THE CONJUGACY PROBLEM FOR TWO-BY-TWO MATRICES OVER POLYNOMIAL RINGS

F. J. Grunewald and N. K. Iyudu

ABSTRACT. We give an effective solution of the conjugacy problem for two-by-two matrices over the polynomial ring in one variable over a finite field.

CONTENTS

1. Introduction ... 2233
2. Reduction to a Quadratic Equation .. 2234
3. Preliminary Considerations for the Solution of the Quadratic Equation 2236
4. Imaginary Case ... 2238
5. Real Case .. 2239
 5.1. Units (equation $u^2 + bvu + cv^2 = 1$) ... 2239
 5.2. General Case $d \neq 1$.. 2242
6. Note on the Case of Characteristic Not Equal to 2 ... 2244
7. Centralizers of Matrices ... 2246
8. The Conjugacy Problem in $GL(2)$ over Polynomial Rings 2246
 References .. 2247

1. Introduction

We consider the conjugacy problem in the ring of two-by-two matrices $M(2, k[x])$ over the polynomial ring $k[x]$, where k is a finite field. We say that two matrices $A, B \in M(2, k[x])$ are conjugate if there is a conjugating matrix U in the group $GL(2, k[x])$ of invertible matrices over $k[x]$, i.e., U satisfies $B = UAU^{-1}$. In what follows, we write $\deg(P)$ for the degree of a polynomial and $\deg(A)$ for the maximal degree of the entries of $A \in M(2, k[x]).$

Theorem 1.1. Let k be a finite field with q elements and $A, B \in M(2, k[x])$. Let δ be the maximum of $\deg(A)$ and $\deg(B)$. If A and B are conjugate, then there is a conjugating matrix U with $\deg(U) \leq (1 + q)\delta q^{78}$.

For certain pairs of matrices $A, B \in M(2, k[x])$, the estimate of the degrees of the entries of U can be improved to be linear in δ independently of q (see Proposition 4.2). Theorem 1.1 shows that there is an algorithm that decides whether two matrices $A, B \in M(2, k[x])$ are conjugate or not. Hence we can state the following corollary.

Corollary 1.2. Let k be a finite field. Then the conjugacy problem in the group $GL(2, k[x])$ is effectively solvable.

Corollary 1.2 should be compared with the solution of the conjugacy problem in an arithmetic group. The conjugacy problem for $GL(n, k)$ ($n \in \mathbb{N}$) was solved in [4]. But even for the case $n = 2$ no explicit estimates like those that follow from Theorem 1.1 are known. Also, the algorithms described in [5], which solve the conjugacy problem in any arithmetic group, do not give estimates for the size of a conjugating matrix.
matrix. The method of solution employed in [4] for the case of \(\text{GL}(n, \mathbb{Z}) \) (where \(n \in \mathbb{N} \) can be extended (without giving estimates) to the case of \(\text{GL}(n, k[x]) \) (where \(n \in \mathbb{N} \) and \(k \) is a finite field), where the characteristic of the field \(k \) does not divide the size \(n \) of the matrices. Also, our method provides extra difficulties in the case where \(k \) has characteristic 2. Further features of the conjugacy problem in \(\text{GL}(2, k[x]) \) are described in Sec. 8.

Given a matrix \(A \in \text{GL}(2, k[x]) \), we define

\[
Z(A) := \{ U \in \text{GL}(2, k[x]) \mid UAU^{-1} = A \}
\]

(1)

to be its centralizer. In the case where \(A \neq 1 \) is semisimple, it is well known that \(Z(A) \) is either finite or the direct product of an infinite cyclic group and a finite group (see Sec. 7). By our methods we can give an estimate for the degrees of the entries of a generator of the infinite part.

Theorem 1.3. Let \(k \) be a finite field with \(q \) elements and \(A \in \text{GL}(2, k[x]) \) be a semisimple matrix not equal to the identity matrix. Let \(Z(A) \) be infinite. Then there is a matrix \(U \in Z(A) \) that generates \(Z(A) \) up to a finite group with \(\deg(U) \leq \deg(A) q^{2 \deg(A)} \).

Our method to prove Theorem 1.1 uses a reduction to a quadratic equation in two variables. As a special case, Pell’s equation

\[
u^2 + Dv^2 = 1
\]

(2)

with \(D \in k[x] \) arises. Let us call \(D \in k[x] \) positive if it is neither constant nor a square, \(D \) has an even degree, and its highest coefficient is a square. Let us furthermore call a solution \((u, v)\) of (2) trivial if \(u, v \in k \) holds.

Theorem 1.4. Let \(k \) be a finite field with \(q \) elements and \(D \in k[x] \) be a positive polynomial. Then (2) has a nontrivial solution \((u, v)\in k^2\) with \(\deg(u), \deg(v) \leq q^{\deg(D)} \).

Pell’s equation (2) has been studied extensively in the paper of Emil Artin of 1924 [2]. He investigates Pell’s equation through continued-fraction expansions. But he has to assume that the characteristic of \(k \) is not equal to 2. Our result in Theorem 1.4 follows straightforwardly from [2]. We modify Artin’s technique for the case of characteristic 2.

Following our reduction, we have to analyze the solutions of general quadratic equations

\[
a u^2 + b u v + c v^2 = d,
\]

(3)

where \(a, b, c, \) and \(d \) are polynomials in \(k[x] \). In the case where the characteristic of \(k \) is not 2, appropriate results can be deduced by the continued-fraction methods of [2]. In the case where the characteristic of \(k \) is 2, we use new degree functions on certain quadratic extension rings of \(k[x] \) to control the behavior of continued-fraction expansions.

2. Reduction to a Quadratic Equation

Let \(k \) be a field. Here we consider pairs of matrices

\[
A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in M(2, k[x]), \quad B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \in M(2, k[x]),
\]

(4)

which we call rationally conjugate if they are conjugate by an element of \(\text{GL}(2, k(x)) \), where \(k(x) \) is the field of rational functions over \(k \). Being rationally conjugate is equivalent to the conditions

\[
\text{Tr}(A) = \text{Tr}(B), \quad \det(A) = \det(B),
\]

(5)

where \(\text{Tr}(A) \) denotes the trace and \(\det(A) \) denotes the determinant of the matrix \(A \).

Suppose we want to find a matrix

\[
U = \begin{pmatrix} u & p \\ v & q \end{pmatrix} \in \text{GL}(2, k[x])
\]

(6)