Supplementary Information

Mining RNA-seq data reveals the massive regulon of GcvB small RNA and its physiological significance in maintaining amino acid homeostasis in *Escherichia coli*

Masatoshi Miyakoshi, Haruna Okayama, Maxence Lejars, Takeshi Kanda, Yuki Tanaka, Kaori Itaya, Miki Okuno, Takehiko Itoh, Noritaka Iwai, Masaaki Wachi

This supplement contains:

Supplementary Figures S1 to S2
Supplementary Tables S1 to S8

Figure S1. Growth inhibition by dipeptides.
Figure S2. Transition of GcvB regulon depending on growth conditions.
Table S1. Genes repeatedly detected in the datasets of RIL-seq, CLASH, and MAPS.
Table S2. Comparative genome analysis of Δpeps suppressor mutants.
Table S3. Bacterial strains used in this study.
Table S4. DNA oligonucleotides used in this study.
Table S5. Plasmids used in this study.
Table S6. Inserts of GcvB mutant plasmids.
Table S7. Details of GFP fusion plasmids.
Table S8. Inserts of GFP fusion plasmids.
Figure S1. Growth inhibition by dipeptides. (A) Growth on M9 plates was compared among the wild-type JM101 strain, Δpeps strain, ΔpepsΔgcvB and ΔpepsΔhfq. M9 plates were supplemented with 0.2 mM dipeptides as indicated. (B) Growth curve of JM101, Δpeps, and ΔpepsΔgcvB strains in M9 liquid medium and Ala-Gln concentration in the supernatant. (C) Growth of JM101 and Δpeps strains on M9 plates supplemented with 1 mg/mL casamino acids (upper panel) and six amino acids (100 µg/mL each, lower panel) in addition to 0.2 mM Ala-Gln. The plates were incubated at 30°C for two days.
Figure S2. Transition of GcvB regulon depending on growth conditions. Pie chart representation of the proportion of each GcvB interactants to the total GcvB chimeric reads calculated from the RIL-seq datasets shown in Table 1. A and B were obtained from the Hfq RIL-seq datasets of E. coli grown in LB medium to early exponential (OD ~0.5) and stationary phase, respectively (Melamed et al., 2016). C and D were obtained from Hfq RIL-seq datasets of E. coli grown to late exponential phase (OD ~1.0) in LB medium and M63 minimal medium, respectively (Melamed et al., 2020).
Table S1. Genes repeatedly detected in the datasets of RIL-seq, CLASH, and MAPS. All genes overlapping among the interactome datasets are listed. Previously identified and newly validated GcvB targets are indicated in bold black and red fonts, respectively.

Gene	Description	MAPS
acs	acetyl-CoA synthetase	34.7
argT	lysine/arginine/ornithine transporter subunit	64.2
aroC	chorismate synthase : N5-glutamine methyltransferase	20.2
asd	asparagine synthetase B	15.8
asnB	aspartase-semialdehyde dehydrogenase, NAD(P)-binding	37.8
aspV	aspV,yafT IGR	16.3
bax	putative glucosaminidase	51.0
cfa	cyclopropane fatty acyl phospholipid synthase	10.5
cstA	carbon starvation protein	12.6
cycA	D-alanine/D-serine/glycine transporter	279.3
dppA	dipeptide/heme ABC transporter periplasmic binding protein	119.6
fecA	KpLE2 phage-like element; ferric citrate outer membrane transporter	8.0
ftsB	cell division protein	29.8
gatY	D-tagatose 1,6-bisphosphate aldolase 2, catalytic subunit	21.1
gdhA	glutamate dehydrogenase, NADP-specific	147.0
gltI	glutamate and aspartate transporter subunit	236.3
mltC	membrane-bound lytic murein transglycosylase C	41.3
mtfA	anti-repressor for DgsA(Mlc)	30.2
ompF	outer membrane porin 1a (Ia;b;F) : asparaginyl tRNA synthetase	14.6
oppA	oligopeptide transporter subunit	52.3
panD	aspartase 1-decarboxylase	207.9
raiA	cold shock protein associated with 30S ribosomal subunit	96.9
rbsK	ribokinase	29.0
rmf	ribosome modulation factor	91.2
rodZ	cytoskeletal protein required for MreB assembly	19.6
serA	D-3-phosphoglycerate dehydrogenase	90.9
sstT	sodium:serine/threonine symporter	97.2
tcyf (flIV)	cystine ABC transporter periplasmic binding protein	95.2
thrL	thr operon leader peptide	124.7
thrU	coaA,thrU.IGR	7.1
wzzB	regulator of length of O-antigen component of lipopolysaccharide chains	18.2
yeeX	UPF0265 family protein	10.4
yfhM	alpha-2-macroglobulin	7.0
yggR	putative peptidase lipoprotein	13.3
ygfF	putative NAD(P)-dependent oxidoreductase	51.0
yghI	putative S-transferase	47.9
yifK	putative APC family amino acid transporter	35.2
ysgA	putative carboxymethylenebutenolidasan	103.0
Table S2. Comparative genome analysis of Δpeps suppressor mutants.

Breakpoints of deletion were detected by sprites v0.3.0 based on the K12 reference genome (NC_000913.3). Deletions found in all the Δpeps strains are indicated in red fonts. Large deletions acquired in the 10 suppressor mutants are highlighted in yellow. + and - represent presence and absence of a mutation respectively.

start	end	JM101	Δpeps	1-1	1-2	2-1	2-2	3-1	3-2	4-1	4-2	5-1	5-2	total	annotation
254,246	255,735	-	+	+	+	+	+	+	+	+	+	+	+	11	pepD
256,125	371,374	+	+	+	+	+	+	+	+	+	+	+	+	12	
990,600	993,256	-	+	+	+	+	+	+	+	+	+	+	+	11	pepN
1,299,498	1,300,694	+	+	+	+	+	+	+	+	+	+	+	+	12	
1,978,502	1,979,271	+	+	+	+	+	+	+	+	+	+	+	+	12	
2,558,709	2,565,481	+	+	+	+	+	+	+	+	+	+	+	+	12	
2,655,110	2,656,323	-	+	+	+	+	+	+	+	+	+	+	+	11	pepB
3,625,588	3,720,629	-	-	+	+	-	-	-	-	+	-	-	-	3	95kb deletion
3,625,590	3,720,631	-	-	-	-	+	+	-	-	+	-	+	+	5	95kb deletion
4,484,475	4,485,916	-	+	+	+	+	+	+	+	+	+	+	+	11	pepA
4,606,166	4,606,314	-	+	+	+	+	+	+	+	+	+	+	+	11	tRNA-Leu(CAG)

SNP calling was performed by GATK-4.0.5.2 based on the K12 reference genome (NC_000913.3). SNPs found in all the Δpeps strains are indicated in red fonts. SNPs acquired in the 10 suppressor mutants are highlighted in yellow. + and - represent presence and absence of a mutation respectively.

position	SNP	WT	Δpeps	1-1	1-2	2-1	2-2	3-1	3-2	4-1	4-2	5-1	5-2	annotation
1276421	C>A	-	+	+	+	+	+	+	+	+	+	+	+	narX (D->Y)
2942810	G>A	-	-	-	-	-	-	-	-	-	-	-	-	gcvcB
2971188	T>A	-	-	-	-	-	-	-	-	-	-	-	-	
334738	C>A	-	+	+	+	+	+	+	+	+	+	+	+	
3702998	C>A	-	-	-	-	-	-	-	-	-	-	-	-	dppD (C->F)
3704067	A>C	-	-	-	-	-	-	-	-	-	-	-	-	dppC (L->R)
Table S3. Bacterial strains used in this study.

Strain	Relevant markers/ genotype	Reference/ source
E. coli		
BW25113	F- λ- rrnB3 ΔlacZ4787 hsdR514 Δ(araBAD)Δ(rhaBAD)567 Δ(rhaBAD)568 rph-1	NBPR strain
ΔgcvB	BW25113 ΔgcvB:: kan	This study
ΔsroC	BW25113 ΔsroC::FRT	This study
ΔgcvBΔsroC	BW25113 ΔgcvB:: kan ΔsroC::FRT	This study
gdhA::3xFLAG	BW25113 gdhA::3xFLAG kan	This study
ΔgcvB gdhA::3xFLAG	BW25113 ΔgcvB:: FRT gdhA::3xFLAG kan	This study
JM101 F-	supE, thi-1, Δ(lac-proAB), F- (pepD)	Wachi laboratory stock
Δpeps	JM101 F- (pepD), pepN, pepB, pepA	Hayashi et al. 2010
ΔpepsΔdpp	Δpeps ΔdppABCDF:: kan	This study
ΔpepsΔgcvB	Δpeps gcvB::kan	This study
ΔpepsΔhfq	Δpeps hfq::kan	This study
ΔpepsΔydeE	Δpeps ΔydeE:: kan	This study
Name	Sequence (5' - 3' direction)	Used for
--------------	---	---
Northern blot		
JVO-0322	CTACGGCGTTCTACATCTCTGAGTTC	Probe for SS rRNA
JVO-0749	TCTGTTTCGGCGCTAGGA	Probe for GevB 5' region
GevB cloning and mutagenesis		
JVO-0237	ACTCTCATACACCGAAC	GevB cloning
MMO-0086	GCTTTTCTCACATAACGACTGCATCTGATGTTT	GevB cloning
MMO-0184	ATGCTTCTGGCTACAGA	GevB R1 deletion
MMO-0185	ACCGTAGCAGAAGACAGTCC	GevB R1 deletion
MMO-0196	ACATTATACCTGTCTGCC	GevB R2 deletion
MMO-0197	GAAAAAGTTAGCTTGGTCT	GevB R3 deletion
MMO-0768	ATATAGTACAGCGGCTAA	GevB R3 deletion
MMO-0769	TAAATGACAGAGAGTGAAA	GevB R3 deletion
JVO-9214	CCTGCTTCTCACATAGTTAAGTTGAGG	GevB G160C mutation
JVO-9215	CTATGGACAGACGAGTTAAAGTGGTACGG	GevB G160C mutation
MMO-0342	TACCTCTCTGCTATTTGCGGG	GevB G156C mutation
MMO-0343	GACAGAGGCGATGAAGCTAGGGA	GevB G156C mutation
MMO-0391	TACCTCAGATCTAGTTAAGGGA	GevB mutR3 mutation
MMO-0392	GACAGAGGCGATGAAGCTAGGGA	GevB mutR3 mutation
MMO-0776	GTCTGCTTCTACATAGTTAAGGGA	GevB C162G mutation
MMO-0777	ATATGACAGAGAGTGGTCTAGG	GevB C162G mutation
GevB target cloning		
MMO-0199	GCTTTTCTACATCGCAAAACACACATGACATTA	gdhA GFP fusion cloning
MMO-0201	GCTTTTCTACATCGCAAAACACACATGACATTA	gdhA GFP fusion cloning
MMO-0327	GCTTTTCTACATCGCAAAACACACATGACATTA	sucB-sucC GFP fusion cloning
MMO-0328	GCTTTTCTACATCGCAAAACACACATGACATTA	sucB-sucC GFP fusion cloning
MMO-0459	GCTTTTCTACATCGCAAAACACACATGACATTA	map GFP fusion cloning
MMO-0461	GCTTTTCTACATCGCAAAACACACATGACATTA	map GFP fusion cloning
MMO-0462	GCTTTTCTACATCGCAAAACACACATGACATTA	catA GFP fusion cloning
MMO-0464	GCTTTTCTACATCGCAAAACACACATGACATTA	catA GFP fusion cloning
MMO-0465	GCTTTTCTACATCGCAAAACACACATGACATTA	ydeE GFP fusion cloning
MMO-0466	GCTTTTCTACATCGCAAAACACACATGACATTA	ydeE GFP fusion cloning
MMO-0469	GCTTTTCTACATCGCAAAACACACATGACATTA	rrf GFP fusion cloning
MMO-0470	GCTTTTCTACATCGCAAAACACACATGACATTA	rrf GFP fusion cloning
MMO-0477	GCTTTTCTACATCGCAAAACACACATGACATTA	hisf-hisQ GFP fusion cloning
MMO-0478	GCTTTTCTACATCGCAAAACACACATGACATTA	hisf-hisQ GFP fusion cloning
MMO-0790	GCTTTTCTACATCGCAAAACACACATGACATTA	kgtP GFP fusion cloning
MMO-0791	GCTTTTCTACATCGCAAAACACACATGACATTA	kgtP GFP fusion cloning
MMO-0792	GCTTTTCTACATCGCAAAACACACATGACATTA	ildC GFP fusion cloning
MMO-0793	GCTTTTCTACATCGCAAAACACACATGACATTA	ildC GFP fusion cloning
MMO-0794	GCTTTTCTACATCGCAAAACACACATGACATTA	gphB GFP fusion cloning
MMO-0795	GCTTTTCTACATCGCAAAACACACATGACATTA	gphB GFP fusion cloning
MMO-0798	GCTTTTCTACATCGCAAAACACACATGACATTA	yggX-mtxC GFP fusion cloning
MMO-0799	GCTTTTCTACATCGCAAAACACACATGACATTA	yggX-mtxC GFP fusion cloning
MMO-0800	GCTTTTCTACATCGCAAAACACACATGACATTA	rbsB-rbsK GFP fusion cloning
MMO-0801	GCTTTTCTACATCGCAAAACACACATGACATTA	rbsB-rbsK GFP fusion cloning
MMO-0803	GCTTTTCTACATCGCAAAACACACATGACATTA	prmb-aroC GFP fusion cloning
MMO-0804	GCTTTTCTACATCGCAAAACACACATGACATTA	prmb-aroC GFP fusion cloning
MMO-0805	GCTTTTCTACATCGCAAAACACACATGACATTA	aroF GFP fusion cloning
MMO-0806	GCTTTTCTACATCGCAAAACACACATGACATTA	aroF GFP fusion cloning
MMO-0817	GCTTTTCTACATCGCAAAACACACATGACATTA	trpE GFP fusion cloning
MMO-0818	GCTTTTCTACATCGCAAAACACACATGACATTA	trpE GFP fusion cloning
MMO-0819	GCTTTTCTACATCGCAAAACACACATGACATTA	acaC GFP fusion cloning
MMO-0820	GCTTTTCTACATCGCAAAACACACATGACATTA	acaC GFP fusion cloning
MMO-0821	GCTTTTCTACATCGCAAAACACACATGACATTA	acaC GFP fusion cloning
MMO-0822	GCTTTTCTACATCGCAAAACACACATGACATTA	acaC GFP fusion cloning
MMO-0925	GCTTTTCTACATCGCAAAACACACATGACATTA	purUGFP fusion cloning
MM0-0926	GATTCCTGCGCGATACAGCCCTTTTTTGCCCGG	puriGFP fusion cloning
MM0-0861	GGTTAAAATGATCTTTATGTTAAAAACAAAACACAAG	ivblGFP fusion cloning
MM0-0862	GTTTGGTCTAGTTTTCATTGCGGACATGG	ivblGFP fusion cloning
MM0-0863	GTTTGTATGCATTTTCTGTTTTAGGACCTTCC	ivblGFP fusion cloning
MM0-0864	GTTTTGGTCTAGCTATTTCCATTGCCAATCTCGCCCGG	ivblGFP fusion cloning
MM0-0865	GTTTTGGTCTAGCTATTTCCATTGCCAATCTCGCCCGG	ivblGFP fusion cloning
MM0-0866	GTTTTGGTCTAGCTATTTCCATTGCCAATCTCGCCCGG	ivblGFP fusion cloning
MM0-0867	GTTTTGGTCTAGCTATTTCCATTGCCAATCTCGCCCGG	ivblGFP fusion cloning
MM0-0868	GTTTTGGTCTAGCTATTTCCATTGCCAATCTCGCCCGG	ivblGFP fusion cloning
MM0-0869	GTTTTGGTCTAGCTATTTCCATTGCCAATCTCGCCCGG	ivblGFP fusion cloning
MM0-0871	GTTTTGGTCTAGCTATTTCCATTGCCAATCTCGCCCGG	ivblGFP fusion cloning
MM0-0872	GTTTTGGTCTAGCTATTTCCATTGCCAATCTCGCCCGG	ivblGFP fusion cloning

GeVβ target mutagenesis

MM0-0355	GATCCAAAACACACACTGAATTACATGA	sucCC-8G
MM0-0454	TGCTGGTATACCGTGATACGAGATACGA	sucCC-8G
MM0-0492	GATGACGATAGATTGACTGACGTACTCTAATACGAC	map C-8G
MM0-0493	AGATTCAATCATCTACGACGTACTCTAATACGAC	map C-8G
MM0-0494	GATGACGATAGATTGACTGACGTACTCTAATACGAC	ydeE-7G
MM0-0495	TGCTGGTATACCGTGATACGAGATACGA	ydeE-7G
MM0-0775	TGCTGGTATACCGTGATACGAGATACGA	ydeE-7G
MM0-0784	TGCTGGTATACCGTGATACGAGATACGA	ydeE-7G
MM0-0785	TGCTGGTATACCGTGATACGAGATACGA	ydeE-7G
MM0-0736	GATGACGATAGATTGACTGACGTACTCTAATACGAC	sucCmutR3
MM0-0737	GATGACGATAGATTGACTGACGTACTCTAATACGAC	sucCmutR3
MM0-0774	GATGACGATAGATTGACTGACGTACTCTAATACGAC	gdhA 4AC
MM0-0775	GATGACGATAGATTGACTGACGTACTCTAATACGAC	gdhA 4AC
MM0-0784	GATGACGATAGATTGACTGACGTACTCTAATACGAC	gdhA 4AC
MM0-0785	GATGACGATAGATTGACTGACGTACTCTAATACGAC	gdhA 4AC
MM0-0930	GATGACGATAGATTGACTGACGTACTCTAATACGAC	gdhA 4AC
MM0-0931	GATGACGATAGATTGACTGACGTACTCTAATACGAC	gdhA 4AC

Lambda Red recombination

JVO-0131	TTCTAGACAACTACTACATATTAGTGGGCGGATAGGTTAGCGGGGCACTTTCTCGGACGCGGGAATTTGAGGCCTGAGCTGTC	gcvB deletion with pKD4
JVO-0132	TTCTAGACAACTACTACATATTAGTGGGCGGATAGGTTAGCGGGGCACTTTCTCGGACGCGGGAATTTGAGGCCTGAGCTGTC	gcvB deletion with pKD4
JVO-7614	TTCTAGACAACTACTACATATTAGTGGGCGGATAGGTTAGCGGGGCACTTTCTCGGACGCGGGAATTTGAGGCCTGAGCTGTC	sroC deletion with pKD4
JVO-7615	TTCTAGACAACTACTACATATTAGTGGGCGGATAGGTTAGCGGGGCACTTTCTCGGACGCGGGAATTTGAGGCCTGAGCTGTC	sroC deletion with pKD4
MM0-0206	TTCTAGACAACTACTACATATTAGTGGGCGGATAGGTTAGCGGGGCACTTTCTCGGACGCGGGAATTTGAGGCCTGAGCTGTC	gdhB:3xFLAG insertion with pSUB13
MM0-0207	TTCTAGACAACTACTACATATTAGTGGGCGGATAGGTTAGCGGGGCACTTTCTCGGACGCGGGAATTTGAGGCCTGAGCTGTC	gdhB:3xFLAG insertion with pSUB13
dppA-P1-R	GCTGACGGGTACGATAGGTTAGCGGGGCACTTTCTCGGACGCGGGAATTTGAGGCCTGAGCTGTC	dppABCDF deletion with pKD13
dppF-P4-F	GCTGACGGGTACGATAGGTTAGCGGGGCACTTTCTCGGACGCGGGAATTTGAGGCCTGAGCTGTC	dppABCDF deletion with pKD13
ydeE-P1-R	GCTGACGGGTACGATAGGTTAGCGGGGCACTTTCTCGGACGCGGGAATTTGAGGCCTGAGCTGTC	ydeE deletion with pKD13
ydeE-P4-F	GCTGACGGGTACGATAGGTTAGCGGGGCACTTTCTCGGACGCGGGAATTTGAGGCCTGAGCTGTC	ydeE deletion with pKD13

ydeE cloning

| psydeE-5 | ATACGACAACTACTACATATTAGTGGGCGGATAGGTTAGCGGGGCACTTTCTCGGACGCGGGAATTTGAGGCCTGAGCTGTC | ydeE cloning |
| psydeE-3' | ATACGACAACTACTACATATTAGTGGGCGGATAGGTTAGCGGGGCACTTTCTCGGACGCGGGAATTTGAGGCCTGAGCTGTC | ydeE cloning |
Table S5. Plasmids used in this study.

Name	Relevant fragment	Comment	Origin / marker	Reference	
pTP11	control plasmid	Control plasmid based on pJV300, ColE1 origin replaced by p15A origin	p15A / Amp^a	Sharma et al, 2011	
pPlc-gcvB	P_{lac}-gcvB	E. coli gcvB mid-copy expression plasmid, gcvB is controlled by the constitutive P_{lac} promoter	p15A / Amp^a	this study	
pPlc-gcvBΔR1	P_{lac}-gcvBΔR1	E. coli gcvB deletion of position 66 – 91	p15A / Amp^a	this study	
pPlc-gcvBΔR2	P_{lac}-gcvBΔR2	E. coli gcvB deletion of position 136 – 144	p15A / Amp^a	this study	
pPlc-gcvBΔR3	P_{lac}-gcvBΔR3	E. coli gcvB deletion of position 152 – 169	p15A / Amp^a	this study	
pPlc-gcvBΔR12	P_{lac}-gcvBΔR12	E. coli gcvB deletion of position 66 – 91 and 136 – 169	p15A / Amp^a	this study	
pPlc-gcvBΔR13	P_{lac}-gcvBΔR13	E. coli gcvB deletion of position 66 – 91 and 152 – 169	p15A / Amp^a	this study	
pPlc-gcvBΔR123	P_{lac}-gcvBΔR123	E. coli gcvB deletion of position 66 - 169	p15A / Amp^a	this study	
pPlc-gcvBΔR1mutR	P_{lac}-gcvBΔR1mutR	E. coli gcvBΔR1 mutant in position 154 – 158 (CTGTC->GACAG)	p15A / Amp^a	this study	
pPlc-gcvBΔR1G156C	P_{lac}-gcvBΔR1G156C	E. coli gcvBΔR1 mutant in position 156 (G->C)	p15A / Amp^a	this study	
pPlc-gcvBΔR1C160G	P_{lac}-gcvBΔR1C160G	E. coli gcvBΔR1 mutant in position 160 (G->C)	p15A / Amp^a	this study	
pPlc-gcvBΔR1C162G	P_{lac}-gcvBΔR1C162G	E. coli gcvBΔR1 mutant in position 162 (G->C)	p15A / Amp^a	this study	
pXG-10sf	P_{lac}-lacZ::gfp	Plasmid for construction of translational sfGFP fusion	pSC101* / Cm^a	Corcoran et al, 2012	
pXG-30sf	P_{lac}-FLAG::glmU::gfp	Plasmid for construction of translational sfGFP fusions of dicistronic targets	pSC101* / Cm^a	Corcoran et al, 2012	
pXG-10sf-gdhA	P_{lac}-gdhA::gfp	E. coli gdhA translational GFP fusion plasmid	pSC101* / Cm^a	this study	
pXG-10sf-map	P_{lac}-map::gfp	E. coli map translational GFP fusion plasmid	pSC101* / Cm^a	this study	
pXG-10sf-cstA	P_{lac}-cstA::gfp	E. coli cstA translational GFP fusion plasmid	pSC101* / Cm^a	this study	
pXG-10sf-ydeE	P_{lac}-ydeE::gfp	E. coli ydeE translational GFP fusion plasmid	pSC101* / Cm^a	this study	
pXG-10sf-rmf	P_{lac}-rmf::gfp	E. coli rmf translational GFP fusion plasmid	pSC101* / Cm^a	this study	
pXG-10sf-kgtP	P_{lac}-kgtP::gfp	E. coli kgtP translational GFP fusion plasmid	pSC101* / Cm^a	this study	
pXG-10sf-icd	P_{lac}-icd::gfp	E. coli icd translational GFP fusion plasmid	pSC101* / Cm^a	this study	
pXG-10sf-glpP	P_{lac}-glpP::gfp	E. coli glpP translational GFP fusion plasmid	pSC101* / Cm^a	this study	
pXG-10sf-aroP	P_{lac}-aroP::gfp	E. coli aroP translational GFP fusion plasmid	pSC101* / Cm^a	this study	
pXG-10sf-trpE	P_{lac}-trpE::gfp	E. coli trpE translational GFP fusion plasmid	pSC101* / Cm^a	this study	
pXG-10sf-acs	P_{lac}-acs::gfp	E. coli acs translational GFP fusion plasmid	pSC101* / Cm^a	this study	
pXG-10sf-asd	P_{lac}-asd::gfp	E. coli asd translational GFP fusion plasmid	pSC101* / Cm^a	this study	
pXG-10sf-purU	P_{lac}-purU::gfp	E. coli purU translational GFP fusion plasmid	pSC101* / Cm^a	this study	
constructs	promoters	transgene	hosts	plasmids	references
---------------------	-----------	-----------------------	------------------------------	----------------	---------------
pXG-10sf-ilvB	LTtetO	ilvB::gfp	E. coli ilvB translational GFP fusion plasmid	pSC101*/Cm®	this study
pXG-10sf-ilvL	LTtetO	ilvL::gfp	E. coli ilvL translational GFP fusion plasmid	pSC101*/Cm®	this study
pXG-10sf-ilvX	LTtetO	ilvX::gfp	E. coli ilvX translational GFP fusion plasmid	pSC101*/Cm®	this study
pXG-30sf-ilvED	LTtetO	FLAG::ilvE-ilvD::gfp	E. coli ilvED translational GFP fusion plasmid	pSC101*/Cm®	this study
pXG-30sf-ilvGM	LTtetO	FLAG::ilvG-ilvM::gfp	E. coli ilvGM translational GFP fusion plasmid	pSC101*/Cm®	this study
pXG-30sf-sucBC	LTtetO	FLAG::sucB-sucC::gfp	E. coli sucBC translational GFP fusion plasmid	pSC101*/Cm®	this study
pXG-30sf-hisJQ	LTtetO	FLAG::hisJ-hisQ::gfp	E. coli hisJQ translational GFP fusion plasmid	pSC101*/Cm®	this study
pXG-30sf-yggX-mltC	LTtetO	FLAG::yggX-mltC::gfp	E. coli yggX-mltC translational GFP fusion plasmid	pSC101*/Cm®	this study
pXG-30sf-rbsBK	LTtetO	FLAG::rbsB-rbsK::gfp	E. coli rbsBK translational GFP fusion plasmid	pSC101*/Cm®	this study
pXG-30sf-prmB-aroC	LTtetO	FLAG::prmB-aroC::gfp	E. coli prmB-aroC translational GFP fusion plasmid	pSC101*/Cm®	this study
pSydeE	lacP	ydeE	E. coli ydeE expression plasmid	pACYC184/Cm®	this study
Table S6. Inserts of GcvB mutant plasmids.
Black letters indicate the gcvB wild-type sequence, R1, R2, and R3 seed sequences are highlighted in yellow, green and cyan, respectively. The modified nucleotides are highlighted in magenta.

Plasmid	Insert from +1 to end of gcvB terminator	Positions deleted or mutated
pP*:gcvB	ACTTCCTGAGCGGAGAAGAAAGTTTTTATCGGAAATGCCGCTTCTGGTAGAACTTTTGCGCTCCCAGTAATTTATTGGAATTCGGGATATGTTCTGCTGACCGACCGCTAAATTTCGGGGCTCTTTTTTTTT	none
pP*:gcvcBΔR1	ACTTCCTGAGCGGAGAAGAAAGTTTTTATCGGAAATGCCGCTTCTGGTAGAACTTTTGCGCTCCCAGTAATTTATTGGAATTCGGGATATGTTCTGCTGACCGACCGCTAAATTTCGGGGCTCTTTTTTTTT	66 - 91
pP*:gcvcBΔR2	ACTTCCTGAGCGGAGAAGAAAGTTTTTATCGGAAATGCCGCTTCTGGTAGAACTTTTGCGCTCCCAGTAATTTATTGGAATTCGGGATATGTTCTGCTGACCGACCGCTAAATTTCGGGGCTCTTTTTTTTT	136 - 144
pP*:gcvcBΔR3	ACTTCCTGAGCGGAGAAGAAAGTTTTTATCGGAAATGCCGCTTCTGGTAGAACTTTTGCGCTCCCAGTAATTTATTGGAATTCGGGATATGTTCTGCTGACCGACCGCTAAATTTCGGGGCTCTTTTTTTTT	152 - 169
pP*:gcvcBΔR12	ACTTCCTGAGCGGAGAAGAAAGTTTTTATCGGAAATGCCGCTTCTGGTAGAACTTTTGCGCTCCCAGTAATTTATTGGAATTCGGGATATGTTCTGCTGACCGACCGCTAAATTTCGGGGCTCTTTTTTTTT	66 - 91
pP*:gcvcBΔR13	ACTTCCTGAGCGGAGAAGAAAGTTTTTATCGGAAATGCCGCTTCTGGTAGAACTTTTGCGCTCCCAGTAATTTATTGGAATTCGGGATATGTTCTGCTGACCGACCGCTAAATTTCGGGGCTCTTTTTTTTT	66 - 91 152 - 169
pP*:gcvcBΔR123	ACTTCCTGAGCGGAGAAGAAAGTTTTTATCGGAAATGCCGCTTCTGGTAGAACTTTTGCGCTCCCAGTAATTTATTGGAATTCGGGATATGTTCTGCTGACCGACCGCTAAATTTCGGGGCTCTTTTTTTTT	66 - 69
pP*:gcvcBΔR1 mutR3	ACTTCCTGAGCGGAGAAGAAAGTTTTTATCGGAAATGCCGCTTCTGGTAGAACTTTTGCGCTCCCAGTAATTTATTGGAATTCGGGATATGTTCTGCTGACCGACCGCTAAATTTCGGGGCTCTTTTTTTTT	66 - 91 154 - 158 (CTGTC→GACAG)
pP*:gcvcBΔR1G156C	ACTTCCTGAGCGGAGAAGAAAGTTTTTATCGGAAATGCCGCTTCTGGTAGAACTTTTGCGCTCCCAGTAATTTATTGGAATTCGGGATATGTTCTGCTGACCGACCGCTAAATTTCGGGGCTCTTTTTTTTT	66 - 69 156 (G→C)
pP*:gcvcBΔR1C160G	ACTTCCTGAGCGGAGAAGAAAGTTTTTATCGGAAATGCCGCTTCTGGTAGAACTTTTGCGCTCCCAGTAATTTATTGGAATTCGGGATATGTTCTGCTGACCGACCGCTAAATTTCGGGGCTCTTTTTTTTT	66 - 99 160 (L→G)
pP*:gcvcBΔR1C162G	ACTTCCTGAGCGGAGAAGAAAGTTTTTATCGGAAATGCCGCTTCTGGTAGAACTTTTGCGCTCCCAGTAATTTATTGGAATTCGGGATATGTTCTGCTGACCGACCGCTAAATTTCGGGGCTCTTTTTTTTT	66 - 99 162 (L→G)
Table S7. Details of GFP fusion plasmids.

Target gene	Backbone	Oligos used to amplify insert	Insert digested with	Upstream ORF [bp]	Intergenic region [bp]	Downstream ORF [bp]	Insert length [bp]	Translational fusion to N-terminal FLAG [aa]	Translational fusion to C-terminal GFP [aa]
gdhA	pXG-10sf	MMO-0199 x MMO-0201	NsiI/NheI	-	63	33	96	-	11
map	pXG-10sf	MMO-0459 x MMO-0461	NsiI/NheI	-	47	48	95	-	16
ctaA	pXG-10sf	MMO-0462 x MMO-0464	NsiI/NheI	-	39	96	135	-	32
ydeE	pXG-10sf	MMO-0465 x MMO-0466	NsiI/NheI	-	69	60	129	-	20
rnf	pXG-10sf	MMO-0469 x MMO-0470	NsiI/NheI	-	132	165	297	-	55
hqfP	pXG-10sf	MMO-0790 x MMO-0791	NsiI/NheI	-	66	120	186	-	40
icd	pXG-10sf	MMO-0792 x MMO-0793	NsiI/NheI	-	162	30	192	-	10
gfpP	pXG-10sf	MMO-0794 x MMO-0795	NsiI/NheI	-	103	90	193	-	30
aroP	pXG-10sf	MMO-0805 x MMO-0818	NsiI/NheI	-	99	60	159	-	20
trpE	pXG-10sf	MMO-0817 x MMO-0818	NsiI/NheI	-	36	90	126	-	30
aca	pXG-10sf	MMO-0819 x MMO-0820	NsiI/NheI	-	20	90	110	-	30
asd	pXG-10sf	MMO-0821 x MMO-0822	NsiI/NheI	-	61	60	121	-	20
purU	pXG-10sf	MMO-0925 x MMO-0926	NsiI/NheI	-	127	60	187	-	20
ibdL	pXG-10sf	MMO-0861 x MMO-0862	NsiI/NheI	-	35	30	65	-	10
ivbB	pXG-10sf	MMO-0863 x MMO-0864	NsiI/NheI	-	53	60	113	-	20
ilvL	pXG-10sf	MMO-0865 x MMO-0869	NsiI/NheI	-	104	9	113	-	3
ilvX	pXG-10sf	MMO-0867 x MMO-0868	NsiI/NheI	-	29	48	77	-	16
ilvED	pXG-30sf	MMO-0890 x MMO-0897	NsiI/NheI	45	64	51	160	15	17
ilvGM	pXG-30sf	MMO-0871 x MMO-0872	NsiI/NheI	96	-4	69	161	32	23
sucBC	pXG-30sf	MMO-0327 x MMO-0328	NsiI/NheI	48	274	30	352	16	10
hisIQ	pXG-30sf	MMO-0477 x MMO-0478	NsiI/NheI	30	89	30	149	10	10
yggX	pXG-30sf	MMO-0798 x MMO-0799	NsiI/NheI	120	64	120	304	40	40
ribS	pXG-30sf	MMO-0800 x MMO-0801	NsiI/NheI	60	125	60	245	20	20
prnB-aroC	pXG-30sf	MMO-0803 x MMO-0804	NsiI/NheI	120	34	90	244	40	30
Table S8. Inserts of GFP fusion plasmids.

E. coli gene sequences are indicated in which black letters correspond to 5′ UTR parts and red letters to ORF parts for pXG-10sf derivatives. For the intraoperonic fusions in pXG30-sf, upstream ORF fused with FLAG, intergenic region, downstream ORF fused with GFP are indicated in blue, black, and red, respectively. The overlapping region between ORFs is highlighted in magenta. NsiI and NheI sites used for cloning are highlighted in bold in cyan and green, respectively.

GFP fusion	Insert
gdhA::gfp	ATGACAT gcacacaagcatgacataaaacacacacacagattatataagggattatatctatagatcagacatatctctggagatcctgctgATGCAT
map::gfp	ATGACAT actaaacatatatcctggatgcagacgtcattgaccagaattaattggtctctcatctcaagacccgaaaatagcataaaacagctgctgATGCAT
ctsA::gfp	ATGACAT aatgtaatactcatatagcacgcacaggtataacgataacacaggaattaacactctctgaccactgtctgctgATGCAT
ydeE::gfp	ATGACAT atttttgcaatgtatttctcaatctctccaacaaaaactacgaaacaggacacacactggccagagagatgtggaggatcctgctgATGCAT
rmf::gfp	ATGACAT caacaaatagttgctggtaatcctttgagcattactactagttactacggtttacagtctgacctgtgctgctgATGCAT
kgtP::gfp	ATGACAT taaaactgcatatattcagctggactcatctcagagatagtggctgtatttcagctgctgATGCAT
icd::gfp	ATGACAT taaaactgcatatattcagctggactcatctcagagatagtggctgtatttcagctgctgATGCAT
gfp::gfp	ATGACAT taaaactgcatatattcagctggactcatctcagagatagtggctgtatttcagctgctgATGCAT
gdi::gfp	ATGACAT taaaactgcatatattcagctggactcatctcagagatagtggctgtatttcagctgctgATGCAT
aspC::gfp	ATGACAT gactctctctgttaatgaaagctgcaatattataaggctgggtcaaatgatcatggatcagagacagcagctgctgATGCAT
trpE::gfp	ATGACAT gactctctctgttaatgaaagctgcaatattataaggctgggtcaaatgatcatggatcagagacagcagctgctgATGCAT
acc::gfp	ATGACAT cttaaaccgagacaaaggatgatgcacaaaaacacatctctccagcagacggctgctgATGCAT
aspC::gfp	ATGACAT gactctctctgttaatgaaagctgcaatattataaggctgggtcaaatgatcatggatcagagacagcagctgctgATGCAT
purU::gfp	ATGACAT atgcccacctggctttgattgcgccgttgctcatctcctggaatagagccatgcagcccaccccaataatctggactggtgctgATGCAT
nhb::gfp	ATGACAT atttttgtaattttctgtagtaaatctgtaataatctgaaattctctattcattgtggctgctgATGCAT
nhn::gfp	ATGACAT atgggttatattctcttctcctattataattcgtttctctctttcttatgctgctgATGCAT
hcl::gfp	ATGACAT atgggttatattctcttctcctattataattcgtttctctctttcttatgctgctgATGCAT
nhm::gfp	ATGACAT atgggttatattctcttctcctattataattcgtttctctctttcttatgctgctgATGCAT
Psu::FLAG::sucB::sucC::gfp	ATGACAT atgggttatattctcttctcctattataattcgtttctctctttcttatgctgctgATGCAT