ITERATED CIRCLE BUNDLES AND INFRANILMANIFOLDS

IGOR BELEGRADEK

ABSTRACT. We give short proofs of the following two facts: Iterated principal circle bundles are precisely the nilmanifolds. Every iterated circle bundle is almost flat, and hence diffeomorphic to an infranilmanifold.

A infranilmanifold is a closed manifold diffeomorphic to the quotient space \(N/\Gamma \) of a simply-connected nilpotent Lie group \(N \) by a discrete torsion-free subgroup \(\Gamma \) of the semidirect product \(N \rtimes C \) where \(C \) is a maximal compact subgroup of \(\text{Aut}(N) \). If \(\Gamma \) lies in the \(N \) factor, the infranilmanifold is called a nilmanifold.

An iterated circle bundle is defined inductively as the total space of a circle bundle whose base is an iterated circle bundle of one dimension lower, and the base at the first step is a point. If at each step the circle bundle is principal, the result is an iterated principal circle bundle.

This note was prompted by a question of Xiaochun Rong who asked me to justify the following fact mentioned in \([BW02]\):

Theorem 1. A manifold is an iterated principal circle bundle if and only if it is a nilmanifold.

The proof of Theorem 1 combines some bundle-theoretic considerations with classical results of Mal’cev \([Mal49]\). The “if” direction was surely known since \([Mal49]\) but \([FH86, \text{Proposition 3.1}]\) seems to be the earliest reference. The statement of Theorem 1 is mentioned without proof in \([Wei94, \text{p.98}]\) and \([FOT08, \text{p.122}]\).

Summary of previous work:

(1) Every iterated principal circle bundle has torsion-free nilpotent fundamental group because the homotopy exact sequence converts a principal circle bundle into a central extension with infinite cyclic kernel.

(2) Theorem 1.2 of \([Nak14]\) implies that every iterated principal circle bundle is diffeomorphic to an infranilmanifold; this was explained to me by Xiaochun Rong. Thus \([Nak14]\) gives another (less elementary) proof of the “only if” direction in Theorem 1 because every iterated principal circle bundle is homotopy equivalent to

Key words and phrases. nilmanifold, almost flat, circle bundle, nilpotent group.

2010 Mathematics Subject classification. Primary 20F18, Secondary 57R22.

This work was partially supported by the Simons Foundation grant 524838.
a nilmanifold, and the diffeomorphism type of an infranilmanifold is determined by its homotopy type [LR84].

(3) According to [PS61] a manifold is a principal torus bundle over a torus if and only if it is a nilmanifold modelled on a two-step nilpotent Lie group.

(4) Every 3-dimensional infranilmanifold has a unique Seifert fiber space structure, see [Sco83, Theorem 3.8], hence it is an iterated circle bundle if and only if the base orbifold (of the Seifert fibering) is non-singular, i.e., the 2-torus or the Klein bottle. Thus iterated circle bundles are rare among 3-dimensional infranilmanifolds.

(5) In [LM13] it is proven that every iterated circle bundle is homeomorphic to an infranilmanifold. Their argument splits in two parts: finding a homotopy equivalence and upgrading it to a homeomorphism. The latter uses topological surgery, which does not extend to the smooth setting.

(6) A natural way to establish the smooth version of the above-mentioned result in [LM13] is to show that every iterated circle bundle is almost flat, and then apply the celebrated work of Gromov-Ruh [Gro78, Ruh82] that infranilmanifolds are precisely the almost flat manifolds. Recall that a closed manifold is almost flat if it admits a sequence of Riemannian metrics of uniformly bounded diameters and sectional curvatures approaching zero. To this end we prove:

Theorem 2. Any iterated circle bundle is almost flat, and therefore diffeomorphic to an infranilmanifold.

Proof of Theorem 1. We use [Rag72, Chapter II] as a reference for Mal’cev’s work. If N/Γ is a nilmanifold, then Γ is finitely generated, torsion-free, and nilpotent, and conversely, any such group is the fundamental group of a nilmanifold, see [Rag72, Theorem 2.18]. Every automorphism of Γ extends uniquely to an automorphism of N, see [Rag72, Theorem 2.11]. Applying this to conjugation by an element of the center of Γ we get the inclusion of centers $Z(\Gamma) \subset Z(N)$. Nilpotency of Γ ensures that $Z(\Gamma)$ is nontrivial, and therefore, there is a one-parameter subgroup $R \leq Z(N)$ such that $R \cap Z(\Gamma)$ is nontrivial, and hence infinite cyclic. Clearly $R \cap \Gamma = R \cap Z(\Gamma)$. The left R-action on N descends to a free $R/(R \cap \Gamma)$-action on N/Γ, which makes N/Γ into a principal circle bundle whose base B_{Γ} is a nilmanifold, namely, the quotient of N/R by $\Gamma/(R \cap \Gamma)$. This proves the “if” direction.

Conversely, let $p: E \to B$ be a principal circle bundle over a nilmanifold B. Its homotopy exact sequence is a central extension, so $\pi_1(E)$ is finitely generated torsion-free nilpotent. Consider a nilmanifold N/Γ with $\Gamma \cong \pi_1(E)$, and let $z \in Z(\Gamma)$ be the element corresponding to the circle fiber of p through the basepoint. Let $R \leq N$ be the one-parameter subgroup that contains z. As above $R \subset Z(N)$ and N/Γ is the total space of a principal circle bundle $p_{\Gamma}: N/\Gamma \to B_{\Gamma}$ whose base B_{Γ} is a nilmanifold and the fibers are the $R/(R \cap \Gamma)$-orbits. The cyclic group $R \cap \Gamma$ is generated by z because its generator projects to a finite order element in the torsion-free group $\Gamma/(z) \cong \pi_1(B)$. Thus the isomorphism $\pi_1(E) \cong \pi_1(N/\Gamma)$ descends to
an isomorphism $\pi_1(B) \to \pi_1(B_\Gamma)$. Since all these manifolds are aspherical, the fundamental group isomorphisms are induced by homotopy equivalences, and we get a homotopy-commutative square

$$
\begin{array}{ccc}
E & \xrightarrow{\varepsilon} & N/\Gamma \\
p & \downarrow & \downarrow p_\Gamma \\
B & \xrightarrow{\beta} & B_\Gamma
\end{array}
$$

where ε and β are homotopy equivalences. We can assume that β is a diffeomorphism because by [Rag72, Theorem 2.11] any homotopy equivalence of nilmanifolds is homotopic to a diffeomorphism. The Gysin sequence implies that the Euler class of a circle bundle generates the kernel of the homomorphism induced on the second cohomology by the bundle projection. The map of the Gysin sequences of p and p_Γ induced by the commutative square shows that β preserves their Euler classes up to sign, and after changing the orientation if necessary we can assume that the Euler classes are preserved by β. The isomorphism type of a principal circle bundle is determined by its Euler class. Since p and the pullback of p_Γ via β have the same Euler class, they are isomorphic, which gives a desired diffeomorphism of E and N/Γ and completes the proof of the “only if” direction. □

Proof of Theorem 2. In view of [Gro78, Ruh82] it is enough to prove inductively that the total space of any circle bundle over an almost flat manifold is almost flat. This comes via the following standard argument. Let $p: E \to B$ be a smooth circle bundle over a closed manifold B. For any Riemannian metric \hat{g} on B there is a metric g on E such that p is a Riemannian submersion with totally geodesic fibers which are isometric to the unit circle, see [Bes08, 9.59]. As in [Bes08, 9.67] let g^t be the metric on E obtained by rescaling g by a positive constant t along the fibers of p, i.e., g^t and g have the same vertical and horizontal distributions V, H, and $g^t|_V = tg|_V$ and $g^t|_H = g|_H$. The fibers of p are g^t-totally geodesic [Bes08, 9.68] so the T tensor vanishes. The diameters of g^t, \hat{g} satisfy $\text{diam}(g^t) \leq \text{diam}(\hat{g}) + O(\sqrt{t})$. The following lemma finishes the proof of almost flatness of E. □

Lemma 3. The sectional curvatures K^t, \hat{K} of g^t, \hat{g} satisfy $|K^t| \leq |\hat{K}| + O(\sqrt{t})$.

Proof. Fix any 2-plane σ tangent to E. Since H has codimension one, σ contains a g^t-unit horizontal vector X. Let C be a g^t-unit vector in σ that is g^t-orthogonal to X. Write $C = U + Y$ where $U \in \mathcal{V}$, $Y \in \mathcal{H}$. The sectional curvature of σ with respect to g^t is given by

$$K^t_\sigma = \langle R^t(C, X)C, X \rangle^t = \langle R^t(Y, X)Y, X \rangle^t + 2\langle R^t(Y, X)U, X \rangle^t + \langle R^t(U, X)U, X \rangle^t$$

where $\langle C, D \rangle^t := g^t(C, D)$ and R^t is the curvature tensor of g^t.

Lemma 9.69 of [Bes08] relates the A tensors A^t, A of g^t, g as follows: $A^t_YX = A_YX$ and $A^t_XU = tA_XU$. Recall that A_YX is vertical and A_XU is horizontal. The formulas in [Bes08, 9.28, 9.69] give
\[g(\tilde{R}(Y, X)\tilde{Y}, \tilde{X}) - \langle R^t(Y, X)Y, X \rangle^t = 3\langle A^t_Y X, A^t_Y X \rangle^t = 3t g(A_Y X, A_Y X) \]

\[\langle R^t(Y, X)U, X \rangle^t = -\left[\langle (D_X A)_Y X, U \rangle \right]^t = -t g((D_X A)_Y X, U) \]

\[\langle R^t(U, X)U, X \rangle^t = \langle A^t_X U, A^t_X U \rangle^t + \left[\langle (D_U A)_X X, U \rangle \right]^t = t^2 g(A_X U, A_X U) \]

where \([\langle (D_U A)_X X, U \rangle]^t = 0\) by the last formula in [Bes08, 9.32].

Since \(g(X, X) = 1 = g^t(C, C) = g(Y, Y) + tg(U, U)\), the vectors \(X, Y, \sqrt{t}U\) lie in the \(g\)-unit disk bundle of \(TE\), which is compact, so the functions \(g(A_Y X, A_Y X)\), \(\sqrt{t}g((D_X A)_Y X, U)\), \(tg(A_X U, A_X U)\) are bounded.

Therefore, if \(Y \neq 0\) and \(\sigma\) is the projection of \(\sigma\) in \(TB\), then

\[K^t_\sigma = \tilde{g}(\tilde{R}(Y, X)\tilde{Y}, \tilde{X}) + O(\sqrt{t}) = \sqrt{\tilde{g}(Y, Y)} K_\sigma + O(\sqrt{t}) \]

and if \(Y = 0\), then \(K^t_\sigma = t^2 g(A_X U, A_X U) = O(t)\). Thus \(|K^t_\sigma| \leq |K_\sigma| + O(\sqrt{t})\). \(\Box\)

References

[Bes08] A. L. Besse, *Einstein manifolds*, Classics in Mathematics, Springer-Verlag, Berlin, 2008, Reprint of the 1987 edition.

[BW02] I. Belegradek and G. Wei, *Metrics of positive Ricci curvature on vector bundles over nilmanifolds*, Geom. Funct. Anal. 12 (2002), no. 1, 56–72.

[FH86] E. Fadell and S. Husseini, *On a theorem of Anosov on Nielsen numbers for nilmanifolds*, Nonlinear functional analysis and its applications (Maratea, 1985), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 173, Reidel, Dordrecht, 1986, pp. 47–53.

[FOT08] Y. Félix, J. Oprea, and D. Tanré, *Algebraic models in geometry*, Oxford Graduate Texts in Mathematics, vol. 17, Oxford University Press, Oxford, 2008.

[Gro78] M. Gromov, *Almost flat manifolds*, J. Differential Geom. 13 (1978), no. 2, 231–241.

[LM13] J. B. Lee and M. Masuda, *Topology of iterated \(S^1\)-bundles*, Osaka J. Math. 50 (2013), no. 4, 847–869.

[LR84] K. B. Lee and F. Raymond, *Geometric realization of group extensions by the Seifert construction*, Contributions to group theory, Contemp. Math., vol. 33, Amer. Math. Soc., Providence, RI, 1984, pp. 353–411.

[Mal49] A. I. Mal’cev, *On a class of homogeneous spaces*, Izvestiya Akad. Nauk. SSSR. Ser. Mat. 13 (1949), 9–32.

[Nak14] M. Nakayama, *On the \(S^1\)-fibred nilBott tower*, Osaka J. Math. 51 (2014), no. 1, 67–87.

[PS61] R. S. Palais and T. E. Stewart, *Torus bundles over a torus*, Proc. Amer. Math. Soc. 12 (1961), 26–29.

[Rag72] M. S. Raghunathan, *Discrete subgroups of Lie groups*, Springer-Verlag, New York-Heidelberg, 1972, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68.

[Ruh82] E. A. Ruh, *Almost flat manifolds*, J. Differential Geom. 17 (1982), no. 1, 1–14.

[Sco83] P. Scott, *The geometries of 3-manifolds*, Bull. London Math. Soc. 15 (1983), no. 5, 401–487.

[Wei94] S. Weinberger, *The topological classification of stratified spaces*, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1994.

Igor Belegradek, School of Mathematics, Georgia Tech, Atlanta, GA, USA 30332

E-mail address: ib@math.gatech.edu