THE PRODUCTION OF BIOETHANOL FROM CUSTARD APPLE PEELS (ANNONA SQUAMOSA) USING SACCHAROMYCES CEREVISIAE

SHINEY JUDITH. M & P. MUTHUSAMY
Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India

ABSTRACT
Bioethanol can be produced through fermentation process from the renewable sources for fuel and fuel additives. There is an increase in the need of bioethanol; hence the bioethanol must be produced using cheap and eco-friendly raw materials. According to these characteristics, fruit wastes can be considered as cheap and cost effective. In this study, the peels of the Annona squamosa (custard apple) were used as a raw material for the production of bioethanol using Saccharomyces cerevisiae and the results were compared using different parameters like time, temperature, pH and amount of yeast. The results of this work show that the rate of ethanol production through the fermentation of custard apple wastes yields are very high at pH 6, temperature 40°C, 7th day, and 10g of yeast and the yield obtained from the optimized parameters is 22.8% (v/v). The results of this present study proposed that the wastes from the fruits that comprises fermentable sugar should not be cast-off on our environment, rather it should be converted into a useful product like bioethanol that can assist as an another energy source.

KEYWORDS: Bioethanol, Annonasquamosa, Saccharomyces Cerevisiae & Fermentation

Received: Feb 28, 2019; Accepted: Mar 22, 2019; Published: Apr 23, 2019; Paper Id.: IJASRJUN20196

INTRODUCTION

Generally, Ethanol is used as a fuel additive and a motor fuel. In industries, it is used as a significant component and it used as a base chemical, an antibacterial hand sanitizer gels and as an antiseptic and also used in medical wipes (Janani et al., 2013). Approximately 80% is the supply of alcohol that has been produced by the fermentation of sugar and starch (Sandhesh et al., 2014). Ethanol provides energy that is renewable. For a proficient ethanol production, four constituents should be required (i.e., fermentable sugars, yeast strain, nutrients and the culture conditions). By using an agricultural feedstock, bioethanol a type of renewable energy source is produced. The first generation of production of ethanol consumed corn as a substrate and later it is well thought out as a feedstock which hints to the second generation of ethanol production which makes use of microorganisms and different wastes as substrates.

On everyday base, heaps of agro-bio wastes are generated, but it is of no use. If we enhance some amount of value to these waste products, we get necessary value added products. After the fermentation process, the waste materials can be utilized as a soil fertilizer (Ishwar et al., 2013). Fruit wastes have good antibacterial and antioxidant properties. The cheapest and the easily accessible raw material for the production of bioethanol are fruit wastes. It is the latent basis from which the ethanol can be produced. The present study was carried out to investigate the production of bioethanol by Saccharomyces cerevisiae utilizing custard apple peels and to optimize the ethanol using different parameters such as pH, time, temperature, amount of yeast.
MATERIALS AND METHODS

Preparation of Custard Apple Peels

Custard apple peels were washed with distilled water and are cut into small pieces and kept in a sunlight for few days, then kept in oven under 55°C for drying (Shilpa et al., 2013).

Preparation of Substrate

After drying, a sample was taken in a pestle and mortar, grinded well and made into powdered form. The powder stored for the further process to be carried out for the project (Subhash et al., 2016).

Fermentation Process

About 50g of the sample weighed separately and 5g of yeast added into it to carry out the fermentation process (Janani et al., 2013). The sample was then kept for incubation in an incubator shaker at 30°C, 100rpm and pH 7. The fermentation system optimized using various parameters like time, temperature, pH, the concentration of the inoculum (Saravana et al., 2013, Irfan et al., 2014, Abebe et al., 2015).

Extraction of Ethanol by Distillation

Distillation unit at boiling point at 78°C used to separate the mixture of ethanol and other residues. For distillation, batch distillation was adopted.

Alcohol Content Estimation

The distilled product sample will be undergoing potassium dichromate method for the estimation of ethanol (Girish et al., 2014).

Optimization of Bioethanol

The optimization was done using different parameters such as pH, time, temperature, the amount of the substrate and yeast. The samples will be established in a varying pH values (pH=4.5-6.5) and varying temperature (25°C-45°C) and varying concentration of yeast (2.5g-12.5g) in order to find out the effect of pH, time, temperature, the amount of substrate and yeast in the ethanol production (Sandhesh et al., 2014, Irfan et al., 2014, Adriana et al., 2015).

RESULTS AND DISCUSSIONS

In this study, it has been investigated that a significant amount of ethanol can be produced from the wastes of the custard apple. The relative study has been done to check the efficiency of ethanol produced from the fruit waste by deciding different parameters. The impact of different parameters on the production of ethanol is presented as follows:

Effect of Time on Ethanol Production

From 0th day to 12th day at regular intervals of 24 hours, the alcohol content was estimated using potassium dichromate method and it was observed that the alcohol content increases from day 1 and it further increases day by day. The maximum alcohol content was produced in the 7th day. After 7th day the alcohol content decreases gradually. It was found that the ethanol was produced at the maximum on day 7. The percentage of ethanol obtained on the 7th day is 19.24% (From graph).
Effect of pH, Temperature, Amount of Yeast on Ethanol Production

pH value has an important effect on the alcoholic fermentation. The pH values of ethanol produced by the process of fermentation ranges from 4.5-6.5. Yeasts survive in a slightly acidic environment. Among this range ethanol produced from custard apple fruit wastes had on higher alcoholic content at pH 6. The maximum alcohol percent obtained at the pH 6 is 11.2% (v/v).

Temperature plays an important role in the production of ethanol, since the alcoholic fermentation increases with the increase in the temperature. The optimum temperature of ethanol ranges from 25°C-45°C which depends on room temperature. The highest yield obtained at 40°C is 12.25% (v/v).

For the yeast concentration the rates increased rapidly with the increase in the amount of yeast added, up to the yeast concentration of 10g/100g of substrate and the optimum yield was obtained up to 20.8% (v/v).

CONCLUSIONS

In my present study, ethanol obtained from the custard apple peels using yeast species *Saccharomyces cerevisiae*. The results conclude that a more concentrated form of ethanol might be attained by re-distillating the product ethanol obtained initially by a developed grade of distillation set up. The more concentrated form of ethanol possibly well used as a biofuel, which discharges no poisonous gases out in the environment. This method is easy approachable to the environment and the leftward residues after the fermentation process can be disposed in the soil acting as a fertilizer for the soil. So even a common man may develop this process and produce it on a commercial basis.

The fermentation of substrate using *S.cerevisiae* (distillery strain) under optimized conditions i.e. pH 6 and temperature 40°C revealed an increase in ethanol production with good fermentation efficiency. However fermentation
efficiency deceases after 7th day of fermentation time. This might be due the either substrate limitations or due to product inhibition. S. cerevisiae reportedly showed the decrease in growth with an increase in ethanol concentration in the medium.

REFERENCES

1. Aastha Bhardwaj, Gouri Satpathy, Rajinder Kumar Gupta. (2014) “Preliminary screening of nutraceutical potential of Annonas squamosa, an underutilized exotic fruit of India and its use as a valuable source in functional foods”, Journal of Pharmacognosy and Phytochemistry 3(2), 172-180.

2. Abebe Reda Woldu, Yenework Nigussie Ashagrie, Yeshitila Asteray Tsigie. (2015) “Bioethanol Production from Avocado Seed Wastes Using Saccharomyces Cerevisiae”, American Journal of Environment, energy and Power Research 3(1), 1-9.

3. Adriana L. Clementz, Nora R. Aimaretti, Debora Manuale, Agustì Codevilla, Juan C. Yori. (2015) “Optimization of ethanol fermentation from discarded carrots using immobilized Saccharomyces cerevisiae”, Int J Energy Environ Eng (2015) 6:129-135.

4. Ajay. V. Gawali, Sapna K. Deotale, Tousf Yunus Shaikh. (2017) “Annona Squamosa: A Source of Natural Pesticide”, International Advanced Research Journal in Science, Engineering and Technology 4(3), 189-190.

5. Ali, W. D. A., Khudair, Z. W., & Abed, M. J. Histopathological Changes in Male Rabbits Thyroid Gland Following Drenching of Nickel Chloride and the Ameliorating Effect of Ethanolic Silybum Marianum Seeds Extract.

6. Almodares. A and Hadi. M.R (2008) “Production of bioethanol from sweet sorghum: A review”, African Journal of Agricultural Research 4 (9), 772 – 780.

7. An, L., & Zhao, T. S. (2011). An alkaline direct ethanol fuel cell with a cation exchange membrane. Energy & Environmental Science, 4(6), 2213-2217.

8. Bakane P.H, Khakare M.M., Gajabe M.H, Borkarand P.A. and Khobragade H.M. (2018) Comparative storage study of custard apple pulp separated by machine and manual, International Journal of Agriculture Sciences 7 (8 ), 647-651.

9. Deva Krisna Kadarani, Setyadjit, Djarot Sasongko Hami Seno, Ermi Sukasih. (2015) “Total Phenol and Antioxidant from Seed and Peel of Ripe and Unripe of Indonesian Sugar Apple (Annonasquamosa L.) Extracted with Various Solvents”, Journal of Pharmacy 5(10), 20-25.

10. Ekin Demiray, Sevgi Ertuğrul Karatay, Gönül Dönmez. (2018) “Evaluation of Pomegranate Peel in Ethanol Production by Saccharomyces cerevisiae and Pichia stipitis”, Science Direct, 06.200.

11. Eman Zakaria Gomaa. (2013) “Bioconversion of orange peels for ethanol production using Bacillus subtilis and Pseudomonas aeruginosa”, African Journal of Microbiology Research 7(14), 1266-1277.

12. Evanie, Devi Deenanath, Karl Rumbold and Sunny Iyuke.(2013) “The Production of Bioethanol from Cashew Apple Juice by Batch Fermentation Using Saccharomyces cerevisiae Y2084 and Vin13”, Hindawi Publishing Corporation ISRN Renewable Energy Volume 2013, Article ID 107851, 11 pages.

13. Galbe. M, Zacchi.G. (2002) “A review of the production of ethanol from softwood”, Appl Microbiol Biotechnol (2002) 59:618–628.

14. Hari Shankar Vishwakarma, Abhishek Kumar, Jyoti Singh, Shipra Dwivedi, Mahendra Kumar. (2014) “Production of Ethanol from Fruit Wastes by using Saccharomyces cerevisiae”, International Journal of Renewable energy and Technology 3(10), 1 – 5.
15. Ishwar Chandra, SaxenaAbha, Bandypadhyay K.K, SaxenaShruti, PrajapatiPriya, Jain Prachi, DhawanShabha. (2013) “Bioethanol Production By Zymomonas mobilis MTCC No. 2427 Using Orange Peels As Low Cost Substrates”, International Journal of ChemTech Research 5(6), 2787-2792.

16. Itelima.J, OnwuliriF, Onwuliri.E, Isaac Onyimba, and Oforji.S (2013) “Bio-Ethanol Production from Banana, Plantain and Pineapple Peels by Simultaneous Saccharification and Fermentation Process”, International Journal of Environmental Science and Development 4(2), 213-216.

17. Janani K., Ketzi M., Megavathi S, Dr.Vinothkumar D. Dr. Ramesh Babu N.G. (2013). “Comparative Studies of Ethanol Production from Different Fruit Wastes Using Saccharomyces cerevisiae”, International Journal of Innovative Research in Science, Journal Engineering and Technology 2(12), 7161-7167.

18. Jill A. Richardson. (2013) “Ethanol (C2H5OH) is an intoxicating, energy-yielding molecule produced by alcoholic fermentation from plants with high carbohydrate content (e.g., barley, wheat, corn, and grapes)”, Science Direct, 01-06.

19. JovanaGrahovac, JelenaDodic, AleksandarJokic, SinišaDodic, Stevan Popov. (2012) “Optimization of ethanol production from thick juice: A response surface methodology approach”, Elsevier, Fuel 93 (2012) 221–228.

20. K Karthikeyan, S Abitha, V G Saravanan Kumar.(2016) “Identification of Bioactive Constituents in Peel, Pulp of Prickly Custard Apple (Annonamuricata) and its Antimicrobial Activity”, International Journal of Pharmacognosy and Phytochemical Research 8(11), 1833-1838.

21. Meenakshi.A, Kumaresan.R (2014) “Ethanol Production from Corn, Potato Peel Waste and its Process Development”, International Journal of Chem Tech Research, 6(5), 2843-2853.

22. Mohammad Zahid, MohdMujahid, Prashant Kumar Singh, Sana Farooqui, Kuldeep Singh, ShahlaParveen and Muhammad Arif. (2018) “Annonasquamosalinn. (custard apple): an aromatic medicinal plant fruit with immense nutraceutical and therapeutic potential”, International Journal of Pharmaceutical Sciences and Research 9(5), 1745-1759.

23. Muhammad Irfan, Muhammad Nadeem, and Quratualain Syed. (2014) “Ethanol production from agricultural wastes using Saccharomyces cerevisiae”, Brazilian Journal of Microbiology, 45(2): 457–465.

24. NareshSharma.K. L, Kalra · Harinder Singh Oberoi Sunil Bansal.(2007) “Optimization of fermentation parameters for production of ethanol from kinnow waste and banana peels by simultaneous saccharification and fermentation”, Indian J. Microbiol.47, 310–316.

25. NatapongKawjit, ThitipornCharusekreesakul, Visa Thongrakard, SiripornSangsuthum and TewinTencomnao. (2014) “Suppressive effect of ethanolic extract of AnnonasquamosaL. Leaves on the expression of Id1 biomarker: Phytochemical investigation and antioxidant activity study”, Journal of Chemical and Pharmaceutical Research 6(1), 499-506.

26. Nararajan.A, Jayavelu.A, Thangamani.R, Devi.K and SenthilKumar.B (2015) “Protective potential of ethanol extract of Annonasquamosa against cisplatin induced hepatorenal toxicity in albino rats”, Life Science Archives (LSA) 1(5), 322- 328.

27. Patil, kurhekar.(2011) “Study on development of custard apple carbonated beverage”, International journal of processing and post-harvest technology 2 (1), 56-58.

28. Qiu Han Seera.B, JobrunNandong. (2016) “Advanced Expanded Microbial Kinetics (EMK) Model for Ethanol Production from Mixed Cassava and Fruit Wastes”, Science Direct, Procedia Engineering 148 (2016) 417 – 425.

29. RajsekharSaha. (2011) “Pharmacognosy and pharmacology of Annonasquamosa: A review”, International Journal of pharmacy & life sciences 2(10), 1183-1189.
30. Reena Nair and Vijay Agrawal. (2017) “A Review on the Nutritional Quality and Medicinal Value of Custard Apple—An Under Utilised Crop of Madhya Pradesh, India”, International Journal of Current Microbiology and Applied Sciences 6(9), 1126–1132.

31. Rueda O. Darwin, Angulo Alexandria, Mafla Elena, BangeppagariManjunatha, Rueda B. Bryan, Gangireddygarvi V. Subbareddy, Naga RajaMaddela and BugadeRajeswari. (2017) “Comparative study of native microorganisms isolated from watermelon (Citrulluslanatus) waste and commercial microorganism (Clostridium thermocellum) used for bioethanol production”, African Journal of Biotechnology 16(9), 380–387.

32. Salem, S. A., El-Mergawi, R. A., & I S, A. (2015). Effect Of Technological Processing And Fermentation Of Soy Milk On The Content of Isoflavones and Antioxidant Status. IMPACT: International Journal of Research in Applied, Natural and Social Sciences (IMPACT: IJRANSS), 3(5), 1–8.

33. SaneshBabu, K.M.Harinikumar, Ravi Kant Singh and AditiPandey. (2014). “Optimization of Bioethanol Production from Fruit Wastes using Isolated Microbial Strains”, International Journal of Advanced Biotechnology and Research (IJBR) 5(4), 598–604.

34. Saravana Murugan.C and Rajendran.S. (2013) “Bioethanol Production from Agave Leaves Using Saccharomyces cerevisiae (MTCC 173) and Zymomonosmasobilis (MTCC 2427)”, International Journal of Microbiological Research 4 (1), 23-26.

35. Shilpa C., GirishaMalhotra and Chanchal. (2013) “Alcohol Production from Fruit and Vegetable Waste”, International Journal of Applied Engineering Research 8(15), 1749–1756.

36. ShinnosukeOnuki, Jacek A. Koziel, Johannes van Leeuwen, William S. Jenks, David A. Grewell, and LingshuangCai. (2008) “Ethanol production, purification, and analysis techniques: a review”, Agriculture and biosystems engineering, Conference proceedings, 085136.

37. Siddalingappa, R.Hotti and Omprakash D. Hebba. (2015) “Biodiesel Production Process Optimization from Sugar Apple Seed Oil (Annonasquamosa) and Its Characterization”, Journal of Renewable Energy 2015, 01-06.

38. Sinthiya.R,Poornima.K. (2017) “Value Added Products from Annona Fruit”, Journal of Environmental Science, Toxicology and Food Technology 11(8), 01-06.

39. SitiHajar Mohd Azhar, Rahmath Abdullaa, SitiAzmah Jamboa, Hartinie Marbawia, Jualang Azlan Gansaa, Ainol Azifa Mohd Faika, Kenneth Francis Rodrigues. (2017) “Yeasts in sustainable bioethanol production: A review”, Biochemistry and Biophysics Reports 10, 52–61.

40. Soma Roy, Prashanth Lingampeta. (2014) “Solid wastes of fruits peels as source of low cost broad spectrum natural antimicrobial compounds furanone, furfural and benezenetriol”, International Journal of Research in Engineering and Technology 3(7), 273-279.

41. Subhash Kumar Mishra, Ramesh Chandra and Ramjee Singh. (2016) “Waste potatoes as an alternative source for the production of bioethanol by co-culture of Saccharomyces cerevisiae and Aspergillusniger”, International Journal of Current Research 8(5), xxx–xxx.

42. Tiwari, S.K. Jadhav and Tiwari. (2011) “Studies of Bioethanol Production from Some Carbohydrate Sources by Gram Positive Bacteria”, Journal of Sustainable Energy & Environment 2, 141-144.

43. Togarepi.E, Mapiye.C, Muchanyereyi.N and Dzomba.P.(2012) “Optimization of Fermentation Parameters for Ethanol Production from Ziziphusmauritiana Fruit Pulp Using Saccharomyces cerevisiae (NA33)”, International Journal of Biochemistry Research & Review 2(2), 60-69.
44. Umesh B. Jagtap, Vishwas A. Bapat. (2015) “Wines from fruits other than grapes: Current status and future prospectus”, Elsevier, Food Bioscience 9(2015), 80-96.

45. Umesh Balkrishna Jagtap, Vishwas Anant Bapat. (2012) “Antioxidant activities of various solvent extracts of custard apple (Annonasquamosa L.) Fruit pulp”, Nutrafoods 11, 137-144.

46. Venkatachalapathy Girish, Krishnappa Ravi Kumar and Sirangala Thimmappa Girisha. (2014) “Estimation of sugar and bio ethanol from different decaying fruits extract”, Advances in Applied Science Research 5(1), 106-110.

47. Vikas Kumar P, Veeranna Goud J, Dilip Babu and Subhash Reddy R. (2011) “Preparation and evaluation of custard apple wine: Effect of dilution of pulp on physico-chemical and sensory quality characteristics”, Int. J. Fd. Ferm. Tech. 1(2) 2011: 247-253.

48. Wahidin Nurianaa, Wuryantor. (2015) “Ethanol Synthesis from Jackfruit (Artocarpusheterophyllus Lam.) Stone Waste as Renewable Energy Source”, Science Direct, Energy Procedia 65 (2015) 372 – 377.

49. Win Min Oo, Myat Mon Khine. (2017) “Pharmacological Activities of Annonasquamosa: Updated Review”, International Journal of Pharmacy and Chemistry 3(6), 86-93.

50. You Ra Gwak, Ye Bin Kim, In Seop Gwak, See Hoon Lee. (2018) “Economic evaluation of synthetic ethanol production by using domestic biowastes and coal mixture”, Elsevier, Fuel (213), 115-122.
