Diverse plant viruses: a toolbox for dissection of cellular pathways

Aayushi Shukla, Silvia López-González, Gesa Hoffmann and Anders Hafrén*

Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Box 7080, 75007 Uppsala, Sweden

* Correspondence: anders.hafren@slu.se

Research in virology has usually focused on one selected host–virus pathosystem to examine the mechanisms underlying a particular disease. However, as exemplified by the mechanistically versatile suppression of antiviral RNA silencing by plant viruses, there may be functionally convergent evolution. Assuming this is a widespread feature, we propose that effector proteins from diverse plant viruses can be a powerful resource for discovering new regulatory mechanisms of distinct cellular pathways. The efficiency of this approach will depend on how deeply and widely the studied pathway is integrated into viral infections. Beyond this, comparative studies using broad virus diversity should increase our global understanding of plant–virus interactions.

Viruses represent the most numerous and diverse organisnal group defined to date (Culley et al., 2007; Paez-Espino et al., 2017) and there are multiple hypotheses speculating that viruses contributed to the origin of cellular life and have a longstanding co-evolutionary history with higher life forms (Durzyńska and Goździcka-Józefiak, 2015; Moreira and López-García, 2015). It is a reasonable assumption that a mutualistic relationship would be the most desired outcome of the tight co-evolutionary relationship between host and virus. While the majority of viruses, including those existing in plants, do not cause disease and are speculated to have a non-harmful relationship with their host plants (Roossinck, 2005, 2015), the scientific literature is clearly dominated by the pathogenic viruses that cause diseases of economic importance (Scholthof et al., 2011). There can be diverse strategies that viruses utilize for pathogenicity, the ability of the virus to cause a disease in its host. Several factors such as horizontal transmission by animal vectors and use of multiple plant species as hosts influence the fitness of the virus in the host population (Froissart et al., 2010; Acosta-Leal et al., 2011; Lancaster and Pfeiffer, 2012; Márquez and Roossinck, 2012). Indeed the ecological prerequisites driving expansion and diversification of viruses are complex.

Convergent evolution of viral effector functions

Most, if not all, pathogens have acquired proteins with effector functions, which are defined by their capacity to manipulate host immune responses and resources for the benefit of infection (Mandadi and Scholthof, 2013). Plant viruses have strong potential for rapid evolution (Duffy et al., 2008; Acosta-Leal et al., 2011), driving diversification and the establishment of immense sequence variability. Importantly, plant viruses seem to acquire effector functions in parallel through convergent evolution rather than horizontal gene transfer, as the latter is common for bacterial and fungal pathogens (Kado, 2009; Selin et al., 2016).

The outcome of this convergent effector evolution is nicely exemplified by the most famous and well-studied class of plant viral effectors, the RNA silencing suppressors, that counteract the prominent RNA silencing pathway employed in plant defense (Csorba et al., 2015; Zhao et al., 2016). Here we have observed that plant viruses universally evolved RNA silencing suppressors in a parallel manner. First, the suppressors lack sequence homology and, secondly, they interfere with different steps of this antiviral pathway (Box. 1). Consequently, the identification and mechanistic study of these effectors have contributed to the holistic understanding of the mechanisms and components underlying the RNA silencing pathway in plants. It is plausible that the convergent evolution of RNA silencing suppressors exemplifies a general model of virus effector evolution. Building on this hypothesis, we expect that viruses have together accumulated mechanistically diverse ways to manipulate and exploit different cellular pathways important for infection in plants (Garcia-Ruiz, 2018). Research suggests that these targets are numerous, including autophagy (Dong and Levine, 2013), RNA granules (Poblete-Duran et al.,...
translational regulation (Zorzatto et al., 2015), the ubiquitin–proteasome system (Verchot, 2016), lipid metabolism (Strating and van Kuppeveld, 2017), phytohormones (Collum and Culver, 2016), vesicular trafficking (Laliberté and Zheng, 2014; Pitzalis and Heinlein, 2017), macromolecular transport between cells (Heinlein, 2015; Kumar et al., 2015), and major developmental pathways including flowering (Cecchini et al., 2002). All these infection targets are also linked to plant defense responses. This lays the groundwork for using diverse virus effectors as a resource for mechanistic and functional studies of such pathways both within and outside an infection context.

Arabidopsis: a powerful model

For the vast majority of plant species, the currently known and available viruses that are capable of a compatible infection are limited. How many different viral species can we expect to infect a single host species? Humans are probably the best surveyed species, with a recent estimate of well over 200 infecting viral species (Woolhouse et al., 2012). Considering the short time period for which Arabidopsis thaliana (Arabidopsis) has been used as a plant model in virology (Pagán et al., 2010; Oubraham and Caranta, 2013), an impressive number of viruses have already been found to infect this plant, with at least 46 different species spanning 16 genera (Table 1). For many viral species, there are several known strains that further expand this diversity, not least because they frequently show large variations in the severity of disease (Cecchini et al., 1998). This enables broad virus diversity and comparative virology studies in the resource-rich model plant Arabidopsis. Owing to broad virus diversity, additional plant models such as tomato, cucumber, lettuce, potato, melon, pepper, and rice could all be considered (Hanssen et al., 2010). The diverse viruses infecting a single host can be exploited to understand pertinent cellular pathways. If using well-established heterologous systems such as Nicotiana benthamiana for screening viral effector proteins without a prerequisite for infection of a specific host, the available virus diversity becomes practically unlimited.

Diverse viruses to dissect selected pathways

The efficiency of a virus diversity approach increases with the overall number of viruses targeting a specific pathway. How globally a selected pathway is integrated into virus infections usually becomes clear in retrospect when enough examples have emerged. However, animal viruses have been studied much more extensively than plant viruses and may therefore provide clear hints as to which cellular pathways could be approached through virus diversity in plants. An example of such a pathway is autophagy, which has so far been shown to function in >50 different animal virus infections, with roles ranging from different antiviral immune responses to direct support for infection (Dong and Levine, 2013). Importantly, animal viruses commonly manipulate different regulatory nodes of the autophagy pathway, transforming them into a potential resource for functional dissection of the pathway.
It is only recently that discoveries of autophagy in plant virus infections have been made, including an ssDNA virus (Haxim et al., 2017), a dsDNA virus (Hafren et al., 2017), and three ssRNA viruses (Hafren et al., 2018; Yang et al., 2018). These few examples already imply global integration of autophagy in plant virus infections, identifying mechanisms involved in inhibition of autophagy by viral proteins, viral protein interaction with autophagy components, viral component degradation by autophagy, and more generally that autophagy has both antiviral and proviral functions in plant virus epidemiology. According to our point of view, we predict that a systematic application of diverse viruses could be used to identify a plethora of autophagy-based mechanisms that are activated and manipulated by viruses, thereby broadening our understanding of the plant autophagy pathway per se and its diverse roles in viral pathogenesis. RNA granules is yet another infection point we consider promising to study further using virus diversity, owing to their broad incorporation into animal virus infections (Poblete-Duran et al., 2016) and also the intriguing connections that slowly accumulate for plant viruses (Beckham et al., 2007; Hafren et al., 2015; Ma et al., 2015; Ye et al., 2015; Meteigner et al., 2016; Krapp et al., 2017).

Table 1. List showing viruses that infect Arabidopsis thaliana Col-0

Genus	Species	Reference
Alfamovirus	Alfalfa mosaic virus	Balasubramaniam et al. (2006)
Begomovirus	Cabbage leaf curl virus	Hill et al. (1998)
	Cleome leaf crumple virus	Paprotka et al. (2010)
	Euphorbia mosaic virus	Paprotka et al. (2010)
	Sri Lankan cassava mosaic virus	Mittal et al. (2008)
	Tomato yellow leaf curl virus	Sade et al. (2014)
	South African cassava mosaic virus	Pierce and Rey (2013)
Bromovirus	Brome mosaic virus	Dzianott and Bujarski (2004)
	Cassia yellow blotch virus	Iwahashi et al. (2005)
	Cowpea chlorotic mottle virus	Fujisaki et al. (2003)
	Spring beauty latent virus	Iwahashi et al. (2005)
Carmovirus	Cardamine chlorotic fleck virus	Skotnicki et al. (1993)
	Turnip crinkle virus	Li and Simon (1990)
Caulimovirus	Cauliflower mosaic virus	Melcher (1989)
Cheraviruses	Apple latent spherical virus	Igarashi et al. (2009)
Citlevirus	Citrus leprosis virus C	Arena et al. (2013)
	Solarium violaeolatum ringspot virus	Arena et al. (2017)
Comovirus	Turnip ringspot virus	Rajakaruna et al. (2007)
Cucumovirus	Cucumber mosaic virus	Takahashi et al. (1994)
Curtovirus	Beet curly top virus	Lee et al. (1994)
	Beet severe curly top virus	Lee et al. (1994)
	Spinach curly top virus	Bajji et al. (2007)
Dichorhavirus	Clerodendrum chlorotic spot virus	Arena et al. (2017)
	Coffee ringspot virus	Arena et al. (2017)
Nanovirus	Faba bean necrotic yellow virus	Vega-Arreguin et al. (2007)
Nepovirus	Arabis mosaic virus	Martinez-Herrera et al. (1994)
	Cherry leaf roll virus	Rumbou et al. (2009)
	Tobacco ringspot virus	Lee et al. (1996)
	Tomato spotted wilt virus	German et al. (1995)
Poletovirus	Beet mild yellowing virus	Stevens et al. (2005)
	Beet western yellow virus	Bortolamielic et al. (2007)
	Turnip yellow virus	Stevens et al. (2005)
Potexvirus	Plantago asiatica mosaic virus	Yamaji et al. (2012)
Potyvirus	Lettuce mosaic virus	Revers et al. (2003)
	Plum pox virus	Decrooq et al. (2006)
	Tobacco etch virus	Contresaras-Paredes et al. (2013)
	Turnip mosaic virus	Martinez-Herrera et al. (1994)
	Watermelon mosaic virus	Oubraham et al. (2014)
Sobemovirus	Turnip rosette virus	Callaway et al. (2004)
Tobamovirus	Oliseed rape mosaic virus	Aguilar et al. (1996)
	Tobacco mosaic virus	Ishikawa et al. (1991)
	Turnip vein cleaning virus	Lartey et al. (1997)
Tobravirus	Pepper ringspot virus	Jaubert et al. (2011)
	Tobacco rattle virus	Donaire et al. (2008)
Tospovirus	Iris yellow spot virus	Naveed and Pappu (2012)
Tymovirus	Turnip yellow mosaic virus	Martinez-Herrera et al. (1994)

It is only recently that discoveries of autophagy in plant virus infections have been made, including an ssDNA virus (Haxim et al., 2017), a dsDNA virus (Hafren et al., 2017), and three ssRNA viruses (Hafren et al., 2018; Yang et al., 2018). These few examples already imply global integration of autophagy in plant virus infections, identifying mechanisms involved in inhibition of autophagy by viral proteins, viral protein interaction with autophagy components, viral component degradation by autophagy, and more generally that autophagy has both antiviral and proviral functions in plant virus epidemiology. According to our point of view, we predict that a systematic application of diverse viruses could be used to identify a plethora of autophagy-based mechanisms that are activated and manipulated by viruses, thereby broadening our understanding of the plant autophagy pathway per se and its diverse roles in viral pathogenesis. RNA granules is yet another infection point we consider promising to study further using virus diversity, owing to their broad incorporation into animal virus infections (Poblete-Duran et al., 2016) and also the intriguing connections that slowly accumulate for plant viruses (Beckham et al., 2007; Hafren et al., 2015; Ma et al., 2015; Ye et al., 2015; Meteigner et al., 2016; Krapp et al., 2017).
What potential advantages and complements do this approach bring compared with others such as Arabidopsis forward genetics? First and as already discussed in connection with the virome interaction with the RNA silencing pathway (Box 1), convergent evolution of the different viruses will result in the identification of different regulatory nodes of complex pathways. Secondly, if we are dealing with cellular pathways and functions that show no growth phenotypes when disrupted and cell biological phenotyping is required, the screening of a virome using such phenotyping platforms is simple compared with a forward genetics screen. This could hold especially true in the absence of an automated high-throughput platform for forward genetics. Thirdly, if the deletion of a pathway component is lethal for plants, it can still be manipulated by viruses without too severe growth phenotypes. One example is provided by the RNA granule pathways that can show quantitative phenotypes during plant virus infections (Hafren et al., 2015), and seedling lethality when knocked out (Xu and Chua, 2011). Another interesting approach will be examining plant pathways that are not globally conserved, but rather between monocot and dicot plants or even solely in between clades (e.g. glucosinolates in Brassicaceae) and how these pathways are altered by viruses capable of infection.

Concluding remarks

Molecular and cell biology-based virology continues to reveal fundamental mechanisms of cellular pathways both within and outside an infection context. Evidently, in many cases, these discoveries have arisen through the mechanistic dissection of viral effector protein manipulations of the host cell. In accordance with the central hypothesis of this viewpoint that viruses acquire effector protein functions through functionally convergent evolution and presuming that convergent evolution successfully equipped diverse viruses with effectors targeting a specific pathway, as observed for RNA silencing, these effectors should provide a unique tool for its mechanistic study. Based on the discussion above, we propose that a prominent resource could be an expression library that consists of proteins from a virus infections (Hafrén et al., 2015), and seedling lethality when knocked out (Xu and Chua, 2011). Another interesting approach will be examining plant pathways that are not globally conserved, but rather between monocot and dicot plants or even solely in between clades (e.g. glucosinolates in Brassicaceae) and how these pathways are altered by viruses capable of infection.

Concluding remarks

Molecular and cell biology-based virology continues to reveal fundamental mechanisms of cellular pathways both within and outside an infection context. Evidently, in many cases, these discoveries have arisen through the mechanistic dissection of viral effector protein manipulations of the host cell. In accordance with the central hypothesis of this viewpoint that viruses acquire effector protein functions through functionally convergent evolution and presuming that convergent evolution successfully equipped diverse viruses with effectors targeting a specific pathway, as observed for RNA silencing, these effectors should provide a unique tool for its mechanistic study. Based on the discussion above, we propose that a prominent resource could be an expression library that consists of proteins from a wide and comprehensive plant virus diversity to be used for screening pathway phenotypes as a starting point to identify pathway regulators. In parallel, this could systematically evaluate the phenomenon of virus effector convergent evolution.

Acknowledgements

Funding from the Swedish Research Councils VR and FORMAS, as well as the Carl Tryggers Foundation for AH is acknowledged.

References

Acosta-Leal R, Duffy S, Xiong Z, Hammond RW, Elena SF. 2011. Advances in plant virus evolution: translating evolutionary insights into better disease management. Phytopathology 101, 1136–1148.
Aguilar I, Sánchez F, Martin Martin A, Martinez-Herrera D, Ponz F. 1996. Nucleotide sequence of Chinese rape mosaic virus (oilseed rape mosaic virus), a crucifer tobanovirus infectious on Arabidopsis thaliana. Plant Molecular Biology 30, 191–197.
Arena GD, Bergamini MP, Tassi AD, Kitajima EW, Kubo KS, Freitas-Astúa J. 2013. Citrus leprosis virus C infects Arabidopsis thaliana, the model for plant–pathogen interactions. Journal of Plant Pathology 95, 448.
Dinizotatto R, Doumayrou J, Vuillaume F, Alizon S, Michalakis Y. 2010. The virulence–transmission trade-off in vector-borne plant viruses: a review of (non)-existing studies. Philosophical Transactions of the Royal Society B: Biological Sciences 365, 1907–1918.
Fujisaki K, Hagihara F, Kaido M, Mise K, Okuno T. 2003. Complete nucleotide sequence of spring beauty latent virus, a bromovirus infectious to Arabis blanda. Archives of Virology 148, 165–175.
García-Ruiz H. 2018. Susceptibility genes to plant viruses. Viruses 10, 484.

German TL, Adkins S, Witherell A, Richmond KE, Knaack WR, Willis DK. 1995. Infection of Arabidopsis thaliana ecotype Columbia by tomato spotted wilt virus. Plant Molecular Biology Report 13, 110–117.

Hafren A, Löhms A, Mäkinen K. 2015. Formation of Potato virus A-induced RNA granules and viral translation are interrelated processes required for optimal virus accumulation. PLoS Pathogens 11, e1005314.

Hafren A, Macia JL, Love AJ, Milner JJ, Drucker M, Hofius D. 2017. Selective autophagy limits cauliflower mosaic virus infection by NBR1-mediated targeting of viral capsid protein and particles. Proceedings of the National Academy of Sciences, USA 114, E2026–E2035.

Hafren A, Üstün S, Hochmuth A, Svenning S, Johansen T, Hofius D. 2018. Turnip mosaic virus counteracts selective autophagy of the viral silencing suppressor HCPro. Plant Physiology 176, 649–662.

Hanssen IM, Lapidot M, Thomma BP. 2010. Emerging viral diseases of tomato crops. Molecular Plant-Microbe Interactions 23, 539–548.

Haxim Y, Ismail A, Jia Q, et al. 2017. Autophagy functions as an antiviral mechanism against geminiviruses in plants. eLife 6, e23897.

Heinlein M. 2015. Plasmodesmata: channels for viruses on the move. Methods in Molecular Biology 1217, 25–52.

Hill JE, Strandberg JO, Hiebert E, Lazarowitz SG. 1998. Asymmetric infectivity of pseudorecombinants of cabbage leaf curl virus and squash leaf curl virus: implications for bipartite geminivirus evolution and movement. Virology 250, 283–292.

Igarashi A, Yamagata K, Sugai T, et al. 2009. Apple latent spherical virus vectors for reliable and effective virus-induced gene silencing among a broad range of plants including tobacco, tomato, Arabidopsis thaliana, cucurbits, and legumes. Virology 386, 407–416.

Ishikawa M, Obata F, Kumagai T, Ohno T. 1991. Isolation of mutants of Arabidopsis thaliana in which accumulation of tobacco mosaic virus coat protein is reduced to low levels. Molecular & General Genetics 230, 33–38.

Iwahashi F, Fujisaki K, Kaido M, Okuno T, Mise K. 2005. Synthesis of infectious in vitro transcripts from Cassia yellow blotch bromovirus cDNA clones and a reassortment analysis with other bromoviruses in protoplasts. Archives of Virology 150, 1301–1314.

Jaubert M, Bhattcharjee S, Mello AF, Perry KL, Moffett P. 2011. ARGONAUTE2 mediates RNA-silencing antiviral defenses against Potato virus X in Arabidopsis. Plant Physiology 156, 1556–1564.

Kado CI. 1998. Asymmetric movement and subcellular localization of TTR1, a single locus in Arabidopsis that confers tolerance to tobacco ring spot nepovirus. The Plant Journal 16, 407–416.

Kumar D, Kumar R, Hyun TK, Kim JY. 2015. Cell-to-cell movement of infectious in vitro transcripts from cDNA clones and a reassortment analysis with other bromoviruses in protoplasts. Archives of Virology 150, 1301–1314.

Lancaster KZ, Pfeiffer JK. 2012. Viral population dynamics and virulence thresholds. Current Opinion in Microbiology 15, 528–530.

Larrey R, Ghoshroy S, Ho J, Citovsky V. 1997. Movement and subcellular localization of a tobravirus in Arabidopsis. The Plant Journal 12, 537–545.

Lee JM, Hartman GL, Domier LL, Bent AF. 1996. Identification and map location of TIR1, a single locus in Arabidopsis thaliana that confers tolerance to tobacco ring spot nepovirus. Molecular Plant-Microbe Interactions 9, 729–735.

Lee S, Stenger DC, Bisaro DM, Davis KR. 1994. Identification of loci in Arabidopsis that confer resistance to geminivirus infection. The Plant Journal 6, 525–535.

Li XH, Simon AE. 1990. Symptom intensification on cruciferous hosts by the virulent satellite RNA of Turnip crinkle virus. Phytopathology 80, 238–242.

Ma X, Nicole MC, Meteignier LV, Hong N, Wang G, Moffett P. 2015. Different roles for RNA silencing and RNA processing components in virus recovery and virus-induced gene silencing in plants. Journal of Experimental Botany 66, 919–932.

Mandadi KK, Scholtz KB. 2013. Plant immune responses against viruses: how does a virus cause disease? The Plant Cell 25, 1489–1506.

Márquez LM, Roossinck MJ. 2012. Do persistent RNA viruses fit the trade-off hypothesis of virulence evolution? Current Opinion in Virology 2, 556–560.

Martínez-Herrera D, Romero J, Martínez-Zapater JM, Ponz F. 1994. Suitability of Arabidopsis thaliana as a system for the study of plant–virus interactions. Fitopatología 29, 132–136.

Melcher U. 1989. Symptoms of Cauliflower mosaic virus infection in Arabidopsis thaliana and turnip. Botanical Gazette, 150, 139–147.

Meteignier LV, Zhou J, Cohen M, Bhattcharjee S, Brossseau C, Chan MG, Robatzek S, Moffett P. 2016. NB-LRR signaling induces translational repression of viral transcripts and the formation of RNA processing bodies through mechanisms different from those activated by UV stress and RNAi. Journal of Experimental Botany 67, 2353–2366.

Mittal D, Borah BK, Dasgupta L. 2008. Agroinfection of cloned S. Lankan cassava mosaic virus DNA to Arabidopsis thaliana, Nicotiana tabacum and cassava. Archives of Virology 153, 2149–2155.

Moreira D, López-García P. 2015. Evolution of viruses and cells: do we need a fourth domain of life to explain the origin of eukaryotes? Philosophical Transactions of the Royal Society B: Biological Sciences 370, 20140327.

Naveed K, Pappu HR. 2012. Susceptibility of Arabidopsis ecotypes to infection by Iris yellow spot virus. Online. Plant Health Progress doi:10.1094/PHP-2012-0714-01-RS.

Ouibrahim L, Caranta C. 2013. Exploitation of natural genetic diversity to study plant–virus interactions: what can we learn from Arabidopsis thaliana? Molecular Plant Pathology 14, 844–854.

Ouibrahim L, Mazier M, Esteven J, Pagny G, Decroocq V, Desbiez C, Moretti A, Gallois JL, Caranta C. 2014. Cloning of the Arabidopsis rwm1 gene for resistance to Watermelon mosaic virus points to a new function for natural virus resistance genes. The Plant Journal 79, 703–716.

Paz-Espino D, Pavlopoulos GA, Ivanova NN, Kyprides NC. 2017. Nontargeted virus sequence discovery pipeline and virus clustering for metagenomic data. Nature Protocols 12, 1673–1682.

Pagán I, Fraile A, Fernandez-Fueyo E, Montes N, Alonso-Blanco C, García-Arenal F. 2010. Arabidopsis thaliana as a model for the study of plant–virus co-evolution. Philosophical Transactions of the Royal Society B: Biological Sciences 365, 1993–1995.

Paprotka T, Metzler V, Jeske H. 2010. The first DNA 1-like alpha satellites in association with New World begomoviruses in natural infections. Virology 404, 148–157.

Pierce EJ, Rey ME. 2013. Assessing global transcriptome changes in response to South African cassava mosaic virus [ZA-99] infection in susceptible Arabidopsis thaliana. PLoS One 8, e67534.

Pilzalis N, Heinlein M. 2017. The roles of membranes and associated cytoskeleton in plant virus replication and cell-to-cell movement. Journal of Experimental Botany 69, 117–132.

Poblente-Duran N, Prades-Perez Y, Vera-Oratola J, Soto-Rifo R, Valiente-Echeverria F. 2016. Who regulates whom? An overview of RNA granules and viral infections. Viruses 8, 180.

Rajakaruna P, Khandekar S, Meulia T, Leisner SM. 2007. Identification and host relations of Turnip ringspot virus, a novel Comovirus from Ohio. Plant Disease 91, 1212–1220.

Revers F, Guiraud T, Houvenaghel MC, Mauduit T, Le Gall O, Candresse T. 2003. Multiple resistance phenotypes to Lettuce mosaic virus among Arabidopsis thaliana accessions. Molecular Plant-Microbe Interactions 16, 608–616.

Roossinck MJ. 2005. Symbiosis versus competition in plant virus evolution. Nature Reviews. Microbiology 3, 917–924.

Roossinck MJ. 2015. Plants, viruses and the environment: ecology and mutualism. Virology 479–480, 271–277.

Rumbou A, von Bargen S, Buttner C. 2009. A model system for plant–virus interaction—infectivity and seed transmission of Cherry leaf roll virus (CLRV) in Arabidopsis thaliana. European Journal of Plant Pathology 124, 527–532.

Sade D, Sade N, Shriki O, et al. 2014. Water balance, hormone homeostasis, and sugar signaling are all involved in tomato resistance to Tomato yellow leaf curl virus. Plant Physiology 165, 1684–1697.

Scholthof KB, Adkins S, Czosnek H, et al. 2011. Top 10 plant viruses in molecular plant pathology. Molecular Plant Pathology 12, 938–954.
Selin C, de Kievit TR, Belmonte MF, Fernando WG. 2016. Elucidating the role of effectors in plant–fungal interactions: progress and challenges. Frontiers in Microbiology 7, 500.

Skotnicki ML, Mackenzie AM, Torronen M, Gibbs AJ. 1993. The genomic sequence of cardamine chlorotic fleck carnovirus. Journal of General Virology 74, 1933–1937.

Stevens M, Freeman B, Liu HY, Herrbach E, Lemaire O. 2005. Beet poleroviruses: close friends or distant relatives? Molecular Plant Pathology 6, 1–9.

Strating JR, van Kuppeveld FJ. 2017. Viral rewiring of cellular lipid metabolism to create membranous replication compartments. Current Opinion in Cell Biology 47, 24–33.

Takahashi H, Goto N, Ebara Y. 1994. Hypersensitive response in cucumber mosaic virus-inoculated Arabidopsis thaliana. The Plant Journal 6, 369–377.

Vega-Arreguín JC, Gronenborn B, Ramírez BC. 2007. Arabidopsis thaliana is a host of the legume nanovirus Faba bean necrotic yellows virus. Virus Research 128, 81–87.

Verchot J. 2016a. Plant virus infection and the ubiquitin proteasome machinery: arms race along the endoplasmic reticulum. Viruses 8, 314.

Verchot J. 2016b. How does the stressed out ER find relief during virus infection? Current Opinion in Virology 17, 74–79.

Weigel D. 2012. Natural variation in Arabidopsis: from molecular genetics to ecological genomics. Plant Physiology 158, 2–22.

Woolhouse M, Scott F, Hudson Z, Howey R, Chase-Topping M. 2012. Human viruses: discovery and emergence. Philosophical Transactions of the Royal Society B: Biological Sciences 367, 2864–2871.

Xu J, Chua NH. 2011. Processing bodies and plant development. Current Opinion in Plant Biology 14, 88–93.

Yamaji Y, Maejima K, Ozeki J, et al. 2012. Lectin-mediated resistance impairs plant virus infection at the cellular level. The Plant Cell 24, 778–793.

Yang M, Zhang Y, Xie X, Yue N, Li J, Wang XB, Han C, Yu J, Liu Y, Li D. 2018. Barley stripe mosaic virus γb protein subverts autophagy to promote viral infection by disrupting the ATG7–ATG8 interaction. The Plant Cell 30, 1582–1595.

Ye J, Yang J, Sun Y, Zhao P, Gao S, Jung C, Qu J, Fang R, Chua NH. 2015. Geminivirus activates ASYMMETRIC LEAVES 2 to accelerate cytoplasmic DCP2-mediated mRNA turnover and weakens RNA silencing in Arabidopsis. PLoS Pathogens 11, e1005196.

Zhao JH, Hua CL, Fang YY, Guo HS. 2016. The dual edge of RNA silencing suppressors in the virus–host interactions. Current Opinion in Virology 17, 39–44.

Zorzatto C, Machado JP, Lopes KV, et al. 2015. NIK1-mediated translation suppression functions as a plant antiviral immunity mechanism. Nature 520, 679–682.