Antimicrobial Resistance in Bacterial Poultry Pathogens: A Review

Nguyen Thi Nhung1, Niwat Chansiripornchai2 and Juan J. Carrique-Mas1,3*

1 Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam, 2 Avian Health Research Unit, Chulalongkorn University, Bangkok, Thailand, 3 Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom

Antimicrobial resistance (AMR) is a global health threat, and antimicrobial usage and AMR in animal production is one of its contributing sources. Poultry is one of the most widespread types of meat consumed worldwide. Poultry flocks are often raised under intensive conditions using large amounts of antimicrobials to prevent and to treat disease, as well as for growth promotion. Antimicrobial resistant poultry pathogens may result in treatment failure, leading to economic losses, but also be a source of resistant bacteria/genes (including zoonotic bacteria) that may represent a risk to human health. Here we reviewed data on AMR in 12 poultry pathogens, including avian pathogenic Escherichia coli (APEC), Salmonella Pullorum/Gallinarum, Pasteurella multocida, Avibacterium paragallinarum, Gallibacterium anatis, Ornito bacterium rhinotracheale (ORT), Bordetella avium, Clostridium perfringens, Mycoplasma spp., Erysipelothrix rhusiopathiae, and Riemerella anatipestifer. A number of studies have demonstrated increases in resistance over time for S. Pullorum/Gallinarum, M. gallisepticum, and G. anatis. Among Enterobacteriaceae, APEC isolates displayed considerably higher levels of AMR compared with S. Pullorum/Gallinarum, with prevalence of resistance over >80% for ampicillin, amoxicillin, tetracycline across studies. Among the Gram-negative, non-Enterobacteriaceae pathogens, ORT had the highest levels of phenotypic resistance with median levels of AMR against co-trimoxazole, enrofloxacin, gentamicin, amoxicillin, and ceftiofur all exceeding 50%. In contrast, levels of resistance among P. multocida isolates were less than 20% for all antimicrobials. The study highlights considerable disparities in methodologies, as well as in criteria for phenotypic antimicrobial susceptibility testing and result interpretation. It is necessary to increase efforts to harmonize testing practices, and to promote free access to data on AMR in order to improve treatment guidelines as well as to monitor the evolution of AMR in poultry bacterial pathogens.

Keywords: antimicrobial resistance, antimicrobials, avian pathogens, poultry production, therapy

INTRODUCTION

Antimicrobial resistance (AMR) is a worldwide health concern (1). Over recent years a considerable body of evidence highlighting the contribution of antimicrobial usage (AMU) and AMR from animals to the overall burden of AMR has emerged (2). A contributing factor is the excessive use of antimicrobials in food animal production. The magnitude of usage is expected to increase considerably over coming years due to intensification of farming practices in much of the developing world (3). Much of our knowledge and assumptions on the prevalence and evolution of AMR in animal production systems relate to organisms that more often than not are commensal in poultry such
as *Escherichia coli* (4–6), *Enterococcus* spp., and *Staphylococcus aureus* (7) as well as foodborne zoonotic pathogens, such as nontyphoidal *Salmonella* (NTS) (5, 8, 9) and *Campylobacter* spp. (10). However, with some exceptions, relatively little is known on the prevalence and mechanisms of AMR in pathogenic bacteria in food animal production, including poultry.

Poultry is one of the most widespread food industries worldwide, and chicken is the most commonly farmed species, with over 90 billion tons of chicken meat produced per year (11). The main reasons are the relatively low production costs and the absence of cultural and religious restrictions for its consumption. A large diversity of antimicrobials are used to raise poultry in most countries (12, 13), mostly through the oral route, with the aim to prevent and to treat disease, but also to enhance growth and productivity (14). A large number of such antimicrobials are considered to be of critical and high importance for human medicine (15).

The indiscriminate use of antimicrobials in animal farming is likely to accelerate the development of AMR in pathogens, as well as in commensal organisms. In addition to the concerns due to the emergence of AMR in bacteria from poultry production, there are also human health concerns about the presence of antimicrobial residues in meat (16) and eggs (17). Additionally, AMR in poultry pathogens is likely to lead to economic losses, derived from the expenditure on ineffective antimicrobials, as well as the burden of untreated poultry disease.

Here, we review and summarize data on phenotypic and genotypic resistance against antimicrobials among known poultry pathogens, in order to identify overall trends and highlight knowledge gaps and methodological issues. This review is intended to act as a baseline to compare country-specific data, as well as an incentive for further isolation and AMR testing of poultry bacterial pathogens using harmonized methodologies.

METHODS

We used the “Web of Knowledge” (www.webofknowledge.com) engine to search for articles published between 2000 and December 2016 containing the terms “AMR” or “antimicrobial susceptibility” in combination with “poultry or chicken,” alongside each one of the following: “E. coli,” “S. pullorum,” “S. gallinarum,” “Pasteurella multocida,” “Avibacterium paragallinarum,” “Haemophilus paragallinarum,” “Mannheimia haemolitica,” “Gallibacterium anatis,” “Ornithobacterium rhinotracheale,” “Mycoplasma,” “Chlamydia psittaci,” “Bordetella avium,” “Riemerella anatipestifer,” “Pseudomonas aeruginosa,” “Mycobacterium avium,” “Clostridium perfringens,” and “Erysipelothrix rhusiopathiae.” Articles with information on “commensal” *E. coli* and NTS spp. were excluded. Also studies reporting on isolates from healthy animals or meat were excluded. We excluded papers covering bacteria isolated from wildlife and domestic pets.

From each publication containing phenotypic data on AMR, the following information was compiled (where available): (1) type of poultry production (poultry species, broiler chicken, layer chicken, and unspecified type); (2) country location; (3) year of sampling; (4) methodologies employed for AMR testing (including interpretative criteria); and (5) phenotypic resistance data.

The prevalence of resistance against specific antimicrobials in individual studies was compiled in tabular form. For papers where dilution methods were used, the MIC50 (or Minimum Inhibitory Concentration required to inhibit the growth of 50% of organisms) were compiled, either as reported or inferred from the MIC distribution. For specific pathogens, AMR prevalence data were summarized by antimicrobial using the median and interquartile range (IQR) across studies. MIC50 data across studies were summarized using the median and IQR for pathogen-antimicrobial combinations investigated in at least three publications. Data summarizing prevalence of AMR was plotted for comparative purposes using spider charts using the finnb package in R software (www.r-project.org).

Escherichia coli

Escherichia coli is a Gram-negative, facultative anaerobe bacterium of the Enterobacteriaceae family. Since *E. coli* is ubiquitous in the gastrointestinal tract of warm-blooded animals, it has been extensively used to monitor AMR in food animals (including poultry) (18, 19). In addition, some *E. coli* strains hosted by poultry are potential source of AMR genes that may transmit to humans (20, 21).

Certain *E. coli* strains, designated as “avian pathogenic *E. coli*” (APEC) are causative agents of colibacillosis, one of the principal causes of morbidity and mortality in poultry worldwide (22). Only studies investigating APEC strains are included in this review, therefore excluding studies on *E. coli* from chicken enteric samples (23, 24).

A total of 12 publications investigated phenotypic resistance in a total of 1,331 APEC isolates from diseased chickens, from Asia (25–29), Africa (30–32), the United States (33, 34), Spain (35), and Brazil (36) (Table 1). All studies included APEC isolates from the chicken species, except one study that, in addition, included isolates from ducks and geese (26). All studies were carried out using the disk diffusion test, except two where isolates were tested using microbroth dilution, and one that used the broth dilution test (Table 1). Two studies reported the MIC distribution of investigated strains (33). A study on 100 APEC strains from Iran reported 99% resistant strains against colistin using the disk diffusion test (28), but it is not clear what breakpoints were used. In addition, colistin resistance cannot be reliably estimated using disk sensitivity tests (37).

Results of phenotypic resistance in APEC are presented in Table S1 in Supplementary Material. Resistance levels of strains were: ampicillin (median 82.0%; IQR 59.0–95.7%), amoxicillin (80.0%; IQR 43.0–93.0%), cefotiofur (8.5%; IQR 5.4–52.9%), streptomycin (69.0%; IQR 46.0–86.0%), gentamicin (30.9%; IQR 18.5–43.9%), kanamycin (31.0%; IQR 23.5–79.0%), chloramphenicol (63.5%, IQR 36.9–79.5%), florfenicol (20.9%; IQR 9.4–41.0%), tetracycline (91.0%; IQR 53.7–96.7%), co-trimoxazole (60.8%; IQR 34.0–85.6%), nalidixic acid (83.0%, IQR 77.0–88.0%), ciprofloxacin (67.0%; IQR 28.3–86.0%), and enrofloxacin (32.0% IQR 5.1–76.0%).

A study from China identified *floR, cmIA, cat1, cat2,* and *cat3* (genes associated with florfenicol and chloramphenicol resistance) among APEC strains (25). In another study from the same country, the presence of class I integrons on isolates from the
same country was strongly correlated with multi-drug resistance (93.3% MDR strains were positive for class 1 integron, compared with 12.5% among non-MDR strains) (26). In a study from Egypt integrons (mostly class 1) were detected in 29.3% isolates, and were associated with the presence of genes encoding for resistance to trimethoprim (dfrA1, 26).
A study on 116 APEC isolates from broilers in Egypt showed a remarkably high percentage of ESBL-producing strains (58.6%). The blaTEM and blaCTX-M-1 genes were the most prevalent genes in these strains (31). In a study from Spain of 11 cephalosporin resistant isolates, 6 contained blaCTX-M-1, 2 bladSHV-12, 2 blacEM-2, and 1 blasMV-2 (35).

A recent study on a large collection (980) of APEC isolates from several countries identified the plasmid-mediated mcr-1 colistin resistance gene in 8 isolates from China (of 31 tested) and 4 from Egypt (of 20 tested). Most such strains were multi-resistant to 10 or more antimicrobials (38).

A study on APEC isolates from Jordan investigated the most effective synergistic effects of combinations of 11 antimicrobials by calculation of a fractional inhibitory concentration index of effective synergistic effects of combinations of 11 antimicrobials (39). Overall levels of phenotypic resistance were: ampicillin (0%; IQR 0–0%), cefotaxime (0%; IQR 0–0%), cefotaxime–cloxacillin (0%; IQR 0–0%), cefuroxime (0%; IQR 0–0%), cefuroxime–cloxacillin (0%; IQR 0–0%), cefuroxime–clavulanic acid (0%; IQR 0–0%), and cefuroxime–clavulanic acid (0%; IQR 0–0%).

A study from Korea reported an increase over time in phenotypic resistance among S. Gallinarum isolates: whereas in 1995 all isolates were fully susceptible to 12 antimicrobials, except for tetracyclines (>83% resistance), by 2001, levels of resistance were: ampicillin (87.0%), gentamicin (56.6%), kanamycin (30.4%), enrofloxacin (93.5%), ciprofloxacin (89.1%), norfloxacin (47.5%), and ofloxacin (17.4%) (41). Over the same period, the MIC range for enrofloxacin, ciprofloxacin, norfloxacin, ofloxacin also increased considerably, in parallel with an increase in the rate of mutations of the gyrA from 5.6 to 89.1% (42).

A further study from the same country unexpectedly identified S. Gallinarum in table eggs from healthy chicken layer flocks (43). Surprisingly, isolates were pan-susceptible for most antimicrobials except for streptomycin (88.5% were intermediate resistance).

A study of 42 quinolone resistant strains identified the substitution of a Ser to a Phe or Tyr at position 83 in the gyrA gene among 71.0% of isolates. The study identified three different class 1 integrons among 57 sulfonamide resistant strains, containing resistance genes aadA (52.6%), aadB (12.3%), or aadB-aadA. In addition, isolates harboring the integron containing aadB-aadA displayed resistance to aminoglycosides, as well as increased resistance to fluoroquinolones. As in the case of E. coli strains, it is suspected that integrons are largely responsible for multi-drug resistance; clonal expansion and horizontal gene transfer may have contributed to the spread of AMR integrons in these organisms (49).

A study of 337 S. Pullorum strains from China showed a consistent increase in resistance between 1962 and 2010. Resistance levels against 11 of 16 antimicrobials tested was significantly greater among int1(+) than int1(−) isolates, and resistance levels to cefamandole, trimethoprim and co-trimoxazole were significantly higher for biofilm-positive types compared with the biofilm-negative groups (48). Recently, full genome sequencing of a multi-drug resistant S. Pullorum isolate from China has been published, and included two prophages, the ST104 and prophage-4 (Fels2) previously found in E. coli (50).

Pasturella multocida

Pasturella multocida is a Gram-negative, non-motile, facultative anaerobic bacterium of the Pasteurellaceae family. It is the causative agent of fowl cholera, a disease that often manifests as acute fatal septicemia in adult birds, although chronic, and asymptomatic infections also occur (51).

A total of eight publications have investigated phenotypic resistance in P. multocida isolates, including studies from the United States (53, 54), Brazil (53, 54), India (55), Indonesia (56), Hungary (57), and Egypt (58) (Table 3). Four studies investigated isolates originating exclusively from the chicken species, and the other four included isolates from ducks, geese, Muscovy ducks, pheasants, and quails, in addition to chicken isolates. Five studies used disk diffusion, and three the broth microdilution technique.

In total, 617 isolates were tested in such studies. Overall levels of phenotypic resistance were: ampicillin (median 2.3%; IQR 0.6–13.5%), gentamicin (4.3%; IQR 1.8–11.1%), erythromycin (18.0%; IQR 2.7–64.1%), florfenicol (0.6%; IQR 0–1.6%), tetracycline (13.8%; IQR 7.6–40.0%), co-trimoxazole (10.8%; IQR 0.0–20.0%), and enrofloxacin (4.7%; IQR 1.0–22.0%). A study...
on 120 isolates from poultry in India showed 100% resistance against sulfadiazine, a drug most often used in the field to treat fowl cholera in that country. Only resistance against chloramphenicol, ciprofloxacin, norfloxacin, enrofloxacin, gentamicin, and lincomycin, was observed in <10% isolates, remaining the only effective therapeutic alternatives (55). However, the authors did not provide the interpretation criteria, other than “provided by the disk manufacturer.” In another study of 56 poultry isolates from Brazil, levels of resistance were highest for sulfonamides (sulfadiazine) (~77%); in contrast levels of resistance against β-lactams (amoxicillin, ceftiofur), aminoglycosides (gentamicin), and macrolides (erythromycin) were <6%. In a study from the United States of 80 isolates, resistance was less than 7% against all antimicrobials. In comparison with E. coli and Salmonella isolates, P. multocida isolates from poultry were found to be much more susceptible to the antimicrobials tested (33).

Studies on isolates from pigs, cattle, and poultry in Europe have shown that resistance in P. multocida is generally mediated by small (4–7 kb size) plasmids (59, 60). A larger plasmid (pVM111) has also been shown to contain multiple genes conferring resistance against tetracyclines, sulfonamides, and streptomycin resistance (tetR-tet(H), sul2, and strA), supporting the hypothesis that the spread of resistance is due to horizontal transfer of plasmids rather than clonal dissemination. It is not known whether this explains the relatively lower prevalence of AMR in P. multocida compared with other Gram-negative bacteria (61).

A vibacterium paragallinarum

A vibacterium paragallinarum (previously H. paragallinarum) is a capsulated, rod-shaped, Gram-negative facultative anaerobe bacterium of the Pasteurellaceae family. It is the etiological agent of infectious coryza, an acute disease of the upper respiratory tract of chickens worldwide (62).

A total of seven publications investigated phenotypic resistance in 143 A. paragallinarum isolates from diseased flocks in Asia (India, Thailand, Indonesia, Taiwan) (63–67), Africa (Uganda) (68), and the Americas (Mexico, Ecuador, Peru, Panama) (5). All studies used the disk diffusion test, except one where broth

Study	Reference (country)	Year of study	No. isolates (bacterial spp.)	Testing method	Interpretation	Phenotypic resistance
1	(41) (Korea)	1995–2001	258 (SG)	Disk diffusion test; agar diffusion	NOCLS M31-A (2000)	AMP (13.0%), AMC (3.9%), CN (43.4%), KA (69.6%), TE (74.8%), OTC (17.9%), SXT (1.5%), COL (0.4%), ENR (6.5%), CIP (10.9%), NOR (52.5%), OFL (82.6%)
2	(43) (Korea)	2010–2012	26 (SG)	Disk diffusion test	CLSI M100-s22 (2012)	AMP (0%), CFZ (0%), AMC (0%), CN (0%), DOX (0%), CTX (0%), IMP (0%), S (0%), OTC (88.5%), AK (0%), ERY (100%), TE (0%), SXT (0%), C (0%), CIP (0%), ENR (0%), NOR (0%)
3	(44) (Korea)	2002–2007	105 (SG)	Agar dilution test	CLSI M31-A2 (2002), CLSI (2006), DAMR (2006)	AMP (41.9%), AMX (24.8%), R, S (64.3%), CN (45.7%), ERY (7.8%), TE (16.2%), SMX (36.2%), NA (98.1%), R, ENR (10.5%), R, OTC (83.8%),
4	(45) (Brazil)	2006–2013	32 (SG/SP)	Disk diffusion test	CLSI M31-A2 (2002), CLSI M100-S23 (2013)	AMP (0%), CTX (0%), IMP (0%), CAZ (0%), CFP (0%), ETP (0%), ERY (0%), TE (6.3%), FP (0%), C (0%), FFN (0%), SXT (1%), NA (37.5%), CIP (34.4%), ENR (25.0%)
5	(48) (China)	1962–2010	337 (SP)	Disk diffusion test	CLSI M100-S22 (2012)	AMP (34.4%), CAB (25.5%), CFM (46.6%), CTX (2.4%), S (61.7%), CN (5.3%), KA (3.9%), SPC (45.0%), C (4.1%), TE (58.7%), SMX (52.8%), TMP (82.8%), SXT (49.4%), NA (69.0%), CIP (4.5%), NIT (26.4%)
6	(49) (India)	Not given	4 (SG)	Disk diffusion test	CLSI M100-S25 (2013)	AMP–SBT (0%), AMC (0%), CRO (0%), AK (0%), S (0%), CN (0%), TE (0%), DOX (0%), ERY (0%), AZI (0%), C (0%), SXT (0%), CIP (0%), ENR (0%), COL (0%)
7	(46) (India)	2009–2010	12 (SG)	Disk diffusion test	Disk manufacturer	AMP (8.3% R; 33.4% I), AMC (0% R; 8.3% I), CLF (0% R; 41.7% I), CN (0% R; 8.3% I), AK (0% R; 66.7% I), NEO (0% R; 58.3% I), TE (16.7% R; 83.3% I), ERY (100% R), C (0% R; 33.4% I), SXT (0% R; 33.4% I), NA (75.2% R; 33.4% I), ENR (0% R; 25.0% I), CIP (0% R; 16.7% I), OFL (0% R; 25.0% I), COL (0% R; 16.7% I)
In studies where intermediate susceptibility is given, results are presented as: R, fully resistant; I, intermediate resistant.

TABLE 3 | Summary of results of 8 phenotypic studies on antimicrobial resistance of *P. multocida* from poultry.

Study	Reference (country)	Year of study	No. isolates (host species)	Testing method	Interpretation	Phenotypic resistance
1	(55) (India)	Not given	94 (chicken), 22 (duck), 4 (quail), 2 (turkey), 1 (goose)	Disk diffusion*	Disk manufacturer	PEN (49.6% R; 43.9% I), AMP (23.6% R; 22.8% I), CAB (59.3% R; 26.0% I), CN (23.6% R; 20.3% I), S (22.5% R; 44.7% I), AK (55.5% R; 19.5% I), C (6.5% R; 19.5% I), ERY (50.4% R; 49.6% I), LCM (2.4% R; 35.8% I), TE (24.4% R; 43.1% I), OTC (8.1% R; 30.1% I), DOX (25.2% R; 17.9% I), SDZ (100% R), TMP (39.0% R; 9.8% I), SXT (31.7% R; 13.8% I), CIP (8.9% R; 40.6% I), ENR (8.1% R; 20.3% I), NOR (8.1% R; 30.1% I), RIF (44.5% R; 25.2%), NIT (34.1% R; 26.0%)
2	(56) (Indonesia)	1998–1999	9 (chicken)	Disk diffusion*	Not indicated	AMP (0% R), CN (11.1% R; 11.1% I), S (22% R; 66.7% I), ERY (22% R, 77.8% I), LCM (100% R), TE (55.6% R; 11.1% I), DOX (11.1% R, 11.1% I), SDZ (100% R), TMP (0% R), ENR (22.2% R, 11.1% I), BAC (44.4% R, 33% I)
3	(53) (Brazil)	Not given	56 (chicken, turkey)	Disk diffusion*	NCCLS M31-A2 (2008)	AMX (1.8%), CEF (1.8%), CN (1.8%), ERY (5.4%), ENR (23.8%), TE (12.5%), SXT (19% R), SDZ (100% R), TUL (0% R), TIM (0% R), INH (25% R), OTC (0% R), TH (0% R), TET (1% R), OXY (2% R)
4	(50) (Egypt)	Not given	10 (chicken)	Broth microdilution*	NCCLS M31-A2 (2008)	AMX (100%), S (0%), FFM (0%), TE (100%), DOX (40%), SXT (0%), CIP (0%)
5	(33) (United States)	2001–2003	80 (chicken)	Broth microdilution*	CLSI M31-A2 (2002), NARMS (2008)	AMC (1.2% R), AMP (1.2% R), TIC (0% R), CN (1.2% R), CEF (1.2% R), CN (2.5% R), SPC (1.2% R), TIM (2.5% R), FFN (1.2% R), TE (6.2% R), SXT (0% R), ENR (1.2% R), DIF (1.2% R), ORB (1.2% R)
6	(57) (Hungary)	2005–2008	7 (geese), 7 (duck), 1 (muscovy duck), 3 (turkey), 1 (chicken), 1 (pheasant)	Disk diffusion*	NCCLS M2-A8 (2003)	PEN (0% R), CQN (0% R), APR (15% R; 40% I), NEO (15% R, ERY (0% R; 40% I), TUL (0% R), C (0% R), FFN (0% R), TE (15.0% R; 5% I), DOX (0% R; 5% I), FLM (40% R), ENR (0% R), OXO (40% R), SXT (20.0% R), COL (0% R)
7	(54) (Brazil)	Not given	99 (chicken), 13 (Japanese quail)	Disk diffusion*	CLSI M31-A3 (2008)	AMP (3.4% R), CIN (1.6% R), AK (1.6% R), TE (5.1% R)
8	(52) (United States)	2006–2011	207 (chicken)	Broth microdilution	CLSI M31-A2 (2002)	PEN (16.0% R; 16.0% I), AMX (5.0% R; 2.0% I), CEF (3.0% R; 2.0% I), NEO (2.0% R; 9.0% I), CN (6.0% R; 15.0% I), ERY (18.0% R; 78.0% I), TUL (97.0% R; 2.0% I), CLD (97.0% R; 3.0% I), FFN (2.0% R; 4.0% I), TE (9.0% R; 5.0% I), DOX (1.0% R; 0% I), OTC (9.0% R; 5.0% I), STZ (6.0% R; 3.0% I), SDZ (9.0% R; 6.0% I), SXT (2.0% R; 2.0% I), ENR (1.0% R; 6.0% I)

In studies where intermediate susceptibility is given, results are presented as: R, fully resistant; I, intermediate resistant.

CLSI, Clinical Laboratory Standard Institute; NCCLS, National Committee for Clinical Laboratory Standards; AK, amikacin; AMC, amoxicillin/clavulanic acid; AMP, ampicillin; AMX, amoxicillin; APR, apramycin; BAC, bacitracin; C, chloramphenicol; CAB, carbenicillin; CEF, cefotaxin; CN, cephalothin; CIP, ciprofloxacin; CLD, clindamycin; CN, gentamicin; CCL, colistin; CQN, cefquinome; DIF, difloxacin; DOX, doxycycline; ENR, enrofloxacin; ERY, erythromycin; FFN, florfenicol; FLM, flumequine; LCM, lincomycin; NEO, neomycin; NOR, norfloxacine; NIT, nitrofurantoin; ORB, orbifloxacin; OTC, oxytetracycline; OXO, oxolinic acid; PEN, penicillin; RIF, rifampicin; S, streptomycin; SDZ, sulfadiazine; SXT, sulfadimethoxine; TIC, ticarcillin; TIM, ticlopidine; TET, tetracycline; TE, tetracycline; TUL, tulathromycin.

*MIC distributions reported; disk concentrations reported.

microdilution (64), and one where agar dilution (68) tests were used (Table 4). Initial MIC interpretative criteria (breakpoints) of resistance for *A. paragallinarum* were provided by Fales et al. (1986) and cited by Blackall (8) (Table 4). Overall levels of phenotypic resistance for the main antimicrobials tested were: ampicillin (median 38.9%; IQR 5.9–60%), neomycin (77.4%; IQR 56.2–100%), streptomycin (72.7%; IQR 62.1–88.9%), erythromycin (77.8%; IQR 69.8–86.3%), co-trimoxazole (44.1%; IQR 19.6–67%). A comparison of results between the disk diffusion method (65) and the broth microdilution (66) on the same panel (18 isolates) from Thailand revealed important discrepancies in the interpretation of results, notably for ampicillin (33.3% disk diffusion vs. 5.6% broth microdilution), amoxicillin (27.8 vs. 0%), ceflufour (27.8 vs. 5.6%), enrofloxacin (27.8 vs. 50.0%), and spectinomycin (11.1 vs. 50.0%).

A study on isolates from Latin American countries (5) showed the lowest level of resistance against co-trimoxazole (potentiated sulfonamide). However, the authors remind that sulfonamides should be administered with caution in poultry given their low safety margin and the presence of residues in meat and eggs for a relatively longer period (13).

A study of four *A. paragallinarum* isolates in Tanzania detected genes associated with streptomycin (*strA*), ampicillin (*tetA*), and sulfamethoxazole (*sul2*) resistance (68). In a study of 18 isolates from Taiwan about 72% isolates contained plasmids pYMH5 and pA14 (64). Sequencing data indicated that pYMH5 encodes functional streptomycin-,
sulfonamide-, kanamycin-, and neomycin-resistance genes (\textit{sul2}, \textit{stra}, \textit{mbeCy}, \textit{aphA1}).

\textbf{Gallibacterium anatis}

\textit{Gallibacterium anatis} biovar haemolytica is a Gram-negative bacterium of the Pasteurellaceae family. The organism is known to colonize the upper respiratory tract and lower reproductive tract of chickens, but also been experimentally shown to induce clinical infection (69). \textit{G. anatis} has previously been misclassified as \textit{M. haemolytica}, \textit{P. hemolytica}, \textit{P. anatis}, and \textit{Actinobacillus salpingitidis}, but was recently recognized as a new genus (\textit{Gallibacterium}) (70). Surveillance data from the state of Mississippi (US) confirmed a progressive increase in confirmed cases of \textit{G. anatis} from 2006 to 2011. By 2011, the annual number of confirmed cases of disease (28) was comparable with those of fowl cholera (32) (52).

A study determined MICs for 10 antimicrobials of 10 Mexican ORT isolates alongside 10 previously characterized strains. MIC values greater than 128 mg/mL were recorded for gentamicin, fosfomycin, trimethoprim, sulfamethazine, sulfamerazine, sulfachinoxaline, and sulfachloropyridazine were identified among isolates. Field reports from that country confirmed that the use of gentamicin or fosfomycin had no effect when used in therapy in infected flocks, and based on these results, the authors recommended that amoxicillin, enrofloxacin, or oxycyclines as drugs of choice (78).

A study investigated the mechanisms of enrofloxacin resistance after experimental inoculation and treatment of turkey

\textbf{Ornithobacterium rhinotracheale (ORT)}

\textit{Ornithobacterium rhinotracheale} is a Gram-negative, rod-shaped bacterium that causes respiratory disease in turkeys, chickens, and other avian species. It was first identified in turkeys in the 1990s (72). Establishing the antibiotic sensitivity of this pathogen is difficult because of its complex growth requirements. ORT is known to be often resistant to many antimicrobials, and therefore only isolates from wild birds are likely to display the highest degree of susceptibility; therefore, antimicrobial susceptibility results in these isolates have often been used to compare with those from poultry isolates (73).

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|}
\hline
\textbf{Study} & \textbf{Reference (country)} & \textbf{Year of study} & \textbf{No. isolates} & \textbf{Testing method} & \textbf{Interpretation} & \textbf{Phenotypic resistance} \\
\hline
1 & (63) (Indonesia) & 1991–1999 & 14 & Disk diffusion & NCCLS (1984) & AMP (7.1% R), NEO (71.4% R), S (78.6% R), ERY (78.6% R), OTC (57.1% R), DOX (35.7% R), SXT (21.4% R) \\
\hline
2 & (64) (Taiwan) & 1990–2003 & 18 & Broth micro dilution & (8) & AMP (38.9% R), NEO (83.3% R), S (88.9% R), ERY (77.8% R), SXT (83.3% R) \\
\hline
3 & (66) (Uganda) & Not given & 5 & Agar dilution & (8) & AMP (60% R), NEO (0%), S (60% R), C (0%), TE (80% R), SMX (60% R) \\
\hline
4 & (65) (Thailand) & 1990–2009 & 18 & Disk diffusion & CLSI M31-A3 (2008) & PEN (27.8% R; 27.8% I), CLX (100%), AMP (33.3% R; 5.5% I), AMX (27.8%), AMO (0%), CEF (27.8%), NEO (100%); CN (5.5% R; 11.1% I), SPC (11.1% I), ERY (77.8% R; 16.7% I), TYL (0% R; 5.5% I), LCM (100%), OTC (65.6% R; 5.5% I), DOX (38.9% R; 11.1% I), SXT (66.7%), ENR (27.8% R; 11.1% I) \\
\hline
5 & (66) (Thailand) & 1990–2009 & 18 & Broth micro dilution & CLSI M100-S21 (2011) and (8) & AMP (5.6% R), AMX (0%), CEF (5.6% R), ERY (66.7% R), CN (55.6% R), S (66.7% R), SPC (50% R), OTC (72.2% R), DOX (66.7% R), SXT (66.7% R), CIP (66.7%) ENR (50% R) \\
\hline
6 & (5) (Mexico, Ecuador, Peru, Panama) & Not given & 66 & Disk diffusion & (65) & PEN (26.0% R), AMC (4.7% R), AMP (5.9% R), S (62.1% R), CN (48.6% R), NEO (56.2% R), KA (24.5% R), ERY (73.0% R), LCM (81.5% R), TE (37.8% R), SXT (19.6% R), COL (22.8% R), FOM (1.6% R) \\
\hline
7 & (67) (India) & Not given & 4 & Disk diffusion & Not given & AMP (100% R), AMC (0%), NEO (100% I), S (100% I), C (0%), TE (100% R), OTC (100% R), DOX (100% R), SXT (0%), FUR (100% R), ENR (0%), CIP (0%), PEF (0%) \\
\hline
\end{tabular}
\caption{Summary of results of 7 phenotypic studies on antimicrobial resistance of \textit{A. paragallinarum} from poultry.}
\end{table}

\textit{Gallibacterium anatis} has previously been misclassified as \textit{M. haemolytica}, \textit{P. hemolytica}, \textit{P. anatis}, and \textit{Actinobacillus salpingitidis}, but was recently recognized as a new genus (\textit{Gallibacterium}) (70). Surveillance data from the state of Mississippi (US) confirmed a progressive increase in confirmed cases of \textit{G. anatis} from 2006 to 2011. By 2011, the annual number of confirmed cases of disease (28) was comparable with those of fowl cholera (32) (52). A total of three studies have investigated phenotypic resistance in \textit{G. anatis} (34, 52, 71). However, in one of them, these isolates were identified as \textit{M. haemolytica} (34). However, in the absence of specific breakpoints published, one study only indicated the mean inhibition zone of isolates, indicating that isolates showed maximum sensitivity to norfloxacin (32 mm) and minimum susceptibility after experimental inoculation and treatment of turkey

\textbf{Ornithobacterium rhinotracheale (ORT)}

\textit{Ornithobacterium rhinotracheale} is a Gram-negative rod-shaped bacterium that causes respiratory disease in turkeys, chickens, and other avian species. It was first identified in turkeys in the 1990s (72). Establishing the antibiotic sensitivity of this pathogen is difficult because of its complex growth requirements. ORT is known to be often resistant to many antimicrobials, and therefore only isolates from wild birds are likely to display the highest degree of susceptibility; therefore, antimicrobial susceptibility results in these isolates have often been used to compare with those from poultry isolates (73).

A study investigated the mechanisms of enrofloxacin resistance after experimental inoculation and treatment of turkey
TABLE 5 | Summary of results of two phenotypic studies on antimicrobial resistance of G. anatis and M. haemolytica from poultry.

Study	Reference (country)	Year of study	No. isolates	Testing method	Interpretation	Phenotypic resistance
1	(34) (United States)*	1998–1992	92	Disk diffusion²	NCCLS M31-A2 (2002)	PEN (92.4%), AMP (5.4%), CEF (0%), CN (1.1%), AK (0%), SPC (73.9%), ERY (100%), CLOD (100%), TE (93.5%), SDX (85.4%), SXT (0.9%), ENR (1.3%)
2	(52) (United States)	2006–2011	84	Broth microdilution	CLSI M31-A2 (2002)	PEN (70.0% R), AMX (36.0% R), CM (21.0% R), CEF (3.0% R), 7.0% I, S (21.0% R), 4.0% I, NEO (14.0% R), 22.0% I, CN (4.0% R), 3.0% I, NOV (100% R), ERY (43.0% R), 57.0% I, TYL (100% R), CLOD (97.0% R), SPC (0% R), 89.0% I, FFN (3.0% R), 11.0% I, TE (80.0% R), 3.0% I, OTC (83.0% R), 3.0% I, STZ (8.0% R), 10.0% I, SDX (43.0% R), 14.0% I, SXT (3.0% R), 14.0% I, ENR (4.0% R), 3.0% I

In studies where intermediate susceptibility is given, results are presented as: R, fully resistant; I, intermediate resistant.

CLSI, Clinical Laboratory Standard Institute; NCCLS, National Committee for Clinical Laboratory Standards; AK, amikacin; AMP, ampicillin; AMX, amoxicillin; CEF, cefotaxim; CLD, clindamycin; CN, gentamicin; ENR, enrofloxacin; ERY, erythromycin; FFN, florfenicol; NEO, neomycin; NOV, novobiocin; OTC, oxytetracycline; PEN, penicillin; S, streptomycin; SDX, sulfadimethoxine; SPC, spectinomycin; STZ, sulfathiazole; SXT, co-trimoxazole; TE, tetracycline; TYL, tylosin.

*Strains identified as M. haemolytica.

TABLE 6 | Summary of results of 7 phenotypic studies on antimicrobial resistance of S. Omnitabacter rhinotracheale (ORT) and B. avium from poultry.

(A) Summary of prevalence of phenotypic resistance of ORT from poultry

Study	Reference (country)	Year of study	No. isolates (host type)	Testing method	Interpretation	Phenotypic resistance
1	(76) (Hungary)	2009–2013	36 (turkeys, chickens, pigeons)	Disk diffusion⁴, broth microdilution, for AMX, DOX, and ERY⁵	CLSI M31-S1 (2004), CLSI M100-S21 (2011)	PEN (30.0% R; 46.7% I), AMP (40.0% R; 23.3% I), AMX (40.0% R; 23.3% I), CEF (63.3% R; 0% I), CN (100% R; 0% I), SPC (0% R; 0% I), C (0% R; 0% I), OTC (20.0% R; 20.0% I), DOX (30.0% R; 16.5% I), ERY (66.7% R; 3.3% I), LCM (70.0% R; 0% I), TIM (13.0% R; 0% I), SUL (60.0% R; 30.0% I), SXT (23.0% R; 33.3% I), NA (100% R), CIP (0% R; 70.0% I), ENR (16.7% R; 63.3% I), COL (76.7% R; 13.3% I)
2	(77) (United States)	1996–2002	124 (turkeys)	Disk diffusion	NCCLS M31-A2 (2002)	PEN (33.9%), CEF (11.3%), CN (60.3%), ERY (5.8%), SPC (18.2%), TE (21.0%), SDM (99.2%), SCP (40.0%), SXT (96.8%), ENR (50.0%), CLOD (0%)
3	(75) (Belgium)	1995–1998	45 (broilers)	Broth dilution⁶	Resistant strains had MICs over three two-fold dilution steps compared with reference strains	AMP (100%), CEF (100%), TYL (97.3%), TIM (95.5%), LCM (100%), DOX (80.0%), TIA (0%), SPT (95.6%), ENR (95.6%), FLM (93.3%)
4	(74) (Netherlands)	1996–1999	395 (broilers)	Agar dilution; Agar gel dilution test; E-test⁷	Provided by the manufacturer	AMX (63.2%), TE (60.9%), SXT (89.3%), ENR (91.6%)

(B) Summary of prevalence of phenotypic resistance of B. avium from poultry

Study	Reference (country)	Year of study	No. isolates	Testing method	Interpretation	Phenotypic resistance
1	(34) (United States)	1998–2002	4 (turkeys)	Disk diffusion	CLSI M31-A2 (2002)	AMP (0%), CN (0%), NEO (0%), TE (0%), SXT (0%), ERY (100%)
2	(76) (Hungary)	1985–2012	13 (turkeys, chickens, pigeons)	Disk diffusion⁵, broth microdilution⁴	CLSI M31-A2 (2002)	PEN (52.6% R; 47.4% I), AMP (40.0% R; 47.3% I), AMX (40.0% R; 15.8% I), CEF (100%), CN (0% R; 0% I), SPC (0% R; 0% I), C (57.9% R; 32.1% I), LCM (100% R), TIM (5.2% R; 0% I), C (0% R; 73.7% I), DOX (0% R; 0% I), OTC (0% R; 10.5% I), SUL (0% R; 0% I), SXT (15.8% R; 0% I), CIP (0% R; 31.6% I), NA (26.3% R; 47.4% I), ENR (15.8% R; 84.2% I), COL (0% R; 0% I)
3	(85) (United States)	Before 2011	12 (turkeys)	Broth microdilution	Levels of resistance defined in relation to the maximum dose for each antimicrobial	CTX (16.7% R; 0% I), CRO (8.3% R; 41.7% I), IMP (8.3% R; 0% I), TIC (8.3% R; 16.7% I), CAB (8.3% R; 0% I), AMP/SM (0% R; 58.3% I), TIC/CA (0% R; 8.3% I), ATM (83.3% R; 16.7% I), TOB (8.3% R; 0% I), C (0% R; 25.5% I), TE (16.7% R; 0% I), SXT (25.0% R; 0% I), SSZ (41.7% R; 0% I), CIP (0% R; 33.0% I), LCM (85.3% R; 25.0% I), LEV (0% R; 8.3% I)

CLSI, Clinical Laboratory Standard Institute; NCCLS, National Committee for Clinical Laboratory Standards; AMP, ampicillin; AMX/SM, ampicillin–sulbactam; AMX, amoxicillin; ATM, aztreonam; C, chloramphenicol; CAB, carbencillin; CEF, cefotaxim; CIP, ciprofloxacin; CN, gentamicin; CLD, clindamycin; COL, colistin; CTX, cefotaxim; CRO, ceftriaxone; DOX, doxycycline; IMP, imipenem; ENR, enrofloxacin; ERY, erythromycin; FLM, flumequine; LCM, lincomycin; LEV, levofloxacin; LOM, lomefloxacin; NA, nalidixic acid; NEO, neomycin; OTC, oxytetracycline; PEN, penicillin; S, streptomycin; SPC, spectinomycin; SUL, sulfadimethoxine; SXT, co-trimoxazole; TIA, tiamulin; TIM, tilmicosin; TYL, tylosin.

*Strains identified as M. haemolytica.

¹MIC distributions reported; disk concentrations reported.

²Disk concentrations given; MIC distribution reported; disk concentrations reported.

³SUMMARY OF PREVALENCE OF PHENOTYPIC RESISTANCE OF ORT FROM POULTRY.

⁴Provided by the manufacturer.

⁵MICs provided for multi-resistant strains.

⁶Levels of resistance defined in relation to the maximum dose for each antimicrobial.

⁷Disk concentrations given; MIC distribution reported; disk concentrations reported.
flocks, and found that mutations in gyrA commonly developed after a single treatment, and it was associated with an increase in MIC (increase in MIC from 0.03 to 0.25 mg/mL), among field isolates (80).

Bordetella avium

Bordetella avium is a Gram-negative, strictly aerobic bacterium, of the family Alcaligenaceae. It is the etiological agent of turkey coryza, a respiratory disease of economic importance to the turkey industry (81). In addition, the organism can however also colonize a range of wild and domestic birds (82, 83). In addition, *B. avium* organism is considered to be zoonotic, since it has been isolated from human patients with respiratory disease (84).

A total of three studies investigated phenotypic resistance in a total of 50 *B. avium* isolates, 1 by disk diffusion (from the United States) (34), 1 by broth microdilution (United States) (85), and 1 using both (Europe) (76) (**Table 6**). In all three studies, turkey isolates were investigated. However, one study also included chicken and pigeon isolates (76). Interpretation of results in both studies was based on criteria “for fastidious Gram-negative bacteria” (34, 76). However, in one study, the prevalence of resistance was determined in relation to the observed MICs for the antimicrobials tested (85).

A study on farmed cockatiel chicks affected with lockjaw syndrome (characterized by anorexia, sneezing, coughing, nasal discharge, and swollen infraorbital sinuses) investigated 10 isolates by disk diffusion. Isolates were sensitive to ampicillin, amoxicillin, penicillin, ceftiofur, enrofloxacin, norfloxacin, ciprofloxacin, erythromycin, florfenicol, and co-trimoxazole, whereas resistance to lincomycin and sulfadimethoxine were common to all of the isolates, and four strains showed resistance to tetracycline (86).

An experiment investigated transfer of a 12–13 kb plasmid (prAM) coding for tetracycline and sulfonamide resistance to a receptor strain. Partial DNA sequence analysis of prAM revealed two genes for conjugation, similar to P-type conjugative transfer ATPase, TrbB, and TrbC of *Enterobacter aerogenes* (85). There is lack of data on additional mechanisms of resistance of this poultry pathogen.

Clostridium perfringens

Clostridium perfringens is a Gram-positive, rod-shaped, anaerobic, spore-forming bacterium commonly found in the intestinal tract of poultry, animals, and the environment. Under certain conditions, the bacterium can multiply, causing necrotic enteritis, and cholangiohepatitis, two diseases that are responsible for heavy losses in the broiler and turkey industry worldwide (87).

A total of seven publications have investigated phenotypic resistance in 564 *C. perfringens* isolates from Belgium (88), Scandinavia (89), Egypt (90), Korea (91), Brazil (92), and Canada (93). All studies investigated chicken isolates, except one that also included isolates from turkey species (92).

Agar dilution and broth microdilution methods were used in three and two publications, respectively. In all studies, the MIC distribution of tested strains was provided. In addition to conventional antibacterial antimicrobials, a number of studies have investigated resistance against antimicrobials commonly used as growth promoters (bacitracin, avilamycin, virginiamycin) in addition to coccidiostats (i.e., salinomycin, monensin) that are also known to have activity against *Clostridium* spp. in the gut (94).

The calculated MIC50 levels for: erythromycin 2 µg/mL (IQR 2.0–5.0), tetracycline (8 µg/mL; IQR 4.5–8), bacitracin (8 µg/mL; IQR 1–128), avilamycin (0.25 µg/mL; IQR 0.25–2.0), naransin (0.25 8 µg/mL; 0.06–0.25), salinomycin 0.5 µg/mL (0.12–0.5), and monensin (0.63 µg/mL; 0.25–1.0). Susceptibility cut-offs were determined based on the observed distribution of MICs. In addition, two studies used disk diffusion methods. However, in one publication, interpretation guidelines were not provided (**Table 7**). Overall levels of resistance were: tetracycline (median 66.6%; IQR 41.8–70.7%), lincomycin (62.4%; IQR 33.6–81.6%), erythromycin (17.5%; IQR 0.6–100%), bacitracin (7.5%; IQR 3.0–56.0%), ampicillin (median 0%; IQR 0–3.5%), and florfenicol (0%; IQR 0–1.0%).

A study from Belgium on isolates collected during 2007 found high (60–70%) levels of resistance against lincomycin and tetracycline, but susceptibility to six other antimicrobials tested. However, the authors found no evidence of increases in the prevalence resistance against these antimicrobials compared with the earlier period 1980–2004 (95).

A study from Taiwan reported MIC50 values of erythromycin and lincomycin for *C. perfringens* isolated from intestinal samples with severe lesions were significantly higher compared with those with mild lesions (96). However, a study from Korea compared resistance patterns between isolates from healthy and sick flocks, and found no difference (91). Studies on *C. perfringens* isolates from Canadian chickens and turkeys had overall higher levels of resistance against bacitracin and virginiamycin compared with bovine and porcine isolates (92), but not for other antimicrobials tested.

Studies in Belgium and Scandinavia have identified tetP(B), tet(M), tetA(P), and tetB(P) genes among tetracycline resistant isolates (88, 89). Genes lnu(A) and lnu(B) genes associated with low-level resistance against lincomycin have identified in strains from Belgium (88).

Mycoplasma spp.

Mycoplasma spp. are Mollicutes bacteria that lack a cell wall around their membrane. *M. gallisepticum* (MG) infection is particularly important as a cause of respiratory disease and decreased meat and egg production in chickens and turkeys worldwide. Other species such as *M. synoviae* (MS) *M. meleagridis*, and *M. iowae* can also cause disease in poultry (97).

Since *Mycoplasma* spp. are fastidious organisms, routine methods based on isolation and phenotypic testing of resistance are not practicable. *Mycoplasma* spp. are unaffected by many common antibiotics that target cell wall synthesis. Antimicrobials commonly used to treat *Mycoplasma* spp. infections include tetracyclines, macrolides (tylosin, tilmicosin), and more recently, fluorquinolones (enrofloxacin, difloxacin), and pleuromutilins (tiamulin).

A total of five studies have determined MICs among a total of 145 MG and 43 MS field strains, all using broth microdilution. Studies were carried out in Israel (98, 99), Jordan (100), Iran (101),...
and Thailand (102). One study compared MIC results using broth microdilution, agar dilution, and E-test methods (98). MIC data were not converted to prevalence of resistance due to the lack of published standards. For those antimicrobials included in at least three studies, the median MIC50 values (and IQRs) were, in decreasing order: erythromycin (8.8 µg/mL; IQR 0.05–128), clindamycin (2.73 µg/mL; IQR 1.0–4.0), ofloxacin (1.48 µg/mL; IQR 0.26–11.31), tylosin (0.125 µg/mL; IQR 0.015–0.33), and doxycycline (0.062 µg/mL; IQR 0.015–0.2).

In vitro studies involving passages in sub-inhibitory concentrations of antimicrobials have shown resistance to macrolides can be quickly acquired among poultry Mycoplasma spp., whereas resistance to enrofloxacin develops more gradually. No resistance to tiamulin or oxytetracycline could be evidenced in MG or MS after 10 passages, whereas M. iowae resistant mutants were obtained. Mycoplasma spp. mutants that became resistant to tylosin were also resistant to erythromycin, whereas mutants made resistant to erythromycin were not always resistant to tylosin (103).

A study on MG and MS isolated from chickens and turkeys in Israel collected during 2005–2006 indicated a reduction in susceptibility against fluoroquinolones (enrofloxacin and difloxacin) compared with archived strains (1997–2003) (98). Similarly, a study from Jordan compared MICs in isolates collected from 2004 to 2005 vs. strains collected during 2007–2008 confirmed a significant increase in MIC against 8 (erythromycin, tilmicosin, tylosin, ciprofloxacin, enrofloxacin, chlorotetracycline, doxycycline) compared with archived strains (1997–2003) (98). In vitro studies involving passages in sub-inhibitory concentrations of antimicrobials have shown resistance to macrolides can be quickly acquired among poultry Mycoplasma spp., whereas resistance to enrofloxacin develops more gradually. No resistance to tiamulin or oxytetracycline could be evidenced in MG or MS after 10 passages, whereas M. iowae resistant mutants were obtained. Mycoplasma spp. mutants that became resistant to tylosin were also resistant to erythromycin, whereas mutants made resistant to erythromycin were not always resistant to tylosin (103).

A study on MG and MS isolated from chickens and turkeys in Israel collected during 2005–2006 indicated a reduction in susceptibility against fluoroquinolones (enrofloxacin and difloxacin) compared with archived strains (1997–2003) (98).

Table 7: Summary of results of 8 phenotypic studies on antimicrobial resistance of C. perfringens from poultry.

Study	Reference (country)	Year of study	No. isolates (host type)	Testing method	Interpretation	Phenotypic resistance
1	(88) (Belgium)	2002	44 (healthy broilers)	Agar dilution*	Based on observation of MIC distributions	AMX (0% R), TYL (0% R), LCM (63.3% R), CTC (65.9% R), OTC (65.9% R), FLA (0% R), AVI (0% R), NAR (0% R), MAD (0% R), SAL (0% R), LAS (0% R), MON (0% R)
2	(93) (Brazil)	Not specified	55 (healthy broilers)	Agar dilution*	Based on observation of MIC distributions	PEN (0% R), LCM (3.6% R; 7.3% I), TE (41.8% R; 18.2% I), BAC (49.1% R; 43.6% I), NAR (0% R), MON (0% R), AVI (0% R)
3	(92) (Canada)	2005	100 (diseased chickens)	Broth microdilution*	Based on observation of MIC distributions	PEN (0% R), BAC (64% R), VIR (25%), ERY (2%), FFN (0%), TE (62%), MET (1%)
4	(91) (Korea)	2010–2012	17 (chickens, turkeys, wild birds) (suspect of necrotic enteritis)	Disk diffusion*	Not provided	PEN (0% R), AMP (0% R), AMC (0% R), CNF (0% R), CEF (0% R), FOX (0% R), S (100% R), NEO (100% R), CN (100% R), CLD (55.0% R), ERY (5.0% R), C (0% R), FFN (0% R), TE (45.0% R), SXT (5.0% R), SSZ (5.0% R), BAC (12.0% R), APR (100% R), COL (100% R)
5	(89) (Sweden, Denmark, Norway)	2000–2001	102 (broilers, layers, and turkeys) (unknown status)	Broth microdilution*	Based on observed MIC distributions	AMP (0% R), NAR (0% R), ERY (100% I), OTC (38.3% R), VIR (3% R), BAC (6.0% R), AVI (100% I), VAN (0% R)
6	(90) (Egypt)	2009–2010	125 (broilers) (unknown status)	Disk diffusion*	BSAC guidelines (2011)*	AMP (7.0% R), AMX (7.0% R), S (100% R), CN (100% R), NEO (93.0% R), SPC (50.0% R), ERY (100% R), LCM (100% R), PEF (94.0% R), SXT (98.0% R), OXA (100% R), SPI (100% R), FOM (2.0% R), FFN (2.0% R), CED (3.0% R), COL (94.0% R)
7	(95) (Belgium)	2007	71 (healthy broilers)	Agar dilution*	Based on observed MIC distributions	AMP (0% R), ERY (0% R), LCM (61.5% R), TYL (0% R), TE (66.6% R), FFN (0% R), ENR (0% R), BAC (0% R)

**AMC, amoxicillin/clavulanic acid; AMP, ampicillin; AMX, amoxicillin; APR, apramycin; AVI, avilamycin; BAC, bacitracin; C, chloramphenicol; CED, cefadine; CEF, cefotaxin; CFN, cefoxitin; CLD, clindamycin; CN, gentamicin; COL, colistin; CTC, chlorotetracycline; ENR, enrofloxacin; ERY, erythromycin; FFN, florfenicol; FOM, fosfomycin; FOX, cefoxitin; MET, metronidazole; LAS, lassalocid; LCM, lincomycin; MAD, maduramycin; MON, monensin; NAR, naransin; NEO, neomycin; OTC, oxytetracycline; OXA, oxolinic acid; PEN, pefloxacin; PEN, penicillin; S, streptomycin; SAL, salinomycin; SPI, spiramycin; SPC, spectinomycin; SSZ, sulfisoxazole; SXT, sulfamethoxazole/trimethoprim; TE, tetracycline; TYL, tylolidin; VAN, vancomycin; VIR, virginiamycin.

*Intermediate strains were considered susceptible.
with enrofloxacin did not succeed in eradicating infection from flocks subjected to experimental infection (105).

Resistant mutants of MG were selected in vitro by passaging have been shown to be due to amino acid substitutions in the gyrA, gyrB, parC, and parE genes (106, 107). A study on 93 strains from several countries indicated that MG strains with substitutions in the quinolone resistance-determining regions (QRDRs) of both gyrA and parC are resistant to enrofloxacin, however in 10% strains with such substitutions did not show a clear correlation with the MIC. The authors concluded that this may limit the applicability of a gene-based assay to detect fluoroquinolone resistance in this avian pathogen (108).

OTHER PATHOGENS

Erysipelothrix rhusiopathiae is a Gram-positive, non-spore-forming, non-acid-fast, and bacillus. The organism was first identified as a human pathogen late in the nineteenth century, causing erisipeloid, a generalized cutaneous form, as well as a septicemic form often associated with endocarditis (109). The organism may cause severe disease outbreaks in a range of species including poultry and pigs (110). There are no published guidelines on interpretation of MIC or diffusion tests for *E. rhusiopathiae* and data on AMR from poultry isolates are very limited. A study in Sweden determined the MIC on 45 isolates from poultry, pigs, emus, and red mites using the broth microdilution. Although data were not presented separately by species, most isolates had a similar resistance pattern. For most of the antimicrobial agents tested, including penicillin and oxytetracycline, the MICs were low. In contrast, the aminoglycosides gentamicin and neomycin, and streptomycin had uniformly MIC levels that were greater than or equal to the highest concentration tested (111).

Riemerella anatipestifer is a Gram-negative, non-motile, non-spore-forming, and rod-shaped bacterium that can infect domestic ducks, geese, turkeys, and other avian species. In ducks, it causes infectious serositis, air-sacculitis, meningitis, salpingitis, or septicemia with high mortality rates (112). A total of five studies investigated MICs of 481 R. anatipestifer strains, three from China (113–115), India (116), and one from Taiwan (117). All studies have used agar dilution method, except for one that used the disk diffusion test (113) and one where the method was not indicated (116). Based on MIC90 values, the five most potent antimicrobials from Taiwan were (in descending order): penicillin, cefotiofur, cephalothin, chloramphenicol, flumequine, and kanamycin, nalidixic acid, nitrofurantoin, amikacin, ampicillin, gentamicin, lincomycin, spectinomycin, streptomycin, tetracycline, and trimethoprim (117).

A study from China investigated MICs and mutant prevention concentrations (MPC) for four antimicrobials (ceftiofur, cefquinome, fleroxacin, and tilmicosin) 98 and 7 isolates from ducks and geese, respectively. Although the highest MIC values were reported for fleroxacin and tilmicosin (both 1 µg/mL), followed by cefquinome (0.063 µg/mL) and cefquinome (0.031 µg/mL), the difference between MIC and MPC values suggested that ceftiofur was the drug that presented the highest risk of selecting mutant strains (114). Another study from the same country investigated antimicrobial susceptibility among 224 duck isolates, and interpreted results by observing distribution of inhibition zones using WhoNet software. Fifty percent of the isolates were resistant against ceftazidime, aztreonam, cefozolin, cefpime, cefuroxime, oxacillin, penicillin G, rifampicin, and co-trimoxazole. The authors inoculated a multi-resistant isolate with high virulence to inoculate to experimental groups, followed by subcutaneous treatment with different antimicrobial drugs. Results suggest a good correlation in the mortality with disk sensitivity results (113).

The antimicrobial susceptibility against 23 antimicrobial agents was investigated in 103 R. anatipestifer isolates obtained from Chinese ducks during 2008 and 2010 using agar dilution. The MIC50 and MIC90 values of streptomycin, kanamycin, gentamicin, apramycin, amikacin, neomycin, nalidixic acid, and sulfadimidine were relatively higher than for amoxicillin and fleroxacin (115).

A study from China has identified the presence of genes and integrons coding for resistance against β-lactamase, aminoglycoside, resistance genes, chloramphenicol, fleroxacin, tetracycline, and sulfonamide resistance genes in variable frequencies. Mutation analysis of the QRDRs of identified mutations in gyrA responsible for quinolone resistance (115). Molecular studies have focused on the identification of macrolide resistance (118). Another study demonstrated the role of efflux pumps in multi-resistance in *R. anatipestifer* (119).

SUMMARY OF AMR PHENOTYPIC DATA FOR MAIN PATHOGENS

Overall median phenotypic results across studies for six pathogenes for which there are sufficient phenotypic data are presented in Figure 1. Among Enterobacteriaceae, *E. coli* displayed consistently higher levels of resistance against most antimicrobials tested compared with *S. Pullorum/Gallinarum*. Median levels of resistance against amoxicillin, amoxicillin, and tetracycline and doxycycline were all >70%. Levels of resistance against ciprofloxacin, neomycin, and chloramphenicol ranged between 50 and 70%, and for gentamicin, fleroxacin, and enrofloxacin ranged between 20 and 50%. In contrast, among *S. Pullorum/Gallinarum*, observed resistance levels were less than 20% for all antimicrobials, except for amoxicillin (24.8%). Among organisms with the family Pasteurellaceae, *A. paragallinarum* had the highest levels of resistance, with resistance levels greater than 70% for erythromycin and tetracycline, and resistance levels against penicillin, gentamicin, co-trimoxazole, and enrofloxacin were in the 20–50% region. In contrast, for *P. multocida*, the highest level of resistance was observed for erythromycin (18%), and levels of resistance against all other antimicrobials were <15%. Notably, ORT isolates had high levels of AMR: over 70% resistance for enrofloxacin, gentamicin, and co-trimoxazole, between 50 and 70% for cefotiofur and amoxicillin, and between 20 and 50% resistance against penicillin, amoxicillin, erythromycin, and tetracycline. Among *B. avium* isolates, the levels of resistance against cephalosporin, penicillin, erythromycin, and enrofloxacin were >50%, but <25% for all other antimicrobials tested. Phenotypic resistance data from...
Figure 1: Summary data on prevalence of phenotypic resistance among common bacterial poultry pathogens (E. coli, S. pullorum/gallinarum, P. multocida, A. paragallinarum, O. rhinotracheale, and B. avium). AMC, amoxicillin/clavulanic acid; AMP, ampicillin; C, chloramphenicol; CEF, ceftiofur; CIP, ciprofloxacin; CN, gentamicin; DOX, doxycycline; ENR, enrofloxacin; ERY, erythromycin; FFN, florfenicol; NEO, neomycin; PEN, penicillin; SXT, co-trimoxazole; TE, tetracycline.

all studies has been compiled in Excel and are available in Table S1 in Supplementary Material.

DISCUSSION

We reviewed 70 publications published since the year 2000 containing phenotypic/genotypic data on AMR in poultry pathogens. This figure is relatively modest, compared with 196 publications returned from a search of titles including [Salmonella OR Campylobacter], AND [poultry OR chickens] AND [antimicrobial resistance OR antimicrobial susceptibility] over the same period, and 76 publications resulting from a search where [Salmonella OR Campylobacter] are replaced with [Escherichia coli OR Enterococcus]. A total of 13/70 (18.6%) of the reviewed publications were not indexed in MEDLINE (the bibliographic citation database of NLM’s PubMed system) (https://www.ncbi.nlm.nih.gov/pubmed), probably reflecting less stringent publication criteria for some of these journals.

There are important gaps in the knowledge on AMR in important zoonotic pathogens such as C. psittaci and M. avium detected from sick poultry. Data from isolates from human patients with chlamydiosis indicate a high prevalence of macrolide and tetracycline resistance, both of which are extensively used in poultry production (120). AMR in M. avium infections is also of great concern, because often drug regimens commonly used for treating tuberculosis in humans are not effective (121). However, most antimicrobials used to treat human cases of M. avium infection are not normally used in animal production.

Our data suggest very variable phenotypic antimicrobial susceptibility results for the same organisms across studies, which is likely to reflect differences in both AMU patterns and in testing methodologies. However, in spite of this variability, there are trends for specific organisms, suggesting that the development of AMR may also have a biological basis. Studies on isolates from healthy animals have shown that E. coli has a higher propensity to develop resistance compared with Salmonella spp. (122).

It would be expected that situations of high usage levels of antimicrobials for disease prophylaxis and growth promotion may give advantage to the transmission of organisms with higher levels of resistance (123). However, data on disease incidence of
bacterial pathogens are generally missing except in a few countries, where laboratory-confirmed diagnostic surveillance data are regularly published (124).

Currently, among the international organizations, only the Clinical and Laboratory Standards Institute (CLSI) has developed protocols for susceptibility testing of certain bacteria of animal origin and determination of interpretative criteria. The CLSI document “Performance Standards For Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals” (3rd Edition) (VET01S) contains interpretative data for Enterobacteriaceae, P. aeruginosa, P. multocida, although the standards have been validated on veterinary isolates of non-poultry origin (except for enrofloxacin in Enterobacteriaceae). However, no international-approved standards are yet available for the other pathogens listed in this review. Furthermore, for most animal pathogens, the relationship between the phenotypic data (inhibition zone, MICs) and the chances of treatment success are yet to be established.

Unfortunately, in a considerable number of studies information on the testing methodology and interpretation criteria for antimicrobial susceptibility testing was insufficient. In some few cases, information on the interpretation criteria was entirely omitted. Furthermore, the data available has not been necessarily generated using harmonized methods, thereby limiting comparability across studies. A web-based platform available to researchers and practitioners that include AMR data on poultry pathogens (including testing methodologies and results, either MIC or inhibition zones) would be desirable so that field testing data could be compared with results from other areas. Such initiatives focused on animal pathogens are already taking place in the European Union with initiatives such as VetPath and Germ-Vet (125, 126), with the capacity to be integrated into national surveillance systems of AMR, provided that appropriate statistical methods are used to ensure the representativeness of isolates included (127).

Studies have shown increases in resistance over time for S. Pullorum/Gallinarum, MG, and G. anatis. However, the absence of large collections of pathogens investigated for AMR over time is a limitation for establishing the evolution of AMR. Studies on larger collection of E. coli strains have conclusively demonstrated increases in resistance over time against most antimicrobials in the United States (4).

Control of bacterial diseases in poultry often relies on the use of prophylactic antimicrobial treatment at different critical points during the rearing period. Given the observed prevalence of AMR it would be expected that in cases where the pathogen is resistant, the use of certain antimicrobials would result in treatment failure. It would be desirable to identify the burden of disease for each pathogen in each country, and if the disease burden justifies it, implement prophylactic vaccination. Except for G. anatis and C. perfringens, vaccines against most bacterial diseases with AMR data presented here have been developed and are available in many countries. However, most vaccination programs are strongly biased toward the prevention of viral diseases. In recent times, more research has been emerging on the potential value of using plant extracts to control bacterial diseases in poultry (128).

There is a consensus among the scientific community that excessive AMU in food animal (including poultry) production should be restrained to limit the impact of AMR on human health (129). In addition to these concerns, AMR in poultry pathogens will inevitably result in treatment failure of poultry diseases, therefore leading to increased pathogen transmission, and production losses. The magnitude of economic losses due to untreated disease has yet to be estimated, but could theoretically be calculated by integrating disease incidence, AMR, and country-wide treatment data.

In order to allow comparability of results across studies, we suggest that in the future, at the very least, all published studies on AMR in poultry pathogens should report the MIC frequency distributions (for dilution tests), disk concentration, as well as disk diffusion zones (for diffusion tests). Ideally, studies should always attach their raw data as an appendix. These distributions will enable the determination of resistance percentages, once any new interpretive criteria are made available (130).

In most countries, worldwide farming is conducted without veterinary supervision, and a wide range of antimicrobials is normally available to farmers “over the counter.” Prudent use practices should include restricting the access for use of antimicrobials that are considered to be important for human medicine in animal production (15). Such restrictions are only currently being enforced only in a number of industrialized countries (12, 131, 132). Measures such as education on good farming practices, limiting the availability of antimicrobials, and building up a knowledge base on the AMR profile of poultry pathogens will encourage responsible AMU, contributing to reduce treatment failure of poultry diseases, therefore helping reduce associated economic losses.

AUTHOR CONTRIBUTIONS

JC-M conceived the idea, provided the structure, wrote the introduction, the methods section, the abstract, and contributed to the discussion. NN and NC carried out the literature review and contributed to the writing up. NN compiled and summarised all data from the original publications, and created the spider charts.

FUNDING

This work was funded by the Wellcome Trust through an Intermediate Clinical Fellowship awarded to JC-M (Grant No. 110085/Z/15/Z).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at http://journal.frontiersin.org/article/10.3389/fvets.2017.00126/full#supplementary-material.
REFERENCES

1. World Health Organization. Antimicrobial Resistance: Global Report on Surveillance. (2014). Available from: http://www.who.int/drugresistance/documents/surveillancereport/en/
2. Marshall BM, Levy SB. Food animals and antimicrobials: impacts on human health. Clin Microbiol Rev (2011) 24:718–33. doi:10.1128/CMR.0002-11
3. Solà-Ginés M, Cameron-Veas K, Badiola I, Dolz R, Majó N, Dahbi G, et al. Colistin use and colistin resistance in bacteria isolated from vertebral osteomyelitis causing outbreaks of colibacillosis in broilers during 2012 in Spain. Avian Dis (2016) 60:673–6. doi:10.1637/11398-022616-ResNote.1
4. Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin SA, Robinson TP, et al. Global trends in antimicrobial use in food animals. Proc Natl Acad Sci USA (2015) 112(18):5649–54. doi:10.1073/pnas.1503141112
5. Luna-Galaz GA, Morales-Erasto V, Peñuelas-Rivas CG, Blackall PJ, Soriano-Vargas E. Antimicrobial sensitivity of Avibacterium paragallinarum isolates from four Latin American countries. Avian Dis (2016) 60:673–6. doi:10.1637/11398-022616-ResNote.1
6. Simoneit C, Burow E, Tenhagen BA, Käsbohrer A. Oral administration of antibiotics increases antimicrobial resistance in Enterococci. Antimicrob Resist Infect Control (2015) 1:100. doi:10.1186/s13756-015-0033-8
7. Blackall PJ. Antimicrobial drug resistance and the occurrence of plasmids in Staphylococcus spp., and Pasteurella multocida isolated from chickens with colibacillosis during 2012 in Spain. J Appl Poult Res (2016) 41:519–22.
8. Saidi R, Mafikraurep V, Mbanga J. Antimicrobial resistance of Escherichia coli isolated from chickens with colibacillosis in and around Harare, Zimbabwe. Avian Dis (2013) 57:152–4. doi:10.1637/10325-081512-Case.1
9. Kempf I, Jouy E, Chauvin C. Colistin use and colistin resistance in bacteria isolated from four Latin American countries. Avian Dis (2016) 60:673–6. doi:10.1637/11398-022616-ResNote.1
10. Custer B, Steele JA, Wilcox BA, Xu J. Intensified food production and critical importance for global food security. Critically Important Antimicrobials for Human Medicine, 5th Revision. (2017). Available from: http://www.who.int/drugresistance/
11. Food and Agriculture Organization of the United Nations. FAOSTAT: Live Animals (APEC) isolated from chickens in Minnesota. J Appl Poult Res (2015) 4:506–11. doi:10.1093/japre/aju/a01
12. Lee SK, Chon JW, Song KY, Hyeon JY, Moon JS, Seo KH. Prevalence, characterization, and antimicrobial susceptibility of Salmonella gallinarum isolated from broiler chicken, Riyadh, Saudi Arabia. J Anim Plant Sci (2015) 25:1540–2.
13. Lee YJ, Kim KS, Kwon YK, Tak RB. Biological characteristics and antimicrobialsusceptibility of Salmonella gallinarum isolated from septicemic broilers. Int J Med Microbiol (2013) 303:475–83. doi:10.3823/pvem008
14. Lee YJ, Kim KS, Kwon YK, Tak RB. Biochemical characteristics and antimicrobial sensitivity of avian pathogenic Escherichia coli (APEC) isolated from chickens during 2007-2010. Thai J Vet Med (2011) 41:519–22.
15. Lee YJ, Kim KS, Kwon YK, Tak RB. Biochemical characteristics and antimicrobial sensitivity of avian pathogenic Escherichia coli (APEC) isolated from chickens during 2007-2010. Thai J Vet Med (2011) 41:519–22.
16. Lee YJ, Kim KS, Kwon YK, Tak RB. Biochemical characteristics and antimicrobial sensitivity of avian pathogenic Escherichia coli (APEC) isolated from chickens during 2007-2010. Thai J Vet Med (2011) 41:519–22.
17. Lee YJ, Kim KS, Kwon YK, Tak RB. Biochemical characteristics and antimicrobial sensitivity of avian pathogenic Escherichia coli (APEC) isolated from chickens during 2007-2010. Thai J Vet Med (2011) 41:519–22.
18. Lee YJ, Kim KS, Kwon YK, Tak RB. Biochemical characteristics and antimicrobial sensitivity of avian pathogenic Escherichia coli (APEC) isolated from chickens during 2007-2010. Thai J Vet Med (2011) 41:519–22.
19. Lee YJ, Kim KS, Kwon YK, Tak RB. Biochemical characteristics and antimicrobial sensitivity of avian pathogenic Escherichia coli (APEC) isolated from chickens during 2007-2010. Thai J Vet Med (2011) 41:519–22.
20. Lee YJ, Kim KS, Kwon YK, Tak RB. Biochemical characteristics and antimicrobial sensitivity of avian pathogenic Escherichia coli (APEC) isolated from chickens during 2007-2010. Thai J Vet Med (2011) 41:519–22.
21. Lee YJ, Kim KS, Kwon YK, Tak RB. Biochemical characteristics and antimicrobial sensitivity of avian pathogenic Escherichia coli (APEC) isolated from chickens during 2007-2010. Thai J Vet Med (2011) 41:519–22.
22. Lee YJ, Kim KS, Kwon YK, Tak RB. Biochemical characteristics and antimicrobial sensitivity of avian pathogenic Escherichia coli (APEC) isolated from chickens during 2007-2010. Thai J Vet Med (2011) 41:519–22.
23. Lee YJ, Kim KS, Kwon YK, Tak RB. Biochemical characteristics and antimicrobial sensitivity of avian pathogenic Escherichia coli (APEC) isolated from chickens during 2007-2010. Thai J Vet Med (2011) 41:519–22.
24. Lee YJ, Kim KS, Kwon YK, Tak RB. Biochemical characteristics and antimicrobial sensitivity of avian pathogenic Escherichia coli (APEC) isolated from chickens during 2007-2010. Thai J Vet Med (2011) 41:519–22.
25. Lee YJ, Kim KS, Kwon YK, Tak RB. Biochemical characteristics and antimicrobial sensitivity of avian pathogenic Escherichia coli (APEC) isolated from chickens during 2007-2010. Thai J Vet Med (2011) 41:519–22.
isolates from chickens in South Korea. Avian Pathol (2010) 39:201–5. doi:10.1080/03079451003767261

45. Dey S, Mahanti A, Batabyal K, Joardar SN, Samanta I, Isore DP, et al. Identification and antimicrobial susceptibility of Salmonella gallinarum isolated from fowl typhoid outbreak in backyard Vanaraja fowl. Explor Anim Med Res (2016) 6:63–7.

46. Taddele MH, Rathore R, Dhamra K. Antibiogram assay of Salmonella gallinarum and other Salmonella enterica serovars of poultry origin in India. Asian J Anim Vet Adv (2012) 7:309–17. doi:10.3923/ajas.2012.309.317

47. Penha RA, Ferreira JC, Kanashiro AM, Costa AL, Berchieri AJ. Anti-microbial susceptibility of Pasteurella multocida and Salmonella pullorum isolated from ill poultry in Brazil. Cienc Rural (2016) 46:513–8. doi:10.1590/0103-8478cr20150398

48. Gong J, Xu M, Zha C, Miao J, Liu X, Bu, et al. Antimicrobial resistance, presence of integrons and biofilm formation of Salmonella pullorum isolates from eastern China (1962-2010). Avian Pathol (2013) 42:290–4. doi:10.1080/03079457.2013.788129

49. Krauland MG, Marsh JW, Paterson DL, Harrison LJ. Integron-mediated multidrug resistance in a global collection of non-typhoidal Salmonella enterica isolates. Emerg Infect Dis (2009) 15:388–96. doi:10.3201/eid1503.081131

50. Li Q, Hu Y, Wu Y, Wang X, Xie X, Tao M, et al. Complete genome sequence of Salmonella enterica serovar Pullorum multidrug resistance strain S06004 from China. J Microbiol Biotechnol (2015) 25:660–6. doi:10.4174/jmjb.140009

51. Anon. Fowl cholera. In: Office International des Epizooties, editor. OIE - Poult Sci of OIE. Paris: Office International des Epizooties (2015). p. 60-06031

52. Jones KH, Thornton JK, Zhang Y, Mauel MJ. A 5-year retrospective report of avian Pasteurella multocida in chickens. Avian Pathol (2011) 40:391–401. doi:10.1080/03079454.2010.508482

53. Srivastava SK. Antibiotic sensitivity patterns among Indian strains of Pasteurella multocida isolated from chickens in Missouri. Poult Sci (2013) 92:3166–71. doi:10.3382/ps.2013-03321

54. Furian TQ, Borges KA, Lavini V, Rocha SL, de Almeida CN, do Nascimento VP, et al. Virulence genes and antimicrobial resistance of Pasteurella multocida isolated from poultry and swine. Braz J Microbiol (2016) 47:210–6. doi:10.1590/1518-878715.11.014

55. San Millan A, Escudero JA, Gutierrez B, Hidalgo L, Garcia N, Llagostera M. Persistence of virulent Pasteurella multocida in chicken intestines. Int J Antimicrob Agents (2007) 29:39–44. doi:10.1016/j.ijantimicag.2007.02.004

56. Shrivachanda SB, Kumar AA, Biswas A, Ramakrishnan MA, Singh VP, Srivastava SK. Antibiotic sensitivity patterns of avian Pasteurella multocida isolated from chickens. Poult Sci (2011) 90:236–42. doi:10.3382/ps.2010-02244

57. Selyesi B, Varga Z, Szentesi-Samu K, Kaszarnyitzky E, Magyar T. Antimicrobial susceptibility of Pasteurella multocida isolated from swine and poultry. Acta Vet Hung (2009) 57:357–67. doi:10.1556/AVet.57.2009.3.2

58. Mohamed MA, Mohamed AW, Ahmed AI, Ibrahim AA, Ahmed MS. Pasteurella multocida in backyard chickens in Upper Egypt: incidence with polymerase chain reaction analysis for capsule type, virulence in chicken embryos and antimicrobial resistance. Vet Ital (2012) 48:77–86.

59. San Millan A, Escudero JA, Gutierrez B, Hidalgo L, Garcia N, Llagostera M. Multiresistance in Pasteurella multocida is mediated by coexistence of small-colony variants of Gram-negative bacteria. J Clin Microbiol (2013) 51:3228–36. doi:10.1128/JCM.01337-13

60. Mariani M, Decostere A, Nauwynck H, Froyman L, Devriese LA, Haesebrouck F. In vitro antibiotic sensitivity of Ornithobacterium rhinotracheale strains from poultry and wild birds. Vet Res (1995) 17:345–56. doi:10.1136/vetres.17.345

61. Anjaneya A, Shambhu Dayal S, Kuldeep D, Mohd Yaqoob W, Vasudevan IS, Mohan J, et al. Antimicrobial resistance patterns of avian Pasteurella multocida isolated from poultry flocks of India. J Pure Appl Microbiol (2014) 8:4818–8.

62. Byurugaba DK, Mungu UM, Gwakisa PS, Katunguka-Rwakishaya E, Bisgaard M, Christensen H, et al. Demonstration of antibiotic resistance genes strA, blafT, tetA, tetC and sul2 in Avibacterium paragallinarum. Afr J Microbiol Res (2011) 5:5624–7. doi:10.5897/AJMR11.186

63. Poernomo S, Sutarma, Rafiee M, Blackall PJ, Isore DP, et al. Identification and antimicrobial susceptibility of Salmonella gallinarum from chickens in South Korea. Avian Pathol (2010) 39:201–5. doi:10.1080/03079451003767261

64. Hsu YM, Shiau HK, Chen WH, Sun TY, Shiang JH. Antibiotic susceptibility, plasmid profiles and haemocin activities of Avibacterium paragallinarum isolated from chickens. Vet Microbiol (2006) 124:209–18. doi:10.1016/j.vetmic.2007.04.024

65. Chukiatkiri K, Sasipreeyajarn J, Blackall PJ, Batabyal K, Joardar SN, Isore DP, et al. Multiresistance in Avibacterium paragallinarum isolated from chickens in Thailand. Avian Dis (2012) 56:359–64. doi:10.1637/19881-080811-Reg.1

66. Noohnkohketkong T, Chukiatkiri K, Sasipreeyajarn J, Chansrirpornchai N. Determination of antimicrobial susceptibility, antimicrobial resistance genes and in vivo testing of antimicrobial susceptibility of Avibacterium paragallinarum isolated from chickens in Thailand. Avian Dis (2012) 56:359–64. doi:10.1637/19881-080811-Reg.1

67. Anjaneya A, Shambhu Dayal S, Kuldeep D, Mohd Yaqoob W, Vasudevan IS, Mohan J, et al. Antimicrobial resistance patterns of avian Pasteurella multocida isolated from chickens in South Korea. Avian Pathol (2010) 39:201–5. doi:10.1080/03079451003767261
85. Beach NM, Thompson S, Mutnick R, Brown L, Kettig G, Puffenbarger R. *Bordetella avium* antibiotic resistance, novel enrichment culture, and antigenic characterization. *Vet Microbiol* (2012) 160:189–96. doi:10.1016/j.vetmic.2012.05.026

86. Grespan A, Camera O, Knobl T, Gomes CR, Felizardo MR, Ferreira TS, et al. Virulence and molecular aspects of *Bordetella avium* isolated from cockatiel chicks (*Nymphicus hollandicus*) in Brazil. *Vet Microbiol* (2012) 160:530–4. doi:10.1016/j.vetmic.2012.06.023

87. Kaldhusdal M, Benestad SL, Lovland A. Epidemiologic aspects of necrotic enteritis in broiler chickens-disease occurrence and production performance. *Avian Pathol* (2016) 45:271–4. doi:10.1080/03079457.2016.1163521

88. Martel A, Devriese LA, Cauwerts K, De Gussem K, Decosteere A, Hasebroeck F. Susceptibility of *Clostridium perfringens* strains from broiler chickens to antibiotics and anticoicidials. *Avian Pathol* (2004) 33:3–7. doi:10.1080/0307945041000163291

89. Johansson A, Greko C, Engström BE, Karlsson M. Antimicrobial susceptibility of Swedish, Norwegian and Danish isolates of *Clostridium perfringens* from poultry, and distribution of tetracycline resistance genes. *Vet Microbiol* (2004) 99:251–7. doi:10.1016/j.vetmic.2004.01.009

90. Osman KM, Elhariri M. Antibiotic resistance of *Clostridium perfringens* isolates from broiler chickens in Egypt. *Rev Sci Tech Off Vet Med* (2012) 32:841–50. doi.10.20500/rsst.32.2.2212

91. Park JY, Kim S, Young Oh J, Hyeyoung K, Jang I, Hee Soo L. Characterization of *Clostridium perfringens* isolates obtained from 2010 to 2012 from chickens with necrotic enteritis in Korea. *Poult Sci* (2015) 94:1158–64. doi:10.3832/ps.0p037

92. Slavic D, Boerlin P, Fabri M, Klotins KC, Zoethout JK, Weir PE, et al. Antimicrobial susceptibility of *Clostridium perfringens* isolates of bovine, chicken, porcine, and turkey origin from Ontario. *Can J Vet Res* (2011) 75:89–97.

93. Silva RO, Salvarani FM, Assis RA, Martins NR, Pires PS, Lobato FC. *Clostridium perfringens* antimicrobial susceptibility of *Mycoplasma gallisepticum* fluoroquinolones in current and archived isolates from premarket broilers. *Vet Res Commun* (2009) 33:1031–7. doi:10.1007/s11259-009-9306-4

94. Anon. The risk of development of antimicrobial resistance with the use of coc-antibiotic resistance, novel enrichment culture, and antigenic characterization. *Vet Microbiol* (2008) 16:036. doi:10.1016/j.vetmic.2007.05.011

95. Reinhardt AR, Bebâr CM, Kobisch M, Kempf I, Gautier-Bouchardon AV. Characterization of mutations in DNA gyrase and topoisomerase IV involved in quinolone resistance of *Mycoplasma gallisepticum* mutants obtained in vitro. *Antimicrob Agents Chemother* (2002) 46:590–3. doi:10.1128/AAC.46.2.590-593.2002

96. Reinhardt AR, Kempf I, Kobisch M, Gautier-Bouchardon AV. Fluoroquinolone resistance in *Mycoplasma gallisepticum*: DNA gyrase as primary target of enrofloxacin and impact of mutations in topoisomerase resistance level. *J Antimicrob Chemother* (2002) 50:589–92. doi:10.1093/jac/dkf158

97. Lysnyansky I, Gerchman I, Levisohn S, Mikula I, Feberwee A, Ferguson NM, et al. Discrepancy between minimal inhibitory concentration to enrofloxacin and mutations present in the quinolone-resistance determining regions of *Mycoplasma gallisepticum* field strains. *Vet Microbiol* (2012) 160:222–6. doi:10.1016/j.vetmic.2012.05.002

98. Wang QN, Chang BJ, Riley TV. *Erysipelothrix rhusiopathiae*. *Vet Microbiol* (2010) 140: 105–17. doi:10.1016/j.vetmic.2009.08.012

99. Bobrek K, Gaweł A, Mazurkiewicz M. Infections with *Erysipelothrix rhusiopathiae* in poultry flocks. *World Poul Sci J* (2013) 69:603–12. doi:10.1017/s0043933130008822

100. Eriksson H, Jansson JOH, Johansen KE, Bäverud V, Chirico J, Aspán A. Characterization of *Erysipelothrix rhusiopathiae* isolates from poultry, pigs, emus, the poultry red mite and other animals. *Vet Microbiol* (2009) 137:98–104. doi:10.1016/j.vetmic.2008.12.016

101. Servar CF, Morishita TY, Nersessian B. The effect of route of inoculation and challenge dosage on Riemerella anatipestifer infection in Pekin ducks (Anas platyrhynchos). *Avian Dis* (2005) 49:104–7. doi:10.1637/7248-07300R1

102. Zhong CY, Chen AC, Wang MS, Zhu DK, Luo QH, Zhuang CD, et al. Antimicrobial susceptibility of *Riemerella anatipestifer* field isolates. *Avian Dis* (2009) 53:601–7. doi:10.1637/8552-120408-ResNote.1

103. Li Y, Zhang Y, Ding H, Mei X, Liu W, Zeng J, et al. In vitro susceptibility of four antimicrobials against *Riemerella anatipestifer* isolates: a comparison of minimum inhibitory concentrations and mutant prevention concentrations for cefitiofur, ceftquinome, florfenicol, and tilmicosin. *BMC Vet Res* (2016) 12:250. doi:10.1186/s12917-016-0796-3

104. Sun N, Liu JH, Yang F, Lin DC, Li GH, Chen ZL, et al. Molecular characterization of the antimicrobial resistance of *Riemerella anatipestifer* isolated from ducks. *Vet Microbiol* (2012) 158:376–83. doi:10.1016/j.vetmic.2012.09.013

105. Surya PS, Priya PM, Mini M. Biotyping and antibiogram of *Riemerella anatipestifer* in poultry flocks. *BMC Vet Res* (2016)(2010) 5:1427–42. doi:10.2217/fmb.10.96

106. Li YF, Jiang HX, Xiang R, Sun N, Zhang Y, Zhao L, et al. Effects of two efflux pump inhibitors on the drug susceptibility of *Riemerella anatipestifer* isolates from China. *J Integr Agric* (2015) 16:957–62. doi:10.1016/j.jia.2014.09.003

107. Chao-Fu C, Wen-Hwa L, Tung-Mao Y, Tai-Sheng C, Yung-Fu C. Antimicrobial susceptibility of *Riemerella anatipestifer* isolated from ducks and the efficacy of cefitiofur treatment. *J Vet Diagn Invest* (2003) 15:26–9. doi:10.1177/1046373031500106

108. Luo H, Liu M, Wang L, Zhou W, Wang M, Cheng A, et al. Identification of ribosomal RNA methyltransferase gene ermF in *Riemerella anatipestifer*. *Avian Pathol* (2015) 44:162–8. doi:10.1080/03079457.2015.1019828

109. Li YF, Jiang HX, Xiang R, Sun N, Zhang Y, Zhao L, et al. Effects of two efflux pump inhibitors on the drug susceptibility of *Riemerella anatipestifer* isolates from China. *J Integr Agric* (2015) 16:929–33. doi:10.1016/j.jia.2014.15.61031-0

110. Sandoz KM, Rockey DD. Antibiotic resistance in Chlamydiae. *Future Microbiol* (2010) 5:1427–42. doi:10.2217/fmb.10.96

111. Dhamma K, Mahendran M, Tiwari R, Singh SD, Kumar D, Singh S, et al. Tuberculosis in birds: insights into the *Mycobacterium avium* infections. *Vet Med Int* (2011) 2011:712369. doi:10.1155/2011/712369

112. Varga C, Rajic A, McFall ME, Reid-Smith R, Deckert AE, Pearl DL, et al. Comparison of antimicrobial resistance in generic *Escherichia coli* and *Salmonella* spp. cultured from identical fecal samples in finishing swine. *Can J Vet Res* (2008) 72:181–7.

113. Grasboll K, Saxmose Nielsen S, Toft N, Christiansen LE. How fitness reduced, antimicrobial resistant bacteria survive and spread: a multiple pig-multiple
bacterial Strain Model. PLoS One (2014) 9(7):e100458. doi:10.1371/journal.pone.0100458

124. Anon. Veterinary Investigation Diagnosis Analysis (VIDA). Annual Report on Data Recorded by APHA and Scotland’s Rural College on Animal and Bird Diagnostic Submissions in Great Britain. Animal and Plant Health Agency (APH) (2016). Available from: http://ahvla.defra.gov.uk/vet-gateway/surveillance/reports.htm

125. Michael GB, Kaspar H, Siqueira AK, de Freitas E, Corbellini LG, Kadlec K, et al. Extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli isolates collected from diseased food-producing animals in the GERM-Vet monitoring program 2008–2014. Vet Microbiol (2017) 200:142–30. doi:10.1016/j.vetmic.2016.08.023

126. El Garch F, de Jong A, Simjee S, Moyaert H, Klein U, Ludwig C, et al. Monitoring of antimicrobial susceptibility of respiratory tract pathogens isolated from diseased cattle and pigs across Europe, 2009-2012: VetPath results. Vet Microbiol (2016) 194:11–22. doi:10.1016/j.vetmic.2016.04.009

127. Kaspar H, Steinacker U, Heidemanns K, Mankertz J. GERM-Vet: a representative cross-sectional monitoring study with veterinary pathogen bacteria in Germany. Int J Med Microbiol (2013) 303:24–24.

128. Abiala M, Olayiwola J, Babatunde O, Aiyelaagbe O, Akinwumi S. Evaluation of therapeutic potentials of plant extracts against poultry bacteria threatening public health. BMC Complement Altern Med (2016) 16:417. doi:10.1186/s12906-016-1399-z

129. Umar S, Sabir H, Ahmed A, Subhan S. Avian metapneumovirus infection in poultry. Worlds Poult Sci (2016) 72:833–45. doi:10.1017/S004393916000738

130. Schwarz S, Sille P, Simjee S, Woodford N, van Duijkeren E, Johnson AP, et al. Assessing the antimicrobial susceptibility of bacteria obtained from animals. J Antimicrob Chemother (2010) 65:601–4. doi:10.1016/j.jantimicag.2009.12.013

131. Agunos A, Carson C, Leger D. Antimicrobial therapy of selected diseases in turkeys, laying hens, and minor poultry species in Canada. Can Vet J (2013) 54:1041–52.

132. Anon. CVMP Strategy on Antimicrobials 2016-2020 European Medicines Agency. (2016). Available from: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2016/10/WC500214901.pdf

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2017 Nhung, Chansiripornchai and Carrique-Mas. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.