ON THE LS-CATEGORY OF HOMOMORPHISMS

ALEXANDER DRANISHNIKOV AND NURSULTAN KUANYSHOV

Abstract. We prove the equality \(\text{cat}(\phi) = \text{cd}(\phi) \) for homomorphisms \(\phi : \Gamma \to \Lambda \) of a torsion free finitely generated nilpotent groups \(\Gamma \) to an arbitrary group \(\Lambda \). We construct an epimorphism \(\psi : G \to H \) between geometrically finite groups with \(\text{cat}(\psi) > \text{cd}(\psi) \).

1. Introduction

Definition 1.1. The (reduced) Lusternik-Schnirelmann category (LS-category), \(\text{cat} \) of an ANR space \(X \) is the minimal number \(k \) such that \(X \) admits an open cover by \(k + 1 \) sets \(U_0, U_1, \ldots, U_k \) such that each \(U_i \) is contractible in \(X \).

The Lusternik-Schnirelmann category is an important invariant, since it gives a lower bound on the number of critical points for a smooth real-valued function on a closed manifold [LS]. Since it is a homotopy invariant, it can be defined for discrete groups \(\Gamma \) as \(\text{cat} \Gamma = \text{cat} B\Gamma \) where \(B\Gamma = K(\Gamma, 1) \) is a classifying space. Eilenberg and Ganea [EG] proved that the LS-category of a discrete group equals its cohomological dimension, \(\text{cat}(\pi) = \text{cd}(\pi) \).

We recall that the cohomological dimension of a group \(\Gamma \) is defined as follows,

\[
\text{cd}(\Gamma) = \max \{ k \mid H^k(\Gamma, M) \neq 0 \}
\]

where the maximum is taken over all \(\mathbb{Z}\Gamma \)-modules \(M \).

Theorem 1.2 [Sch, DR]. For the cohomological dimension of a discrete group \(\Gamma \),

\[
\text{cd}(\Gamma) = \max \{ k \mid (\beta_{\Gamma})^k \neq 0 \}
\]

where \(\beta_{\Gamma} \in H^1(\Gamma, I(\Gamma)) \) is the Berstein-Schwarz class of \(\Gamma \).

The LS-category of the map \(f : X \to Y \), \(\text{cat} f \), is the minimal number \(k \) such that \(X \) admits an open cover by \(k + 1 \) open sets \(U_0, U_2, \ldots, U_k \) with nullhomotopic restrictions \(f|_{U_i} : U_i \to Y \) for all \(i \). The LS-category \(\text{cat} \phi \) of a group homomorphism \(\phi : \Gamma \to \pi \) is defined as \(\text{cat} f \) where the map \(f : B\Gamma \to B\pi \) induces the homomorphism \(\phi \) for the fundamental groups.

The cohomological dimension \(\text{cd}(\phi) \) of a group homomorphism \(\phi : \Gamma \to \pi \) was defined by Mark Grant about 10 years ago on Mathoverflow [Gr] as maximum of \(k \) such that there is a \(\pi \)-module \(M \) with the nonzero induced homomorphism \(\phi^* : H^k(\pi, M) \to H^k(\Gamma, M) \). In view of universality of the Berstein-Schwarz class [DR] for any homomorphism \(\phi : \Gamma \to \pi \)

\[
\text{cd}(\phi) = \max \{ k \mid \phi^*(\beta_{\pi})^k \neq 0 \}.
\]

This brings the inequality \(\text{cd}(\phi) \leq \text{cat} \phi \) for all homomorphisms.

In view of the equality \(\text{cd}(\Gamma) = \text{cat} \Gamma \), the following conjecture seems to be natural:

2000 Mathematics Subject Classification. Primary 55M30; Secondary 55M25, 57R65, 57R67.

Key words and phrases. Lusternik-Schnirelmann category, group homomorphism.
Conjecture 1.3. For any group homomorphism \(\phi : \Gamma \to \pi \) always
\[
\text{cat } \phi = \text{cd}(\phi).
\]

In [Sc] Jamie Scott considered this conjecture for geometrically finite groups and he proved it for monomorphisms of any groups and for homomorphisms of free and free abelian groups.

In [Gr] Tom Goodwillie gave an example of an epimorphism of an infinitely generated group \(\phi : G \to \mathbb{Z}^2 \) with \(\text{cd}(\phi) = 1 \) that disproves the conjecture.

In the first part of this paper we prove Conjecture 1.3 for finitely generated torsion free nilpotent groups. In the second part we present a finitely generated counterexample by constructing a map between aspherical manifolds \(f : M \to N \) with
\[
\text{cat } f > \text{cd}(f_\# : \pi_1(M) \to \pi_1(N)).
\]

2. Preliminaries

2.1. Nilpotent groups. The upper central series of a group \(\Gamma \) is a chain of subgroups
\[
e = Z_0 \leq Z_1 \leq \ldots \leq Z_n \leq \ldots
\]
where \(Z_1 = Z(\Gamma) \) is the center of the group, and \(Z_{i+1} \) is the preimage under the canonical epimorphism \(\Gamma \to \Gamma/Z_i \) of the center of \(\Gamma/Z_i \). A group \(\Gamma \) is nilpotent if \(Z_n = \Gamma \) for some \(n \).

The least such \(n \) is called the nilpotency class of \(\Gamma \), denoted \(\text{nil}(\Gamma) \). Note that the groups with the nilpotency class one are exactly abelian groups.

The lower central series of a group \(\Gamma \) is a chain of subgroups
\[
\Gamma = \gamma_0(\Gamma) \geq \gamma_1(\Gamma) \geq \gamma_2(\Gamma) \geq \ldots
\]
defined as \(\gamma_{i+1}(\Gamma) = [\gamma_i(\Gamma), \Gamma] \). It’s known that for nilpotent groups \(\Gamma \) the nilpotency class \(\text{nil}(\Gamma) \) equals the least \(n \) for which \(\gamma_n(\Gamma) = 1 \).

Proposition 2.1. (1) Let \(\phi : \Gamma \to \Gamma' \) be an epimorphism. Then \(\phi(Z(\Gamma)) \subset Z(\Gamma') \) and
\[
\phi(\gamma_i(\Gamma)) = \gamma_i(\Gamma') \quad \text{for all } i.
\]

(2) For any finitely generated torsion free nilpotent group \(\Gamma \), any \(z \in \Gamma \), and any \(n \in \mathbb{N} \) the condition \(z^n \in Z(\Gamma) \) implies \(z \in Z(\Gamma) \).

Proof. (1) Straightforward (see for example [B], Theorem 5.1.3).

(2) This is Mal’cev’s Theorem 1 in [Ma2]. We note that the proof there is not selfcontained. This statement follows from the fact that \(z \) and \(z^n \) have the same centralizers. The latter can be proven using Mal’cev theorem about embedding \(\Gamma \) into the group of unipotent upper triangular matrices [Ra] and the fact that \(z \) belongs to Zariski closure of \(z^n \). \(\square \)

Corollary 2.2. For any finitely generated torsion free nilpotent group \(\Gamma \) the group \(\Gamma/Z(\Gamma) \) is torsion free finitely generated nilpotent group.

Proof. The torsion free part follows from (2). The rest follows from (1). \(\square \)

We note that \(\text{nil}(\Gamma/Z(\Gamma)) < \text{nil}(\Gamma) \).

Suppose that \(G \) is a connected, simply connected nilpotent Lie group and \(\Gamma \subset G \) is a uniform lattice. Then \(G \) is the universal cover for \(\Gamma \) and \(N = G/\Gamma \) is an aspherical manifold, called a nilmanifold.
Mal’cev Theorem. Every torsion free finitely generated nilpotent group Γ can be realized as the fundamental group of some nilmanifold.

The corresponding simply connected Lie groups G is obtained as the Mal’cev completion of Γ.

2.2. Ganea-Schwarz’s approach to cat. Recall that an element of an iterated join $X_0 \ast X_1 \ast \cdots \ast X_n$ of topological spaces is a formal linear combination $t_0 x_0 + \cdots + t_n x_n$ of points $x_i \in X_i$ with $\sum t_i = 1$, $t_i \geq 0$, in which all terms of the form $0x_i$ are dropped. Given fibrations $f_i : X_i \to Y$ for $i = 0, \ldots, n$, the fiberwise join of spaces X_0, \ldots, X_n is defined to be the space $X_0 \ast Y X_1 \ast Y \cdots \ast Y X_n = \{ t_0 x_0 + \cdots + t_n x_n \in X_0 \ast \cdots \ast X_n \mid f_0(x_0) = \cdots = f_n(x_n) \}$. The fiberwise join of fibrations f_0, \ldots, f_n is the fibration $f_0 \ast \cdots \ast f_n : X_0 \ast Y X_1 \ast Y \cdots \ast Y X_n \to Y$ defined by taking a point $t_0 x_0 + \cdots + t_n x_n$ to $f_i(x_i)$ for any i such that $t_i \neq 0$.

When $X_i = X$ and $f_i = f : X \to Y$ for all i the fiberwise join of spaces is denoted by $*_Y X$ and the fiberwise join of fibrations is denoted by $*_Y f$.

For a path connected space X, we turn an inclusion of a point $* \to X$ into a fibration $p_0^X : G_0(X) \to X$, whose fiber is known to be the loop space ΩX. The n-th Ganea space of X is defined to be the space $G_n(X) = *_{X}^{n+1}G_0(X)$, while the n-th Ganea fibration $p_n^X : G_n(X) \to X$ is the fiberwise join $*_Y^{n+1} p_0^X$. Then the fiber of p_n^X is $*_Y \Omega X$.

The following theorem give the Ganea-Shwarz characterization of cat [Sch], [CLOT]:

Theorem 2.3. If X is a connected ANR, then $\text{cat } X \leq n$ if and only if the fibration $p_n^X : G_n(X) \to X$ admits a section.

This characterization can be extendend to maps:

Theorem 2.4. If $f : X \to Y$ is a map between connected ANRs, then $\text{cat } f \leq n$ if and only if there is a lift of f with respect to the fibration $p_n^X : G_n(Y) \to Y$ admits a section.

2.3. Berstein-Schwarz cohomology class. The Berstein-Schwarz class of a discrete group π is the first obstruction β_π to a lift of $B\pi = K(\pi, 1)$ to the universal covering $E\pi$. Note that $\beta_\pi \in H^1(\pi, I(\pi))$ where $I(\pi)$ is the augmentation ideal of the group ring $\mathbb{Z}\pi$ [Be], [Sch].

Theorem 2.5 (Universality [DR], [Sch]). For any cohomology class $\alpha \in H^k(\pi, L)$ there is a homomorphism of π-modules $I(\pi)^k \to L$ such that the induced homomorphism for cohomology takes $(\beta_\pi)^k \in H^k(\pi, I(\pi)^k)$ to α where $I(\pi)^k = I(\pi) \otimes \cdots \otimes I(\pi)$ and $(\beta_\pi)^k = \beta_\pi \sim \cdots \sim \beta_\pi$.

In the paper we use notations $H^*(\Gamma, A)$ for cohomology of a group Γ with coefficient in Γ-module A. The cohomology groups of a space X with the fundamental group Γ we denote as $H^*(X; A)$. Thus, $H^*(\Gamma, A) = H^*(B\Gamma; A)$ where $B\Gamma = K(\Gamma, 1)$.

3. Reduction to epimorphisms

Lemma 3.1. Let $\pi \subset \Lambda$ be a subgroup, $j : B\pi \to B\Lambda$ be a map generated by this inclusion, and $p' : j^*E\Lambda \to B\pi$ be the pull-back of the universal covering $p_\Lambda : E\Lambda \to B\Lambda$. Then p' has a lift with respect to the universal covering $p_\pi : E\pi \to B\pi$.
Theorem 3.2. From [Sc].

Proof. Clearly, for each path component C of $j^*E\Lambda$ the restriction $p'|_C : C \to B\pi$ of a covering p' is a covering. Easy diagram chasing shows that C is simply connected. Hence, each path component C of $j^*E\Lambda$ is homeomorphic to $E\pi$ and the restriction $p'|_C : C \to B\pi$ is the universal covering. We may assume that $j^*E\Lambda$ is a CW complex. This would imply that each path component C is open. Thus, the lift $j^*E\Lambda \to E\pi$ can be defined independently on each path component. \qed

Given a homomorphism $\phi : \Gamma \to \Lambda$, by $\phi' : \Gamma \to \text{im}(\phi)$ we denote the restriction of ϕ from the codomain to its range. The following theorem is a generalization of Theorem 6.11 from [Sc].

Theorem 3.3. For any group homomorphism $\phi : \Gamma \to \Lambda$, cat $\phi = \text{cat} \phi'$.

Proof. Clearly, cat $\phi \leq$ cat ϕ'. We show that cat $\phi \geq$ cat ϕ'. Let cat $\phi = k$. This means that there is a lift $f : \Gamma \to B\Lambda$ with respect to the Ganea fibration $p_k : G_k(\Lambda) \to \Lambda$. Since the path fibration $p : P_0(\Lambda) \to \pi$ is fiber-wise homotopy equivalent to the universal covering $\pi \to \pi$ for any discrete group π, the k-th Ganea fibration $G_k(\pi) \to \pi$ is fiberwise homotopy equivalent to the iterated fiberwise join $*_{\pi}^{k+1} E\pi$ of the universal covering. Then f admits a lift with respect to

$$*_{BA}^{k+1} p_{\Lambda} : *_{BA}^{k+1} E\Lambda \to B\Lambda.$$

The map f factors as $f = j \circ f'$ where $f' : \Gamma \to B\pi$, $j : B\pi \to B\Lambda$ and $\pi = \text{im}(\phi)$. Hence, the map f' admits a lift to the pull-back

$$f' : \Gamma \to j^*(*_{BA}^{k+1} E\Lambda)$$

By Lemma 2.1 there is a lift s of $*_{\pi}^{k+1} p_{\pi} : j^*(*_{BA}^{k+1} E\Lambda) \to B\pi$ with respect to

$$*_{\pi}^{k+1} p_{\pi} : *_{\pi}^{k+1} E\pi \to B\pi.$$

Then the composition $s \circ f'$ is a lift of f' with respect to $*_{\pi}^{k+1} p_{\pi}$. By Theorem 2.4 cat $f' \leq k$ and, hence, cat $\phi' \leq k$. \qed

Theorem 3.3. For any group homomorphism $\phi : \Gamma \to \Lambda$ and $\phi' : \Gamma \to \text{im}(\phi) = \pi$ as above, $\text{cd}(\phi) = \text{cd}(\phi')$.

Proof. Clearly, $\text{cd}(\phi') \geq \text{cd}(\phi)$. We show that $\text{cd}(\phi') \leq \text{cd}(\phi)$. Let $\text{cd}(\phi') = k$. Then $\phi' : H^k(\pi, M) \to H^k(\Gamma, M)$ is not zero for some π-module M. Let

$$\alpha : \text{Coind}_\pi^\Lambda M = \text{Hom}_\pi(\Lambda M, M) \to M$$

denote the canonical π-homomorphism, defined for $f : \Lambda \to M$ as $\alpha(f) = f(1)$. Consider the commutative diagram

$$
\begin{array}{ccc}
H^k(\Lambda, \text{Coind}_\pi^\Lambda M) & \xrightarrow{j^*} & H^k(\pi, \text{Coind}_\pi^\Lambda M) \\
\downarrow{\phi'^*} & & \downarrow{\phi'^*} \\
H^k(\Gamma, \text{Coind}_\pi^\Lambda M) & \xrightarrow{\alpha^*} & H^k(\Gamma, M)
\end{array}
$$

where α^* is the coefficient homomorphism generated by α. By Shapiro Lemma [Br] the top row through homomorphism is an isomorphism. Therefore, the homomorphism

$$\phi'^* = \phi'^* j^* : H^k(\Lambda, \text{Coind}_\pi^\Lambda M) \to H^k(\Gamma, \text{Coind}_\pi^\Lambda M)$$

is a homotopy equivalence. Hence, cat $\phi'^* \leq k$. This means that cat $\phi' \leq k$. \qed
is nonzero. Hence, $\text{cd}(\phi) \geq k$. □

Theorem 3.2 and Theorem 3.3 imply the following:

Corollary 3.4. Suppose that Conjecture 1.3 holds true for all epimorphisms $\phi : \Gamma \to \pi$ for some class of groups. Then it holds for all homomorphisms for groups from that class.

4. **Homomorphisms of nilpotent groups**

Lemma 4.1. Let Γ be π finitely generated, torsion free nilpotent groups. Then every epimorphism $\phi : \Gamma \to \pi$ can be realized as a locally trivial bundle of nilmanifolds with the fiber a nilmanifold.

Proof. We prove it by induction on $n = s + t$ where $s = \text{nil}(\Gamma)$ and $t = \text{nil}(\pi)$ are the nilpotency classes of Γ and π. The base of induction is the case of abelian groups where any epimorphism $\phi : \mathbb{Z}^{k+\ell} \to \mathbb{Z}^k$ is the projection onto a factor, since it is a split surjection. Clearly, the projection ϕ can be realized as a trivial fiber bundle of tori $T^{k+\ell} \to T^k$ with the fiber a torus T^ℓ.

Suppose that $n > 2$ and the statement of the lemma holds true for $s + t < n$. We denote by $B = Z(\Gamma) \cap \text{Ker} \phi$ and by $A = Z(\Gamma)/B$, where $Z(\Gamma)$ is the center of Γ. Note that B is a direct summand in $Z(\Gamma)$ or, equivalently, A is free. For the later we claim that if $z^n \in B$, then $z \in B$. Indeed, If $z^n \in \text{Ker} \phi$ then $z \in \text{Ker} \phi$, since π is torsion free. If $z^n \in Z(\Gamma)$ then $z \in Z(\Gamma)$ by Proposition 2.1. Thus, $Z(\Gamma) \cong B \oplus A$. Let \tilde{A} be the direct summand of $Z(\pi)$ that contains $\phi(Z(\Gamma)) \cong A$ as a finite index subgroup. In view of Corollary 2.2, π/\tilde{A} is a torsion free nilpotent group.

We consider the nilpotent group $\Gamma' = \Gamma/B$ and the epimorphism $\phi' : \Gamma' \to \pi$. induced by ϕ. In view of the principal fiber bundle $B\Gamma \to B\Gamma'$ with the fiber a torus, it suffices to show that ϕ' can be realized as a fiber bundle of nilmanifolds. We consider the commutative diagram

$$
\begin{array}{ccc}
\Gamma' & \longrightarrow & \Gamma'/A \\
\phi' \downarrow & & \phi' \downarrow \\
\pi & \longrightarrow & \pi/\tilde{A}.
\end{array}
$$

Note that $\Gamma'/A = \Gamma/Z(\Gamma)$ and, hence, ϕ' is an epimorphism with $\text{nil}(\Gamma'/A) + \text{nil}(\pi/\tilde{A}) < s + t$. The homomorphism ϕ' factors through the pull-back $\Lambda = \phi'^*\pi$, $\phi' = \phi' \circ \xi$ with respect to ϕ. Since $\phi'|_A : A \to \tilde{A}$ is an embedding of a finite index subgroup, the homomorphism $\xi : \Gamma' \to \Lambda$ in the commutative diagram of short exact sequences generated by ϕ' and the pull-back

$$
\begin{array}{cccccc}
1 & \longrightarrow & A & \longrightarrow & \Gamma' & \longrightarrow & \Gamma/Z(\Gamma) & \longrightarrow & 1 \\
\downarrow & & \xi & \downarrow & = & & & \\
1 & \longrightarrow & \tilde{A} & \longrightarrow & \Lambda & \longrightarrow & \Gamma/Z(\Gamma) & \longrightarrow & 1 \\
\downarrow & & \phi' & \downarrow & \phi & & & \\
1 & \longrightarrow & \tilde{A} & \longrightarrow & \pi & \longrightarrow & \pi/\tilde{A} & \longrightarrow & 1
\end{array}
$$

is an embedding of a finite index subgroup.
By induction assumption applied to $\widetilde{\phi}$ there is a fiber bundle between nilmanifolds

$$\bar{f} : B(\Gamma / Z(\Gamma)) \to B(\pi / \bar{A})$$

with the fiber a nilmanifold F. Consider the pull-back diagram

$$\begin{array}{ccc}
BA & \to & B(\Gamma / Z(\Gamma)) \\
\downarrow f' & & \downarrow f \\
B\pi & \to & B(\pi / \bar{A}).
\end{array}$$

Let $q : M \to BA$ be a covering that corresponds to the subgroup $\xi(\Gamma') \subset \Lambda = \pi_1(BA)$. Since $\xi(\Gamma')$ is of finite index, M is a closed aspherical manifold with $\pi_1(M) = \Gamma'$. Thus, the composition $f' = \bar{f}' \circ q : M \to B\pi$ realizes the homomorphism ϕ' as a fiber bundle. The fiber of f' is homeomorphic to the total space of a fiber bundle $F' \to F$ with a finite fiber. The homotopy exact sequence of the fibration $F' \to B\Gamma' \xrightarrow{\bar{f}'} B\pi$ and the fact that ϕ' is surjective imply that F' is connected. Hence, F' is a nilmanifold. □

Lemma 4.2. For every locally trivial bundle of closed aspherical manifolds $f : M^m \to N^n$ with compact connected fiber F the induced homomorphism

$$f^* : H^n(N; \mathbb{Z}\pi) \to H^n(M; \mathbb{Z}\pi)$$

is nonzero where $\pi = \pi_1(N)$.

Proof. Consider the pull-back diagram:

$$\begin{array}{ccc}
\tilde{M} & \xrightarrow{p_2} & f^* \tilde{N} \xrightarrow{f} \tilde{N} \\
\downarrow p_M & & \downarrow p_N \\
M & \xrightarrow{f} & N
\end{array}$$

where p_M and p_N are the universal covering maps. Since $f^*(\tilde{N})$ is a covering of M and \tilde{M} is the universal covering, p_M factors through covering maps p_2 and p_1.

We recall [Br, Lemma 7.4] that for every left π-module M there is a natural isomorphism of right modules

$$\Theta : Hom_\pi(M, \mathbb{Z}\pi) \to Hom_c(M, \mathbb{Z})$$

defined by the formula $F \mapsto f_1$ where $F : M \to \mathbb{Z}\pi$, $F(m) = \sum_{\gamma \in \pi} f_\gamma(m)\gamma$. We consider the following commutative diagrams of cochain groups:

$$\begin{array}{ccc}
Hom_\Gamma(C_*(\tilde{M}), \mathbb{Z}\pi) & \xrightarrow{p_2^*} & Hom_\pi(C_*(\tilde{N}), \mathbb{Z}\pi) \\
\downarrow \Psi & & \downarrow \Theta \\
Hom_\pi(C_*(X), \mathbb{Z}\pi) & \xrightarrow{\theta} & Hom_c(C_*(X), \mathbb{Z}) \\
(f)^* & & (f_\gamma)^* \\
Hom_\pi(C_*(\tilde{N}), \mathbb{Z}\pi) & \xrightarrow{\theta} & Hom_c(C_*(\tilde{N}), \mathbb{Z})
\end{array}$$

where $X = f^*\tilde{N}$, $\Psi = \Theta \circ \Phi$, and

$$\Phi : Hom_\Gamma(C_*(\tilde{M}), \mathbb{Z}\pi) \to Hom_\pi(C_*(X), \mathbb{Z}\pi)$$
is defined as follows. For each simplex σ in X we fix a lift $\tilde{\sigma}$ in \tilde{M}. We define
\[\Phi(F)(\sigma) = F(\tilde{\sigma}) \]
for $F \in \text{Hom}_\pi(C_*(\tilde{M}), \mathbb{Z}_2)$ and simplex σ in X.

Claim 1. $\Phi(F) \in \text{Hom}_\pi(C_*(X), \mathbb{Z}_2)$.

Proof. Since the fiber F is connected, it follows that f induces an epimorphism of the fundamental groups. Let $g \in \pi$ and let $f_*(\tilde{g}) = g$. Then $\tilde{g}\sigma$ and $\tilde{g}\tilde{\sigma}$ both cover $g\sigma$. Hence there is $\gamma \in \text{Ker} f_*$ such that $\gamma(\tilde{g}\tilde{\sigma}) = \tilde{g}\tilde{\sigma}$. Then Φ is π-equivariant:
\[\Phi(F)(g\sigma) = F(\tilde{g}\tilde{\sigma}) = F(\tilde{g}\tilde{\sigma}) = F(\tilde{g}\tilde{\sigma}) = gF(\tilde{\sigma}) = g\Phi(F)(\sigma). \]

Claim 2. $\Phi \circ p_2^* = 1$.

Proof. $\Phi \circ p_2^*(F')(\sigma) = \Phi(p_2^*(F'))(\sigma) = (p_2^*F')(\tilde{\sigma}) = F'(p_2(\tilde{\sigma})) = F'(\sigma)$.

Since \tilde{N} is contractible, the bottom row in the diagram above gives us an isomorphism of the cohomology groups $\Theta^*: H^\ast(\tilde{N}; \mathbb{Z}_2) \to H^\ast(\tilde{N}; \mathbb{Z}_2)$. The commutative diagram on the cochain level produces the commutative diagram for cohomology:
\[
\begin{array}{ccc}
H^n(M; \mathbb{Z}_2) & \xrightarrow{\Phi^*} & H^n_c(X; \mathbb{Z}_2) \\
\uparrow f^* & & \uparrow (f^*)^* \\
H^n(N; \mathbb{Z}_2) & \xrightarrow{\Theta^*} & H^n(\tilde{N}; \mathbb{Z}_2) = \mathbb{Z}.
\end{array}
\]

Since \tilde{N} is contractible, $X = f^*(\tilde{N})$ is a trivial fiber bundle with the fiber F. Since $X \simeq \tilde{N} \times F$ admits a proper retraction onto \tilde{N}, we obtain that $(\tilde{f}_e)^*$ is a monomorphism. Hence, the homomorphism $f^*: \mathbb{Z} = H^n(N; \mathbb{Z}_2) \to H^n(M; \mathbb{Z}_2)$ is not trivial. □

Theorem 4.3. For a homomorphism $\phi: \Gamma \to \pi$ of finitely generated torsion free nilpotent groups $\text{cat} \phi = \text{cd}(\phi)$.

Proof. In view of Theorem 3.2 and Theorem 3.3, it suffices to prove the theorem when ϕ is surjective. By Lemma 4.1 there is a fiber bundle of nilmanifolds $M^m = B\Gamma \to B\pi = N^m$ with a compact fiber. By Lemma 4.2 $\text{cd}(\phi) = n$. The inequalities $\text{cd}(\phi) \leq \text{cat} \phi \leq \dim N = n$ complete the proof. □

5. Counterexample

Answering a question of M. Grant, T. Goodwillie gave an example of an epimorphism $\phi: G \to \Gamma$ satisfying the inequality $\text{cd}(\phi) < \min\{\text{cd}(G), \text{cd}(\Gamma)\}$. We present here a slightly modified version of his example. Let $\Gamma = \mathbb{Z}^2$ and $\phi: G \to \Gamma$ be the epimorphism defined by the extension of Γ by the abelian group $I(\Gamma)^2 = I(\Gamma) \otimes \mathbb{Z}$ that corresponds to the square of the Berstein-Schwarz cohomology class $(\beta_{\Gamma})^2 \in H^2(\Gamma, I(\Gamma)^2)$. Then $\phi^*(\beta_{\Gamma})^2 = 0$. Hence, $\text{cd}(\phi) < 2$. If $\text{cat} \phi \leq 1$, then the induced map $\tilde{\phi}: BG \to B\Gamma$ can be lifted to the Ganea’s space $G_1(B\Gamma)$ which is homotopy equivalent to 1-dimensional complex $\Sigma\Gamma$, the suspension of Γ. [CLOT]. Then the epimorphism ϕ factors through a free group F via epimorphisms $G \to F \to \Gamma$. Hence $\text{rank} F \geq 2$. Therefore, G contains a free group of rank ≥ 2. We note that G is amenable as an abelian-by-abelian extension and hence G cannot contain F. Therefore, cat $\phi \geq 2$. Thus, ϕ is an infinitely generated counterexample to Conjecture 1.3.
Remark 5.1. We note there are simpler examples of epimorphisms \(\phi : G \to \Gamma \) satisfying
\[
\text{cd}(\phi) < \min\{\text{cd}(G), \text{cd}(\Gamma)\}.
\]
Namely, the homomorphism \(\phi : F_n \ast \mathbb{Z}^n \to \mathbb{Z}^n \) defined by the abelianization of the first factor and by the projection onto \(\mathbb{Z}^n \to \mathbb{Z} \subset \mathbb{Z}^n \) has \(\text{cd}(\phi) = 1 \) and \(\text{cd}(F_n \ast \mathbb{Z}^n) = \text{cd} \mathbb{Z}^n = n \). Here \(F_n \) denotes the free group on \(n \) generators.

Let \(S \) denote the sphere spectrum. We recall that every stably parallelizable manifold is \(S \)-orientable [Sw]. The \(S \)-cohomotopy groups of \(X \) are exactly the stable cohomotopy groups \(\pi^*_s(X) \). Then Lemma 3.5 of [Ru] in the case of the spectrum \(S \) can be stated as follows:

Lemma 5.2. Suppose that \(f : W \to M \) is a map of degree one between closed stably parallelizable manifolds. Then the induced map \(f^* : \pi^*_s(M) \to \pi^*_s(W) \) is injective.

We note that the natural map \([X, S^n] \to \pi^*_s(X) \) is a bijection when \(\dim X \leq 2n - 2 \) [Hu].

5.1. Bolotov’s example. Answering a question of Gromov [Gro1], D. Bolotov constructed [Bo] a closed 4-manifold \(M \) with the fundamental group \(\pi = \mathbb{Z} \ast \mathbb{Z}^3 \) whose cohomological dimension \(\text{cd}(\pi) = 3 \) such that a classifying map \(u_M : M \to B\pi \) cannot be deformed to the 2-skeleton \(B\pi^{(2)} \). His manifold is defined as the pull-back \(M = g^*(S^3 \times S^1) \) of the \(S^1 \)-bundle \(h \times 1 : S^3 \times S^1 \to S^2 \times S^1 \), where \(h \) is the Hopf fiber bundle, with respect to the collapsing map \(g : N = (S^2 \times S^1) \# T^3 \to S^2 \times S^1 \). Here \(T^3 \) is a 3-dimensional torus. The pull-back bundle is denoted by \(p : M \to N \).

Proposition 5.3. Bolotov’s manifold has the following properties:

(a) The map \(p \) induces an isomorphism of the fundamental groups.

(b) The homomorphism \(u_M^* : H^3(B\pi; A) \to H^3(M; A) \) is trivial for any \(\pi \)-module \(A \).

(c) The through map \(M \cup_1 B\pi = S^1 \vee T^3 \cong T^3 \) is essential where \(q_1 \) collapses \(S^1 \) to the wedge point, and \(q_1 \) is a map of degree one.

(d) The manifold \(M \) is stably parallelizable.

Proof. (a) This is straightforward ([Bo]). Thus, the classifying map \(u_M \) factors through \(p : M \to N \), \(u_M = q_1q_4p \) where \(q_1 : N \to (S^2 \times S^1) \vee T^3 \) collapses the connected sum to the wedge and \(q_3 : (S^2 \times S^1) \vee T^3 \to S^1 \vee T^3 \) projects \(S^2 \times S^1 \) onto the factor \(S^1 \).

(b) Let \(a \in H^3(B\pi; A) \). By the Poincare Duality for local coefficients there is 1-dimensional class \(\beta \) in \(M \) such that \(u_M^*(a) \cup \beta \neq 0 \). In view of universality of the Berstein-Schwarz class \(\beta_{\pi} \) and the fact that \(u_M \) induces an isomorphism of 1-cohomology, we may assume that \(\beta = u_M^*(\beta_{\pi}) \). Then \(0 \neq u_M^*(a) \cup \beta = u_M^*(a \cup \beta_{\pi}) = 0 \). The last equality is due to dimensional reason.

(c) This was proven in [Bo]. Here we present a simplified proof. Let \(q = q_1q_2q_3q_4 : N \to S^3 \):
\[
N = (S^2 \times S^1) \# T^3 \cong (S^2 \times S^1) \vee T^3 \cong S^1 \vee T^3 \cong T^3 \cong S^3.
\]
Let \(a \) be a generator in \(H^3(K(\mathbb{Z}, 3)) \) and let \(a_0 \) be its restriction to \(S^3 = K(\mathbb{Z}, 3)^{(4)} \). Part (b) implies that \(p^*(a_0) = 0 \) where \(a_0 = g^*(a) \). The exact sequence of pair \((C_p, N) \) implies \((j^*)^{-1}(a_0) \neq \emptyset \) where \(j : N \to C_p \) is the inclusion of the codomain of \(p \) into the mapping cone. It suffices to show that \(q : N \to S^3 \) does not extend to \(C_p \). Every extension \(\psi \) of \(q \) to the 4-skeleton \(C_p^{(4)} \) can be extended to a map \(\psi : C_p \to K(\mathbb{Z}, 3) \) defining an element
\[\alpha \in (j^*)^{-1}(\alpha_0). \] We show that such \(\psi \) cannot be deformed to \(S^3 \subset K(\mathbb{Z}, 3) \). Here we assume that \(K(\mathbb{Z}, 3)^{(5)} = S^3 \cup \nu D^5 \).

For a cohomology class \(x \) we denote by \(\bar{x} \) its mod 2 reduction. Since \(q \) is a map of degree one, \(\bar{\alpha}_0 \neq 0 \). We recall that the obstruction to retraction of \(S^3 \cup \nu D^5 \) to \(S^3 \) is the Steenrod square \(Sq^2 \bar{\alpha} \). By the naturality of primary obstructions the obstruction to deform the map
\[q_{ \alpha} : S^3 \xrightarrow{\psi} S^3 \] implies that \(\bar{\alpha}_0 \). Then
\[H^3(N, \partial N; \mathbb{Z}_2) \times H^2(N, \partial N; \mathbb{Z}_2) \xrightarrow{\cup} H^5(N, \partial N; \mathbb{Z}_2) \]
implies that \(\bar{\alpha}_0 \cup u = \bar{\alpha} \cup u \). Then
\[0 \neq \bar{\alpha}_0 \cup u = \bar{\alpha} \cup u = x \cup u \cup u = x \cup Sq^2 u = Sq^2(x \cup u) = Sq^2(\bar{\alpha}). \]

Here we use the equality \(Sq^2 u = u \cup u \) and the Cartan formula for Steenrod squares.

(d) The manifold \(M \) is stably parallelizable as the total space of an orientable \(S^1 \)-bundle over a stably parallelizable manifold \(N \).

We recall that for every closed manifold \(M \) there is a hyperbolization \(f : W \to M \) which a map of degree one of a closed aspherical manifold which is surjective on the fundamental groups. Moreover, the map \(f \) induces an isomorphism between stable tangent bundles of \(M \) and \(W)\).

Theorem 5.4. There is a map of a closed aspherical \(4 \)-manifold \(g : W \to T^3 \) onto a 3-torus that induces an epimorphism of the fundamental groups \(g_\# : \pi_1(W) \to \mathbb{Z}^3 \) such that \(\text{cat } g_\# = 3 \) and \(\text{cd} (g_\#) < 3 \).

Proof. Let \(M \) be the Bolotov’s example and let \(f : W \to M \) be the hyperbolization of \(M \). Let \(g = q_2 \circ u_M \circ f \). Since Bolotov’s example is stably parallelizable and the hyperbolization is a tangential map, by Lemma [5.2] we obtain that \(f^* : \pi_3^s(M) \to \pi_3^s(W) \) is injective. By dimensional reason \([M, S^3] = \pi_3^s(M) \) and \([W, S^3] = \pi_3^s(W) \). Thus, since by Proposition [5.3] (c) the map \(q_1 q_2 u_M : M \to S^3 \) is essential, the map \(q_1 \circ g : W \to S^3 \) is essential as well. Hence, the map \(g \) cannot be deformed to the 2-skeleton. Therefore, \(\text{cat } g > 2 \). Clearly, \(\text{cat } g = \text{cat } g_\# = 3 \).

By Proposition [5.3] (a) the homomorphism \((q_1 \circ u_M)^* \) is trivial on 3-dimensional cohomology. Hence, so is \(g^* \). This means that \(\text{cd} (g_\#) < 3 \).

Acknowledgments

The first author was supported by the Simons Foundation Grant.
References

[B] H. Bechtell, The theory of groups, Addison-Wesley, 1971.
[Be] I. Berstein, On the Lusternik-Schnirelmann category of Grassmannians. Math. Proc. Camb. Philos. Soc. 79 (1976) 129-134.
[Bo] D. Bolotov, Gromov’s macroscopic dimension conjecture, AGT 6 (2006), 1669-1676.
[Br] K. Brown, Cohomology of Groups. Graduate Texts in Mathematics, 87 Springer, New York Heidelberg Berlin, 1994.
[CD] R. M. Charney, M. W. Davis, Strict hyperbolization, Topology 34 (1995), no.2, 329-350.
[CLOT] O. Cornea, G. Lupton, J. Oprea, D. Tanre, Lusternik-Schnirelmann Category, AMS, 2003.
[DJ] M. W. Davis and T. Januszkiewicz, Hyperbolization of polyhedra, J. Differential Geom. 34 (1991), no.2, 347-388.
[DR] A. Dranishnikov, Yu. Rudyak, On the Berstein-Svarc theorem in dimension 2. Math. Proc. Cambridge Philos. Soc. 146 (2009), no. 2, 407-413.
[EG] S. Eilenberg, T. Ganea, On the Lusternik-Schnirelmann Category of Abstract Groups. Annals of Mathematics, 65, (1957), 517-518.
[Gr] M. Grant, https://mathoverflow.net/questions/89178/cohomological-dimension-of-a-homomorphism
[Gro1] M. Gromov Positive curvature, macroscopic dimension, spectral gaps and higher signatures, Functional analysis on the eve of the 21st century. Vol. II, Birkhauser, Boston, MA, 1996.
[Gro2] M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ., 8, Springer, New York, (1987) 75–263.
[Hu] S.-T. Hu, Homotopy theory, Acad. Press, 1959.
[LS] L. Lusternik, L. Schnirelmann, “Sur le probleme de trois geodesiques fermees sur les surfaces de genre 0”, Comptes Rendus de l’Academie des Sciences de Paris, 189: (1929) 269-271.
[Ma1] A. I. Mal’tsev, On a class of homogeneous spaces, Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, vol. 13 (1949), no 3, 201-212.
[Ma2] A. I. Mal’tsev, Nilpotent groups without torsion, Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, vol. 13 (1949), no 1, 9-32.
[Ra] M. S. Raghunathan, Discrete subgroups of Lie groups, Springer, 1972.
[Ru] Yu. Rudyak, On category weight and its applications, Topology 38 (1999) no. 1, 37–55.
[Sch] A. Schwarz, The genus of a fibered space. Trudy Moscov. Mat. Obsc. 10, 11 (1961 and 1962), 217-272, 99-126.
[Sc] J. Scott, On the Topological Complexity of Maps, preprint arXiv:2011.10646 2020.
[Sw] R. Switzer, Algebraic Topology, Homotopy and Homology. Springer, Berlin, 1975.

Alexander Dranishnikov, Department of Mathematics, University of Florida, 358 Little Hall, Gainesville, FL 32611-8105, USA
Email address: dranish@math.ufl.edu

Nursultan Kuanyshov, Department of Mathematics, University of Florida, 358 Little Hall, Gainesville, FL 32611-8105, USA
Email address: kuanyshov@math.ufl.edu