Transkingdom Networks: A Systems Biology Approach to Identify Causal Members of Host-Microbiota Interactions

Authors and affiliations:
Richard R. Rodrigues
College of Pharmacy, Oregon State University, 1601 SW Jefferson Way, Corvallis, Oregon 97331, USA

Natalia Shulzhenko
College of Veterinary Medicine, Oregon State University, 105 Dryden Hall, 450 SW 30th Street, Corvallis, Oregon 97331, USA

Andrey Morgun
College of Pharmacy, Oregon State University, 1601 SW Jefferson Way, Corvallis, Oregon 97331, USA

Corresponding authors:
Andrey Morgun andriy.morgun@oregonstate.edu
Richard R. Rodrigues rodrrich@oregonstate.edu

Running head:
Transkingdom Network Analysis
Transkingdom Networks: A Systems Biology Approach to Identify Causal Members of Host-Microbiota Interactions

Richard R. Rodrigues, Natalia Shulzhenko, Andrey Morgun

Abstract

Improvements in sequencing technologies and reduced experimental costs have resulted in a vast number of studies generating high-throughput data. Although the number of methods to analyze these “omics” data has also increased, computational complexity and lack of documentation hinder researchers from analyzing their high-throughput data to its true potential. In this chapter we detail our data-driven, transkingdom network (TransNet) analysis protocol to integrate and interrogate multi-omics data. This systems biology approach has allowed us to successfully identify important causal relationships between different taxonomic kingdoms (e.g. mammals and microbes) using diverse types of data.

Keywords: omics, transkingdom, network analysis, causal relationships.

Introduction

Over the last decade assessing eukaryotic and prokaryotic genomes and transcriptomes have become extremely easy. With technologies like microarrays and next-generation sequencing, investigators now have faster and cheaper access to high-throughput “-omics” data [1]. This in turn has increased the number of analysis methods [2] and allows for the exploration of new and different biological questions to provide insights and better understanding of host, host-microbial systems, and diseases [3-5].

Studies usually focus on identifying differences between “groups” (e.g., healthy versus diseased or treatment versus control) or changes across a time course (e.g., development of an organism or progression of a disease). Depending on the biological questions, such studies generate one or more types of omics data [6-8], e.g., host gene expression and gut microbial abundance. Typically, studies analyze
these omics data separately, comparing gene expression and microbial abundance between groups or across stages. Although such analysis methods have been very useful, they do not directly answer the most critical questions of host-microbiota interactions, i.e. which microbes affect specific pathways in the host and which host pathways/genes control specific members of the microbial community? Therefore, to answer those questions, these analyses are usually followed by literature searches to identify relationships between host genes and microbes.

Different algorithms and methods have been proposed to integrate multi-omics data [9-13]. More recently, a few published studies have not only integrated microbiome and host data, but have also been able to successfully test their computational predictions in the laboratory [14-19]. In this chapter we describe our data-driven, transkingdom network (TransNet) analysis pipeline (Figure 1) that has allowed us to make validatable computational inferences. We construct networks using correlations between differentially expressed elements (e.g., genes, microbes) and integration of high throughput data from different taxonomic kingdoms (e.g., human and bacteria). In fact, TransNet analysis can be applied to integrate any “Transomics” data, between as well as within taxonomic kingdoms e.g., miRNA and gene expression, protein and metabolite, bacterial and host gene expression, or copy number, methylation, and gene expression. Interrogation of this network allows us to pinpoint important causal relationships between data. For example, using this method we inferred and validated: 1) microbes and microbial genes controlling a specific mammalian pathway [15]; 2) a microbe that mediates effect of one host pathway on another [14]; 3) a host gene that mediates control of gut microbe through an upstream master regulator gene [14]. Below we show how TransNet analysis can be used to integrate host gene expression with microbial abundance to create transkingdom networks.

Materials

Program Availability:
Our transkingdom network analysis pipeline is independent of programming language or software. However, for ease of access and usage simplicity, we have provided our pipeline as a convenient R package (TransNetDemo) and supplementary document (File S1) in addition to the description provided. Although the user can choose to perform the following steps in a programming language or software of their choice, we suggest using our R package.

Required R packages:

Install the following packages along with their dependencies: stringr, ProNet, igraph, ggplot2, gplots from CRAN (https://cran.r-project.org/).

Installing TransNetDemo:

```r
library(devtools)
install_github("richrr/TransNetDemo")
library(TransNetDemo)
```

Data Sources:

Due to a variety of data generation technologies, biological questions, and software, description of every possible analysis is beyond the scope of this chapter. We expect that the user has access to tab-delimited file(s) containing the measurements of biological data type, e.g., gene expression, copy number, methylation, miRNA, or microbial across samples. Depending on the data type the user can find reviews and protocol papers describing the analysis needed to produce “abundance” tables [20-24].

The transkingdom network analysis method can be applied to any experimental design (e.g. treated/untreated, control/disease). As an example we will use simulated data from a simple experimental design that investigates the effects of factors on host-microbial interactions. Consider an experiment with two groups (HFHS/NCD) of 25 samples each. At the end of the experiment, among other phenotypic
measurements (e.g., body weight, enzyme levels, hormone levels), the gene expression levels and microbial abundance in the gut (e.g., ileum) of the samples were measured. Depending on resource availability, high confidence and consistent results can be achieved by increasing the number of samples per group and/or repeating the above experiment multiple times. In this example data, we have two such experiments. A brief description of how to generate the abundance tables is mentioned below.

Information about how the network analysis protocol can be adapted to answer some other biological questions have been mentioned in the NOTES section of this chapter.

Gene expression analysis:

Several different technologies, each with their own pros and cons, allow for the measuring of transcriptome levels in an organism. Although microarrays were extensively used over the last two decades, the availability of cheap and efficient library preparation kits and sequencing methods allow for the expression measurements of known and novel genes using RNA-Seq technologies [25].

In case of RNA-Seq data, the sequencing facilities usually provide fastq files that contain raw reads per sample (demultiplexed). Here, the number of reads corresponding to a particular gene is proportional to that gene’s expression level. Software like FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/), FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/), PRINSEQ [26], or cutadapt [27] can be used for adapter removal and quality control. Depending on the availability of a gold-standard reference host genome sequence, gene expression abundance can be measured using the Tuxedo [21] or Trinity [28] pipeline. Both of these pipelines permit the analysis of single or paired reads and different read lengths while outputting a file containing the expression levels (number of reads) of genes (rows) present in each sample (columns). The obtained read counts can be normalized by simple (e.g., quantile normalization, total reads (CPKM), reads per kilobase per million mapped reads (RPKM) [29]) or sophisticated methods (e.g., DESEQ [30], edgeR [31]).
In the case of microarray data, hybridization facilities usually provide scan files (Affymetrix CEL, Illumina IDAT, or GenePix GPR) that contain the intensity of probes per sample. Here, the probe intensity is proportional to the corresponding gene expression level. Software like Affymetrix® Expression Console™, Illumina’s GenomeStudio, and GenePix® Pro, as well as packages like affy [32] and limma [33], allow for background correction, normalization, and summarized probe intensities while outputting a file containing the expression levels of genes (rows) present in each sample (columns).

Microbial abundance analysis:

The abundance of next-generation technologies has helped in the study of microbial richness and diversity. Scientists no longer need to rely on cultivation methods and can directly sequence the microbiome, helping explore previously unknown microbes. The amplicon based sequencing technologies rely on using a gene marker (16S [34,35] ribosomal RNA gene, Internal Transcribed Spacer [36,37], etc.) to identify microbial presence and abundance. Although relatively cheaper than the shotgun metagenomics, they rely on databases of known genomic markers to identify microbes and rarely provide taxonomy at the species or strain levels. The shotgun metagenomics sequencing approach does a better job at surveying the entire genome of microbes since it does not focus on amplifying specific genes. Consequently, it provides fine-grained taxonomic information along with a more accurate representation of the microbial structure and function, including the previously unknown “dark matter” microbes [38].

Software like QIIME [39], MOTHUR [40], etc. provide all-in-one toolkits that can demultiplex, perform quality control, and analyze the amplicon based sequences. Similar to RNA-Seq data, the fastq files obtained from the sequencing facility need to be processed for the removal of barcodes, adapter, and primers followed by filtering to retain high quality sequences. The reads are grouped (binned) per sequence similarity (usually at 97% threshold) into operational taxonomic units (OTUs). The taxonomy of a known microbe (or the ancestor taxonomy of the top matches) closest to the representative sequence of the OTU is assigned to all the reads in that OTU. The tools output a file containing the abundance
(number of reads) of OTUs (rows) present in each sample (columns). The obtained read counts can be relativized or cumulative sum scaling (CSS) [41] normalized.

Shotgun metagenomic data can be analyzed [38] using tools such as MG-RAST [42], MEGAN [43], MetaPhlAn [44], and HUMAnN [45]. Although most of these software provide taxonomic and functional analyses, they are not standalone. Demultiplexing and quality control need to be done before the reads are imported in the software. Especially in case of host-microbe systems, Processing utility for Metagenomics Analysis (PuMA) (http://blogs.oregonstate.edu/morgunshulzhenkolabs/softwares/puma/) provides an all-inclusive software pipeline that can be more user-friendly. PuMA uses cutadapt for quality control and Bowtie [46] to identify reads that match the host genome and discards these “contaminating” reads from downstream analysis. The remaining microbial reads are aligned to a database of known protein sequences using DIAMOND [47], followed by taxonomic and functional (e.g. SEED, COG, KEGG) assignments using MEGAN. PuMA outputs a file containing the abundance of microbes and pathways (rows) in each sample (columns). The appropriate normalization techniques from the RNA-Seq or amplicon sequencing methods can be performed on the abundance table.

In summary, the user needs at least one of each of the following files before starting network analysis:

- mapping file: tab-delimited file containing the group (e.g. treated/untreated, control/disease) affiliation for each sample with "Factor" and "SampleID" as column headers, respectively.
- data files: tab-delimited files containing the abundance of elements (host genes and microbes) per sample, where the elements and samples are rows and columns, respectively. Importantly, each sample must have both types of data available.
 - normalized gene expression file: the column "IdSymbol" contains the unique genes while the remaining columns contain their expression levels across different samples.
 - normalized otu abundance file: the column "IdSymbol" contains the unique microbes while the remaining columns contain their abundance across different samples.
Methods

The following steps will help to identify key elements of a system from high confidence modules of a
multi-omics network. We show the first few steps with the gene abundance file(s) using the code from the
GeneDemo.R (GD) file available in our package. It is straightforward to run similar steps on the microbe
abundance file(s), however we have also provided the code in MicrobeDemo.R (MD) file for ease of use.

• Start by setting defaults for variables that you will use in the analysis, such as significance
 thresholds (GD: lines 7-9), groups to be compared (GD: lines 11-13), and headers of relevant
columns from the mapping (GD: lines 14-15) and abundance files (GD: line 16).

• Next you want to identify the differentially expressed elements (GD: line 29). The network
 analysis can be performed using all the elements (genes, microbes, etc.). However, we suggest
 identifying the elements that show differential abundance between groups, using code from
 Compare_groups.R (Cg) file, to focus on the most important elements and make the analyses
 computationally efficient.
 o Read from the mapping file to extract the samples from each group (Cg: lines 11-20).
 o Read from the gene abundance file (Cg: lines 22-25).
 o Then perform test for differential abundance using code from Diff_abundance.R (Da)
 file. This function returns the mean, median for each group along with the fold change
 and p-value (Da: lines 8-28).
 o Next, account for multiple testing using Benjamini-Hochberg’s FDR calculation (Cg:
 lines 38-41).
 o Finally, select the differentially expressed genes using appropriate FDR cutoff (GD: line
 33) (< 0.05) (Figure 2b).
• We highly recommend that if you have datasets obtained from replicate experiments or in different sample cohorts that you perform the above steps for each experiment and do meta-analysis [16,18,48,49] (GD: lines 39-47).
 o First, the meta-analysis selects for genes that show fold change direction consistency across datasets (Check_consistency.R), e.g., upregulated (or downregulated) across all experiments.
 o Second, for the genes showing consistent fold change direction use Fisher’s method to calculate a combined p-value (Calc_combined.R) from the individual p-values (from comparison test) across multiple experiments.
 o Then apply appropriate significance thresholds (Apply_sign_cutoffs.R) based on individual p-value (< 0.3) in each dataset, combined (Fisher’s) p-value across datasets (< 0.05), and FDR (< 0.1) across the combined p-values to identify consistently differentially abundant elements.
 o Ensuring the same direction of regulation in all datasets and restricting individual p values at each individual dataset allows controlling of heterogeneity between datasets. Note that mere calculation of Fisher p-value for meta-analysis followed by application of FDR is not sufficient for accurate identification of differentially abundance/expression.
• Determining associations between elements (e.g., genes and/or microbes) is central for network reconstruction. Defining strength and sign of correlation (GD: line 56) can help to determine whether two elements (i.e. biological entities represented by nodes in a network) have a positive or negative interaction. Such information about potential relationships, using code from Correlation_in_group.R (Cig) file, is crucial for interrogating and understanding the regulatory mechanisms between elements. Note, correlations are calculated using data from samples representing one group (phenotypic class), never pooling samples from all groups for estimation of correlation. Therefore, the following steps should be performed for each group separately.
 o Read from the mapping file to extract the samples from a group (Cig: lines 11-18).
Read from the gene abundance file (Cig: lines 20-23).

Then create pairs (Cig: lines 25-32) from the consistent genes obtained in the previous step.

Next perform test for correlation on gene pairs using code from Calc_cor.R (Ccr) file. This function returns the correlation and p-value (Ccr: lines 8-17).

Next, account for multiple testing using Benjamini-Hochberg’s FDR calculation (Cig: lines 48-50).

Finally, select the significantly correlated gene pairs using appropriate FDR cutoff (GD: line 60) < 0.1.

We highly recommend that if you have datasets obtained from replicate experiments or different sample cohorts that you perform the above steps for each experiment and do meta-analysis (GD: lines 65-72).

First, the meta-analysis selects for gene pairs that show correlation direction consistency across datasets (Check_consistency.R), e.g., positive (or negative) across all experiments.

The next steps of combining the individual p-values (from correlation test) and applying multiple significance cutoffs are similar to those in the meta-analysis of genes.

At this point you have a network for a single group where nodes are genes and edges indicate significant correlation. Next, we identify the proportion of unexpected correlations (PUC) [50] (GD: line 83). If two elements have a regulatory relationship we expect them to behave in certain ways. For example, consider two groups. Two positively correlated genes in a group should have the same direction of fold change between two groups. On the other hand, two negatively correlated genes should have the opposite direction of fold change. Edges in a network where the sign of correlations does not correspond to the direction of change are unexpected, are not likely to contribute to the process under investigation, and hence, discarded using code from Puc_compatible_network.R (Pcn) file.

First, for each gene pair identify the sign of correlation (Pcn: lines 47-53).
Second, calculate if each gene in the pair has the same direction of regulation (i.e. fold change) (Pcn: lines 56-65).

Pairs are expected and kept (Pcn: lines 70-80) if they satisfy either of these conditions:

- positively correlated genes have the same fold change direction
- negatively correlated genes have different fold change direction

At this point you have a network that satisfies regulatory relationships. Next, the obtained network can be systematically studied to answer different biological question. Most often, network interrogation relies on identifying highly inter-connected sets of nodes. Such a sub-network is called a module (or cluster). Identify clusters (GD: line 89) using the MCODE method from the Identify_subnetworks.R file (Figure 3b).

Repeat the above steps for the microbial (or any other data type) abundance file(s) to obtain heat map (Figure 2a) and clusters (Figure 3a) per biological data type (e.g. genes, microbes, etc.). Refer to the code in MicrobeDemo.R file.

The next step is to integrate sub-networks to create transkingdom networks using code from the GeneMicrobeDemo.R (GMD) file. Note that at this point you have already identified modules from the gene and the microbe networks. Similar to the above steps, create pairs between nodes from the different modules (GMD: line 29), calculate correlations within a group (GMD: line 32), and identify significant pairs based on single (GMD: line 36) or meta (GMD: lines 41-49) analysis. Next, apply PUC analysis and remove unexpected edges from this transkingdom (gene-microbe) network as it is done for regular gene expression (and microbial abundance) network (GMD: line58).

Combining the gene-gene correlations (edges from the gene sub-networks) (GMD: line 74), microbe-microbe correlations (edges from the microbe sub-networks) (GMD: line 77), and the gene-microbe correlations (GMD: line 80) creates the full transkingdom network (GMD: line 83) (Figure 4).
Finally, identify elements that are crucial for crosstalk between the different modules in a network using bipartite betweenness centrality (BBC) (GMD: lines 92-119). This approach involves calculating the shortest paths between nodes from different modules using code from Get_shortest_paths.R file. The elements with the highest BBC measurement (GMD: lines 123-128) are more likely to be critical in mediating the transfer of signals between the different modules of a network and candidates for further experimentation.

Notes

The above protocol was written for a step-by-step introduction to transkingdom network analysis.

Although the above experimental setup and analyses should suffice in most cases please see the following suggestions for other alternatives to the analysis.

- Data normalization is a crucial step in analysis and network reconstruction [51], hence choose the appropriate normalization method for your biological data [52,53]. No normalization method universally out-performs other methods. However, if unsure about which normalization to use we recommend quantile normalization followed by log transformation since, in our experience, it works well for most biological data.

- Depending on the experimental design and biological question apply appropriate parametric (paired or unpaired t-test, analysis of variance (ANOVA), multivariate ANOVA (MANOVA), etc.) and non-parametric (Man-Whitney, Wilcoxon rank sum test, Multi-response Permutation Procedures (MRPP), etc.) tests to identify differential abundance.

- It is common practice to visualize the levels of differentially abundant elements. The code from Heatmaps.R file can help to visualize the significant genes and microbes from our example.
• Depending on sample size a Pearson or Spearman correlation between two elements from the same samples should suffice. However, use partial correlation [54] or other methods [55] to detect correlations and reduce indirect interactions.

• The network analysis can be extended to identify differentially correlated genes in co-expression networks obtained for the different groups and uncover regulatory mechanisms in phenotypic transitions [56,57].

• Cfinder and graph clustering (MCL) [19] are other tools to help identify modules in networks.

• We can also inspect multiple network topology properties such as the degree and centrality measures using NetworkAnalyzer in Cytoscape to identify important elements in the full transkingdom network.

Acknowledgements

The authors thank Karen N. D’Souza, Khiem Lam, and Dr. Xiaoxi Dong for their help in writing the book chapter. This work was supported by the NIH U01 AI109695 (AM) and R01 DK103761 (NS).

References

1. Schuster SC (2008) Next-generation sequencing transforms today’s biology. Nat Methods 5 (1):16-18. doi:10.1038/nmeth1156

2. Metzker ML (2010) Sequencing technologies - the next generation. Nat Rev Genet 11 (1):31-46. doi:10.1038/nrg2626

3. Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17 (6):333-351. doi:10.1038/nrg.2016.49
4. Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Genet 24(3):133-141. doi:10.1016/j.tig.2007.12.007

5. Morozova O, Marra MA (2008) Applications of next-generation sequencing technologies in functional genomics. Genomics 92 (5):255-264. doi:10.1016/j.ygeno.2008.07.001

6. Erickson AR, Cantarel BL, Lamendella R, Darzi Y, Mongodin EF, Pan C, Shah M, Halfvarson J, Tysk C, Henrissat B, Raes J, Verberkmoes NC, Fraser CM, Hettich RL, Jansson JK (2012) Integrated metagenomics/metaproteomics reveals human host-microbiota signatures of Crohn's disease. PLoS One 7(11):e49138. doi:10.1371/journal.pone.0049138

7. Moreno-Risueno MA, Busch W, Benfey PN (2010) Omics meet networks - using systems approaches to infer regulatory networks in plants. Curr Opin Plant Biol 13 (2):126-131. doi:10.1016/j.pbi.2009.11.005

8. Imhann F, Vich Vila A, Bonder MJ, Fu J, Gevers D, Visschedijk MC, Spekhorst LM, Alberts R, Franke L, van Dullemen HM, Ter Steege RW, Huttenhower C, Dijkstra G, Xavier RJ, Festen EA, Wijmenga C, Zhernakova A, Weersma RK (2016) Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease. Gut. doi:10.1136/gutjnl-2016-312135

9. Joyce AR, Palsson BO (2006) The model organism as a system: integrating 'omics' data sets. Nat Rev Mol Cell Biol 7 (3):198-210. doi:10.1038/nrm1857

10. Gehlenborg N, O'Donoghue SI, Baliga NS, Goesmann A, Hibbs MA, Kitano H, Kohlbacher O, Neuweger H, Schneider R, Tenenbaum D, Gavin AC (2010) Visualization of omics data for systems biology. Nat Methods 7 (3 Suppl):S56-68. doi:10.1038/nmeth.1436

11. Poirol CL, Rahman A, Rodrigues RR, Krishnan A, Addesa JR, Murali TM (2013) Reconciling differential gene expression data with molecular interaction networks. Bioinformatics 29 (5):622-629. doi:10.1093/bioinformatics/btt007

12. Zhang W, Li F, Nie L (2010) Integrating multiple 'omics' analysis for microbial biology: application and methodologies. Microbiology 156 (Pt 2):287-301. doi:10.1099/mic.0.034793-0
13. Greer R, Dong X, Morgun A, Shulzhenko N (2016) Investigating a holobiont: Microbiota perturbations and transkingdom networks. Gut Microbes 7 (2):126-135. doi:10.1080/19490976.2015.1128625

14. Greer RL, Dong X, Moraes AC, Zielke RA, Fernandes GR, Peremyslova E, Vasquez-Perez S, Schoenborn AA, Gomes EP, Pereira AC, Ferreira SR, Yao M, Fuss IJ, Strober W, Sikora AE, Taylor GA, Gulati AS, Morgun A, Shulzhenko N (2016) Akkermansia muciniphila mediates negative effects of IFNγ on glucose metabolism. Nat Commun 7:13329. doi:10.1038/ncomms13329

15. Morgun A, Dzutsev A, Dong X, Greer RL, Sexton DJ, Ravel J, Schuster M, Hsiao W, Matzinger P, Shulzhenko N (2015) Uncovering effects of antibiotics on the host and microbiota using transkingdom gene networks. Gut 64 (11):1732-1743. doi:10.1136/gutjnl-2014-308820

16. Mine KL, Shulzhenko N, Yambartsev A, Rochman M, Sanson GF, Lando M, Varma S, Skinner J, Volfovsky N, Deng T, Brenna SM, Carvalho CR, Ribalta JC, Bustin M, Matzinger P, Silva ID, Lyng H, Gerbase-DeLima M, Morgun A (2013) Gene network reconstruction reveals cell cycle and antiviral genes as major drivers of cervical cancer. Nat Commun 4:1806. doi:10.1038/ncomms2693

17. Schirmer M, Smeekens SP, Vlamakis H, Jaeger M, Oosting M, Franzosa EA, Jansen T, Jacobs L, Bonder MJ, Kurilshikov A, Fu J, Joosten LA, Zhernakova A, Huttenhower C, Wijmenga C, Netea MG, Xavier RJ (2016) Linking the Human Gut Microbiome to Inflammatory Cytokine Production Capacity. Cell 167 (4):1125-1136 e1128. doi:10.1016/j.cell.2016.10.020

18. Shulzhenko N, Morgun A, Hsiao W, Battle M, Yao M, Gavrilova O, Orandle M, Mayer L, Macpherson AJ, McCoy KD, Fraser-Liggett C, Matzinger P (2011) Crosstalk between B lymphocytes, microbiota and the intestinal epithelium governs immunity versus metabolism in the gut. Nat Med 17 (12):1585-1593. doi:10.1038/nm.2505

19. Dong X, Yambartsev A, Ramsey SA, Thomas LD, Shulzhenko N, Morgun A (2015) Reverse enGENEering of Regulatory Networks from Big Data: A Roadmap for Biologists. Bioinform Biol Insights 9:61-74. doi:10.4137/BBI.S12467
20. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JJ, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7 (5):335-336. doi:10.1038/nmeth.f.303

21. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7 (3):562-578. doi:10.1038/nprot.2012.016

22. Laird PW (2010) Principles and challenges of genomewide DNA methylation analysis. Nat Rev Genet 11 (3):191-203. doi:10.1038/nrg2732

23. Krumm N, Sudmant PH, Ko A, O’Roak BJ, Malig M, Coe BP, Project NES, Quinlan AR, Nickerson DA, Eichler EE (2012) Copy number variation detection and genotyping from exome sequence data. Genome Res 22 (8):1525-1532. doi:10.1101/gr.138115.112

24. Perez-Diez A, Morgun A, Shulzhenko N (2007) Microarrays for cancer diagnosis and classification. Adv Exp Med Biol 593:74-85. doi:10.1007/978-0-387-39978-2_8

25. Zhao S, Fung-Leung WP, Bittner A, Ngo K, Liu X (2014) Comparison of RNA-Seq and microarray in transcriptome profiling of activated T cells. PLoS One 9 (1):e78644. doi:10.1371/journal.pone.0078644

26. Schmieder R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics 27 (6):863-864. doi:10.1093/bioinformatics/btr026

27. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnetjournal 17 (1):10. doi:10.14806/ej.17.1.200

28. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Cougar MB, Eccles D, Li B, Lieber M, Maecmanes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, Leduc RD, Friedman N, Regev A (2013) De novo transcript sequence
reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8 (8):1494-1512. doi:10.1038/nprot.2013.084

29. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5 (7):621-628. doi:10.1038/nmeth.1226

30. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11 (10):R106. doi:10.1186/gb-2010-11-10-r106

31. McCarthy DJ, Chen Y, Smyth GK (2012) Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res 40 (10):4288-4297. doi:10.1093/nar/gks042

32. Gautier L, Cope L, Bolstad BM, Irizarry RA (2004) affy--analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20 (3):307-315. doi:10.1093/bioinformatics/btg405

33. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43 (7):e47. doi:10.1093/nar/gkv007

34. Stackebrandt E, Goebel BM (1994) Taxonomic Note: A Place for DNA-DNA Reassociation and 16S rRNA Sequence Analysis in the Present Species Definition in Bacteriology. International Journal of Systematic and Evolutionary Microbiology 44 (4):846-849. doi:10.1099/00221287-44-4-846

35. Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci U S A 82 (20):6955-6959

36. Brookman JL, Mennim G, Trinci AP, Theodorou MK, Tuckwell DS (2000) Identification and characterization of anaerobic gut fungi using molecular methodologies based on ribosomal ITS1 and 185 rRNA. Microbiology 146 (Pt 2):393-403. doi:10.1099/00221287-146-2-393

37. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Fungal Barcoding C, Fungal Barcoding Consortium Author L (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci U S A 109 (16):6241-6246. doi:10.1073/pnas.1117018109
38. Sharpton TJ (2014) An introduction to the analysis of shotgun metagenomic data. Front Plant Sci 5:209. doi:10.3389/fpls.2014.00209

39. Kuczynski J, Stombaugh J, Walters WA, Gonzalez A, Caporaso JG, Knight R (2011) Using QIIME to analyze 16S rRNA gene sequences from microbial communities. Curr Protoc Bioinformatics Chapter 10:Unit 10 17. doi:10.1002/0471250953.bi1007s36

40. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75 (23):7537-7541. doi:10.1128/AEM.01541-09

41. Paulson JN, Stine OC, Bravo HC, Pop M (2013) Differential abundance analysis for microbial marker-gene surveys. Nat Methods 10 (12):1200-1202. doi:10.1038/nmeth.2658

42. Meyer F, Paarmann D, D'Souza M, Olson R, Glass EM, Kubal M, Paczian T, Rodriguez A, Stevens R, Wilke A, Wilkening J, Edwards RA (2008) The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9:386. doi:10.1186/1471-2105-9-386

43. Huson DH, Weber N (2013) Microbial community analysis using MEGAN. Methods Enzymol 531:465-485. doi:10.1016/B978-0-12-407863-5.00021-6

44. Segata N, Waldron L, Ballarini A, Narasimhan V, Jousson O, Huttenhower C (2012) Metagenomic microbial community profiling using unique clade-specific marker genes. Nat Methods 9 (8):811-814. doi:10.1038/nmeth.2066

45. Lindgreen S, Adair KL, Gardner PP (2016) An evaluation of the accuracy and speed of metagenome analysis tools. Sci Rep 6:19233. doi:10.1038/srep19233

46. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10 (3):R25. doi:10.1186/gb-2009-10-3-r25

47. Buchfink B, Xie C, Huson DH (2015) Fast and sensitive protein alignment using DIAMOND. Nat Methods 12 (1):59-60. doi:10.1038/nmeth.3176
48. Rodrigues RR, Barry CT (2011) Gene pathway analysis of hepatocellular carcinoma genomic expression datasets. J Surg Res 170 (1):e85-92. doi:10.1016/j.jss.2011.04.004

49. Morgun A, Shulzhenko N, Perez-Diez A, Diniz RV, Sanson GF, Almeida DR, Matzinger P, Gerbase-DeLima M (2006) Molecular profiling improves diagnoses of rejection and infection in transplanted organs. Circ Res 98 (12):e74-83. doi:10.1161/01.RES.0000228714.15691.8a

50. Yambartsev A, Perlin MA, Kovchegov Y, Shulzhenko N, Mine KL, Dong X, Morgun A (2016) Unexpected links reflect the noise in networks. Biol Direct 11 (1):52. doi:10.1186/s13062-016-0155-0

51. Saccenti E (2016) Correlation Patterns in Experimental Data Are Affected by Normalization Procedures: Consequences for Data Analysis and Network Inference. J Proteome Res. doi:10.1021/acs.jproteome.6b00704

52. Hua YJ, Tu K, Tang ZY, Li YX, Xiao HS (2008) Comparison of normalization methods with microRNA microarray. Genomics 92 (2):122-128. doi:10.1016/j.ygeno.2008.04.002

53. Li P, Piao Y, Shon HS, Ryu KH (2015) Comparing the normalization methods for the differential analysis of Illumina high-throughput RNA-Seq data. BMC Bioinformatics 16:347. doi:10.1186/s12859-015-0778-7

54. de la Fuente A, Bing N, Hoeschele I, Mendes P (2004) Discovery of meaningful associations in genomic data using partial correlation coefficients. Bioinformatics 20 (18):3565-3574. doi:10.1093/bioinformatics/bth445

55. Weiss S, Van Treuren W, Lozupone C, Faust K, Friedman J, Deng Y, Xia LC, Xu ZZ, Ursell L, Alm EJ, Birmingham A, Cram JA, Fuhrman JA, Raes J, Sun F, Zhou J, Knight R (2016) Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME J 10 (7):1669-1681. doi:10.1038/ismej.2015.235

56. Thomas LD, Vyshenska D, Shulzhenko N, Yambartsev A, Morgun A (2016) Differentially correlated genes in co-expression networks control phenotype transitions. F1000Research 5:2740. doi:10.12688/f1000research.9708.1
Figure legends:

Figure 1: Overview of transkingdom network analysis. Omics data for multiple data types (e.g. microbial, gene expression, etc.) are analyzed to identify differentially abundant elements (e.g. microbes, genes, etc.). For each group (e.g. treatment or control) co-expression networks are constructed for each data type followed by the identification of dense sub-networks (modules). Calculating correlations between module elements of the different data types creates the “transkingdom” network. Network interrogation of the transkingdom network allows identification of causal members and regulatory relationships.

Figure 2: Heat map from hierarchical clustering of differentially abundant elements. Rows indicate (a) microbes and (b) genes, while columns indicate samples. The pink and blue colors indicate samples belonging to the groups A (HFHS) and B (NCD), respectively. The green and red colors indicate increase and decrease, respectively, in expression or abundance, whereas brightness indicates higher fold change.

Figure 3: Clusters obtained from the correlation networks. The PUC compatible (a) microbe and (b) gene networks for an individual group (HFHS) are mined to identify densely connected sub-networks. Edges indicate significant correlation between elements.

Figure 4: Transkingdom network. A full network, for the HFHS group, contains gene-gene, microbe-microbe, and gene-microbe edges. Edges indicate significant correlation between elements. The blue and pink colors indicate gene and microbe nodes, respectively. The labeled node has the highest BBC measurement among microbes and is therefore considered to be important and a potential causal player in the experiment.
Differential Abundance

Correlation network

Identify modules

Integrate modules

Transkingdom Networks

Causal inference analyses

Candidates
(a) microbes

Color Key

HFHS
NCD

Row Z-Score

(b) genes

Color Key

HFHS
NCD

Row Z-Score

ILMN_2284930
ILMN_1762337
ILMN_1673870
ILMN_1659452
ILMN_1724040
ILMN_2266005
ILMN_2136495
ILMN_1707169
ILMN_2162298
ILMN_1662897

-3 -2 -1 0 1 2 3

Row Z-Score

-3 -2 -1 0 1 2 3

Row Z-Score
```r
#library(TransNetDemo)
library(stringr)
library(ProNet)
library(igraph)

individualPvalueCutoff = 0.3
combinedPvalueCutoff = 0.05
combinedFDRCutoff = 0.2

geneSymbolColName = "IdSymbol"

foldchVar = "FoldChange_HFHS_NCD"  # or "FoldChange_Median_HFHS_NCD"

library(TransNetDemo)

mapf1 = system.file("extdata", "mapping_file.rand.1.tsv", package = "TransNetDemo")
mapf2 = system.file("extdata", "mapping_file.rand.2.tsv", package = "TransNetDemo")

genef1 = system.file("extdata", "gene_file_1.tsv", package = "TransNetDemo")
genef2 = system.file("extdata", "gene_file_2.tsv", package = "TransNetDemo")

genes1 = Compare_groups(mapf1, genef1, sampleIdColName, factorColName, groupA, groupB, geneSymbolColName)
genes2 = Compare_groups(mapf2, genef2, sampleIdColName, factorColName, groupA, groupB, geneSymbolColName)

# Select differentially abundant elements:
#----------------------------- (i) using a significance threshold ---------------------------
Sign_genes = Comp_genes[which(Comp_genes$FDR < 0.05),]

# this data has been saved as "Sign_genes_metaanalysis_precomputed"

Comp_genes1 = Comp_genes
Comp_genes2 = Compare_groups(mapf2, genef2, sampleIdColName, factorColName, groupA, groupB, geneSymbolColName)
numbDatasets = 2  # number of datasets

s_df = merge(Comp_genes1, Comp_genes2, by="row.names")
rownames(s_df) = rownames(Comp_genes1)
s_df = Check_consistency(s_df, foldchVar, 1, numbDatasets)
comb_in_df = Calc_combined(s_df)
Sign_genes = Apply_sigmoid(comb_in_df, individualPvalueCutoff, combinedPvalueCutoff, combinedFDRCutoff)

# if this returns TRUE, you did everything correct!
identical(rownames(Sign_genes), rownames(Sign_genes_metaanalysis_precomputed))

write.csv(Sign_genes, "Sign_genes_file.csv", quote=FALSE)
```

This code snippet from the `GeneDemo.R` file contains various functions and data manipulations for gene expression analysis. It includes library loading, file system operations, group comparison, significant gene selection, and meta-analysis. The code is designed to work with gene expression data, performing operations such as fold change calculation and filtering genes based on significance thresholds.
54 # gene pairs
55 Corr_pairs = correlation_in_group(mapf1, genef1, sampleIdColName, factorColName, groupA, geneSymbolColName, rownames(Sign_genes))
56
57 # Select significant correlations:
58 # (i) using a significance threshold
59 Sign_pairs = Corr_pairs[which(Corr_pairs$pvalue < 0.05 & Corr_pairs$FDR < 0.1),]
60
61 # OR
62 # (ii) in case you have multiple datasets, we recommend meta-analysis
63 Sign_pairs1 = Correlation_in_group(mapf2, genef2, sampleIdColName, factorColName, groupA, geneSymbolColName, rownames(Sign_genes))
64
65 s_df = merge(Corr_pairs1, Corr_pairs2, by="row.names")
66 rownames(s_df) = rownames(Corr_pairs1)
67 s_df = Check_consistency(s_df, "Coefficient", 0, numbDatasets)
68 comb_in_df = Calc_combined(s_df)
69 Sign_pairs = Apply_sign_cutoffs(comb_in_df, individualPvalueCutoff, combinedPvalueCutoff, combinedFDRCutoff)

© 2017 GitHub, Inc. Terms Privacy Security Status Help Contact GitHub API Training Shop Blog About
library(TransNetDemo)
library(stringr)
library(ProNet)
library(igraph)

groups to compare
groupA = "HFHS"
groupB = "NCD"
sampleIdColName = "SampleID"
factorColName = "Factor"
microbeSymbolColName = "IdSymbol"

fold change column based on mean or median
foldchVar = "FoldChange_HFHS_NCD" # or "FoldChange_Median_HFHS_NCD"

map files
mapf1 = system.file("extdata", "mapping_file.rand.1.tsv", package = "TransNetDemo")
mapf2 = system.file("extdata", "mapping_file.rand.2.tsv", package = "TransNetDemo")

microbe files
microbef1 = system.file("extdata", "microbe_file_1.tsv", package = "TransNetDemo")
microbef2 = system.file("extdata", "microbe_file_2.tsv", package = "TransNetDemo")

microbes
Comp_microbes1 = Compare_groups(mapf1, microbef1, sampleIdColName, factorColName, groupA, groupB, microbeSymbolColName)

Select differentially abundant elements:

(i) using a significance threshold
Sign_microbes = Comp_microbes1[which(Comp_microbes1$FDR < 0.05),]

this data has been saved as "Sign_microbes_metaanalysis_precomputed"

OR

(ii) in case you have multiple datasets, we recommend meta-analysis

Comp_microbes2 = Compare_groups(mapf2, microbef2, sampleIdColName, factorColName, groupA, groupB, microbeSymbolColName)

numbDatasets = 2 # number of datasets

s_df = merge(Comp_microbes1, Comp_microbes2, by="row.names")
rownames(s_df) = rownames(Comp_microbes1)
s_df = Check_consistency(s_df, foldchVar, 1, numbDatasets)
comb_in_df = Calc_combined(s_df)
Sign_microbes = Apply_sign_cutoffs(comb_in_df, individualPValueCutoff, combinedPValueCutoff, combinedFDRcutoff)

if this returns TRUE, you did everything correct!
identical(rownames(Sign_microbes), rownames(Sign_microbes_metaanalysis_precomputed))

write.csv(Sign_microbes,"Sign_microbes_file.csv", quote=FALSE)
microbe pairs

Corr_pairs = Correlation_in_group(napf1, microbef1, sampleIdColName, factorColName, groupA, microbeSymbolColName, rownames(Sign_microbes))

Select significant correlations:

(i) using a significance threshold

Sign_pairs = Corr_pairs[which(Corr_pairs$pvalue < 0.05 & Corr_pairs$FDR < 0.1),]

OR

(ii) in case you have multiple datasets, we recommend meta-analysis

we have already run these steps and stored the data under the variable "Sign_microbepairs_metaanalysis_precomputed"

Corr_pairs1 = Corr_pairs
Corr_pairs2 = Correlation_in_group(napf2, microbef2, sampleIdColName, factorColName, groupA, microbeSymbolColName, rownames(Sign_microbes))

s_df = merge(Corr_pairs1, Corr_pairs2, by="row.names")
rownames(s_df) = rownames(Corr_pairs1)
comb_in_df = Calc_combined(s_df)
Sign_pairs = Apply_sign_cutoffs(comb_in_df, individualPvalueCutoff, combinedPvalueCutoff, combinedFDRCutoff)

if this returns TRUE, you did everything correct!

identical(rownames(Sign_pairs), rownames(Sign_microbepairs_metaanalysis_precomputed))

#write.csv (Sign_pairs,"Sign_microbes_pairs_file.csv", quote=FALSE)

#check consistency

microbes_df = Calc_median_val(Sign_microbes, foldchVar)
identical(microbes_df, Microbe_df_precomputed)

pairs_df = Calc_median_val(Sign_pairs, "Coefficient")
outNetwork = Puc_compatible_network(pairs_df, microbes_df)

if this returns TRUE, you did everything correct!

identical(outNetwork[,c("partner1", "partner2")], Microbe_network_precomputed[,c("partner1", "partner2")])

#write.csv (outNetwork, "microbe-networkFile.csv", quote=FALSE)

cluster1 = Identify_subnetworks(outNetwork)
summary(cluster1)

if this returns TRUE, you did everything correct!

identical(get.edgelist(cluster1), get.edgelist(microbes_mcode_cluster1_precomputed)) OR #sum(get.adjacency(cluster1) != get.adjacency(microbes_mcode_cluster1_edges.txt))

#write_graph(cluster1, "microbes_mcode_cluster1_edges.txt", "ncol")

plot(cluster1, vertex.label=NA, vertex.size=3)
#library(TransNetDemo)
library(stringr)
library(ProNet)
library(igraph)
library(ggplot2)

individualPvalueCutoff = 0.3
combinedPvalueCutoff = 0.05
combinedFDRcutoff = 0.2

gene_microbeSymbolColName = "IdSymbol"

fold change column based on mean or median
foldChVar = "FoldChange_HFHS_NCD" # or "FoldChange_Median_HFHS_NCD"

gene microbe files
gene_microbef1 = system.file("extdata", "gene_microbef1.tsv", package = "TransNetDemo")
gene_microbef2 = system.file("extdata", "gene_microbef2.tsv", package = "TransNetDemo")

map files
mapf1 = system.file("mapping_file.rand.1.tsv", package = "TransNetDemo")
mapf2 = system.file("mapping_file.rand.2.tsv", package = "TransNetDemo")

gene microbe pairs
Corr_pairs = Correlation_in_group(mapf1, gene_microbef1, sampleIdColName, factorColName, groupA, gene_microbeSymbolColName, NA, pairs)

Select significant correlations:
Sign_pairs = corr_pairs[which(Corr_pairs$pvalue < 0.05 & corr_pairs$FDR < 0.1),]

OR

we have already run these steps and stored the data under the variable "Sign_gene_microbe_pairs_metaanalysis_precomputed"
Corr_pairs1 = Corr_pairs
Corr_pairs2 = Correlation_in_group(mapf2, gene_microbef2, sampleIdColName, factorColName, groupA, gene_microbeSymbolColName, NA, pairs)

dataSets = 2 # number of datasets

s_df = merge(Corr_pairs1, Corr_pairs2, by="row.names")
rownames(s_df) = rownames(Corr_pairs1)
s_df = Check_consistency(s_df, "Coefficient", 0, numbDatasets)
comb_in_df = Calc_combined(s_df)
Sign_pairs = Apply_sign_cutoffs(comb_in_df, individualPvalueCutoff, combinedPvalueCutoff, combinedFDRcutoff)

if this returns TRUE, you did everything correct!

write.csv(Sign_pairs,"Sign_gene_microbes_pairs_file.csv", quote=FALSE)
genes_df = rbind(Gene_df_precomputed, Microbe_df_precomputed)
pairs_df = Calc_median_val(Sign_pairs, "Coefficient")
outNetwork = Puc Compatible network(pairs_df, genes_df)
write.csv (outNetwork, "gene_microbe-networkFile.csv", quote=FALSE)

g = graph_from_data_frame(outNetwork, directed = F, vertices = NULL)
if this returns TRUE, you did everything correct!
identical(get.edgelist(g), get.edgelist(Gene_Microbe_network_precomputed))

create TK (bipartite) network using:
(i) genes_mcode_cluster1_precomputed
(ii) microbes_mcode_cluster1_precomputed
(iii) Gene_Microbe_network_precomputed

net1 = get.edgelist(genes_mcode_cluster1_precomputed)
head(net1)
net2 = get.edgelist(microbes_mcode_cluster1_precomputed)
head(net2)
net3 = get.edgelist(Gene_Microbe_network_precomputed)
head(net3)

TK_Network = graph_from_data_frame(rbind(net1, net2, net3), directed = F)
print(TK_Network, e=TRUE, v=TRUE)
if this returns TRUE, you did everything correct!
identical(get.edgelist(TK_Network), get.edgelist(TK_Network_precomputed))

nodes = data.frame()
for (vertex in V(TK_Network)) {
 Name = V(TK_Network)$name[vertex]
 Id = vertex
 Group = ""
 if(Name %in% as.vector(net1)){
 Group = "gene"
 } else {
 Group = "microbe"
 }
 nodes = rbind(nodes, cbind(Name, Id, Group))
}
colnames(nodes)
write.table(nodes, "Trans_Kingdom_NetworkFile_nodes.txt", quote=F, row.names = F, sep=' ', col.names = T)

calc bipartite betweenness centrality
to find important genes
FromNodes = as.numeric(nodes[nodes[,3]=="gene",2])
ToNodes = as.numeric(nodes[nodes[,3]=="microbe",2])

allPairs = expand.grid(FromNodes, ToNodes)
myNetwork = TK_Network
sumAllFractionsForAllNodes = Calc_bipartite_betweenness_centrality(allPairs, FromNodes, myNetwork)
head(sumAllFractionsForAllNodes)

calculate node(s) with max. betweenness centrality
forPlot = colSums(sumAllFractionsForAllNodes)
topThree = sort(forPlot, decreasing = T)[1:3]
TopNode = as.integer(names(topThree[1]))

TopNodeName = nodes[TopNode, "Name"]

TK_Network = set_vertex_attr(TK_Network, "type", index = nodes$id, as.factor(nodes$Group))

no labels
plot(TK_Network, vertex.label = NA, layout = layout_as_tree, vertex.color = c("pink", "skyblue")[(V(TK_Network)$type==1)], vertex.size = 4)

label only the important node
plot(TK_Network, vertex.label = ifelse(V(TK_Network)$name == TopNodeName, V(TK_Network)$name, NA),
 layout = layout_as_tree, vertex.color = c("pink", "skyblue")[(1+(V(TK_Network)$type==1))], vertex.size = 4, vertex.label.dist = 0.15, vertex.label.cex = 0.7)

label only the microbe nodes
plot(TK_Network, vertex.label = ifelse(nodes[which(nodes$Name == V(TK_Network)$name), "Group"] == "microbe", V(TK_Network)$name, NA),
 layout = layout_as_tree, vertex.color = c("pink", "skyblue")[(1+(V(TK_Network)$type==1))], vertex.size = 4, vertex.label.dist = 0.15, vertex.label.cex = 0.7)

legend("topright",
 legend = unique(nodes$Group),
 col = c("skyblue", "pink"),
 lty = 1,
 lwd = 5,
 cex = .7)

plot in two rows
ltypes = c(TRUE, FALSE)[1+(V(TK_Network)$type==1)]

plot(TK_Network, vertex.label = NA, vertex.size = 3, layout = layout_as_bipartite(TK_Network, ltypes, hgap = 500), vertex.color = c("pink", "skyblue")[(1+(V(TK_Network)$type==1))], vertex.size = 4, vertex.label.dist = 0.15, vertex.label.cex = 0.7)
66 lines (49 sloc) 1.92 KB

```r
#library(TransNetDemo)
library(gplots)

# extract inputs - study 1

# groups to compare
groupA = "HFHS"
groupB = "NCD"
sampleIdColName = "SampleID"
factorColName = "Factor"
geneSymbolColName = "IdSymbol"

# map files
map1 = system.file("extdata", "mapping_file.rand.1.tsv", package = "TransNetDemo")

# read the mapping file
map1 = read.delim(map1, header=T)
rownames(map1) = map1[,sampleIdColName]

# select samples from groups
hfhs_samples1 = as.vector(map1[which(map1[,factorColName] == groupA),sampleIdColName])
ncd_samples1 = as.vector(map1[which(map1[,factorColName] == groupB),sampleIdColName])

colors as per the group
samplecolors <- c(rep("magenta",25) , rep("blue",25))

# gene files
gene1 = system.file("extdata", "gene_file_1.tsv", package = "TransNetDemo")

# read the data file
genef1 = read.delim(gene1, header=T, check.names = F, row.names=1)

# make the heat map
dataset1 = genef1[rownames(Sign_genes_precomputed_1),]
dim(dataset1)
heatmap.2(as.matrix(dataset1), col=redgreen(75), ColSideColors=samplecolors, scale="row", key=TRUE, symkey=FALSE, density.info="none", trace="none", upper=FALSE, lower=FALSE)

legend("topright",
  legend = unique(map1$Factor),
  col = c("magenta", "blue"),
  lty= 1,
  lwd = 5,
  cex=.7
)

# make the heat map
microbef1 = system.file("extdata", "microbe_file_1.tsv", package = "TransNetDemo")

# read the data file
microbef1 = read.delim(microbef1, header=T, check.names = F, row.names=1)

# make the heat map
```

r


```r
dataset1 = microbes1[rownames(Sign_microbes_precomputed_1), c(hfhs_samples1, ncd_samples1)]
dim(dataset1)
heatmap.2(as.matrix(dataset1), col=redgreen(75), ColSideColors=samplecolors, scale="row", key=TRUE, symkey=FALSE, density.info="none", trace="none")

legend("topright",
    legend = unique(map1$Factor),
    col = c("magenta", "blue"),
    lty=1, lwd=5, cex=.7
)
```
Apply_sign_cutoffs <- function(df, individualPvalueCutoff = 0.3, combinedPvalueCutoff = 0.05, combinedFDRCutoff = 0.1){
 # find significant in individual pvalue: all of the pvalues for all of the datasets for each element must be smaller than threshold
 # find pvalue data
 pvalueData = df[,grep("pvalue",colnames(df)), drop=FALSE]
 print(head(pvalueData))
 pvalueData = as.matrix(pvalueData)
 pvalueData = apply(pvalueData,2,function(x){as.numeric(as.vector(x))})

 # calculate the largest pvalue among all datasets for each gene, this largest pvalue must be smaller than threshold
 passIndividualPvalue = apply(pvalueData[,max(individualPvalueCutoff)]
 Sign_elements = df[passIndividualPvalue,]
 Sign_elements <- Sign_elements[Sign_elements$"combinedPvalue" < combinedPvalueCutoff & Sign_elements$"combinedFDR" < combinedFDRCutoff,]
 return(Sign_elements)
Calc_bipartite_betweenness_centrality

This function calculates bipartite_betweenness_centrality for each given element pair.

```r
calculated_betweenness_centrality = function(allPairs, FromNodes, myNetwork){
  sumAllFractionsForAllNodes = Get_template_matrix(FromNodes, allPairs)
  sumAllFractionsForAllNodes = as.data.frame(sumAllFractionsForAllNodes)
  sumAllFractionsForAllNodes = Get_shortest_paths(myNetwork)
  print(sumAllFractionsForAllNodes)
  z = lapply(counts, function(x){
    if(nrow(x)>0){
      print(x)
      columnsForUpdate = as.character(intersect(colnames(x),FromNodes))
      print(columnsForUpdate)
      rowsForUpdate = rownames(x)
      print(rowsForUpdate)
      print(x[1,columnsForUpdate])
      sumAllFractionsForAllNodes[rowsForUpdate,columnsForUpdate] <- x[1,columnsForUpdate]
    }
  })
  return(sumAllFractionsForAllNodes)
}
```

Calc_combined = function(s_df){
 pvalueData = s_df[,grep("pvalue",colnames(s_df)), drop=FALSE]
 head(pvalueData)
 total_num_input_files = ncol(pvalueData)
 interestedPvalueData = as.matrix(pvalueData)
 interestedPvalueData = apply(interestedPvalueData, 2, function(x)as.numeric(as.vector(x)))
 combinedPvalue = apply(interestedPvalueData, 1
 ,function(pvalues){
 pvalues = pvalues[!is.na(pvalues)]
 statistics = -2*log(prod(pvalues))
 degreeOfFreedom = 2*length(pvalues)
 combined = 1-pchisq(statistics,degreeOfFreedom)
 })
 }
 # calculate FDR for combined pvalue
 combinedFDR = p.adjust(combinedPvalue, method="fdr")
 comb_in_df = cbind(s_df, combinedPvalue, combinedFDR)
 return(comb_in_df)
}
```r
# Calculate correlation between vectors
# This function calculates correlation between vectors
# @param pair, df, samples
# @return A matrix with statistics for each element pair
Calc_cor = function(pair, df, samples){
  idxs = as.vector(samples)
  c1 = as.numeric(df[pair[1], idxs])
  c2 = as.numeric(df[pair[2], idxs])
  p = cor.test(c1, c2)
  outline = as.matrix(c(p$estimate, p$p.value))
  outline
}
```
Calculate median coefficient or fold change

This function calculates median coefficient or fold change for each element.

```r
Calc_median_val = function(df, pattern){
  Colnames = colnames(df)[grep(pattern,colnames(df))]
  interestedData = df[,Colnames,drop=F]
  interestedData = as.matrix(interestedData)
  combined = apply(interestedData,1,function(x){as.numeric(as.vector(x))})
  oldColnames = colnames(df)
  df = chind(df,combined)
  colnames(df) = c(oldColnames, paste("combined", pattern, sep=''))
  print(head(df))
  return(df)
}
```

© 2017 GitHub, Inc. | Terms | Privacy | Security | Status | Help

Contact GitHub | API | Training | Shop | Blog | About
#' Check consistent direction
#' This function selects elements showing consistent direction across datasets
#' @param df, patternToSearch, threshold
#' @return A matrix with elements showing consistent direction across datasets
#' @export
Check_consistency = function(s_df, pattern, Threshold, numbDatasets=2)
 # select the data of interest
 patternData = s_df[,grep(pattern,colnames(s_df)), drop=FALSE]
 head(patternData)
 rows_passing_consistency = c()
 res_pos = apply(patternData, 1, function(x) sum(x > Threshold))
 rows_passing_consistency = c(rows_passing_consistency, names(res_pos[res_pos==numbDatasets]))
 res_neg = apply(patternData, 1, function(x) sum(x < Threshold))
 rows_passing_consistency = c(rows_passing_consistency, names(res_neg[res_neg==numbDatasets]))
 s_df = s_df[rows_passing_consistency, -1]
 return(s_df)
Compare groups = function(mapFile, geneFile, sampleIdColName, factorColName, groupA, groupB, geneSymbolColName)
#
This function compares the values in two groups for each element
#
@param mapFile, geneFile, sampleIdColName, factorColName, groupA, groupB, geneSymbolColName
@return A data frame with statistics for each element
@export

extract inputs
map = read.delim(mapFile, header=T)
rownames(map) = map[,sampleIdColName]
head(map)

select samples from groups
hfhs_samples = map[which(map[,factorColName] == groupA),]
head(hfhs_samples)
ncd_samples = map[which(map[,factorColName] == groupB),]
head(ncd_samples)

read the data file
genes = read.delim(geneFile, header=T, check.names = F)
rownames(genes) = genes[,geneSymbolColName]
head(genes)

calc diff abundance
out = sapply(rownames(genes), Diff_abundance, genes, rownames(hfhs_samples), rownames(ncd_samples))

format output
Comp_genes = t(out)
colnames(Comp_genes) = c(paste("Mean", groupA, sep="_"), paste("Mean", groupB, sep="_"), paste("FoldChange", groupA, groupB, sep="_"),
paste("Median", groupA, sep="_"), paste("Median", groupB, sep="_"), paste("FoldChange", "Median", groupA, groupB, sep=":");

calculate FDR
FDR = p.adjust(Comp_genes[,"pvalue"],method="fdr")
oldColnames = colnames(Comp_genes)
Comp_genes = as.data.frame(bind(Comp_genes, FDR))

return(Comp_genes)
Correlation_in_group = function(mapFile, geneFile, sampleIdColName, factorColName, groupA, geneSymbolColName, selected_genes, usepairs=NA) {
 # extract inputs
 # read the mapping file
 map = read.delim(mapFile, header=T)
 rownames(map) = map[,sampleIdColName]
 head(map)

 # select samples from group
 hfhs_samples = map[which(map[,factorColName] == groupA),]
 head(hfhs_samples)

 # read the data file
 genes = read.delim(geneFile, header=T, check.names = F)
 rownames(genes) = genes[,geneSymbolColName]
 head(genes)

 # create gene pairs if not already provided
 pairs = ''
 if(is.na(usepairs)) {
 pairs = t(combn(selected_genes,2))[,2:1]
 }else{
 pairs = usepairs
 }
 head(pairs)

 # calculate correlation for each pair
 Corr_pairs = apply(pairs, 1, Calc_cor, genes, rownames(hfhs_samples))

 # format output
 colnames(Corr_pairs) = paste(as.vector(pairs[,1]),as.vector(pairs[,2]),sep="=>")
 # the pairs become row names; and the corr coeff and pvalue are the column names
 Corr_pairs = t(Corr_pairs)
 # append method used to column labels
 colnames(Corr_pairs) = c(paste(groupA, "Coefficient",sep="_"), "pvalue")

 # calculate FDR
 FDR = p.adjust(Corr_pairs[,colnames(Corr_pairs)[grep("pvalue",colnames(Corr_pairs))]],method="fdr")
 Corr_pairs = as.data.frame(cbind(Corr_pairs, FDR))

 return(Corr_pairs)
}
```r
# ' Compare abundance between groups for an element
#'
#  @param element, df, samplesA, samplesB
#  @return A matrix with statistics for each element
#  @export

Diff_abundance = function(element, df, samplesA, samplesB)
{
  samplesA = as.vector(samplesA)
  samplesB = as.vector(samplesB)

  Vec1 = as.numeric(df[element, samplesA])
  Vec2 = as.numeric(df[element, samplesB])

  meanVec1 = mean(Vec1)
  meanVec2 = mean(Vec2)
  fold_change_mean = meanVec1/meanVec2

  medianVec1 = median(Vec1)
  medianVec2 = median(Vec2)
  fold_change_median = medianVec1/medianVec2

  p = t.test(Vec1, Vec2)

  Result = as.matrix(c(meanVec1, meanVec2, fold_change_mean, medianVec1, medianVec2, fold_change_median, p$p.value))

  Result
}
```
```r
# Get counts for all shortest paths between given nodes in a bipartite networks
#This function calculates shortest paths between given nodes in a bipartite networks
# @param pair, myNetwork, sumAllFractionsForAllNodes
# @return Updates the row in pair,sumAllFractionsForAllNodes

Get_shortest_paths = function(pair,myNetwork){
  # for each row in "sumAllFractionsForAllNodes", calculate the values for the columns and update
  print(pair)
  allShortestPaths = get.all.shortest.paths(myNetwork, from= pair[1], to= pair[2], mode = "all", weights=NULL) # calculate the shortest paths
  print(allShortestPaths)
  count = data.frame()
  if (length(allShortestPaths$res)==0){ # if there is no shortest path, do not update "sumAllFractionsForAllNodes"
    fractions = cbind(FromNodes, rep(0, times=length(FromNodes)))
    print("no paths")
  } else{
    allShortestPaths = do.call(rbind,allShortestPaths$res) # a matrix with each row containing a shortest path between the two nodes
    print(allShortestPaths)
    nodesInPath = as.vector(allShortestPaths[,c(-1,-ncol(allShortestPaths))]) # get rid of the two nodes that are under study, the nodes in
    print(nodesInPath)
    count = table(as.factor(nodesInPath))/nrow(allShortestPaths) # for each node in the shortest paths, calculate how many times(normalized
    print(count)
    v = names(count)
    count = data.frame(rbind((count)))
    colnames(count) = v
    rownames(count) = paste(pair, collapse=':')
    print(count)
  }
  count
}
```

transNet Demo / Get_template_matrix.R

```r
# Get_template_matrix

#' This function creates a matrix, with each entry recording for each node (in a column),
#' if it appears (not 1 or 0, but a normalized number, since there can be more
#' than one shortest path between a pair of nodes) in the shortest path between a
#' pair of nodes (in a row), the rows contain all pairs of nodes between two groups.
#' Thus the sum of each column is the betweenness centrality for the node (in that column)

#' @param FromNodes, allPairs
#' @return A matrix with rownames (source-target) and column names as nodes from source nodes set.
#' @export

Get_template_matrix = function(FromNodes, allPairs){
  sumAllFractionsForAllNodes = matrix(0, ncol=length(FromNodes)
  rownames(sumAllFractionsForAllNodes) = ,rownames(allPairs)
  ,dimnames = list(
    paste(as.vector(t(allPairs[,1])),as.vector(t(allPairs[,2])),sep="_"),
    , as.character(FromNodes)
  )
)
  return(sumAllFractionsForAllNodes)
}
```

© 2017 GitHub, Inc. Terms Privacy Security Status Help
Identify top subnetwork

This function returns the induced subgraph of the nodes in the top cluster using mcode

```r
Identify_subnetworks = function(outNetwork){

  # identify subnetworks
  dfNetwork = outNetwork[,c("partner1", "partner2", "combinedCoefficient")]
  print(head(dfNetwork))

  #?graph_from_data_frame
  g = graph_from_data_frame(dfNetwork, directed = F, vertices = NULL)
  print(g, e=TRUE, v=TRUE)
  # see the edges and vertices
  E(g) ; V(g) ; edge_attr(g) ; vertex_attr(g)

  # plots the networks
  #cluster(g,method="MCODE",layout="fruchterman.reingold")
  #cluster(g,method="FN",layout="fruchterman.reingold")

  #https://cran.r-project.org/web/packages/ProNet/vignettes/Tutorial.pdf
  # identify clusters
  result <- mcode(g, wwp=.5, haircut=TRUE, fluff=FALSE, fd=0.8, loops=FALSE)
  summary(result$COMPLEX)

  # plot the top cluster
  cluster1<- induced.subgraph(g,result$COMPLEX[[1]])
  #visualization(cluster1,node.size=4,node.label=V(cluster1)$name,node.label.color="blue")

  return(cluster1)
}
```
```r
# Calculate network that satisfies the PUC criteria
# This function keeps edges that satisfy expected correlation and fold change relationships
# param pairs_df, genes_df
# return A data frame (network) that is Puc compatible
calculatePUC = function(pairs_df, genes_df){

# calculate PUC
outForPUC = cbind(pairs, genes_df)
outForPUC = outForPUC[, grep(pairs, outForPUC)]
outForPUC = outForPUC[, grep(codes, outForPUC)]

# attach the foldChange information for each partner
FoldChangeCol = grep(paste("FoldChange", rownames(foldChange)), colnames(genes_df), value=TRUE, fixed=TRUE)
FoldMeta1_InPair = genes_df[as.vector(outForPUC[,"partner1"], FoldChangeCol, drop=F)]
fold1 = as.data.frame(FoldMeta1_InPair)
fold1 = fold1[as.numeric(as.character(fold1))]
outForPUC = outForPUC[, fold1]

# calculate correlation Direction For combined correlation coefficient of interest
# this point we only have the consistent pairs left, so the value of combined corr coeff is ok to use
interestedCoefficientColnames = grep("Coefficient", colnames(outForPUC), value=TRUE, fixed=TRUE)
print(interestedCoefficientColnames)
interestedCorrelationData = outForPUC[, interestedCoefficientColnames, drop=FALSE]
interestedCorrelationData = apply(interestedCorrelationData[, interestedCorrelationData], function(x)(as.numeric(as.vector(x))))
correlationDirection = interestedCorrelationData/abs(interestedCorrelationData)
```

calculate fold change direction for each partner

```r
FoldChangeColnames = colnames(outForPUC)[grep("FoldChange",colnames(outForPUC))] # since this is using the combined fold change calculate

FoldChangeData = outForPUC[,FoldChangeColnames]
FoldChangeDirection = (FoldChangeData-1)/abs(FoldChangeData-1)

names(FoldChangeDirection) = c()
colnames(FoldChangeDirection) = paste(colnames(FoldChangeData),"Direction",sep="_")

# calculate if fold change direction are the same for the two partners

IfFoldChangeDirectionMatch = apply(FoldChangeDirection,1,prod)
names(IfFoldChangeDirectionMatch) = c()
colnames(correlationDirection) = c()

# use "correlationDirection" and "IfFoldChangeDirectionMatch" to calc PUC,
# i.e. if these two are the same PUC=1 (good)

PUC = IfFoldChangeDirectionMatch * correlationDirection
outForPUC = cbind(outForPUC,correlationDirection,FoldChangeDirection,IfFoldChangeDirectionMatch,PUC)
head(outForPUC)

#write.csv(outForPUC, "PUC-output.csv",row.names=FALSE)

# find PUC expected

out = outForPUC[outForPUC[,"PUC"]==1 ,]
outNetwork = out[!is.na(out$"PUC"),] # remove the rows with 'NA' in PUC columns
return(outNetwork)
```