COMBINATORICS OF AFFINE BIRATIONAL MAPS

ILYA KARZHEMANOV

Abstract. The main object of study of the present paper is the group UAut_n of unimodular automorphisms of \mathbb{C}^n. Taking UAut_n as a working example, our intention was to develop an approach (or rather an edifice) which allows one to prove, for instance, the non-simplicity of UAut_n for all $n \geq 3$. More systematic and, perhaps, general exposition will appear elsewhere.

1. Introduction

The impetus for the present paper was the article [1] in which the study of combinatorics of certain birational automorphisms of \mathbb{k}^n was applied to answer a group-theoretic question. More specifically, given f from the Cremona group Cr_n of birational automorphisms of \mathbb{k}^n, the combinatorics of f we have in mind is encoded (somehow) in a set of lattice points or rather a polytope, which comes for free with each $f \in \text{Cr}_n$. These discrete gadgets are constructed, as used to be common now, by fixing a (non-archimedean) valuation on the field of rational functions on \mathbb{k}^n and applying this valuation to the components of various maps $f \in \text{Cr}_n$. Or, heuristically, one “brings the action of f on \mathbb{k}^n to infinity” (see [6], [10], [9], [8], [15], [13] for related matters).

We would like to apply the preceding point of view to study polynomial automorphisms of \mathbb{k}^n. Recall that the group Aut_n of such automorphisms carries a structure of an infinite-dimensional algebraic group (see [20]). Then, as an algebraic group, Aut_n is generated by the group of affine linear automorphisms of \mathbb{k}^n and by the group of triangular automorphisms of \mathbb{k}^n (see [20, Theorem 4]). The group Aut_n is also non-simple because of the Jacobi map $\text{det} : \text{Aut}_n \rightarrow \mathbb{k}^\ast$. On the other hand, the kernel $\text{UAut}_n := \text{Ker}(\text{det})$ is simple as an algebraic group (see [20, Theorem 5]), but is not that as an abstract group for $n = 2$ (see [5]). The aim of the present paper is to extend the latter result to the case of arbitrary $n \geq 3$:

Theorem 1.1. The group UAut_n is non-simple (as an abstract group) for all $n \geq 3$.

To prove Theorem 1.1 we introduce a subgroup $G \subset \text{Cr}_n$ which “looks like” a subgroup in $\text{SL}_n(\mathbb{Z})$ when brought to infinity, according to what we have said at the beginning (see Section 2 for the construction of G). Though the presence of G might be interesting and important on its own (see for example Proposition 6.2), we focus on one of its subgroups, namely $G_n \subset G$, instead (see Corollary 2.9). One of the crucial features of \mathfrak{G}_n is provided by Proposition 3.1. Up to this end all considerations employ only elementary algebra/combinatorics of polynomials on \mathbb{k}^n.

Proposition 3.1 is enough to prove Theorem 1.1 provided that \mathfrak{G}_n contains “sufficiently many” normal subgroups. The latter turns out to be the case after we introduce a subset G_e of generators of \mathfrak{G}_n in Section 4. More precisely,
Throughout the paper we use the following notations and conventions:

Notations. Throughout the paper we use the following notations and conventions:

- \mathbb{P}^n is the projective space with coordinates $[X_0 : \ldots : X_n]$. We denote by $S := k[X_0, \ldots, X_n]_{\text{hom}}$ the semigroup of homogeneous polynomials in the ring $k[X_0, \ldots, X_n]$.

- We fix the lattice \mathbb{Z}^{n+1} with the basis dual to $\{X_0, \ldots, X_n\}$. We also fix the sublattice $\mathbb{Z}^n \subset \mathbb{Z}^{n+1}$ corresponding to $\{X_1, \ldots, X_n\}$. Both \mathbb{Z}^{n+1} and \mathbb{Z}^n are equipped with the standard lexicographical order for which $X_0 \geq X_1 \geq \ldots \geq X_n$.

- We set $X := (X_1, \ldots, X_n)$, $X^I := X_1^{i_1} \ldots X_n^{i_n}$ for $I \in \mathbb{Z}^n$, $I := (i_1, \ldots, i_n)$. $M_n(R)$ denotes the set of all $(n \times n)$-matrices M with entries $M_{i,j} \in R$, $1 \leq i, j \leq n$, in a ring R.

- Given $h \in k[X_0, \ldots, X_n]$, we set d_h to be the degree of h in X_0. We denote by $\text{Supp } h$ the support of h (i.e. $\text{Supp } h$ is the collection of all monomials that appear in h with non-zero coefficients). We will identify $\text{Supp } h \subset \mathbb{Z}^{n+1}$ with its dual and denote by I_h the maximal vector among those $I \in \mathbb{Z}^n$ with $(d_h, I) \in \text{Supp } h$. We also put $\langle h \rangle := (d_h, I_h)$ (thus $\langle h \rangle$ is the monomial $X_0^{d_h}X_1^{I_h}$).

- Every $f \in \text{Cr}_n$ (and, more generally, every rational self-map of \mathbb{P}^n) is represented by an $(n+1)$-tuple $[f_0 : \ldots : f_n]$ of (not necessarily coprime) polynomials $f_0, \ldots, f_n \in k[X_0, \ldots, X_n]_{\text{hom}}$. In particular, if all f_i are coprime, then f is uniquely determined by $[f_0 : \ldots : f_n]$.

- $f \circ g$ (or fg) denotes the composition $f(g)$ of two rational self-maps of \mathbb{P}^n.

- For a group G and any $a_1, a_2, b \in G$, we put $a_1^b := ba_1b^{-1}$, $C_{a_1} := \{a_1^b\}_{b \in G}$ (the conjugacy class of a_1), and write $a_1 \sim a_2$ if $a_1 \in C_{a_2}$. $N \triangleleft G$ signifies that N is a normal subgroup in G such that $N \neq G, \{1\}$ (1 $\in G$ is the unit element).

- We denote by \mathbb{F}_2 the free group in two generators (\mathbb{F}_2 always comes with the word metric w.r.t. to a fixed set of generators). We will also use standard notions and facts from the geometric group theory (see e.g. [2]). For instance, given two metric spaces X and Y, $X \sim_{q,i.} Y$ (or X is q-i. to Y) signifies that X is quasi-isometric to Y.

2) The results of Section 4 were motivated by (and are a group-theoretic counterpart of) the Splitting theorem for compact Lorentz manifolds with an isometric $\text{SL}_2(\mathbb{R})$-action (cf. [4] §4 and Question 6.4 below).
2. Preliminaries

2.1. The set-up. We assume for simplicity that $k = \mathbb{C}$. Consider $f \in Cr_n$ given by some $f_0, \ldots, f_n \in S$ (we assume $n \geq 3$ in what follows). Suppose that

\begin{equation}
(2.2) \quad f_0 = a_0 X_0^{d_f} X_{I_f} + \sum_{k \geq 1} X_0^{d_f - k} F_k(X),
\end{equation}

\begin{equation}
 f_j = a_{j,0} X_0^{d_f - 1} X_{I_f} + \sum_{k \geq 1} X_0^{d_f - 1 - k} F_{j,k}(X)
\end{equation}

for all $j \geq 1$ and some $d_f \in \mathbb{N}$, where $a_0, a_j \in \mathbb{C}^*$, $F_k(X), F_{j,k}(X) \in \mathbb{C}[X_1, \ldots, X_n]_{\text{hom}} = S$. Note that the condition $d_f - d_j = 1$ (for all $j \geq 1$) is satisfied by every $(n+1)$-tuple (f_0^*, \ldots, f_n^*) such that $hf_i^* = f_i$ for all i and any (fixed) $h \in S$ (with f_i replaced by f_i^* in d_i for all i). In particular, we may take f_i to be coprime, $0 \leq i \leq n$, so that (2.2) is a property of the map f.

Let us also assume that f^{-1} satisfies (2.2) and denote by G the set of all such f. Then, clearly, $G \neq \{1\}$:

Example 2.3. G contains the following groups:

- the group $D_n := (\mathbb{C}^*)^n$ of diagonal automorphisms of \mathbb{P}^n;
- the subgroup in $U \text{Aut}_n$ of those f which preserve the origin in \mathbb{C}^n and have identity Jacobi matrix;
- for each $M \in SL_n(\mathbb{Z})$ with the j-th column I_j contained in the hyperplane $\sum_{i=1}^n X_i = 1$ for all j, the birational transformation $[1 : X_1 : \ldots : X_n] \mapsto [1 : X_{I_1} : \ldots : X_{I_n}]$ (we identify X_j with X_j/X_0) also satisfies (2.2). Note that all such M form a group isomorphic to the subgroup $SL'_n(\mathbb{Z})$ of those elements in $SL_n(\mathbb{Z})$ that fix the vector $(1, \ldots, 1)$ (see 5.1 below for an explicit example of two $a_1, a_2 \in SL'_n(\mathbb{Z}) \subset G$).

Less trivial examples are provided by the groups $E_n \subset G$ and $S_n \subset \mathfrak{S}_n$ below.

Example 2.3 justifies the existence of the group G.

2.4. Group structure on G. Put $h(\langle f \rangle) := h(\langle f_0 \rangle, \ldots, \langle f_n \rangle) = h(1, \langle f_1 \rangle, \ldots, \langle f_n \rangle) \langle f_0 \rangle^\deg(h)$ for every $h \in S$ and $f \in G$ as above. Let also M_f be the $(n \times n)$-matrix whose j-th column equals $I_{j-1} - I_{j^0}$, $1 \leq j \leq n$.

Suppose that $(d_h, I) \in \text{Supp } h$, $I \in \mathbb{Z}^n$, yields $I = I_h$. Then we get the following:

Lemma 2.5. The equality

$$\langle h(\langle f \rangle) \rangle = (\deg(h)(d_f - 1) + d_h, M_f I_h + \deg(h) I_{f_0})$$

holds.

Proof. Indeed, since $f \in G$, we get

$$\sigma(\langle f \rangle) = (\deg(h)(d_f - 1) + d_\sigma, M_f I + \deg(h) I_{f_0}) < (\deg(h)(d_f - 1) + d_h, M_f I_h + \deg(h) I_{f_0}) = \langle h(\langle f \rangle) \rangle$$

for all $\sigma := X_0^{d_\sigma} X^I \in \text{Supp } h \setminus \{\langle h \rangle\}$. \qed
Put \(h(f) := h(f_0, \ldots, f_n) = h \left(\frac{f_1}{f_0}, \ldots, \frac{f_n}{f_0} \right)^{\deg(h)} \). Note that \(\langle h(f) \rangle \in \text{Supp} \ h(f) \). Then from Lemma 2.5 we get
\[
\langle h(f) \rangle = (\deg(h)(d_f - 1) + d_h, M_f I_h + \deg(h) I_{f_0}).
\]

This leads to the anticipated

Proposition 2.7. \(G \) is a subgroup in \(C r_n \).

Proof. Take \(f \in G \) as above. Consider also \(g \in G \) given by some \(g_0, \ldots, g_n \) in \(S \). Then from (2.6) (for \(h = g_0, \ldots, g_n \)) we obtain that \(g \circ f \) is of the form (2.2). Recall also that \(f^{-1}, g^{-1} \in G \) by definition. Thus we get \((g \circ f)^{-1} = f^{-1} \circ g^{-1} \in G \), which proves the assertion.

2.8. Homomorphism \(\rho \). Consider the map \(\rho : G \longrightarrow \mathbb{Z}_0^\geq \) defined as follows:
\[
v : h \mapsto \langle h \rangle = (d_h, I_h) \mapsto I_h
\]
for all \(h \in S \). Then \(v \) is a \(\mathbb{Z}_0^\geq \)-valuation on \(S \). Furthermore, \(v \) (obviously) extends to a \(\mathbb{Z}^n \)-valuation on \(\mathbb{C}(X_1/X_0, \ldots, X_n/X_0) \), providing a particular case of valuations considered in [16], [17]. This determines a map
\[
\rho : G \longrightarrow M_n(\mathbb{Z}), \ f \mapsto \rho(f) := M_f
\]
for all \(f \in G \), with \(v(f_i/f_0) = I_{f_i} - I_{f_0} \), the \(i \)-th column of \(M_f \), \(1 \leq i \leq n \).

From Proposition 2.7 we get the following:

Corollary 2.9. \(\rho(G) \subset GL_n(\mathbb{Z}) \) and \(\rho \) is a group homomorphism. In particular, for \(\mathcal{E}_n := \text{Ker}(\rho) \) the group \(\text{Out}(\mathcal{E}_n) \) of outer automorphisms of \(\mathcal{E}_n \) contains \(\mathbb{F}_2 \).

Proof. Let us use the notations from the proof of Proposition 2.7. Recall that \(d_{g_0(f)} - d_{g_1(f)} = 1 \) for all \(j \geq 1 \) and \(I_{g_i(f)} = M_f I_{g_i} + \deg(g_i) I_{f_0} \) for all \(i \geq 0 \) (see (2.6)). This implies that \(\rho(g \circ f) = M_{g \circ f} = M_f M_g = \rho(g) \rho(f) \). Note also that \(\rho \) splits over \(SL'_n(\mathbb{Z}) \subset G \) and \(\rho(G) = SL'_n(\mathbb{Z}) \) by construction (see (2.2) and Example 2.3). Thus we get \(G = \mathcal{E}_n \times SL'_n(\mathbb{Z}) \) and a homomorphism \(\mathbb{F}_2 \longrightarrow \text{Out}(\mathcal{E}_n) \) (cf. Lemma 2.5 below). Let us show that the latter is injective.

Consider an arbitrary \(f \in D_n \subset G \) (see Example 2.3). We may assume that \(f \) coincides with the map
\[
[X_0 : X_1 : \ldots : X_n] \mapsto [X_0 : \lambda_1 X_1 : \ldots : \lambda_n X_n]
\]
for some fixed \(\lambda_i \in \mathbb{C}^* \). Now take any \(a \in \mathbb{F}_2 \subseteq SL'_n(\mathbb{Z}) \). Then \(a(f) := af a^{-1} \) in \(G \) also belongs to \(D_n \) and is obtained from \(f \) by replacing every \(\lambda_i, 1 \leq i \leq n \), by the products \(\prod_{j=1}^{n} \lambda_{j,i}^{k_{j,i}} \) for some \(k_{j,i} \in \mathbb{Z} \) such that \(\sum_j k_{j,i} = 1 \).

In particular, one may always choose \(f \) (for \(a \neq 1 \)) to be such that \(\prod_{j=1}^{n} \lambda_{j,i}^{k_{j,i}} \neq \lambda_i \) for at least one \(i \), so that \(a(f) \neq f \) in this case.

On the other hand, if \(a(f) = f^g \) for some \(g \in \mathcal{E}_n \), then it follows from Lemma 2.5 that \(f^g = f \) (cf. 3.2 below for the “typical” shape of \(g \)). This together with \(a(f) \neq f \) shows that \(\mathbb{F}_2 \) injects into \(\text{Out}(\mathcal{E}_n) \).
3. The group \mathcal{E}_n

We retain the notations of Section 2

Proposition 3.1. There exists a subgroup $\mathcal{E}_n \subset \mathfrak{S}_n$ and a surjective homomorphism $\xi : \mathcal{E}_n \twoheadrightarrow \mathbf{UAut}_{n-1}$.

Proof. Consider a rational map $\Lambda : \mathbb{P}^n \to \mathbb{P}^n$ defined as follows:

\begin{align*}
X_0 &\mapsto \alpha_0 X_0^d + \alpha X_0 X_1^{d-1} =: \Lambda_0, \\
X_1 &\mapsto \alpha_1 X_0^{d-1} X_1 + \beta X_1^d =: \Lambda_1, \\
X_j &\mapsto \alpha_j X_0^{d-1} X_j + \Lambda_j(X) =: \Lambda_j,
\end{align*}

for all $j \geq 2$ and some $d \in \mathbb{N}$, $\alpha_1, \alpha, \beta \in \mathbb{C}$, $\Lambda_j^*(X) \in \mathbb{C}[X_1, \ldots, X_n]_{\text{hom}}$. Let us additionally suppose that the map $\Lambda^* : [X_1 : \ldots : X_n] \mapsto [X_1^d : \Lambda_1^*(X) : \ldots : \Lambda_n^*(X)]$ is a birational automorphism of \mathbb{P}^{n-1} that coincides with a polynomial automorphism on $\mathbb{C}^{n-1} = \mathbb{P}^{n-1} \cap (X_1 \neq 0)$. Denote by \mathcal{E}_n the set of all such Λ contained in Cr_n.

Lemma 3.3. We have $\mathcal{E}_n \neq \{1\}$. More precisely, to each element in \mathbf{UAut}_{n-1} there corresponds an element in \mathcal{E}_n, similarly as $\Lambda \in \mathcal{E}_n$ above corresponds to $\Lambda^* \in \mathbf{UAut}_{n-1}$.

Proof. We may take $\alpha_0, \alpha_1, \alpha, \beta$ in \mathfrak{S}_2 to be such that the corresponding polynomials Λ_0, Λ_1 have exactly $d - 1$ common roots. Then we identify Λ with the map

\begin{align*}
(X_0, X_2, \ldots, X_n) &\mapsto \left(\Lambda_0/\Lambda_1 = X_0, \ldots, \Lambda_n/\Lambda_1\right)
\end{align*}

on the affine subset $\mathbb{C}^n = \mathbb{P}^n \cap (X_1 \neq 0)$. Now, if $\Lambda_j (= \Lambda_j/\Lambda_1$ on \mathbb{C}^n) are linear for all $j \geq 2$, the assertion is obvious. Otherwise, we may assume the linear part of Λ_j coincides with X_j, all $j \geq 2$. Then it is easy to see that $\Lambda^{-1}(O)$ equals the (non-multiple) point $O := [0 : 1 : 0 : \ldots : 0]$. Indeed, any point from $\Lambda^{-1}(O)$ has $X_0 = 0$ (see (3.2)), i.e. is contained in \mathbb{C}^{n-1} (see definition of Λ^* above). But then $\Lambda^{-1}(O) = \Lambda^*-1(O) = \text{non-multiple } O$. This shows that the degree of the map Λ equals 1.

Lemma 3.5. For every $\Lambda \in \mathcal{E}_n$, we have $\Lambda^{-1} \in \mathcal{E}_n$.

Proof. Consider the hyperplane $\Pi := \langle X_0 = 0 \rangle \subset \mathbb{P}^n$. Then, by construction, $\Lambda|_{\Pi \cap (X_1 \neq 0)}$ is a polynomial automorphism of $\Pi \cap (X_1 \neq 0) = \mathbb{C}^{n-1}$. We also have $\Lambda(O) = O$ for the point $O := [1 : 0 : \ldots : 0]$. Then Λ^{-1} also preserves O and induces a polynomial automorphism on $\Pi \cap (X_1 \neq 0)$. In particular, this implies that both Λ and Λ^{-1} are biholomorphic maps near $O \in \mathbb{C}^n = \mathbb{P}^n \cap (X_0 \neq 0)$, with (diagonal) Jacobi matrices inverse to one another. We leave it to the reader to write down the defining functions for Λ^{-1} and make sure of they look like (3.2). Hence $\Lambda^{-1} \in \mathcal{E}_n$.

Similar argument as in the proof of Lemma 3.3 shows that $\Lambda_1 \circ \Lambda_2 \in \mathcal{E}_n$ for any $\Lambda_1, \Lambda_2 \in \mathcal{E}_n$. Thus \mathcal{E}_n is a (non-trivial) subgroup in Cr_n. Moreover, we have $\mathcal{E}_n \subset \mathfrak{S}_n$ by construction, and restricting to Π we get a homomorphism $\xi : \mathcal{E}_n \to \mathbf{UAut}_{n-1}$. The latter is also onto (see Lemma 3.3 and Proposition 3.1) is proved.

\footnote{Note that $\Lambda^{-1}(\Pi \cap (X_1 \neq 0)) = \Pi \cap (X_1 \neq 0)$, where Λ^{-1} is for the proper birational transform, and Λ is smooth and bijective (hence biregular) near $\Pi \cap (X_1 \neq 0)$ (cf. 3.2 with Λ_0, Λ_1 (resp. X_0, X_1) interchanged).}
Remark 3.6. Let \(L \subseteq \mathbb{C}(X_1, \ldots, X_n) \) be the linear subspace spanned by the rational functions \(1, \Lambda_0/\Lambda_1, \Lambda_2/\Lambda_1, \ldots, \Lambda_n/\Lambda_1 \). Then, as \(\dim L = n + 1 \), the (self) intersection index \([L, \ldots, L]\) (see e.g. [12]) is equal to the degree of \(\Lambda \), which is 1 (cf. the proof of Lemma 3.3). Let also \(v \) be the valuation as in [28]. It follows from [32] that \(\{v(\Lambda_1/\Lambda_0), \ldots, v(\Lambda_n/\Lambda_0)\} \) is the standard basis in \(\mathbb{Z}^n \). Denote by \(\Delta \) (resp. by \(\Delta(S(\Lambda)) \)) the corresponding simplex (resp. Newton convex body) in \(\mathbb{R}^n \) (note that \(\Delta \subseteq \Delta(S(\Lambda)) \)). Then from [12, Theorem 11.2] we obtain that \(1 = \text{Vol}(\Delta(S(\Lambda))) \geq \text{Vol}(\Delta) = 1 \). So the Newton convex body of the rational map \(\Lambda \) is the standard simplex in \(\mathbb{R}^n \). It would be interesting to study the class of algebraic varieties \(X \) for which the latter property is satisfied for any birational map \(X \rightarrow X \).

4. Intermedia: One Group-Geometric Argument

4.1. Two sets of generators in \(\mathfrak{G}_n \). Let \(G_{ne} \) be the set of all \(f \in \mathfrak{G}_n \) such that \(a(f) \neq f \) for every \(a \in \mathbb{F}_2 \setminus \{1\} \). Similarly, let \(G_e \) be the set of all \(f \in \mathfrak{G}_n \) such that \(a(f) \sim f \) for all \(a \in \mathbb{F}_2 \). In general, for any \(g \in \mathfrak{G}_n \), let \(E_g \subseteq \mathbb{F}_2 \) be the group of those \(a \) for which \(a(g) \sim g \) (i.e. \(E_f = \mathbb{F}_2 \) for all \(f \in G_e \)).

Example 4.2. It is easy to see that both sets \(\mathfrak{D}_n \cap G_{ne} \) and \(\mathfrak{D}_n \cap G_e \) are infinite (cf. the proof of Corollary 2.9). Note also that \(G_{ne} \) and \(G_e \) are stable under the conjugation and inversion in \(\mathfrak{G}_n \).

4.3. The tree \(T \). Recall that \(\mathbb{F}_2 \) acts freely, transitively and isometrically on a (four-valent) tree \(T \) (see Figure 1 below). Furthermore, if \(\mathcal{X} \) is a Riemann surface of genus 2, the group \(\mathbb{F}_2 \) appears in the Schottky uniformization of \(\mathcal{X} \) (see e.g. [14]). Namely, since \(\mathbb{F}_2 \subset \mathbf{PGL}_2(\mathbb{C}) \), one obtains a natural \(\mathbb{F}_2 \)-action on \(\mathbb{P}^1(\mathbb{C}) \). Let \(S \subset \mathbb{P}^1(\mathbb{C}) \) be the closure of the set of attractive and repulsive fixed points for all \(\gamma \in \mathbb{F}_2 \). The complement \(\Omega := \mathbb{P}^1(\mathbb{C}) \setminus S \) is connected, \(\Omega = \bigcup_{\gamma \in \mathbb{F}_2} \gamma \cdot D \) for \(D \) being the exterior domain of four non-intersecting circles on the Riemann sphere \(\mathbb{P}^1(\mathbb{C}) \), and \(\mathcal{X} = \mathbb{F}_2 \setminus \Omega \) for the proper discontinuous action \(\mathbb{F}_2 \curvearrowright \Omega \).

This amounts to the next

Lemma 4.4. \(T \sim_{q, 1} \Omega \) (the latter being a domain in \(\mathbb{P}^1(\mathbb{C}) \)).

Further, given \(f \in G_e \) let us suppose for a moment that \(a(f^c) \neq f^c \) for all \(a \in \mathbb{F}_2, c \in \mathfrak{G}_n \). Identify \(T \) with its set of vertices \(\{a(f)\}_{a \in \mathbb{F}_2} \) and similarly introduce the tree \(T^f_c := \{a(f^c)\}_{a \in \mathbb{F}_2} \) (thus \(T^f_c \) is another copy of \(T = T^1_f \)). Then \(T^f_c \) carries a metric \(\text{dist}(\ast, \ast) \), coming from the word metric on \(\mathbb{F}_2 \), so that \(\text{dist}(a(f^c), b(f^c)) := \text{dist}(ab^{-1}, 1) \) for all \(a, b \in \mathbb{F}_2 \).[4] Now, gluing \(T^f_c \) with \(T^f_{(a)(c)} \) (isometrically) via \(b(f^c) \mapsto b^a(f^{a(c)a}) \) for all \(a, b \in \mathbb{F}_2 \) (we regard \(a, b, c \) as elements in \(\mathfrak{G}_n \) acting on \(f \) by conjugation), we may identify the metric space

\[
\mathcal{C}_f := \bigsqcup_{c \in \mathfrak{G}_n} T^f_c / \sim
\]

with \(T \) (as sets). Here \(\sim \) is the equivalence relation such that \(b(f^c) \sim b^a(f^{a(c)a}) \) for all \(a, b, c \).[5] (Note also that the assertion of Lemma 4.4 obviously holds for \(\mathcal{C}_f \) in place of \(T \).)

[4] Note that \(f^c \in G_e \) and \(E_{fc} = E_f \) for all \(c \) (cf. Example 22).

[5] Indeed, we have \(a' a(f) = a'(f^a) = f^{a'(a)a'} \) for all \(a', a \in \mathbb{F}_2 \), which implies that \(\sim \) is symmetric and transitive.
Lemma 4.5. \(C_f \) is defined for any \(f \in G_e \). More precisely, this \(C_f \) is q.-i. to \(\Omega \) and coincides with \(T \) set-theoretically, similarly as above.

Proof. We use notations from Section 2. Put \(x := [X_0, \ldots : X_n] \) and fix an arbitrary \(a \in \mathbb{F}_2 \setminus \{1\} \). Then, since there is no \(c \in \mathfrak{S}_n \) such that \(c^{-1}(g(c(x))) = a^{-1}(g(a(x))) \) for all \(g \in \mathfrak{S}_n \) (because \(a \in \text{Out}(\mathfrak{S}_n) \)), we can associate with \(a(f^c) \) an ordered pair \(\{a;c\} \). Now, since \(\{a;c\} \) are all distinct for different \(a, c \), we repeat the previous construction of the trees \(T_f \) (with \(a(f^c) \) replaced by \(\{a;c\} \)). Finally, we use the fact that \(f \in G_e \) to glue the trees \(T_f \) and \(T_{a(c)a} \) via \(\sim \) as earlier, which gives \(C_f \) (\(\sim \)-q.-i. \(\Omega \)) as wanted. \(\square \)

Remark 4.6. To say it in words, every \(T_f \) in the definition of \(C_f \) corresponds to a “coloring” of \(T \) (one for each \(c \in \mathfrak{S}_n \)), compatible with the \(\mathbb{F}_2 \)-action (cf. Figure 1). In turn, the pairs \(\{a,c\} \) from the proof of Lemma 4.5 can be considered as “local coordinates” (with \(T_e \) being “local charts”) on \(T \), where the \(\mathfrak{S}_n \)-part corresponds to “coordinate bases”, while the \(\mathbb{F}_2 \)-part is the “coordinate values”.

In view of Lemma 4.5 we will not distinguish between \(T \) and \(C_f \) in what follows, so that the tree \(T \) comes enhanced with additional structure (cf. Remark 4.6).

The next result may be considered as the glimpse of a certain “Anosov property” enjoyed by the elements from \(G_e \), for one may observe an analogy between the (hyperbolic) \(\mathbb{Z} \)-action on \(\text{Diff} \) (see the discussion in [11] §2 or in [11] §5 for instance) and the \(\mathbb{F}_2 \)-action on \(G_e \) in our case, with assertions “two elements \(f, g \in \text{Diff} \) are homotopic, \(C^r \)-close, etc.” being replaced by “\(f \sim g, f, g \in G_e \)”.

Proposition 4.7. For every \(f, g \in G_e \), the group \(E_{fg} \) is non-cyclic.

Proof. Suppose that \(E_{fg} = \langle b \rangle \) for some \(b \in \mathbb{F}_2 \). Let us glue \(C_f \) with \(C_g \) as follows:

\[a(f^c) \sim a(g^c) \text{ for all } a \in \mathbb{F}_2, c \in \mathfrak{S}_n. \]

(Obviously, the latter \(\sim \) is compatible with the equivalence relation used to construct \(C_f \) and \(C_g \) above, and so we keep the same notation for both.) Again, since \(\mathbb{F}_2 \subseteq \text{Out}(\mathfrak{S}_n) \) and \(f, g \in G_e \), this construction is compatible with the \(\mathbb{F}_2 \)-action. In particular (to simplify the notations), we will assume that \(a(f^c) \neq f^c, a(g^c) \neq g^c \) for all \(a \in \mathbb{F}_2, c \in \mathfrak{S}_n \), as in Figure 1 below.

Further, in the preceding definition of the trees \(T_f \) we can formally replace \(a(f^c) \) by \(C_a(f^c g^c) \), with arbitrary \(a \in \mathbb{F}_2, c, c' \in \mathfrak{S}_n \), where again \(C_a(f^c g^c) \) is regarded as a “\(\{\text{value};\ \text{coordinate}\} \)” triple \(\{a; c, c'\} \), analogous to that in the proof of Lemma 4.5. Then we repeat the isometric gluings of \(T_f \) with \(T_{a(c)a} \) (resp. of \(T_{c} \) with \(T_{a(c'):a} \)) to get the tree \(T' \sim q.-i. T \) (the former being (formally) identified with \(\{C_a(fg)\}_{a \in \mathbb{F}_2} \), carrying a free, transitive and isometric \(\mathbb{F}_2 \)-action. Thus the construction/enhancement of \(T' \) is essentially the repetition verbatim of that for \(T \).

Lemma 4.8. There is an \(\mathbb{F}_2 \)-equivariant (continuous) map \(\varphi : T \to T' \) of metric spaces which coincides with the quotient map \(\mathbb{F}_2 \to \mathbb{F}_2 / \langle b \rangle \) on the sets of vertices. In particular, \(\varphi \) is surjective.

6) Recall that \(a, b \in G \) act on \(\mathbb{P}^n \). Then \(c^{-1}(g(c(x))) = a^{-1}(g(a(x))) = e^{-1}(g(a(x))) \) is understood as an identity between the elements in \(G \). In particular, this does not depend on the choice of \(x \), so that the further \(\{a;c\} \) is correctly defined.

7) The arguments below work for the product of any \(f_1, \ldots, f_m \in G_e \) and \(m \geq 2 \).
Proof. Identify \mathcal{T} with its chart $\mathcal{T}_f^f \cong \mathcal{T}_g^g$ and set φ to be as follows:

\begin{equation}
\label{eq:4.9}
a(f) \sim a(g) \mapsto C_a(fg), \ a \in \mathbb{F}_2.
\end{equation}

(Here we use the chart \{\(C_a(fg)\)\}_{a \in \mathbb{F}_2} for \mathcal{T}' as well.) Clearly, the (set-theoretic) map φ is surjective and coincides with $\mathbb{F}_2 \to \mathbb{F}_2 / \langle b \rangle$ on the sets of vertices, since $E_{fg} = \langle b \rangle$.

In order to extend φ to a metric morphism, it suffices to show the definition of φ does not depend, up to isometry, on the (\mathbb{F}_2-equivariant) identification of \mathcal{T} with \mathcal{T}_f^f (a.k.a. \mathcal{T}_g^g). This will follow if we check the definition of φ does not depend on replacing a by a' for an arbitrary fixed $a' \in \mathbb{F}_2$ and all a. But that is why we need enhanced \mathcal{T} and \mathcal{T}'. Namely, regarding (as usual) a' as an element in G_n acting on f, g by conjugation, we simply go to the chart $\mathcal{T}_f^{a'} \cong \mathcal{T}_g^{a'}$ of \mathcal{T}' so that φ now acts like this:

$$a' aa'^{-1}(f') \sim a' aa'^{-1}(g') \mapsto C_{a'}(fg).$$

(Here \mathcal{T}' is also considered in its other chart \{\(C_a(fc)\)\}_{a \in \mathbb{F}_2}.) Thus we have replaced $\mathcal{T}, \mathcal{T}'$ by their isometric copies and defined φ for these also (compatibly with (4.9)). This is correct because $\mathcal{T}_f^f \cong \mathcal{T}_g^g, \mathcal{T}_f^{a'} \cong \mathcal{T}_g^{a'}$, etc. are (formally) distinct by construction. \hfill \Box

Lemmas 4.4 and 4.8 yield a 1-cycle fibration $\Omega \longrightarrow \Omega$ which is q.-i. to φ:

\begin{center}
\begin{tikzpicture}
\node (T_f) at (0,0) {\mathcal{T}_f^f};
\node (T_c) at (2,0) {\mathcal{T}_c^c};
\node (T) at (0,-1.5) {$\mathcal{T} \cong_{q.-i.} \Omega$};
\node (T') at (2,-1.5) {$\mathcal{T}' \cong_{q.-i.} \Omega$};
\draw[->] (T_f) -- (T_c);
\draw[->] (T) -- (T');
\end{tikzpicture}
\end{center}

Figure 1.

But the latter is impossible for the domains in $\mathbb{P}^1(\mathbb{C})$. Proposition 4.7 is proved. \hfill \Box

The set G_e generates a normal subgroup N in \mathfrak{G}_n with $N \cap \mathcal{E}_n \supseteq G_e \cap \mathfrak{D}_n \neq \{1\}$ (see Example 4.2). We will see in Section 5 that the complement $\mathfrak{G}_n \setminus G_{ne} \cup G_e$ contains an element Λ such that the group E_{Λ} is cyclic. This together with Proposition 4.7 implies that $N \vartriangleleft \mathfrak{G}_n$. We will show that in fact $\mathfrak{G}_n \setminus N \ni \Lambda$ for some $\Lambda \in \mathcal{E}_n \setminus \ker(\xi)$ (cf. Proposition 4.11), which easily yields $\xi(N \cap \mathcal{E}_n) \not\subseteq \mathbf{U} \mathbf{A} \mathbf{u}t_{n-1}$ (see the discussion after Corollary 5.6), hence Theorem 1.1 (Note that $N \cap \mathcal{E}_n \not\subseteq \ker(\xi)$ because $G_e \cap \mathfrak{D}_n \not\subseteq \ker(\xi)$.)

Remark 4.10. It would be interesting to test non-simplicity of a group G satisfying $\mathbb{F}_2 \subseteq \text{Out}(G)$ and $G_e \cdot G_e \subseteq G_{ne} \cup G_e$ (cf. Question 6.4 below).
5. Proof of Theorem 5.1

5.1. We keep up with the previous notations. Let us assume in addition that \(n \geq 4 \). Consider \(\Lambda \in E_n \) defined as follows (cf. 3.2):

\[
X_i \mapsto (X_0^{d-1} + X_1^{d-1})X_i,
\]

\[
X_4 \mapsto X_0^{d-1}X_4 + \Lambda_d(X_1, X_2, X_3, \ldots, X_n)
\]

for all \(i \neq 4 \). Let us also consider \(a_1, a_2 \in SL'_n(\mathbb{Z}) \) defined as follows (cf. Example 2.3):

\[
a_1 : [1 : X_1 : \ldots : X_n] \mapsto [1 : X_1 : X_2 : X_2^i : X_4 : \ldots : X_n],
\]

\[
a_2 : [1 : X_1 : \ldots : X_n] \mapsto [1 : X_1 : X_1^i : X_3 : \ldots : X_n]
\]

for \(I_1 := (1, -1, 1, 0, \ldots, 0) \) and \(I_2 := (-1, 1, 1, 0, \ldots, 0) \).

Lemma 5.3. The elements \(a_1^2, a_2^2 \) generate a free subgroup \(\mathbb{F}_2 \subseteq SL'_n(\mathbb{Z}) \).

Proof. Take a matrix \(\star := \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & a & b \end{pmatrix} \) with some \(a, b \in \mathbb{C} \). Then the matrix \(X' := \star a_1 \) has entries \(X'_{2,3} = a, X'_{3,3} = -a + b \). Similarly, \(X'' := \star a_2 \) has entries \(X''_{2,3} = a + b, X''_{3,3} = b \). Letting \(a := 1, b := 0 \) and \(a := 0, b := 1 \), we obtain a homomorphism from the group generated by \(a_1^2, a_2^2 \) onto the subgroup \(\Gamma \subseteq SL_2(\mathbb{Z}) \) generated by the matrices \(\begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix} \) and \(\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \). Hence it suffices to show that \(\Gamma \cong \mathbb{F}_2 \). But the latter follows from the Ping-Pong Lemma. \(\square \)

Note that \(a_1 \Lambda a_1^{-1} = \Lambda \) (i.e. \(a_1 \in E_\Lambda \) in the notations of 4.1). On the other hand, we have the following:

Proposition 5.4. There exists \(\Lambda \) of the form (5.2) such that \(a \Lambda a^{-1} \not\cong \Lambda \) for every \(a \in \mathbb{F}_2 \setminus \{a_1^k \}_k \in \mathbb{Z} \).

Proof. Suppose that \(a \Lambda a^{-1} = f \Lambda f^{-1} \) for some \(a \in \mathbb{F}_2 \setminus \{a_1^k \}_k \in \mathbb{Z} \) and \(f \in \mathfrak{E}_n \). We will exclude only the case \(a := a_2 \) (the general case is treated similarly). The map \(a_2 \Lambda a_2^{-1} \) acts as follows:

\[
X_1 \mapsto X_3^{d}(X_0^{d-1} + X_1^{d-1})X_1,
\]

\[
X_4 \mapsto X_0^{d-1}X_3 X_4 + \Lambda_d(X_1X_3, X_1X_2, X_4X_3, \ldots, X_nX_3)
\]

for all \(i \neq 4 \). At this stage we assume that \(\Lambda_d \neq 0 \mod (X_1, X_4, \ldots, X_n) \). Then, in particular, \(a_2 \Lambda a_2^{-1} \) contracts the hyperplane \(H := (X_3 = 0) \) to a point. On the other hand, we have

Lemma 5.5. The map \(f \Lambda f^{-1} \) does not contract \(H \).

Proof. We may assume that \(d \gg 1 \). Then, since \(f \in \mathfrak{E}_n \) and \(\Lambda(O) = 0 \) (see the proof of Lemma 5.3), one can easily see that \(f \Lambda f^{-1} \) asymptotically equals \(\Lambda \). Namely, it suffices to put \(f_i^{-1} := X_i / \varepsilon \) for the components of \(f^{-1} \), \(1 \leq i \leq n \), and some (varying) \(0 \leq \varepsilon \ll 1 \). Then, similarly as in the proof of Lemma 2.5, one finds that \(\Lambda f^{-1} \) acts as \(\Lambda_i + \varepsilon \) for the components of \(\Lambda f^{-1} \) and \(\Lambda \) (cf. 2.2, 5.2). Furthermore, since \(\varepsilon \) can be expressed as an analytic function in \(\Lambda_i \) locally near the point \(O \), by the same argument (with \(X_i \) replaced by \(\Lambda_i \) for all \(i \)) we get \((f \Lambda f^{-1})_i = \Lambda_i + \varepsilon \) for the components of \(f \Lambda f^{-1} \). In particular, \(f \Lambda f^{-1} \) cannot contract \(H \). \(\square \)
Lemma 5.4 gives \(a_2Aa_2^{-1} \neq fAf^{-1} \), a contradiction.

\[\square \]

Let \(\mathfrak{G}_n' \subseteq \mathfrak{G}_n \) be the maximal subgroup preserving the hyperplane \(\Pi = (X_0 = 0) \). Take \(\Lambda \) as in the proof of Proposition 5.4 and let \(\Lambda_0 \) be the restriction of \(\Lambda \) to \(\Pi \). Then from (the proof of) Proposition 5.4 we get the following (w.r.t. the induced \(\rho(G) \)-action on \(\Pi \)):

Corollary 5.6. \(a_1\Lambda_0a_1^{-1} = \Lambda_0 \) and \(a\Lambda_0a^{-1} \neq \Lambda_0 \) in \(\mathfrak{G}_n'|_{\Pi} \) for every \(a \in \mathbb{F}_2 \setminus \{a_1^{k}\}_{k \in \mathbb{Z}} \).

We have \(\mathcal{E}_n \subseteq \mathfrak{G}_n' \) and \(\mathbb{F}_2 \subseteq \text{Out}(\mathfrak{G}_n') \) via the induced \(\rho(G) \)-action on \(\Pi \) (cf. Lemma 5.3 and the proof of Corollary 2.3). Then the arguments of Section 4 with the extra condition “modulo \(\mathcal{X}_0 \)” added, apply literally to show that \((N \cap \mathfrak{G}_n')|_{\Pi} \) is a proper normal subgroup of \(\mathfrak{G}_n'|_{\Pi} \) such that \((N \cap \mathcal{E}_n)|_{\Pi} \neq \{1\} \) and \(\Lambda_0 \not\in N|_{\Pi} \) (for the latter we have also used Corollary 5.6).

Lemma 5.7. \(\xi(N \cap \mathcal{E}_n) \not\subset \mathbb{U}_{\text{Aut}}(\mathcal{E}_n) \).

Proof. Indeed, we have
\[
\begin{align*}
\mathcal{E}_n|_{\Pi} := \xi(\mathcal{E}_n) &= \mathbb{U}_{\text{Aut}}(\mathcal{E}_n), \\
\Lambda \in \mathcal{E}_n \text{ and } \Lambda_0 = \xi(\Lambda) \neq \xi(N \cap \mathcal{E}_n) = (N \cap \mathcal{E}_n)|_{\Pi} \text{ because } \Lambda_0 \not\in N|_{\Pi}, \\
N \cap \mathcal{E}_n \not\subset \text{Ker}(\xi).
\end{align*}
\]

This shows that \(\xi(N \cap \mathcal{E}_n) \neq \{1\}, \mathbb{U}_{\text{Aut}}(\mathcal{E}_n), \) i.e. \(\xi(N \cap \mathcal{E}_n) \not\subset \mathbb{U}_{\text{Aut}}(\mathcal{E}_n) \).

Lemma 5.7 finishes the proof of Theorem 1.1.

6. Final Comments

The way how we used the groups \(G, \mathfrak{G}_n \) and \(\mathcal{E}_n \) to prove Theorem 1.1 makes it reasonable to develop the preceding arguments more systematically and study other subgroups in \(\mathbb{C} \mathfrak{r}_n \) which “behave expectedly at infinity”. Let us advocate this thesis by proving the following:

Proposition 6.1 (cf. [4, 5.1]). For any, not necessarily algebraically closed field \(k \subset \mathbb{C} \), the group \(\mathbb{C} \mathfrak{r}_n \) is not embedable into \(GL_m(\mathbb{C}) \) for all \(m \in \mathbb{N} \cup \{\infty\} \) and \(n \geq 2 \).

Proof. Take \(g_1 \in \mathfrak{s}_n \) and \(g_2 \in SL_n(\mathbb{Z}) \) any unipotent element. Consider the group \(E := \langle g_1, g_2 \rangle \subset G \). Let us also suppose that \(g_2^2 = 1 \). We can always choose \(g_1, g_2 \) in such a way that \(E = \langle g_1, g_2 \rangle \) for some \(2 \leq k \leq n \).

Lemma 6.2. \(E \) is not embedable into \(GL_m(\mathbb{C}) \) for any \(m \in \mathbb{N} \cup \{\infty\} \).

Proof. Here we follow the paper [4]. Suppose that \(E \subset GL_m(\mathbb{C}) \) for some \(m \).

Consider a word metric \(\text{dist}_E \) on \(E \) and the corresponding metric space \((E, \text{dist}_E) \). Then, since the extension \(\langle g_1 \rangle^{\oplus k} \times \langle g_2 \rangle \subset GL_m(\mathbb{C}) \) is non-trivial, we may assume that \(2 \leq m < \infty \), which gives a natural isometric embedding \((E, \text{dist}_E) \hookrightarrow (\mathbb{R}^{\oplus k} \times S^1) \times \mathbb{R}, \text{dist} \), for \(\log(\text{dist}_E) = \text{dist}_E \), such that \((\langle g_1 \rangle^{\oplus k} \times S^1) \times \mathbb{R}, \text{dist} \) is a hyperbolic space and \(s \times \mathbb{R} \) is a horocycle for all \(s \in (\langle g_1 \rangle^{\oplus k} \times S^1) \) (see [4] 2.2, (d), (e), (f)). In particular, since \(g_1^2 = 1 \) and

\[8 \] After the text has been written, I was informed by S. Cantat about http://perso.univ-rennes1.fr/serge.cantat/Articles/cnl-5.jpg where a similar statement had been proved (via a group-theoretic argument) for every finite \(m \in \mathbb{N} \).
\((g_2) = \mathbb{Z} \subset \mathbb{R}\), this implies that \(\text{Con}_\infty(E)\), the *asymptotic cone* of \(E\) (with induced metric), is totally disconnected (loc. cit.).

On the other hand, since \(g_2^a \circ g \circ g_2^b = g' \circ g_2^c\) for all \(a, b \in \mathbb{Z}\), \(g \in (g_1)^{\oplus k}\) and some \(c := c(a, b) \in \mathbb{Z}\), \(g' := g'(g) \in (g_1)^{\oplus k}\), the group \(E \subset \mathfrak{S}_n\) (obviously) acts as \(\mathbb{Z} = \langle g_2 \rangle\) on the Berkovich spectrum of \(\mathbb{C}^n\) (cf. \([13] \text{ Section 5}\)). In particular, we obtain that \((E, \text{dist}_E)\) is q.-i. to \(\mathbb{Z}\) with the corresponding word metric (see \([9, 0.2.C]\)), which implies that \(\text{Con}_\infty(E) = \mathbb{R}\) with the usual metric (see \([9, 2.B, (a)]\)). This contradicts the previous paragraph. \(\Box\)

Lemma 6.2 proves Proposition 6.2. \(\Box\)

Remark 6.3. It would be interesting to construct examples of algebraic varieties \(X\) over a number field \(F\) for which the above non-embeddability result for \(\text{Cr}_n\) provides a non-trivial obstruction to rationality of \(X\) over \(F\).

Finally, Corollary 2.9 relates \(\mathfrak{S}_n\) to hyperbolic groups and groups with small cancellation (cf. \([3]\)), which together with results of Section 3 makes one ask the next

Question 6.4. Let \(G\) be a group such that \(\mathbb{F}_2 \subseteq \text{Out}(G)\). Is \(G\) non-simple?

Unfortunately, the answer to Question 6.4 is negative in general, as the case of the group \(G := \text{PGL}_{n+1}(\mathbb{C})\) (with \(\mathbb{F}_2 \subset \text{Gal}(\mathbb{C}/\mathbb{Q}) \subseteq \text{Out}(G)\) shows. However, the latter indicates an interesting difference between the groups \(\mathcal{E}_n\) and \(\text{PGL}_{n+1}(\mathbb{C})\), which together with the proof of Theorem 1.1 suggests a way to attack the (non-)simplicity of \(\text{Cr}_n\) for all \(n \geq 2\) (basically, one constructs a normal subgroup \(N \subseteq \text{Cr}_n\) exactly as in Section 1 above (cf. Remark 1.11, and tries to show that \(N \neq \text{Cr}_n\), arguing as in Section 1 for instance).

Acknowledgments. The work owes much to the Irene Hurricane (August, 2011) due to which I was stuck in Boston for a couple of extra days. I am grateful to A. Postnikov for hospitality. Also thanks to F. Bogomolov, I. Cheltsov, M. Gizatullin, and A. Khovanskii for patience and encouragement. Partial financial support was provided by CRM fellowship and NSERC grant.

References

[1] G. M. Bergman, The logarithmic limit-set of an algebraic variety, Trans. Amer. Math. Soc. 157 (1971), 459 – 469.

[2] S. Cantat and S. Lamy, Normal subgroups in the Cremona group, Acta Math. 210 (2013), no. 1, 31 – 94.

[3] R. Coulon, Automorphismes extérieurs du groupe de Burnside libre, Institut de Recherche Mathématique Avancée, Université de Strasbourg, Strasbourg, (2010).

[4] G. D’Ambra and M. Gromov, Lectures on transformation groups: geometry and dynamics, in *Surveys in differential geometry (Cambridge, MA, 1990)*, 19 – 111, Lehigh Univ., Bethlehem, PA.

[5] V. I. Danilov, Non-simplicity of the group of unimodular automorphisms of an affine plane, Mat. Zametki 15 (1974), 289 – 293.

[6] V. I. Danilov, Polyhedra of schemes and algebraic varieties, Math. USSR-Sb. 26 (1975), no. 1, 137 – 149.

[7] J. Déserti, Sur les automorphismes du groupe de Cremona, Compos. Math. 142 (2006), no. 6, 1459 – 1478.

9) Pointed out by M. Gromov (though the case of discrete or, better, finitely presented \(G\) might still be of interest).

10) Provided that \(\mathbb{F}_2 \subseteq \text{Out}(\text{Cr}_n)\). For example, one may attain this for \(\text{Gal}(\mathbb{C}/\mathbb{Q}) \subseteq \text{Out}(\text{Cr}_n)\) (cf. [2]), but then the construction of \(N\) may be no longer valid.
[8] M. Einsiedler, M. Kapranov, and D. Lind, Non-Archimedean amoebas and tropical varieties, J. Reine Angew. Math. 601 (2006), 139 – 157.
[9] M. Gromov, Asymptotic invariants of infinite groups, in Geometric group theory, Vol. 2 (Sussex, 1991), 1 – 295, London Math. Soc. Lecture Note Ser., 182 Cambridge Univ. Press, Cambridge.
[10] M. Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math. No. 53 (1981), 53 – 73.
[11] M. Gromov, Hyperbolic manifolds, groups and actions, in Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978), 183 – 213, Ann. of Math. Stud., 97 Princeton Univ. Press, Princeton, NJ.
[12] K. Kaveh and A. Khovanskii, Algebraic equations and convex bodies, in Perspectives in analysis, geometry, and topology, 263 – 282, Progr. Math., 296 Birkhäuser/Springer, New York.
[13] M. Kontsevich and Yu. Tschinkel, Non-archimedean Kähler geometry, Preprint (2011).
[14] Yu. I. Manin, Three-dimensional hyperbolic geometry as oo-adic Arakelov geometry, Invent. Math. 104 (1991), no. 2, 223 – 243.
[15] G. Mikhalkin, Real algebraic curves, the moment map and amoebas, Ann. of Math. (2) 151 (2000), no. 1, 309 – 326.
[16] A. Okounkov, Brunn-Minkowski inequality for multiplicities, Invent. Math. 125 (1996), no. 3, 405 – 411.
[17] A. Okounkov, Why would multiplicities be log-concave?, in The orbit method in geometry and physics (Marseille, 2000), 329 – 347, Progr. Math., 213 Birkhäuser, Boston, Boston, MA.
[18] Y. Prokhorov, Simple finite subgroups of the Cremona group of rank 3, J. Algebraic Geom. 21 (2012), no. 3, 563 – 600.
[19] J.-P. Serre, Le groupe de Cremona et ses sous-groupes finis, Astérisque No. 332 (2010), Exp. No. 1000, vii, 75 – 100.
[20] I. R. Shafarevich, On some infinite-dimensional groups. II, Izv. Akad. Nauk SSSR Ser. Mat. 45 (1981), no. 1, 214 – 226.

Max Planck Institute for Mathematics, Vivatsgasse 7, 53111 Bonn, Germany
E-mail address: karzhema@mpim-bonn.mpg.de