Reducing parasitic capacitance of strained Si nano p-MOSFET by control of virtual substrate doping

Mohammad Mahdi Khatamia, Majid Shalchiana*, Mohammadreza Kolahdouzb

aDepartment of Electrical Engineering, Amirkabir University of Technology, Tehran, Iran
bDepartment of Electrical and Computer Engineering, University of Tehran, Tehran, Iran

*shalchian@aut.ac.ir

Abstract: Biaxially strained Si channel p-MOSFETs on virtual SiGe substrates suffer from a parasitic parallel channel in virtual substrate. This channel participates in current passing through the devices and increases parasitic capacitors which degrades the high frequency response. In this paper a new approach has been introduced to eliminate the channel which in turn reduces parasitic capacitors of the MOSFET. It is illustrated that, increasing virtual substrate doping, can reduce and finally eliminate this unintentional channel. In this work 2D simulation has been used to investigate the impact of the proposed method.

Keywords: biaxially strained Si p-MOSFET, relaxed, virtual substrate, quantum well, parasitic capacitors

Introduction

As semiconductor industry is following Moore’s law, it faces some technology red brick walls that make trouble in its way, e.g. are thermal dissipation, leakage current, and so on [1], [2]. Thus new approaches are required to solve these issues.

It has been shown that biaxially strained Si can improve the carrier’s mobility[3], [4]. Therefore using strained Si as the MOSFET’s channel, reduces the channel resistance. However, there is a major drawback in this approach for p-MOSFETs. Difference in the band energy levels between strained Si and SiGe layer forms a quantum well (QW) for holes within SiGe layer. This QW confines holes inside SiGe layer instead of strained Si. This phenomenon increases leakage current and parasitic capacitors, which degrades MOSFET’s ideality.

One solution proposed by Rim \textit{et al} [5] and analyzed by Maiti and Armstrong [6], was to use a graded SiGe layer between strained Si and relaxed SiGe. Ge fraction of the graded layer changes from zero to Ge fraction of relaxed SiGe. Although this method removes parasitic channel, it simultaneously makes strained layer thicker which results in more defects in the layer, so it is not desired.

Other solution proposed by Sugii \textit{et al} [7], was based on increasing the doping of a part of the strained Si channel to eliminate the parasitic channel. But this method makes fabrication process complicated and also increases the number of defects.

In this work a novel approach has been proposed using doping engineering in virtual substrate of the p-MOSFETs to passivate the parasitic channel. 2D Poisson numerical simulation is used to prove the impact of this method on eliminating the parasitic channel and to reduce the parasitic capacitance. This work is based on the more recent models of the strained Si and SiGe which proposed in [8]–[12].

Structure

A cross section view of the MOSFET has been shown in Figure 1. The structure is based on growing a thin Si (15 nm) on a thick fully relaxed SiGe. As lattice constant of SiGe is larger than Si (almost 4.2%), the Si will be strained in two dimensions. To have fully relaxed SiGe with good quality, it should be a graded SiGe layer between SiGe layer and Si substrate[13]. The channel length is assumed to be 100 nm with doping concentration of 4×10^{17} cm$^{-2}$. A p-poly is used as the MOSFET’s gate, and the oxide thickness is set to 4 nm. Si lattice orientation is (100).
Results and Discussion

There are two major parasitic capacitors which affect high frequency response of MOSFET: gate-source capacitor and gate-drain capacitor. The structure under review has been studied for three doping levels of virtual substrate: 4×10^5 cm$^{-3}$ as the first case, 4×10^6 cm$^{-3}$ as the second case, and 4×10^7 cm$^{-3}$ as the third case.

Figure 2 illustrates the valence band of the MOSFET’s layers in zero bias ($V_{SG}=0$ V, $V_{SD}=0$). In light SiGe doping, valence band level of SiGe is higher than strained Si, which causes holes to occupy SiGe energy states. This means that the SiGe acts as a quantum well for holes. This leads to formation of a parasitic channel in SiGe parallel to the strained Si channel which contribute in passing current. Increasing SiGe doping reduces the width of the quantum well and decreases the number of the energy levels and the barrier height of QW. So increasing the SiGe's doping level in this device, diminishes the role of the quantum well. If doping is large enough, then the current will flow just through the strained Si.

Figure 3 also illustrates hole concentration of the structure in zero bias condition. As illustrated in the third case that doping concentration is 4×10^7 cm$^{-3}$, the density of excess hole in the parasitic channel has been considerably reduced.
the doping of virtual channel, formation and contribution of parasitic channel on MOSFETs can be controlled. More specifically for doping level of $4 \times 10^{17} \text{cm}^{-3}$ parasitic channel could be eliminated which results in lower parasitic capacitances.

Acknowledgment
The authors would like to thank late Dr. Saeid Khatami, for his great help and fruitful discussions.

References
[1] S. L. Braunstein, “Quantum Computation,” York, Apr. 2003.
[2] S. E. Thompson, S. Member, R. S. Chau, T. Ghan, K. Mistry, S. Tyagi, and M. T. Bohr, “In Search of ‘Forever,’ Continued Transistor Scaling One New Material at a Time,” IEEE Trans. Semicond. Manuf., vol. 18, no. 1, pp. 26–36, 2005.
[3] J. Welser, J. L. Hoyt, S. Takagi, and J. F. Gibbons, “Strain Dependence of the Performance Enhancement in Strained-Si n-MOSFETs,” in IEEE International Electron Devices Meeting (IEDM), 1994, pp. 373–376.
[4] R. Oberhuber, G. Zandler, and P. Vogl, “Subband structure and mobility of two-dimensional holes in strained Si/SiGe MOSFET’s,” Phys. Rev. Lett., B, vol. 58, no. 15, pp. 9941–9948, 1998.
[5] K. Rim, J. L. Hoyt, and J. F. Gibbons, “Enhanced Hole Mobilities in Surface-channel Strained-Si p-MOSFETs,” in IEEE International Electron Devices Meeting (IEDM), 1995, pp. 517–520.
[6] G. A. Armstrong and C. K. Maiti, “Strained-Si Channel Hetrojunction P-MOSFETS,” Solid. State. Electron., vol. 42, no. 4, pp. 487–498, 1998.
[7] N. Sugii, S. Yamaguchi, and K. Nakagawa, “Elimination of parasitic channels in strained-Si p-channel metal-oxide-semiconductor field-effect transistors,” Semicond. Sci. Technol., vol. 16, pp. 155–159, 2001.
[8] H. M. Nayefeh, J. L. Hoyt, and D. A. Antoniadis, “A Physically Based Analytical Model for the Threshold Voltage of Strained-Si n-MOSFETs,”
IEEE Trans. Electron Devices, vol. 51, no. 12, pp. 2069–2072, 2004.

[9] A. Biswas and S. Bhattacherjee, “Temperature dependent model for threshold voltage and subthreshold slope of strained-Si channel MOSFETs with a polysilicon gate,” Microelectron. Reliab., pp. 5–7, Apr. 2014.

[10] S. Richard, N. Cavassilas, F. Aniel, and G. Fishman, “Strained silicon on SiGe: Temperature dependence of carrier effective masses,” J. Appl. Phys., vol. 94, no. 8, pp. 5088–5094, 2003.

[11] J. Cressler, Ed., Silicon heterostructure devices. Taylor & Francis, 2010.

[12] Peter Ashburn, SiGe Heterojunction Bipolar Transistors. John Wiley & Sons, 2003.

[13] D. J. Paul, “Si / SiGe heterostructures : from material and physics to devices and circuits,” Semicond. Sci. Technol., vol. 19, pp. 75–108, 2004.