Complete sequences of *Schizosaccharomyces pombe* subtelomeres reveal multiple patterns of genome variation

Yusuke Oizumi, Takuto Kaji, Sanki Tashiro, Yumiko Takeshita, Yuko Date & Junko Kanoh

Genome sequences have been determined for many model organisms; however, repetitive regions such as centromeres, telomeres, and subtelomeres have not yet been sequenced completely. Here, we report the complete sequences of subtelomeric homologous (SH) regions of the fission yeast *Schizosaccharomyces pombe*. We overcame technical difficulties to obtain subtelomeric repetitive sequences by constructing strains that possess single SH regions of a standard laboratory strain. In addition, some natural isolates of *S. pombe* were analyzed using previous sequencing data. Whole sequences of SH regions revealed that each SH region consists of two distinct parts with mosaics of multiple common segments or blocks showing high variation among subtelomeres and strains. Subtelomere regions show relatively high frequency of nucleotide variations among strains compared with the other chromosomal regions. Furthermore, we identified subtelomeric RecQ-type helicase genes, *tlh3* and *tlh4*, which add to the already known *tlh1* and *tlh2*, and found that the *tlh1–4* genes show high sequence variation with missense mutations, insertions, and deletions but no severe effects on their RNA expression. Our results indicate that SH sequences are highly polymorphic and hot spots for genome variation. These features of subtelomeres may have contributed to genome diversity and, conversely, various diseases.
Genomic DNA sequences provide fundamental information for biological study. The genomes of model organisms, such as *Saccharomyces cerevisiae* (*S. cerevisiae*), *Schizosaccharomyces pombe* (*S. pombe*), *Caenorhabditis elegans*, *Drosophila melanogaster*, *Arabidopsis thaliana*, and *Homo sapiens*, have been sequenced in the past two decades, and most of these sequences have been reported. However, sequencing of long repetitive regions has not been completed because of technical difficulties in sequencing and chromosome allocation of such regions, as well as frequent occurrence of mutations and structural changes caused by chromosome rearrangements, such as recombination, translocation, chromosome breakage, and fusion.

Incomplete genomic DNA information can lead to inaccurate data in some experiments. For instance, we are unable to determine the precise chromatin localization of proteins in repetitive regions without actual DNA sequences. Evaluation of protein localization by chromatin immunoprecipitation assays involves PCR with sets of representative primers that target repetitive sequences or Southern blot analysis with representative probes. Chromatin localization values obtained using representative primers or probes merely show averages of all regions that have the target sequences, and they do not reflect actual patterns of chromatin association. Next-generation sequencers (NGSs) do not solve this problem if complete genome sequences are not provided. In addition, there may be uncharacterized genes in unsequenced regions. Therefore, complete sequences of genomic DNA are crucial for accurate analyses and a deeper understanding of model organisms.

Telomeres, which exist at chromosome ends and possess species-specific tandem repeat sequences, play crucial roles in several cellular activities required for cell survival, including protection of chromosome ends, length regulation of telomere-specific repeat DNA, and regulation of chromosome movements during mitosis and meiosis. Subtelomeres, which are adjacent to telomeres, have sequences distinct from telomere repeats and generally contain multiple species-specific segments that share high similarity with other subtelomeres. In the budding yeast *S. cerevisiae*, the subtelomeres contain X and Y’ elements, the latter of which includes the open reading frame (ORF) of a helicase gene. In humans, the subtelomeres are mosaics of ~50 types of common segments containing various ORFs, such as those for the *DUX4* gene, which is related to facioscapulohumeral muscular dystrophy, and for the olfactory receptor family genes. Although substantial knowledge of telomeres has accumulated, research on subtelomeres has progressed slowly compared with research on other chromosomal regions because of technical difficulties caused by long and repetitive nature of this region and partially unknown sequences.

The fission yeast *S. pombe* is one of the most commonly used yeast model organisms for biological study. It preferentially proliferates as haploid in nutrient-rich media and possesses only three chromosomes (chromosome 1 [Ch1], 5.6 Mb; Ch2, 4.6 Mb; Ch3, 3.5 Mb), which enables the whole package of genetic analyses, such as screening for both dominant and recessive mutations, and generation of cells with circular chromosomes by deleting telomere DNA. *S. pombe* subtelomeres spanning ~100 kb are subdivided into two regions of ~50 kb each, the telomere-adjacent and telomere-distal regions (Fig. 1a). The telomere-adjacent regions (SH [subtelomeric homologous] regions) of subtelomeres contain SH sequences, which share high similarity (>90% identity) with at least one other subtelomere in *S. pombe* and form heterochromatin structures. This SH region is subdivided into two regions, the telomere-proximal SH-P and telomere-distal SH-D regions by their different features in 972 strains (Fig. 1a; see below). In contrast, the SH-adjacent regions (SU [subtelomeric unique] regions) share almost no sequence similarity with other subtelomeres, but exhibit common highly condensed chromatin structures called knobs (Fig. 1a). Because of high sequence similarity, it is very difficult to distinguish individual SH regions of subtelomeres at different chromosome ends and to assemble repetitive subtelomeric sequences accurately, even if we use latest NGs. Therefore, parts of SH regions remain un-sequenced for 19 years after vast majority of the *S. pombe* genome sequence was reported (*S. pombe* genome database, PomBase: http://www.PomBase.org/status/sequencing-status) (Fig. 1b). Previously, parts of the four SH regions have been cloned and sequenced (pNSU series, see below) ; however, they have not yet been allocated to specific subtelomeres (see PomBase).

Results

Construction of strains containing single SH regions of 972. To overcome the difficulty in allocating each SH sequence to a specific subtelomere, we constructed strains containing single SH regions of the standard *S. pombe* strain 972 (h−). Strain 972 used in this study (a derivative of the original 972 (ref.)), which has not been crossed with other strains, possesses four SH sequences (*SH1L, SH1R, SH2L, and SH2R*, as shown in Fig. 2a) adjacent to the telomeres of Ch1 and Ch2, but no SH sequence in Ch3 (note that some descendent strains of 972 possess a partial (~16 kb-long) SH sequence adjacent to the telomeres of the left and/or right arms of Ch3; see Supplementary Fig. 1). We previously produced the SD5 (SH deletion 5) strain, in which all five

Fig. 1 Structures and previously unsequenced regions of subtelomeres in *S. pombe* strain 972. a, Schematic illustration of the structures of subtelomeres (~100 kb) of Ch1 and Ch2 in strain 972. The SH region (~50 kb) shows high sequence identity (>90%) with other subtelomeres. Subtelomeric heterochromatin is formed around the SH regions. An SH sequence is composed of two characteristic regions, SH-P (~5 kb) and SH-D. In contrast, the SH-adjacent SU region (~50 kb) shows low sequence identities with other subtelomeres, but forms a highly condensed knob structure that is shared among them. SA indicates a subtelomere-adjacent euchromatin region. b, Schematic illustration of unsequenced regions of subtelomeres in Ch1 and Ch2 of strain 972 according to PomBase (indicated by orange boxes). Tel1, Tel1R, Tel2L, and Tel2R indicate subtelomeres at the left and right arms of Ch1 and those of Ch2, respectively. Subtel1L, Subtel1R, Subtel2L, and Subtel2R indicate subtelomeres at the left and right arms of Ch1 and those of Ch2, respectively. Lengths of unsequenced regions are estimated based on the assumption that these SH sequences show high similarity with that of subtel2R of PomBase. Note that Ch3 is omitted in this panel (see Fig. 2a for the ends of Ch3 in strain 972).
SH regions that are located at both ends of Ch1 and Ch2, and the left end of Ch3 were replaced with a marker gene (his⁷ or ura4⁺) in a nonstandard strain JP1225 background²¹. Strain 972 was crossed with SD5, and the first or second filial progeny were analyzed for the presence or absence of each SH region by pulse-field gel electrophoresis (PFGE) followed by Southern blotting (Fig. 2a–d; also see “Methods” section). We screened for strains that exhibit a single band of telomere-associated sequence (TAS)²⁹ (i.e., SH). We obtained strains that contain a single SH region of 972 and named them 972SD4[1L+], 972SD4[1R+], 972SD4[2L+], or 972SD4[2R+].
since they carry deletions of four SH regions in the original SD5 and one intact SH region from 972. Each intact SH region in 972SD4 was named as 972SD4-SH1L, 972SD4-SH1R, 972SD4-SH2L, or 972SD4-SH2R.

Cloning and sequencing of SH-P regions. From the data in PomBase, multiple common segments aligned in a mosaic pattern were expected for the SH-P region (see below). In order to accurately assemble such repetitive sequences, we amplified the SH-P region (~5 kb) in each 972SD4 by PCR and cloned into a vector. Partial deletion series of the SH-P fragments was constructed by digesting the plasmids with restriction enzymes followed by treatment with exo- and endo-nucleases. Re-circularized plasmids that carry the SH-P fragments with various lengths were sequenced using primers that anneal to the vector (Supplementary Fig. 2, see “Methods” section).

SH-P regions exhibit highly variable mosaic structures consisting of common segments. We classified the sequences of SH-P regions of the 972SD4 strains, a part of SH2R in PomBase (PomBase-SH2R), and insertions in the pNSU series in PomBase into common segments (A–X) as follows. First, the sequences of SH-P regions were classified into common segments that meet the criteria of ≥ 50 bp and >95% identity using NCBI nucleotide BLAST (blastn) program (v2.10.0+, https://blast.ncbi.nlm.nih.gov/Blast.cgi). Then, gaps between the sequences were classified into additional segments that meet the criteria ≥14 bp and >95% identity. Segments were classified into variants (e.g., A1 and A2) that meet the criteria of 100% identity (Fig. 3a and Supplementary Fig. 3). To reduce the number of common segments, exceptional rules were applied for subtypes C (C1–3) and C′, E, E′, and E′′, K and K′, and S and S′, which contain different copies of several common sequence motifs that show 100% identities except for motifs in subtype C, c1–8 (Fig. 3b and Supplementary Fig. 3). SH-P regions in two independent strains (#1 and #2) of 972SD4[1L+], 972SD4[1R+], and 972SD4[2L+] exhibit 100% sequence identity, suggesting that no mutation or rearrangement have been introduced to the SH-P regions of these 972SD4 strains during crossing, amplification by PCR, cloning using *Escherichia coli* (E. coli), and construction of serial deletion mutants. In contrast, two strains of 972SD4[2R+] contain different variants of segment D, D1 and D3, which show differences in two nucleotides, suggesting that the two point mutations at segment D and/or interchromosomal recombination have occurred in 972 or 972SD4[2R+] (Fig. 3a and Supplementary Fig. 3d).

We found that none of the SH-P regions of 972SD4 show the same pattern in the alignment of segments to each other; however, two pairs of regions, 972SD4-SH1L and pNSU21/65, and 972SD4-SH2L and pNSU64, each exhibit the same segment patterns over the whole SH-P regions, suggesting the possibility that these pairs were derived from the same subtelomeres. However, the compositions of the C and D variants are different (C1 vs. C2 or C3, and D1 vs. D3; Fig. 3a, gray dotted lines). We found that segments C in 972SD4 strains are particularly different from those of pNSUs (Fig. 3a, gray dotted lines); i.e., variant C1 is the majority in the SH-P sequences of 972SD4, whereas variant C2 is the majority in those of pNSUs. These data suggest that segment C is prone to mutation and recombination possibly due to its highly repetitive structure (Fig. 3b).

In contrast to 972SD4-SH1L and 972SD4-SH2L, 972SD4-SH1R and 972SD4-SH2R show combinations of pNSU patterns (Fig. 3a). Moreover, subtypes E′ or E′′ and K′, and variant H2 are unique to 972SD4-SH1R among the SH-P sequences of 972SD4 and PomBase-972, suggesting that multiple times of mutation and recombination have occurred at 972SD4-SH1R. Surprisingly, 972SD4-SH2R exhibits a pattern different from a part of the PomBase-SH2R sequence; indeed, the pattern of PomBase-SH2R is found in a part of 972SD4-SH1L, implying that SH1L and SH2R have exchanged their chromosomal positions over repeated rounds of cell divisions.

Although we identified several variants for each segment, these variants are not randomly combined, and partial sequences show the same alignments; for instance, there are two common alignments: P1-Q1-----V-Q3 (in 972SD4-SH1L, PomBase-SH2R, pNSU21/65, and pNSU70/77) and E-F2-----P3-Q3 (in 972SD4-SH2L, 972SD4-SH2R #1, 972SD4-SH2R #2, and pNSU64). Overall changes in the segment and variant compositions imply that SH-P regions are prone to nucleotide change and chromosome rearrangement.

SH-P regions exhibit high variation in segmental arrangement among 972 strains and natural isolates of *S. pombe*. To elucidate how SH-P regions have changed in the course of culturing or evolution, we next extracted uncharacterized sequences of the SH-P regions in various natural isolates of *S. pombe* in J. Bähler’s laboratory in UK (JB strains), using previous raw data by Tusso et al. (long-read sequencing using Nanopore MinION and PacBio RS II) (Fig. 4a, see “Methods” section for details). Our analyses on chromosome configuration suggested that chromosome end fragment of Ch1R has been swapped with that of Ch2R in JB934 in comparison with 972, as described previously (Supplementary Fig. 4) (30). Although long-read sequencing data lack accuracy, we were able to analyze patterns of segments (A–X) and subtypes, but not at the variant level (see figure legends of Fig. 4 for details).

JB22 (972), another clone of 972, has SH regions only at the ends of Ch1 and Ch2, not in Ch3, as in the strain 972 in our laboratory. However, SH-P regions in JB22 (972) have different segment patterns and lengths from those in 972SD4 except for SH2R, which does not contain a segment alignment homologous with PomBase-SH2R. These data indicate that chromosome rearrangement occurs frequently in SH-P regions during culturing in laboratories (Figs. 3a and 4b).

Segment patterns and lengths of SH-P regions in each 972 strain are divergent, whereas JB760, JB1174 (except for SH1R), JB858, and JB1197 exhibit almost uniform segment patterns and lengths among the subtelomeres (Fig. 4c, d, f, h). It is unclear
which type is the original SH-P in *S. pombe*; however, the divergent property is likely ancestral because repeated inter-chromosomal rearrangements will result in uniform patterns of SH-P regions.

We detected some sequences that have not been found in 972 strains but shared by several subtelomeres in JB strains (indicated by black boxes α–δ in Fig. 4 and Supplementary Fig. 5). Particularly, partial sequences of *SH1L* and *SH2R* in JB873 (segments A–I–ΔP–ΔQ containing black boxes) are highly homologous with the SH-P sequences in JB1197 (Fig. 4g, h). Furthermore, JB934 does not possess any SH sequence in *Ch1L*, and JB873 contains partial sequence of long terminal
repeat (LTR) of retrotransposon in the SH-P region of SH2L (Fig. 4e, g).

Interestingly, there are two major types of structures at chromosome ends, telomere-segment A-segment B (Tel-A-B) and telomere-partial segment F-segment G (Tel-ΔF-G). Tel-A-B is found in 972 and JB760 (Figs. 3a, 3b, c), whereas Tel-ΔF-G is found in JB1174, JB934, JB858, and JB873 (Fig. 4d–g). We found that the sequences of segments A and B is highly similar to those of partial segment F and segment G, suggesting the possibility that homologous recombination (HR) between them resulted in a Tel-ΔF-G structure (Supplementary Fig. 6a). Other possibilities are that nucleotide changes have occurred in either A-B or ΔF-G (Supplementary Fig. 6b), or that the G-rich sequences located at the telomere-proximal ends of segment A and ΔF formed G-quadruplex-like structures and stalled replication fork progression, which resulted in chromosome breakage accompanied by de novo telomere synthesis (Supplementary Figs. 3 and 6c). Overall diversity of the SH-P regions in JB strains further support our hypothesis that SH-P regions are hot spots for genome evolution.

SH-D regions in 972 strains are variable and accumulate insertions and deletions. We also determined sequences of SH-D regions in 972SD4 strains by integrating the partial SH-D sequences in PomBase and our newly determined SH-D sequences. The integrated SH-D sequences were classified into common block sequences I–XI (>90% identities between the sequences of the same blocks), and supplemental homologous box sequences Ψ and Ω (Fig. 5a and Supplementary Table 1). In contrast to the SH-P regions, the SH-D regions in strain 972 do not show duplications or differences in orders of blocks I–XI. However, we found differences in length; multiple insertions or deletions were identified in these regions (Fig. 5b).

There are three big differences between subtelomeres (Fig. 5b, thick lines; note that part of them has been described in a previous study). First, there are 3.7 kb deletions in SH1R, SH2L, and SH2R at position 4,520,423 of PomBase-SH2R. Second, there is a 7.1 kb deletion in SH1R at nucleotides 4,514,836–4,507,710 of PomBase-SH2R. This deletion was detected in the three independent strains of 972SD4[1L+] by PFGE-Southern analysis (Fig. 2d). Third, there is a 1.9 kb deletion in SH1L at nucleotides 4,500,309–4,498,438 of PomBase-SH2R.

Intriguingly, boxes Ψ exist at the ends of the 3.7 kb change (Fig. 5a, b, purple and pink boxes, Supplementary Fig. 7a, b, and Supplementary Table 1). Similarly, boxes Ω exist at the ends of 7.1 kb changes (Fig. 5a, b, brown, red, and orange boxes, Supplementary Fig. 7c, d, and Supplementary Table 1). These data imply that the deletions and/or insertions have occurred using these homologous sequences. It is noteworthy that among Ω sequences that are indicated by different colored boxes, there are multiple insertions and deletions in the region where various repeat sequences are arranged intricately, and the sequence of ΩSH1-L (indicated by a brown box) shows lowest sequence identity (83–85%) with other red or orange boxes (Supplementary Fig. 7c, d).

There are also smaller insertions or deletions in SH-D regions (Fig. 5b), thin dotted lines for changes of 10–40 bp compared with PomBase-SH2R. Many of these are observed in no less than two SH-D regions, suggesting that these changes have been copied to other SH regions by chromosome rearrangement. It is also noteworthy that the newly sequenced SH2R in 972SD4[2R+] contains an insertion at position 4,529,376 of PomBase-SH2R, indicating that this insertion has been introduced to SH2R of strain 972 in laboratories after separated from PomBase-972.

To examine stability of the SH-D regions, their DNA structures in two independent strains of 972SD4[1L+], 972SD4[1R+], 972SD4[2L+], and 972SD4[2R+] were analyzed by PCR using multiple primer sets (PCR products i–ix are indicated by gray arrows in Fig. 5b, top). Note that the fragments i–ix in Fig. 5b roughly correspond to blocks I–IX in Fig. 5a). We found that lengths of the all PCR products matched those predicted from PomBase sequence (Fig. 5c), indicating that the overall DNA structures of SH-D regions are stably maintained between PomBase-972 and 972SD4 strains in contrast to those of SH-P regions. We calculated the full length of each SH region (SH-P and SH-D): SH1L, 61.9 kb; SH1R, 39.1 kb; SH2L, 59.1 kb; and SH2R, 49.5 kb, with SH1R having the shortest SH sequence, although these lengths are likely to change through chromosome rearrangements at SH regions.

To examine evolutionary change of SH-D regions, we next analyzed SH-D regions in JB strains using previous NGS data (long-read sequencing) by Tusso et al.30. The SH-D regions in JB22 (972) show clear differences compared with those in PomBase-972 and 972SD4, although the overall pattern of common blocks is very similar (Fig. 5a, b). Block IV and A purple box (Ψ) sequences are present in both SH1L and SH2L in JB22 (972), but not in SH2L in 972SD4. In addition, a brown box sequence (Ω) resides between blocks V and VI in SH1L and SH2L in JB22 (972), whereas the sequence is replaced by a red box sequence (Ω) in SH2L in 972SD4. These data suggest the possibility that HR has occurred between the SH-D regions in SH1L and SH2L in JB22 (972). Thus, the SH-D regions in 972 strains are not highly stable; rather, changeable via recombination.

SH-D regions exhibit striking variations among JB strains. The SH-D regions of the other JB strains show striking variation in numbers and orders of block sequences. Furthermore, various box sequences that are not categorized as SH-D in 972 strains are shared by multiple SH-D regions in JB strains (Fig. 6c–h). It is noteworthy that 972 strains have no SH sequence in Ch3, whereas JB760, JB1174, JB858, and JB873 possess SH-P and SH-D sequences in Ch3 (Figs. 4 and 6). Intriguingly, some descendent strains of 972 also possess SH sequences at either or both ends of Ch3 (Supplementary Fig. 1, KYP33 and JP1225). These data suggest two possibilities: one is that another standard strain 975 (h+) contains SH sequence(s) in Ch3, and it has been transferred.
to descendent strains via mating and meiosis. Another is that \(SH \) regions in Ch1 or Ch2 have been translocated to Ch3 via inter-chromosomal recombination. In fact, the \(SH-P \) sequence in JP1225 shows high similarity with those of 972SD4-SH2R and pNSU71 (Fig. 3a and Supplementary Fig. 1c). However, the former is more possible because of the existence of a black box \(\theta \) sequence associated with \(SH-D \) in Ch3, which has not been found in 972 strains (see below).

Interestingly, multiple copies of brown box sequences (\(\Omega \)) and \(SH-P \) sequences [1]–[8] are found in the \(SH-D \) sequence in JB760 (Fig. 6c). Moreover, adjacent to block II is a black box \(\theta \). The alignment of I-II-\(\theta \) is also found in Ch3 of JB1174, JB858, and
JB873, although partial LTR sequences are inserted in block I in JB1174 and JB873 (Fig. 6d, f, g). Intriguingly, the sequence of box θ is almost identical with that of SAS (spanning ~1.1 kb), which was identified as a subtelomere-associated sequence adjacent to block II in Ch3 in the descendent strains of 972 previously21,27 (Supplementary Fig. 1b–d). Thus, structures of SH-D regions in Ch3 are highly conserved in S. pombe in contrast to other parts of SH-D possibly because the ends of Ch3 are located in the nucleolus apart from those of Ch1 and Ch2 located in the nucleus in vegetatively growing cells17, which may restrain interchromosomal recombination between Ch3 and Ch1 or Ch2. The SH-D regions of JB strains except for JB22 (972) and JB760 showed high variation in their compositions and lengths; however, they share some common features. (1) Blocks I and II are highly conserved. (2) Multiple copies of parts of the SU regions in 972 (indicated by pale blue boxes, e–η, in Fig. 6a, see Supplementary Table 1 for their positions) are found in the SH regions in these strains (indicated by blue boxes in Fig. 6). (3) Multiple black boxes, θ–τ, which are not found in 972 are also shared by the subtelomeres of JB strains except for JB22 (972) (Fig. 6). (4) Blocks I and XI (green) and boxes ε (blue) and ζ (blue) are found inverted compared with those in 972 (Fig. 6d, e, g). (5) Surprisingly, the SU region of JB858 and the SH-D regions of JB858 and JB873 contain sequences of parts of mitochondrial genome (indicated by Mt in Fig. 6f, g). The overall changes in SH-D regions in JB strains indicate that complexed chromosome rearrangements have occurred in the course of evolution of S. pombe even after strain 972 has been isolated.

Subtelomeres are hot spots for mutations. Given that the SH-P regions of 972SD4 contain multiple nucleotide changes compared with those in PomBase-972 (Fig. 3 and Supplementary Fig. 3), we examined whether mutation rates are specifically high in subtelomeres. First, sequences of multiple loci in the SH-D of SH2R in two independent 972SD4/2R+ strains (#1 and #2) were determined and compared with those of PomBase-972 (Fig. 7 and Supplementary Table 2). We found that regions around the tll2 gene locus exhibit high rates of mutations. Most of them are point mutations, but some are changes of numbers of repeat sequences, such as [T]n. It should be noted that the two 972SD4/2R+ strains possess different sequences in the tll2 locus (99.44% vs. 99.41% identities with PomBase). In contrast, the telomere-distal half of SH-D region and all chromosomal regions outside of SH, i.e., the SU region, the subtelomere boundary region, the SA region (see Fig. 1a), and various gene loci in Ch1 or Ch2 in the two 972SD4/2R+ strains show 100% sequence identities with those in PomBase-972, indicating strict preservation of their DNA sequences through repeated rounds of cell division. These data suggest that the telomere-proximal half of SH-D regions (~20 kb), as well as SH-P regions are particularly prone to the accumulation of mutations.

We next examined mutation rates in JB strains using previous NGS data (long-read sequencing by Tusso et al.30 and short-read sequencing with high accuracy using Illumina HiSeq 2000 by Jeffares et al.33, see “Methods” section for details). Only the chromosomal loci outside of SH were analyzed because SH regions are not distinguishable using short reads. We found that JB22 (972) showed 100% sequence identities with PomBase-972 at all loci examined (Fig. 7 and Supplementary Table 2), indicating that genome integrity is strictly maintained through repeated rounds of cell division at these loci.

In striking contrast, JB strains other than JB22 (972) exhibit high mutation rates at the SU, subtelomere boundary, and SA regions in Ch2R (Fig. 7 and Supplementary Table 2), indicating that subtelomeres are prone to nucleotide changes during the long-time course of S. pombe evolution. Interestingly, some JB strains show relatively high mutation rates at the chromosome loci of nonessential genes, especially the rap1 gene (Fig. 7 and Supplementary Table 2). Rap1 is a subunit of the shelterin complex, which protects chromosome ends and regulates various telomere functions.34 Rap1 is recruited to telomeres partly through interaction with a telomere DNA-binding protein Taz1 and associates with multiple proteins to regulate various telomere functions.34–36 Amino acid changes of Rap1 are rarely found in the regions for interactions with its partners (Supplementary Fig. 8). We found one amino acid change, glutamic acid (E) 671 to arginine, in the RCT (Rap1 C-terminal) domain of Rap1, which mediates interaction of Rap1 with Taz1; however, it was suggested that E671 is not involved in their direct interaction.37 Moreover, one amino acid change, E424 to alanine, is found in the DD (dimerization domain) of Taz1, which is important for Taz1 binding to telomere DNA; however, E424 is located outside of the direct interaction domain.38 Furthermore, we found that the sequences of telomere repeats in JB strains are highly similar to those in 972 strains. Thus, it seems that the principal functions of Rap1 and Taz1 are conserved during the course of S. pombe evolution. It is likely that the higher mutation rates in the rap1 and taz1 genes are because their gene products are more tolerant to amino acid changes than other gene products.

Identification of additional members of the subtelomeric RecQ helicase gene family. In genome sequences in PomBase-972, there are two RecQ helicase genes, tll1 (partial) and tll2, which have been allocated to SH1L and SH2R, respectively. Parts of the
DNA sequences of \textit{tlh1/2} are homologous with the \textit{dh} repeat sequence of pericentromeres and serve as templates for small interfering RNA (siRNA) produced by RNA interference (RNAi) machinery; further, the siRNA participates in the initiation of subtelomeric heterochromatin formation22,23. Our sequencing data of \textit{SH} regions newly identified two members of the \textit{tlh} gene family, \textit{tlh3} and \textit{tlh4}, in \textit{SH1R} and \textit{SH2L}, respectively. Thus, genome of strain 972 contains four \textit{tlh} genes in total (Fig. 8a and Supplementary Fig. 9).

The descendent strains of 972 possess additional \textit{tlh} ORF(s) in \textit{Ch3} (Supplementary Fig. 1), that may have transferred from their other chromosome ends or from mating partners. We also found
multiple putative *tlh* genes in the *SH-D* regions of JB strains (Fig. 6, blue arrows). All JB strains possess at least two *tlh* genes because *tlh* genes are located in block II, which is highly conserved among the strains.

The *tlh* genes contain multiple nucleotide changes. Examination of the *tlh* sequences revealed they were only present in one strain (D12-5). In the sequence of PomBase- *SH2R*, there is an in-frame methionine (Met) codon (uMet [upstream Met]) 543 bases (corresponding to 181 amino acids) of the *tlh2* gene is not properly de

Discussion

This study describes in-depth analyses of subtelomeres in *S. pombe*. We obtained complete sequences of subtelomeres in the standard *S. pombe* strain 972 by producing strains with single *SH* regions. We also extracted *SH* sequences of some natural isolates of *S. pombe* strains (JB strains) from previous NGS data. The whole sequences revealed that *SH* regions are composed of two parts: the telomere-adjacent *SH-P* region and telomere-distal *SH-D* region. The *SH-P* region is a mosaic of multiple common segments that vary among subtelomeres and strains, suggesting that this region is highly prone to chromosomal rearrangement during cell divisions. In contrast, the *SH-D* region shows high sequence similarity among subtelomeres and 972 strains, although there are some insertions, deletions, and chromosomal rearrangement, suggesting that the overall DNA structure of this region is stably maintained during short-term culturing. However, JB strains other than JB22 (972) exhibited striking variation in the structures of *SH-D* regions, indicating that *SH-D* regions are also susceptible to chromosomal rearrangement during long-term evolution of *S. pombe*. Interestingly, not only *SH* but also *SU* regions exhibit high rates of nucleotide changes among strains, whereas chromosomal regions outside of this region are subject to highly strict genome preservation. Thus, subtelomeres are hot spots for genome evolution and exhibit multiple patterns of genome variation (Fig. 9).
Human subtelomeres (SH regions in humans) are also mosaics of multiple common segments that correspond to the SH-P region in S. pombe. However, they contain no sequence equivalent to that of the SH-D region, i.e., a relatively long common sequence shared by all subtelomeres. Common segments of the same categories are mostly nonidentical (~90–100% identities), and the location and copy number of each segment vary among individuals. In S. cerevisiae, the subtelomeres have common X and Y’ elements, and ORFs of proteins such as PAU and FLO families; however, copy numbers of the Y’ element and the ORFs are highly variable among strains. Based on these findings and studies in other species, along with our results in...
Fig. 6 Sequence variations of SH-D regions in JB strains. a Schematic illustration of homologous block and box sequences in the SH-D regions in 972SD4 and PomBase-972. Note that sequences of pale blue boxes, ε-η, in the SU regions are shared by multiple subtelomeres in some of JB strains; and thus, they are defined as SH (see Fig. 6d-h, blue boxes). ORFs of the tlh genes located in block II are indicated by blue arrows. b Schematics of the SH-D sequences in strain JB22 (972) in common blocks and boxes. Sequences of indicated blocks and boxes exhibit at least 90% identities with those of PomBase-972. Total length of each SH-D region is indicated. c Schematics of the SH-D sequences in strain JB760. Black boxes indicate common sequences that are shared by some other JB strains but not found in 972D strains. Note that the sequence of c is homologous with that of SAS (see main text and Supplementary Fig. 1 for the details). Contigs 1-3 are the same as those in Fig. 4c, respectively. Boxes in rainbow color [1]-[8], SH-D-like sequences; “?” sequence with <90% identity but substantial similarity with the corresponding segment, block or box (E-value < 10^-3 in NCBI nucleotide BLAST [blastn] search); blue triangle, shorter length of the corresponding segment, block or box; gray dotted line, no sequence information available; blocks or boxes with gradation, unreliable sequence information with less than five reads. d Schematics of the SH-D sequences in strain JB1174. Inverted, opposite sequence direction from that in the corresponding block or box in 972D; blue box, sequence shared by multiple subtelomeres as SH in some JB strains; dark gray box, sequence that has not been found in PomBase and not shared by the other JB strains; orange triangle, longer length of the corresponding block or box. e Schematics of the SH-D sequences in strain JB934. f Schematics of the SH-D sequences in strain JB858. Contig 1 is the same as that in Fig. 4f. Shaded box with red lines, an insertion of a part of mitochondrial genome. g Schematics of the SH-D sequences in strain JB873. h Schematics of the SH-D sequences in strain JB1197.

Fig. 7 Subtelomeres are hot spots for sequence variation. Sequence identities between PomBase-972 and other S. pombe strains used in this study. Sequences of the SH-D and SU regions, the subtelomere boundary, and the SU region in Ch2R, and those of other gene loci of three categories were analyzed (see Supplementary Table 2 for the details). Note that two independent 972SD4[2R+] strains (clones #1 and #2) contain different sequences around the tlh2 gene locus.

S. pombe, we propose that high variation in SH sequences is a common feature in eukaryotes.

What underlies this high variation of SH sequences? First, DNA double-strand breaks (DSBs) are repaired by either HR or non-homologous end joining. Vegetative cell cycle of the wild-type *S. pombe* strain lacks G1 phase because cells already possess sufficient mass to proceed to S phase when the previous mitosis is completed. Therefore, ~80% period of the *S. pombe* cell cycle is G2 phase, when HR predominates for DSB repair.32. Because of the high sequence identities among SH regions, DNA repair by HR may occur frequently between SH regions of different chromosomes (interchromosomal repairs), as well as between sister chromosomes (intrachromosomal repairs), which causes gross rearrangement of chromosomes. Second, repetitive sequences within SH regions may be recognized by HR machineries, causing amplification or deletion of the repeat units. Third, repetitive sequences, including *S. pombe* telomeres and subtelomeres, are regions intrinsically difficult to replicate during S phase.43-45. Replication fork collapse and erosion of telomeres and subtelomeres can result in formation of single-ended DNA breaks that are repaired by break-induced replication (BIR).46. Recent studies suggested that BIR is a highly inaccurate DNA repair mechanism, and causes high levels of mutations and chromosome rearrangements.47-52. Therefore, BIR may cause high rates of mutations and chromosome rearrangements in SH regions. Fourth, the SH-D region serve as a fusion point of chromosome circularization when telomeres are lost.53. *S. pombe* has only three chromosomes, which enables cells to survive telomere crisis by self-circularization of each chromosome.39. Chromosome end fusions of Ch1 and Ch2 take place between H1 and 5 and their inverted sequences, H1-5, which are located in blocks I, II, and V (Fig. 5b, pink arrows). It is possible that chromosome circularization and re-linearization promote chromosome rearrangement of SH-D regions.

Importantly, in the subtelomeres (i.e., the SH and SU regions) of *S. pombe*, there is no gene essential for cell growth under normal culture conditions, and deletion of all SH regions does not affect cell growth per se. Genomes of other species also contain multiple copies of the same genes in SH regions. This may explain why cells can continue to grow, even with mutations in SH (and SU) regions, resulting in the accumulation of mutations. The SU regions are known to form knob bodies that are highly condensed chromatin structures, which may prevent precise DNA replication or normal DNA repair, and causes the accumulation of nucleotide alterations.21-24 (Fig. 9).

Surprisingly, the *tlh* genes in 972D contain no nonsense mutation in their ORFs, although they contained various mutations compared with the *tlh2* gene in PomBase. We found that some of the mutations cause alterations in the amino acid sequences of the conserved RecQ motif (Supplementary Fig. 11). Absence of premature termination codon is important for
The suppression of mRNA degradation mediated by the NMD (nonsense-mediated mRNA decay) mechanism54. Thus, it is likely that the principal function of the \textit{tlh} genes is to produce RNAs containing \textit{dh} sequences, and that presence of the \textit{tlh} ORFs is advantageous for their normal RNA expression, which induces heterochromatin formation. Although a previous study suggested that the \textit{tlh} genes are involved in survival after telomere shortening55, functions of the Tlh protein is not clarified yet.

Over 70 years since Dr. Urs Leupold isolated \textit{S. pombe} standard strains, 968 \textit{(h90)}, 972 \textit{(h−)}, and 975 \textit{(h+)}, from the Delft culture26, it has been believed that these three strains possess almost the same genetic information except for the mating-type genes.
This and previous studies have shown that 972 has no SH sequence in Ch3, whereas some of its descendant strains possess SH region(s) with SAS in Ch3. It is noteworthy that the SAS sequence is absent from the genome of 972. The three standard strains have been traveling over the world to produce numerous number of descendent strains through mating and meiosis. Therefore, the assumption is that 968 and/or 975 had already SH region(s) in Ch3 when they were first isolated.

Taken together, we propose that subtelomeres are highly polymorphic chromosomal regions and contribute to genome evolution. In this study, we have shown that the DNA sequence of the \(tlh2 \) gene has changed from that of the original strain 972 after repeated rounds of cell division (Fig. 8b). Human SH regions also contain various genes, such as \(DUX4 \) (associated with facioscapulohumeral muscular dystrophy) and olfactory receptor genes. Thus, the high rates of polymorphisms in SH regions may contribute to human diversity and sometimes to disease susceptibilities. It is intriguing to investigate correlation between various human diseases and SH sequences. Overall, genome rearrangement, deletion, insertion, and mutation can cause changes in ORFs, which may result in diversification of species.

Methods

Strains and general techniques for \(S. \) pombe. \(S. \) pombe strains used in this study are listed in Supplementary Table 3. Growth media and basic genetic and biochemical techniques used in this study were described previously. To construct 972SD4 strains, 972SD4 and JB22 vs. PomBase), whereas the SH-D region shows lower rates of these changes compared with those in the SH-P region. The SU, boundary, and SA regions and the \(rap1 \) and \(taz1 \) loci also exhibit medium levels of these changes in the JB strains that are phylogenetically distant from 972. Thus, chromosomal regions around the subtelomeres (and the \(rap1 \) and \(taz1 \) loci) are prone to genome diversity. Dotted line indicates a region that was unable to be analyzed with the NGS data.

PFGE. PFGE of NotI-digested chromosomal DNA was performed using a CHEF-DR III Pulsed-Field Electrophoresis System (BioRad) under the following conditions: 1% SeaKem Gold Agarose (Lonza) in 0.5× TBE; temperature, 10°C; initial switch time, 40 s; final switch time, 80 s; run time, 18 h; voltage gradient, 6.8 V/cm; and angle, 120°.

Southern blotting. NotI-digested chromosomal DNA was separated by PFGE and subjected to Southern blotting. Telomeric DNA and TAS fragments (TAS1, TAS2, and rap1 loci) were excised from pNSU705, and used as the telomere and TAS probes, respectively. The \(S. \) pombe \(taz1 \) ORF was amplified by PCR and used as the probe that specifically recognizes the SH-D regions of \(subtel1L \), \(subtel2L \), but not \(subtel1R \) in 972. These DNA fragments were labeled with digoxigenin (DIG), using a DIG High Prime DNA Labeling and Detection Starter Kit.
Cloning and sequencing of SH regions. DNA fragments containing SH regions (−5 kb) were amplified by PCR from genomic DNA of each 97SD24 strain using Phusion High-Fidelity DNA polymerase (Thermo Fisher) and the following primers.

jk1861 5’- ACTATGGTGACCTCCCTGAACCAGCTAACCCTTGTAACC-3’
jk1862 5’- GAATCTCGACCGCCGGTTGGAGCTCAGTGACAGGTTA-3’

Each DNA fragment was inserted at the Smal site of pBluescript SK(−) (Stratagene) using In-Fusion HD Cloning Kit (Clontech). The resulting plasmids were digested with KpnI and XhoI at the multiple cloning site of the vector and treated with exonuclease III (Takara) and mung bean nuclease (Takara). The re-circularized plasmids were cloned using E. coli XL1-Blue (recA1 endA1 gyrA96 thi-1 hsdR17 supE44 recA1 lac [5’ proAB lacPZAM15 Tn10 (TetR)]), and sequenced using the following primers that anneal to the vector.

st13 (M13 primer M1) 5’- GTAAACCGAGCCGGCAT-3’
st14 (M13 primer RV) 5’- CAGGAAACGACGGCTAG-3’

The DNA sequence of SH-P was assembled using the overlapping sequences of serial deletion plasmids (Supplementary Fig. 2). Two independent strains of each 97SD24 were analyzed.

DNA fragments (1.3–2.9 kb) of the SH-D region were amplified by PCR and sequenced, except for the regions with some repeats that were sequenced using the deletion method described above. Two independent strains of each 97SD24 were analyzed.

DNA sequences were determined using BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems), and DNA Sequencing Analysis Software v5.4 (Applied Biosystems). In addition, some DNA sequences were determined by Eurofins Genomics Inc.

Analyses of previous NGS data of JB strains. To analyze DNA sequences at subtelomeres and other chromosomal loci in JB strains, we utilized previous raw data from NGS by Tuso et al. (long-read sequencing by Nanopore MinION and PacBio) and NCBI Sequence Read Archive, PRJNA272756 (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA272756) and those by Jeffares et al. (short-read sequencing by Illumina HiSeq 2000; European Nucleotide Archive, PRJEB2733) https://www.ebi.ac.uk/ena/browser/view/PRJEB2733 [23].

De novo assembly of the long reads (by MinION) were performed as follows. Adapter and its adjacent (10–20 bp) sequences in raw read data were trimmed using Porechop (v0.2.4, https://github.com/rwrick/Porechop) and fastq (v0.20.40). The trimmed long reads were assembled by Canu 2.0 (ref. [41]) using the NIG supercomputer. Chromosome configurations compared with those in strain 972 were analyzed using MuMmer4 (ref. [42]).

To determine sequences at SH regions, we collected long reads that contain telomere repeats and telomere-adjacent segments at their ends using NCBI nucleotide BLAST (blat). The collected reads were classified into several categories using AlView (v1.26) [25] and MAFFT (v7.453) [26], and the sequences of each category were combined into one consensus sequence using Minimap2 (v2.17-r941) [27] and Racon (v1.4.13) [28]. Locations of the SH sequences were determined by search for homologous sequences in the chromosome assembly described above. Long-read data (by PacBio RS II) were also used to improve the quality of sequences.

To determine sequences other than SH, we searched target sequences in the de novo assembly described above and polished them by Pilon (v1.23) [29] using short-read data.

RNA analyses. Total RNA was purified from exponentially growing cells as described previously [30]. For the RT-PCR, complementary DNA was synthesized with random primers using a High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems) and analyzed by conventional PCR (Supplementary Fig. 10) or quantitative PCR using a StepOne Real-Time PCR System (Fig. 8c). Primer sequences are listed in Supplementary Table 4.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability. DNA sequences of newly sequenced SH regions are available in the DNA Data Bank of Japan (DDBJ) under accession codes LC216491 (−1.7 kb of the SH-D region [SH1] in 97SD24[1L+] #1), LC216560 (−1.7 kb of the SH-D region [SH1] in 97SD24[1L+] #2), LC216561 (the SH1 region in 97SD24[1L+] #1), LC216562 (the SH1 region in 97SD24[1L+] #2), LC216565 (the SH1 region in 97SD24[1L+] #2), LC216565 (the SH2L region in 97SD24[2L+] #1), LC216565 (the SH2L region in 97SD24[2L+] #2), and LC216568 (the SH2 region in 97SD24[2R+] #1). Figures 3, 5a, 6a, 7, and 8a, b, Supplementary Figs. 3, 6, 7, 9, and 11, and Supplementary Table 2 are associated with these data sequence. Source data are provided with this paper.

Received: 25 February 2020; Accepted: 3 December 2020; Published online: 27 January 2021

References
1. Goffeau, A. et al. The yeast genome directory. Nature 387, 5 (1997).
2. Wood, V. et al. The genome sequence of Schizosaccharomyces pombe. Nature 415, 871–880 (2002).
3. C. elegans Sequencing Consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282, 1202–1208 (1998).
4. Adams, M. D. et al. The genome sequence of Drosophila melanogaster. Science 287, 2185–2195 (2000).
5. The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–810 (2000).
6. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).
7. Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1315 (2001).
8. International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature 431, 913–945 (2004).
9. Linardopoulou, E. V. et al. Human subtelomeres are hotspots of interchromosomal recombination and segmental duplication. Nature 437, 94–100 (2005).
10. Ahr, M. F., Durkin, S. G., Ragland, R. L. & Glover, T. W. Common fragile sites as targets for chromosome rearrangements. DNA Repair 5, 1126–1135 (2006).
11. Kurosaawa, K. & Ohta, K. Genetic diversification by somatic gene conversion. Genes 2, 48–58 (2011).
12. Almeida, H. & Godinho Ferreira, M. Spontaneous telomere to telomere fusions occur in unperturbed fission yeast cell. Nucleic Acids Res. 41, 3056–3067 (2013).
13. Chen, N. W. G. et al. Common bean subtelomeres are hot spots of recombination and favor resistance gene evolution. Front. Plant Sci. 9, 1185 (2018).
14. Chakalivage, Y. et al. Telomere—led premeiotic chromosome movement in fission yeast. Science 264, 270–273 (1994).
15. Miyoshi, T., Kanoh, J., Saito, M. & Ishikawa, F. Fission yeast Pot1-Tpp1 protects telomeres and regulates telomere length. Science 320, 1341–1344 (2008).
16. de Lange, T. How telomeres solve the end-protection problem. Science 326, 948–952 (2009).
17. Fujita, I. et al. Telomere—nuclear envelope dissociation promoted by Rap1 phosphorylation ensures faithful chromosome segregation. Curr. Biol. 22, 1932–1937 (2012).
18. Louis, E. J. The chromosome ends of Saccharomyces cerevisiae. Yeast 11, 1533–1573 (1995).
19. Stong, N. et al. Subtelomeric CTCF and cohesin binding site organization using improved subtelomere assemblies and a novel annotation pipeline. Genome Res. 24, 1039–1050 (2014).
20. Stadler, G. et al. Telomere position effect regulates DU1X in human fociocapulohumeral muscular dystrophy. Nat. Struct. Mol. Biol. 20, 671–678 (2013).
21. Takahiro, S., Nishihara, Y., Kugou, K., Ohta, K. & Kanoh, J. Subtelomeres constitute a safeguard for gene expression and chromosome homeostasis. Nucleic Acids Res. 45, 10333–10349 (2017).
22. Cam, H. P. et al. Comprehensive analysis of heterochromatin- and RNAi-mediated epigenetic control of the fission yeast genome. Nat. Genet. 37, 809–819 (2005).
23. Kanoh, J., Sadaie, M., Urano, T. & Ishikawa, F. Telomere binding protein Tat1 establishes Swi6 heterochromatin independently of RNAI at telomeres. Curr. Biol. 15, 1808–1819 (2005).
24. Matsuda, A. et al. Highly condensed chromatin are formed adjacent to subtelomeric and decondensed silent chromatin in fission yeast. Nat. Commun. 6, 7753 (2015).
25. Sugawara, N. F. DNA sequences at the telomeres of the fission yeast S. pombe. Ph.D. Thesis, Harvard University (1988).
26. Leupold, U. Die verbereiung von homothallie und heterothallie bei Schizosaccharomyces pombe. C. R. Trav. Lab. Carlsberg Ser. Physiol. 24, 371–480 (1950).
27. Ohno, Y., Ogiyama, Y., Kubota, Y., Kubo, T. & Ishii, K. Acentric chromosome ends are prone to fusion with functional chromosome ends.
through a homology-directed rearrangement. *Nucleic Acids Res.* **44**, 232–244 (2016).

28. Tashiro, S. et al. Shugoshin forms a specialized chromatin domain at subtelomeres that regulates transcription and replication timing. *Nat. Commun.* **7**, 10393 (2016).

29. Nakamura, T. M., Cooper, J. P. & Cech, T. R. Two modes of survival of fission yeast without telomerase. *Science* **282**, 493–496 (1998).

30. Tusso, S. et al. Ancestral admixture is the main determinant of global biodiversity in fission yeast. *Mol. Biol. Evol.* **36**, 1975–1989 (2019).

31. Bochman, M. L., Paeschke, K. & Zakian, V. A. DNA secondary structures: stability and function of G-quadruplex structures. *Nat. Rev. Genet.* **13**, 770–780 (2012).

32. Chaudhuri, A. & Huberman, J. A. Identification of two telomere-proximal fission yeast DNA replication origins constrained by nearby cis-acting sequences to replicate in late S phase. *F1000Res*. **1**, 58 (2012).

33. Jeffares, D. C. et al. The genomic and phenotypic diversity of *Schizosaccharomyces pombe*. *Nat. Genet.* **47**, 235–241 (2015).

34. Fujita, I., Tanaka, M. & Kanoh, J. Identification of the functional domains of the telomere protein Rap1p in *Schizosaccharomyces pombe*. *PLoS ONE* **7**, e49151 (2012).

35. Cooper, J. P., Nimmo, E. R., Allshire, R. C. & Cech, T. R. Regulation of spRap1 and spRif1, recruited to telomeres by Taz1, why, and the how. *J. Biol. Chem.* **2845**, 232–285 (2000).

36. Kanoh, J. & Ishikawa, F. spRap1 and spRif1, recruited to telomeres by Taz1, are essential for telomere function in fission yeast. *Curr. Biol.* **11**, 1624–1630 (2001).

37. Chen, Y. et al. A conserved motif within RAP1 has diversiﬁed roles in telomere protection and regulation in different organisms. *Nat. Struct. Mol. Biol.* **18**, 213–221 (2011).

38. Deng, W. et al. Fission yeast telomere–binding protein Taz1 is a functional but not structural counterpart of human TRF1 and TRF2. *Cell Res.* **25**, 881–884 (2015).

39. Kozak, M. An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. *Nucleic Acids Res.* **15**, 8125–8148 (1987).

40. Young, E., Abid, H. Z., Kwok, P. Y., Riethman, H. & Xiao, M. Comprehensive analysis of human subtelomeres by whole genome mapping. *PLoS Genet.* **16**, e1008347 (2020).

41. Yue, J. X. et al. Contrasting evolutionary genome dynamics between domesticated and wild yeasts. *Nat. Genet.* **49**, 913–924 (2017).

42. Ferreira, M. G. & Cooper, J. P. Two modes of DNA double-strand break repair are reciprocally regulated through the fission yeast cell cycle. *Genes Dev.* **18**, 2249–2254 (2004).

43. Miller, K. M., Rog, O. & Cooper, J. P. Semi-conservative DNA replication through telomeres requires Taz1. *Nature* **440**, 824–828 (2006).

44. Takikawa, M., Tarumoto, Y. & Ishikawa, F. Fission yeast Snt1 is crucial for semi-conservative replication at telomeres and subtelomeres. *Nucleic Acids Res.* **45**, 1253–1269 (2017).

45. Ivanova, T. et al. Budding yeast complete DNA synthesis after chromosome segregation begins. *Nat. Commun.* **11**, 2267 (2020).

46. Kramara, J., Osia, B. & Malkova, A. Break-induced replication: the where, the why, and the how. *Trends Genet.* **34**, 518–531 (2018).

47. Smith, C. E., Llorente, B. & Symington, L. S. Template switching during break-induced replication. *Nature* **447**, 102–105 (2007).

48. Deem, A. et al. Break-induced replication is highly inaccurate. *PLoS Biol.* **9**, e1000594 (2011).

49. Pardo, B. & Aguiera, A. Complex chromosomal rearrangements mediated by break-induced replication involve structure-selective endonucleases. *PLoS Genet.* **8**, e1002979 (2012).

50. Anand, R. P. et al. Chromosome rearrangements via template switching between diverged repeated sequences. *Genes Dev.* **28**, 2394–2406 (2014).

51. Sakofsky, C. J. et al. Break-induced replication is a source of mutation clusters underlying kataegis. *Cell Rep.* **7**, 1640–1648 (2014).

52. Sakofsky, C. J. et al. Translesion polymerases drive microhomology-mediated break-induced replication leading to complex chromosomal rearrangements. *Mol. Cell* **60**, 860–872 (2015).

53. Wang, X. & Baumann, P. Chromosome fusions following telomere loss are mediated by single-strand annealing. *Mol. Cell* **31**, 463–473 (2008).

54. Behm-Ansmant, I. et al. mrRNA quality control: an ancient machinery recognizes and degrades mRNAs with nonsense codons. *FEBS Lett.* **581**, 2845–2853 (2007).

55. Mandell, I. G., Goodrich, K. J., Rahler, J. & Cech, T. R. Expression of a RecQ helicase homolog affects progression through crisis in fission yeast lacking telomerase. *J. Biol. Chem.* **280**, 5249–5257 (2005).

56. Fantes, P. A. & Hoffman, C. S. A Brief history of *Schizosaccharomyces pombe* research: a perspective over the past 70 years. *Genetics* **203**, 621–629 (2016).

57. Bahler, J. et al. Heterologous modules for efficient and versatile PCR-based gene targeting in *Schizosaccharomyces pombe*. *Yeast* **14**, 943–951 (1998).

58. Forsburg, S. L. & Rhind, N. Basic methods for fission yeast. *Yeast* **23**, 173–183 (2006).

59. Moreno, S., Klar, A. & Nurse, P. Molecular genetic analysis of fission yeast *Schizosaccharomyces pombe*. *Methods Enzymol.* **194**, 795–833 (1991).

60. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. *Bioinformatics* **34**, i884–i890 (2018).

61. Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. *Genome Res.* **27**, 722–736 (2017).

62. Marcais, G. et al. MUMmer: A fast and versatile genome alignment system. *PLoS Comput. Biol.* **14**, e1005944 (2018).

63. Larsson, A. AliView: a fast and lightweight alignment viewer and editor for large datasets. *Bioinformatics* **30**, 3276–3278 (2014).

64. Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. *Nucleic Acids Res.* **30**, 3959–3966 (2002).

65. Li, H. Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics* **34**, 3394–3400 (2018).

66. Vasar, R., Sovic, L., Nagarajan, N. & Sikic, M. Fast and accurate de novo genome assembly from long uncorrected reads. *Genome Res.* **27**, 737–746 (2017).

67. Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. *PLoS ONE* **9**, e112963 (2014).

Acknowledgements

We thank H. Kohno for valuable advices on analyses of NGS data, S. Kuraku, H. Innan, H. Michida, T. Nakagawa, and H. Niki for insightful comments, H. Maekawa for critical reading of the manuscript, C. Hoffman, C. Shimoda, M. Yamamoto, and T. Nakamura for lectures on the history of *S. pombe* strains, and all of the lab members for discussion and advice. We acknowledge funding from the Ministry of Education, Culture, Sports, Science and Technology, Japan. We thank H. Kohno for valuable advices on analyses of NGS data, S. Kuraku, H. Innan, H. Michida, T. Nakagawa, and H. Niki for insightful comments, H. Maekawa for critical reading of the manuscript, C. Hoffman, C. Shimoda, M. Yamamoto, and T. Nakamura for lectures on the history of *S. pombe* strains, and all of the lab members for discussion and advice. We acknowledge funding from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author contributions

J.K. conceived the project, Y.O. and J.K. analyzed sequence data, T.K., S.T., and J.K. designed and performed experiments. Y.T. and Y.D. contributed to the analysis of SH regions. Y.O. and J.K. analyzed data and wrote the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41467-020-20595-1.

Correspondence and requests for materials should be addressed to J.K.

Peer review information *Nature Communications* thanks Sigurd Braun and Maria Teresa Teixeira for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.