Role of the gut microbiome in chronic diseases: a narrative review

Amrita Vijay and Ana M. Valdes

© The Author(s) 2021, corrected publication 2022

European Journal of Clinical Nutrition (2022) 76:489–501; https://doi.org/10.1038/s41430-021-00991-6

WHAT IS CURRENTLY KNOWN ON THE TOPIC
The gut microbiome, i.e., the community of bacteria and other microorganisms living in the human gut, has been implicated both directly and indirectly (mediating the effects of diet) on human health [1, 2]. The associations between gut microbiome composition and disease status have been widely reported, while recent studies have demonstrated a role for the gut microbiome in influencing remote organs, mucosal, and immune function [3, 4]. Considerable effort is currently focused on understanding the natural history of microbiome development in humans, the context of health outcomes, in parallel with improving our knowledge of microbiome–host molecular interactions. These efforts ultimately aim to develop effective approaches to rehabilitate perturbed human microbial ecosystems as a means to restore health and prevent disease. This review details the role of the gut microbiome in chronic diseases (Fig. 1) and ways it can be modulated for the management or prevention of chronic conditions.

Differences in gut microbiome composition and function have been associated with a variety of chronic diseases ranging from gastrointestinal inflammatory and metabolic conditions to neurological, cardiovascular, and respiratory illnesses. The aim of this narrative review is to describe the associations between gut microbiome and various types of chronic diseases and to discuss the links to habitual diet and dietary components (Table 1).

Gut microbiome and autoimmune disease
The pathogenesis of autoimmune diseases (AIDs) is not only attributed to genetic susceptibilities but also environmental factors, among which, a disturbed gut microbiota has attracted increasing attention. Compositional and functional changes of gut microbiota have been reported in various autoimmune diseases, and increasing evidence suggests that disturbed gut microbiota contributes to their immunopathogenesis.

Rheumatoid arthritis (RA). Rheumatoid arthritis (RA) is a systemic autoimmune inflammatory condition that manifests in joint damage. It was recently demonstrated that different environmental factors are involved in the development of both intestinal/oral dysbiosis and arthritis onset and outcome, among which the most relevant are diet, smoking, and infections [5, 6]. The observation that germ-free mice are protected from development of experimental arthritis [7] suggests a possible role for the microbiome in the pathogenesis of this disease. The composition of the gut microbiota in RA patients free of therapy is severely altered compared to healthy controls. Chen et al. reported that compared with healthy controls, patients with RA show decreased gut microbial diversity, which correlates with autoantibody levels and disease duration [8]. In addition, at the compositional level, patients with RA show an increased abundance of Prevotella species, including Prevotella copri [8, 9], and recent preclinical phase studies on RA patients in European countries were shown to harbor a high abundance of this species in the intestine, suggesting that dysbiosis precedes the development of arthritis [10]. In contrast, Faecalibacterium, which is generally recognized as a beneficial microbe, is decreased in RA patients. Furthermore, the relative abundance of Collinsella was found to be increased in RA patients [11]. Interestingly, inoculation of Collinsella into collagen-induced arthritis (CIA)-susceptible mice induces severe arthritis. In vitro experiments showed that Collinsella Aerofaciens increases gut permeability and induces IL-17A expression, a key cytokine involved in the pathogenesis of RA, suggesting that Collinsella is a candidate arthritogenic bacterium in the human intestine [11]. In summary, Prevotella copri [12] and Collinsella are the dominant gut microbiota in patients with early RA and may be involved in its pathogenesis.

Recent links have been made between dietary intake of short-chain fatty acids (SCFAs) and autoimmune arthritis in mice, wherein SCFAs play an important role in the suppression of inflammation in RA [13, 14]. Mice deficient for SCFA receptors showed exacerbated inflammation in modes of RA [14]. Butyrate, one of the most abundant SCFAs, acts as an endogenous histone deacetylase (HDAC) inhibitor and has been shown to decrease inflammation in animal models of RA and other inflammatory diseases [15]. A recent study has revealed a role for intestinal barrier function, and specifically for zonulin, a peptide that controls epithelial tight junction permeability, in regulating the onset of joint disease in mice with collagen-induced arthritis (CIA) and potentially also in patients with RA [16]. Increased levels of...
zonulin have been associated with leaky intestinal barrier, dysbiosis, and inflammation. Restoration of the intestinal barrier in the period before clinical arthritis, either by dietary supplementation with the SCFA butyrate or pharmacological agents such as a zonulin antagonist may help delay disease onset and reduce the severity of RA.

Type 1 diabetes (T1D). In humans, intestinal microbiota alterations, including loss of bacterial diversity, preceded the onset of metabolic symptoms associated with T1D [17]. Previous studies have linked several facets of gut health with the onset of T1D in humans and animal models [18–20]. In animal models, antibiotic-induced dysbiosis, altered microbial lipid metabolism, and suppressed enteric Th17 and T-reg cell populations have led to increased incidence of T1DM-like disease in mice [21]. Various human-based studies have also reported altered intestinal microbiota in connection to T1D from several ethnic groups [17, 22–24]. The common findings from these studies include increased numbers of Bacteroides species, and deficiency of bacteria that produce SCFAs [25, 26] in cases of T1D. Specifically, the butyrate producer Faecalibacterium prausnitzii has been found to be decreased in abundance in children with diabetes-related autoantibodies [26].

In addition, increased intestinal permeability [22] and decreased microbial diversity [17] before T1D diagnosis have been reported. A multicenter case–control study of 783 children, showed that the microbiomes of healthy children contained more genes that were related to the fermentation and the biosynthesis of SCFAs, but these were not consistently associated with the abundance of particular taxa across geographically diverse clinical centers, suggesting that microbial function rather than composition was associated more with T1D [27].

![Fig. 1 Schematic representation of the association of the composition of the gut microbiome and gut-derived metabolites with chronic diseases. The solid lines represent negative associations and the dashed lines represent positive associations of the disease phenotype with gut microbes and metabolites.](image)

Table 1. Summary of key findings outlining the role of the gut microbiome in chronic disease.
Key messages
Gut microbiome composition is significantly different in healthy individuals compared to affected individuals with a broad range of chronic diseases. Lower microbiome diversity appears to be a common theme across many of the diseases.
Auto-immune diseases, in common with cardiometabolic diseases and irritable bowel syndrome, show low abundances of SCFA producing bacteria such as *Bifidobacterium*, *Faecalibacterium* sp, *Roseburia* sp, or *Coprococcus eutactus*.
High abundances of pathogenic bacteria (such as *E. coli*, *S. aureus*, and *C. difficile*) are common in some of these diseases.
SCFAs but also gut microbiome metabolites are involved in the health effects of gut microbiome composition and microbial metabolites can be better predictors of health outcomes than microbiome diversity.
Gut microbiome composition is modifiable by various therapeutic strategies. Dietary interventions can result in robust changes in both gut microbiome composition and function and in the corresponding health effects.
The protective effects of SCFAs in T1D have been elucidated in animal studies that have looked at nonobese diabetic (NOD) mouse models [28]. For example, NOD mice fed specialized diets resulting in high bacterial release of acetate and butyrate were almost completely protected from T1D [28] mainly via the immune-modulating effects of SCFAs. In animal models of autoimmune diabetes, increased gut permeability precedes the development of diabetes, and environmental factors that modulate the permeability thereby modulate the incidence of the disease. Gut permeability appears to be an important factor in the relationship between the intestinal microbiota and the development of T1D. Both gut permeability and inflammation have been linked to the development of T1D in humans [26, 29].

Atopic eczema. Atopic eczema, a chronic inflammatory skin disorder, is most prevalent in early childhood. The pathogenesis of eczema has been attributed to skin-barrier dysfunctions, immune dysregulation as well as environmental–host–microbial interactions [30]. Environmental factors and modern lifestyle trends have been shown to indirectly contribute to pathogenesis of the disease through modulation of the gut microbiome [31].

Previous studies have found that the gut microbiome in early life is associated with age of onset, severity, and remission of atopic eczema [32, 33]. However, the association between gut microbiome diversity and atopic eczema development remains contradictory with few studies reporting an inverse relationship between gut diversity and the severity of atopic eczema [34, 35].

The development of atopic eczema may instead be driven by the interactions between specific gut microbiome signatures, the immune system, and the host. Specifically, in patients with atopic eczema, the proportion of Clostridia, Clostridium difficile, Escherichia coli, and Staphylococcus aureus in the gut microbiome is higher than in healthy controls, whereas that of

European Journal of Clinical Nutrition (2022) 76:489 – 501
infection in such patients or a change in the intestinal environment. By-products from these potentially harmful bacteria have been associated with some of the classical symptoms of IBS, including abdominal pain, bloating, and diarrhea [55].

The most consistent finding of a potentially "protective" bacterial group in IBS patients was found in the group of uncultured *Clostridiales*. Although the association is not causal and the mechanism of a protective effect in IBS symptoms is unclear. The genus *Faecalibacterium*, especially *Faecalibacterium prausnitzii*, which belongs to the similar order as the uncultured Clostridia, has been associated with maintaining gut mucosal health. This bacterium was considered as the main butyrate-producing and anti-inflammatory organism [56] and reduced IBS symptoms via mediation of IL-17 expression in a rat model [57, 58], as well as maintained gut-barrier integrity [59]. Furthermore, the genus *Bifidobacterium* was decreased significantly in IBS patients regardless of IBS subtype. Therefore, it was another promising potential genus in ameliorating IBS symptoms. A systematic review of probiotics in IBS has highlighted that *Bifidobacterium*-containing interventions reduce IBS symptoms, which are not seen in products that contain *Lactobacillus* alone [60].

Management of IBS symptoms can be achieved by the restriction of fermentable oligosaccharides, disaccharides, mono- saccharides, and polyols (FODMAP). Clinical studies have now shown the clinical efficacy of the low FODMAP diet in reducing IBS symptoms [61]. One consequence of this dietary intervention is its impact on gut microbiome composition as FODMAPs can modulate microbial composition and microbial metabolite production [62] and not all IBS subjects respond and there may be challenges with implementing a low FODMAP diet. Given the role of the microbiome in metabolizing poorly absorbed carbohydrates that depend on a person’s microbiome composition, that there has been increasing attention on the potential role of the gut microbiome in predicting low FODMAP diet efficacy [63], and recent data suggest that there are potential baseline differences in microbiome activity and composition, which can distinguish between low FODMAP diet responders and non-responders [63].

Inflammatory bowel disease (IBD). Long-lasting inflammation and ulceration of the colon are predominantly traits characteristics of IBD, which are features of Crohn’s disease (CD) and ulcerative colitis (UC). IBD, encompassing both ulcerative colitis and Crohn’s disease, characterized by chronic and relapsing inflammation of the GI tract. The onset of both conditions is, in general, not thought to be due to a single causal organism but by a general microbial dysbiosis in the gut [64]. A role for gut microbes in the manifestation of IBD has been indicated by a number of studies and the gut microbiota are thought to be essential components in the development of mucosal lesions [65]. The alterations in the composition and functionality of the gut microbiota in IBD compared with non-IBD controls have been shown previously. In general, microbial dysbiosis in IBD is characterized by a decrease in diversity and stability of the microbiota [66–69]. Specifically, a decrease in Firmicutes and an increase in Proteobacteria taxa is the most consistent outcome from IBD microbiome studies. Furthermore, a common signature of microbial dysbiosis among IBD patients, especially in (active) CD, is the decreased abundance of Firmicutes bacteria belonging to the families Ruminococcaceae and Lachnospiraceae as opposed to healthy control samples [70–73]. Both families are important functional members of the human gut microbiota since most butyrate-producing bacteria from the human gut belong to them. Therefore, depletion of these bacterial families in IBD can be linked to the observed disturbance on a functional level, including a lower butyrate-producing capacity of the IBD microbiota [74]. In addition, a metagenomic and proteomics study in ileal CD microbiota demonstrated an underrepresentation of genes for SCFA production and a decrease in metagenomic reads and proteins of important butyrate producers *Faecalibacterium prausnitzii* and *Roseburia* sp. [75].

Butyrate has therapeutic potential in IBD because it serves as the main energy source for colonocytes, enhances epithelial barrier integrity, and inhibits inflammation. Recent observational and interventional studies have explored an alternative approach of probiotics, which involves the consumption of butyrate-producing bacteria to increase in situ butyrate production [76–78]. This may suggest that targeting microbial dysbiosis by supplementing butyrate-producing bacteria could restore gut homeostasis and health in IBD.

Gut microbiome composition and cardiometabolic diseases

Cardiovascular disease. The alterations in gut microbiota composition and the metabolic potential of gut microbiota have been identified as a contributing factor in Cardiovascular Disease (CVD) development [79]. Recently, mechanistic links between the gut microbiota and the severity of myocardial infarction have been reported in rats [80, 81]. Hypertension is the most prevalent modifiable risk factor for CVD. However, results from human studies remain scarce and conflicting. In the TwinsUK cohort [82], self-reported hypertension was not related to 68 various microbiota markers. Furthermore, in the CARDIA study of 529 individuals a low diversity alpha diversity resulted in a modest decrease in objectively measured systolic blood pressure (BP) [83]. More recently, the association between the gut microbiome and hypertension was studied on the well-phenotyped population of 6953 individuals as part of the FINRISK study [84] using standardized BP measurements. Although the associations between overall gut taxonomic composition and BP were weak, in individuals with hypertension demonstrated changes in several microbiota genera, with most of these genera belonging to the Firmicutes phylum. Interestingly, most of the negative associations with BP belonged to the *Lactobacillus* species, specifically the greater abundance of *Lactobacillus paracasei*, a known probiotic that was associated with lower mean arterial pressure and lower dietary sodium intake which has also been reported previously by Wilck et al. [85].

Metabolism of certain dietary components such as choline and carnitine, which comprise a large component of a Western diet, has been shown to increase risk of cardiovascular disease mainly via the metabolism of these compounds to produce trimethylamine oxide (TMAO) [86, 87]. Gut-derived metabolites such as SCFAs have been recently shown to modulate blood pressure [88]. The suggested mechanism of SCFAs to modulate blood pressure is via the host G-protein coupled receptor (GPR) pathways that impact renin secretion and blood pressure regulation [88]. A series of studies using GPR41 knockout mice further supports involvement of these receptors in blood pressure control. This suggests that the gut microbiota are potentially intertwined functionally to control blood pressure, and their dysfunctions could be associated with hypertension. A recent study found that a Mediterranean diet which typically encompasses a high fiber diet followed by fasting was shown to reduce systolic blood pressure, need for antihypertensive medications, body mass index at three months post intervention compared to following a Mediterranean diet alone [89]. These data highlight fasting followed by a shift to a health-promoting diet as a promising non-pharmacological intervention for patients with hypertension and other cardiometabolic diseases.

In rodent model studies, the administration of probiotics such as *Lactobacillus plantarum* and *Lactobacillus rhamnosus* was associated with improved ventricular function and attenuated heart failure after myocardial infarction [80, 90]. Furthermore, a meta-analysis demonstrated a significant decrease in blood pressure in patients treated with probiotics [91]. Lastly, supplementation of atherosclerosis-prone mice with A. muciniphila, a mucus colonizer protected against atherosclerosis development induced by feeding a Western diet [92]. These observations may...
suggest that probiotics use, in combination with standard medication, could offer additional benefits in the prevention and management of cardiovascular events.

Type 2 diabetes. Adults with T2DM have an altered gut microbiota composition compared to healthy controls. However, it is unclear whether these changes represent a cause or an effect and required further investigation. Among the commonly reported findings, the genera of *Bifidobacterium, Bacteroides, Faecalibacterium, Akkermansia*, and *Roseburia* were negatively associated with T2D, while the genera of *Ruminococcus, Fusobacterium, and Blautia* were positively associated with T2D [93, 94]. A large metagenome-wide association study found a moderate degree of gut dysbiosis in patients with T2D [95]. Of the identifiable bacterial species, the control samples were enriched in various butyrate-producing bacteria and increased abundance of Lactobacillus spp., while patients with T2D were characterized by an increase in certain opportunistic pathogens, such as a number of *Clostridium* spp. [96]. Overall, T2DM was associated with a reduced abundance of butyrate-producing bacteria and SCFAs, in particular butyrate which has been linked with insulin sensitivity [9, 96, 97]. The link between SCFAs and insulin sensitivity lies in the ability of SCFAs to trigger the secretion of GLP-1 by intestinal L-cells via specific G protein receptors (GPR41, GPR43) which has a substantial impact on pancreatic function and insulin release, as well as central effects regulating appetite [98, 99].

In addition to SCFAs, many other metabolites have been implicated in the role of gut microbiome composition and risk to T2DM. We have in fact reported reproducible associations between serum metabolites of microbial origin and gut microbiome alpha diversity in 1018 individuals from the Twins UK cohort [100]. The circulating levels of these metabolites were combined into a microbiome-metabolite score using a linear combination. Importantly the association of the microbiome metabolite score with cardiometabolic traits was stronger than the association between gut microbiome diversity and the same traits. Specifically, the microbiome metabolite score was associated with prevalence and incidence of T2DM in the discovery cohort and this result was replicated in a multi-ethnic independent US cohort (n = 1522) showing the relevance of microbiome-derived metabolites in predicting risk and supporting their role as the mechanistic link between microbiome composition and health [100].

Non-alcoholic fatty liver disease (NAFLD). Non-alcoholic fatty liver disease (NAFLD) and the more advanced stage non-alcoholic steatohepatitis (NASH) are common comorbidities of obesity and T2DM with an increasing burden for society [101]. There is an increasing body of evidence linking the gut-liver axis to the development of NAFLD. Gut dysbiosis is directly related with the liver through the portal vein [102], whereas butyrate and propionate were enriched in fecal samples from adults with more advanced stages of NAFLD (i.e. fibrosis) [110]. The decrease in the abundance of *F. prausnitzii* and *Roseburia* were negatively associated with T2D in the discovery cohort and this result was replicated in a multi-ethnic independent US cohort (n = 1522) showing the relevance of microbiome-derived metabolites in predicting risk and supporting their role as the mechanistic link between microbiome composition and health [100].

Chronic kidney disease (CKD)

There has been a growing interest in studying the composition of the gut microbiota in patients with CKD as well as the mechanisms by which gut dysbiosis contributes to CKD progression. The influence of the gut microbiota on the gut–kidney axis acts in a reciprocal way with either CKD significantly modifying the composition and functions of the gut microbiota. Alternatively, the gut microbiota is able to manipulate the processes leading to CKD onset and progression through inflammatory, endothelial, and neurologic pathways. Therefore, understanding the complex interaction between these two organs may provide novel interventions to prevent the progression of CKD by targeting the gut microbiota.

The existence of intestinal microbiota alterations such as decrease of microbial richness, diversity, and uniformity has been related to CKD [118]. Patients with CKD show a lower colonization of *Bifidobacterium sp, Lactobacillaceae, Bacteroidaceae, Akkermansia*, and *Prevotellaceae* genera, and higher intestinal levels of *Enterobacteriaceae*, particularly *Enterobacter, Klebsiella*, and *Escherichia*, and also increased levels of *Enterococci* and *Clostridium perfringes* [119, 120]. The decrease in the abundance of *Akkermansia muciniphila*, an important probiotic, in patients with CKD negatively correlated with plasma IL-10 levels, suggesting that an altered microbiota in CKD may promote chronic systemic inflammation [121]. This chronic systemic inflammation state represents a major risk factor for CKD progression.

CDK patients are characterized by decreased consumption of dietary fibers that are required for SCFA production. Lack of dietary fibers leads to increased amino nitrogen, which can be transformed into uremic toxins by the gut microbiota [122]. Patients with CDK are characterized by an imbalance between fermentative and proteolytic microbiota in favor of the latter. The imbalance in favor of proteolytic species is related to individuals with hepatic steatosis and controls, there are, however, large discrepancies found across studies with varying results in the literature. However, a common microbial signature that has been associated with other metabolic diseases is the reduction of levels of the butyrate producer *F. prausnitzii* in the more advanced forms of NAFLD [106, 113].

Several hypotheses have provided mechanistic insights into the pathways by which the gut microbiota might contribute to NAFLD development and its disease progression. Specific microbial species such as *Collinsella sp.* have been shown to metabolize bile acids to oxo-bile acid intermediates which may increase intestinal permeability and contribute to the development of NAFLD [114, 115]. Increased intestinal permeability may lead to lipopolysaccharide (LPS) release to the host, which can trigger tissue and systemic inflammation. Furthermore, the action of microbially-produced metabolites (including TMAO, choline or ethanol) and bile acid signaling can also affect host immunity [108, 116, 117]. Interestingly, unlike other diseases, SCFAs appear to prevent but also promote the development of NAFLD and NASH depending on the signaling pathway or mechanism they activate. Amongst the SCFAs, acetate was found to be enriched in fecal samples from adults with more advanced stages of NAFLD (i.e. fibrosis) [110]. Overall, the role of SCFAs in the gut–kidney axis acts in a reciprocal way with either CKD significantly modifying the composition and functions of the gut microbiota. Alternatively, the gut microbiota is able to manipulate the processes leading to CKD onset and progression through inflammatory, endothelial, and neurologic pathways. Therefore, understanding the complex interaction between these two organs may provide novel interventions to prevent the progression of CKD by targeting the gut microbiota.
detrimental effects and also has a fundamental role in the progression of CKD [123]. Moreover, the main SCFAs especially butyrate, were found to be reduced in the feces and serum of patients during CKD development [123]. Further research is however needed to determine whether increasing levels of circulating SCFAs would provide any direct clinical benefit in patients with CDK.

Several experimental and clinical studies have shown the beneficial effects of prebiotic, probiotic, and symbiotic supplementation on gut microbiota—renal axis [124]. These have emerged as a potential therapeutic intervention to restore the imbalance of the gut microbiota, reduce inflammation or oxidative stress markers and modulate gut-derived uremic toxins, such as P-cresyl sulfate (PCS), indoxyl sulfate (IS), and trimethylamine N-oxide (TMAO), which have been implicated in the progression of CKD [125–127].

Mental health disorders

Gut microbes have been shown to also influence neurological functions and these links have been termed the “gut—brain axis” [128]. The gut microbiota communicates with the brain through three major pathways—the neural pathway (vagus nerve, enteric nervous system), the immune pathway (cytokines), and the endocrine pathway (HPA axis, gut hormones). Impaired functioning of this connection can lead to manifestation of mental disorders. Common gut microbial species belonging to the phylum Firmicutes and Actinobacteria, and the genera Bacteroides and Bifidobacterium, may be contributing to mental health disorders [129]. Different mental disorders are characterized by the differential gut microbial community that is generally predominated by a bacterial genus or a family as summarized in Table 2. Notably, in some of the disorders, there is an overabundance of specific microbial species. For example, abundance of Lactobacillus sp. and Bifidobacterium sp. in disorders like schizophrenia (SCZ) [130] and attention-deficit hyperactivity disorder (ADHD) [131], respectively. The probable reason for this can be attributed to the complexity of the gut microbiota.

Gut microbiota modulates the gut–brain axis via numerous direct and indirect ways. This includes maintaining gut permeability by modulating the integrity of tight junctions in the gut epithelium, producing a wide variety of metabolites including neurotransmitters, SCFAs, and amino acids. These gut-derived metabolites can affect the central nervous system by acting locally on the enteric nervous system or enteric circulation and affect the brain. Furthermore, alteration of the levels of gut microbial metabolites, such as SCFAs, ammonia, tryptophan, and histamine have shown to be associated, directly or by breaking down into neuroactive metabolites, with various neurological conditions like Parkinson’s disease (PD) [132], anorexia nervosa (AN) [133], Alzheimer’s disease (AD) [134], autism spectrum disorder (ASD) [135], and chronic stress and depression [136]. However, whether this association is cause or effect in the mental health disorders is the case, or effect of the alterations in gut microbiota and its functions is not emphatically clear and requires more studies.

Further, considering the evidence, several studies have been undertaken to specifically target the gut microbiota through different therapeutic interventions including administration of pre- and probiotics (psychobiotics) to treat mental health disorders and/or their symptoms [137, 138]. Human-intervention studies with psychobiotics such as the probiotic combinations of lactobacilli and Bifidobacteria showed significant reduction in psychological distress [139], improved cognition and communication among patients with AD [140] and ASD [141], and improving symptoms among PD patients [142]. Based on the promising effects of psychobiotics on modulating the gut–brain axis, more clinical trials are currently being conducted to identify the bacterial strains as potential candidates for treatment of mental disorders.

The gut microbiome as a therapeutic target in chronic diseases

Given the tight interplay between enteric microbial symbionts and host immunity (Fig. 1), efforts have focused on implementing various strategies targeting the gut microbiota to manage or prevent chronic diseases. Clinical approaches to modify gut microbiota generally focus on depleting overabundant members or the overall composition. For example, using antibiotics or antifungal agents, modulation through diet, or supplementation with live microbes (single or mixed species). There are a variety of proposed therapeutic approaches, such as dietary modifications, prebiotics, probiotics, and TMAO-synthesis inhibitors, to target the gut microbiome. More recently, fecal microbial transplantation (FMT) has been used in a range of infectious, neurological, and GI conditions, with promising outcomes (Table 3).

More recently, the composition of the gut microbiome has been implicated in predicting the severity of COVID-19 possibly via its immune-modulatory properties. More specifically, gut commensals with known immunomodulatory potential, such as Faecalibacterium prausnitzii, Eubacterium rectale, and Bifidobacterium adolescentis, were found to be significantly under-represented in patients with COVID-19 compared with healthy controls and were also associated with disease severity after taking account of antibiotic use and patient age [143]. Furthermore, the microbial imbalance found in the COVID patients was also associated with raised levels of inflammatory cytokines and blood markers of tissue damage, such as C-reactive protein and certain enzymes. Based on these findings, increasing the levels of beneficial gut species depleted in COVID-19 could serve as a novel avenue to mitigate severe disease, highlighting the importance of the gut microbiota in the pathophysiology of COVID-19.

Despite encouraging evidence from animal models in which inflammatory conditions were successfully treated via gut microbiota manipulation, data from human trials is less conclusive. Findings from recent work showed that the ability of an introduced microbe to successfully colonize the gut depends on the structure of the resident gut microbiota [144], a factor that has so far been overlooked in microbial intervention-based clinical trials and that might explain discrepancies in animal models and human clinical findings.

Table 2. Studies (or reviews) on non-dietary interventions targeting the gut microbiome.

Therapy	Indication	Type of study/Reference
FMT	T2D/metabolic syndrome	Interventional studies [163, 151]
FMT	or C difficile infection –	Systematic review of RCTs [164]
FMT	for ulcerative colitis –	Systematic review of RCTs [165]
FMT	T1D –	RCT in [166]
TMAO synthesis inhibitors	Lowering cholesterol and bile acid metabolism	Preclinical [167]
TMAO synthesis inhibitors	Chronic kidney disease	Preclinical [168]
TMAO synthesis inhibitors	Heart disease	Preclinical [169]
Table 3. Summary table of key findings.

Disease group	Specific disease	Gut microbes	Main findings
Autoimmune diseases	Rheumatoid arthritis	*Prevotella copri*, *Collinsella sp.*	Increased in abundance [12, 13]
		Faecalibacterium sp.	Decreased in abundance, links to SCFA production [25]
Type-1 diabetes	*Diaister invisus*, *Gemella sanguinis*, *Bifidobacterium longum*	Increased in abundance (children), gut permeability [25]	
	F. prausnitzii	Decreased in abundance (children), butyrate (SCFA) production [28]	
Atopic eczema	*Clostridium difficile*	Increased in abundance [37]	
	Escherichia coli	Increased in abundance, eosinophilic inflammation [37]	
	Staphylococcus aureus	Increased in abundance [37]	
	Bifidobacteria spp.	Decreased in abundance [37]	
	Bacteroides spp.	Decreased in abundance [38, 39]	
	Coprococcus eutactus	Decreased (in children), linked to butyrate production	
	F. prausnitzii	Increased in abundance, SCFA production [41]	
Atopic asthma	Various—*Clostridium*, *Pediococcus*, *Escherichia*, *Klebsiella*, *Morganella*, and *Proteus* spp.	Increased in abundance, increased bioamine (histamine) production [55]	
	Enterococcus faecalis, *Streptococcus* spp., *Bifidobacterium bifidum*, *Lactobacillus* spp.	Increased in abundance, increased bioamine (histamine) levels, increased epoxide hydrolase production of oxylipins (12,13-diHOME) [55, 56]	
Gut inflammation disorders	*Ruminococcus* spp., *Candida* spp., *Dorea* spp.	Increased in abundance [62]	
	Bifidobacteria spp.	Decreased significantly in abundance (all IBS subtypes) [62, 68]	
	Faecalibacterium spp.	Decreased in abundance, anti-inflammatory, butyrate production [62, 64, 65]	
	Enterobacteriaceae spp.	Increased, links to previous intestinal infection and pathogen byproducts [63]	
	Lachnospiraceae spp., *Bacteroides* spp.	Increased in abundance [63]	
Inflammatory bowel disease	*Ruminococcaceae* spp., *Lachnospiraceae* spp.	Decreased in microbiome, butyrate production [78–81]	
	Faecalibacterium prausnitzii, *Roseburia* sp.	Decreased in microbiome, butyrate production [83]	
Cardiometabolic diseases	*Lactobacillus plantarum*, *Lactobacillus rhamnosus*	Improved ventricular function and attenuated heart failure after myocardial infraction [90, 107], improved blood pressure [110]	
	Akkermansia muciniphila	Protected against atherosclerosis in mice [111]	
	Bifidobacterium, *Bacteroides*, *Faecalibacterium Akkermansia* and *Roseburia* spp.	Negative association [112, 113]	
	Ruminococcus, *Fusobacterium*, and *Blautia*	Positive association [112, 113]	
	Lactobacillus spp.	Enriched in control microbiome, butyrate production [112, 114, 115], insulin sensitivity through GLP-1 [116–120]	
	Clostridium spp.	Increased, opportunistic pathogen	
	Collinsell spp.	Increased in abundance [128], increased intestinal permeability and lipopolysaccharide release through metabolism of bile-acids to oxo-bile [144, 145]	
	Escherichia spp., *Dorea* spp.	Increased in abundance [131, 135, 136]	
	Coprococcus spp., *Eubacterium* spp., *Faecalibacterium* spp., *Prevotella* spp.	Decreased in abundance [131, 135, 137]	
Chronic kidney disease	*Bifidobacterium*, *Lactobacillaceae*, *Prevotellaceae*	Decreased in abundance, SCFA producers associated with anti-inflammatory cytokines [148, 149]	
human trials. Nonetheless, intervention with a multispecies consortium of bacteria has shown to be effective in the maintenance of remission in patients with UC but not in those with CD [145]. Meta-analysis of intervention trials in which various combinations of bacterial strains were administered to adults with T2DM showed moderate improvements in hyperglycemia [146]. Moreover, probiotic supplementation during the maintenance of remission in patients with UC but not in those with CD [145]. Meta-analysis of intervention trials in which various combinations of bacterial strains were administered to adults with T2DM showed moderate improvements in hyperglycemia [146]. Moreover, probiotic supplementation during the time of remission being less predictable [150]. More recently, FMT has been applied to chronic inflammatory conditions affecting organs distal to the GI tract. FMT from lean donors improved insulin sensitivity in men with obesity and metabolic syndrome, and this improvement was linked to changes in plasma metabolites, in particular increased gamma-aminobutyric acid (GABA), tryptophan, and phenylalanine [151].

Effects of a healthy diet are mediated via the gut microbiome

The most obvious way of targeting the gut microbiome is through dietary modifications. Already, several controlled clinical dietary intervention studies targeting the human gut microbiota have been reported [2, 152]. For example, diets rich in fiber were shown to significantly improve glucose control and promote a healthier gut microbiota [148, 149]. The strongest associations were with high-density lipoprotein cholesterol (HDLC), which positively correlated with microbial richness. Cardiometabolic markers, which have in the recent past been shown to be strongly predictive of incident diabetes and heart disease, such as glycoprotein acetyl (GlycA) were also associated (positively or negatively) with microbiota richness. One of the most striking findings of the study was that gut microbiome composition is a better predictor of postprandial triglyceride and insulin concentrations than of glucose levels. The authors also reported that the diversity of healthy plant-based foods in habitual diet shapes gut microbiome composition. Approximately 10% of the variance in gut microbial composition could be explained by variation in healthy eating patterns [156].

Disease group	Specific disease	Gut microbes	Main findings
Mental health disorders	SCZ, ADHD	Lactobacillus spp, Bifidobacterium	Increased in abundance in specific disorders such as SCZ and ADHD [157, 158]
General anxiety disorder (GAD)		Bacteroidetes, Ruminococcus gravis, and Fusobacterium	Decreased in abundance in GAD [171, 172]
Post-traumatic stress disorder (PTSD)		Actinobacteria, Lentisphaerae, and Verrucomicrobiota	Decreased in abundance in post-traumatic stress disorder (PTSD) [173]
Depression	Eggerthella, Holdemania, Turicibacter, Paraprevotella, Prevotella, Dialister		Decreased in abundance amongst individuals with depression [174, 175]
Dementia	Escherichia, Blautia, Bifidobacterium, Streptococcus, Lactobacillus, Dorea spp, Actinobacteria, Bacteroides		Decreased in abundance amongst individuals with dementia [177]
Bacterial species were found to segregate into groups associated with more and less healthy plant- and animal- based foods. In addition, the authors reported a microbial signature of cardiometabolic health levels consistent across diet, obesity indicators, and cardiometabolic risks. The authors reported a consistent set of microbial species that strongly linked to all of the following: healthy eating patterns, indicators of obesity and cardiometabolic health, and fasting and postprandial circulating metabolites connected with cardiometabolic risk [156]. Other much smaller studies have also reported that dietary habits are strongly correlated with gut microbiome composition, disease status, and SCFA production [129].

Although a key weakness of the above study is its cross-sectional observational nature, consistent changes in gut microbiome composition and health outcomes have been recently reported by an international consortium investigating the effect of 12 months of Mediterranean diet on 612 elderly individuals from five countries [157]. Shankar Ghosh et al. [157] reported significant differences in the association patterns of bacterial taxa that increased (DietPositive) or decreased (DietNegative) in response to the Mediterranean diet intervention. The DietPositive bacteria had consistent negative associations (significantly lower than the DietNegative bacteria) with the pro-inflammatory circulating markers hsCRP and IL-17 levels as well as with functional measures associated with increased frailty. In contrast, DietPositive bacterial taxa showed positive correlations with measures of improved cognitive function, hand-grip strength, and two of the anti-inflammatory cytokines. DietPositive species included butyrogenic taxa such as F. prausnitzii, Eubacterium and Roseburia, whereas DietNegative bacteria included Ruminococcus torques, Collinsella aerofaciens, Coprococcus comes, Dotia formicigenerans, and Clostridium ramosum. Interestingly, there is no overlap between the “DietPositive” bacteria whose abundance increased after 12 months of a Med Diet reported by Shankar Ghosh et al. [157] and the taxa associated with “healthy diet indices” reported by Asnicar et al. On the other hand, the “DietPositive” and “DietNegative” taxa have substantial overlap with results from our own recent interventional study. We compared the changes in gut microbiome composition after 6 weeks of 500 mg of omega-3 fatty acids or 20 g of soluble fiber (inulin) in 70 middle-age and elderly individuals who had low fiber intake at baseline [158]. We found that consistent with what is known of prebiotics such as inulin, Blautobacterium sp was remarkably increased and this correlated with butyrate production. On the other hand, omega-3 supplementation resulted in a significant decrease in Collinsella sp, both of which are in line with the findings from the Mediterranean diet intervention [157]. Importantly, many of the changes in bacterial abundances and SCFA concentrations were accompanied by decreases in inflammatory or anti-inflammatory molecular mediators such as VLDL or IL4. Unlike the effects seen through a complex dietary intervention, such as the Mediterranean diet, we showed that it is possible to see significant effects based on microbiome composition and cardiometabolic health mediators.

Other recent studies have highlighted the role of the type of dietary fat on gut microbiome composition. In a randomized trial, 38 overweight and obese subjects were assigned to consume an excess of 1000 kcal/day of diets rich in saturated fat, unsaturated fat, or simple sugars for 3 weeks [159]. The relative abundances of individual taxa were altered in a diet-specific manner, wherein the overfeeding of saturated fat increased Proteobacteria, while unsaturated fat increased butyrate producers.

It is indeed possible to target the increase of specific taxa and the production of specific metabolites and the extent to which different carbohydrate sources (digestible by gut bacteria but not by humans) alter gut microbiome composition and function was recently tested by Deehan et al. [148] in a randomized controlled trial using a four-arm design. They gave increasing doses of three forms of resistant starch from maize, potato, or tapioca and a human-digestible corn starch (placebo) to 10 healthy volunteers per arm. They compared the effect of these carbohydrate substrates on gut microbiome composition in humans and found that chemically modified resistant starches with small structural differences induced highly specific effects on the gut microbiome that direct changes in the output of either propionate or butyrate. Dominant effects were remarkably consistent within treatment groups and dose-dependent with a plateau at a dose of 35 g/day. For example, maize-derived resistant starch resulted in increases in B. adolescentis, E. rectale, Oscillibacter, and Ruminococcus-related taxa and this correlated with increases in butyrate production. Tapioca-resistant starch on the other hand, which induced shifts in propionate proportions, as positively correlated with increases in P. distasonis an important succinate-producing bacterium. Succinate is then converted to propionate by other commensal bacteria in the gut. This very elegant design also clearly demonstrated the dose dependency between carbohydrate sources and the production of specific SCFAs. Similar sugars and specific effects on gut microbiome composition have been shown by many interventional studies, both in healthy, [160, 161] and diseased populations [162].

WHERE IS THIS FIELD MOVING TOWARD?
Over the past decade, considerable evidence from both animal and human studies has accumulated showing a clear link between the gut microbiome, chronic diseases, including inflammatory autoimmune disorders, gut inflammation-related disorders, and cardiometabolic diseases (Fig. 1). It is increasingly clear that gut microbiome metabolites are at least in part, the key agents involved in one role of the gut microbiome on human health and among such metabolites, SCFAs appear to be the most important ones. Butyrate-producing bacteria are associated with lower risk of inflammatory autoimmune and cardiometabolic diseases, and also inpatients with inflammatory bowel syndrome (Table 1). A number of therapeutic strategies to target the gut microbiome are possible, but nutritional changes appear to be the most obvious, noninvasive, and immediate way of altering the gut microbiome composition and function. Recent randomized controlled trials have shown that both composition and function respond in consistent ways to specific dietary interventions. Dietary fiber and unsaturated fat, separately or in a healthy diet such as the Mediterranean diet, result in higher relative abundances of butyrate-producing bacteria and these bacteria and the SCFAs produced in turn result in improved health outcomes. Different types of dietary fiber may result in different bacterial changes and different SCFAs. The possibility of designing dietary interventions targeted specifically at increasing certain bacterial metabolites to improve cardiometabolic and inflammatory health outcomes appears well within reach within the next half decade.

REFERENCES
1. Clemente JC, Ursell LR, Parfrey LW, Knight R. The impact of the gut microbiota on human health: an integrative view. Cell. 2012;148:1258–70.
2. Valdes AM, Walter J, Segal E, Spector TD. Role of the gut microbiota in nutrition and health. BMJ. 2018;361:k2179.
3. Belloa Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014;157:121–41.
4. Zhang D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease. Adv Immunol. 2020;30:492–506.
5. Guerreiro CS, Calado Â, Sousa J, Fonseca JE. Diet microbiota, and gut permeability-the unknown triad in rheumatoid arthritis. Front Immunol. 2018;5:349
6. de Oliveira GLV, Leite AZ, Higuchi BS, Gonzaga MI, Mariano VS. Intestinal dysbiosis and probiotic applications in autoimmune diseases. Immunology. 2020;30:1521–12.
7. Scher JU, Sczesnak A, Longman RS, Segata N, Ubeda C, Bielski C, et al. Expansion of the gut microbiota and genetic risk for rheumatoid arthritis. Elife. 2013;2:e01202.
8. Wells PM, Adebayo AS, Bowyer RCE, Freidin MB, Finkch A, Strowig T, et al. Associations between gut microbiota and genetic risk for rheumatoid arthritis in
the absence of disease: a cross-sectional study. Lancet Rheumatol. 2020;2:e148–e147.

9. Donohoe DR, Wali A, Brylawski BP, Bultman SJ. Microbial regulation of glucose metabolism and cell-cycle progression in mammalian colonocytes. PLoS One. 2012;7:e46589.

10. Alpizar-Rodriguez D, Lesker TR, Gronov A, Gilbert B, Raemy E, Lamacchia C, et al. Prevotella copri in individuals at risk for rheumatoid arthritis. Ann Rheum Dis. 2019;78:590–3.

11. Chen J, Wright K, Davis JM, Jeraldo P, Marietta EV, Murray J, et al. An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis. Genome Med. 2016;8:43.

12. Zhang X, Zhang D, Jia H, Feng Q, Wang D, Liang D, et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partially normalized after treatment. Nat Med. 2015;21:895–905.

13. Chen Z, Andreu D, Oeser K, Krijnnac B, Hubeer A, Kleyer A, et al. Th2 and eosi

14. Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, et al. Regulation of intestinal permeability by gut microbiota. Science. 2009;324:1088–92.

15. Wang L, de Zoeten EF, Greene ML, Hancock WW. Immunomodulatory effects of deacetylase inhibitors: therapeutic targeting of FOXO3a regulatory T cells. Nat Rev Drug Discov. 2009;8:969–81.

16. Taji K, Nishim K, Suzuki K, et al. The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. Cell Host Microbe. 2015;17:260–73.

17. Tan J, Andraud M, Moatti M, et al. Association between intestinal permeability and faecal microbiota composition in Italian children. PLoS One. 2016;11:e0154423.

18. Paun A, Yau C, Danska JS. The in...

19. Kostic AD, Gevers D, Siljander H, Vatanen T, Hämäläinen AM, et al. Antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma. EMBO J. 2015;34:5640–7.

20. Knip M, Sijanlar H. The role of the intestinal microbiota in type 1 diabetes mellitus. Nat Rev Endocrinol. 2012;11:154–67.

21. Needell JC, Zipris D. The role of the intestinal microbiome in type 1 diabetes pathogenesis. Curr Diab Rep. 2016;16:89.

22. Livanos AE, Greiner TU, Vangay P, Pathmasiri W, Steward D, McRitchie S, et al. Antinflammatory signals from the human gut microbiota in progression to type 1 diabetes in mice. Nat Microbiol. 2016;1:16140.

23. Maffeis C, Martina A, Corradi M, Quarella S, Nori N, Torriani F, et al. Association between intestinal permeability and faecal microbiota composition in Italian children with beta cell autoimmunity at risk for type 1 diabetes. Metab Res Rev. 2016;32:700–9.

24. Mejia-León ME, Petrosino JF, Ajami NJ, Domínguez-Bello MG, de la Barca AMC. Atopic disease inversely correlates with intestinal microbiota diversity and atopic disease inversely correlates with gut permeability. J Allergy Clin Immunol. 2014;133;769–77.

25. Zhang X, Zhang D, Jia H, Feng Q, Wang D, Liang D, et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat Med. 2015;21:895–905.

26. Chen Z, Andreu D, Oeser K, Krijnnac B, Hubeer A, Kleyer A, et al. Th2 and eosi...
60. Ford AC, Harris LA, Lacy BE, Quigley EMM, Moayyedi P. Systematic review with meta-analysis: the efficacy of prebiotics, probiotics, synbiotics and antibiotics in irritable bowel syndrome. Aliment Pharm Ther. 2018;48:1044–60.

61. Dionne J, Ford AC, Yuan Y, Chey WD, Lacy BE, Saito YA, et al. A systematic review and meta-analysis evaluating the efficacy of a gluten-free diet and a low fodmaps diet in treating symptoms of irritable bowel syndrome. Am J Gastroenterol. 2018;113:1379–95.

62. Chumpitazi BP. The gut microbiome as a predictor of low fermentable oligo-saccharides disaccharides monosaccharides and polyols diet efficacy in functional bowel disorders. Curr Opin Gastroenterol. 2020;36:147–54.

63. Leshem A, Segal E, Elina E. The gut microbiome and individual-specific responses to diet. mSystems. 2020. https://doi.org/10.1128/mSystems.00665-20.

64. Lepage P, Häslér R, Rehman A, Zvirbliene A, Begun A, et al. Twin study indicates loss of interaction between microbiota and mucosa of patients with ulcerative colitis. Gastroenterology. 2011;141:227–36.

65. Manichanh C, Borrell N, Casellas F, Guamer F. The gut microbiota in IBD. Nat Rev Gastroenterol Hepatol. 2012;9:599–608.

66. Ott SJ, Musfeldt M, Wendeoeth DF, Hampe J, Brant O, Folsch UR, et al. Reduction in diversity of the colonic mucosa associated bacterial microbiota in patients with active inflammatory bowel disease. Gut. 2004;53:685–93.

67. Walker AW, Sanderson JD, Churcher C, Parkes GC, Hudspith BN, Rayment N, et al. High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease. BMC Microbiol. 2011;11:17.

68. Tong M, Li X, Wegener Parfrey L, Roth B, Ippoliti A, Wei B, et al. A modular organization of the human intestinal mucosal microbiota and its association with inflammatory bowel disease. PLoS One. 2013;8:e7002.

69. Martinez C, Antolin M, Santos J, Torrejon A, Casellas F, Borruel N, et al. Unstable microbiota in smokers with respiratory symptoms. Cell Metab. 2011;13:517–29.

70. Lam V, Su J, Koprowski S, Hsu A, Tweddell JS, Raffa RB, et al. Intestinal microbial metabolites are linked to severity of myocardial infarction in rats. PLoS One. 2016;11:e0160840.

71. Larsen N, Vognsen FK, van den Berg FWJ, Nielsen DS, Andreassen AS, Pedersen BK, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One. 2010;5:e10965.

72. Sun S, Lulla A, Sioda M, Winglee K, Wu MC, Jacobs DR Jr, et al. Gut microbiota associations with common diseases and prescription medications in a large population. Gut Microbes. 2020;11:1632.

73. Tang WHW, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Curr Atheroscler Rep. 2007;9:546–52.

74. Vrieze A, Ouyang P, Fuentes S, Jonker L, Reiling U, Kotte R, et al. Impact of oral contraceptives on gut microbiome, bile acid metabolism, and insulin sensitivity. J Clin Endocrinol Metab. 2014;99:824–31.

75. Donohoe DR, Garge N, Zhang X, Sun W, O’Connell TM, Bunger MK, et al. The microbiome and butyrate regulate energy metabolism and autophagy in the nematode C. elegans. Cell Metab. 2011;13:517–26.

76. Khalesi S, Sun J, Buys N, Jayasinghe R. Effect of probiotics on blood pressure: a systematic review and meta-analysis of randomized, controlled trials. Hypertension. 2014;64:897–903.

77. Vrieze A, Ouyang P, Fuentes S, Jonker L, Reiling U, Kotte R, et al. Impact of oral contraceptives on gut microbiome, bile acid metabolism, and insulin sensitivity. J Clin Endocrinol Metab. 2014;99:824–31.

78. Tang WHW, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Curr Atheroscler Rep. 2007;9:546–52.

79. Vrieze A, Ouyang P, Fuentes S, Jonker L, Reiling U, Kotte R, et al. Impact of oral contraceptives on gut microbiome, bile acid metabolism, and insulin sensitivity. J Clin Endocrinol Metab. 2014;99:824–31.

80. Tang WHW, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Curr Atheroscler Rep. 2007;9:546–52.

81. Tang WHW, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Curr Atheroscler Rep. 2007;9:546–52.

82. Tang WHW, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Curr Atheroscler Rep. 2007;9:546–52.

83. Tang WHW, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Curr Atheroscler Rep. 2007;9:546–52.

84. Tang WHW, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Curr Atheroscler Rep. 2007;9:546–52.

85. Tang WHW, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Curr Atheroscler Rep. 2007;9:546–52.

86. Tang WHW, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Curr Atheroscler Rep. 2007;9:546–52.

87. Tang WHW, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Curr Atheroscler Rep. 2007;9:546–52.

88. Tang WHW, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Curr Atheroscler Rep. 2007;9:546–52.

89. Tang WHW, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Curr Atheroscler Rep. 2007;9:546–52.

90. Tang WHW, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Curr Atheroscler Rep. 2007;9:546–52.

91. Tang WHW, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Curr Atheroscler Rep. 2007;9:546–52.

92. Tang WHW, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Curr Atheroscler Rep. 2007;9:546–52.

93. Tang WHW, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Curr Atheroscler Rep. 2007;9:546–52.

94. Tang WHW, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Curr Atheroscler Rep. 2007;9:546–52.

95. Tang WHW, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Curr Atheroscler Rep. 2007;9:546–52.

96. Tang WHW, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Curr Atheroscler Rep. 2007;9:546–52.

97. Tang WHW, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Curr Atheroscler Rep. 2007;9:546–52.

98. Tang WHW, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Curr Atheroscler Rep. 2007;9:546–52.

99. Tang WHW, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Curr Atheroscler Rep. 2007;9:546–52.

100. Tang WHW, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Curr Atheroscler Rep. 2007;9:546–52.

101. Tang WHW, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Curr Atheroscler Rep. 2007;9:546–52.
111. Boursier J, Mueller O, Barret M, Machado M, Fizanne L, Araujo-Perez F, et al. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology. 2016;63(6):764–75.
112. Aron-Wisniewsky J, Vigiotti C, Witjes J, Le P, Holleboom AG, Verheij J, et al. Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders. Nat Rev Gastroenterol Hepatol. 2020;17:279–97.
113. Marín V, Guerrieri F, Di Gregorio V, Leverro M, Gagliardi A, Santangelo F, et al. Combining amplicon sequencing and metabolomics in cirrhotic patients highlights distinctive microbiota features involved in bacterial translocation, systemic inflammation and hepatic encephalopathy. Sci Rep. 2018;8:8210.
114. Doden H, Sallam LA, Devendran S, Ly L, Doden G, Daniel SL, et al. Metabolism of o xo-bile acids and characterization of recombinant 12α-hydroxysteroid dehydrogenases from animal species. Am J Physiol Gastrointest Liver Physiol. 2013;304:G227–34.
115. Aron-Wisniewsky J, Gaborit B, Dutour A, Clement K. Gut microbiota and non-alcoholic fatty liver disease: new insights. Clin Microbiol Infect. 2013;19:938–48.
116. Brandt K, Schnabl B. Intestinal microbiota and nonalcoholic steatohepatitis. Curr Opin Gastroenterol. 2017;33:128–33.
117. Onal EM, Afsar B, Covic A, Vaziri ND, Kanbay M. Gut microbiota and inflammation in chronic kidney disease and their roles in the development of cardiovascular disease. Hypertens Res. 2019;42:123–40.
118. Jazani NH, Savoj J, Lustgarten M, Lau W, Vilain ND. Impact of gut dysbiosis on neurovascular pathways in cardiovascular disease. Diseases. 2019;7. https://doi.org/10.3390/8010021.
119. Sircana A, De Michieli F, Parente R, Framarin L, Leone N, Berrutti M, et al. Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders. J Clin Diagn Res. 2017;11:KC01–K005.
120. Tajamori OR, Taghizadeh M, Daneshvar M, Naka K, Grobner B, Borszadi S, et al. Clinical and metabolic response to probiotic administration in people with Parkinson's disease: a randomized, double-blind, placebo-controlled trial. Clin Nutr. 2015;34:101–6.
121. Yeoh YK, Zhuo T, Liu GC-Y, Zhang Z, Liu Q, Duan X, et al. Gut microbiota composition reflects disease severity and functional immune responses in patients with COVID-19. Gut. 2020;70. https://doi.org/10.1136/gutjnl-2020-323200.
122. Zhang L, Wang Y, Xiayu X, Shi C, Chen W, Song N, et al. Altered gut microbiota in autism spectrum disorder. Dig Dis Sci. 2012;57:2096–102.
123. Yang T, Richards EM, Pepine CJ, Raizada MK. The gut microbiota and the brain-cardiovascular axis: a review. Frontline Gastroenterol. 2020;11:62–9.
124. Yeoh YK, Zhuo T, Liu GC-Y, Zhang Z, Liu Q, Duan X, et al. Gut microbiota composition reflects disease severity and functional immune responses in patients with COVID-19. Gut. 2020;70. https://doi.org/10.1136/gutjnl-2020-323200.
125. Afsar B, Covic A, Vaziri ND, Kanbay M. Gut microbiota and inflammation in chronic kidney disease and their roles in the development of cardiovascular disease. Hypertens Res. 2019;42:123–40.
126. Jazani NH, Savoj J, Lustgarten M, Lau W, Vilain ND. Impact of gut dysbiosis on neurovascular pathways in cardiovascular disease. Diseases. 2019;7. https://doi.org/10.3390/8010021.
127. Sircana A, De Michieli F, Parente R, Framarin L, Leone N, Berrutti M, et al. Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders. J Clin Diagn Res. 2017;11:KC01–K005.
128. Tajamori OR, Taghizadeh M, Daneshvar M, Naka K, Grobner B, Borszadi S, et al. Clinical and metabolic response to probiotic administration in people with Parkinson's disease: a randomized, double-blind, placebo-controlled trial. Clin Nutr. 2015;34:101–6.
129. Yeoh YK, Zhuo T, Liu GC-Y, Zhang Z, Liu Q, Duan X, et al. Gut microbiota composition reflects disease severity and functional immune responses in patients with COVID-19. Gut. 2020;70. https://doi.org/10.1136/gutjnl-2020-323200.
130. Zhang L, Wang Y, Xiayu X, Shi C, Chen W, Song N, et al. Altered gut microbiota in autism spectrum disorder. Dig Dis Sci. 2012;57:2096–102.
131. Yang T, Richards EM, Pepine CJ, Raizada MK. The gut microbiota and the brain-cardiovascular axis: a review. Frontline Gastroenterol. 2020;11:62–9.
132. Yeoh YK, Zhuo T, Liu GC-Y, Zhang Z, Liu Q, Duan X, et al. Gut microbiota composition reflects disease severity and functional immune responses in patients with COVID-19. Gut. 2020;70. https://doi.org/10.1136/gutjnl-2020-323200.
162. Houghton D, Hardy T, Stewart C, Errington L, Day CP, Tre nell MI, et al. Systematic review assessing the effectiveness of dietary intervention on gut microbiota in adults with type 2 diabetes. Diabetologia. 2018;61:1700–11.

163. Hartstra AV, Schüppel V, Imangaliyev S, Schüppel V, Imangaliyev S, Schrantee A, Prodan A, Collard D, et al. Fatalization of donor feces affects the gut-brain axis in humans with metabolic syndrome. Mol Metab. 2020;42:10176.

164. Hammeken LH, Baunwald SMD, Hvas CL, Ehlers LH. Health economic evaluations comparing faecal microbiota transplantation with antibiotics for treatment of recurrent Clostridioides difficile infection: a systematic review. Health Econ Rev. 2021;11:3.

165. Zhao HL, Chen SZ, Xu HM, Zhou YL, He J, Huang HL, et al. Efficacy and safety of fecal microbiota transplantation for treating patients with ulcerative colitis: A systematic review and meta-analysis. J Dig Dis. 2020;21:534–48.

166. de Groot P, Nikolic T, Pellegrini S, Sordi V, Imangaliyev S, Rampanelli E, et al. Faecal microbiota transplantation halts progression of human new-onset type 1 diabetes in a randomised controlled trial. Gut. 2021;70:92–105.

167. Pathak P, Helsley RN, Brown AL, Buffa JA, Choucair I, Nemet I, et al. Small molecule inhibition of gut microbial choline trimethylamine lyase activity alters host cholesterol and bile acid metabolism. Am J Physiol Heart Circ Physiol. 2020;318:H1474–H1486.

168. Gupta N, Buffa JA, Roberts AB, Sangwan N, Skye SM, Li L, et al. Targeted inhibition of gut microbial trimethylamine N-Oxide production reduces renal tubulointerstitial fibrosis and functional impairment in a murine model of chronic kidney disease. Arterioscler Thromb Vasc Biol. 2020;40:1239–55.

169. Organ CL, Li Z, Sharp TE 3rd, Polhemus DJ, Gupta N, Goodchild TT, et al. Non-lethal inhibition of gut microbial trimethylamine N-oxide production improves cardiac function and remodeling in a murine model of heart failure. J Am Heart Assoc. 2020;9:e016223.

170. Jiang H-Y, Zhang X, Yu Z-H, Zhang Z, Deng M, Zhao J-H, et al. FABP2 correlated with plasma LPS and altered gut microbiome in anxiety or depression. Gut 2018;67:1555–7.

171. Kelly JR, Borre Y, O’Brien C, Patterson E, El Aydi S, Deane J. et al. Transferring the blues: depression-associated gut microbiota induces neurobehavioural changes in the rat. J Psychiatr Res. 2016;82:109–18.

172. Lin P, Ding B, Feng C, Yin S, Zhang T, Qi X, et al. Prevotella and klebsiella proportions in fecal microbial communities are potential characteristic parameters for patients with major depressive disorder. J Affect Disord. 2017;207:300–4.

173. Zhuang Z-Q, Shen L-L, Li W-W, Fu X, Zeng F, Gui L, et al. Gut microbiota is altered in patients with Alzheimer’s disease. J Alzheimer’s Dis. 2018;64:1337–46.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Correspondence and requests for materials should be addressed to Amrita Vijay

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.