Adding polyethylene glycol to steer ration containing sorghum tannins increases crude protein digestibility and shifts nitrogen excretion from feces to urine

Biao Xie a, Xiao Yang a, Ling Yang b, Xianjiang Wen b, Guangyong Zhao a, *

a State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
b Sorghum Research Institute, Shanxi Academy of Agricultural Sciences, 030600, Jinzhong, China

ABSTRACT

The objectives of the experiment were to study the effects of adding polyethylene glycol (PEG) to steer ration containing high sorghum tannins on rumen fermentation, nutrient digestion, nitrogen (N) balance and plasma biochemical parameters. Eight growing steers at 16 months of age were allotted to a replicated 4 × 4 Latin square design with 4 treatments and 4 periods (19 d each). Polyethylene glycol at 0, 1.75, 3.50 and 7.00 g/kg dry matter (DM) were added to a basal ration containing 27.82% DM of sorghum grain (total tannins 3.3 g/kg DM) as the treatments. The results indicated that adding PEG quadratically increased the ruminal pH (P = 0.049), tended to linearly increase the ruminal concentration of total volatile fatty acids (P = 0.070), increased the molar proportion of acetate (P = 0.016), linearly decreased the molar proportion of butyrate (P = 0.015), and tended to increase the molar proportion of iso-valerate (P = 0.061) and the ruminal concentration of ammonia N (P = 0.092). Adding PEG tended to quadratically decrease the relative abundance of methanogenic archaea (P = 0.082), linearly decreased the relative abundance of Fibrobacter succinogenes (P = 0.008) and decreased the relative abundance of Butyribiro fibrisolvens (P = 0.048) at 7.00 g/kg DM. Dietary addition with PEG increased the crude protein (CP) digestibility (P < 0.001) and tended to increase the neutral detergent fiber digestibility (P = 0.066) in a linear manner. Adding PEG to basal ration also increased the plasma globulin concentration (P = 0.029) and tended to linearly increase the plasma total protein concentration (P = 0.069). Adding PEG linearly decreased the fecal N excretion (P < 0.001) and the fecal N-to-total N excretion ratio (P = 0.004) and increased the urinary N-to-total N excretion ratio (P = 0.004) and urinary urea excretion (P = 0.010) without affecting the urinary N and total N excretions (P > 0.05). It was concluded that adding PEG effectively improved the CP digestibility of the ration containing high sorghum tannins but increased the urinary urea excretion without improving the N retention and N retention rate in steers.

© 2021 Chinese Association of Animal Science and Veterinary Medicine. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Sorghum (Sorghum bicolor L. Moench) is the fifth most important cereal crop in the world after wheat, rice, maize and barley and has been widely grown in semi-arid and tropical regions of Africa and Asia because of its advantages in tolerating drought, flood and salt (Olukoya et al., 2015). Sorghum grain has been widely used as the feed for animals (Wang et al., 2019) and the food for humans (Irondi et al., 2019). The crude protein (CP) content of sorghum grain is 71 to 118 g/kg dry matter (DM) which is close to corn, and the content of essential amino acids is higher than that of corn (Pan et al., 2017). Replacing 25% to 100% of corn in lamb ration by...
sorghum grain improved meat quality but it did not affect daily liveweight gain (Zhong et al., 2016). However, the feeding value of sorghum grain for livestock is generally 85% to 95% of corn (Waniska et al., 2016) because of its high content of condensed tannins (CT) (Nyachoti et al., 1997) which was usually more than 10 g/kg DM (Dykes and Rooney, 2006). Many studies have shown that tannins can bind with feed protein to form tannin-protein complexes in rumen to prevent microbial degradation of protein and increase undegradable protein supply to the hindgut (Getachew et al., 2008; Min et al., 2002). However, some studies also indicated that dietary CT decreased CP digestibility in beef cattle (Stewart et al., 2019). The reason for the results could be that tannin-protein complexes were not fully decomposed in the lower digestive tract, resulting in low CP digestibility.

Polyethylene glycol (PEG) is an inert and synthetic polymer with a high molecular weight which is poorly digested and absorbed in the digestive tract, resulting in low CP digestibility. PEG complexes in rumen to prevent microbial degradation of protein that tannins can bind with feed protein to form tannin-PEG complex (Makkar et al., 1995). Therefore, adding PEG to rations containing high tannins improved feed intake and CP digestibility in sheep (Peng et al., 2016).

Many studies have shown that dietary inclusion of tannins shifts nitrogen (N) excretion from urine to feces in cattle without affecting total N excretion. It is unclear whether adding PEG to ration containing sorghum tannins would improve N retention and N retention rate (NRR) in cattle. The objectives of the experiment were to investigate effects of dietary PEG addition on rumen fermentation, nutrient digestibility, N balance and plasma biochemical parameters in steers fed a ration containing high sorghum tannins.

2. Materials and methods

2.1. Animals, experimental design and the basal ration

The experiment was carried out between April, 2019 and June, 2019 on a commercial beef cattle farm (N 37°53’; E 117°45’) in Shandong province, China. Eight castrated Simmental steers at 16 months of age with an initial liveweight of 357.4 ± 15.6 kg were used. The animals were assigned to a replicated 4 × 4 Latin square design. Four levels of PEG (molecular weight 4,000 kDa, purity ≥99.9%, Sinopharm Chemical Reagent Co., Ltd., Shanghai, China), i.e., 0, 1.75, 3.50 or 7.00 g/kg DM, were added to a basal ration containing high sorghum tannins (Table 1) as experimental treatments. The ration was formulated according to the Nutrient Requirements and Feeding Standards of Beef Cattle (Feng, 2000).

Each experimental period lasted 19 d. The first 14 d were for adaptation and the last 5 d for sampling.

Each animal was supplied with 5.70 kg DM of total mixed ration (TMR) (Table 1) which was about 90% of ad libitum feed intake. The designed amount of PEG was completely mixed with the TMR before feeding. The daily allowance of TMR was divided into 2 equal meals which were provided to each steer at 07:00 and 17:00, respectively. No feed residuals were left during the experiment. The cattle were housed indoors in individual tie stalls (1.5 m × 2.5 m) and had free access to fresh drinking water.

2.2. Sampling

The liveweight of each steer was recorded before feeding in the morning on the first day and the last day of each experimental period. During each sampling period, the feces and urine were totally collected daily at 07:00. The feces were collected using plastic buckets, and the urine was collected using a rubber funnel connected by a polyvinyl chloride pipe to a plastic bucket surrounded with ice packs to keep low temperature. The daily output of feces from each steer was recorded and 2% of the total feces was sampled and a volume of 20 mL of H2SO4 (10%, vol/vol) was added to keep pH < 3.0 for preserving N. The daily output of urine from each animal was measured using a volumetric cylinder and 2% of the total urine was sampled and H2SO4 (10%, vol/vol) was added to keep pH < 3.0 for preserving N. The feeds were also sampled during each experimental period. On the second day of each sampling period, 2 h after morning feeding, 10 mL of blood was taken through the jugular vein of each steer using an evacuated K2EDTA tube (Greiner Bio-one, Frickenhausen, Germany). The blood samples were centrifuged at 2,000 × g for 15 min at 4 °C to obtain plasma samples. On the third day of each sampling period, rumen fluid was taken using an esophageal stomach tube 2 h after feeding in the morning (Brito et al., 2014). The first tube of rumen fluid was discarded to avoid saliva contamination. Then, a volume of 100 mL of rumen fluid was taken and filtered through 4 layers of cheesecloth. The pH of rumen fluid was immediately measured using a portable pH meter (pH-HJ90; Aerospace Computer Company, Beijing, China). All samples were kept in a freezer at −20 °C for subsequent analysis.

2.3. Chemical analysis

The samples of corn silage and feces were lyophilized for 72 h using a freeze dryer (LG-12; Beijing Songyuan Huaxing Technology Development Co., Ltd, Beijing, China). The fecal samples were ground in a mortar and the feed samples were ground using a grinder (FW177, Tianjin Taisite Instrument Co., Ltd., Tianjin, China) through a sieve with pore size of 1 mm. The DM and ash contents of feeds and feces were determined according to AOAC (2005) using methods No. 930.15 and 942.05, respectively. The organic matter (OM) content was calculated by DM content minus ash content. The acid detergent fiber (ADF) and neutral detergent fiber (NDF) contents were analyzed on a fiber analyzer (A200i, ANKOM Technology Co., New York, USA) using the methods of Van Soest et al. (1991) with sodium sulfite and heat-stable α-amylase for analyzing NDF.

Item	Content
Ingredients	
Corn silage	483.6 g/kg DM
Sorghum grain	278.2 g/kg DM
Wheat bran	5.8 g/kg DM
Corn grain	15.1 g/kg DM
Soybean meal	186.7 g/kg DM
Sodium bicarbonate	10.2 g/kg DM
Sodium chloride	10.2 g/kg DM
Calcium carbonate	10.2 g/kg DM
Chemical composition	
CP	143.1 g/kg DM
OM	932.4 g/kg DM
NDF	384.8 g/kg DM
ADF	214.6 g/kg DM
Tannins	3.3 g/kg DM
NEmf1	5.9 MJ/kg DM

1 NEmf refers to the net energy for maintenance and heat production.
The N contents of feeds and feces were analyzed using the Kjeldahl method of AOAC (2005) No. 981.13 and the CP content was calculated as N × 6.25. The N concentration of urine was analyzed using the Kjeldahl method of AOAC (2005) No.973.48. The gross energy (GE) of feed samples was determined by complete combustion on a calorimeter (Parr 6300, Parr Instrument Company, Moline, IL, USA). The tannins of sorghum grain were analyzed according to the methods described by Price et al. (1978).

The total volume of PCR mixture was 25 μL consisting of 12.5-μL SYBR Premix Ex Taq (No. RR420A; Takara, Dalian, China), 0.5-μL forward primer (10.0 μmol/L; Sangon, Shanghai, China), 2.0-μL reverse primer (10.0 μmol/L; Sangon, Shanghai, China), 2.0 μL of DNA template and 9.5 μL of sterile distilled water. The specific real-time PCR primers are listed in Table 2. After the PCR reaction, the dissociation curve analysis was performed to reveal the purity of the amplicon produced.

The plasma concentrations of total protein (TP) (the biuret method), albumin (ALB) (the bromocresol green method), urea (the urease-berthelot method), uric acid (the uricase-peroxidase method), and creatinine (Jaffe’s assay) were analyzed using a spectrophotometer (UV-1801; Beijing Beifen Ruili Analytical Instrument Co. Ltd, Beijing, China). The plasma concentration of growth hormone and insulin-like growth factor-1 (IGF-1) were analyzed using enzyme-linked immunosorbent assay (ELISA) kits (BioSino Bio-Technology and Science Inc., Beijing, China) on a microplate reader (DR-200BS, Wuxi Hiwell-Diatek Instruments Co., Ltd, Jiangsu, China). The plasma concentration of total amino acids, allantoin and hippuric acid were analyzed using colorimetric methods on a semi-automatic biochemical analyzer (A6; 621 Beijing Shining Sun Technology Co., Ltd, Beijing, China).

The urinary concentrations of urea and creatinine were analyzed using commercial kits (Nanjing Jiancheng Bioengineering Institute, Nanjing, China) based on the diacetyl monoxime method and the Jaffe’s assay using a spectrophotometer (UV-1801; Beijing Beifen Ruili Analytical Instrument Co. Ltd, Beijing, China), respectively. The urinary concentrations of uric acid and allantoin were analyzed using a spectrophotometer (UV-1801; Beijing Beifen Ruili Analytical Instrument Co. Ltd, Beijing, China) according to the methods of Chen and Gomes (1992). The urinary concentration of hippuric acid was analyzed according to China Hygienic Standard (WS/T 52-1996) using a spectrophotometer (UV-1801; Beijing Beifen Ruili Analytical Instrument Co. Ltd, Beijing, China).

Table 2

Target microflora	Primer sequences (5’ to 3’)	References
Total bacteria	F: CGCCAAGCGCCAGACCC	Denman and McSweeney (2006)
	R: CCATTGAGACCTGGTAAAGCC	
Protozoa	F: GCTTCTGGAGTGCTGTAAGCC	Sylvester et al. (2004)
Methanogenic archaea	F: CTGCTGCTATCAGGATGCTC	Denman et al. (2007)
Fungi	F: AGGACTAAATGCTGACGAGG	Denman and McSweeney (2006)
Ruminococcus albus	F: CCTAAAACAGCTTCTAGTGC	Stevenson and Weimer (2009)
	R: CTCTCTTGGCTTAAAGACTA	
Ruminococcus flavefaciens	F: CCAAGAGAGATATTCTGAGG	Denman and McSweeney (2006)
	R: GCCTCTGGTATGTAAGG	
Fibrobacter succinogenes	F: GCGGGTCACTCAGGGAGTAA	Denman and McSweeney (2006)
	R: CCAGCTGCCCTCAAACTATC	
Butyrivibrio fibrisolvens	F: ACCGAGAAACCGCAGGA	Stevenson and Weimer (2009)
	R: CGGTCGAACTCTGACGGTAAC	
Prevotella	F: GGTCTGAGAAGGAGCTCC	Stevenson and Weimer (2009)

F – forward; R – reverse.

2.4. Calculations and statistical analysis

The PCR efficiency (E) for each primer pair was determined from the slope of the external calibration curve using the equation:

\[E = 10^{(-1/slope)} - 1 \times 100 \]

where s is the slope of standard curve. The relative abundance of the microbial 16S rDNA gene copy number was expressed relative to the copy number of total rumen bacterial 16S rDNA and calculated as:

Relative abundance = \(2^{(-Ct_{target}-Ct_{total\ bacteria})} \times 100 \)

where Ct is the threshold cycle.

The total urinary excretion of purine derivatives (PD) was calculated and the rumen microbial N supply to steers was predicted using the methods of Chen and Gomes (1992):

PD (mmol/d) = Allantoin (mmol/d) + Uric acid (mmol/d)
where Y refers to the total urinary PD; X, the absorbed PD excretion; BW$^{0.75}$, the metabolic body weight of steers (kg); 0.85, the recovery rate of absorbed purines as PD in urine; 0.385, the endogenous excretion of PD (mmol/kg BW$^{0.75}$ per d).

Microbial N (mg/d) = $(X \times 70)/(0.116 \times 0.83 \times 1.000) = 0.727X$,

where X refers to the absorbed PD excretion (mmol/d); 70, the N content of purines (mg N/mmol); 0.116, the ratio of purine N to total N in mixed rumen microbes; 0.83, the digestibility of microbial purines.

Statistical analysis was performed using the general linear model procedures of SAS (version 9.4; SAS Inst. Inc., Cary, NC, USA) for a replicated Latin square design using the model:

$$Y_{ijk} = \mu + T_i + P_j + C_k + e_{ijk},$$

where Y_{ijk} refers to the dependent variable; μ, overall mean; T_i, PEG effect ($i = 1, 2, 3$ and 4); P_j, period effect ($j = 1, 2, 3$ and 4); C_k, steer effect ($k = 1, 2, 3, 4, 5, 6, 7$ and 8); e_{ijk}, residual error. All differences among experimental diets were compared by Duncan's multiple range test. Polynomial contrasts were conducted to determine the linear and quadratic effects of PEG levels. Differences among treatments were considered significant at $P < 0.05$ and a trend towards significance at $0.05 < P < 0.10$.

3. Results

3.1. Rumen fermentation

The results in Table 3 showed that dietary addition with PEG quadratically increased the ruminal pH ($P = 0.049$), tended to linearly increase the ruminal concentrations of total VFA ($P = 0.070$) and NH$_3$–N ($P = 0.092$). Adding PEG up to 7.00 g/kg DM increased the molar proportion of acetate ($P = 0.016$), linearly decreased the molar proportion of butyrate ($P = 0.015$), and tended to increase the molar proportion of iso-valerate ($P = 0.061$) whereas it did not affect the ruminal concentrations of MCP and other VFA ($P > 0.05$).

3.2. Rumen microflora

Adding PEG to the basal ration did not affect the relative abundances of protozoa and fungi but it quadratically decreased the relative abundance of methanogenic archaea ($P = 0.082$). Adding PEG also linearly decreased the relative abundance of *Fibrobacter succinogenes* ($P = 0.008$) and decreased the relative abundance of *Butyrivibrio fibrisolvens* at 7.00 g/kg DM ($P = 0.048$) whereas it did not affect *Ruminococcus albus*, *Ruminococcus flavefaciens* and *Prevotella* ($P > 0.05$) (Table 4).

3.3. Nutrient digestibility

The results in Table 5 indicated that adding PEG linearly increased the CP digestibility ($P < 0.001$) and tended to increase the NDF digestibility ($P = 0.066$) whereas it did not affect the digestibility of DM, OM or ADF ($P > 0.05$).

3.4. N metabolism

Addition with PEG to the basal ration linearly decreased the fecal N excretion ($P < 0.001$) whereas it did not affect the urinary N and total N excretions ($P > 0.05$). Adding PEG linearly decreased the fecal N-to-total N excretion ratio ($P = 0.004$) and the fecal N-to-N intake ratio ($P < 0.001$), and linearly increased the urinary N-to-total N excretion ratio ($P = 0.004$) whereas it did not affect the urinary N-to-N intake ratio, N retention, NRR and the average daily gain (ADG) ($P > 0.05$) (Table 6).

3.5. Urinary nitrogenous components

Dietary addition with PEG linearly increased the urinary urea excretion ($P = 0.010$) and the urea-N-to-urinary N ratio ($P = 0.028$) whereas it did not affect the urinary excretions of uric acid, allantoin, creatinine and hippuric acid, and the ratios of hippuric acid N to urinary N, creatinine N to urinary N, allantoin N to urinary N, uric acid N to urinary N ($P > 0.05$), the urinary PD excretion and the estimated rumen microbial N ($P > 0.05$) (Table 7).

3.6. Plasma biochemical indices

Adding PEG to the basal ration tended to linearly increase the plasma concentration of TP ($P = 0.069$), linearly increased the plasma concentration of globulin ($P = 0.029$), tended to quadratically increase the plasma concentration of allantoin ($P = 0.079$) whereas it did not affect the plasma concentrations of ALB, urea, total amino acids, growth hormone, IGF-1, uric acid, creatinine and hippuric acid ($P > 0.05$) (Table 8).

Item	PEG, g/kg DM	SEM	P-value	
	0.00	1.75	3.50	7.00
pH	6.64	6.80	6.81	6.76
NH$_3$–N, mmol/L	9.97	8.48	10.34	11.02
TVFA, mmol/L	73.18	81.22	87.12	86.26
VFA, mmol/100 mmol	56.79	58.59	59.69	59.40
Acetate	22.81	23.06	22.79	22.79
Propionate	15.11	13.46	12.79	12.92
Butyrate	2.42	1.46	1.43	1.48
Iso-butyrate	1.02	1.20	1.03	1.22
Valerate	1.85	2.25	2.19	2.20
Iso-valerate	2.56	2.57	2.67	2.64
Acetate-to-propionate	134.7	133.0	137.6	129.8
MCP, mg/mL	0.385	0.082	0.116	0.048

SEM = standard error of the mean; NH$_3$–N = ammonia nitrogen; TVFA = total volatile fatty acids; VFA = volatile fatty acids; MCP = microbial crude protein; T = treatment; L = linear; Q = quadratic.

Table 3

Effects of adding polyethylene glycol (PEG) to a steer ration containing high sorghum tannins on rumen fermentation.

\(^{a,b}\) Within a row, means without a common superscript differ significantly ($P < 0.05$).
Effects of adding polyethylene glycol (PEG) to a steer ration containing high sorghum tannins on the relative abundance of rumen microorganisms (% total bacterial 16S rDNA).

Item	PEG, g/kg DM	SEM	P-value					
	0.00	1.75	3.50	7.00	T	L	Q	
Protozoa	6.78	4.39	2.47	3.52	0.023	0.629	0.322	0.511
Methanogenic archaea, $\times 10^{-3}$	7.95	5.70	4.12	6.68	0.001	0.193	0.370	0.082
Fungi, $\times 10^{-2}$	8.64	6.96	5.34	6.65	0.002	0.713	0.417	0.565
R. albus, $\times 10^{-2}$	2.56	2.15	2.91	1.75	0.004	0.319	0.531	0.528
R. flavuicola, $\times 10^{-2}$	2.70	2.49	3.68	2.98	0.001	0.621	0.565	0.758
F. succinogenes, $\times 10^{-1}$	7.45b	7.98a	3.56b	3.43b	0.104	0.002	0.008	0.802
B. fibrisolvens, $\times 10^{-2}$	6.46e	4.82ab	4.03ab	2.70b	0.104	0.048	0.142	0.865
Prevotella	5.20	5.25	5.08	5.24	3.130	0.977	0.979	0.892

SEM = standard error of the mean; T = treatment; L = linear; Q = quadratic.

Within a row, means without a common superscript differ significantly ($P < 0.05$).

4. Discussion

Tannins can combine with dietary protein through hydrogen bonds to form protein–tannin complexes which can prevent protein degradation by rumen microorganisms (Patra and Saxena, 2011). Tannins are also able to inhibit dietary protein degradation in rumen by reducing the activity of endogenous enzymes and rumen microorganisms (Alonso-Díaz et al., 2010). Polyethylene glycol that has high affinity for tannins can form PEG-tannin complexes to deactivate tannins. Thus, PEG can improve the ruminal CP degradation (Mkhize et al., 2018) and the CP digestibility (Alipanahi et al., 2019) of rations containing tannins.

In the present experiment, dietary addition with PEG tended to increase ruminal concentration of NH$_3$–N and increased CP digestibility, suggesting that PEG inhibited the condensed tannins (CT) activity in rumen. Similar results were also reported by Alipanahi et al. (2019) that adding PEG improved CP digestibility in goats fed with an oak acorn ration containing hydrolysable tannins and by Huang et al. (2015) that adding PEG increased CP digestibility in lambs fed with purple prairie clover containing CT. The increased plasma concentration of TP and globulin in the present experiment could be attributed to the increased CP digestibility.

Tannins can inhibit the activities of ruminal bacteria and anaerobic fungi (Alonso-Díaz et al., 2010) and bind to fiber (Makkar et al., 1985). Thus intake of plants containing CT reduced the ruminal digestibility of fiber (Hassan et al., 2020). In the present experiment, dietary addition with PEG increased the ruminal concentration of acetate and tended to improve NDF digestibility, suggesting that PEG neutralized the negative effects of sorghum CT fiber digestion. Dietary addition with PEG also tended to increase the molar proportion of ruminal isovaleric acid. Because isovaleric acid is mainly derived from the deamination of amino acids in rumen (Patra and Saxena, 2011), sorghum tannins should inhibit the ruminal fermentation of both carbohydrates and protein.

Previous studies indicated that dietary addition of CT or tannic acid decreased the relative abundances of ruminal protozoa and methanogenic bacteria (Jayneegara et al., 2015; Yang et al., 2016). However, the results of the present experiment showed that adding PEG to the ration containing high sorghum tannins did not...
that PEG also has an inhibitory effect on \textit{F. succinogenes} decreased the relative abundance of \textit{F. succinogenes}, growth of \textit{F. succinogenes} asciophyllum nodosum to rumen bacterial cultures inhibited the and attributed to the decreased relative abundances of of butyric acid by adding PEG in the present experiment could be end-product (Kohno et al., 2009). The decreased molar proportion cellulose and other polysaccharides with butyric acid as the major fi \textit{B. brisolvens} are predominant ruminal bacteria which can utilize NH3 for MCP synthesis (Stevenson and Weimer, 2009; Wallace et al., 1997). Adding PEG did not affect the relative abundances of protozoa and methanogens. The results showed that adding PEG to the ration containing high sorghum tannins shifted N excretions from feces to urine. The results of the present experiment also showed that adding PEG increased the urinary urea excretion in steers. The reason for the results could be that PEG tended to increase the ruminal concentration of NH3 by inactivating sorghum CT, resulting in increasing NH3 absorption and urea synthesis in liver. Because urinary urea accounts for the major part of urinary nitrogenous compounds and can be rapidly transformed to NH4 in manure and utilized as the precursor to produce the potent greenhouse gas nitrous oxide (N2O) (Oenema et al., 2005; Sakadevan and Nguyen, 2017), adding PEG to the rations containing high sorghum tannins had a potential to increase the N2O emissions from steer excreta to the environment.

Previous studies indicated that adding CT to the rations of growing lambs and calves did not affect urinary PD excretions (Sharma et al., 2008). The results of the present experiment showed that adding PEG did not affect the urinary excretions of PD and the estimated rumen microbial N supply in steers, suggesting that

affect the relative abundances of protozoa and methanогens. The results indicated that sorghum tannins did not affect ruminal protozoa and methanogenic bacteria. \textit{F. succinogenes} are predominant cellulolytic bacteria in rumen and can digest fibrous plant particles (Cotta, 1988). It was reported that adding CT from asciophyllum nodosum to rumen bacterial cultures inhibited the growth of \textit{F. succinogenes} (Wang et al., 2009). In the present experiment, dietary addition with PEG did not increase but decreased the relative abundance of \textit{F. succinogenes}, suggesting that PEG also has an inhibitory effect on \textit{F. succinogenes}. \textit{B. brisolvens} are also involved in the ruminal degradation of cellulose and other polysaccharides with butyric acid as the major end-product (Kohno et al., 2009). The decreased molar proportion of butyric acid by adding PEG in the present experiment could be attributed to the decreased relative abundances of \textit{F. succinogenes} and \textit{B. brisolvens}. Prevotella are predominant ruminal bacteria which can utilize NH3 for MCP synthesis (Stevenson and Weimer, 2009; Wallace et al., 1997). Adding PEG did not affect the relative abundance of \textit{Prevotella} in the present experiment. This could explain the results that adding PEG did not affect ruminal concentration of MCP.

Previous studies have shown that inclusion of tannins in ruminant rations shift N excretions from urine to feces (Theodoridou et al., 2010) because tannins–protein complexes formed in rumen could not be completely decomposed in the hindgut (Wang et al., 1996). In the present experiment, adding PEG decreased fecal N excretion, but did not affect urinary N excretion, and decreased fecal N-to-total N excretion ratio and increased urinary N-to-total N excretion ratio. The results showed that adding PEG to the ration containing high sorghum tannins shifted N excretions from feces to urine.

Table 7

Item	PEG, g/kg DM	SEM	P-value					
Urea, mmol/d	1.332.7b	1.399.5a	1.620.4a	1.635.4a	84.35	0.044	0.010	0.783
Urea N/urinary N ratio, %	59.0	60.6	70.1	68.9	3.57	0.073	0.028	0.723
Uric acid, mmol/d	2.5	2.7	2.7	3.3	0.36	0.301	0.407	0.698
Uric acid N/urinary N ratio, %	0.2	0.2	0.2	0.3	0.30	0.664	0.514	0.751
Allantoin, mmol/d	66.3	73.2	65.1	78.5	4.54	0.163	0.249	0.557
Allantoin N/urinary N ratio, %	5.9	6.3	5.7	6.6	0.40	0.343	0.469	0.517
Creatinine, mmol/d	78.5	87.8	77.4	91.3	5.21	0.176	0.242	0.664
Creatinine N/urinary N ratio	5.2	5.7	5.0	5.8	0.35	0.353	0.540	0.684
Hippuric acid, mmol/d	144.3	145.8	147.7	146.7	20.46	0.999	0.927	0.955
Hippuric acid N/urinary N ratio, %	3.2	3.1	3.2	3.1	0.43	0.999	0.969	0.997
PD, mmol/d	68.8	75.9	67.7	81.8	4.70	0.158	0.217	0.531
Estimated rumen microbial N, g/d	29.6	35.7	28.5	36.9	3.68	0.299	0.446	0.786

SEM = standard error of the mean; N = nitrogen; PD = purine derivatives; T = treatment; L = linear; Q = quadratic.

Table 8

Items	PEG, g/kg DM	SEM	P-value					
Nutrients								
TP, g/L	68.73b	70.29b	70.26b	70.86b	0.539	0.043	0.069	0.530
ALB, g/L	27.58	27.53	27.73	28.04	0.311	0.059	0.014	0.745
Globulin, g/L	41.15b	42.76b	42.52b	42.82b	0.243	0.050	0.029	0.169
Urea, µmol/L	3.96	3.89	3.99	3.79	0.083	0.351	0.487	0.632
TAA, µmol/L	4.28	4.19	3.96	4.29	0.197	0.629	0.917	0.506
Hormones								
GH, mg/mL	5.21	5.97	6.80	6.82	0.595	0.207	0.148	0.664
IGF-1, mg/mL	193.10	199.45	188.85	183.95	6.182	0.281	0.436	0.606
Purine derivatives								
Uric acid, mg/L	12.76	14.03	11.79	14.79	1.335	0.418	0.762	0.760
Allantoin, mmol/L	1.05	0.87	0.87	0.98	0.061	0.096	0.549	0.079
Other metabolites								
Creatinine, µmol/L	137.44	143.36	139.34	140.95	2.836	0.519	0.720	0.593
Hippuric acid, µmol/L	37.61	35.38	36.54	37.06	1.578	0.763	0.947	0.403

SEM = standard error of the mean; TP = total protein; ALB = albumin; TAA = total amino acids; GH = growth hormone; IGF-1 = insulin-like growth factor-1; T = treatment; L = linear; Q = quadratic.

784
sorghum tannins had no effect on the ruminal microbial N synthesis. The results agreed with the unaffected ruminal concentration of MCP by adding PEG.

5. Conclusions

Adding PEG to the ration containing high sorghum tannins improved ruminal fermentation of carbohydrates, increased CP digestibility, and tended to increase N:N O emissions from steers. It shifted N excretions from feces to urine and increased urinary urea excretion in steers. Hence it had a potential to increase the N:N O emissions from steer excreta. Adding PEG to the ration containing high sorghum tannins had only a minor effect on nutrient utilization in steers and a potentially negative effect on the environment. It is necessary to investigate new approaches to improve both nutrient digestibility and NRR in steers fed rations containing high sorghum tannins.

Author contributions

Biao Xie: Investigation, Data curation, Software, Writing — original draft. Xiao Yang: Investigation. Ling Yang: Investigation. Xianjiang Wen: Investigation. Guangyong Zhao: Conceptualization, Methodology, Supervision, Writing — review & editing.

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, and there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the content of this paper.

Acknowledgements

The experiment was supported by National Natural Science Foundation of China (grant No. 31572428).

References

Alipanahi Z, Fatmahna F, Fajari H, Taalti G, Mirzaei-Alamouti H, Barrett D, Pormalekshahi AJLS. Effect of oak acorn with or without polyethylene glycol in diets containing extruded soybean on milk fatty acid profile, ruminal fermentation and plasma metabolites of lactating goats. Livest Sci 2019;221:57–62.

Alonso-Díaz MA, Torres-Acosta JFJ, Sandoval-Castro CA, Hoste H. Tannins in tropical tree fodders fed to small ruminants: a friendly foe? Small Rumin Res 2010;89:22–30.

Anele UY, Pandu Ranga Reddy P, Salem AZM. Analysis of Corymbia citriodora leaf extract on growth performance, ruminal fermentation, nutrient digestibility, plasma antioxidant activity and faecal bacteria in young calves. Anim Feed Sci Technol 2020;261:114394.

Barbieri LR, Acharya S, Hu TM, McAllister TA, Stanford K. Effects of feed intake, nutrient digestibility and faecal shedding of Escherichia coli O157:H7 in lambs. Anim Feed Sci Technol 2015;207:51–61.

Brito AF, Tremblay GF, Bertrand A, Castonguay Y, Lafreniére G, Michaud R, Berthiaume R. Alfalfa baleage with increased concentration of condensed tannins on live weight, faecal nitrogen and blood metabolites of free-ranging female goats in a semi-arid African savanna. Small Rumin Res 2018;166:28–35.

Buergi JL, López-Moscoso RG, Hirt AE. Ouabain-sensitive bicarbonate secretion and acid absorption by the ileum and in vitro media. J Dairy Sci 1980;63:64–75.

Cotra MA, Amolytic activity of selected species of ruminal bacteria. Appl Environ Microbiol 1988;54:772–6.

Denman SE, McSweeney CS. Development of a real-time PCR assay for monitoring ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl Microbiol Biotechnol 2009;75:165–74.

Eaton WS, Yu J, Small CJ. A critical evaluation of the vanillin reaction as an assay for tannin in sorghum grain. J Agric Food Chem 1978;26:1214–18.

Forsberg L, Forsberg L, Berg T, Nilsson L, Jönsson G. Bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl Microbiol Biotechnol 2009;75:165–74.

Grosell M, Genz J. Ouabain-sensitive bicarbonate secretion and acid absorption by the ileum and in vitro ruminant fermentation and microbial protein synthesis. Anim Feed Sci Technol 2008;140:444–61.

He YZ, Li Z, Tan F, Liu H, Zhu M, Yang HB, Bi GG, Wan HL, Wang JQ, Xu RW. Fatty acid metabolic flux and lipid peroxidation homeostasis maintain the biomembrane stability to improve citrus fruit storage performance. Food Chem 2019;292:314–24.

Huang QQ, Jin L, Xu Z, Barbieri LR, Acharya S, Hu TM, McAllister TA, Stanford K, Wang Y. Effects of purified prairie clover (Dalea purpurea Vent.) on feed intake, nutrient digestibility and faecal shedding of Escherichia coli O157:H7 in lambs. Anim Feed Sci Technol 2015;207:51–61.

Irondi EA, Adegoke BM, Effiong ES, Oyewo SO, Alamu EO, Bolouen AA. Enzymes inhibitory property, antioxidant activity and phenolics profile of raw and roasted red sorghum grains in vitro. Food Sci Hum Well 2010;8:142–8.

Jayeogarala A, Goel G, Markk PFS, Becker K. Divergence between purified hydrolyzable and condensed tannin effects on methane emission, rumen fermentation and microbial population in vitro. Anim Feed Sci Technol 2015;209:60–4.

Kohno M, Suzuki S, Kanaya T, Yoshino T, Matsuura Y, Asada M, Kitamura S. Structural characterization of the extracellular polysaccharide produced by Bifidobacterium longum JBL05. Carbohydr Polym 2009;72:351–60.

Knop K, Hoogenboom R, Fischer D, Schubert SU. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Drug Deliv 2010;49:2688–308.

Knop K, Blummel M, Becker K. Formation of complexes between polyvinyl pyrrolidone or polyethylene glycols and tannins, and their implication in gas production and true digestibility in vitro techniques. Br J Nutr 1995;73:897–913.

Kohno H, Yamamoto N, Ikeda M. Simple determination of microbial protein in rumen liquor. J Dairy Sci 1982;65:2170–3.

Min BR, Atwood GT, Reilly K, Sun W, Peters JS, Barry TN, McNabb WC. Lotus concinuatus condensed tannins decrease in vivo populations of proteolytic bacteria and affect nitrogen metabolism in the rumen of sheep. Can J Microbial 2002;48:911–21.

Mkhize NR, Heitkönig IMS, Scogings PF, Dzibad LE, Prinsa HHT, De Boer WF. Effects of condensed tannins on live weight, faecal nitrogen and blood metabolites of free-ranging female goats in a semi-arid African savanna. Small Rumin Res 2018;166:28–35.

Nyachoti CM, Atkinson JL, Leesos S. Sorghum tannins: a review. Poultry Sci 1997;53:5–21.

Oemena O, Vragne N, Veltlof GL, Van Gorenigeh JW, Dolling J, Kuikman PJ. Trends in global nitrous oxide emissions from animal production systems. Nutr Cycl Agrosyst 2005;72:51–65.

Otukoya IA, Bellmer D, Whiteley JR, Aichele CP. Evaluation of the environmental impacts of ethanol production from sweet sorghum. Energy Sustain Dev 2015;24:1–8.

Pan I, Shang QH, Wu Y, Ma XK, Long SF, Liu L, Li DF, Piao XS. Concentration of digestible and metabolizable energy, standardized ileal digestibility, and growth performance of pigs fed diets containing sorghum produced in the United States or corn produced in China. J Anim Sci 2017;95:4880–92.

Patra AK, Saxena J. Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. J Sci Food Agric 2011;91:24–37.

Peng C, Shirley DC, Xu ZI, Huang QQ, McAllister TA, Chaves AV, Acharya S, Liu CL, Wang SX, Wang YX. Effect of purified prairie clover (Dalea purpurea Vent.) hay and its condensed tannins on growth performance, wool growth, nutrient digestibility, blood metabolites and ruminal fermentation in lambs fed total mixed rations. Anim Feed Sci Technol 2016;210:31–10.

Price ML, Van Scoyoc S, Butler LG. A critical evaluation of the vanillin reaction as an assay for tannin in sorghum grain. J Agric Food Chem 1978;26:1214–18.

Sadakaven K, Nguyen ML. Livestock production and its impact on nutrient pollution and greenhouse gas emissions. Adv Agron 2017;141:147–84.

Sharma RK, Singh B, Sahoo A. Exploitation of dietary tannins to improve rumen metabolism and faecal nitrogen and blood metabolites of free-ranging female goats in a semi-ard African savanna. Small Rumin Res 2018;166:28–35.

Vara de Rey J, Dal Pozzio I, Fredriech J, Díez de la Guardia S, Santander J. Enzymology of raw and processed barley and sorghum. Cereal Chem 1997;74:222–23.

Wang SX, Wang YX. Effect of purified prairie clover (Dalea purpurea Vent.) hay and its condensed tannins on growth performance, wool growth, nutrient digestibility, blood metabolites and ruminal fermentation in lambs fed total mixed rations. Anim Feed Sci Technol 2016;210:31–10.

Xiong CW, Xiong CW. Anele UY, Pandu Ranga Reddy P, Salem AZM. Analysis of Corymbia citriodora leaf extract on growth performance, ruminal fermentation, nutrient digestibility, plasma antioxidant activity and faecal bacteria in young calves. Anim Feed Sci Technol 2020;261:114394.
Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 1991;74:3583–97.

Wallace RJ, McKain N, Broderick GA, Rode LM, Walker ND, Newbold JC, et al. Peptidases of the rumen bacterium, Prevotella ruminicola. Anaerobe 1997;3:35–42.

Wang T, Huang Y, Yao W, He Q, Shao Y, Li H, Li Y, Huang F. Effect of conditioning temperature on pelleting characteristics, nutrient digestibility and gut microbiota of sorghum-based diets for growing pigs. Anim Feed Sci Technol 2019;254:114227.

Wang Y, Alexander TW, McAllister TA. In vitro effects of phlorotannins from Ascophyllum nodosum (brown seaweed) on rumen bacterial populations and fermentation. J Sci Food Agric 2009;89:2252–60.

Wang Y, Waghorn GC, Mchnabb WC, Barry TN, Hedley MJ, Shelton ID. Effect of condensed tannins in Lotus corniculatus upon the digestion of methionine and cysteine in the small intestine of sheep. J Agric Sci 1996;127:413–21.

Yang K, Wei C, Zhao GY, Xu ZW, Lin SX. Effects of dietary supplementing tannic acid in the ration of beef cattle on rumen fermentation, methane emission, microbial flora and nutrient digestibility. J Anim Physiol Anim Nutr 2016;101:302–10.

Zhong RZ, Fang Y, Wang YQ, Sun HX, Zhou DW. Effects of substituting finely ground sorghum for finely ground corn on feed digestion and meat quality in lambs infected with Haemonchus contortus. Anim Feed Sci Technol 2016;211:31–40.