Improved Electrical Characteristics of AlGaN/GaN High-Electron-Mobility Transistor with Al$_2$O$_3$/ZrO$_2$ Stacked Gate Dielectrics

Cheng-Yu Huang1, Soumen Mazumder1*, Pu-Chou Lin2, Kuan-Wei Lee3,* and Yeong-Her Wang1,*

1 Department of Electrical Engineering, Institute of Microelectronics, National Cheng-Kung University, Tainan 701, Taiwan
2 Department of Photonics, National Cheng-Kung University, Tainan 701, Taiwan
3 Department of Electronic Engineering, I-Shou University, Kaohsiung 840, Taiwan
* Correspondence: kwlee@isu.edu.tw (K.-W.L.); yhw@ee.ncku.edu.tw (Y.-H.W.)

Abstract: A metal-oxide-semiconductor high-electron-mobility transistor (MOS-HEMT) is proposed based on using a Al$_2$O$_3$/ZrO$_2$ stacked layer on conventional AlGaN/GaN HEMT to suppress the gate leakage current, decrease flicker noise, increase high-frequency performance, improve power performance, and enhance the stability after thermal stress or time stress. The MOS-HEMT has a maximum drain current density of 847 mA/mm and peak transconductance of 181 mS/mm. The corresponding subthreshold swing and on/off ratio are 95 mV/dec and 3.3 \times 107. The gate leakage current can be reduced by three orders of magnitude due to the Al$_2$O$_3$/ZrO$_2$ stacked layer, which also contributes to the lower flicker noise. The temperature-dependent degradation of drain current density is 26%, which is smaller than the 47% of reference HEMT. The variation of subthreshold characteristics caused by thermal or time stress is smaller than that of the reference case, showing the proposed Al$_2$O$_3$/ZrO$_2$ stacked gate dielectrics are reliable for device applications.

Keywords: metal-oxide-semiconductor (MOS); high-electron-mobility transistor (HEMT); Al$_2$O$_3$; ZrO$_2$

1. Introduction

In recent decades, AlGaN/GaN high-electron-mobility transistors (HEMTs) have received much attention due to their high breakdown voltage, high saturation current, and high operating temperature. These advantages make AlGaN/GaN HEMTs a potential candidate for high-frequency and high-power device applications [1–3]. However, conventional GaN-based HEMTs with a Schottky gate suffer from high leakage current and the current collapse effect, which degrade the device performance and reliability. Inserting dielectric layers underneath the metal gate can effectively reduce the gate leakage current [4,5], suppress current collapse phenomenon [6,7], provide better linearity of RF output power [8,9], and lower flicker noise [10,11]. As the size of the device shrinks, the thickness of the gate dielectric shrinks, resulting in leakage current or related reliability issues.

A thin oxide layer leads to large current leakage; however, high-κ materials increase the physical thickness of gate dielectrics and can thus overcome the tunneling leakage current. The high-κ materials such as HfO$_2$ [12], TiO$_2$ [13], ZrO$_2$ [14], HfAlO$_x$ [15], etc. are expected to increase the capacitance of the transistor without reducing the oxide thickness. Recent research has proposed that different oxide compounds have excellent dielectric properties [16]. Among these materials, ZrO$_2$ is a potential choice. ZrO$_2$ has a wide bandgap (5.16–7.8 eV) and a high dielectric constant (20–25) [17]. However, the ZrO$_2$/GaN interface has some issues, such as a poor conduction band offset with GaN of (~1.1 eV), and a very high interface state density. An ultra-thin Al$_2$O$_3$ film can be inserted to suppress the interface charge of GaN. Al$_2$O$_3$ has a large bandgap (7–8.8 eV).
that can tolerate a high breakdown field [18]. Based on the above discussion, stacked or bilayer gate dielectrics are the effective solution for modifying the interface quality. Strong correlation was observed between different compound contents and microwave dielectric properties [19,20]. Many studies have been widely explored, and excellent results have been obtained [21–25] for GaN-based HEMT; however, the reliability of Al₂O₃/ZrO₂ on AlGaN/GaN HEMTs has rarely been evaluated [23].

Many reports have been published in the GaN-based areas and they often studied the gate leakage, dc, and C-V characteristics at room temperature or high temperature. However, flicker noise, high-frequency performance, power performance, and stability after thermal stress or time stress were less conducted. On the other hand, although stacked oxide layers are available in some studies, there are only a few on the combination of Al₂O₃ and ZrO₂. Authors just studied the trapped charge effects for MOS capacitor or HEMT with Al₂O₃ or ZrO₂ (i.e., single layer, not stacked layer). In this work, a radio frequency (RF) co-sputter system was used to deposit 1 nm-thick Al₂O₃ and 12 nm-thick ZrO₂ films as a stacked gate dielectrics on AlGaN/GaN HEMT to increase breakdown voltage and reduce leakage current. In addition to low-frequency noise and high-frequency performance, the reliabilities of thermal and time stress for proposed devices were investigated.

2. Experimental Study

The wafer structure was grown with metal-organic chemical vapor deposition (MOCVD) on a 6-inch p-type (≤ 0.03 Ω·cm) Si-(111) substrate. The epi-structure from the top to bottom consisted of a 2-nm-thick GaN cap layer, a 20-nm-thick Al₀.₂₅Ga₀.₇₅N barrier layer, a 300-nm-thick GaN channel layer, and a 3.9-µm-thick buffer/transition layer. The sheet resistivity, sheet carrier concentration, and Hall mobility were 448.6 Ω/cm, 2338 cm²/V·s, and 6.137 × 10¹² cm⁻³, respectively. Samples were cleaned in an ultrasonic machine with acetone, methanol, and deionized water for 5 min. For device fabrication, the mesa isolation was conducted using an inductive coupled plasma reactive ion etching (ICP-RIE) system under a Cl₂ and BCl₃ mixed-gas environment. Ohmic contact of source/drain regions were deposited with Ti/Al/Ni/Au (25 nm/150 nm/30 nm/120 nm) by electron beam evaporation and followed by rapid thermal annealing (RTA) at 875 °C for 45 s in N₂ ambient. After that, the gate region was defined by photolithography. For reference Schottky-gate HEMT, gate electrode was deposited directly. For MOS-HEMT, the gate dielectrics of 1-nm Al₂O₃ and 12-nm ZrO₂ stacked layer was then deposited by RF co-sputter system. The co-sputtering system ULVAC ACS-4000-C3 includes electrodes of two DC power supplies and one RF power source. The argon gas flow rate was 30 sccm and the RF power was 100 W for Al₂O₃ of 2 min and ZrO₂ of 11 min, respectively. Finally, a gate electrode of Ni/Au (80 nm/100 nm) was deposited using the electron beam evaporation. The gate length (L₇₅), gate width (W₉₅), and source-to-drain distance (L₉₅) were 1 µm, 100 µm, and 5 µm, respectively. The dc characteristics of the proposed devices were measured using an Agilent B1500A semiconductor analyzer. The low-frequency noise spectrum was measured using a ProPlus system. NoisePro Plus software was used to extract low-frequency noise model parameters. 5-parameter measurements of the high-frequency devices were performed by a Keysight N5245A PNA-X microwave network analyzer.

3. Results and Discussion

A cross-sectional schematic diagram of the device is shown in Figure 1a. Figure 1b shows the atomic force microscopy (AFM) image (5 µm × 5 µm) of the Al₂O₃ and ZrO₂. The root mean square (RMS) value of Al₂O₃ was 0.36 nm and that of ZrO₂ was 0.79 nm, indicating that the surface roughness of oxide films is still good. Figure 1c–e show the X-ray diffraction (XRD) patterns of Al₂O₃, ZrO₂, and Al₂O₃/ZrO₂ stacked layer, respectively. The XRD patterns did not reveal any peaks corresponding to the single crystal or polycrystalline phases, indicating that the RF co-sputtered oxide films were amorphous. The diffraction peaks of AlGaN, GaN, and substrate are not measured due to the use of grazing incidence at a small angle. The insets of Figure 1c,d show the related energy-dispersive
X-ray spectroscopy (EDS) spectra for \(\text{Al}_2\text{O}_3 \) and \(\text{ZrO}_2 \), respectively. The elemental composition ratio of the \(\text{Al}_2\text{O}_3 \) was nearly 2:3, and that of the \(\text{ZrO}_2 \) was around 1:2. The inset of Figure 1e shows the transmission electron microscopy (TEM) image of the \(\text{Al}_2\text{O}_3/\text{ZrO}_2 \) stacked layer between the metal and semiconductor. The image reveals that the \(\text{Al}_2\text{O}_3 \) and \(\text{ZrO}_2 \) layers are not crystalline, which is consistent with the XRD pattern.

Figure 1. (a) Schematic structure of proposed MOS-HEMT; (b) AFM images of \(\text{Al}_2\text{O}_3 \) and \(\text{ZrO}_2 \); (c–e) XRD spectra of the \(\text{Al}_2\text{O}_3 \), \(\text{ZrO}_2 \), and \(\text{Al}_2\text{O}_3/\text{ZrO}_2 \), respectively. The insets of (c,d) show the related EDS spectra. The inset of (e) shows the TEM image of the \(\text{Al}_2\text{O}_3/\text{ZrO}_2 \) stacked layer.

Figure 2a shows the drain current density \((I_{DS}) \) versus drain voltage \((V_{DS}) \) characteristics of the Schottky-gate HEMT for reference and the proposed \(\text{Al}_2\text{O}_3/\text{ZrO}_2 \) stacked-layer MOS-HEMT, respectively. The corresponding static on-state resistance \((R_{on}) \) are 6.21 \(\Omega \)-mm and 3.82 \(\Omega \)-mm at gate voltage \((V_{GS}) = 0 \) V in the linear region, respectively. The maximum \(I_{DS} \) of the stacked layer MOS-HEMT is 847 mA/mm at \(V_{GS} = 5 \) V, which is higher than that (676 mA/mm at \(V_{GS} = 3 \) V) of the Schottky-gate HEMT owing to the high-\(\kappa \)-oxide layer. Figure 2b shows the comparison of transconductance \((g_{m}) \) and \(I_{DS} \) of Schottky-gate HEMT and stacked-layer MOS-HEMT at 4 V of \(V_{DS} \). The \(g_{m} \) values are 134 mS/mm and 181 mS/mm, respectively. The corresponding threshold voltages (gate swing voltages) are \(-3.19 \) V (2.21 V) and \(-3.88 \) V (3.02 V), respectively. The threshold voltage is determined as the \(V_{GS} \) intercept of the linear extrapolation of the drain current at the point of peak \(g_{m} \). For example, the red dotted line in Figure 2b intersects the horizontal axis. The de-
posited Al₂O₃/ZrO₂ layer makes the threshold voltage of MOS-HEMT shift to the negative direction due to the charges at the interface.

Figure 2. (a) I_{DS}-V_{DS} characteristics and (b) corresponding g_m and I_{DS} versus V_{GS} at 4 V of V_{DS} for both devices.

Figure 3a shows the comparison of subthreshold characteristics for the Schottky-gate HEMT and stacked-layer MOS-HEMT. The subthreshold swing (I_{ON}/I_{OFF} ratio) values are 170 mV/dec (2.2×10^6) and 95 mV/dec (3.3×10^7) at $V_{DS} = 4$ V, respectively. The subthreshold swing is the reciprocal of the slope from the curve in Figure 3a, i.e., $\partial V_{GS}/\partial(\log I_{DS})$. The lower subthreshold swing can ensure excellent pinch-off and low power dissipation in digital applications, and good power-added efficiency in analog applications. Due to the Al₂O₃/ZrO₂ between the gate electrode and GaN, the off-state I_{DS} is lower than that of the reference case. Figure 3b shows the two-terminal gate leakage current for the Schottky-gate HEMT and stacked-layer MOS-HEMT. The reverse gate leakage currents are 6.91×10^{-4} mA/mm and 1.75×10^{-6} mA/mm at $V_{GS} = -8$ V, respectively. The gate leakage current can be reduced by around three orders of magnitude for the MOS-HEMT due to the higher energy barrier between the gate metal and GaN. The related turn-on voltages are 1.6 V.

Figure 2. (a) I_{DS}-V_{DS} characteristics and (b) corresponding g_m and I_{DS} versus V_{GS} at 4 V of V_{DS} for both devices.
mA/mm and 1.75×10^{-6} mA/mm at $V_{GS} = -8$ V, respectively. The gate leakage current can be reduced by around three orders of magnitude for the MOS-HEMT due to the higher energy barrier between the gate metal and GaN. The related turn-on voltages are 1.6 V and more than 5 V, respectively. Similar results can be observed in the three-terminal off-state breakdown voltage for both devices as shown in the inset. The off-state breakdown voltages of the reference HEMT and $\text{Al}_2\text{O}_3/\text{ZrO}_2$ MOS-HEMT are 104 and 170 V, respectively. The off-state breakdown voltage is defined as the drain voltage at the drain current density of 1 mA/mm. Therefore, the gate leakage current and breakdown can be suppressed through the MOS structure instead of the Schottky-gate structure.

Figure 3. (a) Comparison of subthreshold current for the Schottky-gate HEMT and stacked layer MOS-HEMT. (b) Comparison of two-terminal gate leakage current for both devices. The inset shows three-terminal off-state breakdown voltage.

Figure 4a,b show the pulse $I_{DS}-V_{DS}$ characteristics of the Schottky-gate HEMT and stacked-layer MOS-HEMT, respectively. The pulse width is 0.5 ms and pulse period is
50 ms. Drain current degradation of the reference HEMT and the stacked-layer MOS-HEMT are approximately 8.1% and 2%, respectively. Figure 4c shows the normalized dynamic R_{on} ratio and the related static R_{on} at $V_{GS} = 0$ V for both devices. Under the condition of high V_{DS}, the device with a stacked oxide layer has less drain current degradation than that of the Schottky-gate HEMT, so its normalized R_{on} is close to 1. Surface traps on the GaN are suppressed and passivated by the Al$_2$O$_3$/ZrO$_2$, leading to the lower drain current degradation than with the reference HEMT. The degradation may be also caused by the interaction between the self-heating and trapping effect [26].

![Graph](image_url)

Figure 4. Cont.
In order to have better insight into the impact of interface traps, high-frequency capacitance-voltage (C-V) and low-frequency noise (i.e., flicker noise) for both devices were measured, as shown in Figure 5a,b, respectively. When the up and down sweep lines do not coincide, the presence of hysteresis (ΔV) is mainly result from the interface traps. The interface trap density (D_{it}) was calculated via the capacitance and ΔV from the high-frequency capacitance measurements [27]. The ΔV (D_{it}) were 220 mV (1.92×10^{12} cm$^{-2}$eV$^{-1}$) for the Schottky-gate HEMT and 40 mV (2.44×10^{11} cm$^{-2}$eV$^{-1}$) for the stacked-layer MOS-HEMT. Lower flicker noise indicates fewer defects or traps at the interface between the metal gate and semiconductor. Defects or traps capture/emission charges via biases, and the total charges within the channel change, resulting in drain current degradation as shown in Figure 4. In addition, the frequency exponent (γ) was fitted as 1.63 and 1.04 for the reference HEMT and MOS-HEMT, respectively. A larger γ closely corresponded to generation-recombination center. Due to the stacked Al$_2$O$_3$/ZrO$_2$ layer, the electric field strength around the gate-drain region is relatively small, resulting in less carrier scattering in the channel. Thus, the Al$_2$O$_3$/ZrO$_2$ stacked layer reduces the gate leakage current at the interface and can also satisfy the dangling bonds on the GaN to suppress defects or traps, leading to reduced carrier scattering and flicker noise.
Figure 5. (a) 1 MHz C-V measurements and (b) flicker noise characteristics for both devices.

Based on the S-parameter measurement in Figure 6a, the unity–current–gain cutoff frequency \(f_T \) and the maximum oscillation frequency \(f_{max} \) were 3 (6.4) GHz and 4.1 (9.1) GHz at maximum \(g_m \) for the Schottky-gate HEMT (MOS-HEMT). The increased microwave performances of the Al\(_2\)O\(_3\)/ZrO\(_2\) MOS-HEMT may be attributed to the increase in the ratio of \(g_m \) to gate-source capacitance or the addition of high-\(\kappa \) material [26]. Similar results were also observed in [28,29]. Figure 6b shows the comparison of output power, power gain, and power-added efficiency (PAE) versus input power at 2.4 GHz for both devices. The saturated output power, power gain, and maximum PAE are 13.4 (15.2) dBm, 8.6 (11.6) dB, and 16.7 (27.1)% for the reference HEMT (MOS-HEMT), respectively. The PAE can be supposed that the rate of input DC power is transformed into output AC power. Improved current drive, \(g_m \), and gate leakage current obtained in Al\(_2\)O\(_3\)/ZrO\(_2\) MOS-HEMT are beneficial to the PAE. Therefore, Al\(_2\)O\(_3\)/ZrO\(_2\) MOS-HEMT demonstrated better saturated output power and maximum PAE than those of the reference case.
The saturated output power, power gain, and maximum PAE are 13.4 (15.2) dBm, 8.6 (11.6) dB, and 16.7 (27.1)% for the reference HEMT (MOS-HEMT), respectively. The PAE can be supported that the rate of input DC power is transformed into output AC power. Improved current drive, g_m, and gate leakage current obtained in Al$_2$O$_3$/ZrO$_2$ MOS-HEMT are beneficial to the PAE. Therefore, Al$_2$O$_3$/ZrO$_2$ MOS-HEMT demonstrated better saturated output power and maximum PAE than those of the reference case.

Figure 6. Comparison of (a) the microwave characteristics at maximum g_m and (b) the power performance as a function of the input power at 2.4 GHz for both devices.

Figure 7a,b show the temperature-dependent $I_{DS}-V_{DS}$ degradation characteristics with various temperatures ranged from room temperature (i.e., 25 °C) to 100 °C for the Schottky-gate HEMT and stacked layer MOS-HEMT, respectively. The temperature program ranged from 25 °C to 100 °C as the devices were measured with an Agilent B1500A semiconductor parameter analyzer. Degradation of the Schottky-gate HEMT and the stacked-layer MOS-HEMT is 47% and 26%, respectively. The R_{on} increased and the I_{DS} decreased at 0 V of V_{GS} for both devices as the temperature increased. Because of the good thermal conductivity of Al$_2$O$_3$, the heat dissipation is better and the degradation of the I_{DS} is smaller than those of the reference HEMT. Figure 8a,b show the subthreshold characteristics with various temperatures for the Schottky-gate HEMT and stacked-layer MOS-HEMT, respectively. The degraded on-state I_{DS} is due to the decreased saturation velocity or mobility [30] results from phonon scattering [31] that dominates the temperature effect at high drain current region, which is consistent with the result in Figure 7. On the contrary, the increased off-state I_{DS} with increasing temperature is owing to the ionized traps that dominate the
temperature effect results in increasing the carrier concentration in the low drain current region. The threshold voltage shift to the positive bias direction with increasing temperature can be observed for both devices. Although the electrons can jump to the conduction band easily with increasing temperature, the Al\textsubscript{2}O\textsubscript{3}/ZrO\textsubscript{2} stacked layer can block the tunneling current, leading to smaller variation in I\textsubscript{DS} and threshold voltage shift compared with those of the reference HEMT in Figure 8a.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure7.png}
\caption{I\textsubscript{DS}-V\textsubscript{DS} characteristics with various temperatures ranged from 25 °C to 100 °C for (a) the Schottky-gate HEMT and (b) the stacked layer MOS-HEMT.}
\end{figure}
Figure 8. Subthreshold characteristics with various temperatures ranged from 25 °C to 100 °C for (a) the Schottky-gate HEMT and (b) the stacked layer MOS-HEMT.

The time stress was biased at V_{GS} of 1 V and V_{DS} of 4 V, with times ranging from 1 s to 1000 s at room temperature. The monitoring of g_m after time stress was performed at V_{DS} of 4 V and V_{GS} sweeping from -6 to 3 V for the Schottky-gate HEMT and stacked-layer MOS-HEMT, respectively, as shown in Figure 9a,b. The degradation of peak g_m (16%) for both devices are almost the same; however, the g_m becomes somewhat unstable as the gate bias increases in Figure 9a. The subthreshold characteristics were measured after stress at V_{GS} of 1 V and V_{DS} of 4 V with different time ranged from 1 s to 1000 s at room temperature. The monitoring was conducted at V_{DS} of 4 V and V_{GS} sweeping from -6 to 0 V for the Schottky-gate HEMT and stacked-layer MOS-HEMT, respectively, as shown in Figure 10a,b. The aforementioned results in Figure 5 describing the defects...
or traps behavior implies that fewer carriers were easily trapped versus detrapped due to the high energy gap of Al₂O₃/ZrO₂, which means the smaller degradation of I_DS or subthreshold current suggests that there are less interface states between the metal gate and GaN. In other words, the subthreshold current decreases with increasing time for both devices; however, a larger variation in threshold voltage shift is attributed to the capture/emission process of traps happening at the interface between the metal gate and GaN as shown in Figure 10a. Table 1 summarizes the dc characteristics of MOS-HEMTs with different stacked gate dielectrics in this work and by other researchers [5,12,21,23,25]. The dc characteristics presented in this work are comparable with those of other groups. The proposed Al₂O₃/ZrO₂ stacked-gate dielectrics are reliable for device applications.

![Figure 9](image_url)

Figure 9. The g_m after stress at V_{GS} of 1 V and V_{DS} of 4 V with different stress time ranged from 1 s to 1000 s at room temperature for (a) the Schottky-gate HEMT and (b) the stacked layer MOS-HEMT.
Figure 9. The g_m after stress at V_{GS} of 1 V and V_{DS} of 4 V with different stress time ranged from 1 s to 1000 s at room temperature for (a) the Schottky-gate HEMT and (b) the stacked layer MOS-HEMT.

Figure 10. Subthreshold characteristics after stress at V_{GS} of 1 V and V_{DS} of 4 V with different stress time ranged from 1 s to 1000 s at room temperature for (a) the Schottky-gate HEMT and (b) the stacked-layer MOS-HEMT.

Figure 10. Subthreshold characteristics after stress at V_{GS} of 1 V and V_{DS} of 4 V with different stress time ranged from 1 s to 1000 s at room temperature for (a) the Schottky-gate HEMT and (b) the stacked-layer MOS-HEMT.

Figure 10. Subthreshold characteristics after stress at V_{GS} of 1 V and V_{DS} of 4 V with different stress time ranged from 1 s to 1000 s at room temperature for (a) the Schottky-gate HEMT and (b) the stacked-layer MOS-HEMT.

Figure 10. Subthreshold characteristics after stress at V_{GS} of 1 V and V_{DS} of 4 V with different stress time ranged from 1 s to 1000 s at room temperature for (a) the Schottky-gate HEMT and (b) the stacked-layer MOS-HEMT.

Figure 10. Subthreshold characteristics after stress at V_{GS} of 1 V and V_{DS} of 4 V with different stress time ranged from 1 s to 1000 s at room temperature for (a) the Schottky-gate HEMT and (b) the stacked-layer MOS-HEMT.

Figure 10. Subthreshold characteristics after stress at V_{GS} of 1 V and V_{DS} of 4 V with different stress time ranged from 1 s to 1000 s at room temperature for (a) the Schottky-gate HEMT and (b) the stacked-layer MOS-HEMT.

Figure 10. Subthreshold characteristics after stress at V_{GS} of 1 V and V_{DS} of 4 V with different stress time ranged from 1 s to 1000 s at room temperature for (a) the Schottky-gate HEMT and (b) the stacked-layer MOS-HEMT.

Figure 10. Subthreshold characteristics after stress at V_{GS} of 1 V and V_{DS} of 4 V with different stress time ranged from 1 s to 1000 s at room temperature for (a) the Schottky-gate HEMT and (b) the stacked-layer MOS-HEMT.

Figure 10. Subthreshold characteristics after stress at V_{GS} of 1 V and V_{DS} of 4 V with different stress time ranged from 1 s to 1000 s at room temperature for (a) the Schottky-gate HEMT and (b) the stacked-layer MOS-HEMT.

Figure 10. Subthreshold characteristics after stress at V_{GS} of 1 V and V_{DS} of 4 V with different stress time ranged from 1 s to 1000 s at room temperature for (a) the Schottky-gate HEMT and (b) the stacked-layer MOS-HEMT.

Figure 10. Subthreshold characteristics after stress at V_{GS} of 1 V and V_{DS} of 4 V with different stress time ranged from 1 s to 1000 s at room temperature for (a) the Schottky-gate HEMT and (b) the stacked-layer MOS-HEMT.

Figure 10. Subthreshold characteristics after stress at V_{GS} of 1 V and V_{DS} of 4 V with different stress time ranged from 1 s to 1000 s at room temperature for (a) the Schottky-gate HEMT and (b) the stacked-layer MOS-HEMT.

Figure 10. Subthreshold characteristics after stress at V_{GS} of 1 V and V_{DS} of 4 V with different stress time ranged from 1 s to 1000 s at room temperature for (a) the Schottky-gate HEMT and (b) the stacked-layer MOS-HEMT.

Figure 10. Subthreshold characteristics after stress at V_{GS} of 1 V and V_{DS} of 4 V with different stress time ranged from 1 s to 1000 s at room temperature for (a) the Schottky-gate HEMT and (b) the stacked-layer MOS-HEMT.

Figure 10. Subthreshold characteristics after stress at V_{GS} of 1 V and V_{DS} of 4 V with different stress time ranged from 1 s to 1000 s at room temperature for (a) the Schottky-gate HEMT and (b) the stacked-layer MOS-HEMT.

Figure 10. Subthreshold characteristics after stress at V_{GS} of 1 V and V_{DS} of 4 V with different stress time ranged from 1 s to 1000 s at room temperature for (a) the Schottky-gate HEMT and (b) the stacked-layer MOS-HEMT.
Table 1. A summary of the dc characteristics of MOS-HEMTs with different stacked gate dielectrics in this work and by other groups.

Group	This Work	[5]	[21]	[23]	[25]	[12]
Gate oxide (nm)/Oxidation technique	Al₂O₃/ZrO₂ (1/12) RF co-sputter	Si₃N₄/HfO₂ (5/25) PEALD⁺ and RF sputter	Al₂O₃, Ga₂O₃/Gd₂O₃ (5/10) N₂O plasma and electron-beam evaporation	Al₂O₃/ZrO₂ (2/2) ALD⁺⁺	Y₂O₃/HfO₂ (1/12) PEALD⁺	Al₂O₃/HfO₂ (2/3) ALD⁺⁺
Mode	D	E	E	D	D	D
Gate length (µm)	1	2	2	2	1	1
Maximum I_DS (mA/mm)	847	600	364	540	600	800
R_on (Ω·mm)	3.82	~8.8	-	6.6	10.7	~5.0
Peak g_m (mS/mm)	181@V_DS = 4 V	170@V_DS = 10 V	105@V_DS = 8 V	94	4.8@V_DS = 0.05 V	150@V_DS = 10 V
Subthreshold swing (mV/dec)	95	85	-	-	70	-
I_ON/I_OFF	3.3 × 10⁷	10⁹	-	10⁹	10⁹	-
Dit (cm⁻²)	2.44 × 10¹¹	-	-	-	-10¹²	-

* Plasma enhanced atomic layer deposition; ++ Atomic layer deposition.

4. Conclusions
This study demonstrated the improved electrical characteristics of AlGaN/GaN MOS-HEMT with Al₂O₃/ZrO₂ stacked gate dielectrics. Improved electrical characteristics included suppressed gate leakage current, decreased flicker noise, increased high-frequency performance, better power performance, and enhanced stability after thermal stress or time stress. The gate leakage current can be reduced by three orders of magnitude due to the Al₂O₃/ZrO₂ stacked layer, which also contributed to the lower flicker noise. To further understand the stability of the proposed device, thermal and time stresses were conducted. The thermally induced degradation of I_DS was smaller than that of reference HEMT. The variation of subthreshold characteristics caused by thermal or time stress was smaller than that of the reference case, showing the proposed Al₂O₃/ZrO₂ stacked gate dielectrics are reliable for device applications.

Author Contributions: Conceptualization, C.-Y.H. and K.-W.L.; Data curation, C.-Y.H.; Formal analysis, C.-Y.H. and K.-W.L.; Funding acquisition, Y.-H.W.; Investigation, C.-Y.H., P.-C.L. and K.-W.L.; Methodology, C.-Y.H. and K.-W.L.; Project administration, Y.-H.W.; Resources, Y.-H.W.; Supervision, Y.-H.W.; Validation, C.-Y.H., S.M. and K.-W.L.; Visualization, C.-Y.H. and K.-W.L.; Writing—original draft, C.-Y.H.; Writing—review & editing, K.-W.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the Ministry of Science and Technology (MOST), Taiwan, grant numbers MOST 106-2221-E-006-219-MY3 and MOST 109-2221-E-006-075-MY2 and Transcom. Inc., Taiwan, grant number 109S0172. The flicker noise and microwave performance measurements at the Taiwan Semiconductor Research Institute, National Applied Research Laboratories, Taiwan, are highly appreciated. The authors also acknowledge the use of EDS spectra, XRD, and AFM belonging to the Core Facility Center of National Cheng-Kung University.

Conflicts of Interest: The authors declare no conflict of interest.
References

1. Mishra, U.K.; Parikh, P.; Wu, Y.-F. AlGaN/GaN HEMTs—An overview of device operation and applications. *Proc. IEEE 2002*, *90*, 1022–1031. [CrossRef]

2. Mukhopadhyay, P.; Banerjee, U.; Bag, A.; Ghosh, S.; Biswas, D. Influence of growth morphology on electrical and thermal modeling of AlGaN/GaN on sapphire and silicon. *Solid-State Electron. 2015*, *104*, 101–108. [CrossRef]

3. Hu, J.; Zhang, Y.; Sun, M.; Piedra, D.; Chowdhury, N.; Palacios, T. Materials and processing issues in vertical GaN power electronics. *Mater. Sci. Semicond. Process. 2018*, *78*, 75–84. [CrossRef]

4. Lee, K.-W.; Chou, D.-W.; Wu, H.-R.; Huang, J.-J.; Wang, Y.-H.; Houng, M.-P.; Chang, S.-J.; Su, Y.-K. GaN MOSFET with liquid phase deposited oxide gate. *Electron. Lett. 2002*, *38*, 829–830. [CrossRef]

5. Choi, W.; Seok, O.; Ryu, H.; Cha, H.Y.; Seo, K.S. High-voltage and low-leakage-current gate recessed normally-off GaN MIS-HEMTs with dual gate insulator employing PEALD-SiNx/RF-sputtered-HfO2. *IEEE Electron Device Lett. 2014*, *35*, 175–177. [CrossRef]

6. Sato, T.; Okayasu, J.; Takikawa, M.; Suzuki, T. AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistors with very high-κ oxynitride TaOxNy gate dielectric. *IEEE Electron Device Lett. 2013*, *34*, 375–377. [CrossRef]

7. Tang, Z.; Jiang, Q.; Lu, Y.; Huang, S.; Yang, S.; Tang, X.; Chen, K.J. 600-V Normally Off SiNx/AlGaN/GaN MIS-HEMT with Large Gate Swing and Low Current Collapse. *IEEE Electron Device Lett. 2013*, *34*, 1373–1375. [CrossRef]

8. Corrion, A.L.; Shinohara, K.; Regan, D.; Milosavljevic, I.; Hashimoto, P.; Willadsen, P.J.; Schmitz, A.; Kim, S.J.; Butler, C.M.; et al. High-speed AlN/GaN MOS-HFETs with scaled ALD Al2O3 gate insulators. *IEEE Electron Device Lett. 2011*, *32*, 1062–1064. [CrossRef]

9. Shrestha, P.; Guidry, M.; Romanczyk, B.; Hatui, N.; Mush, C.; Krishna, A.; Pasayat, S.S.; Karnaty, R.R.; Keller, S.; Buckwalter, J.F.; et al. High Linearity and High Gain Performance of N-Polar GaN MIS-HEMT at 30 GHz. *IEEE Trans. Electron Devices 2010*, *57*, 681–684. [CrossRef]

10. Rzin, M.; Routoure, J.-M.; Guillet, B.; Mechin, L.; Morales, M.; Lacam, C.; Gamarra, P.; Rutenera, P.; Medjdoub, F. Impact of Gate–Drain Spacing on Low-Frequency Noise Performance of In Situ SiN Passivated InAlGaN/GaN MIS-HEMTs. *IEEE Trans. Electron Devices 2017*, *64*, 2820–2825. [CrossRef]

11. Chiu, H.C.; Wang, H.Y.; Peng, L.Y.; Wang, H.C.; Kao, H.L.; Hu, C.W.; Xuan, R. RF performance of in situ SiN gate dielectric AlGaN/GaN MISHEMT on 6-in silicon-on-insulator substrate. *IEEE Trans. Electron Devices 2017*, *64*, 4065–4070. [CrossRef]

12. Yue, Y.; Hao, Y.; Zhang, J.; Ni, J.; Mao, W.; Feng, Q.; Liu, L. AlGaN/GaN MOS-HEMT with HfO2 dielectric and Al2O3 interfacial passivation layer grown by atomic layer deposition. *IEEE Electron Device Lett. 2008*, *29*, 838–840. [CrossRef]

13. Wu, T.Y.; Lin, S.K.; Sze, P.W.; Huang, J.J.; Chien, W.C.; Hu, C.C.; Tsai, M.J.; Wang, Y.H. AlGaN/GaN MOSHEMTs with Al2O3 gate dielectric deposited by atomic layered deposition. *IEEE Electron Devices Lett. 2009*, *30*, 2911–2916. [CrossRef]

14. Byun, Y.C.; Lee, J.G.; Meng, X.; Lee, J.S.; Lucero, A.T.; Kim, S.J.; Young, C.D.; Kim, M.J.; Kim, J. Low temperature (100 °C) atomic layer deposited ZrO2 for recessed gate GaN HEMTs on Si. *Appl. Phys. Lett. 2017*, *111*, 082905. [CrossRef]

15. Yang, S.-K.; Mazumder, S.; Wu, Z.-G.; Wang, Y.-H. Performance Enhancement in N2 Plasma Modified AlGaN/AIN/GaN MOS-HEMT Using HFAlOx Gate Dielectric with F-Shaped Gate Engineering. *Materials 2021*, *14*, 1534. [CrossRef]

16. Turchenko, V.A.; Trukhanov, A.V.; Bobrikov, I.A.; Trukhanov, S.V.; Balagurov, A.M. Study of the crystalline and mag-netic structures of BaFe11.4Al0.6O19 in wide temperature range. *J. Surf. Investig. X-Ray Synchrotron Neutron Tech. 2015*, *9*, 17–23. [CrossRef]

17. Botzakaki, M.A.; Xanthopoulos, N.; Makarona, E.; Tsamis, C.; Kennou, S.; Ladas, S.; Georga, S.N.; Kontritas, C.A. ALD de-posed ZrO2 ultrathin layers on Si and Ge substrates: A multiple technique characterization. *Microelectronic. Eng. 2013*, *111*, 202–218. [CrossRef]

18. Zhang, F.; Sun, G.; Zheng, L.; Liu, S.; Liu, B.; Dong, L.; Wang, L.; Zhao, W.; Liu, X.; Yan, G.; et al. Interfacial stress and energy-band alignment of annealed Al2O3 films prepared by atomic layer deposition on 4H-SiC. *J. Appl. Phys. 2013*, *113*, 044112. [CrossRef]

19. Hao, S.-Z.; Zhou, D.; Pang, L.-X.; Dang, M.-Z.; Sun, S.-K.; Zhou, T.; Trukhanov, S.; Trukhanov, A.; Sombra, A.S.B.; Li, Q.; et al. Ultra-low temperature co-fired ceramics with adjustable microwave dielectric properties in the Na2O-B2O3-MoO3 ternary system: A comprehensive study. *J. Mater. Chem. C 2022*, *10*, 2008–2016. [CrossRef]

20. Almessiere, M.A.; Algarou, N.A.; Slimani, Y.; Sadaqat, A.; Baykal, A.; Manikandan, A.; Tukhanov, S.V.; Tukhanov, A.V.; Ercan, I. Investigation of exchange coupling and microwave properties of hard/soft (SrNi0.98Zr0.02Fe11.96O19)/(CoFe2O4)x nanocomposites. *Mater. Today Nano 2022*, *18*, 100186. [CrossRef]

21. Chiu, H.C.; Wu, J.H.; Yang, C.W.; Huang, F.H.; Kao, H.C. Low-frequency noise in enhancement-mode GaN MOS-HEMTs by using stacked Al2O3/Ga2O3/Gd2O3 gate dielectric. *IEEE Electron Device Lett. 2012*, *33*, 958–960. [CrossRef]

22. Hove, M.V.; Kang, X.; Stoffels, S.; Wellekens, D.; Ronchi, N.; Venegas, R.; Geens, K.; Decoutere, S. Fabrication and performance of Au-free AlGaN/GaN-on silicon power devices with Al2O3 and Si3N4/Al2O3 gate dielectrics. *IEEE Trans. Electron Devices 2013*, *60*, 3071–3078. [CrossRef]

23. Hatano, M.; Taniguchi, Y.; Kodama, S.; Tokuda, H.; Kuzuhara, M. Reduced gate leakage and high thermal stability of Al-GaN/GaN MIS-HEMTs using ZrO2/Al2O3 dielectric stack. *Appl. Phys. Express 2014*, *7*, 044101. [CrossRef]

24. Watanabe, K.; Terashima, D.; Nozaki, M.; Yamada, T.; Nakazawa, S.; Ishida, M.; Ando, Y.; Ueda, T.; Yoshigoe, A.; Hosoi, T.; et al. SiO2/AlON stacked gate dielectrics for AlGaN/GaN MOS heterojunction field-effect transistors. *Jpn. J. Appl. Phys. 2018*, *57*, 06KA03. [CrossRef]
25. Shi, Y.T.; Xu, W.Z.; Zeng, C.K.; Ren, F.F.; Ye, J.D.; Zhou, D.; Chen, D.J.; Zhang, R.; Zheng, Y.; Lu, H. High-k HfO$_2$-based AlGaN/GaN MIS-HEMTs with Y$_2$O$_3$ interfacial layer for high gate controllability and interface quality. *IEEE J. Electron Devices Soc.* **2020**, *8*, 15–19. [CrossRef]

26. Asubar, J.T.; Yatabe, Z.; Gregusova, D.; Hashizume, T. Controlling surface/interface states in GaN-based transistors: Surface model, insulated gate, and surface passivation. *J. Appl. Phys.* **2021**, *129*, 121102. [CrossRef]

27. Wang, Y.; Wang, M.; Xie, B.; Wen, C.P.; Wang, J.; Hao, Y.; Wu, W.; Chen, K.J.; Shen, B. High-performance normally-off Al$_2$O$_3$/GaN MOSFET using a wet etching-based gate recess technique. *IEEE Electron Device Lett.* **2013**, *34*, 1370–1372. [CrossRef]

28. Marso, M.; Heidelberger, G.; Indlekofer, K.M.; Bernát, J.; Fox, A.; Kordoš, P.; Lüth, H. Origin of improved RF performance of AlGaN/GaN MOSHFETs compared to HFETs. *IEEE Trans. Electron Devices* **2006**, *53*, 1517–1523. [CrossRef]

29. Gregušová, D.; Stoklas, R.; Eickelkamp, M.; Fox, A.; Novák, J.; Vescan, A.; Grützmacher, D.; Kordoš, P. Characterization of AlGaN/GaN MISHFETs on a Si substrate by static and high-frequency measurements. *Semicond. Sci. Technol.* **2009**, *24*, 075014. [CrossRef]

30. Shoucair, F.S.; Ojala, P.K. High-temperature electrical characteristics of GaAs MESFET’s (25–400 °C). *IEEE Trans. Electron Devices* **1992**, *39*, 1551–1557. [CrossRef]

31. Maeda, N.; Tsubaki, K.; Saitoh, T.; Kobayashi, N. High-temperature electron transport properties in AlGaN/GaN hetero-structures. *Appl. Phys. Lett.* **2001**, *79*, 1634–1636. [CrossRef]