Virulence Gene Profiles of Multidrug-Resistant Pseudomonas aeruginosa Isolated From Iranian Hospital Infections

Nastaran Fazeli 1, Hassan Momtaz 1,2*

1 Department of Microbiology, Shahrekord Branch, Islamic Azad University, Shahrekord, IR Iran
2 Corresponding Author: Hassan Momtaz, Department of Microbiology, Shahrekord Branch, Islamic Azad University, Shahrekord, IR Iran. Tel: +98-9133812574, E-mail: hamomtaz@yahoo.com

Received: October 28, 2013; Revised: December 25, 2013; Accepted: January 18, 2014

Background: The most common hospital-acquired pathogen is Pseudomonas aeruginosa. It is a multidrug resistant bacterium causing systemic infections.

Objectives: The present study was carried out in order to investigate the distribution of virulence factors and antibiotic resistance properties of Pseudomonas aeruginosa isolated from various types of hospital infections in Iran.

Patients and Methods: Two-hundred and seventeen human infection specimens were collected from Baqiyatallah and Payambaran hospitals in Tehran, Iran. The clinical samples were cultured immediately and samples positive for P. aeruginosa were analyzed for the presence of antibiotic resistance and bacterial virulence genes using PCR (polymerase chain reaction). Antimicrobial susceptibility testing was performed using disk diffusion methodology with Mueller–Hinton agar.

Results: Fifty-eight out of 127 (45.66%) male infection specimens and 44 out of 90 (48.88%) female infection specimens harbored P. aeruginosa. Also, 65% (in male specimens) and 21% (in female specimens) of respiratory system infections were positive for P. aeruginosa, which was a high rate. The genes encoding exoenzyme S (67.64%) and phospholipases C (45.09%) were the most common virulence genes found among the strains. The incidences of various β-lactams encoding genes, including blaTEM, blaSHV, blaCTX, and blaV, were 94.11%, 16.66%, 15.68%, 18.62%, 21.56%, and 17.64%, respectively. The most commonly detected fluoroquinolones encoding gene was gyrA (15.68%). High resistance levels to penicillin (100%), tetracycline (90.19%), streptomycin (64.70%), and erythromycin (43.13%) were observed too.

Conclusions: Our findings should raise awareness about antibiotic resistance in hospitalized patients in Iran. Clinicians should exercise caution in prescribing antibiotics, especially in cases of human infections.

Keywords: Pseudomonas aeruginosa; Virulence Factors; Hospital infections; Iran

1. Background

Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic pathogen causing a wide range of human infections. It is a common hospital-acquired pathogen and responsible for urinary tract infections (UTIs), respiratory infections, dermatitis, soft tissue infections, bacteremia, bone and joint infections, gastrointestinal infections, and a variety of systemic infections, particularly in patients with severe burns, bed ulcers, and in patients suffered from cancer or AIDS who are immunosuppressed (1-3). P. aeruginosa has been associated with a high rate of morbidity, and its mortality rate was reported from 18% to 61% in hospital-acquired infections (2, 4, 5).

P. aeruginosa virulence factors are related to its adhesions and other secreted toxins. The phenazine operons (phzI and phzlII) and genes (phzH, phzM, and phzS) encode precursor proteins involved in the formation of three phenazine compounds passively secreted by P. aeruginosa: pyocyanin, 1-hydroxyphenazine, and phenazine-1-carboxamide (6, 7), which are responsible for increasing intracellular oxidative stress (6). P. aeruginosa also has a large number of other virulence factors such as exotoxin A (exoA), alkaline protease (aprA), exoenzyme S (exoS), elastase and sialidase, which are exoA gene and virulence factor exoS secretions by a type III secretion system (8-10). A zinc metalloprotease called lasB has an elastolytic activity on human tissue and especially lung tissue (11). The gene called nant encodes sialidase, which is responsible for adherence to the cells (11). The phospholipids contained in pulmonary surfactants may be hydrolysed by two phospholipases C encoded by plcH and plcN. An extracellular neuraminidase is thought to play an important role in implantation of the bacterium (11).

Despite using potent antibiotics, invasive P. aeruginosa infection is associated with high mortality (12). In the past decade, acquired multidrug resistance, because of selective antibiotic pressure, has emerged in several countries; and in some cases, infections caused by multidrug resistant P. aeruginosa have been untreatable (13). A previous study addressed that the Iranian isolates of
P. aeruginosa were resistant to trimethoprim (100%), amoxicillin (100%), ampicillin (100%), tetracycline (100%), ticarcillin (100%), carbenicillin (90%), ceftazidime (80%), clavulanic acid (69.2%), imipenem (60%), cefepime (52%), gentamicin (50%), and ciprofloxacin (40 %) (14). Similar incidence of antibiotic resistance among **P. aeruginosa** strains in other countries has been reported previously (12, 15-17). This high antibiotic resistance of **P. aeruginosa** was against commonly used antibiotics and especially β-lactams, including broad-spectrum cephalosporins, quinolones, chloramphenicol, and tetracyclines, mainly encoded by several antibiotic resistance genes, including **bla**TEM, **bla**SHV, **bla**OXA, **bla**CTX, **bla**DHA and **bla**VEB (18).

2. Objectives

There was no comprehensive investigation about the molecular characterization and antimicrobial resistance properties of **P. aeruginosa** isolated from human clinical samples in Iran. Therefore, the present study was carried out in order to investigate the distribution of virulence and antibiotic resistance genes as well as the pattern of antibiotic resistance of **P. aeruginosa** isolated from Iranian hospitalized patients who suffered from UTIs, respiratory infections, burn infections, bed ulcers, and wound infections.

3. Patients and Methods

3.1. Samples and Identification of Pseudomonas aeruginosa

A total of 217 human clinical samples, including wound infections (n = 62), respiratory infections (n = 23), urinary tract infections (n = 41), bed ulcer (n = 39), and burn (n = 52) were collected from hospitalized male and females who were referred to Baqiyatallah and Payambaran hospitals, Tehran, Iran. All samples were transmitted to Microbiology and Infectious Diseases Research Center of the Islamic Azad University of Shahrekord in a cooler with ice-packs. Samples were placed on the selective medium of Pseudomonas Cetrimide Agar (PCA) (LABOBASI, Mendorisio, Switzerland) using a spreading technique. Plates were incubated for 18-24 hours and observed for suspected colonies of **P. aeruginosa**, which was identified by colony pigmentation, grape-like odor, motility and biochemical tests, including carbohydrate fermentation (-), citrate assimilation (+), lysine decarboxylase (-), indole (-), oxidase (+), beta-hemolysis on blood-agar (+), and DNase (-). Inocula from pure colonies on PCA were cultured on nutrient agar slants and kept at 4°C.

3.2. Antibiotic Susceptibility Test

P. aeruginosa isolates were incubated initially on the nutrient agar media (at 4°C) and their positive colonies were transferred to the Müller-Hinton agar (HiMedia Laboratories, Mumbai, India). Antimicrobial susceptibility was performed on Mueller-Hinton agar by the standard disk diffusion method recommended by Clinical and Laboratory Standards Institute (19). This was done by dipping a sterile swab (stick into an overnight nutrient broth) and carefully swabbing the entire surface of Müller–Hinton agar plates. The antibiotics used against the test bacteria were as follows: tetracycline (30 µg/disk); streptomycin (10 µg/disk); chloramphenicol (30 µg/disk); sulfamethoxazole (25 µg/disk); gentamicin (10 µg/disk); enrofloxacin (5 µg/disk); cephalothin (30 µg/disk); ciprofloxacin (5 µg/disk); trimethoprim (5 µg/disk); nitrofurantoin (300 µg/disk); ampicillin (10 µg/disk); penicillin (10 µg/disk), and erythromycin (15 µg/disk). Then, the antibiotic multidisk (Padtan Teb, Iran) was placed on the surface of the inoculated plates and gently pressed. The plates were incubated at 37°C for 18-24 h. The diameter of inhibition zone was measured in millimeters and isolates were scored as sensitive or resistant by comparing with values recommended on standard charts (19). **P. aeruginosa** ATCC 10145 was used as the quality control organism in antimicrobial susceptibility determination.

3.3. DNA Extraction and PCR Confirmation

Chromosomal DNA was extracted from each **P. aeruginosa** isolate by DNA extraction kit (DNPTM, CinaGen, Iran) according to manufacturer’s instruction. The bacteria were confirmed using the PCR method for nanl gene of the **P. aeruginosa** (20). PCR was carried out with 2 µL template DNA, 0.25 µM of each primer (F: 5'-ATGAAACTCTATTTGGAT and R: CTAATCCATGCTGACC-3'), 0.2 mM deoxyribonucleoside triphosphates, 1X reaction buffer, 2 mM MgCl₂, and 1.5 U Taq DNA polymerase (Fermentas) in a total volume of 25 µL. The DNA was amplified using the following protocol: initial denaturation (94°C for 5 min), followed by 25 cycles of denaturation (94°C for 35 s), annealing (53°C for 45 s) and extension (72°C for 1 min), with a single final extension of 7 min at 72°C.

3.4. PCR Amplification of Virulence Genes

Three different multiplex PCR assays were used in order to amplify various virulence genes. The programmable thermal cycler (Eppendorf, Mastercyrcler® 5330, Eppendorf-Netheler-Hinz GmbH, Hamburg, Germany) PCR device was used in all PCR reactions. The first multiplex PCR reaction was used for the detection of **algD** and **algU** virulence genes of **P. aeruginosa** isolated from clinical samples. The PCR reaction was performed in a total volume of 50 µL, containing 2.5 µL of DNA template, 1.5 mM MgCl₂, 200 µM dNTP (Fermentas), 0.5 µM of each primer (**algDF**: 5'-AAGCGGAGATGCGCCGTCTCTC-3' and **algDR**: 5'-AGGGAAATGCCGCGGCGT-3') as well as **algUF**: 5'-CGGAAACCGGAACTGCGG-3' and **algUR**: 5'-GCGCGGCGGCGG-3')(22), 1.25 U Taq DNA polymerase (Fermentas), and 5 µL PCR buffer 10X. Reactions were initiated with 1 cycle, at 95°C for 2 min, followed by 30 cycles at 94°C for 30 s, 58°C for 30 s, 72°C for 1 min and a final elongation
step at 72°C for 7 min. The second multiplex PCR reaction was used for detection of lasB, toxA, plcH, plcN, and exoS virulence genes of *P. aeruginosa* isolated from clinical samples. List of the primers is shown in Table 1 (23) 18. The PCR reaction was performed in a total volume of 50 µL, containing 25 ng of DNA template, 10 mM Tris-HCl, 50 nmol KCl, 1.5 mM MgCl2, 200 µM dNTP (Fermentas), 12.5 pmol of each primer, 1 U Taq DNA polymerase (Fermentas) and 5 µL PCR buffer 10X . Reactions were initiated at 1 cycle at 94°C for 3 min, followed by 30 cycles at 94°C for 30 s, 55°C for 1 min, 72°C for 1.5 min and a final elongation step at 72°C for 5 min. The third multiplex PCR reaction based on the method of Finnan et al. (7) and was used for the detection of exoT, exoY, exoU, apr, phzII, phzM, pilA, pilB, lasA, lasR, lasB, lasN, lasV, and lasR virulence genes. Table 1 shows the list of primers.

Table 1. Oligonucleotide Primers Used for Virulence Genes Amplification

Gene	Sequence (5’–3’)	Size of Product (bp)
lasB	lasB F: GGAATGAACGAAGCGTTCTCCGAC	284
	lasB R: TGGCGTCGAGCAAGACCTCCTCG	
toxA	toxA F: CTGCAGCGGTCCTATGTTCC	270
	toxA R: GATGCTGGACCAGGGTCCAG	
plcH	plcH F: GCACCTGGCTACCTGATGCC	608
	plcH R: TCCGTAGGCCTGACGCTAC	
plcN	plcN F: TCGGTATTCGCAACGCCCTACG	481
	plcN R: TCCGTCGTGAGCCAGGTCAGA	
exoS	exoS F: CGTCGTCGTCGACAGCATTTGCTG	444
	exoS R: CCAGACCGCTTCACCCAGGC	
exoT	exoT F: CAATCATCCTACAGAGACC	1159
	exoT R: TGTCGTAGAGGATCTCCTT	
exoY	exoY F: TATCGACGGCTACGTCAGGT	1035
	exoY R: TTGATGCACTGTGACGCAAG	
exoU	exoU F: GATCTCCCATCACAGGCTCG	3308
	exoU R: CTAGCAATGCGGACTAATCG	
apr	apr F: TGTCAGCAATTCCTTGTAC	1017
	apr R: GTGTCAGCCGGGTGAC	
phzII	phzII F: GCCAAGGTTTGGTGTCGG	1036
	phzII R: GCCATATGGCAAGTATGGAAC	
phzM	phzM F: ATGGAGAGCGGGAGACGAC	875
	phzM R: ATGGCGGTTTCTCCATGCGGAG	
phzS	phzS F: TGGCGCAAGCAGATCAGCTC	1752
	phzS R: ACAACCACTGAGGCGACCTTCC	
phzI	phzI F: CATCAGCTTACGACAATCCC	392
	phzI R: CGGAGAACACTTCTCTTCC	
phzH	phzH F: GGTTGCGGCTGAATACAC	1752
	phzH R: CTCACCTGACGGTGTTGGAG	
lasA	lasA F: GCAGCACAAAGATCCC	1075
	lasA R: GAAATTCGAGGTGGTGGTC	
pvdA	pvdA F: GACTGAGCAGCAGTACGCAC	1281
	pvdA R: TCTGAGCTGACGGTACAGG	
pilA	pilA F: ACAGACATCAACTGACGCC	1675
	pilA R: TTGACCTTCCCATGGCTG	
pilB	pilB F: TCGAATGATCTGACGCGT	408
	pilB R: CTTTCGGAGTGACATCG	
3.5. PCR Amplification of Antibiotic Resistance Genes

Various β-lactamase genes and the genes that encode DNA gyrase (gyrA) and topoisomerase IV (parC) were detected using two separate multiplex PCR assays. Primers gyrA-F (5’-GTGTGCTTTATGCCATGAG-3’) and gyrA-R (5’-GGTTTCCTTTTCCAGGC-3’) (24) were used to amplify 287 bp of the fluoroquinolone resistance-determining region of the gyrA gene. Primers parC-F (5’-CATGCCTAGGCGCATGAG-3’) and parC-R (5’-AGCAGACCTCGGAATAG-3’) (24) were used to amplify 267 bp of the fluoroquinolone resistance-determining region of parC. PCR amplification was performed in a 50 μL mixture, containing 1 × PCR buffer, 2.5 mM MgCl₂, 0.2 mM mix of deoxynucleotide triphosphates (Fermentas), 10 pmol of each primer, 1 U of Taq DNA Polymerase (Fermentase), and 150 ng of the DNA template. Amplification of the target regions was performed in 35 cycles consisting of initial heat activation at 95 °C for 6 min, denaturation at 95 °C for 45 s, annealing at 51°C for 45 s and elongation at 72 °C for 1 min, with a final elongation at 72°C for 7 min. The PCR reaction was performed in a total volume of 25 μL, containing 2 μL of DNA template, 1.4 mM MgCl₂, 150 μM of each dNTP (Fermentas), 0.3 μM of each primers and 1 U Taq DNA polymerase (Fermentas). The cycling parameters used were as previously described (18).

3.6. Gel Electrophoresis

Fifteen microliter of PCR products were resolved on a 1.5% agarose gel containing 0.5 mg/mL of ethidium bromide in Tris-borate-EDTA buffer at 90 V for 1 hour, also using suitable molecular weight markers. The products were examined under ultraviolet illumination.

3.7. Statistical Analysis

The results were transferred to a Microsoft Excel spreadsheet (Microsoft Corp., Redmond, WA) for analysis. Statistical analysis was performed using SPSS/16.0 software (SPSS Inc., Chicago, IL) for finding significant relationships among incidences of bacteria in males and females, virulence gene and pattern of resistance of P. aeruginosa isolated from clinical samples. χ² test and Fisher exact 2-tailed test analysis were performed in this study. Statistical significance was regarded at a P value < 0.05.

3.8. Ethical Considerations

The present study was accepted by the ethics committees of the Baqiyatallah and Payambaran hospitals, Tehran, Iran and Microbiology and Infectious Diseases Center of the Islamic Azad University of Shahrekord Branch, Iran. Written informed consents were obtained from all the study patients or their parents.

Table 2. Oligonucleotide Primers Used for β-Lactamase Genes Amplification

Antimicrobial Agent	Resistance Gene	Sequence (5’-3’)	Size of Product (bp)
β-lactamase	blaTEM	F: ATGAGTATTTCAACATTTCCG	867
		R: GGACTCTGCAACAATACGC	
		R: CTGACAGTTACCAGGCTTA	
β-lactamase	blaSHV	F: GGTATGCGGTATATGGCC	867
		R: TTAGCGTGGCCAGTC	
β-lactamase	blaOXA	F: ACACAGCTAATATAACGCG	814
		R: AGTGTGTTAGAATGTTGATC	
β-lactamase	blaCTXM	F: ATGTGCGAGACGTAAGTGT	593
		R: TGGGTAARTGATGACCAGA	
β-lactamase	blaDHA	F: CACACGGAGGTATTCTGCA	970
		R: CGGTTARACGGCGTACCTG	
β-lactamase	blaVEB	F: CGACCTCTATTCTCCGATG	642

4. Results

All the human clinical samples were examined using culture and PCR techniques. Out of 217 clinical samples, 102 (47%) were positive for P. aeruginosa (Table 3). In addition, 58 out of 127 male clinical samples (45.66%) and 44 out of 90 female clinical samples (48.88%) were positive for P. aeruginosa. We found that the patients with respiratory infections had the highest incidence of P. aeruginosa (65.21%), while the patients with UTIs had the lowest incidence (21.95%). Table 4 presents the antimicrobial resistance in the P. aeruginosa isolates from the human clinical samples. Bacterial strains exhibited the highest level of resistance to penicillin (100%), followed by tetracycline (90.49%), streptomycin (64.70%), and erythromycin (43.13%).
Table 3. Distribution of *Pseudomonas aeruginosa* in Various Source of Infection According to the Gender a

Source of Isolation	Number of Patients	Number of Positive Samples, No.(%)
Wound infection		
M	41	20 (48.78)
F	21	16 (76.19)
Respiratory infection		
M	14	8 (57.14)
F	9	7 (77.77)
Urinary tract infection		
M	25	6 (24)
F	16	3 (18.75)
Bed ulcer		
M	22	10 (45.45)
F	17	6 (35.29)
Burn		
M	25	14 (56)
F	27	12 (44.44)
Total		
M	127	58 (45.66)
F	90	44 (48.88)

a Abbreviations: M, male; F, female.

Table 4. Antimicrobial Resistance Properties in *Pseudomonas aeruginosa* Isolated From Clinical Infections in Human a,b

Source of Isolation	*P. aeruginosa* Isolates	TE30	S10	C30	SXT	GM10	NFX5	CF30	CIP5	TMP5	F/M300	AM10	P10	E15
Wound infection														
M	20	19	17	10	5	5	5	4	8	2	4	20	6	
F	16	15	12	2	6	7	4	4	3	6	1	8	16	
Respiratory infection														
M	8	8	5	2	4	2	3	3	3	1	1	2	8	
F	7	7	3	1	2	3	2	2	1	2	-	-	7	
Urinary tract infection														
M	6	5	3	1	5	-	2	2	2	3	-	-	6	
F	3	2	2	1	1	1	2	2	1	-	-	1	3	
Bed ulcer														
M	10	8	5	2	3	4	3	3	2	7	1	4	10	
F	6	5	3	1	-	2	2	2	1	2	-	2	6	
Burn														
M	14	12	10	2	4	10	3	3	3	3	1	6	14	
F	12	11	6	2	8	6	1	2	2	6	1	3	12	
Total														
M	58	52	40	10	26	21	16	16	14	22	5	16	58	
F	44	40	26	7	17	19	12	12	8	16	2	13	44	

a Abbreviations: M, male; F, female.

b TE30 = tetracycline (30 µg/disk); S10 = streptomycin (10 µg/disk); C30 = chloramphenicol (30 µg/disk); SXT = sulfamethoxazole (25 µg/disk); GM10 = gentamicin (10 µg/disk); NFX5 = enrofloxacin (5 µg/disk); CF30 = cephalothin (30 µg/disk); CIP5 = ciprofloxacin (5 µg/disk); TMP5 = trimethoprim (5 µg/disk); F/M300 = nitrofurantoin (300 µg/disk); AM10 = ampicillin (10 µg/disk); P10 = penicillin (10 µg/disk); E15 = erythromycin (15 µg/disk).
Distribution of antimicrobial resistance genes within the *P. aeruginosa* isolates from the human clinical samples is shown in Table 5. Genes that encode resistance to β-lactams antibiotics such as *bla*~TEM~ (94.11%), *bla*~DHA~ (21.56%), and *bla*~CTX-M~ (18.62%) and the genes that encode resistance to fluoroquinolones, like *gyrA* (15.68%) were the most common antibiotic resistance genes in the human clinical samples. Interestingly, we found that males had the highest frequency of antibiotic resistance genes. Table 6 shows the distribution of virulence genes in the *P. aeruginosa* isolates from the human clinical samples. The most commonly detected virulence genes of *P. aeruginosa* isolates from the human clinical samples were *exoS* (67.64%), *plcH* (45.09%), *phzM* (36.27%), *exoS* (36.27%), *toxA* (35.29%), and *pilA* (34.31%). Moreover, we found that isolates of burn infection had the highest frequency of virulence genes. The PCR results for detection of some virulence and antibiotic resistance genes are shown in Figures 1, 2, and 3.

Table 5. Distribution of Antimicrobial Resistance Genes in *Pseudomonas aeruginosa* Isolated From Clinical Infections in Human

Source of Isolation	*P. aeruginosa* Isolates	*bla*~TEM~	*bla*~SHV~	*bla*~OXA~	*bla*~CTX-M~	*bla*~DHA~	*bla*~VEB~	*gyrA*	*parC*
Wound infection									
M	20	2	-	1	2	-	1	-	-
F	16	16	4	2	2	1	2	2	-
Respiratory infection									
M	8	7	1	2	1	2	1	-	-
F	7	6	2	-	1	-	-	-	-
Urinary tract infection									
M	6	5	-	4	1	2	1	2	-
F	3	3	1	-	1	2	-	1	-
Bed ulcer									
M	10	10	2	3	4	4	1	2	-
F	6	5	-	1	-	-	2	2	1
Burn									
M	14	14	3	4	7	6	7	5	-
F	12	10	2	-	2	2	6	2	-
Total									
M	58	56	8	13	14	16	10	10	-
F	44	40	9	3	5	6	8	6	3

Abbreviations: M, male; F, female.

Table 6. Distribution of Virulence Genes in *Pseudomonas aeruginosa* Isolated From Clinical Infections in Human

Source of Isolation	*P. aeruginosa* Isolates	*pilB*	*pilA*	*pilH*	*alkG*	*alkU*	*plcN*	*nanT*
Wound infection								
M	20	6	2	-	-	-	-	-
F	16	5	1	-	-	-	-	-
Respiratory infection								
M	8	1	3	6	2	2	2	1
F	7	4	1	3	-	-	2	1
Urinary tract infection								
M	6	3	2	1	1	1	1	1
F	3	1	1	1	-	-	1	2
Bed ulcer								
M	10	7	4	7	3	4	-	-
F	6	2	2	-	-	-	-	-
Burn								
M	14	10	5	11	4	7	4	6
F	12	2	6	8	2	4	3	4
Total								
M	58	26	19	44	10	14	7	15
F	44	11	4	25	4	7	6	14

Abbreviations: M, male; F, female.
5. Discussion

The results of the present study showed that multidrug resistant *P. aeruginosa* is one of the main active pathogens in human clinical samples, especially wound infections, respiratory infections, UTIs, bed ulcer, and burn infections. Also, our results showed that antibiotics were used in an irregular manner in Iranian hospitals. These two findings may lead to the emergence of resistant *Pseudomonas* strains, which can infect patients and even healthy people in hospitals.

Similar results have been reported by Zavascki et al. (25, 26), Lanini et al. (27), and Pitten et al. (28). Statistical analyses showed a significant \(P < 0.01 \) association between the incidence of *P. aeruginosa* in respiratory infections (65.21%) and UTIs (21.95%). The high incidences of *P. aeruginosa* in respiratory infections have been previously reported (29-31). In the Viedma et al. (32) study, the main clinical wards in which drug-resistant *P. aeruginosa* strains were isolated included internal medicine (31.1%), surgery (17.5%), intensive care (13.1%), pulmonology (11.5%), and hematology (8.2%). Also, Viedma et al. (32) showed that out of 183 patients, 143 (78.1%) were considered infected, including 36 (19.7%) patients with lower respiratory tract infection, 30 (16.4%) patients with urinary tract infection, 28 (15.3%) patients with bacteremia, and 22 (12%) patients with intra-abdominal infection.

There were significant differences \(P < 0.01 \) in the incidence of *P. aeruginosa* strains between male and female patients. Al-Hasan et al. (33) reported that 62.80% of *P. aeruginosa* strains were isolated from hospitalized males. Also, gender-wise prevalence showed 61.78% male and 38.22% females of the study of Khan et al. (34) were infected by *P. aeruginosa*, which was similar to our results. One possible explanation for the high prevalence of *P. aeruginosa* in male patients lies in their jobs, which usually included hard works outside the house, while Iranian women are typically housewives. Therefore, they are away from contaminated work environments.

The overall incidence of *P. aeruginosa* in human clinical samples of our study was 47%. Similar incidence rates have been reported from India (29.6%) (35), Georgia (31.5%) (36), Norway and Sweden (25.8 to 45.9%) (37), Turkey (16.4%) (38), and Brazil (37.3%) (25). The overall incidence for *P. aeruginosa* was 6.4 cases/100,000 population in England, Wales and Northern Ireland (39). Infections were reported more among those aged 75 years and older, especially among male patients with a rate of 52.0 cases/100,000 population compared with 19.7 cases/100,000 for female patients (the same age group) (40). Tacconelli et al. (40) reported that out of 358 patients with *P. aeruginosa* bacteremia, 133 (37%) were hospitalized in medical wards, 103 (29%) in ICUs, 97 (27%) in surgical wards, and 25 (7%) in neonatology wards. 45 (12%) patients had HIV infection and 28 (8%) had hematologic malignancies.

Similar investigations have been done on Iranian hospitals infections (41-50). Bacterial strains of our investiga-
tion were multidrug resistant. All isolates were resistant to penicillin which shows the irregular and extreme prescription of this antibiotic. There were significant differences (P < 0.01) in the distribution of antimicrobial resistance among penicillin, nitrofurantoin, and chloramphenicol (P < 0.05) and among resistance to penicillin and ampicillin, ciprofloxacin, enrofloxacin, and gentamicin. Majority of the P. aeruginosa strains of the Japoni et al. (51) investigation were resistant to more than 5 antibiotics which was similar to our results. Shiny et al. (52) reported that out of the 500 pus and 500 urine samples screened, the percentage positivity of P. aeruginosa were 12.8% (53) and 4% (20), respectively and all (100%) samples were sensitive to imipenem, while resistance was maximum to cefotaxime (93.75%). In a study of Viedma et al. (32), which was conducted from 2007 to 2010, the prevalence of P. aeruginosa had increased from 2.8% to 15.3% over this period and all the isolates were only susceptible to colistin (100%) and amikacin (75%). High antibiotic resistances against penicillin, tetracycline, streptomycin, and erythromycin have been previously reported too (15, 17). Our results showed that 39.2% and 21.56% of bacterial strains were resistant to gentamicin and ciprofloxacin, respectively. Fazeli et al. (54) showed that 29% and 32.2% of the P. aeruginosa strains were resistant to ciprofloxacin and gentamicin, which was similar to our results. Ciprofloxacin has been stated to be the most potent available drug for the treatment of P. aeruginosa infections (55). Resistance of P. aeruginosa to ciprofloxacin was 21.56%, compared with 26.8% in Latin America (56) and 10%-32% in Europe (57, 58).

The antibiotic resistant pattern found by Akingbade et al. (15) investigation showed that P. aeruginosa, on one hand, had high resistant to amoxicillin (92.7%), ampicillin (90%), cefoxacin (88.2%), cotrimoxazole (77.3%), erythromycin (72.7%), tetracycline (70.9%), streptomycin (65.5%), and ofloxacin (69.0%), and on the other hand, had low resistant to cefazidime (20%), gentamicin (26.4%), levofloxacin (30.9%), ceftiraxone (34.5%), and ciprofloxacin (35%), which was similar to our results. Our results also showed that 16.66% and 6.86% of our bacterial strains were resistant to chloramphenicol and nitrofurantoin, respectively. Similar results have been reported by Lim et al. (18) from Malaysia and Smith et al. (59) from Nigeria. Chloramphenicol and nitrofurantoin are banned antibiotics and the slight antibiotic resistance to these drugs detected in our study indicates that irregular and unauthorized use of them may have occurred in Iran.

Several genes which encode resistance to β-lactams antibiotics such as blatem (94.11%), blada (21.56%), blaoxa (15.68%), blaveb (17.64%), blashv (16.66%), and blactm (18.62%) and the genes that encode resistance to fluoroquinolones like gyrA (15.68%) and parC (2.94%) were detected in the bacterial strains of our study. There were statistically significant differences (P < 0.05) amongst the incidences of genes encoding resistance to β-lactams and those encoding resistance to fluoroquinolones. Also, statistical analyses showed a significant (P < 0.05) association between the incidence of blatem and other genes encoding resistance to β-lactams. There were no significant differences between the incidence of gyrA and parC genes. Of 82 P. aeruginosa strains isolated from human clinical specimens, 15%, 74%, 74%, 76%, 82%, and 76% had tetA, tetB, blavim2a, blavim2b, aaxa, and blaoxa respectively. A recent study performed within our region in Egypt reported that the majority (97%) of P. aeruginosa isolates were beta-lactamase producers (3). P. aeruginosa isolates of the Du et al. (60) study showed the high incidence of antibiotic resistance genes, including blatem (100%), blaPSE1 (100%), blaoxa1 (96.2%), blasihV58 (91.3%), blaoxa17 (78.3%), blavim1 (26.1%), blaoxa10 (21.7%), and blasihV5 (8.7%). In the human isolates, the most prevalent extended-spectrum β-lactamases (ESBLs) in P. aeruginosa are blasihV5 and blasihV5 in Taiwan (61). In the present study, we found that blatem (94.11%) and blada (21.56%) were the most commonly detected antibiotic resistance genes.

The results of disk diffusion method were confirmed the results of PCR amplification of resistance genes. Our results indicated the high presence of virulence factors in P. aeruginosa isolates. Totally, exoS (67.64%) and plcH (45.09%) were the most commonly detected virulence genes. There were statistically significant differences (P < 0.05) amongst the incidences of exoS and exot and exou, also P < 0.05 amongst the incidences of phzM and phzl, phzS and phzH genes. There were no significant differences amongst the incidences of lasA, lasB, plcH, and plcN. Also, statistical analyses showed a significant (P < 0.05) association between the incidences of pilA, pilB, algD, and algU. The exoS gene is directly translocated into eukaryotic cells by the contact-dependent type III secretory process and, as such, it provides the bacterium with a mechanism for manipulating the eukaryotic cells it encounters. In support of exoS contributing to P. aeruginosa pathogenicity, bacterial translocation of exoS into epithelial cells results in a general inactivation of cellular function, as recognized by the inhibition of DNA synthesis, loss of focal adhesion, cell rounding, and microvillus effacement (62, 63). High importance of the exoS, exou, and exot genes of P. aeruginosa in the pathogenicity of lung diseases has been reported before (10). Also, the exoS gene contributed to dissemination in burn, lung diseases and keratitis (10, 53, 64). Our results showed that the exoS gene had the highest incidence in human clinical samples, including wound, respiratory and urinary tract infections, bed ulcer, and burn. The plcH gene is responsible for proinflammatory activities (9), virulence in animal models (66), pulmonary inflammation (9), and inhibition of oxidative burst of neutrophils (65). Similar results have been reported previously from Malaysia (66), Australia (67), Jamaica (68), and Lebanon (17).
exo, apr, phz, las, pvd, pil, tox, alg, plc, and nan virulence genes are predominant in human infections. Antibiotic resistance against penicillin, tetracycline, and streptomycin were high. Prescription of ciprofloxacin, nitrofurantoin, and chloramphenicol can be effective for the treatment of human infections due to *P. aeruginosa* in our area. Hence, judicious use of antibiotics is required by clinicians.

Acknowledgements

The authors would like to thank Dr. E. Tajbakhsh, and Mr. M. Momeni at Biotechnology Research Center of the Islamic Azad University of Shahrekord for their important technical and clinical support. This work was supported by the Islamic Azad University, Shahrekord Branch, Iran.

Authors’ Contributions

DNA extraction, PCR, manuscript preparation, statistical analysis, and project support were all performed by Hassan Montaz. Sample collections and coordination was performed by Nastaran Fazeli. All authors have read and approved the final manuscript.

Funding/Support

This work was supported by the Islamic Azad University, Shahrekord Branch, Iran (grant No. 92/2011).

References

1. Aloufi V, Navon-Venezia S, Seigman-Igra Y, Cabili S, Carmeli Y. Multidrug-resistant *Pseudomonas aeruginosa*: risk factors and clinical impact. *Antimicrob Agents Chemother* 2006; 50(1):343-8.

2. Chatzinikolaou I, Abb-Said D, Bodey GP, Rolston KV, Tarrand JJ, Samonis G. Recent experience with *Pseudomonas aeruginosa* bacteremia in patients with cancer: Retrospective analysis of 245 episodes. *Arch Intern Med.* 2000; 160(4):501-9.

3. Gad GF, El-Domany RA, Zaki S, Ashour HM. Characterization of *Pseudomonas aeruginosa* isolated from clinical and environmental samples in Minia, Egypt: prevalence, antibiogram and resistance mechanisms. *J Antimicrob Chemother.* 2007; 60(5):1010-7.

4. Hirsch EB, Tam VH. Impact of multidrug-resistant *Pseudomonas aeruginosa* infection on patient outcomes. *Expert Rev Pharmacoecon Outcomes Res.* 2010; 10(4):441-51.

5. Maschmeyer G, Breuven I. Review of the incidence and prognosis of *Pseudomonas aeruginosa* infections in cancer patients in the 1990s. *Eur J Clin Microbiol Infect Dis.* 2000; 19(12):915-25.

6. Mavrodi DV, Bonsall RF, Delaney SM, Soule MJ, Phillips G, Thomashow IS. Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from *Pseudomonas aeruginosa* PA01. *J Bacteriol.* 2003; 185(21):6434-65.

7. Finnan S, Morrissey JP, O’Gara F, Boyd EF. Genome diversity of *Pseudomonas aeruginosa* isolates from cystic fibrosis patients and the hospital environment. *J Clin Microbiol.* 2004; 42(12):5783-92.

8. Krall R, Schmidt G, Arkories K, Barbieri JT. *Pseudomonas aeruginosa* ExoT is a Rho GTPase-activating protein. *Infect Immun.* 2000; 68(6):6066-8.

9. Wieland CW, Siegmund B, Senaldi G, Vasil MI, Dinarello CA, Fantuzzi G. Pulmonary inflammation induced by *Pseudomonas aeruginosa* lipopolysaccharide, phospholipase C, and exotoxin A: role of interferon regulatory factor 1. *Infect Immun.* 2002; 70(3):1352-8.

10. Shaver CM, Hauser AR. Relative contributions of *Pseudomonas aeruginosa* ExoU, ExoS, and ExoT to virulence in the lung. *Infect Immun.* 2004; 72(12):5696-77.

11. Lombart IA, Poulsen K, Kilian M. Epidemic population structure of *Pseudomonas aeruginosa*: evidence for a clone that is pathogenic to the eye and that has a distinct combination of virulence factors. *Infect Immun.* 2000; 68(6):6284-95.

12. Makedou K, Tsiriki EP, Biskakis AG, Chatzimitriou M, Halvanitzis AA, Noutsou K, et al. Changes in antibiotic resistance of the most common Gram-negative bacteria isolated in intensive care units. *J Hosp Infect.* 2005; 60(3):245-8.

13. Tsukayama DT, van Loon JJ, Cartwright C, Chmielowski B, Fluit AC, van der Weren C, et al. The evolution of *Pseudomonas aeruginosa* during antibiotic rotation in a medical intensive care unit: the RADAR-Trial. *Int J Antimicrob Agents.* 2004; 24(3):339-45.

14. Shahini N, Shahnin N, Ala S. Determining of resistance and sensitivity of *Pseudomonas aeruginosa* in Iran in 2010-2011. *Res Pharm Sci.* 2012; 7(5):5884.

15. Akingbade O, Baluyan S, Ojo D, Afolabi R, Morbayo O, Okonrethu P, et al. Plasmid profile analysis of multidrug resistant *Pseudomonas aeruginosa* isolated from wound infections in South West, Nigeria. *World Appl Sci J.* 2012; 20(6):766-75.

16. Oliver A, Weigel LM, Rasheed JR, McGowan Jr J, Raney P, Tenover FC. Mechanisms of decreased susceptibility to cefepime in *Pseudomonas aeruginosa* isolated from wound infections in South West, Nigeria. *World Appl Sci J.* 2012; 20(6):766-75.

17. Tokajan S, Timani R, Issa N, Araj G. Molecular Characterization, Multiple Drug Resistance, and Virulence Determinants of *Pseudomonas aeruginosa* Isolated from Lebanon. *Br Microbiol Res J.* 2012; 2(4):2441-50.

18. Lim KT, Yasin RM, Yeo CC, Puthucheary SD, Balan G, Maning N, et al. Genetic fingerprinting and antimicrobial susceptibility profiles of *Pseudomonas aeruginosa* hospital isolates in Malaysia. *J Microbiol Immunol Infect.* 2009; 42(3):197-207.

19. Clinical and Laboratory Standards Institute. M100-S22. Performance standards for antimicrobial susceptibility testing 22nd informational supplement. *Wayne (PA): CLSI.* 2012.

20. Strateau T. Microbiological and molecular-genetic investigations on the resistance mechanisms and virulence factors in clinical strains of *Pseudomonas aeruginosa*. Medical University of Sofia: Bulgaria; 2008.

21. Wozniak DJ, Ohman DE. Transcriptional analysis of the *Pseudomonas aeruginosa* genes algR, algL, and algD reveals a hierarchy of alginate gene expression which is modulated by algT. *J Bacteriol.* 1994; 176(9):6007-14.

22. Schurr MJ, Martin DW, Mudh MH, Deretic V. Gene cluster controlling conversion to alginate-overproducing phenotype in *Pseudomonas aeruginosa*: functional analysis in a heterologous host and role in the instability of mucoidy. *J Bacteriol.* 1994; 176(10):2573-82.

23. Wolska K, Szewda P. Genetic features of clinical *Pseudomonas aeruginosa* strains. *Pol J Microbiol.* 2009; 58(3):255-60.

24. Gorgani N, Albrand S, Patterson A, Pourmand N. Detection of point mutations associated with antibiotic resistance in *Pseudomonas aeruginosa*. *Int J Antimicrob Agents.* 2009; 33(4):414-8.

25. Zavaicki AP, Barth AL, Fernandes JF, Moro AL, Goncalves AL, Goldani LZ. Reappraisal of *Pseudomonas aeruginosa* hospital-acquired pneumonia mortality in the era of metallo-beta-lactamase-mediated multidrug resistance: a prospective observational study. *Crit Care.* 2006; 10(4):R14.

26. Zavaicki AP, Gaspareto PB, Martins AE, Goncalves AL, Barth AL. Outbreak of carbapenem-resistant *Pseudomonas aeruginosa* producing SPM-1 metallo-(beta)-lactamase in a teaching hospital in southern Brazil. *J Antimicrob Chemother.* 2005; 56(6):1348-51.

27. Laniini S, D’Arezzo S, Puro V, Martinelli I, Imperi F, Pinselli P, et al. Molecular epidemiology of a *Pseudomonas aeruginosa* hospital outbreak driven by a contaminated disinfectant-soap dispenser. *PloS One.* 2015; 10(2).

28. Piten FA, Panizg B, Schroder G, Tietze K, Kramer A. Transmission of a multiresistant *Pseudomonas aeruginosa* strain at a German University Hospital. *J Hosp Infect.* 2001; 47(1):27-30.

29. West SE, Zeng L, Lee BL, Kousar MR, Laxova A, Rock MJ, et al. Respiratory infections with *Pseudomonas aeruginosa* in children with cystic fibrosis: early detection by serology and assessment of risk factors. *JAMA.* 2002; 287(22):2958-67.
Ahangarzadeh Rezaee M, Behzadiyan Nejad Q, Owlia P, Najjar patients with cystic fibrosis using RAPD-PCR.

Haghi MT, Hosseinpour Sadeghi R, et al. Pseudomonas aeruginosa strains isolated from burned patients. Burns. 2006;32(3):343–7.

Shiny PA, Rajendran S, Sarayu YL. A comparative analysis of isola- tion and antibiotic sensitivity pattern of Pseudomonas aerugi- nosa isolated from pus and urine with special reference to phe- notypic and genotypic expression of extended spectrum beta lactamas (ESBLs). J Acut Clin Microbiol. 2013;5(3):6.

Sun Y, Karmakar M, Taylor PR, Rietsch A, Pearlman E. ExoS and ExoT ADP ribosyltransferase activities mediate Pseudomonas aeruginosa keratitis by promoting neutrophil apoptosis and bacterial survival. J Immunol. 2012;188(4):1884–95.

Fazeli H, Akbari R, Moghim S, Narimani T, Arabestani MR, Ghod- doussi AR. Pseudomonas aeruginosa infections in patients, hospital mean, and personnel’s specimens. J Res Med Sci. 2012;17(4):323–7.

Gales AC, Jones RN, Turnidge J, Rennie R, Ramphal R. Character- ization of Pseudomonas aeruginosa isolates: occurrence rates, antimicrobial susceptibility patterns, and molecular typing in the global SENTRY Antimicrobial Surveillance Program, 1997-1999. Clin Infect Dis. 2001;32 Suppl 2:S46–55.

Brown PD, Inzundo A. Antibiotic resistance in clinical isolates of Pseudomonas aeruginosa in Jamaica. Rev Panam Salud Publica. 2004;16(2):230–5.

Bonfiglio G, Carciotto V, Russo G, Stefani S, Schito GC, Debbia E, et al. Antibiotic resistance in Pseudomonas aeruginosa: an Italian survey. J Antimicrob Chemother. 1998;41(2):307–10.

Bouza E, Garcia-Garrote F, Cercenado E, Marín M, Diaz MS. Pseu- domonas aeruginosa: a survey of resistance in 116 hospitals in Spain. The Spanish Pseudomonas aeruginosa Study Group. Antimicro- bial Agents Chemother. 1999;43(4):981–2.

Smith S, Ganiyu O, John R, Fowora M, Akinsinde K, Odeigah P. Antimicrobial resistance and molecular typing of pseudomonas aeruginosa isolated from surgical wounds in Lagos, Nigeria. Acta Med Iran. 2012;50(6):431–6.

Du SJ, Kuo HC, Cheng CH, Fei ACY, Wei HW, Chang SK. Molecular mechanisms of ceftazidime resistance in Pseudomonas aeru- ginosa isolates from canine and human infections. Vet Med. 2010;55(4):172–82.

Yu WL, Chuang YC, Walker-Rasmussen J. Extended-spectrum beta-lactamas in Taiwan: epidemiology, detection, treatment and infection control. J Microbiol Infect Dis. 2006;6(9):264–77.

Olson JC, Frylick J, McGuiffe EM, Dolan KM, Yahr TL, Frank DW, et al. Interruption of multiple cellular processes in HT-29 epithel- ial cells by Pseudomonas aeruginosa exoenzyme S. J Infect Immun. 1995;67(5):2147–54.

Yahr TL, Goranson J, Frank DW. Exoenzyme S of Pseudomonas aeruginosa is secreted by a type III pathway. Mol Microbiol. 1996;22(5):991–1003.

Jabalaleni F, Mirsaleheh A, Khorambian R, Aligholi M, Khoram- ronou SS, Assadollahi P, et al. Evaluation of biofilm production and characterization of genes encoding type III secretion system among Pseudomonas aeruginosa isolated from burn patients. Burns. 2012;38(8):1972–7.

Terada LS, Johansen KA, Nowbar S, Vasil AI, Vasil ML. Pseudomo- nas aeruginosa hemolytic phospholipase C suppresses neutrophil respiratory burst activity. Infect Immun. 1999;67(5):2371–6.

Idris SN, Desa MN, Aziz NA, Taib NM. Antimicrobial susceptibil- ity pattern and distribution of exoT and exoU in clinical isolates of Pseudomonas aeruginosa at a Malaysian hospital. Southeast Asian J Trop Med Public Health. 2012;43(1):116–23.

Bradbury RS, Roddam LF, Merritt A, Reid DW, Champion AC. Virulence gene distribution in clinical, nosocomial and envi- ronmental isolates of Pseudomonas aeruginosa. J Med Microbiol. 2010;59(Pt 8):881–90.

Alhydise-Francis K, Brown PD. Diversity of Antimicrobial Resis- tance and Virulence Determinants in Pseudomonas aeruginosa Associated with Fresh Vegetables. Int Microbiol. 2012;15(4):245–51.

Fazeli N et al.