Electrical conductivity of Self-assembling Peptide-semiconducting dye Conjugate nanofibre networks

Zainab O. Makinde a,b, Aakanksha Rani b,c, Taniela Lolohea a,b, Laura J. Domigan b,d, Duncan J. McGillivray a,b, Margaret Brimble a,b, and David E. Williams a,b*

a. School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand.
b. MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6140, New Zealand.
c. School of Biological Sciences, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand.
d. Department of Chemical and Materials Engineering, The University of Auckland, 20 Symonds St., Auckland 1010, New Zealand.

*E-mail: david.williams@auckland.ac.nz

Electronic Supplementary Information

RP-HPLC analyses were performed using a Dionex Ultimate 3000 instrument (Sunnyvale, CA, USA) equipped with a 4 channel UV detector at 210, 230, 254, and 280 nm. The solvent system used was A (0.1% TFA in H2O) and B (0.1% TFA in MeCN). Characterization was performed by LC-MS using ESI in positive mode on an Agilent 1120 compact LC system equipped with Agilent 6120 Quadrupole MS and a UV detector at 214 nm (Palo Alto, CA, USA). The solvent system consisted of A (0.1% formic acid in H2O) and B (0.1% formic acid in MeCN).
ESI 1: RP-HPLC and ESI-MS traces of purified Ac-His-Glu-Phe-Ile-Ser-Thr-Ala-His-NH₂ (HEFISTAH) (ca. 99% as judged by the peak area of at 210 nm); XTerra® MS C18, (4.6 mm × 150 mm; 5 μm), a linear gradient of 5% B to 95% B over 30 min, ca. 3% B per minute at rt, 1.0 mL/min. m/z (ESI-MS) 982.4 ([M+H]+ expected 982.5)
ESI 2: RP-HPLC and ESI-MS traces of dimer-linked peptide dye conjugate (ca. 99% as judged by the peak area of RP-HPLC at 210 nm); XTerra®MS C18, (4.6 mm x 150 mm; 5 μm), a linear gradient of 5% B to 95% B over 30 min, ca. 3% B per minute at rt, 1.0 mL/min. m/z (ESI-MS) 1130.8 ([M+H]^{2+} expected 1129.9)
ESI 3: RP-HPLC and ESI-MS traces of mono linked peptide-dye conjugate (ca. 99% as judged by the peak area of RP-HPLC at 210 nm); XTerra® MS C18, (4.6 mm × 150 mm; 5 μm), a linear gradient of 5% B to 95% B over 30 min, ca. 3% B per minute at rt, 1.0 mL/min. m/z (ESI-MS) 1339.3 ([M+H]^+ expected 1337.5),
(a)

0 % RH

- Z imag (Ω) x 10^7
- Z real (Ω) x 10^7
- Peptide only
- Mono-conjugated sample
- Di-conjugated sample

(b)

~98-99% RH Air

- Z imag (Ω) x 10^8
- Z real (Ω) x 10^6
- Peptide only
- Mono-conjugated sample
- Di-conjugated sample

98 % - 99% RH Air

- Z imag (Ω) x 10^7
- Z real (Ω) x 10^7
- Peptide only
- Mono-conjugated sample
- Di-conjugated sample

Slope= -0.5
Slope= -0.67
Slope= -0.75
- For ~98-99% RH N₂:
 - Peptide only
 - Mono-conjugated sample
 - Di-conjugated sample

- Frequency (Hz)

- For Dry N₂:
 - Peptide only
 - Mono-conjugated sample
 - Di-conjugated sample

- Z imag (Ω) x 10^7
- Z real (Ω) x 10^7
- Slope = -1

- Slope = 0.67
- Slope = 0.83
Result of EIS studies at different atmospheric conditions. (a) Nyquist plot and Bode plots at 0 % RH (b) Nyquist plot and Bode plots at 98 – 99 % RH in the air (c) Nyquist plot and Bode plots at 98 – 99 % RH in N₂ atmosphere (d) Nyquist plot and Bode plots at Dry N₂ atmosphere (e) Nyquist plot and Bode plots Dry air. The dashed lines show the limiting slopes for impedance.