Influence of Ni Precursors on the Structure, Performance, and Carbon Deposition of Ni-Al₂O₃ Catalysts for CO Methanation

Wenlong Mo,* Xingxiang Wang, Meng Zou, Xianjin Huang, Fengyun Ma, Jianzhang Zhao, and Tiansheng Zhao

ABSTRACT: Three Ni-Al₂O₃ catalysts were prepared, in planetary ball-milling machine, by the mechanochemical method with Al(NO₃)₃·9H₂O as the aluminum precursor, (NH₄)₂CO₃ as the precipitant, and Ni(NO₃)₂·6H₂O, NiCl₂·6H₂O, and Ni(CH₃COO)₂·4H₂O as nickel precursors (the corresponding catalysts were labeled as Ni-NO, Ni-Cl, and Ni-Ac). The prepared catalysts were characterized by X-ray diffraction (XRD), temperature-programmed reduction (H₂-TPR), and N₂ adsorption–desorption technologies, and CO methanation performance evaluation was carried out for the catalysts. Results showed that the catalyst with Ni(NO₃)₂·6H₂O as the precursor presented good Ni dispersibility and a small Ni grain size of 6.80 nm. CO conversion, CH₄ selectivity, and yield of the catalyst were as high as 78.8, 87.9, and 69.8%, respectively. Carbon deposition analysis from temperature-programmed hydrogenation (TPH) characterization showed that the H₂ consumption peak area of the three samples followed the order: Ni-NO (2886.66 au) < Ni-Cl (4389.97 au) < Ni-Ac (5721.65 au), indicating that the Ni-NO catalyst showed higher resistance to carbon deposition, which might be due to its small Ni grain size.

1. INTRODUCTION

With the consumption and price change of fossil fuels, the issue of energy supply has aroused widespread concern. Natural gas production from synthesis gas, the methanation process, is an effective way to alleviate the energy crisis.¹⁻⁴ CO methanation (CO + 3H₂ → CH₄ + H₂O) is a typical exothermic reaction (H₂⁰⁹⁸K = −206.1 kJ/mol), and some side reactions occur in the process, such as the water gas transformation reaction (CO + H₂O → CO₂ + H₂) and the disproportionation reaction (2CO → CO₂ + C).⁵ Studies showed that the catalysts used in the CO methanation process are mainly supported catalysts, with Ni, Ru, Rh, Pt, Co, etc., as the active components,⁶⁻⁸ and Al₂O₃, ZrO₂, TiO₂, SiO₂, and SiC as the support.⁸⁻¹⁰ Among them, the Ni-Al₂O₃ catalyst shows high activity and low cost, the methanation performance of which is equivalent to that of noble-metal-based catalysts. However, there are some problems in the application of the Ni-Al₂O₃ catalyst, such as high-temperature sintering of the active component, carbon deposition on the surface of the catalyst, and catalyst poisoning.¹¹ Therefore, improving antisintering ability and anticokeing performance of the Ni-Al₂O₃ catalyst to extend the stability of the catalyst has become a topic of concern to many researchers.

Our group used different methods to prepare Ni-Al₂O₃ catalysts and found that the mechanochemical method with planetary ball-milling machine showed many advantages in preparing industrial catalysts, including large specific surface area, high active-component dispersion, uniform particle distribution, etc. Three catalysts, Ni/Al₂O₃-J, Ni/Al₂O₃-Z, and Ni/Al₂O₃-C, were prepared by the mechanochemical one-step method, the mechanochemical-impregnation two-step method, and the impregnation method (commercial Al₂O₃ as the support). Results showed that, compared with commercial Al₂O₃, the synthesized one by the mechanochemical method presented a large specific surface area and concentrated pore size distribution. The Ni/Al₂O₃-J catalyst presented regular surface morphology and good Ni dispersibility, with CO conversion, CH₄ selectivity, and CH₄ yield of 98.6, 96.0, and 94.7%, respectively. Mo et al. also investigated the influence of ball-milling time on the structure of the Ni-Al₂O₃ catalyst via the mechanochemical one-step method. Results showed that, with a milling time of up to 60 min, the average particle size of the catalyst was small, i.e., 141 nm, with a specific surface area of 329 m²/g, and CO conversion, CH₄ selectivity, and...
yield of 87.9, 86.8, and 74.3%, respectively. Excellent performance of the catalyst might be closely related to its small particle size (141 nm) and large specific surface area (329 m²/g). The effect of calcination temperature on the crystal structure, reduction performance, pore structure, and CO methanation performance of the Ni-Al₂O₃ catalyst was also investigated. With an increase of the calcination temperature from 350 to 700 °C, NiO was still highly dispersed on the surface of the support, while the reduction peak temperature of the catalyst was shifted to a high temperature. Among them, the cat-450 sample with a calcination temperature of 450 °C showed a higher specific surface area of 350 m²/g and higher performance, with CO conversion, CH₄ selectivity, and yield of 97.8, 88.2, and 86.2%, respectively.

In this study, three Ni-Al₂O₃ catalysts with a theoretical nickel mass fraction of 15 wt % were prepared with Al(NO₃)₃·9H₂O as the aluminum precursor, (NH₄)₂CO₃ as the precipitant, and Ni(NO₃)₂·6H₂O, NiCl₂·6H₂O, and Ni-(CH₃COO)₂·4H₂O as nickel precursors. The effect of the Ni precursor on the structure, performance, and carbon deposition of the Ni-Al₂O₃ catalyst for CO methanation in slurry bed was investigated.

2. RESULTS AND DISCUSSION

2.1. Catalyst Characterization. 2.1.1. X-ray Diffraction (XRD) Analysis. Figure 1 shows the XRD patterns of the calcinated and reduced samples. It can be seen from Figure 1a that the X-ray diffraction peaks at 2θ = 37.5, 45.5, and 67.1° are indexed to γ-Al₂O₃ species, while no characteristic peak of NiO is observed, indicating that NiO in the three catalysts is well dispersed on Al₂O₃, which is the feature of the mechanochemical one-step method. Mo et al. prepared a series of Ni-Al₂O₃ catalysts by the method of 1,4-butylenediamine (BYD) hydrocyanation to produce 1,4-butanediol (BED). Excellent performance of the catalyst is mainly related to the following reasons: small catalyst particle size, high Ni loading, and good Ni dispersion. It can be seen from Figure 1b that peak positions of Al₂O₃ were not changed after the high-temperature reduction process, indicating that the spinel of Al₂O₃ remains the same, showing high stability. The existing proposed methanation mechanism can be divided into two categories: (1) associative scheme (the C–O bond breaking is assisted by adatom H₃O⁺) and (2) dissociative scheme (the C–O bond dissociated directly on the catalyst active sites). A schematic diagram is illustrated in Figure 2 (which does not show all of the exact intermediates for clarity). Therefore, Ni particles with high dispersibility are beneficial to give more catalytically active sites. Characteristic diffraction peaks attributed to metallic Ni appear at 2θ = 44.5, 51.8, and 76.4°.
76.4°. Among them, the shape of Ni peaks of the Ni-Cl sample is narrow and sharp, indicating a larger Ni particle size (15.99 nm, Table 1). The diffraction peak intensity of Ni-NO is smaller, with the peak shape more flatter, demonstrating that the dispersion of metallic Ni in the sample of Ni-NO is better than the other two catalysts, with a Ni crystal size of only 6.80 nm. Since the particle sizes of Ni(NO₃)₂·6H₂O, NiCl₂·6H₂O, and Ni(CH₃COO)₂·4H₂O are different, the dispersion of Ni on the support is diverse.¹⁹,²⁰ According to Scherrer’s formula, the Ni crystal size of each reduced catalyst was calculated at 2θ = 51.8°, as shown in Table 1.

2.1.2. Temperature-Programmed Reduction (H₂-TPR) Analysis. Figure 3 shows the H₂-TPR profiles of the calcinated catalysts. It can be seen from the figure that the peak temperature and shape of the reduction peak of the three samples are quite different. Combining with XRD analysis, the β-type peak at 500−750 °C is not attributed to the reduction of crystal NiO, but to the reduction of amorphous NiO which shows strong interaction with the support Al₂O₃. The reduction peak at 750−900 °C is ascribed to the γ-type peak, which usually belonged to the reduction of the NiAl₂O₄ spinel.²¹,²² However, it can be seen from the XRD pattern that the characteristic peak of NiAl₂O₄ is not detected. It is speculated that the γ-type reduction peak might belong to the NiO species that entered into the Al₂O₃ crystal lattice and interacted strongly with it.

It can also be seen from Figure 3 that the reduction peak temperature of Ni-Ac and Ni-NO is higher than that of Ni-Cl, indicating that the metal−support interaction between NiO and Al₂O₃ for the former two samples is stronger than the latter one. The reduction temperature can reflect the interaction between the active component and support. The Ni-Cl sample presents lower reduction temperature, indicating that this catalyst has weak interaction between the active component and support. The Ni particles agglomerated more easily in the process of reduction, resulting in a large Ni particle size, which was not beneficial for CO methanation. And the strong interaction could effectively inhibit the migration and agglomeration of the active component at high temperatures. Table 1 shows Gaussian fitting results of H₂-TPR profiles. The β- and γ-peak area proportions of Ni-Ac and Ni-NO are nearly the same, both showing a higher proportion of the γ-type peak than Ni-Cl. From XRD results, it is speculated that the higher the area proportion of the γ-type peak, the smaller the Ni crystal size, indicating that the small Ni size of Ni-Ac and Ni-NO catalysts might probably be derived from their higher γ-type peak proportion.

2.1.3. N₂ Adsorption−Desorption Analysis. Profiles of the samples belonged to the IV-type isotherm curve and the H3-type hysteresis loop, indicating that the three samples contain many slit holes.²² It can be seen from Figure 4b that pore size distributions of the three samples are similar, mainly located in the range of 2−15 nm, indicating that the catalysts prepared by the mechanochemical method are typical mesoporous materials.

Pore structure parameters, specific surface area, pore volume, and average pore diameter of the three calcinated samples are shown in Table 2. Usually, a high specific surface area can provide much contact surface or more active sites for reactants, which makes it possible to efficiently perform the reaction and enhance surface- or interface-related processes such as adsorption, desorption, and dissociation.²³ It can be seen from the table that, since the preparation method and

Catalyst	S (m²/g)	V (cm³/g)	d (nm)			
	fresh	spent	fresh	spent	fresh	spent
Ni-NO	300.8	226.9	0.50	0.44	6.7	7.7
Ni-Ac	303.4	208.8	0.58	0.45	7.6	8.7
Ni-Cl	291.6	182.7	0.57	0.49	7.8	10.7

Figure 4. (a) N₂ adsorption−desorption isotherms and (b) pore size distributions of the fresh catalysts.
aluminum source of each catalyst were the same, the specific surface area of the three samples is not much different, all around 300 m2/g. In addition, the average pore diameter of Ni-NO is 6.7 nm, smaller than that of the other two catalysts (7.6−7.8 nm), which might exhibit more obvious spatial effects for small molecules.

2.2. Catalyst Performance Evaluation. Figure 5 shows the evaluation results of three reduced catalysts for CO methanation. According to Figure 5a−c, it can be seen that the catalyst activity (CO conversion) for each catalyst is unsteady before 1 h and shows a sharp upward trend, which is the induction period of catalyst activity. And the activity is nearly steady after 1 h and continues until the end of the evaluation process. Ni-Ac presents a higher CO conversion, while its CH$_4$ selectivity is slightly worse compared to Ni-NO. For Ni-NO, lower CO conversion and higher CH$_4$ selectivity can be observed, and thus the CH$_4$ yields of Ni-Ac and Ni-NO are almost the same. Therefore, for the Ni-Ac catalyst, it can be speculated that more byproducts would be produced. It is worth noting that, under the experimental conditions, CO can not only convert to CH$_4$ but also produce some byproducts such as CO$_2$ by the water gas shift reaction (CO + H$_2$O \rightarrow CO$_2$ + H$_2$) and small amounts of C$_2$H$_6$ and C$_3$H$_8$, which might be responsible for the lower CH$_4$ selectivity by Ni-Ac. In addition, X_{CO}, S_{CH4}, and Y_{CH4} of Ni-Cl are lower than those of the former two catalysts, which could result from its large Ni crystal size.

Time-average values of X_{CO}, S_{CH4}, and Y_{CH4} in steady period from Figure 5a−c are listed in Figure 5d. For CO conversion, Ni-Ac (86.4%) > Ni-NO (78.8%) > Ni-Cl (67.2%), and the order of yield of CH$_4$ is as follows: Ni-Ac (71.4%) > Ni-NO (69.8%) > Ni-Cl (30.5%). From the aforementioned characterizations, it can be seen that Ni dispersibility (or Ni particle size) might be responsible for the higher activity of Ni-Ac and
Ni-NO, and the γ-type reduction peak might lead to a small Ni size, as shown in Figure 3.

2.3. Characterization of the Spent Catalyst. 2.3.1. N$_2$ Adsorption−Desorption Analysis. Figure 6 shows N$_2$ adsorption−desorption profiles of the spent catalysts. It can be seen from Figures 6a and 4a that the isotherm curves of the samples before and after the methanation reaction are similar, and they are ascribed to the IV-type isotherm. And the type of hysteresis loop of each spent catalyst is still H3, showing that the slit channel pores also exist in the materials. Pore size distribution of each spent catalyst is mainly in the range of 2−15 nm, which is not much different from the corresponding fresh one. However, the maximum dV/dD values of the three spent catalysts are lower than those of the fresh ones, indicating that the specific surface area of the spent catalyst might be decreased to some extent.

Pore structure parameters of the spent catalysts are shown in Table 2. Obvious change of pore structure parameters could be observed from Table 2. The specific surface area of Ni-NO decreased from 300.8 to 226.9 m2/g with a decreasing rate of 24.57%, while the surface area of Ni-Ac decreased from 303.4 to 208.8 m2/g with a decreasing rate of 31.18%, higher than that of Ni-NO. It is speculated that the decrease of surface area might be caused by carbon deposition, blocking the pore channels in catalysts. However, the pore size of Ni increased from 6.7 to 7.7 nm and that of Ni-Ac increased from 7.6 to 8.7 nm, which may be due to the collapse of micropores and the formation of macropores.

2.3.2. Fractal Dimension. Figure 7 shows linear fitting diagrams for fractal dimensions of the catalysts: (a) fresh and (b) spent catalysts. The diagrams were obtained from N$_2$ adsorption data based on the Frenkel−Halsey−Hill (FHH) theoretical model. The fitting curves of the fresh catalysts and the spent catalysts are different, indicating that the pore structure of the Ni-Al$_2$O$_3$ catalyst has been changed after the methanation process. The fractal dimension and correlation coefficient R^2 of the catalysts are given in Table 3. The correlation coefficients R^2 of the three catalysts after calcination and after reaction are all above 0.98, demonstrating that the fitting curves presented a good linear relationship and the three catalysts were of fractal characteristics. The fractal dimension D can reflect the complexity of the channel structure, the value of which was generally between 2 and 3. The larger the value, the complex the pore structure. The fractal dimensions of the three catalysts are about 2.3, indicating that the wall surface of the pores of the Ni-Al$_2$O$_3$ catalyst prepared by the mechanical ball-milling method is smooth, which might be beneficial for methanation.

2.3.3. Temperature-programmed Hydrogenation (TPH) Analysis. Figure 8 shows the TPH profiles of the catalysts after reaction. The H$_2$ consumption peak appearing before 300 °C is attributed to the hydrogenation of amorphous carbon (C$_a$). This kind of carbon shows high activity and is easy to be hydrogenated at a low temperature to form CH$_x$ species; this is also the desired type of carbon deposition for carbon-related reactions. This type of carbon is easy to transform into β-type carbon species with lower activity at a high temperature, which is the intermediate species of methanation. The peak at 300−450 °C is caused by hydrogenation of high-activity filamentous carbon (C$_{β1}$), and the peak ranging from 450 to 650 °C is ascribed to hydrogenation of low-activity filamentous carbon or coated carbon (C$_{β2}$). Furthermore, the appearance

![Figure 7. Linear fitting diagrams for fractal dimensions of the catalysts: (a) fresh and (b) spent catalysts.](https://pubs.acs.org/doi/10.1021/acsomega.1c00914)

![Figure 8. TPH profiles of the spent catalysts.](https://pubs.acs.org/doi/10.1021/acsomega.1c00914)
of a peak at 650–750 °C may be due to the infiltration of filamentous carbon into the micropores of the catalyst, labeled as C_{β}, requiring a higher temperature to be hydrogenated compared with the former three types of carbon. And the H\textsubscript{2} consumption peak in the temperature range of 750–900 °C belonged to C_{γ}, which might be the hydrogenation of graphite carbon. This type of carbon shows almost no activity and is an important reason for catalyst deactivation. It can be seen from the figure that the spent Ni-Ac catalyst presented all types of carbon deposition, while there was no amorphous carbon for the spent Ni-NO sample, which might have resulted from the fact that the deposited amorphous carbon was too active to retain on the catalyst and that the carbon was easy to react with H\textsubscript{2} to produce the intermediate CH\textsubscript{X} during the methanation process. Additionally, the spent Ni-Cl catalyst has almost no C_{β}, which may be due to its poor catalytic performance, and thus there is no accumulation of C_{β} carbon to form stable graphite carbon.

Table 4 shows the TPH carbon deposition peak area and its relative proportion of each spent catalyst. The magnitude order of the peak area is as follows: Ni-NO (2886.66 au) < Ni-Cl (4389.97 au) < Ni-Ac (5721.65). Christensen et al.27,28 prepared Ni-supported α-Al\textsubscript{2}O\textsubscript{3} and γ-Al\textsubscript{2}O\textsubscript{3} catalysts for steam reforming of methane. It is found that serious carbon deposition was attributed to the large Ni crystal size. Thus, small Ni particle size (6.80 nm) may be the reason for lower carbon deposition on the Ni-NO catalyst, showing higher anticokeing performance. Therefore, it could be understood that severe carbon accumulation of the Ni-Cl catalyst might be derived from its larger Ni particle size. According to the peak area proportion, α- and β-type carbons on the Ni-Cl catalyst account for 97.37%, illustrating that active carbon that can be hydrogenated before 750 °C is the main deposited carbon for the catalyst.

In addition, CO conversion of Ni-Ac is higher than Ni-NO, while its CH\textsubscript{4} selectivity and yield were not significantly improved, which might result from the fact that much carbon was produced on the surface of Ni-Ac in the methanation process and that a large amount of C\textsubscript{γ} (1445.77 au, from TPH profile) cannot be hydrogenated to give CH\textsubscript{4}. On the other hand, the spent Ni-Ac catalyst presents much inert carbon (C\textsubscript{α}) at 750–900 °C, indicating that the catalyst might be more prone to deactivation due to carbon deposition as the reaction time prolonged.

3. CONCLUSIONS

Three Ni-Al\textsubscript{2}O\textsubscript{3} catalysts, with Ni(NO\textsubscript{3})\textsubscript{2}·6H\textsubscript{2}O, NiCl\textsubscript{2}·6H\textsubscript{2}O, and Ni(CH\textsubscript{3}COO)\textsubscript{2}·4H\textsubscript{2}O as nickel precursors, were prepared by the mechanochemical one-step method. The structure and performance of the catalysts showed that different nickel sources presented different effects on the Ni-Al\textsubscript{2}O\textsubscript{3} catalyst. The catalysts with Ni(NO\textsubscript{3})\textsubscript{2}·6H\textsubscript{2}O and Ni(CH\textsubscript{3}COO)\textsubscript{2}·4H\textsubscript{2}O as nickel sources showed a small Ni crystal size and high CO methanation activity. The specific surface area of the three catalysts decreased significantly, implying serious pore structure destruction. Compared to Ni-Ac, Ni-NO and Ni-Cl showed higher resistance to carbon deposition, which is probably related to its small Ni size.

4. EXPERIMENTAL SECTION

4.1. Catalyst Preparation. Three Ni-Al\textsubscript{2}O\textsubscript{3} catalysts were prepared with Al(NO\textsubscript{3})\textsubscript{3}·9H\textsubscript{2}O as the aluminum precursor, (NH\textsubscript{4})\textsubscript{2}CO\textsubscript{3} as the precipitant, and Ni(NO\textsubscript{3})\textsubscript{2}·9H\textsubscript{2}O, NiCl\textsubscript{2}·6H\textsubscript{2}O, and Ni(CH\textsubscript{3}COO)\textsubscript{2}·4H\textsubscript{2}O as nickel precursors (99.99%, Tianjing Shengao Chemical Reagent Co., Ltd., China). Each catalyst was prepared, in planetary ball-milling machine (ND7-2L, Nanjing Laibu Instrument Co., Ltd., China), by the mechanochemical one-step method with mass ratios of large ball to small ball of 1:1 and ball to material of 2:1, and a ball-milling time of 60 min. After the ball-milling process, the obtained mixture was dried at 110 °C for 12 h, calcinated at 450 °C for 4 h, and reduced at 600 °C for 6 h, to obtain the activated Ni-based catalyst. The prepared catalysts were denoted as Ni-NO, Ni-Cl, and Ni-Ac according to the precursor used. The chemical reactions of different Ni precursors are shown in formulas 1–3. It can be seen that

![Figure 9. Schematic diagram of catalyst evaluation device.](image-url)
Ni(NO₃)₂·6H₂O, Al(OH)₃, corresponding salts, and CO₂ are formed in the reaction process. A homogeneous Ni/Al₂O₃ system can be formed through the calcination process of NiCO₃ and Al(OH)₃. And the Ni/Al₂O₃ catalyst with high activity might be realized after reduction

\[
\begin{align*}
4\text{Na}_2\text{CO}_3 + 2\text{Al(NO}_3)_2 \cdot 9\text{H}_2\text{O} + \text{Ni(NO}_3)_2 \cdot 6\text{H}_2\text{O} \\
= \text{NiCO}_3 \cdot 6\text{H}_2\text{O} + 2\text{Al(OH)}_3 + 8\text{NaNO}_3 + 15\text{H}_2\text{O} + 3\text{CO}_2 \uparrow
\end{align*}
\]

4.3.2. Temperature-Programmed Reduction (H₂-TPR). H₂ temperature-programmed reduction and hydrogenation (H₂-TPR and TPH) profiles were obtained using a chemical adsorption instrument (TP-5080, Xianquan Industry and Trade Development Co., Ltd., Tianjin, China) from room temperature to 1000 °C with a rate of 10 °C/min.

4.3.3. N₂ Adsorption–Desorption. An Autosorb-2 physical adsorption instrument (Quantachrome Instruments) was used for N₂ adsorption–desorption characterization. N₂ is used as the adsorbate, and the adsorption–desorption measurement was carried out at liquid nitrogen temperature (−196 °C). The catalyst (0.2 g) was degassed at 110 °C for 8 h; then, the isothermal adsorption–desorption determination was performed at −196 °C. The specific surface area of the catalyst can be obtained by the Brunauer–Emmett–Teller (BET) formula, and the pore volume and pore size distribution can be obtained by the Barrett–Joyner–Hale (BJH) model. The linear expression of the BJH formula is as follows

\[
\ln(V/V_m) = K \ln[[P_s/P]] + C
\]

where \(V \) is the volume of adsorbed gas at equilibrium pressure \(P \), cm³/g; \(P_s \) is the saturated vapor pressure of N₂, kPa; C is the parameter of the equation; and \(K \) is the slope of the straight line obtained by linear fitting with LN (V/V_m) as ordinate and LN [LN (P_s/P)] as abscissa. When 0 > K ≥ −1/3, the relationship between fractal dimension D and slope K is as follows

\[D = 3K + 3 \]

4.2. Catalyst Evaluation. Figure 9 shows the diagram of catalyst evaluation device. Liquid paraffin (250 mL, 99.99%, Shanghai Shanpu Chemical Co., Ltd., China) and catalyst (5 g) were put into a 500 mL reactor, with the reaction temperature of 280 °C, reaction pressure of 1.0 MPa, molar ratio of feed gases (H₂ to CO) of 3:1, gas hourly space velocity of 3000 mL/(g·h), and stirring rate of 750 r/min. And the reaction products are analyzed in situ using a GC400 gas chromatograph. A TDX201 column was used to analyze CH₄, CO₂, and unreacted CO and H₂ by a TCD detector.

CO conversion, CH₄ selectivity, and yield were used as catalyst performance indicators, which can be calculated as follows

\[
\begin{align*}
X_{\text{CO}} &= (V_{\text{CO,in}} - V_{\text{CO,out}}) / V_{\text{CO,in}} \\
Y_{\text{CH}_4} &= V_{\text{out}} \times Y_{\text{CH}_4,out} / (V_{\text{CO,in}} - V_{\text{CO,out}}) \\
S_{\text{CH}_4} &= Y_{\text{CH}_4} / X_{\text{CO}}
\end{align*}
\]

where \(X_{\text{CO}} \) is the CO conversion, %; \(Y_{\text{CH}_4} \) is the CH₄ yield, %; \(S_{\text{CH}_4} \) is the CH₄ selectivity, %; \(V_{\text{CO,in}} \) is the volume flow of CO in the feed, mL/min; \(V_{\text{out}} \) is the volume flow of product, mL/min; \(Y_{\text{CH}_4,out} \) is the volume proportion of methane in the product mixture, %; and \(Y_{\text{CO,out}} \) is the volume proportion of CO in the product mixture, %.

4.3.4. Fractal Dimension. By analyzing the microgeometric characteristics of the catalyst, the fractal characteristics on the microscale of the pore surface can be obtained. According to experimental data of the N₂ adsorption–desorption method, the fractal dimension is calculated using the Frenkel–Halsey–Hill (FHH) model. The linear expression of the FHH model is as follows

\[\ln(V/V_m) = K \ln[[P_s/P]] + C \]

The equation is as follows

\[
V_{\text{out}} = \frac{P_{\text{vap}}}{P}(V - \frac{P}{P_{\text{vap}}})
\]

where \(V \) is the volume of adsorbed gas at equilibrium pressure \(P \), cm³/g; \(P_{\text{vap}} \) is the saturated vapor pressure of N₂, kPa; C is the parameter of the equation; and \(K \) is the slope of the straight line obtained by linear fitting with LN (V/V_m) as ordinate and LN [LN (P/P)] as abscissa. When 0 > K ≥ −1/3, the relationship between fractal dimension D and slope K is as follows

\[D = 3K + 3 \]

4.2. Catalyst Evaluation. Figure 9 shows the diagram of catalyst evaluation device. Liquid paraffin (250 mL, 99.99%, Shanghai Shanpu Chemical Co., Ltd., China) and catalyst (5 g) were put into a 500 mL reactor, with the reaction temperature of 280 °C, reaction pressure of 1.0 MPa, molar ratio of feed gases (H₂ to CO) of 3:1, gas hourly space velocity of 3000 mL/(g·h), and stirring rate of 750 r/min. And the reaction products are analyzed in situ using a GC400 gas chromatograph. A TDX201 column was used to analyze CH₄, CO₂, and unreacted CO and H₂ by a TCD detector.

CO conversion, CH₄ selectivity, and yield were used as catalyst performance indicators, which can be calculated as follows

\[
\begin{align*}
X_{\text{CO}} &= (V_{\text{CO,in}} - V_{\text{CO,out}}) / V_{\text{CO,in}} \\
Y_{\text{CH}_4} &= V_{\text{out}} \times Y_{\text{CH}_4,out} / (V_{\text{CO,in}} - V_{\text{CO,out}}) \\
S_{\text{CH}_4} &= Y_{\text{CH}_4} / X_{\text{CO}}
\end{align*}
\]

where \(X_{\text{CO}} \) is the CO conversion, %; \(Y_{\text{CH}_4} \) is the CH₄ yield, %; \(S_{\text{CH}_4} \) is the CH₄ selectivity, %; \(V_{\text{CO,in}} \) is the volume flow of CO in the feed, mL/min; \(V_{\text{out}} \) is the volume flow of product, mL/min; \(Y_{\text{CH}_4,out} \) is the volume proportion of methane in the product mixture, %; and \(Y_{\text{CO,out}} \) is the volume proportion of CO in the product mixture, %.

4.3. Catalyst Characterization. 4.3.1. X-ray Diffraction (XRD). X-ray diffraction (XRD) patterns were determined using an X-ray diffractometer (D8, Bruker Co., Ltd., Germany) with Ni-filtered Cu Ka radiation (0.15406 nm) under atmospheric pressure with 2θ from 10 to 80°.

4.3.2. Temperature-Programmed Reduction (H₂-TPR). H₂ temperature-programmed reduction and hydrogenation (H₂-TPR and TPH) profiles were obtained using a chemical adsorption instrument (TP-5080, Xianquan Industry and Trade Development Co., Ltd., Tianjin, China) from room temperature to 1000 °C with a rate of 10 °C/min.

4.3.3. N₂ Adsorption–Desorption. An Autosorb-2 physical adsorption instrument (Quantachrome Instruments) was used for N₂ adsorption–desorption characterization. N₂ is used as the adsorbate, and the adsorption–desorption measurement was carried out at liquid nitrogen temperature (−196 °C). The catalyst (0.2 g) was degassed at 110 °C for 8 h; then, the isothermal adsorption–desorption determination was performed at −196 °C. The specific surface area of the catalyst can be obtained by the Brunauer–Emmett–Teller (BET) formula, and the pore volume and pore size distribution can be obtained by the Barrett–Joyner–Hale (BJH) model. The linear expression of the BJH formula is as follows

\[
\ln(V/V_m) = K \ln[[P_s/P]] + C
\]

where \(V \) is the volume of adsorbed gas at equilibrium pressure \(P \), cm³/g; \(P_s \) is the saturated vapor pressure of N₂, kPa; C is the parameter of the equation; and \(K \) is the slope of the straight line obtained by linear fitting with LN (V/V_m) as ordinate and LN [LN (P/P)] as abscissa. When 0 > K ≥ −1/3, the relationship between fractal dimension D and slope K is as follows

\[D = 3K + 3 \]

4.3.4. Fractal Dimension. By analyzing the microgeometric characteristics of the catalyst, the fractal characteristics on the microscale of the pore surface can be obtained. According to experimental data of the N₂ adsorption–desorption method, the fractal dimension is calculated using the Frenkel–Halsey–Hill (FHH) model. The linear expression of the FHH model is as follows

\[\ln(V/V_m) = K \ln[[P_s/P]] + C \]

The equation is as follows

\[
V_{\text{out}} = \frac{P_{\text{vap}}}{P}(V - \frac{P}{P_{\text{vap}}})
\]

where \(V \) is the volume of adsorbed gas at equilibrium pressure \(P \), cm³/g; \(P_{\text{vap}} \) is the saturated vapor pressure of N₂, kPa; C is the parameter of the equation; and \(K \) is the slope of the straight line obtained by linear fitting with LN (V/V_m) as ordinate and LN [LN (P/P)] as abscissa. When 0 > K ≥ −1/3, the relationship between fractal dimension D and slope K is as follows

\[D = 3K + 3 \]
Tiansheng Zhao — State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources and Key Laboratory of Coal Clean Conversion & Chemical Engineering Process (Xinjiang Uyghur Autonomous Region), College of Chemical Engineering, Xinjiang University, Urumqi, Xinjiang 830046, China; State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116024, China; orcid.org/0000-0002-5405-6398

Complete contact information is available at: https://pubs.acs.org/10.1021/acsomega.1c00914

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors sincerely acknowledge the opening foundation of the State Key Laboratory of Fine Chemicals from the Dalian University of Technology (KF1904) and the foundation of the State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering (grant no. 2021-K76).

REFERENCES

(1) Konishcheva, M. V.; Potemkin, P. V.; Zryanyanova, M. M.; Pakharukova, V. P.; Simonov, P. A.; Sobyinan, V. A. Selective CO methanation in H2-rich stream over Ni- and Fe/CoOx: Effect of metal and precursor nature. Int. J. Hydrogen Energy 2015, 40, 14058–14063.
(2) Liu, S.-S.; Jin, Y.-Y.; Han, Y.; Zhao, J.; Ren, J. Highly stable and coking resistant Ge promoted Ni/SiC catalyst towards high temperature CO methanation. Fuel Process. Technol. 2018, 177, 266–274.
(3) Gong, D.; Li, S.; Guo, S.; Tang, H.; Wang, H.; Liu, Y.; Lanthanum and cerium co-modified Ni/SiO2 catalyst for CO methanation from syngas. Appl. Surf. Sci. 2018, 434, 351–364.
(4) Jiménez, R.; Fuentes, K.; Paz Medina, M.; Godoy, S.; Gracia, F.; Karelouic, A. The kinetic effect of H2O pressure on CO hydrogenation over different Rh cluster sizes. Int. J. Hydrogen Energy 2019, 44, 768–777.
(5) Jaijain, G.; Yingli, W.; Yuan, P.; Dacheng, H.; Guangwen, X.; Fangna, G.; Fabing, S. A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas. RSC Adv. 2012, 2, 2358–2368.
(6) Eckle, S.; Denkwitz, Y.; Behrm, R. J. Activity, selectivity, and adsorbed reaction intermediates/reaction side products in the selective methanation of CO in reformed gases on supported Ru catalysts. J. Catal. 2010, 269, 255–268.
(7) Zhu, H.; Razaq, R.; Jiang, L.; Li, C. Low-temperature methanation of CO in coke oven gas using single nanosized CoOx catalysts. Catal. Commun. 2012, 32, 43–47.
(8) Liu, Q.; Wang, S.; Zhao, G.; Yang, H.; Yuan, M.; An, X.; Zhou, H.; Qiao, Y.; Tian, Y. CO methanation over ordered mesoporous NiRu-doped CaO-Al2O3 nanocomposites with enhanced catalytic performance. Int. J. Hydrogen Energy 2018, 43, 239–250.
(9) Panagiotopoulou, P.; Kondarides, D. I.; Verykios, X. E. Mechanistic Study of the Selective Methanation of CO over Ru/TiO2 Catalyst: Identification of Active Surface Species and Reaction Pathways. J. Phys. Chem. C 2011, 115, 1220–1230.
(10) Yongzhao, W.; Ruifang, W.; Yongxiang, Z. Effect of ZrO2 promoter on structure and catalytic activity of the Ni/SiO2 catalyst for CO methanation in hydrogen-rich gases. Catal. Today 2010, 158, 470–474.
(11) Kopyscinska, J.; Schildhauer, T. J.; Biolaz, S. M. A. Methanation in a fluidized bed reactor with high initial CO partial pressure: Part II-Modeling and sensitivity study. Chem. Eng. Sci. 2011, 66, 1612–1621.
(12) Zou, M.; Ma, F.; Mo, W.; Kong, L.; Liu, J.; Zhong, M.; Xiao, Y. Mechanocrahemical prepared Ni/Al2O3 catalysts and their catalytic performance for methanation. Appl. Chem. Ind. 2017, 46, 2314–2319.
(13) Mo, W.; Xiao, Y.; Ma, F.; Zhong, M.; Liu, J.; Nulahong, A. Influence of Milling Time on the Performance of Ni-Al2O3 Catalyst for CO Methanation Based on Slurry-bed Reactor. J. Mol. Catal. A: Chem. 2017, 31, 356–364.
(14) Mo, W.; Xiao, Y.; Ma, F.; Zhong, M.; Liu, J.; Nulahong, A. Influence of calcination conditions on the performance of Ni-Al2O3 catalyst for CO methanation in slurry-bed reactor. J. Fuel Chem. Technol. 2018, 46, 84–91.
(15) Gao, F.; Zou, M.; Mo, W.; Ma, F.; Liu, S.; Yang, G. Influence of precipitant on structure of Ni-Al2O3 catalyst and its catalytic performance in CO methanation based on slurry-bed reactor. Mod. Chem. Ind. 2020, 40, 154–162.
(16) Gao, X.; Mo, W.; Ma, F.; He, X. Effect of Ball-Milling Time on the Performance of Ni-Al2O3 Catalyst for 1,4-Butynediol Hydrogenation to Produce 1,4-Butenediolen. China Pet. Process. Petrochem. Technol. 2020, 22, 78–86.
(17) Gao, X.; Mo, W.; Ma, F.; Fan, X. The influence of nickel loading on the structure and performance of a Ni-Al2O3 catalyst for the hydrogenation of 1,4-butynediol to produce 1,4-butenediol. New J. Chem. 2020, 44, 7683–7689.
(18) Miao, B.; Ma, S. S.; Wang, X.; Su, H.; Chan, S. H. Catalysis mechanisms of CO2 and CO methanation. Catal. Sci. Technol. 2016, 6, 4048–4058.
(19) He, X.; Mo, W.; Qin, S.; Ma, F. Effect of aluminum source on the structure and performance of Ni/Al2O3 catalysts in CO2/CH4 reforming. J. Fuel Chem. Technol. 2020, 48, 221–230.
(20) Wang, X.; Zhao, B.; Jiang, D. E.; Xie, Y. Monolayer dispersion of MoO3, NiO and their precursors on γ-Al2O3. Appl. Catal., A 1999, 188, 201–209.
(21) Xu, Z.; Li, Y.; Zhang, J.; Chang, L.; Duan, Z.; et al. Ultrafine NiO–La2O3–Al2O3 aerogel: a promising catalyst for CH4/CO2 reforming. Appl. Catal., A 2001, 213, 65–71.
(22) Chen, X.; Honda, K.; Zhang, Z. G. CO2/CH4 reforming over NiO/γ-Al2O3 in fixed-bed/ fluidized-bed switching mode. Catal. Today 2004, 93–95, 87–93.
(23) Wei, L.; Jun, L.; Dongyuan, Z. Mesoporous materials for energy conversion and storage devices. Nat. Rev. Mater. Mater. 2016, 1, No. 16023.
(24) Mo, W.; Ma, F.; Liu, Y.; Liu, J.; Zhong, M.; Nulahong, A. Preparation of porous Al2O3 by template method and its application in Ni-based catalyst for CH4/CO2 reforming to produce syngas. Int. J. Hydrogen Energy 2015, 40, 16147–16158.
(25) Mo, W.; Ma, F.; Ma, Y.; Fan, X. The optimization of Ni-Al2O3 catalyst with the addition of La2O3 for CO2/CH4 reforming to produce syngas. Int. J. Hydrogen Energy 2019, 44, 24510–24524.
(26) Mo, W.; Ma, F.; Liu, J.; Zhong, M.; Nulahong, A. A study on the carbonaceous de position on Ni-Al2O3 catalyst in CO2/CH4 reforming on the basis of te mperature-programmed hydrogenation nation characterization. J. Fuel Chem. Technol. 2019, 47, 549–557.
(27) Christensen, K. O.; Chen, D.; Lodeng, R.; Holmen, A. Effect of supports and Ni crystal size on carbon formation and sintering during steam methane reforming. Appl. Catal., A 2006, 314, 9–22.
(28) Chen, D.; Christensen, K. O.; Ochoa-Fernandez, E.; Yu, Z. X.; Totdal, B.; Latorre, N.; Monzon, A.; Holmen, A. Synthesis of carbon nanofibers: effects of Ni crystal size during methane decomposition. J. Catal. 2005, 229, 82–96.
(29) Zhou, Q. C. Microwave-assisted preparation of Ni-W-P/γ-Al2O3 catalyst for coal tar hydrogenation. Ind. Catal. 2019, 27, 47–54.