New genomic resources and comparative analyses reveal differences in floral gene expression in selfing and outcrossing Collinsia sister species

Authors, affiliations, and ORCID numbers
Lauren J. Frazee, Department of Biology, Temple University, Philadelphia, PA 19122, USA 0000-0001-5248-8763
Joanna Rifkin, Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S, Canada 0000-0003-1980-5557
Dinusha C. Maheepala, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA; Present Address: Center for Innovation in Brain Science, University of Arizona Health Sciences, Tucson, AZ 85721, USA
Alannie-Grace Grant, Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, USA
Stephen Wright, Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S, Canada 0000-0001-9973-9697
Susan Kalisz, Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, USA 0000-0002-1761-5752
Amy Litt, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA 0000-0001-6709-8696
Rachel Spigler, Department of Biology, Temple University, Philadelphia, PA 19122, USA 0000-0002-5997-9781

Corresponding author information
Rachel Spigler, 1900 N. 12th Street, Bio-Life 443A, Philadelphia, Pennsylvania 19122
Tel: 215-204-8855, Email: rachel.spigler@temple.edu

Running title: Selfing syndrome omics in Collinsia

© The Author(s) (2021). Published by Oxford University Press on behalf of the Genetics Society of America. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract

The evolutionary transition from outcross-fertilization to self-fertilization is one of the most common in angiosperms and is often associated with a parallel shift in floral morphological and developmental traits, such as reduced flower size and pollen to ovule ratios, known as the ‘selfing syndrome’. How these convergent phenotypes arise, the extent to which they are shaped by selection, and the nature of their underlying genetic basis are unsettled questions in evolutionary biology. The genus Collinsia (Plantaginaceae) includes seven independent transitions from outcrossing or mixed mating to high selfing rates accompanied by selfing syndrome traits. Accordingly, Collinsia represents an ideal system for investigating this parallelism, but requires genomic resource development. We present a high quality de novo genome assembly for the highly selfing species C. rattanii. To begin addressing the basis of selfing syndrome developmental shifts, we evaluate and contrast patterns of gene expression from floral transcriptomes across three stages of bud development for C. rattanii and its outcrossing sister species C. linearis. Relative to C. linearis, total gene expression is less variable among individuals and bud stages in C. rattanii. In addition, there is a common pattern among differentially expressed genes: lower expression levels that are more constant across bud development in C. rattanii relative to C. linearis. Transcriptional regulation of enzymes involved in pollen formation specifically in early bud development may influence floral traits that distinguish selfing and outcrossing Collinsia species through pleiotropic functions. Future work will include additional Collinsia outcrossing-selfing species pairs to identify genomic signatures of parallel evolution.

Keywords

Collinsia, RNA-seq, selfing syndrome, pollen, floral development, differential gene expression, DESeq2, dichogamy, evolutionary genomics, Hi-C scaffolding, parallel evolution
Parallel evolutionary phenomena give us exceptional opportunities to learn how adaptations arise and the nature of their underlying genetic basis. In plants, mating system change from outcrossing to selfing has occurred numerous, independent times throughout evolutionary history (Barrett 2002), and is one of the most common transitions across the angiosperms (Stebbins 1974). Moreover, self-fertilizing (hereafter selfing) species frequently converge on a constellation of traits known as the ‘selfing syndrome’ (Lloyd 1979; Sicard and Lenard 2011). Selfing species commonly exhibit reduced flower size, pollen-to-ovule ratios, pollinator rewards, and floral longevity compared to their outcrossing ancestors (Eckert et al. 2009; Goodwillie et al. 2010; Kalisz et al. 2012). The repeated evolution of the selfing syndrome, combined with evidence of its potential ecological drivers (Kalisz et al. 2004; Fishman and Willis 2008; Pettengill and Moeller 2012; Toräng et al. 2017; Mazer et al. 2020), suggest that these complex phenotypes represent adaptations. However, our understanding of their molecular genetic basis and the extent to which genomic pathways to the syndrome are constrained or possible is minimal (Sicard and Lenhard 2011; Shimizu and Tsuchimatsu 2015; Blount et al. 2018; Tsuchimatsu et al. 2020; Wozniak et al. 2020).

The genus *Collinsia* (Plantaginaceae) is an exemplary system for exploring the genomic basis of selfing syndrome traits and the mechanisms driving their parallel evolution. A phylogeny of *Collinsia* shows at least seven independent transitions from predominantly outcrossing to predominantly selfing, with outcrossing and selfing species falling into discrete groups based on flower size (Armbruster et al. 2002; Baldwin et al. 2011; Kalisz et al. 2012) (Figure 1). All *Collinsia* species are self-compatible in contrast to many current plant systems used to study selfing syndrome evolution (e.g., *Arabidopsis*, *Capsella*, *Brassica*, and *Leavenworthia*, all Brassicaceae; *Solanum*, Solanaceae; and *Ipomoea* spp., Convolvulaceae; Vekemans et al. 2014; Rifkin et al. 2019; Durand et al. 2020; Tsuchimatsu et al. 2020), all of which exhibit a transition from self-incompatible, obligate outcrossing to highly selfing involving mutations at specific S-loci (but also see *Erythranthe*, formerly *Mimulus*: Wu et al. 2008). Consequently, the loss of self-incompatibility is not involved in the evolution of selfing in *Collinsia* and must have arisen, at least in part, through different developmental and molecular mechanisms. High rates of selfing in *Collinsia* species are linked to decreased temporal and spatial separation (dichogamy and herkogamy, respectively) of male and female phases within hermaphroditic flowers (Kalisz et al. 2012). Specifically, onset of stigmatic receptivity and stigma-anther contact occur significantly earlier in the floral lifespan of selfing *Collinsia* species than in their outcrossing sister species (Kalisz et al. 2012). Functionally, this means that self-pollen is deposited on stigmas of selfing species before opportunities to receive outcross pollen, and because selfing species have shorter floral lifespans, outcrossing opportunities are limited overall (Kalisz et al. 2012). In contrast, predominantly outcrossing *Collinsia* species self-fertilize only when sufficient outcross pollen fails to reach the stigma and/or ovules (i.e., pollinator failure: Elle and Carney 2003; Kalisz and Vogler 2003; Kalisz et al. 2004). The abundance of ecological and phenotypic data on *Collinsia* species, including evidence of differences in range size and niche breadth between selfers and outcrossers (Randle et al. 2009; Grant and Kalisz 2020) and evidence of distinct ecological drivers of selfing across species pairs (e.g., Kalisz et al. 2004; Randle et al. 2009) facilitates hypothesis testing about selfing syndrome evolution.

Morphological and developmental differences between sister species are commonly rooted in spatial and/or temporal differences in gene expression (Carroll 2008; Stern and Orgogozo 2008). Recent studies in selfing *Capsella* have linked convergent evolution of reduced flower size to convergent developmental processes and gene expression changes (Fujikura et al.
2018; Woźniak et al. 2020). To identify differences in gene expression that might underlie the shift to selfing in Collinsia, we compared gene expression during flower development in a striking example of recently diverged Collinsia sister species with distinct developmental and morphological traits.

Here, we first present a high quality de novo genome assembly and functional annotation for the highly selfing Collinsia rattanii to develop genomic resources for Collinsia. Then, we evaluate and contrast patterns of gene expression across floral bud development for C. rattanii and its predominantly outcrossing sister species, C. linearis, using floral transcriptomes at three developmental stages. Based on these patterns, we ask: (1) Do genome-wide gene expression patterns differentiate species and stages of floral bud development? (2) Do we see less variation in overall gene expression among C. rattanii individuals, reflecting greater homozygosity as a highly selfing species, and across bud stages within C. rattanii, reflecting its shorter, more rapid period of floral development? (3) Are there consistent differences in gene expression across stages between the species, and do these differences tend to occur in early or late bud development? Finally, we analyze predicted functions of differentially expressed genes to identify those potentially involved in the evolution of the selfing syndrome in C. rattanii.
MATERIALS AND METHODS

Study species

The genus *Collinsia* currently encompasses 22 species of self-compatible, spring-flowering, annual plants (Baldwin et al. 2011). The native range of the genus spans temperate North America with its center of diversity in the California Floristic Province (Baldwin et al. 2011). *Collinsia* flowers are bilaterally symmetrical, and the four immature stamens and the stigma lie in the proximal part of a folded ventral petal, or keel. Upon anthesis, the four anthers dehisce one by one as each filament lengthens toward the distal part of the keel, while the style elongates towards the mature anther(s) and the stigma becomes receptive. In this way, post-anthesis flowers can be divided into four discrete stages, each defined by the number of dehisced anthers (Kalisz et al. 1999). The stage at which the first mature anther sheds pollen generally occurs before the stigma becomes receptive, but the absolute and relative timing of these events, as well as the timing of stigma-anther contact, differs among species. In outcrossing *Collinsia*, the timing of stigmatic receptivity and stigma-anther contact occurs relatively late in the floral lifespan, after most of the anthers have dehisced (Kalisz et al. 2012), which increases the odds of outcrossing but allows for selfing once outcrossing opportunities have passed (i.e., ‘delayed selfing’ sensu Lloyd 1979). In highly selfing *Collinsia* species, stigmatic receptivity and stigma-anther contact occur early in the floral lifespan, approximately when the first anther in the flower becomes mature (Kalisz et al. 2012). Functionally, this elimination of dichogamy and herkogamy in selfing *Collinsia* species allows for early autonomous selfing, prior to the possibility of—and even preempting—outcross pollen receipt (sensu Lloyd 1979).

The sister species *C. rattanii* (selfing) and *C. linearis* (outcrossing) diverged ~1.45 Mya (Baldwin et al. 2011) (Figure 1). Both species are found in open, dry coniferous forest habitats, but *C. rattanii* has a greater geographic range and niche breadth than *C. linearis*, consistent with the general pattern seen for selfers and outcrossers (Grossenbacher et al. 2015). The range of *C. rattanii* extends from northern California north into Washington, while the outcrossing *C. linearis* is limited to northern California and southern Oregon, where their ranges overlap (Grant and Kalisz 2020). Like most species in the genus, both are diploid (n = 7: Garber 1956, 1958).

De novo genome sequencing, assembly, and annotation

We planted seeds of *C. rattanii* collected from Trinity County, CA (40°29'19.78"N, 123°9'56.56"W) and raised the plants in the University of Tennessee, Knoxville (TN, USA) greenhouse. We collected young leaves and meristems from a single plant and sent the sample for high molecular weight DNA extraction and Shotgun paired-end Illumina and Chicago™ sequencing to create a de novo draft genome assembly (Dovetail Genomics, Santa Cruz, CA, USA). Shotgun and Chicago libraries were sequenced on a HiSeq X platform, using 1 lane each for the de novo and Chicago libraries. This produced ~852,000,000 Illumina HiSeq 150 bp read pairs providing ~377X physical coverage of the genome (Table 1). The de novo genome
assembly was constructed with a modified Meraculous assembler. Then we used the Chicago and 20-30X shotgun data to scaffold the newly generated draft assembly with the HiRise™ software pipeline, which produced a draft assembly consisting of 45,357 scaffolds with an N50 of 26.1 Kbp (Table 1). Kmer analysis from raw sequence reads provided an estimated genome size of 0.682 Gbp; Meraculous assembly provided an estimated genome size of 0.673 Gbp (Figure S2).

To improve on the draft assembly, we sent young C. rattanii leaf tissue to Phase Genomics (Seattle, WA, USA) for Hi-C sequencing and genome scaffolding. A Proximo Hi-C library was prepared with chromatin conformation capture data from the new C. rattanii tissue sample, following the manufacturer’s protocol. The library was sequenced on an Illumina HiSeq 4000, producing ~244,000,000 Illumina HiSeq 100 bp read pairs from Hi-C sequencing providing ~72X physical coverage. After aligning these sequences to the draft assembly, putative misjoined contigs were broken with Juicebox according to the observed Hi-C signal, leading to a total of 25 broken contigs (Durand et al. 2016). We then re-aligned to the draft assembly using the resulting corrected sequences (excluding duplicates, pairs with low MAPQ or high edit distance, and pairs mapping to contigs < 5 Kbp). Finally, we ran Proximo Hi-C scaffolding ~200,000 times on the corrected and filtered mappings to optimize scaffold construction and produce our high-quality C. rattanii genome (N50 = 69.25 Mbp; Table 1) according to Hi-C signal, as described in Bickhart et al. (2017). We recovered orphaned contigs with Juicebox (Durand et al. 2016).

We performed gene annotation using data from 6 of the 9 C. rattanii RNAseq samples presented and analyzed in this study (see below) plus amino acid sequences from Erythranthe guttata (family Phrymaceae, formerly Mimulus guttatus) with the BRAKER pipeline (Hoff et al. 2019) (Igenbio, Inc., Chicago, IL). E. guttata is one of the closest relatives of Collinsia with high quality, well-annotated genomic resources (http://phytozome.jgi.doe.gov/pz/p2portal.html) and used as a model system for understanding floral and mating system evolution (e.g., Martin and Willis 2007; Wu et al. 2008). We predicted ribosomal RNAs using barrnap, and tRNAs using tRNAscan-SE [v2.0]. Finally, we assessed the completion of the assembly and gene predictions with BUSCO analysis, using a proprietary Igenbio, Inc., Embryophyta data set (Simão et al. 2015).

Bud development, RNA sequencing, and alignment

Major differences in floral form between Collinsia species may be initiated during floral organ development. Therefore, our goal was to compare gene expression patterns between the sister species across floral bud development, after onset of organ development but prior to anthesis. However, the timing of critical events such as differentiation of pollen or ovule precursor cells or maturation of pollen or embryo sacs, and the programming or onset of developmental trajectories including timing of stigmatic receptivity, are not yet known (Kalisz et al. 2012). As a first step and to determine repeatable, parallel sampling points, we dissected buds from both species across the continuum of their pre-anthesis development (C. linearis N=34, C. rattanii N=30) and recorded the size and color of the petals, stamens, and style in each. We used these data to divide floral bud development in each species into early, middle, and late pre-anthesis or “bud” stages (B1, B2, B3, respectively) based on distinct color changes in the developing organs and changes in organ size (Table 2; Figure S3). We sampled 2-4 whole floral buds per bud stage from each of 3 individuals per species. The three C. rattanii individuals originated from two populations in Trinity Co., CA, USA (HFP: 40°29’19.23” N, 123°09’54.50” W, BC16: 40°39’22.61” N, 123°09’19.82” W). C. linearis individuals originated from two populations in Trinity Co. (MGB:
Plants were germinated at the University of Tennessee-Knoxville, following conditions in Hazzouri et al. (2013; Table S1) and subsequently shipped to University of California-Riverside, where they were grown to flowering and buds were collected. We extracted RNA from each bud, using Qiagen RNeasy Plant Mini Kits (QIAGEN, Hilden, Germany) according to the manufacturer’s protocol. RNA quality was verified with a Bioanalyzer (Agilent, Santa Clara, CA, USA). For RNAseq library generation, we used an NEBNext Ultra Directional RNA Library Prep Kit for Illumina and the NEBNext Poly(A) mRNA Magnetic Isolation Module (New England BioLabs, Ipswich, MA, USA), according to the manufacturer’s protocol. We sequenced the libraries on an Illumina HiSeq 2500 platform with 125 bp paired end reads, at the Genome Innovation Center, McGill University, Montreal, Canada. Raw read quality was verified with FastQC [v0.11.9] (Andrews 2010; Table S2).

We aligned the raw transcriptome sequences to the *C. rattanii* genome using the STAR 2-pass method [v2.7.3a] (Dobin and Gingeras 2015). RNA-seq reads from each sample that aligned to annotated gene models were summarized in R [v3.6.2] with the “featureCounts” function in the “Rsubead” package [v2.0.1] (Liao et al. 2014; R Core Team 2020). We then conducted a regularized logarithm transformation of our raw count data in DESeq2 [v1.26.0] to eliminate the dependence of count variance on count mean; this transformed read count data was used solely for principal components analysis and any other gene expression visualizations (Love et al. 2014).

Gene expression analyses

We first explored global patterns of gene expression across the full genome dataset to determine the extent to which genome-wide read count patterns illustrate developmental divergence between sister species and among stages within species. We used principal components analysis (PCA) with the “FactoMineR” [v2.3] and “factoextra” [v1.0.7.999] R packages (Lê et al. 2008; Kassambara and Mundt 2020) to visualize whether and how our samples clustered based on species and bud stage in relation to the first three PCA axes.

We then identified individual genes showing differential expression between species and developmental bud stages. We modelled a matrix of summarized read counts as the linear combination $Y \sim \text{species} + \text{stage} + \text{species*stage}$ using the DESeq2 R package [v1.26.0] (Love et al. 2014). DESeq2 optimizes the analysis of RNAseq count data from multiple genes by automatically conducting independent filtering (i.e., removing zero-sum or low-count, uninformative genes based on sample count means) and calculating Cook’s distances for outlier detection and removal prior to hypothesis testing (Cook and Weisberg 1982). Since we are primarily interested in evaluating whether changes in gene expression across developmental stages differ in direction or magnitude between the sister species, we focus our results on identifying genes for which the interaction term is significant. Such genes could point toward potential candidates underlying developmental differences associated with the selfing syndrome. We used a likelihood ratio test (LRT) to test for the significance of the interaction term, correcting for multiple tests with a false discovery rate (FDR; Benjamini and Hochberg 1995) of 0.01.

Because DESeq2 treats time as a categorical variable, the LRT for the species*stage interaction functions as an omnibus interaction test, comparing all combinations of stages and species. We therefore also used planned contrasts to explicitly compare gene expression changes that occur early (between stages B1 and B2) versus late (between stages B2 and B3) in floral bud.
development between the species. Significance of contrasts was evaluated using a Wald test, which determined whether the estimated log$_2$ fold changes in read counts as implicated in each contrast were significantly different from zero (Love et al. 2014).

We also identified genes that change in parallel across developmental stages between the species, as these might represent genes controlling floral development that are common to both C. rattanii and C. linearis (e.g., Sun et al. 2016). We first used a LRT to evaluate which genes had a significant ‘time’ (here, ‘stage’) effect (full model = ~ species + stage; reduced model = ~ species), then excluded the subset of the ‘stage effect’ genes that also had a significant ‘species by stage’ interaction effect based on the full model used above.

Gene ontology enrichment analysis

To functionally profile sets of differentially expressed genes, we performed a gene ontology (GO) enrichment analysis in R package “topGO” [v2.38.1] (Alexa and Rahnenführer 2019). Biological process GO term annotations for each gene were extracted from the ERGO [v2.0] proprietary online database (Igenbio, Inc., Chicago, IL). We used Fisher’s exact test to assess the significance of each GO term and the topGO default (‘weight01’) algorithm to account for the hierarchical structure of GO terms in enrichment tests (Alexa et al. 2006). We also used REVIGO (http://revigo.irb.hr/) to flag clusters of redundant significant terms (Supek et al. 2011).
RESULTS

Collinsia rattanii genome assembly and annotation

Hi-C contact mapping and scaffolding produced seven major genome scaffolds, as well as 5,022 unscaffolded contigs (Lieberman-Aiden et al. 2009) (Table 1; Figure S4). This high-quality assembly consists of ~0.506 Gbp, or ~74% of the estimated genome size (Table 1). The ERGO/Igenbio annotation pipeline predicted 47,210 genes (48,523 ORFs) and an average GC content of 35.39% in the Collinsia rattanii genome (Table 3; Figure 2a). Gene density per Mb across the genome is shown in Figure 2a. BUSCO analysis recovered 96.3% complete BUSCOs from a total of 1,375 BUSCO groups searched, indicating a high level of genome assembly completeness (Simão et al. 2015; Table 4). One or more biological process GO term annotations were available for 10,864 genes (~23%; Figure 2b-c) (Igenbio, Inc., Chicago, IL).

Gene expression and gene ontology enrichment

Genome-wide expression patterns: The 18 floral bud samples returned 37.8 million transcripts on average (range 27.2–47.9 million), 80–88% of which, depending on sample, mapped to unique loci in the C. rattanii genome (Table S2). The percentage of uniquely mapped transcripts did not differ between species (r = 0.823, P = 0.423; Table S2). Of 47,210 total predicted genes, 38,589 (~82%) showed expression by one or more samples and were included in our analyses. PCA on the full gene expression dataset reveals clearly defined species-specific clusters differentiated along the primary axis (PC1), representing 50% of the variance in overall gene expression (Figure 3). Notably, we see greater variation among C. linearis samples along this axis. In fact, C. linearis samples also show significantly greater variation in expression per gene based on raw read counts of all expressed genes (with a mean read count ≥ 8) (mean coefficient of variation [CV] = 0.6985) than C. rattanii samples (mean CV = 0.5373; t = 60.693; P < 0.001). The second axis (PC2) represents 14% of the variance in the full dataset and is significantly and strongly correlated with bud developmental stage for C. linearis (r = 0.82, P = 0.007) but not C. rattanii (r = 0.09, P = 0.825) (Figure 3; Figure 4). Instead, we found that the third axis (PC3), which explains 7% of the variance in the full gene expression dataset, is significantly and highly correlated with bud developmental stage in C. rattanii (r = -0.83, P = 0.006) (Figure 4). Floral bud stage in C. linearis shows a weaker, nonsignificant trend with PC3 (r = -0.54, P = 0.136) (Figure 4). Together, these results indicate that stage of bud development can account for a significant amount of variation in total gene expression in our dataset and reveal greater variation across stages within C. linearis. Lower variation across stages in C. rattanii could reflect the compression of developmental processes into the shorter time frame of C. rattanii flower development, resulting in greater overlap of gene expression across stages.

Differential gene expression and gene ontologies: We detected a significant ‘species by stage’ interaction effect on the expression of 855 genes (hereafter ‘interaction effect genes’) based on likelihood ratio tests (Figure 5) indicating that, for these genes, the direction or magnitude of expression changes between stages is species-dependent. In particular, the differences in expression level, based on read counts, across stages tend to be greater in magnitude in C. linearis compared to C. rattanii (Figure 5). This is consistent with greater separation of developmental stages across the longer duration of flower development in the outcrosser. We could assign ~43% of the 855 interaction effect genes to GO terms for biological processes. Enrichment analysis indicates that 11 GO categories are significantly overrepresented.
in this gene set (Table 5; Table S3). We note that there was no evidence of underrepresentation in any GO category in the analyses presented. We visualized expression patterns of the 91 interaction effect genes assigned to these 11 overrepresented GO categories and found consistent differences in patterns of gene expression across bud development between the two species (Figure 6). Most conspicuously, we see that all interaction effect genes associated with pollen exine formation, which encompasses sporopollenin biosynthesis and cell wall callose deposition processes, are highly upregulated in stage B1 in *C. linearis* relative to later stages, but relatively lower and constant across bud development in *C. rattanii* (Figure 6). We also see consistent patterns of expression for interaction effect genes associated with xyloglucan (i.e., cell wall hemicellulose) metabolism, glycerol-3-phosphate catabolism, and transcription regulation. For these genes, expression increases steadily across the three stages for *C. linearis*, whereas relatively little change is seen across bud development in *C. rattanii* (Figure 6). We also see consistent patterns of expression for interaction effect genes associated with lipid metabolism also reflect greater changes in gene expression during bud development in the outcrossover; in this case, about half of the genes are upregulated in B1 relative to other stages in *C. linearis*, similar to the pattern of expression change in pollen exine formation genes, whereas the other half mimic the pattern seen for xyloglucan metabolism, glycerol-3-phosphate catabolism, and transcription regulation. Overall, these results reveal greater changes in gene regulation across bud development in *C. linearis* compared to *C. rattanii*.

We then focused our examination on changes in expression between sequential stages of bud development corresponding to early (between stages B1 and B2) versus later (between stages B2 and B3) development. Based on our planned contrasts, we identified 569 genes for which expression changes in early and/or later development differ in either direction or degree between the species (hereafter ‘contrast effect genes’; Figure 7), 117 of which were not detected by the likelihood ratio test. In nearly all cases (77%), the contrast was significant because of up-or down-regulation of the gene in one species but no expression change in the other; in the remaining cases, both species showed changes in expression, but in opposite directions. We also note that whereas the overwhelming majority of these genes show significant differences in regulation between the species in late development (418/569), differences in early development are greater in magnitude (Figure 7).

Based on GO assignments available for 231 of 569 contrast effect genes, we found significant enrichment for 6 GO terms (Table 6; Table S4) and visualized expression patterns of the associated genes (Figure 8). The three GO categories with the greatest over-representation are pollen exine formation, transposition, and sporopollenin biosynthetic process, which are also overrepresented in the larger set of interaction effect genes. Paralleling the overall set of contrast genes, we see the dominant pattern is strong downregulation of expression across early development for *C. linearis* but consistently low expression in *C. rattanii*. Also for *C. linearis*, four out of five contrast effect genes with functions related to ARF protein signal transduction and carbohydrate phosphorylation have large peaks of expression at stage B2, a pattern which is absent (or even inverted) for *C. rattanii* (Figure 8). In general, we see lower magnitudes of changes in gene expression between developmental stages in *C. rattanii* relative to *C. linearis* for contrast effect genes in these enriched GO categories (Figure 8). Therefore, overall reduced temporal fluctuations in gene expression in the selfer relative to the outcrossover is corroborated across both our genome-wide (Figure 3) and various differential expression analyses, which examine disparate gene sets (Figure S5).

Finally, we found 1,022 genes changing in parallel across bud development in the two species (hereafter ‘shared pattern DEGs’), which could point toward genes underlying processes
and mechanisms common to both species and that occur similarly in *C. rattanii, C. linearis* and, potentially, their close relatives. Based on GO assignments available for 415 of 1,022 genes, this set of genes is significantly enriched (*P* < 0.01) for 15 GO terms, and over half of these terms point to plant hormone response, intra- and extra-cellular localization and transport, and/or reproductive developmental processes (Table S5).
DISCUSSION

The genus *Collinsia* is an emerging model system for studying evolutionary genomic mechanisms underlying the shift to selfing and the selfing syndrome. However, until now, progress was hindered by the lack of necessary genomic resources. We report a high-quality *de novo* genome sequence for the highly selfing species *C. rattanii*, with contiguity across its 7 chromosomes (Garber 1958). This sequence information will enable future large-scale genomic studies into the proximate and ultimate causes of mating system evolution within *Collinsia*, which exhibits multiple transitions from predominantly outcrossing or mixed mating to highly selfing. Because high rates of selfing in *Collinsia* does not involve the loss of self-incompatibility found in most model systems of mating system evolution, genomic studies in *Collinsia* have the potential to provide novel insight into the role of developmental trait changes and their molecular basis in the selfing syndrome.

Our gene expression analyses represent a first step toward uncovering molecular mechanisms differentiating floral development in selfing *C. rattanii* and its outcrossing sister *C. linearis*. We reveal less variation in overall gene expression among individuals and bud stages in *C. rattanii* relative to *C. linearis*. These results are consistent with greater heterozygosity of outcrossing *C. linearis* individuals compared to highly selfing, homozygous *C. rattanii* demonstrated previously by Hazzouri *et al.* (2013) and greater phenotypic and genetic variation seen across outcrossing plant species more broadly (Hamrick and Godt 1996; Kalisz *et al.* 2012). Moreover, we find that gene expression was generally lower and changed relatively little across bud development in *C. rattanii* compared to *C. linearis*. Our findings suggest that transcriptional regulation of enzymes involved most notably in pollen exine formation, including sporopollenin biosynthesis, may influence floral traits that distinguish selfing and outcrossing *Collinsia* species through pleiotropic functions.

The strongest pattern that arose from our dataset is the substantially greater expression of multiple genes associated with pollen exine formation in stage B1 in *C. linearis* relative to *C. rattanii*. This finding aligns with previous gene expression analysis in *C. rattanii* and *C. linearis* indicating generally lower expression of genes important in pollen production, flavonoid production, and morphogenesis in *C. rattanii* (Tables 4, S2 in Hazzouri *et al.* 2013). Here, we isolate this difference to early stages of floral bud development. This timing may reflect the fact that the anthers are well developed early in bud development relative to other floral organs (Figure S3). Typical of the difference between selfing and outcrossing species, the outcrosser *C. linearis* produces more pollen than *C. rattanii*. Thus, the difference in expression profiles of pollen-related genes seen in our study may be associated with differences in the number of cells in tissues dedicated to pollen production and cellular construction in each species. Reduction in the number of pollen grains per flower is commonly seen in selfing species (Cruden 1977; Goodwillie *et al.* 2010; Tsuchimatsu *et al.* 2020). High pollen production is likely under directional selection and adaptive for plants that rely primarily on outcrossing as it increases siring opportunities, but the evolution of the selfing syndrome may have either relaxed this selective pressure for *C. rattanii* or reversed its direction, favoring limited pollen production in the face of resource allocation trade-offs. Evidence for the latter was recently found in the selfing plant *Arabidopsis thaliana* (Tsuchimatsu *et al.* 2020). Of note, several differentially expressed genes between our focal *Collinsia* species are orthologous to those in *A. thaliana*. A gene encoding a protein associated with pollen exine formation and sporopollenin biosynthesis (*C. rattanii* genome designation RCORA09826), which shows substantially greater expression in
stage B1 in *C. linearis*, is orthologous to *A. thaliana* gene AT4G34850, a chalcone synthase (ERGO/Igenbio, Inc. 2020), and to *LESS ADHESIVE POLLEN5* (LAP5). Another gene that similarly shows greater expression in stage B1 in *C. linearis* (RCORA03278) is also orthologous to *A. thaliana* *LESS ADHESIVE POLLEN6* (LAP6). The LAP genes encode chalcone synthase-like proteins for pollen exine formation in anthers (Dobritsa et al. 2010; ERGO/Igenbio, Inc. 2020). Chalcone synthase in plants is also needed for flavonoid production and thus pollinator-attracting pigments in petals as well as functional pollen production and pollen-stigma adhesion (Mo et al. 1992; Dobritsa et al. 2010). Mutants with reduced chalcone synthase expression have been produced in several species, resulting in production of white, sterile anthers (*Petunia* spp.; Napoli et al. 1999), white corollas (*Ipomoea* spp.; Durbin et al. 1995), and smaller fruits with reduced flavonoid concentrations (*Malus × domestica*; Dare et al. 2013). Therefore, low relative levels of genes RCORA09826 and RCORA03278 expression in *C. rattanii* throughout floral bud development are consistent with observed selfing syndrome morphological trends (Figures 6 and 8).

We also saw a trend of significantly increased expression of genes associated with xyloglucan metabolism, glycerol-3-phosphate catabolism, regulation of transcription, and lipid metabolism in late bud development in *C. linearis* (Figures 6, S6). Xyloglucan is a cell wall carbohydrate, the modification of which is associated with plant growth, including that of floral organs (e.g. stamens, petals; Kurasawa et al. 2009; Harada et al. 2011). The increased expression of these genes in *C. linearis* in the latest bud stage could be related to the larger flowers that are characteristic of *C. linearis* relative to *C. rattanii* and thus greater growth seen during stage B3 (Figure S3). Likewise, both DEGs associated with glycerol-3-phosphate catabolism putatively encode glycerol-3-phosphate dehydrogenase, a highly conserved enzyme critical to cell membrane synthesis and glycolysis (Yeh et al. 2008). Regarding lipid metabolism genes, increased expression may reflect pollen maturation occurring closer to anthesis combined with the greater number of pollen grains in *C. linearis* (Zhang et al. 2016).

Ultimately, our work provides new genomic resources for a developing model of mating system evolution and first steps to understanding the role of gene expression. Future work will extend broadly to additional *Collinsia* outcrossing-selfing species pairs to identify signatures of parallel molecular and genomic evolution as well as go deeper to identify eQTL associated with contrasting mating-system traits in *C. rattanii* and *C. linearis*. Moreover, there is an abundance of existing ecological and phenotypic data on *Collinsia* species related to niche breadth (Randle et al. 2009; Grant and Kalisz 2020), sexual interference, sexual conflict, and pollen traits (e.g., Lankinen and Madjidian 2011; Lankinen et al. 2016; Lankinen and Strandh 2019; Malagon et al. 2019; Madjidian et al. 2020), pollination biology (e.g., Elle and Carney 2003; Kalisz and Vogler 2003; Kalisz et al. 2004; Randle et al. 2018), phenotypic plasticity (Jorgenson and Arathi 2013; Spigler and Kalisz 2013), population differentiation (Hazourri et al. 2013; Strandh et al. 2020) and adaptation to extreme soil types (Wright et al. 2006; Moyle et al. 2012). Consequently, the development of genomic resources in *Collinsia* has potential to pave the way for a broad array of ecological genomic studies.
DATA AVAILABILITY STATEMENT

The following are openly available in figshare: (1) Supplementary Figures and Tables, (2) the high quality *Collinsia rattanii* genome assembly, and (3) Supplementary Files (S1-S8), as single zip file, including custom bash/shell and R code used in this project and other supplementary files that allow for replication of the results presented in this study. The raw *C. rattanii* and *C. linearis* RNA-seq read data used in this publication have been deposited in NCBI Gene Expression Omnibus and Sequence Read Archive and are accessible through GEO Series accession number GSE174273 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE174273). Supplemental Material available at figshare: https://doi.org/10.25387/g3.14599995.

ACKNOWLEDGMENTS

The authors thank R. Patel for bioinformatics assistance; G. Smith, M. Walker, and S. Naya from the Spigler Lab for helpful feedback; and B. Choudhury, M. Yuan, and T. Kent from the Wright Lab for logistical assistance. We also thank the Editors and two anonymous reviewers for helpful comments.

CONFLICTS OF INTEREST

The authors have no conflicts of interest to disclose.

FUNDING INFORMATION

This research was supported by an NSERC Discovery grant and a Canada Research Chair award (to SIW); University of Tennessee, Knoxville (to SK); Temple University (to RBS); the Institute for Genomics and Evolutionary Medicine (iGEM) at Temple University (to RBS); and University of California, Riverside (to AL).
LITERATURE CITED

Alexa, A., J. Rahnenführer, 2019 topGO: Enrichment Analysis for Gene Ontology. R package version 2.38.1.

Alexa, A., J Rahnenführer, and T. Lengauer, 2006 Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 22:1600-1607.

Andrews, S, 2010 FastQC: a quality control tool for high throughput sequence data. Available at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc.

Armbruster, W. S., C. P. Mulder C. P., B. G. Baldwin, S. Kalisz, B. Wessa, and H. Nute, 2002 Comparative analysis of late floral development and mating-system evolution in tribe Collinsieae (Scrophulariaceae sl). Am J Bot. 89: 37-49.

Baldwin, B. G., S. Kalisz, and W. S. Armbruster, 2011 Phylogenetic perspectives on diversification, biogeography, and floral evolution of Collinsia and Tonella (Plantaginaceae). Am J Bot. 98: 731-753.

Barrett, S.C., 2002 The evolution of plant sexual diversity. Nat Rev Genet. 3: 274-284.

Benjamini, Y., and Y. Hochberg, 1995 Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol. 57: 289-300.

Bickhart D. M., B. D. Rosen, S. Koren, B. L. Sayre, A. R. Hastie, et al., 2017 Single-molecule sequencing and chromatin conformation capture enable de novo reference assembly of the domestic goat genome. Nat Genet. 49: 643-650.

Blount Z. D., R. E. Lenski, and J. B. Losos, 2018 Contingency and determinism in evolution: replaying life’s tape. Science 362: eaam5979.

Carroll, S. B., 2008 Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134: 25-36.

Cook, R. D., and S. Weisberg, 1982 Residuals and influence in regression. Chapman and Hall, New York.

Cruden, R. W., 1977 Pollen-ovule ratios: a conservative indicator of breeding systems in flowering plants. Evolution 31: 32-46.

Dare, A. P., S. Tomes, M. Jones, T. K. McGhie, D. E. Stevenson, et al., 2013 Phenotypic changes associated with RNA interference silencing of chalcone synthase in apple (Malus × domestica). Plant J 74: 398-410.
Dobin, A., and T. R. Gingeras, 2015 Mapping RNA-seq reads with STAR. Curr Protoc Bioinformatics. 51: 11-14.

Dobritsa, A. A., Z. Lei, S. I. Nishikawa, E. Urbanczyk-Wochniak, D. V. Huhman, et al., 2010 LAP5 and LAP6 encode anther-specific proteins with similarity to chalcone synthase essential for pollen exine development in Arabidopsis. Plant Physiol. 153: 937-955.

Durand, N. C., J. T. Robinson, M. S. Shamim, I. Machol, J. P. Mesirov, et al., 2016 Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Syst. 3: 99-101.

Durand, E., M. Chantreau, A. Le Veve, R. Stetsenko, M. Dubin, et al., 2020 Evolution of self-incompatibility in the Brassicaceae: Lessons from a textbook example of natural selection. Evol Appl. 13: 1279-1297.

Durbin, M. L., G. H. Learn, G. A. Huttley, and M. T. Clegg, 1995 Evolution of the chalcone synthase gene family in the genus Ipomoea. Proc Natl Acad Sci USA. 92: 3338-3342.

Eckert, C. G., B. Ozimec, C. R. Herlihy, C. A. Griffin, and M. B. Routley, 2009 Floral morphology mediates temporal variation in the mating system of a self-compatible plant. Ecology 90: 1540-1548.

Elle, E., and R. Carney, 2003 Reproductive assurance varies with flower size in Collinsia parviflora (Scrophulariaceae). Am J Bot. 90: 888-896.

Fishman, L., and J. H. Willis, 2008 Pollen limitation and natural selection on floral characters in the yellow monkeyflower, Mimulus guttatus. New Phytol. 177: 802-810.

Fujikura, U., R. Jing, A. Hanada, Y. Takebayashi, H. Sakakibara, et al., 2018 Variation in splicing efficiency underlies morphological evolution in Capsella. Dev Cell. 44: 192-203.

Garber, E. D., 1956 The genus Collinsia. I. Chromosome number and chiasma frequency of species in the two sections. Bot Gaz. 118: 71-73.

Garber, E. D., 1958 The genus Collinsia. VII. Additional chromosome numbers and chiasmata frequencies. Bot Gaz. 120: 55-56.

Goodwillie, C., R. D. Sargent, C. G. Eckert, E. Elle, M. A. Geber, et al., 2010 Correlated evolution of mating system and floral display traits in flowering plants and its implications for the distribution of mating system variation. New Phytol. 185: 311-321.

Grant, A. G., and S. Kalisz, 2020 Do selfing species have greater niche breadth? Support from ecological niche modeling. Evolution 74: 73-88.

Grossenbacher, D., R. Briscoe Runquist, E. E. Goldberg, and Y. Brandvain, 2015 Geographic range size is predicted by plant mating system. Ecol Lett. 18: 706-713.
Hamrick, J. L., and M. W. Godt, 1996 Effects of life history traits on genetic diversity in plant species. Philos Trans R Soc Lond B Biol Sci. 351: 1291-1298.

Harada, T., Y. Torii, S. Morita, R. Onodera, Y. Hara, et al., 2011 Cloning, characterization, and expression of xyloglucan endotransglucosylase/hydrolase and expansin genes associated with petal growth and development during carnation flower opening. J Exp Bot. 62: 815-823.

Hazzouri, K. M., J. S. Escobar, R. W. Ness, L. Killian Newman, A. Randle, et al., 2013 Comparative population genomics in Collinsia sister species reveals evidence for reduced effective population size, relaxed selection, and evolution of biased gene conversion with an ongoing mating system shift. Evolution 67: 1263-1278.

Hoff, K. J., A. Lomsadze, M. Borodovsky, and M. Stanke, 2019 Whole-genome annotation with BRAKER, pp 65-95 in Gene Prediction, edited by M. Kollmar. Humana, New York.

Jepson Flora Project, 2020 Jepson eFlora, https://ucjeps.berkeley.edu/eflora/, accessed on May 26, 2020.

Kalisz, S., and D. W. Vogler, 2003 Benefits of autonomous selfing under unpredictable pollinator environments. Ecology 84: 2928-2942.

Kalisz, S., D. W. Vogler, B. Fails, M. Finer, E. Shepard, et al., 1999 The mechanism of delayed selfing in Collinsia verna (Scrophulariaceae). Am J Bot. 86: 1239-1247.

Kalisz, S., D.W. Vogler, and K. Hanley, 2004 Context-dependent autonomous selfing yields reproductive assurance and adaptive mixed mating. Nature 430: 884-886.

Kassambara, A., and F. Mundt, 2020 factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R package version 1.0.7.999. http://www.sthda.com/english/rpkgs/factoextra

Kurasawa, K., A. Matsui, R. Yokoyama, T. Kuriyama, T. Yoshizumi, et al., 2009 The AtXTH28 gene, a xyloglucan endotransglucosylase/hydrolase, is involved in automatic self-pollination in Arabidopsis thaliana. Plant Cell Physiol. 50:413-422.

Lankinen, Å., and J. A. Madjidian, 2011 Enhancing pollen competition by delaying stigma receptivity: pollen deposition schedules affect siring ability, paternal diversity, and seed production in Collinsia heterophylla (Plantaginaceae). Am J Bot. 98: 1191-1200.
Lankinen, Å., H. G. Smith, S. Andersson, and J. A. Madjidian, 2016 Selection on pollen and pistil traits during pollen competition is affected by both sexual conflict and mixed mating in a self-compatible herb. Am J Bot. 103: 541-552.

Lankinen, Å., and M. Strandh, 2019 Can sexual selection cause divergence in mating system–related floral traits? Int J Plant Sci. 180: 996-1003.

Lê, S., J. Josse, and F. Husson, 2008 FactoMineR: an R package for multivariate analysis. J Stat Softw. 25: 1-18.

Liao, Y., G. K. Smyth, and W. Shi, 2014 featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 30: 923-930.

Lieberman-Aiden, E., N. L. Van Berkum, L. Williams, M. Imakaev, T. Ragoczy, et al., 2009 Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 326: 289-293.

Lloyd, D. G., 1979 Some reproductive factors affecting the selection of self-fertilization in plants. Am Nat. 113: 67-79.

Love, M. I., W. Huber, and S. Anders, 2014 Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15: 550.

Madjidian, J. A., H. G. Smith, S. Andersson, and Å. Lankinen, 2020 Direct and indirect selection on mate choice during pollen competition: Effects of male and female sexual traits on offspring performance following two-donor crosses. J Evol Biol. 33: 1452-1467.

Malagon, D.A., M.D. Roche, R. McElderry and S. Kalisz, 2019 Pollen performance decreases with plant age for outcrosser but not selfer: evidence for cost of male performance. Am J Bot. 106: 1271-1278.

Martin, N. H., and J. H. Willis, 2007 Ecological divergence associated with mating system causes nearly complete reproductive isolation between sympatric Mimulus species. Evolution. 61: 68-82.

Mazer, S. J., I. M. Park, M. Kimura, E. M. Maul, A. Yim, et al., 2020 Mating system and historical climate conditions affect population mean seed mass: Evidence for adaptation and a new component of the selfing syndrome in Clarkia. J Ecol. 108: 1523-1539.

Mo, Y., C. Nagel, and L. P. Taylor, 1992 Biochemical complementation of chalcone synthase mutants defines a role for flavonols in functional pollen. Proc Natl Acad Sci USA. 89: 7213-7217.

Moyle, L.C., M. Levine, M. L., Wright JW, 2012 Hybrid Sterility over Tens of Meters Between Ecotypes Adapted to Serpentine and Non-Serpentine Soils. Evol Biol. 39: 207–218.
Napoli, C. A., D. Fahy, H. Y. Wang, and L. P. Taylor, 1999 White anther: a petunia mutant that abolishes pollen flavonol accumulation, induces male sterility, and is complemented by a chalcone synthase transgene. Plant Physiol. 120: 615-622.

Pettengill, J. B., and D. A. Moeller, 2012 Tempo and mode of mating system evolution between incipient Clarkia species. Evolution. 66: 1210-1225.

R Core Team, 2020 R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

Randle, A. M., J. B. Slyder, and S. Kalisz, 2009 Can differences in autonomous selfing ability explain differences in range size among sister-taxa pairs of Collinsia (Plantaginaceae)? An extension of Baker's Law. New Phytol. 183: 618-629.

Randle, A. M., R. B. Spigler, and S. Kalisz, 2018 Shifts to earlier selfing in sympatry may reduce costs of pollinator sharing. Evolution. 72: 1587-1599.

Rifkin, J. L., I. T. Liao, A. S. Castillo, and M. D. Rausher, 2019 Multiple aspects of the selfing syndrome of the morning glory Ipomoea lacunosa evolved in response to selection: A Qst-Fst comparison. Ecol Evol. 9: 7712-7725.

Shimizu, K. K., and T. Tsuchimatsu, 2015 Evolution of selfing: recurrent patterns in molecular adaptation. Annu Rev Ecol Evol Syst. 46: 593-622.

Sicard, A., and M. Lenhard, 2011 The selfing syndrome: a model for studying the genetic and evolutionary basis of morphological adaptation in plants. Ann Bot. 107: 1433-1443.

Simão, F. A., R. M. Waterhouse, P. Ioannidis, E. V. Kriventseva, and E. M. Zdobnov, 2015 BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31: 3210-3212.

Spigler, R. B., and S. Kalisz, 2013 Phenotypic plasticity in mating-system traits in the annual Collinsia verna. Botany 91: 597-604.

Stebbins, G. L., 1974 Flowering plants: evolution above the species level. Belknap Press, Cambridge, MA.

Stern, D. L., and V. Orgogozo, 2008 The loci of evolution: how predictable is genetic evolution? Evolution 62: 2155-2177.

Sun, X., D. Dalpiaz, D. Wu, J. S. Liu, W. Zhong, and P. Ma, 2016 Statistical inference for time course RNA-Seq data using a negative binomial mixed-effect model. BMC Bioinformatics. 17: 324.
Supek, F., M. Bošnjak, N. Škunca, and T. Šmuc, 2011 REVIGO summarizes and visualizes long lists of gene ontology terms. PloS One. 6: e21800.

Toräng, P., L. Vikström, J. Wunder, S. Wötz, G. Coupland, et al., 2017 Evolution of the selfing syndrome: Anther orientation and herkogamy together determine reproductive assurance in a self-compatible plant. Evolution. 71: 2206-2218.

Tsuchimatsu, T., H. Kakui, M. Yamazaki, C. Marona, H. Tsutsui, et al., 2020 Adaptive reduction of male gamete number in the selfing plant Arabidopsis thaliana. Nat Commun. 11: 1-9.

Vekemans, X., C. Poux, P. M. Goubet, and V. Castric, 2014 The evolution of selfing from outcrossing ancestors in Brassicaceae: what have we learned from variation at the S-locus? J Evol Biol. 27: 1372-1385.

Woźniak, N. J., C. Kappel, C. Marona, L Altschmied, B. Neuffer, et al., 2020 A similar genetic architecture underlies the convergent evolution of the selfing syndrome in Capsella. Plant Cell. 32: 935-949.

Wright, J. W., M. L. Stanton, and R. Scherson, 2006 Local adaptation to serpentine and non-serpentine soils in Collinsia sparsiflora. Evol Ecol Res. 8: 1-21.

Wu, C. A., D. B. Lowry, A. M. Cooley, K. M. Wright, Y. W. Lee, et al., 2008 Mimulus is an emerging model system for the integration of ecological and genomic studies. Heredity. 100: 220-230.

Yeh, J. I., U. Chinte, and S. Du, 2008 Structure of glycerol-3-phosphate dehydrogenase, an essential monotopic membrane enzyme involved in respiration and metabolism. Proc Natl Acad Sci USA. 105: 3280-3285.

Zhang, D., J. Shi, and X. Yang, 2016 Role of lipid metabolism in plant pollen exine development, pp. 315-337 in Lipids in plant and algae development. Springer, New York.

Figure Legends

Figure 1 Phylogeny of Collinsia and sister taxa Tonella based on Bayesian phylogenetic analysis. Figure adapted from Baldwin et al. (2011). Branch lengths are scaled to time, in million years (black scale bar). Maximal basal calibration is at 15 Ma. Pictures of Tonella and Collinsia flowers belonging to sister species illustrating the repeated transition from large-flowered outcrossing species to small-flowered selfing species within both genera are shown. Pictures are to scale (purple scale bar). Focal species C. rattanii and its sister species C. linearis are highlighted in purple. Photos by Thomas Harper.

Figure 2 Distribution of Collinsia rattanii genes across 7 chromosomes. The 7 major chromosomes are represented in each sub-figure by 7 horizontal grey lines. (a) All gene density with values calculated at 1 Mb windows. The distribution of 45,542 genes is shown; the
remaining 1,668 genes are located on un-scaffolded contigs. (b-c) Physical maps of functionally annotated *Collinsia rattanii* genes, using GO (gene ontology) terms for biological processes. Chromosome numbers are shown to the left of each chromosome (shown as grey lines). (b) 10,708 genes (i.e., vertical black lines) with one or more GO term annotations for biological processes; another 156 such genes are located on un-scaffolded contigs. (c) Genes annotated with general GO terms for pollination (15 genes in yellow), reproduction (57, in pink), development (31, in green), and growth (20, in black). Some lines may visually overlap one another.

Figure 3 Overall gene expression by species and bud stage. Principal component analysis (PCA) plot of regularized log-transformed RNA-seq read counts for 47,210 (38,589 expressed) genes in the *Collinsia rattanii* genome. N=3 for each species-stage combination. Principal component 1 (PC1) represents 50% of the variance in the read count dataset. (a) PC2 represents 14% of the variance in the read count dataset. Data points are jittered to reduce overlapping. (b) PC3 represents 7% of the variance in the read count dataset.

Figure 4 Overall gene expression by species and coordinates. Scatterplots with linear trend lines showing relationships between principal components coordinates and bud stages for *C. rattanii* and *C. linearis*. Each circle represents one sample (replicate). Red, bold trendlines are statistically significant (*P* < 0.01); dotted trendlines are not significant.

Figure 5 Differential expression of interaction effect genes. Heatmap and hierarchical clustering of regularized log-transformed RNA-seq read counts for the 855 interaction effect genes in the *Collinsia rattanii* genome. Expression levels were further standardized within each row (i.e., within each gene) by subtracting the row mean from each value in a row and dividing those values by the row standard deviation, resulting in a mean of 0 and a standard deviation of 1 for each row. Each row represents one gene’s full expression profile. Red = over expression; blue = under expression. N=3 for each species-stage combination.
Figure 6 Interaction effect gene expression patterns by biological process. Heatmap of regularized log-transformed RNA-seq read counts (averaged across biological replicates) for the 91-gene subset of interaction effect genes that are also indirectly or directly annotated with the 11 (but see note below) significant GO terms as presented in Table 5. Expression levels were further standardized within each row (i.e., within each gene) by subtracting the row mean from each value in a row and dividing those values by the row standard deviation, resulting in a mean of 0 and a standard deviation of 1 for each row. Each row represents one gene’s full expression profile. Red = overexpression; blue = under expression. *Note: These genes are annotated with 2 different significant GO terms, but only appear here in association with one. Additional annotations include: ‘sporopollenin biosynthetic pathway’ for RCORA09826 and RCORA186672; ‘lipid metabolic process’ for RCORA14962; ‘callose deposition in cell wall’ for RCORA36422 and RCORA205649; and ‘regulation of transcription, DNA-templated’ for RCORA141603, RCORA61416, and RCORA41810.

Figure 7 Magnitude and direction of expression changes in early and late development. Heatmaps representing magnitude and direction of significant expression change between bud stages in 164 early and 418 late development contrast effect genes for each species and hierarchical clustering of regularized log-transformed RNA-seq read counts for each gene. Red = positive expression change; blue = negative expression change.

Figure 8 Contrast effect gene expression patterns by biological process. Expression profiles for 17 genes showing significantly different patterns between the species in either early or late development and belonging to the 6 enriched GO categories corresponding to Table 6. RNA-seq read counts (y-axis) for each replicate are presented as either triangles (C. linearis) or circles (C. rattanii); lines connect species-specific count means. On the x-axis, stages in red (bold) indicate whether significant differences between species in gene expression profiles occur early (B1-B2) or late (B2-B3) in development. Note: Since GO term ‘sporopollenin biosynthetic process’ is a subprocess of ‘pollen exine formation’, we categorize gene profiles according to 5 GO terms. *These two genes are also annotated by the significantly enriched GO term ‘sporopollenin biosynthetic process’.

Table 1 Collinsia rattanii nuclear genome assembly statistics by version.

	Illumina HiSeq (Dovetail Genomics)	Hi-C sequencing (Phase Genomics)	
Scaffold	Total length (bp) 499,700,000	506,461,782	
Number	45,357	5,029	
N50 length (bp)	26,100	69,250,000	
Longest scaffold (bp)	231,400	95,162,470	
Contig	Total length (bp) 475,000,000	506,580,232	
	Number	N50 length (bp)	Longest contig (bp)
----------------	----------	------------------	---------------------
	665,422	2,000	37,300
	6,164	650,607	NA
Table 2 *Collinsia* floral bud characteristics by stage.

Species	\(C. \text{ rattanii} \)	\(C. \text{ linearis} \)				
Stage	**B1**	**B2**	**B3**	**B1**	**B2**	**B3**
Bud length (mm)	<2.5	2.5-4.0	>4.0	<2.8	2.8-4.75	>4.75
Petal color	green	white	violet	green	white [violet]*	white
Small stamen height (mm)	<1.0	1.0-2.0	>2.0	<1.0	1.0-2.5	>2.5
Large stamen height (mm, linear only)	<1.0	1.0-2.9	>2.9	<1.5	1.5-3.5	>3.5
Large stamen height (mm, curve traced)	<1.0	1.0-2.9	>2.9	<2.0	2.0-3.5	>3.5
Most distinctive anther color	green	yellow [brown]	yellow	green	brown	brown or yellow
Ovary length (mm)	<0.5	0.5-0.9	>0.9	<0.5	0.5-0.9	>0.9
Style length (mm)	<0.5	0.5-2.0	>2.0	<0.5	0.5-1.75	>1.75
Style shape, color	straight, green	straight, white [curved]	curved, purple	straight, green	curved, white [straight, green]	curved, white

Note: Less common conditions indicated in brackets
Table 3 Gene annotation statistics for *Collinsia rattanii*.

Genome features and gene models	Value
Total length (bp)	506,580,232
Contigs (#)	5,029
G+C content (%)	35.39
Total coding bases (#)	94,323,969
Total gene models (#)	47,210
Average coding sequence length (bp)	311
Genes functionally annotated (%)	12.5
tRNA models (#)	1,083
rRNA models (#)	46
Table 4 BUSCO scores for *Collinsia rattanii* genome.

Metrics	Number (%)
Complete BUSCOs	1,323 (96.3)
Complete and single-copy	1,186 (86.3)
Complete and duplicated	137 (10)
Fragmented BUSCOs	33 (2.4)
Missing BUSCOs	19 (1.3)
Total BUSCO groups searched	**1,375 (100)**

Table 5 Biological processes of interaction effect genes.

GO ID	Description	Total count of genes in *C. rattanii* genome	Observed count of genes in set	Expected count of genes in set	\(P\)-value\(^1\)	
1 GO:0010584	pollen exine formation	16	8	0.54	2.00E-06	
2 GO:0010411	xyloglucan metabolic process	30	5	1.02	0.0031	
3 GO:0010366	negative regulation of ethylene biosynthesis	3	2	0.1	0.0034	
4 GO:0032196	transposition	3	2	0.1	0.0034	
5 GO:0080110	sporopollenin biosynthetic process	3	2	0.1	0.0034	
6 GO:0002237	response to molecule of bacterial origin	3	2	0.1	0.0034	
7 GO:0046168	glycerol-3-phosphate catabolic process	3	2	0.1	0.0034	
8 GO:0006355	regulation of transcription, DNA-templated	911	44	30.87	0.0034	
9 GO:0046373	L-arabinose metabolic process	4	2	0.14	0.0066	
	GO:0052543	callose deposition in cell wall	4	2	0.14	0.0066
---	-------------------	--------------------------------	-----	----	------	--------
10	GO:0006629	lipid metabolic process	602	28	20.4	0.0084

1Significance ($P < 0.01$) determined via the Fisher statistic.
Table 6 Biological processes of contrast effect genes.

GO ID	Description	Total count of genes in C. rattanii genome	Observed count of genes in set	Expected count of genes in set	P-value\(^1\)	Number of observed DEGs in ED, LD\(^2\)
GO:0010584	pollen exine formation	16	8	0.34	1.30E-07	7, 1
GO:0032196	transposition	3	2	0.06	0.0013	1, 1
GO:0080110	sporopollenin biosynthetic process	3	2	0.06	0.0013	2, 0
GO:0016123	xanthophyll biosynthetic process	6	2	0.13	0.0064	1, 1
GO:0032012	regulation of ARF protein signal transduction	6	2	0.13	0.0064	0, 2
GO:0046835	carbohydrate phosphorylation	20	3	0.43	0.0083	1, 2

\(^1\)Significance (P < 0.01) determined via the Fisher statistic.

\(^2\)Number of genes associated with each GO term (Figure 8) showing significant changes in expression during early floral development (ED) and late floral development (LD).
Collinsia linearis

- C. grandiflora
- C. parviflora
- C. verna
- C. violacea
- C. torreyi var. torreyi
- C. wrightii
- C. childii
- C. callosa
- C. "metamorphica"
- C. greenei
 - C. s. var. sparsiflora & var. arvensis
 - C. sparsiflora var. collina
 - C. multicolor
 - C. antonina
 - C. concolor & C. parryi
 - C. heterophylla
 - C. corymbosa
 - C. bartsii folia var. bartsii folia
 - C. tinctoria

Tonella floribunda
T. tenella

5 my
Enriched GO terms	stage	species
pollen exine formation		
xyloglucan metabolic process		
negative regulation of ethylene biosynthesis		
transposition		
response to molecule of bacterial origin		
glycerol-3-phosphate catabolic process		
regulation of transcription, DNA-templated		
L-arabinose metabolic process		
lipid metabolic process		

Downloaded from https://academic.oup.com/g3journal/advance-article/doi/10.1093/g3journal/jkab177/6278899 by guest on 29 May 2021
