Research Article

Study of Molecular and Ionic Vapor Composition over CeI₃ by Knudsen Effusion Mass Spectrometry

A. M. Dunaev,¹ V. B. Motalov,¹ L. S. Kudin,¹ M. F. Butman,¹ and K. W. Krämer²

¹Research Institute of Thermodynamics and Kinetics, Ivanovo State University of Chemistry and Technology, Ivanovo 153000, Russia
²Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland

Correspondence should be addressed to V. B. Motalov; v.motalov@gmail.com

Received 7 August 2016; Accepted 17 October 2016

Academic Editor: Alessandro Longo

Copyright © 2016 A. M. Dunaev et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The molecular and ionic composition of vapor over cerium triiodide was studied by Knudsen effusion mass spectrometry. In the saturated vapor over CeI₃ the monomer, dimer, and trimer molecules and the negative ions I⁻, CeI₄⁻, and Ce₂I₇⁻ were identified in the temperature range of 753–994 K. The partial pressures of CeI₃, Ce₂I₆, and Ce₃I₉ were determined and the enthalpies of sublimation, \(\Delta H^\circ (298.15 \text{ K}) \) in kJ⋅mol⁻¹, in the form of monomers (298 ± 9), dimers (415 ± 30), and trimers (423 ± 50) were obtained by the second and third laws of thermodynamics. The enthalpy of formation, \(\Delta_f H^\circ (298.15 \text{ K}) \) in kJ⋅mol⁻¹, of the CeI₃ (−371 ± 9), Ce₂I₆ (−924 ± 30), and Ce₃I₉ (−1585 ± 50) molecules and the CeI₄⁻ (−857 ± 19) and Ce₂I₇⁻ (−1451 ± 50) ions were calculated. The electron work function, \(\phi_e = 3.3 \pm 0.3 \) eV, for the CeI₃ crystal was evaluated.

1. Introduction

Vaporization thermodynamics of cerium triiodide is the focus of researcher’s attention so far. The first measurements of vapor pressure over CeI₃ were carried out by Knudsen effusion mass spectrometry (KEMS) [1] and Knudsen effusion microbalance [2] techniques. Further KEMS studies were performed by Chantry [3, 4], Struck and Feuersanger [5], and Ohnesorge [6]. In addition the vapor pressure of CeI₃ was determined by the torsion method [7], by optical absorption spectra [8], and recently by X-ray induced fluorescence [9]. In spite of the numerous experimental results [1–9], data on the vapor composition over CeI₃ are very scanty. Moreover, information on the ionic species in saturated vapor over CeI₃ is absent so far.

The present work continues our systematic investigations of the molecular and ionic sublimation of lanthanide halides by KEMS; see for example, [10–14]. The composition of the saturated vapor of CeI₃ was determined and the thermochemical data of the vapor constituents were refined on the basis of the latest sets of molecular parameters.

2. Experimental

A single-focusing magnetic sector type mass spectrometer MII201 modified for high-temperature studies was used. The combined ion source allowed carrying out successive measurements in two modes; see Figure 1 (taken from [15]). In addition to a standard mode of electron ionization (EI) for analysis of neutral vapor species, a thermal ion emission (TE) mode was introduced for the analysis of charged vapor constituents formed inside an effusion cell as a result of thermal ionization. In the latter case, the ions are drawn out from the cell by a weak electric field (\(10^4–10^5 \) V/m) applied between the cell and the collimator (1). The sample (2) was placed into a molybdenum cell (3) under dry conditions in a glove box and then transferred into the vaporization chamber of the mass spectrometer and evacuated. The lid of the cell had the cylindrical effusion orifice (Ø 0.3 × 0.8 mm). The vaporization-to-effusion are ratio was about 400. A resistance furnace was used for the heating of the cell. Its temperature was measured by a tungsten-rhenium thermocouple calibrated with silver to a ±5 K accuracy in the separate experiment.
The vapor species effusing from the cell form a molecular beam, which reaches the ionization chamber (4) and intersects with an electron beam of specified energy. The ionization voltage U_e is set by a computer using a programmable power supply AKIP-H125 in the range of 0–150 V with 10 mV resolution. The tungsten ribbon-type cathode (5) is directly heated by an controllable DC source. The current of the cathode was adjusted to provide a constant emission current of 0.25 A.

The ions formed by the collision of molecular species with electrons are extracted from the ionization chamber, focused, and accelerated by a system of electrostatic lenses (6). The electrostatic capacitor mounted after the exit slit of the ionization chamber (IE mode) or to the effusion cell (TE mode). The polarity of the high voltage can be reversed with respect to the ground potential. Thus, both positive and negative ions can be analyzed. The ions are separated according to their mass-to-charge ratio in the magnetic field of an electromagnet (7) (90°, 200 mm curvature radius). The magnetic field strength is measured by a Hall probe. The ion current registration system (8, 9) includes a secondary electron multiplier Hamamatsu R595 (8) and a Picoammeter Keithley 6485 with 10 fA resolution and 20 fA typical noise. It allows measuring ion currents down to 10^{-18} A. The movable shutter (10) operated by a computer (11) allows distinguishing signals caused by the effusing species from those of the background. The special software “HTMSLab” was used to control experimental parameters, collect and process the data, and export the results into the database. Further details on the apparatus and experimental procedure can be found elsewhere [16–18].

The cerium triiodide sample was synthesized from cerium metal (99.9%, Metall Rare Earth Ltd.) and iodine (p.a., sublimed, Merck). The elements were sealed in an evacuated silica ampoule and slowly heated to 750°C until the reaction was completed. Afterwards the product was sublimed for purification in a sealed silica ampoule under vacuum at 750°C, that is, slightly below the melting point of CeI$_3$ at 766°C. The bright yellow CeI$_3$ is very hygroscopic. Its synthesis was performed under strictly oxygen-free and anhydrous conditions.

The following conclusions were drawn: the ions containing one atom of cerium are formed as a result of direct (CeI)$_n^+$ and dissociative (Ce$^+$, CeI$^+$, and CeI$_2^+$) ionization of the monomer CeI$_3$ molecules with negligibly small contributions from the fragmentation of more complex molecules; the CeI$_2^+$, CeI$_3^+$, and CeI$_3$ ions were produced by the dissociative ionization of the dimer Ce$_2$I$_4$ molecules; and the CeI$_3^+$ ion originated from the trimer molecule Ce$_3$I$_5$.

Along with the abovementioned ions I$^+$ was also observed. The determined AE equal to 10.7 ± 0.5 eV (Table I) points out its origination from atomic iodine (ionization energy IE(I) = 10.4 eV [21]), which can be attributed to the partial decomposition of the sample with the formation of...
Table 1: Ion appearance energies (eV).

Reaction	Ion	This work	[1]	[3]	[5]	[30]
CeI₃ + e⁻ = Ce⁺ + 3I + 2e⁻	Ce⁺	17.2 ± 0.5	17.7 ± 0.5	16.75 ± 0.15		
CeI₃ + e⁻ = CeI⁺ + 2I + 2e⁻	CeI⁺	13.1 ± 0.5	13.6 ± 0.5	13.15 ± 0.15		
CeI₃ + e⁻ = CeI₂⁺ + I + 2e⁻	CeI₂⁺	9.8 ± 0.5	9.7 ± 0.5	9.55 ± 0.1	11.2	
CeI₃ + e⁻ = CeI₂⁺ + 2e⁻	CeI₂⁺	9.1 ± 0.5	9.6 ± 0.5	9.05 ± 0.1	10.8	9.71
Ce₂I₆ + e⁻ = Ce₂I₅⁺ + I + 2e⁻	Ce₂I₅⁺	9.3 ± 0.5				
Ce₂I₈ + e⁻ = Ce₂I₇⁺ + I + 2e⁻	Ce₂I₇⁺	9.1 ± 0.5				
1 + e⁻ = I⁺ + 2e⁻	I⁺	10.7 ± 0.5				

CeI₂. Nevertheless the reproducibility of the mass spectra in heating and cooling cycles (Figure 2), the shapes of IECs showing no brakes, and the determined AE values (Table 1) indicate unambiguously the absence of CeI₂ in the vapor. This fact agrees with the expected much lower volatility of CeI₂ compared to that of CeI₃ in the studied temperature range. Therefore it is assumed that the activity of CeI₃ in the solid state was unity.

The partial pressures of molecules (p_j) (see Table 2) were calculated according to the conventional KEMS procedure using the equation

$$p_j = \frac{k \cdot I \cdot T}{\sigma_j},$$

where k is the sensitivity constant of mass spectrometer (determined in a separate experiment with Ag; the vapor pressure of silver was taken from [22]), σ_j is the ionization cross section of the jth molecule at the working energy of the ionizing electrons (calculated from the experimentally determined atomic cross sections, σ_{at} [23, 24], by the equation $\sigma_j = 0.75 \Sigma \sigma_{at}$ [25]), $I_j = \sum_i(I_{ij}/(a_i \gamma_i))$ is the total ion current of the ith species formed from the jth molecule, a_i is the natural abundance of the measured isotope of the ith ion, γ_i is the ion-electron conversion coefficient of secondary electron multiplier for the ith ion ($\gamma_i \sim M^{-1/2}$ [26], where M is the mass of ion), and T is the temperature of the cell.
Table 2: Partial pressures (Pa) of the molecules.

Species	T, K	\(p_j \cdot 10^4 \)	T, K	\(p_j \cdot 10^5 \)	T, K	\(p_j \cdot 10^6 \)
\(\text{CeI}_3 \)	858	54.5	877	55.4	907.5	54.7
\(\text{Ce}_2\text{I}_6 \)	916	81.5	914.5	82.1	905	83.5
\(\text{Ce}_3\text{I}_9 \)	957	86.5	957.5	87.1	957	87.5

Table 3: Coefficients of (2).

Species	\(A \)	\(B \)
\(\text{CeI}_3 \)	33.35 ± 0.36	34.84 ± 0.41
\(\text{Ce}_2\text{I}_6 \)	44.93 ± 0.69	
\(\text{Ce}_3\text{I}_9 \)	49.62 ± 1.43	42.43 ± 1.52

The standard deviation is given with a “±” sign.

The temperature dependence of the saturated vapor pressure of the monomer and oligomer molecules was approximated by the equation

\[
\ln p_j = -\frac{A \times 10^3}{T} + B. \tag{2}
\]

The coefficients of equation (2) are given in Table 3.

The partial pressures of the molecules of cerium triiodide from different references are compared in Figure 5. As one can see, all experimental vapor pressure values are scattered within about one order of magnitude. Temperature dependencies from the work of Hirayama et al. [2], Villani et al. [7], and Ohnesorge [6] lie below those obtained in this work. The fraction of the dimer molecules measured in this work and in [6] is about the same whereas the absolute pressures differ considerably. The vapor pressure of trimer molecules was determined in this study for the first time.

The enthalpies and entropies of sublimation of cerium triiodide in the form of monomer and oligomer molecules were determined from the temperature dependencies of the partial pressures of the saturated vapor species using the procedure for experimental data processing according to the second and third laws of thermodynamics; see Table 4. The thermodynamic functions required for calculations were taken from [22] for \(\text{CeI}_3 \), and evaluated in this work for the monomer and oligomer molecules in the state of an ideal gas (see Appendix).

As it is seen from Table 4, the values of \(\Delta H^\circ(298.15) \) and \(\Delta S^\circ(T) \) obtained in this work by the second and third laws are in a fair agreement for both monomer and oligomer molecules. The same can be said about the results for the monomer molecules from [2, 7]. The data of the work [9] are in notably worse agreement, whereas those of [6, 8] do not agree within the given uncertainties. At the same time, the third law values for all the data are in a good consent with each other. The temperature trend of the third law values \(\Delta H^\circ(298.15) \) is given in Figure 6, from which one can see that the data of this work and [2, 9] do not show a pronounced temperature dependence as compared to those of [6, 7].

Taking into account this analysis, the recommended values

\[
\begin{align*}
\text{Figure 5: Temperature dependencies of the saturated vapor pressure: (1) } p(\text{CeI}_3) & \text{ from [9], (2) our data, (3) [2], (4) [7], and (5) [6]; (1') } p(\text{Ce}_2\text{I}_6) & \text{ from [9], (2') our data, and (5') [6]; (2'') } p(\text{Ce}_3\text{I}_9) & \text{ our data.}
\end{align*}
\]
Table 4: Enthalpies, ΔH° (kJ·mol$^{-1}$), and entropies, ΔS° (J·mol$^{-1}$·K$^{-1}$), of sublimation of cerium triiodide.

ΔT, K	T, K	N^1	$\Delta_x H^\circ(T)$	$\Delta_x S^\circ(T)$	$\Delta H^\circ(298)$	$\Delta H^\circ(298)$	$\Delta_x S^\circ(T)$	Ref.
753–994	893	38	277 ± 3	194 ± 3	292 ± 4	294 ± 10	191 ± 10	This work
?	933	?	292 ± 21	307 ± 21				[1]
870–1015	945	32	284 ± 4	197 ± 4	301 ± 4	298 ± 10	189 ± 10	[2]
810–953	877	50	274 ± 2	288 ± 2				[5]
854–1017	936	29	284 ± 1	164 ± 1	278 ± 1	307 ± 10	189 ± 10	[6]
910–1031	970	81	284 ± 3	192 ± 6	301 ± 3	303 ± 10	189 ± 10	[7]
1000	1			291 ± 10	187 ± 10			[8]
1072–1136	1094	5	201 ± 11	272 ± 11	296 ± 10	155 ± 10		[8]
1080–1400	1250	?	299 ± 1	290 ± 1	301 ± 10	123 ± 10		[9]
	2CeI$_{3,cr}$ = CeI$_{3,lg}$							
811–994	893	30	374 ± 6	262 ± 6	395 ± 25	409 ± 30	278 ± 30	This work
825–953	898	50	377 ± 5	400 ± 15				[5]
854–1017	936	17	354 ± 1	219 ± 1	379 ± 25	428 ± 30	276 ± 30	[6]
1080–1400	1250	?	251 ± 1	138 ± 1	413 ± 1	421 ± 30	148 ± 30	[9]
	3CeI$_{3,cr}$ = CeI$_{3,lg}$							
907–994	949	16	413 ± 12	257 ± 13	443 ± 40	423 ± 50	236 ± 50	This work

$\Delta H^\circ(298.15 K) = 298 \pm 9^4$

$\Delta H^\circ(298.15 K) = 415 \pm 30$

$\Delta H^\circ(298.15 K) = 423 \pm 50$

Number of measurements.

The original errors are given for the literature data, the standard deviations for this work.

The uncertainties are mainly determined by those in thermodynamic functions.

The uncertainty of the recommended values was calculated by Student's method (monomer) and accepted as the third law ones (others).

The standard formation enthalpies, $\Delta_f H^\circ(298.15 K)$, are equal to -371 ± 9 kJ·mol$^{-1}$ (CeI$_3$), -924 ± 30 kJ·mol$^{-1}$ (CeI$_2$), and -1585 ± 50 kJ·mol$^{-1}$ (CeI$_4$), and were calculated from the recommended $\Delta_f H^\circ(298.15 K)$ values. The formation enthalpy of crystalline cerium triiodide, $\Delta_f H^\circ$(CeI$_{3,cr}$; 298.15 K) = -669 kJ·mol$^{-1}$ [22], was used.

3.2. Charged Vapor Species. In the TE mass spectra in the temperature range of 747–960 K the Γ^- (0.44), CeI$_3^-$ (0.18), CeI$_4^-$ (0.08) ions were identified with the relative ion currents given in parentheses for $T = 846$ K.

Additional experiments with the CeI$_3$-PrI$_5$ binary system were performed to determine the enthalpy of formation of CeI$_4$ ions. The enthalpy of exchange ion-molecular reaction (5) was found to be 1 ± 5 kJ·mol$^{-1}$. The enthalpy of formation of PrI$_5^-$, $\Delta_f H^\circ(298.15 K) = -860 \pm 23$ kJ·mol$^{-1}$ was used as reference value. It was obtained by recalulation of the data [22, 29] with the thermodynamic function used in this work. The experimental equilibrium constants of reaction (3) and reaction (4) investigated over pure CeI$_3$ are listed in Table 5:

$$\text{CeI}_3^- + \text{PrI}_4^- = \text{CeI}_4^- + \text{PrI}_3^2^- \quad (3)$$

$$\text{Ce}_2\text{I}_7^- = \text{CeI}_4^- + \text{CeI}_3^- \quad (4)$$

Figure 6: Temperature dependencies of the third law $\Delta H^\circ(298.15 K)$ values: (1) monomer from [9], (2) our data, (3) [2], (4) [7], and (5) [6]; (1') dimer from [9], (2') our data, and (5') [6]; (2'') trimer our data.
Table 5: Experimental data for reactions (3) and (4).

Reaction (3)	Reaction (4)		
T (K)	ln K_p	T (K)	ln K_p
889	0.35	868	6.39
865	0.39	862	6.61
835	0.30	898	5.92
846	0.49	932	5.43
907	0.41	960	4.94
934	0.39	924	5.49
966	0.38	892	5.94
956	0.37	846	6.67
929	0.34		
906	0.22		
856	0.34		
806	0.38		
854	0.30		
884	0.38		
902	0.30		
950	0.40		
976	0.30		

The reaction enthalpies were calculated by the second and third laws of thermodynamics; see Table 6. The evaluation of the thermodynamic functions of the CeI$_3^-$ and Ce$_2$I$_7^-$ ions is described in Appendix.

One can see that the agreement for the enthalpy of reaction (3) obtained by the second and third laws is good. ΔH°(CeI$_3^-$, 298.15 K) = -371 ± 9 kJ mol$^{-1}$ was recommended. This value is in agreement with those -850 ± 33 kJ mol$^{-1}$ obtained by Chantry from the enthalpy of the reaction CeI$_4^-$ + CeI$_3^-$ = Ce$_2$I$_7^-$ and recalculated with our sublimation enthalpy and thermodynamic functions. The selected formation enthalpy of the Ce$_2$I$_7^-$ ion is -1451 ± 50 kJ mol$^{-1}$ (third law) and was obtained for the first time.

3.3. Thermodynamic Properties Derived from IECs

The enthalpies of ion-molecular reactions were calculated from the differences of the measured AE values given in Table 1; see Table 7. On their basis the standard formation enthalpies of the ions were determined; see Table 8. The accurate values of $\Delta_s H^\circ$(CeI$_4^-$, 298.15 K) = 957 ± 0.1 kJ mol$^{-1}$ [22] and $\Delta_s H^\circ$(I, 298.15 K) = 106.76 ± 0.04 kJ mol$^{-1}$ [22] and the formation enthalpies of the CeI$_3^-$, Ce$_2$I$_6^-$, and Ce$_3$I$_8^-$ molecules obtained in this work (see above) were used as references. The comparison of our results with the data obtained by photoelectron spectroscopy [30], computation [31], and assessment [32] shows that all data are in agreement within the given errors; see Table 8.

Analysis of the ion-molecular reaction enthalpies confirmed the weakness of the first cerium iodine bond in comparison with the other two. Probably, it explains the lower enthalpy of the formation of CeI$_4^-$ (467 ± 10 kJ mol$^{-1}$) compared to CeI$_3^+$ (497 ± 10 kJ mol$^{-1}$).

The formation enthalpy of gaseous CeI$_3$ (-371 ± 9 kJ mol$^{-1}$) obtained from the vapor pressure measurement is in a good agreement with those calculated from the appearance energies (-376 ± 50 kJ mol$^{-1}$) and with the value (-381 kJ mol$^{-1}$) assessed by Sapegin et al. [33] (Table 9). The coincidence of the formation enthalpy values of CeI$_3^-$ as determined from the thermodynamic and threshold approaches, points out a negligible contribution from the excitation and kinetic energy of the fragments. The atomization energy derived from $\Delta AE(I)$ = 106.76 ± 0.04 kJ mol$^{-1}$ was found to be 1109 ± 10 kJ mol$^{-1}$. It yields the average bond strength equal to 370 ± 10 kJ mol$^{-1}$.

3.4. Electron Work Function

The mass spectrometric approach for the work function determination is based on the use of thermochemical cycles including desorption enthalpies of ions and sublimation enthalpies of molecules as described elsewhere [34]. The desorption enthalpy of the CeI$_4^-$ ions, $\Delta_{des} H^\circ$(851 K) = 350 ± 8 kJ mol$^{-1}$, and the Ce$_2$I$_6^-$ ions, $\Delta_{des} H^\circ$(902 K) = 430 ± 18 kJ mol$^{-1}$, were obtained from the temperature dependence of their ion currents; see Figure 7. The electron work function was calculated in accordance with the following expressions:

$$
\varphi_e = -\frac{1}{4} D(CeI_3^-) + \frac{5}{4} \Delta_H^\circ(CeI_3^-) + \Delta AE(I)
+ \Delta_{des} H^\circ(CeI_3^-),
$$

$$
\varphi_e = -\frac{1}{4} D(CeI_3^-) + \frac{9}{4} \Delta_H^\circ(CeI_3^-) + \Delta AE(I)
+ \Delta_{des} H^\circ(Ce_2I_7^-) + \Delta_{des} H^\circ(Ce_3I_8^-),
$$

where $\Delta AE(I)$ is the electron affinity of iodine [22], $D(CeI_3^-)$ is the dissociation enthalpy of the CeI$_3^-$ molecule, $\Delta_{des} H^\circ(CeI_3^-)$ is the enthalpy of the CeI$_3^-$ = Ce$_2$I$_6^-$ reaction (Table 6), and $\Delta_{des} H^\circ(Ce_2I_7^-)$ is the enthalpy of the Ce$_2$I$_7^-$ = Ce$_3$I$_8^-$ reaction. The φ_e values equal to 3.3 ± 0.3 eV and 3.5 ± 0.5 eV were obtained from (5) and (6), respectively. They turned out to be close to $\varphi_e(LaI_3) = 3.5 \pm 0.3$ eV [14].

4. Conclusions

New experimental data on the saturated vapor composition of CeI$_3$ have been obtained by a Knudsen effusion mass spectrometer. The monomer, CeI$_3$, dimer, Ce$_2$I$_6^-$, and trimer, Ce$_3$I$_8^-$, molecules, as well as the [I(CeI$_3$)$_n$]$^-$ ions (n = 0–2), have been observed in the temperature range of 747–994 K. The Ce$_2$I$_6^-$ molecules and the Ce$_3$I$_8^-$ ions were detected for the first time. The sublimation enthalpies of the monomer and oligomer molecules were calculated by the second and third laws of thermodynamics. Critical analysis of all available data allowed us to recommend the following enthalpies of sublimation: ΔH°(298.15 K) in kJ mol$^{-1}$: 298 ± 9 (monomer), 415 ± 30 (dimer), and 423 ± 50 (trimer) and to calculate the formation enthalpies, $\Delta_f H^\circ$(298.15 K) in kJ mol$^{-1}$: -371 ± 9 (CeI$_3$), -924 ± 25 (Ce$_2$I$_6$), -1585 ± 50 (Ce$_3$I$_8$), -857 ± 19...
Table 6: Enthalpies (kJ⋅mol⁻¹) of reactions (3) and (4).

ΔT, K	T, K	N¹	II law²	III law³	Ref.	
806–976	897	17	ΔrH°(T)	ΔrH°(298.15 K)	ΔrH°(298.15 K)	
CeI₃,g + PrI₄,g = CeI₄,g + PrI₃,g	0 ± 3	1 ± 3	1 ± 5	This work		
842–960	896	12	-99 ± 5	-113 ± 6	-75 ± 40	This work

¹Number of measurements.
²The original errors are given for the literature data, the standard deviations for this work.
³The uncertainties are mainly determined by those in thermodynamic functions.

Table 7: Ion-molecular reactions (kJ⋅mol⁻¹).

Reaction	This work	[1]	[3]	[5]	[30]	[31]
CeI⁺	391 ± 10	396 ± 50	347 ± 50	393		
CeI₂⁺	323 ± 10	376 ± 50	347 ± 50			
CeI₃⁺	66 ± 10	10 ± 50	48 ± 50	39	62 ± 50	
CeI₄⁺ + CeI₃⁺ = CeI₅⁺ + 2I₂g + Ce₂I₆g	750 ± 10					
CeI₃⁺ + CeI₈⁺ = CeI₉⁺ + 2I₂g + Ce₂I₆g	768 ± 20					

Table 8: Ion formation enthalpies (kJ⋅mol⁻¹).

Ion	This work	[1]	[3]	[32]	[31]
CeI⁺	673 ± 10	669 ± 50	717	760	671
CeI₂⁺	467 ± 10	399 ± 50	476		
CeI₃⁺	497 ± 10	496 ± 50	535		
CeI₄⁺	-131 ± 10				
CeI₅⁺	-811 ± 20				

Table 9: Formation enthalpies of CeI₃,g (kJ⋅mol⁻¹).

This work from IEC	This work from ΔH°	[1]	[9]	[33]
>=-376 ± 50	-371 ± 9	-436 ± 50	-349	-381

(CeI⁻), and −1451 ± 50 (Ce₂I⁻). The electron work function for cerium triiodide (3.3 ± 0.3 eV) has also been evaluated.

Appendix

A. Description of the Used Thermodynamic Functions of Molecules and Ions

A.1. CeI₃,g. The thermodynamic functions of CeI₃ in the solid and liquid state were taken from [22].

A.2. CeI₄,g. For the first time the thermodynamic functions of monomer molecules Ce₄ in the state of an ideal gas were evaluated by Myers and Graves [35] in the rigid rotator-harmonic oscillator (RRHO) approximation; these were included in the handbooks by Pankratz [36] and Barin [37]. Later the assessment of the functions was made by Osina et al. [38]; they can be found in the IVTANTHERMO database [22]. Recently Solomonik et al. [39] performed quantum-chemical calculations for CeI₄,g at a multireference configuration interaction MRCISD+Q level of theory taking into account relativistic effects; a significant spin-orbit coupling effect on the molecular properties was revealed.

The data used in this work are based on those from [22] taking into account the low lying electronic states computed in [39].

A.3. Ce₂I₆,g. The thermodynamic functions of dimer molecules were calculated in the RRHO approximation using the molecular constants (symmetry D₂h) from [40]. The electronic contribution was taken as doubled compared with the monomers in accordance with [41].

Figure 7: Temperature dependencies of CeI⁻ and Ce₂I⁻ ion currents.
Table 10: Coefficients of polynomial (A.4).

T, K	a, 10^{-1}	b, 10^{2}	c, 10^{-3}	d, 10^{-3}	e, 10^{-3}	f, 10^{-4}	
CeI_{3,ce,l}	0–1033	47.08	2.326	3.838	2.391	8.699	1.760
CeI_{3}	1033–1500	106.9	26.03	16.90	1.830	3.165	0.289
CeI_{6}^{-}	0–1500	122.9	1.780	4.748	4.156	15.36	2.604
Ce_{2}I_{7}^{-}	0–1500	177.9	2.760	7.349	6.477	23.88	4.043
Ce_{2}I_{9}	800–1500	27.52	16.59	20.47	4.390	9.010	0.966

The errors in the functions of Gibbs energy estimated in this work are assumed to be equal to ±5 (CeI_{3}), ±25 (Ce_{2}I_{7}), ±40 (Ce_{2}I_{9}^{-}), and ±50 (Ce_{2}I_{9}) mol^{-1} K^{-1}.

A.4. CeI_{g}. The thermodynamic functions of trimers were assessed by the additive approach with an empirical correction based on the functions of the monomer and oligomer molecules of LuCl_{3} [42] using the following relations:

\[
\text{TDF}_{\text{LaI}_{3}} = \beta_T \cdot (\text{TDF}_{\text{LaI}} + \text{TDF}_{\text{LaI}}),
\]

\[
\beta_T = \frac{\text{TDF}_{\text{LaI}}}{\text{TDF}_{\text{LaI}} + \text{TDF}_{\text{LaI}}},
\]

where TDF means the thermodynamic functions \(\Phi(T)\) or \(H'(T) - H'(0)\).

A.5. CeI_{g}. The thermodynamic functions of the CeI^{-} ions were computed in the RRHO approximation assuming a coincidence of the functions for CeI_{6}^{-} and CeI_{4} based on the molecular constants taken from [43] and the electronic states from [39].

A.6. Ce_{2}I_{g}. The thermodynamic functions of Ce_{2}I_{7}^{-} ions were evaluated by a comparative method on the basis of those for LnI_{3}, LnI_{4}^{-} (Ln = La, Ce) [22, 44], Ce_{2}I_{4} [40], and La_{2}I_{7}^{-} [14] using the following relation:

\[
\text{TDF} \left(\text{Ce}_{2}I_{7}^{-} \right) = \beta_T \cdot \text{TDF} \left(\text{Ce}_{2}I_{6} \right),
\]

where

\[
\beta_T = \frac{\text{TDF} \left(\text{Ce}_{2}I_{7}^{-} \right) / \text{TDF} \left(\text{Ce}_{2}I_{6} \right)}{\text{TDF} \left(\text{La}_{2}I_{7}^{-} \right) / \text{TDF} \left(\text{La}_{2}I_{6} \right)}.
\]

The thermodynamic functions used in this work were approximated by the polynomial

\[
\Phi^* (T) = a \ln x + bx^{-2} + cx^{-1} + dx + ex^2 + fx^3,
\]

\[
(x = \frac{T}{1000}).
\]

The coefficients of (A.4) are listed in Table 10.

Competing Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

This work was supported by the Ministry of Education and Science of the Russian Federation (Project no. 4.1385.2014 K).

References

[1] C. Hirayama and P. M. Castle, “Mass spectra of rare earth triiodides,” Journal of Physical Chemistry, vol. 77, no. 26, pp. 3100–3114, 1973.
[2] C. Hirayama, J. F. Rome, and F. E. Camp, “Vapor pressures and thermodynamic properties of lanthanide triiodides,” Journal of Chemical Engineering Data, vol. 20, no. 1, pp. 1–6, 1975.
[3] P. J. Chantry, “Positive ion appearance potentials measured in CeI_{3},” The Journal of Chemical Physics, vol. 65, no. 11, pp. 4421–4425, 1976.
[4] P. J. Chantry, “Negative ion formation in cerium triiodide,” The Journal of Chemical Physics, vol. 65, no. 11, pp. 4412–4420, 1976.
[5] C. W. Struck and A. E. Feuersanger, “Knudsen cell measurements of CeI_{6}(s) sublimation enthalpy,” High Temperature Science, vol. 31, pp. 127–145, 1991.
[6] M. Ohnesorge, Untersuchungen zur Hochtemperaturchemie quacksilberfreier Metallhalogenid-Entladungslampen mit keramischem Brenner [Ph.D. thesis], Forschungszentrum Jülich, Jülich, Germany, 2005.
[7] A. R. Villani, B. Brunetti, and V. Piacente, “Vapor pressure and enthalpies of vaporization of cerium trichloride, tribromide, and triiodide,” Journal of Chemical and Engineering Data, vol. 45, no. 5, pp. 823–828, 2000.
[8] C. S. Liu and R. J. Zeilwage, “Complex molecules in cesium–rare earth iodide vapors,” The Journal of Chemical Physics, vol. 60, pp. 2400–2413, 1970.
[9] J. J. Curry, E. G. Estupiñán, W. P. Lapatovitch et al., “Study of CeI_{3} evaporation in the presence of group 13 metal–iodides,” Journal of Applied Physics, vol. 115, no. 3, Article ID 034509, 2014.
[10] D. N. Sergeev, M. F. Butman, V. B. Motalov, L. S. Kudin, and K. W. Krämer, “Knudsen effusion mass spectrometric determination of the complex vapor composition of samarium, europium, and ytterbium bromides,” Rapid Communications in Mass Spectrometry, vol. 27, no. 15, pp. 1715–1722, 2013.
[11] D. N. Sergeev, A. M. Dunaev, M. F. Butman, D. A. Ivanov, L. S. Kudin, and K. W. Krämer, “Energy characteristics of molecules and ions of ytterbium iodides,” International Journal of Mass Spectrometry, vol. 374, pp. 1–3, 2014.
[12] L. S. Kudin, D. E. Vorob’ev, and A. E. Grishin, “The thermochemical characteristics of the LnCl_{3} and LnI_{3}Cl_{2} negative ions,” Russian Journal of Physical Chemistry A, vol. 81, no. 2, pp. 147–158, 2007.
