Further Results on a Function Relevant for Conformal Blocks

Vincent Comeau*, Jean-François Fortin†, and Witold Skiba\dagger

*Department of Physics, McGill University, Montréal, QC H3A 2T8, Canada
†Département de Physique, de Génie Physique et d’Optique
Université Laval, Québec, QC G1V 0A6, Canada
\daggerDepartment of Physics, Yale University, New Haven, CT 06520, USA

We present further mathematical results on a function appearing in the conformal blocks of four-point correlation functions with arbitrary quasi-primary operators. The H-function was introduced in a previous article and it has several interesting properties. We prove explicitly the recurrence relation as well as the D_6-invariance presented previously. We also demonstrate the proper action of the differential operator used to construct the H-function.
1. Introduction

Conformal field theories (CFTs) play an important role in modern physics. The introduction of the full conformal algebra constrains non-trivially N-point correlation functions. For example, two-point correlation functions are completely determined by conformal invariance while three-point correlation functions are settled in terms of a finite number of coefficients. This can be seen as originating from the existence of a convergent operator product expansion (OPE) \[1\]. Moreover, using the OPE twice in four-point correlation functions leads to conformal blocks which represent the contributions of exchanged quasi-primary operators to the four-point correlation functions. Using associativity in N-point correlation functions further constrains the OPE, leading to the crossing symmetry of the four-point correlation functions which can be used to restrict the unknown conformal dimensions and OPE coefficients \[2\]. Recent work in spacetime dimensions larger than two resulted in some explicit expressions for certain specific conformal blocks \[3,4\], and the conformal bootstrap in spacetime dimensions larger than two has also been implemented numerically with impressive results \[5\].

The computation of conformal blocks in spacetime dimensions larger than two is not straightforward. Although they are technically determined by conformal symmetry, they are better understood from the embedding space where the conformal generators act linearly \[6\]. For example, the OPE has been studied utilizing the embedding space formalism in \[7,9\]. In \[8\], it was shown how to employ the OPE in the embedding space formalism to compute the scalar conformal block. In \[9\], the results of \[8\] were used to find a very general function, the H-function, that appears in general conformal blocks containing fields in more complicated representations. Using a Rodrigues equation for the H-function, it was shown that it satisfies a recurrence relation and a specific symmetry property leading to invariance under the dihedral group of order 12.

In this paper, an explicit expression for the H-function is used to show directly that the recurrence relation and the symmetry property are indeed satisfied. After briefly reviewing the definition of the H-function in Section 2 several new expressions for this function are obtained in Section 3. These results use the properties of Pochhammer symbols listed in Appendix A as well as properties of hypergeometric-like polynomials listed in Appendix B. Section 4 gives a proof of the recurrence relation and the symmetry property using various expressions explored in the previous section. Finally, in Section 5 the action of the differential operator is found and it is shown how to use it to compute the H-function constructively.

2. Functions

In this section we review the G- and H-functions as well as the associated differential operators introduced in \[9\].
2.1. Power Series

It is a well-known fact that the conformal blocks for scalar exchange in four-point correlation functions of four scalar quasi-primary fields in arbitrary spacetime dimension d are related to the function $G_d^{(q;r;t)}(u,v)$. This function can be expressed as a double sum over powers of the variables $x = u/v$ and $y = 1 - 1/v$, where u and v are the conformal cross-ratios,

$$G_d^{(q;r;t)}(u,v) = \sum_{m,n \geq 0} \frac{(-q)_m(-t)_m}{(r-t+1-d/2)m!}(r)_m(r-t+q)_m n^m y^n. \quad (2.1)$$

Moreover, (2.1) can be expressed in terms of the hypergeometric function $G(\alpha, \beta; \gamma; x, y)$ of Exton [4] as

$$G_d^{(q;r;t)}(u,v) = G(r, r-t+q, r-t+1-d/2, r-t; x, y),$$

where q, r and t are related to the conformal dimensions of the five scalar quasi-primary fields appearing in the conformal blocks.

In [3], it was argued that more general conformal blocks are given by linear combinations of the following function,

$$H_d^{(p,q;r;s,t)}(u,v) = \sum_{m,n \geq 0} \frac{(r)_m(r-s+p)_m(r-t+q)_m}{(r-s)_{2m+n}(r-s+1-d/2)_m(r-t)_{2m+n}(r-t+1-d/2)m!} x^m y^n,$$

$$P_d^{(p,q;r;s,t)}(m,n) \equiv \sum_{i,j \geq 0} \frac{(-1)^j}{i! j!(m-i)!} (-p)_i(-q)_{m-i+j}(-s-q-m+i+j)_{i-j}(-t)_{m-i+j}(r-s+m+n+i)_{m-i}$$

$$\times (r-s+p+1-d/2)m-i(r-t+2m+n+i+j)_{i-j}(r-t+1-d/2+m-i)_i. \quad (2.2)$$

The functional form (2.2), as well as several contiguous relations and the symmetry properties $H_d^{(p,q;r;s,t)}(u,v) = H_d^{(q,p;r,t,s)}(u,v)$ and $H_d^{(p,q;r;s,t)}(u,v) = H_d^{(p,t,r-t+q,s-t+q)}(u,v)$, which generate the dihedral group D_6 of order 12, were obtained by using the definitions (2.1) and (2.2) in terms of differential operators,

$$G_d^{(q;r;t)}(u,v) = \left(u/v \right)^{-r-t+q} D_{(u,v)}^q \left(u/v \right)^{r-t} v^r$$

$$H_d^{(p,q;r;s,t)}(u,v) = \left(u/v \right)^{-r-s+p} D_{(u,v)}^p \left(u/v \right)^{r-s-q} D_{(u,v)}^q \left(u/v \right)^{r-t} v^r$$

$$= \frac{\left(u/v \right)^{-r-s+p} D_{(u,v)}^p \left(u/v \right)^{r-s} G_d^{(q;r;t)}(u,v)}{\left(u/v \right)^{r-s+p} \left(u/v \right)^{r-s+1-d/2} p}. \quad (2.3)$$

In the equation above, the second-order differential operator $D_{(u,v)}$, as well as two related first-order differential operators $D_{(u)}$ and $D_{(v)}$, are defined as

$$D_{(u,v)} = (-2) \left\{ u^2 \partial_u^2 + u^2 (u+v-1) \partial_u \partial_v + u^2 v \partial_v^2 - \left(\frac{d}{2} - 2 \right) u^2 \partial_u + u \left[u + \left(\frac{d}{2} - 1 \right) (1-v) \right] \partial_v \right\},$$

$$D_{(u)} = -2u \partial_u - (u+v-1) \partial_v,$$

$$D_{(v)} = u(u-v-1) \partial_u + v(u-v+1) \partial_v. \quad (2.4)$$
and satisfy the algebra

\[
[D_u, D_v] = D_u - D_v, \quad [D_u, D^h_{(u,v)}] = -2hD^h_{(u,v)}, \quad [D_v, D^h_{(u,v)}] = -2hD^h_{(u,v)}.
\]

2.2. Recurrence Relation and Symmetry

In [9], the recurrence relation

\[
p_d^{(p+1,q,r,s,t)}(m, n) = \frac{r - s + p + 1 - d/2 + m}{r - s + p + 1 - d/2} p_d^{(p,q,r,s,t)}(m, n)
\]

\[
- \frac{(r - s - 1 + 2m + n)(r - s - d/2 + m)(r - t - 1 + 2m + n)(r - t - d/2 + m)}{r - s + p + 1 - d/2}
\]

\[
\times p_d^{(p,q,r,s,t)}(m - 1, n + 1)
\]

\[
+ \frac{(r + m + n)(r - s - d/2 + m)(r - t - d/2 + m)(r - t + q + m + n)}{r - s + p + 1 - d/2}
\]

\[
\times p_d^{(p,q,r,s,t)}(m - 1, n + 2), \quad (2.5)
\]

is necessary to show that (2.2) is the appropriate solution to (2.3) and the symmetry \(H_d^{(p,q,r,s,t)}(u, v) = H_d^{(q,p,r,t,s)}(u, v)\) needed for the invariance under the dihedral group \(D_6\) of order 12 were not explicitly demonstrated to follow from the solution (2.2).

In the next sections, several equivalent expressions for \(P_d^{(p,q,r,s,t)}(m, n)\) and \(H_d^{(p,q,r,s,t)}(u, v)\) will be introduced to verify that (2.5) is satisfied and the solution (2.2) is indeed invariant under \(D_6\).

3. Several Expressions for \(H\)

In this section several equivalent but completely different expressions for the \(H\)-function are given. The first subsection lists the various expressions, while the proofs are left for the following subsections. The reader only interested in the different forms of \(H\) can certainly skip the proofs.

3.1. \(H\)-function

By trivially combining Pochhammer symbols together, the original solution (2.2) for the \(H\)-function can be rewritten as

\[
P_d^{(p,q,r,s,t)}(m, n) = \sum_{i,j \geq 0} \frac{(-1)^i(-m)_i(-i)_j}{i!j!m!} (-p)_i(-q)_{m-i+j}(-s - q + m - i + j)_{i-j}(-t)_{m-i+j}(r - s + m + n + i)_{m-i}
\]

\[
\times (r - s + p + 1 - d/2)_{m-i}(r - t + 2m + n - i + j)_{i-j}(r - t + 1 - d/2 + m - i)_i,
\]

\[
H_d^{(p,q,r,s,t)}(u, v) = \sum_{i,j,m,n \geq 0} \frac{(-1)^i(-m)_i(-i)_j}{i!j!m!n!} (-p)_i(-q)_{m-i+j}(-s - q + m - i + j)_{i-j}(-t)_{m-i+j}(r - s + p + 1 - d/2)_{m-i}
\]

\[
\times (r - s)_{m+n+i}(r - s + 1 - d/2)_m(r - t)_{2m+n-i+j}(r - t + 1 - d/2)_m^{-i} x^m y^n.
\]

(3.1)
Another expression for the H-function, which allows to show that $P_d^{(p,q;r,s,t)}(m,n)$ is invariant under the interchange of $r + 1 - d/2$ and $r + m + n$, is given by

$$
P_d^{(p,q;r,s,t)}(m,n) = \sum_{i,j,k,m,n \geq 0} \frac{(-m)_i(-i)_j(-1)_k}{i!j!k!m!}(-p)_{m-j}(-q)_{j}(r + m + n)_{i-j}(r + s + p + 1 - d/2)_j \cdot \sum \quad (r)_m(n)_{m+n}(r - t + q)_{m+n} \cdot \frac{(r - s)_{2m+n-j}(r - s + 1 - d/2)_{m-j}(r - t)_{m+n+i}(r - t - 1 - d/2)_j}{z^{m}y^{n}}. \tag{3.2}
$$

A slightly more complicated expression with one extra sum, useful to prove the symmetry property $H_d^{(p,q;r,s,t)}(u,v) = H_d^{(q,p;r,t,s)}(u,v)$, corresponds to

$$
P_d^{(p,q;r,s,t)}(m,n) = \sum_{i,j,k,m,n \geq 0} \frac{(-m)_i(-i)_j(-1)_k}{i!j!k!m!}(-p)_{m-j}(-q)_{j}(r + m + n)_{i-j}(r + s + p + 1 - d/2)_j \cdot \sum \quad (r)_m(n)_{m+n}(r - t + q)_{m+n} \cdot \frac{(r - s)_{2m+n-j}(r - s + 1 - d/2)_{m-j}(r - t)_{m+n+i}(r - t - 1 - d/2)_j}{z^{m}y^{n}}. \tag{3.3}
$$

The final rewriting of the H-function, relevant to prove the recurrence relation (2.5), is

$$
P_d^{(p,q;r,s,t)}(m,n) = \sum_{i,j,k,m,n \geq 0} \frac{(-m)_i(-1)_j}{i!j!k!m!}(-p)_{m-j}(-q)_{j}(r + m + n)_{i-j}(r - s + p + 1 - d/2)_j \cdot \sum \quad (r)_m(n)_{m+n}(r - t + q)_{m+n} \cdot \frac{(r - s)_{m+n+i-j}(r - s + 1 - d/2)_{m-j}(r - t)_{m+n+i}(r - t - 1 - d/2)_j}{z^{m}y^{n}}. \tag{3.4}
$$

3.2. Proof of (3.2)

To prove (3.2) from (3.1), it is convenient to reorder the sums in the polynomial using

$$
\sum_{i=0}^{m} \sum_{j=0}^{i} a_{i,j} = \sum_{i=0}^{m} \sum_{j=0}^{i} a_{m-j,i-j}.
$$
which leads to
\[
P_d^{(p,q;r,s,t)}(m,n) = \sum_{i=0}^{m} \sum_{j=0}^{i} \frac{(-m)_i(-i)_j}{i!j!m!} (-p)_{m-j} (-q)_i (-s - q + i)_{m-i} (-t)_i (r - s + 2m + n - j)_j \
\times (r - s + p + 1 - d/2)_j (r - t + m + n + i)_{m-i} (r - t + j + 1 - d/2)_{m-j},
\]
(3.5)
after simplifying the pre-factors. With the help of
\[
(-p)_{m-j} = \frac{(-1)^j (-p)_m}{(p - m + 1)_j},
\]
\[
(r - s + 2m + n - j)_j = (-1)^j (s - r - 2m - n + 1)_j,
\]
\[
(r - t + 1 - d/2 + j)_{m-j} = \frac{(r - t + 1 - d/2)_m}{(r - t + 1 - d/2)_j}
\]
and the symmetry (B.1) on the sum over \(j \) with \(a = s - r - 2m - n + 1 \) and \(d = r - t + 1 - d/2 \), one finally obtains (3.2) after some trivial simplifications. Hence, \(P_d^{(p,q;r,s,t)}(m,n) \) is invariant under the interchange of \(r + 1 - d/2 \) and \(r + m + n \).

3.3. Proof of (3.3)

Now that the equivalence of (3.2) and (3.1) is established, the third form for \(P_d^{(p,q;r,s,t)}(m,n) \) can be obtained from (3.2). Using the binomial identity (A.3) in (3.2) to express
\[
(-s - q + i)_{m-i} = \sum_{k=0}^{m-i} \binom{m-i}{k} (-s)_{m-i-k} (-q + i)_k = \sum_{k=0}^{m-i} \binom{m-i}{k} (-s)_{m-k} (-q + i)_{k-i}
\]
allows to combine the last Pochhammer symbol above with \((-q)_i\) in (3.2), leading to
\[
P_d^{(p,q;r,s,t)}(m,n) = \sum_{i=0}^{m} \sum_{j=0}^{i} \sum_{k=0}^{i} \binom{m-i}{k} \frac{(-m)_i(-i)_j}{i!j!m!} (-p)_{m-j} (-q)_i (-s - q + i)_k (2r - s - t + 2m + n - d/2)_{m-j} \
\times (r - s + m - j + 1 - d/2)_{m-i-j} (r - s + 2m + n - j)_{m-j} (r - t + 1 - d/2)_{m-i-j} (r - t + m + n + i)_{m-i-j}.
\]
Reordering the sums as
\[
\sum_{i=0}^{m} \sum_{j=0}^{k-i} \sum_{k=0}^{m} a_{ijk} = \sum_{k=0}^{m} \sum_{j=0}^{k-i} \sum_{i=0}^{m} a_{i+j,ik},
\]
the previous result becomes
\[
P_d^{(p,q;r,s,t)}(m,n) = \sum_{k=0}^{m} \sum_{j=0}^{k-i} \sum_{i=0}^{m} \binom{m}{k} \frac{(-k+j)_i}{i!m!} (-p)_{m-j} (-q)_i (-s - q + i)_{k} (2r - s - t + 2m + n - d/2)_{i} \
\times (r - s + m - j + 1 - d/2)_{m-i-j} (r - s + 2m + n - j)_{m-j} (r - t + 1 - d/2)_{m-i-j} \
\times (r - t + m + n + i + j)_{m-i-j},
\]
after a trivial simplification of the pre-factors. Using

\[-t_i^j = (-t)_{i+j},\]

\[(r-t+i+j+1-d/2)_{m-i-j} = \frac{(r-t+j+1-d/2)_{m-j}}{(r-t+j+1-d/2)_i},\]

\[(r-t+m+n+i+j)_{m-i-j} = \frac{(r-t+m+n+j)_{m-j}}{(r-t+m+n+j)_i},\]

and separating the sum over \(i\) gives

\[P_{d}^{(p,q;r,s,t)}(m,n) = \sum_{k=0}^{m} \sum_{j=0}^{k} \frac{1}{m!} \binom{m}{k} \frac{k}{j} (-p)_{m-j} (-q)_{k} (-s)_{m-k} (-t)_j (r-s+m+j+1-d/2)_j \times (r-s+2m+n-j)_j (r-t+j+1-d/2)_{m-j} (r-t+m+n+j)_{m-j} \times \sum_{i=0}^{k-j} \frac{(-k+j)_i}{i!} \frac{(-t+j)_i}{i!} \frac{(2r-s-t+2m+n-d/2)_i}{(r-t+j+1-d/2)_i} \frac{(r-t+m+n+j)_{m-j}}{(r-t+m+n+j)_i}.\]

At this point, the symmetry property (B.3) with \(a = -t+j\) can be used for the sum over \(i\) leading to

\[P_{d}^{(p,q;r,s,t)}(m,n) = \sum_{k=0}^{m} \sum_{j=0}^{k} \frac{1}{m!} \binom{m}{k} \frac{k}{j} (-p)_{m-j} (-q)_{k} (-s)_{m-k} (-t)_j (r-s+m+j+1-d/2)_j \times (r-s+2m+n-j)_j (r-t+j+1-d/2)_{m-j} (r-t+m+n+j)_{m-j} \times \frac{(-t+j)_{k-j} (s-m+j+1)_{k-j}}{(r-t+j+1-d/2)_{k-j} (r-t+m+n+j)_{k-j}} \sum_{i=0}^{k-j} \frac{(-k+j)_i}{i!} \frac{(r+1-d/2)_i (r+m+n)_i}{(s-m+j+1)_i (t-k+1)_i}.\]

Combining the Pochhammer symbols in the last line yields

\[P_{d}^{(p,q;r,s,t)}(m,n) = \sum_{k=0}^{m} \sum_{j=0}^{k} \frac{1}{m!} \binom{m}{k} \frac{k}{j} (-p)_{m-j} (-q)_{k} (-s)_{m-k} (-t)_j (r-s+m+j+1-d/2)_j \times (r-s+2m+n-j)_j (r-t+j+1-d/2)_{m-j} (r-t+m+n+j)_{m-j} \times (-1)^{k-j} \sum_{i=0}^{k-j} \frac{(-k+j)_i}{i!} \frac{(r+1-d/2)_i (r+m+n)_i (-t+j)_{k-j-i} (-s+m-k)_{k-j-i}}{(r-t+j+1-d/2)_{k-j} (r-t+m+n+j)_{k-j}},\]

which is equivalent to (3.3) once a few simplifications of the Pochhammer symbols are performed and the indices are changed as in \(i \leftrightarrow k\).

3.4. Proof of (3.3)

The expression (3.4) can be obtained starting from the form (3.5) which can be written as

\[P_{d}^{(p,q;r,s,t)}(m,n) = \sum_{i=0}^{m} \sum_{j=0}^{i} \frac{(-1)^{i+j}}{m-i! i-j! j!} (-p)_{m-j} (-q)_{i} (-s-q+i)_{m-i} (-t)_i (r-s+2m+n-j)_j \times (r-s+p+1-d/2)_j (r-t+m+n+i)_{m-i} (r-t+j+1-d/2)_{m-j},\]
after simplifying the pre-factors. Reordering the sums using
\[
\sum_{i=0}^{m} \sum_{j=0}^{n-i} a_{ij} = \sum_{j=0}^{m} \sum_{i=0}^{m-j} a_{i+j,j},
\]
leads to
\[
P_d^{(p,q;r,s,t)}(m, n) = \sum_{j=0}^{m} \frac{1}{(m-j)!j!} (-p)_{m-j}(-q)_{j}(-s - q + j)_{m-j}(-t)_{j}(r - s + 2m + n - j)_{j} \\
\times (r - s + p + 1 - d/2)_{j}(r - t + m + n + j)_{m-j}(r - t + j + 1 - d/2)_{m-j} \\
\times \sum_{i=0}^{m-j} \frac{(-m+j)_{i}}{i!} \frac{(-q+j)_{i}(-t+j)_{i}}{(-s+q+j)_{i}(r-t+m+n+j)_{i}},
\]
where the sum over \(i\) was factored out and its pre-factor simplified. Using the symmetry property (B.2) for the sum over \(i\) with \(d = -s - q + j\) gives
\[
P_d^{(p,q;r,s,t)}(m, n) = \sum_{j=0}^{m} \frac{1}{(m-j)!j!} (-p)_{m-j}(-q)_{j}(-s - q + j)_{m-j}(-t)_{j}(r - s + 2m + n - j)_{j} \\
\times (r - s + p + 1 - d/2)_{j}(r - t + m + n + j)_{m-j}(r - t + j + 1 - d/2)_{m-j} \\
\times \frac{(r - s + m + n)_{m-j}}{(-s - q + j)_{m-j}} \sum_{i=0}^{m-j} \frac{(-m+j)_{i}}{i!} \frac{(r - t + q + m + n)_{i}(r + m + n)_{i}}{(r-t+m+n+j)_{i}(r-s+m+n)_{i}}.
\]
Combining the Pochhammer symbols together leads to
\[
P_d^{(p,q;r,s,t)}(m, n) = \sum_{j=0}^{m} \sum_{i=0}^{m-j} \frac{(-m)_{i+j}(-i-j)_{j}}{(i+j)!j!m!} (-p)_{m-j}(-q)_{j}(-t)_{j}(r - s + m + n + i)_{m-i} \\
\times (r - s + p + 1 - d/2)_{j}(r - t + m + n + i + j)_{m-j-i}(r - t + j + 1 - d/2)_{m-j} \\
\times (r - t + q + m + n)_{i}(r + m + n)_{i},
\]
after straightforward simplifications of the pre-factors. Shifting \(i \rightarrow i - j\) followed by reversing the order of the sums brings the results to
\[
P_d^{(p,q;r,s,t)}(m, n) = \sum_{i=0}^{m} \sum_{j=0}^{i} \frac{(-m)_{i}(-i-j)_{j}}{i!j!m!} (-p)_{m-j}(-q)_{j}(-t)_{j}(r - s + m + n + i - j)_{m-i+j} \\
\times (r - s + p + 1 - d/2)_{j}(r - t + m + n + i)_{m-i}(r - t + j + 1 - d/2)_{m-j} \\
\times (r - t + q + m + n)_{i-j}(r + m + n)_{i-j},
\]
which is exactly (3.4).
4. Recurrence Relation and Symmetry

This section proves the recurrence relation and the symmetry using suitable expressions for the H-function obtained in the previous section.

4.1. Proof of the Symmetry

In [9] it was argued from the definition of the H-function in terms of the differential operator [2.3] that $H_{d}^{(p,q,r,s,t)}(u,v) = H_{d}^{(q,p,r,s,t)}(u,v)$, a symmetry property necessary to show that the H-function is invariant under D_{6}. At the level of the polynomial $P_{d}^{(p,q,r,s,t)}(m,n)$, the previous symmetry corresponds simply to $P_{d}^{(p,q,r,s,t)}(m,n) = P_{d}^{(q,p,r,s,t)}(m,n)$. It is trivial to show this property directly using expression [3.3].

Indeed, [3.3] implies that

$$P_{d}^{(p,q,r,s,t)}(m,n) = \sum_{i=0}^{m} \sum_{j=0}^{m-i} \frac{(-m)_{i}(-i)_{j}(-i+j)_{k}}{i!j!k!m!} (-q)_{m-j}(-p)_{m-j-k}(-s)_{m-j-k}(r+1-d/2)_{k}(r+m+n)_{k}$$

\[\times (r-t+m-j+1-d/2)_{j}(r-t+2m+n-j)_{j}(r-s+i+1-d/2)_{m-i} \]

\[\times (r-s+m+n+i)_{m-i}. \]

Since

$$\sum_{i=0}^{m} \sum_{j=0}^{m} a_{ij} = \sum_{i=0}^{m} \sum_{j=0}^{m} a_{m-j,m-i},$$

the previous result can be rewritten as

$$P_{d}^{(p,q,r,s,t)}(m,n) = \sum_{i=0}^{m} \sum_{j=0}^{m-i} \frac{(-m)_{i}(-i)_{j}(-i+j)_{k}}{i!j!k!m!} (-q)_{i}(-p)_{m-j}(-t)_{i}(-s)_{m-j-k}(r+1-d/2)_{k}(r+m+n)_{k}$$

\[\times (r-t+i+1-d/2)_{m-i}(r-t+m+n+i)_{m-i}(r-s+m-j+1-d/2)_{j} \]

\[\times (r-s+2m+n-j)_{j} \]

\[= P_{d}^{(p,q,r,s,t)}(m,n), \]

where the pre-factors in the first equality have been simplified. This result for $P_{d}^{(p,q,r,s,t)}(m,n)$ therefore shows that the H-function is invariant under the dihedral group of order 12.

4.2. Proof of the Recurrence Relation

The recurrence relation [2.5] can be verified directly starting from expression [3.4]. It is actually simpler to introduce a generalization of [3.4] in order to prove [2.5]. Defining

$$Q_{d}^{(p,q,t,a,b,c,d,e,f)}(m) = \sum_{i=0}^{m} \sum_{j=0}^{i} \frac{(-m)_{i}(-i)_{j}(-p)_{m-j}(-q)_{j}(-t)_{j}(a)_{j}(b)_{i-j}(c)_{i-j}}{i!j!m! (d)_{j}(e)_{i-j}(f)_{i}},$$

(4.1)
the original polynomial can be written as
\[P_d^{(p,q;r,s,t)}(m,n) = (d)_m(e)_m(f)_m \times Q_d^{(p,q,t,r-s+p+1-d/2,r+m+n,r-t+q+m+n,r-t+1-d/2,r-s+m+n,r-t+m+n)}(m). \] (4.2)

The new polynomial \(Q \) satisfies several contiguous relations. Two such relations are needed to prove (2.5). Using the fact that
\[
(-p)_{m-j} = (-p-1)_{m-j} + (m-j)(-p)_{m-1-j},
\]
\[
a(a+1)_j = (a+m)(a)_j - (m-i)(a)_j - (i-j)(a)_j,
\]
leads directly to the two following contiguous relations for (4.1),
\[
Q_d^{(p,q,t,a,b,c,d,e,f)}(m) = Q_d^{(p+1,q,t,a,b,c,d,e,f)}(m) + Q_d^{(p,q,t,a,b,c,d,e,f)}(m-1)
- \frac{bc}{ef} Q_d^{(p,q,t,a,b+1,c+1,d,e+1,f+1)}(m-1),
\]
\[
aQ_d^{(p+1,q,t,a+1,b,c,d,e,f)}(m) = (a+m)Q_d^{(p+1,q,t,a,b,c,d,e,f)}(m) + (p+1)Q_d^{(p,q,t,a,b,c,d,e,f)}(m-1)
- \frac{bc}{ef} (p+1)Q_d^{(p,q,t,a,b+1,c+1,d,e+1,f+1)}(m-1).
\]

These two contiguous relations are not obeyed by the polynomial \(P_d^{(p,q;r,s,t)}(m,n) \) due to the relationship between the different parameters in (4.2). However, by isolating \(Q_d^{(p+1,q,t,a,b,c,d,e,f)}(m) \) in the first contiguous relation and inserting its definition in the right-hand side of the second contiguous relation, it is easy to obtain the following contiguous relation
\[
aQ_d^{(p+1,q,t,a+1,b,c,d,e,f)}(m) = (a+m)Q_d^{(p+1,q,t,a,b,c,d,e,f)}(m) - (a-p+m-1)Q_d^{(p,q,t,a,b,c,d,e,f)}(m-1)
+ \frac{bc}{ef} (a-p+m-1)Q_d^{(p,q,t,a,b+1,c+1,d,e+1,f+1)}(m-1),
\] (4.3)

which is satisfied by the polynomial \(P_d^{(p,q;r,s,t)}(m,n) \). In fact, (4.3) is nothing else than the recurrence relation (2.5), proving that the \(H \)-function is the correct quantity appearing in conformal blocks.

5. Differential Operators

In this section the differential operator \(D_{(u,v)} \) is used to derive both the \(G \) and \(H \)-functions constructively. Generalizations to higher-point correlation functions will be discussed elsewhere.
5.1. Action

By direct computation, the action of the differential operator $\mathcal{D}_{(u,v)}$ on the variables $x = u/v$ and $y = 1 - 1/v$ is simply

$$\mathcal{D}_{(u,v)} x^m y^n = (-2)[n(n-1)x - n(m+n)xy + (m+n)(m+1-d/2)y^2]x^{m+1}y^{n-2},$$

and therefore

$$\mathcal{D}_{(u,v)}^h x^m y^n = (-2)^h \sum_{i,j \geq 0} \frac{(-e)^{i+j}(-h)_i(-i)_j}{i!j!}(m+i+1-d/2)_{n-i}(m+n)_{n-j} x^{m+h+i} y^{n-i-j}.$$

Expression (5.1) has the correct limiting behavior at $(u,v) \to (0,1)$ as can be checked by computing (2.1) from (2.3), which gives

$$G_d^{(q;r;t)}(u,v) = \frac{x^{-(r-t+q)} \mathcal{D}_{(u,v)}^q x^{-(1-y)^{-r}}}{(2)^q(r-t)q(r-t+1-d/2)_q} = \sum_{k \geq 0} \frac{(r)_k}{k!} \frac{x^{-(r-t+q)} \mathcal{D}_{(u,v)}^{q} x^{-(r-t)y^k}}{(2)^q(r-t+1-d/2)_q}$$

$$= \sum_{i,j,k \geq 0} \frac{(-1)^{i+j}(-i)_j(-k)_i}{i!j!k!} (r)_k (r-t+k)_{q-j} x^i y^j x^{-r}$$

$$= \sum_{m,n,j \geq 0} \frac{(-m)_j (r+m+n)_j}{j!} \frac{(-q)_m (r-m+n)_{n+m} (r-t-m+n)_{q-m}}{(r-t)_q (r-t+1-d/2)_m} x^m y^n$$

$$= \sum_{m,n \geq 0} \frac{(-t)_m (r-m+n)_m}{(r-t)_q (r-t+1-d/2)_m} x^m y^n.$$

In the third equality the sums where shifted $(i,k) \to (m+n+i+j)$, while the Vandermonde’s identity (A.3) was used in the last equality. The final result is equivalent to (2.1) and thus proves that (5.1) is the correct action of the differential operator in computing conformal blocks.

Using (5.1), the H-function can be easily computed from (2.3)

$$H_d^{(p,q;r,s;t)}(u,v) = \frac{\binom{w}{p}^{-(r-s+p)} \mathcal{D}_{(u,v)}^p \binom{w}{m}^{(r-s)} G_d^{(q;r;t)}(u,v)}{(2)^p(r-s)_p (r-s+1-d/2)_p}$$

$$= \sum_{m,n \geq 0} \frac{(-q)_m (-t)_m}{(r-t+1-d/2)_m m!} \frac{(r-m+n)_{m+n} (r-t+q)_m}{(r-t)_m} x^{-(r-s+p)} \mathcal{D}_{(u,v)}^{q} x^{-(r-s+m)y^n}$$

$$= \sum_{i,j,m,n \geq 0} \frac{(-1)^{i+j}(-p)_i(-t)_j}{i!j!} \frac{(-q)_m (-t)_m}{(r-t+1-d/2)_m m!} \frac{(r-m+n)_{m+n} (r-t+q)_m}{(r-t)_m}$$

$$\times \frac{x^{-(r-s+m+i+1-d/2)} y_{n+i-j}}{(r-s)_p (r-s+1-d/2)_p}$$

$$= \sum_{i,j,m,n \geq 0} \frac{(-1)^{i+j}(-p)_i(-t)_j}{i!j!} \frac{(-q)_m (-t)_m}{(r-t+1-d/2)_m m!} \frac{(r-m+n)_{m+n} (r-t+q)_m}{(r-t)_m}$$

$$\times \frac{x^{-(r-s+m+j+1-d/2)} y_{n+i-j}}{(r-s)_m (r-s+1-d/2)_m}.$$

where the last identity, obtained by substituting $(m,n) \to (m-i,n+i+j)$, corresponds exactly to (3.4) after changing $(i,j) \to (m-j,j-i)$. Since (3.4) is the expression for the H-function that
6. Conclusion

We used several identities for the Pochhammer symbols and hypergeometric-like polynomials in order to show that the H-function computed in [9] is the appropriate function appearing in conformal blocks. With the help of these identities, several different expressions for the H-function were presented. This allowed us to demonstrate explicitly that the H-function is invariant under the dihedral group of order 12 and that it satisfies the proper recurrence relation.

We also found the explicit action of the differential operator on simple products of the conformal cross-ratios. This differential form was used to give a constructive proof of the H-function, independent of the approach based on identities used before. As far as computing conformal blocks is concerned, the action of the differential operator is actually the most important result of this paper. Indeed, there exists a generalization of this expression that acts straightforwardly on higher N-point correlation functions. This result will be discussed elsewhere.

Finally, it is worth mentioning that the physical interpretation behind the D_6-symmetry of the H-function remains unclear. Nevertheless, this symmetry might have implications for the analyticity properties in spin of the conformal blocks.

Acknowledgments

Two of the authors (JFF and WS) would like to thank the CERN Theory Group, where this work was conceived, for its hospitality. The work of VC and JFF is supported by NSERC and FRQNT.

A. Mathematical Properties of the Pochhammer Symbol

Pochhammer symbols satisfy several mathematical properties and some of those properties are necessary to show that the different representations of the H-function are equivalent. For completeness, this appendix presents several useful identities for the Pochhammer symbol.

First, the Pochhammer symbol $(x)_\alpha$ is defined as

$$(x)_\alpha = \frac{\Gamma(x + \alpha)}{\Gamma(x)}, \quad (A.1)$$

and for $\alpha = n$ a non-negative integer, it satisfies

$$(-x)_n = (-1)^n(x - n + 1)_n, \quad (A.2)$$
as well as the binomial identity

\[(x + y)_n = \sum_{k \geq 0} \binom{n}{k} (x)_k (y)_{n-k}. \quad (A.3)\]

The Vandermonde’s identity

\[(x + y)_\alpha = \sum_{k \geq 0} \left(\frac{-\alpha}{k!} \right) (-x)_k (y + k)^{\alpha - k}. \quad (A.4)\]

can be obtained from the binomial identity \((A.3) \) by using \((A.2) \). Unlike the binomial identity, the Vandermonde’s identity is satisfied for any \(\alpha \) (not just for integer values) as long as the sum converges. Both \((A.3)\) and \((A.4)\) can be demonstrated by recurrence.

B. Symmetry Properties of Hypergeometric-like Sums

To demonstrate the identities relevant for the \(H \)-function, it is necessary to use symmetry properties of hypergeometric-like polynomials. The appropriate symmetry properties are presented in this appendix.

Defining the hypergeometric-like polynomial

\[F_n \left(\begin{array}{ll} a & b \\ c & d \end{array} \right) = \sum_{k=0}^{n} \frac{(-n)_k (a)_k (b)_k}{k! (c)_k (d)_k}, \]

it is easy to show that it satisfies the following symmetry property,

\[F_n \left(\begin{array}{ll} a & b \\ c & d \end{array} \right) = \frac{(d-a)_n}{(d)_n} F_n \left(\begin{array}{ll} a & c-b \\ c & a-d+1-n \end{array} \right). \quad (B.1)\]

Indeed, one has

\[F_n \left(\begin{array}{ll} a & b \\ c & d \end{array} \right) = \sum_{k=0}^{n} \frac{(-n)_k (a)_k (b)_k}{k! (c)_k (d)_k} = \frac{1}{(d)_n} \sum_{k=0}^{n} \frac{(-n)_k (a)_k (b)_k}{k! (c)_k (d+k)_n-k} \]

\[= \frac{1}{(d)_n} \sum_{k=0}^{n} \frac{(-n)_k (a)_k (b)_k}{k! (c)_k} \sum_{j=0}^{n-k} \binom{n-k}{j} (a+k)_j (d-a)_{n-k-j} \]

\[= \frac{1}{(d)_n} \sum_{k=0}^{n} \sum_{j=0}^{n-k} \frac{(-n)_k}{k!} \binom{n-k}{j-k} (b)_k (c)_k (a)_j (d-a)_{n-j}, \]

from the binomial identity \((A.3)\) for \((d+k)_{n-k} = (d-a+a+k)_{n-k}\) and a simple shift of the sum.
over \(j \). Reordering the sums and simplifying lead to

\[
F_n \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) = \frac{1}{(d)_n \sum_{j=0}^{n}} \left(\begin{array}{c} n \\ j \end{array} \right) (a)_j (d - a)_{n-j} \sum_{k=0}^{j} \frac{(-j)_k (b)_k}{k! (c)_k} \\
\end{array} \right) \\
\] \\
\]

\[
= \frac{1}{(d)_n \sum_{j=0}^{n}} \left(\begin{array}{c} n \\ j \end{array} \right) \frac{(a)_j (d - a)_{n-j}}{(c)_j} \sum_{k=0}^{j} \frac{(-j)_k (b)(c + k)_{j-k}}{k!} \\
\] \\
\]

\[
= \frac{1}{(d)_n \sum_{j=0}^{n}} \left(\begin{array}{c} n \\ j \end{array} \right) \frac{(a)_j (d - a)_{n-j}}{(c)_j} (c - b)_j, \\
\] \\

where the Vandermonde’s identity \((A.4)\) was used in the last equality. With

\[
(d - a)_{n-j} = \frac{(-1)^j (d - a)_n}{(a - d + 1 - n)_j}, \\
\] \\

the last equation becomes

\[
F_n \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) = \frac{(d - a)_n}{(d)_n \sum_{j=0}^{n}} \left(\begin{array}{c} n \\ j \end{array} \right) \frac{(-1)^j (n)_j (a)_j (c - b)_j}{(c)_j (a - d + 1 - n)_j}, \\
\] \\

which is exactly \((B.1)\).

Two other useful symmetry properties can be obtained from \((B.1)\). By applying the symmetry \((B.1)\) recursively to the same relation it is possible to generate more identities. For example, using \((B.1)\) once again gives

\[
F_n \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) = \frac{(d - a)_n}{(d)_n \sum_{j=0}^{n}} \left(\begin{array}{c} n \\ j \end{array} \right) \frac{(-1)^j (n)_j (a)_j (c - b)_j}{(c)_j (a - d + 1 - n)_j}, \\
\] \\

while applying \((B.1)\) twice to \((B.1)\), or once more to \((B.2)\), yields

\[
F_n \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) = \frac{(c + d - a - b)_n}{(d)_n \sum_{j=0}^{n}} \left(\begin{array}{c} n \\ j \end{array} \right) \frac{(-1)^j (n)_j (a)_j (c - b)_j}{(c)_j (a - d + 1 - n)_j}, \\
\] \\

which is exactly \((B.1)\).

To obtain \((B.2)\) and \((B.3)\), the invariance of \(F_n \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \) under the interchange of the two upper variables \((a \leftrightarrow b) \) or the two lower variables \((c \leftrightarrow d) \) was used.
References

[1] G. Mack, “Convergence of Operator Product Expansions on the Vacuum in Conformal Invariant Quantum Field Theory”, Commun. Math. Phys. 53, 155 (1977).

[2] S. Ferrara, A. F. Grillo & R. Gatto, “Tensor representations of conformal algebra and conformally covariant operator product expansion”, Annals Phys. 76, 161 (1973).

[3] F. A. Dolan & H. Osborn, “Conformal four point functions and the operator product expansion”, Nucl. Phys. B599, 459 (2001) hep-th/0011040.

[4] F. A. Dolan & H. Osborn, “Conformal partial waves and the operator product expansion”, Nucl. Phys. B678, 491 (2004) hep-th/0309180.

[5] R. Rattazzi, V. S. Rychkov, E. Tonni & A. Vichi, “Bounding scalar operator dimensions in 4D CFT”, JHEP 0812, 031 (2008) arXiv:0807.0004.

[6] P. A. M. Dirac, “Wave equations in conformal space”, Annals Math. 37, 429 (1936).

[7] S. Ferrara, R. Gatto & A. F. Grillo, “Conformal invariance on the light cone and canonical dimensions”, Nucl. Phys. B34, 349 (1971).

[8] J.-F. Fortin & W. Skiba, “Conformal Bootstrap in Embedding Space”, Phys. Rev. D93, 105047 (2016) arXiv:1602.05794.

[9] J.-F. Fortin & W. Skiba, “Conformal Differential Operator in Embedding Space and its Applications”, arXiv:1612.08672.

[10] H. Exton, “On the system of partial differential equations associated with Appell’s function F_4”, Journal of Physics A: Mathematical and General 28, 631 (1995), http://stacks.iop.org/0305-4470/28/i=3/a=017.