Integrable Heisenberg ferromagnetic equations are an important subclass of integrable systems. The M-XCIX equation is one of a generalizations of the Heisenberg ferromagnetic equation and are integrable. In this paper, the Darboux transformation of the M-XCIX equation is constructed. Using the DT, a 1-soliton solution of the M-XCIX equation is presented.

1 Introduction

During the past decades, there has been an increasing interest in the study of nonlinear models, especially, integrable nonlinear differential equations. Such integrable equations admit in particular soliton or soliton-like solutions. The study of the solitons and related solutions have become one of active areas of research in physics and mathematics. There are several methods to find soliton and other exact solutions of integrable equations, for instance, Hirota method, inverse scattering transformation, bilinear method, Darboux transformation and so on. Among these methods, the Darboux transformation (DT) is a efficient method to construct the exact solutions of integrable equations.

Among of integrable systems, the Heisenberg ferromagnetic equation (HFE) plays an important role in physics and mathematics [1]-[15]. In particular, it describes nonlinear dynamics of magnets. Also the HFE can reproduce some integrable classes of curves and surfaces in differential geometry. There are several types integrable HFE. In this paper, we construct the DT for the HFE with self-consistent potentials. Using the DT, we provide soliton solutions of the HFE with self-consistent potentials.

The paper is organized as follows. In section 2, the M-XCIX equation and its Lax representation are introduced. In section 3, we derived the DT of the M-XCIX equation. Using these Darboux transformations, one soliton solutions are derived in section 4. Section 5 is devoted to conclusion.

2 The M-XCIX equation

The M-XCIX equation reads as (about our notation and definitons, see e.g. [23]-[24])

\[iS_t + \frac{1}{2}[S, S_{xx}] + \frac{1}{\omega}[S, W] = 0, \]
\[iW_x + \omega[S, W] = 0, \]

*Email: rmyrzakulov@gmail.com
where $S = S_i \sigma_i$, $W = W_i \sigma_i$, $S^2 = I$, $W^2 = b(t)I$, $b(t) = \text{const}(t)$, $I = \text{diag}(1, 1)$, $[A, B] = AB - BA$, ω is a real constant and σ_i are Pauli matrices. The M-XCIX equation is integrable by the IST. Its Lax representation can be written in the form

\[
\begin{align*}
\Phi_x &= U\Phi, \quad (2.3) \\
\Phi_t &= V\Phi, \quad (2.4)
\end{align*}
\]

where the matrix operators U and V have the form

\[
\begin{align*}
U &= -i\lambda S, \quad (2.5) \\
V &= \lambda^2 V_2 + \lambda V_1 + \left(\frac{i}{\lambda + \omega} - \frac{i}{\omega}\right) W. \quad (2.6)
\end{align*}
\]

Here

\[
\begin{align*}
V_2 &= -2iS, \quad V_1 = 0.5[S, S_x], \quad (2.7) \\
S &= \begin{pmatrix} S_3 & S^+ \\ S^- & -S_3 \end{pmatrix}, \quad W = \begin{pmatrix} W_3 & W^+ \\ W^- & -W_3 \end{pmatrix}, \quad (2.8) \\
S^\pm &= S_1 \pm iS_2, \quad W^\pm = W_1 \pm iW_2. \quad (2.9)
\end{align*}
\]

At last, we note that if $W = 0$ then the M-XCIX equation becomes the usual HFE

\[
iS_t + \frac{1}{2}[S, S_{xx}] = 0. \quad (2.10)
\]

3 Darboux transformation

3.1 One-fold DT

In this section, we construct the DT for the M-XCIX equation. To do this, let us consider the following transformation of solutions of the equations (2.3)-(2.4)

\[
\Phi' = L\Phi, \quad (3.1)
\]

where

\[
L = \lambda N - I \quad (3.2)
\]

and

\[
N = \begin{pmatrix} n_{11} & n_{12} \\ n_{21} & n_{22} \end{pmatrix}. \quad (3.3)
\]

We require that Φ' satisfies the same Lax representation as (2.3)-(2.4) so that

\[
\begin{align*}
\Phi'_x &= U'\Phi', \quad (3.4) \\
\Phi'_t &= V'\Phi', \quad (3.5)
\end{align*}
\]

where $U' - V'$ depend on S' and W' as $U - V$ on S and W. The matrix L obeys the following equations

\[
\begin{align*}
L_x + LU &= U'L, \quad (3.6) \\
L_t + LV &= V'L. \quad (3.7)
\end{align*}
\]

These equations yield the following equations for N

\[
\begin{align*}
N_x &= iS' - iS, \quad (3.8) \\
N_t &= -S'S_x' - \frac{i}{\omega}W'N + \frac{i}{\omega}NW + SS_x. \quad (3.9)
\end{align*}
\]
and
\[
S' = NSN^{-1}. \quad (3.10)
\]
\[
W' = (I + \omega N)W(I + \omega N)^{-1}. \quad (3.11)
\]
Also we have the following useful second form of the DT for \(S \):
\[
S' = S - iN_x. \quad (3.12)
\]

3.1.1 One-fold DT in terms of the \(N \) matrix

We now ready to write the DT for the M-XCIIX equation in the explicit form. It can be shown that the matrix \(N \) has the form
\[
N = \begin{pmatrix}
n_{11} & n_{12} \\
-n_{12} & n_{11}
\end{pmatrix}, \quad (3.13)
\]
so that
\[
N^{-1} = \frac{1}{n} \begin{pmatrix}
n_{11} & -n_{12} \\
n_{12} & n_{11}
\end{pmatrix} \quad (3.14)
\]
and
\[
(I + \omega N) = -L|_{\lambda=\omega} = \begin{pmatrix}
\omega n_{11} + 1 & \omega n_{12} \\
-\omega n_{12} & \omega n_{11} + 1
\end{pmatrix}, \quad (I + \omega N)^{-1} = \frac{1}{n} \begin{pmatrix}
\omega n_{11} + 1 & -\omega n_{12} \\
\omega n_{12} & \omega n_{11} + 1
\end{pmatrix}. \quad (3.15)
\]
Here
\[
n = \det N = |n_{11}|^2 + |n_{12}|^2, \quad \Box = \det(I + \omega N) = \omega^2|n_{11}|^2 + \omega(n_{11} + n_{11}^*) + 1 + \omega^2|n_{12}|^2. \quad (3.16)
\]
Finally we have
\[
S' = \frac{1}{n} \begin{pmatrix}
S_3(|n_{11}|^2 - |n_{12}|^2) & S^{-n_{11}n_{12}^* + S^+n_{11}^*n_{12}} \\
S^+n_{11}^2 - S^-n_{11}n_{12}^* & S^-n_{11}n_{12}^* - S^-n_{11}n_{12} + S^+n_{11}^*n_{12}
\end{pmatrix}, \quad (3.17)
\]
\[
W' = \frac{1}{n} \begin{pmatrix}
1 + A_{11} & A_{12} \\
-A_{21} & 1 - A_{22}
\end{pmatrix}, \quad (3.18)
\]
where
\[
A_{11} = (\omega^2|n_{11}|^2 + \omega(n_{11} + n_{11}^*) - |n_{12}|^2)W_3 + (\omega n_{11} + 1)n_{12}W^+ + (\omega n_{11} + 1)n_{12}^*W^-; \quad (3.19)
\]
\[
A_{12} = -2\omega n_{11}n_{12}W_3 - 2n_{12}W_3 + \omega^2n_{11}^2W^- + 2\omega n_{11}W^- + W^- - n_{12}^2W^+; \quad (3.20)
\]
\[
A_{21} = -2\omega n_{11}^*n_{12}W_3 - 2n_{12}^*W_3 + \omega^2(n_{11}^*)_2W^+ + 2\omega n_{11}^*W^+ + W^+ - (n_{12})^2W^-; \quad (3.21)
\]
\[
A_{22} = (\omega^2|n_{11}|^2 + \omega(n_{11} + n_{11}^*) - |n_{12}|^2)W_3 + (\omega n_{11}^* + 1)n_{12}^*W^- + (\omega n_{11} + 1)n_{12}W^+; \quad (3.22)
\]
At last, we give the another form of the solutions of \(S \) as:
\[
S' = S - i \begin{pmatrix}
n_{11} & n_{12} \\
n_{11} & -n_{12}
\end{pmatrix}, \quad (3.23)
\]
so that
\[
S^{+'} = S^+ + in_{12}^*, \quad (3.24)
\]
\[
S^{-'} = S^- - in_{12}, \quad (3.25)
\]
\[
S_3' = S_3 - in_{11}. \quad (3.26)
\]

3.1.2 One-fold DT in terms of eigenfunctions

Let the column \((\psi_1, \psi_2)^T\) is the solution of Eqs.(2.3)-(2.4) with \(\lambda \). Then the new column \((-\psi_2^*, \psi_1^*)^T\) is the solution of Eqs.(2.3)-(2.4) as \(\lambda^* \). We now consider the following matrix solution
\[
H = \begin{pmatrix}
\psi_1(\lambda_1; t, x, y) & \psi_1(\lambda_2; t, x, y) \\
\psi_2(\lambda_1; t, x, y) & \psi_2(\lambda_2; t, x, y)
\end{pmatrix}. \quad (3.27)
\]
It satisfies the system:
\[H_x = -iSH\Lambda, \]
\[H_t = -2iSH\Lambda^2 + SS_xH\Lambda - \frac{i}{\omega}WH + WH\Sigma, \]
where
\[\Lambda = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}, \quad \Sigma = \begin{pmatrix} -i\lambda_1 + \omega & 0 \\ 0 & -i\lambda_2 - \omega \end{pmatrix}, \]
det \[H \neq 0 \] and \(\lambda_k \) are complex constants. We now assume that the matrix \(N \) can be written as:
\[N = H\Lambda^{-1}H^{-1}. \]

From these equations follow that \(N \) obeys the equations
\[N_x = iNSN^{-1} - iS, \]
\[N_t = SS_x - NSS_xN^{-1} - \frac{i}{\omega}(WN - NW) + WH\Sigma\Lambda^{-1}H^{-1} - NWH\Sigma H^{-1}, \]
which are equivalent to Eqs.(3.8)-(3.9) as we expected. In order to satisfy the constraints of \(S \) and \(W \), the \(S \) and matrix solutions of the system (2.3)-(2.4) obey the condition
\[\Phi^\dagger = \Phi^{-1}, \quad S^\dagger = S, \]
which follow from the equations
\[\Phi^\dagger = i\lambda\Phi^\dagger S^\dagger, \quad (\Phi^{-1})_x = i\lambda\Phi^{-1}S^{-1}. \]

Here \(\dagger \) denote an Hermitian conjugate. After some calculations we came to the formulas
\[\lambda_2 = \lambda_1^*, \quad H = \begin{pmatrix} \psi_1(\lambda_1; t, x, y) & -\psi_2^*(\lambda_1; t, x, y) \\ \psi_2(\lambda_1; t, x, y) & \psi_1^*(\lambda_1; t, x, y) \end{pmatrix}, \]
\[H^{-1} = \frac{1}{\Delta} \begin{pmatrix} \psi_1^*(\lambda_1; t, x, y) & \psi_2^*(\lambda_1; t, x, y) \\ -\psi_2(\lambda_1; t, x, y) & \psi_1(\lambda_1; t, x, y) \end{pmatrix}, \]
where
\[\Delta = |\psi_1|^2 + |\psi_2|^2. \]

So finally for the matrix \(N \) we get the following expression
\[N = \frac{1}{\Delta} \begin{pmatrix} \psi_1^2 + \lambda_1^2 - \lambda_1^{-1} |\psi_2|^2 & \psi_1^2 \psi_2^* \\ (\lambda_1^{-1} - \lambda_2^{-1})\psi_1^2 \psi_2 & \lambda_2^{-1}|\psi_1|^2 + \lambda_2^{-1} |\psi_2|^2 \end{pmatrix}. \]

Hence we can write the DT in terms of the eigenfunctions of the Lax representations ()-() as
\[S^{+t} = S^t + i \left(\frac{(\lambda_1^{-1} - \lambda_2^{-1})\psi_1^2 \psi_2}{\Delta} \right)_x, \]
\[S^{-t} = S^- - i \left(\frac{(\lambda_1^{-1} - \lambda_2^{-1})\psi_1^2 \psi_2}{\Delta} \right)_x, \]
\[S_3^t = S_3 - i \left(\frac{\lambda_1^{-1}|\psi_1|^2 + \lambda_2^{-1} |\psi_2|^2}{\Delta} \right)_x \]
and similarly for \(W \).

Lastly let us unify our notations rewriting the 1-fold DT as:
\[\Phi^{[1]} = L_1\Phi \]
where
\[L_1 = \lambda l_1^1 + t_1^0 = \lambda l_1^1 - I \] (3.44)
and \(t_1^0 = -I \). Then the 1-fold DT takes the form
\[S^{[1]} = l_1^1 S(l_1^1)^{-1}, \]
\[W^{[1]} = L_1|_{\lambda=-\omega}WL_1^{-1}|_{\lambda=-\omega} \] (3.45)\(\)
or
\[S^{[1]} = l_1^1 \lambda S(l_1^1)^{-1}, \]
\[W^{[1]} = L_1|_{\lambda=-\omega}WL_1^{-1}|_{\lambda=-\omega}. \] (3.46)\(\)

3.2 Two-fold DT

In this subsection we want give some main formulas of the 2-fold DT. We start from the transformation
\[\Phi^{[2]} = L_2 \Phi^{[1]} = (\lambda N_2 - I) \Phi^{[1]} = (\lambda N_2 - I)(\lambda N_1 - I) \Phi = \left(l_2^0 + \lambda l_2^1 + \lambda^2 l_2^2 \right) \Phi \] (3.49)
where
\[L_2 = l_2^0 + \lambda l_2^1 + \lambda^2 l_2^2. \] (3.50)

Here
\[l_2^1 = -(N_1 + N_2), \quad l_2^2 = N_2 N_1, \quad l_2^0 = I \] (3.51)
We have
\[L_{2x} + L_2 U = U^{[2]} L_2, \]
\[L_{2t} + L_2 V = V^{[2]} L_2. \] (3.52)(3.53)

Then Eq.(3.52) gives the coefficients of \(\lambda^i \) as:
\[\lambda^0 : \quad l_{2x}^0 = 0 \] (3.54)
\[\lambda^1 : \quad l_{2x}^1 = il_2^0 S - iS^{[2]} l_2^0, \] (3.55)
\[\lambda^2 : \quad l_{2x}^2 = il_2^1 S - iS^{[2]} l_2^1, \] (3.56)
\[\lambda^3 : \quad 0 = il_2^2 S - iS^{[2]} l_2^2. \] (3.57)

Hence in particular we get
\[S^{[2]} = l_2^2 S(l_2^2)^{-1}. \] (3.58)

We need in the following formulas:
\[\frac{\lambda}{\lambda + \omega} = 1 - \frac{\omega}{\lambda + \omega}, \quad \frac{\lambda^2}{\lambda + \omega} = \lambda - \omega + \frac{\omega^2}{\lambda + \omega} \] (3.59)

Then coefficients of \(\lambda^i \) of two sides of the equation (3.53) give us the following equations
\[\lambda^0 : \quad l_{2x}^0 - \frac{i}{\omega} l_2^0 W + il_2^1 W = - \frac{i}{\omega} W^{[2]} l_2^0 + iW^{[2]} l_2^1 - i\omega W^{[2]} l_2^2, \] (3.60)
\[\lambda^1 : \quad l_{2x}^1 + l_2^0 SS_x - \frac{i}{\omega} l_2^1 W + il_2^2 W = S^{[2]} S_x^{[2]} l_2^0 - \frac{i}{\omega} W^{[2]} l_2^1 + iW^{[2]} l_2^2, \] (3.61)
\[\lambda^2 : \quad l_{2x}^2 - 2il_2^0 S + l_2^1 SS_x - \frac{i}{\omega} l_2^2 W = -2iS^{[2]} l_2^0 + S^{[2]} S_x^{[2]} l_2^1 - \frac{i}{\omega} W^{[2]} l_2^2, \] (3.62)
\[\lambda^3 : \quad -2il_2^1 S + l_2^2 SS_x = -2iS^{[2]} l_2^1 + S^{[2]} S_x^{[2]} l_2^2, \] (3.63)
\[\lambda^4 : \quad -2il_2^2 S = -2iS^{[2]} l_2^2, \] (3.64)
\[(\lambda + \omega)^{-1} : \quad il_2^0 W - i\omega l_2^1 W + i\omega^2 l_2^2 W = iW^{[2]} l_2^0 - i\omega W^{[2]} l_2^1 - i\omega^2 W^{[2]} l_2^2. \] (3.65)
Hence we obtain the following 2-fold DT:

\[S^{[2]} = l_2^2 S(l_2^2)^{-1}, \]
\[W^{[2]} = (l_2^0 - \omega l_2^1 + \omega^2 l_2^2) W(l_2^0 - \omega l_2^1 + \omega^2 l_2^2)^{-1} \]

and

\[l_2^0 = 0. \]

Note these equations we can rewrite as

\[S^{[2]} = L_2 S(L_2)^{-1}, \]
\[W^{[2]} = L_2 W(L_2)^{-1} \]

and

\[L_2|_{\lambda=0} = 0, \]

respectively.

3.3 n-fold DT

Let us now we construct the n-fold DT. It has the form

\[\Phi^{[n]} = L_n \Phi^{[n-1]} = (\lambda N_n - I) \Phi^{[n-1]} = (\lambda N_n - I)(\lambda N_{n-1} - I) \Phi \]

so that

\[\Phi^{[n]} = [\lambda^n t_n^n + \lambda^{n-1} t_n^{n-1} + \ldots + \lambda t_n^1 + t_n^0] \Phi, \]

where \(t_n^0 = (-1)^n I \). The n-fold DT of the M-NCIX equation can be written as:

\[L_{nx} = U^{[n]} L_n - L_n U, \]
\[L_{nt} = V^{[n]} L_n - L_n V. \]

Hence, in particular, we obtain

\[S^{[n]} = \frac{\partial^n L_n}{\partial \lambda^n} S \left(\frac{\partial^n L_n}{\partial \lambda^n} \right)^{-1}, \]
\[W^{[n]} = L_n|_{\lambda=-\omega} W(L_n|_{\lambda=-\omega})^{-1} \]

and

\[L_n|_{\lambda=0} = 0. \]

4 Soliton solutions

Now we consider a seed solution

\[S = \sigma_3, \quad W = b \sigma_3, \]

where \(b = \text{const}(t) \). Then we get

\[S^{[1]} = \frac{1}{n} \left(n_{11}^2 - n_{12}^2 \begin{pmatrix} -2n_{11}n_{12} \\ -2n_{11}^* n_{12}^* \end{pmatrix} \right), \]
\[W^{[1]} = \frac{1}{n} \left(b(\omega^2|n_{11}|^2 +\omega(n_{11} + n_{11}^*) + 1 - |n_{12}|^2) -2\omega n_{11} n_{12} - 2n_{12} \right) \]

6
Now we are ready to write the solutions of the M-XCIX equation in terms of the elements of N. We get

$$S^{+[1]} = \frac{2n_{11}^*n_{12}^*}{n}, \quad (4.4)$$
$$S^{-[1]} = \frac{2n_{11}n_{12}}{n}, \quad (4.5)$$
$$S^{[3]}_Q = \frac{|n_{11}|^2 - |n_{12}|^2}{n}, \quad (4.6)$$
$$W^{+[1]} = -\frac{2bm_1^*(\omega n_{11}^* + 1)}{n}, \quad (4.7)$$
$$W^{-[1]} = -\frac{2bm_{12}(\omega n_{11} + 1)}{n}, \quad (4.8)$$
$$W^{[3]}_Q = \left(\omega^2|n_{11}|^2 + \omega(n_{11} + n_{11}^*) + 1 - |n_{12}|^2b\right). \quad (4.9)$$

In our case the eigenfunctions are given by

$$\psi_1 = e^{i\lambda x + i(2\lambda^2 - \lambda^2 (\frac{1}{\alpha} + \frac{1}{\beta}))(\alpha \omega t + \beta t)}, \quad (4.10)$$
$$\psi_2 = e^{i\lambda x + (2\lambda^2 - \lambda^2 (\frac{1}{\alpha} + \frac{1}{\beta})))\beta t + i\delta_1}, \quad (4.11)$$

where $\lambda = \alpha + i\beta$ and δ_1 are complex constants. Finally the 1-soliton solution of the M-XCIX equation has the form

$$S^{[3]}_Q = \tanh^2 2\theta_1 + \frac{\alpha^2 - \beta^2}{\alpha^2 + \beta^2} \frac{1}{\cosh^2 2\theta_1} = \frac{1}{\cosh^2 2\theta_1} \left(\sinh^2 2\theta_1 + \frac{\alpha^2 - \beta^2}{\alpha^2 + \beta^2}\right), \quad (4.12)$$

$$S^{+[1]} = \frac{2\beta}{\alpha^2 + \beta^2} e^{-ix_1 + ix_2} \left(\frac{\beta \sinh 2\theta_1}{\cosh 2\theta_1} - \frac{i\alpha}{\cosh 2\theta_1}\right), \quad (4.13)$$

$$S^{-[1]} = \frac{2\beta}{\alpha^2 + \beta^2} e^{ix_1 - ix_2} \left(\frac{\beta \sinh 2\theta_1}{\cosh 2\theta_1} + \frac{i\alpha}{\cosh 2\theta_1}\right), \quad (4.14)$$

where

$$\theta_1 = bx - 2\alpha bt + \frac{\beta b}{\alpha + \omega t + \beta^2} - \sigma_1, \quad (4.15)$$

$$\theta_2 = -bx - 2\alpha bt - \frac{\beta b}{\alpha + \omega t + \beta^2} - \sigma_2, \quad (4.16)$$

$$\chi_1 = -i\alpha x - 2i\alpha t - i\beta^2 t + \frac{ib(\alpha + \omega)}{(\alpha + \omega)^2 + \beta^2} - \frac{i}{\omega}bt + i\tau_1, \quad (4.17)$$

$$\chi_1 = i\alpha x + 2i\alpha t - i\beta^2 t - \frac{ib(\alpha + \omega)}{(\alpha + \omega)^2 + \beta^2} + \frac{i}{\omega}bt + i\tau_2. \quad (4.18)$$

Similarly, we can find solutions for W. They have the form

$$W^{[3]}_Q = \frac{(M \cosh^2 2\theta_1 - \beta^2(\omega^2 - 1)b)}{M \cosh^2 2\theta_1 - \beta^2(\omega^2 + 1)}, \quad (4.19)$$

$$W^{+[1]} = \frac{-2i\beta be^{-ix_1 + ix_2}(\omega \cosh 2\theta_1 + i\beta \omega \sinh 2\theta_1 - (\alpha^2 + \beta^2) \cosh^2 2\theta_1)}{\cosh^2 2\theta_1(\alpha^2 A + \beta^2 B) - \frac{\omega^2(\alpha^2 + \beta^2)}{2} - \beta^2}, \quad (4.20)$$

$$W^{-[1]} = \frac{2i\beta be^{ix_1 - ix_2}(\omega \cosh 2\theta_1 - i\beta \omega \sinh 2\theta_1 + (\alpha^2 + \beta^2) \cosh^2 2\theta_1)}{\cosh^2 2\theta_1(\alpha^2 A + \beta^2 B) - \frac{\omega^2(\alpha^2 + \beta^2)}{2} - \beta^2}, \quad (4.21)$$

where

$$M = (\alpha^2 + \beta^2)[(\omega + \alpha)^2 + \beta^2], \quad (4.22)$$

$$A = \omega^2 + 1 + \alpha \omega + \alpha^2 + 2\beta^2, \quad (4.23)$$

$$B = \omega^2 - 1 + \alpha \omega + \beta^2 + 2\alpha^2. \quad (4.24)$$
5 Conclusion

In this paper, we have derived the DT of the M-XCIX equation including one-fold, two-fold and \(n \)-fold DT. This equation describe a nonlinear dynamics of the (1+1)-dimensional ferromagnets with self-consistent potentials and is integrable. As an example, the 1-soliton solution of the M-XCIX equation have been constructed explicitly by using the DT from some trivial seed solution. Of course, in a recursive manner, we can construct the \(n \)-soliton solution as well as the other type nonlinear solutions like: breathers, rogue waves, positons and so on. We will study some important generalizations of the M-XCIX equation in future.

References

[1] Gutshabash E. Sh. *On some set of models of magnets and chiral fields: integrability, Darboux transformation and exact solutions*. Zapiski Nauchnyih Seminarov POMI, 269, 164-179 (2000)

[2] Nian-Ning Huang, Bing Xu. *Darboux Transformation Method for Finding Soliton Solutions of the Landau-Lifshitz Equation of a Classical Heisenberg Spin Chain*, Commun. Theor. Phys., 12, 121-126 (1989).

[3] Zh. Kh. Zhunussova, K. R. Yesmakhanova, D. I. Tungushbaeva, G. K. Mannybekova, G. N. Nugmanova, R. Myrzakulov. *Integrable Heisenberg Ferromagnet Equations with self-consistent potentials*. [arXiv:1301.1649]

[4] J.-S. He, Y. Cheng, Y.-S. Li. Commun. Theor. Phys., 38, 493-496 (2002).

[5] U. Saleem, M. Hasan. *Quasideterminant solutions of the generalized Heisenberg magnet model* J. Phys. A: Math. Theor., 43, 045204 (2010). [arXiv:0912.5030]

[6] M. Lakshmanan, Phil. Trans. R. Soc. A, 369 1280-1300 (2011).

[7] M. Lakshmanan, Phys. Lett. A A 53-54 (1977).

[8] L.A. Takhtajan, Phys. Lett. A 64 235-238 (1977).

[9] C. Senthilkumar, M. Lakshmanan, B. Grammaticos, A. Ramani, Phys. Lett. A 356 339-345 (2006).

[10] Y. Ishimori, Prog. Theor. Phys. 72 33 (1984).

[11] R. Myrzakulov, S. Vijayalakshmi, G. Nugmanova, M. Lakshmanan Physics Letters A, 233, 14-6, 391-396 (1997).

[12] R. Myrzakulov, S. Vijayalakshmi, R. Syzdykova, M. Lakshmanan, J. Math. Phys., 39, 2122-2139 (1998).

[13] R. Myrzakulov, M. Lakshmanan, S. Vijayalakshmi, A. Danlybaeva, J. Math. Phys., 39, 3765-3771 (1998).

[14] Myrzakulov R, Danlybaeva A.K, Nugmanova G.N. Theoretical and Mathematical Physics, V.118, 13, P. 441-451 (1999).

[15] Myrzakulov R., Nugmanova G., Syzdykova R. Journal of Physics A: Mathematical & Theoretical, V.31, 147, P.9535-9545 (1998).

[16] Myrzakulov R., Daniel M., Amuda R. Physica A., V.234, 13-4, P.715-724 (1997).

[17] Myrzakulov R., Makhankov V.G., Pashaev O.. Letters in Mathematical Physics, V.16, N1, P.83-92 (1989)

[18] Myrzakulov R., Makhankov V.G., Makhankov A. Physica Scripta, V.35, N3, P. 233-237 (1987)

[19] Myrzakulov R., Pashaev O., Kholmurodov Kh. Physica Scripta, V.33, N4, P. 378-384 (1986)
[20] Anco S.C., Myrzakulov R. Journal of Geometry and Physics, v.60, 1576-1603 (2010)

[21] Myrzakulov R., Rahimov F.K., Myrzakul K., Serikbaev N.S. On the geometry of stationary Heisenberg ferromagnets. In: "Non-linear waves: Classical and Quantum Aspects", Kluwer Academic Publishers, Dordrecht, Netherlands, P. 543-549 (2004)

[22] Myrzakulov R., Serikbaev N.S., Myrzakul Kur., Rahimov F.K. On continuous limits of some generalized compressible Heisenberg spin chains. Journal of NATO Science Series II. Mathematics, Physics and Chemistry, V 153, P. 535-542 (2004)

[23] R. Myrzakulov, G. K. Mamyrbekova, G. N. Nugmanova, M. Lakshmanan. Integrable (2+1)-dimensional spin models with self-consistent potentials. [arXiv:1305.0098]

[24] R. Myrzakulov, G. K. Mamyrbekova, G. N. Nugmanova, K. Yesmakhanova, M. Lakshmanan. Integrable Motion of Curves in Self-Consistent Potentials: Relation to Spin Systems and Soliton Equations. [in preparation]

[25] Myrzakulov R., Martina L., Kozhamkulov T.A., Myrzakul Kur. Integrable Heisenberg ferromagnets and soliton geometry of curves and surfaces. In book: "Nonlinear Physics: Theory and Experiment. II". World Scientific, London, P. 248-253 (2003)

[26] Myrzakulov R. Integrability of the Gauss-Codazzi-Mainardi equation in 2+1 dimensions. In "Mathematical Problems of Nonlinear Dynamics", Proc. of the Int. Conf. "Progress in Nonlinear sciences", Nizhny Novgorod, Russia, July 2-6, 2001, V.1, P.314-319 (2001)

[27] Chen Chi, Zhou Zi-Xiang. Darboux Transformation and Exact Solutions of the Myrzakulov-I Equations. Chin. Phys. Lett., 26, N8, 080504 (2009)

[28] Zhao-Wen Yan, Min-Ru Chen, Ke Wu, Wei-Zhong Zhao. J. Phys. Soc. Jpn., 81, 094006 (2012)

[29] Yan Zhao-Wen, Chen Min-Ru, Wu Ke, Zhao Wei-Zhong. Commun. Theor. Phys., 58, 463-468 (2012)

[30] K.R. Esmakhanova, G.N. Nugmanova, Wei-Zhong Zhao, Ke Wu. Integrable inhomogeneous Lakshmanan-Myrzakulov equation, [nlin/0604034]

[31] Zhen-Huan Zhang, Ming Deng, Wei-Zhong Zhao, Ke Wu. On the integrable inhomogeneous Myrzakulov-I equation, [nlin/0603069]

[32] Martina L, Myrzakul Kur., Myrzakulov R, Soliani G. Journal of Mathematical Physics, V.42, 13, P.1397-1417 (2001).