A quantum model for collective recoil lasing

R. Bonifacio, M.M. Cola and N. Piovella

Dipartimento di Fisica, Università degli Studi di Milano,
INFM and INFN, Via Celoria 16, Milano I-20133, Italy.

Abstract

Free Electron Laser (FEL) and Collective Atomic Recoil Laser (CARL) are described by the same model of classical equations for properly defined scaled variables. These equations are extended to the quantum domain describing the particle’s motion by a Schrödinger equation coupled to a self-consistent radiation field. The model depends on a single collective parameter \(\tilde{\rho} \) which represents the maximum number of photons emitted per particle. We demonstrate that the classical model is recovered in the limit \(\tilde{\rho} \gg 1 \), in which the Wigner function associated to the Schrödinger equation obeys to the classical Vlasov equation. On the contrary, for \(\tilde{\rho} \leq 1 \), a new quantum regime is obtained in which both FELs and CARLs behave as a two-state system coupled to the self-consistent radiation field and described by Maxwell-Bloch equations.
I. INTRODUCTION

Apparently very different systems as High-Gain Free Electron Laser (FEL) [1] and Collective Atomic Recoil Laser (CARL) [2] exhibit similar behaviors, showing self-bunching and exponential enhancement of the emitted radiation. Originally conceived in a semiclassical framework, they can be as well described quantum-mechanically [3, 4, 5, 6, 7, 8]. However, it is not explicitly evident how to obtain the classical limit starting from the quantum description. First attempts to give a quantum description of the FEL have been proposed in the 80s, starting from a canonical quantization of the \(N \)-particle Hamiltonian in the Heisenberg picture, to study photon statistics and quantum initialization from vacuum in the linear regime [4, 9]. In 1988, Preparata proposed a quantum field theory of FEL [3], in which he has shown that, for \(N \gg 1 \), the FEL dynamics is solved by a single-electron Schrödinger equation coupled to a self-consistent radiation mode. The same model has been recently obtained to describe CARL from a Bose-Einstein condensate (BEC) at zero temperature [6, 8]. Furthermore, it has been also proved experimentally [10, 11, 12] that CARL in a BEC exhibits quantum recoil effects when the average recoil velocity remains less than the photon recoil limit.

In this Letter we start from the classical model describing both CARLs and FELs and we extend it to the quantum realm showing the correspondence between the Preparata model [3] and the CARL-BEC model [10]. In particular, it is possible to derive an equation for the Wigner function of the \(N \)-particle system. The Wigner function obeys to a finite difference equation which reduces to the classical Vlasov equation [13] in the limit in which the number of photons emitted per particle is much larger than unity. In the opposite limit, both CARLs and FELs behave as a two-state system [15, 16, 17] described by the well-known Maxwell-Bloch equations [18].

II. CARL-FEL MODEL

Apparently the physics of FEL and CARL appears to be quite different. The first describes a relativistic high current electron beam with energy \(mc^2\gamma_0 \), injected in a magnet (’wiggler’) with a transverse, static magnetic field \(B_w \) and periodicity \(\lambda_w \), which radiates in the forward direction at the wavelength \(\lambda \sim \lambda_w(1 + a_w^2)/2\gamma_0^2 \), where \(a_w = eB_w/mc^2k_w \) is
the wiggler parameter and \(k_w = 2\pi/\lambda_w \). Instead, CARL consists of a collection of two level atoms in a high-Q ring cavity driven by a far-detuned laser pump of frequency \(\omega_p \) which radiates at the frequency \(\omega \sim \omega_p \) in the direction opposite to the pump. In both cases the radiation process arises from a collective instability which originates a symmetry breaking in the spatial distribution, i.e. a self-bunching of particles which group in regions smaller than the wavelength.

It can be shown that, under suitable conditions and introducing proper dimensionless variables, the dynamics of both FELs and CARLs is described by the following Hamiltonian

\[
H = \sum_{j=1}^{N} \left[\frac{p_j^2}{\bar{\rho}} + i\sqrt{\frac{\bar{\rho}}{2N}} \left(a^\dagger e^{-i\theta_j} - \text{h.c.} \right) \right] - \frac{\delta}{\bar{\rho}} a^\dagger a, \tag{1}
\]

where \(\theta_j \) and \(p_j \) are the phase operator of the \(j \)-th particle and its conjugate momentum operator, obeying \([\theta_j, p_{j'}] = i\delta_{jj'}\). In Eq. (1), \(a \) and \(a^\dagger \) are annihilation and creation operators for the forward radiation mode photon, with \([a, a^\dagger] = 1\). Notice that the dynamics described by Eq. (1) depends only on the parameter \(\bar{\rho} \) and on the detuning \(\delta \), properly defined for the two systems:

- For FELs, \(\bar{\rho} = q\rho_F \) and \(\delta = q(\gamma_0 - \gamma_r)/\gamma_r \), where \(q = mc\gamma_r/hk \), \(\gamma_r = \sqrt{(\lambda_w/2\lambda)(1 + \alpha_w^2)} \) is the resonant energy and \(\rho_F = (1/\gamma_r)(a_w/4ck_w)^{2/3}(e^2n/m\epsilon_0)^{1/3} \) is the BPN parameter for a FEL \[1\], \(\theta = (k_w + k)z - ckt \), \(p = q(\gamma - \gamma_0)/\gamma_r \) and \(k = 2\pi/\lambda \).

- For CARLs, \(\bar{\rho} = \rho_C \) and \(\delta = (\omega_p - \omega)/\omega_R \), where \(\omega_R = 2hk^2/m \) is the recoil frequency, \(\rho_C = (S_0/\omega_R)^{2/3}(\omega d^2n/2me_0)^{1/3} \), \(S_0 = \Delta\Omega/[2(\Gamma^2 + \Delta^2 + \Omega^2)] \), \(\Omega \) is the pump Rabi frequency, \(\Delta \) is the pump-atom detuning, \(\Gamma \) is natural decay constant of the atomic transition and \(d \) is the dipole matrix element \[14\]. Finally, \(\theta = 2kz \) and \(p = m v_z/2hk \), where \(v_z \) is the longitudinal atomic velocity.

In these definitions, \(n = N/V \) is the particle density in the radiation volume \(V \) and \(m \) is the particle mass. Notice that in both cases \(\bar{\rho} \) scales as \(n^{1/3} \), i.e. as the reciprocal of the inter-particle distance. Introducing \(\bar{\rho}_j = (2/\bar{\rho})p_j \) and \(A = (2/N\bar{\rho})^{1/2}a \), the Heisenberg equations associated with Eq. (1) are \[1, 2\]:

\[
\frac{d\theta_j}{d\tau} = \bar{p}_j \tag{2}
\]

\[
\frac{d\bar{p}_j}{d\tau} = -\left(A e^{i\theta_j} + \text{c.c.} \right) \tag{3}
\]
\[\frac{dA}{d\tau} = \frac{1}{N} \sum_{i=1}^{N} e^{-i\theta_j} + \frac{i\delta}{\bar{\rho}} A, \]

(4)

where \(j = 1 \ldots N \) and \(\tau = \omega_R \rho_C t \) for CARL whereas \(\tau = (4\pi \rho_F / \lambda_w) z \) for FEL. Considering the operators \(\theta_j, \bar{\rho}_j \) and \(A \) in Eqs. (2)-(4) as c-numbers, one obtain the well-known classical description for FEL and CARL. The scaling of Eqs. (2)-(4) is called ‘universal’ in the sense that, assuming resonance (i.e. \(\delta = 0 \)), the equations do not contain any parameter. Hence, the scaling law of the various physical quantities can be obtained from their definition in term of \(\bar{\rho} \). In particular, from the definition of \(A \) and \(\bar{\rho} \) it follows that the photon number per particle and the momentum recoil are proportional to \(\bar{\rho} \), both for FELs and CARLs. Hence, it is expected that when \(\bar{\rho} \gg 1 \) the system behaves classically, whereas for \(\bar{\rho} \leq 1 \) quantum effects becomes relevant. Notice that \(|A|^2 + N^{-1} \sum_j \bar{\rho}_j \) is a constant of motion in Eqs. (2)-(4), i.e. the radiated intensity is due to the average recoil.

III. QUANTUM CARL-FEL MODEL

In ref. [3] Preparata, using quantum field theory, has shown that the collective dynamics of the system of \(N \gg 1 \) electrons in an FEL can be described by means of a single complex scalar quantum field whose behavior is governed by a Schrödinger-type equation in the self-consistent radiation field, which originates a pendulum-like potential:

\[i \frac{\partial \psi}{\partial \tau} = -\frac{1}{\bar{\rho}} \frac{\partial^2 \psi}{\partial \theta^2} - \frac{i\bar{\rho}}{2} \left[Ae^{i\theta} - c.c. \right] \psi \]

(5)

\[\frac{dA}{d\tau} = \int_{0}^{2\pi} d\theta |\psi(\theta, \tau)|^2 e^{-i\theta} + \frac{i\delta}{\bar{\rho}} A, \]

(6)

where \(\psi \) is normalized to one, i.e. \(\int_{0}^{2\pi} d\theta |\psi(\theta, \tau)|^2 = 1 \). Note that Eq. (5) is the Schrödinger equation associated to the Hamiltonian (11) and Eq. (6) corresponds to Eq. (4) when the classical average of \(e^{-i\theta} \) is replaced by the quantum ensemble average. Quoting ref. [3], Eqs. (5) and (6) are derived if one “formulate the many-electron problem in the language of quantum field theory and uses the large number \(N \) of electrons to evaluate the resulting path integral by saddle-point techniques”. Recently, the same model of Eqs. (5) and (6) has been used to describe CARL from a BEC [6, 8, 10]. Hence, we propose the nonlinear system of Eqs. (5) and (6) as the quantum extension of the CARL-FEL classical model. We now show that the classical equations (2)-(4) are recovered in the limit \(\bar{\rho} \gg 1 \).

4
IV. WIGNER FUNCTION APPROACH

Let’s consider the standard definition of the Wigner function for a state with wave function $\psi(\theta, \tau)$:

$$W(\theta, p, \tau) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} d\xi e^{i\xi p} \psi^* \left(\theta - \frac{\xi}{2}, \tau \right) \psi \left(\theta + \frac{\xi}{2}, \tau \right),$$

so that

$$\int_{-\infty}^{+\infty} dp W(\theta, p, \tau) = |\psi(\theta, \tau)|^2.$$

One can show that Eq.(5) is equivalent to the following finite difference equation for the quasi-probability distribution $W(\theta, \bar{p}, \tau)$:

$$\frac{\partial W}{\partial \tau} + \bar{p} \frac{\partial W}{\partial \theta} - \frac{\bar{\rho}}{2} \left[Ae^{i\theta} + \text{c.c.} \right]\left[W \left(\theta, \bar{p} + \frac{1}{\bar{\rho}}, \tau \right) - W \left(\theta, \bar{p} - \frac{1}{\bar{\rho}}, \tau \right) \right] = 0.$$

Using Eq. (8), Eq. (6) becomes:

$$\frac{dA}{d\tau} = \int_{-\infty}^{+\infty} d\bar{p} \int_{0}^{2\pi} d\theta W(\theta, \bar{p}, \tau) e^{-i\theta} + \frac{i\delta}{\bar{\rho}} A.$$

We underline again that Eqs.(9) and (10) are equivalent to Eqs.(5) and (6) using the Wigner function representation. In the right hand side of Eq. (9), the incremental ratio $[W(\theta, \bar{p} + \epsilon) - W(\theta, \bar{p} - \epsilon)]/(2\epsilon) \to \partial W(\theta, \bar{p})/\partial \bar{p}$ when $\epsilon = 1/\bar{\rho} \to 0$. Hence, for $\bar{\rho} \gg 1$ Eq. (9) becomes the Vlasov equation:

$$\frac{\partial W}{\partial \tau} + \bar{p} \frac{\partial W}{\partial \theta} - \left[Ae^{i\theta} + \text{c.c.} \right]\frac{\partial W}{\partial \bar{p}} = 0.$$

Eqs. (10) and (11) are equivalent to the classical Eqs. (2)-(4). This means that the particles behave classically, following a Newtonian motion, when $\bar{\rho} \gg 1$ i.e. when the average number of photons scattered per particle is much larger than unity. In this limit, the quantum recoil effects due to the single photon scattering process is negligible. On the contrary, a quantum regime of CARL or FEL occurs when $\bar{\rho} \leq 1$, in which each particle scatters only one photon.

In fact, expanding the wave function in Fourier series as

$$\psi(\theta, \tau) = \frac{1}{\sqrt{2\pi}} \sum_{n} c_n(\tau)e^{in(\theta + \delta \tau)}, \quad n = -\infty, \ldots, +\infty,$$

and inserting this ansatz in Eqs.(5) and (6), one can easily obtain the following closed set of equations for $\varrho_{m,n}(\tau) = c_m(\tau)^* c_n(\tau)$:

$$\frac{d\varrho_{m,n}}{d\tau} = \frac{i}{\bar{\rho}} (m - n) (\delta + m + n) \varrho_{m,n} + \frac{\bar{\rho}}{2} \left[\bar{A} \left(\varrho_{m+1,n} - \varrho_{m,n-1} \right) + \bar{A}^* \left(\varrho_{m,n+1} - \varrho_{m,n-1} \right) \right]$$

$$\frac{d\bar{A}}{d\tau} = \sum_{n=-\infty}^{\infty} \varrho_{n-1,n}. $$
FIG. 1: Numerical solution of Eq.(13) and (14) for \(\bar{\rho} = 10 \) (first row), \(\bar{\rho} = 1 \) (second row) and \(\bar{\rho} = 0.2 \) (third row). The other parameters are \(\delta = 1, A(0) = 10^{-4} \) and \(c_n(0) = \delta_n \). Left column: dimensionless radiation intensity \(|A|^2 \) vs. \(\tau \); central and right column: occupation probabilities \(P_n = |c_n|^2 \) vs. \(n \) and density distribution \(|\psi|^2 \) vs. \(\theta \), for \(\tau \) near the first maximum of \(|A|^2 \).

where \(\tilde{A} = Ae^{-i(\delta/\bar{\rho})\tau} \). These equations are equivalent to Eqs.(5) and (6) for the density matrix in the momentum representation and have been discussed in ref.[16]. Fig.1 shows the numerical solution of Eq.(13) and (14) for \(\bar{\rho} = 10 \) (first row), \(\bar{\rho} = 1 \) (second row) and \(\bar{\rho} = 0.2 \) (third row). The other parameters are \(A(0) = 10^{-4} \), \(c_n(0) = \delta_n \) and \(\delta = 1 \), which corresponds to a single photon scattering recoil. In the first column \(|A|^2 \) is plotted as a function of \(\tau \). The central column shows the occupation probabilities \(P_n = |c_n|^2 \) vs. \(n \), whereas the right column shows the density distribution \(|\psi|^2 \) vs. \(\theta \), for a value of \(\tau \) near
the first maximum of $|A|^2$. We note that for $\bar{\rho} = 10$ the system behaves classically: the momentum states are occupied in a range of the order of $\bar{\rho}$ and the average momentum is $\langle p \rangle \approx -\bar{\rho}$, as can be seen from the first row of fig. Furthermore, the particle distribution shows periodic narrow peaks of density. When $\bar{\rho} = 1$, the mainly occupied momentum states are those for $n = 0$ and $n = -1$, corresponding to particles in the initial state or in the recoil state, respectively. Finally, when $\bar{\rho} \ll 1$, the dynamics is that of a pure two-level system. In this limit, if the initially occupied state is the nth momentum state, the only two momentum states involved in the interaction are those for n and $n - 1$, so that Eq. (13) and (14), after defining the ‘polarization’ $S_n = 2q_{n-1,n}$ and the ‘population difference’ $D_n = q_{n,n} - q_{n-1,n-1}$, reduce to the Maxwell-Bloch equations for a two-state system [18]:

$$\frac{dS_n}{d\tau'} = -i\Delta_n S_n + A'D_n$$

$$\frac{dD_n}{d\tau'} = -\frac{1}{2} \left(A'S_n^* + A*S_n\right)$$

$$\frac{dA'}{d\tau'} = S_n.$$

(15)

(16)

(17)

where $\Delta_n = (\delta - 1 + 2n)/\bar{\rho}^{3/2}$, $A' = \sqrt{\bar{\rho}}A$ and $\tau' = \sqrt{\bar{\rho}}\tau$. With this new scaling and assuming resonance (i.e. $\Delta_n = 0$), Eqs. (15)-(17) do not contain any parameter. Hence, the characteristic timescale is ruled by \sqrt{n} instead of $n^{1/3}$ as in the classical case. The quantum regime for CARLs and FELs is analogous to the coherent spontaneous emission regime predicted quantum-mechanically for a two-level system in ref. [19], where a series of optical “2π-pulses” are generated. In fact, assuming resonance (i.e. $\Delta_n = 0$), A' and S_n are real. Hence, we can introduce the “Bloch angle” ϕ such that $S_n = \sin \phi$, $D_n = \cos \phi$. Then, Eqs. (15)-(17) reduce to a pendulum equation $d^2\phi/d\tau'^2 = \sin \phi$ and $d\phi/d\tau' = A'$. Hence, in the quantum regime, the dynamics is that of a pendulum moving away from the unstable equilibrium point ($\phi = 0$) and undergoing periodically a complete revolution (‘2π-pulse’) with angular velocity A'.

Finally, we note that, adopting the same scaling of Eqs. (15)-(17) in Eq. (5), this can be interpreted as a Schrödinger equation for a single particle with a “mass” $\bar{\rho}^{3/2}$ in a self-consistent pendulum potential. This provides an intuitive interpretation of the classical limit, that holds when the particle’s ‘mass’ is large. The strong differences between the quantum and classical regimes are evident from Fig.

V. CONCLUSIONS

In this Letter we presented a unified quantum model that stands for apparently very different systems as FEL and CARL. The dynamics is described by a Schrödinger equation in a self-consistent pendulum potential and is ruled by an unique parameter $\bar{\rho}$ which represents the maximum number of photons scattered per particle and the maximum momentum recoil in units of the photon recoil momentum. The Schrödinger equation can be transformed in an exact equation for the Wigner quasi-probability distribution. The main results are the following: i) The classical model is recovered in the limit $\bar{\rho} \gg 1$; this because the finite difference equation for the Wigner function reduces to the classical Vlasov equation. ii) In the limit $\bar{\rho} \leq 1$ a completely different dynamical regime occurs (see Fig. 1): due to momentum quantization the system reduces to only two momentum states obeying to the Maxwell-Bloch equations which describe the dynamics of a two-level atomic system coupled to a coherent field.

VI. ACKNOWLEDGEMENTS

One of us (RB) has to acknowledge a big mistake he made almost 20 years ago when Giuliano Preparata, a well-known field theorist, presented to him his general “Quantum Field Theory of a Free Electron Laser” [3]. RB did not understand this work thinking it was incorrect. On the contrary, Preparata’s theory was perfectly correct, as recognized in this Letter, which is dedicated to his memory.

[1] BONIFACIO R., PELLEGRINI C. and NARDUCCI L., Opt. Commun. 50 (1984) 373.
[2] BONIFACIO R., DE SALVO SOUZA L., Nucl. Instrum. and Meth. in Phys. Res. A 341 (1994) 360; BONIFACIO R., DE SALVO SOUZA L., NARDUCCI L. and D’ANGELO E.J., Phys. Rev.A 50 (1994) 1716.
[3] PREPARATA G., Phys. Rev.A 38 (1988) 233.
[4] BONIFACIO R. and CASAGRANDE F., Optics Comm. 50 (1984) 251.
[5] BONIFACIO R., Optics Comm. 146 (1998) 236.
[6] MOORE M.G., ZOBAY O. and MEYSTRE P., Phys. Rev.A 60 (1999) 1491.
[7] LING H.Y., PU H., BAKSMATY L. and BIGELOW N.P., Phys. Rev. A 63 (2001) 053810.
[8] PIOVELLA N., COLA M., BONIFACIO R., Phys. Rev. A 67 (2003) 013817.
[9] BECKER W. and MCIVER J.K., Phys. Rev. A 28 (1983) 1838.
[10] BONIFACIO R., CATALIOTTI F.S., COLA M., FALANI L., FORT C., PIOVELLA N., INGUSCIO M., Optics Comm. 233 (2004) 155.
[11] INOUYE S. et al., Science 285 (1999) 571.
[12] KOZUMA M. et al., Science 286 (1999) 2309; INOUYE S. et al., Nature 402 (1999) 641.
[13] BONIFACIO R., VERKERK P., Optics Comm. 124 (1996) 489.
[14] BONIFACIO R. and DE SALVO SOUZA L., Optics Comm. 115 (1995) 505.
[15] INOUYE S. et al., Phys. Rev. Lett. 85 (2000) 4225.
[16] PIOVELLA N., GATELLI M. and BONIFACIO R., Optics Comm. 194 (2001) 167.
[17] AVETISSIAN H.K. and MKRTCHIAN G.F., Phys. Rev. E 65 (2002) 046505.
[18] ARECCHI F.T., BONIFACIO R., IEEE Quantum Electron. 1 (1965) 169.
[19] BONIFACIO R. and PREPARATA G., Phys. Rev. A 2 (1970) 336.