INTRODUCTION

Chigger mites (trombiculid mites) belong to the family Trombiculidae in the subclass Acari of the class Arachnida. More than 3,000 species have been recorded globally, and more than 400 species have been recorded in China [1]. In the life cycle of chigger mites, only their larvae are parasitic. Larvae are ectoparasites on other animals [1-4]. Specimens of chigger mites are mostly collected from their hosts; therefore, the taxonomic identification is based mainly on larval characteristics [5-8].

Ewing [9] first reviewed the superfamily Trombiculidae Ewing, 1929, which included 2 families; Trombiculidae Ewing, 1929 and Leeuwenhoekiidae Womersley, 1944 [1]. In China, the family Trombiculidae consists of the subfamily Trombiculinae Ewing, 1929 and Gahrliepiinae, 1952, whereas Leeuwenhoekiidae consists of the subfamily Leeuwenhoekiinae Womersley, 1944 and Apoloniinae Wharton, 1947. The subfamily Gahrliepiinae includes the genera Walchia Ewing, 1931, Schengastiella Hirst, 1915, Gahrliepia Oudemans, 1912, Intermedia- lia Yu et al., 1979, and Wuella Wang, 1997 [10]. In the process of identifying specimens of chigger mites collected from small mammals in Yunnan Province, southwest China, we found a new species of the genus Gahrliepia. This paper describes this new chigger mite species, Gahrliepia cangshanensis n. sp.

MATERIALS AND METHODS

The specimens were collected from the Yunnan red-backed vole (also called the Yunnan Chinese vole or large oriental vole) Eothenomys miletus (Thomas, 1914) in the family Cricetidae (order Rodentia), and the Chinese white-bellied rat (also called the white-bellied rat or sulphur bellied rat) Niviventer confucianus (Milne-Edwards, 1871) in the family Muridae (order Rodentia). These 2 rodent hosts, together with other small mammals in the order Soricomorpha and Scandentia, were trapped in the Cangshan Mountains (100˚1’E, 25˚36’N, 2,250 m) in Yunnan Province, southwest China, between April and May in 2010. Small mammals were trapped in 3 different habitats; 1) farmlands, 2) woodlands, and 3) scrublands using live-traps (Guixi Mousetrap Apparatus Factory, Guixi, Jiangxi, China). Live-traps were set in the evening and then checked the following morning. The trapped small mammals were placed in white cloth bags and brought to the laboratory, and then chigger mites were collected from them. In the laboratory, small
mammals were placed in a plastic pail and anesthetized with ether. All research was approved by the local wildlife service authority in Dali Prefecture, Yunnan Province, China. The capture and use of animals was also approved by the Institute of Pathogens and Vectors, Dali University.

Chigger mites, together with other ectoparasites (fleas, sucking lice, and gamasid mites), were collected from each host over a large white plate [1-13]. Specifically, chigger mites were collected from the auricles and external auditory canals of each host’s ears, where chigger larvae are usually attached, using a curette and a lancet [1,3]. Chigger mites were stored individually in vials containing 70% ethanol [1,10-12]. Between examining each small mammal, the white plate and other instruments were cleaned using disposable paper towels to reduce the chance of cross-contamination. Living small mammal hosts were identified based on external morphology, measurements, and visible characters of dentition. Small mammals were sacrificed, and their species identity was determined by examining their skulls in cases where we could not determine the species while they were alive [14]. Chigger mites were mounted on glass slides in Hoyer’s medium and were identified to species using a light microscope [1,3].

Specimens of the new chigger mite species were measured, photographed, and drawn from the microscope images. The terminology and nomenclature used in the morphological descriptions followed Wen et al. [16-18]. Voucher specimens of the new species, including the holotype and paratypes, were deposited in the specimen repository of the Institute of Pathogens and Vectors (Dali University) together with their representative small mammal hosts.

RESULTS

Overall, 379 of the small mammals that we trapped in the Cangshan Mountains were examined and identified to species. These small mammals belonged to 29 genera in the orders Rodentia, Soricomorpha, and Scandentia (Table 1). A total of 6,466 chigger mites, consisting of 121 species, were collected from all the trapped small mammals. Of the 6,466 mites, 5 individual mites were identified as a new species, *Gahrliepia cangshanensis* n. sp. Four mites of the new species were collected from Yunnan red-backed voles (*E. miletus*) and 1 mite was collected from the Chinese white-bellied rat (*N. confucianus*). No specimens of the new species were collected from the remaining 27 species of small mammals.

Table 1. List of small mammal species from the Cangshan Mountains in Yunnan Province of southwest China that were examined for ectoparasites between May and August 2010

Order	Species name (total 29 species)
Rodentia (14 species)	*Mus pahari* Thomas, 1916; *Rattus norvegicus* (Berkenhout, 1769); *Apodemus iber Thomas, 1922*; *Apodemus chevrieri Milne-Edwards, 1868*; *Apodemus latronum Thomas, 1911*; *Niviventer excelsior* (Thomas, 1911); *Niviventer confucianus* (Milne-Edwards, 1871); *Niviventer fulvenscens* (Gray, 1847); *Eothenomys custos* (Thomas, 1912); *Eothenomys miletus* (Thomas, 1914); *Eothenomys oltor* (Thomas, 1911); *Eothenomys evelaeus* (Thomas, 1911); *Berylmys boweri* (Anderson, 1879); *Dremomys perryi* (Milne-Edwards, 1867).
Soricomorpha (14 species)	*Scaportys fusicaudus* (Milne-Edwards, 1872); *Nasillus gracilis* (Thomas, 1911); *Anourosorex squamipes* (Milne-Edwards, 1872); *Blarinella quadrataauda* (Milne-Edwards, 1872); *Crocidura dracula* (Thomas, 1912); *Crocidura horsfieldi* (Thomas, 1856); *Crocidura attenuata* (Milne-Edwards, 1872); *Sorex excelius* (Allen, 1923); *Sorex radulus* (Thomas, 1922); *Sorex bedfordiae* (Thomas, 1911); *Sorex cylindrcauda* (Milne-Edwards, 1871); *Soriculus luicops* (Horsfield, 1855); *Soriculus nigrescens* (Gray, 1842); *Soriculus macrurus* (Hodgson, 1863).
Scandentia (1 species)	*Tupaia belangeri* (Wangner, 1841).

DESCRIPTION

Gahrliepia cangshanensis n. sp. larva (Figs. 1-5)

Materials examined

The holotype, 1 larva, from the Yunnan red-backed vole, *E. miletus*, was collected in the Cangshan Mountains (100°11’ E, 25°36’ N, 2250 m) in Yunnan Province, southwest China. Of the 4 paratypes (4 larvae), 3 were collected from *E. miletus*, and 1 was collected from the Chinese white-bellied rat, *N. confucianus*, in the same region. The holotype and paratypes were deposited in the specimen repository of the Institute of Pathogens and Vectors, Dali University, Yunnan Province, China.

Holotype description

Idiosoma: Medium sized (232.5 × 377.5 μm), partially engorged specimen; eyes 1 pair, 5 μm in diameter, free of cuticle;
humeral setae 1 pair, length 44-45 μm; approximately 40 dor-
sal idiosomal setae, length 34-45 μm, arranged in irregular rows;
sterne setae 2 pairs, formula of sternal seta (fst) = 2.2; anterior
length 42 μm; formula of dorsal setation (fDS) = 2.2.6.4.10.6.
4.4.2; posterior length 36 μm; 58 ventral setae (VS), length
22.5-37.5 μm; 40 dorsal setae (DS), length 28-43 μm; total id-
iosomal tetae 118.

Gnathosoma: Formula of palpal seta (fp) = B/N/N/N/B (B
means “branched”, while N means “naked”); formula of pal-
potarsus (fp) = 4B; palpal claw 3-pronged, length 12 μm; gale-
ala N; cheliceral blade (length 32 μm), broad at base, with ser-
rated tricuspid cap; gnathobase punctuate, bearing 1 barbed
setae.

Scutum: broad and tongue-shaped, with an almost straight
posterior margin. SD/PW = 158 μm/90 μm = 1.76; posterolat-
eral angles rounded. PPLs = 17 in numbers. SB near mid-point
of AP; PL>AL. Sensillae clavate with barbs on shaft and expand-
ed distal portion. Scutal measurements of the holotype and 2
paratypes with means in parentheses: AW (53 μm); PW (90
μm); SB (52 μm); ASB (26 μm); PSB (132 μm); AP (42 μm);
AL (37 μm); PL (41 μm); sensilla (34×15 μm). Here, SD =
scutum distance; PW = posterolateral seta width; SB = sensillary
base distance; AP = distance between anterolateral seta and
posterolateral seta; PL = posterolateral seta; AL = anterolat-
eral seta; AW = anterolateral seta width; ASB = antero-sensillary
base distance; PSB = postero-sensillary base distance.

Legs: Leg I is 7-segmented. Legs II and III are 6-segmented,
terminating in a pair with a claw and claw-like empodium. Leg I: 240-248 μm; coxa with 1 branched seta (1B); trochanter 1 B; basifemur 0; genu 4B, 2 genuae, microgenuala; tibia 8B, 1 tibiae; tarsus (58×20 μm), 12B, 1 spur.

Leg II: $SIF = 4B-N-3-1 100-0000$; $fP = B/N/N/N/B$; $IP = 841-863$ μm. $fS = 7.6.6$; $Oc = 1/1$; $fcx = 1.1.1$; $f = 2.2$; $fDS = 40$; $fSc = 2AL+2PL+17PPL = 21$; $NDV = 18$. Here, IP = index of poda; SIF = synthetic identification formula; fP = formula of poda; fS = formula of segmented poda; Oc = ocellus; fcx = formula of coxa; $f = formula of sternal seta; fDS = formula of dorsal setation; fSc = formula of scutum setation; P = poda; NDV = numbers of dorsal and ventral setae.

The measurements (means; μm) of the holotype and 4 paratypes are shown in Table 2.

Table 2. The measurements (means) of 1 holotype and 4 paratypes (μm)

No.	AW	PW	PPW	SB	ASB	PSB	SD	AP	AL	PL	PPL	Sensilla
1	53	90	53	52	26	132	158	42	37	49	41	3+32+15
2	52	85	55	53	33	145	178	43	13+	x	x	x
3	54	90	55	53	25	139	164	40	39	50	46	x
4	50	83	55	53	24	131	155	40	39	52	48	x
5	52	96	71	52	23	132	155	41	42	51	38	x

$AW =$ anterolateral seta width; $PW =$ posterolateral seta width; $PPW =$ posterior posterolateral seta width; $SB =$ sensillary base distance; $ASB =$ antero-sensillary base distance; $PSB =$ postero-sensillary base distance; $SD =$ scutum distance; $AP =$ distance between anterolateral seta and posterolateral seta; $AL =$ anterolateral seta; $PL =$ posterolateral seta; $PPL =$ posterior posterolateral seta.

The new species is mainly characterized by the 21 dorsal setae. It has the following features: the scutum length is longer than the breadth, it neither has an anteromedian projection nor an anteromedian seta. Leg I is 7-segmented, whereas legs II and III are 6-segmented. On the scutum, no inter-medial setae between sensilla. $IP = 500-1120$ μm. The scutum is broad and tongue-shaped, with almost straight posterior margin. $fT = 4B$. The sensillae clavate has barbs on the shaft and an expanded distal portion.

Discussion

The new species ($Gahrliepia cangshanensis$ n. sp.) has the common features of the genus $Gahrliepia$. Specifically, its scutum lacks anteromedian seta and anteromedian projections. The scutum is broad and tongue-shaped, with an almost straight posterior margin. Leg I is 7-segmented, whereas legs II and III are 6-segmented. However, the new species also has some prominent differences from other species of $Gahrliepia$. The unique features of this new species include no inter-anteromedian seta on the scutum, 21 dorsal setae [1,9,16-19], and $fT = 4B$.

In this paper, the new species was collected only from 2 species of rodents ($E. miletus$ and $N. confucianus$) in the Cangshan Mountains in Yunnan Province. Since our collection was confined to this limited area and only 5 individuals of the new species were collected, we are unable to know how many hosts can harbor this new species and its geographical distribution at present.

Acknowledgements

The project was supported by grants provided by the National Natural Science Foundation of China to Xian-Guo Guo (no. 81160208, 81260259). We would like to offer our sincere thanks to Prof. Xue-li Qiu and Dr. Yi Yan for their help in many ways.

Conflict of Interest

We declare no conflict of interest related with this study.
REFERENCES

1. Li JC, Wang DQ, Chen XB. Trombiculid mites of China: study on vector and pathogen of tsutsugamushi disease. Guangzhou, China. Guangdong Science and Technology. 1997, p 1-570 (in Chinese).

2. Daniel M, Stekolnikov AA. Chigger mites (Acari: Trombiculidae) new to the fauna of Cuba, with the description of two new species. Folia Parasitol 2003; 50: 143-50.

3. Guo XG, Qian Tl, Men XY, Dong WG, Shi WX, Wu D. Preliminary analysis of chigger communities associated with house rats (Rattus flavipes) from six locations in Yunnan, China. Syst Appl Acarol 2006; 11: 13-21.

4. Daniel M, Stekolnikov AA. Chigger mites (Acari: Trombiculidae) from Makalu region in Nepal Himalaya, with a description of three new species. J Med Entomol 2009; 46: 753-65.

5. Ma Y, Yang XZ. Two new species of the family Trombiculidae from Qinghai Province, China (Acari: Trombiculidae). Acta Zool Sin 2002; 27: 740-744 (in Chinese).

6. Ma Y, Yang XZ. A new species of the genus Neotrombicula from Qinghai, China (Acari: Trombiculidae). Acta Zool Sin 2003; 28: 461-463 (in Chinese).

7. Feng YL, Ma Y, Bai XL. A new species of the genus Leptotrombidium from Ningxia, China (Acari: Trombiculidae). Acta Zool Sin 2008; 33: 753-755 (in Chinese).

8. Wu KM, Li C. A new species of the genus Neotrombicula from Qinghai, China (Acari: Trombiculidae). Acta Zool Sin 2001; 26: 35-37 (in Chinese).

9. Ewing HE. Notes on the taxonomy of the trombiculid mites. Proc Biol Soc Wash 1944; 57: 101-104.

10. Wang DQ. A new genus of trombiculid mite of the subfamily Gahrliepiinae (Acari: Trombiculidae). Acta Entomol Sin 1997; 40: 314-316 (in Chinese).

11. Durden LA, Banks CW, Clark KL, Belbey BV, Oliver JH Jr. Ectoparasite fauna of the eastern woodrat, Neotoma floridana: composition, origin, and comparison with ectoparasite fauna of western woodrat species. J Parasitol 1997; 83: 374-381.

12. Durden LA, Ellis BA, Banks CW, Crowe JD, Oliver JH Jr. Ectoparasites of gray squirrels in two different habitats and screening of selected ectoparasites for Bartonellae. J Parasitol 2004; 90: 485-489.

13. Zhan YZ, Guo XG, Speakman JR, Dong WG. Abundances and host relationships of chigger mites in Yunnan Province, China. Med Vet Entomol 2013; 27: 194-202.

14. Huang LQ, Guo XG, Speakman JR, Dong WG. Analysis of gamasid mites (Acari: Mesostigmata) associated with the Asian house rat, Rattus tanezumi (Rodentia: Muridae) in Yunnan Province, Southwest China. Parasitol Res 2013; 112: 1967-1972.

15. Andrew TS, Xie Y. A guide to the mammals of China. Hunan, China. Hunan Education. 2009, p 7-269 (in Chinese).

16. Wen TH. Sand mites of China. Shanghai, China. Shanghai, Xuelin Publishing House, 1984, p 1-370 (in Chinese).

17. Wen TH. Revision on sand-mite tribe Gahrliepiini sensu Wen (Acariiformes: Walchiidae). Syst Appl Acarol 2000; 5: 157-172.

18. Wen TH, Gui YY. Redescriptions of two sibling species of the genus Gateria recorded in Zhejiang province, China (Acariiformes: Walchiidae). Syst Appl Acarol 2000; 5: 177-182.

19. Deng GF. A new species of Gahrliepia from Sichuan, China. Acta Zool Sin 1962; 3: 417-420 (in Chinese).
