Economic model for the production of spirit, inulin and syrup from the locally eco-friendly agave americana

L. Ganduria¹,*, A.F. Van der Merwe², S. Matope²

¹Stellenbosch University, Private Bag X1 Matieland, Capetown, 7602, South Africa
²Corresponding author. Tel.: +27-21-808-4234; fax: +27-21-808-4245 E-mail address: ie@sun.ac.za

Abstract

Less than 3% Agave americana L. plant matrix constitute biodegradable fibers. In order to improve the economic viability of the plant, there is need to commercialize other products from the heart of the plant. The Analytic Hierarchy Process (AHP) was used to analyze a set of factors that affect agave production as well as possible alternatives by finding one with the best rating based on the given preferences. Each product’s benefit to cost ratios was evaluated using data extracted from the economic model. Inulin offers the better benefit to cost ratio compared to agave spirit and inulin.

Keywords: Economic model; SPSS; AHP; Parameter; Criteria; Alternatives, Pina; Eco-friendly; Agave; Benefit to cost ratio

1. Introduction

Agaves are a group of plants of the family Agavaceae, whose center of origin and diversity is Mexico [1][3]. Agave americana L. (AA) species are naturalized in Southern Africa [4]-[7]. They are medium-sized to large, rosulate, perennial, leaf succulents. Agave americana L grow up to 2 m tall and are profusely proliferous through basal suckers [3],[4],[6]. Leaves are light blue with stout marginal spines throughout [8].

Agave is biodegradable. With its multiple uses, especially as a food, fiber, and alcoholic beverage, agave has held and still holds great economic and cultural importance for the society of Mexico [3], [9],[10]. Employment and industrialization that boosts rural development are inevitable within the agave industry. In Mexico alone, about 38,000 workers are employed in the industry [11] and latest science was brought to the agricultural process to save both the industry and the culture [12]. According to Rodrigues et al [13], from 2003 to 2011, industrialization of agave heads increased by leaps of 412 900 tones, 998 400 tones, with a maximum of 1,125,100 in 2008 [14].

Basic applied research on agave plants has been done in the past [15]. The importance of agave to the South African economy has been recognized and a project to commercialize the growing of agave has been initiated in the Eastern Cape Province [16]. The Council of Scientific and Industrial Research (CSIR) studied AA plant processing that focused on understanding the AA plant biochemistry, fiber, textiles and potential for paper making. Important market research was also conducted on global demand for inulin as well as local demand by the textile industry of AA fibers for textile product production such as geotextiles and nonwoven products, [17]. Recently, CSIR carried out a research on “Technology development for establishing an agave plant industry in southern Africa” [18]. Research programs have also been launched in Mexico and other countries to evaluate the greater utilization of the agave plant [16].

The production of agave fiber starts with the harvesting of the leaves. Forty AA leaves are harvested annually and decorticated for green fiber that is useful for composites and technical textiles. However
According to CSIR, the fiber contribution is approximately 1.5% [18] and the rest of the plant has no economic viability. Research has proved that it is not economic to process the fiber only [19]. This paper outlines the production of agave spirit, inulin, and syrup from AA as a way of increasing the economic viability of the agave plants. Critical values are extracted from the economic model and used to derive the benefit to cost ratios of the products.

2. Background of Agave americana L.: South African case study

According to a local farmer, agave bulbils were planted in the Eastern Cape Province as early as the 1860’s. The poles of AA were used in making household fences on polling. Around the 1900s, agaves were also used to feed ostriches. From 1940s to 1960s, agaves were further planted in triangular shapes as a governmental agricultural policy for hedges, soil conservation, and for income. A South African businessman formed Reinet Distillers for “tequila” production in 1998. This was due to a particularly devastating shortage of agave and many companies in Mexico had been pushed out of business [20][22]. However, the name “tequila” could not be used since the agave used was different from Agave tequilana Weber, grown within the boundaries delimited by the Mexican federal government [21][23]. This led to the brand creation of “agava silver” (clear spirit) and “agava gold” (aged spirit) [22] with strength of 45%. In 2008, the factory closed its doors [24]. With the abundance of agave within the 60km radius of the old factory [18], there is a quest to revive the industry as a way of creating jobs for the people.

2.1. Agave cultivation

Land preparation and agave cultivation are labour intensive [25]. Bulbils are used as seed and the harvest cycle takes seven years. Under the traditional cultivation system, the average maturity time for agave is 10 years and harvest begins at 8 years [26]. Based on information from the farmers, the plant density is 3333 plants ha⁻¹. Irrigation is not required and manually operated hand tools are used for weeding. The hearts (pina) of the plants are harvested manually, where it takes seven minutes for an average worker to harvest the whole plant. The pina are transported to the distillery by trucks with an arbitrarily assigned transport distance of 4km as no data are available currently.

2.2. Spirit, inulin and syrup production processes

The number of kilograms of agave heads is an important parameter in spirit, inulin, and syrup production. According to Yan et al 2011 [26], the total mass of the agave heads vary from 30 to 50kg per head. The mass is determined by the number of hectares harvested.

Initially, the heads are macerated into smaller pieces and inulin is mechanically extracted whilst solid fibers are filtrated away [18]. The macerated agave heads are hydrolysed or cooked for at least 32 h at 100°C, thereby breaking the inulin chains into fructose syrup [28][29]-[30]. Steel autoclaves with steam injection that lasts several hours are used for cooking agave heads [26]. High vacuum evaporation is used to extract the excess water from the juice [29]. After cooking the unhydrolysed syrup goes through milling to extract the juice (60%), generating 40% bagasse as a by-product [25]. Fermentation, distillation, and ageing processes then generate agave spirit. The product is matured from 3 to 12 months in oak casks to produce agave spirit [1]. The spirit is bottled and distributed to the retailers. Figure 1 below shows the inputs, processes and outputs involved in pina processing into syrup and spirit.

![Fig. 1. Inputs, processes and outputs in pina processing](image)

3. Methodology

Twenty questionnaires on factors that affect agave production were distributed among agave producers, industrial experts, and researchers in Graaff-Reinet, South Africa. These form a criterion whereby respondents are agave experts directly involved in agave production and processing. Fourteen questionnaires were successfully completed and used for this analysis. SPSS software analyzed data from the fourteen respondents on factors that affect agave processing using a scale of...
1, 3, 5, 7 and 9. Calculations using the weighted average score formula determined the weights of the factors. A weighted average score is obtained by multiplying each data point by its weight, summing the results, and dividing the result by the sum of the weights. The analyzed data was used as input into the AHP multiple criteria decision-making tool.

On the other hand literature review on agave production and processing was used to determine the input and output parameters of agave spirit, inulin and syrup production. Most importantly, interviews with nine industrial experts investigating the interrelationships between input and output parameters were successfully carried out. Data gleaned was used to build the economic model for agave pina processing in Microsoft excel spreadsheets.

4. Analytic Hierarchy Process Algorithm

The Analytic Hierarchy Process (AHP), a multi-criteria decision making tool is a mathematical theory for deriving ratio scale priority vectors from positive reciprocal matrices with entries established by paired comparisons [31][32]. Paired comparisons judgments from a fundamental scale of absolute numbers are entered in a reciprocal matrix. Their numerical values from a fundamental scale of absolute numbers are compared homogeneous elements whose comparison falls within one unit [32][33]. A positive reciprocal matrices with entries established by paired comparisons for inverse judgments and even using decimals to compromise and reciprocals for deriving ratio scale priority vectors from positive reciprocal matrices with entries established by paired comparisons for inverse judgments and even using decimals to compromise and reciprocals. Comparing the criteria for importance with respect to the goal gives the priorities in EM values shown:

\[
\begin{align*}
C_1 & \quad C_2 & \quad C_3 & \quad C_4 & \quad C_5 & \quad C_6 & \quad EM \\
C_1 & \quad 1.0 & \quad 0.9 & \quad 0.3 & \quad 0.2 & \quad 0.2 & \quad 1.4 & \quad 0.0606 \\
C_2 & \quad 1.1 & \quad 1.0 & \quad 0.2 & \quad 0.1 & \quad 0.2 & \quad 1.4 & \quad 0.0517 \\
C_3 & \quad 3.0 & \quad 4.5 & \quad 1.0 & \quad 0.8 & \quad 1.2 & \quad 0.2 & \quad 0.1334 \\
C_4 & \quad 4.5 & \quad 6.5 & \quad 1.3 & \quad 1.0 & \quad 0.7 & \quad 0.2 & \quad 0.1523 \\
C_5 & \quad 4.7 & \quad 5.3 & \quad 0.8 & \quad 1.4 & \quad 1.0 & \quad 4.1 & \quad 0.2379 \\
C_6 & \quad 0.8 & \quad 0.7 & \quad 0.2 & \quad 6.3 & \quad 0.2 & \quad 1.0 & \quad 0.3641
\end{align*}
\]

The most important criterion is capital (C6) with EM value of 0.3641. On rating the alternatives with respect to the criteria, the following EM values are derived.

With respect to criterion C1:

\[
\begin{align*}
A_1 & \quad A_2 & \quad A_3 & \quad EM \\
A_1 & \quad 1 & \quad 9 & \quad 1/9 & \quad 0.2319 \\
A_2 & \quad 1/7 & \quad 1 & \quad 1/3 & \quad 0.0782 \\
A_3 & \quad 1/9 & \quad 3 & \quad 1 & \quad 0.6899
\end{align*}
\]

With respect to criterion C2:

\[
\begin{align*}
A_1 & \quad A_2 & \quad A_3 & \quad EM \\
A_1 & \quad 1 & \quad 5 & \quad 1/3 & \quad 0.3230 \\
A_2 & \quad 1/5 & \quad 1 & \quad 1/3 & \quad 0.1105 \\
A_3 & \quad 1/3 & \quad 3 & \quad 1 & \quad 0.5666
\end{align*}
\]

With respect to criterion C3:

\[
\begin{align*}
A_1 & \quad A_2 & \quad A_3 & \quad EM \\
A_1 & \quad 1 & \quad 9 & \quad 7 & \quad 0.7854 \\
A_2 & \quad 1/9 & \quad 1 & \quad 1/3 & \quad 0.0658 \\
A_3 & \quad 1/7 & \quad 3 & \quad 1 & \quad 0.1488
\end{align*}
\]

With respect to criterion C4:

The structuring of a decision involves a goal, a set of criteria and a set of alternatives to choose from [32][36]. Using the AHP model, the problem is decomposed into a hierarchy of criteria and alternatives. The overall goal is to choose a product. There are six criteria: cycles of shortage of pina (C1), cycles of surplus pina (C2), availability of foreign market (C3), availability of domestic market (C4), labor cost (C5) as well as capital (C6). Cycles of shortage of pina refers to the period when a generation of plants of a certain age group is lost probably due to pests invasion whilst the surplus of agave is when plants that are lying idle with no buyers. The price of agave decreases and farmers neglect to monitor the plantations closely for pests and/or disease, which often lead to an outbreak. Under each criterion there are three alternatives: spirit (A1), inulin (A2) and syrup (A3). Computing the eigenvector determines the relative ranking of alternatives under each criterion. The pairwise matrix is raised to powers that are successively squared; the row sums are then calculated and normalized. During the iterations, the computer stops when the difference between these sums in two consecutive calculations is zero to four decimal places [37]. The judgment matrices and the corresponding priority vectors derived by using EM are as shown below.

Comparing the criteria for importance with respect to the goal gives the priorities in EM values shown:

\[
\begin{align*}
C_1 & \quad C_2 & \quad C_3 & \quad C_4 & \quad C_5 & \quad C_6 & \quad EM \\
C_1 & \quad 1.0 & \quad 0.9 & \quad 0.3 & \quad 0.2 & \quad 0.2 & \quad 1.4 & \quad 0.0606 \\
C_2 & \quad 1.1 & \quad 1.0 & \quad 0.2 & \quad 0.1 & \quad 0.2 & \quad 1.4 & \quad 0.0517 \\
C_3 & \quad 3.0 & \quad 4.5 & \quad 1.0 & \quad 0.8 & \quad 1.2 & \quad 0.2 & \quad 0.1334 \\
C_4 & \quad 4.5 & \quad 6.5 & \quad 1.3 & \quad 1.0 & \quad 0.7 & \quad 0.2 & \quad 0.1523 \\
C_5 & \quad 4.7 & \quad 5.3 & \quad 0.8 & \quad 1.4 & \quad 1.0 & \quad 4.1 & \quad 0.2379 \\
C_6 & \quad 0.8 & \quad 0.7 & \quad 0.2 & \quad 6.3 & \quad 0.2 & \quad 1.0 & \quad 0.3641
\end{align*}
\]
With respect to criterion C_5:

\[
\begin{align*}
A_1 & \quad A_2 & \quad A_3 & \quad EM \\
A_1 & \frac{1}{9} & \frac{1}{7} & (0.510) \\
A_2 & 9 & 1 & 5 & (0.7219) \\
A_3 & 7 & 1 & 5 & (0.2271)
\end{align*}
\]

With respect to criterion C_6:

\[
\begin{align*}
A_1 & \quad A_2 & \quad A_3 & \quad EM \\
A_1 & \frac{1}{9} & \frac{1}{7} & (0.7006) \\
A_2 & 1/3 & 1 & 7 & (0.2148) \\
A_3 & 1/7 & 1/3 & 1 & (0.0846)
\end{align*}
\]

The overall ranking of the product alternatives are evaluated by multiplying the eigenvector of alternatives over each criterion by the criteria vector as shown below.

\[
\begin{align*}
C_1 & \quad C_2 & \quad C_3 & \quad C_4 & \quad C_5 & \quad C_6 & \quad EM \\
A_1 & 1.0 & 0.9 & 0.3 & 0.2 & 0.2 & 1.4 & (0.0606) \\
A_2 & 1.1 & 1.0 & 0.2 & 0.1 & 0.2 & 1.4 & (0.0517) \\
A_3 & 3.0 & 4.5 & 1.0 & 0.8 & 1.2 & 0.2 & 0.2
\end{align*}
\]

The agave spirit (A_1), is the highest ranked product in this category with an EM value of 0.5978.

6. Results and discussion

6.1. The product decision model

The resultant product decision model in Fig 2, involves a goal, a set of criteria (C_1, C_2, C_3, C_4, C_5 and C_6) and a set of alternatives (A_1, A_2, A_3) is shown in Fig 2.

![Fig. 2. The product decision model](image)

The model shows all the respective weights for each attribute. Capital (C_6) is the highest ranking among the factors that affect agave processing. Loans can be issued to potential processors for investment.

6.2. The economic model

Appendix A.1 shows the economic model for the production of spirit, inulin and syrup respectively. The main life cycle stages considered are shown in Fig 1. Input and output parameters for each product; product specifications, production as well as product costing are summarized Ganduri [19]. The model provides an estimation of the cost and profit associated with the particular activity involved in agave pina processing.

6.3. Benefits to cost ratios

Critical values are extracted from the economic model and used to derive the benefit to cost ratios of the products. The benefit to cost ratio is calculated by dividing the normalized cost of production per litre of the alternative by its respective EM value. The results are shown in Fig 3.

![Fig. 3. Benefit/cost ratios](image)

Inulin has the highest benefit to cost ratio. This is due to low capital investment required as compared to other products. From the economic model, 1.73kg of inulin is obtained from 1kg of agave head. South Africa alone needs 200tones of inulin per annum according to SARS import/export data. This implies that, in order to meet the demand, approximately 115607kg of pina should be harvested and processed from approximately 2ha of land per annum.

6.4. Capital investment

Spirit being the main value added product is capital intensive. According to the AACE International [38], estimated total capital requirements is a sum of total plant cost, start-up and other pre-production costs, working capital and land. In this scenario, land is leased
to the processors by the government. From the cash flow generated by the economic model approximately R4 400 000, R3 100 000 and R1 000 000 can be invested for spirit, syrup and inulin production respectively.

6.5. Payback period

Critical data captured from the economic model shows that the time required to recover from the initial investment in year zero is seven years. This is because; in the seventh year sales of inulin, syrup and spirit commence hence more income is generated.

7. Conclusion

A hybrid approach has been used for the product selection problem using the AHP and the economic model. The AHP is used to narrow down all possible product alternatives in the agave processing industry by removing those whose weights are smaller than a pre-determined value obtained under certain circumstances. The economic model shows the product specifications, production inputs and outputs, product costing as well as the cash flow in agave pina processing. The final product alternative is selected by using benefit to cost ratio considering the cost of production per litre of inulin, syrup and spirit against the alternative EM values. The economic model shows that the production of agave spirit, inulin and syrup is feasible. The next stage will be to evaluate different scenarios to represent the combination of each of the processes. The economic model will be used for sensitivity analysis to compare how different variables affect the outcome and used for potential investor’s decision making.

References

[1] Zizumbo-Villarreal, D., Vargas-Ponce, O., Rosales-Adamer, J.J., Colunga-GarcíaMarín, P., 2013. Sustainability of the traditional management of agave genetic resources in the elaboration of mezcal and tequila spirits in western Mexico, Genetic Resources and Crop Evolution 60, p.33-47
[2] Zayas, A.A., 1989. Distribución geográfica y posible origen de las Agavaceae. Revista del Jardín Botánico Nacional, Universidad de la Habana Cuba 10, p.25-35.
[3] Gentry, S.H., 1982. "Agaves of continental North America", University of Arizona Press, Tucson, Arizona, USA, p.278-561.
[4] Smith, G.F., Mössmer, M., 1996. FSA contributions 4: Agavaceae, Bothalia 26, p.31–35
[5] Smith, G.F., 2003. Agavaceae, In G. Germishuisen and Meyer, N.L., Plants of southern Africa: an annotated checklist, Strelitzia,14, p.955
[6] Smith, G.F., Walters, M., FIGUEIREDO, E., KLOPPER, R.R., 2008. Naturalised species of Agave L. Agavaceae in the Eastern Cape Province of South Africa, Bradleya 26, p.33-40
[7] Crouch, N.R., Smith, G.F., 2011. Agavaceae furcerae foetida: an invading alien in South Africa, Bothalia 41, p.196-199
[8] Franck, A.R., 2012. Guide to agave, cinnamonum, corymbia, eucalyptus, pandanus and sanservieria in the flora of Florida. Phytoneuron 102, p.1-23
[9] Vargas-Ponce, O., Zizumbo-Villarreal, D., Martínez-Castillo, J., Coello-Coello, J., Colunga-GarcíaMarín, P., 2009. Diversity and structure of landraces of agave grown for spirits under traditional agriculture, American Journal of Botany 96, p.448-457
[10] Castetter, E.F., Bell W.H., Grove A.R., 1938. The early utilization and distribution of agave in the American southwest, University of New Mexico Bulletin, Biological Series 5, p.10-19
[11] Mohr, G.M., 1999. Blue Agave and its importance in the Tequila Industry, Southern Illinois University Carbondale, Ethnobotanical Leaflets 3, p.1-4, http://openspec.lib.siu.edu/cgi/viewcontent.cgi?article=1447&context=ebl
[12] Dalton, R., 2005. Alcohol & Science: Saving the Agave. Nature 448, p.1070-1071
[13] Rodríguez, R., Jiménez, J.F., Real, J.L.D., Salcedo, E., Zamora J.F., Íñiguez G., 2013. Utilización de subproductos de la industria tequilera. Parte 11. Compostaje de bagazo de agave crudo y biosólidos provenientes de una planta de tratamiento de vinazas tequileras. Revista internacional de contaminación ambiental, 29, p.303-313
[14] Consejo Regulador del Tequila [en línea], 2010. Data base updating and phytosanitary diagnosis agave tequilana weber blue var. http://www.crt.org.mx/images/documentos/data%20base%20updating%20and%20phytosanitary%20diagnosis.pdf viewed on 16/02/2014
[15] Narváez-Zapata, J.A., Sánchez-Teyer, L.F., 2009. Agaves as a Raw Material: Recent Technologies and Applications. Recent Patents on Biotechnology 3, p.185-191
[16] Boguslavsky, A., Barkuysem, F., Timme, E., Matsane, R.N., 2007. ‘Establishing of Agave Americana industry in South Africa’, 5th International Conference on New Crops, Southampton.
[17] Blouw, S., Botha, A., Trollip, N., 2008. Council of Scientific and Industrial Research (CSIR). Updated Agave project plan. Unpublished report
[18] Council of Scientific and Industrial Research (CSIR). 2011. Technology Development for Establishing Agave Plant Industry in Southern Africa. Unpublished report
[19] Ganduri, L., Van der Merwe A.F., Matope, S. Van Nierkerk, W.N.J., 2013. “Economic model for production of eco-friendly products from natural fibre material”, 25th Conference of the Southern African Institute for Industrial Engineering, Stellenbosch, South Africa
[20] González, M.A., 2002. Blue Agave Producers in the Tequila Agro-Industry in Jalisco, Mexico: The Beginning of Production Alliances in the Context of the End of Land Reform. Unpublished Ph.D. Thesis. University of Oxford, England.
[21] Bowen, S., Valenzuela-Zapata, A.G., 2009. Geographical Indications, Terroir, and Socioeconomic and Ecological Sustainability: The Case of Tequila, Journal of Rural Studies 25, p.108–119
[22] George, R., Schlaber, D., Vildman, K., 2006. Offbeat South Africa: The travel guide to the wacky and wonderful, Capetown South Africa. Struiik, p.12-13
[23] Bowen S., 2008. Case study: Tequila, North Carolina State University, United States
[24] In search of the Blue agave. Tequila and the heart of Mexico. South Africa: Tequila’s New Competitor, Closed.
[25] Valenzuela-Zapata, A. G., Nabhan, G.P., 2004. *Tequila*: A Natural and Cultural History, The University of Arizona Press Tucson 1, p.122
[26] Yan, X., Tan, D.K.Y., Inderwildi, O.R., Smith, J.A.C., King, D.A., 2011. Life cycle energy and greenhouse gas analysis
A.1. Economic model for agave spirit, inulin and syrup production

Table 1. Spirit production model

Description	Cost (R)	Unit
Spirit input cost	1885918.53	
Distillation & yeast cost	118238.18	kg
Bottling & labelling cost	116745.47	R
Cost of Bottles	1583841.60	R
Litres of spirit	65993.40	R
Income	8799120.00	R
Profit	6815961.09	
Cost of production	28.58	R/litre

Table 2. Syrup production model

Description	Cost (R)	Unit
Syrup Input cost	97240.38	
Band saw running cost	183.32	R/hour
Steamer running cost	1000.00	R/hour
Labour cost	2933.04	R
Milling cost	19798.02	R
Pina cost	73326.00	R
Syrup	109989.00	litre
Income syrup	18918108.00	R
Profit	18820867.63	
Cost of production	0.88	R/litre

Table 3. Inulin production model

Description	Cost (R)	Unit
Inulin Input cost	5667.95	
Transport cost	412.46	
Band saw running cost	183.32	R
Chipper running cost	183.32	R
Labour cost	3989.12	
Filtration cost	183.32	R
Pina cost	73.33	R
Drying cost	183.32	R
Inulin in kg	1062493.7	kg
Inulin value	5946964.94	R
Profit	5944296.99	
Cost of production	0.04	R/litre