Swiss halocarbon emissions for 2019 to 2020 assessed from regional atmospheric observations

Dominique Rust¹,², Ioannis Katharopoulos¹,³, Martin K. Vollmer¹, Stephan Henne¹, Simon O’Doherty⁴, Daniel Say⁴, Lukas Emmenegger¹, Renato Zenobi², Stefan Reimann¹

¹Laboratory for Air Pollution/Environmental Technology, Empa, Swiss Federal Laboratories for Materials Science and Technologies, Dübendorf, Switzerland
²Department of Chemistry and Applied Biosciences, ETH, Swiss Federal Institute of Technology, Zurich, Switzerland
³Institute for Atmospheric and Climate Science, ETH, Swiss Federal Institute of Technology, Zurich, Switzerland
⁴Atmospheric Chemistry Research Group, University of Bristol, Bristol, UK

Correspondence to: Stefan Reimann (stefan.reimann@empa.ch)

Introduction

RC1: "This paper describes Swiss emissions of a large number of greenhouse and ozone-depleting gases from two top-down methods and compares these results with those officially reported or derived from Jungfraujoch observations. The new observations from Beromünster, Switzerland are introduced and form the main basis for the paper, although other observation stations are used in the inverse modelling."

Reply: A short additional comment on the selection of the sites for the Bayesian inversion (as was also addressed in the reply to the second independent reviewer): The decision of the selection of sites was, on the one hand, based on the quality and completeness of the observations at each site and, on the other hand, on the sensitivity of the sites to Swiss emissions, the main focus of this study. We performed test inversions including an additional site (Taunus Observatory) or excluding the sites at Mace Head and Tacolneston (see also the addendum in Sect. 2.5 of the manuscript). Based on this, for the Bayesian inversion, apart from Beromünster, we continued with the sites at Jungfraujoch, Mace Head and Tacolneston, as described in the manuscript.

General comment

RC1: For quite a few gases there are very significant differences between the TRM and the BI methods. It is therefore a reasonable question to ask whether the times of good agreement are just fortuitous. The key question that has to be addressed is why there is there good agreement sometimes and poor on other occasions. This does undermine the credibility of what is presented if this is not addressed. Which method do the authors believe is the better method?

Reply: Thank you for addressing this substantial question. To meet this point, we added another subsection (Sect. 3.2.4 Methods appraisal) to the manuscript discussing the two calculation methods in this light: "Both applied methods, the TRM and the BI, have their advantages and disadvantages. For the TRM we make the assumptions that the analyte and the tracer have similar spatial and temporal emissions sources, and that the transport distance is either sufficiently short for the ratio of analyte and tracer to be preserved until reaching the receptor, or that the transport distance is sufficiently long so that analyte and tracer emissions from multiple sources are well-mixed when reaching the receptor (Sect. 2.4). The Bayesian inversion makes the assumption that emissions are constant in time. For compounds with intermittent emissions, this may lead to reduced model performance. Furthermore, the method seeks to locate emissions in space, guided by a priori information. In the case of large spatial differences..."
between a priori and real emissions, the method will be challenged, once again leading to reduced model performance. We observe, that for most substances, except the major HFCs, the HFOs, and SF$_6$, the TRM result exceeds the BI result. Possible reasons for this are that the assumption of similar emission sources of analyte and CO as the tracer does not hold and/or that the analyte and tracer emissions are not well mixed when reaching the receptor, leading to a distortion of the halocarbon-tracer ratio. Nonetheless, we used CO as a good universal tracer for many substances. If we used another dispersedly emitted tracer, we would have similar problems. For both calculation methods, we indicated the reliability of the emissions results (Sect. 2.4, 2.5, and Fig. 4) and regarding the most highly emitted substances, we especially consider our results dependable for the major HFCs, the three HFOs, and SF$_6$.”

Substantive Points

RC1: P.7, L225: “for a larger emitting region and over an increased time period” – Larger than what and increased relative to what? Please can this sentence be clarified.

New line numbering "track_changes" document: P.8, L.263
New line numbering "corrected" document: P.8, L.252
Reply: Thank you for the remark, the phrasing was too vague. We improved the text to make it clear: "This also implies that the analyte and the tracer behave similarly in the atmosphere or that the transport distance to the measurement site is either short enough for the analyte and tracer ratio to be preserved or long enough so that analyte and tracer emissions from multiple sources are well-mixed. In this case, a sufficiently large catchment area is needed for substances with distinct emission areas, to result in improved mixing with the tracer.”

RC1: P.8, L250: “specific sigma factors, i.e. 1, 1.5, and 2” – Are these not better described as multiplication factors? If I understand correctly this means that when the factor is 1, more points are considered ‘polluted’ as they are above the baseline + (baseline uncertainty)? Please can this be made clearer? In fact if table S4 (there is no Supplement 4.1) had extra columns the values for factors of 1 and 2 could be included making this very clear.

New line numbering "track_changes" document: P.9, L.291
New line numbering "corrected" document: P.8, L.279
Reply: In the text we changed the term "multiplying with specific sigma factors" to "multiplying with specific factors". We corrected the indication to the Supplement to "Supplement 4". In the caption for Figure 3 and on P. 16, L. 499 (track changes document) we corrected the term "sigma factor" to "multiplication factor". In the Supplement, we added columns for the background fractions for the multiplication factors of 1 and 2 to Table S3, and corrected the caption text accordingly. For Figure S1 we also corrected the caption text accordingly.

RC1: P.8, L.272: “were added to the” – This was unclear to me, you cannot just add 2%, say, to both elements? You could add 2% to the top and subtract 2% from the bottom and vice versa, to give a range. Please can this be clarified.

New line numbering "track_changes" document: P.9, L.312 following.
New line numbering "corrected" document: P.9, L.300 following.
Reply: The two types of accuracies resulting from the calibration of the halocarbon measurements were added in an absolute manner to the uncertainty already being assigned to the term ΔX. This latter uncertainty results from
the propagation of the measurement precisions of each halocarbon \(X \) and the uncertainty of the modelled baseline fit being subtracted from \(X \) (forming \(\Delta X \)). We changed the wording of the text to: "For the halocarbon and CO measurements, the corresponding measurement precisions (Sect. 2.2) at 1-sigma (68 \%) confidence level, and the uncertainty of the modelled baseline fit were propagated by standard Gaussian error propagation. Then the two types of calibration accuracies (Sect. 2.2) for the halocarbon measurements were added to the uncertainty of the term \(\Delta X \) before calculation of the halocarbon–CO emission ratio. Final uncertainties for emission estimations were calculated at the 2-sigma (95 \%) confidence level."

RC1: P.9, L.294: “0.2° by 0.2° in the Alpine area and 1° by 1° elsewhere” – How big is the Alpine area? Also 1 degree (110km) seems very coarse for modelling coastal Mace Head and Tacolneston (~50km from the coast) sites. Has this been demonstrated to be sufficient? What impact would having 0.2 degrees everywhere make?

New line numbering "track_changes" document: P.8, L.243
New line numbering "corrected" document: P.7, L.232

Reply: The Alpine domain extends from 4° W to 16° E and 39° N to 51° N. The coarse resolution for Mace Head and Tacolneston was used in previous studies as well and did not reveal a strong limitation of the model to capture the observed concentrations (e.g., Simmonds et al. 2020). We added the coordinates for the Alpine area to the manuscript text accordingly.

RC1: P.9, L.296: “for 4 and 10 days” – How far do the particles travel in these time scales on average and as a minimum? The length of the simulation will naturally affect the residence time percentages used in the TRM? Also it seems reasonable that all the particles will have clearly left the Swiss area within 4 days but it is not clear the background will be fully mixed, i.e. a source just beyond the 4 days may still be very discernible. Can the authors be confident this is negligible?

New line numbering "track_changes" document: P.8, L.244
New line numbering "corrected" document: P.7, L.234

Reply: Usually, particles have left the Swiss domain after 4 days of integration. However, we agree that frequently the particles have not left the COSMO-7, central European domain after 4 days. We evaluated the contribution to residence time and concentrations at the receptor when continuing the simulation beyond day 4. When including four more days in the backward integration, we see that additional contributions to residence time and greenhouse gas concentrations (CO2, CH4, N2O) are smaller than 10 \% for the location of Beromünster. In the context of the relative residence time contribution from Switzerland employed in the tracer-ratio method, we consider this contribution negligible. Furthermore, in the context of the Bayesian inverse modelling the effect of 4 vs 8 day footprints was evaluated for a single compound (HFO-1234yf). Differences for the Swiss national emissions were again in the order of 10 \%. Although, this is well within the uncertainty range given by the inverse method, we decided to update the transport simulations and inversions to include 8-day backward calculations.

RC1: P.9, L.315: “Daily mean values” – In previous work that I have seen using this method, 3-hourly averaging times were used. Is there a specific reason why the observations were averaged into daily values? It seems odd to lose all this extra information, I think some justification of this is necessary.

New line numbering "track_changes" document: P.11, L.357
New line numbering "corrected" document: P.9, L.319
Reply: Tests with 3-hourly and daily observations were performed. The differences for Swiss national total emissions were again within the a posteriori uncertainties of the inversion. Little benefits were observed in the localization of emissions when using 3-hourly vs. daily mean observations. The decision for daily data was finally based on the fact that it reduces the costs of the maximum likelihood estimate of the covariance parameters considerably and overall lead to a more robust estimation of these parameters. Furthermore, the autocorrelation of 3-hourly observations is considerably larger than that of daily averages. Using the latter allows to treat the model-data mismatch uncertainty as being uncorrelated in time. We added the following justification to the manuscript: "Daily mean observations were preferred over the use of short aggregation intervals (e.g., 3-hourly) because little changes in total and spatially resolved emissions were seen when using the latter. The use of the longer aggregates reduces the inverse problem size and, hence allows for a faster and, in our experience, more robust estimation of covariance parameters."

RC1: P9. L.319: “12.0o W to 21.1o E and 36.0o S to 57.5 o N” – Given that you follow the particles for only 4 days from the Swiss sites then it seems reasonable that many of the released particles will not have left your inversion domain within the 4 days. For example a direct southerly wind of 3 m/s consistently for 4 days is insufficient to move a particle from the southern edge (36deg N) to Beromunster (47degN). How is this accounted for? Also I assume it is a typo as you have written 36 degrees South, should this not be 36 degN?

New line numbering "track_changes" document: P.11, L.368

New line numbering "corrected" document: P.10, L.330

Reply: Thanks for spotting the typo. This was corrected accordingly. The 4 day integration time was discussed already above and has been extended to 8 days for the revised manuscript. This doubling in integration time results in an increase of simulated regional concentrations of around 10 %. For various reasons, this does not automatically translate into a 10 % decrease in Swiss emissions. First, "missing" emissions were probably attributed to more distant regions by the inversion, those were we missed sensitivity beyond day 4. Second, part of the missing regional sensitivity can be reflected by a higher baseline concentration. As the latter is adjusted through the inversion and the adjustments differ if 4 or 8 day integration times were used, the final effect of integration time on total emissions may also vary. Even with 8 day integration time there may still be cases when particles have not left the model domain completely or left the model domain on its eastern boundary, beyond which emission in Eastern Europe still contribute to the regional concentration signal observed at the sites in Western Europe. While this is a general problem of regional inversions and can be improved by sampling boundary conditions from a larger scale model, here we rely on the inverse adjustment of the concentration baselines at each site to compensate for such boundary effects.

RC1: P10. L351:”The HFOs were treated as inert for the inversions, assuming that the transport times from emission sources to BRM are sufficiently small to avoid larger chemical losses” – Given the very short lifetimes of some of the HFOs (single digit days in summer for HFO-1234yf), I think the authors need to quantify the potential error here and also the bias between summer and winter.

New line numbering "track_changes" document: P.12, L.428

New line numbering "corrected" document: P.11, L.385

Reply: When considering monthly average HFO-1234yf lifetimes (taken from Henne et al. 2021) in the calculation of the source sensitivities (footprints) Swiss national emission estimates for this compound were actually about 15
larger than in the base case that ignores lifetimes. Since the travel times of Swiss emissions to the receptor sites Beromünster and Jungfraujoch are relatively short, the impact of lifetimes is actually limited. For regions further away from the observational sites the differences in a posteriori emissions were larger. For HFOs other than HFO-1234yf atmospheric lifetimes are considerably larger (19 days for HFO-1234ze(E) and 42.5 days for HCFO-1233zd(E)) and, hence, impact on Swiss emissions will be even smaller. Hence, for the revised manuscript we updated the inversion for HFO-1234yf including atmospheric lifetimes, but left those for the other HFOs unchanged.

We added the following comment to the manuscript: "Monthly average atmospheric lifetimes of HFO-1234yf as based on Henne et al. (2012) were used to update the source sensitivities specifically for this compound. Subsequently, these updated source sensitivities were used in the inversion. Resulting Swiss emissions were about 10 % higher than when assuming inert HFO-1234yf. The other HFOs treated here have longer atmospheric lifetimes and, hence, their lifetime impact on Swiss emissions is smaller and was deemed negligible in the light of other uncertainties."

RC1: P10. L354: “HFC-23, SF6, and PFC-14” – The emissions of PFC-14 from Al production and HFC-23 as an industrial bi-product will not be population based. So even though the final statistics maybe improved using a population-based prior, is the use of such a prior reasonable or in any other way justifiable? If little is assumed known about the distribution of emissions is not using a ‘flat’ prior more reasonable? Also I assume the authors meant ‘flat, land-based’ prior rather than flat across the inversion domain – please clarify.

New line numbering "track_changes" document: P.13, L.436
New line numbering "corrected" document: P.11, L.394

We carried out additional sensitivity inversions for these three substances with flat a priori distributions. However, the results were less reliable based on the parameters describing the quality of the inversion, i.e. the correlation coefficient, the chi index, the degrees of freedom, and the normalized standard deviation. In the end, flat a priori distributions are also informative and drive the solution. The choice of the a priori is very important for the estimation of the a posteriori distribution in Bayesian inversions, and if the measurements and the prior pose similar uncertainties they are more or less evenly weighted for the estimation of the posterior. Hence, even if the emissions of these substances are not exactly population distributed, the emissions will be more likely coming from the Swiss plateau and not from the Alps, making the assumption of a population based prior more justifiable. Regarding HFC-23 emissions the inversion assumes constant emissions during the year, while this is not true for this substance, making it more difficult for the inversion to handle its case. Concerning what flat means, indeed it is flat land-based. Zero emissions were assigned in the grid cells which correspond to ocean. Finally, the “flat” a priori is uniform in each different country.

Additional explanation was added to the revised manuscript (lines 437-439 in the track changes version).

RC1: P.18, L548: “The results compare well to the Jungfraujoch and the inventory values” – I am not convinced that this is the case for all of these gases, e.g. HFC-145fa and HFC-227ea and HFC-23. A similar comment can be made about PFC-14.

New line numbering "track_changes" document: P.24, L.646
New line numbering "corrected" document: P.19, L.586

Reply: Sorry, this was confusing. We meant to say that also the Jungfraujoch and the inventory values are below 10 Mg yr$^{-1}$. We adapted the text accordingly to: "For HFC-245fa, HFC-365mfc, HFC-23, HFC-227ea, HFC-236fa, and HFC-4310mee, Swiss emissions were determined to be smaller than 10 Mg yr$^{-1}$. This is also the case for the Jungfraujoch and the inventory values. Of all investigated substances, PFC-116, PFC-318, PFC-14, SF$_6$, and NF$_3$ are among those with the longest lifetime and the highest 100-year GWP. Their Swiss emissions were all determined below 10 Mg yr$^{-1}$.

RC1: P.19, L.560: Why is this gas so different across the methods?

New line numbering "track_changes" document: P.24, L.658

New line numbering "corrected" document: P.20, L.595

Reply: As described above, in the case of Beromünster, the tracer-ratio method seems to be better applicable to substances where the halocarbon and tracer ratio is influenced dispersively, i.e. with emissions from several directions and sources. However, HFO-1234ze(E) emissions are pronounced in the direction northeast of Beromünster or from Zürich. Therefore, the tracer-ratio method may not represent this HFO the best. Moreover, with the newly calculated Bayesian inversion results with 8 days integration time instead of 4 days, the tracer-ratio and Bayesian inversion results align a lot better, reducing the difference by about 50%.

Minor Points

RC1: P.2, L.63: “it is used as aerosol propellant” – Insert “an”

New line numbering "track_changes" document: P.2, L.71

New line numbering "corrected" document: P.2, L.66

Reply: done

RC1: P.2, L.63: “and as foam blowing agent” – Insert “a”

New line numbering "track_changes" document: P.2, L.72

New line numbering "corrected" document: P.2, L.67

Reply: done

RC1: P.3, L82: “HFO-1234yf is currently applied as refrigerant” – Insert “a”

New line numbering "track_changes" document: P.3, L.91

New line numbering "corrected" document: P.3, L.86

Reply: done

RC1: P.3, L85: “and as foam blowing agent and propellant” – Insert “a”

New line numbering "track_changes" document: P.3, L.93

New line numbering "corrected" document: P.3, L.88

Reply: done

RC1: P.4, L.127: “which are constantly monitored within the AGAGE network” – Remove the word “constantly”, they are measured at high-frequency not constantly.
RC1: P.4, L.148: “industrially most active region of Switzerland” – Insert “the”

RC1: P.5, L.163: “from the latter on a” – Suggest changing to “from this area on a “

RC1: P.7, L.226: “are at a significant distance” – Please remind the reader of distance to the nearest large town e.g. more than 20km.

RC1: P.8, L.255: “were weighed accordingly” – Change to “weighted”

RC1: P.8, L.255: “to result in a CO emission” – Add the word ‘Swiss’

RC1: P.8, L.264: “in Supplement 4.2.” – Better to say Supplement Fig. S2 as 4.2 doesn’t exist.

RC1: P.8, L.266: “pollution events were summed up” – Please remind the reader that the baseline has been removed to estimate a pollution event.
RC1: P.8, L.280: “(Supplement 4.3)” – Supplement Table S4, 4.3 does not exist
New line numbering "track_changes" document: P.10, L.322
New line numbering "corrected" document: P.9, L.310
Reply: done. We corrected this to: "(…) was greatly reduced (Supplement 4) (…)"

RC1: P.8, L.282: Should section 2.4 come before 2.3 as these simulations are used for the residence times?
New line numbering "track_changes" document: P.10, L.324/ P.7, L.230
New line numbering "corrected" document: P.7, L.220
Reply: done. We exchanged section 2.3 and 2.4. We updated the respective cross-references.

RC1: P.9, L.304: “Next to total receptor mole fractions” – Not sure I understand the use of the phrase ‘Next to’, what does it mean?
New line numbering "track_changes" document: P.8, L.252
New line numbering "corrected" document: P.7, L.242
Reply: done. We changed the sentence to: "Besides total receptor concentrations, spatially resolved FLEXPART source sensitivities were used to identify situations in which air masses sampled at Beromünster were dominated by surface contact over the Swiss domain."

RC1: P9. L323: “ðœ’ðœ’” – Here the O is a superscript, previously it was a subscript.
New line numbering "track_changes" document: P.12, L.404
New line numbering "corrected" document: P.10, L.362
Reply: Thank you for the remark. We added a paragraph explaining the setup of the covariance matrices.

RC1: P9. L325: “model-observation uncertainty” – Adding the word ‘respectively’ at the end of the sentence will help the reader.
New line numbering "track_changes" document: P.11, L.374
New line numbering "corrected" document: P.10, L.335
Reply: done

RC1: P9. L325: I think it would be helpful to the reader to very briefly describe the spatial and temporal covariances used to construct B and R rather than rely on them reading another paper.
New line numbering "track_changes" document: P.11, L.375
New line numbering "corrected" document: P.10, L.337
Reply: Thank you for the remark. We added a paragraph explaining the setup of the covariance matrices.

RC1: P10. L333: “(ð• ø’ 0 , ø• ø ’ ø’)” – Here the O is a superscript, previously it was a subscript.
Reply: done. We changed the 0 to subscript: "(...) values (χ₀, Mₓ) (...)"

RC1: P10, L349: “countries of the inversion domain” – Consider changing 'of' to ‘in’
New line numbering "track_changes" document: P.12, L.426
New line numbering "corrected" document: P.11, L.383
Reply: done

RC1: P10. L359: “chi index” – I think this term needs greater explanation with an appropriate reference.
New line numbering "track_changes" document: P.13, L.444
New line numbering "corrected" document: P.11, L.402
Reply: We modified the sentence as follows in order to provide a concise definition. A reference to Berchet et al. (2013), who explored the use of this parameter in inverse modelling of CH4 emissions, was added as well.

The χ² index (defined as, $\chi^2 = J(x) \frac{2}{d}$, d being the number of observations) assesses the probability density distribution of the a posteriori model residuals and a posteriori emission differences, which should follow a χ² with mean equal to $d/2$.

RC1: P10. L367: “different substances was evaluated” – please quantify how this was done.
New line numbering "track_changes" document: P.13, L.454
New line numbering "corrected" document: P.12, L.412
Reply: This was done semi-objectively, based on the parameters in table S5. The evaluation depends on all these parameters, describing the quality of the inversion; they give us some indication and the final judgement was done based on this. In the text we now especially indicated a threshold of 0.1 for the correlation coefficient (r^2), based on which we considered a result reliable or not. Also for the tracer-ratio method we indicated the minimum number of 10 data points incorporated in the calculation for a result to be reliable.

RC1: P12, L381: “atmospheric concentrations” – consider changing to ‘atmospheric mole fraction’
New line numbering "track_changes" document: P.16, L. 472
New line numbering "corrected" document: P.13, L. 427
Reply: For consistency we changed the term "mole fraction" to the term "concentration" throughout the manuscript and the supplement, including the figures.

RC1: P.12, L404: “small emissions in Switzerland” – add HFC-152a to this for clarity.
New line numbering "track_changes" document: P.17, L.495
New line numbering "corrected" document: P.14, L.450
Reply: done. We change the sentence to: "This can be explained by small HFC-152a emissions in Switzerland arising only from (...)".

RC1: P.13, L413: “there was no notable number of” – consider changing to ‘there were no notable’
New line numbering "track_changes" document: P.17, L.504
New line numbering "corrected" document: P.14, L.459
Reply: As we want to refer to the number of the pollution events, we changed the text to: "However, there were only very few pollution events."

RC1: P.13, L.415: “emitted as unwanted” – consider changing to ‘emitted as an unwanted’

New line numbering "track_changes" document: P.17, L.507
New line numbering "corrected" document: P.14, L.461
Reply: done

RC1: P.13, L.417: “major fraction of the highest events” – please quantify

New line numbering "track_changes" document: P.17, L.508
New line numbering "corrected" document: P.14, L.463
Reply: done. We wrote: 'For SF₆, sporadic pollution episodes were observed, with only 17 % of the pollution events greater than 1 ppt, however, showing a high contribution from Switzerland."

RC1: P.17, L.499: “mostly used in refrigeration” – ‘mostly used as a refrigerant’

New line numbering "track_changes" document: P.22, L.594
New line numbering "corrected" document: P.18, L.539
Reply: done

RC1: P.17, L.502: “are invariably higher” – remove the word ‘invariant’

New line numbering "track_changes" document: P.22, L.598
New line numbering "corrected" document: P.18, L.542
Reply: done

RC1: P.18, L.531: “third highest emissions” – ‘third highest Beromünster emission estimate’

New line numbering "track_changes" document: P.23, L. 628
New line numbering "corrected" document: P.19, L. 569
Reply: We adjusted the text accordingly to make it more clear.

Additional corrections by the authors, apart from the reviewer comments:

Abstract: We improved the abstract text so that it reads better

Jungfraujoch-based emission estimates: We updated the reference of (Reimann et al. 2020) to (Reimann et al. 2021) and updated the Jungfraujoch-based emission values to this report, or, where needed, to the newest calculation results for the corresponding years, as these emission values are adjusted and improved constantly for the year before the newest report is published. This is because the Jungfraujoch-based emissions are calculated as a three-year average. The difference to the values listed in this manuscript before adjustment are small, however.

Beromünster tracer-ratio method: We used the underlying data-set of carbon monoxide (CO) acquired by the Swiss NABEL network. The instrument is another version of Picarro analyzer, also using cavity ring-down spectroscopy. For the tracer-ratio emission results this makes only a minor difference, but we changed the method description for CO measurements in Section 2.2 "Sampling and Analysis" and updated the new emission results in Table 2.
Bayesian inversion: We added more details on the source of the a priori values for specific substances in the text and in the caption of Table 1. The a priori values listed in Table 1 were updated to the originally used UNFCCC and CLIMGAS values, not the a priori values already modified by the inversion calculations, since this might be confusing. The emissions results in Table 2 were updated in the context of the changed modelling.

Acknowledgements: We added more details regarding the contributors and funding of this study.

A few minor corrections: We corrected single words or punctuation characters throughout the manuscript.