ON HOLOMORPHIC SELF-MAPPINGS OF THE UNIT DISK

V.N. DUBININ

Abstract. Using a symmetrization technique, we prove two distortion theorems for holomorphic mappings of the unit disk into itself taking into account the boundary behavior of these mappings.

Keywords: holomorphic functions, distortion theorems, symmetrization of condensers.

1. Introduction

The study of holomorphic mappings of a disk into itself constitutes a significant part of geometric function theory (see, e.g., the papers [1,2] and the bibliography in them). We are interested in the distortion theorems for such mappings that take into account their boundary behavior [3]. The first result of this kind belongs, apparently, to Unkelbach [4]. Let a function \(w = f(z) \) be holomorphic in the disk \(U = \{ z : |z| < 1 \} \) and satisfy the conditions: \(f(0) = 0 \) and \(|f(z)| < 1 \) when \(z \in U \). If \(E \) is an arc of the circle \(|z| = 1 \) such that the set of the limit values of the function \(f \) with respect to \(E \) belongs to the circle \(|w| = 1 \), then this set is also an arc \(f(E) \) of the circle \(|w| = 1 \). According to [4], the lengths of these two arcs satisfy the inequality

\[
\text{length}(f(E)) \geq \frac{2}{1 + |f'(0)|} \text{length}(E).
\]

If at a point \(b \in E \) the derivative \(f'(b) \) exists, then by the passage to the limit in (1) we obtain the boundary Schwarz Lemma:

\[
|f'(b)| \geq \frac{2}{1 + |f'(0)|}.
\]
The above inequality is often called the inequality of Osserman. Other versions of the Schwarz inequality on the boundary, as well as analogues of inequality (1), can be found in [5-7]. Some of these results can be used in the proofs of the inequalities for the complex polynomials [8]. In this note we complement the theorems from the articles [6, 9] taking into account the boundary distortion. The main tool employed in the proofs is Pólya’s circular symmetrization (see [10, Sec. 4.1]). The following section is auxiliary.

2. Preliminaries

We will apply the capacity approach and symmetrization of condensers. The notions from the book [10] will be tacitly used below. In this paper, for the most part, we will consider the condensers with two plates of the form

\[C = (U(R), \{E_0, E_1\}, \{0, 1\}) \equiv (U(R), E_0, E_1), \]

where \(U(R) = \{z : |z| < R\} \), \(0 < R \leq 1 \), and \(E_0, E_1 \) are closed disjoint nonempty sets \(E_0 \subset \overline{U}(R) \), \(E_1 \subset U(R) \). The capacity \(\text{cap} C \) of \(C \) is defined as the infimum of the Dirichlet integrals

\[I(v, U(R)) := \int_{U(R)} |\nabla v|^2 \]

over all admissible functions \(v \), that is, real functions \(v \) which are continuous in \(\overline{U}(R) \), Lipschitz on compact subsets of \(U(R) \) and equal to \(k \) on \(E_k \), \(k = 0, 1 \). If the class of admissible functions is reduced to the subclass of functions \(v \), \(0 \leq v \leq 1 \), equal to \(k \) in a neighbourhood of the plate \(E_k \), \(k = 0, 1 \), then the capacity of a condenser \(C \) does not change [10, Lemma 1.2].

Denote by \(\gamma(\rho) \) the circle \(|z| = \rho \), \(0 \leq \rho \leq 1 \). Let \(B \) be an open subset of \(\overline{U}(R) \). The circular symmetrization (with respect to the positive real half-axis) assigns to a set \(B \) the "circularly symmetric" set

\[\text{Cr } B = \{re^{i\theta} : B \cap \gamma(\rho) \neq \emptyset, 2|\theta|\rho < \text{meas}(B \cap \gamma(\rho))\} \cup \{-r : \gamma(\rho) \subset B\}, \]

where \(\text{meas}(\cdot) \) is the Lebesgue linear measure. In a similar way, we define the symmetrization of a closed subset \(E \) of \(\overline{U}(R) \) as follows:

\[\text{Cr } E = \{re^{i\theta} : E \cap \gamma(\rho) \neq \emptyset, 2|\theta|\rho \leq \text{meas}(E \cap \gamma(\rho))\}. \]

For a condenser \(C = (E_0, E_1) \) we set

\[\text{Cr } C = (\overline{U}(R) \setminus \text{Cr } (\overline{U}(R) \setminus E_0) \setminus \text{Cr } E_1). \]

The following statement goes back to Pólya’s [11] (cf. [10, Theorem 4.2]).

Lemma 1. With the above notation, we have

\[\text{cap } C \geq \text{cap } \text{Cr } C. \]

The inner radius of an open set \(B \subset C \) with respect to a point \(z_0 \in B \) is the quantity

\[r(B, z_0) = \exp\{ \lim_{z \to z_0} [g_B(z, z_0) + \log |z - z_0|] \}, \]

where \(g_B(z, z_0) \) is the Green function of the connected component of \(B \) containing the point \(z_0 \). Let \(B \) be a domain in \(C \) bounded by finitely many piecewise analytic curves, \(\Gamma \) be a nonempty closed subset of \(\partial B \) consisting of finitely many nonsingular arcs such that \((\partial B) \setminus \Gamma \) is union of open smooth arcs, and \(z_0 \) be a point in \(B \). Then
there exists a function \(g_B(z, z_0, \Gamma) \) which is continuous on \(\overline{B} \setminus \{z_0\} \), harmonic in \(B \setminus \{z_0\} \), and satisfying the following conditions:

\[
g_B(z, z_0, \Gamma) = 0 \quad \text{for} \quad z \in \Gamma;
\]

\[
\frac{\partial}{\partial n} g_B(z, z_0, \Gamma) = 0 \quad \text{for} \quad z \in (\partial B) \setminus \Gamma;
\]

\(g_B(z, z_0, \Gamma) + \log |z - z_0| \) is a bounded harmonic function in a neighbourhood of \(z_0 \) (\(\partial/\partial n \) denotes differentiation along the inward normal to \(\partial B \)). The function \(g_B(z, z_0, \Gamma) \) is called the Robin function of the domain \(B \) and the set \(\Gamma \) with pole at \(z_0 \). By the Robin radius of a domain \(B \) with respect to a point \(z_0 \) and a set \(\Gamma \), we mean the quantity

\[
r(B, \Gamma, z_0) = \exp\{ \lim_{z \to z_0} [g_B(z, z_0, \Gamma) + \log |z - z_0|]\}.
\]

Note that if \(a, b \) and \(c \) are real numbers, \(a < b < c \), \(B_1 = \mathbb{C} \setminus \{z : \text{Im} z = 0, \text{Re} z \geq b\} \), \(B_2 = \mathbb{C} \setminus \{z : \text{Im} z = 0, \text{Re} z \geq c\} \), then

\[
r(B_1, [c, +\infty], a) = r(B_2, a) = 4(c - a).
\]

Theorem 2.2 from the book [10] gives

Lemma 2. Let \(B \) be a domain, set \(\Gamma \subset \partial B \), \(z_0 \in B \) as above, and let \(B \subset U \), \((\partial B) \setminus \Gamma \subset \partial U \). Then

\[
\text{cap}(U, \Gamma, \{z : |z - z_0| \leq \varphi(r)\}) = -\frac{2\pi}{\log r} - 2\pi \left[\log \frac{r(B, \Gamma, z_0)}{\mu} \right] \left(\frac{1}{\log r} \right)^2 + o\left(\left(\frac{1}{\log r} \right)^2 \right), \quad r \to 0,
\]

where \(\varphi(r) \) is any real function of the form \(\varphi(r) = \mu r(1 + o(1)) \), \(r \to 0 \) and \(\mu > 0 \).

The behaviour of the Robin radius under conformal map is described in the following statement.

Lemma 3. Let the domains \(B, G \) and the sets \(\Gamma \subset \partial B, \Lambda \subset \partial G \) be as in definition of the Robin radius, and let \(f \) be a function mapping \(B \) conformally and univalently onto \(G \) so that \(f(\Gamma) = \Lambda \). Then

\[
r(G, \Lambda, f(z_0)) = |f'(z_0)|r(B, \Gamma, z_0)
\]

for any point \(z_0 \in B \).

This lemma is a special case of the majorization principle [7, Theorem 4.2].

3. Distortion theorems

We will start with an analogue of the assertions [6, Theorem 2] and [9, Theorem 1]. Set

\[
E(\alpha) = \{z = e^{i\theta} : |\theta| < \alpha\}, \quad 0 \leq \alpha < \pi.
\]

Theorem 1. Let \(f \) be a holomorphic function in the disk \(U \), \(f(U) \subset U \), and let \(f(E(\alpha)) \subset E(\beta) \) for some \(\alpha \) and \(\beta \), \(0 \leq \alpha < \pi \), \(0 \leq \beta < \pi \) (i.e. for each sequence of points \(z_n \in U \), approaching the set \(E(\alpha) \), the corresponding sequence \(f(z_n) \) →

\(1\)If \(\alpha = 0 (\beta = 0) \) then the boundary condition is ignored.
Suppose that $\gamma(p) \not\subseteq f(U)$ for all $p, \tau \leq p \leq 1$, and some fixed τ, $0 \leq \tau < 1$. Then for any real points z_1, z_2 such that $-1 < z_1 < z_2 < 1$ and $|f(z_1)| \neq |f(z_2)|$
\begin{equation}
\frac{|k(e^{i\beta}) - k(m)|k(M) - k(-\tau)|}{k(M) - k(m)} \geq \frac{|k(e^{i\alpha}) - k(z_1)|k(M) - k(-\tau)|}{k(z_2) - k(z_1)}
\end{equation}
where $k(z) = (1 + z)^{-2}$ is the Koebe function and $m = \min\{|f(z_1)|, |f(z_2)|\}$, $M = \max\{|f(z_1)|, |f(z_2)|\}$. Equality in (3) is attained for any points $-1 < z_1 < z_2 < 1$ and any conformal map $f : U \to \mathbb{C}$ such that $f(-1) = -\tau$, $f(1) = 1$ and $0 \leq f(z_1) < f(z_2) < 1$.

Proof. It suffices to consider $\alpha \neq 0$, $\beta \neq 0$ and a nonconstant function f. Let $C = (U, (\partial U) \setminus E(\alpha), [z_1, z_2])$, and let u be an admissible function for the condenser C which is equal to 0 in a neighbourhood of $(\partial U) \setminus E(\alpha)$ and to 1 in a neighbourhood of $[z_1, z_2]$ and satisfies $0 \leq u(z) \leq 1$ for $z \in \overline{U}$. Let γ be a closed circular arc connecting the points $e^{\pm i\alpha}$ and lying in a neighbourhood of $(\partial U) \setminus E(\alpha)$, where $v = 0$. Denote by B the domain in U with the boundary $\partial B = \gamma \cup E(\alpha)$. Note that the set $f(B)$ does not contain the boundary points on the arc $(\partial U) \setminus E(\beta)$. Finally, let R be close to 1, such that $\tau < R < 1$ and $f([z_1, z_2]) \subset U(R)$. Let us inspect the following function on $U(R)$:
\[u(w) = \begin{cases}
\max\{v(z) : f(z) = w\}, & w \in U(R) \cap f(B) \\
0, & w \in U(R) \setminus f(B).
\end{cases} \]
The function f takes each value in $f(B)$ on a finite or countable infinite set of points in B, which accumulate at the boundary of B. Hence, the maximum in the definition of u is taken over finitely many values of v. It is easy to see that u is continuous in $U(R)$ and Lipschitz in a neighbourhood of each point in $U(R)$, with a possible exception of finitely many points w such that $f(z) = w$ and $f'(z) = 0$. From this we conclude that
\[I(v, U) = I(v, B) \geq I(u, U(R)) \geq \text{cap} C(R), \]
where
\[C(R) = (U(R), U(R) \setminus f(B), f([z_1, z_2])). \]
By Lemma 1
\[\text{cap} C(R) \geq \text{cap} C^*(R). \]
Set
\[C^*(R) = (U(R), [-R, -\tau] \cup (\partial U(R)) \setminus \{w : w/R \in E(\beta(R))\}, [m, M]), \]
where $\beta(R)$ is defined by $2\beta(R) = \text{meas}(f(B) \cap \gamma(R))$. In view of the hypotheses of Theorem 1 and monotonicity property of capacity [10, Theorem 1.15] we have
\[\text{cap} C^*(R) \geq \text{cap} C^*(R). \]
Thus
\[I(v, U) \geq \text{cap} C^*(R). \]
Note that
\[\lim_{R \to 1} \beta(R) \leq \beta. \]
By passage to the limit we obtain
\[I(v, U) \geq \text{cap} C^*, \]
where
\[C^* := (U, [-1, -\tau] \cup (\partial U) \setminus E(\beta), [m, M]). \]
Hence,
\begin{equation}
\cap C \geq \cap C^*.
\end{equation}
The function
\[\xi(z) = \frac{k(z) - k(z_1)}{k(z_2) - k(z_1)} \]
maps the condenser \(C \) onto the condenser \(\xi(C) \) with two plates on the Riemann sphere [10, Sec. 1.2]:
\[\xi(C) = ([\xi(e^{i\alpha})], +\infty], [0, 1]). \]
The conformal invariance of capacity gives
\[\cap C = \cap \xi(C). \]
Similarly, the function
\[\eta(w) = \frac{(k(w) - k(m))(k(M) - k(-\tau))}{(k(w) - k(-\tau))(k(M) - k(m))} \]
maps the condenser \(C^* \) onto the condenser
\[\eta(C^*) = ([\eta(e^{i\beta})], +\infty], [0, 1]), \]
and
\[\cap C^* = \cap \eta(C^*). \]
From inequality (4) we have
\[\xi(e^{i\alpha}) \leq \eta(e^{i\beta}). \]
This yields the inequality in Theorem 1. If \(f \) is a conformal map, \(f : U \to U \setminus [-1, -\tau] \) such that \(f(-1) = -\tau, f(1) = 1 \) and \(0 \leq f(z_1) < f(z_2) < 1 \) for some points \(z_1, z_2, -1 < z_1 < z_2 < 1 \), then equality in (4) holds. Hence, we have equality in (3). This completes the proof of Theorem 1.

Let \(f \) be a holomorphic function in the disk \(U, f(U) \subseteq U, f(0) = 0 \). Taking in Theorem 1 \(\alpha = \beta = 0, z_1 = 0 \) and taking the limit as \(z_2 \to 0, \tau \to 1 \) from (3) we deduce the classical Schwarz’s inequality
\[|f'(0)| \leq 1. \]
In a similar way, letting \(z_1 = 0, z_2 = 1 \) and \(\tau \to 1 \) we obtain the Löwner’s inequality
\[\alpha \leq \beta. \]
If we set \(\alpha = \beta = \tau = 0, 0 < z_1 < z_2 < 1, |f(z_1)| < |f(z_2)| \) in (3), then we obtain the following estimate:
\[\frac{(1 + z_2)^2(1 - z_1)^2}{(z_2 - z_1)(1 - z_1 z_2)} \leq \frac{4|f(z_2)|(1 - |f(z_1)|)^2}{(|f(z_2)| - |f(z_1)|)(1 - |f(z_1)f(z_2)|)} \]
(cf. [9, Theorem 1]).

Theorem 2. Under the hypotheses of Theorem 1 suppose that a point \(z \in (-1, 1) \). Then
\begin{equation}
\left| \frac{f'(z)k'(|f(z)|)}{k'(z)} \right| \leq \frac{|k(|f(z)|) - k(-\tau)||k(e^{i\beta}) - k(|f(z)|)|}{|k(e^{i\alpha}) - k(z)||k(e^{i\beta}) - k(-\tau)|},
\end{equation}
where \(k(z) = z(1 + z)^{-2} \) is the Koebe function. Equality holds in (5) for any point \(z \in (-1, 1) \) and any conformal map \(f : U \to U \setminus [-1, -\tau] \) such that \(f(-1) = -\tau, f(1) = 1 \) and \(0 \leq f(z) < 1 \).
Proof. Let \(z_0 \) be a fixed point of the interval \((-1, 1)\), \(f'(z_0) \neq 0 \), and let
\[
C = (U, (\partial U) \setminus E(\alpha), \{z : |z - z_0| \leq r\})
\]
for sufficiently small \(r > 0 \). Repeating the proof of Theorem 1 for the condenser \(C \), we get inequality (4), where this time
\[
C^* = (U, [-1, -\tau] \cup (\partial U) \setminus E(\beta), \{w : |w - |f(z_0)|| \leq \varphi(r)\}),
\]
and \(\varphi(r) = |f'(z_0)|r(1 + o(1)), r \to 0 \). Using Lemma 2 from (4) we obtain
\[
|f'(z_0)|r(U, \gamma, z_0) \leq r(U \setminus [-1, -\tau], \Gamma, |f(z_0)|),
\]
where \(\gamma = (\partial U) \setminus E(\alpha), \Gamma = [-1, -\tau] \cup (\partial U) \setminus E(\beta) \).

The Koebe function \(\xi = k(z) \) maps the disk \(U \) onto the domain \(B_1 = \mathbb{C} \setminus [1/4, +\infty] \) so that \(k(\gamma) = [k(e^{i\alpha}), +\infty] \). By Lemma 3 and equality (2)
\[
|k'(z_0)|r(U, \gamma, z_0) = r(B_1, k(\gamma), k(z_0)) = r(B_2, k(z_0)) = 4[k(e^{i\alpha}) - k(z_0)],
\]
\(B_2 = \mathbb{C} \setminus [k(e^{i\alpha}), +\infty] \). Similarly, the function
\[
\eta(w) = \frac{1}{k(w) - k(-\tau)}
\]
maps the domain \(U \setminus [-1, -\tau] \) conformally and univalently onto the domain \(B_3 = \mathbb{C} \setminus [-\infty, \eta(1)] \), so that \(\eta(\Gamma) = [-\infty, \eta(e^{i\beta})] \). By Lemma 3,
\[
|\eta'|(|f(z_0)|)r(U \setminus [-1, -\tau], \Gamma, |f(z_0)|) = r(B_3, \eta(\Gamma), \eta(|f(z_0)|)) = \eta(B_4, \eta(|f(z_0)|)) = 4[\eta(|f(z_0)|) - \eta(e^{i\beta})],
\]
where \(B_4 = \mathbb{C} \setminus [-\infty, \eta(e^{i\beta})] \). Thus inequality (6) gives
\[
\frac{|f'(z_0)\eta(|f(z_0)|)|}{|k'(z_0)|} \leq \frac{\eta(|f(z_0)|) - \eta(e^{i\beta})}{k(e^{i\alpha}) - k(z_0)}.
\]
This yields the inequality in Theorem 2 for \(z = z_0 \). If \(f \) is a conformal map, \(f : U \to U \setminus [-1, -\tau] \), such that \(f(-1) = -\tau, f(1) = 1 \) and \(0 \leq f(z_0) < 1 \) for a point \(z_0 \in (-1, 1) \), then by Lemma 3 the equality in (6) holds. Hence, we have equality in (5) for \(z = z_0 \). This completes the proof of Theorem 2. \(\square \)

For a holomorphic self-mapping \(f \) of the unit disk \(U \), \(f(0) = 0 \), the inequality (5) gives the classical Schwarz’s inequality \(|f'(0)| \leq 1 \) again. If we set \(z = 0 \), \(f(0) = 0 \) and \(\tau \to 1 \), then we obtain the estimate
\[
|f'(0)| \cos^2 \frac{\beta}{2} \leq \cos^2 \frac{\alpha}{2},
\]
which is an implication of the Schwarz’s inequality and the Lowner’s inequality. Now let \(f \) be a holomorphic function from Theorem 2, \(\alpha \neq 0, \beta \neq 0 \), and suppose, in addition, that \(f \) has an angular limit \(f(1) = 1 \) and a finite angular derivative \(f'(1) \). Then \(f' \) has a finite angular limit \(f'(1) \) at \(z = 1 \) [3, Proposition 4.7]. Applying Theorem 2 to the function \(f \) and taking \(\tau \to 1, z \to 1 \) we arrive at the new inequality:
\[
|f'(1)| \tan \frac{\alpha}{2} \leq \tan \frac{\beta}{2}.
\]
Setting in Theorem 2 \(\alpha = \beta = \tau = 0 \) we obtain the inequality (11) from [9].
ON HOLOMORPHIC SELF-MAPPINGS OF THE UNIT DISK

References

[1] V.V. Goryainov, Semigroups of analytic functions in analysis and applications, Russian Math. Surveys, 67:6 (2012), 975–1021. MR3075076

[2] M. Elin, F. Jacobzon, M. Levinshtein, D. Shoikhet, The Schwarz lemma: rigidity and dynamics, in: A. Vasil’ev (ed.), Harmonic and complex analysis and its applications, Birkhäuser, (2014), 135–230. MR3203101

[3] Ch. Pommerenke. Boundary behaviour of conformal maps, Berlin: Springer-Verlag, 1992. MR1217706

[4] H. Unkelbach, Über die Randverzerrung bei konformer Abbildung, Math. Zeitschr, 43 (1938), 739–742. MR1545744

[5] V.N. Dubinin, On the Schwarz inequality on the boundary for functions regular in the disk, J. Math. Sci., 122:6 (2004), 3623–3629.

[6] V.N. Dubinin, V.Yu. Kim, Distortion theorems for bounded regular functions in the disk, J. Math. Sci., 150:3 (2008), 2018–2026.

[7] V.N. Dubinin, M. Vuorinen, Robin functions and distortion theorems for regular mappings, Math. Nachr., 283:11 (2010), 1589–1602. MR2759796

[8] V.N. Dubinin, Methods of geometric function theory in classical and modern problems for polynomials, Russian Math. Surveys, 67:4 (2012), 599–684. MR3013845

[9] V.N. Dubinin, Bounded holomorphic functions covering no concentric circles, J. Math. Sci., 207:6 (2015), 825–831. MR374211

[10] V.N. Dubinin, Condenser capacities and symmetrization in geometric function theory, Basel: Birkhäuser/ Springer, 2014. MR3243550

[11] G. Polya, Sur la symérisation circulaire, C.R. Acad. Sci. Paris, 230 (1950), 25–27. MR33402

Vladimir Nikolaevich Dubinin
Far-Eastern Federal University,
8, Sukhanov str.,
Vladivostok, 690950, Russia
Institute for Applied Mathematics, Far-Eastern Branch of the RAS
7, Radio str.,
Vladivostok, 690041, Russia
E-mail address: dubinin@iam.dvo.ru