The Association between Ambient Fine Particulate Matter and Oral Neoplasm among Smokers and Betel Quids Chewers

Mei-Sheng Ku, Pallop Siewchaisakul, Amy Ming-Fang Yen, Chen-Yu Liu

1 Institute of Environmental and Occupational Health Science, College of Public Health, National Taiwan University, Taipei, Taiwan
2 School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
3 Faculty of Public Health, Chiang Mai University, Thailand

ABSTRACT

The association between fine particulate matter < 2.5 µm (PM2.5) and oral neoplasm has barely been addressed. The purpose of this study is to elucidate the association between PM2.5 and oral neoplasm, including oral potentially malignant disorder (OPMD) and oral cancer (OC), taking into account the geographical heterogeneity. Data for analysis were derived from nationwide OC screening program, targeting Taiwanese cigarette smokers and/or betel quid smokers, and the Taiwan Air Quality Monitoring Network between 2006 and 2016. Totally 3,864,045 smokers and/or betel quids chewers were enrolled in this study. Among them, 154,030 OPMD cases and 23,286 oral cancers were found during the study period. Information on age, gender, living area, personal oral habits, and monthly PM2.5 concentration in average were collected. We used the Bayesian random-effect logistic regression model to assess the association between PM2.5 and OPMD/OC. After adjusting for sex, age, and behavior of betel quid chewing and cigarette smoking, we found that subjects from areas of higher levels of PM2.5 (≥ 35 µg m–3) had an increased risk of OPMD/OC and OC by 11% (aRR = 1.11; 95% CI: 1.09–1.13) and 55% (aRR = 1.55; 95% CI: 1.49–1.60) respectively, compared to those from areas of lower PM2.5 (< 35 µg m–3). Such effect was further demonstrated in a concentration-dependent manner. Subjects from areas of higher PM2.5 levels were found to have greater risk of OPMD/OC in Taiwan. Future studies are warranted to investigate the effect of personal PM2.5 exposure on OPMD/OC risk.

Keywords: Particulate matter, Oral cancer, Nationwide screening program, Taiwan

1 INTRODUCTION

It is inevitable that air pollution has become environmental burden worldwide. Among all air pollutants, fine particulate matters (particulate matter with an aerodynamic diameter ≤ 2.5 µm; PM2.5) are thought to be the most important toxicants in urban air (Kaiser 2005). In 2016, World Health Organization (WHO) reported that approximately 92% of the world’s population were residing in places where level of the PM2.5 exceeds WHO air quality guideline (AQG), an annual average concentration of 10 µg m–3 (WHO, 2006). Although studies have indicated a decreasing trend in PM2.5 concentrations in many countries, PM2.5 is still a significant public concern in Taiwan, due to many of the people in Taiwan still live in areas with the PM2.5 exceeds 10 µg m–3 and the related adverse health effects such as cardiovascular disease, respiratory disease and cancers have been reported (Cheng and Hsu, 2019; Yang et al., 2018).

Oral cancer (OC) is the fifth leading cause of cancer death and has been the fourth most common cancer in men for more than 10 consecutive years since 2003 in Taiwan (Ministry of Health and Welfare, 2018). In order to prevent the disease onset and to cure or slow the disease progression, the Taiwanese government has implemented the biennial nationwide OC screening focusing on...
adults at a higher risk (betel quid chewers or smokers) since 2004 to detect oral potentially malignant disorder (OPMD) and OC (Chuang et al., 2017). In addition, since betel quid chewing has been identified as a risk factor of OPMD and OC independently (Amarasinghe et al., 2010; Ko et al., 1995; Merchant et al., 2000), and in conjunction with smoking and alcohol drinking (Yen et al., 2007a, 2008; Yen et al., 2008b), the Taiwanese government has reinforced the betel quid chewing prevention and control in recent decades. The betel quid chewing rate among male adults over 18 has been declined from 2007 to 2018 by 59.2% in Taiwan (Health Promotion Administration, 2019). Although age-standardized OC incidence rate increased continuously in both sexes before 2009, it has become flatten since then (Siewchaisakul et al., 2020a).

The other risk factors of OPMD and OC include exposure to heavy metals (arsenic, nickel, and chromium) at high concentration (Chu et al., 2019; Kaldor et al., 1984; Su et al., 2010; Yuan et al., 2011), human papillomavirus (HPV) infection (Chaturvedi, 2012), presence of metabolic syndrome (MetS) (Yen et al., 2011), and age younger than 70 years (Siewchaisakul et al., 2020a).

Recent studies have shown that the level of PM$_{2.5}$ was associated with an increased risk in cardiovascular inflammatory marker such as C-reactive protein (CRP) in adults with MetS (Dabass et al., 2018). Other inflammatory markers including T lymphocytes, macrophages, transforming growth factor (TGF)-β1, tumor necrosis factor (TNF)-α, and interleukin (IL)-6 were also found as underpinning the link between MetS and OPMD (Chiang et al., 2002; Hsu et al., 2014; Ujpál et al., 2004). This led to the hypothesis that PM$_{2.5}$ may also associate with OPMD.

In 2013, PM$_{2.5}$ was noted by International Agency for Research on Cancer (IARC) as carcinogenic to human (Loomis et al., 2013). Carcinomas that have been found to be associated with PM$_{2.5}$ are lung, leiomyoma, bladder cancer, and OC (Chu et al., 2019; Hamra et al., 2014; Mahalingaiah et al., 2014). Previous study has revealed that the long-term PM$_{2.5}$ concentrations and daily mean concentrations over 35 µg m$^{-3}$ varied by meteorological conditions and regions in Taiwan (Cheng and Hsu, 2019). Cheng and Hsu’s (2019) study prompted us to determine the cut-off point of PM$_{2.5}$ and also take into account the heterogenous PM$_{2.5}$ exposure effect on OC between areas in current study. However, few population-based studies investigated the association between PM$_{2.5}$ and OC, especially OPMD.

We therefore aimed to elucidate the association between PM$_{2.5}$ and OPMD/OC, taking heterogeneity between areas into account based on the longitudinal data of air quality monitoring and nationwide OC screening in Taiwan.

2 METHODS

2.1 Study Population and Data Collection

2.1.1 Data source for oral neoplasm

A retrospective cohort design was conducted in this study. Population in this study was based on the nationwide OC screening program between 2006 and 2016. The program has been launched by Health Promotion Administration (HPA), Taiwan, since 2004. The details have been described by Chuang et al. (2017). The biennial OC screening program with visual inspection was done by the trained dentists and physicians and was targeting high risk population aged 30 years and above who had the habit of either cigarette smoking or betel quid chewing. Those with suspicious lesions would be invited by public health nurses to complete the confirmatory follow-up examination. We excluded those who had diagnosed with OC before screening and those cancer-free subjects who were diagnosed as epithelial dysplasia in oral cavity.

The definition of oral cancer was according to International Classification of Diseases, 9th Revision-Clinical Modification (codes 140–141, 143–146, and 148–149) and from the International Classification of Diseases, 10th Revision (codes C00–C06, C09–C10, C12–C14) including lip, tongue, gingival, floor of mouth, palate, other parts of mouth, oropharyngeal, hypopharyngeal and unspecified pharyngeal cancer. OPMD was defined when individuals were clinical diagnosed as leukoplakia, erythroplakia, erythroleukoplakia, erythroplakia, oral submucous fibrosis, and verrucous hyperplasia.

Data on age at screening, sex, residential area (county/city), unhealthy oral habits (betel quid and cigarettes exposure) were retrieved. Subjects may attend the screening program multiple times. We kept only the latest record of subjects upon the detection of OPMD/OC at screening or before the clinical diagnosis of OC, or the last records of subjects who were free from OPMD/OC. The study
was approved by the Research Ethics Committee of National Taiwan University Hospital with informed consent pursuant to the regulations of the Institutional Review Board.

2.1.2 Exposure measurements of PM$_{2.5}$

Air quality data measured by Taiwan’s Environmental Protection Administration (TEPA) were used to estimate PM$_{2.5}$ exposures. Since 1993, Taiwan Air Quality Monitoring Network (AQMN) has been established by TEPA to monitor nationwide air quality by 73 monitoring sites distributed in 22 cities/county (TWEPA, 2019). The complete record of daily continuous monitoring of PM$_{2.5}$ were available since August, 2005. Daily PM$_{2.5}$ concentrations of all monitoring stations in AQMA from 2006 to 2016 were used for the whole year-round measurements and were grouped by city/county.

To investigate the association between PM$_{2.5}$ and OPMD/OC, these spatially averaged PM$_{2.5}$ data were chronically matched to study subjects’ screening date by month and the city/county the subjects lived in to represent their PM$_{2.5}$ exposures.

2.2 Statistical Analysis

Descriptive information is reported as frequency and percentage. We first categorized the PM$_{2.5}$ concentration into dichotomous variable (low and high) using cut-off point of 35 µg m$^{-3}$, the third quartile of the monthly average PM$_{2.5}$ concentration of all the 22 cities/county over eleven years. In addition to the dichotomous, we also categorized PM$_{2.5}$ by 10 µg m$^{-3}$ into 5 groups (< 10, 10–19, 20–29, 30–39, and 40+ µg m$^{-3}$). The lowest PM$_{2.5}$ concentration group (< 10 µg m$^{-3}$) was used as the reference group.

Since PM$_{2.5}$ measurement was based on the level of county/city on monthly basis, we examined the associations between PM$_{2.5}$ and both OPMD/OC, OPMD or OC using the Bayesian univariable random-effects logistic regression models, treating county-specific PM$_{2.5}$ effects as random-effect variables. Age (30–49, 50–69, 70+), sex (male, female), and unhealthy oral habits (cigarette smoking only, betel quid chewing only and betel quid chewing and cigarette smoking) are the potential individual risk factors for oral cancer. We further conducted the multivariable analyses controlling the significant confounding factors based on the univariable model. Notably, we did model the PM$_{2.5}$ as dichotomous and polychotomous in different multivariable models. All tests assumed a two-sided type I error of 0.05 and were performed with SAS version 9.4 (SAS Institute Inc., Cary, NC).

3 RESULTS AND DISCUSSION

There were 154,030 OPMD, 23,286 OC cases, and 3,686,729 subjects free from OPMD/OC included in the analyses. Frequency of demographic information and environmental risk exposure of betel quid, cigarette smoking is shown in Table 1. Most of the study population was diagnosed with OPMD in the age group of 30 to 49 years and with OC in the age group of 50 to 69 years. Men who had the habit of cigarette smoking and betel quid chewing were dominant in both OPMD and OC groups.

Fig. 1 shows the average concentrations of PM$_{2.5}$ by county/city in Taiwan. The highest average concentration was in Chiayi City with the mean of 34.05 µg m$^{-3}$ (standard deviation [SD]: 14.52 µg m$^{-3}$). The lowest average concentration was in Taitung County with the mean of 11.82 µg m$^{-3}$ (SD: 3.88 µg m$^{-3}$) (Table S1).

3.1 PM$_{2.5}$ and Risk of OPMD/OC

Fig. 2(a) shows the proportions of diagnosed OPMD and OC combined cases by county/city. The county/city with the highest proportion of diagnosed cases was Chiayi City (8.88%), the same city with the highest average PM$_{2.5}$ concentration, and the lowest proportion was in Taichung City (1.47%) (Table S2).

The effects of PM$_{2.5}$ and other related factors of OPMD/OC are elucidated in Table 2. In the crude univariable analysis, PM$_{2.5}$ with concentration 35 µg m$^{-3}$ and above showed a significantly increased risk of OPMD/OC by 4% (RR = 1.04, 95% CI: 1.03–1.06) compared to concentration lower than 35 µg m$^{-3}$. In the multivariable analysis after adjusting for sex, age, betel quid chewing...
Table 1. Frequency of demographic and risk factor for oral potentially malignant disorders or oral cancer.

	OPMD + OC	Only OPMD*	Only OC									
	Normal (%)	Cases (%)	Normal (%)	Cases (%)	Normal (%)	Cases (%)						
PM$_{2.5}$ (µg m$^{-3}$)												
< 10	107,378	2.9	47,110	2.7	107,378	2.9	4,238	2.8	107,378	2.9	472	2.0
10–19	1,224,835	33.2	55,677	31.4	1,224,835	33.2	50,065	32.5	1,224,835	33.2	5,612	24.1
20–29	1,501,073	40.7	71,242	40.2	1,501,073	40.7	62,009	40.3	1,501,073	40.7	9,233	39.7
30–39	601,697	16.3	30,343	17.1	601,697	16.3	25,413	16.5	601,697	16.3	4,930	21.2
≥ 40	251,746	6.8	15,344	8.7	251,746	6.8	12,305	8.0%	251,746	6.8	3,093	13.1
Sex												
Male	2,712,478	73.6	166,562	93.9	2,712,478	73.6	144,278	93.7	2,712,478	73.6	22,284	95.7
Female	974,251	26.4	10,754	6.1	974,251	26.4	9,752	6.3	974,251	26.4	1,002	4.3
Age (years)												
30–49	1,719,022	46.6	82,952	46.8	1,719,022	46.6	75,172	48.8	1,719,022	46.6	7,780	33.4
50–69	1,446,335	39.2	81,049	45.7	1,446,335	39.2	68,272	44.3	1,446,335	39.2	12,777	54.9
70+	521,372	14.1	13,315	7.5	521,372	14.1	10,586	6.9	521,372	14.1	2,729	11.7
Habit												
S	1,565,534	42.5	44166	24.9	1565534	42.5	39,260	25.5	1565534	42.5	4960	21.1
B	347,703	9.4	8795	5.0	347703	9.4	7210	4.7	347703	9.4	1585	6.8
BS	1,773,492	48.1	124355	70.1	1773492	48.1	107560	69.8	1773492	48.1	16795	72.1

*For OPMD the concentration was grouped in S groups from < 15 µg m$^{-3}$ to ≥ 45 µg m$^{-3}$ for only OPMD B: Betel quid chewing only; BS: Betel quid chewing and cigarette smoking; S: cigarette smoking only

Fig. 1. Geographically gradients of monthly average PM$_{2.5}$ concentration by county/city. Quintile was used for classification of pattern.
Fig. 2. Geographically gradients of oral neoplasms by county/city. (a) rate (%) of OPMD cases (b) rate (%) of OPMD cases (c) rate (%) of OC cases. Quintile was used for classification of pattern.
Table 2. Univariable and multivariable Bayesian random-effect logistic regression models for oral neoplasm (OPMD + OC).

Variables	RR	(95% CI)	aRR	(95% CI)
PM$_{2.5}$ (vs < 35 µg m$^{-3}$) ≥ 35 µg m$^{-3}$	1.04	(1.03, 1.06)	1.11	(1.09, 1.13)
PM$_{2.5}$ (vs < 10 µg m$^{-3}$) 10–19 µg m$^{-3}$	1.10	(1.07, 1.14)	1.20	(1.16, 1.24)
20–29 µg m$^{-3}$	1.17	(1.13, 1.21)	1.36	(1.31, 1.40)
30–39 µg m$^{-3}$	1.16	(1.13, 1.20)	1.39	(1.34, 1.44)
≥ 40 µg m$^{-3}$	1.24	(1.19, 1.29)	1.52	(1.46, 1.57)
Sex (vs Female) Male	5.56	(5.46, 5.66)	4.81	(4.72, 4.91)
Age group (vs 70+, years) 30–49	1.89	(1.85, 1.92)	1.99	(1.95, 2.02)
50–69	2.19	(2.15, 2.23)	2.29	(2.24, 2.33)
Habit (vs S) B	0.90	(0.88, 0.92)	1.23	(1.20, 1.26)
B + S	2.49	(2.46, 2.51)	2.26	(2.23, 2.28)

B: Betel quid chewing only; BS: Betel quid chewing and cigarette smoking; CI: incredible interval; S: cigarette smoking only; * PM$_{2.5}$ with dichotomous were estimated in different model, adjusted by sex, age, and oral habit (betel quid chewing and cigarette smoking).

and cigarette smoking, the significant effect of PM$_{2.5}$ on OPMD/OC still remains with an increased adjusted risk of 11% (adjusted RR (aRR) = 1.11, 95% CI: 1.09–1.13). When categorized PM$_{2.5}$ by 10 µg m$^{-3}$, the risks of OPMD/OC were significantly higher in the groups in the univariable and the multivariable analyses. The aRRs of OPMD/OC were 1.20 (95% CI: 1.16–1.24), 1.36 (95% CI: 1.31–1.40), 1.39 (95% CI: 1.34–1.44), and 1.52 (95% CI: 1.46–1.57) in the PM$_{2.5}$ concentration groups of 10–19, 20–29, 30–39, ≥ 40 µg m$^{-3}$, respectively, after adjusting for age, sex, betel quid chewing and cigarettes smoking (Table 2).

Dose-response relationships of oral habits and OPMD or OC has been demonstrated in previous studies and we chose some typical papers with comparable attributes of oral habits in Taiwan or India (Madathil et al., 2016; Yang et al., 2010; Yen et al., 2007; Znaor et al., 2003). As shown in previous studies, the higher the quantity of cigarette smoking or betel quid chewing, the higher the risk of OPMD/OC. As shown in Fig. 3(a), the concentration-dependent effect of PM$_{2.5}$ can be observed in comparison with magnitude of effects of traditional risk factors (betel quid and cigarette smoking).

Many studies have reported that exposure to PM$_{2.5}$ increased the risk of lung cancer or respiratory diseases (Ghazipura et al., 2019; Hamra et al., 2014; Hopke et al., 2019; Raaschou-Nielsen et al., 2016). Undoubtedly, oral is one of the exposure routes to these ultrafine particles. Biological evidence has been established for plausible mechanisms between PM$_{2.5}$ and carcinogenesis, such as increased oxidative stress, induced DNA damages and DNA mutations, inflammatory responses, and may lead to the occurrence of malignant tumor (Feng et al., 2016; Ghio et al., 2012). Furthermore, OC/OPMD is mostly developed from the squamous cell, in that accounted to 80–90% of oral malignancy (Johnson et al., 2011). Thus, inflammatory response maybe be one of the mechanisms underpinning the association between PM$_{2.5}$ and OPMD/OC.

3.2 PM$_{2.5}$ and Risk of OPMD

The highest average PM$_{2.5}$ concentration was noted in Chiayi City with the mean of 34.00 µg m$^{-3}$ (SD: 14.50 µg m$^{-3}$) and the lowest average concentration was found in Taitung County with the mean of 11.81 µg m$^{-3}$ (SD: 3.88 µg m$^{-3}$) (Table S3). The proportion of diagnosed OPMD cases by county/city was shown in Fig. 2(b). The highest proportion of diagnosed cases was found in Chiayi City (7.83%), followed by Penghu County (6.48%) and Changhua County (6.26%) and the lowest proportion was found in Hsinchu County (1.23%), see Table S4.

The effect of PM$_{2.5}$ and others related factors on OPMD are elucidated in Table 3. In the
Fig. 3. Adjusted odds/relative risk ratio of PM$_{2.5}$ and other risk factors for (a) OPMD or oral cancer (b) OPMD and (c) OC.
univariable analysis, PM$_{2.5}$ exposure was insignificant associated with OPMD. However, higher PM$_{2.5}$ significantly increased the risk of OPMD by 4% (aRR = 1.04, 95% CI: 1.03–1.06) in the multivariable analysis. When categorized PM$_{2.5}$ by 10 µg m$^{-3}$, the risks of OPMD/OC were significantly higher in the PM$_{2.5}$ > 10 µg m$^{-3}$ concentration groups in the univariable and the multivariable analyses. These concentration-dependent relationships can be observed, and compared to the magnitude of effects of traditional risk factors (betel quid and cigarette smoking) as shown in Fig. 3(b). Recent study has shown one of the cardiovascular related-inflammatory markers, the CRP was shown to be associated with OPMD and several cancers (Braun et al., 2011; Ku et al., 2019; Siewchaisakul et al., 2020; Yen et al., 2011). Pro-inflammatory markers, including TNF-α, IL-6 and CRP were shown to be the underlying mechanism between MetS and OPMD as well (Hsu et al., 2014).

3.3 PM$_{2.5}$ and Risk of OC

The highest average PM$_{2.5}$ concentration was noted in Chiayi City with the mean of 33.98 µg m$^{-3}$ (SD: 14.48 µg m$^{-3}$) and the lowest average concentration was found in Taitung County with the mean of 11.83 µg m$^{-3}$ (SD: 3.88 µg m$^{-3}$) (Table S5). The proportion of diagnosed OC cases by county/city was shown in Fig. 2(c). The highest proportion of diagnosed cases was found in Chiayi City (1.23%), followed by Changhua County (1.23%) and Yunlin County (1.00%) and the lowest proportion was found in Lianjiang County with no case found in our study, see Table S6. The effect of PM$_{2.5}$ and others related factors on OC are elucidated in Table 4. In the univariable analysis, PM$_{2.5}$ with concentration greater than or equal to 35 µg m$^{-3}$ shown significantly increased risk of OC by 44% (RR = 1.44, 95% CI: 1.39–1.50) compared to those lower than 35 µg m$^{-3}$. In the multivariable analysis, higher PM$_{2.5}$ exposure statistically increased the risk of OC by 55% (aRR = 1.15, 95% CI: 1.12–1.18) compared to low PM$_{2.5}$ exposure. When categorized PM$_{2.5}$ by 10 µg m$^{-3}$ in the multivariable analysis, PM$_{2.5}$ still increased risk of OC with higher concentrations. PM$_{2.5}$ with concentration of 10–19 µg m$^{-3}$ has greater risk of OC by 1.68-fold compared to those lower than 10 µg m$^{-3}$ (aRR = 1.68, 95% CI: 1.52–1.85). This result is consistent with the concentrations of 20–29, 30–39, 40 µg m$^{-3}$ compared to < 10 µg m$^{-3}$ in which the aRR were 2.58 (95% CI: 2.33–2.85), 3.12 (95% CI: 2.81–3.45), and 4.21 (95% CI: 3.78–4.68), respectively (Table 4).

These concentration-dependent relationships were commensurate with the magnitude of effects of traditional risk factors (betel quid and cigarette smoking) as shown in Fig. 3(c). The

Variables	RR	(95% CI)	aRR	(95% CI)
PM$_{2.5}$ (vs < 35 µg m$^{-3}$)*	0.98	(0.97, 1.00)	1.04	(1.03, 1.06)
≥ 35 µg m$^{-3}$				
PM$_{2.5}$ (vs < 10 µg m$^{-3}$)	1.05	(1.02, 1.09)	1.15	(1.11, 1.19)
10–19 µg m$^{-3}$				
20–29 µg m$^{-3}$	1.08	(1.04, 1.11)	1.26	(1.21, 1.30)
30–39 µg m$^{-3}$	1.04	(1.01, 1.08)	1.25	(1.20, 1.29)
≥ 40 µg m$^{-3}$	1.06	(1.03, 1.10)	1.30	(1.25, 1.35)
Sex (vs Female)				
Male	5.32	(5.20, 5.43)	4.57	(1.50, 1.54)
Age group (vs 70+, years)				
30–49	2.15	(2.11, 2.20)	2.23	(2.18, 2.28)
50–69	2.32	(2.28, 2.37)	2.40	(2.34, 2.45)
Habit (vs S)				
B	0.83	(0.81, 0.85)	1.15	(1.12, 1.18)
B + S	2.42	(2.39, 2.45)	2.23	(2.20, 2.26)

B: Betel quid chewing only; BS: Betel quid chewing and cigarette smoking; CI: incredible interval; S: cigarette smoking only; * PM$_{2.5}$ with dichotomous were estimated in different model, adjusted by sex, age, and oral habit (betel quid chewing and cigarette smoking).
The same trend could also be found for the association between PM2.5 exposure and risk of OC, higher the quantity of cigarette smoking or betel quid chewing, the higher the risk of OC. The OC risk in association with PM2.5 in our study. We consider monthly average PM2.5 concentration followed-up of OPMD/OC nationwide screening data. This makes allowance for the identification by comparing to the previous studies. First, our study is a longitudinal cohort study with 11 years higher has a significant increased risk of OC, the effect magnitude in associated with OC was higher compared to others. We also found that PM2.5 with concentration of 10 g m$^{-3}$ and more (vs PM2.5 concentration over 40.37 g m$^{-3}$ (aOR = 1.43, 95% CI: 1.17–1.74), compared with 26.74 µg m$^{-3}$ < PM2.5 (Chu et al., 2019). We targeted smokers and/or betel quid chewers, the high-risk population of OPMD/OC and found that PM2.5 with concentration of 35 µg m$^{-3}$ and higher has a significant increased risk of OC, and the effect magnitude in associated with OC was even higher compared to others. We also found that PM2.5 with concentration of 10 µg m$^{-3}$ and higher has a significant increased risk of OPMD. The novelties of this study could be emphasized as a random effect in our model since this exposure indicator is a hierarchical factor rather than an individual one. Last but not least, an ecological study by Su et al. (2019) presented the geographical variations on the association between PM2.5 and cancer incidence in Taiwan. Su et al. (2019) also reported a significant dose-response relationship between PM2.5 and OC incidence with spearman correlation ranged between 0.56–0.59 in men. However, several potential risk factors such as habitual smoking or betel quid chewing were not considered in their study.

3.4 Comparison between Studies

To our knowledge, only limited epidemiological studies have reported PM2.5 and OC risk. A previous study in Taiwan has reported that an increased risk of OC among men who were exposed to PM2.5 concentration over 40.37 µg m$^{-3}$ (aOR = 1.43, 95% CI: 1.17–1.74), compared with 26.74 µg m$^{-3}$ < PM2.5 (Chu et al., 2019). We targeted smokers and/or betel quid chewers, the high-risk population of OPMD/OC and found that PM2.5 with concentration of 35 µg m$^{-3}$ and higher has a significant increased risk of OC, and the effect magnitude in associated with OC was even higher compared to others. We also found that PM2.5 with concentration of 10 µg m$^{-3}$ and higher has a significant increased risk of OPMD. The novelties of this study could be emphasized by comparing to the previous studies. First, our study is a longitudinal cohort study with 11 years followed-up of OPMD/OC nationwide screening data. This makes allowance for the identification of OPMD cases, the precursor of invasive oral cancer, as well as the information on both sexes and unhealthy oral habits. Second, we took into account the geographic variations when evaluating the OC risk in association with PM2.5 in our study. We consider monthly average PM2.5 concentration as a random effect in our model since this exposure indicator is a hierarchical factor rather than an individual one. Last but not least, an ecological study by Su et al. (2019) presented the geographical variations on the association between PM2.5 and cancer incidence in Taiwan. Su et al. (2019) also reported a significant dose-response relationship between PM2.5 and OC incidence with spearman correlation ranged between 0.56–0.59 in men. However, several potential risk factors such as habitual smoking or betel quid chewing were not considered in their study.

Table 4. Univariable and multivariable Bayesian random-effect logistic regression models for OC.

Variables	RR (95% CI)	aRR (95% CI)
PM$_{2.5}$ (vs < 35 µg m$^{-3}$)* ≥ 35 µg m$^{-3}$	1.44 (1.39, 1.50)	1.55 (1.49, 1.60)
PM$_{2.5}$ (vs < 10 µg m$^{-3}$) 10–19 µg m$^{-3}$	1.57 (1.42, 1.73)	1.68 (1.52, 1.85)
20–29 µg m$^{-3}$	2.27 (2.04, 2.51)	2.58 (2.33, 2.85)
30–39 µg m$^{-3}$	2.65 (2.38, 2.93)	3.12 (2.81, 3.45)
≥ 40 µg m$^{-3}$	3.44 (3.09, 3.79)	4.21 (3.78, 4.68)
Sex (vs Female) Male	7.99 (7.50, 8.50)	7.42 (6.95, 7.94)
Age group (vs 70+, years) 30–49	0.86 (0.83, 0.90)	1.00 (0.96, 1.04)
50–69	1.69 (1.62, 1.75)	1.90 (1.82, 1.98)
Habit (vs S) B	1.45 (1.38, 1.54)	1.82 (1.72, 1.93)
B + S	3.02 (2.93, 3.12)	2.48 (2.40, 2.56)

B: Betel quid chewing only; BS: Betel quid chewing and cigarette smoking; CI: incredible interval; S: cigarette smoking only; * PM$_{2.5}$ with dichotomous were estimated in different model, adjusted by sex, age, and oral habit (betel quid chewing and cigarette smoking).
3.5 Limitation

Some limitations in this study should be noted. First, we do not have exact data on individuals’ daily PM$_{2.5}$ exposures. Therefore, we estimated monthly PM$_{2.5}$ concentration in average by areas. Second, we used data based on nationwide OC screening program in which targeted population were those who only experienced betel quid chewing or smoking behavior. Thus, generalization of our study results would limit to smokers and/or betel quid chewers. Third, the PM$_{2.5}$ exposure duration and the exposure history has not been considered in this study. Those who were diagnosed as oral cancer might have been continuously exposed to high level of PM$_{2.5}$. Finally, there are still numerous variables related to OPMD/OC risk such as genetic, family history of OC, history of chronic diseases and other potential carcinogenic compounds, which we haven’t considered in this study.

4 CONCLUSIONS

To our knowledge, this is the first study to investigate the association between PM$_{2.5}$ and OPMD/OC at nationwide level. Based on the longitudinal nationwide OC data, we found that PM$_{2.5}$ exposure was linked to an increased risk of OPMD/OC among smokers and/or betel quid chewers. Our results also demonstrated the spatial variations for PM$_{2.5}$ concentration and OPMD/OC. This information would be beneficial to OPMD/OC prevention policy in some specific counties or cities. Future studies are warranted to investigate the effect of personal PM$_{2.5}$ exposure on OPMD/OC risk.

ACKNOWLEDGMENTS

We thank the Research Ethics Committee of National Taiwan University Hospital approved this project, and granted a waiver for informed consent (202002091W) pursuant to the regulations of the Institutional Review Board. This work was financially supported by the “National Taiwan University Higher Education Sprout Project (NTU-110L8810)” within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan.

SUPPLEMENTARY MATERIAL

Supplementary material for this article can be found in the online version at https://doi.org/10.4209/aaqr.210060

REFERENCES

Amarasinghe, H.K., Usodaarachchi, U.S., Johnson, N.W., Laloo, R., Warnakulasuriya, S. (2010). Betel-quid chewing with or without tobacco is a major risk factor for oral potentially malignant disorders in Sri Lanka: A case-control study. Oral Oncol. 46, 297–301. https://doi.org/10.1016/j.oraloncology.2010.01.017

Braun, S., Bitton-Worms, K., LeRoith, D. (2011). The link between the metabolic syndrome and cancer. Int. J. Biol. Sci. 7, 1003–1015. https://doi.org/10.7150/ijbs.7.1003

Chaturvedi, A.K. (2012). Epidemiology and clinical aspects of HPV in head and neck cancers. Head Neck Pathol. 6, 16–24. https://doi.org/10.1007/s12105-012-0377-0

Cheng, F.Y., Hsu, C.H. (2019). Long-term variations in PM$_{2.5}$ concentrations under changing meteorological conditions in Taiwan. Sci Rep. 9, 6635. https://doi.org/10.1038/s41598-019-43104-x

Chiang, C.P., Wu, H.Y., Liu, B.Y., Wang, J.T., Kuo, M.Y. (2002). Quantitative analysis of immunocompetent cells in oral submucous fibrosis in Taiwan. Oral Oncol. 38, 56–63. https://doi.org/10.1016/s1368-8375(01)00026-4

Chu, Y.H., Kao, S.W., Tantoh, D.M., Ko, P.C., Lan, S.J., Liaw, Y.P. (2019). Association between fine particulate matter and oral cancer among Taiwanese men. J. Investig. Med. 67, 34–38. https://doi.org/10.1136/jim-2016-000263
Chuang, S.L., Su, W.W., Chen, S.L., Yen, A.M., Wang, C.P., Fann, J.C., Chiu, S.Y., Lee, Y.C., Chiu, H.M., Chang, D.C., Jou, Y.Y., Wu, C.Y., Chen, H.H., Chen, M.K., Chiu, S.T. (2017). Population-based screening program for reducing oral cancer mortality in 2,334,299 Taiwanese cigarette smokers and/or betel quid chewers. Cancer 123, 1597–1609. https://doi.org/10.1002/cncr.30517

Dabass, A., Talbott, E.O., Rager, J.R., Marsh, G.M., Venkat, A., Holguin, F., Sharma, R.K. (2018). Systemic inflammatory markers associated with cardiovascular disease and acute and chronic exposure to fine particulate matter air pollution (PM2.5) among US NHANES adults with metabolic syndrome. Environ. Res. 161, 485–491. https://doi.org/10.1016/j.envres.2017.11.042

Environmental Protection Administration, ROC (Taiwan) (TWEPA) (2019). Taiwan Air Quality Monitoring Network. http://taqm.epa.gov.tw/taqm/en/YearlyDataDownload.aspx (accessed 1 October 1 2019)

Feng, S., Gao, D., Liao, F., Zhou, F., Wang, X. (2016). The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicol. Environ. Saf. 128, 67–74. https://doi.org/10.1016/j.ecoenv.2016.01.030

Ghio, A.J., Carraway, M.S., Madden, M.C. (2012). Composition of air pollution particles and oxidative stress in cells, tissues, and living systems. J. Toxicol. Environ. Health Part B 15, 1–21. https://doi.org/10.1080/10937404.2012.632359

Gutiérrez-Castillo, M.E., Roubicek, D.A., Cebrían-Garcia, M.E., De Vizcaya-Ruiz, A., Sordo-Cedeño, M., Ostrosky-Wegman, P. (2006). Effect of chemical composition on the induction of DNA damage by urban airborne particulate matter. Environ. Mol. Mutagen. 47, 199–211. https://doi.org/10.1002/em.20186

Hamra, G.B., Guha, N., Cohen, A., Laden, F., Raasouch-Nielsen, O., Samet, J.M., Vineis, P., Forastiere, F., Saldívar, P., Yorifuji, T., Loomis, D. (2014). Outdoor particulate matter exposure and lung cancer: a systematic review and meta-analysis. Environ. Health Perspect. 122, 906–911. https://doi.org/10.1289/ehp.1408092

Health Promotion Administration (2019). Annual Report. 2019. https://www.hpa.gov.tw/EngPages/Detail.aspx?nodeid=1070&pid=12811

Hopke, P.K., Croft, D., Zhang, W., Lin, S., Masiol, M., Squizzato, S., Thurston, S.W., van Wijngaarden, E., Utell, M.J., Rich, D.Q. (2019). Changes in the acute response of respiratory diseases to PM2.5 in New York State from 2005 to 2016. Sci. Total Environ. 677, 328–339. https://doi.org/10.1016/j.scitotenv.2019.04.357

Hsu, H.J., Yang, Y.H., Shieh, T.Y., Chen, C.H., Kao, Y.H., Yang, C.F., Ko, E.C. (2014). Role of cytokine gene (interferon-γ, transforming growth factor-β1, tumor necrosis factor-α, interleukin-6, and interleukin-10) polymorphisms in the risk of oral precancerous lesions in Taiwanese. Kaohsiung J. Med. Sci. 30, 551–558. https://doi.org/10.1016/j.kjms.2014.09.003

Johnson, N.W., Jayasekara, P., Amarasinghe, A.A. (2011). Squamous cell carcinoma and precursor lesions of the oral cavity: Epidemiology and aetiology. Periodontol 2000 57, 19–37. https://doi.org/10.1111/j.1600-0757.2011.00401.x

Kaiser, J. (2005). Epidemiology. Mounting evidence indicts fine-particle pollution. Science 307, 1858–1861. https://doi.org/10.1126/science.307.5717.1858a

Kaldor, J., Harris, J.A., Glazer, E., Glaser, S., Neutra, R., Mayberry, R., Nelson, V., Robinson, L., Reed, D. (1984). Statistical association between cancer incidence and major-cause mortality, and estimated residential exposure to air emissions from petroleum and chemical plants. Environ. Health Perspect. 54, 319–332. https://doi.org/10.1289/ehp.8454319

Ko, Y.C., Huang, Y.L., Lee, C.H., Chen, M.J., Lin, L.M., Tsai, C.C. (1995). Betel quid chewing, cigarette smoking and alcohol consumption related to oral cancer in Taiwan. J. Oral Pathol. Med. 24, 450–453. https://doi.org/10.1111/j.1600-0714.1995.tb01132.x

Kouassi, K.S., Billet, S., Garçon, G., Verdin, A., Diouf, A., Cazier, F., Djaman, J., Courcot, D., Shirali, P. (2010). Oxidative damage induced in A549 cells by physically and chemically characterized air particulate matter (PM2.5) collected in Abidjan, Côte d'Ivoire. J. Appl. Toxicol. 30, 310–320. https://doi.org/10.1002/jat.1496

Ku, M.S., Fann, J.C., Chiu, S.Y., Chen, H.H., Hsu, C.Y. (2019). Elucidating bidirectional relationship between metabolic syndrome and elevated faecal haemoglobin concentration: A Taiwanese community-based cohort study. BMJ Open 9, e021153. https://doi.org/10.1136/bmjopen-2017-021153

Lee, C.W., Vo, T., Wu, C.Z., Chi, M.C., Lin, C.M., Fang, M.L., Lee, I.T. (2020). The inducible role of
ambient particulate matter in cancer progression via oxidative stress-mediated reactive oxygen species pathways: A recent perception. Cancers 1, 2505. https://doi.org/10.3390/cancers12092505

Loomis, D., Grosse, Y., Lauby-Secrestan, B., Ghisassi, F.E., Bouvard, V., Benbrahim-Tallaa, L., Guha, N., Baan, R., Mattock, H., Straif, K. (2013). The carcinogenicity of outdoor air pollution. Lancet Oncol. 14, 1262–1263. https://doi.org/10.1016/S1470-2045(13)70487-X

Madathil, S.A., Rousseau, M.C., Wynant, W., Slechta, N.F., Netuveli, G., Franco, E.L., Nicolau, B. (2016). Nonlinear association between betel quid chewing and oral cancer: Implications for prevention. Oral Oncol. 60, 25–31. https://doi.org/10.1016/j.joraloncology.2016.06.011

Mahalingiah, S., Hart, J.E., Liden, F., Terry, K.L., Boynton-Jarrett, R., Aschengrau, A., Missmer, S.A. (2014). Air pollution and risk of uterine leiomyomata. Epidemiology 25, 682–688. https://doi.org/10.1097/EDE.0000000000000126

Merchant, A., Husain, S.S., Hosain, M., Fikree, F.F., Pitiphat, W., Siddiqui, A.R., Hayder, S.J., Haider, S.M., Ikram, M., Chuang, S.K., Saeed, S.A. (2000). Paan without tobacco: An independent risk factor for oral cancer. Int. J. Cancer. 86, 128–131. https://doi.org/10.1002/(sici)1097-0215(20000401)86:1<128::aid-ijc20>3.0.co;2-m

Ministry of Health and Welfare, Taiwan (2018). Cancer Registry Annual Report. 2018. https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=269&pid=13498

Paget-Bailly, S., Cyr, D., Luce, D. (2012). Occupational exposures to asbestos, polycyclic aromatic hydrocarbons and solvents, and cancers of the oral cavity and pharynx: A quantitative literature review. Int. Arch. Occup. Environ. Health 85, 341–351. https://doi.org/10.1007/s00420-011-0683-y

Raaschou-Nielsen, O., Beelen, R., Wang, M., Hoek, G., Andersen, Z.J., Hoffmann, B., Stafoggia, M., Samoli, E., Weinmayr, G., Dimakopoulou, K., Nieuwenhuijsen, M., Xun, W.W., Fischer, P., Eriksen, K.T., Sørensen, M., Tjønneland, A., Ricceri, F., de Hoogh, K., Key, T., Eeftens, M., et al. (2016). Particulate matter air pollution components and risk for lung cancer. Environ. Int. 87, 66–73. https://doi.org/10.1016/j.envint.2015.11.007

Siewchaisakul, P., Sarakarn, P., Vatanasapt, P., Chen, S.L., Yen, A.M. (2020a). Sex differences in the heterogeneous dynamic incidence of oral cancer: A comparison between Taiwan and Thailand. Biomed Res. Int. 2020, 9321246. https://doi.org/10.1155/2020/9321246

Siewchaisakul, P., Wang, S.T., Peng, S.M., Sarakarn, P., Chen, L.S., Chen, T.H., Yeh, Y.P., Yen, A.M. (2020b). Effect of metabolic syndrome on incidence of oral potentially malignant disorder: A prospective cohort study in Taiwan. BMJ Open 10, e041971. https://doi.org/10.1136/bmjopen-2020-041971

Su, C.C., Lin, Y.Y., Chang, T.K., Chiou, C.T., Chung, J.A., Hsu, Y.Y., Lian, I. (2010). Incidence of oral cancer in relation to nickel and arsenic concentrations in farm soils of patients' residential areas in Taiwan. BMC Public Health. 10, 67. https://doi.org/10.1186/1471-2458-10-67

Su, S.Y., Liaw, Y.P., Jhuang, J.R., Hsu, S.Y., Chang, C.J., Yang, Y.W., Lee, W.C. (2019). Associations between ambient air pollution and cancer incidence in Taiwan: an ecological study of geographical variations. BMC Public Health 19, 1496. https://doi.org/10.1186/s12889-019-7849-2

Ujpál, M., Matos, O., Bibók, G., Somogyi, A., Szabó, G., Suba, Z. (2004). Diabetes and oral tumors in Hungary: Epidemiological correlations. Diabetes Care 27, 770–774. https://doi.org/10.2337/diacare.27.3.770

World Health Organization (WHO) (2006). Air quality guidelines: Global update 2005: Particulate matter, ozone, nitrogen dioxide, and sulfur dioxide. World Health Organization.

Yang, B., Xiao, C. (2018). PM2.5 exposure significantly improves the exacerbation of A549 tumor-bearing CB17-SCID mice. Environ. Toxicol. Pharmacol. 60, 169–175. https://doi.org/10.1016/j.etap.2018.04.025

Yang, X., Jiang, L., Zhao, W., Xiong, Q., Zhao, W., Yan, X. (2018). Comparison of ground-based PM2.5 and PM10 concentrations in China, India, and the U.S. Int. J. Environ. Res. Public Health 15, 1382. https://doi.org/10.3390/ijerph15071382

Yang, Y.H., Ho, P.S., Lu, H.M., Huang, I.Y., Chen, C.H. (2010). Comparing dose-response measurements of oral habits on oral leukoplakia and oral submucous fibrosis from a community screening program. J. Oral Pathol. Med. 39, 306–312. https://doi.org/10.1111/j.1600-0714.2009.00820.x
Yen, A.M., Chen, S.C., Chen, T.H. (2007). Dose-response relationships of oral habits associated with the risk of oral pre-malignant lesions among men who chew betel quid. Oral Oncol. 43, 634–638. https://doi.org/10.1016/j.oraloncology.2006.05.001

Yen, A.M., Chen, S.C., Chang, S.H., Chen, T.H. (2008a). The effect of betel quid and cigarette on multistate progression of oral pre-malignancy. J. Oral Pathol. Med. 37, 417–422. https://doi.org/10.1111/j.1600-0714.2008.00652.x

Yen, A.M., Chen, S.L., Chiu, S.Y., Chen, H.H. (2011). Association between metabolic syndrome and oral pre-malignancy: A community- and population-based study (KCIS No. 28). Oral Oncol. 47, 625–630. https://doi.org/10.1016/j.oraloncology.2011.04.011

Yen, T.T., Lin, W.D., Wang, C.P., Wang, C.C., Liu, S.A. (2008b). The association of smoking, alcoholic consumption, betel quid chewing and oral cavity cancer: A cohort study. Eur. Arch. Otorhinolaryngol. 265, 1403–1407. https://doi.org/10.1007/s00405-008-0659-z

Yuan, T.H., Lian, I., Tsai, K.Y., Chang, T.K., Chiang, C.T., Su, C.C., Hwang, Y.H. (2011). Possible association between nickel and chromium and oral cancer: A case-control study in central Taiwan. Sci. Total Environ. 409, 1046–1052. https://doi.org/10.1016/j.scitotenv.2010.11.038

Znaor, A., Brennan, P., Gajalakshmi, V., Mathew, A., Shanta, V., Varghese, C., Boffetta, P. (2003). Independent and combined effects of tobacco smoking, chewing and alcohol drinking on the risk of oral, pharyngeal and esophageal cancers in Indian men. Int. J. Cancer 105, 681–686. https://doi.org/10.1002/ijc.11114