Lexical access and representation of Modern Greek derived words with the suffix -dzis*

Christina Manouilidou and Eva Kehayia
University of Ottawa / McGill University and Centre for Interdisciplinary Research in Rehabilitation, Montreal

This article presents a psycholinguistic investigation probing the recognition of derived words with the suffix -dzis in Modern Greek. We investigate the mode of lexical access, as well as the effect that features such as [±concrete], carried by the stem of the derived words, may have on word recognition. Participants (native speakers of Modern Greek) were divided into two age groups in order to investigate possible differences in their performance in two experiments, one on-line and one off-line. Results show that derived words in -dzis are accessed through decomposition. Furthermore, the features [±concrete] of the stem do appear to play a role in the computation of derived words. Finally, age-related differences are found to exist, at least during on-line word recognition.

Keywords: suffix -dzis, [±concrete] feature, decomposition, processing, on-line experiment, derived words, pragmatic features

1. Introduction

The lexicon is often described as containing information about words and morphemes of a language. In linguistic theory, such information may comprise phonological, morphological, morphosyntactic, semantic, and pragmatic characteristics. According to psycholinguistic theory, the mental lexicon is not merely a store of mental representations of words and morphemes, but also contains information on how mental representations are organized and processed in everyday language comprehension and production. Among the issues addressed in the psycholinguistic literature to date, those of particular interest to our study concern the identification of the types of units that may
serve as entries in the mental lexicon, the information they carry, and finally the way they are accessed during language processing.

A number of psycholinguistic models of lexical representation and access have emerged over the years, ranging from those that propose that lexical access proceeds through decomposition (Taft & Forster 1975 and references therein) to those that opt for full lexical listing and subsequent whole-word access (Butterworth 1983). In fact, we know that native speakers may use whole-word access mainly for simple words or for high frequency derived words and rely on decomposition when accessing derived words and compounds of lower frequency. With respect to derived words, the whole-word access mechanism presupposes that they are represented in the lexicon as one unit, while the decomposition mechanism presupposes computation of the individual morphemes. Consequently, in the first case the lexicon is presumed to contain a list of whole words (simple or derived) and in the second a list of morphemes.

As may be anticipated, neither of these extreme positions (whole-word access or strict decomposition models) has received unequivocal experimental support. Thus, a number of hybrid models in which the lexicon is seen as containing both whole words and individual morphemes have emerged both in the theoretical linguistic literature (Halle 1973, Lapointe 1980, Lieber 1980, Williams 1981, Mohanan 1982, Kiparsky 1982, Selkirk 1982, Jensen & Stong-Jensen 1984, Ralli 1988, among others) and in the psycholinguistic literature (Burani et al. 1984, Caramazza et al. 1985, Burani & Caramazza 1987, Caramazza et al. 1988, Laudanna et al. 1989). What is of interest in such models is that they not only provide us with information on processing at the level of the morpheme, but also allow for the investigation of possible effects of specific lexical features (morphological, morphosyntactic, or phonological) during lexical access. Thus, psycholinguistic investigations have shown that an increased processing load either of grammatical features encoded in the lexical representation (such as singular vs. plural) or of morphological operations (such as inflection, derivation, or compounding) can affect reaction times (RTs) during word recognition in on-line psycholinguistic experiments (Taft & Forster 1975, Laudanna et al. 1992, Niemi et al. 1994, Kehayia & Jarema 1994). However, despite existing work on the effect of specific features on lexical access, little is known about the processing of specific semantic features, such as [±concrete], hypothesized to characterize nouns. Among the studies that have thus far investigated the processing of the [±concrete] features using word recognition, recall, lexical decision, and sentence comprehension experimental paradigms, we find superior cognitive processing for concrete nouns as
compared to abstract ones. This has been referred to as a ‘concreteness effect’ (see Paivio 1991 for a review). More specifically, in lexical decision tasks, concrete nouns have been found to be processed faster and more efficiently than abstract nouns (Eviatar et al. 1990, among others). Concreteness effects have also been observed in studies using event-related potentials (ERPs) (West & Holcomb 2000), while category-specific effects in word comprehension and word retrieval have been documented in stroke patients with aphasia (Goulet & Joanette 1994, Shapiro et al. 2000). However, a concreteness effect has not always been found to be facilitatory in a number of studies dealing with brain-damaged populations. Thus, patients with right hemisphere lesions and aphasia (Villardita et al. 1988) or patients who have lost their knowledge of perceptual features in general (Breedin et al. 1994) demonstrated a reverse concreteness effect within the category of nouns.¹

In the present study, we address this issue by focusing on derived words in Modern Greek (MG) comprising a [±concrete] stem and the suffix -dzis, as in taxi-dzis “taxi-driver” ([+concrete] stem taxi “taxi”) or horatadzis “banterer” ([−concrete] stem horato “banter”). In the section that follows, we provide a brief theoretical account of derived words in -dzis in order to introduce those issues that are addressed in the psycholinguistic section.

2. The grammar of the suffix -dzis in MG²

The origin of this suffix is Turkish, appearing in MG as a borrowing in a significant number of Turkish loanwords found in the language. In Turkish the suffix forms denominal nouns, in most cases, denoting a person who is professionally or habitually related to the object or person or property described by the noun stem, e.g. iş “work” → işi “worker” (Lewis 1986 [1967]:59). The words in -dzis are classified by the Reverse Dictionary of MG (Anastasiadis-Simeonidis 2002) either as nouns (Ns) or as adjectives (As). However, according to the theoretical model followed in the present study (Corbin 1987, 1991) a double categorization is not permitted (Corbin 1987:482). Hence, we are left with the following options. First, -dzis produces words that are either Ns or As. This type of derivation implies the existence either of two parallel rules for Ns and As or of two suffixes. In both cases redundancy is obvious, given the fact that adjectives in -dzis can be very easily used as nouns, and vice versa.³ Therefore, the only option is to consider that -dzis produces either Ns that are converted into As or As that are then converted into Ns. A noun–noun derivation is ruled out,
because according to Corbin’s model, the derived word should have the same reference as the stem noun, e.g. *trapezi, trapezaki, trapezara* “table, little table, big table”. Therefore, *taxidzis* “taxi-driver” should refer to the same entity as *taxi*, which is not the case. Consequently, the option that remains is to consider that *-dzis* produces As that are then converted into Ns through the process of change of grammatical category.\(^4\)

Semantically, adjectives in *-dzis* have the predictable meaning “in relation to the prototype of the referent of the noun stem”, while nouns in *-dzis* have the meaning “person in relation to the prototype of the referent of the noun stem”. Based on the definitions of the derived words in *-dzis*, we note that there are two basic types of meaning. Derived words in *-dzis* have either the meaning of “professional” nouns (e.g. *kafedzis* “coffee-house keeper”) or the meaning of “human quality” (e.g. *samatadzis* “trouble-maker”). The first (henceforth referred to as S1) indicates that the person characterized as such has a “functional relation to the object denoted by the noun stem”. Therefore, the derived noun denotes “person who produces, sells, uses, owns, etc. the object denoted by the noun stem”, e.g. *taxi > taxidzis* “taxi-driver”. The second meaning of the words formed by the suffix *-dzis* (henceforth referred to as S2) describes a person who is in a “descriptive relation to the abstract notion denoted by the nominal stem” and consequently denotes a “person who demonstrates a certain behavior relative to that abstract notion”, e.g. *gafa* “blunder” > *gafadzis* “blunderer”. S1 accounts for 65% of the words of our corpus, whereas S2 accounts for 35% of the words.\(^5\) Though these are the two basic meanings of the suffix *-dzis*, it should also be kept in mind that they can be further specialized.

Looking at the semantic duality of the words in *-dzis* one wonders whether there are two homophonous suffixes or a single polysemous one. Based on our corpus, we observe that when the referential meaning of the stem refers to an everyday object, a product, or a service (all of them with the characteristic [+concrete]), the derived words denote “profession”, e.g. *taxidzis* “taxi-driver”. When the referential meaning of the stem refers to a state or activity or to the result of an activity (−concrete), then the derived words denote “human quality” of the nouns they qualify, e.g. *samatas* “trouble” + *-dzis* > *samatadzis* “trouble-maker”. In both cases the derived words in *-dzis* have the characteristic [+animate]. The issue of homonymy and polysemy of the suffix is not discussed further here as it falls outside the scope of this article.

Another important issue regarding the use of this suffix concerns the register of use, as well as its status within certain social dialects. Kazazis points out that some of the Turkisms that did not disappear “have acquired a pejorative,
Ironical, or vulgar connotation” (1969:87). He also claims that the suffix -dzis is productive only in its function as a pejorative suffix (1969:103). Indeed, as is the case with most Turkish loanwords, words ending in -dzis are marked. Though they are commonly used in different social dialects, those denoting profession seem to carry more colloquial, lower register traits. Consequently, the words in -dzis are used in everyday colloquial conversation, often having a pejorative meaning, and exist in addition to the ‘standard’ words.

Finally, there exist words in -dzis that have had a long presence in the history of the Greek language, but are almost out of use nowadays (e.g. kaiktsis “small boat owner”), as well as words in -dzis that are particularly used mostly in oral language or slang (e.g. matadzis “special force policeman”).

Having outlined some of the characteristics of the suffix -dzis, we now turn to our experiment where we address, from a psycholinguistic perspective, some of the features of the suffix -dzis and of the stems it attaches to.

3. Psycholinguistic approach

The aim of the present study is to investigate subjects’ performance on derived words in -dzis. This investigation addresses the issue of mode of lexical access and the effect of the [+concrete] stem. An added issue of interest concerns the possible effect of age on performance on derived words in -dzis.

Such an investigation presupposes that derived words are accessed through decomposition where both stems and features are visible. Since we assume that the lexical access of the derived words in -dzis will proceed through decomposition, and based on the effect of the [+concrete] feature already attested in the literature, we hypothesize that there will be a difference in performance during on-line lexical decision between words denoting “profession” ([+concrete] stem) and those denoting “quality” (−concrete) stem). Finally, we anticipate the presence of an age-related difference due to the status and the frequency of use of the suffix across the different age groups.

3.1 Phase 1: Off-line experiment

To select the stimulus set, and in the absence of frequency and familiarity tables for MG, familiarity ratings were obtained for a total of 225 words. The familiarity test contained words in -dzis, and underived words in -is (e.g. bakalis “grocer”) which were used as controls in the on-line experiment, as well as a
number of underived words, matched in length and number of syllables to the derived words, that were used as fillers (e.g. *vatrahos* “frog”). Participants were asked to rate each word on a scale from 0–4 answering the question: “How often do you think that your friends use this word? Zero (0) stands for ‘not often’ while four (4) stands for ‘very often’.” Furthermore, acceptability ratings were also obtained for 59 novel words in order to obtain an off-line measure of the productivity of the suffix. Novel words were composed of an existing stem and the suffix -*dzis*, such as *karpouzi* “watermelon” + -*dzis* > °*karpouzadzis*. In other words, both morphemes of the novel words exist in MG, but their combination is not attested. The acceptability rating was based on two questions: (Q1) whether they have ever seen or heard the following words, e.g. °*psomadzis* “bread seller”, and (Q2) whether they could foresee using them.

3.1.1 Participants
Forty-one (41) native speakers of MG, 17 men and 24 women, with 9–23 years of education participated in the study. Given that age was one of the independent variables in our investigation, the subjects were divided into two groups (those under age 40, \(n = 23 \), and those over age 40, \(n = 18 \)).

3.1.2 Results
In this section we report on the results of the acceptability ratings on novel words formed with the suffix -*dzis*. For question Q1: 81.1% of the older age group denied having seen or heard the novel words, not significantly different from the 79.5% of the younger age group. For question Q2: 91.6% of the older group replied that they could not foresee using the novel words, again, not significantly different from the 88.8% of the younger group.

Looking at the results of Q1 and Q2, we note that, as anticipated, subjects responded negatively in most cases. However, the very fact that some of the words were accepted denotes a certain degree of productivity of the suffix. In the second phase of the experiment we pursued our investigation using an on-line psycholinguistic task, in order to gain a clear insight into the lexical access and representation of derived words in -*dzis*.

3.2 Phase 2: On-line experiment

3.2.1 Participants
Twenty-six (26) native speakers of MG, divided into two age groups, with a mean of 15 years education, participated in the experiment. The younger group
comprised 15 university students, aged between 18 and 26 years, and the older group comprised 11 individuals aged from 40 to 54 years.

3.2.2 Procedure
A simple visual lexical decision task was used. Testing was conducted on a Power Macintosh computer using the PsyScope 1.0.2 program. Participants first saw a mask (########) at the centre of the screen for 150 ms followed by the target. They were asked to identify whether the target was a word in MG by pressing the YES/NO key on the computer keyboard as quickly as possible.

3.2.3 Material
We compiled the experimental stimuli (see Appendix) based on the results of the familiarity ratings of the first phase. Words that obtained the highest familiarity ratings were chosen (n = 24), 12 indicating profession (e.g. taxi-dzis “taxi-driver”, with a mean familiarity rating of 2.5), comparable to the set of 12 nouns indicating quality (e.g. koumardzis “gambler”, with a mean familiarity rating of 2.2). The stimulus set also included novel words suffixed with -dzis (e.g. psomadzis “bread-seller”; n = 20), underived control words (matched for familiarity, syntactic category, length, and number of syllables, e.g. bakalis “grocer”; n = 48), underived nouns as fillers (e.g. vatrahos “frog”; n = 72), and non-words that were phonotactically well-formed for MG (e.g. nafedzis; n = 144).

3.2.4 Results
Outliers, consisting of RTs that exceeded two standard deviations above or below the mean of each subject, were removed (less than 5% of the data). The large majority of errors and outliers were observed with non-words.

Overall, participants in both age groups responded faster to underived words, controls (CL) and fillers (FL), than to derived words with -dzis (Table 1). For the older group, a repeated measures ANOVA revealed a main effect of category both by item (F1(2,136) = 5.281, p = 0.006) and by subject (F2(2,28) = 10.547, p = 0.0007) while post-hoc analyses (Scheffe’s test) showed a significant difference between the forms that entailed computation due to derivation (FL–W, p = 0.0015; CL–W, p = 0.01), with no difference between underived words (FL–CL, p = 0.55). Similar results were obtained for the younger group both in the item analysis (F1(2,136) = 4.890, p = 0.009) and the subject analysis (F2(2,28) = 20.255, p = 0.0001). Scheffe’s tests revealed a significant difference between parsable and non-parsable forms (FL–W, p = 0.002; CL–W, p = 0.03; FL–CL, p = 0.43).
Table 1. Mean reaction times to experimental, control, and filler words according to age

	Older group		Younger group	
	Mean (ms)	SD (ms)	Mean (ms)	SD (ms)
W [+ -dzis]:	841	75	806	80
CL [− -dzis]:	777	85	744	86
FL [− -dzis]:	789	84	762	83

Words denoting quality yielded longer RTs than those denoting profession for both age groups. For the older group this difference did not reach significance in the by-item analysis \((F_1(1,22) = 1.987, p = 0.17) \), but it was significant in the by-subject analysis \((F_2(1,10) = 6.980, p = 0.02) \). The same pattern was also observed for the younger group, where it reached significance only in the by-subject analysis \((F_1(1,22) = 1.153, p = 0.29; F_2(1,14) = 6.981, p = 0.019) \) (Table 2).

Table 2. Mean reaction times to “profession” and “quality” according to age

	Older group		Younger group	
	Mean (ms)	SD (ms)	Mean (ms)	SD (ms)
profession: kafedzis	820	86	789	86
quality: gafadjis	862	58	824	72

Comparing non-words to novel words (see Table 3), we noted that there was an observable difference between the two. However, this difference was significant only for the younger group of subjects \((F_1(1,156) = 27.150, p = 0.0001; F_2(1,14) = 29.290, p = 0.0001) \); only a trend was found for the older group \((F_1(1,156) = 2.978, p = 0.09; F_2(1,10) = 2.895, p = 0.12) \). Thus, there was a main effect of word category \((F_2(1,156) = 13.933, p = 0.0003) \) and no effect found across age group \((F_2(1,156) = 2.07, p = 0.15) \). The subject–word interaction was not significant \((F_2(1,156) = 1.564, p = 0.21) \).

Table 3. Mean reaction times of rejection of non-existing words according to age

	Older group		Younger group	
	Mean (ms)	SD (ms)	Mean (ms)	SD (ms)
non-words: *diloidzis	972	92	917	166
novel words: *trapez-adzis	1040	103	1036	131

An age group difference was observed in the RTs obtained when subjects accepted novel words (Table 4). This difference was found to be statistically significant \((F_2(1,18) = 5.904, p = 0.025) \).
Table 4. Mean reaction times of acceptance of novel words according to age

	Older group	Younger group
RTs (mean), SD in ms	1282 175	908 149
Percentage	29.2%	20%

Thus, the older group (40+) accepted more novel words in comparison to the younger group (40−), with, however, longer RTs than the younger group, as can be seen in Table 4.

A final analysis compared RTs on ‘+’/‘−’-[concrete]-stem novel words. Interestingly, derived novel nouns denoting profession took longer to be rejected than those denoting quality. However, there was no significant effect of category across age groups ($F(1,17) = 0.003, p = 0.96$). Finally, the interaction between age and category was not statistically significant ($F(1,17) = 0.352, p = 0.56$) (Table 5).

Table 5. Mean reaction times of rejection of novel words according to age group and category

	Observer group	Younger group	
Mean (ms)	SD (ms)	Mean (ms)	SD (ms)
profession [+concrete]	1041 90	1060 69	
quality [−concrete]	1021 98	1066 67	

4. Discussion

The first question addressed in this study concerned the processing and mental representation of words containing the suffix -dzis in MG. As has already been shown, derived words in -dzis yielded longer RTs when compared to underived words. This leads us to the conclusion that during the processing of derived words in -dzis some computation must take place, i.e. the subjects are processing the derived word by decomposing it into its constituents. In order to access individual constituents, it is necessary that they be matched to existing information in the mental lexicon, namely to the mental representation of the stem and of the suffix. Under this assumption we can also explain the results obtained when comparing novel words and non-words. Indeed, for both age groups, RTs for the novel words (comprising a real stem and the suffix -dzis) are longer than those for non-words (comprising a non-existing stem and the suffix -dzis). Thus, the presence of a non-existing stem in the non-word allows for a faster rejection. Since this is so, we can assume that in the case of novel
words, the subjects are recognizing the real stem and the suffix -dzis, rejecting the combination, however. This two-stage process of initial recognition and subsequent rejection is hypothesized to be the cause of longer RTs for the groups of novel words and non-words when compared to the real words. Thus, if we were to place the different word groups in a hierarchical order in terms of processing time required for on-line word recognition, we note that RTs are the fastest for underived real words, where no decomposition is necessary. Furthermore, both underived and derived real words are processed more quickly, as a group, than both the novel words and non-words.

The second issue concerns the possible computational difference for words indicating profession ([+concrete] stem) and those indicating quality ([−concrete] stem). Statistical analysis (by subject) revealed a significant difference across both types of words that denotes a tendency for faster recognition of words indicating profession as compared to those indicating quality. This finding is not surprising if one takes into consideration the fact that the notion of “occupation” is more concrete than the notion of “quality”. Since words in -dzis are recognized through decomposition, and under the assumption that when accessing the individual morphemes of derived words one also accesses the features that they carry, the difference observed can be attributed to the processing of the specific feature marking the stems, i.e. [+concrete]. Based on the above, we anticipate that derived words in -dzis with a [+concrete] stem will be processed faster than words in -dzis with a [−concrete] stem because of the effect exerted by the stem. This result is in accordance with previous studies on normal populations that demonstrated faster word recognition of words with the feature [+concrete] and is supported by theories on the neuronal basis of a concreteness effect.

By analogy to the results obtained for real words, one would expect that novel words formed with the suffix -dzis attaching to a [+concrete] stem, e.g. psomadzis, would be processed faster and more accurately. As has been shown in Table 5, however, no significant difference was found across [+concrete] novel words for both groups of participants. One wonders whether the absence of a difference in the processing of this feature in novel words is due to their differential processing as compared to real words. On the other hand, features that may affect lexical access in real words may not be operant in the processing of novel word combinations. Under this assumption, the fact that performance on novel words did not manifest the [+concrete] difference does not undermine its existence in real words.
The last issue addressed in this study concerns the difference in performance on word recognition patterns across the two age groups. In the group of real words (W–CL–FL) the younger group was faster than the older one. This may be attributed to an overall increase in general reaction-time response that occurs with age. Though variability exists with respect to years of education across the two groups (the older group having fewer years of education), education has not been, in general, associated in the literature with slower RTs, except in cases of less than six years of schooling. However, age appears to have an effect both in RTs and in the degree of acceptance of novel words.

To explain these results, let us take a look at the derivation of novel words. The production of novel words depends on the availability of the derivational rule and the availability of the stem and of the suffix. As there is no reason to believe that the younger group is missing the derivational rule since they are native speakers of MG, one is led to consider the status of the suffix that seems to be more integrated and thus more available in the derivational system of the older group than in that of the younger group. Thus, at least with respect to on-line word recognition, while both groups have access to both the derivational rule and the suffix, the older group is more receptive to novel words, a fact that reflects the higher integration of the suffix into their system. This result appears to be in contrast with the findings observed in the off-line experiment, where both subject groups showed similar performance. If we consider the mechanisms implicated in the two tasks, we note that there are two distinct types of computation, namely a metalinguistic one triggered by the off-line task and a linguistic one triggered by the on-line task. On-line word recognition probes subjects’ underlying knowledge and brings into view subtle aspects of word computation, while an off-line task, not being subject to time constraints, taps into overt, metalinguistic knowledge. Thus, the difference observed is attributed to an interaction between task effects and elicited knowledge.

5. Conclusion

This study is, to our knowledge, the first attempt to investigate the lexical access and representation of MG derived words in -dzis. Our goal was not only to probe the word recognition patterns of such words, but also to obtain a better understanding of the factors that may facilitate or hinder lexical access during on-line psycholinguistic performance. This investigation departed from a theoretical linguistic framework that offered a description of the linguistic
phenomena at hand, while one off-line and one on-line task provided information on the subjects’ metalinguistic, as well as underlying linguistic, processing. The experimental results obtained lead to a number of conclusions regarding the mental representation and processing of derived words in -dzis. First, derived words with the loan-suffix -dzis are accessed through decomposition, similar to other fully transparent, highly productive, and easily decomposable derived words like deverbal adjectives (e.g. htenismenos “combed”). This is attributed to the high integration level of the loan suffix -dzis in MG, which behaves just like any other derivational suffix in the language. Second, our findings underscore the role of specific features, such as [±concrete], during lexical processing, as well as the presence of a ‘concreteness effect’ also observed in the psycholinguistic and neurolinguistic literature.

Finally, our study has allowed the investigation of the role of pragmatic effects, such as the salience of the suffix in different age populations. Indeed, the two different populations appear to present a different behavior towards the suffixed words in -dzis, at least during on-line word recognition. Further research is required, however, to properly address the lexical access of stems and affixes across different age groups.

Notes

* The research reported here was supported by the MCRI grants from the Social Sciences and Humanities Research Council of Canada (#412–95–2006 and 412–2001–1009). The authors would like to thank Dr. Angela Ralli for her insightful comments on an earlier version of this paper and Mr. George Schwartz for his invaluable input, statistical advice, and editorial changes. Finally, we would like to thank the anonymous reviewer and editor Brian Joseph for their constructive comments and suggestions.

1. Two models have been proposed to explain the neuronal basis of the concreteness effect. The first attempts to interpret this pattern of results in terms of a ‘dual code’ theory of language representation (Paivio 1971, 1978, 1991). According to this theory, abstract nouns are stored in memory in a verbal representation only, while concrete words are coded both verbally and imaginatively. Therefore, lexical access to concrete words is faster and more accurate than lexical access to abstract words, essentially, because concrete words are processed by two concurrent processing streams, rather than a single processing stream. The second, known as ‘the context availability theory’, argues that concrete words activate a broader contextual support, which results in faster processing. According to this concept, concrete nouns automatically activate more associative information, resulting in faster recognition of these items (Schwanenflugel & Stowe 1989).
2. For more information on the theoretical issues regarding the derivation of words with -dzis see Manouilidou (2000).

3. Even those words of the corpus that are attested only as As could be nominalized, e.g. tertipadzis “dodger” with the meaning “person that makes dodges”. Similarly, it is equally possible for words attested only as Ns to be used in an adjectival sense, e.g. Aftos o hamoudzis diaittitis den paizei kala tis omades tis Thessalonikis “This hamoudzis [from Southern Greece] referee does not play fairly teams from Thessaloniki”.

4. The process of nominalization is quite frequent in MG, especially with nouns denoting profession, such as aisthitikos “cosmetician”, fysikos “physicist”, etc.

5. The corpus used in this study is based on the reverse dictionary of MG by Anastasiadis-Smeonidis (2002).

6. This might not appear to be the case for very frequent words such as taxidzis “taxi-driver”. However, even in the case of this word, a more unmarked way of naming this occupation would be odigos taxi “driver of taxi”. For the same profession the French noun chauffeur could marginally be used. These synonyms would not exist if taxidzis was inherently unmarked.

7. According to our corpus, the suffix -dzis is also attested as -tsis in the following words: Pasoktsis “voter of PASOK”, Aektis “fan of AEK”, Paoktsis “fan of PAOK”, kaiktis “small boat owner”. The allomorph -tsis appears after the voiceless phoneme /k/, due to regressive assimilation in the contact of the voiceless plosive consonant /k/ with the voiced affricate /dz/. This gives rise to the alternation between the voiced affricate /dz/ and the voiceless affricate /ts/.

8. Both groups of participants were from the same geographic area (Thessaloniki — Northern Greece). Therefore, any differences in their performance cannot be due to dialectal variation.

References

Anastasiadis-Simeonidis, Anna. 2002. Αντίστροφο Λεξικό της Νέας Ελληνικής [A Reverse Index of Modern Greek]. Thessaloniki: Institute of Modern Greek Studies (Manolis Triandafyllidis Foundation), Aristotle University of Thessaloniki.

Breedin, Sarah, Eleanor Saffran & H. Branch Coslett. 1994. “Reversal of the Concreteness Effect in a Patient with Semantic Dementia”. Cognitive Neuropsychology 11.617–660.

Burani, Cristina, Dario Salmaso & Alfonso Caramazza. 1984. “Morphological Structure and Lexical Access”. Visible Language 18:4.342–352.

Burani, Cristina & Alfonso Caramazza. 1987. “Representation and Processing of Derived Words”. Language and Cognitive Processes 2.217–227.

Butterworth, Brian. 1983. “Lexical Representation”. Language Production. Vol. 2: Development, Writing and Other Language Processes ed. by Brian Butterworth, 257–293. London: Academic Press.
Caramazza, Alfonso, Gabriele Miceli, Maria Caterina Silveri & Alessandro Laudanna. 1985. “Reading Mechanisms and the Organization of the Lexicon: Evidence from acquired dyslexia”. *Cognitive Neuropsychology* 2.81–114.

Caramazza, Alfonso, Alessandro Laudanna & Cristina Romani. 1988. “Lexical Access and Inflectional Morphology”. *Cognition* 28.297–332.

Corbin, Danielle. 1987. *Morphologie derivationelle et structuration du lexique*. 2nd edn. 2 vols. Tübingen: Max Niemeyer Verlag.

Corbin, Danielle. 1991. “Introduction — la formation des mots: structure et interpretation”. *Lexique* 10.7–30.

Eviatar, Zohar, Lise Menn & Eran Zaidel. 1990. “Concreteness: Nouns, verbs, and hemispheres”. *Cortex* 26:4.611–624.

Goulet, Pierre & Yves Joanette. 1994. “Sentence Completion Task in Right-Brain-Damaged Right-Handers: Eisenson's study revisited”. *Brain and Language* 46.257–277.

Halle, Morris. 1973. “Prolegomena to a Theory of Word-Formation”. *Linguistic Inquiry* 4.3–16.

Jensen, John T. & Margaret Stong-Jensen. 1984. “ Morphology is in the Lexicon!”. *Linguistic Inquiry* 15.474–498.

Kazazis, Costas. 1969. “The Status of Turkisms in the Present-Day Balkan Languages”. *Aspects of the Balkan: Continuity and Change: Contributions to the International Balkan Conference held at UCLA, October 23–28* ed. by H. Birnbaum & S. Vryonis, 87–116. The Hague.

Kehayia, Eva & Gonia Jarema. 1994. “Morphological Priming (or Prim#ing) of Inflected Verb Forms: A comparative study”. *Journal of Neurolinguistics* 2.83–94.

Kiparsky, Paul. 1982. “From Cyclic Phonology to Lexical Phonology”. *The Structure of Phonological Representations (Part I)* ed. by Harry van der Hulst & Norval Smith, 131–175. Dordrecht: Foris. [Reprinted in: *Phonological Theory: The essential readings* ed. by John Goldsmith, 34–62. Oxford: Blackwell. 1999.]

Lapointe, Steven. 1980. *A Theory of Grammatical Agreement*. Ph.D. dissertation, University of Massachusetts.

Laudanna, Alessandro, William Badecker & Alfonso Caramazza. 1989. “ Priming Homographic Stems”. *Journal of Memory and Language* 28.531–546.

Laudanna, Alessandro, William Badecker & Alfonso Caramazza. 1992. “Processing Inflectional and Derivational Morphology”. *Journal of Memory and Language* 31.333–348.

Lewis, Geoffrey L. 1986 [1967]. *Turkish Grammar*. Oxford: Clarendon Press.

Lieber, Rochelle. 1980. *On the Organization of the Lexicon*. Ph.D. dissertation, MIT.

Manouilidou, Christina. 2000. *Το επίθημα {dzis} στα Νέα Ελληνικά* [The Suffix -dzis in Modern Greek]. M.A. Thesis, Aristotle University of Thessaloniki.

Mohanan, Karuvannur P. 1982. *Lexical Phonology*. Ph.D. dissertation, MIT.

Niemi, Jussi, Matti Laine & Juhani Tuominen. 1994. “Cognitive Morphology in Finnish: Foundations of a new model”. *Language and Cognitive Processes* 9.3.423–446.

Paivio, Allan. 1971. *Imagery and Verbal Processes*. New York: Holt, Rinehart and Winston.

Paivio, Allan. 1978. “Mental Comparisons Involving Abstract Attributes”. *Memory and Cognition* 6.199–208.

Paivio, Allan. 1991. “Dual Coding Theory: Retrospect and current status”. *Canadian Journal of Psychology* 45:3.255–287.
Appendix: List of stimuli

Words in -dzis denoting “profession”

betadzis paliadzis souvladzis
bogiadzis patsadzis sovadzis
kafedzis propodzis taxidzis
koulourdzis psilikadzis violidzis

Words in -dzis denoting “quality”

blofadzis kavgadzis loufadzis
fasariadzis kolpadzis plakadzis
gafadzis kopanadzis samatadzis
horatadzis koumardzis tzabadzis

Controls

adartis komitis pelatis
adzentis lehtitis profitis
afentis leventis realistis
akamatis lignitis rebetis
aktivistis lopodytis sadistis
asvestis magnitis sakatis
bakalis makaritis satrapis
barberis mastoris sexistis
Περίληψη

Η παρούσα εργασία παρουσιάζει τα αποτελέσματα μιας ψυχογλωσσολογικής έρευνας στη Νέα Ελληνική η οποία πραγματεύεται την αναγνώριση παράγωγων λέξεων με το επίθημα -τζής. Διερευνήσαμε τον τρόπο λεξικής αναγνώρισης, όπως επίσης και το ρόλο του χαρακτηριστικού [±συγκεκριμένο] που φέρει η βάση του παράγωγου. Για το σκοπό αυτό καταφύγαμε στη διεξαγωγή ενός off-line και ενός on-line πειράματος απλής οπτικής αναγνώρισης. Οι συμμετέχοντες (φυσικοί ομιλητές της Νέας Ελληνικής) διαιρέθηκαν σε δύο ομάδες, ανάλογα με την ηλικία τους, με σκοπό να διερευνηθούν πιθανές διαφοροποιήσεις στη συμπεριφορά τους. Με βάση τα αποτελέσματα των πειραμάτων μπορούμε να συμπεράνουμε ότι οι παραγωγικές λέξεις με το επίθημα -τζής αναγνωρίζονται μετά από τεμαχισμό στα συστατικά τους. Επιπλέον, το χαρακτηριστικό [±συγκεκριμένο] της βάσης φαίνεται να υφίσταται επεξεργασία και να επηρεάζει την αναγνώριση των παράγωγων λέξεων. Τέλος, κατά την on-line επεξεργασία, παρατηρήθηκαν διαφορές μεταξύ των δύο ομάδων των συμμετεχόντων, οι οποίες αποδίδονται στη διαφορά ηλικίας.