On calibrated representations and the Plancherel Theorem for affine Hecke algebras

James Parkinson*

October 31, 2011

Abstract

This paper has two main purposes. Firstly, we generalise Ram’s explicit construction of calibrated representations of the affine Hecke algebra to the multi-parameter case (including the non-reduced BC_n case). We then derive the Plancherel formulae for all rank 1 and rank 2 affine Hecke algebras including a construction of all representations involved.

Introduction

In this paper, we extend Ram’s explicit construction of calibrated representations of affine Hecke algebras to the multi-parameter case (including the non-reduced case), and we use these representations to derive explicit Plancherel formulae for all rank 1 and rank 2 affine Hecke algebras, following the work of Opdam ([16], [17]).

Let us discuss the relevance and significance of each of these tasks. Affine Hecke algebras arise in the study of representation theory of groups G of Lie type defined over local fields such as $F_q((t))$ or Q_p. If I is an Iwahori subgroup of G then complex representations of G with vectors fixed by I can be studied via corresponding representations of the associated affine Hecke algebra $\mathcal{H} = \mathcal{C}_c(I \backslash G/I)$ of continuous compactly supported I bi-invariant complex valued functions on G (see [1], [14]). On the one hand, the representation theory of affine Hecke algebras is well behaved (for example, the irreducible representations of these infinite dimensional algebras are all finite dimensional), while on the other hand, the representation theory is rather delicate (for instance, the remarkable geometric classification of the irreducibles given in [11] is in terms of the K-theory of the flag variety).

Affine Hecke algebras have a basis $\{T_w \mid w \in W\}$ indexed by elements of an affine Weyl group W, and depend on parameters q_0, \ldots, q_n (one parameter for each Coxeter generator s_0, \ldots, s_n of W). The most studied case is the 1-parameter case, where $q_i = q$ for all i. It is to this case that the profound geometric classification [11] applies. In [21] Ram introduces an explicit combinatorial construction of the class of calibrated representations of 1-parameter affine Hecke algebras. Our first aim of this paper is to extend this construction to the multi-parameter case. These representations will be used in our calculation of the Plancherel measure for rank 2 affine Hecke algebras.

In the second part of this paper we prove the Plancherel Theorem for rank 1 and 2 affine Hecke algebras. The Plancherel Theorem is the spectral decomposition of the canonical trace

*Partially supported under the Australian Research Council (ARC) discovery grant DP110103205.
2010 Mathematics Subject Classification: 20C08
Keywords: Affine Hecke algebra, Calibrated representations, Plancherel measure.
functional $\text{Tr} : \mathcal{H} \to \mathbb{C}$ with $\text{Tr}(T_w) = \delta_{w,1}$ for w in the affine Weyl group W. It is the analogue of the formula

$$\text{Tr}(a) = \sum_{\pi \in \text{Irrep}(\mathcal{H})} m_\pi \chi_\pi(a)$$

for finite dimensional Hecke algebras, where m_π are the generic degrees (see [7, Chapter 11]). For affine Hecke algebras the sum becomes an integral over representations of a C^*-algebra completion of \mathcal{H}, and the weights m_π become the Plancherel measure.

The Plancherel Theorem has been proven in general by Heckman and Opdam [9] and Opdam [17] in a veritable tour-de-force paralleling Harish-Chandra’s work [8] on the Plancherel Theorem for real and p-adic Lie groups (see also Reeder [24]). The Plancherel Theorem has been further developed by Delorme, Opdam, Solleveld and others ([4], [18], [19]). Therefore we should explain why we consider direct calculations in ranks 1 and 2 to be of use.

Firstly, while the general formulation of the Plancherel Theorem in [17] is essentially explicit, there are some constants that are not computed (they are conjectured in [17, Conjecture 2.27]) to be rational numbers. Thus it seems desirable to have direct calculations in ranks 1 and 2 which evaluate of all constants involved. We note that recently [3] the constants have been computed for the classical types.

Secondly, for some concrete applications of the Plancherel Theorem (for example, probabilistic calculations like in [20]) it is helpful to have an explicit construction of all of the representations involved in the Plancherel formula. For the non-expert this may be a difficult task to fulfill, and so we believe that the combination of both parts of this paper, with a precise matching up of representations and terms in the Plancherel Theorem, is of value.

Finally we hope that the explicit calculations may in some ways serve as an introduction to the general theory, and illustrate the complexity involved in the sophisticated work [17]. The starting point and general philosophy for our derivation of the Plancherel Theorems is similar to that in [17], but since we restrict to the rank 2 cases the calculations can be carried out by hand. The calculation takes the form of contour shifts and residue calculations in multiple contour integrals.

1 Definitions and setup

1.1 Root systems and Weyl groups

Let R be an irreducible (not necessarily reduced) finite crystallographic root system with simple roots $\alpha_1, \ldots, \alpha_n$ in an n-dimensional real vector space V with inner product $\langle \cdot, \cdot \rangle$. Let R^+ be the set of positive roots relative to the simple roots $\alpha_1, \ldots, \alpha_n$. Let W_0 be the Weyl group; the subgroup of $GL(V)$ generated by the reflections $s_\alpha, \alpha \in R$, where $s_\alpha(\lambda) = \lambda - \langle \lambda, \alpha \rangle \alpha^\vee$ with $\alpha^\vee = 2\alpha/\langle \alpha, \alpha \rangle$. Thus W_0 is a Coxeter group with distinguished generators s_1, \ldots, s_n (where $s_i = s_{\alpha_i}$). Let w_0 be the (unique) longest element of W_0. The dual root system is $R^\vee = \{\alpha^\vee | \alpha \in R\}$. The coroot lattice Q and the coweight lattice P are

$$Q = \mathbb{Z}\text{-span of } R^\vee \quad \text{and} \quad P = \mathbb{Z}\omega_1 + \cdots + \mathbb{Z}\omega_n,$$

where $\omega_1, \ldots, \omega_n$ are the fundamental coweights defined by $\langle \alpha_i, \omega_j \rangle = \delta_{ij}$. The cone of dominant coweights is $P^+ = \mathbb{Z}_{\geq 0}\omega_1 + \cdots + \mathbb{Z}_{\geq 0}\omega_n$. Then $Q \subseteq P$, and W_0 acts on lattices L with $Q \subseteq L \subseteq P$. The affine Weyl group associated to R and L is

$$W_L = L \rtimes W_0,$$
where we identify \(\lambda \in L \) with the translation \(t_\lambda(x) = x + \lambda \). Let \(\varphi \) be the highest root of \(R \), and let \(s_0 = t_\varphi \circ \varphi \). Let \(S = \{s_0, \ldots, s_n\} \). Then \(W_Q = \langle S \rangle \) is a Coxeter group, and
\[
W_L = W_Q \times (L/Q), \quad \text{where } L/Q \text{ is finite and abelian.}
\]
The length \(\ell(w) \) of \(w \in W_Q \) is the minimum \(\ell \geq 0 \) such that \(w \) can be written as a product of \(\ell \) generators in \(S \). The length of \(w \in W_L \) is defined by \(\ell(w) = \ell(w') \), where \(w = w' \gamma \) with \(w' \in W_Q \) and \(\gamma \in L/Q \). Thus elements of \(L/Q \) have length zero.

Write \(R = R_1 \cup R_2 \cup R_3 \) with
\[
R_1 = \{ \alpha \in R \mid \alpha/2 \notin R \text{ and } 2\alpha \notin R \}, \quad R_2 = \{ \alpha \in R \mid 2\alpha \in R \}, \quad R_3 = \{ \alpha \in R \mid \alpha/2 \in R \}.
\]
These sets are pairwise disjoint, and if \(R \) is reduced then \(R_1 = R \) and \(R_2 = R_3 = \emptyset \). Define \(R_0 = R_1 \cup R_2 \).

The inversion set of \(w \in W \) is \(R(w) = \{ \alpha \in R_0^+ \mid w^{-1}\alpha \in -R_0^+ \} \). By [2 VI, §1] we have
\[
R(w) = \{ \alpha_{i_1}, s_{i_1}\alpha_{i_2}, \ldots, s_{i_{t-1}}\alpha_{i_t} \} \quad \text{whenever } w = s_{i_1} \cdots s_{i_t} \text{ is reduced.} \tag{1.1}
\]

For each rank \(n \geq 1 \) there is exactly one irreducible non-reduced root system (up to isomorphism). This is the \(BC_n \) system, and it can be realised in \(\mathbb{R}^n \) by
\[
R = \pm\{ e_i - e_j, e_i + e_j, \epsilon_k, 2\epsilon_k \mid 1 \leq i < j \leq n \text{ and } 1 \leq k \leq n \},
\]
where the simple roots are \(\alpha_i = e_i - e_{i+1} \) for \(1 \leq i < n \) and \(\alpha_n = e_n \). The coroot lattice is spanned by \(\alpha'_1, \ldots, \alpha'_n, \alpha_n/2 \), and we have \(P = Q \). Then \(R_0 \) is a root system of type \(B_n \) with simple roots \(\alpha_1, \ldots, \alpha_n \).

1.2 Parameter systems and rational functions

Let \(q_0, q_1, \ldots, q_n > 1 \) be numbers such that \(q_i = q_j \) whenever \(s_i \) and \(s_j \) are conjugate in \(W_Q \). We call the sequence \((q_i) \) a parameter system. By [2 IV, §5, No.5, Prop 5] the product \(q_{i_1} \cdots q_{i_t} \) does not depend on the reduced expression \(s_{i_1} \cdots s_{i_t} \), and we define
\[
q_w = q_{i_1} \cdots q_{i_t} \quad \text{if } w = s_{i_1} \cdots s_{i_t} \in W_Q \text{ is reduced.}
\]

If \(\alpha \in W_0\alpha_i \cap W_0\alpha_j \) then \(s_i \) and \(s_j \) are conjugate in \(W_0 \), and hence for \(\alpha \in R_0 \) we define
\[
q_\alpha = q_i \quad \text{if } \alpha \in W_0\alpha_i.
\]

Let \(C[L] = \mathbb{C}\text{-span} \{ x^\lambda \mid \lambda \in L \} \) be the group algebra of \(L \), with the group operation written multiplicatively as \(x^\lambda x^\mu = x^{\lambda+\mu} \). Let \(d_\alpha(x) = 1 - x^{-\alpha'} \), and let
\[
a_\alpha(x) = \begin{cases} 1 - q_\alpha^{-1} & \text{if } \alpha \in R_1 \\ 1 - q_n^{-1} + (q_0^{1/2} q_{n-1/2} - q_0^{-1/2} q_n^{-1/2}) x^{-\alpha'}/2 & \text{if } \alpha \in R_2 \\ 1 - q_\alpha^{-1} x^{-\alpha'} & \text{if } \alpha \in R_0 \end{cases}
\]
\[
n_\alpha(x) = \begin{cases} (1 - q_0^{-1/2} q_n^{-1/2} x^{-\alpha'}/2)(1 + q_0^{1/2} q_n^{-1/2} x^{-\alpha'}/2) & \text{if } \alpha \in R_2.
\end{cases}
\]

In the field of fractions of \(C[L] \) let
\[
b_\alpha(x) = \frac{a_\alpha(x)}{d_\alpha(x)} \quad \text{and} \quad c_\alpha(x) = \frac{n_\alpha(x)}{d_\alpha(x)}.
\]

We write \(a_i(x) \) for \(a_{\alpha_i}(x) \), and similarly for \(b_i(x), c_i(x), d_i(x) \) and \(n_i(x) \). Let
\[
c(x) = \prod_{\alpha \in R_0^+} c_\alpha(x), \quad n(x) = \prod_{\alpha \in R_0^+} n_\alpha(x), \quad d(x) = \prod_{\alpha \in R_0^+} d_\alpha(x).
\]

The expression \(c(x) = n(x)/d(x) \) is the Macdonald c-function.
1.3 Affine Hecke algebras

Standard references for affine Hecke algebras include [12], [13] and [15]. With the above notation, the affine Hecke algebra \mathcal{H}_L with parameters q_0, \ldots, q_n is the algebra over \mathbb{C} with vector space basis $\{T_w \mid w \in W_L\}$ and relations

$$T_u T_v = T_{uv}$$

$$T_i^2 = 1 + (q_i^{\frac{1}{2}} - q_i^{-\frac{1}{2}})T_i$$

for all $i = 0, 1, \ldots, n,$

where we write $T_i = T_{s_i}$.

The above presentation is the Coxeter presentation of \mathcal{H}_L. The Bernstein presentation exploits the semidirect product structure $W_L = L \rtimes W_0$. Each $\lambda \in L$ can be written as $\lambda = \mu - \nu$ with $\mu, \nu \in L \cap P^+$, and we define

$$x^\lambda = T_{t_1} T_{t_2}^{-1}.$$

It is not hard to see that this is well defined, and in particular $x^\lambda = T_i^\lambda$ if λ is dominant.

It can be shown [13] that \mathcal{H}_L has vector space basis $\{T_w x^\lambda \mid \lambda \in L, w \in W_0\}$ and relations

$$T_i^2 = 1 + (q_i^{\frac{1}{2}} - q_i^{-\frac{1}{2}})T_i$$

for for $i = 1, \ldots, n$ \hfill (1.2)

$$T_i T_j T_i \cdots = T_j T_i T_j \cdots \quad (m_{ij} \text{ factors})$$

for $1 \leq i < j \leq n$ \hfill (1.3)

$$x^\lambda x^\mu = x^{\lambda + \mu}$$

for all $\lambda, \mu \in L$ \hfill (1.4)

$$T_i x^\lambda - x^{s_i \lambda} T_i = q_i^{\frac{1}{2}} a_i(x) \frac{x^\lambda - x^{s_i \lambda}}{1 - x^{-\alpha_i^\vee}}$$

for $1 \leq i \leq n$ and $\lambda \in L$. \hfill (1.5)

Thus we see a copy of the group algebra $\mathcal{C}[L]$ of the lattice L inside of \mathcal{H}_L. The relation \hfill (1.5)

is the Bernstein relation. Since $s_i \lambda = \lambda - \langle \lambda, \alpha_i \rangle \alpha_i^\vee$ and $\langle \lambda, \alpha_i \rangle \in \mathbb{Z}$ the fraction that appears in the Bernstein relation is actually an element of $\mathcal{C}[L]$.

It is well known that the centre of \mathcal{H}_L is

$$\mathcal{C}[L]^{W_0} = \{ f \in \mathcal{C}[L] \mid w \cdot f = f \text{ for all } w \in W_0\}.$$

This has powerful implications for the representation theory of \mathcal{H}_L. For example it forces the irreducible representations to be finite dimensional, since it is evident that \mathcal{H}_L is finite dimensional over $\mathcal{C}[L]^{W_0}$.

It is natural to seek modifications τ_w of T_w which satisfy a “simplified Bernstein relation”

$$\tau_w x^\lambda = x^w \lambda \tau_w$$

for all $w \in W_0$ and $\lambda \in L$. \hfill (1.6)

Define elements $\tau_1, \ldots, \tau_n \in \mathcal{H}_L$ by

$$\tau_i = (1 - x^{-\alpha_i^\vee}) T_i - a_i(x).$$

The Bernstein relation gives $\tau_i x^\lambda = x^{s_i \lambda} \tau_i$, and it can be shown (see [21] Proposition 2.7) for example that for $w \in W_0$ the product

$$\tau_w = \tau_{i_1} \cdots \tau_{i_\ell}$$

is independent of the choice of reduced expression $w = s_{i_1} \cdots s_{i_\ell}$.

Thus the elements $\tau_w, w \in W_0$, satisfy (1.6), and a direct calculation gives the useful formula

$$\tau_i^2 = q_i n_i(x) n_i(x^{-1}) \in \mathbb{C}[L].$$

(1.7)
1.4 Harmonic analysis for the affine Hecke algebra

Define an involution \(*\) on \(\mathcal{H}_L\) and the canonical trace functional \(\text{Tr}: \mathcal{H}_L \to \mathbb{C}\) by

\[
\left(\sum_{w \in W_L} c_w T_w \right)^* = \sum_{w \in W_L} c_w T_{w^{-1}} \quad \text{and} \quad \text{Tr}\left(\sum_{w \in W_L} c_w T_w \right) = c_1.
\]

An induction on \(\ell(v)\) shows that \(\text{Tr}(T_u T_v^*) = \delta_{u,v}\) for all \(u, v \in W_L\), and so

\[
\text{Tr}(h_1 h_2) = \text{Tr}(h_2 h_1) \quad \text{for all} \quad h_1, h_2 \in \mathcal{H}_L.
\]

Thus \((h_1, h_2) = \text{Tr}(h_1 h_2^*)\) defines an Hermitian inner product on \(\mathcal{H}_L\). Let \(\|h\|_2 = \sqrt{(h, h)}\). The algebra \(\mathcal{H}_L\) acts on itself by left multiplication, and the corresponding operator norm is

\[
\|h\| = \sup\{\|hx\|_2 : x \in \mathcal{H}_L, \|x\|_2 \leq 1\}.
\]

Let \(\overline{\mathcal{H}_L}\) denote the completion of \(\mathcal{H}_L\) with respect to this norm. Thus \(\overline{\mathcal{H}_L}\) is a non-commutative \(C^*\)-algebra. This algebra is 'liminal'. Even better, all irreducible representations of \(\overline{\mathcal{H}_L}\) are finite dimensional, and so by \([6, \S 8.8]\) there exists a probability measure \(\mu\) such that

\[
\text{Tr}(h) = \int_{\text{spec}(\overline{\mathcal{H}_L})} \chi_\pi(h) d\mu(\pi) \quad \text{for all} \quad h \in \overline{\mathcal{H}_L}.
\]

The measure \(\mu\) is the Plancherel measure. Only those representations of \(\mathcal{H}_L\) which extend to the completion \(\overline{\mathcal{H}_L}\) appear in the Plancherel Theorem. It is known \([17, \text{Corollary 6.2}]\) that these are the tempered representations of \(\mathcal{H}_L\).

Calculating the Plancherel measure explicitly for rank 2 algebras (including explicit constructions of the required representations) is a main aim of this paper. The technique follows the general technique of \([16]\). The starting point is the elementary trace generating function formula from \([16]\) (see also \([20]\)). Let us describe this formula.

If \(t \in \text{Hom}(L, \mathbb{C}^\times)\) we write \(t^\lambda = t(\lambda)\). The Weyl group \(W_0\) acts on \(\text{Hom}(L, \mathbb{C}^\times)\) by the formula \((ut)^\lambda = t^{u^{-1}\lambda}\). Following \([16]\), define a function \(G_t : \mathcal{H}_L \to \mathbb{C}\) by

\[
G_t(h) = \sum_{\mu \in L} t^{-\mu} \text{Tr}(x^\mu h)
\]

whenever the series converges. From \([16]\) we have the following (see \([17]\ (3.9)]\)).

Theorem 1.1. The series \(G_t(h)\) is absolutely convergent for all \(h \in \mathcal{H}_L\) whenever \(|t^{\alpha_i^j}| < q_i^{-1}\) for \((R, i) \neq (BC_n, n)\) and \(|t^{\alpha_i^j}| < q_i^{-1} q_n^{-1}\) for \((R, i) = (BC_n, n)\). Moreover,

\[
G_t(h) = \frac{g_t(h)}{q_{w_0} c(t) c(t^{-1}) d(t)}
\]

where for each fixed \(h\) the function \(g_t(h)\) has an analytic continuation in the \(t\)-variable to \(\text{Hom}(L, \mathbb{C}^\times)\). Moreover, \(g_t(h)\) satisfies

1. \(g_t(h)\) is a polynomial in \(\{t^\lambda : \lambda \in L\}\) (for fixed \(h \in \mathcal{H}_L\)),
2. \(g_t(1) = d(t)\) for all \(t \in \text{Hom}(L, \mathbb{C}^\times)\), and
3. \(g_t(x^\lambda h x^\mu) = t^{\lambda+\mu} g_t(h)\) for all \(\lambda, \mu \in L\) and all \(h \in \mathcal{H}_L\).
Remark 1.2. (a) Note that $t^\lambda g_t(\tau_w) = g_t(\tau_w x^\lambda) = g_t(x^{\lambda} \tau_w) = t^{\alpha_1} g_t(\tau_w)$, and so if $wt \neq t$ then
\[g_t(\tau_w x^\lambda) = \delta_{w,t} t^\lambda d(t). \]
By condition 1 in the theorem this formula holds for all $t \in \text{Hom}(L, \mathbb{C}^\times)$.

(b) The three conditions in the theorem completely determine $g_t(h)$. For example consider the A_2 case. It is sufficient to calculate $g_t(T_w)$ for each $w \in W_0$, because $g_t(T_w x^\lambda) = t^{\lambda} g_t(T_w)$. Write $Q = q^{\frac{1}{2}} - q^{-\frac{1}{2}}$. Applying g_t to the Bernstein relation $T_1 x^{\alpha_1} = x^{-\alpha_1} T_1 + Q + x^{\alpha_1}$ gives
\[g_t(T_1) = Q(1 - t^{-\alpha_1})^{-1} d(t) = Q(1 - t^{-\alpha_2})(1 - t^{-\alpha_2 - \alpha_1}). \]
Similarly, $g_t(T_2) = Q^2(1 - t^{-\alpha_1})(1 - t^{-\alpha_1 - \alpha_2})$, $g_t(T_1 T_2) = g_t(T_2 T_1) = Q^2(1 - t^{-\alpha_1 - \alpha_2})$, and $g_t(T_1 T_2 T_1) = Q^3 + Q(1 - t^{-\alpha_2})(1 - t^{-\alpha_2})$, making (1.10) completely explicit.

Let
\[f_t(h) = \frac{g_t(h)}{d(t)}. \]
(1.11)
Note that $f_t(h)$ may have poles at points where $t^{\alpha_i} = 1$ for some $\alpha \in R_0$. Fix a \mathbb{Z}-basis $\lambda_1, \ldots, \lambda_n$ of L. From (1.9) and (1.10) we have
\[\text{Tr}(h) = \frac{1}{q_{w_0}} \int_{a_1 \mathbb{T}} \cdots \int_{a_n \mathbb{T}} f_t(h) \frac{d t_1 \cdots d t_n}{c(t)c(t^{-1})}, \]
(1.12)
where $t_i = t^\lambda_i$, dt_i is Haar measure on the circle group \mathbb{T}, and where $a_1, \ldots, a_n > 0$ are chosen such that if $t \in \text{Hom}(L, \mathbb{C}^\times)$ with $|t^\lambda_i| = a_i$ for each i then $|t^{\alpha_i}| < q_i^{-1}$ (if $(R, i) \neq (BC_n, n)$) and $|t^{\alpha_i}| < q_0^{-1} q_i^{-1}$ (if $(R, i) = (BC_n, n)$). Formula (1.12) appears in [17, Theorem 3.7], and is the starting point of the Plancherel Theorem.

2 Representations of affine Hecke algebras

Each finite dimensional \mathcal{H}_L module decomposes into a direct sum
\[M = \bigoplus_{t \in \text{supp}(M)} M_t^{\text{gen}} \]
of generalised t-weight spaces
\[M_t^{\text{gen}} = \{ v \in M \mid \text{for each } \lambda \in L \text{ there is a } k > 0 \text{ such that } (x^\lambda - t^\lambda)^k \cdot v = 0 \}, \]
where $\text{supp}(M) = \{ t \in \text{Hom}(L, \mathbb{C}^\times) \mid M_t^{\text{gen}} \neq 0 \}$ is the support of M.

By Schur’s Lemma (see [26]) the centre $\mathbb{C}[L]^{W_0}$ of \mathcal{H}_L acts on an irreducible module M by a scalar. It follows that there exists $t \in \text{Hom}(L, \mathbb{C}^\times)$ such that
\[p(x) \cdot v = p(t) v \quad \text{for all } p(x) \in \mathbb{C}[L]^{W_0} \text{ and all } v \in M. \]
The element t is only defined up to W_0 orbits. The orbit $W_0 t$ is called the central character of M, although as is customary we will usually refer to any $t' \in W_0 t$ as ‘the’ central character of M. A central character $t \in \text{Hom}(L, \mathbb{C}^\times)$ is called regular if $t^{\alpha} \neq 1$ for all $\alpha \in R_0$.

6
2.1 Principal series representations

The large commutative subalgebra $\mathbb{C}[L]$ of \mathcal{H}_L can be used to construct finite dimensional representations of \mathcal{H}_L. The principal series representation with central character $t \in \text{Hom}(L, \mathbb{C}^\times)$ is

$$M(t) = \text{Ind}_{C[L]}^H(Cv_t) = \mathcal{H}_L \otimes_{\mathbb{C}[L]} (Cv_t),$$

where Cv_t is the 1-dimensional representation of $\mathbb{C}[L]$ with $x^\lambda \cdot v_t = t^\lambda v_t$ for all $\lambda \in L$. It is clear that this representation is $|W_0|$-dimensional, and that $\{T_w \otimes v_t \mid w \in W_0\}$ is a basis of $M(t)$.

For $t \in \text{Hom}(L, \mathbb{C}^\times)$ define

$$N(t) = \{\alpha \in R^+_0 \mid n_\alpha(t)n_{-\alpha}(t) = 0\} \quad \text{and} \quad D(t) = \{\alpha \in R^+_0 \mid d_\alpha(t) = 0\}.$$

Note that $N(t)$ and $D(t)$ correspond to the zeros of the numerator and denominator of the Macdonald c-function (respectively). The following Theorem of Kato [10, Theorem 2.2] is fundamental.

Theorem 2.1. The principal series module $M(t)$ is irreducible if and only if (i) $N(t) = \emptyset$, and (ii) the stabiliser of t under the action of W_0 equals the normal closure of $\{s_\alpha \mid \alpha \in D(t)\}$.

If $L = P$ then condition (ii) on the stabiliser and normal closure is automatically satisfied. The importance of the principal series representations is highlighted by the following fact (see, for example, [21, Proposition 2.6]).

Proposition 2.2. If M is an irreducible representation of \mathcal{H}_L with central character t then M is a quotient of $M(t)$. In particular $\dim(M) \leq |W_0|$.

Thus the representation theory of \mathcal{H}_L is relatively under control. It is our aim now to generalise Ram’s construction of calibrated representations of \mathcal{H}_L to the multi-parameter case (including the nonreduced BC_n case).

2.2 Calibrated representations

The arguments in this section follow [21] closely, and so we will just sketch some of the changes.

If $J \subseteq N(t)$ define

$$F_J(t) = \{w \in W \mid R(w^{-1}) \cap N(t) = J \text{ and } R(w^{-1}) \cap D(t) = \emptyset\}.$$

Following [21], the calibration graph of $t \in \text{Hom}(L, \mathbb{C}^\times)$ is the graph $\Gamma(t)$ with vertex set $\{wt \mid w \in W_0\}$ and edges (wt, s_iwt) if and only if $\alpha_i \notin N(wt)$. By the argument in [21, Theorem 2.14] the connected components of $\Gamma(t)$ are precisely the sets

$$\{wt \mid w \in F_J(t)\} \quad \text{such that } J \subseteq N(t) \text{ and } F_J(t) \neq \emptyset. \quad (2.1)$$

Remark 2.3. We note that the geometric argument in [21, Theorem 2.14] also shows that if $w, v \in F_J(t)$, and if $wv^{-1} = s_{i_1} \cdots s_{i_t}$ is a reduced expression, then each element

$$w, s_{i_1}w, s_{i_2}s_{i_1}w, \ldots, s_{i_t} \cdots s_{i_2}s_{i_1}w = v \quad \text{is in } F_J(t).$$

(Because the “smaller regions” in Ram’s proof which correspond to the connected components of the calibration graph are convex in the sense that they are intersections of half spaces, and hence by [25, Proposition 2.8] all minimal length paths between w and v are contained in this region). Thus $F_J(t)$ is ‘geodesically closed’ in the underlying (dual of the) Coxeter complex.
Proposition 2.4. If M is a finite dimensional \mathcal{H}_L-module then
\[\dim(M^\text{gen}_t) = \dim(M^\text{gen}_{t'}) \]
whenever t and t' are in the same connected component of the calibration graph $\Gamma(t)$.

Proof. See [21 Proposition 2.12]. If $\alpha_i \not \in D(t) \cup N(t)$ then the operator $\tau_i : M^\text{gen}_{s_i} \to M^\text{gen}_{s_i}$ is readily seen to be a bijection, using (1.7). This shows that $\dim(M^\text{gen}_t) = \dim(M^\text{gen}_{t'})$ if t and t' are adjacent in the calibration graph, hence the result. \hfill \Box

Let R_{ij} be the subsystem of R generated by the simple roots α_i and α_j. That is, R_{ij} is the intersection of R with the \mathbb{Z}-span of $\{\alpha_i, \alpha_j\}$. We say that a weight $w \in \text{Hom}(L, \mathbb{C}^\times)$ is (i, j)-regular if $(wt)^{\alpha_i}_+ \neq 1$ and $(wt)^{\alpha_j}_+ \neq 1$ for all $w \in W_{ij} = \langle s_i, s_j \rangle$, and (i, j)-calibratable if one of the following conditions holds:

1. The weight t is (i, j)-regular.
2. R_{ij} is of type C_2 (assume α_i short and α_j long) with
 (a) $q_i = q_j$ and $(t^{\alpha_i}, t^{\alpha_j}) = (q_i, q_i^{-1})$ or (q_i^{-1}, q_i), or
 (b) $q_i = q_j^2$ and $(t^{\alpha_i}, t^{\alpha_j}) = (q_j^{-2}, q_j)$ or (q_j^2, q_j).
3. R_{ij} is of type G_2 (assume α_i short and α_j long) with
 (a) $q_i = q_j$ and $(t^{\alpha_i}, t^{\alpha_j}) = (q_i^{-1}, q_i), (q_i, q_i^{-1}), (q_i^2, q_i^{-1}), (q_i^{-2}, q_i)$, or
 (b) $q_i = q_j^3$ and $(t^{\alpha_i}, t^{\alpha_j}) = (q_j^3, q_j^{-1}), (q_j^{-3}, q_j), (q_j^{-3}, q_j^2), (q_j^3, q_j^{-2})$.
4. R_{ij} is of type BC_2 (assume α_i middle-length and α_j short) with
 (a) $q_i = q_0 q_j$ and $(t^{\alpha_i}, t^{\alpha_j}/2) = (q_0 q_j, q_0^{-1/2} q_j^{-1/2}, (q_0^{-1} q_j^{-1}/2), (q_0^{-1} q_j^{-1}/2)$, or
 (b) $q_i = q_0 q_j^{-1}$ or $q_0^{-1} q_j$ and $(t^{\alpha_i}, t^{\alpha_j}/2) = (q_0^{-1} q_j, -q_0^{-1/2} q_j^{-1/2}, (q_0 q_j^{-1}, -q_0^{-1/2} q_j^{-1/2})$, or
 (c) $q_i = q_0^{-1/2} q_j^{1/2}$ and $(t^{\alpha_i}, t^{\alpha_j}/2) = (q_i^{-1}, q_i), (q_i, q_i^{-1})$, or
 (d) $q_i = q_0^{-1/2} q_j^{1/2}$ or $q_0^{1/2} q_j^{-1/2}$ and $(t^{\alpha_i}, t^{\alpha_j}/2) = (q_i^{-1}, -q_i), (q_i, -q_i)$.

Conditions (1), (2)(a) and (3)(a) are equivalent to Ram’s definition of calibratable in the 1-parameter case. Note that in the BC_2 case the underlying root system must be non-reduced, and hence is of type BC_n, and necessarily $1 \leq i \leq n - 1$ and $j = n$.

The following Theorem is the natural generalisation of [21 Theorem 3.1], and the proof follows Ram’s proof closely.

Theorem 2.5. Let $t \in \text{Hom}(L, \mathbb{C}^\times)$, and let $J \subseteq N(t)$. Suppose that $F_J(t) \neq \emptyset$ and that each $w t$ with $w \in F_J(t)$ is (i, j)-calibratable for each pair (α_i, α_j) of simple roots of R. Let $M_J(t)$ be the vector space over \mathbb{C} with basis $\{e_w \mid w \in F_J(t)\}$, and define linear operators \tilde{T}_i $(i = 1, \ldots, n)$, \tilde{x}^λ $(\lambda \in L)$, on $M_J(t)$ by linearly extending the formulae
\begin{align*}
\tilde{x}^\lambda e_w &= (wt)^\lambda e_w \quad \lambda \in L \quad (2.2) \\
\tilde{T}_i e_w &= \frac{1}{q_i^2} b_i(wt)e_w + \frac{1}{q_i^2} c_i(wt)e_{s_i w} \quad 1 \leq i \leq n, \quad (2.3)
\end{align*}
with the convention that $e_w = 0$ if $v \notin F_J(t)$. Then the map $\mathcal{H}_L \to \text{End}(M_J(t))$ with $T_i \mapsto \tilde{T}_i$ and $x^\lambda \mapsto \tilde{x}^\lambda$ defines a representation of \mathcal{H}_L.

Moreover, if $wt \neq w't$ for all $w, w' \in F_J(t)$ with $w \neq w'$ then $M_J(t)$ is irreducible. In particular $M_J(t)$ is necessarily irreducible if $L = P$.

8
Proof. (a) We check that the operators \tilde{T}_i and \tilde{x}^λ satisfy the Bernstein relation. We have

$$
(\tilde{T}_i \tilde{x}^\lambda - \tilde{x}^{s_i \lambda} \tilde{T}_i) e_w = ((wt)^\lambda - \tilde{x}^{s_i \lambda})(q_i^\frac{1}{2} b_i(wt)e_w + q_i^\frac{1}{2} c_i(wt)e_{s_i w})
= ((wt)^\lambda - (wt)^{s_i \lambda}) q_i^\frac{1}{2} b_i(wt)e_w = q_i^\frac{1}{2} a_i(\tilde{x}) \frac{\tilde{x}^\lambda - \tilde{x}^{s_i \lambda}}{1 - \tilde{x}^{-a_i}} e_w.
$$

(b) We now check that the operators \tilde{T}_i satisfy the quadratic relation $\tilde{T}_i^2 = 1 + (q_i^\frac{1}{2} - q_i^{-\frac{1}{2}}) \tilde{T}_i$.\[
\tilde{T}_i^2 e_w = \tilde{T}_i (q_i^\frac{1}{2} b_i(wt)e_w + q_i^\frac{1}{2} c_i(wt)e_{s_i w})
= q_i (b_i(wt)^2 + c_i(wt)c_i(s_i wt)) e_w + q_i c_i(wt) (b_i(wt) + b_i(s_i wt)) e_{s_i w}
= (1 + (q_i^\frac{1}{2} - q_i^{-\frac{1}{2}}) q_i^\frac{1}{2} (b_i(wt) + b_i(s_i wt))) e_{s_i w} = (1 + (q_i^\frac{1}{2} - q_i^{-\frac{1}{2}}) \tilde{T}_i) e_w.
\]

(c) We verify the braid relation $\cdots \tilde{T}_i \tilde{T}_j \tilde{T}_i = \cdots \tilde{T}_j \tilde{T}_i \tilde{T}_j$ (m_{ij} factors). Fix $w \in F_j(t)$. Suppose first that wt is (i,j)-regular. Let $v < v_w$. If $e_{vw} \neq 0$ then (2.3) gives

$$
(\tilde{T}_i - q_i^\frac{1}{2} b_i(vwt)) e_{vw} = q_i^\frac{1}{2} c_i(vwt) e_{s_i v w},
$$

and by Remark 2.3 this formula is also true when $e_{vw} = 0$ and $\ell(s_i v) > \ell(v)$.

Consider the product (well defined by (i,j)-regularity)

$$
A_{ij}(wt) = \cdots (\tilde{T}_i - q_i^\frac{1}{2} b_i(s_j s_i wt)) (\tilde{T}_j - q_j^\frac{1}{2} b_j(s_i wt)) (\tilde{T}_i - q_i^\frac{1}{2} b_i(wt))
$$

(m_{ij} factors).

Let v_0 be the longest element of W_{ij}. Repeatedly using (2.4) and $c_\alpha(vwt) = c_{v-1\alpha}(wt)$ gives

$$
A_{ij}(wt) e_w = q_i^{\frac{1}{2}} [c_{\alpha_i}(wt) c_{s_i \alpha_j}(wt) c_{s_j \alpha_i}(wt) c_{s_j s_i \alpha_j}(wt) \cdots] e_{v_0 w}.
$$

By (1.1) we have $\{\alpha_i, s_i \alpha_j, s_j \alpha_i, \ldots \} = \{\alpha_j, s_j \alpha_i, s_j s_i \alpha_j, \ldots \}$ and so $A_{ij}(wt) e_w = A_{ij}(wt) e_w$.

Each $v \in W_{ij} \setminus \{v_0\}$ has a unique expression as a product of simple generators, and so for $v < v_0$ we may unambiguously define operators $\tilde{T}_v = \tilde{T}_{i_1} \tilde{T}_{i_2} \cdots \tilde{T}_{i_\ell}$ where $v = s_i s_{i_2} \cdots s_{i_\ell}$ is the unique reduced expression for $v \in W_{ij}$. Expanding $A_{ij}(t)$ and $A_{ji}(t)$ and using the already verified quadratic relation for \tilde{T}_i and \tilde{T}_j we see that there are rational functions $p_v(wt)$ and $q_v(wt)$ in wt such that

$$
A_{ij}(wt) e_w = \cdots \tilde{T}_j \tilde{T}_i \tilde{T}_j e_w + \sum_{v < v_0} p_v(wt) \tilde{T}_v e_w,
$$

$$
A_{ji}(wt) e_w = \cdots \tilde{T}_j \tilde{T}_i \tilde{T}_j e_w + \sum_{v < v_0} q_v(wt) \tilde{T}_v e_w,
$$

As in Proposition 2.7 we have $p_v(wt) = q_v(wt)$ for all $v < v_0$, and the braid relation follows.

We now verify the braid relation in the case where wt is (i,j)-calibratable but not (i,j)-regular. Consider the $R_{ij} = C_2$ case with $q_i = q_j$ and $(wt)^{\alpha_i} = q_i$ and $(wt)^{\alpha_j} = q_j^{-1}$. By (2.1) we have $F_j(t) = \{wt\}$, and so the braid relation is trivially satisfied (as $M_J(t)$ is 1-dimensional). All other C_2 cases are similar. In the G_2 case with $q_i = q_j^2$ and $(wt)^{\alpha_i} = q_j^3$ and $(wt)^{\alpha_j} = q_j^{-2}$, by (2.1) we compute $F_j(t) = \{w, s_j w\}$, and a direct calculation gives

$$
\tilde{T}_i e_w = q_i^\frac{1}{2} e_w, \quad \tilde{T}_j e_w = \frac{1}{q_j + 1} \left(-q_j^{-\frac{3}{2}} e_w + q_j^\frac{1}{2} e_{s_j w} \right),
$$

$$
\tilde{T}_i e_{s_j w} = -q_i^{-\frac{1}{2}} e_{s_j w}, \quad \tilde{T}_j e_{s_j w} = q_j^\frac{1}{2} \left(\frac{1 - q_j^{-3}}{1 + q_j^{-2}} e_w + \frac{1}{1 + q_j^{-1}} e_{s_j w} \right).
$$

9
The braid relation follows by direct calculation. The remaining \(G_2 \) cases are similar (or trivial). Finally, in all \(BC_2 \) cases we have \(F_J(t) = \{ w t \} \) and so the braid relation is trivially satisfied.

To conclude the proof we prove the irreducibility statements. By the construction of \(M_J(t) \) the generalised weight spaces of \(M_J(t) \) are \(M_J(t)_{wt} \), with \(w \in F_J(t) \). If \(wt \neq w't \) for all \(w, w' \in F_J(t) \) with \(w \neq w' \) then each generalised weight space has dimension 1. Thus if \(M \) is a proper submodule of \(M_J(t) \) then there is \(w, w' \in F_J(t) \) with \(M_{wt} \neq 0 \) and \(M_{w't} = 0 \), contradicting Proposition 2.5.

\[\text{Remark 2.6.} \] Recently \([5]\) Ram’s construction has been applied to study the representation theory of 1-parameter rank 2 affine Hecke algebras with \(q \) a root of the Poincaré polynomial. One imagines that the construction in Theorem 2.5 could be applied to the study such representations in the multi-parameter case.

2.3 Examples

Let us consider some examples of representations constructed using Theorem 2.5 (these examples arise in the Plancherel Theorems). Of interest, we see in the second and third examples that some non-calibratable modules in the 1-parameter case can be constructed from calibrated representations of multi-parameter algebras by making an appropriate change of basis.

Example 1.

Let \(\mathcal{H} \) be a \(\tilde{C}_2 \) Hecke algebra with \(L = P \) and parameters \(q_1 \) and \(q_2 \) (see Section 3.5). Let \(t \) be the character with \(t^{\omega_1} = -q_1^{-1} \) and \(t^{\omega_2} = q_1^{1/2} \), so that \(t^{\alpha_1^\vee} = q_1^{-1} \) and \(t^{\alpha_2^\vee} = -1 \). Thus \(N(t)^\vee = \{ \alpha_1^\vee, \alpha_2^\vee + 2\alpha_1^\vee \} \) and \(D(t) = \emptyset \). Let \(J_1^\vee = \emptyset \), \(J_2^\vee = \{ \alpha_1^\vee \} \), \(J_3^\vee = \{ \alpha_2^\vee + 2\alpha_1^\vee \} \), and \(J_4^\vee = \{ \alpha_1^\vee, \alpha_2^\vee + 2\alpha_1^\vee \} \). Then \(F_{J_1}(t) = \{ 1, s_2 \} \), \(F_{J_2}(t) = \{ s_1, s_2 s_1 \} \), \(F_{J_3}(t) = \{ s_1 s_2, s_2 s_1 s_2 \} \), and \(F_{J_4}(t) = \{ s_1 s_2 s_1, s_1 s_2 s_1 s_2 \} \). Thus by Theorem 2.5 and Proposition 2.6, there are 4 irreducible modules with central character \(t \), each with dimension 2. For example, the matrices for the module \(M_{J_1}(t) \) with respect to the basis \(\{ e_1, e_{s_2} \} \) are \(\pi(T_1) = -q_1^{-1/2} I \), \(\pi(x^{\omega_1}) = -q_1^{-1} I \), and

\[
\pi(T_2) = \frac{q_2^{1/2}}{2} \begin{pmatrix}
1 & -q_2^{-1} & 1 & q_2^{-1} \\
1 & q_2^{-1} & 1 & -q_2^{-1}
\end{pmatrix}
\]

\(\pi(x^{\omega_2}) = \text{diag}(q_1^{-1/2}, -q_1^{-1/2}) \).

We have \(\pi(x^{\alpha_1^\vee}) = q_1^{-1} I \) and \(\pi(x^{\alpha_2^\vee}) = -I \). It follows that the restriction \(\pi|_{\mathcal{H}} \) is not irreducible. Indeed \(\pi|_{\mathcal{H}} \) is the direct sum of the representations \(\pi^1 \) and \(\pi^3 \) from Section 3.3.

Example 2.

Let \(\mathcal{H} \) be \(\tilde{G}_2 \) Hecke algebra with \(L = P \) and parameters \(q_1 \) and \(q_2 \) (see Section 3.6). Let \(t \in \text{Hom}(Q, \mathbb{C}^\times) \) be the character with \(t^{\alpha_1^\vee} = q_1 \) and \(t^{\alpha_2^\vee} = q_1^{-1/2} q_2^{1/2} \). If \(q_1 \neq q_2 \) and \(q_1 \neq q_2^3 \) then this character is regular, and we compute \(N(t)^\vee = \{ \alpha_1^\vee, \alpha_1^\vee + 2\alpha_2^\vee \} \). Thus there are 4 choices for \(J \subseteq N(t) \), and the connected components of the calibration graph are given by \(\{ w t \mid w \in F_J(t) \} \) for these choices of \(J \). Consider the case \(J^\vee = \{ \alpha_1^\vee + 2\alpha_2^\vee \} \). We compute \(F_J(t) = \{ s_2 s_1 s_2 s_1, s_1 s_2 s_1 s_2 s_1, s_2 s_1 s_2 s_1 s_2 s_1 \} \). The matrices for \(\pi = M_J(t) \) are

\[
\pi(T_1) = \frac{q_2^{1/2}}{2} \begin{pmatrix}
1 & q_2^{-1} & q_2^{1/2} & 0 \\
-1 & 0 & 0 & 0 \\
1 & -q_2^{-1} & q_2^{1/2} & 0 \\
0 & 0 & 0 & -q_2^{-1}
\end{pmatrix}
\]

\(\pi(x^{\alpha_2^\vee}) = \text{diag}(q_1^{1/2} q_2^{1/2}, q_1^{1/2} q_2^{1/2}, q_1^{-1}) \)

\(\pi(T_2) = \frac{q_2^{1/2}}{2} \begin{pmatrix}
-1 & 0 & 0 \\
0 & 1 & -q_2^{-1} \\
0 & 1 & q_2^{1/2} \\
1 & 1 & 0
\end{pmatrix}
\]

\(\pi(x^{\alpha_1^\vee}) = \text{diag}(q_2^{1/2}, q_1^{1/2} q_2^{1/2}, q_1^{1/2} q_2^{1/2}) \)}.

\(\pi(x^{\alpha_2^\vee}) = \text{diag}(q_2^{1/2}, q_1^{1/2} q_2^{1/2}, q_1^{1/2} q_2^{1/2}) \).
The construction breaks down when \(q_1 = q_2 \) or when \(q_1 = q_2^3 \). These cases can be dealt with by a suitable change of basis in the module \(M_J(t) \). Let

\[
A = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & -q_1^{-\frac{1}{2}}q_2^{-\frac{3}{2}} \\
0 & -1 & 1
\end{pmatrix}, \quad B = \begin{pmatrix}
1 & -q_1^{-\frac{1}{2}}q_2^{-\frac{3}{2}} & 0 \\
-1 & 1 & 0 \\
0 & 0 & 1 - q_1^{-\frac{1}{2}}q_2^{-\frac{3}{2}}
\end{pmatrix}.
\]

After conjugating each representing matrix by \(A \) (respectively \(B \)) it is observed that the resulting matrices are defined at \(q_1 = q_2 \) (respectively \(q_1 = q_2^3 \)). Setting \(q_1 = q_2 = q \) (respectively \(q_1 = q^3 \) with \(q_2 = q \)) gives a (non-calibrated) irreducible representation of the algebra \(\mathcal{H}(q,q) \) (respectively the algebra \(\mathcal{H}(q,q^3) \)). For example, the matrices in the \(q_1 = q_2 = q \) case become

\[
\pi(T_1) = q^{\frac{3}{2}} \begin{pmatrix}
\frac{q+1}{q} & \frac{3}{q-1} & \frac{3}{q-1} \\
\frac{3}{q-1} & -\frac{3}{q-1} & -\frac{3}{q-1} \\
-\frac{3}{q-1} & -\frac{3}{q-1} & \frac{3}{q-1}
\end{pmatrix}, \quad \pi(T_2) = q^{\frac{3}{2}} \begin{pmatrix}
-q^{-1} & 0 & 0 \\
0 & 1 & 0 \\
0 & -2q^{-1} & -q^{-1}
\end{pmatrix},
\]

\[
\pi(x^{\alpha_1^+}) = \begin{pmatrix}
0 & 0 & 0 \\
0 & -2q^{-1} & -3q^{-1} \\
0 & -3q^{-1} & 4q^{-1}
\end{pmatrix}, \quad \pi(x^{\alpha_1^+}) = \begin{pmatrix}
q^{-1} & 0 & 0 \\
0 & 3 & 2 \\
0 & -2 & -1
\end{pmatrix}.
\]

Example 3. Let \(\mathcal{H} \) be a \(\tilde{C}_2 \) affine Hecke algebra with either \(L = Q \) or \(L = P \) and with parameters \(q_1 \) and \(q_2 \) (see Sections 3.1 and 5.5). Let \(t \in \text{Hom}(L, \mathbb{C}^\times) \) be a character with \(t^{\alpha_1^+} = q_1^{-1} \) and \(t^{\alpha_2^+} = q_2^{-1} \). If \(q_1 \neq q_2 \) and \(q_1 \neq q_2^3 \) then the character \(t \) is regular, since \(t^{\alpha_1^+ + \alpha_2^+} = q_1^{-1}q_2^{-1} \) and \(t^{\alpha_1^+ + 2\alpha_2^+} = q_1^{-1}q_2^3 \). Thus we compute \(N(t) = \{\alpha_1, \alpha_2\} \) and \(D(t) = \emptyset \). There are 4 choices for \(J \subseteq N(t) \), namely \(J_1 = \emptyset \), \(J_2 = \{\alpha_1\} \), \(J_3 = \{\alpha_2\} \), and \(J_4 = \{\alpha_1, \alpha_2\} \). We compute

\[
F_{J_1}(t) = \{1\}, \quad F_{J_2}(t) = \{s_1, s_2s_1, s_1s_2s_1\}, \quad F_{J_3}(t) = \{s_2, s_1s_2, s_2s_1s_2\}, \quad F_{J_4}(t) = \{s_1s_2s_1s_2\}.
\]

The sets \(\{wt \mid w \in F_{J_1}(t)\} \) with \(i = 1, 2, 3, 4 \) are the connected components of the calibration graph of \(t \). Thus there are 4 irreducible modules \(M_J(t) \) (\(i = 1, 2, 3, 4 \)) with central character \(t \), with dimensions 1, 3, 3, 1 respectively.

Consider the module \(M_{J_3}(t) \) (this module will appear in the Plancherel Theorem for \(\tilde{C}_2 \)). The matrices of \(T_1, T_2, x^{\alpha_1^+} \) and \(x^{\alpha_2^+} \) relative to the basis \(e_{s_2}, e_{s_1s_2}, e_{s_2s_1s_2} \) are

\[
\pi(T_1) = q_1^{\frac{1}{2}} \begin{pmatrix}
1-q_1^{-1} & 1-q_1^{-\frac{3}{2}}q_2 & 0 \\
1-q_1^{-\frac{3}{2}}q_2 & 1-q_1^{-\frac{3}{2}}q_2 & 0 \\
0 & 0 & 1-q_1^{-1}
\end{pmatrix}, \quad \pi(T_2) = q_2^{\frac{1}{2}} \begin{pmatrix}
-q_2^{-1} & 0 & 0 \\
0 & 1-q_2^{-1} & 0 \\
0 & 1-q_2^{-1} & 1-q_1^{-\frac{3}{2}}q_2
\end{pmatrix},
\]

\[
\pi(x^{\alpha_1^+}) = \text{diag}(q_1^{-\frac{1}{2}}q_1^{-1}, q_1^{-\frac{3}{2}}q_2^{-1}, q_1^{-1}), \quad \pi(x^{\alpha_1^+}) = \text{diag}(q_2^{-\frac{1}{2}}q_1^{-1}, q_2^{-\frac{3}{2}}q_2^{-1}, q_2^{-1}q_1^{-1}).
\]

If \(L = P \) then \(\omega_1 = \alpha_1^+ + \alpha_2^+ \) and \(\omega_2 = \alpha_2^+ + \alpha_1^+ \). Therefore the characters \(t \in \text{Hom}(P, \mathbb{C}^\times) \) with \(t^{\alpha_1^+} = q_1^{-1} \) and \(t^{\alpha_2^+} = q_2^{-1} \) are those characters with \(t^{\omega_1} = q_1^{-1}q_2^{-1} \) and \(t^{\omega_2} = \pm q_1^{-1/2}q_2^{-1} \). The corresponding matrices for \(x^{\omega_1} \) and \(x^{\omega_2} \) are

\[
\pi(x^{\omega_1}) = \text{diag}(q_1^{-\frac{1}{2}}q_2, q_2^{-\frac{1}{2}}q_1^{-1}), \quad \pi(x^{\omega_2}) = \pm \text{diag}(q_1^{-\frac{1}{2}}, q_1^{-\frac{1}{2}}, q_1^{\frac{1}{2}}q_2^{-1}).
\]

In the cases \(q_1 = q_2 \) or \(q_1 = q_2^3 \) an analogous computation to that in Example 2 can be used to construct (non-calibrated) irreducible representations of \(\mathcal{H}(q,q) \) and \(\mathcal{H}(q,q^3) \).
2.4 Characters

The following observations about characters will be used for the Plancherel Theorems. Let \(f_t(h) \) be as in (1.11).

Lemma 2.7. Let \(\pi \) be an irreducible representation of \(\mathcal{H}_L \) with central character \(t \), and suppose that the character \(\chi \) of \(\pi \) satisfies

\[
\chi(\tau_w x^\lambda) = \delta_{w,1} \sum_{v \in W_0} k_v(v t)^\lambda \quad \text{for all } w \in W_0 \text{ and } \lambda \in L
\]

for some numbers \(k_v \in \mathbb{C} \). If \(t \) is regular then

\[
\chi(h) = \sum_{v \in W_0} k_v f_v t(h) \quad \text{for all } h \in \mathcal{H}_L.
\]

Proof. Since \(t \) is regular each \(f_v t(h) \) with \(v \in W_0 \) and \(h \in \mathcal{H}_L \) is defined. From Remark 1.2 and the hypothesis we have \(\chi(h) = \sum_{v \in W_0} k_v f_v t(h) \) for all \(h \in \mathcal{H}_L \), where \(\mathcal{H}_L \) is the subalgebra of \(\mathcal{H}_L \) with basis \(\{ \tau_w x^\lambda \mid w \in W_0, \lambda \in L \} \). Let \(\Delta(x) = \prod_{\alpha \in \mathcal{R}_0} (1 - x^{-\alpha'}) = d(x)d(x^{-1}) \). An induction using the formula \((1 - x^{-\alpha'})T_i = \tau_i + a_i(x) \) shows that \(\Delta(x)t^{(w)}T_w \in \mathcal{H}_L \) for all \(w \in W_0 \). Thus \(\Delta(x)t^{(w)}T_w x^\lambda \in \mathcal{H}_L \) for all \(w \in W_0 \) and \(\lambda \in L \). Since \(\Delta(x) \in \mathbb{C}[L]W_0 \) is central and \(\chi \) is irreducible we have

\[
\Delta(t)^{t(w)} \chi(T_w x^\lambda) = \chi(\Delta(x)t^{(w)}T_w x^\lambda) = \sum_{v \in W_0} k_v f_v (\Delta(x)t^{(w)}T_w x^\lambda) = \Delta(t)^{t(w)} \sum_{v \in W_0} k_v f_v (T_w x^\lambda).
\]

We can divide through by \(\Delta(t)^{t(w)} \) since \(t \) is regular.

Proposition 2.8. Let \(\chi_t \) be the character of the principal series representation \(M(t) \) of \(\mathcal{H}_L \) with central character \(t \). Then

\[
\chi_t(h) = \sum_{w \in W_0} f_w t(h) \quad \text{for all } h \in \mathcal{H}_L \tag{2.5}
\]

where the right hand side has an analytic continuation (for fixed \(h \in \mathcal{H}_L \) to all \(t \in \text{Hom}(L, \mathbb{C}^\times) \).

Proof. Suppose first that \(D(t) = \emptyset \) and that \(M(t) \) is irreducible (see Theorem 2.1). Since \(D(t) = \emptyset \) the module \(M(t) \) has basis \(\{ \tau_w \otimes v_t \mid w \in W_0 \} \). To see this note that if \(w = s_{i_1} \cdots s_{i_s} \) is reduced then the Bernstein relation gives

\[
\tau_w \otimes v_t = \left[\prod_{\alpha \in \mathcal{R}(w^{-1})} (1 - t^\alpha) \right] (T_w \otimes v_t) + \text{lower terms},
\]

where ‘lower terms’ is a linear combination of terms \(T_v \otimes v_t \) with \(v < w \) in Bruhat order. Thus if \(D(t) = \emptyset \) then each basis element \(T_w \otimes v_t \) of \(M(t) \) can be written in terms of the elements \(\{ \tau_w \otimes v_t \mid w \in W_0 \} \).

From (1.7) we see that the diagonal entries of the matrix for \(\tau_w \) are all 0. The matrix for \(x^\lambda \) is diagonal with entries \((w t)^\lambda \) \((w \in W_0) \) on the diagonal. Therefore

\[
\chi_t(\tau_w x^\lambda) = \delta_{w,1} \sum_{v \in W_0} (v t)^\lambda \quad \text{for all } w \in W_0 \text{ and } \lambda \in L.
\]

Hence Lemma 2.7 gives (2.5).
The cases where \(D(t) \neq \emptyset \) or \(M(t) \) is not irreducible are obtained as follows. For fixed \(h \in \mathcal{H} \) the the character \(\chi_t(h) \) is, by construction, a linear combination of \(\{ t^\lambda \mid \lambda \in L \} \) and is defined for all \(t \in \text{Hom}(L, \mathbb{C}^\times) \). The right hand side of (2.5) is a rational function in \(t \). Thus the singularities of this rational function are removable singularities (even though each individual summand may have singularities).

\[\chi(h) = \sum_{w \in F_J(t)} f_w(h) \quad \text{for all } h \in \mathcal{H}. \]

Proof. Since \(\tau_1 \cdot e_w = q_1^{1/2} n_1(t) e_{s_w} \) we see that the diagonal entries of the matrix for \(\tau_w \) are 0. Since the matrix representing \(x_1^\lambda \) is diagonal it follows that

\[\chi(\tau_w x_1^\lambda) = \delta_{v,1} \sum_{w \in F_J(t)} (wt)^\lambda \quad \text{for all } v \in W_0 \text{ and } \lambda \in L, \]

and the result follows from Lemma 2.7.

Lemma 2.10. Let \(\pi \) be a 1-dimensional representation of \(\mathcal{H}_L \) with regular central character \(t \). Then

\[\chi(h) = f_t(h) \quad \text{for all } h \in \mathcal{H}_L, \]

unless \(\mathcal{H}_L \) is of type \(\tilde{C}_n \) with \(\pi(x_{\alpha_n}^\vee) = -1 \). In this case there is a 1-dimensional representation \(\pi' \) defined by \(\pi'(x_1^\lambda) = \pi(x_1^\lambda) \) for all \(\lambda \in L \), \(\pi'(T_i) = \pi(T_i) \) for all \(i \neq n \), and \(\pi'(T_n) = q_n^{1/2} \) (respectively \(-q_n^{-1/2} \)) if \(\pi(T_n) = -q_n^{-1/2} \) (respectively \(q_n^{1/2} \)). Then

\[\frac{\chi(h) + \chi'(h)}{2} = f_t(h) \quad \text{for all } h \in \mathcal{H}_L. \]

Proof. By direct analysis of the defining relations (1.2) one sees that the central character \(t \) of a 1-dimensional representation necessarily has \(n_1(t) n_1(t^{-1}) = 0 \), except in the \(\tilde{C}_n \) case with \(\pi(x_{\alpha_n}^\vee) = -1 \). Excluding this case for the moment, it follows from (1.7) that \(\pi(\tau_i) = 0 \) and hence \(\pi(\tau_w x_1^\lambda) = \delta_{w,1} t^\lambda \) for all \(w \in W_0 \) and \(\lambda \in L \). Since \(t \) is assumed to be regular, Lemma 2.7 gives \(\chi(h) = f_t(h) \) for all \(h \in \mathcal{H}_L \).

Now consider the \(\tilde{C}_2 \) case with \(\pi(x_{\alpha_2}^\vee) = -1 \). Let \(\pi' \) be the companion representation defined in the statement of the lemma. The proof of Lemma 2.7 applied to the representation \(\pi \oplus \pi' \) proves the result. The fact that \(\pi \oplus \pi' \) is not irreducible does not effect the proof of Lemma 2.7 because the centre \(\mathbb{C}[L]^{W_0} \) of \(\mathcal{H}_L \) acts by the same scalar on each of \(\pi \) and \(\pi' \).

Remark 2.11. In Proposition 2.9 and Lemma 2.10 we assumed that \(t \) is a regular central character. In general these results are false for non-regular central characters, even if each term \(f_t(h) \) is defined. For example consider the \(\tilde{C}_2 \) case with \(t \in \text{Hom}(Q, \mathbb{C}^\times) \) given by \(t_{\alpha_2}^\lambda = q_1 \), \(t_{\alpha_2}^{-1} = q_2^{-1} \). If \(q_1 \neq q_2 \) and \(q_1 \neq q_2^{-1} \) and \(q_1 \neq q_3 \) and \(q_1 \neq q_3^{-1} \) then this central character is regular, and by Lemma 2.10 we have \(f_t(h) = \chi^A(h) \) for all \(h \in \mathcal{H} \), where \(\chi^A \) is the 1-dimensional representation of \(\mathcal{H} \) listed in Section 3.6. Suppose that \(q_1 = q_2 = q \). A calculation similar to Remark 1.2 shows that \(f_t(h) \) is defined for all \(h \in \mathcal{H} \), and that \(f_t(T_1 T_2 T_1) = q^{1/2} \). But \(\chi^A(T_1 T_2 T_1) = -q^{-1/2} \).
3 The Plancherel Theorem

In this section we state and prove the Plancherel Theorem for each irreducible affine Hecke algebra of rank 1 or rank 2. In each case we give the generators and relations for the algebra, and construct the representations that appear in the Plancherel Theorem (see the appendix for some explicit matrices). We then state the Plancherel Theorem, and give a proof starting from the trace generating function formula (1.12). The proof consists of performing a series of contour shifts and Proposition 2.8 to write (1.12) as

$$\text{Tr}(h) = \frac{1}{|W_0|q_{w_0}} \int_{T^n} \frac{\chi_t(h)}{|c(t)|^2} \, dt + \text{lower terms} \quad (3.1)$$

where the lower order terms are integrals over lower dimensional tori, and can be matched up with lower dimensional representations of the Hecke algebra using Proposition 2.9 and Lemma 2.10.

The possible pairs (R, L) with R an irreducible rank 2 root system and L a \mathbb{Z}-lattice with $Q \subseteq L \subseteq P$ are $(R, L) = (A_2, Q), (A_2, P), (C_2, Q), (C_2, P), (G_2, Q)$, and (BC_2, Q).

3.1 The rank 1 algebras

1. The $\tilde{A}_1(q)$, $L = Q$, algebra has generators $T = T_1$ and $x = x^{\omega_1^\vee}$ with relations

$$T^2 = 1 + (q^{\frac{1}{2} - q^{-\frac{1}{2}}})T, \quad Tx = x^{-1}T + (q^{\frac{1}{2} - q^{-\frac{1}{2}}})(1 + x).$$

Let $\pi_t = \text{Ind}_{\tilde{C}(Q)}^{\tilde{C}(Q)}(Cv_t)$ be the principal series representation with central character $t \in \mathbb{C}^\times$, where $x \cdot v_t = tv_t$. Let π be the 1-dimensional representation of \mathcal{H} with

$$\pi(T) = -q^{-\frac{1}{2}} \quad \text{and} \quad \pi(x) = q^{-1}.$$

Let χ_t be the character of π_t and let χ be the character of π.

2. The $\tilde{A}_1(q)$, $L = P$, algebra has generators $T = T_1$ and $x = x^{\omega_1^\vee}$ with relations

$$T^2 = 1 + (q^{\frac{1}{2} - q^{-\frac{1}{2}}})T, \quad Tx = x^{-1}T + (q^{\frac{1}{2} - q^{-\frac{1}{2}}})x.$$}

Let $\pi_t = \text{Ind}_{\tilde{C}(P)}^{\tilde{C}(P)}(Cv_t)$ be the principal series representation with central character $t \in \mathbb{C}^\times$, where $x \cdot v_t = tv_t$. Let π be the 1-dimensional representation of \mathcal{H} with

$$\pi^1(T) = q^{-\frac{1}{2}}, \quad \pi^1(x) = q^{-\frac{1}{2}}, \quad \text{and} \quad \pi^2(T) = -q^{-\frac{1}{2}}, \quad \pi^2(x) = -q^{-\frac{1}{2}}.$$}

Let χ_t, χ^1, and χ^2 be the characters of π_t, π^1, and π^2 (respectively).

3. The $\tilde{BC}_1(q_0, q_1)$, $L = Q$, algebra has generators $T = T_1$, $x = x^{\omega_1^\vee/2}$ with relations

$$T^2 = 1 + (q_1^{\frac{1}{2}} - q_1^{-\frac{1}{2}})T, \quad Tx = x^{-1}T + (q_1^{\frac{1}{2}} - q_1^{-\frac{1}{2}})x + (q_0^{\frac{1}{2}} - q_0^{-\frac{1}{2}}).$$

Let $\pi_t = \text{Ind}_{\tilde{C}(Q)}^{\tilde{C}(Q)}(Cv_t)$ be the principal series representation with central character $t \in \mathbb{C}^\times$, where $x \cdot v_t = tv_t$. Let π^1, π^2 and π^3 be the 1-dimensional representations of \mathcal{H} with

$$\pi^1(T) = q_1^{-\frac{1}{2}}, \quad \pi^2(T) = -q_1^{-\frac{1}{2}}, \quad \pi^3(T) = q_1^{\frac{1}{2}},$$

$$\pi^1(x) = q_0^{-\frac{1}{2}}q_1^{-\frac{1}{2}}, \quad \pi^2(x) = -q_0^{-\frac{1}{2}}q_1^{-\frac{1}{2}}, \quad \pi^3(x) = -q_0^{-\frac{1}{2}}q_1^{\frac{1}{2}}$$

Let χ_t, χ^1, χ^2, and χ^3 be the characters of π_t, π^1, π^2, and π^3 (respectively).
Theorem 3.1. Let $h \in \mathcal{H}$. In the cases (1), (2) and (3) above we have, respectively:

\[
\begin{align*}
\text{Tr}(h) &= \frac{1}{2q} \int_{\mathbb{T}} \frac{\chi_t(h)}{|c(t)|^2} dt + \frac{q-1}{q+1} \chi(h), \\
\text{Tr}(h) &= \frac{1}{2q} \int_{\mathbb{T}} \frac{\chi_t(h)}{|c(t)|^2} dt + \frac{q-1}{2(q+1)} \left(\chi^1(h) + \chi^2(h) \right), \\
\text{Tr}(h) &= \frac{1}{2q_1} \int_{\mathbb{T}} \frac{\chi_t(h)}{|c(t)|^2} dt + \frac{q_0 q_1 - 1}{(q_0 + 1)(q_1 + 1)} \chi^1(h) + \frac{|q_0 - q_1|}{(q_0 + 1)(q_1 + 1)} \left\{ \begin{aligned}
\chi^2(h) & \quad \text{if } q_0 < q_1 \\
\chi^3(h) & \quad \text{if } q_1 < q_0,
\end{aligned} \right.
\end{align*}
\]

where the c-functions are (respectively)

\[
c(t) = \frac{1 - q^{-1}t^{-1}}{1 - t^{-1}}, \quad c(t) = \frac{1 - q^{-1}t^{-2}}{1 - t^{-2}}, \quad c(t) = \frac{(1 - q_0^{-\frac{1}{2}} q_1^{-\frac{1}{2}} t^{-1})(1 + q_0^{-\frac{1}{2}} q_1^{-\frac{1}{2}} t^{-1})}{1 - t^{-2}}.
\]

Proof. Let us prove the $BC_1(q_0, q_1)$ case. If $q_0 = q_1$ there is some simplification, so suppose that $q_0 \neq q_1$. Write $g(t) = g_t(h)$ and $f(t) = f_t(h)$. From \[\text{(1.12)}\] we have

\[
\text{Tr}(h) = \frac{1}{q_1} \int_{\mathbb{T}} \frac{f(t)}{c(t)c(t^{-1})} dt
\]

where $0 < a < 1$. Note that the integrand has at most removable singularities on $t \in \mathbb{T}$, and that the poles of the integrand that lie between the contours $q_0^{-\frac{1}{2}} q_1^{-\frac{1}{2}} a \mathbb{T}$ and \mathbb{T} are at $t = q_0^{-\frac{1}{2}} q_1^{-\frac{1}{2}}$, $t = -q_0^{-\frac{1}{2}} q_1^{-\frac{1}{2}}$ (in the case that $q_0 < q_1$) and $t = -q_0^{-\frac{1}{2}} q_1^{\frac{1}{2}}$ (in the case that $q_1 < q_0$). Computing residues (using $dt = \frac{1}{2\pi i} d\theta = \frac{1}{2\pi i} \frac{dz}{z}$) gives

\[
\text{Tr}(h) = \frac{1}{q_1} \int_{\mathbb{T}} \frac{f(t)}{c(t)c(t^{-1})} dt + \frac{q_0 q_1 - 1}{(q_0 + 1)(q_1 + 1)} f(q_0^{-\frac{1}{2}} q_1^{-\frac{1}{2}}) + \frac{|q_0 - q_1|}{(q_0 + 1)(q_1 + 1)} \left\{ \begin{aligned}
f(-q_0^{-\frac{1}{2}} q_1^{-\frac{1}{2}}) & \quad \text{if } q_0 < q_1 \\
f(-q_0^{-\frac{1}{2}} q_1^{\frac{1}{2}}) & \quad \text{if } q_1 < q_0.
\end{aligned} \right.
\]

Using Proposition 2.8 we have

\[
\frac{1}{q_1} \int_{\mathbb{T}} \frac{f(t)}{c(t)c(t^{-1})} dt = \frac{1}{2q_1} \int_{\mathbb{T}} \frac{f(t) + f(t^{-1})}{|c(t)|^2} dt = \frac{1}{2q_1} \int_{\mathbb{T}} \frac{\chi_t(h)}{|c(t)|^2} dt,
\]

and Lemma 2.10 gives $f(-q_0^{-\frac{1}{2}} q_1^{-\frac{1}{2}}) = \chi^1(h)$, $f(-q_0^{-\frac{1}{2}} q_1^{\frac{1}{2}}) = \chi^2(h)$, and $f(-q_0^{-\frac{1}{2}} q_1^{\frac{1}{2}}) = \chi^3(h)$. \square

3.2 The $\tilde{A}_2(q)$ algebras with $L = Q$

This case is treated in \cite{[20]}, and so we will just state the result here. The coroot system is $R = \pm \{\alpha^\vee_1, \alpha^\vee_2, \alpha^\vee_1 + \alpha^\vee_2\}$. The affine Hecke algebra has generators $T_1, T_2, x_1 = x^\alpha_1, x_2 = x^\alpha_2$ and relations

\[
\begin{align*}
T_1^2 &= 1 + (q^\frac{1}{2} - q^{-\frac{1}{2}})T_1, \quad T_1 x_1 = x_1^{-1}T_1 + (q^\frac{1}{2} - q^{-\frac{1}{2}})(1 + x_1), \quad T_1 T_2 T_1 = T_2 T_1 T_2, \\
T_2^2 &= 1 + (q^\frac{1}{2} - q^{-\frac{1}{2}})T_2, \quad T_2 x_2 = x_2^{-1}T_2 + (q^\frac{1}{2} - q^{-\frac{1}{2}})(1 + x_2), \quad x_1 x_2 = x_2 x_1, \\
T_1 x_2 &= x_1 x_2 T_1^{-1}, \quad T_2 x_1 = x_1 x_2 T_2^{-1}.
\end{align*}
\]

Let $\pi_t = \text{Ind}_{C[Q]}^{\mathcal{H}}(C_{C[t]})$ be the principal series representation of the affine Hecke algebra \mathcal{H} with central character $t = (t_1, t_2) \in (\mathbb{C}^\times)^2$, where $C_{C[t]}$ is the 1-dimensional representation of $\mathbb{C}[Q]$ with $x_1 \cdot t_1 = t_1 v_t$ and $x_2 \cdot t_2 = t_2 v_t$.

15
Let \mathcal{H}_1 be the subalgebra of \mathcal{H} generated by T_1, x_1 and x_2. Let $s \in \mathbb{C}^\times$ and let $\mathbb{C}u_s$ be the 1-dimensional representation of \mathcal{H}_1 with

$$T_1 \cdot u_s = -q^{\frac{1}{2}} u_s, \quad x_1 \cdot u_s = q^{-1} u_s, \quad x_2 \cdot u_s = q^{\frac{3}{2}} u_s.$$

Let $\pi^1_s = \text{Ind}_{\mathbb{C}P}(\mathbb{C}u_s)$ be the induced representation of \mathcal{H}.

Let π^2 be the 1-dimensional representation of \mathcal{H} with

$$\pi^2(T_1) = -q^{\frac{1}{2}}, \quad \pi^2(T_2) = -q^{\frac{1}{2}}, \quad \pi^2(x_1) = q^{-1}, \quad \pi^2(x_2) = q^{-1}.$$

Let χ_t, χ^1_s, and χ^2 be the characters of π_t, π^1_s, and π^2 (respectively).

Theorem 3.2. for all $h \in \mathcal{H}$ we have

$$\text{Tr}(h) = \frac{1}{6q^3} \int_{\mathbb{T}} \frac{\chi_t(h)}{|c(t)|^2} \, dt + \frac{(q-1)^2}{q^2(q^2-1)} \int_{\mathbb{T}} \frac{\chi^1_s(h)}{|c_1(s)|^2} \, ds + \frac{(q-1)^3}{q^3-1} \chi^2(h),$$

where

$$c(t) = \frac{(1 - q^{-1}t_1^{-1})(1 - q^{-1}t_2^{-1})(1 - q^{-1}t_1^{-1}t_2^{-1})}{(1-t_1^{-1})(1-t_2^{-1})(1-t_1^{-1}t_2^{-1})}, \quad c_1(s) = \frac{1 - q^{-\frac{3}{2}}s^{-1}}{1 - q^2s^{-1}}.$$

3.3 The $\tilde{A}_2(q)$ algebras with $L = P$

The root system is as in Section 3.2. The fundamental coweights are $\omega_1 = \frac{2}{3} \alpha^\gamma_1 + \frac{1}{3} \alpha^\gamma_2$ and $\omega_2 = \frac{1}{3} \alpha^\gamma_1 + \frac{2}{3} \alpha^\gamma_2$, and the coweight lattice is $P = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$. The affine Hecke algebra is generated by $T_1, T_2, x_1 = x^\omega_1$ and $x_2 = x^{\omega_2}$ with relations

$$T_1^2 = 1 + (q^{\frac{1}{2}} - q^{-\frac{1}{2}})T_1 \quad T_1 x_1 = x_1^{-1}x_2 T_1 + (q^{\frac{1}{2}} - q^{-\frac{1}{2}})x_1 \quad T_1 T_2 T_1 = T_2 T_1 T_2$$

$$T_2^2 = 1 + (q^{\frac{1}{2}} - q^{-\frac{1}{2}})T_2 \quad T_2 x_2 = x_1 x_2^{-1} T_2 + (q^{\frac{1}{2}} - q^{-\frac{1}{2}})x_2 \quad x_1 x_2 = x_2 x_1$$

$$T_1 x_2 = x_2 T_1 \quad T_2 x_1 = x_1 T_2.$$

Let $\pi_t = \text{Ind}_{\mathbb{C}P}(\mathbb{C}v_t)$ be the principal series representation of the affine Hecke algebra \mathcal{H} with central character $t = (t_1, t_2) \in (\mathbb{C}^\times)^2$, where $\mathbb{C}v_t$ is the 1-dimensional representation of $\mathbb{C}[P]$ with $x_1 \cdot v_t = t_1 v_t$ and $x_2 \cdot v_t = t_2 v_t$.

Let \mathcal{H}_1 be the subalgebra generated by T_1, x_1 and x_2. Let $s \in \mathbb{C}^\times$, and let $\pi^1_s = \mathcal{H} \otimes \mathcal{H}_1(\mathbb{C}u_s)$ be the 3-dimensional representation of \mathcal{H} induced from the 1-dimensional representation $\mathbb{C}u_s$ of \mathcal{H}_1 given by

$$T_1 \cdot u_s = -q^{\frac{1}{2}} u_s, \quad x_1 \cdot u_s = q^{-\frac{1}{2}} su_s, \quad x_2 \cdot u_s = s^{2} u_s.$$

The module π^1_s has basis $\{1 \otimes u_s, T_2 \otimes u_s, T_1 T_2 \otimes u_s\}$ and support $\text{supp} \pi^1_s = \{t, s_{2t}, s_{1s} s_{2t}\}$, where $t \in \text{Hom}(P, \mathbb{C}^\times)$ is the character with $(t, t_1, t_2) = (q^{-1/2}s, s^2)$. It is not hard to show (see the proof of Lemma 3.1.3) that the character of π^1_s satisfies

$$\chi_s(h) = f_t(h) + f_{s_{2t}}(h) + f_{s_{1s} s_{2t}}(h) \quad \text{for all } s \in \mathbb{C}^\times \text{ and all } h \in \mathcal{H}. \quad (3.2)$$

Let π^2, π^3 and π^4 be the 1-dimensional representations of \mathcal{H} given by (where $\omega = e^{2\pi i/3}$)

$$\pi^2(T_1) = -q^{\frac{1}{2}}, \quad \pi^2(T_2) = -q^{\frac{1}{2}}, \quad \pi^2(x_1) = q^{-1}, \quad \pi^2(x_2) = q^{-1}$$

$$\pi^3(T_1) = -q^{\frac{1}{2}}, \quad \pi^3(T_2) = -q^{\frac{1}{2}}, \quad \pi^3(x_1) = q^{-1}, \quad \pi^3(x_2) = q^{-1}$$

$$\pi^4(T_1) = -q^{\frac{1}{2}}, \quad \pi^4(T_2) = -q^{\frac{1}{2}}, \quad \pi^4(x_1) = q^{-1}, \quad \pi^4(x_2) = q^{-1}.$$

Let $\chi_t, \chi^1_s, \chi^2, \chi^3$ and χ^4 be the characters of $\pi_t, \pi^1_s, \pi^2, \pi^3$, and π^4 (respectively).
Theorem 3.3. For all $h \in \mathcal{H}$ we have
\[
\tau(h) = \frac{1}{6q^3} \int_{\pi/2} \frac{\chi_t(h)}{|c(t)|^2} \, dt + \frac{(q-1)^2}{q^2(q^2-1)} \int_{\mathbb{T}} \frac{\chi_1(h)}{|c_1(s)|^2} \, ds + \frac{(q-1)^3}{3(q^3-1)} (\chi^2(h) + \chi^3(h) + \chi^4(h))
\]
where
\[
c(t) = \frac{(1 - q^{-1}t_1^{-2}t_2)(1 - q^{-1}t_1t_2^{-2})(1 - q^{-1}t_1^{-1}t_2^{-1})}{(1 - t_1^{-2}t_2)(1 - t_1t_2^{-2})(1 - t_1^{-1}t_2^{-1})}, \quad c_1(s) = \frac{1 - q^{-3/2}s^{-3}}{1 - q^{-1/2}s^{-3}}.
\]

Proof. The series $G_t(h)$ converges whenever $|t'^q|, |t'^q|$ < q^{-1}, and hence the series converges whenever $|t_1|, |t_2| < q^{-1}$, where $t_1 = t'^{2\alpha}$ and $t_2 = t'^{2\beta}$. Fix $h \in \mathcal{H}$, and write $f_t(h) = f(t)$. Therefore
\[
\text{Tr}(h) = \frac{1}{q^3} \int_{-a}^{a} \int_{-b}^{b} \frac{f(t)}{c(t)c(t-1)} \, dt_1 \, dt_2
\]
where $0 < a, b < 1$. Fix a number $0 < c < 1$ very close to 1. Consider the inner integral. The t_1-poles of the integrand lying between the contours $q^{-1}aT$ and cT are at the points where $t_1^2 = q^{-1}t_2$. We compute the residues (using $dt_1 = \frac{1}{2\pi i} \frac{ds}{s_1}$) to be
\[
\text{Res}_{t_1 = \pm q^{-1/2}t_2} \frac{f(t)}{c(t)c(t-1)} = \frac{q(q-1)^2}{2(q^2-1)} \frac{f(\pm q^{-1/2}t_2, t_2)}{c_1(s)c_1(s-1)}
\]
Using $\frac{1}{2} \int_{-T}^{T} (f(t^{1/2}) + f(-t^{1/2})) \, dt = \int_{-1/2T}^{1/2T} f(t) \, dt$ it follows that
\[
\text{Tr}(h) = \frac{1}{q^3} \int_{cT} \int_{\mathbb{T}} \frac{f(t)}{|c(t)|^2} \, dt_1 \, dt_2 \, ds + \frac{(q-1)^2}{q^2(q^2-1)} \int_{cT} \frac{f(q^{-1/2}s, s^2)}{c_1(s)c_1(s-1)} \, ds
\]
Interchange the order of integration in the double integral. The t_2-poles of the integrand between the contours $q^{-1}aT$ to T are at the points where $t_2^2 = q^{-1}t_1$ and where $t_2 = q^{-1}t_1^{-1}$. Computing residues gives
\[
\text{Tr}(h) = \frac{1}{q^3} \int_{cT} \int_{\mathbb{T}} \frac{f(t)}{|c(t)|^2} \, dt_2 \, dt_1 + \frac{(q-1)^2}{q^2(q^2-1)} (I_1 + I_2 + I_3),
\]
where
\[
I_1 = \int_{cT} \frac{f(q^{-1/2}s, s^2)}{c_1(s)c_1(s-1)} \, ds \quad I_2 = \int_{cT} \frac{f(s^2, q^{-1/2}s)}{c_1(s)c_1(s-1)} \, ds \quad I_3 = \int_{cT} \frac{f(q^{-1/2}s, q^{-1/2}s^{-1})}{c_1(s)c_1(s-1)} \, ds
\]
where we have set $s = t_1^{1/2}$ in I_2 and $s = q^{1/2}t_1$ in I_3. The t_1-contour in the double integral can be shifted to T without encountering any poles.

The plan is to shift each of the contours in I_1, I_2 and I_3 to the unit contour T. However we need to be careful with the possible singularities of $f(t)$. Therefore we write $f(t) = g(t)/d(t)$, with $g(t)$ analytic. Then the integrands of the integrals I_1, I_2 and I_3 are
\[
\begin{align*}
f(q^{-1/2}s, s^2) & = \frac{(1 - q^{1/2}s^2)g(q^{-1/2}s, s^2)}{(1 - s^2)(1 - q^{1/2}s^{-1})(1 - q^{1/2}s^{-3})(1 - q^{1/2}s^3)} \
c(s, q^{-1/2}s) & = \frac{(1 - q^{1/2}s^3)g(s^2, q^{-1/2}s)}{(1 - s^2)(1 - q^{1/2}s^{-1})(1 - q^{1/2}s^{-3})(1 - q^{1/2}s^3)} \
q^{-1/2}s, q^{-1/2}s^{-1}) & = \frac{(1 - q^{1/2}s^{-3})(1 - q^{1/2}s^{-3})g(q^{1/2}s, q^{1/2}s^{-1})}{(1 - q)(1 - q^{1/2}s^{-3})(1 - q^{1/2}s^3)(1 - q^{1/2}s^{-1})(1 - q^{1/2}s)}
\end{align*}
\]
In particular, the integrands of I_1 and I_2 have singularities on \mathbb{T}. So instead we shift all contours to $e\mathbb{T}$. For the integrals I_2 and I_3 we encounter no poles, and so the shift is for free. For the integral I_1 we pick up simple residues at the points $s^3 = q^{-2}$, and computing residues gives

$$ I_1 = \int_{cT} \frac{f(q^{-\frac{1}{2}}s, s^2)}{c_1(s)c_1(s^{-1})} \frac{q^2(q-1)(q^2-1)}{3(q^3-1)} \left(f(q^{-1}, q^{-1}) + f(\omega q^{-1}, \omega^{-1} q^{-1}) + f(\omega^{-1} q^{-1}, \omega q^{-1}) \right). $$

Therefore

$$ \text{Tr}(h) = \frac{1}{q^3} \int_{T^2} \frac{f(t)}{|c(t)|^2} dt + \frac{(q-1)^2}{q^2(q^2-1)} \int_{cT} f(q^{-\frac{1}{2}}s, s^2) + f(s^2, q^{-\frac{1}{2}}s) + f(q^{-\frac{1}{2}}s, q^{-\frac{1}{2}}s^{-1}) ds \frac{1}{c_1(s)c_1(s^{-1})} \left(f(q^{-1}, q^{-1}) + f(\omega q^{-1}, \omega^{-1} q^{-1}) + f(\omega^{-1} q^{-1}, \omega q^{-1}) \right). $$

By (3.2) the numerator of the single integral is $\chi_s(h)$, and is therefore defined on \mathbb{T} and so the contour of the single integrals can be shifted to T. Proposition 2.8 deals with the double integral, and Lemma 2.10 deals with the 3 constant terms.

3.4 The $\mathcal{C}_2(q_1, q_2)$ algebras with $L = Q$

The dual root system is $R^\vee = \pm \{\alpha_1^\vee, \alpha_2^\vee, \alpha_1^\vee + \alpha_2^\vee, \alpha_1^\vee + 2\alpha_2^\vee\}$. Writing $x_1 = x^{\alpha_1^\vee}$ and $x_2 = x^{\alpha_2^\vee}$, the Hecke algebra has generators T_1, T_2, x_1, x_2 with relations

$$ T_1^2 = 1 + (q_1^{\frac{1}{2}} - q_1^{-\frac{1}{2}})T_1 \quad T_1x_1 = x_1^{-1}T_1 + (q_1^{\frac{1}{2}} - q_1^{-\frac{1}{2}})(1 + x_1) \quad T_1T_2T_1T_2 = T_2T_1T_2T_1 $$

$$ T_2^2 = 1 + (q_2^{\frac{1}{2}} - q_2^{-\frac{1}{2}})T_2 \quad T_2x_2 = x_2^{-1}T_2 + (q_2^{\frac{1}{2}} - q_2^{-\frac{1}{2}})(1 + x_2) \quad x_1x_2 = x_2x_1 $$

$$ T_1x_2 = x_1x_2T_1^{-1} \quad T_2x_1 = x_1x_2T_2^{-1} - (q_1^{\frac{1}{2}} - q_1^{-\frac{1}{2}})x_1x_2. $$

Let $\pi_t = \text{Ind}_C^G(Cv_t)$ be the principal series representation of \mathcal{H} with central character $t = (t_1, t_2) \in (\mathbb{C}^\times)^2$, where Cv_t is the 1-dimensional representation of $\mathbb{C}[Q]$ with $x_1 \cdot v_t = t_1v_t$ and $x_2 \cdot v_t = t_2v_t$.

Let \mathcal{H}_1 be the subalgebra generated by T_1, x_1, x_2 and let \mathcal{H}_2 be the subalgebra generated by T_2, x_1, x_2. Let $s \in \mathbb{C}^\times$, and let $\pi_s^1 = \text{Ind}_C^G(Cu_s^1)$ and $\pi_s^2 = \text{Ind}_C^G(Cu_s^2)$ be the 4-dimensional representations induced from the 1-dimensional representation Cu_s^1 of \mathcal{H}_1 and the 1-dimensional representation Cu_s^2 of \mathcal{H}_2 given by

$$ T_1 \cdot u_s^1 = -q_1^{-\frac{1}{2}}u_s^1 \quad x_1 \cdot u_s^1 = q_1^{-1}u_s^1 \quad x_2 \cdot u_s^1 = q_1^\frac{1}{2}s^2u_s^1 $$

$$ T_2 \cdot u_s^2 = -q_2^{\frac{1}{2}}u_s^2 \quad x_1 \cdot u_s^2 = q_2u_s^2 \quad x_2 \cdot u_s^2 = q_2^{-1}u_s^2. $$

Let π^j ($j = 3, 4, 5, 6, 7$) be the 1-dimensional representations of \mathcal{H} with

$$ \pi^3(T_1) = -q_1^{\frac{1}{2}} \quad \pi^3(T_2) = -q_2^{\frac{1}{2}} \quad \pi^3(x_1) = q_1^{-1} \quad \pi^3(x_2) = q_2^{-1} $$

$$ \pi^4(T_1) = -q_1^{\frac{1}{2}} \quad \pi^4(T_2) = -q_2^{\frac{1}{2}} \quad \pi^4(x_1) = q_1^{-1} \quad \pi^4(x_2) = -1 $$

$$ \pi^5(T_1) = -q_1^{\frac{1}{2}} \quad \pi^5(T_2) = q_2^{\frac{1}{2}} \quad \pi^5(x_1) = q_1^{-1} \quad \pi^5(x_2) = -1 $$

$$ \pi^6(T_1) = q_1^{\frac{1}{2}} \quad \pi^6(T_2) = -q_2^{\frac{1}{2}} \quad \pi^6(x_1) = q_1 \quad \pi^6(x_2) = q_2^{-1} $$

$$ \pi^7(T_1) = -q_1^{\frac{1}{2}} \quad \pi^7(T_2) = q_2^{\frac{1}{2}} \quad \pi^7(x_1) = q_1^{-1} \quad \pi^7(x_2) = q_2. $$
Suppose that \(q_1 \neq q_2 \) and \(q_1 \neq q_2^2 \). Let \(\pi^s = M_j(t) \) be the representation with

\[
(t^{\alpha_1}, t^{\alpha_2}) = (q_1^{-1}, q_2) \quad J^\vee = \{ \alpha_2 \} \quad F_j(t) = \{ s_2, s_1 s_2, s_2 s_1 s_2 \}
\]

(since \(q_1 \neq q_2 \) and \(q_1 \neq q_2^2 \) we compute \(N(t)^\vee = \{ \alpha_1, \alpha_2 \} \) and \(D(t)^\vee = \emptyset \). The matrices for \(\pi^s \) are given in Example 3 of Section 2.3.

Let \(\chi_t, \chi_s, \chi^2_s, \) and \(\chi^2_j \) be the characters of \(\pi_t, \pi_s, \pi^2_s, \) and \(\pi^j \) respectively \((j = 3, \ldots, 8)\).

Lemma 3.4. Let \(t, u \in \text{Hom}(Q, \mathbb{C}^\times) \) be \((t^{\alpha_1}, t^{\alpha_2}) = (q_1^{-1}, q_1^2 s)\) and \((u^{\alpha_1}, u^{\alpha_2}) = (q_2 s, q_2^{-1})\) where \(s \in \mathbb{C}^\times \). For all \(h \in \mathcal{H} \) and all \(s \in \mathbb{C}^\times \) we have

\[
\begin{align*}
\chi_s^1(h) &= f(t)h + f_{s_2t}(h) + f_{s_1s_2t}(h) + f_{s_2s_1s_2t}(h) \quad (3.3) \\
\chi_s^2(h) &= f(u)h + f_{s_1u}(h) + f_{s_2s_1u}(h) + f_{s_1s_2s_1u}(h). \quad (3.4)
\end{align*}
\]

Proof. Let us prove \((3.3) \) (\((3.4) \) is similar). Suppose that \(s \in \mathbb{C}^\times \) is not one of the isolated points of \(\mathbb{C}^\times \) which give \(t^{\alpha_2} = 1 \) for some \(\alpha \in R_0^+ \). Then \(\pi_s^1 \) is irreducible (for example it can be constructed using Theorem 2.5 in these cases) and each \(f_{\alpha}(h) \) is defined (for \(\nu \in W_0 \) and \(h \in \mathcal{H} \)). Moreover \(\pi_t^1 \) has basis \(\{ 1 \otimes u_s^1, \tau_1 \otimes u_s^1, \tau_2 \otimes u_s^1, \tau_1 \tau_2 \otimes u_s^1 \} \) (this is proved in a similar way to the corresponding statement in the proof of Proposition 2.8).

The diagonal entries of each matrix \(\pi_s^1(t^\lambda) \) relative to this basis are 0. This is easily seen once it is observed that \(\tau_1 \otimes u_s^1 = 0 \) (which can be seen by direct calculation, or by \((1.7) \)). Since

\[
\pi_s^1(x^\lambda) = \text{diag}(t^\lambda, (s_2 t)^\lambda, (s_1 s_2 t)^\lambda, (s_2 s_1 s_2 t)^\lambda) \quad \text{for all } \lambda \in Q
\]

it follows that

\[
\chi_s^1(\tau w x^\lambda) = \delta_{w, 1}(t^\lambda + (s_2 t)^\lambda + (s_1 s_2 t)^\lambda + (s_2 s_1 s_2 t)^\lambda) \quad \text{for all } w \in W_0 \text{ and } \lambda \in Q.
\]

Thus Lemma 2.7 gives \((3.3) \) provided \(s \) is not one of the isolated points of \(\mathbb{C}^\times \) that gives \(t^{\alpha_2} = 1 \) for some \(\alpha \in R_0^+ \). But by construction, \(\chi_s^1(h) \) is a polynomial in \(s \) and \(s^{-1} \) (for fixed \(h \in \mathcal{H} \)) and the right hand side of \((3.3) \) is a rational function in \(s \). Hence the result.

Theorem 3.5. For all \(h \in \mathcal{H} \) we have

\[
\text{Tr}(h) = \frac{1}{8q_1^2 q_2^2} \int_{\mathbb{T}^2} \frac{\chi_t(h) dt}{|c(t)|^2} + \frac{q_1 - 1}{2q_1^2 q_2^2(q_1 + 1)} \int_T \frac{\chi_s^1(h)}{|c_1(s)|^2} ds + \frac{q_2 - 1}{2q_1^2 q_2^2(q_2 + 1)} \int_T \frac{\chi_s^2(h)}{|c_2(s)|^2} ds
\]

\[
+ A \chi^3(h) + B \left(\chi^4(h) + \chi^5(h) \right) + |C| \times \begin{cases}
\chi^6(h) & \text{if } q_1 < q_2 \\
\chi^8(h) & \text{if } q_2 < q_1 < q_2^2 \\
\chi^7(h) & \text{if } q_2 < q_1,
\end{cases}
\]

where \(c(t), c_1(s), c_2(s), A, B, \) and \(C \) are as in Appendix A.7. If \(q_1 = q_2 \) or \(q_1 = q_2^2 \) then the final term in the Plancherel Theorem is 0.

Proof. The trace functional is given by

\[
\text{Tr}(h) = \frac{1}{q_1 q_2} \int_{q_1^{-1} a^{1/2}} \int_{q_2^{-1} b^{1/2}} f(t) c(t)^{t^{-1}} dt_2 dt_1, \quad (3.5)
\]

where \(0 < a, b < 1 \) and where \(f(t) = f_t(h) \). Choose \(a \) with \(a < q_1 q_2^{-1} \).
Step 1: Shifting the t_2-contour. Let $0 < c < 1$ with $c^2 > q_1^{-1}$, $c > q_2^{-1}$, $c > q_1 q_2^{-1}$ (if $q_1 < q_2$) and $c > q_1^{-1} q_2$ (if $q_2 < q_1$). We will shift the t_2-contour from $q_2^{-1} bT$ to cT. The integrand has exactly one t_2-pole between these contours, at $t_2 = q_2^{-1}$. Thus

$$\text{Tr}(h) = \frac{1}{q_1 q_2} \int_{cT} s \int_{cT} \frac{f(t)}{c(t)c(t^{-1})} dt_2 dt_1 + I_1,$$

where $I_1 = -\frac{1}{q_1 q_2} \int_{cT} \frac{\text{Res} \ f(t)}{c(t)c(t^{-1})} dt$.

Step 2: Shifting the t_1-contour. Interchange the order of integration in the double integral. We will shift the t_1-contour from $q_1^{-1} aT$ to T. By the conditions on a and c the t_1-poles of the integrand between these contours are at $t_1 = q_1^{-1}$, $t_1 = q_1^{-1} t_2^{-2}$, and $t_1 = q_2^{-1} t_2^{-1}$. Therefore

$$\text{Tr}(h) = \frac{1}{q_1 q_2} \int_{cT} \int_{cT} \frac{f(t)}{c(t)c(t^{-1})} dt_1 dt_2 + I_1 + I_2 + I_3 + I_4,$$

where

$$I_j = -\frac{1}{q_1 q_2} \int_{cT} \frac{\text{Res} \ f(t)}{c(t)c(t^{-1})} dt_2 \quad \text{for } j = 2, 3, 4,$$

with $z_2 = q_1^{-1}$, $z_3 = q_1^{-1} t_2^{-2}$, and $z_4 = q_2^{-1} t_2^{-1}$. In the double integral we may now revert back to the original order of integration, and shift the t_2-contour to T without encountering any poles.

Step 3: Shifting the contours in the integrals I_j. Straightforward calculations give

\begin{align*}
I_1 &= \frac{(q_1 - 1)^2}{q_1^2 q_2 (q_2 - 1)} \int_{q_1^{-1} q_2^{-1}} f(q_2 s, q_2^{-1}) c_2(s) c_2(s^{-1}) \, ds \\
I_2 &= \frac{(q_1 - 1)^2}{q_1 q_2^2 (q_1^2 - 1)} \int_{q_1^{-1} q_2^{-1}} f(q_1^{-1}, q_1^{-1} s) c_1(s) c_1(s^{-1}) \, ds \\
I_3 &= \frac{(q_1 - 1)^2}{q_1^2 q_2 (q_1^2 - 1)} \int_{q_1^{-1} q_2^{-1}} f(s^{-2}, q_1^{-1} s) c_1(s) c_1(s^{-1}) \, ds \\
I_4 &= \frac{(q_1 - 1)^2}{q_1^2 q_2 (q_1^2 - 1)} \int_{q_1^{-1} q_2^{-1}} f(q_1 s^{-1}, s) c_2(s) c_2(s^{-1}) \, ds,
\end{align*}

where we have set $s = q_2^{-1} t_1$ in I_1, $s = q_1^{-1} t_2$ in I_2, $s = q_1^{-1} t_2$ in I_3, and $s = t_2$ in I_4.

We now shift each contour to T. As in the A_2 case we need to be a little careful with possible singularities of $f(t)$. Thus we write $f(t) = g(t)/d(t)$. Then the integrands of I_1, I_2, I_3 and I_4 are

\begin{align*}
\frac{f(q_2 s, q_2^{-1})}{c_2(s) c_2(s^{-1})} &= \frac{q_2 s(1 - s) g(q_2 s, q_2^{-1})}{(q_1 - 1) n_2(s) n_2(s^{-1})} \\
\frac{f(q_1^{-1}, q_1^{-1} s)}{c_1(s) c_1(s^{-1})} &= q_1^{\frac{1}{2}} s(1 - s^2) g(q_1^{-1}, q_1^{-1} s) \\
\frac{f(s^{-2}, q_1^{-1} s)}{c_1(s) c_1(s^{-1})} &= \frac{(1 - s^2) g(s^{-2}, q_1^{-1} s)}{(1 - q_1) n_1(s) n_1(s^{-1})} \\
\frac{f(q_1 s^{-1}, s)}{c_2(s) c_2(s^{-1})} &= \frac{(1 - s) g(q_1 s^{-1}, s)}{(1 - q_1) n_2(s) n_2(s^{-1})},
\end{align*}

where $n_1(s)$ and $n_2(s)$ are the numerators of $c_1(s)$ and $c_2(s)$. Each integrand is nonsingular on T (with removable singularities in the cases $q_1 = q_2$ or $q_1 = q_2^2$).

The poles of the integrand of I_1 which lie between the contours $q_1^{-1} q_2^{-1} aT$ and T are at $s = q_1^{-1} q_2^{-1}$, $s = q_1^{-1} q_2$ (if $q_2 < q_1$) and at $s = q_1 q_2^{-1}$ (if $q_1 < q_2$). Calculating residues gives

$$I_1 = \frac{(q_1 - 1)^2}{q_1^2 q_2 (q_2 - 1)} \int_{T} \frac{f(q_2 s, q_2^{-1})}{|c_2(s)|^2} \, ds + A f(q_1^{-1}, q_2^{-1}) + C \times \begin{cases} f(q_1^{-1} q_2^{-1}, q_2^{-1}) & \text{if } q_2 < q_1 \\ -f(q_1, q_2^{-1}) & \text{if } q_1 < q_2. \end{cases}$$

The poles of the integrand of I_2 which lie between the contours $q_1^{-1} bT$ and T are at $s = -q_1^{-\frac{1}{2}}$, $s = q_1^{-\frac{1}{2}} q_2^{-1}$ (if $q_2 < q_1 < q_2^2$), and $s = q_1^{-\frac{1}{2}} q_2$ (if $q_2^2 < q_1$). Calculating residues gives

$$I_2 = \frac{(q_1 - 1)^2}{q_1 q_2^2 (q_1^2 - 1)} \int_{T} \frac{f(q_1^{-1}, q_1^{-1} s)}{c_1(s) c_1(s^{-1})} \, ds + 2 B f(q_1^{-1}, -1) + C \times \begin{cases} f(q_1^{-1}, q_1 q_2^{-1}) & \text{if } q_2 < q_1 < q_2^2 \\ -f(q_1^{-1}, q_2) & \text{if } q_2^2 < q_1. \end{cases}$$
The poles of the integrand of I_3 which lie between the contours $q_1^{-\frac{1}{2}}cT$ and T are at $s = q_1^{-\frac{1}{2}}q_2$ (if $q_2 < q_1 < q_2^2$) and $s = q_1^{-\frac{1}{2}}q_2^{-1}$ (if $q_2^2 < q_1$). Noting that T is inside $q_1^{-\frac{1}{2}}cT$ gives

$$I_3 = \frac{(q_1 - 1)^2}{q_1 q_2^2 (q_1^2 - 1)} \int_2 f(s, q_1^{-\frac{1}{2}}s) \, ds + C \times \begin{cases} f(q_1 q_2^{-2}, q_1^{-1} q_2) & \text{if } q_2 < q_1 < q_2^2 \\ -f(q_1^{-1} q_2^2, q_2^{-1}) & \text{if } q_2^2 < q_1. \end{cases}$$

The integrand of I_4 has no poles between cT and T. Therefore

$$\text{Tr}(h) = \frac{1}{q_1 q_2^2} \int_{T^2} \frac{f(t)}{|c(t)|^2} \, dt + \frac{(q_1 - 1)^2}{q_1^2 q_2^2 (q_1^2 - 1)} \int_{c} \frac{f(q_1^{-1}, q_2^{-1} s) + f(s, q_1^{-\frac{1}{2}} s)}{|c_1(s)|^2} \, ds$$

$$+ \frac{(q_2 - 1)^2}{q_1^2 q_2 (q_2^2 - 1)} \int_{c} \frac{f(q_2 s, q_2^{-1} s)}{|c_2(s)|^2} \, ds + Af(q_1^{-1}, q_2^{-1}) + 2Bf(q_1^{-1}, -1)$$

$$+ |C| \times \begin{cases} f(q_1^{-1} q_2^2, q_2^{-1}) & \text{if } q_1 < q_2 \\ f(q_1^{-1} q_2^2, q_2^{-1}) + f(q_1^{-1}, q_1 q_2^{-1}) & \text{if } q_2 < q_1 < q_2^2 \\ f(q_1^{-1}, q_2) & \text{if } q_2^2 < q_1. \end{cases}$$

Step 4: Matching with the representations. By Proposition 2.8 the double integral in the above formula is

$$\int_{T^2} \frac{f(t)}{|c(t)|^2} \, dt = \frac{1}{8} \int_{T^2} \chi_t(h) \, dt.$$

The first single integral is

$$\frac{1}{2} \int_{c} \frac{f(q_1^{-1}, q_1^{-\frac{1}{2}} s) + f(s, q_1^{-\frac{1}{2}} s) + f(q_1^{-1}, q_1^{-\frac{1}{2}} s) + f(s, q_1^{-\frac{1}{2}} s)}{|c_1(s)|^2} \, ds = \frac{1}{2} \int_{c} \chi_t(h) \, ds,$$

where we have used Lemma 3.4. A similar analysis applies to the second single integral. Using Lemma 2.10 we have $f(q_1^{-1}, q_2^{-1}) = \chi^3(h)$ and $2f(q_1^{-1}, -1) = \chi^4(h) + \chi^5(h)$. Furthermore, for parameters $q_1 < q_2$ the central character $(t_1, t_2) = (q_1 q_2^{-1})$ is regular (for $t_1^{\alpha_1^+ + \alpha_2^+} = q_1 q_2^{-1} < 1$ and $t_1^{\alpha_1^+ + \alpha_2^+} = q_1 q_2^{-1} < 1$), and so Lemma 2.10 gives $f(q_1, q_2^{-1}) = \chi^6(h)$. Similarly we have $f(q_1^{-1}, q_2) = \chi^7(h)$ for parameters $q_2^2 < q_1$. Finally by Proposition 2.9 we have

$$f(q_1^{-1} q_2^2, q_2^{-1}) + f(q_1^{-1}, q_1 q_2^{-1}) + f(q_1 q_2^{-2}, q_1^{-1} q_2) = \chi^8(h)$$

for all parameters in the range $q_2 < q_1 < q_2^2$ (as the central character is regular).

3.5 The $\tilde{C}_2(q_1, q_2)$ algebras with $L = P$

The root system is as in Section 3.4 and the fundamental coweights are given by $\omega_1 = \alpha_1^+ + \alpha_2^+$ and $\omega_2 = \frac{1}{2}(\alpha_1^+ + \alpha_2^+)$. Writing $x_1 = x_{\omega_1}$ and $x_2 = x_{\omega_2}$, the Hecke algebra has presentation given by generators T_1, T_2, x_1, x_2 with relations

$$T_1^2 = 1 + (q_1^{-\frac{1}{2}} - q_1^{-\frac{1}{2}})T_1 \quad T_1 x_1 = x_1^{-1} x_2 T_1 + (q_1^{-\frac{1}{2}} - q_1^{-\frac{1}{2}}) x_1 \quad T_1 T_2 T_1 T_2 = T_2 T_1 T_2 T_1$$

$$T_2^2 = 1 + (q_2^{-\frac{1}{2}} - q_2^{-\frac{1}{2}})T_2 \quad T_2 x_2 = x_1 x_2^{-1} T_2 + (q_2^{-\frac{1}{2}} - q_2^{-\frac{1}{2}}) x_2 \quad x_1 x_2 = x_2 x_1$$

The representation theory of \mathcal{H} is closely related to the representation theory of the Hecke algebra from Section 3.4.
Let \(\pi_t = \text{Ind}_{\mathcal{H}_t}^{\mathcal{H}}(\mathbb{C}v_t) \) be the principal series representation of \(\mathcal{H} \) with central character \(t = (t_1, t_2) \in (\mathbb{C}^\times)^2 \), where \(\mathbb{C}v_2 \) is the 1-dimensional representation of \(\mathbb{C}[P] \) with \(x_1 \cdot v_t = t_1v_t \) and \(x_2 \cdot v_t = t_2v_t \).

Let \(\mathcal{H}_1 \) be the subalgebra generated by \(T_1, x_1, x_2 \). Let \(s \in \mathbb{C}^\times \), and let \(\pi_s^\pm = \text{Ind}_{\mathcal{H}_s}^{\mathcal{H}}(\mathbb{C}u_s^\pm) \) be the 4-dimensional representations of \(\mathcal{H} \) induced from the representations \(\mathbb{C}u_s^\pm \) of \(\mathcal{H}_1 \) with

\[
T_1 \cdot u_s^\pm = -q_1^{-\frac{1}{2}}u_s^\pm, \quad x_1 \cdot u_s^\pm = q_1^{-\frac{1}{2}}su_s^\pm, \quad x_2 \cdot u_s^\pm = \pm su_s^\pm.
\]

Let \(\mathcal{H}_2 \) be the subalgebra generated by \(T_2, x_1, x_2 \). Let \(s \in \mathbb{C}^\times \), and let \(\pi_s^2 = \text{Ind}_{\mathcal{H}_s^2}^{\mathcal{H}}(\mathbb{C}u_s^2) \) be the 4-dimensional representation of \(\mathcal{H} \) induced from the representation \(\mathbb{C}u_s^2 \) of \(\mathcal{H}_2 \) with

\[
T_2 \cdot u_s^2 = -q_2^{-\frac{1}{2}}u_s^2, \quad x_1 \cdot u_s^2 = s^2u_s^2, \quad x_2 \cdot u_s^2 = q_2^{-\frac{1}{2}}su_s^2.
\]

Let \(\pi_s^j \) (\(j = 3, 4, 5 \)) be the 1-dimensional representations

\[
\pi_3^j(T_1) = -q_1^{-\frac{1}{2}}, \quad \pi_3^j(T_2) = -q_2^{-\frac{1}{2}}, \quad \pi_3^j(x_1) = q_1^{-1}q_2^{-1}, \quad \pi_3^j(x_2) = \pm q_1^{-\frac{1}{2}}q_2^{-1}
\]

\[
\pi_4^j(T_1) = q_1^{-\frac{1}{2}}, \quad \pi_4^j(T_2) = -q_2^{-\frac{1}{2}}, \quad \pi_4^j(x_1) = q_1q_2^{-1}, \quad \pi_4^j(x_2) = \pm q_1^{\frac{1}{2}}q_2^{-1}
\]

\[
\pi_5^j(T_1) = -q_1^{-\frac{1}{2}}, \quad \pi_5^j(T_2) = q_2^{-\frac{1}{2}}, \quad \pi_5^j(x_1) = q_1^{-1}q_2, \quad \pi_5^j(x_2) = \pm q_1^{-\frac{1}{2}}q_2.
\]

Let \(\pi^6 = \text{Ind}(t) \) be the 2-dimensional representation with

\[
(t^{\alpha_1}, t^{\alpha_2}) = (-q_1^{-1}, q_1^{-\frac{1}{2}}) \quad J^\vee = \emptyset \quad F_j(t) = \{1, s_2\}
\]

(we have \(N(t)^\vee = \{\alpha_1, \alpha_1 + 2\alpha_2\} \) and \(D(t)^\vee = \emptyset \)). Coincidentally, \(\pi^6 \cong \text{Ind}_{\mathcal{H}_Q}^{\mathcal{H}}(\mathbb{C}u) \) where \(\mathcal{H}_Q \) is the algebra from Section 3.4 and where \(\mathbb{C}u \) is the 1-dimensional representation of \(\mathcal{H}_Q \) with \(T_1 \cdot u = -q_1^{-1/2}u, T_2 \cdot u = -q_2^{-1/2}u, x_{\alpha_1} \cdot u = q_1^{-1}u, \) and \(x_{\alpha_2} \cdot u = -u \). The matrices for \(\pi^6 \) are given in Example 1 of Section 2.3.

Suppose that \(q_1 \neq q_2 \) and \(q_1 \neq q_2^2 \). Let \(\pi_s^7 = \text{Ind}(t_s^\pm) \) be the 3-dimensional representations with

\[
(t_s^{\pm 1}, t_s^{\pm 2}) = (q_1^{-1}q_2, \pm q_1^{-\frac{1}{2}}q_2) \quad J^\vee = \{\alpha_2\} \quad F_j(t_s^\pm) = \{s_2, s_1s_2, s_2s_1s_2\}
\]

(we calculate \(N(t_s^\pm)^\vee = \{\alpha_1, \alpha_2\} \) and \(D(t)^\vee = \emptyset \)).

Theorem 3.6. For all \(h \in \mathcal{H} \) we have

\[
\text{Tr}(h) = \frac{1}{8q_1q_2} \int_{\mathbb{T}^2} \frac{\chi_i(h)}{|c(t)|^2} dt + \frac{(q_1 - 1)^2}{4q_1q_2(q_1^2 - 1)} \int_{\mathbb{T}} \frac{\chi_s^+(h) + \chi_s^-(h)}{|c_1(s)|^2} ds + \frac{(q_2 - 1)^2}{2q_1q_2(q_1^2 - 1)} \int_{\mathbb{T}} \frac{\chi_s^2(h)}{|c_2(s)|^2} ds
\]

\[
+ \frac{A}{2} \left(\chi_s^3(h) + \chi_s^3(h) \right) + B\chi_s^6(h) + \left| \frac{C}{2} \right| \times \begin{cases}
\chi_s^4(h) + \chi_s^4(h) & \text{if } q_1 < q_2 \\
\chi_s^5(h) + \chi_s^5(h) & \text{if } q_2 < q_1 < q_2^2 \\
\chi_s^6(h) + \chi_s^6(h) & \text{if } q_2^2 < q_1
\end{cases}
\]

where \(c(t), c_1(s), c_2(s) \) are as in Appendix A.2 and \(A, B, C \) are as in Appendix A.4. If \(q_1 = q_2 \) or \(q_1 = q_2^2 \) then the final term in the Plancherel Theorem is 0.
Proof. The series \(G_t(h) \) converges for \(|t^{\alpha_1^\vee}| < q_1^{-1} \) and \(|t^{\alpha_2^\vee}| < q_2^{-1} \). Since \(\alpha_1^\vee = 2\omega_1 - 2\omega_2 \) and \(\alpha_2^\vee = -\omega_1 + 2\omega_2 \) the series converges whenever \(|t_1^{\alpha_1^\vee}| < q_1^{-1} \) and \(|t_1^{\alpha_2^\vee}| < q_1^{-1} \). Thus, writing \(|t_1| = q_1^{-1}q_2^{-1}a\) and \(|t_2| = q_1^{-1/2}q_2^{-1}b\), the series converges for \(b^2 < a < b < 1 \), and so

\[
\text{Tr}(h) = \frac{1}{q_1^{a_2}q_2^{a_2}} \int_{q_1^{-1}q_2^{-1}a \mathbb{R}} \int_{q_1^{-1/2}q_2^{-1}b \mathbb{R}} \frac{f(t)}{c(t)c(t-1)} \, dt_2 dt_1.
\]

From here one can either perform the contour shifts as in the \(L = Q \) case, or change variables \(t_1 = u_1u_2 \) and \(t_2 = u_1u_2^2 \) to transform the above integral into \(\frac{1}{4} \) times the \(L = Q \) integral \[\text{(3.5)}\] with the numerator of its integrand replaced by \(f'(u_1, u_2) = f(u_1u_2, u_1^{1/2}u_2) + f(u_1u_2, -u_1^{1/2}u_2) \). We omit the details. \(\square\)

3.6 The \(\hat{G}_2(q_1, q_2) \) algebras with \(L = Q \)

The coroot system is \(R^\vee = \{\alpha_1^\vee, 2\alpha_1^\vee + 3\alpha_2^\vee, \alpha_1^\vee + 3\alpha_2^\vee, \alpha_2^\vee, \alpha_1^\vee + 2\alpha_2^\vee, \alpha_1^\vee + \alpha_2^\vee \} \), and the reflections \(s_1 \) and \(s_2 \) are given by \(s_1(\alpha_1^\vee) = \alpha_1^\vee + \alpha_2^\vee \) and \(s_2(\alpha_1^\vee) = \alpha_1^\vee + 3\alpha_2^\vee \). Writing \(x_1 = x_1^{\alpha_1^\vee} \) and \(x_2 = x_2^{\alpha_2^\vee} \), the Hecke algebra \(\mathcal{H} \) has generators \(T_1, T_2, x_1 \) and \(x_2 \) with relations

\[
T_1^2 = 1 + (q_1^{1/2} - q_2^{1/2})T_1 \quad T_1x_1 = x_1^{-1}T_1 + (q_1^{1/2} - q_2^{1/2})(1 + x_1)
\]

\[
T_2^2 = 1 + (q_2^{1/2} - q_2^{1/2})T_2 \quad T_2x_2 = x_2^{-1}T_2 + (q_2^{1/2} - q_2^{1/2})(1 + x_2)
\]

\[
T_1T_2T_1T_2T_1T_2T_2 = T_2T_1T_2T_1T_2T_1T_2T_1 \quad T_2x_1 = x_1^{1/2}T_1^{-1} - (q_2^{1/2} - q_2^{1/2})x_1x_2(1 + x_2)
\]

\[
x_1x_2 = x_2x_1.
\]

Let \(\pi_t = \text{Ind}_{\mathcal{H}_t}^{\mathcal{H}_0}(\mathbb{C} v_t) \) be the principal series representation of \(\mathcal{H} \) with central character \(t = (t_1, t_2) \in (\mathbb{C}^\times)^2 \), where \(\mathbb{C} v_t \) is the 1-dimensional representation of \(\mathbb{C} Q \) with \(x_1 \cdot v_t = t_1 v_t \) and \(x_2 \cdot v_t = t_2 v_t \).

Let \(\mathcal{H}_1 \) be the subalgebra of \(\mathcal{H} \) generated by \(T_1, x_1, x_2 \), and let \(\mathcal{H}_2 \) be the subalgebra generated by \(T_2, x_1, x_2 \). Let \(s \in \mathbb{C}^\times \), and let \(\pi_s^1 = \text{Ind}_{\mathcal{H}_1}^{\mathcal{H}_0}(\mathbb{C} u_1^s) \) and \(\pi_s^2 = \text{Ind}_{\mathcal{H}_2}^{\mathcal{H}_0}(\mathbb{C} u_2^s) \) be the 6-dimensional representations induced from the 1-dimensional representation \(\mathbb{C} u_s^1 \) of \(\mathcal{H}_1 \) and the 1-dimensional representation \(\mathbb{C} u_s^2 \) of \(\mathcal{H}_2 \) given by

\[
T_1 \cdot u_s^1 = -q_1^{-1/2}u_s^1 \quad x_1 \cdot u_s^1 = q_1^{-1}u_s^1 \quad x_2 \cdot u_s^1 = q_1^{1/2}u_s^1
\]

\[
T_2 \cdot u_s^2 = -q_2^{-1/2}u_s^2 \quad x_1 \cdot u_s^2 = q_2^{1/2}u_s^2 \quad x_2 \cdot u_s^2 = q_2^{-1/2}u_s^2.
\]

Let \(\pi_3, \pi_4 \) and \(\pi_5 \) be the 1-dimensional representations of \(\mathcal{H} \) with

\[
\pi_3(T_1) = -q_1^{1/2} \quad \pi_3(T_2) = -q_2^{1/2} \quad \pi_3(x_1) = q_1^{-1} \quad \pi_3(x_2) = q_2^{-1}
\]

\[
\pi_4(T_1) = q_1^{1/2} \quad \pi_4(T_2) = -q_2^{1/2} \quad \pi_4(x_1) = q_1^{-1} \quad \pi_4(x_2) = q_2^{-1}
\]

\[
\pi_5(T_1) = -q_1^{1/2} \quad \pi_5(T_2) = q_2^{1/2} \quad \pi_5(x_1) = q_1^{-1} \quad \pi_5(x_2) = q_2^{-1}.
\]

Suppose that \(q_1 \neq q_2, q_1 \neq q_2^2, q_1 \neq q_2^3, q_1 \neq q_2^4 \). Let \(\pi_6 = M_f(t) \) the the 5-dimensional representation with

\[
(t^{\alpha_1^\vee}, t^{\alpha_2^\vee}) = (q_1^{-1}, q_2) \quad J^\vee = \{\alpha_1^\vee\} \quad F_f(t) = \{s_2, s_1s_2, s_2s_1s_2, s_1s_2s_1s_2, s_2s_1s_2s_1s_2 \}.
\]
Let $\pi^7_+ = M_f(t_\pm)$ be the 3-dimensional representations with

$$(t^0_\pm, t^2_\pm) = (q_1, \pm q_1^{-\frac{3}{2}} q_2^{\frac{1}{2}}) \quad J^\vee = \{\alpha_1^\vee + 2\alpha_2^\vee\} \quad F_J(t_\pm) = \{s_2 s_1 s_2 s_1, s_1 s_2 s_1 s_2, s_1 s_2 s_1 s_2\},$$

where we assume that $q_1 \neq q_2$ and $q_1 \neq q_2^3$ for $M_f(t_\pm)$. When $q_1 = q_2$ or $q_1 = q_2^3$ we define π^7_+ differently, as explained in Example 2 of Section 2.3.

Let $\pi^8 = M_f(t)$ be the 2-dimensional representation with

$$(t^0, t^2) = (q_1, \omega) \quad J^\vee = \{\alpha_1^\vee + 3\alpha_2^\vee\} \quad F_J(t) = \{s_1 s_2 s_1 s_2, s_2 s_1 s_1 s_2, s_1 s_2 s_1 s_2\}.$$

Let $\chi_1, \chi_2, \chi_3, \chi_4, \chi_5, \chi_6, \chi_7, \chi_8$ be the characters of the above representations.

Theorem 3.7. For all $h \in \mathcal{H}$ we have

$$\text{Tr}(h) = \frac{1}{12 q_1^3 q_2^3} \int_{T^2} \chi_1(h) |c(t)|^2 dt + \frac{(q_1 - 1)^2}{2 q_1^3 q_2^3(q_1^2 - 1)} \int_{T^2} \chi_2^1(h) |c(s)|^2 ds + \frac{(q_2 - 1)^2}{2 q_1^3 q_2^3(q_2^2 - 1)} \int_{T^2} \chi_2^2(h) |c(s)|^2 ds$$

$$+ A \chi_7^3(h) + B_+ \chi_7^3(h) + B_- \chi_7^3(h) + C \chi_8^3(h) + |D| \times \begin{cases} \chi_4^3(h) & \text{if } q_1 < q_2^{3/2} \\ \chi_6^3(h) & \text{if } q_2^{3/2} < q_1 < q_2 \\ \chi_5^3(h) & \text{if } q_2 < q_1 \end{cases}$$

where $c(t), c_1(s), c_2(s), A, B_\pm, C, D$ are as in Appendix A.3. If $q_1 = q_2^{3/2}$ or $q_1 = q_2^3$ then the final term in the Plancherel Theorem is 0.

Proof. Writing $f(t) = f_t(h)$, the trace functional is given by

$$\text{Tr}(h) = \frac{1}{q_1^3 q_2^3} \int_{T^2} \frac{f(t)}{|c(t)|^2} dt$$

with $0 < a, b < 1$. Choose $0 < a, b < 1$ both very close to 0. Let $0 < c < 1$ be very close to 1. Consider the inner integral. The integrand has exactly one t_2-pole between the contours $q_2^{-1}bT$ and cT, at $t_2 = q_2^{-1}$. Thus we can shift the t_2-contour to cT at the cost of including this residue contribution. Now interchange the order of integration in the double integral. Since $|t_2| = c$ we see that the t_1-poles of the integrand between the contours $q_1^{-1}aT$ and T are at the points where $t_1 = q_1^{-1}, t_1 = q_1^{-1} t_2^{-3}, t_1 = q_2^{-1} t_2^{-2}, t_1 = q_2^{-1} t_2^{-1}$ and $t_2 = q_2^{-1} t_2^{-3}$. After shifting the t_1-contour to T we interchange the order of integration again, and since there are no t_2-poles between cT and T we shift the t_2-contour to T. Thus

$$\text{Tr}(h) = \frac{1}{q_1^3 q_2^3} \int_{T^2} \frac{f(t)}{|c(t)|^2} dt + I_1 + I_2 + I_3 + I_4 + I_5 + I_6^+ + I_6^-$$

where

$$I_1 = -\frac{1}{q_1^3 q_2^3} \int_{q_1^{-1}aT} \frac{f(t)}{c(t)c(t^{-1})} dt_1 \quad I_6^+ = -\frac{1}{q_1^3 q_2^3} \int_{cT} \frac{f(t)}{c(t)c(t^{-1})} dt_2$$

$$I_j = -\frac{1}{q_1^3 q_2^3} \int_{cT} \frac{f(t)}{c(t)c(t^{-1})} dt_2 \quad (j = 2, 3, 4, 5),$$

where $z_1 = q_2^{-1}, z_2 = q_1^{-1}, z_3 = q_1^{-1} t_2^{-3}, z_4 = q_2^{-1} t_2^{-2}, z_5 = q_2^{-1} t_2^{-1},$ and $z_6 = q_1^{-1} t_2^{-3}$.

Use \(\frac{1}{2} \int_{\mathcal{T}} (f(t^{1/2}) + f(-t^{1/2})) dt = \int_{1/2}^{1} f(t) dt \) to write \(I_6^+ + I_6^- = I_6 \) as a single integral. Straightforward calculations give

\[
I_1 = \left(\frac{q_2 - 1}{q_2^2} \right)^2 \int_{q_1^{-1}}^{q_2^{-1}} \frac{f(q_1^2 s, q_2^{-1})}{2a_T c_2(s)c_2(s-1)} ds \quad I_2 = \left(\frac{q_1 - 1}{q_1^2} \right)^2 \int_{q_1^{-1}}^{q_1^2} \frac{f(q_1^{-1}, q_1^{-1})}{2c_1(s)c_1(s-1)} ds
\]

\[
I_3 = \left(\frac{q_1 - 1}{q_1^2} \right)^2 \int_{q_1^{-1}}^{q_1^2} \frac{f(q_1^{-1}, q_1^{-1})}{2c_1(s)c_1(s-1)} ds \quad I_4 = \left(\frac{q_2 - 1}{q_2^2} \right)^2 \int_{q_2^{-1}}^{q_2^2} \frac{f(q_2^{-1}, q_2^{-1})}{2c_2(s)c_2(s-1)} ds
\]

\[
I_5 = \left(\frac{q_2 - 1}{q_2^2} \right)^2 \int_{q_2^{-1}}^{q_2^2} \frac{f(q_2^{-1}, q_2^{-1})}{2c_2(s)c_2(s-1)} ds \quad I_6 = \left(\frac{q_1 - 1}{q_1^2} \right)^2 \int_{q_1^{-1}}^{q_1^2} \frac{f(q_1^{-1}, q_1^{-1})}{2c_1(s)c_1(s-1)} ds
\]

where we have put \(s = q_2^{-1} t_1, q_1^{-1} t_2, q_1^2 t_2, q_2^{-1} t_2, q_2^2 t_2, t_2 \) in \(I_1, I_2, I_3, I_4, I_5, I_6 \) respectively.

One now shifts each contour to \(\mathbb{T} \). As we discuss below, some complications arise when \(q_1 = q_2 \) or \(q_1 = q_3^2 \), and so suppose for now that \(q_1 \neq q_2 \) and \(q_1 \neq q_3^2 \). As in the \(\mathcal{C}_2 \), \(L = Q \), case the integrands of \(I_1, \ldots, I_6 \) are all nonsingular on \(\mathbb{T} \). Moreover, assuming that \(q_1 \neq q_2 \) and \(q_1 \neq q_3^2 \) all singularities are simple poles, and at the special values \(q_1 = q_2^2 \) or \(q_1 = q_3^2 \) there are some removable singularities. Write \(I_1^n, \ldots, I_6^n \) for the integrals over the contour \(\mathbb{T} \). A lengthy analysis (using the fact that \(a \) is close to 0 and \(c \) is close to 1) gives

\[
\text{Tr}(h) = \frac{1}{q_1^2 q_2^2} \int_{\mathbb{T}} \frac{f(t)}{|c(t)|^2} dt + I_1^n + \cdots + I_6^n + A f(q_1^{-1}, q_2^{-1}) + B_+ \sigma_+ + B_- \sigma_-
\]

\[
+ C \left(f(q_1^{-1}, \omega) + f(q_1^{-1}, \omega^{-1}) \right) + |D| \times \begin{cases} f(q_1, q_2^{-1}) & \text{if } q_1 < q_2^{-3/2} \\ \sigma & \text{if } q_2^{-3/2} < q_1 < q_2 \\ f(q_1^{-1}, q_2) & \text{if } q_2 < q_1, \end{cases}
\]

where \(\sigma_\pm = f(\pm q_1^{-1/2} q_2^{-3/2}, q_2^{-1}) + f(q_1^{-1}, \pm q_1^{1/2} q_2^{-1/2}) + f(\pm q_1^{1/2} q_2^{-3/2}, \pm q_1^{-1/2} q_2^{-1/2}) \) and

\[
\sigma = f(q_1^{-1}, q_2^{-1}) + f(q_1^{-1}, q_2^{-1}) + f(q_1^{-1}, q_2^{-1}) + f(q_1^{-2}, q_1^{-1} q_2^{-1}) + f(q_2^{-2}, q_1^{-1} q_2^{-1}) + f(q_1^{-3}, q_1^{-1} q_2^{-2}).
\]

As in the previous sections it is easy to show that

\[
I_1^n + \cdots + I_6^n = \frac{(q_1 - 1)^2}{2q_1^2 q_2^2} \int_{\mathbb{T}} \frac{\chi_4^2(h)}{|c_1(s)|^2} ds + \frac{(q_2 - 1)^2}{2q_1^2 q_2^2} \int_{\mathbb{T}} \frac{\chi_2^2(h)}{|c_2(s)|^2} ds.
\]

Proposition \[2.9\] gives \(f(q_1^{-1}, \omega) + f(q_1^{-1}, \omega^{-1}) = \pi^8(h) \) and \(\sigma = \pi^6(h) \) (note that \(\pi^6 \) only occurs for parameters \(q_2^{3/2} < q_1 < q_2^{3} \), and in this range \(\pi^6 \) is defined and has regular central character). We also have \(\sigma_\pm = \pi_\pm^1(h) \). For \(\pi_\pm^1 \) it is important that \(q_1 \neq q_2 \) and \(q_1 \neq q_3^{-1} \), otherwise \(\pi_\pm^1 \) does not have a regular central character and things become complicated (see below). Lemma \[2.10\] gives \(f(q_1^{-1}, q_2^{-1}) = \chi^3(h) \). Since we exclude \(q_1 = q_2 \) the representation \(\pi^4 \) has regular central character for parameters \(q_1 < q_2^{3/2} \), and so Lemma \[2.10\] gives \(f(q_1, q_2^{-1}) = \chi^4(h) \). Similarly \(f(q_1^{-1}, q_2) = \chi^5(h) \) for all \(q_2^2 < q_1 \) with \(q_1 \neq q_3^3 \).

It remains to discuss the cases \(q_1 = q_2 \) and \(q_1 = q_3^2 \). Let us briefly outline the working involved. Consider the case \(q_1 = q_2 \) (the case \(q_1 = q_3^2 \) case is similar). The integrands of \(I_1, \ldots, I_6 \) are still nonsingular on \(\mathbb{T} \), and the contours in the integrals \(I_3, I_4, I_5 \) can all be shifted to \(\mathbb{T} \) without encountering any poles. This leaves \(I_1, I_2 \) and \(I_5 \) to consider. Writing \(f(t) = g(t)/d(t) \)
the integrands of I_1, I_2 and I_5 are (respectively)
\[
\frac{qs^2(1-s^2)g(q\frac{s}{2},q^{-1})}{(1-q)(1-q^{-\frac{1}{2}}s^{-1})^2(1+q^{-\frac{1}{2}}s)(1-q^{-\frac{1}{2}}s^{-1})(1-q^{-\frac{1}{2}}s)^2(1+q^{-\frac{1}{2}}s)(1-q^{-\frac{1}{2}}s)}
\]
\[
\frac{s^4(1-s^2)g(q^{-1},q\frac{s}{2})}{(1-q)(1-q^{-\frac{1}{2}}s^{-3})(1-q^{-1}s^{-2})(1-q^{-\frac{1}{2}}s^3)(1-q^{-1}s^2)(1-q^{-\frac{1}{2}}s)}
\]
\[
\frac{q^{-\frac{1}{2}}s(1-s^2)g(q^{-\frac{1}{2}}s^{-1},q\frac{s}{2})}{(q-1)(1-q^{-\frac{1}{2}}s^{-1})(1+q^{-\frac{1}{2}}s^{-1})(1-q^{-\frac{1}{2}}s^{-1})(1-q^{-\frac{1}{2}}s)(1+q^{-\frac{1}{2}}s)(1-q^{-\frac{1}{2}}s^{-1})}
\]

The relevant poles are at $s = q^{-\frac{1}{2}}$ (a double pole for I_1, I_2, and I_5), $s = q^{-\frac{1}{2}}$ (a single pole for I_1, I_2, and I_5), $s = \omega^\pm q^{-\frac{1}{2}}$ (single poles for I_2 only), and $s = q^{-\frac{5}{2}}$ (a single pole for I_1 only). The residue contributions from $s = -q^{-\frac{1}{2}}$ make up the $\chi^7(h)$ term, the contributions from $s = \omega^\pm q^{-\frac{1}{2}}$ give the $\chi^8(h)$ term, and the contribution from $s = q^{-\frac{5}{2}}$ gives the $\chi^3(h)$ term. All that remains is to analyse the contribution from the double poles of each integral at $s = q^{-\frac{1}{2}}$.

We claim that the combined residue contribution from the point $s = q^{-\frac{1}{2}}$ is
\[
R_1 + R_2 + R_5 = \frac{q(q-1)^3}{6(q+1)^2(q^3-1)} (\chi^7_+(h) + 2\chi^4(h)). \tag{3.6}
\]

We do not have a conceptual proof of this fact, but it can be obtained by direct calculation as follows. As in Remark 1.2 the functions $g(t) = g_t(h)$ can be explicitly computed (since one only needs to know the values $g_t(T_w)$ for $w \in W_0$, as $g_t(T_wx^3) = t^\lambda g_t(T_w)$). Then the residue contributions can be explicitly calculated (making 12 separate calculations, one for each $h = T_w x^3$ with $w \in W_0$). On the other hand, using the explicit matrices (Example 2 of Section 2.3) for the representations π_4^\pm and π^4 one can compute the expression $\chi^7_+(T_w x^3) + 2\chi^4(T_w x^3)$ and compare. This completes the proof. \hfill \Box

3.7 The $\tilde{BC}_2(q_0,q_1,q_2)$ algebras with $L = Q$

The root system is $R = \pm\{\alpha_1,\alpha_2,\alpha_1 + \alpha_2,\alpha_1 + \alpha_2\}$, giving dual root system $R^\vee = \pm\{\alpha_1^\vee,\alpha_2^\vee,\alpha_1^\vee + \alpha_2^\vee,\alpha_1^\vee + \alpha_2^\vee,\alpha_1^\vee / 2,\alpha_1^\vee + \alpha_2^\vee / 2\}$. The affine Hecke algebra has generators $T_1, T_2, x_1 = x^\alpha_1$ and $x_2 = x^{\alpha_2/2}$ with relations
\[
T_1^2 = 1 + (q_1^\frac{1}{2} - q_1^{-\frac{1}{2}})T_1 \quad T_1 x_1 = x_1^{-1} T_1 + (q_1^\frac{1}{2} - q_1^{-\frac{1}{2}})(1 + x_1)
\]
\[
T_2^2 = 1 + (q_2^\frac{1}{2} - q_2^{-\frac{1}{2}})T_2 \quad T_2 x_2 = x_2^{-1} T_2 + (q_2^\frac{1}{2} - q_2^{-\frac{1}{2}})x_2 + (q_1^\frac{1}{2} - q_1^{-\frac{1}{2}})
\]
\[
T_1 T_2 T_1 T_2 = T_2 T_1 T_2 T_1 \quad T_2 x_1 = x_1 x_2^2 T_2^{-1} - (q_0^\frac{1}{2} - q_0^{-\frac{1}{2}})x_1 x_2
\]
\[
x_1 x_2 = x_2 x_1 \quad T_1 x_2 = x_1 x_2 T_1^{-1}.
\]

Let $\pi_t = \text{Ind}_{\mathbb{C}[Q]}^{\mathbb{C}^x} (\mathbb{C}v_t)$ be the principal series representation of \mathbb{H}^t with central character $t = (t_1, t_2) \in (\mathbb{C}^x)^2$, where $\mathbb{C}v_t$ is the 1-dimensional representation of $\mathbb{C}[Q]$ with $x_1 \cdot v_t = t_1 v_t$ and $x_2 \cdot v_t = t_2 v_t$.

Let \mathbb{H}_1 be the subalgebra generated by T_1, x_1, x_2 and let \mathbb{H}_2 be the subalgebra generated by T_2, x_1, x_2. Let $s \in \mathbb{C}^x$, and let $\pi^s_1 = \text{Ind}_{\mathbb{H}_1}^{\mathbb{H}} (\mathbb{C}u^s_1)$ and $\pi^s_2 = \text{Ind}_{\mathbb{H}_2}^{\mathbb{H}} (\mathbb{C}u^s_2)$ ($j = 1, 2, 3, 4$) be the 4-dimensional representations induced from the 1-dimensional representation $\mathbb{C}u^s_1$ of \mathbb{H}_1 and the
1-dimensional representations Cu^j_s ($j = 2, 3, 4$) of \mathcal{H}_2 given by

\[
\begin{align*}
T_1 \cdot u_s^1 &= -q_1^{-\frac{1}{2}} u_s^1 & x_1 \cdot u_s^1 &= q_1^{-1} u_s^1 & x_2 \cdot u_s^1 &= q_1^1 s u_s^1 \\
T_2 \cdot u_s^2 &= -q_2^{-\frac{1}{3}} u_s^2 & x_1 \cdot u_s^2 &= \frac{q_0}{q_2} \cdot q_2^{-\frac{1}{3}} u_s^2 & x_2 \cdot u_s^2 &= -q_0^{-\frac{1}{2}} - q_2^{-\frac{1}{3}} u_s^2 \\
T_2 \cdot u_s^3 &= -q_2^{-\frac{1}{3}} u_s^3 & x_1 \cdot u_s^3 &= q_0^{-\frac{1}{3}} \cdot q_2^{-\frac{1}{3}} u_s^3 & x_2 \cdot u_s^3 &= -q_0^{-\frac{1}{2}} q_2^{-\frac{1}{3}} u_s^3 \\
T_2 \cdot u_s^4 &= \frac{1}{q_2} u_s^4 & x_1 \cdot u_s^4 &= q_0 q_2^{-\frac{1}{2}} u_s^4 & x_2 \cdot u_s^4 &= -q_0^{-\frac{1}{2}} \cdot \frac{1}{q_2} u_s^4.
\end{align*}
\]

Let π^j ($j = 5, \ldots, 11$) be the 1-dimensional representations of \mathcal{H} with

\[
\begin{align*}
\pi^5 &= (-q_1^{-\frac{1}{2}}, -q_2^{-\frac{1}{2}}, q_1^{-1}, q_0^{-\frac{1}{2}} q_2^{-\frac{1}{2}}) \\
\pi^7 &= (q_1^{-\frac{1}{2}}, -q_2^{-\frac{1}{2}}, q_1^{-1} q_0^{-\frac{1}{2}} q_2^{-\frac{1}{2}}) \\
\pi^9 &= (-q_1^{-\frac{1}{2}}, q_2^{-\frac{1}{2}}, q_1^{-1}, q_0 q_2^{-\frac{1}{2}}) \\
\pi^{11} &= (q_1^{-\frac{1}{2}}, q_2^{-\frac{1}{2}}, q_1^{-1}, -q_0^{-\frac{1}{2}} q_2^{-\frac{1}{2}})
\end{align*}
\]

where in each case we list the quadruples $(\pi^j(T_1), \pi^j(T_2), \pi^j(x_1), \pi^j(x_2))$.

Let $\pi^{12} = M_J(s)$, $\pi^{13} = M_J(t)$, and $\pi^{14} = M_J(u)$ be the 3-dimensional representations with

\[
(s^{\alpha_2}, s^{\alpha_2}/2) = (q_1^{-1}, q_0^{-\frac{1}{2}} q_2^{-\frac{1}{2}}), \quad (t^{\alpha_2}, t^{\alpha_2}/2) = (q_1^{-1}, -q_0^{-\frac{1}{2}} q_2^{-\frac{1}{2}}), \quad (u^{\alpha_2}, u^{\alpha_2}/2) = (q_1^{-1}, -q_0^{-\frac{1}{2}} q_2^{-\frac{1}{2}})
\]

and $J = \{\alpha_2\}$. We assume that $q_1 \neq q_0 q_2$ and $q_1^2 \neq q_0 q_2$ for π^{12}, that $q_1 \neq q_0^{-1} q_2$ and $q_1^2 \neq q_0^{-1} q_2$ for π^{13}, and that $q_1 \neq q_0 q_2^{-1}$ and $q_1^2 \neq q_0 q_2^{-1}$ for π^{14}, so that $N(s) = N(t) = N(u) = \{\alpha_1, \alpha_2\}$ and $D(s) = D(t) = D(u) = \emptyset$, and hence $F_J(s) = F_J(t) = F_J(u) = \{s_2, s_1 s_2, s_2 s_1 s_2\}$.

Finally, let $\pi^{15} = M_J(t)$ and $\pi^{16} = M_J(u)$ be the 2-dimensional representations with

\[
(t^{\alpha_2}, t^{\alpha_2}/2) = (-q_0 q_2^{-\frac{1}{2}} q_2^{-\frac{1}{2}}) \quad \text{and} \quad (u^{\alpha_2}, u^{\alpha_2}/2) = (-q_2^{-\frac{1}{2}} q_2^{-\frac{1}{2}}). \quad J = \emptyset.
\]

Theorem 3.8. For all $h \in \mathcal{H}$ we have

\[
\begin{align*}
\text{Tr}(h) = \frac{1}{8q_1^2 q_2^2} \int_T \int_{T^2} \frac{\chi_t(h)}{|c(t)|^2} \, dt + C_6 \int_T \int_{T^2} \frac{\chi_s^1(h)}{|c_1(s)|^2} \, ds + C_7 \int_T \frac{\chi_q^2(h)}{|c_2(s)|^2} \, ds + C_8 \int_T \frac{\chi_s^3(h)}{|c_3(s)|^2} \, ds
\end{align*}
\]

where $\chi(h) = \chi_s^3(h)$ if $q_0 < q_2$ and $\chi(h) = \chi_s^4(h)$ if $q_2 < q_0$, and where

\[
\begin{align*}
X_1 &= |C_3| \chi_s^{15}(h) + |C_4| \chi_s^6(h) + |C_5| \times \begin{cases}
\chi_8(h) & \text{if } q_1 < q_0^{-\frac{1}{2}} q_2^{-\frac{1}{2}} \\
\chi_8(h) & \text{if } q_0^{-\frac{1}{2}} q_2^{-\frac{1}{2}} < q_1 < q_0^{-1} q_2 \\
\chi_{10}(h) & \text{if } q_0^{-1} q_2 < q_1
\end{cases} \\
X_2 &= |C_3| \chi_s^{16}(h) + |C_5| \chi_s^{10}(h) + |C_4| \times \begin{cases}
\chi_{11}(h) & \text{if } q_1 < q_0^{-\frac{1}{2}} q_2^{-\frac{1}{2}} \\
\chi_{14}(h) & \text{if } q_0^{-\frac{1}{2}} q_2^{-\frac{1}{2}} < q_1 < q_0^{-1} q_2 \\
\chi_6(h) & \text{if } q_0^{-1} q_2 < q_1
\end{cases}
\end{align*}
\]

with $c(t), c_1(s), c_2(s), c_3(s), C_1, \ldots, C_8$ as in Appendix A.4.
Proof. The series \(G_t(h) \) converges for \(|t_1| < q_1^{-1} \) and \(|t_2| < q_0^{-\frac{1}{2}} q_2^{-\frac{1}{2}} \), and so writing \(f(t) = f_t(h) \) we have

\[
\text{Tr}(h) = \frac{1}{q_1^{q_2}} \int_{\mathbb{T}} \int_{q_0^{-\frac{1}{2}} q_2^{-\frac{1}{2}} b \mathbb{T}} \frac{f(t)}{c(t)c(t^{-1})} dt_2 dt_1
\]

whenever \(0 < a, b < 1 \). We choose \(a \) and \(b \) both very close to 0, and choose \(0 < c < 1 \) very close to 1. The \(t_2 \)-poles of the integrand between the contour \(q_0^{-\frac{1}{2}} q_2^{-\frac{1}{2}} b \mathbb{T} \) and \(c \mathbb{T} \) are at \(t_2 = q_0^{-\frac{1}{2}} q_2^{-\frac{1}{2}} \), at \(t_2 = -q_0^{-\frac{1}{2}} q_2^{-\frac{1}{2}} \) (if \(q_0 < q_2 \)) and at \(t_2 = -q_0^{-\frac{1}{2}} q_2^{-\frac{1}{2}} \) (if \(q_2 < q_1 \)). Thus we can shift the \(t_2 \)-contour to \(c \mathbb{T} \) at the cost of residue contributions from the above points. Now interchange the order of integration in the double integral. The \(t_1 \)-poles of the integrand between \(q_1^{-1} a \mathbb{T} \) and \(\mathbb{T} \) are at

\[
t_1 = q_1^{-1}, \ t_1 = q_1^{-1} t_2^{-2}, \ t_1 = q_0^{-\frac{1}{2}} q_2^{-\frac{1}{2}} t_2^{-1}, \ t_1 = -q_0^{-\frac{1}{2}} q_2^{-\frac{1}{2}} t_2^{-1} \quad \text{(if} \ q_0 < q_2 \text{)} \quad \text{and} \quad \ t_1 = -q_0^{-\frac{1}{2}} q_2^{-\frac{1}{2}} t_2^{-1} \quad \text{(if} \ q_2 < q_0 \text{)}.
\]

Computing the associated residues gives

\[
\text{Tr}(h) = \frac{1}{q_1^{q_2}} \int_{\mathbb{T}^2} \frac{f(t)}{c(t)^2} dt + I_1 + I_2 + I_3 + I_4 + \begin{cases} I_5 + I_6 & \text{if} \ q_0 < q_2 \\ I_5' + I_6' & \text{if} \ q_2 < q_0 \end{cases}
\]

where

\[
I_1 = \frac{q_0 q_2 - 1}{q_1 q_2 (q_0 + 1)(q_2 + 1)} \int_{q_0^{-\frac{1}{2}} q_2^{-\frac{1}{2}} c \mathbb{T}} \frac{f(q_0^{-\frac{1}{2}} q_2^{-\frac{1}{2}} s, q_0^{-\frac{1}{2}} q_2^{-\frac{1}{2}})}{c_2(s)c_2(s^{-1})} ds \quad \text{where} \ s = q_0^{-\frac{1}{2}} q_2^{-\frac{1}{2}} t_1
\]

\[
I_2 = \frac{q_1 - 1}{q_1 q_2 (q_1 + 1)} \int_{q_1^{-\frac{1}{2}} c \mathbb{T}} f(q_1^{-\frac{1}{2}} q_1^{-\frac{1}{2}} s, q_1^{-\frac{1}{2}} q_1^{-\frac{1}{2}}) ds \quad \text{where} \ s = q_1^{-\frac{1}{2}} t_2
\]

\[
I_3 = \frac{q_1 - 1}{q_1 q_2 (q_1 + 1)} \int_{q_1^{-\frac{1}{2}} c \mathbb{T}} f(s^{-\frac{1}{2}} q_1^{-\frac{1}{2}} s, q_1^{-\frac{1}{2}} q_1^{-\frac{1}{2}}) ds \quad \text{where} \ s = q_1^{-\frac{1}{2}} t_2
\]

\[
I_4 = \frac{q_0 q_2 - 1}{q_1 q_2 (q_0 + 1)(q_2 + 1)} \int_{c \mathbb{T}} f(q_0^{-\frac{1}{2}} q_2^{-\frac{1}{2}} s^{-1}, q_0^{-\frac{1}{2}} q_2^{-\frac{1}{2}}) ds \quad \text{where} \ s = t_2
\]

\[
I_5 = \frac{q_2 - q_0}{q_1 q_2 (q_0 + 1)(q_2 + 1)} \int_{q_0^{-\frac{1}{2}} q_2^{-\frac{1}{2}} c \mathbb{T}} f(q_0^{-\frac{1}{2}} q_2^{-\frac{1}{2}} s, q_0^{-\frac{1}{2}} q_2^{-\frac{1}{2}}) ds \quad \text{where} \ s = q_0^{-\frac{1}{2}} q_2^{-\frac{1}{2}} t_1
\]

\[
I_5' = \frac{q_0 - q_2}{q_1 q_2 (q_0 + 1)(q_2 + 1)} \int_{q_0^{-\frac{1}{2}} q_2^{-\frac{1}{2}} c \mathbb{T}} f(q_0^{-\frac{1}{2}} q_2^{-\frac{1}{2}} s, q_0^{-\frac{1}{2}} q_2^{-\frac{1}{2}}) ds \quad \text{where} \ s = q_0^{-\frac{1}{2}} q_2^{-\frac{1}{2}} t_1
\]

\[
I_6 = \frac{q_2 - q_0}{q_1 q_2 (q_0 + 1)(q_2 + 1)} \int_{c \mathbb{T}} f(q_0^{-\frac{1}{2}} q_2^{-\frac{1}{2}} s^{-1}, -s) ds \quad \text{where} \ s = t_2
\]

\[
I_6' = \frac{q_0 - q_2}{q_1 q_2 (q_0 + 1)(q_2 + 1)} \int_{c \mathbb{T}} f(q_0^{-\frac{1}{2}} q_2^{-\frac{1}{2}} s^{-1}, -s) ds \quad \text{where} \ s = t_2.
\]

Now shift the contours in all integrals \(I_j, I_j' \) to \(\mathbb{T} \). We omit the details of this long calculation. \(\square \)
A Constants and c-functions

We write \(\sigma_1(x) = 1 + x \) and \(\sigma_2(x) = 1 + x + x^2 \).

A.1 \(\tilde{C}_2(q_1, q_2) \) algebras with \(L = Q \)

\[
c(t) = \frac{(1 - q_1^{-1} t_1^{-1})(1 - q_1^{-1} t_1^{-1} t_2^{-3})(1 - q_2^{-1} t_1^{-1})(1 - q_2^{-1} t_1^{-1} t_2^{-1})}{(1 - t_1^{-1})(1 - t_1^{-1} t_2^{-3})(1 - t_1^{-1} t_2^{-1})(1 - t_1^{-1} t_2^{-1})}
\]

\[
c_1(s) = \frac{(1 + q_1^{-\frac{1}{2}} s^{-1})(1 - q_1^{-\frac{1}{2}} q_2^{-1} s^{-1})(1 - q_1^{-\frac{1}{2}} q_2^{-1} s^{-1})}{(1 - s^{-2})(1 - q_1^{-\frac{1}{2}} s^{-1})}
\]

\[
c_2(s) = \frac{(1 - q_1^{-1} q_2^{-1} s^{-1})(1 - q_1^{-1} q_2^{-1} s^{-1})}{(1 - s^{-2})(1 - q_2 s^{-1})}
\]

\[
A = \frac{(q_1 q_2 - 1)(q_1 q_2^2 - 1)}{\sigma_1(q_1) \sigma_1(q_2) \sigma_1(q_1) \sigma_1(q_2)}
\]

\[
B = \frac{2 q_2(q_1 - 1)^2}{\sigma_1(q_2) \sigma_1(q_1 q_2^{-1}) \sigma_1(q_1) \sigma_1(q_2)}
\]

\[
C = \frac{(q_1 q_2 - 1)(q_1 q_2^2 - 1)}{\sigma_1(q_1) \sigma_1(q_2) \sigma_1(q_1 q_2^{-1}) \sigma_1(q_1) \sigma_1(q_2)}
\]

A.2 \(\tilde{C}_2(q_1, q_2) \) algebras with \(L = P \)

\[
c(t) = \frac{(1 - q_1^{-1} t_1^{-1} t_2^{-3})(1 - q_1^{-1} t_1^{-1} t_2^{-3})(1 - q_2^{-1} t_1^{-1})(1 - q_2^{-1} t_1^{-1} t_2^{-1})}{(1 - t_1^{-2} t_2^{-3})(1 - t_2^{-2})(1 - t_1^{-2} t_2^{-3})(1 - t_2^{-1})}
\]

\[
c_1(s) = \frac{(1 + q_1^{-\frac{1}{2}} s^{-1})(1 - q_1^{-\frac{1}{2}} q_2^{-1} s^{-1})(1 - q_1^{-\frac{1}{2}} q_2^{-1} s^{-1})}{(1 - s^{-2})(1 - q_1^{-\frac{1}{2}} s^{-1})}
\]

\[
c_2(s) = \frac{(1 - q_1^{-1} q_2^{-1} s^{-2})(1 - q_1^{-1} q_2^{-1} s^{-2})}{(1 - s^{-2})(1 - q_2 s^{-2})}
\]

A.3 \(\tilde{C}_2(q_1, q_2) \) algebras with \(L = Q \)

\[
c(t) = \frac{(1 - q_1^{-1} t_1^{-1})(1 - q_1^{-1} t_1^{-2} t_2^{-3})(1 - q_1^{-1} t_1^{-1} t_2^{-3})(1 - q_2^{-1} t_1^{-1})(1 - q_2^{-1} t_1^{-1} t_2^{-1})(1 - q_2^{-1} t_1^{-1} t_2^{-1})}{(1 - t_1^{-1})(1 - t_1^{-2} t_2^{-3})(1 - t_1^{-1} t_2^{-3})(1 - t_2^{-1})(1 - t_1^{-1} t_2^{-3})(1 - t_1^{-1} t_2^{-1})}
\]

\[
c_1(s) = \frac{(1 - q_1^{-\frac{1}{2}} s^{-1})(1 - q_1^{-\frac{1}{2}} q_2^{-1} s^{-1})(1 - q_1^{-\frac{1}{2}} q_2^{-1} s^{-1})}{(1 - s^{-2})(1 - q_1^{-\frac{1}{2}} s^{-1})}
\]

\[
c_2(s) = \frac{(1 - q_1^{-1} s^{-2})(1 - q_1^{-1} q_2^{-1} s^{-1})(1 - q_1^{-1} q_2^{-1} s^{-1})}{(1 - s^{-2})(1 - q_2 s^{-1})(1 - q_2^{-1} s^{-1})}
\]

\[
A = \frac{(q_1 q_2^3 - 1)(q_1^3 q_2^3 - 1)}{\sigma_1(q_1) \sigma_1(q_2) \sigma_2(q_2) \sigma_2(q_1 q_2)}
\]

\[
B = \frac{q_2(q_1 - 1)(q_2 - 1)}{2 \sigma_1(q_1) \sigma_1(q_2) \sigma_2(\pm \sqrt{q_1/q_2}) \sigma_2(\pm \sqrt{q_1 q_2})}
\]

\[
C = \frac{(q_2(q_1 - 1)(q_2^3 - 1))}{\sigma_2(q_2) \sigma_2(q_1 q_2^{-1}) \sigma_2(q_1 q_2)}
\]

\[
D = \frac{(1 - q_1 q_2^{-2})(q_1 q_2^{-3} - 1)}{\sigma_1(q_1) \sigma_1(q_2^{-1}) \sigma_2(q_2^{-1}) \sigma_2(q_1 q_2^{-1})}.
\]
A.4 $\tilde{B}C_2(q_0, q_1, q_2)$ algebras with $L = Q$

$$c(t) = \frac{(1 - q_1^{-1}t_1^{-1})(1 - q_1^{-1}t_1^{-1}t_2^{-2})(1 - a^{-1}t_1^{-1}t_2^{-1})(1 + b^{-1}t_1^{-1}t_2^{-1})(1 - a^{-1}t_2^{-1})(1 + b^{-1}t_2^{-1})}{(1 - t_1^{-1})(1 - t_1^{-1}t_2^{-1})(1 - t_1^{-1}t_2^{-2})(1 - t_2^{-2})}$$

$$c_1(s) = \frac{(1 - q_0 - \frac{1}{2}q_1^{\frac{1}{2}}q_2^{\frac{1}{2}}s^{-1})(1 + \frac{1}{2}q_0 q_1^{\frac{1}{2}}q_2^{\frac{1}{2}}s^{-1})(1 - q_0 q_1^{\frac{1}{2}}q_2^{\frac{1}{2}}s^{-1})(1 + q_0 q_1^{\frac{1}{2}}q_2^{\frac{1}{2}}s^{-1})}{(1 - s^{-2})(1 - q_1 s^{-2})}$$

$$c_2(s) = \frac{(1 + q_0 - \frac{1}{2}q_2^{\frac{1}{2}}s^{-1})(1 - q_0 - \frac{1}{2}q_1^{\frac{1}{2}}q_2^{\frac{1}{2}}s^{-1})(1 - q_0 q_1^{\frac{1}{2}}q_2^{\frac{1}{2}}s^{-1})(1 + q_0 q_1^{\frac{1}{2}}q_2^{\frac{1}{2}}s^{-1})}{(1 - s^{-2})(1 - q_0 q_2^{\frac{1}{2}}s^{-1})}$$

$$c_3(s) = \frac{(1 + q_0 - \frac{1}{2}q_2^{\frac{1}{2}}s^{-1})(1 - q_0 q_1^{\frac{1}{2}}q_2^{\frac{1}{2}}s^{-1})(1 - q_0 q_1^{\frac{1}{2}}q_2^{\frac{1}{2}}s^{-1})(1 + q_0 q_1^{\frac{1}{2}}q_2^{\frac{1}{2}}s^{-1})}{(1 - s^{-2})(1 - q_0 q_2^{\frac{1}{2}}s^{-1})}$$

where $a = q_0 q_2^{-\frac{1}{2}}$ and $b = q_0 - q_2^{\frac{1}{2}}$.

$$C_1 = \frac{(q_0 q_1 q_2 - 1)(q_0 q_1^2 q_2 - 1)}{\sigma_1(q_0)\sigma_1(q_1)\sigma_1(q_2)\sigma_1(q_0 q_1)\sigma_1(q_1 q_2)}$$

$$C_3 = \frac{(q_2 - q_0)(q_0 q_2 - 1)}{\sigma_1(q_0 q_1^{-1})\sigma_1(q_1^{-1} q_2)\sigma_1(q_0 q_1)\sigma_1(q_1 q_2)}$$

and $C_2 = -C_1(q_0^{-1}, q_1, q_2^{-1})$, $C_4 = C_1(q_0^{-1}, q_1, q_2)$ and $C_5 = -C_1(q_0, q_1, q_2^{-1})$. Finally,

$$C_6 = \frac{q_1 - 1}{2q_1 q_2^2(q_2 + 1)}$$

$$C_7 = \frac{q_0 q_2 - 1}{2q_1^2 q_2(q_2 + 1)(q_2 + 1)}$$

$$C_8 = \frac{|q_2 - q_0|}{2q_1^2 q_2(q_2 + 1)(q_2 + 1)}$$

References

[1] A. Borel, Admissible representations of a semisimple group over a local field with fixed vectors under an Iwahori subgroup, Invent. Math. 35, 233–259, (1976).

[2] N. Bourbaki, Lie Groups and Lie Algebras, Chapters 4–6, Elements of Mathematics, Springer-Verlag, Berlin Heidelberg New York, (2002).

[3] D. Ciubotaru, M. Kato (Shiota), S. Kato, On characters and formal degrees of discrete series of affine Hecke algebras of classical types, Invent math, DOI 10.1007/s00222-011-0338-3, Online, (2011).

[4] P. Delorme, E. Opdam, The Schwartz algebra of an affine Hecke algebra, J. Reine Angew. Math. 625 (2008), 59114.

[5] M. Davis, Representations of rank 2 affine hecke algebras at roots of unity, arXiv:1104.4826v1, (2011).

[6] J. Dixmier, C^*-algebras, North-Holland Mathematical Library, Vol. 15. North-Holland Publishing Co., Amsterdam-New York-Oxford, (1977).

[7] M. Geck, G. Pfeiffer, Characters of finite Coxeter groups and Iwahori-Hecke algebras, London Mathematical Society Monographs, New Series 21, Clarendon Press, Oxford (2000).

[8] Harish-Chandra Collected papers, Vol IV, 1970–1983. Edited by V. S. Varadarajan. Springer-Verlag, New York, (1984).
[9] G. Heckman, E. Opdam, *Harmonic analysis for affine Hecke algebras*, Current developments in Mathematics, Intern. Press, 37–60, (1997).

[10] S.-I. Kato, *Irreducibility of principal series representations for Hecke algebras of affine type*, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), no. 3, 929–943.

[11] D. Kazhdan, G. Lusztig, *Proof of the Deligne-Langlands conjecture for Hecke algebras*, Invent. Math. 87, 153–215, (1987).

[12] G. Lusztig, *Affine Hecke algebras and their graded versions*, Journal of the American Mathematical Society, Vol. 2, No. 3, (1989).

[13] I. G. Macdonald, *Affine Hecke algebras and orthogonal polynomials*, Cambridge Tracts in Mathematics, 157. Cambridge University Press, Cambridge, (2003).

[14] H. Matsumoto, *Analyse harmonique dans les systèmes de Tits bornologiques de type affine*, Lecture Notes in Mathematics, Vol. 590. Springer-Verlag, Berlin-New York, (1977).

[15] K. Nelson, A. Ram, *Kostka-Foulkes Polynomials and Macdonald Spherical Functions*, Surveys in Combinatorics, 2003 (Bangor), London Math. Soc. Lecture Note Ser., Cambridge University Press, 307, (2003), 325–370.

[16] E. Opdam, *A generating function for the trace of the Iwahori-Hecke algebra*, Studies in memory of Issai Schur (Chevaleret/Rehovot, 2000), 301–323, Progr. Math., 210, Birkhuser Boston, Boston, MA, (2003).

[17] E. Opdam, *On the spectral decomposition of affine Hecke algebras*, J. Inst. Math. Jussieu 3 (2004), no. 4, 531–648.

[18] E. Opdam, *The central support of the Plancherel measure of an affine Hecke algebra*, Mosc. Math. J. 7 (2007), no. 4, 723741, 767768.

[19] E. Opdam, M. Solleveld, *Discrete series characters for affine Hecke algebras and their formal degrees*, Acta Math. 205 (2010), no. 1, 105187.

[20] J. Parkinson, B. Schapira, *A local limit theorem for random walk on the chambers of A2 buildings*, in Random Walks, Boundaries and Spectra, Progress in Probability, 2011, Vol. 64, 15–53 (2011).

[21] A. Ram, *Calibrated representations of affine Hecke algebras*, preprint (1998), arXiv:0401323; see also [22].

[22] A. Ram, *Affine Hecke algebras and generalized standard Young tableaux*, J. Algebra, 230 (2003), 367–415

[23] A. Ram, *Representations of rank two affine Hecke algebras*, in Advances in Algebra and Geometry, Ed. C. Musili, Hindustan Book Agency, 2003, 57–91

[24] M. Reeder, *Hecke Algebras and Harmonic Analysis on p-adic Groups*, American Journal of Mathematics, Vol. 119, No. 1, 225–249, (1997).

[25] M. Ronan, *Lectures on buildings*, Revised edition, University of Chicago press, (2009).

[26] V. S. Varadarajan, *An introduction to harmonic analysis on semisimple Lie groups*, Cambridge Studies in Advanced Mathematics, 16. CUP, Cambridge, (1989).