The backpropagation algorithm implemented on spiking neuromorphic hardware

The capabilities of natural neural systems have inspired both new generations of machine learning algorithms as well as neuromorphic, very large-scale integrated circuits capable of fast, low-power information processing. However, it has been argued that most modern machine learning algorithms are not neurophysiologically plausible. In particular, the workhorse of modern deep learning, the backpropagation algorithm, has proven difficult to translate to neuromorphic hardware. This study presents a neuromorphic, spiking backpropagation algorithm based on synfire-gated dynamical information coordination and processing implemented on Intel’s Loihi neuromorphic research processor. We demonstrate a proof-of-principle three-layer circuit that learns to classify digits and clothing items from the MNIST and Fashion MNIST datasets. To our knowledge, this is the first work to show a Spiking Neural Network implementation of the exact backpropagation algorithm that is fully on-chip without a computer in the loop. It is competitive in accuracy with off-chip trained SNNs and achieves an energy-delay product suitable for edge computing. This implementation shows a path for using in-memory, massively parallel neuromorphic processors for low-power, low-latency implementation of modern deep learning applications.

Spike-based learning in plastic neuronal networks plays increasingly key roles in both theoretical neuroscience and neuromorphic computing. The brain learns in part by modifying the synaptic strengths between neurons and neuronal populations. Classically, backpropagation (BP) has been essential for supervised learning in artificial neural networks (ANNs). Although the question of whether or not BP operates in the brain is still an outstanding issue, BP does solve the problem of how a global objective function can be related to a local synaptic modification in a network. It seems clear, however, that if BP is implemented in the brain, or if one wishes to implement BP in a neuromorphic circuit, some amount of dynamical information coordination is necessary to propagate the correct information to the proper location such that appropriate local synaptic modification may take place to enable learning.

There is growing interest in reformulating classical algorithms for learning, optimization, and control using event-based...
information-processing mechanisms. Such spiking neural networks (SNNs) are inspired by the function of biological neural systems, i.e., neuromorphic computing. The trend is driven by the advent of flexible computing architectures such as Intel’s neuromorphic research processor, codenamed Loihi, that enable experimentation with such algorithms in hardware.

There is particular interest in deep learning, a central tool in modern machine learning. Deep learning relies on a layered, feed-forward network similar to the early layers of the visual cortex, with threshold nonlinearities at each layer that resemble mean-field approximations of neuronal integrate-and-fire models. While feed-forward architectures are readily translated to neuromorphic hardware, the far more computationally intensive training of these networks ‘on-chip’ has proven elusive as the structure of back-propagation makes the algorithm notoriously difficult to implement in a neural circuit. Interest in a feasible neural implementation of backpropagation has gained renewed momentum with the advent of neuromorphic computational architectures that feature local synaptic plasticity. Because of the well-known difficulties, neuromorphic systems have relied to date almost entirely on conventional off-chip learning and used on-chip computing only for inference. Developing learning systems whose function is realized exclusively using neuromorphic mechanisms has been a long-standing challenge.

Backpropagation has been claimed to be biologically implausible or difficult to implement on spiking chips because of several issues:

(a) Weight transport—usually, synapses in biology and on neuromorphic hardware cannot be used bidirectionally; therefore, separate synapses for the forward and backward pass are employed. However, correct credit assignment, i.e., knowing how a weight change affects the error, requires feedback weights to be the same as feedforward weights.

(b) Backwards computation—forward and backward passes implement different computations. The forward pass requires only weighted summation of the inputs, while the backward pass operates in the opposite direction and additionally takes into account the derivative of the activation function;

(c) Gradient storage—error gradients must be computed and stored separately from activations;

(d) Differentiability—for spiking networks, the issue of non-differentiability of spikes has been discussed, and solutions have been proposed and tested in simulation.

(e) Hardware constraints—for the case of neuromorphic hardware, there are often constraints on plasticity mechanisms, which allow for adaptation of synaptic weights. On some hardware, no plasticity is offered at all, while in some cases, only specific spike-timing-dependent plasticity (STDP) rules are allowed. Additionally, in almost all available neuromorphic architectures, information must be local, i.e., information is only shared between synaptically connected neurons, particularly to facilitate parallelization.

The most commonly used approach to avoiding the above issues is to use neuromorphic hardware only for inference using fixed weights obtained by training of an identical network offline and off-chip. This approach has recently achieved state-of-the-art performance. Hardware-independent ANN-SNN conversion approaches can therefore compete with quantized neural networks also for large architectures and datasets. However, off-chip, offline training does not make use of neuromorphic hardware’s full potential and therefore consumes excessive power. Moreover, to function in most field applications, an inference algorithm should be able to learn adaptively after deployment, e.g., to adjust to a particular speaker in speech recognition, which would enable better autonomy and privacy of edge computing devices. So far, only last layer training, without back-propagation and using variants of the delta rule, has been achieved on spiking hardware. Other on-chip learning approaches use alternatives to backpropagation, bio-inspired non-gradient based methods, or hybrid systems with a conventional computer in the loop. Several promising alternative approaches for actual on-chip spiking backpropagation have been proposed recently, but have not yet been implemented in hardware.

To avoid the backward computation issue (b) and because neuromorphic synapses are not bidirectional, a separate feedback network for the backpropagation of errors has been proposed (see Fig. 1). This leads to the weight transport problem (a), which has been solved by using symmetric learning rules to maintain weight symmetry or with the Kolen-Pollack algorithm, which leads to symmetric weights automatically. It has also been found that weights do not have to be perfectly symmetric because backpropagation can still be effective with random feedback weights (random feedback alignment). However, symmetry in the sign between forward and backward weights matters.

The backward computation issue (b) and the gradient storage issue (c) have been addressed by approaches that separate the function of the neuron into different compartments and use structures that resemble neuronal dendrites for the computation of backward propagating errors. The differentiability issue (d) has been circumvented by spiking rate-based approaches that use the ReLU activation function as done in ANNs. The differentiability issue has also been addressed more generally using surrogate gradient methods and methods that use biologically-inspired STDP and reward modulated STDP mechanisms. For a review of SNN-based deep learning, see. For a review of backpropagation in the brain, see.

In this study, we describe a hardware implementation of the exact backpropagation algorithm that addresses the issues described above using a set of mechanisms that have been developed and tested in simulation by the authors during the past decade, synthesized in our recent study and simplified and adapted here to the features and

![Fig. 1](Overview of conceptual circuit architecture. Feedforward activations of input (x), hidden (h) and output (o) layers are calculated by a feedforward module. Errors (e = t – o) are calculated from the output and the training signal (t). Errors are backpropagated through a feedback module with the same weights W2 for synapses between h and e, but in the opposite direction (mathematically expressed as the transpose, W2T). Local gradients (d1, d2) are gated back into the feedforward circuit at appropriate times to accomplish potentiation or depression of appropriate weights.)
constraints of the Loihi chip. These neuronal and network features include propagation of graded information in a circuit composed of neural populations using synfire-gated synfire chains (SSGCs)69–72, control flow based on the interaction of synfire chains73, and regulation of Hebbian learning using synfire-gating75,76. We simplify our previously proposed network architecture75 and streamline its function. We demonstrate our approach using a proof-of-principle implementation on Loihi77 and examine the performance of the algorithm for learning and inference of the MNIST75 and Fashion MNIST76 test data sets. The nBP implementation is competitive in clock time, sparsity, and power consumption with comparable state-of-the-art algorithms for the same tasks.

Perhaps most importantly, this forms a missing baseline in the field against which novel neuromorphic training algorithms can be assessed. With the proliferation of machine learning applications in the public sphere, there is a need for more efficient training options. We collect many of the current attempts into tables to facilitate further comparisons and hope this will stimulate other work investigating what can currently be achieved with available neuromorphic hardware.

Results
The binarized nBP model
For the proof of principle implementation on the Loihi hardware, we simplify and extend our previous architecture75 using several new algorithmic and hardware-specific mechanisms. Each unit of the neural network is implemented as a single spiking neuron, using the current-based leaky integrate-and-fire (CUBA) model (see Equations (19) and (20) in the Methods section) that is built into Loihi. The time constants of the CUBA model are set to 1 so that the neurons are memoryless. Rather than using rate coding, where spikes are counted over time, we consider neuron spikes at every algorithmic time step so we can regard our implementation as a binary neural network (binary in activation, not weights). The network’s feedforward component is a classic multilayer perceptron (MLP) with three layers, a binary activation function, and discrete (8-bit) weights. However, our approach may be extended to deeper networks and different encodings. In the following equations, each lowercase letter corresponds to a Boolean vector representing a layer of spiking neurons on the chip (a spike corresponds to a 1). The inference (forward) pass through the network is computed as:

\[\mathbf{o} = f(W_f f(W_j x)), \]

(1)

\[f(x) = H(x - 0.5), \]

(2)

\[H(x) = \begin{cases} 0, & x < 0, \\ 1, & x \geq 0, \end{cases} \]

(3)

where \(W_f \) is the weight matrix of the respective layer, \(f \) is a binary activation function with a threshold of 0.5, and \(H \) denotes the Heaviside function. The forward pass thus occurs in 3 time steps as spikes are propagated through layers. The degree to which the feedforward network’s output \(\mathbf{o} \) deviates from a target value \(\mathbf{t} \) is quantified by the squared error, \(\mathbf{E} = \frac{1}{2} \| \mathbf{o} - \mathbf{t} \|^2 \), which we would like to minimize. Performing backpropagation to achieve this requires the calculation of weight updates, which depend on the forward activations, and backward propagated local gradients \(\mathbf{d}_l \) which represent the amount by which the loss changes when the activity of that neuron changes, as:

\[\mathbf{d}_2 = (\mathbf{o} - \mathbf{t}) \odot f'(W_2 \mathbf{h}), \]

(4)

\[\mathbf{d}_l = \text{sgn}(W_2^T \mathbf{d}_2) \odot f'(W_l \mathbf{x}), \]

(5)

Here, \(\cdot \) denotes a Hadamard product, i.e. the element-wise product of two vectors, \(\odot \) denotes the matrix transpose, \(\text{sgn}(x) \) is the sign function, and \(\mathbf{a}_l \) denotes the activation of the \(l \)th layer, \(f(W(a_l)) \), with \(a_0 = x, \mathbf{a}_1 = \mathbf{h}, \mathbf{a}_2 = \mathbf{o} \). Here, \(\eta \) denotes the learning rate and is the only hyperparameter of the model apart from the weight initialization. Denotes the derivative, but because \(f \) is a binary thresholding function (Heaviside), the derivative would be the Dirac delta function, which is zero everywhere apart from at the threshold. Therefore, we use a common method77,78 and represent the thresholding function using a truncated (between 0 and 1) ReLU (Equation (8)) as a surrogate or straight-through estimator when back-propagating the error. The derivative of the surrogate is a box function (Equation (9)):

\[f_{\text{surrogate}}(x) = \min(\max(x, 0), 1), \]

(8)

\[f'(x) = H(x) - H(x - 1). \]

(9)

The three functions (Equations (2), (8) and (9)) are plotted in the inset in Fig. 2.

When performed for each target \(\mathbf{t} \) in the training set, the model may be considered a stochastic gradient descent algorithm with a fixed step size update for each weight in the direction of the gradient sign.

nBP on Neuromorphic Hardware
On the computational level, Equations (1)–(9) fully describe the model exactly as implemented on Loihi, except for the handling of bit precision constraints that affect integer discreteness and value limits and ranges. In the following, we describe how these equations are translated from the computational to the algorithmic neural circuit level, enabling implementation on neuromorphic hardware. Further details on the implementation can be found in the Methods section.

a. Hebbian weight update Equation (7) effectively results in the following weight update per single synapse from presynaptic index \(i \) in layer \(l - 1 \) to postsynaptic index \(j \) in layer \(l \):

\[\Delta w_{ij} = -\eta \cdot a_{i-1,j} \cdot d_{i,j}, \]

(10)

where \(\eta \) is the constant learning rate. To accomplish this update, we use a Hebbian learning rule79 implemented on the on-chip microcode learning engine (for the exact implementation on Loihi, see Methods). Hebbian learning means that neurons that fire together, wire together, i.e., the weight update \(\Delta w \) is proportional to the product of the simultaneous activity of the presynaptic (source) and the postsynaptic (target) neurons. In our case, this means that the values of the two factors of Equation (10) have to be propagated simultaneously, in the same time step, to the pre- \(a_{i-1,j} \) and postsynaptic \(d_{i,j} \) neurons. In contrast, the pre- and postsynaptic neurons are not allowed to fire simultaneously at any other time. For this purpose, a mechanism to control the information flow through the network is needed.

b. Gating controls the information flow As an information control mechanism, we use synfire gating80–83. The gating chain, a closed chain of 12 neurons containing a single spike perpetually sent around the circle, is the backbone of this flow control mechanism. The gating chain controls information flow through the controlled network by selectively boosting layers to bring their neurons closer to the threshold, thereby making them receptive to input.
By connecting particular layers to the gating neuron that fires in the respective time steps, we lay out a path that the activity through the network is allowed to take. For example, to create the feedforward pass, the input layer x is connected to the first gating neuron and therefore gated ‘on’ in time step 1, the hidden layer h is connected to the second gating neuron and gated ‘on’ in time step 2, and the output layer o is connected to the third gating neuron and gated ‘on’ in time step 3. A schematic of this path of the activity can be found in Fig. 2. To speak in neuroscience terms, we are using synfire gating to design functional connectivity through the network anatomy shown in Supplementary Fig. 1.

The columns correspond to the time steps of the algorithm, which are the same as the time steps on Loihi. Time steps 5 and 7 are highlighted as in these steps, the sign of the weight update is inverted (positive), as $r = 1$ in Equation (23). Supplementary Table I shows the information contained in each layer in each respective time step and a detailed step-by-step explanation of the algorithm is given in the Supplementary Methods. The plot in the top left corner illustrates our approach to approximate the activation function f by a surrogate with the box function as derivative, $f_{\text{surr}} = H(x)(1 - x)$, where f is the rectified linear map (ReLU) (see Equations (2), (8) and (9)).

Fig. 2 | Functional connectivity of the 2-layer backpropagation circuit. Layers are only shown when gated ‘on,’ and synapses are only shown when their target is gated on. Plastic connections are all-to-all (fully connected), i.e., all neurons are connected to all neurons in the next layer. The gating connections from the gating chain are one-to-all, and all other connections are one-to-one, which means that a firing pattern is copied directly to the following layer. The names of the neuron layers are given on the left margin so that the row corresponds to layer identity. The columns correspond to the time steps of the algorithm, which are the same as the time steps on Loihi. Time steps 5 and 7 are highlighted as in these steps, the sign of the weight update is inverted (positive), as $r = 1$ in Equation (23). Supplementary Table I shows the information contained in each layer in each respective time step and a detailed step-by-step explanation of the algorithm is given in the Supplementary Methods. The plot in the top left corner illustrates our approach to approximate the activation function f by a surrogate with the box function as derivative, $f_{\text{surr}} = H(x)(1 - x)$, where f is the rectified linear map (ReLU) (see Equations (2), (8) and (9)).

By connecting particular layers to the gating neuron that fires in the respective time steps, we lay out a path that the activity through the network is allowed to take. For example, to create the feedforward pass, the input layer x is connected to the first gating neuron and therefore gated ‘on’ in time step 1, the hidden layer h is connected to the second gating neuron and gated ‘on’ in time step 2, and the output layer o is connected to the third gating neuron and gated ‘on’ in time step 3. A schematic of this path of the activity can be found in Fig. 2. To speak in neuroscience terms, we are using synfire gating to design functional connectivity through the network anatomy shown in Supplementary Fig. 1. Using synfire gating, the local gradient d_{ij} is brought to the postsynaptic neuron at the same time as the activity a_{i-1} is brought back to the presynaptic neuron effecting a weight update. In addition to bringing activity at the right time to the right place for Hebbian learning, the gating chain also makes it possible to calculate and back-propagate the local gradient.

c. **Local gradient calculation** For the local gradient calculation, according to Equation (5), the error $o - t$ and the box function derivative of the surrogate activation function (Equation (9)) are needed. Because there are no negative (signed) spikes, the local gradient is calculated and propagated back twice for a Hebbian weight update in two phases with different signs. The error $o - t$ is calculated in time step 4 in a layer that receives excitatory (positive) input from the output layer o and inhibitory (negative) input from the target layer t, and vice versa for $t - o$.

The box function $f(x)$ (Equation (9)) has the role of initiating learning when the presynaptic neuron receives a non-negative input and of terminating learning when the input exceeds 1, which is why we call the two conditions ‘start’ and ‘stop’ learning (inspired by the nomenclature of ref. 81). This inherent feature of backpropagation avoids weight updates that do not affect the current output as the neuron is saturated with the current input due to the nonlinearity. This regulates learning by protecting trained weights mainly used for other inputs.

To implement these two terms of the box function (Equation (9)), we use two copies of the output layer that receive the same input ($W_2 h$) as the output layer. Using the above-described gating mechanism, one of the copies (start learning, $o^\text{<}$) is brought exactly to its firing threshold when it receives the input, which means that it fires for any activity >0, and the input is not in the lower saturation region of the ReLU. The other copy (stop learning, $o^\text{>}$) is brought further away from the threshold (to 0),
which means that if it fires, the upper saturation region of the ReLU has been reached, and learning should cease.

d. **Error backpropagation** Once the local gradient d_i is calculated as described in the previous paragraph, it is sent to the output layer to update W_2 in time steps 5 and 9. From there, the local gradient is propagated back through the weight matrices W_1 and $-W_1^T$. These weight matrices are ‘transposed’ copies of W_2, i.e., they are connected in the opposite direction. Once propagated backward, the back-propagated error is combined with the ‘start’ and ‘stop’ learning conditions and then sent to the hidden layer in steps 7 and 11. All copies of the weight matrices receive the same update so that they maintain the same weight values.

Algorithm performance

Our implementation of the nBP algorithm on Loihi achieves an average inference accuracy of 95.7% after 60 epochs (best of 3 runs in any epoch: 96.3%) on the MNIST test data set, which is comparable with other shallow, stochastic gradient descent (SGD) trained MLP models without additional allowances. When multiple spikes were present in the output layer, the lowest indexed output was accepted. This occurred in ~2% of cases. The average top-1 accuracy read out from the output layer (0.1 spikes per neuron per inference). Furthermore, as expected, the sparsity of the backpropagation layers increases during training: The error-induced activity from the local gradient layer d_i starts with 0.7 spikes per neuron per sample (during the first 1000 samples) and is essentially switched off in the trained network as the error approaches 0.

Additionally, we evaluated the algorithm on the more challenging drop-in replacement Fashion MNISTi and obtained an accuracy of 79% (81.8% top-1 before thresholding) with a network of size 784-400-10 with binarized images after 40 epochs. This is close to the accuracy (84.4%) of an ANN of this size trained with stochastic gradient descent on the same dataset (for details, see Methods).

Discussion

As we have demonstrated here, by using a well-defined set of neuronal and neural circuit mechanisms, it is possible to implement the backpropagation algorithm on contemporary neuromorphic hardware. Previously proposed methods to address the issues outlined in the Introduction were not on their own able to offer a straightforward path to implement a variant of the nBP algorithm on current hardware. In this study, we avoided or solved these previously encountered issues with neuromorphic backpropagation by combining known solutions with synfire-gated synfire chains (SGSC) as a dynamical information coordination scheme. The algorithm was evaluated on the MNIST and Fashion MNIST test data set on the Loihi VLSI hardware.

The five issues (a)–(e) listed in the Introduction were addressed using the following solutions: (a) The weight transport issue was avoided via the use of a deterministic, symmetric learning rule for the parts of the network that implement inference (feed-forward) and error propagation (feedback) as described by50. This approach is not biologically plausible because of a lack of developmental mechanisms to assure the equality of corresponding weights53. It would, however, without modifications to the architecture be feasible to employ weight decay as described by Kolen and Pollack57 to achieve self-alignment of the backward weights to the forward weights or to use feedback alignment to approximately align the feedforward weights to random feedback weights58; (b) The backward computation issue was solved by using a separate error propagation network through which activation is routed using an SGSC; (c) The gradient storage issue was solved by routing activity through the inference and error propagation circuits within the network in separate stages, thereby preventing the mixing of inference and error information. Some alternatives would not require synfire gated routing but are more challenging to implement on hardware60 as also described in a more comprehensive review4; (d) The differentiability issue was solved by representing the step activation function by a surrogate in the form of a (truncated) ReLU activation function with an easily implementable box function derivative; and (e) The hardware constraint issue was solved by the proposed mechanism’s straightforward implementation on Loihi because it only requires standard integrate-and-fire neurons and Hebbian learning that is modulated by a single factor which is the same for all synapses.

Fig. 3 | Accuracy (acc) and loss (mean squared error, mse) over epochs. The plot shows the mean over three training runs with random weight initialization and random dataset shuffling during training. Individual runs are shown with dots connected by a finer line. In addition to the accuracy and loss calculated using the last layer's spikes, the top-1 accuracy is calculated from the last layer's membrane potential. The accuracy calculation was performed off-chip using checkpoints stored from the on-chip trained network after each half training epoch. Note separate axis scaling for accuracy (left) and loss (right).
While neural network algorithms on GPUs usually use operations on dense activation vectors and weight matrices and, therefore, do not profit from sparsity, spiking neuromorphic hardware only performs an addition operation when a spike event occurs, i.e., adding the weight to the input current, as in Equations (19) and (20). This means that the power consumption directly depends on the number of spikes. Therefore, sparsity, which refers to the property of a vector to have mostly zero elements, is essential for neuromorphic algorithms and, and it is also observed in biology. Consequently, significant effort has been made to make SNNs sparse to overcome the classical rate-based approach based on counting spikes. The binary encoding used here could be seen as a limit case of the quantized rate-based approach, allowing only 0 or 1 spike. Even without regularization to promote sparsity, it yields very sparse activation vectors that are as sparse as most timing codes but only use a single time step. How-

Although our implementation of nBP here was focused primarily on a particular hardware environment, we point out that the synfire-gated synfire chains and other network and neuronal structures that we employ could all potentially have relevance to the understanding of computation in neurophysiological systems. Many of the concepts we use, such as spike coincidence, were originally inspired by neurophysiological experiments. Experimental studies have shown recurring sequences of stereotypical neuronal activation in several species and brain regions and particularly replay in hippocampus. Recent studies also hypothesize and show that a mechanism like gating by synfire chains may play a role in memory formation. Additional evidence shows that large-scale cortical activity has a stereotypical, packet-like character that can convey information about the nature of a stimulus or be ongoing or spontaneous. This apparently algorithmically-related activity has a very similar form to the SGSC-controlled information flow found previously. Interestingly, this type of sequential activation of populations is evoked by the nBP learning architecture, as seen in the raster plot in Supplementary Fig. 2.

Other algorithmic spiking features, such as the back-propagated local gradient layer activity decreasing from 0.7 spikes per neuron to 0 by the end of training, could be identified and used to generate qualitative and quantitative hypotheses concerning network activity in biological neural systems.

Although our accuracy is similar to early implementations of binary neural networks in software, subsequent approaches now reach 98.5% and generally include binarized weights. However,
networks that achieve such accuracy typically employ a convolutional structure or multiple larger hidden layers. Additional features such as dropout, softmax final layers, gain terms, and others could, in principle, be included in spiking hardware and may also account for this 3% gap. So, while we show that it is possible to implement backpropagation on neuromorphic hardware efficiently, several non-trivial steps are still required to make it usable in practical applications:

1. The algorithm needs to be scaled to deeper networks. While the present structure is, in principle, scalable to more layers without considerable adjustments, more investigation is needed to determine whether gradient information remains intact over many layers and to what extent additional features, such as alternatives to batch normalization, may need to be developed.

2. Generalization to convolutional networks is compelling, particularly for image processing applications. For example, in an upgraded version of the algorithm, relay neurons could be replaced by presynaptic (eligibility) traces to keep a memory of the presynaptic activity for the weight update. Furthermore, on the chip instead of using network mechanisms. The proposed model allows an efﬁcient backpropagation of error. The degree to which the network’s output (o) deviates from the target values (t) is quantiﬁed by the squared error, E = 1/2 ∥o − t∥2, which we aim to minimize. The weight updates for each layer are computed recursively by

\[d_l = \begin{cases} (o - t) \odot f'(n_l), & l = N; \\ W_{l-1} \odot f'(n_l), & l < N, \end{cases} \]

\[\frac{\partial E}{\partial W_{l-1}} = d_{l-1}^T d_l, \]

\[W_{\text{new}} = W_{\text{old}} - \eta \frac{\partial E}{\partial W_l}. \]

where \(n_l \) is the network activity at layer \(l \) (i.e., \(n_l = f(W_l n_{l-1}) \)). Here, \(f \) denotes the derivative, \(\odot \) denotes a Hadamard product, i.e. the element-wise product of two vectors, \(d_l \) denotes the matrix transpose, and \(n_l \) denotes \(f(W_l n_{l-1}) \), with \(d_l = x \). The parameter \(\eta \) denotes the learning rate. These general Equations (12)–(14) are realized for two layers in our implementation as given by Equations (5)–(7) in the Results section. Below, we relate these equations to the neural Hebbian learning mechanism used in the neuromorphic implementation of nBP.

As the thresholding (Heaviside) activation function is not differentiable, we replace it with a surrogate \(f_{\text{surrogate}} = \max(0, f) \) rectiﬁed linear map (ReLU) truncated between 0 and 1 (Equation (16)) in the part of the circuit that affects error backpropagation. The derivative \(f' \) of the surrogate in Equation (12) is then a box function, i.e.

\[f(x) = H(x - 0.5), \]

\[f_{\text{surrogate}}(x) = \min(\max(x, 0), 1), \]

\[f(x) = H(x) - H(x - 1), \]

where \(H \) denotes the Heaviside function:

\[H(x) = \begin{cases} 0, & x < 0; \\ 1, & x \geq 0. \end{cases} \]

The following section describes how we implement Equations (11)–(16) in a spiking neural network.

Weight initialization. Plastic weights are initialized by sampling from a Gaussian distribution with a mean of 0 and a standard deviation of \(1/\sqrt{2/(N_{\text{fanin}} + N_{\text{fanout}})} \) (He initialization \(\text{HI} \)). \(N_{\text{fanin}} \) denotes the number of neurons of the presynaptic layer and \(N_{\text{fanout}} \) the number of neurons of the postsynaptic layer.

Input data. The images of the MNIST dataset were optionally cropped by a margin of 4 pixels on each side to remove pixels that are never active and avoid unused neurons and synapses on the chip.

Methods

In this section, we describe our system on three different levels. First, we describe the computational level by fully stating the equations that result in the intended computation. Second, we describe the spiking neural network (SNN) algorithm. Third, we describe the details of our hardware implementation necessary for exact reproducibility.

The binarized backpropagation model

Network Model. The inference (forward) pass through the network is computed as

\[o = f(W_o f(W_{N-1} \ldots f(W_{x}))), \]

where \(f \) is an element-wise nonlinearity and \(W_l \) is the weight matrix of the respective layer. The degree to which the network’s output \(o \) deviates from the target values \(t \) is quantified by the squared error, \(E = \frac{1}{2} \parallel o - t \parallel^2 \), which we aim to minimize. The weight updates for each layer are computed recursively by

\[d_l = \begin{cases} (o - t) \odot f'(n_l), & l = N; \\ W_{l-1} \odot f'(n_l), & l < N, \end{cases} \]

\[\frac{\partial E}{\partial W_{l-1}} = d_{l-1}^T d_l, \]

\[W_{\text{new}} = W_{\text{old}} - \eta \frac{\partial E}{\partial W_l}. \]

where \(n_l \) is the network activity at layer \(l \) (i.e., \(n_l = f(W_l n_{l-1}) \)). Here, \(f \) denotes the derivative, \(\odot \) denotes a Hadamard product, i.e. the element-wise product of two vectors, \(d_l \) denotes the matrix transpose, and \(n_l \) denotes \(f(W_l n_{l-1}) \), with \(d_l = x \). The parameter \(\eta \) denotes the learning rate. These general Equations (12)–(14) are realized for two layers in our implementation as given by Equations (5)–(7) in the Results section. Below, we relate these equations to the neural Hebbian learning mechanism used in the neuromorphic implementation of nBP.

As the thresholding (Heaviside) activation function is not differentiable, we replace it with a surrogate rectified linear map (ReLU) truncated between 0 and 1 (Equation (16)) in the part of the circuit that affects error backpropagation. The derivative \(f' \) of the surrogate in Equation (12) is then a box function, i.e.

\[f(x) = H(x - 0.5), \]

\[f_{\text{surrogate}}(x) = \min(\max(x, 0), 1), \]

\[f(x) = H(x) - H(x - 1), \]

where \(H \) denotes the Heaviside function:

\[H(x) = \begin{cases} 0, & x < 0; \\ 1, & x \geq 0. \end{cases} \]

The following section describes how we implement Equations (11)–(16) in a spiking neural network.

Weight initialization. Plastic weights are initialized by sampling from a Gaussian distribution with a mean of 0 and a standard deviation of \(1/\sqrt{2/(N_{\text{fanin}} + N_{\text{fanout}})} \) (He initialization). \(N_{\text{fanin}} \) denotes the number of neurons of the presynaptic layer and \(N_{\text{fanout}} \) the number of neurons of the postsynaptic layer.

Input data. The images of the MNIST dataset were optionally cropped by a margin of 4 pixels on each side to remove pixels that are never active and avoid unused neurons and synapses on the chip.
The pixel values were thresholded with 0.5 to get a black-and-white image as input to the network. In the case of the 100 – 300 – 10 architecture, the input images were downsampled by a factor of 2. The dataset was presented in a different random order in each epoch.

Accuracy calculation. The reported accuracies are calculated on the MNIST or FMNIST test data set. A sample was counted as correct when the index of the spiking neuron of the output layer in the output phase (time step 3 in Fig. 2) is equal to the correct label index of the presented image. In <1% of cases, there was more than one spike in the output layer; in that case, the lowest spiking neuron index was compared.

The neuromorphic backpropagation algorithm

Spiking neuron model. For a generic spiking neuron element, we use the current-based linear leaky integrate-and-fire model (CUBA). This model is implemented on Intel's neuromorphic research processor, codenamed Loihi. Time evolution in the CUBA model as implemented on Loihi is described by the discrete-time dynamics with $t \in \mathbb{N}$, and time increment $\Delta t = 1$:

$$V_i(t+1) = V_i(t) - \frac{1}{\tau_v} V_i(t) + I_i(t) + I_{\text{const}},$$

(19)

$$U_i(t+1) = U_i(t) - \frac{1}{\tau_u} U_i(t) + \sum_j w_{ij} d_j(t),$$

(20)

where i identifies the neuron.

The membrane potential $V_i(t)$ is reset to 0 upon exceeding the threshold V_{thr} and remains at its reset value 0 for a refractory period, T_{ref}. Upon reset, a spike is sent to all connecting synapses. Here, $U_i(t)$ represents a neuronal current, and δ represents a time-dependent spiking input. I_{const} is a constant input current.

Parameters and mapping. In our implementation of the backpropagation algorithm, we take $\tau_v = \tau_u = 1$, $T_{\text{ref}} = 0$, and $I_{\text{const}} = -8192$ (except in gating neurons, where $I_{\text{const}} = 0$). This leads to a memoryless point neuron that spikes whenever its input in the respective time step exceeds $V_{\text{thr}} = 1024$. This happens when the neuron receives synaptic input larger than 0.5. If V_{thr}, and in the same time step, a gating input overcomes the strong inhibition of the I_{const}, i.e., it is gated ‘on.’ This is how the Heaviside function in Equation (15) is implemented. For the other activation functions, a different gating input is applied.

There is a straightforward mapping between the weights and activations in the spiking neural network (SNN) described in this section and the corresponding artificial neural network (ANN) described in the previous subsection:

$$w_{\text{SNN}} = w_{\text{ANN}} \cdot V_{\text{thr}},$$

(21)

$$a_{\text{SNN}} = a_{\text{ANN}} \cdot V_{\text{thr}}.$$

(22)

So, a value of $V_{\text{thr}} = 1024$ allows for a maximal ANN weight of 0.25 because the allowed weights on Loihi are the even integers from -256 to 254.

Feed-forward pass. The feed-forward pass can be seen as an independent circuit module that consists of 3 layers: An input layer x with 400 (20 x 20) neurons that spikes according to the binarized MNIST dataset, a hidden layer h of 400 neurons, and an output layer o of 10 neurons. The three layers are sequentially gated ‘on’ by the gating chain so that activity travels from the input layer to the hidden layer through the plastic weight matrix W_1 and then from the hidden to the output layer through the plastic weight matrix W_2.

Learning rule. The plastic weights follow the standard Hebbian learning rule with a global third factor to control the sign. Note, however, that here, unlike other work with Hebbian learning rules, due to the particular activity routed to the layers, the learning rule implements a supervised mechanism (backpropagation). Here, we give the discrete update equation as implemented on Loihi:

$$\Delta w = 4r(t) \odot x(t) \odot y(t) - 2x(t) \odot y(t) = (2r(t) - 1) \cdot 2x(t)y(t),$$

(23)

$$r(t) = \begin{cases} 1, & \text{if } (t \mod T) = 5, 7, \\ 0, & \text{otherwise}. \end{cases}$$

(24)

Above, x, y, and r represent the time series available at the synapse on the chip. The signals x and y are the pre- and postsynaptic neuron’s spike trains, i.e., they are equal to 1 in time steps when the respective neuron fires and 0 otherwise. The signal r is a third factor provided to all synapses globally. It determines in which phase (potentiation or depression) the algorithm is in. T denotes the number of phases per trial, which is 12 in this case. So, $r = 0$ in all time steps apart from the 5^th and 7^th of each iteration, where the potentiation of the weights happens. This regularly occurring r signal could thus be generated autonomously using the gating chain. On Loihi, r is provided using a so-called “reinforcement channel.” Note that the reinforcement channel can only provide a global modulatory signal that is the same for all synapses.

The above learning rule produces a positive weight update in time steps in which all three factors are 1, i.e., when both pre- and postsynaptic neurons fire and the reinforcement channel is active. It produces a negative update when only the pre- and post-synaptic neurons fire, and the weight stays the same in all other cases.

To achieve the correct weight update according to the backpropagation algorithm (see Equation (10)), the spiking network has to be designed in a way that the presynaptic activity a_{pre}, and the local gradient d_j are present in neighboring neurons at the same time step. Furthermore, the sign of the local gradient has to determine if the simultaneous activity happens in a time step with active third factor r or not.

This requires control over the flow of spikes in the network, which is achieved by a mechanism called synfire gating37,4, which we adopt and simplify here.

Gating chain. Gating neurons are a separate structure within the backpropagation circuit and are connected in a ring. That is, the gating chain is a circular chain of neurons that, once activated, controls the timing of information processing in the rest of the network. This allows information routing throughout the network to be autonomous to realize the benefits of neuromorphic hardware without the need for control by a classical sequential processor. Specifically, the neurons in the gating chain are connected to the relevant layers, allowing them to control when and where information is propagated. All layers are inhibited far away from their firing threshold by default and can only transmit information, i.e., generate spikes, if their inhibition is neutralized via activation by the gating chain. Because a neuron only fires if it is gated ‘on’ AND gets sufficient input, such gating corresponds to a logical AND or coincidence detection with the input.

In our implementation, the gating chain consists of 12 neurons corresponding to the 12 algorithmic (Loihi) time steps needed to process one sample. Each neuron is connected to all layers that must
be active in each respective time step. The network layers are connected in the manner shown in Supplementary Fig. 1, but the circuit structure, which is controlled by the gating chain, results in a functionally connected network as presented in Fig. 2, where the layers are shown according to the timing of when they become active during one iteration.

The weight of the standard gating synapses (from one of the gating neurons to each neuron in a target layer) is $w_{\text{gate}}^t = -I_{\text{const}} + 0.5V_{\text{thr}}$, i.e. each neuron that is gated ‘on’ is brought to half of its firing threshold, which effectively implements Equation (15). In four cases, i.e., for the synapses to the start learning layers in time step 2 (h^3) and 3 (o^3) and to the backpropagated local gradient layer d_i in time steps 6 and 10, the gating weight is $w_{\text{gate}} = -I_{\text{const}} + V_{\text{thr}}$. In two cases, i.e., for the synapses to the stop learning layer in time step 2 (h^2) and 3 (o^2), the gating weight is $w_{\text{gate}} = -I_{\text{const}}$. These different gating inputs lead to step activation functions with different thresholds, as required for the computations explained in point 3 in the next paragraph.

Backpropagation network modules

In the previous sections, we have explained how the weight update happens and how to bring the relevant values (d_{i-1} and d_i according to Equation (10)) to the correct place at the correct time. In this section, we discuss how these values are actually calculated. The signal d_i, which is the layer activity from the feedforward pass, does not need to be calculated but only remembered. This is done using a relay layer with synaptic delays, as explained in point 1 below. The signal d_i, the last layer local gradient, consists of 2 parts according to Equation (5). The difference between the output and the target $o - t$ (see point 2) and the box function f must be calculated. We factor the latter into two terms, a start and stop learning signal (see point 3). The signal d_i, the backpropagated local gradient, also consists of 2 parts, according to Equation (6). In addition to another ‘start’ and ‘stop’ learning signal, we need $\text{sgn}(W_2 d_i)$, whose computation is explained in point 4.

In the following equation, the weight update is annotated with the number of the paragraph in which the calculating module is described:

$$\Delta W_2 = \eta (o - t) \odot f(W_2 h) h^T,$$

(25)

$$\Delta W_4 = \eta \text{sgn}(W_2 d_i) \odot f'(W_4 x) x^T.$$

(26)

1. Relay neurons

The memory used to store the activity of the input and the hidden layer is a single relay layer connected both from and to the respective layer in a one-to-one manner with the proper delays. The input layer x sends its activity to the relay layer m, so that the activity can be restored in the W_1 update phases in time steps 7 and 11. The hidden layer x sends its activity to the relay layer m, so that the activity can be restored in the W_2 update phases in time steps 5 and 9.

2. Error calculation

The error calculation requires a representation of signed quantities, which is not directly possible in a spiking network because there are no negative spikes. This is achieved here by splitting the error evaluation into two parts, $t - o$ and $o - t$, to yield the positive and negative components separately. Similarly, the calculation of backpropagated local gradients, d_i, is performed using a negative copy of the transpose weight matrix, and it is done in 2 phases for the positive and negative local gradient, respectively. In the spiking neural network, $t - o$ is implemented by an excitatory synapse from t and an inhibitory synapse of the same strength from o, and vice versa for $o - t$. Like almost all other nonplastic synapses in the network, the absolute weight of the synapses is just above the value that makes the target neuron fire when gated on. However, the difference between the output and the target is just one part of the local gradient d_i. The other part is the derivative of the activation function (box function).

3. Start and stop learning conditions

The box function (Equation (17)) can be split into two conditions: a ‘start’ learning and a ‘stop’ learning condition. These two conditions are calculated in parallel with the feedforward pass. The feedforward activation $f(x) = H(x - 0.5V_{\text{thr}})$ corresponding to Equation (1) is an application of the spiking threshold to the layer’s input with an offset of $0.5V_{\text{thr}}$, which is given by the additional input from the gating neurons. The first term of the box function (Equation (9)), $H(x)$, is also an application of the spiking threshold, but this time with an offset equal to the firing threshold so that any input larger than 0 elicits a spike. We call this first term the ‘start’ learning condition, and it is represented in h for the hidden and in o for the output layer. The second term of the box function in Equation (9), $-H(x - V_{\text{thr}})$, is also an application of the spiking threshold, but this time without an offset so that only an input larger than the firing threshold elicits a spike. We call this second term the ‘stop’ learning condition, and it is represented in h and o for the hidden and output layers, respectively. For the W_1 update, the two conditions are combined in a box function layer $b = h - h'$ that then gates the d_i local gradient layer. For the W_2 update, the two conditions are directly applied to the d_i layers because an intermediate b layer would waste one time step. The function is, however, the same: the stop learning o inhibits the d_i layers, and the ‘start’ learning signal o gates them. In our implementation, the two conditions are obtained in parallel with the feedforward pass, which requires two additional copies of each of the two weight matrices. To avoid these copies, one could do this computation sequentially, using the synapses and layers of the feedforward pass three times per layer with different offsets and then routing the outputs to their respective destinations. This would, however, require more time steps.

4. Error backpropagation

Error calculation and gating by the start learning signal and inhibition by the stop learning signal are combined in time step 4 to calculate the last layer local gradients d_{i-1} and d_i. From there, the local gradients are routed into the output layer and its copies for the last layer weight update. This happens in 2 phases: The positive local gradient d_i is connected without delay, leading to potentiation of the forward and backward last layer weight matrices in time step 5. The negative local gradient is connected with a delay of four time steps so that it arrives in the depression phase in time step 9. The opposite delays are used to get a weight update with the opposite sign for the connections to the o^3 layer, which is connected to the negative copy $-W_2^T$. See Fig. 2 for a visualization of this mechanism. Effectively, this leads to the last layer weight update.

$$\Delta W_2 = \eta H(t - o) \odot f(W_2 h) h^T$$

$$- \eta H(o - t) \odot f(W_2 h) h^T,$$

(27)

where the first term on the right-hand side is non-zero when the local gradient is positive, corresponding to an update happening in the potentiation phase, and the second term is nonzero when the local gradient is negative, corresponding to an update happening in the depression phase. The functions f and f' are as described in Equations (15) and (9).

The local gradient activation in the output layer does not only serve the purpose of updating the last layer weights, but it is also directly used to backpropagate the local gradients.
Propagating the signed local gradients backward through the network layers requires a positive and negative copy of the transposed weights, W^T_2 and $-W^T_2$, which are the weight matrices of the synapses between the output layer \mathbf{o} and the back-propagated local gradient layer \mathbf{d}_t, respectively. Here \mathbf{o}' is an intermediate layer that is created exclusively for this purpose. The local gradient is propagated backward in two phases. The part of the local gradient that leads to potentiation is propagated back in time steps 5 to 7, and the part of the local gradient that leads to depression of the W_1 weights is propagated back in time steps 9 to 11. In time step 6, the potentiating local gradient is calculated in layer \mathbf{d}_t as

$$
\mathbf{d}_t^+ = H(W_1^T \mathbf{d}_t^- + (-W_1^T \mathbf{d}_t^-)) \circ \mathbf{b}_n.
$$

(28)

and in timestep 10, the depressing local gradient is calculated in layer \mathbf{d}_t as

$$
\mathbf{d}_t^- = H(-W_1^T \mathbf{d}_t^- + W_1^T \mathbf{d}_t^-) \circ \mathbf{b}_n.
$$

(29)

Critically, this procedure does not simply separate the weights by sign but maintains a complete copy of the weights that is used to associate appropriate sign information to the back-propagated local gradient values. Note that here, the Heaviside activation function $H(x)$ is used rather than the binary activation function $f = H(x - 0.5 V_{th})$, so that any positive gradient will induce an update of the weights. Any positive threshold in this activation will lead to poor performance by making the learning insensitive to small gradient values. The transposed weight copies must be kept in sync with their forward counterparts; therefore, the updates in the potentiation and depression phases are applied concurrently to the forward and backward weights.

So, in total, after each trial, the actual first layer weight update is the sum of four different parts:

$$
\Delta W_1 = \eta(H(W_1^T \mathbf{d}_t^+ + (-W_1^T \mathbf{d}_t^-)) \circ \mathbf{b}_n) \mathbf{x}^T - \eta(H((-W_1^T \mathbf{d}_t^- + W_1^T \mathbf{d}_t^-)) \circ \mathbf{b}_n) \mathbf{x}^T.
$$

(30)

These four terms are necessary because, e.g., a positive error can also lead to depression if backpropagated through a negative weight matrix and vice versa.

Additional details can be found in the Supplementary Methods.

The nBP implementation on Loihi

Partitioning on the chip. To distribute the spike load over cores, neurons of each layer are approximately equally distributed over 96 cores of a single chip. This distribution is advantageous because only a few layers are active at each time step, and Loihi processes spikes within a core sequentially. In total, the network as presented here needs $2N_{fi} + 6N_{hid} + 7N_{out} + 12N_{gat}$ neurons. With $N_{fi} = 400$, $N_{hid} = 400$, $N_{out} = 10$, and $N_{gat} = 1$, these are 3282 neurons and about 200 k synapses, most of which are synapses of the three plastic all-to-all connections between the input and the hidden layer.

Learning implementation. The learning rule on Loihi is implemented as given in Equation (23). Because the precision of the plastic weights on Loihi is maximally 8 bits with a weight range from -256 to 256, we can only change the weight in steps of 2 without making the update non-deterministic. This is necessary for keeping the various copies of the weights in sync (hence the factor of 2 in Equation (23)). With $V_{th} = 1024$, this corresponds to a learning rate of $\eta = \frac{2}{256} \approx 0.002$. The learning rate can be changed by increasing the factor in the learning rule, which leads to a reduction in usable weight precision, or by changing the weight exponent (a factor that scales the weight by powers of 2) or V_{th}, which changes the range of possible weights according to Equations (21) and (22). The range of possible learning rates is therefore limited and may reduce the achievable accuracy in this setting. Several learning rates (settings of V_{th}) were tested with the result that the final accuracy is not very sensitive to small changes. The learning rate that yielded the best accuracy within the possible range is reported here. In the NsSDK API, the neuron traces that are used for the learning rule are $x(t), y(t)$, and $r(t)$ in Equation (23) respectively. x was used with a decay time constant of 4 so that it is only active in the respective time step, effectively corresponding to x_t. To provide the r signal, a single reinforcement channel was used and activated by a regularly firing spike generator in steps 5 and 7.

Weight initialization. After the He initialization as described in the model section of the methods, the weights are mapped to Loihi weights according to Equations (21) and (22). Then, the weights are truncated to the interval $[-240, 240]$ and discretized to 8-bit resolution, i.e., steps of 2, by rounding them to the next valid number towards 0. The truncation was performed to discourage weights close to the margin of the 8-bit range as the positive and negative weight copies get out of sync when the negative weight goes to -256 while the positive is limited to 254. This happened rarely with a minor effect on learning and was corrected every epoch.

Power measurements. All Loihi power measurements are obtained using NsSDK version 0.9.9 on the Nahuku32 board ncl-ghrd-01. Both software API and hardware were provided by Intel Labs. All other probes, including the output probes, are deactivated. For the inference measurements, we use a network consisting only of the three feed-forward layers with non-plastic weights and the gating chain of four neurons. The power was measured for the first 10, 000 samples of the training set for the training measurements and all 10, 000 samples of the test set for the inference measurements.

ANN simulation

Tensorflow FMNIST baseline. Since there is no accuracy data for the binarized Fashion MNIST (FMNIST) dataset in the literature, we conducted experiments using a simple ANN on the regular and binarized datasets. The network achieved a test accuracy of 84.4% on the binarized dataset and 88.4% on the regular dataset. The FMNIST dataset comprises grayscale images of 10 different classes of clothing items. Based on these results, we conclude that binarizing the images leads to a reduction in accuracy. However, for the MNIST dataset, comparisons were made using the regular dataset, as binarization does not significantly impact the classification of handwritten digits.

The experiments were implemented in Python 3.8 using TensorFlow Keras 2.4.0. Like the network on Loihi, we use an architecture with a single hidden layer (784-400-10). The network was trained using sparse categorical cross-entropy loss and the stochastic gradient descent (SGD) optimizer with a fixed learning rate of 0.01 for 40 epochs. We report the learning rate that led to the best accuracy, architecture and optimizer were chosen to match our network on Loihi. However, the ANN was not quantized or constrained.

Data availability

No data was collected in this work. The MNIST and Fashion MNIST datasets used to evaluate the network are publicly available.

Code availability

The source code for the Loihi implementation of the nBP algorithm is available on GitHub at https://github.com/lanl/spikingBackprop.

References

1. Linnainmaa, S. The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors. BIT Numer. Math. 16, 146–160 (1970).
2. Werbos, P. Beyond Regression: "New Tools for Prediction and Analysis in the Behavioral Sciences. https://perceptrondemo.com/assets/P/W.thesis_Beyond.Regression.1974-4b63aa5f.pdf (1974).
3. Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning Internal Representations by Error Propagation. http://www.dtic.mil/docs/citations/ADA164453 (1985).
4. Lillicrap, T. P., Santoro, A., Marris, L., Akerman, C. J. & Hinton, G. Backpropagation and the brain. Nat. Rev. Neurosci. 21, 335–346 (2020).
5. Roelfsema, P. R. & Holtmaat, A. Control of synaptic plasticity in deep cortical networks. Nat. Rev. Neurosci. 19, 166–180 (2018).
6. Yamins, D. L. & DiCarlo, J. J. Using goal-driven deep learning models to understand sensory cortex. Nat. Neurosci. 19, 356–365 (2016).
7. Mead, C. Neuromorphic electronic systems. Proc. IEEE 78, 1629–1836 (1990).
8. Davies, M. et al. Loihi: A neuromorphic manycore processor with on-chip learning. IEEE Micro. 38, 82–99 (2018).
9. Esser, S. et al. Convolutional networks for fast, energy-efficient neuromorphic computing. Proc. Natl Acad. Sci. USA 113, 11441–11446 (2016).
10. Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M. & Liu, S.-C. Conversion of continuous-valued deep networks to efficient event-driven networks for image classification. Front. Neurosci. 11, 682 (2017).
11. Sevora, W., Vineyard, C. M., Dellana, R., Verzi, S. J. & Aimeone, J. B. Training deep neural networks for binary communication with the Whetstone method. Nat. Mach. Intell. 1, 86–94 (2019).
12. Grossberg, S. Competitive learning: from interactive activation to adaptive resonance. In Connectionist Models and Their Implications: Readings from Cognitive Science. (eds. Waltz, D. & Feldman, J. A.) 243–283 (Ablex Publishing Corp., Norwood, NJ, USA, 1988).
13. Crick, F. The recent excitement about neural networks. Nature 337, 129–132 (1989).
14. Painkras, E. et al. SpiNNaker: A multi-core system-on-chip for massively-parallel neural net simulation. In Proc. IEEE 2012 Custom Integrated Circuits Conference (IEEE, 2012).
15. Schemmel, J. et al. A wafer-scale neuromorphic hardware system for large-scale neural modeling. In Proc. IEEE 2010 IEEE International Symposium on Circuits and Systems (IEEE, 2010).
16. Qiao, N. et al. A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128k synapses. Front. Neurosci. 9, 141 (2015).
17. Grossberg, S. Competitive learning: from interactive activation to adaptive resonance. Cogn. Sci. 11, 23–63 (1987).
18. Liao, Q., Leibo, J. & Poggio, T. How important is weight symmetry in backpropagation? In Proc. AAAI Conference on Artificial Intelligence. (IEEE, 2016).
19. Bohte, S. M., Kok, J. N. & La Poutre, H. Error-backpropagation in temporally encoded networks of spiking neurons. Neurocomputing 48, 17–37 (2002).
20. Pfister, J.-P., Toyoizumi, T., Barber, D. & Gerstner, W. Optimal spike-timing-dependent plasticity for precise action potential firing in supervised learning. Neural Comput. 18, 1318–1348 (2006).
21. Wu, Y., Deng, L., Li, G., Zhu, J. & Shi, L. Spatio-temporal back-propagation for training high-performance spiking neural networks. Front. Neurosci. 12, 331 (2018).
22. Zenke, F. & Ganguli, S. Superspike: Supervised learning in multi-layer spiking neural networks. Neural Comput. 30, 1514–1541 (2018).
23. Huh, D. & Sejnowski, T. J. Gradient descent for spiking neural networks. Adv. Neural Inform. Process. Syst. https://doi.org/10.48550/arXiv.1706.04698 (2018).
24. Zhang, W. & Li, P. Temporal spike sequence learning via back-propagation for deep spiking neural networks. Adv. Neural Inform. Process. Syst. 33, 12022–12033 (2020).
25. Rasmussen, D. Nengudi. Combining deep learning and neuromorphic modelling methods. Neuroinformatics 17, 611–628 (2019).
26. Sengupta, A., Ye, Y., Wang, R., Liu, C. & Roy, K. Going deeper in spiking neural networks: VGG and residual architectures. Front. Neurosci. 13, 95 (2019).
27. Shrestha, S. B. & Orchard, G. Slayer: Spike layer error reassignment in time. Adv. Neural Inform. Process. Syst. https://doi.org/10.48550.arXiv.1810.08646 (2018).
28. Boeslzer, G., Indiveri, G., Nair, M. & Renner, A. Accurate mapping of RNNs on neuromorphic hardware with adaptive spiking neurons. Int. Conf. Neuromorphic Syst. https://arxiv.org/pdf/2407.13534 (2024).
29. Rueckauer, B. et al. Nxtf: An API and compiler for deep spiking neural networks on intel Loihi. ACM J. Emerg. Technol. Comput. Syst. (JETC) 18, 1–22 (2022).
30. Bu, T. et al. Optimal ANN-SNN conversion for high-accuracy and ultra-low-latency spiking neural networks. In Proc. 10th International Conference on Learning Representations (ICLR, 2022).
31. Wang, Z. et al. Toward high-accuracy and low-latency spiking neural networks with two-stage optimization. IEEE Transactions on Neural Networks and Learning Systems (IEEE, 2023).
32. Stewart, K., Orchard, G., Shrestha, S. B. & Neftci, E. On-chip few-shot learning with surrogate gradient descent on a neuromorphic processor. In 2020 2nd IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS) 223–227 (IEEE, 2020).
33. DeWolf, T., Jaworski, P. & Eliasmith, C. Nengo and low-power AI hardware for robust, embedded neuromorphics. Front. Neurorobot. https://doi.org/10.3389/fnbot.2020.568359 (2020).
34. Frenkel, C., Lefebvre, M., Legat, J.-D. & Bol, D. A 0.086-mm 12.7-pj/sop 64k-synapse 256-neuron online-learning digital spiking neuromorphic processor in 28 nm cmos. IEEE Trans. Biomed. Circ. Syst. 13, 145–158 (2018).
35. Kim, J. K., K Nagar, P., Chen, T. & Zhang, Z. A 640m pixel/s 3.65 mw sparse event-driven neuromorphic object recognition processor with on-chip learning. In 2015 Symposium on VLSI Circuits (VLSI Circuits) C50–C51 (IEEE, 2015).
36. Buhler, F. N. et al. A 3.43 tops/w 48.9 pj/pixel 50.1 nj/classification 512 analog neuron sparse coding neural network with on-chip learning and classification in 40nm cmos. In 2017 Symposium on VLSI Circuits C30–C31 (IEEE, 2017).
37. Park, J., Lee, J. & Jeon, D. 6.7 a 65m 236.5 nj/classification neuromorphic processor with 7.5% energy overhead on-chip learning using direct spike-only feedback. In 2019 IEEE International Solid State Circuits Conference (ISSCC) 140–142 (IEEE, 2019).
38. Nandakumar, S. et al. Experimental demonstration of supervised learning in spiking neural networks with phase-change memory synapses. Sci. Rep. 10, 1–11 (2020).
39. Frenkel, C., Legat, J.-D. & Bol, D. A 28 nm convolutional neuromorphic processor enabling online learning with spike-based retinas. In 2020 IEEE International Symposium on Circuits and Systems (ISCAS) (IEEE, 2020).
40. Shrestha, A., Fang, H., Rider, D., Mei, Z. & Qui, G. In-hardware learning of multilayer spiking neural networks on a neuromorphic processor. In 2021 58th ACM/ESDA/IEEE Design Automation Conference (DAC) (IEEE, 2021).
41. Imam, N. & Cleland, T. A. Rapid online learning and robust recall in a neuromorphic olfactory circuit. Nat. Mach. Intell. 2, 181–191 (2020).
Sornborger, A. & Renner, A. Neuromorphic backpropagation

Marr, D. & Poggio, T. From understanding computation to understanding function. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 8529–8533 (IEEE, 2020).

Rueckauer, B. & Liu, S.-C. Conversion of analog to spike neural networks using sparse temporal coding. In 2018 IEEE International Symposium on Circuits and Systems (ISCAS), 1–5 (IEEE, Florence, Italy, 2018).

Neftci, E. et al. Synthesizing cognition in neuromorphic electronic systems. Proc. Natl Acad. Sci. 110, E3468–E3476 (2013).

Baumgartner, S. et al. Visual pattern recognition with on-chip learning: towards a fully neuromorphic approach. In Proc. IEEE International Symposium on Circuits and Systems (ISCAS) (IEEE, 2020).

Riehle, A., Grün, S., Diesmann, M. & Aertsen, A. Spike synchronization and rate modulation differentially involved in motor cortical function. Science 276, 1950–1953 (1997).

Abeles, M., Bergman, H., Margalit, E. & Vaadia, E. Spatiotemporal firing patterns in the frontal cortex of behaving monkeys. J. Neurophysiol. 70, 1629–1638 (1993).

Hahnloser, R. H., Kozhevnikov, A. A. & Fee, M. S. An ultra-sparse code underlies the generation of neural sequences in a songbird. Nature 419, 65–70 (2002).

Ikegaya, Y. et al. Synfire chains and cortical songs: temporal modules of cortical activity. Science 304, 559–564 (2004).

Foster, D. J. & Wilson, M. A. Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature 440, 680–683 (2006).

Rajan, K., Harvey, C. D. & Tank, D. W. Recurrent network models of sequence generation and memory. Neuron 90, 128–142 (2016).

Pang, R. & Fairhall, A. L. Fast and flexible sequence induction in spike neural networks via rapid excitability changes. Elife 8, e44324 (2019).

Malvache, A., Reichinnek, S., Villette, V., Haimerl, C. & Cossart, R. Awake hippocampal reactivations project onto orthogonal neuronal assemblies. Science 353, 1280–1283 (2016).

Luzzac, A., McNaughton, B. L. & Harris, K. D. Packet-based communication in the cortex. Nat. Rev. Neurosci. 16, 745–755 (2015).

Simons, T. & Lee, D.-J. A review of binarized neural networks. Electronics 8, 661 (2019).

Orchard, G. et al. Efficient neuromorphic signal processing with Loihi 2. In 2021 IEEE Workshop on Signal Processing Systems (SiPS), 254–259 (IEEE, 2021).

Lin, C.-K. et al. Programming spiking neural networks on Intel’s Loihi. Computer 51, 52–61 (2018).

Chen, G. K., Kumar, R., Sumbul, H. E., Knag, P. C. & Krishnamurthy, R. K. A 4096-neuron 1 m-synapse 3.8-pj/sop spiking neural network with on-chip STDP learning and sparse weights in 10 nm FinFET CMOS. IEEE J. Solid State Circ. 54, 992–1002 (2018).

Marr, D. & Poggio, T. From understanding computation to understanding neural circuitry. Tech. Rep. http://hdl.handle.net/1721.1/5782 (1976).

He, K., Zhang, X., Ren, S. & Sun, J. Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In Proc. IEEE international conference on computer vision, 1026–1034 (IEEE, 2015).

Sornborger, A. & Renner, A. Neuromorphic backpropagation algorithm software. Comput. Softw. https://doi.org/10.11578/dc.20220509.6 (2022).
