1. Introduction

1.1. Main results. Let k be any field. Consider the hereditary algebra $A = k\Delta$ associated to a finite connected quiver without oriented cycles. A fundamental fact in Representation Theory of Algebras is the distinction of the representation type of A: A is representation-finite (that is, there are only finitely many indecomposable A-modules, up to isomorphism) exactly when the underlying graph $|\Delta|$ of Δ is of Dynkin type; A is tame (that is, for each $d \in \mathbb{N}$, the indecomposable d-dimensional A-modules may be classified in a finite number of one-parameter families of modules) exactly when $|\Delta|$ is of extended Dynkin type; in the remaining cases A is wild (that is, there is an embedding $\text{mod-}k \langle x, y \rangle \rightarrow \text{mod-}A$ which preserves indecomposability and isomorphism classes from the category of finite dimensional modules over the ring in two non-commuting indeterminates into the category of finite dimensional A-modules). Consider the Auslander-Reiten translation τ_A in $\text{mod-}A$ and P an indecomposable projective A-module. In case A is tame representation-infinite, the sequence of modules $(\tau_A^{-n}P)_n$ is well defined and the algebra $R(A, P) = \bigoplus_{n=0}^{\infty} \text{Hom}_A(P, \tau_A^{-n}P)$ is an infinite dimensional positively \mathbb{Z}-graded surface singularity. The algebra $R(A, P)$ reflects many properties of A and P and has a particularly interesting structure, as shown in [12]:

Assume $A = \mathbb{C}\tilde{\Delta}$ is a tame hereditary algebra where $\tilde{\Delta}$ extends the Dynkin type $|\Delta|$. Let P the indecomposable projective associated to the vertex in $\tilde{\Delta} \setminus \Delta$. Then $R(A, P)$ is isomorphic to the algebra of invariants $\mathbb{C}[x, y]^G$, where $G \subset SL(2, \mathbb{C})$ is a binary polyhedral group of type $|\Delta|$. Accordingly the completion of the graded algebra $R(A, P)$ is isomorphic to the surface singularity of type $|\Delta|$.

In [34], Ringel introduced the canonical algebras $C = C(p, \lambda)$ depending on a weight sequence $p = (p_1, \ldots, p_t)$ of positive integers and a parameter sequence $\lambda =$
\(\lambda_3, \ldots, \lambda_t\) of pairwise distinct non-zero elements from \(k\). In [11] it was shown that \(\text{mod-}C\) is derived equivalent to \(\text{coh} (X)\) the category of coherent sheaves on a weighted projective line \(X = \mathbb{X}(p, \lambda)\).

One of the aims of this work is the introduction of a class of algebras with related interesting properties. Let \(P\) be an indecomposable projective module over a canonical algebra \(C = C(p, \lambda)\), the one-point extension \(A = C[P]\) defined as the matrix algebra

\[
\begin{bmatrix}
k & 0 \\
P & C
\end{bmatrix}
\]

is called an extended canonical algebra. In section 2 we show that for two indecomposable projective \(C\)-modules \(P\) and \(P'\), the algebras \(C[P]\) and \(C[P']\) are derived equivalent. Moreover, if \(C\) is of tame type, the extended canonical algebra is derived equivalent to a wild hereditary or a wild canonical algebra, so essentially \(C[P]\) belongs to a well-studied class of algebras. There are interesting phenomena arising when \(C\) (and hence \(A\)) is of wild type.

Consider the Coxeter transformation of \(A\) as an automorphism \(\varphi_A\) \(K_0(A) \to K_0(A)\) of the Grothendieck group of \(A\), given on the classes of indecomposable projective modules by the formula \(\varphi_A([P(S)]) = -[I(S)]\), where \(P(S)\) (resp. \(I(S)\)) is the projective cover (resp. injective envelope) of a simple module \(S\). The characteristic polynomial \(f_A(T)\) of \(\varphi_A\) is called the Coxeter polynomial of \(A\).

Let \(\chi_X = 2 - \sum_{i=1}^t (1 - 1/p_i)\) be the (orbifold) Euler characteristic of \(X\). As shown in [12], for \(\chi_X > 0\) the classification problem of \(\text{coh} (X)\) is related to the problem of classifying the Cohen-Macaulay modules over a simple surface singularity and is in fact equivalent to the problem of classifying the graded Cohen-Macaulay modules over a corresponding quasi-homogeneous singularity. Assume \(\chi_X < 0\). By [23, 25] we know that for \(A = C[P]\) an extended canonical algebra

\[f_A(T) = P_C(T)f_C(T)\]

where \(P_C(T)\) is the Hilbert-Poincaré series of the positively graded algebra \(R(p, \lambda) = \bigoplus_{n=0}^{\infty} \text{Hom}_C(M, \tau^n_{\mathbb{X}}M)\), where \(M\) is a rank one not preprojective \(C\)-module. Equivalently, \(R(p, \lambda) = \bigoplus_{n=0}^{\infty} \text{Hom}(\mathcal{O}, \tau^n_{\mathbb{X}}\mathcal{O})\), where \(\mathcal{O}\) is the structure sheaf on \(X\). Recall from [21, 23] that in case \(k = \mathbb{C}\), we can interpret \(R(p, \lambda)\) as an algebra of entire automorphic forms associated to the action of a suitable Fuchsian group of the first kind, acting on the upper half plane \(\mathbb{H}_+\).
From [21], we know that the k-algebra $R = R(p, \lambda)$ is commutative, graded integral Gorenstein, in particular Cohen-Macaulay, of Krull dimension two. The complexity of the surface singularity R is described by the triangulated category

$$D^Z_{Sg}(R) = \frac{D^b(\text{mod}^Z-R)}{D^b(\text{proj}^Z-R)},$$

where mod^Z-R (resp. proj^Z-R) denotes the category of finitely generated (resp. finitely generated projective) \mathbb{Z}-graded R-modules. This category was considered by Buchweitz [5] and Orlov [30], see also Krause’s account [19] for a related, but slightly different approach. For $\chi_X > 0$, where the weight type of X determines a Dynkin quiver Δ, Kajiura, Saito, Takahashi and Ueda [17] have shown that $D^Z_{Sg}(R)$ is equivalent to the derived category of finite dimensional modules over the path algebra $k \Delta$.

For $\chi_X = 0$, the algebra R hence $D^Z_{Sg}(R)$ is not defined, but a close variant $D^{Z(p)}_{Sg}(S)$, as shown by Ueda [35], is equivalent to the derived category $D^b(\text{coh}(X))$ of coherent sheaves on a weighted projective line which is tubular, that is, has weight type $(2,3,6), (2,4,4), (3,3,3)$ or $(2,2,2,2)$.

In section 3 we deal with the case $\chi_X < 0$ and prove that this category, as first observed by Saito and Takahashi (for the field C of complex numbers), is described in the following way.

Theorem 1. Let k be an algebraically closed field. Assume $\chi_X < 0$ and let R be the positively \mathbb{Z}-graded surface singularity attached to X. Then there exists a tilting object T in the triangulated category $D^Z_{Sg}(R)$ whose endomorphism ring is isomorphic to an extended canonical algebra $C[P]$, where C is the canonical algebra associated with X.

It follows that the categories $D^Z_{Sg}(R) = T$ and $D^b(\text{mod}(C[P]))$ are equivalent as triangulated categories. In section 3.9 we further introduce the concept of Coxeter-Dynkin algebras and establish their relationship to the Coxeter-Dynkin diagrams from singularity theory.

More precise information on the structure of the ring $R(p, \lambda)$ is obtained by a closer examination of the spectral properties of the Coxeter transformation of the extended canonical algebra $C[P]$.

A sequence of weights $p = (p_1, \ldots, p_t)$ will always satisfy $p_1 \leq p_2 \leq \cdots \leq p_t$. We consider the lexicographical ordering of sequences $(p_1, \ldots, p_t) \leq (q_1, \ldots, q_s)$ if $t = s$
and \(p_i \leq q_i \) for \(1 \leq i \leq t \). Extend the relation \(p \leq q \) (and say that \(q \) dominates \(p \)) to weight sequences of (possibly) different length by adding 1’s if necessary. The following result is shown in section 4 based on techniques developed in [24] and will be fundamental in the proof of the main results.

Theorem 2. Let \(A = C[P] \) be an extended canonical algebra of the wild canonical algebra \(C = C(p, \lambda) \). The following happens:

(a) \(f_A(T) \) has at most 4 roots not in \(S^1 \).
(b) The roots of \(f_A(T) \) lie on the unit circle \(S^1 \) if and only if the weight sequence \(p \) belongs to the 38-member list determined by all \(p < q \) with \(q \) belonging to the following critical list:

\[
\begin{align*}
(t = 3): & \ (2,3,11), (2,4,9), (2,5,8), (2,6,7), \\
& \ (3,3,8), (3,4,7), (3,5,6), \\
& \ (4,4,6), (4,5,5), \\
(t = 4): & \ (2,2,2,7), (2,2,3,6), (2,3,4,4), (3,3,3,4), \\
(t = 5): & \ (2,2,2,2,5), (2,2,2,3,4), (2,2,3,3,3), \\
(t = 6): & \ (2,2,2,2,2,3), \\
(t = 7): & \ (2,2,2,2,2,2).
\end{align*}
\]

We shall say that the algebra \(R(p, \lambda) \) (and also the weight sequence \(p \)) is formally \(n \)-generated if

\[
P_C(T) = \frac{\prod_{i=1}^{n-2} (1 - T^{c_i})}{\prod_{j=1}^{n} (1 - T^{d_j})}
\]

for certain natural numbers \(c_1, \ldots, c_{n-2} \) and \(d_1, \ldots, d_n \), all \(\geq 2 \). The algebra \(R(p, \lambda) \) (and also the weight sequence \(p \)) is formally a complete intersection if \(P_C(T) \) is a rational function \(f_1(T)/f_2(T) \), where each \(f_i(T) \) is a product of cyclotomic polynomials.

Theorem 3. Let \(C = C(p, \lambda) \) be a wild canonical algebra with weight sequence \((p_1, \ldots, p_t) \) and \(A = C[P] \) be an extended canonical algebra. The following are equivalent:

(a) \(R(p, \lambda) \) is formally 3- or 4-generated
(b) \(R(p, \lambda) \) is formally a complete intersection
(c) The roots of $f_A(T)$ lie on S^1.

Moreover, for $t = 3$ the algebra $R(p, \lambda)$ is a graded complete intersection of the form $k[X_1, \ldots, X_s]/(\rho_3, \ldots, \rho_s)$ where $s = 3$ or 4 and ρ_3, \ldots, ρ_s is a homogeneous regular sequence. For $k = \mathbb{C}$ the assertion also holds for $t \geq 4$ for $R(p, \lambda')$ for a suitable choice of parameters. $\lambda' = (\lambda'_3, \ldots, \lambda'_t)$.

We remark that in almost every case $\text{Root} \ f_A(T) \subset S^1$ implies that the Coxeter transformation φ_A is periodic. In fact the weight sequences $(3, 3, 3, 3)$ and $(2, 2, 2, 2, 4)$ are the only exceptions (section 4).

Theorem 4. Let $C = C(p, \lambda)$ be a wild canonical algebra with weight sequence $p = (p_1, \ldots, p_t)$. Consider $A = C[P]$ an extended canonical algebra. The following are equivalent:

(a) $R(p, \lambda)$ is formally 3-generated

(b) φ_A is periodic of period d and there is a primitive d-th root of unity which is root of $f_A(T)$.

For $t = 3$ the algebra $R(p, \lambda)$ is always a graded complete intersection of the form $k[X_1, X_2, X_3]/(f)$. Moreover, for $t \geq 4$ and $k = \mathbb{C}$ this also holds for $R(p, \lambda')$ for a suitable choice of parameters $\lambda' = (\lambda'_3, \ldots, \lambda'_t)$.

For the proof of Theorem 3 (resp. Theorem 4) we classify in section 5 all the weight sequences p such that $R(p, \lambda)$ is formally a complete intersection (resp. $R(p, \lambda)$ has 3 homogeneous generators). In the complex case the algebras $R(p, \lambda)$ of Theorem 3 correspond to the Fuchsian singularities which are minimal elliptic [36, Proposition 5.5.1] and the classification is related to Laufer’s [20]. The algebras $R(p, \lambda)$ of Theorem 4 relate to classifications by Dolgachev [6] and Wagreich [37] and include the 14 exceptional unimodal Arnold’s singularities [1]. We refer the reader to the complete account by Ebeling [9].

The research for this work was done during exchange visits México-Paderborn. We thank our universities and CONACyT in México for support. We thank Henning Krause for directing our attention to Buchweitz’s paper [5].
1.2. Notation and conventions. Let Q be a finite quiver without oriented cycles. The path algebra kQ has as basis all the oriented paths in Q and product given by juxtaposition of paths. Given an ideal I of kQ which is admissible (that is, $(kQ^+)^m \subset I \subset (kQ^+)^2$ for some $m \geq 2$, where kQ^+ is the ideal of kQ generated by the arrows), we consider the finite dimensional k-algebra $A = kQ/I$. By ‘module’ we mean a finite dimensional right A-module. The category of modules is denoted $\text{mod-}A$. A module is identified with a covariant functor $X: kQ \rightarrow \text{mod-}k$ such that $X(\rho) = 0$ for every $\rho \in I$. Important modules are the simple modules S of A.

We denote by $K_0(A)$ the Grothendieck group of A. Since A has finite global dimension, the classes $[P_i]$ with $i \in Q_0$ form a basis of $K_0(A)$. Thus the Coxeter transformation $\varphi_A: K_0(A) \rightarrow K_0(A)$, given by $\varphi_A([P_i]) = -[I_i]$ defines an isomorphism. The Grothendieck group $K_0(A)$ is equipped with a bilinear form $\langle -,- \rangle_A: K_0(A) \times K_0(A) \rightarrow \mathbb{Z}$, called the Euler form, defined in the classes of modules X and Y as $\langle [X],[Y] \rangle_A = \sum_{i=0}^{\infty} (-1)^i \dim_k \text{Ext}_A^i(X,Y)$. In case $A = k\Delta$ is a hereditary algebra, then $\varphi_A([X]) = [\tau_A X]$ for any indecomposable non-projective A-module X.

For the general situation, we have to look at the derived category $D(A) = \text{D}^b(\text{mod-}A)$ of bounded complexes of A-modules.

The derived category $D(A)$ contains a copy $\text{mod-}A[n]$ of $\text{mod-}A$ for each integer $n \in \mathbb{Z}$, with objects written $X[n]$ and satisfying

$$\text{Hom}_{D(A)}(X[n], Y[m]) = \text{Ext}_A^{n-m}(X,Y).$$

We say that an algebra A is derived hereditary (resp. derived canonical) if $D(A)$ is triangle equivalent to $D(H)$ (resp. $D(C)$) for a hereditary algebra H (resp. a canonical algebra C).

The category $D(A)$ has Auslander-Reiten triangles which yield a self-equivalence $\tau_{D(A)}$ of $D(A)$, the Auslander-Reiten translation, satisfying $\text{Hom}_{D(A)}(Y, \tau_{D(A)} X[1]) = D \text{Hom}_A(X,Y)$. The natural isomorphism $K_0(A) \rightarrow K_0(D(A))$, $X \mapsto X[0]$ yields $\varphi_A([X]) = [\tau_{D(A)} X]$.

For background material on representations of algebras and derived categories we refer the reader to [14, 34].

For vectors $v, w \in K_0(A)$ we get $\langle v, \varphi_A(w) \rangle_A = -\langle w, v \rangle_A$.
2. Extended canonical algebras: basic properties

2.1. Let $C = C(p, \lambda)$ be the canonical algebra defined by the weight sequence $p = (p_1, \ldots, p_t)$ with $p_i \geq 2$ and $(\lambda = \lambda_3, \ldots, \lambda_t)$ a sequence of pairwise distinct non-zero elements of k, that is, C is defined by the quiver

![Quiver Diagram](image)

satisfying the $t - 2$ equations

$$\alpha_{ip_i} \cdots \alpha_{i2} \alpha_{i1} = \alpha_{2p_2} \cdots \alpha_{22} \alpha_{21} - \lambda_i \alpha_{1p_1} \cdots \alpha_{12} \alpha_{11}, \quad i = 3, \ldots, t.$$

The algebra C is a one-point extension $H[M]$ of the hereditary algebra $H = C/(0)$ by an H-module M with dimension vector $[M] = (\dim_k M(i))_i \in K_0(H)$ as follows:

```
1 1 \cdots 1 1
```

In case $t \geq 3$, the module M is an indecomposable H-module which is not preprojective or preinjective.

Observe that the underlying graph of H is a star $[p_1, p_2, \ldots, p_t]$ with linear arms having p_i vertices, $i = 1, \ldots, t$. If H is representation-finite, then $[p_1, p_2, \ldots, p_t]$ is a Dynkin diagram (that is, $\sum_{i=1}^{t} \frac{1}{p_i} > t - 2$) and C is tame of domestic type. If H is tame, then $[p_1, p_2, \ldots, p_t]$ is an extended Dynkin diagram (that is, $\sum_{i=1}^{t} \frac{1}{p_i} = t - 2$) and C is tame of tubular type. See [34] for details.
2.2. The representation theory of mod-C for $C = C(p, \lambda)$ a canonical algebra is controlled by the category coh(\mathbb{X}) of coherent sheaves on a weighted projective line $\mathbb{X} = \mathbb{X}(p, \lambda)$, since the derived categories $D(C)$ and $D^b(\text{coh}(\mathbb{X}))$ are equivalent as triangulated categories [12]. The complexity of the classification problem for coh(\mathbb{X}), and hence for mod-C, is essentially determined by the (orbifold) Euler characteristic $\chi_{\mathbb{X}} = 2 - \sum_{i=0}^{t} (1 - 1/p_i)$. Indeed, for $\chi_{\mathbb{X}} > 0$, the algebra C is tame of domestic type and for $\chi_{\mathbb{X}} = 0$, the algebra C is tubular. The wild case $\chi_{\mathbb{X}} < 0$ was carefully studied in [23], a paper which is the basis of the present investigation.

2.3. Let $C = C(p, \lambda)$ be a canonical algebra. Let P be an indecomposable projective or injective C-module, then $A = C[P]$ is called an extended canonical algebra. Hence A arises from by adjoining one arrow with a new vertex to an arbitrary vertex of C while keeping the relations for C without introducing any new relations. In particular, the opposite algebra of an extended canonical algebra is again extended canonical.

Lemma. Any extended canonical algebra is wild.

Proof: Recall that for an algebra $B = kQ/I$ where Q has no oriented cycles and I is generated by $\rho_1, \ldots, \rho_s \in \bigcup_{i,j \in Q_0} I(i, j)$, the Tits (quadratic) form $q_B : K_0(B) \to \mathbb{Z}$ is defined by

$$q_B(x) = \sum_{i \in Q_0} x(i)^2 - \sum_{i \rightarrow j} x(i)x(j) + \sum_{i,j \in Q_0} r(i, j)x(i)x(j),$$

where $r(i, j) = \# \{s : \rho_s \in I(i, j)\}$. The Tits form is weakly non-negative (i.e. $q_A(v) \geq 0$ for $v \in \mathbb{N}_0$) if B is a tame algebra [31].

For an extended canonical algebra $A = C[P]$ with extension vertex \ast such that $\text{rad} \, P_\ast = P = P_j$ for some vertex j in C, we have the following:

- since $\text{gl dim} \, A = 2$, then $q_A(x) = \langle x, x \rangle_A$;
- the vector $w \in K_0(C) \subset K_0(A)$ with $w(i) = 1$ for every i in C, satisfies $q_c(w) = 0$;
- for $e_\ast = [S_\ast]$, we get

$$q_A(2w + e_\ast) = 4q_c(w) - 2w(j) + 1 < 0.$$

Hence A is of wild type. \qed
2.4. The following result is fundamental for introducing the concept of extended canonical algebras.

Proposition. Let X and Y be two indecomposable projective or injective C-modules over a canonical algebra C. Then the extended canonical algebras $C[X]$ and $C[Y]$ are derived equivalent.

In particular, the derived class of an extended canonical algebra is independent of the chosen projective module.

Proof. (See [24].) Under the equivalence $D(C) = D^b(\text{coh } (X(p, \lambda)))$ the modules X and Y become line bundles over X (up to translation in $D^b(\text{coh } (X)))$. Since the Picard group of X acts transitively on isomorphism classes of line bundles, there is a self-equivalence of $D(C)$ sending X to Y. The assertion follows from [2]. □

2.5. The following remark is useful:

Proposition. Let A be an extended canonical algebra of $C = C(p, \lambda)$ with $p = (p_1, \ldots, p_t)$ satisfying $t \geq 3$. Then A is derived equivalent to a one-point extension $H[N]$ of a hereditary algebra H by an indecomposable module N.

Proof. By (2.3), we may assume that A is the path algebra of the quiver

\[
\begin{array}{ccc}
\alpha_{11} & \rightarrow & \alpha_{12} \\
\alpha_{21} & \rightarrow & \alpha_{22} \\
0 & \rightarrow & \alpha_{t1} \\
\alpha_{11} & \rightarrow & \alpha_{21} \\
& \vdots & \\
& \vdots & \\
& \alpha_{1t} & \rightarrow \\
\end{array}
\]

\[
\begin{array}{ccc}
\cdots & \rightarrow & \cdots \\
\alpha_{1p_1} & \rightarrow & \alpha_{2p_1} \\
\alpha_{2p_2} & \rightarrow & \alpha_{1p_1} \omega \\
\cdots & \rightarrow & \\
\alpha_{tp_t} & \rightarrow & \beta \\
\end{array}
\]

equipped with the canonical relations $\alpha_{ip_i} \cdots \alpha_{i1} = \alpha_{2p_2} \cdots \alpha_{21} - \lambda_i \alpha_{1p_1} \cdots \alpha_{11}$ ($3 \leq i \leq t$). It follows that A is the one-point extension of the path algebra of the star $[2, p_1, p_2, \ldots, p_t]$ by an indecomposable module $N = N(\lambda_3, \ldots, \lambda_t)$ whose restriction to $[p_1, p_2, \ldots, p_t]$ is M as in (2.1) and $N(*) = 0$. □
Remark: An obvious variant of the above statement yields families of one-point extensions of hereditary algebras which are pairwise derived equivalent. For instance, for the canonical type $(2, 3, 7)$, the Proposition yields $10 = (2 - 1) + (3 - 1) + (7 - 1) + 1$ choices of pairs (H, N) of a hereditary algebra H and an indecomposable H-module N such that $H[N]$ is derived equivalent to an extended canonical algebra of type $(2, 3, 7)$.

3. The derived category of an extended canonical algebra

3.1. In this section we are going to investigate the nature of the bounded derived category of an extended canonical algebra $A = C[P]$. As it turns out the structure of this triangulated category will sensibly depend on the sign of the (orbifold) Euler characteristic χ_X of the weighted projective line X associated to C.

Let T be a triangulated k-category, see [13, 27, 18] for definition and properties. An object E in T is called exceptional if $\text{End}(E) = k$ and $\text{Hom}(E, E[n]) = 0$ for all integers $n \neq 0$. By $\perp E$ (resp. E^\perp) we denote the full triangulated subcategory of T consisting of all objects $X \in T$ (resp. $Y \in T$) satisfying $\text{Hom}(X, E[n]) = 0$ (resp. $\text{Hom}(E[n], Y) = 0$ for each integer n. By [3] the inclusion $\perp E \hookrightarrow T$ (resp. $E^\perp \hookrightarrow T$) admits an exact left (resp. right) adjoint $\ell : T \to \perp E$ (resp. $r : T \to E^\perp$).

For the purpose of this paper we call an exceptional object special in T if one of the following two conditions is satisfied:

(i) the left perpendicular category $\perp E$ is equivalent to $D^b(\text{coh}(X))$ for some weighted projective line X and, moreover, the left adjoint ℓ maps E to a line bundle in $\text{coh}(X)$.

(ii) the right perpendicular category E^\perp is equivalent to $D^b(\text{coh}(X))$ for some weighted projective line X and, moreover, the right adjoint r maps E to a line bundle in $\text{coh}(X)$.

Again, for the purpose of this paper, an object T of T is called a tilting object in T if (i) T generates T as a triangulated category, (ii) $\text{Hom}(T, T[n]) = 0$ holds for each non-zero integer n, and (iii) the endomorphism algebra of T has finite global dimension.

3.2. Our main tool to investigate the shape of $D(A)$ is the following proposition.

Proposition. Let T be a triangulated category having an exceptional object E that is special in T. Then there exists a tilting object \bar{T} of T whose endomorphism ring is an extended canonical algebra.
Proof. With the previous notations we assume that $E^\perp = \mathcal{D}b(\text{coh}(\mathcal{X}))$ and $r(E)$ is a line bundle in $\text{coh}(\mathcal{X})$. (The assumption on the left perpendicular $\perp E$ category is treated similarly.) We choose a tilting object T in $\text{coh}(\mathcal{X})$, hence in $\mathcal{D}b(\text{coh}(\mathcal{X}))$ having the line bundle $r(E)$ as a direct summand and such that $\text{End}(T) = C$ is the canonical algebra attached to \mathcal{X} (see [11]). We claim that $\bar{T} = T \oplus E$ is a tilting object in \mathcal{T}. Indeed, since T generates $\mathcal{D}b(\text{coh}\mathcal{X})$ and E together with E^\perp generates \mathcal{T}, it follows that \bar{T} generates \mathcal{T}. Next, we show that $\text{Hom}(\bar{T}, \bar{T}[n]) = 0$ for each nonzero integer n. This reduces to show that $\text{Hom}(E[n], T) = 0$ and $\text{Hom}(T, E[n])$ holds for every nonzero n. The first assertion holds for each n since T belongs to E^\perp. For the second we use that $\text{Hom}(T, E[n]) = \text{Hom}(T[-n], r(E))$ is zero since by construction $r(E)$ is a direct summand of the tilting object T. Finally, the endomorphism ring of \bar{T} is given as the matrix ring

$$\begin{pmatrix} C & 0 \\ P & k \end{pmatrix},$$

where $P = \text{Hom}(T, E) = \text{Hom}(T, rE)$ is an indecomposable projective C-module, hence $\text{End}(\bar{T}) = C[P]$ is an extended canonical algebra. Moreover, as it is easily seen, $C[P]$ has global dimension two. \qed

Keeping the assumptions on E and \mathcal{T} from the proposition, we obtain.

Corollary. If \mathcal{T} is triangle equivalent to a bounded derived category $\mathcal{D}(B)$ for some finite dimensional k-algebra B or, more generally, if \mathcal{T} is algebraic in the sense of Keller [18], then \mathcal{T} is triangle equivalent to $\mathcal{D}b(\text{mod-}A)$, for the extended canonical algebra $A = C[P]$.

Proof. The first claim follows from [32], the general version requires [18] or [4]. \qed

3.3. **Positive Euler characteristic: the domestic case.** Consider a canonical algebra $C = C(p_1, \ldots, p_t)$ of domestic type, that is, $\sum_{i=1}^t \frac{1}{p_i} > 1$. Let $\Delta = [p_1, \ldots, p_t]$ be the star corresponding to the weight sequence $p = (p_1, \ldots, p_t)$ and $\tilde{\Delta}$ be the corresponding extended Dynkin diagram. Then $\tilde{\Delta}$ admits a unique positive additive function λ assuming value 1, that is, $\lambda: \tilde{\Delta} \to \mathbb{N}$ satisfies the conditions:

(i) $2\lambda(i) = \sum_{j \in i^+} \lambda(j)$, where i^+ is the set of neighbors of i;

(ii) for some vertex $i \in \tilde{\Delta}_0$, $\lambda(i) = 1$. Such an i is called an extension vertex.
The double extended graph of type Δ, denoted by $\tilde{\Delta}$, is the graph arising from $\tilde{\Delta}$ by adjoining a new edge in an extension vertex. The list of double extended Dynkin graphs is the following:

weight sequence	double extended Dynkin graph
(p, q)	![Graph](image)
$(2, 2, 4)$![Graph](image)
$(2, 3, 3)$![Graph](image)
$(2, 3, 4)$![Graph](image)
$(2, 3, 5)$![Graph](image)

Proposition. Let $C = C(p, \lambda)$ be a canonical algebra of domestic type $p = (p_1, p_2, p_3)$. Let $\Delta = [p_1, p_2, p_3]$ be the associated Dynkin diagram. For any indecomposable pre-projective C-module N, the one-point extension $A = C[N]$ is derived equivalent to a hereditary algebra of type $\tilde{\Delta}$. In particular, an extended canonical algebra of weight type p is derived hereditary of type $\tilde{\Delta}$.
Proof. The algebra C is tilted of a hereditary algebra $H = k\tilde{\Delta}_1$, where $\tilde{\Delta}_1$ is a quiver with underlying graph $\tilde{\Delta}$. There is a derived equivalence $F: D^b(\text{mod-}H) \to D^b(\text{mod-}C)$ sending the indecomposable projective P_i corresponding to an extension vertex i of $\tilde{\Delta}$ into the projective C-module P_ω. Observe that $H[P_i] = k\tilde{\Delta}_1$ is a hereditary algebra where $\tilde{\Delta}_1$ is a quiver with underlying graph $\tilde{\Delta}$.

Let $X = X(p, \lambda)$ be a weighted projective line such that $D^b(\text{mod-}C) = D^b(\text{coh}(X))$. As an object in $\text{coh}(X)$ the object P_ω has rank one (see [11]). Also by [11], there is an equivalence in $D^b(\text{coh}(X))$ sending P_ω to any indecomposable preprojective C-module N. By [2], the one-point extension $C[N]$ is derived equivalent to $C[P_\omega]$ which is derived hereditary of type $\tilde{\Delta}$. \hfill \Box

3.4. The converse of Proposition 3.3 also holds.

Proposition. Let $C = C(p, \lambda)$ be a canonical algebra and P be an indecomposable projective C-module. The extended canonical algebra $A = C[P]$ is derived hereditary if and only if C is tame domestic.

Proof. If C is tame domestic, then A is derived hereditary by (2.5). For the converse, consider the set of weight sequences $p = (p_1, p_2, \ldots, p_t)$ with $2 \leq p_1 \leq p_2 \leq \cdots \leq p_t$ with the domination order defined in (1.1).

The statement follows by induction on the domination order from the following two facts:

(a) a canonical tubular algebra C is not derived hereditary;
(b) any wild weight sequence dominates a tubular one;
(c) if M is an indecomposable B-module such that $B[M]$ is derived hereditary, then B is derived hereditary.

(a): follows from the structure of derived categories of hereditary algebras, see [14].

(b): is clear.

(c): Assume $D^b(\text{mod-}B[M]) = D^b(\text{mod } H)$ for a hereditary algebra H. By [12], $D^b(\text{mod-}B)$ is equivalent to the right perpendicular category in $D^b(\text{mod-}H)$ with respect to an exceptional object E, that is, E is an indecomposable object satisfying $\text{Ext}^1(E, E) = 0$ and

$$D^b(\text{mod-}B) = E^\perp = \{ X \in D^b(\text{mod-}H) : \text{Hom}(E, X) = 0 = \text{Ext}^1(E, X) \}.$$
Without loss of generality we may assume that $E \in \text{mod-} H$. Then $D^b(\text{mod-} B) \cong D^b(E^\perp)$, where now E^\perp is formed in $\text{mod-} H$. Hence $E^\perp = \text{mod-} H'$ for a hereditary algebra H'.

\[\square \]

\section*{3.5. Euler characteristic zero: the tubular case.}

Consider a canonical algebra $C = C(p, \lambda)$ with weight sequence $p = (p_1, \ldots, p_t)$, we shall assume that $2 \leq p_1 \leq p_2 \leq \cdots \leq p_t$. The module category $\text{mod-} C$ accepts a \textit{separating tubular family} $\mathcal{T} = (T_\lambda)_{\lambda \in \mathbb{P}^1}$, where T_λ is a homogeneous tube for all λ with the exception of t tubes $T_{\lambda_1}, \ldots, T_{\lambda_t}$ with T_{λ_i} of rank p_i ($1 \leq i \leq t$). See [34].

Let $\mathbb{X} = \mathbb{X}(p, \lambda)$ be the weighted projective line such that $\text{mod-} C$ and $\text{coh} (\mathbb{X})$ are derived equivalent. We fix an equivalence $D^b(\text{mod-} C) = D^b(\text{coh} (\mathbb{X}))$. Let S be a simple C-module in the mouth of the tube of rank p_t and consider S as an object in $\text{coh} (\mathbb{X})$. The category S^\perp right perpendicular to the object S is the full subcategory of $\text{coh} (\mathbb{X})$ consisting of all $F \in \text{coh} (\mathbb{X})$ satisfying

$$\text{Hom}_{\mathbb{X}}(S, F) = 0 = \text{Ext}^1_{\mathbb{X}}(S, F).$$

By [12], $S^\perp = \text{coh} (\mathbb{X}')$ where $\mathbb{X}' = \mathbb{X}(p', \lambda)$ is a weighted projective line with weight sequence $p' = (p_1, p_2, \ldots, p_{t-1}, p_t - 1)$. Moreover, if $0 \rightarrow \tau S \rightarrow U \rightarrow S \rightarrow 0$ is the almost split sequence in $\text{coh} (\mathbb{X})$, then U is a simple object in S^\perp of τ'-period $p_t - 1$, where $\tau' = \tau_{D^b(\text{coh} (\mathbb{X}'))}$.

\textbf{Proposition.} Let $C = C(p, \lambda)$ be a canonical algebra of tubular type $p = (p_1, \ldots, p_t)$ and $A = C[P]$ be an extended canonical algebra. Then A is derived canonical of type $\bar{p} = (p_1, \ldots, p_{t-1}, p_t + 1)$.

\textit{Proof.} By (2.4), we may choose P to be the simple projective C-module. We shall show that A is quasi-tilted of type $\bar{p} = (p_1, \ldots, p_{t-1}, p_t + 1)$, see [15].

Let \mathbb{X} be a weighted projective line with $D^b(\text{coh} (\mathbb{X})) = D^b(\text{mod-} C)$ and let $\bar{\mathbb{X}}$ denote a weighted projective line of type \bar{p} such that $\text{coh} (\bar{\mathbb{X}})$ is the perpendicular category S^\perp formed in $\text{coh} (\bar{\mathbb{X}})$ for a simple S from the tube of rank $p_t + 1$. Let U be the middle term of the almost split sequence $0 \rightarrow \tau S \rightarrow U \rightarrow S \rightarrow 0$ in $\text{coh} (\bar{\mathbb{X}})$. Then U is a simple in $S^\perp = \text{coh} (\mathbb{X})$ belonging to the largest tube in $\text{coh} (\mathbb{X})$.

By hypothesis, \mathbb{X} has tubular type. By [22], there is a tilting object \mathcal{T} in $\text{coh}_0(\mathbb{X}) \vee \text{coh}_+(\mathbb{X})[1]$ such that $\text{End} (\mathcal{T}) = C$, where $\text{coh}_0(\mathbb{X})$ (resp. $\text{coh}_+(\mathbb{X})$) denotes the full
subcategory of coh \((\mathcal{X})\) formed by the sheaves of rank 0 (resp. positive rank). Therefore, \(\mathcal{T} \cup \{S\} \subset \text{coh}_0(\mathcal{X}) \cup \text{coh}_+ (\mathcal{X})[1]\) is a tilting complex for \(\mathcal{X}\) whose endomorphism ring is isomorphic to \(C[P] = A\).

\(\square\)

3.6. **Negative Euler characteristic: the wild case.** For negative Euler characteristic the derived category of modules over an extended canonical algebra \(C[P]\) relates to the study of the \(\mathbb{Z}\)-graded surface singularity \(R\) associated with \(C\) and the weighted projective line \(\mathcal{X}\) associated to \(C\). We refer to [11, 21, 12] for further details.

The weighted projective line \(\mathcal{X} = \mathcal{X}(p, \lambda)\) for a weight sequence \(p = (p_1, \ldots, p_t)\) and a parameter sequence \(\lambda = (\lambda_3, \ldots, \lambda_t)\) was introduced in [11] by means of the algebra

\[
S = S(p, \lambda) := k[x_1, \ldots, k_t]/(x_i^p = x_2^{p_2} - \lambda_i x_1^{p_1}), \quad i = 3, \ldots, t.
\]

The algebra \(S\) is naturally graded over the abelian group \(\mathbb{L}(p)\) with generators \(\bar{x}_1, \ldots, \bar{x}_t\), and relations \(p_i \bar{x}_1 = \cdots = p_t \bar{x}_t =: \bar{c}\) by giving each \(x_i\) the degree \(\bar{x}_i\). Here, \(\bar{c}\) is called the canonical element of \(\mathbb{L}(p)\). The group \(\mathbb{L}(p)\) is isomorphic to the direct sum of the group \(\mathbb{Z}\) of integers and some finite group. A quick way to arrive at the category coh \((\mathcal{X})\) of coherent sheaves on \(\mathcal{X}\) is by putting

\[
\text{coh} (\mathcal{X}) = \frac{\text{mod}_{\mathbb{L}(p)} S}{\text{mod}_{\mathbb{L}(p)}^0 S},
\]

where the quotient category on the right is formed in the sense of [10] and the categories \(\text{mod}_{\mathbb{L}(p)} S\) (resp. \(\text{mod}_{\mathbb{L}(p)}^0 S\)) are the categories of finitely generated \(\mathbb{L}(p)\)-graded \(S\)-modules (resp. those of finite length).

The element \(\bar{\omega} = (t - 2)\bar{c} - \sum_{i=0}^t \bar{x}_i\) from \(\mathbb{L}(p)\) is called the **dualizing element**. Its importance comes from the fact that Serre duality for coh \((\mathcal{X})\) holds in the form

\[
\text{DExt}^1(X, Y) = \text{Hom}(Y, X(\bar{\omega})), \quad X \mapsto X(\bar{\omega})
\]

is the self-equivalence of coh \((\mathcal{X})\) induced by grading shift \(M \mapsto M(\bar{\omega})\), given by \(M(\bar{\omega})_{\bar{x}} = M_{\bar{x} + \bar{\omega}}\).

Assume that \(\chi_{\mathcal{X}} < 0\). Then the **graded surface singularity** \(R = R(p, \lambda)\) attached to the weighted projective line \(\mathcal{X}\) (or the canonical algebra \(C\)) with data \((p, \lambda)\) is defined as

\[
R = \bigoplus_{n=0}^{\infty} R_n, \quad \text{where } R_n = S_{n\bar{c}}.
\]

It follows immediately that \(R\) is a finitely generated, i.e. affine, \(k\)-algebra where each \(R_n\) is finite dimensional over \(k\) and, moreover, \(R_0 = k\) and \(R_1 = 0\). The next theorem illustrates the role of \(R\), and shows in particular that the algebra \(R\) keeps all information on \(\mathcal{X}\). For the proofs we refer to [21, 12].
Theorem. Assume $\chi_X < 0$. Then the following holds:

(a) The algebra $R = R(p, \lambda)$ is a positively \mathbb{Z}-graded isolated surface singularity which is graded Gorenstein of Gorenstein index -1.

(b) There is a natural equivalence $\text{coh}(X) \to \text{mod}^{\mathbb{Z}}-R/\text{mod}_{\mathbb{L}}^{\mathbb{Z}}-R$, induced by restricting the grading from $\mathbb{L}(p)$ to $\mathbb{Z} = \mathbb{Z}\omega$.

(c) For $k = \mathbb{C}$, the algebra $R(p, \lambda)$ is the positively \mathbb{Z}-graded algebra of automorphic forms on the (upper) complex half-plane \mathbb{H}_+ with respect to the action of a Fuchsian group G of the first kind of signature $(0; p_1, \ldots, p_t)$.

Concerning (a) we note that — restricting to the case of Krull dimension two — the Gorenstein index d can be defined through the minimal graded injective resolution

$$0 \to R \to E^0 \to E^1 \to E^2 \to 0$$

of the R-module R, where the term E^2 is the graded injective hull of $k(d)$ and generally the grading shift (n) is defined by $M(n)_m = M_{n+m}$. In this situation, Serre duality holds for $\text{coh}(X)$ in the form $D\text{Ext}^1(X, Y) = \text{Hom}(Y, X(-d))$, such that the Auslander-Reiten translation comes from the grading shift $X \mapsto X(-d)$.

Concerning (c) we remark that G is the orbifold fundamental group of X, having a presentation $\langle \sigma_1, \ldots, \sigma_t \mid \sigma_1^{p_1} = \ldots = \sigma_t^{p_t} = \sigma_1 \cdots \sigma_t \rangle$ acting by covering transformations on the (branched) universal cover \mathbb{H}_+ of X. We refer to [26, 28] for the associated rings of automorphic forms.

3.7. For a variety X Orlov investigated in [29] the triangulated category $D_{Sg}(X)$ of the singularities of X defined as the quotient of the bounded derived category $D^b(\text{coh}(X))$ of coherent sheaves modulo the full subcategory of perfect complexes. If X is affine with coordinate algebra R this category $D_{Sg}(R)$ is just the quotient $D^b(\text{mod}-R)/D^b(\text{proj}-R)$, where $\text{proj}-R$ is the category of finitely generated projective R-modules. In [30] Orlov further introduced a graded variant

$$D^Z_{Sg}(R) = D^b(\text{mod}^{\mathbb{Z}}-R)/D^b(\text{proj}^{\mathbb{Z}}-R)$$

called the \textit{triangulated category of the graded singularity} R which will play a central role in this section.

Under the name \textit{stabilized derived category of} R the categories $D_{Sg}(R)$ were introduced by Buchweitz in [5]. His results easily extend to the graded case and yields for an R that is graded Gorenstein an alternative description of $D^Z_{Sg}(R)$ as the \textit{stable}
category of graded maximal Cohen-Macaulay modules $\text{MCM}^{Z}-R$. More precisely, he showed that the category $\text{MCM}^{Z}-R$ of maximal graded Cohen-Macaulay R-modules is a Frobenius-category, hence inducing — in Keller’s terminology [18] — on the attached stable category $\text{MCM}^{Z}-R$ of graded maximal Cohen-Macaulay modules modulo projectives, the structure of an algebraic triangulated category. For a related approach measuring the complexity of a singularity by a triangulated category we refer to Krause’s account [19].

Let $R = \bigoplus_{n \geq 0} R_n$, $R_n = S_{n\omega}$, be the positively Z-graded Gorenstein singularity attached to the weighted projective line \mathbb{X}. It follows from [21, 5.6] that R has Krull dimension two and Gorenstein index -1. We fix some notation: Let $\mathcal{M} = D^b(\text{mod}^{Z}-R)$ and $\mathcal{M}_+ = D^b(\text{mod}^{Z+}-R)$. Let \mathcal{P}_+ be the triangulated subcategory of \mathcal{M}_+ generated by all $R(-n)$, $n \geq 0$ and \mathcal{T} its left perpendicular category $\perp \mathcal{P}_+$ formed in \mathcal{M}_+. Denote further by \mathcal{S}_+ the triangulated subcategory of \mathcal{M}_+ generated by all $k(-n)$, $n \geq 0$ and \mathcal{D} its right perpendicular category \mathcal{S}_+^\perp formed in \mathcal{M}_+. Finally let $\mathcal{D}(-1) = \mathcal{S}_+(-1)^\perp$. Then [30, 2.5] implies the following proposition.

Proposition. Assume that $\chi_{\mathbb{X}} < 0$ and let R be the positively Z-graded singularity attached to \mathbb{X}. Then the following holds:

(a) The natural functor $\mathcal{T} \hookrightarrow \mathcal{M} \xrightarrow{\mathcal{q}} D_{\text{SG}}(R)$, where \mathcal{q} is the quotient functor, is an equivalence of triangulated categories.

(b) The R-module k is an exceptional object in \mathcal{T} with $\perp k = \mathcal{D}(-1)$. Moreover, the category $D^b(\text{coh}(\mathbb{X}))$ is naturally equivalent to $\mathcal{D}(-1)$ under the functor $Y \mapsto (R\Gamma_+(Y))(-1)$.

Proof. For the convenience of the reader we sketch the argument. Using that R is Gorenstein of Gorenstein index -1, and invoking Gorenstein duality $R\text{Hom}_R^*(\cdot, R)$ of \mathcal{M} one sees that $T^\perp \subset \mathcal{D}(-1)^\perp$ and hence $\mathcal{D}(-1)$ is a full subcategory of \mathcal{T}. Further we see that $\perp k = \mathcal{D}(-1)$. It is well-known that

$$\Gamma_+: \text{coh}(\mathbb{X}) \to \text{mod}^{Z+}-R, \quad Y \mapsto \bigoplus_{n=0}^{\infty} \text{Hom}(O, Y(n))$$

is a full embedding having sheafification, that is, the quotient functor $q_+: \text{mod}^{Z+}-R \to \text{coh}(\mathbb{X})$ as an exact left adjoint and such that composition $q \Gamma_+$ is the identity functor on $\text{coh}(\mathbb{X})$, compare [11, 1.8], [21, 5.7]. It follows that $R\Gamma_+: D^b(\text{coh}(\mathbb{X})) \to \mathcal{M}_+$ is a full embedding having $q_+: \mathcal{M}_+ \to \mathcal{M}_+/\mathcal{S}_+$ as a left adjoint, and $q_+ R\Gamma_+ = 1$.
Since R is positively graded with $R_0 = k$, it follows that k is exceptional in \mathcal{M} and hence in \mathcal{M}_+. Invoking the minimal graded injective resolution $0 \to R \to E^0 \to E^1 \to E^2 \to 0$, where E^0 and E^1 are socle-free and E^2 is the graded injective hull of $k(-1)$, it follows that k belongs to \mathcal{T} and then also to $\mathcal{D}(-1)$. It is straightforward to check that $\mathcal{D}(-1)^\perp$ equals the triangulated subcategory $\langle k \rangle$ generated by k, and hence $\perp k = \mathcal{D}(-1)$ in \mathcal{T}.

3.8. **Proof of Theorem 1** We are now in a position to clarify the structure of the category $\mathcal{D}_{\mathcal{Sg}}^Z(R)$. The result was first observed by K. Saito and A. Takahashi (personal communication); it is not yet published, and uses the technique of matrix factorizations as in [17].

By Proposition 3.2 it suffices to show that the left adjoint $\ell : \mathcal{T} \to \perp k$ to the inclusion $j : \perp k \hookrightarrow \mathcal{T}$ maps k to a line bundle in $\mathcal{D}(-1) = \mathcal{D}^b(\text{coh}(X))$ up to translation in $\mathcal{D}(-1)$. We put $A = (R \Gamma_+ (\mathcal{O}(\vec{\omega})))(-1)$ and construct a morphism $\gamma : k \to A[1]$ such that $\text{Hom}(\gamma, Y) : \text{Hom}(A[1], Y) \to \text{Hom}(k, Y)$ is an isomorphism for each $Y \in \perp k$ such that $\ell(k) = A[1]$.

The claim is proved in two steps. Put $R_+ = \bigoplus_{n \geq 1} R_n$, then the exact sequence $0 \to R_+ \to R \to k$ yields an exact triangle $R \to k \to R_+[1]$ in \mathcal{M}, where $\text{Hom}(\alpha, Y)$ is an isomorphism for each $Y \in \perp k$. Note for this that R belongs to $\perp \mathcal{D}(-1)$.

For the next step it is useful to identify the derived category \mathcal{M}_+ with the full subcategory of $\mathcal{D}^b(\text{Mod}_{\mathcal{Z}^+}^Z - R)$ consisting of all complexes with cohomology in $\text{mod}_{\mathcal{Z}^+}^Z - R$. Here, $\text{Mod}_{\mathcal{Z}^+}^Z - R$ denotes the category of all graded R-modules. Let $0 \to R(-1) \to E^0 \to E^1 \to E^2 \to 0$ be the minimal graded injective resolution of $R(1)$ such that E^2 equals the graded injective envelope of k. (This uses that R has Gorenstein index -1.) Sheafification yields the minimal injective resolution $0 \to \mathcal{O}(\vec{\omega}) \to \tilde{E}^0 \to \tilde{E}^1 \to 0$ of $\mathcal{O}(\vec{\omega})$. Accordingly $R \Gamma_+ (\mathcal{O}(\vec{\omega}))$ is given by the complex

$$A : \cdots \to 0 \to E^0_+ (-1) \to E^2_+ (-1) \to 0 \cdots,$$

whose cohomology is concentrated in degrees zero and one and given by

$$\text{H}^0(A) = R_+, \quad \text{H}^1(A) = k(-1).$$

It follows the existence of an exact triangle

$$k(-1)[-2] \to R_+ \xrightarrow{\beta} A \to k(-1)[-1],$$
in \(\mathcal{M}_+ \) where, by construction, \(A \) belongs to \(\mathcal{D}(-1) \). For \(Y \) from \(\mathcal{D}(-1) \) we have, in particular, that \(Y \) belongs to \(k(-1) \) implying that \(\text{Hom}(\beta, Y) \) is an isomorphism. To summarize: The morphism \(\gamma = [k \xrightarrow{\alpha} R_+[1] \xrightarrow{\beta[1]} A[1]] \) yields isomorphisms \(\text{Hom}(\gamma, Y) \) for each \(Y \in \mathcal{D}(-1) \). Hence \(\ell(k)[-1] = A = R\Gamma_+(\mathcal{O}(\vec{\omega}))(1) \) is a line bundle, as claimed. \(\square \)

3.9. The Coxeter-Dynkin algebras of a singularity. In the theory of singularities the attached Coxeter-Dynkin diagrams, see for instance [8, 7], play an important role, in particular, since they establish a link to Lie theory.

Definition. Let \(k \) be an algebraically closed field, and \(R = R(p, \lambda) \) be the \(\mathbb{Z} \)-graded singularity attached to the weighted projective line \(X(p, \lambda) \).

(a) By the Coxeter-Dynkin algebra of hereditary type we mean the path algebra \(D[p] \) of the hereditary star \([p_1, \ldots, p_t] \) having a unique sink.

(b) By the Coxeter-Dynkin algebra of canonical type we mean the algebra \(D(p, \lambda) \) given in terms of the quiver

\[
\begin{array}{c}
\alpha_1 \\
\alpha_2 \\
\vdots \\
\alpha_t \\
\beta_1 \\
\beta_2 \\
\vdots \\
\beta_t \\
\end{array}
\]

with the two relations \(\sum_{i=2}^{t} \alpha_i \beta_i = 0 \) and \(\alpha_1 \beta_1 = \sum_{i=3}^{t} \lambda_i \alpha_i \beta_i \).

(c) By the Coxeter-Dynkin algebra of extended-canonical type we mean the one-point extension \(\hat{D}(p, \lambda) \) of the Coxeter-Dynkin algebra \(D(p, \lambda) \) of canonical type above, introducing a new arrow at the sink vertex and keeping the relations.

The link to singularity theory is given by the following well known result, compare [7, 8].

Theorem. For \(k = \mathbb{C} \) the Coxeter-Dynkin diagram of the singularity \(R(p, \lambda) \) is the underlying digraph of the Coxeter-Dynkin algebra

(a) of hereditary type, if \(\chi_X > 0 \), and then \([p_1, \ldots, p_t]\) is Dynkin.
(b) of canonical type, if \(\chi_X = 0 \), and then \(p \) is tubular.
(c) of extended canonical type, if \(\chi_X < 0 \).

Recall that the digraph of a finite dimensional algebra \(A \) has the underlying graph of the quiver of \(A \) as solid edges and the minimal number of relations between vertices \(i \) and \(j \) as dotted edges.

Proposition. Assume the number of weights \(> 1 \) is at least two. Then the following holds:

(a) The Coxeter-Dynkin algebra \(D(p, \lambda) \) of canonical type is derived equivalent to the canonical algebra \(C(p, \lambda) \).
(b) The Coxeter-Dynkin algebra \(\hat{D}(p, \lambda) \) of extended canonical type is derived equivalent to the extended canonical algebra \(A = C[P] \), where \(C = C(p, \lambda) \).

Proof. Let \(X \) be the weighted projective line with \(t \) weighted points \(x_1, \ldots, x_t \) of weight \(p_1, \ldots, p_t \), respectively. For each \(i = 1, \ldots, t \) denote by \(U_i \) the unique indecomposable sheaf of length \(p_i - 1 \) concentrated in \(x_i \) such there exists an epimorphism \(\mathcal{O} \to U_i \) in \(\text{coh}(X) \), where \(\mathcal{O} \) is the structure sheaf on \(X \). Moreover, let

\[
S_i = U_i^{(1)} \subset U_i^{(2)} \subset \cdots \subset U_i^{(p_i-1)} = U_i
\]

be the complete system of subobjects of \(U_i \). It is straightforward to verify that the object

\[
T = \mathcal{O}(\bar{c}) \oplus \bigoplus_{i=1}^t \left(U_i^{(1)} \oplus U_i^{(2)} \oplus \cdots \oplus U_i^{(p_i-1)} \right) \oplus \mathcal{O}(-\bar{\omega})[1]
\]

is a tilting object in \(\text{D}^b(\text{coh}(X)) \). Moreover, it is not difficult to see that the endomorphism ring of \(T \) is isomorphic to the Coxeter-Dynkin algebra \(D(p, \lambda) \).

This proves (a). Assertion (b) follows from (a) noting that \(\mathcal{O}(-\bar{\omega}) \) is a line bundle by applying [2] or arguing as in Proposition 3.2. \(\square \)

3.10. **The triangulated category of singularities for nonnegative Euler characteristic.** In this paper we mainly concentrate on the case \(\chi_X < 0 \). To complete the picture we review the situation for \(\chi_X \geq 0 \).

Assume that \(k = \mathbb{C} \). For \(\chi_X > 0 \) the Dynkin diagram given by the weight type and the Coxeter-Dynkin diagram of the singularity \(R = R(p, \lambda) \) agree. Moreover, it is shown in [17] that the category \(\text{D}^b_{\text{sg}}(R) \) is equivalent to the bounded derived category \(\text{D}^b(k\Delta) \) of the path algebra of a quiver of the same Dynkin type.
Next we deal with the case $\chi_X = 0$. First, there is no \mathbb{Z}-graded Gorenstein algebra R such that $C = \text{mod}^\mathbb{Z}R/\text{mod}^\mathbb{Z}_0R$ is equivalent to $\text{coh}(X)$. Assume, indeed, that such an algebra R would exist. Let d denote its Gorenstein index. Since the Auslander-Reiten translation $\tau(X) = X(−d)$ has finite order 2, 3, 4 or 6 for any weighted projective line X of tubular type, it follows that $d = 0$, hence τ is the identity, contradiction.

Hence for $\chi_X = 0$ it is more natural to investigate the $L(p)$-graded singularity $S = S(p, \lambda)$ and its triangulated category of singularities $D_{\text{Sg}}^{L(p)}(S)$ which in the tubular case is equivalent to $D^b(\text{coh}(X))$ due to recent work of Ueda [35].

4. The Coxeter polynomial of an extended canonical algebra

4.1. Let A be a finite dimensional k-algebra of finite global dimension. The Coxeter transformation $\varphi_A: K_0(A) \to K_0(A)$ is the automorphism induced by the Auslander-Reiten translation $\tau_{D^b(\text{mod}A)}: D^b(\text{mod}A) \to D^b(\text{mod}A)$. We shall consider φ_A as a $n \times n$ integral matrix where n is the rank of $K_0(A)$. From the Introduction, we recall that $f_A(T) = \det(T\text{id} - \varphi_A)$ is called the Coxeter polynomial of A.

For a one-point extension $A = B[P]$ of an algebra B by an indecomposable projective a simple calculation shows (see [24, 34]):

$$f_A(T) = (1 + T)f_B(T) - T f_C(T).$$

Of particular interest is the hereditary case where any algebra can be constructed by repeated one-point extensions using indecomposable projective modules. In fact, for a star H of type $[p_1, \ldots, p_t]$ the above formula yields:

$$f_{[p_1, \ldots, p_t]}(T) := f_H(T) = \left(T + 1 - T \sum_{i=1}^t \frac{v_{p_{i-1}}}{v_{p_i}} \right) \prod_{i=1}^t v_{p_i},$$

where we set $v_n(T) = T^n - T^{n-1} = \sum_{i=0}^{n-1} T^i$.

For the canonical algebra $C = C(p, \lambda)$ of type $p = (p_1, \ldots, p_t)$, we get

$$f_{(p_1, \ldots, p_t)}(T) := f_C(T) = (T - 1)^2 \prod_{i=1}^t v_{p_1}(T).$$

In particular, all the eigenvalues of φ_C lie on the unit circle \mathbb{S}^1. For these calculations we refer the reader to [23].
Lemma [24]. An extended canonical algebra $A = C[P]$ where $C = C(p, \lambda)$ with $p = (p_1, \ldots, p_t)$ has Coxeter polynomial:

$$\hat{f}_{(p_1,\ldots,p_t)}(T) := f_A(T) = (T + 1)(T - 1)^2 \prod_{i=1}^{t} v_{p_i}(T) - T f_{[p_1,\ldots,p_t]}(T) \quad \square$$

4.2. For later use we recall some facts on cyclotomic polynomials.

The n-cyclotomic polynomial $\phi_n(T)$ is inductively defined by the formula

$$T^n - 1 = \prod_{d|n} \phi_d(T).$$

Recall that the Möbius function is defined as follows:

$$\mu(n) = \begin{cases} 0 & \text{if } n \text{ is divisible by a square} \\ (-1)^r & \text{if } n = p_1\ldots p_r \text{ is a factorization into distinct primes.} \end{cases}$$

A more explicit expression for the cyclotomic polynomials is given by:

Lemma. For each $n \geq 2$, we have

$$\phi_n(T) = \prod_{1 \leq d < n \atop d|n} v_{n/d}(T)^{\mu(d)}$$

4.3. Following [24] we say that a polynomial $p(T) \in \mathbb{Z}[T]$ is represented by $q(T) \in \mathbb{Z}[T]$ if

$$p(T^2) = q^*(T) := T^{\deg q} q(T + T^{-1}).$$

The interest in the representability of polynomials is due to the relation between the set of roots of $p(T)$ and $q(T)$ whenever $p(T^2) = q^*(T)$. Indeed, in that case $\text{Root } p(T) \subset S^1$ (resp. $S^1 \setminus \{1\}$) if and only if $\text{Root } q(T) \subset [-2, 2]$ (resp. $(-2, 2)$).

In [24] is shown that the Coxeter polynomial $\hat{f}_{(p_1,\ldots,p_t)}(T)$ of an extended canonical algebra of type (p_1, \ldots, p_t) is represented by

$$q_{(p_1,\ldots,p_t)}(T) = T(T^2 - 1) \prod_{i=1}^{t} v_{p_i}(T) - \chi_{[p_1,\ldots,p_t]}(T),$$

where $\chi_{[p_1,\ldots,p_t]}(T)$ is the characteristic polynomial of the adjacency matrix of the star graph of type $[p_1, \ldots, p_t]$.

Using the above expressions the following was recently shown by the authors:

Theorem [24]. Let $A = C[P]$ be an extended canonical algebra of type (p_1, \ldots, p_t) and A' be an extended canonical algebra of type $(p_1, \ldots, p_t, p_t + 1)$ and A' be an extended canonical algebra of type (p_1, \ldots, p_t). Then the following holds:
(a) \(\varphi_A \) accepts at most 4 eigenvalues outside \(S^1 \)
(b) If \(\text{Root } f_A \subset S^1 \), then also \(\text{Root } f_{A'} \subset S^1 \)

Sketch of proof: The polynomials \(q_{(p_1, \ldots, p_t)}(T) \) satisfy a Chebyshev recursion formula as follows:
\[q_{(p_1, \ldots, p_t+1)}(T) = T q_{(p_1, \ldots, p_t)}(T) - q_{(p_1, \ldots, p_t-1)}(T). \]

A version of Sturm’s Theorem applies to assure that for any real interval \([\alpha, \beta] \), if \(q_{(p_1, \ldots, p_t+1)}(T) \) has roots \(\lambda_1 \leq \cdots \leq \lambda_s \) in \([\alpha, \beta] \), then \(q_{(p_1, \ldots, p_t)}(T) \) has roots \(\lambda'_1 \leq \cdots \leq \lambda'_{s-1} \) in \([\alpha, \beta] \) satisfying
\[\lambda_1 \leq \lambda'_1 \leq \lambda_2 \leq \lambda'_2 \leq \cdots \leq \lambda_{s-1} \leq \lambda'_{s-1} \leq \lambda_s. \]

(a) and (b) follow easily from these facts. \(\square \)

4.4. According to (4.3), to prove Theorem 2 we need to calculate the minimal weight sequences \(p \) such that \(\hat{f}_p(T) \) is not contained in \(S^1 \). This is done by systematically computing the roots of Coxeter polynomials of extended canonical algebras.

Recall that the spectral radius of the Coxeter transformation \(\varphi_A \) is by definition \(\rho_A(\varphi_A) = \max \{ |\lambda| : \lambda \in \text{Root } f_A(T) \} \). In the following list \(A \) is an extended canonical algebra of weight type \(p \). The invariant called Dynkin index is explained in section 5.
Weight $\rho(\varphi_A)$	Dynkin index	
$t=3$		
$(2, 3, 11)$	$1 + T - T^3 - T^4 + T^6 + T^7 + T^9 + T^{10} - T^{12} - T^{13} + T^{15} + T^{16}$	1.1064
$(2, 4, 9)$	$\phi_2 \phi_5(T^{10} - T^9 + T^5 + T + 1)$	1.1329
$(2, 5, 8)$	$1 + T + T^4 + T^5 + T^6 + 2T^8 + T^9 + T^{10} + T^{11} + T^{14} + T^{15}$	1.1574
$(2, 6, 7)$	$1 + T + T^4 + 2T^5 + 2T^6 + T^7 + T^8 + 2T^9 + 2T^{10} + T^{11} + T^{14} + T^{15}$	1.1669
$(3, 3, 8)$	$1 + T + T^2 + T^5 + 2T^6 + 3T^7 + 2T^8 + T^9 + T^{12} + T^{13} + T^{14}$	1.1498
$(3, 4, 7)$	$1 + T + T^2 + T^3 + T^4 + 2T^5 + 3T^6 + 3T^7 + 3T^8 + 2T^9 + T^{10} + T^{11} + T^{12} + T^{13} + T^{14}$	1.1847
$(3, 5, 6)$	$\phi_3(T^{12} + T^9 + T^7 + T^8 + T^5 + T^4 + T^3 + T + 1)$	1.1966
$(4, 4, 6)$	$\phi_2 \phi_4(T^{10} - T^9 + T^8 + T^6 + T^4 + T^2 - T + 1)$	1.2175
$(4, 5, 5)$	$\phi_5(T^{10} + T^7 + T^6 + T^5 + T^4 + T^3 + 1)$	1.2277
$t=4$		
$(2, 2, 2, 7)$	$\phi_2^3(T^{10} + T^9 + T^5 + T^4 + 1)$	1.1670
$(2, 2, 3, 6)$	$\phi_2^2 \phi_3(T^8 - T^7 + T^6 + T^4 + T^2 - T + 1)$	1.2196
$(2, 3, 3, 4)$	$\phi_2 \phi_4(T^8 + T^5 + T^3 + T^2 + 1)$	1.2874
$(3, 3, 3, 4)$	$\phi_3^2(T^8 + T^6 + 2T^5 + 2T^3 + T^2 + 1)$	1.3307
$t=5$		
$(2, 2, 2, 5)$	$\phi_2^3(T^8 + T^6 + T^3 + 2T^4 + T^3 + T^2 + 1)$	1.2874
$(2, 2, 3, 4)$	$\phi_4^3(T^8 + 2T^6 + T^5 + 3T^4 + 2T^2 + 1)$	1.3351
$(2, 2, 3, 3, 3)$	$\phi_2 \phi_3^2(T^8 + T^4 + 2T^3 + T^2 + 1)$	1.3765
$t=6$		
$(2, 2, 2, 2, 3)$	$\phi_2^4(T^9 + 2T^4 + 3T^3 + 2T^2 + 1)$	1.3305
$t=7$		
$(2, 2, 2, 2, 2, 2)$	$\phi_2^5(T^4 - T^3 + 3T^2 - T + 1)$	1.5392

Table 1. Critical weight sequences.

4.5. To complete the proof of Theorem [2] we shall show that any weight sequence $\rho' < \rho$ with ρ in Table 1 has all its roots on S^1. This is computed in the following Table 2.

As above $A = C[P]$ is an extended canonical algebra of weight type $\rho = (p_1, \ldots, p_t)$. In Table 2, the marks \bullet and \circ refer to the case $k = \mathbb{C}$: those weight sequences marked
by \bullet or \square correspond to algebras $R(p, \lambda)$ associated to hypersurface singularities, in those cases $R(p, \lambda)$ is formally 3-generated. The marks \bullet correspond to Arnold’s 14 exceptional unimodal singularities in the theory of singularities of differentiable maps [1]. Among those weight sequences $p = (p_1, p_2, p_3)$ (that is $t = 3$), Arnold’s singularities are exactly those rings of automorphic forms having three generators [37].
Weight sequence	Factorization of $f_A(T)$	Poincaré series	Period of φ_A
(2, 3, 7)	ϕ_{42}	(6, 14, 21) (42)	42
(2, 3, 8)	$\phi_2 \cdot \phi_{10} \cdot \phi_{30}$	(6, 8, 15) (30)	30
(2, 3, 9)	$\phi_3 \cdot \phi_{12} \cdot \phi_{24}$	(6, 8, 9) (24)	24
(2, 3, 10)	$\phi_2 \cdot \phi_{16} \cdot \phi_{18}$	(6, 8, 9, 10) (16, 18)	72
(2, 4, 5)	$\phi_2 \cdot \phi_6 \cdot \phi_{30}$	(4, 10, 15) (30)	30
(2, 4, 6)	$\phi_2^2 \cdot \phi_{22}$	(4, 6, 11) (22)	22
(2, 4, 7)	$\phi_2 \cdot \phi_9 \cdot \phi_{18}$	(4, 6, 7) (18)	18
(2, 4, 8)	$\phi_2^2 \cdot \phi_4 \cdot \phi_{12} \cdot \phi_{14}$	(4, 6, 7, 8) (12, 14)	84
(2, 5, 5)	$\phi_5 \cdot \phi_{20}$	(4, 5, 10) (20)	20
(2, 5, 6)	$\phi_2 \cdot \phi_8 \cdot \phi_{16}$	(4, 5, 6) (16)	16
(2, 5, 7)	$\phi_{11} \cdot \phi_{12}$	(4, 5, 6, 7) (11, 12)	132
(2, 6, 6)	$\phi_2^2 \cdot \phi_3 \cdot \phi_6 \cdot \phi_{10} \cdot \phi_{12}$	(4, 5, 6, 6) (10, 12)	60
(3, 3, 4)	$\phi_4 \cdot \phi_{24}$	(3, 8, 12) (24)	24
(3, 3, 5)	$\phi_2 \cdot \phi_3 \cdot \phi_6 \cdot \phi_{18}$	(3, 5, 9) (18)	18
(3, 3, 6)	$\phi_2^2 \cdot \phi_{15}$	(3, 5, 6) (15)	15
(3, 3, 7)	$\phi_2 \cdot \phi_3 \cdot \phi_4 \cdot \phi_{10} \cdot \phi_{12}$	(3, 5, 6, 7) (10, 12)	60
(3, 4, 4)	$\phi_2 \cdot \phi_4 \cdot \phi_{16}$	(3, 4, 8) (16)	16
(3, 4, 5)	ϕ_{13}	(3, 4, 5) (13)	13
(3, 4, 6)	$\phi_2 \cdot \phi_3 \cdot \phi_9 \cdot \phi_{10}$	(3, 4, 5, 6) (9, 10)	90
(3, 5, 5)	$\phi_2 \cdot \phi_5 \cdot \phi_8 \cdot \phi_{10}$	(3, 4, 5, 5) (8, 10)	40
(4, 4, 4)	$\phi_2^2 \cdot \phi_3 \cdot \phi_6 \cdot \phi_{12}$	(3, 4, 4) (12)	12
(4, 4, 5)	$\phi_2 \cdot \phi_4 \cdot \phi_8 \cdot \phi_{9}$	(3, 4, 5, 5) (8, 9)	72
(2, 2, 2, 3)	$\phi_2^2 \cdot \phi_{18}$	(2, 6, 9) (18)	18
(2, 2, 2, 4)	$\phi_2^2 \cdot \phi_{14}$	(2, 4, 7) (14)	14
(2, 2, 2, 5)	$\phi_2^2 \cdot \phi_3 \cdot \phi_6 \cdot \phi_{12}$	(2, 4, 5) (12)	12
(2, 2, 2, 6)	$\phi_2^2 \cdot \phi_8 \cdot \phi_{10}$	(2, 4, 5, 6) (8, 10)	40
(2, 2, 3, 3)	$\phi_2 \cdot \phi_3 \cdot \phi_4 \cdot \phi_{12}$	(2, 3, 6) (12)	12
(2, 2, 3, 4)	$\phi_2^2 \cdot \phi_5 \cdot \phi_{10}$	(2, 3, 4) (10)	10
(2, 2, 3, 5)	$\phi_2 \cdot \phi_7 \cdot \phi_8$	(2, 3, 4, 5) (7, 8)	56
(2, 2, 4, 4)	$\phi_2^2 \cdot \phi_4 \cdot \phi_6 \cdot \phi_{8}$	(2, 3, 4, 4) (6, 8)	24
(2, 3, 3, 3)	$\phi_2^2 \cdot \phi_0$	(2, 3, 3) (9)	9
(2, 3, 3, 4)	$\phi_2 \cdot \phi_3 \cdot \phi_6 \cdot \phi_7$	(2, 3, 3, 4) (6, 7)	42
(3, 3, 3, 3)	$\phi_2 \cdot \phi_3 \cdot \phi_6 \cdot \phi_7$	(2, 3, 3, 3) (6, 6)	∞
(2, 2, 2, 2, 2)	$\phi_2^2 \cdot \phi_{10}$	(2, 2, 5) (10)	10
(2, 2, 2, 2, 3)	$\phi_2^2 \cdot \phi_4 \cdot \phi_8$	(2, 2, 3) (8)	8
(2, 2, 2, 2, 4)	$\phi_2^2 \cdot \phi_3 \cdot \phi_5 \cdot \phi_6$	(2, 2, 3, 4) (6, 6)	∞
(2, 2, 2, 3, 3)	$\phi_2^2 \cdot \phi_3 \cdot \phi_5 \cdot \phi_6$	(2, 2, 3, 3) (5, 6)	30
(2, 2, 2, 2, 2)	$\phi_2^2 \cdot \phi_4 \cdot \phi_6$	(2, 2, 2, 3) (4, 6)	12

Table 2. Weights p with $\rho(\varphi_A) = 1$.
4.6. **Proof of Theorem 2.** (a) follows from (4.4) and (4.5) using Theorem (4.3). Part (b) is shown in [24], see (4.3). □

5. **The Poincaré series of an extended canonical algebra**

5.1. Let $C = C(p, \lambda)$ be a wild canonical algebra with weight sequence $p = (p_1, \ldots, p_t)$. Let P be an indecomposable projective C-module. We define the Poincaré series $\hat{P}_C = \hat{P}(p_1, \ldots, p_t) \in \mathbb{Z}[[T]]$ by

$$\hat{P}_C(T) = \sum_{n=0}^{\infty} \langle [P], \varphi^n_C[P] \rangle c T^n.$$

Recall that $\varphi^n_C[P] = [\tau^n_{\text{D}b(\text{mod-}C)}P]$ in $K_0(\text{D}b(\text{mod-}C)) = K_0(C)$. Moreover, observe that $T + \hat{P}_C(T)$ is the Hilbert-Poincaré series $P_C(T)$, as defined in the Introduction, for the graded algebra

$$R(p, \lambda) = \bigoplus_{n=0}^{\infty} \text{Hom}(L, \tau^n_X L)$$

where $X = \mathbb{X}(p, \lambda)$ is a weighted projective line, τ_X is the Auslander-Reiten translation in $\text{coh} \ (X)$ and L is any rank one bundle, see [23] and [25]. In particular, $\hat{P}_C(T)$ does not depend on the choice of P.

Proposition. With the notation above, let $A = C[P]$ be an extended canonical algebra. Then

(a) [25] Cor 3.6: $f_A(T) = P_C(T)f_C(T)$

(b) [23] Th. 8.6: $P_C(T) = 1 + T - \frac{T}{f(p_1; \ldots, p_t)(T)}$

(c) [23] Prop. 4.3: $P_C(T) = T + \frac{1}{1-T} + (t-2) \frac{T}{(1-T)^2} - \sum_{i=1}^{t} \frac{T}{(1-T)(1-T^{p_i})}$. □

5.2. We recall from [23] the following concepts.

Definition [23]. Assume $p = (p_1, \ldots, p_t)$ is a weight sequence of wild type. The *Dynkin label* of p is the Dynkin diagram of one of the extended Dynkin graphs $[2, 2, 2, 2]$, $[3, 3, 3]$ [2, 4, 4] or [2, 3, 6] specified as follows:

(a) if $t \geq 4$, then the label is of type $[2, 2, 2, 2]$

(b) if $t = 3$, then the label is of type $[a, b, c]$ if $[a, b, c] \leq [p_1, p_2, p_3]$ and $a + b + c$ is minimal.

We say that p has *Dynkin index* 2, 3, 4 or 6 if its Dynkin label is $[2, 2, 2, 2]$, $[3, 3, 3]$, $[2, 4, 4]$ or $[2, 3, 6]$ respectively.
Consider the graded algebra $R = R(p, \lambda)$. In [23] the support monoid $M(p)$ was introduced as the set of those $n \in \mathbb{N}$ with $R_n \neq 0$. Clearly, $M(p)$ is an additive semigroup in \mathbb{N} generating \mathbb{Z} as a group.

Proposition [23]. The support monoid $M(p)$ is finitely generated with at most 6 generators. The smallest element in $M(p)$ is the Dynkin index of p. \qed

5.3. In a preliminary version of [23], the authors displayed the list of all possible support monoids $M(p)$. This list of 22 semigroups is essential for the proofs of Theorems 3 and 4 and we reproduce it below. For a weight sequence p the largest integer n such that n does not belong to $M(p)$ is called the Frobenius number of $M(p)$ and it is denoted by $\alpha(p)$. Of particular interest is the fact that $p \leq q$ implies $M(p) \subset M(q)$.
5.4. For a given weight sequence \(p = (p_1, \ldots, p_t) \), the Coxeter polynomials \(f_p(T) \) and \(\hat{f}_p(T) \) are readily computed by (3.2). In case Root \(\hat{f}_p(T) \subset S^1 \), then using (3.2), the Poincaré series \(P_T(T) \) can be written as a rational function

\[
P_T(T) = \frac{m}{\prod_{j=1}^m (1-T^{d_j}) (1-T)^r}
\]

Table 3. Semigroups of \((\mathbb{N}, +)\) with the form \(M(p) \).

Weight type \(p \)	Frobenius number \(\alpha(p) \)	generators of \(\mathbb{M}(p) \)
\((2, 3, 7)\)	43	\{6, 14, 21\}
\((2, 3, 8)\)	25	\{6, 8, 15\}
\((2, 3, 9)\)	19	\{6, 8, 9\}
\((2, 3, 10)\)	13	\{6, 8, 9, 10\}
\((2, 3, 11)\)	13	\{6, 8, 9, 10, 11\}
\((2, 3, 12)\)	13	\{6, 8, 9, 10, 11\}
\((2, 3, 13)\)	7	\{6, 8, 9, 10, 11, 13\}
\((2, 3, \infty)\)	7	\{6, 8, 9, 10, 11, 13\}
\((2, 4, 5)\)	21	\{4, 10, 15\}
\((2, 4, 6)\)	13	\{4, 6, 11\}
\((2, 4, 7)\)	9	\{4, 6, 7\}
\((2, 4, 8)\)	9	\{4, 6, 7\}
\((2, 4, 9)\)	5	\{4, 6, 7, 9\}
\((2, 4, \infty)\)	5	\{4, 6, 7, 9\}
\((2, 5, 5)\)	11	\{4, 5\}
\((2, 5, 6)\)	7	\{4, 5, 6, 7\}
\((2, 5, 7)\)	3	\{4, 5, 6, 7\}
\((2, 5, \infty)\)	3	\{4, 5, 6, 7\}
\((2, 6, 6)\)	7	\{4, 5, 6\}
\((2, 6, 7)\)	3	\{4, 5, 6, 7\}
\((2, 6, \infty)\)	3	\{4, 5, 6, 7\}
\((2, \infty, \infty)\)	3	\{4, 5, 6, 7\}
\((3, 3, 4)\)	13	\{3, 8\}
\((3, 3, 5)\)	7	\{3, 5\}
\((3, 3, 6)\)	7	\{3, 5\}
\((3, 3, 7)\)	4	\{3, 5, 7\}
\((3, 3, \infty)\)	3	\{3, 5, 7\}
\((3, 3, 4)\)	5	\{3, 4\}
\((3, 3, 5)\)	2	\{3, 4, 5\}
\((3, 3, 6)\)	5	\{3, 4\}
\((3, 3, 7)\)	2	\{3, 4, 5\}
\((\infty, \infty, \infty)\)	2	\{3, 4\}
\((2, 2, 2, 3)\)	7	\{2, 9\}
\((2, 2, 2, 4)\)	5	\{2, 7\}
\((2, 2, 2, 5)\)	3	\{2, 5\}
\((2, 2, 2, \infty)\)	3	\{2, 5\}
\((2, 2, 3, 3)\)	1	\{2, 3\}
\((2, 2, 3, \infty)\)	1	\{2, 3\}
\((\infty, \infty, \infty, \infty)\)	1	\{2, 3\}
\((2, 2, 2, 2, 2)\)	3	\{2, 3\}
\((2, 2, 2, 2, 3)\)	1	\{2, 3\}
\((2, 2, 2, 2, \infty)\)	1	\{2, 3\}
\((\infty, \infty, \ldots, \infty)\)	1	\{2, 3\}
for sequences \((d_1, \ldots, d_n)\) and \((c_1, \ldots, c_m)\) of natural numbers \(\geq 2\) and some \(r \in \mathbb{Z}\). In case \(p\) is of wild type, then by (4.1)

\[
\hat{f}_{(p_1, \ldots, p_t)}(1) = -f_{[p_1, \ldots, p_t]}(1) = \left(t - 2 \right) - \sum_{i=1}^{t} \frac{1}{p_i} \prod_{i=1}^{t} p_i > 0
\]

and by (5.1), \(P_C(T)\) has a pole of order 2 at \(T = 1\), that is \(m - n + r = -2\). Moreover, developing the series \(P_C(T)\) we readily see that \(r \neq 0\) implies that the semigroups \(M(p)\) is \(N\), but [23, Th. 10.4] claims that \(1 + \frac{1}{t - 2} \leq \alpha(p)\), that is, \(\alpha(p) > 1\) and therefore \(r = 0\). We state these considerations in the following.

Lemma. Let \(p = (p_1, \ldots, p_t)\) be a weight sequence of wild type and \(C = C(p, \lambda)\) be a canonical algebra. Then \(\text{Root } \hat{f}_{(p_1, \ldots, p_t)}(T) \subset S^1\) if and only if \(R(p, \lambda)\) is formally \(n\)-generated, that is

\[
P_C(T) = \frac{\prod_{i=1}^{n-2} (1 - T^{c_i})}{\prod_{j=1}^{n} (1 - T^{d_j})}
\]

for numbers \(c_1, \ldots, c_{n-2}\) and \(d_1, \ldots, d_n\), all \(\geq 2\), satisfying

\[
1 + \sum_{j=1}^{n} d_j = \sum_{i=1}^{n-2} c_i.
\]

Proof. If \(\text{Root } \hat{f}_{(p_1, \ldots, p_t)}(T) \subset S^1\), we showed that \(P_C(T)\) has the desired form. Moreover,

\[
\sum_{j=1}^{n} d_j + \deg \hat{f}_{(p_1, \ldots, p_t)}(T) = \sum_{i=1}^{n-2} c_i + \deg f_C(T).
\]

The converse follows from \(\hat{f}_{(p_1, \ldots, p_t)}(T) = P_C(T)f_C(T)\). \(\square\)

In Table 2, for a weight sequence \(p = (p_1, \ldots, p_t)\) of wild type and \(C = C(p, \lambda)\) the corresponding canonical algebra we have calculated (under the column ‘Poincaré series’) the sequences \((d_1, \ldots, d_n)\) and \((c_1, \ldots, c_{n-2})\) corresponding to \(P_C(T) = \frac{f_{(p_1, \ldots, p_t)}(T)}{f_{(p_1, \ldots, p_t)}(T)}\).

5.5. Proof of Theorem 3. Let \(C = C(p, \lambda)\) be a canonical algebra of wild type and \(A = C[P]\) be an extended canonical algebra. Implications (a) ⇒ (b) ⇒ (c) are clear.

(c) ⇒ (a): Assume \(\text{Root } f_A(T) \subset S^1\). By (5.4), \(P_C(T)\) is \(n\)-generated. Hence \(M(p)\) is at most \(n\)-generated. By Table 3, if \(n \geq 5\) then \(p = (2, 3, p_3)\) with \(p_3 \geq 11\). But a calculation shows (see Table 2) that \(\text{Root } \hat{f}_{(2,3,11)}(T)\) is not contained in \(S^1\). Then
Theorem 2 implies that Root $\hat{f}_{(2,3,p_3)}(T)$ is not contained in \mathbb{S}^1 for $p_3 \geq 11$, which shows that $n \leq 4$.

For $k = \mathbb{C}$, the list entries in Table 2 correspond to Fuchsian singularities which are minimal elliptic as classified in [36]. These rings are graded complete intersection domains.

5.6. As a consequence of Theorem 3 and the classification given in Table 2 we get the following.

Corollary. Let $C = C(p, \lambda)$ be a canonical algebra of wild type. Let $A = C[P]$ be an extended canonical algebra. The following are equivalent:

(a) φ_A is periodic.

(b) $\text{Spec} \varphi_A \subset \mathbb{S}^1$ and p is not $(3,3,3,3)$ or $(2,2,2,2,4)$.

(c) $f_A(T) = \prod_{i=1}^m \phi_{s_i}(T)^{e_i}$ for $1 \leq s_1 < s_2 < \cdots < s_m$ and $e_i \geq 1$ ($1 \leq i \leq m$), with $e_m = 1$.

6. Graded integral domains with 3 homogeneous generators

6.1. The following simple remark is well-known.

Lemma. Let R be a graded complete intersection integral k-algebra of Krull dimension 2. Then R is generated by 3 homogeneous elements if and only if $R = k[x_1, x_2, x_3]/(f)$ with $\deg x_i = d_i$ ($1 \leq i \leq 3$) and f a homogeneous prime polynomial. In this case the Poincaré-Hilbert series of R has the form

$$\sum_{n=0}^{\infty} (\dim_k R_n)T^n = \frac{1-T^c}{(1-T^{d_1})(1-T^{d_2})(1-T^{d_3})}$$

for some natural numbers c, d_1, d_2, d_3 satisfying $1 + d_1 + d_2 + d_3 = c$.

Proof. Assume we have a graded surjection $g: k[x_1, x_2, x_3] \to R$ such that $y_i = g(x_i)$ is homogeneous of degree d_i, $1 \leq i \leq 3$. Since R is graded integral, then $I = \ker g$ is a prime ideal. Since R has Krull-dimension two, the ideal I has height one, hence it is principal. Let $I = (f)$ and $\deg (f) = c$. Then the Poincaré series has the desired form and $1 + d_1 + d_2 + d_3 = c$ by (4.4).
6.2. Proof of Theorem \([4]\). Let \(C = C(p, \lambda)\) be a wild canonical algebra and \(A = C[P]\) a corresponding extended canonical algebra.

(a) \(\Rightarrow\) (b): Assume \(R(p, \lambda)\) is formally 3-generated. By \([5, 4]\), Root \(f_A \subset S^1\). The result follows from the list given in Table 2.

(b) \(\Rightarrow\) (a): follows as above from Table 2 and \([5, 4]\).

Assume \(R = R(p, \lambda)\) is formally 3-generated with

\[
\sum_{n=0}^{\infty} (\dim_k R_n)T^n = \frac{1-T^{d_1}}{(1-T^{d_2})(1-T^{d_3})}
\]

with \((d_1, d_2, d_3), (c)\) according to Table 2. We shall consider two distinguished situations:

if \(t = 3\), then \(R\) is a quasi-homogeneous complete intersection of the form \(k[x_1, x_2, x_3]/(f)\) with \(\deg x_i = d_i\) and \(f\) a homogeneous relation as displayed in \([6, 3]\).

The case \(t \geq 4\) and \(k = C\) is considered in \([6, 4]\).

\[\square \]

6.3. Theorem \([21]\). Let \(C = C(p, \lambda)\) be a canonical algebra of wild weight type \(p = (p_1, p_2, p_3)\) such that the graded algebra \(R = R(p, \lambda)\) is formally 3-generated. Then \(R\) has the form

\[
R = k[x, y, z] = k[X, Y, Z]/(F)
\]

where the relation \(F\), the degree triple \(\deg (x, y, z)\) and \(\deg (F)\) are displayed in Table 4:

\(p\)	\(\deg (x, y, z)\)	relation \(F\)	\(\deg (F)\)	Name
Index = 6				
(2, 3, 7)	(6, 14, 21)	\(Z^2 + Y^3 + X^7\)	42	\(E_{12}\)
(2, 3, 8)	(6, 8, 15)	\(Z^2 + X^5 + XY^3\)	30	\(Z_{11}\)
(2, 3, 9)	(6, 8, 9)	\(Z^2 + XZ^2 + X^4\)	36	\(Q_{10}\)
4				
(2, 4, 5)	(4, 10, 15)	\(Z^2 + Y^3 + X^2Y\)	30	\(E_{13}\)
(2, 4, 6)	(4, 6, 11)	\(Z^2 + X^4Y + ZY^3\)	22	\(Z_{12}\)
(2, 4, 7)	(4, 6, 7)	\(Y^3 + X^3Y + XZ^2\)	18	\(Q_{11}\)
(2, 5, 5)	(4, 5, 10)	\(Z^2 + Y^2Z + X^5\)	20	\(W_{12}\)
(2, 5, 6)	(4, 5, 6)	\(XZ^2 + Y^2Z + X^4\)	16	\(S_{11}\)
3				
(3, 3, 4)	(3, 8, 12)	\(Z^2 + Y^3 + X^2Z\)	24	\(E_{14}\)
(3, 3, 5)	(3, 5, 9)	\(Z^2 + XY^3 + X^3Z\)	18	\(Z_{13}\)
(3, 3, 6)	(3, 5, 6)	\(Y^3 + X^3Z + XZ^2\)	15	\(Q_{12}\)
(3, 4, 4)	(3, 4, 8)	\(Z^2 - Y^2Z + X^4Y\)	16	\(W_{13}\)
(3, 4, 5)	(3, 4, 5)	\(X^3Y + XZ^2 + Y^2Z\)	13	\(S_{12}\)
(4, 4, 4)	(3, 4, 4)	\(X^4 - YZ^2 + Y^2Z\)	12	\(U_{12}\)
As observed in [21], these 14 equations are equivalent to Arnold’s exceptional unimodal singularities. The equations are slightly different to those of the singularity theory classification, but equivalent for \(k = \mathbb{C} \).

6.4. In view of the identification of \(R(p, \lambda) \) with a ring of automorphic forms [6,5] in case \(k = \mathbb{C} \), we get:

Theorem [9]. Let \(C = C(p, \lambda) \) be a canonical algebra of wild type \(p = (p_1, \ldots, p_t) \) with \(t \geq 4 \) over the complex numbers \(\mathbb{C} \) and \(R = R(p, \lambda) \) be the associated graded algebra. Then the following are equivalent:

(a) \(R(p, \lambda) \) is formally 3-generated;

(b) \(9 \leq \sum_{i=1}^{t} p_i \leq 11 \)

(c) there is a parameter sequence \(\lambda' = (\lambda'_3, \ldots, \lambda'_t) \) such that the algebra \(R(p, \lambda') \) is of the form

\[
\mathbb{k}[x, y, z] = \mathbb{k}[X, Y, Z]/(F)
\]

where the relation \(F \), the degree sequence \(\deg (x, y, z) \) and \(\deg (F) \) are displayed below:

\(t = 4 \)	\(p \)	\(\deg (x, y, z) \)	relation \(F \)	\(\deg (F) \)	Name
\((2, 2, 2, 3) \)	\((2, 6, 9) \)	\(Z^2 + Y^3 + X^9 \)	18	\(J_{3,0} \)	
\((2, 2, 2, 4) \)	\((2, 4, 7) \)	\(Z^2 + XY^3 + X^7 \)	14	\(Z_{1,0} \)	
\((2, 2, 2, 5) \)	\((2, 4, 5) \)	\(Y^3 + XZ^2 + X^6 \)	12	\(Q_{2,0} \)	
\((2, 2, 3, 3) \)	\((2, 3, 6) \)	\(Z^2 + Y^4 + X^6 \)	12	\(W_{1,0} \)	
\((2, 2, 3, 4) \)	\((2, 3, 4) \)	\(YZ^2 + XZ^2 + X^5 \)	10	\(S_{1,0} \)	
\((2, 3, 3, 3) \)	\((2, 3, 3) \)	\(Z^3 + Y^3 + X^3Y \)	9	\(U_{1,0} \)	

\(t = 5 \)	\(p \)	\(\deg (x, y, z) \)	relation \(F \)	\(\deg (F) \)
\((2, 2, 2, 2, 2) \)	\((2, 2, 5) \)	\(Z^2 + Y^5 + X^6 \)	10	\(NA_{1,0,0} \)
\((2, 2, 2, 2, 3) \)	\((2, 2, 3) \)	\(YZ^2 + Y^4 + X^4 \)	8	\(VNA_{1,0,0} \)

Table 5.

References

[1] V.I. Arnold, S. Gusejn-Zade and A. Varchenko. *Singularities of differentiable maps*. Monographs in Math 82 Birkhäuser (1985).

[2] M. Barot and H. Lenzing. *One-point extensions and derived equivalences*. J. Algebra 264 (2003) 1–5.

[3] A.I. Bondal. *Representations of associative algebras and coherent sheaves*. Math. USSR-Izv. 34 (1990), 23–42.

[4] A.I. Bondal and M.M. Kapranov. *Enhanced triangulated categories*. Math. USSR-Sb. 70 (1991), 93–107.
[5] R. O. Buchweitz. Maximal Cohen-Macaulay modules and Tate-cohomology over Gorenstein rings. Unpublished manuscript (1987) 155 pp.
[6] I. V. Dolgachev. Automorphic forms and quasihomogeneous singularities. Functional Anal. Appl. 9 (1975) 149–151.
[7] W. Ebeling and C. T. C. Wall. Kodaira singularities and an extension of Arnold’s strange duality. Compositio Mathematica 56 (1985) 3–77.
[8] W. Ebeling. The monodromy groups of isolated singularities of complete intersections. Lect. Notes Math. 1293, Springer, Berlin (1987).
[9] W. Ebeling. The Poincaré series of some special quasihomogeneous surface singularities. Publ. RIMS, Kyoto Univ. 39 (2003), 393–413.
[10] P. Gabriel. Des catégories abéliennes. Bull. Soc. Math. France 90 (1962), 323–448.
[11] W. Geigle and H. Lenzing. A class of weighted projective curves arising in representation theory of finite dimensional algebras. In: Singularities, representation of algebras and vector bundles. Lect. Notes Math. 1273, Springer, Berlin (1987) 265–297.
[12] W. Geigle and H. Lenzing. Perpendicular categories with applications to representations and sheaves. J. Alg. 144 (1991) 273–343.
[13] S.I. Gelfand and Yu. I. Manin. Methods of Homological Algebra. Springer, Berlin (2003).
[14] D. Happel. Triangulated categories in the Representation Theory of finite dimensional algebras. London Math. Soc. Lect. Note Ser. 119 (1988).
[15] D. Happel, I. Reiten, S. Smalø, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 575 (1996).
[16] D. Happel. A characterization of hereditary categories with tilting object. Invent. Math. 144 (2001) 161–179.
[17] H. Kajura, K. Saito and A. Takahashi. Matrix factorizations and representations of quivers II: Type ADE case. arXiv:math.AG:0511155v2 3 Apr 2006.
[18] B. Keller. On differential graded categories. Preprint 2006.
[19] H. Krause. The stable derived category of a noetherian scheme. Compositio Math. 141 (2005), 1128–1162.
[20] H. Laufer. On minimally elliptic singularities. Ann. J. of Math. 99 (1977) 1257–1295.
[21] H. Lenzing. Wild canonical algebras and rings of automorphic forms. In: Finite dimensional algebras and related topics. Kluwer (1994) 191–212.
[22] H. Lenzing and H. Meltzer. Tilting sheaves and concealed-canonical algebras. In: Proceedings of ICRA VII. CMS Conf. Proc. 18 (1996) 455–473.
[23] H. Lenzing and J. A. de la Peña. Wild canonical algebras. Math. Z 224 (1997) 403–425.
[24] H. Lenzing and J. A. de la Peña. Coxeter polynomials and a Chebyshev recursion formula. To appear.
[25] H. Lenzing. Coxeter transformations associated with finite dimensional algebras. In: Progress in Math 173 (1999) 287–308.
[26] J. Milnor. On the 3 dimensional Brieskorn manifolds $m(p,q,r)$. In: Knots, groups and 3-manifolds; Pap. dedic. Mem. R.H. Fox (1975) 175–225.
[27] A. Neeman. Triangulated Categories. Annals of Mathematics Studies, 148. Princeton University Press, Princeton (2001).
[28] W. Neumann. Brieskorn complete intersections and automorphic forms. Invent. Math. 42 (1977) 285–293.
[29] D. Orlov. Triangulated categories of singularities and D-branes in Landau-Ginzburg models. Proc. Steklov Inst. Math. 246 (2004) 227–248.
[30] D. Orlov. Derived categories of coherent sheaves and triangulated categories of singularities. arXiv:math.AG/0503632v2 22 Sep 2005.
[31] J.A. de la Peña. *On the dimension of the module-varieties of tame and wild algebras*. Comm. in Algebra 19 (6), (1991) 1795–1807.

[32] J. Rickard. *Morita theory for derived categories*. J. London Math. Soc. 39 (1989), 436–456.

[33] C. M. Ringel. *The canonical algebras*. In: Topics in Algebra, part I. Banach Center Pub. 26 (1950) 407–432.

[34] C. M. Ringel. *Tame algebras and integral quadratic forms*. Lect. Notes Math., Springer, Berlin 1099 (1984).

[35] K. Ueda. *Homological mirror symmetry and simple elliptic singularities*. arXiv:math.AG/0604361 v2 3 Jul 2006.

[36] P. Wagreich. *Automorphic forms and singularities with C^*-action*. Illinois J. Math. 25 (1981) 359–382.

[37] P. Wagreich. *Algebras of automorphic forms with few generators*. Trans. Amer. Math. Soc. 262 (1980) 367–389.

H. Lenzing
Institut für Mathematik
Universität Paderborn
33095 Paderborn
Germany
helmut@math.uni-paderborn.de

J. A. de la Peña
Instituto de Matemáticas
Universidad Nacional Autónoma de México
Ciudad Universitaria
México 04510, D. F.
jap@matem.unam.mx