Evaluation of Tranche in Securitization and Long-range Ising Model

K Kitsukawa † † , S Mori ‡ ‡ and M Hisakado ¶ ¶ §
† Graduate School of Media and Governance, Keio University, Endo 5322, Fujisawa, Kanagawa 252-8520, Japan
‡ Department of Physics, School of Science, Kitasato University, Kitasato 1-15-1, Sagamihara, Kanagawa 228-8555, Japan
¶ Standard & Poor’s, Marunouchi 1-6-5, Chiyoda-ku, Tokyo 100-0005, Japan

Abstract. This econophysics work studies the long-range Ising model of a finite system with \(N \) spins and the exchange interaction \(\frac{J}{N} \) and the external field \(H \) as a model for homogeneous credit portfolio of assets with default probability \(P_d \) and default correlation \(\rho_d \). Based on the discussion on the \((J, H)\) phase diagram, we develop a perturbative calculation method for the model and obtain explicit expressions for \(P_d, \rho_d \) and the normalization factor \(Z \) in terms of the model parameters \(N \) and \(J, H \). The effect of the default correlation \(\rho_d \) on the probabilities \(P(N_d, \rho_d) \) for \(N_d \) defaults and on the cumulative distribution function \(D(i, \rho_d) \) are discussed. The latter means the average loss rate of the “tranche” (layered structure) of the securities (e.g. CDO), which are synthesized from a pool of many assets. We show that the expected loss rate of the subordinated tranche decreases with \(\rho_d \) and that of the senior tranche increases linearly, which are important in their pricing and ratings.

PACS numbers: 05.50.+q,02.50.-r

Submitted to: Physica A

† kj198276@sfc.keio.ac.jp
‡ mori@sci.kitasato-u.ac.jp
¶ masato_hisakado@standardpoors.com
1. Introduction

The statistical properties of the models for credit risks have been widely discussed in the past ten years from the standpoint of financial engineering [1, 2] and econophysics [3, 4]. In the context of econophysics, the mechanism of systemic failure in banking has been studied [5, 6]. Power law behavior of the distributions of avalanches and several scaling laws in the context of percolation theory were found. On the other hand, in financial engineering, the evaluation of the effect of the correlation ρ between the rates of return of assets or between the default of assets is a hot topic and is widely discussed from theoretical and empirical viewpoints. Empirically, historically realized values of correlations and their implied values, which are estimated based on the market value of credit derivatives, are compared and their discrepancies, called correlation risk premium, attract investors’ interests from the viewpoint of portfolio management [7].

Theoretically, many statistical models are proposed for modeling credit risk of the pool of many assets [2, 8, 9, 10, 11, 12, 13, 14, 15, 16]. There are two categories in the models. The models in the first category use two state discrete variables which describe whether the asset is defaulted or not [9, 10, 11]. In the financial literature a two-valued variable x_i ($i = 1, \ldots, N$) takes values 0 and 1 depending on whether the i-th asset described by x_i is not defaulted or defaulted. The default probability P_d is defined by the average number of defaulted assets N_d per an asset as $P_d = \frac{\langle N_d \rangle}{N}$. Here $\langle \rangle$ means the expectation value. Ising Spin variable $S = \pm 1$ is also used and it is related to x as $S = 1 - 2x$. Moody’s Binomial (Expansion) approach [9], Moody’s correlated Binomial model [10], Long-range Ising model [11] are in this category. The default correlation is defined by the simultaneous default probability. If we denote the probability distribution of two asset i, j as $P_{ij}(x_i, x_j)$, the default correlation ρ_d is defined by

$$\rho_d = \frac{P_{ij}(1, 1) - P_i(1) \times P_j(1)}{\sqrt{P_i(1)(1 - P_i(1))} \sqrt{P_j(1)(1 - P_j(1))}}. \quad (1)$$

Here, $P_i(x_i)$ and $P_j(x_j)$ are the probability distributions of x_i and x_j and they are calculated from the joint probability distribution $P_{ij}(x_i, x_j)$.

In the second category, the models adopt a continuous variable for the earning rate of an asset and correlation between the earning rates is introduced [8, 12, 13, 14]. On the assumption that the earning rates obey multivariate normal distribution with correlation ρ_a, the probability $P_{i,j}$ for the simultaneous default of the i-th and j-th assets is given by

$$P_{i,j} = \frac{1}{2\pi \sqrt{1 - \rho_a^2}} \int_{-\infty}^{\Phi^{-1}(P_i)} \int_{-\infty}^{\Phi^{-1}(P_j)} \exp\left(-\frac{u^2 - 2\rho_a uv + v^2}{2(1 - \rho_a^2)}\right) du dv. \quad (2)$$

Here P_i and P_j are the default probabilities of the i-th and j-th assets and $\Phi^{-1}(x)$ is the inverse function of the normal distribution function. The variables u, v mean the earning rates of the two assets. If the random variable u (or v) becomes lower than $\Phi^{-1}(P_i)$ (resp. $\Phi^{-1}(P_j)$), the i-th (j-th) asset is judged to be defaulted. The correlation parameter ρ_a is named as “asset correlation” and ρ_a and ρ_d are related via the equation
The conditionally independent model [12], such as the Merton based model, the credit metrix model [13] and the copula model [14] are in the second category.

The reason why default or asset correlations are widely discussed recently is that the pricing of Asset backed Security (ABS), like CDO, needs detailed information about the probabilities $P(N_d)$ for N_d defaults. Here CDO is an abbreviation for Collateralised debt obligation, which is a financial innovation to securitise portfolios of defaultable assets. The portfolio of the underlying debts (assets) collateralizes the securitites (obligations), CDO is a kind of ABS. Securitization by CDO, we mean to synthesize securities based on a pool of many assets, like loans (CLO), commercial bonds (CBO) etc. In the process, layered structure is introduced and securities with high priority (reliability), which is called senior tranche, and those with low priority (called subordinated tranche or equity) are synthesized. Between the senior tranche and the equity, the mezzanine tranche with middle priority is also synthesized. The difference between them is that if some of the assets in the pool are defaulted, the security with lower priority loses its value at first. If the rate of defaulted assets N_d/N exceeds some threshold value P_c, e.g. $P_c = 7\%$ for the mezzanine tranche and $P_c = 10\%$ for the senior tranche, those with higher priority begin to lose their values. The equity play the role of “shock absorber”. By the “tranche” structure, the risk of the senior tranche is reduced and investors feel safe about the investment. On the other hand, the interest rates of the securities of the equity and the mezzanine tranche are set to be higher than those of the senior tranche and the subordinated tranches are high-risk-high-return products.

The default correlation becomes important when one try to estimate the expected loss in each tranche, which is essential in the evaluation of its price (premium). For example, we assume a pool of N homogeneous assets with default probability P_d. If there is no correlation between the defaults, $P(N_d)$ is the binomial distribution $B(N, P_d)$ and has a peak at $N_d = P_dN$. The standard deviation is $\sqrt{NP_d(1-P_d)} \simeq \sqrt{NP_d}$ for small P_d. If the threshold value P_c is large enough, the upper tranche does not suffer from the defaults in the pool. On the other hand, in the extreme case where the default correlation is $\rho_d = 1$, all assets behave in the same way and there are only two cases. One case is that all assets are not defaulted and the probability for the case is $1 - P_d$. The other case is that all assets are defaulted simultaneously and the probability is P_d. In the strong correlation limit ($\rho_d = 1$), when there occur defaults, all assets become defaulted simultaneously. Both senior and subordinated tranches lose their values completely. If there occurs no default, both tranche does not suffer from any damage. The essential problem is to know the ρ_d dependence of the probabilities $P(N_d)$. It is important to estimate the expected loss rate of each tranche based on $P(N_d)$. In addition, we should also study which probabilistic model is good or useful in order to describe the behaviors of the assets.

This paper deals with these problems. The organization of the paper is as follows. In section 2, we study the (J, H) phase diagram of finite size long-range Ising model and show that the assets begin to be correlated in the “Two Peak” Phase in the (J, H) plane. The realistic magnitude of the default correlation ranges from 1 % to several %
Evaluation of Tranche in Securitization

only the Two Peak Phase is interesting from the financial engineering viewpoint. Section 3 is devoted to the calculation of the important parameter P_d and ρ_d in terms of J, H and N. Here, we develop a perturbation method which is based on the discussions in section 2. Up to zero-th order in the perturbation theory, $P(N_d)$ is expressed as the superposition of two binomial distributions, corresponding to the two peaks of $P(N_d)$. The developed method and obtained relations are useful when one apply the long-range Ising model to the evaluation and hedging of the securities with tranches. In section 4, we study the ρ_d dependence of $P(N_d, \rho_d)$ and of the expected loss rates of the tranches. For the latter purpose, we introduce the cumulative distribution $D(i, \rho_d)$ and discuss that they are directly related with the average loss rates of tranches. As the correlation becomes strong (with fixed default probability P_d), the left peak becomes taller and moves towards to the origin ($N_d = 0$). The right peak also becomes taller and shifts to $N_d = N$. Its area approaches to P_d as ρ_d comes close to 1. These behaviors are different from those of the binomial expansion approach, where $P(N_d)$ has only one peak and its shape becomes broader as ρ_d increases. We then discuss the ρ_d dependence of $D(i, \rho_d)$. $D(i)$ for large i increases linearly with ρ_d and the senior tranche cannot avoid the default damage of the assets pool, even when we set P_c to be large. This crucial behavior of the long-range Ising model has been pointed out previously [11], we have clarified the importance in the evaluation of the tranches. Section 5 is dedicated to concluding remarks and future problems. We discuss the usefulness of the long-range Ising model from the viewpoint of financial engineering.

2. Model and Phase Diagram in (J, H) plane

We use Ising Spin variables $S_1, S_2, \cdots, S_N = \pm 1$ which represent states of assets in the reference pool. Here $S_i = -1$ indicates default of i-th asset and $S_i = 1$ means that the i-th asset is not defaulted. We denote the number of $S = \pm 1$ spins by N_{\pm}, so the number of defaulted assets N_d is N_-. The probability distribution for the states of the assets is assumed to be described by the following canonical distribution with the long-range Ising model of a finite system with N spins and the exchange interaction $\frac{J}{k}$ and the external filed H, which are measured in units of Boltzmann constant times temperature.

$$P(S_1, S_2, \cdots, S_N) = \frac{1}{Z_N(J, H)} \exp \left(\frac{J}{2N} \sum_{1 \leq i, j \leq N} S_i S_j + H \sum_{i=1}^{N} S_i \right).$$

We do not omit the $i = j$ terms in the Hamiltonian for later convenience. As is well-known, the exchange interaction $-\frac{J}{k} S_i S_j$ controls the strength of the correlation between S_i and S_j and the external field H favors one of the two spin states. In the actual case where the spin variable represents the states of the assets, the default probability P_d is at most a few percent and almost all assets are not defaulted ($S = 1$). The sign of the external field H is set to be $H > 0$.

The reason to choose the long-range Ising model is that it gives the default distribution $P(N_d)$ directly. In [11], another motivation for the long-range Ising model
has been discussed and their conclusion is that the model is the most natural choice from the viewpoint of the Maximum Statistical Entropy principle. The two parameters J and H are introduced as Lagrange multipliers which ensure that the default probability and the default correlation of the model are p_d and p_d. From the economical viewpoint, we can interpret the model as a kind of factor model. Here, the term 'factor' means the systematic risk factor or the state of the business cycle \cite{2}. In a boom, we have fewer defaults than in a recession. We denote the state of the business cycle as H' and assume that the defaults of the assets are independent from each other, conditional on the realization of the systematic factor H'. The joint probabilities for the assets S_1, S_2, \cdots, S_N and the business cycle variable H' is assumed to be written as

$$P_{\text{factor}}(S_1, S_2, \cdots, S_N, H') = \frac{1}{Z_N(J)} \exp \left(H' \sum_{i=1}^{N} S_i \right) \times P(H').$$ \hspace{1cm} (4)

Here, the random variable H' obeys the probability density function $P(H')$ and the denominator $Z_N(J)$ is the normalization term. Condition on the realization $H' = H$, the each asset state becomes independent from each other and the default probability P_d is given as

$$P_d = \text{Prob}(S_i = -1) = \frac{e^{-2H}}{1 + e^{-2H}}.$$ \hspace{1cm} (5)

The default probability P_d is a decreasing function of H and H for a boom (recession) is large (small). In order to derive the long-range Ising model starting from the above factor mode, we assume that H' obeys the standard normal distribution with mean H and variance J/N.

$$P(H') = \frac{1}{\sqrt{2\pi J}} \exp \left(-\frac{(H' - H)^2}{2J/N} \right).$$ \hspace{1cm} (6)

By averaging over the possible realization of H' weighted with the above $P(H')$, we obtain the expression for the long-range Ising model.

$$\int_{-\infty}^{\infty} P_{\text{factor}}(S_1, S_2, \cdots, S_N, H')dH' = \int_{-\infty}^{\infty} \frac{1}{Z_N(J)} \exp \left(H' \sum_{i=1}^{N} S_i \right) \times P(H')dH'$$

$$= \frac{1}{Z_N(J, H)} \exp \left(\frac{J}{2N} \sum_{1 \leq i,j \leq N} S_i S_j + H \sum_{i=1}^{N} S_i \right).$$ \hspace{1cm} (7)

The validity of the Maximum Statistical Entropy principle or the factor model with the normally distributed business factor H' should be checked by the comparison with other more reliable models.

The Hamiltonian of the long-range Ising model depends on the spin variables only through the combination of the magnetization $M = \sum_{i=1}^{N} S_i$. There is a simple relation between $N_- = N_d$ and M as $M = N_+ - N_- = N - 2N_d$, the default number distribution function $P(N_d)$ is

$$P(N_d) = \frac{\exp \left(\frac{J}{2N} N^2 + HN \right)}{Z_N(J, H)} \sum_{d=0}^{N} C_{N_d} \exp \left(\frac{2J}{N} N_d^2 - (2J + 2H) N_d \right).$$ \hspace{1cm} (8)
Figure 1. Phase diagram in (J, H) plane. For large H and small J, $P(N_d)$ has a single peak at $N_d \approx P_d N$. We call the region as “Single Peak” Phase. For small H and large J, there are two peaks in $P(N_d)$ and we call the region “Two Peak” Phase. The phase boundary is depicted with the broken line (---). The solid line (——) corresponds to a constant P_d line. It starts at $(J, H) = (0, H_C)$, where $\rho_d = 0$. In the $J \to \infty$ limit, the line approaches $H = \frac{H_C}{N}$ asymptotically and $\rho_d \to 1$.

The default probability P_d is defined by the expectation value of N_d as

$$P_d \equiv \frac{< N_d >}{N}. \quad (9)$$

Here $< >$ is the expectation value with the probability distribution (8). For $J = 0$, the probability distribution (8) becomes that of the binomial distribution $B(N, P_d)$ and there is a relation between H and P_d as

$$H = -\frac{1}{2} \log \left(\frac{P_d}{1-P_d} \right) \quad \text{for} \quad J = 0. \quad (10)$$

We denote this value of H as H_C. On the other hand, for $J \to +\infty$ limit, there are only 2 configurations with all spins up or all spins down that have nonzero probabilities. The probabilities are

$$P(1, 1, \cdots, 1) = \frac{1}{1 + e^{-2HN}} \quad P(-1, -1, \cdots, -1) = \frac{e^{-2HN}}{1 + e^{-2HN}}. \quad (11)$$

From the relation $P(-1, -1, \cdots, -1) = P_d$, one obtains the following relation between H and P_d for $J = \infty$ as

$$H_{J=\infty} = \frac{H_C}{N}.$$
For general \(J, H \) and \(N \), it is difficult to obtain \(P_d \). However, for large enough \(N \), by changing variable from \(N_- \) to \(n_- = \frac{N_-}{N} \) in eq.(8), we can estimate \(P_d = \langle n_- \rangle \) by the saddle point approximation. The saddle point equation is

\[
n_- = \frac{e^{4Jn_- - (2J + 2H)}}{e^{4Jn_- - (2J + 2H)} + 1}.
\]

(12)

Of course, by changing variable from \(n_- \) to the magnetization per spin \(m = 1 - 2n_- \), the saddle point equation is transformed into the famous self-consistent equation of the magnetization \(m = \tanh(Jm + H) \). Depending on the values of the parameters \(J, H (> 0) \), there are two cases. For large \(H \) and small \(J \), the equation (12) has only one solution \(n_- \). We call this region in the \((J, H)\) plane as “One Peak” Phase, because the probability distribution \(P(N_d) \) has a single peak at \(Nn_- \). \(P_d \) is almost the same with \(n_- \) in the One Peak Phase. For small \(H \) and large \(J \), the equation (12) has three solutions, two are at maxima \(n_{-1*} < n_{-2*} \) and one is at minimum. We call the region in the \((J, H)\) plane as “Two Peak” Phase, as the reader may easily anticipate the reason. In the case, there is no simple relation between \(P_d \) and the solutions \(n_{-1*}, n_{-2*} \). If \(H > 0 \) is large, the solution \(n_{-1*} \) is almost the same with \(P_d \). However, when the correlation \(\rho_d \) is large, the strength of \(H \) is of the order of \(O(\frac{1}{N}) \) and we cannot neglect the second peak \(n_{-2*} \). In the case, \(n_{-1*} < P_d \) and the average value of \(n_{-1*} \) and \(n_{-2*} \) with \(P(n_{-1*}) \) and \(P(n_{-2*}) \) corresponds to the value of \(P_d \). For example, when \(\rho_d = 1 \) and \(J = \infty \), the average value of \(n_{-1*} = 0 \) and \(n_{-2*} = 1 \) with probabilities eq.(11) is equal to \(P_d \).

In figure 11, we summarize the situation. The solid curve (—) in the \((J, H)\) plane corresponds to the constant \(P_d \) line. The dotted line (— —) is the “phase transition” line between the One-Peak Phase and the Two Peak Phase. In the remainder of the section, we study the correlation \(\rho_d \) in the \((J, H)\) phase diagram. We will see that \(\rho_d \) is almost zero in the One Peak Phase. Only in the Two Peak Phase \(\rho_d \) can take nonzero value.

We discuss the default correlation \(\rho_d \) and recall the definition (11). In order to obtain \(P(S_1, S_2) \), in equation (11), we take the trace over \(S_3, S_4, \cdots, S_N \).

\[
P(S_1, S_2) = \prod_{j=3}^{N} \sum_{S_j=\pm 1} P(S_1, S_2, \cdots, S_N).
\]

(13)

The trace over \(S_3, \cdots, S_N \) is replaced by the summation over \(N_- \) of \(N'' = N - 2 \) Spins. We obtain

\[
P(S_1, S_2) = \frac{1}{Z_N(J, H)} \exp \left(\frac{J}{N} S_1 S_2 + H(S_1 + S_2) \right) \times
\]

\[
\sum_{N_-=0}^{N''} C_{N_-} e^{(\frac{J}{N} (S_1 + S_2)(N'' - 2N_-) + \frac{H}{2} (N'' - 2N_-)^2 + H(N'' - 2N_-))}.
\]

(14)

If the system size \(N \) is large, the summation over \(N_- \) is replaced by the estimation at the saddle points. In the One-Peak region, the saddle point is at \(n_{-*} = P_d \) and \(P(S_1, S_2) \) is given by

\[
P(S_1, S_2) \propto \exp \left(\frac{J}{N} S_1 S_2 + H(S_1 + S_2) \right) \exp \left(-J(S_1 + S_2) \times 2n_{-*} \right).
\]

(15)
In the Two Peak region, two saddle points contribute to the summation and $P(S_1, S_2)$ is estimated as

$$P(S_1, S_2) \propto \exp\left(\frac{J}{N}S_1S_2 + H(S_1 + S_2)\right) \times \left[e^{-J(S_1+S_2)\times2n_{-1}} \times P(n_{-1}) + e^{-J(S_1+S_2)\times2n_{-2}} \times P(n_{-2}) \right]$$ \hspace{1cm} (16)

Here $P(n_{-1})$ and $P(n_{-2})$ are the probabilities for the two peaks n_{-1} and n_{-2}. In the One Peak phase, the constant P_d line in the (J, H) plane is almost given by the following relation between J and H

$$H = \tanh^{-1}(1 - 2P_d) - J(1 - 2P_d).$$ \hspace{1cm} (17)

We calculate the default correlation ρ_d with equations (15) and (16) on the above approximate constant P_d line. About the two saddle points n_{-1}, n_{-2}, and their probabilities $P(n_{-1})$, $P(n_{-2})$, we take them the values at $J = \infty$ and $\rho_d = 1$. We set $n_{-1} = 0, n_{-2} = 1$ and $P(n_{-1}) = 1 - P_d, P(n_{-2}) = P_d$. We set $P_d = 0.01$ and we plot ρ_d vs J in figure 2. We see that the correlation with equation (15), which is plotted with solid line (---), does not become large even in the Two Peak Region. On the other hand, ρ_d with equation (16), which is depicted with dotted line (· · · · · ·) becomes large in the Two Peak Region. We see that the existence of the second peak in $P(N_d)$ plays a crucial role in the emergence of correlation in the long-range Ising model.

3. Perturbative Calculation and Second Peak Contribution

In this section, we try to calculate several quantities of interest of the long-range Ising model. In particular, we obtain the expressions for P_d and ρ_d in terms of the model...
Evaluation of Tranche in Securitization

We expand the quadratic term as J distribution with peak very close to N. In the vicinity of N (or weight) of the second peak P, we calculate the moment $<N>$. The probability P plays a crucial role when one discuss the evaluation of the tranche.

When one calculate P, ρ_d, one way is to calculate $<S_i>$ and $<S_iS_j>$. Here, we calculate the moment of N_d with the probability distribution eq.(8). The default probability is then given by $P_d = \frac{<N_d>}{N}$. About the default correlation ρ_d, we start from the following relation.

$$\rho_d = \frac{P(-1,-1) - P(-1)^2}{P(-1)(1 - P(-1))} = \frac{<S_1S_2> - <S_1><S_2>}{(1 - <S_1>)(1 + <S_1>)}$$ \hspace{1cm} (18)

The magnetization $M = N <S_1>$ and N_d is related as $M = N - 2N_d$ and $N(N - 1) <S_1S_2> = <M^2> - N$, we obtain the following expression

$$\rho_d = \frac{\sigma^2_{N_d} + \frac{1}{N-1}(<N^2_{d}> - N <N_d>)}{<N_d>(<N_d>)}$$ \hspace{1cm} (19)

In order to calculate the moment $<N^1_{d}>$ with eq.(8), the quadratic term $\exp(\frac{2J}{N}N^2_d)$ prevents us from taking summation over N_d. As we have noted previously, the distribution with $J = 0$ is binomial distribution and taking summation over N_d is easy. In addition, the P_d is at most a few percent and the distribution $P(N_d)$ have a peak very close to $N_d = 0$ (and the second peak at $N_d \approx N$ in the Two Peak Phase). We expand the quadratic term as

$$\exp\left(\frac{2J}{N}N^2_d\right) = \sum_{k=0}^{\infty} \frac{1}{k!} \left(\frac{2J}{N}N^2_d\right)^k$$ \hspace{1cm} (20)

and perform the calculation of the moment $<N^1_{d}>$ perturbatively. The expansion is about $\frac{2J}{N}N^2_d$, which is evaluated as $\frac{2J}{N}N^2_d \approx 2JNP^2_d$. In the actual risk portfolio problem, P_d is at most $2 \sim 3\%$ and the system size N is several hundred, the perturbative approximation is considered to be applicable. We also note that, in the Two Peak Phase, the above expansion should be carried out also at $N_d = N$.

In order to perform the calculation in more concrete manner, we use variables N_\pm and start from the following expression for the Hamiltonian.

$$-\mathcal{H} = \frac{J}{2N}M^2 + HM$$

$$= \frac{J}{2N}N^2 + HN - (2H + 2J)N_- + \frac{2J}{N}N^2$$ \hspace{1cm} (21)

$$= \frac{J}{2N}N^2 - HN - (2J - 2H)N_+ + \frac{2J}{N}N^2_+.$$ \hspace{1cm} (22)

In the vicinity of $N_+ = 0$, we denote $P(N_-)$ as $P_-(N_-)$ and we can expand the quadratic term in eq.(21). Likewise, in the vicinity of $N_- = N(N_+ = 0)$, we call $P(N_-)$ as $P_+(N_-)$ and it can also be expanded in N_+.

$$P_- (N_-) = \frac{1}{Z} NC_{N_-} e^{HN} e^{-(2H+2J)N_-} + \frac{2J}{N}N^2$$

$$= \frac{1}{Z} NC_{N_-} e^{HN} e^{-(2H+2J)N_-} \times \sum_{k=0}^{\infty} \frac{1}{k!} \left(\frac{2J}{N}N^2_\pm\right)^k$$ \hspace{1cm} (23)
In equation (29), we denote the two terms as

$$P_+(N_-) = \frac{1}{Z} NC_{N-N}e^{-HN}e^{-(2J-2H)(N-N_-)+\frac{2J}{N}(N-N_-)^2}$$

$$= \frac{1}{Z} NC_{N-N}e^{-HN}e^{-(2J-2H)(N-N_-)} \times \sum_{k=0}^{\infty} \frac{1}{k!}(\frac{2J}{N}(N-N_-)^2)^k.$$

(24)

Z is the normalization constant to ensure that $\sum_{N_-=0}^{N} P(N_-) = 1$. To the zero-th order perturbation approximation $P_-(N_-)$ and $P_+(N_-)$ are binomial distributions and $P(N_-)$ is given by the superposition of these distributions. We summarize the situation as

$$P(N_-) = \begin{cases} P_-(N_-) & (0 \leq N_- \leq L) \\ P_+(N_-) & (0 \leq N - N_- < N - L). \end{cases}$$

(25)

Here L is set to be at the middle of the interval $[0, N]$.

The moment $< N_-^l >$ is calculated with the following equation.

$$< N_-^l >= \sum_{N_-=0}^{N} P(N_-)N_-^l = \sum_{N_-=0}^{L} P_-(N_-)N_-^l + \sum_{N_-=L}^{N} P_+(N_-)N_-^l.$$

(26)

The summation over N_- is from 0 to L, however $P_-(N_-)$ damps rapidly in N_-, it is not so bad to change the range from $[0, L]$ to $[0, N]$. About $P_+(N_-)$ the range of N_- is $[L, N]$. We change variable from N_- to $N_+ = N - N_-$ and denote the probability distribution $P_+(N_- = N - N_+)$ also as $P_+(N_+)$.

$$P_+(N_+) = \frac{1}{Z} NC_{N_+}e^{-HN}e^{-(2J-2H)(N_+)+\frac{2J}{N}(N_+)^2}.$$

(27)

$P_+(N_+)$ also damps rapidly in N_+, we will change the summation range from $[0, N-L]$ to $[0, N]$. $< N_+^l >$ is then calculated perturbatively as

$$< N_+^l >= \sum_{N_+=0}^{N} P_-(N_+)N_+^l + \sum_{N_+=0}^{N} P_+(N_+)(N - N_+)^l$$

$$= \frac{1}{Z} e^{HN} \sum_{N_-=0}^{N} NC_{N_-}e^{-(2H+2J)N_-} \sum_{k=0}^{\infty} \frac{1}{k!}(\frac{2J}{N}N_-^2)^k N_-^l$$

$$+ \frac{1}{Z} e^{-HN} \sum_{N_+=0}^{N} NC_{N_+}e^{-(2J-2H)N_+} \sum_{k=0}^{\infty} \frac{1}{k!}(\frac{2J}{N}N_+^2)^k (N - N_+)^l.$$

(28)

The normalization constant Z is calculated as

$$Z = e^{HN} \sum_{N_-=0}^{N} NC_{N_-}e^{-(2H+2J)N_-} \sum_{k=0}^{\infty} \frac{1}{k!}(\frac{2J}{N}N_-^2)^k$$

$$+ e^{-HN} \sum_{N_+=0}^{N} NC_{N_+}e^{-(2J-2H)N_+} \sum_{k=0}^{\infty} \frac{1}{k!}(\frac{2J}{N}N_+^2)^k$$

$$= Z_- + Z_+.$$

(29)

In equation (29), we denote the two terms as Z_\pm, which come from the summation over N_- and N_+.

In the above calculation, moments of the binomial distribution appears frequently. We introduce the following unnormalized binomial moments $[N_\pm^l]$.

$$[N_\pm^l] = \sum_{N_\pm=0}^{N} NC_{N_\pm}e^{\beta_\pm N_\pm N_\pm^l}.$$

(30)
The default correlation ρ_d on a constant P_d line. $P_d = 0.01$ and we plot ρ_d versus J. H is set to be the value which realize $P_d = 0.01$ for $N = 50$. The solid line (——) shows the result from the perturbative calculation up to second order in $\frac{2J}{N}$ and the line with + symbols shows numerically calculated exact data.

The parameters β_\pm are defined as $\beta_\pm = -2(J \mp H)$. Calculations of $[N^l_\pm]$ is straightforward. The zero-th moment $[1_\pm]$ is given by

$$[1_\pm] = \left(1 + e^{\beta_\pm}\right)^N.$$

(31)

The l-th moment $[N^l_\pm]$ is then obtained by differentiating $[1_\pm]$ with respect to β_\pm repeatedly.

$$[N^l_\pm] = \frac{\partial^l}{\partial \beta^l_\pm} \left(1 + e^{\beta_\pm}\right)^N.$$

(32)

We show the results for the first 6 moments, which are necessary for the second order perturbative calculation.

$$[N^1_\pm] = \left(1 + e^{\beta_\pm}\right)^N (N_1 x_\pm)$$

(33)

$$[N^2_\pm] = \left(1 + e^{\beta_\pm}\right)^N (N_1 x_\pm + N_2 x^2_\pm)$$

(34)

$$[N^3_\pm] = \left(1 + e^{\beta_\pm}\right)^N (N_1 x_\pm + 3N_2 x^2_\pm + N_3 x^3_\pm)$$

(35)

$$[N^4_\pm] = \left(1 + e^{\beta_\pm}\right)^N (N_1 x_\pm + 7N_2 x^2_\pm + 6N_3 x^3_\pm + N_4 x^4_\pm)$$

(36)

$$[N^5_\pm] = \left(1 + e^{\beta_\pm}\right)^N (N_1 x_\pm + 15N_2 x^2_\pm + 25N_3 x^3_\pm + 10N_4 x^4_\pm + N_5 x^5_\pm)$$

(37)

$$[N^6_\pm] = \left(1 + e^{\beta_\pm}\right)^N (N_1 x_\pm + 31N_2 x^2_\pm + 90N_3 x^3_\pm + 65N_4 x^4_\pm + 15N_5 x^5_\pm + N_6 x^6_\pm),$$

(38)
where \(N_i = \frac{N_i!}{(N-i)!} \) and \(x_\pm = \frac{e^{\beta_\pm}}{1+e^{\beta_\pm}} \). In general, the \(l \)-th binomial moment \([N^l_{\pm}] \) is calculated as
\[
[N^l_{\pm}] = (1 + e^{\beta_\pm})^N \sum_{k=1}^{l} y^l_{\pm k} N_k x^k_{\pm},
\]
where the coefficients \(y^l_{\pm k} \) for \(N_k x^k_{\pm} \) is calculated with the following recursive relations.
\[
y^l_{\pm k} = y^{l-1}_{\pm k-1} + ky^{l-1}_{\pm k},
\]
and with the conditions \(y^l_{1 \pm} = 0 \) for \(k > l \) and \(y^1_{1 \pm} = 1 \).

With these preparations, we are ready to write down the results. The perturbative calculation of the normalization constant \(Z \) is given as
\[
Z = Z_- + Z_+ = e^{HN} \sum_{k=0}^{\infty} \frac{1}{k!} \left(\frac{2J}{N} \right)^k [N^k_-] + e^{-HN} \sum_{k=0}^{\infty} \frac{1}{k!} \left(\frac{2J}{N} \right)^k [N^k_+].
\]
The moment \(<N^l_-> \) is given by
\[
<N^l_-> = \frac{1}{Z} e^{HN} \sum_{k=0}^{\infty} \frac{1}{k!} \left(\frac{2J}{N} \right)^k [N^{2k-2}] + \frac{1}{Z} e^{-HN} \sum_{k=0}^{\infty} \frac{1}{k!} \left(\frac{2J}{N} \right)^k \sum_{m=0}^{l-1} tC_m(-1)^m N^{l-m}[N^{2k-2m+2}].
\]
Putting these results into \(P_d = \frac{<N^l_->}{N} \) and eq. (19), the expressions for \(P_d \) and \(\rho_d \) in terms of model parameters \(N, J, H \) are obtained. In addition, the weight of the second peak \(\rho_{all} \), that is the probability of almost all assets are defaulted, is estimated as
\[
\rho_{all} = \frac{Z_+}{Z}.
\]
As we have noted previously, the zero-th order approximation means that we express \(P(N_d) \) as a superposition of two binomial distributions. In the case, the results for \(Z \) and \(P_d, \rho_d \) can be written down in the following simple expressions.
\[
Z^0 = e^{HN} (1 + e^{\beta_-})^N (1 + \gamma^N)
\]
\[
P_d^0 = \frac{x_- + \gamma^N (1 - x_+)}{1 + \gamma^N}
\]
\[
\rho_d^0 = \frac{1}{P_d^0(1 - P_d^0)} \frac{\gamma^N}{(1 + \gamma^N)^2 (1 - (x_- + x_+))^2}
\]
\[
\gamma = e^{-2H} \left(\frac{1 + e^{\beta_+}}{1 + e^{\beta_-}} \right)
\]
The subscript \((0)\) indicates the zero-th order perturbation results. In figure 3, we shows the result for \(\rho_d^2 \) along the constant \(P_d \) line. \(P_d \) is set to be \(P_d = 0.01 \) and with solid line \((-)\) we show the data from the above perturbative calculation up to second order in \(\frac{2J}{N} \). The line with + symbols depicts the numerical data. The two lines coincide well and the match is very good as long as \(P_d \) is set to be small. Figure 4 is the 3-dimensional plot of the data in \((J, H, \rho_d)\) space. \(\rho_d \) begins to be large in the Two Peak region and its rapid growth is well captured by the above perturbative calculation.
Figure 4. 3-dimensional plot of ρ_d in (J, H, ρ_d) space. The solid line (——) shows the result from the perturbative calculation up to second order in $\frac{2J}{N}$ and the line with + symbols depicts numerically calculated exact data. The conditions are the same with those in figure 3.

4. Effect of ρ_d on $P(N_d)$ and on average loss rates of tranches

We would like to discuss the effect of default correlation ρ_d on the probabilities $P(N_d)$ and on the tranche synthesized from the pool of the homogeneous assets. In order to discuss the latter case, we introduce the cumulative distribution function $D(i, \rho_d)$, which is directly related with the average loss rate of the tranche. The default rate P_d and the system size N is fixed. When we show numerical data, we set $N = 100$ and $P_d = 0.05$.

At first, we discuss the former case, the effect on the probabilities $P(N_d, \rho_d)$. Here we write down their ρ_d dependence explicitly. The $\rho_d = 0$ case is easy and $P(N_d, 0)$ is only the binomial distribution $B(N, P_d)$. It has a single peak at NP_d and the width is roughly $2\sqrt{NP_d}$. For $N_d = 0$, $P(0, 0) = (1 - P_d)^N$ and as ρ_d becomes large, $P(0, \rho_d)$ approaches $1 - P_d$. In figure 5 we plot $P(N_d, \rho_d)$ versus ρ_d for $N_d \leq 10$. The system size $N = 100$ and $P_d = 0.05$. $P(0, \rho_d)$ grows monotonically as ρ_d grows. For $1 \leq N_d \leq 5 = NP_d$, $P(N_d, \rho_d)$ at first increases and then decreases as a function of ρ_d. On the other hand, for $N_d \geq 5 = NP_d$, $P(N_d, \rho_d)$ decreases with ρ_d. P_d is small and $P(N_d, 0)$ damps rapidly in N_d for $N_d \geq 5$. $P(N_d, \rho_d)$ is almost zero for any ρ_d, which holds for $10 < N_d \leq 90$. Figure 6 depicts the plots of $P(N_d, \rho_d)$ for $90 \leq N_d \leq 100$. $P(N, 0) = P_d^N \simeq 0$ and $P(N, 1) = P_d$, $P(100, \rho_d)$ grows monotonically.
Evaluation of Tranche in Securitization

Figure 5. Plot of $P(N_d, \rho_d)$ vs ρ_d. $0 \leq N_d \leq 10$ and $N = 100, P_d = 0.05$.

from 0 to $P_d = 0.05$. For $90 \leq N_d \leq 99$, $P(N_d, \rho_d)$ is upward convex with respect to ρ_d. The area of the second peak becomes greater with the increase of ρ_d and $P(N_d, \rho_d)$ increases for $N_d \approx N$. As ρ_d becomes large, the width of the second peak becomes narrow and $P(N_d, \rho_d)$ for $N_d \neq N$ decreases. On the other hand, $P(N, \rho_d)$ increases monotonically to P_d.

To sum up, for $\rho_d = 0$, $P(N_d, 0)$ is $B(N, P_d)$ and it has a single peak. The width of the peak is order $2\sqrt{NP_d}$ and it is small for small P_d. As ρ_d grows, the system is in the Two Peak Phase. At the zero-th order perturbative approximation, $P(N_-) = P_-(N_-) + P_+(N_+)$ is a superposition of two binomial distributions. $P_-(N_d)$ has a peak at $N_d \leq NP_d$ and is approximately obeys $B(N, x_-)$. On the other hand, $P_+(N_d)$ is $B(N, 1 - x_+)$ and has a peak at $N_d \sim N$. The increase in ρ_d accompanies the increase in J, however the change of H is not so large and it decreases slightly (See Figure 1). The first peak position of $P(N_d)$, which is governed by $\beta_- = -2(J + H)$, moves towards to $N_d = 0$ as J increases. The first peak becomes narrower and higher with the left slide and only $P(0, \rho_d)$ grows monotonically. For $0 < N_d \leq NP_d$, $P(N_d, \rho_d)$ is upward convex with respect to ρ_d. $P(N_d, \rho_d)$ for $N_d > NP_d$ damps with ρ_d monotonically. On the other hand, the second peak position, which is governed by $\beta_+ = -2(J - H)$, shifts towards to $N_d = N$. The area of the second peak, which is calculated as in eq. (43), approaches P_d and the width becomes narrow. $P(N, \rho_d)$ increases monotonically to P_d with ρ_d and $P(N_d, \rho_d)$ near $N_d = N$ is upward convex.

We would like to discuss the above effect on the tranche of securities synthesized
from the homogeneous assets pool with parameters P_d, ρ_d. For the purpose, it is useful to introduce the cumulative distribution function $D(i, \rho)$, which is defined as

$$D(i, \rho_d) = \sum_{N_d=i}^{N_d=N} P(N_d, \rho_d). \hspace{1cm} (48)$$

From the definition $D(0, \rho_d) = 1$ and $D(1, \rho_d) = 1 - P(0, \rho_d)$ is the probability of the occurrence of default. We explain the relation between $D(i, \rho_d)$ and the evaluation of the tranche briefly.

The tranche for the interval $[i, j]$ implies that if the number of default N_d is below i ($N_d < i$), the tranche does not suffer from any damage. However, if N_d exceeds or becomes equal to i ($N_d \geq i$), it begins to lose its value. The value of the tranche is $\Delta = j - i + 1$ in units of the number of assets (we assume that the values of all assets in the pool are equal.) and if defaults with $i \leq N_d \leq j$ occurs, it loses $(N_d - i + 1)$ units. When N_d exceeds j ($N_d > j$), the tranche lose its value completely. The expected loss rate of the tranche $[i, j]$ is calculated as

$$E(i|j) = \frac{1}{\Delta} \left(\sum_{k=i}^{j} P(k, \rho_d)(k - (i - 1)) + \Delta \sum_{k=j+1}^{N} P(k, \rho_d) \right). \hspace{1cm} (49)$$

The first terms comes from the partial damage in the tranche ($i \leq N_d \leq j$) and the second term implies the contribution from its complete loss of the tranche ($N_d \geq j + 1$). $E(i|j)$ are directly related with the price of the tranche (premium), which can be
observed in the market. For \(j = i \), we denote \(E(i|i) \) as \(E(i) \) and call it as the expected loss rate at the \(i \)-th tranche. It is related with the cumulative distribution \(D(i, \rho) \)

\[
E(i) = E(i|i) = \sum_{k=i}^{N} P(k, \rho_d) = D(i, \rho_d).
\]

\(E(i) \) is useful, because we can reconstruct \(E(i|j) \) as a sum of \(E(k) \)

\[
E(i|j) = \frac{1}{\Delta} \sum_{k=1}^{j} E(k).
\]

The proof of the relation is straightforward.

\[
\sum_{l=i}^{j} E(l) = \sum_{l=i}^{j} \left(\sum_{k=l}^{N} P(k, \rho_d) \right) = \sum_{l=i}^{j} \left(\sum_{k=l}^{j} P(k, \rho_d) + \sum_{k=j+1}^{N} P(k, \rho_d) \right) = \sum_{k=i}^{j} P(k, \rho_d)(k - (i - 1)) + \Delta \sum_{k=j+1}^{N} P(k) = \Delta E(i|j)
\]

We note that, if we set \(i = 1 \) and \(j = N \) in equation (51), we obtain

\[
E(1|N) = \frac{1}{N} \sum_{k=1}^{N} E(k) = P_d.
\]

Here we use the relation \(E(1|N) = P_d \), which is intuitively clear and can be proved as in the equation (52). From the second equality in eq.(53) that the average of the expected loss rate at each tranche is \(P_d \), tranches look like to “share \(P_d \) between them” or “toss \(P_d \) to other tranches”.

Now we discuss the effect of the default correlation \(\rho_d \) on \(E(i) = D(i, \rho_d) \). From the definition \(D(i, \rho) = \sum_{k=i}^{N} P(k, \rho_d) \), we can understand the \(\rho_d \) dependence easily from the previous discussions on \(P(N_d, \rho_d) \). In figure 7 we show \(D(i, \rho_d) \) for \(91 \leq i \leq 100 \). The area of the second peak increases monotonically to \(P_d \) as we increase \(\rho_d \), the cumulative distributions \(D(i, \rho_d) \) also grow up to \(P_d \). \(P(N_d, \rho_d) \) is almost zero for \(11 \leq N_d \leq 90 \), \(D(i, \rho_d) \) for \(11 \leq i \leq 90 \) behaves in the same way with these \(D(i, \rho_d) \) for \(i = 91 \). If \(i \) becomes small, we see the contribution from the first peak in \(P(N_d, \rho_d) \). For small \(i \), the dips of \(P(N_d, \rho_d) \) for \(N_d \neq 0 \) with respect to \(\rho_d \) dominates the contribution from the second peak. \(P(0, \rho_d) \) increases monotonically and \(D(1, \rho_d) = 1 - P(0, \rho_d) \) decreases with \(\rho_d \). \(D(i, \rho_d) \) for \(i \geq 2 \) also decreases as in figure 8 which shows \(D(i, \rho_d) \) for \(1 \leq i \leq 10 \). These behaviors reflect the left shift and the width tinning of the first peak. For the intermediate value of \(i \), the \(\rho_d \) dependence of \(D(i, \rho_d) \) is not monotonous. In figure 9 we depict \(D(i, \rho_d) \) for \(9 \leq i \leq 11 \). Along with the shape change of the first peak with \(\rho_d \), \(D(i, \rho_d) \) at first decrease. Then, the contribution from the second peak dominates the decrease of the first peak contribution and \(D(i, \rho_d) \) begins to increase.

\(D(i, \rho_d) \) is downward convex with respect to \(\rho_d \) for the interval of \(i \).

We note that the ranges where \(D(i, \rho_d) \) is downward convex, \(D(i, \rho_d) \) decreases monotonically, or \(D(i, \rho_d) \) increases monotonically depends on the parameters \(N, P_d \). The above discussions may not hold for other values of \(N \) and \(P_d \). In particular the range of the downward convex region, if we set \(P_d = 0.01 \), we observe that it shift to
Figure 7. Plot of $D(i, \rho_d)$ vs ρ_d. $91 \leq i \leq 100$.

Figure 8. Plot of $D(i, \rho_d)$ vs ρ_d. $D(i, \rho_d) = \sum_{k=i}^{N} P(k, \rho_d)$ and $1 \leq i \leq 10$.
the positions of the boundaries between the regions are important from the viewpoints of risk management and rating of the securities, we should note this point.

Figure 9. Plot of $D(i, \rho_d)$ vs ρ_d. $9 \leq i \leq 11$. Solid line $i = 9$, broken line $i = 10$ and dotted line $i = 11$.

From these observations, we summarize the ρ_d dependence of $E(i) = D(i, \rho_d)$.

- Senior tranche, the range $[i, j]$ with i, j are set to be large, suffers from the default correlation seriously. $E(i)$ for the range increase linearly with ρ_d. It is approximately given by

\[
E(i) = \rho_d \times P_d
\]

If ρ_d change from 0 to 1, $E(i)$ change from 0 to P_d and the evaluations of the securities decrease almost linearly.

- Equity or subordinate tranche, the range $[i, j]$ is $[1, j]$ and j is small. In the range $1 \leq k \leq j$, $D(k, \rho_d)$ damps monotonically with ρ_d and $E(1|j)$ also damps. The increase in ρ_d causes the increase of the evaluation of the tranche.

- Mezzanine tranche, whose range is between the equity and the senior tranche. In the range, the behaviors of $D(k, \rho_d)$ depends on P_d and the system size N. In the above mentioned $N = 100, P_d = 0.05$ case, $D(k, \rho_d)$ has downward convex shape for some intermediate values of k.
5. Concluding Remarks and Future Problems

In this paper, we have studied the long-range Ising model as a model for a pool of N homogeneous assets with default probability P_d and default correlation ρ_d. We have studied in the (J, H) plane, the behavior of P_d and ρ_d. There are two phases in the (J, H) plane. In the One Peak Phase, the probabilities $P(N_d)$ have a single peak at $N_d \approx NP_d$. The correlation is almost zero in the phase. In the Two Peak Phase, there are two peaks in $P(N_d)$ and ρ_d can take large value. The first peak is closer to origin than NP_d and its area is larger than $1 - P_d$. The second peak is at about N and its area is less than P_d. The parameters J, H should be chosen in the Two peak phase, if the model intends to describe the portfolio with some default correlation between the assets.

We have developed the perturbative method and expressed $P(N_d)$ as a superposition of two binomial distributions with the above two peaks at zero-th order. We have obtained the closed form expression for P_d, ρ_d and the weights for the second peak P_{alt}, which means the probability that almost all assets are defaulted. These expressions are in good agreement with numerically calculated values and give an efficient method for the actual application of the long-range Ising model. Otherwise, for P_d and ρ_d, it is difficult to know the parameters J and H and the long range Ising model is hard-to-use as a model for homogeneous credit risk portfolio.

Furthermore, we have studied the ρ_d dependence of $P(N_d, \rho_d)$ and the cumulative distribution $D(i, \rho_d)$. $P(N_d, 0)$ is binomial distribution $B(N, P_d)$ and it has a peak at NP_d. As we increase ρ_d from 0 to 1, the profile of $P(N_d, \rho_d)$ changes from One peak shape to Two Peak shape. The first peak shifts to the left and its shape becomes higher and narrower. The second peak’s area increases and it shifts to the right with the decrease of its width. At $\rho_d = 1$, $P(N_d, 1)$ has two thin peaks at $N_d = 0$ and $N_d = N$ and the probabilities are $P(0, 1) = 1 - P_d$ and $P(N, 1) = P_d$. Other probabilities are zero. The cumulative distribution functions $D(i, \rho_d)$ correspond to the average loss rates of the i-th tranche. About the senior tranche, the range of the tranche $[i, j]$ is large. As ρ_d increases, $D(i, \rho_d)$ increase almost linearly with ρ_d like $D(i, \rho_d) \approx \rho_d \times P_d$. The average loss rate of the senior tranche $[i, j]$ is given as a sum of $D(k, \rho_d)$ in the range $[i, j]$, the expectation value of the loss rate of the senior tranche also increases as $\rho_d \times P_d$. The price of the tranche is based on the average loss rate, the value of the senior tranche decreases with ρ_d. The range of the equity, the subordinated tranche, is near the origin and the $D(i, \rho_d)$s decrease monotonically. The average loss rate of the equity decreases with ρ_d and the price of the equity increase with ρ_d. The mezzanine tranche is between the equity and the senior tranche. The profile of $D(i, \rho_d)$ in the range depends on the model parameters ρ_d, P_d and N. In the text example, $D(i, \rho_d)$ has a downward convex shape in some region. If the mezzanine range $[i, j]$ is chosen to lie in the region, the average loss rate also behaves similarly. However, other probabilistic model for a pool of assets, e.g. the copula model [14], suggest upward convex shape for the average loss of the mezzanine tranche. The discrepancy comes from the difference of the shapes of $P(N_d, \rho_d)$. The more complete comparison between the probabilistic models for a pool
of correlated assets should be done.

As concluding remarks, we comment on the usage of the long-range Ising model and related future problems. As a statistical model for an ensemble of many assets, the long-range Ising model is an attractive one from the viewpoint of physicists. Its phase diagram and phase transitions are thoroughly studied and its analytic calculation method, like Hubbard-Stratanovich transformation, guides us how to make theoretically tractable models. On the other hand, from the viewpoint of financial engineers, the long-range Ising model is not so convenient. One reason is that the model parameters J, H are not directly related with the observed data P_d and ρ_d (or ρ_a). Other statistical models incorporate these parameters as a model parameters. For example, the Moody’s correlated binomial model gives $P(N_d)$ as a function of P_d and ρ_d explicitly. When one uses Ising model, it is necessary to know the parameters J, H which correspond to P_d, ρ_d. The definition of P_d and ρ_d include the moments $<N^I_d>$ or $<S_i>$ and $<S_iS_j>$, it is necessary to take the trace Tr. The long-range Ising model has the advantage that the trace Tr is reduced to the summation over the total magnetization $M = \sum_{j=1}^N S_j$ and the calculation is not so heavy task. Even so, this one step spoils the usefulness of the model. We have obtained a closed form expressions for P_d and ρ_d and try to circumvent the step. The computational time to obtain J, H for given P_d, ρ_d is reduced much and the failing of the model are partially overcome.

In order to apply the long-range Ising model to the evaluation of the tranche $[i,j]$ in more realistic situation, the assumption of homogeneity of the assets pool should be weakened. One step toward the direction is to introduce multi sectors and assume the homogeneity only in each sector. We label each sector by $I = 1, 2, \cdots K$ and I-th sector contains N^I assets. In the I-th sector, the default rate is P^I_d and the default correlation is ρ^I_d. Between different sectors, say between I-th and J-th sector, the default correlation is ρ^{IJ}_d. We use Ising Spin variables S^I_j to represent the states of the j-th asset in the I-th sector, the generalized long-range Ising model Hamiltonian for the probabilities $P(S^I_j)$ is

$$-\mathcal{H} = \sum_{I=1}^K \frac{J^I}{2N^I} M^2_I + H^I M_I + \sum_{1 < I < J = K} \frac{J^{IJ}}{\sqrt{N^I N^J}} M_I M_J$$

(55)

As in the homogeneous model, the Hamiltonian depends on S^I_j only through the magnetization of the I-th sector $M_I = \sum_{j=1}^{N^I} S^I_j$. When we set $J^I = \frac{J^{IJ}}{\sqrt{N^I N^J}} = \frac{J}{N}$ and $H^I = H$, the model reduces to the homogeneous model with $N = \sum_{I=1}^{K} N^I$, J, H. The problem is to get the relation between J^I, ρ^{IJ}_d, P^I_d and J^I, J^{IJ}, H^I, N^I. In order to accomplish the task, the phase diagram in J^{IJ}, J^I, H^I and the profile $P(N^I_d)$ should be cleared and it is left for future analysis. Furthermore, for more complex situation where i-th asset has default probability P^i_d and the default correlation between i-th and j-th asset is ρ^{ij}_d, the model Hamiltonian becomes that of the random Ising spin systems. The exchange interaction J_{ij} and the external field H_i should be connected to P^i_d and ρ^{ij}_d, which is also left for future problem. Other step is to discard the Ising model and adopt other probabilistic models. One possibility is the Moody’s correlated binomial
model, which uses two state variables $x = 0, 1$ for the state of an asset and incorporates P_d and ρ_d directly in the model parameters. Its generalization to the multi-sector case and more complex situations is an interesting problem. Other possibility is to introduce simplified version of the long-range Ising model. We use two state variable x_i for the state of the i-th asset. The number of defaults N_d is expressed as $N_d = \sum_{j=1}^{N} x_j$. The probabilities $P(x_1, x_2, \cdots, x_N)$ is given as

$$P(x_1, x_2, \cdots, x_N) = (1 - \alpha)p^{N_d}(1 - p)^{N-N_d} + \alpha \delta_{N,N_d}. \quad (56)$$

Instead of the superposition of two binomial distributions, we use $\alpha \delta_{N,N_d}$ for the second peak. The first peak is $B(N, p)$ and the parameters α, p are related with the default probability P_d as $P_d = \alpha + (1 - \alpha)p$. This probabilities $P(x_1, x_2, \cdots, x_N)$ is more tractable than the original probability distribution and the generalizations to more complex situations may be carried out easily.

Acknowledgments

This work has received financial support from Kitasato University, project SCI:2005-1706.

References

[1] Fabozzi F J and Goodman L S 2001 Investing in Collateralized Debt Obligations (U.S. John Wiley & Sons).
[2] Schonbucher P J 2003 Credit Derivatives Pricing Models : Model, Pricing and Implementation (U.S. John Wiley & Sons).
[3] Bouchaud J-P and Potters M 2000 Theory of Financial Risks (Cambridge University Press).
[4] Mantegna R N and Stanley H E 2000 An Introduction to Econophysics (Cambridge University Press).
[5] Aleksiejuk A and Holyst A 2001 Physica A299 198.
[6] Iori G 2001 Physica A299 205.
[7] Calamaro J P, Nassar T and Thakkar K 2004 Correlation: Trading Implications for Synthetic CDO Tranches (Deutsche Bank: Global Market Research, 27 September).
[8] Merton R 1974 The Journal of Finance 29 449.
[9] Cifuentes A and O’Connor G 1996 The Binomial Expansion Method Applied to CBO/CLO Analysis (Moody’s Investors Service).
[10] Witt G 2004 Moody’s Correlated Binomial Default Distribution (Moody’s Investors Service) August 10.
[11] Molins J and Vives E 2004 Long range Ising Model for credit risk modeling in homogeneous portfolios Preprint cond-mat/0401378
[12] Finger C C 2001 Risk July 86.
[13] Finger C C 2000 A Comparison of stochastic default rate models: Working Paper (The RiskMetrics Group).
[14] Li D X 2000 The Journal of Fixed Income 9(4) 43.
[15] Duffie D and Gärleanu 2001 Financial Analyst Journal 57(1) 41-59.
[16] Duffie D and Singleton K J 2003 Credit Risk-Pricing, Measurement and Management (Princeton:Princeton University Press).
[17] Stanley H E 1983 Introduction to Phase Transitions and Critical Phenomena, vol 8 of International Series of Monographs on Physics (New York : Oxford University Press).