Vortex beam manipulation through a tunable plasma-ferrite metamaterial

Davod Nobahar1,2, Sirous Khorram1,2 & João D. Rodrigues3

This paper is devoted to the study of vortex beam transmission from an adjustable magnetized plasma-ferrite structure with negative refraction index. We use the angular spectral expansion technique together with the 4×4 matrix method to find out the transmitted intensity and phase profiles of incoming Laguerre-Gaussian beam. Based on numerical analysis we demonstrate that high transparency and large amount of Faraday rotation in the proximity of resonance frequency region, reverse rotation of spiral wave front, and side-band modes generation during propagation are the remarkable features of our proposed structure. These controllable properties of plasma-ferrite metamaterials via external static magnetic field and other structure parameters provide novel facilities for manipulating intensity and phase profiles of vortex radiation in transmission through the material. It is expected that the results of this work will be beneficial to develop active magneto-optical devices, orbital angular momentum based applications, and wavefront engineering.

In the last years, new advancements in artificial sub-wavelength materials have led to the emergence of negative refraction index structures which have simultaneously negative magnetic permeability and electric permittivity in some frequency domains1-3. Such engineered composites, named metamaterials, have brought about promising platforms and great opportunities to make salient developments in various area as optical imaging4,5, and photonic engineering6,7. It is well established that metamaterials can be designed in diverse geometrical and physical configurations which may lead to complications in some cases. In this regard, Podolskiy et al.8 offered a simpler way to acquire negative refraction index without simultaneous creation of magnetic and electric resonances in a one material. This was the first step to use periodic stratified structures as a metamaterial in which alternative layers of two ordinary materials produce a left handed medium within a certain frequency range9.

Stratified metamaterials owning to the multi reflection and transmission characteristics have provided effective media in order to modify amplitude, phase, location, and polarization of incoming electromagnetic waves10-12. Especially, employing external electric or magnetic fields over such inhomogeneous media enables a higher degree of control over the radiation field through anisotropy-related phenomena such as optical birefringence13,14. In recent years, indisputable prevalence of metamaterial technologies has overshadowed the plasma applications, and aroused a burgeoning interest in exploring optical and magneto-optical properties of plasma metamaterials15-17. In comparison with ordinary metamaterials, promptly control of plasma permittivity function through external parameters makes it a highly adequate for fabricating tunable metastructures. Furthermore, due to the variation of internal parameters of plasma such as electron density, it can cover a wide band of electromagnetic frequency18. Similar to the plasma features, the magnetic permeability function of a ferrite layer is greatly dependent to the static external magnetic field19,20. Inspired by these unique functionalities, here we propose an adjustable stratified metamaterial constructed from periodic plasma and ferrite layers to manipulate incoming microwave vortex beam (VB), and demonstrate what happens to the intensity distribution, phase map, polarization direction, and orbital angular momentum (OAM) of a VB while normally passes through a plasma-ferrite metamaterial (PFMM) layout.

About 29 years ago, the concept of twisted beams carrying OAM was proposed by Allen and his co-workers21. They pointed out that besides spin angular momentum, electromagnetic waves can also carry OAM when their Poynting vector rotates around the propagation axis. It is well proved that VBs manifest themselves through hollow annular pattern with a phase singularity at the center of their helical wavefront22-24. These specific features of VBs have offered new degrees of freedom to make further advances in high resolution imaging and microscopy25, optical trapping26, data transmission and wireless communication27, quantum technology28, and so on. As a

1Faculty of physics, University of Tabriz, Tabriz 51666-16471, Iran. 2Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz 51666-16471, Iran. 3Blackett Laboratory, Physics Department, Imperial College London, Prince Consort Road, London SW7 2AZ, UK. *email: d.nobahar@tabrizu.ac.ir
pivotal role in VBs communication, it can be seen that in the last two decades much effort has been devoted to study the interaction of Laguerre-Gaussian (LG) and Bessel beams with multilayer structures and other complex media. More remarkably, applying programmable metasurfaces to generate and reshape OAM modes has conveyed research in the field of data encoding to new plateau. To this end, several theoretical approaches have been employed to unravel the mechanism of VBs propagation in different types of media. Since the magnetized PFMM behaves as an anisotropic uniaxial medium, in this paper we utilize angular spectral expansion (ASE) technique accompanied by matrix formalism. This matrix formalism is a powerful approach to solve the problems connected to the anisotropic multilayer media, and handily governs the intricacy of various modes of polarization coupling at the anisotropic layer interface.

The rest part of this paper is organized as follows. At first, we adopt the ASE technique to transform a LG beam into superposition of plane waves, and define the effective negative refraction index of PFMM, and find the transmission coefficient of VB via the formalism. Then, we numerically investigate the output beam profiles and describe a variety of magneto-optical effects. Finally, the results of this work are summarized and conclusion are stated.

Summary of theoretical model
The configuration of the stratified metamaterial under investigation is schematically illustrated in Fig. 1. An incident VB on the top surface of the PFMM with an incidence angle θ_i is partially transmitted and reflected with the angles θ_t and θ_r, respectively. We assume that α is a global coordinate system, and the local coordinates attached to the incident and output beams, d_F is the thickness of the ferrite layer, and d_P is the thickness of the plasma layer. Furthermore, in our model the periodic PFMM is affected by a static external magnetic field \vec{H}_0 aligned along the \hat{z}-direction. This imposed magnetic field induces an anisotropy in the ferrite and plasma layers, and causes the plasma permittivity and ferrite permeability to be a tensor instead of a scalar. In this problem, we utilize from a linearly polarized LG beam as an incident VB. The electric field of such VB in the cylindrical coordinate system is expressed by

$$E_i(r_i, \phi_i, z_i) = \frac{1}{R_0} \sqrt{\frac{2p!}{\pi (p + |\ell|)!}} \left(\frac{\sqrt{2}r_i}{R_0} \right)^{|\ell|} \exp \left[-\frac{r_i^2}{R_0^2} \right] \exp \left[-i(\ell \phi_i + \omega t) \right].$$
where, \(R_0 \) is the beam waist radius, \(p \) is the radial mode number or hyperbolic momentum charge, \(\ell \) is the angular mode number or topological charge, \(L_0^* \) is the Laguerre polynomial, and \(\omega \) is the frequency of incident VB. It is known that the VB calculations are accompanied by some complexity. This difficulties can be avoided in the frame of ASE\(^{43,44} \), in which the VB is decomposed into infinite plane waves in the spectral domain as follows

\[
\tilde{E}_i(k_i, \phi_i) = \frac{1}{2\pi} \int_0^{2\pi} \int_0^{\infty} E_i(r_i, \phi_i, z_i) \exp(-\imath k_i r_i \cos(\phi_i - \phi_i)) r_i dr_i d\phi_i. \tag{2}\]

Here, \((k_i, \phi_i)\) indicates the incident spectrum space. In this case, the transmitted electric field in the output plane can be calculated as

\[
E_t(r_t, \phi_t, z_t) = \frac{1}{2\pi} \int_0^{2\pi} \int_0^{\infty} \tilde{U}_t(k_x, k_y) \tilde{E}_i(k_i, \phi_i) \exp(\imath k_i r_i \cos(\phi_i - \phi_i)) \times \exp(\imath k_t z_t) k_t dk_t d\phi_t, \tag{3}\]

where, \(\tilde{U}_t(k_x, k_y) \) is the total transmission coefficient, \(k_x = k_i \cos(\theta_i) + \sqrt{k_i^2 - k_{tx}^2} \sin(\theta_i) \), \(k_y = k_{ty} \), and \(k_{tx} = \sqrt{k_0^2 - k_{ax}^2 - k_{ay}^2} \).

Negative refraction index. It is well established that employing an external magnetic field can induce strong anisotropy in the ferrite and plasma layers\(^{45}\). Due to this fact, the magnetic permeability tensor of the ferrite layer can be described as

\[
\mathbf{\mu}_p = \begin{bmatrix}
\mu_1 & i\mu_2 & 0 \\
-i\mu_2 & \mu_1 & 0 \\
0 & 0 & \mu_3
\end{bmatrix}, \tag{4}\]

in which, \(\mu_1 = 1 + \omega_m(\omega_0 + i\sigma\omega)/[(\omega_0 + i\sigma\omega)^2 - \omega^2] \), \(\mu_2 = \omega_m\omega/[(\omega_0 + i\sigma\omega)^2 - \omega^2] \), and \(\mu_3 = \mu_0 \) with \(\omega_m = 2\pi\gamma M_0 \) being the characteristic circular frequency, \(\omega_0 = 2\pi\gamma H_0 \) being the resonance frequency, and \(\mu_0 \) being the magnetic permeability of the vacuum. Also, \(\gamma = 2.8 \text{MHz/Oe} \) is the gyromagnetic ratio, \(M_0 \) is the saturation magnetization, \(H_0 \) is the static magnetic field, \(\sigma \) is the damping rate. On another side, the electric permittivity tensor of plasma layer under the external magnetization becomes

\[
\mathbf{\varepsilon}_p = \begin{bmatrix}
\varepsilon_1 & i\varepsilon_2 & 0 \\
-i\varepsilon_2 & \varepsilon_1 & 0 \\
0 & 0 & \varepsilon_3
\end{bmatrix}, \tag{5}\]

where, \(\varepsilon_1 = 1 - \omega_p^2(\omega + i\theta)/\omega[(\omega + i\theta)^2 - \omega^2] \) \(\varepsilon_2 = -\omega_p^2\omega_0/\omega[(\omega + i\theta)^2 - \omega^2] \) and \(\varepsilon_3 = 1 - \omega_p^2/\omega(\omega + i\theta) \), with \(\omega_p = \sqrt{4\pi n_e e^2/m_e} \) being the plasma electron frequency, \(\omega_0 = eH_0/\sqrt{\gamma} \) being the cyclotron frequency of electron, and \(\theta \) is the collisional frequency.

Let us suppose that the wavelength \((\lambda)\) of the incoming VB is much greater than the period length \((d = d_x + d_y)\) of the structure. Within this limit, our stratified structure can be regarded as a homogeneous medium, and the averaged permeability \(\mathbf{\mu}_p \) and permittivity \(\mathbf{\varepsilon}_p \) tensors of such system are given by\(^{45}\)

\[
\bar{\mathbf{\chi}} = \begin{bmatrix}
\frac{1}{2}(\chi_{1,m} d_m + \chi_{n} d_n) & \frac{i}{2}(\chi_{2,m} d_m) & 0 \\
-\frac{i}{2}(\chi_{2,m} d_m) & \frac{1}{2}(\chi_{1,m} d_m + \chi_{n} d_n) & 0 \\
0 & 0 & \left[\frac{1}{2}(\frac{d_m}{\chi_{1,m}} + \frac{d_n}{\chi_{n}})^{-1}\right]
\end{bmatrix} \tag{6}\]

In the above relation, \(\chi \in \{\mu, \varepsilon\} \), and \(m, n \in \{P, F\} \). It should be noted that the subscripts \(P \) and \(F \) refer to the plasma and Ferrite layers, respectively. To ensure that the considered structure acts as a metamaterial, it is necessary to obtain its effective refraction index. According to the Maxwell equations, the electric field inside the plasma-ferrite unit cell satisfies the following relation

\[
\tilde{k} \times [\tilde{\mu}^{-1} \tilde{k} \times \tilde{E}] + \frac{\omega_p^2}{c^2} \tilde{\varepsilon} \tilde{E} = 0. \tag{7}\]

Equation (7) can be simplified into the matrix form

\[
\begin{bmatrix}
-N^2 \frac{\mu_1}{\rho} \cos^2 \delta + \varepsilon_{11} & N^2 \frac{\mu_2}{\rho} \cos^2 \delta + \varepsilon_{12} & N^2 \frac{\mu_3}{\rho} \sin \delta \cos \delta \\
N^2 \frac{\mu_1}{\rho} \cos^2 \delta + \varepsilon_{21} & -N^2 \frac{\mu_2}{\rho} \cos^2 \delta - N^2 \sin^2 \delta + \varepsilon_{22} & N^2 \frac{\mu_3}{\rho} \sin \delta \cos \delta \\
N^2 \frac{\mu_1}{\rho} \sin \delta \cos \delta & N^2 \frac{\mu_2}{\rho} \sin \delta \cos \delta - N^2 \frac{\mu_3}{\rho} \sin^2 \delta + \varepsilon_{33}
\end{bmatrix}
\begin{bmatrix}
E_x \\
E_y \\
E_z
\end{bmatrix} = 0 \tag{8}\]

where, \(N = ck/\omega \) is the effective refraction index, \(\rho = \mu_1^2 + \mu_2^2 \), and \(\delta \) is the angle between the external magnetic field \(\tilde{H}_0 \) and wave vector \(\tilde{k} \). Also, \(\mu_{11}, \mu_{12}, \mu_{21}, \) and \(\mu_{22} \) are the elements of \(\mu_1 \), and \(\varepsilon_{11}, \varepsilon_{12}, \varepsilon_{21}, \varepsilon_{22}, \) and \(\varepsilon_{33} \) are the elements of \(\varepsilon \), which are extracted from Eq. (6). For a special case, when the incoming VB propagates along the external magnetic field \((\delta = 0)\), the nontrivial solutions of the Eq. (8) can be given by

\[
N^2_{\varepsilon} = (\varepsilon_{11} \pm i\varepsilon_{21})/(\mu_{11} \pm i\mu_{21}). \tag{9}\]

Here, \(\varepsilon_{\text{eff}} = \varepsilon_{11} \pm i\varepsilon_{21} \) is the effective electric permittivity, and \(\mu_{\text{eff}} = \mu_{11} \pm i\mu_{21} \) is the effective magnetic permeability. Moreover, the subscripts “+” and “−” relate to the ordinary and extraordinary modes, respectively.
should be pointed out that when a homogeneous medium has simultaneously negative permittivity and permeability ($\varepsilon_{\text{eff}} < 0, \mu_{\text{eff}} < 0$), one can find some ranges of frequency at which effective refraction of index remains positive and, consequently the wave is allowed to propagate. It can be simply shown that in the case of extraordinary modes in Eq. (9), μ_{eff} cannot be negative. Thereby, the ordinary modes are the only candidates for having negative refraction index, which will be discussed in the next section.

Transfer matrix formalism. It is well established that 4×4 transfer matrix approach can accurately describe the optical field propagation inside the complex materials\(^{39}\). In this method, after combining the matrix form of Maxwell equations and omitting the longitudinal parts of electromagnetic fields, the wave equation in each anisotropic layer can be written in the compact form

$$\mathbf{i} k_0 \Delta \vec{n} = \frac{\partial}{\partial z} \vec{n},$$ \hspace{1cm} (10)

in which $k_0 = \omega / c, \vec{n} = [\sqrt{\varepsilon_0 E_x(z)} \sqrt{\mu_0 H_y(z)} \sqrt{\varepsilon_0 E_y(z)} \sqrt{\mu_0 H_x(z)}]^T$, and Δ is characteristic the matrix or coefficient matrix obtained for the plasma-ferrite unit cell as

$$\Delta = \begin{bmatrix}
0 & (\mu_{22} - \kappa^2_{33}) & 0 & (\kappa_{23} \mu_{31} + \mu_{21}) \\
(\kappa_{11} - \kappa^2_{33}) & 0 & (\kappa_{12} \mu_{23} + \mu_{12}) & 0 \\
(\kappa_{31} \mu_{13} + \mu_{31}) & 0 & (\mu_{22} - \kappa^2_{11}) & 0 \\
(\kappa_{31} \mu_{13} - \mu_{31}) & 0 & (\mu_{22} - \kappa^2_{11}) & 0
\end{bmatrix},$$ \hspace{1cm} (11)

where, $\kappa_j = k_j / k_0$, $\kappa_j = k_j / k_0$, $\kappa_{ij} = \varepsilon_{ij} / \varepsilon_0$, and $\mu_{ij} = \mu_{ij} / \mu_0$ with $j, j = [1, 2, 3]$.

There are four possible periodic solutions for Eq. (10), which are represented in the form

$$\vec{n}_\xi(z) = \hat{\vec{n}}_\xi(0) \exp[iq_\xi z],$$ \hspace{1cm} (12)

where, $\hat{\vec{n}}_\xi(0)$ is the value of \vec{n} at the entrance face of the considered layer, q_ξ is the longitudinal component of the wave vector, and $\xi = [1, 2, 3]$. Solving Eq. (10) with the help of eigenmodes introduced by Eq. (12), the transfer matrix of the transverse electric and magnetic field components in each layer becomes

$$\tilde{G}_\xi(d) = \tilde{\Psi} Q(d) \tilde{\Psi}^{-1},$$ \hspace{1cm} (13)

in which d is the thickness of each unit cell, $Q(d)$ is a 4×4 diagonal matrix whose elements are $\exp[iq_\xi d]$, and $\tilde{\Psi}$ is a 4×4 matrix composed of $k_0 \Delta$ eigenvectors. The transfer matrix for a multilayer structure is obtained via chain multiplication as

$$\Omega_t = \Lambda^{-1} \prod^{1}_{n=0} \tilde{G}_n(d)_t \Lambda \Omega_i = \tilde{\Omega} \Omega_i,$$ \hspace{1cm} (14)

where $\Omega_t = [E_t^x \ E_t^y \ E_t^z \ E_t^0]^T$, $\Omega_i = [E_i^x \ 0 \ E_i^0 \ 0]^T$, $\tilde{\Omega}$ is the total transfer matrix, and Λ_β with $\beta \in [1, t]$ is named dynamical matrix which is derived from boundary conditions as

$$\Lambda_\beta = \begin{bmatrix}
\cos(\theta_\beta) & -\cos(\theta_\beta) & 0 & 0 \\
\nu_\beta & \nu_\beta & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & -\nu_\beta \cos(\theta_\beta) & \nu_\beta \cos(\theta_\beta)
\end{bmatrix}.$$ \hspace{1cm} (15)

It should be stated that ν_β refers to the refraction index of entrance and exit regions, and ν_β and ν_β denote the polarization of the electric field. Now, using the total transfer matrix elements, the total transmission coefficient of passed ν_β- and ν_β-polarized VB from magnetized PFMM are extracted as follows

$$\bar{O}_1^{\nu_\beta} = \frac{\tilde{\Omega}_{11}}{\tilde{\Omega}_{33} - \tilde{\Omega}_{13} \tilde{\Omega}_{31}},$$ \hspace{1cm} (16)

$$\bar{O}_1^{\nu_\beta} = \frac{\tilde{\Omega}_{33}}{\tilde{\Omega}_{33} - \tilde{\Omega}_{13} \tilde{\Omega}_{31}},$$ \hspace{1cm} (17)

$$\bar{O}_1^{\nu_\beta} = \frac{-\tilde{\Omega}_{13}}{\tilde{\Omega}_{33} - \tilde{\Omega}_{13} \tilde{\Omega}_{31}},$$ \hspace{1cm} (18)

$$\bar{O}_1^{\nu_\beta} = \frac{-\tilde{\Omega}_{31}}{\tilde{\Omega}_{33} - \tilde{\Omega}_{13} \tilde{\Omega}_{31}}.$$ \hspace{1cm} (19)

where, $\tilde{\Omega}_{\kappa \nu}$ are the total transfer matrix components with $\kappa, \nu = [1, 3]$.

To obtain the OAM spectrum of the output beam, here we calculate the projection of the electric field into the spiral harmonics $\exp[i\zeta \phi]$ by
in which,
\[\psi_\zeta (r, z) = \int_0^{2\pi} E(r, \phi, z) \exp(-i\zeta \phi) d\phi. \]

The carried energy via each mode can be given by
\[W_\zeta = \int_0^\infty |\psi_\zeta (r, z)|^2 rdr. \]
Therefore, one can infer that the weight of each OAM state can be obtained by
\[\varphi_\zeta = \frac{\psi_\zeta}{\sum_{\zeta=-\infty}^{\infty} \psi_\zeta}. \]

Eventually, employing the total transmission coefficients, the Faraday rotation angle (FRA) of the transmitted beam can be calculated by
\[\delta_F = \frac{1}{2} \arctan \left[\frac{2 \text{Re}(\bar{U}_z / |U_z|^2)}{1 - |U_z|^2 / |\bar{U}_z|^2} \right]. \]

In the following section, we proceed with some numerical simulations to identify the behavior of LG beam interacting with a magnetized PFMM structure.

Results and discussion

To carry out the numerical analysis, we consider a stratified structure with \(N \) unit cells which each of them containing two layers. For plasma layer, we let \(d_P = 0.05 \text{ cm} \), and \(\theta = 0.01 \text{ GHz} \). Also, Yttrium Iron Garnet (YIG) as a ferromagnetic layer is characterized by \(d_F = 0.05 \text{ cm} \), \(M_0 = 1750 \text{ Oe} \), \(\alpha = 0.002\text{cm}^{-1} \). It is noted that according to the supposed conditions in the theoretical section, it is necessary to consider the incoming VB wavelength much greater than the period length of the PFMM (\(d = d_F + d_P \)). Moreover, the beam waist radius and incident angle of the incoming VB is assumed \(R_0 = 6\lambda \), and \(\theta_i = 0 \), respectively.

Figure 2a,b show the variation of effective electric permittivity (\(\varepsilon_{\text{eff}} \)) and magnetic permeability (\(\mu_{\text{eff}} \)) of plasma-ferrite composite as a function of incident VB frequency (\(\omega \)), with different values of external magnetic field and plasma number density, respectively. In Fig. 2a, which is plotted for a fixed value of plasma number density \(n_e = 10^{14} \text{ cm}^{-3} \), it can be seen that for \(H_0 = 400 \text{ Oe} \), within the frequency domain over 7 GHz both the \(\varepsilon_{\text{eff}} \) and \(\mu_{\text{eff}} \) have negative values, and the negative refraction index condition is fulfilled in this frequency range.
By increasing H_0 up to $H_0 = 500$ Oe the frequency range related to the negative refraction index shifts toward higher values. To show the tunability of the ε_{eff} and μ_{eff} with variation of plasma number density, Fig. 2b is plotted for fixed values of $H_0 = 400$ Oe, and two different values of n_e. It is clear that increasing plasma number density from $n_e = 10^{10}$ cm$^{-3}$ to $n_e = 10^{11}$ cm$^{-3}$ does not lead to a considerable effect on the displacement of the resonance frequency, but cusses to increase the value of ε_{eff} in the resonance region.

Figure 2c,d illustrate the influence of the plasma-ferrite structure on the phase distribution of the incoming VB in the left-handed and right-handed frequency domains, respectively, with $H_0 = 400$ Oe, $n_e = 10^{10}$ cm$^{-3}$, $\ell = 2$, $p = 0$, and two different values of incident frequencies $\omega_1 = 7.15$ GHz and $\omega_2 = 6.82$ GHz. By comparing these two phase profiles of transmitted VB it is concluded that in the incident frequency which the structure displays negative refraction index the transmitted phase front rotates clockwise, while in the other incident frequency associated to the positive refraction index it rotates anti-clockwise. This reversed rotation of the wave front of the VB in the left-handed materials arises from negative phase velocity ($v_{\text{ph}} = \omega/k$) of the vortex field during propagation in metamaterials. As well as, with a precise look at the Fig. 2c,d it is inferred that the optical angular momentum of the transmitted VB can be modulated through variation of the incoming wave frequency. This phenomenon may be related to the dislocation of the output beam with incoming wave frequency.

In Fig. 3a,b we depict the evolution of FRA versus the incident VB frequency for different values of external magnetic field and plasma number density. It is obvious from these figures that FRA changes suddenly in the same wave frequency range which the system exhibits left-handed behavior, as well as, due to the increment of difference between effective refraction index of left and right circularly polarized modes of propagating wave, a large amount of Faraday rotation emerges in those frequencies. In the Fig. 3a, where $n_e = 10^{11}$ cm$^{-3}$, it is observed that the maximum value of δ_F is sensitive to the variation of H_0, and as H_0 increases the maximum value of δ_F remarkably moves toward higher frequencies. The dependence of FRA on the variation of plasma number density is illustrated in Fig. 3b for $H_0 = 400$ Oe, and two different values of n_e. As shown in this figure, in the non-resonance frequency region decreasing the plasma number density gives rise to increasing δ_F, and its maximum value in the resonance region is not very sensitive to the variation of n_e. Such increasing of δ_F with decreasing n_e can be attributed to the transferability of the structure. To show the trend of energy transmission from the structure in corresponding frequency limit, Fig. 3c,d have been plotted for different values of H_0 and n_e. It is shown that there is a significant amount of energy transmission in the vicinity of the resonance region. In general, multilayered structures in which negative refraction index materials are included can be considered as a perfect lens and, therefore, they are envisaged to possess unique transmission features. On the other hand,
Figure 4. Transverse intensity and corresponding phase distributions of transmitted VB with \(n_e = 10^{11} \text{ cm}^{-3}\), \(H_0 = 400 \text{ Oe}\), \(\omega = 7.15 \text{ GHz}\), and different values of angular and radial mode numbers for \(N = 1\) (upper row), and \(N = 2\) (lower row).

The tunability of the intensity profiles, phase maps, and spiral spectrums of the transmitted VB with plasma number density is presented in Fig. 6 for \(H_0 = 4000 \text{ Oe}\), \(\ell = 2\), \(p = 0\), \(\omega = 71.5 \text{ GHz}\), and \(n_e = 2.5 \times 10^{12} \text{ cm}^{-3}\). As shown in this figure, for higher value of external magnetic field and within the negative refraction index frequency range by enhancing the plasma number density reshaping of the transmitted beam occurs, so that, while the magnitude of \(n_e\) reaches to \(4.5 \times 10^{12} \text{ cm}^{-3}\) two distinct intensity bumps become visible in the output plane. These intensity variations are in good agreement with 3D intensity plots and phase maps which plainly exhibit the reshaping and reconstruction of transmitted beam under the influence of variable parameters. Furthermore, to explore the reason of such significant reshaping, we get help from OAM spectrum of transmitted beams shown in the bottom row of the Fig. 6. It is apparent that for higher values of the plasma number density sideband modes are generated with more weight, and the purity of primary topological charge gradually decreases. Apart from the reshaping of the output patterns, one can see
a rotation of the twin part of intensity profile with increasing n_e. As is known, this shape rotation is originated from circular birefringence of plasma-ferrite layer in the presence of external magnetic field\cite{14,53,54}, and can be adjusted via variation of the plasma number density and other external parameters.

Eventually, in Fig. 7 we provide a comparison between mode purity of the output beams in normal and oblique incidence for $\ell = 2$, $p = 0$, $H_0 = 4000$ Oe, $\omega = 71.5$ GHz, and $n_e = 3 \times 10^{12}$ cm$^{-3}$. Also, we represent the intensity profiles of transmitted VB for both normal and oblique incidence in Fig. 7a,b, respectively. From this figure it is plain that for the oblique incidence the weight of primary OAM state in the transmitted beam decreases and the neighboring modes emerge with higher weight. This leads to increase the deformation of the output beam profile of oblique incidence in comparison with the normal incidence ones.

Conclusions

To summarize, we have theoretically studied the transmission of microwave vortex beams (VB) from a magnetized plasma-ferrite metamaterial (PFMM) by applying the angular spectrum expansion approach accompanied by the 4×4 transfer matrix method. From numerical simulations, it has been identified that plasma-ferrite structures exhibit remarkable pass-band and large Faraday rotation angles in the vicinity of the magnetic resonance

Figure 5. (a) Comparison of normalized transversal and longitudinal intensity distribution of transmitted VB for $N = 1$ and $N = 2$, with $n_e = 10^{11}$ cm$^{-3}$, $H_0 = 400$ Oe, $\ell = 3$, $p = 0$, and $\omega = 7.15$ GHz. (b) Comparison of transmitted topological charge mode weight for $N = 1$ and $N = 2$, with the other parameters same as part (a).

Figure 6. Intensity profiles accompanied by corresponding phase maps and OAM spectrums of transmitted VB for $H_0 = 4000$ Oe, $\ell = 2$, $p = 0$, $\omega = 71.5$ GHz, and (a) $n_e = 2.5 \times 10^{12}$ cm$^{-3}$, (b) $n_e = 3.5 \times 10^{12}$ cm$^{-3}$, (c) $n_e = 4.5 \times 10^{12}$ cm$^{-3}$.
frequency. These effects are greatly controlled through some external parameters such as imposed static magnetic field and plasma number density. Furthermore, it has been shown that due to the negative phase velocity, the wave front of VB reversely rotates while propagating through PFMM. The variation of intensity profiles and phase distributions of the transmitted beam with different radial and angular mode numbers has been checked out for different unit cell numbers, and from the comparison of their spiral spectrums it has been found out that throughout the photonic tunneling the incoming VB is perturbed, and novel side-band modes are born and superposed together. Emergence of such side-band modes in the higher values of external magnetic field gives rise to the reshaping and reconstruction of the output beam. We believe that this investigation not only clarifies the behavior of VBs passing through magnetic metamaterials, but also provides a pathway for manipulation of them via tunable stratified structures.

Received: 12 May 2021; Accepted: 29 July 2021
Published online: 06 August 2021

References
1. Veselago, V. G. The electrodynamics of substances with simultaneously negative values of \(\varepsilon \) and \(\mu \). Sov. Phys. Usp. 10, 509–514 (1968).
2. Ramakrishna, S. A. Physics of negative refractive index materials. Rep. Prog. Phys. 68, 449–521 (2005).
3. Solymar, L. & Shamonina, E. Waves in Metamaterials (Oxford University Press, 2009).
4. Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000).
5. Haxha, S. et al. Metamaterial superlenses operating at visible wavelength for imaging applications. Sci. Rep. 8, 16119 (2018).
6. Nahvi, E., Liberal, I. & Engheta, N. Nonlinear metamaterial absorbers enabled by photonic doping of epsilon-near-zero metastructures. Phys. Rev. B 102, 035404 (2020).
7. Staude, I. & Schilling, J. Metamaterial-inspired silicon nanophotonics. Nat. Photon. 11, 274–284 (2017).
8. Podolskiy, V. A. & Narimanov, E. E. Strongly anisotropic waveguide as a nonmagnetic left-handed system. Phys. Rev. B 71, 201101 (2005).
9. Rukhlenko, I. D., Premaratne, M. & Agrawal, G. P. Theory of negative refraction in periodic stratified metamaterials. Opt. Express 18, 27916–27929 (2010).
10. Shadrivov, I. V., Sukhorukov, A. A. & Kivshar, Y. S. Beam shaping by a periodic structure with negative refraction. Appl. Phys. Lett. 82, 3820 (2003).
11. Hao, J. & Zhou, L. Electromagnetic wave scatterings by anisotropic metamaterials: Generalized 4 × 4 transfer-matrix method. Phys. Rev. B 77, 094201 (2008).
12. Gnawal, R. et al. A simplified transfer function approach to beam propagation in anisotropic metamaterials. Opt. Commun. 461, 1235235 (2020).
13. Mehdian, H., Mohammadzahery, Z. & Hasanbeigi, A. Optical and magneto-optical properties of plasma-magnetic metamaterials. J. Phys. D: Appl. Phys. 48, 305101 (2015).
14. Nobahar, D., Hajisharifi, K. & Mehdian, H. Twisted beam shaping by plasma photonic crystal. J. Appl. Phys. 124, 213102 (2018).
15. Sakai, O. & Tachibana, K. Plasmas as metamaterials: A review. Plasma Sources Sci. Technol. 21, 013001 (2012).
16. Kim, H. & Hopwood, J. Wave propagation in composites of plasma and metamaterials with negative permittivity and permeability. Sci. Rep. 9, 3024 (2019).

17. Uchizono, N. M., Samples, S. A. & Wirz, R. E. Tunable reflectionless absorption of electromagnetic waves in a plasma-metamaterial composite structure. Plasma Sources Sci. Technol. 29, 085009 (2020).

18. Moradi, M. & Nkikam, A. R. Terahertz Dyakonov surface waves in plasma metamaterials. Opt. Lett. 43, 519–522 (2018).

19. Xi, X. et al. Polarization-independent circulator based on ferrite and plasma materials in two-dimensional photonic crystal. Sci. Rep. 8, 7827 (2018).

20. Glushchenko, A. G., Glushchenko, E. P. & Zhukov, S. V. Total internal reflection effect on gyrotrropic interface. Phys. Plasmas 25, 022118 (2018).

21. Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992).

22. Babiker, M., Andrews, D. L. & Lem beyss, V. E. The Angular Momentum of Light (Cambridge University Press, Cambridge, 2013).

23. Gbur, G. I. Singular Optics (CRC Press, 2016).

24. Forbes, A., Oliveira, M. D. & Dennis, M. R. Structured light. Nat. Photon. 15, 253–262 (2021).

25. Tian, N., Fu, L. & Gu, M. Resolution and contrast enhancement of subtractive second harmonic generation microscopy with a circularly polarized vortex beam. Sci. Rep. 5, 15380 (2015).

26. Pudgett, M. & Bowman, R. Tweezers with a twist. Nat. Photon. 5, 343–348 (2011).

27. Bozinovic, N. et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 340, 1545–1548 (2013).

28. Bahari, B. et al. Photonic quantum Hall effect and multiplexed light sources of large orbital angular momenta. Nat. Phys. 17, 700–703 (2021).

29. Okuda, H. & Sasada, H. Significant deformations and propagation variations of Laguerre-Gaussian beams reflected and transmitted at a dielectric interface. J. Opt. Soc. Am. A 25, 881–890 (2008).

30. Kurilkin, S. N., Belys, V. N. & Kazak, N. S. Transformation of high-order Bessel vortices in one-dimensional photonic crystals. J. Opt. 12, 015704 (2010).

31. Zhang, L. et al. Deflection of a reflected intense vortex laser beam. Phys. Rev. Lett. 117, 113904 (2016).

32. Nobahar, D., Hajisharifi, K. & Mehdian, H. Collisional absorption of the optical vortex beam in plasma. Opt. Laser Technol. 117, 165–168 (2019).

33. Zhang, K., Wang, Y., Yuan, Y. & Burokur, S. N. A review of orbital angular momentum vortex beams generation: from traditional methods to metasurfaces. Appl. Sci. 10, 1015 (2020).

34. Ma, Q. et al. Beam-editing coding metasurfaces based on polarization bit and orbital angular momentum mode bit. Adv. Opt. Mater. 5, 1700548 (2017).

35. Bai, G. D. et al. Multitasking shared aperture enabled with multiband digital coding metasurface. Adv. Opt. Mater. 6, 1800657 (2018).

36. Iqbal, S., Madni, H. A., Liu, S., Zhang, L. & Cui, T. J. Full controls of OAM vortex beam and realization of retro and negative reflections at oblique incidence using dual-band 2-bit coding metasurface. Mater. Res. Express 6, 125804 (2019).

37. Tang, F., Lu, X. & Chen, Y. The transmission of structured light fields in uniaxial crystals employing the Laguerre-Gaussian mode spectrum. Opt. Express 27, 28204–28213 (2019).

38. Liu, J., Li, H., Li, R., Bai, L. & Wu, Z. Reflection and transmission of a Bessel vortex beam by a stratified uniaxial anisotropic slab. J. Quant. Spectrosc. Radiat. Transf. 251, 107046 (2020).

39. Berreman, D. W. Optics in stratified and anisotropic media: 4×4 matrix formulation. J. Opt. Soc. Am. 62, 502 (1972).

40. Landry, G. D. & Maldonado, T. A. Gaussian beam transmission and reflection from a general anisotropic multilayer structure. Appl. Opt. 35, 5870–5879 (1996).

41. Passler, N. C. & Paarmann, A. Generalized 4×4 matrix formalism for light propagation in anisotropic stratified media: Study of surface phonon polaritons in polar dielectric heterostructures. J. Opt. Soc. Am. B 34, 2128–2139 (2017).

42. Nobahar, D. & Akou, H. Deflection of a twisted beam passing through a plasma layer. Appl. Opt. 59, 6497–6504 (2020).

43. Li, H., Honary, F., Wu, Z. & Bai, L. Reflection and transmission of Laguerre-Gaussian beams in a dielectric slab. J. Quant. Spectrosc. Radiat. Transf. 195, 35–43 (2017).

44. Cui, Z., Hui, Y., Ma, W., Zhao, W. & Han, Y. Dynamical characteristics of Laguerre-Gaussian vortex beams upon reflection and refraction. J. Opt. Soc. Am. B 37, 3730–3740 (2020).

45. Agranovich, V. M. Dielectric permeability and influence of external fields on optical properties of superlattices. Solid State Commun. 78, 747 (1991).

46. Chen, J., Liang, W. & Li, Z. Y. Strong coupling of topological edge states enabling group-dispersionless slow light in magneto-optical photonic crystals. Phys. Rev. B 89, 014103 (2019).

47. Löffler, W., Aiello, A. & Woerdman, J. P. Observation of orbital angular momentum sidebands due to optical reflection. Phys. Rev. Lett. 109, 173302 (2012).

48. Zhu, W. et al. Orbital angular momentum sidebands of vortex beams transmitted through a thin metamaterial slab. Opt. Express 26, 17378–17387 (2018).

49. Zhao, L. et al. Graphene-based tunable Imbert-Fedorov shifts and orbital angular momentum sidebands for reflected vortex beams in the terahertz region. Opt. Lett. 43, 2823–2826 (2018).

50. Okuda, H. & Sasada, H. Huge transverse deformation in nonspecular reflection of a light beam possessing orbital angular momentum near critical incidence. Opt. Express 14, 8393–8402 (2006).

51. Dennis, M. R. & Götze, J. B. Topological aberration of optical vortex beams: Determining dielectric interfaces by optical singularity shifts. Phys. Rev. Lett. 109, 183903 (2012).

52. Gibson, G., Courtial, J. & Padgett, M. J. Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express 12, 5448–5456 (2004).

53. Dey, I. & Bhattacharjee, S. Anisotropy induced wave birefringence in bounded supercritical plasma confined in a multicusp magnetic field. Appl. Phys. Lett. 98, 151501 (2011).

54. Zhang, H. F., Liu, S. B. & Kong, X. K. Investigation of anisotropic photonic band gaps in three-dimensional magnetized plasma photonic crystals containing the uniaxial material. Phys. Plasmas 20, 092105 (2013).

Acknowledgements
This project has been supported by a research grant of the University of Tabriz (number 1698).

Author contributions
D.N. conceived the research idea, developed the research intentions, and performed the numerical simulations. D.N. and S.K. discussed the results, and wrote the manuscript. J.D.R. reviewed the manuscript, and commented on its writing and results.
Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to D.N.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021