GRADINGS BY GROUPS ON MELIKYAN ALGEBRAS

JASON MCGRAW

Abstract. In this paper we describe all gradings by abelian groups without
elements of order five on the Melikyan algebras over algebraically closed fields
of characteristic five.

1. Introduction

Let A be an algebra over a field F, G a group and Aut A, Aut G the automor-
phism groups of A and G, respectively. The base field F will always be algebraically
closed. The field will be of characteristic five when dealing with Melikyan algebras.

Definition 1. A grading Γ by a group G on an algebra A, also called a G-grading,
is a decomposition $\Gamma : A = \bigoplus_{g \in G} A_g$ where each A_g is a subspace such that
$[A_g, A_g'] \subset A_{g'g''}$ for all $g', g'' \in G$. For each $g \in G$, we call the subspace A_g
the homogeneous space of degree g. The set $\text{Supp}_\Gamma A = \{g \in G \mid A_g \neq 0\}$ is called
the support of the grading.

For a grading by a group G on a simple Lie algebra L, it is well known that
the subgroup generated by the support is abelian [6, Lemma 2.1]. If L is finite-
dimensional and the support generates G we have that G is finitely generated.

Definition 2. Two gradings $A = \bigoplus_{g \in G} A_g$ and $A' = \bigoplus_{h \in H} A'_h$
of an algebra A are called equivalent if there exist $\Psi \in \text{Aut } A$ and $\theta \in \text{Aut } G$ such that
$\Psi(A_g) = A'_{\theta(g)}$ for all $g \in G$. If θ is the identity, we call the gradings isomorphic.

Definition 3. Let $A = \bigoplus_{g \in G} A_g$ be a grading by a group G on an algebra A and
φ a group homomorphism of G onto H. The coarsening of the G-grading induced
by φ is the H-grading defined by $A = \bigoplus_{h \in H} A_h$ where
$$A_h = \bigoplus_{g \in G, \varphi(g) = h} A_g.$$

The task of finding all gradings on simple Lie algebras by finite groups in the
case of algebraically closed fields of characteristic zero is almost complete — see [10]
and also [1, 2, 3, 4, 5, 6, 7, 8, 9]. In the case of positive characteristic p, a description
of gradings on the classical simple Lie algebras, with certain exceptions, has been
obtained in [1, 2]. In the case of simple graded Cartan type Lie algebras, the
gradings by \mathbb{Z} have been described in [17]. It was shown in [15] that all gradings by
groups without elements of order p on the graded simple Cartan type Lie algebras,
up to isomorphism, fall into the category of what we call standard gradings (which
are coarsenings of the standard \mathbb{Z}^k-gradings). In [15] the gradings by arbitrary
groups on the Witt algebra $W(1;1)$ were described. The gradings on the restricted
Witt and special algebras have been announced recently by Bal'turin and Kochetov.
in [2]. This paper will deal with the gradings on the Melikyan algebras by arbitrary abelian groups with no elements of order five in the case where the base field F is assumed to be algebraically closed and $p = 5$. We use the notation of [17].

Our main result is the following.

Theorem 1. Let L be a Melikyan algebra over an algebraically closed field. Suppose L is graded by a group G, the support generates G and G has no elements of order 5. Then the grading is isomorphic to a standard G-grading.

The correspondence between the gradings on an algebra by finite abelian groups of order coprime to the characteristic p of the field and finite abelian subgroups of the automorphisms of this algebra is well known. Using the theory of algebraic groups, this extends to infinite abelian groups. Namely, a grading on an algebra $L = \bigoplus_{g \in G} L_g$ by a finitely generated abelian group without elements of order p gives rise to an embedding of the dual group \hat{G} into Aut L using the following action:

$$\chi \ast y = \chi(g)y, \quad \text{for all } y \in L_g, \quad g \in G, \quad \chi \in \hat{G}. $$

We will denote this embedding by $\eta : \hat{G} \to \text{Aut } L$, so

$$\eta(\chi)(y) = \chi \ast y. \tag{1}$$

Lemma 1. Let G, H be groups, A an algebra and $\phi : G \to H$ be a group homomorphism, $\Gamma : A = \bigoplus_{g \in G} A_g$ be a G-grading and $\Gamma : A = \bigoplus_{h \in H} \mathfrak{A}_h$ be the H-grading defined by $\mathfrak{A}_h = \bigoplus_{g \in G, \ h = \phi(g)} A_g$. Then $\eta_\Gamma(H) \subset \eta_\Gamma(\hat{G})$ where the homomorphisms $\eta_\Gamma : \hat{G} \to \text{Aut } A$ and $\eta_\Gamma : H \to \text{Aut } A$ are defined by (1) with respect to the gradings Γ and $\hat{\Gamma}$ respectively.

Proof. Let $\chi \in \hat{H}$. For $y \in A_g$ we have $\eta_\Gamma(\chi)(y) = \chi(\phi(g))y$ since $A_g \subset \mathfrak{A}_{\phi(g)}$. Let $\zeta : G \to F^\times$ be the map defined by $\zeta(g) = \chi(\phi(g))$ for all $g \in G$. Then

$$\zeta(g_1g_2) = \chi(\phi(g_1g_2)) = \chi(\phi(g_1)\phi(g_2)) = \chi(\phi(g_1))\chi(\phi(g_2)) = \zeta(g_1)\zeta(g_2)$$

for all $g_1, g_2 \in G$. Hence $\zeta \in \hat{G}$. Furthermore, for all $y \in A_g$ we have

$$\eta_\Gamma(\chi)(y) = \chi(\phi(g))y = \zeta(g)y = \eta_\Gamma(\zeta)(y).$$

Hence $\eta_\Gamma(\chi) \in \eta_\Gamma(\hat{G})$. \square

Lemma 2. Let G, H be abelian groups without elements of order p, A an algebra $\Gamma : A = \bigoplus_{g \in G} A_g$ be a G-grading and $\hat{\Gamma} : A = \bigoplus_{h \in H} \mathfrak{A}_h$ be an H-grading such that the groups are generated by their support respectively. If $\eta_\Gamma(H) \subset \eta_\Gamma(G)$ then $\hat{\Gamma}$ is a coarsening of the G-grading where $\eta_\Gamma(H)$ and $\eta_\Gamma(G)$ are defined by (1).

Proof. The eigenspaces of $\eta_\Gamma(G)$ and $\eta_\Gamma(H)$ are A_g and \mathfrak{A}_h respectively for all $g \in \text{Supp}_\Gamma A$ and $h \in \text{Supp}_\Gamma A$. Since $\eta_\Gamma(H) \subset \eta_\Gamma(G)$ we have that for any $g \in \text{Supp}_\Gamma A$ the eigenspace A_g of $\eta_\Gamma(G)$ is contained in some eigenspace \mathfrak{A}_h of $\eta_\Gamma(H)$ for some $h \in \text{Supp}_\Gamma A$ where h depends on g. Let $\phi : \text{Supp}_\Gamma A \to \text{Supp}_\Gamma A$ be the map defined by $\phi(g) = h$ for $g \in \text{Supp}_\Gamma A$ where $h \in \text{Supp}_\Gamma A$ and $A_g \subset \mathfrak{A}_h$. The map ϕ extends to a homomorphism of G onto H since $A_gA_{g'} \subset A_{g+g'}$ and $\mathfrak{A}_h\mathfrak{A}_{h'} \subset \mathfrak{A}_{h+h'}$ by the property of gradings and the groups are generated by their supports respectively. Then $\hat{\Gamma}$ is a coarsening of Γ. \square
If L is finite-dimensional, then $\text{Aut } L$ is an algebraic group, and the image $\eta(\hat{G})$ belongs to the class of algebraic groups called quasi-tori. Recall that a quasi-torus is an algebraic group that is abelian and consists of semisimple elements. Conversely, given a quasi-torus Q in $\text{Aut } L$, we obtain the eigenspace decomposition of L with respect to Q, which is a grading by the group of characters of Q, $G = \hat{X}(Q)$.

In this paper, L is a Melikyan algebra $M(2; \underline{n})$, where $\underline{n} = (n_1, n_2)$ is a pair of positive integers — see the definitions in the next section. Unless it is stated otherwise, m is a positive integer and $\underline{n} = (n_1, \ldots, n_m)$ is an m-tuple of positive integers. We denote by a and b some m-tuples of non-negative integers and by i, j, k, l some integers.

2. Melikyan Algebras and Their Standard Gradings

In this section we introduce some basic definitions, closely following [17, Chapter 2]. We start by defining the commutative algebras $O(m; \underline{n})$ and the Witt algebras $W(m; \underline{n})$ which we will use to define the Melikyan algebras when $m = 2$.

Definition 4. Let $O(m; \underline{n})$ be the commutative algebra

$$O(m; \underline{n}) := \left\{ \sum_{0 \leq \alpha \leq \tau(\underline{n})} \alpha(a)x^{(\alpha)} \mid \alpha(a) \in F \right\}$$

er over a field of characteristic p, where $\tau(\underline{n}) = (p^{n_1} - 1, \ldots, p^{n_m} - 1)$, with multiplication

$$x^{(a)}x^{(b)} = \left(\frac{a + b}{a}\right)x^{(a+b)}$$

where $\left(\frac{a + b}{a}\right) = \frac{1}{\prod_{i=1}^{m} \left(\frac{a_i + b_i}{a_i}\right)}$.

For $1 \leq i \leq m$, let $\epsilon_i := (0, \ldots, 0, 1, 0 \ldots, 0)$, where the 1 is at the i-th position, and $x_i := x^{(\epsilon_i)}$.

There are standard derivations on $O(m; \underline{n})$ defined by $\partial_i(x^{(\alpha)}) = x^{(\alpha - \epsilon_i)}$ for $1 \leq i \leq m$.

Definition 5. Let $W(m; \underline{n})$ be the Lie algebra

$$W(m; \underline{n}) := \left\{ \sum_{1 \leq i \leq m} f_i \partial_i \mid f_i \in O(m; \underline{n}) \right\}$$

with the commutator defined by

$$[f \partial_i, g \partial_j] = f(\partial_i g)\partial_j - g(\partial_j f)\partial_i, \quad f, g \in O(m; \underline{n}).$$

The Lie algebras $W(m; \underline{n})$ are called Witt algebras. $W(m; \underline{n})$ is a subalgebra of $\text{Der } O(m; \underline{n})$, the Lie algebra of derivations of $O(m; \underline{n})$.

From now on the base field F is algebraically closed and its characteristic is 5. We set $\hat{W}(2; \underline{n}) = O(2; \underline{n})\hat{\partial}_1 + O(2; \underline{n})\hat{\partial}_2$. We define the map $\text{div} : \hat{W}(2; \underline{n}) \to O(2; \underline{n})$ by

$$\text{div}(f_1 \partial_1 + f_2 \partial_2) := \partial_1(f_1) + \partial_2(f_2)$$
for all \(f_1, f_2 \in O(2; \mathfrak{n}) \). Also set
\[
f_1 \partial_1 + f_2 \partial_2 := f_1 \tilde{\partial}_1 + f_2 \tilde{\partial}_2
\]
for all \(f_1, f_2 \in O(2; \mathfrak{n}) \).

Definition 6. Let \(M(2; \mathfrak{n}) := O(2; \mathfrak{n}) \oplus W(2; \mathfrak{n}) \oplus \tilde{W}(2; \mathfrak{n}) \) be the algebra whose multiplication is defined by the following equations. For all \(D \in W(2; \mathfrak{n}), E \in \tilde{W}(2; \mathfrak{n}), f_1, f_2, g_1, g_2 \in O(2; \mathfrak{n}) \) we set
\[
[D, E] := [\widehat{D}, E] + 2 \text{div}(D) \widehat{E},
\]
\[
[D, f] := D(f) - 2 \text{div}(D)f,
\]
\[
[f, E] := fE
\]
\[
[f_1, f_2] := 2(f_1 \partial_1(f_2) - f_2 \partial_1(f_1))\tilde{\partial}_2 + 2(f_2 \partial_2(f_1) - f_1 \partial_2(f_2))\tilde{\partial}_1.
\]
\[
[f_1 \tilde{\partial}_1 + f_2 \tilde{\partial}_2, g_1 \tilde{\partial}_1 + g_2 \tilde{\partial}_2] := f_1 g_2 - f_2 g_1.
\]
We call \(M(2; \mathfrak{n}) \) the Melikyan algebra.

The algebras \(O(m; \mathfrak{n}), W(m; \mathfrak{n}), M(2; \mathfrak{n}) \) defined above have well known canonical \(\mathbb{Z} \)-gradings.

Definition 7. Let \(A = O(m; \mathfrak{n}), W(m; \mathfrak{n}), M(2; \mathfrak{n}) \). The canonical \(\mathbb{Z} \)-grading of \(A \),
\[
A = \bigoplus_{i \in \mathbb{Z}} = \{ y \in A | \text{deg}_A(y) = i \},
\]
is defined by declaring their degrees, \(\text{deg}_O, \text{deg}_W \) and \(\text{deg}_M \), respectively, as follows:
\[
\text{deg}_O(x^{(a)}) := a_1 + \cdots + a_m,
\]
\[
\text{deg}_W(x^{(a)} \partial_1) := a_1 + \cdots + a_m - 1,
\]
\[
\text{deg}_M(x^{(a)} \partial_1) := 3 \text{deg}_W(x^{(a)} \partial_1),
\]
\[
\text{deg}_M(x^{(a)} \tilde{\partial}_1) := 3 \text{deg}_W(x^{(a)} \partial_1) + 2,
\]
\[
\text{deg}_M(x^{(a)}) := 3 \text{deg}_O(x^{(a)}) - 2,
\]
for \(0 \leq a \leq \tau(\mathfrak{n}) \). The canonical filtration of \(A \), is defined by declaring \(A_{(i)} = \bigoplus_{j \geq i} A_j \).

Note that \(W(2; \mathfrak{n}) = \bigoplus_{i \in \mathbb{Z}} M_{3i} \).

Lemma 3. Let \(\Gamma_M : M(2; \mathfrak{n}) = \bigoplus_{(a, a_2) \in \mathbb{Z}^2} M_{(a_1, a_2)} \) where
\[
M_{(a_1, a_2)} := \text{Span}\{x^{(a+\varepsilon_i) \partial_1}| 1 \leq i \leq 2\}
\]
\[
M_{(3a_1, 3a_2)+\mathbb{1}} := \text{Span}\{x^{(a+\varepsilon_i) \tilde{\partial}_1}| 1 \leq i \leq 2\}
\]
\[
M_{(3a_1, 3a_2)-\mathbb{1}} := \text{Span}\{x^{(a)}\}.
\]
The decomposition above is \(\mathbb{Z}^2 \)-grading on \(M(2; \mathfrak{n}) \).
Remark 1. The support of the \(\mathbb{Z}^2 \)-grading \(\Gamma_M \) does not generate \(\mathbb{Z}^2 \). The support generates the subgroup \(G = \langle (3i + j, j) \mid i, j \in \mathbb{Z} \rangle \) which is isomorphic to \(\mathbb{Z}^2 \). Hence we can define a \(\mathbb{Z}^2 \)-grading for which the support generates \(\mathbb{Z}^2 \). Let \(\phi_M : \mathbb{Z}^2 \to \mathbb{Z}^2 \) defined by \(\phi_M((1,0)) = (3,0) \) and \(\phi_M((0,1)) = (1,1) \). If we set \(L_a = M_{\phi_M((a))} \) for \(a \in \mathbb{Z}^2 \) then \(\Gamma_M : M(2;\mathbb{N}) = \bigoplus_{a \in \mathbb{Z}^2} L_a \) is a \(\mathbb{Z}^2 \)-grading since \(\phi_M(\mathbb{Z}^2) = G \). Also since \(L_{(-1,0)} = M_{(-3,0)} = \text{Span}\{\partial_t\} \) and \(L_{(0,-1)} = M_{(-1,-1)} = F \) we have that the support of the \(\Gamma_M \) grading generates \(\mathbb{Z}^2 \).

Note that the grading in Lemma 3 is a coarsening of the \(\Gamma_M \) grading. By Lemma 4 we have that \(\eta_{\Gamma_M}(\mathbb{Z}^2) \subset \eta_{\Gamma_M}(\mathbb{Z}^2) \). We will mainly work with the grading \(\Gamma_M \) and get results for \(\Gamma_M \). We will show that \(\eta_{\Gamma_M}(\mathbb{Z}^2) \) is a maximal abelian subgroup of \(\text{Aut} M(2;\mathbb{N}) \) which implies that \(\eta_{\Gamma_M}(\mathbb{Z}^2) = \eta_{\Gamma_M}(\mathbb{Z}^2) \).

Definition 8. We call the \(\mathbb{Z}^2 \)-grading \(\Gamma_M \) in Remark 4 the standard \(\mathbb{Z}^2 \)-grading on \(M(2;\mathbb{N}) \). Let \(\text{deg}_{\Gamma_M}(y) \) and \(\text{deg}(y) \) be the degrees of \(y \) with respect to the \(\mathbb{Z}^2 \)-gradings \(\Gamma_M \) and \(\Gamma_M \) respectively.

Remark 2. The canonical \(\mathbb{Z} \)-grading is a coarsening of the \(\mathbb{Z}^2 \)-grading \(\Gamma_M \) from Lemma 5 and hence a coarsening of the standard \(\mathbb{Z}^2 \)-grading \(\Gamma_M \). Explicitly,

\[
M_i = \bigoplus_{a_1 + a_2 = i} M_{(a_1, a_2)}.
\]

Definition 9. Let \(G \) be an abelian group and \(\varphi : \mathbb{Z}^2 \to G \) a homomorphism. The decomposition \(M(2;\mathbb{N}) = \bigoplus_{g \in G} M_g \), given by

\[
M_g = \text{Span}\{y \in M(2;\mathbb{N}) \mid \varphi(\text{deg}_{\Gamma_M}(y)) = g\},
\]

is a \(G \)-grading on \(M(2;\mathbb{N}) \). We call such decomposition a standard \(G \)-grading induced by \(\varphi \) on \(M(2;\mathbb{N}) \). We will refer to a standard \(G \)-grading induced by \(\varphi \) as a standard \(G \)-grading when \(\varphi \) is not specified.

The grading \(\Gamma_M \) on \(M(2;\mathbb{N}) \) gives rise to a quasi-torus \(\eta_{\Gamma_M}(\mathbb{Z}^2) \). We will show later that \(\eta_{\Gamma_M}(\mathbb{Z}^2) \) is actually a maximal torus. Let \(t^a := t_1^{a_1} t_2^{a_2} \) for all \(\underline{a} = (t_1, t_2) \in (F^\times)^2 \) and \(\alpha(\underline{a}) := t_1 t_2 \). We define \(\lambda : (F^\times)^2 \to \text{Aut} M(2;\mathbb{N}) \) where

\[
\begin{align*}
\lambda(t^a)x(a)\partial_i & := t^{3a-3x(a)}(a)\partial_i, \\
\lambda(t^a)x(a)\partial_i & := t^{3a-3x(a)}\alpha(\underline{a})(x(a))\partial_i, \\
\lambda(t^a)x(a) & := t^{3a}\alpha(\underline{a})^{-1}x(a).
\end{align*}
\]

For any element \(y \) in \(M_{(a_1, a_2)} \) of the grading \(\Gamma_M \) we have \(\lambda(t(y)) = \underline{t}^a y \) which is the same as saying \(\lambda(t)(y) = \underline{t}^{\text{deg}(y)} y \).

Lemma 4. \(\lambda \) is a homomorphism of algebraic groups.

Proof. We start by showing that for \(\underline{a} \in (F^\times)^2 \) we have \(\lambda(t^a) \in \text{Aut} M(2;\mathbb{N}) \). Lemma 3 gives us that \(\text{deg}([y, z]) = \text{deg}(y) + \text{deg}(z) \) when \(y, z \) are homogeneous elements. For homogeneous \(y, z \) we have

\[
\lambda(t)([y, z]) = \underline{t}^{\text{deg}([y,z])} [y, z] = \underline{t}^{\text{deg}(y) + \text{deg}(z)} [y, z] = \underline{t}^{\text{deg}(y)} \underline{t}^{\text{deg}(z)} [y, z].
\]

Hence \(\lambda(t) \in \text{Aut} M(2;\mathbb{N}) \).
Now we show that λ is a homomorphism. Let $s, t \in (F^\times)^2$ and y be a homogeneous element. Then

$$\lambda(sy) = (sx)^{\deg(y)} = s^{\deg(y)}x^{\deg(y)} = s^{\deg(y)}\lambda(x)(y)$$

which shows that λ is a homomorphism.

It is obvious that λ is a rational map and it is a homomorphism. \square

Let $T_M := \lambda((F^\times)^2)$. The kernel of λ is $\{(t_1, t_2) \in (F^\times)^2 \mid t_1^3 = t_2^3 = 1, t_1t_2 = 1\}$. Since the kernel is finite and λ is a regular homomorphism we have that T_M is a torus.

Lemma 5. The torus T_M is $\eta_{\hat{\Gamma}M}(\widehat{\mathbb{Z}^2})$.

Proof. First we show that $\eta_{\hat{\Gamma}M}(\widehat{\mathbb{Z}^2}) \subset T_M$. Let $\chi \in \widehat{\mathbb{Z}^2}$ and $\chi((1,0)) = t_1 \in F^\times$ and $\chi((0,1)) = t_2 \in F^\times$. For $y \in M_{(a_1, a_2)}$ we have

$$\eta_{\hat{\Gamma}M}(\chi)(y) = \chi((a_1, a_2))y = \chi((a_1, 0))\chi((0, a_2))y = \chi((0, 1))^{a_1}y = (t_1, t_2)^{\deg(y)}y = \lambda((t_1, t_2))(y).$$

Hence $\eta_{\hat{\Gamma}M}(\chi) \in T_M$ and we have $\eta_{\hat{\Gamma}M}(\widehat{\mathbb{Z}^2}) \subset T_M$.

Now we show that $T_M \subset \eta_{\hat{\Gamma}M}(\widehat{\mathbb{Z}^2})$. For $\chi : \mathbb{Z}^2 \rightarrow F^\times$ let $\chi : \mathbb{Z}^2 \rightarrow F^\times$ be the element of $\widehat{\mathbb{Z}^2}$ defined by $\chi(a) = t^a$ for any $a \in \mathbb{Z}^2$. For $y \in M_{a}$, $a \in \mathbb{Z}^2$ we have

$$\lambda(\chi)(y) = \chi(y) = \eta_{\hat{\Gamma}M}(\chi)(y).$$

Hence $\lambda(\chi) \in \eta_{\hat{\Gamma}M}(\widehat{\mathbb{Z}^2})$ and we have $T_M \subset \eta_{\hat{\Gamma}M}(\widehat{\mathbb{Z}^2})$. \square

The following proposition shows that if we want to know more about the quasitorus $\eta(\hat{G})$ up to conjugation by an automorphism of $M(2; n)$ then we should look at the normalizer of a maximal torus in $\Aut M(2; n)$. This follows from [10] Corollary 3.28.

Proposition 1. A quasi-torus of an algebraic group belongs to the normalizer of a maximal torus. \square

In Section 3, we will show that T_M is a maximal torus of $\Aut M(2; n)$. This leads us to look at the normalizer of the restriction of T_M on $W(2; n)$ in $\Aut W(2; n)$. Using that the automorphisms of $W(2; n)$ can extend to $\Aut M(2; n)$ (– see [12]) we can then extend the information of the normalizer in $\Aut W(2; n)$ to get the normalizer of T_M in $\Aut M(2; n)$.

The goal of Section 3 is to show that if G has no elements of order five then $\eta(\hat{G})$ is always contained in a maximal torus.

3. **The Automorphism Groups of Melikyan Algebras**

The automorphism group of $M(2; n)$ respects the canonical filtration on $M(2; n)$ (– see proof of [13] Theorem 4.7). Also [12] says that any automorphism of $W(2; n)$ can be extended to an automorphism of $M(2; n)$.

We start by looking at a maximal torus of $\Aut W(2; n)$. Let

$$T_W := \{ \psi \in \Aut W(2; n) \mid \psi(x^{(a)}\partial_k) = t_1^{a_1}t_2^{a_2}t_k^{-1}x^{(a)}\partial_k, t_j \in F^\times \}.$$

According to [17], p. 371, T_W is indeed a maximal torus of $W(2; n)$.

Let $\Aut W M(2; n) = \{ \Psi \in \Aut M(2; n) \mid \Psi(W(2; n)) = W(2; n) \}$ and $\pi : \Aut W M(2; n) \rightarrow \Aut W(2; n)$ is the respective restriction map on
\(\text{Aut}_W M(2; \underline{n}) \). Since \(T_M = n_{\overline{M}}(\overline{2^2}) \) with respect to the \(\mathbb{Z}^2 \)-grading \(T_M \) on \(M(2; \underline{n}) \) and \(W(2; \underline{n}) \) is a graded subspace of this grading we have \(T_M \subset \text{Aut}_W M(2; \underline{n}) \).

Lemma 6. The restriction of \(T_M \) to \(W(2; \underline{n}) \) is \(T_W \).

Proof. We start by showing \(T_W \subset \pi(T_M) \). For any \(\psi \in T_W \) we have a pair \((s_1, s_2) \in (F^\times)^2\) such that \(\psi(x^{(a)} \partial_i) = s_1^{a_1} s_2^{a_2} s_i^{-1} x^{(a)} \partial_i \). For any element \(u \in F^\times \) there is at least one element \(v \) such that \(v^3 = u \) because \(F \) is algebraically closed. Hence there exist \(t_1 \) and \(t_2 \) in \(F^\times \) such that \(t_1^3 = s_1 \) and \(t_2^3 = s_2 \). Computing \(\lambda(t) \) on \(x^{(a)} \partial_i \) we get
\[
\lambda(t)(x^{(a)} \partial_i) = t_1^{3a_1} t_2^{3a_2} t_i^{-1} x^{(a)} \partial_i = s_1^{a_1} s_2^{a_2} s_i^{-1} x^{(a)} \partial_i.
\]
This shows that \(\psi = \pi(\lambda((t_1, t_2))) \in \pi(T_M) \) and we have \(T_W \subset \pi(T_M) \).

The kernel of \(\pi \) on \(T_M \) is \(\{ \lambda(t) \in T_M \mid t_1^3 = t_2^3 = 1 \} \).

Lemma 7. [12, Lemma 5] If \(\Theta \in \text{Aut}_W M(2; \underline{n}) \) is such that \(\pi(\Theta) = \text{Id}_W \) then for \(y \in M_i, i \in \mathbb{Z} \), there exists a \(\beta \) such that \(\Theta(y) = \beta^i y \) where \(\beta^3 = 1 \).

We now fix \(\beta \) to be a primitive third root of unity and set \(\Theta := \lambda(\beta^2, \beta^2) \). Note that \(\Theta \in T_M \).

Corollary 1. Let \(\Psi \) and \(\Phi \) be elements of \(\text{Aut}_W M(2; \underline{n}) \). If \(\pi(\Psi) = \pi(\Phi) \) then there exists an \(l \) such that \(0 \leq l \leq 2 \) and \(\Psi = \Phi \Theta^l \).

Proof. If \(\pi(\Psi) = \pi(\Phi) \) then \(\pi(\Phi^{-1} \Psi) = \text{Id}_W \). By Lemma 7 we have \(\Phi^{-1} \Psi = \Theta^l \) for some \(0 \leq l \leq 2 \).

Corollary 2. If \(\Psi \in \text{Aut}_W M(2; \underline{n}) \) is such that \(\pi(\Psi) \in T_W \) then \(\Psi \in T_M \).

Proof. Lemma 6 shows that there exists \(\Phi \in T_M \) such that \(\pi(\Phi) = \pi(\Psi) \) and Corollary 1 says that \(\Psi = \Phi \Theta^l \) for some \(1 \leq l \leq 2 \). Hence \(\Psi \in T_M \).

In order to describe the normalizers in \(\text{Aut} W(2; \underline{n}) \) and \(\text{Aut} M(2; \underline{n}) \) we introduce the automorphism \(\nu \) of \(O(2; \underline{n}) \) that induces an automorphism \(\sigma \) of \(W(2; \underline{n}) \) and finally we extend \(\sigma \) to \(\text{Aut} M(2; \underline{n}) \). For \(\underline{n} = (n_1, n_2) \) we define \(\overline{n} := (a_2, a_1) \) for \(a = (a_1, a_2) \in \mathbb{Z}^2 \). Let \(n_1 = n_2 \). The linear maps \(\nu \) and \(\sigma \) of \(O(2; \underline{n}) \) and \(W(2; \underline{n}) \) respectively, defined by \(\nu(x^{(a)}) := x^{\overline{n}} \) and \(\sigma(D) := D \nu^{-1} \) for \(x^{(a)} \in O(2; \underline{n}) \), and all \(D \in W(2; \underline{n}) \).

Lemma 8. For \(n_1 = n_2 \), the maps \(\nu \) and \(\sigma \) are automorphisms of \(O(2; \underline{n}) \) and \(W(2; \underline{n}) \) respectively.

Proof. It follows easily from [17, Theorem 6.3.2] that \(\nu \) is a continuous automorphism of \(O(2; \underline{n}) \) (which are in \(\text{Aut} O(2; \underline{n}) \) as the name implies). It follows from [17, Theorem 7.3.2] that conjugating an element \(D \) of \(W(2; \underline{n}) \) by a continuous automorphism \(\psi \) of \(O(2; \underline{n}) \), \(D \mapsto \psi \circ D \circ \psi^{-1} \) is an automorphism of \(W(2; \underline{n}) \) and hence \(\sigma \in \text{Aut} W(2; \underline{n}) \).

Lemma 9. [15] The normalizer of \(T_W \) in \(\text{Aut} W(2; \underline{n}) \) is \(T_W \) if \(n_1 \neq n_2 \) and \(T_W \langle \sigma \rangle_2 \) if \(n_1 = n_2 \).

The following follows from the first paragraph on p.3920 of [12].
Proposition 2. For every automorphism ψ of $W(2; n)$ there exists a ψ_M of $M(2; n)$ which respects $W(2; n)$ and whose restriction to $W(2; n)$ is ψ. □

By Proposition 2 there exists a $\sigma_M \in \text{Aut} M(2; n)$ which respects $W(2; n)$ and whose restriction is σ. We fix this σ_M.

Now we can prove that T_M is a maximal torus in $\text{Aut} M(2; n)$. Let $U_M = \langle \sigma_M \rangle$ when $n_1 = n_2$ and identity otherwise.

Proposition 3. The normalizer of T_M in $\text{Aut} M$ is $T_M U_M$.

Proof. In [12] p. 3921 it is stated that we can decompose $\Psi \in \text{Aut} M$ as the product of $\Psi = \Phi \Omega$ where Φ, $\Omega \in \text{Aut} M(2; n)$ are such that for all $i \in \mathbb{Z}$ we have

$$\Phi(y) = y + M_{(i+1)} \quad \text{for } y \in M_i,$$

$$\Omega(M_i) = M_i.$$ Let $\Psi \in N_{\text{Aut} M(2; n)}(T_M)$. Then we will show that $\Phi = \text{Id}_M$.

Let $y \in M_i$ be a nonzero eigenvector of T_M. Since $\Psi(y) \in M_{(i+1)}$ by (2) and $0 \neq \Psi(y) \in M_k$ we have $k \geq i$. Hence $\Phi(y) = y$ for all $i \in \mathbb{Z}$. Now we use the decomposition of $\Psi = \Phi \Omega$. We have $\Omega(y) = w \in M_i$ since $\Omega(M_i) = M_i$ for all i. (2)

$$\Psi(y) = \Phi(\Omega(y)) = \Phi(w) \in w + M_{(i+1)}.$$ Since $w \neq 0$ the calculations above show that $\Psi(y) \in M_{(i)}$ and $\Psi(y) \notin M_{(i+1)}$.

The intersection of M_k and $M_{(i)} = \bigoplus_{j \geq i} M_j$ is zero if $k < i$. Since $\Psi(y) \in M_{(i)}$ by (2) and $0 \neq \Psi(y) \in M_k$ we have $k \geq i$. Since $\Psi(y) \notin M_{(i+1)}$ by (2) and $\psi(y) \in M_k$ we have $k \leq i$. Hence $k = i$. We have shown that $\Psi(M_i) = M_i$ for all i.

Hence $\Phi = \text{Id}_M$. Since $W(2; n) = \bigoplus_{i \in \mathbb{Z}} M_i$, we have $\Psi(W(2; n)) = W(2; n)$. We conclude that if $\Psi \in N_{\text{Aut} M(2; n)}(T_M)$ then Ψ preserves the standard \mathbb{Z}-grading of $M(2; n)$ and that $\pi(\Psi) \in N_{\text{Aut} W(2; n)}(T_W)$ since $\pi(T_M) = T_W$ (Lemma 6).

According to Lemma 6, $N_{\text{Aut} W(2; n)}(T_W) = T_W$ when $n_1 \neq n_2$ and $T_W(\sigma)$ if $n_1 = n_2$. By Corollary 2 the set of automorphisms of $M(2; n)$ which when restricted to $W(2; n)$ are in T_M is $\text{Aut} W(2; n)$. When $n_1 = n_2$, Corollary 4 says that if $\Psi \in \text{Aut} W(2; n)$ and $\pi(\Psi) = \rho \sigma$, where $\rho \in T_W$ then there exists $z \in T_M$ such that $\pi(z) = \rho$ and $\Psi = z\sigma M \Theta$ for $0 \leq l \leq 2$. The automorphism Θ is in T_M since $\Theta = \lambda(\beta^2, \beta^2)$. Hence, $N_{\text{Aut} M(2; n)}(T_M) \subset T_M U_M$.

Conversely let $\Psi \in \text{Aut} W(2; n)$ such that $\pi(\Psi) \in N_{\text{Aut} W(2; n)}(T_W)$. Then

$$\pi(\Psi \lambda(\beta) \Psi^{-1}) = \pi(\Psi) \pi(\lambda(\beta)) \pi(\Psi)^{-1} \in T_W.$$ By Corollary 2 we have that $\Psi(\lambda(\beta) \Psi^{-1} \in T_M$ and hence it follows that $\Psi \in N_{\text{Aut} M(2; n)}(T_M)$. Since for $n_1 = n_2$ we have $\pi(\sigma_M) = \sigma \in N_{\text{Aut} W(2; n)}(T_W)$ and it follows that $\sigma_M \in N_{\text{Aut} M(2; n)}(T_M)$. We have shown that $T_M U_M \subset N_{\text{Aut} M(2; n)}(T_M)$.

□

Corollary 3. The centralizer of T_M in $\text{Aut} M(2; n)$ is T_M. Moreover, T_M is a maximal torus and $T_M = \eta_{\mathbb{Z}^2}(\mathbb{Z}^2)$.

Proof. The centralizer of T_M is contained in the normalizer of T_M. By Proposition 3 the normalizer of T_M is in $\text{Aut} W(2; n)$. This implies that if $\Psi \in \text{Aut} W(2; n)$ and Ψ is in the centralizer of T_M then $\pi(\Psi)$ must be in the centralizer of $\pi(T_M) = T_W$ (Lemma 6). Since T_W is a maximal torus and (for $n_1 = n_2$) $\sigma \notin T_W$ we have
that σ is not in the centralizer of T_W. Hence σ_M is not in the centralizer of T_M. We have shown that the centralizer of T_M in $\text{Aut} M(2; \underline{n})$ is T_M and that T_M is a maximal torus.

By Lemma 1 we have $T_M = \eta_{T_M}(\hat{Z}^2) \subset \eta_{M(2; \underline{n})}(\hat{Z}^2)$. Since $\eta_{T_M}(\hat{Z}^2)$ is abelian and contains T_M it must be in the centralizer of T_M which is T_M. □

Proposition 4. Let Q be a quasi-torus in $\text{Aut} M(2; \underline{n})$. There is an automorphism $\Psi \in \text{Aut} M(2; \underline{n})$ such that $\Psi Q \Psi^{-1} \subset T_M$.

Proof. By Proposition 1 Q is inside the normalizer of a maximal torus. Up to conjugation we can assume $Q \subset \mathcal{N}_{\text{Aut} M(2; \underline{n})}(T_M)$. Then Q must preserve $W(2; \underline{n})$ since $\mathcal{N}_{\text{Aut} M(2; \underline{n})}(T_M) = T_M U_M$ (Proposition 3). Let $Q' = \pi(Q)$. It follows that $Q' \subset \mathcal{N}_{\text{Aut} W(2; \underline{n})}(T_W)$. In [15] it is shown that there exists a $\psi \in \text{Aut} W(2; \underline{n})$ such that $\psi Q' \psi^{-1} \subset T_W$. Proposition 2 says that there is $\Psi \in \text{Aut} M(2; \underline{n})$ such that $\pi(\Psi) = \psi$. Hence $\pi(\Psi Q \Psi^{-1}) = \psi Q' \psi^{-1} \subset T_W$. Since $\pi(\Psi Q \Psi^{-1}) \subset T_W$, Corollary 2 gives us that $\Psi Q \Psi^{-1} \subset T_M$. □

We can now prove Theorem 1.

Proof. Let $L = M(2; \underline{n})$. Suppose $\Gamma : L = \bigoplus_{g \in G} L_g$ is a G-grading where G is a group without elements of order five. Without loss of generality, we assume that the support of the grading generates G. Let $\eta_T : \hat{G} \to \text{Aut} L$ be the corresponding embedding and $Q = \eta_T(\hat{G})$. Then by Proposition 4 there is a $\Psi \in \text{Aut} M(2; \underline{n})$ such that $\Psi Q \Psi^{-1} \subset T_M$. Recall that by Corollary 3 that $T_M = \eta_{T_M}(\hat{Z}^2)$. It follows from Lemma 2 that $L = \bigoplus_{g \in G} L'_g$, where $L'_g = \Psi(L_g)$, is a coarsening of the standard Z^2-grading Γ_M which is isomorphic to the original grading. □

References

[1] Bahturin, Y.; Kochetov, M. *Group Gradings on the Lie algebra psl_n in positive characteristic*. J. Pure Appl. Algebra 213 (2009), no. 9, 1739–1749.

[2] Bahturin, Y.; Kochetov M., *Group Gradings on Restricted Cartan Type Lie Algebras*. arXiv:math/1001.0191 (2009)

[3] Bahturin, Y.; Kochetov, M.; Montgomery, S. *Group Gradings on Simple Lie Algebras in Positive Characteristic*. Proc. AMS 137 (2009) no.4, 1245-1254.

[4] Bahturin, Y.; Shestakov, I. P.; Zaicev, M. V. *Gradings on simple Jordan and Lie algebras*. J. Algebra 283 (2005), no. 2, 849–868.

[5] Bahturin, Y.; Tvalavadze, M. *Group gradings on G_2*. Comm. Algebra 37 (2009), no. 3, 885–893

[6] Bahturin, Y.; Zaicev, M. *Group gradings on simple Lie algebras of type “A”*. J. Lie Theory 16 (2006), no. 4, 719–742.

[7] Draper, C.; Martín, C. *Gradings on g_2*. Linear Algebra Appl. 418 (2006), no. 1, 85–111.

[8] Draper, C.; Martín, C. *Gradings on the Albert algebra and on \mathfrak{f}_4*. To appear in Revista Matemática Iberoamericana.

[9] Draper, C.; Viruel, A. *Group gradings on $o(8, \mathbb{C})$*. Rep. Math. Phys. 61 (2008), no. 2, 265–280.

[10] Elduque, A. *Fine gradings on simple classical Lie algebras*. arXiv:0906.0655 (2009).

[11] Halvícik, M.; Patera, J. and Pelantová, E. *On Lie gradings II*. Linear Algebra App. 277 (1998), 97-125.

[12] Kuznetsov, Michael I.; Mulyar, Olga A. *Automorphisms of exceptional simple Lie algebras*. Special issue dedicated to Alexei Ivanovich Kostrikin. Comm. Algebra 29 (2001), no. 9, 3919–3934.

[13] Kuznetsov, M. I.*The Melikyan algebras as Lie algebras of the type G_2*. Comm. Algebra 19 (1991), no. 4, 1281–1312

[14] McGaw, J. *Gradings by Finite Groups of the Witt Algebra*. to appear in Communications in Algebra.
[15] McGraw, J. Gradings by Groups on the Cartan type Lie Algebras. arXiv:1002.4893v1 (2010).
[16] Platonov, V. P. The Theory of Algebraic Linear Groups and Periodic Groups. Trans Amer. Math. Soc. Series 2 69 (1968), 61–159.
[17] Strade, H. Simple Lie algebras over Fields of Positive Characteristic, I Structure Theory. De Gruyter Expositions in Mathematics, 38. Walter de Gruyter & Co., Berlin, 2004. viii+540 pp.