LETTER TO THE EDITOR

SELPM Asp603Asn and severe thrombosis in COVID-19 males

Chiara Fallerini1,2, Sergio Daga1,2, Elisa Benetti2, Nicola Picchiotti3,4, Kristina Zguro2, Francesca Catapano1,2, Virginia Baroni1,2, Simone Lanini5, Alessandro Bucalossi6, Giuseppe Marotta6, Francesca Colombo7, Margherita Baldassarri1,2, Francesca Fava1,2,8, Giada Beligni1,2, Laura Di Sarno1,2, Diana Alaverdian1,2, Maria Palmieri1,2, Susanna Croci2, Andrea M. Isidori9, Simone Furini2, Elisa Frullanti1,2 on behalf of GEN-COVID Multicenter Study, Alessandra Renieri1,2,8* and Francesca Mari1,2,8

Abstract
Thromboembolism is a frequent cause of severity and mortality in COVID-19. However, the etiology of this phenomenon is not well understood. A cohort of 1186 subjects, from the GEN-COVID consortium, infected by SARS-CoV-2 with different severity was stratified by sex and adjusted by age. Then, common coding variants from whole exome sequencing were mined by LASSO logistic regression. The homozygosity of the cell adhesion molecule P-selectin gene (SELPM) rs6127 (c.1807G > A; p.Asp603Asn) which has been already associated with thrombotic risk is found to be associated with severity in the male subcohort of 513 subjects (odds ratio = 2.27, 95% Confidence Interval 1.54–3.36). As the SELPM gene is downregulated by testosterone, the odd ratio is increased in males older than 50 (OR 2.42, 95% CI 1.53–3.82). Asn/Asn homozygotes have increased D-dimers values especially when associated with poly Q ≥ 23 in the androgen receptor (OR 3.26, 95% CI 1.41–7.52). These results provide a rationale for the repurposing of antibodies against P-selectin as adjuvant therapy in rs6127 male homozygotes especially if older than 50 or with an impaired androgen receptor.

Keywords: COVID-19, Thromboembolism, Thrombus, Venous thromboembolism, P-selectin, Anti-selectin P monoclonal antibodies

To the Editor
It is now widely recognized that COVID-19 is a systemic disease, characterized by dysregulation of the immune system and by a hypercoagulable state [1]. The bases of this prothrombotic susceptibility remain until now elusive, even if it is evident that host genetic factors largely contribute to COVID-19 phenotypic variability. Rare variants of genes involved in adaptive immunity have been identified in Mendelian forms of COVID-19, where the presence of one rare mutation leads to a severe COVID-19 phenotype segregating in the family following a classic Mendelian inheritance pattern [2]. Among common genetic factors, the protective role of the 0 blood group has been identified, at least in part possibly due to von Willebrand factor (vWF) destabilization protecting from thrombosis [3]. We have also shown that longer polyQ repeats (≥ 23) in the androgen receptor (AR) predispose to severe COVID-19 outcome due to reduced testosterone anti-inflammatory and anti-thrombotic effect [4].

The P-selectin (SELPM) gene encodes a cell adhesion molecule mediating the interaction of activated platelets on endothelium with leukocytes and playing a key role in thrombosis [5, 6]. Furthermore, significantly increased P-selectin and other prothrombotic biomarkers...
concentration in plasma samples of severe COVID-19 patients compared to healthy controls has been recently reported [7, 8].

Among SELP variants, the Asp603Asn functional polymorphism (rs6127; c.1807G > A—previously reported as Asp562Asn or Asp541Asn) has been associated with thrombotic risk in various conditions [9, 10]. The polymorphism, together with other coding polymorphisms, has indeed been shown to affect the binding of P-selectin to its ligand on leukocytes, possibly making the protein more efficient at recruiting leukocytes to the endothelium [10].

Within the Italian GEN-COVID cohort, we applied an ordered logistic regression to the clinical WHO gradings,
stratified by sex and adjusted by age in order to define severe and mild patients (see Additional file 1: Supplementary file). We then tested by LASSO logistic regression different combinations of coding polymorphisms in homozygous state and found that the \textit{SELP} rs6127 polymorphism correlates with severity only in the subcohort of males (Fig. 1a; Table 1a; Supplementary file; data on females not shown). The genotypic frequencies of the polymorphism in severe and mild patients were confirmed to be in Hardy–Weinberg equilibrium; the minor allele frequency in our cohort was similar to that reported in the European (non-Finnish) population in the gnomAD database (56.2% vs 55.8%) (https://gnomad.broadinstitute.org/).

The hyper-inflammatory and hyper-thrombotic state, due to viral injury of the vascular endothelium, leads to the release of P-selectin by activated platelets, driving thrombosis and vascular inflammation probably more efficiently in those individuals with enhanced P-selectin activities due a double copy of Asparagine 603 [10]. These results are in line with the demonstration that SARS-CoV-2 induces thrombosis by binding to ACE2 on platelets and subsequent integrin \(\alpha IIb\beta3\) activation and P-selectin expression [11], and that P-selectin soluble isoform is increased in thrombosis [6] and severe COVID-19 [7, 8].

Since \textit{SELP} transcription is inhibited by androgens [12], the strength of the association should increase with age. Interestingly, the OR (2.42) in males aged \(\geq 50\) years with respect to the whole cohort (OR = 2.27) is increased (Table 1).

In a subset of 52 severely affected hospitalised males, four main laboratory parameters related to a proinflammatory state (lymphocyte count, D-dimer and LDH) and a higher risk for thrombosis (D-dimer, platelet count and LDH) were longitudinally followed (Fig. 1b–e). We observed that the maximum pick (over 10 times of the normal upper value) was exclusive of Asp/Asn and Asn/Asn genotypes and older patients (Fig. 1b–e). The pick timing was earlier in Asn/Asn (median 7.5 days from infection) than Asp/Asn (median 13.5 days from infection), \((p\: value=3 \times 10^{-2}, \text{Fig. 1f})\). As the vWF is a downstream effector for clotting, the non-0 blood groups, associating with more stable vWF, also correlate with higher D-dimer and LDH values (Fig. 1g, h), in agreement with previous reports [3].

Given the stronger association of the \textit{SELP} polymorphism in older males, the AR poly-Q status would impact on the \textit{SELP} genotype [4]: the combination of poly-Q \(\geq 23\) with homozygous \textit{SELP} polymorphism versus D-dimer value reached an OR of 3.26 (Table 1c). This result indicates that the two polymorphisms enhance each other, being two pieces of the same puzzle contributing to thrombosis in COVID-19 males.

Anti-P-Selectin monoclonal antibodies have been developed for human use: the phase-3 Inclacumab and the FDA&EMA approved Crizanlizumab, the latter as a prevention of vaso-occlusive crises in patients with sickle cell disease [13]. A general clinical trial to test the efficacy and safety of Crizanlizumab in not selected hospitalized COVID-19

\begin{table}
\centering
\caption{Chi-square test in male cohort calculated for all ages (a); for age \(\geq 50\) years (b); and combination of AR poly-Q \(\geq 23\) and D-dimer value (c)}
\begin{tabular}{|l|c|c|c|}
\hline
 & Severe (%) & Mild (%) & Marginal row totals \\
\hline
\multicolumn{4}{|l|}{Chi-square test in male cohort (all ages)} \\
\hline
Asn/Asn genotype & 90 (38.14) & 59 (21.30) & 149 \\
Asp/Asp and Asp/Asn genotype & 146 (61.86) & 218 (78.70) & 364 \\
Marginal column totals & 236 (100) & 277 (100) & 513 (grand total) \\
\hline
\multicolumn{4}{|l|}{Chi-square test in males \(\geq 50\) years} \\
\hline
Asn/Asn genotype & 73 (39.25) & 40 (21.05) & 113 \\
Asp/Asp and Asp/Asn genotype & 113 (60.75) & 150 (78.95) & 263 \\
Marginal column totals & 186 (100) & 190 (100) & 376 (grand total) \\
\hline
\multicolumn{4}{|l|}{Chi-square test of combination of AR poly Q \(\geq 23\) and D-dimer value} \\
\hline
Asn/Asn and AR polyQ \(\geq 23\) & 10 & 19 & 29 \\
Asp/Asp and Asp/Asn and AR poliQ < 23 & 40 & 248 & 288 \\
Marginal Column totals & 50 & 267 & 317 (grand total) \\
\hline
\end{tabular}
\end{table}
patients is ongoing (https://clinicaltrials.gov/ct2/show/study/NCT04435184). Clinical trials in COVID-19 hospitalised males with SELP rs6127 should now be encouraged.

Abbreviations
AR: Androgen receptor; SELP: P-selectin gene; vWF: Von Willebrand factor.

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s13045-021-01136-9.

Additional file 1. Material and Methods plus study group appendix.

Acknowledgements
This study is part of the GEN-COVID Multicenter Study, https://sites.google.com/dbm.unisi.it/gen-covid; the Italian multicenter study aims at identifying the COVID-19 host genetic bases. Specimens were provided by the COVID-19 Biobank of Siena, which is part of the Genetic Biobank of Siena, member of BBMRI-IT, of Telethon Network of Genetic Biobanks (project no. GTR18001), of EuroBioBank, and of RDConnect. We thank the CINECA consortium for providing computational resources and the Network for Italian Genomes (NIG) http://www.nig.cineca.it for its support. We thank private donors for the support provided to A.R. (Department of Medical Biotechnologies, University of Siena) for the COVID-19 host genetics research project (D.L. n.18 of March 17, 2020).

Authors’ contributions
AR, FM and EF designed the study; CF, SD, EB, NP, KZ, FC, VB, GB, LDS, DA, SL, SC, MF, AP, GM, AMI, EF, SF analyzed the data; EB, KZ, NP, SF performed statistical analysis; M8, FT and GEN-COVID Multicenter Study provided clinical data; AR and FM supervised the study. All authors read and approved the final manuscript.

Funding
We thank the COVID-19 Host Genetics Initiative (https://www.covid19hg.org/), MIUR project “Dipartimenti di Eccellenza 2018–2020” to the Department of Medical Biotechnologies University of Siena, Italy and “Bando Ricerca COVID-19 Toscana” project to Azienda Ospedaliero Universitaria Senese. We also thank Intesa Sanpaolo for the 2020 charity fund dedicated to the project “N. B/2020/0119 Identificazione delle basi genetiche determinanti la variabilità clinica della risposta a COVID-19 nella popolazione italiana”; the Italian Ministry of Education, University and Research for funding within the “Bando FISR 2020” in COVID-19 Toscana” project to Azienda Ospedaliero Universitaria Senese, Siena, Italy. 7 Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.

Received: 1 June 2021 Accepted: 3 August 2021
Published online: 16 August 2021

Competing interests
All the authors declare no competing financial interests.

Author details
1 Medical Genetics Unit, University of Siena, Policlinico Le Scotte, Viale Bracci, 2, 53100 Siena, Italy. 2 Department of Medical Biotechnologies, Med Biotech Hub and Competence Center, University of Siena, Siena, Italy. 3 Department of Mathematics, University of Pavia, Pavia, Italy. 4 DISM-SAILAB, University of Siena, Siena, Italy. 5 National Institute for the Infectious Diseases “L. Spallanzani”, Rome, Italy. 6 Stem Cell Transplant and Cellular Therapy Unit, University Hospital, Siena, Italy. 7 Istituto di Tecnologie Biomediche – Consiglio Nazionale delle Ricerche, Segrate, MI, Italy. 8 Genetica Medica, Azienda Ospedaliero-Universitaria Senese, Siena, Italy. 9 Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.

References
1. Tang N, Li D, Wang X, et al. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020. https://doi.org/10.1111/jth.14768.
2. Fallerini C, Daga S, Mantovani S, et al. Association of toll-like receptor 7 variants with life-threatening COVID-19 disease in males: findings from a nested case-control study. Elife. 2021;12(10):e67569. https://doi.org/10.7554/elif.e67569.
3. Severe Covid-19 GWAS Group, Ellinghaus D, Degenhardt F, et al. Genomewide Association Study of Severe Covid-19 with Respiratory Failure. N Engl J Med. 2020;383(16):1522–34. https://doi.org/10.1056/NEJMoa20283.
4. Baldassarri M, Picciotti N, Fava F, et al. Shorter androgen receptor polyQ alleles protect against life-threatening COVID-19 disease in European males. EBioMedicine. 2021;65:103246. https://doi.org/10.1016/j.ebiom.2021.103246.
5. Blann AD, Nadar SK, Lip GYH, et al. The adhesion molecule P-selectin and cardiovascular disease. Eur Heart J. 2003;24:2166–79.
6. Merten M, Thiagarajan P. P-selectin in arterial thrombosis. Z Kardiol. 2004;93(11):855–63. https://doi.org/10.1007/s00392-004-0146-5.
7. Bongiovanni D, Klug M, Lazareva O, et al. SARS-CoV-2 infection is associated with a pro-thrombotic platelet phenotype. Cell Death Dis. 2021;12(1):S0. https://doi.org/10.1038/s41419-020-03333-9.
8. Manne BK, Denorme F, Middleton EA, et al. Platelet gene expression and function in patients with COVID-19. Blood. 2020;136(11):1317–29. https://doi.org/10.1182/blood.2020007214.
9. Ay C, Jungbauer LV, Kaidar A, et al. P-selectin gene haplotypes modulate soluble P-selectin concentrations and contribute to the risk of venous thromboembolism. Thromb Haemost. 2008;99(5):899–904. https://doi.org/10.1160/TH07-11-0672.
10. Tregouet DA, Barbaxu S, Escolano S, et al. Specific haplotypes of the P-selectin gene are associated with myocardial infarction. Hum Mol Genet. 2002;11(17):2015–23. https://doi.org/10.1093/hmg/11.17.2015.
11. Zhang S, Liu Y, Wang X, et al. SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19. J Hematol Oncol. 2020;13:120. https://doi.org/10.1186/s13045-020-00954-7.
12. Karolczak K, Konieczna L, Kostka T, et al. Testosterone and dihydrotestosterone reduce platelet activation and reactivity in older men and women. Aging (Albany NY). 2018;10(5):902–29. https://doi.org/10.18632/aging.101438.
13. Agrati C, Bordoni V, Sacchi A, et al. Elevated sP-selectin in severe Covid-19: considerations for therapeutic options. Mediterr J Hematol Infect Dis. 2021;13(1):e2021016. https://doi.org/10.4084/MJHID.2021.016.