Carbon Dioxide Embolism during Laparoscopic Surgery

Eun Young Park,¹ Ja-Young Kwon,² and Ki Jun Kim³

¹Department of Anesthesiology and Pain Medicine, Hallym University College of Medicine, Seoul; ²Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul; ³Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea.

Clinically significant carbon dioxide embolism is a rare but potentially fatal complication of anesthesia administered during laparoscopic surgery. Its most common cause is inadvertent injection of carbon dioxide into a large vein, artery or solid organ. This error usually occurs during or shortly after insufflation of carbon dioxide into the body cavity, but may result from direct intravascular insufflation of carbon dioxide during surgery. Clinical presentation of carbon dioxide embolism ranges from asymptomatic to neurologic injury, cardiovascular collapse or even death, which is dependent on the rate and volume of carbon dioxide entrapment and the patient's condition. We reviewed extensive literature regarding carbon dioxide embolism in detail and set out to describe the complication from background to treatment. We hope that the present work will improve our understanding of carbon dioxide embolism during laparoscopic surgery.

Key Words: Carbon dioxide, embolism, laparoscopy, pneumoperitoneum

INTRODUCTION

Laparoscopy has become a routine method for diagnosis and treatment of gynecological and intra-abdominal diseases. To do so requires insufflation of carbon dioxide for accurate visualization and operative manipulation. Consequently, carbon dioxide embolism may arise therefrom. Carbon dioxide embolism is a rare but potentially serious complication of laparoscopic procedures.¹ It is caused by entrapment of carbon dioxide in an injured vein, artery or solid organ, and results in blockage of the right ventricle (RV) or pulmonary artery.² There have been reports of carbon dioxide emboli occurring in various procedures including laparoscopic appendectomy,¹ laparoscopic cholecystectomy,¹⁻⁷ endoscopy,⁴ hysteroscopy,⁷ and other gynecological laparoscopic surgeries.⁹⁻¹³ Recently, carbon dioxide emboli have also been reported to occur during laparoscopic nephrectomy,¹⁴ laparoscopic hepatectomy,¹⁵ endoscopic vein harvesting,¹⁶,¹⁷ endoscopic thyroidectomy,¹⁸ and laparoscopic radical prostatectomy.¹⁹

Here we provide an extensive literature review regarding carbon dioxide embolism in detail, and describe the incidence, pathophysiology, clinical signs, diagnosis, prevention, and treatment of carbon dioxide embolism during laparoscopic surgery.
Gas embolism was observed in all patients undergoing total laparoscopic hysterectomy, and 37.5% of patients had grades higher than III (Fig. 1). No patient in this study showed hemodynamic instability or electrocardiogram changes at the time of venous air embolism (VAE) occurrence. Most instances of VAE during total laparoscopic hysterectomy (TLH) occurred during transection of the round ligament and dissection of the broad ligament.

In several cases, clinical carbon dioxide as a diagnosis was only reported in the medical or hospital record when some provocative medical intervention occurred. Less significant cases of embolism may only have been historically maintained as a comment in the specific anesthetic record, which were likely not individually reviewed in a large case series. Thus, the real “clinical incidence” of carbon dioxide embolism is likely higher than that reported by these series.

Table 1. The Incidence of Carbon Dioxide Embolism during Laparoscopic Procedures

Author	Surgery	Carbon dioxide embolism case/total patients (%)	Method of detection
Brühl	Laparoscopic liver biopsy	1/63,845 (0.0016)	-
Phillips, et al.	Gynecologic laparoscopy	15/113,253 (0.013)	-
Mintz	Laparoscopic sterilization	2/100,000 (0.002)	-
Gomar, et al.	Laparoscopy & hysteroscopy	1/1,612 (0.062)	-
Hynes and Marshall	Gynecologic laparoscopy	7/1,194 (0.59)	Stethoscope & signs
Bonjer, et al.	Laparoscopy	7/489,335 (0.0014)	-
Landercaasper, et al.	Laparoscopic cholecystectomy	0/61 (0)	Doppler & ETCO₂
Derouin, et al.	Laparoscopic cholecystectomy	11/16 (69)	TEE
Fahy, et al.	Laparoscopic nephrectomy	1/16 (6)	TEE
Lin, et al.	Endoscopic vein harvesting	69/403 (17.1)	TEE
Chiu, et al.	Endoscopic vein harvesting	49/498 (9.9)	TEE
Kim, et al.	Total laparoscopic hysterectomy	40/40 (100)	TEE

TEE, transesophageal echocardiography; ETCO₂, end-tidal carbon dioxide.
Carbon dioxide embolism can manifest itself through a “gas lock” effect, causing obstruction to RV ejection, right and left cardiac failure, paradoxical embolism with or without patent foramen ovale, arrhythmia, pulmonary hypertension, systemic hypotension, and cardiovascular collapse. Because of its high blood solubility, carbon dioxide causes similar but less marked effects than those produced by air. Carbon dioxide embolism does not produce the bronchoconstriction or changes in pulmonary compliance that are caused by air embolism. Clinically, carbon dioxide embolism can present with systemic hypotension, dyspnea, cya-
nosis, tachycardia or bradycardia, arrhythmia, or asystole. A “mill-wheel” murmur also can be ausculated. Carbon dioxide embolism may increase or decrease end-tidal carbon dioxide tension. Other effects include elevated pulmonary arterial pressure (PAP), elevated central venous pressure, hypoxemia, and increased arterial partial pressure of carbon dioxide (Table 3). The relationship between carbon dioxide embolism and the interplay of different pressures (intro-abdominal, thoracic, cardiac, and venous) existing during laparoscopic surgeries has not been extensively studied. Peritoneal insufflation to intra-abdominal pressures higher than 10 mm Hg induces significant alterations of hemodynamics. Such hemodynamic changes might be caused by pneumoperitoneum, patient position, hypercapnia, or the carbon dioxide embolism itself. Adequate peritoneal insufflation below 10 mm Hg may decrease the incidence of carbon dioxide embolism.

DIAGNOSIS

TEE

TEE has been established as the most sensitive method for detecting intravenous injection of carbon dioxide as small as 0.1 mL/kg when compared with ETCO₂, pulmonary artery pressure, and precordial auscultation, which has a similar threshold of 0.5 mL/kg. In another study, TEE detected gas emboli of 0.02 mL (0.0007 mL/kg) boluses, and was 50 to 100 times as sensitive to the presence of emboli, after bolus injection, as ETCO₂. Studies with TEE probes identified subclinical gas emboli in 11 of 16 patients (68%) undergoing laparoscopic cholecystectomy, but no emboli were reported when precordial Doppler ultrasonography was used in 61 patients undergoing the same procedure. Dion, et al. identified a change in pulmonary artery pressure in dogs only after injection of a 100 mL bolus of air, whereas TEE identified all bolus injections of 15 mL of air. TEE monitoring has also been increasingly used for the diagnosis for carbon dioxide embolism during endoscopic saphenous vein harvesting in coronary artery bypass surgery.

Because administration of fluid and pharmacologic agents during surgical intervention causes some turbulent flow, which stimulates gas bubbles in the right atrium, the traditional TEE view of the right atrium is not ideal for monitoring for the appearance of carbon dioxide bubbles. Therefore, the transgastric inferior vena cava view has been utilized to solve this problem. TEE has clearly demonstrated carbon dioxide originating from the inferior vena cava, as well as gas in the RV and main pulmonary artery, documented RV failure, interventricular septal shift toward the left ventricle, and a decrease in left ventricular dimensions.

The disadvantages of TEE include high cost, technical complexity, and the need for constant operator attention. Transesophageal Doppler

Transesophageal Doppler

Transesophageal Doppler has recently emerged as an optimal means of gas embolus detection. It is easier and much less expensive to use routinely, and it is nearly as sensitive as TEE. During laparoscopic cholecystectomy in pigs, transesophageal Doppler was found to be a highly sensitive monitor that provided earlier detection of carbon dioxide emboli at lower doses than ETCO₂ monitoring. This method demonstrated 100% sensitivity in detecting 0.1 mL/kg emboli.

Precordial Doppler

Precordial Doppler was initially introduced as a simple and highly sensitive device for detecting venous air emboli. However, although Wadhwa, et al. monitored 100 patients undergoing laparoscopic procedures with a Doppler ultrasonic instrument, they reported no incidence of carbon di-

| Table 3. The Physiological Changes, Signs and Symptoms of Carbon Dioxide Embolism |
|---------------------------------|-------------------|-----------------|
| Cause | Physiologic change | Sign and symptoms |
| Gas exchange abnormality | Decreased PaO₂ | Dyspnea |
| | Decreased PaCO₂ | Cyanosis |
| | Decreased pH | Hypoxia |
| Increased RV afterload | Increased PAP | Hypotension |
| | Cor pulmonale | Chest pain |
| RV failure | | Murmur |
| Decreased LV filing | Decrease in CO | Arrhythmia |
| LV failure | | ECG change of MI|
| Cardiac arrest | | Sudden death |

CO, cardiac output; ECG, electrocardiogram; LV, left ventricle; MI, myocardial infarct; PAP, pulmonary artery pressure; RV, right ventricle.
Carbon Dioxide Embolism

In another study, no carbon dioxide embolism was detected on precordial Doppler ultrasonography in 61 patients undergoing laparoscopic cholecystectomy. The Doppler transducer is usually placed in the parasternal area at the fourth intercostal space overlying the RA. Despite the precordial Doppler’s ease of placement and sensitivity, it is an imperfect method because it is not quantitative, and its false negative rate due to position of probe.\(^4^1\)

ETCO\(_2\): Monitoring has been suggested as a sensitive and noninvasive means of detecting gas embolism.\(^4^2\) However, carbon dioxide embolism can cause either an increase or a decrease in ETCO\(_2\).\(^2^4\) Several reports have described a rise in ETCO\(_2\),\(^1^1,4^2\) where a continuously recorded ETCO\(_2\) concentration increased abruptly from 3.8 to 4.2% in carbon dioxide embolism patients who were diagnosed on the basis of a sudden abrupt onset of systolic and diastolic murmurs during laparoscopy.\(^4^2\)

Diakun\(^3^3\) detailed the temporal association of cardiovascular collapse with an abrupt increase in ETCO\(_2\). Most reports, however, described significant decreases in ETCO\(_2\) with clinical episodes of carbon dioxide embolism.\(^6,8,2^3,4^4\) A small transient rise in ETCO\(_2\) follows larger boluses, probably caused by an increase in the carbon dioxide dissolved in the blood. Rapid decrease in ETCO\(_2\) is caused by obstruction of some of the pulmonary vasculature by emboli, expanding the ventilatory dead space.\(^3^7\) Couture, et al.\(^3^6\) found that, regardless of the mode of administration of carbon dioxide (bolus or infusion), the first response to carbon dioxide embolism was a decrease in ETCO\(_2\).

Precordial or esophageal stethoscope There have been several reports of “mill-wheel” precordial murmurs: a loud, harsh, churning, tickling, splashing metallic sound, which are usually noted concomitantly with cardiovascular collapse.\(^1^1,1^2,4^5,4^6\) However, these signs are inconsistent. A recent review of seven episodes of carbon dioxide embolism during laparoscopy revealed that a “mill-wheel” murmur was reported by fewer than half of the patients. It was not specifically sought out in the other cases because of the rapidity of cardiac events.\(^3^\) Brundin, et al.\(^9\) reported that the typical metallic heart sounds were noted during hysteroscopy in 10% of cases.

PAP monitoring In dogs, gas bubbles were seen in the right heart by TEE af-
ter bolus injection of 15 mL carbon dioxide, while it took a bolus injection of 100 mL carbon dioxide to cause a significant increase in PAP.\(^\) The mean PAP rose by ≥3 mm Hg after bolus injection of 0.76±0.33 mL/kg of carbon dioxide in pigs.\(^3^6\) During laparoscopic liver resection in nine pigs after injection of 0.4 mL/kg of carbon dioxide, the mean PAP increased gradually over the entire four-hour study period. Pulmonary cardiac wedge pressure was fairly stable, varying between 6 and 8 mm Hg. Pulmonary venous resistance increased during the first 20 min, then remained stable. Cardiac output decreased during the first 15 min, then stayed constant during the rest of the study period.\(^4^7\)

Schmandra, et al.\(^1^5\) observed a rise in mean PAP during laparoscopic liver resection, but the changes were not significant. There was, however, a significant increase in pulmonary cardiac wedge pressure with a significant decrease in cardiac output. Mayer, et al.\(^3^2\) reported an immediate three-fold increase above the baseline in mean PAP upon intravenous infusion of carbon dioxide, particularly in the high infusion rate group. Assuming that this increase in mean PAP can be entirely explained by a mechanical obstruction, mean PAP more closely approximates the residual degree of pulmonary vascular obstruction and circulatory compromise. The mean PAP returned to the basal level 9.9±3.3 min after a 1 mL/kg injection of carbon dioxide, which was shorter than the time required for the mean PAP to return to basal levels after a 1 mL/kg injection of air (15.3±2.1 min).\(^4^8\)

PREVENTION

Preventive measures can be taken at the time of surgery in an effort to avoid carbon dioxide emboli. To avoid massive infusion of carbon dioxide intravenously, correct positioning of the Veres needle must be assured. This can be accomplished by aspiration prior to insufflation or test inflation of a few mL of carbon dioxide. Use of low insufflation pressure during laparoscopic surgery is also very important to preventing carbon dioxide emboli.\(^3^\)

An increase in central venous pressure to a level permanently exceeding the intraperitoneal pressure may be appropriate for reducing the risk of carbon dioxide embolism.\(^1^5\) The reverse Trendelenburg position has been known to decrease the incidence of gas embolism,\(^4^9\) and head-down positioning may also reduce the migration of gas bubbles to the head because the bubbles are naturally buoyant. Positive end-expiratory pressure may decrease the pressure gra-
ed as needed to maintain oxygenation of vital organs.$^{12,53-56}$ The most important causes of life-threatening carbon dioxide emboli are right heart failure caused by gas lock created by entrapped carbon dioxide bubbles in the heart, pulmonary vasoconstriction, and subsequent left ventricular failure due to left ventricular filling defects. The treatment of life-threatening carbon dioxide emboli includes administration of vasopressors and inotropic agents to maintain cardiac output and the use of intra-aortic balloon counterpulsation to maintain hemodynamic stability.23 Vasodilators can also be used to treat increased pulmonary vasoconstriction and to reduce RV afterload when hypotension is not present.2 Prostaglandin analogues or phosphodiesterase inhibitors may be considered for treatment of severe pulmonary hypertension. One case report described the use of inhaled epoprostenol to treat pulmonary hypertension caused by a carbon dioxide embolism.16

Cardiopulmonary bypass has also been successfully used to support patients with emboli.43 If a patient remains unstable, emergency thoracotomy with internal cardiac massage and aspiration should be considered to facilitate movement of the gas from the heart.7,8

Hyperbaric oxygen therapy is reportedly useful for treating carbon dioxide emboli, especially for the neurologic deficits caused by cerebral gas emboli. Hyperbaric compression reduces bubble size (one-third of the original volume at three atmospheres), restores blood flow, and limits detrimental effects of the gas-blood interface. Other potential beneficial effects include a reduction in intracranial pressure and increased tissue oxygenation via diffusion.57 Reust, et al.58 reported that repeated TEE showed clearance of large carbon dioxide bubbles in the coronary artery after hyperbaric oxygen therapy. Hyperbaric oxygen therapy for carbon dioxide emboli is less useful than for air emboli, because carbon dioxide is more soluble. Also, there is a higher pressure gradient between the blood and carbon dioxide bubbles (over 600 mm Hg), which encourages reabsorption.23 Complications of hyperbaric oxygen therapy include barotrauma (particularly to the ear and sinuses), pulmonary oxygen toxicity, decompression sickness, and seizures.59

ACKNOWLEDGEMENTS

We would like to thank the publisher of Anesthesiology and the authors (Kim et al., Anesthesiology 2009; 111) for giving us permission to adapt their figures (Fig. 1). Also, we
would like to thank the authors (Mirska MA et al., Anesthesiology 2007; 106) of a major review article on venous air embolism for giving us inspiration and guidance.

REFERENCES

1. Magrina JF. Complications of laparoscopic surgery. Clin Obstet Gynecol 2002;45:469-80.
2. Kim CS, Liu J, Kwon JY, Shin SK, Kim KJ. Venous air embolism during surgery, especially cesarean delivery. J Korean Med Sci 2008;23:753-61.
3. Cottin V, Delafosse B, Viale JP. Gas embolism during laparoscopy: a report of seven cases in patients with previous abdominal surgical history. Surg Endosc 1996;10:166-9.
4. Derouin M, Couture P, Boudreault D, Girard D, Gravel D. Detection of gas embolism by transesophageal echocardiography during laparoscopic cholecystectomy. Anesth Analg 1996;82:119-24.
5. Landercasper J, Miller GJ, Stratl PJ, Olson RA, Boyd WC. Carbon dioxide embolization and laparoscopic cholecystectomy. Surg Laparosc Endosc 1993;3:407-10.
6. Mattel P, Tyler DC. Carbon dioxide embolism during laparoscopic cholecystectomy due to a patent paraurbical vein. J Pediatr Surg 2007;42:570-2.
7. Cobb WS, Fleishman HA, Kercher KW, Matthews BD, Heniford BT. Gas embolism during laparoscopic cholecystectomy. J Laparoendosc Adv Surg Tech A 2005;15:387-90.
8. Herron DM, Vernon JK, Gryska PV, Reines HD. Venous gas embolism during endoscopy. Surg Endosc 1999;13:276-9.
9. Brundin J, Thomasson K. Cardiac gas embolism during carbon dioxide hysteroscopy: risk and management. Eur J Obstet Gynecol Reprod Biol 1989;33:241-5.
10. Phillips J, Keith D, Hulka J, Hulka B, Keith L. Gynecologic laparoscopy in 1975. J Reprod Med 1976;16:105-17.
11. Hynes SR, Marshall RL. Venous gas embolism during gynaecological laparoscopy. Can J Anaesth 1992;39:748-9.
12. Gomar C, Fernandez C, Villalonga A, Nalda MA. Carbon dioxide embolism during laparoscopy and hysteroscopy. Ann Fr Anesth Reanim 1985;4:380-2.
13. Kim CS, Kim JY, Kwon JY, Choi SH, Na S, An J, et al. Venous air embolism during total laparoscopic hysterectomy: comparison to total abdominal hysterectomy. Anesthesiology 2009;111:50-4.
14. Fahy BG, Hasnain JU, Flowers JL, Plotkin JS, Odonkor P, Forgason KL. Transesophageal echocardiographic detection of gas embolism and cardiac valvular dysfunction during laparoscopic nephrectomy. Anesth Analg 1999;88:500-4.
15. Schmandra TC, Mierdl S, Bauer H, Gutt C, Hanisch E. Transesophageal echocardiography shows high risk of gas embolism during laparoscopic hepatic resection under carbon dioxide pneumonoperitoneum. Br J Surg 2002;89:870-6.
16. Martineau A, Arcand G, Couture P, Babin D, Perreault LP, Deault A. Transesophageal echocardiographic diagnosis of carbon dioxide embolism during minimally invasive saphenous vein harvesting and treatment with inhaled epoprostensol. Anesth Analg 2003;96:962-4.
17. Chiu KM, Lin TY, Wang MJ, Chu SH. Reduction of carbon dioxide embolism for endoscopic saphenous vein harvesting. Ann Thorac Surg 2006;81:1697-9.
39. Glenski JA, Cucchiara RF, Michenfelder JD. Transesophageal echocardiography and transcutaneous O2 and CO2 monitoring for detection of venous air embolism. Anesthesiology 1986;64:541-5.
40. Wadhwa RK, McKenzie R, Wadhwa SR, Katz DL, Byers JF. Gas embolism during laparoscopy. Anesthesiology 1978;48:74-6.
41. Schubert A, Deogaonkar A, Drummond JC. Precordial Doppler probe placement for optimal detection of venous air embolism during craniotomy. Anesth Analg 2006;102:1543-7.
42. Shulman D, Aronson HB. Capnography in the early diagnosis of carbon dioxide embolism during laparoscopy. Can Anaesth Soc J 1984;31:455-9.
43. Diakun TA. Carbon dioxide embolism: successful resuscitation with cardiopulmonary bypass. Anesthesiology 1991;74:1151-3.
44. Huang YY, Wu HL, Tsou MY, Zong HJ, Guo WY, Chan KH, et al. Paradoxical carbon dioxide embolism during pneumoperitoneum in laparoscopic surgery for a huge renal angiomyolipoma. J Chin Med Assoc 2008;71:214-7.
45. Yacoub OF, Cardona I Jr, Coveler LA, Dodson MG. Carbon dioxide embolism during laparoscopy. Anesthesiology 1982;57:533-5.
46. Clark CC, Weeks DB, Gusdon JP. Venous carbon dioxide embolism during laparoscopy. Anesth Analg 1977;56:650-2.
47. Jersenius U, Fors D, Rubertsson S, Arvidsson D. The effects of experimental venous carbon dioxide embolization on hemodynamic and respiratory variables. Acta Anaesthesiol Scand 2006;50:156-62.
48. Drummond JC, Prutow RJ, Scheller MS. A comparison of the sensitivity of pulmonary artery pressure, end-tidal carbon dioxide, and end-tidal nitrogen in the detection of venous air embolism in the dog. Anesth Analg 1985;64:688-92.
49. Fong J, Gadalla F, Druzin M. Venous emboli occurring cesarean section: the effect of patient position. Can J Anaesth 1991;38:191-5.
50. Nichols SL, Tompkins BM, Henderson PA. Probable carbon dioxide embolism during laparoscopy; case report. Wis Med J 1981;80:27-9.
51. Durant TM, Oppenheimer MJ, Lynch PR, Ascanio G, Webber D. Body position in relation to venous air embolism: a roentgenologic study. Am J Med Sci 1954;227:509-20.
52. Colley PS, Artru AA. Bunegin-Albin catheter improves air retrieval and resuscitation from lethal venous air embolism in upright dogs. Anesth Analg 1989;68:298-301.
53. Duncan C. Carbon dioxide embolism during laparoscopy: a case report. AANA J 1992;60:139-44.
54. Ostman PL, Pantle-Fisher FH, Faure EA, Glosten B. Circulatory collapse during laparoscopy. J Clin Anesth 1990;2:129-32.
55. Nishiyama T, Hanaoka K. Gas embolism during hysteroscopy. Can J Anaesth 1999;46:379-81.
56. Staffieri F, Lacitignola L, De Siena R, Crovace A. A case of spontaneous venous embolism with carbon dioxide during laparoscopic surgery in a pig. Vet Anaesth Analg 2007;34:63-6.
57. McGrath BJ, Zimmerman JE, Williams JF, Parmet J. Carbon dioxide embolism treated with hyperbaric oxygen. Can J Anaesth 1989;36:586-9.
58. Reust RS, Diener BC, Stroup JS, Haraway GD. Hyperbaric treatment of arterial CO2 embolism occurring after laparoscopic surgery: a case report. Undersea Hyperb Med 2006;33:317-20.
59. Gabb G, Robin ED. Hyperbaric oxygen. A therapy in search of diseases. Chest 1987;92:1074-82.