Microbial Calcification: An Insight Into Carbonate Precipitation And Its Emerging Influence In Diverse Applications

Venkat Kumar Shanmugam*1, Vijaya Raghavan Rangamaran1

1. Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.

ABSTRACT

Microbially induced carbonate precipitation (MICP) is a biologically induced mineralization process and has found its application in various engineering realms. The process of MICP is often mediated by the enzymes urease and carbonic anhydrase. The bacterial cell wall acts as the nucleation site for the formation of CaCO3. This review summarizes the mechanism associated with the microbial CaCO3 precipitation process and the function of urease. The role of extracellular polymeric substances (EPS) and their ability to influence MICP are also discussed. The various polymorphs of CaCO3 that are formed in the due course of MICP and the conditions that determine the polymorph selection are discussed as well. Biocalcification by different classes of bacteria isolated from various sources are summarized. This review describes in detail the various applications of MICP including its role in biocementation, removal of heavy metals, CO2 sequestration, fracture sealing in underground geology, remediation of limestone structures and as a counter measure for erosion. Over the last few years, various process improvements have emerged for improving the quality of MICP and thereby enhancing their potential, viz. optimization of bacterial growth medium, using industrial by-products as growth media components, etc. Some of these process improvements are also discussed in this review. The shortfalls of MICP, particularly those while implementing it at the field level, issues associated with commercialization of the process are also described along with its future perspectives.

Keywords: MICP, urease, CaCO3, polymorphs, engineering applications

*Corresponding Author Email: biovijay89@gmail.com
Received 01 February 2018, Accepted 23 February 2018
INTRODUCTION

Over the last two decades, biomineralization has evolved as an intriguing avenue to investigate for the research fraternity, primarily attributed to the wide range of minerals that are being formed. Biomineralization is defined as the process through which living organisms produce minerals viz. phosphates, sulphates, carbonates, etc. [1-3]. This phenomenon is widespread in nature and syntheses of extracellular minerals have been reported from all classes of organisms. The mechanism of biomineralization can be classified under two major categories: Biologically controlled mineralization (BCM) and biologically induced mineralization (BIM) [4]. In BCM, minerals are synthesized under certain conditions at a specific location within or on the cell while in BIM, there is an extracellular precipitation of minerals due to supersaturation [5].

Biocalcification or Microbially induced carbonate precipitation (MICP) is the process through which microbes form carbonates due to supersaturation associated with certain biochemical activities [6]. MICP is a complex process and their underlying mechanisms are being studied widely. There are reports suggesting that MICP occurs on account of: (1) photosynthesis [7] (2) ureolysis [8] (3) ammonification [9] (4) sulphate reduction [10], etc. Among them, MICP through urea hydrolysis is the commonly found phenomena. Secretion of extracellular polymeric substances (EPS) by the bacteria also acts as the binders of metal ions which facilitate carbonate precipitation [11]. The genomic pathway of MICP is yet to be understood completely, since there are multiple factors which play crucial roles. However, Barbesi et al. [12] has reported the role of genes lcF A, ysiA, ysiB, etfB, and etfA which form a part of lcF A operon system in calcite precipitation by Bacillus subtilis. The study suggested that the gene etfA was crucial for precipitation and there was possible association with fatty acid metabolism.

There are four major factors that impact the precipitation of carbonates: (1) pH of the environment, (2) calcium concentration, (3) dissolved inorganic carbon (DIC) concentration and (4) availability of nucleation sites [13]. In MICP, the bacterial cell wall acts as the nucleation site in which the carbonate ion formed due to enzyme activity binds with Ca$^{2+}$ ions to precipitate carbonate crystals [14]. The process of calcium carbonate (CaCO$_3$) precipitation in microbes is often mediated by the enzyme urease and in certain instances through carbonic anhydrase [15]. However, mediation of biocalcification by urease enzyme has been exhaustively studied in various microorganisms [16, 17]. Urease driven carbonate precipitation process is recognized as environmental friendly and hence used for a multitude of biotechnological applications. Notably, MICP is used for strengthening of concrete materials [18], restoration of limestone buildings [19], self healing of...
concrete structures [20], removal of heavy metals and radionucleotides [21], CO₂ sequestration [22], etc. Implementing MICP for sealing fractures in wellbores [23], as a countermeasure for soil erosion [24], an agent to reduce permeability of soil [25] are on the rise, thereby finding its application in subsurface engineering as well.

In spite of its widespread application and demonstration at the lab scale level, several challenges are confronted upon implementing MICP at the field scale applications. The role of environmental factors on the microbial growth, impacts of by-products formed during the process are to be considered for the sustainable application. This review provides an insight into the mechanism of MICP, its applications, recent process improvements, limitations and future prospects.

Urease Driven Carbonate Precipitation

Urease is a common enzyme found to be present in various microbes. Urease mediates the hydrolysis of urea to ammonia and carbamic acid which reacts with water to from carbonic acid.

\[
\begin{align*}
\text{CO(NH₂)₂} + \text{H₂O} & \xrightarrow{\text{bacteria}} \text{NH₂COOH} + \text{NH₃} \\
\text{NH₂COOH} + \text{H₂O} & \rightarrow \text{NH₃} + \text{H₂CO₃}
\end{align*}
\]

Carbonic acid and ammonia further equilibrates in water to from bicarbonate and ammonium ions. The formation of hydroxide ion causes an increase in environmental pH, a condition suitable for precipitation to occur [26].

\[
\begin{align*}
\text{H₂CO₃} & \rightarrow 2\text{H}⁺ + 2\text{CO₃}²⁻ \\
\text{NH₃} + \text{H₂O} & \rightarrow \text{NH}_₄⁺ + \text{OH}⁻
\end{align*}
\]

In the presence of calcium ions, carbonate ions combine to form CaCO₃ crystals.

\[
\text{Ca}²⁺ + \text{CO₃}²⁻ \rightarrow \text{CaCO₃}
\]

In MICP, the formation of CaCO₃ occurs on the bacterial cell wall which serves as nucleation site. The bacterial cell wall possesses negatively charged ions which bind to available Ca²⁺ ions. The carbonate ions that are formed as a result of urease activity binds to the calcium ions at the bacterial cell wall to form CaCO₃. The process of bacterial calcium metabolism and subsequent precipitation of CaCO₃ is represented in Figure 1. The process of carbonate precipitation through ureolysis by bacteria has been found to be a rapid process to accumulate high amount of CaCO₃ [27].
Figure 1: Representation of bacterial metabolism of calcium and CaCO₃ precipitation under high pH and high Ca²⁺ conditions. Image source: Hammes and Verstraete (2002) [13].

The efficiency of bacterial mediated carbonate precipitates and the precipitation caused by free urease enzyme from plant (jack bean) were compared and reported [28]. The use of free enzyme is a straightforward process facilitating to avoid the issues surrounding scaling up of bacterial cultures and their maintenance. In addition, the size of the free urease from plant (12 nm) [29] was significantly smaller than the bacterial urease (0.5- 5 µm) [30] and hence it was found to penetrate the pores in a better manner. Accumulation of CaCO₃ was higher upon using free urease which may be ascribed to the inhibition of bacterial activity due to high urea or calcium ion concentration [30]. The durability can be increased by immobilizing the free enzymes on a suitable substrate [31].

ROLE OF EXTRACELLULAR POLYMERIC SUBSTANCES (EPS) IN CARBONATE PRECIPITATION

EPS have been found to play a crucial role in MICP through enhancing the carbonate precipitation process [11]. EPS, which contains charges residues and sugars possessing carboxyl, amine, hydroxyl groups which helps in trapping of metal ions such as Ca²⁺, Mg²⁺, etc [32]. This trapping of metal ions provide a suitable condition for MICP upon the formation of carbonate ions in the environment. Several classes of bacteria including cyanobacteria, bacilli, etc. are found to produce EPS [11, 33]. Achal et al. [34] has reported the role of EPS in the increased strength of sand column by Sporosarcina pasteurii. (Some more references). Kawaguchi et al. (2002) [11] reported that EPS was significant in increasing the precipitation and composition of CaCO₃. The type of EPS produced by the microbes influences the CaCO₃ polymorphs as well. The growth of aragonite
crystals were inhibited by acid polysaccharides [35], while the polysaccharides associated with
glycoproteins facilitated calcite formation [36]. EPS is the basic structural component of biofilm
formation. Formation of biofilms by bacteria helps them bind the substrate for a significant period
and also provides the nucleation site for a longer period of time [37, 38].

CALCIUM CARBONATE POLYMORPHS

Different polymorphs of CaCO_3 have been reported to be produced by the microbes. Predominantly formed polymorphs are calcite, vaterite and aragonite, while monohydrocalcite and
hexahydrocalcite [39] are also produced by certain microbes. Calcite is the most commonly found
and the most thermodynamically stable polymorph of CaCO_3 [40, 41]. On the other hand, vaterite
is metastable form of CaCO_3 and it appears as a transitional phase before getting converted into
calcite [42]. The process of calcite precipitation involves: (a) formation of amorphous carbonate
(b) intermediate transition to vaterite and (c) final conversion to stable calcite [43, 44].

Calcium sources are also found to influence the polymorph formation in MICP. Calcium chloride
led to the precipitation of rhombohedral shaped calcite [45, 46]. Calcium acetate formed lettuce
shaped vaterite while other sources like calcium lactate and calcium gluconate formed spherical
shaped vaterite [47]. Among these, calcium chloride is found to be more stable source and is
observed in most biocalcification processes [48]. The changes in polymorphs caused by various
calcium sources are presented in Figure 2. Polymorph selection is reported to be affected by
several parameters including, nature of bacteria, the growth medium, type of EPS produced by
bacteria, etc. [49, 50, 13]. In all instances, the precipitation is closely associated with the bacterial
cells, since cells act as the nucleation site for carbonate precipitation.
Figure 2: Scanning electron micrographs showing calcium carbonate crystals along with rod shaped Bacillus sp. CR2 cells in media containing: a) calcium chloride, b) calcium nitrate, c) calcium acetate, d) calcium oxide and e) control. Image source: Achal and Pan (2014) [48].

BIOCALCIFICATION BY VARIOUS MICROBES FROM DIFFERENT SOURCES

Studies on exploring biocalcifying microbial strains have been on the ascending phase and reports from diverse geographic locations continue to surge. The amount of urease produced by the bacteria had a pivotal role to play in the carbonate precipitation process. The bacteria obtained from various sources have been screened for urease activity and their subsequent precipitation process. Zamarreno et al.[51] reported freshwater strains of Pseudomonas and Acinetobacter obtained from a calcified branch in a stream in Somerset, England. Sporosarcina sp., Bacillus sp. and Brevundimonas sp. isolated from Beidaihe marine sediment in China were found to produce calcium carbonate crystals [52]. Sulfur oxidizing bacteria belonging to the phyla Aquificae, isolated from hot springs in Yunnan province, China were found to be associated with CaCO₃ precipitation [53]. Dhami et al. [50] reported a strain of Bacillus megaterium, isolated from
calcerous soil from Andhra Pradesh, India, which were able to produce significantly high amount of urease (Table 1) and calcite precipitates. Proportions of various metabolisms that lead to microbial carbonate precipitations are given in Figure 3 [54].

![Figure 3: Graphs representing the various metabolisms associated with MICP process in various environments. Image source: Zhu and Dittrich (2016) [54].](image)

Table 1: Urease activity of various bacteria isolated from different sources and the amount of CaCO₃ precipitated by them

Bacteria	Isolation source	Urease activity(U/mL)	Amount of CaCO₃ precipitate	Reference
Bacillus sp. CT2	Cement	575.87	NA	33
Bacillus sp. CT5	Cement	670.71	NA	33
Sporosarcina pasteurii	Mutant strain	550	NA	34
Bacillus sp. CR2	Mine tailing soil	432	2.32 mg/cell mass (mg)	48
Bacillus megaterium SS3	Calcareous soil	690	1.87 g/L	50
B. thuringiensis	Calcareous soil	620	1.67 g/L	50

*NA- Data not available

APPLICATIONS OF MICP
Owing to its eco-friendly attribute, MICP has been employed in diverse engineering and biotechnological applications. The cost associated with implementing MICP has proven to be cheaper than the existing technologies. The application of MICP in biocementation, heavy metal removal, radionucleotide removal, etc. have been widely studied and discussed. Over the recent years, in addition to these existing applications, MICP has gained importance in other domains as well (Figure 4).

![Figure 4: Application of MICP in various engineering realms.](image)

Biocementation

Cement has become an indispensable part of any construction material and it acts as the binder of soil particles in concrete. Manufacturing of cement leads to CO₂ emission and it is reported that the cement producing industries contribute to 5-7% [55] of global CO₂ emissions which is roughly equated as 900kg of CO₂ per ton of cement produced [56]. As an effort to curb CO₂ emissions and the ever increase need to increase the strength of concretes, several attempts are made to replace cements with other materials. But the impact of the chemicals used thereby on the environment and the cost involved makes it necessary to look for other alternatives. Biogrouting methods are being carried out to evaluate their potential in improving the strength of concrete [57]. MICP has been applied to increase the concrete strength, reduce its water absorption capacity and repairing of cracks in concrete structures. Three bacterial isolates belonging to *Bacillus megaterium*, *Bacillus*
licheniformis and *Bacillus flexus* isolated from alkaline soils of a cement factory showed calcite precipitation and were effective in increasing the compressive strength of concrete after 28 days [58]. The bacterial strains were also found to be helpful in self healing of concrete cracks. Sarda et al. [59] reported that the concrete specimens cured in bacterial growth media (14%) had lesser rate of water absorption as compared to the cubes cured in water (25%). It is interpreted that the pores of the specimens are blocked by the carbonate precipitates which does not allow water to penetrate. Achal et al. (2013) [60] reported the effect of *Bacillus sp.* in increasing the durability and self healing efficiency of cementitious materials. It was observed that the rate of chloride permeability was altered from moderate to very low and the compressive strength was increased by 40%. Cracks up to 27.2mm were found to be healed by microbial precipitation process. In terms of cost comparison, the report by Ivanov and Chu [61], biogrouting costs around 0.5–9 USD/m3 of soil whereas chemical grouting costs 2–72 USD/m3 of soil. Hence, biocementation has proven to be a viable alternative to the existing technologies.

Removal of heavy metals (Bioremediation of underground water)

Heavy metal contamination of ground water as a result of rapid industrialization is on an alarming rise. The heavy metal contaminants from the solid wastes discharged by factories percolate into the underground aquifers, thereby affecting the water column [62]. Metals such as copper, lead, cadmium, chromium, zinc, mercury, arsenic, nickel have been identified as the dominant contaminants [63, 64]. These heavy metal contaminations cause serious health hazard to the living organisms, since they directly affect the food chain [65]. Various conventional techniques such as electrochemical treatment, filtration, ion exchange, etc. are not successful in removing the metals completely [66–68]. In addition, the aforementioned methods are expensive and they consume high amount of energy for their functioning [69]. Low cost biological alternative for removal of heavy metals were identified in the form of biosorbents, wherein microbial biomass were used to scavenge the heavy metals [70]. Various microbes including *Bacillus sphaericus* (Bacteria) [71], *Tetraselmis suecica* (algae) [72], *Mucor rouxii* (fungus) [73] and various mixed cultures of bacteria were used for bioremediation purposes [74]. However, these biosorbents take a longer time for the remediation process and the heavy metals get back to the environment after some point of time. In the recent years, MICP has been a viable alternative strategy for heavy metal removal, since it is cost effective and eco-friendly. The carbonate precipitating microbes converts the heavy metals into their carbonate form and causes it to precipitate. Achal et al. (2011) [75] reported that the strain *Kocuria flava* CR1 was able to remove 97% of copper from the environment. A strain of *Terrabacter tumescens* was found to remediate 99% of cadmium from soil wastewater. A near
100% removal of lead by *Sporosarcina koreensis* UR47 was reported, wherein lead is immobilized by the calcite produced and hence prevents it from releasing back to the environment [76]. Similarly, strains of *Sporosarcina ginsengisoli* CR5 was able to remove 96.3% of arsenic after 7 days of growth [77]. Hammes et al. [78] investigated the use of MICP for removing calcium ions from industrial wastewater and it was found that excess of 90% calcium removal was achieved in the process.

CO₂ sequestration

Global warming is on an alarming rise over the last decade, causing serious threats to mankind. A well known predominant causative factor for global warming is the increase in level of the greenhouse gases, particularly CO₂ [79]. Automobile and industrial emissions, cement production, deforestation, etc have been the vital cause for the increase in atmospheric CO₂ [80]. There is an average increase of 3.8ppm over the last three years [81]. The primary aim of the climate change mitigation process is to reduce the anthropogenic emissions of CO₂. Carbon sequestration is a part of the mitigation process which involves capturing and long term storage of atmospheric CO₂. Chemical conversion of CO₂ is the conventional method that is being used for years, in which CO₂ is converted to carbonates forms such as calcite, vaterite, etc. [82, 27]. But, the process is rather slow. As an alternative, researchers have suggested the use of MICP to sequester atmospheric CO₂. Okyay and Rodrigues [83] studied the role of biotic and abiotic factors that influence carbonate precipitation and CO₂ sequestration. It was found that the pH, growth medium and urea concentration were the defining factors. An optimized medium considering these parameters yielded an increase up to 148.9% of uptake through calcification. Role of carbonic anhydrase in sequestering CO₂ were studied by Ramanan et al. [84], wherein crude and purified enzymes were evaluated for the ability to sequester CO₂ and precipitate carbonates. It was reported that the purified enzyme deposited 15 times more carbonate than the crude enzyme. Cho et al. [85] studied the effects of surfactants like sodium dodecyl sulfate (SDS), Triton X-100, and cetyltrimethylammonium chloride (CTAC) on the CO₂ biomineralization by *Sporosarcina pasteurii* and *Bacillus megaterium*. The study suggested that each of the surfactants had a different impact on biomineralization. In *S. Pasteurii*, there was a decrease in headspace CO₂ content, while in *B. megaterium* CO₂ removal increased by 8% and 16% upon using CTAC and triton X-100 respectively. This also suggested the species specific response to the surfactants and the corresponding biomineralization process.

Sealant in underground geology

- www.ajptr.com
In recent years, MICP has found its application in underground geology wherein it is used as sealants in wellbores. These underground structures are predominantly used for carbon sequestration, storage of nuclear wastes, etc. Hence, any leakage in these structures could be hazardous [86, 87]. Under controlled conditions, it is learnt at the field level that MICP can be used to seal fractures which could potentially cause subsurface leakages. The advantage of using MICP is its low viscosity on account of its aqueous nature. Field level studies have been carried out to study the fracture sealing potential through MICP in a 24.4 cm (9.625 inch) diameter well located on the Gorgas Steam Generation facility near Jasper, Alabama, USA, which was a part of carbon storage project [88]. The field test was successful as complete biomineralization was observed at 340.7 m below the ground level. Around 6 bacterial inoculations (Sporosarcina pasteurii, ATCC 11859) and 24 calcium injections were given during the sealing process. Complete biomineralization was inferred by the rejection of any further fluid injections.

The efficiency of MICP in sealing fine apertures in sealing fine aperture fractures in crystalline rocks which act as geological containers for storing nuclear wastes were studied [89]. Sporosarcina pasteurii was used as the source of MICP and a combination of MICP and colloidal silica (filler) was also tried out in order to enhance the availability for nucleation sites for biomineralization to occur. The flow time of bacteria was increased in order attain a better distribution in the fracture. Use of MICP alone showed significant results showing precipitates across the fracture with thicknesses ranging being between 0.52mm and 0.18mm. This study reemphasized the role of MICP in subsurface engineering applications.

Restoration and conservation of limestone buildings

Limestone monuments are omnipresent, right from the Milan cathedral in Italy to the Taj Mahal in India. Limestone, composed of calcite and small portions of aragonite has been predominantly used for construction of such huge structures primarily due to its durability which can help them exist for ages [90]. However, the presence of pores in limestone surface makes them susceptible to environmental pollutants and harsh weathering conditions [91]. Various physical, chemical and biological factors contribute to the progressive deterioration of limestone monuments [92, 93]. Several attempts are being made to restore and conserve the monuments which carry historical significance. Inorganic and organic methods have been tried as a part of the remediation process, but they have not been completely satisfactory since they involve utilisation of huge amounts of solvents and in certain cases, the color and texture of the structure are lost [94]. In addition, chemical based restorations involving resins proved to be expensive. These limitations have made the researchers to turn towards bio-based remediation of limestone buildings. MICP is currently
used across the global as an efficient alternative for restoring ancient limestone monuments. Lemetayar et al. [95] studied the ability of calcite producing bacteria for providing surface protecting coating on limestone monuments. Biocalcifying bacterial strains were applied on the tower of Saint Médard church in France. Periodical monitoring indicated the formation of calcite layers on the surface of the tower and it was sustained for a significant amount of time, thereby indicating that MICP is a viable choice for limestone restoration. Bacterial cell wall fraction of *Bacillus subtilis* was tested for its remediation property against limestone structures at S. Maria of Angera’s Cathedral, Italy [96]. Calcite precipitation was observed on the walls of the Cathedral and the water absorption was found to be reduced by 16.7%, signifying the application of biomineralization based remediation.

RECENT DEVELOPMENTS AND PROCESS IMPROVEMENTS

MICP has been gaining global attention and its application in a wide range of civil, environmental and geotechnical related processes are ever increasing. Microbes capable of precipitating carbonates under controlled conditions are being continuously explored and isolated. Several factors influence the microbes’ ability to form carbonate crystals including temperature, cell concentration, urea and calcium concentration, pH, etc. [97-100] and the changes in these parameters have a significant impact on the precipitation process. Studies are being conducted to improve the quantity and accelerate the precipitation process. This section describes some of the recent developments and optimization processes that have been made in improving MICP process and addressing the issues surrounding it.

Alternative bacterial growth medium

The usage of expensive commercial grade laboratory nutrient medium for field application has posed a major challenge in commercialization of MICP. As a measure to address this issue, the prospects of using cheaper alternative sources of growth medium are examined. Yoosathaporn et al. [101] investigated the use of an agriculture waste in the form of effluent from chicken manure bio-gas plant effluent from chicken manure (CME) bio-gas plant as growth medium for carbonate precipitation by *Bacillus pasteurii*. It was observed that the specific urease activity increased upon using CME-urea medium and the cost per litre was found out to be 0.71 USD which is 88.6% lesser than commercially available medium. The compressive strength of cement cubes prepared with bacterial cells grown in CME-urea medium had increase by 30.27% when compared to control. Usage of corn steep liquor (CSL), an industrial by-product rich in proteins has been tried for cultivating biocalcifying strains of *Sporosarcina pasteurii* [102]. While the growth and urease activity of *S. Pasteurii* were comparable with other growth mediums like nutrient broth and yeast.
extract, the amount of calcite precipitated in CSL medium was significantly higher. The compressive strength of cement mortar cubes prepared with CSL medium showed an increase up to 30%. The usage of another industrial by-products from dairy industry, lactose mother liquor (LML), was explored for the suitability as an alternative growth medium [103]. Though no significant increase was observed in terms of bacterial growth, urease activity and compressive strength, the results were comparable with other commercial growth mediums. It suggests that LML can be used as a potential low cost alternative for culturing biocalcifying strains.

Optimization of bacterial growth parameters

Nature of bacteria and the cell concentration impacts urease production and the subsequent carbonate precipitation. Though species specific, the bacterial growth medium has a profound influence on MICP. Raut et al. [104] developed an optimized medium (OptU) for enhanced urease production. OptU media resulted in significant increase of urease activity in *Bacillus pasteurii* and the compressive strength of bricks increased by 83.9% when compared to results from nutrient broth medium. The water absorption also reduced by 48.9% upon using optU medium. Kakelar et al. [105] employed central composite design based on response surface methodology to optimize three vital parameters for increased carbonate precipitation in *Sporosarcina pasteurii* grown at different concentrations of yeast extract/sodium acetate. The statistically predicted values significantly correlated to the experimental values with a correlation coefficient of 0.973. The study revealed that yeast concentration (9.69 g/L), NH₄ concentration (9.69 g/L) and incubation time (60h) were the defining parameters. A strength of 795 kPa was obtained on cemented column post optimization of the growth parameters even with usage of poorly graded soil. Optimization of various parameters including incubation period, temperature, pH and urea concentration for biocalcifying *Sporosarcina pasteurii* has been reported [106]. Urease activity of the bacterial strain under temperatures ranging between 20–45 °C, pH between 6.0–8.5, incubation period upto 96h and urea concentration between 2–10% were examined. Optimal conditions for high urease activity were temperature 25–30 °C, pH 6.5–8.0, 24 h incubation and 6–8% (w/v) urea concentration. Role of pH and aeration in carbonate precipitation by the strains of *Bacillus licheniformis* and *Bacillus sphaericus* has been reported [107]. A pH of 12 resulted in increasing the precipitation by 6.3 folds, while increasing the aeration in the bioreactor from 0.5 to 4.5 standard liter per minute (SLPM) resulted in 4.2 times higher carbonates. It was also observed that the pH played a pivotal role in determining the polymorphs. Calcite was the predominant polymorph at pH 12 while vaterite was abundantly found at pH less than 10, but were transformed to calcite upon increasing the pH.
LIMITATIONS AND FUTURE PERSPECTIVES

Given its broad range of applications in remediation of environment, civil, geotechnology, etc., MICP has its own limitations and shortfalls. MICP is a time consuming process as well, since it is governed by microbial activities which are highly susceptible to environmental changes. It is observed that ammonium ions that are released during ureolysis may form nitrates and react with calcite, resulting in the formation of calcium nitrate. Calcium nitrates can cause deterioration of civil structures over a period of time. The release ammonia and nitrate are as such hazardous to human health. One of the major obstacles in implementing MICP at the commercial level is the high cost associated with it due to the usage of commercial bacterial growth mediums. However, as mentioned above several groups of researchers are working on utilizing industrial by-products as media supplements to address this issue. Uncontrolled bacterial growth over a period of time is a vital shortfall as well. Scaling up of bacterial culture from the field to the industrial level is a great challenge considering the construction and maintenance of huge bioreactors.

MICP has evolved as a highly potential, solvent, chemicals-free and in-situ remediation process. Its applications are on the rise and diligent efforts are being taken to overcome its shortfalls. Further exploration of various bacterial strains from different geographic locations for their biocalcifying potential and the mechanisms involved shall improve our acumen in this research avenue. A coordinated effort to optimize the various factors influencing MICP from researchers of various disciplines including microbiology, biotechnology, geology, chemistry, etc. shall ensure that commercialization of MICP sees its daylight in the near future.

ACKNOWLEDGEMENT

The authors are thankful to Dr. R. Kirubagaran, Scientist-G and Group head, Marine Biotechnology division, National Institute of Ocean Technology for providing his consent to carry out this work at NIOT. The authors would like to thank Dr. G. Dharani, Scientist-E, Marine Biotechnology division, National Institute of Ocean Technology for his constant suggestions on this work.

REFERENCES

1. Lian B, Hu Q, Chen J, Ji J, Teng HH. Carbonate biomineralization induced by soil bacterium Bacillus megaterium. Geochim Cosmochim Acta 2006;70:5522-35.
2. Labrenz M, Druschel GK, Thomsen-Ebert T, Gilbert B, Welch SA, Kemner KM, et al. Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science 2000;290:1744-7.
3. Sánchez-Román M, Rivadeneyra MA, Vasconcelos C, McKenzie JA. Biomineralization of carbonate and phosphate by moderately halophilic bacteria. FEMS Microbiol Ecol 2007;61:273-84.

4. Mann S. Biomineralization and biomimetic materials chemistry. J Mater Chem 1995;5:935–946.

5. Lowenstam HA, Weiner S. On biomineralization. Oxford University Press, New York, 1989.

6. Bosak T. Calcite precipitation, microbially induced. In, Reitner J, Thiel V (eds). Encyclopedia of Geobiology, Netherlands, Springer, 2011;223-227.

7. Thompson JB, Ferris FG. Cyanobacterial precipitation of gypsum, calcite, and magnesite from natural alkaline lake water. Geology 1990; 18(10):995-8.

8. Stocks-Fischer S, Galinat JK, Bang SS. Microbiological precipitation of CaCO3. Soil Biol Biochem 1999;31:1563-71.

9. González-Muñoz MT, Rodriguez-Navarro C, Martínez-Ruiz F, Arias JM, Merroun ML, Rodriguez-Gallego M. Bacterial biomineralization: new insights from Myxococcus-induced mineral precipitation. Geological Society, London, Special Publications. 2010;336:31-50.

10. Castanier S, Le Métayer-Levrel G, Perthuisot JP. Ca-carbonates precipitation and limestone genesis—the microbiogeologist point of view. Sediment Geol 1999;126:9-23.

11. Kawaguchi T, Decho AW. A laboratory investigation of cyanobacterial extracellular polymeric secretions (EPS) in influencing CaCO3 polymorphism. J Cryst Growth 2002;240:230-5.

12. Barabesi C, Galizzi A, Mastromei G, Rossi M, Tamburini E, Perito B. Bacillus subtilis gene cluster involved in calcium carbonate biomineralization. J Bacteriol 2007;189:228-35.

13. Hammes F, Verstraete W. Key roles of pH and calcium metabolism in microbial carbonate precipitation. Rev Env Sci Bio 2002;1:3-7.

14. Qian C, Wang R, Cheng L, Wang J. Theory of Microbial Carbonate Precipitation and Its Application in Restoration of Cement-based Materials Defects. Chinese J Chem 2010;28:847-57.

15. Dhami NK, Reddy MS, Mukherjee A. Synergistic role of bacterial urease and carbonic anhydrase in carbonate mineralization. Appl Biochem Biotechnol 2014;172:2552-61.

16. Hammes F, Boon N, de Villiers J, Verstraete W, Siciliano SD. Strain-specific ureolytic microbial calcium carbonate precipitation. Appl Environ Microbiol 2003;69:4901-9.
17. Burbank MB, Weaver TJ, Williams BC, Crawford RL. Urease activity of ureolytic bacteria isolated from six soils in which calcite was precipitated by indigenous bacteria. Geomicrobiol J 2012;29:389-95.
18. Bang SS, Galinat JK, Ramakrishnan V. Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii. Enzyme Microb Technol 2001;28:404-9.
19. Le Metayer-Levrel G, Castanier S, Orial G, Loubiere JF, Perthusot JP. Applications of bacterial carbonatogenesis to the protection and regeneration of limestones in buildings and historic patrimony. Sediment Geol 1999;126:25-34.
20. Achal V, Mukerjee A, Reddy MS. Biogenic treatment improves the durability and remediates the cracks of concrete structures. Constr Build Mater 2013;48:1-5.
21. Hamdan N, Kavazanjian Jr E, Rittmann BE. Sequestration of radionuclides and metal contaminants through microbially-induced carbonate precipitation. InProc. 14th Pan American Conf. Soil Mech. Geotech Engng, Toronto; 2011.
22. Mitchell AC, Dideriksen K, Spangler LH, Cunningham AB, Gerlach R. Microbially enhanced carbon capture and storage by mineral-trapping and solubility-trapping. Environ Sci Technol 2010;44:5270-6.
23. Bucci NA, Ghazanfari E, Lu H. Microbially-Induced Calcite Precipitation for Sealing Rock Fractures. InGeo-Chicago 2016;558-567.
24. Maleki M, Ebrahimi S, Asadzadeh F, Tabrizi ME. Performance of microbial-induced carbonate precipitation on wind erosion control of sandy soil. International Journal of Environ Sci Technol 2016;13:937-44.
25. Smith A, Pritchard M, Edmondson A, Bashir S. The Reduction of the Permeability of a Lateritic Soil through the Application of Microbially Induced Calcite Precipitation. Nat Resour 2017;8:337.
26. Ferris FG, Stehmeier LG, Kantzas A, Mourits FM. Bacteriogenic mineral plugging. J Can Petrol Technol 1997;36.
27. Dhami NK, Reddy MS, Mukherjee A. Biominalization of calcium carbonates and their engineered applications: a review. Front Microbiol 2013;4.
28. Sondi I, Salopek-Sondi B. Influence of the Primary Structure of Enzymes on the Formation of CaCO3 Polymorphs: A Comparison of Plant (Canavalia ensiformis) and Bacterial (Bacillus pasteurii) Ureases. Langmuir 2005;21:8876-82.
29. Blakeley RL, Zerner B. Jack bean urease: the first nickel enzyme. J Mol Catal 1984;23:263-92.
30. Nemati M, Greene EA, Voordouw G. Permeability profile modification using bacterially formed calcium carbonate: comparison with enzymic option. Process Biochem 2005;40:925-33.

31. Bachmeier KL, Williams AE, Warmington JR, Bang SS. Urease activity in microbiologically-induced calcite precipitation. J Biotechnol 2002;93:171-81.

32. Kremer B, Kazmierczak J, Stal LJ. Calcium carbonate precipitation in cyanobacterial mats from sandy tidal flats of the North Sea Geobiol 2008;6:46-56.

33. Achal V, Mukherjee A, Reddy MS. Characterization of two urease-producing and calcifying *Bacillus* spp. isolated from cement. J Microbiol Biotechnol 2010;20:1571-6.

34. Achal V, Mukherjee A, Basu PC, Reddy MS. Strain improvement of *Sporosarcina pasteuri* for enhanced urease and calcite production. J Ind Microbiol Biotechnol 2009;36:981-8.

35. Wada N, Okazaki M, Tachikawa S. Effects of calcium-binding polysaccharides from calcareous algae on calcium carbonate polymorphs under conditions of double diffusion. J Cryst Growth 1993;132:115-21.

36. Albeck S, Weiner S, Addadi L. Polysaccharides of intracrystalline glycoproteins modulate calcite crystal growth in vitro. Chem Eur J 1996;2:278-84.

37. Decho AW. Microbial exopolymer secretions in ocean environments: their role (s) in food webs and marine processes. Oceanogr Mar Biol Annu Rev 1990;28:73-153.

38. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM. Microbial biofilms. Annu Rev Microbiol 1995;49:711-45.

39. Krumbein WE. Photolithothrophic and chemooorganotrophic activity of bacteria and algae as related to beachrock formation and degradation (Gulf of Aqaba, Sinai). Geomicrobiol J 1979;1:139-203.

40. Spanos N, Koutsoukos PG. The transformation of vaterite to calcite: effect of the conditions of the solutions in contact with the mineral phase. J Cryst Growth 1998;191:783-90.

41. Okwadha GD, Li J. Optimum conditions for microbial carbonate precipitation. Chemosphere 2010;81:1143-8.

42. Tourney J, Ngwenya BT. Bacterial extracellular polymeric substances (EPS) mediate CaCO₃ morphology and polymorphism. Chem Geol 2009;262:138-46.
43. Spanos N, Koutsoukos PG. The transformation of vaterite to calcite: effect of the conditions of the solutions in contact with the mineral phase. J Cryst Growth 1998;191:783-90.

44. Shen Q, Wang L, Huang Y, Sun J, Wang H, Zhou Y, et al. Oriented aggregation and novel phase transformation of vaterite controlled by the synergistic effect of calcium dodecyl sulfate and n-pentanol. J Phys Chem B 2006;110:23148-53.

45. De Yoreo JJ, Vekilov PG. Principles of crystal nucleation and growth. Rev Mineral Geochem 2003;54:57-93.

46. Favre N, Christ ML, Pierre AC. Biocatalytic capture of CO$_2$ with carbonic anhydrase and its transformation to solid carbonate. J Mol Catal B Enzym 2009;60:163-70.

47. Tai CY, Chen FB. Polymorphism of CaCO$_3$, precipitated in a constant-composition environment. AIChE Journal 1998;44:1790-8.

48. Achal V, Pan X. Influence of calcium sources on microbially induced calcium carbonate precipitation by Bacillus sp. CR2. Appl Biochem Biotechnol 2014;173:307-17.

49. Ferrer MR, Quevedo-Sarmiento J, Bejar V, Delgado R, Ramos-Cormenzana A, Rivadeneyra MA. Calcium carbonate formation by Deleya halophila: effect of salt concentration and incubation temperature. Geomicrobiol J. 1988;6:49-57.

50. Dhami NK, Reddy MS, Mukherjee A. Biomineralization of calcium carbonate polymorphs by the bacterial strains isolated from calcareous sites. J Microbiol Biotechnol. 2013;23:707-14.

51. Zamarreno DV, Inkpen R, May E. Carbonate crystals precipitated by freshwater bacteria and their use as a limestone consolidant. Appl Environ Microbiol 2009;75:5981-90.

52. Wei S, Cui H, Jiang Z, Liu H, He H, Fang N. Biomineralization processes of calcite induced by bacteria isolated from marine sediments. Braz J Microbiol 2015;46:455-64.

53. Jiang L, Xu H, Qiao H. Biomediated Precipitation of Calcium Carbonate in a Slightly Acidic Hot Spring, Yunnan Province. Acta Geologica Sinica (English Edition) 2017:91:145-55.

54. Zhu T, Dittrich M. Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: a review. Front Bioeng Biotechnol 2016;4.

55. Chen C, Habert G, Bouzidi Y, Jullien A. Environmental impact of cement production: detail of the different processes and cement plant variability evaluation. J Clean Prod 2010;18:478-85.
56. Hasanbeigi A, Menke C, Price L. The CO₂ abatement cost curve for the Thailand cement industry. J Clean Prod 2010;18:1509-18.

57. Dhami NK, Reddy SM, Mukherjee A. Biofilm and microbial applications in biomineralized concrete. In, Seto J (ed). Advanced topics in Biomineralization. InTech, 2012.

58. Krishnapriya S, Babu DV, Prince Arulraj G. Isolation and identification of bacteria to improve the strength of concrete. Microbiol Res 2015;174:48-55.

59. Sarda D, Choonia HS, Sarode DD, Lele SS. Biocalcification by Bacillus pasteurii urease: a novel application. J Ind Microbiol Biotechnol 2009;36:1111-5.

60. Achal V, Mukerjee A, Reddy MS. Biogenic treatment improves the durability and remediates the cracks of concrete structures. Constr Build Mater 2013;48:1-5.

61. Ivanov V, Chu J. Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ. Rev Env Sci Bio 2008;7:139-53.

62. Gazsó LG. The key microbial processes in the removal of toxic metals and radionuclides from the environment. Central European Journal of Occupational and Environmental Medicin 2001;7:178-85.

63. Pérez-Marín AB, Ballester A, González F, Blázquez ML, Muñoz JA, Sáez J, et al. Study of cadmium, zinc and lead biosorption by orange wastes using the subsequent addition method. Bioresour Technol 2008;99:8101-6.

64. Akpor OB, Muchie M. Remediation of heavy metals in drinking water and wastewater treatment systems: Processes and applications. Int J Phys Sci 2010;5:1807-17.

65. Abdel-Baki AS, Dkhil MA, Al-Quraishy S. Bioaccumulation of some heavy metals in tilapia fish relevant to their concentration in water and sediment of Wadi Hanifah, Saudi Arabia. Afr J Biotechnol 2011;10:2541-7.

66. Volesky B. Detoxification of metal-bearing effluents: biosorption for the next century. Hydrometallurgy 2001;59:203-16.

67. Bai HJ, Zhang ZM, Yang GE, Li BZ. Bioremediation of cadmium by growing Rhodobacter sphaeroides: kinetic characteristic and mechanism studies. Bioresour Technol 2008;99:7716-22.

68. Wang J, Chen C. Biosorbents for heavy metals removal and their future. Biotechnol Adv 2009;27:195-226.
69. El Zayat M. Removal of heavy metals by using activated carbon produced from cotton stalks. Canadian Journal of Environmental, Construction and Civil Engineering 2010;1:71–79.

70. Javanbakht V, Zilouei H, Karimi K. Lead biosorption by different morphologies of fungus Mucor indicus. Int Biodeterior Biodegradation 2011;65:294-300.

71. Al-Daghistani H. Bio-Remediation of Cu, Ni and Cr from rotogravure wastewater using immobilized, dead, and live biomass of indigenous thermophilic Bacillus species. Internet J Microbiol 2012;10.

72. Pérez-Rama M, Torres E, Suárez C, Herrero C, Abalde J. Sorption isotherm studies of Cd (II) ions using living cells of the marine microalga Tetraselmis suecica (Kylin) Butch. J Environ Manage 2010;91:2045-50.

73. Yan G, Viraraghavan T. Heavy-metal removal from aqueous solution by fungus Mucor rouxii. Water Res 2003;37:4486-96.

74. Sulaymon AH, Ebrahim SE, Mohammed Ridha MJ. Comparative biosorption of Pb(II), Cr(III) and Cd(II) ions in single component system by live and dead anaerobic biomass, bath study. J Eng 2012;18:710–716.

75. Achal V, Pan X, Zhang D. Remediation of copper-contaminated soil by Kocuria flava CR1, based on microbially induced calcite precipitation. Ecol Eng 2011;37:1601-5.

76. Li M, Cheng X, Guo H. Heavy metal removal by biomineralization of urease producing bacteria isolated from soil. Int Biodeterior Biodegradation 2013;76:81-5.

77. Achal V, Pan X, Fu Q, Zhang D. Biomineralization based remediation of As (III) contaminated soil by Sporosarcina ginsengisoli. J Hazard Mater 2012;201:178-84.

78. Hammes F, Seka A, Van Hege K, Van de Wiele T, Vanderdeelen J, Siciliano SD, et al. Calcium removal from industrial wastewater by bio-catalytic CaCO₃ precipitation. J Chem Technol Biotechnol 2003;78:670-7.

79. Yadav R, Labhsetwar N, Kotwal S, Rayalu S. Single enzyme nanoparticle for biomimetic CO₂ sequestration. J Nanopart Res 2011;13:263-71.

80. Malhi Y, Grace J. Tropical forests and atmospheric carbon dioxide. Trends in Ecol Evol 2000;15:332-7.

81. Earth's CO₂ Home Page. Available from: https://www.co2.earth/.

82. Mann S. Biomineralization: principles and concepts in bioinorganic materials chemistry. Oxford University Press on Demand; 2001.
83. Okyay TO, Rodrigues DF. Biotic and abiotic effects on CO2 sequestration during microbially-induced calcium carbonate precipitation. FEMS microbiol ecol 2015;91.
84. Ramanan R, Kannan K, Sivanesan SD, Mudliar S, Kaur S, Tripathi AK, et al. Bio-sequestration of carbon dioxide using carbonic anhydrase enzyme purified from *Citrobacter freundii*. World J Microbiol Biotechnol 2009;25:981-7.
85. Cho Y, Mahanty B, Kim CG. Effect of Surfactants on CO2 Biomineralization with *Sporosarcina pasteurii* and *Bacillus megaterium*. Water Air Soil Pollut 2015;226:2245.
86. West JJ, Fiore AM. Management of tropospheric ozone by reducing methane emissions. Environ Sci Technol 2005;39:4685–4691.
87. Kang M, Kanno CM, Reid MC, Zhang X, Mauzerall DL, Celia MA, et al. Direct measurements of methane emissions from abandoned oil and gas wells in Pennsylvania. Proc Natl Acad Sci U.S.A. 2014;111:18173-7.
88. Phillips AJ, Cunningham AB, Gerlach R, Hiebert R, Hwang C, Lomans BP, et al. Fracture sealing with microbially-induced calcium carbonate precipitation: A field study. Environ Sci Technol 2016;50:4111-7.
89. Cunningham A. Field Test and Evaluation of Engineered Biomineralization Technology for Sealing Existing Wells. Montana State Univ., Bozeman, MT (United States); 2015.
90. Graedel TE. Mechanisms for the atmospheric corrosion of carbonate stone. J Electrochem Soc 2000;147:1006-9.
91. Tiano P, Biagiotti L, Mastromei G. Bacterial bio-mediated calcite precipitation for monumental stones conservation: methods of evaluation. J Microbiol Methods 1999;36:139-45.
92. De Muynck W, De Belie N, Verstraete W. Microbial carbonate precipitation in construction materials: a review. Ecol Eng 2010;36:118-36.
93. Dhami, NK, Mukherjee A, Reddy MS. Remediation of stones and cultural heritages using calcifying bacteria. Front Microbiol 2014;5: p. 304.
94. Lazzarini L, Tabasso Laurenzi M. Il restauro della pietra. Cedam. Casa editrice dott. Antonio Milani; 1986.
95. Le Metayer-Levrel G, Castanier S, Orial G, Loubiere JF, Perthusot JP. Applications of bacterial carbonatogenesis to the protection and regeneration of limestones in buildings and historic patrimony. Sediment geol 1999;126:25-34.
96. Perito B, Marvasi M, Barabesi C, Mastromei G, Bracci S, Vendrell M, et al. *Bacillus subtilis* cell fraction (BCF) inducing calcium carbonate precipitation: biotechnological perspectives for monumental stone reinforcement. J Cult Herit 2014;15:345-51.

97. Ferris FG, Phoenix V, Fujita Y, Smith RW. Kinetics of calcite precipitation induced by ureolytic bacteria at 10 to 20 °C in artificial groundwater. Geochimica et Cosmochimica Acta 2004;68:1701-10.

98. Ng WS, Lee ML, Hii SL. An overview of the factors affecting microbial-induced calcite precipitation and its potential application in soil improvement. World Academy of Science, Engineering and Technology 2012;62:723-9.

99. Okwadha GD, Li J. Optimum conditions for microbial carbonate precipitation. Chemosphere 2010;81:1143-8.

100. Gorospe CM, Han SH, Kim SG, Park JY, Kang CH, Jeong JH, et al. Effects of different calcium salts on calcium carbonate crystal formation by Sporosarcina pasteurii KCTC 3558. Biotechnol Bioprocess Eng 2013;18:903-8.

101. Yoosathaporn S, Tiangburanatham P, Bovonsombut S, Chaipanich A, Pathom-Aree W. A cost effective cultivation medium for biocalcification of Bacillus pasteurii KCTC 3558 and its effect on cement cubes properties. Microbiol Res 2016;186:132-8.

102. Achal V, Mukherjee A, Reddy MS. Biocalcification by Sporosarcina pasteurii using corn steep liquor as the nutrient source. Ind Biotechnol 2010;6:170-4.

103. Achal V, Mukherjee A, Basu PC, Reddy MS. Lactose mother liquor as an alternative nutrient source for microbial concrete production by Sporosarcina pasteurii. J Ind Microbiol Biotechnol 2009;36:433-8.

104. Raut SH, Sarode DD, Lele SS. Biocalcification using B. pasteurii for strengthening brick masonry civil engineering structures. World J Microbiol Biotechnol 2014;30:191-200.

105. Kakelar MM, Ebrahimi S. Up-scaling application of microbial carbonate precipitation: optimization of urease production using response surface methodology and injection modification. International Journal of Environmental Science and Technology 2016;13:2619-28.

106. Omorogie AI, Khoshdelnezamiha G, Senian N, Ong DE, Nissom PM. Experimental optimisation of various cultural conditions on urease activity for isolated Sporosarcina pasteurii strains and evaluation of their biocement potentials. Ecol Eng 2017;109:65-75.
107. Seifan M, Samani AK, Berenjian A. New insights into the role of pH and aeration in the bacterial production of calcium carbonate (CaCO₃). Appl Microbiol Biotechnol 2017;101:3131-42.