O impacto da lesão renal aguda transitória e persistente na mortalidade hospitalar em pacientes com COVID-19

The impact of transient and persistent acute kidney injury in hospital mortality in COVID-19 patients

Introdução: A lesão renal aguda (LRA) foi descrita em pacientes com doença do Coronavírus 2019 (COVID-19) e é considerada um marcador de gravidade da doença e fator prognóstico negativo para sobrevida. Neste estudo, os autores visaram estudar o impacto da lesão renal aguda transitória e persistente (LRAp) na mortalidade hospitalar em pacientes com COVID-19. Métodos: Estudo observacional retrospectivo de pacientes internados com COVID-19 no Departamento de Medicina do Centro Hospitalar Universitário Lisboa Norte, Lisboa, Portugal, entre Março-Agosto de 2020. Realizou-se análise multivariada para prever desenvolvimento de LRA e mortalidade hospitalar. Resultados: De 544 pacientes com COVID-19, 330 desenvolveram LRA: 166 LRA persistente (LRAp), 164, LRA transitória. Pacientes com LRA eram mais velhos, apresentaram mais comorbidades prévias, maior necessidade de serem medicados com inibidores do SRAA, apresentaram creatina sérica basal mais elevada (CrS) (1,60 mg/dL vs 0,87 mg/dL), maior razão NL, e acidemia mais grave na admissão hospitalar, e necessitaram mais frequentemente de internação na UTI, ventilação mecânica, e uso de vasopressores. Pacientes com LRA persistente apresentaram maior nível de CrS (1,71 mg/dL vs 1,25 mg/dL) na admissão hospitalar. A mortalidade hospitalar foi de 14,0% e foi maior em pacientes com LRA (18,5% vs 7,0%). A DRC e ferritina sérica foram preditores independentes de LRA. A LRA não previu mortalidade, mas a LRAp foi um preditor independente de mortalidade, assim como idade e nível de lactato. Conclusão: A LRAp foi associada independentemente à mortalidade hospitalar em pacientes com COVID-19, mas seu impacto no acompanhamento de longo prazo ainda precisa ser determinado.

Descritores: Injúria Renal Aguda; COVID-19; SARS-CoV-2; Mortalidade Hospitalar.

INTRODUCTION: Acute kidney injury (AKI) has been described in Coronavirus Disease 2019 (COVID-19) patients and is considered a marker of disease severity and a negative prognostic factor for survival. In this study, the authors aimed to study the impact of transient and persistent acute kidney injury (pAKI) on in-hospital mortality in COVID-19 patients. Methods: This was a retrospective observational study of patients hospitalized with COVID-19 in the Department of Medicine of the Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal, between March 2020 and August 2020. A multivariate analysis was performed to predict AKI development and in-hospital mortality. Results: Of 544 patients with COVID-19, 330 developed AKI: 166 persistent AKI (pAKI), 164 with transient AKI. AKI patients were older, had more previous comorbidities, had higher need to be medicated with RAAS inhibitors, had higher baseline serum creatine (SCr) (1.60 mg/dL vs 0.87 mg/dL), higher NL ratio, and more severe acidemia on hospital admission, and more frequently required admission in intensive care unit, mechanical ventilation, and vasopressor use. Patients with persistent AKI had higher SCr level (1.71 mg/dL vs 1.25 mg/dL) on hospital admission. In-hospital mortality was 14.0% and it was higher in AKI patients (18.5% vs 7.0%). CKD and serum ferritin were independent predictors of AKI. AKI did not predict mortality, but pAKI was an independent predictor of mortality, as was age and lactate level. Conclusion: pAKI was independently associated with in-hospital mortality in COVID-19 patients but its impact on long-term follow-up remains to be determined.

Keywords: Acute Kidney Injury; COVID-19, SARS-CoV-2; Hospital Mortality.
Introdução

No final de Dezembro de 2019, um surto de pneumonia grave atípica foi detectado em Wuhan, na China. Os casos iniciais foram todos associados ao mercado atacadista local de alimentos e causados pela síndrome respiratória aguda grave do coronavírus 2 (SARS-CoV-2). Esta doença ficou conhecida como Doença do Coronavírus 2019 (COVID-19). A infecção espalhou-se rapidamente pelo mundo e foi declarada uma pandemia pela Organização Mundial da Saúde em 11 de Março de 2020. Ao final de Janeiro de 2021, quase 100 milhões de casos de COVID-19 haviam sido registrados em todo o mundo, resultando em mais de dois milhões de mortes.

A maioria dos pacientes apresenta sintomas leves, como febre, dispneia, tosse, dor de cabeça e diarreia ou são assintomáticos. No entanto, casos mais graves de pneumonia podem levar à síndrome da angústia respiratória aguda (SARA), choque séptico, falência múltipla de órgãos e óbito. A lesão renal aguda (LRA) foi descrita em pacientes com COVID-19 e é considerada um marcador de gravidade da doença e um fator prognóstico negativo para a sobrevivência. No entanto, ainda se desconhece quais fatores predizem a mortalidade em pacientes com COVID-19 com LRA.

Os autores estudaram o impacto da lesão renal aguda transitória e persistente na mortalidade hospitalar em pacientes com COVID-19.

Pacientes e Métodos

O presente estudo foi uma análise retrospectiva de pacientes hospitalizados admitidos na Unidade Dedicada a pacientes com COVID-19 (UICIVE) no Departamento de Medicina do Centro Hospitalar Universitário Lisboa Norte (CHULN), em Lisboa, Portugal, entre Março e Agosto de 2020. O Comitê de Ética aprovou este estudo de acordo com as diretrizes institucionais e o consentimento livre e esclarecido foi dispensado, dada a natureza retrospectiva e não intervencionista do estudo.

Os pacientes elegíveis eram adultos (≥18 anos de idade) que testaram positivo para COVID-19 através do teste de reação em cadeia da polimerase de uma amostra nasofaríngea e foram admitidos na UICIVE de 1º de Março a 31 de Maio de 2020. Para pacientes que tiveram múltiplas admissões hospitalares qualificadas, incluímos apenas a primeira hospitalização. Os critérios de exclusão foram (a) pacientes com doença renal crônica (DRC) em terapia renal substitutiva, (b) pacientes que foram submetidos a terapia renal substitutiva uma semana antes da admissão, (c) pacientes que tiveram menos de 2 determinações de CrS e (d) pacientes que tiveram alta ou foram a óbito menos de dois dias após a admissão.

Os dados foram coletados de registros clínicos eletrônicos individuais. Foram analisadas as seguintes variáveis: características demográficas (idade, gênero); comorbidades (diabetes mellitus, hipertensão, doença pulmonar obstrutiva crónica (DPOC), doença cardiovascular (DCV), cirrose, DRC e/ou malignidade ativa); tratamento atual com inibidores do SRAA; gravidade da doença de acordo com a Escala de Gravidade Respiratória de Brescia-COVID (BCRSS, do inglês Brescia-COVID Respiratory Severity Scale) na admissão; valores laboratoriais na admissão [hemoglobina sérica, hematocrito, neutrófilos, contagem de linfócitos e plaquetas, albumina sérica, ferritina sérica, creatinina sérica, proteína C reativa (PCR), gasometria arterial e análise de pH, e lactato desidrogenase (LDH); exposição a nefrotoxinas durante a primeira semana de admissão [medicamentos anti-inflamatórios não-esteroides (AINEs), radiocontrast, vancomicina, aminoglicosídeos]; necessidade de internação na unidade de terapia intensiva (UTI); necessidade de ventilação mecânica; uso de vasopressores; e tratamento para COVID-19 (hidroxicloroquina, lopinavir/ritonavir, corticosteroides, tocilizumab, remdesivir). O diagnóstico da COVID-19 foi baseado nas diretrizes provisórias da OMS.

A LRA que se desenvolveu durante a internação hospitalar foi definida de acordo com a classificação do KDIGO (Kidney Disease Improving Global Outcomes), utilizando os critérios de creatinina sérica (CrS), como segue: Estágio 1: aumento na CrS de 0,3 mg/dL em 48 horas ou um aumento de 1,5-1,9 vezes na CrS a partir do valor basal em 7 dias; Estágio 2: aumento de 2,9 vezes na CrS em 7 dias; Estágio 3: aumento de 3 ou mais vezes na CrS dentro de 7 dias ou início de terapia renal substitutiva (TRS). Os pacientes foram estratificados de acordo com o estágio de LRA mais elevado alcançado durante sua internação. A LRA persistente (LRAp) foi definida como LRA por um período superior a 48h, de acordo com os critérios do KDIGO, conforme o relatório de consenso do Grupo de Trabalho da 16ª ADQI. A LRA transitória (LRAt) foi definida como LRA de duração inferior a 48h.
A CrS de pré-admissão (CrS nos três meses anteriores) foi considerada como valor basal. A taxa de filtração glomerular estimada (TFGe) para pacientes com CrS basal prévia foi calculada usando a equação de creatinina da Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI)\(^\text{12}\). Quando indisponível, a CrS basal foi estimada a partir da equação MDRD, aceitando o limite inferior de uma TFG basal normal de 75 mL/min/1,73m\(^2\), conforme proposto anteriormente\(^\text{10}\). A presença de DRC foi estimada de acordo com a CrS basal como uma TFGe inferior a 60 mL/min/1,73m\(^2\)\(^\text{13,25}\).

O diabetes mellitus foi diagnosticado de acordo com os critérios da Associação Americana de Diabetes\(^\text{14}\). A hipertensão foi diagnosticada de acordo com as Diretrizes de 2018 da Sociedade Europeia de Cardiologia (SEC) e da Sociedade Europeia de Hipertensão\(^\text{15}\). A DPOC compreendia enfisema e bronquite crônica. A DCV foi considerada sempre que se documentou um histórico de doença cerebrovascular, insuficiência cardíaca crônica de qualquer causa, doença isquêmica cardíaca, e/ou doença arterial periférica. A acidemia foi definida como o pH da gasometria <7,35. A razão N/L na admissão foi calculada como: contagem de neutrófilos/contagem de linfócitos.

Os desfechos analisados foram o desenvolvimento de LRA durante a primeira semana de admissão e mortalidade hospitalar.

ANÁLISE ESTATÍSTICA

As variáveis categóricas foram descritas como o número total e a porcentagem para cada categoria, enquanto as variáveis contínuas foram descritas como a média ± desvio padrão. As variáveis contínuas foram comparadas com o teste t de Student e as variáveis categóricas foram comparadas com o teste Qui-quadrado. Todas as variáveis foram submetidas à análise univariada para determinar fatores estatisticamente significativos que possam ter contribuído para o desenvolvimento de LRA e mortalidade intra-hospitalar. Posteriormente, foram incluídas variáveis significativas na análise multivariada utilizando o método de regressão logística. Os dados foram reportados como odds ratios (ORs) com intervalos de confiança de 95% (IC). A significância estatística foi definida como um valor de P <0,05. A análise estatística foi realizada com o pacote de software estatístico SPSS para Windows (versão 21.0).

RESULTADOS

PARTICIPANTES

De 1º de Março a 30 de Agosto, 544 pacientes foram admitidos na UICIVE com um diagnóstico de COVID-19. Os dados demográficos e clínicos dos pacientes são descritos na Tabela 1.

A maioria dos pacientes internados era do sexo masculino (n=298, 54,8%), com uma média de idade de 68,9±17,9 anos. A hipertensão arterial foi a comorbidade mais comum (n= 345, 63,4%), seguida por doença cerebrovascular e diabetes (n= 175, 32,2% e n=146, 26,8%, respectivamente). A creatinina basal foi estimada apenas com MDRD em 29 pacientes (5,3%). A CrS basal média foi de 0,98±0,44 mg/dL, a TFG média foi de 75,68±24,89 mL/min/1,73m\(^2\) e 103 pacientes apresentaram DRC (18,9%). Duzentos e vinte e seis pacientes foram medicados com inibidores do SRAA. Durante a internação hospitalar, 78 pacientes receberam nefrotoxinas, como AINEs, radiocontrastex, vancomicina, ou aminoglicosídeos.

Na admissão hospitalar, a CrS média foi de 1,32±1,47 mg/dL, o nível médio de hemoglobina foi de 12,68±2,29 g/dL (41,2% dos pacientes apresentaram anemia), a razão NL média foi de 6,36±6,28, a albumina sérica média foi de 3,58±0,50 g/dL (48% dos pacientes apresentaram hipoalbuminemia), a ferritina sérica média foi 1097,03±1300,67 μg/L, a PCR média foi de 9,51±9,29 mg/dL, o nível médio de lactato foi de 14,53±10,02 mg/dL, e 43% dos pacientes eram acidêmicos.

Com relação ao tratamento, uma grande maioria dos pacientes foi medicada com lopinavir/ritonavir (n=199, 36,6%), hidroxicloroquina (n=156, 28,7%) e corticosteroides (n=140, 25,7%), enquanto apenas 47 pacientes (8,6%) foram medicados com remdesivir e 18 pacientes (3,3%) foram tratados com tocilizumab.

Mais de 20% dos pacientes hospitalizados (n=120) precisaram de internação na UTI, principalmente devido à insuficiência respiratória, 56 pacientes preencheram os critérios de SARA, 69 pacientes necessitaram de ventilação mecânica, e 18 pacientes necessitaram de suporte vasopressor.

LESAO RENAL AGUDA

Nesta coorte de pacientes infectados por SARS-COV-2, 60,6% desenvolveram LRA durante a internação hospitalar (n=330). Destes, 50,3% (n=166) apresentaram LRAp definida como LRA que persiste por mais de 48 horas ou requer terapia renal substitutiva (TRS).
TABELA 1 CARACTERÍSTICAS BÁSICAS DOS PACIENTES DE ACORDO COM O DESENVOLVIMENTO DA LRA

Característica	Total (n=544)	Sem LRA (n=214)	LRA (n=330)	Valor de p
Idade (anos)	68,9±17,9	64,2±18,38	71,7±17,03	<0,001
Gênero (masculino) – n (%)	298 (54,8)	107 (50,0)	191 (57,9)	0,346
Comorbidades – n (%)				
Hipertensão	345 (63,4)	107 (50,0)	238 (72,1)	<0,001
Diabetes	146 (26,8)	43 (20,0)	103 (31,2)	0,016
DRC	175 (32,2)	46 (21,5)	129 (39,1)	<0,001
DPOC	103 (18,9)	17 (7,9)	86 (26,1)	<0,001
Cirrose	25 (4,6)	11 (5,1)	14 (4,2)	0,597
Neoplasia	87 (16,0)	34 (15,9)	53 (16,1)	0,769
Inibidores do SRAA – n (%)	226 (41,5)	69 (32,2)	157 (47,6)	0,002
CrS basal (mg/dL)	0,98±0,44	0,89±0,42	1,03±0,44	<0,001
TFGe basal (mL/min/1,73m²)	75,6±24,89	83,5±23,38	70,9±24,62	<0,001
Escore de Brescia ≥ 2	78 (14,3)	22 (10,3)	56 (32,9)	0,039
Laboratório				
CrS na admissão (mg/dL)	1,32±1,47	0,87±0,55	1,60±1,76	<0,001
Hemoglobina (g/dL)	12,6±2,29	12,8±2,22	12,59±2,34	0,242
Anemia – n (%)	224 (41,2)	80 (37,4)	144 (43,6)	0,455
Razão NL	6,36±6,28	5,15±4,86	7,09±6,90	<0,001
Albumina sérica (g/dL)	3,58±0,50	3,50±0,52	3,62±0,50	0,494
Hipoalbuminemia – n (%)	261 (48,0)	99 (46,3)	162 (49,0)	0,214
Ferritina sérica (ug/dL)	1097,03±1300,67	829,41±634,96	1255,88±1547,51	0,006
PCR (mg/dL)	9,51±9,29	8,16±8,27	10,33±9,77	0,008
Acidemia – n (%)	43 (7,9)	5 (2,3)	38 (11,5)	0,001
Nível de lactato (mg/dL)	14,53±10,02	13,95±9,62	14,86±10,24	0,344
Nefrotoxinas – n (%)	78 (14,3)	28 (13,1)	50 (14,7)	0,715
Admissão na UTI – n (%)	120 (22,1)	33 (15,4)	87 (25,7)	0,009
Ventilação mecânica – n (%)	69 (12,7)	18 (8,4)	51 (15,2)	0,029
Uso de vasopressores – n (%)	18 (3,3)	4 (1,9)	14 (4,2)	0,160
SARA – n (%)	56 (10,4%)	16 (7,5)	40 (12,1)	0,124
Tratamento da COVID-19				
Hidroxicloroquina – n (%)	156 (28,7)	61 (28,5)	95 (28,8)	0,728
Lopinavir/ritonavir – n (%)	199 (36,6)	76 (35,5)	123 (37,3)	0,893
Tocilizumab – n (%)	18 (3,3)	6 (2,8)	12 (3,6)	0,685
Corticosteroides – n (%)	140 (25,7)	43 (20,0)	97 (29,4)	0,035
Remdesivir – n (%)	47 (8,6)	12 (5,6)	35 (10,6)	0,064
LRA – n (%)	330 (60,6)			
LRA persistente – n (%)	166 (50,3)			
KDIGO estágio 1 – n (%)	109 (33,0)			
KDIGO estágio 2 – n (%)	46 (13,9)			
KDIGO estágio 3 – n (%)	184 (55,8)			
Necessidade de TRS – n (%)	53 (9,7)	53 (16,1)		
TDP no hospital (dias)	31,9±43,14	29,11±41,09	33,62±44,31	0,238
CrS na alta hospitalar (mg/dl)	0,99±0,67			
Mortalidade hospitalar – n (%)	76 (14,0)	15 (7,0)	61 (18,5)	<0,001

LRA – lesão renal aguda; SARA – síndrome da angústia respiratória aguda; DRC – doença renal crônica; DPOC – doença pulmonar obstrutiva crônica; COVID-19 – Doença do Coronavírus 2019; PCR – proteína C reativa; DCV – doença cardiovascular; TFGe – taxa de filtração glomerular estimada; UTI – unidade de terapia intensiva; KDIGO – Kidney International Disease Global Outcome; TDP – tempo de permanência hospitalar; razão NL – razão neutrofilo/linfócito; SRAA – Sistema renina-angiotensina aldosterona; TRS – terapia renal substitutiva; CrS – creatinina sérica.
De acordo com a gravidade da LRA, a maioria dos pacientes estava no estágio 3 do KDIGO (n=184, 55,8%), seguidos por KDIGO estágio 1 (n=109, 33,0%), e KDIGO estágio 2 (n=46, 13,9%); 16,1% dos pacientes com LRA necessitaram de TRS.

Os pacientes com LRA eram mais velhos (71,73±17,03 vs 64,23±18,38 anos, p<0,001), eram mais propensos a ter comorbididades prévias - hipertensão arterial (72,1 vs 31,2%, p=0,016), doença cerebrovascular (39,1 vs 21,5%, p<0,001), DRC (26,1 vs 7,9%, p<0,001) - e a serem medicados com inibidores do SRAA (47,6 vs 33,0%, p=0,002). A CrS basal média foi mais alta em pacientes com LRA (1,03±0,44 vs 0,89±0,42, p<0,001). Pacientes com escore BCRSS superior a 2 desenvolveram LRA com maior frequência (32,9 vs 10,3% p= 0,039). Na admissão hospitalar, pacientes com LRA apresentaram CrS mais elevada (1,60±1,76 vs 0,87±0,55, p<0,001), razão NL mais alta (7,09±6,90 vs 5,15±4,86, p<0,001), e eram mais propensos a serem acidêmicos (11,5 vs 2,3%, p=0,001). Pacientes com LRA necessitaram de mais internações na UTI (25,7 vs 15,4%, p<0,009) e ventilação mecânica (15,2 vs 8,4%, p<0,029). Não houve diferença quanto ao vasopressor utilizado, aos critérios de SARA preenchidos e ao tratamento medicamentoso para a infecção por SARS-COV-2 entre pacientes com e sem LRA.

Em uma análise multivariada (Tabela 2), DRC (OR ajustado 5,022; IC95% 1,606-15,702; p=0,006) e ferritina sérica (OR ajustado 1,001; IC95% 1,000-1,001; p=0,009) foram preditores independentes de LRA.

LRA persistente vs. LRA transitória

Com relação à duração da LRA, os pacientes com LRAp eram mais velhos (71,45±17,15 vs 67,73±18,31 anos, p=0,058) apresentaram mais hipertensão arterial (71,7 vs 59,1%, p=0,017) e maior exposição a nefrotoxinas (19,9 vs 10,4%, p=0,015). Diabetes (30,7 vs 23,8%, p=0,157), doença cerebrovascular (39,8 vs 26,8%, p=0,013), DRC (24,7 vs 17,7%, p=0,112), e medicação com inibidores do SRAA (48,2 vs 41,5%, p=0,165) foram mais comuns em pacientes com LRAp do que em pacientes com LRA transitória.

Pacientes com LRAp apresentaram nível de CrS mais elevado (1,71±2,37 vs 1,25±0,68, p=0,026) e mais acidemia (11,4 vs 6,1%, p=0,085) na admissão hospitalar. Não foram observadas diferenças na gravidade da LRA entre os grupos: KDIGO 1- 28,9 vs 34,1%, KDIGO 2- 18,1 vs 8,5%, KDIGO 3- 53,0 vs 56,7%).

Estes dados são mostrados na Tabela 3.

Tabela 2: Análise univariada e multivariada de fatores preditivos de LRA em pacientes com COVID-19

Característica	OR não ajustado (IC95%)	Valor de P	OR ajustado (IC95%)	Valor de P
Idade	1,024 (1,014-1,034)	0,000	1,008 (0,987-1,030)	0,444
Gênero (masculino)	1,182 (0,835-1,674)	0,345		
Comorbidades				
Hipertensão	2,158 (1,506-3,092)	0,000	1,508 (0,750-3,031)	0,249
Diabetes	1,644 (1,093-2,473)	0,017	1,624 (0,780-3,383)	0,195
DCV	2,123 (1,431-3,151)	0,000	1,096 (0,513-2,242)	0,812
DRC	3,804 (2,187-6,617)	0,000	5,022 (1,606-15,702)	0,006
DPOC	1,000 (0,694-1,684)	1,000		
Cirrose	1,053 (0,613-1,811)	0,851		
Neoplasia	0,932 (0,582-1,492)	0,769		
Escore de Brescia	1,434 (1,143-1,798)	0,002	1,088 (0,806-1,467)	0,582
Hemoglobina	0,955 (0,885-1,031)	0,241	1,065 (0,980-1,033)	0,139
Anemia	1,145 (0,803-1,631)	0,455		
Razão NL	1,066 (1,027-1,107)	0,001	1,065 (0,980-1,033)	0,139
Albumina sérica	1,600 (0,431-5,943)	0,483		
Ferritina sérica	1,000 (1,000-1,001)	0,010	1,001 (1,000-1,001)	0,009
LDH	1,001 (1,000-1,003)	0,057		
PCR	1,027 (1,007-1,048)	0,009	0,995 (1,000-1,001)	0,804
Acidemia	4,702 (1,816-12,178)	0,001	11,095 (1,377-89,413)	0,024
Nível de lactato	1,010 (0,989-1,031)	0,349		

DRC – doença renal crônica, DPOC – doença pulmonar obstrutiva crônica; PCR – proteína C reativa; DCV – doença cardiovascular; LDH – lactato desidrogenase; razão NL – razão neutrófilo/linfócito.
Tabela 3: Características de pacientes com LRA persistente e transitória

Característica	LRA transitória (n=164)	LRA Persistente (n=166)	Valor de p
Idade (anos)	67,73±18,31	71,45±17,15	0,058
Gênero (masculino) – n (%)	90 (54,9)	97 (58,4)	0,515
Comorbidades – n (%)			
Hipertensão	97 (59,1)	119 (71,7)	0,017
Diabetes	39 (23,8)	51 (30,7)	0,157
DRC	44 (26,8)	66 (39,8)	0,013
DRC	29 (17,7)	41 (24,7)	0,112
DPOC	20 (12,2)	24 (14,5)	0,545
Cirrose	7 (4,3)	8 (4,8)	0,586
Neoplasia	23 (14,0)	23 (13,9)	0,965
Inibidores do SRAA – n (%)	68 (41,5)	80 (48,2)	0,165
CrS basal (mg/dL)	0,97±0,34	1,03±0,45	0,151
TFGe basal (mL/min/1,73m²)	75,58±24,04	72,15±25,55	0,211
Escore de Brescia ≥ 2	19 (11,59)	33 (19,9)	0,005
Laboratório			
CrS na admissão (mg/dL)	1,25±0,68	1,71±2,37	0,026
Hemoglobina (g/dL)	12,71±2,45	12,58±2,30	0,621
Anemia – n (%)	64 (39,0)	74 (44,6)	0,306
Razão NL	6,57±6,79	6,96±6,57	0,599
Albumina sérica (g/dL)	3,57±0,51	3,62±0,50	0,825
Hipoalbuminemia – n (%)	69 (42,1)	82 (49,4)	0,850
Ferritina sérica (ug/dL)	1231,38±1608,02	1097,97±1176,80	0,523
PCR (mg/dL)	9,65±10,02	9,59±8,49	0,925
LDH (mg/dL)	335,34±149,55	351,26±172,83	0,373
Acideia – n (%)	10 (6,1)	19 (11,4)	0,085
Nível de lactato (mg/dL)	15,07±8,94	13,56±6,60	0,103
Nefrotoxinas – n (%)	17 (10,4)	33 (19,9)	0,015
Admissão na UTI – n (%)	32 (19,5)	58 (34,9)	0,002
Ventilação mecânica – n (%)	19 (11,6)	33 (19,9)	0,093
Uso de vasopressores – n (%)	3 (1,8)	12 (7,2)	0,028
SARA – n (%)	13 (7,9)	30 (18,1)	0,014
Tratamento da COVID-19			
Hidroxicloroquina – n (%)	39 (23,8)	58 (34,9)	0,021
Lopinavir/ritonavir – n (%)	56 (34,1)	71 (42,8)	0,107
Tocilizumab – n (%)	3 (1,8)	7 (4,2)	0,195
Corticosteroides – n (%)	41 (25,0)	52 (31,3)	0,135
Remdesivir – n (%)	16 (9,8)	16 (9,6)	0,985
Estágio do KDIGO			0,038
KDIGO estágio 1 – n (%)	56 (34,1)	48 (28,9)	
KDIGO estágio 2 – n (%)	14 (8,5)	30 (18,1)	
KDIGO estágio 3 – n (%)	93 (56,7)	88 (53,0)	
TDP no hospital (dias)	29,29±38,00	37,74±46,89	0,073
TDP na UTI (dias)	3,79±9,27	7,32±13,73	0,022
CrS na alta hospitalar (mg/dL)	0,97±0,69	1,17±0,88	0,026
Mortalidade hospitalar – n (%)	20 (12,2)	35 (21,1)	0,030

LRA – lesão renal aguda; SARA – síndrome da angústia respiratória aguda; DRC – doença renal crônica; DPOC – doença pulmonar obstructiva crônica; COVID-19 – Doença do Coronavírus 2019; PCR – proteína C reativa; DCV – doença cardiovascular; TFGe – taxa de filtração glomerular estimada; UTI – unidade de terapia intensiva; KDIGO – Kidney International Disease Global Outcome; LDH – lactato desidrogenase; TDP – tempo de permanência no hospital; razão NL – razão neutrófilo/linfócito; SRAA – Sistema renina-angiotensina aldosterona; TRS – terapia renal substitutiva; Crs – creatinina sérica.
Impacto da LRA persistente na mortalidade por COVID-19

DESFECHOS

O tempo médio de hospitalização foi de 31,9±43,14 dias e não foi encontrada diferença estatística entre os grupos LRA e sem LRA (33,62±44,31 vs 29,11±41,09, p=0,238). O nível médio de CrS na alta hospitalar foi de 0,99±0,67mg/dL.

No geral, a mortalidade hospitalar foi de 14,0% (n=76), e a mortalidade foi maior em pacientes com LRA (18,5 vs 7,0%, p=0,001). Em uma análise multivariada (Tabela 4), a LRA não foi um preditor independente de mortalidade (OR ajustado 0,88; IC95% 0,32-2,44, p=0,808), mas uma análise de subgrupo revelou que a LRAp foi um preditor independente de mortalidade (OR ajustado 10,57; IC95% 2,49-45,49, p=0,002). Idade (OR ajustado 1,072; IC95% 1,011-1,137, p=0,002) e nível de lactato (OR ajustado 1,077; IC95% 1,011-1,148, p=0,002) também foram preditores independentes de mortalidade.

DISCUSSÃO

Nesta análise retrospectiva, relatamos uma alta incidência de LRA associada à COVID-19. Relatamos também que a LRA persistente foi associada independentemente à mortalidade.

O desenvolvimento de LRA em pacientes com COVID-19 foi reportado em estudos anteriores. A incidência de LRA relatada em pacientes hospitalizados com COVID-19 varia de 5,1 a 75,0% 6,16-24. A ampla gama de incidência de LRA pode ser explicada por diferenças na demografia, comorbidades e gravidade da doença pois quase todos os estudos utilizaram a definição do KDIGO.

Os estudos que relataram uma incidência menor de LRA em pacientes com COVID-19, como no estudo de Wang et al. (2020)17, que relatou uma incidência de 5,1% e Cui et al. (2020)19, que relataram uma incidência de LRA de 18,1%, foram realizados com pacientes mais jovens e com menos comorbidades do que nossos pacientes.

TABELA 4 ANÁLISE UNIVARIADA E MULTIVARIADA DE FATORES PREDITIVOS DE MORTALIDADE EM PACIENTES COM COVID-19

Característica	OR não ajustado (IC95%)	Valor de P	OR ajustado (IC95%)	Valor de P
Idade	1,057 (1,037-1,078)	0,000	1,072 (1,011-1,137)	0,002
Gênero (masculino)	0,904 (0,556-1,470)	0,685		

Comorbidades				
Hipertensão	2,032 (1,160-3,560)	0,013	4,257 (0,637-28,443)	0,135
Diabetes	1,048 (0,609-1,803)	0,866		
DCV	2,741 (1,675-486)	0,000	0,557 (0,171-1,811)	0,330
DRC	3,509 (2,065-5,965)	0,000	1,078 (0,328-3,541)	0,901
DPOC	0,913 (0,433-1,927)	0,812		
Cirrose	0,950 (0,432-2,092)	0,899		
Neoplasia	2,526 (1,442-4,425)	0,001	1,069 (0,202-5,666)	0,938
Escore de Brescia	1,334 (1,088-1,636)	0,006	1,052 (0,599-1,848)	0,859
Hemoglobina	0,787 (0,709-0,874)	0,000	0,829 (0,637-1,079)	0,162
Anemia				
Razão NL	1,050 (1,018-1,083)	0,002	0,977 (0,93-1,056)	0,570
Albumina sérica	1,05 (1,000-1,001)	0,998		
Ferritina sérica	1,000 (1,000-1,000)	0,009	1,001 (1,000-1,001)	0,005
LDH	1,002 (1,001-1,003)	0,000	1,002 (0,999-1,005)	0,258
PCR	1,015 (0,990-1,041)	0,239		
Acidemia	1,861 (0,874-3,964)	0,107		
Nível de lactato	1,064 (1,034-1,094)	0,000	1,077 (1,011-1,148)	0,002
Admissão na UTI	0,931 (0,514-1,884)	0,813		
LRA	2,779 (1,534-5,035)	0,001	0,88 (0,32-2,44)	0,808
Estágio do KDIGO	1,03 (0,75-1,40)	0,863		
LRA em 48h ou TRS	5,699 (3,286-9,883)	0,000	10,57 (2,45-45,49)	0,002

LRA – lesão renal aguda; DRC – doença renal crônica; DPOC – doença pulmonar obstrutiva crônica; PCR – proteína C reativa; DCV – doença cardiovascular; TFGe – taxa de filtração glomerular estimada; UTI – unidade de terapia intensiva; KDIGO – Kidney International Disease Global Outcome; LDH - lactato desidrogenase; razão NL – razão neutrófilo/linfócito; TRS – terapia renal substitutiva.
Fisher et al. (2020)25, em um estudo retrospectivo de 4.609 pacientes, relataram uma incidência de LRA em pacientes com COVID-19 semelhante ao nosso estudo: 56,9%25. Fominsky et al. (2021)20, em um estudo observacional retrospectivo de 99 pacientes com COVID-19, relataram 75% da incidência de LRA, mas analisaram apenas pacientes que necessitavam de ventilação mecânica.

A maior coorte de pacientes hospitalizados com COVID-19, que incluiu 5.449 pacientes, relatou uma incidência de LRA de 36,6% que se desenvolveu principalmente no início do curso da infecção por COVID-19 e 46,5% dos pacientes com LRA apresentaram LRA estágio 1 do KDIGO6. Isto está de acordo com nosso estudo, no qual a maioria dos pacientes desenvolveu LRA dentro das primeiras 48 horas. Grande parte dos estudos relatou que a maioria dos pacientes apresenta menor (KDIGO 1) ou maior gravidade (KDIGO 3)20-22. Em nosso estudo, a maioria dos pacientes encontrava-se no estágio 3 do KDIGO. Não houve diferença na gravidade da LRA entre LRA transitória e persistente. Na verdade, a prevalência de LRA estágio 3 foi ligeiramente maior em LRAt, o que pode ser devido à desidratação secundária ao vômito ou à diarreia, que pode ser resolvida rapidamente após a admissão hospitalar. Alguns pacientes provavelmente apresentavam LRA antes da admissão hospitalar, como refletido por uma CrS mais elevada na admissão, em comparação com a CrS basal.

A etiologia da LRA em pacientes com COVID-19 parece ser multifatorial. Tal fato pode estar relacionado a distúrbios do equilíbrio hídrico secundários a sintomas gastrointestinais (náuseas, vômitos e diarreia), congestão venosa renal secundária a miocardiopatia ou miocardite viral aguda7, dano tubular tóxico decorrente de síndrome de liberação de citocinas ou rabdomiólise8, efeito citopático direto de SARS-CoV-29, endotelite, eventos trombóticos e coagulação intravascular27,28, nefrotoxicidade de drogas como lopinavir/ritonavir, análogos de nucleosídeos, remdesivir, tenofovir, fosfato de cloroquina e sulfato de hidroxicloroquina29, e interação entre os receptores de SARS-COV-2 e angiotensina II (aparentemente os pacientes com baixo polimorfismo do alelo D têm alta mortalidade)7.

Em nosso estudo, DRC e ferritina sérica foram preditores independentes do desenvolvimento de LRA. Em estudos anteriores, idade, DRC, hipoalbuminemia, linfopenia e razão neutrófilos/linfócitos, lactato desidrogenase, dimeros-d, proteína C reativa, e necessidade de ventilação mecânica ou suporte vasopressor foram relatados como preditores independentes do desenvolvimento de LRA6,16,20,25,30. Apesar do foco considerável no uso de inibidores do SRAA e na gravidade da COVID-19, e de um estudo recente de Soleimani et al. (2020)31 que relataram a associação de inibidores do SRAA e o desenvolvimento de LRA, o mesmo não foi encontrado em nossa coorte. Curiosamente, nesse estudo, a descontinuação do SRAA foi associada a um risco maior de mortalidade, de ventilação invasiva, e de LRA. Outros dois estudos constataram que os inibidores do SRAA não estavam associados ao aumento da mortalidade em pacientes com COVID-1922,33 e, em contraste, um desses estudos descobriu que a descontinuação dos inibidores do SRAA estava associada a uma alta mortalidade de pacientes com COVID-1926.

Outros estudos tentaram encontrar biomarcadores predictivos de LRA em pacientes com COVID-19. Azam et al. (2020)34, em um estudo com 352 pacientes com COVID-19 hospitalizados, dos quais 91 tinham LRA, relataram que o receptor solúvel de uroquinase (suPAR) previu o desenvolvimento de LRA. Husain-Syed et al. (2020)35 analisaram a utilidade de biomarcadores urinários para prever LRA em pacientes com COVID-19. Eles descobriram que a excreção de alfa-1-microglobulina foi maior em pacientes que desenvolveram LRA e que os pacientes com LRA com níveis elevados de [TIMP-2]•[IGFBP7] pareciam ter pior prognóstico.

Estudos anteriores demonstraram uma taxa maior de mortalidade em pacientes com COVID-19 com LRA. Cheng et al. (2020)16, em uma coorte prospectiva de 701 pacientes hospitalizados, relataram um maior risco de mortalidade em pacientes com LRA mais grave, apesar da incidência de LRA ser de apenas 5,1%. Lim et al. (2020)30 estudaram 164 pacientes com COVID-19 e demonstraram que a LRA estágio 3 do KDIGO estava associada a maior mortalidade. Cui et al. (2020)19, em um estudo observacional retrospectivo multicêntrico de 116 pacientes com COVID-19, relataram uma mortalidade maior em pacientes com LRA (57,1 vs 12,6%, p=0,000). Um estudo recente de Chan et al. (2021)22, em uma coorte maior de 3.993 pacientes hospitalizados com COVID-19, descobriu que a LRA estava associada a uma mortalidade mais elevada, uma vez que 50% dos pacientes com LRA foram a óbito, contra 8% dos pacientes sem LRA (p<0,001).
Hirsch et al. (2020) descreveram uma relação importante entre a LRA e a insuficiência respiratória. Primeiro, eles descobriram que a maioria dos casos de LRA grave ocorreu em estreita proximidade temporal à intubação e ventilação mecânica e, em segundo lugar, os pacientes em ventiladores apresentavam uma taxa de LRA mais alta e estágios de LRA mais graves. Curiosamente, em nossa coorte de pacientes, o desenvolvimento de acidemia foi um fator preditivo para LRA, mas o nível de lactato não foi, o que possivelmente refletiu a gravidade da doença associada à COVID-19, principalmente a acidemia respiratória. Na verdade, o nível médio de lactato de nossa coorte estava abaixo de 20 mg/dL. Alguns estudos que analisaram apenas a mortalidade associada à LRA em pacientes com COVID-19 gravemente enfermos relataram maior mortalidade nesses pacientes. Fominský et al. (2021), em um estudo com pacientes com COVID-19 admitidos na UTI com necessidade de ventilação mecânica invasiva, descobriram que pacientes com LRA apresentavam 40% de mortalidade e pacientes que necessitavam de TRS contínua apresentavam uma mortalidade de 50%. Xu et al. (2021), em um estudo observacional retrospectivo multicêntrico com 671 pacientes com COVID-19 admitidos na UTI, relataram uma mortalidade mais elevada aos 28 dias em pacientes com LRA (72 vs 42%, p<0,001).

Em nosso estudo, a LRA não foi preditiva de mortalidade em pacientes com COVID-19, mas a persistência de LRA por mais de 48 horas foi. Nenhun dos estudos mencionados anteriormente avaliou a LRA persistente na mortalidade. De acordo com estudos anteriores em pacientes sem COVID-19, a LRA persistente afetou a mortalidade. Até o momento, não temos conhecimento de nenhum estudo que tenha avaliado o impacto real da duração da LRA na mortalidade em pacientes com COVID-19. A LRA foi definida e estratificada de acordo com a classificação do KDIGO utilizando critérios de CrS. Tanto a gravidade quanto a duração da LRA foram avaliadas para verificar seu impacto no prognóstico. Apesar do desenho retrospectivo, as variáveis estudadas foram rotineiramente registradas na prática diária.

CONCLUSÃO
Para concluir, demonstramos que a LRA foi frequente em pacientes hospitalizados com COVID-19 e que a LRA persistente estava independentemente associada à mortalidade hospitalar. Idade mais avançada e níveis mais elevados de lactato também foram preditores de mortalidade nesta coorte. Este estudo destaca a necessidade de melhorar a detecção precoce de LRA a fim de iniciar estratégias terapêuticas oportunas, uma vez que a rápida recuperação da função renal dentro de 48 horas está associada a um melhor prognóstico. O impacto da duração da LRA no acompanhamento de longo prazo de pacientes com COVID-19 ainda precisa ser determinado.

CONTRIBUÇÃO DOS AUTORES
JB e JG ambos os autores contribuíram igualmente. Todos os autores contribuíram substancialmente para a concepção ou desenvolvimento do estudo; coleta, análise ou interpretação dos dados; redação ou revisão crítica do manuscrito; e aprovação final da versão a ser publicada.
CONFLITO DE INTERESSES
Os autores declararam não ter conflitos de interesse relacionados com a publicação deste manuscrito.

REFERÊNCIAS
1. Zhu N, Zhang D, Wang W, Li X, Yang R, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020 Feb;382(8):727-33.
2. World Health Organization (WHO). Virtual press conference on COVID-19 – 11 March 2020 [Internet]. Geneva: WHO; 2020; [access in 2021 Feb 14]. Available from: https://www.who.int/docs/default-source/coronaviruse TRANSCRIPTS/WHO-ALERTS-EMERGENCIES/CORONAVIRUS/Press Conference/full-and-final-11March2020.pdf?sfvrsn=c-432b53b3_2
3. Johns Hopkins University & Medicine (JHU). COVID-19 map [Internet]. Baltimore: Johns Hopkins Coronavirus Resource Center; 2021; [access in 2021 Feb 14]. Available from: https://coronavirus.jhu.edu/map.html
4. Ren YR, Golding A, Sorbello A, Ji P, Chen J, Saluja B, et al. A comprehensive updated review on SARS-CoV-2 and COVID-19. J Clin Pharmacol. 2020 Aug;60(8):954-75.
5. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020 Jun;382(18):1708-20.
6. Hirsch JS, Ng JH, Ross DW, Sharma P, Shah HH, Barnett RL, et al. Acute kidney injury in patients hospitalized with COVID-19. Kidney Int. 2020 Jul;98(1):209-18.
7. Ronco C, Reis T. Kidney involvement in COVID-19 and rationale for extracorporeal therapies. Nat Rev Nephrol. 2020 Jun;16(6):308-10.
8. Duca A, Piva S, Focà E, Latronico N, Rizzi M. Calculated decisions: Brescia-COVID respiratory severity scale (BCRSS) algorithm. Emerg Med Pract. 2020 Apr;22(5 Suppl):CD1-CD2.
9. World Health Organization (WHO). Clinical management of severe acute respiratory infection when novel coronavirus (2019-nCoV) infection is suspected: interim guidance, 28 January 2020 [Internet]. Geneva: WHO; 2020; [access in 2021 Feb 14]. Available from: https://apps.who.int/iris/handle/10665/330893
10. Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract. 2012;120(4):179-84.
11. Chawla LS, Bellomo R, Bhorac A, Goldstein SL, Siew ED, Bagshaw SM, et al. Acute kidney disease and renal recovery: consensus report of the acute disease quality initiative (ADQI) 16 workshop. Nat Rev Nephrol. 2017 Apr;13(4):241-57.
12. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009 May;150(9):604-12.
13. Kidney Disease: Improving Global Outcomes (KDIGO). KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2013;3(1):1-130.
14. American Diabetes Association (ADA). Standards of medical care in diabetes-2009. Diabetes Care. 2009;32(Suppl 1):1-61.
15. Williams B, Mancia G, Spiering W, Rosé EA, Azizi M, Burnier M, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018 Jun;39(23):3021-104.
16. Cheng Y, Luo R, Wang K, Zhang N, Zhang M, et al. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int. 2020 Int. 2020 May;97(5):829-38.
17. Wang L, Li X, Chen H, Yan S, Li D, Li Y, et al. Coronavirus disease 19 infection does not result in acute kidney injury: an analysis of 116 hospitalized patients from Wuhan, China. Am J Nephrol. 2020;51(5):343-8.
18. Zangrillo A, Beretta I, Scandroglio AM, Monti G, Fominskij E, Colombo S, et al. Characteristics, treatment, outcomes and cause of death of invasively ventilated patients with COVID-19 ARDS in Milan. Crit Care Resusc. 2020 Sep;22(3):200-11.
19. Cui X, Yu X, Wu X, Huang L, Tian Y, Huang X, et al. Acute kidney injury in patients with the coronavirus disease 2019: a multicenter study. Kidney Blood Press Res. 2020;45(4):612-22.
20. Fominskij EV, Scandroglio AM, Monti G, Calabro MG, Landoni G, Dell’Acqua A, et al. Prevalence, characteristics, risk factors, and outcomes of in ventilated COVID-19 patients with acute kidney injury and renal replacement therapy. Blood Purif. 2021;50(1):102-9.
21. Xu J, Xie J, Du B, Tong Z, Qiu H, Bagshaw SM. Clinical characteristics and outcomes of patients with severe COVID-19 induced acute kidney injury. J Intensive Care Med. 2021 Mar;36(3):319-26.
22. Chan L, Chaudhary K, Saha A, Chauhan K, Vaid A, Zhao S, et al. AKI in hospitalized patients with COVID-19. J Am Soc Nephrol. 2021 Jan;32(1):151-60.
23. Cheng Y, Luo R, Wang X, Wang K, Zhang N, Zhang M, et al. The incidence, risk factors, and prognosis of acute kidney injury in adult patients with coronavirus disease 2019. J Am Soc Nephrol. 2020 Oct;15(10):1394-402.
24. Ng JH, Hirsch JS, Hazzan A, Wanchoo R, Shah HH, Maleckal DA, et al. Outcomes among patients hospitalized with COVID-19 and acute kidney injury. Am J Kidney Dis. 2021 Feb;77(2):204-15.e1.
25. Fisher M, Neugarten J, Bellin E, Yunes M, Stahl L, Johns TS, et al. AKI in hospitalized patients with and without COVID-19: a comparison study. J Am Soc Nephrol. 2020 Sep;31(3):2145-57.
26. Puelles VG, Lüchtefinger M, Lindenmeyer MT, Sperhake JP, Wong MN, Allessi L, et al. Multiorgan and renal tropism of SARS-CoV-2. N Engl J Med. 2020 Aug;383(6):590-2.
27. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020 Apr;18(4):844-7.
28. Jhaveri KD, Meir LRF, Chang BS, Parikh R, Wanchoo R, Barilla-LaBarca ML, et al. Thrombotic microangiopathy in a patient with COVID-19. Kidney Int. 2020 Aug;99(2):509-12.
29. Izzedine H, Jhaveri KD, Perazella MA. COVID-19 therapeutic options for patients with kidney disease. Kidney Int. 2020 Jun;97(6):1297-9.
30. Lim JH, Park SH, Jeon Y, Cho JH, Jung HY, Choi JY, et al. Fatal outcomes of COVID-19 in patients with severe acute kidney injury. J Clin Med. 2020 Jun;9(6):1718.
31. Soleimani A, Kazemian S, Saleh SK, Aminrooraya A, Shajari Z, Hadadi A, et al. Effects of angiotensin receptor blockers (ARBs) on in-hospital outcomes of patients with hypertension and confirmed or clinically suspected COVID-19. Am J Hypertens. 2020 Dec;33(12):1102-11.
32. COVID-19 Risk and Treatments (CORIST) Collaboration. Findings from an observational multicenter study in Italy and a metanalysis of 19 studies. Vascul Pharmacol. 2020 Dec;135:106805.
33. Gao C, Cai Y, Zhang K, Zhou L, Zhang Y, Zhang X, et al. Association of hypertension and antihypertensive treatment with COVID-19 mortality: a retrospective observational study. Eur J Heart J. 2020 Jun;41(22):2058-66.
34. Azam TU, Shadid HR, Blakely P, O’Hayer P, Berlin H, Pan M, et al. Soluble urokinase receptor (SuPAR) in COVID-19-related AKI. J Am Soc Nephrol. 2020 Nov;31(11):2725-35.
35. Hussain-Syed F, Wilhelm J, Kassoumeh S, Birken H, Herold S, Vadász I, et al. Acute kidney injury and urinary biomarkers in hospitalized patients with coronavirus disease-2019. Nephrol Dial Transplant. 2020 Jul;35(7):1271-4.
36. Yoo J, Lee JS, Lee J, Jeon JS, Noh H, Han DC, et al. Relationship between duration of hospital acquired acute kidney injury and mortality: a prospective observational study. Korean J Intern Med. 2015 Mar;30(2):205-11.
37. Han SS, Kim S, Ahn SY, Lee J, Kim DK, Chin HJ, et al. Duration of acute kidney injury and mortality in critically ill patients: a retrospective observational study. BMC Nephrol. 2013 Jun;14:133.
38. Quiroga B, Sainz MS, Sánchez-Rey BS, Ramos PM, Ortiz A, Ruano P. Persistent kidney dysfunction after acute kidney injury predicts short-term outpatient mortality. Intern Med J. 2020 Dec 20; [Epub ahead of print]. DOI: https://doi.org/10.1111/imj.15166

39. Rubin S, Orieux A, Prevel R, Garric A, Bats ML, Dabernat S, et al. Characterization of acute kidney injury in critically ill patients with severe coronavirus disease 2019. Clin Kidney J. 2020 Jun;13(3):354-61.

40. Kellum JA. Persistent acute kidney injury. Crit Care Med. 2015 Aug;43(8):1785-6.