Baryon masses in the three-state Potts field theory in a weak magnetic field

S B Rutkevich

Fakultät für Physik, Universität Duisburg-Essen, D-47058 Duisburg, Germany
E-mail: sergei.rutkevich@uni-due.de

Received 10 August 2014
Accepted for publication 5 December 2014
Published 6 January 2015

Abstract. The 3-state Potts field theory describes the scaling limit of the 3-state Potts model on the two-dimensional lattice near its continuous phase transition point. In the presence of thermal and magnetic field perturbations, the 3-state Potts field theory in the ordered phase exhibits confinement of kinks, which allows both mesons and baryons. We calculate the masses of light baryons in this model in the weak confinement regime in leading order of the small magnetic field. In leading order of perturbation theory, the light baryons can be viewed as bound states of three quantum particles—the kinks, which move on a line and interact via a linear potential. We determine the masses of the lightest baryons by numerical solution of the associated non-relativistic one-dimensional quantum three-body problem.

Keywords: spin chains, ladders and planes (theory), classical phase transitions (theory), quantum phase transitions (theory)

ArXiv ePrint: 1408.1818
1. Introduction

Confinement of kink topological excitation is a quite common phenomenon in 2d-Euclidean Quantum Field Theories (QFT), which are invariant under some discrete symmetry group and display a continuous order-disorder phase transition. After the Wick rotation, such models can be viewed as relativistic QFT with one space and one time dimension. If the system has \(q \) degenerate vacua \(|0_\alpha\rangle \), \(\alpha = 1, \ldots, q \), in the ordered phase due to the spontaneous breaking of the discrete symmetry, the particle sector of the theory should contain kinks \(K_{\alpha\beta} \), \(\alpha, \beta = 1, \ldots, q \) that interpolate between two different vacua. The application of a uniform external field that shifts to a lower value the energy of the vacuum \(|0_q\rangle \), lifts the degeneracy between the vacua. As a result, the vacuum \(|0_q\rangle \) transforms into the true ground state, whereas the states \(|0_\alpha\rangle \) with \(\alpha = 1, \ldots, q-1 \) become the non-stable false vacua. This induces a long-range attractive interaction between kinks, which, in turn, leads to their confinement: isolated kinks do not exist in the system any more and become bound into compound particles. Particular realizations of this scenario in different two-dimensional field-theoretical models have attracted much attention in recent years [1–7].

The interest in the problem of kink confinement stems from several origins. First, together with particle decay, inelastic scattering and resonances [8–10], nucleation in the false vacua etc [2, 11–13], this phenomenon falls into the realm of non-integrable aspects of the quantum field theory and statistical mechanics, which cannot be described within the framework of exactly solvable models [14]. If one views quantum field theories as points in the ‘space of local interactions’ [15,16] that flow under the action of the renormalization group, a generic point in this space would correspond to some non-integrable model. The

doi:10.1088/1742-5468/2015/01/P01010
famous example is the near-critical two-dimensional Ising model with non-zero magnetic field \cite{2,12,17,18}. Of course, any progress in understanding universal properties of such non-integrable models is highly desirable.

The second motivation comes from particle physics due to certain common features between the confinement of kinks and the confinement of quarks in Quantum Chromodynamics (QCD). One example is provided by the Bethe–Salpeter equation introduced in the Ising field theory by Fonseca and Zamolodchikov \cite{2}, which turns out to be very similar to the Bethe–Salpeter equation in ’t Hooft’s multicolor two-dimensional QCD \cite{19}, see \cite{3,20}. Note that the kinks and their bound states in the confinement regime are often referred to as quarks, mesons (two-kink bound states) and baryons (three-kink bound states), respectively.

Finally, the kink confinement can be realized in one-dimensional condensed-matter systems. It has recently been experimentally observed \cite{21,22} in the one-dimensional Ising spin-chain ferromagnet cobalt niobate (CoNb$_2$O$_6$). The magnetic structure of this compound can be described by the one-dimensional quantum Ising spin-chain model, which is the paradigmatic model for the theory of quantum phase transitions \cite{23}.

The simplest and most studied example of kink confinement is provided by the Ising Field Theory (IFT), i.e. the Euclidean QFT, which describes the scaling limit of the two-dimensional lattice Ising model. At zero magnetic field $h = 0$ in the ferromagnetic phase $T < T_c$, this model is characterized by a spontaneously broken \mathbb{Z}_2 symmetry, has $q = 2$ degenerate vacua and two types of kinks $K_{1,2}$ and $K_{2,1}$, which can be viewed as non-interacting fermions of mass $m \sim (T_c - T)$. Only mesonic bound states are present in this model in the confinement regime, when a magnetic field h that explicitly breaks the \mathbb{Z}_2 symmetry is applied. As $h \to 0$, the masses $\mu_n(h)$, $n = 1, 2, \ldots$, of the mesons densely fill the interval $[2m, \infty)$. The evolution of the IFT meson masses $\mu_n(h)$ with increasing h has been studied in great detail both numerically and analytically \cite{2–4,14,17,24}. Two asymptotic expansions have been obtained for the IFT meson masses in the weak confinement regime $h \to 0$. The semiclassical expansion \cite{3,4} in integer powers of h holds for the masses $\mu_n(h)$ of highly exited mesons, with $n \gg 1$. The low-energy expansion \cite{2,3,17} in fractional powers of h describes the masses of mesons with not very large values of n, such that $\mu_n(h) - 2m \ll m$. Note that the leading term of the low-energy expansion can be obtained in a very simple manner from the McCoy–Wu scenario, in which the meson is interpreted as a bound state of two non-relativistic quantum particles moving on a line and attracting one another with a linear potential.

The q-state Potts Field Theory (PFT) provides a more complicated example of the model exhibiting kink confinement. Being defined in two space-time dimensions only for $q \leq 4$, it represents the scaling limit of the two-dimensional q-state lattice Potts model \cite{25} near its continuous phase transition point. At zero magnetic field $h = 0$, the model is invariant under the group S_q describing permutations of q colors and has q degenerate vacua in the ordered phase. The PFT reduces to the IFT at $q = 2$. The kinks $K_{\alpha\beta}$, $\alpha, \beta = 1, \ldots, q$, are massive particles that interact with each other at short distances already when $h = 0$, if $q > 2$. The interaction of kinks in the $h = 0$ PFT is described by a factorizable scattering matrix, as found by Chim and Zamolodchikov \cite{26}. The application of the magnetic field in the ordered phase leads to kink confinement in the PFT, which has been studied in several papers \cite{5,27,28}. The symmetry analysis of the kink bound states and the qualitative analysis of the evolution of their mass spectrum were performed by...
Delfino and Grinza [5]. These authors have shown, that besides the mesons, the baryonic (three-kink) bound states are present at \(q = 3, 4 \) and the ‘tetra-quark’ (four-kink) bound states appear at \(q = 4 \) in the \(q \)-state PFT in the confinement regime. Lepori, Tóth and Delfino [27] have numerically studied the evolution of the particle mass spectrum in the 3-state PFT under variation of the temperature and magnetic field by means of the Truncated Conformal Space Approach (TCSA) [29,30]. Analytic perturbative analysis of the meson mass spectrum in the \(q \)-state PFT has been done in paper [28], in which the leading terms of both low-energy and semiclassical asymptotical small-\(h \) expansions for the meson masses were obtained.

The purpose of the present paper is to calculate the masses of the few lightest baryons in the 3-state PFT in the weak confinement regime at \(h \to +0 \). Following the McCoy–Wu scenario, we treat the light baryons at \(h \to +0 \) as bound states of three non-relativistic quantum particles (the kinks), which move on a line and interact with each other with the linear attractive potential. This allows us to relate the masses of light baryons with discrete energy levels of a certain one-dimensional quantum three-body problem, which we approximately solve by numerical means.

The paper is organized as follows. Section 2 contains a brief introduction into the Potts field theory and some of its well-known properties at zero magnetic field. The weak confinement regime in the ferromagnetic 3-state PFT is discussed in section 3, where the non-relativistic quantum three-body problem, which determines the masses of light baryons is also presented. In section 4, we reduce this quantum three-body problem to the Fredholm integral equation, whose numerical solution is described in section 5. Concluding remarks are given in section 6.

2. Potts field theory

The Potts field theory describes the scaling limit of the two-dimensional \(q \)-state Potts model with the number of colors \(q \) lying in the interval \(q \leq 4 \). The PFT Euclidean action can be written as [5,26,27]

\[
\mathcal{A} = \mathcal{A}_{\text{CFT}}^{(q)} - \tau \int d^2 x \varepsilon(x) - h \int d^2 x \sigma_q(x),
\]

Here \(\mathcal{A}_{\text{CFT}}^{(q)} \) corresponds to the Conformal Field Theory, which is associated with the critical point, \(\varepsilon(x) \) is the energy density, \(\sigma_a(x) \) are the spin densities, which are subject to the constrain \(\sum_{\alpha=1}^{q} \sigma_{\alpha}(x) = 0 \). The couplings \(\tau \) and \(h \) are proportional to the deviation of the temperature and magnetic field from their critical point values. The magnetic field \(h \) is chosen to act on the \(q \)-th color only. At the critical point, the energy density and the spin density have the scaling dimensions \(X_{\varepsilon}^{(q)}, X_{\sigma_q}^{(q)} \), respectively.

At \(h = 0 \), the Potts model is invariant under the permutation group \(S_q \); at \(h \neq 0 \) the symmetry reduces to the group \(S_{q-1} \) of permutations of the colors \(\alpha = 1, \ldots, q - 1 \). The PFT is integrable at \(h = 0 \). At \(h = 0 \) and \(\tau < 0 \), the \(S_q \) symmetry is spontaneously broken: the model has \(q \) degenerate vacua \(|0_{\alpha}\rangle \), \(\alpha = 1, 2, \ldots, q \), which are distinguished by the values of the order parameter \(\langle \sigma_{\gamma} \rangle_{\alpha} \equiv \langle 0_{\alpha} | \sigma_{\gamma}(x) | 0_{\alpha} \rangle \). The symmetry group \(S_q \) acts by permutations of these vacua.
In this paper, we shall concentrate on the PFT with $q = 3$ in the ordered phase $\tau < 0$. At $h = 0$ and $\tau < 0$, the 3-state PFT has three degenerate vacua $|0_\alpha\rangle$, $\alpha = 1, 2, 3$ shown schematically in figure 1(a). Its particle sector contains six kinks $K_{\alpha\beta}(\theta)$, $\alpha, \beta = 1, 2, 3$, which interpolate between two different vacua α and β, see figure 1(b). Each kink $K_{\alpha\beta}(\theta)$ is a relativistic particle having mass m and rapidity θ. The latter parametrizes the kink’s energy $E = m \cosh \theta$ and momentum $p = m \sinh \theta$. The kink mass is related with the parameter τ as $|\tau| \sim m^2 - X^{(q)}$.

In contrast to the IFT, the kinks in the 3-state PFT interact with each other at distances $\lesssim m^{-1}$ already at $h = 0$. This interaction leads to the mutual kink scattering, which is described by the factorizable scattering matrix. The corresponding two-kink scattering matrix in the q-state PFT is described by the commutation relations found by Chim and Zamolodchikov [26]:

\begin{align}
K_{\alpha\gamma}(\theta_1)K_{\gamma\beta}(\theta_2) &= S_0(\theta_{12}) \sum_{\delta \neq \gamma} K_{\alpha\delta}(\theta_2)K_{\delta\beta}(\theta_1) + S_1(\theta_{12})K_{\alpha\gamma}(\theta_2)K_{\gamma\beta}(\theta_1), \quad \alpha \neq \beta, \\
K_{\alpha\gamma}(\theta_1)K_{\gamma\alpha}(\theta_2) &= S_2(\theta_{12}) \sum_{\delta \neq \gamma} K_{\alpha\delta}(\theta_2)K_{\delta\alpha}(\theta_1) + S_3(\theta_{12})K_{\alpha\gamma}(\theta_2)K_{\gamma\alpha}(\theta_1),
\end{align}

where $\theta_{1,2} = \theta_1 - \theta_2$ and

\begin{align}
S_0(\theta) &= \frac{\sinh \lambda \theta \sinh \lambda (\theta - i\pi)}{\sinh \lambda (\theta - \frac{2\pi}{3}) \sinh \lambda (\theta - \frac{i\pi}{3})} \Pi \left(\frac{\lambda \theta}{1\pi} \right), \\
S_1(\theta) &= \frac{\sin \frac{2\pi}{3} \sinh \lambda (\theta - i\pi)}{\sin \frac{\pi\lambda}{3} \sinh \lambda (\theta - \frac{2\pi}{3})} \Pi \left(\frac{\lambda \theta}{1\pi} \right), \\
S_2(\theta) &= \frac{\sin \frac{2\pi}{3} \sinh \lambda \theta}{\sin \frac{\pi\lambda}{3} \sinh \lambda (\theta - \frac{i\pi}{3})} \Pi \left(\frac{\lambda \theta}{1\pi} \right), \\
S_3(\theta) &= \frac{\sin \frac{\pi\lambda}{3}}{\sin \frac{\pi\lambda}{3}} \Pi \left(\frac{\lambda \theta}{1\pi} \right).
\end{align}

The parameter λ is related to q via

$$\sqrt{q} = 2 \sin \frac{\pi\lambda}{3},$$

doi:10.1088/1742-5468/2015/01/P01010

Figure 1. (a) Three degenerate vacua $|0_\alpha\rangle$ and (b) six kinks $K_{\alpha\beta}$, $\alpha, \beta = 1, 2, 3$ of the 3-state PFT at $\tau < 0$ and $h = 0$.
and
\[\Pi \left(\frac{\lambda \theta}{i \pi} \right) = \frac{\sinh \lambda \left(\theta + i \frac{\pi}{3} \right)}{\sinh \lambda \left(\theta - i \pi \right)} e^{A(\theta)}, \]
\[A(\theta) = \int_0^\infty \frac{dx}{x} \frac{\sinh \frac{x}{2} \left(1 - \frac{1}{\lambda} \right) - \sinh \frac{x}{2} \left(\frac{1}{\lambda} - \frac{5}{3} \right)}{\sinh \frac{x}{2} \cosh \frac{x}{2}} \sinh \frac{x \theta}{i \pi}. \]

Due to (8), the parameter \(\lambda \) takes the value unity in the 3-state PFT,
\[\lambda = 1, \quad \text{at } q = 3. \]

Note, that at \(q = 3 \), the scaling dimensions of the energy density and the spin density operators take the values [5]
\[X^{(3)}_\varepsilon = \frac{4}{5}, \quad X^{(3)}_\sigma = \frac{2}{15}. \]

3. Weak confinement in the 3-state PFT

Application of a weak magnetic field \(h > 0 \) along the third direction decreases the energy of the vacuum \(|0_3\rangle \), lifting the degeneracy between the vacuum \(|0_3\rangle \) and the remaining ones \(|0_{1,2}\rangle \). The vacuum \(|0_3\rangle \) becomes the true ground state of the system and the states \(|0_{1,2}\rangle \) become false (metastable) vacua. In the leading order in \(h \), the energy density difference \(\Delta E \) between the metastable vacua \(|0_{1,2}\rangle \) and the ground state \(|0_3\rangle \) reads [5]
\[\Delta E = \mathcal{E}_\alpha - \mathcal{E}_3 = f_0 + O(h^2), \quad \alpha = 1, 2, \]
\[\mathcal{E}_\alpha = -h \langle 0_\alpha | \sigma_3(0) | 0_\alpha \rangle + O(h^2), \quad \alpha = 1, 2, 3, \]
\[f_0 = \frac{3bh}{2}, \]
where \(\mathcal{E}_\alpha \) is the energy density for the vacuum \(|0_\alpha\rangle \) in presence of the weak magnetic field coupled to the vacuum \(|0_3\rangle \) and \(b \) is some positive number. This energy shift leads to a long-range linear attractive potential between kinks, which causes their confinement into mesonic and baryonic bound states [5]. There are two series of mesonic states \(\pi_n^{(\kappa)} \),
\[\pi_n^{(\kappa)} = K_{31} K_{13} + (-1)^\kappa K_{32} K_{23}, \]
and two series of baryonic states \(p_n^{(\kappa)} \),
\[p_n^{(\kappa)} = K_{31} K_{12} K_{23} + (-1)^\kappa K_{32} K_{21} K_{13}, \]
which differ by their parity \(\kappa = 0, 1 \), see figure 2.

It was argued in [28] that the masses of the lightest mesons \(\mu_n^{(\kappa)} \), \(n = 1, 2, \ldots \), at small \(h > 0 \) can be determined to leading order in \(h \) from the Schrödinger eigenvalue problem
\[\left[-\frac{\partial^2}{2m} - \frac{\partial^2}{2m} + 2m - \mu_n^{(\kappa)} + (x_2 - x_1) f_0 \right] \psi_n^{(\kappa)}(x_1, x_2) = 0, \]
where \(-\infty < x_1 < x_2 < \infty \) and \(f_0 \) is the string tension given by (14). The eigenfunction \(\psi_n^{(\kappa)}(x_1, x_2) \) must be translationally invariant, i.e.
\[\psi_n^{(\kappa)}(x_1, x_2) = \psi_n^{(\kappa)}(x_1 + X, x_2 + X) \quad \text{for all } X, \]
\[doi:10.1088/1742-5468/2015/01/P01010 \]
vanish fast enough at \((x_2 - x_1) \to +\infty\) and satisfy the boundary conditions
\[
\psi_n^{(1)}(x_1, x_2)|_{x_1 = x_2 = 0} = 0, \tag{17}
\]
\[
(\partial_{x_1} - \partial_{x_2})\psi_n^{(0)}(x_1, x_2)|_{x_1 = x_2 = 0} = 0. \tag{18}
\]
It was shown in \([28]\), that these boundary conditions follow from the small-\(\theta\) asymptotics of the two-kink scattering matrix (2)–(7) at \(q = 3\). The translation invariance requirement (16) guarantees, that the wave function \(\psi_n^{(\kappa)}(x_1, x_2)\) describes the meson at rest.

The resulting mass spectrum of the light mesons reads \([28]\):
\[
\mu_n^{(1)} = 2m + f_0^{2/3}m^{-1/3}z_n + O(f_0^{4/3}), \tag{19}
\]
\[
\mu_n^{(0)} = 2m + f_0^{2/3}m^{-1/3}z_n' + O(f_0^{4/3}), \tag{20}
\]
where \((-z_n)\) and \((-z_n')\) are the zeroes of the Airy function \(\text{Ai}(x)\) and its derivative \(\text{Ai}'(x)\), respectively.

Before we turn to our main subject of interest—the baryon masses in the 3-state PFT, it is worthwhile to recall in more details the strategy adopted in \([28]\) to analyze the meson mass spectrum in the \(q\)-state PFT.

It is well known since the pioneer work by McCoy and Wu \([17]\) that the Schrödinger eigenvalue problem (15)–(17) determines the spectrum of light mesons in the ferromagnetic IFT in the limit of a weak magnetic field. In the IFT, these equations are well justified, since they follow in the two-quark approximation (which is known to be asymptotically exact in the IFT at \(h \to 0\)) from the Bethe–Salpeter equation, as it was shown by Fonseca and Zamolodchikov \([2,3]\).

Generalization of the IFT Bethe–Salpeter equation to the \(q\)-state PFT with \(2 < q \leq 4\) was obtained in section 5 of paper \([28]\). It turns out, that the two-kink PFT Bethe–Salpeter equation looks very similar to its IFT counterpart, in spite of quite different properties of kinks in these two models: the IFT kinks are free fermions at zero magnetic field, whereas the PFT kinks strongly interact with one another at small distances \(\sim m^{-1}\) already at \(h = 0\). As in the case of the IFT, the PFT Bethe–Salpeter equation contains the matrix element of the spin operator between the two-kink states in the rapidity basis,
\[
\langle K_{\alpha,\theta_2} K_{\alpha,\theta_1} | \sigma_q(0) | K'_{\beta,\theta'_2} K'_{\beta,\theta'_1} \rangle, \tag{21}
\]
\[
\text{doi:}10.1088/1742-5468/2015/01/P01010
\]
which can be expressed by means of the crossing relation \[31\] in terms of the four-kink form factor \(F_{\alpha_1\alpha_2\alpha_3\alpha_4}^{\sigma_\alpha}(\theta_1, \theta_2, \theta_3, \theta_4)\),
\[
\langle K_{\alpha_1}(\theta_1)K_{\alpha_2}(\theta_1)|\sigma_\gamma(0)|K_{\alpha_3}(\theta'_1)K_{\alpha_4}(\theta'_2)\rangle = F_{\alpha_1\alpha_2\alpha_3\alpha_4}^{\sigma_\gamma}(\theta_2 + i\pi, \theta_1 + i\pi, \theta'_1, \theta'_2),
\] (22)
\[
F_{\alpha_1\alpha_2\alpha_3\alpha_4}^{\sigma_\alpha}(\theta_1, \theta_2, \theta_3, \theta_4) = \langle 0|\sigma_\gamma(0)|K_{\alpha_1}(\theta_1)K_{\alpha_2}(\theta_2)K_{\alpha_3}(\theta_3)K_{\alpha_4}(\theta_4)\rangle.
\] (23)

Though form factors in integrable theories can be in principle determined from the scattering matrix in the frame of the bootstrap approach \[31\], their explicit calculation in the general \(q\)-state PFT turns out to be a rather difficult problem. All \(n\)-kink form factors of the spin operator are known for the Ising case \(q = 2\), due to Berg, Karowski and Weisz \[32\]. Delfino and Cardy \[33\] obtained the two-kink form factors \(\langle 0|\sigma_\gamma(0)|K_{\alpha_1}(\theta_1)K_{\alpha_2}(\theta_2)\rangle\) for the \(q\)-state PFT with \(q = 3, 4\). Calculation of the \(n\)-kink form factors of the spin operators for the \(q\)-state PFT with \(n > 2\) and \(2 < q \leq 4\) remains to be an open problem.

As far as the four-kink form factors and the matrix element \(21\) of the spin operator between the two-kinks states are unknown in the PFT, the Bethe–Salpeter equation \(90\) in \[28\] cannot be used as a starting point for calculation of the meson mass spectra. By this reason, a different approach was applied in \[28\] to this end. It does not require knowledge of the form factors, but instead is based on the explicitly known two-kink scattering matrix \(2\)–\(10\) at zero magnetic field. In what follows we shall remind the main ideas and assumptions forming background of this alternative approach.

At zero magnetic field, the two kinks \(K_{\alpha}(x_1)\) and \(K_{\alpha}(x_2)\) in the \(q\)-state PFT do not interact at large distances \(x_2 - x_1 \gg m^{-1}\). Their state can be characterised by the two-particle wave function \(\psi(x_1, x_2)\) and their dynamics is determined by the free Hamiltonian
\[
\mathcal{H}_0 = \omega(\hat{p}_1) + \omega(\hat{p}_2),
\] (24)
where \(\hat{p}_i = -i\partial_{x_i}, i = 1, 2\) are the kink momentum operators. Since kinks are topological excitation, the state \(\langle K_{\alpha_1}(x_1)K_{\alpha_2}(x_2)\rangle\) represents a domain of the \(\alpha\)-phase having the width \(l \approx x_2 - x_1\) surrounded by the \(q\)-phase. It is clear, that application of a weak magnetic field \(h > 0\) coupled to the \(q\)-th color should induce the long-range interaction between the kinks. In the leading order in \(h\), this interaction should modify the Hamiltonian \(24\) to the form
\[
\mathcal{H} = \omega(\hat{p}_1) + \omega(\hat{p}_2) + V(x_1, x_2),
\] (25)
\[
V(x_1, x_2) = (x_2 - x_1) \Delta \mathcal{E},
\] (26)
where the string tension \(\Delta \mathcal{E}\) is given by \(12\). In the IFT, this Hamiltonian follows from the integral Bethe–Salpeter equation in the leading order in \(h\). In particular, the linear long-range potential \(26\) arises from the second order pole of the integral kernel of the Bethe–Salpeter equation in the momentum representation, which in turn results from the so-called kinematic singularities of the two-kink matrix element \(21\) of the spin operator, see equation \(3.14\) in \[3\] and subsequent discussion there. For the PFT, the two-kink Hamiltonian \(25\) and \(26\) is postulated in the described heuristic approach. It is postulated also, that a meson having zero momentum and parity \(\kappa\) can be described by the two-kink wave function \(\psi^{(\kappa)}(x_1, x_2)\), if \(x_2 - x_1 \gg m^{-1}\). Accordingly, the wave function of a meson at rest should satisfy requirement \(16\) and solve the ‘stationary Schrödinger equation’
\[
[\omega(\hat{p}_1) + \omega(\hat{p}_2) + (x_2 - x_1) \Delta \mathcal{E}]\psi_n^{(\kappa)}(x_1, x_2) = \mu_n^{(\kappa)}\psi_n^{(\kappa)}(x_1, x_2), \quad \text{for} \quad x_2 - x_1 \gg m^{-1}.
\] (27)
Of course, equation (27) could not hold in the region \(x_2 - x_1 \lesssim m^{-1}\) for two reasons. First, interaction between the kinks at small distances is strong already at zero magnetic field and cannot be described by the linear potential (26). Second, the simple two-particle description of the meson state fails in the strong-interaction region \(x_2 - x_1 \lesssim m^{-1}\) because of the virtual particles generation. On the other hand, in the leading order in \(h \to 0\), one can neglect the effect of the magnetic field on the short-range interaction of kinks\(^1\) and characterize the latter by the zero-field scattering matrix (2)–(10), which gives rise to the effective boundary conditions for equation (27) at small \(x_2 - x_1\). Solution of the outlined above boundary problem yields the PFT meson mass spectrum [28] in the leading order in the magnetic field expressed in terms of the scattering matrix (2)–(10). The described boundary problem reduces in the non-relativistic approximation to the form (15)–(18) that is sufficient to determine the masses \(\mu_n^{(\kappa)}\) of light enough mesons, provided that \(\mu_n^{(\kappa)} - 2m \ll m\).

Now let us proceed to the problem of the baryon mass spectrum in the 3-state PFT in the weak confinement regime. Our interest will be restricted on the masses of few lightest baryons at a small \(h > 0\), which we intend to determine in the leading order in \(h\). To this end, we shall apply the described above heuristic strategy, which was used previously for calculation of the meson masses in the PFT.

In the leading order in \(h \to +0\), the baryon can be treated as a bound state of three kinks, whereas the \(N\)-kink fluctuations with \(N \neq 3\) should contribute to the baryon state at higher orders in \(h\). In the three-kink approximation, the state \(|B^{(\kappa)}(P)\rangle\) of a baryon having the momentum \(P\) and parity \(\kappa\) can be described in the position-space representation by the wave function

\[
\Psi^{(\kappa)}(x_1, x_2, x_3; P) = \langle K_{11}(x_1)K_{12}(x_2)K_{23}(x_3)|B^{(\kappa)}(P)\rangle \\
+ (-1)^\kappa \langle K_{32}(x_1)K_{21}(x_2)K_{13}(x_3)|B^{(\kappa)}(P)\rangle,
\]

where \(x_\alpha, \alpha = 1, 2, 3\), are the spatial coordinates of the kinks, which lie in the region \(-\infty < x_1 < x_2 < x_3 < \infty\). The wave function (28) should vanish fast enough as \((x_3 - x_1) \to \infty\) and obey the following symmetry properties

\[
\Psi^{(\kappa)}(x_1 + X, x_2 + X, x_3 + X; P) = e^{iPX} \Psi^{(\kappa)}(x_1, x_2, x_3; P), \\
\Psi^{(\kappa)}(-x_3, -x_2, -x_1; -P) = (-1)^\kappa \Psi^{(\kappa)}(x_1, x_2, x_3; P),
\]

for arbitrary \(X\).

Since the masses \(M_n^{(\kappa)}\) of baryons with small enough \(n = 1, 2\ldots\) at \(h \to +0\) only slightly exceed \(3m\), \(M_n^{(\kappa)} - 3m \sim h^{2/3}\), the kinetic energies of three kinks forming a baryon with zero momentum \(P = 0\) should be small compared with their mass \(m\). This allows one to treat such three kinks as non-relativistic quantum particles. These particles interact with each other with the linear potential

\[
V(x_1, x_2, x_3) = (x_3 - x_1) f_0
\]

at large distances \((x_3 - x_1) \gg m^{-1}\). The above potential does not depend on the coordinate \(x_2\) of the middle kink, which separates domains of the metastable phases 1 and 2 characterized by the same energy density \(E_1 = E_2\), see figure 2(b).

\(^1\) In contrast, one must keep the long-range potential (26) in equation (27) already in the zero order in \(h\), since the linear potential changes the character of the energy spectrum at arbitrary small magnetic field and, therefore, cannot be treated perturbatively.
Accordingly, the masses $M^{(n)}_n$ of the lightest baryons $n = 1, 2, \ldots$ can be determined in the leading order in $h \rightarrow +0$ from the three-particle Schrödinger partial differential equation
\[
\left[-\sum_{j=1}^{3} \frac{\partial^2}{\partial x_j^2} + 3m - M^{(n)}_n + (x_3 - x_1)f_0 \right] \Psi^{(n)}_n(x_1, x_2, x_3; 0) = 0,
\]
in the domain $-\infty < x_1 < x_2 < x_3 < \infty$. Indeed, equation (31) does not hold if at least two kinks approach too close to each other, $\min(x_2 - x_1, x_3 - x_2) \lesssim m^{-1}$, due to the strong short-range interaction between kinks. However, this strong short-range interaction can be characterized (in the zero order in h) by the scattering matrix (2)–(10). One can easily see, that only the two-particle scattering described by the commutation relation (2) are allowed for the kinks forming a baryon. In the 3-state PFT, the latter commutation relation reduces to the form
\[
K_{\alpha\gamma}(\theta_1)K_{\gamma\beta}(\theta_2) = S_1(\theta_1 - \theta_2)K_{\alpha\gamma}(\theta_2)K_{\gamma\beta}(\theta_1),
\]
\[
S_1(\theta) = -\exp\left[-2i \int_0^\infty \frac{dx}{x} \frac{\sinh(x/3)}{\sinh x} \sin(x\theta/\pi) \right].
\]
Here $\alpha = 3$, $\gamma \neq \beta$ and $\gamma, \beta \neq 3$ for the collision of the left and the middle kinks, while $\beta = 3$, $\gamma \neq \alpha$ and $\gamma, \alpha \neq 3$ for the collision of the middle and the right ones. Since the kinetic energies of colliding kinks are small, one can use the small-θ asymptotics of the scattering amplitude $S_1(\theta)$,
\[
S_1(\theta) = -1 + O(\theta).
\]
Thus, at small θ_1, θ_2, the commutation relation (32) reduces to the form
\[
K_{\alpha\gamma}(\theta_1)K_{\gamma\beta}(\theta_2) = -K_{\alpha\gamma}(\theta_2)K_{\gamma\beta}(\theta_1) + O(\theta_1 - \theta_2),
\]
which implies, that the kinks in this particular scattering process can be treated as free fermions. Accordingly, we shall impose the fermionic boundary conditions on the baryon wave function $\Psi^{(n)}_n(x_1, x_2, x_3; 0)$:
\[
\Psi^{(n)}_n(x_1, x_2, x_3; 0)|_{x_1=x_2} = 0, \quad \Psi^{(n)}_n(x_1, x_2, x_3; 0)|_{x_2=x_3} = 0.
\]
For the baryon at rest, the symmetry properties (29) reduce to the form
\[
\Psi^{(n)}(x_1 + X, x_2 + X, x_3 + X; 0) = \Psi^{(n)}_P(x_1, x_2, x_3; 0),
\]
\[
\Psi^{(n)}(-x_3, -x_2, -x_1; 0) = (-1)^n \Psi^{(n)}(x_1, x_2, x_3; 0).
\]

4. Reducing of the eigenvalue problem to the Fredholm integral equation

Let us proceed to the rescaled variables:
\[
x_j = (mf_0)^{-1/3}\xi_j, \quad j = 1, 2, 3,
\]
\[
M^{(n)}_n = 3m + f_0^{2/3}m^{-1/3} \epsilon^{(n)}_n,
\]
\[
\Psi^{(n)}_n(x_1, x_2, x_3; 0) = (mf_0)^{1/3} \Phi^{(n)}_n(\xi_1, \xi_2, \xi_3).
\]
Then, equation (31) takes the form
\[
\left(-\frac{1}{2} \sum_{j=1}^{3} \partial_{\xi_j}^{2} - \epsilon_{n}^{(\kappa)} + \xi_{1} - \xi_{3} \right) \Phi_{n}^{(\kappa)}(\xi_{1}, \xi_{2}, \xi_{3}) = 0, \tag{40}
\]
for \(-\infty < \xi_{1} < \xi_{2} < \xi_{3} < \infty\). We shall use the following Ansatz for the solution of this equation:
\[
\Phi_{n}^{(\kappa)}(\xi_{1}, \xi_{2}, \xi_{3}) = \int_{0}^{\infty} dp \, g^{(\kappa)}(p) \, f^{(\kappa)} \left[p \left(\xi_{2} - \frac{\xi_{1} + \xi_{3}}{2} \right) \right] \, \text{Ai} \left(\xi_{3} - \xi_{1} + \frac{3p^{2}}{4} - \epsilon_{n}^{(\kappa)} \right), \tag{41}
\]
where \(f^{(0)}(z) = \cos z, \, f^{(1)}(z) = \sin z, \, \text{Ai}(\xi) \) is the Airy function and \(g^{(\kappa)}(p) \) is some unknown function.

One can easily check, that the right-hand side of (41) with an arbitrary function \(g^{(\kappa)}(p) \) providing convergence of the integral in \(p \) gives a solution of equation (40). The function \(\Phi_{n}^{(\kappa)}(\xi_{1}, \xi_{2}, \xi_{3}) \) defined by (41) also satisfies the equalities
\[
\Phi^{(\kappa)}(\xi_{1} + \xi, \xi_{2} + \xi, \xi_{3} + \xi) = \Phi^{(\kappa)}(\xi_{1}, \xi_{2}, \xi_{3}), \quad \xi \in \mathbb{R}, \tag{42}
\]
\[
\Phi^{(\kappa)}(-\xi_{3}, -\xi_{2}, -\xi_{1}) = (-1)^{\kappa} \Phi^{(\kappa)}(\xi_{1}, \xi_{2}, \xi_{3}), \tag{43}
\]
which guarantee (36).

We require, further, that \(\Phi^{(\kappa)}(\xi_{1}, \xi_{2}, \xi_{3}) \) vanishes fast enough as \((\xi_{3} - \xi_{1}) \to +\infty \) in the domain \(-\infty < \xi_{1} < \xi_{2} < \xi_{3} < \infty\). To satisfy also the boundary condition (35), one ought to require that the function \(g^{(\kappa)}(p) \) is the solution of the linear homogeneous integral equation
\[
\int_{0}^{\infty} dp \, U^{(\kappa)}(\xi, p; \epsilon_{n}^{(\kappa)}) \, g^{(\kappa)}(p) = 0 \tag{44}
\]
on the half-line \(0 < \xi < \infty \), with the asymmetric kernel
\[
U^{(\kappa)}(\xi, p; \epsilon) = f^{(\kappa)}(p \xi/2) \, \text{Ai} \left(\xi + \frac{3p^{2}}{4} - \epsilon \right). \tag{45}
\]

After the change of variables
\[
\xi = \frac{u}{1-u}, \quad p = \left[\frac{4v}{3(1-v)} \right]^{1/2}, \tag{46}
\]
\[
g^{(\kappa)}(p) = \phi^{(\kappa)}(v) \, (3v)^{1/2} \, (1-v)^{3/2}, \tag{47}
\]
the integral equation (4) takes the form
\[
\int_{0}^{1} dv \, K^{(\kappa)}(u, v; \epsilon_{n}^{(\kappa)}) \, \phi^{(\kappa)}(v) = 0, \tag{48}
\]
for \(0 \leq u \leq 1 \), whose kernel
\[
K^{(\kappa)}(u, v; \epsilon) = f^{(\kappa)} \left(\frac{u \, v^{1/2}}{(1-u)(1-v)^{1/2}} \right) \, \text{Ai} \left(\frac{u}{1-u} + \frac{v}{1-v} - \epsilon \right), \tag{49}
\]
is continuous in the square \(0 \leq u, v \leq 1 \).

Consider the Fredholm operator eigenvalue problem [34]:
\[
\int_{0}^{1} dv \, K^{(\kappa)}(u, v; \epsilon) \, g^{(\kappa)}(v; \epsilon) = \lambda^{(\kappa)}(\epsilon) g^{(\kappa)}(u, \epsilon). \tag{50}
\]
For arbitrary complex ϵ, the spectrum $\lambda_{\nu}^{(\kappa)}(\epsilon)$, $\nu = 1, 2, \ldots, \infty$ is discrete with the limiting point $\lambda_{\nu}^{(\kappa)}(\epsilon) \to 0$ at $\nu \to \infty$. The baryon masses $M_{n}^{(\kappa)}$, $n = 1, 2, \ldots$ are determined through (38) by the solutions of the equation

$$
\lambda_{\nu(n)}^{(\kappa)}(\epsilon) \big|_{\epsilon=\epsilon(n)} = 0,
$$

with some $\nu(n)$.

5. Numerical solution of equation (49)

For the numerical solution, the Fredholm integral operator in equation (48) was replaced by the ϵ-dependent square $N \times N$-matrix $K_{ij}^{(\kappa)}(\epsilon, N)$,

$$
K_{ij}^{(\kappa)}(\epsilon, N) = \frac{K^{(\kappa)}(u_{i}, v_{j}; \epsilon)}{N},
$$

$$
u = \frac{i}{N-1}, \quad v_{j} = \frac{j}{N-1}, \quad i, j = 0, 1, 2, \ldots, N-1.
$$

In the limit $N \to \infty$, eigenvalues $\Lambda_{\nu}^{(\kappa)}(\epsilon, N)$ of this matrix should approach the eigenvalues of the Fredholm integral equation (48),

$$
\lim_{N \to \infty} \Lambda_{\nu}^{(\kappa)}(\epsilon, N) = \Lambda_{\nu}^{(\kappa)}(\epsilon).
$$

The matrix $K_{ij}^{(\kappa)}(\epsilon, N)$ was diagonalized numerically for given N. The evolution of its eigenvalues upon increasing ϵ is plotted in figure 3 for the matrix dimensions $N = 31$ and $N = 101$. For complex eigenvalues, both real and imaginary parts are displayed.

The obtained numerical results indicate a very fast decrease of the absolute values of the eigenvalue $\Lambda_{\nu}^{(\kappa)}(\epsilon, N)$ with increasing ν, at fixed ϵ and N. For $\epsilon = 0$, this is illustrated in table 1. Accordingly, only two eigenvalues corresponding to $\nu = 1, 2$ can be distinguished from zero in figure 3 at $\epsilon = 0$. As soon as ϵ increases, subsequent eigenvalues with $\nu = 3, 4, \ldots$ become larger in absolute values, deviating one by one from the abscissae in figures 3(a) and (b).

Another important feature of the spectral patterns shown in figure 3 is that the blue and red curves, which correspond to the matrix dimensions $N = 31$ and $N = 101$, respectively, remain rather close to each other at small enough $\epsilon \lesssim 8$. Due to (51), one should expect, that these patterns are also close to the asymptotical $N \to \infty$ spectra, i.e. to the spectra $\lambda_{\nu(n)}^{(\kappa)}(\epsilon)$ of the Fredholm integral equation (48).

However, the eigenvalue $\Lambda_{\nu}^{(\kappa)}(\epsilon, N)$ approaches its limiting values $\lambda_{\nu}^{(\kappa)}(\epsilon)$ for $N \to \infty$ not uniformly in ϵ: at larger ϵ one has to proceed to larger matrix dimensions N to reach the asymptotic $N \to \infty$ value. The reason is that the large positive ϵ shifts the argument $z = \left(\frac{u}{1-u} \right)$ of the Airy function $Ai(z)$ in the integral kernel (47) to negative z. Since $Ai(z)$ oscillates at negative z, the kernel $K^{(\kappa)}(u, v; \epsilon)$ becomes strongly oscillating in the square $0 < u, v < 1$ at large ϵ. Therefore, as ϵ increases, one should proceed to larger matrix dimensions N in order to provide ‘sufficient resolution’ to approximate the highly oscillating kernel $K^{(\kappa)}(u, v; \epsilon)$ in the square $0 < u, v < 1$ by its $N \times N$-discrete-lattice counterpart $K_{ij}^{(\kappa)}(\epsilon, N)$.

The deviations between the blue ($N = 31$) and red ($N = 101$) curves in figures 3(a) and (b) become considerable at $\epsilon \simeq 9$ and increase further at larger ϵ. This indicates that
at such large $\epsilon \gtrsim 9$ one has to increase the matrix dimension N to higher values to be able to describe the $N \to \infty$ asymptotic spectrum $\lambda^{(\kappa)}_{\nu}(\epsilon)$.

Several crossings of the ϵ-axis by the spectral curves are clearly seen in figures 3(a) and (b). The first three ones are located at

$$\epsilon^{(0)}_1 = 4.602, \quad \epsilon^{(0)}_2 = 5.912, \quad \epsilon^{(0)}_3 = 7.098,$$

for $\kappa = 0$ in figure 3(a) and at

$$\epsilon^{(1)}_1 = 6.650, \quad \epsilon^{(1)}_2 = 7.734, \quad \epsilon^{(1)}_3 = 8.753,$$

for $\kappa = 1$. (52) (53)

doi:10.1088/1742-5468/2015/01/P01010
Table 1. Four initial eigenvalues $\Lambda^{(\kappa)}(0,N)$ of the $N \times N$-matrices $K^{(\kappa)}_{ij}(\epsilon,N)$ at $\epsilon = 0$ for $N = 31, 101$ and $\kappa = 0, 1$.

ν	1	2	3	4
$\Lambda^{(0)}(0,31)$	0.104289	-0.00416232	0.000225285	-0.0000140359
$\Lambda^{(0)}(0,101)$	0.102381	-0.00407641	0.000220799	-0.0000137643
$\Lambda^{(1)}(0,31)$	0.0104795	-0.000685642	0.000447833	-3.02246 \times 10^{-6}
$\Lambda^{(1)}(0,101)$	0.0107229	-0.000701738	0.000458517	-3.09608 \times 10^{-6}

Figure 4. The fine structure of the spectral curves $\Lambda^{(0)}(\epsilon,N)$ near the point $\epsilon \approx \epsilon^{(0)}_{3}$. The blue curves corresponding to the matrix dimension $N = 31$ display avoided crossing near the point $\epsilon = 7.0982$, which transforms into two turning points in red curves relating to the case $N = 101$. Between these two turning points, corresponding two eigenvalues become complex and mutually conjugate.

for $\kappa = 1$ in figure 3(b). Up to the digits specified in (52) and (53), the locations of these crossing points for red and blue curves coincide. Accordingly, we finally get from (38) the masses of the lightest baryons at $h \to +0$:

$$M_n^{(\kappa)} = 3m + f_0^{2/3} m^{-1/3} \epsilon_n^{(\kappa)} + O(\sqrt[4]{f_0})$$

with $\kappa = 0, 1$, $n = 1, 2, 3, \ldots$, (54)

where $\epsilon_n^{(\kappa)}$ for $\nu = 1, 2, 3$ are given by equations (52) and (53).

It should be noted that before crossing the ϵ-axis, the spectral curve $\lambda^{(\kappa)}(\epsilon)$ crosses infinitely many other spectral curves $\lambda^{(\kappa)}_{\nu'}(\epsilon)$ with large enough ν', since

$$\lim_{\nu' \to \infty} \lambda^{(\kappa)}_{\nu'}(\epsilon) = 0.$$

In fact, such crossings between two spectral curves $\lambda^{(\kappa)}(\epsilon)$ and $\lambda^{(\kappa)}_{\nu'}(\epsilon)$ are rather avoided crossings, or turning points of the spectral curves. All these features can be seen in figure 4, which displays the evolution of the spectral curves $\Lambda^{(0)}(\epsilon,N)$ for $N = 31, 101$ in the small region near the third crossing point $\epsilon \approx \epsilon^{(0)}_{3} = 7.098 \ldots$
6. Conclusions

In this paper we have studied the baryonic excitations in the 3-state Potts field theory in the weak confinement regime, which is realized in the ordered phase in the presence of a weak magnetic field h acting on the third color. Two series of baryons with parities $\kappa = 0, 1$ are allowed, if the applied magnetic field is positive, i.e. if the resulting ground state $|0_3\rangle$ becomes non-degenerate in energy.

To determine the masses of the light baryons in the regime of small magnetic field h, we have applied the procedure that was originally developed to calculate the meson masses in the IFT [2, 17] and has been used later [28] for meson mass calculations in the PFT. In this approach, the baryon (or the meson) is interpreted as a bound state of three (or two) kinks, which are treated as non-relativistic interacting quantum particles. The light baryon mass spectrum was determined from the stationary Schrödinger equation, which describes relative one-dimensional motion of three kinks with coordinates $-\infty < x_1 < x_2 < x_3 < \infty$ interacting via the linear confining potential $(x_3 - x_1) f_0$. Here $f_0 > 0$ is the string tension, which is proportional to the applied magnetic field h. The boundary condition for the Schrödinger equation at $x_1 = x_2$ and $x_2 = x_3$ were gained from the low-momentum asymptotics of the exactly known two-kink scattering matrix [26] at $h = 0$. The resulting mass spectrum of the light baryons in the leading order in $h \to +0$ is given by equation (54). Several coefficients $\epsilon_n^{(\kappa)}$, with $\kappa = 1, 2$ and $n = 1, 2, 3$ in this equation were obtained numerically, see equations (52) and (53).

As it was shown in [27], the numerical TCSA method provides an alternative possibility to study the baryon mass spectra in the 3-state PFT. It would be interesting to perform systematic TCSA calculations of the baryon masses in this model at small magnetic fields and to compare the TCSA baryon spectra with our results. It was noted in [27], however, that the TCSA calculations of the PFT particle spectra in the confinement regime become more demanding as the magnetic field approaches to zero and require increase of the numerical accuracy.

The employed in this paper heuristic strategy is well justified in the case of the meson mass spectrum in the IFT, since it reproduces the leading order of the low-energy expansion (see equation (5.16) in reference [3]), which was derived in the systematic perturbative approach based on the Bethe–Salpeter equation [2, 3]. Unfortunately, such justification is not possible neither for the meson mass calculation in the q-state PFT with $2 < q \leq 4$ [28], nor for the baryon mass calculation described in this paper, since the required form factors of the spin operator are not explicitly known. Calculation of these form factors is essential for exploiting all advantages of the Bethe–Salpeter approach in the problem of kink confinement in the PFT. It would open possibility to determine the higher-order corrections to the meson and baryon mass spectra including contribution of the virtual kinks generation processes (on the multi-quark corrections to the meson masses in the IFT see [3, 24]). Explicit expressions for the form factors of the spin operator are needed also to describe the real processes with non-conserved number of kinks—decay of non-stable mesons/baryons and mixing between the baryon and meson states, which could be allowed in the higher orders of the small-h form factor perturbation theory.
Acknowledgments

I am thankful to H W Diehl for interesting discussions and numerous suggestions leading to improvement of the text.

This work was supported by Deutsche Forschungsgemeinschaft (DFG) via Grant Ru 1506/1.

References

[1] Delfino G and Mussardo G 1998 Non-integrable aspects of the multi-frequency Sine–Gordon model Nucl. Phys. B 516 675–703
[2] Fonseca P and Zamolodchikov A 2003 Ising field theory in a magnetic field: analytic properties of the free energy J. Stat. Phys. 110 527–90
[3] Fonseca P and Zamolodchikov A 2006 Ising spectroscopy I: mesons at $T < T_c$ arXiv:hep-th/0612304
[4] Rutkevich S B 2005 Large-n excitations in the ferromagnetic Ising field theory in a weak magnetic field: mass spectrum and decay widths Phys. Rev. Lett. 95 250601
[5] Delfino G and Grinza P 2008 Confinement in the q-state Potts field theory Nucl. Phys. B 791 265–83
[6] Mussardo G and Takács G 2009 Effective potentials and kink spectra in non-integrable perturbed conformal field theories J. Phys. A: Math. Theor. 42 304022
[7] Mussardo G 2011 Integrability, non-integrability and confinement J. Stat. Mech. P01002
[8] Delfino G, Grinza P and Mussardo G 2006 Decay of particles above threshold in the Ising field theory with magnetic field Nucl. Phys. B 737 291–303
[9] Zamolodchikov A and Ziyatdinov I 2011 Inelastic scattering and elastic amplitude in Ising field theory in a weak magnetic field at $T>T_c$. Perturbative analysis Nucl. Phys. B 849 654–74
[10] Zamolodchikov A B 2013 Ising spectroscopy II: particles and poles at $T>T_c$ arXiv:1310.4821
[11] Rutkevich S B 2001 Analytic verification of the droplet picture in the two-dimensional Ising model J. Stat. Phys. 104 589–608
[12] Mangazeev V V, Dudalev M Y, Bazhanov V V and Batchelor M T 2010 Scaling and universality in the two-dimensional Ising model with a magnetic field Phys. Rev. E 81 060103
[13] Brandino G P, Konik R M and Mussardo G 2010 Energy level distribution of perturbed conformal field theories J. Stat. Mech. P07013
[14] Delfino G, Mussardo G and Simonetti P 1996 Non-integrable quantum field theories as perturbations of certain integrable models Nucl. Phys. B 473 469–508
[15] Ma S K 1976 Modern Theory of Critical Phenomena (Reading, MA: W.A. Benjamin)
[16] Cardy J 1996 Scaling and Renormalization in Statistical Physics (Cambridge Lecture Notes in Physics) (Cambridge: Cambridge University Press)
[17] McCoy B M and Wu T T 1978 Two dimensional Ising field theory in a magnetic field: breakup of the cut in the two-point function Phys. Rev. D 18 1259–67
[18] Delfino G 2004 Integrable field theory and critical phenomena: the Ising model in a magnetic field J. Phys. A: Math. Gen. 37 R45–78
[19] ’t Hooft G 1974 A two-dimensional model for mesons Nucl. Phys. B 75 461–70
[20] Fateev V A, Lukyanov S L and Zamolodchikov A B 2009 On the mass spectrum in ’t Hooft’s 2D model of mesons J. Phys. A: Math. Theor. 42 304012
[21] Coldea R, Tennant D A, Wheeler E M, Wawrzynska E, Prabhakaran D, Telling M, Habicht K, Smeibill P and Kiefer K 2010 Quantum criticality in an Ising chain: experimental evidence for emergent E8 symmetry Science 327 177–80
[22] Morris C M, Aguilar R V, Ghosh A, Koohpayeh S M, Krizan J, Cava R J, Tchernyshyov O, McQueen T M and Armitage N P 2014 Hierarchy of bound states in the one-dimensional ferromagnetic Ising chain CoNb$_2$O$_6$ investigated by high-resolution time-domain terahertz spectroscopy Phys. Rev. Lett. 112 137403
[23] Sachdev S 2011 Quantum Phase Transitions (Cambridge: Cambridge University Press)
[24] Rutkevich S B 2009 Formfactor perturbation expansions and confinement in the Ising field theory J. Phys. A: Math. Theor. 42 304025
[25] Baxter R J 1982 Exactly Solved Models in Statistical Mechanics (London: Academic)
[26] Chim L and Zamolodchikov A B 1992 Integrable field theory of the q-state Potts model with $0 < q < 4$ Int. J. Mod. Phys. A 7 5317–35

doi:10.1088/1742-5468/2015/01/P01010
Baryon masses in the 3-state PFT

[27] Lepori L, Tóth G Z and Delfino G 2009 The particle spectrum of the three-state Potts field theory: a numerical study J. Stat. Mech. P11007

[28] Rutkevich S B 2010 Two-kink bound states in the magnetically perturbed Potts field theory at $T < T_c$ J. Phys. A: Math. Theor. 43 235004

[29] Yurov V P and Zamolodchikov A B 1991 Truncated-fermionic-space approach to the critical 2d Ising model with magnetic field Int. J. Mod. Phys. A 6 4557–78

[30] Lencsés M and Takács G 2014 Excited state TBA and renormalized TCSA in the scaling Potts model J. High Energy Phys. JHEP09(2014)052

[31] Smirnov F A 1992 Form Factors in Completely Integrable Models of Quantum Field Theory (Advanced Series in Mathematical Physics) (Singapore: World Scientific)

[32] Berg B, Karowski M and Weisz P 1979 Construction of Green’s functions from an exact S matrix Phys. Rev. D 19 2477–9

[33] Delfino G and Cardy J 1998 Universal amplitude ratios in the two-dimensional q-state Potts model and percolation from quantum field theory Nucl. Phys. B 519 551–78

[34] Reed M and Simon B 1980 Methods of Modern Mathematical Physics I: Functional Analysis (New York: Academic)

doi:10.1088/1742-5468/2015/01/P01010