Ultrasound-assisted adsorption of pharmaceuticals onto clay decorated carbon Nano composites as a novel adsorbent: as a Applicable for environmental studies

Aseel M Aljeboree¹, Abass Noor Alshirifi ² and Ayad F. Alkaim ³

¹,³ College of science for women-Chemistry Department/ University of Babylon -Iraq
²College of science -Chemistry Department/ University of Babylon -Iraq
annenayad@gmail.com

Abstract

Pharmaceutical pollutants substantially affect the environment; thus, their treatments have been the focus of many studies. Pharmaceuticals, which are frequently detected in natural and wastewater bodies as well as drinking water have attracted considerable attention, because they do not readily biodegrade and may persist and remain toxic. As a result, pharmaceutical residues pose ongoing and potential health and environmental risks. To tackle these emerging contaminants using one type of Carbon source (CNT) has been widely used as highly effective adsorbent for antibiotics because of its large specific surface area, high porosity, and favorable pore size distribution. In this study, the adsorption performance of CNT towards major types of antibiotics such as Phenylephrine hydrochloride drug. The removal present increase with increase amount of adsorbent but decrease with increase initial drug concentration, and contact time. The equilibrium data were evaluated using Langmuir, Freundlich isotherms. Freundlich, model best describes the uptake of drug.

Keywords: Pharmaceuticals, Phenylephrine hydrochloride drug, Nanocomposites, Adsorption, Ultrasound, Clay.

Introduction

The pollution produced by pharmaceutical products in surface and ground waters has been acknowledged by many countries as an environmental problem and has led to the establishment of a research field known as Pharmaceuticals in the Environment. The pharmaceutical industry uses the designation Active Pharmaceutical Ingredients to describe products that are pharmacologically active, resistant to degradation, highly persistent in aqueous medium, and potentially able to produce adverse events in water
organisms and have a negative impact on human health.\[1\]

Therapeutic groups most commonly detected in water are: (i) anti-inflammatory drugs and analgesics (paracetamol, acetylsalicylic acid, ibuprofen, and diclofenac); (ii) antidepressants (benzodiazepines); (iii) Antiepileptics (carbamazepine); (iv) lipid-lowering drugs (fibrates); (v) β-blockers (atenolol, propanolol, and metoprolol); (vi) antiulcer drugs and antihistamines (ranitidine and famotidine); (vii) antibiotics (tetracyclines, macrolides, β-lactams, penicillins, quinolones, sulfonamides, fluoroquinolones, chloramphenicol and imidazole derivatives); (viii) other substances (cocaine, barbiturates, methadone, amphetamines, opiates, heroin, and other narcotics) \[1,2\]. Several methods to remove pharmaceutical products, including biodegradation\[3\], electrocoagulation \[4\], ozonation \[5, 6\], ultrafiltration membrane \[7\], and adsorption\[8\], have been used to treat pharmaceuticals. Among these methods, adsorption is the simplest, cheapest, and most versatile technique for holding these pollutants \[9\], Activated carbon \[10\], biochar \[11\], mesoporous silica \[12\], zeolite \[13\], chitosan \[14, 15\], carbon nanotubes (CNTs) \[16\], clays \[17\], resin \[18\], biomass wastes \[18, 19\], and graphene oxide \[20\] adsorbents have been effectively utilized to attract pharmaceutical pollutants from wastewaters.

Experimental Part

Adsorption experiments

For Phenylephrine hydrochloride drug removal from aqueous solution, typical adsorption experiments were performed to evaluate and compare the capacity of CNT /Decorated / Clay(Bentonite) / Fe2O3 Micro/Nanocomposites. PHE stock solutions (1000mgL\(^{-1}\)) were prepared with detail water and all subsequent experiments were made by diluting these solutions. The experiments were carried out in a Sonication water bath using Erlenmeyer flasks and, the experimental conditions were determined by preliminary tests. For all experiments the volume of solution was 100 mL. Firstly, the adsorbent dosage effect was investigated from 0.01 to 0.15 g L\(^{-1}\), at the original solution pH (6), temperature of 298 K, agitation of 3000 rpm, contact time of 1 h and initial concentration of 50 mg L\(^{-1}\). The effect of pH solution was studied by agitating 0.1 g of CNT /Decorated / Clay(Bentonite) / Fe2O3 Micro/Nanocomposites and 100 mL of PHE drug concentration (50 mgL\(^{-1}\)) using Sonication water-bath at 25°C. The experiment was conducted at different pH from 3, 6, 8, 11. Agitation was provided for 1 h contact time at a constant agitation speed. The pH was adjusted by adding a few drops of diluted 0.1 N KOH, or 0.1 N HCl and measured by using a pH meter. Then, equilibrium isotherms were obtained at temperatures (298 K) with PHE drug concentration range from 2 to 100 mg L\(^{-1}\), CNT /Decorated / Clay(Bentonite) / Fe2O3 Micro/Nanocomposites and 100 mL of PHE drug concentration (50 mgL\(^{-1}\)) using Sonication water-bath at 25°C. The experiment was conducted at different pH from 3 ,6,8, 11. Agitation was provided for 1 h contact time at a constant agitation speed. The pH was adjusted by adding a few drops of diluted 0.1 N KOH, or 0.1 N HCl and measured by using a pH meter. Then, equilibrium isotherms were obtained at temperatures (298 K) with PHE drug concentration range from 2 to 100 mg L\(^{-1}\), CNT /Decorated / Clay(Bentonite) / Fe2O3 Micro/Nanocomposites. dosage of 0.1 g L\(^{-1}\) and pH of 6.5. In this case, the solutions were stirred at 3000 rpm until the equilibrium. Finally For all experiments, samples were collected, centrifuged at 3000 rpm for 10 min, and the remaining PHE concentration in liquid phase was determined by spectrophotometry at the maximum wavelength of absorption (272nm) using a spectrophotometer. The experiments were carried out in triplicates and blanks were performed. The dye removal percentage (%R), equilibrium adsorption capacity (q\(_{e}\)) were determined by Eqs. (1)–(2), respectively:
\[E\% = \frac{C^0 - C_e}{C^0} \times 100 \quad (1) \]

\[Q_e = \frac{(C^0 - C_e) \cdot V}{W} \quad (2) \]

where \(C^0 \) is the initial dyes concentration in liquid (mg L\(^{-1}\)), \(C_e \) is the equilibrium dyes concentration in liquid (mg L\(^{-1}\)), \(m \) is the amount of adsorbent (g) and \(V \) is the volume of solution (L)

Result and Dictation

Characterization of The Preparation CNT /Decorated /Clay(Bentonite) / Fe\(_2\)O\(_3\) Micro/Nanocomposites

Energy Dispersion X-ray

EDX is a versatile technique used for qualitative and semi-quantitative analysis, it was noted that the iron in the clay(Bentonite) was increased in the presence of carbon and Fe2O3 impetration. For pristine clay(Bentonite), it showed larger particle size and unequal particles due to stacking of flaky materials in comparison to the treatment with hydrochloric acid and sodium chloride where these particles were disaggregated to smaller flakes and a clear microstructures difference distinction (Figures 1).

Morphology and Microstructure Analysis

The samples appeared with crapy, rough and porous fracture surface (Figure 3). This increase the surfaces of the absorbents that facilitates water diffusion into the absorbent.
At magnification over 1000X, bentonite clay/CNT lamellar structures were clearly visible (Figure 3). Furthermore TEM provide good agreements with the results of SEM[21, 22].

Figure (3): SEM images of CNT/Clay(Bentonite) /Fe$_2$O$_3$.

Transmittance Electron Microscopy (TEM)

Transmittance electron microscopy is a suitable technique for studying the surface morphology, results show good agreement with the FESEM measurements shown in Figure (4).

Figure (4): TEM image for CNT decorated Clay(Bentonite) /Fe2O3
Chemical Composition (XRF) Analysis

XRF analysis consider a very important technique for determination percentage of oxide in a mixture, results are shown in Tables (1). An evident increase in Fe$_2$O$_3$ content indicates Fe species had been loaded on bentonite for all sample were decorated by C substrate, the highest value of Fe$_2$O$_3$ (11.77 %) percentage is shown in Table (2) this attributed to exist of a higher percentage if the pristine of CNT sample [23].

Table (1): XRF analysis of Bentonite Clay

	524-4	L.O.I.	MgO	Al2O3	SiO2	P2O5	SO3	Cl
(%)	81.97	0.033	0.99	16.379	0.026	0.351	0.046	

		K2O	CaO	Fe2O3	Ni	Zn
Traces:						
		0.099	0.188	0.755	0.007	0.048

Table (2): XRF analysis of CNT decorated/Bentonite clay supported Fe$_2$O$_3$

	524-1	L.O.I.	Na2O	MgO	Al2O3	SiO2	P2O5	SO3	Cl
(%)	20.48	0.07	3.847	11.164	43.117	0.661	0.812		

		K2O	CaO	TiO2	Cr	MnO	Fe2O3	Ni	
Traces:									
		0.017	0.408	7.005	0.62	0.021	0.036	11.77	0.008

		Cu	Zn	Sr	Zr	Mo
Traces:						
		0.012	0.099	0.009	0.007	0.007

Effect of Weight of Composite

Variation of adsorbent dose showed that although increasing of weight of composite in aqueous solution can result to increased drug removal. The plot of removal % of PHE drug adsorption against the weight of CNT /Decorated /Clay(Bentonite)/Fe2O3 Micro/Nanocomposites adsorbent respectively in gram. From the Figures 5 it is observed that the percentage of adsorption is increases with increase in the adsorbent. This can be attributed to an increase in surface area of the nanocomposites, which in turn increases the binding sites. At higher dosage, there is
a very fast adsorption on to the adsorbent surface that leads to improved uptake of the drug [24-26].

![Graph showing effect of mass amount of adsorbent on percent removal and amount of adsorbed PHE drug](image)

Figure(5): Effect of mass amount of adsorbent (Clay(Bentonite) /CNT) nanoparticles on the percent removal and amount of adsorbed PHE drug, initial concentration = 50 mg/L, Temp. = 25°C, contact time 1 h.

Effect of pH

pH Solution can play an important role for the adsorption of the analytics by affecting both the existing forms of the target compounds, the charge species and density on the sorbent surface. In this work, the effect of pH solution on the extraction of target is investigated in the pH range of 2.0-11.0. As can be seen from Figure (6) , the sorption percentage of drug on CNT /Decorated /Clay(Bentonite)/Fe2O3 Micro/Nanocomposites very little in pH range of 2-4, which suggests that CNT /Decorated /Clay(Bentonite)/Fe2O3 Micro/Nanocomposites are excellent adsorbents for drug removal from large volumes of aqueous solutions. The results show a maximum adsorption of PHE pH 6. At pH .above 8, the amount of PHE drug noticeably decreases following a typical anionic adsorption behavior. [27-29].
Figure (6): Effect of solution pH on the adsorption of PHE drug on clay(Bentonite)/CNT. (Exp. Condition: Temp. = 25°C, contact time 1 h, and pH of solution 6).

The initial drug concentration effect

Different concentrations of PHE drug 2-100 mg/L were selected. The amounts of drug adsorbed at pH 6, adsorbent dosage 0.1g and 25°C are given in Figure 7. With increasing initial concentration of PHE drug from 2 to 100mg/L, the removal of drug molecules decreases from 99.47 to 81.59% after 1 hr of equilibrium adsorption time [26, 30, 31].

Figure(7): Effect of initial concentration on the percent removal and amount of adsorbed PHE drug onto Clay(Bentonite) /CNT (Exp. Condition: Temp. = 25°C, contact time 1 h, and pH of solution 6).
Adsorption isotherms

Two isotherm models namely Langmuir and Freundlich isotherm were examined. Linear regression was used to determine the best fitting model. The Langmuir model supposes that adsorption occurs uniformly on the active sites of the adsorbent surface. Once the adsorbate occupies an active site, no further adsorption can take place at this site. The Langmuir adsorption equation is[32]

\[Q_e = q_m \frac{K_L C_e}{1+(K_L C_e)} \]

Where, \(q_e \) is the amount adsorbed (mg/g) at equilibrium. \(C_e \) is the equilibrium solution concentration (mg/L). \(Q_0 \) and \(b \), the Langmuir constants represent the maximum adsorption capacity (mg/g) at complete monolayer coverage and energy of adsorption respectively. [33]

Where \(C^0 \) is the initial dyes concentration and \(b \) is the Langmuir constant. This parameter can indicate whether the adsorption process is irreversible (\(RL = 0 \)), favorable (\(0 < RL < 1 \)), linear (\(RL = 1 \)) or unfavorable (\(RL > 1 \)) Freundlich Isotherm model is defined as:[34]

\[Q_e = K_F C_e^{1/n} \]

where \(q_e \) is the amount adsorbed (mg/g), \(C_e \) is the equilibrium concentration of dyes solution (mg/L). \(K_F \) (mg/g) represents adsorption capacity and \(n \) is the dimensionless exponent of the Freundlich equation representing adsorption intensity.

A plot of \(q_e \) versus \(C_e \) (Figure 8) where the values of \(KF \) and \(1/n \) are obtained from the intercept and slope of the linear regressions (Table 3).
Figure (8): Nonlinear fit of different adsorption isotherm models for adsorption of PHE drug on (clay(Bentonite) /CNT), initial concentration = 50 mg/L, Temp. = 25°C, contact time 1 h, and mass of adsorbent 0.1 g/L.

Table (3): Langmuir and Freundlich, model isotherms parameters for PHE drugs adsorbed on the surface of (clay(Bentonite) /CNT) at 25 °C.

Phenylephrine hydrochloride	Parameters	Clay/CNT
Isotherm models		
Langmuir	qm (mg/g)	0.2791±0.07476
	KL(L/mg)	87.1358±8.3875
	R²	0.95229
Freundlich	Kᵢ	0.40561±0.0121
	1/n	2.37058±0.6821
	R²	0.9966
Conclusions

The results of EDX analysis shows that the elemental contents of Clay(Bentonite)/CNT were mainly composed of C, Fe and O elements. Highly removal of PHE drug in the presence of Clay(Bentonite)/CNT nanocomposites the removal of drug molecules decreases from 99.47 to 81.59% after 1 hr of equilibrium adsorption time and the percentage of adsorption is increases with increase in the adsorbent.

Reference

1. Rivera-Utrilla, J., *Pharmaceuticals as emerging contaminants and their removal from water. A review.* Chemosphere. 93(7): p. 1268-1287.
2. Bush, K., *Antimicrobial agents.* Current Opinion in Chemical Biology, 1997. 1(2): p. 169-175.
3. Zhou, H., *Enhancement with physicochemical and biological treatments in the removal of pharmaceutically active compounds during sewage sludge anaerobic digestion processes.* Chemical Engineering Journal. 316: p. 361-369.
4. Nariyan, E., A. Aghababaei, and M. Sillampäär, *Removal of pharmaceuticals from water with an electrocoagulation process; effect of various parameters and studies of isotherm and kinetic.* Separation and Purification Technology. 188: p. 266-281.
5. Salman, J.M., E. Abdul-Adel, and A. F.AlKaim, *Effect of pesticide Glyphosate on some biochemical features in cyanophyta algae Oscillatoria limnetica.* International Journal of PharmTech Research, 2016. 9(8): p. 355-365.
6. Gomes, J.o., *Application of ozonation for pharmaceuticals and personal care products removal from water.* Science of The Total Environment. 586: p. 265-283.
7. Sheng, C., *Removal of Trace Pharmaceuticals from Water using coagulation and powdered activated carbon as pretreatment to ultrafiltration membrane system.* Science of The Total Environment. 550: p. 1075-1083.
8. Marques, S.C.R., *Pharmaceuticals removal by activated carbons: Role of morphology on cyclic thermal regeneration.* Chemical Engineering Journal. 321: p. 233-244.
9. Moro, T.R., *Adsorption of pharmaceuticals in water through lignocellulosic fibers synergism.* Chemosphere. 171: p. 57-65.
10. Calisto, V.n., *Single and multi-component adsorption of psychiatric pharmaceuticals onto alternative and commercial carbons.* Journal of Environmental Management. 192: p. 15-24.
11. Lin, L., W. Jiang, and P. Xu, *Comparative study on pharmaceuticals adsorption in reclaimed water desalination concentrate using biochar: Impact of salts and organic matter.* Science of The Total Environment. 601-602: p. 857-864.
12. Liang, Z., *Adsorption of quinolone antibiotics in spherical mesoporous silica: Effects of the retained template and its alkyl chain length.* Journal of Hazardous Materials. 305: p. 8-14.
13. Sun, K., *Sorption and retention of diclofenac on zeolite in the presence of cationic surfactant.* Journal of Hazardous Materials. 323: p. 584-592.
14. Abdulrazzak, F.H., *Sonochemical/hydration-dehydration synthesis of Pt-TiO$_2$ NPs/decorated carbon nanotubes with enhanced photocatalytic hydrogen production activity.* Photochemical and Photobiological Sciences 2016. 15 (11): p. 1347-1357.

15. Kyzas, G.Z., D.N. Bikiaris, and D.A. Lambropoulou, *Effect of humic acid on pharmaceuticals adsorption using sulfonic acid grafted chitosan.* Journal of Molecular Liquids. 230: p. 1-5.

16. Zhao, H., *Adsorption behavior and mechanism of chloramphenicolcs, sulfonamides, and non-antibiotic pharmaceuticals on multi-walled carbon nanotubes.* Journal of Hazardous Materials. 310: p. 235-245.

17. Dordio, A.V., *Mechanisms of removal of three widespread pharmaceuticals by two clay materials.* Journal of Hazardous Materials. 323: p. 575-583.

18. Zhou, Y., L. Zhang, and Z. Cheng, *Removal of organic pollutants from aqueous solution using agricultural wastes: A review.* Journal of Molecular Liquids. 212: p. 739-762.

19. Alkaim, A.F., Alrobayi, Enas M., Algubili, Abrar M and Aljeboree, Aaseel M, *Synthesis, characterization, and photocatalytic activity of sonochemical/hydration–dehydration prepared ZnO rod-like architecture nano/microstructures assisted by a biotemplate.* Environmental technology, 2017. 38(17): p. 2119-2129.

20. Shan, D., *Preparation of porous graphene oxide by chemically intercalating a rigid molecule for enhanced removal of typical pharmaceuticals.* Carbon. 119: p. 101-109.

21. Edathil, A.A., P. Pal, and F. Banat, *Alginate clay hybrid composite adsorbents for the reclamation of industrial lean methyldeethanolamine solutions.* Applied Clay Science, 2018. 156: p. 213-223.

22. Gao, J., *Preparation and properties of novel eco-friendly superabsorbent composites based on raw wheat bran and clays.* Applied Clay Science, 2016. 132-133: p. 739-747.

23. Ahmed, H.R., S.J. Raheem, and B.K. Aziz, *Removal of Leishman stain from aqueous solutions using natural clay of Qulapalk area of Kurdistan region of Iraq.* Karbala International Journal of Modern Science, 2017. 3(3): p. 165-175.

24. Aljeboree, A.M., *Removal of Vitamin B6 (Pyridoxine) Antibiotics Pharmaceuticals From Aqueous Systems By ZnO.* International Journal of Drug Delivery Technology 2019. 9(2): p. 125-129.

25. Aljeboree, A.M., *Adsorption of crystal violet dye by Fugas Sawdust from aqueous solution.* International Journal of ChemTech Research, 2016. 9: p. 412-423.

26. Aljeboree, A.M., *Adsorption of methylene blue dye by using modified Fe/Attapulgite clay* Research Journal of Pharmaceutical, Biological and Chemical Sciences, 2015. 6(4): p. 778.
27. Aljeboree, A.M., Adsorption and Removal of pharmaceutical Riboflavin (RF) by Rice husks Activated Carbon. International Journal of Pharmaceutical Research 2019. 11(2): p. 255-261.
28. Zeng, S., Enrichment of polychlorinated biphenyl 28 from aqueous solutions using Fe 3 O 4 grafted graphene oxide. Chemical engineering journal, 2013. 218: p. 108-115.
29. Aljeboree, A.M. and A.S. Abbas, Removal of Pharmaceutical (Paracetamol) by using CNT/ TiO2 Nanoparticles. Journal of Global Pharma Technology, 2019. 11(01): p. 199-205.
30. Aljeboree, A.M., et al., THE EFFECT OF DIFFERENT PARAMETERS ON THE REMOVAL OF VITAMIN B12 DRUG (AS A MODEL BIOCHEMICAL POLLUTANTS) BY AC/ CLAY. Biochem. Cell. Arch., 2019. 19(1): p. 755-759.
31. A F Alkaim, M.B.A., Adsorption of basic yellow dye from aqueous solutions by Activated carbon derived from waste apricot stones (ASAC): Equilibrium, and thermodynamic aspects. International journal of chemical sciences, 2013. 11(2): p. 797-814.
32. Langmuir, I., The constitution and fundamental properties of solids and liquids. J. Am. Chem. Soc., 1916. 38 p. 2221-2295.
33. Aljeboree, A.M., A.F. Alkaim, and A.H. Al-Dujail, Adsorption isotherm, kinetic modeling and thermodynamics of crystal violet dye on coconut husk based activated carbon. Desalination and Water Treatment, 2014. 21(02): p. 1–12.
34. H.M.F., FreundlichDie adsorption in lusungen Z. Phys. Chem., 1906. 57 p. 385-470.