White Matter Abnormalities Are Related to Microstructural Changes in Preterm Neonates at Term-Equivalent Age: A Diffusion Tensor Imaging and Probabilistic Tractography Study

BACKGROUND AND PURPOSE: Preterm infants have a high risk of brain injury and neurodevelopmental impairment, often associated with WMA on conventional MR imaging. DTI can provide insight into white matter microstructure. The aim of this study was to investigate the association between WMA on conventional MR imaging and DTI parameters in specific fibers in preterm neonates at term-equivalent age.

MATERIALS AND METHODS: Seventy preterm neonates (39 boys and 31 girls) were included in the study. WMA were classified as no, mild, moderate, or severe. Probabilistic tractography provided tract volumes, FA, MD, λ∥, and λ⊥ in the CST, SLF, TRs, and corpus callosum. Data were compared by using MANOVA, and adjustment for multiple comparisons was performed.

RESULTS: Important associations were found between WMA and microstructural changes. Compared with neonates with no WMA (n = 41), those with mild WMA (n = 27) had significantly increased λ⊥ and MD in the left ATR, the left sensory STR, the bilateral motor STR, and for λ∥ also in the right CST; FA decreased significantly in the left sensory STR. Diminished tract volumes and altered diffusion indices were also observed in the 2 neonates with moderate WMA.

CONCLUSIONS: Altered DTI indices in specific tracts, with λ⊥ as most prominent, are associated with mild WMA in preterm neonates at term-equivalent age.

ABBREVIATIONS: ATR = anterior thalamic radiation; CST = corticospinal tract; λ∥ = longitudinal diffusivity; λ⊥ = transverse diffusivity; MANOVA = multivariate analysis of variance; MD = mean diffusivity; pre-OL = pre- and immature oligodendroglial cells; PTR = posterior thalamic radiation; SLF = superior longitudinal fasciculus; STR = superior thalamic radiation; TRs = thalamic radiations; WMA = white matter abnormalities

The incidence of preterm birth is increasing and accounts for 5%–13% in industrialized countries.1 Preterm infants are at high risk of brain injury and poor neurodevelopmental outcome. Motor disabilities are typical, with approximately 2%–7% of preterm infants developing cerebral palsy,2 usually associated with cystic periventricular leukomalacia on MR imaging.3-5 Cognitive, behavioral, and social difficulties are more common than motor dysfunction6-7; however, their correlation with imaging is still debated. They may be associated with subtle WMA—for example, diffuse excessive high signal intensity on T2-weighted images8 and other abnormal T1 or T2 signals.9,10 Woodward et al11 have shown that WMA on conventional MR imaging at term-equivalent age (gestational age of 40 weeks) predict adverse neurodevelopmental outcomes at 2 years of age in preterm infants. However, the evaluation of conventional MR imaging is limited in qualitative assessments, and it does not provide information on the extent of the injury in specific white matter pathways.

DTI is currently the best noninvasive technique to assess microstructural changes in white matter pathways. DTI enables quantitative assessment of brain normal structures and lesions by calculating FA, MD, λ∥, and λ⊥. FA expresses the fraction of anisotropic diffusion. MD corresponds to the directionally averaged magnitude of water diffusion. λ∥ expresses the parallel diffusion to white matter fibers; a marked decrease of λ∥ reflects axonal injury.12 λ⊥ expresses the perpendicular diffusion to the fiber direction; an increase of λ⊥ indicates reduced oligodendroglial integrity around the axons.12

Fiber tracking allows the visualization of white matter tracts. Previous studies have showed significant region-specific changes in diffusion indices in preterm infants with WMA at term-equivalent age.13-15 However, the diffusion indices of these studies were obtained from predefined ROIs in white matter but not in specific fiber tracts. Only a few studies have used DTI and tractography for the assessment of white matter injury in neonates,16,17 and most tractography studies were performed on children older than 2 years of age and usually in a small cohort.18-20 Little is known about the microstructural changes in specific fiber tracts in the preterm brain.
at term-equivalent age, and to our knowledge, no study has yet shown the association between microstructural changes by fiber tracking and WMA graded according to Woodward et al.11

In this study by using DTI and probabilistic tractography, we investigated DTI parameters (tract volume, FA, MD, λ₁, and λ₂) in the CST, SLF, TRs, and corpus callosum. The aim of the study was to investigate whether WMA on conventional brain MR imaging are related to diffusion changes in specific fiber tracts.

Materials and Methods

Patients

During a 5-year period (from October 2005 to September 2010) in our institution, 301 preterm neonates underwent brain MR imaging without sedation for detecting lesions related to premature birth.11 Two hundred twenty-six neonates were excluded from the study due to the movement artifacts on conventional MR imaging or on DTI. Furthermore, we excluded 3 neonates with known malformations or

Table 1: WMA assessment at conventional MRI

Characteristics	Score 1	Score 2	Score 3
White matter signal abnormality	Normal	Focal regions (<2 regions per hemisphere)	Multiple regions (>2 regions)
	34/70 (48.6%)	15/70 (21.4%)	21/70 (30.0%)
White matter volume loss	Normal	Mild reduction with increased ventricular size (Ei = 0.3–0.36)	Marked reduction with increased ventricular size (Ei > 0.36)
	61/70 (87.1%)	37/70 (12.9%)	0/70 (0%)
Cystic abnormalities	Normal	<2-mm single focal cyst	Multiple cysts or a single larger (>2 mm) focal cyst
	66/70 (94.3%)	0/70 (0%)	4/70 (5.7%)
Ventricular dilation	Normal	Mild-moderate enlargement of the frontal, temporal, and occipital horns	More global enlargement of the frontal, temporal, and occipital horns
	57/70 (81.4%)	12/70 (17.2%)	1/70 (1.4%)
Thinning of the corpus callosum	Normal	Focal thinning in the corpus callosum	Global thinning across the entire corpus callosum
	54/70 (77.2%)	15/70 (21.4%)	1/70 (1.4%)

Note: Ei indicates Evans Index.

![Fig 1](https://example.com/fig1.jpg)
Fig 1. Tracts are shown on T2-weighted images in neonate with no WMA, scanned at 36 weeks corrected gestational age (A–D) and in neonate with moderate WMA, scanned at 36 weeks (E–H). Axial images (A, B) show the Ths (ATR in yellow, motor STR in yellow-red, sensory STR in blue and PTR in dark green). Axial images (B, F) show the corpus callosum (dark red). Sagittal images (C, G) show the frontoparietal SLF (dark blue) and parietotemporal SLF (pink). Coronal (D, H) images show the CSTs (light green). Images were obtained from a 1.5T magnet (Philips Achieva, Best, The Netherlands).
congenital infections: 1 infant with Chiari type III, 1 with polymicrogyria, and 1 with congenital cytomegalovirus infection. Finally, 72 preterm neonates with applicable DTI sequences and conventional MR imaging were studied.

The study was approved by the ethics committee of our institution (Reference: P2004/207 and P2009/234), and informed written parental consent was obtained for each participant.

Table 2: FA in each tract

Tract	Preterm with No WMA (n = 41) (mean) (SD)	Preterm with Mild WMA (n = 27) (mean) (SD)	Preterm with Moderate WMA (n = 2) P Value
CST (left)	0.28 (0.03)	0.27 (0.04)	.022 Case 1: 0.25
CST (right)	0.26 (0.04)	0.26 (0.04)	.005 Case 1: 0.21
Frontoparietal SLF (left)	0.17 (0.03)	0.16 (0.03)	.020 Case 1: 0.12
Frontoparietal SLF (right)	0.18 (0.02)	0.16 (0.03)	.004 Case 1: 0.11
Parietotemporal SLF (left)	0.17 (0.02)	0.16 (0.03)	.077 Case 1: 0.09
Parietotemporal SLF (right)	0.16 (0.02)	0.15 (0.03)	.191 Case 1: 0.11
ATR (left)	0.19 (0.02)	0.18 (0.03)	.012 Case 1: 0.16
ATR (right)	0.10 (0.02)	0.18 (0.03)	.045 Case 1: 0.12
Motor STR (left)	0.25 (0.03)	0.23 (0.04)	.005 Case 1: 0.22
Motor STR (right)	0.25 (0.03)	0.24 (0.05)	.024 Case 1: 0.19
Sensory STR (left)	0.24 (0.03)	0.22 (0.03)	<.001* Case 1: 0.15
Sensory STR (right)	0.23 (0.02)	0.22 (0.04)	.006 Case 1: 0.17
PTR (left)	0.21 (0.03)	0.20 (0.03)	.103 Case 1: 0.09
PTR (right)	0.21 (0.02)	0.20 (0.03)	.009 Case 1: 0.11
Corpus callosum	0.26 (0.03)	0.24 (0.03)	.016 Case 1: 0.14

*The P value reaches statistical significance after controlling for false discovery rate (P < .003).

Table 3: MD (10^-3mm²/s) in each tract

Tract	Preterm with No WMA (n = 41) (mean) (SD)	Preterm with Mild WMA (n = 27) (mean) (SD)	Preterm with Moderate WMA (n = 2) P Value
CST (left)	1.340 (0.10)	1.362 (0.09)	.027 Case 1: 1.45
CST (right)	1.338 (0.09)	1.377 (0.12)	.005 Case 1: 1.45
Frontoparietal SLF (left)	1.45 (0.10)	1.45 (0.12)	.458 Case 1: 1.57
Frontoparietal SLF (right)	1.43 (0.10)	1.46 (0.12)	.071 Case 1: 1.53
Parietotemporal SLF (left)	1.48 (0.07)	1.49 (0.09)	.634 Case 1: 1.57
Parietotemporal SLF (right)	1.50 (0.11)	1.49 (0.09)	.879 Case 1: 1.51
ATR (left)	1.33 (0.07)	1.36 (0.09)	.003* Case 1: 1.47
ATR (right)	1.33 (0.07)	1.35 (0.09)	.045 Case 1: 1.54
Motor STR (left)	1.31 (0.10)	1.36 (0.10)	.004* Case 1: 1.45
Motor STR (right)	1.31 (0.10)	1.37 (0.14)	.002* Case 1: 1.43
Sensory STR (left)	1.32 (0.08)	1.37 (0.11)	.001* Case 1: 1.48
Sensory STR (right)	1.33 (0.10)	1.38 (0.11)	.012 Case 1: 1.50
PTR (left)	1.48 (0.08)	1.51 (0.10)	.064 Case 1: 1.57
PTR (right)	1.49 (0.08)	1.52 (0.09)	.047 Case 1: 1.51
Corpus callosum	1.57 (0.06)	1.59 (0.08)	.036 Case 1: 1.92

*The P value reaches statistical significance after controlling for false discovery rate (P < .003).

Assessment of White Matter Injury

Two readers, experienced neuroradiologists (D.B. and P.D.), interpreted conventional MR imaging (sequences 1–4), blinded to the subject’s clinical condition but informed of the subject’s gestational age at birth and corrected gestational age at MR imaging. WMA were graded according to Woodward et al,11 by using 5 characteristics, each with a score of 1 (normal), 2 (mild abnormality), and 3 (moderate-severe abnormality) (Table 1). These 5 assessments of the cerebral white matter were then combined to give an overall WMA score, which was categorized in 4 groups: no abnormality (total score, 0–3), mild abnormality (total score, 4–6), moderate abnormality (total score, 7–9), moderate abnormality (total score, 10–12), and severe abnormality (total score, 13–15). In Table 1, the ventricular dilation was assessed by using the Evans Index, defined as the maximal frontal horn ventricular width divided by the transverse inner diameter of the skull.21 Disagreements on classification were resolved by consensus, and cases with unresolved discrepancies at consensus were excluded from further analysis.

Data Postprocessing

Data analysis was performed by using the software FSL (http://www.fmrib.ox.ac.uk/fsl).22 Image artifacts due to eddy current distortions and head movements were minimized by registering the DTI from 32 directions to the B0.
Table 4: λ_\perp (10$^{-3}$mm2/s) in each tract

Tract	Preterm with No WMA (n = 41) (mean) (SD)	Preterm with Mild WMA (n = 27) (mean) (SD)	Preterm with Moderate WMA (n = 2) (mean) (SD)	P Value	Case 1	Case 2
CST (left)	1.14 (0.10)	1.17 (0.12)	.007	Case 1: 1.29	Case 2: 1.29	
CST (right)	1.14 (0.10)	1.19 (0.13)	.001*	Case 1: 1.28	Case 2: 1.28	
Frontoparietal SLF (left)	1.33 (0.11)	1.34 (0.13)	.291	Case 1: 1.48	Case 2: 1.16	
Frontoparietal SLF (right)	1.31 (0.10)	1.35 (0.13)	.033	Case 1: 1.45	Case 2: 1.41	
Parietotemporal SLF (left)	1.35 (0.07)	1.36 (0.10)	.403	Case 1: 1.50	Case 2: 1.32	
Parietotemporal SLF (right)	1.38 (0.11)	1.38 (0.10)	.724	Case 1: 1.43	Case 2: 1.40	
ATR (left)	1.20 (0.07)	1.23 (0.07)	.001*	Case 1: 1.35	Case 2: 1.36	
ATR (right)	1.20 (0.07)	1.23 (0.09)	.025	Case 1: 1.45	Case 2: 1.33	
Motor STR (left)	1.14 (0.10)	1.20 (0.12)	<.001*	Case 1: 1.45	Case 2: 1.24	
Motor STR (right)	1.15 (0.10)	1.21 (0.15)	.001*	Case 1: 1.31	Case 2: 1.32	
Sensory STR (left)	1.16 (0.09)	1.22 (0.12)	<.001*	Case 1: 1.29	Case 2: 1.18	
Sensory STR (right)	1.18 (0.10)	1.23 (0.12)	.005	Case 1: 1.37	Case 2: 1.38	
PTR (left)	1.32 (0.09)	1.36 (0.12)	.060	Case 1: 1.50	Case 2: 1.27	
PTR (right)	1.33 (0.08)	1.36 (0.10)	.018	Case 1: 1.43	Case 2: 1.48	
Corpus callosum	1.35 (0.07)	1.39 (0.09)	.012	Case 1: 1.79	Case 2: 1.63	

*The P value reaches statistical significance after controlling for false discovery rate ($P < .003$).

Probabilistic Tractography

The bundles were reconstructed in each subject by 1 investigator (Y.L.) using multilens probablistic tractography.24,25 The masks were identified and manually placed by 2 neuroradiologists (Y.L. and D.B.) in consensus for each tract. The CST was tracked by using a seed mask in the bottom of the thalamus, and a waypoint mask, in the anterior limb of the internal capsule for the ATR, in the precentral gyrus for the motor STR, in the postcentral gyrus for the sensory STR, and in the occipital lobe for the PTR. The corpus callosum was tracked by symmetric seed masks drawn on either side of the midline.19

The original tracts were normalized by the total number of samples going from the seed ROI to the target ROI.25 Finally, the obtained connectivity distributions were thresholded with a probability of 0.2% for the corpus callosum and 2% for the bilateral tracts.27,29,30

The tract volume and diffusion indices (FA, MD, λ_\parallel, and λ_\perp) of each tract were evaluated by using FSL calculations.27

Statistical Analyses

All statistical analyses were performed with the Statistical Package for the Social Sciences, Version 15 (SPSS, Chicago, Illinois). A 1-sample Kolmogorov-Smirnov test was performed to detect a possible departure from normality of our variables. A MANOVA was used to compare tract volumes and diffusion indices between WMA groups; the corrected gestational age at MR imaging was considered as a covariate. After controlling for false discovery rate,31 statistical significance was reached when $P < .003$.

Results

Of the 72 preterm neonates who were recruited, 2 were excluded due to disagreement between readers on the conventional MR imaging assessment. Seventy neonates were included in the tractography study, and their clinical characteristics collected from patient medical records are given in On-line Table 1. Forty-one neonates were classified as having no WMA; 27 neonates, with mild WMA; 2 neonates, with moderate WMA; and no neonate, with severe WMA. Because of the small sample size ($n = 2$) of the moderate group, statistical analyses were only performed between the groups with no WMA and with mild WMA.

Clinical Characteristics

There were no significant differences in any of the clinical characteristics between the neonates with no and with mild WMA (data not shown).

Tract Volume in Relation to WMA

Tract volume results are detailed in On-line Table 2. No significant differences were found in tract volume between neonates with no WMA and with mild WMA. In case 1 with moderate WMA, showing diffuse white matter signal-intensity abnormalities, multiple cystic lesions, and thinning of the corpus callosum, some tract volumes were relatively small compared with the mean volumes in the neonates with no WMA (Fig 1). Case 2, showing diffuse white matter signal-intensity abnormalities and ventricular dilation, had no obviously decreased tract volume.

FA in Relation to WMA

Neonates with mild WMA had significantly lower FA in the left sensory STR compared with neonates with no WMA; in the 2 neonates with moderate WMA, we observed decreased FA values in the CST, SLF, TRs, and corpus callosum (Table 2).

MD in Relation to WMA

Neonates with mild WMA had significantly higher MD in the left ATR, the left sensory STR, and the bilateral motor STR compared with neonates with no WMA; in the 2 neonates with moderate WMA, we observed increased MD values in the CST, SLF, TRs, and corpus callosum (Table 3).
No significant differences in λ were found between the neonates with no and mild WMA; in the 2 neonates with moderate WMA, no obvious changes were observed in λ (On-line Table 3).

λ in Relation to WMA
Neonates with mild WMA had significantly higher λ in the left ATR, the left sensory STR, the bilateral motor STR, and the right CST compared with neonates with no WMA; in 2 neonates with moderate WMA, we observed increased λ values in the CST, SLF, TRs, and corpus callosum (Table 4).

Figure 2 shows the diffusion indices in the left sensory STR in neonates with no WMA, mild WMA, and moderate WMA.

Discussion
In this structural MR imaging study, we demonstrated important associations between WMA on conventional MR imaging and microstructural changes in specific fiber tracts by using DTI and probabilistic tractography. Compared with neonates with no WMA, those with mild WMA had significantly increased λ and MD values in the left ATR, the left sensory STR, the bilateral motor STR, and for λ also in the right CST; FA decreased significantly in the left sensory STR. Diminished tract volumes and altered diffusion indices were also present in the 2 patients with moderate WMA.

The findings of microstructural changes in specific fiber tracts are consistent with previous DTI studies on predefined ROIs in white matter tissues. WMA were found to be related to changed diffusion indices, in particular to the λ values in sensorimotor regions. The increased λ values imply reduced oligodendroglial integrity around the axons. At term-equivalent time, few WM fibers have completely myelinated. In this “premyelinated” stage, pre-OL start to ensheath the axons. The pre-OL are especially vulnerable due to dynamic development during the last trimester of pregnancy, and the loss of pre-OL is the most common injury to the preterm brain. The decrease of pre-OL is counteracted by an increase in oligodendroglial progenitors, shown in several animal models; however, these cells might not have the capacity to further differentiate to become mature myelin-producing cells. Therefore, the altered diffusion indices in this study may relate to the disruption of pre-OL development, which leads to a failure of pre-OL ensheathment of axons. No significant association found in λ suggests that disrupted premyelinating oligodendroglia is the major correlate with WMA rather than axonal pathology.

In neonates with mild WMA, we found bilaterally decreased FA in the sensory STR that, after adjustment for multiple comparisons, was statistically significant at the left side only (Table 2). Because 3 eigenvalues of water diffusion decrease together in the premyelinated stage, FA values could have no significant changes in the premyelinated stage. In general, myelination starts from posterior to anterior and sensory pathways myelinate before motor pathways; therefore, the altered FA values could emerge earlier in the sensory pathways.

Specific white matter fibers contribute to brain functional networks as information transmitters. The CST and STR are the sensorimotor-related fibers. The CST originates from the frontal cortex, but most fibers come from primary motor and premotor areas, containing mostly motor axons. The STR projects from the ventrolateral nuclei to the frontoparietal cortex, mainly including the motor and somatosensory cortex. The ATR is the projection connecting the frontal cortex and the thalamus; the frontal cortex is considered to play an important role in cognitive and executive functions. In our study, preterm neonates with mild WMA compared with no WMA had altered diffusion indices in the CST, STR, and ATR, but not in other fibers. It is possible that the microstructural changes in specific fiber tracts are consistent with previous DTI studies on predefined ROIs in white matter tissues. WMA were found to be related to changed diffusion indices, in particular to the λ values in sensorimotor regions. The increased λ values imply reduced oligodendroglial integrity around the axons. At term-equivalent time, few WM fibers have completely myelinated. In this “premyelinated” stage, pre-OL start to ensheath the axons. The pre-OL are especially vulnerable due to dynamic development during the last trimester of pregnancy, and the loss of pre-OL is the most common injury to the preterm brain. The decrease of pre-OL is counteracted by an increase in oligodendroglial progenitors, shown in several animal models; however, these cells might not have the capacity to further differentiate to become mature myelin-producing cells. Therefore, the altered diffusion indices in this study may relate to the disruption of pre-OL development, which leads to a failure of pre-OL ensheathment of axons. No significant association found in λ suggests that disrupted premyelinating oligodendroglia is the major correlate with WMA rather than axonal pathology.

In neonates with mild WMA, we found bilaterally decreased FA in the sensory STR that, after adjustment for multiple comparisons, was statistically significant at the left side only (Table 2). Because 3 eigenvalues of water diffusion decrease together in the premyelinated stage, FA values could have no significant changes in the premyelinated stage. In general, myelination starts from posterior to anterior and sensory pathways myelinate before motor pathways; therefore, the altered FA values could emerge earlier in the sensory pathways.

Specific white matter fibers contribute to brain functional networks as information transmitters. The CST and STR are the sensorimotor-related fibers. The CST originates from the frontal cortex, but most fibers come from primary motor and premotor areas, containing mostly motor axons. The STR projects from the ventrolateral nuclei to the frontoparietal cortex, mainly including the motor and somatosensory cortex. The ATR is the projection connecting the frontal cortex and the thalamus; the frontal cortex is considered to play an important role in cognitive and executive functions. In our study, preterm neonates with mild WMA compared with no WMA had altered diffusion indices in the CST, STR, and ATR, but not in other fibers. It is possible that the microstructural changes in specific fiber tracts are consistent with previous DTI studies on predefined ROIs in white matter tissues. WMA were found to be related to changed diffusion indices, in particular to the λ values in sensorimotor regions. The increased λ values imply reduced oligodendroglial integrity around the axons. At term-equivalent time, few WM fibers have completely myelinated. In this “premyelinated” stage, pre-OL start to ensheath the axons. The pre-OL are especially vulnerable due to dynamic development during the last trimester of pregnancy, and the loss of pre-OL is the most common injury to the preterm brain. The decrease of pre-OL is counteracted by an increase in oligodendroglial progenitors, shown in several animal models; however, these cells might not have the capacity to further differentiate to become mature myelin-producing cells. Therefore, the altered diffusion indices in this study may relate to the disruption of pre-OL development, which leads to a failure of pre-OL ensheathment of axons. No significant association found in λ suggests that disrupted premyelinating oligodendroglia is the major correlate with WMA rather than axonal pathology.

In neonates with mild WMA, we found bilaterally decreased FA in the sensory STR that, after adjustment for multiple comparisons, was statistically significant at the left side only (Table 2). Because 3 eigenvalues of water diffusion decrease together in the premyelinated stage, FA values could have no significant changes in the premyelinated stage. In general, myelination starts from posterior to anterior and sensory pathways myelinate before motor pathways; therefore, the altered FA values could emerge earlier in the sensory pathways.

Specific white matter fibers contribute to brain functional networks as information transmitters. The CST and STR are the sensorimotor-related fibers. The CST originates from the frontal cortex, but most fibers come from primary motor and premotor areas, containing mostly motor axons. The STR projects from the ventrolateral nuclei to the frontoparietal cortex, mainly including the motor and somatosensory cortex. The ATR is the projection connecting the frontal cortex and the thalamus; the frontal cortex is considered to play an important role in cognitive and executive functions. In our study, preterm neonates with mild WMA compared with no WMA had altered diffusion indices in the CST, STR, and ATR, but not in other fibers. It is possible that the microstructural changes in specific fiber tracts are consistent with previous DTI studies on predefined ROIs in white matter tissues. WMA were found to be related to changed diffusion indices, in particular to the λ values in sensorimotor regions. The increased λ values imply reduced oligodendroglial integrity around the axons. At term-equivalent time, few WM fibers have completely myelinated. In this “premyelinated” stage, pre-OL start to ensheath the axons. The pre-OL are especially vulnerable due to dynamic development during the last trimester of pregnancy, and the loss of pre-OL is the most common injury to the preterm brain. The decrease of pre-OL is counteracted by an increase in oligodendroglial progenitors, shown in several animal models; however, these cells might not have the capacity to further differentiate to become mature myelin-producing cells. Therefore, the altered diffusion indices in this study may relate to the disruption of pre-OL development, which leads to a failure of pre-OL ensheathment of axons. No significant association found in λ suggests that disrupted premyelinating oligodendroglia is the major correlate with WMA rather than axonal pathology.

In neonates with mild WMA, we found bilaterally decreased FA in the sensory STR that, after adjustment for multiple comparisons, was statistically significant at the left side only (Table 2). Because 3 eigenvalues of water diffusion decrease together in the premyelinated stage, FA values could have no significant changes in the premyelinated stage. In general, myelination starts from posterior to anterior and sensory pathways myelinate before motor pathways; therefore, the altered FA values could emerge earlier in the sensory pathways.

Specific white matter fibers contribute to brain functional networks as information transmitters. The CST and STR are the sensorimotor-related fibers. The CST originates from the frontal cortex, but most fibers come from primary motor and premotor areas, containing mostly motor axons. The STR projects from the ventrolateral nuclei to the frontoparietal cortex, mainly including the motor and somatosensory cortex. The ATR is the projection connecting the frontal cortex and the thalamus; the frontal cortex is considered to play an important role in cognitive and executive functions. In our study, preterm neonates with mild WMA compared with no WMA had altered diffusion indices in the CST, STR, and ATR, but not in other fibers. It is possible that the microstructural changes in specific fiber tracts are consistent with previous DTI studies on predefined ROIs in white matter tissues. WMA were found to be related to changed diffusion indices, in particular to the λ values in sensorimotor regions. The increased λ values imply reduced oligodendroglial integrity around the axons. At term-equivalent time, few WM fibers have completely myelinated. In this “premyelinated” stage, pre-OL start to ensheath the axons. The pre-OL are especially vulnerable due to dynamic development during the last trimester of pregnancy, and the loss of pre-OL is the most common injury to the preterm brain. The decrease of pre-OL is counteracted by an increase in oligodendroglial progenitors, shown in several animal models; however, these cells might not have the capacity to further differentiate to become mature myelin-producing cells. Therefore, the altered diffusion indices in this study may relate to the disruption of pre-OL development, which leads to a failure of pre-OL ensheathment of axons. No significant association found in λ suggests that disrupted premyelinating oligodendroglia is the major correlate with WMA rather than axonal pathology.
cultural changes in those fiber tracts might be responsible for later neurodevelopmental deficits in motor and cognitive functions. In forthcoming studies, these tracts could be selectively studied and correlated with possible neurodevelopmental outcomes in patients with mild WMA at term-equivalent age.

Beyond the microstructural association, no significant differences were found in tract volumes between neonates with no WMA and mild WMA, and only 1 neonate with moderate WMA had some relatively decreased tract volumes. This might suggest that tract volumes were not significantly associated with the subtype WMA.

These findings in tract volumes and diffusion indices are only partly in agreement with the results of de Bruïne et al,16 who studied fiber tracts in very preterm infants by tractography and found no association between tract lengths and the degree of white matter injury. Our results were different from their findings at the microstructural level: They showed a strong association between DTI indices and the gestational age at MR imaging, but those DTI values were independent of WMA. These different results in diffusion indices might be due to the wide range of gestational age when infants underwent MR imaging because some of their infants were imaged after 46 weeks. Gestational age at MR imaging plays an important role in the changes of diffusion indices,44 especially in the first year of life.19 In our study, there was no significant difference in the gestational age at MR imaging between groups; however, the gestational age at MR imaging was considered as a covariate when we performed the comparisons.

We evaluated WMA on conventional MR imaging according to the scores of Woodward et al,11 because they studied a large population (167 infants) and included the neurodevelopmental outcome at 2 years of age (corrected for prematurity). Moreover, in our study, we used a careful approach of evaluation to define the degree of abnormalities in 5 characteristics because it was based on a subjective reading. The conventional MR imaging was first evaluated by 2 readers blindly. Second, a consensus was required for the inconsistent categorized cases as well as for the consistent categorized cases with different scores in $>\ 2$ characteristics. Two cases were excluded due to unresolved discrepancies at consensus. We had a cohort of 70 preterm neonates, but only 2 of them (3%) were classified into the moderate group and there was no neonate with severe WMA, which was less than the amount in other studies with the same classification.11,15 However, those studies included very preterm neonates (born at <30 weeks), so those infants might be more sensitive to the effects of extreme prematurity, like greater risks of mortality and morbidity.1 Another limitation of the present study was that we did not perform DTI and tractography in healthy term neonates, so we were not able to compare our preterm neonates with healthy term neonates.

Conclusions

Altered DTI indices in the CST, STR, and ATR, with λ_1 as the most prominent, were associated with mild WMA on conventional MR imaging in preterm neonates at term-equivalent age.

Acknowledgments

We thank Doni Tamblyn for her assistance in language editing.

References

1. Slattery MM, Morrison JJ. Preterm delivery. Lancet 2002;360:1489–97
2. van Haastert IC, Groenendaal F, Uiterwaal CS, et al. Decreasing incidence and severity of cerebral palsy in prematurely born children. J Pediatr 2011;159:86–91
3. Fazzi E, Orcesi S, Caffi L, et al. Neurodevelopmental outcome at 5–7 years in preterm infants with periventricular leukomalacia. Neuropediatrics 1994;25:134–39
4. Ohgi S, Akiyama T, Fukuda M. Neurobehavioural profile of low-birthweight infants with cystic periventricular leukomalacia. Dev Med Child Neurol 2005;47:221–28
5. Ramenghi LA, Rutherford M, Fumagalli M, et al. Neonatal neuroimaging: going beyond the pictures. Early Hum Dev 2009;85:575–77
6. Holst L, Grunau RV, Whitlefield MF. Developmental coordination disorder in extremely low birth weight children at nine years. J Dev Behav Pediatr 2002;23:9–15
7. Taylor HG, Minich NM, Klein N, et al. Longitudinal outcomes of very low birth weight: neuropsychological findings. J Int Neuropsychol Soc 2004;10:149–63
8. Dreyt LE, Kennea N, Counsell SJ, et al. Natural history of brain lesions in extremely preterm infants studied with serial magnetic resonance imaging from birth and neurodevelopmental assessment. Pediatrics 2006;118:536–48
9. Inder TE, Wells SJ, Mogridge NB, et al. Defining the nature of the cerebral abnormalities in the premature infant: a qualitative magnetic resonance imaging study. J Pediatr 2003;143:171–79
10. Maalouf EF, Duggan PJ, Rutherford MA, et al. Magnetic resonance imaging of the brain in a cohort of extremely preterm infants. J Pediatr 1999;135:351–57
11. Woodward LJ, Anderson PJ, Austin NC, et al. Neonatal MRI to predict neurodevelopmental outcomes in preterm infants. N Engl J Med 2006;17:727–29
12. Song SK, Sun SW, Ramsbottom MJ, et al. Dystymelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage 2002;17:1429–36
13. Cheong JL, Thompson DK, Wang HX, et al. Abnormal white matter signal on MR imaging is related to abnormal tissue microstructure. AJNR Am J Neuroradiol 2009;30:623–28
14. Counsell SJ, Shen Y, Boardman JP, et al. Axial and radial diffusivity in preterm infants who have diffuse white matter changes on magnetic resonance imaging at term-equivalent age. Pediatrics 2006;117:376–86
15. Sköld B, Horsch S, Hallberg B, et al. White matter changes in extremely preterm infants: a population-based diffusion tensor imaging study. Acta Paedi- at 2010;99:842–49
16. de Bruïne FT, van Wezel-Meijler G, Leijser LM, et al. Tractography of developing white matter of the internal capsule and corpus callosum in very preterm infants. Eur Radiol 2011;21:538–47
17. Thompson DK, Inder TE, Faggian N, et al. Characterization of the corpus callosum in very preterm and full-term infants utilizing MRI. Neuroimage 2011;55:147–90
18. Hoon AH, Stashinko EE, Nagae LM, et al. Sensory and motor deficits in children with cerebral palsy born preterm correlate with diffusion tensor imaging abnormalities in thalamocortical pathways. Dev Med Child Neurol 2009;51:697–704
19. Counsell SJ, Dreyt LE, Larkman DJ, et al. Thalamo-cortical connectivity in children born preterm mapped using probabilistic magnetic resonance tractog- raphy. Neuroimage 2007;34:896–904
20. Thomas B, Eysen M, Peeters R, et al. Quantitative diffusion tensor imaging in cerebral palsy due to periventricular white matter injury. Brain 2008;131:2562–77
21. Evans WA. An encephalographic ratio for estimating ventricular enlargement and cerebral atrophy. Arch Neurol Psychiatry 1942;47:931–37
22. Smith SM, Jenkinson M, Woolrich MW, et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 2004; 21(suppl 1):S208–19
23. Bassi L, Ricci D, Volzone A, et al. Probabilistic diffusion tractography of the optic radiations and visual function in preterm infants at term-equivalent age. Brain 2008;131:573–82
24. Behrens TE, Johansen-Berg H, Woolrich MW, et al. Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci 2003;6:750–57
25. Johansen-Berg H, Behrens T. Diffusion MRI. London, UK; Elsevier; 2009:333– 52, 434–36
26. Wakana S, Caprihan A, Panzenboeck MM, et al. Reproducibility of quantita- tive tractography methods applied to cerebral white matter. Neuroimage 2007;36:630–44
27. Liu Y, Baleraux D, Kavec M, et al. Structural asymmetries in motor and lan-
language networks in a population of healthy preterm neonates at term-equivalent age: a diffusion tensor imaging and probabilistic tractography study. *Neuroimage* 2010;51:783–88

28. Makris N, Kennedy DN, McInerney S, et al. Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. *Cereb Cortex* 2005;15:854–69

29. Aeby A, Liu Y, De Tiege X, et al. Maturation of thalamic radiations between 34 and 41 weeks gestation: a combined voxel-based study and probabilistic tractography using diffusion tensor imaging. *AJNR Am J Neuroradiol* 2009;30:1780–86

30. Powell HW, Parker GI, Alexander DC, et al. Hemispheric asymmetries in language-related pathways: a combined functional MRI and tractography study. *Neuroimage* 2006;32:388–99

31. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. *J R Statist Soc B* 1995;57:289–300

32. Khwaja O, Volpe JJ. Pathogenesis of cerebral white matter injury of prematurity. *Arch Dis Child Fetal Neonatal Ed* 2008;93:153–61

33. Volpe J. *Neurology of the Newborn.* Philadelphia: W.B. Saunders; 2008

34. Volpe J. *Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances.* *Lancet Neurol* 2009;8:110–24

35. Back SA, Luo NL, Borenstein NS, et al. Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury. *J Neurosci* 2001;21:1302–12

36. Haynes RL, Folkert RD, Keefe RJ, et al. Nitrosative and oxidative injury to premylinating oligodendrocytes in periventricular leukomalacia. *J Neuropath Exp Neurol* 2005;64:441–50

37. Yang Z, Covey MV, Bird CL, et al. Sustained neocortical neurogenesis after neonatal hypoxic/ischemic injury. *Ann Neurol* 2007;61:199–208

38. Sizonenko SV, Camm EI, Dayer A, et al. Glial responses to neonatal hypoxic-ischemic injury in the rat cerebral cortex. *Int J Dev Neurosci* 2008;26:37–45

39. Dubois J, Dehaene-Lambertz G, Perrin M, et al. Asynchrony of the early maturation of white matter bundles in healthy infants: quantitative landmarks revealed non-invasively by diffusion tensor imaging. *Hum Brain Mapp* 2006;29:14–27

40. Kinney HC, Armstrong DL. Perinatal neuropathology. In: Graham DJ, Lantos PE, eds. *Greenfield’s Neuropathology.* London, UK: Arnold; 2002:557–59

41. Davidoff RA. *The pyramidal tract.* *Neurology* 1990;40:332–39

42. Passingham RE, Stephan KE, Kotter R. The anatomical basis of functional localization in the cortex. *Nat Rev Neurosci* 2002;3:606–16

43. Anderson V, Jacobs R, Harvey AS. Prefrontal lesions and attentional skills in childhood. *J Int Neuropsychol Soc* 2005;11:817–31

44. Hupp PS, Dubois J. Diffusion tensor imaging of brain development. *Semin Fetal Neonatal Med* 2006;11:489–97

45. Forbes KP, Pipe JC, Bird CR. Changes in brain water diffusion during the 1st year of life. *Radiology* 2002;222:405–09