A SHORT PROOF OF KOTZIG’S THEOREM

GLEB NENASHEV

Abstract. A new shortest proof of Kotzig’s Theorem about graphs with unique perfect matching is presented in this paper. It is well known that Kotzig’s theorem is a consequence of Yeo’s Theorem about edge-colored graph without alternating cycle. We present a proof of Yeo’s Theorem based on the same ideas as our proof of Kotzig’s theorem.

1. Introduction

The well-known theorem of A. Kotzig was proved for the first time in [K].

Theorem 1. (A. Kotzig, 1959) Let G be a connected graph with unique perfect matching. Then G has a bridge that belongs to this matching.

However, the proof in [K] was tedious. The shortest proof of Kotzig’s theorem that is known now is to derive it from the following theorem of A. Yeo [Y].

We denote by $G-e$ graph G without the edge e and by $G-v$ graph G without the vertex v and all edges incident to it.

Theorem 2. (A. Yeo, 1997) All edges of a graph G are colored such that there is no alternating cycles (i.e. each cycle has two adjacent edges of the same colors). Then G contains a vertex v such that every connected component of $G-v$ is joined to v with edges of one color.

This theorem have rather short and elegant proof using the method of alternating chains. Let us also mention, that a particular case of Yeo’s Theorem for coloring with two colors was proved by Grossman and Haggkvist in 1982 [GH].

Our short proof of the Theorem 1 is based on analyzing of a minimal counterexample. Also we show that our method works in Theorem 2.

Acknowledgement. The author is grateful to Dmitri Karpov for his comments and for discussion of proofs.

2. Proofs

Proof of Theorem 1. Suppose the statement of theorem is false. Consider a counterexample G with a minimum number of edges. Let F the set of all edges of the unique perfect matching and $\overline{F} = E(G) \setminus F$. Consider two cases.

1° There exists a bridge $a \in \overline{F}$ of the graph G. Consider the graph $G-a$. Clearly, it has exactly two connected components. If any of these components has a bridge that belongs to F, then the graph G also has such a bridge. We obtain a contradiction. Hence, each connected component has a second perfect matching. Clearly, then G also has second matching. This is a contradiction.

2° Set \overline{F} contains no bridges of the graph G. Each vertex is incident to an edge of \overline{F}, otherwise G has a bridge that belongs to F. Furthermore, at least one vertex is incident to at least two edges of \overline{F}, since otherwise G is an even cycle and hence, it has two perfect matchings.

This research is supported by RF Government grant 11.G34.31.0026 and by JSC "Gazprom Neft".
Thus, $|F| < |\overline{F}|$. Since G is a minimal counterexample after deleting from G any edge of \overline{F} a bridge that belongs to F appears in the resulting graph. Hence, there are two edges $a_1, a_2 \in \overline{F}$ such that both graphs $G - a_1$ and $G - a_2$ have the same bridge $b \in F$. Hence, the graph $G - b$ has two bridges a_1 and a_2, and the graph $G - \{a_1, a_2\}$ has three connected components.

Returning the bridge b we obtain two connected components X, Y in $G - \{a_1, a_2\}$. Since a_1 and a_2 are not bridges in G, we can denote them $a_1 = x_1y_1$ and $a_2 = x_2y_2$, where $x_1, x_2 \in X, y_1, y_2 \in Y$ (see Fig. 1 left).

Denote by F_x the edges of matchings F lying in the component X. Let us contract x_1y_1, Y and y_2x_2 in edge x_1x_2 (possibly multiple edges or a loop can appear, see Fig. 1) and obtain a graph G_x.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure1.png}
\caption{Solid lines - edges from F, dotted - from \overline{F}.}
\end{figure}

Obviously, if G_x has a bridge of F_x, then G has a bridge of F. Hence, there is F_x - a matching in G_x that is different from F_x. If $x_1x_2 \notin F_x$, then there is a second matching $F' = (F \setminus F_x) \cup F_2$ in the graph G, but it’s impossible. Then F_x' contains an edge x_1x_2. One can similarly define the matching F_y and the graph G_y, and prove that there exists another matching F_y' in G_y that contains y_1y_2. Then the graph G has a matching $F'' = (F_y' \setminus \{x_1x_2\}) \cup (F_y' \setminus \{y_1y_2\}) \cup \{x_1y_1, x_2y_2\}$, different from F, contradiction.

Proof of Theorem 2. Assume the contrary and consider a minimal counterexample G (at first we minimize the number of vertices, after that the number of edges).

Clearly, G is connected and has no cut-vertex. Vertex is called monochrome if all edges incident to it are of the same color. And vertex v of G is called cut-color if no connected component of $G - v$ is joined to v with edges of more than one color. Consider several cases.

1° There is an edge b_1b_2, such that the graph $G - b_1b_2$ has no monochrome vertex.

Since G is a minimal counterexample there is a cut-color vertex v in $G - b_1b_2$. Graph $G - b_j$ is connected, hence, $b_j \neq v$. Let X_1 be a subgraph of the graph $G - b_1b_2$ induced on the vertex v together with the connected component of $G - b_1b_2 - v$ that contains b_1. Now we add to X_1 the vertex c and edge b_1c of the same color as b_1b_2 and edge v of any unique color. Denote the obtained graph by G_1 (see Fig. 2). Graph G_1 is less than G, otherwise the part X_2 has only one vertex and hence, the vertex b_2 in $G - b_1b_2$ is monochrome.

The graph G_1 has no monochrome vertices and no cut-color vertices (G_1 has no cut-vertex). Hence, there is the alternating cycle in G_1, it must contain C (otherwise, there is such a cycle in G). Consequently, there is an alternating path from v to b_1 in X_1 with color of last edge different from the color of edge b_1b_2. Similarly, there is such a path from v to b_2. Two edges incident to v in these paths have different colors. Otherwise, if their colors coincide all edges incident to v in both parts X_1 and X_2 have the same color, and therefore, v is monochrome, which is impossible. Taking these two paths and adding to them the edge b_1b_2 we obtain an alternating cycle in G. This contradicts our assumption.
There is a vertex c of degree 2 such that the graph $G - c$ has no monochrome vertex.

Since G is a minimal counterexample, there appears a cut-color vertex v in $G - c$. Vertex c is incident to two edges cb_1 and cb_2 of distinct color. Let X_1 be a subgraph of the graph $G - c$ induced on the vertex v together with the connected component of $G - c - v$ that contains b_1. Then we construct (similarly $1^°$ case) an alternating path from v to b_1 with last edge with distinct color from b_1c in the part X_1 and an alternating path from v to b_2 with last edge with distinct color from b_2c in the part X_2. Glue these paths together with the edges b_1c and cb_2, we obtain an alternating cycle in G. This contradicts our assumption.

There are two adjacent vertices c_1, c_2 of degree 2.

Let c_1b_1 and c_2b_2 be the other edges incident to c_1 and c_2, respectively. If these two edges have different colors, then after deleting the edge c_1c_2 and gluing the vertices c_1 and c_2 we obtain a smaller counterexample. If c_1b_1 and c_2b_2 have the same color, we delete the vertices c_1 and c_2 and add a new edge b_1b_2 with the same color as b_1c_1. Clearly, we obtain a smaller counterexample.

Consider the remaining cases.

Let us construct a digraph on the vertices of G using his edges. We draw an arc \vec{ab} if ab is an edge of G and the b is a monochrome vertex of the graph $G - ab$. (Maybe the arc \vec{ba} is drawn too).

Let x be the number of vertices of degree 2 in G. Then the graph G has at least $\frac{2x + 3(v - x)}{2} = 1.5v - 0.5x$ edges. Since there is no situation of case $2^°$, at least one arc starts at each vertex of degree 2. Obviously, at least two arcs end at each vertex of degree 2. Since vertices of degree 2 are not adjacent, the number of arcs is at least $x + e \geq 1.5v + 0.5x$.

Let two arcs (corresponding to the edges e_1, e_2 of graph G) end at the vertex d. Let E_d be the set of all edges incident to d. Then edges of $E_d \setminus \{e_1\}$ have the same color and edges of $E_d \setminus \{e_2\}$ have the same color. But vertex d is not monochrome in G, clearly, d has degree 2. Then the sum of incoming degrees of vertices does not exceed $2x + (v - x) = v + x$. But then we have $1.5v + 0.5x \leq v + x$, hence, $v = x$. But we have two adjacent vertices of degree 2. We obtain a contradiction.

References

[GH] J. W. Grossman, R. Haggkvist. Alternating cycles in Edge-Partitioned Graphs. Journal of Combinatorial Theory, Series B 34 (1982), p. 77-81.

[K] A. Kotzig. On the theory of finite graphs with a linear factor II. Mat.-Fyz. Casopis. Slovensk. Akad. Vied, 9(3) (1959).p. 136-159.

[Y] A. Yeo. A note on alternating cycles in Edge-coloured Graphs. Journal of Combinatorial Theory, Series B 69 (1997), p. 222-225.

Chebyshev Laboratory, St. Petersburg State University, 14th Line, 29b, Saint Petersburg, 199178 Russia.

E-mail address: glebmen@mail.ru