Phenotypic and molecular characterisation of a novel species, *Mycobacterium hubeiense* sp., isolated from the sputum of a patient with secondary tuberculosis in Hubei of China

Xiaoli Yu1,*, Hui Zheng1,*, Fang Zhou1, Peng Hu1, Hualin Wang1, Na Li1, Juncai He1, Peidong Wang1, Lu Zhang1,2, Hongsheng Men4, Jie Xiang3 and Shulin Zhang2,5

1School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China; 2Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; 3Wuhan Medical Treatment Center, Wuhan, China; 4Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA and 5Tuberculosis Research Center, Shanghai Public Health Clinical Center, Shanghai, China

Abstract

A new fast-growing mycobacterium, designated strain QGD101T, was isolated from the sputum of an 84-year-old man suspected of tuberculosis in Wuhan Medical Treatment Center, Hubei, China. This strain was a gram-staining-negative, aerobic, non-spore-forming and catalase-positive bacterium, which was further identified as the NTM by PNB and TCH tests. The moxifloxacin and levofloxacin exhibited strong suppressing function against QGD101\(^T\) with MIC values of 0.06 and 0.125 µg/ml after drug susceptibility testing of six main antimicrobial agents on mycobacteria. Based on the sequence analysis of 16S rRNA, *rpoB*, *hsp65* and 16S-23S rRNA internal transcribed spacer, the strain QGD101\(^T\) could not be identified to a species level. *Mycobacterium moriokaense* ATCC43059\(^T\) that shared the highest 16S rRNA gene sequence similarity (98%) with strain QGD101\(^T\) was actually different in genomes average nucleotide identity (78.74%). In addition, the major cellular fatty acids of QGD101\(^T\) were determined as C18:1\(\omega_9c\), C16:0 and C18:2\(\omega_6c\). The DNA G + C content was 64.9% measured by high performance liquid chromatography. Therefore, the phenotypic and genotypic characterisation of this strain led us to the conclusion that it represents a novel species of mycobacteria, for which the name *Mycobacterium hubeiense* sp. nov. (type strain QGD101\(^T\) = CCTCCAA 2017003\(^T\) = KCTC39927\(^T\)) was proposed. Thus, the results of this study are very significant for the clinical diagnosis of tuberculosis and future personalised medicine.

Introduction

Non-tuberculous mycobacteria (NTM) are a large family of acid-fast bacteria, which can be opportunistic pathogens and cause pulmonary disease resembling tuberculosis, lymphadenitis, skin disease or disseminated disease [1–4]. Until now, more than 160 NTM species have been found in List of Prokaryotic names with Standing in Nomenclature (http://www.bacterio.net/mycobacterium.html). Members of NTM are able to be distinguished from photochromogens, scotochromogens and nonchromogens. NTM can also be classified based on the rate of growth [5–7]. NTM are widely distributed in the environment, particularly in wet soil, marshland, streams, rivers and estuaries [8, 9].

In clinical practice, NTM can cause the TB-like clinical presentations. Importantly, most NTM (except *M. kansasi*) are inherently resistant to or only partially susceptible to the standard anti-tubercular drugs. Thus, the diagnosis of NTM infection is critical for choosing effective treatment [10]. In this study, a clinical strain QGD101\(^T\) was isolated from the sputum sample of a patient suspected of tuberculosis during July 2012 in Wuhan Medical Treatment Center, Hubei, China (30°67′N 114°29′E). By the image findings and medical history, the case was primarily diagnosed as secondary suspected tuberculosis. The patient had the pathological characteristics such as pulmonary fibrosis cavity, hemoptysis, etc., and the commonly used anti-tuberculosis drugs isoniazid and rifampicin had no obvious effect on conventional treatment. The pathogen culture for mycobacteria was positive. By the use of molecular identification and evolutionary analysis, this mycobacterium was identified as a new species. The results of this study have a great significance for clinical diagnosis of emerging diseases and the replenishment of new mycobacterial resources.
Materials and methods

Ethics statement

Ethical approval is granted by the Ethics Committee of Wuhan Polytechnic University (ID Number: 20120720006). The sputum sample was obtained from a patient suspected of tuberculosis in Wuhan Medical Treatment Center in Hubei Province, on 20 July 2012.

Microbiological analysis

The early morning sputum specimens were collected from an 84-year-old man diagnosed as secondary tuberculosis and were processed with the standard protocol [11]. After decontamination, each sample was cultured onto Löwenstein–Jensen (L–J) media at 37 °C for 8 weeks. The cultures were inspected weekly and growth was examined by visual inspection for colonies. Negative slides were then confirmed by Ziehl–Neelsen staining.

Biochemical and physiological-testing

Biochemical and physiological-testing, including iron uptake, urease testing, nitrate reduction and pyrazinamidase testing [12], were performed for QGD101T, Mycobacterium barrassiae CIP 108545T and Mycobacterium moriokaense ATCC 43059T. Catalase activity was determined using bubble production H2O2 solution [13]. Other biochemical testing was carried out using VITEK 2 ANC and VITEK 2 GP testing kits according to the protocols of the manufacturer (bioMerieux). Growth characteristics at 28 °C, 37 °C and 42 °C were respectively assessed after 5 days of incubation in L–J medium.

The drug susceptibility testing (DST) for QGD101T

According to the resazurin microplate assay [14], the commonly used antimicrobial agents such as rifampin (RIF), ethambutol (EMB), streptomycin, levofloxacin (LVX), kanamycin (KAN), azithromycin (AZI) and moxifloxacin (MOX) were respectively used to determine the MIC value of strain QGD101T.

HPLC analysis

For quantitative analysis of the cellular fatty acid composition, strain QGD101T was cultured at 37 °C for 5 days. The DNA G + C content was determined by means of reversed-phase high performance liquid chromatography, which was according to the protocol described by Mesbah et al. [15].

DNA extraction, PCR amplification and sequencing

Genomic DNA of M. tuberculosis isolate QGD101T was extracted by the classical phenol–chloroform method and stored at −20 °C. Oligonucleotide primers were designed using Primer 5.0 (PREMIER Biosoft, Palo Alto, CA, USA) and Oligo 6 software (Molecular Biology Insights, Inc., Cascade, CO, USA). Amplification of the 16S rRNA gene and 16S-23S rRNA internal transcribed spacer (ITS) sequence was performed as previously described [10]. The hsp65 gene was amplified using primers Tb11 (5′-ACCAACGATGGTGTGTCCAT-3′) and Tb12 (5′-CTTGTCGAACCGCATACCCT-3′) targeting positions 396–836 of the gene sequence of M. tuberculosis [16]. The same experimental protocol was used for amplification with the exception that annealing was performed at 57 °C for 1 min. Amplification of rpoB was done with primers MycoF (5′-GGCAAGGTCACCCCGAAGGG-3′; base positions 2573 to 2592) and MycoR (5′-AGCGGCTGCTGGGTGATCATC-3′; base positions 3316 to 3337) in two conserved regions flanking the most variable rpoB region [17]. Direct sequencing was performed on amplified products with the 3730xl DNA Analyser. Similarity values and percent divergence of the 16S rRNA gene were calculated using MegAlign of Lasergene (DNA-Star, Madison, WI, USA).

Sequence analysis and phylogenetic classification

Molecular typing and species identification were performed using BLAST search (http://www.ncbi.nlm.nih.gov/BLAST/). Multiple-sequence alignment was performed in MEGA version 7.0.18. Sequences were then trimmed to start and finish at the same nucleotide position for phylogenetic analysis. The sequences of the 16S rRNA, rpoB, hsp65 genes and ITS sequence of the isolated strain were compared with available sequences from GenBank using the BLAST program to determine their approximate phylogenetic affiliation. The 16S rRNA phylogenetic trees based on

Fig. 1. Neighbour-joining trees based on 16S rRNA gene sequences of strain QGD101T and some type strains. The tree was rooted with N. farcinica ATCC3318T. Percentages indicated at nodes represent bootstrap levels supported by 1000 resampled datasets; values <50% are not shown. The significance of the branching order was estimated by the bootstrap method calculated 1000 replications. Bar, 0.01 substitutions per nucleotide position. Note: ‘M.’ is the abbreviation of ‘Mycobacterium’, and ‘N.’ is the abbreviation of ‘Nocardia’.
mycobacterial species were constructed using neighbour-joining algorithm following Kimura 2-parameter correction and maximum likelihood methods in MEGA 7.0.18. The significance of the branching order was estimated by the bootstrap method based on 1000 replications.

Genomic analysis

The complete genome sequence of strain QGD101T was determined using the Illumina Miseq. The reads were assembled de novo using SOAPdenovo version 2.04 and the gaps of the assembled sequence were closed using GapCloser version 1.12, and the average nucleotide identity (ANI) value was calculated using JSpeciesWS [18].

Results

Genotype identification analysis

The strain QGD101T shares 99% identity with \textit{M. barrassiae} CIP108545T and \textit{M. moriokaense} ATCC43059T in the 16S
Table 1. VITEK 2 GP and VITEK 2 ANC test kits results

VITEK 2 GP test	M. hubeiens	VITEK 2 ANC test	M. hubeiens
D-amygdalin	−	ELMAN	−
Phosphatidylinositol Phospholipase C	−	Phenylalanine arylamidase	+
D-xylose	−	D-cellobiose	−
Arginine Dihydrolase 1	−	Arbutin	−
β-Galactosidase	−	5-Bromo-4-chloro-3-indoxyl-β-glucoside	−
α-glucosidase	−	5-Bromo-4-chloro-3-indoxyl-β-glucuronide	−
Ala-Phe-Pro arylamidase	−	β-Galactopyranose indoxyl	−
Cyclodextrin	−	α-Arabinosidase	−
L-aspartate arylamidase	−	5-Bromo-4-chloro-3-indoxyl-α-galactoside	−
β-Galactopyranose	−	β-Mannosidase	−
α-Mannosidase	−	Arginine GP	−
Phosphatase	−	Pyruvate	(−)
Leucine arylamidase	+	Maltotriose	−
L-proline arylamidase	−	Esculin hydrolyse	−
β-Glucuronidase	−	β-D-fucosidase	−
α-Galactosidase	−	5-Bromo-4-chloro-3-indoxyl-β-N-acetyl-glucosamide	−
L-pyrrolidonyl-arylaminidase	−	5-Bromo-4-chloro-3-indoxyl-α-mannoside	−
β-Glucuronidase	−	α-L-fucosidase	−
Alanine arylamidase	+	L-arabinose	−
Tyrosine arylamidase	+	d-Ribose 2	−
D-sorbitol	−	Phenylphosphonate	−
Urease	−	α-L-arabinofuranosidase	−
Polymixin B resistance	−	GRAM	+
D-galactose	−	MORPH	−
D-ribose	−	AERO	+
L-lactate alkalinisation	−		
Lactose	−		
N-acetyl-D-glucosamine	−		
D-maltose	−		
Bacitracin resistance	−		
Novobiocin resistance	−		
6.5% NaCl	−		
D-mannitol	−		
D-mannose	−		
Methyl-B-D-glucopyranoside	−		
Pullulan	−		
D-raffinose	−		
O/129 resistance	−		
Salicin	−		
Sucrose	−		
D-trehalose	+		
Arginine dihydrolase 2	−		
Optochin resistance	−		

+, positive; −, negative.
rRNA gene. It shares 96% identity in the rpoB gene with *M. barras- siae* CIP108545 and *M. moriokaense* CIP105393. The ITS sequence analysis showed that this strain shares 85% identity with *M. chubuense* NBB4. The hsp65 gene sequence analysis also showed that this strain shares 92% identity with *M. moriokaense*.

Results of rpoB gene identification are more approximate to the 16S rRNA gene phylogenetic classification. The neighbour-joining tree (Fig. 1) indicated that strain QGD101T was a member of the genus *Mycobacterium* and formed a subcluster with *M. barras- siae* CIP108545T and *M. moriokaense* ATCC43059T with a 63% bootstrap value. Also, the rpoB NJ tree showed that QGD101T was closely related to *M. barras- siae* CIP108545T and *M. moriokaense* CIP105393T, both with an 84% bootstrap value (Fig. 2).

A GenBank accession number for the 16S rRNA, hsp65 and rpoB gene sequence and 16S-23S rRNA intergenic spacer value (Fig. 2).

Comparative analysis of genomic sequences

The genomic analysis of QGD101T was obtained by genome sequencing, and the whole sequence of QGD101T has been uploaded on Genbank. The GC content in the QGD101T gene region is 66.99%, while GC content in the intergenic region is 62.49%. To evaluate the similarity between genome sequences, ANI values were analysed between the strain and reported genomes of closest species (Fig. 3). The strain QGD101T showed 78.75% ANI values compared to the closest reference strain *M. moriokaense* ATCC43059T (NZ_MVIB01000100). These DNA relatedness and ANI results indicate that strain QGD101T represents a novel genomic species that is distinct from its closest relatives.

This Whole Genome Shotgun project has been deposited at DDBJ/ENA/GenBank under the accession PIZU00000000. The version described in this paper is version PIZU01000000.

Phenotypic identification analysis

The phenotypic and biochemical characteristics of strain QGD101T are shown in Table 1. The strain QGD101T can grow on media containing either TCH or PNB, indicated that strain QGD101T is a fast-growing NTM.

The differential characteristics between strain QGD101T and its reference species in the genus *Mycobacterium* are shown in Table 2. The strain QGD101T could also grow on sodium glutamate glucose agar but not on MacConkey agar. *M. barras- siae*, *M. moriokaense* and strain QGD101T were all able to grow at 42 °C, however, none of them could produce pigment. All three strains showed positive activities for urease, 5% NaCl tolerance, iron uptake, nitrate reductase and negative activities for arylsulfate, alkaline phosphatase and esculin. There are also different characteristics among the three species. For example, *M. barras- siae* and *M. moriokaense*, but not strain QGD101T, showed positive activities for the pyrrolidonyl arylamidase test. For the α-glucosidase test, only *M. moriokaense* showed positive activities. For their carbon source, *M. barras- siae* was able to assimilate both d-sorbitol and l-arabinose except d-mannitol. *M. barras- siae* was able to use l-arabinose only. However, none of the three chemicals could be used by strain QGD101T as its sole carbon source. These differences clearly demonstrated that the strain QGD101T is different from *M. moriokaense* and *M. barras- siae*, other biochemical characteristics of strain QGD101T are shown in Table 2.

The major fatty acids (>10% of the total fatty acids) disclosed by gas-liquid chromatography analysis detected in strain QGD101T were C18:1ω9c (36.82%), C16:0 (29.9%) and C18:2ω6,9c (11.31%), for which the Sherlock Microbial Identification System (MIS) showed no match with QGD101T (Fig. 4). And the DNA G+C content value of strain QGD101T was 64.9% (65.25% ± 0.35%), which was consistent with the GC values sequenced from the genomic analysis.

Drug resistance of strain QGD101T

The DST of strain QGD101T showed that the MIC values of different drugs were: RFB (0.5 µg/ml), EMB (0.5 µg/ml), MOX (0.06 µg/ml), LVX (0.125 µg/ml), RIF (8 µg/ml), KAN (8 µg/ml) and AZI (128 µg/ml). According to the drug susceptibility criteria in the Susceptibility Test of Mycobacteria, Nocardia and Other Aerobic Actinomycetes [18], this result indicated that strain QGD101T was sensitive to drugs RFB, EMB, MOX and LVX, but resistant to RIF, KAN and AZI.

Discussion

In view of the development of environment and climate change, more mycobacteria are discovered and the membership list of genus *Mycobacterium* is ever expanding [19]. Therefore,
discovering novel species of NTM and identification of clinical isolates are of great significance for the clinical practice. Especially, accurate differentiation of NTM from the *M. tuberculosis* complex is needed for effective patient management, because many NTM strains are resistant to the anti-mycobacterial agents [20]. This study suggested that the differential identification of mycobacteria is very significant to initiate personal medication in clinical practice, especially for the TB suspect.

In this study, a mycobacterium was isolated from a suspected TB patient. In order to accurately identify this bacteria, biochemical analysis, molecular sequence analysis, G + C content determination and cell wall fatty acid composition were performed. In most cases, 16S rRNA gene sequence can provide species-specific signature sequences useful for the identification of bacteria [21]. Further, the combination of multiple genes, 16S rRNA, *hsp65* and *rpoB* analysis is preferred [10 22 23]. The *rpoB* gene encodes the β-subunit of RNA polymerase containing conserved sequence regions flanking highly variable regions. It has been developed as a suitable tool for the accurate taxonomic identification of *Mycobacterium* [22]. The *hsp65* gene is a highly conserved housekeeping gene coding for a 65 kDa protein containing epitopes that are unique as well as epitopes that are common to various species of mycobacteria [24].

The *M. moriokaense* group was composed of *M. barrassiae* and *M. moriokaense*, sharing 99% identity in the 16S rRNA gene [25]. The strain QGD101T shares 99% identity and 98% query cover with *M. barrassiae* CIP108545T and *M. moriokaense* ATCC43059T in the 16S rRNA gene. The phylogenetic tree of 16S rRNA suggested the close relationship of strain QGD101T to *M. moriokaense* and *M. barrassiae*. By genomic analysis, QGD101T showed 78.75% ANI values relative to the closest reference strain *M. moriokaense* ATCC43059T (NZ_MVIB01001000). These DNA relatedness and ANI results indicate that strain QGD101T represents a novel genomic species that is distinct from its closest relatives.

The strain QGD101T could grow on media containing either TCH or PNB indicating that QGD101T is NTM. The differential characteristics between strain QGD101T and the reference species of *Mycobacterium* were obvious, especially the ability to assimilate D-sorbitol, L-arabinose and the activity to β-galactosidase, α-glucosidase, suggesting that the strain QGD101T represented a new species in the genus *Mycobacterium*.

To identify the drug resistance of this species, we chose MOX for patients. After 1 week of medication, the patient stopped coughing up blood, imaging examination showed that the lung shadow was weakened. After 2 months of treatment, the symptoms disappeared completely. This indicates that MOX can effectively inhibit the growth of the pathogen (QGD101T) in the patient, providing hope for the recovery of other patients infected with the strain.

In general, the physiological, biochemical characteristics and the genotype analysis demonstrated the clear differences between QGD101T and the type strains of its closest phylogenetic neighbours. Therefore, the genome analysis indicated that strain QGD101T represented a novel genomic species, and for which the name *Mycobacterium hubeiense* sp. nov. (type strain QGD101T = CCTCCAA 2017003T = KCTC 39927T) was proposed.

Acknowledgements. Financial support from the National Science and Technology Major Project of China (No. 2017ZX10201301-003-001, 2017ZX10201301-003-003) and the China National Natural Science Foundation of China (81871613) is gratefully acknowledged.

Author contributions. Conceived and designed the experiments: XLY, HZ, FZ, HLW, NL, PDW, WHZ, JX, HSM and SLZ. Performed the experiments: PH, HZ and PDW. Analysed the data: HZ, QHW, PDW and WHZ. Contributed reagents/materials/analysis tools: HZ, WHZ, LZ, HSM, JCH and SLZ. Wrote the paper: XLY, HZ, PDW, HSM and SLZ.

Conflict of interest. The authors declare no conflict of interest.

References

1. Wallace R (2010) History of MAC. Available at http://www.maclungdisease.org/history-of-mac.
2. Wentworth AB et al. (2013) Increased incidence of cutaneous nontuberculous mycobacterial infection, 1980 to 2009: a population-based study. Mayo Clinic Proceedings 88, 38–45.
3. Kim BJ et al. (2014) *Mycobacterium paragordonae* sp. nov., a slowly growing, scotochromogenic species closely related to *Mycobacterium gordonae*.
International Journal of Systematic and Evolutionary Microbiology 64, 39–45.
4. Yu XL et al. (2014) Molecular characterization of multidrug-resistant Mycobacterium tuberculosis isolated from south-central China. Journal of Antibiotics (Tokyo) 67, 291–297.
5. Runyon EH (1999) Anonymous mycobacteria in pulmonary disease. Medical Clinics of North America 43, 273–290.
6. Rogall T et al. (1990) Towards a phylogeny and definition of species at the molecular level within the genus Mycobacterium. International Journal of Systematic Bacteriology 40, 323–330.
7. Brown-Elliott BA et al. (2002) Clinical and taxonomic status of pathogenic nonpigmented or late-pigmenting rapidly growing mycobacteria. Clinical Microbiology Reviews 15, 716–746.
8. Rhodes MW et al. (2003) Mycobacterium shottsii sp. nov., a slowly growing species isolated from Chesapeake Bay striped bass (Morone saxatilis). International Journal of Systematic and Evolutionary Microbiology 53, 421–424.
9. Trujillo ME et al. (2004) Mycobacterium psychrotolerans sp. nov., isolated from pond water near a uranium mine. International Journal of Systematic and Evolutionary Microbiology 54, 1459–1463.
10. Yu XL et al. (2014) Identification and characterization of non-tuberculous mycobacteria isolated from tuberculosis suspects in Southern-central China. PLoS One 9, e114353.
11. Kent PT (1985) Public health mycobacteriology. A Guide for the Level III Laboratory. Published online: 1985.
12. Roberts GD et al. (1991) Manual of Clinical Microbiology, 5th Edn. Washington, DC: American Society for Microbiology. Published online: 1991.
13. Iwase T et al. (2013) A simple assay for measuring catalase activity: a visual approach. Scientific Reports 3, 3–6.
14. Gupta A et al. (2011) Evaluation of the performance of nitrate reductase assay for rapid drug-susceptibility testing of Mycobacterium tuberculosis in North India. Journal of Health, Population and Nutrition 29, 20–25.
15. Mesbah M et al. (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. International Journal of Systematic Bacteriology 39, 159–167.
16. Telenti A et al. (1993) Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis. Journal of Clinical Microbiology 31, 175–178.
17. Adekambi T et al. (2003) rpoB-based identification of nonpigmented and late-pigmenting rapidly growing mycobacteria. Journal of Clinical Microbiology 41, 5699–5708.
18. Li R et al. (2010) De novo assembly of human genomes with massively parallel short read sequencing. Genome Research 20, 265–272.
19. Zhang SL et al. (2007) Use of a novel multiplex probe array for rapid identification of Mycobacterium species from clinical isolates. World Journal of Microbiology and Biotechnology 23, 1779–1788.
20. Rahman MM et al. (2017) Molecular detection and differentiation of Mycobacterium tuberculosis complex and non-tuberculous Mycobacterium in the clinical specimens by real time PCR. Mymensingh Medical Journal 26, 614–620.
21. Ni Y et al. (2008) 16S rDNA and 16S-23S internal transcribed spacer sequence analyses reveal inter- and intraspecific Acidithiobacillus phyl-ogeny. Microbiology (Reading, England) 154, 2397–2407.
22. Adekambi T et al. (2004) Dissection of phylogenetic relationships among 19 rapidly growing Mycobacterium species by 16S rRNA, hsp65, sodA, recA and rpoB gene sequencing. International Journal of Systematic and Evolutionary Microbiology 54, 2095–2105.
23. Kabongo-Kayoka PN et al. (2017) Novel Mycobacterium avium complex species isolated from black wildebeest (Connochaetes gnou) in South Africa. Transboundary and Emerging Diseases 64, 929–937.
24. Devulder G et al. (2005) A multigene approach to phylogenetic analysis using the genus Mycobacterium as a model. International Journal of Systematic and Evolutionary Microbiology 55, 293–302.
25. Adekambi T et al. (2006) Mycobacterium barrassiae sp. nov., a Mycobacterium moriokaense group species associated with chronic pneumonia. Journal of Clinical Microbiology 44, 3493–3498.