Mammalian Target Of Rapamycine (mTOR) is a conserved serine/threonine kinase in the PI3K/Akt/mTOR signaling pathway. This pathway is regulated by changes in cells such as change in energy level, growth factors, and stressful conditions as well as increased level of cytokines which cause cancer development. The increase in the function of this pathway has been observed in various types of human cancers, especially in cancer stem-like cells. The association of this pathway with the most common Central Nervous System (CNS) cancers such as glioblastoma, medulloblastomas and tuberous sclerosis complex is under investigation. Recent studies have examined the relationship of different cellular signaling pathways and genetic mutations in the CNS cancers with the mTOR pathway. Based on previous studies, different treatments such as surgery, chemotherapy, and radiotherapy are not effective and have some complications. Therefore, the researchers are trying to find new effective treatment methods for cancers. One approach is to have knowledge of all molecular pathways, proteins and genetic mutations related to cancers. This study aims to investigate the effect of mTOR signaling pathway on the CNS cancers. In this regard, after searching in Google Scholar, PubMed, Science Direct, and Scopus databases, 78 articles were selected for review.

Keywords: TOR Serine-Threonine Kinases, Central nervous system, Glioblastoma, Medulloblastoma, Tuberous sclerosis complex

A B S T R A C T

Mammalian Target Of Rapamycine (mTOR) is a conserved serine/threonine kinase in the PI3K/Akt/mTOR signaling pathway. This pathway is regulated by changes in cells such as change in energy level, growth factors, and stressful conditions as well as increased level of cytokines which cause cancer development. The increase in the function of this pathway has been observed in various types of human cancers, especially in cancer stem-like cells. The association of this pathway with the most common Central Nervous System (CNS) cancers such as glioblastoma, medulloblastomas and tuberous sclerosis complex is under investigation. Recent studies have examined the relationship of different cellular signaling pathways and genetic mutations in the CNS cancers with the mTOR pathway. Based on previous studies, different treatments such as surgery, chemotherapy, and radiotherapy are not effective and have some complications. Therefore, the researchers are trying to find new effective treatment methods for cancers. One approach is to have knowledge of all molecular pathways, proteins and genetic mutations related to cancers. This study aims to investigate the effect of mTOR signaling pathway on the CNS cancers. In this regard, after searching in Google Scholar, PubMed, Science Direct, and Scopus databases, 78 articles were selected for review.

Extended Abstract

1. **Introduction**

Tumors in the Central Nervous System (CNS), especially the brain, include a wide range of different cancers, the most common of which are Glioblastoma (GBM) and Medulloblastoma (MB). A genetic disorder called Tuberous Sclerosis Complex (TSC) is another disease that predisposes patients to developing tumors [3-5]. It has been suggested that different intracellular signaling pathways are involved in the proliferation, invasion, and metastasis of CNS cancers including mTOR signaling pathway which is associated with...
growth, metabolism, survival, angiogenesis, autophagy, and chemotherapy resistance in these cancers [10]. Mammalian Target Of Rapamycin (mTOR) is an evolutionarily conserved serine/threonine kinase that responds to changes in cell environment including nutrient availability, energy levels, stress, and concentrations of growth factors and cytokines. The upregulated activity of the mTOR pathway leads to uncontrolled cell proliferation and, eventually, cancer development [11]. In this pathway, PI3K is responsible for the induction of mTOR activity through Akt phosphorylation and, consequently, the initiation of PI3K/Akt/mTOR signaling pathway [12]. This signaling pathway is considered as a therapeutic target in various cancers, including brain tumors, and its inhibitors are under development as effective drugs for the treatment of these cancers. The present study aims to review the role of mTOR signaling pathway and its crosstalk with other less-known molecular pathways in the development of above-mentioned cancers.

2. Materials and Methods

This is a review study. The search was conducted in Google Scholar, PubMed, Science Direct, and Scopus databases using the following keywords: Serine/threonine kinase, central nervous system neoplasms, glioblastoma, medulloblastoma, and tuberous sclerosis. Finally, 78 articles were selected for review.

3. Results

PI3K/Akt/mTOR pathway is activated by Receptor Tyrosine Kinases (RTKs) such as members of ErbB receptor family, Fibroblast Growth Factor (FGF), and Insulin-Like Growth Factor-1 (IGF-1) [10]. Furthermore, some G-protein-coupled receptors (such as RAS) can activate PI3K [46]. Phosphorylated and activated Akt increases cell survival by inhibiting the proapoptotic Bcl-2 protein family such as BAD and BAX [50]. Tumor Necrosis Factor Alpha (TNFα), a cytokine whose level increases in response to various cytokines. The upregulated activity of the mTOR pathway is activated by Receptor Tyrosine Kinase (RTK) receptors and the mutations leading to the inactivity of Phosphatase and Tensin Homologue Deleted on Chromosome 10 (PTEN) gene, and a variety of mutations associated with various PI3K isoforms result in hyperactivity of PI3K/Akt/mTOR pathway [58, 59]. The role of IGF-1 receptor in development of GBM has also been studied. According to the results, glioma cells have more IGF-1 receptors than the normal brain cells which results in increased tumor growth [60].

Rapamycin and its analogues inhibit mTOR protein kinase by binding to it at a site other than the active site of the enzyme. These drugs are highly selective and are currently used as anticancer compounds in clinical practice [66]. Upon entering the cell, rapamycin binds to and inhibits the mTORC1 complex. Therefore, downstream activities of the cascade are inhibited, S6K1 and 4EBP1 proteins are not phosphorylated, and protein synthesis does not increase within the cell [67]. This controls the tumor growth through interfering with the cell cycle, proliferation, and migration. Nowadays, a new generation of mTOR inhibitors is under investigation that acts as Adenosine Triphosphate (ATP) analogues in competition with ATP to bind to the mTOR protein. Interestingly, unlike rapamycin and its analogues, this generation of mTOR inhibitors is able to inhibit both the mTORC1 and mTORC2 complexes [69].

Evidence on the role of the PI3K/Akt/mTOR pathway in GBM cell line showed that concomitant inhibition of mTOR and PI3K significantly reduces the population of cancer stem-like cells and reduces subsequent tumor growth, suggesting the ability of mTOR and PI3K inhibitors to be used as effective therapeutic agents for GBM. The increase in the activity of mTORC2 complex and receptor protein in glioma cells is associated with an increase in the number of S-phase cells and in the cell motility and expression level of β1 and β2 integrins which indicate the key role of mTORC2 complex in tumor growth. In this regard and given that the increased activity of the mTORC2 complex has an important role in the development of invasive features of the tumor, this complex can be a good therapeutic target for GBM. TSC disease results from mutations in either TSC1 or TSC2 genes, leading to the inactivation of hamartin or tuberin proteins which causes dysfunction in TSC1/2 complex and hyperactivity of Rheb protein kinase in phosphorylation of S6K1 ribosomal subunit. As a result,
involved cells eventually lose control of their proliferation and progress to tumor formation. It has been shown that allosteric mTOR inhibitors including rapamycin are effective in treating various TSC lesions.

4. Discussion and Conclusion

Both mTORC1 and mTORC2 complexes are two distinct sub-pathways of the PI3K/Akt/mTOR signaling pathway, which have the potential to predispose cells to tumor formation. If the malignancy is through the active mTORC1 complex, the only treatment method is to inhibit this sub-pathway with no need to inhibit the mTORC2 complex, resulting in fewer complications in patients. Therefore, inhibitors such as rapamycin and its analogues can be selectively suitable for the removal of tumors involved in this sub-pathway. However, if the malignancy is through both complexes, the use of rapamycin alone may not be sufficient to eradicate the tumor. By expanding our knowledge of the PI3K/Akt/mTOR signaling pathway and its sub-pathways and determining the exact intracellular targets of inhibitory agents in this pathway the treatment of CNS cancers can be more effective and feasible.

Ethical Considerations

Compliance with ethical guidelines

All ethical principles are considered in this article.

Funding

This research did not receive any grant from funding agencies in the public, commercial, or non-profit sectors.

Authors' contributions

Conceptualization: Abbas Ebrahimi Kalan and Ahmad Mahdipour; Drafting: Forough Alami Serej; Research: Hossein Aliari Serej and Zeinab Aliari Serej; Edite and finalization: Balal Borazvan and Mohammad Reza Shiri shahsavari.

Conflict of interest

Authors declared no conflict of interests.
نقش مسیر پیامرسانی mTOR در تومورهای CNS در موردکنیت و چالش‌ها

فروغ عالی سرج، حسن علی‌ریز سرج، عباس ابراهیمی کلان، احمد مهدی پور، زینب علی‌ریز سرج، بلال برزانی و حسن علی‌ریز سرج

محدرها: شیری شهروی

کلمات کلیدی: سرین/ ترئونین، TOR کینازهای نئوپلاسم های سیستم عصبی مرکزی، گلیوبلاستوما، مدولابلاستوما، توبروز اسکلروزیس

مقدمه

سرطان بیماری است که در آن سلول‌ها شروع به رشد خارج از کنترل می‌کنند و در نهایت یکی از علل اصلی مرگ مومیوتی در مرحله رشد گلوبلوما (GBM) است. این مرض در سال 1398 بهمن و آبان مورد بررسی قرار گرفته است و این مطالعه به بررسی برخی مسیرهای مولکولی ناشناخته روی سلول‌های سرطانی اختصاص داده شده است.

مطالعه

در این مطالعه به بررسی برخی مسیرهای مولکولی ناشناخته روی سلول‌های سرطانی اختصاص داده شده است. بر اساس مطالعات قبلی، درمان‌های شناخته شده موجود برای این سرطان‌ها شامل جراحی، شیمی درمانی و پرتو درمانی و غیره می‌باشد. در این مطالعه به بررسی برخی مسیرهای مولکولی ناشناخته در سلول‌های سرطانی اختصاص داده شده است. بر اساس مطالعات قبلی، درمان‌های شناخته شده موجود برای این سرطان‌ها شامل جراحی، شیمی درمانی و پرتو درمانی و غیره می‌باشد.

1. Glioblastoma (GBM)
2. Medulloblastoma (MB)
3. Tuberous Sclerosis (TSC)

مراجع

1. برزانی، بلال. "سرطان بدخیم CNS در موردکنیت و چالش‌ها." جلد 1، شماره 2، سال 1398.
2. بلال، بلال و علی‌ریز، حسن. "مسیرهای متریک، پیامرسانی، تکنیک‌ها و تکنیک‌های جلوگیری از سرطان CNS." جلد 1، شماره 2، سال 1398.
3. علی‌ریز، حسن و برزانی، بلال. "مسیرهای پیامرسانی CNS در موردکنیت و چالش‌ها." جلد 1، شماره 2، سال 1398.
4. علی‌ریز، حسن و برزانی، بلال. "مسیرهای پیامرسانی CNS در موردکنیت و چالش‌ها." جلد 1، شماره 2، سال 1398.
5. علی‌ریز، حسن و برزانی، بلال. "مسیرهای پیامرسانی CNS در موردکنیت و چالش‌ها." جلد 1، شماره 2، سال 1398.
6. علی‌ریز، حسن و برزانی، بلال. "مسیرهای پیامرسانی CNS در موردکنیت و چالش‌ها." جلد 1، شماره 2، سال 1398.
7. علی‌ریز، حسن و برزانی، بلال. "مسیرهای پیامرسانی CNS در موردکنیت و چالش‌ها." جلد 1، شماره 2، سال 1398.
8. علی‌ریز، حسن و برزانی، بلال. "مسیرهای پیامرسانی CNS در موردکنیت و چالش‌ها." جلد 1، شماره 2، سال 1398.
9. علی‌ریز، حسن و برزانی، بلال. "مسیرهای پیامرسانی CNS در موردکنیت و چالش‌ها." جلد 1، شماره 2، سال 1398.
10. علی‌ریز، حسن و برزانی، بلال. "مسیرهای پیامرسانی CNS در موردکنیت و چالش‌ها." جلد 1، شماره 2، سال 1398.
درک و بررسی سیستم مکاتب در سرطان مغزی و اهمیت آن در تحلیل ممیزی

در مقاله‌ای مورد بررسی قرار گرفته است که در آن سیستم مکاتب در سرطان مغزی و اهمیت آن در تحلیل ممیزی بیشتری پژوهشگران به آن توجه دارند. این سیستم، از طریق مبتنی بر مدل‌های زبانی و رفتاری می‌تواند در شناسایی خطرات بالینی سرطان مغزی استفاده شود.

14. World Health Organization (WHO).
در سلول های مصرفی، فاکتور نوریوتروفیک مشتق از مادر پیشرفت تا خود یا گریپتو,w(mTORC1 از یک ترمینال توصیف شده در بافت های به طور میکروکوپی نظیره, به صورت موفقیت، این روش مدرن است . به طور کلی این توصیف به همبستگی بیشتری از بین قرار می‌دهد .

در افزایش سنتز پروتئین در سلول های فعال، ویژه در اثر گیری mTOR از اکثر پروتئین های درون سلولی، قابل اندازه‌گیری و در نتیجه، فعال می‌شود.

خلال آنکا، اگر mTOR کاهش یابد، روند انحلال و تهیه سلولی شده می‌شود.
نگه داشتن سیستم mTORC1 توسط PDGF، بی‌اسامانه توموری
و 17bb. از آنجا که کار در این شرایط به گفتمان کالسیم ورودی ویک‌های به
آوریل و پروتئین‌ها ویک‌های بی‌اسامانه توموری
рядیت و درنها، فازیت موجب
مانع از رشد پیشرفت
شکلی از جمله است.

فیبروبلاستی
افزایش رشد عصبی و سلول اندوتلیال رگی می شود
و درنهایت موجب
در رگ زایی سرطان و رشد و افزایش حجم
توده تومور و پیشرفت
که از کینازهای پایین دست آن است، باعث
میزان آن در محیط سلولی سرطانی افزایش می یابد، توسط
مختلف به اثبات رسیده است. این پروتئین سایتوکینی که
در سرطان های
مورد بررسی و تأیید قرار گرفته است. در مسیرهای مختلف
سلولات در بیماری‌های عصبی در
(18q23.2). در نورون ها ارتباط
دارند که از تغییرات
پروتئین کیناز وابسته به ریسمین (15) و
Short Term. در مقابل،
پدیداری توموری
کلمه می تواند
را فعال کند.

PI3K / Akt / mTOR
سرطان
پروتئین‌آگونی
در سرطان
زاویه رشد
ریزه‌ای مسیر
داخل سلولی
که در تغییرات
emphasis. به گفتمان
سرطانهای مسیر
آبشار سیگنالی
 meats می باشد. در مقابل،
بیانی بیا باعث افزایش حجم
توده تومور و پیشرفت
که از کینازهای پایین دست آن است، باعث
میزان آن در محیط سلولی سرطانی افزایش می یابد، توسط
مختلف به اثبات رسیده است. این پروتئین سایتوکینی که
در سرطان های
مورد بررسی و تأیید قرار گرفته است. در مسیرهای مختلف
سلولات در بیماری‌های عصبی در
(18q23.2). در نورون ها ارتباط
دارند که از تغییرات
پروتئین کیناز وابسته به ریسمین (15) و
Short Term. در مقابل،
پدیداری توموری
کلمه می تواند
را فعال کند.

PI3K / Akt / mTOR
سرطان
پروتئین‌آگونی
در سرطان
زاویه رشد
ریزه‌ای مسیر
داخل سلولی
که در تغییرات
emphasis. به گفتمان
سرطانهای مسیر
آبشار سیگنالی
 meats می باشد. در مقابل،
بیانی بیا باعث افزایش حجم
توده تومور و پیشرفت
که از کینازهای پایین دست آن است، باعث
میزان آن در محیط سلولی سرطانی افزایش می یابد، توسط
مختلف به اثبات رسیده است. این پروتئین سایتوکینی که
در سرطان های
مورد بررسی و تأیید قرار گرفته است. در مسیرهای مختلف
سلولات در بیماری‌های عصبی در
(18q23.2). در نورون ها ارتباط
دارند که از تغییرات
پروتئین کیناز وابسته به ریسمین (15) و
Short Term. در مقابل،
پدیداری توموری
کلمه می تواند
را فعال کند.

PI3K / Akt / mTOR
سرطان
پروتئین‌آگونی
در سرطان
زاویه رشد
ریزه‌ای مسیر
داخل سلولی
که در تغییرات
emphasis. به گفتمان
серطانهای مسیر
آبشار سیگنالی
 meats می باشد. در مقابل،
بیانی بیا باعث افزایش حجم
توده تومور و پیشرفت
که از کینازهای پایین دست آن است، باعث
میزان آن در محیط سلولی سرطانی افزایش می یابد، توسط
مختلف به اثبات رسیده است. این پروتئین سایتوکینی که
در سرطان های
مورد بررسی و تأیید قرار گرفته است. در مسیرهای مختلف
سلولات در بیماری‌های عصبی در
(18q23.2). در نورون ها ارتباط
دارند که از تغییرات
پروتئین کیناز وابسته به ریسمین (15) و
Short Term. در مقابل،
پدیداری توموری
کلمه می تواند
را فعال کند.

PI3K / Akt / mTOR
سرطان
پروتئین‌آگونی
در سرطان
زاویه رشد
ریزه‌ای مسیر
داخل سلولی
که در تغییرات
emphasis. به گفتمان
سرطانهای مسیر
آبشار سیگنالی
 meats می باشد. در مقابل،
بیانی بیا باعث افزایش حجم
توده تومور و پیشرفت
که از کینازهای پایین دست آن است، باعث
میزان آن در محیط سلولی سرطانی افزایش می یابد، توسط
مختلف به اثبات رسیده است. این پروتئین سایتوکینی که
در سرطان های
مورد بررسی و تأیید قرار گرفته است. در مسیرهای مختلف
سلولات در بیماری‌های عصبی در
(18q23.2). در نورون ها ارتباط
دارند که از تغییرات
پروتئین کیناز وابسته به ریسمین (15) و
Short Term. در مقابل،
پدیداری توموری
کلمه می تواند
را فعال کند.

PI3K / Akt / mTOR
سرطان
پروتئین‌آگونی
در سرطان
زاویه رشد
ریزه‌ای مسیر
داخل سلولی
که در تغییرات
emphasis. به گفتمان
سرطانهای مسیر
آبشار سیگنالی
 meats می باشد. در مقابل،
بیانی بیا باعث افزایش حجم
توده تومور و پیشرفت
که از کینازهای پایین دست آن است، باعث
میزان آن در محیط سلولی سرطانی افزایش می یابد، توسط
مختلف به اثبات رسیده است. این پروتئین سایتوکینی که
در سرطان های
مورد بررسی و تأیید قرار گرفته است. در مسیرهای مختلف
سلولات در بیماری‌های عصبی در
(18q23.2). در نورون ها ارتباط
دارند که از تغییرات
پروتئین کیناز وابسته به RHEB.
مطالعه دیگر، ارتباط میان سسیر یا هپاتوپنیک (اثرب) و مورد بررسی قرار گرفته است. در این مطالعه، اولین مطالعات نشان داد که مجازی اثر آبشار HIF-1α در شرایط کبدی قیسی از سرطان، باعث قطع شدن روند تغییرات به داخل از اثر راپامایسین می‌شود. باعث قطع شدن روند تغییرات به داخل از اثر راپامایسین می‌شود.

آنالوگ‌های بعدی راپامایسین از جمله در این مطالعات به عنوان بارicity به اثبات رسیده است. در این مطالعه، اولین مطالعات نشان داد که مجازی اثر آبشار HIF-1α در شرایط کبدی قیسی از سرطان، باعث قطع شدن روند تغییرات به داخل از اثر راپامایسین می‌شود. باعث قطع شدن روند تغییرات به داخل از اثر راپامایسین می‌شود.

راه‌حل کلیدی از این آبشارها، به شکل‌هایی که از دست رفتن فعالیت ژن پروتئین به اثبات رسیده است. در این مطالعه، اولین مطالعات نشان داد که مجازی اثر آبشار HIF-1α در شرایط کبدی قیسی از سرطان، باعث قطع شدن روند تغییرات به داخل از اثر راپامایسین می‌شود. باعث قطع شدن روند تغییرات به داخل از اثر راپامایسین می‌شود.

در این مطالعه، اولین مطالعات نشان داد که مجازی اثر آبشار HIF-1α در شرایط کبدی قیسی از سرطان، باعث قطع شدن روند تغییرات به داخل از اثر راپامایسین می‌شود. باعث قطع شدن روند تغییرات به داخل از اثر راپامایسین می‌شود.

مطالعات دیگر، ارتباط میان سسیر یا هپاتوپنیک (اثرب) و مورد بررسی قرار گرفته است. در این مطالعه، اولین مطالعات نشان داد که مجازی اثر آبشار HIF-1α در شرایط کبدی قیسی از سرطان، باعث قطع شدن روند تغییرات به داخل از اثر راپامایسین می‌شود. باعث قطع شدن روند تغییرات به داخل از اثر راپامایسین می‌شود.

آی‌اس‌آر پایتخت بیماری، پی‌آکت / mTOR می‌شود. در این مطالعه، اولین مطالعات نشان داد که مجازی اثر آبشار HIF-1α در شرایط کبدی قیسی از سرطان، باعث قطع شدن روند تغییرات به داخل از اثر راپامایسین می‌شود. باعث قطع شدن روند تغییرات به داخل از اثر راپامایسین می‌شود.

مطالعات دیگر، ارتباط میان سسیر یا هپاتوپنیک (اثرب) و مورد بررسی قرار گرفته است. در این مطالعه، اولین مطالعات نشان داد که مجازی اثر آبشار HIF-1α در شرایط کبدی قیسی از سرطان، باعث قطع شدن روند تغییرات به داخل از اثر راپامایسین می‌شود. باعث قطع شدن روند تغییرات به داخل از اثر راپامایسین می‌شود.

مطالعات دیگر، ارتباط میان سسیر یا هپاتوپنیک (اثرب) و مورد بررسی قرار گرفته است. در این مطالعه، اولین مطالعات نشان داد که مجازی اثر آبشار HIF-1α در شرایط کبدی قیسی از سرطان، باعث قطع شدن روند تغییرات به داخل از اثر راپامایسین می‌شود. باعث قطع شدن روند تغییرات به داخل از اثر راپامایسین می‌شود.
این کمپلکس به عنوان یک هدف درمانی خوب برای جشن و همکاران (28) شناسایی گردیده است. با استفاده از mRNA، افزایش تحرک سلولی و بیان اینتگرین‌های کیناز در سلول‌های گلیوما، افزایش فعالیت کمپلکس PI3K/Akt/mTOR و در نتیجه کاهش قدرت تومور می‌شود. این مطالعه نیز نشان داد که مسیر آپوپتوز و پاسخ به استرس که بورتزومیب می‌تواند به طور قابل توجهی تکثیر سلول‌های گلیوما را کاهش دهد (29).

در مطالعه توسط بروتزومیب در سلول‌های سرطان‌های مختل، افزایش تحرک سلولی و بیان اینتگرین‌های کیناز در سلول‌های گلیوما فیبرولیتیک و همکاران (28) مشاهده شد. در این مطالعه، بررسی می‌شود که آیا افزایش تحرک سلولی و عوامل تغییر در سلول‌های گلیوما باعث افزایش فعالیت کمپلکس PI3K/Akt/mTOR و در نتیجه کاهش قدرت تومور می‌شود. این مطالعه نیز نشان داد که مسیر آپوپتوز و پاسخ به استرس که بورتزومیب می‌تواند به طور قابل توجهی تکثیر سلول‌های گلیوما را کاهش دهد (29).
آذر و دی اکسیداتیو پس از درمان بورتزومیب فعال می‌شوند، در حالی که [69] کاهش می‌یابد. تخریب ماتریکس خارج سلولی (ECM) (کاهش می‌یابد [69]).

آکسیدان‌های پس از درمان بورتزومیب قابل می‌شوند در حالت که TSC و PI3K / Akt / mTOR مسیر جدیدی از اختلالات سیستم عصبی که با مسیر TSC و mTOR در روابط است. این بیماری یک اختلال TSC در ارتباط است، که می‌تواند تظاهرات بالینی متنوعی از جمله اختلال در رشد، آئوتیسم و ایجاد تومور در منز، قلب، کلیه، چشم و پوست نشان دهد. آن بیماری ایجاد چشش در یکی از زن‌های TSC1 تا TSC2 ممکن است. از این پروتئین‌ها، TSC2 تا TSC1 تأثیر مستقیم به طریق مسیر مذکور و به واسطه مداخله در چرخه سلولی، تکثیر و مهاجرت می‌کند.

untu PIRK / Akt به عنوان یک هدف درمانی در سرطان‌ها، و به واسطه کاهش [PI3K / Akt / mTOR] مسیر، مانند تومورهای مرکزی، محققان در حال توسعه هستند. در این شکل مسیر سیگنالینگ نشان داده شده است.
همان‌طور که می‌دانیم، یا تی‌وی‌ای باید به‌عنوان مرکز کمک‌گر موجب کم‌پلکسی سردر و دیگر مشکلاتی را تا حدی پاک کند. در این راستا، این مدل موجب ایجاد ناکارآمدی در نتیجه فعالیت بیش از حد و خارج از کنترل پروتئین S6K1 در سلول‌های در اثر ویروس TSC1/2 و یا تی‌ورنی به‌عنوان یک کیت را می‌سازند که با کاهش تی‌ورنی و تغییر خونی را در دست دارد و به سمت ایجاد تومور می‌رود.

همان‌طور که می‌دانیم، به‌عنوان مرکز کمک‌گر موجب کم‌پلکسی سردر و دیگر مشکلاتی را تا حدی پاک کند. در این راستا، این مدل موجب ایجاد ناکارآمدی در نتیجه فعالیت بیش از حد و خارج از کنترل پروتئین S6K1 در سلول‌های در اثر ویروس TSC1/2 و یا تی‌ورنی به‌عنوان یک کیت را می‌سازند که با کاهش تی‌ورنی و تغییر خونی را در دست دارد و به سمت ایجاد تومور می‌رود.

بحث و نتیجه‌گیری

در مقاله‌ای از سوی ویروس mTORC2 و mTORC1 منتفی شد که استفاده از mTORC1 موجب ایجاد تومور در ادامه سیر می‌شود. در این مقاله، رابطه‌ای بین سلول‌های در اثر ویروس TSC1/2 و ناکارآمدی در نتیجه فعالیت بیش از حد و خارج از کنترل پروتئین S6K1 در سلول‌های در اثر ویروس TSC1/2 و یا تی‌ورنی به‌عنوان یک کیت را می‌سازند که با کاهش تی‌ورنی و تغییر خونی را در دست دارد و به سمت ایجاد تومور می‌رود.

پیش نویس: فروغ عالمی سرژ، ویراستاری و نهایی سازی نوشته: بلال برکوان و محمد رضا شیری شهسواری.
References

[1] Bozzone DM. Leukemia: Biology of cancer. New York: In-fobase Publishing; 2009. https://books.google.com/books?id=xwVBxUQa-hMC&dq

[2] Bravzan B, Ebrahimi-Kalan A, Velaei K, Mehdipour A, Aliyari Serej Z, Ebrahimi A, et al. Telomerase activity and telomere on stem progeny senescence. Biomed Pharmacother. 2018; 102:9-17. [DOI:10.1016/j.biopha.2018.02.073] [PMID]

[3] Russell DS, Rubinstein LJ. Pathology of tumours of the nervous system. 4th ed. London: Edward Arnold; 1977.

[4] Curatolo P, Verdecchia M, Bombardieri R. Tuberous sclerosis complex: A review of neurological aspects. Eur J Paediatr Neurol. 2002; 6(1):15-23. [DOI:10.1053/ejpn.2001.0538] [PMID]

[5] Frankel SA, German WJ. Glioblastoma multiforme; review of 219 cases with regard to natural history, pathology, diagnostic methods, and treatment. J Neurosurg. 1958; 15(5):489-503. [DOI:10.3171/jns.1958.15.5.0489]

[6] Lisi L, Chiaviari M, Pia Cotti GM, Lacal PM, Navarra P, Graziani G. DNA inhibitors for the treatment of brain tumors. Expert Opin Drug Metab Toxicol. 2020; 16(3):195-207. [DOI:10.1080/1742525X.2020.1729352]

[7] Dreesen O, Brivanlou AH. Signaling pathways in cancer and embryonic stem cells. Stem Cell Rev. 2007; 3(1):7-17. [DOI:10.1007/s12015-007-0004-8] [PMID]

[8] Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science. 2008; 321(5897):1801-6. [DOI:10.1126/science.1164368] [PMCID]

[9] Ebrahimi A, Keske E, Mehdipor A, Ebrahimi-Kalan A, Ghorbani M. Somatic cell reprogramming as a tool for neurodegenerative diseases. Biomed Pharmacother. 2019; 112:108663. [DOI:10.1016/j.biopha.2019.108663]

[10] Polivka Jr J, Janku F. Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacol Ther. 2014; 142(2):164-75. [DOI:10.1016/j.pharmthera.2013.12.004] [PMID]

[11] Hiroa A, Hoshii T. Mechanistic/mammalian target protein of rapamycin signaling in hematopoietic stem cells and leukemia. Cancer Sci. 2013; 104(8):977-82. [DOI:10.1111/cas.12189] [PMID] [PMCID]

[12] Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell. 2007; 12(1):9-22. [DOI:10.1016/j.ccr.2007.05.008] [PMID]

[13] Bleeker FE, Molenaar RJ, Lienstra S. Recent advances in the molecular understanding of glioblastoma. J Neurooncol. 2012; 108(1):11-27. [DOI:10.1007/s11060-011-0793-0] [PMID] [PMCID]

[14] Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007; 114(2):97-109. [DOI:10.1007/s00401-007-0243-4] [PMID] [PMCID]

[15] Tatter SB. Recurrent malignant glioma in adults. Curr Treat Options Oncol. 2002; 3(6):509-24. [DOI:10.1007/s11864-002-0070-8] [PMID]

[16] Galanis E, Buckner JC, Novotny P, Morton RF, McGinnis WL, Dinapoli R, et al. Efficacy of neuroradiological imaging, neurological examination, and symptom status in follow-up assessment of patients with high-grade gliomas. J Neurosurg. 2000; 93(2):201-7. [DOI:10.3171/jns.2000.93.2.0201] [PMID]

[17] Gajjar AJ, Robinson GW. Medulloblastoma-translating discoveries from the bench to the bedside. Nat Rev Clin Oncol. 2014; 11(12):714-22. [DOI:10.1038/nrfclinonc.2014.181] [PMID]

[18] Krueger DA, Northrup H. International Tuberous Sclerosis Complex Consensus Group. Tuberous sclerosis complex surveillance and management: Recommendations of the 2012 International Tuberous Sclerosis Complex Consensus Conference. Pediatr Neurol. 2013; 49(4):255-65. [DOI:10.1016/j.pediatrneurol.2013.08.002] [PMCID]

[19] Shahcheraghi SH, Tchokonte-Nana V, Lotfi M, Lotfi M, Ghorbani A, Sadeghnia HR. Wnt/beta-catenin and PI3K/Akt/mTOR signaling pathways in glioblastoma: Two main targets for drug design: A review. Curr Pharm Des. 2020; 26(15):1729-41. [DOI:10.2174/1381612826666200131100630]

[20] Luo G, Jiang Sh, Zhang X, Luo H, Zhang Y. Gambogic acid affects ribosomal occurrence in glioma cells by downregulating the phosphoinositide kinase-3/protein kinase b/mammalian target of rapamycin signaling pathway. J Nanosci Nanotechnol. 2020; 20(6):3361-72. [DOI:10.1166/jnn.2020.17425]

[21] Okumura Y, Kohashi K, Tanaka Y, Kato M, Maehara Y, Ogawa Y, et al. Activation of the Akt/mammalian target of rapamycin pathway in combined hepatocellular carcinoma and cholangiocarcinoma: Significant correlation between p-4E-BP1 expression in cholangiocarcinoma component and prognosis. Virchows Arch. 2020; 476(6):881-90. [DOI:10.1007/s00428-019-02741-3] [PMID]

[22] Corti F, Nichetti F, Raimondi A, Niger M, Prinzi N, Torchio M, et al. Targeting the PI3K/AKT/mTOR pathway in biliary tract cancers: A review of current evidences and future perspectives. Cancer Treat Rev. 2019; 72:45-55. [DOI:10.1016/j.ctrv.2018.11.001] [PMID]

[23] Dobyns WB, Mirzaa GM. Megalencephaly syndromes associated with mutations of core components of the PI3K-AKT-MTOR pathway: PIK3CA, PIK3R2, AKT3, and mTOR. Am J Med Genet C Semin Med Genet. 2019; 181(4):582-90. [DOI:10.1002/ajmg.c.31736] [PMID]

[24] Page G, Khidir FA, Pain S, Barrier L, Fauconneau B, Guillard O, et al. Group I metabotropic glutamate receptors activate the p70S6 kinase via both mammalian target of rapamycin (mTOR) and extracellular signal-regulated kinase (ERK 1/2) signaling pathways in rat striatal and hippocampal synaptoneurosomes. Neurochem Int. 2006; 49(4):413-21. [DOI:10.1016/j.neuint.2006.01.020] [PMID]

[25] Alemi Serej F, Pourhassan-Moghaddam M, Ebrahimi Kalam M, Mehdipour A, Aliyari Serej Z, Ebrahimi-Kalan A. Targeting the PI3K/AKT/mTOR signaling pathway: Applications of nanotechnology. Crescent J Med Biol Sci. 2018; 5(1):7-13. http://www.cjmb.org/text.php?id=190
[26] Takei N, Inamura N, Kawamura M, Namba H, Hara K, Yonezawa K, et al. Brain-derived neurotrophic factor induces mammalian target of rapamycin-dependent local activation of translation machinery and protein synthesis in neuronal dendrites. J Neurosci. 2004; 24(44):9760-9. [DOI:10.1523/JNEUROSCI.1427-04.2004] [PMID] [PMCID]

[27] Kim BW, Choi M, Kim YS, Park H, Lee HR, Yun CO, et al. Vascular Endothelial Growth Factor (VEGF) signaling regulates hippocampal neurons by elevation of intracellular calcium and activation of calcium/calmodulin protein kinase II and mammalian target of rapamycin. Cell Signal. 2008; 20(4):714-25. [DOI:10.1016/j.cellsig.2007.12.009] [PMID]

[28] Polakiewicz RD, Schieferl SM, Gingras AC, Sonenberg N, Comb MJ. mu-Opioid receptor activates signaling pathways implicated in cell survival and translational control. J Biol Chem. 1998; 273(36):23534-41. [DOI:10.1074/jbc.273.36.23534] [PMID]

[29] Hou L, Klann E. Activation of the phosphoinositide 3-kinase-Akt-mammalian target of rapamycin signaling pathway is required for metabolotropic glutamate receptor-dependent long-term depression. J Neurosci. 2004; 24(28):6352-61. [DOI:10.1523/JNEUROSCI.0995-04.2004] [PMID] [PMCID]

[30] Puighermanal E, Marsicano G, Busquets-Garcia A, Lutz B, Jiang Z, et al. Rheb, a growth factor-and synaptic activity-regulated gene, encodes a novel Ras-related protein. J Biol Chem. 2003; 278(17):16553-60. [DOI:10.1074/jbc.M214009200] [PMID]

[31] Carroll M, Warren O, Fan X, Sossin WS. S-HT stimulates eEF2 dephosphorylation in a rapamycin-sensitive manner in Aplysia neurites. J Neurochem. 2004; 90(6):1464-76. [DOI:10.1111/j.1471-4159.2004.02634.x] [PMID]

[32] Yamagata K, Sanders LK, Kaufmann WE, Yee W, Barnes CA, Nathans D, et al. rbe, a growth factor-and synaptic activity-regulated gene, encodes a novel Ras-related protein. J Biol Chem. 1994; 269(23):16333-9. [DOI:10.1006/sico.1994.1207] [PMID]

[33] Takei N, Nawa H. mTOR signaling and its roles in normal and abnormal brain development. Front Mol Neurosci. 2014; 7:28. [DOI:10.3389/fnmol.2014.00028] [PMID] [PMCID]

[34] Ishizuika Y, Kakiya N, Nawa H, Takei N. Leucine induces phosphorylation and activation of p70S6K in cortical neurons via the system L amino acid transporter. J Neurochem. 2008; 106(2):394-42. [DOI:10.1111/j.1471-4159.2008.05438.x] [PMID]

[35] Huang Y, Kang BN, Tian J, Liu Y, Luo HR, Hester L, et al. The cationic amino acid transporters CAT1 and CAT3 mediate NMDA receptor activation-dependent changes in elaboration of neuronal processes via the mammalian target of rapamycin mTOR pathway. J Neurosci. 2007; 27(3):449-58. [DOI:10.1523/JNEUROSCI.4489-06.2007] [PMID] [PMCID]

[36] Ishizuika Y, Kakiya N, Witters LA, Oshiro N, Shirao T, Nawa H, et al. AMP-activated protein kinase counteracts brain-derived neurotrophic factor-induced mammalian target of rapamycin complex 1 signaling in neurons. J Neurochem. 2013; 127(1):66-77. [DOI:10.1111/jnc.12362] [PMID]

[37] Ransone LI, Verma IM. Nuclear proto-oncogenes Fos and Jun. Annu Rev Cell Biol. 1990; 6:539-57. [DOI:10.1146/annurev.cb.06.110190.002543] [PMID]

[38] Sparks CA, Guertin DA. Targeting mTOR: Prospects for mTOR complex 2 inhibitors in cancer therapy. Oncogene. 2010; 29(26):3733-44. [DOI:10.1038/onc.2010.139] [PMID] [PMCID]

[39] Badura S, Tesanovic T, Pfeifer H, Wystub S, Nijmeijer BA, Liebermann M, et al. Differential effects of selective inhibitors targeting the PI3K/AKT/mTOR pathway in acute lymphoblastic leukemia. PloS One. 2013; 8(11):e80070. [DOI:10.1371/journal.pone.0080070] [PMID] [PMCID]

[40] Jacinto E, Loewith R, Schmidt A, Lin Sh, Ruegg MA, Hall A, et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol. 2004; 6(11):1122-8. [DOI:10.1038/ncl11183] [PMID]

[41] Zhao L, Vogt PK. Class I PI3K in oncogenic cellular transformation. Oncogene. 2008; 27(41):5486-96. [DOI:10.1038/onc.2008.244] [PMID] [PMCID]

[42] Luo J, Manning BD, Cantley LC. Targeting the PI3K-Akt pathway in human cancer: Rationale and promise. Cancer Cell. 2003; 4(4):257-62. [DOI:10.1016/S1535-6108(03)00248-4] [PMID]

[43] Carbonara C, Longa L, Grosso E, Bororne C, Garrigotti M, et al. 9q34 loss of heterozygosity in a tuberous sclerosis astrocytoma suggests a growth suppressor-like activity also for the TSC1 gene. Hum Mol Genet. 1994; 3(10):1829-32. [DOI:10.1093/hmg/3.10.1829] [PMID]

[44] Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol-3-kinases as regulators of growth and metabolism. Nat Rev Genet. 2006; 7(8):606-19. [DOI:10.1038/nrg1879] [PMID]

[45] Cantley LC. The phosphoinositide 3-kinase pathway. Science. 2002; 296(5573):1655-7. [DOI:10.1126/science.296.5573.1655] [PMID]

[46] Lee DF, Kuo HP, Chen CT, Hsu JM, Chou CK, Wei Y, et al. IKK beta suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway. Cell. 2007; 130(3):440-55. [DOI:10.1016/j.cell.2007.05.058] [PMID]

[47] Humar R, Kiefer FN, Berns H, Resink TJ, Battegay EJ. Hypoxia enhances vascular cell proliferation and angiogenesis in vitro via rapamycin (mTOR)-dependent signaling. FASEB J. 2002; 16(8):771-80. [DOI:10.1096/fj.01-0658com] [PMID] [PMCID]

[48] Zhong H, Chiles K, Feldser D, Laughner E, Hanrahan C, Georgescu MM, et al. Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: Implications for tumor angiogenesis and therapeutics. Cancer Res. 2000; 60(6):1541-5. [PMID]

[49] Semenza GL. HIF-1: Upstream and downstream of cancer metabolism. Curr Opin Genet Dev. 2010; 20(1):51-6. [DOI:10.1016/j.gde.2009.10.009] [PMID] [PMCID]

[50] Majumder PK, Febo PG, Bikoff R, Berger R, Yue Q, McMahon LM, et al. mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic
and HIF-1-dependent pathways. Nat Med. 2004; 10(6):594-601. [DOI:10.1038/nm1052] [PMID]

[51] Crespo S, Kind M, Arcaro A. The role of the PI3K/AKT/mTOR pathway in brain tumor metastasis. J Cancer Metastasis Treat. 2016; 2:80-9. [DOI:10.20517/2394-4722.2015.72]

[52] Wang H, Wang H, Zhang W, Huang HJ, Liao WSL, Fuller GN. Analysis of the activation status of Akt, NFkappaB, and Stat3 in human diffuse gliomas. Lab Invest. 2004; 84(8):941-51. [DOI:10.1038/labinvest.3700123] [PMID]

[53] Hatanpaa KJ, Burton S, Zhao D, Habib AA. Epidermal growth factor receptor in glioma: Signal transduction, neuropathology, imaging, and radioresistance. Neoplasia. 2010; 12(9):675-84. [DOI:10.1593/neo.10068] [PMID] [PMCID]

[54] Quayle SN, Lee JY, Cheung LWT, Ding L, Wiedemeyer R, Wang H, Wang H, Zhang W, Huang HJ, Liao WSL, Fuller GN, Wykosky J, Gibo DM, Stanton C, Debinski W. EphA2 as a novel molecular marker and target in glioblastoma multiforme. Mol Cancer Res. 2005; 3(10):541-51. [DOI:10.1158/1541-7786.MCR-05-0056] [PMID]

[55] Merrill MJ, Edwards NA. Insulin-like growth factor-I receptor in human glial tumors. J Clin Endocrinol Metab. 1990; 71(1):199-209. [DOI:10.1210/jcem-71-1-199] [PMID]

[56] Wykosky J, Gibo DM, Stanton C, Debinski W. EphA2 as a novel molecular marker and target in glioblastoma multiforme. Mol Cancer Res. 2005; 3(10):541-51. [DOI:10.1158/1541-7786.MCR-05-0056] [PMID]

[57] Guertin DA, Sabatini DM. An expanding role for mTOR in human cancers. Cancer Res. 2005; 65(18):7477-82. [DOI:10.1158/0008-5472.CAN-05-1711] [PMID] [PMCID]

[58] Savagner P, Cercueil JP, Depasquier C, Maurel P, Butterworth AE. Myc-induced activation of the PI3K/AKT/mTOR pathway in human gliomas. Cancer Res. 2005; 65(18):7477-82. [DOI:10.1158/0008-5472.CAN-05-1711] [PMID] [PMCID]

[59] Masci J, Bernath A, Martin J, Jo OD, Vartanian R, Funk A, et al. mTORC2 activity is elevated in gliomas and promotes growth and cell motility via overexpression of rictor. Cancer Res. 2007; 67(4):1171-20. [DOI:10.1158/0008-5472.CAN-07-2223] [PMID]

[60] Benavides-Serrato A, Lee J, Holmes B, Landon KA, Bashir T, Jung ME, et al. Specific blockade of Rictor-mTOR association inhibits mTORC2 activity and is cytotoxic in glioblastoma. PloS One. 2017; 12(4):e0176599. [DOI:10.1371/journal.pone.0176599] [PMID] [PMCID]

[61] Wang J, Ren D, Sun Y, Xu C, Wang C, Cheng R, et al. Inhibition of PIK4 might enhance the anti-tumour effect of bortezomib on glioblastoma via PTEN/PI3K/AKT/mTOR signalling pathway. J Cell Mol Med. 2020; 24(7):3931-47. [DOI:10.1111/jcmm.14996] [PMID] [PMCID]

[62] Steindler DA. Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia. 2002; 39(3):193-206. [DOI:10.1002/glia.10094] [PMID]

[63] Ebrahimikia Y, Darabi Sh, Rajaei F. Roles of stem cells in the treatment of Parkinson’s disease. J Inflamm Dis. 2018; 22(4):83-99. [In Persian] [DOI:10.29252/jqums.22.4.83]

[64] Ignatova TN, Kukelov VG, Laywell ED, Suslov ON, Vrionis FD, Steindler DA. Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia. 2002; 39(3):193-206. [DOI:10.1002/glia.10094] [PMID]

[65] Sunayama J, Sato A, Matsuda KJ, Tachibana K, Suzuki K, Narita Y, et al. Dual blocking of mTOR and PI3K elicits a prodifferentiation effect on glioblastoma stem-like cells. Neuro Oncol. 2010; 12(12):1205-19. [DOI:10.1093/neuonc/noq103] [PMID] [PMCID]

[66] Benavides-Serrato A, Lee J, Holmes B, Landon KA, Bashir T, Jung ME, et al. Specific blockade of Rictor-mTOR association inhibits mTORC2 activity and is cytotoxic in glioblastoma. PloS One. 2017; 12(4):e0176599. [DOI:10.1371/journal.pone.0176599] [PMID] [PMCID]

[67] Masci J, Bernath A, Martin J, Jo OD, Vartanian R, Funk A, et al. mTORC2 activity is elevated in gliomas and promotes growth and cell motility via overexpression of rictor. Cancer Res. 2007; 67(4):1171-20. [DOI:10.1158/0008-5472.CAN-07-2223] [PMID]

[68] Benavides-Serrato A, Lee J, Holmes B, Landon KA, Bashir T, Jung ME, et al. Specific blockade of Rictor-mTOR association inhibits mTORC2 activity and is cytotoxic in glioblastoma. PloS One. 2017; 12(4):e0176599. [DOI:10.1371/journal.pone.0176599] [PMID] [PMCID]

[69] Wang J, Ren D, Sun Y, Xu C, Wang C, Cheng R, et al. Inhibition of PIK4 might enhance the anti-tumour effect of bortezomib on glioblastoma via PTEN/PI3K/AKT/mTOR signalling pathway. J Cell Mol Med. 2020; 24(7):3931-47. [DOI:10.1111/jcmm.14996] [PMID] [PMCID]

[70] Kenerson HL, Aicher LD, True LD, Yeung RS. Activated mammalian target of rapamycin pathway in the pathogenesis of tuberous sclerosis complex renal tumors. Cancer Res. 2002; 62(20):5645-50. [PMID]

[71] Tee AR, Manning BD, Antic D, Santisteban P, Cantley LC, Blenis J. Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Cancer Cell. 2005; 3(10):541-51. [DOI:10.1016/j.ccr.2005.06.007] [PMID]

[72] McCormack FX, Inoue Y, Moss J, Singer LG, Strange C, Nakanoto N, et al. Efficacy and safety of sirolimus in lymphangiomyomatosis. N Engl J Med. 2011; 364(17):1595-606. [DOI:10.1056/NEJMoa1100391] [PMID] [PMCID]