Exact dynamics of a large spin in a damped spin-boson model

Mattias T. Johnsson,1 Ben Q. Baragiola,2,3,4 Thomas Volz,1,4 and Gavin K. Brennen1,4
1Department of Physics and Astronomy, Macquarie University, North Ryde, NSW 2109, Australia
2Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
3Centre for Quantum Computation and Communication Technology, School of Science, RMIT University, Melbourne, VIC 3001, Australia
4Centre for Engineered Quantum Systems, Department of Physics and Astronomy, Macquarie University, North Ryde, NSW 2109, Australia

We consider a spin-j particle coupled to a structured bath of bosonic modes that decay into thermal baths. We obtain an analytic expression for the reduced spin state and use it to investigate non-Markovian spin dynamics. In the heavily overdamped regime, spin coherences are preserved due to a quantum Zeno effect. We extend the solution to two spins and include coupling between the modes, which can be leveraged for preservation of the symmetric spin subspace. For many spins, we find that inter-mode coupling gives rise to a privileged symmetric mode gapped from the other modes. This provides a handle to selectively address that privileged mode for quantum control of the collective spin. Finally, we show that our solution applies to defects in solid-state systems, such as NV− centres in diamond.

I. INTRODUCTION

Quantum control of spins is now an advanced field with applications being developed for quantum sensing [1] and quantum computing [2]. Less well-developed, however, is the control of the environments with which the spins inevitably interact. In the limit where a spin is only weakly coupled to its environment, which has a large bandwidth relative to the spin dynamics, then the Born-Markov and rotating-wave approximations apply. The environment quickly loses information, and the Markovian system dynamics obey a Lindblad master equation [3, 4]. In another setting, the coupling is weak but the environmental correlations are long lived. Dynamical decoupling pulses can be employed to protect the spins [5]. These limits are starting points for approaches to studying reduced spin dynamics for potential engineering of spin control and coherence preservation. More generally, though, one must consider that both (a) the spin-environment coupling is not weak and (b) the environment is “structured” in that it possesses non-trivial spectral and temporal correlations.

The fundamental tools for studying such systems beyond weak-coupling are bipartite spin-boson models, where the spin is strongly coupled to an environment of modes [6, 7]. Various techniques have been employed to solve for the reduced-spin dynamics including generalized master equations [6], hierarchical methods [8–10], dilation to a tripartite unitary dynamics [11], and others [12–15]. Typically, such studies are limited to two-level ($j = \frac{1}{2}$) spins. In this work, we develop a complementary analytic solution for the case of a large spin ($j > 1/2$) with no transverse driving and where the modes themselves decay irreversibly into thermal baths. This solution does not require solving dynamical equations, instead we give the time-evolved reduced spin state directly. This reveals non-Markovian behavior [16, 17] as well as how the spin and modes interact during thermalization.

For multiple spins, the spectrum and decay rates of the bosonic modes can induce effective interactions between the spins. We consider a multi-spin setting motivated by defects in solid-state system, where each electronic emitter couples dominantly to local vibrational modes [18–21]. Coupling between local modes (indicative of non-local normal modes) can induce a separation of energy scales that implies distinct dynamics on different collective subspaces of the spins. Similar effects are found in spin-boson studies of exciton dynamics using effective modes [22], where the existence of a single or group of “preferred” modes can lead to lengthened electronic coherences [23]. Selectively addressing preferred modes provides a handle for quantum control of collective spin degrees of freedom.

The paper is organized as follows. In Sec. II we introduce the model and solve for the exact reduced dynamics of a single large spins, and we illustrate important limiting behaviour including an overdamped setting that preserves spin coherences using a quantum-Zeno-type effect. In Sec. III we solve for the reduced dynamics of two spins in the same setting where the bosonic modes are themselves coupled to each other. We analyze how the symmetric spin subspace can be preserved for a longer time due to this modification of the environment. Extending the analysis to many spins, we show in Sec. IV that coupling between all the bosonic modes can in certain regimes open a gap between a symmetric eigenmode and the rest, and this provides a mechanism for coherent control on the symmetric spin subspace. In Sec. V, we show that our solution is also useful to describe the physics of solid-state defects, such as NV− centres in diamond. We include two other relevant effects in such systems: pure dephasing and optical decay. Finally, we conclude with a summary of results and suggestions for further applications.
II. LARGE SPIN COUPLED TO A COLLECTION OF VIBRATIONAL MODES: ANALYTIC SOLUTION

Our starting point is a closed system comprising a single spin-j particle coupled to a collection of harmonic oscillators. Although the results apply in general for spin-boson coupling, we consider for concreteness the harmonic oscillators to be a discrete set of vibrational modes determined by the boundary conditions in a crystal setting. We derive an analytic formula for the time-evolved joint state of the closed system from which we extract the reduced state of the spin by tracing over the modes. Since the interaction with the vibrational modes is unitary (and not dissipative), the reduced spin state experiences non-Markovian effects.

Spin dephasing arises from state-dependent coupling to the set of local vibrational modes, because the electronic excited state deforms the local electron density of the crystal. The Hamiltonian for this situation is the (large-spin) spin-boson model,

$$\hat{H} = \Omega j_z + \sum_k \omega_k (\hat{v}_k \hat{v}_k + \frac{1}{2}) + \hat{j}_z \otimes \sum_k (\eta_k \hat{v}_k + \eta_k^* \hat{v}_k) \tag{1}$$

where η_k characterizes the interaction strength between the spin and the kth vibrational mode and Ω is the transition frequency. Each vibrational mode is described by bosonic field operators satisfying $[\hat{v}_k, \hat{v}_k^\dagger] = \delta_{kk'}$.

The joint state of the spin-boson system at time t is formally given by

$$\hat{\rho}(t) = \hat{U}(t) \hat{\rho}_{\text{spin}}(0) \otimes \hat{\rho}_{V}(0) \hat{U}^\dagger(t), \tag{3}$$

where $\hat{\rho}_{\text{spin}}(0) \otimes \hat{\rho}_{V}(0)$ is the initial joint state. The interaction-picture propagator for the spin-boson system (with respect to the free Hamiltonians of the spin and vibrational modes) is

$$\hat{U}(t) = \mathcal{T} \exp \left[-i \int_0^t dt' \hat{j}_z \otimes \hat{V}(t') \right], \tag{4}$$

where \mathcal{T} designates the time-ordering operator, and the Hermitian interaction-picture mode operator is

$$\hat{V}(t) := \sum_k (\eta_k \hat{v}_k e^{i\omega_k t} + \eta_k^* \hat{v}_k e^{-i\omega_k t}). \tag{5}$$

By writing the propagator in the eigenbasis of the spin, we can manipulate it into a form that is useful for calculating time evolution:

$$\hat{U}(t) = \sum_{m=-j}^j \mathcal{T} \exp \left[-im \int_0^t dt' \hat{V}(t') \right] |j, m\rangle \langle j, m|. \tag{6}$$

The time-ordered integral in this expression can be simplified. Using the fact that all the vibrational mode operators for $k \neq k'$ commute, we remove the time-ordering by employing a Magnus expansion, which terminates at second order. Details are given in Appendix A. This gives the expression,

$$\mathcal{T} \exp \left[-im \int_0^t dt' \hat{V}(t') \right] = e^{im^2 \Phi(t)} \exp \left[-im \int_0^t dt' \hat{V}(t') \right], \tag{7}$$

where the c-number phase is

$$\Phi(t) := -\int_0^t dt_1 \int_0^{t_1} dt_2 \int d\omega J(\omega) \sin[\omega(t_1 - t_2)] \tag{8}$$

and we have defined a spectral density,

$$J(\omega) := \sum_k |\eta_k|^2 \delta(\omega - \omega_k). \tag{9}$$

Importantly, the time ordering has been removed, and the phase factor is determined only by the spectral density (through the coupling strengths in the Hamiltonian) and not by the state of the vibrational modes.

With the propagator in Eq. (7), we can express the general solution for the joint spin-vibrational state at time t as Eq. (3):

$$\hat{\rho}(t) = \sum_{m,m'=-j}^j e^{i(m^2-m'^2)\Phi(t)} \rho_{\text{spin}}^m(m') |j, m\rangle \langle j, m'|, \tag{10}$$

where the matrix elements of the initial spin state are

$$\rho_{\text{spin}}^m(m') := \langle j, m| \hat{\rho}_{\text{spin}}(0) |j, m'\rangle, \tag{11}$$

and we have used that $\hat{V}^\dagger(t) = \hat{V}(t)$, since it’s a Hamiltonian.

A. Reduced state of the spin

The reduced density matrix for the spin at time t, $\hat{\rho}_{\text{spin}}(t)$, is found by tracing over the vibrational degrees of freedom in the expression for the joint state, Eq. (3),

$$\hat{\rho}_{\text{spin}}(t) = \text{Tr}_{V} [\hat{\rho}(t)]. \tag{12}$$

By decomposing the reduced spin state in the eigenbasis, Eq. (2),

$$\hat{\rho}_{\text{spin}}(t) = \sum_{m,m'=-j}^j \rho_{\text{spin}}^{m,m'}(t) |j, m\rangle \langle j, m'|, \tag{13}$$

we find the matrix elements by tracing over the vibrational modes in the general solution, Eq. (10),

$$\rho_{\text{spin}}^{m,m'}(t) = \rho_{\text{spin}}^{m,m'}(0) e^{i(m^2-m'^2)\Phi(t)} S(t), \tag{14}$$

where $S(t)$ is the spectral density.

The time-ordered integral in this expression can be simplified. Using the fact that all the vibrational mode operators for $k \neq k'$ commute, we remove the time-ordering by employing a Magnus expansion, which terminates at second order. Details are given in Appendix A. This gives the expression,

$$\mathcal{T} \exp \left[-im \int_0^t dt' \hat{V}(t') \right] = e^{im^2 \Phi(t)} \exp \left[-im \int_0^t dt' \hat{V}(t') \right], \tag{7}$$

where the c-number phase is

$$\Phi(t) := -\int_0^t dt_1 \int_0^{t_1} dt_2 \int d\omega J(\omega) \sin[\omega(t_1 - t_2)] \tag{8}$$

and we have defined a spectral density,

$$J(\omega) := \sum_k |\eta_k|^2 \delta(\omega - \omega_k). \tag{9}$$

Importantly, the time ordering has been removed, and the phase factor is determined only by the spectral density (through the coupling strengths in the Hamiltonian) and not by the state of the vibrational modes.

With the propagator in Eq. (7), we can express the general solution for the joint spin-vibrational state at time t as Eq. (3):

$$\hat{\rho}(t) = \sum_{m,m'=-j}^j e^{i(m^2-m'^2)\Phi(t)} \rho_{\text{spin}}^m(m') |j, m\rangle \langle j, m'|, \tag{10}$$

where the matrix elements of the initial spin state are

$$\rho_{\text{spin}}^{m,m'}(0) := \langle j, m| \hat{\rho}_{\text{spin}}(0) |j, m'\rangle, \tag{11}$$

and we have used that $\hat{V}^\dagger(t) = \hat{V}(t)$, since it’s a Hamiltonian.

A. Reduced state of the spin

The reduced density matrix for the spin at time t, $\hat{\rho}_{\text{spin}}(t)$, is found by tracing over the vibrational degrees of freedom in the expression for the joint state, Eq. (3),

$$\hat{\rho}_{\text{spin}}(t) = \text{Tr}_{V} [\hat{\rho}(t)]. \tag{12}$$

By decomposing the reduced spin state in the eigenbasis, Eq. (2),

$$\hat{\rho}_{\text{spin}}(t) = \sum_{m,m'=-j}^j \rho_{\text{spin}}^{m,m'}(t) |j, m\rangle \langle j, m'|, \tag{13}$$

we find the matrix elements by tracing over the vibrational modes in the general solution, Eq. (10),

$$\rho_{\text{spin}}^{m,m'}(t) = \rho_{\text{spin}}^{m,m'}(0) e^{i(m^2-m'^2)\Phi(t)} S(t), \tag{14}$$

where $S(t)$ is the spectral density.
For each matrix element, labeled by m and m', this expression requires evaluating the term

$$S(t) := \text{Tr}_V \left[e^{-i(m-m') \int_0^t dt' \hat{V}(t')} \hat{\rho}_V(0) \right], \quad (15)$$

for a given initial state of the vibrational modes $\hat{\rho}_V(0)$.

We consider the situation where the vibrational modes are initially in a thermal state characterized by $\beta = 1/k_B T$ for temperature T. The initial state across the k modes is given by

$$\hat{\rho}_V(0) = \bigotimes_k \hat{\rho}_{\text{th},k}, \quad (16)$$

where the thermal state for vibrational mode k is given in the diagonal coherent-state basis (P-function) as

$$\hat{\rho}_{\text{th},k} = \frac{1}{\pi \bar{n}_k} \int d^2 \alpha \exp \left(-\frac{|\alpha|^2}{\bar{n}_k}\right) |\alpha\rangle \langle \alpha|, \quad (17)$$

with thermal occupation $\bar{n}_k = |\exp(\beta \omega_k) - 1|^{-1}$. In this case, the integral in Eq. (15) can be evaluated analytically. Details following the method of Agarwal [24] are given in Appendix B. Plugging the result, Eq. (B8), into the general formula, Eq. (14), gives the matrix elements given in Appendix B. Plugging the result, Eq. (B8), into the general formula, Eq. (14), gives the matrix elements,

$$\rho_{\text{spin}}^{m,m'}(t) = \rho_{\text{spin}}^{m,m'}(0) \exp \left[-\int_0^t dt_1 \int_0^{t_1} dt_2 \int_0^\infty d\omega J(\omega) \times \left(i(m^2 - m'^2) \sin[\omega(t_1 - t_2)] + (m - m')^2 \coth \left(\frac{\beta \omega}{2}\right) \cos[\omega(t_1 - t_2)] \right) \right]. \quad (18)$$

These dynamics are nontrivial for the spin coherences, while the diagonal matrix elements ($m = m'$) do not evolve. For small bath temperatures, $\beta \rightarrow \infty$, this equation approaches the closed, unitary situation where the spin coherences dynamically evolve along with the vibrational modes, but they do not decay. Finally, we note that, although we have focused on the reduced spin state $\hat{\rho}(t)$ the dynamical map above can be applied to any operator by decomposing it in the j_z-basis.

We can also consider Eq. (18) as arising from the correlation functions of the modes operators. Defining a quadrature operator for mode k (giving the unnormalized position quadrature when η_k is real),

$$\hat{X}_k := \eta_k \hat{v}_k + \eta_k^* \hat{v}_k^\dagger, \quad (19)$$

we note that if one has a Hamiltonian of the form in Eq. (1), and the initial state of the vibrational modes is thermal, then the quadrature correlation function of the modes is given by (see Appendix C),

$$C(t) := \sum_k \langle \hat{X}_k(t) \hat{X}_k(0) \rangle \quad (20)$$

$$= \sum_k |\eta_k|^2 \left[\coth \left(\frac{\beta \omega_k}{2}\right) \cos(\omega_k t) - i \sin(\omega_k t) \right], \quad (21)$$

$$\int_0^\infty d\omega J(\omega) \left[\coth \left(\frac{\beta \omega}{2}\right) \cos(\omega t) - i \sin(\omega t) \right]. \quad (22)$$

In the final line, we have expressed the correlation function in terms of the spectral density $J(\omega)$, Eq. (9). It will also convenient to divide the correlation function into its real and imaginary parts

$$C(t) = C_{\text{Re}}(t) + iC_{\text{Im}}(t). \quad (23)$$

Using the above expressions, the analytic form for the reduced-spin matrix elements, Eq. (18), can also be written as

$$\rho_{\text{spin}}^{m,m'}(t) = \rho_{\text{spin}}^{m,m'}(0) \exp \left[i(m^2 - m'^2)I_{\text{Im}}(t; \tilde{\omega}) - (m - m')^2 I_{\text{Re}}(t; \tilde{\omega}) \right]. \quad (24)$$

where we have defined integrals over the real and imaginary parts of the correlation function,

$$I_{\text{Re}}(t; \tilde{\omega}) := \int_0^t dt_1 \int_0^{t_1} dt_2 C_{\text{Re}}(t_1 - t_2), \quad (25a)$$

$$I_{\text{Im}}(t; \tilde{\omega}) := \int_0^t dt_1 \int_0^{t_1} dt_2 C_{\text{Im}}(t_1 - t_2), \quad (25b)$$

with $\tilde{\omega}$ included to indicate that each integral is a function of the mode frequencies. Recall that this solution is in the interaction picture with respect to the bare spin and bare mode Hamiltonians.

The imaginary part I_{Im} gives the coherent dynamics of the spin coherences, and the real part I_{Re} describes their decay. Note that the integrals in Eq. (25) can in principle be evaluated term-by-term by recognizing that the correlation function, Eq. (20), is a sum over the vibrational mode index k. That is, we may express the integrals as

$$I_{\text{Re}}(t; \tilde{\omega}) = \sum_k I_{\text{Re}}(t; \omega_k), \quad (26a)$$

$$I_{\text{Im}}(t; \tilde{\omega}) = \sum_k I_{\text{Im}}(t; \omega_k). \quad (26b)$$

This form will be valuable for evaluating the terms below.

B. Spin dephasing in the presence of thermal dissipation of the vibrational modes

Above, we considered a single large spin and a collection of vibrational modes evolving unitarily as a closed
system. Here, we generalize this situation to an open system where each vibrational mode is coupled to a local dissipative bath at inverse temperature β_k. This is described by the master equation for joint state $\hat{\rho}$,

$$
\frac{d}{dt} \hat{\rho} = -i \frac{\hbar}{\bar{\omega}} [\hat{H}, \hat{\rho}] + \sum_k D_k^{th}[\hat{\rho}],
$$

(27)

with spin-boson Hamiltonian in Eq. (1) and thermal dissipator

$$
D_k^{th}[\hat{\rho}] := \Gamma_k (\hat{n}_k + 1) (\hat{v}_k \rho \hat{v}_k^\dagger - \frac{1}{2} \hat{v}_k^\dagger \hat{v}_k \rho - \frac{1}{2} \rho \hat{v}_k \hat{v}_k^\dagger) + \Gamma_k \hat{n}_k (\hat{v}_k \rho \hat{v}_k - \frac{1}{2} \hat{v}_k^\dagger \hat{v}_k \rho - \frac{1}{2} \rho \hat{v}_k \hat{v}_k^\dagger).
$$

(28)

The top line describes loss of vibrational excitations into the bath, and the second line describes incoherent heating according to the temperature of the bath (note that this term vanishes when the bath occupancy vanishes.) Going to the interaction picture with respect to the free Hamiltonian of the spin and of the vibrational modes does not affect the form of the thermal dissipator.

In the previous section we demonstrated that the evolution of the reduced spin density matrix can be described by the thermal-state correlation functions of the modes. This is true even when the vibrational modes decay according to the Markovian thermal dissipator in Eq. (28), which gives a decaying correlation function. Including the dissipator causes the quadratures to decay via the replacement $\hat{v}_k \rightarrow e^{-\frac{\Gamma_k t}{2\omega_k}} \hat{v}_k$ in Eq. (19).

We now find the correlation function, Eq. (20), for the vibrational modes. There are in principle two temperature expressions associated with each vibrational mode: that of the initial vibrational-mode states and that of the bath to which each mode couples. We set these to be the same under the assumption that each vibrational mode is initially in equilibrium with its local bath. As derived in Appendix C, the correlation function [Eq. (20)] of the decaying vibrational modes is

$$
C(t) = \sum_k |\eta_k|^2 e^{-\frac{i}{2} \Gamma_k t} \{ \coth \left(\frac{\beta \omega_k}{2} \right) \cos(\omega_k t) - i \sin(\omega_k t) \}.
$$

(29)

While the open-systems dynamics of the joint state is Markovian, the spin subsystem evolves in a non-Markovian way. The expression for the reduced spin density matrix is given by Eq. (24),

$$
\rho_{m m'}^{\text{spin}}(t) = \rho_{m m'}^{\text{spin}}(0) \exp \left[i (m^2 - m'^2) \mathcal{I}_{\text{Re}}(t; \hat{\omega}, \hat{\Gamma}) - (m - m')^2 \mathcal{I}_{\text{Im}}(t; \hat{\omega}, \hat{\Gamma}) \right],
$$

(30)

with the integrals in Eq. (25) taken here over the real and imaginary parts of the correlation function in Eq. (29) that includes thermal dissipation. Note that we include an additional label on the integrals $\hat{\Gamma}$ to include the vibrational-mode decay rates. We now evaluate the integrals above term-by-term, as described by Eq. (26). For vibrational mode k with frequency ω_k and decay rate Γ_k, each term evaluates to

$$
\mathcal{I}_{\text{Re}}(t; \omega_k, \Gamma_k) = \frac{2|\eta_k|^2 \coth \left(\frac{\beta \omega_k}{2} \right)}{(\Gamma_k^2 + 4\omega_k^2)^2} \left \{ -2(\Gamma_k^2 - 4\omega_k^2) + \Gamma_k t (\Gamma_k^2 + 4\omega_k^2) + e^{-\frac{\Gamma_k t}{2\omega_k}} \left[-8\Gamma_k \omega_k \sin(\omega_k t) + 2(\Gamma_k^2 - 4\omega_k^2) \cos(\omega_k t) \right] \right \}
$$

(31a)

$$
\mathcal{I}_{\text{Im}}(t; \omega_k, \Gamma_k) = \frac{4|\eta_k|^2}{(\Gamma_k^2 + 4\omega_k^2)^2} \left \{ 4\omega_k \Gamma_k - \omega_k t (\Gamma_k^2 + 4\omega_k^2) - e^{-\frac{\Gamma_k t}{2\omega_k}} \left[(\Gamma_k^2 - 4\omega_k^2) \sin(\omega_k t) + 4\Gamma_k \omega_k \cos(\omega_k t) \right] \right \}.
$$

(31b)

These expressions complete the full non-Markovian description of the reduced spin state, Eq. (30). An important thing to notice is that the diagonal matrix elements $(m = m')$ do not evolve. This is due to the fact that the spin-boson Hamiltonian, Eq. (1), is diagonal in \hat{j}_z. The off-diagonal coherences, however, experience both unitary-type and dephasing-type dynamics according to $\mathcal{I}_{\text{Im}}(t; \hat{\omega}, \hat{\Gamma})$ and $\mathcal{I}_{\text{Re}}(t; \hat{\omega}, \hat{\Gamma})$, respectively. Notice that the accumulated coherent phase accumulation in Eq. (30) is trivial for a single qubit ($j = \frac{1}{2}$) while it is not for larger j.

For vanishing damping rates, $\Gamma_k \rightarrow 0$, the expressions above simplify to

$$
\mathcal{I}_{\text{Re}}(t; \omega_k, 0) = \frac{2|\eta_k|^2 \coth \left(\frac{\beta \omega_k}{2} \right) \sin^2 \left(\frac{\omega_k t}{2} \right)}{\omega_k^2} \quad (32)
$$

$$
\mathcal{I}_{\text{Im}}(t; \omega_k, 0) = \frac{|\eta_k|^2}{\omega_k^2} \left[\sin \left(\frac{\omega_k t}{2} \right) - \omega_k t \right].
$$

(33)

Interestingly, at zero temperature given by $\beta \rightarrow \infty$ (vacuum state in vibrational mode k), the first term \mathcal{I}_{Re} vanishes. The spin evolution in Eq. (30) is then dominated by unitary dynamics described by a nonlinear \hat{j}_z^2 interaction. This is akin to a single-axis twisting Hamiltonian [25], which generates spin squeezing for a spin with $j > \frac{1}{2}$. Note that for spin $\frac{1}{2}$, this effect vanishes.
entirely. For nonzero damping, this unitary dynamics competes with the dephasing-type dynamics related to $\mathcal{I}_{\text{Re}}(t; \omega_k, \Gamma_k)$.

1. **Asymptotic dynamics**

We can gain insight into the complicated expressions above by looking at their asymptotic forms. In the long-time limit, $\Gamma_k t \gg 1$ for all k (i.e., for times t much longer than any characteristic decay time $1/\Gamma_k$), the oscillating transients die off, and the integrals become

\begin{align}
\mathcal{I}_{\text{Re}}(t; \omega_k, \Gamma_k) &\rightarrow 2|\eta_k|^2 \coth \left(\frac{\omega_k}{2} \right) \frac{\Gamma_k}{F_k^2 + 4\omega_k^2} t, \tag{34} \\
\mathcal{I}_{\text{Im}}(t; \omega_k, \Gamma_k) &\rightarrow -4|\eta_k|^2 \omega_k t, \tag{35}
\end{align}

There are two parameter regimes of interest for the spin dynamics. The first is the underdamped case, where $\Gamma_k < \omega_k$ for all k. The asymptotic expressions above become

\begin{align}
\mathcal{I}_{\text{Re}}(t; \omega_k, \Gamma_k) &\rightarrow |\eta_k|^2 \coth \left(\frac{\omega_k}{2} \right) \frac{\Gamma_k}{2\omega_k^2} t, \tag{36} \\
\mathcal{I}_{\text{Im}}(t; \omega_k, \Gamma_k) &\rightarrow -|\eta_k|^2 \frac{1}{\omega_k} t. \tag{37}
\end{align}

The magnitudes of spin coherences oscillate at frequency $|\eta_k|^2/\omega_k$ while experiencing damping at a rate proportional to Γ_k. This behavior is shown in the upper panel of Fig. 1 for the case of a spin-$\frac{1}{2}$ coupled to a single mode. Note that these oscillations arise from the non-Markovian dephasing-type dynamics generated by \mathcal{I}_{Re}. In fact, for spin-$\frac{1}{2}$, the unitary-type oscillations generated by \mathcal{I}_{Im} vanish.

The second regime of interest is the overdamped case, where $\Gamma_k \gg \omega_k$ for all k, in which the magnitude of the spin coherences monotonically decreases. This behavior is due to the fact that the integral factors become

\begin{align}
\mathcal{I}_{\text{Re}}(t; \omega_k, \Gamma_k) &\rightarrow 2|\eta_k|^2 \coth \left(\frac{\omega_k}{2} \right) \frac{1}{\Gamma_k} t, \tag{38a} \\
\mathcal{I}_{\text{Im}}(t; \omega_k, \Gamma_k) &\rightarrow 4|\eta_k|^2 \frac{\omega_k}{\Gamma_k^2} t \approx 0. \tag{38b}
\end{align}

The spin coherence experiences no oscillations and decays at a rate that is inversely proportional to the vibrational decay rate. Thus, in the overdamped regime, larger vibrational decay rates serve to preserve spin coherences. This can be interpreted in terms of a quantum Zeno effect: the modes measure the spin and then immediately discard the information into the environment—similar to rapid projective spin measurements. To minimize decoherence of the spin, one desires weak spin-mode couplings η_k and fast decay from the bosonic modes to their baths. Overdamped behavior is shown in the lower panel of Fig. 1.

FIG. 1: Decay of the off-diagonal coherences of a $j = \frac{1}{2}$ spin coupled to a single bosonic mode for varying decay rates. The mode is at zero temperature $\beta \rightarrow \infty$, and for simplicity we set $\eta/\omega = 1$. The top figure shows the underdamped regime ($\Gamma < \omega$) with decay rates $\Gamma/\omega = 0$ (green), 0.1 (orange), 0.3 (blue), 1 (red, dashed). The transition from underdamped, highly non-Markovian dynamics to the simpler overdamped dynamics is evident in the disappearance of oscillations. The bottom figure shows the overdamped regime ($\Gamma > \omega$) with decay rates $\Gamma/\omega = 1$ (red, dashed), 3 (blue), 10 (orange), 40 (green). In the underdamped regime, the decay rate of the spin coherence increases with increasing decay rate Γ, while in the overdamped regime the decay rate of the spin coherence decreases with increasing decay rate Γ. This can be seen from Eq. (34), which shows that in the underdamped case the decay rate of the spin coherences scales proportional to Γ, while in the overdamped case the decay rate scales proportional to Γ^{-1}. This is a manifestation of the quantum Zeno effect; when the information the environment gains about the spin is lost fast enough, the spin state is frozen and does not decohere.

As a final note, we point out that the map in Eq. (30) (as well as the others like it throughout this work) can be used to describe the reduced Schrödinger-type dynamics of any reduced-spin operator, not just density matrices, by expressing it in the j_z eigenbasis. Heisenberg-picture dynamics can be found simply by applying the propagator accordingly and following the same procedure.
III. DISSIPATIVE PROTECTION OF THE SYMMETRIC SUBSPACE FOR TWO SPINS

We now explore how vibrational dissipation can have a protective effect on the coherences between many spins. We take each to be spin $j = \frac{1}{2}$ with eigenstates $|m\rangle = |\pm \frac{1}{2}\rangle$, where the label giving spin $j = \frac{1}{2}$ is suppressed for brevity. Thus, the operator $\hat{J}^{(n)}_z$ for the nth spin satisfies

$$\hat{J}^{(n)}_z|\pm \frac{1}{2}\rangle = \pm \frac{1}{2}|\pm \frac{1}{2}\rangle.$$ \hfill (39)

We consider a collection of such spins, each of which has local dynamics described by the spin-boson Hamiltonian in Eq. (1) (for $j = \frac{1}{2}$). This physical setting is motivated by two-level emitter defects in solids, where an electronic excitation deforms the surrounding crystal lattice, thus coupling to localized vibrational modes \[20\]. More details on this connection are given in Sec. V.

We focus on the pedagogical case of two spin-$\frac{1}{2}$ particles. Each spin couples to a quadrature of single local vibrational mode. This means that each spin-mode pair is described by the spin-boson Hamiltonian in Eq. (1), with just one term in the sum over k. Including a coupling between the two local vibrational modes of strength κ, the Hamiltonian describing this situation is given by

$$\hat{H} = \omega_0 (\hat{v}_1^1 \hat{v}_1 \hat{v}_2 + 1) + \kappa (\hat{v}_1^1 \hat{v}_2 + \hat{v}_1 \hat{v}_2^1) + \eta [\hat{J}^{(1)}_z \otimes (\hat{v}_1 + \hat{v}_2^1) + \hat{J}^{(2)}_z \otimes (\hat{v}_2 + \hat{v}_1^1)].$$ \hfill (40)

The distributed (nonlocal) vibrational eigenmodes are given by symmetric and antisymmetric combinations of the local ones,

$$\hat{v}_\pm = \frac{1}{\sqrt{2}} (\hat{v}_1 \pm \hat{v}_2),$$ \hfill (41)

whose eigenfrequencies are split by the coupling κ,

$$\omega_\pm := \omega_0 \pm 2\kappa.$$ \hfill (42)

In this basis, the Hamiltonian can be rewritten as

$$\hat{H} = \omega_+ \hat{v}_+^\dagger \hat{v}_+ + \omega_- \hat{v}_-^\dagger \hat{v}_- + \eta \hat{J}_z \otimes \hat{\phi}_+ + \eta \hat{A}_z \otimes \hat{\phi}_-.$$ \hfill (43)

where $\hat{\phi}_\pm := \frac{1}{\sqrt{2}} (\hat{v}_\pm + \hat{v}_\pm^\dagger$ are the distributed-mode position quadrature operators. Coupled to the symmetric and anti-symmetric distributed modes are the (Hermitian) symmetric and antisymmetric collective operators,

$$\hat{\mathcal{J}}_z := \hat{J}^{(1)}_z + \hat{J}^{(2)}_z,$$

$$\hat{A}_z := \hat{J}^{(1)}_z - \hat{J}^{(2)}_z.$$ \hfill (44)

(45)

The eigenstates of collective spin operator $\hat{\mathcal{J}}_z$ are the coupled angular momentum states $|J, M\rangle$, satisfying

$$\hat{\mathcal{J}}_z |J, M\rangle = M |J, M\rangle,$$

$$\hat{J}^2 |J, M\rangle = J(J + 1) |J, M\rangle.$$ \hfill (46a)

\hfill (46b)

(47)

$$\hat{A}_z = 2(|1, 0\rangle \langle 0, 0| + |0, 0\rangle \langle 1, 0|),$$ \hfill (48)

This description makes it clear that the \hat{A}_z operator couples the $J = 1$ and $J = 0$ subspaces without adding or removing spin excitations (indicated by no change in the M label). Meanwhile, collective spin operators such as \hat{J}_z are block-diagonal in the coupled-spin basis, which separates them into their irreducible representations \[26\]; here $\hat{J}_z = \hat{J}_z^{(1)} \hat{J}_z^{(0)}$, where $\hat{J}_z^{(i)}$ is the spin-i irreducible representation.

Each of the symmetric and antisymmetric vibrational modes decays into its own thermal bath, giving a master equation,

$$\frac{d}{dt} \hat{\rho} = -i [\hat{H}, \hat{\rho}] + \mathcal{D}_{+}^{\text{th}}[\hat{\rho}] + \mathcal{D}_{-}^{\text{th}}[\hat{\rho}]$$ \hfill (49)

where the thermal dissipators are defined in Eq. (28) and have respective decay rates Γ_{\pm}. Note that this is different from the above case, where each vibrational mode decays locally. Although the spins are not directly coupled to one another, their local vibrational modes may be (for $\kappa \neq 0$), and further, the vibrational modes decay in a collective symmetric and antisymmetric fashion. These give rise to effective spin-spin coupling, which can be seen in the evolution of the reduced spin state $\hat{\rho}_{\text{spin}}(t) = \text{Tr}_Y [\hat{\rho}(t)]$. The matrix elements in the local-spin basis, $\rho_{m_1, m_2}(t) := \langle m_1, m_2 | \hat{\rho}_{\text{spin}}(t) | m'_1, m'_2 \rangle$, evolve according to

$$\rho_{m_1, m_2}(t) = \rho_{m'_1, m'_2}(0) \exp \left\{ \right.$$ \hfill (50)

$$i [(m_1^2 + m_2^2) - (m_1^2 + m_2^2)] \mathcal{I}_{\text{in}}(t; \omega_+, \Gamma_+) + i [(m_1^2 - m_2^2) - (m_1^2 - m_2^2)] \mathcal{I}_{\text{in}}(t; \omega_-, \Gamma_-) - [(m_1 + m_2) - (m'_1 + m'_2)]^2 \mathcal{I}_{\text{Re}}(t; \omega_+, \Gamma_+) - [(m_1 - m_2) - (m'_1 - m'_2)]^2 \mathcal{I}_{\text{Re}}(t; \omega_-, \Gamma_-) \}.$$ \hfill (50)

The terms associated with the symmetric vibrational mode have sums of m_1 and m_2 and those associated with the antisymmetric vibrational mode have differences of m_1 and m_2.

A. Preserving the symmetric subspace

We are interested in preserving the symmetric spin subspace where the symmetricDicke states lie. In the local spin basis, the diagonal elements of the density matrix
that describe local-spin populations do not evolve. However, the collective spin populations do, since the states $|J, M = 0\rangle$ contain local-spin coherences. The symmetric subspace is described by the rank-3 projector

$$
\hat{P}_{\text{sym}} := \sum_{M=-1}^{1} \hat{P}_{J,M},
$$

(51)

where $\hat{P}_{J,M} := |J, M\rangle\langle J, M|$. Because dephasing is diagonal in the local spin basis, the projectors $\hat{P}_{1,1}$ and $\hat{P}_{1,-1}$ are stationary in time. Population only leaves the symmetric subspace through the state $|J = 1, M = 0\rangle$. Using Eq. (50), the projector onto this state evolves as

$$
\hat{P}_{1,0}(t) = \frac{1}{2} \left[1 + e^{-4\hat{X}_{\text{dec}}(t; \omega_+, \Gamma_-)} \right] \hat{P}_{1,0}
+ \frac{1}{2} \left[1 - e^{-4\hat{X}_{\text{dec}}(t; \omega_-, \Gamma_-)} \right] \hat{P}_{0,0},
$$

(52)

revealing that population lost from $|J = 1, M = 0\rangle$ moves to $|J = 0, M = 0\rangle$. The result is that the overlap of the symmetric-subspace projector decays over time,

$$
\text{Tr}[\hat{P}_{\text{sym}}(t)\hat{P}_{\text{sym}}(0)] = 2 + \frac{1}{2} \left(1 + e^{-4\hat{X}_{\text{dec}}(t; \omega_-, \Gamma_-)} \right).
$$

(53)

Crucially, the decay exponent scales as Γ_-^{-1} in the overdamped limit where $\Gamma_- \gg \omega_-\,$ as shown in Eq. (38a). This means that as the antisymmetric vibrational-mode decay rate increases, the rate at which population leaves the symmetric subspace decreases. This is a manifestation of the quantum Zeno effect, wherein a quantum system with support on a subspace A and that is coherently coupled to a second subspace B that is measured at a fast rate, is effectively decoupled from B thus preserving coherence in A. Symmetric state preservation is illustrated in Figure 2.

Note that Eq. (53) does not involve the symmetric decay rate Γ_+ at all. Although we do not explore the effect here, symmetric-mode decay can act as dephasing within the symmetric subspace. This reduces coherences between the off-diagonal elements in the collective basis, but unlike the antisymmetric decay Γ_-, it does not move population out of that symmetric subspace.

The role of the coupling κ between the bosonic modes is to shift the energies of the eigenmodes and hence their decay rates. Since we assume the bosonic model decay arises due to Lindblad type dynamics with a Markovian bath, we can write the decay rates according to Fermi’s golden rule $\Gamma(\omega) = 2\pi D(\omega)g^2$ where g is some fundamental coupling rate between initial and final bosonic mode states and $D(\omega)$ is the density of states at the energy of the final states. For the Debye model of coupling between phonons in three dimensional systems, the density of states scales like $D(\omega) \propto \omega^3$ as does $\Gamma(\omega)$. Hence for this simple model of two vibrational modes, we have

$$
\frac{\Gamma_{\pm}}{\Gamma} = \left(\frac{\omega \pm 2\kappa}{\omega_0} \right)^3,
$$

(54)

where Γ is the mode decay rate in absence of interactions. Lifting the mode degeneracy via nonzero inter-mode coupling will decrease ($\kappa > 0$) or increase ($\kappa < 0$) the antisymmetric mode decay rate relative to the symmetric mode decay rate as shown in (54). The latter case is useful for preserving the symmetric subspace as illustrated in Figure 3. This protection is accompanied by lower symmetric decay rates, which reduces the spin dephasing within the collective spin subspace.
IV. USING INTER-MODE COUPLINGS TO ALTER THE ENVIRONMENTAL STRUCTURE

We now consider the effects of a structured environment where the modes couple together (see Fig. 4). We show that for certain inter-mode couplings, discussed below, a large spectral gap opens between the (near-)symmetric mode and all other normal modes. The energy splitting can be used to address this mode. When the modes are coupled to spins with a spin-boson coupling, selectively addressing the symmetric mode can be useful for quantum optical protocols. For example, when the mode decay rates are small or absent, one can use this gap to engineer a geometric phase gate [27] that gives rise to nonlinear interactions between the spins.

Consider the N-spin generalization of the spin-boson Hamiltonian in Eq. (40) with each spin coupled to a single mode,

$$\hat{H} = \hat{H}_m + \sum_{k=1}^{N} \hat{J}_k \otimes (\eta_k \hat{\upsilon}_k + \eta_k^* \hat{\upsilon}_k^\dagger).$$
(55)

where the mode-wise part of the Hamiltonian is

$$\hat{H}_m = \omega_0 \sum_{k=1}^{N} (\hat{\upsilon}_k^\dagger \hat{\upsilon}_k + \frac{1}{2}) + \sum_{k \neq k'} \kappa_{k,k'} \hat{\upsilon}_k^\dagger \hat{\upsilon}_{k'},$$
(56)

The mode-wise couplings $\kappa_{k,k'}$ can be grouped into a matrix κ. Diagonalizing \hat{H}_m (by diagonalizing κ) gives rise to N normal bosonic modes $\hat{\upsilon}_{k'}$ with associated eigen-frequencies $\lambda_{k'}$.\footnote{Even though k and k' are dummy indices, we denote them differently for clarity.} This allows the mode-wise part of the Hamiltonian to be written as

$$\hat{H}_m = \sum_{k'=1}^{N} \lambda_{k'} (\hat{\upsilon}_{k'}^\dagger \hat{\upsilon}_{k'} + \frac{1}{2}).$$
(57)

Formally, the eigenmodes are constructed from the original modes by

$$\hat{\upsilon}_{k'} = \sum_{j=1}^{N} (\lambda_{k'} |k\rangle \hat{\upsilon}_k.$$
(58)

where $|\lambda_{k'}\rangle$ is an eigenvector of the matrix κ (not a Hilbert-space vector), and $|k\rangle$ is a unit vector with all zero entries except at position k. Using the normal modes, the full spin-boson Hamiltonian in Eq. (55) can be written

$$\hat{H} = \sum_{k'=1}^{N} \lambda_{k'} (\hat{\upsilon}_{k'}^\dagger \hat{\upsilon}_{k'} + \frac{1}{2}) + \sum_{k} (\hat{O}_{k'} \otimes \hat{\upsilon}_{k'}^\dagger + \hat{\upsilon}_{k'}^\dagger \otimes \hat{O}_{k'}).$$
(59)

Each normal mode couples to collective operators in the spin degree of freedom,

$$\hat{O}_k := \sum_{j} \langle j | \lambda_k \rangle e^{i \phi_j} \hat{J}_z^{(j)},$$
(60)

where the phase factor comes from the phase of the coupling parameter $\eta_j = |\eta_j| e^{i \phi_j}$. In general, these are not collective spin operators satisfying $SU(2)$ commutation relations and due to the inter-mode coupling, the Hamiltonian is no longer a spin-boson Hamiltonian. However, when $\phi_j = 0$ and $\langle j | \lambda_k \rangle = \sqrt{N}$, one of these operators becomes $\hat{O}_k = \frac{1}{\sqrt{N}} \hat{J}_z$, where

$$\hat{J}_z := \sum_{j=1}^{N} \hat{J}_z^{(j)}$$
(61)

is a collective spin operator. Below, we discuss situations where the symmetric mode

$$\hat{\upsilon}_s := \frac{1}{\sqrt{N}} \sum_{k=1}^{N} \hat{\upsilon}_k,$$
(62)

with eigenfrequency λ_s couples to \hat{J}_z and how this can be exploited for nonlinear interactions in the collective spin.

A. Structured modewise coupling to isolate the symmetric normal mode

The normal mode spectrum is determined by κ. We assume the spin-mode coupling rates are uniform, $\eta_j = \eta$,

FIG. 4: Depiction of multiple spins whose local modes are coupled together, illustrated in the context of two-level defects in solid state (see Sec. V). Each pseudo-spin couples in a state-dependent manner to local bosonic modes, e.g. a local vibronic mode, shown as a state dependent displacement of the harmonic oscillator potential by an amount $x_0 = 2x_{\text{rms}} \eta/\omega$, where x_{rms} is ground state width and ω the energy of the mode. Further, the modes are coupled to each other with potentially different strengths κ_{ij} (blue dashed lines), and also experience decay into a bath of extended thermal modes, e.g. phonons, at rate Γ (red wavy lines).
and consider κ with certain structure, described below, where the symmetric mode λ_s is gapped from the rest of the eigenmodes. In this scenario the Hamiltonian Eq. (59) can be written

$$H = \sum_{k \neq s} \lambda_k (\hat{w}_k^\dagger \hat{w}_k + \frac{1}{2}) + \sum_{k \neq s} \eta (\hat{O}_k \otimes \hat{w}_k^\dagger + \hat{O}_k^\dagger \otimes \hat{w}_k) + \hat{H}_s$$

where the dynamics of the symmetric mode is

$$\dot{\hat{H}}_s = \lambda_s (\hat{w}_s^\dagger \hat{w}_s + \frac{1}{2}) + \eta \dot{\bar{J}}_s \otimes (\hat{w}_s^\dagger + \hat{w}_s).$$

Although we are most interested in the symmetric spin space, note that \bar{J}_s operator has support over the entire Hilbert space of the spins (dimension 2^N). Thus, it is not simply an operator for the single $2J + 1$-dimensional symmetric space (total spin $J = N/2$) but acts all the irreducible representations of angular momentum and their multiplicities [28]. However, \bar{J}_s does not mix these subspaces, so \hat{H}_s likewise does not mix spin-subspaces of different permutation symmetry. This is important because the collective spin state is often prepared in the symmetric subspace.

Now using the spectral resolvability of the symmetric mode it is possible to perform quantum control on the dynamics to effectively restrict evolution to the symmetric subspace. Consider a dynamical decoupling pulse sequence where periodically with period T the unitary $V = e^{i\pi J_s e^{i\pi \hat{w}_s}}$ is applied, i.e. a composition of an on site bit flip on the qubits and π phase shift on the symmetric mode. This describes a bang-bang decoupling sequence and if it is done fast relative to the coupling strength, i.e. $T^{-1} \gg \eta$, then the effective evolution will be restricted to that generated by \hat{H}_s [5]. Such evolution can be used to generate spin squeezing. For example, in the limit that the mode decay rates go to zero $\Gamma_k \rightarrow 0$ and when the overall time of evolution for the dynamically decoupled sequence satisfies $\omega_t = r \pi$ for $r \in \mathbb{N}$, then by Eq. (33) the evolution acts on the spins alone according to the unitary $U(t) = e^{-i \chi \hat{J}_s^2}$ with $\chi = \frac{\pi \sigma^2}{\eta \mu}$.

We now demonstrate several conditions where such a gap between the symmetric mode and the other modes can arise. We consider situations where κ is negative; i.e. all the mode-wise couplings satisfy $\kappa_{ij} < 0$. Within this parameter regime, we study two types of structured mode-wise coupling. The first is uniform negative mode-wise coupling and the second is random (but negative) mode coupling.

1. Uniform coupling

We begin with the case where the mode-wise couplings are all equal, $\kappa_{ij} = \kappa$, making κ proportional to the unit matrix. Diagonalizing κ gives $N-1$ degenerate modes of frequency $|\omega_0 - \kappa|$, and one privileged fully symmetric mode, Eq. (62), with frequency $|\omega_0 + (N-1)\kappa|$. Note that when $\kappa < 0$, the symmetric mode is the lowest energy mode, and when $\kappa > 0$, it is the highest energy one.

2. Random coupling

We also assume the coupling is a perturbation to the bare mode coupling, specifically that the matrix $(\omega_0 l_N + \kappa)$ is positive. The Hamiltonian can be written in terms of normal modes as

$$H = \sum_{j=1}^{N} \lambda_j (\hat{w}_j^\dagger \hat{w}_j + \frac{1}{2})$$

where $\{\lambda_j\}$ are the (increasing ordered) eigenvalues of the matrix, $\sqrt{(\omega_0 l_N + \kappa)^2}$, and the eigenmodes \hat{w}_j are determined from the eigenvectors $|\lambda_j\rangle = \sum_k c_{j,k} |k\rangle$ of the matrix κ. By the Frobenius-Perron theorem, there is a unique smallest eigenvalue λ_1 and the corresponding normal mode has strictly positive coefficients, $c_{1,j} > 0$. Furthermore, according to a theorem of Füredi and Komlos [29], if the couplings are described by independent (not necessarily identically distributed) random variables, with a common bound and with common mean $E[k_{j,k}] = \mu < 0$ and variance $E[(k_{j,k} - \mu)^2] = \sigma^2$, then the unique smallest eigenvalue satisfies

$$\lambda_1 = \omega_0 - \frac{\sigma^2}{|\mu|} + \frac{1}{N} \sum_{j,k=1}^{N} \kappa_{j,k} + O(1/\sqrt{N}),$$

and all the other eigenvalues are concentrated in the interval $[\omega_0 - c\sqrt{N}, \omega_0 + c\sqrt{N}]$, where c is any constant greater than 2σ. This implies an expected spectral gap between the ground and second lowest energy modes of

$$E[\lambda_2 - \lambda_1] = |\mu| N + \frac{\sigma^2}{|\mu|} - 2\sigma \sqrt{N} + O(1/\sqrt{N}).$$

Furthermore, the lowest energy mode is close to the fully symmetric mode. From Lemma 3 in Ref. [29], the ground-state eigenvector $|\lambda_1\rangle$ has overlap with the uniform state $|v\rangle = \frac{1}{\sqrt{N}} \sum_j |j\rangle$ of $\langle \lambda_1 | v \rangle > 1 - \frac{2\sigma^2}{N\mu}$ with probability $P > 1 - 1/N$.

Summarizing, for a collection of N identical bosonic modes coupled to each other in an all-to-all manner, a gap develops in the eigenmodes with a low-energy symmetric mode. When the inter-mode couplings are random with but with common negative mean and a common variance, the ground energy mode is close to the fully symmetric mode with a fidelity error that falls off as $1/N$, and the energy gap is $O(N)$. This is illustrated in Fig. 5.

V. CONNECTION TO EMITTER DEFECTS IN SOLID-STATE SYSTEMS

Our analysis has up to this point been made quite generally in terms of spins coupled to bosonic modes. We now show that it may have applications to solid-state systems where defects in crystals couple to vibrational lattice phonons. Such a system describes, for example,
A model for such a system has been considered by Betzholtz et al. [20], where the defect is a two-level electronic system with ground and excited states $|g\rangle$ and $|e\rangle$ and transition frequency Ω. In the context of NV$^-$ centres, $|g\rangle$ and $|e\rangle$ correspond to the 3A_2 and 3E electronic levels respectively. The solid-state lattice is locally deformed due to the electronic excited-state orbital, coupling each two-level electronic system to a vibrational mode with bare frequency ω. The Hamiltonian governing the dynamics is given by [20]

$$
\hat{H}_{\text{el-vib}} = \Omega \hat{P}_e + \omega \hat{v}^\dagger \hat{v} + \eta \hat{P}_v \otimes (\hat{v} + \hat{v}^\dagger),
$$

where $\hat{P}_e := |e\rangle\langle e|$ is the projector onto the electronic excited state, and η is the vibronic coupling strength. In a crystal setting, the local vibrational mode \hat{v} couples to longer range acoustic phonons, which can serve as a thermal bath with dissipator as in Eq. (28).

The reduced state of the electronic subsystem can be calculated using the solutions for the spin-boson model we derived in previous Sections. Additionally, our results regarding protection of coherences and symmetric subspaces, as well as the effect of randomized mode couplings, will also apply to these lattice defect systems.

To see this, again we assume an initial joint state $\hat{\rho}(0) = \hat{\rho}_{V}(0) \otimes \hat{\rho}_{\text{el}}(0)$. The initial electronic state is arbitrary and has matrix elements $\rho_{jk} := \langle j | \hat{\rho}_{\text{el}}(0) | k \rangle$ for $j, k \in \{g, e\}$, and $\hat{\rho}_{V}(0)$ is a (single-mode) thermal state, Eq. (17). As shown in Appendix D, the reduced spin state is given by (68) is

$$
\hat{\rho}^\text{el}(t) = \rho_{gg} |g\rangle\langle g| + \rho_{ge} e^{-i\mathcal{I}_{\text{Im}} - \mathcal{I}_{\text{Re}}} |g\rangle\langle e| + \rho_{ee} |e\rangle\langle e|.
$$

The dynamical phase and decay factors, \mathcal{I}_{Im} and \mathcal{I}_{Re}, are shortened notation for those defined in Eqs. (25). Here, they are evaluated for the single frequency ω (since there is only a single mode). If the electronic defect couples to multiple modes, extension to this case is straightforward using by using their more general forms.

An excited defect or color centre can undergo optical decay on the timescale of a few nanoseconds [32] as well as additional pure dephasing. These two effects were not considered in the spin-boson model above, as we focused there on interactions between spins and bosonic modes (vibrational phonon modes in this context). To include these two additional processes, we add to our master equation Lindblad terms describing optical decay at a rate Γ_{op} and additional dephasing at a rate Γ_{dp}. As shown in Appendix D, this results in a reduced electronic state given by

$$
\hat{\rho}^\text{el}(t) = (1 - \rho_{ee} e^{-\Gamma_{\text{dp}} t}) |g\rangle\langle g| + \rho_{ge} e^{-i\mathcal{I}_{\text{Im}} - \mathcal{I}_{\text{Re}}} |g\rangle\langle e| + \rho_{eg} e^{i\mathcal{I}_{\text{Im}} - \mathcal{I}_{\text{Re}}} |e\rangle\langle g| + e^{-\Gamma_{\text{op}} t} \rho_{ee} |e\rangle\langle e|,
$$

where \mathcal{I}_{Im} and \mathcal{I}_{Re} are those given by Eqs. (31).
The exact dynamics of such a system depends highly on the frequencies, the inter-mode coupling rates, and spin-mode coupling rates, which determine whether the system operates in the underdamped or overdamped regime (see Sec. II B 1). For many solid-state defect emitters, such as NV centres, these frequencies and couplings are not well known and will differ depending on whether, for example, the system being considered is bulk or nanocrystalline. Regardless, such systems could provide a rich playground to test the effects that our model predicts.

VI. CONCLUSION

In this work, we have solved the spin-boson model for the case of a single large spin coupled to a collection of bosonic modes. We provide an analytic solution for the non-Markovian reduced spin dynamics that applies when the modes themselves can decay into local thermal environments. We identify two regimes of interest: underdamped and overdamped. In the underdamped regime, spin coherences oscillate while decaying at a rate proportional to the modes’ decay rates. In the overdamped regime, the coherences experience no oscillations and decay at a rate inversely proportional to the modes’ decay rate. This Zeno-like effect can serve as a mechanism to preserve spin coherences. These regimes may also determine whether the dynamics is non-Markovian Markovian [41].

In the multiple spin-boson setting where the modes are intercoupled, the existence of normal modes with a fast decay into the thermal bath can result in protective effects on the collective spin. For two spins, population transfer out of symmetric subspace depends only on the decay of the antisymmetric normal mode, and the subspace can be preserved for significantly longer than expected when this decay is large. For \(N \) coupled bosonic modes, equal coupling yields a single privileged symmetric normal mode whose energy is gapped from the other \(N - 1 \) degenerate normal modes modes. Remarkably, this holds when the couplings between the modes are random in magnitude with a common mean and variance. In this case the energy gap persists between a single privileged near-symmetric normal mode and all the other modes whose energies are clustered within some energy window. This energy gap allows for the possibility of using dynamical decoupling to perform quantum information processing procedures, such as engineering effective spin squeezing or geometric phase interactions between the spins.

Finally, we connect our analysis to a simple model for defects in solid-state systems and discuss where our solutions and analyses can be applied. Some physical settings, such as NV centres in diamond, have extremely large vibrational decay rates, which could interfere with coherent effects. Our results suggest the opposite: large decay rates may actually serve to preserve inter-emitter coherences in a Zeno-type fashion. This gives a possible reason why recent optical experiments with NV centres in nanodiamonds have displayed collective effects [36, 37] that require coherences on timescales much longer than that of the corresponding vibrational decay. Collective effects in the optical degrees of freedom are present in a wide range of solid-state systems, including rare-earth-ion doped solids, molecular aggregates, and low-dimensional excitonic solids [42], and it will be interesting to apply our findings in these contexts.

Acknowledgments

The authors thank Akib Karim for insightful discussions. B.Q.B., T.V., and G.K.B. acknowledge support from the Australian Research Council Centre of Excellence for Engineered Quantum Systems (Grant No. CE170100009). B.Q.B. was additionally supported by the Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology (Project No. CE170100012) and the Japan Science and Technology Agency through the MEXT Quantum Leap Flagship Program (MEXT Q-LEAP).

Appendix A: Removing time ordering using the Magnus expansion

The Magnus expansion [43] allows us to write a time-ordered exponential generated by a time-dependent operator \(\hat{A}(t) \) in terms of a non-time-ordered exponential,

\[
\mathcal{T} \exp \left[\int_0^t dt' \hat{A}(t') \right] = \exp \left[\hat{\Omega}(t) \right] ,
\]

(A1)

where \(\hat{\Omega}(t) \) is a sum of terms related to the commutator of \(\hat{A}(t) \) at different times,

\[
\hat{\Omega}(t) = \int_0^t dt_1 \hat{A}(t_1) - \frac{1}{2} \int_0^t dt_1 \int_0^{t_1} dt_2 [\hat{A}(t_2), \hat{A}(t_1)] + \ldots ,
\]

(A2)

where additional terms involve nested multi-time commutators.

The unitary propagator in Eq. (6) contains a time-ordered exponential operator over the vibrational modes. Since the modes are independent, \(\{ \hat{v}_k, \hat{v}^\dagger_{k'} \} = \delta_{k,k'} \), we can treat each vibrational mode, indexed by \(k \), separately. For each \(k \),
the time-ordered exponential is generated by $\hat{V}_k(t) := \eta_k \hat{v}_k^1 e^{\im \omega_k t} + \eta_k^* \hat{v}_k e^{-\im \omega_k t}$, which satisfies the following multi-time commutator,

$$[\hat{V}_k(t_2), \hat{V}_k(t_1)] = 2\eta_k^2 \sin[\omega_k(t_1 - t_2)].$$

(A3)

All higher-order commutators vanish, so the Magnus expansion in Eqs. (A1–A2) requires only first- and second-order terms. Using this fact, we get for the time-ordered exponential,

$$\mathcal{T} \exp \left[-im \int_0^t dt' \hat{V}(t') \right] = \prod_k \mathcal{T} \exp \left[-im \int_0^t dt' \hat{V}_k(t') \right]$$

(A4)

$$= \exp \left[-i \sum_k |\eta_k|^2 m^2 \int_0^t dt_1 \int_0^t dt_2 \sin[\omega_k(t_1 - t_2)] \right] \exp \left[-im \int_0^t dt' \hat{V}(t') \right]$$

(A5)

$$= \exp \left[-im^2 \int d\omega \int_0^t dt_1 \int_0^t dt_2 J(\omega) \sin[\omega(t_1 - t_2)] \right] \exp \left[-im \int_0^t dt' \hat{V}(t') \right].$$

(A6)

In the second line, we converted the product of exponentials back into an exponential of a sum over terms. In the final line, we introduced an integral over ω with the spectral density $J(\omega)$, Eq. (9), as the integration kernel. Importantly, note that all the time ordering of operators has been removed, with the effects captured in the exponential two-time integrals in the first term. In the main text and in the following Appendix, we express the final line as (7), where we have collected the terms in the first exponential into a c-number phase $\Phi(t)$, Eq. (8).

Appendix B: Trace over vibrational modes in a thermal state

When the vibrational modes are prepared in the mode-wise tensor-product thermal state in Eq. (16), the partial trace in Eq. (15) can be performed analytically. We follow here the calculation in Agarwal (2010) [24]. For this tensor-product state, the $S(t)$ factor describing the partial trace that appears in the expression for the reduced-spin matrix elements factorizes,

$$S(t) = \prod_k \text{Tr}_k \left[\exp \left[-i(m - m') \int_0^t dt' \left(\eta_k \hat{v}_k^1 e^{\im \omega_k t'} + \eta_k^* \hat{v}_k e^{-\im \omega_k t'} \right) \right] \hat{\rho}_{\text{therm}, k} \right],$$

(B1)

and each mode is initially described by a thermal state with average excitation \bar{n}_k, Eq. (17). We will treat each trace separately. Defining for convenience the coefficients

$$\eta_k(t) := -(m - m') \int_0^t dt' \eta_k e^{\im \omega_k t},$$

(B2)

the exponential operator in the above expression can be written in the disentangled form,

$$\exp \left[i\eta_k(t) \hat{v}_k^1 + i\eta_k^*(t) \hat{v}_k \right] = \exp \left[i\eta_k(t) \hat{v}_k^1 \right] \exp \left[i\eta_k^*(t) \hat{v}_k \right] \exp \left[-\frac{1}{2} |\eta_k(t)|^2 \right].$$

(B3)

The trace can now be taken trivially,

$$\text{(trace over vib. mode } k) = \frac{1}{\pi \bar{n}_k} \exp \left[-\frac{1}{2} |\eta_k(t)|^2 \right] \int d^2 \alpha \exp \left(-\frac{|\alpha|^2}{\bar{n}_k} \right) \exp \left[i\eta_k(t) \alpha^* + i\eta_k^*(t) \alpha \right]$$

(B4)

$$= \exp \left[-\left(\bar{n}_k + \frac{1}{2} \right) |\eta_k(t)|^2 \right]$$

(B5)

$$= \exp \left[-\frac{1}{2} \coth \left(\frac{\hbar \beta \omega_k}{2} \right) \right] \frac{(m - m')^2}{2} \int_0^t dt_1 \int_0^t dt_2 e^{i \omega_k (t_1 - t_2)},$$

(B6)

where we substituted for $|\eta_k(t)|^2$ using Eq. (B2) and rewrote the thermal factor using

$$\bar{n}_k + \frac{1}{2} = \frac{1}{2} \coth \left(\frac{\hbar \beta \omega_k}{2} \right).$$

(B7)

Summing this expression over all vibrational modes (in the exponential) and including the spectral density $J(\omega)$, Eq. (9), we find the integral in Eq. (B1) to be

$$S(t) = \exp \left[-i(m - m')^2 \int_0^t dt_1 \int_0^t dt_2 \int d\omega J(\omega) \coth \left(\frac{\hbar \beta \omega}{2} \right) \cos[\omega(t_1 - t_2)] \right].$$

(B8)
Appendix C: Derivation of the correlation function

First, consider the quadrature correlation function for a single mode k without coupling to a dissipative bath. Then, due to the free evolution of the mode $\hat{v}_k(t) = e^{-i\omega_k t} \hat{v}_k(0)$ we have

$$\langle \hat{X}_k(t) \hat{X}_k(0) \rangle = \text{Tr}_V [\eta_k e^{-i\omega_k t} \hat{v}_k(0) + \eta_k^* e^{i\omega_k t} \hat{v}_k^\dagger(0)] (\eta_k \hat{v}_k(0) + \eta_k^* \hat{v}_k^\dagger(0)) \hat{\rho}_V(0)$$ \hspace{1cm} (C1)

The initial state of the modes, $\hat{\rho}_V(0)$, is that of Eq. (16), where each mode is thermally occupied with inverse temperature β and mean occupation number $\bar{n}_k = 1/(e^{\beta \omega_k} - 1)$. The only surviving terms in the trace are those with equal numbers of creation and annihilation operators; hence,

$$\langle \hat{X}_k(t) \hat{X}_k(0) \rangle = |\eta_k|^2 (e^{-i\omega_k t} \text{Tr}_V [\hat{v}_k(0) \hat{v}_k(0) + 1] \hat{\rho}_V(0)) + e^{i\omega_k t} \text{Tr}_V [\hat{v}_k^\dagger(0) \hat{v}_k(0)] \hat{\rho}_V(0)$$ \hspace{1cm} (C2)

$$= |\eta_k|^2 [e^{-i\omega_k t} (1 + \bar{n}_k) + e^{i\omega_k t} \bar{n}_k]$$ \hspace{1cm} (C3)

$$= |\eta_k|^2 \left[\coth(\beta \omega_k/2) \cos(\omega_k t) - i \sin(\omega_k t) \right].$$ \hspace{1cm} (C4)

When dissipation is included, the quadrature correlation function can be computed starting with the joint density matrix for mode k and its local environment E, $\hat{\rho}_V(0) \otimes \hat{\rho}_E(0)$ (mode label k suppressed) evolve according the total Hamiltonian $\hat{H}_{V,E}$, which includes local and interaction couplings, and finally tracing:

$$\langle \hat{X}_k(t) \hat{X}_k(0) \rangle = \text{Tr}_{V,E} \left[e^{i\hat{H}_{V,E} t} \eta_k \hat{v}_k(0) + \eta_k^* \hat{v}_k^\dagger(0) \right] e^{-i\hat{H}_{V,E} t} \left[\eta_k \hat{v}_k(0) + \eta_k^* \hat{v}_k^\dagger(0) \right] \hat{\rho}_V(0) \ominus \hat{\rho}_E(0)$$ \hspace{1cm} (C5)

We consider both the modes and their environments to be in separable thermal states characterized by inverse temperature β—that is, thermal equilibrium. When the environment satisfies the conditions that giving rise to Lindblad evolution of the mode, i.e. the evolution satisfies the Born-Markov approximation, the trace over E gives rise to decay of the mode operators $\hat{v}_k(t) = e^{-i\omega_k t} e^{-\Gamma_k t/2} \hat{v}_k(0)$. Note that the bath temperature does not affect the time evolution of \hat{v}_k, although it does in general affect other moments (such as \bar{n}_k). Assuming as before that the modes are thermal occupied, the correlation function becomes

$$\langle \hat{X}_k(t) \hat{X}_k(0) \rangle = e^{-\Gamma_k t/2} |\eta_k|^2 \left(e^{-i\omega_k t} \text{Tr}_V [\hat{v}_k(0) \hat{v}_k(0) + 1] \hat{\rho}_V(0) \right) + e^{i\omega_k t} \text{Tr}_V [\hat{v}_k^\dagger(0) \hat{v}_k(0)] \hat{\rho}_V(0)$$ \hspace{1cm} (C7)

$$= e^{-\Gamma_k t/2} |\eta_k|^2 [e^{-i\omega_k t} (1 + \bar{n}_k) + e^{i\omega_k t} \bar{n}_k]$$ \hspace{1cm} (C8)

$$= e^{-\Gamma_k t/2} |\eta_k|^2 \left[\coth(\beta \omega_k/2) \cos(\omega_k t) - i \sin(\omega_k t) \right].$$ \hspace{1cm} (C9)

Appendix D: Connection to a solid-state electronic-vibrational model

Consider the vibronic Hamiltonian, Eq. (68), but with multiple vibrational modes coupled to the two-level electronic emitter:

$$\hat{H} = \Omega \hat{J}_z + \sum_k \omega_k (\hat{v}_k^\dagger \hat{v}_k + \frac{1}{2}) + |e\rangle \langle e| \otimes \sum_k (\eta_k \hat{v}_k^\dagger + \eta_k^* \hat{v}_k)$$

$$= \Omega \hat{J}_z + \sum_k \omega_k (\hat{v}_k^\dagger \hat{v}_k + \frac{1}{2}) + \frac{1}{2} \sum_k (\eta_k \hat{v}_k^\dagger + \eta_k^* \hat{v}_k) + \frac{1}{2} \sum_k (\eta_k \hat{v}_k^\dagger + \eta_k^* \hat{v}_k)$$ \hspace{1cm} (D1)

In the second line, we have used that fact that $|e\rangle \langle e| = \frac{1}{2} (\hat{J}_z + \hat{I})$ for spin $j = 1/2$. One identifies this Hamiltonian as nearly the same as our original spin-boson Hamiltonian with a few modifications. First, $\eta_k \rightarrow \eta_k^* / 2$. More importantly, we find an additional coherent drive on the modes of strength $|\eta_k|$. However, we do not need to rely on this identification in order to solve for the reduced spin state, as we show below.

Following the derivation in Sec. II, the interaction-picture propagator using the Hamiltonian Eq. (D1) is

$$\hat{U}(t) = \mathcal{T} \exp \left[-i \int_0^t dt' |e\rangle \langle e| \otimes \hat{V}(t') \right];$$ \hspace{1cm} (D2)

compare to the propagator in Eq. (4). We use the solutions in the main text by identifying the eigenvalues $m = 1$ for $|e\rangle \langle e|$ and $m = 0$ for $|g\rangle \langle g|$. With this, the formal solution for the joint electronic-vibrational state at time t is
found from Eq. (10),
\[\hat{\rho}(t) = \rho_{gg}|g\rangle \langle g| \otimes \hat{\rho}_{V}(0) + \rho_{ge} \otimes e^{-i\Phi(t)}|g\rangle \langle e| \hat{\rho}_{V}(0) e^{i \int_{0}^{t} dt' \hat{V}(t')} + \rho_{eg}|e\rangle \langle g| \otimes e^{i\Phi(t)} e^{-i \int_{0}^{t} dt' \hat{V}(t')} \hat{\rho}_{V}(0) + \rho_{ee}|e\rangle \langle e| \otimes e^{-i \int_{0}^{t} dt' \hat{V}(t')} \hat{\rho}_{V}(0) e^{i \int_{0}^{t} dt' \hat{V}(t')}, \]
(D3)

where \(\rho_{jk} := \langle j|\hat{\rho}(0)|k\rangle \) are the matrix elements of the initial electronic state.

Setting the initial state of the vibrational modes to be the multimode thermal state, Eq. (17), then the reduced electronic state, \(\hat{\rho}^{el}(t) := \text{Tr}_{\text{vib}}[\hat{\rho}(t)] \), is found from Eq. (30) to be
\[\hat{\rho}^{el}(t) = \rho_{gg}|g\rangle \langle g| + \rho_{ge} e^{-i\int_{0}^{t} dt' \hat{V}(t')} |g\rangle \langle e| + \rho_{eg} e^{i\int_{0}^{t} dt' \hat{V}(t')} |g\rangle \langle g| + \rho_{ee}|e\rangle \langle e|. \]
(D4)

We have written out the full reduced spin state because of its compact form for spin-\(\frac{1}{2} \) (as opposed to presenting the solution matrix-elementwise as for the general case in text). As expected, the ground and excited states do not evolve, while the coherences evolve in a non-Markovian fashion.

1. Including optical decay and additional dephasing

The Lindblad maps for a two-level system undergoing pure dephasing at rate \(\Gamma_{dp} \) and optical decay into the vacuum at a rate \(\Gamma_{op} \) are
\[D_{dp}[\hat{\rho}] := \Gamma_{dp} (\hat{\sigma}_{z} \hat{\rho} \hat{\sigma}_{z} - \hat{\rho}) , \]
\[D_{op}[\hat{\rho}] := \Gamma_{op} (\hat{\sigma}_{-} \hat{\rho} \hat{\sigma}_{+} - \frac{1}{2} \hat{\sigma}_{+} \hat{\sigma}_{-} - \frac{1}{2} \hat{\rho} \hat{\sigma}_{+} \hat{\sigma}_{-}) , \]
where \(\hat{\sigma}_{-} := |g\rangle \langle e|, \hat{\sigma}_{+} := |e\rangle \langle g| \), and \(\hat{\sigma}_{z} := |e\rangle \langle e| - |g\rangle \langle g| \). The dephasing map simply generates decay of the coherences at rate \(\Gamma_{dp} \). The final two terms on the right-hand side of the optical decay map are integrated directly in our solution in the standard fashion as a anti-Hermitian Hamiltonian \(\hat{H} = i \Gamma_{op} |e\rangle \langle e| \). The first term describes incoherent refeeding of the ground state \(|g\rangle \langle g| \) directly from the excited state \(|e\rangle \langle e| \). Both effects can be included directly into the solution above to obtain
\[\hat{\rho}^{el}(t) = (1 - \rho_{ee} e^{-\Gamma_{op} t})|g\rangle \langle g| + \rho_{ge} e^{-\Gamma_{dp} t} e^{-i\int_{0}^{t} dt' \hat{V}(t')} e^{-i\int_{0}^{t} dt' \hat{V}(t')} |g\rangle \langle e| + \rho_{eg} e^{-\Gamma_{dp} t} e^{i\int_{0}^{t} dt' \hat{V}(t')} e^{i\int_{0}^{t} dt' \hat{V}(t')} |g\rangle \langle g| + \rho_{ee} e^{-\Gamma_{op} t} \rho_{ee} |e\rangle \langle e|. \]
(D7)

The apparent disappearance of the initial matrix element \(\rho_{gg} \) comes from the fact that the \(|g\rangle \langle g| \) coefficient is \(\rho_{gg} + \rho_{ee}(1 - e^{-\Gamma_{op} t}) = 1 - \rho_{ee} e^{-\Gamma_{op} t} \), where we used \(\rho_{gg} + \rho_{ee} = 1 \). The above can be compared to the reduced-state equation derived by Betzholz et al. [20], noting that their solution is in the Schrödinger picture, while Eq. (D7) is in the interaction picture with respect to the bare electronic and vibrational Hamiltonians.

[1] C. L. Degen, F. Reinhard, and P. Cappellaro, Rev. Mod. Phys. 89, 035002 (2017), URL https://link.aps.org/doi/10.1103/RevModPhys.89.035002.
[2] S. Pezzagna and J. Meijer, Applied Physics Reviews 8, 011308 (2021), https://doi.org/10.1063/5.0007444, URL https://doi.org/10.1063/5.0007444.
[3] C. W. Gardiner and M. J. Collett, Phys. Rev. A 31, 3761 (1985), URL https://link.aps.org/doi/10.1103/PhysRevA.31.3761.
[4] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, 2007).
[5] L. Viola and S. Lloyd, Phys. Rev. A 58, 2733 (1998), URL https://link.aps.org/doi/10.1103/PhysRevA.58.2733.
[6] M. Grifoni and P. Hänggi, Physics Reports 304, 229 (1998), ISSN 0370-1573, URL https://www.sciencedirect.com/science/article/pii/S0370157398000222.
[7] M. Thorwart, E. Paladino, and M. Grifoni, Chemical Physics 296, 333 (2004), ISSN 0301-0104, the Spin-Boson Problem: From Electron Transfer to Quantum Computing, URL https://www.sciencedirect.com/science/article/pii/S0301010403005469.
[8] A. Ishizaki and Y. Tanimura, Journal of the Physical Society of Japan 74, 3131 (2005), URL https://doi.org/10.1143/JPSJ.74.3131.
[9] I. Burghardt, R. Martinazzo, and K. H. Hughes, The Journal of Chemical Physics 137, 144107 (2012), https://doi.org/10.1063/1.4752078, URL https://doi.org/10.1063/1.4752078.
