Abstract

Background: *Lactococcus garvieae* is an unusual cause of infective endocarditis (IE). No current diagnostic and therapeutic guidelines are available to treat IE caused by these organisms. Based on a case report, we provide a review of the literature of IE caused by *L. garvieae* and highlight diagnostic and treatment challenges of these infections and implications for management.

Case presentation: A 50-year-old Asian male with mitral prosthetic valve presented to the hospital with intracranial haemorrhage, which was successfully treated. Three weeks later, he complained of generalized malaise. Further work up revealed blood cultures positive for Gram-positive cocci identified as *L. garvieae* by MALDI-TOF. An echocardiogram confirmed the diagnosis of IE. Susceptibility testing showed resistance only to clindamycin. Vancomycin plus gentamicin were started as empirical therapy and, subsequently, the combination of ceftriaxone plus gentamicin was used after susceptibility studies were available. After two weeks of combination therapy, ceftriaxone was continued as monotherapy for six additional weeks with good outcome.

Conclusions: Twenty-five cases of IE by *Lactococcus garvieae* have been reported in the literature. Compared to other Gram-positive cocci, *L. garvieae* affects more frequently patients with prosthetic valves. IE presents in a subacute manner and the case fatality rate can be as high as 16%, comparable to that of streptococcal IE (15.7%). Reliable methods for identification of *L. garvieae* include MALDI-TOF, 16S RNA PCR, API 32 strep kit and BD Automated Phoenix System. Recommended antimicrobials for *L. garvieae* IE are ampicillin, amoxicillin, ceftriaxone or vancomycin in monotherapy or in combination with gentamicin.

Keywords: Lactococcus, Case report, Gram positive cocci, Infective endocarditis, Diagnosis, Treatment, Risk factors

Background

Lactococcus garvieae are Gram-positive cocci previously considered part of the genus *Streptococcus*. In 1985, these organisms were classified within the genus lactococci due to DNA-DNA hybridization studies and fatty acid profiles [1–3]. Currently, the genus *Lactococcus* contains 11 species [4]. *L. garvieae* is associated with fish infections in warm water causing outbreaks of haemorrhagic sepsis in rainbow trout [2, 5]. These organisms have also been isolated from raw cow milk, goat cheese, fish, beef meat, poultry and pork meat [6]. Human infections caused by *L. garvieae* have been reported in different countries and have been associated to ingestion of raw seafood. Indeed, a study by Wang et al. found that among four patients with invasive *L. garvieae* infection, three had ingested seafood contaminated by these organisms [7]. Infective endocarditis (IE) is a known disease caused by *L. garvieae*, however, the true incidence of disease is difficult to assess since misidentification with other Gram-positive cocci like *Enterococcus* spp. and streptococci (employing different automatized diagnostic tools) has commonly been reported [8, 9]. Here, we report a case of *L. garvieae* IE and describe the risk factors associated with this disease, the diagnostic challenges to identify these organisms and therapeutic approaches used to treat these infections. We
seek to provide clinicians with relevant and updated information on the diagnosis and management of IE caused by the genus *L. garvieae*.

We searched MEDLINE, EMBASE and LILACS using the following MeSH, major and free terms: “endocarditis”, “endocarditis, bacterial”, “endocarditis, subacute bacterial”, “endocarditis bacteriana”, “endocarditis bacteriana subacute” and “lactococo”, “lactococcus”, “lactococcus lactis”, “lactococcus garvieae”, “lactococcus garvieae endocarditis”. We selected all the articles in Spanish, English and French published before March 2018 that included case reports of endocarditis and *Lactococcus* in the titles.

Case presentation

A 50-year-old Asian man with history of rheumatic heart disease (without hypertension) and mechanical prothetic mitral valve replacement 5 years before admission, dyslipidaemia and reflux esophagitis presented to the emergency room with severe bilateral occipital headache. He was diagnosed with an intracranial haemorrhage confirmed by CT brain. At the time of admission, his INR was within therapeutic range (2.35). After initial work up, the patient was hospitalized for 10 days and discharged without any residual neurologic sequelae. Atorvastatin was prescribed. No fever or elevation of the C reactive protein (CRP) or erythrocyte sedimentation rate (ESR) were identified during the admission. He worked as an accountant and had been living in the US for the past 30 years with no recent travel outside the US. Three weeks later, he complained of flu-like symptoms and oseltamivir was prescribed. A week later, the patient returned to the hospital with epistaxis, haematuria, and malaise without fever. Physical examination was unremarkable with normal neurologic exam, except for a pansystolic heart murmur. Blood tests showed elevated white blood count (14.5 × 10⁹/L) and serum creatinine of 1.54 mg/dl (Normal value: 0.8–1.2 mg/dl). CRP and ESR were also elevated (34.5 mg/dl and 75 mm/h, respectively). A Chest X ray was found without acute abnormalities and the urine analysis showed no abnormalities. Three days after admission, blood cultures were positive for Gram-positive cocci in chains in 4 out of 4 bottles. Transthoracic echocardiography was inconclusive, but a transoesophageal echocardiography (TEE) revealed a 0.8 cm vegetation on the ventricular side of the native aortic valve without valve dysfunction, confirming the diagnosis of IE. Empirical intravenous antibiotic therapy was started with vancomycin 30 mg/kg/day in divided doses and gentamicin 3 mg/kg/day. The organism was recovered on blood agar and was identified by MALDI-TOF as *Lactococcus garvieae*. Susceptibility testing showed resistance to clindamycin, whereas it was susceptible to penicillin (MIC 0.25 μg/ml), ceftriaxone (MIC 0.25 μg/ml), vancomycin (MIC 1.5 μg/ml) and levofloxacin (MIC 2 μg/ml). With these results, vancomycin was switched to ceftriaxone 2 g IV twice daily plus gentamicin as combination therapy for the first 2 weeks. This regimen was chosen based on previous cases since no specific guidelines exist on how to treat these organisms. Gentamicin was stopped after two weeks and ceftriaxone was continued for 4 additional weeks pending a surgical decision. In the setting of intracranial bleed and IE, rupture of a mycotic aneurysm was highly suspected and the patient was considered a possible surgical candidate for aortic valve replacement. CT angiography of the brain (5 weeks after the initial episode of intracranial bleed) showed encephalomalacia in the left parietal and occipital lobes with subacute to chronic haemorrhage, with no mycotic aneurysms. After several discussions, the stroke team agreed on resuming anticoagulation with heparin IV drip (considering that the patient had a “chronic” bleed without active haemorrhage and that the risk of embolism was high due to the presence of a mechanical heart valve and IE). It was also suggested postponing aortic valve replacement for at least 4 weeks after effective antimicrobial therapy. After 4 weeks of therapy, decrease of inflammatory markers (CRP to 8.5 mg/dl and ESR to 40 mm/h) was observed and repeat blood cultures were negative.

Upon further questioning, the patient admitted that his diet was rich in grilled fish. Additionally, he reported a long history of chronic epigastric pain for 5 years, for which he had been taking over the counter medicines. An esophagogastroduodenoscopy showed severe gastritis and reflux esophagitis. After 6 weeks of treatment for IE, the patient had clinical improvement with no recurrence of infection but repeat TEE revealed severe aortic valve insufficiency. He underwent mechanical aortic valve replacement without complications and cultures from the excised valve were sterile.

Discussion and conclusion

Different clinical presentations of subacute IE make it challenging to make an early diagnosis of infection and can cause delays in appropriate treatment. In our case, treatment of IE was delayed due to low suspicion of the disease at presentation and the occurrence of the intracranial haemorrhage. Importantly, collection of blood cultures as soon as infection was suspected, led to isolation of *L. garvieae* and identification using MALDI-TOF.

A total of 25 cases of IE caused by *L. garvieae* were identified in the literature review [8–30]. Among the 25 cases of IE caused by *L. garvieae* (Table 1), 58% were reported in men and the median age of presentation was 68 years. Median duration of symptoms before consulting was 14 days (IQR = 6.2–21). The most common reported symptoms were fever (68%) and chills (28%).
Reference	Country	Age	Sex	Associated factors for IE by *L. garvieae* and comorbidities	Symptoms and duration (days)	Physical examination	Laboratories and Echocardiography (Vegetation size)	Identification	Susceptibility	Therapy and days of treatment	Complications and Outcome
Clavero et al. 2017	Chile	72	F	AV fistulas, Diverticulosis, CKD, DM 2 and HTN, colonic polyps	Chills, fever (1)	Fever, systolic murmur, pulmonary crackles	TEE: mitral vegetation (4 mm) Labs: Leucocytosis elevated CRP Colonooscopy: Colonic polyps	LG, Vitek 2			
2											
and 16S rRNA PCR.	MIC: VAN 2 µg/ml, CTX 0.25 µg/ml PEN 0.5 µg/ml	Empiric: CLO + AMK									
Directed: VAN + GEN µg (NI)	Shock, respiratory failure (Died)										
Lim and Jenkins 2017	UK	57	M	Cooked fish, gallstones, renal stones, Colonic polyps	Fever weight loss (60)	Panystolic murmur	TEE: mitral valve vegetation (NI) and regurgitation. Colonooscopy: Duodenal polyps	LG, MS	PEN MIC: 1 mg/L Etest BioMérieux, S: GEN 200 µg Oxoid by diffusion disc testing.	AMX + GEN (42d) Valve replacement	No complications, (Alive)
Landeloos et al. 2017	Belgium	82	F	Prosthetic mitral valve, previous endocarditis, Cooked fish, colonic polyps, FA, HTN, Osteoporosis.	Fever, hyporexia, dyspnoea (14)	Bradycardia, Basal lung crepitations, reinforce caused S2	TEE: mitral vegetation (10x5 mm) Labs: Elevated CRP no leucocytosis. Colonooscopy: Colonic polyps.	LG, MS, 16S rRNA PCR.	PEN, MIC 1 mg/L Etest BioMérieux, S: GEN 200 µg Oxoid by diffusion disc testing.	AMX + GEN (42d) Valve replacement	No complications (Alive)
Bazemore et al. 2016	USA	45	M	Multiple substance abuse. Repair of aortic root aneurysm, Hepatitis C and cirrhosis	Malaise, weakness (60)	Fever, systolic murmur	No Echo reported. Leucocytosis, Elevated CRP and ESR.	LG, MS	E-test: sensitive to CRO and VAN Cut-off values for *S. bovis*	Empiric: TJP + VAN	
Directed: CRO + GEN (NI) + Valve repair	Aortic valve dehiscence (Alive)										
Suh et al. 2016	South Korea	75	F	Mitral valve prosthesis, eats sea fresh food.	Dyspnoea (3) Holosystolic murmur	TTE: mitral vegetation (16 mm) Labs: Leucocytosis, Elevated CRP	LG, Vitek 2				
2											
and 16S rRNA PCR.	MicroScan MICrOSTREP plus panel: PEN 0.12 µg/ml, AMC 0.5/0.25 µg/ml, CRO 0.25 µg/ml, CTX 0.25 µg/ml, MEM 0.06 µg/ml, VAN 1 µg/ml, LVX 1 µg/ml, CLI > 0.5 mg/ml (only R to CLI), E test (bioMérieux, Marcy l'Etoile, France) PEN 0.75 mg/L, CRO 0.38 mg/L	Empiric: CRO + GEN + RIF									
Directed: TEC											
Changed: CRO monotherapy (40d)	Aortic and mitral replacement	Heart failure (Alive)									
Reference	Country	Age	Sex	Associated factors for IE by L. garvieae and comorbidities	Symptoms and duration (days)	Physical examination	Laboratories and Echocardiography (Vegetation size)	Identification	Susceptibility	Therapy and days of treatment	Complications and Outcome
---	---	---	---	---	---	---	---	---	---	---	---
Heras Cañas et al. 2015	Spain	68	M	Prosthetic aortic valve, HTN, dyslipidaemia, Hodgkin lymphoma in remission, AV block	Fever, Dyspnoea (10)	NI	TTE: mitral vegetation (NI)	LG: MS and 16S rRNA PCR	Streptococci breakpoints: S: CTX: 0.38 µg/ml, ERY: 0.25 mgidl, VAN 1 µg/ml, LVX 1.5 µg/ml, VAM, AMP, CTX, OXA, I: PENH:MIC 0.75 µg/ml, R: CLI 1 µg/ml	Empiric: DAP + AMP + CRO	Aortic valve dehiscence
Ignesti et al. 2015	USA	83	M	Prosthetic aortic valve, Recent dental intervention, CHF, CLL, Prostate cancer, Coarctation of aorta, CABG	Malaise, fever, vomit, headache, cough, myalgia, diaphoresis (7)	NI	TTE: Could not exclude vegetations, Labs: Leucocytosis, Elevated CRP	NI	NI	Empiric: AMP + GEN	No complication, (Alive)
Ortiz et al. 2014	Spain	70	F	No risk factors or comorbidities	Dyspnoea (NI)	Holosystolic murmur, fever	TTE: mitral vegetation (NI) Labs: Leucocytosis and elevated CRP	NI	S: CTX, CIP, ERY, DAP, VAN	Empiric: AMC + GEN	No valve surgery
Spain	77	F	Colorectal cancer, HTN, CLL	Back pain, fever (2)	Purpuric lesions in extremities, fever	TEE: mitral and aortic vegetation (NI) Labs: NI	NI	S: PEN, AMC, CIP, VAN	AMP + GEN (NI) No valve surgery	AKI, Heart failure	(Died)
Tsur et al. 2014	Israel	76	M	Raw fish, Prosthetic aortic valve, CHF, AF, DM 2, HTN, Oesophageal carcinoma.	Constipation, fever (NI)	Fever, Tachycardia, Systolic murmur.	TEE: Vegetation biologic prosthetic valve (NI) Labs: Leucocytosis	S: CRO and GEN	Vitek 2 ¥, 16S rRNA PCR	Empiric: CRO	No valve replacement
Rasmussen et al. 2014	Sweden	81	M	Prosthetic aortic valve, rectal diverticulosis, CAD, CABG, AF	Malaise, headache, dysphasia (NI)	Fever, systolic murmur.	TEE: vegetations mitral valve and prosthetic valve (NI) Labs: Elevated CRP	LG: Vitek 2 ¥, 16S rRNA PCR	PEN 0.5 mg/L, TOB: 2 mg/L	PEN + TOB (28d) No valve replacement	Subdural hematoma
Navas et al. 2013	USA	64	M	Previous mitral valve repair, Dental intervention, CAD, Cardiac	Fatigue, weight loss, hypoxemia, weakness, fever (NI)	NI	Echo not specified: Aortic vegetations	LG: Vitek 2 ¥, 16S rRNA PCR and MS Wrong ID. Microscan	Streptococcus breakpoints: I: PEN and AMP	VAN monotherapy (42d) Aortic valve replacement. Removal of pacemaker	Intracardiac device infection (Alive)
Reference	Country	Age	Sex	Associated factors for IE by *L. garvieae* and comorbidities	Symptoms and duration (days)	Physical examination	Laboratories and Echocardiography (Vegetation size)	Identification	Susceptibility	Therapy and days of treatment	Complications and Outcome
--------------------	---------	-----	-----	--	-----------------------------	-----------------------	---	---------------	---------------	-----------------------------	---------------------------
Fleming et al. 2012	USA	68	M	Prosthetic aortic valve, NHL in remission. Colonic polyps	Migratory arthralgias, dyspnoea, hypoxia, fatigue, weight loss, fever (21)	Systolic ejection murmur. Splinter haemorrhage in nails of left hand	Echo not specified: Vegetation mitral valve. (NI)	LG: Vitek 2®, 16S rRNA PCR	Breakpoints for VGS: S: VAN, SAM, CRO, T2P R: AMP, GEN, CLI	Empiric: AMP + GEN Directed: VAN monotherapy (42d)	No information of complications (Died)
Russo et al. 2012	Italy	63	M	Ascending aorta and aortic valve replacement previous endocarditis, HTN.	Fever, chills, Pharyngitis, weakness (7)	Systolic murmur, hepatomegaly	TEE: mitral vegetation (NI) Labs: Elevated CRP	LG: API 32®, Vitek 2®, 16S rRNA PCR	EUCAST Streptococci breakpoint: S: ERY/S: 0.125 μg/ml, CTX 0.5 μg/ml LVX: 0.5 μg/ml AMP: 0.25 μg/ml AMC: 0.5 μg/ml CIP: 0.75 μg/ml DAP: 0.125 μg/ml GEN: 2 μg/ml VAN: 2 μg/ml TEC: 0.5 μg/ml PEN: 2 μg/ml R: CLI: > 64 μg/ml RIF > 64 μg/ml	Empiric: VAN + GEN Directed: AMP monotherapy (14d)	No valve replacement
Watanabe et al. 2011	Japan	55	F	No risk factors or comorbidities	Malaise, myalgia, fever (60)	Systolic murmur, painful black induration in finger.	TEE: Mitral vegetation (10 mm) Labs: No leucocytosis Elevated CRP	LG: Rapid ID32 Strep. 7, 16S rRNA	E test: (AB Biodisk, Dalvagen, Solna, Sweden): ERY 0.25 mg/L, CLI: > 256, VAN: 0.38 mg/L, LZD: 2 mg/L PEN 0.5 mg/L, CRO 0.38 1mg/L, GEN: 1.5 mg/L, STR: 64 mg/L	Empiric: PEN + GEN. Directed: CRO + GEN (63d) No valve surgery	Septic embolism, stroke, aspirative pneumonia (Alive)
Zuily et al. 2011	France	64	F	Mitral valve prosthesis, fresh seafood, Pacemaker, Hepatitis C cirrhosis	Fever (NI)	Fever, Murmur.	TEE: Mitral vegetation (NI) Labs: Elevated CRP and ESR Leucocytosis	LG: PCR	NI	AMX + GEN (42d)	No complications (Alive)
Wilbring et al. 2011	Germany	55	M	Fish farmer, mechanical tricuspid valve prosthesis, periodontitis	Chills, fever, dyspnoea (14)	Murmur	TEE: Mechanical prosthetic valve vegetation (7x9mm) Labs: Leucocytosis and elevated CRP	NI		Inpatient: GEN + VAN + RIF ambulatory: LVX + AMC (56d) No valve replacement	No complications (Alive)
Hirakawa Brazil 2011	Brazil	58	F	Mitral prosthesis	Fever, chills, Fever, Osler	TEE: No vegetations Labs:	LG: Not specified	S: PEN, GEN, VAN.		VAN monotherapy (28d)	No
Reference	Country	Age	Sex	Associated factors for IE by L. garvieae and comorbidities	Symptoms and duration (days)	Physical examination	Laboratories and Echocardiography (Vegetation size)	Identification	Susceptibility	Therapy and days of treatment	Complications and Outcome
-----------	---------	-----	-----	--	-----------------------------	-----------------------	---	---------------	--------------	--------------------------------	--------------------------
et al. 2011	Taiwan	41	M	No risk factors or comorbidities	Slurred speech (1)	Right hemiparesis of right body sensation, right positive Babinski sign, murmur, fever	TEE: Mitral vegetation and rupture of chordae tendineae (NI) Labs: Leucocytosis and elevated CRP	LG: Vitek 2®, Automated Phoenix®, 16S rRNA PCR	NI	PEN: 0.75 µg/ml. PEN + GEN (30d)	No complications Complications (Alive)
Li et al. 2008	China	67	M	Heart rheumatic disease, previous endocarditis, eats fresh fish, AF	Chills, fever (21)	Fever, mitral regurgitation murmur	TEE: Mitral vegetation (10x1mm) Labs: Elevated ESR Neurophilia	NI	NI	AMP monotherapy (42d) Valve replacement	Partial rupture of mitral valve (Alive)
Yiu et al. 2007	Taiwan	72	M	Kidney stones, mitral valve prolapse, raw fish consumption, gastric ulcer	Fever, purpuric leg lesions (14)	Systolic murmur.	Echo not specified: Severe mitral regurgitation, prolapse of posterior mitral valve, echogenic mass on the posterior mitral valve Labs: No leucocytosis. Endoscopy: Gastric ulcer	LG: ID32 STREP; BioMérieux, Hazelwood, MO, USA, 16S rRNA PCR	NI	PEN + GEN (42d)	No complications (Alive)
Wang et al. 2006	Canada	80	M	DM2, Hypertension, CAD, CHF	Dyspnoea, epigastric discomfort. (NI)	Midsystolic murmur	TEE: Aortic vegetation (24 mm) Labs: Nil	Wrong ID: API 20® (L. lactis), Vitek Z® (Enterococcus), 16S rRNA PCR	CLSI Enterococcus spp. breakpoints: S: PEN, CIP, OFX, LVX, TET, VAN, CLSI Streptococcus spp. breakpoints: S: AMP, VAN, GEN	Empiric inpatient: Amp Ambulatory: PEN and then switched to AMP again. Monotherapy (56d) Valve replacement	No complications (Alive)
Fihman et al. 2005	France	86	M	Prosthetic aortic valve, Cholecystectomy.	Fever, right hip pain (21)	Fever, respiratory distress	TEE: Aortic vegetation (10 mm) Labs: Leucocytosis and elevated CRP.	LG: API 32®, 16S rRNA PCR	E test: MIC: PEN: 0.75 µg/ml, AMX: 0.5 µg/ml CTX: 0.38 µg/ml, VAN: 1.5 µg/ml, TEC: 0.38 µg/ml, CLI > 8 µg/ml	Inpatient: AMX + GEN Ambulatory: AMX monotherapy (49d) Valve repair	No complications (Alive)
James et al. 2000	UK	56	F	Aortic valve prosthesis	Low back pain, chills,	Low back tenderness,	TTE: No vegetation Labs: Elevated ESR and CRP. No	LG: API Step 1	With streptococci reference laboratory	Empiric: VAN Directed: TEC monotherapy (56d) Osteomyelitis (Alive)	No complications (Alive)
Table 1 Clinical, microbiological and management characteristics of IE by L. garvieae (Continued)

Reference	Country	Age	Sex	Associated factors for IE by L. garvieae and comorbidities	Symptoms and duration (days)	Physical examination	Laboratories and Echocardiography (Vegetation size)	Identification	Susceptibility	Therapy and days of treatment	Complications and Outcome
Fefer et al. 1998	USA 84 F	Pacemaker for heart block, Aortic valve prosthesis, omeprazole, hypertrophic cardiomyopathy, ITP, hypothyroidism.	Hyporexia, weakness, dyspnoea (NI)	Holosystolic murmur, bilateral pulmonary rales	TEE: Ruptured chordae tendineae. Labs: Leucocytosis. Negative colonoscopy.	LG: Biochemical tests.	NCCLS Staphylococcus spp. breakpoints: S: VAN, AMP, CRO Empiric: AMP + GEN Directed: CRO monotherapy (NI)	Intracranial haemorrhage, Rupture of chordae tendineae (Died)			

NI No information, AMK amikacin, AMX amoxicillin, AMC amoxicillin-clavulanic acid, AMP ampicillin, CFZ cefazolin, CDN cefditoren, CTX cefotaxime, CRO ceftriaxone, CEF cephalothin, CHL chloramphenicol, CIP ciprofloxacin, CLR clarithromycin, CLI clindamycin, DAP daptomycin, ERY erythromycin, GEN gentamicin, LVX levofloxacin, LZD linezolid, MEM meropenem, MXF moxifloxacin, OFX ofloxacin, PEN penicillin, TZP piperacillin-tazobactam, RIF rifampin, STR streptomycin, TEC teicoplanin, TET tetracycline, TOB tobramycin, SXT trimethoprim-sulfamethoxazole, VAN vancomycin, MIC Minimal inhibitory concentration, S Sensitive, I Intermediate, R resistant, VGS Viridans Group Streptococci, CKD Chronic kidney disease, AKI Acute kidney injury, DM2 Diabetes mellitus type 2, AF Atrial fibrillation, CHF Cardiac heart failure, NHL Non-Hodgkin Lymphoma, COPD Chronic obstructive pulmonary disease, CLL Chronic lymphocytic leukaemia, CAD Coronary artery disease, CABG Coronary artery bypass graft, LG Lactococcus garvieae a Manual API 32 step kit, automated Vitek 2 kit with GP identification card (BioMérieux Marcy l’étoile, france), b Microscan walk away system (dade behring, inc., Sacramento, CA), c Automated Phoenix system (Becton Dickinson Diagnostic systems, Franklin Lakes, NJ), d: API 20strep kit (BioMérieux), e: 500 16S ribosomal RNA bacterial sequencing kit (PE applied Biosystems, Foster city, CA, USA) ABI PRISM 310 Genetic Analyzer (PE applied biosystems), f: API 2010 Strep (BioMérieux, Basngstoke, Hants, UK)
Presence of heart murmurs was the most common finding in the physical examination (72%). Laboratory tests usually showed leucocytosis, elevated CRP and ESR. Echocardiogram was reported in 24 out of 25 cases and vegetations were identified in 83.3%. The mitral valve was the most frequently involved valve. Colonoscopy was performed in 5 cases, all of which reported colonic polyps. The median duration of antimicrobial therapy was 42 days (IQR 41–45.5).

When compared to other Gram-positive microorganisms, L. garvieae seems to affect more frequently patients with prosthetic valves. In our review, 52% (n = 13) patients with L. garvieae IE had prosthetic valves, while large cohorts of endocarditis caused by Enterococcus spp., Streptococcus spp., Coagulase negative Staphylococci (CoNS) and S. aureus, report prosthetic valve involvement in 15.3–35%, 16.3–17.2%, 28–32.2% and 15.3–16% of cases, respectively [31–33]. Complications of IE such as valve dehiscence or rupture, septic emboli, renal failure, shock, stroke and heart failure were reported in 50% (n = 12) of cases. Surgery for valve repair or replacement was performed in 48% of cases. The case fatality rate of L. garvieae IE was 16% (n: 4), which is low compared to that of other GPC such as S. aureus (44.4%), Enterococcus spp. (23%) and CoNS (33.4%), but comparable to that of streptococci IE (15.7%) [32].

The ingestion of raw sea food or exposure to fish, the presence of colonic polyps and the repeated exposure to dairy products have been postulated to be risk factors for infection by L. garvieae [7]. Less than half of patients with IE caused by L. garvieae reported ingestion of fish (including raw or cooked) [7, 15, 19, 23, 24, 26–28, 30] or were diagnosed with a concomitant GI disorder [10, 13, 19–21, 24, 28–30]. Our patient reported both conditions. The most important predisposing factor in these patients appears to be the presence of previous valvular disease. An association with gastrointestinal disease and consumption of fish has been established. Reliable methods for identification of L. garvieae include MALDI-TOF, 16S RNA PCR, API 32 strep kit (BioMérieux, Marcy l’Etoile, France) and BD Automated Phoenix System. Based on prior case reports and our own patient case, the recommended antimicrobials for L. garvieae are ampicillin (2 g every 4 h), amoxicillin (200 mg/kg/day divided in 4–6 doses), ceftriaxone (2 g every 12–24 h) or vancomycin (30 mg/kg/day divided in 2–3 doses) as monotherapy or in combination with gentamicin (3 mg/kg/day). Doses were defined using the recommendations for the treatment of VGS and enterococcal IE published by the American Heart Association/Infectious Diseases Society of America (AHA-IDSA) and European Society of Cardiology guidelines [34, 35]. It is unclear if combination therapy is needed (in cases where aminoglycoside toxicity is an issue), given that 5 out of 25 patients with L. garvieae IE were treated with vancomycin [9, 15, 17], teicoplanin [17] or ampicillin [8] monotherapy with good outcomes. Further, the majority of patients in the L. garvieae group who died were treated at some point with monotherapy and combination therapy.

Abbreviations

AF: Atrial fibrillation; AKI: Acute kidney injury; AMC: Amoxicillin-clavulanic acid; AMK: Amikacin; AMP: Ampicillin; AMX: Amoxicillin; BD: Becton Dickinson; CABG: Coronary artery bypass graft; CAD: Coronary artery disease; CDN: Cefidetore; CEF: Cefalothin; CFZ: Cefazolin; CHF: Cardiac heart failure; CHL: Chloramphenicol; CIP: Ciprofloxacin; CKD: Chronic kidney disease; CLI: Clindamycin; CL: Chronic lymphocytic leukaemia; CLR: Clarithromycin; CLSI: Clinical and laboratory standards institute; CONS: Coagulase negative staphylococci; COPD: Chronic obstructive pulmonary disease; CRP: C Reactive Protein; CT: Computed Tomography; Ctx: Cefotaxime; DAP: Daptomycin; DM2: Diabetes mellitus type 2; DNA: Deoxyribonucleic acid; ERY: Erythromycin; ESR: Erythrocyte Sedimentation Rate; EUCAST: European Committee on Antimicrobial Susceptibility Testing; GEN: Gentamicin; GI: Gastrointestinal; GP: Gram positive; GPC: Gram positive cocci; I: Intermediate; IE: Infective Endocarditis; INR: International Normalized Ratio; IQR: Interquartile range; IV: Intravenous; LG: Lactococcus garvieae; LVX: Levofloxacin; LZD: Linezolid; MALDI-TOF: Matrix-Assisted Laser Desorption/Ionization Time of Flight; MEM: Meropenem; MIC: Minimum Inhibitory Concentration; MXF: Moxifloxacin; NHL: Non-Hodgkin Lymphoma; NI: No information; OFX: Ofloxacin; PCR: Polymerase Chain Reaction; PEN: Penicillin; R: Resistant; RIF: Rifampin; RNA: Ribonucleic acid; S: Sensitive; STR: Streptomycin; SXT: Trimethoprim-sulfamethoxazole; TEC: Teicoplanin; TET: Tetracyclin; TOB: Tobramycin; TZP: Piperacillin-tazobactam; VAN: Vancomycin

Funding

This work supported by NIH-National Institute of Allergy and Infectious Diseases grant number K24-AI114818 to CAA. This grant serves for undertaking research performed in CAA lab and for publication.
The funders of the study had no role in the study design, data collection, data analysis, data interpretation, or writing of the manuscript.

Availability of data and materials
No data or materials are available.

Authors' contributions
AM, AD and CAA wrote the manuscript and structured the literature review. CAA, AM, SG and CN took care of the patient and collected clinical data. All authors reviewed and approved the final version of the manuscript.

Ethics approval and consent to participate
Does not apply.

Consent for publication
Written informed consent was given by the patient to publish the information in this case report.

Competing interests
CAA has received grant support from Merck, Entasys and MeMed diagnostics. The other authors have no competing interests to declare.

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1. Department of Internal Medicine, Division of Infectious Diseases, UTH - McGovern Medical School, Houston, TX, USA.
2. Grupo de Investigación en Enfermedades Infecciosas, Hospital Universitario San Ignacio, Pontificia Universidad Javeriana, Bogotá, Colombia.
3. Departamento de Microbiología, Universidad de Antioquia, School of Medicine, Medellin, Colombia.
4. Center for Antimicrobial Resistance and Microbial Genomics (CARMIG), UTH - McGovern Medical School, Houston, TX, USA.
5. Molecular Genetics and Antimicrobial Resistance Unit and International Center for Microbial Genomics, Universidad El Bosque, Bogota, Colombia.
6. University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin St. MSB 2.112, Houston, TX 77030, USA.

Received: 23 November 2018 **Accepted:** 17 March 2019

Published online: 03 April 2019

References
1. Schleifer KH, Kraus J, Dvorak C, Klapfer-Bälz R, Collins MD, Fischer W. Transfer of Streptococcus lactis and related streptococci to the genus Lactococcus gen. Nov. Syst Appl Microbiol. 1985;6(2):183-95.
2. Vendrell D, Balcazar JL, Ruiz-Zarzuela I, de Blas I, Gironés O, Múzquiz JL. Transfer of Streptococcus lactis and related streptococci to the genus Lactococcus gen. Nov. Syst Appl Microbiol. 1985;6(2):183-95.
3. Collins MD, Farrow JA, Phillips BA, Kandler O. Streptococcus garvieae sp. nov. Description of Lactococcus garvieae subsp. garvieae subsp. nov. Int J Syst Evol Microbiol. 2016;66(10):3805-9.
4. Cavanagh D, Fitzgerald GF, McAuliffe O. From field to fermentation: the origins of Lactococcus lactis and its domestication to the dairy environment. Food Microbiol. 2015;47:45-61.
5. Gilleo J, Galan-Sanchez F, Blanco MM, Rodriguez-Iglesias M, Domínguez L, Fernández-Garayzábal JF. The zoonotic potential of Lactococcus garvieae: an overview on microbiology, epidemiology, virulence factors and relationship with its presence in foods. Rev Sci Vet. 2016;10959-70.
6. Wang Y, Chieh-HS, Chen S-C, Huang J-P, Hsieh I-C, Wen M-S, et al. Lactococcus garvieae infections in humans: possible association with aquaculture outbreaks: Lactococcus Garvieae infections in humans. Int J Clin Pract. 2006;61(1):73.
7. Vinh DC, Nichol KA, Rand F, Embil JM. Native-valve bacterial endocarditis caused by Lactococcus garvieae. Diagn Microbiol Infect Dis. 2006;56(1):91-4.
8. Navas ME, Hall G, El Bejani D. A case of endocarditis caused by Lactococcus garvieae and suggested methods for identification. J Clin Microbiol. 2013;51(6):1900-2.
9. Clavero R, Escober J, Ramos-Avalos S, Merello L, Álvarez F. Lactococcus garvieae endocarditis in a patient undergoing chronic hemodialysis. First case report in Chile and review of the literature. Rev Chil Infectol. 2017;34(4):397-403.
10. Fefer JJ, Ratzen KR, Sharp SE, Saiz E. Lactococcus garvieae endocarditis: report of a case and review of the literature. Diagn Microbiol Infect Dis. 1998;32(2):127-30.
11. Fihman V, Raskine L, Barrou Z, Kiffel C, Riahi J, Berckot B, et al. Lactococcus garvieae endocarditis: identification by 16S RNA and sodA sequence analysis. J Inf Secur. 2006;5(2):1-6.
12. Fleming H, Fowler SV, Nguyen L, Hoffsinger DM. Lactococcus garvieae multi-valve infective endocarditis in a traveler returning from South Korea. Travel Med Infect Dis. 2012;10(2):101-4.
13. Heras Cañas V, Pérez Ramírez MD, Bermúdez Jiménez F, Rojo Martin MD, Miranda Casas C, Marín Arriaza M, et al. Lactococcus garvieae endocarditis in a native valve identified by MALDI-TOF MS and PCR-based 16S rRNA in Spain: a case report. New Microbes New Infect. 2015;5:13-5.
14. Hirakawa TF, da Costa FFA, Vilela MC, Rign M, Abemurs H. Araújo MRE de. Lactococcus garvieae endocarditis: first case report in Latin America. Arq Bras Cardiol. 2011;97(5):108-10.
15. Igneti L, Eithoukh N, Shaffer A, Goren R. 1200: a rare case of lactococcus garvieae endocarditis in a critically ill patient. Crit Care Med. 2015;43:502.
16. James PR, Hardman SM, Patterson DL. Osteomyelitis and possible endocarditis secondary to Lactococcus garvieae: a first case report. Postgrad Med. 2000;108(9):301-3.
17. Li WK, Chen Y-S, Wann SR, Liu Y-C, Tsai H-C. Lactococcus garvieae endocarditis with initial presentation of acute cerebral infarction in a healthy immuneocompetent man. Intern Med Jpn. 2008;47(12):1143-6.
18. Lim FH, Jenkins DR. Native valve endocarditis caused by Lactococcus garvieae: an emerging human pathogen. BMJ Case Rep. 2017;2012(2017):1-3.
19. Ortiz C, López J, Del Amo E, Sevilla T, García PE, San Román JA. Lactococcus garvieae infective endocarditis: report of 2 cases and review of the literature. Rev Esponilla Cardiol Eng. 2014;67(9):776-8.
20. Rasmussen M, Björk Werner J, Doökk, M, Christensson B. Lactococcus garvieae endocarditis presenting with subdural haematomat. BMC Cardiovasc Disord. 2014;14(14):13.
21. Russo G, Iannetta M, D’Abramo A, Mascellino MT, Pantosti A, Erario L, et al. Lactococcus garvieae endocarditis in a patient with colonic diverticulosis: first case report in Italy and review of the literature. New Microbiol. 2012; 35(4):495-501.
22. Suh Y, Ja Kim M, Seung Jung P, Chon H, Hwan Kim C, Kang Y, et al. Afebrile multi-valve infective endocarditis caused by Lactococcus garvieae: a case report and literature review. Intern Med Jpn. 2016;55(5B):1011-5.
23. Tsur A, Slutzki T, Flusser D. Lactococcus garvieae endocarditis on a prosthetic biological aortic valve. Zoonoses Public Health. 2015;62(6):345-7.
24. Watanabe Y, Naito T, Kituchi K, Aman Y, Uehara Y, Isonuma H, et al. Infective endocarditis with Lactococcus garvieae in Japan: a case report. J Med Case Rep. 2011;5:356.
25. Wilbring M, Alexiou K, Reichenspunner H, Matschke K, Tugtekin SM. Lactococcus garvieae endocarditis causing zoonotic prosthetic valve endocarditis. Clin Res Cardiol Off J Ger Card Soc. 2011;100(6):545-6.
26. Yu K-H, Siu C-W, TO K-W, Jim M-H, Lee KL-F, Lau C-P, et al. A rare cause of infective endocarditis: Lactococcus garvieae. Int J Cardiol. 2007;114(2):286-7.
27. Zulli S, Mami Z, Meune C. Lactococcus garvieae endocarditis. Arch Cardiovasc Dis. 2011;104(2):138-9.
28. Bazemore TC, Maskarinec SA, Zeitlow K, Hendershot EF, Perfect JR. Familial adenomatous polyposis manifesting as Lactococcus Endocarditis: a case report and review of the association of Lactococcus with underlying gastrointestinal disease. Case Rep Infect Dis. 2016;2016:858532.
29. Landeiro E, Van Camp G, De Beenhouwer H. Lactococcus garvieae prosthetic mitral valve endocarditis: a case report and literature review. Clin Microbiol Newsl. 2017;39(16):130-1.
30. Murdoch DR, Corey GR, Hoen B, Mirto JM, Fowler VG, Bayer AS, et al. Clinical presentation, etiology, and outcome of infective endocarditis in the 21st century: the international collaboration on endocarditis-projective cohort study. Arch Intern Med. 2009;169(5):463-73.
31. Muñoz P, Kestler M, De Alarcon A, Miró JM, Fowler VG, Bayer AS, et al. Current epidemiology and outcome of infective endocarditis: a multicenter, prospective, cohort study. Medicine (Baltimore). 2015;94(43):e1816.
32. Chirouze C, Athan E, Allas F, Chu VH, Ralph Corey G, Selton-Suty C, et al. Enterococcal endocarditis in the beginning of the 21st century: analysis
from the international collaboration on endocarditis-prospective cohort study. Clin Microbiol Infect. 2013;19(12):1140–7.

34. Baddour LM, Wilson WR, Bayer AS, Fowler VG, Tleyjeh IM, Rybak MJ, et al. Infective endocarditis in adults: diagnosis, antimicrobial therapy, and Management of Complications: a scientific statement for healthcare professionals from the American Heart Association. Circulation. 2015;132(15):1435–86.

35. Habib G, Lancellotti P, Antunes MJ, Bongiorni MG, Casalta J-P, Del Zotti F, et al. 2015 ESC guidelines for the management of infective endocarditis: the task force for the Management of Infective Endocarditis of the European Society of Cardiology (ESC) endorsed by: European Association for Cardio-Thoracic Surgery (EACTS), the European Association of Nuclear Medicine (EANM). Eur Heart J. 2015;36(44):3075–128.