Comparative analysis of Klebsiella pneumoniae genomes identifies a phospholipase D family protein as a novel virulence factor

Lery, L. M. S., Frangeul, L., Tomas, A., Passet, V., Almeida, A. S., Bialek-Davenet, S., Barbe, V., Bengoechea, J. A., Sansonetti, P., Brisse, S., & Tournebize, R. (2014). Comparative analysis of Klebsiella pneumoniae genomes identifies a phospholipase D family protein as a novel virulence factor. *BMC Biology, 12*, [41].
https://doi.org/10.1186/1741-7007-12-41

Published in:
BMC Biology

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2014 Lery et al. licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen's academics and its Open Research team. We would love to hear how access to this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback
Comparative analysis of *Klebsiella pneumoniae* genomes identifies a phospholipase D family protein as a novel virulence factor

Letícia MS Lery1,2,10*, Lionel Frangeul3, Anna Tomas4,5, Virginie Passet6,7, Ana S Almeida1,2,11, Suzanne Blaak-Davenet5,7, Valérie Barbe8, José A Bengoechea4,5,12, Philippe Sansonetti1,2,9, Sylvain Brisse6,7 and Régis Tournebize1,2,13*

Abstract

Background: *Klebsiella pneumoniae* strains are pathogenic to animals and humans, in which they are both a frequent cause of nosocomial infections and a re-emerging cause of severe community-acquired infections. *K. pneumoniae* isolates of the capsular serotype K2 are among the most virulent. In order to identify novel putative virulence factors that may account for the severity of K2 infections, the genome sequence of the K2 reference strain Kp52.145 was determined and compared to two K1 and K2 strains of low virulence and to the reference strains MGH 78578 and NTUH-K2044.

Results: In addition to diverse functions related to host colonization and virulence encoded in genomic regions common to the four strains, four genomic islands specific for Kp52.145 were identified. These regions encoded genes for the synthesis of colibactin toxin, a putative cytotoxin outer membrane protein, secretion systems, nucleases and eukaryotic-like proteins. In addition, an insertion within a type VI secretion system locus included sel1 domain containing proteins and a phospholipase D family protein (PLD1). The *pld1* mutant was avirulent in a pneumonia model in mouse. The *pld1* mRNA was expressed in vivo and the *pld1* gene was associated with *K. pneumoniae* isolates from severe infections. Analysis of lipid composition of a defective *E. coli* strain complemented with *pld1* suggests an involvement of PLD1 in cardiolipin metabolism.

Conclusions: Determination of the complete genome of the K2 reference strain identified several genomic islands comprising putative elements of pathogenicity. The role of PLD1 in pathogenesis was demonstrated for the first time and suggests that lipid metabolism is a novel virulence mechanism of *K. pneumoniae*.

Keywords: Genome sequencing, Host-microbe interactions, Bacterial pathogenesis, Lipid metabolism

Background

K. pneumoniae is responsible for a variety of diseases in humans and animals. As a prominent nosocomial pathogen it is mainly responsible for urinary tract, respiratory tract or blood infections [1-3]. In addition, because of the acquisition of extended-spectrum β-lactamases and carbapenemases, such as the recently described NDM-1 [4], multi, extremely or pan-drug resistant clinical strains are more frequently isolated [5,6]. In addition, *K. pneumoniae* has re-emerged as a cause of community-acquired infections including pneumonia and the characteristic syndrome of pyogenic liver abscess, with possible complications including endophthalmitis or meningitis [7,8]. *K. pneumoniae* is, thus, an important virulent pathogen able to cause serious infections in ambulatory, otherwise healthy hosts and to spread within patients [5,9] that requires a better understanding of the molecular mechanisms underlying the various forms of its pathogenesis.

Major *K. pneumoniae* virulence factors include the capsule, the lipopolysaccharide, iron scavenging systems and adhesins [3,10-14]. The capsule is one of the most important virulence determinants, protecting against serum bactericidal activity, antimicrobial peptides and phagocytosis [11,15-18]. At least 77 capsular (K) types can be distinguished, but types K1 and K2 are prominent...
by their virulence in murine models of infection [19-21] and by their epidemiological prevalence [9,18,21,22]. However, not all K1/K2-type strains are necessarily virulent, as distinct clonal groups of K1 and K2 differ sharply by their virulence [23]. Reference strain Kp52.145 (derived from B5055, the reference strain of serotype K2) is a highly virulent strain from which important virulence factors, including the large virulence plasmid harboring the regulator of mucoid phenotype (rmpA) and the aerobactin cluster, were identified [10,11,21]. Even though a virulence plasmid-cured strain is less virulent than the parental strain, it remained more virulent than other isolates that do not harbor this plasmid [21], showing that factors other than capsule overexpression and aerobactin account for the higher pathogenesis of this strain. Therefore, although known virulence factors are certainly crucial for bacterial survival, protection and interaction with the host, putative new virulence factors that could subvert host cell physiology and response remain yet to be identified.

Comparative genomics of pathogenic and non-pathogenic strains is a powerful approach to identify putative virulence genes. Several draft or complete genomes of clinical isolates of \textit{K. pneumoniae} have been published so far, but only the virulent serotype K1 strain NTUH-K2044 [24] has been described in detail. In order to identify new \textit{K. pneumoniae} K2 virulence factors, we sequenced the genome of the virulent strain Kp52.145, as well as two additional strains of low virulence, SB2390 (serotype K2) and SB3193 (serotype K1). By comparing these three novel genomes to the publicly available genomes of the virulent K1 strain NTUH-K2044 and reference strain MGH 78578, we identified in Kp52.145 putative virulence genes and analyzed their distribution within a diverse collection of \textit{K. pneumoniae} strains. We demonstrate that a gene coding for a phospholipase D family protein (PLD1), located within a type VI secretion system locus, is expressed \textit{in vivo}, is involved in controlling bacterial membrane lipid composition, and is a new virulence factor.

\section*{Results and Discussion}

\subsection*{Genome assembly and annotation}

The genomes of Kp52.145, SB2390 and SB3193 were sequenced by a combination of 454 and Illumina technologies using single and paired-end libraries. Finishing efforts resulted in the complete genome sequence of \textit{K. pneumoniae} Kp52.145 (one chromosome + two plasmids), comprising 5.45 Mbp and 5,314 protein coding genes (Figure 1). SB2390 and SB3193 genomes were assembled in 11 and 17 scaffolds, respectively. The GC\% of these three genomes ranged from 55.6\% to 56.7\%. The general features of the \textit{K. pneumoniae} sequenced genomes are summarized in Table 1.

Because Kp52.145 is a highly virulent strain, our analyses were focused on comparing its genome with the genomes of \textit{K. pneumoniae} strains SB2390, SB3193, NTUH-K2044 and MGH78578. According to SEED subsystems annotations [25], about 60\% of protein-coding genes for each \textit{K. pneumoniae} genome had predicted functions. More specifically, the largest percentage of annotated genes is involved in the metabolism of carbohydrates (approximately 20\%), of amino acids and their derivatives (approximately 10\%) and of cofactors, vitamins and prosthetic groups (approximately 8\%) [see Additional file 1].

\subsection*{Common genome}

To define the common genome of the five strains, we used stringent BlastClust parameters of at least 90\% identity and at least 80\% coverage. This analysis identified 3,587 coding sequences common to the five genomes. The majority of proteins are involved in metabolic processes, such as energy metabolism and transporters, supporting the general concept that the core genome encompasses essential functions required for survival of the microorganism. The \textit{K. pneumoniae} core genome comprised several sets of genes whose functions are related to bacterial survival in the environment or interaction with its host, and possibly virulence. This was the case, for example, of genes involved in quorum-sensing and biofilm formation, adhesins, and secretion systems, for which examples are detailed below.

Genes encoding for autoinducer-2 and type III fimbriae involved in biofilm formation in \textit{K. pneumoniae} [26-28], were present in all sequenced strains. In addition, genes coding for synthesis and transport of the poly-\(\beta\)-1,6-N-acetyl-D-glucosamine (PGA) adhesin (KpST66_4915 to KpST66_4918 in Kp52.145 genome) which is required for the structural stability of \textit{Escherichia coli} biofilms [29], and YidE (KpST66_0019), which mediates the hyperadherence phenotype of \textit{E. coli} [30], were also found in the core genome of \textit{K. pneumoniae} strains.

Moreover, the five \textit{K. pneumoniae} genomes contained the genes barA/uvrY (respectively KPST66_0986 and KpST66_3517) and ycfX/ycfE (KpST66_2441 and KpST66_2442) that may be involved in bacterial fitness and virulence. The two-component system BarA/UvrY (KpST66_3517 and KpST66_0986 in Kp52.145 genome) contributes to biofilm formation in \textit{Salmonella enterica} and is a virulence determinant of urinary tract \textit{E. coli} infections [31,32]. The \textit{E. coli} YcfF protein is expressed in a septicemia murine model of infection in which the ycfF mutant is attenuated, thus suggesting its implication in the \textit{in vivo} survival/multiplication of the bacteria [33].

Several putative secretion systems were identified as part of the common genome of the \textit{K. pneumoniae} strains, including one type I secretion system (T1SS) and one type II secretion system (T2SS). T2SS is composed of the pullulanase related genes pulA-O that are involved in the pathogenesis of several bacteria [34,35]. \textit{Streptococcus}
Figure 1 K. pneumoniae Kp52.145 genome. A) Chromosome representation: Outermost layers in gray indicate the position of positive and negative strand CDSs. tRNAs are represented in green, while the four virulence-related genomic islands (GI) are in red, the locus coding for anaerobic metabolism in orange, the T6SS gene clusters in blue and capsular synthesis region in yellow. Inner circle represents G+C%. Detail of the T6SS locus III region containing the putative phospholipase (pld1 gene) (orange) and sel1 (pink) genes is shown enlarged. B) Plasmids representation: plasmid maintenance genes and IS sequences are shown in blue, proteins with unknown functions in gray, known functions in green, toxin-antitoxin systems in yellow and mspA in red. CDSs, coding sequences.
PulA binds to host lung glycogen leading to a strong interaction with alveolar type II cells [36]. Similarly, the alpha-amylase AmyA degrades glycogen into cyclic maltodextrins, which increases the transepithelial translocation of *Streptococcus* [37]. Both amyA and pulA-O genes are encoded in *K. pneumoniae* genomes, but their functions in this bacterium remain to be characterized.

Type VI secretion system (T6SS) putative genes were located in at least three different loci of the *K. pneumoniae* genomes, in accordance with a previous *in-silico* study [38]. T6SS clusters are usually found within pathogenicity islands or on chromosomal regions presenting virulence or host survival biases. Additionally, T6SS has been suggested to assist colonization and infection. Indeed, in a screen that identified *K. pneumoniae* mutants failing to colonize mice [39], two of them were mutants in genes coding for proteins annotated as hypothetical, that have been subsequently re-annotated as T6SS proteins [38]. Type III secretion systems were not found in *Klebsiella*, but type IV secretion systems, possibly corresponding to conjugation apparatus, were present only in some strains (Kp52.145, SB2390 and NTUH-K2044) (Table 2).

Furthermore, the core genome presented a large genomic region located between gly-tRNA and phe-tRNA loci in Kp52.145 genome, containing *frdABCD* genes coding for the fumarate reductase enzymatic complex responsible for fumarate respiration under anaerobic growth of bacteria. This complex is a virulence determinant for *Helicobacter pylori*, *Mycobacterium tuberculosis*, *Actinobacillus pleuropneumoniae* and *S. enterica*, as mutants on these genes are attenuated [40-43]. The ability to grow anaerobically allows bacterial pathogens to persist in host tissues, including in the lungs. Curiously, this genomic locus encoded in *K. pneumoniae* at least one more protein involved in anaerobic metabolism, the anaerobic C4-dicarboxylate transporter DcuA (KpST66_4904), supporting the idea that this GI provides *K. pneumoniae* advantages to grow under anaerobic conditions, possibly favoring infection. Additional proteins that might be involved in bacterial fitness to environmental stress conditions were encoded in this region. For instance, the putative small multidrug resistance protein SugE (KpST66_4904) has been shown to regulate biofilm formation and capsule expression [44]. A lipocalin-2 bacterial protein Bcl (KpST66_4881) is also encoded in this island of the genome. Eukaryotic lipocalins are small extracellular proteins that bind hydrophobic ligands and fulfill numerous biological functions including regulation of homeostasis and immunity.

Table 1: General features of the *K. pneumoniae* genomes analyzed

K-type	Strain bank ID	Scaffolds	Size (Mb)	% GC	Total PCG	rRNA operons	tRNA genes	% coding	Plasmids	Reference
K2	3341/Kp52.145	3	5.45	56.4	5,314	8	85	88	2	This manuscript
K2	2390	11	5.62	56.74	5,367	6	77	86.8	?	This manuscript
K1	3193	16	5.01	55.6	4,793	10	73	92	?	This manuscript
K1	NTUH (ST23)	2	5.24	57.6	4,992	19	76	89	1	Wu et al. [63]
K5	MGH (SB107)	6	5.31	57	4,776	10	56	85	5	(NC_009648)

The three genomes sequenced in this study are compared to strains NTUH and MGH, previously published. PCG, protein coding genes.

Table 2: Distribution of virulence-related factors among *K. pneumoniae* genomes analyzed

Virulence-factor	SB3341	SB2390	SB3193	NTUH	MGH	Functional role
rmpA	++	-	-	++	-	Regulator of capsule expression
Aerobactin	+	-	-	+	-	Siderophage
Enterobactin	+	+	+	+	+	Siderophage
Yersiniabactin	+	+	+	+	-	Siderophage
Colibactin	+	-	-	-	-	Genotoxin
T4SS (virB)	+	+	-	+	-	Conjugative machinery/protein secretion
T2SS	+	+	+	+	+	Protein secretion
T6SS	+	+	+	+	+	Protein secretion
Pld-family	+	-	-	-	-	Lipid metabolism
Sell lipoproteins	-	-	-	-	-	Unknown
cOMP	+	-	-	-	-	Putative cytotoxin
IgG-like	+	-	-	-	-	Binding to extra cellular matrix compounds
SEFIR-domain	+	-	-	-	-	Potentially hijack IL17R signaling pathways
Bcl	+	+	-	+	+	Binding to hydrophobic ligands / putative regulation of homeostasis and immunity
cellular homeostasis and immunity and are regulators of antibacterial defense [45]. Lipocalin2 is for instance a siderophore scavenger for several bacteria, including *K. pneumoniae* [46], as well as a negative regulator of inflammatory response during *Streptococcus pneumoniae* pneumonia [47]. However, the role of bacterial lipocalins is not yet known.

Finally, a phosphatidylserine decarboxylase (KpST66_4873) might be important for the integrity of the bacterial membrane composition, as phospholipid biosynthetic pathways play crucial roles in the virulence of several pathogens [48,49].

Accessory genome

The accessory genome (genes absent in at least one of the five strains) included a large number of specific coding sequences (CDSs): 743 genes were found only in Kp52.145, 608 in NTUH-K2044, 806 in SB3193, 635 in SB2390 and 488 in MGH78578. About 50% of these genes code for hypothetical proteins or proteins of unknown function. The distribution of the putative virulence-related genes of *K. pneumoniae* among the sequenced strains is summarized in Table 2. The specific regions or genes of Kp52.145 are detailed below.

Kp52.145 plasmids

Strain Kp52.145 possessed two plasmids (Figure 1B). The first plasmid of 121 Kb carried the aerobactin cluster and the regulator of mucoid phenotype *rmpA* genes. The presence of this plasmid was previously correlated with the virulence of *K. pneumoniae* K1 and K2 isolates [21,50]. Additionally, a strain cured from this plasmid showed a 6 × 10^4-fold reduction in virulence, establishing the link between this plasmid and bacterial virulence [21]. In addition to aerobactin and *rmpA*, this plasmid contained genes coding for F-pilin, purine metabolism, insertion sequences and proteins of unknown functions. Kp52.145 also carried a second, previously non-described, plasmid of about 90 Kb. Interestingly, it contained *rmpA2*, a homologue of the regulator of mucoid phenotype *rmpA*, which seems to be involved in capsule expression regulation [51,52]. F-pilin genes, a subtilisin-related serine protease, an AAA + ATPase, the UV protection system UmuD/UmuC and the genes encoding the toxin-antitoxin systems RelE/orf4 and VagD/VagC (Figure 1B) were also found on this plasmid. However, the potential role of these genes in virulence remains to be investigated.

Genomic islands identified in the genome of strain Kp52.145

In addition to the capsule synthesis operon and the iron-acquisition systems (yellow and orange boxes in Figure 1A, respectively), known to be involved in *K. pneumoniae* virulence, four additional regions of the Kp52.145 genome presented several characteristics of pathogenicity islands (red boxes, Figure 1A). These regions are defined by a different GC content in comparison to the average of the genome, represented large chromosomal regions (often > 30 Kb), were associated with tRNA genes or with the presence of insertion sequences, integrases and transposases, and were present in pathogenic strains while less frequent in less-virulent strains [53,54]. The four GIs present in the Kp52.145 genome were present or partially present in NTUH, but none of them was present in SB2390, SB3193 and MGH 78578, indicating that their occurrence is specific to pathogenic genomes. Figure 2 shows the four GIs identified, highlighting the putative virulence related genes.

Genomic island 1 (GI-I): ICE-Kp1-like region

The largest GI found in the Kp52.145 genome comprised 133,679 bp, presented a GC content of 52%, was inserted in an asn-tRNA locus and encoded 92 CDSs (Figure 2A). Most of the protein-coding genes found in this region were described as part of the IceKpI GI of NTUH-K2044 [55,56], although several differences were found. Kp52.145 GI-I begins at asn tRNA locus followed by several uncharacterized proteins and insertion sequence elements. GI-I coded for the synthesis of two polyketide/nonribosomal peptides (yersiniabactin and colibactin) and for the conjugative transfer machinery (T4SS) that allows horizontal transfer of the island [56]. In contrast to the previous description of IceKpI [56], the Kp52.145_GI-I carried colibactin and did not contain the region coding for vagC-vagD, *iroN-iroB-iroC-iroD* and *rmpA* genes which are carried only by the 121 Kb plasmid in Kp52.145.

Genomic island 2 (GI-II)

We describe here a novel GI (GI-II). It is a 29,829 bp island, with a GC content of 49% and coding for 28 CDSs which is inserted in a leu-tRNA locus (Figure 2B). Potential pathogenesis-related genes coded for a putative cytotoxic outer membrane protein (cOMP, KpST66_4736) and a polyclinamine ABC transport system (KpST66_4729 to KpST66_4732). cOMP closest known homologue (34% identity) was a *Plesiomonas shigelloides* predominant virulence factor proposed to trigger cell death in host cells following infection [57]. Polyclinamine biosynthesis and transport mechanisms were intricately linked to fitness, survival, biofilm formation and pathogenesis, for instance in *S. pneumoniae* and *Yersinia pestis* [58,59]. Additionally, this GI encoded a 4-phytase gene (KpST66_4736), *ugpQ3* (KpST66_4728) and *xylA*, *xynT*, *xynB*, *xylR* (KpST66_4724 to KpST66_4727) that are involved in xylose metabolism.

Genomic island 3 (GI-III)

The third GI is characterized by a 49,657 bp region presenting a G + C content of 51% and contained 66 CDSs,
Figure 2 (See legend on next page.)
most of them coding for phage structural proteins (Figure 2C). This GI included genes coding for proteins with homologues that were shown to play a role in bacterial adhesion and immune system escape [60-62]. These proteins encoded for an immunoglobulin domain-containing protein (KpST66_1506), a peptidase S24-like protein (KpST66_1511), two HNH family endonucleases (KpST66_1468 and 1486) and an exonuclease (locus 1464).

Genomic island 4 (GI-IV)
The forth island (GI-IV) was mainly comprised of phage-related genes. Among the 42 CDSs encoded within this genomic region, one gene coded for a SEFIR-domain containing protein (KpST66_1945; Figure 2D). A SEFIR domain is usually found in IL17 receptors and SEF proteins, acting in eukaryotes signaling pathways. Very little is known about prokaryotic SEFIR-containing proteins. Structural analyses suggested that these bacterial SEFIR domains share structural and electrostatic similarity with their mammalian homologues and, thereby, could potentially subvert host immunity by hijacking the IL17R signaling pathways [63]. Notably, local production of IL-17 is a significant factor in effective host defense against Gram-negative bacteria, including K. pneumoniae [64]. Therefore, further studies are required to elucidate whether KpST66_1945 is implicated in K. pneumoniae pathogenesis.

Distribution of GIs among K. pneumoniae strains
To investigate the distribution of the described GIs in K. pneumoniae, the presence of the putative virulence-related genes was searched using BlastN in 171 genomes, including 119 publicly available and 52 unpublished genomes (Bialek-Davenet, Brisse et al., unpublished work) representing 47 different sequence types (STs). Whereas the SEFIR-domain containing protein gene of GI-IV was only found in two (1.2%) isolates of sequence type ST15, the three other GIs described herein were more distributed among K. pneumoniae isolates (Table 3). GI-II genes were present in a total of 11 (6.4%) isolates, most of which belonged to ST375, ST65 and ST25, which were associated with severe infections caused by isolates of capsular serotype K2 [9,65]. The genes of GI-II were always found in synteny. GI-III genes were observed in only seven (4.1%) isolates dispersed in several unrelated STs. The distribution of the ICEKpI element (similar to GI-I) has been previously analyzed [55].

T6SS locus III insertion
Recently, three different T6SS loci were defined in K. pneumoniae [38]. Within these loci, three putative valine-glycine repeat (Vgr) proteins and two hemolysin-coregulated proteins (Hcp) were described as potential effector proteins, through their sequence similarities to Vibrio cholerae and Pseudomonas aeruginosa effector proteins [65-68]. Accordingly, the Kp52.145 genome also presented three conserved T6SS loci syntenic to those previously described. The first two loci were identical in composition and orientation to the previously described ones. The third one, locus III, had conservation of adjacency limited to the imcF/impG/impH and impJ/ompA/vgrG gene clusters, as a region with nine genes was inserted between these two clusters. This insertion encoded for one hypothetical protein, five putative Sel-1 repeat containing lipoproteins and three putative phospholipase D family proteins.

Table 3 Prevalence of the genomic islands among K. pneumoniae isolates

Genomic island	Virulence-related features	Prevalence (%)	Remarkable STs
GI-I	Colibactin	3.5	-
	Yersiniabactin		
GI-II	cOMP	5.8	3775,65,25
	4-phytase		
GI-III	Igg-like	8.1	Dispersed
	Exonuclease	57.6	375,65
GI-IV	Sefir-domain	1.7	-
T6SS insertion	PLD1	7.0	380,35
	Sel 1	7.0	380,35

aaccording to ref. [55]. Prevalence of virulence-related features encoded in GI-II, GI-III, GI-IV and T6SS insertion was based on >90% identity and >50% coverage in the length of the genes, using a database of 171 Klebsiella genomes representative of 47 different STs. STs, sequence types.
(Figure 1A). Flanking sequences suggesting how this region was inserted were not found.

Sel1 lipoproteins are poorly characterized and there was no evidence for their function in *K. pneumoniae*, but they are essential in *Legionella pneumophila* for invasion of host cells where they influence vacuolar trafficking of bacteria [69]. The three open reading frames encoding putative phospholipase D proteins in strain Kp52.145 encoded one full length protein (KpST66_3368, 623 aminoacids), one C-terminal region (KpST66_3371, 187 aa) and one N-terminal region (KpST66_3372, 317 aa). Phospholipase D family proteins have been described as important for host cell invasion, bacterial dissemination and disease progression [70-73]. The bacterial phospholipase D family comprises at least four classes of proteins with distinct functions: true phospholipase D, cardiolipin synthase, phosphatidylserine synthase and endonuclease [74]. Full length *K. pneumoniae* PLD1 and its closest homologs all presented the conserved motif HXK(X)4Da and a serine or threonine approximately eight residues after asparagine (Figure 3), but no other conserved domain was described in each family, thus making it difficult to infer protein function only by sequence analysis.

In order to obtain evidence that the product of these three genes coding either for full length or partial PLD-family proteins are important for bacterial survival in vivo, we checked by RT-PCR for their mRNA expression. We observed that these genes are expressed both in bacteria grown for four hours in Trypto Casein Soy broth (GTCS) medium, as well as in the lungs of mice infected for 24 hours (data not shown). These results prompted us to further check for a putative involvement of the full length PLD gene, called pld1, on *K. pneumoniae* virulence.

Involvement of the phospholipase D family protein gene *pld1* in KP 52.145 virulence

As PLD-family proteins have been shown to be involved in virulence [75-77], we decided to characterize the role of the full length PLD1 protein. We first tested a pld mutant strain in a *K. pneumoniae* murine model. Mice were infected intranasally with 10⁸ of either the wild-type bacteria, a pld1 mutant, or the mutant strain complemented with a plasmid expressing the putative PLD1 protein (pPLD), and their survival was monitored for seven days. Interestingly, the mutant strain appeared avirulent in a mouse model of acute pneumonia while mice infected with the wild-type and the complemented strain succumbed in less than one week (Figure 4). However, the wild-type, the mutant and the complemented mutant strains grew equally well in Luria-Bertani broth (LB) broth (data not shown). These results indicated that the pld1 mutant was strongly attenuated in vivo, thus showing an important role for PLD1 in virulence.

To analyze the frequency and clonal distribution of the pld1 gene in *K. pneumoniae*, the 171 genomes were analyzed using BlastN. We observed that besides ST66, represented by strain Kp52.145, pld1 was present in 10 strains (6.4%) belonging to ST380, ST679, ST67 (K. pneumoniae subsp. rhinoscleromatis) and ST35, but in none of the other isolates. It is interesting to note that ST380 was associated with severe *K. pneumoniae* infections [9,65] and that *K. pneumoniae* subsp. rhinoscleromatis is the only Klebsiella strain to be able to survive intracellularly in macrophages [78].

Functional characterization of PLD1

In order to demonstrate the phospholipase activity of PLD1 and characterize its involvement in lipid metabolism, the lipid composition of wild-type and mutant strains was analyzed by thin-layer chromatography (TLC). A remarkable lipid spot was absent from the pld1 mutant in comparison with the complemented strain, suggesting that the putative PLD1 is involved in lipid metabolism [see Additional file 1]. To reinforce this result, a plasmid carrying the pld1 gene was inserted into *E. coli* strain SD9 [79]. This strain is deficient in phosphatidylserine and cardiolipin, thus presenting a simpler lipid composition than its parental strain and Kp52.145. Lipid profiles of SD9 and complemented strains had a different lipid composition. Notably, the PLD1-expressing strain contained an additional lipid spot in comparison to the SD9 strain, suggesting that PLD1 is responsible for this difference (Figure 5A). SD9 wild-type strain also presented an extra lipid spot in comparison to the PLD1-expressing strain, possibly representing the PLD1 substrate (Figure 5A). Densitometric analysis of iodine-stained lipids on TLC plates revealed that this lipid spot corresponded to 21% of the total amount of lipids in SD9 strain, but only 6% of SD9 complemented with a plasmid expressing pld1. Mass spectrometry (MS) analysis of total lipid extract was carried out to identify such lipid. Comparing lipid profiles by MS, we found a lipid of mass 788.4 present only in the PLD1-deficient strain (Figure 5B) and identified it as phosphatidyl glycerol (PG) using the LipidMaps database.

As mentioned above, the bacterial PLD-family proteins can be classified in four subfamilies. One of them, the cardiolipin synthase is able to convert two PG molecules into glycerol and cardiolipin, or to catalyze the opposite reaction, leading to PG formation [80]. Our results suggest that PLD1 belongs to the cardiolipin synthase subfamily and that it plays a role in balancing the PG and cardiolipin content.

It has been shown that humans and mice with bacterial pneumonia have markedly elevated amounts of cardiolipin in lung fluid and that it impairs surfactant function, lung mechanics, modulation of cell survival and cytokine networks and lung consolidation [81].
Figure 3 Sequence alignment of Kp52.145 (Kp) PLD1 and its closest related sequences: putative phospholipase D family protein from Pseudomonas syringae (PS) and cardiolipin synthases from P. putida (PP), Staphylococcus aureus (SA), Bacillus subtilis (BS) and E. coli (EC). The rectangles indicate the phospholipase D active site regions and the asterisk points to the corresponding transposon insertion site in $pld1$ mutant strain.
There is evidence that bacteria are able to adjust their relative concentrations of phosphatidylethanolamine and PGs when subjected to environmental stresses. Such an alteration in headgroup composition seems to be a means for changing membrane permeability and, hence, preserving stability [82]. Therefore, we hypothesize that PLD1 alters the membrane composition and charge, affecting bacterial interaction with the host environment.

Recently, Russel et al. demonstrated that diverse phospholipase proteins encoded within the T6SS loci of several prokaryotic genomes are antibacterial effectors, conferring competitive advantages on the donor strain during interbacterial interactions [83]. These proteins are generally designated as ‘T6SS Lipase Effectors’ (Tle) and classified in five sub-families, according to the sequence conservation and number of catalytic motifs present. Kp52.145 PLD-family protein could be considered a Tle5 member, as it presents two conserved HxKxxxxD motifs. However, in the Kp52.145 genome we did not identify any gene similar to the cognate immunity genes - a hallmark of the genomic islands described by Russel et al. Moreover, we did not observe such an antibacterial effect of Kp52.145 or its PLD1 mutant strain upon competition with E. coli [see Additional file 1]. These results showed that pld1 is implicated in virulence without being an anti-bacterial factor and is, so far, unique.

Conclusions
This study presents a comparative analysis of the complete genome sequence of the high virulence reference strain Kp52.145, a derivative of the K2 reference strain B5055. It revealed five genomic regions possibly involved in bacterial virulence. One gene, pld1, was shown to be involved in virulence in a mouse model of pneumonia and revealed a novel implication of lipid metabolism in K. pneumoniae pathogenesis. Future analysis of additional putative virulence factors such as Sel1 lipoproteins, VgrG, Hcp, Bcl, cOMP and Sefir-domain containing protein are required for a comprehensive understanding of K. pneumoniae core virulence genes.

Methods
Selection of isolates for genome sequencing/bacterial strains
Strain Kp25.145 (a derivative of B5055, the reference strain of serotype K2) is a laboratory strain used to study K. pneumoniae pathogenesis [11,21] and was chosen as the focus of this work. SB2390 (cur15505, isolated in Curaçao, 2002, urinary tract infection; belongs to ST14) and SB3193 (IPEUC-744, isolated from a metritis case in a mare, 1981 in France; belonging to ST82) [23] are non-virulent strains that were sequenced to allow the comparison between virulent and non-virulent strains.

The pld1 transposon mutant was isolated by Anna Tomas and Jose Bengoecheoa during a screen of a K. pneumoniae mutant library made by Tn5 transposon insertion (manuscript in preparation). In this mutant, the transposon was inserted at position 1,625 of pld1 gene. The complementation of the mutant strain was achieved through bacterial transformation using electrocompetent cells and a plasmid carrying pld1 gene. pld1 gene was amplified by PCR and cloned at the multiple

Figure 4 PLD1 involvement in K. pneumoniae virulence. Mice survival after infection with K. pneumoniae Kp52.145 wild-type, pld1 mutant and complemented strains. Data are representative of seven mice per group from two independent experiments. Standard deviation is shown. PLD, phospholipase D.
Figure 5 (See legend on next page.)
cloning site of puc18 plasmid. Cloning was confirmed by DNA sequencing.

Genome sequencing and assembly

K. pneumoniae strains were sequenced using a combination of 454 and Illumina reads. Single and paired-end 454 reads with an average of 400 nucleotides were assembled into contigs and scaffolds by Newbler. Illumina reads of about 76 or 36 nucleotides were aligned to scaffolds in order to confirm and correct possible homopolymer errors in the 454 reads. Coverage was as follows: Kp52.145 genome: 170 X using GAIIx (76 nt) + 13.8 X using MP titanium + 18 X using SR titanium; SB2390 genome: 81 X using GAIIx (36 nt) + 6.4 X using MP titanium + 22 X using SR titanium; SB3193 genome: 209 X using GAIIx (76 nt) + 5.4 X using MP titanium + 20 X using SR titanium.

Following the primary assembly of the genomes, an *in silico* finishing approach, based on the methods described by Pop *et al.* [84], was performed in order to identify small and identical repeats on the genomes. In such cases and without high quality bases discrepancies, the contigs containing the small repeats were manually duplicated and added to the assembly.

Scaffolds were aligned to experimentally determined *Bgl*II optical maps generated by OpGen company from purified chromosomal DNA, using MapSolver version 3.1 software. Such alignments were used to check for the quality of the assemblies. Additionally, specific pairs of primers were designed in order to close all remaining gaps. PCR products were purified in NucleoFast 96 plates (Macherey Nagel, Düren, Germany) and aliquots were used for sequencing reactions with the BigDye Terminator Cycle Sequencing Ready reaction Kit (Applied Biosystems, Foster City, USA) and then infected intranasally with 20 μl

RT-PCR

Lungs of control or Kp52.145-infected mice were homogenized in cold TRI reagent (Sigma, Gillingham, Dorset, UK) using a Precellys lysing kit (Precellys, Saint Quentin en Yvelines, France). Total lung and bacterial mRNAs were extracted according to the manufacturer's instructions. RNA (2 μg) was reverse transcribed in cDNA using Superscript II enzyme (Invitrogen, Foster City, CA, USA). Aliquots were used in PCR reactions using specific primers [see Additional file 1].

Animal experiments

BALB/c mice were purchased from Janvier (Le Genest St. Isle, France). Mice were housed under standard conditions of feeding, light and temperature with access to food and water *ad libidum*. Experiments were performed according to the national and Institut Pasteur guidelines for laboratory animal experiments. Protocols were approved by the Institut Pasteur animal care and use committee (protocol 05–59) and the Direction des Services Vétérinaire de Paris (permit 75–713 to RT). Six- to eight-week-old mice were anesthetized with acepromazine (Calmivet, 1.5 mg/kg, Vetoquinol, Lure, France), and ketamine (Imalgene, 31.25 mg/kg, Merial, Lyon, France), and then infected intranasally with 20 μl.
bacterial suspension. The virulence of *K. pneumoniae* strains was tested on six-week-old BALB/c mice, as previously described [23]. Seven mice per test condition were infected with 10⁶ bacteria. Mice were followed every day for one week. Experiments were performed at least twice.

Thin-layer chromatography and mass spectrometry of lipids

Bacterial lipids were extracted by the method of Bligh and Dyer [87]. Briefly, bacterial stationary-phase cultures were concentrated 10 times and mixed with chloroform: methanol. After centrifugation at 1,000 rpm for five minutes, the organic phase was recovered. Lipid profiles were analyzed by two-dimensional TLC using TLC Silica gel 60 F₂₅₄ plates (Merck, Whitehouse Station, NJ, USA). As the stationary phase and a chloroform 9:1 methanol mixture as the mobile phase in both dimensions. Staining was performed by iodine vapor. TLC calibrated images were acquired in ImageScanner using LabScan v5.0 software. The relative intensity of each spot was calculated in ImageMaster two-dimensional Platinum v7.0 software. Alternatively, lipid extracts were analyzed by MS and MS/MS in an ESI-Q-Tof Micro (Waters), in positive ion mode. Resolution was typically lower than 10 ppm.

Anti-bacterial competition assays

Competition assays were performed as previously described [88]. Briefly, *K. pneumoniae* Kp52.145 or its pld1 mutant cells grown overnight on an agar plate were re-suspended in LB, normalized to OD₆₀₀ of 0.5 and mixed at a ratio of 5:1 with a spontaneous nalidixic acid (nal) resistant mutant strain of *E. coli* MG1655. The mixture was incubated for four hours on a prewarmed agar plate. Recovered cells were plated out on antibiotic selective media and viable cells were reported as the total number recovered per co-culture spot. *Serratia marcescens* DB10 was used as a positive control.

Additional file

Additional file 1: 1) Distribution of *K. pneumoniae* Kp52.145 genes, according to RAST categories. Each functional category is represented in a different color. The total number of genes per category is shown. 2) pld PCR assay. A collection of 42 virulent and non virulent clones was screened by PCR for pld gene. Strains containing pld gene are indicated by (+) and the absence of pld gene is indicated by (−). 3) TLC lipid profiles of *K. pneumoniae* Kp52.145 wild-type (left panel) and pld mutant strains (right panel). Black circles indicate differentially expressed lipids. 4) Bacterial competition assay. Anti-bacterial activity was measured as the number of *E. coli* cells recovered after the co-culture with *K. pneumoniae* Kp52.145 wild-type and pld mutant strains. *S. marcescens* was used as a positive control strain. 5) List of primers used for RT-PCR analysis.

Compeing interests
The authors declare they have no competing interests.

Authors’ contributions

LMLS participated in the genome sequencing and assembly, carried out the annotation and comparative genomic analysis, performed RT-PCR, lipid analysis and animal experiments and drafted the manuscript. LF carried out the genome assembly and participated in genome annotation. AT and JB generated the mutant strain and carried out the bacterial competition assay. VP, ASA and VB participated in the genome sequencing. PS participated in the design of the study and the genome sequencing and assembly. PS participated in the study design and coordination. RT conceived the study, participated in the genome sequencing and assembly and carried out animal experiments. SBD analyzed the presence of genes within other *K. pneumoniae* genomes. LMLS, JB, PJJS, SB and RT wrote the manuscript. All authors read and approved the final manuscript.

Acknowledgements

LMLS, AT and this work were supported by an ERA-Net Pathogenomic 2008 grant allocated to both P. Sansonetti and J. Bengoechea. ASA is a recipient of a fellowship from the Fundação para a Ciência e a Tecnologia from Portugal. The authors thank Stephane Salamone and David Touboul for their help with lipid analysis.

References

1. Brisse S, Grimont F, Grimont PAD: The genus Klebsiella. In *The Prokaryotes: A Handbook on the Biology of Bacteria*; Volume 6. 3rd edn. New York: Springer NY; 2006:159–196.
2. Keynan Y, Rubinstein E: The changing face of Klebsiella pneumoniae infections in the community. Int J Antimicrob Agents 2007, 30:385–389.
3. Podschan R, Ullmann U: Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 1998, 11:589–603.
4. Moellerling RC Jr, NDM-1—a cause for worldwide concern. N Engl J Med 2010, 363:2377–2379.
5. Shon AS, Russo TA: Hypervirulent Klebsiella pneumoniae: the next superbug? Future Microbiol 2012, 7:669–671.
6. Su SC, Su UK, Mo L, Yeh KM, Fung CP, Lin JC, Chang FY: Community-acquired liver abscess caused by serotype K1 Klebsiella pneumoniae with CTX-M-15-type extended-spectrum beta-lactamase. Antimicrob Agents Chemother 2008, 52:3004–3005.
7. Su UK, Yeh KM, Lin JC, Fung CP, Chang FY: Klebsiella pneumoniae liver abscess: a new invasive syndrome. Lancet Infect Dis 2012, 12:881–887.
8. Yoon JH, Kim YJ, Jun YH, Kim SI, Kang JY, Suk KT, Kim DJ: Liver abscess due to Klebsiella pneumoniae: Risk factors for metastatic infection. Scand J Gastroenterol 2014, 49:3012–3014.
9. Nassif X, Honore N, Vasselton T, Cole ST, Sansonetti PJ: Positive control of colanic acid synthesis in *Escherichia coli* by rmpA and rmpB, two
virulence-plasmid genes of Klebsiella pneumoniae. Mol Microbiol 1989, 3:1349–1359.

11. Nassif X, Fourrier JM, Arondel J, Sansonetti PJ: Mucoid phenotype of Klebsiella pneumoniae is a plasmid-encoded virulence factor. Infect Immun 1989, 57:546–552.

12. Regue M, Heeb B, Pique N, Izquierdo L, Merino S, Fresno S, Benedit VJ, Tomás JM. A gene, uge, is essential for Klebsiella pneumoniae virulence. Infect Immun 2004, 72:54–61.

13. Mey A, Ponard C, Colomb M, Normier G, Binz H, Revillard JP. Acylation of the lipid A region of a Klebsiella pneumoniae LPS controls the alternative pathway activation of human complement. Mol Immunol 1994, 31:1239–1246.

14. Izquierdo L, Tomas JM, Bengoechea JA. Capsule polysaccharide mediates bacterial resistance to antimicrobial peptides. Infect Immun 2004, 72:1107–1114.

15. Morantin D, Regueiro V, March C, Llobet E, Margarite J, Larante E, Garmendia J, Bengoechea JA. Klebsiella pneumoniae capsule polysaccharide impedes the expression of beta-defensins by airway epithelial cells. Infect Immun 2010, 78:1135–1146.

16. Yeh KM, Hsu P, Aip SJ, Liu TK, Chen TL, Chang FY, Koh TH: Capsular type K1 or K2, rather than mgal and rpmA, is a major virulence determinant for Klebsiella pneumoniae liver abscess in Singapore and Taiwan. J Clin Microbiol 2007, 45:466–471.

17. Mizia K, Ohta M, Mori M, Hasegawa T, Nakashima I, Kato N. Virulence for mice of Klebsiella strains belonging to the O1 group: relationship to their capsular (K) types. Infect Immun 1983, 40:56–61.

18. Sacco RL, Cappuccio F, Fattorini G, Gaglio D, Pellegrini F. Synthesis of phosphatidylcholine, a typical eukaryotic cell membrane phospholipid, by a strain of Klebsiella pneumoniae. J Bacteriol 2005, 187:4088–4090.

19. Brisse S, Fecvre C, Passet V, Issenintha-Jeanjean S, Tourmelbize R, Diancourt L, Grimont P. Virulent clones of Klebsiella pneumoniae: identification and evolutionary scenario based on genomic and phenotypic characterization. J Bacteriol 2009, 191:2489–2494.

20. Wu KM, Li L, Wang J, Tsao N, Liao TL, Tsai HC, Fung CP, Chen HJ, Liu YM, Wang JT, Fang CT, Chang SC, Shyu HY, Liu TT, Chen YT, Shau YR, Lauderdale TL, Su IJ, Kirby R, Tsai SF: Genome sequencing and comparative analysis of Klebsiella pneumoniae strain NTUH-K2044, a strain causing liver abscess and meningitis. J Bacteriol 2009, 191:4492–4501.

21. Aztz RK, Bartels D, Best AA, Delongh M, Dicz T, Edwards RA, Formsmek K, Gerdes S, Glass BM, Kubal M, Meyer F, Olsen GJ, Olson R, Osternan AL, Overbeek RA, McNeil LK, Paarmann D, Pannell T, Pettorelli B, Pusch GD, Reich C, Stevens R, Vassileva O, Vennström W, Wilke A, Zagnitto O. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008, 9:75.

22. Di Martin P, Caffierin N, Joly B, Darufilch-Michaud A, Klebsiella pneumoniae type pil facilitate adherence and biofilm formation on abiotic surfaces. J Bacteriol 2003, 185:490–16.

23. Lavender HF, Jagannath JR, Clegg S: Biofilm formation in vitro and virulence in vivo of mutants of Klebsiella pneumoniae. Infect Immun 2004, 72:4888–4890.

24. Agladel Z, Wang X, Romeo T: Spatial periodicity of Escherichia coli K-12 biofilm microstructure initiates during a reversible, polar attachment phase of development and requires the polysaccharide adhesin PGA. J Bacteriol 2005, 187:8237–8246.

25. Torres AG, Jeter C, Langley W, Mathysse AG: Differential binding of Escherichia coli O157:H7 to alfalfa, human epithelial cells, and plastic is mediated by a variety of surface structures. Appl Environ Microbiol 2005, 71:8008–8015.

26. Tompkins-Smit AM, Verwey-van Vught AM, Kanis IY, MacLaren DM: Contribution of the SirA regulon to biofilm formation in Salmonella enterica serovar Typhimurium. Microbiology 2006, 152:3411–3424.

27. Suzuki K, Wang X, Weibacher T, Fernsna N, Georganis D, Babitzke P, Rome A: Regulatory circuitry of the CsrA/CsrB and BarA/UrVY systems of Escherichia coli. J Bacteriol 2002, 184:5130–5140.

28. Khan MA, Isaacson RE: Identification of Escherichia coli genes that are specifically expressed in a murine model of septicemia infection. Infect Immun 2002, 70:3404–3412.

29. Balád DL, Higgens EE, Hocking OM, Frasquier J, Cavaliere R, James CE, Bennett-Wood V, Azzopardi K, Turnbull L, Lithgow T, Robin-Browm RM, Whitchurch CB, Tauschek M: The Type II secretion system and its ubiquitous lipoprotein substrate, SseL, are required for biofilm formation and virulence of enteropathogenic Escherichia coli. Infect Immun 2012, 80:2042–2052.

30. Iwaki A, Heesemann J, Garcia E, Igwe E, Noetig C, Rakin A: Novel virulence-associated type II secretion system unique to high-pathogenicity Yersinia enterocolitica. Infect Immun 2003, 71:1872–1879.

31. Hytonen J, Haataja S, Finne J: Streptococcus pyogenes glycoprotein-binding streptaphesisin activity is mediated by a surface-associated carbohydrate-degrading enzyme, pululanase. Infect Immun 2003, 71:784–793.

32. Shohboune SA 3rd, Keith DB, Davenport MT, Bees SB, Carroll RK, Musser JM: Contribution of AmyA, an extracellular alpha-galactan degrading enzyme, to group A streptococcal host-pathogen interaction. Microbiol 2000, 40:159–174.

33. Sarris PF, Zoumadakis C, Panopoulos NJ, Scoulica EV: Distribution of the putative type VI secretion system core genes in Klebsiella spp. Infect Genet Evol 2011, 11:157–166.

34. Lavelon MS, Hsu J, Rick PD, Miller VL: Identification of Klebsiella pneumoniae virulence determinants using an intranasal infection model. Mol Microbiol 2005, 58:1054–1075.

35. Sz Z, Feng Y, Dangler CA, Xu S, Taylor NS, Fox JG: Fumarate reductase is essential for Helicobacter pylori colonization of the mouse stomach. Microb Pathog 2000, 29:257–266.

36. Li AH, Lam WL, Stokes RW: Characterization of genes differentially expressed within macrophages by virulent and attenuated Mycobacterium tuberculosis identifies candidate genes involved in intracellular growth. Microbiology 2008, 154:2291–2303.

37. Buettner FF, Bendalliah IM, Bosse J, Dreckmann K, Nash JH, Langford PR, Gerfach GF: Analysis of the Actinobacillus pleuropneumoniae ArcA regulon identifies fumarate reductase as a determinant of virulence. Infect Immun 2008, 76:2284–2295.

38. Mercado-Lubo R, Gauger EJ, Leatham MP, Conway T, Cohen PS: A Salmonella enterica serovar typhimurium succinate dehydrogenase/fumarate reductase double mutant is avirulent and immunogenic in BALB/c mice. Infect Immun 2008, 76:1128–1134.

39. Wu MC, Lin TL, Hsieh PF, Yang HC, Wang JT: Isolation of genes involved in biofilm formation of a Klebsiella pneumoniae strain causing pyogenic liver abscess. PLoS One 2011, 6:e23500.

40. Flower DR: The lipocalin protein family: structure and function. Biochem J 1996, 318:1–14.

41. Bachman MA, Lenio S, Schmidt L, Cylinder JE, Weiser JN: Interaction of lipocalin 2, transferrin, and siderophores determines the replicative niche of Klebsiella pneumoniae during pneumonia. MBio 2012, 3(6).

42. Warszawskia JM, Gavish R, Shafar O, Sigel S, Doringe R, Lakovits K, Mesteri I, Mairz M, Boon L, Spiel A, Fuhrmann V, Strobl B, Muller M, Schenk P, Weiss G, Knapp S: Lipocalin 2 deactivates macrophages and worsens pneumococcal pneumonia outcomes. J Clin Invest 2013, 123:3363–3372.

43. Chen YL, Montedonico AE, Kaufman S, Dunlap JR, Menn FM, Reynolds TB: Phosphatidylserine synthase and phosphatidylserine decarboxylase are essential for cell wall integrity and virulence in Candida albicans. Mol Microbiol 2010, 75:1112–1125.

44. Conde-Alvarez R, Grillo MJ, Salcedo SP, de Miguel MJ, Fugier E, Gorvel JP, Mironyan I, Iriarte M: Synthesis of phosphatidylcholine, a typical eukaryotic phospholipid, is necessary for full virulence of the intracellular bacterial parasite Brucella abortus. Cell Microbiol 2006, 8:1322–1335.
plpVK-derived loci and abscess formation. Eur J Clin Microbiol Infect Dis 2010, 29:689–698.

51. Wacharotayankin R, Arakawa Y, Ohta M, Tanaka K, Akashi T, Mori M, Kato N: Enhancement of extracapsular polysaccharide synthesis in Klebsiella pneumoniae by RmpA2, which shows homology to NtcR and FixJ. Infect Immun 1993, 61:3164–3174.

52. Hsu CR, Lin TL, Chou HC, Wang JT: The role of Klebsiella pneumoniae mmpA in capsular polysaccharide synthesis and virulence revisited. Microbiology 2011, 157:3446–3457.

53. Hochhut B, Dobrindt U, Hacker J: Pathogenicity islands and their role in bacterial virulence and survival. Contrib Microbiol 2005, 12:234–254.

54. Gal-Mor O, Finlay BB: Pathogenicity islands: a molecular toolbox for bacterial virulence. Cell Microbiol 2006, 8:1707–1719.

55. Putze J, Hennigoun C, Nouguyed JP, Zhang W, Hornburg S, Karch H, Bringer MA, Fayeolle C, Caniell E, Rabisch G, Weisblad TA, Oswald E, Forestier C, Hacker J, Dobrindt U: Genetic structure and distribution of the colibactin genomic island among members of the family Enterobacteriaceae. Infect Immun 2009, 77:4669–4703.

56. Lin TL, Lee CZ, Hsieh PF, Tsai SF, Wang JT: Characterization of integrative and conjugative element ICEKp1-associated genomic heterogeneity in a Klebsiella pneumoniae strain isolated from a primary liver abscess. J Bacteriol 2008, 190:515–526.

57. Tsugawa H, Ogawa A, Takehara S, Kimura M, Okawa Y: Primary structure and function of a cytotoxic outer-membrane protein (ComP) of Plesiomonas shigelloides. FEMS Microbiol Lett 2008, 281:1–10.

58. Shah P, Nanduri B, Swiatlo E, Ma Y, Pendarvis K: Alteration of phospholipid composition by the lipid pump Atp8b1 determines the severity of Typhimurium infection. Infect Immun 2005, 73:6658–6673.

59. Fevre C, Almeida AS, Taront S, Pedron T, Huereau M, Prevost MC, Kleiersean A, Cumanio A, Brisse S, Sansonetti PJ, Tournebrze R: A novel murine model of rhinoscleroma identifies Mikulicz cells, the disease signature, as IL-10 dependent derivatives of inflammatory monocytes. EMBO Mol Med 2013, 5:156–530.

60. Shibuya I, Miyazaki C, Ohta A: Alteration of phospholipid composition by combined defects in phosphatidyserine and cardiolipin synthases and physiological consequences in Escherichia coll. J Bacteriol 1995, 177:1085–1092.

61. Schilme: Cardiolipin synthesis for the assembly of bacterial and mitochondrial membranes. J Lipid Res 2008, 49:1607–1620.

62. Ray NB, Durairaj L, Chen BB, McVerry BJ, Ryan AJ, Donahoe M, Waltonbrough AK, O’Donnell CP, Henderson FC, Etscheidt CA, McCoy DM, Agarsandian M, Hayes-Rowan EC, Coon TA, Butler PL, Galkar L, Mathur SN, Sieren JC, Tyurina YY, Kagan VE, McLenann G, Mallampalli RK: Dynamic regulation of cardiolipin by the lipid pump Atp8b1 determines the severity of lung injury in experimental pneumonia. Nat Med 2010, 16:1120–1127.

63. Lopes SC, Neve CS, Eaton P, Gameiro P: Improved model systems for bacterial membranes from differing species: the importance of varying composition in PE/PG/cardiolipin ternary mixtures. Mol Membr Biol 2012, 29:207–217.

64. Russell AB, Leroux M, Hather K, Agnello DM, Ishikawa T, Wiggins PA, Wai SN, Mougous JD: Diverse type VI secretion phospholipases are functionally plastic antibacterial effectors. Nature 2013, 496:508–512.

65. Nagarajan N, Cook C, Di Bonaventura MM, Ge H, Richards A, Bishop-Lilly KA, Hayes-Rowan EC, Butler PL, Gakhar L, Mathur SN, Sieren JC, Tyurina YY, Kagan VE, McLenann G, Mallampalli RK: Dynamic regulation of cardiolipin by the lipid pump Atp8b1 determines the severity of lung injury in experimental pneumonia. Nat Med 2010, 16:1120–1127.

66. Franguel L, Gaser P, Russnick C, Buchrieser C, Dohoude P, Kunst F: CAAT-Box, Contigs-Assembly andAnnotation Tool-Box for genome sequencing projects. Bioinformatics 2004, 20:790–797.

67. Bansal SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller WP, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25:3389–3402.

68. Blyth EG, Dyer WJ: A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959, 37:911–917.

69. Mordoch SB, Trunk K, English G, Fritsch MJ, Pourkarimi E, Coulthurst SJ: The opportunistic pathogen Serratia marcescens utilizes type VI secretion to target bacterial competitors. J Bacteriol 2011, 193:6057–6069.