tyr3 = tyrosinase 3 (Acc #: Q19673). Lgc22: ligand-gated channel 22 (Acc. #: NP_500538). HMP2: Hydra metalloprotease 2 (Acc. #: AAD33860). Human MFAP2: Microfibrillar associated protein 2 (Acc. #: P55001). Mab7: Male abnormal protein 7 (Acc. #: NP_508174). PMP-1: Podocoryne metalloproteinase 1 (58).

Figure 3. Evolutionary relationships of MMP23_{TxD} to sea anemone toxins, ShKT domains and ICRs of CRISPs. Phylogenetic tree (PHYLIP) generated using the alignment in Fig. 2C and the GeneBee Molecular Biology Servers Tree Top Phylogenetic tree prediction algorithm http://www.genebee.msu.su/genebee.html]. In addition to the protein sequences used in the multiple sequence alignment in Fig. 2C, two plant proteins are included in the phylogenetic tree: oxidoreductase, 2OG-Fe(II) oxygenase family protein from Arabidopsis thaliana (Acc. #: NP_189490) and prolyl 4-hydroxylase alpha-subunit, Oryza sativa Japonica Group (Acc. # AAT77286).

Figure 4. Synthesis of MMP23{TxD} peptide. A. RP-HPLC profile after 24 h oxidative folding. Gradient 5 - 95% B in 45 min. 1.5 ml/min; A= 0.1% TFA in water and B= 0.1% TFA in acetonitrile. Peak 3 is MMP23_{TxD}. B. Purified MMP23_{TxD} RP-HPLC profile with same gradient parameters. Peak 4 is the correctly folded material. C. Electrospray Mass Spectrum of MMP23_{TxD} with M+5= 885, M+4= 1108, M+3= 1475, M+2=2213 peaks indicated.

Figure 5. Structure of MMP23_{TxD}. A. Stereo views of closest-to-average structure of MMP23_{TxD} in ribbon form showing secondary structure. B. Family of 20 final structures superimposed over backbone heavy atoms (N, Cα, C') over all residues with disulfide bonds shown in orange.

Figure 6. Comparison of structures of MMP23_{TxD} and sea anemone K+ channel blockers A. Closest-to-average structure of MMP23_{TxD} displayed in ribbon form using MolMol to depict the secondary structure and compared to that of BgK (PDB: 1BGK) and ShK (PDB: 1ROO). The letters N and C refer to the amino and carboxyl termini, respectively. B. Surface representation of MMP23_{TxD} generated using Pymol. Surface is coloured with basic residues in blue (Arg in dark blue and Lys in light blue) and acidic residues in red. The two views are related by a 180° rotation about the vertical axis. C. Stereo view of MMP23_{TxD} (black) superimposed with BgK (blue) over backbone heavy atoms over aligned and well-defined residues (residues 4-9,10-28,30-36 for MMP23_{TxD} with residues 3-8,11-29,30-36 for BgK). [Group global RMSD 2.13 Å]. D. Stereo view of MMP23_{TxD} (black) superimposed with ShK (purple) over backbone heavy atoms (residues 4-9,10-14,19-36 for MMP23_{TxD} with residues 4-9,12-16,17-34 of ShK) [Group global RMSD 2.67 Å]. Group global RMSDs are calculated from average pairwise RMSDs between each ensemble of final structures.
Figure 7. Comparison with CRISP domain structures. A. Superposition of CRISP domains - Stecrisp (yellow) [PDB id 1RC9], Natrin (red) [PDB id 1XTA], Triflin (purple) [PDB:1WVR], CRISP-2 / Tpx-1 (violet) [PDB id 2A05] and PsTx (green) [PDB id 2DDA]. B. Superposition of closest-to-average structure of MMP23_{TxD} (light blue) and Stecrisp (yellow) [Global RMSD: 3.07 Å]. C. Superposition of closest-to-average structure of MMP23_{TxD} (light blue) and BgK (grey) [Global RMSD: 2.28 Å]. In all cases structures were superimposed over backbone heavy atoms.

Figure 8. MMP23_{TxD} blocks Kv1.3 channels. A. Whole-cell patch-clamp Kv1.6 current trace showing dose dependent block of Kv1.6 channels by MMP23_{TxD}. B. Whole-cell patch-clamp Kv1.3 current trace showing dose dependent block of Kv1.3 channels by MMP23_{TxD}. C. Dose-response curves for Kv1.3, Kv1.6 and Kv1.1 channels blocked by MMP23_{TxD}; n=3-5 for each data point. D. Table showing IC_{50} values ± SD for respective channel block; n = 4-5 for each value.

Figure 9. MMP23 co-localizes with Kv1.3 in the ER. MMP23 co-localizes with MMP23_{TxD}-sensitive Kv1 channels and with ER marker SERCA-2. A. eGFP-MMP23 (green) co-localizes with Kv1.3 channels (red), but not with Kv1.2 (red); eGFP did not co-localize with either channel. B. Quantification of co-localization between eGFP or eGFP-MMP23 with Kv1.3 or Kv1.2 (white bar, n=25 cells; black bar, n=30 cells) (* p<0.05, ** p<0.01, *** p<0.001). C. eGFP-MMP23 (green) co-localizes with ER membrane marker SERCA-2 (red). Areas of co-localization are shown in yellow in the overlay image. eGFP does not co-localize with SERCA-2.

Figure 10. Full-length MMP23 suppresses Kv1 channels by decreasing cell surface expression. A. Proposed orientation of MMP23 and Kv1 channels in the ER. The crystal structure of Kv1.2 (PDB 2a79) was used in this diagram because it is the only mammalian Kv1 channel for which a three dimensional structure is determined (62). Furthermore, its topology, particularly in the external vestibule where toxins bind, is similar to that of other Kv1 channels. In our depiction of MMP23, the transmembrane segment traverses the ER membrane, the metalloprotease domain (portrayed by the MMP3 catalytic domain structure, PDB id 2jnp) lies within the ER lumen, and MMP23_{TxD} is positioned in close proximity to the outer vestibule of the Kv1 channel. B. Kv1.6, Kv1.3, Kv1.2 and Kv1.7 current densities in the presence of eGFP (control) or eGFP-MMP23. Kv1.3 and Kv1.2 were stably expressed in L929-fibroblasts, while Kv1.6 and Kv1.7 were transiently expressed in COS7 cells. Scatter diagrams represent pooled data from 3-4 independent experiments. (* p<0.05, ** p<0.01, *** p<0.001). C. pDSRED-MMP23 reduced ShK-F6CA staining of cell-surface Kv1.3 channels as compared to pDSRED-C1 monomer in COS7 cells. D-value is a measure of the difference in fluorescence intensities of stained and unstained cells (n=5 experiments, p<0.05).
Figure A: Pie chart showing the distribution of proteins with BgK/ShK-like TxDs across different species and phyla.

Figure B: Bar chart showing the number of proteins with BgK/ShK-like TxDs for various proteins:
- Zn peptidase
- An peroxidase
- CC
- tyrosinase
- P4Hα
- Ig-CAM
- SCP
- ZnMet
- TSP1
- TLSP
- EGF

The x-axis represents the number of proteins, ranging from 0 to 80.
The figure illustrates the concentration-response relationships for Kv1.6 and Kv1.3 channels in response to MMP23 and TxD.

Table: IC50 Values

Channel	IC50 (µM)
Kv1.6	0.4
Kv1.3	2.8
Kv1.1	49
Kv1.4	57
Kv1.2	>100
Kv1.5	>100
Kv1.7	>100
KCa3.1	>100
A

eGFP	Kv1.3	Overlay
eGFP	N	N
eGFP-MMP23	N	N

eGFP	Kv1.2	Overlay
eGFP	N	N
eGFP-MMP23	N	N

B

Kv1.3

![Graph showing % colocalization](image)

Kv1.2

![Graph showing % colocalization](image)

C

eGFP-MMP23	SERCA-2	Overlay
eGFP-MMP23	N	N

![Graph showing % colocalization](image)
A

ER Lumen

Catalytic domain

IgCAM

Kv channel

B

Cytoplasm

Kv1.6	Kv1.3	Kv1.2	Kv1.7
** **	** **	ns	ns

pA/pF	eGFP	eGFP-MMP23	eGFP	eGFP-MMP23	eGFP	eGFP-MMP23	eGFP	eGFP-MMP23
3000			1000					
2000			750					
1000			500					
750			250					
500			0					

C

ShK-F6CA staining

** **

D-value	dsRED	dsRED-MMP23
0.5		
0.4		
0.3		
0.2		
0.1		
0.0		
Table 1: Pairwise RMSD over the backbone heavy atoms (N, Cα, C') of MMP23\textsubscript{TxD}, BgK and ICR domains of CRISP proteins. 1, Stecrisp (1RC9); 2, MMP23\textsubscript{TxD}; 3, Natrin (1XTA); 4, pseudechetoxin (2DDA); 5, CRISP2/Tpx-1 (2A05); 6, BgK (1BGK); 7, ShK (1ROO); 8, Triflin (1WVR). A total of 30 residues were used in the alignment to generate the RMSD values. The residues used in the analysis include: Stecrisp (184-189,192-196,201-215), MMP23\textsubscript{TxD} (4-9,10-14,19-27,30-34,36), Natrin (184-189,192-196,201-215), pseudechetoxin (174-179,182-186,191-205), Triflin (184-189,192-196,201-215), CRISP2 / Tpx-1 (206-211,214-218,223-237), BgK (3-8,11-15,20-28,30-34,36), ShK (4-9,12-25,28-32,34).

	1	2	3	4	5	6	7	8
1	3.07	0.77	0.82	1.13	3.09	3.79	0.52	
2	3.07	3.06	2.98	3.05	2.28	2.77	2.99	
3	0.77	3.06	0.75	1.07	3.11	3.57	0.81	
4	0.82	2.98	0.75	1.32	2.97	3.53	0.98	
5	1.13	3.05	1.07	1.32	3.08	3.60	0.98	
6	3.09	2.28	3.11	2.97	3.08	2.78	3.06	
7	3.79	2.77	3.57	3.53	3.60	2.78	3.71	
8	0.52	2.99	0.81	0.98	0.98	3.06	3.71	
Potassium channel modulation by a toxin domain in matrix metalloprotease 23
Srikant Rangaraju, Keith K. Khoo, Zhiping Feng, George Crossley, Daniel Nugent, Ilya
Khaytin, Victor Chi, Cory Pham, Peter Calabresi, Michael W. Pennington, Raymond S.
Norton and K. George Chandy

J. Biol. Chem. published online December 4, 2009

Access the most updated version of this article at doi: 10.1074/jbc.M109.071266

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

Supplemental material:
http://www.jbc.org/content/suppl/2009/12/04/M109.071266.DC1