Energy-saving technologies in the operation of oil fields

V M Ulyasheva, N S Ponomarev, I I Sukhanova and A Y Martianova
Saint Petersburg State University of Architecture and Civil Engineering, St. Petersburg, Russia

ulyashevavm@mail.ru

Abstract. The analysis of peculiarities for functioning of the enterprise aimed at the development of an oil field located in the Arctic zone of Russia is presented. The specific energy consumption for oil and oil-containing liquids production, preparation and transportation of a marketable product are identified. Based on the assessment of the facility’s energy systems condition and world experience in the field of energy saving in the operation of oil fields in severe northern conditions, the used and potential energy-saving technologies have been analyzed. A more complete use of the energy of associated petroleum gas, taking into account its significant contribution to air pollution, based on the utilization of exhaust gases heat, will reduce heat pollution and excessive diesel fuel consumption in boiler houses for facility heating. From the point of view of increasing energy efficiency of the heat supply system, it is proposed to increase the heat-shielding performance of facilities, in particular the rotational field camp, the use of modern automated heat points with weather control. According to the study results, when generating electricity with the use of a gas-turbine drive, a non-regenerative cycle is used accompanied by releasing high-temperature exhaust gases. It is proposed to use gas turbine units with a regenerative cycle during the development of oil fields and to consider the possibilities for using a combined cycle. To increase the energy efficiency of pumps responsible for the formation pressure increase and oil transportation systems, it is recommended to implement a variable frequency drive. To reduce inefficient energy consumption, it was proposed to install additional temperature sensors in the electrical heating system for oil pipelines. As well as the possible options for energy consumption reduction through the use of wind generators, cogeneration based on solar energy and heat pumps are described.

1. Introduction
As is known, oil is one of the most important minerals ensuring the well-being of many countries including Russia. More than 500 million tons of oil is produced annually in our country [1]. However, a significant number of oil fields are located in the Arctic zone, the border of which runs along the Arctic Circle north of 66°33’ N The development of such fields is complicated by climatic conditions, difficulties in cargo delivery and oil transportation, as well as distance from powerful energy systems. The selection of oil production technology is the subject of a significant number of papers including [2]. Depending on the features of the field and the particular well (formation characteristics; oil properties; the presence of mechanical impurities, water and associated gas), the oil production method is chosen. Currently, the pumping method is mainly used. To prepare oil for transportation, booster pumping stations and separation plants are provided. All equipment of the well facility, complex for preparation of commercial oil and external oil transportation is a powerful consumer of electric and thermal energy.
2. Main part

An analysis of energy consumption of one of the fields within the Nenets Autonomous District (NAD) of the Arkhangelsk Region shows that up to 95% of electric energy is used to provide process (oil production, formational pressure maintenance system, electrical heating of process pipelines and equipment of the oil pumping station) and household consumers [3]. Electricity generation is provided by diesel power plants (DPP). A significant amount of diesel fuel is also spent for thermal energy generation, taking into account the low temperature for heating calculation (−39 °C) and, accordingly, the duration of a heating period of 289 days [4]. Figure 1 shows the data on specific energy consumption (SEC) for the production of oil-containing liquid (OCL) and oil in tons of oil equivalent (toe) per thousand tons of oil (t) per year. According to the data, it can be seen that the increased specific energy consumption in the winter period is primarily associated with the cost of thermal energy generation.

![Figure 1](image_url)

Figure 1. Dynamics of changes in specific discharge per month for the year

Difficulties in diesel fuel delivery, the state policy in the field of improving the energy efficiency of production processes, the need to solve environmental problems in oil fields specify the search for alternative methods of heat and electricity generation.

One of the most appropriate solutions to reduce diesel consumption is the use of associated petroleum gas (APG), which inevitably accompanies the oil production process. In the analysis performed in [5, 6], the use of APG significantly reduces greenhouse gases emission into the atmosphere. Moreover, as noted in [7], in Russia, the volume of greenhouse gas emissions due to APG flaring is about 35 billion m³/year, which is more than the total amount of the fields of Nigeria, Iraq and Iran. There are objective reasons for this related to oil production, distance of domestic fields from settlements - potential energy consumers.

In Russia, APG is used primarily for oil heating in special process furnaces at the stages of marketable product obtaining and during preparation for transportation. However, such furnaces do not provide for a system for exhaust gases heat recovery, the temperature of which, according to studies of [3], reaches 583 °C. The use of gas-water heat exchangers widely used at compressor stations would provide the rotational field camp and production facilities with thermal energy, thereby reducing diesel fuel costs. However, currently, for heating, its own hot-water boiler-house using diesel fuel is used, and electric heaters are used at distant sites. Data
on the actual consumption of diesel fuel for thermal energy generation and potentially possible when using a heat recovery system (HRS) are shown in Figure 2.

![Figure 2. Actual diesel fuel consumption, t, for thermal energy generation and potentially possible when using HRS](image)

The boiler house also is not provided the heat recovery system, while significant heat losses are associated with the above-ground laying of heating networks, poor insulation and non-compliance of burning characteristics of rotational field camps enclosing structures with the current energy saving requirements [8]. As a result, excessive consumption of thermal energy also leads to an excessive consumption of diesel fuel. In addition, to reduce thermal energy consumption, it is possible to use modern automated heat points with weather control.

In addition to thermal energy generation for heating and hot water, diesel fuel is used in the following lines:
- power station (energy generation);
- motor transport.

When using gas power plants (GPP), currently the gas turbine exhaust gases with a temperature of about 500 °C are removed without recovery, increasing thermal pollution in the atmosphere. In addition, the non-regenerative cycle has a rather low efficiency (28-32%). In order to save energy, it is proposed to use a regenerative cycle to heat cyclic air, which is also widely used in gas turbine units for gas blower driving at compressor stations of gas mains. The use of the regenerative cycle according to the analysis of [3] will decrease the specific consumption of fuel gas by 0.01 kg/kW·h, which corresponds to an increase in efficiency up to 37%.

Another possible vector of energy saving in the development of energy resources in the oil field is the use of the combined cycle providing for reduction of exhaust gases temperature and increase in plant efficiency up to 60%.

There are also potential opportunities for energy conservation in the power supply system of the main production sites of the enterprise. Technical losses in electric networks are load losses (37%) and idle losses (62%) due to uneven energy consumption. According to [9], the limit reactive power coefficient (tgφ) for consumers connected to 6 kV voltage networks is 0.4. To analyze the level of reactive power compensation in the networks of the enterprise under study, tgp values for outgoing feeders were calculated based on the experimental data. An increase in reactive power level by 11 out of 63 studied 6 kV feeders shows an insufficient level of reactive power compensation. An increase in reactive power factor leads to an increase in electric energy losses in electric networks and an increase in electric energy
cost.

To increase the energy efficiency of pumps operation responsible for formational pressure maintenance (RPM) systems, it is recommended to implement a variable frequency drive (VFD). However, it should be noted that when installing the VFD on high-voltage electric motors (EM), the converters will be equipped with power transformers of about 1000 kVA (for EM - 630 kW). In this case, it is necessary to take into account the idle and short-circuit losses, which will be at least 2% of the power transformer capacity, and also the own costs of the VFD block modules at least 0.5% of the power, then the total potential reduction will be 2.5% for each unit.

Thus, the total estimated potential energy savings as a result of implementing the VFD system on the pumps of the RPM system will amount to 2924.2 thous. kW·h/year.

While studying the operation mode of pumps for commercial oil transferring from the central oil collection point (CCP), it was found that the pumps operate with a variable load, which is due to the performance control through throttling. In this system, the VFD is also the most economic control mode that contributes to energy saving in the amount of 6250.2 thous. kW·h/year by reducing power consumption and process automation.

A modern energy-efficient automated induction-resistive system [3], which allows maintaining the necessary temperature conditions for transportation of oil (40 ... 45 °C) and water (+ 10 °C) is implemented at the enterprise for electric heating of the main pipelines. However, in order to avoid inefficient energy consumption, the system requires modernization, which consists in installation of additional temperature sensors on each parallel pipeline upstream of a common collector.

In terms of using alternative energy sources at the fields under question, wind generators can be used to generate electric energy, since the facilities are located in the way of the Bolshezemelskaya Tundra with a flat relief. The average wind speed is 4-8 m/s, which determines the feasibility of wind generators application. The calculation for one production site presents that the energy saving potential will be 2102.4 thous. kW·h/year when installing wind generators with a total capacity of 396 kW.

One of the latest trends in energy saving, in particular in the European Union, is the use of energy cogeneration [7]. Thus, as of 2020, the contribution of cogeneration is planned in the field of energy saving of about 15% and as for reduction of greenhouse gases - 24%. In this case, the share of cogeneration using equivalent energy sources is growing. The feasibility of distributed energy application is based on the conventional selection of equipment for peak conditions, while the structure of energy consumption is uneven. The use of distributed energy based on gas engine generator plants (GEGP) with gas-diesel engines and waste modules is a particularly rational solution for experiencing power shortages of oil fields development. Starting from the production drilling stage, this solution will allow stopping usage of boiler houses. The modular technology will provide for the possibility of a gradual increase in generators and energy consumers, and will make it possible to replace the electrical heating of pipelines with heat using antifreeze.

However, distributed power generation does not currently exclude the need for the delivery of diesel fuel, preparation for the respective generators of fuel gas energy (APG), “crude” oil or its highly viscous derivative products. To solve this problem, it is proposed to use the well-known Stirling heat engine [11], which does not require special fuel preparation and uses any source of heat, such as solar energy, associated petroleum gas.

The Stirling thermodynamic cycle is based on the periodic heating and cooling of the working fluid, with energy extraction from the resulting pressure change (Figure 3).

The process a–c is isothermal compression with intense heat removal q_2^*, in this case, $T_a = T_c = T_2$.

The c–z process is isochoric, $v_c = v_z$, the temperature of the working fluid increases from $T_c = T_2$ to $T_z = T_1$ with heat q_1^* supply.

The process z–e isothermal expansion ($T_z = T_e = T_1$), heat q_1^* is supplied to the working fluid.

The e–a process is isochoric, $v_e = v_a = \text{const}$, with heat q_2^* removal.
External heat supply is carried out through a heat-conducting wall. The working fluid is in an enclosed space during operation.

The work in the Stirling cycle is a difference between the operation obtained in the process of isothermal expansion (heat supply \(q_1^* \)) and the work spent in the process of isothermal compression with heat removal (\(q_2^* \)). The cycle thermal efficiency is determined according to the formula:

\[
\eta_c = 1 - \frac{\tau - 1 + (k-1)\ln\varepsilon}{\tau[1+(k-1)\ln\varepsilon]-1},
\]

where \(\varepsilon = \frac{v_a}{v_c} \) – compression index; \(\tau = \frac{T_1}{T_2} \) – extent of heating; \(k = \frac{c_p}{c_v} \) – adiabatic index.

Among the advantages of Stirling engines the simple design, economical operation, environmental friendliness can be noted. However, bulkiness and material consumption, inertia when changing the heat flux, the need to create high pressures introduce limitations in the use of Stirling engines.

The energy-saving technologies associated with the need for temperature stabilization of rocks in permafrost conditions to avoid deformation of production wells and potential emergencies have the special place in the development of oil fields.

Permafrost rocks in the Bolshezemelskaya Tundra of the Nenets Autonomous Area occupy almost the entire central and northeastern parts of the district – 95%. The thickness of permafrost rocks reaches 500 meters, the temperature ranges from \(-5^\circ C\) to \(-2^\circ C\).

Currently, the following technical solutions are used to prevent permafrost thawing: strapping and suspension of casing strings, thermal insulation of casing strings and construction of seasonal cooling devices (heat pipes) [13]. A more reliable method to prevent soil from thawing is to use geothermal heat pumps, while heat can be used for heating and hot water supply facilities.

3. Conclusion
The use of the proposed energy-saving technologies in the operation of oil fields will allow reducing costs for fuel, amount of hazardous emissions and heat pollution of the atmosphere.

References
[1] Catalog of oil and gas fields in Russia Available from: https://energybase.ru/oil-gas-field [Accessed 20 March 2020]
[2] Persiyantsev M N 2000 Oil production in abnormal operating conditions (LLC Nedra-Biznecenter) p 653
[3] Ulyasheva V M and Ponomarev N S 2019 Analysis of measures for energy saving in operation of oil fields Santekhnika. Heating. Air conditioning 11 44-49
[4] 2018 SP 131.13330.2018 Construction Climatology. Updated revision of SNiP 23-01-99 Russian
Ministry of Regional Development Federal Center of Rating, Standardization and Technical Assessment of Compliance in Construction p 109

[5] 2014 PBL Netherlands Environmental Assessment Agency. Trends in global CO2 emissions: 2014 Report, Institute for Environment and Sustainability (IES) of the European Commission’s Joint Research Centre (JRC) Available from: www.pbl.nl/en or edgar.jrc.ec.europa.eu [Accessed 20 March 2020]

[6] Iran's NISOC Signs Contracts to Cut Flaring Available from: https://financialtribune.com/articles/energy/100537/irans-nisoc-signs-contracts-to-cut-flaring [Accessed 20 March 2020]

[7] Kathem Hassan Ali Eco technology and Sustainable Building Engineering Available from: http://miun.diva-portal.org/smash/get/diva2%3A768346/FULLTEXT01.pdf [Accessed 20 March 2020]

[8] 2013 SP 50.13330.2012 Updated revision of SNiP 23-02-2003 Thermal Protection of the Buildings. Introduction 2013 07 01 p 95

[9] Order N 380 of the Ministry of Industry and Energy of the Russian Federation dated June 23 2015 On the procedure for calculation of the active and reactive power consumption ratio for individual power receivers

[10] Domnikov A Yu Systemic issue Available from: https://www.m.eprussia.ru [Accessed 20 March 2020]

[11] Lukanin V N et al 2009 Heat engineering (M.: Higher School) p 671

[12] Gorelik, Ya B et al 2008 Dynamics of frozen rocks thawing in the zone of two wells influence Cryosphere of the Earth XII 1 59-65

[13] The technology of thermal stabilization of soils Available from: http://frost3d.ru/termostabilizatsiya-gruntov/ Accessed 20 March 2020]