Determining of Factors Influencing the Success and Failure of Hospital Information System and Their Evaluation Methods: A Systematic Review

Farahnaz Sadoughi 1, Khalil Kimiafar 1,2,3, Maryam Ahmadi 1, Mohammad Taghi Shakeri 3

1Department of Health Information Management, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, IR Iran
2Department of Medical records and Health Information Technology, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
3Department of Community Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, IR Iran

*Corresponding Author: Khalil Kimiafar, Department of Medical Records and Health Information Technology, School of Paramedical Sciences, Mashhad University of Medical Sciences, Felestin Sq., Mashhad, IR Iran, Tel: +98-5117610111, E-mail: kimaifar@iums.ac.ir

Received: April 22, 2013; Revised: May 3, 2013; Accepted: May 10, 2013

1. Background

Nowadays, using new information technology (IT) has provided remarkable opportunities to decrease medical errors, support health care specialist, increase the efficiency and even the quality of patient’s care and safety (1, 2). On the other hand, there are numerous problems in the scope of IT-based systems in the field of health care; therefore, it causes a deep gap between the positive potential for IT to help health care organizations and their negative impacts. It means that a huge amount of money is invested in health information systems, but a significant portion of this money is wasted for inefficient systems or not implemented ones (3).

Evaluation means “the act of measuring or exploring properties of a health information system (in planning, development, implementation, or operation), the result of which informs a decision to be made concerning that system in a specific context” (4). An evaluation which is carried out based on suitable investment and approved techniques can cause the organization to have a forward movement (5, 6). Organizations require a comprehensive evaluation framework, which can help create and develop methods of information system evaluation (7); on the other hand, the identification of methods for information systems evaluation can be possible through the identifying the success and failure factors of these systems (8).

When we talk about success, we should identify what the criteria and parameters used for the evaluation of success are. Success is considered as a dynamic concept (9). Whether the system achieves its intended purpose from its establishment is what we mean by success; moreover, it should be carried out based on an anticipated time table and budget, while the project team and its users are satisfied with the results and this satisfaction should

Implication for health policy/practice/research/medical education:
The results of the present research indicate that the emphasis of HISs evaluation moves from technical subjects to human and organizational subjects and from objective to subjective issues. Therefore, this issue entails more familiarity with more qualitative evaluation methods.

Copyright © 2013, Iranian Red Crescent Medical Journal; Published by Kowsar Corp. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
be constant (10). Since the information system is complicated and multidimensional, it may succeed or fail in different situations (11, 12). These days, due to increasing attention of different organizations to expenses related to the projects of information systems and gaining at least the minimum benefits from them, studying their success or failure has its special importance (13-15). There are various reports presented pertaining to the high rates of failure in IT projects in industrial sector and health care organizations especially in hospitals (3,16-19). Kaplan in his study asserts that the rate of failure in implementation of IT in health care organizations of America is almost 50 percent (20).

Information systems are the combination of different elements, among which the measurement of some elements is easier than that of the others. The evaluation framework which is simply concentrated on elements whose measurement is easier cannot introduce a perfect framework in evaluation of information systems (21). Many case studies have been done, whose results are based on one or a few factors which affect the success of IT-based systems, so it mentions this important point that the findings of such literatures should be put together as a puzzle. In this case, a lot of benefits can be achieved from the significant studies done in this field by using different approaches (22). Just one comprehensive evaluation study can show whether a specific system can be successful in a special place or not. Moreover, each evaluation criterion must be measured through an appropriate method. A perfect evaluation should include all proper success factors (23, 24).

Previous researchers have discussed the challenges of the evaluation of health information systems and the problems resulting from lack of unique conceptual framework to guide evaluation researches (25, 26). The most significant challenge in evaluation of information systems used in health care is that information systems can influence the improvement of treatment and the patient’s health level. Due to this potential influence on the patient’s life, more accurate criteria should be applied for the evaluation of these systems (5, 11, 27). Of course, understanding the effects, results and prerequisites necessary for successful implementation of information technologies in health care require a multi-factor viewpoint (15).

Some success and failure factors have either less or more importance in different information systems (28). The main focus of our study is placed on the HIS, a computer system is designed to support the hospital needs for comprehensive information including patient’s information, clinical information and financial management (29, 30). The main purpose of this system is improvement the quality of care provided for patients (31, 32). Although the integrated HIS leads to more efficient use of sources, it has not resulted in effective service offering, improvement quality of care and increased productivity in many countries (11, 33). Unfortunately, the measurement methodologies of different effects of these systems have not been improved along with the development of these systems, while the future managers and users of HISs need accurate evaluation of these systems (11, 34).

2. Objectives

The purpose of this systematic review was the identification of the HIS success and failure factors and the evaluation methods of these factors. This study emphasizes the need to a comprehensive evaluation of HISs which considers a wide range of success and failure factors in these systems.

3. Materials and Methods

We searched for relevant English language studies based on keywords in title and abstract, using PubMed, Ovid Medline (by applying MeSH terms), Scopus, ScienceDirect and Embase (earliest entry to March 17, 2012). In addition, we applied methods such as documentation review of relevant agencies (like Statistics and Information Technology Office in Ministry of Health and Medical Education) and databases that provide grey literature (like system for information on grey literature) for publication bias control. Also, searching was supplemented by scanning bibliographies from identified studies. The key journals have been manually searched to find references which may not be found in databases and the list of references. Table 1 represents the used search strategy and Figure 1 shows a flowchart representing the search and way of choosing studies.
Two reviewers independently examined all titles and abstracts. Cohen’s Kappa coefficient was used to measure the inter-rater agreement on the inclusion or exclusion of the articles (k=0.77). The difference between the ideas of the two reviewers was settled by asking the idea of the third reviewer. To control assessment bias, reviewers were blinded about each other’s decisions and some information such as the names of journals and authors that could influence their decisions. Studies which considered models and success or failure factors, or studied the evaluation models of the HIS and the related ones were chosen. The studies examining the information systems in a specific area apart from the field of health care and in the field of public health as well as primary care in addition to non-English articles were excluded from the study.

Assessing the quality of qualitative research has attracted much debate and there is little consensus regarding whether quality can or should be assessed in relation to qualitative research (35-37). Since most articles which entered in this study were review articles and data analysis was done on the words and phrases in the articles using meta synthesis, to avoid losing valuable insights that existed in some studies that might be omitted in critical appraisal, we did not assess the quality of the selected studies.

Since the studies used in this systematic review were heterogeneous, the combination of extracted data was carried out by using narrative synthesis method. Finally, the common and varying aspects of the factors and their evaluation methods used in the selected studies were determined. Then these factors and methods were classified in different groups, and a framework was offered for the evaluation of success and failure factors in the HIS.

4. Results

Searching the online databases resulted in 475 articles. Initial screening of titles and abstracts rendered 63 articles eligible for further full-text review. Six additional articles were identified by reviewing the bibliographies, yielding a total of 69 articles. Based on reviewing the full-text of remaining articles, 53 articles were excluded since they did not correspond with the criteria and purpose of this study, and finally 16 articles remained which required detailed analysis. The summaries of findings pertaining to these articles are presented in Table 2. Most selected studies considered factors such as management (n = 11), behavioural (n = 15), organizational (n = 13) and economy (n = 11) as success factors (Table 3). Moreover, some evaluation methods such as interviews (n = 4), questionnaires (n = 5) and usability measurement methods (n = 7) were the most common methods in selected articles (Table 4).
Table 2. The Summary of Findings Extracted From Selected Studies

Authors / Year / Reference No.	Study Methods	Success / Failure Factors	Evaluation Methods / Approaches
M.J. Van Der Meijden et al. / 2003 (21)	Literature review	System Quality	Questionnaires; Time studies; Work sampling
		Information quality	
		User satisfaction	Open-end interviews; Questionnaires; Triangulation
		Usage	Work sampling; Time studies; Kept the log
G. Pare et al. / 2008 (38)	Literature review and a Delphi study	Risk dimensions and risk factors: Technological (introduction of a new technology; complex/unreliable technical infrastructure or network; complex software solution; complex incompatible hardware; poor software performance); Human/user (unrealistic expectations; overall resistance to change; lack of cooperation/commitment from users; poor computer skills; prior negative experiences with Clinical Information System (CIS) projects); Usability (poor perceived system ease of use; poor perceived system usefulness; misalignment of system with local practices and processes); Project team (changes to membership on the project team; poor project leadership; lack of required knowledge or skills; lack of clear role definitions; negative attitude of project team members); Project (large and complex project; project ambiguity; changes to requirements; insufficient resources; lack of a project champion; lack of a formal project management methodology); Organizational/Environmental (lack of commitment from upper management; organizational instability; lack of local personnel knowledgeable in IT; legal and ethical constraints; privacy and confidentiality issues); Strategic/Political (misalignment of actors’ and partners’ objectives and stake; political games/conflicts; unreliable external partners)	Not mentioned
P. Yu / 2010 (39)	Literature review and a case study	End user HIS perspectives	Cross sectional and longitudinal questionnaire
D. Zikos et al. / 2011 (40)	Literature review and a case study	Failure factors including: Underfunding; Inadequate use of standards; Lack of skilled IT experts; Insufficiently trained personnel and users' reserve; Lack of a strategic plan; Lack of central planning; difficulties in the acceptance and incorporation of IT; Existing individual interests; Users reluctant to handle sensitive data; Difficulties in incorporating standards	Exploratory study; Feasibility study; Cost-Effectiveness study; Contracted task agreement; Integrated complete information system; Technical specifications (maintainability, system scalability is ensured; specific use instructions are provided; data backup mechanisms are supported; data security is adequate; IS is fast and flexible; The menus are localized); Standards and coding (HL7; DICOM; GMDN; APC; K/Do); Evaluation of IS (patient satisfaction evaluation; employee satisfaction evaluation; measurement of cost productivity)
MM Yusof et al. / 2008 (41)	Literature review and a case study	Technology: System quality (data accuracy; data currency; database contents; ease of use; ease of learning; availability; use-ability); Information quality (importance; relevance; usefulness; legibility; format; accuracy; conciseness; completeness; reliability; timeliness; data entry methods); Service quality (quick responsiveness; assurance; empathy; follow up service; technical support)	Quantitative and qualitative mix method
Human: System use (amount/duration: number of inquiries; amount of connect time; number of functions used; number of records accessed; frequency of access; frequency of report requests; number of reports generated; use by whom? (direct vs. chauffeured use); actual vs. reported use; nature of use (use for intended purpose; appropriate use; type of information used); purpose of use; level of use (general vs. specific); recurring use; report acceptance; percentage used; voluntaries of use; motivation to use; attitude; expectations/belief; knowledge/expertise; acceptance; resistance/refusal; training) User satisfaction (satisfaction with specific functions; overall satisfaction; perceived usefulness; enjoyment; software satisfaction; decision making satisfaction)

Organization: Structure (type; size; culture; planning; strategy; management; clinical process; autonomy; communication; leadership; top management support; medical sponsorship; champion; mediator; teamwork); Environment (financing source; government; politics; localization; competition; inter-organizational relationship; population served; external communication); Net benefits (clinical practice (Job effects; task performance; productivity; work volume; morale); Efficiency; Effectiveness (goal achievement; service); Decision making quality (analysis; accuracy; time; confidence; participation); Error reduction; Communication; Clinical outcomes (patient care; morbidity; mortality; Cost))

V.P. Aggelidis et al. 2012 (42) Literature review and personal interviews with users
Factors at hospital level (knowledge and understanding of Computerized Hospital information systems (CHIS); appropriate ness of CHIS design; CHIS performance; availability of hospital resources for implementation; related training and ongoing support of the CHIS (‘hospital resources’)); Factors at provincial level (CHIS supplier knowledge and understanding of the environment; CHIS software fit with user requirements; organizational and contractual mechanisms such as customization and adaptation); Resource availability

L.A. Hanmer/ 2007 (43) Literature review and a case study with local experts
Factors at hospital level (knowledge and understanding of Computerized Hospital information systems (CHIS); appropriate ness of CHIS design; CHIS performance; availability of hospital resources for implementation; related training and ongoing support of the CHIS (‘hospital resources’)); Factors at provincial level (CHIS supplier knowledge and understanding of the environment; CHIS software fit with user requirements; organizational and contractual mechanisms such as customization and adaptation); Resource availability

L.W. Peute et al./ 2010 (44) Longitudinal study with interviews, questionnaires, field and documentary historical methods
Success factors including: Political; strategy (transparency of vision; scope and objectives; top level commitment and higher Organizational readiness; Usability and ethnographic studies with interviews, questionnaires, field and documentary historical methods) Managerial; economy; education (sufficient funds; internal communication and feedback; transparency; graph; studies) Technical; functional (workflow analysis; support clinical protocols; user centered design; usability; consistent; intuitive and user friendly interface; decision support; customization; flexibility; adaptability; System speed; available functionality; system maturity; system testing and evaluation; multi-dimensional integration) Cultural; behavioral; organizational (complexity of work practices; value to users; collaboration and trust; social relations; open attitude; culture of involved department; power; control and politics; organizational readiness; involvement of end-users; contacts); A feedback mechanism needs to be integrated into the software development cycle and implementation process; Reduce the complexity of the system implementation by dividing it up in separate issues; Project mechanisms to react on changes

E-S. Nahm et al./ 2007 (45) Literature review
User satisfaction
Questionnaire

Clinical outcomes (patient clinical status; patient safety; length of stay; and mortality rates) Randomized controlled trials (RCTs); Use proxy outcomes (decreased medication errors, improved adherence to practice guidelines, and improved quality of documentation)

Financial impact
Return on Investment (ROI) analysis (benefit-to-cost ratio; Net Present Value (NPV); Break-even period or payback analysis)

Outcomes of CIS implementation
Quantitative designs
Experimental designs such as RCT
Non-experimental designs
Reference	Design	Failure/Factors	Success/Factors
D. H. Freed, 2006 (46)	Review article	Quasi-experimental designs (one group pre-and post-test studies, time and motion studies)	Not mentioned
B. Kaplan, 2009 (17)	Literature review and workshop report	Descriptive design (Survey studies)	Not mentioned
B. Rahimi, 2007 (15)	Literature review	Qualitative designs	Not mentioned
J. Brender et al., 2006 (28)	Analysis of conference proceedings and Delphi study	Experimental designs	Not mentioned

Failure factors:
- Not reengineering; No fun to use; Automation; No structured systems development methodology; No user governance; Not user-friendly; Poor or no strategic alignment; No dedicated project resources; Questionable data integrity; Organizational and/or user instability
- Difficulties of communicating across different groups; The complexity of IT undertakings; The need to integrate all aspects of projects, work environments, and regulatory and policy requirements; The difficulty of getting all the parts and participants in harmony
- Technical issues related to functionality and interoperability; Social, cultural, and financial issues; Longitudinal and qualitative evaluation
- In general: have a multi-actor perspective in order to understand the effects, consequences and prerequisites that have to be achieved for the successful implementation; Organizational and economic factors; User and patient satisfaction

Success factors:
- Functional (careful preparation of the user requirements specification to appropriate and balanced take into account and express users requirements; needs as well as demands; alignment of the role and design of the IT-system; coping with the complexity; flexibility towards dynamic changes and changes in the organizational context; added functionality are provided by the IT-based system; enabling users to provide new or better services); Organizational (collaboration and cooperation; make implementation a transparent process within the organization; work from the workflow; high competences; support from higher level organizations); Behavioral (the users are key; the personal attitude; engagement and commitment; motivational activities); Cultural (understand medicine and healthcare in general as a separate culture; understand the local culture; preparedness and willingness towards cultural change); Political (high-level commitment; monitoring political implications; considering IT-system a service rather than a product from a vendor; collaboration in providing new solutions; transparency); Management (management support; flexible planning; prospective and proactive control; consider IT implementation as a change process; coping with the impact of change; user involvement; strategy; communication; handling the diversity within stakeholder goals); Technical (standard based; data validity procedures are part of system quality; use proven technology; usability; integrated functionality; communication standards; balance between flexibility and stability; evolution rather than revolution; flexibility and adaptability; enabling future functional and technical changes); Legal aspects (know what the legal constraints opportunities are); Strategy (national; regional; organizational; accepted also at lower levels); Economy (there has to be a return of investment (whether material or immaterial); justification of increase of costs; sufficient funding); Education (sufficient training); User acceptance
Failure factors: Functional (the system does not meet expectations; limitations in the way the user can express his/herself; moving target); Organizational (not understanding the organizational context); Behavioral (overloading the user; underestimating user acceptance; resistance because of fear or loss of control of own job situation); Cultural (assuming that what works at one place also works somewhere else; users have too high expectations); Management (overambitious implementation plans; judgment based on wrong premises; improper tendering; business reorganization of the vendor); Technical (limitations in the way the user can express his/herself; the technology is so restricted that it impacts design and implementation choices; response rate and other performance measures; vendor did not support the functionality quoted; insufficient verification of conformity with requirements specification); Legal (low concern on regulations and standards; compliance with laws and existing ethical rules of conduct); Economy (lacking financial power of a vendor); Education (visible discrepancy between successive versions of the IT-based system).

VP Aggelidis/ 2008	Literature review	The quality of information provided to users; The impact of IS on users’ thinking; decisions or actions; Organizational factors; Socio-technical factors	Technical verification and validations (during system development); Pilot and feasibility studies (after implementation); Monitoring studies (during routine use)
Economic factors			Cost minimization analysis; Cost effectiveness analysis; Cost utility analysis; Cost benefit analysis
System usage			Recording the length of user connection; The number of computer functions utilized; The number of client records processed; The number of tasks performed; The level of sophistication of usage; Questionnaire
R. Heeks/ 2006 (3)	Literature review and a case study	Fit between an organizational system, an information system, a management system, and its environment; Fit between technology and the task it is intended to support; Fit between IS and organizational strategy; Size of gap that exists between current realities and design conceptions of the HIS Professional, technical, economic and political factors; Designers and their cultural values, objectives; Assumptions about the users’ activities, skills, culture and objectives, and assumptions about the user organization’s structure, hardware and software infrastructure; Information (data stores, data flows, etc.); Technology (both hardware and software); Processes (the activities of users and others); Objectives and values (the key dimension, through which factors such as culture and politics are manifest); Staffing and skills (both the quantitative and qualitative aspects of competencies); Management systems and structures, and other resources (particularly time and money)	Analysis of work procedure; Balanced scorecard; Delphi; Field study; Focus group interview; Heuristic evaluation; Interviews (non-standardized); Logical framework approach (LFA); Questionnaires (non-standardized); Risk assessment; Social network analysis; SWOT; Stakeholder analysis; Usability; Video recording; WHO: Framework for assessment of strategies; Clinical/Diagnostic performance; Cognitive assessment; Cognitive walkthrough; Technical verification; Functionality assessment; Randomized controlled studies; Effect assessment
J. Brender et al/ 2004 (47)	Workshop report	Not mentioned	
Success Factors	Sub Factors	Frequency (%)	Reference No.
-------------------	---	---------------	--
Functional	Preparation of the user requirements	4 (25)	(38, 43, 44, 28)
	Alignment of the role and design of the HIS (Task-technology adaption)	4 (25)	(3, 28, 39, 41)
	Flexibility towards dynamic changes and changes in the organizational context	4 (25)	(28, 41, 43, 44)
	Added functionality are provided by the HIS, enabling users to provide new or better services	3 (18.75)	(28, 41, 44)
	Improve clinical performance and outcomes	4 (25)	(15, 41, 44, 45)
	In general	9 (56.25)	(3, 15, 17, 28, 38, 41, 43, 44)
Organizational	Collaboration and cooperation	6 (37.5)	(17, 28, 38, 41, 42, 44)
	Participation in decision-making	3 (18.75)	(11, 41, 44)
	Work from the workflow	3 (18.75)	(28, 44, 46)
	Support from higher level organizations	3 (18.75)	(28, 41, 44)
	Make implementation a transparent process within the organization	2 (12.5)	(28, 44)
	Organizational stability	3 (18.75)	(38, 44, 46)
	Rate of hospital independence and authority	1 (6.25)	(41)
	Organizational capacity for changes	2 (12.5)	(39, 44)
	In general	13 (81.25)	(3, 11, 15, 17, 23, 28, 38, 39, 41-44, 46)
Behavioral	User involvement	4 (25)	(28, 42, 44, 46)
	User engagement and commitment	6 (37.5)	(28, 39-42, 46)
	Resistance to changes	3 (18.75)	(28, 38, 41)
	User knowledge and skills	6 (37.5)	(3, 38, 40-43)
	Stakeholder, user and patient satisfaction	15 (93.75)	(3, 11, 15, 17, 23, 28, 38-46)
	Motivational activities	5 (31.25)	(17, 29, 40, 41, 46)
	User acceptance (perceived system ease of use, perceived system usefulness)	7 (43.75)	(29, 38-43)
	In general	15 (93.75)	(3, 11, 15, 17, 23, 29, 38-46)
Cultural	Understand health care as a specific culture	1 (6.25)	(29)
	Understand the local culture (such as attention to cultural differences between public and private hospitals as well as developing and developed countries)	3 (18.75)	(3, 29, 44)
	Preparedness and willingness towards cultural change (professional culture)	1 (6.25)	(29)
	Expectations of users	3 (18.75)	(29, 38, 41)
	In general	6 (37.5)	(3, 17, 29, 38, 41, 44)
Management	Managers commitment	5 (31.25)	(29, 38, 40, 41, 44)
	Formulation and expression of a clear vision for the enterprise showing the HIS as part of it	1 (6.25)	(44)
	Setting clear goals and instructions	3 (18.75)	(3, 17, 44)
	Flexible planning	3 (18.75)	(29, 41, 44)
	Prospective and proactive control	1 (6.25)	(29)
	Coping with the impact of change	3 (18.75)	(3, 28, 44)
	Internal communication and clear feedback	3 (18.75)	(28, 41, 44)
	Having a strategy	4 (25)	(28, 40, 41, 44)
Stakeholder Goals	Frequency	References	
--	-----------	------------	
Handling the diversity within stakeholder goals	2	(28, 38)	
Using formal project management methodology	2	(38, 46)	
Dedicate, availability and prioritize of competitive hospital resources (human, financial and physical resources and time)	6	(3, 17, 38, 41, 43, 44)	
Identify and mitigate risk (risk management)	1	(17)	
Consider IT implementation as a change process	1	(28)	
Understanding socio-technical nature of HISs	3	(11, 15, 17)	
Regular evaluations and using their results at different stages of HIS life cycle	2	(40, 44)	
In general	11	(3, 11, 15, 17, 28, 38, 40, 41, 43, 44, 46)	
Technical (system quality, information quality and service quality)			
Integration with Legacy system	3	(28, 40, 44)	
Interoperability and Interconnectivity	2	(17, 42)	
Usability	7	(28, 38, 40-42, 44, 46)	
Balance between flexibility and stability of IT	2	(28, 40)	
Reliable technical infrastructure or network,	2	(3, 38)	
Complexity of the system	3	(17, 28, 38)	
Information quality (relevancy, usefulness, completeness, etc.)	8	(3, 11, 15, 23, 28, 41, 42, 46)	
Response time (system speed)	5	(28, 40-42, 44)	
System security	3	(40-42)	
Service quality (the support provided by the information department, the support provided by the maintenance company)	5	(28, 40-43)	
Quality of user documentation	2	(40, 42)	
Flexibility and adoptability, enabling future functional and technical changes	5	(28, 38, 41, 42, 44)	
Using proper standards, coding and nomenclature	1	(40)	
In general	13	(3, 11, 15, 17, 28, 38, 40-44, 46)	
Strategy			
National, regional, organizational	2	(28, 41)	
Accepted also at lower levels	1	(28)	
Alignment between system strategies and hospital strategies	3	(3, 38, 46)	
In general	7	(28, 38, 40, 41, 44, 46)	
Economy			
Return on investment (material or immaterial)	4	(15, 28, 40, 41)	
Justification of increase of costs	4	(15, 28, 41, 45)	
Sufficient funding	4	(28, 40, 41, 44)	
In general	11	(3, 11, 15, 17, 28, 40, 41, 43-46)	
Education			
Sufficient training to make the best out of the daily operation	3	(17, 28, 40)	
Sufficient training to provide an understanding of its limitations and future potentials	1	(17)	
In general	7	(17, 28, 40-44)	
Legal			
Compliance with legal requirements	1	(28)	
Know what the legal constraints/opportunities are	1	(28)	

Iran Red Cres Med J. 2013;15(12):e11716
Table 4. The HIS Evaluation Methods and Their Frequency in Selected Studies

Evaluation Methods	Frequency (%)	Reference No.
Analysis of work procedure	1 (6.25)	(47)
Stakeholder analysis	1 (6.25)	(47)
Organizational readiness	1 (6.25)	(44)
Framework for assessment of strategies	1 (6.25)	(47)
Thinking-aloud	2 (12.5)	(15, 45)
Cognitive assessment	2 (12.5)	(15, 47)
Cognitive walkthrough	2 (12.5)	(15, 47)
Heuristic evaluation	2 (12.5)	(15, 47)
Balanced scorecard	1 (6.25)	(47)
Risk assessment	3 (18.75)	(3, 40, 47)
Focus group interview	2 (12.5)	(40, 47)
Delphi	1 (6.25)	(47)
Social network analysis	2 (12.5)	(15, 47)
Randomized controlled studies	3 (18.75)	(15, 45, 47)
Use proxy outcomes (decreased medication errors, improved adherence to practice guidelines, and improved quality of documentation)	2 (12.5)	(45, 47)
Interviews	4 (25)	(23, 39, 45, 47)
Questionnaires	5 (31.25)	(11, 23, 39, 45, 47)
Functionality assessment	1 (6.25)	(47)
Design-reality gap model	1 (6.25)	(3)
Logical framework approach (LFA)	1 (6.25)	(47)
Work sampling	2 (12.5)	(23, 39)
SWOT	1 (6.25)	(47)
Studying the existing documents and Chart review	2 (12.5)	(23, 39)
Technical verification	2 (12.5)	(11, 47)
Video recording	3 (18.75)	(11, 45, 47)
Time studies	2 (12.5)	(23, 45)
Kept the log	2 (12.5)	(11, 23)
Effect assessment	1 (6.25)	(47)
Field study	1 (6.25)	(47)
Cost minimization analysis	1 (6.25)	(11)
Cost effectiveness analysis	3 (18.75)	(11, 40, 45)
Cost utility analysis	3 (18.75)	(11, 40, 45)
5. Discussion

The results of the present research indicate that the emphasis of HISs evaluation moves from technical subjects to human and organizational subjects and from objective to subjective issues. Therefore, this issue entails more familiarity with more qualitative evaluation methods.

It has been proved that the application of HISs can create basic changes in culture, policy and authority, which link professional groups to one another in an organization. However, these basic subjects have not been identified in many of success models. These issues result out of the inability of these models to interpret some cases of failure (39). Many studies published about the success of information systems have been carried out by focusing on the model of DeLone and McLean (48, 49). Since in this model some important factors have not been considered, the mentioned studies cannot present a comprehensive model in this field. For instance, they deal with supporting the top managers and the involvement of users, and point out that these factors can influence the level of success, but these variables are not considered in this model. Moreover, other factors like culture and organizational characteristics are not considered in this model. The changes of procedures and culture are among the obstacles which are reported in widespread use of health care information systems (41).

Other studies emphasized on organizational and management factors such as management commitment, a champion and his/her characteristics (28, 38, 41, 51, 52). The findings indicate that, among different factors of success, user satisfaction to measure HISs success is of special significance (3, 11, 15, 17, 23, 28, 38-46). This factor is probably the most widespread factor used in measurement of success (11, 41, 42). Even though some researchers may doubt about the reliability and appropriateness of using the user satisfaction to measure the success of information systems (52, 53), the researches which have been carried out, have proved that satisfaction is a useful criterion to measure the success of the system (11, 32, 54, 55). However, in the field of health care information systems, only four percent of researches have used the criterion of the influence of user satisfaction, whereas this rate reaches almost 20 percent in the researches of information systems (56). The findings show that, in published literatures, special attention has been paid to the economy factors and their evaluation (3, 11, 15, 17, 28, 38, 40, 41, 43-46). On the other hand, when the efficiency of investment in IT is studied, some problems manifest themselves as follows (11):

1. The expenditures are mostly indirect, so their calculation is difficult
2. The benefits and organizational impacts are often intangible, so their realization may take a long time

In spite of these problems, findings show that there are appropriate and verified methods for evaluating economy aspects which provide useful information in this area. The other point which seems noticeable about the success factors of the HIS refers to two of selected articles indicating that the evaluation of HISs is one of the success factors (40, 44). We believe that the quality and quantity of evaluations and using their results at different stages of the HIS life cycle can be an influential and significant factor in the success of such systems, and this factor can be studied through methods like interviews and studying the existing documents.

The findings reveal that, among the suggested methods for the evaluation of success or failure factors of HISs, using questionnaires (11, 23, 39, 45, 47) and interviews (23, 39, 45, 47) are more emphasized. Questionnaires are the best approved method for the evaluation of personal opinion, perception and attitude which is widely used in information systems and health researches. A comprehensive interview and focus group interview are effective on understanding how and why events have happened or will occur and on the perception of users about how affairs can be done more efficiently (39). Among the evaluation methods extracted for this research, some methods are based on the retrospective nature (like functionality assessment). The other kinds such as balanced scorecard and delphi methods might present a guideline for planning and revision HISs, which provide formative evaluation (57). Some methods may not meet the specific information needs in the related field completely, but can be used as valuable supportive means in the field of evaluation. As the symptoms of a disease comprise a part of the pattern of that disease all these methods present a pattern to show the success or failure (8). The presented methods are adapted from different sciences including psychology, social science, computer and health informatics sciences. Applying adapted evaluation methods requires methodological skills, discipline, innovation and flexibility to adapt the chosen method with the intended case, its situation and specifically information needs (8, 24).

The major limitations of this study are that some selected studies deal with only success and failure factors (28, 38, 42, 43, 46), or focused on evaluation methods (47), but, due to the significance of these studies, they are considered and reviewed in this research. In addition, among the extracted factors, there were some factors which could be placed in different groups and several discussion sessions took place to choose the most appropriate category for each factor. Another limitation is that only the articles written in English were selected; therefore, there might be some noteworthy articles in this field published in other languages.
In most of the reviewed articles, the main focus has been laid on the necessity of using multi-method approaches and combining methods to obtain more comprehensive and useful results. The integrating of different methods can be beneficial to find an inclusive answer to evaluation questions. The integrity of supplementary methods, data sources, theories and observers are studied under the term of triangulation (58). The combination of qualitative data gathering approaches (such as observations and interviews) and quantitative data gathering approaches (such as questionnaires and work sampling) provides a good opportunity through triangulation to improve the quality of results (59).

Finally, in this research, the extraction of key concepts of each study was carried out through applying meta synthesis, and such concepts were put together and classified, then the suggested framework was formed to evaluate the HIS success [Table 5]. This framework includes 12 main factors, 67 sub factors, and 33 suggested methods for the evaluation of these sub factors. One can determine the appropriate method based on this information and with a general review of the listed methods and factors, one can create better and more comprehensive methods based on his/her information needs. Of course, more attempts and investigations are still necessary to be done in this field.

Table 5. The HIS Success Factors and Their Suggested Evaluation Methods

Success Factors	Sub Factors	Evaluation Methods
Functional	Preparation of the user requirements	Analysis of work procedure, Stakeholder analysis, Organizational readiness, Framework for assessment of strategies
	Alignment of the role and design of the HIS (Task-technology adaption)	Thinking-aloud, Cognitive assessment, Cognitive walkthrough, Heuristic evaluation, Analysis of work procedure
	Flexibility towards dynamic changes and changes in the organizational context	Organizational readiness, Balanced scorecard, Risk assessment
	Added functionality are provided by the HIS, enabling users to provide new or better services	Focus group interview, Delphi, Social network analysis, Stakeholder analysis
	Improve clinical performance and outcomes	Randomized controlled studies, Use proxy outcomes (decreased medication errors, improved adherence to practice guidelines, and improved quality of documentation)
Organizational	Collaboration and cooperation	Social network analysis, Stakeholder analysis
	Participation in decision-making	Focus group interview
	Work from the workflow	Social network analysis
	Support from higher level organizations	Stakeholder analysis, Interviews (non-standardized)
	Make implementation a transparent process within the organization	Focus group interview, Social network analysis, Stakeholder analysis
	Organizational stability	Social network analysis, Organizational readiness
	Rate of hospital independence and authority	Interviews
	Organizational capacity for changes	Organizational readiness
Behavioral	User involvement	Social network analysis, Stakeholder analysis, Focus group interview, Questionnaires
	User engagement and commitment	Focus group interview, Social network analysis, Stakeholder analysis
	Resistance to changes	Organizational readiness
	User knowledge and skills	Focus group interview, Questionnaires
	Stakeholder, user and patient satisfaction	Focus group interview, Questionnaires
	Motivational activities	Focus group interview, Personal interviews
	User acceptance (perceived system ease of use, perceived system usefulness)	Focus group interview, Questionnaires
Cultural	Understand health care as a specific culture	Analysis of work procedure
Understand the local culture (such as attention to cultural differences between public and private hospitals as well as developing and developed countries) Analysis of work procedure, Functionality assessment, Design—reality gap model
Preparedness and willingness towards cultural change (professional culture) Organizational readinessness

Expectations of users	Focus group interview
Management	
Managers commitment	Logical framework approach (LFA)
Formulation and expression of a clear vision for the enterprise showing the HIS as part of it	Balanced scorecard, Framework for assessment of strategies
Setting clear goals and instructions	Balanced scorecard, Framework for assessment of strategies
Flexible planning	Documents and chart review
Prospective and proactive control	Logical framework approach (LFA)
Coping with the impact of change	Organizational readiness, Work sampling
Internal communication and clear feedback	Social network analysis
Having a strategy	Framework for assessment of strategies
Handling the diversity within stakeholder goals	Stakeholder analysis, Organizational readiness
Using formal project management methodology	Analysis of work procedure, Balanced scorecard, Framework for assessment of strategies
Dedicate, availability and prioritize of competitive hospital resources (human, financial and physical resources and time)	Risk assessment, SWOT assessment
Identify and mitigate risk (risk management)	Risk assessment, Design—reality gap model
Consider IT implementation as a change process	Analysis of work procedure, Framework for assessment of strategies
Understanding socio-technical nature of HISs	Interviews, Questionnaires, Delphi
Regular evaluations and using their results at different stages of HIS life cycle	Interviews, Studying the existing documents and Chart review
Technical (system quality, information quality and service quality)	Integration with Legacy system Technical verification
Interoperability and Interconnectivity	Technical verification
Usability	Cognitive assessment, Cognitive walkthrough, Heuristic evaluation, Video recording, Thinking-aloud, Work sampling, Time studies, Kept the log
Balance between flexibility and stability of IT	Organizational readiness against change
Reliable technical infrastructure or network, Complexity of the system	Technical verification
Information quality (relevancy, usefulness, completeness, etc.)	Chart review, Questionnaires
Response time (system speed)	Questionnaires, Time and motion studies, Work sampling
System security	Technical verification
Service quality (the support provided by the information department, the support provided by the maintenance company)	Review of contracted task agreement and chart review, Questionnaires, Interviews
Quality of user documentation	Thinking-aloud, Questionnaires, Interviews
Flexibility and adoptability, enabling future functional and technical changes	Technical verification
Using proper standards, coding and nomenclature	Technical verification
Strategy
National, regional, organizational
Accepted also at lower levels
Alignment between system strategies and hospital strategies

Framework for assessment of strategies
Focus group interview

Economy
Return on investment (material or immaterial)
Justification of increase of costs
Sufficient funding

Delphi, Effect assessment, Field study, Cost minimization analysis, Cost effectiveness analysis, Cost utility analysis, Cost benefit analysis

Economy
Return on investment (material or immaterial)
Justification of increase of costs
Sufficient funding

Delphi, Cost effectiveness analysis, Cost utility analysis, Cost benefit analysis

Education
Sufficient training to make the best out of the daily operation
Sufficient training to provide an understanding of its limitations and future potentials

Functionality assessment, Work sampling, Time studies, Focus group interview

Legal
Compliance with legal requirements
Know what the legal constraints/opportunities are

Field study, Review of legal documents, SWOT, Interviews

Ethical
Compliance with existing ethical rules in affairs management
Privacy and confidentiality

Focus group interview, Chart review

Political
Political games/conflicts
Willingness towards investment on IT systems
Reliable external partners

Interviews, Questionnaires, Chart review and review of contracts as well as history of partners activities

Acknowledgments

This study was part of a PhD. dissertation supported by Iran University of Medical Sciences (grant No: IUMS/SHMIS-1390/460)

Financial Disclosure

There is no financial disclosure.

Funding Support

There is no funding or support.

Authors’ Contributions

Kimiafar carried out the design and coordinated the study, participated in most of the experiments and prepared the manuscript. Dr. Sadoughi and Dr. Ahmadi provide assistance in the design of the study, coordinated and carried out all the research sections and participated in manuscript preparation. Dr. Shakeri provided assistance for methodology design and all study sections. All authors have read and approved the content of the manuscript.

References

1. Low C, Hsueh Chen Y. Criteria for the evaluation of a cloud-based hospital information system outsourcing provider. *J Med Syst.* 2012;36(6):1543–53.
2. Sheikhtaheri A, Sadoughi F, Ahmadi M, Moghaddasi H. A framework of a patient safety information system for Iranian hospitals: lessons learned from Australia, England and the US. *Int J Med Inform.* 2013;82(5):335–44.
3. Heeks R. Health information systems: failure, success and improvisation. *Int J Med Inform.* 2006;75(2):245–37.
4. Ammenwerth E, Brender J, Nyrkainen P, Prokosch HU, Rigby M, Talmon J, et al. Visions and strategies to improve evaluation of health information systems. Reflections and lessons based on the HIS-EVAL workshop in Innsbruck. *Int J Med Inform.* 2004;73(6):479–91.
5. Rigby M. Evaluation—the Cinderella science of ICT in health. *Yearb Med Inform.* 2006:114–20.
6. Sadoughi Farahnaz, Aminpour Farzaneh. A Review on the Evaluation Methods of Health Information Systems. *Iran J Med Educ.* 2011;10(5):1077–1086.
7. Ozkan Sevgi, Baykal Nazife, Sincan Murat. Process-Based Evaluation of Hospital Information Systems: Application of an Information System Success Model (PRISME) in the Healthcare Domain. *Health Information Systems: Concepts, Methodologies, Tools, and Applications.* Hershey, PA, USA: IGI Global; 2012. pp. 339–355.
8. Brender J. Evaluation methods to monitor success and failure factors in health information systems development. In: Kushniruk AW, Borycki E, editors. *Human, social, and organizational aspects of health information systems.* New York: IGI; 2008. pp. 180–201.
9. Berg M. Implementing information systems in health care organizations: myths and challenges. *Int J Med Inform.* 2001;64(2-3):143–56.
10. Fortune J, Peters G. Information systems : achieving success by avoiding failure. Chichester, England: John Wiley & Sons; 2005.
11. Aggelidis VassiliosP, Chatzoglou ProdromosD. Methods for evaluating hospital information systems: a literature review. *EuroMed J Busin.* 2008;3(1):399–418.
12. Wateridge John. How can IS/IT projects be measured for success?
1. Kaplan B, Shaw NT. Future directions in evaluation research: people, organizational, and social issues. Methods Inf Med. 2004;43(3):215–31.
2. Rahimi B, Vimarlund V. Methods to evaluate health information systems in healthcare settings: a literature review. J Med Syst. 2007;31(8):397–412.
3. Jones Capers. Patterns of large software systems: failure and success. Computer. 1995;28(8):386–87.
4. Kaplan B, Harris-Salamone KD. Health IT success and failure: recommendations from literature and an AMIA workshop. J Am Med Inform Assoc. 2009;16(2):209–9.
5. Wears RL, Berg M. Computer technology and clinical work: still waiting for Godot. JAMA. 2005;293(10):1261–3.
6. Sadoughi F, Sheikhhaahi A, Meidani Z, ShahmoradiL. Management information system (concept, structure, development and evaluation). Tehran: Jafari; 2011.
7. Kaplan B. Culture counts: how institutional values affect computer use. MD Comput. 2000;17(2):23–6.
8. Perera R, Dowell T, Crampton P, Kearns R. Panning for gold: an evaluation of clinical information system implementation in selected hospitals: 2009. J Health Admin. 2010;40(3):419–434.
9. Van Der Meijden MJ, Tange HJ, Troost J, Hasman A. Determinants of inpatient clinical information systems: a literature review. J Am Med Inform Assoc. 2003;10(3):225–43.
10. Sadoughi F, Ghaizaisaiedi M, Meraji M, Kimiafar K, Ramezanghorani N. Health information management technology. Tehran: Jafari; 2011.
11. Ammenwerth E, Graber S, Herrmann G, Burkke T, Konig J. Evaluation of health information systems-problems and challenges. Int J Med Inform. 2003;71(2–3):325–35.
12. Kaplan B. Evaluating information applications—some alternative approaches: theory, social interactionism, and call for methodological pluralism. Int J Med Inform. 2001;64(1):39–56.
13. Kaplan B, Shaw NT. People, organizational, and social issues: Evaluation as an exemplar. Yearbook Med Info. 2002:2.
14. Brender J, Ammenwerth E, Nykanen F, Talmon J. Factors influencing success and failure of health information systems—a pilot Delphi study. Methods Inf Med. 2006;45(6):315–36.
15. Shortliffe EH, Cimino JJ. Biomedical Informatics: Computer Applications in Health Care and Biomedicine (Health Informatics). Secaucus, NJ: Springer-Verlag New York, Inc.; 2006.
16. Moradi Gholamreza, Sarbas Masoumeh, Khomeifar Khalil, Shafeei Naser, Setaesh Yousuf. The role of hospital information system on Dr Sheikh Hospital performance promotion in Mashhad. Health Info Manag. 2009;5(2).
17. Bates DW, Cohen M, Leape LL, Overhage JM, Shobot MM, Sheridan T. Reducing the frequency of errors in medicine using information technology. J Am Med Inform Assoc. 2003;10(4):299–308.
18. Valaes A, Vahedian M, Esmaeili H, Kiamifar K. Views of users towards the Quality of Hospital Information System in Training Hospitals, J Res Health Sci. 2010;10(1):47–53.
19. Ahmadi M, Barabadi M, Kamkar Haghighi M. Evaluation of Hospital Information Systems in the Medical Records. Health Info Manag J. 2010;1(1):48–55.
20. Farzandipour Mehrdad, Sadoughi Farahzad, Meidani Zahra. Hospital Information Systems Users Need Analysis: A Vendor Survey. J Health Inform Dev Countries. 2011;1(1).
21. Thomas J, Harden A. Methods for the thematic synthesis of qualitative research in systematic reviews. BMC Med Res Methodol. 2008;8:45.
22. Beck CT. Caring within nursing education: a metasynthesis. J Nurs Educ. 2001;40(3):301–9.
23. Thorne S, Jensen L, Kearney MH, Noblit G, Sandelowski M. Qualitative metasynthesis: reflections on methodological orientation and ideological agenda. Qual Health Res. 2004;14(10):1342–65.
24. Pare G, Scottie C, Jaana M, Girouard D. Prioritizing the risk factors influencing the success of clinical information system projects. A Delphi study in Canada. Methods Inf Med. 2008;47(3):251–9.
25. Yu P. A multi-method approach to evaluate health information systems. Stud Health Technol Inform. 2010;160(1):2321–5.
26. Zikfos D, Mitsios A, Mantas J. Assessment of hospital information systems implementation: a case study. Stud Health Technol Inform. 2011;165:123–8.
27. Yusof MM, Kuljis J, Papanazofopoulu A, Stergioulas LK. An evaluation framework for Health Information Systems: human, organization and technology-fit factors (HOT-fit). Int J Med Inform. 2008;77(5):386–98.
28. Aggelidis VP, Chatzoglu PD. Hospital information systems: measuring end user computing satisfaction (EUCS). J Biomed Inform. 2012;45(3):356–79.
29. Hamner LA, Roode JB, Isaacs S. Modelling the effect of limited or vulnerable resources on the use of computerised hospital information systems (CHIS) in South Africa. Stud Health Technol Inform. 2007;130:299–309.
30. Peute LW, Aarts J, Bakker PJ, Jaspers MW. Anatomy of a failure: a sociotechnical evaluation of a laboratory physician order entry system implementation. Int J Med Inform. 2010;79(4):568–70.
31. Nahim ES, Vaydia V, Ho D, Schart R, Seagull J. Outcomes assessment of clinical information system implementation: a practical guide. Nurs Outlook. 2007;55(6):282–288.
32. Freed DH. Certain death: ten predictors of hospital information system failure. Health Care Manag (Frederick). 2006;25(2):26–33.
33. Brender Jytte. Handout: Medinfo 2004 Workshop: “Good Evaluation of Health Informatics Applications”. 2004.
34. DeLone WilliamH, McLean EphraimR. Information systems success: the quest for the dependent variable. Inf Sys Res. 1992;3(4):150–95.
35. DeLone WilliamH. The DeLone and Mclean model of information systems success: a ten-year update. J Manag Inf Syst. 2003;19(4):9–30.
36. Moghaddasi H, Sheikhhaahi A. CEO is a vision of the future role and position of CIO in healthcare organizations. J Med Syst. 2010;34(5):328–40.
37. Shahmoradi L, Ahmadi M, Haghani H. Determining the most important evaluation indicators of healthcare information systems and suggested model. J Health Admin. 2007;30(28):25–24.
38. Galletta DennisF, Lederer AlbertL. Some cautions on the measurement of user information satisfaction*. Health Inform Assoc. 1989;20(3):299–309.
39. Mealone NancyPaule, A theoretical assessment of the user-satisfaction construct in information systems research. Manag Sci. 1990;36(1):76–91.
40. Ahmadi M, Shahmoradi L, Barabadi M, Hoseini AF. A survey of usability of hospital information systems from the perspective of nurses, department secretaries, and paraclinic users in selected hospitals: 2009. J Health Admin. 2011;44(4):Pett-Pe020.
41. Sadoughi Farahzad, Khoshkam Masoumeh, Farahi SayedehRaizyeh. Usability Evaluation of Hospital Information Systems in Hospitals Affiliated with Mashhad University of Medical Sciences, Iran. Director General. 2012;9(3).
42. van der Loo RP, van Gennip EM, Bakker AR, Hasman A, Rutten FF. Evaluation of automated information systems in health care: an approach to classifying evaluative studies. Comput Methods Programs Biomed. 1995;48(2):145–52.
43. Brender J. Evaluation of health information applications—challenges ahead of us. Methods Inf Med. 2006;45(5):562–6.
44. Ammenwerth Elske, Gräber Stefan, Büttke Thomas, Iller Carola. Evaluation of Health Information Systems: Challenges and Approaches. Medical Informatics in Obstetrics and Gynecology. Hertshely, PA, USA: IGI Global; 2009, pp. 130–145.
45. Kaplan Bonnie, Ducson Dennis. Combining qualitative and quantitative methods in information systems research: a case study. MIS Quarterly. 1988:57–586.