The association between caffeine exposure during pregnancy and risk of gestational hypertension/preeclampsia: a meta-analysis and systematical review

Lihu Gu
Ningbo No 2 Hospital: Ningbo Huamei Hospital University of Chinese Academy of Sciences

Mengting Zhang
Zhejiang Chinese Medical University

Yujing He
Zhejiang Chinese Medical University

Yuexiu Si
Zhejiang Chinese Medical University

Yetan Shi
Zhejiang Chinese Medical University

Ke Jiang
Zhejiang Chinese Medical University

Jingyi Shen
Zhejiang Chinese Medical University

Jiaze Hong
Zhejiang Chinese Medical University

Ping Chen (caffeine2022@163.com)
Ningbo No 2 Hospital: Ningbo Huamei Hospital University of Chinese Academy of Sciences
https://orcid.org/0000-0002-2229-4594

Research Article

Keywords: Caffeine, Gestational hypertension, Preeclampsia, Risk, Meta-analysis

Posted Date: August 23rd, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1827742/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

The potential effect of caffeine exposure during pregnancy on gestational hypertension (GH)/preeclampsia has attracted attention but remains unclear. A systematic literature search of PubMed, Embase, and Cochrane Library databases was performed until March 2022. Observational studies assessing the association between caffeine exposure during pregnancy and the risk of GH/preeclampsia were included. The study protocol was registered in PROSPERO: CRD42022322387. Ten studies involving 114984 pregnant women (2548 diagnosed with GH and 2473 diagnosed with preeclampsia) were included. Comparing caffeine exposure with non-caffeine exposure, no significant association was found between caffeine exposure during pregnancy and the risk of GH (OR = 0.99, 95% CI: 0.90–1.08, p = 0.800) and preeclampsia (OR = 1.13, 95% CI: 0.97–1.31, p = 0.114). Subgroup analyses comparing low to moderate doses with no/lowest doses showed that caffeine exposure during pregnancy was not significantly associated with GH (OR = 1.00, 95% CI: 0.90–1.08) or preeclampsia (OR = 1.03, p = 0.648). Besides, subgroup analyses comparing high doses with no/lowest doses showed that caffeine exposure during pregnancy was not significantly associated with GH (OR = 1.06, p = 0.623) or preeclampsia (OR = 1.18, p = 0.192). This study found that caffeine exposure during pregnancy was not significantly associated with the risk of GH/preeclampsia.

Introduction

Hypertensive disorders of pregnancy (HDP) are one of the leading causes of maternal and perinatal morbidity and mortality worldwide, especially in low-income and middle-income countries(1). Gestational hypertension (GH) and preeclampsia are two types of HDP, accounting for 6–7% and 2–5% of diagnoses in pregnant women respectively(2, 3). GH is defined as new-onset hypertension with blood pressure ≥ 140/90mmHg on 2 occasions at least 4 hours apart after 20 weeks’ gestation(4). Preeclampsia is defined as hypertension with proteinuria or other end-organ dysfunction after 20 weeks of gestation(5). Furthermore, it is estimated that the latter complicates the pregnancy for about 3–5% of the women who give birth(5). The etiology and predictors of GH/preeclampsia remain unclear(6, 7).

Important dietary sources of caffeine include coffee, tea, caffeinated soda (cola), energy drinks and other soft drinks(8, 9). Epidemiological evidence supports the benefits of caffeine for some chronic diseases, stating that moderate caffeine consumption is safe, but noting that excessive consumption can have negative effects on children and pregnant women(10, 11). WHO recommends that pregnant women consume no more than 300mg caffeine per day(12). Additionally, a review of caffeine consumption recommends that pregnant women consume no more than 2 cups of coffee or 4 cups of tea per day(10).

Caffeine consumption is more common among women aged 20–50 years old(13), raising concerns about its potential effects on GH/preeclampsia. Nevertheless, observational studies on caffeine intake during pregnancy and the risk of GH/preeclampsia have yielded mixed results. Some papers displayed no relationship between caffeine intake during pregnancy and the risk of GH/preeclampsia(14, 15). Conversely, a nationwide birth cohort study by Kawanishi et al.(16) reported that high dose of caffeine intake during pregnancy could increase the risk of GH/preeclampsia. Therefore, we conducted a meta-analysis to discover the potential association between caffeine exposure during pregnancy and the risk of GH/preeclampsia.

Methods

Search strategy

We performed a systematic search on PubMed, Embase, and Cochrane Library databases from inception to 11 March 2022. The search items included (1,3,7-trimethylxanthine OR caffeine OR tea OR coffee OR cola OR chocolate OR soft drink OR cocoa) AND (pregnant woman OR woman, pregnant OR pregnancy OR pregnancy OR pregnancies OR maternity OR maternal OR maternally OR prenatal OR perinatal) AND (‘pre-eclampsia’ [Mesh] OR ‘hypertension, pregnancy-induced’ [Mesh] OR ‘hypertension’ [Mesh] OR pre-eclampsia OR hypertension, pregnancy induced OR pregnancy-induced hypertension OR induced hypertension, pregnancy OR gestational hypertension OR hypertension, gestational). Moreover, the references of the included articles were manually checked for additional sources. The entire review process was mapped using the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) flow diagram and the study protocol was registered in PROSPERO: CRD42022322387.

Eligible criteria

The meta-analysis included studies with the following criteria, which: (1) were observational studies (cohort, cross-sectional, or case-control studies); (2) assigned participants consumed caffeinated beverages to the exposure group, and participants consumed no or the lowest dose of caffeinated beverages to the non-exposure group; (3) reported risk estimates for the association between caffeine exposure during pregnancy and the risk of GH/preeclampsia; (4) were published in English.

The exclusion criteria were as follows: (1) pregnant women with a medical history of hypertension and/or renal disease, history of HDP in previous pregnancies, and history of diabetes mellitus and gestational diabetes mellitus were included. (2) The articles were designed to investigate the association between caffeine exposure before pregnancy and the risk of GH/preeclampsia. (3) No exactable data was available. (4) When more than one paper was published by the same author or institution, the paper with the highest quality was selected.

Quality assessment and data extraction

Two researchers independently evaluated the eligibility of each study and exploited the desired information from it. Disagreements were arbitrated by a third researcher. The Newcastle-Ottawa Quality Assessment Scale (NOS) was used to assess the methodological quality of the included observational studies. Additionally, the following data were extracted: author, year of publication, country, study design, number of participants, time to recruit participants, pregnancy stage, outcome, caffeine intake sources, dietary assessment tool, and adjusted variables.
Statistical analysis

All statistical analyses were performed using Stata software version 12.0, with p<0.05 estimated as significant. OR and 95% CIs were applied as the effect sizes of caffeine exposure during pregnancy on the risk of GH/preeclampsia. As the dose and source of caffeine intake differed, a random effects model was used to combine effect sizes. Moreover, statistical heterogeneity among studies was assessed based on I^2 statistics. The values I^2 of 25-50%, 50-75%, and >75% were considered as low, moderate, and high heterogeneity, respectively(17). Subgroup analysis was established to identify sources of heterogeneity. When more than 10 articles are included in the meta-analysis, relevant calculation of publication bias and sensitivity analysis will be carried out.

Results

Characteristics of eligible research

The flow chart of study selection is summarized in Fig. 1. An initial search from various electronic databases found 701 relevant studies. After excluding unrelated papers, 10 studies eventually met the inclusion criteria(14–16, 18–24). The basic characteristics of selected studies are described in Table 1. One cross-sectional study(24), two case-control studies(19, 22), and seven cohort studies(14–16, 18, 20, 21, 23) were imported into meta-analysis. All studies were published between 1997 and 2021, and these were conducted in Norway, USA, Canada, Netherlands, Ethiopia, Japan, and Brazil. A total of 114984 pregnant women participated, including 2548 diagnosed with GH and 2473 diagnosed with preeclampsia. Dietary assessment of pregnant women was based on the food frequency questionnaire and interviews. In addition, caffeine sources for pregnant women included coffee, tea, chocolate, soft drinks, and energy drinks. Nine studies controlled the variables, except one that was not adjusted. Common variables adjusted for included studies were age, body mass index (BMI), education, smoking and alcohol consumption.
Author	Year	Country	Study design	Time to recruit patients	Patients number	Outcome	Dietary assessment tool	Caffeine intake sources	Trimester considered
Wergeland	1997	Norway	Cross-sectional	1989.10-1989.11	5292	Preeclampsia	Questionnaire	Coffee (cups/day)	Throughout pregnancy
Triche	2008	USA	Cohort	1996.9-2000.1	1681	Preeclampsia	Structured interview	Chocolate (servings/week)	First and third
Wei	2009	Canada	Case-control	2003.1-2006.3	245	Preeclampsia	In-person interview and structured questionnaire	Tea (cups/week)	Throughout pregnancy
Saftlas	2010	USA	Cohort	1988.4-1991.12	2325	Preeclampsia	Interview and FFQ	Chocolate (servings/week)	First and third
Bakker	2011	Netherlands	Cohort	2001-2005	7771	Preeclampsia	FFQ	Coffee and tea (units/day)	Throughout pregnancy
Borgen	2012	Norway	Cohort	1999-2008	31230	Preeclampsia	FFQ	Sugar-sweetened soft beverages, carbonated (ml/day)	First and second

NA, not applicable; GH, gestational hypertension; FFQ, food frequency questionnaire; BMI, body mass index.
Author	Year	Country	Study design	Time to recruit patients	Patients number	Outcome	Dietary assessment tool	Caffeine intake sources	Trimester considered
Endeshaw	2015	Ethiopia	Case-control	2014.9	302	Preeclampsia	In-person interview and questionnaire	Coffee (cups/day)	Throughout pregnancy
Hinkle	2021	USA	Cohort	2009–2013	2719	Preeclampsia	FFQ	Coffee, tea, soda and energy drink (mg/day)	First and second
Kawanishi	2021	Japan	Cohort	2011.1–2014.3	56300	GH	FFQ	Coffee, tea (cups/day)	Throughout pregnancy
Barbosa	2021	Brazil	Cohort	2010.1–2011.6	2750	GH	Structured questionnaire	Soft drink (times/week)	Second

NA, not applicable; GH, gestational hypertension; FFQ, food frequency questionnaire; BMI, body mass index.

Quality Assessment

The NOS consists of eight items and is divided into three dimensions, according to selectivity, comparability and the study type-outcome (cohort study) or exposure (case-control study) (25). The NOS was performed to evaluate the quality of observational studies, and only high-quality studies with an overall score ≥ 7 were included in the final analysis. Details of the quality assessment are displayed in Supplementary Table 1.

Prognostic Analysis

Gestational hypertension

Three studies have been reported in GH comparing caffeine intake with no caffeine intake during pregnancy. The results revealed that caffeine intake during pregnancy was not significantly associated with the risk of GH (OR = 0.99, 95% CI: 0.90–1.08, I² = 51.0%, p = 0.800) (Fig. 2).

Subgroup analysis of doses was performed to compare low to moderate dose with no/lowest dose and high dose with no/lowest dose respectively. The results illustrated that the dose of caffeine consumption had no significant correlation with the incidence of GH (low/moderate dose: OR = 1.00, p = 0.987; high dose: OR = 1.06, p = 0.623, respectively) (Table 2).
Table 2: Subgroup analysis of the effects of caffeine intake on gestational hypertension and preeclampsia.

	No. of Studies	OR	95% CI	p	Heterogeneity (I²) (%)
Gestational hypertension					
Low to moderate vs. no/lowest	4	1.00	0.93–1.08	0.987	24.9
High vs. no/lowest	5	1.06	0.84–1.33	0.623	64.7
Preeclampsia					
Yes vs. no					
Coffee	2	1.78	1.15–2.74	0.009	0.0
Soft drink	2	1.10	1.00–1.21	0.056	14.2
Low to moderate vs. no/lowest	6	1.03	0.91–1.17	0.648	15.0
Chocolate	2	0.63	0.36–1.09	0.098	0.0
Soft drink	2	1.07	0.95–1.20	0.280	9.6
High vs. no/lowest	6	1.18	0.92–1.50	0.192	35.0
Coffee	2	1.24	0.70–2.19	0.456	65.8
Chocolate	2	0.66	0.37–1.17	0.153	0.0
Soft drink	2	1.40	0.79–2.47	0.246	48.9

Preeclampsia

Five studies referred to preeclampsia and compared caffeine intake with no caffeine intake during pregnancy. The pooled results depicted no significant association between caffeine exposure during pregnancy and the risk of preeclampsia (OR = 1.13, 95% CI: 0.97–1.31, I² = 50.8%, p = 0.114) (Fig. 3). Besides, the sources of caffeine intake were analyzed by subgroup. The pooled results depicted that coffee (OR = 1.78, p = 0.009) and soft drink (OR = 1.10, p = 0.056) consumption during pregnancy was associated with an increased risk of preeclampsia, although the latter was not statistically significant (Table 2).

Subgroup analysis was performed on the doses and sources of caffeine intake. The pooled results of low to medium dose versus no/lowest dose showed no significant association between caffeine consumption during pregnancy and the risk of preeclampsia (OR = 1.03, p = 0.648). Moreover, pooled results of further subgroup analyses showed that consumption of chocolate (OR = 0.63, p = 0.098) and soft drinks (OR = 1.07, p = 0.280) during pregnancy was not significantly associated with the risk of preeclampsia (Table 2).

Similarly, the pooled results showed no significant correlation between caffeine consumption and the risk of preeclampsia (OR = 1.18, p = 0.192) at high doses versus no/lowest doses. Additionally, pooled results of further subgroup analyses showed that consumption of coffee (OR = 1.24, p = 0.456), chocolate (OR = 0.66, p = 0.153) and soft drinks (OR = 1.40, p = 0.246) during pregnancy was not significantly associated with the risk of preeclampsia (Table 2).

Discussion

Caffeine is the most widely consumed psychoactive substance worldwide(26, 27). It is estimated that approximately 70% of women in the USA consume caffeine continuously during pregnancy(28). Although a large body of reviews investigated that caffeine consumption in adults was associated with a reduced risk of several chronic diseases and cancers, it has also been indicated that caffeine consumption during pregnancy may increase the risk of pregnancy complications(11, 27, 29). The relationship between caffeine consumption and HDP is therefore of concern, but remains controversial.

Our meta-analysis aimed to investigate the association between caffeine exposure during pregnancy and the risk of GH/preeclampsia. The results demonstrated that caffeine exposure during pregnancy was not significantly associated with GH/preeclampsia. For preeclampsia, the results of subgroup analyses comparing caffeine exposure with non-caffeine exposure revealed that coffee and soft drink intake during pregnancy may increase the risk of preeclampsia, although there were only two studies in each subgroup analysis. Moreover, other subgroup analyses showed no association between caffeine intake during pregnancy and the risk of preeclampsia.

In parallel to our findings, a meta-analysis indicated that coffee consumption had no significant effect on hypertension(30). Furthermore, one review detected no clear connection between coffee exposure and the risk of hypertension(31). Nevertheless, dose-response meta-analysis by Xie et al.(32) and Grosso et al. (33) both demonstrated that coffee consumption was inversely associated with risk of hypertension in a dose-response manner. Besides, a meta-analysis proved a significant connection between soda consumption and the risk of hypertension(34). Additionally, a case-crossover study of 286 women(35) detected
a strong inverse association of caffeine consumption with preeclampsia. Based on the above, the mechanism between caffeine intake during pregnancy and GH/preeclampsia remains unclear.

These discrepancies can be explained by a number of underlying reasons. First of all, the limited number of studies covered is probably the main reason. Then, the respective effects of different sources of caffeine may interact, obscuring the actual correlation between caffeine exposure during pregnancy and the risk of GH/preeclampsia. In addition, the classification of caffeine dose levels varied between studies. Consequently, the lack of standardization in caffeine measurement cannot be ignored. Finally, guidelines from the American College of Obstetricians and Gynecologists (ACOG) recommended that pregnant women consume up to two cups of moderate-strength coffee per day(36). Pregnant women have been shown to significantly reduce their caffeine intake, especially coffee during pregnancy(37–40). Therefore, one possible explanation for our results is the low caffeine intake of pregnant women in the included studies, leading to a lower proportion of pregnant women consuming moderate to high doses (14, 15, 41).

Caffeine and its metabolites belong to methylxanthines, which are non-selective adenosine receptor antagonists and have diuretic and natriuretic effects(42). Caffeine and its metabolites play a natriuretic role through adenosine A1 receptor blockade, resulting in reduced proximal tubular sodium reabsorption(43–45). This may be one reason why heavy coffee consumption is associated with lower blood pressure.

The renin-angiotensin aldosterone system (RAAS) is a key regulator of physiological homeostasis(46). Historically, the role of the RAAS has been considered an important cause of proteinuria leading to preeclampsia(47). The compensatory alterations in the RAAS, characterized by an increase in almost all components of RAAS, benefit the maintenance of salt-water balance and adequate placental perfusion to ensure maternal and fetal health during normal pregnancy. However, preeclampsia disrupts homeostasis, leading to disruption of the delicate equilibrium of RAAS in the circulatory and uteroplacental units(48), presenting with increased sensitivity to Ang II. Further, Ang II sensitivity continues to increase, increasing salt sensitivity and altering renal hemodynamics(49). Diuretic effects of caffeine on renal tubules or caffeine-induced epinephrine release may increase renin release(50, 51), thereby activating RAAS and further raising blood pressure.

Molecular mechanisms of action of caffeine on cellular signaling is primarily through competitive inhibition of G-protein coupled adenosine receptors, reducing intracellular inositol triphosphate, diacylglycerol, and calcium signaling(52, 53). There are studies and reviews that have proved a beneficial effect of coffee on renal function(54, 55). This phenomenon may be due to caffeine inhibiting vasoconstriction of afferent arterioles by type-1 adenosine receptors and increasing glomerular filtration rate (GFR)(56). Adenosine modulators have been implicated in several pathophysiology of preeclampsia. The mechanism may be related to placental ischemia and hypoxia in preeclampsia(57, 58). However, the association between caffeine intake and renal impairment in preeclampsia is still being investigated.

Caffeine beverages contain ingredients other than caffeine that may have different effects on GH and preeclampsia. For example, coffee contains several compounds such as kahweol, cafestol, chlorogenic acid, and trigonelline. These compounds have bidirectional effects on blood pressure regulation(59). Furthermore, these ingredients also have antioxidant, anti-inflammatory, anticarcinogenic, and antifibrotic effects(56, 60). It seems that the benefits of caffeine on GH/preeclampsia may be due to these substances. Collectively, the mechanisms of caffeine intake during pregnancy and GH/preeclampsia are intricate.

The strengths of this article are that, to our knowledge, no meta-analysis has examined the association between caffeine exposure during pregnancy and the risk of GH/preeclampsia. In addition, comprehensive subgroup analyses were established to explore the heterogeneity and compare the potential differences between different subgroups.

However, there are also some limitations. First, the number of articles included in this meta-analysis was limited. Second, there was no standardization of caffeine in estimating caffeine consumption, which could lead to measurement bias. Third, all eligible articles were observational studies that had certain biases, such as recall bias and selection bias. Fourth, some studies did not control for covariates or ignored some potential residual confusions. Taking race as an example, although a large prospective cohort study has noted significant racial differences in HDP(61), only two studies in this meta-analysis adjusted for race as a variable. Finally, the exclusion of non-English articles may introduce publication bias.

Conclusion

The results of this meta-analysis showed that caffeine exposure during pregnancy is not significantly associated with the risk of GH/preeclampsia, regardless of the dose or source of caffeine intake. Moreover, more appropriately designed, larger-scale studies are needed to explore the impact of caffeine exposure during pregnancy on the risk of GH/preeclampsia.

Abbreviations

HDP, hypertensive disorders of pregnancy; GH, gestational hypertension; OR, odds ratio, CI, confidence interval; NOS, Newcastle-Ottawa Quality Assessment Scale; RAAS, renin-angiotensin aldosterone system.

Declarations

Conflicts of Interest

The authors declare there was no conflict of interest.
Ethics approval
Not applicable.

Consent to participate
Not applicable.

Consent for publication
Not applicable.

Availability of data and material
Data supporting findings reported in this study are available in the supplementary materials.

Acknowledgments
Not applicable.

Author Contributions
Each author contributed significantly to concept and development of the present paper. Lihu Gu and Mengting Zhang designed the research process. Yujing He and Yuexiu Si searched the database for corresponding articles and extracted useful information from the articles above. Yetan Shi and Ke Jiang used statistical software for analysis. Jingyi Shen and Jiaze Hong drafted the meta-analysis. All authors had read and approved the manuscript and ensured that this was the case.

References
1. Gestational Hypertension and Preeclampsia. ACOG Practice Bulletin, Number 222. Obstet Gynecol. 2020;135(6):e237-e60.
2. Vest AR, Cho LS. Hypertension in pregnancy. Curr Atheroscler Rep. 2014;16(3):395.
3. Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists’ Task Force on Hypertension in Pregnancy. Obstet Gynecol. 2013;122(5):1122–31.
4. Sinkey RG, Battarbee AN, Bello NA, Ives CW, Oparil S, Tita ATN. Prevention, Diagnosis, and Management of Hypertensive Disorders of Pregnancy: a Comparison of International Guidelines. Current Hypertension Reports. 2020;22(9).
5. Chappell LC, Cluver CA, Kingdom J, Tong S. Pre-eclampsia. The Lancet. 2021;398(10297):341–54.
6. Sibai B, Dekker G, Kupferminc M. Pre-eclampsia. The Lancet. 2005;365(9461):785–99.
7. Sircar M, Thadhani R, Karumanchi SA. Pathogenesis of preeclampsia. Curr Opin Nephrol Hypertens. 2015;24(2):131–8.
8. Zucconi S, Volpato C, Adinolfi F, Gandini E, Gentile E, Loi A, et al. Gathering consumption data on specific consumer groups of energy drinks. EFSA Supporting Publications. 2013;10(3):394E.
9. Reyes CM, Cornelis MC. Caffeine in the Diet: Country-Level Consumption and Guidelines. Nutrients. 2018;10(11).
10. Heckman MA, Weil J, Gonzalez de Mejia E. Caffeine (1, 3, 7-trimethylxanthine) in foods: a comprehensive review on consumption, functionality, safety, and regulatory matters. J Food Sci. 2010;75(3):R77–87.
11. Poole R, Kennedy OJ, Roderick P, Fallowfield JA, Hayes PC, Parkes J. Coffee consumption and health: umbrella review of meta-analyses of multiple health outcomes. BMJ. 2017;359:j5024.
12. WHO Guidelines Approved by the Guidelines Review Committee. WHO Recommendations on Antenatal Care for a Positive Pregnancy Experience. Geneva: World Health Organization Copyright © World Health Organization 2016.; 2016.
13. Drewnowski A, Rehm CD. Sources of Caffeine in Diets of US Children and Adults: Trends by Beverage Type and Purchase Location. Nutrients. 2016;8(3):154.
14. Bakker R, Steegers EA, Raat H, Hofman A, Jaddoe VW. Maternal caffeine intake, blood pressure, and the risk of hypertensive complications during pregnancy. The Generation R Study. Am J Hypertens. 2011;24(4):421–8.
15. Hinkle SN, Gleason JL, Yisahak SF, Zhao SK, Mumford SL, Sundaram R, et al. Assessment of Caffeine Consumption and Maternal Cardiometabolic Pregnancy Complications. JAMA Netw Open. 2021;4(11):e2133401.
16. Kawanishi Y, Kakigano A, Kimura T, Ikehara S, Sato T, Tomimatsu T, et al. Hypertensive Disorders of Pregnancy in Relation to Coffee and Tea Consumption: The Japan Environment and Children’s Study. Nutrients. 2021;13(2).
17. Cumpston M, Li T, Page MJ, Chandler J, Welch VA, Higgins JP, et al. Updated guidance for trusted systematic reviews: a new edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst Rev. 2019;10:ED000142.
18. Triche EW, Grosso LM, Belanger K, Dafersky AS, Benowitz NL, Bracken MB. Chocolate consumption in pregnancy and reduced likelihood of preeclampsia. Epidemiology. 2008;19(3):459–64.
19. Wei SQ, Xu H, Xiong X, Luo ZC, Audibert F, Fraser WD. Tea consumption during pregnancy and the risk of pre-eclampsia. Int J Gynaecol Obstet. 2009;105(2):123–6.
20. Saftas AF, Triche EW, Beydoun H, Bracken MB. Does chocolate intake during pregnancy reduce the risks of preeclampsia and gestational hypertension? Ann Epidemiol. 2010;20(8):584–91.

21. Borger I, Aamodt G, Harsen N, Haugen M, Meltzer HM, Brantsaeter AL. Maternal sugar consumption and risk of preeclampsia in nulliparous Norwegian women. Eur J Clin Nutr. 2012;66(8):920–5.

22. Endeshaw M, Abebe F, Bedimo M, Asrat A. Diet and Pre-eclampsia: A Prospective Multicentre Case-Control Study in Ethiopia. Midwifery. 2015;31(6):617–24.

23. Barbosa JMA, Silva A, Kac G, Simoes VMF, Bettiol H, Cavalli RC, et al. Is soft drink consumption associated with gestational hypertension? Results from the BRISA cohort. Braz J Med Biol Res. 2021;54(1):e10162.

24. Wergeleand E, Strand K. Working conditions and prevalence of preeclampsia, Norway 1989. Int J Gynaecol Obstet. 1997;58(2):189–96.

25. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25(9):603–5.

26. Gonzalez de Mejia E, Ramirez-Mares MV. Impact of caffeine and coffee on our health. Trends Endocrinol Metab. 2014;25(10):489–92.

27. Qian J, Chen Q, Ward SM, Duan E, Zhang Y. Impacts of Caffeine during Pregnancy. Trends Endocrinol Metab. 2020;31(3):218–27.

28. Fray CD, Johnson RK, Wang MQ. Food sources and intakes of caffeine in the diets of persons in the United States. J Am Diet Assoc. 2005;105(1):110–3.

29. van Dam RM, Hu FB, Willett WC. Coffee, Caffeine, and Health. N Engl J Med. 2020;383(4):369–78.

30. Steffen M, Kuhle C, Hensrud D, Erwin PJ, Murad MH. The effect of coffee consumption on blood pressure and the development of hypertension: a systematic review and meta-analysis. J Hypertens. 2012;30(12):2245–54.

31. Sudano I, Binggeli C, Spieker L, Lüscher TF, Rutschitzka F, Noll G, et al. Cardiovascular effects of coffee: is it a risk factor? Prog Cardiovasc Nurs. 2005;20(2):65–9.

32. Xie C, Cui L, Zhu J, Wang K, Sun N, Sun C. Coffee consumption and risk of hypertension: a systematic review and dose-response meta-analysis of cohort studies. J Hum Hypertens. 2018;32(2):83–93.

33. Grosso G, Micek A, Godos J, Pajak A, Sciaccia S, Bes-Rastrollo M, et al. Long-Term Coffee Consumption Is Associated with Decreased Incidence of New-Onset Hypertension: A Dose-Response Meta-Analysis. Nutrients. 2017;9(8).

34. Cheungpasitporn W, Thongprayoon C, Edmonds PJ, Sivrali N, Ungprasert P, Kittanamongkolchai W, et al. Sugar and artificially sweetened soda consumption linked to hypertension: a systematic review and meta-analysis. Clinical and experimental hypertension (New York, NY: 1993). 2015;37(7):587 – 93.

35. Ford JB, Schemann K, Patterson JA, Morris J, Herbert RD, Roberts CL. Triggers for Preeclampsia Onset: a Case-Crossover Study. Paediatr Perinat Epidemiol. 2016;30(6):555–62.

36. ACOG CommitteeOpinionNo. Moderate caffeine consumption during pregnancy. Obstet Gynecol. 2010;162(2 Pt 1):467–8. 116(1).

37. Chen LW, Low YL, Fok D, Han WM, Chong YS, Gluckman P, et al. Dietary changes during pregnancy and the postpartum period in Singaporean Chinese, Malay and Indian women: the GUSTO birth cohort study. Public Health Nutr. 2014;17(9):1930–8.

38. Skreden M, Bere E, Sagedal LR, Vistad I, Overby NC. Changes in beverage consumption from pre-pregnancy to early pregnancy in the Norwegian Fit for Delivery study. Public Health Nutr. 2015;18(7):1178–96.

39. Chen L, Bell EM, Browne ML, Druschel CM, Romitti PA, National Birth Defects Prevention S. Exploring maternal patterns of dietary caffeine consumption before conception and during pregnancy. Matern Child Health J. 2014;18(10):2446–55.

40. Lawson CC, LeMasters GK, Wilson KA. Changes in caffeine consumption as a signal of pregnancy. Reproductive Toxicol (Elmsford NY). 2004;18(9):625–33.

41. van der Hoeven T, Browne JL, Utterwaal C, van der Ent CK, Grobbée DE, Dalmeijer GW.Antenatal coffee and tea consumption and the effect on birth outcome and hypertensive pregnancy disorders. PLoS ONE. 2017;12(5):e0177619.

42. Nussberger J, Mooser V, Maridor G, Juillerat L, Waeber B, Brunner HR. Caffeine-induced diuresis and atrial natriuretic peptides. J Cardiovasc Pharmacol. 1990;15(5):685–91.

43. Guessous I, Eap CB, Bochud M. Blood pressure in relation to coffee and caffeine consumption. Curr Hypertens Rep. 2014;16(9):468.

44. van Buren M, Bijlsma JA, Boer P, van Rijn HJ, Koomans HA. Natriuretic and hypotensive effect of adenosine-A1 blockade in essential hypertension. J Hypertension (Dallas, Tex: 1979). 1993;22(5):728 – 34.

45. van Dam RM, Hu FB, Willett WC. Coffee, Caffeine, and Health. N Engl J Med. 2020;383(4):369–78.

46. Steffen M, Kuhle C, Hensrud D, Erwin PJ, Murad MH. The effect of coffee consumption on blood pressure and the development of hypertension: a systematic review and meta-analysis. J Hypertens. 2012;30(12):2245–54.

47. Ford JB, Schemann K, Patterson JA, Morris J, Herbert RD, Roberts CL. Triggers for Preeclampsia Onset: a Case-Crossover Study. Paediatr Perinat Epidemiol. 2016;30(6):555–62.

48. ACOG CommitteeOpinionNo. Moderate caffeine consumption during pregnancy. Obstet Gynecol. 2010;162(2 Pt 1):467–8. 116(1).

49. Chen LW, Low YL, Fok D, Han WM, Chong YS, Gluckman P, et al. Dietary changes during pregnancy and the postpartum period in Singaporean Chinese, Malay and Indian women: the GUSTO birth cohort study. Public Health Nutr. 2014;17(9):1930–8.

50. Skreden M, Bere E, Sagedal LR, Vistad I, Overby NC. Changes in beverage consumption from pre-pregnancy to early pregnancy in the Norwegian Fit for Delivery study. Public Health Nutr. 2015;18(7):1178–96.

51. Chen L, Bell EM, Browne ML, Druschel CM, Romitti PA, National Birth Defects Prevention S. Exploring maternal patterns of dietary caffeine consumption before conception and during pregnancy. Matern Child Health J. 2014;18(10):2446–55.

52. Lawson CC, LeMasters GK, Wilson KA. Changes in caffeine consumption as a signal of pregnancy. Reproductive Toxicol (Elmsford NY). 2004;18(5):625–33.

53. van der Hoeven T, Browne JL, Utterwaal C, van der Ent CK, Grobbée DE, Dalmeijer GW. Antenatal coffee and tea consumption and the effect on birth outcome and hypertensive pregnancy disorders. PLoS ONE. 2017;12(5):e0177619.

54. Nussberger J, Mooser V, Maridor G, Juillerat L, Waeber B, Brunner HR. Caffeine-induced diuresis and atrial natriuretic peptides. J Cardiovasc Pharmacol. 1990;15(5):685–91.

55. Guessous I, Eap CB, Bochud M. Blood pressure in relation to coffee and caffeine consumption. Curr Hypertens Rep. 2014;16(9):468.

56. van Buren M, Bijlsma JA, Boer P, van Rijn HJ, Koomans HA. Natriuretic and hypotensive effect of adenosine-A1 blockade in essential hypertension. J Hypertension (Dallas, Tex: 1979). 1993;22(5):728 – 34.

57. Rieg T, Steigle H, Schernmann J, Richter K, Osswald H, Vallon V. Requirement of intact adenosine A1 receptors for the diuretic and natriuretic action of the methylxanthines theophylline and caffeine. J Pharmacol Exp Ther. 2005;313(1):403–9.

58. Simoes ESAC, Flynn JT. The renin-angiotensin-aldosterone system in 2011: role in hypertension and chronic kidney disease. Pediatr Nephrol. 2012;27(10):1835–45.

59. Gathiram P, Moodley J. The Role of the Renin-Angiotensin-Aldosterone System in Preeclampsia: a Review. Curr Hypertens Rep. 2020;22(11):89.

60. Yang J, Shang J, Zhang S, Li H, Liu H. The role of the renin-angiotensin-aldosterone system in preeclampsia: genetic polymorphisms and microRNA. J Mol Endocrinol. 2013;50(2):R53–66.

61. van der Graaf AM, Toering TJ, Faas MM, Lely AT. From preeclampsia to renal disease: a role of angiogenic factors and the renin-angiotensin aldosterone system? Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association -. Eur Ren Association. 2012;27(Suppl 3):iii51–7.
51. Wierema TK, Houben AJ, Kroon AA, Postma CT, Koster D, van Engelshoven JM, et al. Mechanisms of adenosine-induced renal vasodilatation in hypertensive patients. J Hypertens. 2005;23(9):1731–6.
52. Daly JW, Butts-Lamb P, Padgett W. Subclasses of adenosine receptors in the central nervous system: interaction with caffeine and related methylxanthines. Cell Mol Neurobiol. 1983;3(1):69–80.
53. Snyder SH, Katims JJ, Annau Z, Bruner SF, Daly JW. Adenosine receptors and behavioral actions of methyloxanthines. Proc Natl Acad Sci USA. 1981;78(5):3260–4.
54. He WJ, Chen J, Razavi AC, Hu EA, Grams ME, Yu B, et al. Metabolites Associated with Coffee Consumption and Incident Chronic Kidney Disease. Clin J Am Soc Nephrol: CJASN. 2021;16(11):1620–9.
55. Kennedy OJ, Pirastu N, Poole R, Fallowfield JA, Hayes PC, Grzeszkowiak EJ, et al. Coffee Consumption and Kidney Function: A Mendelian Randomization Study. Am J kidney diseases: official J Natl Kidney Foundation. 2020;75(5):753–61.
56. Kanbay M, Siriopol D, Copur S, Tapoi L, Benchea L, Kuwabara M, et al. Effect of Coffee Consumption on Renal Outcome: A Systematic Review and Meta-Analysis of Clinical Studies. J Ren Nutr. 2021;31(1):5–20.
57. Saloso R, Farias M, Gutierrez J, Pardo F, Chiarello DI, Toledo F, et al. Adenosine and preeclampsia. Mol Aspects Med. 2017;55:126–39.
58. Iriyama T, Sayama S, Osuga Y. Role of adenosine signaling in preeclampsia. J Obstet Gynecol Res. 2021;48(1):49–57.
59. Surma S, Oparil S. Coffee and Arterial Hypertension. Curr Hypertens Rep. 2021;23(7):38.
60. Daneshchv HR, Smetana GW, Brindamour L, Bain PA, Mukamal KJ. Impact of Coffee Consumption on Physiological Markers of Cardiovascular Risk: A Systematic Review. Am J Med. 2021;134(5):626 – 36.e2.
61. Bouthoom SH, Gaillard R, Steegers EA, Hofman A, Jaddoe VW, van Lenthe FJ, et al. Ethnic differences in blood pressure and hypertensive complications during pregnancy: the Generation R study. Hypertension (Dallas, Tex: 1979). 2012;60(1):198–205.

Supplementary Table 1

Supplementary Table 1 is not available with this version.

Figures

Figure 1

A schematic flow for the selection of articles included in this meta-analysis.

Figure 2

Forest plot of the association between caffeine exposure vs. non-caffeine exposure during pregnancy and the risk of gestational hypertension (GH) (p=0.800).

Figure 3

Forest plot of the association between caffeine exposure vs. non-caffeine exposure during pregnancy and the risk of preeclampsia (p=0.114).