HPV molecular detection from urine versus cervical samples: an alternative for HPV screening in indigenous populations

Francisco I. Torres-Rojas 1 Equal first author, 1, Miguel A. Mendoza-Catalán 1 Equal first author, 1, Luz del C Alarcón-Romero 2, Isela Parra-Rojas 3, Sergio Paredes-Solis 4, Marco A. Leyva-Vázquez 1, Jair E. Cortes-Arciniega 1, Carlos J. Bracamontes-Benitez 1, Berenice Illades-Aguiar Corresp. 1 \\

1 Laboratory de Biomedicina Molecular. Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo, Guerrero, Mexico \\
2 Laboratorio de Citopatología e Histoquímica. Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo, Guerrero, Mexico \\
3 Laboratorio de Investigación en Obesidad y Diabetes, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México \\
4 Centro de Investigación de Enfermedades Tropicales, Universidad Autónoma de Guerrero, Acapulco, Guerrero, México \\

Corresponding Author: Berenice Illades-Aguiar \\
Email address: billades@uagro.mx

Background Cervical cancer (CC) is the fourth leading cause of death from neoplasms in women and is caused by the human papilloma virus (HPV). Several methods have been developed for the screening of cervical lesions and HPV; however, some socio-cultural factors prevent women from undergoing gynecological inspection, which results in a higher risk of mortality from cervical cancer in certain population groups as indigenous communities. This study aimed to compare the concordance in HPV detection from urine and cervical samples, to propose an alternative to cervical scraping, which is commonly used in the cervical cancer screening. Methodology The DNA from cervical scrapings and urine samples was extracted using the proteinase K method followed by precipitation with alcohol, phenol and chloroform; a modification of the proteinase K method was developed in the management of urine sediment. Viral genotyping was performed using INNOLipa.

Results The study population consisted of 108 patients from an indigenous population at southern Mexico, 32 without squamous intraepithelial lesions (NSIL) and 76 with low squamous intraepithelial lesions (LSIL). The majority of NSIL cervical scrapes were negative for HPV (90.63%), whereas more than half of LSIL cases were high-risk HPV positive (51.32%), followed by multiple infection by HR-HPV (17.11%), and multiple infection by LR- and HR-HPV (9.21%). No statistically significant relationship between the cytological diagnosis and the HPV genotypes detected in the urine samples was observed. A concordance of 68.27% for HPV positivity from urine and cervical samples was observed. Similarly, a concordance of 64.52% was observed in the grouping of HPVs by oncogenic risk. HR-HPV was detected in 71% of the urine samples from women with LSIL diagnosis, which suggests that HR-HPV detected in a urine sample could indicate the presence or risk.
of developing SIL. Conclusion HR-HPV detection in urine samples could be an initial approach for women at risk of developing LSIL and who, for cultural reasons, refuse to undergo a gynecological inspection.
HPV molecular detection from urine versus cervical samples: an alternative for HPV screening in indigenous populations.

Francisco Israel Torres-Rojas¹†, Miguel Ángel Mendoza-Catalán¹†, Luz del Carmen Alarcón-Romero², Isela Parra-Rojas³, Sergio Paredes-Solís⁴, Marco Antonio Leyva-Vázquez¹, Jair Esteban Cortes-Arciniega¹, Carlos Jonás Bracamonte-Benítez¹, Berenice Illades-Aguiar¹.

¹ Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico.
² Laboratorio de Citopatología e Histoquímica, Facultad de Ciencias Químico Biológicas Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico.
³ Laboratorio de Investigación en Obesidad y Diabetes, Facultad de Ciencias Químico Biológicas Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico.
⁴ Centro de Investigación de Enfermedades Tropicales, Universidad Autónoma de Guerrero, Acapulco, Guerrero, Mexico.

† These authors contributed equally to this work.

Corresponding Author:
Berenice Illades-Aguiar¹
Av. Lázaro Cárdenas, Chilpancingo, Guerrero, Mexico.
Email address: billades@uagro.mx
Abstract

Background

Cervical cancer (CC) is the fourth leading cause of death from neoplasms in women and is caused by the human papilloma virus (HPV). Several methods have been developed for the screening of cervical lesions and HPV; however, some socio-cultural factors prevent women from undergoing gynecological inspection, which results in a higher risk of mortality from cervical cancer in certain population groups as indigenous communities. This study aimed to compare the concordance in HPV detection from urine and cervical samples, to propose an alternative to cervical scraping, which is commonly used in the cervical cancer screening.

Methodology

The DNA from cervical scrapings and urine samples was extracted using the proteinase K method followed by precipitation with alcohol, phenol and chloroform; a modification of the proteinase K method was developed in the management of urine sediment. Viral genotyping was performed using INNOLipa.

Results

The study population consisted of 108 patients from an indigenous population at southern Mexico, 32 without squamous intraepithelial lesions (NSIL) and 76 with low squamous intraepithelial lesions (LSIL). The majority of NSIL cervical scrapes were negative for HPV (90.63%), whereas more than half of LSIL cases were high-risk HPV positive (51.32%), followed by multiple infection by HR-HPV (17.11%), and multiple infection by LR- and HR-HPV (9.21%). No statistically significant relationship between the cytological diagnosis and the HPV genotypes detected in the urine samples was observed. A concordance of 68.27% for HPV positivity from urine and cervical samples was observed. Similarly, a concordance of 64.52% was observed in the grouping of HPVs by oncogenic risk. HR-HPV was detected in 71% of the urine samples from women with LSIL diagnosis, which suggests that HR-HPV detected in a urine sample could indicate the presence or risk of developing SIL.

Conclusion

HR-HPV detection in urine samples could be an initial approach for women at risk of developing LSIL and who, for cultural reasons, refuse to undergo a gynecological inspection.

Introduction

Cervical cancer (CC) is the third most frequent neoplasm in women in the world and the second most frequent among those who are 15-44 years old (Arbyn et al., 2020). Almost all CC cases are related to high-risk human papillomavirus (HR-HPV) infection, with HPV16 and HPV18 being the most common HR-HPVs in CC (Téguété et al., 2017; Chan et al., 2019). The progression of cervical cancer involves premalignant transition stages, which are known as squamous intraepithelial lesions of low or high degree according to the Bethesda System (LSIL or HSIL, respectively) (Nayar and Wilbur 2015). Multiple HPV infection is very common in the diagnosis of precursor lesions. It has also been proposed that diverse HPVs can develop synergism in the cell, which could be associated with the progress of lesions (Sohrabi and Hajia 2017).
Clinical diagnosis is focused on the cellular morphological changes caused by HPV infection. The Papanicolaou test is considered the gold standard for early detection of cervical carcinoma, however, the Pap test results should not be considered to be a determinant criterion in the treatment decision (Sayyah-Melli et al., 2019; Kitchen and Cox 2020). It is highly recommended that the cytological diagnosis via the Pap test be complemented with molecular HPV detection to increase the certainty of the diagnosis and maximize cancer prevention.

Samples for molecular HPV detection must be collected by trained personnel (Mittal and Yadav 2019), however, in some populations, such as the Nahuatl in Mexico, collection of this type of sample by medical personnel is often not allowed (Graham & Mishra 2011; Giorgi-Rossi et al., 2014). Hence, it is necessary to propose alternatives for sampling. In Mexico, the cervical cancer screening program is focused on the detection of cervical premalignant lesions using the Pap test, in sexually active women from 25 to 34 years old, and HPV detection in women from 35 to 64 years old with repetition every 5 years when the Pap test is negative (CNEGSR, 2015). Although this service is free of charge in any institution of the National Health System, many women, mainly those who belong to indigenous communities, refuse a gynecological inspection for cultural reasons. Therefore, it is highly important to identify less invasive screening alternatives to include this type of population. The proposed options to replace the Pap test include the self-sampling method (Dzuba et al., 2002); sampling through cervicovaginal washes (Nobbenhuis et al., 2002); and, interestingly, urine, which, in recent reports has been detailed as a useful alternative for HPV detection (Pattyn et al., 2019b; Lefeuvre et al., 2020). Most studies focused on HPV detection from urine have worked with the first urine of the day and the extraction of DNA using commercial kits (Khunamornpong et al., 2016; Nilyanimit et al., 2017). To date, no studies have investigated the Nahuatl indigenous community, whose sociodemographic characteristics such as gender perspectives and low access to health systems (Leyva-Flores et al., 2013), make it vulnerable to HPV infection. In addition, data relating to the level of concordance in the diagnostic tests between cervical scraping and urine are scarce. To address the above, this work aims to determine the concordance between the molecular detection of HPV in Nahuatl from urine and cervical scraping samples, the latter being considered the gold standard, using an efficient and low-cost method for DNA extraction from urine samples.
Materials and Methods

Study population

This study was conducted in the Nahuatl indigenous communities of Xalitla, San Juan Tetelcingo, San Agustín Oapan, San Miguel Tecuixiapan, and Ahuehuepan in the municipality of Tepecuoacuilco de Trujano, which is located in the northern part of the state of Guerrero, Mexico. Indigenous women were invited to participate in the study by calling with loudspeakers in the Nahuatl language and subsequently visiting homes. The invitation was for women to attend their community health center, to have a Pap smear, for the molecular detection of HPV in cervical scrapings and urine samples. The women who attended the health center were surveyed to determine their age, schooling, gynecological-obstetrical background, knowledge of cervical cancer, and whether they had had a Pap smear. The visit to the communities and the recruitment of the women who decided to participate in the study took place from September to November 2019. The research protocol was approved by the Ethics Committee of the Universidad Autónoma de Guerrero under identification number 03/07/2019 and the participating women signed informed consent.

Specimen collection and preparation

The women included in the study had an exo-endocervical sample taken for the Pap smear and cervical HPV detection. The cervical specimen was collected using a cervix brush directed at the transformation zone (TZ) and an Ayre wooden spatula for ectocervix zone sampling of the uterine cervix and placed into PreservCyt solution (Cytyc Corporation, Marlborough, MA) for liquid-based cytology. In addition, another cervical specimen for HPV detection was collected using a Dacron swab and placed in universal collection medium (UCM) (Digene Corporation, Gaithersburg, MD). Both samples were transferred to Facultad de Ciencias Químico Biológicas (FCQB) and stored at room temperature, until the Pap smear and HPV-molecular detection. In addition, the patients were asked for a sample from the first-void urine, collected themselves in a 10 x 60 mL plastic urine collection specimen bottle, stored at 4 °C for a maximum period of 72 hours, and transferred to FCQB. A quantity of 15 ml of urine was centrifuged at 3500 rpm for 20 minutes and then washed with PBS 1X twice, and DNA extraction and HPV
detection/genotyping were subsequently performed. Another fraction of the sample was used for dipstick urinalysis.

Dipstick Urinalysis

Dipstick urinalysis was performed using Combur 10-Test M strips according to manufacturer instructions. Briefly, 10-15 mL was taken from the specimen container and one strip was submerged for 15-30 seconds; then, the strip was read with reference to the scale printed on the packaging. The strips had reagent pads for the semiquantitative assessment of density, pH, leukocyte esterase, nitrite, protein, glucose, ketones, urobilogen, bilirubin, and hemoglobin/myoglobin.

Cytological diagnosis

The cytological diagnosis of the exo-endocervical samples was performed according to the Bethesda System (Solomon et al., 2002; Nayar and Wilbur 2015). Slides with the cytological smears of the TZ for conventional cytology examination were fixed in ethanol for 10 min. The slides were then stained using the Papanicolaou kit (cat. no. 64294; Hycel, Chemical Reagents). Briefly, the slides were hydrated in a descending alcohol series and then incubated at room temperature for 45 sec with Harris hematoxylin to stain the nuclei. Additionally, Orange G colorant was added and incubated at room temperature for 80 sec, followed by EA-50 incubated at room temperature for 3 min, which stained the eosinophils and basophils cells, respectively. The slides were then cleared with Xylol reagent prior to microscopic observation (DM1000 LED; Leica Microsystems, Inc.; magnification, 10x-20x).

Alternatively, the samples for liquid-based cytology were processed according to the manufacturer's protocol of liquid-PREP™ (LGM International, Inc.). Briefly, a clearing solution was added to each sample and then the samples were centrifuged at 1000 × g for 5 min at room temperature. The supernatant was discarded after the addition of the cell base solution, which conserved the pellet. The samples were mixed and 10 µl was added to the slide, which was fixed at room temperature with ethanol for 10 min, following by staining using the Papanicolaou kit and microscopic observation (DM1000 LED; Leica Microsystems, Inc.; magnification, 10x-20x).
DNA extraction and integrity

DNA was extracted from cervical scrapes via the phenol-chloroform-isoamyl alcohol method (Ausubel et al., 1995) following proteinase K digestion at 64°C for 45 minutes. For the extraction of DNA from the urine pellet, proteinase K was added, and then the sample was incubated in a water bath for 15 minutes and subsequently incubated at 55°C overnight. Finally, the phenol-chloroform-isoamyl alcohol procedure was performed. The DNA recovered was diluted in DEPC water and quantified by spectrophotometry. Although a DNA purity (260/230 nm absorbance ratio) ≥ 1.6 is suggested for an optimal PCR result (Gallagher 2001), we considered a DNA purity ≥ 1.4 as suitable for viral genotyping, considering the DNA integrity determined through β-globin gene detection, thereby, 108 samples were considered to be viable (Supplementary Figure 1).

HPV detection and genotyping

The DNA was subjected to an HPV genotyping assay using an INNO-LiPA HPV Genotyping Extra II assay (INNO-LiPA; Fujirebio Europe, Ghent, Belgium) according to the manufacturer’s instructions. This system amplifies a 65-bp fragment of the L1 open reading frame and enables the identification of 32 HPV genotypes including 13 high-risk types (HPV 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, and 68), six probable high-risk types (HPV 26, 53, 66, 70, 73 and 82), and thirteen low-risk or unknown risk types (HPV 6, 11, 40, 42, 43, 44, 54, 61, 62, 67, 81, 83 and 84). For data analysis, the HPVs detected in the samples were grouped according to oncogenic risk, as HR-HPV, LR-HPV, multiple infection by LR- and HR-HPV (MI LR/HR-HPV), and unidentified HPV infection (HPV-X).

Statistical analysis

Data capture and statistical analysis were performed with the statistical program STATA 14.0 (College Station, TX: StataCorp LP). Qualitative variables were analyzed by chi-square test (X^2) or Fisher’s exact test as appropriate. In quantitative variables, the Shapiro–Wilk test was carried out for normality determination and the Mann–Whitney test was applied for comparison between two groups. Finally, the sensitivity, specificity, and concordance (Cohen’s Kappa coefficient)
were calculated, considering HPV detection from cervical scrapings as the reference. A Kappa value of less than 0.20 indicates poor agreement, 0.21–0.40 moderate agreement, 0.61–0.80 good agreement and 0.81–1.00 very good agreement. \(p \) values \(\leq 0.05 \) were considered statistically significant (Brennan and Silman 1992).

Results

After carrying out sensitization in the indigenous communities, 155 indigenous women attended the health centers and were surveyed: 24 from Ahuehuepan (20.34% of the total number of attendess), 30 from San Agustin Oapan (27.03%), 29 from San Juan Tetelcingo (40.28%), 41 from San Miguel Tecuixiapan (44.09%) and 31 (25.85%) from Xalitla of the municipality of Tepecoacuilco, Guerrero, Mexico. The median age was 47.5 years, 62% of the women had not gone to school, 62% did not consume alcohol, 81% had had a Pap smear but mentioned that on many occasions they had not been given the results, and more than 90% did not know about cervical cancer (data not shown). Of the 155 women surveyed, 108 appropriate cervical scrapings and 104 urine samples were obtained. This difference occurred because some of the women did not agree to undergo a cervical scraping (7.74%), others were menstruating (4.52%), and some of the urine samples did not have the appropriate DNA purity for processing (18.06%).

Cytological analysis showed that 32 women did not have squamous intraepithelial lesions (NSIL) and 76 had low squamous intraepithelial lesions (LSIL). The median ages of the women were 49.0 (39.0–55.0) and 45.5 (29.0–56.5) years in the NSIL and LSIL groups, respectively. The clinical and pathological characteristics are summarized in Table 1. In this population, only a greater number of sexual partners showed a statistically significant relationship with LSIL (Table 1).

HPV positivity in cervical and urine samples

As expected, based on analysis the cervical samples, a statistically significant relationship was observed between the HPV-oncogenic risk detected and cytological diagnosis \((p=0.001) \). The NSIL samples were significantly negative to HPV (90.63%), whereas LSIL cases were positive to HR-HPV (51.32 %), followed by multiple infection by HR-HPV (17.11 %), and multiple infection by LR- and HR-HPV (9.21 %), (Table 2). By contrast, no statistically significant relationship between the cytological diagnosis and the HPV genotypes detected in the urine.
samples was observed ($p = 0.33$). The most frequent HR-HPV genotypes detected in cervical samples were HPV-52 (10/108 cases), followed by HPV-58 and HPV-59 (9/108 cases), whereas the most frequent HR-HPV genotypes in urine samples were HPV-39 (21/105), followed by HPV-16 (17/105), HPV-52 (16/105), and HPV-51 (15/105) (Supplementary Table 1). The number of HPV genotypes detected in cervical and urine samples was associated to cytological diagnosis ($p=0.001$ and $p=0.047$, respectively); In addition, HR-HPV was detected in 71% (HR-HPV + MI LR/HR-HPV + MI HR-HPV) of urine samples from women with LSIL diagnosis (Table 2).

Concordance between urine and cervical samples for HPV detection

A positive agreement of 86.11 % for HPV determined by INNOLiPA from urine and cervical samples was observed, regardless of the viral genotype, however, the total concordance was poor or weak (Kappa = 0.16, concordance 68.27 %) (Table 3). A similar result was observed by grouping the detected HPVs by oncogenic risk; an agreement of 89.6 % in HR-HPV positivity between urine and cervical samples was observed (Kappa = 0.16, concordance 64.52 %) (Table 4). The sensitivity and specificity of HR-HPV positivity in urine, using cervical scrapings as reference, were 89.7% and 25.7%, respectively.

Discussion

Currently, cervical cancer (CC) is the third most frequent neoplasm in women in the world (Arbyn et al., 2020), and nearly 100% of CC cases are related to high-risk human papillomavirus (HR-HPV) infection (Hooi et al., 2018; Chan et al., 2019). In developing countries, cancer mortality and morbidity are higher than those in developed countries, and an elevated cervical cancer-related mortality has been reported mainly in indigenous women. This suggests structural, social, or individual barriers to screening contribute to the poor prognosis of cancer cases in indigenous women (Cramb et al., 2012; Vasilevska et al., 2012).

The factors determining the high prevalence of cervical cancer in Mexico, particularly in Guerrero State, include the socio-cultural characteristics of the population, lack of marital
support for screening, cultural taboos, stigmatization of women with this neoplasm, and, finally, the limited information regarding the procedure for early diagnosis of HPV infection (Nilyanimit et al., 2017). In addition, indigenous populations have low detection coverage, and many indigenous women refuse gynecological inspection due to cultural barriers, such as shame, or prohibition by their husband or other women in the community. These factors block timely HPV detection and increase the risk of developing premalignant lesions.

Although gynecological inspection via the Papanicolaou test and HPV molecular detection are the most important methods for screening of premalignant lesions of cervical cancer, it is important to identify less invasive alternatives to obtain useful samples for HPV detection. Therefore, this study evaluated the concordance of HPV molecular detection from two different samples, cervical scraping, and urine, to evaluate urine as a potential alternative for screening in indigenous communities.

In the indigenous population studied, only the number of sexual partners was found to show a relationship with LSIL (Table 1), which is in agreement with previous reports that indicate a close relationship of this factor with the development of cervical neoplasm (Herrero et al., 1990; Itarat et al., 2019). Other factors such, as parity and age of first sexual encounter, have been related to premalignant lesions and cervical cancer development (Lukac et al., 2018; Kashyap et al., 2019).

Interestingly, in this study population HPV-52 was most frequent detected in cervical scrapings. This finding did not agree with previous reports in the region indicating that HPV-16 and HPV-18 are most frequent (Illades-Aguiar et al., 2009; Illades-Aguiar et al., 2010). Previous findings indicate differences in the HPV distribution between ethnic groups (Lin et al., 2015; Baloch et al., 2017). In this regard, is important to note that the analyzed population belongs to a socioeconomic zone with a high of migration rate (about 78%) and this situation can cause changes in the prevalence of sexually transmitted infections in the community (OMS 2003; Platt et al., 2013). One of the most important characteristics in the progression of cervical lesions is the presence of several viral genotypes. Thus, a finding of this study that should be noted, as shown in Table 2, is the high prevalence of multiple infections in the analyzed groups, which is a
common finding in precursor lesions, as previously reported (Schmitt et al., 2013; Aguilar-Lemarroy et al., 2015).

The potential HPV detection from urine has been previously described by various authors; however, most have suggested performing DNA extraction using commercial kits (Brinkman et al., 2002; Cuzick et al., 2017; Pattyn et al., 2019b), which would increase the cost of the test and the difficulty of using urine samples as a feasible option for HPV screening. In this study, the DNA was extracted from both type of samples using the common phenol-chloroform-isooamyl alcohol method. Thus, DNA with adequate quality was obtained for molecular HPV detection, which was determined by reviewing the DNA integrity via β-globin gene detection. Molecular HPV detection from urine and cervical scraping samples may be similar in terms of cost, however, the importance of the use of urine samples is that it is a non-invasive method, and could be a useful alternative for women who refuse the gynecological inspection.

Different HPV genotypes were detected in urine samples compared to cervical scrapings; for instance, HPV 16 and HPV 39 were more frequent in urine in comparison with cervical samples (Supplementary Table 1). Similarly, in a study in Chilean women, no significant differences in HPV detection and genotyping between the cervical and urine samples were observed. In some cases, the detection of carcinogenic HPV was positive in the cervical but negative in the urine samples, whereas in a similar number of cases, samples were positive for HR-HPV detection in urine but negative in cervical samples (Buchegger et al., 2018). In addition, Tanzi and colleagues, (2013), reported that the absolute number of genotypes detected in urine samples was higher than the number of genotypes identified following examination of cervical samples (Tanzi et al., 2013). Other studies have reported that HPV prevalence was similar or higher in another genital regions compared to cervical samples; it was observed that prevalence for any HPV type in vaginal specimens was greater than that in cervical samples, whereas the prevalence for any carcinogenic HPV type in vaginal and cervical specimens was similar, suggesting carcinogenic HPV genotypes could have similar tropism for vaginal and cervical epithelium (Castle et al., 2007). One possible explanation for this observation is that HPV of other anatomic sites, such as the urethra, vulva or vagina could be present in the urine sample considering the natural route of this liquid waste (Sehgal et al., 2009, Tanzi et al., 2013, Abelson et al., 2018, Buchegger et al., 2018).
A concordance of 68.27% in HPV detection from urine and the cervix was found (Table 3). In addition, one or more HR-HPVs was detected in 71% of urine samples from women with LSIL diagnosis (Table 2). The above findings suggest that two or more viral genotypes, mainly HR-HPV, detected in a urine sample could indicate the presence of, risk of developing, SIL. Therefore, urine can be a suitable sample in populations of women who do not accept gynecological inspection to obtain cervical scrapings. Other studies have supported the idea of using urine for HPV detection (Brinkman et al., 2002; Sargent et al., 2019; Pattyn et al., 2019a; Tranberg et al., 2020).

A limitation of this study is that there were only two study groups, NSIL and LSIL. With a larger population and at least three study groups (NSIL, LSIL, and HSIL), the concordance in the HPV molecular detection by INNOLiPA from urine and cervical samples could be more evident. Considering the experience gained in this study, in addition to that reported by other relevant studies, we propose a workflow with urine samples for the detection of HPV, focused mainly on HR-HPV, and the possible management of patients (Figure 1). According to the guidelines of the Mexican program for the timely detection of cervical cancer, after a negative result of HPV in cervical scrapings, the test should be conducted every five years (CNEGSR, 2015). In this workflow for HPV screening from urine samples, considering that sensibility of HPV detection from urine samples was 89.7% in relation to the molecular detection of HPV from cervical scrapings, we proposed that women aged 35–64 years old with a negative result of HR-HPV or positive result of LR-HPV could be considered to be at low risk and their next analysis could be scheduled after four and three years, respectively. In contrast, women who test positive for HR-HPV could be considered to be at risk of developing squamous intraepithelial lesions of the cervix (SIL) and should be submitted to a Pap test for gynecological inspection to confirm or rule out the presence of lesions and infection by HPV in cervical cells (Figure 1).

Although the Pap test continues to be the gold standard for the determination of cervical abnormalities, the molecular detection of HR-HPV in urine samples is a non-invasive method. Thus, it could represent an initial approach for women at risk of developing SIL and a feasible alternative for indigenous women who, due to cultural barriers and poor health services, do not have timely detection of pre-malignant lesions and cervical cancer.
Conclusions

The use of urine samples for the molecular detection of HPV is a non-invasive method that could be a good alternative for the screening of women from indigenous populations who, for sociocultural reasons, initially refuse gynecological inspection. Only women who test positive for HR-HPV from a urine sample would be referred to gynecological inspection and the Pap test, to confirm or rule out the presence of cervical lesions and HPV infection.

Acknowledgements

We want to thank Natividad Sales Linares for her expert technical assistance.

References

Abelson B, Sun D, Que L, Nebel RA, Baker D, Popiel P, Amundsen CL, Chai T, Close C, DiSanto M, Fraser MO, Kielb SJ, Kuchel G, Mueller ER, Palmer MH, Parker-Autry C, Wolfe AJ and Damaser MS. 2018. Sex differences in lower urinary tract biology and physiology. Biology of sex differences. 9 (1): 45. DOI: 10.1186/s13293-018-0204-8

Aguilar-Lemarroy A, Vallejo-Ruiz V, Cortés-Gutiérrez E, Salgado-Bernabé ME, Ramos-González NP, Ortega-Cervantes L, Arias-Flores R, Medina-Díaz IM, Hernández-Garza F, Santos-López G, Piña-Sánchez P, IMSS Research Network on HPV. 2015. Human papillomavirus infections in Mexican women with normal cytology, precancerous lesions, and cervical cancer: Type-specific prevalence and HPV coinfections. Journal of Medical Virology, 87(5), 871–884. DOI: 10.1002/jmv.24099

Arbyn M, Weiderpass E, Bruni L, de Sanjosé S, Saraiya M, Ferlay J and Bray F. 2020. Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis. Lancet Glob. Health. 8 (2): e191–e203. DOI: 10.1016/S2214-109X(19)30482-6

Ausubel F, Brent R, Kingston R, Moore D, Seidman JG, Smith JA and Struhl K. 1995. Short Protocols in Molecular Biology. John Wiley & Sons, New York.2–3. DOI: 10.1002/bmb.1996.5690240143

Balogh Z, Yasmeen N, Li Y, Ma K, Wu X, Yang SH and Xia X. 2017. Prevalence and risk factors for human papillomavirus infection among Chinese ethnic women in southern of Yunnan, China. Braz J Infect Dis. 21 (3): 325-332. DOI: 10.1016/j.bjid.2017.01.009

Brennan P and Silman A. 1992. Statistical methods for assessing observer variability in clinical measures. BMJ. 304 (6840): 1491-4. DOI: 10.1136/bmj.304.6840.1491

Brinkman JA, Jones WE, Gaffiga AM, Sanders JA, Chaturvedi AK, Slavinsky III J, Clayton JL, Dumestre J and Hagensee ME. 2002. Detection of human papillomavirus DNA in urine specimens from human immunodeficiency virus-positive women. Journal of clinical microbiology. 40 (9): 3155–3161. DOI: 10.1128/jcm.40.9.3155-3161.2002

Buchegger K, Viscarra T, Andana A, Ili C, López J, Zanella L, Carmona-López MI, Fernández JJ, Espinel IC, Sánchez R, Roa JC and Brepi P. 2018. Detection and genotyping of
human papillomavirus virus (HPV): a comparative analysis of clinical performance in cervical and urine samples in Chilean women. Int J Clin Exp Pathol. 11 (11): 5413-5421.

Castle PE, Rodriguez AC, Porras C, Herrero R, Schiffman M, Gonzalez P, Hildesheim A and Burk RD. 2007. A comparison of cervical and vaginal human papillomavirus. Sexually transmitted diseases. 34 (11), 849–855. DOI: 10.1097/OLQ.0b013e318064e8e5

Centro Nacional de Equidad de Género y Salud Reproductiva (CNEGSR). 2015. Prevención y Control del Cáncer de la Mujer. Available at

https://www.gob.mx/salud/cnegsr/es/acciones-y-programas/prevencion-y-deteccion-oportuna-del-cancer-de-cuello-uterino (Accessed 20 March 2021).

Chan CK, Aimagambetova G, Ukybassova T, Kongrtay K and Azizan A. 2019. Human Papillomavirus Infection and Cervical Cancer: Epidemiology, Screening, and Vaccination-Review of Current Perspectives. J Oncol. (2019): 3257939. DOI: 10.1155/2019/3257939

Cramb SM, Garvey G, Valery PC, Williamson JD, and Baade PD. 2012. The first year counts: cancer survival among indigenous and non-indigenous Queenslanders, 1997–2006. Med. J. Aust. 196: 270–274. DOI: 10.5694/mja11.11194

Cuzick J, Cadman L, Ahmad AS, Ho L, Terry G, Kleeman M, Lyons D, Austin J, Stoler MH, T Vibat CR, Dockter J, Robbins D, Billings PR and Erlander MG. 2017. Diagnostic Accuracy of a Urine-Based Human Papillomavirus Assay in a Referral Population. Cancer Epidemiol Biomarkers Prev. 26 (7): 1053-1059. DOI: 10.1158/1055-9965.EPI-16-0960

Dzuba IG, Diaz-Yunes E, Allen B, Flores-Leonard Y, Lazcano-Ponce EC, Shah KV, Bishai D, Lorincz A,Ferris D, Turnbull B, Hernández-Avila M and Salmerón J. 2002. The acceptability of self-collected samples for HPV testing vs. the pap test as alternatives in cervical cancer screening. J Womens Health Gend Based Med. 11 (3): 265-275. DOI:

10.1089/152460902753668466

Gallagher S. (2001). Quantitation of nucleic acids with absorption spectroscopy. Curr Protoc Protein Sci. Appendix 4:Appendix 4K. DOI: 10.1002/0471140864.psa04ks13

Giorgi-Rossi P, Baldacchini F and Ronco G. 2014. The Possible Effects on Socio-Economic Inequalities of Introducing HPV Testing as Primary Test in Cervical Cancer Screening Programs. Frontiers in oncology. (4): 20. DOI: 10.3389/fonc.2014.00020

Graham JE and Mishra A. 2011. Global challenges of implementing human papillomavirus vaccines. International journal for equity in health. (10) 27. DOI: 10.1186/1475-9276-10-27

Herrero R, Brinton LA, Reeves WC, Brenes MM, Tenorio F, de Britton RC, Gaitán E, Montalván, García and Rawls WE. 1990. Risk factors for invasive carcinoma of the uterine cervix in Latin America. Bull Pan Am Health Organ. 24 (3): 263-83.

Hooi DJ, Lissenberg-Witte BI, de Koning MNC, Pinedo HM, Kenter GG, Meijer CJ and Quint WG. 2018. High prevalence of high-risk HPV genotypes other than 16 and 18 in cervical cancers of Curaçao: implications for choice of prophylactic HPV vaccine. Sex Transm Infect. 94 (4): 263-267. DOI: 10.1136/sextrans-2017-053109

Illades-Aguiar B, Cortés-Malagón EM, Antonio-Véjar V, Zamudio-López N, Alarcón-Romero LdelC, Fernández-Tilapa G, Hernández-sotelo D, Terán-Porcayo MA, Flores-Alfaro E
and Leyva-Vázquez MA. 2009. Cervical carcinoma in Southern Mexico: Human papillomavirus and cofactors. Cancer Detect Prev. 32 (4): 300-307. DOI: 10.1016/j.cdp.2008.09.001

Illades-Aguiar B, Alarcón-Romero Ldel C, Antonio-Véjar V, Zamudio-López N, Sales-Linares N, Flores-Alfaro E, Fernández-Tilapa G, Vences-Velázquez A, Muñoz-Valle JF and Leyva-Vázquez MA. 2010. Prevalence and distribution of human papillomavirus types in cervical cancer, squamous intraepithelial lesions, and with no intraepithelial lesions in women from Southern Mexico. Gynecol Oncol. 117 (2): 291-296. DOI: 10.1016/j.ygyno.2010.01.036

Itarat Y, Kietpeerakool C, Jampathong N, Chumworathayi B, Kleeaek P, Aue-Aungkul A, and Nhokaew W. 2019. Sexual behavior and infection with cervical human papillomavirus types 16 and 18. International journal of women's health. 11): 489–494. DOI: 10.2147/IJWH.S218441

Kashyap N, Krishnan N, Kaur S, and Ghai S. 2019. Risk Factors of Cervical Cancer: A Case-Control Study. Asia-Pacific journal of oncology nursing. 6 (3), 308–314. DOI: 10.4103/apjon.apjon_73_18

Kitchen FL and Cox CM. 2020. Papanicolaou Smear. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan–..

Khunamornpong S, Settakorn J, Sukpan K, Lekawanvijit S, Katruang N and Siriaunkgul S. 2016. Comparison of Human Papillomavirus Detection in Urine and Cervical Samples Using High-Risk HPV DNA Testing in Northern Thailand. Obstet Gynecol Int 2016:6801491. DOI: 10.1155/2016/6801491

Lefeuivre C, Pivert A, Guillou-Guillemette HL, Fabiani FL, Veillon P, Banaszuk ASLD and Ducancelle A. 2020. Urinary HPV DNA testing as a tool for cervical cancer screening in women who are reluctant to have a Pap smear in France. J Infect. 81 (2): 248-254. DOI:10.1016/j.jinf.2020.05.006.

Leyva-Flores R, Infante-Xibille C, Gutiérrez JP and Quintino-Pérez F. 2013. Inequidad persistente en salud y acceso a los servicios para los pueblos indígenas de México, 2006-2012. Salud Pública de México. 55 (Supl. 2): S123-S128.

Lin L, Benard VB, Greek A, Hawkins NA, Roland KB, and Saraiya M. 2015. Racial and ethnic differences in human papillomavirus positivity and risk factors among low-income women in Federally Qualified Health Centers in the United States. Preventive medicine. 81, 258–261. DOI: 10.1016/j.ypmed.2015.08.027

Lukac A, Sulovic N, Smiljic S, Ilic AN, & Saban O. 2018. The Prevalence of the Most Important Risk Factors Associated with Cervical Cancer. Materia socio-medica. 30 (2), 131–135. DOI: 10.5455/msm.2018.30.131-135

Mittal B and Yadav S. 2019 Molecular Diagnosis of Cervical Cancer. In: Shukla K., Sharma P., Misra S. (eds) Molecular Diagnostics in Cancer Patients. Springer, Singapore.

Nayar R and Wilbur DC. The Pap test and Bethesda 2014. 2015. Cancer Cytopathol. 123 (5): 271-81. DOI: 10.1002/cncy.21521
Nilyanimit P, Chansaenroj J, Karalak A, Laowahutanont P, Junyangdikul P and Poovorawan Y. 2017. Comparison of human papillomavirus (HPV) detection in urine and cervical swab samples using the HPV GenoArray Diagnostic assay. *PeerJ* (5): e3910. DOI: 10.7717/peerj.3910

Nobbenhuis MAE, Helmerhorst TJM, van den Brule AJC, Rozendaal L, Jaspars LH, Voorhorst FJ, Verheijen RHM and Meijer CJLM. 2002. Primary screening for high risk HPV by home obtained cervicovaginal lavage is an alternative screening tool for unscreened women. *J Clin Pathol.* 55 (6): 435-439. DOI: 10.1136/jcp.55.6.435

Pattyn J, Van Keer S, Biesmans S, leven M, Vanderborght C, Beyers K, Vankerckhoven V, Bruyndonckx R, Van Damme P and Vorsters A. 2019a. Human papillomavirus detection in urine: Effect of a first-void urine collection device and timing of collection. *J Virol Methods.* 264: 23-30. DOI: 10.1016/j.jviromet.2018.11.008

Pattyn J, Van Keer S, Téblick L, Van Damme P and Vorsters A. 2019b. HPV DNA detection in urine samples of women: 'an efficacious and accurate alternative to cervical samples?'. *Expert Rev Anti Infect Ther.* 17 (10): 755-757. DOI: 10.1080/14787210.2019.1668776

Platt L, Grenfell P, Fletcher A, Sorhaindo A, Jolley E, Rhodes T and Bonell C. 2013. Systematic review examining differences in HIV, sexually transmitted infections and health-related harms between migrant and non-migrant female sex workers. *Sex Transm Infect.* 89 (4): 311-319. DOI: 10.1136/sextrans-2012-050491

Sargent A, Fletcher S, Bray K, Kitchener HC and Crosbie EJ. 2019. Cross-sectional study of HPV testing in self-sampled urine and comparison with matched vaginal and cervical samples in women attending colposcopy for the management of abnormal cervical screening. *BMJ Open.* 9 (4): e025388. DOI: 10.1136/bmjopen-2018-025388

Sayyah-Melli M, Rahmani V, Ouladsahebmadarek E, Jafari-Shobeiri M, Gharabaghi PM and Vahidi MN. 2019. Diagnostic Value of Pap Smear and Colposcopy in Non-benign Cervical Lesions. *International Journal of Women’s Health and Reproduction Sciences.* 7 (2): 211–215. DOI: 10.15296/ijwhr.2019.35

Schmitt M, Depuydt C, Benoy I, Bogers J, Antoine J, Arbyn M, Pawlita M and VALGENT Study Group. 2013. Multiple human papillomavirus infections with high viral loads are associated with cervical lesions but do not differentiate grades of cervical abnormalities. *Journal of clinical microbiology.* 51(5), 1458–1464. DOI: 10.1128/JCM.00087-13

Sehgal A, Gupta S, Parashari A, Sodhani P and Singh V. 2009. Urine HPV-DNA detection for cervical cancer screening: prospects and prejudices. *J Obstet Gynaecol.* 29 (7): 583-9. DOI: 10.1080/01443610903061736

Sohrabi A and Hajia M. 2017. Cervical Cancer and Genital Infections: Assessment of Performance and Validation in Human Papillomavirus Genotyping Assays in Iran, its Neighbouring Countries and Persian Gulf Area. *Iranian journal of pathology.* 12(1), 35–4.

Solomon D, Davey D, Kurman R, Moriarty A, O'Connor D, Prey M, Raab S, Sherman M, Wilbur D, Wright Jr T, Young N, Forum Group Mmebers and Bethesda 2001 Workshop. 2002.
The 2001 Bethesda System: terminology for reporting results of cervical cytology. *JAMA.* 2002;287:2114–9. DOI: 10.1001/jama.287.16.2114.

Tanzi E, Bianchi S, Fasolo MM, Frati ER, Mazza F, Martinelli M, Colzani D, Beretta R, Zappa A and Orlando G. 2013. High performance of a new PCR-based urine assay for HPV-DNA detection and genotyping. *J Med Virol.* 85: 91-8. DOI: 10.1002/jmv.23434

Téguété I, Dolo A, Sangare K, Sissoko A, Rochas M, Beseme S, Tounkara K, Yekta S, De Groot AS and Koita OA. 2017. Prevalence of HPV 16 and 18 and attitudes toward HPV vaccination trials in patients with cervical cancer in Mali. *PloS one.* 12 (2), e0172661. DOI: 10.1371/journal.pone.0172661

Tranberg M, Skov-Jensen J, Hammer-Bech B, and Andersen B. 2020. Urine collection in cervical cancer screening – analytical comparison of two HPV DNA assays. *BMC Infectious Diseases.* 20: 926. DOI: 10.1186/s12879-020-05663-7

Vasilevska M, Ross SA, Gesink D and Fisman DN. 2012. Relative risk of cervical cancer in indigenous women in Australia, Canada, New Zealand, and the United States: a systematic review and meta-analysis. *J Public Health Policy.* 33 (2): 148-64. DOI: 10.1057/jphp.2012.8

World Health Organization (WHO). (2003) International Migration, Health & Human Rights, Health and Human Rights Publication Series, No. 4, Dec., WHO, Switzerland.
Table 1 (on next page)

Clinical characteristics of the indigenous population studied

NSIL, non-squamous intraepithelial lesions; LSIL, low-grade squamous intraepithelial lesions; C-section, caesarean section; \(^a\)Median (p25-p75), \(^b\)Mann Whitney-test, \(^c\)\(\chi^2\) test, \(^d\)Fisher’s exact test.
Table 1. Clinical characteristics of the indigenous population studied

Cytological diagnosis	NSIL n=32	LSIL n=76	Total n=108	p value*
Age (years)a	49 (39-55)	45.5 (29-56.5)	47.5 (32-55.5)	0.28b
Alcohol consumption				
No	19 (29.69)	45 (70.31)	64 (59.26)	0.98c
Yes	13 (29.55)	31 (70.45)	44 (40.74)	
Sexual partners				
One	27 (38.03)	44 (61.97)	71 (66.36)	0.013d
≥Two	5 (13.89)	31 (86.11)	36 (33.64)	
Menarche				
≤14 years old	27 (28.72)	67 (71.28)	94 (87.04)	0.23d
≥15 years old	5 (35.71)	9 (64.29)	14 (12.96)	
Number of births				
None	4 (21.05)	15 (78.95)	19 (17.59)	
One	2 (16.67)	10 (83.33)	12 (11.11)	0.41d
≥Two	26 (33.77)	51 (66.23)	77 (71.30)	
Abortions				
None	25 (31.25)	55 (68.75)	80 (74.07)	
One	7 (38.89)	11 (61.11)	18 (16.67)	0.08d
≥Two	0 (0)	10 (100.00)	10 (9.26)	
C-section				
None	21 (25.30)	62 (74.70)	83 (76.85)	
One	4 (33.33)	8 (66.67)	12 (11.11)	0.10d
≥Two	7 (53.85)	6 (46.15)	13 (74.08)	
Pap previous				
Yes	27 (29.35)	65 (70.65)	92 (85.19)	1.00d
No	5 (31.25)	11 (68.75)	16 (14.81)	

NSIL, non-squamous intraepithelial lesions; LSIL, low-grade squamous intraepithelial lesions; C-section, caesarean section; aMedian (p25-p75), bMann Whitney-test, cX² test, dFisher’s exact test.
Table 2 (on next page)

HPV infection detected in cervix and urine samples

NSIL, non-squamous intraepithelial lesions; LSIL, low-grade squamous intraepithelial lesions; HPV-LR, low risk HPV infection; HPV-HR, high risk HPV infection; MI LR/HR-HPV, low risk HPV and high risk HPV multiple infection; HPV-X, unidentified HPV; MI, multiple infection; \(^c\)Fisher’s exact test; *p value ≤ 0.05 was considered as statistically significant.
Table 2. HPV infection detected in cervix and urine samples

	Cytological diagnosis				p value*
		NSIL	LSIL	Total	
HPV infection in cervix					
Negative	29 (90.63)	3 (3.95)	32 (29.63)		
LR-HPV	0 (0)	3 (3.95)	3 (2.78)		
HR-HPV	1 (3.13)	39 (51.32)	40 (37.04)		
MI LR/HR-HPV	2 (3.13)	20 (9.21)	22 (7.41)	0.001c	
HPV-X	0 (0)	11 (14.47)	11 (10.19)		
HPV infection in urine					
Negative	9 (28.13)	10 (13.70)	19 (18.10)		
LR-HPV	1 (3.13)	3 (4.11)	4 (3.81)		
HR-HPV	10 (31.25)	18 (24.66)	28 (26.67)	0.306c	
MI LR/HR-HPV	10 (15.63)	34 (13.70)	44 (14.29)		
X-HPV	2 (6.25)	8 (10.96)	10 (9.52)		
HPV genotypes in cervix					
None	29 (90.63)	3 (3.95)	32 (29.63)		
One	1 (3.13)	53 (69.74)	54 (50.00)	0.0001c	
≥ two (MI)	2 (6.25)	20 (26.32)	22 (20.37)		
HPV genotypes in urine					
None	10 (31.25)	9 (12.50)	19 (18.27)		
One	13 (40.63)	29 (40.28)	42 (40.38)	0.047c	
≥ two (MI)	9 (28.13)	34 (47.22)	43 (41.35)		

NSIL, non-squamous intraepithelial lesions; LSIL, low-grade squamous intraepithelial lesions; HPV-LR, low risk HPV infection; HPV-HR, high risk HPV infection; MI LR/HR-HPV, low risk HPV and high risk HPV multiple infection; HPV-X, unidentified HPV; MI, multiple infection; *Fisher's exact test; *p values<0.05 was considered as statistically significant.
Table 3 (on next page)

Concordance, sensitivity, and specificity of HPV detection in urine and cervical samples
Table 3. Concordance, sensitivity, and specificity of HPV detection in urine and cervical samples.

HPV Detection in Cervical Scraping	Urine HPV detection	Total n=104	
	HPV positive	HPV negative	
HPV positive	62 (86.11)	10 (13.89)	72 (69.23)
HPV negative	23 (71.88)	9 (28.12)	32 (30.77)
	85 (81.73)	19 (18.27)	

Sensitivity: 86.10%
Specificity: 28.10%
Concordance: 68.27%
Kappa: 0.16
Table 4 (on next page)

Concordance, sensitivity, and specificity in detection of HPV-oncogenic risk groups in urine and cervical samples.

HR-HPV, high risk HPV infection; LR-HPV, low risk HPV infection HR-HPV, high risk HPV infection; LR-HPV, low risk HPV infection
Table 4. Concordance, sensitivity, and specificity in detection of HPV-oncogenic risk groups in urine and cervical samples.

HPV Detection in Cervical Scraping	Urine HPV detection	Total n=93	
HR-HPV	HR-HPV	52 (89.66)	58 (62.37)
LR-HPV	LR-HPV	2 (66.67)	3 (3.23)
Negative	Negative	24 (75.00)	32 (34.40)

Sensitivity: 89.70%
Specificity: 25.70%
Concordance: 64.52%
Kappa:0.16

HR-HPV, high risk HPV infection; LR-HPV, low risk HPV infection.
Figure 1

Workflow proposed for human papillomavirus (HPV) infection screening in indigenous women

Red: The sample is not suitable for analysis; it must be discarded, and a new sample requested from the patient. Green: The sample is suitable for analysis. Blue: HPV negative, no risk of squamous intraepithelial lesions (SIL). Yellow: low risk for SIL. Orange: moderate or high risk for SIL.
Women 35-64 years old

Self-collection of first void urine
(anytime of day), first morning urine preferably

<1 hour after collection

- Keep 15 ml in refrigeration (<72 hrs)
- Centrifugate at 3500 rpm for 5 minutes (sediment maintenance at 4°C)

Centrifugate at 3500 rpm for 5 minutes (sediment maintenance at 4°C)

Wash the sediment with 500 μl PBS 1X three times

DNA extraction
(Proteinase K modified method)

- DNA purity <1.4
- DNA Quantification by spectrometry
 - DNA purity ≥ 1.4

Elimination
Request new sample from patient

Viral genotyping

- HR-HPV Positive
 - Refer the patient to Pap test
- LR-HPV Positive
 - Sampling after three years
- HPV Negative
 - Sampling after four years