A relation among the effective nucleon mass, the incompressibility and the effective \(\sigma\)-meson mass in nuclear matter

Yoshitaka Iwasaki, Hiroaki Kouno, Akira Hasegawa and Masahiro Nakano

Department of Physics, Saga University, Saga 840, Japan
*University of Occupational and Environmental Health, Kitakyushu 807, Japan

Abstract

A relation among the effective nucleon mass \(M^*\), the incompressibility \(K\) and the effective \(\sigma\)-meson mass \(m^*_\sigma\) in nuclear matter is studied by using the relativistic nuclear model. We found that there is a strong correlation between \(M^*\) and \(m^*_\sigma\), while there is only a weak correlation between \(K\) and \(m^*_\sigma\). At the normal density, \(m^*_\sigma\) is smaller than the one at zero density, if \(M^*\) is smaller than 0.8 times of the nucleon mass at zero density. It is also found that the off-shell effective mass \(\mu^*_\sigma\) is related directly to \(K\) and \(M^*\) at the normal density.

1 Introduction

Recently, the \(\pi-\pi\) scattering phase shift is reanalyzed and the existence of the light iso-singlet scalar \(\sigma\)-meson is strongly suggested. [1] The similar results are also obtained by reanalyzing the \(\pi^0\pi^0\) mass spectra and angular distributions around \(K\bar{K}\)-threshold and at 1.5GeV in \(p\bar{p}(\text{at rest}) \to 3\pi^0\). [2]

Although the existence of the \(\sigma\)-meson is not still established, this meson play an important role for the nuclear matter properties in the quantum hadrodynamics(QHD). For example, the nuclear saturation properties are realized by a balance of attractive effects of the \(\sigma\)-meson and repulsive effects of the \(\omega\)-meson. [3]

The effective self-interactions (or potentials) of \(\sigma\)-meson play an important role in determining the effective nucleon mass and the incompressibility of the nuclear matter. [4] Inversely, in QHD, the properties of the effective potentials in the symmetric nuclear matter are almost determined if the values of the effective nucleon mass \(M^*_N\) at the normal density and the incompressibility \(K\) are given as input parameters. The effective \(\sigma\)-meson mass is also determined if the values of these two quantities are given, since it can be defined as a second derivative of the effective potential with respect to the \(\sigma\)-meson field. In this paper, we study the relation among the effective nucleon mass, the incompressibility and the effective \(\sigma\)-meson mass within the framework of QHD.

2 Formalism

We use the relativistic Hartree approximation (RHA) [5] based on the \(\sigma-\omega\) model. [6] The Lagrangian density is composed of three fields, the nucleon \(\psi\), the scalar \(\sigma\)-meson \(\phi\) and the vector \(\omega\)-meson \(V^\mu\), and is given by

\[
L = \bar{\psi}(i\gamma^\mu \partial^\mu - M + g_s \phi - g_v \gamma^\mu V^\mu) \psi + \frac{1}{2} \phi \partial^\mu \phi \partial_\mu \phi - \frac{1}{2} \mu^2 \phi^2
- \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2} \mu^2 \phi^2 \psi^4 + \frac{1}{4} \sum_{n=0}^4 C_n \phi^4; \quad F_{\mu\nu} = \partial_\mu V_\nu - \partial_\nu V_\mu \quad (1)
\]
where \(M, \mu_s, \mu_v, g_s, g_v \) and \(C_n \) are constant parameters. The last term in (1) is a counter term and \(C_n \) is determined by the phenomenological renormalization conditions at zero baryon density, namely,

\[
C_n = \frac{1}{n! \partial^n} U_{\text{1-loop}}^V(<\phi>)\quad (n = 0, 1, 2, 3, 4),
\]

where \(U_{\text{1-loop}}^V \) is the unrenormalized 1-loop effective potential induced by the vacuum fluctuations and \(<\phi> \) is the ground state expectation value of the \(\sigma \)-meson field.

Replacing the meson fields by their ground state expectation values \(<\phi> \) and \(<V^0> \), we obtain the equation of motions for \(<\phi> \) and for \(<V^0> \), namely,

\[
\rho_s = \frac{1}{C_s^2} g_s <\phi> = \frac{1}{C_s^2} (M - M^*)
\]

and

\[
\rho = \frac{1}{C_v^2} g_v <V^0>.
\]

where \(M^* (\equiv M - g_s <\phi>) \), \(\rho_s \) and \(\rho \) are the effective nucleon mass, the scalar density and the baryon density, respectively, and \(C_s = g_s/\mu_s \) and \(C_v = g_v/\mu_v \).

The scalar density \(\rho_s = <\bar{\psi}\psi> \) and the baryon density \(\rho = <\bar{\psi}\gamma_0\psi> \) are given by

\[
\rho_s(k_F, <\phi>) = \frac{\lambda}{2\pi^2} k_F^3 \left[k_F E_F^* - M^* k_F E_F^* \ln \left(\frac{k_F}{E_F^*} \right) \right]
\]

\[
- \frac{1}{g_s} \frac{d}{d <\phi>} U_{\text{1-loop}}^{V,R} \equiv \rho_s^D(k_F, <\phi>) + \rho_s^V(<\phi>)
\]

and

\[
\rho(k_F) = \frac{\lambda}{3\pi^2} k_F^3,
\]

where \(\lambda \) is the number of degree of freedom of nucleons, \(k_F \) is the Fermi momentum, \(E_F^* = \sqrt{k_F^2 + M^*} \), respectively. The \(\rho_s^D \) and \(\rho_s^V \) are the density part and vacuum fluctuation part of the scalar density, respectively. The \(U_{\text{1-loop}}^{V,R} \) is the renormalized effective potential induced by the 1-loop vacuum fluctuation effects and is given by

\[
U_{\text{1-loop}}^{V,R}(<\phi>) = - \frac{\lambda}{8\pi^2} [M^* \ln(M^*/M) + M^3(M - M^*) - \frac{7}{2} M^2(M - M^*)^2 + \frac{13}{3} M(M - M^*)^3 - \frac{25}{12} (M - M^*)^4].
\]

The energy density of the nuclear matter is also given by

\[
\varepsilon(k_F, <\phi>, <V^0>) = \varepsilon_N(k_F, M^*) + \varepsilon_v(<V^0>)
\]

\[
+ \frac{1}{2} \mu_s^2 <\phi>^2 + U_{\text{1-loop}}^{V,R}(<\phi>)
\]

where

\[
\varepsilon_N(k_F, <\phi>) = \frac{\lambda}{12\pi^2} \left[3k_F^2 E_F^* + \frac{3}{2} M^2 k_F E_F^* - \frac{3}{2} \ln \left(\frac{k_F + E_F^*}{M^*} \right) \right]
\]

\[
\varepsilon_v(<V^0>) = \frac{\lambda}{8\pi^2} \left[M^* \ln(M^*/M) + M^3(M - M^*) - \frac{7}{2} M^2(M - M^*)^2 + \frac{13}{3} M(M - M^*)^3 - \frac{25}{12} (M - M^*)^4 \right].
\]
\[\varepsilon_v(k_F, V_0) = g_v < V^0 > \rho - \frac{\mu_v^2}{2} < V^0 >^2 = \frac{\mu_v^2}{2} < V^0 >^2. \] (10)

It is easy to show that
\[\rho^D_s = - \frac{1}{g_s} \frac{\partial \varepsilon_N}{\partial \langle \phi \rangle} \] (11)

Using the thermodynamical identity, we obtain
\[\varepsilon + P = \mu = E_F^* + C_v^2 \rho, \] (12)

where \(P \) and \(\mu \) are the pressure and the baryonic chemical potential of the nuclear matter, respectively. At the normal density \(\rho_0 \), the pressure \(P \) vanishes. Then, Eq. (12) yields
\[C_v^2 = \left(-a_1 + M - \sqrt{k_F^2 + M_0^{*2}} \right)/\rho_0, \] (13)

where the quantity with zero subscript shows the one at the normal density and \(a_1 \) is the value of the binding energy. Equation (13) and the condition \(C_v^2 > 0 \) gives a condition \(M_0^*/M < 0.944 \). The incompressibility \(K \) of the nuclear matter is given by
\[K = 9 \rho_0 \left(\frac{\partial^2 (\varepsilon/\rho)}{\partial \rho^2} \right) \bigg|_{\rho = \rho_0} = 9 \left. \frac{\partial P}{\partial \rho} \right|_{\rho = \rho_0} = 9 \left. \frac{\partial \mu}{\partial \rho} \right|_{\rho = \rho_0} \] (14)

Putting \(\mu = E_F^* + C_v^2 \rho \) into (14), we obtain
\[K = 9 \rho_0 \left(\frac{k_F^3}{3 \rho E_F^*} + \frac{g_s^2}{\mu_v^2} + \frac{M^*}{E_F^*} \frac{dM^*}{d \rho} \right) \bigg|_{\rho = \rho_0} \] (15)

Next we calculate the self-energy \(\Pi_s \) of the \(\sigma \)-meson by using the random phase approximation (RPA). [6] Using the same renormalization conditions as (2) for the effective potential and the usual renormalization conditions for the \(\sigma \)-meson wave function, we obtain
\[\Pi_s(q; < \phi >, k_F) = \Pi_s^V(q^2; < \phi >) + \Pi_s^D(q; < \phi >, k_F). \] (16)

The particle-antiparticle excitation part \(\Pi_s^V \) does not depend explicitly on \(k_F \) and is given by
\[\Pi_s^V(q^2; < \phi >) = \frac{3g_s^2}{4\pi^2} \int_0^1 dx \left[3M^{*2} + M^2 - 4MM^* - q^2x(1 - x) - A^{*2} \ln \frac{A^{*2}}{M^2} \right], \] (17)

where \(A^{*2} = M^{*2} - q^2x(1 - x) \). The \(\Pi_s^D \) which includes the particle-hole excitations and the Pauli-blocking effects depends explicitly on \(k_F \) and is given by
\[\Pi_s^D(q; < \phi >, k_F) = - i\frac{g_s^2}{2(2\pi)^4} \text{Tr}[G_D(k)G_F(k + q) \right. \]
\[+ G_F(k)G_D(k + q) + G_D(k)G_D(k + q)] \] (18)
where \(G_D \) and \(G_F \) are the density part and the Feynman part of the nucleon propagator in RHA.

Now we define two kinds of effective \(\sigma \)-meson mass. First, we define an "off-shell" effective mass \(\mu_s^* \) by

\[
\mu_{s}^{*2} \equiv \mu_{s}^{2} + \lim_{q_0 \to 0} \lim_{|q| \to 0} \Pi_{s}(q).
\]

(19)

The \(\mu_s^* \) can be regarded as a range of the nuclear force which is mediated by the \(\sigma \)-meson in the nuclear matter. The \(\mu_s^* \) can be related to the effective potential of the nuclear matter. In fact, it is easy to show that

\[
\mu_{s}^{*2} = \frac{\partial^2 \varepsilon}{\partial \langle \phi \rangle^2}.
\]

(20)

Differentiating the equation of motion \((3)\) for the \(\sigma \)-meson field with respect to the baryon density and using Eqs. \((11)\) and \((20)\), we obtain

\[
\frac{dM^{*}}{d\rho} = -\frac{g_{s}^{2} M^{*}}{E_{F}^{*} \mu_{s}^{*2} E_{F}^{*}} + \frac{g_{s}^{2} M^{*}}{\mu_{s}^{2} E_{F}^{*}}
\]

(21)

Putting \((21)\) into \((15)\), we obtain

\[
K = 9\rho_{0}\left(\frac{k_{F}^{3}}{3\rho E_{F}^{*}} + \frac{g_{s}^{2} M^{*}}{\mu_{s}^{2} E_{F}^{*}}\right)_{\rho = \rho_{0}}.
\]

(22)

The \(\mu_s^* \) is not an "on-shell" mass which is defined by the pole of the propagator

\[
\Delta(q) = \frac{1}{q^2 - (\mu_{s}^{2} + \Pi_{s}(q))}.
\]

(23)

We define the "on shell" effective mass \(m_{s}^{*} \) by the equation

\[
m_{s}^{*2} \equiv \mu_{s}^{2} + \Pi_{s}(q)_{\delta_{0} = m_{s}^{*}}.
\]

(24)

In particular, at \(\rho = 0 \), we define

\[
m_{s}^{2} \equiv \mu_{s}^{2} + \Pi_{s}(q)_{\delta_{0} = m_{s}^{2}}.
\]

(25)

where \(m_s \) is the physical mass of \(\sigma \)-meson.

In the ordinary RHA \(K = 473 \text{MeV} \), which is much larger than the empirical value \(150 \sim 350 \text{MeV} \). \cite{7, 8} Therefore, we add an additional potential of the \(\sigma \)-meson self-interaction

\[
U_{H}(\phi) = \sum_{n=5}^{\infty} D_{n}(g_{s} \phi)^{n} = \sum_{n=5}^{\infty} D_{n}(M - M^{*})^{n}
\]

(26)

to the Lagrangian \((\Phi)\). We regard \(U_{H}(\phi) \) as the effective potential induced by the higher-order quantum corrections beyond 1-loop approximation. We remark that, in Eq. \((26)\), the terms of \(\phi > 0 \sim \phi > 4 \) have been canceled by
the counter term to the higher-order quantum corrections just as Eq. (2). By this modification, Eqs (8) and (16) are modified as

$$
\varepsilon(k_F, <\phi>, <V^0_0>) = \varepsilon_N(k_F, M^*) + \varepsilon_v(<V^0_0>) + \frac{1}{2} \mu^2_s <\phi>^2 + U_1^{V,R}(<\phi>) + U^H(<\phi>)
$$

and

$$
\Pi_s(q; <\phi>, k_F) = \Pi^V_s(q^2; <\phi>) + \Pi^D_s(q; <\phi>, k_F) + g_s^2 \frac{d^2}{dM^*} U^H(<\phi>).
$$

We remark that Eqs. (20) and (22) are still valid, after this expansion was carried out.

3 Numerical calculation

Equation (22) gives the relation among the effective nucleon mass, the incompressibility and the effective σ-meson mass μ^*_s at the normal density. If the values of M^*_0 and K is given, $C_v = g_v/\mu_v$ is determined by Eq. (13) and we can calculate the ratio μ^*_s/g_s at the normal density. In Fig. 1, we display the ratio μ^*_s/g_s as a function of M^*_0 with several values of K. In the numerical calculations, we set $a_1 = 15.75 \text{MeV}$, $\rho_0 = 0.15 \text{fm}^{-3}$ and $M = 939 \text{MeV}$. The ratio μ^*_s/g_s increases as M^*_0 increases, while the ratio depends on K only slightly.

Since U^H does not appear explicitly in (22), the result in Fig. 1 is established regardless of the details of the potential form. However, to calculate μ^*_s itself, we must determine g_s. For this purpose, we assume that

$$
U^H(<\phi>) = D_5(M - M^*)^5 + D_6(M - M^*)^6.
$$

In this approximation, we have four parameters for RHA calculation, namely, C_s, C_v, D_5 and D_6. As is seen in Eq. (13), C_v is determined if the value of M^*_0 is given. We have two conditions for the saturations at $\rho = \rho_0$:

$$
\varepsilon(\rho_0) = (M - a_1) \rho_0 \quad \text{and} \quad P(\rho_0) = 0
$$

Therefore, if the value of K is given, the remaining three parameters C_s, D_5 and D_6 are determined.

Using the same potential as (29), we obtain

$$
\Pi_s(q; <\phi>, k_F) = \Pi^V_s(q^2; <\phi>) + \Pi^D_s(q; <\phi>, k_F) + 20 g_s^2 D_5 (M - M^*)^3 + 30 D_6 g_s^2 (M - M^*)^4,
$$

From Eqs. (29) and (32), at zero density, we obtain

$$
1 + C_s g_s^2 \frac{\Pi^V_s(q)}{g_s^2} \bigg|_{q^2=0, q_0=m_s^*} = \frac{m_s^2}{\mu_s^2}.
$$

Since Π^V_s/g_s^2 does not depend on g_s, we can calculate μ_s by putting the value of C_s and $m_s = 550 \text{MeV}$ into Eq. (22). After determining μ_s, we can also determine the value of g_s. In Figs. 2 and 3, we display μ_s and g_s as a function of M^*_0. As
M_0^* increases, g_s is suppressed more strongly than μ_s. Since, as is seen in C_2^s approaches zero as $M_0^* \to 0.944M$, g_s becomes small more quickly than μ_s to keep the saturation conditions. Both of μ_s and g_s depend on K only slightly.

After determining μ_s and g_s, we can calculate μ_s^* and m_s^*. In Figs. 4 and 5, we display μ_s^*/μ_s and m_s^*/m_s at the normal density as a function of M_0^*. As M_0^* increase, the ratios μ_s^*/μ_s and m_s^*/m_s increase. The ratio μ_s^*/μ_s is smaller than 1 for $M_0^* < 0.560(0.542, 0.526)M$, when $K = 200(300, 400)$MeV. Similarly, the ratio m_s^*/m_s is smaller than 1 for $M_0^* < 0.815(0.802, 0.793)M$, when $K = 200(300, 400)$MeV. Both of two ratios depend on K only slightly.

In Figs. 6 and 7, we display μ_s^*/μ_s and m_s^*/m_s as a function of baryon density with several values of M_0^*. Since two ratios depend on K only slightly, we have fixed the value of K at 300MeV. The density dependence of the two ratios also changes, when M_0^* changes. The ratio $\mu_s^*/\mu_s \gtrsim 1$ in the region of $\rho \lesssim 1.3\rho_0$, while the ratios $m_s^*/m_s < 1$ except for the case with $M_0^* = 0.85M$.

4 Summary

In summary, we have studied the relation among the effective nucleon mass M^*, the incompressibility K and the effective σ-meson mass m_s^* in nuclear matter by using the relativistic nuclear model. We found that there is a strong correlation between M^* and m_s^*, while there is only a weak correlation between K and m_s^*. At the normal density, m_s^* is smaller than the one at zero density for $M_0^* \leq 0.8M$, while μ_s^* hardly decreases. We remark that it is interesting that the off-shell mass μ_s^* at the normal density is related directly to M_0^* and K which can be determined phenomenologically.

ACKNOWLEDGEMENTS

The authors thanks Prof. T. Kohmura and T. Maruyama for useful discussions.

References

[1] N. N. Achasov and G. N. Shestakov, Phys. Rev. D49, 5779(1994). R. Kamiński, L. Leśniak and J.-M. Maillet, Phys. Rev. D50 (1994), 3145. N.A. Törnqvist and M. Roos, Phys. Rev. Lett. 76 (1996), 1575. M. Harada, F. Sannino and J. Schechter, Phys. Rev. D54 (1996), 1991. S. Ishida, M. Ishida, H. Takahashi, T. Ishida, K. Takamatsu and T. Tsuru, Prog. Theor. Phys. 95 (1996), 745.

[2] M. Ishida, T. Kodama, S. Ishida, T. Ishida, K. Takamatsu and T. Tsuru, preprint, hep-ph/0005251.

[3] J. D. Walecka, Ann. of Phys. 83 (1974), 491.

[4] J. Boguta and A.R. Bodmer, Nucl. Phys. A292 (1977), 413.

[5] S. A. Chin, Phys. Lett. B62 (1976), 263. S. A. Chin, Ann. of Phys. 108 (1977), 301.

[6] R. J. Furnstahl and C. J. Horowitz, Nucl. Phys. A485 (1988), 632.
Figures

Figure 1: The ratio μ^*_0/g_* as a function of M^*_0. The solid, the dashed and dashed-dotted curves show results for $K = 200\text{MeV}, 300\text{MeV}$ and 400MeV, respectively. The cross show the result for the original RHA.
Figure 2: The μ_s as a function of M_0^*. The various curves and the cross have the same notation as in Fig. 1.

Figure 3: The g_s as a function of M_0^*. The various curves and the cross have the same notation as in Fig. 1.
Figure 4: The ratio μ_{s0}^*/μ_s as a function of M_0^*. The various curves and the cross have the same notation as in Fig. 1.

Figure 5: The ratio m_{s0}^*/m_s as a function of M_0^*. The various curves and the cross have the same notation as in Fig. 1.
Figure 6: The ratio μ_s^*/μ_s as a function of the baryon density. The solid, the dashed and dashed-dotted curves show results for $M_0^* = 0.65M$, $0.75M$ and $0.85M$, respectively. The dotted curve shows the result for the original RHA.

Figure 7: The ratio m_s^*/m_s as a function of the baryon density. The various curves have the same notation as in Fig. 6.