Isolation and characterization of microsatellites from a cicada, *Yezoterpnosia nigricosta* (Hemiptera: Cicadidae), distributed in subarctic and cool temperate forests

Takashi Kanbe1*†, Keisuke Yumoto2†, Uchu Yamakawa2, Souta Nakajima2†, Shingo Kaneko3, Keiko Kitamura4, Yoko Saito5 and Yoshiaki Tsuda2*

1Systematic Entomology, Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
2Sugadaira Research Station, Mountain Science Center, University of Tsukuba, Ueda, Nagano 386-2204, Japan
3Faculty of Symbiotic Systems Science, Fukushima University, Fukushima, Fukushima 960-1296, Japan
4Hokkaido Research Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Sapporo, Hokkaido 062-8516, Japan
5Department of Ecosystem Studies, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan

(Received 16 April 2020, accepted 10 July 2020; J-STAGE Advance published date: 24 December 2020)

The cicada *Yezoterpnosia nigricosta* (Hemiptera: Cicadidae) is distributed in subarctic and cool temperate forests in Japan, China and the Russian Far East. Due to its limited and isolated distribution at higher altitudes in cool temperate forests on the main island of Japan, especially in the central and southern areas, this species is listed as a threatened or near-threatened species on the Red List of 12 prefectures in Japan. Moreover, there are concerns about the impacts of climate change on the species' distribution and population demography. In this study, seventeen microsatellite markers were developed for *Y. nigricosta*, and marker suitability was evaluated using 32 individuals from two populations in Nagano prefecture (central Japan) and Hokkaido, a northern island of Japan. The number of alleles, expected heterozygosity and fixation index at each locus were 1–15 (mean = 4.294), 0.000–0.914 (mean = 0.519) and −0.225–0.456 (mean = 0.108), respectively. Furthermore, there was moderate genetic differentiation between the two populations (\(F_{ST} = 0.111, F'_{ST} = 0.237\)). These markers will be useful to evaluate the genetic structure and to infer population demographic history of *Y. nigricosta* populations, which can contribute to population genetics studies of this species.

Key words: subarctic-cool temperate forest, climate change, population genetics, *Yezoterpnosia nigricosta*
on species in subarctic and cool temperate forests and ecosystems, it is important to examine population genetic diversity, structure and demographic history of the species that inhabit them. However, although population genetic studies have been conducted for cool temperate forest tree species across Japan (e.g., Tsuda et al., 2015), insect species are yet to be well examined and there is less information about the population demographic history of insects distributed in cool temperate forests.

Yezoterpnosia nigricosta (Motschulsky, 1866) is a cicada distributed in subarctic and cool temperate forests in Japan, China and the Russian Far East. In the northern area of Japan, _Y. nigricosta_ is widespread and occurs continuously from low altitudes to subalpine forests, while in the central and southern parts of Japan, the species’ distribution is restricted to the higher altitudes of cool temperate forests, which are mainly dominated by beech (_Fagus crenata_) and oak (_Quercus crispula_) trees. Thus, this species is listed as a threatened or near-threatened species on the Red List of 12 prefectures in Japan (Association of Wildlife Research and EnVision, 2007, http://jpnrdb.com/search.php?mode=map&q=07150110701). The species is characterized by its emergence period from spring to early summer (e.g., May–July), much earlier than other cicada species such as _Cryptotympana facialis_ (Walker, 1858) and _Graptopsaltria nigrofuscata_ (Motschulsky, 1866) (Matsukawa, 2011). According to a recent taxonomic study by Lee (2012), this species was transferred from the genus _Terpnosia_ Distant, 1892 to _Yezoterpnosia_ Matsumura, 1917. In the present study we focused on _Y. nigricosta_ as an environmental indicator species in Japan, representative of cool temperate forest insects. A population genetic study was therefore performed to elucidate the genetic structure and population demographic history of this species and to evaluate the impacts of climate change.

Recent next-generation sequencing (NGS)-based technology has enabled the efficient development of not only single-nucleotide polymorphisms but also microsatellite markers (Drechsler et al., 2013; Yamakawa et al., 2019). Thus, 17 polymorphic microsatellites were isolated from _Y. nigricosta_ through restriction site-associated DNA sequencing (RAD-seq) and their genetic variation was evaluated using two populations in Japan.

An adult individual was collected in Sapporo, Hokkaido for genome sequencing. In addition, eight individuals were collected from Hokkaido to Kyushu, covering the species’ range in Japan, for screening polymorphic loci. To evaluate the genetic diversity of the developed loci, 17 individuals were collected from the Sugadaira Research Station, Mountain Science Center, University of Tsukuba (36°31’ N/138°20’ E) in Nagano Prefecture; and 15 individuals were collected from the Hokkaido Research Center, Forestry and Forest Products Research Institute (42°59’ N/141°23’ E) in Hokkaido. The whole body or a foreleg of the samples was preserved with 99.5% ethanol and stored at –20 °C until DNA extraction.

Total genomic DNA for NGS library preparation was extracted from flight muscle of the individual collected in Sapporo, Hokkaido, using a commercial DNA extraction kit, NucleoSpin Tissue (Macherey-Nagel, Düren, Germany). Construction of the RAD-seq library and sequencing with a high-throughput DNA sequencing platform was conducted by Novogene (Beijing, China). Briefly, the genomic DNA was digested by the restriction enzyme EcoRI. After ligating adapters and random shearing, 300–500-bp fragments with both adapters were selected and amplified by PCR. Paired-end sequencing with 150 bp length at each end was performed on HiSeq X Ten (Illumina, San Diego, CA, USA). Raw sequence data were assembled with a cloud computing service of Read Annotation Pipeline (Nagasaki et al., 2013), provided by the DNA Data Bank of Japan (DDBJ). After preprocessing by trimming low-quality bases, de novo assembly was conducted with Velvet Version 1.2.10 (Zerbino and Birney, 2008). From assembled contigs, sequences including microsatellite(s) were extracted and primers for each locus were designed using the software QDD version 3.1 (Meglécz et al., 2014). From the list outputted, sequences which included one microsatellite composed of at least six repetitions of a 2–6-bp motif, but not any homopolymers or nanosatellites, were chosen. Because some of the contigs could be misassembled by Velvet, the accuracy of target sequences was confirmed by mapping raw sequence reads to the sequences extracted from the contigs with Geneious R10 (Biomatters, Auckland, New Zealand).

After preliminary PCR amplification tests for all 51 designed primer pairs, the level of polymorphism of amplified loci was checked using eight individuals collected from Hokkaido to Kyushu, covering the species’ range in Japan. PCR amplification was carried out using the Type-it Microsatellite PCR Kit (Qiagen, Valencia, CA, USA), based on two methods of fluorescent labeling of primers, depending on loci (Table 1). First, in the method using fluorescently labeled universal primers (Blacket et al., 2012), each 5-μl reaction contained 2.5 μl of 2× Type-it Multiplex PCR Master Mix, 0.5 μl of 0.01 μM forward tailed primer and 0.2 μM each of fluorescently labeled universal primer and reverse primer, 1.2 μl of RNase-free water and 2–10 ng/μl of genomic DNA. Second, the traditional approach in which forward primers have fluorescent dyes added was employed, with each 5-μl reaction containing 2.5 μl of 2× Type-it Multiplex PCR Master Mix, 0.5 μl of 0.2 μM each of forward and reverse primer, 1.0 μl of RNase-free water and 2–10 ng/μl of genomic DNA. In both methods, the amplification process consisted of an initial denaturation at 95 °C for 5 min; 30 cycles of denaturation at 95 °C for 30 s, annealing at 57 °C for 90 s and extension at 72 °C.
Yezoterpnosia nigricosta microsatellites

for 30 s; and a final extension at 60 °C for 30 min. Fragment sizes were determined using an ABI PRISM 3130 Genetic Analyzer (Applied Biosystems, Foster City, CA, USA) and GeneMarker software (SoftGenetics, State College, PA, USA) with GeneScan 500 LIZ dye Size Standard v2.0 (Applied Biosystems).

The genetic diversity of the loci that showed amplification and polymorphism was evaluated using 32 individuals from two populations of Y. nigricosta as mentioned above. Total genomic DNA of these samples was extracted using the DNeasy Blood & Tissue kit (Qiagen), and PCR and genotyping were conducted by the same methods as used in the polymorphism check mentioned above.

For each population, the number of alleles (A), expected heterozygosity (Hₑ) and fixation index (Fₑₛ) at each locus

Table 1. Characteristics of 17 microsatellite primers developed for Yezoterpnosia nigricosta

Locus	Primer sequences (5'-3')	Repeat motif	Ta (°C)	Fluorescent label*	Directly labeling locus-specific	Size range (bp)	DDBJ accession no.
TeNi002	F: TGCTGAAGAGGTATCCCACT	(AT)₆	57	PET		241–255	LC537600
	R: CCATCCCATTCGGTGCAAG						
TeNi003	F: AGCTAGCAGGAAGACATGTTG	(GC)₆	57	Tail A		101–103	LC537601
	R: ACTAGTGTGATAACCGGCCACT						
TeNi012	F: TTCTCCGCCTGAATAACAACA	(AC)₆	57	Tail A		185–187	LC537602
	R: CGCATTGCAAGGAATGTTGC						
TeNi019	F: TGATCGAATTCGGAAACAGGCA	(GAT)₆	57	FAM		103–127	LC537603
	R: TCCAAAAGGATCACAGTGGCA						
TeNi028	F: CCATGGTTTAGTTGTTATGGCC	(TG)₆	57	Tail D		152–158	LC537604
	R: ACATGTATCCAGACATGCATG						
TeNi029	F: TGGAAGGTAATGGCTTGGTGTG	(GC)₆	57	Tail D		158–160	LC537605
	R: TGGGACACATTCTTTCACGC						
TeNi032	F: TATCATCTGGGACGGGGGTG	(CA)₆	57	HEX		130–142	LC537606
	R: AAGCAACATCCTGTCATGCG						
TeNi038	F: TCACACGTGATGGAACACCGA	(CA)₇	57	Tail A		139–153	LC537607
	R: CGCAAGTAATACAGACAGTGG						
TeNi040	F: GCCTAGGATGAATGTGTACGC	(GT)₇	57	NED		109–122	LC537608
	R: AACAAAGATCGGACTGATCTAA						
TeNi041	F: TAAGTACCCGTCGAGGCTAG	(GT)₇	57	Tail C		134–140	LC537609
	R: AAGGCCGTTGTTACAGAGAT						
TeNi045	F: CGCTCACCCTCTTTAGTTCCA	(TG)₈	57	Tail D		109–131	LC537610
	R: AAGGTAACATAGGAAACAGTG						
TeNi047	F: GGGCTGTAGTCAGATTTGCC	(AG)₉	57	HEX		228–288	LC537611
	R: AAGCGGAAATTCAAGACGGGA						
TeNi048	F: AAATACAGCCTTGGCTGGA	(TG)₈	57	NED		160–168	LC537612
	R: TACTGACACTCGGTCAGCC						
TeNi050	F: GATGTATTTGACGGCCAGGAG	(GT)₉	57	HEX		80–86	LC537613
	R: CACCTTATAGGTTACGCTDGGA						
TeNi051	F: CGAGATGGCTAGACAGAAGGT	(AG)₉	57	FAM		92–122	LC537614
	R: CTTGCGGGCCTTAGATTGCC						
TeNi052	F: GTAGAGGGTCGTCAGCTGGTG	(GA)₉	57	FAM		163–169	LC537615
	R: ACAGGGACGTGTTTACTGCA						
TeNi053	F: TTATCGGAGGAGGAGAAAGC	(AC)₁₀	57	Tail B		165–195	LC537616
	R: CGGCTGGAAGCTTTAAGTG						

Tₐ, annealing temperature; * sequence of the fluorescent labels: Tail A = 5'-GCCTCCCTCCGCGCA-3', Tail B = 5'-GCCTTGC-CAGCCCGC-3', Tail C = 5'-CGGAGAGCCGAGAGGTG-3', Tail D = 5'-CAGGACCAGGTACGGTGTG-3'.
were evaluated using FSTAT version 2.9.3 (Goudet, 1995). The deviation of \(F_{ST} \) value from zero was tested by 1,000 randomizations at each locus and population using FSTAT to check Hardy–Weinberg equilibrium. In addition, genetic differentiation between the two populations was evaluated by calculating \(F_{ST} \) (Weir and Cockerham, 1984) and its standardized value, \(F'_{ST} \), which ranges from 0 to 1 (Meirmans and Hedrick, 2011), using GenAlEx version 6.5 (Peakall and Smouse, 2012).

A total of 22,233,102 read pairs (approximately 6.7 Gb) obtained from RAD-seq were assembled into 2,401,270 contigs (maximum contig size = 7,699 bp, minimum contig size = 45 bp, N50 contig size = 218 bp). From the contigs, 793 sequences containing microsatellites were extracted by the QDD pipeline. Next, 135 sequences with a pure microsatellite composed of six or more repetitions of a motif were selected. After excluding misassembled sequences, 51 loci remained. Finally, 17 polymorphic loci with clear fragment patterns that could be easily genotyped were obtained (Table 1). The number of alleles across the two populations was 1–15 (mean = 4.294) and three loci were not polymorphic in the Sapporo population (Table 2). \(H_E \) and \(F_{IS} \) per locus were 0.000–0.914 (mean = 0.519) and −0.225–0.456 (mean = 0.108), respectively (Table 2). Although \(F_{IS} \) values showed negative and positive values, these values did not significantly deviate from 0, suggesting they were in Hardy–Weinberg equilibrium. \(F_{ST} \) and \(F'_{ST} \) between the two populations were 0.111 and 0.237, respectively, suggesting moderate genetic differentiation, probably due to a distribution shift and demographic history of cool temperate forests in Japan, in relation to the Quaternary ice ages (Tsuda et al., 2015).

Overall, 17 polymorphic microsatellite markers were developed for \textit{Y. nigricosta}, which will be useful for population genetics studies of this species. Additional samples covering the species’ range will be collected and examined in the future, and the genetic structure and past demographic history of the species will be inferred using the loci developed here, in order to evaluate the impacts of climate change and understand the life history strategy and evolution of cicadas.

We thank Prof. Shin-ichi Akimoto, Prof. Hitoshi Araki and Dr. Izumi Yao for their continuous support. This work was supported by Japan Society for the Promotion of Science KAKENHI Grant Number 15K18603 to T. K., and the fund of Nagano Prefecture to promote scientific activity to K. Y. The raw read data of the RAD-seq obtained in this study were deposited at DDBJ Sequence Read Archive with the accession no. DRR227422.

Table 2. Genetic variation of the 17 microsatellite loci for two populations of \textit{Yezoterpnosia nigricosta}

Locus	Sugadaira population (N = 17)	Sapporo population (N = 15)
	\(A \) \(H_E \) \(F_{IS} \)	\(A \) \(H_E \) \(F_{IS} \)
TeNi002	7 0.673 0.301	3 0.657 0.188
TeNi003	2 0.500 0.125	2 0.514 −0.167
TeNi012	2 0.257 −0.143	2 0.238 −0.12
TeNi019	5 0.665 −0.061	5 0.664 −0.004
TeNi028	4 0.285 −0.095	1 0.000 NA
TeNi029	2 0.165 −0.067	1 0.000 NA
TeNi032	7 0.743 0.287	4 0.574 0.303
TeNi038	5 0.590 0.152	3 0.355 0.436
TeNi040	6 0.629 0.251	5 0.710 0.154
TeNi041	4 0.324 0.273	1 0.000 NA
TeNi045	9 0.840 0.090	3 0.381 −0.225
TeNi047	15 0.914 0.292	8 0.843 0.051
TeNi048	5 0.798 0.263	5 0.693 −0.058
TeNi050	3 0.540 0.456	3 0.481 0.03
TeNi051	5 0.526 0.441	3 0.605 0.008
TeNi052	3 0.507 −0.043	3 0.555 0.279
TeNi053	4 0.627 −0.196	6 0.795 0.162

N, number of analyzed individuals; \(A \), number of alleles; \(H_E \), expected heterozygosity; \(F_{IS} \), fixation index; NA, not available.

REFERENCES

Blacket, M. J., Robin, C., Good, R. T., Lee, S. F., and Miller, A. D. (2012) Universal primers for fluorescent labelling of PCR fragments—an efficient and cost-effective approach to genotyping by fluorescence. Mol. Ecol. Resour. 12, 456–463.

Colwell, R. K., Brehm, G., Cardelús, C. L., Gilman, A. C., and Longino, J. T. (2008) Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322, 258–261.

Drechsler, A., Geller, D., Freund, K., Schmeller, D. S., Künzel, S., Rupp, O., Loyau, A., Denoël, M., Valbuena-Ureña, E., and Steinfartz, S. (2013) What remains from a 454 run: estimation of success rates of microsatellite loci development in selected newt species (\textit{Calotriton asper}, \textit{Lissotriton helveticus}, and \textit{Triturus cristatus}) and comparison with Illumina-based approaches. Ecol. Evol. 3, 3947–3957.

Goudet, J. (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J. Hered. 86, 485–486.

Hallmann, C. A., Sorg, M., Jongejans, E., Siepel, H., Hofland, N., Schwan, H., Stenmans, W., Müller, A., Sumser, H., Hörren, T., et al. (2017) More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS One, 12, e0185809.

Hayashi, M., and Saisho, Y. (2011) The Cicadidae of Japan. Seibundo Shinkosha, Tokyo (in Japanese).

Lee, Y. J. (2012) Resurrection of the genus \textit{Yezoterpnosia} Matsumura (Hemiptera: Cicadidae: Cicadini) based on a new definition of the genus \textit{Ternopsistos} Distant. J. Asia Pac. Entomol. 15, 255–258.

Lister, B. C., and Garcia, A. (2018) Climate-driven declines in arthropod abundance restructure a rainforest food web. Proc. Natl. Acad. Sci. USA 115, E10397–E10406.

Meglécz, E., Pech, N., Gilles, A., Dubut, V., Hingamp, P., Trilles, A., Grenier, R., and Martin, J.-F. (2014) QDD version 3.1: a user-friendly computer program for microsatellite selec-
Yezoterpnosia nigricosta microsatellites

Meirmans, P. G., and Hedrick, P. W. (2011) Assessing population structure: F_{ST} and related measures. Mol. Ecol. Resour. 11, 5–18.

Menéndez, R., Megías, A. G., Hill, J. K., Braschler, B., Willis, S. G., Collingham, Y., Fox, R., Roy, D. B., and Thomas, C. D. (2006) Species richness changes lag behind climate change. Proc. Biol. Sci. 273, 1465–1470.

Nagasaki, H., Mochizuki, T., Kodama, Y., Saruhashi, S., Morizaki, S., Sugawara, H., Ohyanagi, H., Kurata, N., Okubo, K., Takagi, T., et al. (2013) DDBJ read annotation pipeline: a cloud computing-based pipeline for high-throughput analysis of next-generation sequencing data. DNA Res. 20, 383–390.

Peakall, R., and Smouse, P. E. (2012) GenAIEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28, 2537–2539.

Sánchez-Bayo, F., and Wyckhuys, K. A. G. (2019) Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 232, 8–27.

Thomas, J. A., Telfer, M. G., Roy, D. B., Preston, C. D., Greenwood, J. J. D., Asher, J., Fox, R., Clarke, R. T., and Lawton, J. H. (2004) Comparative losses of British butterflies, birds, and plants and the global extinction crisis. Science 303, 1879–1881.

Tsuda, Y., Nakao, K., Ide, Y., and Tsumura, Y. (2015) The population demography of Betula maximowicziana, a cool-temperate tree species in Japan, in relation to the last glacial period: its admixture-like genetic structure is the result of simple population splitting not admixing. Mol. Ecol. 24, 1403–1418.

Weir, B. S., and Cockerham, C. C. (1984) Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370.

Yamakawa, U., Kaneko, S., Imai, R., Faulks, L. K., Kon, K., Kyogoku, D., Isagi, Y., and Tsuda, Y. (2019) Development of microsatellite markers for the endangered sleeper Eleotris oxycephala (Perciformes: Eleotridae). Genes Genet. Syst. 94, 219–224.

Zerbino, D. R., and Birney, E. (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18, 821–829.