Synthesis of Molybdenum Pincer Complexes and Their Application in the Catalytic Hydrogenation of Nitriles

Thomas Leischner,[a] Anke Spannenberg,[a] Kathrin Junge,[a] and Matthias Beller*[a]

Dedicated to Prof. Dr. Uwe Rosenthal on the occasion of his 70th birthday

A series of molybdenum(0), (I) and (II) complexes ligated by different PNP and NNN pincer ligands were synthesized and structurally characterized. Along with previously described Mo–PNP complexes Mo-1 and Mo-2, all prepared compounds were tested in the catalytic hydrogenation of aromatic nitriles to primary amines. Among the applied catalysts, Mo-1 is particularly well suited for the hydrogenation of electron-rich benzonitriles. Additionally, two aliphatic nitriles were transformed into the desired products in 80 and 86%, respectively. Moreover, catalytic intermediate Mo-1a was isolated and its role in the catalytic cycle was subsequently demonstrated.

Introduction

Reduction of nitriles continues to attract significant attention of synthetic chemists for the preparation of diverse amines.[1,2] Traditionally, these reactions are carried out on laboratory scale using an excess of stoichiometric reducing agents, resulting in at least equimolar amounts of waste products.[2,3] On the contrary, catalytic homogenous hydrogenation using defined organometallic complexes provides an environmentally benign alternative, as it is more atom-economic with less waste generation.[3,4] Nevertheless, the selective catalytic hydrogenation of nitriles to primary amines remains to be challenging for certain substrates, due to the underlying reaction mechanism (see Scheme 1).[3]

In general, primary amines are important intermediates for various applications in organic synthesis as well as in the production of bulk and fine chemicals.[5] Therefore, the development of novel (catalytic) protocols for their synthesis remains of particular interest. Until recently, noble metal-based catalyst systems prevailed for this purpose in both, industrial processes and academic research.[5] However, their comparably high price, limited availability and toxicity issues, set incentives for their replacement. Yet, in the past two decades significant progress in this direction has been achieved using for example Fe, Co and Mn complexes supported by pincer ligands.[6]

In this respect, also molybdenum constitutes an attractive substitute for precious metals, due to its low costs and environmentally benign nature.[7] Although the organometallic chemistry of molybdenum, particularly of its pincer complexes, has been studied in-depth in recent years,[8] reports on its application in catalytic homogeneous nitrile hydrogenation are exceptionally scarce. In fact to date, only three examples have been reported for related reductions (Scheme 2). In 2012, Nikonov and co-workers described the application of imido-hydrido Mo(IV) complex I for the catalytic hydroboration of nitriles in the presence of HBCat (Cat = catechol). However, only aceto- and benzonitrile were tested as substrates.[9]

The group of Berke developed a molybdenum-catalyzed homogeneous nitride hydrogenation, based on molybdenum(I)-amido pincer catalyst II. However, the developed protocol operated under relatively harsh conditions (5 mol% catalyst, 140°C) to yield secondary imines in high selectivity.[10]

In 2020, Wang and co-workers published an efficient transfer hydrogenation of nitriles using molybdenum-thiolate complex III in combination with NH₂BH₃ as hydrogen donor.

Scheme 1. General scheme for the hydrogenation of nitriles.

[a] T. Leischner, Dr. A. Spannenberg, Dr. K. Junge, Prof. Dr. M. Beller
Leibniz Institute for Catalysis
Albert-Einstein-Straße 29a, 18059 Rostock (Germany)
E-mail: Matthias.Beller@catalysis.de

Supporting information for this article is available on the WWW under https://doi.org/10.1002/cctc.202000736

This publication is part of a joint Special Collection with EurJIC on “Pincer Chemistry & Catalysis”. Please follow the link for more articles in the collection.

© 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
Notably, this methodology applies particularly mild conditions and is compatible with aliphatic and aromatic nitriles selectively forming primary amines. The versatility of the developed system is highlighted by the successful reduction of both cyano groups of industrially relevant adiponitrile to corresponding 1,6-diamino-hexane in 70% yield.

In 2018, we described the synthesis of a series of molecular defined molybdenum PNP-pincer complexes and subsequently demonstrated their activity in the catalytic hydrogenation of acetophenones, styrenes and formamides (Figure 1). Based on these works, herein we report the synthesis and structural characterization of a series of previously unknown molybdenum pincer complexes and their behavior in the hydrogenation of nitriles to primary amines.

Results and Discussion

At the outset of our studies, we investigated whether our previously developed method for the synthesis of molybdenum complexes Mo-1 and Mo-2, could be extended to other pincer ligands (Scheme 3). Thus, PNP ligands \(\text{Cy}_2 \text{PCH}_2 \text{CH}_2 \text{NH} \), \(\text{Ph}_2 \text{PCH}_2 \text{CH}_2 \text{NH} \), \(\text{Et}_2 \text{PCH}_2 \text{CH}_2 \text{NH} \) as well as the NNN pincer ligand \(\text{bis}-(2\text{-pyridylmethyl})\text{amine} \) were reacted with \(\text{Mo}(\text{PPh}_3)_2(\text{CH}_3\text{CN})_2(\text{CO})_2 \) in either dichloromethane (DCM) or tetrahydrofuran (THF). Applying \(\text{Cy}_2 \text{PCH}_2 \text{CH}_2 \text{NH} \) as ligand in DCM, resulted in the intended formation of Mo(I) complex Mo-6 in 46% yield. However, when the reaction was carried out in THF as reaction solvent, the formation of a light green, ill-soluble powder was observed. Due to the extremely low solubility of this powder in all common organic solvents, we were not able to unequivocally confirm its identity by either NMR experiments or X-ray analysis of suitable single crystals. Nevertheless, EA, IR and HR/ESI-MS experiments strongly suggest the formation of the corresponding Mo(0) complex Mo-5.

Next, we subjected \(\text{Ph}_2 \text{PCH}_2 \text{CH}_2 \text{NH} \) to the reaction with \(\text{Mo}(\text{PPh}_3)_2(\text{CH}_3\text{CN})_2(\text{CO})_2 \) in THF. Interestingly, we obtained Mo(0)-complex Mo-3a, featuring a PPh₃ ligand coordinated to the metal center, as the sole reaction product, in 91% yield. Attempts to transform Mo-3a into the corresponding CH₃CN

![Scheme 2. Reported examples of molybdenum-catalyzed homogeneous nitrile reductions.](image)

![Scheme 3. Synthesis of new molybdenum PNP pincer complexes.](image)
derivative remained unsuccessful. Surprisingly, when the reaction was carried out in DCM under otherwise identical conditions, selective formation of Mo-3a was observed again. Even after stirring for several days at room temperature, 31P(1H) NMR analysis revealed Mo-3a as the main species. However, slow formation of a new resonance at 63 ppm occurred. Assuming, that Mo-3a is relatively stable towards chlorination, the reaction mixture was heated to 40°C for three hours. 31P(1H) NMR analysis showed complete conversion of Mo-3a into the new species at 63 ppm. Subsequent isolation and characterization provided diamagnetic Mo(II) pincer complex Mo-4a in 56% yield.

When exploring the reactivity of (Et$_2$PCH$_2$CH$_2$)$_2$NH, we observed a similar reaction behavior as compared to (Ph$_2$PCH$_2$CH$_2$)$_2$NH. Performing the reaction in THF, we were able to isolate the corresponding Mo(0) Mo-3b in 82% yield. Nevertheless, carrying out the reaction in DCM resulted in the formation of complex product mixtures, even at −20°C.

Finally, the NNN pincer ligand bis-(2-pyridylmethyl)amine was applied. The ligand reacted readily with Mo (PPPh$_3$)$_2$(CH$_2$CN)$_2$(CO)$_2$ in DCM and THF, respectively, resulting in the formation of Mo-7 in both cases (Scheme 4).

Complex Mo-7 proved to be remarkably stable towards chlorination and remained molecule unchanged even after refluxing for 24 h in DCM and DCE, respectively. All prepared coordination compounds have been characterized by standard techniques including 1H, 13C and 31P(1H) NMR (except Mo-6 and Mo-7, see vide infra) and IR spectroscopy as well as elemental analysis (for NMR and IR spectra, see supporting information). Additionally, we were able to determine solid-state structures of complexes Mo-3a, Mo-3b, Mo-4a, Mo-6 as well as Mo-7 by X-ray analysis of suitable single crystals. Their structural views are depicted in Figure 2. However, due to the insolubility of Mo-7 in all common NMR solvents, including benzene, toluene, THF, acetonitrile, DMSO and methanol, as well as the paramagnetic nature of Mo-6, we were unable to obtain meaningful NMR data of these complexes.

Complexes Mo-3a, Mo-3b and Mo-7 adopt a distorted octahedral coordination geometry at the molybdenum center, with the CO ligands being in a cis-orientation. The coordinated pincer ligands all exhibit a fac-arrangement around the central metal atom. However, in complex Mo-6 the mer-coordination mode of the pincer ligand is observed with the CO ligands being in a cis-arrangement. The described characteristics for Mo-6 are in agreement with our previously published solid state structure of Mo-2 (vide infra). The coordination geometry at the Mo atom of the heptacoordinated Mo(II)-complex Mo-4a can be best described as distorted capped octahedral.

The recorded IR spectra of the reported complexes all show medium to strong carbonyl absorption bands between 1921 cm$^{-1}$ and 1679 cm$^{-1}$.

Next, we tested the catalytic activity of the newly described molybdenum pincer complexes Mo-3a, Mo-3b, Mo-4a, Mo-6.

![Scheme 4. Synthesis of previously unknown molybdenum NNN pincer complex Mo-7.](image)

![Figure 2. Molecular structures of Mo-3a, Mo-3b, Mo-4a, Mo-6 and Mo-7 in the solid state. Thermal ellipsoids are drawn at 30% probability level. Hydrogen atoms, except the N-bound are omitted for clarity. For Mo-6, only one molecule of the asymmetric unit is shown.](image)
and Mo-7, as well as of the previously reported compounds Mo-1 and Mo-2, in the catalytic hydrogenation of benzonitrile 1a. It has to be noted, that in our initial work some activity was reported in this transformation, using Mo-2 as the catalyst, without further optimization. However, under the reported conditions, only modest conversion (42%) and poor product selectivity (13%) for the desired primary amine were observed. In order to minimize potential decomposition of the homogeneous molybdenum catalysts, the initial catalyst screening was carried out at 100 °C in the presence of 10 mol% NaBHEt. Under these conditions full conversion was observed for Mo-1 and Mo-2, yielding approximately 1:1 mixtures of 2a and 3a (Table 1, entries 1–2). All other Mo-complexes, however, provided inferior results (Table 1, entries 3–7). Interestingly, Mo-4a as well as Mo-7 failed to give any conversion at all.

The activity of Mo-1 and Mo-2 was subsequently compared at a reduced temperature of 80 °C (Table 1, entries 8 and 9). Here, Mo-1 provided a superior conversion of 90%. Based on this result and its more convenient synthesis, we focused on Mo-1 in the due course of the optimization process. Selecting 80 °C reaction temperature and 5 mol% of Mo-1 (Table 1, entry 8) as the optimal setting, we explored several different solvents. In contrast to previous reports on base metal catalyzed hydrogenation of nitriles, Mo-1 was found to be completely inactive in i-PrOH, while toluene as solvent provided the best results. Applying THF, 1,4-dioxane and Bu3O resulted in significantly lower activities and predominantly yielded 3a as the reaction product. Other aliphatic solvents such as n-heptane and cyclohexane, were not suitable for the attempted transformation (Figure 3).

Subsequently, we investigated the influence of dihydrogen pressure, catalyst loading, the amount of additive used (Table S1, see supporting information), as well as the substrate concentration (Table S2, see supporting information) on the reaction outcome. Reducing the catalyst loading to 2.5 mol% resulted in a significantly less active system. However, lowering the amount of additive to 5 mol% led to no loss in reactivity.

Increasing the H2 pressure to 80 bar showed no observable effect. Albeit, carrying out the reaction at 30 bar of dihydrogen caused a sharp drop in catalyst activity. A rise of the reaction temperature to 100 °C eventually resulted in full conversion of 1a in the presence of 5 mol% NaBHEt and Mo-1, respectively (Table 1, entry 10). Next, we evaluated several substrate concentrations based on 0.5 mmol of 1a, ranging from 0.08 to 0.5 M. Notably, using 5 mL of toluene proved to be the optimal concentration, providing the desired product benzylamine 2a in 96% yield (Table 1, entry 11). Finally, a series of control experiments were carried out. In the absence of Mo-1, no catalytic reaction took place (Table 1, entry 12). Similarly, no product formation could be detected, when the reaction was performed in the absence of NaBHEt (Table 1, entry 13). In order to confirm, that no heterogeneous catalysis takes place, a mercury poisoning experiment was conducted, revealing no loss of activity (Table S2, see supporting information).

Having optimized conditions in hand, we proceeded to the application of Mo-1 in the hydrogenation of a variety of different benzonitriles to the corresponding benzylamines. As shown in Scheme 5 our developed methodology appeared to be particularly well suited for electron-rich benzonitriles and the intended primary amines were consistently obtained in high yields. Substituents in para-, meta- and ortho-position of the phenyl ring were well tolerated and even sterically hindered nitriles 1k and 1m were successfully converted, furnish 2k and 2m in isolated yields of 68% and 91%, respectively. Notably, when the stericbulk was further increased, using 2,6-dimethylbenzonitrile 1n, we were still able to isolate the desired primary amine 2n in a good yield of 72%. The system proved to be insensitive towards halides such as fluoride and chloride (2b and 2c) and no dehalogenation products were observed during the catalysis. This was additionally the case when 3,5-dichlorobenzonitrile 1o was employed, providing 3,5-dichlorobenzylamine 2o in 60% isolated yield. Moreover, also a benzylether moiety, often cleaved under hydrogenation conditions, remained unaffected and no deprotection could be detected in product 2h. However, some (hetero)benzonitriles with substituents in either ortho- or para-position, such as H, Me, CO2Me, carbonyl-, cyano- and nitro groups, either gave only

Table 1. Initial screening of Mo-catalysts and reaction parameters.

Entry	Catalyst	Conv. [%]	Yield 2 [%]	Yield 3 [%]
1	Mo-1	> 99	58	40
2	Mo-2	> 99	52	42
3	Mo-3a	62	38	20
4	Mo-3b	70	41	24
5	Mo-4a	< 1	< 1	< 1
6	Mo-5a	1	< 1	< 1
7	Mo-7	< 1	< 1	< 1
8^a	Mo-1	90	50	38
9^a	Mo-1	81	42	35
10^a	Mo-1	> 99	55	41
11^a	Mo-1	> 99	96	< 1
12^f	–	4	< 1	
13^f	Mo-1	7	< 1	

[a] Reaction conditions: 0.5 mmol substrate, 2 mL toluene, 5 mol% catalyst, 10 mol% NaBHEt (1M in THF), 50 bar H2, 100 °C, 24 h. [b] Determined by GC using hexadecane as internal standard. [c] 80 °C, [d] 5 mol% NaBHEt, 0.5 M in THF. [e] 5 mL toluene, 0.5 mmol substrate. [f] No catalyst was used. [g] No NaBHEt added.

![Figure 3. Study of the solvent effect in the hydrogenation of benzonitrile 1a to benzylamine 2a and N-benzylideneketamine 3a catalyzed by Mo-1.](image-url)
poor conversions or did not yield the desired primary amines in sufficient quantities (see Table S3, supporting information). Clearly, in these cases the observed reactivity of the catalyst is not an easy function of the electron-donating or electron-withdrawing character of the respective substituents. Apparently, there are several factors influencing the observed reactivity. In Table S3 some of the observed side products are mentioned.

Interestingly, for 2- and 4-trifluoromethyl-substituted benzonitriles low conversions and negligible product yields were observed, while in the case of meta-CF₃-substituted nitrile 1l the corresponding primary amine 2l could be isolated in 61 % yield. Furthermore, we successfully applied two aliphatic nitriles 1p and 1q to our reported protocol. In both cases, Mo-1 proved to be a suitable catalyst and we were able to isolate the intended reaction products 2p and 2q in 80 % and 86 % yield, respectively.

Finally, with respect to the mechanism we became interested in the molecular structure of the organometallic species formed from the reaction of Mo-1 and NaBHEt₃. Hence, we conducted a control experiment, treating 0.5 mmol of Mo-1 with an excess of NaBHEt₃ in toluene at room temperature (for experimental details, see Supporting Information). The reaction proceeded rapidly, resulting in the formation of a clear red solution within less than one minute. The ¹³C(¹H) NMR analysis of the crude reaction mixture revealed the formation of a strong singlet resonance at 74 ppm as the main product alongside some free ligand. Attempts to characterize the corresponding species by X-ray analysis of suitable crystals were successful and provided the solid-state structure of Mo-1a (Scheme 6). As expected, the applied additive acts as base and abstracts a proton from Mo-1. Interestingly, the deprotonation does not involve the NH moiety of the pincer ligand but takes place at the CH₃-group of the coordinated acetonitrile ligand, resulting in the formation of a covalent C–B bond. This observed reactivity is in sharp contrast to classical reaction patterns observed for pincer supported (base) metal catalysts, where basic additives typically activate the catalyst by deprotonation of the ligand backbone.[⁴]

In order to confirm that Mo-1a indeed plays an active role in the catalysis, the benchmark reaction was carried out using 5 mol% Mo-1a in the absence of NaBHEt₃ under otherwise identical conditions. Benzylamine 2a was observed in 92 % yield, proving the involvement of Mo-1a in the catalytic hydrogenation of benzonitrile 1a. Next, we were interested in the reactivity of Mo-1a towards dihydrogen. Therefore, Mo-1 was activated with two equivalents of NaBHEt₃ in d₅-toluene and subsequently stirred for 3 h at 100 °C in the presence of 50 bar H₂ (for experimental details see Supporting Information). Analysis of the reaction mixture by ¹³C NMR spectroscopy revealed two new main resonances at 89.1 and 75.9 ppm, thus proving that Mo-1a had undergone a reaction with H₂. However, no hydride signals could be detected according to the obtained 'H NMR spectrum. The resonance at 75.9 ppm corresponds to the Mo(0) complex fac-[(PrPhCH₂CH₂)₂NH]Mo(CO)₃[¹³C] revealing a potential catalyst deactivation pathway.

Furthermore, to understand the poor catalytic performance of Mo-1 when electron deficient nitriles are applied, a series of control experiments were conducted, too (Scheme 7).

Adding 0.5 mmol of 4-(trifluoromethyl)benzonitrile 1r to the benchmark reaction resulted in a complete shut-down of catalyst activity and no benzylamine 2a could be detected.
In a glove box, an 8 mL glass vial containing a stirring bar was charged with complex Mo-1 (12.5 mg; 5 mol%). Toluene (5 mL) was added and the corresponding greenish suspension was treated with NaBH₄ (0.5 M in THF; 50 µL; 5 mol%). The reaction mixture was stirred for 20 minutes and the corresponding substrate was subsequently added. Afterwards, the vial was capped and transferred into an autoclave. Once sealed, the autoclave was purged three times with 10 bar of hydrogen, then pressurized to the desired hydrogen pressure (50 bar) and placed into an aluminum block that was preheated to the desired temperature (100 °C). After 24 h, the autoclave was cooled in an ice bath and the remaining gas was released carefully. The solution was subsequently diluted with 50 mL Et₂O and filtered through a small pad of silica. The silica was washed with DCM (10 mL) and the combined filtrates were treated with 2 mL of HCl (2 M in Et₃O). The obtained precipitate was filtered off, washed two times with 20 mL ethyl acetate and two times with 20 mL Et₂O and subsequently dried in vacuo. For the characterization of the products of the catalysis, see Supporting Information.

Acknowledgements

This work was supported by the BMBF, the state Mecklenburg-Western Pomerania and the European Union as part of the NoNoMeCat (675020) project. We thank the analytic department of LIKAT for their support and assistance. Open access funding enabled and organized by Projekt DEAL.

Conflict of Interest

The authors declare no conflict of interest.

Keywords: molybdenum · pincer complexes · hydrogenation · nitrile · primary amine

References

[1] a) D. M. Bagal, B. M. Bhanage, Adv. Synth. Catal. 2015, 357, 883–900.
 b) S. Das, K. Junge, M. Beller, Angew. Chem. Int. Ed. 2014, 53, 9478–9481.
 c) S. Das, K. Junge, M. Beller, J. Am. Chem. Soc. 2013, 135, 14897–14899.
 d) S. Das, K. Junge, M. Beller, Angew. Chem. Int. Ed. 2012, 51, 1663–1666.
 e) S. Das, K. Junge, M. Beller, J. Am. Chem. Soc. 2011, 133, 12818–12821.

[2] For a general book about organic reductions, see: a) J. Seyden-Penne, Reductions by the Aluminum- and Borohydrides in Organic Synthesis, 2nd edition, Wiley-VCH, New York, United States of America 1997; for selected examples see: b) S. Zhou, K. Junge, D. Addis, S. Das, M. Beller, Angew. Chem. Int. Ed. 2009, 48, 9507–9510; c) S. Das, D. Addis, S. L. Zhou, K. Junge, M. Beller, J. Am. Chem. Soc. 2010, 132, 1770–1771; d) G. Pelletier, W. S. Bechara, J. A. Charette, J. Am. Chem. Soc. 2010, 132, 12817–12819; e) S. Das, D. Addis, K. Junge, M. Beller, Chem. Eur. J. 2011, 17, 12186–12192; f) C. Cheng, M. Brookhart, J. Am. Chem. Soc. 2012, 134, 11304–11307; g) S. Das, B. Wendi, K. Moller, K. Junge, M. Beller, Angew. Chem. Int. Ed. 2012, 51, 1662–1666; h) S. Park, M. Brookhart, J. Am. Chem. Soc. 2012, 134, 640–653; i) T. Dombay, C. Helleu, C. Darcel, J. B. Sortais, Adv. Synth. Catal. 2013, 355, 3358–3362; j) J. T. Reeves, Z. L. Tan, M. A. Marsini, R. X. Han, Y. B. Xu, D. C. Reeves, H. Lee, B. Z. Lu, C. H. Senanayake, Adv. Synth. Catal. 2013, 113, 47–52; k) E. Blondiaux, T. Cantat, Chem. Commun. 2014, 50, 9349–9352; l) N. L. Lampland, M. Hovey, D. Mukherjee, A. D. Sadow, ACS Catal. 2015, 5, 4219–4226; m) D. Mukherjee, S. Shirase, K. Masahira, J. Okuda, Angew. Chem. Int. Ed. 2016, 15, 13326–13329; n) K. Junge, M. Beller, Org. Process Res. Dev. 2014, 18, 289–302.
For a general review regarding Co, Fe and Mn catalyzed homogeneous nitrile hydrogenations see: a) D. M. Sharma, B. Punji, Chem. Asian J. 2020, 15, 328–338; b) A. L. Prakash, M. Beller, S. Werkmeister, B. Wendt, H. Jiao, J. Pascher, A. Spannenberg, H. Jiao, B. Stöger, K. Meireiter, L. F. Veiros, K. Kirchner, Dalton Trans. 2014, 7, 135–140; c) T. Li, J. Li, R. A. James, Y. Nishibayashi, J. Am. Chem. Soc. 2014, 136, 14377–14380; d) S. Elangovan, C. Topf, K. Junge, M. Beller, Dalton Trans. 2015, 44, 16350–16354; e) S. Elangovan, C. Topf, K. Junge, M. Beller, Dalton Trans. 2015, 44, 16350–16354; f) S. Elangovan, C. Topf, K. Junge, M. Beller, Dalton Trans. 2015, 44, 16350–16354; g) M. Pfeil, T. A. Engesser, A. Koch, J. Junge, J. Krahmer, C. Näther, F. Tuczek, Eur. J. Inorg. Chem. 2020, 1437–1448.

[10] a) W. Schirmer, U. Flörke, H. Haupt, Z. Anorg. Allg. Chem. 1978, 545, 83–97; b) J. Ellermann, M. Moll, N. Will, J. Organomet. Chem. 1989, 378, 73–79; c) H. F. Lang, P. E. Fanwick, R. A. Dalton, Inorg. Chim. Acta 2002, 329, 1–8; d) B. Benito-Garagorri, E. Becker, J. Wiedermann, W. Lacker, M. Pollak, K. Meireiter, J. Kisala, K. Kirchner, Organometallics 2006, 25, 1900–1913; e) K. Arashiba, Y. Miyake, Y. Nishibayashi, Nat. Chem. 2011, 3, 120–125; f) K. Arashiba, K. Sasaki, K. Kuriyama, Y. Miyake, Y. Nakanishi, Y. Nishibayashi, Organometallics 2012, 31, 2035–2041; g) L. Knöpfle, K. Arashiba, S. Kuriyama, Y. Miyake, Y. Shimazaki, H. Nakashima, Y. Nishibayashi, Organometallics, 2012, 31, 8437.8443; h) O. Öztopcu, C. Holzhacker, M. Puchberger, M. Weil, K. Meireiter, L. F. Veirs, K. Kirchner, Organometallics, 2013, 32, 3042–3052; i) L. F. Veirs, B. Stöger, B. Pittenauer, M. Puchberger, G. Allmair, L. F. Veirs, K. Kirchner, J. Organomet. Chem. 2014, 760, 74–83; j) S. R. M. M. de Aguiar, O. Oztopcu, B. Stöger, K. Meireiter, L. F. Veirs, B. Pittenauer, G. Allmair, K. Kirchner, Dalton Trans. 2014, 43, 14669–14679; k) S. Chakraborty, O. Blacque, H. Berke, Dalton Trans. 2015, 44, 6560–6570; l) R. Castro-Rodrigo, S. Chakraborty, L. Munjana, W. Brennessel, W. D. Jones, Organometallics 2016, 35, 1312–1313; m) Y. Zhang, P. G. Williard, W. H. Bernskoetter, Organometallics 2016, 35, 860–865; n) S. R. M. M. de Aguiar, B. Stöger, B. Pittenauer, G. Allmair, L. F. Veirs, K. Kirchner, Dalton Trans. 2016, 45, 13834–13845; o) G. A. Silantyev, M. Förster, S. Schlusslaß, J. Abbensett, C. Wüthele, C. Volkman, M. C. Holthausen, S. Schneider, Angew. Chem. Int. Ed. 2017, 56, 5872–5876; Angew. Chem. 2017, 129, 5966–5970; p) S. M. M. de Aguiar, O. Oztopcu, A. Troiani, G. de Petris, M. Weil, B. Stöger, L. F. Veirs, B. Pittenauer, G. Allmair, K. Kirchner, Eur. J. Inorg. Chem. 2018, 8, 876–884; q) M. V. Joannou, M. J. Bezdek, P. J. Chirik, ACS Catal. 2018, 8, 5276–5283; r) M. J. Bezdek, P. J. Chirik, Angew. Chem. Int. Ed. 2018, 8, 2224–2228; s) M. J. Bezdek, P. J. Chirik, Organometallics 2019, 38, 1682–1687; t) Y. Ashida, S. Kondo, K. Arashiba, T. Kikuchi, K. Nakajima, S. Kakimoto, Y. Nishibayashi, Synthesis 2019, 51, 3792–3795; u) M. Álvarez, A. Galindo, P. J. Perez, E. Carmona, Chem. Sci. 2019, 10, 8341–8346; v) R. L. B. Bornschein, B. Pittenauer, G. Allmair, K. Kirchner, Eur. J. Inorg. Chem. 2019, 48, 16350–16354; w) M. Pfeil, T. A. Engesser, A. Koch, J. Junge, J. Krahmer, C. Näther, F. Tuczek, Eur. J. Inorg. Chem. 2020, 1437–1448.

[11] A. Y. Khalimon, P. Farha, L. G. Kuzmina, G. I. Nikonov, Chem. Commun. 2012, 48, 455–457.

[12] S. F. Hou, J. Y. Chen, M. Xue, M. Jia, X. Zhai, R.-Z. Liao, C.-H. Tung, W. Wang, ACS Catal. 2020, 10, 380–390.

[13] a) T. Leischnner, A. Spannberg, K. Junge, M. Beller, Organometallics 2013, 32, 4402–4408; b) T. Leischnner, L. F. Veirs, A. Spannberg, K. Junge, M. Beller, Dalton Trans. 2013, 42, 10566–10576.

[14] a) E. Ben-Ari, G. Leitus, L. J. W. Shimon, D. Milstein, J. Am. Chem. Soc. 2006, 128, 15390–15391; b) J. R. Khusnutdinova, D. Milstein, Angew. Chem. Int. Ed. 2015, 54, 12236–12273; Angew. Chem. 2015, 127, 12406–12445.

Manuscript received: April 30, 2020
Revised manuscript received: May 28, 2020
Accepted record online: July 9, 2020

Version of record online: July 9, 2020