Combining Big Data and Artificial Intelligence for Managing Collective Knowledge in Unpredictable Environment—Insights from the Chinese Case in Facing COVID-19

Francesca Iandolo 1 • Francesca Loia 2 • Irene Fulco 3 • Chiara Nespoli 4 • Francesco Caputo 2

Received: 3 April 2020 / Accepted: 1 November 2020 / Published online: 13 November 2020 © The Author(s) 2020

Abstract

The increasing fluidity of social and business configurations made possible by the opportunities provided by the World Wide Web and the new technologies is questioning the validity of consolidated business models and managerial approaches. New rules are emerging and multiple changes are required to both individuals and organizations engaged in dynamic and unpredictable paths.

In such a scenario, the paper aims at describing the potential role of big data and artificial intelligence in the path toward a collective approach to knowledge management. Thanks to the interpretative lens provided by systems thinking, a framework able to explain human-machine interaction is depicted and its contribution to the definition of a collective approach to knowledge management in unpredictable environment is traced. Reflections herein are briefly discussed with reference to the Chinese governmental approach for managing COVID-19 spread to emphasise the support that a technology-based collective approach to knowledge management can provide to decision-making processes in unpredictable environments.

Keywords Knowledge management • Collective knowledge • Big data • Artificial intelligence • Viable systems approach • COVID-19
Preliminary Reflections About the Contribution of New Technologies to Collective Approach for Knowledge Management

The increasing rapidity of social and business changes is rapidly producing several consequences on consolidated business and managerial models (Kirton 2004; Van Oosterhout et al. 2006; Zainon et al. 2011; Bourdieu et al. 2019). Previous approaches are showing increasing incapability in forecasting emerging dynamics pushing both researchers and practitioners toward new possible models and technical instruments.

Social and business organizations are experiencing a new era in which competitive advantages should be daily rebuilt and they cannot be more managed by individual actors (Liedtka 1996; Ketchen Jr et al. 2007; Allred et al. 2011). New rules are emerging in which market and social balances daily change as a consequence of interactions among multiple categories of actors endowed by subjective purposes and—sometimes—conflicting approaches (Del Giudice et al. 2016).

Organizations interested in surviving over the time must rethink their strategies and managerial paths overcoming a ‘simplistic’ view based on previous consolidated market position and/or contributions provided by the efficiency in production (Sweet 2001; Sandberg 2014). Something more is required for all the organizations involved in the emerging era (Kanter 2003; Saviano et al. 2017). New processes should be built acting on the collaboration and contamination among divergent perspectives to overcome reductionist boundary-based representations for identifying new business areas and market opportunities (Caputo 2016; Del Giudice et al. 2017; Arrigo 2018).

Collaboration, contamination, interactions, and sharing among the others seem to be new keywords on which to base a paradigmatic shift for business and managerial studies (Saviano et al. 2018; Yu and Yang 2018).

All these concepts are well summarized by the domain of the Digital Era as an emerging time-based configuration in which relationships among the actors are influenced by individual ability to be actively involved in emerging technology-based configurations and competitive advantages emerge from the combination of individual abilities thanks to the contributions provided by new technologies (Christensen 2001; Hu et al. 2005; Caputo and Walletzky 2017; Amendola et al. 2018). Digital era offers to all social and business actors the possibility for becoming central nodes in emerging and changing organizations within rules are dynamically defined as a consequence of the total amount of data shared among the actors and knowledge co-produced by the interactions among the parts (Tapscott 1996; Brynjolfsson and Kahin 2002; Turban et al. 2006). Accordingly, digital era can be considered as a technology-based configuration of knowledge era in which centrality of data and information is ensured while new ‘weapons’ are provided to all the actors interested in better understanding and managing dynamics and emerging processes (Leeflang et al. 2014).

Recognizing the multiple challenges that can derive from above-mentioned configurations for all the organizations, the paper aims at reflecting about the influence of new technologies in knowledge management and decision-making processes to identify possible ways through which consolidated and almost inefficient individualistic approaches can be outmoded for identifying and catching new market opportunities. In such a direction, the interpretative framework of viable systems approach (VSA) (Barile 2009; Golinelli 2010; Barile et al. 2012) is embraced for providing a wider view about paths through which a collective approach to knowledge management can
be stimulated for better understanding and solving shared problems. In such a direction, knowledge management domain in investigated with the aim to explore dynamics on which big data and artificial intelligence are based and through which collective knowledge can emerge and support the management of unpredictable environment. Policy-making approaches developed in China for facing COVID-19 challenge are then briefly discussed for underlining the multiple advantages that a collective approach to knowledge management can produce both for individuals and organizations in the management of unpredictable environments. The attention is focused on Chinese case in facing COVID-19 because it well summarizes both individual and collective reaction to the emerging and unpredictable dynamics. At the same time, the observed case also provides multiple interesting evidences about the role of new technologies in supporting knowledge contamination for facing collective issues.

The remainder of this paper is structured as follows: “Theoretical background” provides a brief overview about the theoretical background on which reflections herein are based with specific reference to the role of new technologies in the knowledge management process and to the challenges and opportunities of collective approaches in knowledge management; “A viable systems perspective for managing knowledge in the digital era” introduces the conceptual framework of VSA and it underlines possible systems-based guidelines for supporting collective approaches to knowledge management in the digital era; “Collective intelligence for facing COVID-19 challenge: the Chinese case” provides a synthesis of policy-making devolved in China for facing COVID-19 challenge to emphasise implications and opportunities of a systems-based view of collective approaches to knowledge management process; “Implications, limitations, and future directions for research” finally lists main theoretical and practical implications of reflections herein and it also draws main conclusions and directions for future research.

Theoretical Background

Insights from Digital Tools in Knowledge Management Processes

Nowadays, information technologies made cheaper and faster gathering and processing of large amounts of data (Asrar-ul-Haq and Anwar 2016; Santoro et al. 2018). This new phenomenon, called big data, represents a new era in data exploration and usage (Chen and Zhang 2014). The “mass digitization” (Coyle 2006) along with “Internet of Things” interconnection (Ashton 2009) has led to a rapid expansion of large amounts of data along three dimensions: volume, speed, and variety, as summarized by the “3Vs” model of Laney (Zikopoulos and Eaton 2011; Beyer and Laney 2012; Zaslavsky et al. 2013). Over the time, additional dimensions have been added to this model for highlighting the quality across datasets—veracity—and the capacity to generate useful output for industry challenges and issues—value (Uddin and Gupta 2014).

Big data analytics follow an approach based on artificial intelligence (AI), which can be defined as the way of training computers to mimic thinking patterns (Nilsson 2014). The subfields of AI include several techniques of machine learning (Qiu et al. 2016; Zhou et al. 2017) through which it is possible to build a computer system able to
‘change’ thanks to experience. This approach offers the opportunity for identifying non-obvious and hidden patterns of information and building predictive models.

In such a direction, big data can be considered as an additional valuable knowledge asset (Erickson and Rothberg 2015): the huge volumes of data are processed for extracting valuable knowledge, which can be used for enhancing the performance of many different processes in organizations.

The adoption of big data instruments in organizations’ configurations determines the capacity to absorb untapped knowledge and combine it in innovative paths for improving organizations’ performance. As a valuable example, the combination of tacit knowledge of experienced employees (Ball and Gotsill 2011) with the knowledge obtained from big data (Feblowitz 2013) offers to organizations valuable new resources on which found new competitive advantages.

Thanks to big data, organizations can collect information from different perspectives with the aim to define more efficient decision-making processes (Lamont 2012) based on a more detailed understanding of existing data (LaValle et al. 2011) and on the opportunities for better tracing further social and market evolutions (Bose 2009; Pauleen and Wang 2017).

Accordingly, big data can support decision-making process improving efficiency in data’ transmission, capture, storage, analysis, visualization, and interpretation (LaValle et al. 2010; Chen and Zhang 2014). More in detail, the algorithm-based approaches offer the possibility for extracting useful information from large datasets (Fan and Bifet 2013; Dáñiga et al. 2018) and it can reveal valuable insights on which to base decision-making process for overcoming limitations related to reductionist approaches only based on experience and intuition (McAfee et al. 2012).

A Collective Approach to Knowledge Management

As a consequence of changing dynamics in social and business configurations, organizations interested in surviving over the time must develop frameworks able to conceptually and operationally integrate smart technologies in knowledge management processes for supporting decision-making and organizational value creation activities (Tanriverdi 2005; Holtshouse 2013; Carayannis et al. 2018).

Accordingly, Gruber (2008) reflecting upon web 2.0 era, characterized by blogs, Twitter, wikis, photo sharing, collaborative tagging and social networking sites, which enable to create and disseminate contents in a relatively simple way, has proposed collective knowledge system as a framework able to reveal the power of social web thanks to the semantic web.

Following Gruber’s representation (2008), social web refers to web sites in which user participation is the primary value driver, for instance, Facebook and YouTube, while semantic web can be considered as an ecosystem of structured data in which value is created by data integration from many sources. More in detail, semantic web aims at providing answers to small groups of people by elaborating user-generated contents through knowledge extraction approaches (Hepp et al. 2005) supporting the shift from gathered and individual intelligence to collective intelligence (Davies et al. 2003; Handschuh and Staab 2003).

Collective intelligence can be considered as the result of an emerging environment in which social knowledge is enhanced thanks to the support provided by networked
ICTs (information communication technologies) as drivers able to simultaneously and constantly enforce human interactions (Lévy and Bononno 1997). As widely discussed by consolidate literature, collective intelligence has a pervasive and disruptive role in defining human-machine relationship (de Senzi Zancul et al. 2016; Khan and Vorley 2017; Soto-Acosta et al. 2018). In such a direction, collective intelligence offers the opportunity for defining new schemes in knowledge management processes thanks to the definition of a collective knowledge system (CKS) as a framework structured in three levels as depicted in following Fig. 1:

- A social system related to problem-solving discussions (questions and answers) developed in websites;
- A search engine able to identify and classify contents generated in the social system;
- Users in a complex situation related to users’ actions interested in obtaining information through the definition of queries or in providing information through feedback processes related to the efficiency and utility of existing queries and search mechanisms.

As shown in Fig. 1, CKS refers to a human-machine interaction framework in which both humans and machines actively contribute to the production and usage of intelligence useful for facing emerging problems thanks to the supports provided by ICT tools (analytics and research engine, etc.) (Gaeta et al. 2019). Following this flow, knowledge emerges as the result of combination among individual contributions and their reciprocal influence (Pauleen and Wang 2017; Sumbal et al. 2017).

In the field of emergency response, a framework based on the collective intelligence can aggregate multiple sources of knowledge reducing time for data processing and supporting decision-making processes (Vivacqua and Borges 2010). In such a scenario, Vivacqua and Borges (2012) define a framework which formalizes the interaction between environmental information (context of the emergency) and the multiple involved individuals (population and respondents) with the aim to trace paths through
which individuals can provide information for supporting decision-making and policymaking processes. Basically, the framework is composed of two modules:

- A Collective Intelligence (CI) module composed by:
 - An interface through which population can provide data about their perceptions;
 - A data collection system for receiving and store raw data sent in by the individuals;
 - A data processing system in which multiple algorithms co-exist for aggregating, organizing, classifying, consolidating, and verifying collected data.
- A Decision Support module that receives CI data, processes it, integrates it with data from external sources, and provides information useful for supporting decision-making processes.

Relevant advantages of CKS in managing emergent and unpredictable dynamics are also highlighted by the *black swan* metaphor proposed by Taleb (2007), in which it underlined the need for connecting relevant information from individuals and groups in order to manage not expected events.

In nutshell, a collective knowledge framework can support knowledge management system for preventing black swans. However, there is still an open question about the ways in which collective knowledge frameworks can be effectively built and spread (Hecker 2012). For bridging this gap in knowledge, useful guidelines can be derived from systems thinking as summarized in the following section.

A Viable Systems Perspective for Managing Knowledge in the Digital Era

VSA is a conceptual framework based on systems theories (Beer 1984; Capra 1997; Checkland 1981; Laszlo 1996; Meadows 2008; Von Bertalanffy 1968; Weinberg 1975) which provide useful guidelines for supporting both researchers and practitioners in analysing, understanding, and systems behaviours. According to VSA (Barile 2009; Golinelli 2010), each organized entity that is interested in survival over time can be described as a viable system. Focusing on the relationship between environment and system (Ashby 1968), the VSA states that a viable system is able to achieve balancing conditions and to survive if it is able to understand and respond to the complexity and turbulence of the external environment. Accordingly, the VSA highlights a strong link between decision-making processes and systems’ survival, clarifying that decision-making is a cognitive process within multiple phases should be managed as summarized in following Table 1.

Each phase summarized in Fig. 1 requires a different ‘kind of knowledge’ in terms of combination among (Barile 2013): (1) *information units* as the amount of data endowed by a system; (2) *interpretative schemes* as organizational patterns through which data are organized; and (3) *value category* as values and strong beliefs that address system’s evaluation and perceptions.

Recognizing the interpretative contributions provided by the VSA, it is possible to state that acting on the paths through which information units, interpretative schemes, and value categories interact both inside a system and among multiple systems, different decision-making processes can be derived. Building upon this speculation, a
The knowledge itinerary

Phase of the decision-making process	Brief description
Chaos	Conditions in which it is perceived the existence of ‘something wrong or strange’ but origin/cause, effect, and solution of this condition are not known.
Complexity	Problems are understood and it appears as clear in the system’s perspective, but any solution is imaged and/or known.
Complication	Systems perceive the existence of a possible solution for the experienced problem, but it is still not well defined and/or formalized.
Certainty	Perceived solutions have been applied and problems have been solved then the system understands that it is possible to solve similar problems using the same instruments and resolutive approaches.

Source: Authors’ elaboration from Barile (2009)

renovate role for big data and AI can be identified with reference to emergent and chaotic configurations.

A human-machine-based interactions model can be formulated acting on the interaction among two levels (Gruber 2008):

- **Humans users** which include the environmental dynamics and human-human interactions;
- **Machine processes** related to automated activities carried out by software and hardware components for enabling the smart technologies processes. This level is composed by the **Collective Intelligence (CI) module**, which aims to collect and process the user-generated data, and the **Decision Support module** that elaborates through AI algorithms the information units gathered.

Thanks to this model it is possible to depict an open and dynamic view of environmental dynamism as a source of opportunity in which the attention is on the relationships among multiple entities with the aim to define new forms of interaction (Saviano and Caputo 2013). Basically, the model represented in following Fig. 2 offers the opportunities for listing a few fundamental steps for supporting decision-making processes:

- Individuals produce data related to their perceptions and expectations using instruments provided by World Wide Web (Lastowka 2007);
- **CI module** collects and stores raw data from individuals’ actions defining semi-structured data which can be managed in a repository (Vivacqua and Borges 2012; Fan and Bifet 2013). In this phase, **information units** are produced and made available for multiple decision-making processes.
- **Decision Support module** receives semi-structured data and it processes them via AI algorithms for identifying useful data related to a specific decision-makers request (Gruber 2008). In this phase, machine learning algorithms via an AI approach are able to identify non-obvious and hidden patterns of information in data contributing to the definition of new **interpretative schemes**.
– Decision-makers analyse available structured data on the base of their tacit knowledge (Nonaka and Takeuchi 1995) and value categories (Barile 2009) for producing predictive knowledge thanks to analytics (Pauleen and Wang 2017). In this phase, value categories influence decision-makers in evaluating, revising, and accepting or rejecting contents emerged from data analysis (Hair 2007).
– Decisions are formulated on the basis of the decision-maker’s cognitive processes. As a consequence, each decision-maker can formulate different decisions. The implemented decisions, synthesis of subjective perceptions, and representations of available data (Ratten 2016; Carrubbo et al. 2017) entail a change in the behaviour of each individual of the population.

In nutshell, the framework shown in Fig. 2 offers the opportunity for tracing renovate approaches to knowledge management thanks to the support provided by ICTs. The above-mentioned steps support dynamic interactions among the multiple actors involved in a shared and collaborate knowledge processes through which subjective contributions can be combined in order to obtain updated, useful, and integrate source of knowledge thanks to which it is possible to develop harmonic interactions for ensuring systems’ viability (Barile and Polese 2010; Caputo et al. 2017).

Collective Intelligence for Facing COVID-19 Challenge: The Chinese Case

Reflections herein in previous sections could support both researchers and practitioners in better understanding the dynamics and challenges faced by the Chinese government in dealing with the pandemic caused by the COVID-19.

During the annual Lunar New Year holiday, COVID-19 has started to spread in China. In this period, the people returned to their family homes and several billion
person-trips have made by residents and visitors, mostly on crowded planes, trains, and buses. Knowing this meant each infected person could have numerous close contacts over a protracted time and across long distances, the government needed to quickly act: China focused on traditional public health outbreak response tactics—Isolation, quarantine, social distancing, and community containment (Wu and McGoogan 2020).

More than this, other approaches based on sophisticated computational methods have been applied by the Chinese government. Data from hundreds of millions of smartphones have been collected and used for containing COVID-19 spread. Data from all smartphones with enabled GPS have been collected for tracking the user’s itinerary and estimate the probability that an individual has exposure to COVID-19 by matching its position to the position of infected individuals or groups.

Thanks to these data, authorities have increased efficiency in the use of limited medical resources directing—for example—tests for the virus to high-risk subjects identified by the artificial intelligence algorithm and controlling individuals who may have attempted to flee quarantine (Goldman 2020).

Furthermore, Hu et al. (2020) developed a modified stacked auto-encoder for modelling the transmission dynamics of the epidemics. They used the latent variables in the auto-encoder and clustering algorithms to group the provinces/cities for investigating the transmission structure. The aim of the work was to model the real-time forecasting of the confirmed cases of COVID-19 across China. The data were collected from January 11 to February 27, 2020, by World Health Organization. They predicted that the epidemics of COVID-19 will be over by the middle of April. If the data are reliable and there are no second transmissions, this model can forecast the transmission dynamics of the COVID-19 across the provinces/cities in China. The AI-inspired methods are a powerful tool for helping public health planning and policy-making.

In nutshell, big data and AI analytics have supported Chinese authorities in establishing the chain of virus transmission. On the 2nd of March, China reported only 126 new cases, compared to 851 in South Korea and 835 in Iran, out of a total of 1969 new worldwide cases (Goldman 2020) demonstrating the high accuracy of the AI-based methods for forecasting COVID-19 trajectory (Hu et al. 2020).

Anyways, all the approaches developed by Chinese authorities have been made possible by Chinese value categories according to which no privacy constraints exist and telecom providers can collect and use locational data. Instead, smartphone users in the USA and Europe can access their own data, but privacy laws prevent the government from collecting these data.

Accordingly, it is possible to state that it is needed to increase data sharing in case of outbreaks or disasters for supporting global understanding and efficient decision-making processes (Allam and Jones 2020).

Implications, Limitations, and Future Directions for Research

The increasing fluidity of information sharing made possible by the spread of World Wide Web has radically changed the world in which we all live every day (Sundararajan 2016; Constantiou et al. 2017; Caputo and Evangelista 2018). In such a scenario, social and business organizations are progressively understanding that the
previous managerial models and business approaches, basically rooted on competitive advantages produced by the ownership of critical raw materials and/or efficiency in production, are not enough to ensure organizations’ survival.

New competitive arenas are emerging in which traditional rules seem to be not fully respected and different efforts are required to both organizations and individuals (Morgan and Hunt 1999; Hennig-Thurau and Hansen 2013). A new paradigm seems to be commonly recognized in all the emerging configurations: the central role of knowledge management processes supported by new technologies for better collecting, combining, and using data through collaborative and participative approaches (Paroutis and Al Saleh 2009; Choudhary et al. 2013).

In such a scenario, the paper has provided preliminary reflections about the ways through which knowledge management processes can change thanks to the support provided by new technologies. Adopting the interpretative lens provided by the VSA, the key role of big data and AI in supporting the shift toward collective intelligence has been depicted and a possible framework has been drawn for supporting both researchers and practitioners in catching risks and opportunities of new technologies in knowledge management processes. In such a direction, the case of Chinese governmental approach to COVID-19 spread has been used as an example for clarifying the relevant role that information sharing and data accessibility have in ensuring efficient and fast decision-making approaches for facing disaster events.

The COVID-19 pandemic has underlined the multiple relevant advantages that a planned approach to collective knowledge management can provide in ensuring more efficiency in the management of unpredictable dynamics (Zhong et al. 2020) thanks to the support provided by new technologies (Hollander and Carr 2020). Investigated scenario recalls the attention on the need for improving shared approach to smart technologies in healthcare sector (Papa et al. 2020) with the aim to increase individual and collective ambidexterity through the definition of widen conceptual framework (Chinnaswamy et al. 2019) and the adoption of practicable instruments (Bresciani et al. 2018).

Reflections and pathway herein for supporting a shifting toward collective intelligence in knowledge management processes represent a starting point on which act for developing new managerial models able to stimulate data sharing and emphasise the role of new technologies for building new interpretative schemes able to overcome consolidated—and sometimes useless—representation of available data. From a different perspective, the paper also underlines the need for developing multidisciplinary research approaches able to overcome reductionist representations of business and social organizations. In such a direction, thanks to the interpretative contributions provided by systems thinking, the need for overcoming organizations’ boundaries in knowledge management practices is underlined and possible domains are underlined in which stimulate multidisciplinary debates for ensuring the emergence of collaborative and participative approaches trough which ensure both individual and collective satisfaction.

At the state, the paper enriches the ongoing debate about knowledge management processes in digital era provided theoretical reflections that require to be further developed through case studies and quantitative analysis able to provide information about advantages and risks of collective intelligence in different cognitive scenarios. Despite this, the paper highlights a possible key role of new technologies in supporting
decision-making processes without forgetting and underestimating the relevant role of human resources.

Funding Open access funding provided by Università degli Studi di Napoli Federico II within the CRUI-CARE Agreement.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Allam, Z., & Jones, D. S. (2020). On the coronavirus (COVID-19) outbreak and the Smart City Network: universal data sharing standards coupled with artificial intelligence (AI) to benefit urban health monitoring and management. *Healthcare, 8*(1), 46–54.

Allred, C. R., Fawcett, S. E., Wallin, C., & Magnan, G. M. (2011). A dynamic collaboration capability as a source of competitive advantage. *Decision Sciences, 42*(1), 129–161.

Amendola, C., Calabrese, M., & Caputo, F. (2018). Fashion companies and customer satisfaction: a relation mediated by information and communication technologies. *Journal of Retailing and Consumer Services, 43*, 251–257.

Arrigo, E. (2018). Open innovation and market orientation: an analysis of the relationship. *Journal of the Knowledge Economy, 9*(1), 150–161.

Ashby, W. R. (1968). Principles of self-organizing system. In W. Buckley (Ed.), *Systems research of behavioral science*. New York: Aldine Transaction.

Ashton, K. (2009). That ‘internet of things’ thing. *RFID journal, 22*(7), 97–114.

Asrar-ul-Haq, M., & Anwar, S. (2016). A systematic review of knowledge management and knowledge sharing: Trends, issues, and challenges. *Cogent Business & Management, 3*(1), 1127744.

Ball, K., & Gotsill, G. (2011). *Surviving the baby boomer exodus: Capturing knowledge for Gen X and Gen Y employees*. New York: Nelson Education.

Barile, S. (2009). *Management sistematico vitale*. Torino: Giappichelli.

Barile, S. (Ed.). (2013). *Contributions to Theoretical and Practical Advances in Management, Viable Systems Approach*. Roma: ARACNE Editrice.

Barile, S., & Polese, F. (2010). Smart service systems and viable service systems: applying systems theory to service science. *Service Science, 2*(1–2), 21–40.

Barile, S., Pels, J., Polese, F., & Saviano, M. (2012). An introduction to the viable systems approach and its contribution to marketing. *Journal of Business Market Management, 5*(2), 54–78.

Beer, S. (1984). The viable system model: Its provenance, development, methodology and pathology. *Journal of the Operational Research Society, 35*(1), 7–25.

Beyer, M. A., & Laney, D. (2012). *The importance of “big data”: a definition*. Stamford: Gartner.

Bose, R. (2009). Advanced analytics: opportunities and challenges. *Industrial Management & Data Systems, 109*(2), 155–172.

Bourdieu, P., Coleman, J. S., & Coleman, Z. W. (2019). *Social theory for a changing society*. London: Routledge.

Bresciani, S., Ferraris, A., & Del Giudice, M. (2018). The management of organizational ambidexterity through alliances in a new context of analysis: Internet of Things (IoT) smart city projects. *Technological Forecasting and Social Change, 136*, 331–338.

Brynjolfsson, E., & Kahin, B. (Eds.). (2002). *Understanding the digital economy: data, tools, and research*. Cambridge: MIT press.

Capra, F. (1997). *The web of life: a new scientific understanding of living systems*. London: Anchor.
Caputo, F. (2016). A focus on company-stakeholder relationships in the light of the stakeholder engagement framework. In D. Vrontis, Y. Weber, & E. Tsoukatos (Eds.), *Innovation, entrepreneurship and digital ecosystems* (pp. 455–470). Cyprus: EuroMed press.

Caputo, F., & Evangelista, F. (2018). The role of information sharing and communication strategies for improving stakeholder engagement. In S. M. R. Shams, D. Vrontis, Y. Weber, & E. Tsoukatos (Eds.), *Business models for strategic innovation* (pp. 51–69). London: Routledge.

Caputo, F., & Walletzky, L. (2017). Investigating the users’ approach to ICT platforms in the city management. *Systems, 5*(1), 1–15.

Caputo, F., Evangelista, F., Perko, I., & Russo, G. (2017). The role of big data in value co-creation for the value ecosystems. In S. Barile, R. Espejo, I. Perko, & M. Saviano (Eds.), *Cybernetics and systems. Social and business decisions* (pp. 261–267). London: Giappichelli-Routledge.

Carayannis, G. E., Del Giudice, M., Saviano, M., & Caputo, F. (2018). Beyond big data: from smart to wise systems thinking, systems practice. *Checkland, P. B. (1981). Systems thinking, systems practice*. Chichester: Wiley.

Chen, C. P., & Zhang, C. Y. (2014). Data-intensive applications, challenges, techniques and technologies: a survey on big data. *Information Sciences, 275*, 314–347.

Chinnaswamy, A., Papa, A., Dezi, L., & Mattiacci, A. (2019). Big data visualisation, geographic information systems and decision making in healthcare management. *Management Decision, 57*(8), 1937–1959.

Choudhary, A. K., Harding, J., Camarinha-Matos, L. M., Lenny Koh, S. C., & Tiwari, M. K. (2013). Knowledge management and supporting tools for collaborative networks. *International Journal of Production Research, 51*(7), 1953–1957.

Christensen, C. M. (2001). The past and future of competitive advantage. *Sloan Management Review, 42*(2), 105–109.

Constantiou, I., Marton, A., & Tuunainen, V. K. (2017). Four models of sharing economy platforms. *MIS Quarterly Executive, 16*(4), 231–251.

Coyle, K. (2006). Mass digitization of books. *The Journal of Academic Librarianship, 32*(2), 641–645.

Dahya, J., Caputo, F., & Ráček, J. (2018). Complex network analysis for knowledge management and organizational intelligence. *Journal of the Knowledge Economy, 11*, 1–20. https://doi.org/10.1007/s13132-018-0553-x.

Davies, J., Fensel, D., & Van Harmelen, F. (Eds.). (2003). *Towards the semantic web*. Ontology-driven knowledge management. New York: Wiley.

de Senzi Zaneul, E., Takey, S. M., Barquet, A. P. B., Kuwabara, L. H., Miguel, P. A. C., Rozenfeld, H., & Del Giudice, M. (2016). Business process support for IoT based product-service systems (PSS). *Business Process Management Journal, 22*(2), 305–323. https://doi.org/10.1108/BPMJ-05-2015-0078.

Del Giudice, M., Caputo, F., & Evangelista, F. (2016). How are decision systems changing? The contribution of social media to the management of decisional liquefaction. *Decision Systems, 25*(3), 214–226.

Del Giudice, M., Arslan, A., Scuotto, V., & Caputo, F. (2017). Influences of cognitive dimensions on the collaborative entry mode choice of small-and medium-sized enterprises. *International Marketing Review, 34*(4), 652–673.

Erickson, S., & Rothberg, H. (2015). Big data and knowledge management: establishing a conceptual foundation. *Leading Issues in Knowledge Management, 2*, 204.

Fan, W., & Bifet, A. (2013). Mining big data: current status and forecast to the future. *ACM SIGKDD Explorations Newsletter, 14*(2), 1–5.

Febelowitz, J. (2013). Analytics in oil and gas: the big deal about big data. In SPE Digital Energy Conference. Society of Petroleum Engineers. doi:https://doi.org/10.2118/163717-MS.

Gaeta, M., Loia, F., Sarno, D., & Carrubbo, L. (2019). Online social network viability: misinformation management based on service and systems theories. *International Journal of Business and Management, 14*(1), 17–35.

Goldman, D. (2020). China suppressed Covid-19 with AI and big data. https://asiatimes.com/2020/03/china-suppressed-covid-19-with-ai-and-big-data/. Accessed 15 March 2020.

Golinelli, G. M. (2010). *Viable systems approach (VSA).* Padova: Kluwer Cedam.

Gruber, T. (2008). Collective knowledge systems: where the social web meets the semantic web. *Journal of web semantics, 6*(1), 4–13.
Hair, J. F. (2007). Knowledge creation in marketing: the role of predictive analytics. *European Business Review, 19*(4), 303–315.

Handschuh, S., & Staab, S. (Eds.). (2003). *Annotation for the semantic web*. Amsterdam: IOS press.

Hecker, A. (2012). Knowledge beyond the individual? Making sense of a notion of collective knowledge in organization theory. *Organization Studies, 33*(3), 423–445.

Hennig-Thurau, T., & Hansen, U. (Eds.). (2013). *Relationship marketing: Gaining competitive advantage through customer satisfaction and customer retention*. New York: Springer Science & Business Media.

Hepp, M., Leymann, F., Domingue, J., Wahler, A., & Fensel, D. (2005). Semantic business process management: a vision towards using semantic web services for business process management. In *IEEE International Conference on e-Business Engineering (ICEBE’05)* (pp. 535–540). New York: IEEE.

Hollander, J. E., & Carr, B. G. (2020). Virtually perfect? Telemedicine for COVID-19. *New England Journal of Medicine, 382*(18), 1679–1681.

Holtshouse, D. K. (2013). *Information technology for knowledge management*. New York: Springer Science & Business Media.

Hu, T. S., Lin, C. Y., & Chang, S. L. (2005). Technology-based regional development strategies and the emergence of technological communities: a case study of HSIP, Taiwan. *Technovation, 25*(4), 367–380.

Hu, Z., Ge, Q., Jin, L., & Xiong, M. (2020). Artificial intelligence forecasting of COVID-19 in China. arXiv preprint arXiv:2002.07112.

Kanter, R. M. (2003). *Challenge of organizational change: how companies experience it and leaders guide it*. London: Simon and Schuster.

Ketchen Jr., D. J., Ireland, R. D., & Snow, C. C. (2007). *Strategic entrepreneurship, collaborative innovation, and wealth creation*. Strategic Entrepreneurship Journal, 1(3–4), 371–385.

Khan, Z., & Vorley, T. (2017). Big data text analytics: an enabler of knowledge management. *Journal of Knowledge Management, 21*(1), 18–34.

Kirton, M. J. (2004). *Adoption-innovation: in the context of diversity and change*. London: Routledge.

Lamont, J. (2012). Big data has big implications for knowledge management. *KM World, 21*(4), 8–11.

Laszlo, E. (1996). *The systems view of the world: a holistic vision for our time*. New Jersey: Hampton Press.

Lave, S., Hopkins, M. S., Lesser, E., Shockley, R., & Kurschwitz, N. (2010). Analytics: the new path to value. *MIT Sloan Management Review, 52*(1), 1–25.

LaValle, S., Lesser, E., Shockley, R., Hopkins, M. S., & Kurschwitz, N. (2011). Big data, analytics and the path from insights to value. *MIT Sloan Management Review, 52*(2), 21–32.

Leefflang, P. S., Verhoeof, P. C., Dahlström, P., & Freundt, T. (2014). Challenges and solutions for marketing in a digital era. *European Management Journal, 32*(1), 1–12.

Lévy, P., & Bonomo, R. (1997). *Collective intelligence: mankind’s emerging world in cyberspace*. New York: Perseus books.

Liedtka, J. M. (1996). Collaborating across lines of business for competitive advantage. *Academy of Management Perspectives, 10*(2), 20–34.

McAfee, A., Brynjolfsson, E., Davenport, T. H., Patil, D. J., & Barton, D. (2012). Big data: the management revolution. *Harvard Business Review, 90*(10), 60–68.

Meadows, D. H. (2008). *Thinking in systems: a primer*. London: Chelsea green publishing.

Morgan, R. M., & Hunt, S. (1999). Relationship-based competitive advantage: the role of relationship marketing in marketing strategy. *Journal of Business Research, 46*(3), 281–290.

Nilsson, N. J. (2014). *Principles of artificial intelligence*. London: Morgan Kaufmann.

Nonaka, I., & Takeuchi, H. (1995). *The knowledge-creating company: How Japanese companies create the dynamics of innovation*. Oxford: Oxford university press.

Papa, A., Mital, M., Pisano, P., & Del Giudice, M. (2020). E-health and wellbeing monitoring using smart healthcare devices: an empirical investigation. *Technological Forecasting and Social Change, 153*, 119226. https://doi.org/10.1016/j.techfore.2018.02.018.

Paroutis, S., & Al Saleh, A. (2009). Determinants of knowledge sharing using Web 2.0 technologies. *Journal of Knowledge Management, 13*(4), 52–63.

Pauleen, D. J., & Wang, W. Y. (2017). Does big data mean big knowledge? KM perspectives on big data and analytics. *Journal of Knowledge Management, 21*(1), 1–6.

Qiu, J., Wu, Q., Ding, G., Xu, Y., & Feng, S. (2016). A survey of machine learning for big data processing. *EURASIP Journal on Advances in Signal Processing, 2016*(1), 67–82.

Ratten, V. (2016). Service innovations in cloud computing: a study of top management leadership, absorptive capacity, government support, and learning orientation. *Journal of the Knowledge Economy, 7*(4), 935–946.
Sandberg, S. (2014). Experiential knowledge antecedents of the SME network node configuration in emerging market business networks. *International Business Review, 23*(1), 20–29.

Santoro, G., Vrontis, D., Thrassou, A., & Dezi, L. (2018). The Internet of Things: building a knowledge management system for open innovation and knowledge management capacity. *Technological Forecasting and Social Change, 136*, 347–354.

Saviano, M., & Caputo, F. (2013). Managerial choices between systems, knowledge and viability. In S. Barile (Ed.), *Contributions to theoretical and practical advances in management. A viable systems approach (VSA)* (pp. 219–242). Aracne: Roma.

Saviano, M., Barile, S., Spohrer, J. C., & Caputo, F. (2017). A service research contribution to the global challenge of sustainability. *Journal of Service Theory and Practice, 27*(5), 951–976.

Saviano, M., Caputo, F., Mueller, J., & Belyaeva, Z. (2018). Competing through consonance: a stakeholder engagement view of corporate relational environment. *Sinergie Italian Journal of Management, 105*, 63–82.

Soto-Acosta, P., Del Giudice, M., & Scuotto, V. (2018). Emerging issues on business innovation ecosystems: the role of information and communication technologies (ICTs) for knowledge management (KM) and innovation within and among enterprises. *Baltic Journal of Management, 13*(3), 298–302.

Sumbal, M. S., Tsui, E., & See-to, E. W. (2017). Interrelationship between big data and knowledge management: an exploratory study in the oil and gas sector. *Journal of Knowledge Management, 21*(1), 180–196.

Sundararajan, A. (2016). *The sharing economy: the end of employment and the rise of crowd-based capitalism*. Cambridge: Mit Press.

Sweet, P. (2001). Strategic value configuration logics and the “new” economy: a service economy revolution? *International Journal of Service Industry Management, 12*(1), 70–84.

Taleb, N. N. (2007). *The black swan: the impact of the highly improbable*. New York: Random house.

Tanriverdi, H. (2005). Information technology relatedness, knowledge management capability, and performance of multibusiness firms. *MIS Quarterly, 29*, 311–334.

Tapscott, D. (1996). *The digital economy: promise and peril in the age of networked intelligence*. New York: McGraw-Hill.

Turban, E., Leidner, D., McLean, E., Wetherbe, J., & Cheung, C. (2006). *Information technology for management: transforming organizations in the digital economy*. New York: Wiley.

Uddin, M. F., & Gupta, N. (2014). Seven V’s of big data understanding big data to extract value. In *Proceedings of 2014 Zone 1 Conference of the American Society for Engineering Education (ASEE Zone 1)* (pp. 1–5). New York: IEEE.

Van Oosterhout, M., Waarts, E., & van Hillegersberg, J. (2006). Change factors requiring agility and implications for IT. *European Journal of Information Systems, 15*(2), 132–145.

Vivacqua, A. S., & Borges, M. R. (2010). Collective intelligence for the design of emergency response. In *The 2010 14th international conference on computer supported cooperative work in design* (pp. 623–628). New York: IEEE.

Vivacqua, A. S., & Borges, M. R. (2012). Taking advantage of collective knowledge in emergency response systems. *Journal of Network and Computer Applications, 35*(1), 189–198.

Von Bertalanffy, L. (1968). *General system theory: foundations, development, applications*. New York: George Braziller.

Weinberg, G. (1975). *An introduction to general systems thinking*. New York: Wiley.

Wu, Z., & McGoogan, J. M. (2020). Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. *Jama, 323*(13), 1239–1242.

Yu, D., & Yang, J. (2018). Knowledge management research in the construction industry: a review. *Journal of the Knowledge Economy, 9*(3), 782–803.

Zainon, N., Salleh, H., & Rahim, F. A. (2011). Coping with the rapidity of information technology changes. A comparison review on current practices. *World Academy of Science, Engineering and Technology, 5*(8), 990–996.

Zaslavsky, A., Perera, C., & Georgakopoulos, D. (2013). *Sensing as a service and big data*, arXiv preprint arXiv:1301.0159.

Zhong, B. L., Luo, W., Li, H. M., Zhang, Q. Q., Liu, X. G., Li, W. T., & Li, Y. (2020). Knowledge, attitudes, and practices towards COVID-19 among Chinese residents during the rapid rise period of the COVID-19 outbreak: a quick online cross-sectional survey. *International Journal of Biological Sciences, 16*(10), 1745–1752.

Zhou, L., Pan, S., Wang, J., & Vasilakos, A. V. (2017). Machine learning on big data: opportunities and challenges. *Neurocomputing, 237*, 350–361.
Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Affiliations

Francesca Iandolo¹ · Francesca Loia² · Irene Fulco³ · Chiara Nespoli⁴ · Francesco Caputo²

Francesca Iandolo
francesca.iandolo@uniroma1.it

Francesca Loia
francesca.loia@unina.it

Irene Fulco
irenefulco@unitus.it

Chiara Nespoli
chiaranespoli1@gmail.com

¹ Department of Management, Faculty of Economics, University of Rome ‘La Sapienza’, Via del Castro Laurenziano, 9, 00161 Rome, Italy
² Department of Economics, Management, and Institutions (DEMI), University of Naples ‘Federico II’, Via Cintia, 21, 80126 Naples, Italy
³ Department of Economics and Management (DEIM), University of Tuscia of Viterbo, Via del Paradiso, 47, 01100 Viterbo, Italy
⁴ University of Campania ‘L. Vanvitelli’, Via Roma, 29, 81031 Aversa, CE, Italy