STRONGLY GRADED GROUPOID AND DIRECTED GRAPH ALGEBRAS

LISA ORLOFF CLARK, ELLIS DAWSON AND IAIN RAEBURN

Abstract. We show the reduced C^*-algebra of a graded ample groupoid is a strongly graded C^*-algebra if and only if the corresponding Steinberg algebra is a strongly graded ring. We apply this result to get a theorem about the Leavitt path algebra and C^*-algebra of an arbitrary graph.

The prototypical example of a strongly \mathbb{Z}-graded ring is the ring $K[x,x^{-1}]$ of Laurent polynomials over a field K. The homogeneous components are the sets K^{x_p}, and for $m, n \in \mathbb{Z}$ such that $m+n = p$, every element $rx^p \in K^{x_p}$ can be realised as a product $(rx^m)(1x^n)$ of elements in the homogeneous components K^{x_m} and K^{x_n}. The C^*-algebraic analogue of $K[x,x^{-1}]$ is the C^*-algebra $C(T)$ of continuous functions on the unit circle $T \subseteq \mathbb{C}$, which by the Stone–Weierstrass theorem contains the trigonometric polynomials as a dense subspace. This is the prototype of a strongly \mathbb{Z}-graded C^*-algebra with homogeneous subspaces $C(T)^n = \mathbb{C} z^n$.

To be more precise, suppose that A is a C^*-algebra and Γ is a group. Following Exel [9, Definition 16.2], we say that A is a Γ-graded C^*-algebra if there are linearly independent closed subspaces $\{A_\gamma : \gamma \in \Gamma\}$ of A such that for every $\alpha, \beta \in \Gamma$, we have

(a) $A_\alpha \cdot A_\beta := \text{span}\{ab : a \in A_\alpha, b \in A_\beta\} \subseteq A_{\alpha\beta}$,
(b) $A_\alpha^* := \{a^* : a \in A_\alpha\} \subseteq A_{\alpha^{-1}}$ and
(c) $\bigoplus_{\gamma \in \Gamma} A_\gamma$ is dense in A.

We say that A is a strongly Γ-graded C^*-algebra if in addition $A_\alpha \cdot A_\beta$ is dense in $A_{\alpha\beta}$ for all $\alpha\beta \in \Gamma$.

Our work is inspired by a recent result of Clark, Hazrat and Rigby in [7] which identifies the groupoids for which the Steinberg algebra is a strongly graded ring. Given an ample groupoid G with Hausdorff unit space and a continuous cocycle $c : G \to \Gamma$, c induces a grading on

\begin{itemize}
 \item 2010 Mathematics Subject Classification. 16S99, 16S10, 22A22, 46L05, 46L55.
 \item Key words and phrases. Groupoid C^*-algebra, Steinberg algebra, Leavitt path algebra.
 \item This research was supported by a Marsden grant from the Royal Society of New Zealand.
\end{itemize}
the Steinberg R-algebra $A_R(G)$. The groupoid G is strongly graded in the sense that $c^{-1}(\alpha)c^{-1}(\beta) = c^{-1}(\alpha\beta)$ for all $\alpha, \beta \in \Gamma$ if and only if $A_R(G)$ is a strongly Γ-graded ring [7, Theorem 3.11]. Strongly graded groupoids also appear in [4]. In Proposition 2 we show that c also induces a Γ-grading on the reduced C^*-algebra $C_r^*(G)$. We then show in Theorem 3 that $C_r^*(G)$ is a strongly Γ-graded C^*-algebra if and only if the complex Steinberg algebra $A(G)$ is a strongly Γ-graded ring. Our main tool in the proof is the injective, continuous linear map j from $C_r^*(G)$ into the space of functions from G to \mathbb{C} that are bounded with respect to the uniform norm from [14, Proposition 4.4.2].

The key examples for us are the C^*-algebras $C^*(E)$ of directed graphs E, for which the gauge action $\gamma : \mathbb{T} \to \text{Aut} C^*(E)$ gives a \mathbb{Z}-grading with

$$C^*(E)_n := \{ a \in C^*(E) : \gamma_z(a) = z^n a \text{ for all } z \in \mathbb{T} \}.$$

In [7], the authors identify the directed graphs E for which the Leavitt path algebras $L_R(E)$ are strongly \mathbb{Z}-graded in [7, Theorem 4.2]. (See also [10, Theorem 1.3].) We use our Theorem 3 to show $L_C(E)$ is strongly \mathbb{Z}-graded if and only if $C^*(E)$ is strongly \mathbb{Z}-graded. Thus the graph condition of [7, Theorem 2.4] (which we will describe soon) also characterises when $C^*(E)$ is strongly \mathbb{Z}-graded.

Since we are proving a C^*-algebraic result, we use the convention that the spanning elements \{\alpha\beta\} of $L_C(E)$ are determined by pairs $\alpha, \beta \in E^*$ satisfying $s(\alpha) = s(\beta)$. In other words, we use the conventions of [13] rather than those of [11]. With these conventions, a directed graph E has property (Y) if, for every infinite path $x \in E^\infty$ and every $k \in \mathbb{N}$, there are an initial segment α of x and a finite path $\beta \in E^*$ such that $s(\alpha) = s(\beta)$ and $|\beta| - |\alpha| = k$, that is, β has k more edges than α. The reason for the name is the picture:

![Graph Diagram]

We can state our main graph algebra result as follows.
Theorem 1. Suppose that E is a directed graph. Then the graph algebra $C^*(E)$ is strongly \mathbb{Z}-graded if and only if E is row-finite, has no sources, and has property (Y).

As a corollary, we get that $C^*(E)$ is a strongly \mathbb{Z}-graded C^*-algebra if and only if $L_C(E)$ is strongly \mathbb{Z}-graded ring. We conclude with a brief analysis of $(L(E))_0$, the core of a Leavitt path algebra which is dense inside of the core of $C^*(E)$. We show that every element of the core of a Leavitt path algebra is contained in a finite-dimensional subalgebra. Previously this was known for row-finite graphs, see for example the last line of the proof of [2, Theorem 5.3].

1. Strongly graded Steinberg algebras and groupoid C^*-algebras

We begin this section with some definitions. Suppose R is a ring. If A and B are subsets of R, then we write AB for the set of all finite sums of elements of the form ab where $a \in A$ and $b \in B$. Let Γ be a group. We say that R is a Γ-graded ring if there are subgroups $\{R_\gamma : \gamma \in \Gamma\}$ in R such that for every $\alpha, \beta \in \Gamma$:

(a) $R_\alpha R_\beta \subseteq R_{\alpha \beta}$ and
(b) $\bigoplus_{\gamma \in \Gamma} R_\gamma = R$.

Further, we say R is a strongly Γ-graded ring if the containment in (a) above is in fact an equality.

We say a groupoid G is ample if it is a topological groupoid and has a basis of compact open bisections. When G is an ample groupoid such that $G^{(0)}$ is Hausdorff, the complex Steinberg algebra of G is the space

$$A(G) := \text{span}\{1_B : B \text{ is a compact open bisection}\}$$

where 1_X denotes the characteristic function from G to \mathbb{C} of X. Addition and scalar multiplication are defined pointwise, and the convolution product is such that

$$1_B 1_D = 1_{BD}$$

for compact open bisections B and D. If $c : G \to \Gamma$ is a continuous cocycle into a discrete group Γ, then the Steinberg algebra $A(G)$ is a Γ-graded ring such that for $\gamma \in \Gamma$

$$A(G)_\gamma := \{f \in A(G) : \text{supp} f \subseteq G_\gamma\}$$

where $G_\gamma := c^{-1}(\gamma)$. Thus

$$A(G) = \bigoplus_{\gamma \in \Gamma} A(G)_\gamma.$$

(See [8, Lemma 3.11].)
The next proposition shows that this structure also gives a grading on the groupoid C^*-algebra. For this proposition (and also the following theorem) we use the injective continuous linear map
\[j : C^*_r(G) \to B(G), \]
where $B(G)$ denotes the normed vector space of bounded functions from G to \mathbb{C} with respect to $\| \cdot \|_{\infty}$. This map restricts to the identity on $A(G)$. (See, for example, [5, page 3680].)

Proposition 2. Let G be an ample groupoid such that G^0 is Hausdorff and let $c : G \to \Gamma$ be a continuous cocycle into a discrete group Γ. Then $C^*_r(G)$ is a Γ-graded C^*-algebra such that for each $\gamma \in \Gamma$ we have
\[C^*_r(G)_\gamma := \overline{A(G)_\gamma}. \]

Proof. Fix $\alpha, \beta \in \Gamma$. Because $A(G)_\alpha \cdot A(G)_\beta$ is contained in the closed set $C^*_r(G)_{\alpha\beta}$,
\[C^*_r(G)_\alpha \cdot C^*_r(G)_\beta \subseteq C^*_r(G)_{\alpha\beta} \]
by the continuity of multiplication. Similarly
\[C^*_r(G)^*_\gamma \subseteq C^*_r(G)^{-1}_\gamma \]
by the continuity of the involution \ast. Next we verify that each $C^*_r(G)_\gamma$ is a linearly independent subspace. To do this, we claim that
\[j(C^*_r(G)_\gamma) \subseteq B(G_\gamma). \]
We have that j is the identity map on $A(G)_\gamma \subseteq B(G_\gamma)$. It is straightforward to check that $B(G_\gamma)$ is closed in $B(G)$ with respect to $\| \cdot \|_{\infty}$ and hence the claim follows from the continuity j.

Now consider a finite linear combination $\sum a_i = 0$ where each $a_i \in C^*_r(G)_{\gamma_i}$ and the γ_i are distinct elements of Γ. By linearity
\[0 = j(\sum a_i) = \sum j(a_i). \]
Since the supports of $j(a_i)$ are all disjoint, $j(a_i) = 0$ for every i. Thus $a_i = 0$ because j is an injective linear map.

Finally notice
\[A(G) = \bigoplus_{\gamma \in \Gamma} A(G)_\gamma \subseteq \bigoplus_{\gamma \in \Gamma} C^*_r(G)_\gamma \subseteq C^*_r(G). \]
Thus since $A(G)$ is dense in $C^*_r(G)$ by [17, Proposition 6.7], we have that
\[\bigoplus_{\gamma \in \Gamma} C^*_r(G)_\gamma \text{ is dense in } C^*_r(G). \]
\[\square \]
Theorem 3. Let G be an ample groupoid such that $G^{(0)}$ is Hausdorff and let $c : G \to \Gamma$ be a continuous cocycle into a discrete group Γ. The following are equivalent:

(a) G is strongly Γ-graded groupoid in the sense that $G_\alpha G_\beta = G_{\alpha\beta}$ for all $\alpha, \beta \in \Gamma$;

(b) $A(G)$ is a strongly Γ-graded ring;

(c) $C^*_r(G)$ is a strongly Γ-graded C^*-algebra.

Remark 4. Using [7, Theorem 3.11], we could replace item (b) in Theorem 3 with the equivalent statement: $A_R(G)$ is a strongly Γ-graded ring for any commutative ring R with identity.

The equivalence of (a) and (b) is established in [7, Theorem 3.11]. We establish the equivalence of (b) and (c). That (c) implies (b) is straightforward: Take $\alpha, \beta \in \Gamma$. Since $C^*_r(G)_{\alpha\beta}$ is closed and $C^*_r(G)$ is Γ-graded, $C^*_r(G)_{\alpha} \cdot C^*_r(G)_{\beta}$ trivially has closure in $C^*_r(G)_{\alpha\beta}$. To see that this closure is all of $C^*_r(G)_{\alpha\beta}$, take $a \in C^*_r(G)_{\alpha\beta}$. Since $C^*_r(G)_{\alpha\beta} = A(G)_{\alpha\beta}$, there exist $f_n \in A(G)_{\alpha\beta}$ such that $f_n \to a$ in $C^*_r(G)$. Since $A(G)$ is strongly graded, we have

$$f_n \in A(G)_{\alpha} \cdot A(G)_{\beta} \subseteq C^*_r(G)_{\alpha} \cdot C^*_r(G)_{\beta}$$

for each n and hence the limit a belongs to $C^*_r(G)_{\alpha\beta}$.

For the reverse implication, we use the following lemma.

Lemma 5. Let G be an ample groupoid such that $G^{(0)}$ is Hausdorff and let $c : G \to \Gamma$ be a continuous cocycle into a discrete group Γ. Then for $\alpha, \beta \in \Gamma$ we have

$$A(G)_\alpha \cdot A(G)_\beta \subseteq \{ f \in A(G) : f(x) \neq 0 \implies x \in G_\alpha G_\beta \}.$$

Proof. Observe that $A(G)_\alpha \cdot A(G)_\beta$ is equal to

$$\text{span}\{1_{BD} : B \subseteq G_\alpha, D \subseteq G_\beta \text{ are compact open bisections}\}$$

(see [7, bottom of page 53]). Since the support of a sum of functions is contained in the union of the supports of the summands, the containment follows.

Proof of Theorem 3 To complete the proof, suppose $A(G)$ is not strongly graded. Then G is not strongly graded by [7, Theorem 3.11], that is, by (a) \implies (b) of Theorem 3. Then there exists $\gamma \in \Gamma$ and $x \in G_e \setminus G_\gamma G_{\gamma^{-1}}$.
by [7, Lemma 3.1]. Since c is continuous, G_e is open so we can find $B \subseteq G_e$ a compact open bisection containing x. Since $1_B(x) = 1,$

$$1_B \in A(G)_e \setminus A(G)_\gamma A(G)_{\gamma^{-1}}$$

by Lemma 5. We show

$$1_B \notin A(G)_\gamma A(G)_{\gamma^{-1}}$$

using an adaptation of the argument in [6, Proposition 3.3(i)]. By way of contradiction, suppose there exists a sequence $(f_n) \subseteq A(G)_\gamma \cdot A(G)_{\gamma^{-1}}$ that converges to 1_B in $C^*_r(G)$. Again we apply the injective continuous linear map $j : C^*_r(G) \to B(G)$. Since j restricts to the identity map on $A(G)$ we have $j(f_n) = f_n \to j(1_B) = 1_B$ in $\| \cdot \|_{\infty}$. Recall that $1_B(x) \neq 0$. However, $x \notin G_\gamma G_{\gamma^{-1}}$ so $f_n(x) = 0$ for all $n \in \mathbb{N}$ by Lemma 5, which is a contradiction. Therefore

$$f \notin A(G)_\gamma A(G)_{\gamma^{-1}}$$

and $C^*_\nu(G)$ is not a strongly Γ-graded C^*-algebra. \hfill \Box

2. LEAVITT PATH ALGEBRAS

We want to connect properties of $C^*(E)$ and properties of $L_C(E)$, and hence we want to be able to view $L_C(E)$ as a subalgebra of $C^*(E)$ using the homomorphism ι which takes a spanning element $\alpha \beta^*$ to the element $s_\alpha s_\beta^*$ of $C^*(E)$. That ι is an injection was established (for example) in [3, §1.3], but with an annoying hypothesis of “no sources”. So we pause to prove the following more general result.

Proposition 6. Suppose that E is a directed graph. Then the homomorphism $\iota : L_C(E) \to C^*(E)$ is an isomorphism of $L_C(E)$ onto the \ast-subalgebra

$$A := \text{span} \{ s_\alpha s_\beta^* : \alpha, \beta \in E^* \text{ and } s(\alpha) = s(\beta) \} \text{ of } C^*(E).$$

Proof. We want to apply the Graded Uniqueness Theorem for Leavitt path algebras [11, Theorem 2.2.15], but $C^*(E)$ is not \mathbb{Z}-graded in the algebraic sense, and hence that result does not apply to $\iota : L_C(E) \to C^*(E)$. However, the \ast-subalgebra A is \mathbb{Z}-graded, with

$$A_n = \text{span} \{ s_\alpha s_\beta^* : s(\alpha) = s(\beta) \text{ and } |\alpha| - |\beta| = n \}.$$

Since we can always find Cuntz-Krieger E-families $\{S, P\}$ with $P_v \neq 0$ for every $v \in E^0$ (see the top of [13, page 8]), every p_v is non-zero. Thus [11, Theorem 2.2.15] implies that ι is an injection of $L_C(E)$ into
A; since every $s_\alpha s_\beta^*$ belongs to the range of ι, it is an isomorphism, as claimed.

Next we relate the grading spaces $C^*(E)_n$ for the C^*-algebra to those of the Leavitt path algebra. We define $\Phi_n : C^*(E) \to C^*(E)_n$ in terms of the gauge action $\gamma : \mathbb{T} \to \text{Aut} C^*(E)$ by

$$\Phi_n(a) = \int_{\mathbb{T}} w^{-n} \gamma_w(a) \, dw.$$

Left invariance of the Haar integral on \mathbb{T} implies that Φ_n is a norm-decreasing $C^*(E)_n$-bilinear map of $C^*(E)$ onto $C^*(E)_n$ such that

$$\Phi_n(s_\mu s_\nu^*) = \begin{cases} s_\mu s_\nu^* & \text{if } |\mu| - |\nu| = n, \\ 0 & \text{otherwise.} \end{cases}$$

The map $\Phi_n \circ \iota$ is a bounded linear map of $L_C(E)$ onto a dense subspace of $C^*(E)_n$, and its restriction to $L_C(E)_n$ is an injection of $L_C(E)_n$ onto this dense subspace of $C^*(E)_n$. Hence, modulo the canonical injection ι of $L_C(E)$ in $C^*(E)$, $C^*(E)_n$ is the closure of $L_C(E)_n$. We suppress ι, and write $C^*(E)_n = \overline{L_C(E)_n}$.

Proposition 7. Suppose that E is a directed graph. Then $C^*(E)$ is a strongly \mathbb{Z}-graded C^*-algebra if and only if $L_C(E)$ is a strongly \mathbb{Z}-graded ring.

With the following lemma, the proof of Proposition 7 is an immediate corollary to Theorem 3.

Lemma 8. For any directed graph E, there is an ample Hausdorff amenable groupoid G_E and an isomorphism $\pi : C^*(E) \to C^*(G_E)$ such that $\pi(C^*(E)_n) = C^*(G_E)_n$, and such that the restriction of π to $L_C(E)$ is a \mathbb{Z}-graded (ring) isomorphism of $L_C(E)$ onto $A(G_E)$.

Remark 9. Because G_E is amenable, the full and reduced C^*-algebras are equal so we drop the r subscript from the $C^*_r(G_E)$ from now on.

Proof. Let G_E be the boundary path groupoid of E as defined by Paterson on page 653 of [12]. Then G_E is ample and Hausdorff; see [15, Theorem 2.4] for a nice proof of this. The groupoid G_E is amenable by [12, Theorem 4.2]. We view $C^*_r(G_E)$ as the universal groupoid C^*-algebra. In this sense, there is a representation $\pi_{\text{max}} : C_c(G_E) \to C^*(G_E)$ that is universal for representations of $C_c(G_E)$ and $\pi_{\text{max}}(C_c(G_E))$ is dense in $C^*(G_E)$. See [16, Theorem 3.2.2] for more details. Since we view $A(G_E) \subseteq C_c(G_E)$ as subsets of $C^*(G_E)$, we identify $C_c(G_E)$ with

[1] Paterson calls G_E the path groupoid.
$\pi_{\text{max}}(C_e(G_E))$ inside $C^*(G_E)$, which we can do because π_{max} is injective by [16, Corollary 3.3.4].

One can show that the collection

$$P_v := 1_{Z(v)}, \quad S_e := 1_{Z(e, s(e))}$$

for $v \in E^0$ and $e \in E^1$ is a Cuntz-Krieger E-family in $C^*(G_E)$. The universal property of $C^*(E)$ gives a homomorphism $\pi : C^*(E) \to C^*(G_E)$ such that

$$\pi(p_v) = P_v \quad \text{for } v \in E^0 \quad \text{and} \quad \pi(s_e) = S_e \quad \text{for } e \in E^1.$$

(See [13, page 42].) Notice that the restriction of π to $L_C(E)$ is precisely the \mathbb{Z}-graded ring isomorphism from $L_C(E)$ onto $A(G_E)$ in [8, Example 3.2], and hence $\pi(L_C(E)_n) = A(G_E)_n$.

Paterson shows in in [12, Theorem 3.8] and [11, Theorem 3.1] that representations of $C^*(E)$ are in bijective correspondence with representations of $C_e(G_E)$. So the universal representation p_v, s_e of $C^*(E)$ corresponds to a representation $\phi : C_e(G_E) \to C^*(E)$: indeed, by looking at the details of the proof of [12, Theorem 3.8], we see that $\phi(P_v) = p_v$ and $\phi(S_e) = s_e$ for $v \in E^0$ and $e \in E^1$. The universal property of $C^*(G_E)$ [16, Theorem 3.2.2] gives a homomorphism $\psi : C^*(G_E) \to C^*(E)$ such that $\psi = \phi$ on $C_e(G_E)$.

Notice that $\pi \circ \phi$ and $\phi \circ \pi$ restrict to identity maps on $A(G_E)$ and $L_C(E)$ respectively. We show that π is a bijection by showing that $\pi \circ \psi$ and $\psi \circ \pi$ are the identity maps on $C^*(G_E)$ and $C^*(E)$ respectively. Fix $a \in C^*(G_e)$. Since $A(G_E)$ is dense in $C^*(G_E)$ by [17, Proposition 6.7], $a = \lim f_n$ where $f_n \in A(G_E)$. Then using that homomorphisms between C^*-algebras are automatically continuous, we have

$$\pi(\psi(a)) = \pi(\psi(\lim f_n)) = \lim \pi(\psi(f_n)) = \lim \pi(\phi(f_n)) = \lim f_n = a.$$

For the other direction, fix $b \in C^*(E)$. Then $b = \lim b_n$ where $b_n \in L_C(E)$, and recalling that π takes elements of $L_C(E)$ to elements of $A(G_E)$, we deduce that

$$\psi(\pi(b)) = \psi(\lim(\psi(b_n))) = \lim(\psi(\pi(b_n))) = \lim(\phi(\pi(b_n))) = \lim b_n = b.$$

Thus π is an isomorphism with inverse ψ. Continuity of π and ψ imply $\pi(C^*(E)_n) = C^*_r(G_E)_n$, and this completes the proof. \hfill \square

Proof of Proposition 7. Because the restricted map π from Lemma 8 is a graded ring isomorphism, $L_C(E)$ is strongly \mathbb{Z}-graded if and only if $A(G_E)$ is strongly \mathbb{Z}-graded. Now Theorem 3 says this is equivalent to $C^*(G_E)$ being strongly \mathbb{Z}-graded. Since π preserves the C^*-grading, the result follows. \hfill \square
Now we have the pieces needed to prove Theorem 1. Recall that [7, Theorem 4.2] says $L_C(E)$ is strongly \mathbb{Z}-graded if and only if E is row-finite, has no sources and has property Y. Thus Theorem 1 follows from Proposition 7 above and [7, Theorem 4.2].

In strongly graded algebras, a lot of the structure of the algebra can be seen in the core, that is, in the homogeneous component of the identity e. Thus we conclude by establishing that the core of a Leavitt path algebra is build from finite dimensional subalgebras in the following way.

Proposition 10. Suppose that E is a directed graph and K is a field. Then every $a \in L_K(E)_0$ belongs to a finite-dimensional $*$-subalgebra of $L_K(E)_0$.

To prove this result, we need to understand the finite-dimensional subalgebras of $L_K(E)_0$. We start by choosing an enumeration $\{e_j : j \in \mathbb{N}\}$ of the countable set E^1. For $J \in \mathbb{N}$, we write

$$E^k_J := \{ \alpha \in E^k : \alpha_i \in \{e_j : 1 \leq j \leq J\} \text{ for all } i \},$$

and $E^0_J := \{s(e_j) : 1 \leq j \leq J\}$. Notice that the sets E^k_J are all finite, and $E^k_J \subseteq E^k_{J+1}$. We define

$$G_{k,J} := \text{span}\{\alpha \beta^* : \alpha, \beta \in E^k_J\}.$$

For $\beta, \gamma \in E^k_J$ we have $|\beta| = |\gamma| = k$, and hence we have

$$\beta^* \gamma = \begin{cases} s(\beta) = s(\gamma) & \text{if } \beta = \gamma \\ 0 & \text{otherwise.} \end{cases}$$

It follows that

$$G_{k,J}(v) := \text{span}\{\alpha \beta^* := \alpha, \beta \in E^k_Jv\}$$

is a (finite-dimensional) matrix algebra, and

$$v \neq w \implies G_{k,J}(v)G_{k,J}(w) = \{0\}.$$

Thus

$$G_{k,J} = \bigoplus_{v \in E^0_J} G_{k,J}(v)$$

is a finite direct sum of matrix algebras.

Lemma 11. Suppose that $k, l \in \mathbb{N}$ and $k > l$. Then for every $J \in \mathbb{N}$ and $v, w \in E^0_J$, we have

$$G_{k,J}(v)G_{l,J}(w) \subseteq G_{k,J}(v).$$
Proof. For $\alpha\beta^* \in G_{k,J}$ and $\gamma\delta^* \in G_{l,J}(w)$, we have $|\beta| = k > l = |\gamma|$, and hence

$$(\alpha\beta^*)(\gamma\delta^*) = \begin{cases}
\alpha(\delta\beta')^* & \text{if } \beta = \gamma\beta' \\
0 & \text{otherwise.}
\end{cases}$$

Since $s(\delta\beta') = s(\beta) = s(\alpha) = v$, we deduce that $(\alpha\beta^*)(\gamma\delta^*) \in G_{k,J}(v)$ (it could be 0, but that is in $G_{k,J}(v)$ too). A similar argument gives $(\gamma\delta^*)(\alpha\beta^*) \in G_{k,J}(v)$. \hfill \square

Corollary 12. For each $J \in \mathbb{N}$, the set

$$F_{k,J} := \text{span} \left(\bigcup \{ G_{l,J} : l \leq k \} \right)$$

is a finite-dimensional \ast-subalgebra of $L_K(E)_0$.

Proof. The set $F_{k,J}$ is a vector subspace of $L_K(E)_0$ and is closed under conjugation because each $G_{l,J}$ is. The lemma implies that it is closed under multiplication. It is finite-dimensional because there are only finitely many $G_{l,J}$ in play, and their union spans $F_{k,J}$. \hfill \square

Proof of Proposition 10. We suppose that $a \in L_K(E)_0$. Then there are a finite set S of pairs $(\alpha, \beta) \in E^* \times E^*$ such that $s(\alpha) = s(\beta)$ and $|\alpha| = |\beta|$, and scalars $c_{\alpha,\beta}$ such that

$$a = \sum_{(\alpha,\beta) \in S} c_{\alpha,\beta} \alpha\beta^*.$$

Since the set S is finite, the set of vertices

$$V := \{ v \in E^0 : v = s(\alpha_i) \text{ or } s(\beta_i) \text{ for some } (\alpha, \beta) \in S \text{ and } i \leq |\alpha| \}$$

is finite. Thus there exists J such that $V \subseteq E^0_J$. Then with $k := \max\{|\alpha| : (\alpha, \beta) \in S\}$, we have

$$\alpha\beta^* \in G_{|\alpha|,J} \subseteq F_{k,J} \text{ for all } (\alpha, \beta) \in S.$$

Thus $a = \sum c_{\alpha,\beta} \alpha\beta^*$ belongs to the subspace $F_{k,J}$, which by Corollary 12 is a finite-dimensional \ast-subalgebra of $L_K(E)_0$. \hfill \square

References

[1] G. Abrams, P. Ara and M. Siles Molina, Leavitt Path Algebras, Lecture Notes in Math., vol. 2191, Springer-Verlag, London, 2017.
[2] P. Ara, M.A. Moreno, E. Pardo, Nonstable K-theory for graph algebras, Algebr. Represent. Theory 10 (2007), 157–178.
[3] G. Aranda Pino, F. Perera Domènech and M. Siles Molina (Editors), Graph Algebras. Bridging the Gap between Analysis and Algebra, Univ. of Málaga, 2007.
[4] A. Buss and R. Meyer, Inverse semigroup actions on groupoids, Rocky Mountain J. Math 47(2017), 53–159.
[5] L.O. Clark, R. Exel, E. Pardo, A. Sims and C. Starling, Simplicity of algebras associated to non-Hausdorff groupoids, *Trans. Amer. Math. Soc.* 372 (2019), 3669–3712.

[6] L.O. Clark and J. Fletcher, Groupoid algebras as covariance algebras, https://arxiv.org/1906.02855

[7] L.O. Clark, R. Hazrat and S.W. Rigby, Strongly graded groupoids and strongly graded Steinberg algebras, *J. Algebra* 530 (2019), 34–68.

[8] L.O. Clark and A. Sims, *Equivalent groupoids have Morita equivalent Steinberg algebras*, J. Pure Appl. Algebra 219 (2015), 2062–2075.

[9] R. Exel, *Partial Dynamical Systems, Fell Bundles and Applications*, Math. Surveys and Monographs, vol. 224, Amer. Math. Soc., Providence, 2017.

[10] P. Nystedt and J. Öinert, Strongly graded Leavitt Path Algebras, https://arxiv.org/2002.06965.

[11] A.L.T. Paterson, Groupoids, inverse semigroups, and their operator algebras, Birkhäuser Boston Inc., Boston, MA, 1999, xvi+274.

[12] A.L.T. Paterson, *Graph inverse semigroups, groupoids and their C^*-algebras*, J. Operator Theory 48 (2002), 645–662.

[13] I. Raeburn, *Graph Algebras*, CBMS Regional Conference Series in Math., vol. 103, Amer. Math. Soc., Providence, 2005.

[14] J. Renault, *A groupoid approach to C^*-algebras*, volume 793 of *Lecture Notes in Mathematics*, Springer, Berlin, 1980.

[15] S.W. Rigby, The groupoid approach to Leavitt path algebras, A. A. Ambily, R. Hazrat, B. Sury eds, *Leavitt Path Algebras and Classical K-Theory*, Indian Statistical Institute Series, Springer 2020.

[16] A. Sims, Hausdorff étale groupoids and their C^*-algebras, *Operator algebras and dynamics: groupoids, crossed products and Rokhlin dimension*, Advanced Courses in Mathematics, CRM Barcelona, Birkhauser, to appear.

[17] B. Steinberg, A groupoid approach to discrete inverse semigroup algebras, *Adv. Math.* 223 (2010), 689–727.

Department of Mathematics and Statistics, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand