Ischemia-induced cell depolarization: does the hyperpolarization-activated cation channel HCN2 affect the outcome after stroke in mice?

Petra Ehling1,6*, Eva Gob2†, Stefan Bittner3, Thomas Budde4, Andreas Ludwig5, Christoph Kleinschnitz2 and Sven G Meuth1,3

Abstract

Background: Brain ischemia is known to include neuronal cell death and persisting neurological deficits. A lack of oxygen and glucose are considered to be key mediators of ischemic neurodegeneration while the exact mechanisms are yet unclear. In former studies the expression of two different two-pore domain potassium (K2P) channels (TASK1, TREK1) were shown to ameliorate neuronal damage due to cerebral ischemia. In neurons, TASK channels carrying hyperpolarizing K+ leak currents, and the pacemaker channel HCN2, carrying depolarizing Ih, stabilize the membrane potential by a mutual functional interaction. It is assumed that this ionic interplay between TASK and HCN2 channels enhances the resistance of neurons to insults accompanied by extracellular pH shifts.

Methods: In C57Bl/6 (wildtype, WT), hcn2+/+ and hcn2−/− mice we used an in vivo model of cerebral ischemia (transient middle cerebral artery occlusion (tMCAO)) to depict a functional impact of HCN2 in stroke formation. Subsequent analyses comprise behavioural tests and hcn2 gene expression assays.

Results: After 60 min of tMCAO induction in WT mice, we collected tissue samples at 6, 12, and 24 h after reperfusion. In the infarcted neocortex, hcn2 expression analyses revealed a nominal peak of hcn2 expression 6 h after reperfusion with a tendency towards lower expression levels with longer reperfusion times. Hcn2 gene expression levels in infarcted basal ganglia did not change after 6 h and 12 h. Only at 24 h after reperfusion, hcn2 expression significantly decreases by ~55%. However, 30 min of tMCAO in hcn2−/− as well as hcn2+/+ littersmates induced similar infarct volumes. Behavioural tests for global neurological function (Bederson score) and motor function/coordination (grip test) were performed at day 1 after surgery. Again, we found no differences between the groups.

Conclusions: Here, we hypothesized that the absence of HCN2, an important functional counter player of TASK channels, affects neuronal survival during stroke-induced tissue damage. However, together with a former study on TASK3 these results implicate that both TASK3 and HCN2 which were supposed to be neuroprotective due to their pH-dependency, do not influence ischemic neurodegeneration during stroke in the tMCAO model.

Background

Ischemic stroke occurs due to an interruption of blood supply to corresponding areas of the brain, initiating an ischemic cascade. The depletion of oxygen or glucose in ischemic brain tissue sets off a series of interrelated events that result in neurodegeneration. Consequently, this leads to a high rate of permanent disabilities and even death [1]. Generally, neurotoxicity can be mediated by ionic imbalances that contribute to apoptosis (programmed cell death). Many efforts have been spent so far on investigating neuronal ion channel function and regulation after stroke in different animal models [2-5]. Cells that undergo apoptosis have a strongly depolarized membrane potential prior to cell death [6,7]. In contrast, a hyperpolarized membrane potential has been reported to be an important mechanism promoting resistance to apoptosis [8,9]. Thus, an important indicator for neuronal

* Correspondence: petra.ehling@uni-muenster.de
† Equal contributors
1 Department of Neurology, and Institute of Physiology, Neuropathophysiology, Albert-Schweitzer-Campus 1, Westfälische Wilhelms University, 48149 Münster, Germany
2 Department of Neurology, ICB, Mendelstr. 7, 48149 Münster, Germany
Full list of author information is available at the end of the article

© 2013 Ehling et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Biomed Central
survival seems to be the stability of the resting membrane potential. Among others HCN channels (hyperpolarization-activated and cyclic nucleotide-gated channels, also known as pacemaker channels) help to maintain a stable cell membrane potential at rest and thereby define the excitability of CNS neurons [10-13]. For thalamocortical relay neurons, it could be demonstrated that two ion channels, which are predominantly active at rest, strongly influence the resting membrane potential. The hyperpolarizing K+ leak current carried by two-pore domain K+ (K2P) channels, which are predominantly active at rest, strongly influences the activity of acid-sensing ion channels as well as the cell membrane potential. Thus, a future therapeutic strategy to further stabilise the resting membrane potential of neurons might promote their survival in an early phase of stroke development.

The HCN channel family comprises four members (HCN1-4). Currents through HCN channels (Ih) have unusual characteristics including activation upon hyperpolarization, permeability to K+ and Na+, as well as modulation by cyclic AMP [12]. Originally, they were identified as pace making channels in the heart that set cardiac rhythm [22-26]. Besides pacing the heart these channels are recognized as ubiquitous components of the nervous system. By setting the membrane potential and input resistance at rest, HCN channels play an important role to the integrative function and the sensitivity to synaptic inputs in neurons [12,24]. Channel malfunction could be linked to central diseases including epilepsy [13,27]. Hcn2 transcripts were found at high levels nearly ubiquitously in brains of adult mice, and the strongest signals were seen in the olfactory bulb, hippocampus, thalamus and brainstem [28]. Here, we test the hypothesis that functional HCN2 channels limit the infarct volumes and improve neurological and motor abilities in a mouse model of stroke (tMCAO). Based on their inhibition by acidification which occurs during arterial occlusion one might predict that less active HCN2 channels favour a more hyperpolarized membrane potential and a reduced susceptibility to brain damage.

Methods

Real-time PCR

For hcn2 gene expression ipsilesional neocortices and basal ganglia of C57Bl6 WT mice (Charles River, Sulzfeld, Germany) were analysed 6, 12 and 24 h after reperfusion together with corresponding tissue samples from sham-operated mice. Tissue homogenization, RNA isolation and real-time RT-PCR were performed as described [29]. Total RNA was prepared with a Microrna D-8 power homogenizer (Art) using the Trizol reagent® (Invitrogen) and was quantified spectrophotometrically. Then, 1 μg of total RNA were reversely transcribed with the TaqMan® Reverse Transcription Reagents (Applied Biosystems) according to the manufacturer’s protocol using random hexamers. Relative gene expression levels of hcn2 (assay ID: Mnt00468538_m1, Applied Biosystems) was quantified with the fluorescent TaqMan® technology. GAPDH (Taq-Man® Predeveloped Assay Reagents for gene expression, part number: 4352339E, Applied Biosystems) was used as an endogenous control to normalize the amount of sample RNA. The PCR was performed with equal amounts of cDNA in the StepOnePlus™ Real-Time PCR System (Applied Biosystems) using the TaqMan® Universal 2x PCR Master Mix (Applied Biosystems). Reactions (total volume 12.5 μl) were incubated at 50°C for 2 min, at 95°C for 10 min followed by 40 cycles of 15 sec at 95°C and 1 min at 60°C. Water controls were included to ensure specificity. Each sample was measured in triplicate and data points were examined for integrity by analysis of the amplification plot. The comparative Ct method was used for relative quantification of gene expression as described [30].

Induction of cerebral ischemia

Animal experiments were approved by governmental agencies (Regierung von Unterfranken, Würzburg, Germany, approval number 54/09) for animal research and conducted according to the recommendations for research in mechanism-driven basic stroke studies [31], current ARRIVE guidelines (http://www.nc3rs.org/ARRIVE). Focal cerebral ischemia was induced in 8-20 weeks old hcn2+/+ and hcn2−/− [13] littermates of either sex weighing 15-30 g (hcn2+/+: 20-30 g; hcn2−/−: 15-25 g) by transient middle cerebral artery occlusion (tMCAO) as described previously [32,33]. Briefly, mice were anesthetized with 2.5% enflurane (Abbott, Wiesbaden, Germany) in a 70% N2O/30% O2 mixture. Core body temperature was maintained at 37°C throughout surgery using a feedback-controlled heating device. Following a midline skin incision in the neck, the proximal common carotid artery and the external carotid artery were ligated and a standardized silicon rubber-coated 6.0 nylon monofilament (6021; Doccol Corp., CA, USA) was inserted and advanced via the right internal carotid artery to occlude the origin of the right MCA. The intraluminal suture was left in situ for 0.5 or 1 hour, respectively. Then animals were re-anesthetized and the occluding monofilament was withdrawn to allow reperfusion. After 24 hours neurological deficits were scored by two blinded investigators and quantified according to Bederson [34]: 0, no deficit; 1, forelimb flexion; 2, as for 1, plus decreased resistance to lateral push; 3, unidirectional circling; 4, longitudinal spinning; 5, no movement. For the
grip test, the mouse was placed midway on a string between two supports and rated as follows [35]: 0, falls off; 1, hangs onto string by one or both forepaws; 2, as for 1, and attempts to climb onto string; 3, hangs onto string by one or both forepaws plus one or both hind paws; 4, hangs onto string by fore- and hind paws plus tail wrapped around string; 5, escape (to the supports).

Laser-Doppler flowmetry

Laser-Doppler flowmetry (Moor Instruments, Axminster, United Kingdom) was used to monitor cerebral blood flow in the right MCA territory (6 mm lateral and 2 mm posterior from bregma) [36] in *hcn2*+/+ and *hcn2*−/− (n = 4/group) before surgery (baseline), immediately after MCA occlusion (ischemia), and 5 minutes after removal of the occluding monofilament (reperfusion).

Determination of infarct size

Mice were sacrificed 24 hours after tMCAO. Brains were quickly removed and cut in 2 mm thick coronal sections using a mouse brain slice matrix. The slices were stained with 2% 2,3,5-triphenyltetrazolium chloride (TTC; Sigma-Aldrich, St. Louis, MO) in PBS to visualize the infarctions [34]. Planimetric measurements (ImageJ software, National Institutes of Health, Bethesda, MD) blinded to the treatment groups were used to calculate lesion volumes, which were corrected for brain edema according to the following equation: \(V_{\text{indirect}} \text{ (mm}^3\text{)} = V_{\text{infarct}} / \left(1 - \frac{V_{\text{ih}} - V_{\text{ch}}}{V_{\text{ch}}}\right) \). The term \(V_{\text{ih}} - V_{\text{ch}} \) represents the volume difference between the ischemic hemisphere and the control hemisphere and \(\frac{V_{\text{ih}} - V_{\text{ch}}}{V_{\text{ch}}} \) expresses the difference as a percentage of the control hemisphere [37,38].

Histology

For analysis of the overall brain architecture formalin-fixed brains from naïve *hcn2*−/− and *hcn2*+/+ littermates were embedded in paraffin-wax, cut into 5 μm thick sections and stained for cresyl violet. For hematoxylin and eosin staining *hcn2*−/− and *hcn2*+/+ mice that underwent 30 min tMCAO were deeply anesthetized and transcardially perfused with 4% paraformaldehyde (PFA) 24 hours after reperfusion. Thereafter brains were embedded in paraffin-wax and cut into 5 μm thick sections 0.5 mm anterior from bregma (representing the ischemic territory of the MCA).

Statistical analysis

Data are expressed as mean ± standard deviation (SD) except for the ordinal Bederson score and the grip test score that are depicted as scatter plots including median with the 25% percentile and the 75% percentile given in brackets in the text. Data were tested for Gaussian distribution with the D’Agostino and Pearson omnibus normality test and then analyzed by unpaired, 2-tailed Student’s t-test (infarct volumes) or the nonparametric Mann–Whitney test (Bederson score and the grip test). Real-time PCR and Laser-Doppler flowmetry data were analyzed by 1-way ANOVA in case of analyzing the interactions of two independent variables or 2-way ANOVA with post hoc Bonferroni adjustment for P values in case of multiple comparisons. \(p < 0.05 \) was considered statistically significant.

Results

Hcn2 gene expression decreases in basal ganglia 24 h after arterial occlusion

It has been previously shown that mRNA expression of different cation channels is increased after MCAO in rats. This overexpression of ion channel genes can be prevented through the application of the neuroprotective substance ginsenoside-Rd [39]. Here, we tested whether transient cerebral ischemia influenced *hcn2* expression levels. Relative *hcn2* gene expression values of sham-treated WT mice in infarcted cortex (1.0 ± 0.1; Figure 1A) and basal ganglia (1.0 ± 0.1; Figure 1B) were compared with three different time points (6, 12, 24 h; n = 4-5 per group) after 60 min of tMCAO. In infarcted cortical tissue *hcn2* gene expression levels nominally peaked at 6 h after

Figure 1 Time course of *hcn2* gene expression in infarcted neocortex and basal ganglia after tMCAO. Relative *hcn2* gene expression was assessed by means of semi-quantitative real-time PCR in infarcted neocortical areas (A) and basal ganglia (B) of sham-treated WT mice as well as at three different time points after reperfusion (6 h, 12 h, 24 h). *p < 0.05, 1-way ANOVA followed by Bonferroni multiple comparison test.
tMCAO (1.26 ± 0.2) and slightly decreased at later time points (12 h: 1.03 ± 0.2; 24 h: 0.62 ± 0.3). However, no significant differences were detected. Also in infarcted basal ganglia hcn2 gene expression levels remained unaltered early after the insult (6 h: 0.87 ± 0.3; 12 h: 1.20 ± 0.4). However, at 24 h (0.45 ± 0.1) after tMCAO we detected a significant ~55% reduction of expression levels compared to sham-treated mice.

Genetic ablation of HCN2 channels has no major impact on the outcome after tMCAO

Based on the observation that transient arterial occlusion alters hcn2 gene expression in infarcted basal ganglia 24 h after surgery, we next investigated the functional role of HCN2 channels in vivo during experimental cerebral ischemia. Prior to this we found the overall brain architecture of hcn2−/− and hcn2+/+ mice to be normal as revealed by cresyl violet staining of naïve brain sections (Additional file 1: Figure S1). Since all and 33% of HCN2-deficient and hcn2+/+ mice died after 60 min of perfusion, we induced mild ischemia by 30 min of tMCAO which resulted in a mortality of 31% in hcn2+/+ and hcn2−/− littermates (5 mice from 16 died in each group, data not shown). 24 hours after reperfusion stroke-induced tissue damage in both groups was restricted to neocortical areas and basal ganglia as revealed by TTC-staining of 2 mm-thick coronal sections (Figure 2A). Hcn2+/+ animals showed stroke volumes of 36.2 ± 19.3 mm³ while hcn2−/− mice displayed infarct areas of 40.5 ± 25.2 mm³ (n = 11 per group; p = 0.66; Figure 2B). As expected from comparable infarct sizes, no functionally relevant differences could be found for the Bederson score (median, 2.0 [1.0, 3.0] for

![Image](http://www.etsmjournal.com/content/5/1/16)

Figure 2 Infarct volumes 24 h after 30 min MCA occlusion in hcn2+/+ and hcn2−/− mice. (A) Representative 3,5-Triphenyltetrazoliumchloride (TTC) stained images of three corresponding coronal sections (upper panel) of control (hcn2+/+) and hcn2−/− mice. Ischemic infarctions appear white and regularly and include the neocortex and basal ganglia as confirmed by haematoxylin and eosin staining (lower panel) (bar: 1 mm). (B) Mean brain infarct volumes on day1 after 30 min tMCAO in the two animal groups (hcn2+/+: n = 11; hcn2−/− mice: n = 11). Non-significant differences (ns), unpaired, 2-tailed Student’s t-test.
hcn2 +/+ vs. 2.0 [0.0, 4.0] for hcn2 −/−; p = 0.64; Figure 3A) and the grip test (median, 3.0 [3.0, 4.0] for hcn2 +/+ vs. 3.0 [3.0, 4.0] for hcn2 −/−; p = 0.86; Figure 3B). As measured by laser Doppler flowmetry, no differences in cerebral perfusion between the groups at any time point could be observed (Figure 4A). Assessment of the cerebral vasculature by ink-perfusion revealed identical constitutions in hcn2 +/+ and hcn2 −/− mice as a complete circle of Willis could be identified in all animals and the anatomy of the MCA trunk and branch did not differ between genotypes (Figure 4B).

Discussion

Brain injury following transient or permanent focal cerebral ischemia develops from a complex series of pathophysiological events. Very early after the onset of a perfusion deficit membrane depolarisation in the core region of the affected brain tissue and glutamate excitotoxicity raise initial cell damage and trigger an inflammatory response as well as apoptosis in later stages of stroke development [7]. This study focuses on the impact of HCN2 channels on the early pathophysiological events after arterial occlusion. The findings of the presented study show: (1) during the course of stroke development hcn2 gene expression remains stable in infarcted cortical areas and reveals a significant decrease in affected basal ganglia 24 h after reperfusion compared to sham-treated animals; (2) the presence of HCN2 channels does not affect stroke development regarding infarct sizes and neurological as well as motor functions assessed from tMCAO-treated mice. Although hcn2 gene expression was found to be reduced in infarcted basal ganglia 24 h after occlusion, it is concluded that with the techniques applied in this study an impact of HCN2 channels on stroke development in mice could not be determined.

Since drugs that reduced infarct-induced depolarizations in the core and penumbra region decrease infarct sizes in

Figure 3 HCN2 ablation does not affect neurological and motor functions after 30 min MCA occlusion. Neurological Bederson score (A) and grip test (B) from the hcn2 +/+ and hcn2 −/− animals shown in Figure 2 on day 1 after 30 min tMCAO. Non-significant differences (ns), Mann-Whitney test.

Figure 4 Assessment of the cerebral vasculature in hcn2 +/+ vs. hcn2 −/− littermates. (A) Regional cerebral blood flow (rCBF) was monitored using the Laser-Doppler flowmetry prior (baseline), during (ischemia) and shortly after (reperfusion) 60 min of tMCAO to make sure that perfusion deficits were similar in hcn2 −/− (grey) and hcn2 +/+ mice (black; n = 3 per group). No differences in rCBF were observed between the groups at any time point, ns: not significant 2-way ANOVA, Bonferroni’s post hoc test. (B) Assessment of the cerebral vasculature in hcn2 −/− and control (hcn2 +/+) littermates by perfusion with black ink. A complete Circle of Willis was found in both animal groups and the anatomy of the MCA trunk and branch was identical in hcn2 +/+ and hcn2 −/− mice.
expression of TRPM7, ASIC1a and ASIC2a [39]. A K+ leak glutamate receptors but down regulated MCAO-induced significant effects on the expression of TRPM1-6 and tive substance of the Chinese herb panax ginseng, had no study pre-treatment with Ginsenoside-Rd, a neuroprotec-
was found in rat brains after 120 min of tMCAO. In that study pre-treatment with Ginsenoside-Rd, a neuroprotec-
expression of genes encoding a non-selective cation channel (TRPM7) and two sodium channels (ASIC1a, ASIC2a) overex-
expression of genes encoding a non-selective cation channel (TRPM7) and two sodium channels (ASIC1a, ASIC2a) already been observed. Overex-
neuroprotective role of TREK1 channels after hypoxia apoptosis in a neuron-astrocyte co-culture indicating a
mice showed an increased vulnerability to ischemia because neuroprotection through polyunsaturated fatty acids (TREK1 agonists) which was impressive in wildtype anim-
Figure 3). HCN channel activati o nu p o nh y p e r p o l a r i z a t i o n (see Figure 2) nor neurological and motor functions (see
HCN channels with inwardly rectifying K+ channels and K+ leak channels in mouse cortical [42] and by HCN2/ TASK3 interactions in rat thalamocortical neurons [14]. Thus, we here tested whether HCN2 ablation would interfere with the stability of the membrane potential and thereby influence stroke pathophysiology. The present find-
HCN2 channels affect neither infarct sizes (see Figure 2) nor neurological and motor functions (see Figure 3). HCN channel activation upon hyperpolarization is an unique characteristic of all HCN channels [22-24] thereby outbalancing a hyperpolarized membrane potential (<-80 mV) towards resting values (-60 to -70 mV). More-
HCN2 channels affect neither infarct sizes (see Figure 2) nor neurological and motor functions (see Figure 3). HCN channel activation upon hyperpolarization is an unique characteristic of all HCN channels [22-24] thereby outbalancing a hyperpolarized membrane potential (<-80 mV) towards resting values (-60 to -70 mV). More-
HCN2 channels affect neither infarct sizes (see Figure 2) nor neurological and motor functions (see Figure 3). HCN channel activation upon hyperpolarization is an unique characteristic of all HCN channels [22-24] thereby outbalancing a hyperpolarized membrane potential (<-80 mV) towards resting values (-60 to -70 mV). More-
HCN2 channels affect neither infarct sizes (see Figure 2) nor neurological and motor functions (see Figure 3). HCN channel activation upon hyperpolarization is an unique characteristic of all HCN channels [22-24] thereby outbalancing a hyperpolarized membrane potential (<-80 mV) towards resting values (-60 to -70 mV). More-
HCN2 channels affect neither infarct sizes (see Figure 2) nor neurological and motor functions (see Figure 3). HCN channel activation upon hyperpolarization is an unique characteristic of all HCN channels [22-24] thereby outbalancing a hyperpolarized membrane potential (<-80 mV) towards resting values (-60 to -70 mV). More-
HCN2 channels affect neither infarct sizes (see Figure 2) nor neurological and motor functions (see Figure 3). HCN channel activation upon hyperpolarization is an unique characteristic of all HCN channels [22-24] thereby outbalancing a hyperpolarized membrane potential (<-80 mV) towards resting values (-60 to -70 mV). More-
HCN2 channels affect neither infarct sizes (see Figure 2) nor neurological and motor functions (see Figure 3). HCN channel activation upon hyperpolarization is an unique characteristic of all HCN channels [22-24] thereby outbalancing a hyperpolarized membrane potential (<-80 mV) towards resting values (-60 to -70 mV). More-
HCN2 channels affect neither infarct sizes (see Figure 2) nor neurological and motor functions (see Figure 3). HCN channel activation upon hyperpolarization is an unique characteristic of all HCN channels [22-24] thereby outbalancing a hyperpolarized membrane potential (<-80 mV) towards resting values (-60 to -70 mV). More-
HCN2 channels affect neither infarct sizes (see Figure 2) nor neurological and motor functions (see Figure 3). HCN channel activation upon hyperpolarization is an unique characteristic of all HCN channels [22-24] thereby outbalancing a hyperpolarized membrane potential (<-80 mV) towards resting values (-60 to -70 mV). More-
HCN2 channels affect neither infarct sizes (see Figure 2) nor neurological and motor functions (see Figure 3). HCN channel activation upon hyperpolarization is an unique characteristic of all HCN channels [22-24] thereby outbalancing a hyperpolarized membrane potential (<-80 mV) towards resting values (-60 to -70 mV). More-
HCN2 channels affect neither infarct sizes (see Figure 2) nor neurological and motor functions (see Figure 3). HCN channel activation upon hyperpolarization is an unique characteristic of all HCN channels [22-24] thereby outbalancing a hyperpolarized membrane potential (<-80 mV) towards resting values (-60 to -70 mV). More-
HCN2 channels affect neither infarct sizes (see Figure 2) nor neurological and motor functions (see Figure 3). HCN channel activation upon hyperpolarization is an unique characteristic of all HCN channels [22-24] thereby outbalancing a hyperpolarized membrane potential (<-80 mV) towards resting values (-60 to -70 mV). More-
HCN2 channels affect neither infarct sizes (see Figure 2) nor neurological and motor functions (see Figure 3). HCN channel activation upon hyperpolarization is an unique characteristic of all HCN channels [22-24] thereby outbalancing a hyperpolarized membrane potential (<-80 mV) towards resting values (-60 to -70 mV). More-
HCN2 channels affect neither infarct sizes (see Figure 2) nor neurological and motor functions (see Figure 3). HCN channel activation upon hyperpolarization is an unique characteristic of all HCN channels [22-24] thereby outbalancing a hyperpolarized membrane potential (<-80 mV) towards resting values (-60 to -70 mV). More-
HCN2 channels affect neither infarct sizes (see Figure 2) nor neurological and motor functions (see Figure 3). HCN channel activation upon hyperpolarization is an unique characteristic of all HCN channels [22-24] thereby outbalancing a hyperpolarized membrane potential (<-80 mV) towards resting values (-60 to -70 mV). More-
HCN2 channels affect neither infarct sizes (see Figure 2) nor neurological and motor functions (see Figure 3). HCN channel activation upon hyperpolarization is an unique characteristic of all HCN channels [22-24] thereby outbalancing a hyperpolarized membrane potential (<-80 mV) towards resting values (-60 to -70 mV). More-
HCN2 channels affect neither infarct sizes (see Figure 2) nor neurological and motor functions (see Figure 3). HCN channel activation upon hyperpolarization is an unique characteristic of all HCN channels [22-24] thereby outbalancing a hyperpolarized membrane potential (<-80 mV) towards resting values (-60 to -70 mV). More-
HCN2 channels affect neither infarct sizes (see Figure 2) nor neurological and motor functions (see Figure 3). HCN channel activation upon hyperpolarization is an unique characteristic of all HCN channels [22-24] thereby outbalancing a hyperpolarized membrane potential (<-80 mV) towards resting values (-60 to -70 mV). More-
2. Ehling P, Bittner S, Bobak N, Schwarz T, Wiendl H, Budde T, Kleinschitz C, Meuth S: Two pore domain potassium channels in cerebral ischemia: a focus on K2P9.1 (TASK3, KCNK9). Exp Transl Stroke Med 2010, 2:14.

3. Meuth S, Kleinschitz C, Broicher T, Austinit M, Brauneinger S, Bittner S, Fischer S, Bayliss D, Budde T, Stoll G, Wiendl H: The neuroprotective impact of the leak potassium channel TASK1 on stroke development in mice. Neurobiol Dis 2009, 33:11–11.

4. Heuteauer C, Guy N, Laigle C, Blondeau N, Duprat F, Mazzucia M, Lang-Lazdunski L, Widmann C, Zanzouri M, Remy G, Lazdunski M: TREK-1, a K+ channel involved in neuroprotection and general anesthesia. EMBO J 2004, 23:2684–2695.

5. Laigle C, Confort-Gouny S, Le Fur Y, Cozzone P, Viola A: Deletion of TRAAK potassium channel affects brain metabolism and protects against ischemia. PLoS One 2012, 7(12):e53266. doi:10.1371/journal.pone.0053266.

6. Franco R, Bornier C, Cidlowski J: Potential roles of electronic ion transport and plasma membrane depolarization in apoptosis. J Membr Biol 2006, 209:43–58.

7. Dimagi U, ladeocia C, Moskwitz M: Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 1999, 22:91–397.

8. Gilbert M, Saad A, Rupnow B, Knox S: Association of BCL-2 with membrane hyperpolarization and radioresistance. J Cell Physiol 1996, 168:114–122.

9. Williams S, French J, Gilbert M, Rangaswami A, Wallesczek J, Knox S: Bcl-2 overexpression results in enhanced capacitative calcium entry and resistance to SKF-96365-induced apoptosis. Cancer Res 2000, 60:4363–4368.

10. Pape H, Bornier C, Cidlowski J:roles of electronic ion transport and plasma membrane depolarization in apoptosis. J Membr Biol 2006, 209:43–58.

11. Kanyshkova T, Pawlowski M, Meuth P, Dubé C, Bender R, Brewster A.

12. Robinson R, Siegelbaum S: Differential distribution of four hyperpolarization-activated current channels in mouse brain. Biol Chem 1999, 380:975–980.

13. Laigle C, Confort-Gouny S, Le Fur Y, Cozzone P, Viola A: Deletion of TRAAK potassium channel affects brain metabolism and protects against ischemia. PLoS One 2012, 7(12):e53266. doi:10.1371/journal.pone.0053266.

14. Meuth S, Kanyshkova T, Meuth P, Landgraf P, Munsch T, Ludwig A, Hofmann F, Pape H, Munsch T, Zong X, A, Wotjak C, Munsch T, Zong X, 216:573–580.

15. Budde T, Caputi L, Kanyshkova T, Staak R, Abrahamczik C, Munsch T, Pape H: Impaired regulation of thalamic pacemaker channels through an imbalance of subunit expression in absence epilepsy. J Neurosci 2005, 25:9871–9882.

16. Moosang S, Bier M, Hofmann F, Ludwig A: Differential distribution of four hyperpolarization-activated current channels in mouse brain. Biol Chem 1999, 380:975–980.

17. Langhauer F, Göb E, Kraft P, Geis C, Schmitt J, Brede M, Göbel K, Helluy L, Pham M, Bendszus M, et al: Kininogen deficiency protects from ischemic neurodegeneration in mice by reducing thrombosis, blood-brain barrier damage, and inflammation. Blood 2012, 120:4062–4092.

18. Dimagi U, Bench S: Assessing the question of quality in experimental stroke research. J Cereb Blood Flow Metab 2005, 26:1465–1478.

19. Kleinschitz C, Pozgajova M, Pham M, Bendszus M, Nieswandt B, Stoll G: Targeting platelets in acute stroke: impact of glycoprotein Ib, Vi, and Ib/IIia blockade on infarct size, functional outcome, and intracranial bleeding. Circulation 2007, 116:2323–2330.

20. Kleinschitz C, Austinit M, Badar M, Renne T, Stoll G: Deficiency of bradykinin receptor B2 is not detrimental in experimental stroke. Hypertension 2008, 51:33.

21. Bederson J, Ptits L, Tsuji M, Nishimura M, Davis R, Bartkowiak H: Rat middle cerebral arterial occlusion: evaluation of the model and development of a neurologic examination. Stroke 1986, 17:472–476.

22. Moran FM, Higgins LS, Cordell B, Moser PC: Age-related deficits in transgenic mice expressing the 751-amino acid isoform of human beta-amyloid precursor protein. Proc Natl Acad Sci USA 1995, 92:5341–5345.

23. Connolly E, Winfree C, Springer T, Naka Y, Liao H, Yan S, Stern D, Solomon R, Gutierrez-Ramos J, Pinsky D: Cerebral protection in homoygous null ICAM-1 mice after middle cerebral arterial occlusion. J Neurosci 2005, 25:8776–8787.

24. Erdemli G, Crunelli V: Release of monoamines and nitric oxide is involved in the modulation of hyperpolarization-activated inward current during acute thalamic hypoxia. Neuroscience 2000, 96:565–574.

25. Erdemli G, Crunelli V: Response of thalamocortical neurons to hypoxia: a whole-cell patch-clamp study. J Neurosci 1998, 18:5212–5224.

26. Richards D, Obrenovitch T, Symon L, Curzon G: Extracellular dopamine and serotonin in the rat striatum during transient ischaemia of different severities: a microdialysis study. J Neurochem 1993, 60:128–136.
47. Santoro B, Tibbs G. The HCN gene family: molecular basis of the hyperpolarization-activated pacemaker channels. Ann N Y Acad Sci 1999, 868:741–764.

48. Wainger B, DeGennaro M, Santoro B, Siegelbaum S, Tibbs G. Molecular mechanism of cAMP modulation of HCN pacemaker channels. Nature 2001, 411:805–810.

doi:10.1186/2040-7378-5-16
Cite this article as: Ehling et al: Ischemia-induced cell depolarization: does the hyperpolarization-activated cation channel HCN2 affect the outcome after stroke in mice? Experimental & Translational Stroke Medicine 2013 5:16.