Implications of Long Non-Coding RNAs in Age-Altered Proteostasis

Cristina-Sorina Catana¹, Catalina-Angela Crișan², Dana Opre³, Ioana Berindan-Neagoe⁴,⁵,⁶*

¹Department of Medical Biochemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania. ²Department of Neurosciences, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania. ³Department of Psychology, Babeș-Bolyai University, Cluj-Napoca, Romania. ⁴MEDFUTURE - Research Center for Advanced Medicine, Cluj-Napoca, Romania. ⁵Research Center for Functional Genomics, Biomedicine and Translational Medicine, Institute of Doctoral Studies, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania. ⁶Department of Experimental Pathology, “Prof. Dr. Ion Chiricuta” Oncology Institute, Cluj-Napoca, Romania.

[Received June 20, 2019; Revised August 8, 2019; Accepted August 14, 2019]

ABSTRACT: This review aims to summarize the current knowledge on how IncRNAs are influencing aging and cancer metabolism. Recent research has shown that senescent cells re-enter cell-cycle depending on intrinsic or extrinsic factors, thus restoring tissue homeostasis in response to age-related diseases (ARDs). Furthermore, maintaining proteostasis or cellular protein homeostasis requires a correct quality control (QC) of protein synthesis, folding, conformational stability, and degradation. Long non-coding RNAs (IncRNAs), transcripts longer than 200 nucleotides, regulate gene expression through RNA-binding protein (RBP) interaction. Their association is linked to aging, an event of proteostasis collapse. The current review examines approaches that lead to recognition of senescence-associated IncRNAs, current methodologies, potential challenges that arise from studying these molecules, and their crucial implications in clinical practice.

Key words: Inc RNA, cancer metabolism, age-related diseases, proteostasis, HOTAIR

Age-associated diseases such as cancer, cardiovascular diseases, obesity, neurodegenerative disorders, sarcopenia and several other conditions are dictated by distinct adjustments of gene expression programs that underlie aging. Recent research indicates that through examining the modifying factors of intrinsic appearance of senescent cells we could genetically program and determine their re-entry into the cellular cycle. Thereupon, in the future, senescent cells might be programmed to get involved in the treatment of cancer and aging-related diseases [1].

Aging phenotype is represented by expanded cellular senescence, reduction of stem cell population, altered proteostasis (which activates the inflammasome - a multiprotein oligomer responsible for inflammation), change in intercellular communication and loss of telomere function [2, 3].

Maintaining cellular protein homeostasis, or proteostasis, requires correct quality control (QC) of protein-related processes: synthesis, folding, conformational stability, degradation. A complicated and flexible proteostasis network (PN) parallels these processes with molecular chaperones and their QC
regulators thus avoiding age-associated proteinopathies included in ARDs [4].

These mechanisms are governed by proteins that bind RNA, DNA, as well as a diversity of long non-coding RNAs (lncRNAs), long nuclear RNAs greater than 200 nucleotides, and microRNAs (miRNAs), small non-coding RNA molecules with a length of 20-25 nucleotides that are involved in controlling target gene translation and post-transcriptional modulation of gene expression. The regulatory function of lncRNAs, which are considered powerful epigenetic regulators, has been partially revealed in embryonic stem cells (ESCs) and in induced pluripotent stem cells (iPSCs) [5, 6]. The stability and longevity of RNA molecules provide a great opportunity for non-invasive diagnosis and tumor assessment [7]. We present multiple strategies for modulating proteostasis capacity, which may aid the urgently-needed therapies for age-dependent pathologies [5, 7-9].

The accurate relationship between lncRNAs and proteostasis can be explained, both phenotypically and molecularly, by the lncRNAs – binding proteins (RBP) interactions. These interactions are essential in performing all cellular functions and in preserving homeostasis.

RBPs, RNA binding proteins, have crucial roles in a myriad of cellular processes. The first step in analyzing their possible role includes identifying their binding partner. Also, lncRNAs’ homeostasis (lncRNAstasis) paralleled the protein disruption in cellular senescence thus maintaining the correct cellular quality control (QC). Proteostasis mechanisms support the stabilization of accurately folded proteins, the heat shock protein family, and the mechanisms for lysosome and proteasome mediated protein breakdown [10, 11].

Nuclear lncRNAs modulate transcription by recruiting transcription factors to specific regions of nuclear DNA and also for ribonucleoprotein complexes with RBP. They participate in chromatin organization, gene expression, as well as structural scaffolds of nuclear domains. These complexes control gene expression at distinct key points, illustrating the critical role of lncRNA interaction with certain proteins in order to maintain cellular hemostasis [11].

The lncRNA pRNA interacts with DNA at the specific interaction point DNMT3B to control rRNA transcription [12]. In addition, PTENP1-asRNA alpha blocks transcription of PTEN coding gene by to DNMT3A (DNA methylase) at PTEN coding gene promoter [13]. PTENP1asRNA beta positively provides post transcriptional regulation of PTENP1 mRNA [11].

The nuclear enriched transcript 1 (NEAT) recruits paraspeckles RNA-binding proteins such as PSPC1, NONO/P54NR and PSF/SFPQ, directly or in a complex manner, and also suppresses gene expression by interaction with PRC1, PRC2, JARID1B, ESET and SUV39H1, chromatin binding protein/complexes [14, 15].

The lncRNA TERC, a telomerase RNA component, maintains telomere length, while the lncRNA THRIL-lnRNPL interactions modulate (TNF) α expression [16].

Cytoplasmic lncRNAs have different functions. They can act as translation regulators via base pairing with their target mRNAs or they can influence protein expression levels by increasing and decreasing mRNA stability [17, 18]. Another function of cytoplasmic lncRNAs is modulating ubiquitination process or controlling the passage of proteins or other RNAs between the cytoplasm and the nucleus [11]. Some lncRNAs indirectly regulate protein levels by influencing the available pool of miRNAs and, thereby, affecting mRNA turnover and translation. On the other hand, some lncRNAs interact directly with mRNAs, in order to enhance or suppress their translations, or with proteins, modulating their half-life time. For instance, the lncRNA GAS5 limits the “flow” of glucocorticoid receptor (GR) from the cytosol to the nucleus inhibiting GR mediated gene expression. In addition, the maternally expressed gene 3 (MEG3) which induces the p53 translation decreases the MDM2 expression while HuR can displace the lncRNA 7SL protein and also increases the p53 expression [19, 20]. Conversely, the highly expressed lncRNA 7SL could abolish p53 translation [11].

Classification lncRNAs according to their mechanism of action

LncRNAs are heterogeneous transcripts that are not translated into proteins or encoding for small proteins [9, 21]. They can be intergenic transcripts or large intergenic non-coding RNAs (lincRNAs), enhancer RNAs (eRNAs), or sense or antisense RNAs from the same or the opposite strand of mRNA that overlaps other genes. LncRNAs produced by RNA splicing have been revealed, such as circular RNAs (circRNAs), to derive from vestigial genes without coding potential, named pseudogene-encoded lncRNAs, from mRNA promoter regions, described as promoter-associated lncRNAs, as well as from introns, long intronic ncRNAs [22-24]. Competing endogenous RNAs (abbreviated ceRNAs), which manage RNA transcripts by competing for shared miRNAs, and circRNAs are stable and accumulate in great numbers [2, 25].

Remarkably, these lncRNAs have crucial roles in gene regulation, affecting different aspects of cellular homeostasis such as proliferation, migration or genomic stability by assembling transcriptional modulators, by base-pairing with mRNAs, by enrolling chromatin
modification factors, as well as by interfering with RNA-binding proteins and leading to age-associated phenotypes relevant to multiple disease pathophysologies associated with the aging process [2, 24, 26, 27].

Experimental evaluation of lncRNAs has clarified the importance of these biomolecules, that are not only a binding proteins and leading to age

"transcriptional noise", but they perform a function elsewhere in the cell after they leave the transcription site. The non-coding transcriptome could reveal unexpected molecular activities, offering a great potential to distinguish between normal and disease states [24].

**Table 1.** lncRNAs in proteostasis.

| lncRNA         | ARDs                                      | Function in proteostasis                  | Target gene                                                                 | The cellular and molecular effects of the lncRNA                                                                 | Ref. |
|----------------|-------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------|
| LncRNA-MALAT1  | -highly expressed in cancer; Diabetic     | Protein turnover                          | -HMGB1; β-catenin; - B-MYB; - PDGF-BB; - ATG7 (miR142-3p)                      | -Inhibition of Tumor Cell Apoptosis; - kidney fibrosis; restored podocytes function; - Phenotypic switching of VSMCs | [34], [77], [81], [82] |
| LncRNA-p21     | -skin cancer; -colorectal cancer; -prostate cancer | Protein turnover                          | p53; HIF-1α β-catenin                                                         | cell cycle arrest; apoptosis in keratinocytes; represses translation of cancer proteins                         | [7], [37], [54], [83], [84] |
| LncRNA CND1/cyclin D1 | - many cancer types; - BCL2; -breast cancer | -Protein turnover; - TLS; -cyclin D1      |                                                                              | - cell cycle regulator in cancer                                                                                 | [38], [39] |
| LncRNA-HOTAIR  | -breast, gastric, and colorectal cancers; nasopharyngeal cancer | -Protein turnover; - Scaffold function    | -PRC2; - Snurportin-1; Ataxin-1                                              | • cell proliferation, invasion, aggression, and metastasis; inhibition of apoptosis                              | [31], [29], [42], [45] |
| Lnc AS Uchl1   | -neurodegenerative diseases; -cancer; -auditory cortex senescence | Protein turnover                          | -MDM2; -UPS-related proteins: p53, p14; ARF, p27KIPL, ubiquitinated proteins, monoubiquitin, BE1, PSMA7 | • prevents cellular senescence                                                                                  | [49], [50], [51] |
| LncRNA GAS5    | -gastric carcinoma; -prostate cancer     | -Protein turnover; -Membrane trafficking | YBX1; E2F1; P27Kip1 FAS; BIK; p53                                                | -Inhibits cellular proliferation - a growth arrest lncRNA                                                   | [52], [85] |
| Lnc RNA PANDA  | -breast, osteosarcoma, colorectal, liver, bladder, renal cell carcinoma | Membrane trafficking; -Membrane trafficking; -Scaffold function | PRC2                                                                 | inhibits DNA-damage-induced apoptosis; Control of proliferation, metabolism, apoptosis and senescence; histone modifications | [36], [87] |
| Lnc RNA ANRASSF1 | - is expressed in response to oxidative stress | Membrane trafficking | TDP-43, modulates Cdk6 levels                                                   | controlling cell-cycle progression                                                                              | [88] |
| LncRNA Gadd7   | -widely upregulated in cancer tissues; -ovarian cancer; - tongue squamous cell carcinoma | -Autophagy; -Membrane trafficking Autophagy | p53; HuR miR-675                                                              | cellular senescence                                                                                                | [70], [36] |
| LncRNA 7SL     | -tumor chemoresistance; -hepatocellular carcinoma | Autophagy                                 | -COX-2; USP22/COX-2 axis; - Sirt1 MDM2; p53                                    | -A key synthesis-related factor of miRNA related to tumor cell activities; - cellular proliferative and invasive capacities | [89] |
| Lnc RNA DICER1 | -colorectal cancer; - Huntington’s disease | Autophagy                                 |                                                                                 | Increase triglyceride and cholesterol levels in hepatoma cell                                                | [64] |
| LncRNA HULC    | -tumor chemoresistance; -hepatocellular carcinoma | Autophagy                                 |                                                                                 | -blocks apoptosis                                                                                                | [20] |
LncRNAs in proteostasis

Aging is associated with the progressive deterioration of proteostasis, a portmanteau of two words, protein and homeostasis. It encompasses competing and integrated processes that control protein biogenesis, folding, interactions, trafficking and degradation within and outside the cell. Proteostasis dysfunction, including autophagy and the ubiquitin-proteasome pathways, leads to age-related diseases (ARDs) such as Alzheimer’s disease, cancer, and other degenerative disorders, being an accepted aging factor [2, 28, 29]. In line with this, we summarize proteostasis-related LncRNAs associated with protein turnover (synthesis and degradation), trafficking and autophagy (Table 1).

LncRNAs associated with protein turnover

Protein turnover represents the balance between protein synthesis and protein degradation. This process decreases with age in all senescent organisms. Protein turnover occurs in the brain and may contribute to protein aggregation and neurodegeneration, disturbing physiological neurogenesis and synaptic plasticity [2, 30].

Protein degradation is driven by the ubiquitin proteasome pathway. Protein synthesis depends on mRNA level. The translation rate is modulated by LncRNAs indirectly by affecting the pool of miRNAs, suppressing the mRNA turnover and translation (lincRNA-ROR and linc-MD1), or through direct interaction with proteins and mRNAs, modifying their translation [2].

Perturbations of protein-RNA interactions are involved in metabolic and autoimmune diseases, cancer, neurological and muscular disorders. Many RNA-binding proteins (RBP) such as heterochromatin protein 1, male-specific lethal-1 (MSL), the catalytic subunit of MSL histone acetyltransferase (HAT) enzyme complex (MOF), deafness dystonia peptide 1 (DDP1), Trithorax group implicated in distinct tumor stages bind LncRNAs [31].

LncRNA–MALAT. LncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), a cell cycle regulator whose depletion triggers G1 or G1/S arrest by suppressing cell proliferation and growth activating senescence phenotype [32] and a high expression molecular predictor of poor survival rates in cancer, interacts with splicing regulatory (SR) protein family members. This LncRNA triggers two cell-cycle regulators, cyclins A2 and B1, and controls the oncogenic transcription of myeloblastosis viral oncogene B (B-MYB) [33, 34].

LincRNA-p21 regulates p21 by recruiting hnRNPK and reducing cell proliferation. It also affects somatic cell reprogramming via cell senescence or apoptosis pathway [32]. This lncRNA, interacting with cadherin-associated protein, beta (CTNNB) mRNAs, encoding beta-catenin via the Wnt/beta-catenin signaling pathway and decreasing oxident stress, could have antisenescent effects in...
doxorubicin (Dox)treated HL1 murine cardiomyocytes, where it was shown to have a high expression [35]. LncRNA-p21 is also induced by hypoxia-inducible factor 1α (HIF-1α), being able to bind this factor, and by UVB via the p53 pathway, having an important role in UVB-induced apoptosis. Urinary levels of LncRNA-p21 LncRNA may help discriminating between prostate cancer and benign prostate hyperplasia [7, 36, 37].

LncRNA CND1/cyclin D1, a cell cycle regulator in many cancers, is transcribed from the cyclin D1 gene promoter region. It interacts with the translocated liposarcoma (TLS) protein, a sensor for the detection of DNA damage [38]. High levels of cyclin D1 expression are associated with better outcomes of adjuvant trastuzumab therapy in HER2-positive early breast cancer [39].

LncRNA ANRIL. This lncRNA, transcribed from the inhibitor of kinase 4 (INK4) locus, is the antisense non-coding RNA in INK4 (ANRIL). It interacts with both CBX7, a component of the polycomb group protein regulator of cytokinesis (PRC1), where it activates epigenetic silencing of the CDKN2A/CDKN2B loci, and SUZ12, a component of PRC2. Its down-regulation translation of the cell cycle inhibitors such as P14, P15 and P16. Additionally, the lncRNA MIR31HG interacts with both PRC1 and PRC2 complexes to suppress the P16INK4A expression [Ghanam]. LncRNA ANRIL is upregulated in prostate cancer, interacting with the chromobox 7 (CBX7) protein, part of the polycomb group protein regulator of cytokinesis (PRC1) protein complex [31, 40]. This lncRNA activates the proliferation and migration of prostate cancer cells through the let-7a/TGF-β1/Smad signaling axis [41].

LncRNA HOTAIR, up-regulated during the aging process, increases ubiquitinization degradation of Snurportin-1 (SNUPN) and Ataxin-1 (ATXN1) by functioning as a scaffold for DAZ interacting zinc finger protein (DZIP3) and Mex-3 RNA binding family member B (MEX3B) and their corresponding substrates [11].

HOTAIR is one of the first lncRNAs linked to cancer. It interacts with polycomb repressive complex 2 (PRC2), a histone methyltransferase and lysine-specific histone demethylase 1A (LSD1), an illustration of histone demethylation [31, 42, 43]. During aging, this lncRNA is degraded by the senescence repressor HuR, a miRNA-200a dependent RBP, due to its binding to the 3’UTR of e-Jun mRNA in a region including this miR binding site [44]. HOTAIR prevents cellular senescence through the decay of Snurportin-1 and Ataxin-1 targets via the ubiquitination pathway. Ectopic expression of LncRNA HOTAIR determines inflammation through NF-κB activation and through interleukin (IL)-6 expression [45, 46, 47]. MiRNA-203 inhibits HOTAIR, regulating tumorigenesis via the epithelial-to-mesenchymal transition (EMT) pathway [48] (Fig. 1).

Lnc AS Uchl1 (ubiquitin C-terminal hydrolase L1) intensifies translation of UCHL1, which plays an important role in the ubiquitin proteasome system (UPS) and in many other cellular processes such as differentiation, cell proliferation, as well as in brain function and in neurodegenerative diseases. Loss of function of UCHL1 leads to serious degenerative modifications in the central nervous system, this proteolytic deficit contributing to neurological conditions [49, 50]. Overexpression of UCHL1 decreased mouse double minute 2 (MDM2) levels, a factor involved in cancers, and increased the UPS-related proteins such as p53, p14, ADP-riboseylation factor (ARF), p27KIP1, ubiquitinated proteins, monoubiquitin, BE1, proteasome subunit alpha type 7 (PSMA7) and the proteasomal activity, the last five systems being implicated in auditory cortex senescence [49, 51].

LncRNA GAS5. Growth arrest specific transcript 5 (GAS5) was shown to interact with Y-box binding protein 1 (YBX1) through the GAS5/YBX1/p21 pathway, and the knockdown of lncRNA GAS5 was demonstrated to accelerate YBX1 protein turnover without affecting its gene expression. LncRNA GAS5 downregulation lowers YBX1 protein concentration, interfering with YBX1-transactivated p21 transcription and abrogating G1 phase cell cycle arrest in gastric carcinoma. The lncRNA GAS5/YBX1/p21 axis was proved to be a useful target for developing lncRNA-based treatment for cancer [52].

**LncRNAs in protein membrane trafficking**

Membrane trafficking is the cornerstone of molecular biology. It compartmentalizes cells into functional recognizable units for signal initiation and processing. It is generally accepted that deregulated membrane trafficking leads to pathological aging. Kesl/Osh4, a member of the oxysterol binding protein-related protein (ORP) superfamily, and other ORPs, activate cell-cycle control functions, inhibiting phosphatidylidyinositol transfer protein (Sec14)-dependent membrane trafficking using the trans-Golgi (TGN)/endosomal network, inhibiting the G1/S transition, when cells are under caloric restriction (CR). Therefore, replicative aging is encouraged. Kes1-dependent cell-cycle control depends on the Greatwall/MASTL kinase ortholog Rim15 and is in opposition to the Sec14 action in a mechanism independent of Kes1/Sec14 total membrane-trafficking actions. ORPs define a family of stage-specific cell-cycle regulation factors with tumor suppressor-like functions [53].
Cell cycle is strictly regulated by cyclin-dependent kinases (CDKs) and several related pathways such as p53 and the retinoblastoma protein (pRB). Current research on lncRNAs outlines their involvement in the control of key cell cycle regulators such as p53, pRB, cyclins, CDKs, and CDK inhibitors. These lncRNAs are epigenetic regulators and transcription and post-transcription regulators for primary control cellular levels of cell cycle modulators through different mechanisms. Sometimes, certain lncRNAs are induced by DNA damage, leading to cell cycle arrest or apoptosis as a response to DNA damage. Consequently, deregulations of lncRNAs are involved in tumoral genesis and in chronic inflammation and they could represent possible molecular targets for both cancer diagnosis and therapy [54].

LncRNA-P21-associated ncRNA DNA damage-activated (PANDA) is specifically induced by DNA damage through the p53 pathway, through binding the nuclear transcription factor Y subunit α (NF-YA). Its activation is prevented and the expression of proapoptotic genes is suppressed. The interaction between NF-YA and p53 disrupts the cell cycle and senescence [8, 53].

Lnc RNA GAS5 is a growth arrest lncRNA involved in human malignancies. It inhibits the transcription of glucocorticoid receptor (GR) by blocking this nuclear receptor in the cytoplasm [52, 55]. Later on, it was shown to have a role on mESC proliferation. LncRNA Gas5 has a key role in controlling iPSC reprogramming, self-renewal and pluripotency of mESCs. The knockdown of Gas5 facilitates endodermal differentiation of mESCs and reduces the efficiency of iPSC reprogramming through
the Dicer-miR291a–cMyc axis. It is also involved in the DNA demethylation course in mESCs [5].

ANRASSF1. This lncRNA forms an RNA/DNA hybrid at the transcriptional start site of RASSF1A, a gene encoding the Ras association domain-containing protein 1. It becomes hypermethylated during aging. Ras proteins, members of a superfamily of GTP-ases, have a key position in numerous signaling networks, counting the IIS action, controlling proliferation, metabolism, apoptosis and senescence. The hyperactivation of Ras or mutant Ras proteins is difficult to target (the intrinsic enzyme activity of "signal recognition protein" SRP) [58]. 7SL interacts with RBP HuR, promoting translation of p53, the most important growth regulator and tumor suppressor protein [59].

**LncRNAs in autophagy**

Autophagy is a versatile and protective degradation process supervising cellular quality control during the aging process [60]. The autophagic flux depends on direct improvement in somatic conservation and proteostasis. Therefore, the intracellular proteostatic signalling pathways are involved in transferring autophagic status between cells and tissues, controlling ARDs on a systemic level [61]. Certain lncRNAs were recently found to control autophagy.

H19, a suppressed lncRNA in patients with high blood sugar and diabetic cardiomiopathy, abolishes autophagy by repressing a GTPase DIRAS3, a tumor suppressing gene, therefore regulating ATG7 gene expression [61, 62].

LncRNA DICER1 - antisense RNA 1 (AS1) has an important role in autophagy and tumor progression. Overexpressed in osteosarcoma cells, this lncRNA knockdown could suppress autophagy by inhibiting the expression levels of certain proteins as follows: autophagy-5 (ATG5), microtubule-associated protein light chain 3 (LC3-II) involved in autophagosome membrane expansion, and beclin 1, an apoptotic promoter. Moreover, miR-30b targets 3'-UTR of DICER1-AS1 and ATG5 [63].

LncRNA HULC. Considerable research has revealed that autophagy is a key factor in tumor chemoresistance and that lncRNA HULC is highly induced in liver cancer by therapy with antitumoral reagents such as oxaliplatin, 5-fluorouracil and pirarubicin (THP), which leads to protective autophagy. In human HCC tissues, the mechanism is mediated by the silent information regulator 1 (Sirt1) protein, the level of HULC being positively correlated with that of Sirt1. The pathway ‘HULC/ubiquitin-specific peptidase 22 (USP22)/Sirt1/protective autophagy’ increases HCC cells sensitivity to chemotherapeutic agents. This pathway could be a novel target for sensitizing HCC cells to HCC chemotherapy [64]. Mechanistically it was found that HULC could act as a molecular sponge of miR-372, 107 and 186 thus promoting tumorigenesis [65] (Fig. 2). This lncRNA increases expression of becline-1, an autophagy related gene, and also the interplay between LC3 and ATG3 during hepatocarcinogenesis [66].

LncRNA MEG3. The lncRNA MEG3 gene was shown to be involved in colorectal cancer, controlling certain cellular and molecular processes such as autophagy and growth arrest by suppressing MDM2, upregulating p53 and blocking apoptosis [20, 67, 68]. This lncRNA could be a novel biomarker for predicting clinical outcome in cancer [69].

LncRNA 7SL. 7SL-depleted cells are lead to cellular senescence and autophagy due to the competitive binding between HuR and 7SL, which can be removed, increasing the p53 gene expression. It also blocks the cell cycle and enhances senescence and autophagy [70].

Other examples of lncRNAs involved in controlling all autophagic stages are HOTAIR, MALAT1, NBR2, PTENP1, and recently NEAT1 activating autophagy in Parkinson’s disease via PINK1 protein [71, 61]. Equivalently, lncRNAs GAS5 and CAIF modulate ATG3 in certain pathological conditions such as osteosarcoma, myocardial infarction and cancer [72, 61].

**LncRNAs: scaffold function**

LncRNAs could serve as protein scaffolds, participating in the assembly of ribonucleoproteins that link the factors together to produce new functions. The association between lncRNAs and disease may involve their scaffolding capacity. Certain lncRNAs present specific protein-binding domains that incorporate each molecule together. This action may have an impact on transcription or repression processes [73, 74].
lncRNA HULC, highly expressed in liver cancer, modulates the oncogene HMGA2 to activate tumorigenesis and interacts with the CLOCKmRNA, leading to the enhancement of its transcription. HMGA2 plays an essential role in the genesis of lung cancer, gastric cancer and colorectal carcinoma. HULC could be considered a molecular sponge which sequester certain miRNAs such as miR-186, miR-107 as well as miR-372, therefore reducing the translational repression of HMGA2, E2F1 and PRKACB. The expression level of HULC is positively correlated with HMGA2 and opposite to miR-186. In human HCC tissues, HULC upregulated HMGA2 expression via sequestering miR-186 promotes tumorigenesis. Moreover, HULC induces the expression of cyclin A and IL-15 in a dose-dependent manner.

LncRNA H19 controls a collection of genes consisting of H19 and insulin-like growth factor-2 (IGF2) through the interaction with methyl-CpG-binding domain protein 1 (MBD1). Therefore, a ribonucleoprotein complex H19-MBD1 is formed. It represses gene expression by recruitment of histone lysine methyltransferases. Both H19 and IGF2 are involved in aging. Moreover, their increased level promotes ARDs [75].

LncRNAs PRNCR1 and PCGEM1. Two lncRNAs, namely prostate cancer non-coding RNA 1 (PRNCR1) and prostate cancer gene expression marker 1 (PCGEM1), generally overexpressed in the most aggressive forms of prostate cancers, precisely bind to the androgen receptor (AR) and strongly amplify androgen receptor-mediated gene expression in both ligand-independent and dependent pathways [75].
Table 2. Senescence- associated lncRNAs and neurodegenerative disorders.

| lncRNA/expression | Implication in neurodegenerative disorders | Abnormalities in neuronal process/ Clinical features | Reference |
|-------------------|-------------------------------------------|----------------------------------------------------|-----------|
| MEG3              | - upregulated in the hippocampus of old mice; downregulated in old induced striatal medium-sized spiny neurons (MSSNs); PTEN/PJ3K/akt signaling cascade; - upregulated in AD disease brain affecting Aβ formation | - cognitive decline; downregulated in HD brain tissue; - synaptic plasticity in neurons | [30], [92] |
| SORL1-AS          | - upregulated in frontal and temporal cortices; increases Aβ secretion | - AD; - Protein aggregation; - cognitive impairment | [30], [93] |
| Six3OS            | - Regulation of Six3 targets through interactions with Eya proteins and the chromatin-modifying protein EzH2; | - adult mouse neurogenesis | [94] |
| 17A               | - upregulated in human aged SVZ; - upregulated in the hippocampus of old mice; - scaffold for proteins and RNAs; -downregulated in murine dopaminergic cells; - regulated by a transcription factor Nurr1 required for dopamine cells differentiation | - AD; -Allosteric GABA B2 intracellular signaling -cognitive decline; -neurodegeneration; -PD | [30], [96], [97] |
| MALAT-1           | - altered expression in all tissues | - AD; - Neurodegeneration; -PD | [98] |
| UCHL1-AS          | - high expression of HOTAIR promotes PD BACE1 mRNA stability and Aβ42 formation | - up-regulated in AD brains | [99], [100], [101] |

Abbreviations: Aβ – amyloid β; AD- Alzheimer’s disease; ANRIL- antisense non-coding RNA from the inhibitor of kinase 4 (INK4); GABA - gamma-aminobutyric acid; HD- Huntington’s disease; HOTAIR - Hox transcript antisense intergenic RNA; MALAT-1- Metastasis Associated Lung Adenocarcinoma Transcript 1; MEG3- maternally expressed gene 3; MSSNs- medium-sized spiny neurons; NURR1- Nuclear receptor related 1 protein; PD- Parkinson disease; PJ3K - phosphatidylinositol-3-kinase; PTEN- phosphatase and tensin homolog; Six3OS - Six3 opposite strand; SORL1-AS-sorbin related receptor antisense transcript; SVZ- subventricular zone; UCHL1- ubiquitin carboxyterminal hydrolase 1; Vax2OS- ventral anterior homeobox 2 opposite strand.

After the interaction between PRNCR1 and AR, the association of disruptor of telomeric silencing 1 like histone H3 methyltransferase (DOT1L) to the PRNCR1-AR complex is accelerated through acetylation at the Ct-term of AR protein. DOT1L mediates N-terminal acetylation of AR protein, which increases the enrollment of lncRNA PCGEM1. In prostate cancer cells, translation of short hairpin RNA targeting these two lncRNAs was shown to actively suppress proliferation of cancer cells and tumor growth in murine models [76].

LncRNA MALAT1. The downregulation of MALAT1 decreased platelet-derived growth factor-BB (PDGF-BB)-induced proliferation and migration by inhibiting autophagy. MALAT1 functions as a competing endogenous RNA (ceRNA) controlling autophagy-related 7 (ATG7) gene transcription via sponging miR142-3p. It switches the phenotype of vascular smooth muscle cells (VSMCs) with consecutive proliferation, contributing to different vascular conditions such as atherosclerosis, transplant vasculopathy, in-stent restenosis, or vein bypass graft failure [77].

LncRNA HOTAIR

LncRNAs - Telomerase RNA Component (TERC) and telomeric repeat containing RNA (TERA) are telomerase limiting factors maintaining telomere length and controlling the survival of neural stem cells (NSCs) in neural aging [2,30] (Table 2). LncRNA TERC provides a template for the biosynthesis of telomeric units and forms a complex with other proteins. In addition, this lnc has a catalytic function through adding telomere repeats [78]. Dysregulation of TERRA leads to premature aging; elevated levels in particular result in a specific syndrome consisting of immunodeficiency, facial dysmorphism and centromeric instability [79, 80] (Fig. 2).

Conclusions

Aging is governed by important adjustments in protein expression patterns modulated by lncRNAs, which critically modify both the pathological and physiological decline associated with senescence. Their potential usefulness in cancer or neurodegenerative diseases is not fully clarified at present. However, we can see the refined mechanisms involving the regulatory interaction between lncRNAs, miRNAs and RBPs as key actors which could
represent novel targets for future therapeutic interventions.

In summary, this analysis on IncRNAs has revealed, through a deeper molecular understanding, that they are truly age-related functional biomolecules with a vital contribution in normal physiology or aging-associated dysfunction.

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Acknowledgements

This work is was supported by ACHILE, FDI and ECHITAS projects: a project CNFIS-FDI (CNFIS-FDI-2019-0666), entitled “Sustenance and valorification of research of excellence in the domain of personalized medicine by internationalization and increasement of research activities visibility”, PDI-PFE-CDI 2018 ctr 29PFE/18.10.2018 entitled “Increasing the performance of scientific research and technology transfer in translational medicine through the formation of a new generation of young researchers”—ECHITAS, project No. 164/2017. PCE-Achile entitled “Addressing the complex exposome profile in hormone-dependent cancers of the breast and prostate and its influence on tumoral genome”.

References

[1] Li Y, Zhao H, Huang X, Tang J, Zhang S, Li Y, Liu X, He L, Ju Z, Lui KO, Zhou B (2018). Embryonic senescent cells re-enter cell cycle and contribute to tissues afterbirth. Cell Res, 28: 775-778.

[2] Grammatikakis I, Pandya AC, Abdelmohsen K, Gorospe M (2014). Long noncoding RNAs (lncRNAs) and the molecular hallmarks of aging. Aging (Albany NY), 6: 992-1009.

[3] Miller BF, Hamilton, KL (2017). Overview: the modulation of aging through altered proteostasis. J Physiol, 595:6381–6382.

[4] Klaips CL, Jayaraj GG, Hartl FU (2018). Pathways of cellular proteostasis in aging and disease. J Cell Biol, 217:51-63.

[5] Braicu C, Cătană C, Calin GA, Berindan-Neagoe I (2014). NCRNA combined therapy as future treatment option for cancer. Curr. Pharm, 20:6565-6574.

[6] Quan H, Fan Q, Li C, Wang YY, Wang L (2018). The transcriptional profiles and functional implications of long non-coding RNAs in the unfolded protein response. Sci Rep, 8: 4981.

[7] Redi RS, Berindan-Neagoe I, Pop VI, Calin GA (2012). Non-coding RNAs as theranostics in human cancers. J Cell Biochem, 113: 1451-1459.

[8] Cătană CS, Pichler M, Giannelli G, Mader RM, Berindan-Neagoe I (2017). Non-coding RNAs, the Trojan horse in two-way communication between tumor and stroma in colorectal and hepatocellular carcinoma. Oncotarget, 8: 29519-29534.

[9] Gulei D, Mehterov N, Ling H, Stanta G, Braicu C, Berindan-Neagoe I (2017). The “good-cop bad-cop” TGF-beta role in breast cancer modulated by non-coding RNAs. General subjects. Biochim Biophys Acta, 1861:1661-1675.

[10] Hartl FU, Brocher A, Hayer-Hartl M (2011). Molecular chaperones in protein folding and proteostasis. Nature, 475(7356):324.

[11] Ghanam AR, Ali W, Abdalla M (2018). Long non-coding RNA-protein interaction: the preliminary step to track their biological functions. Genetics and Molecular Research, 17(4).

[12] Schmitz KM, Mayer C, Postepaska A, Grummt I (2010). Interaction of noncoding RNA with the rDNA promoter mediates recruitment of DNMT3b and silencing of rRNA genes. Genes Dev, 24(20):2264-9.

[13] Johnsson P, Ackley A, Vidsardottir L, Lui WO, Corcoran M, Grandè R, Morris KV (2013). A pseudogene long-noncoding-RNA network regulates PTEN transcription and translation in human cells. Nat Struct Mol Biol, (4):440.

[14] Guttmann D, Donaghey J, Carey BW, Garber M, Grenier JK, Munson G, Young G, Lucas AB, Ach R, Bruhn L, Yang X (2011). IncRNAs act in the circuitry controlling pluripotency and differentiation. Nature, 477(7364):295.

[15] Nakagawa S, Naganuma T, Shioi G, Hirose T (2011). Paraspeckles are subpopulation-specific nuclear bodies that are not essential in mice. J Cell Biol, 193(1):31-9.

[16] Li Z, Chao TC, Chang KY, Lin N, Patil VS, Shimizu C, Head SR, Burns JC, Rana TM (2014). The long noncoding RNA THRIL regulates TNFα expression through its interaction with hnRNPL. Proc Natl Acad Sci U S A, 111(3):1002-7.

[17] Faghihi MA, Modarresi F, Khalil AM, Wood DE, Sahagian BG, Morgan TE, Finch CE, Laurent III GS, Kenny PJ, Wahlestedt C (2008). Expression of a noncoding RNA is elevated in Alzheimer's disease and drives rapid feed-forward regulation of β-secretase. Nat Med, 14(7):723.

[18] Kretz M, Siprashvili Z, Chu C, Webser DE, Zehnder A, Qu K, Lee CS, Folkhart RJ, Groff AF, Chow J, Johnston D (2013). Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature, 493(7431):231.

[19] Lee SY, Hvag YK, Yun HS, Han JS (2012). Decreased levels of nuclear glucocorticoid receptor protein in the hippocampus of aged Long-Evans rats with cognitive impairment. Brain research, 1478: 48-54.

[20] Baldassarre A, Masotti A (2012). Long Non-Coding RNAs and p53 Regulation. Int J Mol Sci, 13: 16708–16717.

[21] Seles M, Hutterer GC, Kiesslich T, et al (2016). Current Insights into Long Non- Coding RNAs in Renal Cell Carcinoma. Int J Mol Sci, 17:573.

[22] Derrien T, Johnson R, Bussotti G, Tanzer A, et al (2012). The GENCODE v7 catalog of human long noncoding
noncoding RNAs repress transcription through a RNA binding protein TLS. Adv Exp Med Biol, 722: 196–208. Filipits M, Dafni U, Grant M, et al (2018). Association of p27 and Cyclin D1 Expression and Benefit from Adjuvant Trastuzumab Treatment in HER2-Positive Early Breast Cancer: A TransHERA Study. Clin Cancer Res, 24:3079-3086. Yap KL, Li S, Muñoz-Cabello AM, Raguž S, et al (2010). Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell, 38:662–674. Zhao B, Lu YL, Yang Y, et al (2018). Overexpression of lncRNA ANRIL promoted the proliferation and migration of prostate cancer cells regulating let-7a/TGF-β1/Smad signaling pathway. Cancer Biomark, 21: 613-620. Wu Y, Zhang L, Wang Y, et al (2014). Long noncoding RNA HOTAIR involvement in cancer. Tumour Biol, 35:9531–9538. Cai B, Song XQ, Cai JP, Zhang S (2014). HOTAIR: a cancer-related long non-coding RNA. Neoplasma, 61: 379–391. Del Vecchio G, De Vito F, Saunders SJ, Risi A, Mannironi C, Bozzoni I, Presutti C (2016). RNA-binding protein HuR and the members of the miR-200 family play an unconventional role in the regulation of c-Jun mRNA. RNA, 22:1510-1521. Yoon JH, Abdelmohsen K, Kim J, et al (2013). Scaffold function of long non-coding RNA HOTAIR in protein ubiquitination. Nat. Commun, 4:2939. Cătană CS, Calin GA, Berindan-Neagoe I (2015). Inflammation-miRs in Aging and Breast Cancer: Are They Reliable Players? Front Med (Lausanne), 2:85. Özçelik AY, Miller DF, Ozçelik ON, Fang F, Liu Y, Matei D (2016). NF-κB-HOTAIR axis links DNA damage response, chemoresistance and cellular senescence in ovarian cancer. Oncogene, 35: 5350-5361. Dagsu P, Kulkami P, Majid S, et al (2018). MicroRNA-203 Inhibits Long Noncoding RNA HOTAIR and Regulates Tumorigenesis through Epithelial-to-mesenchymal Transition. Pathway in Renal, Cell Carcinoma. Mol Cancer Ther, 17:1061-1069. Ummanni R, Jost E, Braig M, et al (2011). Ubiquitin carboxyl-terminal hydrolase 1 (UCHL1) is a potential tumour suppressor in prostate cancer and is frequently silenced by promoter methylation. Mol Cancer, 10: 129. Carrieri C, Cimatti L, Biagioli M, et al (2012). Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature, 491: 454-457. Zhang L, Zhou Y, Huang T, et al (2017). The Interplay of LncRNA-H19 and Its Binding Partners in Physiological Process and Gastric Carcinogenesis. Int J Mol Sci, 20:18(2), pii: E450. Liu Y, Zhao J, Zhang W, Gan J, Chengen H, Huang G, Zhang Y (2015). IncRNA GAS5 enhances G1 cell cycle arrest via binding to YBX1 to regulate p21 expression in stomach cancer. Sci Rep, 5:10159. Huang J, Mousley CJ, Dacquay L, Maitra N, et al...
(2018). A Lipid Transfer Protein Signaling Axis Exerts Dual Control of Cell-Cycle and Membrane Trafficking Systems. Dev Cell, 44:378-391.

[54] Kitagawa M, Kitagawa K, Kotake Y, Niida H, and Ohhata T (2013). Cell cycle regulation by long non-coding RNAs. Cell Mol Life Sci, 70:4785–4794.

[55] Mourtada-Maarabouni M, Pickard MR, Hedge V L, Farzaneh F GT (2009). GASS, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene, 28:195-208.

[56] Goossens J, Vanmechelen E, Trojanowski JQ, et al (2015). TDP-43 as a possible biomarker for frontotemporal lobar degeneration: a systematic review of existing antibodies. Acta Neuropathol Commun, 3:5.

[57] Hollander MC, Alamo J Jr. Fornace AJ (1996). A novel DNA damage-inducible transcript, gadd7, inhibits cell growth, but lacks a protein product. Nucleic Acids Res, 24:1589–1593.

[58] Walter P, Blobel G (1982). Signal recognition particle contains a 7S RNA essential for protein translocation across the endoplasmic reticulum. Nature, 299:691–698.

[59] Deschênes M, Chabo B (2017). The emerging role of alternative splicing in senescence and aging. Aging Cell, 16:918–933.

[60] Cătănă C S, Atanasov A G, Berindan-Neagoe I (2018). Natural products with anti-aging potential: Affected targets and molecular mechanisms. Biotechnol Adv, 36:1649-1656.

[61] Wong SQ, Kumar AV, Mills J, Lapierre LR (2019). Autophagy in aging and longevity. Hum Genet.

[62] Zhuo C, Jiang R, Lin X, Shao M (2016). LncRNA H19 inhibits autophagy by epigenetically silencing of DIRAS3 in diabetic cardiomyopathy. Oncotarget, 8:1429–1437.

[63] Gu Z, Hou Z, Zheng L, Wang X, Wu L, Zhang C (2018). LncRNA DICER1-AS1 promotes the proliferation, invasion and autophagy of osteosarcoma cells via miR-30b/ATG5. Biomed. Pharmacother, 104:110-118.

[64] Xiong H, Li B, He J, Zeng Y, Zhang Y, He F (2017). LncRNA HULC promotes the growth of hepatocellular carcinoma cells via stabilizing COX-2 protein. Biochem. Biophys. Res Commun, 490:693-699.

[65] Wang Y, Xu Z, Jiang J, Xu C, Kang J, Xiao L, Wu M, Xiong J, Guo X, Liu H (2013). Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. Developmental cell, 25(1):69-80.

[66] Xin X, Wu M, Meng Q, Wang C, et al (2018). Long noncoding RNA HULC accelerates liver cancer by inhibiting PTEN via autophagy cooperation to miR15a. Mol Cancer, 17:94.

[67] Yin D, Liu Z, Zhang ZE, Kong R, Zhang Z, Guo R (2015). Decreased expression of long noncoding RNA MEG3 affects cell proliferation and predicts a poor prognosis in patients with colorectal cancer. Tumour Biol, 36:4851-4859.

[68] Ying L, Huang Y, Chen H, Wang Y, Xia L, Chen Y, Liu Y, Qiu F (2013). Downregulated MEG3 activates autophagy and increases cell proliferation in bladder cancer. Mol Biosystems, 9:407–411.

[69] Cui X, Jing X, Long C, Tian J, Zhu J (2017). Long noncoding RNA MEG3, a potential novel biomarker to predict the clinical outcome of cancer patients: a meta-analysis. Oncotarget, 8:19049-19056.

[70] Abdelmohsen K, Panda A C, Kang MJ, et al (2014). 7SL RNA represses p53 translation by competing with HuR. Nucleic Acids Res, 42:10099-10111.

[71] Yan W, Chen ZY, Chen JQ, Chen HM (2018). LncRNA NEAT1 promotes autophagy in MPTP-induced Parkinson’s disease through stabilizing PINK1 protein. Biochem Biophys Res Commun, 496:1019–1024.

[72] Gu J, Wang Y, Wang X, Zhou D, Wang X, Zhou M, He Z (2018). Effect of the LncRNA GASS-MiR-23a-ATG3 axis in regulating autophagy in patients with breast cancer. Cell Physiol Biochem, 48:194–207.

[73] Ribeiro DM, Zanzi A, Cipriano A, et al (2018). A Lipid Transfer Protein Signaling Axis Exerts Dual Control of Cell-Cycle and Membrane Trafficking Systems. Nucleic Acids Res, 46:917-928.

[74] Park JY, Lee JH, Park JH, Lee SH, Kim JH (2014). Roles of Long Non-Coding RNAs on Tumorigenesis and Glioma Development. Brain Tumor Res Treat, 2:1-6.

[75] Christofori G, Naik P, Hanahan D (1994). A second signal supplied by insulin-like growth factor II in oncogene-induced tumorigenesis. Nature, 369:414-418.

[76] Yang L, Lin C, Jin C, et al (2013). LncRNA-dependent mechanisms of androgen-receptor-regulated gene activation programs, Nature, 500:598–602.

[77] Song TF, Huang LW, Yuan Y, et al (2018). LncRNA MALAT1 regulates smooth muscle cell phenotype switch via activation of autophagy. Oncotarget, 9:4411–4426.

[78] Wapinski O, Chang HY (2011). Long noncoding RNAs and human disease. Trends Cell Biol, 21:354-361.

[79] Deng Z, Cambell AE, Liebermann PM (2010). TERRA, CpGmethylation and telomere heterochromatin: lessons from ICF syndrome cells. Cell Cycle, 9:69-74.

[80] Cubiles MD, Barroso S, Vaquerro-Sedas MI, Enguix A, Aguilera A, Vega-Palas MA (2018). Epigenetic features of human telomeres. Nucleic Acids Res, 46:2347-2355.

[81] Gao D, Lv AE, Li HP, Han DH, Zhang YP (2017). LncRNA MALAT1 Elevates HMGB1 to Promote Autophagy Resulting in Inhibition of Tumor Cell Apoptosis in Multiple Myeloma, J Cell Biochem, 118:3341-3348.

[82] Hu M, Wang R, Li X, Fan M, Lin J, Zhen J, Chen L, Lv Z (2017). LncRNA MALAT1 is dysregulated in diabetic nephropathy and involved in high glucose-induced podocyte injury via its interplay with β-catenin. J Cell Mol Med, 21:2732–2747.

[83] Kotake Y, Kitagawa K, Ohhata T, Sakai S, Uchida C, Niida H., Naemura M, Kitagawa M (2016). Long non-coding RNA, PANDA, contributes to the stabilization of p53 tumor suppressor protein. Anticancer Research, 36:1605–1611.

[84] Kotake Y, Goto T, Naemura M, Inoue Y, Okamoto H, Tahara K (2017). Long noncoding RNA PANDA positively regulates proliferation of osteosarcoma.
cells. Anticancer Research, 37:81–85.

[85] Luo G, Liu D, Huang C, Wang M, Xiao X, Zeng F (2017). LncRNA GAS5 Inhibits Cellular Proliferation by Targeting P27Kip1. Mol Cancer Res, 15: 789–799.

[86] Hung T, Wang Y, Lin M F, et al (2011). Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nature Genetics, 43: 621–629.

[87] Beckedorff FC, Ayupe AC, Crocci-Souza R, et al (2013). The Intronic long noncoding RNA ANRASSF1 recruits PRC2 to the RASSF1A promoter, reducing the expression of RASSF1A and increasing cell proliferation. PLoS Genet, 9: e1003705.

[88] Liu X, Li D, Zhang W, Guo M, Zhan Q (2012). Long non-coding RNA gadd7 interacts with TDP-43 and regulates Cdk6 mRNA decay. EMBO J, 31: 4415–4427.

[89] Zeng S, Yang J, Zhao J, Liu Q, Rong M, Guo Z, Gao W (2014). Silencing Dicer expression enhances cellular proliferative and invasive capacities in human tongue squamous cell carcinoma. Oncol Rep, 31: 867–873.

[90] Xiang JF, Yin QF, Chen T, et al (2014). Human colorectal cancer-specific CCAT1-LncRNA regulates long-range chromatin interactions at the MYC locus. Cell Research, 24, 513–531.

[91] Samper E, Flores JM, Blasco MA (2001). Restoration of telomerase activity rescues chromosomal instability and premature aging in Terc−/− mice with short telomeres. EMBO Rep, 2: 800–807.

[92] Tan MC, Widagdo J, Chau YQ, et al (2017). The Activity-Induced Long Non-Coding RNA Meg3 Modulates AMPA Receptor Surface Expression in Primary Cortical Neurons. Front Cell Neurosci, 11: 124.

[93] Hu G, Niu F, Humburg BA, Liao K, Bendi S, Callen S, Fox HS, Buch S (2018). Molecular mechanisms of long noncoding RNAs and their role in disease pathogenesis. Oncotarget, 9: 18648–18663.

[94] Rapicavoli NA, Poth EM, Zhu HS Blackshaw (2011). The long noncoding RNA Six3OS acts in trans to regulate retinal development by modulating Six3 activity. Neural Dev, 6: 32.

[95] Massone S, Vassallo I, Fiorino G, et al (2011). 17A, a novel non-coding RNA, regulates GABA B alternative splicing and signaling in response to inflammatory stimuli and in Alzheimer disease. Neurobiol Dis, 41: 308–317.

[96] Barry G, Guennewig B, Fung S, et al (2015). Long-Non-Coding RNA Expression during Aging in the Human Subependymal Zone. Front Neurol, 6:45.

[97] Stillings RM, Benito E, Gertig M, et al (2014). De-regulation of gene expression and alternative splicing affects distinct cellular pathways in the aging hippocampus. Front. Cell. Neurosci, 8:373.

[98] Salta E, De Strooper B (2017). Noncoding RNAs in neurodegeneration. Nat Rev Neurosci, 18: 627-640.

[99] Wang S, Zhang X, Guo Y, Rong H, Liu T (2017). The long non-coding RNA HOTAIR promotes Parkinson’s disease by upregulating LRRK2 expression. Oncotarget, 8: 24449-24456.

[100] Riva P, Ratti A, Venturin M (2016). The Long Non-Coding RNAs in Neurodegenerative Diseases: Novel Mechanisms of Pathogenesis. Curr Alzheimer Res, 13: 1219-1231.

[101] Modaresi F, Faghihi MA, Patel NS, et al (2011). Knockdown of BACE1-AS Nonprotein-Coding Transcript Modulates Beta-Amyloid-Related Hippocampal Neurogenesis. Int J Alzheimers Dis, 2011: 929042.

[102] Kitagawa M, Kitagawa K, Kotake Y, Niida H, Ohhata T (2013). Cell cycle regulation by long non-coding RNAs. Cell Mol Life Sci, 70: 4785-4794.

[103] Collette J, Le Bourhis X, Adriaenssens E (2017). Regulation of Human Breast Cancer by the Long Non-Coding RNA H19. Int J Mol Sci, 18: E2319.

[104] Matouk JJ, Halle D, Raveh E, Gilon M, Sorin V, Hochberg A (2016). The role of the oncofetal H19 lncRNA in tumor metastasis: orchestrating the EMT-MET decision. Oncotarget, 7: 3748–3765.