OPEN LETTER
How modelling can help steer the course set by the World Health Organization 2021-2030 roadmap on neglected tropical diseases [version 1; peer review: awaiting peer review]

Jessica Clark1,2, Wilma A. Stolk3, María-Gloria Basáñez4,5, Luc E. Coffeng3, Zulma M. Cucunubá4,5, Matthew A. Dixon5,6, Louise Dyson7,8, Katie Hampson2, Michael Marks9,10, Graham F. Medley11, Timothy M. Pollington1,7, Joaquin M. Prada12, Kat S. Rock7, Henrik Salje13, Jaspreet Toor5, T. Déirdre Hollingsworth1

1Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Old Road Campus, Headington, Oxford, OX3 7LF, UK
2Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
3Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3000 CA, The Netherlands
4London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
5MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
6Schistosomiasis Control Initiative Foundation, London, SE11 5DP, UK
7Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK
8School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
9Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
10Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
11Centre for Mathematical Modelling of Infectious Disease, London School of Hygiene & Tropical Medicine, 15-17 Tavistock Place, London, WC1H 9SH, UK
12School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7AL, UK
13Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK

First published: 27 Jul 2021, 5:112
https://doi.org/10.12688/gatesopenres.13327.1
Latest published: 27 Jul 2021, 5:112
https://doi.org/10.12688/gatesopenres.13327.1

Abstract
The World Health Organization recently launched its 2021-2030 roadmap, Ending the Neglect to Attain the Sustainable Development Goals, an updated call to arms to end the suffering caused by neglected tropical diseases. Modelling and quantitative analyses played a significant role in forming these latest goals. In this collection, we discuss the insights, the resulting recommendations and identified challenges of public health modelling for 13 of the target diseases: Chagas disease, dengue, gambiense human African trypanosomiasis (gHAT), lymphatic filariasis (LF), onchocerciasis, rabies, scabies, schistosomiasis, soil-transmitted helminthiases (STH),
Corresponding author: Jessica Clark (jessica.clark@glasgow.ac.uk)

Author roles: Clark J: Conceptualization, Writing – Original Draft Preparation, Writing – Review & Editing; Stolk WA: Conceptualization, Writing – Original Draft Preparation, Writing – Review & Editing; Basáñez MG: Writing – Original Draft Preparation, Writing – Review & Editing; Coffeng LE: Writing – Original Draft Preparation, Writing – Review & Editing; Cucunubá ZM: Writing – Original Draft Preparation, Writing – Review & Editing; Dixon MA: Writing – Original Draft Preparation, Writing – Review & Editing; Dyson L: Writing – Original Draft Preparation, Writing – Review & Editing; Hampson K: Writing – Original Draft Preparation, Writing – Review & Editing; Marks M: Writing – Original Draft Preparation, Writing – Review & Editing; Medley GF: Writing – Original Draft Preparation, Writing – Review & Editing; Pollington TM: Writing – Original Draft Preparation, Writing – Review & Editing; Prada JM: Writing – Original Draft Preparation, Writing – Review & Editing; Rock KS: Writing – Original Draft Preparation, Writing – Review & Editing; Salje H: Writing – Original Draft Preparation, Writing – Review & Editing; Toor J: Writing – Original Draft Preparation, Writing – Review & Editing; Hollingsworth TD: Conceptualization, Funding Acquisition, Supervision, Writing – Original Draft Preparation, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: This work was supported by the Bill and Melinda Gates Foundation through the Neglected Tropical Disease (NTD) Modelling Consortium (OPP1184344). JT acknowledges funding from the Medical Research Council (MRC) Centre for Global Infectious Disease Analysis (reference MR/R015600/1), jointly funded by the UK MRC and the UK Foreign, Commonwealth & Development Office (FCDO), under the MRC/FCDO Concordat agreement and is also part of the European and Developing Countries Clinical Trials Partnership (EDCTP2) programme supported by the European Union. MGB and MAD acknowledge joint centre funding (grant No. MR/R015600/1) by the UK MRC and the UK Department for International Development (DFID) under the MRC/DFID Concordat agreement which is also part of the EDCTP2 programme supported by the European Union.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2021 Clark J et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Clark J, Stolk WA, Basáñez MG et al. How modelling can help steer the course set by the World Health Organization 2021-2030 roadmap on neglected tropical diseases [version 1; peer review: awaiting peer review] Gates Open Research 2021, 5:112 https://doi.org/10.12688/gatesopenres.13327.1

First published: 27 Jul 2021, 5:112 https://doi.org/10.12688/gatesopenres.13327.1
Neglected tropical diseases continue to affect over one billion people as the result of the considerable inequalities in global healthcare systems that fail to support those most in need. The burden of NTDs falls largely on the poorest communities, resulting in an unrelenting cycle of poverty that is driven by negative social, health and economic impacts of infection on individuals and families, augmenting existing social divides. For infections with a substantial zoonotic component, morbidity and mortality among livestock also affect people’s livelihood with economic impacts that transcend medical implications. Notable progress to reduce the burden of NTDs has been made as a result of the commitments made in 2012 through the WHO 2020 NTD Roadmap and the London Declaration on NTDs. As a result, 500 million people no longer require interventions against several NTDs and 40 countries, territories and areas have eliminated at least one disease. These wins are the outcome of concerted and consolidated efforts from endemic communities and invaluable volunteers, governments, donor agencies and the pharmaceutical industry. Despite such early gains, reaching the endgame presents some of the greatest challenges – namely sustaining those early gains whilst identifying and averting small numbers of sparsely distributed cases. The 2030 roadmap is shaped around three pillars that aim to support global efforts to maintain the gains, address the challenges and ultimately combat NTDs: 1. Accelerating programmatic action. 2. Intensifying cross-cutting approaches and 3. Shifting operating models and culture to facilitate in country ownership.

The use of mathematical and statistical modelling in NTD research and policy has until recently, and with a few exceptions (e.g., onchocerciasis), lagged behind other groups of infectious diseases that receive more focus and funding (often, diseases that impact wealthier individuals and nations, or those perceived to potentially impact these). However, this is changing with the advent of groups like the NTD Modelling Consortium, who have developed the Policy-Relevant Items for Reporting Models in Epidemiology of Neglected Tropical Diseases (PRIME-NTD) principles, as a guide to communicate the quality and relevance of modelling to stakeholders. This has added clout to the call for modelling in the policy arena as well as setting a high bar of best practice for the wider modelling community. Having now gained significant traction, the use of modelling in NTD policy has contributed to new interventional tools, vector control strategies, shaped policy responding to COVID-19-related programme disruptions and has aided in the development of WHO guidelines. For this positive relationship to continue, it is imperative to invest in a mutual understanding through ongoing conversation between policy-makers and modellers, to determine what kind of questions are the “right” questions, how to interpret uncertainty and what the models can and cannot be used for.

This piece introduces a collection of papers borne of a meeting in Geneva, in April 2019 attended, among others, by the NTD Modelling Consortium and convened by the WHO: Achieving NTD control, Elimination and Eradication Targets Post-2020; Modelling Perspectives & Priorities. As new management targets and strategies took shape, the meeting provided policy makers and modellers the space to ask and answer specific questions regarding the proposed 2030 goals and the intended strategies to achieve them. Although the roadmap covers a range of diseases with diverse epidemiologies and differing management recommendations, the priority questions identified by modelers and stakeholders during the 2019 meeting and echoed by the authors of the technical commentaries shared three similar themes that should be considered in NTD modelling moving forward: timelines, programme design, and clinical study design.

Timelines
Goals are only worth setting in the context of time. It is therefore not surprising that many of the technical commentaries in this collection identified timelines as a priority issue. The public health and economic benefits of reaching goals are innumerable but can only be achieved by the target year through appropriate mobilisation of diverse resources. Modelling in the forms of past inference and forward projections can align many moving parts (for example epidemiological, demographic, and social considerations) to inform our understanding of the reasons why programmes succeed or fail. Forecasts have played a crucial role in understanding whether the 2020 and associated collection, 2025 and 2030 goals can be reached under current strategies with the caveat that long-term predictions naturally become more uncertain.

In some instances, whether a goal can or will be met on time is relatively easy to ascertain – for example it is a resounding no for leprosy and rabies, which are hindered by passive case control, long quiescent incubation periods, and inadequate investment in interventions. Alternatively, the...
goals for schistosomiasis31, STH1, and onchocerciasis33 seem achievable in some or most settings, depending on localised parameters like baseline prevalence, and already experienced duration of and adherence to mass drug administration (MDA) programmes. In the case of \textit{T. solium}, a lack of internationally agreed goals for elimination or control curtails the ability to effectively model timelines; for example, the 2021-2030 NTD roadmap proposes the overall milestone of achieving “intensified control in hyperendemic areas”, without agreeing on technical definitions for \textit{T. solium} endemicity levels, or defining measurable criteria for attaining “intensified” control14.

Programme design

The diseases considered by the London Declaration and WHO roadmaps are at differing stages in their trajectories. Whilst some are on the cusp of achieving their goals, others face political and epidemiological barriers to progress. Both scenarios raise several priority questions regarding programme design, where ‘programme’ can mean intervention or surveillance. In addition to determining success or failure within the defined intervention time frames, modelling has provided insights into key factors of operational design like the treatment coverage necessary to reach goals in a given setting. Where it may not be possible, models can be used to test the efficacy of separate and combined chemotherapeutic17 and non-pharmaceutical interventions34,45,46, including combined interventions that target multi-host systems for zoonotic NTDs47. Additionally, deciding the optimal timing48 or frequency46,49 of treatment, and knowing who to treat50,51 are essential to the success of all interventions. Of course, the intervention strategies most likely to lead to achievement of the goals may not be sustainable in terms of cost to individuals, governments, or donors. By partnering highly detailed transmission models with cost-effectiveness analysis, modelling can also contribute to tailored insights regarding the affordability and benefits versus costs of interventions32,42. Models can also be used to explore integration between NTD programmes, or to understand the potential cross-utility of existing NTD programmes on other helminth species, such as exploring the additional benefit of national schistosomiasis control programmes using praziquantel on \textit{T. solium} prevalence in co-endemic areas14. Understanding this cross-utility is vital to intensifying cross-cutting approaches – one of the three core pillars of the roadmap, that differentiates the framework from its predecessor.

These are all very practical features of intervention programmes that can in principle be planned for, but underlying features of target populations and human nature can undermine these plans. Survey data in recent years have made it evident that whilst the aim may be to deliver treatment at a certain geographical and therapeutic coverage, it is not analogous with consumption, as treatment is systematically not ingested by some33,54, or is not disseminated to the full intended group, reducing the true coverage. There are a variety of reasons for this53,56, but it is likely that similar mechanisms impact participation in surveillance, therefore biasing the estimates of prevalence, particularly when treatment and surveillance are co-occurring (e.g., gHAT62, rabies57,68). Modelling shows that the impact of this variable true coverage depends on the pathogen in question and transmission intensity60,69-71 but it undoubtedly has an impact on reaching public health goals23,73.

Once a strategy has been deemed effective and prevalence targets are attained, it is likely that these interventions either transition, such as going from MDA to identified case management, or they stop all together. Establishing robust surveillance strategies at this point is vital, but obviously not everyone can be regularly sampled and not every incident infection case will be detected. Stochastic events like reinfection and reintroduction are risks that can drive resurgence. Modelling can support the identification of the optimal surveillance strategy and determine which prevalence or intensity indicators need to be monitored to ensure the desired public health goal74-76, although challenges remain in developing long-term strategies77. Modelling can make useful contributions in developing sustainable, effective interventions and surveillance strategies and should therefore be included in any programmatic design from the start. As embodied by the 2021-2030 NTD roadmap, impactful interventions cannot be achieved by working in silos, but instead require continuous communication between all parties of an interdisciplinary team.

Drug development and clinical study design

Though modelling is increasingly used in public health decision making, the use of modelling to direct clinical trial design and drug development is not so common, and even less so for NTDs. To reach goals like elimination as a public health programme (trachoma, STH, schistosomiasis and LF) and elimination of transmission (onchocerciasis) novel drug development will be critical1,4,5,9,11,13,78. However, financial returns on investments into NTDs are limited and therefore largely unappealing, particularly because of the heavy reliance by endemic nations, on donations from pharmaceutical producers. Increased use of mathematical modelling could reduce the financial waste associated with the drug-development-to-distribution-pipeline79. If we consider this pipeline in three parts; pre-clinical, clinical trial and distribution, it is clear that modelling can provide valuable insight at each stage. Onchocerciasis and LF have recently benefited from pharmacokinetic-pharmacodynamics modelling, translating pre-clinical non-human experimental results into quantitative insights relevant to human treatment79. Clinical trial simulations are designed to include all aspects of a clinical trial protocol including (but not limited to) recruitment criteria, drug properties/ effectiveness and follow-up times10, providing valuable guidance that translates into more effective, efficient, cost-efficient and robust clinical trials. In addition to providing insight into the optimal distribution of new drugs3, rethinking the distribution of existing drugs to achieve public health targets can also be guided by modelling75,78.

Challenges

Modelling has certainly addressed many of the key questions asked of modellers at the 2019 meeting3. However, cross-disease challenges remain3. The most common of these, highlighted by all groups involved in the meeting
report2 and this collection, is undoubtedly a lack of data or poor data quality. This could be because certain parameters simply cannot be measured; because of vast heterogeneity or because they have yet to be collected85. For example, VL has a highly variable incubation period, unknown duration of asymptomatic infection and estimates for the duration of lasting immunity are ill-defined84,85, introducing uncertainty into the temporal dynamics underlying any projections. Chagas disease, gHAT and leprosy also suffer from indeterminate incubation periods81,82,83 impacting case detection and adding greater uncertainty in epidemiological estimates fitted to by models85,86. Asymptomatic or pre-symptomatic infection is common of many NTDs and presents a significant challenge to their management. For example, asymptomatic VL infections cannot be treated, whereas it is possible to treat asymptomatic gHAT but only if it is able to be detected. Identifying their respective proportions in an infected population, particularly in the absence of high surveillance coverage, means accounting for this group using roundabout methods and proxy diagnostics8,9.

Many diagnostics are indirect, proxy measures of case detection, often with less than perfect sensitivity or specificity9,84,85, and have a direct effect on perceived prevalence and individual burdens of infection85,89. Given that models are only as good as the data to which they are fitted, this has a significant impact on the utility of model results. For example, in the instances of STH and intestinal schistosomiasis (Schistosoma mansoni), WHO targets are given in terms of eggs per gram of faecal matter as detected with the Kato-Katz method, which notoriously suffers from poor sensitivity, particularly for low intensity infections10, invariably underestimating prevalence. Where a multi-host system is present for zoonotic NTDs, though it is possible to measure infection through direct observation of parasite stages in the animal host(s)11, via necropsy or other methods10,85, it is likely that this approach is inappropriate for monitoring and evaluating the likes of T. solium control programmes, due to the large animal sample sizes required to detect a statistically meaningful impact on transmission, especially in low prevalence settings12. Molecular xenomonitoring (testing vectors for the parasite instead of human hosts) for LF and onchocerciasis has shown promise11 but operational research gaps remain, impacting large-scale utilisation11. Reconciling these different streams of imperfect diagnostic data will be key to their utility in modelling and indeed to reaching and sustaining public health goals.

The operational units over which epidemiological data are collected, and projections made are also often over somewhat arbitrary administrative borders that infectious diseases do not adhere to. For rabies, non-spatial models are inadequate for capturing the low-endemicity incidence rates15 such that more data-intensive modelling approaches are required. In addition to questionable detection success, VL surveillance has operated over geographical units that are too large to evaluate the success of control methods8, despite modelling showing that transmission is highly localised over smaller spatial scales (i.e. 85% of inferred transmission distances ≤300m)96. Similarly for onchocerciasis, modelling shows that the rate at which interventions can be scaled down depend strongly on the spatial units of assessment3,96. Clustering of T. solium porcine cysticercosis around human taeniasis carriers, particularly evident in South American communities, demonstrates the need for spatially explicit models in certain settings81,97, such as the recently developed CystiAgent model for Peru88, capable of testing spatially structured interventions. From this it is evident that whilst spatial heterogeneity requires nuanced model structure, the leading challenge here is the paucity of data at the spatial level necessary to parameterise the models for spatially relevant insights. This will become ever more important as all NTDs move towards low-prevalence and spatially-heterogenous incidence patterns.

The assumptions made to overcome these uncertainties often differ across models – which then produce differing results. Whilst this is somewhat overcome by the practice of model comparison86,100, which highlights important biological and population processes that impact epidemiological trajectories, these unknowns wave a clear flag for collaborative opportunities between modellers, field epidemiologists and clinicians. Indeed, the optimal working relationship is a synergistic pathway, where the model’s needs drive data collection, the data shapes further model iterations, and these then inform policy and the outcomes at the programmatic and clinical level81,82,83,85,101–103. Improving communication between these groups is critical to achieving the desired public health gains85.

\textbf{Conclusion}
The increased use of mathematical and statistical modelling over the last decade has helped move the field of NTDs into a more quantitative space, providing the link between epidemiological concepts and observed reality. For modelling to continue to fill this role and influence decision-making, ongoing conversations and engagement between all parties will be paramount. These will, in turn, overcome the continuous challenges of data quality and access, and the consequent model assumptions required. As programme and disease management move towards a country-ownership framework under the new roadmap, it will be key that modelling follows suit, overcoming systematic notions of knowledge ownership and challenging associated power dynamics104,112. In this way, future modelling will work to support this new NTD landscape.

\textbf{Data availability}
No data are associated with this article.

\textbf{Acknowledgements}
We would like to acknowledge all of those who contributed to the pieces within this collection. We list them here in alphabetical order: Fernando Abad-Franch30,42, Bernadette Abela-Ridder23, Emily Adams86, Maryam Aliie83,85, Marina
Antillon16,51, Benjamin F. Arnold1, Robin L. Bailey19, Seth Blumberg1, Anna Borlase1, Uffe C Braae4,49, Maria Soledad Castaño16,51, Joel Changalucha28, Nakul Chitnis16,51, Sarah Cleaveland30, Ronald E Crump33,35, Derek A.T. Cummings13, Christopher Davis33,35, Emma L. Davis33,35, Michael Deiner7, Brecht Devleeschauwer12,29, Andy P Dobson14, Daniel Engelmann49, Neil Ferguson2, Claudio Fronterre1, Sarah Gabriel16, Federica Giardina31, William Godwin1, Sébastien Gourbière48, Jonathan I D Hamley17,39, Wendy E Harrison49, Alex Holmes18, Ching-I Huang18,35, Maria V Johansen13, John Kaldor16, Matt J. Keeling48,49,51, Charles H. King1, Lea Knopf2, Periklis Kontoroupis31, Epke A. Le Rutte21, Justin Lessler24, Michael Z Levy53, Thomas M. Lietman1, Kenneth Lushas12,29, Mary Veronica Malizia21, Jodie McVernon38,49, Edwin Michael11, Philip Milton17,36, Elizabeth Miranda29, Eric Q. Moorring17, Pierre Nouvellet12, David Pigott44, Travis C. Porco1, Jorge E. Rabinovich3, Sylvia Ramiandrasoa41, Isabel Rodriguez-Barraquer2, Kristyna Rysava35, Veronika Schmidt6,19, Morgan E. Smith11, Andrew Steer48, Michelle Stanton2, Fabrizio Tediosi16,51, Tenzin Tenzin11, S. M. Thumbi44, Michael Tildesley36, Panayiota Touloupou12, Chiara Trevisan22, Caroline Trotter24, Inge Van Damme35, Carolin Vegvari13, Juan-Carlos Villar38,29, Sake J. de Vlas21, Martin Walker20,57, Ryan Wallace1, Andrea S. Winkler6,19 & Peter Winskil17.
	Institution Name	Location
25	Department of Veterinary Medicine, University of Cambridge, Cambridge, UK	
26	Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.	
27	Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania	
28	Field Epidemiology Training Program Alumni Foundation Inc., Quezon City, Philippines	
29	Grupo de Cardiología Preventiva, Facultad de Ciencias de la Salud, Universidad Autónoma de Bucaramanga, Bucaramanga, Colombia.	
30	Grupo Triatomíneos, Instituto René Rachou, Fundação Oswaldo Cruz - Fiocruz, Belo Horizonte, Minas Gerais, Brazil	
31	Imperial College London, London, UK	
32	Infectious Diseases Modelling Group, University of Sussex, Sussex House, Brighton BN1 9RH, UK	
33	Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK	
34	Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA	
35	Kirby Institute, University of New South Wales, Sydney, Australia	
36	Liverpool School of Tropical Medicine	
37	London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, Norfolk Place, London W2 1PG, UK.	
38	Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK	
39	MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, Norfolk Place, London W2 1PG, UK.	
40	Murdoch Childrens Research Institute, Melbourne, Australia	
41	National Centre for Animal Health, Department of Livestock, Ministry of Agriculture & Forests Serbithang, Babesa, Bhutan	
42	Núcleo de Medicina Tropical, Universidade de Brasília, Brasília, Distrito Federal, Brazil	
43	One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Bassetterre, St. Kitts & Nevis.	
44	Paul G Allen School for Global Animal Health, Washington State University, Pullman, Washington, USA	
45	Schistosomiasis Control Initiative Foundation, Edinburgh House, 170 Kennington Lane, Lambeth, London SE11 5DP, UK.	
46	School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK	
47	Service de Lutte contre les Maladies Endémiques et Négligées (SLMEN), Ministry of Public Health, Madagascar.	
48	The Centre for the Mathematical Modelling of Infectious Diseases, Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK	
49	The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, and the Royal Melbourne Hospital, Melbourne, Australia	
50	UMR 5096 ‘Laboratoire Génome et Développement des Plantes’, Université de Perpignan Via Domitia, Perpignan, France	
51	University of Basel, Peterplatz 1, Basel, 4051, Switzerland	
52	University of California, San Francisco, California, USA	
53	University of Florida, Gainesville, Florida, USA	
54	University of Washington, Seattle, Washington, USA	
55	Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, Mathematics Institute and School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK	
56	LYO-X GmbH, Allschwil, Switzerland	
References

1. World Health Organization: Ending the neglect to attain the sustainable development goals: a road map for neglected tropical diseases 2021-2030. Geneva: World Health Organization, 2020; License: CC BY-NC-SA 3.0 IGO.

2. NTD Modelling Consortium, WHO Department of Control of Neglected Tropical Diseases: Achieving NTD Control, Elimination and Eradication Targets Post-2020 Modelling Perspectives and Priorities. Geneva, 2019; 15th - 16th April 2019. Publisher Full Text

3. Collaborating Group on Dengue Disease Modelling: Considerations for the 2030 Sustainable Development Goals for dengue (version 1; peer review: 2 approved with reservations). Gates Open Res. 2019; 3. Publisher Full Text

4. NTD Modelling Consortium Lymphatic Filariasis Group: The roadmap towards elimination of lymphatic filariasis by 2030: insights from quantitative and mathematical modelling (version 1; peer review: 2 approved). Gates Open Res. 2019; 3: 1538. PubMed Abstract | Publisher Full Text | Free Full Text

5. NTD Modelling Consortium discussion group on Trachoma: Insights from mathematical modelling and quantitative analysis on the proposed 2030 goals for trachoma (version 2; peer review: 2 approved). Gates Open Res. 2021; 3: 1721. PubMed Abstract | Publisher Full Text | Free Full Text

6. NTD Modelling Consortium Visceral Leishmaniasis Group: Insights from mathematical modelling and quantitative analysis on the proposed WHO 2030 targets for visceral leishmaniasis on the Indian subcontinent (version 1; peer review: 3 approved, 1 approved with reservations). Gates Open Res. 2019; 3: 1651. PubMed Abstract | Publisher Full Text | Free Full Text

7. Marks M, McVeron J, Engelman D, et al.: Insights from mathematical modelling on the proposed WHO 2030 goals for scabies (version 1; peer review: 3 approved). Gates Open Res. 2019; 3: 1542. PubMed Abstract | Publisher Full Text | Free Full Text

8. NTD Modelling Consortium discussion group on soil-transmitted helminthes: Insights from quantitative analysis and mathematical modelling on the proposed WHO 2030 goals for soil-transmitted helminthes (version 2; peer review: 2 approved). Gates Open Res. 2019; 3: 1632. PubMed Abstract | Publisher Full Text | Free Full Text

9. NTD Modelling Consortium Discussion Group on Gambiense Human African Trypanosomiasis: Insights from quantitative and mathematical modelling on the proposed 2030 goal for gambiense human African trypanosomiasis (gHAT) (version 2; peer review: 2 approved). Gates Open Res. 2020; 3: 1553. PubMed Abstract | Publisher Full Text | Free Full Text

10. Dyson L, Moorng EG, Holmes A, et al.: Insights from quantitative and mathematical modelling on the proposed 2030 goals for Yaws (version 1; peer review: 2 approved). Gates Open Res. 2019; 3: 1576. PubMed Abstract | Publisher Full Text | Free Full Text

11. NTD Modelling Consortium Schistosomiasis Group: Insights from quantitative and mathematical modelling on the proposed WHO 2030 goal for schistosomiasis (version 2; peer review: 3 approved). Gates Open Res. 2019; 3: 1517. PubMed Abstract | Publisher Full Text | Free Full Text

12. Collaborating Group on Chagas Disease Modelling: Insights from quantitative and mathematical modelling on the proposed WHO 2030 goals for Chagas disease (version 1; peer review: 2 approved). Gates Open Res. 2019; 3: 1539. PubMed Abstract | Publisher Full Text | Free Full Text

13. NTD Modelling Consortium Onchocerciasis Group: The World Health Organization 2030 goals for onchocerciasis: Insights and perspectives from mathematical modelling (version 1; peer review: 3 approved). Gates Open Res. 2019; 3: 1545. PubMed Abstract | Publisher Full Text | Free Full Text

14. CystTeam Group for Epidemiology and Modelling of Taenia solium/TAenia Cysticercosis: The World Health Organization 2030 goals for Taenia solium: Insights and perspectives from transmission dynamics modelling (version 2; peer review: 3 approved). Gates Open Res. 2019; 3: 1546. PubMed Abstract | Publisher Full Text | Free Full Text

15. World Health Organization Rabies Modelling Consortium: Zero human deaths from dog-mediated rabies by 2030: perspectives from quantitative and mathematical modelling (version 2; peer review: 3 approved, 1 approved with reservations). Gates Open Res. 2020; 3: 1564. PubMed Abstract | Publisher Full Text | Free Full Text

16. World Health Organization: Global update on implementation of preventive chemotheraphy against neglected tropical diseases in 2018. Weekly Epidemiological Record. 2019; 38(94): 425-40. Reference Source

17. Hotz PJ, Ottesen E, Fenwick A, et al.: The neglected tropical diseases: the ancient afflictions of stigma and poverty and the prospects for their control and elimination. In: Pollard AJ, Finn A, (eds.) Adv Exp Med Biol. 2006; 582: 23-43. Boston, MA: Springer. PubMed Abstract | Publisher Full Text

18. World Health Organization: Accelerating Work to Overcome the Global Impact of Neglected Tropical Diseases – A Roadmap for Implementation. Geneva. 2012. Reference Source

19. Uniting to Combat NTDs: London Declaration on Neglected Tropical Diseases. 2012. Reference Source

20. Behrend MR, Basáñez MG, Hamley JD, et al.: Modelling for policy: The five principles of the Neglected Tropical Diseases Modelling Consortium. PLoS Negl Trop Dis. 2020; 14(4): e0008053. PubMed Abstract | Publisher Full Text | Free Full Text

21. Hollingsworth TD, Adams ER, Anderson RM, et al.: Quantitative analyses and modelling to support achievement of the 2020 goals for nine neglected tropical diseases. Parasit Vectors. 2015; 8: 630. PubMed Abstract | Publisher Full Text | Free Full Text

22. Siylanou A, Hadjichrysanthou C, Trusscott JE, et al.: Developing a mathematical model for the evaluation of the potential impact of a partially efficacious vaccine on the transmission dynamics of Schistosoma mansoni in human communities. Parasit Vectors. 2017; 10(1): 294. Publisher Full Text | Publisher Full Text | Free Full Text

23. Rock KS, Ndefo-Mb Ah ML, Casanto S, et al.: Assessing strategies against gambiense sleeping sickness through mathematical modeling. Clin Infect Dis. 2018; 66(suppl. 4): S286-S292. PubMed Abstract | Publisher Full Text | Free Full Text

24. Mahamat MH, Peka M, Rayaisse JB, et al.: Adding tsetse control to medical activities contributes to decreasing transmission of sleeping sickness in the Mandoul focus (Chad). PLoS Negl Trop Dis. 2017; 11(7): e0005792. PubMed Abstract | Publisher Full Text | Free Full Text

25. Rock KS, Torr SJ, Lumbala C, et al.: Predicting the impact of intervention strategies for sleeping sickness in two high-endemicity health zones of the Democratic Republic of Congo. PLoS Negl Trop Dis. 2017; 11(1): e0005162. PubMed Abstract | Publisher Full Text | Free Full Text

26. Rock KS, Torr SJ, Lumbala C, et al.: Quantitative evaluation of the strategy to eliminate human African trypanosomiasis in the Democratic Republic of Congo. Parasit Vectors. 2015; 8: 532. PubMed Abstract | Publisher Full Text | Free Full Text

27. Toor J, Adams ER, Allen M, et al.: Predicted impact of COVID-19 on neglected tropical disease programs and the opportunity for innovation. Clin Infect Dis. 2020; 72(8): 1463-6. PubMed Abstract | Publisher Full Text | Free Full Text

28. Kura K, Ayabina D, Toor J, et al.: Disruptions to schistosomiasis programmes due to COVID-19: an analysis of potential impact and mitigation strategies. Trans R Soc Trop Med Hyg. 2021; 115(3): 245-52. PubMed Abstract | Publisher Full Text | Free Full Text

29. Aliche M, Casanto S, Davis CN, et al.: Predicting the impact of COVID-19 interruptions on transmission of gambiense human African trypanosomiasis in two health zones of the Democratic Republic of Congo. Trans R Soc Trop Med Hyg. 2020; 114(7): 822-8. PubMed Abstract | Publisher Full Text | Free Full Text

30. Blumberg B, Borlase A, Prado JM, et al.: Implications of the COVID-19 pandemic in eliminating trachoma as a public health problem. Trans R Soc Trop Med Hyg. 2021; 115(3): 203-21. PubMed Abstract | Publisher Full Text | Free Full Text

31. Aliche M, Casanto S, Davis CN, et al.: Modelling trachoma post-2020: opportunities for mitigating the impact of COVID-19 and accelerating progress towards elimination. Trans R Soc Trop Med Hyg. 2021; 115(3): 213-21. PubMed Abstract | Publisher Full Text | Free Full Text

32. Hamley JD, Blok DJ, Walker M, et al.: What does the COVID-19 pandemic mean for the next decade of onchocerciasis control and elimination? Trans R Soc Trop Med Hyg. 2021; 115(3): 269-80. PubMed Abstract | Publisher Full Text | Free Full Text

33. Le Rutte EA, Coffeng LE, Munoz, et al.: Modelling the impact of COVID-19-related control programme interruptions on progress towards the WHO 2030 target for soil-transmitted helminthes. Trans R Soc Trop Med Hyg. 2021; 115(3): 222-8. PubMed Abstract | Publisher Full Text | Free Full Text

34. Malizia V, Giardina F, Vegvar C, et al.: Modelling the impact of COVID-19-related control programme interruptions on progress towards the WHO 2030 target for soil-transmitted helminthes. Trans R Soc Trop Med Hyg. 2021; 115(3): 253-60. PubMed Abstract | Publisher Full Text | Free Full Text

35. Prada JM, Stolk WA, Davis EL, et al.: Delays in lymphatic filariasis elimination programmes due to COVID-19, and possible mitigation strategies. Trans R Soc Trop Med Hyg. 2021; 115(3): 261-8. PubMed Abstract | Publisher Full Text | Free Full Text

36. World Health Organization: Guideline: Alternative mass drug administration regimens to eliminate Lymphatic Filariasis. 2017. Reference Source

37. Irvine MA, Stolk WA, Smith ME, et al.: Effectiveness of a triple-drug regimen for global elimination of lymphatic filariasis: a modelling study. Lancet
et al. et al.
randomized clinical trials that investigate the interruption of transmission of soil-transmitted helminths employing mass drug administration. PLoS Negl Trop Dis. 2018; 12(10): e0006864. PubMed Abstract | Publisher Full Text | Free Full Text

76. Toor J, Truscott J, Werkman M, et al.: Determining post-treatment surveillance criteria for predicting the elimination of Schistosoma mansoni transmission. Parasit Vectors. 2019; 12(1): 437. PubMed Abstract | Publisher Full Text | Free Full Text

77. Minter A, Pells L, Medley GF, et al.: What Can Modeling Tell Us About Sustainable End Points for Neglected Tropical Diseases? Clin Infect Dis. 2021; 72(Suppl 3): S129–S33. PubMed Abstract | Publisher Full Text | Free Full Text

78. Walker M, Hamley JID, Milton P, et al.: Supporting drug development for neglected tropical diseases using mathematical modelling. Clin Infect Dis. 2021; ciab350. PubMed Abstract | Publisher Full Text

79. AlJayoussi G, Tyer HE, Ford L, et al.: Short-course, high-dose Rifampicin achieves Wolbachia depletion predictive of curative outcomes in preclinical models of lymphatic filariasis and onchocerciasis. Sci Rep. 2017; 7(1): 210. PubMed Abstract | Publisher Full Text | Free Full Text

80. Walker M, Hamley JID, Milton P, et al.: Designing antifilarial drug trials using clinical trial simulators. Nat Commun. 2020; 11(1): 2685. PubMed Abstract | Publisher Full Text | Free Full Text

81. Turner HC, Walker M, Atiah SK, et al.: The potential impact of moxidectin on onchocerciasis elimination in Africa: an economic evaluation based on the Phase II clinical trial data. Parasit Vectors. 2015; 8: 167. PubMed Abstract | Publisher Full Text | Free Full Text

82. Hollingsworth TD, Pulliam JR, Funk S, et al.: Seven challenges for modelling indirect transmission: vector-borne diseases, macro parasites and neglected tropical diseases. Epidemics. 2015; 18: 16–20. PubMed Abstract | Publisher Full Text | Free Full Text

83. Toor J, Hamley JID, Fronterre C, et al.: Strengthening data collection for neglected tropical diseases: What data are needed for models to better inform tailored intervention programmes? PLoS Negl Trop Dis. 2021; 15(5): e0009351. PubMed Abstract | Publisher Full Text | Free Full Text

84. Le Rutte EA, Chapman LAC, Coffeng LE, et al.: Policy Recommendations From Transmission Modeling for the Elimination of Visceral Leishmaniasis in the Indian Subcontinent. Clin Infect Dis. 2018; 66(suppl 4): S301–S58. PubMed Abstract | Publisher Full Text | Free Full Text

85. Chapman LAC, Jewell CP, Spencer SE, et al.: The role of case proximity in transmission of visceral leishmaniasis in a highly endemic village in Bangladesh. PLoS Negl Trop Dis. 2018; 12(10): e0006453. PubMed Abstract | Publisher Full Text | Free Full Text

86. Nery JS, Ramond A, Pescarin IM, et al.: Socioeconomic determinants of leprosy new case detection in the 100 Million Brazilian Cohort: a population-based linkage study. Lancet Glob Health. 2019; 7(9): e1226–e36. PubMed Abstract | Publisher Full Text | Free Full Text

87. Clark J, Arinaitwe M, Nankasi A, et al.: Neglected tropical diseases and public health interventions: A scoping review and analysis of data from diagnostic and epidemiological studies. PLoS Negl Trop Dis. 2018; 12(3): e0006624. PubMed Abstract | Publisher Full Text | Free Full Text

88. Lindholz CG, Favero V, de Marco Verissimo C, et al.: Study of diagnostic accuracy of Helminthx, Kato-Katz, and POC-CCA methods for diagnosing intestinal schistosomiasis in a low transmission area in northeastern Brazil. PLoS Negl Trop Dis. 2018; 12(3): e0006274. PubMed Abstract | Publisher Full Text | Free Full Text

89. Lodge JW, Webster JP, Lu DB, et al.: Identifying host species driving transmission of schistosomiasis japonica, a multistrobe parasite system, in China. Proc Natl Acad Sci U S A. 2013; 110(28): 11457–62. PubMed Abstract | Publisher Full Text | Free Full Text

90. Pryce J, Reimer LJ: Evaluating the diagnostic test accuracy of molecular xenomonitoring methods for characterizing community burden of lymphatic filariasis. Clin Infect Dis. 2021; 72(Suppl 3): S203–S209. PubMed Abstract | Publisher Full Text | Free Full Text

91. Pioly N, Unnasch TR, Williams SA: The Current Status of Molecular Xenomonitoring for Lymphatic Filariasis and Onchocerciasis. Trends Parasitol. 2017; 33(10): 788–98. PubMed Abstract | Publisher Full Text | Free Full Text

92. Chapman LAC, Spencer SEF, Pollington TM, et al.: Inferring transmission trees to guide targeting of interventions against visceral leishmaniasis and post-kala-azar dermal leishmaniasis. Proc Natl Acad Sci U S A. 2020; 117(41): 25742–50. PubMed Abstract | Publisher Full Text | Free Full Text

93. Stolk WA, Blok DJ, Hamley JID, et al.: Scaling-down mass ivernetin treatment for onchocerciasis elimination: modeling the impact of the geographical unit for decision making. Clin Infect Dis. 2021; 72(Suppl 3): S165–S171. PubMed Abstract | Publisher Full Text | Free Full Text

94. Dixon MA, Braae UC, Winskill P, et al.: Strategies for tackling Taenia solium taeniosis/cystercerosis: A systematic review and comparison of transmission models, including an assessment of the wider Taeniid family transmission models. PLoS Negl Trop Dis. 2019; 13(4): e0007301. PubMed Abstract | Publisher Full Text | Free Full Text

95. Pray IW, Wakefield W, Pan W, et al.: Understanding transmission and control of the pork tapeworm with Cystigagent: a spatially explicit agent-based model. Parasit Vectors. 2020; 13(1): 372. PubMed Abstract | Publisher Full Text | Free Full Text

96. Hollingsworth TD, Medley GF: Learning from multi-model comparisons: Collaboration leads to insights, but limitations remain. Epidemics. 2017; 18: 1–9. PubMed Abstract | Publisher Full Text | Free Full Text

97. Hamley JID, Walker M, Coffeng LE, et al.: Structural Uncertainty in Onchocerciasis Transmission Models Influences the Estimation of Elimination Thresholds and Births for Age Groups for Seromonitoring. J Infect Dis. 2020; 221(Suppl 5): S510–S8. PubMed Abstract | Publisher Full Text | Free Full Text

98. Giardina F, Coffeng LE, Farrell SH, et al.: Sampling strategies for monitoring and evaluation of morbidity and prevalence for soil-transmitted helminths. PLoS Negl Trop Dis. 2019; 13(6): e0007514. PubMed Abstract | Publisher Full Text | Free Full Text

99. Pinセット A, Hollingsworth TD: Optimising sampling regimes and data collection to inform surveillance for trachoma control. PLoS Negl Trop Dis. 2018; 12(10): e0006531. PubMed Abstract | Publisher Full Text | Free Full Text

100. Michael E, Sharma S, Smith ME, et al.: Quantifying the value of surveillance data for improving model predictions of lymphatic filariasis elimination. PLoS Negl Trop Dis. 2018; 12(10): e0006674. PubMed Abstract | Publisher Full Text | Free Full Text

101. Chapman LAC, Morgan ALK, Adams ER, et al.: Age trends in asymptomatic and symptomatic Leishmania donovani infection in the Indian subcontinent: A review and analysis of data from diagnostic and epidemiological studies. PLoS Negl Trop Dis. 2018; 12(12): e0006803. PubMed Abstract | Publisher Full Text | Free Full Text

102. Hamley JID, Milton P, Walker M, et al.: Modelling exposure heterogeneity and density dependence in onchocerciasis using a novel individual-based transmission model. EPONCHO-IIBM: Implications for elimination and data needs. PLoS Negl Trop Dis. 2019; 13(2): e0007557. PubMed Abstract | Publisher Full Text | Free Full Text

103. Lietman TM, Deiner MS, Oldenburg CE, et al.: Identifying a sufficient core group for trachoma transmission. PLoS Negl Trop Dis. 2018; 12(10): e0006478. PubMed Abstract | Publisher Full Text | Free Full Text

104. Bulstra CA, Le Rutte EA, Malaviya P, et al.: Visceral leishmaniasis: Spatiotemporal heterogeneity in disease transmission and underlying the hotspots in Muzaffarpur, Bihar, India. PLoS Negl Trop Dis. 2018; 12(10): e0006888. PubMed Abstract | Publisher Full Text | Free Full Text

105. Coffeng LE, Vaz Nery S, Gray DJ, et al.: Predicted short and long-term impact of deworming and water, hygiene, and sanitation on transmission of soil-transmitted helminths. PLoS Negl Trop Dis. 2018; 12(12): e0006758. PubMed Abstract | Publisher Full Text | Free Full Text

106. de Vos AS, Stolk WA, de Vlas SJ, et al.: The effect of assorative mixing on stability of low helmint transmission levels and on the impact of mass drug administration: Model explorations for onchocerciasis. PLoS Negl Trop Dis. 2018; 12(10): e0006622. PubMed Abstract | Publisher Full Text | Free Full Text

107. Abimbola S, Ansthasia S, Montenegro C, et al.: Addressing power asymmetries in global health: Imperatives in the wake of the COVID-19 pandemic. PLoS Med. 2021; 18(4): e1003630. PubMed Abstract | Publisher Full Text | Free Full Text

108. Adetokunboh OO, Mthombothi ZE, Dominic EM, et al.: African based researchers' output on models for the transmission dynamics of infectious diseases and public health interventions: A scoping review. PLoS One. 2021; 16(5): e0250086. PubMed Abstract | Publisher Full Text | Free Full Text