Redox-active metal–metal bonds between lanthanides in dimetallofullerenes

Alexey A. Popov*
Leibniz Institute for Solid State and Materials Research, Helmholtzstraße 20, 01069 Dresden, Germany

Abstract
The empty space inside a fullerene cage can be filled with a variety of species, including metal dimers. Encapsulation of Sc$_2$, Y$_2$, or lanthanide dimers leads to dimetallofullerenes featuring metal–metal bonding molecular orbital. Such an orbital can be either HOMO or LUMO of the dimetallofullerene molecule. In certain cases, single-occupied metal–metal bonding orbital can be also stabilized. This review is focused on redox processes involving variation of the electron population of metal–metal bonding orbitals in dimetallofullerenes.

Introduction
The encapsulation of metal atoms by carbon cages in endohedral metallofullerenes (EMFs) leads to a plethora of interesting chemical and physical phenomena [1–5]. High chemical and thermal stability of fullerene cage protects endohedral entities from the environment and can stabilize unusual species, which cannot exist otherwise. Metal atoms enclosed inside a fullerene transfer their valence electrons to the carbon cage, resulting in “salts” with cationic metals and anionic fullerene cages. Electrochemistry has been traditionally used as a relatively simple and yet very powerful technique to study electronic structures of EMFs [1,6•].

Empty fullerenes are good electron acceptors and undergo multiple single-electron redox steps in solutions [7]. Encapsulation of metal atoms and clusters results in more complex redox behavior of EMFs since both the carbon cage and the endohedral cluster can exhibit redox activity. Especially interesting are endohedral (in cavea) electron transfer processes, in which the endohedral cluster is redox-active, whereas the carbon cage acts as an inert container transparent to electrons [8,9•]. An obvious prerequisite for the endohedral redox activity in EMF molecules is a localization of frontier molecular orbitals (HOMO or LUMO) on endohedral species. Experimentally, the endohedral redox processes can be identified via unexpected redox behavior (e.g., shifted potential when compared to analogous molecules) or via spectroscopic characterization of the charged species. Electron paramagnetic resonance (EPR) spectroscopy is an especially powerful tool, since EMFs with endohedral redox activity often exhibit rich hyperfine structure with large coupling constants in their ion radicals [10•].

*Corresponding author: Popov, Alexey A. (a.popov@ifw-dresden.de).
This review is focused on the electrochemistry of EMFs featuring redox-active metal–metal bonds, and in particular on dimetallofullerenes (di-EMFs hereafter). First, we describe the electronic structure of di-EMFs from the molecular orbital (MO) point of view. This description forms a basis for the understanding of the redox behavior of three types of di-EMF: di-EMFs without metal–metal bonds, but with metal-based LUMO; di-EMFs with two-electron metal–metal bonds; and di-EMF with single-electron metal–metal bonds. Discussion of electrochemical properties of di-EMF is accompanied by the results of EPR spectroscopic measurements of their radical species.

Metal–metal bonding in dimetallofullerenes: theoretical description

Computational studies of di-EMF with Sc, Y, or lanthanides (metal is designated as M hereafter) show that these molecules feature metal–metal bonding molecular orbital, whose energy is close to the energy of the frontier cage-based MOs [11,12]. Whether the M–M bonding MO in a given di-EMF is the HOMO or the LUMO depends on the energy match between the metal-based and fullerene-based orbitals.

Figure 1a shows MO energy levels of two fullerene cages typical for di-EMFs, C_{80}\text{-}\text{i}_{h}(7) and C_{82}\text{-}\text{C}_{3v}(8) (fullerene isomers are designated by their point group symmetry and the number in accordance with Fowler–Manolopoulos spiral algorithm [13]). Characteristic feature of C_{80}\text{-}\text{i}_{h}(7) is the 4-fold degenerate orbital occupied by only two electrons. Jahn–Teller distortion reduces the symmetry and introduces a small gap between the HOMO and the 3-fold degenerate LUMO. The electronic structure of the molecule is very unstable, and C_{80}\text{-}\text{i}_{h}(7) has never been obtained as an empty fullerene. However, if the LUMO is filled with six electrons, a stable structure with large band gap is obtained [14]. C_{80}\text{-}\text{i}_{h}(7) is thus an archetypical cage for EMFs with 6-fold electron transfer from endohedral species to the fullerene [3].

C_{82}\text{-}\text{C}_{3v}(8) has small HOMO–LUMO gap, two low-lying unoccupied MOs, and a significant gap between the LUMO+1 and LUMO+2. The electronic structure of this fullerene is stabilized by addition of four electrons [15]. C_{82}\text{-}\text{C}_{3v}(8) (along with C_{82}\text{-}\text{C}_{6}(6), which has similar electronic structure) is therefore the most abundant fullerene cage for EMFs with 4-fold electron transfer.

Also shown in Figure 1 are the energy levels of the occupied valence MOs in the two lanthanide dimers, La_{2} and Lu_{2}. La_{2} has closed-shell electronic structure with six electrons occupying three MOs (hence (6s)\sigma^{2}(5d)\pi^{4} configuration) [16]. The energies of these MOs are considerably higher than the energy of the LUMO in C_{80}\text{-}\text{i}_{h}(7), so when the La_{2} dimer is encapsulated inside this cage, a complete transfer of all six valence electrons to the fullerene occurs. The formal charge distribution in the resulting di-EMF molecule is then (La^{3+})_{2}@C_{80}^{6–}, the HOMO is localized on the fullerene, whereas the LUMO resembles the (6s)\sigma^{2} orbital of the pristine La_{2} dimer (Figure 1b). Thus, there is no La–La bonding in the non-charged La_{2}@C_{80}, but the LUMO of the molecule has the La–La bonding character, and the bond between metal atoms can be formed if the LUMO is populated by a surplus electron.
The lanthanide contraction results in a substantially different electronic structure of Lu$_2$ when compared to that of La$_2$. The ground state of Lu$_2$ is a triplet, (6s)2(6p)2(5d)2[16], with a significant splitting of the spin-up and spin-down orbitals (Figure 1a). These orbitals span a broader energy range than in La$_2$. In particular, the (6s)2 level in Lu$_2$ is ca. 2 eV lower in energy than in La$_2$ and, even more importantly, it has lower energy than the LUMO of C$_{80}$h$_6$(7). As a result, the hypothetical Lu$_2$@C$_{80}$h$_6$(7) has an open-shell electronic structure with five electrons transferred from Lu$_2$ to the C$_{80}$h$_6$ cage [17•]. C$_{82}$−C$_{34}$(8) is a more suitable host for the Lu$_2$ dimer than C$_{80}$h$_6$(7). In Lu$_2$@C$_{82}$h$_6$C$_3$v(8), four electrons from the (6s)2(5d)2[17•] levels of Lu$_2$ are donated to the fullerene cage, whereas the (6s)2 orbital of Lu$_2$ remains occupied. The formal charge distribution in the di-EMF is then (Lu$^{2+}$)$_2$@C$_{82}$$^{4-}$. The Lu–Lu bonding orbital resembling the (6s)2 MO of Lu$_2$ is the HOMO of Lu$_2$@C$_{82}$, whereas the LUMO is localized on the fullerene cage (Figure 1b).

Redox-active metal–metal bonds in dimetallofullerenes

Dimetallofullerenes with the metal-based LUMO

Early lanthanides, such as La, Ce, and less studied Pr and Nd, form di-EMFs with the transfer of all six valence electrons to the carbon cage. In addition to the C$_{80}$h$_6$(7) cage, several other fullerenes can act as acceptors of six electrons: La and/or Ce di-EMFs were reported for C$_{72}$h$_2$(10611) [18,19], C$_{76}$h$_6$(17490) [20], C$_{78}$h$_2$(5) [21,22], C$_{80}$h$_2$(6) [23], and C$_{100}$h$_4$(450) [24]. In all these di-EMFs, the M–M bonding MO is the LUMO, and hence metal–metal bonds are expected to be formed in the anionic state(s).

Electrochemical studies of La$_2$@C$_{2n}$ (2n = 72, 78, 80) showed that these di-EMFs exhibit 2–3 reversible single-electron reduction steps. The first reduction of La$_2$@C$_{80}$h$_6$ occurs at ≈−0.31 V (all redox potentials discussed hereafter are measured in o-dichlorobenzene and are referred to the Fe(Cp)$_2$+/0 redox couple) [25]. Likewise, the first reductions of La$_2$@C$_{72}$h$_2$ (−0.68 V) [26], La$_2$@C$_{78}$ (−0.40 V) [22], and La$_2$@C$_{80}$h$_2$(5) (−0.36 V) [23] are significantly more positive than for the EMFs with fullerene-based reductions (usually more negative than −1 V [1]). The first reduction potentials of analogous Ce di-EMFs are cathodically shifted by 0.04–0.13 V versus isostructural La di-EMFs (Table 1) [21,23,27,28].

Besides the value of the first reduction potential and its metal-dependence, another indication of the metal-based reduction in La and Ce di-EMFs is the difference between the first and second reduction potentials, which amounts to 1.23–1.44 V (Table 1). For a fullerene redox process based on the same MO, the difference between the first and second reduction steps is usually within 0.4–0.5 V. The metal-based redox process results in a much larger potential difference for the consequent redox steps, because these steps are either based on the M–M bonding MO (with a much higher on-site Coulomb interaction than in the fullerene) or affect different MOs (one metal-based, and one delocalized over the carbon cage). Thus, both the high potential of the first reduction step and the large gap between the first and the second reduction potentials point to the population of the M–M bonding MO and hence formation of the single-electron M–M bond at the first reduction step.

Formation of the single-occupied La–La bonding MO in the [La$_2$@C$_{80}$h$_6$]$^{−}$ anion radical is further confirmed by EPR spectroscopy [29]. The M–M bonding orbitals in di-EMFs have
hybrid spd character with large s-contribution, and population of such MOs by a single electron is expected to give paramagnetic species with large metal-based hyperfine constants [10••,11]. Indeed, huge isotropic 139La coupling constant of 364 G was reported in the radical anion $[La_2@C_{80}-I]_{-\bullet}$ [29,30].

Dimetallofullerenes with metal-based HOMO

Due to the lanthanide contraction, the metals close to the end of the lanthanide row exhibit more covalent character in their compounds. In di-EMFs, Er and Lu give away only two electrons to the fullerene cage (the formal charge of the fullerene cage is thus -4). The remaining metal-based valence electrons then form the M–M bond via the sigma-type spd-hybrid MO. The most abundantly produced di-EMFs with four-fold charged fullerene cages are the two isomers of C$_{82}$, C$_{5}\times(6)$ and $C_{3v}\times(8)$ [31–34]. Structural characterization was also reported for several other Lu di-EMFs, including Lu$_2@C_{76}$–$T_d(1)$ [35], Lu$_2@C_{84}$–$D_{2d}(23)$, and Lu$_2@C_{86}$–$C_{2v}(9)$ [31]. If the M–M bonding MO is the HOMO (as predicted by theory), these di-EMFs should feature a metal–metal bond already in the pristine non-charged state, and this bond should be electrochemically active in the oxidation processes.

The experimental confirmation of the metal–metal bonding in di-EMFs is not very straightforward. The formal charge of the fullerene cage in M$_2@C_{82}$ can be deduced from Vis-NIR spectroscopic measurements. UV-vis-NIR absorption spectra of the di-EMFs with the same fullerene cage and different metals are virtually identical. Presumably, the excitation originating from the metal-based HOMO have very low intensity and cannot be observed, resulting in the dominance of the $\pi \rightarrow \pi^*$ transitions in the fullerene cages. Similar spectra are also observed for sulfide clusterfullerenes M$_2S@C_{82}$ [32••,36] or carbide clusterfullerenes M$_2C_2@C_{82}$ [12,37]. In cluster-fullerenes, the non-metal endohedral entity bears a negative charge (C$_2^2-$, O$^{2-}$, or S$^{2-}$), the metal atoms are in their 3+ state, whereas the cage has the negative charge of -4. Such clusterfullerenes do not feature metal–metal bonds, and their frontier MOs are usually localized on the fullerene cage [6•]. The close resemblance of the absorption spectra of di-EMF and clusterfullerenes proves that the carbon cage in these EMFs has the same formal charge, -4. Thus, $+2$ oxidation state of metal atoms appears natural. However, the presence of the M–M bond does not automatically follow from the oxidation state. X-ray absorption spectra at the M$_{4,5}$ edge (3d→4f excitations commonly used in the studies of lanthanides) did not show substantial difference between Er$_2@C_{82}$ or Er$_2C_2@C_{82}$ [38]. However, both Er$^{2+}$ and Er$^{3+}$ states in EMFs feature the same 4f12 occupation, and therefore absorption at the M$_{4,5}$ edge may be not sensitive enough to the difference in the valence orbital populations.

Electrochemistry provides more straightforward approach to the problem. If the M–M bonding MO is indeed the redox-active HOMO of di-EMFs, the first oxidation potential should exhibit pronounced metal-dependence in contrast to the first reduction potential, which corresponds to the cage-based LUMO and is not expected to vary much from metal to metal. Indeed, electrochemistry reveals pronounced differences in the electronic structure of Er$_3@C_{82}$ and Lu$_3@C_{82}$ [32••]. Their reduction potentials are rather similar (Figure 2a; note that C$_{82}$–C_3 isomer exhibits irreversible reduction steps, whereas reduction steps of C$_{82}$–C_5 isomers are fully reversible). Such a similarity of the potentials points to the fullerene-based
nature of the underlying redox steps, in agreement with DFT prediction. On the contrary, oxidation potentials of Er$_2$@C$_{82}$ and Lu$_2$@C$_{82}$ are strongly metal-dependent. Er$_2$@C$_{82}$ isomers have their first oxidation step at ca. 0.3–0.4 V lower potentials than Lu-counterparts (Table 1). The same trend was observed for M$_2$@C$_{82}$-C$_{3v}$ structures with other metals, including Sc$_2$@C$_{82}$ and mixed-metal ErSc@C$_{82}$ and YLu@C$_{82}$ di-EMFs [32••]. With almost identical reduction potential, they exhibit large variability of the first oxidation potentials (Figure 2b). Metal-dependence of the first oxidation potential in di-EMFs confirms the computationally predicted metal–metal bonding HOMO in these molecules (Figure 2c). Lu has the lowest energy of the M–M bonding HOMO, and hence Lu di-EMFs exhibit the highest oxidation potentials when compared to other metals. In fact, oxidation potentials of Lu-di-EMFs are close to the cage-based oxidation potentials of sulfide clusterfullerenes M$_2$S@C$_{82}$ (Table 1), and it is hard to distinguish if the first oxidation step of Lu$_2$@C$_{82}$ isomers is metal- or fullerene-based. Lower oxidation potentials of di-EMFs with other metals unequivocally point out the metal-based processes.

Single-electron oxidation of di-EMF with M–M bonding HOMO produces a single-occupied metal-based orbital with unprecedented spin properties. Large contribution of metal s-atomic orbital to the M–M HOMO of M$_2$@C$_{82}$ yields a large isotropic hyperfine coupling constant for metals with non-zero nuclear spin in [M$_2$@C$_{82}$]$^{1+}$ cation radicals. A striking example is the cation radical of Sc$_2$@C$_{82}$, which at room temperature in o-dichlorobenzene solution exhibits well-resolved EPR spectrum with the hyperfine structure spanning 2800 G (Figure 2d). Instead of 15 lines expected for two equivalent Sc with nuclear spin of 7/2, experimental spectrum comprises 64 lines caused by additional splitting due to the large 45Sc hyperfine constant, $a(^{45}\text{Sc}) = 199.2$ G [32••]. Formation of the single-electron Er–Er bond in [Er$_2$@C$_{82}$-C$_{3v}$]$^{1+}$ was supported by SQUID magnetometry. The oxidation of Er$_2$@C$_{82}$ strongly modified the spin state of the endohedral Er$_2$ unit, presumably creating a three-center [Er$_{3+}$–e–Er$_{3+}$] system with stronger exchange interactions than in the pristine Er$_2$@C$_{82}$ [32••].

Dimetallofullerenes with single-electron metal–metal bond

Whereas early and late lanthanides tends to form di-EMFs with tri- and di-valent state of metals, respectively, yttrium and lanthanides in the middle part of the lanthanide row (Gd–Ho) give di-EMF with even more peculiar electronic structure. Computational studies of M$_2$@C$_{80}$-I$_6$ (M = Y, Lu) showed that the ground electronic state for these di-EMF is a triplet [17•]. The M–M bonding MO is occupied by a single electron, and another unpaired spin is delocalized over the fullerene cage. The formal charge distribution is then (M$_2$)$^{5+}$@C$_{80}$$^{5-}$. During the extraction of fullerenes from the arc-discharge soot by standard fullerene solvents (such as CS$_2$ or toluene) these molecules remain insoluble, presumably due to polymerization or aggregation with the soot particles.

Electronic structure of such M$_2$@C$_{80}$-I$_6$ di-EMFs can be stabilized by addition of an electron, which yields to closed-shell electronic structure of the fullerene cage, (M$_2$)$^{5+}$@C$_{80}$$^{6-}$ [39]. Indeed, the synthesis of M$_2$@C$_{80}$ derivatives was accomplished when EMFs were extracted from the soot with N,N-dimethylformamide, which is known to form fullerene anions during extraction (Figure 3a) [40,41]. Chemical derivatization with a single
radical group R (R = CF₃ or benzyl CH₂Ph) is another way to quench the cage-based radical in M₂@C₈₀-I₈ [17•,42••]. Finally, addition of an electron is equivalent to substitution of one carbon atom by nitrogen. C₇₉N⁵⁻ is isoelectronic to C₈₀⁶⁻, and stable M₂@C₇₉N compounds were obtained in Dorn’s group for M = Y, Gd, and Tb [43,44]. The common feature of M₂@C₈₀⁻, M₂@C₇₉N, or M₂@C₈₀(R) is the single-electron M–M bond stabilized inside the fullerene. For M = Y, localization of the spin density on the Y–Y bonding MO can be confirmed by EPR spectroscopy, which revealed similar spectra in all three types of EMFs with large isotropic ⁸⁹⁹Y hyperfine coupling constants near of 80 G (Figure 3b,c) [17•,42••,44]. Formation of the single-electron La–La bond in La₂@C₈₀(CH₂Ph) and similar radical monoadducts of La₂@C₈₀-I₈ was also confirmed by EPR spectroscopy and single-crystal X-ray diffraction [45••,46].

Potentially, the half-occupied M–M bonding orbital can be redox active both in reduction and oxidation processes. However, DFT calculations predict large energy difference between occupied and unoccupied counterparts of the MO [42••]. As a result, the occupied component of the M–M bonding MO in La₂@C₈₀(CH₂Ph) is predicted to be the HOMO, whereas the LUMO is localized on the fullerene cage. In Y₂@C₈₀(CH₂Ph), analogous calculations showed metal-based LUMO and fullerene-based HOMO.

Y and Gd–Ho M₂@C₈₀(CH₂Ph) derivatives exhibit virtually identical oxidation potential at +0.51–0.52 V (Table 1, Figure 3d) [32••,47]. The lack of the metal dependence is an indication of the fullerene-based oxidation in these di-EMFs, in agreement with DFT prediction for Y₂@C₈₀(CH₂Ph). With the first oxidation potential at +0.15 V [45••], La₂@C₈₀(CH₂Ph) is an obvious outlier exhibiting the metal-based oxidation. Thus, the metal–metal bonding MO of La₂@C₈₀(CH₂Ph) is depopulated in the oxidation process, whereas for other metals the single-electron M–M bond is not affected.

The first reduction potentials of M₂@C₈₀(CH₂Ph) derivatives are different and span the range from −0.52 V in Y₂@C₈₀(CH₂Ph) to −0.92 V in La₂@C₈₀(CH₂Ph). In the Gd–Ho row, the potential is changing gradually with the size of the lanthanide, more negative values corresponding to larger ionic radii. This behavior is consistent with the metal-based reduction for Y and medium-size lanthanides. Hence, the single-electron M–M bond turns to a two-electron bond in their monoanions. In La₂@C₈₀(CH₂Ph), the process switches to the fullerene-based reduction.

Electrochemical studies of other di-EMFs with single-electron M–M bond were reported so far only for Gd₂@C₇₉N [43]. Its first oxidation potential at +0.51 V is very close to that of M₂@C₈₀(CH₂Ph) derivatives with fullerene-based oxidation (Table 1). The first reduction at −0.96 V is more negative than in any M₂@C₈₀(CH₂Ph), including La₂@C₈₀(CH₂Ph). Computational studies showed that Gd₂@C₇₉N has two low-energy unoccupied MOs, one Gd-based and one delocalized over the fullerene, thus making it hard to distinguish between the fullerene- and metal-based reductions. However, the large difference between the first and the second reduction potentials of almost 1 V (Table 1) indicates that the first reduction of Gd₂@C₇₉N may indeed involve the Gd–Gd bonding MO.
Outlook

The unique environment of endohedral fullerene provides a possibility to stabilize exotic species with unconventional bonding situation, such as lanthanide dimers with metal–metal bonds. Whereas many lanthanide complexes with low oxidation states have been synthesized [48••], no other molecular compounds with lanthanide–lanthanide bonds have been reported so far [49••]. Furthermore, the M–M bonding MOs in dimetallofullerenes are redox active and undergo single-electron reduction or oxidation, which leads to radical species with single-electron M–M bonding MOs. Electrochemistry is thus found to be a convenient technique to study metal–metal bonds in fullerenes. Redox variability of the population of the lanthanide–lanthanide bonding MOs in di-EMFs is very useful for tuning their magnetic properties. The presence of the unpaired valence electron in lanthanide-based di-EMFs results in giant exchange interactions and coupling of local 4f-derived spins and unpaired spin in the M–M bonding MO into a larger “superspin”. If lanthanides with large magnetic anisotropy (such as Dy or Tb) are coupled this way, single molecule magnets with high blocking temperature of magnetization can be obtained [42••]. Semi-occupied M–M bonding MO is also essential for the spin-polarized electronic transport through single fullerene molecules, which can lead to single-molecule electronic and spintronic devices.

Acknowledgments

We acknowledge European Research Council (ERC) under the European Union Horizon 2020 research and innovation programme (grant agreement no 648295 “GraM3”) and Deutsche Forschungsgemeinschaft (grant PO 1602/4-1).

Abbreviations

EMF endohedral metallofullerene

di-EMF dimetallofullerene

MO molecular orbital

HOMO highest occupied molecular orbital

LUMO lowest unoccupied molecular orbital

EPR electron paramagnetic resonance

M–M bond metal–metal bond

Vis-NIR visible and near-infrared

DFT density functional theory.

References and recommended reading

Papers of particular interest, published within the period of review, have been highlighted as:

• Paper of special interest.

•• Paper of outstanding interest.
1. Popov AA, Yang S, Dunsch L. Endohedral fullerenes. Chem Rev. 2013; 113:5989–6113. [PubMed: 23635015]
2. Lu X, Feng L, Akasaka T, Nagase S. Current status and future developments of endohedral metallofullerenes. Chem Soc Rev. 2012; 41:7723–7760. [PubMed: 22907208]
3. Wang T, Wang C. Endohedral metallofullerenes based on spherical I_P-C_{80} cage: molecular structures and paramagnetic properties. Acc Chem Res. 2014; 47:450–458. [PubMed: 24328037]
4. Rodríguez-Fortea A, Balch AL, Poblet JM. Endohedral metallofullerenes: a unique host-guest association. Chem Soc Rev. 2011; 40:3551–3563. [PubMed: 21505658]
5. Yang S, Wei T, Jin F. When metal clusters meet carbon cages: endohedral clusterfullerenes. Chem Soc Rev. 2014; 47:450–458. [PubMed: 24328037]
6. Popov AA. Electrochemistry and frontier molecular orbitals of endohedral metallofullerenes. In: Endohedral Fullerenes: Electron Transfer and Spin. Popov AA, editor. Cham: Springer International Publishing; 2017. 35–62. [The most recent overview of electrochemical properties of endohedral fullerenes, accompanied by the analysis of their molecular orbitals]
7. Echegoyen L, Echegoyen LE. Electrochemistry of fullerenes and their derivatives. Acc Chem Res. 1998; 31:593–601.
8. Popov AA, Dunsch L. Electrochemistry in cavea: endohedral redox reactions of encaged species in fullerenes. J Phys Chem Lett. 2011; 2:786–794.
9. Zhang Y, Popov AA. Transition-metal and rare-earth-metal redox couples inside carbon cages: fullerenes acting as innocent ligands. Organometallics. 2014; 33:4537–4549. [An overview of EMFs exhibiting endohedral electrochemical processes, i.e. featuring redox activity of endohedral clusters]
10. Popov AA. Ion radicals of endohedral metallofullerenes studied by EPR spectroscopy. In: Endohedral Fullerenes: Electron Transfer and Spin. Popov AA, editor. Cham: Springer International Publishing; 2017. 183–198. [An overview of electron paramagnetic resonance studies of ion radicals of endohedral metallofullerenes]
11. Popov AA, Avdoshenko SM, Pendás AM, Dunsch L. Bonding between strongly repulsive metal atoms: an oxymoron made real in a confined space of endohedral metallofullerenes. Chem Commun. 2012; 48:8031–8050.
12. Kurihara H, Lu X, Iiduka Y, Mizorogi N, Slanina Z, Tsuchiya T, Nagase S, Akasaka T. Sc$_2$@C$_{3v}$(8)-C$_{82}$ vs. Sc$_2$C$_2$@C$_{3v}$(8)-C$_{82}$: drastic effect of C$_2$ capture on the redox properties of scandium metallofullerenes. Chem Commun. 2012; 48:1290–1292.
13. Fowler P, Manolopoulos DE. An Atlas of Fullerenes. Oxford, U.K.: Clarendon Press; 1995.
14. Campanera JM, Bo C, Poblet JM. General rule for the stabilization of fullerene cages encapsulating trimetallic nitride templates. Angew Chem Int Ed. 2005; 44:7230–7233.
15. Valencia R, Rodríguez-Fortea A, Poblet JM. Understanding the stabilization of metal carbide endohedral fullerenes M$_2$C$_2$@C$_{82}$ and related systems. J Phys Chem A. 2008; 112:4550–4555. [PubMed: 18438990]
16. Cao X, Dolg M. Pseudopotential study of lanthanum and lutetium dimers. Theor Chem Acc. 2002; 108:143–149.
17. Wang Z, Kitaura R, Shinohara H. Metal-dependent stability of pristine and functionalized unconventional dimetallofullerene M$_2$@I_P-C_{80}. J Phys Chem C. 2014; 118:13953–13958. [A computational study of M$_2$@C$_{80}$ molecules, which revealed unusual triplet ground state with single electron on metal–metal bonding orbital for Y$_2$@C$_{80}$ and Lu$_2$@C$_{80}$]
18. Zhao Y-L, Yu H-T, Lian Y-F. Experimental and theoretical evaluation of structures of Pr$_2$@C$_{72}$ and its functionalized adduct with adamantylidene carbene. RSC Adv. 2016; 6:115113–115119.
19. Stevenson S, Burbank P, Harich K, Sun Z, Dorn HC, van Loosdrecht PHM, deVries MS, Salem JR, Kiang CH, Johnson RD, Bethune DS. La$_2$@C$_{72}$: metal-mediated stabilization of a carbon cage. J Phys Chem A. 1998; 102:2833–2837.
20. Suzuki M, Mizorogi N, Yang T, Uhlik F, Slanina Z, Zhao X, Yamada M, Maeda Y, Hasegawa T, Nagase S, et al. La$_2$@C$_{9}(17\text{~g}90)$-C$_{76}$: a new non-IPR dimetallic metallofullerene featuring unexpectedly weak metal–pentalene interactions. Chem Eur J. 2013; 19:17125–17130. [PubMed: 24307369]
21. Yamada M, Wakahara T, Tsuchiya T, Maeda Y, Kako M, Akasaka T, Yoza K, Horn E, Mizorogi N, Nagase S. Location of the metal atoms in Ce\textsubscript{2}@C\textsubscript{78} and its bis-silylated derivative. Chem Commun. 2008:558–560.

22. Cao BP, Wakahara T, Tsuchiya T, Kondo M, Maeda Y, Rahman GMA, Akasaka T, Kobayashi K, Nagase S, Yamamoto K. Isolation, characterization, and theoretical study of La\textsubscript{2}@C\textsubscript{78}. J Am Chem Soc. 2004; 126:9164–9165. [PubMed: 15281789]

23. Yamada M, Mizorogi N, Tsuchiya T, Akasaka T, Nagase S. Synthesis and characterization of the D\textsubscript{5h} isomer of the endohedral dimetallofullerene Ce\textsubscript{2}@C\textsubscript{80}: two-dimensional circulation of encapsulated metal atoms inside a fullerene cage. Chem Eur J. 2009; 15:9486–9493. [PubMed: 19655348]

24. Beavers CM, Jin H, Yang H, Wang Z, Wang X, Ge H, Liu Z, Mercado BQ, Olmstead MM, Balch AL. Very large, soluble endohedral fullerenes in the series La\textsubscript{2}C\textsubscript{90} to La\textsubscript{2}C\textsubscript{138}: isolation and crystallographic characterization of La\textsubscript{2}@D\textsubscript{5}(450)-C\textsubscript{100}. J Am Chem Soc. 2011; 133:15338–15341. [PubMed: 21863855]

25. Suzuki T, Maruyama Y, Kato T, Kikuchi K, Nakao Y, Achiha Y, Kobayashi K, Nagase S. Electrochemistry and ab-initio study of the dimetallofullerene La\textsubscript{2}@C\textsubscript{80}. Angew Chem Int Ed. 1995; 34:1094–1096.

26. Lu X, Nikawa H, Nakahodo T, Tsuchiya T, Ishitsuka MO, Maeda Y, Akasaka T, Toki M, Sawa H, Slanina Z, et al. Chemical understanding of a non-IPR metallofullerene: stabilization of encaged metals on fused-pentagon bonds in La\textsubscript{2}@C\textsubscript{72}. J Am Chem Soc. 2008; 130:9129–9136. [PubMed: 18570421]

27. Yamada M, Wakahara T, Tsuchiya T, Maeda Y, Akasaka T, Mizorogi N, Nagase S. Spectroscopic and theoretical study of endohedral dimetallofullerene having a non-IPR fullerene cage: Ce\textsubscript{2}@C\textsubscript{72}. J Phys Chem A. 2008; 112:7627–7631. [PubMed: 18666762]

28. Yamada M, Nakahodo T, Wakahara T, Tsuchiya T, Maeda Y, Akasaka T, Kako M, Yoza K, Horn E, Mizorogi N, et al. Positional control of encapsulated atoms inside a fullerene cage by exohedral addition. J Am Chem Soc. 2005; 127:14570–14571. [PubMed: 16231899]

29. Kato T. Metal dimer and trimer within spherical carbon cage. J Mol Struct. 2007; 838:84–88.

30. Tsuchiya T, Wielopolski M, Sakuma N, Mizorogi N, Akasaka T, Kato T, Guldi DM, Nagase S. Stable radical anions inside fullerene cages: formation of reversible electron transfer systems. J Am Chem Soc. 2011; 133:13280–13283. [PubMed: 21766816]

31. Shen W, Bao L, Wu Y, Pan C, Zhao S, Fang H, Xie Y, Jin P, Peng P, Li F-F, Lu X. Lu\textsubscript{2}@C\textsubscript{2n} (2n = 82, 84, 86) crystallographic evidence of direct Lu–Lu bonding between two divalent lutetium ions inside fullerene cages. J Am Chem Soc. 2017; 139:9979–9984. [PubMed: 28679207] [Synthesis of Lu-dimetallofullerenes, and their single-crystal X-ray diffraction studies showing the short Lu–Lu distances.]

32. Samoylova NA, Avdoshenko SM, Krylov DS, Thompson HR, Kirkhorn A, Rosenkranz M, Schiemenz S, Ziegs F, Wolter AUB, Yang S, et al. Confining the spin between two metal atoms within the carbon cage: redox-active metal-metal bonds in dimetallofullerenes and their stable cation radicals. Nanoscale. 2017; 9:7977–7990. [PubMed: 28574078] [Extended electrochemical studies of M\textsubscript{2}@C\textsubscript{82} dimetallofullerenes proving the presence of metal–metal bonds and their single-electron oxidation.]

33. Olmstead MM, Lee HM, Stevenson S, Dorn HC, Balch AL. Crystallographic characterization of Isomer 2 of Er\textsubscript{2}@C\textsubscript{82} and comparison with Isomer 1 of Er\textsubscript{2}@C\textsubscript{82}. Chem Commun. 2002:2688–2689.

34. Olmstead MM, de Bettencourt-Dias A, Stevenson S, Dorn HC, Balch AL. Crystallographic characterization of the structure of the endohedral fullerene \{Er\textsubscript{3}@C\textsubscript{82} Isomer 1\} with C\textsubscript{5v} cage symmetry and multiple sites for erbium along a band of ten contiguous hexagons. J Am Chem Soc. 2002; 124:4172–4173. [PubMed: 11960421]

35. Umemoto H, Ohashi K, Inoue T, Fukui N, Sugai T, Shinozaka H. Synthesis and UHV-STM observation of the T\textsubscript{d}-symmetric Lu metallofullerene: Lu\textsubscript{2}@C\textsubscript{76}(T\textsubscript{d}). Chem Commun. 2010; 46:5653–5655.

36. Chen C-H, Krylov DS, Avdoshenko SM, Liu F, Spree L, Yadav R, Alvertis A, Honzi L, Nenkov K, et al. Selective arc-discharge synthesis of Dy\textsubscript{2}S-clusterfullerenes and their isomer-dependent single molecule magnetism. Chem Sci. 2017; 8:6451–6465. [PubMed: 29263779]
37. Ito Y, Okazaki T, Okubo S, Akachi M, Ohno Y, Mizutani T, Nakamura T, Kitaura R, Sugai T, Shinohara H. Enhanced 1520nm photoluminescence from Er$^{3+}$ ions in di-erbium-carbide metallofullerenes (Er$_2$C$_2$)@C$_{82}$ (isomers I, II and III). ACS Nano. 2007; 1:456–462. [PubMed: 19206667]

38. Okimoto H, Kitaura R, Nakamura T, Ito Y, Kitamura Y, Akachi T, Ogawa D, Imazu N, Kato Y, Asada Y, et al. Element-specific magnetic properties of di-erbium Er$_2$@C$_{82}$ and Er$_2$C$_2$@C$_{82}$ metallofullerenes: a synchrotron soft X-ray magnetic circular dichroism study. J Phys Chem C. 2008; 112:6103–6109.

39. Velloth A, Imamura Y, Kodama T, Hada M. Theoretical Insights into the electronic structures and stability of dimetallofullerenes M$_2$@I$_p$-C$_{80}$. J Phys Chem C. 2017; 121:18169–18177.

40. Kareev IE, Bubnov VP, Yagubskii EB. Endohedral gadolinium-containing metallofullerenes in the trifluoromethylation reaction. Russ Chem Bull. 2008; 57:1486–1491.

41. Kareev IE, Lebedkin SF, Bubnov VP, Yagubskii EB, Ioffe IN, Khvylevko IV, Strauss SH, Boltalina OV. Trifluoromethylated endohedral metallofullerenes: synthesis and characterization of Y@C$_{82}$(CF$_3$)$_5$. Angew Chem Int Ed. 2005; 44:1846–1849.

42. Liu F, Zhang J, Fuhrer T, Champion H, Furukawa K, Kato T, Mahaney JE, Burke BG, Williams KA, Walker K, et al. Gd$_3$@C$_{70}$N: isolation, characterization, and monoadduct formation of a very stable heterofullerene with a magnetic spin state of S = 15/2. J Am Chem Soc. 2011; 133:9741–9750. [PubMed: 21548647]

43. Fu W, Zhang J, Fuhrer T, Champion H, Furukawa K, Kato T, Mahaney JE, Burke BG, Williams KA, Walker K, et al. Gd$_3$@C$_{70}$N: isolation, characterization, and monoadduct formation of a very stable heterofullerene with a magnetic spin state of S = 15/2. J Am Chem Soc. 2011; 133:9741–9750. [PubMed: 21548647]

44. Zuo T, Xu L, Beavers CM, Olmstead MM, Fu W, Crawford TD, Balch AL, Dorn HC. M$_2$@C$_{70}$N (M = Y, Tb): isolation and characterization of stable endohedral metallofullerenes exhibiting M–M bonding interactions inside Aza[80]fullerene cages. J Am Chem Soc. 2008; 130:12992–12997. [PubMed: 18774804]

45. Bao L, Chen M, Pan C, Yamaguchi T, Kato T, Omstead MM, Balch AL, Akasaka T, Lu X. Crystallographic evidence for direct metal–metal bonding in a stable open-shell La$_2$@I$_p$-C$_{80}$ derivative. Angew Chem Int Ed. 2016; 55:4242–4246. [Photochemical synthesis of La$_2$@C$_{80}$(CH$_2$Ph) with single-electron La–La bond; its structural, EPR, and electrochemical studies.]

46. Yamada M, Kurihara H, Suzuki M, Saito M, Slanina Z, Uhlik F, Aizawa T, Kato T, Omstead MM, et al. Hiding and recovering electrons in a dimetallic endohedral fullerene: air-stable products from radical additions. J Am Chem Soc. 2015; 137:232–238. [PubMed: 25494409]

47. Samoylova N.A., Liu F., Spree L., Popov A.A.: unpublished results. 2017.

48. Evans WJ. Tutorial on the role of cyclopentadienyl ligands in the discovery of molecular complexes of the rare-earth and actinide metals in new oxidation states. Organometallics. 2016; 35:3088–3100. [The tutorial includes overview of Lanthanides with cyclopentadienyl featuring divalent oxidation state.]

49. Liddle ST. Molecular Metal–Metal Bonds. Wiley-VCH Verlag GmbH & Co. KGaA; 2015. [Comprehensive overview of metal–metal bonding in molecular compounds.]

50. Mercado BQ, Chen N, Rodriguez-Forteza A, Mackey MA, Stevenson S, Echegoyen L, Poblet JM, Olmstead MM, Balch AL. The shape of the Sc$_2$(μ$_2$-S) unit trapped in C$_{82}$-crystallographic, computational, and electrochemical studies of the isomers, Sc$_2$(μ$_2$-S)@C$_6$(6)-C$_{82}$ and Sc$_2$(μ$_2$-S)@C$_3$(8)-C$_{82}$. J Am Chem Soc. 2011; 133:6752–6760. [PubMed: 21473581]

51. Chen C-H, Ghiassi KB, Cerón MR, Guerrero-Ayala MA, Echegoyen L, Olmstead MM, Balch AL. Beyond the butterfly: Sc$_2$C$_2$@C$_{82}$(9)-C$_{86}$, an endohedral fullerene containing a planar, twisted Sc$_2$C$_2$ unit with remarkable crystalline order in an unprecedented carbon cage. J Am Chem Soc. 2015; 137:10116–10119. [PubMed: 26237275]
Figure 1.
(a) Molecular orbital energy level of empty fullerene C_{80}^--$I_6(7)$ and C_{82}^--$C_{3v}(8)$ compared to those of the metal dimers La_2 and Lu_2 (DFT calculations at the PBE/TZ2P level). Occupied MO levels of fullerenes are shown as black lines, unoccupied levels–as pink lines. Gray arrows indicate donation of six or four electrons from metal dimer to fullerene in corresponding dimetallofullerenes. (b) Frontier molecular orbitals (HOMO and LUMO) of $La_2@C_{80}$: LUMO and $Lu_2@C_{82}$: LUMO, $La_2@C_{80}$: HOMO and $Lu_2@C_{82}$: HOMO.
Figure 2.
(a) Cyclic voltammetry of Er$_2$@C$_{82}$ and Lu$_2$@C$_{82}$ dimetallofullerenes with C_{3v} (8) and C_6 cage isomers in o-dichlorobenzene/TBAPF$_6$ solution at 100 mV s$^{-1}$; whereas the first reduction potentials of Lu$_2$@C$_{82}$ and Er$_2$@C$_{82}$ with the same fullerene cage are virtually identical (denoted by blue dashed line), the first oxidation potentials are different by more than 0.3 V (red lines); (b) square wave voltammetry of several M$_2$@C$_{82}$ - C$_{3v}$ (8) at the first oxidation step (M$_2$ = Lu$_2$, YLu, Er$_2$, ErSc, Sc$_2$); (c) HOMO orbitals for Lu$_2$@C$_{82}$, Y$_2$@C$_{82}$, and YLu@C$_{82}$; (d) EPR spectrum of Sc$_2$@C$_{82}^+$ cation in o-dichlorobenzene at room
temperature, $a^{15}\text{Sc} = 199.2\text{ G}$, $g = 1.994$; the lines show assignment of the peaks in terms of $|I, m_I$ nuclear spin quantum numbers of the Sc$_2$ dimer. Reproduced with permission from the Ref. [32••].
Figure 3.
(a) Schematic description of the electron distribution between M–M bonding MO and fullerene cage in dimetallofullerenes $M_2@C_{80}^-$ (M = Y, Tb, Dy, etc.) and a chemical route to stabilize these structures via reduction and subsequent nucleophilic substitution yielding air-stable $M_2@C_{80}(CH_2Ph)$ monoadduct. (b) EPR spectra of the toluene solution of $Y_2@C_{80}(CH_2Ph)$ at room temperature and at 150 K (below the freezing point of the solvent); the isotropic RT spectrum has g-factor of 1.9733 and the $g_{iso}^{(89Y)}$ value of 223.8 MHz; the axial spectral pattern in frozen solution is reproduced by $g_\perp = 1.9620$, $g_\parallel = 1.9982$.

Curr Opin Electrochem. Author manuscript; available in PMC 2018 August 02.
$\alpha_{\perp}^{(89)Y} = 208.0 \text{ MHz}, \quad \alpha_{\parallel}^{(89)Y} = 245.9 \text{ MHz};$ (c) spin density distribution in $Y_2@C_{80}(\text{CH}_2\text{Ph})$ computed at the PBE0/TZVP level; (d) square wave voltammetry of $M_2@C_{80}(\text{CH}_2\text{Ph})$ ($M = Y, \text{Dy, and Tb}$), black vertical bars denote redox potentials of $\text{La}_2@C_{80}(\text{CH}_2\text{Ph})$ from Ref. [45••], dotted lines denote the first oxidation (cyan) and the first reduction (red) potentials. Based on the data from Ref. [42••].
Table 1
Redox potentials of di-EMFs featuring the M–M bonding HOMO or LUMO in comparison to selected clusterfullerenes^a

EMF	$E^{2+/1}$	$E^{1+/0}$	$E^{0/-1}$	$E^{-1/-2}$	$E^{-2/-3}$	gap_{cc}^b	Ref.
Metal-based LUMO							
La₂@C₇₂-D₂(10611)	0.75	0.24	-0.68	-1.92	0.92	[26]	
Ce₂@C₇₂-D₂(10611)	0.82	0.18	-0.81	-1.86	0.99	[27]	
La₂@C₅₀-C₇(17490)	0.65	0.21	-0.63	-1.83	0.84	[20]	
La₂@C₅₀-D_{4d}(5)	0.62	0.26	-0.40	-1.84	0.66	[22]	
Ce₂@C₅₀-D_{4d}(5)	0.79	0.25	-0.52	-1.86	0.77	[21]	
La₂@C₅₀-D_{4d}(6)	0.78	0.22	-0.36	-1.72	0.58	[23]	
Ce₂@C₅₀-D_{4d}(6)	0.66	0.20	-0.40	-1.76	0.60	[23]	
La₂@C₅₀-I_g(7)	0.95	0.56	-0.31	-1.72	0.87	[25]	
Ce₂@C₅₀-I_g(7)	0.95	0.57	-0.39	-1.71	0.96	[28]	
Metal-based HOMO							
Er₂@C₅₂-C₇(6)	0.65	0.02	-1.01	-1.31	1.03	[32••]	
Lu₂@C₅₂-C₇(6)	0.74	0.34	-1.00	-1.32	1.34	[32••]	
Er₂S@C₅₂-C₇(6)^c		0.39	-1.16	-1.49	1.19	[32••]	
Sc₂S@C₅₂-C₇(6)^c	0.65	0.39	-0.98	-1.12	1.37	[50]	
Sc₂@C₅₂-C₇(8)		0.02	-1.16	-1.53	1.18	[32••]	
ErSc@C₅₂-C₇(8)		0.08	-1.11	-1.49	1.19	[32••]	
Er₂@C₅₂-C₇(8)		0.13	-1.14	-1.41	1.27	[32••]	
YLu@C₅₂-C₇(8)		0.23	-1.13	1.36		[32••]	
La₂@C₅₂-C₇(8)	0.95	0.50	-1.16	-1.46	1.66	[32••]	
ErSc@C₅₂-C₇(8)^c	0.88	0.51	-0.98	-1.21	1.49	[32••]	
Sc₂S@C₅₂-C₇(8)^c	0.96	0.52	-1.04	-1.19	1.56	[50]	
Lu@C₅₂-C₇(9)		0.31	-1.01	-1.34	1.35	[31]	
Sc₂C₅₂-C₇(9)^c		0.47	-0.84	-1.11	1.31	[51]	
Single-electron M–M bonding MO							
Gd₂@C₉₀₀-I_g(7)		0.51	-0.96	-1.98	1.45	[43]	
La₂@C₉₀₀-CH_{Ph}		0.15	-0.92	-1.34	0.97	[45••]	
Y₂@C₉₀₀-CH_{Ph}	0.98	0.52	-0.52	-1.29	1.04	[42••]	
Gd₂@C₉₀₀-CH_{Ph}		0.52	-0.86	-1.35	1.38	[47]	
Tb₂@C₉₀₀-CH_{Ph}		0.51	-0.79	-1.36	1.71	[47]	
Dy₂@C₉₀₀-CH_{Ph}	0.98	0.52	-0.60	-1.28	1.12	[42••]	
Ho₂@C₉₀₀-CH_{Ph}		0.51	-0.54	-1.33	1.05	[47]	

^aAll potentials are measured in o-dichlorobenzene solution and referenced versus Fe(Cp)₂^{4+/0} redox pair; redox processes involving M–M bonding orbitals are highlighted in bold.

Curr Opin Electrochem. Author manuscript; available in PMC 2018 August 02.
\[\text{gap}^{EC} \text{ is defined as } E^{+1/0} - E^{0/-1}. \]

Clusterfullerenes with cage-based first oxidation steps, listed here for comparison to di-EMFs with the same fullerene cages.