Large Time Behavior on the Linear Self-Interacting Diffusion Driven by Sub-Fractional Brownian Motion II: Self-Attracting Case

Rui Guo¹, Han Gao²*, Yang Jin³ and Litan Yan³

¹College of Information Science and Technology, Donghua University, Shanghai, China, ²College of Fashion and Art Design, Donghua University, Shanghai, China, ³Department of Statistics, College of Science, Donghua University, Shanghai, China

In this study, as a continuation to the studies of the self-interaction diffusion driven by subfractional Brownian motion \(SH \), we analyze the asymptotic behavior of the linear self-attracting diffusion:

\[
dX^H_t = dS^H_t - \theta \left(\int_0^t (X^H_t - X^H_s) ds \right) dt + \nu dt, \quad X^H_0 = 0,
\]

where \(\theta > 0 \) and \(\nu \in \mathbb{R} \) are two parameters. When \(\theta < 0 \), the solution of this equation is called self-repelling. Our main aim is to show the solution \(X^H_t \) converges to a normal random variable \(\xi_\infty^H \) with mean zero as \(t \) tends to infinity and obtain the speed at which the process \(X^H_t \) converges to \(\xi_\infty^H \) as \(t \) tends to infinity.

Keywords: subfractional Brownian motion, self-attracting diffusion, law of large numbers, Malliavin calculus, asymptotic distribution

1 INTRODUCTION

In a previous study (I) (see [12]), as an extension to classical result, we considered the linear self-interacting diffusion as follows:

\[
X^H_t = S^H_t - \theta \int_0^t \left(\int_0^s (X^H_s - X^H_u) du \right) ds + \nu t, \quad t \geq 0, \tag{1}
\]

with \(\theta \neq 0 \), where \(\theta \) and \(\nu \) are two real numbers, and \(S^H \) is a sub-fBm with the Hurst parameter \(\frac{1}{2} \leq H < 1 \). The solution of Eq. (1) is called self-repelling if \(\theta < 0 \) and is called self-attracting if \(\theta > 0 \). When \(\theta < 0 \), in a previous study (I), we showed that the solution \(X^H_t \) diverges to infinity as \(t \) tends to infinity and

\[
J^H_0 (t; \theta, \nu) := t e^{\theta t} X^H_t \to \xi_\infty^H - \frac{\nu}{\theta}
\]

and

\[
J^H_n (t; \theta, \nu) := \theta t^2 \left(J^H_{n-1} (t; \theta, \nu) - (2n - 3)!! \left(\xi_\infty^H - \frac{\nu}{\theta} \right) \right) \to (2n - 1)!! \left(\xi_\infty^H - \frac{\nu}{\theta} \right)
\]

in \(L^2 \) and almost surely, for all \(n = 1, 2, \ldots \), where \((-1)!! = 1 \) and
\[\rho_{\infty}^H = \int_0^\infty e^{2t/\lambda_{H,\theta}} ds_t^H. \]

In the present study, we consider the case \(\theta > 0 \) and study its large time behaviors.

Let us recall the main results concerning the system (Eq. 1). When \(H = \frac{1}{2} \), as a special case of path-dependent stochastic differential equations, in 1995, Cranston and Le Jan [8] introduced a linear self-attracting diffusion (Eq. 1) with \(\theta > 0 \). They showed that the process \(X_t \) converges in \(L^2 \) and almost surely as \(t \) tends infinity. This path-dependent stochastic differential equation was first developed by Durrett and Rogers [10] introduced in 1992 as a model for the shape of a growing polymer (Brownian polymer). The general form of this kind of model can be expressed as follows:

\[X_t = X_0 + B_t + \int_0^t \int_0^s f(X_u - X_v) du dv, \quad t \geq 0 \tag{2} \]

where \(B \) is a \(d \)-dimensional standard Brownian motion and \(f \) is Lipschitz continuity. \(X_t \) corresponds to the location of the end of the polymer at time \(t \). Under some conditions, they established asymptotic behavior of the solution of the stochastic differential equation. The model is a continuous analog of the notion of edge (respectively, vertex) self-interacting random walk (see, e.g., Pemantle [22]). By using the local time of the solution process \(X \), we can make it clear how the process \(X \) interacts with its own occupation density. In general, Eq. 2 defines a self-interacting diffusion without any assumption on \(f \). We call it self-repelling (respectively, self-attracting) if, for all \(x \in \mathbb{R}^d, x \cdot f(x) \geq 0 \) (respectively, \(\leq 0 \)). More examples can be found in Benaim et al. [2, 3], Cranston and Mountford [9], Gan and Yan [11], Gauthier [13], Herrmann and Roynet [14], Herrmann and Scheutzow [15], Mountford and Tarr [20], Sun and Yan [26, 27], Yan et al [34], and the references therein.

In this present study, our main aim is to expound and prove the following statements:

(I) For \(\theta > 0 \) and \(\frac{1}{2} < H < 1 \), the random variable

\[X_\infty^H = \int_0^\infty h_0(s) ds + \int_0^\infty h_0(s) ds \]

exists as an element in \(L^2 \), where the function is defined as follows:

\[h_0(s) = 1 - \theta s e^{2s^2/\lambda_{H,\theta}} \int_s^\infty e^{-2u^2/\lambda_{H,\theta}} du, \quad s \geq 0 \]

with \(\theta > 0 \).

(II) For \(\theta > 0 \) and \(\frac{1}{2} < H < 1 \), we have

\[X_t^H \to X_\infty^H \]

in \(L^2 \) and almost surely as \(t \to \infty \).

(III) For \(\theta > 0 \) and \(\frac{1}{2} < H < 1 \), we have

\[\frac{t^{H/2}}{\lambda_{H,\theta}} (X_t^H - X_\infty^H) \to N(0, 1) \]

in distribution as \(t \to \infty \), where

\[\lambda_{H,\theta} = \frac{1}{2} \Gamma(2H + 1) \theta^{-2H}. \]

(IV) For \(\theta > 0 \) and \(\frac{1}{2} < H < 1 \), we have

\[Y_t^H = \int_0^t (X_u^H - X_v^H) du, \quad t \geq 0. \]

Then the convergence

\[\lim_{t \to \infty} \frac{1}{t^{2-2H}} \int_0^t (Y_u^H)^2 du \to \frac{H}{3 - 2H} \theta^{-2H} \Gamma(2H) \]

holds in \(L^2 \) as \(T \) tends to infinity.

This article is organized as follows. In Section 2, we present some preliminaries for sub-fBm and Malliavin calculus. In Section 3, we obtain some lemmas. In Section 4, we prove the main results given as before. In Section 5, we give some numerical results.

2 PRELIMINARIES

In this section, we briefly recall the definition and properties of stochastic integral with respect to sub-fBm. We refer to Alós et al [1], Nualart [21], and Tudor [31] for a complete description of stochastic calculus with respect to Gaussian processes.

As we pointed out in the previous study (I) (see [12]), the sub-fBm \(S_t^H \) is a rather special class of self-similar Gaussian processes such that \(S_t^H = 0 \) and

\[R^H(t, s) := E[S_t^H S_s^H] = s^{2H} + t^{2H} - \frac{1}{2} \left[(s + t)^{2H} + |t - s|^{2H} \right] \quad (3) \]

for all \(s, t \geq 0 \). For \(H = 1/2 \), \(S_t^H \) coincides with the standard Brownian motion \(B_t \). \(S_t^H \) is neither a semimartingale nor a Markov process unless \(H = 1/2 \), so many of the powerful techniques from stochastic analysis are not available when dealing with \(S_t^H \). As a Gaussian process, it is possible to construct a stochastic calculus of variations with respect to \(S_t^H \). The sub-fBm appeared in Bojdecki et al [4] in a limit of occupation time fluctuations of a system of independent particles moving in \(\mathbb{R}^d \) according a symmetric \(\alpha \)-stable Lévy process. More examples for sub-fBm and related processes can be found in Bojdecki et al. [4–7], Li [16–19], Shen and Yan [23, 24], Sun and Yan [25], C. A. Tudor [32], Tudor [28–31], C. A. Tudor [33], Yan et al [33, 35, 36], and the references therein.

The normality and Hölder continuity of the sub-fBm \(S_t^H \) imply that \(t \to S_t^H \) admits a bounded \(p_{H,\theta} \) variation on any finite interval with \(p_{H,\theta} > \frac{1}{\lambda_{H,\theta}} \). As an immediate result, one can define the Young integral of a process \(u = u(s, t) \geq 0 \) with respect to a sub-fBm \(S_t^H \)

\[\int_0^t u_t ds_t^H \]

as the limit in probability of a Riemann sum. Clearly, when \(u \) is of bounded \(q_{H,\theta} \) variation on any finite interval with \(q_{H,\theta} > 1 \) and \(\frac{1}{p_{H,\theta}} + \frac{1}{q_{H,\theta}} > 1 \), the integral is well-defined and
\[u_t S_t^H = \int_0^t u_s ds^H + \int_0^t S_t^H du_s \]

for all \(t \geq 0 \).

Let \(H \) be the completion of the linear space \(E \) generated by the indicator functions \(1_{[0,t]} \), \(t \in [0, T] \) with respect to the inner product:

\[\langle 1_{[0,t]}, 1_{[0,s]} \rangle_H = R^H(t,s) \]

for \(s, t \in [0, T] \). For every \(\varphi \in \mathcal{H} \), we can define the Wiener integral with respect to \(S^H \), denoted by

\[S^H(\varphi) = \int_0^T \varphi(s) ds^H \]
as a linear (isometric) mapping from \(\mathcal{H} \) onto \(S^H \) by using the limit in probability of a Riemann sum, where \(S^H \) is the Gaussian Hilbert space generating by \(S^H \) and

\[\| \varphi \|_H^2 = E\left(\int_0^T \varphi(s) ds^H \right)^2 \]

for any \(\varphi \in \mathcal{H} \). In particular, when \(\frac{1}{2} < H < 1 \), we can show that

\[\| \varphi \|_H^2 = \int_0^T \int_0^T \varphi(t) \varphi(s) \psi_H(t,s) dsdt, \quad \forall \varphi \in \mathcal{H}, \]

where

\[\psi_H(t,s) = \frac{\partial^2}{\partial t \partial s} R^H(t,s) = H(2H-1)(|t-s|^{2H-2} - |t+s|^{2H-2}) \]

as a linear mapping from \(\mathcal{H} \) onto \(S^H \) by using the limit in probability of a Riemann sum, where \(S^H \) is the Gaussian Hilbert space generating by \(S^H \) and

\[\| \varphi \|_H^2 = E\left(\int_0^T \varphi(s) ds^H \right)^2 \]

for any \(\varphi \in \mathcal{H} \). In particular, when \(\frac{1}{2} < H < 1 \), we can show that

\[\| \varphi \|_H^2 = \int_0^T \int_0^T \varphi(t) \varphi(s) \psi_H(t,s) dsdt, \quad \forall \varphi \in \mathcal{H}, \]

where

\[\psi_H(t,s) = \frac{\partial^2}{\partial t \partial s} R^H(t,s) = H(2H-1)(|t-s|^{2H-2} - |t+s|^{2H-2}) \]
for $s, t \in [0, T]$. Thus, when $\frac{1}{2} < H < 1$ if for every $T > 0$, the integral
\[\int_0^T \varphi(s)dS^H_t \]
exists in L^2 and
\[\int_0^\infty \int_0^\infty \varphi(t)\varphi(s)\psi_H(t, s)dtds < \infty, \]
we can define the integral as follows:
\[\int_0^\infty \varphi(s)dS^H_t \]
and
\[E\left(\int_0^\infty \varphi(s)dS^H_t \right)^2 = \int_0^\infty \int_0^\infty \varphi(t)\varphi(s)\psi_H(t, s)dtds. \]

Let now D and δ be the (Malliavin) derivative and divergence operators associated with the sub-fBm S^H. And let $\mathbb{D}^{1,2}$ denote the Hilbert space with respect to the norm as follows:
\[\|F\|_{1,2} := \sqrt{E[F]^2 + E[DF]^2_H}. \]
Then the duality relationship
\[E[F\delta(u)] = E(DF, u)_H \]
holds for any $F \in \mathbb{D}^{1,2}$ and $\mathbb{D}^{1,2} \subset \text{Dom}(\delta)$. Moreover, for any $u \in \mathbb{D}^{1,2}$, we have
\[E[\delta(u)^2] = E[u]_H^2 + E(Du, (Du)^\gamma)_{\gamma H t} \]
\[= E[u]_H^2 + E\left[\int_{[0, T]} D\varphi\psi_H(\xi, s)d\xi d\eta \right]. \]
where \((Du)^*\) is the adjoint of \(Du\) in the Hilbert space given as follows: \(\mathcal{H} \otimes \mathcal{H}\). We denote

\[
\delta(u) = \int_0^T u_t dS_t^H
\]

for an adapted process \(u\), and it is called the Skorohod integral. By using Alós et al. [1], we can obtain the relationship between the Skorohod and the Young integral as follows:

\[
\int_0^T u_t dS_t^H = \int_0^T u_t dS_t^H + \int_0^T D_t u_t \psi_H(t, s) ds dt,
\]

provided \(u\) has a bounded \(q\) variation with \(1 \leq q < \frac{1}{H}\) and \(u \in D_{1,2}\) such that

\[
\int_0^T \int_0^T D_t u_t \psi_H(t, s) ds dt < \infty.
\]

3 SOME BASIC ESTIMATES

For simplicity, we throughout let \(C\) stand for a positive constant which depends only on its superscripts, and its value may be different in different appearances, and this assumption is also suitable to \(c\). Recall that the linear self-attracting diffusion with sub-fBm \(S^H\) is defined by the following stochastic differential equation:

\[
X_t^H = S_t^H - \theta \int_0^t (X_s^H - X_u^H) du + \nu t, \quad t \geq 0
\]
TABLE 1 | Data of X^H_t with $\theta = 1$ and $H = 0.7$

t	X^H_t	t	X^H_t		
0.000	0.000	0.3438	-0.1216	0.6875	-0.0979
0.015	0.0067	0.3594	-0.1290	0.7031	-0.0968
0.031	0.0113	0.3750	-0.1406	0.7188	-0.107
0.046	0.0160	0.3906	-0.1467	0.7344	-0.109
0.062	-0.0153	0.4063	-0.1469	0.7500	-0.108
0.078	-0.0238	0.4219	-0.1579	0.7656	-0.118
0.093	-0.0229	0.4375	-0.1624	0.7813	-0.116
0.109	-0.0270	0.4531	-0.1666	0.7969	-0.112
0.125	-0.0335	0.4688	-0.1701	0.8125	-0.123
0.145	-0.0523	0.4843	-0.1717	0.8281	-0.140
0.156	-0.0370	0.5000	-0.1738	0.8438	-0.146
0.171	-0.0498	0.5175	-0.1774	0.8594	-0.155
0.185	-0.0544	0.5313	-0.1766	0.8750	-0.160
0.203	-0.0593	0.5469	-0.1713	0.8906	-0.170
0.218	-0.0765	0.5625	-0.1667	0.9063	-0.174
0.234	-0.0850	0.5781	-0.1664	0.9219	-0.178
0.250	-0.0981	0.5938	-0.1521	0.9375	-0.179
0.265	-0.1062	0.6094	-0.1422	0.9531	-0.180
0.281	-0.1127	0.6250	-0.1395	0.9688	-0.178
0.296	-0.1132	0.6406	-0.1282	0.9844	-0.193
0.312	-0.1140	0.6563	-0.1234	1.0000	-0.198
0.328	-0.1214	0.6719	-0.1054		

TABLE 2 | Data of X^H_t with $\theta = 10$ and $H = 0.7$

t	X^H_t	t	X^H_t		
0.000	0.0000	0.3438	-0.0983	0.6875	-0.1109
0.015	0.0067	0.3594	-0.1104	0.7031	-0.1121
0.031	0.0113	0.3750	-0.1108	0.7188	-0.1126
0.046	0.0160	0.3906	-0.1098	0.7344	-0.1034
0.062	-0.0179	0.4063	-0.1119	0.7500	-0.0991
0.078	-0.0177	0.4219	-0.1106	0.7656	-0.0901
0.093	-0.0242	0.4375	-0.1128	0.7813	-0.0890
0.109	-0.0319	0.4531	-0.1170	0.7969	-0.0894
0.125	-0.0306	0.4688	-0.1185	0.8125	-0.0909
0.140	-0.0416	0.4844	-0.1205	0.8281	-0.0857
0.156	-0.0523	0.5000	-0.1311	0.8438	-0.0851
0.171	-0.0577	0.5156	-0.1068	0.8594	-0.0951
0.187	-0.0637	0.5313	-0.1067	0.8750	-0.0909
0.203	-0.0690	0.5469	-0.1137	0.8906	-0.0890
0.218	-0.0708	0.5625	-0.1105	0.8963	-0.0949
0.234	-0.0670	0.5781	-0.1101	0.9219	-0.0976
0.250	-0.0630	0.5938	-0.1078	0.9375	-0.1006
0.265	-0.0744	0.6094	-0.1078	0.9531	-0.0998
0.281	-0.0831	0.6250	-0.1069	0.9688	-0.0941
0.296	-0.0865	0.6406	-0.1059	0.9844	-0.0933
0.312	-0.0881	0.6563	-0.1085	1.0000	-0.0928
0.328	-0.0962	0.6719	-0.1107		

with $\theta > 0$. The kernel $(t, s) \rightarrow h_0(t, s)$ is defined as follows:

$$h_0(t, s) = \begin{cases} 1 - \theta \text{sech}^H t & t \geq s, \\ 0 & \text{otherwise} \end{cases}$$

for $s, t \geq 0$. By the variation of constants method (see, Cranston and Le Jan [8]) or Itô’s formula, we may introduce the following representation:

$$X^H_t = \int_0^t h_0(t, s)ds^H_t + \nu \int_0^t h_0(t, s)ds$$

for $t \geq 0$.

The kernel function $(t, s) \rightarrow h_0(t, s)$ with $\theta > 0$ admits the following properties (these properties are proved partly in Cranston and Le Jan [8]):

- For all $s \geq 0$, the limit
Let $\frac{1}{2} < H < 1$ and $\theta > 0$. Then the random variable

$$X^H = \int_0^\infty h_0(s) dS^H + v \int_0^\infty h_0(s) ds$$

exists as an element in L^2.

Proof. This is a simple calculus exercise. In fact, we have

$$h_0(s) = \lim_{t \to 0} h_0(t, s) = 1 - \theta e^{\frac{1}{2} \theta t} \int_s^\infty e^{-\frac{1}{2} \theta t} du$$

exists.

- For all $t \geq s \geq 0$, we have $h_0(s) \leq h_0(t, s)$, and

$$0 \leq h_0(s) \leq C_0 \min\left\{1, \frac{1}{s^2}\right\}, \quad e^{-\frac{1}{2} \theta (s^2 - t^2)} \leq h_0(t, s) \leq 1;$$

- For all $t \geq s$, $r \geq 0$ and $\theta \neq 0$, we have

$$h_0(t, 0) = h_0(t), t = 1, \quad \int_s^t h_0(t, u) du = e^{\frac{1}{2} \theta t} \int_s^t e^{-\frac{1}{2} \theta u} du$$

and

$$|h_0(t, s) - h_0(s)| = |h_0(t, r) - h_0(r)| \leq \frac{1}{t^2} \text{sec} \left(\frac{1}{2} \theta (s^2 - t^2)\right) e^{-\theta t};$$

- For all $t > 0$, we have

$$\left|\int_0^t \left[h_0(t, s) - h_0(s) \right] ds \right| \leq \frac{1}{\theta t}$$

Lemma 3.1. Let $\frac{1}{2} < H < 1$ and $\theta > 0$. Then the random variable

$$X^H = \int_0^\infty h_0(s) dS^H + v \int_0^\infty h_0(s) ds$$

exists as an element in L^2.

Proof. This is a simple calculus exercise. In fact, we have

$$\int_0^\infty h_0(s) ds dS^H = \int_0^\infty h_0(s) ds dS^H + v \int_0^\infty h_0(s) ds$$

for all $\theta > 0$ and $\frac{1}{2} < H < 1$. Clearly, Eq. 10 implies that

$$\int_0^1 h_0(s) h_0(r) \left((s - r)^{2H - 2} - (r + s)^{2H - 2} \right) dr ds,$$
\[
\int_{1}^{\infty} \int_{0}^{\infty} h_0(s)h_0(r)(s - r)^{2H-2}drds \\
\leq (C_0)^2 \int_{1}^{\infty} \int_{1}^{\infty} (rs)^{-\theta}((s-r)^{2H-2}-(r+s)^{2H-2})drds \\
\leq (C_0)^2 \int_{1}^{\infty} \int_{1}^{\infty} (rs)^{-\theta}((s-r)^{2H-2}-(r+s)^{2H-2})drds \\
= (C_0)^2 \int_{1}^{\infty} \int_{1}^{\infty} r^{2H-2}x^{-\theta}(x-1)^{2H-2}-(1+x)^{2H-2})dxdr < \infty
\]
for all \(\theta > 0 \) and \(\frac{1}{2} < H < 1 \). These show that the random variable \(X_H^t \) exists as an element in \(L^2 \).

Lemma 3.2. Let \(\theta > 0 \). We then have
\[
\lim_{t \to \infty} t e^{t\theta} \left(\int_{0}^{t} h_0(t,s)ds - \int_{0}^{\infty} h_0(s)ds \right) = -\frac{1}{\theta}
\]

Proof. This is a simple calculus exercise. In fact, we have
\[
\int_{0}^{t} h_0(t,s)ds - \int_{0}^{\infty} h_0(s)ds = \int_{0}^{t} [h_0(t,s) - h_0(s)]ds - \int_{0}^{\infty} h_0(s)ds \\
= t \theta e^{t\theta} \left(\int_{1}^{\infty} e^{-\theta x^2}dx - \int_{1}^{\infty} e^{-\theta x^2}dx \right)ds - \int_{0}^{\infty} h_0(s)ds \\
= (e^{t\theta} - 1) \int_{0}^{\infty} e^{-\theta x^2}dx - \int_{0}^{\infty} h_0(s)ds.
\]
for all \(t \geq 0 \) and \(\theta > 0 \). Noting that
\[
\lim_{t \to \infty} t \left(e^{t\theta} - 1 \right) \int_{0}^{\infty} e^{-\theta x^2}dx = \lim_{t \to \infty} \frac{1}{t} \int_{0}^{\infty} e^{t\theta}dx = \frac{1}{\theta}
\]
and
\[
\lim_{t \to \infty} t \int_{0}^{\infty} h_0(s)ds = \lim_{t \to \infty} \frac{1}{t} t \int_{0}^{\infty} h_0(s)ds \\
= \lim_{t \to \infty} t h_0(t) = \lim_{t \to \infty} t \left(1 - \theta e^{t\theta} \right) \int_{0}^{\infty} e^{-\theta x^2}dx = \frac{1}{\theta}
\]
we see that
\[
\lim_{t \to \infty} t e^{t\theta} \left(\int_{0}^{t} h_0(t,s)ds - \int_{0}^{\infty} h_0(s)ds \right) \\
= \lim_{t \to \infty} \frac{1}{t} e^{t\theta} \left(e^{t\theta} - 1 \right) \int_{0}^{\infty} e^{-\theta x^2}dx - \int_{0}^{\infty} h_0(s)ds = -\frac{1}{\theta}.
\]
by L’Hôpital’s rule.

Lemma 3.3. Let \(\theta > 0 \). We then have
\[
\left| \frac{d}{dt} h_0(t) \right| \leq C_0 \min \left\{ 1, \frac{1}{t^2} \right\}
\]
for all \(t \geq 0 \).

Lemma 3.4. Let \(\theta > 0 \) and \(\frac{1}{2} < H < 1 \). We then have
\[
\lim_{t \to \infty} \frac{1}{t^{2H-2}} e^{-\frac{t}{2H}} t \int_{0}^{t} s e^{\frac{t}{2H}} \psi_H(s,r)dsdr = \frac{1}{4} \theta^{2H-1}(2H+1).
\]

Proof. By L’Hôpital’s rule and the change of variable \(\frac{1}{2} \theta (t^2 - r^2) = x \), it follows that
\[
\lim_{t \to \infty} \frac{1}{t^{2H-2}} e^{-\frac{t}{2H}} t \int_{0}^{t} s e^{\frac{t}{2H}} \psi_H(s,r)dsdr \\
= \lim_{t \to \infty} \frac{1}{2\theta t^{2H-2}} \int_{0}^{t} e^{\frac{t}{2H}} \psi_H(t,r)dr \\
= \lim_{t \to \infty} \frac{H(2H-1)}{2\theta t^{2H-2}} \int_{0}^{t} e^{\frac{t}{2H}} \left((t-r)^{2H-2} - (t+r)^{2H-2} \right)dr \\
= \lim_{t \to \infty} \frac{H(2H-1)}{2\theta t^{2H-2}} \int_{0}^{t} e^{-\frac{t}{2H}} \left(t - \sqrt{t^2 - \frac{2x}{\theta}} \right)^{2H-2}dx \\
= \frac{1}{2} \theta^{2H} H(2H-1) \Gamma(2H-1) = \frac{1}{4} \theta^{2H-1}(2H+1),
\]
where we have used the equation
\[
\lim_{t \to \infty} \frac{1}{t^{2H-2}} e^{-\frac{t}{2H}} t \int_{0}^{t} e^{\frac{t}{2H}} (t+r)^{2H-2}dr = 0.
\]
This completes the proof.

Lemma 3.5. Let \(\theta > 0 \) and \(\frac{1}{2} < H < 1 \). We then have
\[
c(t-s)^{2H} \leq E \left[(X_H^t - X_H^s)^2 \right] \leq C(t-s)^{2H}
\]
for all \(0 \leq s < t \leq T \), where \(C \) and \(c \) are two positive constants depending only on \(H, \theta, \upsilon \) and \(T \).

Proof. The lemma is similar to Lemma 3.5 in the previous study (I).
On the other hand, by Lemma (3.5), 3.3 and the equation \(\sqrt{t_t} \to 0 \) almost surely as \(t \) tends to infinity, we find that
\[
\int_t^\infty S_d^t dh_\theta(s) \leq C_\theta \int_t^\infty |S_d^t| \frac{ds}{s^2} \to 0,
\]
as \(t \) tends to infinity. It follows from the integration by parts that
\[
\int_t^\infty h_\theta(s) dS^t_d = -h_\theta(t) S_d^t - \int_t^\infty S_d^t dh_\theta(s) \to 0
\]
almost surely as \(t \) tends to infinity.

4 SOME LARGE TIME BEHAVIORS

In this section, we consider the long time behaviors for \(X^t \) with \(\frac{1}{2} < H < 1 \) and \(\theta > 0 \) and our objects are to prove the statements given in Section 1.

Theorem 4.1. Let \(\theta > 0 \) and \(\frac{1}{2} \leq H < 1 \). Then the convergence
\[
X^{t_s} \to X^t_{\infty}
\]
holds in \(L^2 \) and almost surely as \(t \) tends to infinity.

Proof. When \(H = \frac{1}{2} \), the convergence is obtained in Cranston-Le Jan [8]. Consider the decomposition
\[
X^t - X^t_{\infty} = \int_0^t [h_\theta(t, s) - h_\theta(s)] dS^t_d + \int_t^\infty h_\theta(s) dS^t_d + \sum_{n=1}^\infty \sigma^2 n \int_{s}^{t} (h_\theta(t, s) - h_\theta(s)) dS^t_d \equiv Y^t_t + \sum_{n=1}^\infty \sigma^2 s \int_{s}^{t} h_\theta(s) dS^t_d + \sum_{n=1}^\infty \sigma^2 n \int_{s}^{t} h_\theta(s) dS^t_d
\]
for all \(t \geq 0 \).

We first check that Eq. 19 holds in \(L^2 \). By Lemma 3.6 and Lemma 3.2, we only need to prove \(Y^t_t \) converges to zero in \(L^2 \). It follows from the equation
\[
\int_t^\infty e^{-\frac{1}{2} \theta t} d\tau = \frac{1}{\theta} e^{-\frac{1}{2} \theta t}
\]
for all \(\theta > 0 \) as \(t \) tends to infinity and Lemma 3.4 that
\[
E[Y^t_t] = \int_0^t \left| |h_\theta(t, s) - h_\theta(s)| h_\theta(t, r) - h_\theta(r) | \psi_{H}(s, r) d\sigma dr + \sum_{n=1}^\infty \sigma^2 n \int_{s}^{t} (h_\theta(t, s) - h_\theta(s)) dS^t_d + \sum_{n=1}^\infty \sigma^2 n \int_{s}^{t} h_\theta(s) dS^t_d
\]
for all \(\theta > 0 \) as \(t \) tends to infinity and Lemma 3.4 that
\[
E[Y^t_t] = \int_0^t \left| |h_\theta(t, s) - h_\theta(s)| h_\theta(t, r) - h_\theta(r) | \psi_{H}(s, r) d\sigma dr + \sum_{n=1}^\infty \sigma^2 n \int_{s}^{t} (h_\theta(t, s) - h_\theta(s)) dS^t_d + \sum_{n=1}^\infty \sigma^2 n \int_{s}^{t} h_\theta(s) dS^t_d
\]
for all \(\theta > 0 \) and \(\frac{1}{2} < H < 1 \) as \(t \) tends to infinity, which implies that Eq. 19 holds in \(L^2 \).

We now check that Eq. 19 holds almost surely as \(t \) tends to infinity. By Lemma 3.6, we only need check that \(Y^t_t \) converges to zero almost surely as \(t \) tends to infinity. We have
\[
Y^t_t = \int_0^t [h_\theta(t, s) - h_\theta(s)] dS^t_d
\]
\[
= \left(\int_t^\infty e^{-\frac{1}{2} \theta t} d\tau \right) \int_0^t \theta e^{\frac{1}{2} \theta t} dS^t_d = \frac{1}{t} e^{-\frac{1}{2} \theta t} \int_0^t \theta e^{\frac{1}{2} \theta t} dS^t_d
\]
for all \(\theta > 0 \) and \(\frac{1}{2} < H < 1 \) as \(t \) tends to infinity. To obtain the convergence, we define the random sequence
\[
Z_{n,k} = Y^t_t, \quad k = 0, 1, 2, \ldots, n
\]
for every integer \(n \geq 1 \). Then \(\{Z_{n,k}, k = 0, 1, 2, \ldots, n\} \) is Gaussian for every integer \(n \geq 1 \). It follows from Lemma 3.4 that
\[
\sigma^2 (n) := E\left[(Z_{n,k})^2 \right] \sim \frac{1}{(n + k)^2} e^{-\theta (n + k)^2} E\left[\int_0^{n+1} \sigma^2 s \int_{s}^{t} h_\theta(s) dS^t_d \right]^2
\]
\[
\leq \frac{1}{(n + k)^2} e^{-\theta (n + k)^2} \int_0^{n+1} \int_0^{n+1} \sigma^2 \int_{s}^{t} h_\theta(s) dS^t_d \int_{s}^{t} h_\theta(r) dS^t_d
\]
for every integer \(n \geq 1 \) and \(0 \leq k \leq n \), which implies that
\[
P\left(\left| Z_{n,k} \right| > \epsilon \right) = \int_0^\infty \frac{1}{\sqrt{2\pi \sigma(n)}} \frac{e^{-\frac{1}{2} \sigma(n)^2 x^2}}{\sqrt{2\pi \sigma(n)}} dx \leq \frac{1}{\epsilon} \int_0^\infty x e^{-\frac{1}{2} \sigma(n)^2 x^2} dx
\]
\[
= \frac{\sigma(n)}{\epsilon} \int_{\epsilon \sigma(n)}^{\infty} \frac{e^{-\frac{1}{2} y^2}}{\sqrt{2\pi \sigma(n)^2}} dy \leq \frac{\sigma(n)}{\epsilon} \int_{\epsilon \sigma(n)}^{\infty} \frac{e^{-\frac{1}{2} y^2}}{\sqrt{2\pi \sigma(n)^2}} dy
\]
\[
\leq \frac{\sigma(n)}{\epsilon} \int_{\epsilon \sigma(n)}^{\infty} \frac{e^{-\frac{1}{2} y^2}}{\sqrt{2\pi \sigma(n)^2}} dy
\]
for any \(\epsilon > 0 \), every integer \(n \geq 1 \) and \(0 \leq k \leq n \). On the other hand, for every \(s \in (0, 1) \), we denote
\[
R_s = Y^t_t - Y^t_{t-1}
\]
Then \(\{R_s, 0 \leq s \leq 1\} \) is also Gaussian for every integer \(n \geq 1 \) and \(0 \leq k \leq n \). It follows that
\[
E\left[(R_s^t - R_s^{t'})^2 \right] \leq \frac{C}{n^{2H}} E\left[(S^t - S^{t'})^2 \right]
\]
for all \(s \), \(s' \in [0, 1] \). Thus, for any \(\epsilon > 0 \), by Slepian’s theorem and Markov’s inequality, one can get
\[
P\left(\sup_{s \in [0, 1]} \left| R_s^t \right| > \epsilon \right) \leq P\left(C \frac{1}{n^{2H}} E\left[(S^t - S^{t'})^2 \right] \right)
\]
for every integer \(n \geq 1 \) and \(0 \leq k \leq n \). Combining this with the Borel–Cantelli lemma and the relationship
\[
\left\{ \sup_{s \in [0, 1]} \left| Y^t_t \right| > \epsilon \right\} \subset \left\{ \left| Z_{n,k} \right| > \epsilon/2 \right\} \cup \left\{ \sup_{s \in [0, 1]} \left| R_s^t \right| > \epsilon/2 \right\}
\]
we show that $Y_t^H \to 0$ almost surely as t tends to infinity. This completes the proof.

Theorem 4.2. Let $\theta > 0$ and $\frac{1}{2} \leq H < 1$. Then the convergence

$$t^H (X_t^H - X_0^H) \rightarrow \mathcal{N}(0, \lambda_{H, \theta})$$ \hspace{1cm} (21)

holds in distribution, where \mathcal{N} is a central normal random variable with its variance

$$\lambda_{H, \theta} = \frac{1}{2} \Gamma (2H + 1) \theta^{-2H}.$$

Proof. When $H = \frac{1}{2}$, this result also is unknown. We only consider the case $\frac{1}{2} < H < 1$ and similarly one can prove the convergence for $H = \frac{1}{2}$ by Eq. 20, Slutsky’s theorem, and Lemma 3.2, we only need to show that

$$t^H \int_0^\infty h_0(s)dS_t^H \to 0 \quad (t \to \infty)$$ \hspace{1cm} (22)

in probability and

$$t^H Y_t^H \rightarrow \mathcal{N}(0, \lambda_{H, \theta}) \quad (t \to \infty).$$ \hspace{1cm} (23)

in distribution.

First, Eq. 22 follows from Eq. 10 and

$$t^H E \left[\int_0^\infty h_0(s)dS_t^H \right]^2 = t^{2H} \int_0^\infty \int_0^\infty h_0(s)h_0(r)\psi_H(s, r)ds dr$$

$$\leq \frac{4t^{2H}}{\theta^2} \int_0^\infty \int_0^\infty \frac{1}{(sr)^2} \psi_H(s, r)ds dr$$

$$= \frac{4t^{2H-4}}{\theta^2} \int_0^\infty \int_0^\infty \frac{1}{(xy)^2} \psi_H(x, y)dxdy \to 0$$

for all $\theta > 0$ and $\frac{1}{2} < H < 1$ as t tends to infinity.

We now obtain convergence (23). By the equation

$$\int_0^\infty e^{+i\omega u} du \sim \frac{1}{\theta^2} e^{+i\omega u^2},$$

as t tends to infinity and Lemma 3.4, we get

$$t^{2H} E [Y_t^H]^2 = t^{2H} \int_0^\infty \int_0^\infty \psi_H(s, r)ds dr$$

$$= t^{2H} \left(\int_0^\infty e^{+i\omega u} du \right)^2 \int_0^\infty \int_0^\infty sre^{+i\omega s^2} \psi_H(s, r)ds dr$$

$$\sim \frac{2}{t^{2H}} e^{+i\omega t} \int_0^t \int_0^\infty \frac{1}{r} e^{+i\omega s^2} \psi_H(s, r)ds dr \to \frac{1}{2} \Gamma (2H + 1) \theta^{-2H}$$

for all $\theta > 0$ and $\frac{1}{2} < H < 1$ as t tends to infinity. Thus, convergence (23) follows from the normality of $t^H Y_t^H$ for all $\frac{1}{2} < H < 1$ and the theorem follows.

At the end of this section, we obtain a law of large numbers. Consider the process Y_t^H defined by

$$Y_t^H = \int_0^t (X_s^H - X_0^H)ds, \quad t \geq 0.$$

Then the self-attracting diffusion X^H satisfies

$$X_t^H = S_t^H - \theta \int_0^t Y_s^H ds + v_t, \quad t \geq 0$$ \hspace{1cm} (24)

and

$$Y_t^H = tX_t^H - \int_0^t X_s^H ds = \int_0^t s dX_s^H$$

by integration by parts. It follows that

$$dY_t^H = -\theta Y_t^H dt + \frac{1}{2} \theta Y_t^H dt + v_t dt$$ \hspace{1cm} (25)

for all $\frac{1}{2} \leq H < 1$ and $t \geq 0$. By the variation of constant method, we can give the explicit representation of Y_t^H as follows:

$$Y_t^H = e^{-\frac{1}{2} \int_0^t \theta s^2 ds} Y_{0}^H + \frac{\theta}{2} (1 - e^{-\frac{1}{2} \theta t^2}), \quad t \geq 0.$$ \hspace{1cm} (26)

Lemma 4.1. Let $\frac{1}{2} \leq H < 1$ and $\theta > 0$. Then we have

$$\frac{1}{T} \int_0^T Y_t^H dt \to \frac{\theta}{\theta^2}$$ \hspace{1cm} (27)

almost surely and in L^2 as T tends to infinity.

Proof. This lemma follows from Eq. 24 and the estimates

$$E \left(\left(\frac{1}{T} \int_0^T Y_t^H dt - \frac{\theta}{\theta^2} \right)^2 \right) = \frac{1}{T^2} E \left(\left(\frac{Y_T^H}{T} - \frac{\theta}{\theta^2} \right)^2 \right)$$

$$\leq \frac{2}{\theta^2} \left(\frac{E (Y_T^H)^2}{T^2} + \frac{E (Y_T^H)^2}{T^2} \right) \to 0,$$

as T tends to infinity.

Theorem 4.3. Let $\frac{1}{2} \leq H < 1$ and $\theta > 0$. Then we have

$$\frac{1}{T^{2H}} \int_0^T (Y_t^H)^2 dt \to \frac{H}{3 - 2H} \theta^{-2H} \Gamma (2H)$$ \hspace{1cm} (28)

in L^2 as T tends to infinity.

Proof. Given $\frac{1}{2} < H < 1$ and $\theta > 0$,

$$\Delta_t = \frac{\theta}{\theta^2} (1 - e^{-\frac{1}{2} \theta t^2}), \quad \eta_t^H = e^{-\frac{1}{2} \theta t^2} \int_0^t s e^{\frac{1}{2} \theta s^2} ds$$

for all $t \geq 0$. Then

$$Y_t^H = \eta_{t\Delta_t} + \Delta_t$$

for all $t \geq 0$. We now prove the lemma in three steps.

Step 1. We claim that

$$\lim_{t \to \infty} \frac{1}{T^{3-2H}} \int_0^T E \left((Y_t^H)^2 \right) dt \to \frac{H}{3 - 2H} \theta^{-2H} \Gamma (2H),$$ \hspace{1cm} (29)

as t tends to infinity. Clearly, we have

$$\lim_{t \to \infty} \frac{1}{T^{3-2H}} \int_0^T \Delta_t^2 dt = 0.$$

Thus, 29 is equivalent to
\[
\frac{1}{T^{3-2H}} \int_0^T E \left[(\eta^H_t)^2 \right] dt \to \frac{H}{3-2H} \theta^{2H}(2H). \tag{30}
\]

By L'Hôpital's rule and Lemma 3.4, it follows that
\[
\lim_{T \to \infty} \frac{1}{T^{3-2H}} \int_0^T E \left[(\eta^H_t)^2 \right] dt = \lim_{T \to \infty} \frac{1}{T^{3-2H}} \int_0^T \psi_H(u, v) u dv du
\]
\[
= \lim_{T \to \infty} e^{-2t^{2H}} \int_0^T \psi_H(u, v) u dv du
\]
\[
= \frac{1}{2} (3 - 2H) \theta^{2H}(2H + 1) = \frac{H}{3-2H} \theta^{2H}(2H)
\]
for all \(\frac{1}{2} < H < 1 \).

Step II. We claim that
\[
\frac{1}{T^{3-2H}} E \left(\int_0^T \Delta \eta^H_t dt \right)^2 = \frac{1}{T^{3-2H}} \int_0^T \Delta \Delta \eta^H_t ds dt \to 0,
\]
as \(T \) tends to infinity. We have that
\[
E(\eta^H_t \eta^H_s) = e^{-2t^{2H}} \int_0^T \eta^H_s dS_t \int_0^T \eta^H_s dS_t
\]
\[
eq e^{-2t^{2H}} \int_0^T \psi_H(u, v) u dv du
\]
\[
= \frac{H}{2} (2H - 1) e^{-2t^{2H}} \int_0^T \psi_H(u, v) u dv du
\]
\[
+ \frac{H}{2} (2H - 1) e^{-2t^{2H}} \int_0^T \psi_H(u, v) u dv du
\]
\[
= \frac{H}{2} (2H - 1) [\Lambda_t(H; t, s) + \Lambda_t(H; t, s)]
\]
for all \(t > s > 0 \). An elementary calculation may show that
\[
\Lambda_t(H; t, s) \leq e^{-2t^{2H}} \int_0^t u (u - s)^{2H-2} e^{t^{2H}} \left(\int_0^t u e^{-2t^{2H}} dS \right) du
\]
\[
\leq \frac{1}{\theta} e^{-2t^{2H}} (e^{t^{2H}} - 1) \int_0^t u (u - s)^{2H-2} e^{t^{2H}} du
\]
\[
\leq \frac{1}{\theta} e^{-2t^{2H}} (1 - e^{-2t^{2H}}) \int_0^t u (u - s)^{2H-2} e^{t^{2H}} du
\]
\[
\leq \frac{1}{2\theta} e^{-2t^{2H}} \int_0^{t^{2H}} \left(\frac{t^{2H}}{t^{2H}} + x - s \right)^{2H-1} e^{t^{2H}} dx
\]
\[
\leq \frac{1}{2\theta} e^{-2t^{2H}} \int_0^{t^{2H}} x^{2H-2} \left(t^{2H} + x + s \right)^{2H-1} e^{t^{2H}} dx
\]
\[
\leq \frac{1}{2\theta} (t + s)^{2-2H} e^{-2t^{2H}} \int_0^{t^{2H}} x^{2H-2} dx
\]
for all \(t > s > 0 \). It follows from the equation
\[
\int_0^T t^{2H} dS_t \sim \chi^H(1 + \alpha) e^\alpha + \chi^H(1 + \beta) e^\beta + \chi^H(1 + \gamma) e^\gamma
\]
with \(x \geq 0 \) and \(\beta > -1 \) that
\[
\Lambda_t(H; t, s) \leq C (t - s)^{2H-2} (1 \wedge (t^2 - s^2))
\]
\[
\leq C (t - s)^{2H-2} (1 \wedge (t^2 - s^2)) \tag{33}
\]
for all \(t > s > 0 \) and \(0 \leq \alpha \leq 1 \). For the term \(\Lambda_t(H; t, s) \), by the proof of Lemma 3.4, we find that
\[
\lim_{T \to \infty} \frac{1}{T^{3-2H}} \int_0^T \int_0^T \psi_H(u, v) u dv du
\]
\[
= \frac{1}{\theta} \theta^{2H}(2H + 1)
\]
for all \(\frac{1}{2} < H < 1 \). Combining this with the equation
\[
\int_0^T \int_0^T \psi_H(u, v) u dv du = C \in (0, \infty)
\]
and the equation \(e^{-2t^{2H}} \leq \frac{1}{\theta} \leq \frac{1}{\theta} \) with \(x > 0 \) and \(0 < q < 1 \), we get
\[
\Lambda_t(H; t, s) = 2 \psi_H(u, v) u dv du = C \in (0, \infty)
\]
\[
\leq C e^{-2t^{2H}} \left(\frac{t^2 - s^2}{2H(2H - 1)} \right)^{2H-2}
\]
\[
\leq \frac{C}{(t^2 - s^2)^{2H-2}}
\]
for all \(t > s > 0 \), \(\frac{1}{2} < H < 1 \) and \(0 \leq y \leq 2 - 2H \). Thus, we have shown that the estimate
\[
E(\eta^H_t \eta^H_s) \leq C \psi_H(t - s)^{2H-2} (1 \wedge (t^2 - s^2))
\]
\[
\leq (t^2 - s^2)^{2H-2}
\]
holds for all \(t > s > 0 \). In particular, we have
\[
E(\eta^H_t \eta^H_s) \leq C \psi_H(t - s)^{2H-2}
\]
for all \(t, s \geq 0 \). As a corollary, we get
\[
\frac{1}{T^{3-2H}} E \left(\left(\int_0^T \psi_H^2 dS_t \right)^2 \right) \to \frac{H}{3-2H} \theta^{2H}(2H)
\]
\[
\to \frac{C \psi_H}{T^{3-2H}} \to 0,
\]
as \(T \) tends to infinity.

Step III. We claim that
\[
\frac{1}{T^{3-2H}} E \left[\left(\int_0^T \psi_H^2 dS_t \right)^2 \right] \to \frac{H}{3-2H} \theta^{2H}(2H)
\]
as \(t \) tends to infinity. By steps I and II, we find that Eq. 37 is equivalent to
\[
\frac{1}{T^{3-2H}} E \left[\left(\int_0^T \psi_H^2 dS_t \right)^2 \right] \to \frac{H}{3-2H} \theta^{2H}(2H)
\]
as \(t \) tends to infinity. Noting that the equation
\[
E(\eta^H_t \eta^H_s) = E(\eta^H_t \eta^H_s) + 2 E(\eta^H_t \eta^H_s)
\]
(39)
for all $t, s > 0$, we further find that convergence (38) also is equivalent to

$$
\Lambda(H; T) := \frac{1}{T^{6-4H}} E\left(\int_0^T \left(\eta_t^H \right)^2 - E(\eta_t^H)^2 \right)^2 dt
$$

$$
= \frac{2}{T^{6-4H}} \int_0^T \int_0^t \left(\eta_s^H \eta_t^H \right)^2 dsdt \to 0,
$$

(40)
as T tends to infinity. We now check that convergence (40) in two cases.

Case 1. Let $\frac{1}{4} < H < 1$. Clearly, by Eq. 36, we have to

$$
\Lambda(H; T) \leq C_{\delta H} \int_0^T \int_0^1 (t-s)^{4H-4} dsdt
$$

$$
\leq C_{\delta H} T^{4H-2} \to 0 \quad (T \to \infty).
$$

(41)

Case 2. Let $\frac{1}{2} < H \leq \frac{1}{3}$. By Eq. 36, we have that

$$
\int_1^T \int_0^{\sqrt{t-1}} \left(E(\eta_t^H \eta_s^H) \right)^2 dsdt \leq C_{\delta H} \int_1^T \int_0^{\sqrt{t-1}} (t-s)^{4H-4} dsdt
$$

$$
\leq C_{\delta H} T^{4H-2}
$$

with $\frac{1}{2} < H < \frac{1}{3}$ and

$$
\int_1^T \int_0^{\sqrt{t-1}} \left(E(\eta_t^H \eta_s^H) \right)^2 dsdt \leq \int_1^T \int_0^{\sqrt{t-1}} \frac{1}{t-s} dsdt \leq CT \log T
$$

with $H = \frac{1}{3}$ for all $T > 1$. Similarly, by Eq. 35, we also have

$$
\int_1^T \int_0^{\sqrt{t-1}} \left(E(\eta_t^H \eta_s^H) \right)^2 dsdt
$$

$$
\leq C_{\delta H} \int_1^T \int_0^{\sqrt{t-1}} (t-s)^{4H-4+2a} dsdt
$$

$$
\leq C_{\delta H} \int_1^T \int_0^{\sqrt{t-1}} t^{2a} (t-s)^{4H-4+2a} dsdt
$$

$$
= C_{\delta H} \int_1^T \int_0^{\sqrt{t-1}} t^{2a} (t-\sqrt{t^2-1})^{4H-3+2a} dt
$$

$$
= C_{\delta H} \int_1^T \int_0^{\sqrt{t-1}} t^{2a} (t+\sqrt{t^2-1})^{4H-3+2a} dt \leq CT^{4-4H}
$$

for all $T > 1$ and $\frac{1}{2} - 2H < \alpha = \gamma < 2 - 2H$ since $0 < t^2 - s^2 < 1$ for $(s, t) \in \{ (s, t) | 1 \leq t \leq T, t^2 - 1 < s < t \}$. Thus, we have shown that

$$
\Lambda(H; T) = \frac{1}{T^{6-4H}} \int_1^T \int_0^{\sqrt{t-1}} \left(E(\eta_t^H \eta_s^H) \right)^2 dsdt
$$

$$
+ \frac{1}{T^{6-4H}} \int_1^T \int_0^{\sqrt{t-1}} \left(E(\eta_t^H \eta_s^H) \right)^2 dsdt + \frac{1}{T^{6-4H}} \int_0^1 \int_0^{\sqrt{t-1}} \left(E(\eta_t^H \eta_s^H) \right)^2 dsdt
$$

$$
\leq C_{\delta H} \frac{T^{4H-2} + T^{4-4H} + 1}{T^2} \to 0
$$

(42)

with $\frac{1}{4} < H < \frac{1}{2}$ and

$$
\Lambda^2(H; T) \leq C_{\delta H} \frac{T^{4H-2} + T^{4-4H} + 1}{T^2} \to 0, \quad \text{as } T \to \infty.
$$

(43)
as T tends to infinity. This shows that convergence (40) holds for all $\frac{1}{4} < H < 1$. Similarly, we can also show the theorem holds for $H = \frac{1}{2}$ and the theorem follows.

Remark 1. By using the Borel–Cantelli lemma and Theorem 4.3, we can check that convergence (28) holds almost surely.

5 SIMULATION

We have applied our results to the following linear self-attracting diffusion driven by a sub-fBm ξ_t^H with $\frac{1}{2} < H < 1$ as follows:

$$
d\chi_t^H = dS_t^H - \theta \left(\int_0^t (\chi_s^H - \chi_t^H) ds \right) dt + \nu dt, \quad \chi_0^H = 0,
$$

where $\theta > 0$ and $\nu \in \mathbb{R}$ are two parameters. We will simulate the process with $\nu = 0$ in the following cases:

- $H = 0.7: \theta = 1, \theta = 10$ and $\theta = 100$, respectively (see, Figures 1–3, Tables 1–3);
- $H = 0.5: \theta = 1, \theta = 10$ and $\theta = 100$, respectively (see, Figures 4–6, Tables 4–6).

Remark 2. From the following numerical results, we can find that it is important to study the estimates of parameters θ and ν.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article-supplementary material; further inquiries can be directed to the corresponding authors.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct, and intellectual contribution to the work and approved it for publication.

REFERENCES

1. Alós E, Mazet O, Nualart D Stochastic Calculus with Respect to Gaussian Processes. Ann Prob (2001) 29:766–801. doi:10.1214/aop/1008956962
2. Benaim M, Ciotir I, Gauthier C-E Self-repelling Diffusions via an Infinite Dimensional Approach. Stoch Pde: Anal Comp (2015) 3:506–30. doi:10.1007/s40072-015-0059-5
3. Benaim M, Ledoux M, Raimond O Self-interacting Diffusions. Probab Theor Relat Fields (2002) 122:1–41. doi:10.1007/s004400100161
4. Bojdecki T, Gorostiza LG, Talarczyk A Some Extensions of Fractional Brownian Motion and Sub-fractional Brownian Motion Related to Particle Systems. Elect Commn Prob (2007) 12:161–72. doi:10.1214/ejc.v12-1272
5. Bojdecki T, Gorostiza LG, Talarczyk A Sub-fractional Brownian Motion and its Relation to Occupation Times. Stat Probab Lett (2004) 69:405–19. doi:10.1016/j.spl.2004.06.035
