Computation of Separation Axioms in N-Topology

M. LELLIS THIVAGAR, M. AROCKIA DASAN V. RAMESH

School of Mathematics, Madurai Kamaraj University Madurai-625 021, Tamil Nadu, India
Corresponding Author E-mail : dassfredy@gmail.com
http://dx.doi.org/10.22147/jusps-A/290206

Acceptance Date 29th Dec., 2016, Online Publication Date 2nd Feb., 2017

Abstract

In this paper we introduce and characterize \(N\tau g \)-open sets and derive that this class of \(N\tau g \)-open sets forms a topology on \(X \). We also define the necessary and sufficient condition for a set to be \(N\tau g \)-open set. Further we induce various kinds of spaces in N-topology and its applications.

Key words: N-topology, \(N\tau g \)-closed, \(N\tau g \)-closed, \(N\tau \#g \)-closed.

MSC 2010: 54A05,54A99, 54C10

1. Introduction

Norman Levine\(^5\) initiated the concept of semi open sets in 1963. He\(^6\) further investigated the properties of g-closed sets. Dontchev\(^4\) established some properties of separation axioms in \(\alpha \)-topology. P. Sundaram \textit{et al}\(^7\) introduced some weak forms of closed sets and its separation axioms. Later on Lellis Thivagar \textit{et al}\(^2\) initiated the concept of N-topological space and defined its open sets. He\(^3, 4\) also developed some weak forms of open sets and generalized closed sets in N-topological space. Here we introduce and develop the properties of \(N\tau g \)-open sets. Also we derive the necessary and sufficient condition for a set to be \(N\tau g \)-open set. Further we induce various kinds of spaces in N-topology and characterize its properties.

2. Preliminaries :

In this section we recall some known results of N-topological spaces which are used in the following sections.

By a space \((X, N\tau)\), we mean N-topological space with N-topology \(N\tau \) on \(X \) on which no separation axioms are assumed unless explicitly stated.

\textbf{Definition 2.1.}\(^2\) Let \(X \) be a non-empty set, \(\tau_1, \tau_2, \tau_3, \ldots, \tau_N \) be N-arbitrary topologies defined on \(X \) and let the collection \(N\tau \) be defined by

\[N\tau = \{ S \subseteq X : S = (\bigcup_{i=1}^{N} A_i) \cup (\bigcap_{i=1}^{N} B_i), A_i, B_i \in \tau_i \} \]

This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-sa/4.0)
satisfying the following axioms:

(i) \(X, \emptyset \in N\tau \).
(ii) \(\bigcup_{i=1}^{n} S_i \in N\tau \) for all \(S_i \in N\tau \).
(iii) \(\bigcap_{i=1}^{n} S_i \in N\tau \) for all \(S_i \in N\tau \).

Then the pair \((X, N\tau)\) is called a \(N\)-topological space on \(X \) and the elements of the collection \(N\tau \) are known as \(N\tau \)-open sets on \(X \). A subset \(A \) of \(X \) is said to be \(N\tau \)-closed on \(X \) if the complement of \(A \) is \(N\tau \)-open on \(X \). The set of all \(N\tau \)-open sets on \(X \) and the set of all \(N\tau \)-closed sets on \(X \) are respectively denoted by \(N\tau O(X) \) and \(N\tau O(X) \).

Definition 2.2. Let \((X, N\tau)\) be a \(N\)-topological space and \(S \) be a subset of \(X \). Then

(i) the \(N\tau \)-interior of \(S \), denoted by \(N\tau\text{-int}(S) \), and is defined by
 \[N\tau\text{-int}(S) = U \{ F : G \subseteq S \text{ and } G \text{ is } N\tau\text{-open} \} \]

(ii) the \(N\tau \)-closure of \(S \), denoted by \(N\tau\text{-cl}(S) \), and is defined by
 \[N\tau\text{-cl}(S) = \bigcap \{ F : S \subseteq F \text{ and } F \text{ is } N\tau\text{-closed} \} \]

Remark 2.3. A subset \(A \) of a \(N\)-topological space \((X, N\tau)\) is called a

(i) \(N\tau\)-\(\alpha \)-open set if \(A \subseteq N\tau\text{-int}(N\tau\text{-cl}(A)) \).
(ii) \(N\tau\)-semi open set if \(A \subseteq N\tau\text{-cl}(N\tau\text{-int}(A)) \).
(iii) \(N\tau\)-pre open set if \(A \subseteq N\tau\text{-int}(N\tau\text{-cl}(A)) \).
(iv) \(N\tau\)-\(\beta \)-open set if \(A \subseteq N\tau\text{-cl}(N\tau\text{-int}(N\tau\text{-cl}(A))) \).

Definition 2.4. A subset \(A \) of a \(N\)-topological space \((X, N\tau)\) is called

(i) a \(N\tau \)-generalized closed (briefly \(N\tau\text{-g} \)-closed) set if \(N\tau\text{-cl}(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is \(N\tau \)-open in \((X, N\tau)\).
(ii) a \(N\tau\)-\(\alpha \)-generalized closed (briefly \(N\tau\text{-ga} \)-closed) set if \(N\tau\text{-cl}(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is \(N\tau \)-open in \((X, N\tau)\).
(iii) a \(N\tau\)-generalized \(\alpha \)-closed (briefly \(N\tau\text{-ga} \)-closed) set if \(N\tau\text{-}\alpha\text{-cl}(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is \(N\tau\)-\(\alpha \)-open in \((X, N\tau)\).
(iv) a \(N\tau\)-generalized semi closed (briefly \(N\tau\text{-gs} \)-closed) set if \(N\tau\text{-scl}(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is \(N\tau \)-open in \((X, N\tau)\).
(v) a \(N\tau\)-semi generalized closed (briefly \(N\tau\text{-gs} \)-closed) set if \(N\tau\text{-cl}(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is \(N\tau \)-semi open in \((X, N\tau)\).
(vi) a \(N\tau\text{-g} \)-closed set if \(N\tau\text{-cl}(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is \(N\tau \)-open in \((X, N\tau)\).
(vii) a \(N\tau\text{-g} \)-closed set if \(N\tau\text{-cl}(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is \(N\tau\text{-g} \)-open in \((X, N\tau)\).
(viii) a \(N\tau\text{-gs} \)-closed set if \(N\tau\text{-scl}(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is \(N\tau\text{-gs} \)-open in \((X, N\tau)\).
(ix) a \(N\tau\text{-gs} \)-closed set if \(N\tau\text{-cl}(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is \(N\tau\text{-gs} \)-open in \((X, N\tau)\).

Remark 2.5. \(N\tau\)-open sets :

(i) \(N\tau\text{-g} \)-open set if \(N\tau\text{-cl}(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is \(N\tau \)-open in \((X, N\tau)\).
(ii) \(N\tau\text{-g} \)-open set if \(N\tau\text{-cl}(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is \(N\tau\text{-g} \)-open in \((X, N\tau)\).

3. Characterization of \(N\tau\text{-g} \)-open sets :
In this section we discuss some more properties of $N\tau\bar{g}$-open set and the relationships between this open set and other existing open sets.

Proposition 3.1 Let $(X, N\tau)$ be a N-topological space. Then

(i) every $N\tau$-open set is $N\tau\bar{g}$-open set but not conversely.
(ii) every $N\tau$-semi open set is $N\tau\bar{g}$-gs-open set but not conversely.
(iii) every $N\tau$-α open set is $N\tau\bar{g}$-gs-open set but not conversely.
(iv) every $N\tau\bar{g}$-open set is $N\tau\bar{g}$-gs-open set but not conversely.
(v) every $N\tau\bar{g}$-open set is $N\tau gs$-open set but not conversely.
(vi) every $N\tau\bar{g}$-gs-open set is $N\tau$-β open set but not conversely.
(vii) every $N\tau\bar{g}$-ga-open set is $N\tau$-pre $open$ set but not conversely.
(viii) every $N\tau$-open set is $N\tau\bar{g}$-open set but not conversely.
(ix) every $N\tau\bar{g}$-open set is $N\tau\bar{g}$-open set but not conversely.
(x) every $N\tau\bar{g}$-open set is $N\tau\bar{g}$-open set but not conversely.
(xi) every $N\tau\bar{g}$-open set is $N\tau\bar{g}$-gs-open set but not conversely.
(xii) every $N\tau\bar{g}$-open set is $N\tau\bar{g}$-open set but not conversely.
(xiii) every $N\tau\bar{g}$-open set is $N\tau$-β open set but not conversely.
(xiv) every $N\tau\bar{g}$-open set is $N\tau\bar{g}$-ga-open set but not conversely.
(xv) every $N\tau\bar{g}$-open set is $N\tau$-pre $open$ set but not conversely.
(xvi) every $N\tau\bar{g}$-open set is $N\tau gs$-open set but not conversely.

Proof: Proof is the analogue of Proposition 3.3, Proposition 3.7 4. Also the converse follows from Examples 3.4, 3.5, 3.6, 3.8 4.

Proposition 3.2 An arbitrary union of $N\tau\bar{g}$-open sets is $N\tau\bar{g}$-open.

Proof: It follows from the Theorem 4.7 4.

Proposition 3.3 If A and B are $N\tau\bar{g}$-open sets, then $A \cap B$ is $N\tau\bar{g}$-open set.

Proof: Proof is analogue to the Theorem 4.9 4.

Remark 3.4 From the Propositions 3.2 and Proposition 3.3, we observe that the class of $N\tau\bar{g}$-open sets forms a topology.

Theorem 3.5 A set A is $N\tau\bar{g}$-open if and only if $F \subseteq N\tau$-int (A) whenever F is $N\tau\bar{g}$-gs-closed and $F \subseteq A$.

Proof: Necessity: Let A be $N\tau\bar{g}$-open and $F \subseteq A$, where F is $N\tau\bar{g}$-gs-closed. By definition, $X - A$ is $N\tau\bar{g}$-closed. Also $X - A \subseteq X - F$. This implies $N\tau$-cl $(X - A \subseteq X - F$. But $N\tau$-cl $(A') = X - N\tau$-int (A), then $X - N\tau$-int $(A') \subseteq X - F$. That is $F \subseteq N\tau$-int (A).

Sufficiency: If A is a $N\tau\bar{g}$-gs-closed with $F \subseteq N\tau$-int (A) whenever $F \subseteq A$, it follows that $X - A \subseteq X - F$ and $X - N\tau$-int $(A') \subseteq X - F$. Hence $X - A$ is $N\tau\bar{g}$-closed and A becomes $N\tau\bar{g}$-open.

Theorem 3.6 If $N\tau$-int $(A) \subseteq B \subseteq A$ and A is $N\tau\bar{g}$-open, then B is $N\tau\bar{g}$-open.

Proof: By hypothesis $A' \subseteq B' \subseteq (N\tau$-int $(A))'$. That is, $A' \subseteq B' \subseteq (A - \tau$-cl $(A'))' = N\tau$-cl (A'). Since A' is $N\tau\bar{g}$-closed and by Theorem 4.13 4, B' is $N\tau\bar{g}$-closed. Hence B is $N\tau\bar{g}$-open.

Theorem 3.7 A set A is $N\tau\bar{g}$-closed if and only if $N\tau$-cl $(A) \subseteq A$ is $N\tau\bar{g}$-open set.

Proof: Necessity: Suppose that A is $N\tau\bar{g}$-closed in $(X,N\tau)$. Let F be a $N\tau\bar{g}$-gs-closed subset of $N\tau$-cl $(A) \subseteq A$. By Theorem 4.12 4, $F = \emptyset$. Therefore, $F \subseteq N\tau$-int $(N\tau$-cl $(A) \subseteq A$ and by Theorem 3.5, $N\tau$-cl $(A) \subseteq A$ is $N\tau\bar{g}$-open.

Sufficiency: Let $A \subseteq G$ where G is a $N\tau\bar{g}$-gs-open set. Then $N\tau$-cl $(A) \cap G \subseteq N\tau$-cl $(A) \cap A = N\tau$-cl $(A) \subseteq A$ is $N\tau\bar{g}$-open. Hence A is $N\tau\bar{g}$-closed in $(X,N\tau)$. Since $N\tau$-cl $(A) \subseteq G'$ is $N\tau\bar{g}$-gs-closed set and $N\tau$-cl $(A) \subseteq A$ is $N\tau\bar{g}$-open, by Theorem 3.5, we have $N\tau$-cl $(A) \cap G \subseteq N\tau$-int $(N\tau$-cl $(A) \cap A) = \emptyset$. Hence A is $N\tau\bar{g}$-closed in $(X,N\tau)$.

Computation of Separation Axioms in N-Topology. 79
Theorem 3.8 For a subset \(A \) of \((X, N_{\tau})\), the following are equivalent:

(i) \(A \) is \(N_{\tau}^g \)-closed.

(ii) \(N_{\tau} \text{-cl}(A) \setminus A \) contains no non empty \(N_{\tau}^g \)-closed set.

(iii) \(N_{\tau} \text{-cl}(A) \setminus A \) is \(N_{\tau}^g \)-open.

Proof: Follows from Theorem 3.12 and Theorem 3.7.

4. Some Separation Axioms in \(N \)-Topology:

In this section we introduce some new class of spaces via \(N_{\tau}^g \)-closed set. The relationships between these spaces and other existing spaces are also discussed.

Definition 4.1 An \(N \)-topological space \((X, N_{\tau})\) is called a

(i) \(N_{\tau}T_{1/2} \)-space, if every \(N_{\tau}g \)-closed set is \(N_{\tau} \)-closed.

(ii) \(N_{\tau}a \)-space, if every \(N_{\tau} \)-closed set is \(N_{\tau}g \)-closed.

(iii) \(N_{\tau}a \)-space, if every \(N_{\tau} \)-closed set is \(N_{\tau}g \)-closed.

(iv) \(N_{\tau}a \)-space, if every \(N_{\tau}g \)-closed set is \(N_{\tau} \)-closed.

(v) \(N_{\tau}T_{1/2} \)-space, if every \(N_{\tau}g \)-closed set is \(N_{\tau}^a \)-closed.

(vi) \(N_{\tau}T_{1/2} \)-space, if every \(N_{\tau}g \)-closed set is \(N_{\tau}^a \)-closed.

(vii) \(N_{\tau}T_{1/2} \)-space, if every \(N_{\tau}g \)-closed set is \(N_{\tau}^a \)-closed.

(viii) \(N_{\tau}T_{1/2} \)-space, if every \(N_{\tau}g \)-closed set is \(N_{\tau}^a \)-closed.

(ix) \(N_{\tau}T_{1/2} \)-space, if every \(N_{\tau}g \)-closed set is \(N_{\tau}^a \)-closed.

(x) \(N_{\tau}T_{1/2} \)-space, if every \(N_{\tau}g \)-closed set is \(N_{\tau}^a \)-closed.

(x) \(N_{\tau}T_{1/2} \)-space, if every \(N_{\tau}g \)-closed set is \(N_{\tau}^a \)-closed.

Theorem 4.2 Every \(N_{\tau}T_{1/2} \)-space is a \(N_{\tau}g \)-space but not conversely.

Proof: Let \((X, N_{\tau})\) be a \(N_{\tau}T_{1/2} \)-space and \(A \) be a \(N_{\tau}g \)-closed subset of \(X \). By Proposition 3.7, \(A \) is \(N_{\tau}g \)-closed. Since \(X \) is a \(N_{\tau}T_{1/2} \)-space, \(A \) is a \(N_{\tau} \)-closed subset of \(X \). Therefore \(X \) is a \(N_{\tau}g \)-space.

Example 4.3 If \(N \equiv 5 \), \(X = \{a, b, c, d\} \), \(\tau_1 = \{\emptyset, X, \{a\}\} \), \(\tau_2 = \{\emptyset, X, \{b\}\} \), \(\tau_3 = \{\emptyset, X, \{a, b\}\} \) and \(\tau_4 = \emptyset \), \(\emptyset \cup \{\emptyset, X, \{a, b\}\} \). Then \(5_{\tau} \emptyset \subseteq X = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\} \), \(5_{\tau} \emptyset \subseteq X = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\} \) and \(5_{\tau} \emptyset \subseteq X = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\} \) and \(5_{\tau} \emptyset \subseteq X = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\} \) Clearly, is \((X, 5_{\tau}) \) is \(5_{\tau} \)-space but not \(5_{\tau} \)-space.

Theorem 4.4 Every \(N_{\tau}g \)-space is a \(N_{\tau}g \)-space but not conversely.

Proof: Proof trivially follows from Proposition 3.7.

Example 4.5 If \(N = 2 \), \(X = \{a, b, c\} \), \(\tau_1 = \{\emptyset, X, \{a\}\} \) and \(\tau_2 = \{\emptyset, X, \{b, c\}\} \). Then \(2_{\tau} \emptyset \subseteq X = \{\emptyset, X, \{a\}, \{b\}, \{c\}\} \), \(2_{\tau} \emptyset \subseteq X = \{\emptyset, X, \{a\}, \{b\}, \{c\}\} \) and \(2_{\tau} \emptyset \subseteq X = \{\emptyset, X, \{a\}, \{b\}, \{c\}\} \) and \(2_{\tau} \emptyset \subseteq X = \{\emptyset, X, \{a\}, \{b\}, \{c\}\} \). Thus \((X, 2_{\tau}) \) is \(2_{\tau} \)-space but not \(2_{\tau} \)-space.

Theorem 4.6 Every \(N_{\tau}T_{1/2} \)-space is a \(N_{\tau}g \)-space but not conversely.

Proof: Proof follows from Proposition 3.7.

Example 4.7 The space \((X, 5_{\tau}) \) in the Example 4.3 is \(5_{\tau} \)-space but not a \(5_{\tau} \)-space.

Remark 4.8 \(N_{\tau}g \)-space and a \(N_{\tau}a \)-space are independent as shown in the following examples.

Example 4.9 The space \((X, 5_{\tau}) \) in the Example 4.3 is \(5_{\tau} \)-space but not a \(5_{\tau} \)-space.

Example 4.10 If \(N = 5 \), \(X = \{a, b, c, d\} \), \(\tau_1 = \{\emptyset, X, \{a\}\} \), \(\tau_2 = \{\emptyset, X, \{b, c\}\} \), \(\tau_3 = \{\emptyset, X, \{a, b, c\}\} \), \(\tau_4 = \emptyset \), \(\emptyset \cup \{\emptyset, X, \{a, b, c\}\} \) and \(\tau_5 = \emptyset \). Then \(5_{\tau} \emptyset \subseteq X = \{\emptyset, X, \{a, b, c\}\} \), \(5_{\tau} \emptyset \subseteq X = \{\emptyset, X, \{a, b, c\}\} \) and \(5_{\tau} \emptyset \subseteq X = \{\emptyset, X, \{a, b, c\}\} \). Here \((X, 5_{\tau}) \) is
5τα-space but not 5τβ-space.

Remark 4.11 \(Nτ T_g \)-space and \(Nτ T_{1/2} \)-space are independent as shown in the following example.

Example 4.12 The space \((X, 2τ)\) in the Example 4.5 is \(2τ T_g \)-space but not a \(2τ T_{1/2} \)-space. Also consider if \(N = 2, X = \{a, b, c, d\}, τ_1 = \{\emptyset, X, (a), [a, b, c]\} \) and \(τ_2 = \{\emptyset, X, (b, c), (a, b, c)\} \). Then \(2τ O(X) = \{\emptyset, X, (a), (b, c), (a, b, c)\} \) and \(2τ G(C(X)) = \{\emptyset, X, (d), (a, d), [a, d], (a, c, d), (a, b, d), (b, c, d)\} \). Here \((X, 2τ)\) is \(2τ T_{1/2} \)-space but not a \(2τ T_g \)-space.

Theorem 4.13 For a \(N \)-topological space \((X, Nτ)\), the following are equivalent:
(i) \((X, Nτ)\) is a \(Nτ T_g \)-space.
(ii) Every singleton of \((X, Nτ)\) is either \(Nτ^*gs \)-closed or \(Nτ \)-open.

Proof: (i) \(⇒\) (ii): Let \(x \in X \) and if \([x]\) is not \(Nτ^*gs \)-closed, then \(X - \{x\} \) is not \(Nτ^*gs \)-open. Since \(X \) is the only \(Nτ^*gs \)-open set containing \(X - \{x\}\). Then \(X - \{x\} \) is \(Nτ g \)-closed in \(X \). By assumption, \(X - \{x\} \) is a \(Nτ \)-closed set of \(X \) or equivalently \([x]\) is \(Nτ \)-open.

(ii) \(⇒\) (i): Let \(A \) be a \(Nτ g \)-closed set and always \(A \subseteq Nτ-cl \). Let \(x \in Nτ-cl(A) \). By assumption, \([x]\) is either \(Nτ^*gs \)-closed or \(Nτ \)-open.

Case (i): If \([x]\) is \(Nτ^*gs \)-closed and \(x \not\in A \), then \(Nτ-cl(A) - A \) contains a non-empty \(Nτ^*gs \)-closed set \([x]\), which is a contradiction to Proposition 4.12 [4]. Thus \(x \not\in A \).

Case (ii): If \([x]\) is \(Nτ \)-open, since \(x \in Nτ-cl(A) \) then \([x]\cap A \neq \emptyset \). So \(x \in A \). Thus in both cases \(x \in A \) and so \(Nτ-cl(A) \subseteq A \). Therefore \(A = Nτ-cl(A) \). That is, \(A \) is a \(Nτ \)-closed. Thus \(X \) is a \(Nτ T_g \)-space.

Theorem 4.14 Every \(Nτ T_{1/2} \)-space is a \(Nτ g T_g \)-space but not conversely.

Proof: Let \((X, Nτ)\) be a \(Nτ T_{1/2} \)-space and \(A \) be a \(Nτ g T_g \)-closed subset of \(X \). Since \(X \) is a \(Nτ T_{1/2} \)-space, \(A \) is a \(Nτ \)-closed subset of \(X \). Then \(A \) is a \(Nτ g \)-closed subset of \(X \). Therefore \(X \) is a \(Nτ g T_g \)-space.

Example 4.15 The space \((X, 5τ)\) in the Example 4.10 is \(5τ g T_g \)-space but not a \(5τ T_{1/2} \)-space.

Theorem 4.16 Every \(Nτ T_g \)-space and \(Nτ g T_g \)-space are independent as shown in the following example.

Example 4.17 The space \((X, 5τ)\) in the Example 4.10 is \(5τ g T_g \)-space but not a \(5τ T_{1/2} \)-space. The space \((X, 5τ)\) in the Example 4.3 is \(5τ T_g \)-space but not a \(5τ g T_g \)-space.

Theorem 4.17 If \((X, Nτ)\) is a \(Nτ g T_g \)-space, then every singleton subset of \((X, Nτ)\) is either \(Nτ g \)-closed or \(Nτ g \)-open.

Proof: Let \(x \in X \) and if \([x]\) is not \(Nτ g \)-closed, then \(X - \{x\} \) is not \(Nτ g \)-open. Then \(X \) is the only \(Nτ \)-open set containing \(X - \{x\}\). So \(X - \{x\} \) is \(Nτ g \)-closed. Since \(X \) is a \(Nτ g \)-space, the set \(X - \{x\} \) is \(Nτ g \)-closed or equivalently \([x]\) is \(Nτ g \)-open.

Example 4.18 The converse of the Theorem 4.17 need not be true. Consider the space \((X, 5τ)\) in the Example 4.3, here the sets \([c]\), \([d]\) are \(5τ g \)-closed and the sets \([a]\), \([b]\) are \(5τ g \)-open. But it is not a \(5τ T_g \)-space.

Theorem 4.19 A space \((X, Nτ)\) is \(Nτ T_{1/2} \)-space if and only if \((X, Nτ)\) is \(Nτ T_g \) and \(Nτ g T_g \)-space.

Proof: Necessity: It follows from Theorem 4.2 and Theorem 4.13.

Sufficiency: Suppose that \(X \) is both \(Nτ T_g \) and \(Nτ g T_g \). Let \(A \) be a \(Nτ g \)-closed subset of \(X \), then \(A \) is \(Nτ g \)-closed.

Then \(A \) is \(Nτ g \)-closed and \(Nτ g \)-closed. Therefore \((X, Nτ)\) is a \(Nτ T_{1/2} \)-space.

Theorem 4.20 Every \(Nτ g T_g \)-space is \(Nτ T_g \)-space but not conversely.

Proof: Proof follows trivially from Proposition 3.7 [4].

Example 4.21 The space \((X, 5τ)\) in the Example 4.10 is \(5τ g T_g \)-space but not a \(5τ T_a \)-space.

Theorem 4.22 Every \(Nτ g T_g \)-space is \(Nτ g T_a \)-space but not conversely.

Proof: Let \((X, Nτ)\) be a \(Nτ g T_g \)-space and \(A \) be a \(Nτ g T_a \)-closed subset of \(X \). Then \(A \) is a \(Nτ g \)-closed subset of
and by Proposition 3.7, A is $N\tau g$-closed. Therefore X is a $N\tau aT_d$-space.

Example 4.24 The space $(X, 5\tau)$ in the Example 4.3 is $5\tau aT_d$-space but not a $5\tau aT_g$-space.

Theorem 4.25 If $(X, N\tau)$ is a $N\tau aT_g$-space, then every singleton subset of $(X, N\tau)$ is either $N\tau a\tau g$-closed or $N\tau g$-open.

Proof: Proof is similar as Theorem 4.15.

Example 4.26 Converse of the Theorem 4.25 need not be true. Consider the space $(X, 5\tau)$ in the Example 4.3, here the sets $\{c\}, \{d\}$ are $5\tau a\tau g$-closed and the sets $\{a\}, \{b\}$ are $5\tau g$-open. But $(X, 5\tau)$ is not a $5\tau aT_g$-space.

Conclusion

Thus in this paper we introduced and investigated the properties of some generalized open sets. Further we successfully developed various kinds of spaces and discussed the necessary and sufficient conditions. This theory has wider scope of developing into other applicable research areas of topology such as Nano topology, Fuzzy topology, Intuitionistic topology, Digital topology and so on.

References

1. Dontchev J., On some separation axioms associated with the α-topology, Mem. Fac. Sci. Kochi. Univ. Ser. A. Math., 18, 31-35 (1997).
2. Lellis Thivagar M., Ramesh V., Arockia Dasan M.; On new structure of N- topology, Cogent Mathematics (Taylor and Francise) Vol. 3, 1204104 (2016).
3. Lellis Thivagar M., Arockia Dasan M., Ramesh V.; New classes of weak open sets in N-topology, Proceedings of International conference on Mathematical Sciences 2016, Carmel College for Women, Goa, India.
4. Lellis Thivagar M., Arockia Dasan M., Ramesh V.; Innovative generalized closed set of N-topology, (Communicated).
5. Levine N., Semi-open sets and semi-continuity in topological spaces, Amer Math. Monthly, 70, 36-41 (1963).
6. Levine N., Generalized closed sets in topology, Rend. Circ. Mat. Palermo., 19, 89-96 (1970).
7. Sundaram P., Maki H. and Balachandran K., Semi-generalized continuous maps and semi-$T_{1/2}$-spaces, Bull. Fukuoka Univ. Edu., Part III, 40, 33-40 (1991).
8. Veerakumar M.K.R.S, #g-semi closed sets in topological spaces, Antarctica J. Math, 2(2), 201-222 (2005).
9. Mashhour. A.S., Abd El-Monsef M.E., El-Deeb.S.N., On pre continuous and weak pre continuous mappings, Proc. Math. Phys. Soc. Egypt, 53, 47-53 (1982).
10. Njastad O., On some classes of nearly open sets, Pacific J. Math., 15, 961-970 (1965).