Chronicles of Cytopathology-A Review

Preethi Sharma¹, Minal Chaudhary², Rajul Ranka³, Madhuri Gawande², Prajakta Zade², Alka Hande⁴

¹Ph.D Research Scholar & Assistant Professor, Department of Oral and Maxillofacial Pathology, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Medical Sciences (Deemed to be University), Sawangi (M), Wardha, Maharashtra, India; ²Professor, Department of Oral and Maxillofacial Pathology, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Medical Sciences (Deemed to be University), Sawangi (M), Wardha, Maharashtra, India; ³PhD Research Scholar, Department of Oral and Maxillofacial Pathology, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Medical Sciences (Deemed to be University), Sawangi (M), Wardha, Maharashtra, India; ⁴Professor and Head, Department of Oral and Maxillofacial Pathology, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Medical Sciences (Deemed to be University), Sawangi (M), Wardha, Maharashtra, India.

ABSTRACT

The review gives brief information on the olden days of cytology beginning from its origin to recent modern advancements. It also gives an outline regarding the basics of cytology. The field of cytology has achieved a marvelous drive all across the world owing to its rapidity, accurateness, and cost-efficacy. The literature was searched using MEDLINE/PubMed to identify relevant articles published in English from the date of inception to date. A brief history of cytology, newer cytological methods, modifications in the sampling tools and the sensitivity and specificity of collecting devices are presented in the article. The review will benefit all the dental practitioners facing challenges during performing exfoliative cytology.

Key Words: Cytology, Collecting devices, Cytomorphometry, Cancer

INTRODUCTION

The field of cytology has attained a great amount of drive throughout the nation with respect to its rapidity, reliability, and inexpensiveness. The branch of cytology was identified and practiced in the 18th and 19th centuries.¹ The advancement of this branch was not standardized until the 20th century. In 1989, the first American Board of examination in the field of cytopathology has commenced.² The field of cytopathology is well established with two main branches exfoliative cytology and fine-needle aspiration biopsy.² The study of exfoliated cells from pre-malignant and malignant lesions of cervical mucosa by Papanicolaou and Traut has strongly swayed the way for Oral cytology.³ The worth of using a microscope in the 19th century was recognized by Pathologists Italian Morgagni, the British Baillie, and the French Bichat.¹ In the sputum of oropharyngeal carcinoma, the architecture of abnormal cells was first identified in the 19th century. Exfoliative cytology in the oral cavity was first identified by Montgomery and Von Ham.¹ The purpose of performing Cytology is to reach at an accurate diagnosis, screening and follow up. The Advantages are a simple, safe and quick method of collection. It is cost-effective and gives accurate results.⁴ Cytopathological Features of malignancy include cellular pleomorphism, nuclear pleomorphism, altered Nuclear/Cellular ratio, hyperchromatism, enlarged nucleoli, increased and abnormal mitotic activity.⁴ There were many contributions and publications in the field of Cytology (Table 1).

With many breaks and deviations after an arduous 150 years, cytology has become a subspecialty of pathology in the last 25 years. In an attempt to improve the quality of smears and staining of cells, various new tools for sampling with modifications were introduced. The sensitivity and specificity of the tools were identified. (Table 2 & Table 3).
Table 1: Contributions and Publications in the field of Cytology

Years	Year	Author	Subject	
1830s-1890s			Imprint smears and microscopic observation of sediments from body fluids began	
1836	-	Johannes Muller	First pathologist who identified cancer cells from the cut surfaces of excised mammary carcinoma	
1843	-	Walsh	Identified cancer cells from scrapings of uterine cervical cancer and fistulous parotid tumor	
1844	-	Walsh	Publication in colored prints on Cancerous cells of breast carcinoma, sarcoma of the mandible and soft tissue sarcomas of the leg	
1845	-	Lebert	The cytology atlas of Lebert	
1846	-	Paget	Cancer cells were identified in the lung cancer and gastric cancer.	
1853	-	Paget	Smears from aspirate of breast cancer were prepared.	
1856	-		Cancer cells were analysed in samples of urine.	
1860	-	Baele	Sputum examination in pharyngeal carcinoma.	
1869	-		Cancerous cells were identified from Urethra.	
1890	-		Microscopic investigation of urine became a standard method for the diagnosis of urinary bladder tumor.	
1900s to 1950s	1904	-	Malignant cells were identified from CSF, gastric washings	
1920	-		There came a momentous years and great amount of significance in the field of cytology.	
1928	-	Papanicolaou	The conclusions at the Third Race Betterment Conference were made.	
1930	-		Cytologic examination of all sites of the body was made possible.	
1940	-	Weinmann	Study of oral cellular keratinisation.	
1941	-	Ziskin et al,	Effects of menstrual cycle on oral cellular architecture.	
1942	-	Papanicolaou and	Staining procedure for cytologic smears.	
		Traut		
1943	-	James Ewing	Aspiration cytology was made known.	
1943	-	Traut and	Book on 'Diagnosis of uterine cancer by the vaginal smear'.	
		Papanicolaou		
1948	-	Papanicolaou and	The epithelia of woman's reproductive organs.	
		Traut		
1949	-	Lombart et al,	Introduced the screening tests of vaginal smear for uterine cervix carcinoma.	
1950s to 1980s	1950s	-	Nieburgs and Fund	CYTOLoGICAL dIAGNOSIS OF mALIGNANCY OF NASOPHARYNX.
1956 & 1960		-	Hashime Murayama	The drawings of exfoliated cells were excellently depicted.
1956 & 1960		-		Two complementary editions of "The Atlas of exfoliative cytology" was published.
1960s	-		Cytology emerged as a new speciality.	
Table 1: (Continued)

Years	Year	Author	Subject
1961		Leopold Koss	Text book on cytopathology.9
1886-	1961	Aurel Babes	Published papers on diagnosis of uterine cervical cancers.75
1883-	1962	George Papanicolaou	Monograph on aspiration cytology was published in cytology.72
1974		Swedish hematologist-cytologist	Guidebook on aspiration cytology.73
1981		Swedish hematologist-cytologist	
1880s to	Today	By the end of 1980s	70% reduction in the mortality from cancer of uterine cervix was recorded in several geographical areas where mass screening was introduced.54

Newer cytological methods

The use of Oral brush was recommended for smears of cervical lesions in Gynaecology during the 1980’s. This method gave better spreading of exfoliated cells on slides in comparison to smears taken by wooden spatula. The quality and validity of smears were improved by this method.47,48 It has an advantage of sampling of deeper cell layers. Thus, the use of a brush was found to be more convenient and accurate when compared to the wooden depressor.

The sample size should be adequate to evaluate the histomorphology of the exfoliated cells. The significance of oral brush cytology was revealed in a multicentre study where smears were taken from 5% of benign lesions using cytobrush and subsequently dysplastic epithelial changes were confirmed by using scalpel biopsy.49 The most representative site should be selected for scalpel biopsy in case of a larger lesion.

Table 2: Modifications of sampling tools in Exfoliative cytology

Year	Author	Modification
1951	Gladstone	Sponge biopsy
1952	Schneider	Staining modifications
1960	Cawson	Staining modifications
1963	King	Metal spatula recommendation
	Staats and Goldsby	
1964	Sandler	Use of sharp curette for removal of keratotic layer
1981	Dumbach et al	Smear curettage
1999	Sciuumba	Oral brush
2001	Remmerbach et al	Conventional oral brush cytology combined with DNA-image-cytometry
2003	Remmerbach et al	Conventional oral brush cytology combined with AgNOR-analysis
2007	Gupta et al	Oral brush cytology with Toluidine blue
2007	Driemel et al	Conventional oral brush cytology combined with high molecular Tenascin-C antibody
2008	Mehrotra	Conventional oral brush cytology without computer assistance

Table 3: Specificity and Sensitivity of sampling tools for oral cytology

Collecting device	Specificity	Sensitivity
Cotton tipped applicator90-92	-	93.8-96%
Wooden spatula93-96	88.9-100%	86.5-97.5%
Metal spatula94-97-60	100%	76.9-100%
Curette98	99%	87-100%
Conventional brush cytology42,45,62,63,64		
Collecting device	Specificity	Sensitivity
Cotton tipped applicator90-92	-	93.8-96%
Wooden spatula93-96	88.9-100%	86.5-97.5%
Metal spatula94-97-60	100%	76.9-100%
Curette98	99%	87-100%
Conventional brush cytology42,45,62,63,64		

In conventional oral brush cytology, the sensitivity and specificity ranges between 79% & 97%, 95.1% to 99.5% respectively. Though it is a promising method, the specificity and the sensitivity of oral brush cytology is increased but is statistically not significant in comparison with conventional cytology (Table 4). Hence it is essential to utilize the accurate devices in order to enhance the defined specificity and sensitivity of conventional oral brush cytology.65

Liquid-based cytology

In the mid-1990’s, Liquid based cytology (LBC) was introduced to overcome the drawbacks of conventional Papanicolaou (Pap) smears in the screening of cervical cancer. It basically uses the collection fluid that fixes, homogenizes and rinse the cells.
Liquid based cytology was utilized on smears obtained from the oral cavity taken by cytobrush. It had an advantage of easier diagnosis of abnormal cells, better cell spreading and smear thickness. The specificity of 99.0% and sensitivity of 95.1% was reported after the combination of LBC and cytobrush in Oral squamous cell carcinoma.66

Improved analytical methods

Cytomorphometry

OralCDx (Oral cell diagnostics) is a computer assisted method that helps in the study of exfoliated cells collected by brush biopsy. The microscopic image of the cells collected by an image processing system is examined by a computer. This system is planned for the detection of Pre-malignant and malignant cells. Features of atypia at cellular level are cellular keratinization and alterations in cellular, nuclear morphology. 90% of sensitivity and specificity of OralCDx was found in the lesions tested with the scalpel and brush biopsy.41,66

In many articles, it has been shown that the negative and positive predictive values of OralCDx were considerably greater when compared to the Pap test, mammogram, or prostate specific antigen (PSA).41,67,68,69 OralCDx showed magnificent positive predictive values reported by Kosicki et al. as 42% by Scheifele et al. as 35%, by Poate et al. as 44%, by Svirsky et al. as 38% and by Scuibba et al. as 30%.41

Table 4: Specificity and Sensitivity of oral brush cytology

Method	Specificity	Sensitivity	Author
Computer-assisted analysis of oral brush biopsy	93%	100%	Sciubba41
Conventional cytology	99.5%	94.6%	Remmerbach et al42
DNA aneuploidy by image cytometry	100%	96.4%	
Combination of Conventional cytology and DNA image cytometry	100%	98.2%	
Combination of Conventional cytology and DNA image cytometry	97.4%	100%	Maraki et al67
Combination of Conventional cytology and AgNOR analysis	100%	92.5%	Remmerbach et al68
Oral CDx technique	94.3%	92.3%	Scheifele at al69
Conventional cytology	100%	79%	Driemel et al40
Laminin-5 immunocytochemistry	98%	93%	
Combination of Conventional cytology and gamma 2-chain of Laminin-5 immunocytochemistry	100%	93%	
Conventional cytology	96%	78%	Driemel et al40
High molecular Tenascin-C antibody	93%	85%	
Combination of Conventional cytology and high molecular Tenascin-C antibody	99%	95%	
Conventional cytology	95.1%	91.3%	Remmerbach et al64
DNA aneuploidy by image cytometry	100%	97.8%	
Conventional cytology	93.3%	76.8%	Mehrotra et al46

Analysis of DNA

DNA (Deoxyribonucleic Acid) image cytometry is used to measure DNA ploidy to detect the risk of malignancy. The smear samples were compared with normal 300 oral exfoliated cells after Fuelgen staining. DNA content is analyzed via a computer endorsed program. The specificity and sensitivity was increased to 100%.70

Molecular analysis

Ogden et al assessed immunohistochemical staining for the diagnosis of oral squamous cell carcinoma. Low sensitivity rates were determined with antibodies against cytokeratin 8 and 19. In liquid-based cytology, the assessment of malignant cells is made possible with antibodies AE1 and AE3 (anti-cytokeratin monoclonal antibodies).71

p53 (TP53 or tumor protein) suppressor gene mutation can be a useful prognostic marker of Oral cancer.72 The differentiation of cellular proliferation between reactive and neoplastic lesions was assessed by Nuclear organizer regions (NOR).41 The cost was comparatively more to use it as a method of diagnosis. The specificity of combined cytogenic FISH (Fluorescence in situ hybridization) and the cytomorphometric analysis was shown to be increased in determining the innocuous lesions of oral cavity.73

The extracellular matrix proteins Laminin and high molecular weight Tenascin-C (TNC) being highly expressed plays a major role in the carcinogenesis of Oral cancers.45,63 The false-negative rate could be lowered by the sensitivity of 93-95% of this method. Protein chip arrays were used for the analysis of Oral brush biopsies of normal, inflammatory,
hyperproliferative and malignant lesions. S100A8 and S100A9 (S100 calcium-binding proteins) are the proteins identified for the diagnosis of oral lesions.

DISCUSSION

Exfoliative cytology is the microscopic examination of exfoliated, shed or desquamated epithelial cells from the surface of the epithelium usually the mucous membrane. It also includes the examination of cells that have been collected from body fluids or by scraping the tissue surface. The fact behind exfoliative cytology lies in the physiology of the epithelium. The continual exfoliation of epithelial cells is a part of physiological turnover. Deeper cells strongly adhere to each other with the help of the attachment apparatus in normal conditions. In case of any abnormal pathology or in case of malignancy, the cells lose their adhesion and exfoliate along with the superficial cells of the epithelium. It was only in very recent years, the concept of screening and early detection of cancer has gained enormously wide acceptance. The concept was discussed in detail by Cochrane and Holland. To date, mass screening programs only for cervical cancer have been successful. In a country like India where usage of tobacco is very high, mass screening programs must be adopted as a part of national health policy. The search engines reveal a large number of newly introduced techniques that can be performed on oral exfoliated cells like liquid-based cytology, molecular analysis via immunohistochemistry, polymerase chain reaction, flow cytometry, image analysis, neural networking, southern blotting, interphase cytogenetics etc.

CONCLUSION

The branch of Oral cytology has emerged a long way around from its Papanicolaou days. It plays the major role in avoiding misdagnosis of clinically interpreted lesions. Early screening and detection of potentially malignant conditions have a better prognosis. However surgical biopsy followed by a histopathological diagnosis remains the Goldmark. Recently, a large number of novel techniques have been introduced that help in the early detection of potentially malignant lesions and oral cancer. These newer techniques appear promising and could contribute to the change in the paradigm of oral cancer diagnostics.

ACKNOWLEDGEMENT

I am grateful to all the authors/editors/publishers whose articles are cited and included in references of this manuscript.

Source of Funding- Nil

Conflict of Interest- Nil

REFERENCES

1. Demay RM. The art and science of cytopathology. 1st edition. 1996.
2. Cibas ES, Ducatman BS. Cytology: Diagnostic principles and clinical correlates. 2nd edition. 2003.
3. Montgomery PW, Haam Von E.A study of the exfoliative cytology in patients with carcinoma of the oral mucosa. J Dent Res 1951;30:308-13.
4. Steven I. Hajdu. A note from history: The first use of the microscope in medicine. Annals of clinical and laboratory science, vol. 32, no. 3, 2002.
5. Steven I. Hajdu and Hormoz Elyah. Foundation of Diagnostic Cytology. 2008
6. Walshe WH. The nature and treatment of cancer. Taylor and Walton, London, 1846.
7. Walshe WH. Anatomy, Physiology, Pathology and Treatment of Cancer. Ticknor, Boston, 1844.
8. Paget J. Lectures on surgical Pathology. Longman, London, 1853.
9. Beale LS. Examination of sputum from case of cancer of the pharynx and adjacent parts. Arch Med. 1860; 2:44–6.
10. Dickinson WH. Portions of a cancerous growth passed by the urethra. Trans Path Soc London, 1869; 20: 223–237.
11. Ferguson F. The diagnosis of tumors of the bladder by microscopic examination. Proc NY Path Soc, meeting of April 27, 1892.
12. Mammis IN, Spandonos DA. George N. Papanicolaou (1883–1962): Fifty years after the death of a great doctor, scientist and humanitarian. J BUON. 2012; 17: 180–184. [PubMed]
13. Papanicolaou GN. New cancer diagnosis. In Proceedings of the Third Race Betterment Conference, January 2–6, 1928. Battle Creek, Mich.: Race Betterment Foundation, 1928, 528–534. 2.
14. Fergusson RS. Prostatic neoplasms: Their diagnosis by needle puncture and aspiration. Am J Surg, 1930; 9: 507–511.
15. Mulholland SW. A study of prostatic secretion and its relation to malignancy. Proc Mayo Clin, 1931; 6: 733-735.
16. Pool EH, Dunlop GR. Cancer cells in blood stream. Am J Cancer, 1934; 21: 99-102.
17. Dudgeon LS, Wrigley CH. On demonstration of particles of malignant growth in sputum by means of wet-film method. J Laryng Otol, 1935; 50: 752–763.
18. Foot NC. The identification of tumor cells in sediments of serous effusions. Am J Pathl, 1937; 13: 1-11.
19. Russell DS, Krayenbuhl H, Cairns H. The wet film technique in the histological diagnosis of intracranial tumors: a rapid method. J Pathol Bact, 1937; 45: 501–505.
20. Weimann J. The keratinization of the human oral mucosa. J Dent Res. 1940; 19: 57.
21. Ziskin DE, Kamen P, Kitley I. Epithelial smears from oral mucosa. J Dent Res. 1941; 20: 386–7. 14.
22. Papanicolaou GN. A new procedure for staining vaginal smears. Science. 1942; 95: 438–9.
23. Ewing J. Neoplastic diseases. Saunders, Philadelphia 1922.
24. Papanicolaou GN, Traut HF. Diagnosis of uterine cancer by the vaginal smear. New York: The Commonwealth Fund; 1943. p. S1–47.
25. Papanicolaou GN, Traut HF, Marchetti AA. The Epithelia of Woman’s Reproductive Organs: a correlative study of cyclic changes. New York: The Commonwealth Fund, 1948.
26. Morrison LF, Hopp ES, Wu R. Diagnosis of malignancy of the nasopharynx. Cytological studies by the smear technique. Ann Otol Rhinol Laryngol 1949; 58: 18-32.
27. H. E. Nieburgs, M.D.; Edgar R. Pund, M.D. Detection of cancer of the cervix uteri Evaluation of comparative exfoliative cyto-
logic diagnosis: a study of 10,000 cases Jama. 1950;142(4):221-226.
28. Papanicolaou GN. Atlas of Exfoliative Cytology. Cambridge: Harvard University Press, 1954.
29. Reagan JW, Ng ABP. The Cells of Uterine Adenocarcinoma. Williams Wilkins, Baltimore, 1965 Google Scholar
30. Johnson WW, Frable WJ. Diagnostic Respiratory Cytopathology. Masson, New York, 1979 Google Scholar
31. Koss LG. Diagnostic Cytology and Its Histopathologic Basis. Lippincott, Philadelphia, 1961.
32. Zajicek J (1974) Aspiration Biopsy Cytology: Cytology of supra diaphragmatic organs. Science, Basle.
33. Kaminsky DB (1981) Aspiration biopsy for the community hospital. Masson Publishing, New York, USA.
34. Marta Cervantes-Amat, Gonzalo Lopez-Abente, Nuria Aragones, Marina Pollan, Roberto Pastor-Barriussoand Beatriz Perez-Gomez. The end of the decline in cervical cancer mortality in Spain: trends across the period 1981–2012
35. Gladstone SA. Sponge biopsy in the diagnosis of the cancer in the mouth. J Oral Surg. 1951;9:104–9.
36. Ravi Mehrotra. The role of cytology in oral lesions: A review of recent improvements. Diagnostic Cytopathology January 2012
37. Cawson RA. The cytodiagnosis of oral cancer. Br Dent J. 1960; 19:294–8.
38. King OH. Intraoral exfoliative cytology techniques. Acta Cytol. 1963;7:327–9.
39. Staats OJ, Goldsby JW. Graphic comparison of intra oral exfoliative cytology techniques. Acta Cytol. 1963;7:107–10.
40. Sandler HC. The cytodiagnosis of tumors of the oral cavity. Acta Cytol. 1964;8:114–20.
41. Sciubba JJ. Improving detection of precancerous and cancerous oral lesions. Computer-assisted analysis of the oral brush biopsy. US Collaborative Oral CDx Study Group. J Am Dent Assoc 1999;130:1445-1457
42. Remmerbach TW, Weidenbach H, Pommjanski N, et al. Cytologic and DNA-cytometric early diagnosis of oral cancer. Anal Cell Pathol 2001;22:211–221.
43. Remmerbach TW, Weidenbach H, Muller C, et al. Diagnostic value of nucleolar organizer regions (AgNORs) in brush biopsies of suspicious lesions of the oral cavity. Anal Cell Pathol 2003;25:139–146.
44. Gupta A, Singh M, Ibrahim R, Mehrotra R. Utility of toluidine blue staining and brush biopsy in precancerous and cancerous oral lesions. Acta Cytol 2007;51:788–794.
45. Driemel O, Dahse R, Berndt A, et al. High-molecular tenascin-C as an indicator of atypical cells in oral brush biopsies. Clin Oral Invest 2007;11:93–99.
46. Mehrotra R, Singh MK, Pandya S, Singh M. The use of an oral brush biopsy without computer-assisted analysis in the evaluation of oral lesions: A study of 94 patients. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008;106:246–253.
47. Jones AC, Pink FE, Sandow PL, Stewart CM, Migliorati CA, Baughman RA. The cytobrush plus cell collector in oral cytology. Oral Surg Oral Med Oral Pathol 1994; 77:101–4.
48. Murata PJ, Johnson RA, Mc Nicoll KE. Controlled evaluation of implementing the cytobrush technique to improve Papanicolaou smear quality. Obstet Gynecol 1990; 75: 690–5.
49. Ahmed HG, Idris AM, Ibrahim SO. Study of oral epithelial atypia among Sudanese tobacco users by Exfoliative cytology. Anticancer Res 2003; 23: 1943–9.
50. Peters H, Rijssinghani K. The cytologic interpretation of the mouth smear. J Indian Med Assoc 1956; 27: 231–6.
51. Hopp ES. Cytologic diagnosis and prognosis in carcinoma of the mouth, pharynx and nasopharynx. Laryngoscope 1958; 68: 1281–7.
52. Sandler HC, Freund HR, Stahl SS. Exfoliative cytology applied to the detection and treatment of head and neck cancer. Surgery 1959; 46: 479–85.
53. Sandler H, Stahl SS, Cahn LR, Freund HR. Exfoliative cytology for detection of early mouth cancer. Oral Surg Oral Med Oral Pathol 1960; 13: 994–1009.
54. Umiker WO, Lampe I, Rapp R, Hiniker JJ. Oral smears in the diagnosis of carcinoma and premalignant lesions. Oral Surg Oral Med Oral Pathol 1960; 13: 897–907.
55. Selbach GJ, Haam von E. The clinical value of oral cytology. Acta Cytol 1963; 7: 337–45.
56. Shklar G, Cataldo E, Meyer I. Reliability of cytologic smear in diagnosis of oral cancer. A controlled study. Arch Otolaryngol 1970; 91: 158–60.
57. Salley JJ. Experimental carcinogenesis in the cheek pouch of the Syrian hamster. J Dent Res 1954; 33: 253–62.
58. Tiecke RW, Kendrick FJ, Calandra JC. Smear techniques in the diagnosis of intraoral carcinoma. Dent Prog 1961;1: 192–8.
59. Gardner AF. An investigation of the use of Exfoliative cytology in the diagnosis of malignant lesions of the oral cavity. The cytologic diagnosis of oral carcinoma. Acta Cytol 1964; 8: 436–45.
60. Banoczy J. Exfoliative cytologic changes in oral leukoplakia. J Dent Res 1967; 48: 17–21.
61. Ingram RC, Krantz S, Mendeloff J, Leslie H. Exfoliative cytology and the early diagnosis of oral cancer. Cancer 1963; 16: 160–5.
62. Mehrotra R, Gupta A, Singh M, Ibrahim R. Application of cytology and molecular biology in diagnosing premalignant or malignant oral lesions. Mol Cancer 2006; 5: 1–11.
63. Driemel O, Dahse R, Hakim SG, et al. Laminin-5 immunocytochemistry: a new tool for identifying dysplastic cells in oral brush biopsies. Cytopathology 2007; 18: 348–55.
64. Remmerbach TW, Hemprich A, Bocking A. Minimal invasive brush-biopsy: diagnostic aid for earliest detection of oral cancer. Schweiz Monatsschr Zahnmed 2007; 117: 926–40.
65. Lingen MW, Kalmar JR, Karrtson T, Speight PM. Critical evaluation of diagnostic aids for the detection of oral cancer. Oral Oncol 2008; 44: 10–22.
66. Navone R, Burlo P, Pich A, et al. The impact of liquidbased oral cytology on the diagnosis of oral squamous dysplasia and carcinoma. Cytopathology 2007; 18: 356–60.
67. Scheifele C, Schmidt-Westhausen AM, Dietrich T, Reichart PA. The sensitivity and specificity of the Oral CDx technique. Oral Oncol 2004; 40: 824–8.
68. Poate TWI, Buchanan JAG, Hodgson TA, et al. An audit of the efficacy of the oral brush biopsy technique in a specialist oral medicine unit. Oral Oncol 2004; 40: 829–34.
69. Svidersky JA, Burns JC, Carpenter WM, et al. Comparison of computer-assisted brush biopsy results with follow up scalpel biopsy and histology. Gen Dent 2002; 50: 500–3.
70. Maraki D, Becker J, Bocking A. Cytologic and DNA cytometry very early diagnosis of oral cancer. J Oral Pathol Med 2004; 33: 398–404.
71. Hayama FH, Motta ACF, de Padua AGS, Migliardi DA. Liquid-based preparations versus conventional cytology: specimen adequacy and diagnostic agreement in oral lesions. Med Oral Pathol Oral Cir Bucal 2005; 10: 115–22.
72. Lopez M, Aguierre JM, Cuevas N, et al. Use of cytological specimens for p53 gene alteration detection in oral squamous cell carcinoma risk patients. Clin Oncol 2004;16: 366–70.
73. Hirshberg A, Yarom N, Amariglio N, et al. Detection of nondiploid cells in premalignant and malignant oral lesions using combined morphological and FISH analysis – a new method for early detection of suspicious oral lesions. Cancer Lett 2007; 253: 282–90.
74. Driemel O, Murzik U, Escher N, et al. Protein profiling of oral brush biopsies: S100A8 and S100A9 can differentiate between normal, premalignant and tumour cells. Proteomics Clin Appl 2007; 1: 486–93.

75. Bijoy Kurnar Das, Mallik NC. The diagnostic perspectives of oral exfoliative cytology- an overview JIDA 2000; 71: 7-9

76. Bibbo. Comprehensive Cytopathology. Ilnd edition 1997.