Plants are the primary source of food, shelter, and various remedial approaches. They are being in use for treating various kinds of human ailments across the world since the ancient times. One of such important plants is *Eclipta alba* (Asteraceae) which is commonly known as Bhringraj and false daisy. This plant is known for its extra-ordinary therapeutic properties. It is one of most widely used plant in traditional systems of medicines such as Ayurvedic, Unani, Siddha, homeopathy, Chinese, and folk. Each part of this medicinal plant contains many important phytochemical constituents such as coumestans, triterpenes, flavonoids, steroids, polypeptides, and saponins. It is majorly used for enhancing the growth, strength, and blackening of hair. It is used as the main ingredient in many hair oils. It significantly treats problems related to hair such as hair fall, dandruff, premature greying, and baldness. *E. alba* exhibits many other important biological properties such as anticancer, anti-bacterial, anti-viral, anti-stress, and immunomodulatory. Thus, this medicinal plant is playing a vital role in the medical field and cosmetic industry. The present review is a summary of phytomedicinal importance of *E. alba* in Ayurveda as well as folk medicine system.

ABSTRACT

Plants are the primary source of numerous medicines for thousands of years [1,2]. Among plants, medicinal plants are of great significance. Medicinal plants are those plants whose one or more than one part possess substances which are medically important and are used for the synthesis of new drugs [3,4]. Kingdom plantae is considered as the treasure house of many important drugs. It has been a culture of using medicinal plants [5]. Initially most of the medicinal preparations were obtained from the plants only either in the simpler form or in the complex form [6]. Drugs derived from plants are named as herbal drugs, botanical drugs, botanicals, phytomedicines, traditional medicines, herbal medicines, traditional Chinese medicines (TCMs), traditional herbal medicinal products, natural health products, or plant food supplements. These phytomedicines have advantages over synthetic drugs such as they are easily available, less expensive, safe, and efficient and have negligible side effects [7-10]. Even most of the modern drugs are derived from the natural sources like plants. As per the data resources, quarter of the medicines used in the present times in industrialized countries has been derived from tropical plants directly or indirectly [11-13]. Medicinal plants have a very rich history of their utilization to treat variety of diseases. The practice of using plants to treat diseases and get relief from physical sufferings is as old as the origin of mankind [14,15]. As per the estimated reports of the WHO, in developed nations around 80% of the total population rely majorly on the phytomedicines for maintaining their health and fulfilling basic requirements [16-19]. India comes under the category of world biodiversity centers which is blessed with the rich medicinal plant history having more than 45,000 diverse species of plants; therefore, it is considered as Botanical garden of the world [20,21]. Indian medicinal plants are used in many traditional systems of medicine such as Ayurveda, Siddha, Unani Folk system, and as well as allopathy [22]. Ayurveda is the most ancient traditional medicine system. There are almost 600 herbal medicinal plants and their formulations are being in use in Ayurvedic practices for the treatment of several diseases [23]. In U.K. around 25% of population use phytomedicines in their day-to-day routine. Phytomedicines are used in each and every corner of the world. Medicinal herbs are used for the healing purpose by African population [24]. In Africa, traditional medicines are being in use since 4000 years. These medicines served as the primary health-care system in the absence of modern medicines [25,26]. More than 1000 species of plants are mentioned in the compendium of Materia Medica which is an ancient encyclopedia of TCM [27]. In China, medicinal plants are being in therapeutic use in dietary therapy for numerous years and thus maintaining the health [28,29]. As per the reported data, 60 out of 104 global drugs that are used for last 37 years have been derived from the TCM plants [30]. In countries like West Africa modern drugs are not affordable by many people thus people rely on phytochemicals for cure and heal purpose [31]. About 85% of Swazis and Nigers use traditional medicine as a health-care system [32,33]. Approximately 27% of South African population uses traditional medicines as its main health care system. *Eclipta alba* (L.) (Fig. 1) is one of most well-known and valuable medicinal plants in India. It is commonly named as false daisy and Bhringraj and Karisilakanni. Genus *Eclipta* originated from the Greek word “Deficient” which means absence of the bristles and awns on the fruits [34,35]. *E. alba* (L.) belongs to the family Asteraceae. This medicinal plant has rich ethnomedicinal history. *E. alba* and its therapeutic value has also been mentioned in classical text “Bhavaprakash” [36]. In Ayurveda, it is named as “bhringoraj”, in Unani system; it is named as “bhangra” whereas in Siddha it is named as “karissalaankanni” [37]. *E. alba* is categorized into three categories on the basis of the color of the flowers/fruits which are white-flowering, the yellow-flowering, and the black-fruiting. Each type is found in marshes, rivers, and lakes or on the foothills of the Himalayas in India [33]. This medicinal plant is mostly used in tropical and sub-tropical regions as a traditional medicine. It is also utilized as a functional food [38]. It is a very famous hepatoprotective drug and popularly called as “King of hair” [39]. The extracts of this medicinal herb are used as preventive measure or as an anti-venom against snakebite. It is used to treat issues related to gastro-intestinal tract, respiratory issues, to heal cut and wounds, inflammation, and many more diseases [40–44]. Wedelolactone, demethylwedelolactone, desmethyl-Wedelolactone, furanocoumarins, oleane and taraxastane glycosides, and 7glucoside are the primary phytochemical constituents of *E. alba*. Each part of this...
Bhringraj is an annual multibranched herbaceous plant that reaches up to the height of 30–50 cm. The form of this plant may be erect or prostrate. The plant is covered with hair of white color. The hair is present on both the surfaces of leaves. The stem is of red color. There is presence of simple, sessile, and lanceolate leaves which are of length 4–10 cm, breadth 0.8–2 cm, and tallness 90 cm with slender. The leaves are opposite in nature with a petiole. At the lower nodes rooting is present. The plant is covered with flowers throughout the year. The fruiting period of E. alba is from September to October [53-55].

BOTANICAL DESCRIPTION OF E. ALBA (BHRINGRAJ)

E. alba is an annual multibranched herbaceous plant that reaches up to the height of 30–50 cm. The form of this plant may be erect or prostrate. The plant is covered with hair of white color. The hair is present on both the surfaces of leaves. The stem is of red color. There is presence of simple, sessile, and lanceolate leaves which are of length 4–10 cm, breadth 0.8–2 cm, and tallness 90 cm with slender. The leaves are present in opposite manner which are attached to the stem without the presence of petiole. At the lower nodes rooting is present. The floral heads are solitary and white whose diameter is 6–8 mm. Flowers are narrowly winged. The plant has well developed root system. Grey cylindrical roots are present there. The plant is covered with flowers throughout the year. The fruiting period of *E. alba* is from September to October [53-55].

GEOGRAPHICAL DISTRIBUTION OF E. ALBA (BHRINGRAJ)

It is found as a weed in tropical and subtropical regions of the world such as South America, Asia, and Africa at an altitude of up to 2000 m. It is found throughout India, China, Thailand, and Brazil, Taiwan, Indonesia, Japan, the Philippines, Bangladesh, and United States. In India, it is mainly found in states Assam, Bihar, Uttar Pradesh, and Manipur [5-60].

PHYTOCHEMISTRY OF E. ALBA (BHRINGRAJ)

E. alba (Bhringraj) contains wide range of diverse phytochemical constituents which include coumestans, alkaloids, flavonoids, glycosides, polyacetylenes, and triterpenoids, phenolic acids, saponins, sterol, sesquiterpene lactones, proteins, amino acids, carbohydrates, glycosides, polyacetylenes, and triterpenoids, phenolic acids, saponins, and many more [61-65].

Coumestans

Coumestans are the main active phytochemical constituents of *E. alba* which are the derivatives of coumarin. Wedelolactone, demethylwedelolactone, demethylwedelolactone-7-glucoside, isodemethylwedelolactone acetylated, and strychnolactone are the main coumestans present in the whole plant especially in the leaves. These are believed to be associated with anti-cancer properties [66-70].

Alkaloids

The major alkaloids present in *E. alba* leaves are (20S) (25S)-22,26-imino-cholesta-5,22(N)-dien-3β-ol (verazine, 3). Other novel alkaloids reported are 20-epi-3- dehydroxy-3-oxo-5,6-dihydro- 4.5 dehydrovenezine (1), ecliptalbine [(20R)-20-pyrrolid-cholesta-5-ene-3β-23-diol] (4), (20R)-4β-hydroxyverazine (5), 4β-hydroxyvenezine (6), (20R)-25β-hydroxyverazine (7), 25β-hydroxyverazine and (8), Ecliptalbine (4). While methanolic extract of the plant contains alkaloids such as verazine, 20-epi-3-dehydroxy-3-oxo-5, 6-dihydro- 4.5 dehydrovenezine, 4β-dehydroxyverazine, 4hydroxyverazine, (20R)-4α-hydroxyverazine, and 25β-hydroxyverazine. Some other reported alkaloids are eclectine, nicotine, verazine, and dehydroverazine ecliptalbine [71].

Saponin

Saponins are mainly associated with the cytotoxic activity. Eclalbinat, alpha-amyrin, ursoic acid, and oleamonic are novel triterpenoid saponin which has been isolated from the whole plant of *E. alba* [72-74]. Eclalbatin, dasyscyphin C is present in the roots which are associated with the properties such as anticancer, antiviral, and antioxidant activity [75].

Sterols

Stigmasterol, daucosterol, stigmasteryl 3-O-glucoside, phytosterol, and β-glucoside of phytosterol are the major sterols present in *E. alba* seed [76,77]. Stigmasterol is an important sterol which is involved in the process of synthesis of major reproductive hormones like progesterone, androgens, estrogens, and corticoids [78].

Flavonoids

Apigenin, luteolin and luteolin-7-glucoside, and orobol are the main flavonoids present in *E. alba*. Apigenin and luteolin are associated with the anti-cancer properties [64].

Terpenoids and their glycosides

Eclalbasaponins VI-X (taraxastane triterpene glycosides), eclalbasaponins I-VI (oleanane triterpene glycosides), eclalbasaponins
I-VI (triterpene glycosides), ecliptasponins C and D (triterpenoid glucosides), ecalbatin, α-amyrin, β-amyrin, oleanonic acid, ursolic acid (triterpenoids), wederic acid are the main terpenoids, and their glycosides present in E. alba. Oleononic acid, ecalbatin, and α-amyrin, are present in the whole plant [79-82].

Phenolic acid

Protocatechueic acid and 4-hydroxy benzoic acid are the phenolic acid extracted from the E. alba. Sesquiterpene lactones E. alba consists of 5-hydroxymethyl-(2,2‘:5‘,2‘')-terthienyl tiglate, 5-hydroxymethyl-(2,2‘:5‘,2‘')-terthienyl agelate, 5-hydroxymethyl-(2,2‘:5‘,2‘')-terthienyl acetate as its main Sesquiterpene lactone content.

Polypeptides

The main polypeptides present in E. alba are cystine, glutamic acid, phenyl alanine, tyrosine and methionine.

Volatile oil

Heptadecane, 6,10,14-trimethyl-2-pentadecanone, n-hexadecanoic acid, pentadecane, eudesma-4(14),11-diene, phytol, octadec-9-enoic acid, 1,2-benzenedicarboxyllic acid diisocetyl ester, (ZZ)-9,12-octadecadienoic acid, (Z)-7,11-dimethyl-3-methylene-1,6,10-dodecatrione, (ZZZ)-nt [83].

TRADITIONAL AND MODERN VIEW OF E. ALBA (BHRINGRAJA)

Ayurvedic view

E. alba is called as Bhringraja in Ayurveda. It is one of the most valuable plants in Ayurveda. This magical herb is associated with many biological properties which are being used in many Ayurvedic practices for the treatment of various human ailments. It significantly works on Pitta dosha (Fire and water component of the body) and Vata dosha (air and space components of the body). It acts as a rasayana. The extract obtained from the leaves is used as liver tonic, rejuvenative and beneficial for hair, eyes, edema, and phlegm [84]. It is mentioned in Dhanvantari Nighantu, Raj Nighantu, Kavyadev Nighantu for its use in pandu, shotha and kamala [85-87], Rasapanchak of E. alba (Bhringraja) as per Ayurveda is shown in Table 3.

Properties and uses of E. alba (Bhringraja) [89,90]

Sansthic Karm-wahaya

It is topically used in cuts, wounds, and inflammation/swelling. It reduces headache when its oil is applied on head. It is used as eye/ear drop to reduce pain. It is also used in elephantiasis. It is very good for hair as it helps in growth, strengthening and blackening of hair. It is used in hair disorders such as premature greying, dandruff, hair fall, and baldness.

Abhyantar-nadi sansthan

It is used as pain killer.

Netra

It is beneficial for eyes.

Pachansansthan

It improves digestion and enhances appetite. It is good for liver. It helps in digestion of "ama" which means toxins and undigested food. It also acts as an anthelmintic. It is used in conditions such as anorexia, hepatomegaly, splenomegaly, jaundice, piles, and abdominal pain.

Table 3: Rasapanchak of Eclipta alba (Bhringraja) as per Ayurveda [80]

Sanskrit/English	Sanskrit/English
Virya/Potency	Ushna/Hot
Vipak/Metabolic property	Kattu/Pungent
Guna/Physical property	Laghu/Light, Ruksha/Rough
Guna/Taste	Kattu/Pungent, Tikat/Bitter

Some Ayurvedic formulations of E. alba (Bhringraja) [91-94]

Bhringraja is used in many Ayurvedic formulations. For example, Bhringraja taila is used for facial (Hair fall or loss of hair). Another formulation of yakrit pihantak churna is used as a hepatoprotective. An important Ayurvedic cosmetic formulation of E. alba along with Vitex negundo, Spheoranthes indicus and Carum copticum is used as a rejuvenator in the treatment of Kayalkala.

Folk view

E. alba (Bhringraja) is an important medicinal herb with rich history of its utilization in various folk systems around the world. It is used to treat numerous diseases. For instance, in Thailand, people use E. alba leaves against skin related problem and hair fall. They use stem to treat tuberculosis, asthma and as a blood tonic while E. alba leaves are used against jaundice, liver related problems, loss of appetite, and edema, whereas leaves are also used to reduce wrinkles and heal wounds, palpitation, pimples, premature greying of hair, gingivitis, and alopecia. Whole plant is consumed in treating diarrhea and dysentery, fever, general weakness, jaundice, liver related problems, loss of appetite, and edema, whereas root extract is used against hemorrhoids [100]. In Hāmacal Pradesh India, people use leaf decoction of E. alba against headache. The extract obtained from the leaves is used against head lice, cold, and asthma [101]. E. alba is a common remedy for the upper respiratory infections and eye/ear infections in children. Bhringraj oil is used all over the India for good hair [102]. In Punjab, Pakistan leaves, roots, and flowers of E. alba are prescribed by herbal healers as a cure for liver disorders, hepatic, and spleen ailments. Leaves are used to enhance the digestion and appetite. The whole plant is used as a hair tonic, whereas leaves are used to treat athlete’s foot disease [103,104]. In Bahawalnagar District, Punjab, Pakistan, people use to chew E. alba leaves to improve their eye health and they treat hypertension using the extract of this plant [105]. In Bahawalpur, Pakistan, this plant is used as a blood purifier and hair tonic. It is also used against leprosy, itching, earache, jaundice, fever and bleeding disorder, toothache and gum complaints, nausea, and vomiting [106]. In Odisha, India, leaves are used as an antibacterial agent [107]. The juice of E. alba is useful for the expulsion of worms in infants. Manipuri tribes use stem decoction of this plant against liver enlargement while use extracts of leaves in cough and fever. Toto tribe of India uses it as an antidote against scorpion sting. Some communities
of Odisha use it as remedy for itching, conjunctivitis and other eye problems. Tribal Societies of Anakattik Hills, Tamil Nadu, consume this plant against antifertility, antedote to snake bite, fever, and headache. It is used against toothache, headache, gland swelling, and elephantiasis by people of Sagar tribes, Madhya Pradesh. Asthma, bronchitis, and leukoderma are treated by consumption this plant by tribal Societies of Saurashtra, Gujarat [109]. In Chandelui District of Uttar Pradesh, people use leaves of *E. alba* against dandruff along with seeds of *Foeniculum vulgare* [109]. In Javadhu Hills Tamil Nadu, *E. alba* leaves are used for treating diabetes [110]. Gujjars of Rajaji Tiger Reserve, Uttarakhand, treat liver problems with the leaves of this plant [111]. In some areas of Tamil Nadu, people use the paste made up of leaves of *E. alba* to prevent dandruff and to enhance the hair growth [112]. In some villages of Dakshin Dinajpur District, West Bengal, people use leaf and seed of this plant to treat problems related to stomach and liver, inflammation, digestion, and use it as a hair tonic [113]. In West Nimar district, Madhya Pradesh, people use oil extracted from the seeds of *E. alba* to enhance the hair growth [114]. In areas around the Dandeli Wild Life Sanctuary, people treat warts and leprosy by applying the *E. alba* leaf juice [115]. People of Wanagal district of Andhra Pradesh, use this plant to avoid hair fall and provide strength to hair and to increase the appetite [116]. The people of Nandurbar tribe of Maharashtra use this plant as a remedy for menorrhagia [117]. The tribal people of Peth and Trimbakeshwar of Nashik District, Maharashtra, the leaves of *E. alba* are used for treating the injuries caused by mud [118]. In Chennai, people use whole plant as a liver tonic. Leaf juice along with honey is used to treat cough and watery nose in children. Furthermore, the leaves juice is used for hair growth [119]. In Karnataka, this plant is used as an antedote for scorpion bite while the paste made up of this plant is used to blacken and strengthen the hair [120]. In Chittagong Hill Tracts, Bangladesh, people use paste made up of stem, and leaves of *E. alba* against skin problems [121]. In Koikuri, Dinajpur, this plant is used to heal wounds and as a remedy for skin diseases [122]. In West Singhbhum districts of Jharkhand, people eat *E. alba* leaves used as a leafy vegetable as a cure to anaemia [123]. The plant is administered as nasal or eye drop to get relief from pain and chronic headache in Bayelsa state of Nigeria [124].

Modern view

In the modern era people are showing great interest in herbal medicines because these have several advantages over the modern synthetic drugs. The demand of herbal drugs in the market is increasing rapidly due to which the chances of their adulteration/contamination have also increased [125,126]. There are several factors which promote the degradation of the herbal products such as misidentification of species or plant parts, intentional adulteration, and contamination. Due to all these factors the quality and safety of herbal drugs is in question [127]. There are reported cases of misidentification of herbal plants that might happen due to similarities of morphology of the plants and sometimes due to conflict in the common as well scientific names of the plants. This is one of the primary reasons that lead to the degrading of the herbal products [128]. Another major factor of degradation of herbal products is intentional adulteration which is done in many ways such as by inducing either orthodox drugs or by substituting products of inferior quality or by introducing foreign particles or contaminants like sand, metals, soil etc. The main purpose behind intentional adulteration is to derive maximum profit [129-131]. Most commonly used contaminants in herbal products are heavy metals like mercury, arsenic, and lead, cadmium, copper and thallium. Other contaminants used are pesticides, microbes, and mycotoxins [132-138]. The most common forms of herbal drugs available in the market are powders, capsules, and extracts. Adulterants are often induced before processing stage or during the processing of herbal drugs. Proper quality analysis and standardization at these stages are required to avoid health risks [139-141]. Standardization of herbal drugs confirms the accurate quantity quality and associated therapeutic properties with dosage [142]. Techniques like standard DNA barcode have proved to be important in detecting species misidentification [143].

PHARMACOLOGICAL AND THERAPEUTIC USES OF E. ALBA (BHIRINGRAJA)

E. alba (Bhiringraja) has variety of phytochemical constituents present in it which exhibit various therapeutic properties. Some of its reported therapeutic uses are summarized below.

Hepatoprotective

Singh et al conducted a study on rats and mice models in which hung injury was induced artificially by carbon tetrachloride. It was found that alcoholic extract of *E. alba* (Bhiringraja) exhibit hepatoprotective activity at a dosage of 62.5-500.0 mg/kg p.o. Extract restored all the changes induced by carbon tetrachloride [144]. The experimental study conducted by Naik et al, on albino rat models treated with high fatty diet to investigate the hepatoprotective activity of *E. alba* (Bhiringraja) demonstrated that phytochemical constituents such as Wedelolactone, demethylwedelolactone, and saponins are associated with hepatoprotectivity. It was found that these phytochemicals significantly reduced the fat deposition, mononuclear infiltration, and necrotic foci. Regeneration of hepatocytes in the liver was also stimulated by these phytochemical constituents [145]. This activity was also investigated by Ahirwar and Saxena, on albino rat models. Models were artificially induced with hepatotoxicity by carbon tetrachloride. It was found that isolated fraction of *E. alba* had significant hepatoprotective potential at dosage of 200 mg/kg body weight. The protein levels were restored after the treatment with *E. alba* extract. [146]. This activity was also supported by a comparative study conducted by Kumar et al, on albino rat models. In this study paracetamol was used to induce hepatotoxicity in the models. Alcoholic and aqueous extracts...
were comparatively investigated. It was found that alcoholic extract of E. alba has more potent hepatoprotective activity [147]. Indhuleka and Jeyaraj performed an investigative study on animal models to find out the hepatoprotective nature of E. alba. Models were induced with hepatotoxicity by paracetamol. Study revealed that E. alba has potent hepatoprotective activity [148].

Hair growth

Begum et al. conducted a study on nude mice to evaluate the hair growth promoting activity of E. alba. Petroleum ether extract (PEE) along with other solvent fractions of E. alba was topically applied on the backs of nude mice. Prominent follicular hypertrophy was observed after the treatment with PEE. In the basal epidermal and matrix cells, follicular keratinocytes number was increased. These changes support E. alba use in the growth of hair [42]. Another study conducted by Begum et al., supported the use of E. alba for hair growth. The study was conducted on nude mice models which were genetically suffering from hair loss due to abnormal keratinization. It was revealed from the study that topical application of methanolic extract of E. alba had significant impact on the hair growth of mice models. It was observed that hair follicle number had increased after the treatment which shows that E. alba is a brilliant hair growth promoter [149].

Anti-cancer

An in vitro study was conducted by Chaudhary et al., to evaluate the anti-cancer potential of E. alba. The model systems used for the study were Human liver cancer cell line (HepG2), G6 glioma and A498 cell lines. It was found that hydroalcoholic extract of this plant caused inhibition of cell proliferation [150].

Antibacterial

An in vitro study conducted by Gurrapu and Mamidala, on Escherichia coli, Pseudomonas aeruginosa, Shigella boydii, Staphylococcus aureus, and Streptococcus faecalis demonstrated that E. alba can be used as a good antimicrobial agent. It was found that alkaloids extracted from E. alba has inhibitory against these bacterial strains [151]. Karkhikumar et al. evaluated the anti-bacterial and anti-oxidant potential of E. alba on bacteriun species E. coli, Klebsiella pneumoniae, Shigella dysenteriae, Salmonella typhi, P. aeruginosa, Bacillus subtilis, and S. aureus. Ethanol and ethyl acetate extracts were found to be significant antibacterial agents. Ferric thiocyanate method was employed for the evaluation of anti-oxidant potential. Hexane, ethyl acetate, ethanol, and water extract showed anti-oxidant activity at various concentrations (50, 100, 250, and 500 in µg/mL) while aqueous extract showed significantly less activity than the other extracts [152].

Anti-viral

A study conducted by Manvar et al., against Hepatitis C virus (HCV) showed that E. alba extract had significant inhibitory actions against RNA dependent RNA polymerase activity of HCV replicates in vitro whereas it caused inhibition of HCV replication in cell-culture system which showed its anti-viral potential [153].

Memory enhancer

Banji et al. examined the memory enhancing activity of E. alba. The suspension of E. alba extract in distilled water was administered to rat models. They evaluated the transfer latency of models on an elevated plus maze. The study revealed that E. alba is associated with memory enhancing activities [154].

Immunomodulatory

Syed et al. evaluated the immunomodulatory behavior of E. alba in an in-vitro study. It was found that coumestans such as Wedelolactone and demethylwedelolactone had inhibitory actions against trypsin which supports its use as an immunomodulatory agent [155].

Anti-stress

Chanu et al. studied anti-stress property of E. alba in Labeo calbasu fingerlings in stress was induced by acid. It was observed that ethanolic extract of the plant exhibited anti-stress activity by restoring the levels of stress hormones – serum cortisol, glucose, alanine amino transferase, aspartate amino transferase – and enzymes – lactate dehydrogenase, malate dehydrogenase, ATPase, superoxide dismutase, and catalase which showed its anti-stress activity [156].

CONCLUSION

E. alba (Bhringraj) is a wonder herb which is most commonly used in traditional systems of medicine for treating numerous human ailments. It is widely used for its extra-ordinary property of enhancing the hair growth and provides strength to hair. It possesses wide range of phytochemical constituents such as coumestans, saponins, and alkaloids which exhibit significant biological properties such as hepatoprotectivity, antibacterial, anti-viral, anti-stress, and immunomodulatory. It is used in almost each culture and tribe of the world. It is also used as leafy vegetable in some cultures. In Ayurveda, it is used against diseases such as elephantiasis, anorexia, leprosy, eczema, psoriasis, jaundice, piles, cough, col, and splenomegaly. This small medicinal herb with multiple therapeutic applications can be a promising and reliable source of new drugs in future.

AUTHOR CONTRIBUTION

We declare that this work was done by the authors named in this article and all liabilities pertaining to claims relating to the content of this article will be borne by the authors.

Dr. Gitika Chaudhary drafted the article and contributed in writing Ayurvedic view of the article. Dr. Hemlata Kaurav contributed in drafting and writing pharmacological portion of plant.

Isha Kumari contributed in data collection and writing the paper.

CONFLICT OF INTEREST

No potential conflict of interest was reported by the authors.

AUTHOR FUNDING

No any funding for this article writing.

REFERENCES

1. Nair R, Kalariya T, Chanda S. Antibacterial activity of some selected Indian medicinal flora. Turk J Biol 2005;29:41-7.
2. Ghorbani A. Studies on pharmaceutical ethnobotany in the region of Turkmen Sahra, north of Iran: (Part 1): General results. J Ethnopharmacol 2005;102:58-68.
3. Chukwuma EC, Soladoye MO, Feyisola RT. Traditional medicine and the future of medicinal Plants in Nigeria. J Med Plants Stud 2015;3:23-9.
4. Lifongo LL, Simoben CV, Njie-Kang F, Babiaka SB, Judson PN. A bioactivity versus ethnobotanical survey of medicinal plants from Nigeria, West Africa. Nat Prod Bioprospect 2014;4:1-9.
5. Akintouna A, Asodele O, Afolyan G, Coker HA. Mutagenic screening of some commonly used medicinal plants in Nigeria. J Ethnopharmacol 2009;125:461-70.
6. Ayyanar M, Ignacimuthu S. Ethnobotanical survey of medicinal plants commonly used by Kani tribals in Tirunelveli hills of Western Ghats, India. J Ethnopharmacol 2011;134:851-64.
7. Yadav RN, Agarwala M. Phytochemical analysis of some medicinal plants. J Phytol 2011;3:10-4.
8. Simmner C, Graham JG, Chen SN, Pauli GF. Integrated analytical assets and botanical authenticity and adulteration management. Fitoterapia 2018;129:401-14.
9. Ichim MC. The DNA-based authentication of commercial herbal products reveals their globally widespread adulteration. Front Pharmacol 2019;10:1227.
10. Nagabushhan RK, Raveasha A. Ethnobotanical survey and chemical validation of medicinal plants used in the treatment of fungal infections in Agumbe region of Western Ghats, India. Int J Pharm Pharm Sci 2015;7:273-7.
11. Yorek N, Aydin H, Ugulu I, Dogan Y. An investigation on students’ perceptions of biodiversity. Online Submission 2008;7:175-84.
Evaluation of mineral contents in medicinal plant *Eclipta alba* (L.) Hassk. promotes hair matrix keratinocyte proliferation and *Wedelia indica* (Neem) in animal models of Alopecia.

Kumari et al. 2021;17:103-5.
Assessing phytoestrogen exposure in epidemiologic studies: Development of a database (United States). Cancer Causes Control 2000;11:289-98.

Abdel-Kader MS, Bahlert BD, Malone S, Werkhoven MC, van Troon F, David, et al. DNA-damaging steroidal alkaloids from Eclipta alba from the suriname rainforest. J Nat Prod 1998;61:1202-8.

Podolak I, Galanty A, Sobolewska D, Saponins as cytotoxic agents: A review. Pharm Chem Rev 2010;9:425-74.

Khanna VG, Kannabiran K. Anti-inflammatory activity of saponins isolated from the leaves of Gymnema sylvestre and Eclipta prostrata on HeLa cells. Int J Green Pharm 2009;3:227-9.

Yildirim I, Kutha T. Anticancer agents: Saponin and tannin. Int J Biol Chem 2015;9:332-40.

Kannabiran K. Antiinflammatory activity of saponin fractions of the leaves of Gymnema sylvestre and Eclipta prostrata. World J Microbiol Biotechnol 2008;24:2737-40.

Han Y, Xia C, Cheng X, Xiang R, Liu H, Yan Q, et al. Preliminary studies on chemical constituents and pharmacological action of Eclipta prostrata L. Zhongguo Zhong Yao Za Zhi 1998;23:680-703.

Mehra PN, Nanda SS. Pharmacognosy of Bhringaraj. Antihypotensive drug of original. Ind J Pharm 1968;30:284.

Kaur N, Chadhary J, Jain A, Khoshe L. Stigmastanol: A comprehensive review. Int J Pharm Sci Res 2011;2:2259.

Gomathy S, Narendran ST, Meyyanathan SG, Gowramma BL. Development and validation of HPLC method for the simultaneous estimation of apigenin and luteolin in commercial formulation. J Curr Res 2020;27:2020.

Zhang M, Chen YY, Di XH, Liu M. Isolation and identification of echiptasaponin D from Eclipta alba (L.) hassk. Yau Xue Xue Bao Acta Pharm Sin 1997;32:63-4.

Upadhyay RK, Pandey MB, Jha RN, Pandey VB. Ecballatrin, a triterpenoid saponin from Eclipta alba J. Asthma Nat Prod Res 2001;3:213-7.

Yahara S, Ding N, Nohara T. Oleaneanol glycosides from Eclipta alba. Chem Pharm Bull 1994;42:1336-8.

Jain S, Singh P. A dithienylcyclol ester from Eclipta erecta Linn. Indian J Chem B Org Chem Include Med Chem 1988;27:99-100.

Lans C. Composition of plants used for skin and stomach problems in Trinidad and Tobago with Asian ethnomedicine. J Ethnobiol Ethnomed 2007;3:1-22.

Verma RK, Singh HN, Thakur AK, Kohli SJ. Ethnobotanical survey of medicinal and aromatic plants of Bhagalpur Region. Int J Appl Sci Biotechnol 2020;2:79-98.

Sharma PV, Sharma G. Dhvanantari nignjatu, Karveeradi varga, 4/10-11, 4th ed. Varanasi: Chaukhamba Orientalia Publication; 2005. p. 122-23.

Tripathi I, Raj Nighanta, Shatadhayadi Varga. 2nd ed. Varanasi: Chaukhamba Krishnaadasa Academy; 2006. p. 89.

Sharma PV, Sharma G. Kairiedva Nighanta, Oshadhi varga, 1/153-75. 1st ed. Varanasi: Chaukhamba Orientalia Publication; 1979. p. 637.

Muddgal D. Dravyagun Vijnana. 2nd ed. Dr. Dan NV, Nhu DT. Medicinal Plants in Vietnam. Manila: WHO Regional Office for the Western Pacific; 1990.

Rai MB. Medicinal plants of Tehrathum district, Eastern Nepal. Our Nat 2003;1:42-8.

Panthi MP, Singh AG. Ethnobotany of Arghakhanchi district, Nepal: Plants used in dermatological and cosmetic disorders. Int J Appl Sci Biotechnol 2013;3:27-32.

Khan AV, Khan AA. Ethnomedicinal uses of Eclipta prostrata Linn. Indian J Tradit Knowl 2008;7:316-20.

Parkash V, Aggarwal A. Traditional uses of ethnomedicinal plants of lower foot-hills of Himachal Pradesh-I. Indian J Tradit Knowl 2010;9:319-21.

Pandey MK, Sharma RK, Lata S. Antibacterial activity of Eclipta alba (L.) Hassk. J Appl Pharm Sci 2011;1:14.

Sardar AA, Khan Z, Perveen A, Zereen A. Appraisal of ethnobotanical uses of the wetland plants of Pakistan, Punjab. Afr J Tradit Complement Altern Med 2015;12:9-13.

Ali S, Shabbir A, Muhammad S. Ethnobotanical uses of some native and alien plants of The Jhok Reserve Forest, Punjab, Pakistan. Pak J Weed Sci Res 2018;24:89-103.

Anwer Z, Shabbir S, Iram T, Tariq S, Murad H. Ethnobotanical study of wild flora of Haroonabad, District Bahawalnagar, Punjab, Pakistan. Eur J Bot 2020;5:41-62.

Wariss HM, Ahmad S, Anjum S, Alam K. Ethnobotanical studies of dicotyledonous plants of Lal Suhana national park, Bahawalpur, Pakistan. Int J Sci Res 2014;3:2452-60.

Kumar S, Das G, Shin HS, Kumar P, Patra JK. Diversity of plant species in the steel city of Odisha, India: Ethnobotany and implications for conservation of urban bio-resources. Braz Arch Biol Technol 2018;61:1-19.

Ahmad M, Tripathi AK, Sharma JK. Ethnobotany of important medicinal plants growing as weed and their conservation. Perspect Biodivers Ind 2018;4:292-6.

Singh A, Singh PK. An ethnobotanical study of medicinal plants in Channadu district of Uttar Pradesh, India. J Ethnopharmacol 2009;121:324-9.

Thirumalai T, Beverly CD, Sathiyaraj K, Senthilkumar B, David E. Ethnobotanical study of anti-diabetic medicinal plants used by the local people in Javadhu hills Tamilnadu, India. Asian Pac J Trop Biomed 2012;2:9010.

Bhandari BS. Ethnobotanical plants used in health care and traditional practices by local inhabitants (Gujars) of Rajaji Tiger Reserve, Uttarakhand, India. Indian J Tradit Knowl 2021;20:91-105.

Brinda R, Parvathy S. Ethnobotanical medicines of anaimauli union pollachi taluk, Coimbatore district, Tamilnadu. Anc Sci Life 2003;2:166.

Das H, Chakraborty U. Ethnobotanical study of medicinal plants in the Dakshin Dinajpur district. Res Rev 2019;8:18-24.

Mahajan SK. Traditional herbal remedies among the tribes of Bijnagar to West Nimar district, Madhya Pradesh. Indian J Tradit Knowl 2005;6:375-7.

Hosamani PA, Lakshman HC, Kulkarni SS, Gadi D. Documentation of ethnobotanical medicinal plants growing in rock crevices of river Kuli in Dandi wild life Sanctuary. Life Sci Leaf 2012;3:36-9.

Vijayaragir RC, Mamidala E. Ethnobotanical investigations among traditional healers in Warangal district of Andhra Pradesh, India. Pharmacogn J 2012;4:13-7.

Patil HM, Bhaskar RV. Medicinal uses of plants by tribal medicine men of Nandurbar district in Maharashtra. Explorer 2006;5:125-30.

Mali PR. Ethnobotanical studies of Peth and Trimbakeshwars district Nashik, Maharashtra, India. Trends Life Sci 2012;3:15-7.

Sadhuakar P. Ethnobotanical studies in select parks of Chennai city. India J Environ Educ 2017;1;1-33.

Ghatapanadri SR, Johnson N, Rajasab AH. Documentation of folk knowledge on medicinal plants of Gujrbarga district, Karnataka. Indian J Tradit Knowl 2011;10:349-53.

Bristhy SR, Setu NI, Anwar M, Jahan R, Mia MM, Kadir MF, et al. Ethnobotanical study on medicinal plants for dermatological disorders at Chittagong Hill Tracts, Bangladesh. Pharm Biomed Res 2020;6:61-90.

Rahman AH, Alam MS, Ahmad S, Naderuzzaman AT, Islam AK. An ethnobotanical portrait of a village: Kokkiri, Dinajpur with reference to medicinal plants. Int J Biosci 2012;2:1-0.

Tudor D, Sinha VS. An ethnobotanical survey on medicinal plants used to mitigate anemia by tribes of east and West Singhbhum districts of Jharkhand, India. JPhytochem Phytother 2017;6:2592-5.

Olatokunbo IS, Atinuke DA. Ethnobotanical survey of medicinal plants in the lower foot-hills of Himachal Pradesh-I. Indian J Tradit Knowl 2012;3:2109.
127. Adewunmi CO, Ojewole JA. Safety of traditional medicines, complementary and alternative medicines in Africa. Afr J Tradit Complement Altern Med 2004;1:1-3.
128. Srirama R, Kumar JS, Seethapathy GS, Newmaster SG, Ragupathy S, Ganeshaiah KN, et al. Species adulteration in the herbal trade: Causes, consequences and mitigation. Drug Saf 2017;40:651-61.
129. Yee SK, Chu SS, Xu YM, Choo PL. Regulatory control of Chinese proprietary medicines in Singapore. Health Pol 2005;71:133-49.
130. Miller GM, Stripp R. A study of western pharmaceuticals contained within samples of Chinese herbal/patent medicines collected from New York City’s Chinatown. Legal Med 2007;9:258-64.
131. Joharchi MR, Amiri MS. Taxonomic evaluation of misidentification of crude herbal drugs marketed in Iran. Avic J Phytomed 2012;2:105.
132. Ernst E, Coon JT. Heavy metals in traditional Chinese medicines: A systematic review. Clin Pharmacol Ther 2001;70:497-504.
133. Ernst E. Heavy metals in traditional Indian remedies. Eur J Clin Pharmacol 2002;57:891-6.
134. Ko RJ. Adulterants in Asian patent medicines. N Engl J Med 1998;339:847.
135. Obi E, Akunyili DN, Ekpo B, Orisakwe OE. Heavy metal hazards of Nigerian herbal remedies. Sci Total Environ 2006;369:35-41.
136. Caldas ED, Machado LL. Cadmium, mercury and lead in medicinal herbs in Brazil. Food Chem Toxicol 2004;42:599-603.
137. Garcia-Rico L, Leyva-Perez J, Jara-Marini ME. Content and daily intake of copper, zinc, lead, cadmium, and mercury from dietary supplements in Mexico. Food Chem Toxicol 2007;45:1599-605.
138. Ernst E. Adulteration of Chinese herbal medicines with synthetic drugs: A systematic review. J Intern Med 2002;252:107-13.
139. Walker KM, Applequist WL. Adulteration of selected unprocessed botanicals in the US retail herbal trade. Econ Bot 2012;66:321-7.
140. Rathore KS. Standardisation and evaluation of herbal drug formulations. J Adv Lab Res Biol 2015.
141. Posadzki P, Watson L, Ernst E. Contamination and adulteration of herbal medicinal products (HMPs): An overview of systematic reviews. Eur J Clin Pharmacol 2013;69:295-307.
142. Sagar BP, Zafar R, Panwar R, Kumar V, Mangla A. Herbal drugs standardization. Indian Pharm 2005;4:19-22.
143. Chen S, Yao H, Han J, Liu C, Song J, Shi L, et al. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS One 2010;5:e8613.
144. Singh B, Saxena AK, Chandan BK, Agarwal SG, Bhatia MS, Anand KK. Hepatoprotective effect of ethanolic extract of Eclipta alba on experimental liver damage in rats and mice. Phytother Res 1993;7:154-8.
145. Naik KS, Gurushanthaiah M, Kavimani M, Prabhhu K, Lokanadham S. Hepatoprotective role of Eclipta alba against high fatty diet treated experimental models a histopathological study. Maedica 2018;13:217.
146. Ahirwar DK, Saxena RC. Hepatoprotective activity of ethanolic extract of Eclipta alba in albino rats. Biomed Pharmacol J 2008;1:235.
147. Kumar K, Katiyar AK, Swamy VP, Sahu VP, Kumar S. Hepatoprotective effect of Eclipta alba on experimentally induced liver damage in rats. Indian J Vet Pathol 2013;37:159-63.
148. Indhuleka A, Jeyaraj M. Hepatoprotective effect of Eclipta alba on membrane marker enzymes against paracetamol induced liver damage. Orient J Chem 2019;35:1215.
149. Begum S, Lee MR, Gu LJ, Hossain M, Kim HK, Sung CK. Comparative hair restorer efficacy of medicinal herb on nude (Foxn) mice. Biomed Res Int 2014;14:1-9.
150. Chaudhary H, Dhana V, Singh J, Kamboj SS, Seshadri S. Evaluation of hydro-alcoholic extract of Eclipta alba for its anticancer potential: An in vitro study. J Ethnopharmacol 2011;136:363-7.
151. Gurrapu S, Mamidala E. In vitro antibacterial activity of alkaloids isolated from leaves of Eclipta alba against human pathogenic bacteria. Pharmacog J 2017;9:573-7.
152. Karthikumar S, Vigneswari K, Jegathesan K. Screening of antibacterial and antioxidant activities of leaves of Eclipta prostrata (L). Sci Res Essay 2007;2:101-4.
153. Manvar D, Mishra M, Kumar S, Pandey VN. Identification and evaluation of anti hepatitis C virus phytochemicals from Eclipta alba. J Ethnopharmacol 2012;144:545-54.
154. Banji O, Banji D, Annamalai AR, Manavalan R. Investigation on the effect of Eclipta alba on animal models of learning and memory. Indian J Physiol Pharmacol 2007;51:274.
155. Syed SD, Deepak M, Yogisha S, Chandrashekar AP, Maddurarachappa KA, D’Souza P, et al. Trypsin inhibitory effect of wedelolactone and demethylwedelolactone. Phytother Res 2003;17:420-1.
156. Chau TI, Roy SD, Chahla NK, Rawat KD, Sharma A, Kumar K. Antistress ability of Eclipta alba ethanol extract in Labeo calbasu fingerlings exposed to acid stress. Isr J Aquac Bamiidegh 2013;65:1-9.