Case report

Rare spindle cell hemangioma of bone: Case report and literature review

Cong Huang, MDa, Hengsheng Zhang, MDa,*, Li Guan, MDb, Junde Luo, MDa

aDepartment of Radiology, No. 926 Hospital, Joint Logistics Support Force of PLA, Kaiyuan, Yunnan 661699, China
bDepartment of Orthopedics, No. 926 Hospital, Joint Logistics Support Force of PLA, Kaiyuan, Yunnan 661699, China

\textbf{A R T I C L E I N F O}

Article history:
Received 12 October 2021
Revised 17 November 2021
Accepted 21 November 2021

Keywords:
Spindle cell hemangioma
Frontal bone
Vascular tumor
Magnetic resonance imaging

\textbf{A B S T R A C T}

Spindle cell hemangioma is a rare benign hemangioma. It is mainly found as small soft tissue nodules in the distal extremities, especially in the hands. The manifestation in bone is extremely rare. We present a case of spindle cell hemangioma of bone in the frontal bone. We also reviewed the literature to find the common imaging findings of intraosseous hemangiomas. The main manifestations of X-ray and CT were osteolytic lesions with soap bubble-like changes, and soft tissue mass formation. Magnetic resonance imaging mainly showed a lobulated mass with clear boundary, uneven hyperintense on T2WI, and obvious enhancement on contrast-enhanced scan. Surgical excision is curative. While this lesion is rare, it can be considered in the differential diagnosis if the characteristic imaging features are present.

© 2021 Published by Elsevier Inc. on behalf of University of Washington.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

\textbf{Introduction}

Spindle cell hemangioma (SCH) is an uncommon benign tumor. It is characterized by a combination of cavernous spaces and solid areas of spindle cells and epithelioid cells [1]. Since its first description by Weiss and Enzinger as a rare type of hemangioma in 1986 [1], only a few reports have been published on intraosseous spindle cell hemangioma in the relevant English medical literature, and 1 case arises in the calcaneus [2], 1 case arises in the periosteal of the fibula [3], 1 case arises in the sacrum [4], 1 case arises in the frontal bone [5].

Abbreviations: SCH, Spindle cell hemangioma; MRI, Magnetic resonance imaging; T1WI, T1-weighted images; T2WI, T2-weighted images; CT, Computed tomography.
* Corresponding author.
E-mail address: 347259009@qq.com (H. Zhang).
https://doi.org/10.1016/j.radcr.2021.11.051
1930-0433/© 2021 Published by Elsevier Inc. on behalf of University of Washington. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Herein, we reported a case with spindle cell hemangioma originating of the frontal bone.

\textbf{Case report}

A 50-year-old man presented with a 2-month history of a painless mass in the right side of the frontal bone. Physical examination revealed a mass in the frontal, which measured approximately 4.0 × 3.5 cm, was circumscribed, soft, non-mobile, and non-tender. Laboratory data and neurologic examinations...
Fig 1 – A-C, X-ray and CT examination of tumor (white arrow). A, X-ray showed local bone resorption and decreased density of the frontal bone. B-C, CT showed osteolytic destruction of frontal bone and formation of soft tissue mass with local soap bubble-like changes and continuous interruption of bone in the inner and outer plate.

were unremarkable. Plain radiography showed that there was a large circumscribe radiolucent lesion in the right of the frontal. There was no adjacent soft tissue swelling. (Fig. 1A). CT scan of the head showed a lytic lesion in the frontal bone, with a soap bubble appearance, cortical destruction, and associated soft tissue component. (Fig. 1B-C). Contrast-enhanced MRI revealed a lobulated mass in the frontal bone, measuring 3.7 × 3.3 × 2.8 cm. The lesion was hypointense on the T1-weighted images, hyperintense on the T2-weighted images, and demonstrated avid enhancement on the postcontrast sequences. (Fig. 2A-D).

Surgery and pathology

An operation was performed that the lesion was excised. Histologic examination of the obtained mass revealed Spindle cell hemangioma composed of dilated vascular spaces and a proliferation of bland appearing interspersed spindle cells (Fig. 3). Immunohistochemical analysis was diffusely positive for CD31, Action, Vimentin and focally for CD34, that they were consistent with spindle cell hemangioma

Postoperative course

The post-operative course was uneventful. Follow-up imaging revealed no evidence of recurrence. Because the tumor is benign, there’s no need to state that chemotherapy or radiation weren’t given!

Discussion

Spindle cell hemangioma, which is characterized by a combination of cavernous spaces and solid areas of spindle cells and
epithelioid cells is an uncommon vascular lesion that was first
described in 1986[1]. This entity was originally believed to be a
 tumor with limited metastatic potential, but now it is regarded
as a benign vascular lesion and not a low-grade angiosarcoma
[6]. While the course is benign, the lesion tends to recur [7].
It generally occurs as cutaneous or subcutaneous nodules in
young adults and typically arises in the subcutis of the distal
extremities, particularly the hand. Spindle cell hemangioma
of bone is more common in women, the incidence in women
is 2 ~ 3 times higher than that in men, and can occur at any
age, but middle-aged patients are the most common, and the
peak age of onset is about 40 years old. There are no specific
symptoms in the clinic. Combined with the literature cases,
there were 5 patients, 1 male and 4 female, aged from 35 to 65
years old, with an average age of 46 years old.

About their image performance is rarely reported based
on our extensive search of the English-language literature.
Imaging studies on spindle cell hemangiomas of bone have
rarely been described, and only four previous reports have
included imaging findings of spindle cell hemangiomas of
bone [2–4] (Table 1). The lesion can look aggressive, with os-
seous destruction and a soft tissue component. The lesions
are typically hypointense on T1-weighted imaging, heteroge-
one on T2-weighted imaging, and demonstrate enhance-
ment on post-contrast sequences. The imaging differential di-
agnosis of spindle cell hemangioma in the frontal bone in-
cludes eosinophilic granuloma and metastatic tumors. The
eosinophilic granuloma of the skull, which usually occurs in
male children, shows osteolytic destruction of the skull, pen-
etrates the internal and external plate of the skull, and the
"button-like" dead bone can be seen inside. there is no scle-
rotic edge around the focus, the edge is smooth, and the shape
of the soft tissue mass is regular. The edge is smooth. Skull
metastases, mostly in elderly patients, have a history of pri-
mary tumor, osteolytic bone destruction, and there are no resi-
dual bone fragments inside.

Pathologically, spindle cell hemangioma is characterized
by cavernous vessels and fusiform areas [8]. The cells are dark.
Author	Age (years)/gender	Location	Symptoms and size	Imaging appearance	Treatment	Recurrence	Follow-up (months)
Andrea Winter, B.A. et al [4]	31/F	Sacrum	Low-back and left lower-extremity pain in the S-1 distribution without weakness or bowel or bladder dysfunction. This lesion were 3.7×7.6cm in anteroposterior and transverse dimensions	A large osteolytic sacral lesion extending from S-1 to S-3, hypointense on T1- and mildly hyperintense on T2-weighted images, and avidly enhancing on the postcontrast T1-weighted images.	Embolization and excision	No	9
Shinji Tsukamoto et al [3]	49/F	Periosteal of fibula	Pain and swelling, no pain at rest, but felt pain during and after exercise. A fixed, very firm, tender mass of about 5cm.	Plain radiography showed that there was a large circumscribed radiolucent lesion on the surface of the fibula with a loculated soap bubble appearance. CT revealed a surface lesion with cortical destruction and periosteal. MRI revealed a lobulated tumor on the surface of the bone, homogenous intermediate intensity on T1, nonhomogenous high intensity on T2, a diffuse enhancement of tumor matrix with Gd-DTPA on T1-weighted fat-suppression imaging.	Excision	No	10
Michiyuki Hakozaki et al [2]	65/F	Calcaneus	Pain, the pain on weight bearing and did not pain on rest. This lesion were 4.6 × 3.1 × 2.8 cm.	Plain radiography revealed an osteolytic lesion with soap bubble–like multilocular appearance and a thinned lateral cortical bone in the left calcaneus. MRI revealed an intraosseous tumor in the left calcaneus, low intensity on T1, high intensity with mixed low and intermediate intensity on T2, marginal enhancement on gadolinium-enhanced, T1-weighted fat-suppression imaging.	At 21 months after the biopsy, curettage of the tumor with argon beam coagulator treatment and an autogenous iliac bone graft with β-tricalcium phosphate.	NO	18
Wu Jun et al [5]	35/F	Frontal bone	Right frontal mass, 3.0×2.0cm.	CT showed the right frontal bone lesions from the plate was flat outward expansion of the defect, the edge clear, the density decreased, the inner plate is not continuous	Excision	NO	12

M = male, F = female, MRI = magnetic resonance imaging, CT = computer tomography.
pink in HE staining, with plump nuclei and clear nucleoli. Immunohistochemical CD31 (and factor VIII or CD34) were positive.

Surgical treatment is the first choice and effective treatment for SCH. Although SCH is considered to be a benign disease, it has been reported that there may be recurrence after operation, and it may also involve the whole limb. However, no recurrence or other progression was found in this case after follow-up for 5 years. In the retrospective literature, 4 cases were followed up, the follow-up period ranged from 9 months to 18 months, and no signs of recurrence or progression were found during the follow-up period.

Conclusion

we have described a rare case of intraosseous SCH of the frontal bone, despite its rarity, this lesion should be included in the differential diagnosis of primary bone tumor or imag-

ing, especially if it is an osteolytic lesion with a loculated soap bubble appearance, and have an obvious enhancement on postcontrast. The diagnosis still needs to be combined with a pathological examination.

Patient consent

Written informed consent was obtained from his guardian for publication of this report.

Competing Interests

The authors report no conflict of interest concerning the materials or methods used in this study, or related to the findings specified in this paper.

REFERENCES

[1] Weiss SW, Enzinger FM. Spindle cell hemangiendothelioma: A low grade angiosarcoma resembling a cavernous hemangioma and Kaposi’s sarcoma. Am J Surg Pathol 1986;10:521–30.

[2] Hakozaki M, Tajino T, Watanabe K, et al. Intraosseous spindle cell hemangioma of the calcaneus: a case report and review of the literature. Ann Diagn Pathol 2012;16:369–73.

[3] Tsukamoto S, Honoki K, Shimada K, et al. Periosteal spindle cell hemangioma of the fibula: a case report. Skeletal Radiol 2013;42:1165–8.

[4] Winter A, Siu A, Jamshidi A, Malawer M, et al. Spindle cell hemangiendothelioma of the sacrum: case report. J Neurosurg Spine 2014;21:275–8.

[5] Jun Wu, You Zhou, Jun Fan, et al. Skull spindle cell hemangioma: case report. Chin J Neurosurg Dis Res 2011;10:280–1.

[6] Ding J, Hashimoto H, Imayama S, Tsuneyashi M, Enjoje M. Spindle cell hemangiendothelioma: probably a benign vascular lesion, not a low grade angiosarcoma. A clinicopathological, ultrastructural and immunohistochemical study. Virchows Arch A Pathol Anat Histopathol 1992;420:77–88.

[7] Chung DH, Keum JS, Lee GK, et al. Spindle cell hemangiendothelioma. J Korean Med Sci 1995;10:2115–211S.

[8] Weiss SW, Goldblum JR. Spindle cell hemangioma. In: Weiss SW, Goldblum JR, editors. Enzinger and Weiss’s soft tissue tumors. Philadelphia, PA: Mosby/Elsevier; 2008. p. 655–8.