EXTENSION OF A CONJECTURAL SUPERCONGRUENCE OF (G.3) OF SWISHER USING ZEILBERGER’S ALGORITHM

ARIJIT JANA AND GAUTAM KALITA

Abstract. Using Zeilberger’s algorithm, we here give a proof of the supercongruence

\[\sum_{n=0}^{p^r-3} (8n+1) \frac{(1/4)^4}{\binom{1/4}{n}} \equiv -p^3 \sum_{n=0}^{p^{r-2}-3} (8n+1) \frac{(1/4)^4}{\binom{1/4}{n}} \pmod{p^{r-2}}, \]

for any odd integer \(r > 3 \). This extends the third conjectural supercongruence of (G.3) of Swisher to modulo higher prime powers than that expected by Swisher.

1. Introduction and statement of the results

For a complex number \(z \) with \(\text{Re}(z) > 0 \), the gamma function \(\Gamma(z) \) is defined as

\[\Gamma(z) = \int_0^\infty x^{z-1}e^{-x}dx. \]

The functional equation \(z\Gamma(z) = \Gamma(1+z) \) gives the continuation of \(\Gamma(z) \) to a meromorphic function defined for all complex numbers \(z \). Throughout the paper, let \(p \) be an odd prime. Following \([2]\), the \(p \)-adic gamma function is defined as

\[\Gamma_p(n) = (-1)^n \prod_{0<j<n, p \nmid j} j, \quad n \in \mathbb{N}. \]

Let \(\mathbb{Z}_p \) be the ring of \(p \)-adic integers. We extend \(\Gamma_p \) to all \(x \in \mathbb{Z}_p \) by setting

\[\Gamma_p(x) = \lim_{n \to x} \Gamma_p(n), \]

where \(n \) runs through any sequence of natural numbers which \(p \)-adically approaches to \(x \) and \(\Gamma_p(0) = 1 \). Suppose \(f_p \left[(x)_n\right] \) denote the product of the \(p \)-factors present in \((x)_n \), then

\[(x)_n = (-1)^n f_p \left[(x)_n\right] \frac{\Gamma_p(x+n)}{\Gamma_p(x)}, \]

where the rising factorial (also known as Pochhammer’s symbol) \((x)_n \) is given by \((x)_0 := 1 \) and \((x)_n := x(x+1) \cdots (x+n-1) \) for \(n \geq 1 \).
In [16], Ramanujan discovered 17 infinite series representations of \(\frac{1}{\pi} \), such as
\[
(1.2) \quad \sum_{n=0}^{\infty} (8n + 1) \left(\frac{1}{4} \right)^n_n = \frac{2\sqrt{2}}{\sqrt{\pi} \Gamma \left(\frac{1}{4} \right)^2}.
\]
The identity (1.2), proved by Hardy [6] pp. 495, appeared in the first letter of Ramanujan to Hardy. VanHamme [18] conjectured that the identity (1.2) has a surprising p-adic analogue
\[
(1.3) \quad \sum_{n=0}^{p-1} (8n + 1) \left(\frac{1}{4} \right)^n_n \equiv \frac{p \Gamma_p \left(\frac{1}{2} \right) \Gamma_p \left(\frac{3}{4} \right)}{\Gamma_p \left(\frac{1}{4} \right)^2} \pmod{p^3}
\]
if \(p \equiv 1 \pmod{4} \). Motivated by the work of Long [14], Swisher [17] gave a proof of (G.2) extending to all primes. In particular, she proved that
\[
(1.3) \quad \sum_{n=0}^{p-1} (8n + 1) \left(\frac{1}{4} \right)^n_n \equiv \begin{cases}
\frac{p \Gamma_p \left(\frac{1}{2} \right) \Gamma_p \left(\frac{3}{4} \right)}{\Gamma_p \left(\frac{1}{4} \right)^2} \pmod{p^4}, & \text{if } p \equiv 1 \pmod{4} \text{ and } t = 1; \\
\frac{-3p^2}{2} (-1)^{\frac{3p-1}{4}} \Gamma_p \left(\frac{1}{2} \right) \Gamma_p \left(\frac{3}{4} \right)^2 \pmod{p^3}, & \text{if } p \equiv -1 \pmod{4} \text{ and } t = 3.
\end{cases}
\]
Swisher further listed a number of general VanHamme-type supercongruence conjectures based on computational evidence computed using Sage, some particular cases of which have been proved by He [7, 8, 9], Chetry and the second author [11], and the authors [10, 13]. The general VanHamme-type supercongruence conjecture of Swisher corresponding to (G.2) states that
\[
(1.3) \quad \left\{
\begin{array}{ll}
S \left(\frac{p^r - 1}{4} \right) \equiv (-1)^{\frac{p^r-1}{4}} p \Gamma \left(\frac{1}{2} \right) \Gamma_p \left(\frac{1}{4} \right)^2 \left(\frac{p^{r-1} - 1}{4} \right) \pmod{p^{4r}} & \text{if } p \equiv 1 \pmod{4}; \\
S \left(\frac{p^r - 1}{4} \right) \equiv -p^3 S \left(\frac{p^{r-2} - 1}{4} \right) \pmod{p^{4r-2}} & \text{if } p \equiv 3 \pmod{4}, r \geq 2 \text{ even}; \\
S \left(\frac{p^r - 3}{4} \right) \equiv -p^3 S \left(\frac{p^{r-2} - 3}{4} \right) \pmod{p^{r+1}} & \text{if } p \equiv 3 \pmod{4}, r \geq 3 \text{ odd};
\end{array}
\right.
\]
where \(S(m) := \sum_{n=0}^{m} (8n + 1) \left(\frac{1}{4} \right)^n_n \). Using hypergeometric series identities and evaluations, the authors [13] extended the case \(p \equiv 3 \pmod{4} \) of (1.3) to modulo \(p^4 \), and proved the second supercongruence of (G.3) for the case \(r = 2 \). In [11], the authors have further proved some generalizations of the case \(p \equiv 3 \pmod{4} \) of (1.3).

Our main aim in this paper is to prove the third supercongruence of the general VanHamme-type supercongruence conjecture (G.3) posed by Swisher. Because of the truncation of the sum at \(\frac{p^{r-1} - 1}{4d} \) for \(p \equiv -1 \pmod{d} \), proof of such supercongruences using hypergeometric series identities fails. Thus the authors have employed the powerful WZ-method in [12] to prove the third supercongruence conjecture of (F.3) where the series truncates at \(\frac{p^{r-1}}{4d} \) for \(p \equiv 3 \pmod{4} \). Following [15, 19], we here use the powerful Zeilberger’s algorithm instead of WZ-method to prove the third supercongruence conjecture of (G.3).
Theorem 1.1. Let p be a prime such that $p \equiv 3 \pmod{4}$. If $r > 1$ is an odd integer, then

$$\sum_{n=0}^{\frac{p^r-3}{2}} (8n+1) \left(\frac{4}{1}\right)_n^4 \equiv 64(-1)^{\frac{p^r-3}{2}+1} p^{\frac{3(r-1)}{2}} \frac{\Gamma_p \left(\frac{3}{4}\right)^2}{\Gamma_p \left(\frac{1}{2}\right) \Gamma_p \left(\frac{1}{4}\right)} \pmod{p^{\frac{3r-1}{2}}}.$$

We further prove the following supercongruence confirming the third supercongruence of (G.3) for $r > 3$. In fact, we extend the third conjectural supercongruence of (G.3) to modulo higher prime powers than that expected by Swisher.

Theorem 1.2. Let p be a prime such that $p \equiv 3 \pmod{4}$. If $r > 3$ is any odd integer, then

$$\sum_{n=0}^{\frac{p^r-3}{2}} (8n+1) \left(\frac{4}{1}\right)_n^4 \equiv -p^3 \sum_{n=0}^{\frac{p^r-2-3}{2}} (8n+1) \left(\frac{4}{1}\right)_n^4 \pmod{p^{\frac{3r-1}{2}}}.$$

2. Preliminaries

In this section, we state and prove some results concerning p-adic gamma function and rising factorials. We first recall some basic properties of p-adic gamma function in the following lemma. Let \mathbb{Q}_p and $\nu_p(.)$ denote the field of p-adic numbers and the p-adic valuation on \mathbb{Q}_p, respectively.

Lemma 2.1. [2] Section 11.6 Let p be an odd prime and $x, y \in \mathbb{Z}_p$. Then

(i) $\Gamma_p(1) = -1$.

(ii) $\frac{\Gamma_p(x+1)}{\Gamma_p(x)} = \begin{cases} -x, & \text{if } \nu_p(x) = 0; \\ 1, & \text{if } \nu_p(x) > 0. \end{cases}$

(iii) $\Gamma_p(x)\Gamma_p(1-x) = (-1)^{a_0(x)}$, where $a_0(x) \in \{1, 2, \ldots, p\}$ satisfies $a_0(x) \equiv x \pmod{p}$.

(iv) if $x \equiv y \pmod{p}$, then $\Gamma_p(x) \equiv \Gamma_p(y) \pmod{p}$.

We now state some recurrence relations of certain rising factorials that shall be used in the proofs of our results.

Lemma 2.2. [12] Lemma 2.3] Let p be a prime with $p \equiv 3 \pmod{4}$. If $r > 1$ is an odd positive integer, then

(a) $\left(\frac{4}{3}\right)_{\frac{p^r-3}{2}} = \frac{p^{\frac{r-1}{4}+\frac{r-2}{4}}}{(-1)^{\frac{r-1}{4}+\frac{r-2}{4}}} \Gamma_p \left(\frac{p^r}{4}-\frac{5}{4}\right) \Gamma_p \left(\frac{p^r-1}{4}+\frac{1}{4}\right) \left(\frac{p^{r-2}}{2} - \frac{5}{4}\right) \left(\frac{p^{r-2}}{2} - \frac{1}{4}\right).$

(b) $\left(\frac{1}{3}\right)_{\frac{p^r-3}{2}} = \frac{p^{\frac{r-1}{4}+\frac{r-2}{4}}}{(-1)^{\frac{r-1}{4}+\frac{r-2}{4}}} \Gamma_p \left(\frac{p^r}{4}+\frac{1}{4}\right) \Gamma_p \left(\frac{p^r-1}{4}+\frac{3}{4}\right).$

(c) $\left(\frac{1}{3}\right)_{\frac{p^r-3}{2}} = \frac{p^{\frac{r-1}{4}+\frac{r-2}{4}}}{(-1)^{\frac{r-1}{4}+\frac{r-2}{4}}} \Gamma_p \left(\frac{p^r}{4}-\frac{1}{2}\right) \Gamma_p \left(\frac{p^r-1}{4}+\frac{1}{2}\right) \left(\frac{p^{r-2}}{4} - \frac{1}{2}\right).$

Lemma 2.3. Let p be a prime with $p \equiv 3 \pmod{4}$. If $r > 1$ is an odd integer, then

$$\left(\frac{1}{3}\right)_{\frac{p^r-3}{2}} = \frac{p^{\frac{r-1}{4}+\frac{r-2}{4}}}{(-1)^{\frac{r-1}{4}+\frac{r-2}{4}}} \Gamma_p \left(\frac{p^r}{4}-\frac{1}{2}\right) \Gamma_p \left(\frac{p^r-1}{4}+\frac{1}{2}\right) \left(\frac{p^{r-2}}{4} - \frac{1}{2}\right).$$
Lemma 3.1. Let \(n \geq k \geq 0 \) be integers. Suppose

\[
F(n, k) = (-1)^k \frac{(8n + 1)(\frac{k}{2})^3 (\frac{1}{2})_{n+k}}{(1)_{n} (1)_{n-k} (\frac{3}{2})_{k}^2}
\]

Our motivation of taking the above hypergeometric functions is based on WZ-pairs of \([3, 4, 5, 20]\).

Proof. Noting that the \(p \)-factors present in \((\frac{1}{2})^{p-\frac{3}{4}}\) are

\[
\left\{ \left(k + \frac{1}{2} \right) p \mid 0 \leq k \leq \frac{p^{r-1} - 5}{4} \right\},
\]

we use (1.1) to obtain

\[
\left(\frac{1}{2} \right)^{p-\frac{3}{4}} = (-1)^{p-\frac{3}{4}} \frac{\Gamma_p \left(\frac{p}{4} - \frac{1}{4} \right)}{\Gamma_p \left(\frac{1}{4} \right)} f_p \left[\left(\frac{1}{2} \right)^{p-\frac{3}{4}} \right]
\]

\[
= (-1)^{p-\frac{3}{4}} \frac{\Gamma_p \left(\frac{p}{4} - \frac{1}{4} \right)}{\Gamma_p \left(\frac{1}{4} \right)} \prod_{k=0}^{p-1} \left(kp + \frac{p}{2} \right)
\]

\[
= (-1)^{p-\frac{3}{4}} \frac{\Gamma_p \left(\frac{p}{4} - \frac{1}{4} \right)}{\Gamma_p \left(\frac{1}{4} \right)} p^{p-\frac{3}{4}} \left(\frac{1}{2} \right)^{p-\frac{3}{4}}
\]

\[
= (-1)^{p-\frac{3}{4}} \frac{\Gamma_p \left(\frac{p}{4} - \frac{1}{4} \right)}{\Gamma_p \left(\frac{1}{4} \right)} \frac{\Gamma_p \left(\frac{p}{4} + \frac{1}{4} \right)}{\Gamma_p \left(\frac{3}{4} \right)} f_p \left[\left(\frac{1}{2} \right)^{p-\frac{3}{4}} \right].
\]

Since \((\frac{1}{2})^{p-\frac{3}{4}}\) contains the \(p \)-factors

\[
\left\{ \left(k + \frac{1}{2} \right) p \mid 0 \leq k \leq \frac{p^{r-2} - 3}{4} \right\},
\]

we have

\[
f_p \left[\left(\frac{1}{2} \right)^{p-\frac{3}{4}} \right] = \prod_{k=0}^{p-2} \left\{ \left(k + \frac{1}{2} \right) p \right\} = p^{p-\frac{2}{4}} \left(\frac{1}{2} \right)^{p-\frac{2}{4}} \left(\frac{p^{r-2} - 3}{4} \right).
\]

As a result, we complete the proof of the lemma. \(\square \)

3. Zeilberger’s algorithm and proof of the results

For integers \(n \geq k \geq 0 \), suppose \(F(n, k) \) is a hypergeometric function in \(n \) and \(k \). The Zeilberger’s algorithm enables us to find another hypergeometric function \(G(n, k) \), as well as polynomials \(p(k) \) and \(q(k) \) such that

\[
p(k)F(n, k - 1) - q(k)F(n, k) = G(n + 1, k) - G(n, k).
\]

However, the process is not so obvious always. If \(p(k) = q(k - 1) \), then \(q(k)F(n, k) \) and \(G(n, k) \) form a WZ-pair. We here employ the Zeilberger’s algorithm for the function

\[
F(n, k) = (-1)^k \frac{(8n + 1)(\frac{k}{2})^3 (\frac{1}{2})_{n+k}}{(1)_{n} (1)_{n-k} (\frac{3}{2})_{k}^2}.
\]

Our motivation of taking the above hypergeometric functions is based on WZ-pairs of \([3, 4, 5, 20]\).

Lemma 3.1. Let \(n \geq k \geq 0 \) be integers. Suppose

\[
F(n, k) = (-1)^k \frac{(8n + 1)(\frac{k}{2})^3 (\frac{1}{2})_{n+k}}{(1)_{n} (1)_{n-k} (\frac{3}{2})_{k}^2}.
\]
and hence we complete the proof of the lemma.

Proof. It is easy to deduce that

\[G(n, k) = (-1)^{k-1} \frac{16 \left(\frac{1}{4} \right)_{n}^{3} \left(\frac{1}{4} \right)_{n+k-1}}{(1)_{n-1}^{2} (1)_{n-k}^{2}} , \]

where \(1/(1)_m = 0 \) for \(m = -1, -2, \ldots \). Then

\[(4k - 3)F(n, k - 1) - (4k - 2)F(n, k) = G(n + 1, k) - G(n, k) . \]

Proof. It is easy to deduce that

\[\frac{F(n, k - 1)}{F(n, k)} = -\frac{4k^2}{(4n + 4k - 3)(n - k + 1)} , \]

\[\frac{G(n + 1, k)}{F(n, k)} = -\frac{16 \cdot (4n + 1)^3}{(8n + 1)(n - k + 1)} , \]

and

\[\frac{G(n, k)}{F(n, k)} = -\frac{16n^3}{(4n + 4k - 3)(8n + 1)} . \]

As a result, we have

\[(4k - 3) \frac{F(n, k - 1)}{F(n, k)} - (4k - 2) = \frac{G(n + 1, k)}{F(n, k)} - \frac{G(n, k)}{F(n, k)} , \]

and hence the result follows.

Lemma 3.2. Let \(p \equiv 3 \pmod{4} \) and \(r > 1 \) an odd integer. For \(k = 1, 2, \ldots, \frac{p^r - 3}{4} \), we have

\[G \left(\frac{p^r + 1}{4}, k \right) \equiv 0 \pmod{p^{2r-1}} . \]

Proof. Noting that \((a)_{n+1} = (a + n)(a)_n, (a)_{n+k} = (a)_{n}(a + n)_k, \) and \((a)_{n-k} = (1-a-n)_{n-k} (1-a-n)_k \), we have

\[G \left(\frac{p^r + 1}{4}, k \right) = (-1)^{k-1} 16 \frac{\left(\frac{1}{4} \right)_{n}^{3} \left(\frac{1}{4} \right)_{n+k}^{3}}{(1)_{n-1}^{2} (1)_{n-k}^{2} (\frac{1}{4})^k} . \]

\[= -16 \left(\frac{p^r - 2}{4} \right)^3 \left(\frac{1}{4} \right)_{\frac{p^r - 3}{4}} \frac{4 \left(\frac{p^r - 2}{4} \right)_{k} (\frac{1}{4})_{\frac{p^r - 3}{4}}}{(\frac{1}{4})^{2k}} . \]

Using Lemma 2.2, one can easily see that

\[\nu_p \left\{ \left(\frac{1}{4} \right)_{\frac{p^r - 3}{4}} \right\} = \frac{r-1}{2} . \]

Since \(\nu_p \left(\left(\frac{p^r - 2}{4} \right)_{k} \right) \geq \nu_p \left(\left(\frac{1}{4} \right)_{k} \right) \) and \(\nu_p \left(\left(\frac{1}{4} \right)_{\frac{p^r - 3}{4}} \right) \geq \nu_p \left(\left(\frac{1}{4} \right)_{k} \right) \), we must have

\[\nu_p \left\{ \left(\frac{p^r - 2}{4} \right)_{k} (\frac{1}{4})_{\frac{p^r - 3}{4}} (\frac{1}{4})^k \right\} \geq 0 , \]

and hence we complete the proof of the lemma.
Proof of Theorem 1.1. From Lemma 3.1 we have
\[(4k - 3) \sum_{n=0}^{r-3} F(n, k - 1) - (4k - 2) \sum_{n=0}^{r-3} F(n, k) = G \left(\frac{p^r + 1}{4}, k \right) - G(0, k).\]
Thus Lemma 3.2 yields
\[\sum_{n=0}^{r-3} F(n, k - 1) \equiv \frac{(4k - 2)}{(4k - 3)} \sum_{n=0}^{r-3} F(n, k) \pmod{p^{2(r-1)}}.\]
Using this repeatedly, we deduce that
\[\sum_{n=0}^{r-3} F(n, 0) = \left(\prod_{k=1}^{n} \frac{4k - 2}{4k - 3} \right) \sum_{n=0}^{r-3} F \left(n, \frac{p^r - 3}{4} \right) \pmod{p^{2(r-1)}}\]
\[\equiv \frac{(\frac{1}{2})^{r-3}}{(\frac{1}{2})^{r-3}} F \left(\frac{p^r - 3}{4}, \frac{p^r - 3}{4} \right) \pmod{p^{2(r-1)}}.\]
Noting that
\[\sum_{n=0}^{r-3} (8n + 1) \frac{4}{(1)^n} = \sum_{n=0}^{r-3} F(n, 0),\]
we have
\[\sum_{n=0}^{r-3} (8n + 1) \frac{4}{(1)^n} \equiv \frac{(\frac{1}{2})^{r-3}}{(\frac{1}{2})^{r-3}} F \left(\frac{p^r - 3}{4}, \frac{p^r - 3}{4} \right) \pmod{p^{2(r-1)}}\]
(3.1)
\[\equiv (-1)^{r-3} (2p^r - 5) \frac{(\frac{1}{2})^{r-3}}{(\frac{1}{2})^{r-3}} \equiv \frac{(\frac{1}{2})^{r-3}}{(\frac{1}{2})^{r-3}} A(p),\]
where
\[A(p) = \prod_{j=1}^{r-3} \left\{ \begin{array}{l}
\left(\frac{x^j - 1}{4} \right) \left(\frac{x^{j+1} - 1}{4} \right) \Gamma_p \left(\frac{x^{j+1} + 1}{4} \right) \\
\Gamma_p \left(\frac{x^{j+1} + 1}{4} + \frac{1}{4} \right) \Gamma_p \left(\frac{x^{j+1} + 1}{4} - \frac{1}{4} \right) \Gamma_p \left(\frac{x^{j+1} + 1}{4} \right)
\end{array} \right\} \pmod{p}
\]
\[= \frac{\Gamma_p \left(\frac{1}{4} \right) \Gamma_p \left(\frac{3}{4} \right) \Gamma_p \left(\frac{1}{4} \right)}{\Gamma_p \left(\frac{1}{4} \right) \Gamma_p \left(\frac{3}{4} \right)} \pmod{p}
\]
\[= (-1)^{r-3} \pmod{p}
\]
because of Lemma 2.1. In view of (1.1) and Lemma 2.1 note that
\[\left(\frac{1}{2} \right)^{r-3} \frac{\Gamma_p \left(\frac{1}{4} \right) \Gamma_p \left(\frac{3}{4} \right)}{\Gamma_p \left(\frac{1}{4} \right)} \equiv 4(-1)^{r-3} \frac{\Gamma_p \left(\frac{1}{2} \right)}{\Gamma_p \left(\frac{1}{2} \right)} \pmod{p},\]
\[
\left(\frac{1}{4}\right)_{r-3} = (-1)^{r-3} \frac{\Gamma_p \left(\frac{r}{2} - \frac{3}{4}\right)}{\Gamma_p \left(\frac{3}{4}\right)} = \frac{16}{5} (-1)^{\frac{r-1}{2}} \frac{\Gamma_p \left(\frac{3}{4}\right)}{\Gamma_p \left(\frac{1}{4}\right)} \pmod{p},
\]
and
\[
(1)_{r-1} = (-1)^{r-1} \frac{\Gamma_p \left(\frac{r}{2} + \frac{1}{4}\right)}{\Gamma_p (1)} = (-1)^{\frac{r+1}{2}} \frac{1}{4} \pmod{p}.
\]

As a result, we have from (3.2) that
\[
\frac{(1/2)_{r-1} \left(\frac{3}{4}\right)_{r-3}}{(1)_{r}^{4}} \equiv \frac{64}{5} (-1)^{\frac{r+1}{2}} p^{\frac{3(r-1)}{2}} \frac{\Gamma_p \left(\frac{4}{1}\right)}{\Gamma_p \left(\frac{1}{4}\right)} \pmod{p}.\]

Since \(\min \{2(r - 1), \frac{3r - 1}{2}\} = \frac{3r - 1}{2}\), (3.1) yields
\[
\sum_{n=0}^{\frac{r-2}{3}} (8n + 1) \frac{\left(\frac{1}{4}\right)_{n}^{4}}{(1)_{n}^{4}} \equiv 64(-1)^{\frac{r-1}{2}} p^{\frac{3(r-1)}{2}} \frac{\Gamma_p \left(\frac{4}{1}\right)}{\Gamma_p \left(\frac{1}{4}\right)} \pmod{p},
\]
completing the proof of the theorem.

Proof of Theorem 1.2 Let \(r \geq 5\) be an odd integer. Replacing \(r\) by \(r - 2\) in Theorem 1.1, we obtain
\[
\sum_{n=0}^{\frac{r-2}{3}} (8n + 1) \frac{\left(\frac{1}{4}\right)_{n}^{4}}{(1)_{n}^{4}} \equiv 64(-1)^{\frac{r-3}{2}} p^{\frac{3(r-3)}{2}} \frac{\Gamma_p \left(\frac{3}{4}\right)}{\Gamma_p \left(\frac{1}{4}\right)} \pmod{p}.
\]

Consequently,
\[
-p^{3} \sum_{n=0}^{\frac{r-2}{3}} (8n + 1) \frac{\left(\frac{1}{4}\right)_{n}^{4}}{(1)_{n}^{4}} \equiv 64(-1)^{\frac{r-1}{2}} p^{\frac{3(r-1)}{2}} \frac{\Gamma_p \left(\frac{3}{4}\right)}{\Gamma_p \left(\frac{1}{4}\right)} \pmod{p}.
\]

Hence we complete the proof of the theorem because of Theorem 1.1.

Acknowledgement: The first author acknowledges the support received from the Department of Science and Technology, Government of India, through an INSPIRE Fellowship DST/INSPIRE Fellowship/2017/IF170327.

References

[1] A. S. Chetry and G. Kalita, *On a general VanHamme-type supercongruence*, J. Ramanujan Math. Soc., to appear.
[2] H. Cohen, *Number Theory* Vol. II, Analytic and Modern Tools, Graduate Text in Mathematics 240, Springer, New York (2007).
[3] S. B. Ekhad and D. Zeilberger, *A WZ proof of Ramanujan’s formula for \(\pi\)*, Geometry, Analysis, and Mechanics, J. M. Rassias (ed.), World Scientific, Singapore (1994), 107–108.
[4] J. Guillera, *Some binomial series obtained by the WZ-method*, Adv. Appl. Math. 29 (2002), no. 4, 599-603.
[5] J. Guillera, *Generators of some Ramanujan formulas*, Ramanujan J. 11 (2006), no. 1, 41–48.
[6] G. H. Hardy, *A chapter from Ramanujan’s note-book*, Math. Proc. Cambridge Philos. Soc. 21 (1923), no. 2, 492–503.
[7] B. He, *Some congruences on conjectures of van Hamme*, J. Number Theory 166 (2016), 406–414.
[8] B. He, *On some conjectures of Swisher*, Results Math. 71 (2017), 1223–1234.
[9] B. He, *On extensions of van Hamme’s conjectures* Proc. Roy. Soc. Edinburgh Sect. A 148 (2018), no. 5, 1017–1027.
[10] A. Jana and G. Kalita, *Supercongruences for sums involving rising factorial* \(\left(\frac{1}{k}\right)^3\), Integral Transforms Spec. Funct. **30** (2019), no. 9, 683–692.
[11] A. Jana and G. Kalita, *Supercongruence conjectures involving fourth power of some rising factorials*, Proc. Math. Sci. **130** (2020), Art. 59, 13 pp.
[12] A. Jana and G. Kalita, *Proof of a supercongruence conjecture of (F.3) of Swisher using the WZ-method*, submitted for publication.
[13] G. Kalita and A. Jana, *On some supercongruence conjectures for truncated hypergeometric series*, Indian J. Pure Appl. Math., to appear.
[14] L. Long, *Hypergeometric evaluation identities and supercongruences*, Pacific J. Math. **249** (2011), no. 2, 405–418.
[15] M. Petkovšek, H. S. Wilf, and D. Zeilberger, *A=B*, A K Peters, Ltd., Wellesley, MA, (1996).
[16] S. Ramanujan, *Modular equations and approximations to \(\pi\)*, Quart. J. Math. **45** (1914), 350–372. In Collected papers of Srinivasa Ramanujan, pages 23–39. AMS Chelsea Publ., Providence, RI, 2000.
[17] H. Swisher, *On the supercongruence conjectures of Van Hamme*, Res. Math. Sci. **2** (2015), Art. 2, 18 pp.
[18] L. Van Hamme, *Some conjectures concerning partial sums of generalized hypergeometric series*, \(p\)-adic functional analysis (Nijmegen, 1996), Lecture Notes in Pure and Appl. Math. **192** (1997), 223–230.
[19] S.-D. Wang, *Some supercongruences involving \(\left(\frac{2k}{k}\right)^4\)*, J. Differ. Equ. Appl. **24** (2018), no. 9, 1375–1383.
[20] W. Zudilin, *Ramanujan-type supercongruences*, J. Number Theory **129** (2009), no. 8, 1848–1857.

Department of Science and Mathematics, Indian Institute of Information Technology Guwahati, Bongora, Assam-781015, India

Email address: jana9arijit@gmail.com

Department of Science and Mathematics, Indian Institute of Information Technology Guwahati, Bongora, Assam-781015, India

Email address: haigautam@gmail.com