On the Reynolds number expansion for the Navier-Stokes equations

Carlo Morosia, Livio Pizzoccherob

a Dipartimento di Matematica, Politecnico di Milano, P.zza L. da Vinci 32, I-20133 Milano, Italy
e–mail: carlo.morosi@polimi.it

b Dipartimento di Matematica, Università di Milano Via C. Saldini 50, I-20133 Milano, Italy
and Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Italy
e–mail: livio.pizzocchero@unimi.it

Abstract

In a previous paper of ours [15] we have considered the incompressible Navier-Stokes (NS) equations on a d-dimensional torus \mathbb{T}^d, in the functional setting of the Sobolev spaces $H^n_{\text{div}}(\mathbb{T}^d)$ of divergence free, zero mean vector fields ($n > d/2 + 1$). In the cited work we have presented a general setting for the \textit{a posteriori} analysis of approximate solutions of the NS Cauchy problem; given any approximate solution u_a, this allows to infer a lower bound T_c on the time of existence of the exact solution u and to construct a function R_n such that $\|u(t) - u_a(t)\|_n \leq R_n(t)$ for all $t \in [0,T_c)$. In certain cases it is $T_c = +\infty$, so global existence is granted for u. In the present paper the framework of [15] is applied using as an approximate solution an expansion $u^N(t) = \sum_{j=0}^{N} R^j u_j(t)$, where R is the Reynolds number. This allows, amongst else, to derive the global existence of u when R is below some critical value R_* (increasing with N in the examples that we analyze). After a general discussion about the Reynolds expansion and its \textit{a posteriori} analysis, we consider the expansions of orders $N = 1, 2, 5$ in dimension $d = 3$, with the initial datum of Behr, Nečas and Wu [1]. Computations of order $N = 5$ yield a quantitative improvement of the results previously obtained for this initial datum in [15], where a Galerkin approximate solution was employed in place of the Reynolds expansion.

Keywords: Navier-Stokes equations, existence and regularity theory, theoretical approximation.

AMS 2000 Subject classifications: 35Q30, 76D03, 76D05.
1 Introduction

The incompressible Navier-Stokes (NS) equations with no external forces and periodic boundary conditions can be written as

$$\frac{\partial u}{\partial t} = \nu \Delta u + \mathcal{P}(u, u),$$

(1.1)

where: $\nu \in (0, +\infty)$ is the viscosity coefficient; $u = u(x, t)$ is the divergence free velocity field; the space variables $x = (x_s)_{s=1,...,d}$ belong to the torus \mathbb{T}^d (and yield the derivatives $\partial_s := \partial/\partial x_s$); $\Delta := \sum_{s=1}^d \partial_{ss}$ is the Laplacian. Furthermore, \mathcal{P} is the bilinear map defined as follows: for all sufficiently regular velocity fields v, w on \mathbb{T}^d,

$$\mathcal{P}(v, w) := -L(v \cdot \partial w)$$

(1.2)

where $(v \cdot \partial w)_r := \sum_{s=1}^d v_s \partial_s w_r$ ($r = 1, ..., d$), and L is the Leray projection onto the space of divergence free vector fields. The dimension d is arbitrary in the general setting of this paper, but we put $d = 3$ in the application of the last section.

Let us introduce the rescaled time t and the Reynolds number R, setting $t := \nu \tau$, $R := \frac{1}{\nu}$; (1.3)

then Eq (1.1) takes the form

$$\frac{\partial u}{\partial t} = \Delta u + R \mathcal{P}(u, u),$$

(1.4)

that will be the standard of this paper. Our functional setting for Eq. (1.4) is based on the Sobolev spaces

$$H^n_{\Sigma_0}(\mathbb{T}^d) \equiv H^n_{\Sigma_0} := \{ v : \mathbb{T}^d \rightarrow \mathbb{R}^d \mid \langle v \rangle = 0, \text{div } v = 0, \sqrt{-\Delta}^n v \in L^2(\mathbb{T}^d) \}$$

(1.5)

(where $\langle \rangle$ indicates the mean over \mathbb{T}^d; for any real n, the above space is equipped with the inner product $\langle v | w \rangle_n := \langle \sqrt{-\Delta}^n v | \sqrt{-\Delta}^n w \rangle_{L^2}$ and with the corresponding norm $\| \cdot \|_n$).

In our paper [15] we have outlined a general framework to obtain quantitative information on the exact solution u of the NS Cauchy problem analyzing a posteriori an approximate solution. To be more precise, consider the NS equation (1.4) with a specified initial condition $u(x, 0) = u_*(x)$; let $u_a : \mathbb{T}^d \times [0, T_a) \rightarrow \mathbb{R}^d$ be an approximate solution of this Cauchy problem, and consider (for $n > d/2 + 1$) the Sobolev norms

$$\| \left(\frac{\partial u_a}{\partial t} - \Delta u_a - R \mathcal{P}(u_a, u_a) \right)(t) \|_n, \quad \| u_a(0) - u_* \|_n,$$

$$\| u_a(t) \|_n, \quad \| u_a(t) \|_{n+1},$$

(1.6)

(1.7)

where $t \in [0, T_a)$ and $u_a(t) := u_a(\cdot, t)$. The norms in (1.6) control the differential
and datum errors of u_a, while the norms in (1.7) refer to the growth of u_a. The approach of [15] relies on the so-called control inequalities; these consist of a differential inequality and of an inequality on the initial value, determined by the norms (1.6) (1.7) and involving an unknown function $R_n : [0, T_c) \to [0, +\infty)$. Assume the control inequalities to have a solution R_n, with a suitable domain $[0, T_c)$; then, according to [15], the solution u of the NS equation (1.4) with initial datum u_\ast exists (in a classical sense) on the time interval $[0, T_c)$, and its distance from the approximate solution admits the bound

$$
\|u(t) - u_a(t)\|_{n} \leq R_n(t) \quad \text{for } t \in [0, T_c) .
$$

(1.8)

(For similar or related statements on the NS equations and other nonlinear evolutionary PDEs, see the papers by Chernyshenko et al. [3], Robinson et al. [18] and our works [11] [12] [13].)

In the present paper we apply the above framework choosing as an approximate solution a polynomial in R of the form

$$
u^N(t) := \sum_{j=0}^{N} R^j u_j(t) ,
$$

(1.9)

where the terms $u_j(t)$ are determined requiring the differential error to be $O(R^{N+1})$ for $R \to 0$. We emphasize that, in our approach, the order N could be large but is fixed; so we are not considering the $N \to +\infty$ limit, i.e., the solution of the Cauchy problem for Eq. (1.4) via a power series $u(t) = \sum_{j=0}^{+\infty} R^j u_j(t)$. A theoretical analysis of the convergence issue for such a series, in suitable function spaces, has been developed by some authors, especially Cannone [2] and Sinai [19]. However, the approaches of these authors yield convergence conditions (local or global in time) which depend on the initial datum u_\ast only through its norm; moreover, these authors have dedicated little attention to the strictly quantitative aspects of their analysis (such as the evaluations of the constants in certain inequalities). On the contrary, our approach based on a finite order approximant u^N as in (1.9) has the following features.

(i) We produce estimates on the interval of existence of the exact solution u (and on its distance from u^N) which depend on the fine structure of the initial datum u_\ast and not only on its norm; the specific features of the initial datum yielding these estimates are encoded in the expression of the differential error $\partial u^N / \partial t - \Delta u^N - R\mathcal{P}(u^N, u^N)$.

(ii) Our analysis is fully quantitative: it relies on explicit expressions for u^N and its errors and uses, amongst else, the estimates of [14] [16] on the constants in certain inequalities about \mathcal{P}.
The above setting invites a computer assisted approach: this can be readily set up when the NS initial datum \(u_* \) is sufficiently simple, say, a Fourier polynomial. In this case the approximant \(u^N \) and the errors \(\partial u^N / \partial t - \Delta u^N - R \mathcal{P}(u^N, u^N), u^N(0) - u_* \), with their Sobolev norms, can be determined via any package for symbolic computation; after this a solution \(R_n \) for the control inequalities can be obtained numerically. More precisely, one can try to satisfy them as equalities: this amounts to solve the Cauchy problem for a simple ODE in the unknown function \(t \mapsto R_n(t) \). This “control Cauchy problem” is easily treated numerically.

In the present paper the above procedure is described in general terms and then applied with \(d = 3 \) and \(n = 3 \), choosing for \(u_* \) the so-called Behr-Nečas-Wu (BNW) initial datum \([1]\). For the practical implementation we use MATHEMATICA on a PC; first we work with \(N = 1 \) to introduce the method, and then pass to the orders \(N = 2 \), \(N = 5 \).

In all the above cases, the control Cauchy problem has a solution \(R_3 \) of domain \([0, +\infty)\) if \(R \) is below some critical value \(R_* \) (depending on \(N \)); in this situation we can grant global existence for the solution \(u \) of the NS Cauchy problem, and the inequality \(\|u(t) - u^N(t)\|_3 \leq R_3(t) \) holds for all \(t \in [0, +\infty) \). For \(R \) above \(R_* \), the control problem has a solution \(R_3 \) on a bounded interval \([0, T_c)\); so, the existence of the solution \(u \) of the NS Cauchy problem and the inequality \(\|u(t) - u^N(t)\|_3 \leq R_3(t) \) are granted only on this interval. Passing from \(N = 1 \) to \(N = 2 \), and from \(N = 2 \) to \(N = 5 \), the critical value \(R_* \) increases.

In the final part of the paper the outcomes of the above Reynolds expansions are compared with the results of \([15]\), where an approximate NS solution was constructed for the BNW initial datum using the Galerkin method with a set of 150 Fourier modes; it turns out that this Galerkin approach is quantitatively equivalent to the Reynolds expansion of order \(N = 2 \), while the expansion of order \(N = 5 \) gives much better results concerning the global existence of \(u \) and its distance from the approximate solution.

The paper is organized as follows. After fixing some basic notations, Section 2 reviews the general setting of \([15]\) for approximate NS solutions (in a reformulation suitable for our purposes, where the Reynolds number \(R = 1/\nu \) and the rescaled time \(t = \nu t \) are preferred to the variables \(\nu, t \)). Sections 3 and 4 present the general Reynolds expansion \((1.9)\), the control inequalities for it and some basic computational rules for the practical implementation of this approach. Section 5 applies the previous framework to the the BNW initial datum, and makes a comparison with the Galerkin approach of \([15]\) for the same datum.

In a forthcoming paper \([10]\) the Reynolds expansion and the related control equation will be applied to the BNW datum for larger values of \(N \), and then employed for other initial data of interest in the NS community, namely, the “vortices” of Taylor-Green \([20]\) and Kida \([6]\).
2 Preliminaries

Throughout the paper we fix a space dimension \(d \in \{2, 3, \ldots\} \); in the application of section 5 we will put \(d = 3 \). For \(a, b \in \mathbb{R}^d \) or \(\mathbb{C}^d \) we put \(a \ast b := \sum_{r=1}^{d} a_r b_r \) and \(|a| := \sqrt{\bar{a} \cdot a} \), where \(\bar{a} \) denotes the complex conjugation.

Let us consider the \(d \)-dimensional torus \(\mathbb{T}^d := (\mathbb{R}/2\pi \mathbb{Z})^d \); the setting outlined hereafter for function spaces and NS equations on the torus is similar to the one of [13] [15]. In the sequel we employ the Fourier basis made of the functions \(\{e_k\} \)

\[
e_k : \mathbb{T}^d \to \mathbb{C} , \quad e_k(x) := e^{i k \cdot x} \quad (k \in \mathbb{Z}^d) .
\]

Let us consider the space \(D'(\mathbb{T}^d, \mathbb{R}) \equiv D' \) of real distributions on \(\mathbb{T}^d \).[3] Any \(v \in D' \) has a weakly convergent Fourier expansion \(v = \sum_{k \in \mathbb{Z}^d} v_k e_k \), where \(v_k := \langle 2\pi \rangle^{-d} \langle v, e_k \rangle \) (the notation indicates the action of \(v \) on the test function \(e_{-k} \)); of course the reality of \(v \) is expressed by the condition \(\overline{v_k} = v_{-k} \).

We will often be interested in the spaces \(L^p(\mathbb{T}^d, \mathbb{R}) \equiv L^p \) and, in particular, in the real Hilbert space \(L^2 \) with the product \(\langle v \mid w \rangle_{L^2} := \int_{\mathbb{T}^d} dx \, vw = (2\pi)^d \sum_{k \in \mathbb{Z}^d} \overline{v_k} w_k \) and the corresponding norm \(\| \cdot \|_{L^2} \). For all \(n \in \mathbb{R} \), the \(n \)-th Sobolev space of zero mean functions on \(\mathbb{T}^d \) is

\[
H^n_0(\mathbb{T}^d) \equiv H^n_0 := \left\{ v \in D' \mid \langle v \rangle = 0 , \sqrt{-\Delta}^n v \in L^2 \right\}
\]

(2.2)

\[
= \left\{ v \in D' \mid v_0 = 0 , \sum_{k \in \mathbb{Z}^d \{ \{0 \}} |k|^{2n} |v_k|^2 < +\infty \right\}
\]

(in the above \(\langle v \rangle \in \mathbb{R} \) is the mean of \(v \), i.e., by definition, the action of \(v \) on the test function \(1/(2\pi)^d \); moreover, \(\sqrt{-\Delta} v := \sum_{k \in \mathbb{Z}^d \{ \{0 \}} |k|^n v_k e_k \). \(H^n_0 \) is a Hilbert space with the inner product and the norm

\[
\langle v \mid w \rangle_n := \langle \sqrt{-\Delta}^n v \mid \sqrt{-\Delta}^n w \rangle_{L^2} = (2\pi)^d \sum_{k \in \mathbb{Z}^d \{ \{0 \}} |k|^{2n} \overline{v_k} w_k , \| v \|_n := \sqrt{\langle v \mid v \rangle_n} ;
\]

(2.3)

if \(m \leq n \), then \(H^n_0 \subset H^m_0 \).

The Laplacian and its semigroup. Let us consider the operator \(\Delta := \sum_{r,s=1}^{d} \partial_{rs} : D' \to D' \); of course \(\Delta e_k = -|k|^2 e_k \) for all \(k \in \mathbb{Z}^d \). For each \(n \in \mathbb{R} \), \(\Delta \) maps continuously \(H^{n+2}_0 \) into \(H^n_0 \), with \(\| \Delta v \|_n \leq \| v \|_{n+2} \) for all \(v \in H^{n+2}_0 \). We can define a semigroup \(\{ e^{t\Delta} \}_{t \in [0, +\infty)} \) of linear operators on \(D' \), putting

\[
e^{t\Delta} : D' \to D' , \quad v \mapsto e^{t\Delta} v := \sum_{k \in \mathbb{Z}^d} e^{-|k|^2 t} v_k e_k .
\]

(2.4)

\[\text{In [13] [15], the normalization factor } (2\pi)^{-d/2} \text{ was included in the definition of } e_k.\]

\[\text{This is defined in terms of the space } D'(\mathbb{T}^d, \mathbb{C}) \equiv D'_\mathbb{C} \text{ of complex distributions on } \mathbb{T}^d, \text{ which is the topological dual of } C^\infty(\mathbb{T}^d, \mathbb{C}). \text{ } D'_\mathbb{C} \text{ is known to carry a complex conjugation } \overline{\cdot} \text{, see, e.g., [12]; real distributions } v \text{ on } \mathbb{T}^d \text{ are characterized by the condition } \overline{v} = v.\]
Let \(n \in \mathbb{R} \). The following holds:
\[
e^t \Delta H^n_0 \subset H^n_0 ; \quad \| e^t \Delta v \|_n \leq e^{-t} \| v \|_n \quad \text{for } t \in [0, +\infty), v \in H^n_0 ;
\]
\[
e^t \Delta H^{n-1}_0 \subset H^n_0 ; \quad \exists \mu \in L^1((0, +\infty), \mathbb{R}) \text{ (independent of } n \text{) such that}
\]
\[
\| e^t \Delta v \|_n \leq \mu(t) \| v \|_{n-1} \quad \text{for } t \in (0, +\infty), v \in H^{n-1}_0
\]
(for the proof of (2.6) see, e.g., [13], that also gives an explicit expression for \(\mu \) implying \(\mu(t) = O(1/\sqrt{t}) \) for \(t \to 0^+ \) and \(\mu(t) = e^{-t} \) for \(t \) large). The map \((t, v) \mapsto e^t \Delta v \) is continuous from \([0, +\infty) \times H^n_0\) to \(H^n_0 \) and from \((0, +\infty) \times H^{n-1}_0\) to \(H^n_0 \).

Moreover,
\[
v \in H^{n+2}_0 \Rightarrow (t \mapsto e^t \Delta v) \in C([0, +\infty), H^{n+2}_0) \cap C^1([0, +\infty), H^n_0)
\]
\[
\frac{d}{dt}(e^t \Delta v) = \Delta(e^t \Delta v) \quad \text{for } t \in [0, +\infty).
\]
To go on, let
\[
f \in C([0, +\infty), H^{n+1}_0);
\]
for each \(t \in [0, +\infty) \) the function \(s \in (0, t) \mapsto e^{(t-s) \Delta} f(s) \) is in \(L^1((0, t), H^{n+2}_0) \) because, on the grounds of (2.6), \(\| e^{(t-s) \Delta} f(s) \|_{n+2} \leq \mu(t-s) \| f(s) \|_{n+1} \); therefore, the definition
\[
F(t) := \int_0^t ds e^{(t-s) \Delta} f(s) \quad \text{for } t \in [0, +\infty)
\]
produces a function \(F \in C([0, +\infty), H^{n+2}_0) \). This function is also in \(C^1([0, +\infty), H^n_0) \) and satisfies an inhomogeneous heat equation with source term \(f \):
\[
\frac{dF}{dt}(t) = \Delta F(t) + f(t) \quad \text{for } t \in [0, +\infty).
\]
(Moreover, \(F \) is the unique solution of (2.10) with the above indicated regularity and with \(F(0) = 0 \).)

Vector fields on \(T^d \). Here and in the sequel, “a vector field on \(T^d \)” means “an \(\mathbb{R}^d \)-valued distribution on \(T^d \).” We write \(\mathcal{D}(T^d) \equiv \mathcal{D} \) for the space of such distributions; these can be identified with \(d \)-tuples \(v = (v_1, ..., v_d) \), where \(v_r \in D \) for each \(r \). Partial derivatives, the Laplacian \(\Delta \) and the operators \(\sqrt{-\Delta} \), \(e^t \Delta \) are defined componentwise as maps from \(\mathcal{D} \) to \(\mathcal{D} \). Any \(v \in \mathcal{D} \) has a weakly convergent Fourier expansion \(v = \sum_{k \in \mathbb{Z}^d} v_k e_k \), with coefficients \(v_k \in \mathbb{C}^d \) (such that \(\bar{v}_k = v_{-k} \)).

In the sequel \(\mathcal{L}^p(T^d) \equiv \mathcal{L}^p \) denotes the space of \(L^p \) vector fields \(T^d \to \mathbb{R}^d \). For each \(n \in \mathbb{R} \), the \(n \)-th Sobolev space of zero mean vector fields on \(T^d \) is
\[
\mathcal{H}^n_0(T^d) \equiv \mathcal{H}^n_0 := \{ v \in \mathcal{D} | \langle v \rangle = 0, \sqrt{-\Delta}^n v \in \mathcal{L}^2 \}
\]
\[
= \{ v \in \mathcal{D} | v_0 = 0, \sum_{k \in \mathbb{Z}^d \setminus \{0\}} |k|^{2n} |v_k|^2 < +\infty \}
\]
(in the above, the mean \(\langle v \rangle \in \mathbb{R}^d \) is defined componentwise; we note that \(\mathbb{H}_0^n = \{ v = (v_1, ..., v_d) \in \mathcal{D}' | v_r \in H_0^n \text{ for each } r \} \). \(\mathbb{H}_0^n \) is a Hilbert space with the inner product and the norm

\[
\langle v | w \rangle_n := \langle \sqrt{-\Delta^n} v | \sqrt{-\Delta^n} w \rangle_{L^2} = (2\pi)^d \sum_{k \in \mathbb{Z}^d \backslash \{0\}} |k|^{2n} v_k \cdot w_k,
\]

\[\|v\|_n := \sqrt{\langle v | v \rangle_n} . \tag{2.12}\]

Eqs. \((2.5)-(2.10)\) and the related statements have obvious analogues, where \(H_0^n \) is replaced by \(\mathbb{H}_0^n \) for any \(n \).

Divergence free vector fields; the Leray projection. The space of divergence free vector fields on \(T^d \) is

\[
\mathcal{D}'_\Sigma := \{ v \in \mathcal{D}' | \text{div } v = 0 \} = \{ v \in \mathcal{D}' | k \cdot v_k = 0 \ \forall k \in \mathbb{Z}^d \} . \tag{2.13}\]

The **Leray projection** is the linear, surjective map

\[
\mathcal{L} : \mathcal{D}' \to \mathcal{D}'_\Sigma , \quad v \mapsto \mathcal{L}v := \sum_{k \in \mathbb{Z}^d} (\mathcal{L}_k v_k) e_k ; \tag{2.14}\]

here \(\mathcal{L}_k \) is the orthogonal projection of \(\mathbb{C}^d \) onto the orthogonal complement of \(k \), i.e.,

\[
\mathcal{L}_0 c = c , \quad \mathcal{L}_k c = c - \frac{k \cdot c}{|k|^2} k \quad \text{for } c \in \mathbb{C}^d , k \in \mathbb{Z}^d \backslash \{0\} . \tag{2.15}\]

For each \(n \in \mathbb{R} \), the \(n \)-th Sobolev space of zero mean, divergence free vector fields is

\[
\mathbb{H}^n_{\Sigma 0} := \mathcal{D}'_\Sigma \cap \mathbb{H}^n_0 ; \tag{2.16}\]

this is a closed subspace of \(\mathbb{H}^n_0 \), and thus becomes a Hilbert space with the restriction of the inner product \(\langle \cdot | \cdot \rangle_n \). One has

\[
\mathcal{L} \mathbb{H}^n_0 = \mathbb{H}^n_{\Sigma 0} , \quad \| \mathcal{L}v \|_n \leq \| v \|_n \quad \text{for } n \in \mathbb{R} , v \in \mathbb{H}^n_0 . \tag{2.17}\]

The spaces \((2.16)\) are the basis of our treatment of the NS equations; again, we have analogues of Eqs. \((2.5)-(2.10)\) and of the related statements, where \(H_0^n \) is replaced by \(\mathbb{H}^n_{\Sigma 0} \) for any \(n \).

The NS bilinear map. Consider two vector fields \(v, w \) on \(T^d \) such that \(v \in L^2 \) and \(\partial_s w \in L^2 \) for \(s = 1, ..., d \); then we have a well defined vector field \(v \cdot \partial w \in L^1 \) of components \((v \cdot \partial w)_r := \sum_{s=1}^d v_s \partial_s w_r \) (which has mean zero if div \(v = 0 \)); we can apply to this the Leray projection \(\mathcal{L} \) and form the (divergence free) vector field

\[
P(v, w) := -\mathcal{L}(v \cdot \partial w) . \tag{2.18}\]

The bilinear map \(P : (v, w) \mapsto P(v, w) \), which is a main character of the incompressible NS equations, is known to possess the following properties.
(i) For each \(n > d/2 \), \(\mathcal{P} \) is continuous from \(\mathbb{H}^n_{\Sigma_0} \times \mathbb{H}^{n+1}_{\Sigma_0} \) to \(\mathbb{H}^n_{\Sigma_0} \), so, there is a constant \(K_{nd} \equiv K_n \) such that
\[
\| \mathcal{P}(v, w) \|_n \leq K_n \| v \|_n \| w \|_{n+1} \quad \text{for } v \in \mathbb{H}^n_{\Sigma_0}, \ w \in \mathbb{H}^{n+1}_{\Sigma_0}. \tag{2.19}
\]

(ii) For each \(n > d/2 + 1 \), there is a constant \(G_{nd} \equiv G_n \) such that
\[
|\langle \mathcal{P}(v, w) | w \rangle_n| \leq G_n \| v \|_n \| w \|_n \quad \text{for } v \in \mathbb{H}^n_{\Sigma_0}, \ w \in \mathbb{H}^{n+1}_{\Sigma_0} \tag{2.20}
\]
(this result is due to Kato, see [4]).

From here to the end of the paper, \(K_n \) and \(G_n \) are constants fulfilling the previous inequalities (and not necessarily sharp). From [14] [16] we know that we can take
\[
K_3 = 0.323, \quad G_3 = 0.438 \quad \text{if } d = 3; \tag{2.21}
\]
these values will be useful in the sequel.

The NS Cauchy problem. From here to the end of the paper, we fix a Sobolev order
\[
n \in \left(\frac{d}{2} + 1, +\infty \right). \tag{2.22}
\]
Let us choose a Reynolds number \(R \in [0, +\infty) \) and an initial datum
\[
u_* \in \mathbb{H}^{n+2}_{\Sigma_0}. \tag{2.23}
\]

2.1 Definition. The (incompressible) NS Cauchy problem with Reynolds number \(R \) and initial datum \(\nu_* \) is the following:
\[
\text{Find } \nu \in C([0, T), \mathbb{H}^{n+2}_{\Sigma_0}) \cap C^1([0, T), \mathbb{H}^n_{\Sigma_0}) \text{ such that } \tag{2.24}
\]
\[
\frac{d\nu}{dt} = \Delta \nu + R \mathcal{P}(\nu, \nu), \quad \nu(0) = \nu_*
\]
(with \(T \in (0, +\infty], \) depending on \(\nu \)).

It is known [5] that the above Cauchy problem has a unique maximal (i.e., not extendable) solution; any solution is a restriction of the maximal one. [3]

Approximate solutions of the NS Cauchy problem. In this paragraph we briefly rephrase some basic results of [15] with the notations of the present paper (note that in [15] the NS equations were written in the form (1.1) rather than (1.4)). We consider again the Cauchy problem (2.24), for given \(n, R, \nu_* \) as above; the definitions and the theorem that follow are reported from [15], with obvious adaptations.

4It is known as well that, if \(\nu \) solves (2.24), the function \((x, t) \to \nu(x, t) \) is smooth on \(T^d \times (0, T) \) (see, e.g., Theorem 15.2 (A) of [7]): one could give stronger regularity results with suitable assumptions on \(\nu_* \). In the sequel we will not be interested in such regularity matters.
2.2 Definition. An approximate solution of the problem (2.24) is any map $u_\alpha \in C((0, T_\alpha), \mathbb{H}_s^{n+2}) \cap C^1((0, T_\alpha), \mathbb{H}_s^n)$ (with $T_\alpha \in (0, +\infty)$). Given such a function, we stipulate (i) (ii).

(i) The differential error of u_α is
\[
e(u_\alpha) := \frac{du_\alpha}{dt} - \Delta u_\alpha - R \mathcal{P}(u_\alpha, u_\alpha) \in C([0, T_\alpha), \mathbb{H}_s^n) ;
\] (2.25)
the datum error is
\[
u_\alpha(0) - u_\star \in \mathbb{H}_s^{n+2}.
\] (2.26)

(ii) Let $m \in \mathbb{N}$, $m \leq n$. A differential error estimator of order m for u_α is a function $\epsilon_m \in C([0, T_\alpha), [0, +\infty))$ such that
\[
\|e(u_\alpha)(t)\|_m \leq \epsilon_m(t) \quad \text{for } t \in [0, T_\alpha)
\] (2.27)

Let $m \in \mathbb{N}$, $m \leq n + 2$. A datum error estimator of order m for u_α is a real number $\delta_m \in [0, +\infty)$ such that
\[
\|u_\alpha(0) - u_\star\|_m \leq \delta_m ;
\] (2.28)
a growth estimator of order m for u_α is a function $\mathcal{D}_m \in C([0, T_\alpha), [0, +\infty))$ such that
\[
\|u_\alpha(t)\|_m \leq \mathcal{D}_m(t) \quad \text{for } t \in [0, T_\alpha)
\] (2.29)

In particular the function $\epsilon_m(t) := \|e(u_\alpha)(t)\|_m$, the number $\delta_m := \|u_\alpha(0) - u_\star\|_m$ and the function $\mathcal{D}_m(t) := \|u_\alpha(t)\|_m$ will be called the tautological estimators of order m for the differential error, the datum error and the growth of u_α.

Let us observe that Eq. (2.25) could be read as follows: the function u_α fulfills the NS equations with an external forcing $e(u_\alpha)$. The a posteriori analysis of Chernyshenko et al. for the approximate NS solutions is based on this remark and on a robustness result for the NS equations with respect to external forces (see [3]; more detailed information on the relations between this paper and our approach is given in [15]).

From here to the end of the section we consider an approximate solution u_α of the problem (2.24), with domain $[0, T_\alpha)$; this is assumed to possess differential, datum error and growth estimators of orders n or $n + 1$, indicated with $\epsilon_n, \delta_n, \mathcal{D}_n, \mathcal{D}_{n+1}$.

2.3 Definition. Let $\mathcal{R}_n \in C([0, T_\epsilon), \mathbb{R})$, with $T_\epsilon \in (0, T_\alpha]$. This function is said to fulfill the control inequalities if
\[
\frac{d^+ \mathcal{R}_n}{dt} \geq -\mathcal{R}_n + R(G_n \mathcal{D}_n + K_n \mathcal{D}_{n+1})\mathcal{R}_n + R G_n \mathcal{R}_n^2 + \epsilon_n \quad \text{in } [0, T_\epsilon),
\] (2.30)
\[
\mathcal{R}_n(0) \geq \delta_n .
\] (2.31)

In the above d^+/dt indicates the right, upper Dini derivative: so, for all $t \in [0, T_\epsilon)$,
\[
(d^+ \mathcal{R}_n/dt)(t) := \limsup_{h \to 0^+} [\mathcal{R}_n(t + h) - \mathcal{R}_n(t)]/h.
\]
One can show that any function $R_n \in C([0, T_c], \mathbb{R})$ fulfilling the control inequalities is automatically nonnegative \(^5\).

2.4 Proposition

Assume there is a function $R_n \in C([0, T_c], [0, +\infty))$ fulfilling the control inequalities; consider the maximal solution u of the NS Cauchy problem \(^2\), and denote its domain with $[0, T)$. Then

$$T \geq T_c \ ,$$

$$\|u(t) - u_a(t)\|_n \leq R_n(t) \quad \text{for } t \in [0, T_c) \ .$$

Proof (sketch)

For the sake of brevity, we put $w(t) := u(t) - u_a(t)$ for $t \in [0, \min(T, T_a))$.

The function w fulfills $d\Delta w/dt = \Delta w + R \mathcal{P}(u_a, w) + R \mathcal{P}(w, u_a) + R \mathcal{P}(w, w) - e(u_a)$ and $w(0) = u_* - u_a(0)$. From here, using the inequalities \(^{2.19}^{2.20}\) about \mathcal{P} and \(^{2.27}^{2.28}^{2.29}\) about $e(u_a)$, $u_* - u_a(0)$ and u_a one infers that the continuous function $\|w\|_n : t \in [0, \min(T, T_a)) \mapsto \|w(t)\|_n$ fulfills

$$\frac{d^+\|w\|_n}{dt} \leq -\|w\|_n + R(G_n \mathcal{D}_n + K_n \mathcal{D}_{n+1})\|w\|_n + R G_n \|w\|_n^2 + \epsilon_n ,$$

$$\|w(0)\|_n \leq \delta_n$$

(note that the usual derivative $d\|w\|_n/dt$ might fail to exist at times t such that $w(t) = 0$; this is the reason for using the Dini derivative). From \(^{2.35}^{2.36}\), from the control inequalities \(^{2.30}^{2.31}\) and from a comparison theorem \(^3\) one infers

$$\|w(t)\|_n \leq R_n(t) \quad \text{for } t \in [0, \min(T, T_a))$$

Finally, one has

$$\min(T, T_c) = T_c \ ;$$

in fact, if $T < T_c$ we would have $\|u(t)\|_n \leq \|w(t)\|_n + \|u_a(t)\|_n \leq R_n(t) + \mathcal{D}_n(t)$ for all $t \in [0, T)$ and this would imply $\limsup_{t \to T^-} \|u(t)\|_n \leq R_n(T) + \mathcal{D}_n(T) < +\infty$, contradicting standard results on the maximal solution of the NS Cauchy problem.

\(\square\)

Paper \[^{15}\] presents some applications of the previous proposition, where u_a is constructed by the Galerkin method. (For completeness we mention that the framework

\[^5\] In fact the zero function fulfills relations analogous to \(^{2.30}^{2.31}\), with \geq replaced by \leq; by standard comparison results, this implies $R_n(t) \geq 0$ for all $t \in [0, T_c)$. The comparison results required to prove the last statement have been reviewed in \[^{15}\] (see Lemma 4.3 in the cited paper and the related references).

\[^6\] See again Lemma 4.3 of \[^{15}\].
of [15] also covers the case of the Euler equations, i.e., the limit case \(\nu \to 0 \) of (1.1) which is formally equivalent to \(R \to +\infty \); some applications to the Euler equations have been considered both in [15] and in [9].

In the sequel we present an application of Proposition 2.4, choosing for \(u_a \) a polynomial in \(R \) (see Eq. (1.9)). In the next two sections we develop this approach in general terms, giving the error estimators for an approximate solution of this kind; in the final section we apply this procedure choosing for \(u_* \) the BNW initial datum.

3 Reynolds number expansions as approximate NS solutions

Let us recall that \(n \in (d/2 + 1, +\infty) \), and consider the NS Cauchy problem (2.24) with \(R \in [0, +\infty) \) and datum \(u_* \in \mathbb{H}_\Sigma_0^{n+2} \). Let us choose an order \(N \in \{0, 1, 2, \ldots\} \) and consider as an approximate solution for (2.24) a polynomial of degree \(N \) in \(R \), of the form

\[
 u^N : [0, +\infty) \to \mathbb{H}_\Sigma_0^{n+2}, \quad t \mapsto u^N(t) := \sum_{j=0}^{N} R^j u_j(t),
\]

\[
 u_j \in C([0, +\infty), \mathbb{H}_\Sigma_0^{n+2}) \cap C^1([0, +\infty), \mathbb{H}_\Sigma_0^n) \quad \text{for } j = 0, \ldots, N;
\]

the functions \(u_j \) herein are to be determined.

3.1 Proposition. (i) Let \(u^N \) be as in (3.1). The datum and differential errors of \(u^N \) are

\[
 u^N(0) - u_* = (u_0(0) - u_*) + \sum_{j=1}^{N} R^j u_j(0);
\]

\[
 e(u^N) = \left(\frac{du_0}{dt} - \Delta u_0 \right) + \sum_{j=1}^{N} R^j \left[\frac{du^j}{dt} - \Delta u_j - \sum_{\ell=0}^{j-1} \mathcal{P}(u_\ell, u_{j-\ell-1}) \right]
\]

\[
 - \sum_{j=N+1}^{2N+1} \sum_{\ell=j-N-1}^{N} \mathcal{P}(u_\ell, u_{j-\ell-1}).
\]

(ii) One can define recursively a family of functions \(u_j \in C([0, +\infty), \mathbb{H}_\Sigma_0^{n+2}) \cap C^1([0, +\infty), \mathbb{H}_\Sigma_0^n) \) setting

\[
 u_0(t) := e^{t\Delta} u_* \quad \text{for } t \in [0, +\infty),
\]

\[
 u_j(t) := \sum_{\ell=0}^{j-1} \int_{0}^{t} ds \ e^{(t-s)\Delta} \mathcal{P}(u_\ell(s), u_{j-\ell-1}(s)) \quad \text{for } t \in [0, +\infty), j = 1, \ldots, N.
\]
With this choice of \(u_0, \ldots, u_N\) the coefficients of \(R^0, R^1, \ldots, R^N\) in Eqs. (3.2) and (3.3) vanish, so that

\[
 u^N(0) - u_* = 0 ;
 \tag{3.6}
\]

\[
 e(u^N) = - \sum_{j=N+1}^{2N+1} R^j \sum_{\ell=j-N-1}^N \mathcal{P}(u_\ell, u_{j-\ell-1}) .
 \tag{3.7}
\]

The second equation implies

\[
 \|e(u^N)(t)\|_n \leq K_n \sum_{j=N+1}^{2N+1} R^j \sum_{\ell=j-N-1}^N \|u_\ell(t)\|_n \|u_{j-\ell-1}(t)\|_{n+1} \text{ for } t \in [0, +\infty) .
 \tag{3.8}
\]

Proof.

(i) Eq. (3.2) is obvious. Let us prove Eq. (3.3); to this purpose, we note that

\[
 e(u^N) = \frac{du^N}{dt} - \Delta u^N - R\mathcal{P}(u^N, u^N) = \left(\frac{d}{dt} - \Delta\right)\left(\sum_{j=0}^N R^j u_j\right) - R\mathcal{P}\left(\sum_{\ell=0}^N R^\ell u_\ell, \sum_{h=0}^N R^h u_h\right)
\]

\[
 = \sum_{j=0}^N R^j (\frac{du_j}{dt} - \Delta u_j) - \sum_{\ell, h=0}^N R^{\ell+h+1}\mathcal{P}(u_\ell, u_h)
\]

\[
 = \left(\frac{du_0}{dt} - \Delta u_0\right) + \sum_{j=1}^N R^j (\frac{du_j}{dt} - \Delta u_j) - \sum_{j=1}^{2N+1} R^j \sum_{(\ell, h) \in I_{Nj}} \mathcal{P}(u_\ell, u_h) ,
\]

\[
 I_{Nj} := \{((\ell, h) \in \{0, \ldots, N\}^2 \mid \ell + h + 1 = j\} .
\]

One easily checks that

\[
 j \in \{1, \ldots, N\} \Rightarrow I_{Nj} = \{((\ell, j-\ell-1) \mid \ell \in \{0, \ldots, j-1\}\} ,
\]

\[
 j \in \{N+1, \ldots, 2N+1\} \Rightarrow I_{Nj} = \{((\ell, j-\ell-1) \mid \ell \in \{j-N-1, \ldots, N\}\} ;
\]

this readily yields the thesis (3.3).

(ii) First of all, let us prove by recurrence over \(j\) that the functions \(u_j\) of Eqs. (3.4) (3.5) are well defined and belong to \(C([0, +\infty), H^{n+2}_{220}) \cap C^1([0, +\infty), H^2_{220})\), for all \(j \in \{0, \ldots, N\}\).

For \(j = 0\), this follows from an obvious vector analogue of the regularity statement in (2.7). Now, let \(j \in \{1, \ldots, N\}\) and assume the thesis to hold up to the order \(j-1\); then the functions \(t \in [0, +\infty) \mapsto \mathcal{P}(u_\ell(t), u_{j-\ell-1}(t)) (\ell = 0, \ldots, j-1)\) are in \(C([0, +\infty), H^{n+1}_{220})\) due to the properties of \(\mathcal{P}\). By obvious vector analogues of the considerations accompanying Eqs. (2.9) (2.10), with \(f\) replaced by \(\mathcal{P}(u_\ell, u_{j-\ell-1})\), we see that the functions \(t \mapsto \int_0^t ds e^{(t-s)} \Delta \mathcal{P}(u_\ell(s), u_{j-\ell-1}(s))\) belong to \(C([0, +\infty)H^{n+2}_{220}) \cap \)
\[C^1([0, +\infty), \mathbb{H}_{\Sigma_0}^n); \] the same can be said of \(u_j \), which is the sum over \(\ell \) of these functions.

To go on, let us note that the definition (3.4) implies

\[
\begin{align*}
 u_0(0) &= u_*, \\
 \frac{du_0}{dt} &= \Delta u_0,
\end{align*}
\]

while the definition (3.5) implies

\[
\begin{align*}
 u_j(0) &= 0, \\
 \frac{du_j}{dt}(t) &= \Delta u_j(t) + \sum_{\ell=0}^{j-1} P(u_\ell(t), u_{j-\ell-1}(t)) \quad \text{for } j \in \{1, \ldots, N\} \tag{3.10}
\end{align*}
\]

(to check the last equality, use Eq. (2.10) with \(f \) replaced by \(\sum_{\ell=0}^{j-1} P(u_\ell(t), u_{j-\ell-1}(t)) \)). Eqs. (3.9) and (3.10) indicate, respectively, the vanishing of the coefficients of \(R_0 \) and \(R_j \) \((j = 1, \ldots, N)\) in both Eqs. (3.2) (3.3).

Now Eqs. (3.6) (3.7) are obvious. Eq. (3.7) and the inequality \(\|P(u_\ell(t), u_{j-\ell-1}(t))\|_n \leq K_n \|u_\ell(t)\|_n \|u_{j-\ell-1}(t)\|_{n+1} \) gives immediately Eq. (3.8).

3.2 Remark. Apart from technicalities, the previous result can be described as follows. The coefficients of \(R_0, R_1, \ldots, R_N \) in the expressions (3.2) (3.3) for the datum and differential errors of \(u^N \) are zero if \(u_0 \) fulfills the heat equation with initial datum \(u_* \) and \(u_j \) fulfills, for each \(j \in \{1, \ldots, N\} \), an inhomogeneous heat equation with zero initial datum and a source term depending on \(u_0, \ldots, u_{j-1} \). The positions (3.4) (3.5) provide the solutions for these initial value problems. \(\square \)

Let \(N \in \{0, 1, 2, \ldots\} \); we define again \(u^N \) and \(u_j \) \((j = 0, \ldots, N)\) via Eqs. (3.1) (3.3), and regard \(u^N \) as an approximate solution of the Cauchy problem (2.24), of domain \([0, +\infty)\). This has the tautological datum error and growth estimators

\[
\begin{align*}
 \delta_n := 0, & \quad \mathcal{D}_n(t) := \|u^N(t)\|_n, \quad \mathcal{D}_{n+1}(t) := \|u^N(t)\|_{n+1}. \tag{3.11}
\end{align*}
\]

The differential error \(e(u^N) \) can be expressed via Eq. (3.7); we can use for it the tautological estimator

\[
\epsilon_n(t) := \|e(u^N)(t)\|_n \tag{3.12}
\]

or the rougher estimator indicated by (3.8), i.e., the function

\[
\epsilon_n(t) := K_n \sum_{j=N+1}^{2N+1} R_j \sum_{\ell=j-N-1}^{N} \|u_\ell(t)\|_n \|u_{j-\ell-1}(t)\|_{n+1}. \tag{3.13}
\]

Now, using Proposition 2.4 with \(u_a = u^N \) and the above estimators we obtain the following.
3.3 Corollary. Let $N \in \{0, 1, 2, \ldots\}$; define δ_n, D_n, D_{n+1} via Eq. (3.11) and ϵ_n via Eq. (3.12) or (3.13), for $t \in [0, +\infty)$. Suppose there is a function $R_n \in C([0, T_c), [0, +\infty))$, with $T_c \in (0, +\infty]$, fulfilling the control inequalities (2.30) (2.31). Consider the maximal solution u of the NS Cauchy problem (2.24), of domain $[0, T)$; then
\[
T \geq T_c, \quad \|u(t) - u^N(t)\|_n \leq R_n(t) \quad \text{for } t \in [0, T_c) .
\] (3.14)
In particular, the control inequalities (2.30) (2.31) are satisfied by any function $R_n \in C^1([0, T_c), [0, +\infty))$ fulfilling the control Cauchy problem
\[
\frac{dR_n}{dt} = -R_n + R(G_nD_n + K_nD_{n+1})R_n + RG_nR^2_n + \epsilon_n \quad \text{on } [0, T_c), \quad R_n(0) = 0 .
\] (3.15)

3.4 Remarks. (i) Even though rougher than the estimator (3.12), the estimator (3.13) is interesting because its computation is less expensive; this is a relevant fact, especially in applications with a large N.
(ii) Let us consider the estimator (3.12), writing via (3.7) the error therein; alternatively, let us use the estimator (3.13). In both cases, it is natural to write
\[
\epsilon_n(t) = R^{N+1}\bar{\epsilon}_n(t) \quad \text{for } t \in [0, +\infty) ,
\] (3.16)
where $\bar{\epsilon}(t)$ is a suitable function; this is a polynomial of degree N in R in the case (3.13), and the square root of a polynomial of degree $2N$ in R in the case (3.12).

Consequently, the solution of the Cauchy problem (3.15) can be written as
\[
R_n(t) = R^{N+1}\bar{R}_n(t) ,
\] (3.17)
where $\bar{R}_n \in C^1([0, T_c), [0, +\infty))$ is such that
\[
\frac{d\bar{R}_n}{dt} = -\bar{R}_n + R(G_nD_n + K_nD_{n+1})\bar{R}_n + R\bar{N}^2G_{n}\bar{R}_n + \bar{\epsilon}_n , \quad \bar{R}_n(0) = 0 .
\] (3.18)
(iii) Eq. (3.14) has a number of obvious implications; let us give two examples.
(iii) The inequalities $\|u^N(t)\|_n - \|u(t) - u^N(t)\|_n \leq \|u(t)\|_n \leq \|u^N(t)\|_n + \|u(t) - u^N(t)\|_n$, the definition of $D_n(t)$ in (3.11) and Eq. (3.14) for R_n imply
\[
D_n(t) - R_n(t) \leq \|u(t)\|_n \leq D_n(t) + R_n(t) \quad \text{for } t \in [0, T_c) .
\] (3.19)
(iii) For any $v \in \mathbb{H}^n_u$, the equation $\|v\|^2 = (2\pi)^d \sum_{k \in \mathbb{Z}^d \backslash \{0\}} |k|^{2n} |v_k|^2$ implies $(2\pi)^{d/2} |v_k| \leq \|v\|_n/|k|^n$ for all k. This inequality with $v = u(t) - u^N(t)$ and (3.14) give
\[
(2\pi)^{d/2} |u_k(t) - u^N_k(t)| \leq \frac{R_n(t)}{|k|^n} \quad \text{for } k \in \mathbb{Z}^d \backslash \{0\} \text{ and } t \in [0, T_c) .
\] (3.20)
4 Implementing the recursion relations (3.4) (3.5)

The recursion relations mentioned in the title are the main characters of Proposition 3.1; their building blocks are, essentially, the linear maps \mathcal{U}, \mathcal{K} defined as follows:

$$
\mathcal{U} : H_0^{n+2} \to C([0, +\infty), H_0^{n+2}) \cap C^1([0, +\infty), H_0^n), \quad z \mapsto \mathcal{U}z \quad (4.1)
$$

where $\mathcal{U}z : [0, +\infty) \to H_0^{n+2}$, $t \mapsto (\mathcal{U}z)(t) := e^{t\Delta}z$;

$$
\mathcal{K} : C([0, +\infty), H_0^{n+1}) \to C([0, +\infty), H_0^{n+2}) \cap C^1([0, +\infty), H_0^n), \quad f \mapsto \mathcal{K}f \quad (4.2)
$$

where $\mathcal{K}f : [0, +\infty) \to H_0^{n+2}$, $t \mapsto (\mathcal{K}f)(t) := \int_0^t ds e^{(t-s)\Delta}f(s)$

(as for the domains and codomains of the above maps, recall Eqs. (2.7) (2.10) and the related comments). These maps have vector analogues, denoted for simplicity with the same letters,

$$
\mathcal{U} : \mathbb{H}_0^{n+2} \to C([0, +\infty), \mathbb{H}_0^{n+2}) \cap C^1([0, +\infty), \mathbb{H}_0^n), \quad z \mapsto \mathcal{U}z \quad (4.3)
$$

$$
\mathcal{K} : C([0, +\infty), \mathbb{H}_0^{n+1}) \to C([0, +\infty), \mathbb{H}_0^{n+2}) \cap C^1([0, +\infty), \mathbb{H}_0^n), \quad f \mapsto \mathcal{K}f \quad (4.4)
$$

these are defined rephrasing Eqs. (4.1) (4.2). In the sequel, it will always be clear from the context whether the symbols \mathcal{U}, \mathcal{K} refer to the maps (4.1) (4.2) or to the maps (4.3) (4.4). For $z = (z_1, ..., z_d) \in \mathbb{H}_0^{n+2}$ and $f = (f_1, ..., f_d) \in C([0, +\infty), \mathbb{H}_0^{n+1})$ we have

$$
\mathcal{U}z = (\mathcal{U}z_1, ..., \mathcal{U}z_d), \quad \mathcal{K}f = (\mathcal{K}f_1, ..., \mathcal{K}f_d) \quad (4.5)
$$

With the above notations, for any $u_\ast \in \mathbb{H}_0^{n+2}$ the recursion relations (3.4) (3.5) can be written as

$$
u_0 := \mathcal{U}u_\ast \quad (4.6)
$$

$$
\nu_j := \sum_{\ell=0}^{j-1} \mathcal{K}\mathcal{P}(u_\ell, u_{j-\ell-1}) \quad (j = 1, ..., N) \quad (4.7)
$$

Hereafter we give a set of elementary computational rules about the maps \mathcal{U}, \mathcal{K} and \mathcal{P}; these allow a straightforward computation of the functions $u_0, u_1, ..., u_N$ in Eqs. (4.6) (4.7), at least in the case when u_\ast is a Fourier polynomial (see the remark at the end of this section). Our computational rules involve the functions $e_k \in D$, $e_k(x) := e^{ik\cdot x} \ (k \in \mathbb{Z}^d)$ and

$$
B_{a,b} : [0, +\infty) \to \mathbb{R}, \quad t \mapsto B_{a,b}(t) := t^a e^{-bt} \quad (a, b \in \mathbb{N}) \quad (4.8)
$$

as well as the products

$$
B_{a,b}e_k : [0, +\infty) \to C^\infty(\mathbb{T}^d, \mathbb{C}), \quad t \mapsto t^a e^{-bt}e_k \quad (4.9)
$$
The formulation of our rules entails the complexified versions of the maps \(U, \mathcal{K} \) and \(\mathcal{P} \), denoted with the same symbols. For example, the complexified versions of the maps \(U \) and \(\mathcal{K} \) in Eqs. (4.1), (4.2) are defined as in the cited equations replacing systematically the spaces \(D' \) and \(H_0^\alpha \) with their complex analogues \(D_C' \) (the space of all complex distributions on \(\mathbb{T}^d \)) and \(H_0^\alpha_C \) (the space of zero mean complex distributions \(v \) such that \(\sqrt{-\Delta} v \) is square integrable). With the previous warnings, we summarize our computational rules in the forthcoming lemma.

4.1 Lemma. Let \(a, a', b, b', \in \mathbb{N}, k, k' \in \mathbb{Z}^d \) and \(s \in \{1, \ldots, d\} \). Then

\[
\partial_s (B_{a,b} e_k) = ik_s B_{a,b} e_k ; \tag{4.10}
\]

\[
(B_{a,b} e_k)(B_{a',b'} e_{k'}) = B_{a+a',b+b'} e_{k+k'} . \tag{4.11}
\]

In addition, let \(k \neq 0 \) (so that the functions below are in the domains of the complexified maps \(U \) or \(\mathcal{K} \)). Then

\[
U e_k = B_{0,|k|^2} e_k ; \tag{4.12}
\]

\[
\mathcal{K}(B_{a,b} e_k) = a! \left(\frac{B_{0,|k|^2}}{(b - |k|^2)^{a+1}} - \sum_{\ell=0}^{a} \frac{B_{\ell,b}}{(b - |k|^2)^{a+1-\ell}} \right) e_k \quad \text{if } b \neq |k|^2 , \tag{4.13}
\]

\[
\mathcal{K}(B_{a,|k|^2} e_k) = \frac{B_{a+1,|k|^2}}{a+1} e_k . \tag{4.14}
\]

Proof. Eqs. (4.10), (4.11) are obvious consequences of the definitions of \(e_k \) and \(B_{a,b} \).

Eq. (4.12) is just a reformulation of the relation \(e^{t\Delta} e_k = e^{-|k|^2 t} e_k \).

In order to derive Eqs. (4.13), (4.14), we note that (both for \(b \neq |k|^2 \) and for \(b = |k|^2 \)),

\[
\mathcal{K}(B_{a,b} e_k)(t) = \int_0^t ds e^{(t-s)\Delta}(s^a e^{-bs} e_k) \tag{4.15}
\]

\[
= \int_0^t ds s^a e^{-bs} e^{-|k|^2(t-s)} e_k = e^{-|k|^2 t} \left(\int_0^t ds s^a e^{-(b-|k|^2)s} \right) e_k .
\]

Let \(b \neq |k|^2 \). Then, a change of variables \(\sigma = (b - |k|^2)s \) gives \(\int_0^t ds s^a e^{-(b-|k|^2)s} = 1/(b - |k|^2)^{a+1} \int_0^{(b-|k|^2)t} d\sigma \sigma a e^{-\sigma} ; \) thus

\[
\mathcal{K}(B_{a,b} e_k)(t) = \frac{e^{-|k|^2 t}}{(b - |k|^2)^{a+1}} \gamma(a + 1, (b - |k|^2)t) e_k , \tag{4.16}
\]

where we have introduced the incomplete Gamma function

\[
\gamma(\alpha, y) := \int_0^y d\sigma \sigma^{\alpha-1} e^{-\sigma} \quad \text{for } y \in \mathbb{R}, \alpha \in \{1, 2, 3, \ldots\} . \tag{4.17}
\]
It is known that
\[\gamma(a + 1, y) = a! \left(1 - e^{-y} \sum_{\ell=0}^{a} \frac{y^\ell}{\ell!} \right) \] (4.18)
(see, e.g., [17], page 177, Eqs. (8.4.7) and (8.4.11)). Inserting this result into (4.16) we obtain that, for \(b \neq |k|^2 \),
\[\mathcal{K}(B_{a,b} e_k)(t) = a! \left(\frac{e^{-|k|^2 t}}{(b - |k|^2)^a+1} - \sum_{\ell=0}^{a} \frac{t^\ell e^{-bt}}{(b - |k|^2)^{a+1-\ell} \ell!} \right) e_k \] ; (4.19)
this proves Eq. (4.13). Finally, in the case \(b = |k|^2 \) we obtain from (4.15) that
\[\mathcal{K}(B_{a,|k|^2} e_k)(t) = e^{-|k|^2 t} \left(\int_0^t ds s^a \right) e_k = \frac{t^{a+1} e^{-|k|^2 t}}{a+1} e_k \] ; (4.20)
this proves Eq. (4.14).

4.2 Remark. Let us return to the recursion rules (4.6) (4.7), assuming that the initial datum \(u^* \) is a Fourier polynomial: by this we mean that \(u^* \) has finitely many non zero Fourier coefficients. In this case, due to Eqs. (4.6) and (4.12) all components of \(u_0 \) are linear combinations of finitely many functions of the form \(B_{0,|k|^2} e_k \). Using Eq. (4.7) with the results of the previous lemma we see that, for \(j = 1, ..., N \), each component of \(u_j \) is a finite linear combination of functions of the form \(B_{a,b} e_k \). We note that each term \(\mathcal{P}(u_\ell, u_{j-\ell-1}) \) in Eq. (4.7) can be calculated as follows: first of all, one computes each component of \(u_\ell \cdot \partial u_{j-\ell-1} \) using elementary considerations of bilinearity, together with Eqs. (4.10) (4.11); next, one obtains \(\mathcal{P}(u_\ell, u_{j-\ell-1}) = -\mathcal{L}(u_\ell \cdot \partial u_{j-\ell-1}) \) using the expression (2.14)(2.15) for the Leray projection.

5 An application with the Behr-Nečas-Wu (BNW) initial datum

Throughout this section we work with

\[d = 3 \ , \quad n = 3 \] (5.1)
and any Reynolds number \(R \in [0, +\infty) \). The Cauchy problem (2.24) takes the form

\[\text{Find } u \in C([0, T), \mathbb{H}^5_{\Sigma_0}) \cap C^1([0, T), \mathbb{H}^3_{\Sigma_0}) \text{ such that } \] (5.2)
\[\frac{du}{dt} = \Delta u + R\mathcal{P}(u, u) \ , \quad u(0) = u_* \ . \]

The initial datum \(u_* \) in \(\mathbb{H}^5_{\Sigma_0} \) (in fact, in \(\mathbb{H}^m_{\Sigma_0} \) for any real \(m \)) is chosen as follows:
\[u_*(x_1, x_2, x_3) := 2 \left(\cos(x_1 + x_2) + \cos(x_1 + x_3), \right. \]
\[\left. - \cos(x_1 + x_2) + \cos(x_2 + x_3), - \cos(x_1 + x_3) - \cos(x_2 + x_3) \right) . \]

(5.3)

This is a Fourier polynomial; indeed
\[u_* = \sum_{k=\pm a, \pm b, \pm c} u_{*k} e_k , \]

(5.4)

\[a := (1, 1, 0), \ b := (1, 0, 1), \ c := (0, 1, 1) ; \]
\[u_{*, \pm a} := (1, -1, 0), \ u_{*, \pm b} := (1, 0, -1), \ u_{*, \pm c} := (0, 1, -1) . \]

This initial datum has been introduced by Behr, Nečas and Wu in [1]; these authors have considered the datum (5.3) (5.4) as the origin of a possible blow-up for the Euler equations (i.e., for the zero viscosity limit of (1.1)).

We have disputed the BNW blow-up conjecture in [8]; in the present paper, independently of any opinion on the validity of this conjecture, we consider the datum (5.3) (5.4) in presence of viscosity and analyze it by the Reynolds expansion method of sections 3 and 4. In the final subsection we compare the outcomes of this approach with the results on the BNW datum obtained for the viscous case in [15], where a Galerkin approximate solution was employed in place of the Reynolds expansion.

Setting up the Reynolds expansion. The expansion of order \(N \) relies on the function \(u^N := \sum_{j=0}^{N} R_j u_j : [0, +\infty) \to H^5_{\Sigma_0} \) where \(u_0, \ldots, u_N \) are computed via the recursion rules (4.6) (4.7), starting from the BNW datum (5.4); after finding \(u^N \), one computes the related growth and error estimators \(D_3, D_4, \epsilon_3 \) and sets up the control Cauchy problem
\[\frac{dR_3}{dt} = -R_3 + R(G_3 D_3 + K_3 D_4) R_3 + R G_3 R_3^2 + \epsilon_3 \]

on \([0, T_c)\), \(R_3(0) = 0 \),

(5.5)

with \(K_3 \) and \(G_3 \) as in (2.21). In the sequel
\[R_3 : [0, T_c) \to [0, +\infty) \]

(5.6)

always denotes the maximal solution of this problem [7].

The above conceptual scheme has been implemented in the cases \(N = 1, 2, 5 \), on which we report in the sequel. The case \(N = 1 \) is useful to illustrate in full detail the method; the other ones give more accurate results, at the price of more expensive computations. In all cases, for the practical computation of \(u_0, u_1, \ldots \) and of the estimators \(D_3, D_4, \epsilon_3 \), we have employed MATHEMATICA in the symbolic

\[\text{More precisely: one considers the real valued } C^1 \text{ functions fulfilling (5.5), which are automatically nonnegative (see the comment immediately after Proposition 2.4); the maximal } C^1 \text{ solution (i.e., the solution with the largest domain) is the function in (5.6).} \]

17
mode. Then the control Cauchy problem has been solved numerically (using again MATHEMATICA) for several sample values of \(R \); these numerical calculations are very reliable, since they concern a simple one-dimensional ODE. The outcomes of such computations give evidence for the following picture.

(i) There is a critical Reynolds number \(R^* \) (depending on \(N \)) such that \(T_c = +\infty \) for \(0 \leq R \leq R^* \), and \(T_c < +\infty \) for \(R > R^* \). Moreover, for \(0 \leq R \leq R^* \) one has \(R_3(t) \to 0^+ \) for \(t \to +\infty \), while for \(R > R^* \) one has \(R_3(t) \to +\infty \) for \(t \to T_c^- \).

On the grounds of our general setting, the results (i) on the control Cauchy problem yield the following conclusion.

(ii) Let us consider the maximal solution \(u \) of the NS Cauchy problem (5.2) and the Reynolds expansion (for \(N = 1, 2 \) or 5), with its critical number \(R^* \). For \(0 \leq R \leq R^* \), \(u \) is global and \(\|u(t) - u^N(t)\|_3 \leq R_3(t) \) for all \(t \in [0, +\infty) \). For \(R > R^* \), we can only grant that the domain of \(u \) contains the interval \([0, T_c)\), and that \(\|u(t) - u^N(t)\|_3 \leq R_3(t) \) for all \(t \in [0, T_c) \).

In the sequel we give more detailed information about each one of the cases \(N = 1, 2, 5 \). As expected, when \(N \) is increased the critical value \(R^* \) increases as well. Our tests also indicate that, for a given \(R \), when \(N \) increases the same happens of \(T_c \); on the contrary \(R_3 \) becomes smaller, thus giving a more stringent estimate on \(\|u(t) - u^N(t)\|_3 \).

Case \(N = 1 \). This relies on

\[
u^1 := u_0 + Ru_1 : [0, +\infty) \to \mathbb{R}^5_{\Sigma_0}.
\]

The expressions of \(u_j = (u_{j,1}, u_{j,2}, u_{j,3}) \) for \(j = 0, 1 \) are as follows (with \(B_{a,b}(t) := t^ae^{-bt} \), as in the previous section):

\[
u_{0,1} = B_{0,2}(e_{(-1,-1,0)} + e_{(-1,0,-1)} + e_{(1,0,1)} + e_{(1,1,0)}) ,
\]

\[
u_{0,2} = B_{0,2}(-e_{(-1,-1,0)} + e_{(0,1,1)} - e_{(-1,1,0)}) ,
\]

\[
u_{0,3} = B_{0,2}(-e_{(-0,0,-1)} - e_{(0,-1,-1)} - e_{(0,1,1)} - e_{(1,0,1)}) ;
\]
In Boxes 1a-1d we consider the case of the MATHEMATICA output in the computation of r. Each one of these boxes (and of the subsequent ones)

$u_{1,1} = \frac{2i}{3} B_{0,4}(e_{(-2,-1,-1)} + e_{(-1,-2,-1)} - e_{(-1,-1,-2)} + e_{(1,1,2)} - e_{(1,2,1)} - e_{(2,1,1)})$

(5.9)

$+\frac{2i}{3} B_{0,6}(e_{(-2,-1,-1)} + e_{(-1,-2,-1)} - e_{(-1,-1,-2)} + e_{(1,1,2)} + e_{(1,2,1)} + e_{(2,1,1)})$

$u_{1,2} = \frac{2i}{3} B_{0,4}(e_{(-2,-1,-1)} + e_{(-1,-2,-1)} - e_{(-1,-1,-2)} + e_{(1,1,2)} + e_{(1,2,1)} + e_{(2,1,1)})$

(5.10)

$+\frac{2i}{3} B_{0,6}(e_{(-2,-1,-1)} + e_{(-1,-2,-1)} - e_{(-1,-1,-2)} - e_{(1,1,2)} - e_{(1,2,1)} - e_{(2,1,1)})$

$u_{1,3} = \frac{2i}{3} B_{0,4}(e_{(-2,-1,-1)} + e_{(-1,-2,-1)} + e_{(-1,-1,-2)} - e_{(1,1,2)} - e_{(1,2,1)} - e_{(2,1,1)})$

$+\frac{2i}{3} B_{0,6}(e_{(-2,-1,-1)} - e_{(-1,-2,-1)} - e_{(-1,-1,-2)} + e_{(1,1,2)} + e_{(1,2,1)} - e_{(2,1,1)})$.

The next step is to compute the differential error $e(u^1)$ which can be expressed via $e(\pi)$ and the (time dependent) norms

$D_3 := \|u^1\|_3, \quad D_4 := \|u^1\|_4, \quad \epsilon_3 := \|e(u^1)\|_3$.

These are as follows:

$D_3 = 4\sqrt{6}(2\pi)^{3/2} \left[B_{0,4} + 18R^2(B_{0,8} - 2B_{0,10} + B_{0,12})\right]^{1/2}$

(5.11)

$D_4 = 8\sqrt{3}(2\pi)^{3/2} \left[B_{0,4} + 54R^2(B_{0,8} - 2B_{0,10} + B_{0,12})\right]^{1/2}$,

(5.12)

$\epsilon_3 = 8\sqrt{2}/3(2\pi)^{3/2}R^2 \left[1065(B_{0,12} - 2B_{0,14} + 6B_{0,16}) + 3872R^2(B_{0,16} - 4B_{0,18} + 6B_{0,20} - 4B_{0,22} + 2B_{0,24})\right]^{1/2}$.

(5.13)

The above functions determine the control Cauchy problem (5.5). The numerical solution of this problem for many sample values of R yields a picture as in items (i)(ii), page 18, with a critical Reynolds number

$R_* \in (0.08, 0.09)$.

(5.14)

In Boxes 1a-1d we consider the case $R = 0.08$, giving information on the following functions of time: the quantity $(2\pi)^{3/2}|u^1_k(t)|$ for the wave vector $k = (1,1,0)$; the estimators D_3 and ϵ_3; the solution R_3 of the control Cauchy problem, which is global. In Boxes 2a-2d we consider the analogous functions in the case $R = 0.09$, where R_3 diverges at $T_* = 2.153...$ [3]. Each one of these boxes (and of the subsequent ones)

8Here and in the sequel, an expression like $r = a.bcede...$ means that $a.bcede$ are the first digits of the MATHEMATICA output in the computation of r. 19
contains the graph of the function under consideration, and its numerical values for some choices of \(t \).

One immediately notices that the functions in boxes of the types (a) and (b) (i.e., the norm of the Fourier component \((1,1,0)\) and the estimator \(\mathcal{D}_3 \)) are very similar in these examples (and in all the subsequent ones), even from the quantitative viewpoint. What really makes the difference among these examples (and the forthcoming ones) are the differential error estimator \(\epsilon_3 \) and the solution \(R_3 \) of the control Cauchy problem, considered in type (c) and (d) boxes.

Case \(N = 2 \). This relies on the function

\[
\begin{align*}
 u^2 := u_0 + Ru_1 + R^2 u_2 &: [0, +\infty) \to \mathbb{H}^5_{x_0}.
\end{align*}
\]

(5.15)

Of course, \(u_0, u_1 \) are as in Eqs. (5.8) (5.9); \(u_2 = (u_{2,1}, u_{2,2}, u_{2,3}) \) has a more complicated expression, and in order to save room we only report its first component. This is

\[
 u_{2,1} = \frac{1}{9} B_{0,2} \left(-e(-1,-1,0) - e(-1,0,-1) - e(1,0,1) - e(1,1,0) \right) + \frac{1}{3} B_{0,4} \left(e(0,-2,0) - e(0,0,-2) - e(0,2,0) + e(0,2,0) \right)
\]

\[
 + \frac{1}{12} B_{0,6} \left(-e(-3,-2,-1) - e(-3,-1,-2) + e(-2,-3,-1) - e(-2,-1,-3) - e(-1,-3,-2) - e(-1,-2,-3) + 4e(-1,-1,0) + 4e(-1,0,-1) - 8e(0,-2,0) + 8e(0,0,-2) + 8e(0,0,2) - 8e(0,2,0) + 4e(1,0,1) + 4e(1,1,0) - e(1,2,3) - e(1,3,2) - e(2,1,3) + e(2,3,1) - e(3,1,2) - e(3,2,1) \right)
\]

\[
 + \frac{1}{9} B_{0,8} \left(e(-3,-2,-1) + e(-3,-1,-2) - e(-2,-3,-1) + e(-2,-1,-3) + e(-1,-3,-2) + e(-1,-2,-3) - 2e(-1,-1,0) - 2e(-1,0,-1) + 3e(0,-2,0) - 3e(0,0,-2) - 3e(0,0,2) + 3e(0,2,0) - 2e(1,0,1) - 2e(1,1,0) + e(1,2,3) + e(1,3,2) + e(2,1,3) - e(2,3,1) + e(3,1,2) + e(3,2,1) \right)
\]

\[
 + \frac{1}{36} B_{0,14} \left(-e(-3,-2,-1) - e(-3,-1,-2) + e(-2,-3,-1) - e(-2,-1,-3) - e(-1,-3,-2) - e(-1,-2,-3) - e(1,2,3) - e(1,3,2) - e(2,1,3) + e(2,3,1) - e(3,1,2) - e(3,2,1) \right).
\]

The next step involves the differential error \(e(u^2) \) (see again (3.7)) and the (time dependent) norms

\[
 \mathcal{D}_3 := \|u^2\|_3, \quad \mathcal{D}_4 := \|u^2\|_4, \quad \epsilon_3 := \|e(u^2)\|_3.
\]

(5.17)

For example, one has
\[
D_3 = \sqrt{2} \left(2\pi\right)^{3/2} \left[1296 B_{0,4} + 288 R^2 \left(-B_{0,4} + 84 B_{0,8} - 164 B_{0,10} + 81 B_{0,12} \right) \\
+ R^4 \left(16 B_{0,4} + 1056 B_{0,8} - 4544 B_{0,10} + 16317 B_{0,12} - 29496 B_{0,14} + 17680 B_{0,16} \\
+ 6174 B_{0,20} - 8232 B_{0,22} + 1029 B_{0,28} \right) \right]^{1/2}.
\]

The expressions of \(D_4\) and \(\epsilon_3\) are not reported. The former has a complexity similar to that of \(D_3\), the latter is lengthier; in fact, \(\epsilon_3\) has the form \((2\pi)^{3/2} \left(\sum_{j,b} C_{j,b} R^j B_{a,b} \right)^{1/2}\), where \(C_{j,b}\) are rational coefficients and the sum involves 48 pairs \((j, b)\), with \(j \in \{6, 8, 10\}\).

Let us pass to the control Cauchy problem (5.5); in the present case, the picture of items (i)(ii), page 18 is realized with a critical Reynolds number

\[R_* \in (0.12, 0.13). \]

Boxes 3a-3d are about the case \(R = 0.12\), and give information on the functions already chosen for the previous tables; one of them is the solution \(R_3\) of the control Cauchy problem, which is global. Boxes 4a-4d are about the analogous functions in the case \(R = 0.13\), in which \(R_3\) diverges at \(T = 2.604\).

Case \(N = 5\). This relies on the function

\[u^5 := \sum_{j=0}^{5} R^j u_j : [0, +\infty) \to \mathbb{H}_{\Sigma_0}^5. \]

The terms \(u_0, u_1, u_2\) are as before; the functions \(u_3, u_4\) and \(u_5\) have expressions of increasing complexity, that we cannot reproduce here. We only mention that each one of the components \(u_{5,1}, u_{5,2}, u_{5,3}\) is a linear combination with rational coefficients of 1924 terms of the form \(i B_{a,b} e_k\), with \(a \in \{0, 1, 2\}\); the wave vectors \(k\) appearing at least in one of the three components of \(u_5\) are 174.

The differential error and the norms

\[\mathcal{D}_3 := \|u^5\|_3, \quad \mathcal{D}_4 := \|u^5\|_4, \quad \epsilon_3 := \|\epsilon(u^5)\|_3 \]

have very lengthy expressions. Each one of the functions (5.21) has the form \((2\pi)^{3/2} \left(\sum_{j,a,b} C_{j,a,b} R^j B_{a,b} \right)^{1/2}\), where the \(C_{j,a,b}\) are rational coefficients and the sum involves finitely many triples \((j, a, b)\) of nonnegative integers; these triples are 204 in the cases of \(D_3\) and \(D_4\), and 1734 in the case of \(\epsilon_3\).

As in the other cases, the final step is the control problem (5.5); the picture outlined by items items (i)(ii), page 18 is now realized with a critical Reynolds number

\[R_* \in (0.23, 0.24). \]
In Boxes 5a-5d and 6a-6d we give some information about the cases $R = 0.23$ and $R = 0.24$, respectively. Boxes 7a-7d are about the case $R = 0.12$; this choice is considered as well in the next subsection, where it is used for a comparison between the Reynolds expansion and the Galerkin approach.

Comparison with the Galerkin approach. In [15] we have considered the NS Cauchy problem with the BNW initial datum, using the Galerkin approximate solution u^G that corresponds to a finite set of Fourier modes $G \subset \mathbb{Z}^3 \setminus \{0\}$ (this is assumed to be reflection invariant: $k \in G \Rightarrow -k \in G$).

This approach relies on the (finite-dimensional) Galerkin subspace

$$H_{\Sigma_0}^G := \{ v \in \mathcal{D}'_{\Sigma_0} \mid v_k = 0 \text{ for } k \notin G \}$$ \hspace{1cm} (5.23)

and on the projection

$$\mathcal{P}^G : \mathcal{D}'_{\Sigma_0} \rightarrow H_{\Sigma_0}^G , \quad v = \sum_{k \in \mathbb{Z}^d \setminus \{0\}} v_k e_k \mapsto \mathcal{P}^G v := \sum_{k \in G} v_k e_k .$$ \hspace{1cm} (5.24)

The Galerkin approximate solution of the Cauchy problem (5.2) (with the BNW datum) corresponding to the set of modes G is the unique function u^G such that

$$u^G \in C^1([0, +\infty), H^G_{\Sigma_0}), \quad \frac{du^G}{dt} = \Delta u^G + R \mathcal{P}^G (u^G, u^G) , \quad u^G(0) = \mathcal{P}^G u^*$$ \hspace{1cm} (5.25)

(thus, u^G solves a finite-dimensional Cauchy problem; one can show the existence of a global solution, of domain $[0, +\infty)$, using the fact that the L^2 norm is a decreasing function of time). Indeed, in [15] we considered an equivalent formulation of (5.25) based on the viscosity ν and on the unscaled time t, related to R and to the present time variable t via Eq. (1.3); in the sequel we will rephrase the results of [15] in terms of the variables R and t.

For a given G, u^G can be computed numerically; more precisely, one solves numerically a system of ODEs for the Fourier coefficients $\hat{\gamma}_k$ in the expansion

$$u^G(t) = \sum_{k \in G} \hat{\gamma}_k(t) e_k .$$ \hspace{1cm} (5.26)

One can specialize to u^G the general framework for approximate NS solutions; in particular, one introduces the differential error $e(u^G) := du^G/dt - \Delta u^G - R \mathcal{P}(u^G, u^G)$ and the tautological estimators of orders 3 or 4 for the growth of u^G and for the above error, i.e., the functions

$$\mathcal{D}_3(t) := \|u^G(t)\|_3, \mathcal{D}_4(t) := \|u^G(t)\|_4, \tilde{\epsilon}_3(t) := \|e(u^G)(t)\|_3 \quad (t \in [0, +\infty))$$ \hspace{1cm} (5.27)
Let us summarize the results arising from this choice of G. The datum error $\hat{u}G(0) - u_*$ is zero if G contains the Fourier modes $\pm a, \pm b, \pm c$ involved in Eq. (5.4). Assuming this, one can analyze the Galerkin approximate solution in terms of a control Cauchy problem

$$\frac{d\hat{R}_3}{dt} = -\hat{R}_3 + R(G_3\hat{D}_3 + K_3\hat{D}_4)\hat{R}_3 + RG_3\hat{R}_3^2 + \hat{e}_3$$ on $[0, \hat{T}_c)$, \quad $\hat{R}_3(0) = 0$, (5.28)

whose (maximal) solution $\hat{R}_n \in C^1([0, \hat{T}_c), [0, +\infty))$ can be computed numerically. In [15] we have employed a set G of 150 modes, of the following form:

$$G := S \cup -S; \quad -S := \{-k \mid k \in S\}; (5.29)$$

$$S := \{(0, 0, 2), (0, 1, -3), (0, 1, 1), (0, 1, 3), (0, 2, 0), (0, 2, 2), (0, 3, -1), (0, 3, 1), (0, 3, 3),$$

$$(1, -3, -2), (1, -3, 0), (1, -3, 2), (1, -2, -3), (1, -2, -1), (1, -2, 1), (1, -2, 3),$$

$$(1, -1, -2), (1, -1, 2), (1, 0, -3), (1, 0, 1), (1, 0, 3), (1, 1, -2), (1, 1, 0), (1, 1, 2), (2, -3),$$

$$(1, 2, -1), (1, 2, 1), (1, 2, 3), (1, 3, -2), (1, 3, 0), (1, 3, 2), (2, -3, -3), (2, -3, -1), (2, -3, 1),$$

$$(2, -3, 3), (2, -2, -2), (2, -2, 2), (2, -1, -3), (2, -1, 3), (2, -1, 1), (2, -1, 3), (2, 0, 0),$$

$$(2, 0, 2), (2, 1, -3), (2, 1, -1), (2, 1, 1), (2, 1, 3), (2, 2, -2), (2, 2, 0), (2, 3, -3), (2, 3, -1),$$

$$(2, 3, 1), (2, 3, 3), (3, -3, -2), (3, -3, 2), (3, -2, -3), (3, -2, -1), (3, -2, 1), (3, -2, 3),$$

$$(3, -1, -2), (3, -1, 0), (3, -1, 2), (3, 0, -1), (3, 0, 1), (3, 0, 3), (3, 1, -2), (3, 1, 0), (3, 1, 2),$$

$$(3, 2, -3), (3, 2, -1), (3, 2, 1), (3, 2, 3), (3, 3, -2), (3, 3, 0), (3, 3, 2)\}.$$

Let us summarize the results arising from this choice of G.

(i) There are indications for the existence of a critical Reynolds number R_* such that: $\hat{T}_c = +\infty$ and \hat{R}_3 vanishes at $+\infty$ if $0 \leq R \leq R_*$, while $\hat{T}_c < +\infty$ and \hat{R}_3 diverges at \hat{T}_c if $R > R_*$. One has $R_* \in (0.13, 0.14)$.

(ii) Let us consider the maximal solution u of the NS Cauchy problem (5.2). For $0 \leq R \leq R_*$, (i) grants that u is global and $\|u(t) - uG(t)\|_3 \leq \hat{R}_3(t)$ for all $t \in [0, +\infty)$. For $R > R_*$ (i) only grants that the domain of u contains the interval $[0, \hat{T}_c)$, and that $\|u(t) - uG(t)\|_3 \leq \hat{R}_3(t)$ for all $t \in [0, \hat{T}_c)$.

As an example, Boxes 8a-8d report the main results about the Galerkin approach for $R = 0.12$. Both the general picture (i) (ii) and the results for $R = 0.12$ indicate a substantial equivalence between the Galerkin approach with the set G of (5.29) and the Reynolds expansion of order $N = 2$. In fact:

\footnote{The estimate coming directly from [15] is $1/8 < R_* < 1/7$, whence $0.125 < R_* < 0.143$; this estimate has been refined to $0.13 < R_* < 0.14$ by a supplementary run of the MATHEMATICA program for [15].}
(a) The expansion of order $N = 2$ yields a picture similar to $(\tilde{n}) \ (\tilde{n})$, with a critical Reynolds number $R_* \in (0.12, 0.13)$ (see items (i)(ii) of page 18 and Eq. (5.19) for R_*).

(b) The error estimators $\varepsilon_3, \hat{\varepsilon}_3$ and the solutions R_3, \hat{R}_3 of the control equations for the $N = 2$ Reynolds expansion and for the Galerkin approach with G in (5.29) have similar orders of magnitude in the case $R = 0.12$, here used as a test to make comparisons: see Boxes 3c-3d and 8c-8d for more detailed information.

If we pass to the $N = 5$ expansion, we find a significant improvement with respect to the results of the above Galerkin approach. Let us recall that, for $N = 5$, the critical Reynolds number for global existence is in the interval $(0.23, 0.24)$; moreover, if we use again the case $R = 0.12$ for a comparison, we see that the error estimators ε_3 and the function R_3 of the $N = 5$ expansion are much smaller than the homologous function $\hat{\varepsilon}_3, \hat{R}_3$ of the Galerkin approach: see Boxes 7c-7d and 8c-8d. In particular, the ratio $R_3(t)/\hat{R}_3(t)$ is of order 10^{-4}: so, the bound $\|u(t) - u^5(t)\|_3 \leq R_3(t)$ is much more stringent than the bound $\|u(t) - u^G(t)\|_3 \leq \hat{R}_3(t)$.

24
Box 1a. \(N = 1 \), \(R = 0.08 \): the function \(\gamma(t) := (2\pi)^{3/2}|w_{[1,1,0]}(t)| \). One has \(\gamma(0) = 22.27 \), \(\gamma(0.5) = 8.189 \), \(\gamma(1) = 3.012 \), \(\gamma(1.5) = 1.108 \), \(\gamma(2) = 0.4076 \), \(\gamma(4) = 7.466 \times 10^{-3} \), \(\gamma(8) = 2.564 \times 10^{-6} \), \(\gamma(10) = 4.587 \times 10^{-8} \).

Box 1b. \(N = 1 \), \(R = 0.08 \): the function \(D_{\gamma}(t) := \|w_{[1]}(t)\|_2 \). One has \(D_{\gamma}(0) = 154.3 \), \(D_{\gamma}(0.5) = 56.94 \), \(D_{\gamma}(1) = 20.90 \), \(D_{\gamma}(1.5) = 7.683 \), \(D_{\gamma}(2) = 2.826 \), \(D_{\gamma}(4) = 0.05176 \), \(D_{\gamma}(8) = 1.736 \times 10^{-5} \), \(D_{\gamma}(10) = 3.180 \times 10^{-7} \).

Box 1c. \(N = 1 \), \(R = 0.08 \): the function \(\epsilon_{3}(t) \). One has \(\epsilon_{3}(0) = 0 \), \(\epsilon_{3}(0.14) = 2.266 \), \(\epsilon_{3}(0.25) = 0.4695 \), \(\epsilon_{3}(2) = 1.296 \times 10^{-4} \), \(\epsilon_{3}(4) = 8.108 \times 10^{-10} \).

Box 1d. \(N = 1 \), \(R = 0.08 \): the function \(\Re_{3}(t) \). This appears to be globally defined, and vanishing at \(+\infty\). One has \(\Re_{3}(0) = 0 \), \(\Re_{3}(1) = 9.858 \), \(\Re_{3}(1.5) = 11.66 \), \(\Re_{3}(2) = 10.23 \), \(\Re_{3}(4) = 2.283 \), \(\Re_{3}(8) = 0.04547 \), \(\Re_{3}(10) = 6.162 \times 10^{-3} \).

Box 2a. \(N = 1 \), \(R = 0.09 \): the function \(\gamma(t) := (2\pi)^{3/2}|w_{[1,1,0]}(t)| \). One has \(\gamma(0) = 22.27 \), \(\gamma(0.5) = 8.188 \), \(\gamma(1) = 3.011 \), \(\gamma(1.5) = 1.107 \), \(\gamma(2) = 0.4075 \), \(\gamma(4) = 7.465 \times 10^{-3} \).

Box 2b. \(N = 1 \), \(R = 0.09 \): the function \(D_{\gamma}(t) := \|w_{[1]}(t)\|_2 \). One has \(D_{\gamma}(0) = 154.3 \), \(D_{\gamma}(0.5) = 56.99 \), \(D_{\gamma}(1) = 20.90 \), \(D_{\gamma}(1.5) = 7.684 \), \(D_{\gamma}(2) = 2.826 \), \(D_{\gamma}(4) = 0.05176 \).

Box 2c. \(N = 1 \), \(R = 0.09 \): the function \(\epsilon_{3}(t) \). One has \(\epsilon_{3}(0) = 0 \), \(\epsilon_{3}(0.14) = 2.868 \), \(\epsilon_{3}(0.25) = 0.05829 \), \(\epsilon_{3}(2) = 1.640 \times 10^{-4} \), \(\epsilon_{3}(4) = 1.026 \times 10^{-8} \).

Box 2d. \(N = 1 \), \(R = 0.09 \): the function \(\Re_{3}(t) \). This diverges for \(t \to \infty \). One has \(\Re_{3}(0) = 0 \), \(\Re_{3}(0.5) = 6.624 \), \(\Re_{3}(1) = 23.20 \), \(\Re_{3}(1.5) = 46.66 \), \(\Re_{3}(2) = 176.0 \).
Box 3a. $N = 2, R = 0.12$: the function

$$\gamma(t) := \langle \bar{w}_{1,1,0} \rangle(t).$$

One has $\gamma(0) = 22.27, \gamma(0.5) = 8.183, \gamma(1) = 3.009, \gamma(1.5) = 1.076, \gamma(2) = 0.4072, \gamma(4) = 7.459 \times 10^{-3}, \gamma(8) = 2.502 \times 10^{-6}, \gamma(10) = 4.583 \times 10^{-8}.$$

Box 3b. $N = 2, R = 0.12$: the function

$$D_3(t) := \| u^3(t) \|.\] One has $D_3(0) = 154.3, D_3(0.5) = 57.10, D_3(1) = 20.88, D_3(1.5) = 7.672, D_3(2) = 2.821, D_3(4) = 0.05168, D_3(8) = 1.733 \times 10^{-5}, D_3(10) = 3.175 \times 10^{-7}.$$

Box 3c. $N = 2, R = 0.12$: the function

$$c_3(t).$$ One has $c_3(0) = 0, c_3(0.2) = 0.2709, c_3(1) = 0.01087, c_3(2) = 1.688 \times 10^{-4}, c_3(4) = 5.653 \times 10^{-8}.$$

Box 3d. $N = 2, R = 0.12$: the function

$$\mathcal{X}_3(t).$$ This appears to be globally defined, and vanishing at $+\infty$. One has $\mathcal{X}_3(0) = 0, \mathcal{X}_3(1) = 4.699, \mathcal{X}_3(1.6) = 6.854, \mathcal{X}_3(2) = 6.368, \mathcal{X}_3(4) = 1.466, \mathcal{X}_3(8) = 0.02914, \mathcal{X}_3(10) = 3.949 \times 10^{-3}.$$

Box 4a. $N = 2, R = 0.13$: the function

$$\gamma(t) := \langle \bar{w}_{1,1,0} \rangle(t).$$ One has $\gamma(0) = 22.27, \gamma(0.5) = 8.183, \gamma(1) = 3.009, \gamma(1.5) = 1.065, \gamma(2) = 0.4071, \gamma(4) = 7.457 \times 10^{-3}.$$

Box 4b. $N = 2, R = 0.13$: the function

$$D_3(t) := \| u^3(t) \|.\] One has $D_3(0) = 154.3, D_3(0.5) = 57.16, D_3(1) = 20.89, D_3(1.5) = 7.671, D_3(2) = 2.821, D_3(4) = 0.05166.$$

Box 4c. $N = 2, R = 0.13$: the function

$$c_3(t).$$ One has $c_3(0) = 0, c_3(0.2) = 0.3568, c_3(1) = 0.01280, c_3(2) = 2.146 \times 10^{-4}, c_3(4) = 7.187 \times 10^{-8}.$$

Box 4d. $N = 2, R = 0.13$: the function

$$\mathcal{X}_3(t).$$ This diverges for $t \to 2: = 2.694.\] One has $\mathcal{X}_3(0) = 0, \mathcal{X}_3(0.5) = 1.735, \mathcal{X}_3(1) = 10.20, \mathcal{X}_3(1.5) = 20.68, \mathcal{X}_3(2) = 36.30, \mathcal{X}_3(2.5) = 175.3.$
One has \(\gamma(0) = 22.27 \ldots \), \(\gamma(0.5) = 8.160 \ldots \), \(\gamma(1) = 2.997 \ldots \), \(\gamma(1.5) = 1.102 \ldots \), \(\gamma(2) = 0.4055 \ldots \), \(\gamma(4) = 7.428 \ldots \times 10^{-3} \), \(\gamma(8) = 2.491 \ldots \times 10^{-6} \), \(\gamma(10) = 4.564 \ldots \times 10^{-8} \).
Box 7a. \(N = 5, R = 0.12 \): the function
\[\gamma(t) = (2\pi)^{3/2}/u_{12}(t) \]. One has \(\gamma(0) = 22.27 \ldots, \gamma(0.5) = 8.14 \ldots, \gamma(1) = 3.009 \ldots, \gamma(1.5) = 1.107 \ldots, \gamma(2) = 0.4072 \ldots, \gamma(4) = 7.459 \ldots \times 10^{-3}, \gamma(8) = 2.502 \ldots \times 10^{-6}, \gamma(10) = 4.583 \ldots \times 10^{-8} \).

Box 7b. \(N = 5, R = 0.12 \): the function
\[D_2(t) = ||u(t)||_2 \]. One has \(D_2(0) = 154.3 \ldots, D_2(0.5) = 57.10 \ldots, D_2(1) = 20.88 \ldots, D_2(1.5) = 7.672 \ldots, D_2(2) = 2.821 \ldots, D_2(4) = 0.05168 \ldots, D_2(8) = 1.733 \ldots \times 10^{-5}, D_2(10) = 3.175 \ldots \times 10^{-7} \).

Box 7c. \(N = 5, R = 0.12 \): the function
\[e_5(t) \]. One has \(e_5(0) = 0, e_5(0.33) = 3.259 \ldots \times 10^{-3}, e_5(1) = 1.634 \ldots \times 10^{-6}, e_5(2) = 4.126 \ldots \times 10^{-9}, e_5(4) = 1.266 \ldots \times 10^{-13} \).

Box 7d. \(N = 5, R = 0.12 \): the function
\[R_3(t) \]. This appears to be globally defined, and vanishing at \(+\infty\). One has \(R_3(0) = 0, R_3(1) = 2.237 \ldots \times 10^{-4}, R_3(1.4) = 2.784 \ldots \times 10^{-4}, R_3(2) = 2.171 \ldots \times 10^{-4}, R_3(4) = 3.410 \ldots \times 10^{-5}, R_3(10) = 8.431 \ldots \times 10^{-8} \).

Box 8a. Galerkin method with \(G \) as in (5.29), for \(R = 0.12 \): the function
\[\hat{\gamma}(t) = (2\pi)^{3/2}/u_{12}(t) \]. One has \(\hat{\gamma}(0) = 22.27 \ldots, \hat{\gamma}(0.5) = 8.14 \ldots, \hat{\gamma}(1) = 3.009 \ldots, \hat{\gamma}(1.5) = 1.107 \ldots, \hat{\gamma}(2) = 0.4072 \ldots, \hat{\gamma}(4) = 7.459 \ldots \times 10^{-3}, \hat{\gamma}(8) = 2.506 \ldots \times 10^{-6}, \hat{\gamma}(10) = 4.562 \ldots \times 10^{-8} \).

Box 8b. Galerkin method for \(R = 0.12 \): the function
\[\hat{D}_2(t) = ||\hat{u}(t)||_2 \]. One has \(\hat{D}_2(0) = 154.3 \ldots, \hat{D}_2(0.5) = 57.10 \ldots, \hat{D}_2(1) = 20.88 \ldots, \hat{D}_2(1.5) = 7.672 \ldots, \hat{D}_2(2) = 2.821 \ldots, \hat{D}_2(4) = 0.05168 \ldots, \hat{D}_2(8) = 1.736 \ldots \times 10^{-5}, \hat{D}_2(10) = 3.811 \ldots \times 10^{-7} \).

Box 8c. Galerkin method for \(R = 0.12 \): the function
\[e_5(t) \]. One has \(e_5(0) = 0, e_5(0.18) = 1.411 \ldots, e_5(1) = 0.01121 \ldots, e_5(2) = 4.492 \ldots \times 10^{-6}, e_5(4) = 5.590 \ldots \times 10^{-9} \).

Box 8d. Galerkin method for \(R = 0.12 \): the function
\[R_3(t) \]. This appears to be globally defined, and vanishing at \(+\infty\). One has \(R_3(0) = 0, R_3(1) = 2.964 \ldots, R_3(1.5) = 4.022 \ldots, R_3(3) = 1.679 \ldots, R_3(4) = 0.6665 \ldots, R_3(6) = 0.09327 \ldots, R_3(8) = 0.01267 \ldots, R_3(10) = 1.716 \ldots \times 10^{-3} \).
Acknowledgments. This work was partly supported by INdAM, INFN and by MIUR, PRIN 2010 Research Project “Geometric and analytic theory of Hamiltonian systems in finite and infinite dimensions”.

References

[1] E. Behr, J. Nečas, H. Wu, On blow-up of solution for Euler equations, M2AN: Math. Model. Numer. Anal. 35 (2001), 229-238.

[2] M. Cannone, Ondlettes, paraproduits et Navier-Stokes, Diderot, 1995.

[3] S.I. Chernyshenko, P. Constantin, J.C. Robinson, E.S. Titi, A posteriori regularity of the three-dimensional Navier-Stokes equations from numerical computations, J. Math. Phys. 48 (2007), 065204/10.

[4] T. Kato, Nonstationary flows of viscous and ideal fluids in \mathbb{R}^3, J. Funct. Anal. 9 (1972), 296-305.

[5] T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations, in “Spectral theory and differential equations”, Proceedings of the Dundee Symposium, Lecture Notes in Mathematics 448 (1975), 23-70.

[6] S. Kida, Three-dimensional periodic flows with high-symmetry, J. Phys. Soc. Japan 54 (1985), 2132-2140.

[7] P.G. Lemarié-Rieusset, “Recent developments in the Navier-Stokes problem”, Chapman & Hall, Boca Raton, 2002.

[8] C. Morosi, M. Pernici, L. Pizzocchero, On power series solutions for the Euler equation, and the Behr-Nečas-Wu initial datum, ESAIM Math. Model. Numer. Anal. 47 (2013), 663-688. See also arXiv:1203.6865

[9] C. Morosi, M. Pernici, L. Pizzocchero, A posteriori estimates for Euler and Navier-Stokes equations, submitted (2013).

[10] C. Morosi, M. Pernici, L. Pizzocchero, in preparation.

[11] C. Morosi, L. Pizzocchero, On approximate solutions of semilinear evolution equations, Rev. Math. Phys. 16 (2004), 383-420. See also arXiv:math-ph/0309016

[12] C. Morosi, L. Pizzocchero, On approximate solutions of semilinear evolution equations II. Generalizations, and applications to Navier-Stokes equations, Rev. Math. Phys. 20 (2008), 625-706. See also arXiv:0709.1670
[13] C. Morosi, L. Pizzocchero, An H^1 setting for the Navier-Stokes equations: Quantitative estimates, Nonlinear Anal. 74 (2011), 2398-2414. See also arXiv:0909.3707

[14] C. Morosi, L. Pizzocchero, On the constants in a Kato inequality for the Euler and NS equations, Commun. Pure Appl. Analysis 11 (2012), 557-586. See also arXiv:1009.2051

[15] C. Morosi, L. Pizzocchero, On approximate solutions for the Euler and Navier-Stokes equations, Nonlinear Analysis 75 (2012), 2209-2235. See also arXiv:1104.3832

[16] C. Morosi, L. Pizzocchero, On the constants in a basic inequality for the Euler and NS equations, Appl. Math. Lett. 26 (2013), 277-284. See also arXiv:1007.4412

[17] F. W. J. Olver et al., editors, NIST Handbook of Mathematical Functions, Cambridge University Press, 2010.

[18] J.C. Robinson, W. Sadowski, Numerical verification of regularity in the three-dimensional Navier-Stokes equations for bounded sets of initial data, Asymptot. Anal. 59 (2008), 39-50.

[19] Y. Sinai, Power series for solutions of the 3D Navier-Stokes system on \mathbb{R}^3, J. Stat. Phys. 121 (2005), 779–803.

[20] G.I. Taylor, A.E. Green, Mechanism of the production of small eddies from large ones, Proc. R. Soc. Lond. A 158 (1937), 499-521.