Initial recognition of U12-dependent introns requires both U11/5′ splice-site and U12/branchpoint interactions

Mikko J. Frilander and Joan A. Steitz

Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, Howard Hughes Medical Institute, New Haven, Connecticut 06536-0812 USA

We have investigated the formation of prespliceosomal complex A in HeLa nuclear extracts on a splicing substrate containing an AT-AC (U12-type) intron from the P120 gene. Using an RNase H protection assay and specific blocking oligonucleotides, we find that recognition of the 5′ splice-site (5′ss) and branchpoint sequence (BPS) elements by U11 and U12 snRNPs, respectively, displays strong cooperativity, requiring both sites in the pre-mRNA substrate for efficient complex formation. Deletion analysis indicates that beside the 5′ss and BPS, no additional elements in the pre-mRNA are necessary for A-complex formation, although 5′exon sequences provide stimulation. Cross-linking studies with pre-mRNAs containing the 5′ss or BPS alone indicate that recognition of the BPS by the U12 snRNP is stimulated at least 20- to 30-fold by the binding of the U11 snRNP to the 5′ss in the same pre-mRNA molecule, whereas recognition of the 5′ss by U11 is stimulated approximately fivefold by the U12/BPS interaction. These results argue that intron recognition in the U12-dependent splicing pathway is carried out by a single U11/U12 di-snRNP complex, suggesting greater rigidity in the intron recognition process than in the major spliceosome.

[Key Words: Pre-mRNA splicing, spliceosome assembly; A complex formation; U11 snRNP; U12 snRNP]

Received December 17, 1998; revised version accepted February 16, 1999.

The removal of introns from pre-mRNA molecules is carried out by the spliceosome, a large RNA–protein complex, which for most introns is composed of five small nuclear ribonucleoprotein [snRNP] particles [denoted U1, U2, U4, U5, and U6] and numerous protein factors. In vitro studies have indicated that the snRNP and protein components assemble sequentially onto each intron [Moore et al. 1993], yielding several distinct intermediates, complexes E, A, B, and C, for the mammalian system [Konarska and Sharp 1987; Michaud and Reed 1991; Jamison et al. 1992]. Conserved sequence elements near the 5′ and 3′ ends of the intron are recognized during the formation of the earliest prespliceosomal complex E by the U1 snRNP and by the splicing factor U2AF, which bind to the 5′ splice site (5′ss) and polypyrimidine tract (PPT), respectively, in an ATP-independent manner [Michaud and Reed 1991, 1993]. The E complex contains several additional protein factors that contribute to its formation. For instance, SR proteins have been shown to promote 5′ss recognition by the U1 snRNP [Kohtz et al. 1994; Staknis and Reed 1994; Jamison et al. 1995], and both SR proteins and mBBP/SF1 are thought to bridge the 5′ and the 3′ portions of the intron by simultaneously interacting with the U1 snRNP at the 5′ss and U2AF bound to the PPT, thus forming a functional link between the 5′ and 3′ ends of the intron [Michaud and Reed 1993; Wu and Maniatis 1993; Abovich and Rosbash 1997]. Complex A is the first ATP-dependent spliceosome assembly intermediate and is formed when the U2 snRNP binds to the branchpoint sequence [BPS]. The formation of A complex requires base-pairing between the U2 snRNA and the BPS [Zhuang and Weiner 1989; Query et al. 1994]. In addition to this RNA–RNA interaction, the SF3 proteins present in the 17S form of the U2 snRNP and U2AF bound to the PPT are essential for A complex assembly [Ruskin et al. 1988; Gozani et al. 1996; Yu et al. 1998]. Later spliceosomal complexes (B and C) are formed after the U4/U6.U5 tri-snRNP joins the nascent spliceosome. An extensive network of snRNA–snRNA and snRNA–pre-mRNA interactions then orchestrate dynamic changes that convert the spliceosome to a catalytically active conformation [for reviews, see Moore et al. 1993; Madhani and Guthrie 1994; Umen and Guthrie 1995].

In addition to the U2-dependent spliceosome described above, a parallel U12-dependent pre-mRNA splicing machinery exists in mammalian cells, as well as in other higher organisms, including insects and plants. U12-type introns contain divergent, but highly conserved, 5′ss and BPS signals [Hall and Padgett 1994; for
reviews, see Sharp and Burge 1997; Tarn and Steitz 1997). Their removal is catalyzed by a novel, low-abundance spliceosome in which the U1, U2, U4, and U6 snRNPs are replaced by highly divergent counterparts, the U11, U12, U4atac, and U6atac snRNPs, whereas the U5 snRNP is apparently shared by the two splicosomes (Hall and Padgett 1996; Tarn and Steitz 1996a,b). The assembly pathway of the U12-dependent spliceosome mimics that of the U2-dependent spliceosome, with characteristic prespliceosomal complex A, mature spliceosomal complex B, and catalytically active complex C (Tarn and Steitz 1996a,b). Moreover, the snRNA–snRNA and snRNA–pre-mRNA interactions formed during U12-dependent spliceosome assembly are highly similar to interactions detected during assembly of the U2-dependent spliceosome. Specifically, both biochemical and genetic evidence show that the 5’ss is recognized by the U11 snRNP, followed by U6atac, whereas the BPS binds the U12 snRNP. The base-pairing interactions between the U12 and U6atac snRNAs in the catalytically active spliceosome are also highly similar to interactions found for the U2-dependent spliceosome in both the mammalian and yeast systems (Hall and Padgett 1996; Tarn and Steitz 1996a,b; Kolossova and Padgett 1997; Yu and Steitz 1997, Incorvaia and Padgett 1998). Despite their overall similarity, the two splicing systems display important differences. First, the 5’ss and the BPS elements in U12-type introns are highly conserved, with no apparent PPT between the BPS and 3’splice-site (3’ss) (Sharp and Burge 1997). In addition, some U11 and all of the U12 snRNPs exist in splicing extracts as di-snRNP complexes rather than as the discrete U1 and U2 snRNP particles characteristic of the U2-dependent system; free U11 mono-snRNP particle reflects the higher abundance of U11 compared with U12 (Montzka and Steitz 1988; K.M. Wassarman and Steitz 1992). Finally, the cellular abundance of all the snRNA components specific to the U12-dependent spliceosome is ~100-fold lower than their counterparts in the U2-dependent spliceosome (Montzka and Steitz 1988; Tarn and Steitz 1996b). These differences suggest that the early recognition steps in U12-dependent spliceosome formation might follow a different pathway, but it is equally possible that the 5’ss or BPS could initially be recognized independently [as in U2-dependent system] by the free U11 mono-snRNP or the U11/U12 complex. Here we show a requirement for both the 5’ss and BPS during early complex formation, suggesting recognition of both sites in a U12-dependent intron by a single U11/U12 di-snRNP particle.

Results

An ATP-independent commitment complex has been described as the earliest specific step in spliceosome assembly for both yeast and mammalian U2-dependent splicing systems. Such a complex can be formed in the absence of ATP and is resistant to subsequent challenge by a vast excess (50- to 1000-fold) of splicing substrate in the presence of ATP (Séraphin and Rosbash 1989; Michaud and Reed 1991; Jamison et al. 1992). We were not able to identify a stable ATP-independent commitment complex in the U12-dependent splicing system using the P120 splicing substrate [data not shown]. Therefore, formation of the earliest detectable assembly intermediate, the A complex, was used to study intron recognition in the U12-dependent splicing system.

Use of 2′-O-methyl oligonucleotides complementary to U6atac or U6 snRNA to arrest spliceosome assembly

Previously, four specific complexes, A, A2, B, and C, were observed during assembly of the U12-dependent spliceosome on the P120 splicing substrate (Tarn and Steitz 1996a). The appearance of these complexes required inhibition of the competing U2-dependent splicing machinery with a 2′-O-methyl oligonucleotide U2b (called U2_{27–49} here), which prevents the U2/BPS interaction. Complex A2, containing only the U12 snRNP, was deduced to be a heparin-induced dissociation product of complex A1, which contains both the U11 and U12 snRNPs (Tarn and Steitz 1996a). We performed heparin titration experiments [not shown] and established that a single A complex band containing both the U11 and U12 snRNPs was obtained when the heparin concentration in the native gel loading buffer was decreased to 25 µg/ml [see below]. This heparin concentration was therefore used in all subsequent native gel analyses of U12-dependent splicing.

To study initial recognition of the 5’ss and the BPS in a U12-type intron, it was necessary to prevent the displacement of the U11 snRNP by U6atac, which occurs during B complex formation [Tarn and Steitz 1996b; Incorvaia and Padgett 1998]. Assembly of the U2-dependent spliceosome can be arrested at the A complex stage by preincubating the splicing reaction with a 2′-O-methyl oligonucleotide complementary to nucleotides 1–20 of U2 snRNA prior to the addition of pre-mRNA (Lamond et al. 1989; Furman and Glitz 1995). This oligonucleotide binds to the first stemloop of U2 snRNA and prevents critical U2/U6 snRNA interactions necessary for later steps in spliceosome assembly. The analogous region in U12 snRNA is adjacent to the region complementary to the BPS of U12-type introns. To avoid overlap with the anti-U12 oligonucleotide used later, a 2′-O-methyl oligonucleotide U6atac_{1–20} complementary to the nucleotides 1–20 of the U6atac snRNA, was used instead to block the interaction of U6atac snRNA with the 5’ss of the P120 substrate [Fig. 1A].

On addition of a labeled P120 splicing substrate to a HeLa splicing reaction blocked for U2-dependent spliceosome assembly by preincubation with the 2′-O-methyl oligonucleotide U2_{27–49}, complexes A and B can be observed [Fig. 1B, lanes 1–6], as described previously (Tarn and Steitz 1996a). Complex C is not visible, as assembly of this complex requires ~2 hr of incubation. When the preincubation was performed in the presence of both the U2_{27–49} and U6atac_{1–20}, 2′-O-methyl oligonucleotides, no B-complex formation was observed. Instead, spliceo-
some assembly was arrested at what appears to be the A complex stage [Fig. 1B, lanes 7–12]. Northern analysis of reactions containing unlabeled P120 splicing substrate [Fig. 1C] confirmed the presence of U11 and U12 snRNAs in both normal and arrested A complexes, whereas no U11 snRNA was detected in the B complex, as described previously (Tarn and Steitz 1996a). The kinetics of A complex formation in untreated compared with U6atac1–20-blocked assembly reactions was similar, both peaking after 60 min of incubation.

To confirm that arrest at the A complex stage by the U6atac1–20 oligonucleotide is due to blockage of a specific region in U6atac snRNA, we examined the effect of an analogous 2′-O-methyl oligonucleotide on U2-dependent spliceosome assembly. Splicing reactions were preincubated either without any oligonucleotide or with a 2′-O-methyl oligonucleotide complementary to nucleotides 27–46 of U6 (U627–46; Fig. 1D) prior to addition of the labeled adenovirus splicing substrate. Native gel analysis revealed that, similar to the U12-dependent system, U2-dependent spliceosome assembly was arrested at the A complex stage [Fig. 1E, lanes 9–16]. We conclude that in both splicing systems, B complex formation can be prevented by specific 2′-O-methyl oligonucleotides that block the U6atac/5′ss or U6/5′ss interaction.

The 5′ss and BPS of the P120 splicing substrate are recognized cooperatively

The existence of a U11/U12 di-snRNP complex, as opposed to U1 and U2 mono-snRNPs, suggested that the 5′ss and the BPS might be recognized concurrently during the earliest stage of U12-dependent spliceosome assembly. To test this possibility, a modification of the
RNase H protection assay developed to study 5’ss choice (Eperon et al. 1993) was used to measure the level of occupancy at specific sites along the P120 splicing substrate. After spliceosome assembly for 40 min in reactions arrested at the A complex stage, five specific sites located in the 5’ exon, at the 5’ss, in the intron, at the BPS, and in the 3’ exon were targeted for RNase H cleavage by incubating the reactions in the presence of one or two 14-mer DNA oligonucleotides [Fig. 2A] for 20 min. Gel analysis then revealed whether any of these sites was bound by factors that prevent the binding of the DNA oligonucleotide(s) and consequently protect the splicing substrate from RNase H hydrolysis. During the 60 min required to carry out the assay, no dissociation of the arrested A complex was detected (see Fig 1B).

When protection at the five individual sites diagramed in Figure 2A was examined with a single DNA oligonucleotide [Fig. 2B, lanes 1–5], only the 5’ss and BPS were found to be protected from RNase H hydrolysis [lanes 2 and 4], as indicated by the recovery of full-length P120 splicing substrate from those reactions. Quantitation revealed that ~10%–15% of the input pre-mRNA was protected in reactions targeted with either the 5’ss- or BPS-specific DNA oligonucleotide, with the BPS protection usually being somewhat higher (10%–20%) than protection at the 5’ss. Protection of the other three regions [Fig. 2B, lanes 1,3,5] was ~10- to 20-fold lower, the same as the background level observed when DNA oligonucleotides and the P120 splicing substrate were added to the reaction simultaneously (see below). These data indicate that the 5’ss and BPS are selectively recognized, presumably by U11 and U12 snRNPs, respectively, during A complex assembly.

To ask whether these two sites are occupied simultaneously in a single substrate molecule, the 5’ss and BPS were targeted in the same reaction with two DNA oligonucleotides. The recovery of full-length P120 [in which both sites must be protected in a single pre-mRNA molecule] was ~70% of the 5’ss value [Fig 2B, lane 6]. Because competition experiments with unlabeled full-length substrates indicated that the amount of labeled P120 used in the assay is saturating [data not shown], this result suggests that the 5’ss and BPS in a single substrate molecule are being recognized concomitantly, suggesting cooperativity between U11 and U12 binding. As the DNA oligonucleotides used in the RNase H protection assay can compete with snRNPs for binding to the pre-mRNA, the decreased RNase H protection of the full-length substrate in reactions containing two DNA oligonucleotides instead of one can be explained by an additive competitive effect.

Cooperativity between U11 and U12 binding was tested further by examining substrate protection after blocking either the U11/5’ss or U12/BPS interaction by use of antisense oligonucleotides targeted to critical regions of the U11 or U12 snRNA. Whereas 2’-O-methyl oligonucleotide U12$_{11-28}$ (see Fig. 3A) was reported previously to block the U12/BPS interaction [Tarn and Steitz 1996a,b], attempts to use 2’-O-methyl oligonucleotides targeted to the 5’ end of U11 snRNA to prevent 5’ss recognition or to select U11 snRNPs had failed [K.M. Wassarman and Steitz 1992; Tarn and Steitz 1996a]. We therefore designed two peptide nucleic acid [PNA] oligomers that should form an RNA–PNA$_2$ triplex [Knudsen and Nielsen 1996] with nucleotides 1–8 of U11 snRNA [Fig. 3A]. Preincubation with these PNA oligomers inhibited splicing of the U12-type P120 substrate [Fig. 3B] but did not affect splicing of the U2-type adenovirus substrate [Fig. 3C]. Partial RNase T$_1$ hydrolysis of nuclear extracts and subsequent primer extension analysis revealed that the PNA oligomers bind to the single-stranded 5’ end of U11 snRNA (see Fig. 3A) and protect the G residues from cleavage [data not shown].

The effect of the U11 and U12-specific antisense oligonucleotides on recognition of the 5’ss and BPS was tested by performing three separate reactions [Fig. 3D,E], which were analyzed by the RNase H assay (see Fig. 2). The first was arrested A complex formation on the P120 splicing substrate. The second was the same reaction but preincubated with either the U11- or U12-specific anti-
mediate and product are indicated at right. (D) Effect of the 2'-O-methyl antisense oligonucleotide U1211–28 (0.5 µM) on the RNase H protection profile of the P120 splicing substrate. After arrested A complex formation, individual sites were targeted as in Fig. 2A. (Bottom) Gel slices show recovery of the full-length P120 splicing substrate in the RNase H protection profile (see Fig. 2B). (Top) The graph shows mean values obtained from four independent experiments with the standard deviation indicated by error bars. (Solid bars) Protection observed on a mock-treated reaction; (open bars) reactions containing the U1211–28 oligonucleotide; (shaded bars) control reactions in which splicing substrate was added at the time of the RNase H assay. (E) Effect of PNA oligonucleotides U11-2P and U11-3P (5 µM each) on the RNase H protection profile of the P120 splicing substrate. (Bottom) Gel slices show recovery of the full-length P120 splicing substrate in the RNase H protection profile (see Fig. 2B). (Top) The graph shows mean values obtained from three independent experiments, with the standard deviation indicated by error bars. The color coding is the same as in D.

In the reciprocal experiment (Fig. 3E), the two PNA oligonucleotides targeted to the 5' end of U11 snRNA decreased protection at the 5'ss 10-fold, close to the background level, whereas protection at the BPS was reduced to ~40%. These results again show significant cooperativity between U11 and U12 binding. Apparent independent U12 binding to the BPS was ruled out by subsequent RNase H experiments in which both the 5'ss and the U12/BPS interactions were simultaneously blocked; these revealed that the PNA oligonucleotides were partially inhibiting RNase H hydrolysis at the BPS (data not shown). For unknown reasons, this inhibitory effect requires 40 min incubation at +30°C and is therefore not observed in the RNase H control reaction shown. Similar interference can be observed in the RNase H protection profile of the 5' exon (Fig. 3E). Consistent with this interpretation, no A complexes were detected by native gel analysis in reactions containing...
either U11- or U12-specific antisense oligonucleotides [data not shown].

The most straightforward interpretation of the strong cooperativity seen between U11 and U12 binding to the 5’ss and BPS, respectively, in RNase H protection experiments is that a U11/U12 di-snRNP complex recognizes these important intron regions simultaneously. To ensure that the di-snRNP structure was not being directly perturbed by antisense oligonucleotide pretreatment, glycerol gradient analysis of nuclear extracts blocked either with U11- or U12-specific antisense oligonucleotides was performed. No dissociation of the di-snRNP was detected [data not shown].

Both the 5’ss and BPS are required for efficient snRNP recognition of a U12-type intron

In the U2-dependent splicing system, the U1 or U2 snRNP can bind independently to a 3’ or 5’ half-substrate containing only its respective binding site (Barabino et al. 1990; Michaud and Reed 1993; Tarn and Steitz 1995). We therefore examined the binding of U11 or U12 snRNPs to 5’ or 3’ P120 half-substrates using native gel analyses. No A complex formation was detected with either half-substrate or even when the two half-substrates were used together [data not shown].

More sensitive cross-linking assays were then used to compare the relative binding of U11 and U12 snRNPs with the 5’ and 3’ half-substrates and full-length P120 substrate. Psoralen was used to probe U12/BPS interactions (Tarn and Steitz 1996a,b), whereas detection of U11/5’ss interactions required the construction of splicing substrates containing a single 4SU residue close to the 5’ss (Yu and Steitz 1997). We placed 4SU in position +7 relative to the 5’ss, as 4SU at this position had been shown previously to cross-link to U11 snRNA [Yu and Steitz 1997]. 4SU was used because it is commercially available as the phosphoramidite monomer and therefore could be readily incorporated into RNA oligonucleotides. Splicing substrates containing 4SU exhibited normal splicing activity as monitored by the appearance of the lariat product (Fig. 4C).

Unlabeled splicing substrates [for psoralen cross-linking] or trace-labeled substrates [for 4SU cross-linking] were cross-linked in arrested A complex assembly reactions, followed by Northern analysis (Fig. 4A,B). The identities of the cross-links were confirmed by RNase H targeting [see Materials and Methods] and reprobing the filters successively with probes complementary to different snRNAs. As seen in Figure 4A, lane 3, and Figure 4B, lane 4, both U12/P120 and U11/P120 cross-links formed with the full-length P120 splicing substrate. The U12/P120 cross-links were completely abolished by preincubation with either the U11- or U12-specific antisense oligonucleotide [Fig. 4A, lanes 4,5]. In contrast, the U11/P120 cross-links were completely inhibited only by the

Figure 4. Northern blot analysis of cross-linked products containing U12 or U11 and the full-length P120 splicing substrate or 3’ or 5’ half-substrate. Cross-linking conditions [±UV], RNA substrates, and antisense oligonucleotides used during preincubation are indicated (aU11—5 µM U11-2P and U11-3P; aU12—0.5 µM U1211–28). The identities of the cross-linked bands are shown at right. [Asterisk] Cross-reacting bands detected in the absence of UV irradiation or splicing substrate. The sizes of DNA markers [M], a 53P-labeled pBR322 digest, are at left. (A) Psoralen cross-linking of the unlabeled full-length P120 splicing substrate [lanes 1–5] or 3’ half-substrate [lanes 6–10]. Cross-links were detected by hybridization with a U12-specific riboprobe. (Lanes 6–10) Exposure was eight times longer than that for lanes 1–5. (B) Cross-linking of a trace-labeled full-length P120 splicing substrate [lanes 1–6] or 5’ half-substrate [lanes 7–10] containing 4SU at position +7 of the intron. The full-length P120 control lacking the 4SU (lane 1) was not trace labeled. Cross-linked products were detected by hybridization with a U11-specific riboprobe. (C) Time course appearance of the lariat product in a standard splicing reaction containing either the full-length P120 splicing substrate [P120] or a substrate containing 4SU at intron position +7 (P120-4SU).
U11-specific PNA oligonucleotides (Fig. 4B, lane 5); inhibition of the U12/P120 interaction produced a fivefold decrease in U11/P120 cross-link formation (Fig. 4B, lane 6). These results confirm strong cooperativity between the U12/BPS and U11/5’ss interactions seen in Figure 2, D and E, and again suggest that the U11 snRNP can bind weakly to the 5’ss in the absence of the U12/BPS interaction [see Fig. 2D].

Cross-linking was also performed with P120 half-substrates (Fig. 4A,B, right). With the 3’ half-substrate, faint U12/P120-3’ cross-linked bands, ~60-fold weaker than with the full-length P120 substrate, were detected on longer (8×) exposures [Fig. 4A, lane 8; see also Fig. 6, below]. Preincubation with either U11- or U12-specific antisense oligonucleotides led to the disappearance of these cross-links (Fig. 4A, lanes 9,10). With the 5’ half-substrate, only the U11-specific antisense oligonucleotide inhibited formation of the U11/P120-5’ cross-link (Fig. 4B, lane 8 vs. lane 9), demonstrating that the 5’ end of U11 snRNA is necessary for cross-link formation; antisense inhibition of the U12/BPS interaction did not change the level of the U11/P120-5’ cross-link (Fig. 4B, lane 10). The efficiency of 5’ half-substrate cross-linking to the U11 snRNA was approximately fivefold lower than with the full-length splicing substrate [Fig 4B, lane 4 vs. 8], consistent with the fivefold dependence on U12 for cross-linking to the 5’ss of the full-length P120 substrate [U11/P120] in the presence of the U12-specific antisense oligonucleotide [Fig. 4B, lanes 4,6].

A U12/U6atac cross-linked species with identical mobility to a previously mapped U12/U6atac helix Ia cross-link [Tarn and Steitz 1996b] was also detected in reactions arrested at the A complex stage. This cross-link is visible in long exposures of autoradiograms of reactions that did not receive any splicing substrate [Fig. 4A, lane 7], but is greatly stimulated in full splicing reactions [Fig. 4A, lane 3; see also Fig. 6, below]. The stimulation of U12/U6atac cross-link formation in reactions arrested at the A complex stage is consistent with recent observations of U2/U6 interactions in the absence of B complex formation in both the mammalian and yeast U2-dependent systems (see Discussion for details) and provides an additional internal control for spliceosome assembly.

Note that the reactions treated with either U11- or U12-specific antisense oligonucleotides (Fig. 4A, lanes 4,5) do not show enhanced levels of this U12/U6atac cross-link, consistent with the lack of stable A complex formation in these reactions.

Parallel cross-linking experiments were performed with the well-studied U2-dependent splicing system arrested at the A complex stage (Fig. 5) to ensure that the results in Figure 4 are not due to some peculiarity of our assay. We used the adenovirus splicing substrate (Sollnick 1985), which contains a consensus 5’ss and strong BPS followed by a PPT—features that promote efficient spliceosome assembly even in the absence of other stimulatory signals [e.g., exonic enhancers]. Psoralen cross-linking [D.A. Wassarman and Steitz 1992] was conducted with or without preincubation with antisense 2’-O-methyl oligonucleotides reported to block U1/5’ss.

Figure 5. Northern blot analysis of cross-linked products containing U1 or U2 and the full-length adenovirus splicing substrate or 3’ or 5’ half-substrates. The cross-linking conditions [UV], the RNA substrates, and antisense oligonucleotides used during preincubation are indicated (aU1—15 µM U11–14; aU2—4.8 µM U227–49; aU11—5 µM each U11-2P and U11-3P; aU12—0.5 µM U1211–28). The identities of cross-linked bands are shown at right and the sizes of DNA markers, a 32P-labeled pBR322 digest, at left. [A] Psoralen cross-linking of the unlabeled full-length adenovirus splicing substrate [lanes 1–7] or 5’ half-substrate [lanes 8–14]. Cross-linked products were detected by hybridization with a U1-specific riboprobe. [B] Psoralen cross-linking of the unlabeled full-length adenovirus splicing substrate [lanes 1–7] or 3’ half-substrate [lanes 8–14]. Cross-linked products were detected by hybridization with a U2-specific riboprobe. [Asterisk] Cross-reacting bands detected in the absence of UV irradiation or splicing substrate.
and U2/BPS interactions [Lamond et al. 1989; Barabino et al. 1990], the U11- and U12-specific antisense oligonucleotides described above provided negative controls. The results [Fig. 5] agree with previous reports on the early assembly of the U2-dependent spliceosome [Ruby and Abelson 1988; Séraphin and Rosbash 1991; Hall and Konarska 1992; Chiara and Reed 1995]. The U1/5’ss interaction [Fig. 5A, lane 3] is completely independent of the U2/BPS interaction: Neither inhibition of U2/BPS binding by the 2’-O-methyl oligonucleotide [lane 5] nor use of the 5’ half-substrate [lanes 10,12] altered the level of U1/5’ss cross-linking. Also in agreement with previous results [Michaud and Reed 1993; Chiara and Reed 1995; Tarn and Steitz 1995], the 3’ half-substrate cross-linked to U2 snRNA in the absence of the 5’ss [Fig. 5B, lane 10], whereas blocking the 5’ end of the U1 snRNA with the antisense 2’-O-methyl oligonucleotide U11,14 abolished the U2/BPS interaction with both the full-length adenovirus substrate [lane 4] and the 3’ half-substrate [lane 11] [Seiwert and Steitz 1993; Tarn and Steitz 1994, 1995]. The U11- and U12-specific antisense oligonucleotides had no effect on adenovirus cross-link formation [Fig. 5A,B, lanes 6,7,13,14]. Therefore, we conclude that our assay using reactions blocked at the A complex stage is valid.

The 5’ss and BPS suffice for A complex formation on the P120 substrate

To investigate whether substrate sequences beside the 5’ss and BPS are required for stable U11/U12 binding, we carried out a deletion analysis of the P120 splicing substrate [Fig. 6A]. Both psoralen cross-linking of U12 to the BPS and native gel analysis were used to test A complex formation [Fig. 6B,C]. The data in Figure 6B [gel probed with U12 antisense] define a minimal P120 splicing substrate that can efficiently cross-link to U12 snRNA. Substrate c with a deletion of virtually all sequences downstream from the BPS [including the 3’ss] had nearly the same efficiency of U12 cross-linking as the full-length substrate [Fig. 6B, lane 4 vs. lane 2]. The other two deletions, which either removed the majority of the 5’ exon [substrate b] or combined deletions b and c and, in addition, contained an intron deletion [substrate d] that moved the BPS closer to 5’ss [the distance between 5’ss and the branch site decreased from 89 to 39 nucleotides], displayed somewhat reduced U12 cross-linking efficiencies [68% for b and 48% for d of the level observed with full-length substrate; Fig. 6B, cf. lanes 3 and 5 with lane 2]. In contrast, removal of the 5’ss reduced U12 cross-linking efficiency to background levels [Fig. 6B, lane 6] as observed in Figure 4A.

These results were confirmed by native gel analysis [Fig. 6C]. The efficiency of A complex formation for deletion substrate c lacking the 3’ exon and 3’ss was nearly the same as for the full-length P120 splicing substrate [Fig. 6C, lane 3, note that the P120 3’ exon contains one-third of the labeled U residues in the substrate]. In contrast, the other two deletion substrates displayed reduced levels of complex formation [Fig. 6C, lanes 2,4; typically 30%–60% relative to substrates containing the intact 5’ exon], suggesting that the 5’ exon may contain an element that stimulates A complex formation. Northern analysis confirmed the presence of U11 and U12 snRNPs in these complexes [data not shown] except for the smallest deletion [d], which could not be assessed because its A complex exhibited nearly identical mobility to the U11/U12 complex in native gels. We conclude that the 5’ss and BPS comprise necessary and sufficient signals for stable U11 and U12 binding to the P120 premRNA substrate.

Discussion

We present the first detailed analysis of the early assembly stages of the U12-dependent spliceosome. Interactions were monitored by native gel electrophoresis, RNase H protection assays and RNA–RNA cross-linking using the full-length P120 splicing substrate, as well as 5’ and 3’ half-substrates, under conditions which arrest
formation of the U12-dependent spliceosome at the A complex stage. We conclude that binding to the 5’ss and BPS is a cooperative process, in which U11/5’ss and U12/BPS interactions together mediate efficient intron recognition leading to A complex formation. Our observation that prevention of one interaction, by either an antisense oligonucleotide or use of a half-substrate, inhibits the other interaction, strongly supports a model in which a single U11/U12 di-snRNP recognizes both the 5’ss and BPS as opposed to a model in which these two sites are recognized by separate snRNPs. Deletion analysis of the P120 splicing substrate further indicates that beside the 5’ss and BPS, no other sequence elements are required for A complex formation, although some sequence(s) located in the 5’ exon may provide stimulation.

Our experiments were carried out with a model splicing substrate derived from intron F and the flanking exons of the human P120 gene (Hall and Padgett 1996; Tarn and Steitz 1996a). This intron belongs to a subclass of U12-type introns that contains A and C at the 5’ and 3’ termini, respectively. The other subclass of U12-type introns has Gs at both the 5’ and 3’ ends of the intron (Dietrich et al. 1997). There is no indication that the terminal nucleotides form base-pairing interactions with either the U11 or U12 snRNA and the three nucleotides at the 3’ end of the P120 intron are dispensable for A complex formation (see Fig. 6). Because of the extraordinarily high conservation of 5’ss and BPS signals from plants to mammals (Sharp and Burge 1997; Burge et al. 1998), we believe that cooperative recognition of the 5’ss and BPS is a common feature of spliceosome assembly on U12-type introns.

Differences in the early assembly of U12- and U2-dependent spliceosomes

Comparison of A complex assembly in the U12- and U2-dependent systems reveals a major difference. In yeast and mammalian cells, the 5’ss is recognized by the U1 mono-snRNP independent of U2 (Ruby and Abelson 1988; Séraphin and Rosbash 1991; Michaud and Reed 1993; Chiara and Reed 1995), whereas in the U12-dependent system we find that the U11/5’ss interaction is markedly stimulated by the U12/BPS interaction (see Figs. 3 and 4). Such cooperative recognition and the high conservation of the 5’ss and BPS in U12-type introns suggest that this splicing system is more rigid, with intron definition occurring in a single binding event. Thus, in the U12-dependent system, the bridge that connects the 5’ and the 3’ ends of the introns appears already built in to the U11/U12 di-snRNP structure, whereas in the U2-dependent system, separate components are required (see Wu and Maniatis 1993; Abovich and Rosbash 1997). Several studies have indicated that in addition to signals present within U12-type introns, exon definition interactions and exonic enhancers can stimulate the splicing of U12-type introns (Wu and Krainer 1996, 1998). Cooperative recognition of the highly conserved 5’ss and BPS signals argues that stimulatory elements in the vicinity of U12-type introns may simply enhance the basal level of splicing rather than promoting elaborate alternative splicing patterns characteristic of the U2-dependent system.

Another major difference between the two systems is the apparent lack of an ATP-independent commitment complex in the U12-dependent system. Both U11/5’ss and U12/BPS interactions have been detected previously by cross-linking ([32P]U or psoralen, respectively) in the absence of ATP [Tarn and Steitz 1996b; Yu and Steitz 1998], and similar results were obtained in this study (M. Friland and J. Steitz, unpubl.). However, we were unable to document the formation of a stable ATP-independent commitment complex that could be chased into functional spliceosomes in the presence of excess competitor RNA, as for the mammalian and yeast U2-type introns (Séraphin and Rosbash 1989, Michaud and Reed 1991, Jamison et al. 1992). In the U2-dependent system, U1 and U2AF can form stable ATP-independent complexes with the 5’ss and PPT, respectively, but ATP is needed to stabilize the U2/BPS interaction in complex A [Bindereif and Green 1987; Liao et al. 1992]. Therefore, if ATP is also required to stabilize the U12/BPS interaction, and the 5’ss and BPS are recognized in a single binding event, then the failure to detect an ATP-independent commitment activity in the U12-dependent system is expected.

In contrast to differences observed in early complex formation, complex B formation appears similar for U12- and U2-dependent spliceosomes. Stable B complex is not observed in either system in the presence of a 2’-O-methyl oligonucleotide that blocks the U6atac/5’ss or U6/5’ss interaction (see Fig. 1). But the resulting arrested A complexes apparently interact with the tri-snRNP particle, as indicated by the presence of U12/U6atac [Figs. 4A and 6B] and U2/U6 cross-links (Fig. 5B). The U12/U6atac cross-linked band (Fig. 4A) has identical mobility to a previously mapped cross-link in helix Ia [Tarn and Steitz 1996b], whereas the U2/U6 cross-link is located most probably in helix II [Hausner et al. 1990]. A previous study similarly reported a U2/U6Color={131} 3’ half-substrate triple cross-link that occurred in the absence of a functional U6/5’ss interaction [Tarn and Steitz 1995]. Using yeast U1 snRNA mutants that prevent the unwinding of U1/5’ss helix, Staley and Guthrie 1999 recently reported association of the tri-snRNP particle with the pre-spliceosome in the absence of U6/5’ss interactions. There, the catalytic core (U2/U6 base-pairing) was not formed, as no unwinding of U4/U6 base-pairing was observed, whereas in our case, detectable U12/U6atac cross-links suggest catalytic core formation. Possibly, the 2’-O-methyl oligonucleotide we used to arrest spliceosome assembly binds to the 5’ end of U6atac and mimics functional 5’ss recognition, subsequently triggering the U4atac/U6atac unwinding process.

U11/U12 snRNP binding in a nonspliceosomal context

In addition to its role in the splicing of U12-type introns, the U11/U12 complex has also been ascribed a regula-
Implications for the evolutionary fate of U12-type introns

A puzzling feature of the U12-dependent splicing system is its distribution in the eukaryotic lineage (Sharp and Burge 1997; Burge et al. 1998). U12-type introns have been identified in vertebrate, insect, and plant genes, but they are absent in nematodes and lower eukaryotes, for example, yeast. A fission/fusion model for the origin of U12-type introns, on the basis of sequence comparisons, has been proposed recently to account for their absence from certain branches of the evolutionary tree and for their overall low abundance compared with U2-type introns (Burge et al. 1998). According to this model, the two splicing systems evolved in two separate lineages, which then fused, followed by conversion of most U12-type introns to U2-type introns.

Intron conversion from U12 to U2 type has experimental support (Dietrich et al. 1997; Kolossova and Padgett 1997). These studies indicate that the U12-type splicing system is highly sensitive to mutations that disrupt the binding of U11 to the 5’ss. Because of the cooperative recognition we have documented, such mutations would prevent BPS recognition in addition to 5’ss recognition we have documented, such mutations would prevent BPS recognition in addition to 5’ss recognition. The absence of competition from the U12-dependent system would then allow utilization of even weak U2-dependent splice sites, facilitating the conversion of U12- to U2-type introns.

Materials and methods

Oligonucleotides

DNA, RNA, and 2’-O-methyl oligonucleotides were purchased from the KccK Oligonucleotide Synthesis Facility, Yale University.
ments and a bridging DNA oligonucleotide complementary to residues 137–192 of the P120 splicing substrate were mixed together, denatured at +95°C for 3 min and slowly cooled to room temperature. The ligation reaction was carried out at +20°C for 12–14 hr in reaction buffer containing 50 mM Tris-Cl (pH 7.5), 10 mM MgCl₂, 20 mM DTT, 1 mM ATP, 1% polyvinyl alcohol, 1 U/μl RNasin, and 3 U/μl T4 DNA ligase (United States Biochemical). The final concentrations of the DNA bridging oligonucleotide and the RNA fragments were 1–3 μM. Trace-labeled 5’ or 3’ fragments were included in the ligation reaction to facilitate detection of ligated products by autoradiography. The splicing substrates containing 454UD residues were purified in 5% denaturing polyacrylamide gels.

Splicing and A complex assembly reactions

The P120 and adenovirus in vitro splicing reaction conditions were essentially as described [Tarn and Steitz 1996a], except that 4.8 μM U2b 2’-O-methyl oligonucleotide (same as U237–49) was used in P120-containing reactions. To arrest U12-dependent spliceosome assembly at the A complex stage, a standard P120 splicing mixture lacking pre-mRNA was preincubated in the presence of 0.5 μM U6atac1–20 2’-O-methyl oligonucleotide at +30°C for 10 min, after which the splicing substrate was added and the incubation was continued for an additional 40 min. Similarly, U12-dependent spliceosome assembly was arrested at the A complex stage by preincubation with the U6atac1–20 2’-O-methyl oligonucleotide for 10 min at +30°C, followed by 20 min incubation at +30°C in the presence of the adenovirus splicing substrate.

RNase H assay

A modification of the RNase H protection assays described previously [Barabino et al. 1990; Eperon et al. 1993] was used to examine the binding of U11 and U12 snRNPs to pre-mRNA. Briefly, U12-dependent A complexes were formed as described above in reactions containing 2 nM 32P-labeled P120 splicing substrate and 0.05 U/μl RNase H (Pharmacia). Aliquots of the assembly reactions were subsequently divided into tubes containing DNA oligonucleotides (20 μM final concentration; sufficient for >99% cleavage of the substrate in nuclear extract) complementary to specific regions of the P120 splicing substrate, and incubation was continued for 20 min. The reactions were stopped by adding 3 volumes of proteinase K mixture (5 mg/ml proteinase K, 50 mM EDTA, 0.5% SDS), incubated at +55°C for 30–60 min, extracted with phenol/chloroform/isoamyl alcohol (PCA), and precipitated with ethanol. Reactions were separated in 6% denaturing polyacrylamide gels and the level of protection of full-length P120 splicing substrate in each lane was analyzed by PhosphorImager (Molecular Dynamics).

Native gel electrophoresis

Spliceosomal complexes were resolved on 4% native gels according to Konarska [1989]. To prevent the dissociation of the A complex into two bands [see Tarn and Steitz 1996a], the amount of heparin added to P120 reactions prior to loading was lowered to 25 μg/ml (final concentration). Heparin [1 mg/ml] was used when loading reactions containing the adenovirus splicing substrate.

Cross-linking

Psoralen cross-linking was used to detect the U12/BPS, U1/5’ss, and U2/BPS interactions in A complexes. The concentrations of the unlabeled full-length and half-substrates were 20 nM for U12/P120 cross-linking and 5 nM for U1/adenol and U2/adeno cross-linking. After A complex formation, the samples were transferred to ice, AMT [4′-aminomethyl-4,5,8-trimethyl] psoralen (HRI Associates, Concord, CA) was added to a final concentration of 20 μg/ml, and the samples were irradiated with 365 nm UV light for 10 min. To detect U11/P120 interactions, 4 nM trace-labeled P120 454U 5’ half-substrate was used for A complex assembly. Subsequently, the samples were transferred to ice and irradiated with 365 nm UV light for 10 min. Cross-linked samples were subsequently treated with proteinase K as described above, PCA extracted and precipitated with ethanol. Cross-linked RNAs were separated in 5% denaturing polyacrylamide gels and transferred to Zeta-Probe membranes (Bio-Rad). Cross-links were detected with 32P-labeled riboprobes as described previously [Tarn and Steitz 1996a]. Both RNase H targeting by use of DNA oligonucleotides complementary to snRNAs or splicing substrates, as described previously [Tarn and Steitz 1996a], and probing of the filters successively with probes for different snRNAs were used to confirm the identities of the cross-linked bands.

Acknowledgments

We thank the members of the Steitz laboratory for stimulating discussions and experimental advice, and Tim McConnell, Leo Otake, Abhi Patel, Liz Shari and Yi-Tao Yu for critical reading of the manuscript. We are grateful to Suzanne DeGregorio for help with nuclear extract preparations and to Woan-Yu Tarn for the well-organized 2’-O-methyl oligonucleotide collection, which has proven invaluable. This work was supported by a European Molecular Biology Organization long-term fellowship to M.J.F and National Institutes of Health grant GM26154 to J.A.S.

The publication costs of this article were defrayed in part by payment of page charges. This article must therefore be hereby marked ‘advertisement’ in accordance with 18 USC section 1734 solely to indicate this fact.

References

Abovich, N. and M. Rosbash. 1997. Cross-intron bridging interactions in the yeast commitment complex are conserved in mammals. Cell 89: 403–412.

Barabino, S.M.L., B.J. Blencowe, U. Ryder, B.S. Sproat, and A.I. Abovich. 1997. Cross-intron bridging interactions in the yeast commitment complex are conserved in mammals. Cell 89: 403–412.

Burge, C.B., R.A. Padgett, and P.A. Sharp. 1998. Evolutionary fates and origins of U12-type introns. Mol. Cell 2: 773–785.

Chiara, M.D. and R. Reed. 1995. A two-step mechanism for 5’ and 3’ splice-site pairing. Nature 375: 510–513.

Dietrich, R.C., R. Incorvaia, and R.A. Padgett. 1997. Terminal intron dinucleotide sequences do not distinguish between U2- and U12-dependent introns. Mol. Cell 1: 151–160.

Eperon, I.C., D.C. Ireland, R.A. Smith, A. Mayeda, and A.R. Krainer. 1993. Pathways for selection of 5’ splice sites by U1 snRNPs and SF2/ASF. EMBO J. 12: 3607–3617.

Furman, E. and D.G. Glitz. 1995. Purification of the spliceo-
some A-complex and its visualization by electron microscopy. J. Biol. Chem. 270: 15515–15522.
Gontarek, R.R., M.T. McNally, and K. Beerman. 1993. Mutation of an RSV intronic element abolishes both U11/U12 snRNPs binding and negative regulation of splicing. Genes & Dev. 7: 1926–1936.
Gozani, O., R. Feld, and R. Reed. 1996. Evidence that sequence-independent binding of highly conserved U2 snRNP proteins upstream of the branch site is required for assembly of spliceosomal complex A. Genes & Dev. 10: 233–243.
Hall, K.B. and M.M. Konarska. 1992. The 5′ splice site consensus RNA oligonucleotide induces assembly of U2/U4/U5/U6 small nuclear ribonucleoprotein complexes. Proc. Natl. Acad. Sci. 89: 10969–10973.
Hall, S.L. and R.A. Padgett. 1994. Conserved sequences in a class of rare eukaryotic nuclear introns with non-consensus splice-sites. J. Mol. Biol. 239: 857–865.
———. 1996. Requirement of U12 snRNA for in vivo splicing of a minor class of eukaryotic pre-mRNA introns. Science 271: 1716–1718.
Hausner, T.P., L.M. Giglio, and A.M. Weiner. 1990. Evidence for base-pairing between mammalian U2 and U6 small nuclear ribonucleoprotein particles. Genes & Dev. 4: 2146–2156.
Incorvia, R. and R.A. Padgett. 1998. Base pairing with U6atac snRNA is required for 5′ splice site activation of U12-dependent introns in vivo. RNA 4: 709–718.
Jamison, S.F., A. Crow, and M.A. Garcia-Blanco. 1992. The spliceosome assembly pathway in mammalian extracts. Mol. Cell. Biol. 12: 4279–4287.
Jamison, S.F., Z. Pasman, J. Wang, C.L. Will, R. Lührmann, J.L. Manley, and M.A. Garcia-Blanco. 1995. U1 snRNPs—ASF/SF2 interaction and 5′ splice site recognition: Characterization of required elements. Nucleic Acids Res. 23: 3260–3267.
Knudsen, H. and P.E. Nielsen. 1996. Antisense properties of duplex- and triplex-forming PNAs. Nucleic Acids Res. 24: 494–500.
Kohtz, J.D., S.F. Jamison, C.L. Will, P. Zuo, R. Lührmann, M.A. Garcia-Blanco, and J.L. Manley. 1994. Protein-protein interactions and 5′-splice-site recognition in mammalian mRNA precursors. Nature 368: 119–124.
Kolossova, I. and R.A. Padgett. 1997. U11 snRNA interacts in vivo with the 5′ splice site of U12-dependent (AU-AC) pre-mRNA introns. RNA 3: 227–233.
Konarska, M.M. 1989. Analysis of splicing complexes and small nuclear ribonucleoprotein particles by native gel electrophoresis. Methods Enzymol. 180: 442–453.
Konarska, M.M. and P.A. Sharp. 1987. Interactions between small nuclear ribonucleoprotein particles in formation of spliceosomes. Cell 49: 763–774.
Lamond, A.I., B.S. Sroou, U. Ryder, and J. Hamm. 1989. Probing the structure and function of U2 snRNP with antisense oligonucleotides made of 2′-OMe. Cell 58: 383–390.
Liao, X.C., H.V. Colot, Y. Wang, and M. Rosbash. 1992. Requirement for U2 snRNA addition to yeast pre-mRNA. Nucleic Acids Res. 20: 4237–4245.
Madhani, H.D. and C. Guthrie. 1992. A novel base-pairing interaction between U2 and U6 snRNAs suggests a mechanism for the catalytic activation of the spliceosome. Cell 71: 803–817.
———. 1994. Dynamic RNA-RNA interactions in the spliceosome. Annu. Rev. Genet. 28: 1–26.
McNally, L.M. and M.T. McNally. 1998. An RNA splicing enhancer-like sequence is a component of a splicing inhibitor element from Rous sarcoma virus. Mol. Cell. Biol. 18: 3103–3111.
Michaud, S. and R. Reed. 1991. An ATP-independent complex commits pre-mRNA to the mammalian spliceosome assembly pathway. Genes & Dev. 5: 2534–2546.
———. 1993. A functional association between the 5′ and 3′ splice sites is established in the earliest prespliceosome complex [E] in mammals. Genes & Dev. 7: 1008–1020.
Montzka, K.A. and J.A. Steitz. 1988. Additional low-abundance human small nuclear ribonucleoproteins: U11, U12 etc. Proc. Natl. Acad. Sci. 85: 8885–8889.
Moore, M.J. and P.A. Sharp. 1992. Site-specific modification of pre-mRNA: The 2′-hydroxyl groups at the splice sites. Science 256: 992–997.
Moore, M.J., C.C. Query, and P.A. Sharp. 1993. Splicing precursors to mRNAs by the spliceosome. In The RNA world (ed. R.F. Gesteland and J.F. Atkins), pp. 303–357. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
Query, C.C., M.J. Moore, and P.A. Sharp. 1994. Branch nucleophile selection in pre-mRNA splicing: Evidence for the bulged duplex model. Genes & Dev. 8: 587–597.
Ruby, S.W. and J. Abeelson. 1988. An early hierarchic role of U1 small nuclear ribonucleoprotein in spliceosome assembly. Cell 52: 207–219.
Seiwert, S.D. and J.A. Steitz. 1993. Uncoupling two functions of the U1 small nuclear ribonucleoprotein particle during in vitro splicing. Mol. Cell. Biol. 13: 3135–3145.
Séraphin, B. and M. Rosbash. 1989. Identification of functional U1 snRNA—pre-mRNA complexes committed to spliceosome assembly and splicing. Cell 59: 349–358.
———. 1991. The yeast branchpoint sequence is not required for the formation of a stable U1 snRNA—pre-mRNA complex and is recognized in the absence of U2 snRNA. EMBO J. 10: 1209–1216.
Sharp, P.A. and C.B. Burge. 1997. Classification of introns: U2 type or U12 type. Cell 91: 875–879.
Sołnick, D. 1985. Trans splicing of mRNA precursors. Cell 42: 157–164.
Staknis, D. and R. Reed. 1994. SR proteins promote the first specific recognition of pre-mRNA and are present together with the U1 small nuclear ribonucleoprotein particle in a general splicing enhancer complex. Mol. Cell. Biol. 14: 7670–7682.
Staley, J.P. and C. Guthrie. 1999. An RNA switch at the 5′ splice site requires ATP and the DEAD box protein Prp28p. Mol. Cell 3: 55–64.
Sun, J.-S. and J.L. Manley. 1995. A novel U2–U6 snRNA structure is necessary for mammalian mRNA splicing. Genes & Dev. 9: 843–854.
Tarn, W.Y. and J.A. Steitz. 1994. SR proteins can compensate for the loss of U1 snRNA functions in vitro. Genes & Dev. 8: 2704–2717.
———. 1995. Modulation of 5′ splice site choice in the pre-messenger RNA by two distinct steps. Proc. Natl. Acad. Sci. 92: 2504–2508.
———. 1996a. A novel spliceosome containing U11, U12, and U5 snRNPs excises a minor class [AT-AC] intron in vitro. Cell 84: 801–811.
———. 1996b. Highly divergent U4 and U6 small nuclear RNAs required for splicing rare AT-AC introns. Science 273: 1824–1832.
———. 1997. Pre-mRNA splicing: The discovery of a new spliceosome doubles the challenge. Trends Biochem. Sci. 22: 132–137.
Umen, J.G. and C. Guthrie. 1995. The second catalytic step of pre-mRNA splicing. RNA 1: 869–885.
Wassarman, D.A. and J.A. Steitz. 1992. Interaction of small nuclear RNA’s with precursor messenger RNA during in vitro splicing. Science 257: 1918–1925.

Wassarman, K.M. and J.A. Steitz. 1992. The low-abundance U11 and U12 small nuclear ribonucleoproteins [snRNPs] interact to form a two-snRNP complex. Mol. Cell. Biol. 12: 1276–1285.

Wu, J.Y. and T. Maniatis. 1993. Specific interactions between proteins implicated in splice site selection and regulated alternative splicing. Cell 75: 1061–1070.

Wu, Q. and A.R. Krainer. 1996. U1-mediated exon definition interactions between AT-AC and GT-AG introns. Science 274: 1005–1008.

———. 1998. Purine-rich enhancers function in the AT-AC pre-mRNA splicing pathway and do so independently of intact U1 snRNP. RNA 4: 1664–1673.

Yu, Y.-T. and J.A. Steitz. 1997. Site-specific crosslinking of mammalian U11 and U6atac to the 5’ splice site of an AT-AC intron. Proc. Natl. Acad. Sci. 94: 6030–6035.

Yu, Y.-T., M.-D. Shu, and J.A. Steitz. 1998. Modifications of U2 snRNA are required for snRNP assembly and pre-mRNA splicing. EMBO J. 17: 5783–5795.

Zhuang, Y. and A.M. Weiner. 1989. A compensatory base change in human U2 snRNA can suppress a branch site mutation. Genes & Dev. 3: 1545–1552.
Initial recognition of U12-dependent introns requires both U11/5′ splice-site and U12/branchpoint interactions

Mikko J. Frilander and Joan A. Steitz

Genes Dev. 1999, 13: