The effect of neoadjuvant therapy on PD-L1 expression and CD8⁺ lymphocyte density in non-small cell lung cancer

Philipp Zens, Corina Bello, Amina Scherz, Michael von Gunten, Adrian Ochsenbein, Ralph A. Schmid and Sabina Berezowska

PD-L1 expression is the routine clinical biomarker for the selection of patients to receive immunotherapy in non-small cell lung cancer (NSCLC). However, the application and best timing of immunotherapy in the resectable setting is still under investigation. We aimed to study the effect of chemotherapy on PD-L1 expression and tumor infiltrating lymphocytes (TILs), which is to date still poorly understood. Our retrospective, single-centre neoadjuvant cohort comprised 96 consecutive patients with NSCLC resected 2000–2016 after neoadjuvant therapy, including paired diagnostic chemo-naïve specimens in 53 cases. A biologically matched surgical cohort of 114 primary resected cases was included. PD-L1 expression, CD8⁺ TILs density and tertiary lymphoid structures were assessed on whole slides and correlated with clinico-pathological characteristics and survival. Seven/53 and 12/53 cases had lower respectively higher PD-L1 expressions after neoadjuvant therapy. Most cases (n = 34) showed no changes in PD-L1 expression, the majority of these harboring PD-L1 < 1% in both samples (21/34 [61.8%]). Although CD8⁺ TILs density was significantly higher after chemotherapy (p = 0.031) in resections compared to diagnostic biopsies, this might be due to sampling and statistical bias. No difference in PD-L1 expression or CD8⁺ TILs density was detected when comparing the neoadjuvant and surgical cohort. In univariable analyses, higher CD8⁺ TILs density, higher numbers of tertiary lymphoid structures but not PD-L1 expression were significantly associated with longer survival. Increased PD-L1 expression after neoadjuvant chemotherapy was not significantly associated with shorter 5-year survival, but the number of cases was very low. In multivariable analysis, only pT category and age remained independent prognostic factors. In summary, PD-L1 expression was mostly unchanged after neoadjuvant chemotherapy compared to diagnostic biopsies. The sample size of cases with changed PD-L1 expression was too small to draw conclusions on any prognostic value.

Modern Pathology (2022) 35:1848–1859; https://doi.org/10.1038/s41379-022-01139-y

INTRODUCTION

Lung cancer is the deadliest cancer worldwide, mainly explainable by the late diagnosis due to presentation in advanced stages (UICC/AJCC TNM stage III/IV)¹. For early-stage non-small cell lung cancer (NSCLC), surgery still offers the best chance of cure². However, especially in nodal-positive patients, there is a high risk of recurrence and death. Since randomized trials have shown that additional neoadjuvant or adjuvant chemotherapy leads to better outcomes compared to resection only, it is generally accepted that patients with lymph node metastatic NSCLC should not receive surgery as a stand-alone treatment³,⁴. Adjuvant platinum-based chemotherapy offers a modest 5-year survival benefit of about 5% and is recommended for patients with completely resected early-stage, high-risk NSCLC — weighing the benefits and risks³,⁴. Perioperative therapeutic approaches are a hotly debated topic, with immunotherapy-based combinations and targeted treatments — in EGFR mutated NSCLC — dominating the current trial landscape. According to surgical outcomes from the phase III CheckMate 816 trial, the neoadjuvant combination of nivolumab and chemotherapy showed considerably lower rates of residual tumor compared with chemotherapy alone⁵. Primary results of the phase III global IMPower010 trial demonstrated a significant improvement in disease-free survival (DFS) comparing atezolizumab with best supportive care after adjuvant chemotherapy for resected stage IIB – IIIA NSCLC. The greatest benefit was observed in patients with a tumoral programmed cell death 1 ligand 1 (PD-L1) expression ≥1%⁶. Programmed cell death protein 1 (PD1) and its ligand PD-L1 belong to the costimulatory pathway of the adapted immune system⁷. Extensive studies have explained the hijacking of this regulatory pathway by different tumor entities including lung cancer⁸. PD1 is expressed on the surface of T cells, mediating inhibitory and stimulatory signals⁹. The overexpression of PD-L1 on the surface of tumor cells leads to evasion of an appropriate tumor-induced response of the immune system by T cell apoptosis and
exhaustion. The combination of immune checkpoint blockade and chemotherapy seems to be beneficial especially in patients with low levels of PD-L1 expressing tumor cells and ongoing trials are reporting positive results of this regimen in patients with resectable lung cancer. However, the selection of appropriate patients is currently based only on PD-L1 expression in tumor tissue prior to medication, which is a suboptimal biomarker. More selective tools or, conceivably, a combination of multiple tumor immunity markers such as tumor mutational burden or CD8+ tumor infiltrating lymphocytes (TILs) are needed to predict response to treatment. This is highlighted by recent examples of immune checkpoint blockade (ICB) benefit irrespective of tumoral PD-L1 expression. Furthermore, it is still unclear how classic neoadjuvant chemotheraphy influences the tumor microenvironment and if it could promote therapeutic ICB. Regarding the neoadjuvant setting, several studies have reported dynamic changes, though without a clear trend of altered PD-L1 expression after chemotherapy (Table 1). Here, we aimed to assess PD-L1 expression and CD8+ TILs density and their prognostic importance in a real-life cohort of patients with NSCLC resected after neoadjuvant chemoradiotherapy compared to paired diagnostic samples and a biologically matched surgical cohort with primary resected advanced NSCLC.

MATERIAL AND METHODS

Study population

This retrospective single center study was conducted on consecutive patients with NSCLCs, resected between January 2000 and December 2016 in the Department of thoracic surgery of the Inselpital and diagnosed at the Institute of Pathology, University of Bern. It includes a neoadjuvant cohort of cases resected after neoadjuvant (radio-)chemotherapy, as previously described, and a biologically matched surgical cohort of primary resected cases of lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD) at a locally advanced stage, defined by the presence of mediastinal lymph-node metastases (pN2). The cases were included according to pathology reports, validated and expanded by considering the clinical files of the Inselpital Bern (clinical data), cantonal cancer registry or the survival data) and by contacting the general practitioners (clinical and survival data).

The initial neoadjuvant cohort consisted of 130 patients and was reduced to 118 patients after excluding tumors with neuroendocrine histology and patients not treated with neoadjuvant intention (flowchart in supplementary fig. S1). For PD-L1 and tumor microenvironment evaluation (CD8+ TILs and tertiary lymphoid structures, TILs), the cohort was further reduced to 96 respectively 95 patients due to insufficient residual tumor in the excluded case (Supplementary fig. S1). For one patient with a LUSC a second sample was evaluated for PD-L1 due to the incidental diagnosis of an independent small LUAD. Regarding pre-neoadjuvant therapy specimens, 86/118 patients had available diagnostic biopsies or cytology specimens, in 53 cases with sufficient tumor content for PD-L1 assessment and in 36 cases with adequate material for CD8+ TILs evaluation, excluding cytologies and lymph node biopsies without desmoplastic reaction. TILs were not evaluated in the pretherapeutic specimens.

The surgical cohort was biologically matched, meaning that the final tumor stage would have qualified for neoadjuvant therapy (pN2), had it been suspected preoperatively. It consisted initially of 115 cases including 60 patients with LUAD and 55 patients with LUSC. Finally, 114 patients were included for PD-L1 evaluation and 111 patients for CD8+ TILs and TLS evaluation (Supplementary fig. S1).

For harmonization, all cases were pathologically re-evaluated by SB and PZ and re-staged according to the current 8th edition of the UICC TNM classification. We only included the pathological TNM classification as assessed by the resection specimen since the predominant growth pattern was assessed for primary resected LUAD cases according to the current 2021 World Health Organization criteria. Table 2 summarizes the baseline characteristics of the cohorts including p-values of the statistical comparison if applicable. We did not statistically compare tumor stages (due to selection bias in the surgical cohort as described above), growth pattern (not assessable after neoadjuvant therapy) and neoadjuvant (radio)-chemotherapy (only applied to patients of the neoadjuvant cohort).

This study was carried out according to the REMARK criteria and approved by the Cantonal Ethics Commission of the Canton of Bern (KEK 2017-00830), which waived the requirement for written informed consent.

Survival analyses

We restricted the survival analyses to five years after initial diagnosis to account for the multimorbidity of patients. Overall survival (OS) was defined as the period from the beginning of treatment to death of any cause. DFS was defined as the period from the beginning of treatment to clinically reported relapse or death of any cause. The beginning of treatment was defined by the start of neoadjuvant therapy in the neoadjuvant cohort or the date of resection in the surgical cohort and in 2 cases with missing information about the starting date of neoadjuvant therapy. Patients with stage IV disease (n = 14), missing survival information (n = 7), non-curative resection (n = 2) or lack of follow-up information within 30 days after surgery (n = 12) were excluded from survival analyses resulting in 175 patients included (Supplementary fig. S1). Median OS was 35 (95% CI 29 – 47) months and 87 events were observed (Supplementary fig. S2A). Median DFS was 18 (95% CI 15 – 25) months and 118 events were observed (Supplementary fig. S2B). There was no significant difference of survival between the neoadjuvant cohort and the surgical cohort (Supplementary fig. S2C, D).

Immunohistochemical staining and scanning

For immunohistochemical staining appropriate tissue blocks were selected after screening all available H&E slides. PD-L1 staining was effectuated in a closed system using the Ventana PD-L1 (SP263) assay (Roche Diagnostics International AG, Rotkreuz, Switzerland) on the fully automated immunostainer Benchmark ULTRAs (Roche-Diagnostics International AG) following the manufacturer’s instructions. The sections were pre-processed using CC1 buffer at 100 °C for 64 min, followed by antibody incubation at 37 °C for 16 min and visualization with DAB.

CD8 staining was effectuated using C8/144B (Agilent, Santa Clara, CA, United States) on the fully automated immunostainer BOND III (Leica Biosystems, Muttenz, Switzerland). The sections were pre-processed with EP buffer at 100 °C for 20 min followed by incubation of the diluted antibody (1:200) for 15 min and visualization with DAB. Selected slides were digitized using the Panoramic P250 Flash III (3DHistech, Budapest, Hungary) in multiple runs at a resolution of 0.243 μm/pixel.

The tissue had been obtained during the routine diagnostic workflow and the formalin-fixed paraffin-embedded tissue had been stored at the Institute of Pathology Bern according to the recommendation of the Swiss Society of Pathology. There was no evidence of time-dependent staining bias with similar distributions of PD-L1 or CD8 expression along the period of observation (Supplementary fig. S3A, B).

PD-L1 assessment

Specimens with at least 100 tumor cells were eligible. PD-L1 expression was assessed by PZ and reviewed on a double-headed microscope together with SB. In cases of discordant assessment consensus was achieved. PD-L1 expression was assessed as the tumor proportional score (TPS), defined by the proportion of PD-L1 positive tumor cells of all tumor cells. PD-L1 positive tumor cells were defined as showing membranous staining of any intensity. TPS was assessed as a continuous parameter in 1% increments up to 10% and 5% increments in cases showing >10% expression. For statistical analyses, cases were assigned to the three clinically relevant bins of TPS: < 1%, ≥1–49% or ≥50%. PD-L1 positive cases were defined by TPS ≥ 1% and strong expressing cases were defined as TPS ≥ 50%.

Assessment of CD8+ tumor infiltrating lymphocytes and tertiary lymphoid structures

For the assessment of CD8+ TILs, only biopsies of non-lymph nodes and lymph nodes with desmoplastic reaction were eligible. We evaluated CD8+ TILs per mm² applying a semi-automated approach using the open-source software QuPath (Supplementary fig. S4). First, we manually annotated regions of interest following recommendations of the Interna-Immunology Biomarkers Working Groups. Thus, only TILs within the borders of the invasive front of tumors were evaluated and smaller satellite nodules without desmoplastic reaction were not included in the assessment. In neoadjuvant cases with extensive fibrotic areas, only the
Table 1. Currently published studies investigating the effect of neoadjuvant regimens on PD-L1 expression and the immune microenvironment.

study	year	number of patients (paired/PD-L1/CD8)	histology	neoadjuvant treatment	PD-L1 clone	PD-L1 evaluation	PD-L1 results	CD8 clone	CD8 evaluation	CD8 conclusion (change after neoadj. treatment)	
Remark	2016	21/122/122	LUSC/ LUAD/LCC	CT + CRT	E1L3N	TPS	no change	no	NA	SP16 density	
Sheng	2016	32/32/0	LUSC/LUAD	CT	E1L3N	H-Score	decrease	additional	<1% 1-5% 5-10% 10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80% 80-90% 90-100%	no	
Song	2016	76/76/0	LUSC	CT	NA	H-Score	increase	no	65 (85.5)	NA	
Zhang	2016	30/92/92	LUSC/LUAD	Abcam b	H-Score	NA no	no	1-49% 50-80%	NA		
Fujimoto	2017	35/35/34	LUSC/LUAD	CRT	28–8	TPS	decrease	<1%	15 (42.9)	C8/144B SPS	
Parra	2018	0/112/112	LUSC/LUAD	CT	E1L3N	TPS (automated, 5 hotspots)	increase	no	C8/144B SPS		
Rojko	2018	41/41/0	LUSC/NSCLC/SLCC	CT	SP142	TPS (3 TMA spots)	no change	1% 1-5% 5-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80% 80-90% 90-100%	29 (70.7)	NA	
Choe	2019	33/43/43	LUSC/non-LUSC	CRT	22C3 SP263	TPS	no change	no	16 (48.5)	C8/144B SPS	
Fournel	2019	39/39/39	LUSC/NSCLC/LCNEC	CT	E1L3N	TPS	increase	no	8 (20.5)	SP16 density (automated, selected spots)	no change
Guo	2019	63/63/0	LUSC/NSCLC/NEC	CT	22C3	TPS	increase	<1%	1-49% 50-80%	40 (63.5)	NA
Shin	2019	86/86/0	LUSC/NSCLC/LCC	CRT	E1L3N	TPS	increase	<1% 1-5% 5-10%	40 (46.5)	NA	
NA											
Yoneda	2019	41/41/41	LUSC/LUAD	CT group CRT group	E1L3N	TPS	increase (CCRT no change CT)	no	NA	C8/144B SPS	
Gaudreau	2021	0/82/82	LUSC/non-LUSC	CT	E1L3N	NA no	no	NA	NA	C8/144B proportion (automated, 5 spots)	increase

LUSC lung squamous cell carcinoma, LUAD lung adenocarcinoma, LCC large cell carcinoma, NSCLC non-small cell lung carcinoma, SCLC small cell lung cancer, LCCNEC large cell neuroendocrine carcinoma, NEC neuroendocrine carcinoma, TPS tumor proportional score, SPS stroma proportional score, CRT chemoradiotherapy, CT chemotherapy, a comparison was made but not statistically assessed, b rabbit anti-PD-L1/CD8 from Abcam, c classified as ≤25%, 26–50%, >50% of nucleated cells in the stroma, d multiplex immunofluorescence, e additional classification in <1%, 1–5%, 6–10%, 11–20%, 21–30%, 31–40%, 41–50%, 51–60%, 61–70%, 71–80%, 81–90%, 91–100% TPS, f follow-up study of Parra et al. with potential overlap of the cohorts, PD-L1 was stained but the results were not reported.
Table 2. Baseline characteristics of the neoadjuvant and surgical cohort.

	Neoadjuvant cohort	Surgical cohort	p value
	(n = 96)	(n = 114)	
Age (median [IQR])	63.50 [55.75, 70.00]	63.50 [58.00, 70.00]	0.418*
Sex (%)			
Female	28 (29.2)	38 (33.3)	0.553*
Male	68 (70.8)	76 (66.7)	
Smoking status (%)			
Never/ex-smoker	56 (67.5)	55 (61.1)	0.429*
Active smoker	27 (32.5)	35 (38.9)	
Histology (%)			
LUSC	46 (47.9)	54 (47.4)	0.678*
LUAD	47 (49.0)	60 (52.6)	
Other	3 (3.1)		
Tumor size (median [IQR])	3.20 [2.00, 4.85]	4.75 [3.00, 6.07]	<0.001*
Major pathological response (%)			
MPR	33 (34.4)		
No MPR	63 (65.6)		
(y)pT (%)			
(y)pT0	1 (1.0)		
(y)pT1	32 (33.3)	17 (14.9)	
(y)pT2	22 (22.9)	37 (32.5)	
(y)pT3	20 (20.8)	31 (27.2)	
(y)pT4	21 (21.9)	29 (25.4)	
Stage (%)			
I	17 (17.7)		
II	25 (26.0)		
III	50 (52.1)	104 (91.2)	
IV	4 (4.2)	10 (8.8)	
Growth pattern (%)			
Acinar/papillary	15 (25.9)		
Solid	28 (48.3)		
Micropapillary	15 (25.9)		
Type of resection (%)			
Wedge	3 (2.6)		
Lobectomy	53 (55.2)	62 (54.4)	
Bilobectomy	5 (5.2)	8 (7.0)	
Pneumonecctomy	38 (39.6)	41 (36.0)	
Neoadjuvant therapy (%)			
Cisplatin+Docetaxel	54 (57.4)		
Carboplatin+Paclitaxel	5 (5.3)		
Cisplatin+Pemetrexed	13 (13.8)		
Cisplatin+Gemcitabine	8 (8.5)		
Cisplatin+Vinorelbine	5 (5.3)		
Cisplatin+Etoposide	1 (1.1)		
Other	8 (8.5)		
Neoadjuvant radiotherapy (%)			
No	67 (76.0%)		
Yes	23 (24.0%)		
Adjuvant therapy (%)			<0.001*
No	65 (73.9)	32 (32.3)	
Yes	23 (26.1)	67 (67.7)	

No statistical comparison of stage, growth patterns, residual tumor and neoadjuvant therapy due to inherent differences.

Main variable names are italic and statistically significant p-values are bold.

*Fisher's exact test, °Wilcoxon rank-sum test.
stroma adjacent to the tumor nests was included for analyses. Next, cells in the annotated regions were segmented using the threshold-based watershed detection of QuPath followed by the application of a series of object classifiers for exclusion of anthracotic pigments and artefacts before classification and counting of CD8 negative and positive cells (technical manuscript in preparation). The performance of this automated detection and classification was compared in 22 cases using 5000 × 5000 px wide squares against manual counting of one observer (PZ, Supplementary table 1).

Regarding the evaluation of TLS, the digitized H&E sections were used for manual assessment of the number and activity (presence of germinal squares against manual counting of one observer (PZ, Supplementary manuscript in preparation). The performance of this automated detection and classification was compared in 22 cases using 5000 × 5000 px wide squares against manual counting of one observer (PZ, Supplementary table 1).

Regarding the evaluation of TLS, the digitized H&E sections were used for manual assessment of the number and activity (presence of germinal centers) of TLS in the resection specimens by PZ⁴. In 44 cases, another block than used for PD-L1 or CD8 assessment was evaluated due to the presence of larger areas of adjacent normal lung tissue. All nodular aggregates of lymphocytes in the tumor region and within 7 mm of the tumor border were counted⁴. In cases of densely infiltrated tumoral stroma, only nodular aggregates apparent on low magnification were included.

Statistics
All analyses were conducted using R software (version 4.0.5, https://cran.r-project.org/) with suitable packages. For comparison of naturally ordered categorical variables or continuous variables, we used the Wilcoxon rank-sum or Kruskal-Wallis test and for comparison of other categorical variables the Fisher’s exact test. Correlation was assessed using the Spearman test. Survival analyses were conducted using the Log-rank test and univariable cox proportional hazard models. Kaplan-Meier plots were used for the representation of survival curves. Multivariable cox proportional hazard models were used for correction for confounders, which were selected based on a significance level of p ≤ 0.1. CD8 + TILs density was included as binary variable (low vs. high) in all survival models. It was dichotomized using maximally selected rank statistics based on Log-rank scores as test statistic and the approximation by Hothorn and Lausen for small sample sizes⁴.⁵

RESULTS
No upregulation of PD-L1 expression by neoadjuvant therapy
After neoadjuvant therapy, PD-L1 expression was <1% in 43/96 (44.8%) cases, 1–49% in 31/96 (32.3%) cases and ≥50% in 22/96 (22.9%) cases (Fig. 1A). In the surgical cohort, PD-L1 expression was <1% in 40/114 (35.1%) cases, 1–49% in 47/114 (41.2) cases and ≥50% in 27/114 (23.7%) cases (Fig. 1A). There was no significant difference in PD-L1 expression between the neoadjuvant cohort and the surgical cohort also after adjusting for histology.

Except for smoking status (active smoker vs. former/- never smoker) none of the clinico-pathological parameters was associated with higher PD-L1 expression. In the neoadjuvant cohort, active smoking was associated with a higher PD-L1 TPS (p = 0.013). Active smokers had a significantly higher frequency of PD-L1 positive tumors in the neoadjuvant cohort (p = 0.02, Supplementary fig. S5) and inversely in the surgical cohort (p = 0.026, Supplementary fig. S5).

PD-L1 expression was not significantly altered comparing paired pre-/post-neoadjuvant samples. Overall, 7/53 (13.2%) tumors had lower PD-L1 expression and 12/53 (22.6%) had higher PD-L1 expression in the resection specimen, as assessed regarding the clinically significant cut-offs of 1% and 50% (Supplementary table 2 and Supplementary fig. S6). Four/7 cases showed lower PD-L1 expression regarding the 50% cut-off and 5/7 regarding the 1% cut-off (2 cases changed from ≥50% to <1%). A positive or negative change of PD-L1 could not be associated with response to neoadjuvant therapy (major pathological response [MPR] yes/ no), patients’ sex, tumor histology or change of CD8 + TILs density (Supplementary table 3).

Higher CD8 + tumor infiltrating lymphocyte density is associated with higher PD-L1 expression
After neoadjuvant therapy, mean CD8 + TILs density within the tumor region was 242.45 (IQR 73.11–290.32) cells/mm² (Fig. 1A). In the surgical cohort, mean CD8 + TILs density was 252.1 (IQR 98.37–314.73) cells/mm² (Fig. 1A). CD8 + TILs density was similar between the neoadjuvant and surgical cohort. After neoadjuvant therapy, a median of 10 (IQR 4–21.5) TLS were counted on the selected whole slides. In the surgical cohort, a median of 9 (IQR

Fig. 1 PD-L1 expression and CD8 + TILs. A Stacked bar plot and density diagram depict the different distribution of PD-L1 TPS and CD8 + TILs between the neoadjuvant and the surgical cohort. B Representative cases of the individual PD-L1 TPS categories and the corresponding CD8 stained section.
The histological tumor types visualized by different colors indicate a potentially more pronounced positive change in lung adenocarcinomas compared to tumors with non-adenocarcinoma histology. LUSC lung squamous cell carcinoma, LUAD lung adenocarcinoma.

4–19) TLSs were counted. After subgrouping according to histology, the median number of TLS was comparable between histological tumor types and groups. However, there were only 4 cases with active TLS in the neoadjuvant cohort compared to 13 cases in the surgical cohort. A higher number of active TLS comparing the cohorts was observed regardless of histological tumor type.

A higher CD8+ TLS density was statistically significantly associated with LUAD histology ($p_{\text{neoadjuvant}} = 0.001$, $p_{\text{surgical}} = 0.017$). LUAD showed significantly higher numbers of CD8 + TLSs (neoadjuvant: 253.76 [98.42–355.84] vs. 90.43 [51.24–138.39], surgical: 193.49 [128.44–329.61] vs. 137.91 [77.34–242.90]). Additional neoadjuvant radiotherapy $p_{\text{neoadjuvant}} = 0.026$ and a higher PD-L1 expression ($p_{\text{neoadjuvant}} = 0.027$, $R_S = 0.23$, $p_{\text{surgical}} = 0.003$ $R_S = 0.28$, Fig. 2A) were associated with increased densities of CD8 + TLSs. However, when subgrouping according to histological tumor type, PD-L1 expression did no longer significantly correlate with CD8 + TLSs density in LUAD after neoadjuvant treatment. Similar results were observed when applying the clinical cut-offs at 1% or 50% PD-L1 expression (Fig. 2B, C). Among the primary resected cases, PD-L1 positive cases showed a higher CD8 + TLS density. After neoadjuvant therapy, this remained true only for non-LUAD tumors. Strong PD-L1 expression correlated with CD8 + TLSs density in LUAD and non-LUAD tumors in both cohorts. In the surgical cohort, tumor size inversely correlated with CD8 + TLSs density ($R_S = -0.24$, $p = 0.011$), whereas in cases after neoadjuvant treatment, higher numbers of TLS correlated with higher CD8 + TLSs density ($R_S = 0.27$, $p = 0.009$).

CD8 + TLS density was significantly lower before neoadjuvant therapy comparing paired samples ($p = 0.031$, Fig. 3). We performed subgroup analyses to check whether changes of CD8 + TLS density were associated with changes in PD-L1 expression. However, changes of CD8 + TLS density were only significant in the subgroup of cases with no change of PD-L1 expression regarding the threefold classification (Supplementary Fig. S7), presumably due to insufficient sample size in the other subgroups. Furthermore, higher CD8 + density before or after neoadjuvant therapy was not associated with an increase of PD-L1 expression.

Prognostic significance of immune related biomarkers

In the entire study population, PD-L1 expression assessed in resection specimens had no prognostic significance, neither for OS nor for DFS, neither using the three-tier classification nor the cut-offs of 1% or 50% individually (Supplementary fig. S8). In subgroup analyses including only cases after neoadjuvant therapy or primary resected cases, PD-L1 positivity was a prognostic marker.
for longer OS in the surgical cohort \((p = 0.029, \text{HR} 0.5255, 95\% \text{ CI} 0.2924–0.9444, \text{Fig. 4})\). Regarding PD-L1 as a dynamic marker, although patients with decreased PD-L1 expression seemed to have a longer 5-year OS, this was not statistically significant, and the case number was very low (Fig. 5).

We used maximally selected rank statistic to determine the adequate cut-off for CD8\(^+\) TILs density at 283.18 cells/mm\(^2\) in the entire study population. Overall, higher CD8\(^+\) TILs numbers were associated with longer OS \((p = 0.014, \text{HR} 0.5373, 95\% \text{ CI} 0.3251–0.888, \text{Supplementary fig. S9A})\) and longer DFS \((p = 0.008, \text{HR} 0.5707, 95\% \text{ CI} 0.3762–0.8656, \text{Supplementary fig. S9B})\). In the subgroup analyses, however, it was a positive prognostic factor for OS only in the neoadjuvant cohort \((p = 0.029, \text{HR} 0.4332, 95\% \text{ CI} 0.1997–0.9397, \text{Fig. 6A})\) and for DFS only in the surgical cohort \((p = 0.048, \text{HR} 0.5513, 95\% \text{ CI} 0.3043–0.9986, \text{Fig. 6D})\).

The number of TLS was considered as a continuous variable and it was a prognostic marker considering the entire study population \((p = 0.045, \text{HR} 0.9833, 95\% \text{ CI} 0.9673–0.9996)\) but not in the subcohorts \((p_{\text{neoadjuvant}} = 0.15, p_{\text{surgical}} = 0.13)\).

We investigated the validity of the prognostic significance only in the overall population to achieve sufficient sample size and number of events. As the three immune markers PD-L1 expression, CD8\(^+\) TILs and TLS correlated significantly, we performed a cox regression analysis for each marker. PD-L1 expression was included using the TPS 1% cut-off only. None of the immune markers was prognostic in the multivariable model for OS \((p_{\text{PD-L1}} = 0.241, p_{\text{CD8}} = 0.368, p_{\text{TLS}} = 0.246)\) or DFS \((p_{\text{PD-L1}} = 0.054, p_{\text{CD8}} = 0.098, p_{\text{TLS}} = 0.407)\) but age and PT4 were consistent prognostic factors in the multivariable models (Supplementary fig. S10).

DISCUSSION

In this study on immune related biomarkers in locally advanced resectable NSCLC, CD8\(^+\) TILs and TLS were prognostic factors...
but did not yield additional information to age and TNM in multivariable analyses. CD8+ TILs density correlated with PD-L1 expression. PD-L1 expression was not consistently upregulated after neoadjuvant chemotherapy, in line with some, but not all previous studies13,16,19–22.

The effect of chemotherapy on PD-L1 expression in the resectable setting has been previously investigated as summarized in Table11–23. Most studies reported an increased PD-L1 expression after chemotherapy when assessing paired samples. The importance of the PI3K/ALK pathway in PD-L1 upregulation was demonstrated in in vitro and in vivo functional assays14,19. Conversely, some studies showed no change or even a decreased PD-L1 expression following chemotherapy11,12,15,17,18. In fact, when reassessing the positive studies and considering the absolute number of cases per category (decrease, no change, increase), most cases did not change. Of the four studies conducted using an FDA approved antibody, only one concluded an increased PD-L1 expression post-chemotherapy15,17,18,20. Thus, our study results are in line with previous reports for FDA approved antibodies and suggest that changes in PD-L1 expression due to chemotherapy are observed only in a minority of tumors. In the majority of our cases (34/53) PD-L1 expression was stable and most of them were negative (21/34 cases) in both the biopsy/cytology specimens and the resection after neoadjuvant therapy. This concordance between biopsy and resection in explicit cases (TPS < 1% or ≥50%) was also described in a larger study by Hwang et al. performed on 103 paired cases without focus on neoadjuvant therapy35. The authors reported only a moderate concordance, primarily explained by considerable discordance in cases with intermediate PD-L1 expression (TPS 1–49%)35. Considering these and previously reported results, it seems unlikely that neoadjuvant chemotherapy induces PD-L1 expression.

Chemotherapy is deemed to improve immunosurveillance by different effects (antigenicity, immunogenicity, susceptibility)36. This would suggest an upregulation of PD-L1 in tumor cells to evade a strong antitumor response. A potential explanation for the lack of consistent upregulation in clinical samples could be the influence of chemotherapy on the immune microenvironment. Two larger studies have investigated such effects in detail by applying multiplex immunofluorescence and a multiomics approach16,23. Both studies describe an increase of immune cells in specimens after neoadjuvant therapy and point out that different subgroups of immune cells are increased depending on the underlying histological tumor type16,23. However, the multiomics approach indicated no increase of T-cell receptor richness and clonality, thus failed to validate the supposed increase of antigenicity or susceptibility23. Importantly, these studies did not include paired samples and, especially the study using multiomics, included only few cases depending on the performed analysis (n = 10–72)23.

In order to account for the immune microenvironment, we assessed the CD8+ TILs density and number and state of TLS. By applying a semiautomatic approach, we were able to count CD8+ TILs in the entire tumor region of the slides used for PD-L1 assessment, in contrast to the published studies usually performing hot spot analysis37–40. Although we confirmed published results indicating an increase of TILs in tumors resected after neoadjuvant therapy15,18,22, we cannot conclude that chemotherapy increases CD8+ TILs densities due to (a) no significant difference in CD8+ TILs density between cases resected after neoadjuvant therapy and primary resected cases, (b) biopsies covering
much smaller tissue areas than whole slides (thus being more prone to sampling error due to heterogeneity), and (c) higher variance in post-neoadjuvant therapy specimens leading to higher median ranks and means due to outliers (implications for statistical testing).

Another explanation, comparing preclinical and clinical studies, could be the heterogeneity of applied chemotherapeutic regimens, inherent in our real-life cohort approach. Although most cytotoxic agents have immunosurveillance enhancing effects, these differ considerably. Thus, while oxaliplatin and gemcitabine have been shown to promote immunogenic cell death, especially via exposure of calreticulin, others do not without addition of radiotherapy (e.g. cisplatin). Furthermore, although Zhang et al. and Fournel et al. suggested an upregulation of PD-L1 via the PI3K/ALK pathway, earlier studies support rather the downregulation of suppressive checkpoints via the STAT pathway. In our study, the majority of patients (n = 54) received cisplatin and docetaxel, but only 12/54 received additional radiotherapy. On the other hand, the few patients who had received gemcitabine and had available paired samples (n = 2) showed PD-L1-upregulation despite the lack of neoadjuvant radiotherapy, and only 3/11 cases were PD-L1 negative in the resection specimens.

The prognostic power of PD-L1 expression as a double-edged sword has already been described exhaustively in advanced NSCLC and a high PD-L1 expression does not seem to be consistently associated with shorter survival. Likewise, most studies including tumors after neoadjuvant therapy reported no prognostic importance of PD-L1 expression. In this study, static PD-L1 expression, evaluated only in the resection
cases (approximately 30% changed PD-L1 expression in the resection) compared to significantly increased. However, cases with intermediate PD-L1 expression in the resection (50–59%) T cell infiltration in non-small cell lung cancer (NSCLC) following neoadjuvant therapy. Lung Cancer 51, 1086–1097 (2018).

Shin, J., Chung, J. H., Kim, S. H., Lee, K. S., Suh, K. J., Lee, J. Y. et al. Effect of Platinum-Based Chemotherapy on PD-L1 Expression on Tumor Cells in Non-small Cell Lung Cancer. Cancer Lett. 366, 1–5 (2020).

Yamada, K., Kuswata, T., Kanayama, M., Mori, M., Kawanami, T., Yatera, K. et al. Alteration of Tumor Type and Addressed Lung-Specific Artefacts as Anthracosis, allowing a reliable assessment of CD8+ TILs on the whole slide level corresponding to the area assessed for PD-L1 scoring37–40,103. Nevertheless, our study has limitations inherent to its retrospective and “real-life” character. In particular, compared to clinical studies investigating the effect of (radio-)chemotherapy, patients with different chemotherapeutic regimens were included11,18. Although patients with changed PD-L1 expression after neoadjuvant therapy did not statistically differ from the rest of the cohort regarding duration of neoadjuvant therapy or therapy free interval between the last cycle of neoadjuvant therapy and resection, these differences in duration of therapy and therapy free interval need to be accounted for when interpreting our results.

In conclusion, PD-L1 expression was not altered by intervening neoadjuvant (radio-)chemotherapy but CD8+ TILs were significantly increased. However, cases with intermediate PD-L1 expression (1–49% TPS) in biopsies showed some dynamic (6/12 [50%] cases changed PD-L1 expression in the resection) compared to negative (<1% PD-L1 TPS) or strong positive (≥50% PD-L1 TPS) cases (approximately 30% changed PD-L1 expression in the resection). Thus, it could be of value to repeat PD-L1 testing in cases with intermediate PD-L1 expression. Literature suggests PD-L1 dynamics (decrease, no change, increase) to be a more valid prognostic marker. Although maybe due to the low sample size, this could not be statistically confirmed in our cohort. Subsequent clinical trials are warranted in order to determine if PD-L1 restesting should be performed after neoadjuvant therapy due to therapeutic implications of an altered PD-L1 expression.

DATA AVAILABILITY
Anonymized detailed clinico-pathological data and the R-Script used for data analysis are available upon request to the authors.

REFERENCES
1. Sung, H., Fealay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71, 209–249 (2021).

2. Howington, J. A., Blum, M. G., Chang, A. C., Balekian, A. A. & Murthy, S. C. Treatment of stage I and II non-small cell lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 143, e276S–e313S (2013).

3. Souquet, P. J. & Geriniere, L. The role of chemotherapy in early stage of non-small cell lung cancer. Lung Cancer 34, 515S–518S (2001).

4. Postmus, P. E., Kerr, K. M., Oudkerk, M., Senan, S., Waller, D. A., Vansteenkiste, J. et al. Early and locally advanced non-small-cell lung cancer (NSCLC): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 28, iv1–iv21 (2017).

5. Strojan, P., Tribodet, H., Ringuetti, F., Simeone, M., Shepherd, F. A., Stephens, R. J. et al. Lung adenocarcinoma evaluation: a pooled analysis by the LACE Collaborative Group. J Clin Oncol 26, 3552–3559 (2008).

6. Spicer, J., Wang, C., Tanaka, F., Saylors, G. B., Chen, K.-N., Liberman, M. et al. Surgical outcomes from the phase 3 CheckMate 806 trial: Nivolumab (NIVO) + platinum-doublet chemotherapy (chemo) vs chemo alone as neoadjuvant treatment for patients with resectable non-small cell lung cancer (NSCLC). Journal of Clinical Oncology 39, 8503–8503 (2021).

7. Wakelee, H. A., Atkinson, N. K., Zhou, C., Cusidó, T., Vynnychenko, I. O., Goloborodko, O. et al. Impower101: Primary results of a phase III global study of atezolizumab versus best supportive care after adjuvant chemotherapy in resected stage IB-IIA non-small cell lung cancer (NSCLC). Journal of Clinical Oncology 39, 8500–8501 (2021).

8. Wei, S. C., Duffy, C. R. & Allison, J. P. Fundamental Mechanisms of Immune Checkpoint Blockade Therapy. Cancer Discov 8, 1069–1086 (2018).

9. Dafni, U., Tsiorti, Z., Vervita, K. & Peters, S. Immune checkpoint inhibitors, alone or in combination with chemotherapy, as first-line treatment for advanced non-small cell lung cancer. A systematic review and network meta-analysis. Lung Cancer 134, 127–140 (2019).

10. Camidge, D. R., Doebbe, R. C. & Kerr, K. M. Comparing and contrasting predictive biomarkers for immunotherapy and targeted therapy of NSCLC. Nat Rev Clin Oncol 16, 341–355 (2019).

11. Remark, R., Lupo, A., Alifano, M., Biton, J., Ouakrim, H., Stefani, A. et al. Immune contexture and histological response after neoadjuvant chemotherapy predict clinical outcome of lung cancer patients. Oncoimmunology 5, e1255394 (2016).

12. Sheng, J., Fang, W., Yu, J., Chen, N., Zhan, J., Ma, Y. et al. Expression of programmed death ligand-1 on tumor cells varies pre and post chemotherapy in non-small cell lung cancer. Sci Rep 6, 20090 (2016).

13. Song, Z., Yu, X. & Zhang, Y. Altered expression of programmed death-ligand 1 after neo-adjuvant chemotherapy in patients with lung squamous cell carcinoma. Lung Cancer 99, 166–171 (2016).

14. Zhang, P., Ma, Y., Lv, C., Huang, M., Li, M., Dong, B. et al. Upregulation of programmed cell death ligand 1 promotes resistance response in non-small-cell lung cancer patients treated with neo-adjuvant chemotherapy. Cancer Sci 107, 1563–1571 (2016).

15. Fujimoto, D., Uehara, K., Sato, Y., Sakanoue, I., Ito, M., Teraoka, S. et al. Alteration of PD-L1 expression and its prognostic impact after concurrent chemoradation therapy in non-small cell lung cancer patients. Sci Rep 7, 11373 (2017).

16. Parra, E. R., Villalobos, P., Behrens, C., Jiang, M., Pataer, A., Swisher, S. G. et al. Effect of neoadjuvant chemotherapy on the immune microenvironment in non-small cell lung carcinomas as determined by multiplex immunofluorescence and image analysis approaches. J Immunother Cancer 6, 48 (2018).

17. Rojko, L., Reiniger, T., Teglasi, V., Fabian, K., Pipek, O., Vagvolgyi, A. et al. Chemotherapy treatment is associated with altered PD-L1 expression in lung cancer patients. J Cancer Res Clin Oncol 144, 1219–1226 (2018).

18. Choe, E. A., Cha, Y. J., Kim, J. H., Pyo, K. H., Hong, M. H., Park, S. Y. et al. Dynamic changes in PD-L1 expression and CD8+ T cell infiltration in non-small cell lung cancer following chemoradiation therapy. Lung Cancer 136, 30–36 (2019).

19. Fournel, L., Wu, Z., Stadler, N., Damotte, D., Lococo, F., Boulle, G. et al. Cisplatin Chemotherapy for Thoracic NSCLC. Lung Cancer Res Treat 51, 1086–1097 (2019).

20. Yonedna, K., Kuswata, T., Kanayama, M., Mori, M., Kawanami, T., Yatera, K. et al. Alteration in tumoral PD-L1 expression and stromal CD8+positive tumour-infiltrating lymphocytes after concurrent chemo-radiotherapy for non-small cell lung cancer. Br J Cancer 121, 490–496 (2019).

21. Gaudreau, P. O., Negroa, M. V., Mitchell, K. G., Reuben, A., Corsini, E. M., Li, J. et al. Neoadjuvant Chemotherapy Increases Cytoxic T Cell, Tissue Resident Memory T Cell, and B Cell Infiltration in Resectable NSCLC. J Thorac Oncol 16, 127–139 (2021).
24. Pfirsichke, C., Engblom, C., Rickett, S., Cortez-Retamozo, V., Garris, C., Pucci, F. et al. Immunogenic Chemotherapy Sensitizes Tumors to Checkpoint Blockade Therapy. *Immunity* **44**, 343–354 (2016).

25. Zens, P., Bello, C., Scherz, A., Koenigsdorf, J., Pollinger, A., Schmid, R. A. et al. A prognostic score for non-small cell lung cancer resected after neoadjuvant therapy in comparison with the tumor-node-metastases classification and major pathological response. *Mod Pathol* **34**, 1333–1344 (2021).

26. Brierley JD, G. M., Wittkeind K. International Union Against Cancer (UICC): TNM Classification of Malignant Tumours. 8 edn. (Wiley-Blackwell, 2017).

27. WHO Classification of Tumours. *Thoracic Tumours*. 5 edn. Vol. 5 (International Agency for Research on Cancer, 2021).

28. McShane, L. M., Altman, D. G., Sauerbrei, W., Taube, S. E., Gion, M., Clark, G. M. et al. Recommendations for tumor marker prognostic studies (REMARK). *J Natl Cancer Inst* **97**, 1180–1185 (2005).

29. Dinnhofer, S., Bubendorf, L., Lehr, H.-A., Landau, B. & Zinkluesen, H.-R. Quality guidelines of the Swiss Society of Pathology. Qualitätsrichtlinien SGPath (St. Gallen, Schweizerische Gesellschaft für Pathologie, accessed 29 July 2022; https://sgpath.ch/qualitaetsicherung/ (2011).

30. Bankhead, P., Loughrey, M. B., Fernandez, J. A., Dombrowski, Y., McArt, D. G., Lonsdorfer, E. et al. Immunohistochemistry Testing in Lung Cancer (North Fort Myers, Editorial Rx Press, 2017).

31. Hendry, S., Salgado, R., Gevaert, T., Russell, P. A., John, T., Thapa, B. et al. Assessing Tumor-infiltrating Lymphocytes in Solid Tumors: A Practical Review for Pathologists and Proposal for a Standardized Method From the International Immunoncology Biomarkers Working Group: Part 1: Assessing the Host Immune Response. TILs in Invasive Breast Carcinoma and Ductal Carcinoma In Situ, Metastatic Tumor Deposits and Areas for Further Research. *Adv Anat Pathol* **24**, 235–251 (2017).

32. Hendry, S., Salgado, R., Gevaert, T., Russell, P. A., John, T., Thapa, B. et al. Assessing Tumor-Infiltrating Lymphocytes in Solid Tumors: A Practical Review for Pathologists and Proposal for a Standardized Method from the International Immunoncology Biomarkers Working Group: Part 2: TILs in Melanoma, Gastrointestinal Tract Carcinomas, Non-Small Cell Lung Carcinoma and Mesothelioma, Endometrial and Ovarian Carcinomas, Squamous Cell Carcinoma of the Head and Neck, Gynecological Carcinomas, and Primary Brain Tumors. *Adv Anat Pathol* **24**, 311–335 (2017).

33. Silina, K., Soltermann, A., Attar, F. M., Canasovana, R., Uckelely, Z. M., Thut, H. et al. Germinal Centers Determine the Prognostic Relevance of Tertiary Lymphoid Structures and Are Impaired by Cytotoxicostids in Lung Squamous Cell Carcinoma. *Cancer Res* **78**, 1308–1320 (2018).

34. Hothorn, T. & Lausen, B. On the exact distribution of maximally selected rank statistics. *Computational Statistics & Data Analysis* **43**, 121–137 (2003).

35. Hwang, D. M., Albaqer, T., Santiago, R. C., Weiss, J., Tanguay, J., Cabanero, M. et al. Prevalence and Heterogeneity of PD-L1 Expression by 22C3 Assay in Routine Clinical Practice: A British Analysis. *Cancer* **126**, 2305–2316 (2020). The authors declare no conflict of interest.

36. Zitvogel, L., Galluzzi, L., Smyth, M. J. & Kroemer, G. Mechanism of action of programmed death ligand 1 expression: a pragmatic approach in early-stage cancer. *Nat Rev Drug Discov* **16**, 1802–1824 (2017).

37. Twomey, J. D. & Zhang, B. Cancer Immunotherapy Update: FDA-Approved Checkpoint Inhibitors and Companion Diagnostics. *AAPS J* **23**, 39 (2021).

38. Zafra, M. S., Mellado, C., Vazquez, E., Guida, J., Parra, J., Bissell, M. et al. The landscape of immune microenvironment in lung adenocarcinoma and squamous cell carcinoma based on PD-L1 expression and tumour-infiltrating lymphocytes. *Cancer Med* **8**, 7207–7218 (2019).

39. Tsao, M. S., Kerr, K. M., Dacic, S., Yatabe, Y. & Hirsch, F. R. IASLC Atlas of PD-L1 immunohistochemistry testing in lung cancer. (North Fort Myers: Editorial Rx Press, 2017).

40. Naito, T., Udagawa, H., Sato, J., Horinouchi, H., Murakami, S., Goto, Y. et al. A Minimum Of 100 Tumor Cells in a Single Biopsy Sample Is Required to Assess Programmed Cell Death Ligand 1 Expression in Predicting Patient Response to Nivolumab Treatment in Nonquamous Non-Small Cell Lung Carcinoma. *J Thorac Oncol* **14**, 1818–1827 (2019).

41. Bremnes, R. M., Busund, L. T., Kliovar, T. L., Andersen, S., Richardsen, E., Roche and Bemmes, R. M., Busund, L. R. et al. Digitally quantified CD8+: the best candidate marker for an immune cell score in non-small cell lung cancer? *Carcinogenesis* **41**, 1671–1681 (2020).

Acknowledgements

The authors are very thankful for the expert technical support of the Translational Research Unit of the Institute of Pathology, University of Bern. We acknowledge the Cancer registry Bern for acquiring extensive follow-up data of the patients.

Author contributions

P.Z.: Conceptualization, Data curation, Formal analyses, Funding acquisition, Methodology, Visualization, Writing – original draft, Writing – Review & Editing; C.B.: Data curation, Writing – Review & Editing; A.O.: Data curation, Writing – Review & Editing; M.G.: Resources, Writing – Review & Editing; A.D.: Resources, Writing – Review & Editing; R.Q.: Resources, Writing – Review & Editing; S.B.: Conceptualization, Data curation, Formal analyses, Funding acquisition, Methodology, Project administration, Resources, Supervision, Writing – original draft, Writing – Review & Editing.

Funding

The study was supported by grants from the Stiftung zur Krebsbekämpfung (SKB425) and Cancer Research Switzerland (KFS-4604-02-2019) to SB. PZ is supported by a MD-PhD scholarship of Cancer Research Switzerland (MD-PhD-5088–06–2020). The funding agencies had no role in study design, in the collection, analysis and interpretation of data, in the writing of the report or in the decision to submit the article for publication. Open Access funding provided by the University of Lausanne.

Competing interests

SB has served as compensated consultant for Baxilae, Eli Lilly, MSD and Roche (payment to institution) and has received research funding from Roche outside of the current project. The other authors declare no conflict of interest.

Ethics approval and consent to participate

This study was approved by the Cantonal Ethics Committee of the canton of Bern waiving the requirement of informed consent (KEK 2017–00830). The study was performed in accordance with the Declaration of Helsinki.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41379-022-01139-y.

Correspondence and requests for materials should be addressed to Sabina Berezowska.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
