Original article
Scand J Work Environ Health 1981;7(4):302-309
doi:10.5271/sjweh.2544

On the interaction between occupational arsenic exposure and smoking and its relationship to lung cancer.
by Pershagen G, Wall S, Taube A, Linnman L

Key terms: arsenic; arsenic exposure; cancer; interaction; lung; lung cancer; occupational arsenic exposure; occupational exposure; smelter; smoking; sulfur dioxide

This article in PubMed: www.ncbi.nlm.nih.gov/pubmed/7347915
On the interaction between occupational arsenic exposure and smoking and its relationship to lung cancer

by G"oran Pershagen, MD,¹ Stig Wall, PhD,² Adam Taube, PhD,³ Lars Linnman, BSc¹

Exposure to inorganic arsenic compounds has been associated with an increased mortality from lung cancer among copper smelter workers (12, 25, 33), pesticide production workers (9, 15, 21), and vintners (8, 29). In several of the studies positive dose-response relationships were indicated. Investigations on Swedish copper smelter workers have revealed an increased risk of lung cancer (23), especially among workers exposed to arsenic (2, 34).

The interaction between tobacco smoking and occupational exposures can sometimes be fit to a multiplicative model, in which the effect, eg, increase in lung cancer incidence, on workers who are smokers can be estimated by the multiplication of effects in nonexposed smokers and exposed nonsmokers. This type of interaction has been observed in asbestos factory and insulation workers (4, 31), and in uranium ore miners (1). In other instances the multiplicative model is not applicable, eg, among zinc-lead miners (3) and workers exposed to chloromethylethers (35).

Two studies on American copper smelter workers exposed to arsenic did not give evidence of a positive interaction between smoking and smelter employment (not further specified) on lung cancer mortality (25, 26). However, no detailed analysis of the arsenic-tobacco smoking interaction was performed.

A peculiarity with arsenic carcinogenicity is the discrepancy between epidemiologic and experimental data. Animal carcinogenicity tests have been negative except for some preliminary data indicating a role of arsenic in the development of lung cancer (10) and leukemia (20). Arsenic is not mutagenic in bacterial tests (13, 28).
On the other hand, there are indications, from different experimental systems, that arsenic may interfere with deoxyribonucleic acid (DNA) repair, and therefore a cocarcinogenic effect is possible (11, 27).

The purpose of the present investigation was to elucidate the arsenic-tobacco smoke interaction among workers from a large Swedish copper smelter. It was anticipated that the results would give practical guidance for minimizing the risks associated with occupational exposure to arsenic, as well as provide insight into the mechanisms of arsenic carcinogenicity.

Methods

Source of subjects

The study was performed according to the case-control or case-referent technique within a cohort. The cohort included all male workers employed at least three months at the Rönnkärsverken copper smelter since the start of operations in 1928 until 1 January 1967 (34). It consisted of 3,958 subjects who were followed until 1 January 1977, and all but 1% were traced. Data on the causes of death among the 953 workers who had died before this date were obtained from the National Register on Causes of Death. This register contains information from death certificates, which have been shown to be of high validity for most diagnoses (6).

The cases constituted all men who had died from cancer of the trachea, bronchus, or lung (International Classification of Diseases 162, eighth revision), i.e., a total of 76 subjects. Two referents were chosen for each case among deceased workers in the cohort who had not died from cancer of the trachea, bronchus, or lung. The referents were matched to the cases according to year of birth. Altogether the group of cases and referents included 228 subjects.

Source of exposure information

The information on occupational exposure was gathered from company records, which had been kept since the start of operations at the smelter in 1928. The records contained detailed information on the time spent in various workplaces at the smelter by each worker (34).

The assessment of arsenic exposure was based on a safety engineer’s estimations of exposure levels in each department during different time periods (19). Exposure to sulfur dioxide (SO₂), which often occurred together with arsenic, was assessed in a similar way. Actual measurements were few however; in 1954 it was reported that the average concentrations of airborne arsenic ranged from 0.06 to 2 mg/m³, while those of SO₂ ranged from 15 to 300 mg/m³ at the roasters and copper furnaces and in the converter hall (14). The workers were classified into different categories according to their estimated exposure to arsenic and SO₂, and the time trend in exposure levels was also taken into account:

a. Roaster workers: More than six months of work in the gas purifier or roaster departments. Both arsenic and SO₂ exposure was high for this group.

b. High arsenic: More than six months of work in the arsenic metal, arsenic refining, arsenic salt, building, electric, machine, or selenium departments, excluding roaster workers. The arsenic exposure was high in this group, but lower than for the roaster workers, and the SO₂ exposure was substantially lower than for the roaster workers.

c. High SO₂: More than six months of work in the anode furnace, converter, copper furnace, or sulfur departments, excluding roaster workers and workers in the high arsenic category. The SO₂ levels were as high in these workplaces as at the roasters, but the arsenic levels were substantially lower.

Arsenic exposure primarily occurred at the workplaces included in the roaster worker, high arsenic, and high SO₂ exposure categories. Consequently, the workers in these categories were grouped together in the “arsenic exposed” category. The major remaining worksites at the smelter, where subjects in the reference category (no arsenic exposure) had worked, included the battery factory, central laboratory, coal crusher, copper foundry, deliv-
Table 3. Tobacco consumption among smoking smelter workers in different exposure categories.

Exposure category	Number	Daily tobacco consumption b (g)	Mean	Standard deviation
No arsenic exposure				
Cases	24	12.3		9.7
Referents	49			
High sulfur dioxide exposure				
Cases	9	10.9		13.3
Referents	21			
High arsenic exposure				
Cases	18	14.7		8.7
Referents	19			
Roaster workers				
Cases	17	11.5		10.0
Referents	11			

* a For 11 of the 168 subjects reported to be daily smokers for at least 2 a, it was not possible to get data on consumption.

* b Computed by adding cigarettes (assuming 1 g tobacco/cigarette) and pipe tobacco (calculated from data on weekly consumption).

Fig 1. Etiologic fraction of lung cancer cases among smelter workers exposed to arsenic and/or smokers.

etioologic fraction of 67 %, ie, 4.7 out of the total of 7 lung cancer cases in this group. Similarly, for a total of 24 cases of lung cancer among the smokers not exposed to arsenic, 19.2 may be attributed to smoking, and the etiologic fraction of 93 % of the arsenic-exposed smokers corresponds to 41 out of 43 cases. Altogether this makes 64.9 “etiologic” cases ie, which not would have occurred in the absence of exposure.

Fig 2. Etiologic fraction (EF) of deaths due to lung cancer associated with arsenic (As) exposure and smoking. Bars indicate approximate 95 % confidence intervals.

Fig 2 shows the relative importance of arsenic exposure and smoking for the whole population of smelter workers.
CONTENTS

Volume 7, Number 1, March 1981

"Human response to controlled levels of combinations of sulfur dioxide and inert dust" I Andersen, L Melhave, DF Proctor ... 1

"Methyl chloride and diazepam effects on performance" V Putz-Anderson, JV Setzer, JS Croxton, FC Phipps ... 8

"A study of chromosomal aberrations in miners exposed to diesel exhausts" I Nordenson, A Sweins, E Dahlgren, L Beckman ... 14

"Felling work, low-back pain and osteoarthritis" E Saarinen, L Brishaber, M Kaskinen ... 18

"Changes in rat liver microsomal cytochrome P-450 and enzymatic activities after the inhalation of n-hexane, xylene, methyl ethyl ketone and methylchloroform for four weeks" R Toftgard, OG Nilsen, JÅ Gustafsson ... 31

"A rapid method for the selective analysis of total urinary metabolites of inorganic arsenic" H Norin, M Vahter ... 38

"Distribution and elimination of 14C-styrene in rat" A Carlsson ... 45

"Distribution and elimination of 14C-xylene in rat" A Carlsson ... 51

"Interferences in the spectrophotometric S-diphenylcarbazide determination of environmental hexavalent chromium in a chromium and zinc plating plant" G Carelli, R La Bua, V Rimatori, D Porcelli, A Iannaccone .. 56

Letter to the Editor: "Video computer terminals and occupational dermatitis" V Lindén, S Rolfsen ... 62

Letter to the Editor: "A Swedish cancer-environment register available for research" K Wiklund, J Einhorn, G Wennström, G Rapaport ... 64

Book review: Recommended health-based limits in occupational exposure to heavy metals: Report of a WHO Study Group .. 68

Book review: Safety with lasers and other optical sources, a comprehensive handbook ... 69

Announcements ... 71

Volume 7, Number 2, June 1981

"Hazards of heat exposure: A review" FN Dukes-Dobos ... 73

"Exposure to acetone: Uptake and elimination in man" E Wigaeus, S Holm, I Åstrand ... 84

"Formaldehyde exposure in work and the general environment: Occurrence and possibilities for prevention" R Niemelä, H Vainio ... 95

"Analysis of inorganic fiber concentrations in biological samples by scanning electron microscopy" B Gylseth, RH Baunan, R Bruun .. 101

"Inorganic fibers in lung tissue from patients with pleural plaques or malignant mesothelioma" B Gylseth, G Mowé, V Skaug, A Wannag .. 109

"Delivery outcome for women working in the pulp and paper industry" U Blomqvist, A Ericson, B Källén, P Westerholm .. 114

"Relation of soft-tissue sarcoma, malignant lymphoma and colon cancer to phenoxy acids, chlorophenols and other agents" L Hardell .. 119

"Temporal patterns in psychophysiological activation in rotating shift workers — A follow-up field study one year after an increase in nighttime work" K Dahlgren .. 131

"Long-term adjustment of circadian rhythms to a rotating shiftwork schedule" K Dahlgren ... 141

Book review: Developments in occupational medicine ... 152

Book review: Metals in the environment ... 153

Book review: Biological monitoring methods for industrial chemicals ... 154

Announcements ... 155
blood" P Grandjean, J Lintrup .. 311
Book review: *Occupational health risk assessment: A preparatory study of the exposure of welders to toxic substances and the resulting health effects* 313
Announcements ... 314

Volume 7, Supplement 1, 1981

"Carbon monoxide criteria: With reference to effects on the heart, central nervous system and fetus" R Rylander, J Vesterlund 1—39

Volume 7, Supplement 2, 1981

"Survey of air contaminants from welding" U Ulfvarson 1—28

Volume 7, Supplement 3, 1981

"Health hazards and stress factors in small industry — Prevalence study in the province of Uusimaa with special reference to the type of industry and the occupational title as classifications for the description of occupational health problems" T Vihma 1—149

Volume 7, Supplement 4, 1981

"Proceedings of the US-Finnish joint symposium on occupational safety and health and the third annual NIOSH scientific symposium" 1—166

General aspects of occupational health

"Occupational safety and health in the 1980s: Policy options — Historic perspective" HK Abrams .. 7
"Job demands and worker health in machine-paced poultry inspection" B Wilkes, L Stammerjohn, N Lalich ... 12
"A cross-sectional medical and industrial hygiene survey of workers exposed to carbon disulfide" J Fajen, B Albright, SS Leffingwell 20

Neurotoxicology

"Neuropsychological findings among workers exposed to organic solvents" AM Seppäläinen ... 29
"Epidemiologic design for field studies: Occupational neurotoxicity" JM Melius, PA Schulte ... 34
"Neurobehavioral effects of methyl bromide inhalation exposures" WK Anger, JV Setzer, JM Russo, WS Brightwell, RG Wait, BL Johnson 40
"Behavioral changes after long-term exposure to organic solvents and their mixtures: Determining factors and research results" K Lindström 48
"Follow-up studies of workers with bladder neuropathy caused by exposure to dimethylaminopropionitrile" EL Baker, DC Christiani, DH Wegman, M Siroky, CA Niles, RG Feldman .. 54

Reproductive effects

"Monitoring genotoxicity in the occupational environment" M Sorsa, K Falck, H Norppa, H Vainio .. 61
"Testing of selected workplace chemicals for teratogenic potential" BD Hardin, GP Bond, MR Sikov, FD Andrew, RP Bellies, RW Niemeier 66
"Design considerations in pregnancy outcome studies of occupational populations" SG Selevan .. 76

Safety

"Risk assessment and the setting of priorities in occupational health and safety" J Rantanen .. 84
“Epidemiologic principles applied to injury prevention” PJ Coleman 91
“Work conditions and accidents in three industries” J Saari, J Lahtela 97
“The research-defining Accident Investigation Methodology of the National Institute for Occupational Safety and Health” J Gustin ... 106
“Safety in materials handling” K Häkkinen .. 109
“The determination of effective injury controls for metalcutting lathe operators” JR Etherton, TR Trump, RC Jensen ... 115

Epidemiology

“‘Negative’ results in cohort studies — How to recognize fallacies” S Hernberg 121
“Developing a national occupational health surveillance system in the United States” TM Frazier ... 127
“Overview of Finnish epidemiologic studies on occupational cancer” S Toia ... 133
“Mortality study of workers employed at organochlorine pesticide manufacturing plants” D Ditriglia, DP Brown, T Namekata, N Iverson ... 140
“Lung cancer and other mortality patterns among foundrymen” E Egan-Baum, BA Miller, RJ Waxweiler ... 147
“Mortality among workers in a die-casting and electroplating plant” M Silverstein, F Mirer, D Kotelchuck, B Silverstein, M Bennett ... 156

Author index

Åkerstedt T, see Torsvall et al .. 196
Åman C-G, see Ahlborg et al ... 239
Åstrand I, see Wigaeus et al ... 84
Abrams HK: Occupational safety and health in the 1980s: Policy options — Historic perspective ... suppl 4, p 7
Ahlborg G, et al: Laryngeal cancer and pickling house vapors .. 239
Aalto A, see Vainio et al .. 241
Albright B, see Fajen et al .. 1
Andersen I, et al: Human response to controlled levels of combinations of sulfur dioxide and inert dust ... suppl 4, p 20
Andersson K, et al: Chemosorption sampling and analysis of formaldehyde in air: Influence of recovery during the simultaneous sampling of formaldehyde, phenol, furfural and furfuryl alcohol ... 282
Andersson L, see Floidin et al ... 169
Andrew FD, see Hardin et al ... suppl 4, p 66
Anger WK, et al: Neurobehavioral effects of methyl bromide inhalation exposures ... suppl 4, p 20
Anjou C-G, see Floidin et al ... 169
Axelson O, see Floidin et al ... 169
Baker EL, et al: Follow-up studies of workers with bladder neuropathy caused by exposure to dimethylaminopropionitrile ... suppl 4, p 282
Baunan RH, see Gylseth & Baunan ... 101
Baunan RH, see Gylseth et al (a) .. 190
Beckman L, see Nordenson et al (a) ... 14
Beckman L, see Nordenson et al (b) ... 277
Bellies RP, see Hardin et al ... suppl 4, p 66
Belin L, et al: Life-threatening pulmonary reaction from car paint containing a pre-polymerized isocyanate (letter to the Editor) ... 310
Bennett M, see Silverstein et al .. suppl 4, p 156
Bjørseth A, et al: Polycyclic aromatic hydrocarbons in the work atmosphere: Determination of area-specific concentrations and job-specific exposure in a vertical pin Soderberg aluminum plant ... 223
Bjørseth O, see Bjørseth et al ... 223
Blomqvist U, et al: Delivery outcome for women working in the pulp and paper industry ... 114
Boeri R, see Filippini et al .. 257
Bond GP, see Hardin et al ... suppl 4, p 282
Bordo B, see Filippini et al ... suppl 4, p 282
Brightwell WS, see Anger et al .. suppl 4, p 282
Brown DP, see Ditriglaja et al .. suppl 4, p 140
Brüshaber L, see Sairanen et al .. 18