A theory of planned behavior-enhanced intervention to promote health literacy and self-care behaviors of type 2 diabetic patients

ISA MOHAMMADI ZEIDI¹, HADI MORSHEDI¹, HAMIDREZA ALIZADEH OTAGHVAR²

¹ Social Determinants of Health Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran; ² Trauma and Injury Research Center, Iran University of Medical Sciences, Tehran, Iran

Keywords
Diabetes • Self-care behavior • Health literacy • Attitude • Behavior change

Summary

Background

Improved health literacy and awareness could help type 2 diabetic patients to control the disease complications.

Objective. The current study aimed to evaluate the impact of theory-based educational intervention on health literacy and self-care behaviors of type 2 diabetic patients in Tonekabon city.

Methods. This randomized controlled trial study was conducted at health care centers in Tonekabon city, Iran, from April 5, 2017, to October 22, 2018. Using multistage random sampling, 166 patients with type 2 diabetes divided into two groups: theory-based intervention (n = 83) and custom education (n = 83). The data collection tools consisted of demographic information, Theory of Planned Behavior (TPB) measures, health literacy for Iranian adults (HELIA) and summary of diabetes self-care activities (SDSCA). The five 45-minute group training sessions based on the baseline assessment and model constructs along with the targeted pamphlet and m-health strategy were designed for the experimental group. Data were analyzed using chi-square, independent and paired t-test and Analysis of covariance (ANCOVA).

Results. After controlling for pre-test effect, there was a significant difference between the two groups in terms of mean scores of attitudes, subjective norms, perceived behavior control and intention in post-test (P < 0.001). Also, after controlling for the pre-test effect, the results showed a significant difference in the self-care domain in the post-test (P < 0.001). Finally, after controlling for the pre-test variable effect, covariance analysis reflects significant difference in total health literacy score and its dimension at posttest (P < 0.001).

Conclusions. Applying TPB based education is suggested to maintain and improve self-care behaviors and health literacy in type 2 diabetic patients and other chronic diseases.

Prevalence of Type 2 Diabetes Worldwide and in Iran

Yearly, more than 7 million people worldwide suffer from diabetes, which would lead to nearly 3.8 million death related to it. Furthermore, every 10 seconds equates to a diabetic patient death. It is expected that the number of diabetic patients will approximately double by 2030 if no intervention is considered, developing countries to encounter with a 69% increase in diabetes prevalence [6]. In addition, estimations suggesting that 14% of Iranian population aged over 30 are diabetic, which their number will rise to 9 million by 2021 [7]. Considering the increasing trend of diabetes all around the world, World Health Organization (WHO) has regarded it as a hidden epidemic and requested all countries to deal with it. Therefore, given the lack of a certain cure for diabetes, what could play a key role in preventing its sever complications is to concentrate on appropriate cares such as regular blood sugar control and maintaining it in an optimum level [8].

Self-care and its role in diabetes control

Studies have shown that maintaining blood glucose level in a normal range may cause eye and renal complications to delay by 8 and 6 years, respectively. There is no
denying that patients’ responsibility in controlling blood sugar and effective management of the disease are an integral part of self-care behaviors [9].

Generally, self-care is an evolutionary process on enhancing knowledge and awareness through learning that improves quality and leads to patient’s better adaptation to stress, despite the complex nature of diabetes. Self-care comprises all the actions that each individual performs to take care of their health relying on knowledge, skills and capacities [10]. As a result, one of the changeable and effective risk factors in the incidence of T2D is the lack of adherence to self-care behaviors. Moreover, no adherence to self-care principles is the momentous underlying cause of mortality in individuals with diabetes. Several studies have reported that self-care can lead to longevity increasing, decreasing the incidence of disease complications or postpone it, and improving the quality of life (QOL) of diabetic patients [11, 12].

Despite the importance of self-care, research findings indicate that only 16.2% of diabetic patients adhere to self-care behaviors [9]. In addition, the results of Vosoghi et al. (2012) study revealed that 68.5% of patients with T2D have poor self-care ability [13]. Similarly, Parham et al. found that 53.5% of the patients do not perform self-care behaviors [14].

Health literacy and its relationship with self-care

Self-care is influenced by a set of knowledge, personal beliefs and attitudes, as well as the values and sociocultural characteristics. Among these, the role of knowledge about the nature of the disease and its preventive strategies strongly affects the control of the disease [15]. In contrast, patients should not only be able to obtain sufficient information about the disease and the necessary care skills but also to take advantage of their knowledge in different circumstances. Patients’ skills to access, understand and use information from various sources will have an impressive effect on their behavior and health condition. Such skills are termed health literacy. Indeed, health literacy refers to an individual’s capacity to gain access to, interpret, and understand the basic information, which is integral to make effective health-related decisions [16]. Low health literacy could lead to patient’s poor performance in activities such as blood glucose monitoring, medicine intake adjusting, consumed carbohydrate calculating [17].

WHO has identified health literacy as one of the greatest health determinant [18]. It is less probable that individuals with limited health literacy could perceive written and spoken information given by health experts [19]. Limited access to health care, self-care deficit, less adherence to treatment, continual hospitalization, and lack of confidence to health experts are of consequences of low health literacy [20]. Results of the latest national study in the United States demonstrated that 36% of adults have limited health literacy (adequate or borderline health literacy) [21]. Additionally, findings of Tehrani et al. indicated that 56.6% of the individuals undergoing treatment have inadequate health literacy [22].

The effect of education on self-care and health literacy

Education, improved health literacy and awareness could help diabetic patients to control the disease conditions, reduce the level of perceived stress, and apply effective coping strategies. WHO has considered education as the foundation of diabetes treatment, and identified attitude change, self-care promotion and increased awareness as the key goals of diabetes education [23]. Appropriate education could lead to a decrease in diabetes complications up to 80% [24].

Theoretical framework of educational intervention

Despite the importance of education and improving health literacy in diabetic patients, previous studies on behavior changing have revealed that elevating knowledge is not sufficient to achieve it and is required to address other behavior determinants such as attitudes, social norms and environmental factors. In fact, the value of health education programs depends on the effectiveness of them, and subsequently the capacity of such programs to change behavior depends largely on the application of health education models. Moreover, most of the interventions using behavior change models have been more successful in achieving their goals [25]. The Theory of Planned Behavior (TPB), one of the social-cognitive models introduced by Ajzen and Fishbein in 1988, provides a useful framework for predicting and understanding of health-related behaviors. From the perspective of TPB, optimal behavior could be predicted by behavioral intention. Intention is the main indicator by which it can be understood how much people are willing to do things and try to plan for implementation of a particular behavior. It is, for its part, the result of attitude (positive or negative evaluation of the behavior), subjective norm (whether the significant individuals confirm the behavior or not) and perceived behavioral control or PBC (the expanse that individuals believe could control the behavior performance). Perceived behavioral control, additionally, could anticipate a behavior directly, which occurs when the behavior is not fully under individual’s intention. Review studies have emphasized that the TPB is the most comprehensive and appropriate theory for studying diverse behavior [26-29].

Summary and purpose of the present research

Despite this, the application of this theory for designing interventions and assessing the degree of changes in behavioral psychology’s predictions has not been well investigated. Moreover, there are limited studies on the educational interventions’ assessing with the purpose of promoting health literacy and self-care in diabetic patients simultaneously, and most of research have focused only on the prediction and description of self-care determinants and correlation between the variables, or measured the effect of intervention on one of the self-care behaviors such as physical activity or foot care,
separately. To this end, the current study was undertaken to determine the effect of educational intervention based on TPB on the self-care behaviors and health literacy of T2D patients.

Material and methods

Setting and sampling

The present study was a randomized controlled trial (RCT) conducted from March 2018 to April 2019. The purpose of this study was to determine the effect of theory-based education on health literacy and self-care behaviors in patients with T2D in Tonekabon, Mazandaran province, Iran.

The research society consisted of all T2D patients who referred regularly to 4 Tonekabon urban health care centers. The method of multistage random sampling was used for the sample selection. Firstly, through the 13 healthcare centers located in different parts of the city, 4 of them were randomly selected. Afterwards, among the volunteer patients of each center, eligible Participants were randomly selected on the basis of random numbers table.

Sample size was calculated based on previous studies, the confidence interval of 95%, test power of 80% and using G*power software about 66 patients. Due to simple random sampling, the effect size of 0.50 and probability of 20% drop in participants, 83 patients were considered for each of the experimental and control groups, finally. Inclusion criteria were comprised of reading and writing ability, the history of at least six months of diabetes definite diagnosis, the history of drug therapy, living in the city up to a following year later, the lack of suffering from grade 2 diabetic foot ulcers and higher (based on Wagner’s criteria and the confirmation of clinic specialist) and voluntary participation. While Inclusion criteria consisted of suffering from gestational diabetes, mental and physical disorders and uncontrolled underlying disease as high blood pressure (160/90 mmHg) despite taking medicine.

All participants signed an informed consent form before participation. The study protocol was approved by the University of Alberta Research Ethics Board and Alberta Health Services.

Data collection

Data in the present study were gathered with the use of self-administered questionnaire including the following sections.

Demographic questionnaire

This questionnaire includes age, gender, education, employment status, marital status, economic status, history of having diabetes, medicine utilization, weight, and length.

Theory of Planned Behavior (TPB) constructs-related items

According to the of Fishbein & Ajzen (2010) Questionnaire Design guidance, a semi structural interviewing was carried out from 10 T2D patients, and silent belief related to constructs were extracted. Subsequently, the first version of the items was designed on the basis of the extracted beliefs and previous studies. Then, an expert panel (including 2 health education assistants, 2 internal specialists, 2 nutrition experts, 2 public health expert) assessed the content validity of the questions and confirmed Content Validity Index (CVI) and Content Validity Rate (CVR). The values of 0.83 and 0.86 in CVI and CVR, respectively indicated the content validity of the scales. Then, in order to determine the reliability by the method of test retest reliability and also measure face validity, the questionnaire was completed by a sample composed of 10 T2D patients, with two weeks interval. In addition, Cronbach’s alpha coefficient was used to determine the internal consistency. At last, the following scales were applied to measure the TPB-related structures:

- **subjective norms (5 items):** patients were asked to express their agreement with each item on a 5-point Likert scale from 1 (completely disagree) to 5 (completely agree). The responses ranged from 5 to 25, and the higher was the score, the stronger was the social support for self-care. The Cronbach’s alpha coefficient of 0.83 indicated good internal consistency, and the test-retest coefficient of 0.93 confirmed the reliability of the scale;

- **attitude (8 items):** it was measured based on the 5-points Likert scale ranging from 1 (completely disagree) to 5 (completely agree). The scores ranged from 8 to 40, and the lower were the grades, the weaker were the attitude and vice versa. Moreover, the values of \(r = 0.79 \) and \(\alpha = 0.76 \) were the confirmative of internal consistency and acceptable reliability;

- **PBC (5 items):** it was evaluated on the 5-points Likert scale ranging from 1 (not sure at all) to 5 (completely sure). The responses ranged from 5 to 25, and the higher was the score, the more was the intentional perceived control of patients on the desired behavior. Finally, the internal consistency and reliability of the questions of this scale were confirmed by Cronbach’s alpha coefficient and test-retest;

- **behavioral intention (5 items):** patients were requested to answer questions based on the 5-point Likert scale from 1 (completely disagree) to 5 (completely agree). The scores ranged from 5 to 25, and the lower were the scores, the weaker were the targets and vice versa. The Cronbach’s alpha coefficient of 0.83 and the test coefficient of 0.93 indicated an internal consistency and a good reliability of the scale, respectively.

Short Test of Functional Health Literacy in Adults (STOHFLA)

This test is used to assess the health literacy of diabetic patients. The questionnaire is one of the most common and comprehensive general standard instruments in health literacy appraisal. The number of questions in
The Summary of Diabetes Self-Care Activities (SDCA)
The questionnaire is composed of 15 questions on diet, physical activity, blood glucose monitoring, foot care and medication use. Each question is given a score from 0 to 7 in terms of the number of days in the last week that a person has performed self-care behaviors. As example, eight questions are related to nutritional behaviors with the range of scores from 0 to 56 dividing into undesirable (0-16), somewhat desirable (17-32) and desirable (33-56). Moreover, the total score of self-care is divided into the following levels: poor self-care (0-37), moderate self-care (38-71) and good self-care (72-105). The validity and reliability of the questionnaire has been confirmed in previous studies [31, 32].

DATA COLLECTION PROCESS
After initial coordination and allocation of patients to experimental and control groups, they were asked to complete the questionnaires in the health centers in two stages of before and 2 months after the theory-based intervention. To this end, according to a pre-prepared timetable agreed upon by patients, they were requested to complete the research tool after receiving the health services. The questionnaires were filled out at approximately 45 minutes in the presence of one of the researchers. The researchers attended not only to answer possible questions, explain the method of completing scales, and make sure from responding to all questions, but also to elucidate on the way of answering to the questions and emphasize on providing honest responses. In addition, they stressed on the anonymity and confidentiality of the contained information in the questionnaires.

THEORY BASED EDUCATION
After analyzing the patients’ responses to the questionnaires in the first phase, the patients assigned to the experimental group participated in a multi-part training program. Participants in the intervention group consisting of 7-15 T2D patients were involved in five 45-minute training sessions. The goals of each session were determined by TPB constructs as well as first phase response analysis. A set of educational strategies tailored to the purpose of each session was used such as lecture, role playing, focus group discussion, Q&A methods, brainstorming and practical implementation of skills. Moreover, a 10-minute educational film, targeted pamphlet and educational booklet were given to the experimental group patients was used to remind the educational content presented at each session.

With regard to the capabilities and access of patients to the use of cyberspace and online social networking information, all the provided information in educational package were presented to all T2D patients involved in the experimental group with the use of m-health strategy and based on the WhatsApp application. Detailed information on the content and purpose of the training sessions is provided in Table 1.

DATA ANALYSIS
SPSS software (version 23) was applied for data analysis. Data normality was confirmed based on Kolmogrov-Smirnov test. Descriptive statistics including mean and standard deviation, along with analytic statistics tests were used for data analysis. Moreover, the data were subjected to parametric tests as paired and independent t-test, chi-square and one-way analysis of variance (ANOVA). The significance level was considered of 5%. The present investigation was approved by the ethics committee of Qazvin University of Medical Sciences (IR.QUMS.REC.1396.354). Moreover, in order to respect for human dignity, after collecting the second stage data, all patients in the control group participated in an intensive educational course including two 60-minute training sessions. In addition, all the educational provision presented to the experimental group was also provided to T2D patients in the control group.

Results
The findings of Table I show the demographic and background characteristics of the patients participating in the study. The mean age of the patients was 57.3 ± 9.5 years and frequency of patients older than 50 years was higher than other age groups. Also, the mean BMI of patients was 27.5 ± 4.5 and approximately 50% of patients in both groups had BMI of 25-30. Moreover, half of the patients had primary education and almost 10% had a university education. In addition, about 2/3 of patients are retired and 12.05% of patients in the experimental group and 15.67% of the control group were housewives. The results of Chi-square test didn’t show significant difference between the two groups in terms of demographic variables. Further results are shown in Table II. The results of comparing the mean of self-care domains between the two groups before and after the educational intervention are shown in Table III. Results of independent t-test showed that there was no significant difference between the two groups in terms of mentioned variables before intervention. However, the mean of all self-care domains such as Diet, Blood Glucose Control, Regular Physical Activity, Medication Adherence and Foot Care increased significantly in the experimental...
group after the intervention ($P < 0.001$). Despite this, the results of paired t-test did not show a significant change in the mean of these domains in the control group. Further results are shown in Table III.

The results of covariance analysis showed that the difference between the pre-test and post-test scores of the two groups was significant for the mean of attitude construct ($F = 621.77$, $P < 0.001$). Also, the eta coefficient indicates that Theory based educational intervention is able to explain 31.5% of the variance of attitude constructs in
T2D patients ($F = 67.75, P < 0.001$). Moreover, the results of Table IV show there was a significant difference between the two groups in terms of PBC in post-test ($F = 23.69, P < 0.001$). According to Eta coefficient, it can be deduced that 13.9% of the variance of PBC is described by theory based educational intervention. Finally, after controlling for pretest effect, the results of covariance analysis showed a significant difference in posttest regarding behavioral intention ($F = 23.69, P < 0.001$). Also, Eta coefficient indicates that 27.3% of the variance in behav-

Variables	Intervention (n = 83)	Control (n = 83)	P value			
Age (years)						
Less than 45	2	2	2.41	2	2.41	$P = 0.39$ \(\chi^2 = 0.512\) \(df = 118\)
46-50	7	5	4.83	7	7.23	
51-55	14	15	16.9	15	15.66	
56-60	19	18	22.9	18	21.69	
60-65	20	24	24.1	24	28.92	
More than 65	21	20	25.3	20	24.1	
Total	83	83	100	83	100	
BMI						
Less than 25	20	21	24.1	21	25.31	
25.1-30	43	45	51.81	45	54.22	
More than 30	20	17	24.10	17	20.48	
Total	83	83	100	83	100	
Education						
Elementary	43	41	51.81	41	49.4	
Middle school	17	19	20.49	19	22.9	
High school	14	13	16.87	13	15.67	
University	9	10	10.85	10	12.05	
Total	83	83	100	83	100	
Job status						
Housewife	10	13	12.05	13	15.67	
Retired	58	56	69.88	56	67.47	
Employed	15	14	18.08	14	16.87	
Total	83	83	100	83	100	

Tab. II. Distribution of demographic characteristics of T2D patients in experimental and control groups.

Tab. III. Comparison of mean and standard deviation of self-care and related dimensions in diabetic patients in experimental and control groups before and after educational intervention.
The findings are listed in Table V show the result of One-way covariance analysis regarding the effect of theory-based educational intervention on self-care domains in patients with type 2 diabetes. After removing the pre-test effect, there was a significant difference between the mean scores of physical activity in the post-test ($F = 93.44, P < 0.001, \eta^2 = 0.389$). In addition, η coefficient indicates that 38.9% of variance in physical activity domain is predicted by educational theory-based education. Moreover, after controlling for the pre-test effect, the results showed a significant difference in the nutrition domain in the post-test ($F = 23.86, P < 0.001, \eta^2 = 0.140$) and η coefficient also indicates that 14% of the variance in nutrition domain is explained by theory-based education. Finally, after controlling for the pre-test variable effect, results of one-way ANCOVA reflect significant difference in foot care ($F = 199.31, P < 0.001, \eta^2 = 0.576$), medication adherence ($F = 116.85, P < 0.001, \eta^2 = 0.85$), blood glucose control ($F = 119.34, P < 0.001, \eta^2 = 0.88$) and total self-care ($F = 66.1, P < 0.001, \eta^2 = 0.76$) in posttest. In addition, theory-based educational intervention was able to describe 57.6, 5.8, 8.8 and 7.6% of the variance in foot care, medication adherence, glycemic control, and self-care behaviors, respectively ($P < 0.05$). Further results are shown in Table V.

The results of Table VI are related to the mean and standard deviation of the total health literacy score and its dimensions in the experimental and control group patients before and after the educational intervention. Results of independent t-test before the intervention did not show any significant difference between the two groups in terms of the mentioned variable and its dimensions. However, the mean scores of reading skills, accessibility, comprehension, analysis and decision making significantly improved in the experimental group after the intervention ($P < 0.001$). Also, the mean score of total health literacy in the experimental group increased significantly after the educational intervention ($P < 0.001$). Table VII shows the results of the analysis of covariance regarding the effect of theory-based educational intervention on health literacy dimensions and its total score in T2D patients in the experimental and control groups. The findings indicate that after controlling the pre-test effect, there was a significant difference between the mean of reading skills in the post-test ($F = 65.49, P < 0.001, \eta^2 = 0.76$). Eta coefficient also indicates that 76% of the variance of reading skill dimension is predicted by educational intervention. In addition, after controlling for the pre-test effect, the results indicated a significant difference in the mean score of information accessibility ($F = 28.82, P < 0.001, \eta^2 = 0.50$), Information Comprehension ($F = 96.16, P < 0.001, \eta^2 = 0.78$), information analysis ($F = 85.87, P < 0.001, \eta^2 = 0.80$), decision making and information behavior ($F = 105.48,$
P < 0.001, η² = 0.83) in the post-test. Also, Eta coefficients associated with each dimension showed that theory-based intervention was able to describe 50, 78, 80 and 83% of the variance in the information accessibility, comprehension, analysis and decision making dimensions, respectively. Finally, after controlling for the pre-test variable effect, covariance analysis reflect significant difference in total health literacy score at post test and theory-based education was able to explain 84% of the variance in total score of health literacy in diabetics patients (F = 91.41, P < 0.001, η² = 0.84).

Discussion

The purpose of present study was to determine the effect of a theory-based educational intervention on health literacy and self-care behaviors in T2D patients. Generally, the findings showed that the intervention based on TPB could improve the health literacy and self-care behaviors in the participated patients. In accordance with the current study, in a meta-analysis conducted on the effect of diabetes self-care interventions with a focus on health literacy, positive changes were obtained in cognitive-psychological health, along with desirable health outcomes and self-care improvement [34]. Furthermore, the results of a systematic review of Berkman et al. (2011) indicated a health literacy intervention has a significant effect on prevalence of disease, knowledge, self-efficacy and medication adherence [35]. The findings of the study by Zhao et al. (2015) are consistent with the results of the present study [36].
One of the major results of this study was the score enhancement of all domains and the total score of health literacy among experimental group after intervention. Health literacy is the capacity of individuals to acquire, process, and understand basic health services and information in order to make appropriate health decisions [16]. Limited health literacy is influenced by complex mechanisms that affect health and health outcomes including reduced access to health care, poor interactions between patient and health care providers, and a lack of proper self-care under specific circumstances, all of which are crucial to the diabetes management [37]. In fact, inadequate health literacy refers to the patients who are incapable of acquiring, interpreting, and understanding health-related information, which is of paramount importance for making correct decision in health care system. As a result, they need to be informed and educated in a different way than others. Given the findings of present study, most of the patients in experimental group had insufficient health literacy before intervention, and the number of those with borderline and adequate health literacy was low, respectively, which was in line with the results reported by Esfahrood et al. (2016), and Fransen et al. (2012) [38, 39]. After the educational intervention, the number of patients whose health literacy was improved significantly increased and it is reasonable to expect a significant decrease in the percentage of T2D patients with low levels of health literacy. Similar results in consistent with ours have been reported on the enhancing of health literacy as a function of theory-based education impact [40, 41]. Some studies have emphasized the necessity of designing and implementing educational interventions equal to the level of health literacy of patients, and shown that the determinants of health behaviors in patients with various levels of health literacy significantly differ; to this end, the same interventional strategies shouldn’t be designated. In addition, the following strategies could be employed to improve health literacy in patients: simple and understandable communication, gradual presentation of information and an emphasis on information curtailment, limiting information provided at each patient referral, repeating information in various ways, repeatedly receiving feedback and refining the education process, encouraging patients to be curious, and focusing on simple media utilization [42, 43]. Overall, it is recommended that health care experts be familiar with the concept and strategies of health literacy, and apply these skills while educating patients in order to better returnee’s perception of represented information in addition to the enhancement of effectiveness of educational interventions.

Another important finding of the present study was that the TPB theory constructs comprising attitude, subjective norms, PBC, and behavioral intention improved significantly after intervention in the experimental group. This is in accordance with the results obtained by Bei-ranvand et al. (2016), Taha et al. (2016) and Reisi et al. (2017) [44-46]. Also, a review of 20 RCT by Zhao et al. (2017) revealed that theory-based self-management educational interventions on patients with T2D were able to significantly improve patients’ self-efficacy, diabetes knowledge and other psychological variables [47]. So, the multidimensional nature and complexities associated with self-care behaviors justify the necessity of using theories and patterns of behavioral change to describe factors influencing the foregoing behavior. The association between TPB constructs and self-care behaviors in diabetic patients has been well predicted in various studies. Identification of psychological factors affecting self-care behavior is an indispensable and undeniable step in the design of interventions [48].

Amongst the TPB constructs used in this study, the mean score of attitudes of the experimental group significantly improved after the intervention, which is in agreement with the results of previous investigation [44, 45]. Generally, adopting health behaviors in diabetic patients will arise from an individual’s evaluation of positive and negative consequences of the recommended behavior, perceived benefits and barriers, understanding the outcomes of not following the advised behavior, the severity of the complications, and the perceived risk [49]. It could be hypothesized that the reason for the improvement of attitude and self-care behaviors is considering attitude as one of the principal components of the educational program. Particular concentration on perceived threats and sensitization to various complications of a disease, being negligible before the educational intervention, promises the effectiveness of education in designing educational content. Developing a positive attitude in diabetic patients could cause adherence to self-care behaviors. Besides, there is a positive correlation between attitude and the level of health literacy in diabetic patients. Therefore, patients’ health literacy enhancement could in turn affect attitude changes positively. It is recommended that health experts reinforce positive attitudes and reduce negative beliefs using techniques such as qualitative interviewing, and effective intervention strategies like focus groups.

Moreover, to attitude change, the experimental group achieved significantly higher mean score in subjective norms after the intervention, which is in line with previous research findings [49-51]. Song et al. (2017) after reviewing 28 interventional studies concluded that there was a moderate and significant relationship between social support and self-care in diabetic patients [52]. In this regard, research has revealed that the level of psychological vulnerability of individuals with higher social support is lower than others. Social support could be effective in controlling diabetes through two major processes: the direct impact of social support via health-related behaviors such as encouraging healthy behaviors, and the shield effect of social support that contributes to the adjustment of acute and chronic neurotic stress effects on health, as well as increased adaptation to diabetes neurotic pressure [53, 54]. In fact, the relationship between social support and improvement in behaviors controlling disease, diet adherence and self-management in diabetic patients has been approved. Whenever stress levels were high, diabetic patients who received more social support would have better glycemic control. Also, family sup-
Conclusions

The results implied that educational intervention based on the constructs of TPB can considerably elevate the level of health literacy, attitude, subjective norms, PBC, and behavioral intention in patients with T2D. Further-
more, the effectiveness of theory-based education in promoting self-care behaviors such as regular adherence to the prescribed medication, foot care, regular physical activity, healthy diet, and blood glucose self-monitoring were confirmed. Therefore, applying this model of behavior change is suggested to maintain and improve self-care behaviors in both T2D patients and other chronic diseases.

Ethical approval

The study protocol was approved by the Ethics Committee of Qazvin University of Medical Sciences (IR. QUMS.REC.1396.354- January 2016).

Acknowledgements

The present manuscript was extracted from a research project in biochemistry. Special thanks and appreciation go to the physicians, health care experts, nurses and other personnel of Tonekabon Health Centers who collaborated in conducting different phases of this study. We also appreciate all the type 2 diabetes patients who participated in the study.

Funding sources: the present study was supported by Vice-Chancellor for Research and Technology of Qazvin University of Medical Sciences.

Conflict of interest statement

The authors declare no conflict of interest.

Authors' contributions

IMZ was involved in the study concept, design, analysis, interpretation of data, and drafting of the manuscript. HM and HAO supervised the conduct of the study.

References

[1] Gonzalvo JD. Introduction to basal insulin therapy: clinical management of diabetes. Am J Manag Care. 2018 Mar; 24(6 Suppl):S87-S92. Review.

[2] Rydén L, Ferrannini E, Mellbin L. Risk factor reduction in type 2 diabetes demands a multifactorial approach. Eur J Prev Cardiol. 2019 Dec; 26(2_suppl):81-91. https://doi.org/10.1177/2047487319872015.

[3] Shepard BD. Sex differences in diabetes and kidney disease: mechanisms and consequences. Am J Renal Physiol 2019. https://doi.org/10.1152/ajprenal.00249.2019

[4] Bommer C, Heesemann E, Sagalova V, Manne-Goehler J, Atun R, Bärnighausen T, Vollmer S. The global economic burden of diabetes in adults aged 20-79 years: a cost-of-illness study. Lancet Diabetes Endocrinol 2017;5:423-30. https://doi.org/10.1016/S2213-8587(17)30097-9

[5] Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohrooghe AW, Malanda B. IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract 2018 Apr;138:271-81. https://doi.org/10.1016/j.diabres.2018.02.023

[6] Standl E, Khunti K, Hansen TB, Schnell O. The global epidemics of diabetes in the 21st century: Current situation and perspectives. Eur J Prev Cardiol 2019;26(suppl. 2):7-14. https://doi.org/10.1177/2047487319881021

[7] Akbarzadeh A, Salehi A, Molavi Vardanjani H, Poustchi H, Gandomkar A, Fattahi MR, Malekzadeh R. Epidemiology of adult diabetes mellitus and its correlates in pars cohort study in Southern Iran, Arch Iran Med 2019;22:633-9.

[8] Stokes J, Gellatly J, Bower P, Meacock R, Cotterill S, Sutton M, Wilson P. Implementing a national diabetes prevention programme in England: lessons learned. BMC Health Serv Res 2019;19:991. https://doi.org/10.1186/s12913-019-4809-3

[9] Yang E, Kim HJ, Ryu H, Chang SJ. Diabetes self-care behaviors in adults with disabilities: a systematic review. Jpn J Nurs Sci 2020;17:e12289. https://doi.org/10.1111/jjns.12289

[10] Mogre V, Johnson NA, Tzelepis F, Shaw JE, Paul C. A systematic review of adherence to diabetes self-care behaviours: Evidence from low- and middle-income countries. J Adv Nurs 2019;75:3374-89. https://doi.org/10.1111/jan.14190

[11] Sharma S, Mishra AJ. Diabetes self-care management: experiences of the socio-economically backward sections of Jammu. Diabetes Metab Syndr 2019;13:1281-6. https://doi.org/10.1016/j.dsx.2019.01.025

[12] Nelson LA, Ackerman MT, Grevey RA Jr, Wallston KA, Mayberry LS. Beyond race disparities: accounting for socioeconomic status in diabetes self-care. Am J Prev Med 2019;57:111-6. https://doi.org/10.1016/j.amepre.2019.02.013

[13] Rosoghi Karkazloo N, Abootalebi Daryasari G, Farahani B, Mohammednejad E, Sajjadi A. The study of self-care agency in patients with diabetes. (Aradabili) Modern Care Journal 2012;8:197-204. http://sid.bums.ac.ir/dspace/handle/bums/5163

[14] Parham M, Riahiin A, Jandaghi M, Darivandpour A. Self-care behaviors of diabetic patients in Qom. Qom Univ Med Sci J 2012;6:81-7. http://journal.muq.ac.ir/article-1-539-en.html

[15] Huang CH, Lin PC, Chang Yeh M, Lee PH. a study on self-care behaviors and related factors in diabetes patients. Hu Li Za Zhi 2017;64:61-9. https://doi.org/10.6224/JN.64.1.61

[16] Ishikawa H, Takeuchi T, Yano E. Measuring functional, communicative, and critical health literacy among diabetic patients. Disab Care 2008:31:874-9. https://doi.org/10.2337/dc07-1932

[17] Bohanny W, Wu SF, Liu CY, Yeh SH, Tsay SL, Wang TJ. Health literacy, self-efficacy, and self-care behaviors in patients with type 2 diabetes mellitus. J Am Assoc Nurse Pract 2013;25:495-502. https://doi.org/10.1111/j.1745-7599.12017

[18] Garcia-Codina O, Juvinayá-Canal D, Amil-Bujan P, Bertran-Noguer C, González-Mestre MA, Masachs-Fatjo E, Santaeugènia SJ, Magrinyà-Rull P, Saltó-Cerezuella E. Determinants of health literacy in the general population: results of the Catalan health survey. BMC Public Health 2019;19:1122. https://doi.org/10.1186/s12889-019-7381-1

[19] Platter H, Kaplow K, Baur C. Community Health Literacy Assessment: a systematic framework to assess activities, gaps, assets, and opportunities for health literacy improvement. Health Lit Res Pract 2019;3:e216-26. https://doi.org/10.3928/24748307-20190821-01

[20] Rudd RE. Health Literacy: insights and issues. Stud Health Educ 2007;4:1-9.
[23] Beck J, Greenwood DA, Blanton L, Bollerling ST, Butcher MK, Condon JE, Cypress M, Faulkner P, Fischl AH, Francis T, Kolb LE, Lavin-Tompkins JM, MacLeod J, Maryniuk M, Mensing C, Orzech EA, Pope DD, Pulizzi JL, Reed AA, Rhinehart AS, Siminerio L, Wang J. 2017 Standards Revision Task Force. 2017 National Standards for Diabetes Self-Management Education and Support. Diabetes Educ. 2017;43:449-64. https://doi.org/10.1177/0145721717722968. Erratum in: Diabetes Educ 2017;43:650.

[24] Nijland N, van Gemert-Pijnen JE, Kelders SM, Brandenburg BJ, Seydel ER. Factors influencing the use of a Web-based application for supporting the self-care of patients with type 2 diabetes: a longitudinal study. J Med Internet Res 2011;13:e71. https://doi.org/10.2196/jmir.1605.

[25] Al-Durra M, Torio MB, Caiazza JA. The use of behavior change theory in Internet-based asthma self-management interventions: a systematic review. J Med Internet Res 2015;17:e89. https://doi.org/10.2196/jmir.4110.

[26] Li ASW, Figg G, Schütz B. Socioeconomic status and the prediction of health promoting dietary behaviours: a systematic review and meta-analysis based on the theory of planned behaviour. Appl Psychol Health Well Being 2019;11:382-406. https://doi.org/10.1111/apwh.12154.

[27] Starfelt Sutton LC, White KM. Predicting sun-protective intentions and behaviours using the theory of planned behaviour: a systematic review and meta-analysis. Psychol Health 2016;31:1272-92. https://doi.org/10.1080/08870446.2016.1204449.

[28] McDermott MS, Oliver M, Simnadis T, Beck EJ, Coltman T, Starfelt Sutton LC, White KM. Predicting sun-protective behavior: a systematic review and meta-analysis based on the theory of planned behaviour. J Adv Nurs 2015;81:150-6. https://doi.org/10.1111/j.1365-2648.2015.05820.

[29] Cooke R, Daldah M, Normann P, French DP. How well does the theory of planned behaviour predict alcohol consumption? A systematic review and meta-analysis. Health Psychol Rev 2016;10:148-67. https://doi.org/10.1080/17437199.2014.947547.

[30] Fishbein M, Ajzen I. Predicting and changing behavior: the reasoned action approach. New York, NY: Psychology Press, Taylor & Francis group 2010.

[31] Thomason TR, Mayo AM. A critique of the short test of functional literacy in adults. Clin Nurse Spec 2015;29:308-12. https://doi.org/10.1097/NUR.0000000000000156.

[32] Reisi M, Mostafavi F, Javadzade H, Mahaki B, Tavassoli E, Sharifirad G. Communicative and critical health literacy and self-care behaviors in patients with type 2 diabetes. Iran J Diabetes Metab 2015;14:199-208. http://ijdld.tums.ac.ir/article-1-5369-en.html.

[33] Jalaludin M, Fuziah M, Hong J, Mohamad Adam B, Jamaiyah A, Crotty K, Holland A, Brasure M, Lohr KN, Harden E, Tant A. Theory-based health literacy-sensitive, culturally tailored diabetes self-management education. QJM 2018;12:26-37. https://doi.org/10.1097/NUR.0000000000000156.

[34] Zhao RY, He XW, Zhu YM, Shan YM, Zhu LL, Zhou Q. A stewardship intervention program for safe medication management and use of antidiabetic drugs. Clin Interv Aging 2015;10:1201-12. https://doi.org/10.2147/CIA.S87456.

[35] Rezaee Esfahrood Z, Haerian ardekani A, Rahmanian M, Ghaffari Targhi M. A Survey on health literacy of referred diabetic patients to Yazd diabetes research center. TB 2016;15:176-86. http://tbj.ssu.ac.ir/article-1-2283-en.html.

[36] Franssen MP, von Wagner C, Essink-Bot ML. Diabetes self-management in patients with low health literacy: ordering findings from literature in a health literacy framework. Patient Educ Couns 2012;88:44-53. https://doi.org/10.1016/j.pec.2011.11.015.

[37] Hejazi S, Peyman N, Tajfard M, Esmaily H. The impact of education based on self-efficacy theory on health literacy, self-efficacy and self-care behaviors in patients with type 2 diabetes. Iran J Health Educ Health Promot 2018;5:296-303. https://doi.org/10.30099/acapub.ijhehp.5.4.296.

[38] Long AF, Gambling T. Enhancing health literacy and behavioural change within a tele-care education and support intervention for people with type 2 diabetes. Health Expect 2012;15:267-82. https://doi.org/10.1111/j.1369-7625.2011.00678.x.

[39] Noordman J, van Vliet L, Kaunang M, van den Muijsenbergh M, Boland G, van Dulmen S. Towards appropriate information provision and decision-making with patients with limited health literacy in hospital-based palliative care in Western countries: a scoping review into available communication strategies and tools for healthcare providers. BMC Palliat Care 2019;18:37. https://doi.org/10.1186/s12904-019-0421-x.

[40] Lee TW, Lee SH, Kim HH, Kang SJ. Effective intervention strategies to improve health outcomes for cardiovascular disease patients with low health literacy skills: a systematic review. Asian Nurs Res (Korean Soc Nurs Sci) 2012;6:128-36. https://doi.org/10.1016/j.anjr.2012.09.001.

[41] Reiravand S, Asadizaker M, Fayazi S, Yaralizadeh M. Efficacy of an intervention based on the theory of planned behavior on foot care performance in type ii diabetic patients. Jundishapur J Chronic Dis Care 2016;5:e30622. https://doi.org/10.17795/ jjcde-30622.

[42] Taha NM, Zaton HK, Abd Elariz NH. Impact of a health educational guideline on the knowledge, self-management practice and self-efficacy of patients with type-2 diabetes. J Nurs Educ Pract 2016;6:46-55. https://doi.org/10.5430/jnep.v6n9p46.

[43] Reisi M, Javadzade H, Sharifirad G, Mostafavi F, Tavassoli E, Imanzad M. Effects of an educational intervention on self-care and metabolic control in patients with type II diabetes. Jurnal of Client-centered Nursing Care 2017;3:205-14. https://doi.org/10.32598/jcnc.3.3.205.

[44] Zhao FF, Suhonen R, Koskinen S, Leino-Kilpi H. Theory-based self-management educational interventions on type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. J Adv Nurs 2017;73:812-33. https://doi.org/10.1111/jan.13163.

[45] Saad AMJ, Younes ZMH, Ahmed H, Brown JA, Al Owesie RM, Hassoun AAK. Self-efficacy, self-care and glycemic control in Saudi Arabian patients with type 2 diabetes mellitus: a cross-sectional survey. Diabetes Res Clin Pract 2018;137:28-36. https://doi.org/10.1016/j.diabres.2017.12.014.

[46] Karimy M, Koohestani HR, Araban M. The association between attitude, self-efficacy, and social support and adherence to diabetes self-care behavior. Diabetes Metab Syndr 2018;10:88-96. https://doi.org/10.1016/s1309-0815-0386-6.

[47] Dousti F, Maleki A, Chiti H, Fahghizadeh S, Taheri SS. Investigation of the effect of individual counseling of physical activity based on theory of planned behavior on glycemic indexes in women with gestational diabetes: a randomized clinical trial. Qon Unv Med Sci 2018;12:26-37. https://doi.org/10.29252/qums.12.9.26.

[48] Rosal MC, Ockene JS, Restrepo A, White MJ, Borg A, Olendzki B, Scavron J, Candiib L, Welch G, Reed G. Randomized trial of a literacy-sensitive, culturally tailored diabetes self-management intervention for low-income latinos: latinos en control. Diabetes Care 2011;34:838-44. https://doi.org/10.2337/dc10-1981.
Song Y, Nam S, Park S, Shin IS, Ku BJ. The impact of social support on self-care of patients with diabetes: what is the effect of diabetes type? Systematic review and meta-analysis. Diabetes Educ 2017;43:396-412. https://doi.org/10.1177/0145721717712457

Faraji J, Soltanpour N, Lotfi H, Moceini R, Moharreri AR, Roudayki S, Hosseini SA, Olson DM, Abdollahi AA, Soltanpour N, Mohajerani MH, Metz GAS. Lack of social support raises stress vulnerability in rats with a history of ancestral stress. Sci Rep 2017;7:5277. https://doi.org/10.1038/s41598-017-05440-8

Saleh LD, van den Berg JJ, Chambers CS, Operario D. Social support, psychological vulnerability, and HIV risk among African American men who have sex with men. Psychol Health 2016;31:549-64. https://doi.org/10.1080/08870446.2015.1120301

Graven LJ, Grant JS. Social support and self-care behaviors in individuals with heart failure: an integrative review. Int J Nurs Stud 2014;51:320-33. https://doi.org/10.1016/j.ijnurstu.2013.06.013

Huang YM, Shiyanbola OO, Smith PD. Association of health literacy and medication self-efficacy with medication adherence and diabetes control. Patient Prefer Adherence 2018;12:793-802. https://doi.org/10.2147/PPA.S153312

Al-Hashmi I, Hodge F, Nandy K, Thomas E, Brecht ML. The effect of a self-efficacy-enhancing intervention on perceived self-efficacy and actual adherence to healthy behaviours among women with gestational diabetes mellitus. Sultan Qaboos Univ Med J 2018;18:e513-e519. https://doi.org/10.18295/squmj.2018.18.04.014

Mohammadi S, Karim NA, Talib RA, Amani R. The impact of self-efficacy education based on the health belief model in Iranian patients with type 2 diabetes: a randomised controlled intervention study. Asia Pac J Clin Nutr 2018;27:546-55. https://doi.org/10.6133/apjcn.072017.07

Olson EA, McAuley E. Impact of a brief intervention on self-regulation, self-efficacy and physical activity in older adults with type 2 diabetes. J Behav Med 2015;38:886-96. https://doi.org/10.1007/s10865-015-9660-3

[52] Song Y, Nam S, Park S, Shin IS, Ku BJ. the impact of social support on self-care of patients with diabetes: what is the effect of diabetes type? Systematic review and meta-analysis. Diabetes Educ 2017;43:396-412. https://doi.org/10.1177/0145721717712457
[53] Faraji J, Soltanpour N, Lotfi H, Moceini R, Moharreri AR, Roudayki S, Hosseini SA, Olson DM, Abdollahi AA, Soltanpour N, Mohajerani MH, Metz GAS. Lack of social support raises stress vulnerability in rats with a history of ancestral stress. Sci Rep 2017;7:5277. https://doi.org/10.1038/s41598-017-05440-8
[54] Saleh LD, van den Berg JJ, Chambers CS, Operario D. Social support, psychological vulnerability, and HIV risk among African American men who have sex with men. Psychol Health 2016;31:549-64. https://doi.org/10.1080/08870446.2015.1120301
[55] Graven LJ, Grant JS. Social support and self-care behaviors in individuals with heart failure: an integrative review. Int J Nurs Stud 2014;51:320-33. https://doi.org/10.1016/j.ijnurstu.2013.06.013
[56] Huang YM, Shiyanbola OO, Smith PD. Association of health literacy and medication self-efficacy with medication adherence and diabetes control. Patient Prefer Adherence 2018;12:793-802. https://doi.org/10.2147/PPA.S153312
[57] Al-Hashmi I, Hodge F, Nandy K, Thomas E, Brecht ML. The effect of a self-efficacy-enhancing intervention on perceived self-efficacy and actual adherence to healthy behaviours among women with gestational diabetes mellitus. Sultan Qaboos Univ Med J 2018;18:e513-e519. https://doi.org/10.18295/squmj.2018.18.04.014
[58] Mohammadi S, Karim NA, Talib RA, Amani R. The impact of self-efficacy education based on the health belief model in Iranian patients with type 2 diabetes: a randomised controlled intervention study. Asia Pac J Clin Nutr 2018;27:546-55. https://doi.org/10.6133/apjcn.072017.07
[59] Olson EA, McAuley E. Impact of a brief intervention on self-regulation, self-efficacy and physical activity in older adults with type 2 diabetes. J Behav Med 2015;38:886-96. https://doi.org/10.1007/s10865-015-9660-3

Received on March 17, 2020. Accepted on August 12, 2020.

Correspondence: Isa Mohammadi Zeidi, Social Determinants of Health Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran - Tel. +98 9124146500 - E-mail: emohammadi@qums.ac.ir, drhralizade@yahoo.com

How to cite this article: Zeidi IM, Morshedi H, Alizadeh Otaghvar H. A theory of planned behavior-enhanced intervention to promote health literacy and self-care behaviors of type 2 diabetic patients. Prev Med Hyg 2020;61:E601-E613. https://doi.org/10.15167/2421-4248/jpmh2020.61.4.1504

© Copyright by Pacini Editore Srl, Pisa, Italy

This is an open access article distributed in accordance with the CC-BY-NC-ND (Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International) license. The article can be used by giving appropriate credit and mentioning the license, but only for non-commercial purposes and only in the original version. For further information: https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en