A Seriation Approach for Visualization-Driven Discovery of Co-Expression Patterns in Serial Analysis of Gene Expression (SAGE) Data

Olena Morozova1*, Vyacheslav Morozov2, Brad G. Hoffman3, Cheryl D. Helgason3, Marco A. Marra1

1 Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada, 2 Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada, 3 Department of Cancer Endocrinology, BC Cancer Research Centre, Vancouver, British Columbia, Canada

Abstract

Background: Serial Analysis of Gene Expression (SAGE) is a DNA sequencing-based method for large-scale gene expression profiling that provides an alternative to microarray analysis. Most analyses of SAGE data aimed at identifying co-expressed genes have been accomplished using various versions of clustering approaches that often result in a number of false positives.

Principal Findings: Here we explore the use of seriation, a statistical approach for ordering sets of objects based on their similarity, for large-scale expression pattern discovery in SAGE data. For this specific task we implement a seriation heuristic we term 'progressive construction of contigs' that constructs local chains of related elements by sequentially rearranging margins of the correlation matrix. We apply the heuristic to the analysis of simulated and experimental SAGE data and compare our results to those obtained with a clustering algorithm developed specifically for SAGE data. We show using simulations that the performance of seriation compares favorably to that of the clustering algorithm on noisy SAGE data.

Conclusions: We explore the use of a seriation approach for visualization-based pattern discovery in SAGE data. Using both simulations and experimental data, we demonstrate that seriation is able to identify groups of co-expressed genes more accurately than a clustering algorithm developed specifically for SAGE data. Our results suggest that seriation is a useful method for the analysis of gene expression data whose applicability should be further pursued.

Introduction

With the advent of high throughput technologies, large-scale gene expression studies have become routine in many biological laboratories. Two conceptually different approaches to high throughput gene expression profiling are microarrays [1] and tag sequencing-based methods, such as Serial Analysis of Gene Expression (SAGE) [2]. While both of these gene expression platforms can generate large genome-wide expression data sets, making full use of the data is still an important bioinformatic challenge [3]. A common aim of high throughput gene expression studies is to identify genes with similar expression profiles since such genes may be functionally related and thus may be used to predict functions of unknown genes. This aim has been most often addressed by various versions of clustering analysis that group genes into clusters with correlations among their expression values [4,5]. Currently available clustering methods show variable success at identifying functionally-relevant gene groupings [6–8].

While microarray studies assess gene expression levels by measuring hybridization intensities to the relevant probes [1], SAGE studies use portions of cDNA transcripts known as SAGE tags that are concatenated, cloned, and sequenced to provide a quantitative measure of the transcripts levels in the cell [2]. The use of SAGE had been until recently limited by the sequencing cost and laborious steps inherent in the cloning procedure. However, with modern advances in sequencing technologies, SAGE-related methods have become more cost-effective and are gaining popularity owing to some technological advantages they offer over microarrays [9]. In particular, SAGE does not rely on previous knowledge of gene structure. In addition, it has been suggested that SAGE studies are more robust, and require fewer replicates than microarray studies [9,10]. Generally, SAGE data have been subjected to the same clustering methods as microarray data [11]. However, more appropriate distance measures accounting for the discreet, Poisson-distributed structure of SAGE data have been shown to produce better clustering results than those achieved with conventional Euclidian or Pearson similarity measures routinely used in microarray data clustering [12]. A successful clustering method for SAGE termed PoissonC accounts for the categorical structure of SAGE data by using the Chi-square
Seriation using the progressive construction of contigs

Motivated by the opportunity to improve upon current methods for analyzing large scale expression datasets, we set out to explore the use of seriation as a substitute for clustering for identifying co-expression patterns in SAGE data. Seriation seeks the best enumeration order among objects based on their similarity according to a chosen criterion. Since the problem is NP-hard, we developed a novel heuristic specifically for the SAGE data analysis task. The ‘progressive construction of contigs’ heuristic attempts to put the most similar objects side by side without breaking already established chains of closely related elements we term ‘contigs’. Here we use pairwise correlations between expression vectors (normalized tag counts for a particular tag across all libraries) as the criterion for defining similarities between tags; however, in principle, other similarity criteria can be used for this task. The pairwise correlations between tag expression vectors \(x \) and \(y \) are calculated using the standard correlation coefficient function,

\[
R(x,y) = \frac{\sqrt{C(x,y) \cdot C(y,x)}}{\sqrt{C(x,x) \cdot C(y,y)}}
\]

where \(C(x,y) = E[(x−\bar{x})(y−\bar{y})] \); \(\bar{x} \) and \(\bar{y} \) are the means of expression vectors \(x \) and \(y \), and \(E \) is the mathematical expectation. The correlation values are subsequently arrayed into a symmetric matrix, which is subjected to the following progressive seriation procedure.

In the first step, the tag pair with the highest correlation value is found and marked as the beginning of the first contig. At each subsequent step the tag pair with the next highest correlation value is identified. If one of the members of the tag pair is involved in a previously formed contig, the columns of the matrix are reordered accordingly. Importantly, previously reordered elements are kept intact in this process. If it is impossible to add the similarity maximum of the current step to a contig given the restriction on the previously moved objects or if the tag pair with the correlation maximum does not involve any of the members of the formed contigs, the current similarity maximum is used to start a new contig. The seriation process continues until all elements have been processed. The result is the production of contigs of similar correlation values that can be displayed along the diagonal of the correlation matrix representing internal topologies in the data. Theoretically, in the case of a Robinson data structure, whereby the data are from a unimodal distribution, the contigs are merged into one and the obtained result is the most optimal single seriation solution [14,17].

A key algorithmic difference between the seriation algorithm described above and a procedurally similar hierarchical clustering algorithm (such as the hierarchical clustering method developed in [19] and implemented in [4]) is the treatment of vectors after the highest pairwise correlation value has been identified at each step. In clustering, the vectors are averaged together into a new vector using a linkage rule (for instance, average linkage clustering) and this new vector is represented by a node in the hierarchical clusterogram. In contrast, in the case of seriation, no new vector or node is formed, and the rows and columns of the correlation matrix are merely reordered to reflect underlying patterns in the data as described above. Therefore, no linkage rule is required in seriation in addition to the distance metric used to define similarities.

In the current implementation of the seriation algorithm, ordered structures (contigs) are revealed by color-coding the reordered correlation matrix according to the magnitude of the correlation value. In this manner, visual inspection of the matrix allows for the selection of ordered contigs for further inspection. Due to the visualization component, the algorithm is able to analyze up to 4000 genes at a time (tested on 1.7 IBM PC Pentium 4, Z60t laptop) and is suitable for the analysis of pre-selected sets of genes. Importantly, the algorithm produces a robust solution for each seriation run (in other words, equivalent solution is produced upon repeated seriation of the same data set).

Performance of seriation on simulated SAGE data

To test the performance of the seriation heuristic we generated a simulation dataset containing 500 expression vectors of dimension 5 (corresponding to 500 SAGE tags expressed over 5 different time points or conditions). Since expression data for a gene collected under different experimental conditions or at
different time points are not completely independent, distinguishing genes with similar expression profiles in which the dynamics of gene expression changes is considered is of biological interest [5]. We designed the expression vectors to represent 10 different expression profiles that might be of potential biological interest (Figure S1).

To test the dependence of algorithm performance on the amount of noise in the data, we initially seriated three of these expression profiles with increasing numbers of noise tags. Pattern 2 corresponds to tags whose expression slightly peaks at time point 2 and then at time point 5; pattern 3 includes tags with a single expression peak at time point 2; and pattern 1 corresponds to tags with an expression peak over time points 3 and 4 (Figure S1). To closely simulate actual SAGE data, we added ‘noise’ or singleton tags whose expression profiles do not conform to any of the three patterns. Such expression profiles are common in gene expression datasets, particularly ones with few experimental conditions sampled relative to the number of genes [5]. Since it has been previously shown that SAGE data can be approximated by a Poisson distribution [12], we used Poisson-based rules for our simulations (see methods). Genes with similar expression profiles were modeled by a Poisson distribution with the same λ [12]. In contrast, genes that do not belong to any of the three patterns of interest (i.e. noise) were simulated by constructing expression profiles based on a Poisson distribution with random λ, obtained from a uniform distribution [1, 300]. We tested the performance of seriation as well as the PoissonC clustering algorithm, a successful K-means clustering algorithm previously developed specifically for SAGE data [12] on the simulation data set in three rounds, each time increasing the amount of noise present among the profiles of interest (Table S1). In each round, seriation yielded three clear contigs along the diagonal corresponding to the three patterns of interest (Figure 1A). Importantly, increasing the amount of tags corresponding to noise from 34 (round 1) to 384 (round 3) did not significantly affect the performance of the seriation algorithm (Table 1). We also applied the PoissonC algorithm to the

![Figure 1. Performance of seriation on simulated SAGE data.](https://example.com/figure1.png)

(A) Seriation results of the three rounds of simulations with increasing amounts of noise from round 1 (34 tags) to round 3 (384 tags). The dark red squares along the diagonal indicate tags with the expression patterns 1–3 that were grouped together by seriation. (B) Seriation of 10 expression profiles with limited amount of noise. The dark red squares along the diagonal indicate tags in each expression profile that were grouped together. The numbers indicate expression patterns from Figure S1 that were grouped into each contig. Note that two contigs in the middle (5 and 1) appear more similar to each other than any other contig pair indicating similarity of the corresponding expression patterns.
doi:10.1371/journal.pone.0003205.g001
Table 1. Effect of the amount of noise in SAGE data on the performance of seriation and PoissonC.

Pattern1	Pattern2	Pattern3					
	TP	FP	TP	FP			
Round 1: 34 noise tags	Seriation	41	1	38	4	37	4
	PoissonC	41	2	38	2	37	5
Round 2: 120 noise tags	Seriation	41	6	38	6	37	3
	PoissonC	41	13*	38	14*	37	15*
Round 3: 384 noise tags	Seriation	41	5	38	3	37	3
	PoissonC	41	43*	38	99*	37	61*

Seriation and PoissonC were applied to a simulated SAGE data set containing three expression patterns and increasing amount of noise tags. The dataset is described in more detail in the text and in Table S1. TP (True Positives) include tags that were correctly classified as belonging to the correct expression group (expression pattern 1, 2, or 3 or noise) by assigning them to the cluster (PoissonC) or contig (seriation) containing other members of the expression group. FP (False Positives) include noise tags that have been erroneously assigned to a cluster or contig with tags that conform to the expression pattern 1, 2, or 3.

The false positive rate is significantly higher for the PoissonC algorithm than it is for seriation mostly due to the erroneous assignment of noise tags to an expression pattern (p<0.05).

doi:10.1371/journal.pone.0003205.t001

Table 2. Comparative performance of seriation and PoissonC on a simulated SAGE data set with 10 expression patterns.

Algorithm	TP	FP
Seriation	549	1
PoissonC	528	2*

Seriation and PoissonC were applied to the analysis of a simulated SAGE data set containing 10 expression patterns each including 50 tags, and 50 noise tags. TP (True Positives) are tags that were correctly classified as belonging to the right expression pattern or noise. FP (False Positives) are tags that were assigned to the wrong pattern or noise tags that were assigned to an expression pattern.

*The false positive rate is significantly higher for the PoissonC algorithm than it is for seriation (p<0.05).

doi:10.1371/journal.pone.0003205.t002
These groupings are easily recognized from the color-coded seriated correlation matrix (Figure 2) as the two supercontigs. While it is possible to extract similar information from the clustering results, seriation provides a means to organize it in a relevant easily-interpretable and visualizable manner.

As evident from the simulation study, seriation is more discriminative than clustering analysis at grouping co-expressed genes together resulting in more accurate results. On the other hand, clustering analysis forces all the tags to belong to a cluster thereby resulting in more false positives. Here, many genes in the seriation experiment were not captured in the contigs (Figure 2) as they are presumably not sufficiently similar to any of the patterns present in the contigs. It can be noted that all the GO categories that were found to be enriched in Blackshaw et al. [20] clusters were also present in the contigs (Table 3) suggesting that Blackshaw et al. [20] clusters were somewhat redundant and may contain false positives.

Performance of seriation on novel experimental SAGE data

We next applied the seriation algorithm to the analysis of SAGE libraries we generated as part of the Mouse Atlas Project (www.mouseatlas.org). The Mouse Atlas Project aims to produce a collection of SAGE libraries derived from various mouse tissues representing different developmental stages, ranging from embryonic stem cells to post-natal day 84 [21]; currently the resource contains over 200 different libraries. Due to our interest in the transcriptional regulation of pancreatic development we focused on analyzing the expression of transcription factors expressed in six SAGE libraries representing various stages of pancreatic endocrine cell development ranging from Theiler stage 17 (TS17) to post-natal day 70 (P70). Transcription factors are regulatory proteins that are presumed to be responsible for the coordinated expression of functionally-related genes. Transcription factors are at the top of the regulatory hierarchies that drive pancreatic development and enable beta cell maturation [22]. Thus, global analysis of transcription factor expression may provide insight into the mechanisms of pancreatic development and the misregulation of the mechanisms in disease.

SAGE expression profiles of 319 transcription factors expressed in six pancreatic libraries were subjected to seriation analysis. The algorithm yielded five contigs of transcription factor SAGE tags with similar expression profiles (Figure 4). For this analysis, we chose contigs as groupings of co-expressed genes [red squares along the diagonal, Figure 4A] with at least 10 members. Contigs of transcription factors expressed in the pancreatic libraries are provided in Figure S4. Annotation analyses of the resulting contigs suggested that they were functionally relevant based on the
enrichment for GO category, SwissProt keyword and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations (Table 4, Figure S5). It was also evident that the contigs contained transcription factors that were expected to be grouped together based on their known membership in the same pathway. For instance, transcription factors implicated in islet cell type specification as part of FoxO signaling, Neurod1 and Foxa2 [23] were grouped together into contig1. In addition, Pax6 which was

Figure 3. Analysis of seriation contigs of genes expressed in mouse retinal SAGE libraries. (A). Comparison of seriation contigs to the original clusters from Blackshaw et al. [20]. Seriation contigs are color-coded and plotted on the x-axis of the 3D graph. The peaks on the z-axis represent the percent cluster members (y-axis) present in the particular contig. Most seriation contigs are composed of one or several predominant clusters (also see Table 3). (B). Expression profiles of genes in seriation contigs. The relative expression levels from 0% to 100% are plotted on the y-axis for each contig while the retinal libraries derived from developmental stages E12.5, E14.5, E16.5, E18.5, P0.5, P2.5, P4.5, P6.5, P10, and adult are on the x-axis. The ordering of contigs is temporal such that genes expressed in earlier developmental stages tend to be in the first contigs, while genes expressed in later stages are in later contigs. This partitioning is particularly evident from the expression patterns of genes in the supercontigs. doi:10.1371/journal.pone.0003205.g003
Table 3. Comparison of seriation and PoissonC analyses of genes expressed in retinal SAGE libraries.

Contig	Percent of predominant cluster members in predominant cluster	Predominant Percent of contig members in predominant cluster	Top Gene Ontology annotations enriched in predominant cluster	Top Gene Ontology annotations enriched in predominant clusters
Contig1	4	32.59%	Mitochondrial Ribonucleoprotein complex, p = 8.68E-03	
Contig2	5	79.77%	Ribosomal Cytosolic ribosome (sensu Eukarya), p = 2.52E-09	
Contig3	12	96.36%	None Biosynthesis, p = 1.11E-02	
Supercontig 1 (contigs 1, 2, 3)	4, 5, 12	33.48%, 93.64%, 100%	Mitochondrial, Ribosomal, RNA processing	Mitochondrial, Ribosomal, RNA processing, p = 7.17E-14
Contig4	6	31.94%	RNA processing Ligase activity, p = 3.28E-02	
Contig5	6	33.33%	RNA processing N/A	
Contig6	N/A	N/A	Structural molecule activity, p = 3.29E-05	
Contig7	15	41.07%	Ribosomal Cytosolic ribosome (sensu Eukarya), p = 4.89E-07	
Contig8	8, 22, 24	100%, 37.5%, N/A	Vision, Transporter activity, Vision, Vision Transcription, p = 5.77E-14	
Contig9	1, 8, 10, 21-22, 24	100%, 100%, 56.25%, 100%, 26.76%	Vision, Ribosomal, Transcription, Vision, Vision Transcription, p = 7.17E-14	
Supercontig 2 (contigs 8, 9)	1, 8, 10, 21-22, 24	100%, 100%, 56.25%, 100%, 26.76%	Vision, Ribosomal, Transcription, Vision, Vision Transcription, p = 7.17E-14	
Contig10	2	100%	Lens proteins, p = 5.75E-05	

*Data from Blackshaw et al. [20].

doi:10.1371/journal.pone.0003205.t003

Discussion

Clustering analysis has been the approach of choice for most gene expression studies. However, due to high dimensionality of gene expression datasets, many clustering algorithms are prone to producing false positive expression-based interactions [3]. SAGE data have been particularly poorly exploited by statistical analyses owing to the domination of the gene expression field by microarrays that produce continuous data as opposed to discrete count-derived data produced by SAGE. With the advent of next-generation sequencing technologies, sequence tag-based methods have been gaining popularity for gene expression analysis thereby necessitating the development of statistical methods for analyzing discreet expression data. To date, a few clustering algorithms designed to exploit the digital data structure have been developed for SAGE data analysis, and shown to perform favorably compared to conventional microarray clustering algorithms [12]. However, these methods are still subject to the inherent limitations of the clustering approach itself.

We explored the use of local seriation for the identification of co-expression patterns in SAGE data. The primary goal of seriation methods is finding an optimal ordering of a set of objects based on a similarity criterion. Since there are n! ways to order a set of n objects, finding the most optimal seriation order becomes computationally expensive with the increasing size of the data set; therefore, heuristics have been developed to achieve an optimal ordering solution [17]. We developed a novel bottom-up heuristic we termed ‘progressive construction of contigs’ specifically designed for seriation of gene expression vectors according to their similarity. The ‘progressive construction of contigs’ heuristic is based on a greedy process that does not question the previous steps, and thus is fast and can, in principle, be implemented with large datasets. We tested the performance of seriation on both...
simulated and experimental SAGE data, and compared its performance with that of the PoissonC K-means clustering algorithm, a current state-of-the-art method in the field of SAGE data analysis [12]. We demonstrated that seriation was able to identify contigs of co-expressed genes that were related to clusters of co-expressed genes obtained by PoissonC (Table 3). We showed that the co-expression contigs were enriched for genes with similar functions as defined by both Gene Ontology and SwissProt keyword annotations as well as the known memberships in the same pathway. Therefore, we provided an empirical demonstration that the results from the two approaches are related and are complementary to each other. We further showed that in contrast to clustering, seriation could detect relationships among contigs of co-expressed genes, such as their temporal order, whenever such relationships were present in the data. Moreover, based on the simulation results, seriation appeared less sensitive to noisy data than PoissonC, and produced fewer false positives.

The major conceptual difference between seriation and clustering underlying the differential performance of the methods on noisy SAGE data stems from the different primary goals of the two methods. The primary goal of seriation is reordering during which inherent patterns in the dataset (e.g., presence of groups of elements that are related to one another) are revealed. On the other hand, the primary goal of clustering is partitioning the dataset into groups of similar elements. A key advantage of ordering over grouping is that ordering allows for the discovery of gradual progressions in the data while such gradual information is lost in grouping analyses. For instance, Robinson properties in the data can be revealed by seriation but not by clustering [14]. Gene expression changes over various experimental conditions are often of a gradual nature rendering seriation a useful tool for the discovery of similar expression profiles. In other words, the identification of groups of related elements is a consequence of seriation while it is the primary goal of clustering. Due to this fact, following clustering analysis of gene expression datasets, all genes are assigned to the most appropriate cluster based on a generic linkage rule. In contrast, following seriation analysis that does not require a linkage rule, contigs of genes with high pairwise correlation coefficients are revealed by reordering. Real versus spurious co-expression interactions can be thus gauged from the color-coded reordered correlation matrix (e.g., Figure 1, Figure 2, Figure 4A) wherein clear tightly-formed red squares along the

Figure 4. Seriation of transcription factors expressed in Mouse Atlas pancreatic libraries. SAGE data for transcription factors expressed in the pancreatic libraries from the Mouse Atlas project were subjected to seriation analysis as described in the text. The reordered correlation matrix containing correlation coefficients for each tag pair computed to measure the similarity of their pancreatic expression profiles is color-coded red to blue to represent decreasing correlation values. (A). 5 contigs recognizable as red squares along the diagonal are evident. (B). Expression profiles of transcription factors in contigs in (A). The relative expression levels from 0% to 100% are plotted on the y-axis for each contig while the pancreatic libraries derived from stages TS17, TS19, TS20, TS21, TS22, and P70 are on the x-axis.

doi:10.1371/journal.pone.0003205.g004
Table 4. Summary of seriation analysis of transcription factors expressed in pancreas.

Contig	Tags in contig	Characterized transcription factors in contig	Gene Ontology annotations enriched in contig*	SwissProt keywords enriched in contig*	KEGG annotations enriched in contig*
Contig1	28	Foxa2, Neurod1, Pax6, Mysl1, Ets2, Mxd4, Mnt	Anatomical structure development, p = 1.52E-03; System development, p = 2.99E-03; Organ development, p = 9.31E-03	N/A	N/A
Contig2	55	Kin, Pole4, Foxa3, Tox3, Neurod2, Neurog3, Fox, Fos, Yyl1, Jun, Nlx2-2	Defense response, p = 2.21E-02; Receptor activity, p = 2.13E-02	N/A	N/A
Contig3	61	Hoxb2, Dr1, Foxm1, Hmg1, Kif6, Snai1, Hoxb5, Sax18, Hoxb1, Hoxb6, Hoxa10, Hand1, Pax1, Hoxa5, Hoxa7	Multicellular organismal development, p = 1.45E-06; pattern specification process, p = 4.46E-05; regulation of cell differentiation, p = 9.97E-03	N/A	N/A
Contig4	52	Hmg1, Foxxp, Mum1, Lin28, Msh6, Dnase2a, Mxd3, Rest, Gata4, Kif4, Cdx2, Smad4, Smad3	Transmembrane receptor protein serine/threonine kinase signaling pathway, p = 2.96E-02; regulation of signal transduction, p = 2.12E-02; negative regulation of cellular process, p = 2.14E-02	N/A	TGF-beta signaling pathway, p = 7.66E-04; Wnt signaling pathway, p = 3.05E-02
Contig5	97	Pax4, Dpm1, Sox9, Stat2, Arid2, Terf1, Dpm1, Elf5, Mif1, Lars2, Arid3a, Stat4	Apoptosis, p = 1.23E-03; Programmed cell death, p = 1.43E-03; Regulation of apoptosis, p = 2.19E-03	Apoptosis, p = 6.08E-03; Coiled coil, p = 6.62E-03	N/A

Number of tags falling into each seriation contig is shown along with the representative contig members and their representative functional annotation using GO categories, SwissProt keywords, and KEGG pathways. For a full list of annotations enriched in the contigs see Figure S5. Known regulators of pancreatic development as well as the transcription factors discussed in the text are bolded.

Materials and Methods

The simulation design was influenced by a previously described algorithm [3] for short-term time series microarray expression data. The simulation design was then applied to SAGE data [7]. However, we used the Poison distribution that has been shown to be suitable for modeling SAGE data [7] instead of the uniform distribution used in [7] to model microarray data. In brief, we generated a distribution used in [7] to model microarray data. But instead of using the uniform distribution, we used the Poison distribution for the simulation. The Poison distribution is defined as follows:

\[v_i = \text{Poisson}(i), \quad i = 0, 1, 2, \ldots \]

where \(Z \) takes on the values 0, 1, or 2 with equal probability of 1/3 and \(v_i \) represents the number of tags with a tag count of \(i \) for \(i = 0, 1, 2 \). The Poison distribution is given by:

\[v_i = \text{Poisson}(i) \sim \text{Poisson}(1/3) \]

Simulation study:

The simulation study was conducted with the aim of assessing the ability of seriation to identify groups of co-expressed genes. We generated a simulation dataset containing 500 expression vectors, each consisting of 5 genes. The expression profiles for each tag were generated using a random process, where each tag was assigned to one of 10 expression patterns, as suggested by the authors. The expression profiles for each gene were generated using a random process, where each gene was assigned to one of 10 expression patterns, as suggested by the authors. The expression profiles for each gene were generated using a random process, where each gene was assigned to one of 10 expression patterns, as suggested by the authors.

Seriation of SAGE Data

Seriation of SAGE data revealed groupings of co-expressed genes while the rest of the matrix expressed genes that do not belong to any of the clusters. The seriation method was found to be suitable for modeling SAGE data, as it accurately identified groups of co-expressed genes. However, the method was found to be less accurate when applied to microarray data, as it failed to identify groups of co-expressed genes. Overall, the method was found to be a useful tool for identifying co-expressed genes in SAGE data.
GO category, SwissProt keyword and KEGG pathway enrichment analysis

GO category analysis of retinal SAGE clusters and contigs was performed using EASE software as described [34]. GO category, SwissProt keyword and KEGG pathway enrichment analysis of transcription factor contigs was performed using the web-based FatiGO+ tool [33]. P-values of less than 0.05 were considered statistically significant for both analyses.

Clustering analysis

K-means clustering analysis was performed according to the PoissonC algorithm [12]. The within-cluster dispersion was calculated as described [20]. The java implementation of the clustering algorithm and the within-cluster dispersion calculation was kindly provided by Li Cai (Rutgers University, NJ).

Seriation algorithm and its implementation

Seriation was conducted on simulated, retinal or Mouse Atlas SAGE data using the custom MATLAB implementation. The algorithm was run three times on each experimental dataset to ensure the seriation result was robust. The analysis of simulated SAGE data was done as described above. The implementation of the algorithm can be made available to interested academic users upon request.

Supporting Information

Figure S1 Composition of the simulation dataset during three rounds of simulations. Simulated SAGE datasets were constructed to include three different expression patterns of potential biological interest (depicted in Figure S1, patterns 1, 2, and 3) and modeled as described in Materials and Methods. To simulate actual SAGE data, we included singleton tags that do not strictly conform to any of the three expression patterns (referred to as ‘noise’). The simulation was conducted over three rounds with constant numbers of tags in each expression category (rows 1–3) and increasing numbers of noise tags (row 4). The expression profiles in each category are shown in column 5 and explained in Materials and Methods.

Found at: doi:10.1371/journal.pone.0003205.s001 (0.86 MB TIF)

Table S1 Composition of the simulation dataset during three rounds of simulations. Simulated SAGE datasets were constructed to include three different expression patterns of potential biological interest (depicted in Figure S1, patterns 1, 2, and 3) and modeled as described in Materials and Methods. To simulate actual SAGE data, we included singleton tags that do not strictly conform to any of the three expression patterns (referred to as ‘noise’). The simulation was conducted over three rounds with constant numbers of tags in each expression category (rows 1–3) and increasing numbers of noise tags (row 4). The expression profiles in each category are shown in column 5 and explained in Materials and Methods.

Found at: doi:10.1371/journal.pone.0003205.s005 (0.03 MB XLS)

Seriation of SAGE Data

[32,33]. The sequences were selected based on the mouse genome NCBI build 32 and are analyzed in O. Morozova and T.R. Hughes. Patterns of transcription factor evolution in vertebrates. Proceedings of the Third Canadian Student Conference on Biomedical Computing (CS CBC), 2008. We found that out of 994 transcription factors expressed in the Mouse Atlas libraries, 319 were present in the pancreatic libraries with a tag count of 4 or higher.

GO category, SwissProt keyword and KEGG pathway enrichment analysis

GO category analysis of retinal SAGE clusters and contigs was performed using EASE software as described [34]. GO category, SwissProt keyword and KEGG pathway enrichment analysis of transcription factor contigs was performed using the web-based FatiGO+ tool [33]. P-values of less than 0.05 were considered statistically significant for both analyses.

Clustering analysis

K-means clustering analysis was performed according to the PoissonC algorithm [12]. The within-cluster dispersion was calculated as described [20]. The java implementation of the clustering algorithm and the within-cluster dispersion calculation was kindly provided by Li Cai (Rutgers University, NJ).

Seriation algorithm and its implementation

Seriation was conducted on simulated, retinal or Mouse Atlas SAGE data using the custom MATLAB implementation. The algorithm was run three times on each experimental dataset to ensure the seriation result was robust. The analysis of simulated SAGE data was done as described above. The implementation of the algorithm can be made available to interested academic users upon request.

Supporting Information

Figure S1 Composition of the simulation dataset during three rounds of simulations. Simulated SAGE datasets were constructed to include three different expression patterns of potential biological interest (depicted in Figure S1, patterns 1, 2, and 3) and modeled as described in Materials and Methods. To simulate actual SAGE data, we included singleton tags that do not strictly conform to any of the three expression patterns (referred to as ‘noise’). The simulation was conducted over three rounds with constant numbers of tags in each expression category (rows 1–3) and increasing numbers of noise tags (row 4). The expression profiles in each category are shown in column 5 and explained in Materials and Methods.

Found at: doi:10.1371/journal.pone.0003205.s001 (0.86 MB TIF)

Figure S2 Expression profiles of genes in 24 clusters from Blackshaw et al. [20]. The relative expression levels from 0% to 100% are plotted on the y-axis for each cluster while the retinal libraries derived from developmental stages E12.5, E14.5, E16.5, E18.5, P0.5, P2.5, P4.5, P6.5, P10, and adult are on the x-axis.

Found at: doi:10.1371/journal.pone.0003205.s002 (2.79 MB TIF)

Figure S3 Contig membership of genes expressed in retinal SAGE libraries.

Found at: doi:10.1371/journal.pone.0003205.s003 (0.12 MB XLS)

Figure S4 Contig membership of transcription factors expressed in pancreas.

Found at: doi:10.1371/journal.pone.0003205.s004 (0.04 MB XLS)

Figure S5 Annotations enriched in contigs of transcription factors expressed in pancreas.

Found at: doi:10.1371/journal.pone.0003205.s005 (0.03 MB XLS)

Author Contributions

Conceived and designed the experiments: OM MAM. Performed the experiments: OM MAM. Analyzed the data: OM MAM. Wrote the paper: OM MAM. Developed and implemented the seriation algorithm: VM. Constructed pancreatic SAGE libraries and provided guidance for biological interpretation of the results: BGH CDH. Supervised the study: MAM.

References

1. Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270(5235): 467–470.
2. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270(5235): 484–487.
3. Clarke R, Ressom HW, Wang A, Xuan J, Liu MC, et al. (2008) The properties of high-dimensional data spaces: Implications for exploring gene and protein expression data. Nat Rev Cancer 8(1): 37–49.
4. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95(25): 14863–14868.
5. Ernst J, Nau GJ, Bar-Joseph Z (2005) Clustering short time series gene expression data. Bioinformatics 21 Suppl 1: i159–68.
6. Thalamuthu A, Mukhopadhyay I, Zheng X, Tseng GC (2006) Evaluation and comparison of clustering methods in microarray analysis. Bioinformatics 22(19): 2405–2412.
7. Perúš A, Bleuler S, Zimmermann P, Wille A, Buhlmann P, et al. (2006) A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics 22(9): 1122–1129.
8. Zhang W, Morris QD, Chang R, Shi O, Balowski MA, et al. (2004) The functional landscape of mouse gene expression. J Biol 3(5): 21.
9. Brener S, Johnson M, Bridgham J, Golda G, Lloyd DH, et al. (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol 18(6): 630–634.
10. Audic S, Claverie JM (1997) The significance of digital gene expression profiles. Genome Res 7(10): 986–995.
11. Kendall DG, Tautu P, eds. Mathematics in the Archaeological and Historical Sciences. Edinburgh: Edinburgh University Press. pp 215–232.
12. Cai L, Huang H, Blackshaw S, Liu JS, Cepko C, et al. (2004) Clustering analysis of SAGE data using a poisson approach. Genome Biol 5(7): R51.
13. Kendall DG (1971) Seriation from abundance matrices. In: Hodson FR, Kendall DG, Tauts P, eds. Mathematics in the Archaeological and Historical Sciences. Edinburgh: Edinburgh University Press. pp 215–232.
14. Robinson WS (1951) A Method for Chronologically Ordering Archaeological Deposits. American Antiquity 16(4): 293–301.
15. Peric WMF (1899) Sequences in Prehistoric Remains. The Journal of the Royal Anthropological Institute of Great Britain and Ireland 29: 295–301.
16. Bar-Joseph Z, Gifford D, Jaakkola TS (2001) Fast optimal leaf ordering for hierarchical clustering. Bioinformatics 17: S22–S29.
17. Caraux G, Painloche S (2005) PermuatMatrix: A graphical environment to arrange gene expression profiles in optimal linear order. Bioinformatics 21(7): 1289–1291.
18. Puolamki K, Fortelius M, Mannila H (2006) Seriation in paleontological data using markov chain monte carlo methods. PLoS Comput Biol 2(2): e6.
19. Sokal RR, Michener CD (1958) A statistical method for evaluating systematic relationships. Univ. Kans. Sci. Bull 29: 1409–1438.
20. Blackshaw S, Harpavat S, Trimarchi J, Cai L, Huang H, et al. (2004) Genomic analysis of mouse retinal development. PLoS Biol 2(9): e247.
21. Siddiqui AS, Khattra J, Delaney AD, Zhao Y, Astell C, et al. (2005) A mouse atlas of gene expression: Large-scale digital gene-expression profiles from precisely defined developing C57BL/6J mouse tissues and cells. Proc Natl Acad Sci U S A 102(51): 18483–18490.
22. Kim SK, MacDonald RJ (2002) Signaling and transcriptional control of pancreatic organogenesis. Curr Opin Genet Dev 12(5): 540–547.
23. Kitamura T, Ido Kitamura Y (2007) Role of FoxO proteins in pancreatic beta cells. Endocr J 54(4): 507–515.
24. Marsich E, Vetere A, Di Piazza M, Tell G, Paolotti S (2003) The Pax6 gene is activated by the basic helix-loop-helix transcription factor NeuroD/BETA2. Biochem J 376: 707–715.
25. Gasa R, Mrejen C, Lynn FC, Skewes-Cox P, Sanchez L, et al. (2007) Induction of pancreatic islet cell differentiation by the neurogenin-neuroD cascade. [Epub ahead of print].
26. Habener JF, Kemp DM, Thomas MK (2005) Minireview: transcriptional regulation in pancreatic development. Endocrinology 146(4): 1025–1034.
27. Griffith OL, Pleasance ED, Fulton DL, Oviesi M, Ester M, et al. (2005) Assessment and integration of publicly available SAGE, cDNA microarray, and oligonucleotide microarray expression data for global coexpression analyses. Genomics 86(4): 476–488.
28. Firdl AB (2003) A HANDful of questions: The molecular biology of the heart and neural crest derivatives (HAND)-subclass of basic helix-loop-helix transcription factors. Gene 312: 27–40.
29. Westernman BA, Murre C, Oudejans CB (2003) The cellular Pax-Hox-helix connection. Biochim Biophys Acta 1629(1–3): 1–7.
30. Hoffman BG, Zavaglia B, Witsche J, Ruiz de Algara T, Thiessen N, et al. (2008) Identification of Transcripts with Enriched Expression in the Developing and Adult Pancreas. Genome Biology 9(6): R99.
31. Robertson N, Oveis-Fordorei M, Zuyderduyn SD, Yarhol RJ, Fjell C, et al. (2007) DiscoverySpace: An interactive data analysis application. Genome Biol 8(1): R6.
32. Hubbard TJ, Aken BL, Beal K, Ballester B, Caccamo M, et al. (2007) Ensembl 2007. Nucleic Acids Res 35(Database issue): D610–7.
33. Bateman A, Coin L, Durbin R, Finn RD, Hollich V, et al. (2004) The pfam protein families database. Nucleic Acids Res 32(Database issue): D136–41.
34. Hosack DA, Dennis G Jr, Sherman BT, Lane HC, Lempicki RA (2003) Identifying biological themes within lists of genes with EASE. Genome Biol 4(10): R70.
35. Al-Shahrour F, Minguez P, Tarraga J, Medina I, Alloza E, et al. (2007) Fatigo+: A functional profiling tool for genomic data. integration of functional annotation, regulatory motifs and interaction data with microarray experiments. Nucleic Acids Res 35(Web Server issue): W91–6.