Zastosowanie ultrasonografii w ocenie powikłań zakrzepowych u dzieci z centralnymi, tunelizowanymi cewnikami dożylnymi

Ultrasound assessment of thrombotic complications in pediatric patients with tunneled central venous catheters

Marek Tomaszewski¹, Wojciech Kosiak¹, Ninela Irga², Katarzyna Polczyńska³

¹ Pracownia Diagnostyki Ultrasonograficznej i Biopsyjnej, Klinika Pediatrii, Hematologii i Onkologii, Gdańsk Uniwersytet Medycyny, Gdańsk, Polska
² Oddział Hematologii, Klinika Pediatrii, Hematologii i Onkologii, Gdańsk Uniwersytet Medycyny, Gdańsk, Polska
³ Oddział Chemioterapii, Klinika Pediatrii, Hematologii i Onkologii, Gdańsk Uniwersytet Medycyny, Gdańsk, Polska

Correspondence: Marek Tomaszewski, Pracownia Diagnostyki Ultrasonograficznej i Biopsyjnej, Klinika Pediatrii, Hematologii i Onkologii, ul. Dębinki 7, 80-211 Gdańsk, e-mail: tomaszma@wp.pl, tel.: +48 58 349 29 22, faks: +48 58 349 28 63

Streszczenie

Centralny dostęp dożylny polega na wprowadzeniu cewnika naczyniowego (kateteru) do żyły głównej i zlokalizowaniu jego końcówki blisko ujścia do prawego przedinionka serca. U pacjentów Kliniki Pediatrii, Hematologii i Onkologii Uniwersyteckiego Centrum Klinicznego Gdańskiego Uniwersytetu Medycznego w ciągu roku przeprowadza się 40–50 zabiegów implantacji cewników centralnych typu Broviac/Hickman przez żylę podobojczykową. W Pracowni Diagnostyki Ultrasonograficznej i Biopsyjnej przy wyżej wymienionej Klinice od 2005 roku wykonuje się rocznie około 200–250 badań, do których wskazaniem jest ocena centralnego dostępu dożylnego. Zastosowanie katetu znacznie poprawia komfort pacjentów wymagających długotrwałego dostępu dożylnego. Jest jednak procedurą inwazyjną, obarczoną ryzykiem wystąpienia szeregów powikłań, zarówno wczesnych, jak i późnych. Powiklania późne dotyczą cewników już implantowanych i obejmują między innymi zakrzepicę odcieniową. Celem niniejszej pracy jest prezentacja trzech pacjentów z Kliniki Pediatrii, Hematologii i Onkologii Uniwersyteckiego Centrum Klinicznego Gdańskiego Uniwersytetu Medycznego, u których doszło do powikłań zakrzepowych w przebiegu długotrwałego utrzymywaneego cewnika centralnego. Przedstawiono możliwości wykorzystania ultrasonografii w ocenie powstały zaburzeń. W prezentowanych przypadkach możliwe było określenie wielkości i lokalizacji skrzepliny, co pozwoliło na podjęcie skutecznego leczenia u dwojga pacjentów. Omówiono patomechanizm powstania zakrzepicy odcieniowej oraz czynniki zwiększonego ryzyka takich zaburzeń. Zwrócono uwagę na konieczność wykonywania badań ultrasonograficznych u dzieci z kateterem już przy pierwszych objawach sugerujących powikłania zakrzepowe. Na podstawie obserwacji własnych, pomimo braku walidacji dla diagnostyki ultrasonograficznej w ocenie cewników centralnych, uważamy, że jest to metoda bardzo obiecująca i godna polecenia w ocenie powikłań zakrzepowych u dzieci z centralnym dostępem dożylnym.
Wprowadzenie

Centralny dostęp dożylny polega na wprowadzeniu cewnika naczyniowego (kateteru) do żyły głównej (najczęściej górnej), tak aby jego końcówka zlokalizowana była blisko ujęcia do prawego przedziorka. W zależności od sposobu wprowadzenia oraz umiejscowienia obwodowej części kateteru wyróżnia się następujące rodzaje cewników centralnych:

- nietunelizowane – wprowadzane bezpośrednio do żyły (stosowane krótkoterminowo);
- tunelizowane – częściowo przeprowadzone w tunelu wytworzonym w tkance podskórnej ściany klatki piersiowej, typu Broviac/Hickman (ryc. 1);
- porty naczyniowe – składające się z cewnika i podskórnie umieszczonej zasadniczej części portu(1,2).

U pacjentów Kliniki Pediatrii, Hematologii i Onkologii Uniwersyteckiego Centrum Klinicznego Gdańskiego Uniwersytetu Medycznego (UCK GUMed) rocznie wykonywane są 40–50 zabiegów implantacji cewników centralnych typu Broviac/Hickman z dostępu przez żyłę podobojęzykową (lewą lub prawą).

Wprowadzenie cewników centralnych znacznie poprawia komfort pacjentów wymagających długotrwałego dostępu dożylnego. Początkowo, w latach 70. ubiegłego wieku, cewniki stosowano u chorych żyjących pozajelitowo. Obecnie najczęściej są one wykorzystywane u pacjentów hematologizowanych, ponadto w chirurgii oraz w intensywnej terapii. Wskazania do zaoferowania cewnika centralnego u dzieci z oddziałów hematologii i onkologii obejmują przede wszystkim: konieczność stosowania chemioterapii, przewidywaną długotrwałą płynoterapię, żywienie pozajelitowe, podaż środków o wysokiej osmolarności oraz częste pobieranie krwi(3).

Introduction

Central venous access consists in inserting a vascular catheter to the vena cava and placing its tip in the vicinity of the opening to the right atrium. In the patients of the Clinic of Pediatrics, Hematology and Oncology at the Academic Clinical Centre of the Medical University in Gdańsk, such implantation procedures are conducted 40–50 times in a year using Broviac/Hickman catheters that are placed in the subclavian vein. In the Ultrasound and Biopsy Laboratory at the clinic mentioned above, approximately 200–250 examinations have been conducted since 2005 to assess the central venous access. Implantation of a catheter considerably increases the comfort of patients who require a long-term venous access. Nevertheless, it is an invasive procedure, burdened with a risk of numerous, early and late complications. The late complications are associated with implanted catheters and include catheter-related thrombosis. The aim of this paper was to present three patients of the Clinic of Pediatrics, Hematology and Oncology at the Academic Clinical Centre of the Medical University in Gdańsk, in whom thrombotic complications occurred as a result of long-term central venous catheters. The paper also discusses the possibilities of using sonography in the assessment of such complications. In the presented patients, it was possible to determine the size and localization of a thrombus which enabled effective treatment in two cases. The pathomechanism of catheter-related thrombosis was explained and the risk factors of such complications were discussed. The attention was paid to the necessity of conducting ultrasound examinations in pediatric patients with inserted catheters as soon as the first symptoms of thrombosis appear. Based on own observations and despite the lack of validation of ultrasound imaging in the assessment of central catheters, we believe that this method is highly promising and can be recommended for the assessment of thrombotic complications in pediatric patients with central venous catheters.

Key words

central venous catheter, thrombosis, ultrasonography, pediatric patients

Abstract

Central venous access consists in inserting a vascular catheter to the vena cava and placing its tip in the vicinity of the opening to the right atrium. In the patients of the Clinic of Pediatrics, Hematology and Oncology at the Academic Clinical Centre of the Medical University in Gdańsk, such implantation procedures are conducted 40–50 times in a year using Broviac/Hickman catheters that are placed in the subclavian vein. In the Ultrasound and Biopsy Laboratory at the clinic mentioned above, approximately 200–250 examinations have been conducted since 2005 to assess the central venous access. Implantation of a catheter considerably increases the comfort of patients who require a long-term venous access. Nevertheless, it is an invasive procedure, burdened with a risk of numerous, early and late complications. The late complications are associated with implanted catheters and include catheter-related thrombosis. The aim of this paper was to present three patients of the Clinic of Pediatrics, Hematology and Oncology at the Academic Clinical Centre of the Medical University in Gdańsk, in whom thrombotic complications occurred as a result of long-term central venous catheters. The paper also discusses the possibilities of using sonography in the assessment of such complications. In the presented patients, it was possible to determine the size and localization of a thrombus which enabled effective treatment in two cases. The pathomechanism of catheter-related thrombosis was explained and the risk factors of such complications were discussed. The attention was paid to the necessity of conducting ultrasound examinations in pediatric patients with inserted catheters as soon as the first symptoms of thrombosis appear. Based on own observations and despite the lack of validation of ultrasound imaging in the assessment of central catheters, we believe that this method is highly promising and can be recommended for the assessment of thrombotic complications in pediatric patients with central venous catheters.
Implantation of the central catheter is an invasive procedure, burdened with a risk of numerous, early and late complications. The early complications are direct consequences of cannulation itself: e.g. subcutaneous hematoma, subcutaneous emphysema, pneumothorax, air embolism, arrhythmias, damage to the thoracic duct, brachial plexus, the vessel’s wall or cardiac wall (tamponade) and mediastinal bleeding. The late complications are associated with implanted catheters and include mechanical complications such as: accidental removal of the catheter, spontaneous retraction of the catheter, catheter fracture or translocation of its tip as well as infections and thrombotic complications[3-5].

Initially, the procedure of catheter implantation and the assessment of complications were conducted with the use of X-ray techniques (conventional chest X-ray, venography). The application of sonography (US) in the assessment of central venous catheters initially concerned the localization of the catheter in the venous system[6]. In the subsequent years, as the technical possibilities developed and the method became more common, the range of its application became wider. Currently, it is used both in the initial assessment of the venous return anatomy and during catheter implantation as well as in the assessment of early and late complications[7,8]. In the Ultrasound and Biopsy Laboratory at the Clinic of Pediatrics, Hematology and Oncology at the Academic Clinical Centre of the Medical University in Gdańsk, approximately 200–250 US examinations have been conducted since 2005 to assess the central venous access.

The aim of this paper was to present three patients, in whom thrombotic complications occurred as a result of long-term indwelling central venous catheters and to present the possibilities of sonography in the assessment of such consequences and in treatment monitoring.

Technika badania

Badania wykonywane były aparatami ultrasonograficznymi Logiq 7 (GE Medical Systems, Waukesha, WI, USA, rok produkcji 2005) – z wykorzystaniem głowic: sektoro- wej 7 S (4.0–8.0 MHz), sektoro- wej 3 S (2.8–3.8 MHz), głowicy konweskowej (2.0–5.5 MHz) i głowicy liniowej M12 (7–14 MHz) – oraz SPARQ (Philips Healthcare, Bothell, WA, USA, rok produkcji 2012) – za pomocą głowicy sektoro- wej (2.0–4.0 MHz), konweskowej (2.0–5.5 MHz)

Examination technique

The examinations were conducted with the use of the Logiq 7 ultrasound system (GE Medical Systems, Waukesha, WI, USA, produced in 2005) with the following transducers: 7 S sector probe (4.0–8.0 MHz), 3 S sector probe (2.8–3.8 MHz), convex probe (2.0–5.5 MHz) and M12 linear probe (7–14 MHz), as well as with the use of the SPARQ system (Philips Healthcare, Bothell, WA, USA, produced in 2012) with sector (2.0–4.0 MHz),
i liniowej (4.0–12.0 MHz). W badaniach korzystano z opcji obrazowania dwuplaszczyznowego 2D (two-dimensional) i doplera kodowanego kolorem (CD) oraz stosowano środek „kontrastowy” w postaci 0,9-procentowego roztworu NaCl\(^9\). Podstawową projekcją dla oceny cewnika centralnego była projekcja nadmostkowa (ryc. 2).

Prezentacja przypadków

Przypadek 1.

Pacjentka 7-letnia z rozpoznaniem ostrej białaczki limfoblastycznej. W 5. dobie leczenia implantowano cewnik centralny (VYGON, Lifecath Biflux 7F) do prawej podobojczykowej. W 8. miesiącu chemioterapii (II protokół według ALLIC 2002) z powodu zakażenia (Empedobacter brevis, Enterobacter agglomerans, Pseudomonas sp.) usuńto prawidłowo działający kateter. Drugi cewnik centralny (VYGON, Lifecath Biflux 7F) wprowadzono poprzez lewą podobojczykową. W 19. dobie po implantacji wystąpiły trudności w pobieraniu krwi, przy zachowaniu możliwości podaży płynów przez oba ujścia kateteru. W wykonanym badaniu USG, w projekcji nadmostkowej, uwidoczniło fragment cewnika w żyły ramienne-głowowej lewej oraz przyścienną convex (2.0–5.5 MHz) and linear probes (4.0–12.0 MHz). The examinations were performed in two-dimensional as well as color Doppler modes and a “contrast” agent in the form of a 0.9% NaCl solution was used\(^9\). The basic projection for the assessment of the central catheter was the suprasternal one (fig. 2).

Case reports

Case 1

A 7-year-old patient with acute lymphoblastic leukemia. On the 5\(^{th}\) day of the therapy, a central venous catheter (VYGON, Lifecath Biflux 7F) was implanted in the right subclavian vein. Due to infection (Empedobacter brevis, Enterobacter agglomerans, Pseudomonas sp.), a properly working catheter was removed in the 8\(^{th}\) month of chemotherapy (II protocol according to the ALLIC 2002 regimen). The second central catheter (VYGON, Lifecath Biflux 7F) was inserted to the left subclavian vein. On the 19\(^{th}\) day following the implantation, difficulty in drawing blood appeared but it was still possible to administer fluids through both openings of the catheter. A 2D US examination in the suprasternal view conducted with the use of a sector probe demonstrated a fragment of the catheter in the left brachiocephalic vein and
Przypadek 2.

Pacjent 12-letni z rozpoznanie nieziarniczego chloniaka. W 7. dniu pobytu w szpitalu implantowano cewnik centralny (VYGON, Lifecath Bilux 7F) do prawej żyły podobojczykowej. Po 4 tygodniach chemioterapii (BFM 04 III) z powodu zakażenia (Staphylococcus, koagulazoujemny) usunięto prawidłowo działający kateter. Drugi cewnik centralny (VYGON, Lifecath Bilux 7F) wprowadzono poprzez lewą żyłę podobojczykową. W 7. tygodniu po implantacji wystąpiły trudności zarówno w pobieraniu krwi, jak i w podażach płynów przez oba ujścia kateteru. W badaniu głowicą sektorową w projekcji nadmokowej w żyłe żył karno-miejskiej uwidocznił się skrzepliny w okolicy końcówek cewnika. Skrzeplina prawie całkowicie zamknięła światło naczynia. W opcji CD zaobserwowano przepływ dwoma wąskimi strumieniami na obwodzie żyły (ryc. 7). W badaniu głowicą konweksową w projekcji nadmokowej a mural thrombus with the size of 11.7 × 7.4 mm in the right brachiocephalic vein (fig. 3). Subsequently, a color Doppler examination was conducted with the use of a convex probe in the same projection (fig. 4). A clear outline of the thrombus located opposite to the implanted catheter was obtained. Additionally, it was possible to assess the degree to which the right brachiocephalic vein was narrowed. The 2D examination conducted with the sector probe revealed a fragment of the catheter in the left brachiocephalic vein. For more accurate localization of its tip, a US examination with prior intravenous administration of 0.9% NaCl solution was conducted (figs. 5, 6). In a subsequent examination performed on the first day after the 24-hour infusion with Actylise, a reduction in the size of the thrombus was observed. The treatment with low-molecular-weight heparin was initiated which resulted in restoring complete patency of the vein. The maintenance therapy with heparin was continued until the removal of the catheter after the completed chemotherapy.

Case 2

A 12-year-old patient with non-Hodgkin lymphoma. On the 7th day of the patient’s stay in hospital, a central venous catheter (VYGON, Lifecath Bilux 7F) was implanted in the right subclavian vein. Following 4 weeks of chemotherapy (BFM 04 III), a properly working catheter was removed due to infection (coagulase-negative Staphylococcus). The second central catheter (VYGON, Lifecath Bilux 7F) was inserted to the left subclavian vein. In the 7th week following the implantation, difficulty in drawing blood and administering fluids through both openings appeared. A suprasternal US examination with a sector probe was conducted and revealed a thrombus in the left brachiocephalic vein localized in the region of the catheter’s tip. The thrombus occluded the vessel’s lumen nearly completely. A color Doppler examination revealed peripheral flow in two narrow streams (fig. 7). In a suprasternal examination with a convex probe aiming to examine...
z ukierunkowaniem na lewą żyłę ramienne-gołowowu uwidoczniono zarys skrzepliny o wymiarach 27 × 8 mm (ryc. 8, 9). W leczeniu zastosowano Actylize i w kontrolnym bada-
niu USG w pierwszej dobie po zakończonym 24-godzinnym wlewie wykazano całkowite udrożnienie przepływu w świe-
tle żyły. Następnie podano heparynę drobnoząsteczko-wą w dawce profilaktycznej i utrzymano takie leczenie do czasu usunięcia kateteru po zakończonej chemioterapii.

Przypadek 3.

Pacjent 7-letni z nieoperacyjnym guzem ośrodowego układu nerwowego, w trakcie leczenia paliatywnego w warunkach domowych. Wskazaniem do badania USG były trudności w pobieraniu krwi przy zachowanej prawidłowej poda-

nie mieszka. W badaniach w projekcji nadmostkowej góreąka kierunkowaniem na lewą żyłę ramienne-gołowowu oraz konweksową nie udało się uwidocznić przepływu krwi w żyle ramienne-gołowowej lewej z powodu całkowitej nie-
drożności spowodowanej skrzepliną. Ponadto przy pomocy głowicy liniowej uzyskano obraz rozległej skrzepliny w żyle szynowej wewnętrznej lewej (w przekroju poprzecznym o wymiarach 9,0 × 5,9 mm), prawie całkowicie zamykającej światło naczynia (ryc. 10, 11). W celu utrzymania drożności kateteru włączono do leczenia przewlekłe heparynę drobno-
ząsteczko-wą. Pacjent zmarł 2 miesiące później z powodu progresji choroby nowotworowej.

Case 3

A 7-year-old patient with an inoperative tumor of the central nervous system, treated palliatively at home. The difficulty in drawing blood with continued possibility to administer fluids through one of the catheter’s openings (VYGON, Lifecath BiFlux 7F) was an indication for a US examination. In suprasternal examinations performed with sector and convex probes, no blood flow was observed in the left brachiocephalic vein due to a complete obstruction caused by a thrombus. Moreover, with the help of a linear probe, an image of an extensive thrombus in the internal jugular vein was obtained (with the size of 9.0 × 5.9 mm, in a trans-
verse plane) which occluded the vein nearly completely (figs. 10, 11). In order to restore patency, the continuous treatment with low-molecular-weight heparin was initiated. The patient died 2 months later due to the progression of the neoplastic disease.

Ryc. 8. Przypadek 2. Projekcja nadmostkowa. Badanie głowicą konweksową w opcji CD. Pomiar wielkości skrzepliny w lewej żyłce ramienne-gołowowej – 26,9 × 8,0 mm

Fig. 8. Case 2. Suprasternal view. Color Doppler examination with the use of a convex probe. Measurement of the thrombus in the left brachiocephalic vein – 26.9 × 8.0 mm

Ryc. 9. Przypadek 2. Schemat ilustrujący lokalizację skrzepliny wokół końcowego odcinka kateteru

Fig. 9. Case 2. Diagram illustrating the localization of the thrombus around the catheter’s tip
Omówienie
Zakrzepicą centralnego dostępu żylnego (odcewnikową) nazywamy wytworzenie się skrzepliny w okolicy końcówek kateteru, częściowo lub całkowicie zamykającej światło żyły[10]. Częstość występowania tego zaburzenia u dzieci sięga nawet 50%[11]. Proces tworzenia się skrzepliny przebiega w kilku etapach: w pierwszej kolejności wokół końcówek kateteru tworzy się pochewka ze spłotu nitek włókni minimalnych, kiedy wykonane jest podanie leków lub płynów, nie ma zaś możliwości aspiracji krwi. W kolejnym etapie skrzeplina częściowo, przysienne zamyka światło żyły (mural thrombosis), a następnie całkowicie blokuje przepływ krwi przez żyłę (venous thrombosis)[9]. W konsekwencji może wystąpić postępująca zakrzepica żylna, obejmująca np. żyłę szyjną wewnętrzną, tak jak u pacjenta nr 3.

Patogeneza zakrzepicy centralnego dostępu żylnego jest złożona. Na pierwszym miejscu wymienia się uszkodzenie śródbloka naczyń w wyniku mechanicznego urazu. W przedstawionym przez nas przypadku nr 1 skrzeplina uwidoczniła się w żyłce położonej przeciwlegle w stosunku do wprowadzonego cewnika, co sugeruje właśnie taki mechanizm jej powstania. Kolejnym bardzo ważnym czynnikiem przyspieszającym tworzeniu się skrzepliny odcewnikowej jest współistniejące zakażenie. W dwojga prezentowanych pacjentów, u których zakrzepica pojawiła się po implantacji drugiego kateteru, pierwszy cewnik został usunięty z powodu infekcji. Inne czynniki ryzyka to stosowanie cytotoksycznych (L-asparaginaza), sterydów i antybiotyków oraz podawania enteralnej wody. Inne czynniki ryzyka są także obciążający, np. rodzinny w kierunku zaburzeń krzepliwości (trombofilii)[5,7,12-14].

Zakrzepica w zakresie spływu żyły głównej górnej może powodować takie objawy, jak obrzek twarzy i górnej połowy ciała, zaczernienie, zasięgnięcie, ból kończyny górnej po stronie w którym zakrzepica centralnego dostępu żylnego jest złożona.

Discussion
Central venous catheter thrombosis (catheter-related thrombosis) is a formation of a blood clot in the region of the catheter’s tip, which partially or completely occludes the vein[10]. The incidence of thrombotic events in pediatric patients amounts to 50%[11]. A thrombus is formed in several phases: first of all, a fibrin sheath forms around the tip of the catheter. Such a pericatheter thrombus may result in its partial occlusion in the valve mechanism – administration of medicines or fluids is possible, but blood withdrawal is not. Subsequently, the thrombus partially occludes the vein along its wall (mural thrombosis) and then blocks blood flow completely (venous thrombosis)[12]. As a consequence, progressing venous thrombosis may encompass e.g. the internal jugular vein – as it happened in the patient 3.

The pathogenesis of catheter-related thrombosis is complex. The damage to the vascular endothelium resulting from mechanical injury is believed to be the prime cause. In the case 1 presented above, the thrombus was found in the vein opposite to the catheter inserted, which suggests such a mechanism of its formation. Another important factor predisposing to catheter-related thrombosis formation is a concomitant infection. In two patients presented above, in whom thrombosis appeared after the implantation of the second catheter, the first one had been removed due to infection. Other risk factors are: use of cytostatic agents (L-asparaginase), steroids and antibiotics as well as parenteral nutrition and positive family history of coagulation disorders (trombophilia)[5,7,12-14].

Thrombosis of the superior vena cava drainage may be manifested with the following symptoms: edema of the face and upper part of the body, reddening, cyanosis, pain in the upper extremity at the side of the catheter and dilatation of the superficial veins. Pediatric patients, however,
założonego cewnika, poszerzenie żył powierzchownych. Jednak u dzieci rzadko dochodzi do pełnoobjawowych powikłań (2% według Fratino(17)) – przyczynia się to do opóźnienia właściwej diagnostyki i do progresji zakrzepicy. Dlatego proponuję się regularną ocenę ultrasonograficzną spływu żyłnego u pacjentów pediatrycznych z cewninami centralnymi. Pierwsze badanie wykonuje się przyłóżkowo po kilku godzinach od implantacji kateteru. Taka strategia jest zgodna z jednym z nowych kierunków rozwoju ultrasonografii, jakim są badania przyłóżkowe, wykonywane według określonego schematu, ukierunkowane na wyjaśnienie w krótkim czasie konkretnego problemu klinicznego (point of care ultrasound). W ocenie pacjenta po implantacji kateteru można zastosować protokół CVC sono, opracowany przez Matsushima w 2010 roku(18), według którego przeprowadza się kolejno: C – wykluczenie powikłań mechanicznych, takich jak pneumothorax i hemothorax (mechanical complication screen), V – ocenę wewntrzynaczyniowej lokalizacji końcówek kateteru (intravenous tip screen) oraz C – ocenę wewntrzysercowej lokalizacji końcówek kateteru (intracardiac tip screen). W przypadku jakichkolwiek wątpliwości dotyczących działania cewnika kolejne badania wykonuje się niezwłocznie. Najczęściej pierwszym niepokojącym sygnałem jest jego jednokierunkowa niedrozność, czyli trudności w pobieraniu krwi przy zachowanej możliwości podaży płynów. Taka sytuacja może wynikać z nieprawidłowego położenia końcówek kateteru, która „przylega” do ściany naczynia – wówczas wystarczająca dla jego udrożnienia jest zmiana pozycji ciała (położenie dziecka na plecach lub na boku) albo wykonywanie podgłowionych ruchów oddechowych czy prób Valsalvy. Czynności te mają na celu poszerzenie światła naczyń żyłnego i właściwe ułożenie się końcówek kateteru względem jego ściany. Niestety, taka jednokierunkowa niedrozność cewnika może wskazywać również na początkową fazę zaburzeń zakrzepowych, np. na niewielką skrzeplinę w okolicy końcówki kateteru, zachowującą się jak zastawka, czyli otwierającą ujście cewnika w czasie podaży płynu, ale zamykającą jego światło podczas pobierania krwi. Zjawisko to zostało zaobserwowane u dwójgi z prezentowanych pacjentów.

Ultrasonografia już od wielu lat wykorzystywana jest w ocenie powikłań zakrzepowych u pacjentów z cewninami centralnymi(16), jednak nie ustalono dotychczas rzeczywistej wartości tej metody w tym zakresie. Doniesienia różnych autorów są niejednoznaczne. Według Gaitini czułość badań z użyciem doplerra kodowanego kolorem w diagnostyce zakrzepicy kończyn górnych waha się od 78% do 100%, a specyficzność od 82% do 100%(17). Z kolei Male, badając dzieci z białaczką, uzyskał tylko 37-procentową czułość w wykrywaniu zakrzepicy żyły podobojczykowej(18). Z jednej strony podkreśla się dostępność i nieinwazyjność ultrasonografii, z drugiej zwraca uwagę na możliwość uzupełniania obrazów falaśnymi i ujemnymi w przypadku małych skrzeplin(19). Większość autorów jest zgodna, uznając wenografii za złoty standard w ocenie zakrzepicy odwecwynowej, a ultrasonografii pozostającą rolę badania przesiewowego(17,19,20).

W naszej pracowni badanie USG z wykorzystaniem różnich typów głowic (sektorsowej, konweksowej i liniowej) i różnych metod obrazowania (2D, CD) oraz z podaną 0,9-procentowego NaCl od ponad 8 lat stanowi podstawą oceny zmian w przypadku dysfunkcji kateteru.

Sonography has been used for the assessment of thrombotic complications in patients with central catheters for many years(16) but so far, the genuine value of this method has not been determined. The reports of various authors are ambiguous. Gatini claims that sensitivity of color Doppler sonography in the diagnosis of upper limb thrombosis ranges from 78% to 100% and specificity – from 82% to 100%(17). However, in Male’s study of pediatric patients with leukemia, the level of sensitivity in detecting thrombosis of the subclavian vein was only 37%(18). On the one hand, the accessibility and non-invasiveness of sonography are emphasized, on the other, attention is drawn to the possibility of obtaining false negative images in the case of small thrombi(19). The majority of authors agree that venography is the gold standard in catheter-related thrombosis and sonography is given the role of a screening examination(17,19,20).

In our ultrasound laboratory, US examinations with the use of various types of transducers (sector, convex and linear) and various techniques (2D, color Doppler) as well as with the administration of a 0.9% NaCl solution have been the basis of assessment in catheter dysfunctions for 8 years.
WniósKI

Pomimo braku walidacji dla diagnostyki ultrasonograficznej w ocenie ewentualności zakrzepowych u dzieci z centralnym dostępem doj בידי, autorzy zgłaszają za zainteresowanie powiązane z innymi osobami lub organizacjami, które mogą być negatywnie wpływać na treść publikacji oraz rościć sobie prawo do tej publikacji.

Konflikt interesów

Autorzy nie zgłaszają żadnych finansowych ani osobistych powiązań z innymi osobami lub organizacjami, które mogą być negatywnie wpływać na treść publikacji oraz rościć sobie prawo do tej publikacji.

Podziękowanie

Autorzy składają podziękowanie Agnieszce, 4-letniej pacjentce Oddziału Hematologii, za cierpliwość podczas sesji zdjęciowej, życząc jej prawidłowego działania kateteru podczas całego, długoego leczenia ostrej białaczki limfoblastycznej.

Piśmiennictwo/References

1. Galloway S, Bodenham A: Long-term central venous access. Br J Anesth 2004; 92: 772–734.
2. Vo JN, Hoffer FA, Shaw DW: Techniques in vascular and interventional radiology: pediatric central venous access. Tech Vasc Interv Radiol 2010; 13: 250–257.
3. Ge X, Cavallazzi R, Li C, Pan SM, Wang YW, Wang FL: Central venous access sites for the prevention of venous thrombosis, stenosis and infection. Cochrane Database Syst Rev 2012; 3: CD004084.
4. Baskin JL, Pui CH, Reiss U, Wilimas JA, Metzger ML, Ribeiro R et al.: Management of occlusion and thrombosis associated with long-term indwelling central venous catheters. Lancet 2009; 374: 159–169.
5. Kusminsky RE: Complication of central venous catheterization. J Am Coll Surg 2007; 204: 681–696.
6. Legler D, Nugent M: Doppler localization of the internal jugular vein facilitates central venous cannulation. Anesthesiology 1984; 60: 481–482.
7. Peris A, Zagli G, Bonizzoli M, Cianchi G, Ciapetti M, Spin a R et al.: Implantation of 3951 long-term central venous catheters: performances, risk analysis, and patient comfort after ultrasound-guidance introduction. Anesth Analg 2010; 111: 1194–1201.
8. Troianos CA, Hartman GS, Glas KE, Skubas NJ, Eberhardt RT, Walker JD et al.: Special articles: guidelines for performing ultrasound guided vascular cannulation: recommendations of the American Society of Echocardiography and the Society of Cardiovascular Anesthesiologists. Anesth Analg 2012; 114: 46–72.
9. Liu YT, Bahl A: Evaluation of proper above-the-diaphragm central venous catheter placement: the saline flush test. Am J Emerg Med 2011; 29: 842.e1–842.e3.
10. Debourdeau P, Kassab Chahmi D, Le Gal G, Kriegel I, Desruennes E, Donard MC et al.: 2008 SOR guidelines for the prevention and treatment of thrombosis associated with central venous catheters in patients with cancer: report from the working group. Ann Oncol 2009; 20: 1459–1471.
11. Journeycake JM, Buchanan GR: Thrombotic complications of central venous catheters in children. Curr Opin Hematol 2003; 10: 369–374.
12. Fratino G, Molinari AC, Parodi S, Longo S, Saracco P, Castagnola E et al.: Central venous catheter-related complications in children with oncological/hematological diseases: an observational study of 418 devices. Ann Oncol 2005; 16: 648–654.
13. Mitchell LG, Andrew M, Hanna K, Abshire T, Halton J, Anderson R et al.: A prospective cohort study determining the prevalence of thrombotic events in children with acute lymphoblastic leukemia and a central venous line who are treated with L-asparaginase: results of the Prophylactic Antithrombin Replacement in Kids with Acute Lymphoblastic Leukemia Treated with Asparaginase (PARKAA) Study. Cancer 2003; 97: 508–516.
14. Revel-Vilk S, Yacobovich J, Tamary H, Goldstein G, Nemet S, Weintraub M et al.: Risk factors for central venous catheter thrombotic complications in children and adolescents with cancer. Cancer 2010; 116: 4197–4205.
15. Matsu shima K, Frankel HL: Bedside ultrasound can safely eliminate the need for chest radiographs after central venous catheter placement: CVC sono in the surgical ICU (SICU). J Surg Res 2010; 163: 155–161.
16. Kerr TM, Lutter KS, Moeller DM, Hasselfeld KA, Roedersheimer LR, McKenna PJ et al.: Upper extremity venous thrombosis diagnosed by duplex scanning. Am J Surg 1990; 160: 202–206.
17. Gaitini D, Beck-Razi N, Haim N, Brenner B: Prevalence of upper extremity deep vein thrombosis diagnosed by color Doppler duplex sonography in cancer patients with central venous catheters. J Ultrasound Med 2006; 25: 1297–1300.
18. Male C, Chait P, Ginsberg JS, Hanna K, Andrew M, Halton J et al.: Comparison of venography and ultrasound for the diagnosis of asymptomatic deep vein thrombosis in the upper body in children: results of the PARKAA study. Prophylactic Antithrombin Replacement in Kids with ALL treated with Asparaginase. Thromb Haemost 2002; 87: 593–598.
19. Chin EE, Zimmerman PT, Grant EG: Sonographic evaluation of upper extremity deep venous thrombosis. J Ultrasound Med 2005; 24: 829–838.
20. Baarslag HJ, van Beek EJ, Koopman MM, Reekers JA: Prospective study of color duplex ultrasonography compared with contrast venography in patients suspected of having deep venous thrombosis of the upper extremities. Ann Intern Med 2002; 136: 865–872.