Title: Reduced transmission of *Mycobacterium africanum* compared to *M. tuberculosis* in urban West Africa

Authors
Prince Asare, Adwoa Asante-Poku, Diana Ahu Prah, Sonia Borrell, Stephen Osei-Wusu, Isaac Darko Otchere, Audrey Forson, Gloria Adjapong, Kwadwo Ansah Koram, Sebastien Gagneux and Dorothy Yeboah-Manu

Affiliations
Noguchi Memorial Institute for Medical Research, University of Ghana (UG), Legon (P Asare, A Asante-Poku PhD, D A Prah MSc, S Osei-Wusu MPhil, I D Otchere MPhil, Prof K A Koram PhD, Prof D Yeboah-Manu PhD)
West African Centre for Cell Biology of Infectious Pathogens, UG (P Asare)
Department of Biochemistry, Cell and Molecular Biology, UG (P Asare)
Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland (S Borrell PhD, Prof S Gagneux PhD)
University of Basel, Basel, Switzerland (S Borrell PhD, Prof S Gagneux PhD)
Department of Chest Diseases, Korle-Bu Teaching Hospital, Korle-Bu, Accra, Ghana (A Forson MBChB)
Centre for Plant Medicine Research, Mampong, Ghana (G Adjapong PhD)

*Corresponding author:
Prof Dorothy Yeboah-Manu
Bacteriology Department, Noguchi Memorial Institute for Medical Research, University of
Ghana, LG 581, Legon, Accra-Ghana.
dyeboah-manu@noguchi.ug.edu.gh
Tel: (+233) 208123882
Abstract

Background: Understanding transmission dynamics is useful for tuberculosis (TB) control. We conducted a population-based molecular epidemiological study to understand TB transmission in Ghana.

Methods: *Mycobacterium tuberculosis* complex (MTBC) isolates obtained from prospectively-sampled pulmonary TB patients between July, 2012 and December, 2015 were confirmed as MTBC using IS6110 PCR. MTBC lineages were identified by large sequence polymorphism and single nucleotide polymorphism assays and further characterized using spoligotyping and standard 15-loci MIRU-VNTR typing. We used the n-1 method to estimate recent TB transmission and identified associated risk factors using logistic regression analysis.

Findings: Out of 2,309 MTBC isolates, we identified 1,082 (46·9%) single cases with 1,227 (53·1%) isolates belonging to one of 276 clustered cases (clustering range; 2–35). Recent TB transmission rate was estimated to be 41·2%. While we see no significant difference in the recent transmission rates between lineages of *Mycobacterium africanum* (lineage-5 (31·8%); lineage-6 (24·7%), p=0·118), we found that lineage-4 belonging to the *M. tuberculosis* transmitted significantly higher (44·9%, p<0·001). Finally, apart from age being significantly associated with recent TB transmission (p=0·007), we additionally identified a significant departure in the male/female ratio among very large clustered cases compared to the general TB patient population (3:1 vs. 2:1, p=0·022).

Interpretations: Our findings indicate high recent TB transmission suggesting occurrences of unsuspected outbreaks. The observed reduced transmission rate of *M. africanum* suggests other factor(s) may be responsible for its continuous presence in West Africa.
Funding: Wellcome Trust Intermediate Fellowship Grant 097134/Z/11/Z to Dorothy Yeboah-Manu.

Research in context

Evidence before this study

We searched PubMed for population-based molecular epidemiology studies conducted in Ghana before May, 2011 and again June 2017 using the search terms “tuberculosis” and “transmission”, “population based”, “population-based” or “epidemiology”. We found no such study conducted in Ghana and confirmed this with coordinators of the National Tuberculosis control Program (NTP). Till date, the only detailed population-based molecular epidemiological study conducted in Ghana has been from our research group where we found the distribution of *Mycobacterium africanum* and *Mycobacterium tuberculosis* sensu stricto to be fairly constant in the respective proportions of 20% and 80% within the study period. However, to the best of our knowledge, no study has been conducted to identify the transmission dynamics of circulating MTBC strains in Ghana and this makes this current study the first of its kind.

Added value of the study

This study, for the first time in Ghana using combined discriminatory power of spoligotyping and 15-loci MIRU-VNTR typing, has estimated the recent TB transmission rate (clustering rate) to be 41.2% with the urban and rural settings having estimated rates of 41.7% and 9.0% respectively. Within our study population, we identified the unlikeliness of a clustered case to harbor either isoniazid or rifampicin resistant TB strain (adjusted OR 0.7, 95% CI 0.5 – 0.9) and showed low transmission of multidrug resistant TB strains. From this study, we have also identified that each year increase in age is significantly associated with an approximately 1%
(CI: 0.13 – 2.00, p=0.007) decrease in the odds of a TB patient being part of a recent transmission event putting age as a significant risk factor. This implies that, compared to younger individuals, older individuals are more likely to get active TB disease by reactivation of latent TB infection. Also, we identified that the male/female ratio among very large clusters (cluster size; n>20) was significantly higher than that observed in the general TB patient population (3:1 vs. 2:1, p=0.022) with some large clusters (cluster size between 6 and 20) involving only males. Using adjusted predictions, we found that TB patients were more likely to be involved in a recent transmission event in 2012 compared to 2013 – 2015 and further identified that, clustering generally increases with increase in the number of TB contacts. The low observed transmission among Maf lineages and their constant prevalence as previously reported indicate other factor(s) (environmental/host) is (are) likely to be responsible for maintaining Maf in Ghana.

Implication of all the available evidence

The slight reduction of transmission rate after 2012 might be as a result of increased awareness during our national tuberculosis survey conducted in 2013. This shows that, with increased awareness we can reduce TB burden resulting from recent transmission. Despite the numerous efforts by the NTP, in 2015 Ghana recorded a very low TB detection rate of 34% (14,999/44,000) which is way below the African and global targets of 50% and 70% respectively. The rate of sputum conversion (having microscopy results showing negative for AFB among TB patients) and relapse following the intensive 2 months, at 5 months or the entire 6 months TB treatment regimen has been used by the NTP as conventional indicators for assessing TB control. Some aspects of TB control such as identifying the frequency of reactivation of latent infection and the risk of recent TB transmission among the population
would be missed by the currently used conventional indicators. Our current study provides vital information which will help the control program.
Introduction

Tuberculosis (TB) is a global health emergency; in 2015 an estimated 10.4 million people got sick, while 1.8 million died of TB.¹ The World Health Organization (WHO) in 1993 declared TB a global health emergency and called for much efforts and resources to fight this global menace. Due to the largely ineffectiveness of the Bacillus Calmette–Guerin (BCG) vaccine, the current TB control strategy especially in resource limited settings relies on case detection and treatment by the Directly Observed Therapy short course (DOTs) strategy. The conventional indicators used for assessing the national control programs under this strategy focus on the proportion of patients with new sputum smear positive pulmonary disease that are cured by the end of treatment or whose sputum microscopy becomes negative after the first 2 months of treatment. Such indicators ignore equally important aspects of TB control, which includes the duration of infectivity, the frequency of reactivation, and the risk of progression among the infected contacts and the proportion of TB due to recent transmission.

Understanding transmission dynamics will contribute to knowledge on factors that enhance spread of the disease, which is useful for TB control. Molecular epidemiological studies have been very useful in a number of countries in supporting TB control by identifying populations at most risk, transmission sites as well as providing much understanding on the prevalence of different *Mycobacterium tuberculosis* complex (MTBC) strains with varied virulence and drug resistance incidence rates.²⁻⁵ These studies have shown that the dynamics of TB transmission vary greatly geographically. Even though Africa harbors a large proportion of the global TB cases with current incidence at 275 per 100,000 population,¹ population-based molecular epidemiological studies needed to understand transmission patterns are rare, with the few studies conducted lacking in-depth analysis of the transmission dynamics of MTBC strains belonging to different lineages.⁶⁻⁸
The molecular typing tools, spacer oligonucleotide typing (spoligotyping) and mycobacterial interspersed repetitive unit-variable number of tandem repeat (MIRU-VNTR) typing, have been successfully used for strain differentiation in TB transmission studies due to their combined high discriminatory power and reproducibility, and in combination with epidemiological data, have been remarkably used for the detection of recent TB transmission/outbreaks.2,4,9,10 Currently, due to the high cost and expertise needed for employing whole genome sequencing and analysis, population-based studies may not readily employ its use and considering capacity building in a low resource setting like Ghana, spoligotyping and MIRU-VNTR typing remains good alternatives.

Tuberculosis in humans is caused mainly by \textit{Mycobacterium tuberculosis} sensu stricto (MTBss) and \textit{M. africanum} (Maf) which are further divided into seven lineages [MTBss: lineage 1-4 and 7 (L1-L4 and L7), Maf: lineages 5 and 6 (L5 and L6)]11,12, while MTBss is globally distributed Maf is restricted to West Africa where it is responsible for up to 50\% of TB cases.13 Nevertheless, reports mainly from the Gambia where L6 is prevalent suggest Maf is attenuated compared to MTBss given the indication that Maf will be outcompeted by MTBss.11,14,15 However, an 8-year study recently conducted in Ghana found the prevalence of Maf to be fairly constant with approximately 20\% indicating that Maf may transmit as equally as MTBss (mainly L4).16 The objective of the study was to determine the transmission dynamics of TB caused by MTBss and Maf.
Methods

Study design and population

This study was a population-based prospective study in which sputum samples were collected from consecutive clinically diagnosed pulmonary TB patients reporting to 12 selected health facilities within an urban setting [Accra Metropolitan Assembly (AMA)] and a rural setting East Mamprusi district (MamE) (figure 1). The study was conducted from July, 2012 to December, 2015. A pulmonary TB case was defined as an individual with both clinical and bacteriologically confirmed case of TB. Detailed demographic and epidemiological data including age, sex, employment status, residential address, health status and previous history of TB were obtained from each participant after obtaining consent using a structured questionnaire.

Mycobacterial isolation, species identification and drug susceptibility testing

The sputum samples were decontaminated and cultured on Lowenstein-Jensen media to obtain mycobacterial isolates which were confirmed as MTBC by detecting the MTBC-specific insertion sequence IS6110 using PCR.\(^\text{17}\) In vitro drug susceptibility to isoniazid and rifampicin were determined using either the microplate alamar blue cell viability assay as described elsewhere,\(^\text{18}\) and/or the Geno-type MTBDRplus (Hain lifescience), according to the manufacturer’s protocol.\(^\text{19}\)

Lineage and strain classification

Lineage and strain classification of the MTBC was achieved in a step wise manner using large sequence polymorphism typing identifying regions of difference 4, 9, 12, 702, and 711,\(^\text{11,13}\) single nucleotide polymorphism typing, spoligotyping,\(^\text{20}\) and MIRU-VNTR typing.\(^\text{21}\) For MIRU-VNTR typing, we first used a customized set of 8-MIRU loci as described by Asante-Poku et
al.22 and resolved clustered cases by analyzing the remaining 7 loci of the standard MIRU-15 loci set.21 All assays were well controlled with PCR amplifications and pre-PCR procedures conducted in physically separated compartments to avoid laboratory cross contamination. The presence of more than one allelic repeat number (multiple allele) for any given locus is suggestive of laboratory cross contamination, multiple strain infection or microevolution of a single strain. To prevent bias resulting from cross contamination and multiple strain infection, isolates with multiple allele at more than one MIRU loci (described as untypeable) were excluded from further analysis. Isolates with only one multiple allele at any given locus were however included due to the possibility of microevolution.

The spoligotyping patterns and assigned shared type numbers obtained were defined according to SITVITWEB database (http://www.pasteur-guadeloupe.fr: 8081/SITVIT_ONLINE/) while sub-lineages were assigned based on the MIRU-VNTRplus database (http://www.miru-vntrplus.org).23 Strains with no lineage nomenclature data were further identified using the TB-lineage database24 or otherwise regarded as orphan strains. A strain was defined as an MTBC isolate with a unique molecular signature thus, a unique spoligotype pattern and/or a unique MIRU-VNTR allelic pattern for the number of investigated MIRU loci.

Clustering analysis and risk factor assessment

Clustering analysis was performed using the categorical parameter and the UPGMA coefficient from a constructed phylogenetic tree using the online MIRU-VNTR tool. Clustering analysis was based on the assumption that, strains with the same DNA fingerprint may be epidemiologically linked and associated with recent TB transmission.25 A Cluster was defined as two or more isolates (same strain) that share an indistinguishable spoligotype and 15-loci MIRU-VNTR
allelic pattern but allowing for one missing allelic data at any one of the difficult-to-amplify MIRU loci (VNTR 2163, 3690 and 4156). We also defined the size of a cluster using the total number of isolates in the cluster into categories of small (2 isolates), medium (3 – 5 isolates), large (6 – 20 isolates) and, very large (>20 isolates).

The recent transmission rate was estimated using the n–1 formulae: \[\frac{26(nc-c)}{n} \]

Where; \(nc \) is the total number of clustered cases, \(c \) is the number of clusters, and \(n \) is the total number of cases in the sample.

We included only one strain per participant in our analysis and excluded follow-up cases.

Clustering analysis was stratified first by location and then by MTBC lineage. The spatial distribution and clustering among all of the observed Spoligo/MIRU strain types were studied by constructing a minimum spanning tree (MST) with Bionumerics software (Applied Maths, Sint-Marteen-Latem, Belgium).

Data management and analysis

Both molecular and epidemiological data were analyzed. Epidemiological data retrieved from all participants with positive MTBC cultures were included in the analysis while excluding data from those with no growth, contaminated cultures and isolated non-tuberculous mycobacterial species. All statistical analyses were carried out using the Stata statistical package version 14·2 (Stata Corp., College Station, TX, USA). The association of specific lineages and/or sub-lineages of the MTBC with time and/or geographical locations were explored using chi-square test and a logistic regression model. For the determination of independent predictive factors for recent TB transmission, a multivariate analysis (forward step-wise approach with a probability entry of 0·1)
was conducted using a logistic regression model while estimating the odds ratios (OR). P-values < 0.05 were considered significant.

The manuscript was reported according to the “strengthening the reporting of molecular epidemiology for infectious diseases (STROME-ID)” guidelines.27

Ethics statement

Ethical clearance for this study was obtained from the Scientific and Technical Committee and then the Institutional Review Board at NMIMR, University of Ghana with a federal wide assurance number FWA00001824 after reviewing and approving the protocols and procedures.

Role of the funding source

Funders had no role in the study design; collection, analysis, and interpretation of data; in the writing of the report; and in the decision to submit the paper for publication. DYM, PA and AAP had full access to all the data used in the study. The corresponding author had the final responsibility for the decision to submit for publication.
Results

Characteristics of study participants
We recruited 3,303 sputum smear positive pulmonary TB cases and obtained 2,604 (78·8%) MTBC isolates. After excluding 13 M. bovis and isolates that were untypeable (described in methods), 2,309/2,604 (88·7%) isolates were included for clustering analysis. The participants included comprised 71% (1,631) males and 29% (663) females (15 participants had no record of gender) with a median age of 39 (range: 3 to 91) and 33 (range: 4 to 90), respectively (figure 2; appendix p 2). The male/female ratio observed was comparable to the national average of approximately 2:1. Of the 2,309 MTBC participants, 201 (8·7%) were from the rural setting and 2,108 (91·3%) from the urban setting. Among our study cohort, 7·4% (184/2,482) of participants were previously treated cases, which is similar to the national value of 7·2%1. Seventy-one percent (1,561/2,080) presented with a bacterial burden resulting from sputum smear microscopy of at least 2+ and 33% (544/1,665) admitted having contact with at least one TB patient. In a multivariate logistic regression analysis, we found that male patients are less likely to be infected with a L5 strain (adjusted OR 0·7, 95% CI 0·5 – 0·9) and individuals living in villages are more likely to be infected with a L6 strain (OR 6·6, CI 1·2 – 36·1) (appendix p 3).

Population structure and recent transmission rate estimation
Among the 2,309 MTBC isolates analyzed for clustering, 1,870 (81·0%) were MTBss and 439 (19·0%) were Maf. Six of the seven human-adapted MTBC lineages were found, with L4, L5 and L6 being most frequent with 1,741 (75·4%), 289 (12·5%), and 150 (6·5%) isolates, respectively (table 1). The relative proportions of the most frequent MTBC lineages remained
constant over the entire three and half year study period (ptrend: L4 p=0.7168, L5 p=0.8379, L6 p=0.2466, figure 3).

Table 1: Geographical distribution and population structure of MTBC in Ghana by spoligotyping

	Rural, N (%)	Urban, N (%)	Combined, N (%)
MTBC isolates	204 (8.8)	2,118 (91.2)	2,322
Species Distribution			
M. tuberculosis	172 (9.2)	1,698 (90.8)	1,870 (80.5)
M. africanum	29 (6.6)	410 (93.4)	439 (18.9)
Animal	3 (23.1)	10 (76.9)	13 (0.6)
Human adapted lineage distribution			
Lineage_1	4 (10.5)	34 (89.5)	38 (1.6)
Lineage_2	14 (21.5)	51 (78.5)	65 (2.8)
Lineage_3	1 (3.8)	25 (96.2)	26 (1.1)
Lineage_4	153 (8.8)	1,588 (91.2)	1,741 (75.4)
Lineage_5	15 (5.2)	274 (94.8)	289 (12.5)
Lineage_6	14 (9.3)	136 (90.7)	150 (6.5)
Lineage_4 sub-lineage distribution			
Cameroon	77 (7.4)	969 (92.6)	1,046 (60.1)
Ghana	50 (13.3)	326 (86.7)	376 (21.6)
Haarlem	12 (7.7)	144 (92.3)	156 (9.0)
LAM	7 (14.0)	43 (86.0)	50 (2.9)
Uganda	1 (2.5)	39 (97.5)	40 (2.3)
Others (S, U, X, NEW-1)	5 (9.8)	46 (90.2)	51 (2.9)
Not_determined	1 (4.5)	21 (95.5)	22 (1.3)

* Proportion stated here are column wise distributions with respect to the categories of species, lineages or sub-lineages.

MTBC: Mycobacterium tuberculosis complex

Of the 2,309 isolates included for clustering analysis, we identified 1,227 (53.1%) isolates being clustered in 276 different clusters with an average cluster size of 4 (range: 2 – 35) and 1,082 (46.9%) singletons, giving a total of at least 1,358 unique MTBC strains circulating within our study population (table 2a). Using the n-1 method, we estimated the overall clustering rate (reflecting recent transmission rate) to be 41.2%. Lineages 2, 4 and 5 contributed high clustering rates of 53.8%, 44.9%, and 31.8%, respectively (table 2a). The Cameroon, Ghana and Haarlem sub-lineages of L4 were the most abundant sub-lineages and significantly contributed to the observed high L4 clustering rate (p<0.05) and there was no significant difference between the
Cameroon and Ghana sub-lineages (p=0.565) (figure 4). While we see no significant difference in the recent transmission rates between members of Maf (L5 and L6, p=0.118), we found that L4 transmitted significantly higher (p<0.001) with seven of its clusters having very large cluster sizes (>20 isolates per cluster) made up of the Ghana sub-lineage (4 very large clusters) and Cameroon sub-lineage (3 very large clusters) (figure 4; appendix p 6). Notwithstanding the lower transmissibility of lineages 5 and 6, we also observed four large clusters for each of these lineages. The urban and rural settings had estimated recent transmission rates of 41.7% and 9.0% respectively.

Table 2a: Clustering analysis stratified by lineages and major sub-lineage populations of MTBC

Lineage	Isolates (n)	Clustered cases (c)	Clustered strains (nc)	Single cases (s)	Total strain types (s+c)	Clustering rate† (%)
Lineage 1	38	3	7	31	34	10.5
Lineage 2	65	8	43	22	30	53.8
Lineage 3	26	2	4	22	24	7.7
Lineage 4	1,741	201	982	759	960	44.9
	Cameroon #	1046	123	614	432	46.9
	Ghana #	376	36	206	170	45.2
	Haarlem #	156	23	91	65	43.6
	LAM #	50	6	25	25	38.0
	Uganda #	40	5	16	24	27.5
Lineage 5	289	51	143	146	197	31.8
Lineage 6	150	11	48	102	113	24.7
Cameroon	969	77	112	5	394	47.8
Ghana	326	50	32	4	182	46
Haarlem	144	12	20	1	81	42
Summary*	2309	276	1227	1082	1358	41.2

* Summary was calculated using only the items in cells corresponding to the six main lineages.

Major lineage 4 sub-population

† The clustering rate was used for estimating the recent transmission rate

Table 2b: Clustering analysis stratified by study setting and lineages/major sub-lineage populations of MTBC

Lineage	Isolates (n)	Clustered cases (c)	Clustered strains (nc)	Single cases (s)	Total strain types (s+c)	Clustering rate† (%)
Lineage 1	34 Urban	4 Rural	3 Urban	0 Rural	7 Urban	11.8 Urban
Lineage 2	51 Urban	14 Rural	5 Urban	1 Rural	33 Urban	54.9 Urban
Lineage 3	25 Urban	14 Rural	5 Urban	1 Rural	21 Urban	8 Urban
Lineage 4	1,588 Urban	153 Rural	183 Urban	10 Rural	907 Urban	45.6 Urban
Cameroon	969 Urban	77 Rural	112 Urban	5 Rural	575 Urban	47.8 Urban
Ghana	326 Urban	50 Rural	32 Urban	4 Rural	182 Urban	46 Urban
Haarlem	144 Urban	12 Rural	20 Urban	1 Rural	81 Urban	42.4 Urban
Exploring the diversity and clustering within the MTBC lineages

We included data from both 15-MIRU (allelic information) and spoligotyping pattern to construct minimum spanning trees. Very large molecular clusters (clusters with > 20 isolates: defined in methods) were observed for L4 in addition to one strikingly large cluster belonging to the Beijing family of lineage 2 (figure 5; appendix p 7). Generally, we observed low distribution of multidrug resistant TB strains across all the major lineages (appendix p 8 – 10). There was no single large cluster with all isolates being multidrug resistant with only rare focal MDR-TB distribution among some lineage 4 clusters (appendix p 8). The spatial distributions of the isolates constituting each cluster stratified by study setting are shown in appendix (p 11 – 13).

Molecular epidemiology and factors associated with clustering: Logistic regression modeling

Next we looked for risk factors that may associate with recent TB transmission. We identified a total of 675 individuals belonging to either large (6 – 20 isolates) or very large (>20 isolates) molecular clusters with a combined median cluster size of 14 (range 6 – 35). Majority of the individuals belonging to very large clusters were males with a male to female ratio of approximately 3:1, significantly higher than the 2:1 ratio observed in the general TB patient

	LAM	Uganda	Lineage 5	Lineage 6	Summary
#	43	39	274	136	2108
7	7	1	15	14	201
6	0	5	49	10	252
0	25	0	0	0	11
18	0	16	137	43	1131
7	7	0	137	0	29
24	7	15	186	93	977
0	44.2	1	15	14	172
		0	186	103	1229
			15	14	183
				24.3	41.7
				0	9

* Summary was calculated using only the items in cells corresponding to the six main lineages.
Major lineage 4 sub-population
† The clustering rate was used for estimating the recent transmission rate

278
population (p=0.022). Three large clusters; cluster ID MSC4193, MSC5003·X and MSC4107 with cluster sizes of 9, 7 and 7 respectively, involved only males (table 3).

Number	Cluster code	Gender male : female	Median age (IQR)	*Diagnosis lapse (months)	*Same residential district	*Known risk factor (number)	Lineage (sub-lineage)	*Drug resistance	
1	MSC4063.X	35:4 34 (26 - 44)	40 7/5/5/4/4/5	Smoking (6) other (8)	L4 (Cameroon)	3			
2	MSC4060.X	34:10 34 (25 – 45)	41 6/4/3/3/3/3	Smoking (6) other (5)	L4 (Cameroon)	4			
3	MSC4045.X	26:4 40 (29 – 48)	39 7/3/3/3/3	Smoking (5) HIV (4) Other (3)	L4 (Cameroon)	2			
4	MSC2001	27:25 35 (27 – 48)	37 8/5	Smoking (8) HIV (4) Other (2)	L2 (Beijing)	1			
5	MSC4031	26:19 41 (33 – 52)	36 6/4/3	Smoking (6) HIV (3) Other (1)	L4 (Ghana)	11			
6	MSC4110	26:21 38 (28 – 51)	39 6/3	Smoking (5) HIV (1) Other (4)	L4 (Ghana)	ND			
7	MSC4095	24:16 35 (24 – 45)	39 7/6	Smoking (5) Other (2)	L4 (Ghana)	9			
8	MSC4027	21:16 27 (25 – 45)	40 6/3	Smoking (3)	L4 (Ghana)	3			
9	MSC4063.3	19:18 28 (21 – 45)	41 5/5	Smoking (7)	L4 (Cameroon)	ND			
10	MSC4063.18	18:10 35 (24 – 41)	36 6/3	Smoking (4) HIV (1)	L4 (Cameroon)	ND			
11	MSC4013	15:13 42 (32 – 55)	32 4/3	Smoking (3) HIV (2) Others (2)	L4 (Haarlem)	2			
12	MSC4136	15:13 36 (28 – 44)	34 6	Smoking (2) HIV (1) Others (3)	L4 (Haarlem)	ND			
13	MSC4040	14:8 31 (27 – 45)	33 3/3	HIV (1) Others (4)	L4 (Cameroon)	1			
14	MSC4069.X	14:11 27 (23 – 38)	34 6/3	Smoking (2) HIV (2) Others (1)	L4 (Cameroon)	ND			
15	MSC4073	14:9 40 (29 – 47)	24 5/4	Smoking (3)	L4 (Cameroon)	3			
16	MSC5002.X	14:7 40 (38 – 53)	28 5	HIV (2) Smoking (1)	L5 (West African I)	2			
17	MSC4063.2	13:8 37 (27 - 44)	38 4	Smoking (2) Others (3)	L4 (Cameroon)	ND			
18	MSC4068.X	13:9 35 (30 – 44)	27 5/3	Smoking (6)	L4 (Cameroon)	ND			
---	---	---	---	---	---	---			
19	MSC4024	12	6:5	28 (26 – 42)	37	Smoking (2) Others (1)	L4 (X3)	4	
20	MSC4060.18	12	7:5	35 (32 – 40)	36	Smoking (2) HIV (2) Others (3)	L4 (Cameroon)	1	
21	MSC4063.17	12	7:5	26 (24 – 51)	39	Smoking (4) HIV (1) Others (3)	L4 (Cameroon)	2	
22	MSC4138	11	7:4	41 (30 – 48)	28	Smoking (4)	L4 (LAM)	ND	
23	MSC4069.3	10	5:5	32 (24 – 39)	31	Smoking (1) HIV (1)	L4 (Cameroon)	2	
24	MSC4104	10	7:2	35 (25 – 54)	34	Smoking (3) Others (1)	L4 (Ghana)	6	
25	MSC6006	10	4:6	41 (35 – 47)	33	Smoking (1) Others (2)	L6 (West African II)	ND	
26	MSC4045.3	9	7:2	43 (32 – 50)	33	Smoking (1) Others (1)	L4 (Cameroon)	1	
27	MSC4060.21	9	6:3	32 (26 – 43)	22	ND	HIV (1) Others (2)	L4 (Cameroon)	ND
28	MSC4060.3	9	5:4	32 (25 – 53)	34	Smoking (1) Others (2)	L4 (Cameroon)	ND	
29	MSC4193	9	9:0	36 (30 – 41)	28	ND	Smoking (6) HIV (1) Others (2)	L4 (Cameroon)	ND
30	MSC4068.3	8	6:2	45 (34 – 54)	27	2	Smoking (2) HIV (1) Others (1)	L4 (Cameroon)	ND
31	MSC4022	7	6:1	50 (46 – 62)	36	4	Smoking (1) Others (1)	L4 (Haarlem)	ND
32	MSC4060.4	7	3:4	34 (30-49)	22	5	Smoking (1)	L4 (Cameroon)	ND
33	MSC4080.13	7	4:3	24 (17 – 50)	20	3	Smoking (1)	L4 (Cameroon)	1
34	MSC4082	7	6:1	35 (28 – 40)	33	Smoking (1)	L4 (Ghana)	ND	
35	MSC4107	7	7:0	38 (29 – 53)	28	3/3	Smoking (2) Others (1)	L4 (Ghana)	1
36	MSC5003.2	7	4:3	35 (26 – 57)	33	ND	HIV (1)	L5 (West African I)	1
37	MSC5003.X	7	7:0	43 (26 – 66)	34	3	Smoking (2) Others (1)	L5 (West African I)	ND
38	MSC6004	7	5:2	44 (36 – 50)	31	ND	HIV (1) Others (3)	L6 (West African II)	3

† Time lapse (in months) between first diagnosed case and last diagnosed case

Number of participants with same district of residence. Only >2 individuals in the same residential district were indicated. “/”: was used to separate individuals from different districts

* Others in this category refers to alcohol or substance abuse

¤ Number of participants carrying strains with drug resistance to either isoniazid or rifampicin

L2: lineage 2, L4: lineage 4, L5: lineage 5, L6: lineage 6, ND: none determined, IQR: interquartile range

Cluster codes in **bold** involved evidence of household transmission
Epidemiological investigations revealed both localized and dispersed recent transmission among the clustered cases with suggested evidence of household transmission in at least six large clusters (MSC4063-X, MSC2001, MSC4095, MSC4063·18, MSC4069-X and MSC4104). Specifically, the same L4 strain (part of cluster MSC4069-X) was found to circulate among three individuals belonging to the same household with the oldest person (age 49) reporting having contact with his son who had TB four months prior to his episode (suggestive of household transmission). Majority of the large clusters involved TB strains circulating over almost the entire study period (figure 6). Apart from three Ghana sub-lineage clusters (MSC4104, MSC4031 and MSC4095) and one L6 cluster (MSC6004) with respectively 60% (6/10), 42% (11/26), 38% (9/24) and 43% (3/7) of isolates showing resistance to either rifampicin and/or isoniazid (table 3), we did not observe such high levels of drug resistance in the other large and very large clusters. Only 2% of the isolates belonging to large and very large clusters were MDR-TB strains and this was significantly lower than that for small (2 isolates) and medium (3 – 5 isolates) (4%) clusters (p=0.031).

For the determination of possible factors associated with recent TB transmission, we first performed a general logistic regression model including all MTBC lineages using the event of belonging to a clustered case as the outcome variable and participants’ variables as possible predictors (table 4). In a separate logistic regression model, we tested risk factors associated with recent TB transmission stratified independently by L4 and L5 (table 5) excluding L6 due to limited sample size. In the multivariable analysis for the general logistic regression model, we found that harboring either isoniazid or rifampicin resistant MTBC strain (adjusted OR 0.7, 95% CI 0.5 – 0.9) was associated with a lower odds of belonging to a clustered case (table 4). All
other factors such as education status, occupation, income level, ethnicity, religion or HIV status had no association with recent TB transmission.

Finally, using adjusted predictions, we found that, the probability of belonging to a clustered case decreased with age and increased with the number of TB contacts (figure 7). In a separate logistic regression analysis, including age as a continuous variable with belonging to a clustered case the outcome variable, we found that, each year increase in age was significantly associated with approximately 1% (CI: 0·13 – 2·00%) decrease in the odds of a TB patient being part of a recent transmission event (p=0·007).

Table 4: logistic Regression analysis of risk factors associated with TB clustering (recent TB transmission)

Variable	MTBC (N =2,309)	Univariate	Multivariate			
	Total TB cases, N (%)	Clustered cases, N (%)	OR (95% CI)	p-value	Adjusted OR (95% CI)	p-value
Year diagnosed						
2012	2,309 (100)	1,229 (53·2)	1·4 (1·0 - 1·8)	0·043	1·3 (0·9 - 1·7)	0·113
2013	244 (10·6)	147 (60·3)	Reference			
2014	776 (33·6)	410 (52·8)	Reference			
2015	707 (30·6)	365 (51·6)	1·0 (0·8 - 1·2)	0·642	0·9 (0·7 - 1·1)	0·203
Gender	2,294 (99·4)					
Male	1,631 (71·1)	863 (52·9)	1·0 (0·8 - 1·2)	0·685		
Female	663 (28·9)	357 (53·8)	Reference			
Age³(yrs)	2,224 (96·3)					
<15	37 (1·7)	25 (67·6)	1·6 (0·8 - 3·3)	0·183	1·6 (0·8 - 3·2)	0·221
15 - 29	639 (28·7)	360 (56·3)	Reference			
30 - 39	570 (25·6)	307 (53·9)	0·9 (0·7 - 1·1)	0·387	0·9 (0·7 - 1·2)	0·688
40 - 59	778 (35·0)	398 (51·2)	0·8 (0·7 - 1·0)	0·052	0·9 (0·7 - 1·1)	0·241
>59	200 (9·0)	97 (48·5)	0·7 (0·5 - 1·0)	0·053	0·9 (0·6 - 1·1)	0·211
Nationality	1,781 (77·1)					
Ghanaian	1,714 (96·2)	932 (54·4)	Reference			
Others	67 (3·8)	38 (56·7)	1·1 (0·7 - 1·8)	0·706		
Locality	2,309 (100)	1,229 (53·2)				
Rural	201 (8·7)	74 (36·8)	Reference			
Urban	2,108 (91·3)	1,155 (54·8)	2·1 (1·5 - 2·8)	<0·001		
Residence classification	1,642 (71·1)					
Village	69 (4·2)	27 (39·1)	0·5 (0·3 - 0·8)	0·007		
Town	182 (11·1)	96 (52·7)	0·9 (0·6 - 1·2)	0·415		
City residential area	52 (3·2)	27 (51·9)	0·8 (0·5 - 1·5)	0·564		
City suburb	1,136 (69·2)	636 (56·0)	Reference			
City Slum	203 (12·4)	112 (55·2)	1·0 (0·7 - 1·3)	0·83		
Residential district	1,538 (66·6)	298 (54·7)	Reference			
----------------------	--------------	------------	-----------			
Ablekuma	545 (35·4)	298 (54·7)	Reference			
Ashiedu Keteke	170 (11·1)	100 (58·8)	1·2 (0·8 - 1·7)	0·343		
Ayawaso	220 (14·3)	124 (56·4)	1·1 (0·8 to 1·5)	0·672		
Kpeshie	224(14·6)	121 (54·0)	1·0 (0·7 - 1·3)	0·867		
Mamprusi East	70 (4·6)	22 (31·4)	0·4 (0·2 - 0·6)	<0·001		
Okaikoi	176 (11·4)	98 (55·7)	1·0 (0·7 to 1·5)	0·816		
Osu Klottey	133 (8·6)	78 (58·7)	1·2 (0·8 - 1·7)	0·409		
Household type	1,624 (70·3)					
Self-contain	412 (25·4)	221 (53·6)	1·0 (0·8 - 1·2)	0·797		
Compound house	1,212 (74·6)	659 (54·4)	Reference			
Education	1,748 (75·7)					
Primary	222 (12·7)	125 (56·3)	1·1 (0·8 - 1·5)	0·637		
Middle/JHS	637 (36·4)	347 (54·5)	Reference			
Secondary	429 (24·5)	232 (54·1)	1·0 (0·8 - 1·3)	0·899		
Tertiary	190 (10·9)	110 (57·9)	1·1 (0·8 - 1·6)	0·405		
No Education	270 (15·4)	141 (52·2)	0·9 (0·7 - 1·2)	0·534		
Occupation	1,722 (74·6)					
Unemployed	390 (22·6)	208 (53·3)	0·9 (0·7 - 1·1)	0·423		
Unskilled	951 (55·2)	530 (55·7)	Reference			
Skilled	381 (22·1)	198 (52·0)	0·9 (0·7 - 1·1)	0·213		
Monthly income (GH¢)	1,622 (70·2)					
None	371 (22·9)	213 (57·4)	Reference			
<301	807 (49·7)	438 (54·3)	0·9 (0·7 - 1·1)	0·315		
301 - 1,000	407 (25·1)	218 (53·6)	0·8 (0·6 - 1·1)	0·281		
>1,000	37 (2·3)	15 (40·5)	0·5 (0·3 - 1·0)	0·052		
Religion	1,771 (76·7)					
Christian	1,361 (76·9)	739 (54·3)	Reference			
Islam	302 (17·0)	161 (53·3)	1·0 (0·7 - 1·2)	0·755		
Others	26 (1·5)	14 (53·9)	1·0 (0·4 - 2·1)	0·963		
Not religious	82 (4·6)	49 (59·7)	1·2 (0·8 - 2·0)	0·366		
Ethnicity	1,760 (76·4)					
Akan	570 (32·3)	309 (54·2)	Reference			
Ewe	259 (14·7)	143 (55·2)	1·0 (0·8 - 1·4)	0·788		
Ga/Adangbe	544 (30·8)	310 (57·0)	1·1 (0·9 - 1·4)	0·352		
Others	392 (22·2)	196 (50·0)	0·8 (0·6 - 1·1)	0·199		
Marital Status	1,758 (76·1)					
Single	766 (43·6)	431 (56·3)	Reference			
Married	742 (42·2)	395 (53·2)	0·9 (0·7 - 1·1)	0·237		
Divorced	167 (9·5)	99 (59·3)	1·1 (0·8 - 1·6)	0·476		
Widowed	83 (4·7)	35 (42·2)	0·6 (0·3 - 0·9)	0·015		
Smear positivity	2,208 (95·6)					
Scanty 1 - 9	173 (7·8)	96 (55·5)	1·1 (0·8 - 1·5)	0·714		
1+	474 (21·5)	237 (50·0)	0·9 (0·7 - 1·1)	0·151		
2+	546 (24·7)	294 (53·9)	1·0 (0·8 - 1·2)	0·957		
3+	1,015 (46·0)	548 (54·0)	Reference			
Previous TB treatment	1,737 (75·2)					
Yes	291 (16·8)	153 (52·6)	0·9 (0·7 - 1·2)	0·535		
No	1,446 (83·2)	789 (54·6)	Reference			
Risk of TB contact						
Closefriend/Household	1,665 (72·1)	594 (33·0)	Reference			
----------------------	---------------	-------------	-----------	---		
No contact	1,121 (67·3)	594 (33·0)	Reference			
1 contact	212 (12·7)	118 (55·7)	1·1 (0·8 - 1·5)	0·475		
2-5 contacts	309 (18·6)	179 (57·9)	1·2 (0·9 - 1·6)	0·123		
6-10 contacts	23 (1·4)	15 (65·2)	1·7 (0·7 - 4·0)	0·249		
Imprisonment	1,660 (71·9)	849 (54·3)	Reference			
Yes	97 (5·8)	56 (37·7)	1·1 (0·8 - 1·7)	0·513		
No	1,563 (94·2)	849 (54·3)	Reference			
Health/Lab worker	1,661 (71·9)	881 (54·6)	Reference			
Yes	47 (2·8)	25 (53·2)	0·9 (0·5 - 1·7)	0·85		
No	1,614 (97·2)	881 (54·6)	Reference			
Immunosuppressive condition	1,695 (73·4)	488 (54·6)	1·0 (0·9 - 1·2)	0·747		
Any	893 (52·7)	488 (54·6)	1·0 (0·9 - 1·2)	0·747		
None	802 (47·3)	432 (53·9)	Reference			
Diabetes Mellitus	534 (23·1)	253 (47·7)	Reference			
Yes	104 (19·5)	54 (51·9)	1·0 (0·7 - 1·5)	0·957		
No	430 (80·5)	222 (51·6)	Reference			
HIV status	1,166 (50·5)	550 (53·8)	Reference			
Yes	144 (12·3)	82 (56·9)	1·1 (0·8 - 1·6)	0·481		
No	1,022 (87·7)	550 (53·8)	Reference			
Smoking	1,518 (65·7)	590 (54·4)	Reference			
Yes	434 (28·6)	237 (54·6)	1·0 (0·8 - 1·2)	0·949		
No	1,084 (71·4)	590 (54·4)	Reference			
Substance abuse (excluding alcohol)	1,401 (60·7)	250 (54·3)	1·0 (0·8 - 1·3)	0·858		
Yes	140 (10·0)	84 (60·0)	1·3 (0·9 - 1·8)	0·172		
No	1,261 (90·0)	680 (53·9)	Reference			
Substance abuse (including alcohol)	1,474 (63·8)	250 (54·3)	1·0 (0·8 - 1·3)	0·858		
Yes	460 (31·2)	250 (54·3)	1·0 (0·8 - 1·3)	0·858		
No	1,014 (68·8)	546 (53·8)	Reference			
Lineage	2,309 (100)	546 (53·8)	Reference			
Lineage 1	38 (1·7)	7 (18·4)	0·2 (0·08 - 0·4)	<0·001		
Lineage 2	65 (2·8)	43 (66·3)	1·5 (0·9 - 2·5)	0·126		
Lineage 3	26 (1·1)	4 (15·4)	0·1 (0·05 - 0·4)	<0·001		
Lineage 4	1,741 (75·4)	984 (56·5)	Reference			
Lineage 5	289 (12·5)	143 (49·5)	0·8 (0·6 - 1·0)	0·026		
Lineage 6	150 (6·5)	48 (32·0)	0·4 (0·3 - 0·5)	<0·001		
Lineage 4 sub-lineage						
Cameroon	1,046 (60·1)	616 (58·9)	Reference			
Ghana	376 (21·6)	206 (54·8)	0·8 (0·7 - 1·1)	0·167		
Harleem	156 (9·0)	91 (58·3)	1·0 (0·7 - 1·4)	0·895		
LAM	50 (2·9)	25 (50·0)	0·7 (0·4 - 1·2)	0·215		
Uganda	40 (2·3)	16 (40·0)	0·5 (0·2 - 0·9)	0·02		
Others	51 (2·9)	26 (51·0)	0·7 (0·4 - 1·3)	0·265		
Not determined	22 (1·3)	4 (18·2)	0·2 (0·1 - 0·5)	0·001		
Drug resistance	2,300 (99·6)	546 (53·8)	Reference			

Risk Factors associated with TB clustering: logistic Regression Analysis stratified by lineage

Variables	line4 (N=1,741)	Univariate	Multivariate	line5 (N=289)	Univariate					
	TB cases, N (%)	clustered* cases, N (%)	OR (95% CI)	Adjusted OR (95% CI)	p-value	TB cases, N (%)	clustered* cases, N (%)	OR (95% CI)	p-value	
Year diagnosed	1,741 (100)	120 (65-6)	1.5 (1.1 - 2.1)*	1.4 (1.0 - 2.1)	0.062	26 (9-0)	14 (53-8)	1.2 (0.5 - 2.9)	0.659	
2012	183 (10-5)	120 (65-6)	1.5 (1.1 - 2.1)*	1.4 (1.0 - 2.1)	0.062	26 (9-0)	14 (53-8)	1.2 (0.5 - 2.9)	0.659	
2013	568 (32-6)	318 (56-0)	Reference	Reference	Reference	98 (33-9)	48 (49-0)	Reference	Reference	
2014	548 (31-5)	300 (54-7)	1.0 (0.8 - 1.2)	1.0 (0.7 - 1.3)	0.847	92 (31-8)	43 (46-7)	0.9 (0.5 - 1.6)	0.757	
2015	442 (25-4)	244 (55-2)	1.0 (0.8 - 1.2)	1.0 (0.7 - 1.3)	0.955	73 (25-3)	38 (52-1)	1.2 (0.6 - 2.1)	0.691	
Age (yrs)	1,672	20 (74-1)	1.0 - 2.1	1.0 - 2.0	2.1 (0.9 - 5.0)	2.1 (0.9 - 5.0)	5 (1-8)	3 (60-0)		
<15	27 (1-6)	20 (74-1)	2.0 - 5.0	Reference	78 (27-6)	42 (53-8)				
15 - 29	497 (29-7)	289 (58-2)	Reference	Reference	Reference	78 (27-6)	42 (53-8)			
30 - 39	432 (25-8)	252 (58-3)	1.0 - 2.0	1.0 - 2.0	2.1 (0.9 - 5.0)	2.1 (0.9 - 5.0)	5 (1-8)	3 (60-0)		
40 - 59	580 (34-7)	315 (54-3)	1.0 - 2.0	1.0 - 2.0	2.1 (0.9 - 5.0)	2.1 (0.9 - 5.0)	5 (1-8)	3 (60-0)		
>59	136 (8-1)	71 (52-2)	0.8 - 5.0	Reference	78 (27-6)	42 (53-8)				
Locality	1,741 (100)	289 (100)	1.0 - 2.0	1.0 - 2.0	2.1 (0.9 - 5.0)	2.1 (0.9 - 5.0)	5 (1-8)	3 (60-0)		
Rural	153 (8-8)	59 (38-6)	Reference	Reference	Reference	15 (5-2)	4 (26-7)	Reference	Reference	
Urban	1,588 (91-2)	923 (58-1)	2.2 (1.6 - 3.1)**	2.2 (1.6 - 3.1)**	2.2 (1.6 - 3.1)**	2.2 (1.6 - 3.1)**	274 (94-8)	139 (50-7)	2.8 (0.9 - 9.1)	0.081
Residential district	1,165	189	1.0 - 2.0	1.0 - 2.0	2.1 (0.9 - 5.0)	2.1 (0.9 - 5.0)	5 (1-8)	3 (60-0)		

For the multivariate model, we included only variables with p<0.1 and with at least 90% of available data. We however excluded “locality” due to reduced sample size from the rural setting.

We excluded residence classification, marital status, isoniazid mono-resistance and MDR due to co-linearity with other variables in the model.

*p<0.05; **p<0.01

A Cluster was defined as two or more isolates (same strain) that share an indistinguishable spoligotype and 15-loci

MTBC: *Mycobacterium tuberculosis* complex, OR: odds ratio
Location	Count (Distribution)	Reference Count (Reference Distribution)	Reference Count (Reference Distribution)
Cameroon	1046 (60-1)	614 (58-7)	
Ghana	376 (21-6)	206 (54-8)	90 (0-7 - 1-2)
Harleem	156 (9-0)	91 (58-3)	1-0 (0-7 - 1-4)
LAM	50 (2-9)	25 (50-0)	0-7 (0-4 - 1-2)
Uganda	40 (2-3)	16 (40-0)	0-5 (0-2 - 0-9)
Others	51 (2-9)	26 (51-0)	0-7 (0-4 - 1-3)
Not determined	22 (1-3)	4 (18-2)	0-2 (0-1 - 0-5)
Drug resistance	1,736		
Any	241 (13-9)	114 (47-3)	0-7 (0-5 - 0-9)
None	1,495 (86-1)	867 (58-0)	Reference

358 We included in this analysis, only variables with p<0.1 from the general logistic regression model in table 4
359 For the multivariate model, we included only variables with p<0.1 and with at least 90% of available data.
360 *p<0.05; **p<0.001
361 # A Cluster was defined as two or more isolates (same strain) that share an indistinguishable spoligotype and 15-loci
362 MIRU-VNTR allelic pattern but allowing for one missing allelic data at any one of the difficult-to-amplify MIRU loci.
Discussion

The aims of this study were to conduct a population-based prospective molecular epidemiological study to analyze the transmission dynamics of MTBC strains circulating in Ghana and to identify risk factors associated with recent TB transmission. The current study also offered us the opportunity to create a local repository of strain types for future reference to help monitor TB programs by analyzing the trends in estimates of recent transmission.

We obtained a high MTBC isolate recovery rate of 78.8% higher than that reported in similar studies28,29 and this strengthens the power of the sample size to make assessments of TB transmission rate in Ghana. Our study identified a high TB clustering (recent TB transmission) rate of 41.2% which is quite alarming with the urban and rural areas having estimated rates of 41.7% and 9.0% respectively (table 2b). These findings call for intensifying community outreach programs to encourage early case reporting and infection control. Moreover, our analysis predicted the probability of clustering to generally increase with increase in the number of TB contacts (figure 7). This means that a susceptible individual is likely to have TB and be involved in a recently transmitted event as the number of TB contacts increases.

Within our study population, we found no association of recent TB transmission with education status, occupation, income level, ethnicity, religion or HIV status. However, we observed that individuals below the age of 30 years were associated with recent TB transmission, and this is similar to observations made elsewhere.28,30 Also from this study, we observed that each year increase in age is associated with an approximately 1% (CI: 0.13 – 2.00, p=0.007) decrease in the odds of a TB patient being part of a recent transmission event implying that, compared to younger individuals, older individuals are more likely to get active TB disease by reactivation of latent TB infection rather than through a recent transmission event.28 This finding put age as a
risk factor for recent TB transmission in Ghana. Also, we identified that the male/female ratio among very large clusters was significantly higher than that observed in the general TB patient population (p=0.022). This finding, together with the observation that some large clusters involved only males, also puts males as having a higher risk of recent TB transmission compared to females suggesting that males may engage in certain social activities that predisposes them to belonging to a recent transmission event.

We observed a lower rate of MDR-TB among large clustered cases compared to the general population (2% vs 4%, p=0.031) indicating a low MDR-TB transmissibility within our study population. This finding further suggests that, majority of drug resistant-TB cases in Ghana acquired the drug resistance during treatment which indicate poor patient compliance. We also found that compared to drug (isoniazid and/or rifampicin) sensitive TB strains, it is unlikely to find TB strains with either isoniazid and/or rifampicin resistance involved in a recent transmission event (adjusted OR 0.7, 95% CI 0.5 – 0.9).

Within our study setting, we observed a reduced transmission of Maf (L5: 31.8%, L6: 24.7%) compared to MTBss L4 (44.9%). The high recent transmission rate observed for L4 was driven by both the Cameroon and Ghana sub-lineages with no difference in their transmissibility, hence putting the Ghana sub-lineage as a very important pathogen. The high transmission of the Ghana sub-lineage coupled with recently reported association with drug resistance is of public health importance and hence calls for the national tuberculosis control program to support peripheral diagnostic laboratories with facilities to accurately detect and help control the spread of the Ghana sub-lineage.

The higher recent transmission rate for L4 compared to L5 may arguably just be a mirage and may not necessarily imply the outcompeting of L5 by L4 as their relative proportions still remain
constant over the entire study period of this current study (figure 3) and also from previous reports.16 The reduced prevalence and transmission of L5 may just be a result of a bottleneck event which might have taken place in the past resulting in the reduction of Maf population at the time and ever since, Maf has been transmitting at this same average rate ensuring a stable population proportion over time. Despite the low transmissibility of Maf, the observed stable relative proportion over the entire study period may be because the pathogen, has adapted to infecting specific host populations (possibly due to unidentified host genetic or environmental factors peculiar to some West African inhabitants) and hence enabling the maintenance of a stable prevalence over time. Using adjusted predictions for the probability of clustering, we found that, Maf L5 may still have the propensity to transmit as equal as lineage 4 (figure 7) not forgetting the confounding effect of a higher diversity in spoligotype pattern of L5 compared to L4 and hence reducing the clustering of the former.8 Compared to L4, we found a significant association of L6 with individuals living in villages (OR 6·6, p<0·05; appendix p 3). The low recent TB transmission in the villages coupled with an association of L6 could be the reason why we observed low frequencies of L6 strains within our study setting.

Our report could be limited by the possibility of underestimating recent transmission rate resulting from misclassifying strains as unique if they were actually clustered outside of our restricted geographic sampling site and sampling period. We however took some measures to address underestimation of recent TB transmission by recruiting up to 90\% of the diagnosed TB cases spanning a three and a half year period. In addition, we also understand the possibility of overestimating recent TB transmission rates considering that the basis of our clustering analysis was done using a combined 15 loci MIRU-VNTR typing and spoligotyping whereas WGS could have offered a better resolution of strains.
Overall, our findings indicate high recent TB transmission suggesting occurrences of unsuspected outbreaks and recommends intensifying community education to improve early case reporting and infection control.
Contributors

DYM designed the study, provided supervision and support, provided intellectual input and wrote the manuscript. PA performed most of the laboratory procedures, collated the epidemiological and laboratory data, did all statistical and cluster analysis on the data and wrote the manuscript. AAP contributed to the study design, performed some laboratory procedures and provided all associated data and provided useful comments to writing the manuscript. DAP performed some laboratory procedures and provided all associated data. SB provided supervision, support, intellectual input and critically reviewed the manuscript. SOW performed some laboratory procedures and provided all associated data and provided useful comments to writing the manuscript. IDO performed some laboratory procedures and provided all associated data and provided useful comments to writing the manuscript. AF supported the enrollment and collection of clinical and demographic data from the health facilities. GA did some laboratory procedures and provided all associated data. KAK provided supervision and support, intellectual input and provided useful comments to writing the manuscript. SG designed the study, provided supervision and support, provided intellectual input and critically reviewed the manuscript. All coauthors reviewed and approved the final manuscript before submission.

Declaration of interest

We declare that we have no competing interest

Acknowledgements

The research was funded with the Wellcome Trust Intermediate Fellowship Grant 097134/Z/11/Z to Dorothy Yeboah-Manu. PA was supported by the West African Centre for
Cell Biology of Infectious Pathogens (WACCBIP)-World Bank ACE PhD studentship. The authors are grateful for the administrative support of Dr. Frank Bonsu, National Tuberculosis Control Program, Ghana, laboratory heads and nurses at various facilities we recruited cases and all study participants. We thank the national service personnel for providing immense help in completing questionnaires and making sputum samples available for laboratory investigations. We thank Vida Yirenkyiwaa Adjei and Portia Abena Morgan of Noguchi Memorial Institute for Medical Research for their assistance in some laboratory procedures.
References

1. WHO. Global tuberculosis report. Geneva: World Health Organization; 2016.

2. Varghese B, al-Omari R, Grimshaw C, Al-Hajoj S. Endogenous reactivation followed by exogenous re-infection with drug resistant strains, a new challenge for tuberculosis control in Saudi Arabia. *Tuberculosis (Edinb)* 2013; 93(2): 246-9.

3. Yang C, Luo T, Shen X, et al. Transmission of multidrug-resistant *Mycobacterium tuberculosis* in Shanghai, China: a retrospective observational study using whole-genome sequencing and epidemiological investigation. *The Lancet Infectious Diseases* 2016.

4. Anderson LF, Tamne S, Brown T, et al. Transmission of multidrug-resistant tuberculosis in the UK: a cross-sectional molecular and epidemiological study of clustering and contact tracing. *Lancet Infect Dis* 2014; 14(5): 406-15.

5. Walker TM, Lalor MK, Broda A, et al. Assessment of *Mycobacterium tuberculosis* transmission in Oxfordshire, UK, 2007-12, with whole pathogen genome sequences: an observational study. *Lancet Respir Med* 2014; 2(4): 285-92.

6. Mulenga C, Shamputa IC, Mwakazanga D, Kapata N, Portaels F, Rigouts L. Diversity of *Mycobacterium tuberculosis* genotypes circulating in Ndola, Zambia. *BMC Infect Dis* 2010; 10: 177.

7. Glynn JR, Alghamdi S, Mallard K, et al. Changes in *Mycobacterium tuberculosis* genotype families over 20 years in a population-based study in Northern Malawi. *PLoS One* 2010; 5(8): e12259.

8. Asante-Poku A, Otchere ID, Osei-Wusu S, et al. Molecular epidemiology of *Mycobacterium africanum* in Ghana. *BMC Infect Dis* 2016; 16: 385.
9. Barnes PF, Cave MD. Molecular Epidemiology of Tuberculosis. *N Engl J Med* 2003; 349(12): 1149-56.

10. Maguire H, Dale JW, McHugh TD, et al. Molecular epidemiology of tuberculosis in London 1995-7 showing low rate of active transmission. *Thorax* 2002; 57(7): 617-22.

11. de Jong BC, Antonio M, Gagneux S. *Mycobacterium africanum*—review of an important cause of human tuberculosis in West Africa. *PLoS Negl Trop Dis* 2010; 4(9): e744.

12. Blouin Y, Hauck Y, Soler C, et al. Significance of the identification in the Horn of Africa of an exceptionally deep branching *Mycobacterium tuberculosis* clade. *PLoS One* 2012; 7(12): e52841.

13. Gagneux S, Small PM. Global phylogeography of *Mycobacterium tuberculosis* and implications for tuberculosis product development. *The Lancet Infectious Diseases* 2007; 7(5): 328-37.

14. Kallenius G, Koivula T, Ghebremichael S, et al. Evolution and clonal traits of *Mycobacterium tuberculosis* complex in Guinea-Bissau. *J Clin Microbiol* 1999; 37(12): 3872-8.

15. de Jong BC, Hill PC, Aiken A, et al. Progression to active tuberculosis, but not transmission, varies by *Mycobacterium tuberculosis* lineage in The Gambia. *J Infect Dis* 2008; 198(7): 1037-43.

16. Yeboah-Manu D, Asare P, Asante-Poku A, et al. Spatio-Temporal Distribution of *Mycobacterium tuberculosis* Complex Strains in Ghana. *PLoS One* 2016; 11(8): e0161892.

17. Yeboah-Manu D, Yates MD, Wilson SM. Application of a simple multiplex PCR to aid in routine work of the mycobacterium reference laboratory. *J Clin Microbiol* 2001; 39(11): 4166-8.
18. Otchere ID, Asante-Poku A, Osei-Wusu S, et al. Detection and characterization of drug-resistant conferring genes in *Mycobacterium tuberculosis* complex strains: A prospective study in two distant regions of Ghana. *Tuberculosis* 2016.

19. Barnard M, Albert H, Coetzee G, O’Brien R, Bosman ME. Rapid molecular screening for multidrug-resistant tuberculosis in a high-volume public health laboratory in South Africa. *Am J Respir Crit Care Med* 2008; **177**(7): 787-92.

20. Kamerbeek J, Schouls L, Kolk A, et al. Simultaneous detection and strain differentiation of *Mycobacterium tuberculosis* for diagnosis and epidemiology. *J Clin Microbiol* 1997; **35**(4): 907-14.

21. Supply P, Allix C, Lesjean S, et al. Proposal for standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat typing of *Mycobacterium tuberculosis*. *J Clin Microbiol* 2006; **44**(12): 4498-510.

22. Asante-Poku A, Nyaho MS, Borrell S, Comas I, Gagneux S, Yeboah-Manu D. Evaluation of customised lineage-specific sets of MIRU-VNTR loci for genotyping *Mycobacterium tuberculosis* complex isolates in Ghana. *PLoS One* 2014; **9**(3): e92675.

23. Allix-Beguec C, Harmsen D, Weniger T, Supply P, Niemann S. Evaluation and strategy for use of MIRU-VNTRplus, a multifunctional database for online analysis of genotyping data and phylogenetic identification of *Mycobacterium tuberculosis* complex isolates. *J Clin Microbiol* 2008; **46**(8): 2692-9.

24. Shabbeer A, Cowan LS, Ozcaglar C, et al. TB-Lineage: an online tool for classification and analysis of strains of *Mycobacterium tuberculosis* complex. *Infect Genet Evol* 2012; **12**(4): 789-97.

25. Hall A. What is molecular epidemiology? *Trop Med Int Health* 1996; **1**(4): 407-8.
26. Glynn JR, Vynnycky E, Fine PE. Influence of sampling on estimates of clustering and recent transmission of *Mycobacterium tuberculosis* derived from DNA fingerprinting techniques. *Am J Epidemiol* 1999; 149(4): 366-71.

27. Field N, Cohen T, Struelens MJ, et al. Strengthening the Reporting of Molecular Epidemiology for Infectious Diseases (STROME-ID): an extension of the STROBE statement. *The Lancet Infectious Diseases*; 14(4): 341-52.

28. Hamblion EL, Le Menach A, Anderson LF, et al. Recent TB transmission, clustering and predictors of large clusters in London, 2010-2012: results from first 3 years of universal MIRU-VNTR strain typing. *Thorax* 2016; 71(8): 749-56.

29. Mears J, Abubakar I, Cohen T, McHugh TD, Sonnenberg P. Effect of study design and setting on tuberculosis clustering estimates using Mycobacterial Interspersed Repetitive Units-Variable Number Tandem Repeats (MIRU-VNTR): a systematic review. *BMJ Open* 2015; 5(1): e005636.

30. Vluggen C, Soetaert K, Groenen G, et al. Molecular epidemiology of *Mycobacterium tuberculosis* complex in Brussels, 2010-2013. *PLoS One* 2017; 12(2): e0172554.

31. Danso E, Addo IY, Ampomah IG. Patients' Compliance with Tuberculosis Medication in Ghana: Evidence from a Periurban Community. *Advances in Public Health* 2015; 2015: 6.
Reduced transmission of *Mycobacterium africanum* compared to *M. tuberculosis* in urban West Africa

Prince Asare¹,²,³, Adwoa Asante-Poku¹,², PhD, Diana Ahu Prah¹, MSc, Sonia Borrell⁴,⁵, PhD, Stephen Osei-Wusu¹, MPhil, Isaac Darko Otchere¹, MPhil, Audrey Forson⁶, MBChB, Gloria Adjapong⁷, PhD, Kwadwo A. Koram¹, PhD, Sebastien Gagneux⁴,⁵, PhD, Dorothy Yeboah-Manu¹, PhD

¹Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana

²West African Centre for Cell Biology of Infectious Pathogens, University of Ghana

³Department of Biochemistry, Cell and Molecular Biology, University of Ghana

⁴Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.

⁵University of Basel, Basel, Switzerland

⁶Department of Chest Diseases, Korle-Bu Teaching Hospital, Korle-Bu, Accra, Ghana

⁷Centre for Plant Medicine Research, Mampong, Ghana
Figure 1: Map of study area showing the location of the 12 sampling sites (health facilities)
Figure 2: Pipeline for recruited participants and culture positive TB cases used for clustering analysis.

*Category described as untypeable for MIRU-VNTR includes isolates with ≥2 MIRU-loci un-amplified (164, 71.3%) and isolates with double allele at ≥2 MIRU-loci (66, 28.7%). These isolates were described as suspected mix infection or laboratory contamination and hence were removed from further analysis.

Frequency was expressed as the total number of *Mycobacterium tuberculosis* complex (MTBC) isolates obtained
Figure 3: Temporal distribution of 2,309 MTBC isolates stratified by lineage. Lineages have been color coded with the universally accepted color codes for the main MTBC lineages.
Figure 4: Cluster distribution and size stratified by lineage (panel A and C) and sub-lineage (panel B and D).

* $p<0.001$ # $p=0.118$ $\forall p=0.565$
Figure 5: Minimum spanning tree (MST) representation of the clustering of 2,322 MTBC isolates from Accra Metropolitan Assembly and East Mamprusi district built with Bionumerics software. The color code reflects the main MTBC lineages 1 to 6 with the size depicting the number of clustered isolates with an identical strain type.
Figure 6: Time lapse between first and last diagnosed case within selected large and very large clusters. Lineages 5 and 6 have been color coded with the universally accepted color codes for the main MTBC lineages whereas sub-lineages of lineage 4 have been color coded, Cameroon: red, Ghana: gold, Haarlem: pink, LAM: purple and X3: yellow.
Figure 7: Adjusted predictions of the probability of belonging to a clustered case with 95% confidence interval at the year of diagnosis (A), while ageing (B), considering the number of close TB contact(s) (C) and of circulating MTBC lineages (D).