Determining the Relationship between Triglycerides and Arterial Stiffness in Cardiovascular Risk Patients Without Low-Density Lipoprotein Cholesterol-Lowering Therapy
The Coupling Registry

Hiromitsu Sekizuka,1 MD, Satoshi Hoshide,2 MD, Tomoyuki Kabutoya,2 MD and Kazuomi Kario,2 MD

Summary
Data examining the relationship between arterial stiffness and triglyceride (TG) and other cardiovascular risk factors have remained to be sparse.

Of the 5,109 patients with any cardiovascular risk factors in the Cardiovascular Prognostic Coupling Study in Japan (the Coupling Registry), the data of 1,534 patients who had no history of cardiovascular disease and were without low-density lipoprotein cholesterol (LDL-C)-lowering therapy (average age 67.9 ± 12.0 years, 55% males) were analyzed. Arterial stiffness was evaluated using the cardio-ankle vascular index (CAVI).

Among the clinical and behavioral cardiovascular risk factors, the significant factors that constituted the CAVI value were smoking, diabetes, lower high-density lipoprotein cholesterol, and higher TG. After adjustment for age, sex, and body mass index (BMI), only TG (odds ratio [OR] per 1 standard deviation, 1.26 [95% confidence interval, 1.12-1.44]) and diabetes (OR, 1.52 [1.22-1.90]) were found to be associated with a risk of higher CAVI (≥ 9.0). TG (C-statistic, 0.80 [0.78-0.82]; \(P = 0.040 \)) and diabetes (C-statistic, 0.80 [0.78-0.82]; \(P = 0.038 \)) significantly improved the discrimination of the risk of a higher CAVI beyond the model that included age, sex, and BMI.

TG was associated with a risk of arterial stiffness, and its contribution was slight but almost the same as that of diabetes among patients who had cardiovascular risk without a history of cardiovascular disease and LDL-C-lowering therapy.

Key words: Atherosclerosis, Dyslipidemia, Cardiovascular disease, Cardio-ankle vascular index, Diabetes mellitus

Arterial stiffness, which involves structural and physiological changes in the arteries, has been identified to be associated with risk of cardiovascular disease (CVD) events.1,2) Although there are several established traditional cardiovascular risk factors such as age, male gender, smoking, hypertension, low-density lipoprotein cholesterol (LDL-C), diabetes, and chronic kidney disease (which all contribute as risk factors of arterial stiffness), the contribution of each risk factor to the risk of CVD events is different.3,5) In epidemiological studies, triglyceride (TG) has been recognized as an important marker of CVD events.5-9) However, the most recent trial using omega-3 fatty acid (which primarily lowers the body’s TG level) did not observe any significant reduction in statin-treated CVD events.10) The association between TG and CVD events has thus, remained in the modern era despite aggressive treatment with LDL-C-lowering therapy.

The cardio-ankle vascular index (CAVI), which is a noninvasive vascular function test, is widely used as a surrogate marker of both arterial stiffness and the risk of CVD.11-13) In several cross-sectional studies, the clinical and behavioral cardiovascular risk factors including TG have been determined as significant factors that constituted the CAVI.14-16) However, a part of those studies did not take LDL-C-lowering therapy into consideration.16) Most importantly, a majority of those studies did not compare the relationship between arterial stiffness and TG and other cardiovascular risk factors.

In this study, we investigated whether TG is associated with the CAVI in a modern cohort that consisted of a large Japanese population with cardiovascular risk. We also compared the risk discrimination of the CAVI between TG and other cardiovascular risk factors. We targeted individuals without lipid-lowering therapy to clearly test the association between TG and the CAVI; we have also extended the search for this association based on the specified threshold of LDL-C, speculating that the asso-
cation between TG and CAVI would be attenuated in the group with higher LDL-C level and might be more remarkable in the group with lower LDL-C level. These speculations were based on the strong evidence about the association between lipid-lowering statin therapy/LDL-C level and arterial stiffness.17-19

Methods

Subjects: The protocol of the Cardiovascular Prognostic Coupling Study in Japan (the Coupling Registry) has been registered at the University Hospital Medical Information Network Clinical Trials Registry (UMIN-CTR) website under the trial number UMIN000018474.20 Briefly, the Coupling Registry is a nationwide multicenter prospective cohort study to determine CAVI values that are predictive of cardiovascular events in Japanese patients aged ≥ 30 years with any of the following cardiovascular risk factors observed at a clinic or hospital: diabetes, glucose tolerance disorder, dyslipidemia, high-normal normotension or grade I-III hypertension (> 130/85 mm Hg), current smoking, chronic kidney disease (estimated glomerular filtration rate < 60 mL/minute/1.73 m2 and/or positive proteinuria), and medical history of CVD (coronary artery disease, cerebrovascular disorder or non-cardiogenic cerebrovascular disorder, aortic dissection, peripheral artery disease, history of hospitalization by heart failure).

Patients with any of the following were excluded: chronic renal failure requiring hemodialysis; other serious illnesses (e.g., end-stage cancer, active connective tissue disease); alcohol or drug addiction; inability to attend hospital visits or provide informed consent; or other factors rendering them inappropriate as judged by the study physician.

This research was conducted in accordance with the Helsinki Declaration. The ethics committee of the internal review board of the Jichi Medical University School of Medicine approved the protocol. The Fujitsu Clinic Ethics Committee reviewed this study, and we obtained the approval of the Committee before conducting this study (Ethical Committee Approval No. 13). The study protocol was registered on the clinical trials registration site, i.e., the UMIN-CTR, under registration no. UMIN000018474. Written informed consent was obtained from all subjects enrolled in this study.

Measurement of blood pressure: Clinic blood pressure (BP) was measured after 5 minutes of rest as the average of 2 serial measurements taken by a physician or nurse using the same validated methods used in their clinical practice. We obtained each subject’s systolic and diastolic BP and pulse rate.21

Measurement of the CAVI: The CAVI was measured using a VaSera VS-1000 device (Fukuda Denshi, Tokyo), with the subject in the recumbent position, and it was calculated automatically using a VaSera VS-Series Vascular Screening System (Fukuda Denshi). Measurement of the CAVI requires the placement of electrocardiogram electrodes on both wrists and a microphone for phonocardiography on the sternum in the second intercostal space. In addition, a BP cuff is wrapped around each of the 4 extremities. In this manner, the upper arm and ankle pulse waves, as well as BP, can all be measured using plethysmography. The CAVI value was calculated as the average of the right and left CAVI values. We defined a higher CAVI as ≥ 9.0, which was established as being associated with the progression of CVD events.12,22

Statistical analyses: The data are expressed as the mean ± standard deviation (SD) or percentage. Correlations between parametric variables were analyzed using Pearson’s correlation coefficient. The difference in CAVI between males and females was analyzed using Mann-Whitney U-test. We performed a multiple regression analysis using the entire population to evaluate the association between each cardiovascular risk factor and the CAVI after adjustment for age, sex, and BMI. The predictive performance of each variable was calculated and compared with each other by a receiver operating characteristics analysis.

An optimized LDL-C level is the most important factor for preventing the progression of arteriosclerosis and the onset of CVD.1,4 Therefore, to dilute the effect of the LDL-C level on CAVI, we further performed a similar analysis for the association between TG and CAVI after dividing the subjects into 2 groups, that is, those with LDL-C ≥ 140 mg/dL and those with LDL-C < 140 mg/dL, according to the Japan Atherosclerosis Society definition of hypercholesterolemia,19 and then a similar analysis was performed. Statistical analyses were conducted using the JMP software program for Windows (ver. 10.0; SAS Institute, Cary, NC, USA) and STATA ver. 15.0 software (StataCorp, College Station, TX). Significant differences were defined at a P-value for the hazard ratio of < 0.05.

Results

Background characteristics of the subjects: The CAVI has been measured in 5,109 patients in the Coupling Registry. Of these patients, those missing LDL-C, high-density lipoprotein cholesterol (HDLC), or TG data ($n = 1,499$), those with a history of CVD ($n = 1,207$), and those with LDL-C-lowering therapy (i.e., those taking statins; $n = 2,393$) were excluded from analysis. Thus, in total, the data of the remaining 1,534 participants were analyzed (Figure 1). The average age and BMI were 67.9 ± 12.0 years old and 24.5 ± 4.1 kg/m2, respectively. Of these, 850 (55%) were male. The average CAVI value was 8.8 ± 1.4. The prevalence and extent of other cardiovascular risk are shown in Table I. The distributions of TG and CAVI are illustrated in Figures 2, 3.

Association between cardiovascular risk and CAVI: Age ($r = 0.574$; $P < 0.001$) and BMI ($r = -0.327$; $P < 0.001$) were significantly associated with CAVI. Males had higher CAVI than females (8.9 ± 1.4 versus 8.6 ± 1.3, $P < 0.001$). In the multiple regression analysis adjusted for age, sex, and BMI, the presence of diabetes, current smoking, HDLC, and TG were associated with the CAVI,
while the presence of hypertension, chronic kidney disease, and LDL-C was not (model 1 in Table II). In the multiple regression analysis that included age, sex, BMI, and the significant risk factors in model 1, the presence of diabetes ($\beta = 0.12$ and $P < 0.001$), current smoking ($\beta = 0.04$ and $P = 0.030$), and TG ($\beta = 0.05$ and $P = 0.042$) were independently associated with the CAVI (Model 2 in Table II). In addition, 87 patients were determined to be taking fibrates (bezafibrate and fenofibrate), representing only 6% of the total patients. When we performed further analysis adding the use of fibrates as a covariate, the association between TG and CAVI remained the same in both model 1 ($\beta = 0.05$, $P < 0.001$) and model 2 ($\beta = 0.04$, $P = 0.49$).

We next investigated the association between cardiovascular risk factors and higher CAVI (≥ 9.0). After adjustment for age, sex, and BMI, we observed that TG (odds ratio [OR] per 1 SD, 1.26; 95% confidence interval [CI]: 1.12-1.44), the presence of diabetes (OR, 1.52; 95% CI: 1.22-1.90), and chronic kidney disease (OR, 1.93; 95% CI: 1.51-2.47) were associated with the risk of a higher CAVI (≥ 9.0), but the presence of hypertension, smoking, and LDL-C were not (Table III).

Discrimination of cardiovascular risk for CAVI: We assessed the discriminative performance of cardiovascular risk factors for a higher CAVI by using C-statistics. When each cardiovascular risk factor was added to the base model that included age, sex, and BMI, we observed that TG ($P = 0.040$) and diabetes ($P = 0.038$) significantly improved the model of discrimination of the risk of a higher CAVI, whereas chronic kidney disease did not (Table III).

Association between cardiovascular risk and the CAVI stratified by LDL-C levels: When we divided the subjects into a lower LDL-C group (< 140 mg/dL, $n = 1,232$) and a higher LDL-C group (≥ 140 mg/dL, $n = 302$), the results of a multiple regression analysis showed that the presence of diabetes, current smoking, HDL-C, and TG were associated with CAVI adjusted for age, sex, and BMI in the subjects with LDL-C < 140 mg/dL (model 1 in Table IV). In a multiple regression analysis that included age, sex, BMI, and significant risk factors from model 1, the presence of diabetes ($\beta = 0.13$ and $P < 0.001$), current smoking ($\beta = 0.05$ and $P = 0.046$), and TG ($\beta = 0.06$ and $P = 0.022$) were determined to be independently associated with the CAVI (model 2 in Table IV). In the subjects with LDL-C values ≥ 140 mg/dL, only HDL-C ($\beta = -0.10$ and $P = 0.037$) was associated with CAVI (Table IV).

Table V showed the association between cardiovascular risk factors and a higher CAVI after the subjects are divided into with and without LDL-C values ≥ 140 mg/dL. In the subjects with LDL-C < 140 mg/dL, after adjustment for age, sex, and BMI, the presence of diabetes,
chronic kidney disease, and TG were associated with the risk of a higher CAVI, whereas in the subjects with LDL-C values ≥ 140 mg/dL, this association was identified for hypertension and chronic kidney disease. Concerning the discrimination of cardiovascular risk factors for a higher CAVI, adding TG or diabetes to the base model that included age, sex, and BMI tended to improve the model of discrimination of the risk of a higher CAVI in the subjects with LDL-C < 140 mg/dL.
Table II. Multiple Linear Regression Analysis with Cardio-Ankle Vascular Index as Dependent Factor (n = 1,534)

Variables	Model 1	Model 2		
	β	P-value	β	P-value
Diabetes (0 = no, 1 = yes)	0.13	< 0.001	0.12	< 0.001
Hypertension (0 = no, 1 = yes)	-0.02	0.268	-	-
Smoking (no = 0, 1 = yes)	0.05	0.008	0.04	0.030
Chronic kidney disease (0 = no, 1 = yes)	-0.03	0.163	-	-
LDL-C (1 mg/dL)	0.00	0.992	-	-
HDL-C (1 mg/dL)	-0.06	0.006	-0.03	0.235
TG (1 mg/dL)	0.07	< 0.001	0.05	0.042

In model 1, each variable was added separately to the baseline regression models, which included age, sex, and BMI. In model 2, each variable was added separately to the model, which included age, sex, BMI, and selected covariates that were significant in model 1 (diabetes, smoking, HDL-C, and TG).

Table III. Multiple Logistic Regression Analysis and Change in Model Discrimination with Cardio-Ankle Vascular Index ≥ 9 as Dependent Factor

	OR (95% CI) of each variable	P-value	C-statistic	P-value of change from base model
Base model	-	-	0.79 (0.77, 0.81)	-
+ Diabetes (0 = no, 1 = yes)	1.52 (1.22–1.90)	< 0.001	0.80 (0.78, 0.82)	0.038
+ Hypertension (0 = no, 1 = yes)	1.33 (0.98–1.82)	0.066	0.79 (0.77, 0.82)	0.772
+ Smoking (no = 0, 1 = yes)	1.15 (0.83–1.62)	0.396	0.80 (0.77, 0.82)	0.296
+ Chronic kidney disease (0 = no, 1 = yes)	1.93 (1.51–2.47)	< 0.001	0.79 (0.77, 0.81)	0.872
+ LDL-C, per 1 SD	1.03 (0.91–1.16)	0.623	0.79 (0.77, 0.81)	0.935
+ HDL-C, per 1 SD	0.88 (0.78–1.00)	0.056	0.79 (0.77, 0.82)	0.206
+ TG, per 1 SD	1.26 (1.12–1.44)	< 0.001	0.80 (0.78, 0.82)	0.040

The base model included age, sex, and BMI. One SD increment of each measure is as follows: LDL-C, per 28.7 mg/dL; HDL-C, per 17.1 mg/dL; TG, per 79.6 mg/dL.

Table IV. Multiple Linear Regression Analysis with Cardio-Ankle Vascular Index as the Dependent Factor in LDL-C < 140 mg/dL and LDL-C ≥ 140 mg/dL

Variables	LDL-C < 140 mg/dL (n = 1,232)	LDL-C ≥ 140 mg/dL (n = 302)				
	Model 1	Model 2	Model 1	Model 2		
	β	P-value	β	P-value	β	P-value
Diabetes (0 = no, 1 = yes)	0.14	< 0.001	0.13	< 0.001	0.06	0.169
Hypertension (0 = no, 1 = yes)	-0.04	0.067	-	-	0.05	0.275
Smoking (no = 0, 1 = yes)	0.06	0.014	0.05	0.046	0.05	0.315
Chronic kidney disease (0 = no, 1 = yes)	-0.02	0.297	-	-	-0.04	0.368
LDL-C (1 mg/dL)	0.00	0.987	-	-	-0.07	0.129
HDL-C (1 mg/dL)	-0.05	0.034	-0.02	0.535	-0.10	0.037
TG (1 mg/dL)	0.08	< 0.001	0.06	0.022	0.02	0.638

In model 1, each variable was added separately to the baseline regression models, which included age, sex, and BMI. In model 2, each variable was added separately to the model, which included age, sex, BMI, and selected covariates that were significant in model 1 (diabetes, smoking, HDL-C, and TG).

Discussion

The findings of this study can be summarized as follows: in the patients aged ≥ 30 years with one or more cardiovascular risks who had no history of CVD and who had not taken LDL-C-lowering therapy, (1) the presence of diabetes, smoking, and TG were independently associated with the CAVI as a continuous variable. (2) As a categorical variable, only the addition of diabetes and TG improved the model discrimination for a higher CAVI, for which the contributions were slight but almost the same as that of diabetes. (3) These associations were marginally consistent in the subjects with LDL-C < 140 mg/dL, but not in those with LDL-C ≥ 140 mg/dL. **Hypertriglyceridemia and CAVI:** Our analyses revealed that TG had a significant positive effect on the CAVI in the entire cohort and in the LDL-C < 140 mg/dL group when adjusted for age, sex, and BMI in each group. Although there have been reports examining the association between hypertriglyceridemia and high CAVI values.
their results have been inconsistent.25-27) In a population
with uncontrolled mean LDL-C levels or without measured LDL-C data (174.4 mg/dL or no records), no signifi-
cant association was noted between hypertriglyceridemia and CA VI values.14-16) Our present findings support the results
of those studies, because the mean LDL-C level in this
study was relatively low (115.1 ± 28.7 mg/dL).

In studies examining the coronary artery disease risk
assessment using Mendelian randomization, TG was re-
garded as a significant positive risk factor, along with
LDL-C and non-fasting plasma glucose.28) In addition, al-
though high LCL-C levels are an important risk factor for CVD, lowering the LDL-C alone cannot sufficiently sup-
press the onset of CVD. Even though LDL-C in patients with metabolic syndrome was shown to be strongly re-
duced by statins, it was not possible to counteract cardio-
vascular risk factors other than LDL-C for the onset of CVD.29) In that report, TG remained as a significant factor
along with fasting plasma glucose as cardiovascular risks.29

There is also a meta-analysis demonstrating that fi-
brate use for hypertriglyceridemia reduced major CVD
events by 25% when limited to primary pre-
vention.30) Namely, next to hyper-LDL-cholesterolemia,
hypertriglyceridemia as a residual risk has been identified
to be vital (along with hyperglycemia) in efforts to sup-
press the onset of CVD.

However, we observed no significant association be-
 tween LDL-C levels and CAVI in this study. In earlier in-
vestigations, the association between the lipid profile and
CAVI has also shown inconsistent results. Although LDL-
C has been recognized as an established major risk factor for arteriosclerosis, several studies reported that there was no association between LDL-C and CAVI levels.31,32) The pathological processes in the early phase of atherogenesis are initiated by accumulation of LDL-C, followed by cell-
ular infiltration and foam cell formation.33) There is a pos-
sibility that initial lipidosis induced by infiltration of
LDL-C may soften the arterial wall.34) The effect of statins
on CAVI levels has been considered regarding this dis-
crepancy, but this has not been established.35,36) We thus,
include subjects who had not been treated with an LDL-
C-lowering therapy including statin, but our findings are
similar to those of the previous studies. Further research is
necessary to clarify the association between LDL-C and
CAVI.

Hypertriglyceridemia, diabetes mellitus, and cardiovas-
cular risk: Interestingly, in this study, the inclusion of
high TG level improved the model discrimination for a
higher CAVI, similar to diabetes. Although diabetes has
been established as an important risk factor for CVD,37)
the risk posed by TG for CVD has been debated as men-
tioned above. The TG level in Japanese subjects with type
2 diabetes is considered a major predictor of CVD, com-
parable to LDL-C.38) It is possible that our present find-
ings indicate that hypertriglyceridemia along with diabetes mellitus could pose a residual risk among lipid items.

There have been several investigations examining the
association between both TG and diabetes and the CAVI,
and the results of the majority of those investigations have
failed to determine whether the treatment of TG or diabe-
tes has greater clinically meaningful improvement that
would affect the risk of a high CAVI. In this study, we as-
essed this association with the use of C-statistics, and our
findings indicated that the TG level is clinically meaning-
ful for arterial stiffness, equal to incident diabetes.

Study limitations: The blood test data in this study were
analyzed without taking into account the time of the
blood collection. It has been acknowledged that there is
no difference in terms of LDL-C and HDL-C between
non-fasting and fasting conditions.39) In contrast, several
previous papers reported that TG was more predictive of
a CVD incident in non-fasting than in fasting blood collec-
tion.36,39) While other papers reported that TG was associ-
ated with CVD incidence irrespective of fasting condi-
tion.40) Thus, the debate remains about the ability of non-
fasting TG to predict the onset of CVD.34,41)

As a result, the effects of high TG levels and the use

Table V. Multiple Logistic Regression Analysis and Change in Model Discrimination with CAVI ≥ 9 as Dependent Factor in LDL-C < 140 mg/dL and LDL-C ≥ 140 mg/dL

Variables	LDL-C < 140 mg/dL (n = 1,232)	LDL-C ≥ 140 mg/dL (n = 302)					
	OR (95% CI) of each variable	P-value	C-statistic	OR (95% CI) of each variable	P-value	C-statistic	
Base model	–	–	0.79 (0.76, 0.81)	–	–	–	
+ Diabetes (0 = no, 1 = yes)	1.46 (1.14–1.87)	0.003	0.79 (0.77, 0.82)	1.61 (0.95–2.74)	0.076	0.82 (0.78, 0.87)	
+ Hypertension (0 = no, 1 = yes)	1.16 (0.81–1.66)	0.424	0.79 (0.76, 0.81)	1.91 (1.02–3.73)	0.044	0.82 (0.77, 0.87)	
+ Smoking (no = 0, 1 = yes)	1.03 (0.70–1.49)	0.890	0.79 (0.77, 0.81)	1.24 (0.50–2.99)	0.637	0.82 (0.77, 0.87)	
+ Chronic kidney disease (0 = no, 1 = yes)	1.35 (1.50–2.56)	< 0.001	0.79 (0.76, 0.81)	2.04 (1.06–3.97)	0.033	0.82 (0.77, 0.87)	
+ LDL-C, per 1SD	1.02 (0.90–1.17)	< 0.001	0.79 (0.76, 0.81)	0.493	0.49 (0.20–0.94)	0.018	0.83 (0.78, 0.87)
+ HDL-C, per 1SD	0.92 (0.80–1.05)	0.213	0.79 (0.76, 0.81)	0.451	0.72 (0.53–0.97)	0.032	0.82 (0.78, 0.87)
+ TG, per 1SD	1.30 (1.13–1.50)	< 0.001	0.79 (0.77, 0.82)	0.054	1.06 (0.75–1.48)	0.730	0.82 (0.77, 0.87)

The base model included age, sex, and BMI. One SD increment of each measure is as follows: LDL-C, per 22.1 mg/dL; HDL-C, per 17.7 mg/dL; TG, per 82.1 mg/dL in LDL-C < 140 mg/dL and LDL-C, per 13.7 mg/dL; HDL-C, per 14.3 mg/dL; TG, per 67.3 mg/dL in LDL-C ≥ 140 mg/dL.
of fibrates and antidiabetes/hypertension drugs on the CAVI levels were unclear in this study.

TG was not significantly associated with CAVI value in those with LDL-C ≥ 140 mg/dL, which may have been due to the insufficient sample size, because of the nature of subanalysis.

Conclusion: In this cohort, high TG was associated with a risk of arterial stiffness assessed using the CAVI, and its contribution was slight but almost the same as that of diabetes in the subjects who had cardiovascular risk with a history of CVD and LDL-C-lowering therapy. These findings were remarkable in the subjects with lower LDL-C. For the primary prevention of CVD events, hypertriglyceridemia may be a potential therapeutic target among dyslipidemias. It is necessary to prospectively examine whether CAVI-guided therapy in patients with cardiovascular risks can suppress the onset of CVD. It is also necessary to verify this with the Coupling Registry study.

Disclosure

Conflicts of interest: Kazuomi Kario has received research funding from Fukuda Denshi Co. All other authors have no conflicts of interest to declare.

References

1. Nakamura K, Tomaru T, Yamamura S, Miyashita Y, Shirai K, Noike H. Cardio-ankle vascular index is a candidate predictor of coronary atherosclerosis. Circ J 2008; 72: 598-604.
2. Schwartzkopff B, Motz W, Frenzel H, Vogt M, Knauer S, Strauer BE. Structural and functional alterations of the intra-myocardial coronary arterioles in patients with arterial hypertension. Circulation 1993; 88: 993-1003.
3. D’Agostino RB Sr, Vasan RS, Pencina MJ, et al. General cardiovascular risk profile for use in primary care: The Framingham Heart Study. Circulation 2008; 117: 743-53.
4. Nishimura K, Okamura T, Watanabe M, et al. Predicting coronary heart disease using risk factor categories for a Japanese urban population, and comparison with the Framingham risk score: The Suita Study. J Atheroscler Thromb 2014; 21: 784-98.
5. Arima H, Yonemoto K, Doi Y, et al. Development and validation of a cardiovascular risk prediction model for Japanese: The Hisayama Study. Hypertens Res 2009; 32: 1119-22.
6. Schwartz GG, Abt M, Bao W, et al. Fasting triglycerides predict recurrent ischemic events in patients with acute coronary syndrome treated with statins. J Am Coll Cardiol 2015; 65: 2267-75.
7. ACCORD Study Group, Ginsberg HN, Elam MB, et al. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med 2010; 362: 1563-74.
8. Liu D, Guan L, Zhao Y, et al. Association of triglycerides to high-density lipoprotein cholesterol ratio with risk of incident hypertension. Hypertens Res 2020; 43: 948-55.
9. Ohshima H, Adachi H, Enomoto M, et al. Association between growth hormone and hypertension in a general population. Hypertens Res 2020; 43: 1430-6.
10. Nicholls SJ, Lincoff AM, Garcia M, et al. Effect of high-dose omega-3 fatty acids vs corn oil on major adverse cardiovascular events in patients at high cardiovascular risk: The STRENGTH Randomized Clinical Trial. JAMA 2020; 324: 2268-80.
11. Shirai K, Hiruta N, Song M, et al. Cardio-ankle vascular index (CAVI) as a novel indicator of arterial stiffness: Theory, evidence, and perspectives. J Atheroscler Thromb 2011; 18: 924-38.
12. Kubota Y, Maebuchi D, Takei M, et al. Cardio-ankle vascular index is a predictor of cardiovascular events. Artery Res 2011; 5: 91-6.
13. Sato Y, Nagayama D, Saiki A, et al. Cardio-ankle vascular index is independently associated with future cardiovascular events in outpatients with metabolic disorders. J Atheroscler Thromb 2016; 23: 596-605.
14. Pavlovska I, Kunzova S, Jakubik J, et al. Associations between high triglycerides and arterial stiffness in a population-based sample: Kardiovize Brno 2030 study. Lipids Health Dis 2020; 19: 170.
15. Nagayama D, Watanabe Y, Saiki A, Shirai K, Tatsuono I. Lipid parameters are independently associated with cardio-ankle vascular index (CAVI) in healthy Japanese subjects. J Atheroscler Thromb 2018; 25: 621-33.
16. Wang H, Liu J, Zhao H, et al. Relationship between cardio-ankle vascular index and plasma lipids in hypertension subjects. J Hum Hypertens 2015; 29: 105-8.
17. Noda H, Iso H, Irie F, Sairienchi T, Ohtaka E, Ohta H. Gender difference of association between LDL cholesterol concentrations and mortality from coronary heart disease among Japanese: The Ibaraki Prefectural Health Study. J Intern Med 2010; 267: 576-87.
18. Imamura T, Doi Y, Arima H, et al. LDL cholesterol and the development of stroke subtypes and coronary heart disease in a general Japanese population: The Hisayama Study. Stroke 2009; 40: 382-8.
19. Kinoshita M, Yokote K, Arai H, et al. Japan Atherosclerosis Society (JAS) guidelines for prevention of atherosclerotic cardiovascular Diseases 2017. J Atheroscler Thromb 2018; 25: 846-984.
20. Kario K, Kabutoya T, Fujiwara T, et al. Rationale, design, and baseline characteristics of the cardiovascular prognostic coupling study in Japan (the Coupling Registry). J Clin Hypertens (Greenwich) 2020; 22: 465-74.
21. Kabutoya T, Hoshide S, Fujiwara T, et al. Age-related difference of the association of cardiovascular risk factors with the cardio-ankle vascular index in the cardiovascular Prognostic Coupling Study in Japan (the Coupling Registry). J Clin Hypertens (Greenwich) 2020; 22: 1208-15.
22. Izuhara M, Shinji K, Kadota S, et al. Relationship of cardio-ankle vascular index (CAVI) to carotid and coronary arteriosclerosis. Circ J 2008; 72: 1762-7.
23. Nagayama D, Imamura H, Sato Y, et al. Inverse relationship of cardioankle vascular index with BMI in healthy Japanese subjects: A cross-sectional study. Vasc Health Risk Manag 2017; 13: 1-9.
24. Fischer S, Schatz U, Julius U. Practical recommendations for the management of hyperlipidemia. Atheroscler Suppl 2015; 18: 194-8.
25. Topouzian J, Labat C, Gautier S, et al. Effects of metabolic syndrome on arterial function in different age groups: the advanced approach to arterial stiffness study. J Hypertens 2018; 36: 824-33.
26. Nam SH, Kang SG, Lee YA, Song SW, Rho JS. Association of metabolic syndrome with the cardioankle vascular index in asymptomatic Korean population. J Diabetes Res 2015; 2015: 328585.
27. Laucevičius A, Ryliskytė L, Balsytė J, et al. Association of cardio-ankle vascular index with cardiovascular risk factors and cardiovascular events in metabolic syndrome patients. Medicina (Kaunas) 2015; 51: 152-8.
28. Jansen H, Samani NJ, Schunkert H. Mendelian randomization studies in coronary artery disease. Eur Heart J 2014; 35: 1917-24.
29. Deedwania P, Barter P, Carmena R, et al. Reduction of low-density lipoprotein cholesterol in patients with coronary heart disease and metabolic syndrome: analysis of the treating to new targets study. Lancet 2006; 368: 919-28.
30. Jun M, Foote C, Ly J, et al. Effects of fibrates on cardiovascular
outcomes: a systematic review and meta-analysis. Lancet 2010; 375: 1875-84.
31. Homma S, Kato K, Hayashi J, Yamamoto M. Negative associations between arterial stiffness parameter evaluated by cardio-ankle vascular index and serum low-density lipoprotein cholesterol concentration in early-stage atherosclerosis. Angiology 2015; 66: 143-9.
32. Suzuki J, Kuross T, Kon T, Tomaru T. Impact of cardiovascular risk factors on progression of atherosclerosis in younger patients: evaluation by carotid duplex ultrasonography and cardio-ankle vascular index (CAVI). J Atheroscler Thromb 2014; 21: 554-62.
33. Pentikäinen MO, Oörni K, Ala-Korpela M, Kovanen PT. Modified LDL-Trigger of atherosclerosis and inflammation in the arterial intima. J Intern Med 2000; 247: 359-70.
34. Soska V, Dobsak P, Dusek L, et al. Cardio-ankle vascular index in heterozygous familial hypercholesterolemia. J Atheroscler Thromb 2012; 19: 453-61.
35. Miyashita Y, Endo K, Saiki A, et al. Effects of pitavastatin, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, on cardio-ankle vascular index in type 2 diabetic patients. J Atheroscler Thromb 2009; 16: 539-45.
36. Sone H, Tanaka S, Tanaka S, et al. Serum level of triglycerides is a potent risk factor comparable to LDL cholesterol for coronary heart disease in Japanese patients with type 2 diabetes: subanalysis of the Japan Diabetes Complications Study (JDCS). J Clin Endocrinol Metab 2011; 96: 3448-56.
37. Nordestgaard BG, Langsted A, Mora S, et al. Fasting is not routinely required for determination of a lipid profile: Clinical and laboratory implications including flagging at desirable concentration cut-points—a joint consensus statement from the European Atherosclerosis Society and European Federation of Clinical Chemistry and Laboratory Medicine. Eur Heart J 2016; 37: 1944-58.
38. Tada H, Nomura A, Yoshimura K, et al. Fasting and non-fasting triglycerides and risk of cardiovascular events in diabetic patients under statin therapy. Circ J 2020; 84: 509-15.
39. Jackson KG, Poppitt SD, Minihane AM. Postprandial lipemia and cardiovascular disease risk: Interrelationships between dietary, physiological, and genetic determinants. Atherosclerosis 2012; 220: 22-33.
40. Iso H, Imano H, Yamagishi K, et al. Fasting and non-fasting triglycerides and risk of ischemic cardiovascular disease in Japanese men and women: The Circulatory Risk in Communities Study (CIRCS). Atherosclerosis 2014; 237: 361-8.
41. Nakayama A, Morita H, Sato T, et al. Small dense low-density lipoprotein cholesterol is a potential marker for predicting laser treatment for retinopathy in diabetic patients. J Atheroscler Thromb 2021; 62889.