Pressure-Induced Intermediate-to-Low Spin State Transition in LaCoO$_3$

T. Vogt1,*, J.A. Hriljac2, N.C. Hyatt3, P. Woodward4

1Physics Department, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
2School of Chemistry, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
3Department of Engineering Materials, The University of Sheffield, S1 3JD, UK
4Department of Chemistry, Ohio State University, Columbus, Ohio 43210, USA

In February 26, 2018

Synchrotron X-ray powder diffraction experiments reveal that the transition from a magnetic intermediate spin (IS) state $t^{2}_2e^{6}_{g}$ to a nonmagnetic low-spin (LS) ground state t^{4}_2g in LaCoO$_3$ normally observed when cooling, manifests itself under pressure by an anomalously low bulk compressibility of 150(2) GPa and an initially very large Co-O bond compressibility of 4.8×10^{-3} GPa$^{-1}$ which levels off near 4 GPa. The continuous depopulation of the IS state is driven by an increased crystal field splitting resulting in an effective reduction of the size of the Co$^{3+}$ cation.

PACS numbers: 61.50.Ks, 75.25.+z

The magnetic and electronic properties of the paradigmatic charge-transfer insulator LaCoO$_3$ which crystallizes in a rhombohedral distortion of the cubic perovskite structure with the a−a−a− tilt system continue to be topical. Magnetic susceptibility measurements reveal transitions at 100 and 500K. The 100K transition was first interpreted by Goodenough as a spin state transition of 50% of the Co$^{3+}$ ions from a nonmagnetic low-spin (LS, t^{2}_2g, S=0) ground state to a high spin state (HS, $t^{4}_2e^{6}_{g}$, S=2). The 500K transition was assigned to an order-disorder transition, where the e_g electrons become itinerant and destroy the spin-state ordered superstructure the latter, however, was never observed experimentally and a dynamic disorder of HS and LS Co$^{3+}$ was subsequently proposed. An alternative interpretation based on photo-electron emission and X-ray absorption spectroscopy led to the postulation of an intermediate spin (IS, t^{2}_2g, S=1) state and the two transitions were assigned to thermally activated LS-to-IS and IS-to-HS state transitions. According to classical ligand field theory the IS state should always be energetically above the LS or HS state. However, LDA+U calculations by Korotin et al established that the IS state could be energetically stabilized with respect to the HS state. Recent neutron powder diffraction experiments by Radaelli and Cheong show that the thermal lattice expansion is best fitted by such a LS-to-IS-to-HS state sequence without orbital degeneracy of the IS state. However, correction terms to a simple activated behavior and a significantly reduced HS effective moment are required, indicating that this model is, at present, incomplete.

Pressure can alter the magnetism of transition-metal oxides by inducing Mott or spin state transitions. The first is a consequence of the closure of the Mott-Hubbard or charge-transfer gap, whereas the latter results from a breakdown of strong Hund’s rule coupling and occurs when the crystal field splitting dominates over the exchange energy. A second order HS-to-LS transition under pressure leads to the collapse of the magnetic state in wuestite (Fe$_{0.44}$O$_3$) as shown by Mössbauer spectroscopy. In RFeO$_3$ (R=La, Pr) a pressure-induced collapse of the Mott-Hubbard state and a subsequent continuous HS-to-LS transition was observed. Takano et al observed a first-order pressure-driven HS-to-LS transition in CaFeO$_3$ by in-situ Mössbauer spectroscopy and x-ray diffraction. In the following we present experimental evidence for a continuous IS-to-LS state transition occurring in LaCoO$_3$ under hydrostatic pressure at room temperature.

The experimental setup and detailed procedure for the high-pressure synchrotron x-ray powder diffraction experiments performed at beam line X7A at the National Synchrotron Light Source at Brookhaven National Laboratory are described elsewhere. Rietveld refinements were performed using the program GSAS. The results of the fits are summarized in Table 1. The lattice parameters and the volume of the unit cell reveal no discontinuity as a function of pressure (Figure 1). Intriguingly however, the value of the bulk modulus, B_0, of 150(2) GPa obtained by fitting a second order Birch-Murnaghan Equation of State with $V_0=335.834(5)$Å3 and $B’=4$ (by definition) to the pressure dependence of the unit cell volume is significantly smaller than those observed for comparable perovskites with the a−a−a− tilt system such as LaAlO$_3$ ($B_0=190(5)$ GPa) and PrAlO$_3$ ($B_0=205(8)$ GPa). The Cornelius-Schilling model predicts values of 180, 189 and 191 GPa for B_0 of LaCoO$_3$, LaAlO$_3$ and PrAlO$_3$ respectively. Our experimental value is therefore highly indicative of an unusually low volume compressibility in LaCoO$_3$.

The La$^{3+}$ cation in LaCoO$_3$ is at the center of a distorted dodecahedron and coordinated by twelve oxygen...
Under pressure, the Co-O bonds contract, as expected. The effect of pressure on the individual metal-oxygen bond distances clearly reveals that there are two distinct regions with a change in slope near 4 GPa (Figures 3a and b). Initially the short La-O bonds increase, the long ones decrease, and the six intermediate ones also decrease, but by a much smaller amount. Under pressure, the Co-O bonds contract, as expected. When analyzing the individual linear bond compressibilities \(\beta_L = (-1/L)(\delta L/\delta P)_T \) up to 4 GPa, one observes that the contraction of the intermediate La-O bond \(\beta_{La-O3} = 3.6 \times 10^{-3} GPa^{-1} \) matches the Co-O bond compressibility \(\beta_{Co-O} = 4.8 \times 10^{-3} GPa^{-1} \). In contrast, the three long La-O bonds contract very strongly \(\beta_{La-O1} = 1.8 \times 10^{-2} GPa^{-1} \), while the short ones expand \(\beta_{La-O2} = -1.76 \times 10^{-2} GPa^{-1} \) at a comparable rate. This is a clear indication of significant changes in the magnitude of the octahedral tilting as discussed in the following paragraph.

An exceedingly useful measure of the distortion of a perovskite-type structure from the cubic aristotype ABO₃ is the tilt angle, \(\phi \), which gives the degree of rotation around the threefold axis of the BO₆ octahedra. O’Keefe et al. [23] have shown that the variation of \(\phi \) with pressure in orthorhombic perovskites depends on the strength of the two bond compressibilities \(\beta_{A-O} \) and \(\beta_{B-O} \). If the A site is more compressible, \(\beta_{A-O} > \beta_{B-O} \), \(\phi \) should increase with pressure and the structure will distort away from cubic symmetry. If the bond compressibilities are reversed in magnitude, the tilt angle should decrease with pressure. These trends are indeed observed in the three isostructural orthorhombic systems (Pbnm, b\(^{-}\)b\(^{+}\)a\(^{+}\)) where \(\phi \) increases in MgSiO\(_3\) \(\beta_{Mg-O} = 1.1 \times 10^{-3} GPa^{-1} \) \(\beta_{Si-O} = 8.9 \times 10^{-3} GPa^{-1} \) and decreases in LaMnO\(_3\) \(\beta_{La-O} = 2.8 \times 10^{-2} GPa^{-1} \) \(\beta_{Mn-O} = 3.2 \times 10^{-3} GPa^{-1} \) and YAlO\(_3\) \(\beta_{Y-O} = 2.0 \times 10^{-3} GPa^{-1} \) \(\beta_{Al-O} = 2.5 \times 10^{-2} GPa^{-1} \). In the related system ScAlO\(_3\), the compressibilities of \(\beta_{Sc-O} \) and \(\beta_{Al-O} \) are essentially equal \((\approx 5 \times 10^{-3} GPa^{-1}) \), and there is no significant change in \(\phi \) with pressure [23]. To our knowledge, the only previously published detailed crystallographic data for a rhombohedral perovskite under pressure is the case of PrAlO\(_3\) [24], which is isostructural with LaCoO\(_3\) and also adopts the a\(^{-}\)a\(^{-}\)a\(^{-}\) tilt system (space group R-3c) up to ca. 7 GPa. Above this pressure PrAlO\(_3\) undergoes a phase transition into the a\(^{0}\)b\(^{-}\)b\(^{-}\) tilt system (space group Imma). Similar to LaMnO\(_3\) and YAlO\(_3\), the A-O bond is less compressible \(\beta_{A-O} = 2.8 \times 10^{-2} GPa^{-1} \) than the B-site \(\beta_{B-O} = 2.8 \times 10^{-3} GPa^{-1} \) and the tilt angle decreases with pressure. When considering the data to 4 GPa for LaCoO\(_3\), once again the A site is less compressible \(\beta_{La-O} = 3.0 \times 10^{-3} GPa^{-1} \) than the B-site \(\beta_{Co-O} = 4.8 \times 10^{-3} GPa^{-1} \) and the tilt angle decreases. Therefore it appears that the argument forwarded by O’Keefe et al. [24] relating individual bond compressibilities to a distortion under pressure is also valid for perovskites that adopt other than orthorhombic crystal symmetry.

The variation of the tilt angle as well as the Co-O-Co angles for LaCoO\(_3\) under pressure (Figure 4) clearly emphasize what has already been noted from the pressure dependence of the bond distances, that, in contrast to the unit cell parameters there is an obvious change in the response of the bond distances and angles above ca. 4 GPa. Based on a comparison of the limited number of experimentally determined individual bond compressibilities in perovskites, it is clear that below 4 GPa, the Co-O bond is highly compressible \(\beta_{Co-O} = 4.8 \times 10^{-3} GPa^{-1} \). In fact it is the most compressible B-O bond observed to date (greater than Sr\(^{4+}\)-O, Mn\(^{3+}\)-O and Al\(^{3+}\)-O). Above 4 GPa, the compressibility is considerably lower \(\beta_{Co-O} = 1.2 \times 10^{-3} GPa^{-1} \), much more in line with the expected value for a B-O bond in a perovskite. To place these observations within our current framework of understanding one needs to take into account the depopulation of the IS state under pressure. Asai et al. [34] have shown experimentally that the energy gap between LS and IS states increases under pressure. At pressures above 0.5 GPa this increase is found to be quadratic indicating a very strong volume dependence of the IS state energy. Therefore the IS state will be depopulated under pressure and as a result a small but noticeable contraction of the Co-O bond is to be expected. This contraction occurs as a result of the depopulation of Co \(e_g \) orbitals, which are Co-O \(\sigma \)-antibonding in character. This is the origin of the well-known fact that LS Co\(^{3+}\) has a smaller radius (0.685Å) than HS Co\(^{3+}\) (0.75Å) [33]. If we estimate the radius of IS Co\(^{3+}\) as the arithmetic mean of LS and HS values (0.717Å), it is gratifying to note that the expected IS Co\(^{3+}\)-O distance (1.927Å) is close to the value of 1.933(1)Å observed at ambient pressure. The expected LS Co\(^{3+}\)-O distance (1.895Å) is very close to 1.896(1)Å, the value observed at 3.98 GPa as well as the zero-pressure value of 1.905Å extrapolated back from the region between 4 and 8 GPa [34]. Obviously, the fairly rapid and continuous contraction of the effective size of the cobalt centered octahedra leads to a decrease in the magnitude of the octahedral tilting distortion. Both the
observed Co-O distances and the changes in the octahedral tilting strongly suggest that at 4 GPa, the IS is significantly depopulated. The dramatic change in Co-O bond compressibility as well as the change from a decreasing to an increasing tilt angle that occurs above 4 GPa, suggests that the spin state transition for IS to LS is essentially complete at 4 GPa. The fact that at higher pressures the LS Co$^{3+}$-O bonds have a lower compressibility than the La-O bonds is responsible for the gradual increase in octahedral tilting between 4 and 8 GPa.

In summary, we have shown that LaCoO$_3$ has an anomalously low bulk compressibility (B$_0$=150(2) GPa). Furthermore, individual bond compressibilities reveal a change in their pressure-dependence near 4 GPa indicating a change in the compression mechanism. This pressure behavior is caused by an 'unusually' compressible Co-O bond. We argue that the reason for this is a pressure-induced continuous depopulation of the IS state over the 0 - 4 GPa pressure range. This depopulation is driven by the increased crystal field splitting between the t$_{2g}$ and e$_g$ orbitals, which results in a reduction of the effective size of Co$^{3+}$ as antibonding electrons are removed from the e$_g$ orbitals. We encourage first-principles calculations of the electronic structure taking into account this spin state transition to compare with our experimental values. This is to our knowledge the first observation of a continuous pressure-induced IS-to-LS transition under pressure in a perovskite. Furthermore, we have demonstrated that high-pressure diffraction provides an excellent opportunity to probe the structural response of spin state transitions.

We gratefully acknowledge discussions with Fabian Essler and John Tranquada and would like to thank J. Hu from the Geophysical Laboratory, Carnegie Institution of Washington for being able to use the laser system at beam line X17C for pressure determination. The work was supported by the Division of Materials Science, US Department of Energy, under Contract NO. DE-AC02-98CH10886

* Corresponding author , Email address: tvogt@bnl.gov

[1] A.M. Glazer, Acta Cryst A31, 756 (1975)
[2] J.B. Goodenough, J. Phys. Chem. of Solids 6, 287 (1958)
[3] G. Thornton, B.C. Torfield, and D.E. Williams Solid State Comm. 44, 1213 (1982)
[4] G. Thornton, B.C Torfield, and A.W. Hewat, J. Solid State Chem. 61, 301 (1986)
[5] M.A. Senris-Rodriguez and J.B. Goodenough, J. Solid State Chem. 116, 224 (1995)
[6] S. Masuda, M. Aoki, Y. Harada et al Phys. Rev. Lett. 71, 4214 (1993)
[7] M. Abbate, J.C. Fuggle, A. Fujimori et al Phys. Rev. B47, 16124 (1993)
[8] T. Saitoh, T. Mizokawa, A. Fujimori et al Phys. Rev. B55, 4257 (1997)
[9] K. Asai, A. Yoneda, O. Yokukura et al J. Phys. Soc. Jpn 67(1), 290. (1998)
[10] M.A. Korotin, S.Y. Tu, I.V. Ezhov et al Phys. Rev. B54, 5309 (1996)
[11] P.G. Radaelli, S.-W. Cheong Phys. Rev. B56, 094408 (2002)
[12] M.P. Pasternak, R.D. Taylor, A. Chen et al Phys. Rev. Lett. 65, 790 (1990)
[13] M.P. Pasternak, R.D. Taylor, R. Jeanloz et al Phys. Rev. Lett. 79(5), 5046 (1997)
[14] W.M. Xu, O. Naaman, G.Kh. Rozenberg et al Phys. Rev. B64, 094411 (2001)
[15] M. Takano et al Phys. Rev. Lett. 67, 3267 (1991)
[16] T. Vogt, G. Schneider, J.A. Hriljac et al Phys Rev. B63, 220555(R) (2001)
[17] A. C. Larson and R.B. von Dreele, Los Alamos National Laboratory Report LAUR 86-746 (1986)
[18] EOSfit v5.2, R.J. Angel(2001)
[19] F. Birch, Phy. Rev. 71, 809 (1947)
[20] P. Bouvier, J. Kreisel, J. Phys. Cond. Matt. 14, 3981 (2002)
[21] B.J. Kennedy, T. Vogt, C.D. Martin et al Chem. Mater. 14, 2644 (2002)
[22] A.L. Cornelius, S. Klotz, J.S. Schilling Physica C197, 209 (1992)
[23] P.M. Woodward, Acta Cryst. B53,32 (1997)
[24] M. O’Keefe, B.G. Hyde, and B.G. Bovin Phys. Chem. Miner. 4, 299 (1979)
[25] Y. Kudoh, E. Ito, and H. Takeda, Phys. Chem. Miner. 14, 350 (1987)
[26] L. Pinsard-Gaudart et al Phys. Rev. B64, 064426 (2001)
[27] I. Loa et al Phys. Rev. Lett. 87, 125501 (2001)
[28] N.L. Ross Phase Trans. 58, 27 (1996)
[29] N.L. Ross Phys. Chem. Miner. 25, 597 (1998)
[30] K. Asai, O. Yukokura, M. Suzuki et al J. Phys. Soc. Jpn 66(4), 967 (1997)
[31] R.D. Shannon, C.T. Prewitt Acta Cryst B25, 925 (1969)
[32] B-O distances are most accurately predicted in perovskites by using the 2 coordinate radius for oxygen and the 6-coordinate radius for the B-cation.