Endoscopic ultrasound-guided radiofrequency ablation in gastroenterology: New horizons in search

Satyarth Chaudhary, Si-Yu Sun

Satyarth Chaudhary, Department of Gastroenterology and Hepatology, Kidney Hospital and Lifeline Medical Institutions, Jalandhar, Punjab 144003, India

Si-Yu Sun, Endoscopy Center, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China

Author contributions: Both authors equally contributed to this paper with regard to conception and design of the study, literature review and analysis, drafting, critical revision and editing of the manuscript, and final approval of the final version.

Conflict-of-interest statement: No potential conflicts of interest exist.

Abstract
Radiofrequency ablation (RFA) has been widely used for the treatment of various solid organ malignancies. Over the last decade, endosonographers have gradually shifted the application of RFA from porcine models to humans to treat a spectrum of diseases. RFA is performed in patients with pancreatic carcinoma who are not candidates for surgery. In this paper, we will discuss various indications for RFA, its procedural details and complications. At present, endoscopic ultrasound-guided RFA is gradually incorporated into the management of various diseases and opens a new avenue for disease treatment.

Key words: Pancreatic carcinoma; Radiofrequency ablation

INTRODUCTION

Over the last two decades, palliation techniques for pancreatic adenocarcinoma have changed significantly. New developments in endoscopic ultrasound-guided...
therapies have also rapidly emerged[1]. Radiofrequency ablation (RFA) utilizes high frequency alternating current and can result in coagulative necrosis[2,3], and it can be applied percutaneously, intraoperatively or in combination with endoscopic ultrasound (EUS). This modality is gradually gaining popularity among endosonographers at tertiary centers. EUS-RFA is now an established anti-tumor therapy and an alternative to surgery[4].

Pancreatic adenocarcinoma is an aggressive tumor with a dismal survival rate due to delayed diagnosis. Only 10% of patients qualify for curative surgery[5]. The majority of patients have an unresectable locally advanced disease with encasement of vessels (superior mesenteric vessels, portal vein and/or hepatic artery)[6]. One-year survival rate in these patients is less than 5% after diagnosis[7].

EUS-guided RFA was first used in a porcine model by Goldberg et al[8] in 1999. EUS is used for various therapeutic procedures as it can be precisely applied in pancreatic lesions and helps delineate the area of interest for ablation[9-11].

EUS provides real-time imaging of deeply located anatomical structures such as the pancreas which is difficult to approach via the percutaneous route[12]. RFA has been widely utilized in the treatment of liver, lung and kidney tumors[13-15].

MECHANISM OF RFA

RFA is based on the principle that high frequency alternating current is converted into thermal energy which results in coagulative necrosis of surrounding tissue[16]. Thermal exposure above 45 °C results in denaturation of cell proteins and is utilized in the treatment of various tumors[17].

There are three important components in this procedure: the generator, the needle and the tissue.

The generator utilizes alternating current and converts it into thermal energy which is transferred through the exposed part of the needle[8,18].

RFA also causes thermal damage to the epithelium with a gradual rise in temperature, which results in destruction of cyst epithelium[19].

CLINICAL APPLICATIONS OF RFA

RFA is principally utilized in various benign and malignant conditions, including intraoperative applications. Studies have suggested that RFA leads to tumor necrosis and a reduction in tumor volume[20].

RFA can also be used in patients with malignant biliary obstruction for endobiliary ablation in the self-expandable metallic stent to improve stent patency[21].

A cryothermal probe (ERBE, Elektromedizin GmbH) has been used for palliation in locally advanced pancreatic carcinoma patients, with a technical success rate of 72.8% and median survival of 6 mo post ablation with manageable complications including jaundice, duodenal stricture and cystic fluid collection[20-22].

INDICATIONS

EUS-guided RFA is indicated in various diseases including: (1) pancreatic adenocarcinoma[23]; (2) patients after chemoradiotherapy; (3) patients with progressive tumor growth causing biliary or gastric outlet obstruction[24]; (4) liver metastasis[25]; (5) intraductal papillary mucinous neoplasms (IPMN)[26,27]; and (6) insulinoma[28,29].

PROCEDURE

A 19 G needle is usually used to puncture the pancreatic tissue under EUS guidance, the stylet is removed to introduce a thin wire which is connected to the generator, and then the tissue is ablated. This principle has been applied using a Habib EUS-RFA catheter (EMcision Ltd., London, United Kingdom) where a monopolar probe with a diameter of 1 Fr and length of 220 cm is utilized with a 2 cm active electrode tip to ablate the tissue[28,30,31]. It ablates for 2 min, which is considered one ablation with a break of 60 s for cooling. Up to 10 ablations can be applied to the tissue with interspersed cooling periods (Figures 1 and 2). In the case of a cyst, the lesion is aspirated prior to ablation. This technique should not be used in patients with cardiac pacemakers or other active implants.

Another novel 18 G RFA electrode (EUSRA RF Electrode; STARmed, Koyang, South Korea) with a total working length of 150 cm is also used. This electrode has the unique feature of two 0.8 mm diameter holes which are located 5 mm away from the tip, and can be used for aspiration and injection. The active electrode length is 7 mm while the tip exposure length is 10 mm. This RF electrode is attached to the RF generator (VIVA Combo system; STARmed) to ablate the tissue[32]. It results in the ablation of 1-3 cm of localized tissue from the needle tip[32-34].

A new flexible hybrid bipolar probe also known as the cryotherm probe (ERBE Elektromedizin, Tubingen, Germany) has recently been introduced, which combines cryotechnology with RFA[35]. This probe has an advantage over a monopolar probe in that it causes less collateral damage, but it is less efficient than a monopolar probe[36-38].

Cooling using a cryogenic gas increases the effect of RFA and interstitial devitalization[12]. It also proves that cooling does not affect the efficacy of ablation[39].

TIME AND TEMPERATURE UTILIZED IN RFA

RFA was successfully used in other organs such as the liver, intrahepatic tumors and muscle to achieve maximum coagulation within 6 min, prior to its application in the pancreas[40].

Chaudhary S et al. EUS-guided RFA in gastroenterology
among the first to validate and define the thermo-
kinetic principles in the pancreas. As the distance
from the electrode increases, the temperature tends
to decrease. The optimal temperature for thermal
ablation was demonstrated in a porcine model by
Date in 2005. It was concluded that optimal thermo-
kinetics was generated at a temperature of 90 °C
when applied for 5 min. This leads to ablation of pancreatic
tissue without injury to adjacent organs.

A few other studies have also established the
relationship between temperature and the rate of
complications. It was again established in a study by Girelli et al.
that a decrease in temperature from 105 °C to 90 °C
leads to an overall reduction in the complication rate
from 24% to 8%.

Wu et al. showed that when a temperature
of 30 °C was applied, this led to a high rate of post-
operative morbidity, where complications included
pancreatic fistula, portal thrombosis, septic shock and
massive bleeding.

EUS-RFA OF THE PANCREAS IS
DIFFERENT TO THAT OF OTHER
ORGANS

EUS-RFA is better than planned palliative R2 resections
in pancreatic carcinoma patients as it results in
decreased morbidity, mortality and reduced hospital
stay. There are certain important and significant
differences in ablation of the pancreas compared with
other organs: (1) the RFA protocol for other organs
cannot be applied to the pancreas as the physical
properties of the pancreas are entirely different from
those of other organs; (2) the pancreas is surrounded
by other organs (the stomach and duodenum),
vessels and bile ducts and thus has an increased
risk of thermal-induced injury; and (3) pancreatic
cancer usually has diffuse margins, whereas hepatic
carcinoma or metastasis has discrete margins;
therefore, it is difficult to completely ablate pancreatic
carcinoma in a single session.

EVALUATION OF EFFICACY OF RFA
TREATMENT

Lesion size can be evaluated by imaging at repeated
intervals. Tumor progression can be estimated by an
improvement in symptoms (abdominal pain, back
pain) or biochemical indices (CA19-9 levels).

RATIO OF PASSES TO THE SIZE OF THE
LESION

The ratio of the number of passes to the size of the
lesion is extremely variable in different studies with
a median value of 0.5 (range, 0.36-19). This can be
explained by the application of different devices.

COMPLICATIONS OF RFA

The fear of adverse events related to EUS-RFA also
limits its application by clinicians in pancreatic car-
cinoma patients.

Most complications are related to thermal injury
to pancreatic parenchyma (acute pancreatitis) and
surrounding structures including thermal damage to
superior mesenteric vessels, bile ducts, the portal
vein, stomach and duodenum. Mild abdominal
pain was reported by 25%-33% of patients in various
studies. Frequent complications were gastro-
intestinal hemorrhage, pancreatic fistula, bile leak,
portal vein thrombosis, pseudocyst and sepsis. The
overall postoperative morbidity rate was 28.3% and
mortality was approximately 4%.

The pancreas is different to other organs such as
the liver and kidney where RFA has been successfully
utilized for the treatment of carcinomas. Optimal
thermokinetic characteristics of the pancreas have
not been completely determined, thus there is no
standardized protocol for pancreatic RFA. Usually two
or more sessions of RFA are required for pancreatic
carcinoma ablation. Retroperitoneal location,
proximity to major vessels, distal bile duct crossing
the head of the pancreas and closeness to the stomach

figure 1: Habib RF needle with Cook Echo Tip needle. Courtesy of EMcision
International Inc.

figure 2: Radiofrequency generator (RITA 1500 X, ANGIODYNAMICS).
and duodenum are also major hurdles.”

CONCLUSION

Normal pancreatic tissue is thermosensitive, thus RFA can lead to an inflammatory response with fibrosis and occasionally cystic collections. A clearer understanding of the principles of thermokinetics in humans is required to effectively ablate abnormal tissues. Better ablation devices with minimal side effects and complications may ensure improved results in the future. Further studies with a large number of subjects will provide a better understanding of this novel technique.

REFERENCES

1. Bhutani MS, Arora A. New developments in endoscopic ultrasound-guided therapies. *Endosc Ultrason* 2015; 4: 304-311 [PMID: 26643698 DOI: 10.1016/j.eusu.2014.11.002]
2. Figueras-Barojas P, Bakhru MR, Habib NA, Ellen K, Millman J, Jamal-Kabani A, Gaidhane M, Kahaleh M. Safety and efficacy of radiofrequency ablation in the management of unresectable bile duct and pancreatic cancer: a novel palliation technique. *J Oncol* 2013; 2013: 910897 [PMID: 23690775 DOI: 10.1155/2013/910897]
3. Matsui Y, Nakagawa Y, Kamiyama Y, Yamamoto K, Kubo N, Nakayama Y. Selective thermocoagulation of unresectable pancreatic cancers by using radiofrequency capacitive heating. *Pancreas* 2000; 20: 14-20 [PMID: 10630378]
4. Brugge WR. EUS-guided tumor ablation with heat, cold, microwave, or radiofrequency: will there be a winner? *Gastrointest Endosc* 2009; 69: S212-S216 [PMID: 19179160 DOI: 10.1016/j.gie.2008.12.031]
5. Warshaw AL, Fernandez-del Castillo C. Pancreatic carcinoma. *N Engl J Med* 1992; 326: 455-465 [PMID: 13277720 DOI: 10.1056/NEJM199201133260706]
6. Verslype C, Van Cutsem E, Cicirato M, Casini S, Cunningham D, Diaz-Rubio E, Glinsky E, Haller D, Heidemann V, Hoff P, Johnston PG, Kerr D, Labianca R, Louvet C, Minsky B, Moore M, Nordlinger B, Pedrazzoli S, Roth A, Rothenberg M, V, Hoff P, Johnston PG, Kerr D, Labianca R, Louvet C, Minsky B, Moore M, Nordlinger B, Pedrazzoli S, Roth A, Rothenberg M, Rongier P, Schmoll HJ, Tabernero J, Tempero M, Van Cutsem E, Dicato M, Cascinu S, Cunningham D, Facciorusso A, Goldschein O, Hellmuth F, Janne PA, Johansson P, Jonker DJ, Kemeny N, Kingham L, Kim S, Klimstra DS, Komorowski RA, Lablanche J, Lebbe C, Leemans JL, Leunen K, Leupper B, Levenback C, Llombart-Cussac A, Longo D, Louvet C, Minsky B, Moore M, Nordlinger B, Pedrazzoli S, Roth A, Rothenberg M, Rongier P, Schmoll H, Schubert A, Shimizu M, Simonet J, Stenman A, Tan PH, Tomlinson I, Van Cutsem E, Dicato M, Cascinu S, Cunningham D, Facciorusso A, Goldschein O, Hellmuth F, Janne PA, Johansson P, Jonker DJ, Kemeny N, Kingham L, Kim S, Klimstra DS, Komorowski RA, Lablanche J, Lebbe C, Leemans JL, Leunen K, Leupper B, Levenback C, Llombart-Cussac A, Longo D, Louvet C, Minsky B, Moore M, Nordlinger B, Pedrazzoli S, Roth A, Rothenberg M, Rongier P, Schmoll H, Schubert A, Shimizu M, Simonet J, Stenman A, Tan PH, Tomlinson I, Van Cutsem E, Dicato M, Cascinu S, Cunningham D, Facciorusso A, Goldschein O, Hellmuth F, Janne PA, Johansson P, Jonker DJ, Kemeny N, Kingham L, Kim S, Klimstra DS, Komorowski RA, Lablanche J, Lebbe C, Leemans JL, Leunen K, Leupper B, Levenback C, Llombart-Cussac A, Longo D, Louvet C, Minsky B, Moore M, Nordlinger B, Pedrazzoli S, Roth A, Rothenberg M, Rongier P, Schmoll H, Schubert A, Shimizu M, Simonet J, Stenman A, Tan PH, Tomlinson I, Van Cutsem E, Dicato M, Cascinu S, Cunningham D, Facciorusso A, Goldschein O, Hellmuth F, Janne PA, Johansson P, Jonker DJ, Kemeny N, Kingham L, Kim S, Klimstra DS, Komorowski RA, Lablanche J, Lebbe C, Leemans JL, Leunen K, Leupper B, Levenback C, Llombart-Cussac A, Longo D, Louvet C, Minsky B, Moore M, Nordlinger B, Pedrazzoli S, Roth A, Rothenberg M, Rongier P, Schmoll H, Schubert A, Shimizu M, Simonet J, Stenman A, Tan PH, Tomlinson I, Van Cutsem E, Dicato M, Cascinu S, Cunningham D, Facciorusso A, Goldschein O, Hellmuth F, Janne PA, Johansson P, Jonker DJ, Kemeny N, Kingham L, Kim S, Klimstra DS, Komorowski RA, Lablanche J, Lebbe C, Leemans JL, Leunen K, Leupper B, Levenback C, Llombart-Cussac A, Longo D, Louvet C, Minsky B, Moore M, Nordlinger B, Pedrazzoli S, Roth A, Rothenberg M, Rongier P, Schmoll H, Schubert A, Shimizu M, Simonet J, Stenman A, Tan PH, Tomlinson I, Van Cutsem E, Dicato M, Cascinu S, Cunningham D, Facciorusso A, Goldschein O, Hellmuth F, Janne PA, Johansson P, Jonker DJ, Kemeny N, Kingham L, Kim S, Klimstra DS, Komorowski RA, Lablanche J, Lebbe C, Leemans JL, Leunen K, Leupper B, Levenback C, Llombart-Cussac A, Longo D, Louvet C, Minsky B, Moore M, Nordlinger B, Pedrazzoli S, Roth A, Rothenberg M, Rongier P, Schmoll H, Schubert A, Shimizu M, Simonet J, Stenman A, Tan PH, Tomlinson I, Van Cutsem E, Dicato M, Cascinu S, Cunningham D, Facciorusso A, Goldschein O, Hellmuth F, Janne PA, Johansson P, Jonker DJ, Kemeny N, Kingham L, Kim S, Klimstra DS, Komorowski RA, Lablanche J, Lebbe C, Leemans JL, Leunen K, Leupper B, Levenback C, Llombart-Cussac A, Longo D, Louvet C, Minsky B, Moore M, Nordlinger B, Pedrazzoli S, Roth A, Rothenberg M, Rongier P, Schmoll H, Schubert A, Shimizu M, Simonet J, Stenman A, Tan PH, Tomlinson I, Van Cutsem E, Dicato M, Cascinu S, Cunningham D, Facciorusso A, Goldschein O, Hellmuth F, Janne PA, Johansson P, Jonker DJ, Kemeny N, Kingham L, Kim S, Klimstra DS, Komorowski RA, Lablanche J, Lebbe C, Leemans JL, Leunen K, Leupper B, Levenback C, Llombart-Cussac A, Longo D, Louvet C, Minsky B, Moore M, Nordlinger B, Pedrazzoli S, Roth A, Rothenberg M, Rongier P, Schmoll H, Schubert A, Shimizu M, Simonet J, Stenman A, Tan PH, Tomlinson I, Van Cutsem E, Dicato M, Cascinu S, Cunningham D, Facciorusso A, Goldschein O, Hellmuth F, Janne PA, Johansson P, Jonker DJ, Kemeny N, Kingham L, Kim S, Klimstra DS, Komorowski RA, Lablanche J, Lebbe C, Leemans JL, Leunen K, Leupper B, Levenback C, Llombart-Cussac A, Longo D, Louvet C, Minsky B, Moore M, Nordlinger B, Pedrazzoli S, Roth A, Rothenberg M, Rongier P, Schmoll H, Schubert A, Shimizu M, Simonet J, Stenman A, Tan PH, Tomlinson I, Van Cutsem E, Dicato M, Cascinu S, Cunningham D, Facciorusso A, Goldschein O, Hellmuth F, Janne PA, Johansson P, Jonker DJ, Kemeny N, Kingham L, Kim S, Klimstra DS, Komorowski RA, Lablanche J, Lebbe C, Leemans JL, Leunen K, Leupper B, Levenback C, Llombart-Cussac A, Longo D, Louvet C, Minsky B, Moore M, Nordlinger B, Pedrazzoli S, Roth A, Rothenberg M, Rongier P, Schmoll H, Schubert A, Shimizu M, Simonet J, Stenman A, Tan PH, Tomlinson I, Van Cutsem E, Dicato M, Cascinu S, Cunningham D, Facciorusso A, Goldschein O, Hellmuth F, Janne PA, Johansson P, Jonker DJ, Kemeny N, Kingham L, Kim S, Klimstra DS, Komorowski RA, Lablanche J, Lebbe C, Leemans JL, Leunen K, Leupper B, Levenback C, Llombart-Cussac A, Longo D, Louvet C, Minsky B, Moore M, Nordlinger B, Pedrazzoli S, Roth A, Rothenberg M, Rongier P, Schmoll H, Schubert A, Shimizu M, Simonet J, Stenman A, Tan PH, Tomlinson I, Van Cutsem E, Dicato M, Cascinu S, Cunningham D, Facciorusso A, Goldschein O, Hellmuth F, Janne PA, Johansson P, Jonker DJ, Kemeny N, Kingham L, Kim S, Klimstra DS, Komorowski RA, Lablanche J, Lebbe C, Leemans JL, Leunen K, Leupper B, Levenback C, Llombart-Cussac A, Longo D, Louvet C, Minsky B, Moore M, Nordlinger B, Pedrazzoli S, Roth A, Rothenberg M, Rongier P, Schmoll H, Schubert A, Shimizu M, Simonet J, Stenman A, Tan PH, Tomlinson I, Van Cutsem E, Dicato M, Cascinu S, Cunning
EUS-guided RFA in gastroenterology

Chaudhary S et al.

48 Suppl 1: E144-E145 [PMID: 27081874 DOI: 10.1055/s-0042-1704650]

29 Lakkatia S, Ramchandani M, Galasso D, Gupta R, Venugopal S, Kalpala R, Reddy DN. EUS-guided radiofrequency ablation for management of pancreatic insulinaoma by using a novel needle electrode (with videos). Gastrointest Endosc 2016; 83: 234-239 [PMID: 26394384 DOI: 10.1016/j.gie.2015.08.085]

30 Silvius UB, Daniel P, Claudiu M, Sândulescu L, Simona F, Ştefan P, Valeriu S, Adrian S. Endoscopic ultrasound-guided radiofrequency ablation of the pancreas: An experimental study with pathological correlation. Endosc Ultrasound 2015; 4: 330-335 [PMID: 26643702 DOI: 10.4103/2303-9027.170426]

31 Chapman CG, Siddiqui UD, New Scopes, New Accessories, New Stents for Interventional Endoscopic Ultrasound. Clin Endosc 2016; 49: 41-46 [PMID: 26859253 DOI: 10.5946/ce.2016.49.1.41]

32 Kim HJ, Seo DW, Hassannadin A, Kim SH, Chae HJ, Jang JW, Park DH, Lee SS, Lee SK, Kim MH. EUS-guided radiofrequency ablation of the porcine pancreas. Gastrointest Endosc 2012; 76: 1039-1043 [PMID: 23078928 DOI: 10.1016/j.gie.2012.07.015]

33 Pai M, Habib N, Senturk H, Lakkatia S, Reddy N, Cincinnati VR, Kaba I, Beckebaum S, Drymousis P, Kahaleh M, Brugge W. Endoscopic ultrasound-guided needle ablation for pancreatic cystic neoplasms and neuroendocrine tumors. World J Gastrointest Surg 2015; 7: 52-59 [PMID: 25914783 DOI: 10.4240/wjgs.v7.i4.52]

34 Song TJ, Seo DW, Lakkatia S, Reddy N, Oh DW, Park DH, Lee SS, Lee SK, Kim MH. Initial experience of EUS-guided radiofrequency ablation of unresectable pancreatic cancer. Gastrointest Endosc 2016; 83: 440-443 [PMID: 26344883 DOI: 10.1016/j.gie.2015.08.048]

35 Hines-Peralta A, Hollander CY, Solazzo S, Horkan C, Liu ZJ, Goldberg SN. Hybrid radiofrequency and cryoblation device: preliminary results in an animal model. J Vasc Interv Radiol 2004; 15: 1111-1120 [PMID: 15466798 DOI: 10.1097/01.rvl.0000136031.91939.ec]

36 Wu Y, Tang Z, Fang H, Gao S, Chen J, Wang Y, Yan H. High operative risk of cool-tip radiofrequency ablation for unresectable pancreatic head cancer. J Surg Oncol 2006; 94: 392-395 [PMID: 16967436 DOI: 10.1002/jso.20580]

37 Van Goethem BE, Rosenveldt KW, Kirpensteijn J. Monopolar versus bipolar electrocoagulation in canine laparoscopic ovarioectomy: a nonrandomized, prospective, clinical trial. Vet Surg 2003; 32: 464-470 [PMID: 14569575 DOI: 10.1053/jvts.2003.50052]

38 Lee JM, Han JK, Choi SH, Kim SH, Lee JY, Shin KS, Han CJ, Choi BI. Comparison of renal ablation with monopolar radiofrequency and hypertonic-saline-augmented bipolar radiofrequency: in vitro and in vivo experimental studies. AJR Am J Roentgenol 2005; 184: 897-905 [PMID: 15728615 DOI: 10.2214/ajr.184.3.01840897]

39 Feghachi S, Molenaar IQ, Klaessens JH, Besselink MG, Offerhaus JA, van Hillegersberg R. Radiofrequency ablation of the pancreas with and without intraluminal duodenal cooling in a porcine model. J Surg Res 2013; 184: 867-872 [PMID: 23726235 DOI: 10.1016/j.sjsr.2013.04.068]

40 Goldberg SN, Gazelle GS, Dawson SL, Rittman WJ, Mueller PR, Rosenthal DH. Tissue ablation with radiofrequency: effect of probe size, gauge, duration, and temperature on lesion volume. Acad Radiol 1995; 2: 399-404 [PMID: 9419582]

41 Date RS, Biggins J, Paterson I, Denton J, McMahon RF, Siriwandana AK. Development and validation of an experimental model for the assessment of radiofrequency ablation of pancreatic parenchyma. Pancreas 2005; 30: 266-271 [PMID: 15782106]

42 Date RS. Current status of local ablative techniques in the treatment of pancreatic cancer. Pancreas 2006; 33: 198-199 [PMID: 16868488 DOI: 10.1097/01.mpa.0000229006.39667.ea]

43 Elias D, Baton O, Sideris L, Lasser P, Pocard M. Necrotizing pancreatitis after radiofrequency destruction of pancreatic tumours. Eur J Surg Oncol 2004; 30: 85-87 [PMID: 14736529]

44 Siriwandana AK. Radiofrequency ablation for locally advanced cancer of the pancreas. JOP 2006; 7: 1-4 [PMID: 16407612]

45 Girelli R, Frigerio I, Salvia R, Barbi E, Tinazzi Martini P, Bassi C. Feasibility and safety of radiofrequency ablation for locally advanced pancreatic cancer. Br J Surg 2010; 97: 220-225 [PMID: 20069610 DOI: 10.1002/bjs.6800]

46 Spiliotis JD, Datsis AC, Michalopoulos NV, Kekelos SP, Vazevanidou A, Rogdakis AG, Christopoulos AN. Radiofrequency ablation combined with palliative surgery may prolong survival of patients with advanced cancer of the pancreas. Langenbecks Arch Surg 2007; 392: 55-60 [PMID: 17089173 DOI: 10.1007/s00423-006-0098-5]

47 Cantore M, Girelli R, Mambrini A, Frigerio I, Boz G, Salvia R, Giardino A, Orlandi M, Aurierma J, Bassi C. Combined modality treatment for patients with locally advanced pancreatic adenocarcinoma. Br J Surg 2012; 99: 1083-1088 [PMID: 22648697 DOI: 10.1002/bjs.8789]

48 Hadjicostas P, Malakounides N, Varianos C, Kitiris E, Lerni F, Symeonides P. Radiofrequency ablation in pancreatic cancer. HPB (Oxford) 2006; 8: 61-64 [PMID: 18333241 DOI: 10.1080/136518206005046673]

49 Gaidhane M, Smith J, Ellen K, Gatesman J, Habib N, Foley P, Moskaluk C, Kahaleh M. Endoscopic Ultrasound-Guided Radiofrequency Ablation (EUS-RFA) of the Pancreas in a Porcine Model. Gastroenterol Res Pract 2012; 2012: 431451 [PMID: 23049547 DOI: 10.1155/2012/431451]

50 Yoon WD, Brugge WR. Endoscopic ultrasonography-guided tumor ablation. Gastrointest Endosc Clin N Am 2012; 22: 359-369, xi [PMID: 22632957 DOI: 10.1016/j.gice.2012.04.017]

51 Seo DW. EUS-Guided Antitumor Therapy for Pancreatic Tumors. Gut Liver 2010; 4 Suppl 1: S76-S81 [PMID: 21103299 DOI: 10.5009/gnl.2010.4.1.576]

52 Pezzilli R, Ricci C, Serra C, Casadei R, Monari F, D’Ambra M, Corinaldesi R, Minni F. The problems of radiofrequency ablation as an approach for advanced unresectable ductal pancreatic carcinoma. Cancers (Basel) 2010; 2: 1419-1431 [PMID: 24281165 DOI: 10.3390/cancers20134191]
