Rational points on certain homogeneous varieties

Pengyu Yang

Received: 4 November 2021 / Accepted: 19 September 2022 / Published online: 17 February 2023
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023

Abstract
Let L be a simply-connected simple connected algebraic group over a number field F, and H be a semisimple absolutely maximal connected F-subgroup of L. Let $\Delta(H)$ be the image of H diagonally embedded in L^n. Under a cohomological condition, we prove an asymptotic formula for the number of rational points of bounded height on projective equivariant compactifications of $\Delta(H)\backslash L^n$ with respect to a balanced line bundle.

Keywords
Rational points · Height · Counting

Mathematics Subject Classification
14G05 · 11G50

1 Introduction
Let X be a smooth projective variety over a number field F. X is called Fano if the anticanonical divisor $-K_X$ is ample. Given an ample line bundle \mathcal{L} on X, and an adelic metrization \mathcal{L} of \mathcal{L}, we can define an associated height function

$$H_\mathcal{L} : X(F) \to \mathbb{R}_{\geq 0}$$

on the set of F-rational functions (see [1, Section 2]). Take a suitable Zariski open $X^\circ \subset X$, Manin’s conjecture [2] predicts the asymptotic growth of the number of rational points with height at most T in $X^\circ(F)$, as $T \to \infty$. Consider the counting function

$$N(X^\circ(F), \mathcal{L}, T) = \# \{ x \in X^\circ(F) : H_\mathcal{L}(x) \leq T \},$$

it is conjectured that
\[N(X^\circ(F), \mathcal{L}, T) \sim c(\mathcal{L}) T^{a(\mathcal{L})} (\log T)^{b(\mathcal{L}) - 1}, \]

where \(c(\mathcal{L}) > 0\), and \(a(\mathcal{L}), b(\mathcal{L})\) are geometric constants attached to \(X\) and \(\mathcal{L}\), which we define below.

Let \(\mathcal{L}\) be an ample line bundle on \(X\), and let \(\Lambda_{\text{eff}}(X)\) denote the pseudo-effective cone in the real Néron–Severi group \(\text{NS}(X, \mathbb{R})\). We define

\[
\begin{align*}
 a(\mathcal{L}) &= \inf \{ t \in \mathbb{Q} : t[\mathcal{L}] + [K_X] \in \Lambda_{\text{eff}}(X) \}, \\
 b(\mathcal{L}) &= \text{the maximal codimension of the face containing } a(\mathcal{L})[\mathcal{L}] + [K_X].
\end{align*}
\]

(1.1)

The property of these two constants was systematically studied in [6], where the notion of \textit{balanced} line bundle was defined.

In the equivariant setting, let \(G\) be an algebraic group over \(F\), and \(H\) be an \(F\)-subgroup of \(G\). Take \(X^\circ = H \backslash G\), and let \(X\) be a smooth \(G\)-equivariant compactification of \(X^\circ\). Let \(\mathcal{L}\) be an ample line bundle on \(X\). Several cases have been studied in recent years using ergodic-theoretical methods. Gorodnik, Maucourant and Oh [3] studied the case where \(G = H \times H\) using adelic mixing, and this case was studied by Shalika, Takloo-Bighash and Tschinkel [8] independently using deep results from the theory of automorphic forms. Later Gorodnik and Oh [4] proved Manin’s conjecture for \(G\) a connected semisimple \(F\)-group, and \(H\) a semisimple maximal connected \(F\)-subgroup of \(G\), under certain cohomological condition. Gorodnik, Takloo-Bighash and Tschinkel [5] settled the case where \(H\) is a simple connected \(F\)-group diagonally embedded into \(G = H^n\), and \(\mathcal{L} = -K_X\) is the anticanonical bundle.

Definition 1.1 Let \(X\) be an equivariant compactification of \(X^\circ = H \backslash G\) and \(H' \subset G\) any closed proper subgroup containing the diagonal, i.e. \(H \subset H'\). Let \(X' \subseteq X\) be the induced equivariant compactification of \(H \backslash H'\). A line bundle \(\mathcal{L}\) on \(X\) is called \textit{balanced with respect to} \(H'\) if

\[
(a(\mathcal{L}|_{X'}), b(\mathcal{L}|_{X'})) < (a(\mathcal{L}), b(\mathcal{L})),
\]

in the lexicographic ordering. It is called \textit{balanced} if this property holds for every such \(H' \subset G\).

In this article we confirm the following asymptotic formula of Manin type.

Theorem 1.2 Let \(L\) be a simply-connected absolutely-simple connected algebraic group over a number field \(F\), and \(H\) be a semisimple absolutely maximal connected \(F\)-subgroup of \(L\). Let \(G = L^n\), and \(\Delta(H)\) be the image of the diagonal embedding of \(H\) into \(G\). Let \(X\) be a \(G\)-equivariant compactification of \(X^\circ = \Delta(H) \backslash G\). Let \(\mathcal{L}\) be a balanced line bundle on \(X\), with a smooth adelic metrization \(\mathcal{L}\). Suppose that for any completion \(F_v\) of \(F\), the map of Galois cohomology \(H^1(F_v, H) \to H^1(F_v, L)\) is injective. Then

\[N(X^\circ(F), \mathcal{L}, T) \sim c_L \cdot T^{a(\mathcal{L})} (\log T)^{b(\mathcal{L}) - 1}, \]

(1.2)

as \(T \to \infty\), for some \(c_L > 0\).
Our proof is based heavily on [5], and also combines techniques from [1, 4].

Example 1.3 Let $L = \text{SL}_{2m}$ and $H = \text{Sp}_{2m}$, where $m \geq 2$ is an integer. Let X be an equivariant compactification of $\Delta(H) \backslash L^n$, and we take L to be its anticanonical bundle $-K_X$. By [6, Theorem 1.3] and Proposition 2.1 below, $-K_X$ is balanced. Moreover, since $H^1(F_v, H)$ is trivial, we know that $H^1(F_v, H) \to H^1(F_v, L)$ is injective. Hence the conditions of Theorem 1.2 are satisfied, and the asymptotic formula (1.2) holds for this case.

2 Intermediate subgroups

Let F be an algebraically closed field of characteristic 0. Let L be a simply-connected simple connected algebraic group defined over F, and H be a semisimple maximal connected F-subgroup of L. $G = L^n$ is the n-fold direct product of L.

Let $\Delta_1(H)$ denote the diagonal embedding of H into G. In this section we classify all the subgroups of G which contain $\Delta_1(H)$. For any group N and integer r, let $\Delta_r(N)$ denote the image of the diagonal embedding of N into N^r.

Proposition 2.1 (cf. [5, Proposition 4.1]) Suppose M is a connected algebraic group such that $\Delta_1(H) \subset M \subset G$. Then there exist positive integers $n_1, \ldots, n_k; m_1, \ldots, m_l$ such that $n_1 + \cdots + n_k + m_1 + \cdots + m_l = n$, and that up to permutation of indices, M is the image of the morphism

$$\prod_{i=1}^k \Delta_{n_i}(H) \prod_{j=1}^l \Delta_{m_j}(L) \to L^n$$

$$(h_1, \ldots, h_s, g_1, \ldots, g_t) \mapsto (h_1, \ldots, h_s, \rho_1(g_1), \ldots, \rho_t(g_t)),$$

where $\rho_i : L \to L$ is an automorphism of L fixing each element in H.

Proof We prove by induction on n. The case $n = 1$ follows from the maximality of H. Suppose the proposition holds for $n - 1$. For $G = L^n$, let $p_1 : M \to L^{n-1}$ denote the projection onto the first $n - 1$ entries, and $p_2 : M \to L$ the projection onto the last entry. After possibly applying a permutation, we can assume p_2 is onto, i.e. $p_2(M) = L$. Otherwise M is contained in H^n and the conclusion holds by [5, Proposition 4.1].

Now consider $N := p_2(\ker p_1)$. Since M contains $\Delta(H)$, it follows that N is normalized by H. If N is contained in H, then N is a normal subgroup of H. If N is not contained in H, then H is a proper subgroup of NH, but H is maximal, hence $NH = L$. Since L is simple and N is normal in L, we conclude that $N = L$. Now we discuss all the possible cases.

Case 1. $N = L$. In this case, $M = p_1(M) \times L$. By inductive hypothesis we know that $p_1(M)$ is of the form as in the proposition. Hence $M = p_1(M) \times L$ also satisfies the conclusion.
Case 2. \(N \) is an infinite normal subgroup of \(H \). Let \(N_L(N) \) denote the normalizer of \(N \) in \(L \), then it is a proper subgroup of \(L \) containing \(H \). Since \(p_2(M) = L \), we can take \(g \in p_2(M) \) such that \(g \notin N_L(N) \). Then there exists \(a \in L^{\pi-1} \) such that \((a, g) \in M \). It follows that \((a^{-1}, Ng^{-1}) \subset M \), and this implies \(gNg^{-1} \subset N \). Therefore \(g \in N_L(N) \), contradicting the choice of \(g \).

Case 3. \(N \) is finite. Then \(p_1 \) is an isogeny. By inductive hypothesis we may assume that \(p_1(M) = L^r H^s \). Since \(p_2(M) = L \), we get a surjection \(\overline{p_2} : L^r H^s \to L/N \), whose kernel is denoted by \(K \). Since \(L \) and \(H \) are both semisimple, by Lemma 2.2 below, the neutral component \(K^0 \) of \(K \) is of the form \(L^{r-1} H^s \).

\[
\begin{array}{ccc}
p_1(M) & \sim & L^r H^s \\
\downarrow & & \downarrow \overline{p_2} \\
p_1(M)/K_0 & \mathrel{\mathrel{\mathrel{\mathrel{\sim}}}} & L \\
\downarrow \phi & & \downarrow \pi \\
p_1(M)/K & \xrightarrow{\psi} & L/N
\end{array}
\]

Since \(\psi \) is an automorphism of \(L/N \), by the following Theorem 2.3, \(\psi \) induces an isomorphism \(\phi : p_1(M) \to L \). Further lifting to \(p_1(M) \), we can say that \(\overline{p_2} \) induces \(\overline{\phi} : p_1(M) \to L \), whose mapping graph \(M_0 \) is contained in \(M \). Since \(M \) is connected, we know that \(M_0 = M \). In other words, \(p_1 \) is surjective. Therefore \(\overline{p_2} \) induces an automorphism \(\rho : L \to L \). Since \(\Delta(H) \) is contained in \(M \), we know that \(\rho \) fixes each element in \(H \).

Lemma 2.2 Suppose \(G_i \)'s are simple algebraic groups, and \(H \) is a connected normal subgroup of \(\prod_{i=1}^{n} G_i \). Then there exist \(1 \leq i_1 < \cdots < i_k \leq n \) such that \(H = \prod_{j=1}^{k} G_{i_j} \).

Proof We prove by induction on \(n \). Without loss of generality, we may assume that the projection \(p_2(H) \) of \(H \) onto the last summand is nontrivial. Since \(G_n \) is simple, and \(p_2(H) \) is connected normal in \(G_n \), we know that \(p_2(H) = G_n \). Suppose \(h = (h_1, h_2) \) where \(h_1 \in \prod_{i=1}^{n-1} G_i \). Then for any \(g \in G_n \) we have \((h_1, gh_2 g^{-1}) \in H \), as \(H \) is normal. This implies that \(gh_2 g^{-1} h_2^{-1} \in p_2(\ker p_1) \). Hence \(p_2(\ker p_1) \) contains \([G_n, G_n], \) the commutator group of \(G_n \). Since \(G_n \) is simple, we know that \(p_2(\ker p_1) = G_n \). Therefore \(H = p_1(H) \times G_n \). And by inductive hypothesis \(p_1(H) \) is already a direct product.

We now see that the study of automorphism group plays an import role here. Hence let us recall the following result.

Theorem 2.3 ([7, Theorem 2.8]) For any simply connected semisimple group \(G \), the automorphism group \(\text{Aut } G \) is the semidirect product of \(\text{Int } G \simeq \overline{G} \) by \(\text{Sym}(R) \), where \(R \) is the Dynkin diagram. If \(G \) is an arbitrary semisimple group and \(\widetilde{G} \xrightarrow{\pi} G \) is a universal covering, then \(\text{Aut } \widetilde{G} \) is isomorphic to the subgroup of \(\text{Aut } G \) fixing \(\ker \pi \), the fundamental group.

Here we also give a corollary of this theorem, which will be used in the next section.
Corollary 2.4 Let G be a simply-connected semisimple group and H be a maximal connected subgroup of G. Then the set

$$\{ \rho \in \text{Aut } G : \rho(h) = h \text{ for all } h \in H \}$$

is finite.

Proof By Theorem 2.3, it suffices to consider inner automorphisms only, as $\text{Sym } R$ is already finite. Suppose $\rho(g) = g_0g_0^{-1}$ for some $g_0 \in G$, then $g_0 \in Z_H(G)$. Since H is maximal and G is semisimple, we know that $Z_H(G)$ is finite. Hence we only have finitely many choices of such automorphisms. \square

3 Equidistribution of translated measures

Let F be a number field. Let L be a connected semisimple group defined over F, and H a semisimple maximal connected subgroup of L. Notice that in this section we drop the assumption that L is simply-connected. Let $\pi: \widetilde{L} \to L$ be the universal cover of L and W a compact subgroup of $L(\mathbb{A})$ such that $W \cap L(\mathbb{A}_f)$ is open in $L(\mathbb{A}_f)$. Define

$$L_W := L(F) \pi(\widetilde{L}(\mathbb{A}))W$$

and

$$Y_W := L(F) \backslash L_W.$$

Let $C_c(Y_W)^W$ denote the space of compactly supported W-invariant continuous functions on Y_W. Let $G = L^n$ be the n-fold direct product of L, and $V = W^n$ is an open subgroup of G. Set

$$G_V := G(F) \pi(\widetilde{G}(\mathbb{A}))V = L_W \times \cdots \times L_W.$$

Theorem 3.1 Let L be a connected simple group defined over F. Let H be a simple maximal connected subgroup of L. Suppose

$$\{(b^{(k)}_1, \ldots, b^{(k)}_n)\} \subset L_W \times \cdots \times L_W$$

is a sequence such that

(1) For any $i \neq j$,

$$\lim_{k \to \infty} (b^{(k)}_i)^{-1}b^{(k)}_j = \infty.$$

(2) For any i, $b^{(k)}_i \to \infty$ modulo $H(\mathbb{A})$, as $k \to \infty$.

Then for all $f_1, \ldots, f_n \in C_c(Y_W)^W$, we have

$$\lim_{k \to \infty} \int_{Y_W} f_1(yb^{(k)}_1) \cdots f_n(yb^{(k)}_n) \, d\nu(y) = \int_{Y_W} f_1 \, d\mu \cdots \int_{Y_W} f_n \, d\mu.$$
where ν is the invariant probability measure supported on $H(F) \setminus (H(\tilde{A}) \cap L_W)$ considered as a measure on Y_{W} via pushing forward by the natural injection, and μ is the probability Haar measure on Y_{W}.

Proof Set

$$W^{(k)} = \bigcap_{i=1}^{n} b_i^{(k)} W(b_i^{(k)})^{-1}.$$

From the proof of [4, Corollary 4.14], we know that $H(F) \pi(\tilde{H}(A))(W^{(k)} \cap H(A_f))$ is a normal subgroup of $H(\tilde{A}) \cap L_W$ with finite index, for any k. Hence there exists a finite subset $\Delta^{(k)} \subseteq H(\tilde{A}) \cap L_W$ such that

$$H(\tilde{A}) \cap L_W = \bigcup_{x \in \Delta^{(k)}} H(F) \pi(\tilde{H}(A)) x (W^{(k)} \cap H(A_f)),$$

where the union is a disjoint union. We note that by [4, Corollary 4.10], $H(F) \pi(\tilde{H}(A))$ is normal in $H(\tilde{A}) \cap L_W$. Observe that the function

$$y \mapsto f_1(yb_1^{(k)}) \cdots f_n(yb_n^{(k)})$$

is right invariant under $W^{(k)}$. Therefore

$$\int_{Y_{W}} f_1(yb_1^{(k)}) \cdots f_n(yb_n^{(k)}) \, d\nu(y)$$

$$= \sum_{x \in \Delta^{(k)}} \int_{W^{(k)}} \int_{x_0 \pi(\tilde{H}(A))x} f_1(ub_1^{(k)}) \cdots f_n(ub_n^{(k)}) \, d\mu_{x}^{(k)}(u) \, dw$$

$$= \sum_{x \in \Delta^{(k)}} \frac{1}{\# \Delta^{(k)}} \int_{x_0 \pi(\tilde{H}(A))x} f_1(ub_1^{(k)}) \cdots f_n(ub_n^{(k)}) \, d\mu_{x}^{(k)}(u),$$

where $\mu_{x}^{(k)}$ is the invariant probability measure supported on $x_0 \pi(\tilde{H}(A))x$, and dw is the normalized invariant measure on $W^{(k)}$.

Now for any k, choose $x^{(k)} \in \Delta^{(k)}$, and set

$$c^{(k)} = (x^{(k)}b_1^{(k)}, \ldots, x^{(k)}b_n^{(k)}).$$

Since $(c_i^{(k)})^{-1} c_j^{(k)} = (b_i^{(k)})^{-1} b_j^{(k)}$ and $x^{(k)} \in H(\tilde{A})$, we can see that the sequence $\{c^{(k)}\}$ still satisfies both conditions in the theorem. According to the definition we can rewrite the last integral in (3.1) as

$$\sum_{x \in \Delta^{(k)}} \frac{1}{\# \Delta^{(k)}} \int_{x_0 \pi(\tilde{H}(A))x} f_1(ub_1^{(k)}) \cdots f_n(ub_n^{(k)}) \, d\mu_{x}^{(k)}(u),$$
\[
\int_{x_0\pi(H(\mathbb{A}))} f_1(u b_1^{(k)}) \cdots f_n(u b_n^{(k)}) \, d\mu_x(u) = \int_{G(F) \backslash G_V} f_1 \otimes \cdots \otimes f_n \, d(c^{(k)} \cdot \lambda_H).
\]

(3.2)

Now it remains to determine the limit points of \(c^{(k)} \cdot \lambda_H\), where \(\lambda_H\) is the invariant probability measure on \(\pi(\Delta(H)(\mathbb{A}))\).

Since \(H\) is maximal in \(L\), the centralizer \(Z_L(H)\) of \(H\) in \(L\) is anisotropic. Hence the centralizer of \(\Delta(H)\) in \(G = L^n\), which equals \(Z_L(H) \times \cdots \times Z_L(H)\), is also anisotropic over \(F\). Therefore, by [4, Theorem 1.7(1)] we know that \(\{c^{(k)} \cdot \lambda_H\}\) is relatively compact. Suppose \(\mu\) is a limit point. By [4, Theorem 1.7(2)] we get a connected \(F\)-subgroup \(M\) of \(G\) and a sequence \(\delta^{(k)} \in G(F)\) such that

\[
\Delta(H) \subset (\delta^{(k)})^{-1} M \delta^{(k)} \subset G.
\]

Hence

\[
M = \delta^{(k)} N_k \delta^{(k)}^{-1},
\]

(3.3)

where \(N_k\) is an intermediate subgroup as described in Proposition 2.1. Now it suffices to show that \(M = G\), and the theorem will follow by a similar argument to [5, Theorem 5.1].

We prove \(M = G\) by contradiction. Suppose \(M\) is a proper subgroup of \(G\). By Corollary 2.4, the number of intermediate subgroups is finite, and thus by passing to a subsequence we may assume that \(N_k = N\) for all \(k\). Here \(N\) is a proper subgroup of \(G = L^n\).

Case 1. There is no \(\Delta_{n_1}(H)\) part. Since \(N\) is a proper subgroup of \(G\), we can find \(i \neq j\) such that \(\pi_{ij}(N) = \Delta_2(L)\). Set \(\sigma^{(k)} = (\delta^{(1)})^{-1} \delta^{(k)}\), we see from equation (3.3) that

\[
z^{(k)} := (\sigma_i^{(k)})^{-1} \sigma_j^{(k)} \in Z(L)(F).
\]

By [4, Theorem 1.7(2)], there exists \(h^{(n)} \in \pi(\Delta(H)(\mathbb{A}))\) such that \(\delta^{(k)} h^{(n)} c^{(k)}\) converges. In particular, \((z^{(k)})^{-1} c_i^{(k)})^{-1} c_j^{(k)}\) converges. Since \(Z(L)\) is finite, \(\{z^{(k)}\}\) is a compact set. Hence \((c_i^{(k)})^{-1} c_j^{(k)}\) converges, but this contradicts to the fact that pairwise ratios diverge.

Case 2. There is a \(\Delta_{n_1}(H)\) part. We may assume that \(\pi_1(N) = H\). We see from (3.3) that \(\sigma_1^{(k)}\) is in the normalizer \(N_L(H)\) of \(H\). But \(H\) has finite index in \(N_L(H)\), hence \(\{\sigma_1^{(k)}\}\) is bounded modulo \(H\). Again by [4, Theorem 1.7], the sequence \(\sigma_1^{(k)} h_1^{(k)} c_1^{(k)}\) converges. This contradicts to the fact that \(\{c_1^{(k)}\}\) diverges modulo \(H\).

Therefore, \(M = G\), and still by [4, Theorem 1.7] we know that there exists a normal subgroup \(M_0\) of \(M(\mathbb{A}) = G(\mathbb{A})\) containing \(G(F) \pi(G(\mathbb{A}))\) and \(g \in \pi(G(\mathbb{A}))\) such that for any \(f \in \mathcal{C}_c(G(F))\), we have the following:

\[
\int_{G(F) \backslash G_V} f \, d\mu = \int_{G(F) \backslash G_V} f \, d(g \cdot v_{M_0}) = \int_{G(F) \backslash G_V} f \, dv_{M_0} = \int_{G(F) \backslash G_V} f(uv) \, dv \, dv_{M_0} = \int_{G(F) \backslash G_V} f \, dz,
\]

(3.4)
where $d\mu_{M_0}$ is the pushforward of the Haar measure on x_0M_0, and dz is the Haar measure on $G(F)\backslash G_V$.

Finally, combining equations (3.1), (3.2), (3.4) we finish the proof of the theorem. \square

4 Volume computation

In this section, let L be a simply-connected simple connected algebraic group over a number field F, and H be a simple maximal connected F-subgroup of L. Denote by G the n-fold direct product of L. We treat H as a subgroup of G via diagonal embedding. Let X be a smooth projective equivariant compactification of $X^0 = H \backslash G$. Let L be an ample line bundle on X. By [5, Proposition 2.1], we can write

$$L = \sum_{\alpha \in A} \lambda_\alpha D_\alpha, \quad \lambda_\alpha \in \mathbb{Q}_{>0},$$

and

$$-K_X = \sum_{\alpha \in A} \kappa_\alpha D_\alpha,$$

where all $\kappa_\alpha \geq 1$.

Given a smooth metrization L of L, as in [1, Section 2.1] we have a corresponding height function

$$H = H_L : X^0(F) \to \mathbb{R}_{>0}.$$

There exists a compact open subgroup V of $G(\AA_f)$ such that the adelic height function H is invariant under V. By possibly replacing V with a smaller compact open subgroup, we may assume that $V = W \times \cdots \times W$ for a compact open subgroup W of $H(\AA_f)$.

To compute the volume of the height ball via standard Tauberian argument, we need the following result.

Theorem 4.1 ([5, Theorem 3.3]) Let G be a connected semisimple algebraic group and $H \subset G$ a closed subgroup, defined over a number field F, such that the map $H^1(E, H) \to H^1(E, G)$ is injective, for E being either F or a completion of F. Let X be a smooth projective equivariant compactification of $X^0 = H \backslash G$ with normal crossing boundary $\cup_{\alpha \in A} D_\alpha$ and

$$H : \mathbb{C}^A \times X^0(\AA) \to \mathbb{C}$$

an adelic height system. Then there exists a function Φ, holomorphic and bounded in vertical strips for $\Re s_\alpha > \kappa_\alpha - \epsilon$, for some $\epsilon > 0$, such that for $s = (s_\alpha)$ in this domain one has

$$\int_{X^0(\AA)} H(s, x)^{-1} dx = \prod_{\alpha \in A} \zeta_F(s_\alpha - \kappa_\alpha + 1) \cdot \Phi(s),$$

\copyright Springer
where ζ_F is the Dedekind zeta function.

Let B_T be the height ball in $X_V = X^0(\mathbb{A})$ defined by

$$B_T = B_{T,L} = \{x \in X_V : H_L(x) < T\}.$$

We have the following asymptotic formula for the volume of the height ball.

Lemma 4.2 ([5, Lemma 6.3]) Let \mathcal{L} be an ample line bundle on X, and \mathcal{L} be a smooth metrization of \mathcal{L}. Then

$$\text{vol}(B_T) \sim c_L \cdot T^{a_L} (\log T)^{b_L - 1}$$

with a_L, b_L as in (1.1) and $c_L > 0$.

The following lemma is a generalized version of [5, Lemma 6.6].

Lemma 4.3 Let $H \subset M \subset G$ be semisimple connected algebraic groups defined over F, and \mathcal{L} be a balanced line bundle on $H \setminus G$. Let K be a compact subset of $G(\mathbb{A})$ such that $k_1k_2^{-1} \notin M(\mathbb{A})$ for all distinct $k_1, k_2 \in K$. Suppose $H^1(F_v, H) \to H^1(F_v, G)$ is injective for any place v of F, then for any smooth adelic metrization of \mathcal{L}, we have

$$\lim_{T \to \infty} \frac{\text{vol}(B_T \cap (H \setminus M)(\mathbb{A}) \cdot K)}{\text{vol}(B_T)} = 0.$$

Proof Since we have injectivity of cohomology, we can apply Theorem 4.1 to $H \setminus M$ and $H \setminus G$. Now we know the poles of the height integral and their orders, and we can apply the standard Tauberian argument to obtain the volume asymptotics (see [1, Appendix A]). The proof of [5, Lemma 6.6] works with no changes needed. \qed

Corollary 4.4 Let $G = L^n$ and H embeds in G diagonally. Let the volume be given by the Tamagawa measure with respect to a balanced line bundle \mathcal{L}.

1. Let K_1 be a compact subset of $L(\mathbb{A})$. For any $1 \leq i < j \leq n$, we have

$$\lim_{T \to \infty} \frac{\text{vol}(B_T \cap \{(x_1, \ldots, x_n) \in (H \setminus G)(\mathbb{A}) : (x_i)^{-1}x_j \in K_1\})}{\text{vol}(B_T)} = 0.$$

2. Let K_2 be a compact subset of $H \setminus L(\mathbb{A})$. Fix $1 \leq i \leq n$, we have

$$\lim_{T \to \infty} \frac{\text{vol}(B_T \cap \{(x_1, \ldots, x_n) \in (H \setminus G)(\mathbb{A}) : x_i \in K_2\})}{\text{vol}(B_T)} = 0.$$

Proof In (1) we take

$$M = \{(x_1, \ldots, x_n) \in G : x_i = x_j\},$$

and

$$K = \{(x_k) \in G(\mathbb{A}) : x_j \in K_1; x_k = e \text{ for all } k \neq \hat{j}\}.$$
In (2) we take

\[M = \{(x_1, \ldots, x_n) \in G : x_i \in H\}, \]

and

\[K = \{(x_k) \in G(\mathbb{A}) : x_i \in K_2; x_k = e \text{ for all } k \neq i\}. \]

Now it remains to apply Lemma 4.3.

We recall the definition of \(L_W, Y_W \) and \(G_V \) from Sect. 3. Since \(L \) is simply-connected, we have \(L_W = L(F) \pi(\tilde{L}(\mathbb{A})) W = L(\mathbb{A}), G_V = (L_W)^n = G(\mathbb{A}). \) Denote \(Y = Y_W = L(F) \backslash L(\mathbb{A}) \) and \(Z = Z_V = G(F) \backslash G(\mathbb{A}). \) Let \(\nu \) be the invariant probability measure supported on \(H(F) \backslash H(\mathbb{A}). \) Let \(dx \) denote the Tamagawa measures on \(X^\circ(\mathbb{A}), \) and \(dz \) denote the invariant probability measure on \(G(F) \backslash G(\mathbb{A}). \)

We recall the following result from [5].

Proposition 4.5 ([5, Corollary 6.8]) For any \(f \in C_c(Z), \)

\[
\lim_{T \to \infty} \frac{1}{\text{vol}(B_T)} \int_{B_T} dx \int_Y f(yx) d\nu(y) = \int_Z f \, dz.
\]

Proof We follow the proof of [5, Corollary 6.8]. By the Stone–Weierstrass theorem, it suffices to consider functions of the form \(f = f_1 \otimes \cdots \otimes f_n \) with \(f_i \in C_c(Y), \) and it is shown that we may assume \(f_i \) to be \(W \)-invariant. In this case,

\[
I(x) = \int_Y f(yx) \, d\nu(y) = \int_Y f_1(yx_1) \cdots f_n(yx_n) \, d\nu(y).
\]

Given compact subsets \(K_1 \) of \(L(\mathbb{A}) \) and \(K_2 \) of \((H \backslash L)(\mathbb{A}), \) we set

\[
B_{T,K_1,K_2} = \left\{ x \in B_T : (x_i)^{-1}x_j \notin K_1, i \neq j; x_i \notin K_2 \right\}.
\]

By Theorem 3.1, for every \(\epsilon > 0, \) there exists \(K_1 \) and \(K_2 \) such that for all \(x = (x_1, \ldots, x_n) \in B_{T,K_1,K_2}, \) we have

\[
|I(x) - \int_Y f_1 \, d\mu \cdots \int_Y f_n \, d\mu| < \epsilon,
\]

and

\[
\int_{B_{T,K_1,K_2}} I(x) \, dx = \text{vol}(B_{T,K_1,K_2}) \int_Y f_1 \, d\mu \cdots \int_Y f_n \, d\mu + O(\epsilon \text{vol}(B_{T,K_1,K_2})). \tag{4.1}
\]
One also has
\[\int_{B_T \setminus B_T, K_1, K_2} I(x) \, dx = O(\text{vol}(B_T \setminus B_T, K_1, K_2)). \tag{4.2} \]

Since the line bundle \(\mathcal{L} \) is balanced, it follows from Lemma 4.3 that
\[\frac{\text{vol}(B_T \setminus B_T, K_1, K_2)}{\text{vol}(B_T)} \to 0, \quad T \to \infty. \]

Since \(\epsilon > 0 \) is arbitrary, combining (4.1) and (4.2) we finish the proof of the proposition. \(\square \)

Proof of Theorem 1.2 By [5, Lemma 3.4], the height balls are well-rounded. Then Theorem 1.2 follows from Proposition 4.5 via the standard unfolding argument. See e.g. [4, Proposition 5.3] and [5, Theorem 6.9].

Acknowledgements The author would like to thank David Anderson and Alexander Gorodnik for helpful discussions. The author also would like to thank the referee for helpful suggestions.

References

1. Chambert-Loir, A., Tschinkel, Yu.: Igusa integrals and volume asymptotics in analytic and adelic geometry. Confluentes Math. 2(3), 351–429 (2010)
2. Franke, J., Manin, Yu.I., Tschinkel, Yu.: Rational points of bounded height on Fano varieties. Invent. Math. 95(2), 421–435 (1989)
3. Gorodnik, A., Maucourant, F., Oh, H.: Manin’s and Peyre’s conjectures on rational points and adelic mixing. Ann. Sci. Éc. Norm. Supér. (4) 41(3), 383–435 (2008)
4. Gorodnik, A., Oh, H.: Rational points on homogeneous varieties and equidistribution of adelic periods. With an appendix by Mikhail Borovoi. Geom. Funct. Anal. 21(2), 319–392 (2011)
5. Gorodnik, A., Takloo-Bighash, R., Tschinkel, Yu.: Multiple mixing for adele groups and rational points. Eur. J. Math. 1(3), 441–461 (2015)
6. Hassett, B., Tanimoto, S., Tschinkel, Yu.: Balanced line bundles and equivariant compactifications of homogeneous spaces. Int. Math. Res. Not. IMRN 2015(15), 6375–6410 (2015)
7. Platonov, V., Rapinchuk, A.: Algebraic Groups and Number Theory. Pure and Applied Mathematics, vol. 139. Academic Press, Boston (1994)
8. Shalika, J., Takloo-Bighash, R., Tschinkel, Yu.: Rational points on compactifications of semi-simple groups. J. Amer. Math. Soc. 20(4), 1135–1186 (2007)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.