UV, visible and near-infrared lights induced NO\textsubscript{x} destruction activity of (Yb,Er)-NaYF\textsubscript{4}/C-TiO\textsubscript{2} composite

Xiaoyong Wu1, Shu Yin1, Qiang Dong1, Bin Liu2, Yuhua Wang2, Tohru Sekino1, Soo Wahn Lee3 & Tsugio Sato1

1Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai 980-8577, Japan, 2Lanzhou University, 222, Transhuinan Road, Lanzhou 730000, People’s Republic of China, 3Sunmoon University, 100, Gilsan-Ri, TangJung-Myon, Asan, ChungNam, 336-708, Republic of Korea.

Titanium dioxide (TiO\textsubscript{2}) is a well-known photocatalyst for environmental cleaning and energy conversion. However, it can only be excited by ultraviolet light for photocatalysis due to its wide band gap (3.2 eV). In this paper, we present a novel (Yb,Er)-NaYF\textsubscript{4}/C-TiO\textsubscript{2} composite which can be perfectly induced not only by ultraviolet light but also weak visible and near infrared lights, owing to the increased carbon doping contents and optimal energy transfer between up-conversion phosphor and C doped TiO\textsubscript{2} compared with that of solely C-TiO\textsubscript{2}. Consequently, the (Yb,Er)-NaYF\textsubscript{4}/C-TiO\textsubscript{2} composite can present the outstanding continuous NO\textsubscript{x} gas destruction ability under the irradiation of ultraviolet, weak visible and infrared lights much superior to pure C-TiO\textsubscript{2}, P25 titania and even that of (Yb,Er)-NaYF\textsubscript{4}/N-TiO\textsubscript{2} composite, due to the nice synergetic effect of (Yb,Er)-NaYF\textsubscript{4} and C-TiO\textsubscript{2}, indicating a promising potential in the photocatalyst application with high efficiency of ultraviolet, visible and infrared lights induced photocatalysis simultaneously.

TiO\textsubscript{2}, one of the most promising photocatalysts, has attracted considerable attention in recent years due to its high oxidative power, abundance, chemical stability, environmentally friendly and low cost1-5. Unfortunately, the wide band gap of TiO\textsubscript{2} ca. 3.2 eV has limited its widespread application in industry since it needs to be excited by ultraviolet (UV) light6-8. It is well known that the UV light only occupies 5% of solar light, whereas the residual 45% and 50% of solar light are comprised by visible light and near-infrared (NIR) light, respectively. Therefore, there is still a large space for TiO\textsubscript{2} to be improved for photocatalysis using solar light9,10.

In order to overcome this issue, several strategies, such as dye sensitizing11,12, heterostructure13,14, ion doping15-17, etc. have been developed. For example, Genevieve et al. reported that the visible solar light absorption of titanium dioxide could be significantly enhanced by combining titanium dioxide with Osmium and Ruthenium propyridyl complexes18. Zhou et al. presented that the visible light absorption of TiO\textsubscript{2} was able to be extended to 650 nm by forming a heterostructure with Ag\textsubscript{2}O nanoparticles19. Yin et al. demonstrated that different phases of nitrogen doped titania nanocrystals were successfully prepared by a homogeneous precipitation-solvothermal process in TiCl\textsubscript{3}-hexamethylenetetramine aqueous and alcohol solutions, and the as-prepared samples showed excellent visible light absorption due to the nitrogen doping in titania lattice20. However, most of them can only extend the solar light absorption of TiO\textsubscript{2} to the visible-light range. As for NIR light absorption, few papers reported about this. Qin group firstly demonstrated NIR-driven photocatalysis of TiO\textsubscript{2} by combining it with YF\textsubscript{3}:Yb, Tm or NaYF\textsubscript{4}:Yb,Tm9,10. The mechanism for this NIR-driven photocatalysis is as follows. The up-conversion phosphor absorbed the NIR light and then emitted UV light. Finally, this converted UV light would be reabsorbed by TiO\textsubscript{2} for photocatalysis. Nevertheless, in this case, only UV and NIR lights could be utilized by these two composites. Furthermore, the light conversion from NIR light to UV light is usually not efficient enough compared with the transformation from NIR light to visible light. Because the light energy conversion would be more efficient when the fewer anti-stokes shift was happened in this process21-23. Therefore, the combination of weak visible light induced TiO\textsubscript{2} based photocatalyst with NIR-Vis up-conversion phosphor obtaining the lower anti-stokes shift may be the more promising way to effectively use the whole solar light (UV, visible, NIR lights) for photocatalysis.

It is well known that NaYF\textsubscript{4} has been widely recognized as the most efficient host for up-conversion phosphor until now due to its low phonon energy and efficient multicolor emissions. Subsequently, the Yb and Er co-doped
NaYF₄ designated as (Yb,Er)-NaYF₄ has become the most promising visible light emitting up-conversion phosphor with two main emission peaks at about 545 and 655 nm under the irradiation of 980 nm²⁻³⁻²⁶. In order to use (Yb,Er)-NaYF₄ as NIR-Vis conversion matrix achieving the optimal synergetic effect between up-conversion phosphor and photocatalyst, a suitable TiO₂ based photocatalyst, which has a good visible absorption covered the 545 and 655 nm range sufficiently, together with excellent photocatalytic activity under very weak light irradiation, is required.

Recently, C has become one of the most studied dopants in TiO₂²⁷⁻²⁸ since Saktihivel et al. reported that carbon doped particles presented five times higher activity than nitrogen-doped TiO₂ in the degradation of 4-chlorophenol by visible light²⁹. According to the density functional theory calculations within the generalized gradient approximation reported by Valentin et al.³⁰, C doped TiO₂ presented excellent visible light absorption and could cover the majority of visible solar lights by introducing series of localized occupied states above the valence band gap of TiO₂ semiconductor, and it has been experimentally confirmed by many researchers³¹⁻³³. Our groups³² also prepared the C doped TiO₂ by a facile solvothermal method, which exhibited fabulous visible light absorption in the range of 380–780 nm and corresponding nice visible light responsive NOx destruction ability superior to that of N-TiO₂.

Therefore, in order to improve solar energy utilization by enabling the effective use of not only UV, visible lights but also NIR light for photocatalysis, a novel composite, which consisted of NIR light induced (Yb,Er)-NaYF₄ up-conversion phosphor and UV, visible lights driven C-TiO₂ photocatalyst, was synthesized by a facile calcination assisted solvothermal method without the addition of any other carbon precursors except for Ti source and ethanol solvent. In addition, the NOx gas destruction activity was employed to test the photocatalytic ability of composite instead of dye solution degradation due to the influence of solution on the emission intensity of up-conversion phosphor by a facile solvothermal method, no impurity peaks appeared in (1:1)@(Yb,Er)-NaYF₄/TiO₂ except for those of anatase TiO₂ and (Yb,Er)-NaYF₄, indicating that the introduction of (Yb,Er)-NaYF₄ in the solution made no visible change on the formation of anatase TiO₂ during the solvothermal process. The corresponding XRD patterns for other weight ratios of the composites are shown in supplementary Figure S1 and no difference was exhibited among them except for relative peak intensities.

Figure 1 shows the XRD patterns of samples of C-TiO₂, (1:1)@(Yb,Er)-NaYF₄/C-TiO₂ and (Yb,Er)-NaYF₄. All the diffraction peaks of sample C-TiO₂ were well indexed to the anatase phase of TiO₂ (JCPDS file No. 21-1272) and no impurity peaks appeared. After combining with (Yb,Er)-NaYF₄ phosphor by a facile solvothermal method, no impurity peaks appeared in (1:1)@(Yb,Er)-NaYF₄/C-TiO₂ except for those of anatase TiO₂ and (Yb,Er)-NaYF₄, indicating that the introduction of (Yb,Er)-NaYF₄ in the solution made no visible change on the formation of anatase TiO₂ during the solvothermal process. The corresponding XRD patterns for other weight ratios of the composites are shown in supplementary Figure S1 and no difference was exhibited among them except for relative peak intensities.

Figure 2 shows the TEM image, HRTEM image, element mapping and EDX spectrum of (1:1)@(Yb,Er)-NaYF₄/C-TiO₂ composite. It could be clearly seen from element mapping that the element of Na, Y, F, Yb, Er, Ti and O truly existed in the sample. The element mapping of C is not shown because a large amount of C existed in the support film of the TEM grid. However, actually, the existence of C in the TiO₂ could be confirmed from the EDX spectrum and the following DRS and XPS analysis. In addition, it could also be found in Figure 2 that the large particle size of (Yb,Er)-NaYF₄ (200–400 nm) were successfully coated by small particles of C-TiO₂ (7–10 nm) to form core/shell structure. The d-spacing of covered small particle was about 0.351 nm, which agreed with the spacing of (101) of anatase TiO₂. The specific surface area of C-TiO₂ and (Yb,Er)-NaYF₄ were determined as 124.3 and 11.5 m²g⁻¹, respectively. When the C-TiO₂ nanoparticles were combined with (Yb,Er)-NaYF₄ powders in core/shell structure, the specific surface was changed to 70.1 m²g⁻¹. In addition, the SEM images of the samples C-TiO₂, (Yb,Er)-NaYF₄ and (1:1)@(Yb,Er)-NaYF₄/C-TiO₂ were also characterized (see supplementary Figure S2). After coupling small nanosize particle of C-TiO₂, the morphology and particle size of (1:1)@(Yb,Er)-NaYF₄/C-TiO₂ composite presented no big variation compared with those of solely (Yb,Er)-NaYF₄ except for a rough surface due to the covering of C-TiO₂ nanoparticles.

Figure 3 presents the DRS, PL spectra, visual emitting map of C-TiO₂, (1:1)@(Yb,Er)-NaYF₄/TiO₂, (1:1)@(Yb,Er)-NaYF₄/C-TiO₂ and (Yb,Er)-NaYF₄. It was apparent that C-TiO₂ exhibited a nice visible light absorption up to about 600 nm due to the C doping in TiO₂ by inducing some impurity energy levels of C above the valence band of TiO₂ (Figure 3 (a))³⁰⁻³¹. (Yb,Er)-NaYF₄ displayed only the absorption band from 908 to 1028 nm, corresponding to the 2F⁷/₂ → 2F⁵/₂ transition of Yb⁺ in NaYF₄³²⁻³⁴. When TiO₂ was combined with (Yb,Er)-NaYF₄, (1:1)@(Yb,Er)-NaYF₄/TiO₂ represented a strong UV absorption of TiO₂ with the NIR light absorption band of (Yb,Er)-NaYF₄. Furthermore, (1:1)@(Yb,Er)-NaYF₄/C-TiO₂ showed the significantly enhanced visible light absorption up to 900 nm, owing to the introduction of C into TiO₂ lattice during calcination³⁵⁻³⁶. In addition, it is interesting that the visible light absorption of (1:1)@(Yb,Er)-NaYF₄/C-TiO₂ was much stronger than that of pure C-TiO₂, which is probably attributed to the increased C doping contents in TiO₂ in the presence of (Yb,Er)-NaYF₄ crystal. This phenomenon was also observed in our precious works³⁶. The doped C contents in TiO₂ would be increased when other impurity ions (Nd³⁺, etc.) or other phases were existed in the preparation of C-TiO₂ by solvothermal method. The advisable reason for this phenomenon is still unclear which will be our next work. The effects of (Yb,Er)-NaYF₄ contents on the DRS of (Yb,Er)-NaYF₄/C-TiO₂ composites are demonstrated in supplementary Figure S3. It was obvious that the
Figure 2 | Element mapping, TEM image, HRTEM image and EDX spectrum of the sample (1:1)@(Yb,Er)-NaYF₄/C-TiO₂.

Figure 3 | DRS(a), PL spectra(b), visual emitting map(c) of C-TiO₂, (1:1)@(Yb,Er)-NaYF₄/TiO₂, (1:1)@(Yb,Er)-NaYF₄/C-TiO₂, and (Yb,Er)-NaYF₄ under the excitation of 980 nm laser and (d) overlap between the DRS and PL spectrum of (1:1)@(Yb,Er)-NaYF₄/C-TiO₂. For comparison, the DRS of (1:1)@(Yb,Er)-NaYF₄/TiO₂ was also indicated in (d).
visible light absorption of the samples improved with an increase in (Yb,Er)-NaYF4 content. When the four kinds of samples in Figure 3(a) were excited by a NIR diode laser light (980 nm), different intensities of green light were emitted as shown in Figure 3(b). The (Yb,Er)-NaYF4 powders showed the highest emission intensity with four emission peaks at about 408, 525, 540 and 653 nm, which are corresponding to the transitions from $^2\text{H}_{9/2}$, $^2\text{S}_{1/2}$ and $^2\text{I}_{9/2}$ to $^4\text{I}_{15/2}$ of Er$^{3+}$, respectively. When the (Yb,Er)-NaYF4 powders were mixed with undoped TiO2 particles to form (1 : 1)@(Yb,Er)-NaYF4/TiO2, the relative emission intensity of peak at 540 nm decreased to about 1/4, probably due to the shielding of the excitation light by TiO2 nanoparticles on the surface of (Yb,Er)-NaYF4 core. More importantly, the relative emission intensity of sample (1 : 1)@(Yb,Er)-NaYF4/C-TiO2 declined more significantly. The reason for this dramatic decrement of emission intensity might be explained by Figure 3 (d). It could be explicitly observed that the DRS of (1 : 1)@(Yb,Er)-NaYF4/C-TiO2 had a good overlap with four emission peaks in PL spectrum, while no overlap could be observed for (1 : 1)@(Yb,Er)-NaYF4/TiO2, indicating that C-TiO2 could efficiently absorb the visible fluorescence emitted from (Yb,Er)-NaYF4. When the (1 : 1)@(Yb,Er)-NaYF4/C-TiO2 composite was excited by 980 nm laser, the up-conversion phosphor (Yb,Er)-NaYF4 in the composite would emit green light with four emission peaks at 408, 525, 540 and 653 nm. Meanwhile, a large part of emitted green light would be efficiently absorbed by the C-TiO2 particles coated on the surface of (Yb,Er)-NaYF4, eventually leading to the strong reduction of emission intensity of green light compared with (Yb,Er)-NaYF4 and (1 : 1)@(Yb,Er)-NaYF4/TiO2. As for sample C-TiO2, no green light was observed when excited by 980 nm laser, since no up-conversion occurred in this sample. The corresponding visual emitting maps for these four samples monitored by 980 nm NIR light irradiation are presented in Figure 3 (c), in which the laser sources and IR light path are shown by computer graphics.

In order to investigate the status of C in the TiO2 lattice, the XPS measurement was employed. From XPS spectra of C 1s for C-TiO2 and (1 : 1)@(Yb,Er)-NaYF4/C-TiO2 in Figure 4, it could be obviously seen that both samples exhibited three peaks at 282.0 eV, 284.6 eV and 285.6 eV. The peak at 284.6 eV was ascribed to the adventitious carbon species from the XPS measurement and the peak around 285.6 eV is corresponding to the elemental carbon which has the same binding energy as that of carbon in the graphite intercalation compound. More importantly, the small peak at about 282.0 eV should be ascribed to the binding energy of C-Ti bond, indicating that the C had been successfully doped into TiO2 lattice by replacing O site. The relative area of 282.0 eV peak for (1 : 1)@(Yb,Er)-NaYF4/C-TiO2 was larger than that of C-TiO2, and the corresponding dopant C concentration for two samples were about 0.38 at.% and 0.19 at.%, which were well agreements with that of DRS result in Figure 3 (a). It is well known that some impurity C energy levels will be introduced above the valence band of TiO2 when C was doped in O site of TiO2, and then the electrons can be excited from impurity C energy levels instead of the valence band of TiO2 to the conduction band of TiO2, which eventually leads to the strong visible light absorption of C-TiO2.

Photocatalytic activities. The photocatalytic activities of samples were investigated by testing the NOx gas destruction ability under the irradiation of UV, visible and NIR lights. Figure 5 illustrates the deNOx activity of various samples using different wavelengths of light sources and all of the samples were kept in dark for 30 min before irradiation to eliminate the influence of absorption of NO species by samples. In Figure 5 (A) and (C), it can be obviously seen that there was no obvious deNOx activity for (Yb,Er)-NaYF4 (sample (c)) regardless of irradiation wavelengths. As for pure C-TiO2 (sample (a)), 0%, 6.2%, 23.2%, 28.3% and 32.9% of NO were decomposed under the excitation of NIR diode laser, red LED, green LED, blue LED and UV LED, respectively. The nice visible light induced photocatalytic activity for this sample was mainly assigned to the excellent visible absorption of TiO2 after C doping, but no NIR light driven deNOx activity was performed, because C-TiO2 could not be excited by 980 nm NIR light. However, when C-TiO2 photocatalyst was combined with (Yb,Er)-NaYF4 up-conversion phosphor, about 8.5% of NO gas was successfully destructed even when the NIR diode laser was used as the irradiation light source. This NIR light induced activity should be owing to the synergetic effect of C-TiO2 photocatalyst and (Yb,Er)-NaYF4 up-conversion phosphor, since no corresponding performance was observed by pure C-TiO2 and (Yb,Er)-NaYF4 individually. In addition, the visible light induced deNOx performance was significantly enhanced to 19.5%, 26.2% and 30% with the irradiation of 627, 530 and 445 nm LED lights, respectively. This interesting result might be dominantly due to the increased visible light absorption ability by increasing C doping content as shown in Figure 3(a). As for the effect of thermal reaction on the visible-NIR light induced photocatalytic activity, it could be ignored since no visible-NIR light responsive deNOx activity was observed for the pure (Yb,Er)-NaYF4 and no NIR light driven deNOx performance was exhibited for solely C-TiO2. Furthermore, the temperature was fixed at a constant room temperature during the photocatalytic testing.

The detailed mechanism for this synergy phenomenon will be explained in the following section. Besides, the deNOx activity of (1 : 1)@(Yb,Er)-NaYF4/C-TiO2 was also compared with those of (1 : 1)@(Yb,Er)-NaYF4/TiO2, (1 : 1)@(Yb,Er)-NaYF4/N-TiO2 and P25 using different wavelengths of lights (Figure 5(B)). When (Yb,Er)-NaYF4 up-conversion phosphor was mixed with pure TiO2, only 27.5% of UV light induced photocatalytic activity was displayed, and no distinct visible and NIR lights induced deNOx activity was presented due to the poor visible and NIR light absorption of pure TiO2. As for P25, 26.8% and 9.6% of NOx were destructed when UV and blue LEDs were used as light sources, respectively. The XRD pattern, DRS and photoluminescence spectrum of (1 : 1)@(Yb,Er)-NaYF4/N-TiO2 are illustrated in supplementary Figure S4. The XRD profile of (1 : 1)@(Yb,Er)-NaYF4/N-TiO2 was similar to that of (1 : 1)@(Yb,Er)-NaYF4/C-TiO2, but the visible light absorption was much weaker, indicating only extend the...
absorption tail to about 560 nm. Consequently, (1:1)@(Yb,Er)-NaYF4/N-TiO2 exhibited only 7.3% and 23% of NOx destruction ability with the visible light irradiation of 530 and 445 nm, respectively. Although the absorption spectrum of (1:1)@(Yb,Er)-NaYF4/N-TiO2 showed a little overlap with its photoluminescence spectrum, it was still not effective enough to induce the obvious deNOx performance under the excitation of 980 nm light. Furthermore, the effect of (Yb,Er)-NaYF4 content on the photocatalytic activity of (Yb,Er)-NaYF4/C-TiO2 composites was also studied using different wavelengths lights (in Figure 5-(D)). (1:1)@(Yb,Er)-NaYF4/C-TiO2 demonstrated a little better deNOx ability than those of other compositions of (Yb,Er)-NaYF4/C-TiO2 composites.

In addition, the deNOx ability of (1:1)@(Yb,Er)-NaYF4/C-TiO2 was also investigated by employing NIR laser, red LED, the combination of NIR laser and red LED as irradiation sources (Figure 6). It was clearly exhibited that about 19% of NOx gas was destructed under the excitation of red LED. While when NIR laser was combined with red LED as the light source, further 4.5% of NOx gas reduction was appeared and then moved back to 19% again as the NIR diode laser was eliminated. This result indicated that the NIR light induced deNOx ability of the C-TiO2 photocatalyst combined with (Yb,Er)-NaYF4 up-conversion phosphor truly had a positive effect on the total photocatalytic activity of photocatalyst when irradiated by UV, visible, NIR lights, therefore, the solar light might be more

Figure 5 | Time dependence of NOx destruction activity (A), (B), corresponding deNOx ability (C) of (a) C-TiO2, (b) (1:1)@(Yb,Er)-NaYF4/C-TiO2, (c) (Yb,Er)-NaYF4, (d) (1:1)@(Yb,Er)-NaYF4/TiO2, (e) (1:1)@(Yb,Er)-NaYF4/N-TiO2, (f) P25 titania under the irradiation of different wavelengths of lights, and the effect of (Yb,Er)-NaYF4 content on the deNOx ability of (Yb,Er)-NaYF4/C-TiO2 composites (D).

Figure 6 | DeNOx ability of sample (1:1)@(Yb,Er)-NaYF4/C-TiO2 with respect to the irradiation lights.
effectively utilized for photocatalysis compared with that of pure C-TiO₂ photocatalyst in the absence of up-conversion phosphor. Meanwhile, the dependence of deNOₓ ability of (1:1)(Yb,Er)-NaYF₄/C-TiO₂ on the irradiation wattages of NIR diode laser is illustrated (see supplementary Figure S5). With an increase in irradiation wattage of NIR laser, the corresponding deNOₓ ability was increased, which further confirmed that the NIR light induced photocatalytic activity was actually realized and could be affected by irradiation energy power.

It is well known that the photoluminescence of phosphor is sensitive to the operating condition, and the surrounding atmosphere of the photocatalyst may change after irradiation for some time. Therefore, the reproducibility of NIR light induced deNOₓ ability of (Yb,Er)-NaYF₄/C-TiO₂ composite was evaluated. The deNOₓ reaction performance of (1:1)(Yb,Er)-NaYF₄/C-TiO₂ with the repeated induction of 980 nm light is shown in Figure 7. It is apparent that the NIR light induced deNOₓ ability of the sample presented no obvious difference after 4 times running, implying that the (Yb,Er)-NaYF₄/C-TiO₂ composite had an excellent stability for NOₓ destruction when irradiated by NIR light.

Discussion

Figure 8 illustrates the photoluminescence and UV, visible, NIR lights induced photocatalytic reaction mechanism of the (Yb,Er)-NaYF₄/C-TiO₂ composite. It is accepted that up-conversion phosphors can convert longer wavelength radiation (NIR light) to shorter wavelength fluorescence (UV or visible light) via a two-photon or multi-photon mechanism and then achieve the anti-stokes shift. When a 980 nm NIR laser was used to excite the (Yb,Er)-NaYF₄/C-TiO₂, the Yb³⁺ as a sensitizer ion in (Yb,Er)-NaYF₄ phosphor could absorb this light, and then an electron was able to be excited from the 2F₅/₂ to 2F₇/₂ level. After that, the excited electron would transfer back to the ground state of 2F₅/₂ and the released energy in this process was dominantly nonradiatively transferred to active ions of Er³⁺, leading to a population of Er³⁺ from 1I₅/₂ to 1I₇/₂. In addition, a second or more similar 980 nm photons from excited Yb³⁺ ion could populate to much higher 2F₇/₂, 2F₅/₂ and 4H₉/₂ energetic levels of Er³⁺ ion. Some of the excited electrons of Er³⁺ ion then would relax nonradiatively by a fast multiphonon decay process to the 2H₁₁/₂, 4S₃/₂, 4F₉/₂ etc. energy levels. Finally, these excited electrons would radiatively transfer to the Er³⁺ ground state of 1I₅/₂ and present four emissions at 408 nm (²H₆/₂ → ¹I₅/₂), 521 nm (²H₁₃/₂ → ¹I₅/₂), 540 nm (⁴S₃/₂ → ¹I₁₅/₂) and 653 nm (²F₇/₂ → ¹I₁₅/₂). The (Yb,Er)-NaYF₄ eventually emitted green light due to the main peak at 540 nm. In this case, the emitted green light from (Yb,Er)-NaYF₄ could be reabsorbed by the surface C-TiO₂ nanoparticles which had an excellent light absorption in the range of above mentioned four peaks owing to the C doping in TiO₂ (shown in Figure 3). At that time, the electron in TiO₂ was excited to the conduction band of TiO₂ from C doped impurity energy levels, producing a pair of hole and electron in TiO₂ lattice. The photogenerated hole would then be trapped by water and adsorbed OH⁻ species in the air to generate hydroxyl radicals -OH. Besides, the photoinduced electron in the conduction band would form ‘OH⁻ in the presence of oxygen. In addition, the detailed destruction mechanism of NO species by photocatalyst has been investigated by some researchers. The characterization system in the present research was quite similar to that of the Japanese Industrial Standard which was established at the beginning of 2004. In this JIS standard, it is recommended that the photocatalytic activity of the photocatalyst should be characterized by measuring the decrease in the concentration of NO at the outlet of a continuous reactor. In the presence of oxygen, the electrons in the conduction band are immediately trapped by the molecular oxygen to form ‘O₂⁻, which can then generate active ·OOH radicals. The nitrogen monoxide reacts with these reactive oxygen radicals, molecular oxygen, and very small amount of water in the air to produce HNO₂ or HNO₃. It was reported that about 20% of nitrogen monoxide was decomposed to nitrogen and oxygen directly. As for UV, visible lights induced photocatalytic performance of (Yb,Er)-NaYF₄/C-TiO₂ composite, it was very similar to that of NIR light induced activity. The only difference was that the irradiation light source for photocatalysis was not transferred from up-conversion phosphor but directly from the UV or visible light sources and then the electron would be excited from the valence band of TiO₂, or C doped energy levels to the conduction band of TiO₂, eventually inducing the photocatalysis.

In summary, the (Yb,Er)-NaYF₄/C-TiO₂ composites were successfully prepared by a simple calcination assisted solvothermal method. The results showed that when C-TiO₂ photocatalyst was combined with (Yb,Er)-NaYF₄ up-conversion phosphor, the visible absorption of C-TiO₂ was significantly improved up to 900 nm, which had a nicely overlap with the photoluminescence spectrum of (Yb,Er)-NaYF₄ excited by 980 nm. Due to this reason, the (Yb,Er)-NaYF₄/C-TiO₂ composite presented excellent deNOₓ ability not only under the irradiation of visible and UV lights but also NIR light, being much superior to those of pure C-TiO₂, P25 and even (Yb,Er)-NaYF₄/N-TiO₂ composite. In addition, the composite exhibited outstanding stability for the photocatalytic activity and truly played a positive effect in the improvement of utilization of total solar light.
(UV, visible, NIR lights) for photocatalysis. A promising strategy to utilize UV, weak visible lights and infrared light for photocatalysis simultaneously and effectively has been established. Furthermore, it also provides a strong potential to couple various color light-emitting up-conversion phosphors (such as blue, green, yellow, red emitting phosphors) with excellent visible light responsive C doped TiO2 to form novel composites with high photocatalytic activity under the irradiation of UV, visible and infrared lights.

Methods

Sample preparation. A series of (Yb,Er)-NaYF4/C-TiO2 composites, with the (Yb,Er)-NaYF4/C-TiO2 weight ratios of 1:2, 2:1 and 2:2 were prepared by a simple calcination assisted solvothermal method, and were denoted as (1:2)/(Yb,Er)-NaYF4/C-TiO2, (2:1)/(Yb,Er)-NaYF4/C-TiO2, and (2:2)/(Yb,Er)-NaYF4/C-TiO2, respectively. The (Yb,Er)-NaYF4 used in this experiment was purchased from Shanghai Huaining Gona Rare Earth New Materials Co., Ltd. (China). In a typical synthesis process of (1:2)/(Yb,Er)-NaYF4/C-TiO2 particle, the appropriate amounts of (Yb,Er)-NaYF4 particles were dispersed in 20 mL ethanol with continuous stirring for 30 min. After that, 0.6 mL titanium tetra-n-butoxide was introduced dropwise to the suspension solution with another 30 min magnetic stirring. Subsequently, 10.5 mL ethanol/water (9:1) mixed solution was added dropwise to the solution and stirred for 60 min before transferring into a 100 mL Teflon-lined stainless steel autoclave. Finally, the solution was heated at 190 °C for 2 h, and the products were separated by centrifugation, washed and calcined at 265 °C for 1 h in ambient condition. For comparison, C-TiO2 was prepared by a similar process without the addition of (Yb,Er)-NaYF4 particles, and (1:1)/(Yb,Er)-NaYF4/C-TiO2 without calcination at 265 °C.

For comparison, (1:1)/(Yb,Er)-NaYF4/N-TiO2, in which nitrogen doped titania (N-TiO2) was utilized instead of the carbon doped titania (C-TiO2) was also synthesized by a conventional hydrothermal method similar to our previous report22. A desired amount of (Yb,Er)-NaYF4, HMT (3 g, 99%), and 2 mL of 20 wt% TiCl4 solution were mixed with 30 mL of distilled water. The mixture was placed into a stainless steel autoclave attached to a Teflon tube of internal volume of 100 mL. The autoclave was heated and kept at 90 °C for 1 h to realize homogeneous precipitation and then heated at 190 °C for 2 h. The product powder was separated by centrifugation, washed with distilled water and acetone three times, then vacuum dried at 80 °C overnight. In order to eliminate the effect of organics remained in the sample, the dried particles were finally calcined at 450 °C for 2 h.

Characterization. The crystalline phases of the products were identified by X-ray diffraction analysis (XRD, Bruker AXS D2 Phaser) using graphite-monochromized CuKα radiation. The UV–vis diffuse reflectance spectra (DRS) were measured using a UV–vis spectrophotometer (Shimadzu, UV-2540). The specific surface areas were determined by the BET method (Quantachrome Instruments, NOVA4200e). The size, shape and element mapping of the composites were observed by transmission electron microscopy (TEM, JEOLJEM-2010) and high resolution transmission electron microscopy (HRTEM) (FE-TEM, JEM-2100F). The chemical compositions of the samples were determined by the EDX spectrometer (Raytax EDX-800HS, Shimadzu). The surface composition and binding energy of the samples were determined by X-ray photoelectron spectroscopy (XPS, Perkin Elmer PHI 5600). The shift of the binding energy owing to relative surface charging was corrected using the C 1 s level at 284.6 eV as an internal standard and Ar+ sputtering was employed to clean the surface of samples. Photoluminescence (PL) spectra of specimens were measured by a spectrophotometer (Shimadzu RF-5300PC).

Photocatalytic activity tests. The photocatalytic activities of samples were investigated by evaluating the decomposition of NOx (DeNOx) in a flow type reactor under irradiation of different wavelengths of LEDs and NIR laser (see supplementary Figure S6) at room temperature, where the detailed testing parameters were summarized in supplementary Table S1. The sample powder was spread in the sample cell (20 mm × 20 mm × 0.5 mm) of a glass plate and then placed at the bottom center of the reactor (373 cm² of internal volume) in which a 1:1 mixed gas of air and nitrogen balanced 1 ppm of NO was flowed at the rate of 200 cm³ min⁻¹. The sample powder was kept in the dark for 30 min to reach the adsorption and desorption equilibrium of NO gas. After that, the light source was turned on to irradiate the sample for 10 min and then turned off to cool down to the original concentration for another 10 min. The measuring time for each sample under each light source was 20 min. The concentration of NO was monitored by a NO analyzer (Yanaco, ECL-88A) continuously. In addition, the testing temperature was kept at a constant room temperature by using an electric fan in an air conditioner room.

1. Kang, I. C. et al. Improvement in Photocatalytic Activity of TiO2 under Visible Irradiation through Addition of N-TiO2. Environ. Sci. Technol. 42, 3652–3662 (2008).
2. Khan, S., Al-Shahry, M. & Inglis,Jr, W. B. Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2. Science 297, 2243–2245 (2002).
33. Boulen, G. et al. Structural and Spectroscopic Characterization of Nominal Yb5+, Er3+, @nSiO2@mSiO2 Nanospheres as Carriers for Up-conversion Phosphors. Adv. Funct. Mater. 11, 263–270 (2001).
34. Martin-Rodriguez, R. et al. Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb, Er upconversion phosphors. J. Phys. Chem. B 109, 16579–16586 (2005).
35. Wang, D. H., Jia, L., Wu, X. L., Lu, L. Q. & Xu, A. W. One-step hydrothermal synthesis of N-doped TiO2/C nanocomposites with high visible light photocatalytic activity. Nanoscale 4, 576–584 (2012).
36. Wu, X. Y. et al. Photocatalytic Properties of Nd and C Codoped TiO2 with the Whole Range of Visible Light Absorption. J. Phys. Chem. C 117, 8345–8352 (2013).
37. Yi, G. S. et al. Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb, Er upconversion phosphors. Nano. Lett. 4, 2191–2196 (2004).
38. Zeng, J. H., Su, J., Li, Z. H., Yan, R. X. & Li, Y. D. Synthesis and upconversion luminescence of hexagonal-phase NaYF4: Yb, Er+3 phosphors of controlled size and morphology. Adv. Mater. 17, 2119–2123 (2005).
39. Chen, C. et al. Preparation, characterization and visible-light activity of carbon modified TiO2 with two kinds of carbonaceous species. J. Mol. Catal. A: Chem. 314, 35–41 (2009).
40. Neumann, B., Bogdanov, P., Tributsch, H., Saktiavel, S. & Kisch, H. Electrochemical Mass Spectroscopic and Surface Photovoltage Studies of Catalytic Water Photooxidation by Undoped and Carbon-Doped Titania. J. Phys. Chem. B 109, 16579–16586 (2005).
41. Irie, H., Watanabe, Y. & Flashimoto, K. Carbon-doped Anatase TiO2 Powders as a Visible-light Sensitive Photocatalyst. Chem. Lett. 32, 772–773 (2003).
42. Kang, I. C., Zhang, Q. W., Yin, S., Sato, T. & Saito, F. Preparation of a visible sensitive carbon doped TiO2 photo-catalyst by grinding TiO2 with ethanol and heating treatment. Appl. Catal. B: Environ. 80, 81–87 (2008).
43. Yan, S. C., Lv, S. B., Li, Z. S. & Zou, Z. G. Organic-inorganic composite photocatalyst of g-C3N4 and TaON with improved visible light photocatalytic activities. Dalton Trans. 39, 1488–1491 (2010).
44. Chen, S. F., Yu, X. L. & Liu, W. Preparation and Photocatalytic Activity Evaluation of Composite Photocatalyst Fe–TiO2/TiO2. ECS Trans. 21, 3–22 (2009).
45. Dai, Y. L. et al. Up-Conversion Cell Imaging and pH Induced Thermally Controlled Drug Release from NaYF4: Yb5+, Er3+ @Hydrogel Core-Shell Hybrid Microspheres. ACS Nano. 6, 3327–3338 (2012).
46. Kang, X. et al. Core–Shell Structured Up-Conversion Luminescent and Mesoporous NaYF4: Yb5+, Er3+ @SiO2@SiO2 Nanospheres as Carriers for Drug Delivery. J. Phys. Chem. C 115, 15801–15811 (2011).
47. Boyer, J. C. & van Veggel, F. Absolute Quantum Yield Measurements of Colloidal NaYF4: Er3+, Yb5+ Upconverting Nanoparticles. Nanoscale 2, 1417–1419 (2010).
48. Hoffmann, M. R., Martin, S. T., Choi, W. & Bahnemann, D. W. Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 95, 69–96 (1995).
49. Sato, T., Zhang, P. & Yin, S. High Performance Visible Light Responsive Photocatalysts for Environmental Cleanup via Solution Processing. Progress Cryst. Growth Character. Mater. 58, 92–105 (2012).
50. Yin, S., Slaman, U. & Sato, T. Current Progress on Modified SrTiO3 Visible Light Induced Photocatalyst. Mater. Focus 1, 18–31 (2012).
51. Yin, S. et al. Photocatalytic Oxidation of NOx under Visible LED Light Irradiation over Nitrogen-Doped Titania Particles with Iron or Platinum Loading. J. Phys. Chem. C 112, 12425–12431 (2008).
52. Dalton, J. S. et al. Photocatalytic oxidation of NOx gases using TiO2: a surface spectroscopic approach. Environ. Pollut. 120, 415–422 (2002).
53. Anpo, M. Development of the Second Generation Photocatalyst with Novel Functionality in the Ultraviolet and Visible Light. Recent Developments on Visible Light Response Type Photocatalysts, NTS Inc. (ed.), 3–42 (NTS, Tokyo, 2002).
54. Test Method for Air Purification Performance of Photocatalytic Materials - Part 1: Removal of Nitric Oxide, JIS R 1701-1:2004(J), (Japanese Standards Association, Tokyo, 2004).

Acknowledgments
This research was supported in part by the Management Expenses Grants for National Universities Corporations from the Ministry of Education, Culture, Sports, Science for Technology of Japan (MEXT), the Grant-in-Aid for Science Research (No. 23241025, No.25289245), the Nippon Sheet Glass Foundation for Materials Science and Engineering, and also partly supported by the National Research Foundation (NRF) of Korea under the Global Research Laboratory (GRL) program, the TAGEN Project 2013 in Tohoku University, and the Adaptable and Seamless Technology Transfer Program through Target-driven R&D, JST(A251Z200155M).

Author contributions
X.W. and Q.D. conducted the most of investigation for the samples. X.W. wrote the main paper. S.Y. designed the concept and the experiment method of the research. S.Y. and T.S. supervised the project, had given valuable advices on the proceeding of this work, and revised the manuscript. R.L. and Y.W. had provided precious suggestions on the selection of up-conversion phosphors. T.S. and S.L. led the GRL project and supported the characterization of the samples. All authors discussed the results and commented on the manuscript at all stages.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/scientificreports

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Wu, X.W. et al. UV, visible and near-infrared lights induced NOx destruction activity of (Yb,Er)@NaYF4/C-TiO2 composite. Sci. Rep. 3, 2918; DOI:10.1038/scientificreports.2013.2918 (2013).

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported license. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0