Article

[Tb₄(OH)₄]-Cuboid Complex Dianion Stabilized with Six Carboxylate Bridges and Four Diketonate Caps

Yoshiki Yamaguchi and Takayuki Ishida *

Department of Engineering Science, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan; yamaguchiy@ttf.pc.uec.ac.jp
* Correspondence: takayuki.ishida@uec.ac.jp

Abstract: A cubane-like complex dianion [Tb₄(OH)₄(tfa)₆(hfac)₄]²⁻ was synthesized, accompanied by two counter cations of [Ni(hfac)(2pyIN)₂]⁺, where Htfa, Hhfac, and 2pyIN stand for trifluoroacetic acid, 1,1,1,5,5,5-hexafluoropentane-2,4-dione, and 4,4,5,5-tetramethyl-2-pyridylimidazolin-1-oxyl, respectively. In the complex anion, each Tb ion was capped with hfac, and each Tb···Tb diagonal was bridged with tfa, thus forming an approximate Td symmetry, though the whole molecular formula was crystallographically independent in an orthorhombic Pbcn space group. The ionic charge was −2 in total. The magnetic study revealed that the complex ions were magnetically isolated from each other. Practically no 4f–4f superexchange interaction was operative, while the 2p–3d ferromagnetic coupling seemed to be appreciable, as anticipated from the proposed magnetostructural relationship.

Keywords: rare earth metal; lanthanide; lanthanoid; molecular magnetism; magnetic properties; ferromagnetic coupling

1. Introduction

Heterospin magnetic materials are fascinating to researchers because of the wide variety of symmetries and energy levels of the paramagnetic centers available from the viewpoint of frontier-orbital engineering [1–12]. Lanthanide ions, as a 4f spin source, have a large magnetic moment and strong magnetic anisotropy, and become indispensable in the development of conventional bulk magnets as well as recently exploited single-molecule magnets (SMMs) [4]. As a working hypothesis to construct exchange-coupled clusters and networks, plausible magneto-structure correlations have been proposed for 2p–3d [5–7], 3d–4f [8,9], and 2p–4f [10–12] heterospin systems. There are an increasing number of reports describing 2p–3d–4f triad systems [13–17]. Hopefully, these paramagnetic centers would be better strongly exchange-coupled, because the resultant large total spin quantum number is favorable for SMM performance.

Lanthanide ions usually behave as a hard acid compared with transition-metal ions, which exhibit a soft nature [18]. Upon such selectivity, a simple synthesis has widely been applied, where the 2p, 3d, and 4f spin sources are mixed in a one-pot manner [13–17]. During our development on 2p–3d–4f heterospin magnets, we have found a cubane-like complex dianion [Tb₄(OH)₄(tfa)₆(hfac)₄]²⁻, accompanied by two counter cations of [Ni(hfac)(2pyIN)₂]⁺ in a crystal lattice. Here, Htfa and Hhfac stand for trifluoroacetic acid and 1,1,1,5,5,5-hexafluoropentane-2,4-dione, respectively. Carbonyl compounds are often available as an antenna in luminescent materials [19,20]. The 2pyIN radical (4,4,5,5-tetramethyl-2-pyridylimidazolin-1-oxyl or 2-pyridyl iminonitroxide) [21] is popular in the metal-radical approach. We will describe the molecular/crystal structure and magnetic properties of the product. The formation of cubane-like clusters is not so astonishing since various oxo- and hydroxo-bridged metal clusters have been developed, but a highly symmetric architecture and dianionic valence is rare in the lanthanide cubane-like chemistry, to our knowledge.
2. Materials and Methods

2.1. Preparation

The complex formation was conducted according to the method for the known lanthanide–nitroxide complexes [22,23] with a slight modification. A heptane solution (20 mL) including [Tb(hfac)3(H2O)2] [24,25] (40.3 mg; 0.049 mmol) was refluxed and concentrated to ca. 2 mL. Similarly, another heptane suspension (20 mL) including Ni(CF3CO2)2·4H2O (Wako, 19.3 mg; 0.054 mmol) was refluxed and concentrated to ca. 2 mL. The above solution and suspension were cooled to ca. 40 °C and poured into a dichloromethane solution (1.5 mL) including 2pyIN [19] (21.7 mg; 0.10 mmol). Immediately, the combined solution was filtered, and the filtrate was allowed to stand in a freezer (−22 °C). After 3 days, [Ni(hfac)(2pyIN)2][Tb4(OH)4(tfa)6(hfac)4](C7H16)2 (abbreviated as 1 hereafter) as orange polycrystalline precipitates were separated on a filter, washed with heptane, and air-dried (Scheme 1). The yield was 18.1 mg (40%). Mp 148–150 °C. Anal. (PerkinElmer 2400 II, PerkinElmer Inc., Waltham, MA, USA). Calcd. for C111H122F54N12Ni2O32Tb4, orthorhombic Pbca, V = 30220.1(9) Å3, Z = 8, d = 1.721 g cm−3, μ(MoKα) = 2.228 mm−1, R(F) (I > 2σ(I)) = 0.0526, wR(F2) (all reflections) = 0.1185, goodness-of-fit parameter = 0.976, T = 96 K for 41279 reflections. For experimental details and geometrical parameter tables, see CCDC reference number 2153576.

Scheme 1. Synthesis of 1. Red arrows depict the coordination bonds in the cubane-like skeleton.

2.2. Structural Analysis

X-Ray diffraction data of a single crystal of 1 were collected on a Saturn 70 hybrid pixel array detector (Rigaku, Tokyo, Japan) with graphite monochromated Mo Kα radiation (λ = 0.71073 Å). The structure was solved by a heavy-atom method and expanded using Fourier techniques in the Olex2 program [26]. The parameters were refined on Shelxl [27]. The thermal displacement parameters of non-hydrogen atoms were refined anisotropically. Considerable residual electron densities were found in a void space, and solvent heptane molecules could not be placed, possibly owing to severe disorder. A “squeeze” treatment [28] was applied to 183 residual electrons in a void space of 1016 Å3 per asymmetric cell, corresponding to three heptane molecules as a solvent mask. Selected data are as follows: C111H122F54N12Ni2O32Tb4, orthorhombic Pbcn, a = 32.1908(6), b = 29.0734(5), c = 32.2901(6) Å, V = 30220.1(9) Å3, Z = 8, d = 1.721 g cm−3, μ(MoKα) = 2.228 mm−1, R(F) (I > 2σ(I)) = 0.0526, wR(F2) (all reflections) = 0.1185, goodness-of-fit parameter = 0.976, T = 96 K for 41279 reflections. For experimental details and geometrical parameter tables, see CCDC reference number 2153576.

2.3. Magnetic Measurements

Direct and alternating current (dc and ac, respectively) magnetic susceptibilities of 1 were measured on MPMS-XL7 and MPMS3 SQUID magnetometers (Quantum Design Inc., San Diego, CA, USA). For the dc measurements, the magnetic responses were corrected with diamagnetic blank data of the sample holder measured separately, and further diamagnetic contribution was estimated from Pascal’s constants [29].
3. Results and Discussion

Compound 1 was prepared from the starting materials [Tb(hfac)$_3$(H$_2$O)$_2$], Ni(CF$_3$CO$_2$)$_2$, and 2pyIN in a one-pot manner. The product was stable under ambient conditions, but the crystal solvent molecules incorporated escaped easily from the crystal lattice. The composition was confirmed to be [Ni(hfac)(2pyIN)$_2$][Tb$_4$(OH)$_4$(tfa)$_6$(hfac)$_4$] by means of spectroscopic, analytic, and X-ray diffraction analyses. The single-crystal X-ray diffraction study clarified that the space group was orthorhombic $Pbca$ with a whole formula unit crystallographically independent (Figure 1a). Considerable residual electron densities were found in a void space in a lattice, being ascribable to heptane. The complex cations and anions were discrete and accordingly seem to be magnetically isolated from each other. On the other hand, the Ni$^{2+}$ ion and 2pyIN ligands must be magnetically correlated because of the direct metal–radical coordination bonds (see below).

As Figure 1b shows, the anionic portion has a tetrancular Tb$^{3+}$ cage cluster in 1. Each Tb$^{3+}$ ion is coordinated with three OH$^-$ ions, and each OH$^-$ ion plays the role of a tripoal bridge, forming a cube-like structure. The intra-cuboid Tb–O bond lengths varied from 2.329(3) to 2.429(3) Å, the Tb–O–Tb angles from 105.06(11) to 108.67(11)$^\circ$, and the O–Tb–O angles from 69.04(10) to 71.47(10)$^\circ$. Thus, the cubane-like cluster was considerably distorted with the wider Tb–O–Tb angles and narrower O–Tb–O angles, compared to 90$^\circ$. The peripheral ligands were characterized as follows: each Tb$^{3+}$ ion was capped with an hfac anion, and every Tb···Tb diagonal was bridged with a tfa anion. Several tfa-bridged lanthanide complexes are known in the literature [30]. Thus, the tetra(μ_3-hydroxo)- and hexa(μ_2-η^2(O,O')-tfa)-bridged structure in 1 can be regarded as an approximate Td symmetry. The Tb$^{3+}$ ions are eight-coordinate, and the SHAPE analysis [31] indicates that the TbO$_8$ coordination spheres are best described as a triangular dodecahedron (TDD-8). Hydrogen bonds were found between the anion and cation moieties; the O···O distances were 2.991(5) and 2.918(4) Å for O2–H2···O25 and O4–H4···O29, respectively. Such interactions brought about an L-shaped cation–dianion–cation arrangement, and the resultant bulkiness seems to afford a void space in a crystal lattice, where the crystal solvent molecules were incorporated.
1.8 K, and this profile can partly be explained in terms of depopulation effect regarding
was negligible. At 300 K, the χ_π portion and (c,d) two cationic [Ni(hfac)(2pyIN)]$_2$ portions in the crystal of 1. Only a major conformer is drawn for disordered trifluoromethyl groups, and hydrogen atoms are omitted for clarity in (b-d).

The thermal ellipsoids are drawn at the 50% probability level. The atomic color codes are: C, black; O, red; N, blue; F, yellow; Tb, turquoise; Ni, green.

The [Tb$_4$(OH)$_4$]$_{8+}$ core in 1 was similar to that of the known lanthanide cuboids [32–35]. A possible formation mechanism has already been discussed elsewhere [35]. In comparison with the known compounds, it should be noted that the present complex had peripheral ligands located in a highly symmetrical manner. Furthermore, a dianionic valence of the cuboidal complex ion is rather rare.

As for the cation moiety of 1 (Figure 1c,d), we can find two 2pyIN chelate rings around the Ni$^{2+}$ (3d8) ion. The C$_{2py}$–C$_{2im}$–N–Ni torsion angle, ϕ, is proposed to be a convenient metric to assess magnetostructural relationship. The torsion angles were 1.1(6), 1.7(6), –2.5(6), and 0.7(5)$^\circ$ around the C40–C33–N1–Ni1, C52–C45–N4–Ni1, C69–C62–N7–Ni2, and C74–C81–N12–Ni2 bonds, respectively. These small torsions guarantee the absence of d_2/d_2–π^* orbital overlap. A closely related 2p/3d = 1/1 complex [Ni(hfac)$_2$(2pyIN)] was reported to display orthogonal d–π^* orbital arrangement and ferromagnetic coupling [36]. According to the magnetostructural relationship, the critical $|\phi_C|$ of the exchange coupling alters from ferro- to antiferromagnetic, was reported to be 12.8(8)$^\circ$ for the Cu$^{2+}$ and Ni$^{2+}$ compounds [7] and 21(1) or 26(3)$^\circ$ for the Ni$^{2+}$ compounds [37]. We can safely predict that the [Ni(hfac)(2pyIN)$_2$]$^{2+}$ portions in 1 should behave as a ground quintet species.

Figure 2a displays the dc magnetic susceptibility result on 1. A relatively temperature-insensitive character appeared, indicating that each complex ion was magnetically isolated from each other. This finding also implies that the Tb–O–Tb superexchange coupling was negligible. At 300 K, the χ_mT value was 50.5 cm3 K mol$^{-1}$, in good agreement with the theoretical value 50.7 cm3 K mol$^{-1}$ expected from the sum of four Tb$^{3+}$ ions (11.81 cm3 K mol$^{-1}$ each with the angular moment $J = L + S = 6$ and the Landé factor $g_J = 3/2$), two Ni$^{2+}$ ions (1.00 cm3 K mol$^{-1}$ each), and four radicals (0.375 cm3 K mol$^{-1}$ each). On cooling, the χ_mT value gradually decreased and reached 45.6 cm3 K mol$^{-1}$ at 1.8 K, and this profile can partly be explained in terms of depopulation effect regarding the J sublevels in the Tb$^{3+}$ ion. Such a lanthanide single-ion property sometimes disturbs exchange coupling analysis. In the present case, the 2p–3d interaction in the cation portions could not be evaluated.
Conceptualization and writing, T.I.; all of the experiments, Y.Y. All authors.

Figure 2. (a) The $\chi_m T(T)$ plot for 1, measured at 500 Oe. The polycrystalline sample was fixed with a small amount of eicosane. Inset: the $M(H)$ plot for 1, measured at 1.8 K. The sample was not fixed. (b) Ac magnetic susceptibilities for 1 without any applied dc field.

The M–H curve (Figure 2a, inset) displays a positive slope even at 7 T, and the magnetization (34.4 $N_A H_B$ at 7 T and 1.8 K when the sample was unfixed) was lower than the theoretical maximum value 44 $N_A H_B$, mainly because of the strong magnetic anisotropy of the Tb$^{3+}$ moment.

Figure 2b shows the in-phase (χ') and out-of-phase parts (χ'') of the molar ac magnetic susceptibilities for 1, measured in no dc bias field. In further experiments with applied fields of 1000 and 2000 Oe, no appreciable χ'' was recorded either. There have been several reports on Dy-based SMMs including Dy$_4$(OH)$_4$ cuboids [33]. The Kramers theorem suggests that Dy$^{3+}$ ion has a double-well potential surface suitable for SMMs but Tb$^{3+}$ ion does not [38,39]. After combining the results of the Tb$_4$- and Dy$_4$-based cuboids, the single-ion magnetic property of Tb$^{3+}$ and Dy$^{3+}$ seems to regulate the whole molecular magnetism. This conclusion is compatible with the negligible 4f–4f coupling in the cuboid.

4. Conclusions

A dianionic cuboidal complex ion [Tb$_4$(OH)$_4$(tfa)$_6$(hfac)$_4$]$^{2-}$ was synthesized, accompanied by two counter cations of [Ni(hfac)(2pyIN)$_2$]$^+$ in a crystal lattice. In the complex anion, each Tb ion is capped with hfac and bridged with tfa in a highly symmetrical manner. The magnetic study revealed that the complex ions were magnetically isolated and that the Tb–O–Tb superexchange coupling was negligible, although the 2p–3d–4f heterospin material was realized Building upon the present architectural study, the use of a wide diversity of carboxylates and diketonates will be of interest to supramolecular chemistry involving a lanthanide cuboid building block.

Author Contributions: Conceptualization and writing, T.I.; all of the experiments, Y.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported in part from JSPS KAKENHI (grant number JP20K21170).

Data Availability Statement: CCDC reference number 2153576 contains the supplementary crystallographic data for 1. These data are provided free of charge by the Cambridge Crystallographic Data Centre at www.ccdc.cam.ac.uk/structures (accessed on 21 February 2022).

Conflicts of Interest: The authors declare no conflict of interest.
References

1. Liu, K.; Shi, W.; Cheng, P. Toward heterometallic single-molecule magnets: Synthetic strategy, structures and properties of 3d–4f discrete complexes. *Coord. Chem. Rev.* 2015, 289, 74–122. [CrossRef]

2. Demir, S.; Jeon, I.R.; Long, J.R.; Harris, T.D. Radical ligandcontaining single-molecule magnets. *Coord. Chem. Rev.* 2015, 289, 149–176. [CrossRef]

3. Liu, J.L.; Chen, Y.C.; Tong, M.L. Symmetry strategies for high performance lanthanide-based single-molecule magnets. *Chem. Soc. Rev.* 2018, 47, 2431–2453. [CrossRef] [PubMed]

4. Gatteschi, D.; Sessoli, R.; Villain, J. *Molecular Nanomagnets*; Oxford University Press: Oxford, UK, 2006.

5. Kahn, O. *Molecular Magnetism*; VCH: New York, NY, USA, 1993.

6. Caneschi, A.; Gatteschi, D.; Sessoli, R.; Rey, P. Toward molecular magnets: The metal-radical approach. *Acc. Chem. Res.* 1989, 22, 392–398. [CrossRef]

7. Ishida, T.; Ito, S.; Homma, Y.; Kyoden, Y. Molecular S = 2 High-Spin, S = 0 Low-spin and S = 0 ⇄ 2 Spin-Transition-/Crossover Nickel(II)-Bis(nitrooxide) Coordination Compounds. *Inorganics* 2021, 9, 10. [CrossRef]

8. Peng, Y.; Powell, A.K. What do 3d-4f butterflies tell us? *Coord. Chem. Rev.* 2021, 426, 213490. [CrossRef]

9. Watanabe, R.; Fujiwara, K.; Okazawa, A.; Tanaka, G.; Yoshii, S.; Nojiri, H.; Ishida, T. Chemical trend of Ln−M exchange couplings in heterometallic complexes with Ln = Gd, Tb, Dy, Ho, Er and M = Cu, V. *Chem. Commun.* 2011, 47, 2110–2112. [CrossRef]

10. Ikekaya, N.; Kanetomo, T.; Murakami, R.; Ishida, T. Triply Radical-coordinated Gadolinium(III) Complex as a High-spin S = 5/2 Assembly. *Chem. Lett.* 2012, 41, 82–83. [CrossRef]

11. Kanetomo, T.; Naoi, Y.; Enomoto, M. Gadolinium-Triradical Complex with Ground S = 10 State: Synthesis, Structural Characterization and Magnetic Studies. *Eur. J. Inorg. Chem.* 2021, 1130–1136. [CrossRef]

12. Nakamura, T.; Kanetomo, T.; Ishida, T. Strong Antiferromagnetic Interaction in a Gadolinium(III) Complex with Methoxy-TEMPO Radical: A Relation between the Coupling and the Gd–O–N Angle. *Inorg. Chem. 2020*, 60, 535–539. [CrossRef]

13. Escobar, L.B.L.; Guedes, G.P.; Soriano, S.; Speziali, N.L.; Jordão, G.; Cunha, A.C.; Ferreira, V.F.; Maxim, C.; Novak, M.A.; Andruh, M.; et al. New Families of Hetero-tri-spin 2p–3d–4f Complexes: Synthesis, Crystal Structures, and Magnetic Properties. *Inorg. Chem.* 2014, 53, 7508–7517. [CrossRef]

14. Novitchi, G.; Shova, S.; Lan, Y.; Wernsdorfer, W.; Train, C. Verdazyl Radical, a Building Block for a Six-Spin-Center 2p–3d–4f Complexes: Synthesis, Molecular Structures, and Magnetic Properties. *Inorg. Chem.* 2014, 55, 12122–12134. [CrossRef]

15. Li, H.; Sun, J.; Yang, M.; Sun, Z.; Tang, J.; Ma, Y.; Li, L. Functionalized nitronyl nitroxide biradicals for the construction of 3d–4f heterometallic compounds. *Inorg. Chem.* 2018, 57, 9757–9765. [CrossRef]

16. Vaz, M.G.F.; Andruh, M. Molecule-based magnetic materials constructed from paramagnetic organic ligands and two different metal ions. *Coord. Chem. Rev.* 2021, 427, 213611. [CrossRef]

17. Patrascu, A.A.; Calancea, S.; Briganti, M.; Soriano, S.; Madalan, A.M.; Cassaro, R.A.A.; Caneschi, A.; Totti, F.; Vaz, M.G.F.; Andruh, M. A chimeric design of heterospin 2p–3d, 2p–4f, and 2p–3d–4f complexes using a novel family of paramagnetic disymmetric compartmental ligands. *Chem. Commun.* 2017, 53, 6504–6507. [CrossRef]

18. Parr, R.G.; Pearson, R.G. Absolute hardness: Companion parameter to absolute electronegativity. *J. Am. Chem. Soc.* 1983, 105, 7512–7516. [CrossRef]

19. Kudyakova, Y.S.; Slepkhun, P.A.; Valova, M.S.; Burgart, Y.V.; Saloutin, V.I.; Bazhin, D.N. Role of alkyl substituents in the structure and luminescence properties of discrete terbium(III)-lithium(I) B-Diketonates. *J. Mol. Struct.* 2021, 1226, 129331. [CrossRef]

20. Takano, R.; Ishida, T. Polymeric Terbium(III) Squarate Hydrate as a Luminescent Magnet. *Crystals* 2021, 11, 1221. [CrossRef]

21. Helbert, J.N.; Kopf, P.W.; Poindexter, E.H.; Wagner, B.E. Complexing and protonation of free-radical imidazolin-1-oxyl and imidazolin-1-oxyl 3-oxide ligands: A magnetic-resonance investigation. *J. Chem. Soc. Dalton Trans.* 1975, 1975, 998–1006. [CrossRef]

22. Kanetomo, T.; Yoshitake, T.; Ishida, T. Strongest Ferromagnetic Coupling in Designed Gadolinium(III)−Nitroxide Coordination Compounds. *Inorg. Chem.* 2016, 55, 8140–8146. [CrossRef]

23. Kanetomo, T.; Ishida, T. Preparation and characterization of [Gd(hfac)3(DTBN)(H2O)] (DTBN = di-t-butyl nitrooxide). Ferromagnetic Gd3+−Gd3+ super–superexchange. *Chem. Commun.* 2014, 50, 2529–2531. [CrossRef]

24. Richardson, M.F.; Wagner, W.F.; Sands, D.E. Rare-earth tris(hexafluoroacetylacetonates and related compounds. *J. Inorg. Nucl. Chem.* 1968, 30, 1275–1289. [CrossRef]

25. Bagryanskaya, I.Y.; Poliatanskaya, L.V.; Tretyakov, E.V. Frequently used, but still unknown: Terbium(III) tris-hexafluoroacetylacetonate dihydrate. *Inorg. Chem. Commun.* 2016, 66, 47–50. [CrossRef]

26. Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.; Puschmann, H. Olex2: A complete structure solution, refinement and analysis program. *J. Appl. Crystallogr.* 2009, 42, 339–341. [CrossRef]

27. Sheldrick, G.M. Crystal structure refinement with SHELXL. *Acta Crystallogr. Sect. C Struct. Chem.* 2015, 71, 3–8. [CrossRef]

28. Spek, A.L. PLATON SQUEEZE: A tool for the calculation of the disordered solvent contribution to the calculated structure factors. *Acta Crystallogr. Sect. C Struct. Chem.* 2015, 71, 9–18. [CrossRef]

29. Bain, G.A.; Berry, J.F. Diamagnetic Corrections and Pascal’s Constants. *J. Chem. Educ.* 2008, 85, 532–536. [CrossRef]

30. Eliseeva, S.V.; Pleshkov, D.N.; Lyssenko, K.A.; Lepnev, L.S.; Bünzli, J.C.G.; Kuzmina, N.P. Highly luminescent and triboluminescent coordination polymers assembled from lanthanide β-diketonates and aromatic bidentate O-donor ligands. *Inorg. Chem.* 2010, 49, 9300–9311. [PubMed]
31. Lluncll, M.; Casanova, D.; Circla, J.; Bofill, J.M.; Alcmany, P.; Alvarez, S.; Pinsky, M.; Avnir, D. SHAPE, Version 2.1; University of Barcelona: Barcelona, Spain; Hebrew University of Jerusalem: Jerusalem, Israel, 2005.

32. Li, X.; Sun, H.L.; Wu, X.S.; Qiu, X.; Du, M. Unique (3,12)-connected porous lanthanide–organic frameworks based on Ln$_4$O$_4$ clusters: Synthesis, crystal structures, luminescence, and magnetism. *Inorg. Chem.* 2010, 49, 1865–1871. [CrossRef]

33. Wong, H.Y.; Chan, W.T.K.; Law, G.L. Assembly of lanthanide(III) cubanes and dimers with single-molecule magnetism and photoluminescence. *Inorg. Chem.* 2018, 57, 6893–6902. [PubMed]

34. Andrews, P.C.; Gee, W.J.; Junk, P.C.; MacLellan, J.G. Systematic study of the formation of the lanthanoid cubane cluster motif mediated by steric modification of diketonate ligands. *Dalton Trans.* 2011, 40, 12169–12179. [CrossRef]

35. Wu, Y.; Morton, S.; Kong, X.; Nichol, G.S.; Zheng, Z. Hydrolytic synthesis and structural characterization of lanthanide-acetylacetonato/hydroxo cluster complexes—A systematic study. *Dalton Trans.* 2011, 40, 1041–1046. [CrossRef]

36. Luneau, D.; Rey, P.; Laugier, J.; Belorizky, E.; Cogne, A. Ferromagnetic behavior of nickel(II)–imino nitrooxide derivatives. *Inorg. Chem.* 1992, 31, 3578–3584. [CrossRef]

37. Okazawa, A. Magneto-Structural Relationship on Strong Exchange Interactions between Chelating Nitroxide Radical and Transition-Metal Spins. *IOP Conf. Ser. Mater. Sci. Eng.* 2017, 202, 012002. [CrossRef]

38. Rinehart, J.D.; Long, J.R. Exploiting single-ion anisotropy in the design of f-element single-molecule magnets. *Chem. Sci.* 2011, 2, 2078–2085. [CrossRef]

39. Ishida, T. Spin-Parity Behavior in the Exchange-Coupled Lanthanoid-Nitroxide Molecular Magnets. *IOP Conf. Ser. Mater. Sci. Eng.* 2017, 202, 012001. [CrossRef]