Antimicrobial Effect of Nisin against Bacillus cereus in Beef Jerky during Storage

Na-Kyoung Lee
Konkuk University

Hyoun Wook Kim
National Institute of Animal Science

Joo Yeon Lee
Korea Livestock Products HACCP Accreditation Service

Dong Uk Ahn
iowa State University, duahn@iastate.edu

Cheon-Jei Kim
Konkuk University

See next page for additional authors

Follow this and additional works at: https://lib.dr.iastate.edu/ans_pubs

Part of the Agriculture Commons, Food Microbiology Commons, and the Meat Science Commons

The complete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ans_pubs/924. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.

This Article is brought to you for free and open access by the Animal Science at Iowa State University Digital Repository. It has been accepted for inclusion in Animal Science Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Antimicrobial Effect of Nisin against Bacillus cereus in Beef Jerky during Storage

Abstract
The microbial distribution of raw materials and beef jerky, and the effect of nisin on the growth of Bacillus cereus inoculated in beef jerky during storage, were studied. Five strains of pathogenic B. cereus were detected in beef jerky, and identified with 99.8% agreement using API CHB 50 kit. To evaluate the effect of nisin, beef jerky was inoculated with approximately 3 Log CFU/g of B. cereus mixed culture and nisin (100 IU/g and 500 IU/g). During the storage of beef jerky without nisin, the number of mesophilic bacteria and B. cereus increased unlikely for beef jerky with nisin. B. cereus started to grow after 3 d in 100 IU nisin/g treatment, and after 21 d in 500 IU nisin/g treatment. The results suggest that nisin could be an effective approach to extend the shelf-life, and improve the microbial safety of beef jerky, during storage.

Keywords
beef jerky, pathogenic bacteria, Bacillus cereus, nisin, microbial safety

Disciplines
Agriculture | Animal Sciences | Food Microbiology | Meat Science

Comments
This article is published as Lee, Na-Kyoung, Hyoun Wook Kim, Joo Yeon Lee, Dong Uk Ahn, Cheon-Jei Kim, and Hyun-Dong Paik. "Antimicrobial effect of nisin against Bacillus cereus in beef jerky during storage." Korean journal for food science of animal resources 35, no. 2 (2015): 272. doi:10.5851/kosfa.2015.35.2.272.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

Authors
Na-Kyoung Lee, Hyoun Wook Kim, Joo Yeon Lee, Dong Uk Ahn, Cheon-Jei Kim, and Hyun-Dong Paik

This article is available at Iowa State University Digital Repository: https://lib.dr.iastate.edu/ans_pubs/924
Antimicrobial Effect of Nisin against *Bacillus cereus* in Beef Jerky during Storage

Na-Kyoung Lee¹, Hyoun Wook Kim², Joo Yeon Lee³, Dong Uk Ahn⁴, Cheon-Jei Kim⁵, and Hyun-Dong Paik¹,⁵*

¹Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 143-701, Korea
²National Institute of Animal Science, RDA, Suwon 441-706, Korea
³Korea Livestock Products HACCP Accreditation Service, Anyang 430-731, Korea
⁴Animal Science Department, Iowa State University, Ames, IA 50011, USA
⁵Bio/Molecular Informatics Center, Konkuk University, Seoul 143-701, Korea

Abstract

The microbial distribution of raw materials and beef jerky, and the effect of nisin on the growth of *Bacillus cereus* inoculated in beef jerky during storage, were studied. Five strains of pathogenic *B. cereus* were detected in beef jerky, and identified with 99.8% agreement using API CHB 50 kit. To evaluate the effect of nisin, beef jerky was inoculated with approximately 3 Log CFU/g of *B. cereus* mixed culture and nisin (100 IU/g and 500 IU/g). During the storage of beef jerky without nisin, the number of mesophilic bacteria and *B. cereus* increased unlikely for beef jerky with nisin. *B. cereus* started to grow after 3 d in 100 IU nisin/g treatment, and after 21 d in 500 IU nisin/g treatment. The results suggest that nisin could be an effective approach to extend the shelf-life, and improve the microbial safety of beef jerky, during storage.

Key words: beef jerky, pathogenic bacteria, *Bacillus cereus*, nisin, microbial safety

Received January 6, 2015 / Revised March 10, 2015 / Accepted March 25, 2015

Introduction

From 2000 to 2008, the social cost of food-borne illness in the USA amounted to $9.4 million annually. *Bacillus cereus*, *Clostridium perfringens*, or *Staphylococcus aureus* was charged $1.3 million (Scallan *et al.*, 2011). In these pathogens, *B. cereus* is a common food contaminant, and is an etiological agent of two distinct forms of illness, i.e., emetic and diarrheal. *B. cereus* is found in meats, milk, vegetables, and some *B. cereus* are able to grow at 5 or 7°C, acid condition, and heating by sporulation (Dufrenne *et al.*, 1994; Simpson *et al.*, 1994; van Netten *et al.*, 1990). *B. cereus* is not dangerous in low level (< 10⁶ CFU/g), however *B. cereus* can multiply to dangerous levels in subsequent time and temperature. The counts of *B. cereus* were reported to be 2.9–4.59 Log CFU/g in meat products and *B. cereus* grow well after cooking (Tewari *et al.*, 2015). Therefore, *B. cereus* in food must be controlled by heat treatment, radiation, and antimicrobials.

Jerky is processed almost everywhere in the world. It is microbiologically safe, easy to prepare, light-weight, has a rich nutrient content, and can be stored without refrigeration (Kim *et al.*, 2008b). However, some stressed pathogens included spore-forming bacteria may exhibit lower infectious doses, foodborne disease outbreaks related to jerky products have actually increased (Edison *et al.*, 2000; Keene *et al.*, 1997). Jerky has been studied for food additives, heating, and irradiation against *Staphylococcus aureus*, *Listeria monocytogenes*, *Bacillus cereus*, *Salmonella Typhimurium*, *Escherichia coli*, etc. for microbial safety, without addressing the quality of jerky during storage (Kim *et al.*, 2010).

Nisin is the most commercial bacteriocin produced by *Lactococcus lactis* subsp. *lactis*, which exhibits antimicrobial activity against a wide range of Gram-positive vegetative cells and spores. Nisin have been used for just processed cheese in Korea (Ministry of Food and Drug Safety). Bacteriocin has already been used in more than 50 countries in the food industry as an antagonistic additive (Ray, 1992). In addition, nisin has been permitted in processed meat include limits of 12.5 mg/kg in USA (Food...
and Drug Association), and has mainly been applied to dairy and meat products as a target of Gram positive pathogen (mainly *Listeria monocytogenes*) (Balciunas et al., 2013). Meanwhile, *B. cereus* has been investigated in beef gravy, fruit beverage, and cooked chilled foods (Assous et al., 2012; Beuchat et al., 1997; Choma et al., 2000).

There are limited data in the literature describing microbial distribution, particularly pathogens in jerky. However, the hurdle of *L. monocytogenes*, *Salmonella Typhimurium*, and *Salmonella enterica* was studied in jerky for its safety (Boles et al., 2007; Calicioglu et al., 2003; Yoon et al., 2009). Therefore, the purposes of this study were to determine microbial contamination status of the raw materials used for beef jerky, and beef jerky itself, and the antimicrobial effect of nisin on the growth of *B. cereus* inoculated in beef jerky during storage.

Materials and Methods

Preparation of beef jerky

Beef was purchased from a local market for the manufacture of beef jerky. The meat was tempered at 4°C for 24 h and sliced 6 mm thick. The composition of jerky spices was water (10%), soy sauce (9%), starch syrup (5%), sugar (2%), D-sorbitol (6%), pepper (0.5%), ginger powder (0.1%), garlic powder (0.2%), onion powder (0.2%), sodium nitrate (0.007%), sodium citrate (0.01%), and soup stock powder (0.1%). Treated raw meats using potassium sorbate (0.1%), sodium erythorbate (0.036%), *B. cereus* strains and addition to beef jerky

B. cereus strains isolated in raw meat, spices, and spiced meat were used for hurdle technology. *B. cereus* was grown on PCA (Difco Laboratories, USA) at 37°C for 24 h. *B. cereus* numbers were determined using cereus selective agar (Merck, Germany), at 30°C for 24 h. Microbial colonies were counted, and expressed as log colony forming units per gram (Log CFU/g). Pathogenic microorganisms of each sample were isolated, and identified as described in Table 1.

Preparation of *B. cereus* strains and addition to beef jerky

B. cereus strains isolated in raw meat, spices, and spiced meat were used for hurdle technology. *B. cereus* was grown on PCA (Difco) overnight at 30°C, and then left at ambient temperature for one week, to sporulate. When spores were detected microscopically, spore suspensions were created in sterile 0.1% peptone water, and heat treated (80°C for 10 min) to kill vegetative cells. Spores were enumerated by viable counts, and the suspensions were adjusted to 10^6 spore/mL. Mixed inocula were prepared, by combining spore suspensions in equal concentrations. Spores were inoculated to the beef jerky, to give a predicted level of 10^3 CFU/g.

Preparation of nisin and addition to beef jerky

Nisin (Sigma-Aldrich, USA) was used as a form of stock solution. A standard stock solution of nisin containing 1×10^7 IU/mL was prepared, by dissolving 100 mg of nisin in 0.02 M HCl (1 mL), and adding 9 mL of distilled water.

Pathogenic bacteria	Isolation culture condition	Growth culture condition	Identification
Escherichia coli O157:H7	Sorbitol MacConkey agar, 35°C, 24 h	Modified EC medium, 35°C, 24 h	Gram stain, API 32E, serotypes
Bacillus cereus	Cereus selective agar, 30°C, 24 h	Tryptic soy agar, 30°C, 24 h	Gram stain, API CHB 50
Clostridium perfringens	Clostridium perfringens agar, 35°C, 24 h	Cook Meat medium, 35°C, 24 h	Gram stain, API 20A
Salmonella spp.	Hektoen enteric agar, 35°C, 24 h	Selentie F broth, 35°C, 24 h	Gram stain, Triple sugar iron agar (TSI), MIL, API 32E
Listeria monocytogenes	Oxford agar, 30°C, 48 h	Listeria enrichment broth, 30°C, 24 h	CAMP test, hemolysis, API Listeria, serotypes
Staphylococcus aureus	Mannitol salt agar with egg yolk, 35°C, 48 h	Tryptic soy broth with 10% sodium chloride, 35°C, 24 h	Gram stain, catalase, coagulase, API staph
Yersinia enterocolitica	Yersinia selective agar with ceftuladin, irgasan, novobiocin, 35°C, 24 h	Peptone sorbitol bile broth, 10°C, 10 days	Gram stain, urea, citrate, motility test, API 32E

Microbiological analysis

Each sample (25 g) was taken aseptically using a sterile stomacher bag containing 225 mL of 0.1% sterile peptone water, and macerated for 2 min. Decimal serial dilution in 0.1% peptone water was prepared. The number of mesophilic bacteria counts were determined using plate count agar (PCA, Difco Laboratories, USA), at 37°C for 48 h. *B. cereus* numbers were determined using cereus selective agar (Merck, Germany), at 30°C for 24 h. Microbial colonies were counted, and expressed as log colony forming units per gram (Log CFU/g). Pathogenic microorganisms of each sample were isolated, and identified as described in Table 1.

Preparation of *B. cereus* strains and addition to beef jerky

B. cereus strains isolated in raw meat, spices, and spiced meat were used for hurdle technology. *B. cereus* was grown on PCA (Difco) overnight at 30°C, and then left at ambient temperature for one week, to sporulate. When spores were detected microscopically, spore suspensions were created in sterile 0.1% peptone water, and heat treated (80°C for 10 min) to kill vegetative cells. Spores were enumerated by viable counts, and the suspensions were adjusted to 10^6 spore/mL. Mixed inocula were prepared, by combining spore suspensions in equal concentrations. Spores were inoculated to the beef jerky, to give a predicted level of 10^3 CFU/g.

Preparation of nisin and addition to beef jerky

Nisin (Sigma-Aldrich, USA) was used as a form of stock solution. A standard stock solution of nisin containing 1×10^7 IU/mL was prepared, by dissolving 100 mg of nisin in 0.02 M HCl (1 mL), and adding 9 mL of distilled water.
Nisin was added at concentrations of 100 IU/g and 500 IU/g, respectively to the beef jerky.

Package and storage of beef jerky

A coextruded, multilayered film (C5045, nylon/PE/nylon/PE/nylon/LLDPE, Cryovac Division, Sealed Air Corporation, USA) was used for packaging and the pouches were heat-sealed under vacuum. Beef jerky samples were then stored at room temperature (25°C) for 60 d, and samples were taken at regular intervals throughout the storage period for quality measurements.

Results and Discussion

The pathogens most frequently associated with raw meats are *E. coli* O157:H7, *B. cereus*, *Salmonella* spp., *L. monocytogenes*, and *S. aureus* (Edison et al., 2000; Kim et al., 2008b). For the determination of microbial contamination, the incidences of pathogenic bacteria in raw meat, spices, spiced meats, and jerky products are summarized in Table 2. Five strains of *B. cereus* were isolated from raw meat, spices, and spiced meat, while no pathogens were detected in the final products. In addition, no other pathogens were detected. These results may be a drying process using dehydrator.

Five isolated strains using cereus selective agar were Gram positive, rod shaped, spore forming bacteria, and catalase-positive. These strains did not grow on Simon’s citrate, produced NO₂⁻, and need to take arginine for growth. Therefore, these isolates were identified as *B. cereus* by ATB automated identification system, with 99.8% identity.

The antimicrobial effect of nisin against mesophilic bacteria can survive the pasteurization process and cause outbreak at storage temperature (Carlin et al., 2000; Paik et al., 2006).

B. cereus can be detected in jerky, because of the strong survival of spores in the processing. Therefore, the antimicrobial effect of nisin was investigated against *B. cereus* during storage (Fig. 1(b)). The number of *B. cereus* in beef jerky without nisin was 2.4 Log CFU/g at 0 d, and remained around 3 Log CFU/g during storage. The number of *B. cereus* with 100 IU nisin/g meat was not detected at 2 d, but was detected at 4 d. These values were around 3 Log CFU/g during storage. With 500 IU nisin/g, *B. cereus* was detected at 28 d, and remained around 2.2 Log CFU/g during storage.

The inactivation of nisin is known by the presence of proteolytic enzymes produced by *B. cereus* (Beuchat et al., 1997). In control samples (without inoculated *B. cereus* and nisin), no major changes in the number of *B. cereus* growth during storage were observed. The remaining of the number of *B. cereus* in beef jerky without nisin may be depend on low water activity of jerky. Nisin was reported as biopreservative against *B. cereus* in cook-chill foods of soybean sprout, cooked rice, and milk (Kim et al., 2008a; Penna et al., 2002; Vessoni et al., 2002). In addition, nisin was applied as incorporating film against *B. cereus* (Alrabadi, 2012).

The increase in the numbers of microorganisms depends on the initial numbers of microorganisms and the storage temperature (Carlin et al., 2000; Paik et al., 2006). Nisin reduced initial numbers of microorganism and delayed the occurrence as inoculum in this study, and these results indicate that by supplementing it to the beef jerky, high risk of illness can be avoided.

In conclusion, the incidences of pathogenic bacteria in raw meat, spices, spiced meats, and jerky products were studied. Just five strains of *B. cereus* were isolated from raw meat, spices, and spiced meat, while no pathogens were detected in the final products. The effect of nisin on

Table 2. Isolation of pathogenic bacteria presented in raw meat, spices, spiced meat, and jerky

Pathogenic bacteria	Raw meat	Spices	Spiced meat	Jerky
Escherichia coli O157:H7	−	−	−	−
Bacillus cereus	+	+	+	−
Clostridium botulinum	−	−	−	−
Clostridium perfringens	−	−	−	−
Salmonella spp.	−	−	−	−
Shigella spp.	−	−	−	−
Listeria monocytogenes	−	−	−	−
Staphylococcus aureus	−	−	−	−
Yersinia enterocolitica	−	−	−	−

−, negative; +, positive.
the growth of \textit{B. cereus} inoculated in beef jerky during storage was demonstrated. The addition of nisin can decrease the initial cell count of mesophilic bacteria and \textit{B. cereus} in beef jerky. The results suggest that nisin could be an effective approach to extend the shelf life, and improve the microbial safety of beef jerky, during storage.

Acknowledgements

This research was supported by Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0093824), Republic of Korea and also supported by ‘Cooperative Research Program for Agriculture Science & Technology Development (Project title: Development of diagnostic techniques using ELISA for quinolones, Project No. PJ00932902)” Rural Development Administration, Republic of Korea.

References

1. Alrabadi, N. I. (2012) Shelf life extension of Cheddar processed cheese using polyethylene coating films of nisin against \textit{Bacillus cereus}. \textit{J. Biol. Sci.} \textbf{12}, 406-410.
2. Assous, M. T. M., Khalaf-Allah, A. M., Sobhy, H. M., and Amani, M. I. H. (2012) Inhibition of \textit{Bacillus cereus} in fresh guave-necta by plantaricin and nisin. \textit{World J. Dairy Food Sci.} \textbf{7}, 93-100.
3. Balciunas, E. M., Martinez, F. A. C., Todorov, S. D., Franco, F. D. G. M., Converti, A., and Oliveira, R. P. S. (2013) Novel biotechnological applications of bacteriocin: A review. \textit{Food Control} \textbf{32}, 134-142.
4. Beuchat, L. R., Clavero, M. R. S., and Jaquette, C. B. (1997) Effect of nisin and temperature on survival, growth, and enterotoxin production characteristics of psychrotrophic \textit{Bacillus cereus} in beef gravy. \textit{Appl. Environ. Microbiol.} \textbf{63}, 1953-1958.
5. Boles, J. A., Neary, K., and Clawson, K. (2007) Survival of \textit{Listeria monocytogenes} on jerky contaminated postprocessing. \textit{J. Muscle Foods} \textbf{18}, 186-193.
6. Calicioglu, M., Sofos, J. N., and Kendall, P. A. (2003) Influence of marinades on survival during storage of acid-adapted and nonadapted \textit{Listeria monocytogenes} inoculated post-drying on beef jerky. \textit{Int. J. Food Microbiol.} \textbf{86}, 283-292.
7. Carlin, F., Guinebretière, M. H., Choma, C., Pasqualini, R., Bracconier, A., and Nguyen-The, C. (2000) Spore-forming bacteria in commercial cooked, pasteurized and chilled vegetable purees. \textit{Food Microbiol.} \textbf{17}, 153-165.
8. Choma, C., Guinebretière, M. H., Carlin, F., Schmitt, P., Velge, P., Granum, P. E., and Nguyen-The, C. (2000) Prevalence, characterization and growth of \textit{Bacillus cereus} in commercial cooked chilled foods containing vegetables. \textit{J. Appl. Microbiol.} \textbf{88}, 617-625.
9. Dufrenne, J., Soentoro, P., Tatin, S., Day, T., and Notermans, S. (1994) Characteristics of \textit{Bacillus cereus} related to safe food production. \textit{Int. J. Food Microbiol.} \textbf{23}, 99-109.
10. Edison, M., Sewell, C. M., Graves, G., and Olson, R. (2000) Beef jerky gastroenteritis outbreaks. \textit{J. Environ. Health} \textbf{62}, 9-13.
11. Food and Drug Association. Available from: http://www.fda.gov/ucm/groups/fdagov-public/@fdagov-foods-gen/documents/document/ucm266587.pdf. Accessed Jan. 20, 2015.
12. Keene, W. E., Sazie, E., Kok, J., Rice, D. H., Hancock, D. D., and Balan, V. K. (1997) An outbreak of \textit{Escherichia coli} O157:H7 infections traced to jerky made from deer meat. \textit{J. Am. Med. Assoc.} \textbf{277}, 1229-1231.
13. Kim, H. J., Chun, H. H., Song, H. J., and Song, K. B. (2010) Effects of electron beam irradiation on the microbial growth and quality of beef jerky during storage. \textit{Radiat. Phys. Chem.} \textbf{79}, 1165-1168.
14. Kim, H. J., Lee, N. K., Lee, D. S., Hong, W. S., Lee, S. R., Kim, C. J., and Paik, H. D. (2008a) Improvement of microbiological safety of \textit{sous vide} processed soybean sprouts: Nisin and \textit{Bacillus cereus} challenge. \textit{Food Sci. Biotechnol.} \textbf{17}, 166-171.
15. Kim, H. W., Kim, H. J., Kim, T. H., Kim, T. I., Lee, J. Y., Kim,
C. J., and Paik. H. D. (2008b) The distribution of indicator organisms and incidence of pathogenic bacteria in raw pork material used for Korean pork jerky. *Korean J. Food Sci. An.* **28**, 76-81.

16. Ministry of Food and Drug Safety. Korea’s food additive code. Available from: http://www.mfds.go.kr/fa/index.do?page_gubun=1&serialno=634&gongjeoncategory=2&page=7&nMenuCode=12. Accessed Jan. 20. 2015.

17. Paik, H. D., Kim, H. J., Nam, K. J., Kim, C. J., Lee, S. E., and Lee, D. S. (2006) Effect of nisin on the storage of sous vide processed Korean seasoned beef. *Food Control* **17**, 994-1000.

18. Penna, T. C. V., Moraes, D. A., and Fajardo, D. N. (2002) The effect of nisin on growth kinetics from activated *Bacillus cereus* spores in cooked rice and in milk. *J. Food Prot.* **65**, 419-422.

19. Ray, B. (1992) Nisin of *Lactococcus lactis* ssp. lactis as a food biopreservative. In *Food Biopreservatives of Microbial Origin* pp. 207-264, CRC Press, Florida.

20. Scallan, E., Hoekstra, R. M., Angulo, J., Tauxe, R. V., Widowsen, M. A., Roy, S. L., Jones, J. L., and Griffin, P. M. (2011) Foodborne illness acquired in the United States-Major pathogens. *Emerg. Infect. Dis.* **17**, 7-15.

21. Simpson, M. V., Smith, J. P., Simpson, B. K., Ramaswamy, H., and Doods, K. L. (1994) Storage studies on a sous vide spaghetti and meat sauce product. *Food Microbiol.* **11**, 5-14.

22. Tewari, A., Singh, S. P., and Singh, R. (2015) Incidence and enterotoxigenic profile of *Bacillus cereus* in meat and meat products of Uttarakhand, India. *J. Food Sci. Technol.* **52**, 1796-1801.

23. van Netten, P., van De Moosdjik, A., van Hoensel, P., Mos-sel, D. A. A., and Perales, I. (1990) Psychrotrophic strains of *Bacillus cereus* producing enterotoxin. *J. Appl. Bacteriol.* **69**, 73-79.

24. Vessoni, P., Moraes, D. A., and Fajardo, D. N. (2002) The effect of nisin on growth kinetics from activated *Bacillus cereus* spores in cooked rice and in milk. *J. Food Prot.* **65**, 419-422.

25. Yoon, Y., Geornaras, I., Kendall, P. A., and Sofos, J. N. (2009) Modeling the effect of marination and temperature on *Salmonella* inactivation during drying of beef jerky. *J. Food Sci.* **74**, M165-M171.