Is the anomalous decay ratio of $D_{sJ}(2632)$ due to isospin breaking?

L. Maiani
Università di Roma ‘La Sapienza’ and I.N.F.N., Roma, Italy

F. Piccinini
I.N.F.N. Sezione di Pavia and Dipartimento di Fisica Nucleare e Teorica, via A. Bassi, 6, I-27100, Pavia, Italy

A.D. Polosa
Centro Studi e Ricerche “E. Fermi”, via Panisperna 89/A-00184 Roma, Italy

V. Riquer
CERN Theory Department, CH-1211, Switzerland

The SELEX Collaboration [1] at Fermilab claims a 7σ observation of a narrow charmed meson, $D_{sJ}(2632)$, decaying into $D_s^+ \eta$ and $D^0 K^+$. The ratio between the $D^0 K^+$ and the $D_s^+ \eta$ modes reported is about 0.16 ± 0.06. As the Collaboration points out, this is quite an anomalous result, given also that the decay momentum of the first mode is about twice that of the second. This result would be totally at variance with the attribution of the $D_{sJ}(2632)$ to a $c\bar{s}$ state. Pending confirmation of this effect and a determination of the particle quantum numbers, we point out in this note that this result would arise quite naturally if the $D_{sJ}(2632)$ were a bound state of a diquark-antidiquark pair, in particular an S-wave scalar [2]. The suppression of quark pair annihilation into gluons, due the asymptotic freedom, makes so that the mass eigenvalues are aligned with states diagonal with respect to quark masses, even for the light, up and down, quarks. The possibility of such an effect for pentaquark states was pointed out in ref. [3]. In our case it is supported by the close degeneracy of $a(980)$ and $f(980)$ mesons, which should become more pronounced for the analogous states at the charm energy scale. The $D_{sJ}(2632)$ would be essentially a $[cd][d\bar{s}]$ state (not an isospin eigenstate) whose decay into $D^0 K^+$ is forbidden by the Okubo-Zweig-Iizuka et al. rule [4]. The interpretation proposed here is vulnerable to very simple tests, which we hope may be performed in the near future:

1. The same $D_{sJ}(2632)$ resonance should decay into $D_s^+ \pi^0$ and $D^+ K^0$, with sizeable branching ratios which we predict within narrow bounds. Simultaneous decay into in $D_s^+ \eta$ and $D^+ \pi^0$ is direct proof of isospin breaking.
2. A charge $+2$ state, very close in mass, should exist and be produced with sizeable cross section, mostly decaying into $D_s^+ \pi^+$ and $D^+ K^+$.

In [2] we propose that scalar mesons below 1 GeV are four quark states of the form $[qq][q\bar{q}]$ ($q=$ up, down, strange) where brackets represent states which are completely antisymmetric in color, flavor and spin. We show that this interpretation gives a good explanation of the spectrum and decay modes, except for the OZI rule violating mode $f \rightarrow \pi \pi$, which turns out to be larger than predicted. Decays are computed in terms of a single coupling, representing the amplitude for the switch of a $q\bar{q}$ pair between the diquarks, transforming the state into a pair of colorless mesons. A firm prediction of the scheme is the existence of similar scalar mesons with one light quark replaced by a heavy quark, e.g. charm. As discussed in [2] we expect such particles to occur in a reducible $6 \oplus 3$ of flavor $SU(3)$. States with $C = S = +1$, of the form $[cq][\bar{s}q]$ (q is now restricted to up and down quarks) form an $I = 1$ and $I = 0$ complex of four states with electric charges 0, $+1$, $+2$. There are two states with electric charge $+1$: $I = 1$, $I_3 = 0$ and $I = 0$. By analogy with the light scalar meson complex, $a(980)$ and $f(980)$, we call the two states a_{cs}^+ and f_{cs}^+. If isospin were strictly conserved, the two states would be pure mass eigenstates belonging, respectively, to the 6 and to the 3 and different decay modes. One expects [2]
the four decay channels:

\[a_{cS}^+ = \frac{(\{cu\}[\bar{u}s] - \{cd\}[\bar{d}s])}{\sqrt{2}} \rightarrow D_s \pi^0, \quad (DK)_{J = 0}, \]

\[f_{cS}^+ = \frac{(\{cu\}[\bar{u}s] + \{cd\}[\bar{d}s])}{\sqrt{2}} \rightarrow D_s \eta, \quad (DK)_{J = 0}. \]

The mesons \(a(980) \) and \(f(980) \) are degenerate within, say, 10 MeV. As seen in \((2) \), this reflects the smallness of the OZI violating contributions to the mass matrix, which would align the mass eigenstates to pure \(SU(3) \) representations. We expect OZI violations to be even smaller in heavy meson systems (as exemplified by the narrow width of the \(J/\Psi \) and mass eigenstates to align strictly on the quark composition rather than the \(SU(3) \), or even \(SU(2) \) representations. This happens when the diagonal masses of the \(I = 1 \) and \(I = 0 \) states become degenerate within few MeV, comparable to the non-diagonal diagonal masses of the \(I = 1 \) and \(I = 0 \) states become degenerate within, say, 10 MeV. As seen in \((2) \), this reflects the smallness of the \(SU(3) \) violation in the mass eigenstate has been considered by the very small \(R \) and \(I = 1/2 \) should occur already at the level of the pentaquark baryons \((3) \).

A large mixing between \(a_{cS}^+ \) and \(f_{cS}^+ \) leads to decays of the mass eigenstates that do not respect the isospin symmetric pattern given above. To be quantitatively, assume that the mass eigenstates are superposition of the two, OZI conserving, eigenvectors:

\[|S_u\rangle = \{cu\}[\bar{u}s], \]

\[|S_d\rangle = \{cd\}[\bar{d}s]. \] (1)

According to:

\[|D_h\rangle = \cos \theta |S_u\rangle + \sin \theta |S_d\rangle, \]

\[|D_i\rangle = -\sin \theta |S_u\rangle + \cos \theta |S_d\rangle. \] (2)

Decay amplitudes of four-quark states are computed following Ref. \((2) \), in terms of a single amplitude \(A \). Keeping into account the antisymmetric structure of the diquarks, one finds easily the results in Table I. \(X_q \) is the projection on the \(\eta \) meson of the isosinglet pseudoscalar state \(\eta_q \):

\[\eta_q = \frac{(u\bar{u} + d\bar{d})}{\sqrt{2}}, \]

\[X_q = \frac{(\cos \phi + \sqrt{2} \sin \phi)}{\sqrt{3}} \approx 0.72. \] (3)

Where \(\phi \) is the \(\eta' \eta' \) meson mixing angle, \(\sin \phi \approx 0.19 \) (quadratic mass formulae).

The particle produced in strong reactions is a mixture of the two eigenstates according to the respective probabilities: \(P = \text{prob. of producing } D_h, \quad (1 - P) = \text{prob. of producing } D_i \).

\(D_h \eta \)	\(D_h \pi^0 \)	\(D^+ K^+ \)	\(D^+ K^0 \)
\(A(\cos \theta + \sin \theta)X_q \)	\(A(\cos \theta - \sin \theta)X_q \)	\(-A \cos \theta \)	\(-A \sin \theta \)
\(D_i \eta \)	\(D_i \pi^0 \)	\(A(\cos \theta + \sin \theta)X_q \)	\(A(\cos \theta - \sin \theta)X_q \)
\(A \cos \theta \)	\(A \sin \theta \)		

TABLE I: Amplitudes for the decays of \(D_h \) and \(D_i \) in the OZI allowed channels.

Producing \(D_i \). Apart from a normalization factor:

\[P = |A^{(0)}(\cos \theta + \sin \theta)/\sqrt{2} + A^{(1)}(\cos \theta - \sin \theta)/\sqrt{2}|^2 \] (4)

and \(A^{(0,1)} \) are the amplitudes to produce the isospin 1 and 0 states, \(a \) and \(f \). The decay probability of the \(D_h/D_i \) mixture into a given channel, \(X \), is:

\[\Gamma(X) = P \Gamma_h(X) + (1 - P) \Gamma_i(X). \] (5)

The ratio of the \(D^0 K^+ \) to the \(D_s^+ \eta \) rates is computed assuming S-wave decays. Using the amplitudes of Table I we find:

\[R^0 = \frac{\Gamma(D^0 K^+) \Gamma(D_s^+ \pi^0)}{\Gamma(D_s^+ \eta)^2 P \Gamma(D^0 K^+)} \approx 0.027 \]

\[= \frac{P \cos^2 \theta + (1 - P) \sin^2 \theta}{(1 + \sin 2\theta)P + (1 - \sin 2\theta)(1 - P)}. \] (6)

We give in (1) the curve representing \((3) \) in the \(\theta - P \) plane. The very small value of \(R^0 \) reflects into an allowed region with very small \(P \) and \(\theta \). We find:

\[-0.19 < \sin \theta < +0.14, \quad P < 0.03. \] (7)

The picture that emerges is that \(D_s(2632) \) is to high precision \(D_i \), which in turn is mainly \(S_d \), whose decay
into D^0K^+ is OZI forbidden with only a small component along S_u for which D^0K^+ is OZI allowed. We report in the same figure two similar curves referring to the D^0K^+ and $D_s\pi^0$ modes, computed for the indicated value of the ratio of the rates to the $D_s\eta$ mode. These curves intersect the first one for values in the intervals:

$$4 < \frac{\Gamma(D^+K^0)}{\Gamma(D_s\eta)} < 7.6; \quad 1.7 < \frac{\Gamma(D_s\pi^0)}{\Gamma(D_s\eta)} < 6.5. \quad (8)$$

A last comment refers to the doubly charged, exotic state: $a_{cs}^{++} = [cu][\bar{d}\bar{s}]$, expected to decay into $D_s\pi^+$ or D^+K^+. The smallness of P indicates an almost complete cancellation: $A(0) + A(1) \simeq 0$. However, the state a_{cs}^{++} is produced with the amplitude $A(1)$ only and is thus expected to be produced about as much as the $D_{sJ}(2632)$

Acknowledgments. ADP thanks the Physics Department of the University of Bari for their kind hospitality.

[1] A.V. Evdokimov et al., hep-ex/0406045
[2] L. Maiani, F. Piccinini, A.D. Polosa, V. Riquer, “A new look at scalar mesons”, hep-ph/0407017
[3] G.C. Rossi and G. Veneziano, “Isospin mixing of narrow pentaquark states”, hep-ph/0404262
[4] G. Zweig, CERN report S419/TH412 (1964), unpublished;

S. Okubo, Phys. Lett., 5(1963) 165; I. Iizuka, K. Okuda and O. Shito, Prog. Theor. Phys. 35 (1966) 1061.
[5] S. Eidelman et al., Phys. Lett. B592 (2004) 1.
[6] R.L. Jaffe and F. Wilczek, Phys. Rev. Lett. 91 (2003) 232003.