An Efficient Simulation of Quantum Secret Sharing

Kartick Sutradhar · Hari Om

Abstract In quantum cryptography, quantum secret sharing (QSS) is a fundamental primitive. QSS can be used to create complex and secure multiparty quantum protocols. Existing QSS protocols are either at the \((n, n)\) threshold \(2\) level or at the \((t, n)\) threshold \(d\) level with a trusted player, where \(n\) denotes the number of players and \(t\) denotes the threshold number of players. Here, we propose a secure \(d\)-level QSS protocol for sharing a secret with efficient simulation. This protocol is more secure, flexible, and practical as compared to the existing QSS protocols: \((n, n)\) threshold \(2\)-level and \((t, n)\) threshold \(d\)-level with a trusted player. Further, it does not disclose any information about the secret to players. Its security analysis shows that the intercept-resend, intercept, entangle-measure, forgery, collision and collusion attacks are not possible in this protocol.

Keywords Secure Computation · Quantum Cryptography · Information Security · Quantum Secret Sharing

1 Introduction

A dealer shares a secret with \(n\) players in secret sharing (SS), and when the secret needs to be reconstructed, the threshold number of players can do so collaboratively. The quantum secret sharing [15,11,7,15,20,18,14,27,11,35,28,26,31,62,17,13,33,14,11,14,13,62] is a fundamental primitive protocol for sharing a secret in quantum cryptography, which may be considered as an

Kartick Sutradhar
Indian Institute of Technology (ISM) Dhanbad
Mobile: +91-7602621359
E-mail: kartick.sutradhar@gmail.com

Hari Om
Indian Institute of Technology (ISM) Dhanbad
E-mail: hariom4india@gmail.com
extension of secret sharing. The QSS protocol can be used to create complex multiparty quantum computing protocols that are secure. In the \((n, n)\) threshold QSS, a dealer shares a secret with \(n\) players by dividing it into \(n\) bits, known as shares, which are distributed among \(n\) players, each of whom has only his share. The secret can be reconstructed by the \(n\) players working together. Similarly, in the \((t, n)\) threshold QSS, a dealer shares a secret with \(n\) players by dividing it into \(n\) bits and distributing them to the \(n\) players. The \(t\) players will work together to solve the mystery. Because it protects the quantum threshold and secure quantum multiparty computation, the QSS is commonly used in quantum threshold cryptography and secure quantum multiparty computation.

Here, we propose a secure \(d\)-level QSS protocol for sharing a secret, where \(t\) players can reconstruct the secret without a trusted player. In our protocol, each player knows only his share, even the reconstructor knows only his share. In this protocol, we use some basic operations i.e., protocol-I of Shi et al. \[51\], CNOT gate \[37\], secure communication \[72\], \[65\], \[60\], \[61\], \[46\], \[75\], \[21\], \[73\], \[64\], \[63\], entangle state \[71\], \[53\], \[54\], \[7\], \[45\], \[52\], \[59\], \[58\], \[57\], \[49\], \[47\], \[42\], \[48\], \[56\], Quantum Fourier Transform (QFT) \[19\] and Inverse Quantum Fourier Transform (QFT\(^{-1}\)) \[19\], to transform the particles. We use a quantum approach in classical secret sharing to combine the benefits of both classical and quantum secret sharing, preventing attacks such as Intercept-Resend (IR), Intercept, Entangle-Measure (EM), Forgery, Collision, and Collusion.

2 Related Work

There are numerous QSS protocols for secret sharing in quantum cryptography \[31\], \[23\], \[15\], \[22\], \[74\], \[50\], \[61\], \[46\], \[83\], \[55\], \[60\], \[30\], \[25\], \[24\]. In 1999, Hillery et al. discussed the first QSS protocol \[15\] based on the Greenberger-Home-Zeilinger (GHZ) state. In 2009, Li et al. introduced a QSS protocol \[1\] of secure direct communication. This protocol is \((t, n)\) threshold scheme but 2 level. In 2013, Yang et al. introduced a QSS protocol \[74\] based on the QFT. This protocol is \(d\)-level \((t, n)\) threshold scheme but it is not secure because each player broadcasts the results of the measurement at the last step. Because the measurement results contain information about the secret, if an attacker intercepts the measurement results, he may expose the secret or execute an intercept-resend attack. In 2015, Qin et al. discussed a QSS protocol \[40\] based on the phase shift operation, which is 2-level \((t, n)\) threshold scheme. The protocols \[1\] and \[40\] are not secure because the unitary operation transforms the private information of player \(P_{e-1}\) and then the transformed information is transmitted to player \(P_e\). So, the players \(P_{e-1}\) and \(P_{e+1}\) collaboratively can retrieve the private information of player \(P_e\). In 2017, Song et al. discussed a \((t, n)\) threshold \(d\)-level QSS protocol \[60\] based on some basic operations, i.e., \(d\)-level CNOT gate, QFT, generalized Pauli operator, and QFT\(^{-1}\). In that protocol, Alice (dealer) selects \(Bob_1\) as a trusted reconstructor from the set of participants \(\mathbb{B} = \{Bob_1, Bob_2, \ldots, Bob_n\}\) and then selects a hash function
SHA1 to compute the hash value of the secret (which is to be shared) and sends this hash value to the trusted reconstructor Bob1. Here, Bob1 can perform collision attack to reveal the secret. So, the security of this protocol is dependent on the trusted reconstructor Bob1. The main problem of Song et al.’s protocol is that the reconstructor Bob1 cannot recover the original secret because QFT^{-1} cannot be summed up over all the states $|16\rangle$. In other words, the reconstructor Bob1 needs the secret information of other players to reconstruct the original secret. In 2018, Qin et al. [39] discussed a QSS protocol which can efficiently share a secret by using the QFT and Pauli operator, but it is a (n, n) threshold scheme.

In our protocol, any t players can reconstruct the secret without a trusted player and each player knows only his share, nothing else. Furthermore, the reconstructor is unable to perform the collision attack because the secret’s hash value is shared among the players.

3 Preliminaries

The QFT, $QFT-1$, Control-NOT (CNOT) gate, and Shamir’s Secret Sharing, which will be used in the proposed QSS protocol, are all introduced here.

3.1 Quantum Fourier Transform

The QFT [19], a unitary transform, is based on the quantum phenomenon and expansion of the standard discrete Fourier transform. For $s \in \{0, 1, \ldots, d-1\}$, the QFT of d-level quantum system is defined as follows:

$$QFT: |s\rangle \rightarrow \frac{1}{\sqrt{d}} \sum_{q=0}^{d-1} e^{2\pi i s q / d} |q\rangle.$$ (1)

The QFT^{-1} is defined by

$$QFT^{-1}: |q\rangle \rightarrow \frac{1}{\sqrt{d}} \sum_{s=0}^{d-1} e^{-2\pi i q s / d} |s\rangle.$$ (2)

Further,

$$\sum_{q=0}^{d-1} e^{2\pi i s q / d} = \begin{cases} 0 & \text{if } s \neq 0 \mod d \\ d & \text{if } s = 0 \mod d \end{cases}$$ (3)

So,

$$QFT^{-1}\left(\frac{1}{\sqrt{d}} \sum_{q=0}^{d-1} e^{2\pi i s q / d} |q\rangle\right) = \frac{1}{\sqrt{d}} \sum_{q=0}^{d-1} e^{2\pi i s q / d} QFT^{-1} |q\rangle$$

$$= \frac{1}{d} \sum_{q=0}^{d-1} |s\rangle + \frac{1}{d} \sum_{k=0 \land k \neq s}^{d-1} 0. |k\rangle = |s\rangle$$ (4)
That is,
\[QFT^{-1}(QFT|s\rangle) = |s\rangle. \] (5)

3.2 Control-NOT (CNOT) gate

The CNOT gate \[^37\] is a two-qubit gate, one is control qubit and other is
target qubit. If the control bit of CNOT gate is set to |0\>, then the NOT gate
would not be applied to the target bit. If the control bit of the CNOT gate is
set to |1\>, then the NOT gate would be applied to the target bit.

3.3 Shamir’s Secret Sharing

In the Shamir’s secret sharing \[^43\], there are a dealer D and n players \(\mathcal{P} = \{P_1, P_2, \ldots, P_n\} \). The Shamir’s secret sharing consists of two phases:

3.3.1 Secret Sharing Phase

In this phase, the dealer selects a polynomial \(f(x) = S + a_1x + a_2x^2 + \cdots + a_{t-1}x^{t-1} \) of degree \((t-1)\), where S is a secret and \(a_1, a_2, \ldots, a_{t-1} \) are coefficients of the polynomial \(f(x) \). The dealer computes n shares and distributes them among n players, each player \(P_i \) only knows \(f(x_i) \), where \(i = 1, 2, \ldots, n \).

3.3.2 Secret Reconstruction Phase

Using \(t \) shares of the secret and the Lagrange interpolation formula, \(t \) players
will jointly reconstruct the secret in this phase.

\[
f(x) = \sum_{r=1}^{t} f(x_r) \prod_{1 \leq j \leq t, j \neq r} \frac{x - x_j}{x_r - x_j} \] (6)

To calculate the polynomial at \(x = 0 \), Eq.(6) can be simplified as

\[
f(0) = \sum_{r=1}^{t} f(x_r) \prod_{1 \leq j \leq t, j \neq r} \frac{x_j}{x_j - x_r} \] (7)

4 Proposed Method

We present a \(d \)-level QSS protocol for sharing a secret that allows \(t \) players
to reconstruct the secret without the help of a trusted player. In comparison
to the existing QSS protocols, such as the \((n, n)\) threshold 2-level and \((t, n)\)
threshold \(d \)-level, which both require a trusted player, this protocol is more
secure, versatile, and practical. Furthermore, no information about the secret
is revealed to any of the players. There are two stages to the QSS protocol:
secret sharing and secret reconstruction.
4.1 Secret Sharing Phase

In this phase, the dealer D shares the secret among players $P = \{P_1, P_2, \ldots, P_n\}$. Initially, the dealer D selects a prime d such that $2 \leq d \leq 2n$ and sets a finite field \mathbb{Z}_d. Then, the dealer D selects a polynomial $f(x) = S + a_1x + a_2x^2 + \cdots + a_{t-1}x^{t-1}$ of degree of $(t-1)$, where S is secret, $a_1, a_2, \ldots, a_{t-1}$ are coefficients of polynomial $f(x) \in \mathbb{Z}_d$ and the symbol '$+$' is defined as addition modulo d. The dealer computes the classical shares $f(xi)$ and uses the BB84 protocol to encode these classical shares $f(xi)$ in a qubit string [2]. The qubit string of $f(xi)$ is distributed among n players, player P_i only knows the share $f(x_i)$. In addition, the dealer D selects the SHA1 hash function to compute the hash value $\mathcal{H}(S)$ [12] and shares it among n players using the polynomial $g(x) = \mathcal{H}(S) + b_1x + b_2x^2 + \cdots + b_{n-1}x^{n-1}$. Player P_i only knows the share $g(x_i)$, where $i = 1, 2, \ldots, n$.

4.2 Secret Reconstruction Phase

Suppose $Q = \{P_1, P_2, \ldots, P_t\}$ is a qualified subset from all the qualified subsets, where the number of players in each qualified subset is t. The dealer D selects a player from the qualified subset $Q = \{P_1, P_2, \ldots, P_t\}$ as a reconstructor. The reconstructor P_1 selects the SHA1 hash value H and sets a finite field \mathbb{Z}_d. Then, the dealer D shares the secret among players P_i. Then, player P_1 makes ancillary state $|\psi_1\rangle$ and shares it among n players using the polynomial $g(x) = H(S) + b_1x + b_2x^2 + \cdots + b_{n-1}x^{n-1}$. Player P_i only knows the share $g(x_i)$, where $i = 1, 2, \ldots, n$.

Step 1: Player P_r, $r = 1, 2, \ldots, t$, calculates the share (s_r) of the share as follows.

$$s_r = f(x_r) \prod_{1 \leq j \leq t, j \neq r} \frac{x_j}{x_j - x_r} \mod d \quad (8)$$

Step 2: Player P_1 (reconstructor) makes basis state $|s_1\rangle_H$, where size of the basis state is c-qubit, s_1 is his private shadow of the share and $c = [\log_2 d]$. Then, player P_1 applies QFT on the state $|s_1\rangle_H$ and the resultant state $|\varphi_1\rangle$ is calculated as follows:

$$|\varphi_1\rangle = \langle QFT |s_1\rangle_H$$

$$= \frac{1}{\sqrt{d}} \sum_{k=0}^{d-1} e^{2\pi i x k} |k\rangle_H \quad (9)$$

Step 3: Player P_1 again makes ancillary state $|0\rangle_T$, where size of the ancillary state is c-qubit and $c = [\log_2 d]$, and then executes $CNOT^{\otimes c}$ operations on the combined state $|\varphi_1\rangle |0\rangle_T$, where the first c-qubits is control qubit and second c-qubits is target qubit. After performing $CNOT^{\otimes c}$ operations, the state $|\varphi_2\rangle$ evolves as an entangled state $|\varphi_2\rangle$, where subscript H or T represents home
state (non-transmitted state) or transmitted state.

\[|\varphi_2\rangle = CNOT^{\otimes c} |\varphi_1\rangle |0\rangle_T \]

\[= \frac{1}{\sqrt{d}} \sum_{k=0}^{d-1} e^{2\pi i \frac{k}{d}} |k\rangle_H |k\rangle_T \]

(10)

Step 4: Player \(P_1 \) communicates with player \(P_2 \) using the authenticated quantum channel to send the ancillary state \(|k\rangle_T \) (i.e., second \(c \)-qubits).

Step 5: Player \(P_2 \) applies an oracle operator \(C_k \) on \(|k\rangle_T |s_2\rangle \), where \(C_k \) is given by

\[C_k : |k\rangle_T |s_2\rangle \rightarrow |k\rangle_T U^k |s_2\rangle \]

(11)

with

\[U |s_2\rangle = e^{2\pi i \frac{s_2}{d}} |s_2\rangle \]

(12)

where, \(|s_2\rangle \) is an eigenvector of \(U \) with eigenvalue \(e^{2\pi i \frac{s_2}{d}} \). The combined quantum system of \(P_1 \) and \(P_2 \) is shown as follows.

\[|\varphi_3\rangle = C_k \frac{1}{\sqrt{d}} \sum_{k=0}^{d-1} e^{2\pi i \frac{k}{d}} |k\rangle_H |k\rangle_T |s_2\rangle \]

\[= \frac{1}{\sqrt{d}} \sum_{k=0}^{d-1} e^{2\pi i \frac{k}{d} + \frac{2\pi i k}{d}} |k\rangle_H |k\rangle_T |s_2\rangle \]

(13)

Step 6: Player \(P_2 \) communicates with player \(P_3 \) through an authenticated quantum channel to send the ancillary state \(|k\rangle_T \) and keeps \(|s_2\rangle \) as secret. Player \(P_3 \) performs \(t-1 \) times similar process as done by \(P_2 \). If \(t \) players honestly perform the protocol, then the combined quantum state is obtained as shown below.

\[|\varphi_4\rangle = \frac{1}{\sqrt{d}} \sum_{k=0}^{d-1} e^{2\pi i \left(\frac{s_1}{d} + \frac{s_2}{d} \right) k} |k\rangle_H |k\rangle_T |s_2\rangle \ldots |s_t\rangle \]

(14)

Step 7: The ancillary state \(|k\rangle_T \) is sent by \(P_1 \) back to \(P_1 \) through an authenticated quantum channel. Player \(P_1 \) again performs \(CNOT^{\otimes c} \) operation on his \(2c \) qubits, where the first \(c \)-qubits is control qubit and second \(c \)-qubits is target qubit. The output state is shown as below.

\[|\varphi_5\rangle = CNOT^{\otimes c} |\varphi_4\rangle = \frac{1}{\sqrt{d}} \sum_{k=0}^{d-1} e^{2\pi i \left(\frac{s_1}{d} + \frac{s_2}{d} \right) k} |k\rangle_H |0\rangle_T |s_2\rangle \ldots |s_t\rangle \]

(15)

Step 8: The second \(c \)-qubits (i.e., ancillary state \(|0\rangle_T \)) is measured by player \(P_1 \) in computational basis. If the output of the measurement is \(|0\rangle \), then player \(P_1 \) continues the process; otherwise, he believes that the protocol executes with at least one corrupted player and ends the protocol.
Step 9: Player P_1 applies QFT^{-1} on the first c-qubits and measures the output to get the secret $f(0)' = \sum_{r=1}^{t} s_r \mod d$.

Step 10: Finally, t players perform all the above nine steps again to get the hash value of the secret and player P_1 gets the hash value of the secret $g(0)' = \sum_{r=1}^{t} h_r \mod d$, where h_r is the shadow of hash value shares. Player P_1 uses the hash function SHA1 to compute the hash value $H(f(0)')$ and compares it with the hash value $g(0)'$. If ($H(f(0)') = g(0)'$), then player P_1 realizes that all t players have performed the reconstruction phase honestly; otherwise, player P_1 believes that there is at least one corrupted player.

5 Correctness Proof of (t, n) threshold d-level QSS

Here, we prove the correctness of the proposed (t, n) threshold d-level QSS. We mainly focus on the correctness proof of Step 9 of secret reconstruction phase.

Lemma 1 If QFT^{-1} (as given in Equation 2) is applied to the first c-qubits, then the measurement of the output is secret $(f(0)')$.

Proof Applying QFT^{-1} to the first c-qubits provides the process of secret recovery as given below:
The original secret $f(0)'$ can be calculated using the Lagrange interpolation and Equation 7 as follows.

$$f(0)' = f(x_1) \prod_{1 \leq j \leq t, j \neq 1} \frac{x_j}{x_j - x_1} + \cdots + f(x_t) \prod_{1 \leq j \leq t, j \neq t} \frac{x_j}{x_j - x_t} \mod d$$

$$= (s_1 + \cdots + s_t) \mod d$$

(16)

Player P_1 applies QFT^{-1} to the first c-qubits.

$$QFT^{-1}\left(\frac{1}{\sqrt{d}} \sum_{k=0}^{d-1} e^{2\pi i (\frac{k^2 - 1}{d} + \frac{k}{d})} |k\rangle_H\right) = \frac{1}{\sqrt{d}} \sum_{k=0}^{d-1} e^{2\pi i (\frac{k^2 - 1}{d} + \frac{k}{d})} QFT^{-1} |k\rangle_H$$

$$= \left| \sum_{r=1}^{t} s_r \mod d \right>_H + \frac{1}{d} \sum_{l=0}^{d-1} 0. |l\rangle_H$$

$$= \left| \sum_{r=1}^{t} s_r \mod d \right>_H = |f(0)'\rangle_H$$

(17)

Therefore, if this protocol honestly is executed by t players, the reconstructor P_1 will get the original secret.
6 Simulation Results

In this protocol, the initiator P_1 applies QFT on the q-qubit state and executes $CNOT$ gate. Then, the ancillary qubit is sent to player P_2, who applies the oracle operator on the ancillary qubit. Thereafter, player P_2 sends the ancillary qubit to P_3 and player P_3 performs similar process. This process is performed $(t - 1)$ times. After that, the ancillary qubit is sent back to player P_1 by P_t. The player P_t performs $CNOT$ and QFT^{-1} to get the multiplication. In the secure multiparty quantum multiplication, the Hadamard gate is taken to be the QFT. After this, the initiator P_1 performs QFT on the c-qubit state and executes $CNOT$ gate. Then, $|k\rangle_T$ is sent to player P_2 who applies the oracle operator on $|k\rangle_T$. Thereafter, player P_2 sends $|k\rangle_T$ to P_3, who performs similar process. This process is performed $(t - 1)$ times. After that, the ancillary state $|k\rangle_T$ is sent back to player P_1 by P_t. Player P_1 performs $CNOT$ and QFT^{-1} to get the multiplication. We have executed this quantum protocol for (t,n) threshold secure multiparty multiplication using the following number of players and qubits:

- In simulations 1 – 3, we have considered three players with one qubit, three players with two qubits, and three players with three qubits, respectively, and got efficient result after taking 8192 number of average shots.
- In simulations 4 – 6, we have considered four players with one qubit, four players with two qubits, and four players with three qubits, respectively, and got efficient result after taking 8192 number of average shots.
- In simulations 7 – 9, we have considered fifteen players with one qubit, fifteen players with two qubits, and fifteen players with three qubits, respectively, and got efficient result after taking 8192 number of average shots.

We got efficient results of multiplication after taking 8192 number of average shots.

7 Results and Discussion

In this section, we discuss the security and performance analysis of the proposed (t,n) threshold QSS protocol based on some properties.

7.1 Security Analysis

Here, we analyze the outside (i.e., outside eavesdropper wants to steal the private information of all players) and participant (i.e., attack from one or more dishonest players) attacks. We discuss four types of outside attacks (i.e., Intercept-Resend (IR), Intercept, Entangle-Measure (EM) and Forgery) and two types of participant attacks (i.e., Collision and Collusion) [3,66,69,67,68].
7.1.1 Outside Attack

In this type of attack, an outside eavesdropper wants to steal the private information of all players. We discuss the Intercept-Resend (IR), Intercept, Entangle-Measure (EM) and Forgery attacks as follows.

Intercept-Resend (IR) Attack: In intercept-resend attack, a player measures the quantum state, which is sent by another player and replaces this state with his own state and then sends the replacement state to other players. In our proposed protocol, player P_1 sends the ancillary state $|k\rangle_T$ to dishonest player P_2 through an authenticated quantum channel and player P_2 wants to eavesdrop P_1’s shadow of the share s_1. If the ancillary state measured by dishonest player P_2 in computational basis $|0\rangle, |1\rangle, \ldots, |d-1\rangle$, the dishonest player P_2 can succeed to get $|l\rangle_T$ with the probability of $1/d$, but the output of the measurement k is totally independent of P_1’s share s_1. Further, player P_2 sends the state $|k\rangle_T$ to player P_3. Unfortunately, k does not possess any partial information about P_1’s shadow of the share s_1. The dishonest player P_2 cannot get any information from the intercepted state, and similarly the dishonest player P_3 cannot get any information from the transmitted state $|k\rangle_T$. So, the intercept-resend attack is infeasible.

Intercept Attack: In this attack, the dishonest player P_2 wants to eavesdrop P_1’s shadow of the share s_1. The dishonest player P_2 can measure the output of the unitary operator (transformed state) because, based on QFT, player P_2 knows that player P_1’s shadow of the share state $|s_1\rangle$ has evolved as the ancillary state $|k\rangle_T$. So, QFT^{-1} can be performed on the ancillary state $|k\rangle_T$ by dishonest player P_2 to reveal s_1. If the ancillary state measured by dishonest player P_2 in computational basis $|0\rangle, |1\rangle, \ldots, |d-1\rangle$, then P_2 can succeed to get $|l\rangle_T$ with the probability of $1/d$, but P_2 cannot get P_1’s shadow of the share, because the global information cannot be extracted from the limited number of qubits. The entangled systems cannot be disentangled by the limited number of qubits. So, the attacker cannot get any information about P_1’s shadow of the share.

Entangle-Measure (EM) Attack: The dishonest player P_2 performs a more complicated entangle-measure attack. Player P_2 prepares an ancillary state $|0\rangle_{P_2}$ that gets entangled with the transmitted state $|k\rangle_T$ using the local unitary operations. Then, player P_2 measures the entangle state to get the partial information about player P_1’s shadow of the share. After successful completion of honesty test, it can easily be deduced that $\eta_k = 1$. After performing U_{TP_2}, P_2 sends $|k\rangle_T$ back to P_1 and measures the ancillary system after execution of $CNOT^{\otimes c}$ operation by player P_1. If player P_2 measures the ancillary state $|\phi(k)\rangle_{P_2}$, P_2 cannot get any information about P_1’s shadow of the share s_1 because of entanglement of $|k\rangle_H$ and $|\phi(k)\rangle_{P_2}$. So, this attack is also infeasible.
Forgery Attack: In forgery attack, the participants can execute the protocol with the fake shares. The proposed QSS protocol can prevent the forgery attack, which is one of the important issues, where the participants can provide the fake shares. If any dishonest player performs the Pauli operator with the fake shadow, the original secret cannot be reconstructed correctly. In the proposed protocol, player P_1 uses the hash function $SHA1$ to compute the hash value $H(f(0)'')$ and compares it with the hash value $g(0)'$. If ($H(f(0)'') = g(0)'$), then P_1 shares the secret with other $t-1$ players; otherwise, P_1 realizes that at least one player performs the reconstruction phase dishonestly and terminates the reconstruction phase. So, the forgery attack is not possible in our quantum (t,n) threshold QSS protocol.

7.1.2 Participant Attack

This type of attack is performed by one or more dishonest players to reveal the secret information.

Collision (attack from one) Attack: In collision attack, the attacker performs an attack on the hash function, where the hash function produces the same hash value for two different inputs. Many existing QSS protocols cannot prevent the collision attack. In [60], Alice (dealer) selects Bob_1 as a trusted reconstructor from the set of participants $B = \{Bob_1, Bob_2, ..., Bob_n\}$ and then selects a hash function $SHA1$ to compute the hash value of the secret (which is to be shared). Then, Alice sends this hash value to the trusted reconstructor Bob_1. At this point, Bob_1 can perform collision attack to reveal the secret. So, the security of their protocol is dependent on the trusted reconstructor Bob_1. In our protocol, the dealer D computes the hash value $H(S)$ using the $SHA1$ hash function and shares it among n players. Therefore, the reconstructor P_1 does not have any information about the hash value and he cannot perform the collision attack.

Collusion (attack from more than one dishonest players) Attack: In collusion attack, some players can collude together to get the shadow of the share of other player. In order to get the private information of P_e, players P_{e-1} and P_{e+1} perform the protocol dishonestly. In our proposed protocol, players P_{e-1} and P_{e+1} cannot perform the collusion attack because the unitary operation is performed by each participant with his private information. Moreover, this private information is not transmitted through a quantum channel.

7.2 Performance Analysis

We analyze and compare the performance of the proposed QSS protocol with the existing QSS protocols, i.e., Li et al.’s QSS [11], Yang et al.’s QSS [24], Qin et al.’s QSS [40], Song et al.’s QSS [60], and Qin et al.’s QSS [39] in terms of three parameters: universality, cost, and attack. Li et al.’s QSS protocol
An Efficient Simulation of Quantum Secret Sharing

1 is \((t, n)\) threshold scheme, but it is not for \(d\)-level particle. Yang et al.’s QSS protocol [74] is for \(d\)-level particle, but this protocol is \((n, n)\) threshold scheme. Qin et al.’s QSS protocol [40] is \((t, n)\) threshold scheme, but it is not for \(d\)-level particle. Song et al.’s QSS protocol [60] is for \(d\)-level particle, and also it is \((t, n)\) threshold scheme. Song et al.’s QSS protocol [60] can prevent the IR, EM, forgery attacks, but it cannot prevent the collision attack. Qin et al.’s QSS protocol [39] is for \(d\)-level particle and \(cn\) qubits, but this protocol is \((n, n)\) threshold scheme. Here, we have compared the proposed QSS protocol with six existing protocols in terms of the communication cost and computation cost. The communication cost can be computed based on the transmitted particles, i.e., message particles and decoy particles. The computation cost can be computed based on five parameters: \(QFT\), \(U\) operation, \(QFT^{-1}\), measure operation, and hash operation. The Li et al.’s QSS protocol [1] needs to perform \(t(2t - 1)\) number of \(U\) operations, \(t\) number of measure operations, needs to transmit \(t(t + 1)\) number of messages, and \(z(t + 1)\) number of decoy particles, where \(z\) is the number of decoy particles. The Yang et al.’s protocol [74] needs to perform \(n\) number of \(QFT\), \(n\) number of \(U\) operations, \(n\) number of measure operations, and needs to transmit \((n - 1)\) number of message particles. The Qin et al.’s protocol [40] needs to perform \(t(t + 1)\) number of \(U\) operations, needs to transmit \(t(t + 1)\) number of messages, and \(z(t + 1)\) number of decoy particles. The Song et al.’s protocol [60] needs to perform \(1\) number of \(QFT\), \(t\) number of \(U\) operations, \(1\) number of \(QFT^{-1}\), \(1\) number of measure operations, \(2\) number of hash operations and needs to transmit \((t - 1)\) number of message particles. The Qin et al.’s protocol [39] needs to perform \(1\) number of \(QFT\), \(t(t + 1) + n\) number of \(U\) operations, \(1\) number of \(QFT^{-1}\), \(n\) number of measure operations, and needs to transmit \(n\) number of message particles as well as \(z(t + 1)\) number of decoy particles. Our proposed protocol needs to perform \(1\) number of \(QFT\), \((t - 1)\) number of \(U\) operations, \(1\) number of \(QFT^{-1}\), \(2\) number of hash operations, and needs to transmit \(t\) number of decoy particles. So, the complexity of our proposed protocol is less as compared to the existing QSS protocols.

8 Conclusion

In this paper, we discussed a secret-sharing protocol in which \(t\) players can reconstruct the secret without the help of a trusted player. In comparison to existing QSS protocols, our protocol is more secure, versatile, and practical. The reconstructor \(P_1\) only knows his share and nothing else; even the secret’s hash value is unknown to him. Since the reconstructor \(P_1\) only knows his share, it cannot perform the collision attack.
Ethical Statement

This article does not contain any studies with human or animal subjects performed by any of the authors. The manuscript has been prepared following the instructions provided in the Authors Guidelines of the journal.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

1. Bao-Kui, L., Yu-Guang, Y., Qiao-Yan, W.: Threshold quantum secret sharing of secure direct communication. Chinese Physics Letters 26(1), 010302 (2009)
2. Bennett, C.H., Brassard, G.: An update on quantum cryptography. In: Workshop on the Theory and Application of Cryptographic Techniques, pp. 475–480. Springer (1984)
3. Cai, X.Q., Wang, T.Y., Wei, C.Y., Gao, F.: Cryptanalysis of multiparty quantum digital signatures. Quantum Information Processing 18(8), 252 (2019)
4. Charoghchi, S., Mashhadi, S.: Three (t, n)-secret image sharing schemes based on homogeneous linear recursion. Information Sciences 552, 220–243 (2021)
5. Chen, X.B., Sun, Y.R., Xu, G., Yang, Y.X.: Quantum homomorphic encryption scheme with flexible number of evaluator based on (k, n)-threshold quantum state sharing. Information Sciences (2019)
6. Chen, X.B., Wang, Y.L., Xu, G., Yang, Y.X.: Quantum network communication with a novel discrete-time quantum walk. IEEE Access 7, 13634–13642 (2019)
7. Dan, L., SHI, R.h., ZHANG, S., ZHONG, H.: Efficient anonymous roaming authentication scheme using certificateless aggregate signature in wireless network. Journal on Communications 37(7), 182 (2016)
8. Dehkordi, M.H., Mashhadi, S.: An efficient threshold verifiable multi-secret sharing. Computer Standards & Interfaces 30(3), 187–190 (2008)
9. Dehkordi, M.H., Mashhadi, S.: New efficient and practical verifiable multi-secret sharing schemes. Information Sciences 178(9), 2262–2274 (2008)
10. Dehkordi, M.H., Mashhadi, S.: Verifiable secret sharing schemes based on non-homogeneous linear recursions and elliptic curves. Computer Communications 31(9), 1777–1784 (2008)
11. Dehkordi, M.H., Mashhadi, S., Oraei, H.: A proactive multi stage secret sharing scheme for any given access structure. Wireless Personal Communications 104(1), 491–503 (2019)
12. Eastlake, D., Jones, P.: Us secure hash algorithm 1 (sha1) (2001)
13. Gyongyosi, L., Imre, S.: Quantum circuit design for objective function maximization in gate-model quantum computers. Quantum Information Processing 18(7), 1–33 (2019)
14. Hao, C., Wenping, M.: (t, n) threshold quantum state sharing scheme based on linear equations and unitary operation. IEEE Photonics Journal 9(1), 1–7 (2017)
15. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Physical Review A 59(3), 1829 (1999)
16. Kao, S.H., Hwang, T.: Comment on (t, n) threshold d-level quantum secret sharing. arXiv preprint arXiv:1801.00216 (2018)
17. Karimifard, Z., Mashhadi, S., EBRAHIMI, B.D.: Semiquantum secret sharing using three particles without entanglement (2016)
18. Lau, H.K., Weedbrook, C.: Quantum secret sharing with continuous-variable cluster states. Physical Review A 88(4), 042313 (2013)
19. Lo, H.K., Spiller, T., Popescu, S.: Introduction to quantum computation and information. World Scientific (1998)
20. Lu, C., Miao, F., Hou, J., Meng, K.: Verifiable threshold quantum secret sharing with sequential communication. Quantum Information Processing 17(11), 310 (2018)
21. Luo, Z.y., Shi, R.h., Xu, M., Zhang, S.: A novel quantum solution to privacy-preserving nearest neighbor query in location-based services. International Journal of Theoretical Physics 57(4), 1049–1059 (2018)
22. Mashhadi, S.: Analysis of frame attack on hsu et al.s non-repudiable threshold multi-proxy multi-signature scheme with shared verification. Scientia Iranica 19(3), 674–679 (2012)
23. Mashhadi, S.: A novel secure self proxy signature scheme. IJ Network Security 14(1), 22–26 (2012)
24. Mashhadi, S.: A novel non-repudiable threshold proxy signature scheme with known signers. IJ Network Security 15(4), 274–279 (2013)
25. Mashhadi, S.: Computationally secure multiple secret sharing: Models, schemes, and formal security analysis. ISecure 7(2) (2015)
26. Mashhadi, S.: Analysis of warrant attacks on some threshold proxy signature schemes. Journal of Information Processing Systems 12(2), 249–262 (2016)
27. Mashhadi, S.: How to fairly share multiple secrets stage by stage. Wireless Personal Communications 90(1), 93–107 (2016)
28. Mashhadi, S.: Share secrets stage by stage with homogeneous linear feedback shift register in the standard model. Security and Communication Networks 9(17), 4495–4504 (2016)
29. Mashhadi, S.: New multi-stage secret sharing in the standard model. Information Processing Letters 127, 45–48 (2017)
30. Mashhadi, S.: Secure publicly verifiable and proactive secret sharing schemes with general access structure. Information sciences 378, 99–108 (2017)
31. Mashhadi, S.: General secret sharing based on quantum fourier transform. Quantum Information Processing 18(4), 114 (2019)
32. Mashhadi, S.: A csa-secure multi-secret sharing scheme in the standard model. Journal of Applied Security Research 15(4), 84–95 (2020)
33. Mashhadi, S.: Improvement of a (t, n) threshold d-level quantum secret sharing scheme. Journal of Applied Security Research pp. 1–12 (2020)
34. Mashhadi, S.: Toward a formal proof for multi-secret sharing in the random oracle model. Information Security Journal: A Global Perspective 29(5), 244–249 (2020)
35. Mashhadi, S., Dehkordi, M.H.: Two verifiable multi secret sharing schemes based on nonhomogeneous linear recursion and lfsr public-key cryptosystem. Information Sciences 294, 31–40 (2015)
36. Mashhadi, S., Dehkordi, M.H., Kiamari, N.: Provably secure verifiable multi-stage secret sharing scheme based on monotone span program. IET Information Security 11(6), 326–331 (2017)
37. Nielsen, M.A., Chuang, I.: Quantum computation and quantum information (2002)
38. Peng, Z.w., Shi, R.h., Wang, P.h., Zhang, S.: A novel quantum solution to secure two-party distance computation. Quantum Information Processing 17(6), 1–12 (2018)
39. Qin, H., Tso, R., Dai, Y.: Multi-dimensional quantum state sharing based on quantum fourier transform. Quantum Information Processing 17(3), 48 (2018)
40. Qin, H., Zhu, X., Dai, Y.: (t, n) threshold quantum secret sharing using the phase shift operation. Quantum Information Processing 14(8), 2997–3004 (2015)
41. Run-Hua, S., Liu-Sheng, H., Wei, Y., Hong, Z.: An efficient scheme for multiparty multi-particle state sharing. Communications in Theoretical Physics 54(1), 93 (2010)
42. Run-Hua, S., Liu-Sheng, H., Wei, Y., Hong, Z.: A novel multiparty quantum secret sharing scheme of secure direct communication based on bell states and bell measurements. Chinese Physics Letters 28(S5), 050303 (2011)
43. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613 (1979)
44. Shi, R., Huang, L., Yang, W., Zhong, H.: Quantum secret sharing between multiparty and multiparty with bell states and bell measurements. SCIENCE CHINA Physics, Mechanics and Astronomy 53(12), 2238–2244 (2010)
45. Shi, R., Zhang, Y., Zhong, H., Cui, J., Zhang, S.: Data integrity checking protocol based on secure multiparty computation. In: Wireless Communications, Networking and Applications, pp. 873–882. Springer (2016)
46. Shi, R.H.: Efficient quantum protocol for private set intersection cardinality. IEEE Access 6, 73102–73109 (2018)
47. Shi, R.h., Huang, L.s., Yang, W., Zhong, H.: Efficient symmetric five-party quantum state sharing of an arbitrary m-qubit state. International Journal of Theoretical Physics 50(11), 3529–3536 (2011)
48. Shi, R.h., Huang, L.s., Yang, W., Zhong, H.: Multi-party quantum state sharing of an arbitrary two-qubit state with bell states. Quantum Information Processing 10(2), 231–239 (2011)
49. Shi, R.H., Huang, L.S., Yang, W., Zhong, H.: Novel and effective secret sharing scheme. Journal of China Institute of Communications 33(1), 10–16 (2012)
50. Shi, R.h., Mu, Y., Zhong, H., Cui, J., Zhang, S.: An efficient quantum scheme for private set intersection. Quantum Information Processing 15(1), 363–371 (2016)
51. Shi, R.h., Mu, Y., Zhong, H., Cui, J., Zhang, S.: Secure multiparty quantum computation for summation and multiplication. Scientific reports 6(1), 1–9 (2016)
52. Shi, R.h., Mu, Y., Zhong, H., Zhang, S.: Quantum oblivious set-member decision protocol. Physical Review A 92(2), 022309 (2015)
53. Shi, R.h., Mu, Y., Zhong, H., Zhang, S.: Comment on secure quantum private information retrieval using phase-encoded queries. Physical Review A 94(6), 066301 (2016)
54. Shi, R.h., Mu, Y., Zhong, H., Zhang, S., Cui, J.: Quantum private set intersection cardinality and its application to anonymous authentication. Information Sciences 370, 147–158 (2016)
55. Shi, R.H., Zhang, S.: Quantum solution to a class of two-party private summation problems. Quantum Information Processing 16(9), 1–9 (2017)
56. Shi, R.H., Zhong, H.: Asymmetric multiparty-controlled teleportation of arbitrary n-qubit states using different quantum channels. In: International Conference on Theoretical and Mathematical Foundations of Computer Science, pp. 337–344. Springer (2011)
57. Shi, R.h., Zhong, H.: Multiparty quantum secret sharing with the pure entangled two-photon states. Quantum Information Processing 11(1), 161–169 (2012)
58. Shi, R.H., Zhong, H.: Multi-party quantum key agreement with bell states and bell measurements. Quantum information processing 12(2), 921–932 (2013)
59. Shi, R.h., Zhong, H., Zhang, S.: Comments on two schemes of identity-based user authentication and key agreement for mobile client–server networks. The Journal of Supercomputing 71(11), 4015–4018 (2015)
60. Song, X.L., Liu, Y.B., Deng, H.Y., Xiao, Y.G.: (t, n) threshold d-level quantum secret sharing. Scientific reports 7(1), 6306 (2017)
61. Sun, Z., Song, L., Huang, Q., Yin, L., Long, G., Lu, J., Hanzo, L.: Toward practical quantum secure direct communication: A quantum-memory-free protocol and code design. IEEE Transactions on Communications 68(9), 5778–5792 (2020)
62. Sutradhar, K., Om, H.: Efficient quantum secret sharing without a trusted player. Quantum Information Processing 19(2), 1–15 (2020)
63. Sutradhar, K., Om, H.: A generalized quantum protocol for secure multiparty summation. IEEE Transactions on Circuits and Systems II: Express Briefs 67(12), 2978–2982 (2020)
64. Sutradhar, K., Om, H.: Hybrid quantum protocols for secure multiparty summation and multiplication. Scientific Reports 10(1), 1–9 (2020)
65. Sutradhar, K., Om, H.: An efficient simulation for quantum secure multiparty computation. Scientific Reports 11(1), 1–9 (2021)
66. Ting-Ting, S., Jie, Z., Fei, G., Qiao-Yan, W., Fu-Chen, Z.: Participant attack on quantum secret sharing based on entanglement swapping. Chinese Physics B 18(4), 1333 (2009)
67. Wang, T.Y., Li, Y.P.: Cryptanalysis of dynamic quantum secret sharing. Quantum information processing 12(5), 1991–1997 (2013)
68. Wang, T.Y., Liu, Y.Z., Wei, C.Y., Cai, X.Q., Ma, J.F.: Security of a kind of quantum secret sharing with entangled states. Scientific reports 7(1), 2485 (2017)
69. Wang, T.Y., Wen, Q.Y.: Security of a kind of quantum secret sharing with single photons. Quantum Information & Computation 11(5), 434–443 (2011)
70. Wang, T.y., Wen, Q.y., Gao, F., Lin, S., Zhu, F.c.: Cryptanalysis and improvement of multiparty quantum secret sharing schemes. Physics Letters A 373(1), 65–68 (2008)
71. Xu, G., Chen, X.B., Dou, Z., Li, J., Liu, X., Li, Z.: Novel criteria for deterministic remote state preparation via the entangled six-qubit state. Entropy 18(7), 267 (2016)
72. Xu, G., Xiao, K., Li, Z., Niu, X.X., Ryan, M.: Controlled secure direct communication protocol via the three-qubit partially entangled set of states. Comput. Mater. Continua 58(3), 809–827 (2019)
73. Xu, M., Shi, R.h., Luo, Z.y., Peng, Z.w.: Nearest private query based on quantum oblivious key distribution. Quantum Information Processing 16(12), 1–12 (2017)
74. Yang, W., Huang, L., Shi, R., He, L.: Secret sharing based on quantum fourier transform. Quantum information processing 12(7), 2465–2474 (2013)
75. Zhang, R., Shi, R.h., Qin, J.q., Peng, Z.w.: An economic and feasible quantum sealed-bid auction protocol. Quantum Information Processing 17(2), 1–14 (2018)