The Effect of the Foliar Application of Potassium, Calcium, Boron and Humic Acid on Vegetative Growth, Fruit Set, Leaf Mineral, Yield and Fruit Quality of 'Anna' Apple Trees

Walid Fediala Abd El- Gleel Mosa¹², Nagwa A. Abd EL-Megeed³ and Lidia Sas Paszt¹

¹Research Institute of Horticulture, Konstytucji 3 Maja, Skierniewice, Poland.
²Plant Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt.
³Nubaria Horticulture Research Station, Agriculture Research Center (ARC), Giza, Egypt.

Authors’ contributions

This work was carried out in collaboration between all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AJEA/2015/16716
Editor(s):
(1) Juan Yan, Sichuan Agricultural University, China.
(2) Anonymous, Kenya Agricultural and Livestock Research Organization, Kenya.
Reviewers: (1) Saad Farouk Mohamed Hussien, Agric. Botany Department, Faculty of Agriculture, Mansoura University, Egypt.
Complete Peer review History: http://www.sciencedomain.org/review-history.php?id=1078&id=2&aid=8118

Received 11th February 2015
Accepted 7th April 2015
Published 8th May 2015

Original Research Article

ABSTRACT

This experiment was carried out during 2012 and 2013 seasons on seven years old "Anna" apple trees (Malus domestica L.). Trees were planted at 5x5 meters on sandy loam soil under drip irrigation system in a private orchard at El-Nubaria, Behera Governorate, Egypt. The experiment involved ten foliage spraying treatments as follows: control, sprayed with water, K at 2% as potassium sulphate, Ca at 0.2% as calcium chloride, B at 0.2% as boric acid, H.A. at 5% as humic acid, potassium sulphate+ humic acid, calcium chloride+ humic acid, boric acid+ humic acid, potassium sulphate+ calcium chloride+ boric acid and potassium sulphate+ calcium chloride+ boric acid+ humic acid. The obtained results showed that potassium sulphate+ calcium chloride+ boric acid+ humic acid combination was the best treatment. This combination had the highest positive effect to improve the percentages of yield, fruit set, reducing sugar and total soluble solids. Also, it

*Corresponding author: E-mail: walidbreeder@yahoo.com;
increased Ca, P, K, N, B, Zn, Mn and Fe in the leaves in the two seasons, as compared to the control. Moreover, this combination improved significantly anthocyanin concentration, TSS/acid ratio, shoot diameter, shoot length, leaf area, fruit diameter, fruit length, average fruit weight and fruit firmness. It decreased the percentages of fruit drop and acidity in the two seasons as compared to the control and the other treatments.

Keywords: Anna apple; foliar application; humic acid; yield; fruit quality.

1. **INTRODUCTION**

Anna apple (*Malus domestica* L. Borkh) is a low chilling requirement cultivar [1], spreading in many tropic and subtropic areas including Egypt. Foliar fertilization has advantages of low application rates, uniform distribution of fertilizer materials, easiest method of application and quick responses to applied nutrients [2]. Boron is an important micronutrient for trees and it may be applied to the soil or the foliage with good effect. Foliar applications of boron before full bloom or after harvest increased fruit set and fruit yield of apple trees [3]. Foliar application of calcium borate on some characters of apple fruits "Sheikh Amir" variety during 2010 and 2011 seasons at Shirvan region was studied by [4]. The obtained results showed that among all measured characters high amount of fruit yield, fruit firmness, total soluble solids and fruit concentration of B and Ca were recorded in calcium borate treatment but maximum amount of fruit acidity was obtained in control treatment. Spraying "Golden Japanese" plum by four potassium fertilizer sources at bud burst, after fruit set and one month after fruit set increased significantly fruit set, yield, fruit weight, fruit size, fruit length, fruit diameter, total sugar and potassium percentages, while decreased fruit drop percentage in comparison with the control treatment. In addition, the tested treatments increased total carbohydrates and leaf macro-elements content [5]. Humic acid enhanced significantly apple fruit yield, weight and soluble solids content [6], yield, fruit quality and grower income of apple [7]. Applying humic fertilizers on "Canino" apricot [8] and on "Le-Conte" pear [9] increased markedly the yield of these fruits. Gradual increases in shoot diameter, average shoot length, leaf area and NPK accumulation were parallel to the increase of humic acid application on "Anna" apple trees [10].

The purpose of this study was investigate the effect of foliar application of either humic acid, potassium, calcium or boron as well as their combinations on vegetative growth, fruit set, leaf mineral, yield and fruit quality of 'Anna' apple trees.

2. **MATERIALS AND METHODS**

This experiment was carried out during the two successive seasons, 2012 and 2013 on seven years old "Anna" apple trees (*Malus domestica* L. Borkh), planted at 5×5 meters apart in a sandy loam soil under drip irrigation system in a private orchard located at El-Nubaria, Beheira governorate, Egypt. The physiochemical analysis of experimental soil was indicated in Table 1 and it was carried out according to Cottenie et al. [11]. Forty uniform trees were selected for this study and all of them were subjected to the same cultural practices in the two seasons. They were sprayed three times, before flowering, 10 days after full bloom and one month later after adding misrol liquid soap (1 ml/l) as a wetting agent in the two seasons with the following treatments:

- **T1:** Control (sprayed with water)
- **T2:** K at (2%) as potassium sulphate
- **T3:** Ca at (0.2%) as calcium chloride
- **T4:** B at (0.2%) as boric acid
- **T5:** H.A.(humic acid 5%)
- **T6:** K + H.A
- **T7:** Ca + H.A.
- **T8:** B + H.A.
- **T9:** K + Ca + B
- **T10:** K + Ca + B + H.A.

The trees were treated with actosol ® a fertilizer whose NPK ratio is 10-10-10 and humic acid concentration of 2.9%, humic acid is manufactured by ARCTECH INC. in USA.

The previous treatments were applied and arranged in a randomized complete block design. Each treatment included four replicates with one tree for each replicate.

The effect of the previous treatments was studied by evaluating their influence on the following parameters.
2.1 Vegetative Parameters

At the end of growing seasons, the selected shoots were measured for the average of shoot length cm, shoot diameter cm and leaf area cm².

2.2 Fruit Set and Fruit Drop Percentage

Two main branches from two direction (east and west) of each tree were chosen and tagged in March of the two experimental seasons, the number of flowers was recorded and those set fruits on the selected branches were counted for calculating the percentage of fruit set according to Westwood [12] equation:

\[
\text{Fruit set } \% = \frac{\text{Number of set fruitlets}}{\text{Number of opened flowers}} \times 100
\]

Pre-harvest fruit drop was calculated by counting the number of dropping fruit from the 4th week of May till the commercial harvesting time under the experimental conditions (3rd week in June), then expressed as a percent from the whole number of fruits existed on the tree at the 4th week of May.

\[
\text{Fruit drop } \% = \frac{\text{Number of dropped fruitlets}}{\text{Number of set fruitlets}} \times 100
\]

2.3 Yield per Tree

Yield was pressed in weight kg and number of fruits per tree was recorded at harvest time (3rd week of June).

2.4 Leaf Chemical Composition

Samples of twenty leaves from the middle part of the shoots according to [13] were randomly selected from each replicate (at the 2nd week of June) to determined their content from N%, P %, K %, Ca% and Fe, Zn, Mn and B at ppm.

Leaf samples were washed with tap water, then with distilled water and dried at 70°C until a constant weight, finally, ground and acid digested using H2SO4 and H2O2 until clear solution was obtained according to Wilde et al. [14].

The digested solution was used for the determination of each of nitrogen (N) using micro Kjeldhal method, phosphorus (P) by vanadomolybdo method and potassium (K) was determined by flame photometer according to the method described by [15]. Zinc, manganese, calcium and iron were determined on atomic absorption spectrophotometer (2-8200 Series Polarized Zeeman, Hitachi, Tokyo, Japan) by using specific lamp for specific nutrient. The B in leaf samples was determined by dry ashing as reported earlier by [16], and subsequent measurement of B was done through colorimetry Azomethine-H as outlined [17].

2.5 Fruit Quality

Twenty fruits were randomly taken at harvest time from each replicate for the determination of both physical and chemical characteristics.

2.6 Fruit Physical Characteristics

Fruit weight (g), fruit length (cm), fruit diameter (cm) and L/D ratio, fruit firmness (lb/ inch²) using a Magness and Taylor pressure tester with 7/18 inch plunger.

2.7 Fruit Chemical Characteristics

Total soluble solids were determined using a hand refractometer, percentage of titration acidity in fruit juice was determined according to [18], total soluble solid / total acidity ratio were calculated.

Total sugars, reducing and non-reducing sugars were estimated According to [19]. Anthocyanin was determined at the stage of coloration (mg/100 g fresh weight peel) according to Rabino et al. [20].

2.8 Statistical Analysis

The obtained data were subjected to the proper analysis of variance (ANOVA) according to [21]. Least significant difference (LSD) at 0.05% level of significance was used to compare the treatment means.

Table 1. Physical and chemical properties of the experiment soil

Depth (cm)	Texture	pH	Total CaCO₃ (mg/L)	EC.(dS/m)	O.M. (%)	Cations (meq/ 100 g soil)	DTPA-extractable (mg/kg)
0 - 40	Sandy loam	8.50	30.46	1.37	0.54	Na⁺⁺ 2.01, K⁺ 0.07, Ca⁺⁺ 3.28, Mg⁺⁺ 2.27	Fe 0.39, Mn 0.50, Zn 0.31
3. RESULTS

Data in Table 2, clearly showed that shoot diameter, shoot length and leaf area were increased significantly over the control by the foliar application of potassium sulphate alone or combined with humic acid, humic acid alone, potassium sulphate + calcium chloride + boric acid combination. Moreover, they also improved by usage, potassium sulphate + calcium chloride + boric acid + humic acid, calcium chloride + humic acid and boric acid + humic acid combinations as compared to the control in both study seasons. Boric acid improved significantly leaf area, but it did not have any significant effect on shoot length or shoot diameter. Also, the usage of calcium chloride alone did not have any significant effect on shoot length, shoot diameter or leaf area, in both seasons as compared to the control.

Results in Table 3, showed that the foliar application of potassium sulphate alone and humic acid alone or in combination with each other gave great increases in the yield, fruit set percentages, average fruit weight and decreased the percentages of fruit drop. The similar results were obtained by the usage of boric acid alone or combined with humic acid. Furthermore, calcium chloride + humic acid, potassium sulphate + calcium chloride + boric acid or potassium sulphate + calcium chloride + boric acid + humic acid combinations increased significantly the yield, fruit set percentages, average fruit weight and decreased the fruit drop percentages with comparing to the control. On the opposite side, the combination between potassium sulphate and humic acid gave non-significant increase in average fruit weight as compared to the control. The usage of calcium chloride did not have any remarkable effect on fruit set, yield, average fruit weight or/and fruit drop as compared to the control treatment in the two seasons.

From the results in Table 4, it can be concluded that potassium sulphate + calcium chloride + boric acid + humic acid combination gave a remarkable increase in the percentages of Ca, P, K and N in the leaves as compared to the control treatment. The usage of potassium sulphate alone or combined with humic acid enhanced significantly the percentages of K and N, but it did not have any significant effect on P and Ca percentages as compared to the control. Potassium sulphate and humic acid combination improved the percentages of P, but it did not have any remarkable effect on the percentages of Ca. The usage of calcium chloride had a positive effect to increase the percentages of calcium, but it did not have any great effect on N, P and K percentages in the leaves. Calcium chloride and humic acid combination improved remarkably N, P and K percentages in the leaves but it did not affect significantly Ca percentages as compared to the control. Boric acid had no significant effect on N, P, K and Ca percentages. The combination between humic and boric acid increased significantly P and Ca percentages, but it had insignificant effect on the percentages of N and K. Humic acid gave a great increase in Ca, K and N percentages over the control. Potassium sulphate + calcium chloride + boric acid combination increased positively N percentage, but it gave non-significant increase in Ca, K and P percentages in the leaves with comparing to the control in both study seasons.

Listed data in Table 5, B, Zn, Mn and Fe content in the leaves was affected positively by the foliar application of humic acid alone, calcium chloride + humic acid, potassium sulphate + calcium chloride + boric acid or potassium sulphate + calcium chloride + boric acid + humic acid combinations as compared to the control in the two seasons. Potassium sulphate increased significantly Zn, Mn and Fe concentrations, but its effect on B content was insignificant as compared to the control in the two seasons. Potassium sulphate + humic acid combination enhanced Zn and B concentration but, it had no significant effect on Fe or Mn concentration in the leaves as compared to the control. Moreover, calcium chloride gave a considerable enhancement in Zn and Mn concentration but it did not have any significant effect on Fe or B content in the leaves in both seasons as compared to the control. Boric acid gave no remarkable increase in Fe, Mn and Zn content in the leaves. On the other side, boric and humic acid combination caused significant increments in Zn, Mn and B concentrations but it gave in significant increase in F concentration in the leaves with comparing to the control treatment in the two seasons.

From the results in Table 6, it can be noticed that potassium sulphate + calcium chloride + boric acid + humic acid combination enhanced remarkably fruit diameter, fruit length and fruit firmness in both seasons as compared to the control. Potassium sulphate, boric acid, humic acid, calcium chloride + humic acid combination or potassium sulphate + calcium chloride + boric acid combination enhanced fruit diameter, fruit length and fruit firmness in both seasons as compared to the control.
acid combination increased fruit length and fruit diameter but, they did not give a significant increase in fruit firmness in the two seasons compared to the control. Calcium chloride enhanced fruit length and fruit diameter only in the first season and fruit firmness in the second season as compared to the control. Potassium sulphate + humic acid and/or boric acid + humic acid combination gave a slight increase in fruit length or fruit diameter in the two seasons as compared to the control.

From the results in Table 7, the foliar application of potassium sulphate, humic acid, boric acid or calcium chloride + humic acid combination improved TSS and TSS/acid ratio and decreased acidity percentage in the fruitsas compared to the control in the two seasons. In addition, the combination of potassium sulphate + calcium chloride + boric acid or potassium sulphate + calcium chloride + boric acid + humic acid had the same effect. Potassium sulphate combined with humic acid increased positively TSS/acid ratio but it had insignificant effect on TSS or acidity, with comparing to the control. On the opposite side, calcium chloride alone and boric + humic acid combination did not have any remarkable effect on acidity, TSS, TSS/acid ratio in both seasons as compared to the control.

Data in Table 8, showed that the combination of potassium sulphate + calcium chloride + boric acid + humic acid gave a remarkable increases in reducing sugar percentages and anthocyanin in the two seasons as compared to the control.

Table 2. Effect of spraying potassium, calcium, boron and humic acid on some vegetative growth of "Anna" apple trees in 2012 and 2013 seasons

Treatments	Shoot length (cm)	Shoot diameter (cm)	Leaf area (cm²)			
	2012	2013	2012	2013	2012	2013
T1: Control (sprayed with water)	35.76e	36.47g	0.65g	0.67d	23.36e	24.17d
T2: K at (2%) as potassium sulphate	40.36c	41.65c	0.73de	0.74c	27.18b	28.53bc
T3: Ca at (0.2%) as calcium chloride	36.81de	37.27fg	0.67fg	0.69cd	25.37de	26.67c
T4: B at (0.2%) as boric acid	36.92de	37.31fg	0.68efg	0.70cd	26.46d	27.85c
T5: H.A. (humic acid5%)	41.87b	43.52bc	0.81bc	0.82b	29.24ab	30.46ab
T6: K + H.A.	37.28b	38.52ef	0.72def	0.73cd	26.85cd	27.14c
T7: Ca + H.A.	42.74b	43.83ab	0.77cd	0.82b	28.65abc	30.06ab
T8: B + H.A.	37.65d	39.67de	0.71ef	0.74c	26.12d	27.23c
T9: K + Ca + B	38.14d	40.36cd	0.84b	0.85b	27.25bcd	28.65bc
T10: K + Ca + B + H.A.	44.67a	45.17a	0.91a	0.94a	30.67a	31.42a
L.S.D.0.05	1.46	1.57	0.05	0.06	2.11	2.17

Means not sharing the same letter(s) within each column, significantly different at 0.05 level of probability

Table 3. Effect of spraying potassium, calcium, boron and humic acid on fruit set, fruit drop, yield and average fruit weight of "Anna" apple trees in 2012 and 2013 seasons

Treatments	Fruit set (%)	Fruit drop (%)	Yield (kg/ tree)	Average fruit weight (g)						
	2012	2013	2012	2013	2012	2013	2012	2013	2012	2013
T1: Control (sprayed with water)	13.64e	12.96g	76.37a	75.85a	36.47f	38.14f	117.38f	120.54g		
T2: K at (2%) as potassium sulphate	18.42cd	18.57d	70.25cd	68.46cd	43.52d	45.27d	134.65cd	137.94e		
T3: Ca at (0.2%) as calcium chloride	13.87e	13.72g	75.84ab	73.25ab	38.56ef	40.71ef	119.73ef	121.41g		
T4: B at (0.2%) as boric acid	19.86bc	19.75cd	70.86cd	69.14c	45.17cd	49.63c	132.38d	135.46e		
T5: H.A. (humic acid5%)	20.36b	20.85bc	68.46def	65.36de	52.74b	53.67b	145.20b	152.46b		
T6: K + H.A.	17.65d	16.36e	71.25cd	68.56cd	39.82e	42.62de	119.65ef	122.46g		
T7: Ca + H.A.	20.46b	21.74bc	67.36ef	65.47de	47.85c	49.36c	137.81c	146.54c		
T8: B + H.A.	14.67e	15.27ef	72.37bc	70.85bc	40.17e	43.65de	122.45e	128.37f		
T9: K + Ca + B	21.37b	22.57bc	66.31f	64.73ef	50.76b	51.36bc	137.56c	142.17d		
T10: K + Ca + B + H.A.	24.56a	24.87a	60.27g	61.83f	58.47a	60.27a	152.37a	167.24a		
L.S.D.0.05	1.67	2.05	3.48	3.29	2.84	3.04	4.38	4.14		

Means not sharing the same letter(s) within each column, significantly different at 0.05 level of probability
Table 4. Effect of spraying potassium, calcium, boron and humic acid on some leaf macro elements content of "Anna" apple trees in 2012 and 2013 seasons

Treatments	N (%)	P (%)	K (%)	Ca (%)				
	2012	2013	2012	2013	2012	2013	2012	2013
T1: Control (sprayed with water)	1.87e	1.90e	0.31de	0.30cd	1.83d	1.87e	1.31cd	1.34de
T2: K at (2%) as potassium sulphate	1.98bcd	2.02bcd	0.32cde	0.34abc	2.01c	2.04bcd	1.30cd	1.34de
T3: Ca at (0.2%) as calcium chloride	1.89de	1.91de	0.31de	0.32bcd	1.82d	1.85e	1.44ab	1.48a
T4: B at (0.2%) as boric acid	1.96cde	1.98cde	0.29e	0.28d	1.84d	1.90e	1.28cd	1.29de
T5: H.A. (humic acid5%)	2.07b	2.11ab	0.34bcd	0.35abc	2.04bc	2.07bc	1.40b	1.44ab
T6: K + H.A.	2.04bc	2.08bc	0.37ab	0.38a	2.01c	2.02cd	1.34c	1.37bc
T7: Ca + H.A.	2.07b	2.10b	0.35abc	0.36ab	2.14ab	2.18ab	1.30cd	1.35cd
T8: B + H.A.	1.91de	1.95de	0.36ab	0.38a	1.87d	1.90de	1.49a	1.50a
T9: K + Ca + B	2.05bc	2.07bc	0.34bcd	0.35abc	1.86d	1.94cd	1.28d	1.27e
T10: K + Ca + B + H.A.	2.20a	2.22a	0.38a	0.37ab	2.20a	2.25a	1.46a	1.48a

Means not sharing the same letter(s) within each column, significantly different at 0.05 level of probability

Table 5. Effect of spraying potassium, calcium, boron and humic acid on some leaf microelements content of "Anna" apple trees in 2012 and 2013 seasons

Treatments	Fe (ppm)	Zn (ppm)	Mn (ppm)	B (ppm)				
	2012	2013	2012	2013	2012	2013	2012	2013
T1: Control (sprayed with water)	119.00d	118.00de	25.00f	26.00g	45.00e	47.00d	68.00e	70.00e
T2: K at (2%) as potassium sulphate	123.00b	124.00b	30.00de	30.00e	50.00c	52.00b	71.00d	73.00de
T3: Ca at (0.2%) as calcium chloride	119.00d	117.00e	28.00e	29.00ef	49.00cd	49.00bcd	68.00e	71.00e
T4: B at (0.2%) as boric acid	120.00cd	119.00cde	25.00f	27.00fg	46.00de	48.00cd	86.00bc	88.00b
T5: H.A. (humic acid5%)	126.00a	128.00a	32.00cd	34.00c	56.00ab	58.00a	88.00bc	89.00b
T6: K + H.A.	121.00bcd	120.00cd	31.00d	33.00cd	48.00cde	49.00bcd	75.00d	78.00c
T7: Ca + H.A.	126.00a	130.00a	35.00b	37.00b	55.00b	57.00a	83.00c	89.00b
T8: B + H.A.	120.00cd	119.00cde	30.00de	31.00de	51.00c	50.00bcd	74.00d	76.00cd
T9: K + Ca + B	122.00bc	121.00c	34.00bc	38.00b	49.00cd	51.00bc	88.00bc	91.00b
T10: K + Ca + B + H.A.	128.00a	129.00a	41.00a	44.00a	59.00a	60.00a	93.00a	97.00a

Means not sharing the same letter(s) within each column, significantly different at 0.05 level of probability

Potassium sulphate, boric acid and calcium chloride + humic acid combination increased significantly anthocyanin concentration in the fruits. Additionally, Potassium sulphate + humic acid or potassium sulphate + calcium chloride + boric acid combination had the same effect, however all of them gave insignificant increase in reducing sugar and total sugar percentages as compared to the control in the two seasons. Humic acid achieved a great increase in reducing sugar percentage, although it gave insignificant enhancement in the total sugar percentage and anthocyanin with comparing to the control in the two seasons. On the other side, calcium chloride or boric acid + humic acid combination did not have any remarkable effect on anthocyanin concentration, total sugar or reducing sugar percentages as compared to the control in the two seasons.

All the treatments did not achieve any significant increases in the total sugar percentages in the fruits in the first season or in non-reducing sugar in both seasons as compared to the control.

4. DISCUSSION

According to our results the foliar application of potassium, calcium, boron and humic acid either alone or in combinations improved vegetative growth, fruit set, leaf mineral, yield, chemical and physical fruit characteristics of ‘Anna’ apple trees.
on "Zebda" mango trees application increased fruit firmness at harvest time [26]. To the foliar application of potassium nitrate and persimmon berries [25]. Solids content and decreased the total acidity of potassium supply increased the total carbohydrate accumulation [24]. High potassium concentration in a plant affects quality of pear and apple trees [23]. Besides, effective in improving, nutritional status, yield and crop production. As macronutrient in plant growth and sustainable [22], who stated that potassium plays a vital role in parallel with the findings of [30], who found that foliar applications of calcium chloride have been reported to delay ripening of strawberries. There are in agreement of [30], who found that foliar applications of calcium chloride increased the acidity of fruits and this explains why it delay the ripening of fruits and these results are in agreement of [28], who mentioned that foliar applications of calcium on "Golden" apple trees uptake by roots decreased rapidly. Additionally, our results are consistent with the findings of [28], who mentioned that foliar application of calcium on "Golden" apple trees was effective in the second half of vegetation period, when the delivery of Ca ions to fruits was effective in the second half of vegetation period, when the delivery of Ca ions to fruits and chemical characteristics as comparing with control treatment [27]. According to our results calcium chloride increased the acidity of fruits and this explains why it delay the ripening of fruits and these results are in agreement of [30], who found that foliar applications of calcium chloride have been reported to delay ripening of strawberries. There

Treatments	Fruit length (cm)	Fruit diameter (cm)	L/ D (ratio)	Fruit firmness (lb/ inch²)				
T1: Control (sprayed with water)	5.27g	5.36e	5.21h	5.29f	1.01b	1.01a	12.86b	12.73e
T2: K at (2%) as potassium sulphate	5.47d	5.68c	5.36d	5.58d	1.02ab	1.02a	12.81b	12.57e
T3: Ca at (0.2%) as calcium chloride	5.35ef	5.48e	5.26fg	5.34f	1.02ab	1.03a	13.37b	13.84bc
T4: B at (0.2%) as boric acid	5.45d	5.57d	5.31e	5.42e	1.03a	1.03a	12.83b	12.69e
T5: H.A. (humic acid5%)	5.76b	5.89b	5.63b	5.72b	1.02ab	1.03a	13.04b	13.45cd
T6: K + H.A.	5.30fg	5.38e	5.23gh	5.29f	1.01b	1.02a	13.26b	13.51cd
T7: Ca + H.A.	5.62c	5.72e	5.54c	5.65c	1.01b	1.01a	13.09b	13.14cd
T8: B + H.A.	5.37e	5.52d	5.27f	5.47e	1.02ab	1.01a	14.64a	14.37ab
T9: K + Ca + B	5.60c	5.74c	5.54c	5.63cd	1.01b	1.02a	13.00b	12.96de
T10: K + Ca + B + H.A.	5.92a	6.03a	5.84a	5.97a	1.01b	1.01a	14.77a	14.63a
L.S.D.0.05	0.05	0.07	0.03	0.05	0.01	0.02	0.64	0.71

Means not sharing the same letter(s) within each column, significantly different at 0.05 level of probability

Treatments	TSS (%)	Acidity (%)	TSS/acid ratio
T1: Control (sprayed with water)	12.50b	12.60c	12.49a
T2: K at (2%) as potassium sulphate	14.70a	14.90a	14.39b
T3: Ca at (0.2%) as calcium chloride	12.60b	12.50c	12.49a
T4: B at (0.2%) as boric acid	14.60a	14.80ab	14.48bc
T5: H.A. (humic acid5%)	15.10a	15.40a	15.38e
T6: K + H.A.	13.10b	13.40bc	13.45a
T7: Ca + H.A.	15.20a	15.40a	15.40a
T8: B + H.A.	12.70b	12.90c	12.48abc
T9: K + Ca + B	14.80a	14.90a	14.41d
T10: K + Ca + B + H.A.	15.80a	15.70a	15.38e
L.S.D.0.05	1.26	1.48	0.04

Means not sharing the same letter(s) within each column, significantly different at 0.05 level of probability

These results are in parallel with the findings of [22], who stated that potassium plays a vital role as macronutrient in plant growth and sustainable crop production. Spraying potassium was highly effective in improving, nutritional status, yield and quality of pear and apple trees [23]. Besides, high potassium concentration in a plant affects carbohydrate accumulation [24]. Higher potassium supply increased the total soluble solids content and decreased the total acidity of berries [25]. The increment in "Costata" persimmon fruit weight reached about 36% due to the foliar application of potassium nitrate and increased fruit firmness at harvest time [26]. The application of different potassium fertilizer forms on "Zebda" mango trees had a positive effect on leaf area, mineral content, yield and fruit physical and chemical characteristics as comparing with control treatment [27].
photosynthesis of apple trees. Moreover, humic accumulation of nutrients and enhanced humic acid substances promoted N uptake and obtained results by Our results could be explained in light of those from the control trees trees and the fruits had higher firmness than set and fruit yield of mature "Conference" pear before full bloom or after harvest increased fruit Furthermore, the foliar applications of b fruit set, vegetative growth and yield foliage of apple trees had a higher increase in "Elstar" increased fruit set and yield of the apple cultivar apple trees. [36] Boron was highly effective in improving, the findings of [33], who found that spraying boron was highly effective in improving, nutritional status, yield and quality of pear and apple trees. Boron sprayed after bloom increased fruit set and yield of the apple cultivar "Elastar" [36]. The foliar application of boron to foliage of apple trees had a higher increase in fruit set, vegetative growth and yield [3]. Furthermore, the foliar applications of boron before full bloom or after harvest increased fruit set and fruit yield of mature "Conference" pear trees and the fruits had higher firmness than those from the control trees [37]. Our results could be explained in light of obtained results by [38,39] which showed that humic acid substances promoted N uptake and accumulation of nutrients and enhanced photosynthesis of apple trees. Moreover, humic acid is one of the bio-stimulants which promote plant growth when applied in small quantities [40]. It has many effects due to their increase of cation exchange capacity which affects the retention and availability of nutrients, or due to a hormonal effect, or a combination of both [41]. Humic materials enhanced significantly apple fruit weight, yield and soluble solids content [6] and yield, fruit quality and grower income of peach and apple [7]. Humic acids had been shown to stimulate plant growth and consequently yield by acting on mechanisms involved in: cell respiration, photosynthesis, protein synthesis, water and nutrient uptake and enzyme activities [42]. Humic acid also, enhanced 'Canino' apricot plant growth, nutrient uptake, fruit yield and fruit characteristics and promoted peach, pear and apple to grow better and accumulate higher amounts of NPK and dry matter [10]. The foliar application of humic acid had a positive effect on yield, fruit quality, leaf chlorophyll as well as leaf mineral content of NPK of Florida Prince Peach [43]. Furthermore, it improved vegetative growth, fruit set, yield and fruit quality of 'Canino' apricot meanwhile juice acidity decreased indicating better fruit quality [44].

5. CONCLUSION

The foliar application of potassium sulphate, boric acid and humic acid, singly or in combination, had a positive effect to improve the vegetative growth, fruit set, leaf mineral content, yield and fruit quality of 'Anna' apple trees. Calcium chloride alone had a positive effect to increase calcium content in the leaves. Potassium sulphate + calcium chloride + boric

Table 8. Effect of spraying potassium, calcium, boron and humic acid on some chemical fruit characteristics of "Anna" apple trees in 2012 and 2013 seasons

Treatments	Total sugar (%)	Reducing sugar (%)	Non-reducing sugar (%)	Anthocyanin (mg/100 g)				
	2012	2013	2012	2013	2012	2013	2012	2013
T1: Control (sprayed with water)	7.92a	7.92b	4.67c	4.73cd	3.15a	3.19a	21.37c	22.87d
T2: K at (2%) as potassium sulphate	8.14a	8.21ab	4.89bc	4.92bcd	3.25a	3.29a	27.84ab	28.17ab
T3: Ca at (0.2%) as calcium chloride	7.81a	7.90b	4.66c	4.71d	3.15a	3.19a	21.40c	22.72d
T4: B at (0.2%) as boric acid	8.05a	8.12ab	4.86bc	4.90bcd	3.19a	3.22a	26.35b	26.57bc
T5: H.A. (humic acid 5%)	8.46a	8.57ab	5.12ab	5.17ab	3.34a	3.40a	22.76c	24.36cd
T6: K + H.A.	7.92a	7.96b	4.72bc	4.82bcd	3.20a	3.14a	29.47a	28.95ab
T7: Ca + H.A.	8.24a	8.37ab	5.02abc	5.11abc	3.22a	3.26a	28.37ab	29.34a
T8: B + H.A.	7.92a	7.97b	4.78bc	4.78cd	3.19a	22.35c	23.47d	
T9: K + Ca + B	8.21a	8.35ab	4.97abc	5.01bcd	3.24a	3.34a	27.25ab	28.17ab
T10: K + Ca + B + H.A.	8.45a	8.72a	5.36a	5.42a	3.09a	3.30a	29.46a	30.18a
L.S.D.0.05	0.67a	0.74	0.42	0.38	0.27	0.28	2.52	2.74

Notes: Treatment means not sharing the same letter(s) within each column, significantly different at 0.05 level of probability.
acid+ humic acid combination was the best treatment. This combination had the highest positive effect to improve the percentages of yield, fruit set, reducing sugar and TSS. Also, it increased Ca, P, K, N, B, Zn, Mn and Fe content in the leaves in the two seasons, as compared to the control treatment. Moreover, it improved significantly anthocyanin concentration, TSS/acid ratio, shoot diameter, shoot length, leaf area, fruit diameter, fruit length, average fruit weight and fruit firmness. It decreased the percentages of fruit drop and acidity in the two seasons as compared to the control and the other treatments.

ACKNOWLEDGEMENTS

The work has been supported by the grant from the EU Regional Development Fund through the Polish Innovation Economy Operational Program, contract No. UDA-POIG. 01.03.01-10-109/08.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Krisanapook K, Subhadrabandhu S, Ogata R. Induction of bud break in apple trees that received insufficient chilling by hydrogen cyanamide. Kasetsart Journal (Natural Science).1995;29:239-245.
2. Khayyat M, Tafazoli E, Eshghi S, Rajaei S. Effect of nitrogen, boron, potassium and zinc sprays on yield and fruit quality of date palm. American-Eurasian Journal of Agricultural and Environmental Science. 2007;2(3):289-296.
3. Peryea FJ, Neilsen D, Neilsen G. Boron maintenance sprays for apple: Early-season applications and tank-mixing with calcium chloride. Hort Science. 2003; 38(4):542-546.
4. Asgharzade A, Babaian M. Foliar application of calcium borate and micronutrients effects on some characters of apple fruits in Shirvan region. Annals of Biological Research. 2012;3(1):527-533.
5. El-sherif HM, Taha NM, El- Fahkarani FM. Effect of potassium fertilizer source on tree fruiting, fruit quality and storability of "Golden Japanese" plum. Journal of Agricultural Science Mansoura University. 2008;33(4):2743-2756.
6. Li N, Wang XX, Lu BL. Study of the effect of apple liquid fertilizer on the growth and fruit development of apple. China Fruits.1999;4:20-21.
7. Fathi MA, Fawzia ME, Yahia MM. Improving growth, yield and fruit quality of 'Desert Red' peach and 'Anna' apple by using some bio stimulants. Minia Journal of Agricultural Research and Development. 2002;22(4):519-534.
8. Shaddad G, Khalil A, Fathi MA. Improving growth, yield and fruit quality of "Canino" apricot by using bio, mineral and humate fertilizers. Minufiya Journal of Agricultural Research. 2005;30:317-328.
9. Kabeel H, Abd Elatif FM, Baza MSM. Growth, fruiting and nutritional status of "Le-Cont" pear trees in response to mineral and humate fertilizers. Annals of Agricultural Science Moshtohor. 2008; 46(2):139-156.
10. Eissa FM, Fathi MA, El-Shall SA. The humic acid and rootstock in enhancing salt tolerance of "Anna" apple seedlings. Journal of Agricultural Science Mansoura University. 2007;32:3667-3682.
11. Cottenie A, Verloo M, Kickens L, Velghe G, Camerlynuck R. Chemical analysis of plant and soil. Laboratory of Analytical and Agrochemistry, State University of Belgium. Gent. 1982:43-51.
12. Westwood NM. Temperate-Zone Pomology. Timber Press. 9999 SW-Wilshire Portland, Oregon 97225. 1988; 181.
13. Chuntanaparb N, Cummings C. Seasonal trends in concentration of nitrogen, phosphorus potassium, calcium, and magnesium in leaf portions of apple, blueberry, grape, and peach. Journal of the American Society for Horticultural Science. 1981;105:933-935.
14. Wilde SA, Corey RB, Lyer JG, Voigt GK. Soils and plant analysis for tree culture. 3rd Ed. Oxford, IBH, New Delhi. 1985;1- 218.
15. Chapman, HD, Parker F. Determination of NPK method of analysis for soil, plant and water. Division of Agricultural Sciences, University of California, USA. 1961;150-179.
16. Chapman HD, Pratt PF. Methods of analysis for soils, plants and waters. Division of Agricultural Sciences, University of California. Riverside. USA; 1961.
17. Bingham F. Methods of soil analysis: Parte 2. Madison: American Society of Agronomy. 1982;431-447.
18. Association of Official Agriculture Chemists, AOAC. “Official methods of analysis”. Benjamin Franklin Station, Washington D.C., U.S.A. 1985;495-510.
19. Malik CP, Singh MB. Extraction and estimation of amino acids and keto acids. In: Plant enzymology and histoenzymology. (Eds.): CP. Malik, MB. Singh, Kalyani Publishers, New Delhi-Lud Hana, India. 1980;286.
20. Rabino L, Alberto L, Monrad MK. Photocontrol of anthocyanin synthesis. Journal of Plant Physiology. 1977;59:569-573.
21. Snedecor GW, Cochran WG. Statistical methods, 7th edition, Ames, Iowa: Iowa State University Press.1980;85-86.
22. Baligar VC, Fageria NK, He ZL. Nutrient use efficiency in plants. Communications in Soil Science and Plant Analysis. 2001;32:921-950.
23. Gobara AA, Ahmed FF, El-Shammaraa MS. Effect of varying N. K. and Mg application ratio on productivity of Banaty grapevines. The fifth Arabian Horticulture conference. Ismallia Egypt. 2001;24-28:83-90.
24. Starck Z. Transportation and distribution of nutrients in plants. SGGW. 2003;359.
25. Martin P, Delgado R, González MR, Gallegos JI. Colour of "Tempranillo" grapes as affected by different nitrogen and potassium fertilization rates. Acta Horticulturae. 2004;652:153-159.
26. Abd El-Fatah DM, Mohamed SA, Ismail OM. Effect of biostimulants, ethrel, boron and potassium nutrient on fruit quality of "Costata" persimmon. Australian Journal of Basic and Applied Sciences. 2008;2(4):1432-1437.
27. Taha RA, Hassan HSA, Shaaban EA. Effect of different potassium fertilizer forms on yield, fruit quality and leaf mineral content of "Zebda" mango trees. Middle-East Journal of Scientific Research. 2014;21(1):123-129.
28. Casero T, Benavides A, Recasens I, Rufat J. Preharvest calcium sprays and fruit calcium absorption in ‘Golden’ apples. Acta Horticulturae. 2002;594:467-473.
29. Benavides A, Recasens I, Casero T, Soria Y, Puy J. Multivariate analysis of quality and mineral parameters on "Golden Smoothie" apples treated before harvest with calcium and stored in controlled atmosphere. Food Science and Technology International. 2002;8:139-145.
30. Wojcik P, Lewandowski L. Effect of calcium and boron sprays on yield and quality of “Elsanta” strawberry. Journal of Plant Nutrition. 2003;26(3):671-682.
31. Casero T, Benavides A, Puy J, Recasens I. Relationships between leaf and fruit nutrients a fruit quality attributes in "Golden Smoothie" apples using multivariate regression techniques. Journal of Plant Nutrition. 2004;27:313-324.
32. Nachtigall GR, Dechen AR. Seasonality of nutrients in leaves and fruits of apple trees. Scientia Agricola. 2006;63(5):493-501.
33. Świątkiewicz D, Błaszczzyk J. Effect of calcium nitrate spraying on mineral contents and storability of ‘Elise’ apples. Polish Journal of Environmental Studies. 2009;18(5):971-976.
34. Kazemi M. Foliar application of salicylic acid and calcium on yield, yield component and chemical properties of strawberry. Bulletin of Environment, Pharmacology and Life Sciences. 2013;2(11):19-23.
35. Hanson EJ. Sour cherry trees respond to foliar boron applications. Hort Science. 1991;26:1142-1145.
36. Wojcik P, Cieslinski G, Mika A. Apple yield and fruit quality as influenced by boron applications. Journal of Plant Nutrition. 1999;22:1365-1377.
37. Wojcik P, Wojcik M. Effects of boron fertilization on "Conference" pear tree vigor, nutrition and yield and storability. Plant and Soil. 2003;256:413-421.
38. Tatini M, Bertoni P, Landi A, Traversi ML. Effect of humic acids on growth and biomass portioning of container grown olive plants. Acta Horticulturae. 1991;294:75-80.
39. Jianguo Y, Shuuying Y, Yingchang S. Influence of humic acid on the physiological and biochemical indexes of apple trees. Journal of Forest Research. 1998;11:623-628.
40. Chen Y, Magen H, Riov J. Humic substances originating from rapidly decomposing organic matter: properties and effects on plant growth. In Senesi N, Miano TM (Eds): Humic substances in the global environment and implication on...
human health. Elsevier, Amsterdam, the Netherlands. 1994;427-443.
41. Chunhua L, Cooper RJ, Bowman DC. Humic acid application affects photosynthesis, root development and nutrient content of creeping bentagrass. Hortscience. 1998;33(6):1023-1025.
42. Chen Y, De Nobili M, Aviad T. Stimulatory effects of humic substances on plant growth. 103-129. In: Magdoff FR, Weil RR, (Eds.) Soil Organic Matter in Sustainable Agriculture. CRC Press, New York. USA; 2004.
43. Abd El-Razek E, Abd-Allah AS, Saleh MMS. Yield and fruit quality of "Florida prince" peach trees as affected by foliar and soil applications of humic acid. Journal of Applied Sciences Research. 2012;8(12):5724-5729.
44. Fathy MA, Gabr MA, El Shall SA. Effect of Humic Acid Treatments on 'Canino' Apricot Growth, Yield and Fruit Quality. New York Science Journal. 2010;3(12):109-115.

© 2015 Mosa et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sciencedomain.org/review-history.php?id=1078&id=2&aid=9116