γ-aminobutyric acid secreted from islet β-cells modulates exocrine secretion in rat pancreas

Yong-Deuk Park, Zheng-Yun Cui, Guang Wu, Hyung-Seo Park, Hyoung-Jin Park

INTRODUCTION

γ-aminobutyric acid (GABA), a well-known inhibitory neurotransmitter, is also present in islet β-cells of the pancreas at a very high concentration comparable to that in the brain. Glutamic acid decarboxylase (GAD) and GABA transaminase also co-exist in islet β-cells. GABA has been known as a modulator of the endocrine pancreas. It has been reported that GABA and its agonist inhibit release of somatostatin and glucagon whereas it stimulates release of insulin. The GABA concentration and the GAD activity are very high in insulinoma tissue while the GAD level is very low in the pancreatic tissue with insulin-dependent diabetes mellitus.

In the pancreas, a substance secreted from islet cells reaches acinar cells at a very high concentration through the intra-pancreatic circulation, the islet-acinar portal system, and then gives a vast influence on exocrine function. Thus, we hypothesized that GABA might also play a role in pancreatic exocrine function if it would be secreted from islet β-cells into the portal system. There are some reports suggesting that islet β-cells may secrete GABA and that GABA may affect pancreatic exocrine function. The pancreatic β-TC6 cells, a murine β-cell line developed from insulinoma, secrete GABA in response to glucose. Cultured rat β-cells also secrete GABA into the medium in response to glutamine. High affinity binding sites of GABA have been determined in pancreatic exocrine cells. We have previously reported that exogenous GABA enhances CCK-stimulated exocrine secretion while it has no influence on spontaneous or secretin-stimulated exocrine secretion of the isolated rat pancreas.

Thus, this study was aimed to investigate whether GABA in islet β-cells acts as a hormone to modify pancreatic exocrine secretion. Secretion of GABA from islet β-cells and effects of endogenous GABA on pancreatic exocrine secretion were determined in this study.

Abstract

AIM: To investigate the role of endogenous γ-aminobutyric acid (GABA) in pancreatic exocrine secretion.

METHODS: The isolated, vascularly perfused rat pancreas was employed in this study to eliminate the possible influences of extrinsic nerves and hormones. Cholecystokinin (CCK; 10 pmol/L) was intra-arterially given to stimulate exocrine secretion of the normal pancreas.

RESULTS: Glutamine, a major precursor of GABA, which was given intra-arterially at concentrations of 1, 4 and 10 mmol/L, dose-dependently elevated the CCK-stimulated secretions of fluid and amylase in the normal pancreas. Bicuculline (10 μmol/L), a GABA receptor antagonist, blocked the enhancing effect of glutamine (4 mmol/L) on the CCK-stimulated exocrine secretions. Glutamine, at concentrations of 1, 4 and 10 mmol/L, dose-dependently increased the GABA concentration in portal effluent of the normal pancreas. The effects of glutamine on the CCK-stimulated exocrine secretion as well as the GABA secretion were markedly reduced in the streptozotocin-treated pancreas.

CONCLUSION: GABA could be secreted from β-cells into the islet-acinar portal system after administration of glutamine, and could enhance the CCK-stimulated exocrine secretion through GABA receptors. Thus, GABA in islet β-cells is a hormone modulating pancreatic exocrine secretion.
study. Bicuculline was used to interfere with the GABA action by blocking GABAs receptors. Streptozotocin was employed to destroy islet β-cells containing GABA. The totally isolated, vascularly perfused pancreas model was used in this study to eliminate the possible influences of extrinsic nerves and hormones on exocrine secretion.

MATERIALS AND METHODS

Preparation of totally isolated and vascularly perfused pancreas

Male Sprague-Dawley rats, weighing 250-300 g, were anesthetized with an intra-peritoneal injection of 25 g/L urethan (Sigma, St. Louis, MO) at a dose of 7 mL/kg of body mass after 24 h fasting with free access to water. Rats were sacrificed by an intravenous overdose of urethan after isolation of the pancreas. The isolated, vascularly perfused rat pancreas was prepared according to a method described previously. In brief, the abdominal aorta was carefully dissected and cannulated with PE-50 tubing (Clay Adams, Parsippany, NJ) just above the celiac, artery, and then tightly ligated below the superior mesenteric artery. The pancreatic duct was cannulated at the duodenal end with PE-10 tubing (Clay Adams). The portal vein was also cannulated with Tygon microbore tubing (Fisher Scientific, Pittsburgh, PA) to drain perfusate. The isolated pancreas was perfused with modified Krebs-Henseleit solution (pH 7.4, 305 mosmol/kg water) through the celiac and superior mesenteric arteries at a flow rate of 1.2 mL/min by using a multistaltic pump (Buchler, Kansas, MO). The perfusate contained 1 g/L bovine serum albumin (Sigma), 3 g/L Dextran T-70 (Sigma) and 18 mmol/L glucose (Sigma), and was continuously oxygenated with 95 mL/L O2 containing 5 mL/L CO2. The pancreas was isolated with the duodenum, but separated from other neighboring organs and tissues, and then placed in a temperature-controlled experimental chamber at 37°C. The chamber was also continuously supplied with Krebs-Henseleit solution at a flow rate of 0.35 mL/min and also oxygenated. After an equilibration period of 30 min, pancreatic juice secreted in 15 min was collected throughout the whole period of the experiment. Portal effluent drained in 15 min was also collected in ice-chilled tubes, and then kept at -70°C for GABA assay.

Effects of glutamine and GABA on CCK-induced exocrine secretion

Exocrine secretion of the isolated rat pancreas was stimulated by intra-arterial infusion of synthetic CCK-8 (Squibb Institute, Princeton, NJ) at a concentration of 10 pmol/L for 90 min. Glutamine (Sigma), a major precursor of GABA, was added to perfusate at a concentration of 1, 4, or 10 mmol/L from 30 min prior to the infusion of CCK until the end of the experiment. For mimicking the effects of glutamine, GABA (Sigma) at a concentration of 30 μmol/L was intra-arterially infused to the pancreas from 30 min before the CCK infusion until the end of the experiment. Bicuculline (Tocris, Baldwin, MO), a GABAs receptor antagonist, was intra-arterially infused at a concentration of 10 μmol/L from 30 min before the infusion of CCK until the end of the experiment. Effects of glutamine (4 mmol/L) on the CCK-stimulated pancreatic exocrine secretion were also observed after destruction of islet β-cells by streptozotocin (Sigma). Streptozotocin was intra-peritoneally injected at a single dose of 75 mg/kg 3 d before the experiment.

Effects of glutamine on GABA secretion

Glutamine (Sigma) was intra-arterially infused to the isolated pancreas at a concentration of 1, 4, or 10 mmol/L from 30 min prior to the infusion of CCK until the end of the experiment. The GABA concentration in portal effluent drained in 15 min was determined by an enzymatic recycling for NADPH as reported previously. Briefly, 500 μL portal effluent of the isolated perfused rat pancreas was lyophilized. The lyophilized samples were dissolved in 80 μL GABA assay reagent (0.3 mol/L Tris-HCl buffer-pH 8.9, 10 002 nkat/L GABAs, 5 mmol/L α-ketoglutarate, 0.1 g/L mercaptoethanol, 0.5 mmol/L NADP) and incubated for 15 min at 37°C. At the end of the reaction, 20 μL of 1.5 mol/L NaOH was added and the incubation was continued for 20 min at 60°C. A 20 μL aliquot was mixed with 250 μL enzyme recycling reagent (0.2 mol/L Tris-HCl buffer-pH 8.0, 5 mmol/L ketoglutarate, 1 mmol/L glucose-6-phosphate, 25 mmol/L ammonium acetate, 1 mmol/L ADP, 0.2 g/L BSA, 55,011 nkat/L glutamate dehydrogenase, 2.5 mmol/L glucose-6-phosphate dehydrogenase). The reaction was carried out at 37°C for 1 h and stopped by heating at 100°C for 7 min. A 90 μL aliquot was mixed with 250 μL assay reagent (0.1 mmol/L Tris-HCl buffer-pH 8.0, 1 mmol/L NADP, 0.4 mmol/L EDTA, 366.7 nkat/L 6-phosphoglucuronate dehydrogenase) and incubated for 30 min at 25°C. The final absorbance was recorded at 340 nmol/L. All chemicals were purchased from Sigma.

Pancreatic secretions of fluid and amylase

The volume flow of pancreatic juice was determined by measuring the length of pancreatic juice collected in microtube with a capacity of 3.8 μL/cm. α-amylase activity in pancreatic juice was determined by a method reported previously.

Statistical analysis

All results were illustrated as mean ± SE. The data were analyzed using the Student’s t test. The difference was considered significant when P < 0.05.

RESULTS

Effects of glutamine on CCK-stimulated exocrine secretion

The isolated, perfused rat pancreas spontaneously secreted a minute amount of juice (34.8 ± 5.8 nL/min) and amylase activity (5.80 ± 1.86 nkat/min). CCK-8, given intra-arterially at a concentration of 10 pmol/L, significantly increased (P < 0.01) the basal pancreatic secretions of fluid and amylase to 304.7 ± 23.5 nL/min and 82.83 ± 7.11 nkat/min, respectively. Figure 1 illustrates the effects of glutamine on the CCK-stimulated exocrine secretions of the isolated rat pancreas. Glutamine, added in the perfusate at concentrations of 1, 4 and 10 mmol/L, dose-dependently elevated the CCK-stimulated pancreatic
secretions of fluid and amylase to 387.3 ± 39.0 nL/min and 115.71 ± 9.50 nkat/min, 432.3 ± 48.3 nL/min and 144.02 ± 11.88 nkat/min, 439.0 ± 45.3 nL/min and 179.18 ± 17.48 nkat/min, respectively. Figure 2 illustrates the effects of bicuculline, a GABA_A receptor antagonist, on actions of glutamine and GABA in pancreatic exocrine secretions. Synthetic GABA, given intra-arterially at a concentration of 30 μmol/L, also increased (P < 0.001) the CCK-stimulated pancreatic secretions of fluid and amylase to 418.7 ± 31.8 nL/min and 221.82 ± 32.11 nkat/min, respectively. Bicuculline at a concentration of 10 μmol/L significantly reduced (P <0.001) the glutamine (4 mmol/L)- or GABA (30 μmol/L)-enhanced, CCK-stimulated pancreatic secretions of fluid and amylase to 289.3 ± 22.0 nL/min and 78.72 ± 7.00 nkat/min or 290.2 ± 27.7 nL/min and 130.00 ± 13.41 nkat/min, respectively. The enhancing effects of glutamine (4 mmol/L) on the CCK-stimulated secretions of fluid and amylase were greatly diminished in the pancreas isolated from the streptozotocin-treated rats (Figure 3).

Effects of glutamine on GABA secretion

The mean basal concentration of GABA in portal effluent of the normal pancreas was 0.72 ± 0.08 μmol/L. Figure 4 demonstrates the dose-dependent effects of glutamine on GABA secretion in the isolated rat pancreas. When glutamine, at concentrations of 1, 4 and 10 mmol/L, was added to the perfusate containing 10 pmol/L CCK, the GABA concentrations in portal effluent increased from the basal level to the peak level of 4.72 ± 1.01 μmol/L, 8.94 ± 0.81 μmol/L and 12.11 ± 0.75 μmol/L, respectively. Figure 5 illustrates the effects of glutamine on GABA secretion in the pancreas isolated from streptozotocin-treated rats. The streptozotocin-treated pancreas spontaneously secreted GABA at a rate of 0.55 ± 0.04 μmol/L, which was significantly lower (P < 0.05) than that obtained in the normal pancreas. When glutamine, at 4 mmol/L, was added to the perfusate containing 10 pmol/L CCK, the GABA concentration was increased from the basal level to the peak level of 2.08 ± 0.28 μmol/L, which was also significantly lower (P < 0.001) than that observed in the normal pancreas.

DISCUSSION

The results of the present investigation clearly demonstrate that glutamine has an influence on exocrine secretion in the isolated, perfused rat pancreas. When glutamine was intra-arterially given at a concentration of 1, 4 or 10 mmol/L to the isolated pancreas, the CCK-
Effects of glutamine on CCK-stimulated secretions of fluid (A) and amylase (B) in the pancreas isolated from the streptozotocin (STZ)-treated rat (mean ± SE, n = 7). 1P < 0.05 vs STZ-treated pancreas.

Figure 3

Figure 4 Dose-dependent effects of glutamine on GABA secretion in the pancreas isolated from the streptozotocin-treated rat (mean ± SE, n = 7). 1P < 0.01 vs without glutamine.

Figure 5 Effects of glutamine on GABA secretion in the pancreas isolated from the STZ-treated rat (mean ± SE, n = 7). 1P < 0.05 vs normal pancreas.

Endogenous GABA appears to exert the enhancing effects on the CCK-stimulated pancreatic exocrine secretion via GABA-A receptors. In this study, the enhancing effects of glutamine on the CCK-stimulated pancreatic secretion were effectively blocked by bicuculline, a GABA-A receptor antagonist[15]. Existence of GABA receptors has been reported in porcine exocrine cells of neonatal pigs[12] and in AR42J cells, a pancreatic cancer cell line[24]. Endogenous GABA may elevate the CCK-stimulated pancreatic exocrine secretion indirectly by modulating release of islet hormones. It has been reported that GABA or its agonist inhibits release of somatostatin[6,20], which inhibits CCK-stimulated pancreatic exocrine secretion[12,27]. We have already reported that a somatostatin antagonist further elevates the enhancing effects of GABA on CCK-stimulated pancreatic exocrine secretion[13]. It has also been documented that GABA stimulates release of insulin[6], which increases CCK-stimulated pancreatic exocrine secretion[12,29,30]. In addition, the GAD activity in the pancreatic islet is very low in mice suffering from insulin-dependent diabetes mellitus[6], in which pancreatic exocrine secretion is reduced[30]. Endogenous GABA may also enhance the intrinsic neuronal action on pancreatic exocrine secretion. Our previous studies showed that exogenous GABA further elevates pancreatic exocrine secretion evoked by electrical field stimulation as well as neurotransmitters such as gastrin-releasing peptide[27] and acetylcholine[32] in rat pancreas. Recently, GABA-sensitive neurons have been electrophysiologically observed in cat pancreas[33]. Although GABA could depolarize all ganglial...
cells recorded in the study through GABA\textsubscript{A} receptor, only approximately 10% of neurons among them could generate action potential. Thus, it is unclear at present whether the GABA-induced neuronal activation results in modification of pancreatic exocrine secretion.

In summary, glutamate could further elevate CCK-stimulated pancreatic exocrine secretion of the isolated rat pancreas dose-dependently, which could be blocked by hiccuculine. Glutamate could increase the GABA concentration in portal effluent of the isolated rat pancreas dose-dependently. The effects of glutamate on the CCK-stimulated pancreatic exocrine secretion as well as the GABA secretion were markedly reduced in the pancreas isolated from the streptozotocin-treated rat. Therefore, it is concluded that GABA can be secreted from islet \(\beta \)-cells into the islet-acinar portal system after administration of glutamate, which could enhance CCK-stimulated pancreatic exocrine secretion via GABA\textsubscript{A} receptors. The results strongly indicate that GABA in islet \(\beta \)-cells may be an islet hormone affecting exocrine secretion of the pancreas in rats.

REFERENCES

1. Salazar P, del Carmen Sánchez-Soto M, Hiriart M, Tapia R. Biochemical characteristics of the gamma-aminobutyric acid system in the insulinoma cell lines HIT-T15, RIN-m5F, betaTc3, and comparison with rat brain. Arch Med Res 2001; 32: 419-428

2. Adegate E, Perny AS. GABA in the endocrine pancreas: cellular localization and function in normal and diabetic rats. Tissue Cell 2002; 34: 1-6

3. Petersen JS, Rimvall K, Jørgensen PN, Hasselager E, Dyrberg T. Regulation of GAD expression in rat pancreatic islets and brain by gamma-vinyl-GABA and glucose. Diabetologia 1998; 41: 530-535

4. Winnock F, Ling Z, De Pott R, Dejonghe S, Schuit F, Gorus F, Pipeleers D. Correlation between GABA release from rat islet beta-cells and their metabolic state. Am J Physiol Endocrinol Metab 2002; 282: E937-E942

5. Franklin IK, Wollheim CB. GABA in the endocrine pancreas: its putative role as an islet cell paracrine-signalling molecule. J Gen Physiol 2004; 123: 185-190

6. Yoshioka M. Elevation of somatostatin content, and reduction of somatostatin release by GABA in rat pancreatic islets. Kobe J Med Sci 1986; 32: 27-38

7. Wendt A, Birnb B, Buschard K, Gromada J, Salehi A, Sewing S, Rorsman P, Braun M. Glucose inhibition of glucagon secretion from rat alpha-cells is mediated by GABA released from neighboring beta-cells. Diabetes 2004; 53: 1038-1045

8. Dong H, Kumar M, Zhang Y, Guylkhandanyan A, Xiang YY, Ye B, Perrella J, Hyder A, Zhang N, Wheeler M, Lu WY, Wang Q. Gamma-aminobutyric acid up- and downregulates insulin secretion from beta cells in concert with changes in glucose concentration. Diabetologia 2006; 49: 697-705

9. Gladkevich A, Kof J, Hakobyan VP, Melkonyan KV. The peripheral GABAergic system as a target in endocrine disorders. Auton Neurosci 2006; 124: 1-8

10. von Schönfeld J, Goebell H, Mühler MK. The islet-acinar axis of the pancreas. Int J Pancreatol 1994; 16: 131-140

11. Nakagawa A, Stagner JI, Samols E. In situ binding of islet hormones in the isolated perfused rat pancreas: evidence for local high concentrations of islet hormones via the islet-acinar axis. Diabetologia 1995; 38: 262-268

12. Reusens-Billen B, Pirot X, Remacle C, Hoet JJ, de Gasparo M. Localization of GABA high-affinity binding sites in the pancreas of neonatal rat. Cell Tissue Res 1984; 235: 503-508

13. Gaskins HR, Baldeón ME, Selaslie L, Beverly JL. Glucose modulates gamma-aminobutyric acid release from the pancreatic beta TC6 cell line. J Biol Chem 1995; 270: 30286-30289

14. Smismans A, Schuit F, Pipeleers D. Nutrient regulation of gamma-aminobutyric acid release from islet beta cells. Diabetologia 1997; 40: 1411-1415

15. Park HS, Park HJ. Effects of gamma-aminobutyric acid on secretagogue-induced exocrine secretion of isolated, perfused rat pancreas. Am J Physiol Gastrointest Liver Physiol 2000; 279: G677-G682

16. Penhos JC, Wu CH, Basabe JC, Lopez N, Wolff FW. A rat pancreas-small gut preparation for the study of intestinal factor(s) and insulin release. Diabetes 1969; 18: 733-738

17. Park HJ, Lee YL, Kwon HY. Effects of pancreatic polypeptide on insulin action in exocrine secretion of isolated rat pancreas. J Physiol 1993; 463: 421-429

18. Carrobbio S, Ishihara H, Fernandez-Pascual S, Bartley C, Martin-Del-Rio R, Maechler P. Insulin secretion profiles are modified by overexpression of glutamate dehydrogenase in pancreatic islets. Diabetologia 2004; 47: 266-276

19. Bormann J, The ABC of GABA receptors. Trends Pharmacol Sci 2000; 21: 16-19

20. Rick W, Stegbauer HP. \(\alpha \)-Amylase; measurement of reducing group. In: Bergmeyer HU, ed. Method of enzymatic analysis. Vol. 2, 2nd ed. Weinheim, Germany: Verlag Chemie, 1974: 885-915

21. Park HS, Lee YL, Kwon HY, Chey WY, Park HJ. Significant cholinergic role in secretin-stimulated exocrine secretion in isolated rat pancreas. Am J Physiol 1998; 274: G413-G418

22. Kash SE, Condie BG, Baeckkesov S. Glutamate decarboxylase and GABA in pancreatic islets: lessons from knock-out mice. Horm Metab Res 1999; 31: 340-344

23. Braun M, Wendt A, Birnb B, Bromann J, Eliasson L, Galvanovsky J, Gromada J, Mulder H, Rorsman P. Regulated exocytosis of GABA-containing synaptic-like microvesicles in pancreatic beta-cells. J Gen Physiol 2004; 123: 191-204

24. von Blankenfeld G, Turner J, Ahnert-Hilger G, John M, Enkvist MO, Stephenson F, Kettenmann H, Wiedenhoff B. Expression of functional GABA\textsubscript{A} receptors in neuroendocrine gastropancreatic cells. Pflugers Arch 1995; 430: 381-388

25. Robbins MS, Grouse LH, Sorenson RL, Elde RP. Effect of muscimol on glucose-stimulated somatostatin and insulin release from the isolated, perfused rat pancreas. Diabetes 1981; 30: 168-171

26. Park HS, Park IS, Lee YL, Kwon HY, Park HJ. Effects of intrapancreatic neuronal activation on cholecystokinin-induced exocrine secretion of isolated perfused rat pancreas. Pflugers Arch 1999; 437: 511-516

27. Park YD, Cui ZY, Park HJ. Effects of gamma-aminobutyric acid on action of gastrin-releasing peptide in exocrine secretion of isolated, perfused rat pancreas. Pflugers Arch 2002; 430: 308-313

28. Iswabe C, Shiratori K, Shimizu K, Hayashi N. Role of endogenous insulin in pancreatic exocrine secretion in rats. Pancreatology 2001; 1: 300-305

29. Lee YL, Kwon HY, Park HS, Lee TH, Park HJ. The role of insulin in the interaction of secretin and cholecystokinin in exocrine secretion of the isolated perfused rat pancreas. Pancreas 1996; 12: 58-63

30. Park HS, Yoon HS, Park YD, Cui ZY, Lee YL, Park HJ. Endogenous somatostatin inhibits interaction of insulin and cholecystokinin on exocrine secretion of isolated, perfused rat pancreas. Pancreas 2002; 24: 373-379

31. Göke B. Diabetes mellitus and exocrine pancreatic function. Digestion 2005; 72: 69-70

32. Park YD, Park HS, Cui ZY, Park HJ. Effects of \(\gamma \)-aminobutyric acid on intrinsic cholinergic action in exocrine secretion of isolated, perfused rat pancreas. Diabetes 2001; 50: 781-788

33. Sha L, Miller SM, Szarvasiewicz J. Electrophysiological effects of GABA on cat pancreatic nerves. Am J Physiol Gastrointest Liver Physiol 2001; 280: G324-G331

S- Editor Pan BR L- Editor Wang XL E- Editor Ma WH