The efficacy and safety of tranexamic acid in lumbar surgery: A meta-analysis of randomized-controlled trials

Kankan Xiao, MD, Xianglong Zhuo, MD, Xiaozhong Peng, MD, Zhenguo Wu, MD, Bing Li, MD

Department of Orthopaedics, Guangxi Liuzhou Workers Hospital (the Fourth Affiliated Hospital of Guangxi Medical University), Liuzhou, China

With the improvement of human life expectancy and changes in lifestyle, the number of patients undergoing lumbar surgery for lumbar diseases is increasing. In lumbar surgery, extensive muscle tissue stripping can lead to spinal canal decompression, bone graft fusion, a large wound, and internal fixation may injure the long segment of the intraspinal venous plexus, and these factors are expected to cause more postoperative bleeding. The amount of pre- and postoperative bleeding is closely related to the complexity of the operation and is directly related to the time of the drainage tube removal and the need for postoperative blood transfusion. Reducing the exudation of incision blood and removing the drainage tube as soon as possible is not only necessary for postoperative rehabilitation, but it is also essential to minimize the risk of lower-extremity deep venous thrombosis (DVT). Concurrently, minimizing quantity of blood loss from the wound following the surgery may help to eliminate the necessity for a blood transfusion. Therefore, reducing perioperative blood loss is important to ensure the safety of surgery.

ABSTRACT

Objectives: This meta-analysis aims to assess tranexamic acid (TXA) effectiveness and safety in lumbar surgery.

Patients and methods: Renewals of randomized-controlled trials (RCTs) were conducted utilizing databases of medical literature such as PubMed, China Science and Technology Journal Database, Cochrane Library, China National Knowledge Infrastructure (CNKI), and EMBASE to compare principal and safety endpoints. The risk ratio (RR), standard mean difference (SMD), and 95% confidence intervals (CIs) were calculated. For the evaluation of the quality of the included studies, the Cochrane risk of bias criteria were utilized by two authors.

Results: In total, 49 articles were enrolled that included 4,822 patients. Of the patients, 2,653 were administered TXA and 2,169 were in the control group. The findings indicated that TXA was capable of significantly lowering postoperative blood loss (PBL), transfusion rate, transfusion volume, total blood loss (TBL), intraoperative blood loss (IBL), and drainage compared to the control group. Besides, hemoglobin (Hb) and hematocrit (Hct) values were higher in the TXA group compared to the control group. As the safety endpoints, TXA significantly reduced D-dimer levels compared to the control group; however, both TXA and control groups had no significant variations in deep venous thrombosis (DVT). Subgroup analysis was administrated according to the administration method of TXA and the operation type and intravenous and topical TXA were combined in the meta-analysis.

Conclusion: This meta-analysis showed that TXA had the potential to significantly lower PBL, transfusion rate, transfusion volume, TBL, IBL, and drainage compared to the control group. As the safety endpoints, TXA significantly reduced D-dimer levels compared to the control group; however, both TXA and control groups had no significant variations in deep venous thrombosis (DVT). Subgroup analysis was administrated according to the administration method of TXA and the operation type and intravenous and topical TXA were combined in the meta-analysis.

Keywords: Lumbar surgery; meta-analysis, tranexamic acid.
To minimize perioperative blood loss, physicians have utilized a variety of techniques, such as controlled hypotension, blood dilution, autologous blood transfusion, and application of hemostatic drugs.[7] Currently, in orthopedic surgery, hemostatic medications with various hemostatic routes have been widely utilized, but due to the need for immobilization, DVT risk exists and, therefore, the application of hemostatic drugs is still controversial.[8] As a common hemostatic drug, tranexamic acid (TXA) is a lysine synthetic derivative and an antifibrinolytic agent.[9] Its pharmacological action is to bind competitively to the lysine binding sites on the source of fibrinolytic enzyme, tissue type plasminogen activator, and plasmin to prevent the dissolution of thrombi.[10-12] Numerous studies have reported that TXA has no effect on enhancing the incidence of DVT, but most of them are routinely used for chemical thromboprophylaxis and, thus, the risk of thrombosis is still not clear.[13-16]

The application of TXA in lumbar surgery is relatively common, but it is still controversial and ambiguous about its safety and effectiveness.[17] Therefore, our study aimed to discover the safety and effectiveness of TXA in lumbar surgery to reinforce the hemostatic medicines clinical application.

PATIENTS AND METHODS

Search strategy

A literature search utilizing the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were carried out by two authors[18] for papers assessing the safety and effectiveness of TXA in lumbar operation. We searched in PubMed, the Cochrane Library, EMBASE, the China National Knowledge Infrastructure (CNKI), and the China Science and Technology Journal Database (commonly known as “VIP”) comprehensively for randomized-controlled trials (RCTs). The language choice is restricted to English or Chinese, and the date of publication was set to begin on January 1st, 2003 to June 30th, 2021. “Tranexamic Acid” and “Lumbar” were utilized as key words, Other meta-analyses and reviews were used to retrieve additional relevant literature. For incomplete or missing data, we contacted the original research authors through electronic mail. Two authors reviewed the retrieved literature. In case of disagreements, a third author was invited to review the paper and render a final decision. No written consent or ethical approval was required, as all data in this meta-analysis were derived from previously published research.

Inclusion and exclusion criteria

Inclusion criteria:

1. The study was an RCT;
2. Evaluated TXA effectiveness and safety in lumbar surgery;
3. The subjects of study were patients who underwent lumbar surgery;
4. On basis of TXA, at least one of groups were assessed;
5. TXA had no dosage or use restrictions;
6. Language options were restricted to English or Chinese;
7. The papers included give sufficient data for analysis.

Exclusion criteria:

1. Animal experiments;
2. Non-randomized trials or semi-randomized controlled trials;
3. Case reports, non-clinical trials, or series;
4. Papers containing wrong or missing data or articles from which data could not be collected.

Endpoints

Total blood loss (TBL) and transfusion rate were the initial endpoints of the study. Secondary endpoints were postoperative drainage, transfusion volume, intraoperative blood loss (IBL), postoperative blood loss (PBL), hemoglobin (Hb) and hematocrit (Hct). Safety endpoints were DVT, and D-dimer (a fibrin degradation product that is traditionally used as a biomarker of DVT).[19,20]

Data extraction

The retrieved studies contents were reviewed by two authors independently. A third author validated the primary endpoints derived by the two authors. The following information were included in extracted data: author's first name, publication year, country conducted in, body mass index (BMI), the size of the sample, sex ratio, intervention, average age, operation type, follow-up time and the endpoints computed in each study. If the study's contents required clarifying, the study's primary author was called up. Conflicts were resolved via prevailing opinion or by calling up a third author who ultimately took the decision.
Risk of bias assessments

Two authors independently appraised the studies’ methodological quality using the Cochrane risk of bias criteria. Each item was classified as having a low risk, a high risk, or no obvious risk. The guideline for detecting limitations of this study (risk of bias) in Cochrane Reviews is shown in Table I, along with the corresponding GRADE evaluation of the quality of evidence. Every trial’s bias assessment checklist involved seven items: randomization sequence generation, allocation concealment, blinding of participants and personnel, findings appraisal blinding, inadequate data findings, selective reporting, as

Risk of bias	Across studies	Interpretation	Considerations	GRADE assessment of study limitations
Low	Most information is from studies at low risk of bias.	Plausible bias unlikely to seriously alter the results.	No apparent limitations.	No serious limitations, do not downgrade.
Unclear	Most information is from studies at low or unclear risk of bias.	Plausible bias that about the results.	Potential limitations are unlikely to lower confidence in the estimate of effect.	No serious limitations, do not downgrade.
High	The proportion of information from studies at high risk of bias is sufficient to affect the interpretation of results.	Plausible bias that seriously weakens confidence in the results.	Potential limitations are likely to lower confidence in the estimate of effect.	Serious limitations, downgrade one level.

TABLE II

Study limitations in randomized-controlled trials: Explanation

Explanation
Lack of allocation concealment
Lack of blinding
Incomplete accounting of patients and outcome events
Selective outcome reporting
Other limitations
well as additional biases. We evaluated publication bias according to the guidance shown in Table II.

Statistical analysis

The individual study results were analyzed and pooled using the Stata version 12.0 software (Stata Corp., College Station, TX, USA). Risk ratios (RRs), standardized mean differences (SMDs), and 95% confidence intervals (CIs) with two-sided p values were estimated in the pooled results. A p value of <0.05 was considered statistically significant. The I² test was utilized to assess heterogeneity. In case of I²<50%, heterogeneity was deemed to be minor; but, in case of I²>50%, heterogeneity was deemed to be substantial. If the I² was <50%, the fixed-effects model was utilized; when the I² was >50%, the random-effects model was utilized. If more than 10 studies were involved in the analysis of this endpoint, a funnel plot was constituted to scrutinize publication bias, as well as discovering the heterogeneity sources. We conducted a subgroup analysis of the indicators including the patients’ TBL, transfusion rates, DVT, and D-dimer level. Subgroup analyses were performed on the basis of administration and operation type.

RESULTS

Studies retrieved and characteristics

Relying on the (PRISMA) guideline, a total of 2,963 studies were registered. The research titles and abstracts were reviewed to preclude studies that were not pertinent. Then, we excluded research that were not suitable by scanning articles full text. Ultimately, relying on the inclusion and exclusion criteria, 49 studies [21-69] including a total of 4,822 patients were enrolled (Figure 1). [70] At length, 2,653 patients (55.0%) and 2,169 patients (45.0%) were allotted to the experimental and the control groups, respectively. The researches involved were all RCTs in the meta-analysis. The participants’ baseline characteristics in the RCTs are fully revealed in Table III.

Literature quality evaluation

Since studies included were all RCTs, two authors were saddled with the responsibility of assessing the retrieved studies quality relying on the Cochrane risk of bias criteria. In 49 studies, random sequence generation and allocation concealment were performed. Twenty-four studies verified
Authors	Year	Country	Sample size	Female, No (%)	Average age (years)	BMI	Intervention	Follow-up	Operative type	Endpoints		
Elmose et al.[21]	2019	Denmark	117	116 (0.49)	48.9±15.4	51.1±14.9	TXA, 10 mg/kg, IV, Equivalent normal saline (0.9%), IV	28 days	Minor lumbar spine surgery	Total blood loss, Intraoperative blood loss, Postoperative blood loss		
Kim et al.[22]	2017	South Korea	24	24 (0.67)	63.3±7.6	65.2±7.0	TXA, 5 mg/kg, IV, preoperation; A maintenance dosage of 1 mg/kg/h, until 5 h after surgery	7 days	PLIF	Total blood loss, Intraoperative blood loss, Postoperative blood loss, postoperative drainage, Hb, Hct		
Kim et al.[22]	2017	South Korea	24	24 (0.50)	61.0±9.0	65.2±7.0	TXA, 10 mg/kg, IV, preoperation; A maintenance dosage of 2 mg/kg/h, until 5 h after surgery	7 days	PLIF	Total blood loss, Intraoperative blood loss, Postoperative blood loss, postoperative drainage, Hb, Hct		
Liang et al.[23]	2016	China	30	30 (0.50)	51.1±10.7	53.8±11.2	Gelfoam was soaked in TXA (2,000 mg: 20 mL), topical, intraopration	3 days	Lumbar spine surgery	Transfusion volume, postoperative drainage, Hb, Hct		
Mu et al.[24]	2019	China	45	42 (0.40)	54.2±7.4	52.6±6.7	TXA, 15 mg/kg, IV, preoperation; A maintenance dosage of 1 mg/kg/h, intraoperation	84 days	PLIF	Transfusion rate, Intraoperative blood loss, Postoperative blood loss, postoperative drainage, Hb, Hct		
Mu et al.[24]	2019	China	39	42 (0.44)	51.8±8.1	52.6±6.7	Gelfoam was soaked in TXA (1 g: 50 mL), intraoperation	84 days	PLIF	Transfusion rate, Intraoperative blood loss, Postoperative blood loss, postoperative drainage, Hb, Hct		
Nagabhushan et al.[25]	2017	India	25	25 (0.64)	49.6±9.8	51.7±9.7	TXA, 10 mg/kg, IV, preoperation; A maintenance dosage of 1 mg/kg/h, until closure	NA	Lumbar Spinal Fusion Surgery	Intraoperative blood loss, Postoperative drainage, Hb		
Ou et al.[26]	2018	China	59	59 (0.47)	64.2±4.6	64.0±5.1	Gelfoam was soaked in TXA (1 g: 10 mL), topical, intraoperation	30 days	Lumbar decompression and fusion surgery	Total blood loss, Total blood loss, postoperative drainage, Hb, Hct, D-dimer		
Authors	Year	Country	Sample size	Female, No (%)	Average age (years)	BMI	Intervention	Follow-up	Operative type	Endpoints		
------------------	------	---------	-------------	----------------	-------------------	-----	--------------	-----------	----------------	--		
Shi et al.[27]	2017	China	50	25 (0.50)	53.8±12.1	55.8±13.1	TXA, 30mg/kg, IV, preoperation; A maintenance dosage of 2 mg/kg/h, until the end of the operation	35 days	Posterior lumbar surgery for stenosis or spondylolisthesis	Total blood loss, transfusion rate, Intraoperative blood loss, postoperative drainage, Hb, Hct		
Wang et al.[28]	2013	China	30	14 (0.47)	63.1±4.0	62.0±4.6	Equivalent normal saline (0.9%), IV	2 days	Posterior approach lumbar surgery	Total blood loss, intraoperative blood loss, postoperative blood loss		
Wong et al.[29]	2008	Canada	73	52 (0.71)	56.8±16.2	50.0±16.2	TXA, 10 mg/kg, IV; A maintenance dosage of 1 mg/kg/h, until the end of the operation	90 days	PLIF/PTIF	Transfusion rate, Hb, D-dimer,		
Xu et al.[30]	2017	China	40	21 (0.525)	53.1±2.8	57.4±10.7	TXA (1g/100ml), topical, intraoperation	30 days	Posterior spinal fusion surgery	Total blood loss, transfusion rate, postoperative drainage, Hct		
Shi[59]	2016	China	55	24 (0.44)	54.6±12.2	52.3±12.1	TXA, 30 mg/kg, IV, preoperation; The maintenance dose of 2 mg/kg/h, until the end of the operation	3 days	PLIF	Total blood loss, transfusion rate, intraoperative blood loss, postoperative drainage, Hb, Hct, D-dimer		
Shi[59]	2016	China	54	26 (0.48)	55.6±11.8	52.3±12.1	TXA, 20 mg/kg, IV, preoperation; the maintenance dose of 1 mg/kg/h, until the end of the operation	3 days	PLIF	Total blood loss, transfusion rate, intraoperative blood loss, postoperative drainage, Hb, Hct, D-dimer		
Shi[59]	2016	China	55	32 (0.58)	54.5±11.2	52.3±12.1	TXA, 10 mg/kg, IV, preoperation; the maintenance loss of 0.5 mg/kg/h, until the end of the operation	3 days	PLIF	Total blood loss, transfusion rate, intraoperative blood loss, postoperative drainage, Hb, Hct, D-dimer		
Huang and Yang[57]	2011	China	34	20 (0.59)	75.8±3.4	73.6±4.2	TXA, 1 g, IV; the same dosage of TXA, 2 h after the first administration	7 days	Multi-level lumbar spinal stenosis surgery	Transfusion rate, Intraoperative blood loss, postoperative drainage, Hb		
Bu et al.[30]	2014	China	133	31 (0.23)	54.2±13.1	52.6±16.3	TXA, 1g, topical, after the deep fascia was closed	90 days	PUF	Transfusion volume, transfusion rate, postoperative drainage, Hb		
Authors	Year	Country	Sample size	Female, No (%)	Average age (years)	BMI	Intervention	Follow-up	Operative type	Endpoints		
--------------	------	---------	-------------	----------------	------------------	-----	--------------	-----------	----------------	---		
Zhang et al.	2015	China	35 38	20 (0.57) 21 (0.55)	52.3±9.7 51.6±10.4	23±1.2 23.8±3.2	Gelfoam was soaked in TXA (5 mL: 0.5 g), topical, intraoperation	30 days	Two-segment lumbar posterior decompression and intervertebral fusion	Total blood loss, transfusion rate, intraoperative blood loss, postoperative bleeding drainage		
Zhang et al.	2015	China	46 46	21 (0.46) 20 (0.43)	NA NA NA NA NA	TXA, 2 g, topical, after laminotomy; TXA, 1 g, topical, intraoperation	15 days	PLIF with cage	Transfusion volume, intraoperative blood loss, postoperative blood loss, D-dimer			
Yan	2015	China	35 33	15 (0.43) 13 (0.39)	58.4±6.6 56.6±9.4	20.6±3.2 22.8±4.1	TXA, 15 mg/kg, IV, preoperation	2 days	PLIF/TLIF	Total blood loss, intraoperative blood loss, transfusion volume, D-dimer		
Huang et al.	2015	China	30 30	5 (0.17) 7 (0.23)	56.1±4.9 56.9±4.8	NA NA	TXA, 30 mg/kg, IV, before operation; The maintenance dose of 1 mg/kg, intraoperation	3 days	PLIF	Transfusion volume, intraoperative blood loss, Hb, DVT		
Feng	2016	China	60 60	24 (0.4) 26 (0.43)	74.5±16.2 76.3±14.8	NA NA	TXA (100 mL: 1 g), 15 mg/kg, IV, preoperation	90 days	lumbar spinal stenosis surgery	Intraoperative blood loss, postoperative drainage, Hb, D-dimer		
Nian, et al.	2016	China	30 30	13 (0.43) 11 (0.37)	54.6±10.9 52.1±11.0	24.6±3.2 25.7±3.3	TXA (100 mL: 1 g), topical, intraoperation	7 days	PLIF	Total blood loss, transfusion rate, postoperative drainage, Hb, D-dimer		
Wang et al.	2016	China	25 25	10 (0.4) 12 (0.48)	64.7±8.0 66.3±9.8	23.5±4.0 21.8±3.5	TXA, 100 mg/kg, IV, preoperation; The maintenance dose is 10 mg/kg/h, until the end of the operation	NA	ALSS	Transfusion volume, intraoperative blood loss, postoperative drainage		
Jia et al.	2016	China	30 30	14 (0.47) 12 (0.40)	63.1±4.0 62.0±4.6	21.7±1.9 22.2±1.9	TXA, 15 mg/kg, IV, preoperation	2 days	Posterior approach lumbar surgery	Total blood loss, intraoperative blood loss		
Meng et al.	2017	China	40 40	16 (0.4) 20 (0.2)	61.1±5.8 62.7±6.1	27.5±4.7 26.1±4.9	TXA, topical	2 days	Lumbar spine surgery	Transfusion volume, transfusion rate, intraoperative blood loss, postoperative blood loss, DVT		
Meng et al.	2017	China	40 40	17 (0.425) 20 (0.2)	62.3±5.4 62.7±6.1	25.2±5.3 26.1±4.9	TXA, 15 mg/kg, IV, preperation	7 days	Lumbar spine surgery	Transfusion volume, transfusion rate, intraoperative blood loss, postoperative blood loss, DVT		
Authors	Year	Country	Sample size	Female, No (%)	Average age (years)	BMI	Intervention	Follow-up	Operative type	Endpoints		
-----------------	------	---------	-------------	----------------	---------------------	-----	---	-----------	---------------------------------------	--		
Song et al.	2017	China	16 16	NA NA	18–65 18–65	NA NA	TXA, 1g, IV, preoperation; A maintenance dosage of 10 mg/kg/h, until the end of the operation	Equivalent normal saline (0.9%), IV	1 day	Transpedicular vertebral osteotomy	Total blood loss, transfusion volume, postoperative drainage	
Chang et al.	2017	China	29 29	15 (0.52) 17 (0.59)	51.1±13.7 52.8±14.6	NA NA	Gelfoam was soaked in TXA, 500 mg Gelfoam	7 days	PLIF		Intraoperative blood loss, postoperative drainage, Hb, DVT	
Zhang et al.	2017	China	41 41	18 (0.44) 22 (0.54)	49.6±8.7 46.8±10.7	NA NA	TXA, 10 mg/kg, IV, preoperation TXA, 10 mg/kg, IV, preoperation	Equivalent normal saline (0.9%), IV	7 days	PLIF		Total blood loss, Intraoperative blood loss, postoperative drainage, Hb, DVT
Zhang et al.	2017	China	41 41	22 (0.54) 22 (0.54)	49.0±9.1 46.8±10.7	NA NA	TXA, 15 mg/kg, IV, preoperation Equivalent normal saline (0.9%), IV	7 days	PLIF		Total blood loss, Intraoperative blood loss, postoperative drainage, Hb, DVT	
Liu and Liu	2018	China	39 39	15 (0.38) 18 (0.46)	66.3±5.6 64.2±4.8	25.4±3.1 24.7±2.6	TXA, 1g, topical, intraoperation Equivalent normal saline (0.9%), topical	3 days	PLIF		Intraoperative blood loss, postoperative drainage, Hb, DVT	
Zhang et al.	2018	China	54 50	32 (0.59) 20 (0.4)	45.8±10.6 44.1±9.9	22.2±2.4 22.3±2.7	TXA, 15 mg/kg, IV, preoperation Equivalent normal saline (0.9%), IV	3 days	PLIF	Percutaneous pedicle screw fixation for thoracolumbar fractures	Total blood loss, Intraoperative blood loss, postoperative drainage, Hb, Hct, D-dimer	
Hu et al.	2018	China	40 40	NA NA	67.0±10.5 64.5±10.1	NA NA	TXA, 10 mg/kg, IV, preoperation A maintain dose of 2 mg/kg/h, until the end of the operation Equivalent normal saline (0.9%), IV	3 days	PLIF	Surgery for spinal metastatic tumors	Transfusion rate, Intraoperative blood loss, postoperative drainage, Hb	
Chen et al.	2018	China	100 100	35 (0.43) 43 (0.43)	55.7±15.8 53.9±13.6	23.8±4.7 23.7±5.1	TXA (5 mL: 0.5g), 1 g IV, preperation; A maintenance dose of 10 mg/kg/h Equivalent normal saline (0.9%), IV	2 days	PLIF	Multilevel lumbar inter-body fusion	Total blood loss, Intraoperative blood loss, postoperative drainage, Hb, Hct, DVT	
Liu et al.	2019	China	35 35	19 (0.54) 20 (0.57)	76.8±4.3 77.4±4.2	25.4±2.8 25.3±3.9	TXA, 10 mg/kg, IV, preperation; A maintenance dose of 1 mg/kg/h, intraoperation Equivalent normal saline (0.9%), IV	90 days	PLIF	Posterior lumbar surgery of 3 segments	Transfusion rate, Intraoperative blood loss, postoperative drainage, Hb	
Wang et al.	2017	China	39 41	18 (0.46) 19 (0.46)	41.2±10.3 42.5±9.5	NA NA	TXA, 10 mg/kg, IV; The maintenance dose of 1 mg/kg/h, until the end of the operation Equivalent normal saline (0.9%), IV	12 weeks	PLIF	Transforaminal thoracic inter-body fusion (TTIF)	Total blood loss, Intraoperative blood loss, postoperative drainage, D-dimer, DVT	
Authors	Year	Country	Sample size	Female, No (%)	Average age (years)	BMI	Intervention	Follow up	Operative type	Endpoints		
------------------	------	---------	-------------	----------------	--------------------	-----	---	-----------	----------------	---		
Wang et al.[32]	2019	China	30	28 (0.47)	60.5±6.3	24.7±2.6	TXA, 15 mg/kg, IV; The maintenance dose of 15 mg/kg	12 months	PLIF	Total blood loss, Intraoperative blood loss, postoperative drainage, Hb, Hct, D-dimer, DVT		
Deng et al.[31]	2019	China	50	49 (0.98)	62±2.0	25±2.5	TXA, IV	3 months	TLIF	Intraoperative blood loss, postoperative drainage, Hb		
Xia[37]	2019	China	20	21 (0.55)	50.2±12.5	54.0±12.8	TXA saline, 800 mL, topical	NA	NA	Postoperative drainage, Hb, D-dimer		
Xu et al.[34]	2019	China	30	21 (0.7)	49.6±12.8	50.6±16.2	TXA saline, 1 g in 100 mL, topical	72 hours	PLIF	Postoperative drainage, Hb, D-dimer		
Yang et al.[35]	2019	China	18	16 (0.89)	72.5±6.3	73.7±6.1	TXA, 1 g in 100 mL, IV; TXA saline, 1 g in 100 mL, topical	3 days	PLIF	Total blood loss, transfusion volume, transfusion rate, postoperative drainage, Hb, Hct		
Zhao et al.[36]	2019	China	43	43 (0.99)	71.3±4.4	71.1±4.3	TXA, 30 mg/kg, IV; TXA saline, 0.5 g in 10 mL, topical	4 days	Other	Intraoperative blood loss, postoperative drainage, Hb, D-dimer		
Zhu[38]	2019	China	39	22 (0.56)	64.4±3.6	64.1±4.1	TXA, 20 mg/kg, IV; The maintenance dose of 2 mg/kg, until the end of the operation	12 weeks	PLIF/TLIF	Total blood loss, transfusion rate, postoperative drainage, intraparoperative blood loss		
Zhu[38]	2019	China	40	22 (0.55)	63.9±4.0	64.1±4.1	TXA saline, 0.1 g/mL, topical	12 weeks	PLIF/TLIF	Total blood loss, transfusion rate, postoperative drainage, intraparoperative blood loss		
Ding et al.[41]	2020	China	15	15 (0.5)	64.3±5.6	66.2±5.0	TXA, 5 mg/kg, IV; The maintenance dose of 2 mg/kg, until the end of the operation	1 week	PLIF	Total blood loss, postoperative drainage, intraparoperative blood loss, postoperative blood loss, Hb, Hct		
Authors	Year	Country	Sample size	Female, No (%)	Average age (years)	BMI	Intervention Details	Follow-up	Operative type	Endpoints		
------------	------	---------	-------------	----------------	--------------------	-----	---	-----------	----------------	---		
Ding et al. [47]	2020	China	15, 15	NA, NA	62.0±7.0, 66.2±5.0	26.5±2.8, 26.1±2.3	TXA, 10 mg/kg, IV; The maintenance dose of 2 mg/kg/h, until the end of the operation	1 week	PLIF	Total blood loss, postoperative drainage, intraoperative blood loss, postoperative blood loss, Hct		
He et al. [46]	2020	China	20, 20	12 (0.6), 9 (0.46)	58.0±12.4, 57.9±11.8	25.0±5.2, 24.8±4.4	TXA, 10 mg/kg, IV; The maintenance dose of 6-8 mg/kg/h up to a total dose of 15 mg/kg during the surgery	NA	TLIF	Transfusion rate, intraoperative blood loss, postoperative blood loss, postoperative drainage, Hb		
Li et al. [49]	2020	China	70, 70	46 (0.66), 47 (0.67)	66.7±3.3, 65.6±3.2	24.0±3.3, 22.8±2.4	TXA, 15 mg/kg, IV; TXA saline, 2 g in 20 mL, injected into the incision	3 months	Other	Total blood loss, intraoperative blood loss, postoperative blood loss, Hb, DVT		
Xia et al. [46]	2020	China	46, 44	26 (0.57), 20 (0.45)	51.2±10.4, 56.3±13.9	NA, NA	TXA, 1 g in 100 mL, topical; Equivalent normal saline (0.9%)	7 days	Other	Transfusion volume, transfusion rate, D-dimer, postoperative drainage, postoperative blood loss		
Yang et al. [43]	2020	China	33, 32	13 (0.39), 14 (0.44)	62.9±5.5, 65.6±7.2	30.3±6.5, 24.4±3.6	TXA, 15 mg/kg, IV; TXA saline, 1 g in 10 mL, topical; the maintenance dose of 15 mg/kg/h, until the end of the operation	72 hours	Other	Intraoperative blood loss, postoperative blood loss, D-dimer		
Yang et al. [41]	2020	China	32, 32	15 (0.47), 14 (0.44)	65.6±7.5, 65.6±7.2	28.2±5.9, 24.4±3.6	TXA, 1 g in 100 mL, topical; Equivalent normal saline (0.9%)	72 hours	Other	Intraoperative blood loss, postoperative blood loss, D-dimer		
Yang et al. [39]	2020	China	30, 30	17 (0.57), 15 (0.5)	66.8±5.3, 67.6±7.0	25.8±2.1, 25.4±1.1	TXA, 10 mg/kg, IV; The maintenance dose of 2 mg/kg/h, until the end of the operation	72 hours	Other	Total blood loss, transfusion volume, intraoperative blood loss, postoperative drainage, D-dimer		
Zhang et al. [39]	2020	China	151, 138	94 (0.62), 91 (0.66)	54.7±9.9, 57.0±10.2	25.8±3.3, 25.2±3.5	TXA, 1 g, IV; TXA 1.0 g in 10 mL, topical; the maintenance dose of 15 mg/kg/h, until the end of the operation	35 days	PLIF	Total blood loss, transfusion rate, intraoperative blood loss, postoperative blood loss		
Liu et al. [41]	2021	China	40, 40	23 (0.58), 21 (0.53)	50.2±12.2, 49.3±11.6	24.9±1.7, 25.2±1.6	TXA, 1 g in 100 mL, IV; Equivalent normal saline (0.9%)	1 week	PLIF	Total blood loss, intraoperative blood loss, postoperative blood loss, D-dimer		
TABLE III
Continued

Authors	Year	Country	Sample size	Female, No (%)	Average age (years)	BMI	Intervention	Follow-up	Operative type	Endpoints
Mi et al.[44]	2021	China	50	24 (0.48)	56.5±16.8	NA	NA	7 days	TLIF	Transfusion rate, intraoperative blood loss, postoperative drainage, D-dimer, DVT
Yuan et al.[41]	2021	China	39	22 (0.56)	64.1±6.7	NA	TXA saline, 2 g in 100 mL, IV before surgery	NA	PLIF	Hb, Hct, total blood loss, intraoperative blood loss, D-dimer, transfusion rate, postoperative drainage
Yuan et al.[41]	2021	China	36	20 (0.56)	65.5±6.8	NA	TXA saline, 2 g in 100 mL, IV; the maintenance dose of 10 mg/kg/h, until the end of the operation	NA	PLIF	Hb, Hct, total blood loss, intraoperative blood loss, D-dimer, transfusion rate, postoperative drainage
Zhang et al.[45]	2021	China	40	NA	NA	NA	TXA; 1-2 g, IV; TXA, 1 g, topical	NA	Other	Total blood loss, transfusion volume, transfusion rate, intraoperative blood loss, postoperative drainage, Hb, Hct, D-dimer

BMI: Body mass index; PTIF: Posterior thoracic interbody fusion; TLIF: Transforaminal lumbar interbody fusion; DVT: Deep venous thrombosis; E: Experimental group; C: Control group; TXA: Tranexamic acid; PLIF: Posterior lumbar interbody fusion; PTIF: Posterior thoracic interbody fusion; TLIF: Transforaminal lumbar interbody fusion; ALSS: Adult lumbar scoliosis; TBL: Total blood loss; IBL: Intraoperative blood loss; PBL: Postoperative blood loss; Hb: Hemoglobin; Hct: Hematocrit; IV: Intravenous; Htc: Hematocrit.
Study	Random allocation	Hidden distribution	Blind method	Incomplete outcome data	Selective reporting of results	Other bias	Quality grade
Wong et al. [29]	Randomized	No clear	Double-blind	Low	Low	Low	Low A
Huang and Yang [57]	Randomized	No clear	No clear	Low	Low	Low	Low C
Wang et al. [28]	Randomized	No clear	Double-blind	Low	Low	Low	Low B
Bu et al. [93]	Randomized	No clear	Single-blind	Low	Low	Low	Low C
Huang et al. [84]	Randomized	No clear	No clear	Low	Low	Low	Low C
Yan [50]	Randomized	No clear	No clear	Low	Low	Low	Low C
Zhang et al. [85]	Randomized	No clear	No clear	Low	Low	Low	Low C
Zhang et al. [84]	Randomized	No clear	No clear	Low	Low	Low	Low C
Liang et al. [23]	Randomized	No clear	No clear	Low	Low	Low	Low B
Feng [59]	Randomized	No clear	No clear	Low	Low	Low	Low C
Jia et al. [83]	Randomized	No clear	Double-blind	Low	Low	Low	Low B
Nian et al. [84]	Randomized	No clear	No clear	Low	Low	Low	Low C
Shi et al. [27]	Randomized	No clear	Triple-blind	Low	Low	Low	Low B
Wang et al. [84]	Randomized	No clear	No clear	Low	Low	Low	Low C
Chang et al. [85]	Randomized	No clear	No clear	Low	Low	Low	Low C
Kim et al. [22]	Randomized	No clear	Double-blind	Low	Low	Low	Low B
Nagabhushan et al. [25]	Randomized	No clear	Double-blind	Low	Low	Low	Low A
Shi [80]	Randomized	No clear	Double-blind	Low	Low	Low	Low B
Song et al. [84]	Randomized	No clear	No clear	Low	Low	Low	Low C
Xu et al. [83]	Randomized	No clear	No clear	Low	Low	Low	Low A
Meng et al. [87]	Randomized	No clear	No clear	Low	Low	Low	Low C
Zhang and Yang [89]	Randomized	No clear	Double-blind	Low	Low	Low	Low B
Chen et al. [83]	Randomized	No clear	No clear	Low	Low	Low	Low C
Hu et al. [81]	Randomized	No clear	No clear	Low	Low	Low	Low C
Liu and Liu [82]	Randomized	No clear	No clear	Low	Low	Low	Low C
Mua et al. [24]	Randomized	No clear	No clear	Low	Low	Low	Low A
Ou et al. [26]	Randomized	No clear	No clear	Low	Low	Low	Low A
Zhang et al. [89]	Randomized	No clear	Single-blind	Low	Low	Low	Low B
Elmose et al. [21]	Randomized	No clear	Double-blind	Low	Low	Low	Low A
Liu et al. [86]	Randomized	No clear	No clear	Low	Low	Low	Low C
Wang et al. [83]	Randomized	No clear	Double-blind	Low	Low	Low	Low A
Wang et al. [83]	Randomized	No clear	No clear	Low	Low	Low	Low C
Deng et al. [81]	Randomized	No clear	Single-blind	Low	Low	Low	Low B
Xia [87]	Randomized	No clear	Single-blind	Low	Low	Low	Low B
Xu et al. [34]	Randomized	No clear	Double-blind	Low	Low	Low	Low A
Yang et al. [35]	Randomized	No clear	Double-blind	Low	Low	Low	Low A
Zhao et al. [36]	Randomized	No clear	No clear	Low	Low	Low	Low C
Zhu [38]	Randomized	No clear	Double-blind	Low	Low	Low	Low A
Ding et al. [47]	Randomized	No clear	Double-blind	Low	Low	Low	Low A
He et al. [48]	Randomized	No clear	Double-blind	Low	Low	Low	Low A
Jianjiang et al. [49]	Randomized	No clear	No clear	Low	Low	Low	Low C
Xia et al. [49]	Randomized	No clear	Double-blind	Low	Low	Low	Low A
Yang et al. [49]	Randomized	No clear	No clear	Low	Low	Low	Low C
Yang et al. [48]	Randomized	No clear	No clear	Low	Low	Low	Low C
Zhang et al. [39]	Randomized	No clear	Single-blind	Low	Low	Low	Low B
Liu et al. [40]	Randomized	No clear	No clear	Low	Low	Low	Low C
Mi et al. [44]	Randomized	No clear	No clear	Low	Low	Low	Low C
Yuan et al. [41]	Randomized	No clear	No clear	Low	Low	Low	Low C
Zhang et al. [45]	Randomized	No clear	No clear	Low	Low	Low	Low C
participant and personnel blinding, while 24 studies demonstrated outcome assessment blinding. Other biases were not mentioned in any of the studies. Table IV summarizes the quality score of the literature.

Primary effective endpoints

Total blood loss (mL)

Total blood loss was reported in 27 studies (35 trial comparisons). In all, 2,841 patients were assessed for TBL, with 1,623 and 1,218 allotted to the experimental and the control groups, respectively. The results demonstrated that the control group’s TBL were significantly higher than that of the experimental group (SMD: -1.15, 95% CI: -1.37 to -0.92, I²=87.9%, p=0.000) (Figure 2). We utilized the random-effects model.

Transfusion rate (%)

There were 14 studies (18 trial comparisons) covered the transfusion rate. In all, 172 of 1,366 individuals in the experimental group required blood transfusion, and 337 of 1,039 individuals in the control group required concurrently. The results indicated that TXA significantly reduced blood transfusions incidence compared to the control group (12.6% vs. 31.4%) (RR: 0.41, 95% CI: 0.34 to 0.49 I²=1.7%, p=0.434) (Figure 3). The fixed-effects model was done.

Secondary effective endpoints

Transfusion volume (mL)

Thirteen studies (14 trial comparisons) reported the transfusion volume. In the aggregate, 1,136 patients were contained to evaluate the transfusion volume.
rate, 588 and 548 in the experimental and control groups, respectively. Based on findings, compared to the control group, transfusion volume seems to be significantly lower in the experimental group’s transfusion volume (SMD: -2.42, 95% CI: -3.24 to -1.60, I²=96.9%, p=0.000) as illustrated in Supplementary Figure 1. The random-effects model was done.

Intraoperative blood loss (mL)

Thirty-nine studies (51 trial comparisons) reported IBL. The number of patients was 3,881, with 2,180 allotted to the experimental group and 1,701 to the control group. The statistical findings revealed that, compared to the control group, the experimental group’s IBL was significantly lower (SMD: -0.83, 95% CI: -1.05 to -0.61, I²=91.3%, p=0.000) as illustrated in Supplementary Figure 2. The random-effects model was done.

Postoperative blood loss (mL)

Eleven studies (15 trial comparisons) reported PBL. A total of 1,385 patients were evaluated for PBL. Of them, 761 and 624 were allotted to the experimental and control groups, respectively. Compared to the control group, the experimental PBL was significantly lower (SMD: -2.13, 95% CI: -2.68 to -1.57, I²=94.9%, p=0.000) as illustrated in Supplementary Figure 3. The random-effects model was done.

Postoperative drainage (mL)

Thirty-five studies (44 trial comparisons) reported postoperative drainage. In all, 3,109 patients were assessed for postoperative drainage, with 1,704 and 1,405 allotted to the experimental and control groups, respectively. The findings revealed that the experimental had significantly lower postoperative drainage than the control group (SMD: -1.55, 95% CI: -1.83 to -1.26, I²=92.2%, p=0.000) as illustrated in Supplementary Figure 4. The random-effects model was done.

Hemoglobin (g/dL)

Thirty-two studies (42 trial comparisons) reported Hb content. A total of 3,326 patients were involved to evaluate Hb content, of whom 1,863 were in the experimental group and 1,463 in the control group. The findings indicated that the experimental group’s Hb content was significantly higher than the control group (SMD: 0.53, 95% CI: 0.36 to 0.71, I²=83.9%, p=0.000) as illustrated in Supplementary Figure 5. The random-effects model was done.
Hematocrit (%)

Eighteen studies (24 trial comparisons) reported Hct. A total of 1,844 patients were evaluated for Hct, of whom 1,052 and 792 in the experimental and control groups, respectively. The results demonstrated that the TXA group had a greater level of Hct than the control group (SMD: 0.39, 95% CI: 0.08 to 0.70, I²=91.0%, p=0.000) as illustrated in Supplementary Figure 6. The random-effects model was done.

Safety endpoints

Deep venous thrombosis

Eight studies (11 trial comparisons) covered DVT, of which 19 out of 581 in the experimental group and 23 out of 432 in the control group experienced DVT. There was no significant variation among the TXA and control groups (3.2% vs. 5.3%) (RR: 0.78, 95% CI: 0.48 to 1.28, I²=0.0%, p=0.926) as illustrated in Figure 4. The fixed-effects model was done.

D-dimer (mg/L)

The concentration of D-dimer can be used in blood tests to help to diagnose thrombosis. Negative results can rule out thrombosis, while positive results suggest thrombosis probability, even so other potential reasons were not excluded. Therefore, its fundamental usage is to exclude thromboembolic diseases with a low probability. D-dimer was evaluated in 19 studies (24 trial comparisons), enrolling 1,837 participants for D-dimer assessment. The experimental group composed of 1,014 participants, whereas the control group composed of 823 participants. The results revealed that, compared to the control group, the experimental group's D-dimer levels were significantly lower (SMD: -0.35, 95% CI: -0.70 to -0.01, I²=92.5%, p=0.000) as illustrated in Figure 5. The random-effects model was done.

Publication bias and sensitivity analysis and subgroup analysis

According to the TXA administration method and the type of operation, subgroup analysis was done. Subgroup analysis results are listed in Supplementary Figures 7-14. The patients' TBL in the posterior lumbar surgery (PLS) group, posterior lumbar interbody fusion (PLIF) group, other operative type group and PLIF/transforaminal lumbar interbody fusion (TLIF) group was significantly lower compared to the control group (SMD: -0.84, 95% CI: -1.39 to -0.28, I²=89.4%, p=0.000; SMD: -1.14, 95% CI: -1.42 to -0.86, I²=79.9%, p=0.000; SMD: -1.21, 95% CI: -1.67 to -0.75, I²=92.0%, p=0.000; SMD: -1.94, 95% CI: -2.32 to -1.56, I²=87.9%, p=0.799) as illustrated in Supplementary Figure 7. The findings revealed that patients' TBL in the intravenous administration group, topical application group, and intravenous administration before the operation group was significantly lower compared to the control group.
group, whereas there were no significant variations in the intravenous administration group + topical application group (SMD: -0.06, 95% CI: -1.32 to -0.81, I²=87.7%, p=0.000; SMD: -1.46, 95% CI: -1.95 to -0.97, I²=87.8%, p=0.000; SMD: -1.55, 95% CI: -2.09 to -1.01; SMD: -0.29, 95% CI: -0.97 to 0.39) as illustrated in Supplementary Figure 8. The transfusion rates in the PLIF group, the other operative type group, and the topical application group were all significantly lower compared to the control group. There were no significant variations between the TLIF group and the control group (RR: 0.40, 95% CI: 0.33 to 0.48, I²=18.3%, p=0.269; RR: 0.60, 95% CI: 0.39 to 0.92, I²=0.0%, p=0.855; RR: 0.27, 95% CI: 0.11 to 0.70, I²=0.0%, p=0.658; RR: 0.11, 95% CI: 0.01 to 2.01) as illustrated in Supplementary Figure 9. The transfusion rates in the topical application group, intravenous administration group, and intravenous administration before the operation group were all significantly lower compared to the control group, whereas there were no significant variations while comparing intravenous administration with topical application (RR: 0.40, 95% CI: 0.30 to 0.54, I²=0.0%, p=0.440; RR: 0.41, 95% CI: 0.32 to 0.53, I²=0.0%, p=0.684; RR: 0.21, 95% CI: 0.06 to 0.69) as illustrated in Supplementary Figure 10. There were no significant variations in DVT in the PLIF group patients, other operative type group, transforaminal thoracic interbody fusion (TTIF), TLIF, and the control group (RR: 1.00, 95% CI: 0.29 to 3.41, I²=0.0%, p=0.764; RR: 0.47, 95% CI: 0.13 to 1.64, I²=0.0%, p=0.805; RR: 0.98, 95% CI: 0.53 to 1.80; RR: 0.33, 95% CI: 0.04 to 3.10) as illustrated in Supplementary Figure 11. There were no significant variations in the intravenous administration group's DVT patients, topical application group, and control group (RR: 0.85, 95% CI: 0.50 to 1.46, I²=0.0%, p=0.856; RR: 0.54, 95% CI: 0.15 to 1.94, I²=0.0%, p=0.719) as illustrated in Supplementary Figure 12. Patients in the PLS group had significantly lower D-dimer levels compared to the control group (SMD: -0.31, 95% CI: -0.53 to -0.09, I²=0.0%, p=0.698) as illustrated in Supplementary Figure 13; however, there were no significant variations in the patients' D-dimer levels in the PLIF group, other operative type group, TLIF...
Tranexamic acid in lumbar surgery

Our results revealed that TXA might significantly reduce TBL, transfusion rate, transfusion volume, IBL, PBL, drainage, and D-dimer compared to the control group. While comparing to the control group, TXA could significantly improve Hb and Hct and there

Currently, there are many articles studying TXA in lumbar surgery. In terms of its efficacy, Du and Feng\cite{87} conducted a meta-analysis to show that TXA had an important ability to minimize IBL and length of hospital stay following lumbar spinal fusion surgery. According to Lu et al.,\cite{79} TXA usage significantly decreased perioperative blood loss and the needs of red blood cell transfusions, but other surgical and clinical outcomes were not significantly different. On the other hand, some scholars put an opposed opinion that TXA might be incapable to reduce blood transfusion rate. Gong et al.,\cite{80} performed a meta-analysis and concluded that intravenous TXA had the ability to significantly minimize surgical blood loss. However, TXA treatment did not result in a significant reduction in the transfusion rates in treated patients. Endres et al.,\cite{81} performed a retrospective, case-control study and suggested that, when TXA was used in PLS, the Hb concentration was higher and the amount of blood loss was reduced. It lacked the capability to demonstrate a variation in transfusion rates. Furthermore, the safety of the TXA is also under study and some have offered the opinion that it has not any effect on enhancing thrombotic events risk. Bai et al.,\cite{82} performed a meta-analysis and proposed that TXA can minimize Hb loss, TBL, intraoperative and PBL, and it does not enhance thrombotic events risk following posterior lumbar fusion. However, there was no significant variation in blood transfusion rates. A retrospective, non-randomized, case-cohort study was performed by Sun et al.,\cite{83} and reported that TXA efficiently lowered perioperative blood loss, tube drainage durations, and length of hospitalization and it had no impact on increasing the risk of complications. Ren et al.,\cite{84} also carried out a retrospective, case-control study and concluded that TXA significantly minimized PBL, shortened the time to withdrawal of drainage tubes and the length of hospitalization in patients receiving PLS fusion surgery, although it did not increase the complication incidence. In contrast, Baldus et al.,\cite{85} conducted a comparative study with controls and found that the TXA group had less blood loss and received fewer blood transfusions than the aprotinin treatment group without any significant differences in the intraoperative or postoperative complications. As a result, it is yet unclear if TXA is safe and effective enough to be utilized in the clinic.

Recently, with the maturity of lumbar surgical techniques and the improvement of surgical equipment, bleeding during lumbar surgery has been effectively controlled.\cite{86} However, lumbar surgery is still one of the surgical procedures that causes extensive blood loss and, thus, surgeons are concerned about how to reduce perioperative blood loss.\cite{87} The TXA has been approved by the United States Food and Drug Administration (FDA) for more than 30 years and was added to the World Health Organization (WHO) Essential Drugs List in 2011.\cite{88} It shows excellent tolerance, with only rare dose-dependent adverse reactions, including nausea, vomiting, diarrhea, headache, upright reaction, blurred vision, and vertigo.\cite{89} Many original studies and reviews have suggested that TXA is safer than placebo and does not increase the incidence of DVT or pulmonary embolism.\cite{90} Additionally, clinical findings indicate that TXA usage in cardiac valve replacement and total hip arthroplasty can significantly minimize intraoperative blood transfusion volumes without enhancing the risk of thrombosis.\cite{91} Even so, TXA's effectiveness and safety in lumbar surgery still remain controversial.
were no significant variations in DVT among the TXA group and the control group. We did subgroup and sensitivity analyses after assessing that the endpoints had a high degree of heterogeneity. There were no restrictions on the usages or dose of TXA in our inclusion criteria and, therefore, we performed a subgroup analysis according to the method of administration of TXA (intravenous injection or local injection) and compared their postoperative drainage. Both routes could significantly reduce the patients’ TBL postoperative drainage compared to the control group. Nonetheless, there were no significant variations in postoperative drainage among the two subgroups, and these results cannot explain the heterogeneity. We speculated that this might be because the articles we included had a limited sample size and the patients were relatively heterogeneous. The disunity of the control group and the different dosages used in the TXA group might be also causes of heterogeneity.

To the best of our knowledge, the safety of TXA has been a bigger issue than studies of its efficacy, on account of its hemostatic mechanism that through the abnormal hyperactive fibrinolytic enzyme, causing platelet agglutination and inhibiting the decomposition of coagulation factors, and playing a hemostatic role. Until now, several studies have found that TXA is not associated with the increasing risk of complications; but the patients enrolled in these studies are also routinely prophylaxis with antithrombotic drugs after surgery which may cover the potential increased risk of TXA in venous thromboembolism. Besides, these vast majority of studies also exclude patients with comorbidities and patients who may be at risk for thromboembolism. The result in the meta-analysis suggests that the level of D-dimer decreases in TXA group than the control group. After reviewing the included literatures, we found that, in some of them, the D-dimer levels in the experimental group were somewhat less than in the control group, and there were non-significant variations. Others showed that TXA attenuated the increase of D-dimer after surgery. We can speculate that it is related to its anti-fibrinolytic effect: fibrinolytic enzymes, plasminogen, and fibrin binding may be inhibited by TXA by blocking lysine binding sites on plasminogen molecules, thus inhibiting the fibrinolytic decomposition caused by fibrinolytic enzyme. Theoretically, the risk of thrombosis is low after TXA use.

The potential clinical implications are as follows: (i) Thirty RCTs were identified, which comprised 3,042 subjects, more than in previous meta-analyses. The larger, population-inclusive, evidence-based review we conducted summarized the data and might provide a theoretical basis for future clinical drug use; (ii) Subgroup analyses were carried out based on the type of operation and administration route to account for the impact of several parameters on the overall effect; (iii) To determine the source of heterogeneity, we performed a sensitivity analysis to indicate the impact of sample size on the overall effect; and (iv) Ten indicators were assessed including TBL, transfusion rate, transfusion volume, IBL, PBL, drainage Hb, Hct, D-dimer, and DVT, which seemed to be more comprehensive than previous articles. Nonetheless, this study has some limitations: (i) We did not examine the interactions among the subgroup analyses due to the inherent limitations of the enrolled studies; (ii) The impact of the baseline features on the results could not be determined, since the outcome events documented in the enrolled studies were utilized; (iii) As most of the included articles did not report this information, we could not extract relevant data for some baseline features, such as other drug use, hypertension, or diabetes, which may cause some mixed bias. In addition, subgroup analysis according to the dose of TXA, the age of the adults and the safety endpoints, such as the risk of cerebrovascular accident, heart disease, or pulmonary embolism could not be performed; (iv) The outcomes of the various interventions in the control group may show significant heterogeneity. Even so, for ethical issues, we realize that it is unrealistic to compel the original author to refrain from using any hemostatic or anticoagulant interventions; hence, we incorporated all of these articles; (v) Since the limitation of the number of safety events such as cardiac problems or pulmonary embolism in published RCTs, the more safety endpoints could not be included; and (vi) Since there were no obvious findings were found in sensitivity analysis we conducted, it was not detailed in the paper. Moreover, although the results from this meta-analysis did not find an increased risk for DVT, RCTs included almost all exclude patients with comorbidities for this reason and consisted of patients with a low risk. It is still not clear that the safety of TXA in patients with risk factors. Further comprehensive studies with more data are needed to confirm these findings.

In conclusion, this meta-analysis demonstrates that TXA has the potential to significantly minimize TBL, transfusion rate, transfusion volume, IBL, PBL, drainage compared to the control group. Besides, the Hb and Hct values were higher in the TXA group than the control group. Its hemostatic potential
Tranexamic acid in lumbar surgery

after lumbar spine surgery is trustworthy. Besides, it is still controversial in safety endpoints that TXA can significantly reduce D-dimer compared to the control group, whereas there were no significant variations in DVT between the TXA and the control groups.

Declaration of conflicting interests
The authors declared no conflicts of interest with respect to the authorship and/or publication of this article.

Funding
The authors received no financial support for the research and/or authorship of this article.

REFERENCES

1. Netto MB, Barranco ABS, Oliveira KWK, Petronilho F. Influence of anxiety and depression symptoms on the quality of life in patients undergoing lumbar spine surgery. Rev Bras Ortop 2017;53:38-44.
2. Hinev A, Paunov S. Mini-incision muscle-sparing lumbar approach to the kidney, the renal pelvis and the upper ureter. Urology 2006;68:224.
3. Marder VJ, Shulman NR. Major surgery in classic hemophilia using fraction I: Experience in twelve operations and review of the literature. The American Journal of Medicine 1966;41:56-75.
4. Kim SD, Suh JK, Ha SK, Kim JH, Cho TH, Park JY, et al. Surgical anatomy of lateral extracavitary approach to the thoracolumbar spine: Cadaveric study. J Korean Neurosurg Soc 2001;30:1187-92.
5. Gasparini G, Papaleo P, Pola P, Cerciello S, Pola E, Fabbriciani C. Local infusion of norepinephrine reduces blood losses and need of transfusion in total knee arthroplasty. Int Orthop 2006;30:253-6.
6. Tse EY, Cheung WY, Ng KF, Luk KD. Reducing perioperative blood loss in spine surgery. Clin Spine Surg 2017;30:383-8.
7. Qureshi R, Puvanesarajah V, Jain A, Hassanzadeh H. Perioperative management of blood loss in spine surgery. Clin Spine Surg 2017;30:383-8.
8. Coppola A, Simone CD, Palmieri NM, Coppola D, Lanza F, Ruosi C, et al. Recombinant activated factor VII for hemostatic cover of orthopedic interventions in a girl with thrombocytopenia with absent radii syndrome. Blood Coagul Fibrinolysis 2007;18:199-201.
9. McCormack PL. Tranexamic acid: A review of its use in the treatment of hyperfibrinolysis. Drugs 2012;72:585-617.
10. Larsson P, Ulfhammer E, Karlsson L, Bokarewa M, Wälander K, Jern S. Effects of IL-1beta and IL-6 on tissue-type plasminogen activator expression in vascular endothelial cells. Thromb Res 2008;123:342-51.
11. Tosenberger A, Ataullakhanov F, Bessonov N, Panteelev MA, Tokarev A, Volpert V. The role of platelets in coagulation during thrombus formation in flow. Immunol Cell Biol 2012;85:525-31.
12. Akpinar E, Halici Z, Cadirci E, Bayir Y, Karakus E, Calik M, et al. What is the role of renin inhibition during rat septic conditions: Preventive effect of aliskiren on sepsis-induced lung injury. Naunyn Schmiedebergs Arch Pharmacol 2014;387:969-78.
13. Johansson T, Pettersson LG, Lisander B. Tranexamic acid in total hip arthroplasty saves blood and money: A randomized, double-blind study in 100 patients. Acta Orthop 2005;76:314-9.
14. Lacko M, Jarcuska P, Schreierova D, Lackova A, Gharabeh A. Tranexamic acid decreases the risk of revision for acute and delayed periprosthetic joint infection after total knee replacement. Jt Dis Relat Surg 2020;31:8-13.
15. Niskanen RO, Korkala OL. Tranexamic acid reduces blood loss in cemented hip arthroplasty: A randomized, double-blind study of 39 patients with osteoarthritis. Acta Orthop 2005;76:829-32.
16. Abdelaziz H, Chaabene A, Schulmeyer J, Gehrke T, Haasper C, Hawi N, et al. Intravenous tranexamic acid is associated with safe reduced blood loss and transfusion rate in one-stage exchange for infected hip arthroplasty. Jt Dis Relat Surg 2021;32:17-21.
17. Cuellar JM, Yoo A, Tovar N, Coelho PG, Jimbo R, Vandeweghe S, et al. The effects of Amicar and TXA on lumbar spine fusion in an animal model. Spine (Phila Pa 1976) 2014;39:E1132-7.
18. McInnes MDF, Moher D, Thombs BD, McGrath TA, Bossuyt PM; and the PRISMA-DTA Group, Clifford T, et al. Preferred reporting items for a systematic review and meta-analysis of diagnostic test accuracy studies: The PRISMA-DTA statement. JAMA 2018;319:388-96.
19. Refaai MA, Riley P, Mardovina T, Bell PD. The clinical significance of fibrin monomers. Thromb Haemost 2018;118:1856-66.
20. Soomro AY, Guerchicoff A, Nichols DJ, Suleman J, Dangas GD. The current role and future prospects of D-dimer biomarker. Eur Heart J Cardiovasc Pharmacother 2016;2:175-84.
21. Elmose S, Andersen MO, Andresen EB, Carreon LY. Double-blind, randomized controlled trial of tranexamic acid in minor lumbar spine surgery: No effect on operative time, intraoperative blood loss, or complications. J Neurosurg Spine 2019;1:7.
22. Kim KT, Kim CK, Kim YC, Juh HS, Kim HJ, Kim HS, et al. The effectiveness of low-dose and high-dose tranexamic acid in posterior lumbar interbody fusion: A double-blind, placebo-controlled randomized study. Eur Spine J 2017;26:2851-7.
23. Liang J, Liu H, Huang X, Xiong W, Zhao H, Chua S, et al. Using tranexamic acid soaked absorbable gelatin sponge following complex posterior lumbar spine surgery: A randomized control trial. Clin Neurol Neurosurg 2016;147:110-4.
24. Mu X, Wei J, Wang C, Ou Y, Yin D, Liang B, et al. Intravenous administration of tranexamic acid significantly reduces visible and hidden blood loss compared with its topical administration for double-segment posterior lumbar interbody fusion: A single-center, placebo-controlled, randomized trial. World Neurosurg 2019;122:e821-e827.
25. Nagabhushan RM, Shetty AP, Dumpa SR, Subramanian B, Kannan RM, Shanmuganathan R. Effectiveness and safety of batroxobin, tranexamic acid and a combination in reduction of blood loss in lumbar spinal fusion surgery. Spine (Phila Pa 1976) 2018;43:E267-E273.
31. Deng R, Xiao L, Guo T, Lin Z. Effect of routine perioperative dose of tranexamic acid on intraoperative and postoperative blood loss of TLIF. Chin J Integr Med 2019;29:88-90.

32. Wang F, Wang J, Nan L, Zhou S, Liu Y, Cai T, et al. Safety and efficacy of tranexamic acid in posterior lumbar interbody fusion. Zhongguo Jizhu Jisui Zazhi 2019;5:422-30

33. Wang W, Duan K, Ma M, Jiang Y, Liu T, Liu J, et al. Tranexamic acid decreases visible and hidden blood loss without affecting prethrombotic state molecular markers in transforaminal thoracic interbody fusion for treatment of thoracolumbar fracture-dislocation. Spine (Phila Pa 1976) 2018;43:E734-E739.

34. Xu D, Chen X, Li Z, Ren Z, Zhuang Q, Li S. Tranexamic acid reduces hidden blood loss in posterior lumbar interbody fusion (PLIF) surgery. Medicine (Baltimore) 2020;99:e19552.

35. Yang M, Li Z, He K, Liu M, Wang S, Yue H, et al. Combined use of tranexamic acid and rivaroxaban in posterior lumbar interbody fusion safely reduces blood loss and transfusion rates without increasing the risk of thrombosis-a prospective, stratified, randomized, controlled trial. Int Orthop 2020;44:2079-87.

36. Liu S, Zhang Y, Deng X, Fang J, Liu Y. Analysis of autologous blood transfusion combined with tranexamic acid infusion during posterior lumbar interbody fusion. J Prac Orthop 2021;1:71-4.

37. Xia C. The effect of tranexamic acid on postoperative drainage after posterior lumbarfusion [Graduation Thesis]. Southern Medical University; 2019.

38. Zhi Y. Effects of different application of tranexamic acid on reducing blood loss in lumbar spine surgery [Graduation Thesis]. Zhengzhou University; 2019.

39. Zhang L, Li Y, Liu D, Xiao X, Guan T, Yue H, et al. Combined use of tranexamic acid and rivaroxaban in posterior lumbar interbody fusion safely reduces blood loss and transfusion rates without increasing the risk of thrombosis-a prospective, stratified, randomized, controlled trial. Int Orthop 2020;44:2079-87.

40. Liu S, Zhang Y, Deng X, Fang J, Liu Y. Analysis of autologous blood transfusion combined with tranexamic acid infusion during posterior lumbar interbody fusion. J Prac Orthop 2021;1:71-4.

41. Yuan J, Yang Y, Zhang H, Liu M, Yan H, Wei H, et al. Effect of adequate amount of tranexamic acid before operation on blood loss and safety in posterior lumbar fusion with multiple segments. Chin J Blood Transfusion Jan 2021;34:43-7.

42. Yang L, Rao Y, Zhang C, Zhou Y, Yang S, Cui H. Local and intravenous administration of tranexamic acid in surgical procedure for degenerative lumbar scoliosis. Orthopedic Journal of China; 2020;15:1381-4.

43. Xia B, Shen X, Wei J, Lin Y. Effect of local application of tranexamic acid in lumbar spine surgery on postoperative drainage volume and coagulation function. J Spinal Surg 2020;18:168-71.

44. Mi S, Wu Y, Zheng B, Yang Y, Xu W, Pan W. A comparative study of the effect of topical tranexamic acid on blood loss after posterior lumbar decompression and fusion. ZH J Traumatic 2021;2:217-9.

45. Zhang H, Liu M, Yuan J, Yan H, Yang Y, Wei H, et al. Clinical study of preoperative intravenous infusion combined with local tranexamic acid before incision closure to reduce bleeding in elderly spine surgery. Chin J Bone Joint Injury 2021;1:78-80.

46. He B, Li Y, Xu S, Ou Y, Zhao J. Tranexamic acid for blood loss after transforaminal posterior lumbar interbody fusion surgery: A double-blind, placebo-controlled, randomized study. Biomed Res Int 2020;2020:8516504.

47. Ding B, Zhang X, Gu C, Guo Z. Clinical observation of tranexamic acid used in posterior lumbar fusion. Ningxia Med J 2020;42:936-8.

48. Yang X, Hao D, He B, Yan L, Gao W, Li Y, et al. Efficacy and safety of blood loss with different dose of tranexamic acid in lumbar stenosis surgery for elderly patients. Zhongguo Jizhu Jisui Zazhi 2020;30:727-34.

49. Li J, Wang L, Bai T, Liu Y, Huang Y. Combined use of intravenous and topical tranexamic acid efficiently reduces blood loss in patients aged over 60 operated with a 2-level lumbar fusion. J Orthop Surg Res 2020;15:339.

50. Yan X. Evaluation of intraoperative tranexamic acid in posterior approach lumbar surgery. Inner Mongolia Med 2015;7:810-2.

51. Bu G, Wu Y, Deng S, Du Q, Zhu J, Cui C, et al. The safety and efficacy of local administration of tranexamic acid into posterior lumbar interbody fusion wounds. Orthopedic Journal of China 2014;22:1637-41.

52. Feng Y. The study of the efficacy and safety of tranexamic acid in elderly lumbar spinal stenosis surgery [Graduation Thesis]. Chengdu University of TCM; 2016.

53. Jia H, Ma W, An M. Effect of tranexamic acid on reducing postoperative blood loss in posterior approach lumbar surgery. Jing Yaotong Zazhi; 2016.

54. Zhang J, Liu J, He X, Meng Y, Huang Y, Wu Q, et al. Effects of tranexamic acid impregnated gelatin sponge on postoperative bleeding after multi-segment lumbar vertebra surgery. Chine J Bone and Joint Surg 2015;8:508-11.

55. Zhang H, Li Z, Wu C. Effect of intracision tranexamic acid on blood loss and functional recovery after posterior lumbar Cage fusion. Yixue Xinxian 2015;43:168-9.

56. Huang B, Zhu S, Huang Y. Tranexamic acid in posterior lumbar fusion surgery. Journal of Yangtze University (Natural Science Edition) 2015;18:20-1.
Tranexamic acid in lumbar surgery

57. Huang C, Yang M. The effect of tranexamic acid in perioperative blood loss control and its safety assessment in old patients with multiple lumbar spinal stenosis. Chin J Postgrad Med 2011;34:17-20.

58. Nian L, Zhao J, Li Q, Liu R. A prospective study on the efficacy and safety of intraoperative infiltrating tranexamic acid in reducing blood loss after lumbar fusion surgery. Chin J Orthop 2016;24:657-9.

59. Shi H. The efficacy of different doses tranexamic acid in the reduction of blood loss in complex posterior lumbar surgery. [Graduation Thesis]. Chongqing Medical University; 2016.

60. Zhang Y, Wang X, Zhao Q, Shui C, Sun H, Hao D. Effect of intravenous tranexamic acid on perioperative hidden blood loss in percutaneous pedicle screw fixation for thoracolumbar fractures. Chinese Journal of Orthopaedic Trauma 2018(12):291-5.

61. Hu Z, Zhang J, Meng X, Zhang Z, Wang L, Duan W. The analysis of safety and effectiveness of tranexamic acid on the surgery for spinal metastatic tumors. Chin J Clin Healthc 2018;21:794-7.

62. Liu T, Liu Y. Clinical study of tranexamic acid in reducing blood loss after single segment lumbar fusion. Chin Med J Mectall Indus 2018;35:18-20.

63. Chen L, Li C, Lan G. Clinical research on efficacy and safety on intravenous injection of tranexamic acid on blood loss control in multilevel lumbar inter body fusion patients. J of Guangxi Med University 2018;35:672-5.

64. Song F, Hu L, Zhang J, Sun Y. Effect of tranexamic acid on bleeding in ankylosing spondylitis treated by transpedicle vertebral osteotomy. J Clin Med 2017;4:19156-8.

65. Chang L, Xiong W, Liu H, Liu X. A clinical study on the topical application of tranexamic acid + gelatin sponge in lumbar surgery. Chin J of Bone and Joint 2017;6:786-91.

66. Wang S, Qiu Y, Liu W, Wang M. Clinical study on application of tranexamic acid in adult degenerative lumbar scoliosis orthopedic surgery. Acta Acad Med Weifang 2016;38:467-9.

67. Meng X, Hu C, Yang X. Effects of tranexamic acid on lumbar surgery by different ways of administration. J of Hebei Med University 2017;38:29-32.

68. Liu Y, Cao X, Zhu J. Effect of tranexamic acid in reducing perioperative bleeding of the elderly undergoing posterior lumbar surgery of 3 segments and the safety. Geriatr Health Care 2019;25:101-3.

69. Zhang Y, Yang Y. Study of postoperative blood loss on patients with short segmental lumbar spinal stenosis with different doses intravenous tranexamic acid. Chin J Clinicians 2017;8:57-61.

70. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009;6:e1000097.

71. de Maat GH, Punt IM, van Rhijn LW, Schurink GW, van Ooij A. Removal of the Charité lumbar artificial disc prosthesis: Surgical technique. J Spinal Disord Tech 2009;22:334-9.

72. Ad N, Henry L, Hunt S, Holmes SD. Impact of clinical presentation and surgeon experience on the decision to perform surgical ablation. Ann Thorac Surg 2013;96:763-8.

73. DeFilippis AP, Oloyede OS, Andrikopoulu E, Saenger AK, Palachuvattil JM, Fasoro YA, et al. Thromboxane A2 generation, in the absence of platelet COX-1 activity, in patients with and without atherothrombotic myocardial infarction. Circ J 2013;77:2786-92.

74. Nanda K, Moss AC. Update on the management of ulcerative colitis: Treatment and maintenance approaches focused on MMX(R) mesalamine. Clin Pharmacol 2012;4:41-50.

75. Burren DB, Perry CM. Rivaroxaban: A review of its use in the treatment of deep vein thrombosis or pulmonary embolism and the prevention of recurrent venous thromboembolism. Drugs 2014;74:243-62.

76. Sun S-W, Wang X, Yang J, Ju R-B. Combined use of intraarticular and intravenous tranexamic acid in total hip arthroplasty. Chinese Journal of Tissue Engineering Research 2016;20:7149-55.

77. Du Y, Feng C. The efficacy of tranexamic acid on blood loss from lumbar spinal fusion surgery: A meta-analysis of randomized controlled trials. World Neurosurg 2018;119:e228-e234.

78. Lu VM, Ho YT, Nambiar M, Mobbs RJ, Phan K. The perioperative efficacy and safety of antifibrinolytics in adult spinal fusion surgery: A systematic review and meta-analysis. Spine (Phila Pa 1976) 2018;43:E949-E958.

79. Gong M, Liu G, Chen L, Chen R, Xiang Z. The efficacy and safety of intravenous tranexamic acid in reducing surgical blood loss in posterior lumbar interbody fusion for the adult: A systematic review and a meta-analysis. World Neurosurg 2019;122:559-68.

80. Endres S, Heinz M, Wilke A. Efficacy of tranexamic acid in reducing blood loss in posterior lumbar spine surgery for degenerative spinal stenosis with instability: A retrospective case control study. BMC Surg 2011;11:29.

81. Bai J, Zhang P, Liang Y, Wang J, Wang Y. Efficacy and safety of prophylactic intravenous tranexamic acid on perioperative blood loss in patients undergoing posterior lumbar fusion: A meta-analysis. BMC Musculoskelet Disord 2019;20:390.

82. Sun H, Deng L, Deng J, Wang J, Zhang H, Chen K, et al. The efficacy and safety of intravenous tranexamic acid on perioperative blood loss in patients treated with posterior lumbar interbody fusion. World Neurosurg 2019;125:e198-e204.

83. Ren Z, Li S, Sheng L, Zhuang Q, Li Z, Xu D, et al. Efficacy and safety of topical use of tranexamic acid in reducing blood loss during primary lumbar spinal surgery: A retrospective case control study. Spine (Phila Pa 1976) 2017;42:1779-84.

84. Balsud CR, Bridwell KH, Lenke LG, Okubadejo GO. Can we safely reduce blood loss during lumbar pedicle subtraction osteotomy procedures using tranexamic acid or aprotinin? A comparative study with controls. Spine (Phila Pa 1976) 2010;35:235-9.
SUPPLEMENTARY FIGURE 1. Comparison of Transfusion volume between the tranexamic acid group and the control group.

SUPPLEMENTARY FIGURE 2. Comparison of intraoperative blood loss between the tranexamic acid group and the control group.

SUPPLEMENTARY FIGURE 3. Comparison of Postoperative blood loss between the TXA group and the control group.

SUPPLEMENTARY FIGURE 4. Comparison of Postoperative drainage between the TXA group and the control group.
SUPPLEMENTARY FIGURE 5. Comparison of Hb between the TXA group and the control group.
SMD: Standardized mean difference; CI: Confidence interval; TXA: Tranexamic acid.

SUPPLEMENTARY FIGURE 6. Comparison of Hct between the TXA group and the control group.
SMD: Standardized mean difference; CI: Confidence interval; TXA: Tranexamic acid.

SUPPLEMENTARY FIGURE 7. Comparison of TBL between the TXA group and the control group. (Subgroup analysis according to operative type).
SMD: Standardized mean difference; CI: Confidence interval; TBL: Total blood loss; TXA: Tranexamic acid.

SUPPLEMENTARY FIGURE 8. Comparison of TBL between the TXA group and the control group. (Subgroup analysis according to administration).
SMD: Standardized mean difference; CI: Confidence interval; TBL: Total blood loss; TXA: Tranexamic acid.
SUPPLEMENTARY FIGURE 9. Comparison of Transfusion rate between the TXA group and the control group. (Subgroup analysis according to operative type).

RR: Risk ratio; CI: Confidence interval; TXA: Tranexamic acid.

SUPPLEMENTARY FIGURE 10. Comparison of Transfusion rate between the TXA group and the control group. (Subgroup analysis according to administration).

RR: Risk ratio; CI: Confidence interval; TXA: Tranexamic acid.

SUPPLEMENTARY FIGURE 11. Comparison of DVT between the TXA group and the control group. (Subgroup analysis according to operative type).

RR: Risk ratio; CI: Confidence interval; TXA: Tranexamic acid; DVT: Deep venous thrombosis.

SUPPLEMENTARY FIGURE 12. Comparison of DVT between the TXA group and the control group. (Subgroup analysis according to administration).

RR: Risk ratio; CI: Confidence interval; DVT: Deep venous thrombosis; TXA: Tranexamic acid.
SUPPLEMENTARY FIGURE 13. Comparison of D-dimer between the TXA group and the control group. (Subgroup analysis according to operative type).

SMD: Standardized mean difference; CI: Confidence interval; TXA: Tranexamic acid.

SUPPLEMENTARY FIGURE 14. Comparison of D-dimer between the TXA group and the control group. (Subgroup analysis according to administration).

SMD: Standardized mean difference; CI: Confidence interval; TXA: Tranexamic acid.

SUPPLEMENTARY FIGURE 15. Comparison of TBL between the TXA group and the control group. (Funnel plot)

SMD: Standardized mean difference; TBL: Total blood loss; TXA: Tranexamic acid.

SUPPLEMENTARY FIGURE 16. Comparison of Transfusion rate between the TXA group and the control group (Funnel plot).

RR = Risk ratio; TXA: Tranexamic acid.

SUPPLEMENTARY FIGURE 17. Comparison of Transfusion volume between the TXA group and the control group. (Funnel plot)

SMD: Standardized mean difference; TXA: Tranexamic acid.
SUPPLEMENTARY FIGURE 18. Comparison of IBL between the TXA group and the control group. (Funnel plot)
SMD: Standardized mean difference; IBL: Intraoperative blood loss.

SUPPLEMENTARY FIGURE 19. Comparison of PBL between the TXA group and the control group. (Funnel plot)
SMD: Standardized mean difference; PBL: Postoperative blood loss.

SUPPLEMENTARY FIGURE 20. Comparison of Postoperative Drainage between the TXA group and the control group. (Funnel plot)
SMD: Standardized mean difference; TXA: Tranexamic acid.

SUPPLEMENTARY FIGURE 21. Comparison of Hb between the TXA group and the control group. (Funnel plot)
SMD: Standardized mean difference; TXA: Tranexamic acid.
SUPPLEMENTARY FIGURE 22. Comparison of Hct between the TXA group and the control group. (Funnel plot)
SMD: Standardized mean difference; TXA: Tranexamic acid.

SUPPLEMENTARY FIGURE 23. Comparison of DVT between the TXA group and the control group. (Funnel plot)
SMD: Standardized mean difference; DVT: Deep venous thrombosis; TXA: Tranexamic acid.

SUPPLEMENTARY FIGURE 24. Comparison of D-dimer between the TXA group and the control group. (Funnel plot)
SMD: Standardized mean difference; TXA: Tranexamic acid.

SUPPLEMENTARY FIGURE 25. Comparison of Transfusion rate between the TXA group and the control group. (Sensitivity analysis)
RR: Risk ratio; TXA: Tranexamic acid.
SUPPLEMENTARY FIGURE 26. Comparison of Transfusion volume between the TXA group and the control group. (Sensitivity analysis)
SMD: Standardized mean difference; TXA: Tranexamic acid.

SUPPLEMENTARY FIGURE 27. Comparison of IBL between the TXA group and the control group. (Sensitivity analysis)
SMD: Standardized mean difference; IBL: Intraoperative blood loss; TXA: Tranexamic acid.

SUPPLEMENTARY FIGURE 28. Comparison of PBL between the TXA group and the control group. (Sensitivity analysis)
SMD: Standardized mean difference; PBL: Postoperative blood loss; TXA: Tranexamic acid.

SUPPLEMENTARY FIGURE 29. Comparison of Hct between the TXA group and the control group. (Sensitivity analysis)
CI: Confidence interval; Hct: Hematocrit; TXA: Tranexamic acid.
SUPPLEMENTARY FIGURE 30. Comparison of D-dimer between the TXA group and the control group (Sensitivity analysis).

CI: Confidence interval; TXA: Tranexamic acid.