New Constructions of MDS Symbol-Pair Codes

Baokun Ding, Gennian Ge, Jun Zhang, Tao Zhang and Yiwei Zhang

Abstract

Motivated by the application of high-density data storage technologies, symbol-pair codes are proposed to protect against pair-errors in symbol-pair channels, whose outputs are overlapping pairs of symbols. The research of symbol-pair codes with large minimum pair-distance is interesting since such codes have the best possible error-correcting capability. A symbol-pair code attaining maximal minimum pair-distance is called a maximum distance separable (MDS) symbol-pair code. In this paper, we give a new construction of q-ary MDS symbol-pair codes with pair-distance 5 and length from 5 to $q^2 + q + 1$, which completely solves the case $d = 5$. For pair-distance 6 and length from 6 to $q^2 + 1$, we construct MDS $(n, 6)_q$ symbol-pair codes by using a configuration called ovoid in projective geometry. With the help of elliptic curves, we present a construction of MDS symbol-pair codes for any pair-distance d and length $d \leq n \leq q + \lfloor 2\sqrt{q} \rfloor + \delta(q) - 3$, where $\delta(q) = 0$ or 1.

Index Terms

Symbol-pair read channels, MDS symbol-pair codes, projective geometry, elliptic curves.

I. INTRODUCTION

With the development of high-density data storage technologies, while the codes are defined as usual over some discrete symbol alphabet, their reading from the channel is performed as overlapping pairs of symbols. A channel whose outputs are overlapping pairs of symbols is called a symbol-pair channel. A pair-error is defined as a pair-read in which one or more of the symbols are read in error. The design of codes to protect efficiently against a certain number of pair-errors is significant.

Chee et al. in [4] established a Singleton-type bound on symbol-pair codes and constructed infinite families of symbol-pair codes that meet the Singleton-type bound, which are called maximum distance separable symbol-pair codes or MDS symbol-pair codes for short. The construction of MDS symbol-pair codes is interesting since the codes have the best pair-error correcting capability for fixed length and dimension. The authors in [4] made use of interleaving and graph theoretic concepts as well as combinatorial configurations to construct MDS symbol-pair codes. Kai et al. [8] constructed MDS symbol-pair codes from cyclic and constacyclic codes.

Classical MDS codes are MDS symbol-pair codes [4] and other known families of MDS $(n, d)_q$ symbol-pair codes are shown in Table I.

d	q	n	Reference
2, 3	$q \geq 2$	$n \geq 2$	[4]
4	$q \geq 2$	$n \geq 2$	[4]
5	even prime power	$5 \leq n \leq 2q + 3$	[4]
	odd prime		
	prime power	$n(q^2 - 1, n > q + 1$	[4]
	prime power	$n = q^2 + q + 1$	[4]
6	prime power, $q \equiv 1 \mod 3$	$n = 2\frac{q^2 + q + 1}{q + 1} + 1$	[4]
	odd prime power	$n = \frac{q^2 - 1}{q - 1}$	[4]
7	odd prime	$n = 8$	[4]

In this paper, we present three new constructions of MDS symbol-pair codes and obtain the following three new families:

1) MDS $(n, 5)_q$ symbol-pair codes for $q \geq 2$ and $5 \leq n \leq q^2 + q + 1$.

The research of G. Ge was supported by the National Natural Science Foundation of China under Grant Nos. 11431003 and 61571310, B. Ding, T. Zhang and Y. Zhang are with the School of Mathematical Sciences, Zhejiang University, Hangzhou 310027, China (e-mail: bkding@zju.edu.cn; tzh@zju.edu.cn; reoxyw@163.com).

G. Ge is with the School of Mathematical Sciences, Capital Normal University, Beijing 100048, China. He is also with Beijing Center for Mathematics and Information Interdisciplinary Sciences, Beijing, 100048, China (e-mail: genge@zju.edu.cn).

J. Zhang is with the School of Mathematical Sciences, Capital Normal University, Beijing 100048, China (e-mail: junz@cnu.edu.cn).
2) MDS \((n, 6)_q\) symbol-pair codes for \(q \geq 3\) being a prime power and \(6 \leq n \leq q^2 + 1\).
3) MDS \((n, d)_q\) symbol-pair codes for \(q\) being a prime power and general \(n, d\) satisfying \(d \leq n \leq q + \lfloor 2\sqrt{q} \rfloor + \delta(q) - 3\),
where
\[
\delta(q) = \begin{cases}
0, & \text{if } q = p^a, a \geq 3, a \text{ odd and } p \mid |2\sqrt{q}|; \\
1, & \text{otherwise.}
\end{cases}
\]

This paper is organized as follows. Basic notations and definitions are given in Section II. In Section III, we construct MDS symbol-pair codes with \(d = 5\). And we derive MDS symbol-pair codes with \(d = 6\) from projective geometry in Section IV. By using elliptic curves, we give the construction of MDS symbol-pair codes for any \(d\) satisfying certain conditions in Section V. Section VI concludes the paper.

II. Preliminaries

A. Symbol-Pair Codes

Let \(\Sigma\) be the alphabet consisting of \(q\) elements. Each element in \(\Sigma\) is called a symbol. For a vector \(u = (u_0, u_1, \cdots, u_{n-1})\) in \(\Sigma^n\), we define the symbol-pair read vector of \(u\) as
\[
\pi(u) = ((u_0, u_1), (u_1, u_2), \cdots, (u_{n-1}, u_0)).
\]

It is obvious that each vector \(u\) in \(\Sigma^n\) has a unique symbol-pair read vector \(\pi(u)\) in \((\Sigma \times \Sigma)^n\). For two vectors \(u, v\) in \(\Sigma^n\), the pair-distance between \(u\) and \(v\) is defined as
\[
d_p(u, v) := \{|i \in \mathbb{Z}_n : (u_i, u_{i+1}) \neq (v_i, v_{i+1})\}.
\]
where \(\mathbb{Z}_n\) denotes the ring \(\mathbb{Z}/n\mathbb{Z}\).

A code \(C\) over \(\Sigma\) of length \(n\) is a nonempty subset of \(\Sigma^n\) and the elements of \(C\) are called codewords. The minimum pair-distance of \(C\) is defined as
\[
d_p(C) = \min\{d_p(u, v) | u, v \in C, u \neq v\},
\]
and the size of \(C\) is the number of codewords it contains. In general, a code \(C\) over \(\Sigma\) of length \(n\), size \(M\) and minimum pair-distance \(d\) is called an \((n, M, d)_q\) symbol-pair code. Besides, if \(C\) is a subspace of \(\Sigma^n\), then \(C\) is called a linear symbol-pair code. All the known MDS symbol-pair codes are linear, and in this paper we also consider linear symbol-pair codes.

The minimum pair-distance \(d\) is an important parameter in determining the error-correcting capability of \(C\). Thus it is significant to find symbol-pair codes of fixed length \(n\) with pair-distance \(d\) as large as possible. In [4], the authors have proved the following Singleton-type bound.

Theorem 2.1 (Singleton Bound). Let \(q \geq 2\) and \(2 \leq d \leq n\). If \(C\) is an \((n, M, d)_q\) symbol-pair code, then \(M \leq q^{n-d+2}\).

A symbol-pair code achieving the Singleton bound is a maximum distance separable (MDS) symbol-pair code. An MDS \((n, M, d)_q\) symbol-pair code is simply called an MDS \((n, d)_q\) symbol-pair code.

B. Almost MDS Codes

For a linear code \(C\) over \(\mathbb{Z}_q\) with parameters \([n, k, d_H]\), where \(n\) is the length, \(k\) is the dimension and \(d_H\) is the minimum Hamming distance, we have the following Singleton bound.

Theorem 2.2 (Singleton Bound). For every \([n, k, d_H]_q\) linear code, we have \(k \leq n - d_H + 1\).

A linear \([n, k, d_H]_q\) code achieving the Singleton bound is called a maximum distance separable (MDS) code. A linear \([n, k, d_H]_q\) code with \(k = n - d_H\) is called an almost MDS code [6].

In [3], the authors presented the following theorem which allows us to construct MDS symbol-pair codes from almost MDS codes.

Theorem 2.3. Let \(C\) be an almost MDS code over \(\mathbb{F}_q\) of length \(n\) with minimum Hamming distance \(d_H\). If pair-distance \(d \geq d_H + 2\), then \(C\) is an MDS \((n, d_H + 2)_q\) symbol-pair code.

Recall that a linear code \(C\) has minimum Hamming distance \(d_H\) if and only if the parity check matrix of \(C\), say \(H\), satisfies the following two conditions:
1. any \(d_H - 1\) columns of \(H\) are linearly independent;
2. there exist \(d_H\) linearly dependent columns.

Illuminated by Theorem 2.2, we further describe the properties of the parity check matrices of such almost MDS codes in Theorem 2.3, which give a sufficient condition for the existence of MDS symbol-pair codes, in the following theorem.

Theorem 2.4. There exists an MDS \((n, d + 2)_q\) symbol-pair code \(C\) if there exists a matrix with \(d\) rows and \(n\) columns over \(\mathbb{Z}_q\), denoted by \(H = [H_0, H_1, \cdots, H_{n-1}]\), where \(H_i (0 \leq i \leq n - 1)\) is the \(i\)-th column of \(H\), satisfying:
1. any \(d - 1 \) columns of \(H \) are linearly independent;
2. there exist \(d \) linearly dependent columns;
3. any three cyclically consecutive columns are linearly independent, i.e., \(H_i, H_{i+1}, \ldots, H_{i+d-1} \) are linearly independent for \(0 \leq i \leq n - 1 \), where the subscripts are reduced modulo \(n \).

\textbf{Proof:} The first two conditions indicate that \(C \) is an almost MDS code with minimum Hamming distance \(d \). Consider any codeword \(c \in C \) with \(d \) nonzero coordinates, the \(d \) nonzero coordinates are not cyclically consecutive from the third condition. Thus, \(C \) is an MDS \((n, d + 2)_q\) symbol-pair code with size \(q^{d-d} \).

\section{MDS Symbol-Pair Codes with Pair-Distance 5}

In this section we construct MDS \((n, 5)_q\) symbol-pair codes. According to Theorem 2.4, what we need is to construct a matrix \(H \) with 3 rows and \(n \) columns over \(\mathbb{Z}_q \) satisfying the following conditions:
1. any two columns of \(H \) are linearly independent;
2. there exist three linearly dependent columns;
3. any three cyclically consecutive columns are linearly independent.

By the first condition, we have \(n \leq q^2 + q + 1 \) since this is exactly the largest possible number of pairwise independent vectors. We first describe how to construct a full matrix \(H(q) \) of size \(3 \times (q^2 + q + 1) \) and then we mention how to adjust \(H(q) \) to get a matrix \(H(q; n) \) of size \(3 \times n \) for any \(n, 5 \leq n \leq q^2 + q + 1 \). Choose the column vectors of \(H(q) \) from the following \(q^2 + q + 1 \) vectors: \(\{0, 0, 1\}^T, (0, 1, x)^T \) for \(x \in \mathbb{Z}_q \), \((a, b)^T \) for \(a, b \in \mathbb{Z}_q \), so that the first two conditions are guaranteed, and we only need to order these vectors in a proper way to meet the third condition.

First we deal with the case that \(q \) is not a multiple of 2. As a preparation step, we partition the \(q^2 \) vectors \(\{(1, a, b)^T, a, b \in \mathbb{Z}_q \} \) into \(q \) disjoint blocks \(B_i = \{(1, a, a^2 + i)^T, a \in \mathbb{Z}_q \} \) for \(0 \leq i < q \). We give an order of the vectors within \(B_i \). Set the first vector to be \((1, a, a^2 + i)^T \) with \(a = i \) and the next to be \((1, a + 1, (a + 1)^2 + i)^T \). This recursive order ends until the vector \((1, i + q - 1, (i + q - 1)^2 + i)^T \).

Then we construct the matrix \(H(q) \) as follows. List all the blocks \(B_i \) defined above in the reverse order of their subscripts: \(B_{q-1}, B_{q-2}, \ldots, B_1, B_0 \). Between any pair of consecutive blocks \(B_i \) and \(B_{i-1} \), insert a vector \((0, 1, 2(i - 1))^T \). Note that the pair of \(B_0 \) and \(B_{q-1} \) is also considered, and the vector \((0, 1, 2(q - 1))^T \) should be inserted between them, which is further restricted to be the first column of \(H(q) \). Finally the vector \((0, 0, 1)^T \) could be placed anywhere and we just set it as the last column. That is,

\[
H(q) = \begin{bmatrix}
0 & 1 & B_{q-1} & 0 & 0 & \ldots & 0 & 0 \\
1 & B_{q-2} & 0 & \ldots & 0 & \ldots & 0 & 0 \\
2(q - 1) & 2(q - 2) & 2(q - 3) & \ldots & 2i & \ldots & B_1 & 1 & B_0 & 0
\end{bmatrix}.
\]

\textbf{Proposition 3.1.} Every three cyclically consecutive columns of \(H(q) \) are linearly independent over \(\mathbb{Z}_q \).

\textbf{Proof:} For three consecutive columns within a block \(B_t \), \(0 \leq t \leq q - 1 \), we have

\[
\begin{vmatrix}
a - 1 & a & a + 1 \\
(a - 1)^2 + t & a^2 + t & (a + 1)^2 + t
\end{vmatrix} = \begin{vmatrix}
a - 1 & a & a + 1 \\
(a - 1)^2 & a^2 & (a + 1)^2
\end{vmatrix} = 2 \not\equiv 0 \, (\text{mod } q) \quad (1)
\]

For three consecutive columns with a vector \((0, 1, 2s)^T \) in the middle, we have

\[
\begin{vmatrix}
s & 1 & s \\
s^2 + t & 2s & s^2 + t
\end{vmatrix} = \begin{vmatrix}
s & 1 & 0 \\
s^2 + t & 2s & t' - t
\end{vmatrix} = t' - t \not\equiv 0 \, (\text{mod } q) \quad (2)
\]

For three consecutive columns containing a vector \((0, 1, 2s)^T \), which is not in the middle, we have either

\[
\begin{vmatrix}
0 & 1 & 1 \\
1 & s & s + 1 \\
2s & s^2 + t & (s + 1)^2 + t
\end{vmatrix} = -1 \not\equiv 0 \, (\text{mod } q), \quad (3)
\]

or

\[
\begin{vmatrix}
1 & 1 & 0 \\
s - 1 & s & 1 \\
(s - 1)^2 + t & s^2 + t & 2s
\end{vmatrix} = 1 \not\equiv 0 \, (\text{mod } q). \quad (4)
\]

\[
\begin{vmatrix}
1 & 1 & 1 \\
s - 1 & s & s + 1 \\
(s - 1)^2 + t & s^2 + t & 2s
\end{vmatrix} = 1 \not\equiv 0 \, (\text{mod } q).
\]

Finally, it is easy to see that every three consecutive columns in \(H(q) \) containing the vector \((0, 0, 1)\) are linearly independent over \(\mathbb{Z}_q \).

We now focus on the case that \(2 \) divides \(q \) and \(q \neq 2, 4 \). The general outline is similar. First define the blocks \(B_i \) in the same way and list all the blocks \(B_i \) in the reverse order of their subscripts: \(B_{q-1}, B_{q-2}, \ldots, B_1, B_0 \). Now the insertion of a vector of the form \((0, 1, x)^T\) between each pair of two consecutive blocks cannot be carried in the same way as above since now we have \(2\mathbb{Z}_q \neq \mathbb{Z}_q \). We need to find out which vector of the form \((0, 1, x)^T\) can be inserted between the blocks \(B_{s+1} \) and \(B_s \). Recall the proof of Proposition \(5.1 \) It can be checked that the choice of the value \(x \) only affects equations \(3 \) and \(4 \). So for the validity of that proof we only require that

\[
\begin{pmatrix}
0 & 1 & 1 \\
1 & s & s + 1 \\
x & s^2 + t & (s + 1)^2 + t
\end{pmatrix} = x - 2s - 1 \not\equiv 0 \pmod{q},
\]

and

\[
\begin{pmatrix}
1 & 1 & 0 \\
-1 & s & s \\
(s - 1)^2 + t & s^2 + t & x
\end{pmatrix} = x - 2s + 1 \not\equiv 0 \pmod{q}.
\]

That is, \(x \) could be any value except for \(2s + 1 \) and \(2s - 1 \). An explicit insertion scheme seems hard to be expressed in an easy form as above. We now just show that a proper insertion scheme surely exists. Construct a bipartite graph. The first part of the vertices corresponds to \(0 \leq x < q \). The second part of the vertices is the set \(\{?, i : 0 \leq i < q\} \), where the symbol \(? \) indicates the location between the blocks \(B_{i+1} \) and \(B_i \). \(x \) is connected to \(? \) if and only if the vector \((0, 1, x)^T\) could be inserted in the location \(? \). A perfect matching in this bipartite graph corresponds to a proper insertion scheme.

The degree of every vertex in the first part is at least \(q - 4 \) since the equation \(2s + 1 = x \) or \(2s - 1 = x \) for a given \(x \in \mathbb{Z}_q \) has at most two solutions each. The degree of every vertex in the second part is exactly \(2 \). Thus when \(2 \) divides \(q \) and \(q \neq 2, 4 \),

1. the neighbourhood of every single vertex in the first part is of size at least \(|q - 4| \geq 1 \);
2. the neighbourhood of every two vertices in the first part is of size at least \(|q - 4| \geq 2 \);
3. the neighbourhood of every more than two vertices in the first part is of size \(q \).

Then the famous Hall’s theorem guarantees a perfect matching in this bipartite graph, which corresponds to a proper insertion scheme.

However, the case \(q = 4 \) is listed as a separated case due to the inapplicability of Hall’s theorem under the framework above. To follow a similar framework, the order within a block needs some slight modifications and then a proper insertion scheme comes along. We shall just list the desired \(3 \times 21 \) matrix \(H(4) \) instead of tedious explanations.

\[
H(4) = \begin{bmatrix}
0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\
1 & 0 & 1 & 2 & 3 & 1 & 3 & 0 & 1 & 2 & 1 & 2 & 1 & 0 & 3 & 1 & 3 & 2 & 1 & 0 & 0 \\
3 & 0 & 1 & 0 & 1 & 0 & 2 & 1 & 2 & 1 & 1 & 2 & 3 & 2 & 3 & 2 & 0 & 3 & 0 & 3 & 1
\end{bmatrix}.
\]

Up till now we have constructed the matrix \(H(q) \) of size \(3 \times (q^2 + q + 1) \) for every \(q \geq 3 \). Next we discuss how to adjust \(H(q) \) to get a \(3 \times n \) matrix \(H(q; n) \) for every \(n \), \(5 \leq n \leq q^2 + q + 1 \). Denote \(n = \alpha(q + 1) + \beta \), where \(0 \leq \beta \leq q \). There are certainly lots of methods to get such a desired matrix and we offer one as follows.

- If \(\beta \neq 2 \), select the first \(n - 1 \) columns of \(H(q) \), then add the vector \((0, 0, 1)^T\).
- If \(\beta = 2 \), select the first \(n - 1 \) columns of \(H(q) \), then insert the vector \((0, 0, 1)^T\) as the new third column.

The case \(\beta = 2 \) is separated since if we still abide by the first rule then we will come across a triple of the form \(\{(0, 1, x)^T, (0, 0, 1)^T, (0, 1, y)^T\} \) which is certainly not independent.

The validity of the construction of the \(3 \times n \) matrix can be easily inferred from Proposition \(3.1 \) plus some further checks on those triples containing the vector \((0, 0, 1)^T\), and the two triples of the form \(\{(0, 1, x)^T, (0, 1, y)^T, (1, a, b)^T\} \) (in the \(\beta = 2 \) case).

As illustrative examples, we give the following matrices when \(q = 5 \): the full matrix \(H(5) \) of size \(3 \times 31 \), the adjusted matrix \(H(5; 13) \) (corresponding to \(\beta \neq 2 \)) and \(H(5; 14) \) (corresponding to \(\beta = 2 \)).

\[
H(5) = \begin{bmatrix}
0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\
1 & 4 & 0 & 1 & 2 & 3 & 1 & 3 & 4 & 0 & 1 & 2 & 1 & 2 & 3 & 4 & 0 & 1 & 0 & 1 & 2 & 3 & 4 & 0 \\
3 & 0 & 4 & 0 & 3 & 1 & 2 & 4 & 3 & 4 & 2 & 4 & 1 & 1 & 3 & 2 & 3 & 2 & 2 & 0 & 0 & 2 & 1 & 0 & 1 & 4 & 4 & 1 & 1
\end{bmatrix}.
\]

\[
H(5; 13) = \begin{bmatrix}
0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\
1 & 4 & 0 & 1 & 2 & 3 & 1 & 3 & 4 & 0 & 1 & 2 & 0 \\
3 & 0 & 4 & 0 & 3 & 3 & 1 & 2 & 4 & 3 & 4 & 2 & 1
\end{bmatrix}, H(5; 14) = \begin{bmatrix}
0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\
1 & 4 & 0 & 0 & 1 & 2 & 3 & 1 & 3 & 4 & 0 & 1 & 2 & 1 \\
3 & 0 & 1 & 4 & 0 & 3 & 3 & 1 & 2 & 4 & 3 & 4 & 2 & 4
\end{bmatrix}.
\]

Finally, for the case \(q = 2 \), we list the matrices \(H(2), H(2; 5), H(2; 6) \) as follows.

\[
H(2) = \begin{bmatrix}
0 & 1 & 1 & 1 & 1 \\
1 & 4 & 0 & 1 & 2 \\
3 & 0 & 4 & 0 & 3
\end{bmatrix}, H(2; 5) = \begin{bmatrix}
0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 \\
1 & 4 & 0 & 0 & 1 & 2 & 3 & 1 \\
3 & 0 & 1 & 4 & 0 & 3 & 3 & 1
\end{bmatrix}, H(2; 6) = \begin{bmatrix}
0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 \\
1 & 4 & 0 & 0 & 1 & 2 & 3 & 1 \\
3 & 0 & 1 & 4 & 0 & 3 & 3 & 1
\end{bmatrix}.
\]
H(2) = \[
\begin{bmatrix}
1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 1
\end{bmatrix},
\]
H(2; 5) = \[
\begin{bmatrix}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 1
\end{bmatrix},
\]
H(2; 6) = \[
\begin{bmatrix}
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 1
\end{bmatrix}.
\]

So far we have constructed MDS \((n, 5)_q\) symbol-pair codes for any \(q \geq 2\) and \(5 \leq n \leq q^2 + q + 1\). And note that the parity-check matrix of any MDS \((n, 5)_q\) symbol-pair code should be of size \(3 \times n\) and it has no two linearly dependent columns. Thus MDS \((n, 5)_q\) symbol-pair codes exist only when \(n \leq q^2 + q + 1\) and our construction completely solves this case. We close this section by summing up the above in the following theorem.

Theorem 3.2. For any \(q \geq 2\), there exists an MDS \((n, 5)_q\) symbol-pair code if and only if \(5 \leq n \leq q^2 + q + 1\).

IV. MDS Symbol-Pair Codes from Projective Geometry

Let \(q\) be a prime power. Denote the finite field containing \(q\) elements as \(F_q\). Let \(V(r + 1, q)\) be a vector space of rank \(r + 1\) over \(F_q\). The projective space \(PG(r, q)\) is the geometry whose points, lines, planes, \(\cdots\), hyperplanes are the subspaces of \(V(r + 1, q)\) of rank \(1, 2, 3, \cdots, r\), respectively. The dimension of a subspace of \(PG(r, q)\) is one less than the rank of a subspace of \(V(r + 1, q)\).

Label each point of \(PG(r, q)\) as \((a_0, a_1, \cdots, a_r)\), the subspace spanned by a nonzero vector \((a_0, a_1, \cdots, a_r)\), where \(a_i \in F_q\) for \(0 \leq i \leq r\). Since these coordinates are defined only up to multiplication by a nonzero scalar \(\lambda \in F_q\) (here \((\lambda a_0, \lambda a_1, \cdots, \lambda a_r)\) = \((a_0, a_1, \cdots, a_r)\)), we refer to \((a_0, a_1, \cdots, a_r)\) as homogeneous coordinates. Thus, there are a total of \((q^{r+1} - 1)/(q - 1)\) points in \(PG(r, q)\). For an integer \(r \geq 2\), if we choose \(n \geq r + 3\) points in \(PG(r, q)\) and regard them as column vectors of a matrix \(H\), from Theorem 2.3 we have the following theorem.

Theorem 4.1. There exists an MDS \((n, r + 3)_q\) symbol-pair code if there exists a set \(S\) of \(n \geq r + 3\) points of \(PG(r, q)\) satisfying the following conditions:
1. any \(r\) points from \(S\) generate a hyperplane in \(PG(r, q)\);
2. there exist \(r + 1\) points in \(S\) lying on a hyperplane;
3. if the \(n\) points are ordered, say \(P_0, P_1, \cdots, P_{n-1}\), then any \(r + 1\) cyclically consecutive points do not lie on a hyperplane, i.e., \(P_i, P_{i+1}, \cdots, P_{i+r}\), where the subscripts are reduced modulo \(n\), do not lie on a hyperplane for \(0 \leq i \leq n - 1\).

Here we consider the case \(r = 3\).

Definition 4.2. A set \(O\) of points of \(PG(3, q)\) is called an ovoid provided it satisfies the following conditions:
1. each line meets \(O\) in at most two points;
2. through each point of \(O\) there are \(q + 1\) lines, each of which meets \(O\) in exactly one point, and all of them lie on a plane.

The following two lemmas can be found in [11].

Lemma 4.3. Each ovoid has \(q^2 + 1\) points.

Lemma 4.4. Each plane meets \(O\) either in one point or in \(q + 1\) points.

We can easily derive the following lemma.

Lemma 4.5. For an ovoid \(O\) in \(PG(3, q)\), there exist \(q + 1\) planes, each of which contains \(q + 1\) points in \(O\). Moreover, these planes intersect in a common line in \(O\) and cover all points of \(O\).

Proof: Consider the points of \(O\). Fix two arbitrary points \(A, B \in O\), and choose a point \(P\) from \(O \setminus \{A, B\}\). By Lemma 4.4, the plane formed by \(A, B, P\), which we denote by \(ABP\), must meet \(O\) in \(q + 1\) points. Now choose a point \(Q \in O\) which is not on \(ABP\). Then, again, we get a plane \(ABQ\) which meets \(O\) in \(q + 1\) points. If we continue in this way, we can get \(q + 1\) planes, each of which contains \(q + 1\) points of \(O\). These planes intersect in a common line which meets \(O\) in the points \(A, B\).

We can now state our construction.

Theorem 4.6. Let \(q \geq 5\) be an odd prime power. Then there exist MDS \((n, 6)_q\) symbol-pair codes for all \(n, 6 \leq n \leq q^2 + 1\).

Proof: Let \(O\) be an ovoid in \(PG(3, q)\) and \(\pi_0, \pi_1, \cdots, \pi_q\) be the planes described in Lemma 4.4. Moreover, let the intersection of \(\pi_0, \pi_1, \cdots, \pi_q\) meet \(O\) in the points \(A, B\). For convenience, denote the plane formed by points \(P, Q, R\) by \(PQR\) and denote the set of the points lying in a set, say \(\Omega\), but not on plane \(PQR\) by \(\Omega \setminus PQR\). For four ordered points \(P, Q, R, S\), we say \(S\) is a proper point if \(S\) does not lie on the plane \(PQR\). In other words, we say \(S\) is a proper point if \(S\) does not lie on the plane formed by the three points ordered right ahead of it.

We now consider the three conditions stated in Theorem 3.1. It is clear that, for the points of \(O\), the first condition is satisfied. By taking at least four points from one of the planes \(\pi_i\), for \(0 \leq i \leq q\), we can see that the second condition can be easily satisfied. Thus, the points of \(O\) simply need to be ordered such that any four cyclically consecutive points do not lie on
a plane to meet the third condition. To attain this goal, we discuss it in two parts. First we order \(n \) \((6 \leq n \leq q^2 + 1)\) points of \(O \) as \(P_0, \ldots, P_{n-1} \) and make sure that any four consecutive points are not lying on a plane, i.e., \(P_i, P_{i+1}, P_{i+2}, P_{i+3} \) are not lying on a plane for \(0 \leq i \leq n-4 \). On this basis, we then adjust the order to make any four cyclically consecutive points are not lying on a plane, i.e., \(P_i, P_{i+1}, P_{i+2}, P_{i+3} \) are not lying on a plane for \(0 \leq i \leq n-1 \).

![Diagram](image)

Fig. 1. The sets \(\pi_i \setminus \{A, B\} \) when \(q \) is an odd prime power.

First let \(\alpha, \beta, \gamma \) and \(\delta \) denote the sets \(\pi_0 \setminus \{A, B\}, \pi_1 \setminus \{A, B\}, \pi_2 \setminus \{A, B\}, \pi_3 \setminus \{A, B\} \) respectively, as illustrated in Figure 1. Let \(A, B \) be the first and second points. Choose arbitrary points \(P_1 \) and \(Q_1 \) from \(\alpha \) and \(\beta \) to be the third and fourth points respectively. It is obvious that \(A, B, P_1, Q_1 \) do not lie on a plane, since each line meets \(O \) in at most two points, two planes must intersect \(O \) in at most two points. We can also find \(P_2 \in \alpha \setminus BP_1Q_1 \) to be the fifth and \(Q_2 \in \beta \setminus P_1P_2Q_1 \) to be the sixth. We can continue in this way, i.e., take proper points from \(\alpha \) and \(\beta \) in turn, until only one point remains in \(\alpha \).

Now suppose this has been done so that the point \(P_{q-1} \) remains, i.e., we have ordered the points as \(A, B, P_1, Q_1, \ldots, P_{q-2}, Q_{q-2} \). Then we have that \(P_4, Q_4, P_3, Q_3, P_2, Q_2 \) do not lie on a plane, nor do the four points \(q_4, P_3, q_3, P_2, q_2, P_1, q_1 \). Next we order the two points \(P_{q-1} \) and \(Q_{q-1} \). We consider the following three cases:

case 1: \(P_{q-1} \notin P_{q-2}Q_{q-3}, Q_{q-2} \notin P_{q-1}Q_{q-2} \).

Note that this situation is ideal. Let the order be \(P_{q-4}, Q_4, P_3, Q_3, P_2, Q_2, P_1, Q_1 \). Change the order to be \(P_4, Q_4, P_3, Q_3, P_2, Q_2, P_1, Q_1 \).

case 2: \(P_{q-1} \notin P_{q-2}Q_{q-3}, Q_{q-2} \notin P_{q-1}Q_{q-2} \).

Note that this situation is ideal. Let the order be \(P_{q-4}, Q_4, P_3, Q_3, P_2, Q_2, P_1, Q_1 \). Change the order to be \(P_{q-4}, Q_4, P_3, Q_3, P_2, Q_2, P_1, Q_1 \).

case 3: \(P_{q-1} \in P_{q-2}Q_{q-3}, Q_{q-2} \in P_{q-1}Q_{q-2} \).

Change the order to be \(P_{q-4}, Q_4, P_3, Q_3, P_2, Q_2, P_1, Q_1 \).

Next, we find a proper point \(R_1 \in \gamma \) to be the next point, as well as proper points \(S_1 \in \delta \) and \(R_2 \in \gamma \). Then order the remaining points in \(\gamma \) and \(\delta \) just as what we have done for the points in \(\alpha \) and \(\beta \). Repeat the procedure until all of the points in \(O \) are covered. By now, we have got \(n \) ordered points \(P_0, \ldots, P_{n-1} \) with \(n \) from 6 to \(q^2 + 1 \) such that \(P_1, P_{i+1}, P_{i+2}, P_{i+3} \) don’t lie on a plane for \(0 \leq i \leq n-4 \).

Note that we have finished our first part. Denote the last four points by \(W, X, Y, Z \). To make any four cyclically consecutive points not to be lying on a plane, we still need to ensure that \(X, Y, Z \) and \(A \) do not all lie on a plane, nor do \(Y, Z, A, B \) and nor do \(Z, A, B, P_1 \). We discuss this in the following cases.

case a: \(X, Y, Z \) and \(A \) lie on a plane.

This happens only when \(X \in \pi_i, Y \in \pi_{i+1} \) and \(Z \in \pi_{i+2} \), for some \(i, 0 \leq i \leq q-2 \). For example, \(P_{q-1}, Q_{q-1} \) and \(R_1 \) in Figure 1. Otherwise, we always have exactly two of \(X, Y, Z \) belonging to the same set \(\pi_i \setminus \{A, B\} \) that ensures \(X, Y, Z, A \) do not lie on a plane.

Note that plane \(WXY \) intersects \(\pi_{i+2} \) in at most two points and \(XY \) \(Z \) intersects \(\pi_{i+2} \) in at most two points, one of which is point \(A \). Thus, in this case we find a point \(\pi_{i+2} \setminus \{A, B\} \), not lying on planes \(WXY \) and \(XY \) to be the new last point. We can always do this since there are totally \(q + 1 \geq 6 \) points in \(\pi_{i+2} \).

case b: \(Y, Z, A \) and \(B \) lie on a plane.

This happens when the last two points lie in the same \(\pi_i \setminus \{A, B\} \), which occurs in cases 2 and 3 above. Note that \(\alpha \) and \(\beta \) can be any \(\pi_i \setminus \{A, B\} \) and \(\pi_{i+1} \setminus \{A, B\} \) respectively for \(i = 0, 2, 4, \ldots, q-1 \) in the following discussion. In case 2, if the last three points are \(Q_{q-4}, Q_{q-3} \) and \(P_{q-2} \), then we replace them by \(Q_{q-4}, P_{q-3} \) and \(Q_{q-3} \). If the last three points are \(P_{q-2}, Q_{q-3} \) and \(Q_{q-2} \), then we replace them by \(P_{q-2}, Q_{q-3} \) and \(Q_{q-2} \). In case 3, if the last three points are \(P_{q-2}, Q_{q-2} \) and \(Q_{q-1} \), then we replace them by \(P_{q-2}, P_{q-1} \) and \(Q_{q-1} \).

case c: \(Z, A, B \) and \(P_1 \) lie on a plane.

This happens when \(Z \) lies in \(\pi_0 \setminus \{A, B\} \), i.e., \(7 \leq n \leq 2q-1 \) and \(n \) is odd. In this case, after choosing the first three points \(A, B, P_1 \), we choose proper points from \(\pi_2 \setminus \{A, B\} \) and \(\pi_3 \setminus \{A, B\} \) in turn.
Remark 4.7. Note that $q = 3$ is not included in Theorem 4.6 since in case 2 we need the number of points in each plane is at least 6 because we use the condition P_{q-1}, P_{q-3} and P_{q-2} are on the same plane. We give the MDS symbol-pair codes directly for $q = 3$. There exists an MDS $(n, 6)_3$ symbol-pair code, $n \in \{6, 7, 8, 9, 10\}$, and its parity check matrix is formed by the first n columns of the matrix

$$
\begin{pmatrix}
0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 2 & 1 & 2 & 1 & 2 \\
0 & 0 & 1 & 0 & 2 & 0 & 2 & 1 \\
0 & 0 & 1 & 1 & 2 & 2 & 1 & 0 \\
2 & 0 & 0 & 0 & 0 & 1 & 0 & 0
\end{pmatrix}.
$$

Theorem 4.8. Let $q \geq 8$ be an even prime power. Then there exist MDS $(n, 6)_q$ symbol-pair codes for all n, $6 \leq n \leq q^2 + 1$.

Proof: Let the notations be defined as in Theorem 4.6. Note that the case when q is even is different from that when q is odd due to there being an odd number of planes. For $6 \leq n \leq q^2 + 2$, we can order n points in $\pi_0, \pi_1, \ldots, \pi_{q-1}$ just as in Theorem 4.6 since the number of planes is even. The key step of this proof is to put the remaining $q - 1$ points in order. To attain this goal, we first order all the points of the first three planes, and then can just proceed as the case when q is odd.

Let $\alpha, \beta, \gamma, \delta, \zeta$ denote the sets $\pi_0 \setminus \{A, B\}, \pi_1 \setminus \{A, B\}, \pi_2 \setminus \{A, B\}, \pi_3 \setminus \{A, B\}, \pi_4 \setminus \{A, B\}$ respectively, as illustrated in Figure 2. Again, let A and B be the first two points and choose arbitrary P_1 and Q_1 from α and β respectively. Choose the next point $R_1 \in \gamma \setminus BP_1Q_1$, and then $P_2 \in \alpha \setminus P_1Q_1R_1$ and $Q_2 \in \beta \setminus P_2Q_1R_1$, i.e., take proper points from α, β and γ in turn. We can continue in this way until only one point remains in α.

Suppose this has been done so that P_{q-1} remains, i.e., we have ordered the points as $A, B, P_1, Q_1, R_1, \ldots, P_{q-2}, Q_{q-2}, R_{q-2}$. Note that the intersection of two planes meets O in at most two points. We can always find a point S_1 in δ that does not lie on the planes $P_{q-2}Q_{q-2}R_{q-2}$ and $P_{q-1}Q_{q-2}R_{q-2}$ since the planes intersect δ in at most four points and there are $q - 1 \geq 7$ points in δ. Similarly, we can find $T_1 \in \zeta$ not lying on planes $P_{q-1}R_{q-2}S_1$ and $P_{q-1}Q_{q-1}S_1$. $S_2 \in \delta$ not lying on planes $P_{q-1}Q_{q-1}T_1$ and $Q_{q-1}R_{q-1}T_1$. Next find $T_2 \in \zeta \setminus Q_{q-1}R_{q-1}S_2$, $S_3 \in \delta \setminus R_{q-1}S_2T_2$ and $T_3 \in \zeta \setminus R_{q-1}S_3T_2$. Let the order of points be $P_{q-2}, Q_{q-2}, R_{q-2}, S_1, P_{q-1}, T_1, Q_{q-1}, S_2, R_{q-1}, T_2, S_3, T_3$. Note that we have ordered all the points in α, β and γ, and any four consecutive points are not on a plane. There are even number of sets left. We can then simply proceed as in Theorem 4.6 and also the similar discussion follows Theorem 4.6.

![Fig. 2. The sets $\pi_i \setminus \{A, B\}$ when q is an even prime power.](image)

Remark 4.9. Since there are only 5 points in each plane when $q = 4$, we discuss it as a separated case. Denote the primitive element of \mathbb{F}_4 as w. Then there is an MDS $(n, 6)_4$ symbol-pair code, $n \in \{6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17\}$, and its parity check matrix is formed by the first n columns of the matrix

$$
\begin{pmatrix}
0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & w & 1 & w & 1 & w \\
0 & 0 & 1 & 0 & 1 & w & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & w & 0
\end{pmatrix}.
$$

There exists an MDS $(7, 6)$ symbol-pair code with parity check matrix

$$
\begin{pmatrix}
0 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & w & 1 & w & 1 \\
0 & 0 & 1 & 0 & w & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & w & w
\end{pmatrix}.
$$

Above all, we can conclude the following theorem.
Theorem 4.10. For any prime power \(q \), \(q \geq 3 \), and every integer \(n \), \(6 \leq n \leq q^2 + 1 \), there exists an MDS \((n,6)_q\) symbol-pair code.

Remark 4.11. Compare the cases \(r = 2 \) and \(r = 3 \) in Theorem 4.7 if we consider the set of all the points instead of the ovoid, all the lines through a fixed point instead of the planes described in Lemma B.5 then we can get MDS \((n,5)_q\) symbol-pair codes for \(5 \leq n \leq q^2 + q + 1 \) with \(q \) being a prime power in a similar way. Thus, this method deserves further investigation for larger \(r \), which may derive MDS symbol-pair codes with larger pair-distance.

V. MDS Symbol-Pair Codes from Elliptic Curves

In this section, we give a construction of MDS symbol-pair codes with general symbol-pair minimum distance from elliptic curve codes. We first briefly review some facts about elliptic curve codes.

Let \(E/F_q \) be an elliptic curve over the finite field \(F_q \) with function field \(F_q(E) \). Let \(E(F_q) \) be the set of all \(F_q \)-rational points on \(E \). Suppose \(D = \{P_1, P_2, \cdots , P_n\} \) is a proper subset of rational points \(E(F_q) \), and \(G \) is a divisor of degree \(k \) \((2g-2 < k < n)\) with \(\text{Supp}(G) \cap D \neq \emptyset \). Without any confusion, we also write \(D = P_1 + P_2 + \cdots + P_n \). Denote by \(\mathcal{L}(G) \) the \(F_q \)-vector space of all rational functions \(f \in F_q(E) \) with the principal divisor \(\text{div}(f) \geq -G \), together with the zero function (cf. [13]).

The functional AG code \(C_{\mathcal{L}}(D,G) \) is defined to be the image of the following evaluation map:

\[
ev : \mathcal{L}(G) \rightarrow F_q^n; f \leftrightarrow (f(P_1), f(P_2), \cdots , f(P_n)).
\]

It is well-known that \(C_{\mathcal{L}}(D,G) \) has parameters \([n,k,d_H]\) where the minimum Hamming distance \(d_H \) has two choices:

\[
d_H = n - k, \text{ or } d_H = n - k + 1.
\]

Suppose \(O \) is one of the \(F_q \)-rational points on \(E \). The set of rational points \(E(F_q) \) forms an abelian group with zero element \(O \) (for the definition of the sum of any two points, we refer to [12]), and is isomorphic to the Picard group \(\text{div}^*(E)/\text{Prin}(F_q(E)) \), where \(\text{Prin}(F_q(E)) \) is the subgroup consisting of all principal divisors.

Denote by \(\oplus \) and \(\ominus \) the additive and minus operator in the group \(E(F_q) \), respectively.

Proposition 5.1 ([5], [15]). Let \(E \) be an elliptic curve over \(F_q \) with an \(F_q \)-rational point \(O \), \(D = \{P_1, P_2, \cdots , P_n\} \) a subset of \(E(F_q) \) such that \(O \notin D \) and let \(G = kO \) \((0 < k < n)\). Endow \(E(F_q) \) a group structure with the zero element \(O \). Denote by

\[
N(k,O,D) = |\{S \subseteq D : |S| = k, \oplus_{P \in S} P = O\}|.
\]

Then the AG code \(C_{\mathcal{L}}(D,G) \) has minimum Hamming distance \(d_H = n - k + 1 \) if and only if

\[
N(k,O,D) = 0.
\]

And the minimum Hamming distance \(d_H = n - k \) if and only if

\[
N(k,O,D) > 0.
\]

Proof: We have already seen that the minimum distance of \(C_{\mathcal{L}}(D,G) \) has two choices: \(n - k, n - k + 1 \). So \(C_{\mathcal{L}}(D,G) \) is not MDS, i.e., \(d = n - k \) if and only if there is a function \(f \in \mathcal{L}(G) \) such that the evaluation \(\text{ev}(f) \) has weight \(n - k \). This is equivalent to that \(f \) has \(k \) zeros in \(D \), say \(P_{i_1}, \cdots , P_{i_k} \). That is

\[
\text{div}(f) \geq -(k - 1)O - P + (P_{i_1} + \cdots + P_{i_k}),
\]

which is equivalent to

\[
\text{div}(f) = -(k - 1)O - P + (P_{i_1} + \cdots + P_{i_k}).
\]

The existence of such an \(f \) is equivalent to saying

\[
P_{i_1} \oplus \cdots \oplus P_{i_k} = P.
\]

Namely, \(N(k,P,D) > 0 \). It follows that the AG code \(C_{\mathcal{L}}(D,G) \) has minimum Hamming distance \(n - k + 1 \) if and only if \(N(k,P,D) = 0 \).

We restrict ourself to the case \(n > q + 1 \), since for every length \(n \leq q + 1 \), MDS symbol-pair codes of length \(n \) can be constructed from Reed-Solomon codes. In this case, the minimum Hamming distance \(d_H \) of elliptic curve codes is related to the main conjecture of MDS codes which was affirmed for elliptic curve codes [9], [10].

Proposition 5.2 ([9], [10]). Let \(C_{\mathcal{L}}(D,G) \) be the elliptic curve code constructed in Proposition 5.1 with length \(n > q + 1 \). Then the subset sum problem always has solutions, i.e.,

\[
N(k,O,D) > 0.
\]

And hence, elliptic curve codes with length \(n > q + 1 \) have deterministic minimum Hamming distance \(d_H = n - k \).
That is, elliptic curve codes with length $n > q + 1$ are almost MDS codes. To obtain long codes from elliptic curves, we need the following two well-known results of elliptic curves over finite fields.

Lemma 5.3 (Hasse-Weil Bound [12]). Let E be an elliptic curve over \mathbb{F}_q. Then the number of \mathbb{F}_q-rational points on E is bounded by

$$|E(\mathbb{F}_q)| \leq q + \lfloor 2\sqrt{q} \rfloor + 1.$$

Lemma 5.4 (Hasse-Deuring [7]). The maximal number $N(\mathbb{F}_q)$ of \mathbb{F}_q-rational points on E, where E runs over all elliptic curves over \mathbb{F}_q, is

$$N(\mathbb{F}_q) = \begin{cases} q + \lfloor 2\sqrt{q} \rfloor, & \text{if } q = p^a, a \geq 3, a \text{ odd and } p \mid \lfloor 2\sqrt{q} \rfloor; \\ q + \lfloor 2\sqrt{q} \rfloor + 1, & \text{otherwise}. \end{cases}$$

Denote by

$$\delta(q) = \begin{cases} 0, & \text{if } q = p^a, a \geq 3, a \text{ odd and } p \mid \lfloor 2\sqrt{q} \rfloor; \\ 1, & \text{otherwise}. \end{cases}$$

To construct an MDS symbol-pair code from classical error-correcting codes with large minimum Hamming distance, the key step is to find a way of ordering the coordinates. For general codes, this step seems very difficult. In the rest of this paper, we deal with the case of elliptic curve codes.

Theorem 5.5. Let \mathbb{F}_q be a finite field of q elements. Let $N(\mathbb{F}_q) = q + \lfloor 2\sqrt{q} \rfloor + \delta(q)$. Then for any $1 \leq d \leq n \leq N(\mathbb{F}_q) - 3$, there exist MDS symbol-pair codes over \mathbb{F}_q with parameters $(n, d + 2)$.

Proof: Note that $d = n$ is a trivial case. By Lemma 5.4 take E to be a maximal elliptic curve over \mathbb{F}_q with an \mathbb{F}_q-rational point O, i.e.,

$$|E(\mathbb{F}_q)| = N(\mathbb{F}_q).$$

Take divisor $G = kO$ in the construction of elliptic curve codes.

Case (I): $N = N(\mathbb{F}_q)$ is odd. Suppose

$$E(\mathbb{F}_q) = \{P_1, P_2, \ldots, P_{N-2}, P_{N-1}, O\}$$

where $P_1 \oplus P_2 = P_3 \oplus P_4 = \cdots = P_{N-2} \oplus P_{N-1} = O$.

1) For odd d and even integer $n : d < n \leq N - 1$, in this case $k = N - 1 - d$ is odd. Take

$$D = \{P_1, P_2, \ldots, P_{N-2}, P_{N-1}\}.$$

Then by Proposition 5.2 there are no k cyclically consecutive points whose sum is O. And hence, the elliptic curve code $C_0(D, G)$ is an MDS symbol-pair code with parameters $(N - 1, d + 2)$. By deleting pairs $(P_1, P_2), (P_3, P_4), \ldots$, we can obtain MDS symbol-pair codes with parameters $(n, d + 2)$, where n runs over all even integers $d < n \leq N - 1$.

2) For even d and odd integer $n : d < n \leq N - 2$, in this case $k = N - 2 - d$ is odd. Take

$$D = \{P_1, P_2, \ldots, P_{N-2}\}.$$

Then by Proposition 5.2 there are no k cyclically consecutive points whose sum is O. And hence, the elliptic curve code $C_0(D, G)$ is an MDS symbol-pair code with parameters $(N - 2, d + 2)$. By deleting pairs $(P_1, P_2), (P_3, P_4), \ldots$, we can obtain MDS symbol-pair codes with parameters $(n, d + 2)$ where n runs over all odd integers $d < n \leq N - 2$.

3) For even d and even integer $n : d < n \leq N - 3$, in this case $k = N - 3 - d$ is even. Write $N - 3 = (k + 1)s + r$ for some integers $s \geq 1$ and $0 \leq r \leq k$. Take the pre-evaluation set

$$D_0 = \{P_1, P_2, \ldots, P_{N-5}, P_{N-4}, P_{N-2}\}$$

and arrange it by the following algorithm:

Step 1. Arrange D_0 as following:

$$D_1 = \{P_1, \ldots, P_{k-1}, P_{N-5}, P_k, \ldots, P_{(s-1)k-1}, P_{N-3-s}, P_{(s-1)k}, \ldots, P_{sk-1}, P_{N-4}, P_{sk}, P_{sk+1}, \ldots, P_{sk+r-1}, P_{N-2}\}.$$

After this step, there are no k consecutive points whose sum is O in the sequence

$$P_1, \ldots, P_{k-1}, P_{N-5}, P_k, \ldots, P_{(s-1)k-1}, P_{N-3-s}, P_{(s-1)k}, \ldots, P_{sk-1}, P_{N-4}, P_{sk}, P_{sk+1}, \ldots, P_{sk+r-2}.$$

But there may be some k cyclically consecutive points whose sum is O in the tail sequence

$$P_{(s-1)k+r+1}, \ldots, P_{sk-1}, P_{N-4}, P_{sk}, P_{sk+1}, \ldots, P_{sk+r-1}, P_{N-2}, P_1, \ldots, P_{k-r-1}.$$

For instance, $k = 6$, $N = 19$, by Step 1, we get

$$D_1 = P_1, \ldots, P_6, P_{14}, P_6, \ldots, P_{11}, P_{15}, P_{12}, P_{13}, P_{17}.$$
There are no 6 consecutive points whose sum is O in the sequence
\[P_1, \ldots, P_5, P_{14}, P_6, \ldots, P_{11}, P_{15}, P_{12}, P_{13}.\]
But there may be some 6 cyclically consecutive points whose sum is O in the tail sequence
\[P_{10}, P_{11}, P_{15}, P_{12}, P_{13}, P_{17}, P_1, P_2.\]

Step 2. In the case that r is even. It is easy to see that at most one of the following two equalities holds:
\[P_{(s-1)k+r+2} + \cdots + P_{N-4} + P_{N-2} = 2 + P_{(s-1)k+r+2} + P_{N-4} = P_{sk+r+1} + P_{N-2} = O,\]
and
\[P_{(s-1)k+r+3} + \cdots + P_{N-4} + P_{N-2} + P_1 = P_{N-4} + P_{sk+r+1} + P_{N-2} + P_1 = O.\]

If the first one holds, then SWITCH $P_{(s-1)k+r+1}$ and $P_{(s-1)k+r+2}$; if the second one holds, then SWITCH P_1 and P_2; if neither of the two holds, then do nothing.

For any $i = 1, \ldots, \frac{k-r-2}{3}$, similarly at most one of the following two equalities holds:
\[P_{(s-1)k+r+2i+2} + \cdots + P_{N-4} + P_{N-2} + P_1 + \cdots + P_{2i} = P_{(s-1)k+r+2i+2} + P_{N-4} + P_{sk+r+1} + P_{N-2} = O,\]
and
\[P_{(s-1)k+r+2i+3} + \cdots + P_{N-4} + P_{N-2} + P_1 + \cdots + P_{2i+1} = P_{N-4} + P_{sk+r+1} + P_{N-2} + P_{2i+1} = O.\]

If the first one holds, then SWITCH $P_{(s-1)k+r+2i+1}$ and $P_{(s-1)k+r+2i+2}$; if the second one holds, then SWITCH P_{2i+1} and P_{2i+2}; if neither of the two holds, then do nothing.

In the case that r is odd, the algorithm is the same as the even case, check the sum of k cyclically consecutive points and do the corresponding SWITCH operation.

Continue the above example, if
\[P_{10} + P_{11} + P_{15} + P_{12} + P_{13} + P_{17} = P_{10} + P_{15} + P_{13} + P_{17} = O,\]
then SWITCH P_9 and P_{10}; and in this case, it is immediate that
\[P_{11} + P_{15} + P_{12} + P_{13} + P_{17} + P_1 = P_{15} + P_{13} + P_{17} + P_1 \neq O,\]
so we do not need to reorder P_1 and P_2, and so on.

Using the above algorithm to rearrange the evaluation set to get a newly arranged evaluation set D, by Proposition 5.2, there are no k cyclically consecutive points whose sum is O. And hence, the elliptic curve code $C_{\mathcal{O}}(D, G)$ is an MDS symbol-pair code with parameters $(N-3, d+2)$. So, similarly as above, by deleting pairs from the pre-evaluation set, we can obtain MDS symbol-pair codes with parameters $(n, d+2)$ where n runs over all even integers $d < n \leq N-3$.

4) For odd d and odd integer $n : d < n \leq N - 2$, in this case $k = N - 2 - d$ is even. Write $N - 2 = (k + 1)s + r$ for some integers $s \geq 1$ and $0 \leq r \leq k$. Take the pre-evaluation set
\[D_0 = \{P_1, P_2, \ldots, P_{N-3}, P_{N-2}\}\]
and arrange it as following
\[D = \{P_1, \ldots, P_{k-1}, P_{N-3}, P_k, \ldots, P_{(s-1)k-1}, P_{N-1-s}, P_{(s-1)k}, \ldots, P_{sk-1}, P_{N-2}, P_{sk}, P_{sk+1}, \ldots, P_{sk+r}\}.\]

If r is even, then it is easy to see that by Proposition 5.2, there are no k cyclically consecutive points whose sum is O. If r is odd, then similarly as in the case 3), there may be some k cyclically consecutive points whose sum is O in the tail sequence. In this case, we just need process the same algorithm in the case 3) to obtain a rearranged evaluation set D such that there are no k cyclically consecutive points whose sum is O. And hence, the elliptic curve code $C_{\mathcal{O}}(D, G)$ is an MDS symbol-pair code with parameters $(N-2, d+2)$. So, similarly as above, by deleting pairs from the pre-evaluation set, we can obtain MDS symbol-pair codes with parameters $(n, d+2)$ where n runs over all odd integers $d < n \leq N-2$. In conclusion, in the case that $N = N(F_q)$ is odd, for any $1 \leq d \leq n \leq N(F_q) - 3$, no matter that d is odd or even, there exists an MDS symbol-pair code with parameters $(n, d+2)$.

Case (II): $N = N(F_q)$ is even. The proof is the same. Note that there are one or three non-zero elements of order 2 in the group $E(F_q)$. Using these elements in the setting of the pre-evaluation set, the left of the proof is all the same. We omit the details here.

So, by the discussion above, we complete the proof of the theorem. \[\blacksquare\]

Remark 5.6. From the proof, we see that in some cases, the length of the MDS symbol-pair code constructed from elliptic curve can attain $N(F_q) - 2$ or $N(F_q) - 1$. We omit the detail of the statements in the theorem to get a clear description of
our result. Also, note that there are other works devoted to constructing almost MDS codes using curves besides elliptic curves. To construct MDS symbol-pair codes using these almost MDS codes, how to arrange the evaluation set becomes the difficult step.

VI. CONCLUSION

In this paper, we first discuss the properties of the parity check matrix of an almost MDS code which is simultaneously an MDS symbol-pair code. On this basis, we construct q-ary MDS symbol-pair codes with minimum pair-distance 5 and length from 5 to $q^2 + q + 1$ for any $q \geq 2$. As we can see, $q^2 + q + 1$ is the largest possible length of an MDS symbol-pair code with pair-distance 5. Thus, we have completely solved the case $d = 5$. Later, we introduce a special configuration in projective geometry called ovoid, which allows us to derive q-ary MDS symbol-pair codes with $d = 6$ and length ranging from 6 to $q^2 + 1$ for q being a prime power. This is an interesting method and deserves further investigation since it works well for both $d = 5$ and $d = 6$, and it may work for larger pair-distance. With the help of elliptic curves, we show that we can construct MDS symbol-pair codes for any pair-distance d and length $n \leq q + \lfloor 2\sqrt{q} \rfloor + \delta(q) - 3$. Comparing with the results listed in Table 1, our results provide a much larger range of parameters.

REFERENCES

[1] E. Ballico and A. Cossidente, “Curves in projective spaces and almost MDS codes,” Des. Codes Cryptogr., vol. 24, no. 2, pp. 233–237, 2001.
[2] Y. Cassuto and M. Blaum, “Codes for symbol-pair read channels,” IEEE Transactions on Information Theory, vol. 57, no. 12, pp. 8011–8020, 2011.
[3] Y. Cassuto and S. Litsyn, “Symbol-pair codes: Algebraic constructions and asymptotic bounds,” in Information Theory Proceedings (ISIT), 2011 IEEE International Symposium on, 2011, pp. 2348–2352.
[4] Y. M. Chee, L. Ji, H. M. Kiah, C. Wang, and J. Yin, “Maximum distance separable codes for symbol-pair read channels,” IEEE Transactions on Information Theory, vol. 59, no. 11, pp. 7259–7267, 2013.
[5] Q. Cheng, “Hard problems of algebraic geometry codes,” IEEE Transactions on Information Theory, vol. 54, pp. 402–406, 2008.
[6] M. A. de Boer, “Almost MDS codes,” Des. Codes Cryptogr., vol. 9, no. 2, pp. 143–155, 1996. [Online]. Available: http://dx.doi.org/10.1007/BF00124590
[7] M. Deuring, “Die typen der multiplikatorenringe elliptischer funktionenkörper,” Abhandlungen Aus Dem Mathematischen Seminar Der Universität Hamburg, vol. 14, no. 1, pp. 197–272, 1941.
[8] X. Kai, S. Zhu, and P. Li, “A construction of new MDS symbol-pair codes,” IEEE Transactions on Information Theory, vol. 61, no. 11, pp. 5828–5834, 2015.
[9] J. Li, D. Wan, and J. Zhang, “On the minimum distance of elliptic curve codes,” in Information Theory (ISIT), 2015 IEEE International Symposium on, 2015, pp. 2391–2395.
[10] C. Munuera, “On the main conjecture on geometric MDS codes,” IEEE Transactions on Information Theory, vol. 38, no. 5, pp. 1573–1577, 1992.
[11] S. Payne, “Topics in finite geometry: ovals, ovoids and generalized quadrangles,” UC Denver Course Notes, 2009.
[12] J. Silverman, The arithmetic of elliptic curves, 2nd ed., ser. Graduate Texts in Mathematics. Dordrecht: Springer, 2009, vol. 106.
[13] H. Stichtenoth, Algebraic function fields and codes, 2nd ed., ser. Graduate Texts in Mathematics. Berlin: Springer-Verlag, 2009, vol. 254.
[14] E. Yaakobi, J. Bruck, and P. H. Siegel, “Decoding of cyclic codes over symbol-pair read channels,” in Information Theory Proceedings (ISIT), 2012 IEEE International Symposium on, 2012, pp. 2891–2895.
[15] J. Zhang, F.-W. Fu, and D. Wan, “Stopping sets of algebraic geometry codes,” IEEE Transactions on Information Theory, vol. 60, no. 3, pp. 1488–1495, March 2014.