Synthesis and characterization of Cu-doped TiO\(_2\) (Cu/TiO\(_2\)) nanoparticle as antifungal **phytophthora palmivora**

M Natsir\(^1\), M Maulidibah\(^*\), A H Watoni\(^1\), J Arit\(^1\), A Sari\(^1\), L O A Salim\(^1\), S Sarjuna\(^1\), I Irwan\(^1\) and M Nurdin\(^1\)

\(^1\) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo, Kendari 93232, Southeast Sulawesi, Indonesia

maulid06@yahoo.com (corresponding author)

Abstract. Preparation of Cu-doped TiO\(_2\) nanoparticles (Cu/TiO\(_2\)) as antifungal Phytophthora palmivora has been carried out. In this study, we did a synthesis of Cu/TiO\(_2\) nanoparticles by the sol-gel method and determine the performance of the modification of Cu/TiO\(_2\) nanoparticles as antifungal agents P. palmivora. The stages of this research include synthesis of Cu/TiO\(_2\) nanoparticles using the sol-gel method, characterization of Cu/TiO\(_2\) nanoparticles using UV-Vis DRS and characterization of Cu/TiO\(_2\) nanoparticles using SEM-EDX, and P. palmivora antifungal activity test. TiO\(_2\) is known to be used as an antifungal agent and to increase photocatalytic activity, TiO\(_2\) is doped with Cu metal ions to be active in visible light. The results showed that Cu/TiO\(_2\) has a band gap energy of 3.12 eV. Based on the results of SEM-EDX analysis of TiO\(_2\)-Cu nanoparticles confirmed the presence of elements Cu (2.16%), Ti (28.74%) and O (69.10%) with morphological shapes such as irregular spheres. Cu/TiO\(_2\) nanoparticles have a strong ability at concentrations of 0.05% and 2.5% in inhibiting the growth of the fungus P. palmivora. Percent inhibition respectively 60.41% and 75% and at concentrations>3% have activities that can kill P. palmivora fungus.

1. **Introduction**

The productivity of cocoa yield in several countries such as Ivory Coast, Ghana, Nigeria, Cameroon, Brazil, Ecuador, Malaysia, and Indonesia has been reported to have decreased due to Phytophthora palmivora fungus attacks that cause rot on cocoa plants\(^{[1,2]}\). Various attempts have been made including the use of spraying with chemical fungicides. But the use of chemical fungicides is also a major source of heavy metal pollution on plantation soils. Aside from being a source of pollutants, the use of chemical fungicides has not shown optimal performance due to the nature of compounds that are unstable and resistant to fungi. In addition, the use of chemical fungicides is also very expensive, for that we need an alternative material that can be used to replace chemical fungicides\(^{[3]}\).

The development of anti-fungus based on TiO\(_2\) nanoparticles was reported as an interesting study to overcome various pests and plant diseases. Titanium dioxide is a semiconductor material used as photocatalysts, solar cells, biological sensors, and antimicrobial agents\(^{[4–7]}\). Among the existing semiconductors, TiO\(_2\) is a good semiconductor used because it is non-toxic, has high thermal stability, corrosion resistance and abundant availability in nature, so the price is relatively cheap\(^{[8–10]}\). From the results of several studies conducted, TiO\(_2\) nanoparticles showed excellent performance in inhibiting the growth of fungi such as Fusarium oxysporum, Helminthosporium maydis, Asperillus niger, Fusarium graminearum, Hypocrella xii, and Mucor circinelloidei\(^{[11]}\).

To increase antifungal activity, the surface of TiO\(_2\) can be modified through metal or non-metal element insertion. Doping TiO\(_2\) with nonmetal atoms such as carbon (C) \(^{[12]}\), sulfur (S) \(^{[13]}\), fluorine
(F) [14], phosphorus (P) [15], nitrogen (N) [16] and boron (B) [17] have been shown to cause TiO$_2$ to absorb visible light in the wavelength range (λ) 450-600 nm. In addition to non-metals, some metal ions are also used as dopants in TiO$_2$ semiconductors including using dopants Fe, Cu and Ce have been shown to be able to shift photocatalytic uptake in the direction of visible light Popa et al. [18]. In this work, we have successfully synthesized Cu/TiO$_2$ composites by the sol-gel method. Cu is also reported to have high toxicity to microorganisms and is able to widen the working area of TiO$_2$ to visible light so that it is widely used as a material modification. Cu/TiO$_2$ composites will be applied as an anti-fungal agent P. palmivora in overcoming cocoa plants.

2. Experimental Methods
Preparation of Cu/TiO$_2$ composite
Synthesis of Cu/TiO$_2$ composite was conducted by mixing of 15 mL ethanol, 2 mL Aquades, 1 mL acetic acid (0.5 M) into a reflux flask which is containing 4 mL of Titanium tetra-isopropoxide (TTIP), 0.5 mL acetylacetone, and 15 mL ethanol. The mixture was then refluxed for 3 hours at temperature 50 °C. Sol TiO$_2$ was stirred using a magnetic stirrer for 1 hour at 50 °C followed by adding 2 mL of CuSO$_4$.5H$_2$O as a dopant source. It evaporates at room temperature for 48 h to form a gel and heated at 80°C for 30 min. To obtain the Cu/TiO$_2$ powder, we calcinate the sol-gel Cu/TiO$_2$ composite at temperature 500°C for 1 h to form Cu/TiO$_2$ anatase phase and characterized by using UV-Vis Diffuse Reflectance Spectroscopy (UV-DRS) and Scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM/EDX).

2.1. Antibacterial activity test
The antibacterial activity test was carried out using Cu/TiO$_2$ composites by the dilution method. Cu / TiO$_2$ composites were prepared with various concentrations as shown in Table 1. As for control (-) using P. palmivora fungus inoculated on solid PDA media without Cu/TiO$_2$ composites and control (+) using the Dithane M-45 fungicide.

Table 1. Variation concentration and mass of Cu/TiO$_2$ composites as antifungal P. palmivora

No.	Concentration of Cu/TiO$_2$(%)	Mass of Cu/TiO$_2$ (g)	PDA media volume (mL)
1.	0.05	0.005	10
2.	2.5	0.25	10
3.	3	0.30	10
4.	3.5	0.35	10
5.	4	0.40	10
6.	4.5	0.45	10
7.	5	0.5	10

3. Results and Discussion

3.1. Preparation of Cu/TiO$_2$ composite
In this study, we used an alkoxide source as a TTIP precursor serving the distribution media for dopant ions to form TiO$_2$ and Cu/TiO$_2$ composites. The addition of ethanol to the sol-gel process serves as an inhibitor of the hydrolysis of the precursors so as to maintain the alkoxy metal reactivity for the formation of more stable soles. So that the hydrolysis and condensation processes for the formation of Ti-O-Ti polymers are increasingly optimal. While the addition of acetyl acetate functions as a ligand to chelate titanium so the solution is yellow and to form mesostructure TiO$_2$anatase[19–22].

Furthermore, TTIP, acetyl acetate, ethanol, glacial acetic acid, and distilled water were refluxed for three hours at 50°C to increase interactions between compounds [23–25]. The TiO$_2$ sol is stirred using a magnetic stirrer for 1 hour at 50°C followed by the addition of 2 mL CuSO$_4$.5H$_2$O as a copper dopant source Figure 1a.
The sol which contains Cu then evaporates the solvent to form a gel. The use of CuSO₄·5H₂O as a dopant based on research conducted by Yadav et al. [26] proved that CuSO₄·5H₂O effectively acted as a source of Cu to reduce the value of the TiO₂ bandgap. The Cu/TiO₂ composite obtained was then calcined at 500°C for 3 hours to remove solvents such as water and ethanol. The results obtained after the calcination look as shown in Figure 1b.

![Figure 1. Sol-gel Cu/TiO₂ composite (a), Powder of Cu/TiO₂ composite (b)](image)

3.2. **UV-Vis Diffuse Reflectance Spectroscopy (UV-Vis DRS)**

Measurement using DRS to determine the absorption character in areas with both UV and visible wavelengths with a wavelength range of 200-800 nm and determine the bandgap of TiO₂ and Cu/ TiO₂ composites. The results of the characterization using UV-Vis DRS can be seen in Figure 2.

![Figure 2. Bandgap spectra of TiO₂ compared with Cu/TiO₂ composite](image)

Based on Figure 2 it can be seen the value of the energy bandgap on TiO₂ of 3.27 eV, appropriate to the reported by Zhang et al. [27]. TiO₂ which was doped with Cu obtained a bandgap energy value of 3.12 eV. These results indicate that Cu dopant can reduce the bandgap of TiO₂ energy. Cu/TiO₂ composite bandgap values obtained in this study are in line with research conducted by Yadav et al. [26] and Ambrozova et al. [28] in his research has successfully synthesized doped Cu TiO₂ in the wavelength range of 300-700 nm and obtained bandgap energy of 2.95 eV and 3.06 eV, respectively. Copper doping has been proven to narrow the bandgap energy, increase the hydrophilicity of TiO₂ and increase the photocatalytic activity of TiO₂[29–32].

3.3. **Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX)**

The characterization morphology of Cu/TiO₂ was carried out by using SEM/EDX. Figure 3 showed that qualitatively TiO₂ and Cu/TiO₂ are relatively different but generally consist of irregular spherical particles and microstructure in the gaps of particles. An image of Cu/TiO₂ composites shows gray particles with a more dominant microstructure. White particles indicate the presence of TiO₂ while gray particles indicate TiO₂ which has been doped with copper. The addition of copper dopants causes a decrease in particle size compared to TiO₂ without dopants. A decrease in particle size and an
increase in the surface area indicate an increase in photocatalytic activity. This indicates that photocatalyst material which has a smaller size can provide better photocatalyst activity.

![EDX analysis result](image)

Figure 3. Morphology and elements characterization of Cu/TiO$_2$ composite

EDX analysis is performed to find out the percentage of the constituent elements resulting from the synthesis. The results of the characterization using EDX can be seen in Figure 3. Based on the results of the characterization obtained it can be seen that the peak of Cu at 8.0 KeV, the peak of Ti at 4.5 KeV and the peak of O at 0.51 KeV. Cu peaks that are seen indicate the success of the doping process on TiO$_2$[30]. The EDX analysis of Cu/TiO$_2$ composites confirmed the presence of Cu, Ti and O elements with 69.10, 28.74 and 2.16, respectively. The peak position obtained in the EDX spectra is as reported by Segne et al. [33] and Chen et al. [34].

3.4. Antifungal Activity test of Cu/TiO$_2$ composite

Antifungal activity testing was carried out to determine the performance of Cu/TiO$_2$ composites for P. palmivora fungi on cocoa plants. Antifungal activity test of Cu/TiO$_2$ composites was made with various concentrations namely 0.05%, 2.5%, 3%, 3.5%, 4%, 4.5% and 5%. The results of the Cu/TiO$_2$ composite antifungal against P. palmivora fungus were observed in negative control for one week. Characteristics of P. palmivora colonies are generally round with uneven edges and white in color.
Figure 4. Test of Cu/TiO₂ composite antifungal activity against P. palmivora fungi; (a) 0.05% Cu/TiO₂; (b) 2.5% Cu/TiO₂; (c) 3% Cu/TiO₂; (d) 3.5% Cu/TiO₂; (e) 4% Cu/TiO₂; (f) 4.5% Cu/TiO₂; (g) 5% Cu/TiO₂; (h) 0.2% fungicide as positive control (+); (i) P. palmivora fungi and media as negative controls (-)

Based on Figure 4, it can be seen that the Cu/TiO₂ composite has a very good ability to inhibit P. palmivora fungus. This can be seen at a concentration of 3% - 5% which is the concentration that has the greatest inhibition and the ability is the same as the Dithane M-45 function where there is no significant colony formation on P. palmivora fungi[3,35,36]. This is in line with what was reported by Chen et al. [34] that Cu/TiO₂ has the ability as a strong antimicrobial agent. Based on measurements of growth inhibition of fungal colonies using the formula Sharma and Pandey[37] and Aulifa et al. [38] obtained the average inhibition value of P. palmivora fungal colonies as shown in Table 2.

Sample concentration of Cu/TiO₂ (%)	Diagonal diameter (cm)	Inhibition (%)
0.05	1.90	60.41
2.5	1.20	75
3	0	100
3.5	0	100
4	0	100
4.5	0	100
5	0	100

Table 1 shows that the anti-fungal activity at 0.05% Cu/TiO₂ concentration and 2.5% Cu/TiO₂ had strong activity against P. palmivora fungus with inhibition rates of 60.41% and 75%, respectively, and at concentrations of Cu/TiO₂ > 3% have very strong activity against P. palmivora fungi.

4. **Conclusion**

In this research, we successfully synthesized Cu/TiO₂ composites by the sol-gel method. The results showed that Cu/TiO₂ has a bandgap energy of 3.12 eV. Based on the results of the SEM-EDX analysis of Cu/TiO₂ composite confirmed the presence of elements Cu (2.16%), Ti (28.74%) and O (69.10%) with morphological shapes such as irregular spheres. Cu/TiO₂ composite have a strong ability at concentrations of 0.05% and 2.5% in inhibiting the growth of the fungus P. palmivora. Percent
inhibition respectively 60.41% and 75% and at concentrations >3% have activities that can kill P. palmivora fungus.

Acknowledgment
We acknowledge the financial support from the DRPM-Ministry of Research, Technology and Higher Education of the Republic of Indonesia.

References
[1] Evans H C 2007 Cacao diseases— the trilogy revisited Phytopathology97 1640–3
[2] Arham Z and Nurdin M 2017 Heavy Metal Content of Cocoa Plantation Soil in East Kolaka, Indonesia. Orient. J. Chem.33 1164
[3] Maulidiyah M, Natsir M, Fitrianingsih F, Arham Z, Wirbo D and Nurdin M 2017 Lignin Degradation of Oil Palm Empty Fruit Bunches using TiO2 Photocatalyst as Antifungal of Fusarium Oxysporum Orient. J. Chem.33 3101–6
[4] Nurdin M, Dali N, Irwan I, Maulidiyah M, Arham Z, Ruslan R, Hamzah B, Sarjuna S and Wirbo D 2018 Selectivity Determination of Pb2+ Ion Based on TiO2-Ionophores BEK6 as Carbon Paste Electrode Composite Anal. Bioanal. Electrochem. 10 1538–47
[5] Nurdin M, Agusu L, Putra A A M, Maulidiyah M, Arham Z, Wirbo D, Muzakkar M Z and Umar A A 2019 Synthesis and electrochemical performance of graphene-TiO2-carbon paste nanocomposites electrode in phenol detection J. Phys. Chem. Solids 131 104–10
[6] Muzakkar M Z, Nurdin M, Ismail I, Maulidiyah M, Wirbo D, Ratna R, Saad S K M and Umar A A 2019 TiO2 Coated-Asphalt Buton Photocatalyst for High-Performance Motor Vehicles Gas Emission Mitigation Emiss. Control Sci. Technol.
[7] Nurdin M, Maulidiyah M, Muzakkar M Z and Umar A A 2019 High performance cypermethrin pesticide detection using anatase TiO2-carbon paste nanocomposites electrode Microchem. J.145 756–61
[8] Arham Z, Nurdin M and Buchari B 2016 Photoelectrocatalysis performance of La2O3 doped TiO2/Ti electrode in degradation of rhodamine B organic compound Int. J. ChemTech Res.9 113–20
[9] Nurdin M, Zaeni A, Maulidiyah, Natsir M, Bampe A and Wirbo D 2016 Comparison of conventional and microwave-assisted extraction methods for TiO2 recovery in mineral sands Orient. J. Chem.32 2713–21
[10] Muzakkar M Z, Wirbo D and Nurdin M 2017 A Novel of Buton Asphalt and Methylene Blue as Dye-Sensitized Solar Cell using TiO2/Ti Nanotubes Electrode IOP Conference Series: Materials Science and Engineering vol 267 (IOP Publishing) p 12035
[11] Nasrollahi A, Pourshamsian K H and Mansourkiaee P 2011 Antifungal activity of silver nanoparticles on some of fungi Int. J. Nano Dimens.1 233
[12] Shahrezaei F, Pkarvan P, Azandaryani A H, Pirsaheb M and Mansouri A M 2016 Preparation of multi-walled carbon nanotube-doped TiO2 composite and its application in petroleum refinery wastewater treatment Desalin. Water Treat.57 14443–52
[13] Boningari T, Inturi S N R, Suidan M and Smirniotis P G 2018 Novel one-step synthesis of sulfur doped-TiO2 by flame spray pyrolysis for visible light photocatalytic degradation of acetaldehyde Chem. Eng. J.339 249–58
[14] Ravidhas C, Anitha B, Venkatesh R, Monica S E S, Gopalakrishna D, Raj A M E and Ravichandran K 2018 Role of fluorine doping on luminescence centers and enhanced photocatalytic performance of nebulizer sprayed TiO2 films under visible light J. Lumin.198 272–83
[15] Ganesh I 2017 Effects of phosphorus-doping on energy band-gap, structural, surface, and photocatalytic characteristics of emulsion-based sol-gel derived TiO2 nano-powder Appl. Surf. Sci.414 277–91
[16] Rajoriya S, Bargole S, George S, Saharan V K, Gogate P R and Pandit A B 2019 Synthesis and
characterization of samarium and nitrogen doped TiO₂ photocatalysts for photo-degradation of 4-acetamidophenol in combination with hydrodynamic and acoustic cavitation. Sep. Purif. Technol. 209 254–69

[17] Zhang W, Liu Y and Xin H 2018 Sol-gel Preparation of Hollow Spherical x% B-TiO₂ Photocatalyst: The Effect of Boron Content on RBR X-3B Decoloration. Curr. Nanosci. 14 209–15

[18] Popa M, Indrea E, Pascuta P, Cosoveanu V, Popescu I C and Danciu V 2010 Fe, Ce and Cu influence on morpho-structural and photocatalytic properties of TiO₂ aerogels. Rev. Roum. Chim. 55 369–75

[19] Mursalim L O, Ruslan A M, Safitri R A, Azis T, Maulidiyah, Wibowo D and Nurdin M 2017 Synthesis and photoelectrocatalytic performance of Mn-N-TiO₂/Ti electrode for electrochemical sensor. IOP Conf. Ser. Mater. Sci. Eng. 267

[20] Nurdin M 2014 Maulidiyah. Fabrication of TiO₂/Ti nanotube electrode by anodizing method and its application on photoelectrocatalytic system. Int. J. Sci. Technol. Res. 3 122–4

[21] Nurdin M, Azis T, Maulidiyah M, Aladin A, Hafid N A, Salim L O A and Wibowo D 2018 Photocurrent Responses of Metanil Yellow and Remazol Red B Organic Dyes by Using TiO₂/Ti Electrode. IOP Conf. Ser. Mater. Sci. Eng. 367

[22] Maulidiyah, Nurdin M, Wibowo D and Sani A 2015 Nano tube titanium dioxide/titanium electrode fabrication with nitrogen and silver metal doped anodizing method: Performance test of organic compound rhodamine b degradation. Int. J. Pharm. Pharm. Sci. 7

[23] Wahab A W, La Nafie N and Nurdin M 2013 Synthesis and characterization of electrodes N-TiO₂/Ti for chemical oxygen demand sensor with visible light response flow. Int. J. Sci. Technol. Res. 2 220–4

[24] Nurdin M, Ramadhan L O A N, Darmawati D, Maulidiyah M and Wibowo D 2018 Synthesis of Ni, N co-doped TiO₂ using microwave-assisted method for sodium lauryl sulfate degradation by photocatalyst. J. Coatings Technol. Res. 15 395–402

[25] Maulidiyah M, Azis T, Lindayani L, Wibowo D, Salim L O A, Aladin A and Nurdin M 2019 Sol-gel TiO₂/Carbon Paste Electrode Nanocomposites for Electrochemical-assisted Sensing of Fipronil Pesticide. J. Electrochem. Sci. Technol. 10 394-401

[26] Yadav H M, Otari S V, Koli V B, Mali S S, Hong C K, Pawar S H and Delekara S D 2014 Preparation and characterization of copper-doped anatase TiO₂ nanoparticles with visible light photocatalytic antibacterial activity. J. Photochem. Photobiol. A Chem. 280 32–8

[27] Zhang Y, Meng Y, Zhu K, Qiu H, Ju Y, Gao Y, Du F, Zou B, Chen G and Wei Y 2016 Copper-doped titanium dioxide bronze nanowires with superior high rate capability for lithium ion batteries. ACS Appl. Mater. Interfaces 8 7957–65

[28] Ambrožová N, Reli M, Sihor M, Kuśtrowski P, Wu J C S and Kočí K 2018 Copper and platinum doped titania for photocatalytic reduction of carbon dioxide. Appl. Surf. Sci. 430 475–87

[29] Maulidiyah M, Widianingsih E, Azis T and Wibowo D 2015 Preparation of visible photocatalyst N-TiO₂ and its activity on Congo red degradation. ARPN J. Eng. Appl. Sci. 10 6250–6

[30] Nurdin M, Muzakkar M Z, Maulidiyah M, Maulidiyah N and Wibowo D 2016 Plasmonic Silver—N/TiO₂ Effect on Photoelectrocatalytic Oxidation Reaction. J Mater Env. Sci. 7 3334–43

[31] Wibowo D, Salamba R and Nurdin M 2015 Preparation and Characterization of Activated Carbon from Coconut Shell—Doped TiO₂ in Water Solution. Orient. J. Chem. 31 2337–42

[32] Wibowo D, Ruslan, Maulidiyah and Nurdin M 2017 Determination of COD based on Photoelectrocatalysis of FeTiO₃/TiO₂/Ti Electrode. IOP Conf. Ser. Mater. Sci. Eng. 267

[33] Segne T A, Tirukkovalluri S R and Challapalli S 2011 Studies on characterization and photocatalytic activities of visible light sensitive TiO₂ nano catalysts co-doped with magnesium and copper. Int. Res. J. Pure Appl. Chem. 84–103
[34] Chen S, Guo Y, Chen S, Ge Z, Yang H and Tang J 2012 Fabrication of Cu/TiO$_2$ nanocomposite: toward an enhanced antibacterial performance in the absence of light Mater. Lett. 83 154–7

[35] Maulidiyah M, Mardhan F T, Muzuni, Ansharullah, Natsir M, Wibowo D and Nurdin M 2019 Lignin black liquor degradation on oil palm empty fruit bunches using ilmenite (FeO.TiO$_2$) and its activity as antibacterial J. Phys. Conf. Ser. 1242

[36] Natsir M, Maulidiyah M, Ansharullah A, Arham Z, Wibowo D and Nurdin M 2018 Natural Biopesticide Preparation As Antimicrobial Material Based on Lignin Photodegradation Using Mineral Ilmenite (FeO.TiO$_2$) Int. Res. J. Pharm. 9 170–4

[37] Sharma G 2010 Influence of culture media on growth, colony character and sporulation of fungi isolated from decaying vegetable wastes J. Yeast Fungal Res. 1 157–64

[38] Aulifa D L and Aryantha I N P 2015 Antifungal Phytophthora Palmivora From Clove Buds (Syzygium Aromaticum L.) Int. J. Pharm. Pharm. Sci. 325–8