Embeddings of right-angled Artin groups into higher dimensional Thompson groups

Motoko Kato

Abstract

In this paper, we construct embeddings of right-angled Artin groups into higher dimensional Thompson groups. In particular, we embed every right-angled Artin groups into n-dimensional Thompson groups, where n is the number of complementary edges in the defining graph. It follows that $\mathbb{Z}^n \ast \mathbb{Z}$ embeds into nV for every $n \geq 1$.

1 Introduction

The Thompson group V is an infinite simple finitely presented group, which is described as a subgroup of the homeomorphism group of the Cantor set C. Brin [1] defined higher dimensional Thompson groups as generalizations of the Thompson group $V = 1V$. By definition, n-dimensional Thompson group n_1V embeds into n_2V when $n_1 \leq n_2$. Brin [1] showed that V and $2V$ are not isomorphic. Bleak and Lanoue [3] showed n_1V and n_2V are isomorphic if and only if $n_1 = n_2$.

In [4], Bleak and Salazar-Díaz proved that $\mathbb{Z}^2 \ast \mathbb{Z}$ does not embed in V. Recently, Corwin and Haymaker [6] determined which right-angled Artin groups embed into V. Using the nonembedding result of [4], they showed that $\mathbb{Z}^2 \ast \mathbb{Z}$ is the only obstruction for a right-angled Artin group to be embedded into V. On the other hand, Belk, Bleak and Matucci [2] proved that a right-angled Artin group embeds in nV with sufficiently large n. They took n to be the sum of the number of vertices and the number of complementary edges in the defining graph. They conjectured that a right-angled Artin group embeds into $(n - 1)V$ if and only if the right-angled Artin group does not contain $\mathbb{Z}^n \ast \mathbb{Z}$. Corwin [5] constructed embeddings of $\mathbb{Z}^n \ast \mathbb{Z}$ into nV for every $n \geq 2$. It follows that every nV with $n \geq 2$ does not embed into V.

In this paper, we give another construction of embeddings of right-angled Artin groups into higher-dimensional Thompson groups. In particular, we may embed a right-angled Artin group into nV, where n is the number of
complementary edges in the defining graph. We may construct embeddings of $\mathbb{Z}^n * \mathbb{Z}$ into nV in this way.

The author would like to thank Takuya Sakasai and Tomohiko Ishida for helpful comments. This work was supported by the Program for Leading Graduate Schools, MEXT, Japan.

2 Right-angled Artin groups

Let Γ be a finite graph with a vertex set $V(\Gamma) = \{v_i\}_{1 \leq i \leq m}$ and an edge set $E(\Gamma)$. The corresponding right-angled Artin group, denoted by A_Γ, is a group defined by the presentation

$$A_\Gamma = \langle g_1, \ldots, g_m \mid g_ig_j = g_jg_i \text{ for all } \{v_i, v_j\} \in E(\Gamma) \rangle.$$

In the following, we let

$$\bar{E}(\Gamma) = \{\{v_i, v_j\} \mid v_i \neq v_j \in V(\Gamma) \text{ are not connected by edges}\}.$$

We call the elements of $\bar{E}(\Gamma)$ complementary edges.

We use the following theorem, known as the ping-pong lemma for the right-angled Artin groups.

Theorem 2.1 ([7]). Let A_Γ be a right-angled Artin group with generators $\{g_i\}_{1 \leq i \leq m}$ acting on a set X. Suppose that there exist subsets S_i ($1 \leq i \leq m$) of X, with divisions $S_i = S_i^+ \coprod S_i^-$, satisfying the following conditions:

1. $g_i(S_i^+) \subset S_i^+$ and $g_i^{-1}(S_i^-) \subset S_i^-$ for all i.
2. If g_i and g_j commute, then $g_i(S_j) = S_j$.
3. If g_i and g_j do not commute, then $g_i(S_j) \subset S_j^+$ and $g_i^{-1}(S_j) \subset S_j^-$.
4. There exists $x \in X - \bigcup_{i=1}^m S_i$ such that $g_i(x) \in S_i^+$ and $g_i^{-1}(x) \in S_i^-$ for all i.

Then this action is faithful.

3 Embedding right-angled Artin groups into nV

We use the following notations in [1]. We let I be a half-open interval $[0, 1)$. An n-dimensional rectangle is an affine copy of I^n in I^n, constructed by
repeating “dyadic divisions”. An \(n \)-dimensional pattern is a finite set of \(n \)-dimensional rectangles, with pairwise disjoint, non-empty interiors and whose union is \(I^n \). A numbered pattern is a pattern with a one-to-one correspondence to \(\{0, 1, \ldots, r-1\} \) where \(r \) is the number of rectangles in the pattern.

Let \(P = \{P_i\}_{0 \leq i \leq r-1} \) and \(Q = \{Q_i\}_{0 \leq i \leq r-1} \) be numbered patterns. We define \(v(P, Q) \) to be a map from \(I^n \) to itself which takes each \(P_i \) onto \(Q_i \) affinely so as to preserve the orientation. The \(n \)-dimensional Thompson group \(nV \) is the set of partially affine, partially orientation preserving right-continuous bijections from \(I^n \) to itself.

Using these notations, we give a construction of embeddings of right-angled Artin groups into higher dimensional Thompson groups.

Theorem 3.1. Let \(\Gamma \) be a graph with the vertex set \(V(\Gamma) = \{v_i\}_{1 \leq i \leq m} \). Suppose that there are nonempty subsets \(\{D_i\}_{1 \leq i \leq m} \) of \(\{1, \ldots, n\} \), such that \(D_i \cap D_j = \emptyset \) if and only if \(v_i \) and \(v_j \) are connected by an edge. Then the right-angled Artin group \(A_\Gamma \) embeds into \(nV \).

For a nonempty subset \(D \) of \(\{1, \ldots, n\} \), a \(D \)-slice of \(I^n \) is an \(n \)-dimensional rectangle \(S = \prod_{d=1}^{n} I_d \), where \(d \in D \) if and only if \(I_d \) is properly contained in \([0, 1)\).

Lemma 3.2. Let \(D \) be a nonempty subset of \(\{1, \ldots, n\} \). For every \(D \)-slice \(S \) of \(I^n \) and every division \(S = S^+ \bigcup S^- \) where \(S^+ \) and \(S^- \) are again \(D \)-slices, there is \(h \in nV \) satisfying

\[
(1) \quad h \text{ changes } d \text{-th coordinate of } I^n \text{ if and only if } d \in D.
\]

\[
(2) \quad h(I^n - S^-) = S^+ \text{ and } h^{-1}(I^n - S^+) = S^-.
\]

Proof. There is an \(n \)-dimensional pattern which contains \(S \) as a rectangle and consists of \(D \)-slices. We fix one of such pattern \(P \), and consider \(I^n - S \) as a disjoint union of \((|P| - 1)\)-many \(D \)-slices.

We divide \(S^+ \) into mutually disjoint \(|P|\)-many \(D \)-slices. We choose one of those \(D \)-slices in \(S^+ \) and name it \(S^{++} \). We consider \(S^+ - S^{++} \) as a disjoint union of \((|P| - 1)\)-many \(D \)-slices. Similarly, we choose a \(D \)-slices \(S^{--} \) in \(S^- \), and consider \(S^- - S^{--} \) as a disjoint union of \((|P| - 1)\)-many \(D \)-slices.

We define \(h \in nV \) as follows:

0. \(h \) maps \(I^n - S \) to \(S^+ - S^{++} \).

1. \(h \) maps \(S^+ \) to \(S^{++} \).

2. \(h \) maps \(S^- - S^{--} \) to \(I^n - S \).
3. h maps S^- to S^-.

This h satisfies conditions (1) and (2).

We show the construction of the map h in the following figure, in the case where $n = 2$, $D = \{1, 2\}$, $S = [0, 1/2) \times [0, 1/2)$ and $S^+ = [0, 1/4) \times [0, 1/2)$.

\[\begin{array}{ccc}
0_1 & 0_2 \\
1 & 2_1 & 2_2 \\
3 & 2_3 & 0_3 \\
\end{array} \] \[\begin{array}{ccc}
2_1 & 2_2 \\
0_1 & 0_2 \\
1 & 0_3 & 3 \\
& 2_3 \\
\end{array} \]

Remark 3.1. We take $h \in nV$ as in Lemma 3.2 with respect to a D-slice S and some division $S = S^+ \bigsqcup S^-$. Let S' be a D'-slice with $D \cap D' = \emptyset$. We may observe that $h(S') = S'$, because S' is determined only by d'-th coordinates for $d' \in D'$, which are unchanged by h.

Lemma 3.3. For nonempty subsets $\{D_i\}_{1 \leq i \leq m}$ of $\{1, \ldots, n\}$, there is a set of n-dimensional rectangles $\{S_i\}_{1 \leq i \leq m}$ satisfying

1. For every i, S_i is a D_i-slice of I^n.
2. $S_i \cap S_j = \emptyset$ if and only if $D_i \cap D_j \neq \emptyset$.
3. $\bigcup_{i=1}^{m} S_i \subsetneq I^n$.

Proof. We fix a dyadic division $I = \bigsqcup_k J_k$, where $k \geq m + 1$. We define $S_i = \bigsqcup_{d \in D_i} I_d$ by setting $I_d = J_i$ when $d \in D_i$, and $I_d = I$ otherwise.

1. Such S_i is a D_i-slice.
2. If $D_i \cap D_j \neq \emptyset$, then $S_i \cap S_j = \emptyset$ since $I_d \cap I_d' = J_i \cap J_j = \emptyset$ for all $d \in D_i \cap D_j$. The converse follows from the observation that a D-slice and a D'-slice always intersect when $D \cap D' = \emptyset$.
3. Since we took J_k small enough, $\bigcup_{i=1}^{m} S_i$ is properly contained in I^n.

Therefore, $\{S_i\}_{1 \leq i \leq m}$ satisfies conditions required in Lemma 3.3.

Proof of Theorem 3.1. Let Γ be a finite graph with vertices $\{v_i\}_{1 \leq i \leq m}$. Let $\{D_i\}_{1 \leq i \leq m}$ be nonempty subsets of $\{1, \ldots, n\}$ such that $D_i \cap D_j = \emptyset$ if and only if v_i and v_j are connected by an edge.

According to Lemma 3.3, we take $\{S_i\}_{1 \leq i \leq m} \subset I^n$ with respect to $\{D_i\}_{1 \leq i \leq m}$. For every i, we fix D_i-slices S_i^+ and S_i^- satisfying $S_i = S_i^+ \bigsqcup S_i^-$. We define h_i to be h of Lemma 3.2 which is defined with respect to S_i^+, S_i^+, and S_i^-.

We may define a homomorphism \(\phi : A_\Gamma \to nV \) which maps each generator \(g_i \), corresponding to the vertex \(v_i \), to \(h_i \). This homomorphism is well-defined, since \(h_i \) and \(h_j \) commute when \(v_i \) and \(v_j \) are connected by an edge, according to the first condition of Lemma 3.2.

We consider an action of \(A_\Gamma \) on \(I^n \), which is defined by \(g \cdot x = \phi(g)(x) \).

In the following, we show that this action is faithful, and thus \(\phi \) is injective.

1. By the definition of \(h_i \), \(h_i(S_i^+) \subseteq S_i^+ \) and \(h_i^{-1}(S_i^-) \subseteq S_i^- \) for all \(i \).

2. According to Remark 3.1, \(h_i(S_j) = S_j \) when \(g_i \) and \(g_j \) commute.

3. When \(g_i \) and \(g_j \) do not commute, \(v_i \) and \(v_j \) are not connected by an edge, and \(S_i \) and \(S_j \) are disjoint. Therefore \(h_i(S_j) \subseteq h_i(I^n - S_i) \subseteq S_i^+ \) and \(h_i^{-1}(S_j) \subseteq h_i^{-1}(I^n - S_i) \subseteq S_i^- \).

4. Since \(\bigcup_{i=1}^{m} S_i \nsubseteq I^n \), there is \(x_0 \in I^n - S_i \) for all \(i \). Such \(x_0 \) satisfies \(h_i(x_0) \in S_i^+ \) and \(h_i^{-1}(x_0) \in S_i^- \), for all \(i \).

By Theorem 2.1, \(\phi \) is injective and an embedding of \(A_\Gamma \) into \(nV \).

Corollary 3.4. A right-angled Artin group \(A_\Gamma \) embeds into \(n \)-dimensional Thompson groups, where \(n \) is the number of complementary edges in \(\Gamma \).

Proof. We may assume that every vertex of \(\Gamma \) contributes to a complementary edge. In fact, if we let

\[
V_0(\Gamma) = \{ v \in V(\Gamma) \mid \text{For all } v \neq v' \in V(\Gamma), \{v, v'\} \in E(\Gamma) \},
\]

then \(A_\Gamma = \mathbb{Z}^{V_0(\Gamma)} \times A_{\Gamma'} \) for some subgraph \(\Gamma' \) satisfying the assumption and \(E(\Gamma) = \bar{E}(\Gamma') \). In general, if two groups \(G \) and \(H \) embed in \(nV \), then \(G \times H \) again embeds in \(nV \). Therefore, it is enough to consider whether \(A_{\Gamma'} \) embeds into \(nV \) or not.

Given \(A_\Gamma \) satisfying our assumption, we let \(V(\Gamma) = \{v_i\}_{1 \leq i \leq m} \) be the vertex set and \(\bar{E}(\Gamma) = \{ \bar{e}_k\}_{1 \leq k \leq n} \) be the set of complementary edges. For every \(i \in \{1, \ldots, m\} \), we let

\[
D_i = \{ k \in \{1, \ldots, n\} \mid \bar{e}_k \text{ contains } v_i \text{ as an endpoint.} \}.
\]

We associate \(D_i \) with \(v_i \).

\(\Gamma \) satisfies the condition required in Theorem 3.1 with respect to the subsets \(\{D_i\}_{1 \leq i \leq m} \) of \(\{1, \ldots, n\} \).

References

[1] M. G. Brin, Higher dimensional Thompson groups, Geom. Dedicata, 108, 163–192, 2004.
[2] J. Belk, C. Bleak and F. Matucci, *Embedding right-angled Artin groups into Brin-Thompson groups*, preprint, arXiv:math/1602.08635.

[3] C. Bleak and D. Lanoue, *A family of non-isomorphism results*, Geom. Dedicata, **146**, 21–26, 2010.

[4] C. Bleak and O. Salazar-Díaz, *Free products in R. Thompson’s group V*, Transactions of the American Mathematical Society **365.11**, 5967-5997, 2013.

[5] N. Corwin, *Embedding and nonembedding results for R. Thompson’s group V and related groups*, ETD collection for University of Nebraska - Lincoln, Paper AAI3590310, 2013.

[6] N. Corwin, K. Haymaker, *The graph structure of graph groups that are subgroups of Thompson’s group V*, preprint, arXiv:math/1603.08433.

[7] T. Koberda, *Ping-pong lemmas with applications to geometry and topology*, IMS Lecture Notes, Singapore, 2012.