Nationwide Surveillance and Molecular Characterization of Critically Drug-Resistant Gram-Negative Bacteria: Results of the Research University Network Thailand Study

Thitiya Yungyuen, a Tanittha Chatsuwan, b, c Rongpong Plongla, c, d Sakawrat Kanthawong, a Umaporn Yordpratum, a Supayang P. Voravuthikunchai, f Sarunyou Chusri, g Dennapa Saeloh, h Worada Samosomsuk, i Nunta Suwantarat, j Romanee Chaiwarith, k Surat Wannalerdsakun, l Porpon Rotjanapan, m Prawat Chanhtarit, m Orawan Tulyaprawat, a Iyarat Thaipsittikul, k Pattarachai Kiratisin* on behalf of the Research University Network Thailand Study Group

a Department of Microbiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
b Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
c Department of Microbiology and Stewardship Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
d Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
e Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
f Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
g Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
h Department of Medical Technology, Prince of Songkla University, Songkhla, Thailand
i Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani, Thailand
j Department of Medicine, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
k Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
l Department of Medicine, Faculty of Medicine, Naresuan University, Phitsanulok, Thailand
m Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand

ABSTRACT A large-scale surveillance is an important measure to monitor the regional spread of antimicrobial resistance. We prospectively studied the prevalence and molecular characteristics of clinically important Gram-negative bacilli, including Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii complex (ABC), and Pseudomonas aeruginosa, from blood, respiratory tract, urine, and sterile sites at 47 hospitals across Thailand. Among 187,619 isolates, 93,810 isolates (50.0%) were critically drug resistant, of which 12,915 isolates (13.8%) were randomly selected for molecular characterization. E. coli was most commonly isolated from all specimens, except the respiratory tract, in which ABC was predominant. Prevalence of extended-spectrum cephalosporin resistance (ESCR) was higher in E. coli (42.5%) than K. pneumoniae (32.0%), but carbapenem-resistant (CR)-K. pneumoniae (17.2%) was 4.5-fold higher than CR-E. coli (3.8%). The majority of ESCR/CR-E. coli and K. pneumoniae isolates carried bla_{CTX-M} (64.6% to 82.1%), bla_{NDM} and bla_{OXA-48-like} were the most prevalent carbapenemase genes in CR-E. coli/CR-K. pneumoniae (74.9%/52.9% and 22.4%/54.1%, respectively). In addition, 12.9%/23.0% of CR-E. coli/CR-K. pneumoniae coharried bla_{NDM} and bla_{OXA-48-like}. Among ABC isolates, 41.9% were extensively drug resistant (XDR) and 35.7% were multidrug resistant (MDR), while P. aeruginosa showed XDR/MDR at 6.3%/16.5%. A. baumannii was the most common species among ABC isolates. The major carbapenemase gene in MDR-A. baumannii/XDR-A. baumannii was bla_{OXA-23-like} (85.8%/93.0%), which had much higher rates than other ABC species. bla_{IMP}, bla_{VIM}, bla_{OXA-40-like} and bla_{OXA-58-like} were also detected in ABC at lower rates. The most common carbapenemase gene in MDR/XDR-P. aeruginosa was bla_{IMP} (29.0%/30.6%), followed by bla_{VIM} (9.5%/25.3%). The findings reiterate an alarming situation of drug resistance that requires serious control measures.

KEYWORDS drug resistance, Gram-negative bacteria, surveillance, bla gene, Thailand
Critically drug-resistant Gram-negative bacilli (CDRGNB) constitute a significant cause of high morbidity and mortality worldwide. The most common CDRGNB in clinical practice include *Escherichia coli*, *Klebsiella pneumoniae*, *Acinetobacter baumannii* complex (ABC), and *Pseudomonas aeruginosa*. Among *E. coli* and *K. pneumoniae*, serious concerns are specifically for extended-spectrum cephalosporin-resistant (ESCR) and carbapenem-resistant (CR) isolates. The most important species of ABC is *A. baumannii*. Some isolates of ABC and *P. aeruginosa* demonstrate high resistance to several antimicrobial classes, defined as multidrug-resistant (MDR) and extensively drug-resistant (XDR) bacteria (1). Infections due to these CDRGNB likely contribute to significant long-term stays and high mortality rates (2). The World Health Organization announced that these bacteria were critical priorities for research and new antimicrobial agent development (3). A hospital surveillance system is a proactive approach to taking action on antimicrobial resistance and nosocomial infection. At the international level, surveillance data have been employed to monitor the emergence of resistant bacteria and prevent global spread.

Due to antimicrobial resistance, the mortality rate has strikingly exceeded 54 per 100,000 population in Thailand (4). The availability of over-the-counter drugs and overprescribing in hospitals of many antibacterial agents have provoked the situation. The survey revealed that 29.7% of Thai people were self-medicated with antibacterial agents, and most of them had symptoms resembling viral infection (5). The significant correlation between carbapenem consumption and the increase of CR-*E. coli* and CR-*K. pneumoniae* has also been demonstrated (6). While CDRGNB infection is on the rise in most Southeast Asian countries, large-scale surveillance of clinically significant isolates with molecular analysis remains very limited (7). This study aimed to conduct a nationwide prospective survey of CDRGNB prevalence in Thailand and investigate the molecular characteristics of beta-lactamase genes. CDRGNB isolates were classified into critically drug-resistant (CDR) groups, including CDR-*E. coli* (ESCR-*E. coli* and CR-*E. coli*), CDR-*K. pneumoniae* (ESCR-*K. pneumoniae* and CR-*K. pneumoniae*), CDR-ABC (MDR-ABC and XDR-ABC), and CDR-*P. aeruginosa* (MDR-*P. aeruginosa* and XDR-*P. aeruginosa*). The project was a part of the Research University Network Thailand’s collaborative effort in partnership with government, military, and private hospitals to address the threatening health issues.

RESULTS

Prevalence of CDRGNB from clinical specimens. There were 47 hospitals across all Thailand regions that participated in this study, including university, government, military, and private hospitals of various sizes and types of services, as shown in Table 1. A total of 187,619 isolates of four clinically significant Gram-negative bacteria (*E. coli*, *K. pneumoniae*, ABC, and *P. aeruginosa*) from blood, respiratory tract, urine, and sterile site samples were reported during the study period. ABC isolates were collected as a complex according to biochemical-based identification commonly

Type of hospital	Level of care	Size (no. of beds)	No.
Study center and study hubs	Tertiary care	>1,000	4
University		>500–1,000	2
		≤500	1
Satellite hospitals	Tertiary care	>1,000	2
Government		>500–1,000	19
		≤500	7
	Secondary care	≤500	8
Private	Secondary care	≤500	3
Military	Tertiary care	>500–1,000	1
Total			47
used in hospital laboratories with limited species differentiation. These Gram-negative bacteria were mainly isolated from the respiratory tract (48.7%), followed by urine (32.2%), blood (13.7%), and sterile sites (5.4%). *E. coli* was the most predominant organism, followed by *K. pneumoniae*, ABC, and *P. aeruginosa* (Table 2). *E. coli* was most commonly isolated from blood, urine, and sterile sites, while ABC was most commonly isolated from the respiratory tract. *K. pneumoniae* was the second most common pathogen from all specimen types. Isolates in eight CDR groups comprised half of the study isolates, indicating the overall prevalence of CDRGNB at 50% from clinical specimens (Table 3). CDRGNB had high rates in all specimens, especially for the respiratory tract, urine, and sterile site samples, which were shown in over 50% of isolates. ESCR- *E. coli* was the most prevalent CDRGNB in overall specimens and was found at the highest rates from urine and blood, respectively, while ESCR-*K. pneumoniae* was most detected from the respiratory tract samples. XDR-ABC had a higher ratio over MDR-ABC and were most predominant in respiratory tract samples, followed by sterile sites. *P. aeruginosa* had less prevalence of MDR and XDR isolates than ABC and was also commonly found in the respiratory tract samples.

The distribution of each CDR group in clinical specimens is shown in Fig. 1. Overall, the prevalence of ESCR-*K. pneumoniae* was lower than ESCR-*E. coli*, but the CR-*K. pneumoniae* rate was 4.5-fold higher than that for CR-*E. coli*, resulting in a CDR-*K. pneumoniae* rate (49.2%) slightly higher than the CDR-*E. coli* rate (46.3%). A combination of ESCR-*E. coli* and CR-*E. coli* constituted more than half of *E. coli* isolates from the respiratory tract (54.7%) and sterile site (51.6%) samples and at high rates in urine (47.4%) and blood (38.0%) samples. ESCR-*K. pneumoniae* and CR-*K. pneumoniae* were detected in more than half of *K. pneumoniae* isolates from urine (59.6%) and sterile site (53.0%) samples and also at high rates in the respiratory tract (47.0%) and blood (37.1%) samples. CR-*K. pneumoniae* was at a higher rate than CR-*E. coli* in all specimen types.

Table 2: Prevalence of Gram-negative bacteria in this study

Organism	No. of isolates from clinical specimen (%)	Respiratory	Urine	Sterile site
	All Blood Respiratory Urine Sterile site			
E. coli	63,991 (34.1) 14,548 (56.7) 6,760 (7.4) 39,540 (65.4) 3,143 (31.3)			
K. pneumoniae	48,013 (25.6) 6,053 (23.6) 27,618 (30.2) 11,786 (19.5) 2,556 (25.4)			
ABC	42,616 (22.7) 3,201 (12.5) 33,741 (36.9) 3,490 (5.8) 2,184 (21.7)			
P. aeruginosa	32,999 (17.6) 1,853 (7.2) 23,330 (25.5) 5,647 (9.3) 2,169 (21.6)			
Total	187,619 (100) 25,655 (100) 91,449 (100) 60,463 (100) 10,052 (100)			

Table 3: Prevalence of CDRGNB in various specimens

Organism	CDR group	All (N = 187,619)	Respiratory (N = 91,449)	Urine (N = 60,463)	Sterile site (N = 10,052)
		Blood (N = 25,655)			
E. coli	ESCR-*E. coli*	27,169 (14.5) 5,246 (20.4) 3,295 (3.6) 17,167 (28.4) 1,461 (14.5)			
	CR-*E. coli*	2,404 (1.3) 274 (1.1) 403 (0.4) 1,566 (2.6) 161 (1.6)			
K. pneumoniae	ESCR-*K. pneumoniae*	15,378 (8.2) 1,364 (5.3) 9080 (9.9) 4,160 (6.9) 774 (7.7)			
	CR-*K. pneumoniae*	8,220 (4.4) 886 (3.5) 3893 (4.3) 2,860 (4.7) 581 (5.8)			
ABC	MDR-ABC	15,222 (8.1) 969 (3.8) 11,975 (13.1) 1,481 (2.5) 797 (7.9)			
	XDR-ABC	17,792 (9.5) 1,156 (4.5) 14,491 (15.9) 1,265 (2.1) 880 (8.8)			
P. aeruginosa	MDR-*P. aeruginosa*	5,509 (2.9) 232 (0.9) 3,766 (4.1) 1,223 (2.0) 288 (2.9)			
	XDR-*P. aeruginosa*	2,030 (1.1) 69 (0.3) 929 (1.0) 942 (1.6) 90 (0.9)			
Total	93,823 (50.0) 10,169 (39.6) 47,832 (52.3) 30,664 (50.7) 5,032 (50.1)				
CDR-ABC were predominant among ABC isolates in all specimens, ranging from 66.4% to 78.7%. XDR-ABC had the highest rate in respiratory tract samples and higher rates than MDR-ABC in all specimen types except urine. MDR-\textit{P. aeruginosa} and XDR-\textit{P. aeruginosa} were less prevalent overall than other CDRGNB. CDR-\textit{P. aeruginosa} was

FIG 1 Prevalence of CDRGNB in different clinical specimens. Percentages of each CDRGNB group in overall (A), blood (B), respiratory tract (C), urine (D), and sterile site (E) samples are shown.
Table 4: Molecular characteristics of *bla* genes among CDRGNB

CDR group (n)	% Detection				
	*bla*CTX-M	*bla*OXA-23	*bla*OXA-48	*bla*OXA-48	*bla*OXA-58
E. coli (2,952)	64.6	—	—	—	—
CR-E. coli (722)	66.9	0.8	74.9	2.9	4.6
K. pneumoniae (3,391)	79.9	—	—	—	—
K. pneumoniae (1,591)	82.1	0.5	52.9	1.8	2.8
MDR-ABC					
A. baumannii (1,158)	—	—	—	2.0	2.9
Non-A. baumannii (181)	—	—	12.2	1.7	10.5
XDR-ABC					
A. baumannii (1,364)	—	—	—	0.8	1.3
Non-A. baumannii (160)	—	—	—	6.9	3.1
MDR-P. aeruginosa (854)	—	—	29.0	9.5	—
XDR-P. aeruginosa (542)	—	—	30.6	25.3	—

A. baumannii isolates were slightly less susceptible than other ABC species, except for trimethoprim-sulfamethoxazole. All XDR-A. baumannii and 98.3% of MDR-A. baumannii isolates were exceptionally high in urine samples, with a larger ratio of XDR-*P. aeruginosa* than in other specimens.

Molecular characteristics of resistance genes among CDRGNB. A total of 12,915 isolates, or approximately 13.8% of CDRGNB isolates, were randomly selected for resistance gene detection. The results of *bla* genes detected among these isolates are shown in Table 4. *bla*CTX-M was highly prevalent among CR-*E. coli* (65.9%) and CR-*K. pneumoniae* (80.6%) at nearly similar rates between ESCR and CR groups of each organism. Among CR-*E. coli* isolates, *bla*OXA was the predominant carbapenemase gene, followed by *bla*OXA-48. However, both *bla*OXA and *bla*OXA-48 were common among CR-*K. pneumoniae*, with a slightly higher prevalence for *bla*OXA-48 (12.5%) and 23.0% of CR-*E. coli* and CR-*K. pneumoniae*, respectively, carried both *bla*NDM and *bla*OXA-48. Lower numbers of CR-*E. coli* and CR-*K. pneumoniae* carried *bla*IMP, *bla*IMP, and *bla*OXA, which were slightly more common in CR-*E. coli* than in CR-*K. pneumoniae*.

Based on the detection of *bla*OXA-51, 86.5% and 89.5% of ABC isolates were determined to be A. baumannii, and the rest were other species of ABC. *bla*OXA was the most prevalent carbapenemase gene in both MDR-A. baumannii and XDR-A. baumannii isolates and was shown at a much higher rate than in other ABC species. Metallo-β-lactamase (MBL) genes (*bla*OXA and *bla*OXA-51) and other OXA genes (*bla*OXA-40 and *bla*OXA-58) were also found with much less prevalence. Notably, *bla*OXA and *bla*OXA-58 were more common among other ABC species than in A. baumannii. In addition to *bla*OXA-51, 67 (5.8%) and 38 (2.8%) isolates of MDR-A. baumannii and XDR-A. baumannii, respectively, carried both *bla*OXA-23 and *bla*OXA-48. Three MDR-A. baumannii isolates (0.3%), but not XDR-A. baumannii, had four *bla*OXA genes (*bla*OXA-23, *bla*OXA-40, *bla*OXA-51, and *bla*OXA-58). However, all MDR-ABC and XDR-ABC isolates with an MBL gene carried either *bla*OXA or *bla*OXA-58; i.e., none of them had both genes. *bla*IMP was prominent at a similar rate in both MDR-*P. aeruginosa* and XDR-*P. aeruginosa*, followed by *bla*IMP which was more pronounced in XDR-*P. aeruginosa* than in MDR-*P. aeruginosa*. Eight MDR-*P. aeruginosa* (0.9%) and 21 XDR-*P. aeruginosa* (3.9%) isolates had both *bla*OXA and *bla*OXA-58.

Antimicrobial susceptibility of CDRGNB. Table 5 shows susceptibility rates of CDRGNB groups to alternative antimicrobial agents. XDR-ABC and XDR-*P. aeruginosa* are not shown due to their resistance to all tested drugs. Carbapenems and amikacin were highly effective against ESCR-*E. coli* and ESCR-*K. pneumoniae*, and amikacin remained moderate against CR-*E. coli* and CR-*K. pneumoniae*. Piperacillin-tazobactam had good activity for ESCR-*E. coli* but not ESCR-*K. pneumoniae*. ESCR-*E. coli* and ESCR-*K. pneumoniae* isolates were moderately susceptible to netilmicin and cefoxitin, but most were resistant to ciprofloxacin, trimethoprim-sulfamethoxazole, and tetracycline. CR-*E. coli* and CR-*K. pneumoniae* were resistant to most drugs, except aminoglycosides may have moderate activity against them. A. baumannii isolates were slightly less susceptible than other ABC species, except for trimethoprim-sulfamethoxazole. All XDR-A. baumannii and 98.3% of MDR-A. baumannii...
isolates were resistant to at least a carbapenem, resulting in the rate of carbapenem resistance among *A. baumannii* of 77.0%. Among *P. aeruginosa*, 96.8% of MDR-*P. aeruginosa* and all XDR-*P. aeruginosa* isolates were resistant to at least a carbapenem, given *P. aeruginosa*’s carbapenem resistance rate of 22.3%. Amikacin showed moderate activity against MDR-ABC and MDR-*P. aeruginosa*. Trimethoprim-sulfamethoxazole and netilmicin had partial action against MDR-*A. baumannii* and MDR-*P. aeruginosa*, respectively.

DISCUSSION

Infection due to CDRGNB has raised a serious concern worldwide and requires urgent solutions to reduce the wide spread of these organisms. Systematic surveillance of drug-resistant bacteria plays a vital role in monitoring and controlling the situation (8). This study conducted large-scale surveillance of four clinically significant Gram-negative bacteria in eight CDR groups. CDR-*E. coli* and CDR-*K. pneumoniae* were common causes of various infections, especially in the urinary tract, intra-abdominal area, and bloodstream, with high rates of extended-spectrum β-lactamase production and low susceptibility to fluoroquinolones, indicating multiple resistance mechanisms (9–11). The prevalence of CR-*E. coli* and CR-*K. pneumoniae* in Thailand has rapidly increased in the past decade. Studies in the late 2000s and early 2010s showed that *E. coli* and *K. pneumoniae* isolates from Thai patients were less than 1% and 5% resistant to carbapenems, respectively (12, 13). In this study, the CR-*E. coli* prevalence has risen to 3.8% and varied in different specimen types, ranging from 1.9% to 6.0%. An average proportion of CR-*K. pneumoniae* was 4.5-fold (ranging from 2.4- to 7.7-fold) higher than CR-*E. coli*. Therefore, within less than a decade, CR-*E. coli* and CR-*K. pneumoniae* prevalences in Thailand have risen more than three times. Inappropriate consumption of carbapenems was shown to contribute to an increased prevalence of CDRGNB, including CR-*E. coli* and CR-*K. pneumoniae* (6, 14). The increasing trends of CR-*E. coli* and CR-*K. pneumoniae* have also been reported from many countries in Southeast Asia, in which CR-*K. pneumoniae* often showed higher prevalence (15). Malaysia, Myanmar, Indonesia, and Vietnam were countries with a high prevalence of CR-*E. coli* (1.9% to 10.0%) and CR-*K. pneumoniae* (7.9% to 9.5%). Our study was among the most extensive and recent studies in Thailand. It revealed significantly higher CR-*E. coli* and CR-*K. pneumoniae* rates than what was shown in previous reports from Thailand and neighboring countries, raising a critical need for infection control actions. Aminoglycosides seemed to be the only class that is active for CR isolates but with modest activities. With a rise of CR isolates among *Enterobacteriaceae*, polymyxins, tigecycline, and fosfomycin were often choices for the alternative or last-line drug. However, these agents still have limitations due to toxicity or availability in different regions (16).

The most common carbapenemase genes in CR-*E. coli* and CR-*K. pneumoniae* detected in this study were *bla*_{NDM} and *bla*_{OXA-48-like}. In contrast to North America,
Latin America, some European countries, and China, where \textit{bla}_{KPC} appears commonly, \textit{bla}_{KPC} has rarely been detected in Thailand and Southeast Asia (17–19). \textit{bla}_{NDM} has been endemic to South Asia and later widespread in Southeast Asia (15, 17). A study in Myanmar also revealed that all carbapenem gene-carrying \textit{Enterobacteriaceae} clinical isolates had \textit{bla}_{NDM}, of which \textit{bla}_{NDM-5} was the most predominant (20). \textit{bla}_{NDM} was first reported in Thailand in 2012 (21), and this study, conducted approximately 6 years later, showed a very high prevalence of \textit{bla}_{NDM} in both CR-\textit{E. coli} and CR-\textit{K. pneumoniae}, suggesting a successful spreading of the gene in this country. Various mobile genetic elements mediate its rapid dissemination, such as transposons and conjugative plasmids. \textit{bla}_{NDM} was also found in CR-\textit{E. coli} and CR-\textit{K. pneumoniae} isolates from the environment, likely related to contracting these organisms through traveling in the region of endemicity (18). While \textit{bla}_{AMP} and \textit{bla}_{VIM} were found at a low prevalence, \textit{bla}_{OXA-48-like}, a class D carbapenemase, was strikingly high among CR-\textit{E. coli} and CR-\textit{K. pneumoniae}. Originating in and primarily endemic to European and Middle East countries, \textit{bla}_{OXA-48-like} and its derivatives have rapidly spread to Africa, South America, and Asia (17, 18). OXA-48 and OXA-48-like carbapenemases display unique characteristics of a modest hydrolytic activity for penicillins and carbapenems but not for cephalosporins, making it problematic for \textit{in vitro} detection (22). Although OXA-48 usually confers weak resistance to carbapenems in \textit{Enterobacteriaceae}, it may be cocarried with an MBL gene, e.g., \textit{bla}_{NDM}, as shown in this study, resulting in high-level carbapenem resistance (23).

CDR-ABC was shown to be the main portion of ABC isolates in all specimen types. The most common gene that mediates carbapenem resistance in ABC is \textit{bla}_{OXA}, which produces a class D OXA \(\beta\)-lactamase. The majority species of ABC was \textit{A. baumannii}, based on the presence of intrinsic \textit{bla}_{OXA-51-like} (24). Although \textit{bla}_{OXA-51-like} may not be the most accurate marker for species confirmation, it is practical to screen for \textit{A. baumannii} in an extensive survey. Besides chromosomally encoded \textit{bla}_{OXA-51-like}, we investigated three mainly plasmid-borne \textit{bla}_{OXA} carbapenemase-related genes, \textit{bla}_{OXA-23-like}, \textit{bla}_{OXA-40-like} (formerly known as \textit{bla}_{OXA-24}), and \textit{bla}_{OXA-58-like}. Commonly present among ABC in Asian countries (25–28). All four OXA carbapenemases and their derivatives are transferable by a mobile genetic element. Either OXA-23 or OXA-51 is sufficient to confer carbapenem resistance in ABC, but generally, other carbapenemases and other mechanisms, e.g., efflux pump, often collectively coproduce high-level resistance. We showed that \textit{bla}_{OXA-23-like} was most common among MDR-\textit{A. baumannii} and XDR-\textit{A. baumannii} but was less prevalent among other species of ABC. \textit{bla}_{OXA-40-like} and \textit{bla}_{OXA-58-like} are less common and usually confer low activity against carbapenems. This study reported that ABC isolates carry up to four \textit{bla}_{OXA} genes, making them highly resistant to carbapenems. Although other resistance mechanisms were not investigated, it is likely that a combination of resistance determinants attributed to the extreme resistance phenotype in ABC.

The worldwide SENTRY surveillance program demonstrated that CDR-\textit{P. aeruginosa} had a declining rate and was most susceptible to colistin, followed by amikacin (29). A previous study in Thailand among hospitalized patients during 2014 showed a higher rate of XDR-\textit{P. aeruginosa} but a lower rate of MDR-\textit{P. aeruginosa} compared to this study, suggesting a decreasing trend of XDR-\textit{P. aeruginosa} but not MDR-\textit{P. aeruginosa} (30). Amikacin was shown in the SENTRY report and this study to be most active against MDR-\textit{P. aeruginosa}, yet with a modest susceptibility rate. Most CDR-\textit{P. aeruginosa} isolates were resistant to carbapenems. The carbapenem resistance rate among \textit{P. aeruginosa} isolates tends to be stable or decreasing over time in many regions (29, 31). \textit{P. aeruginosa} often intrinsically harbors several \(\beta\)-lactam resistance mechanisms, including membrane modification, efflux pump, and AmpC enzyme hyperproduction (32). MBL enzymes were sporadically studied among carbapenem-resistant \textit{P. aeruginosa}, of which IMP and VIM were the most common carbapenemases (33, 34). We reported that \textit{bla}_{AMP} was detected at approximately similar rates in both MDR-\textit{P. aeruginosa} and XDR-\textit{P. aeruginosa}, while \textit{bla}_{VIM} was detected 2.7-fold more often in XDR-\textit{P. aeruginosa}.Originating in and primarily endemic to European and Middle East countries, \textit{bla}_{OXA-48-like} and its derivatives have rapidly spread to Africa, South America, and Asia (17, 18). OXA-48 and OXA-48-like carbapenemases display unique characteristics of a modest hydrolytic activity for penicillins and carbapenems but not for cephalosporins, making it problematic for \textit{in vitro} detection (22). Although OXA-48 usually confers weak resistance to carbapenems in \textit{Enterobacteriaceae}, it may be cocarried with an MBL gene, e.g., \textit{bla}_{NDM}, as shown in this study, resulting in high-level carbapenem resistance (23).

CDR-ABC was shown to be the main portion of ABC isolates in all specimen types. The most common gene that mediates carbapenem resistance in ABC is \textit{bla}_{OXA}, which produces a class D OXA \(\beta\)-lactamase. The majority species of ABC was \textit{A. baumannii}, based on the presence of intrinsic \textit{bla}_{OXA-51-like} (24). Although \textit{bla}_{OXA-51-like} may not be the most accurate marker for species confirmation, it is practical to screen for \textit{A. baumannii} in an extensive survey. Besides chromosomally encoded \textit{bla}_{OXA-51-like}, we investigated three mainly plasmid-borne \textit{bla}_{OXA} carbapenemase-related genes, \textit{bla}_{OXA-23-like}, \textit{bla}_{OXA-40-like} (formerly known as \textit{bla}_{OXA-24}), and \textit{bla}_{OXA-58-like}. Commonly present among ABC in Asian countries (25–28). All four OXA carbapenemases and their derivatives are transferable by a mobile genetic element. Either OXA-23 or OXA-51 is sufficient to confer carbapenem resistance in ABC, but generally, other carbapenemases and other mechanisms, e.g., efflux pump, often collectively coproduce high-level resistance. We showed that \textit{bla}_{OXA-23-like} was most common among MDR-\textit{A. baumannii} and XDR-\textit{A. baumannii} but was less prevalent among other species of ABC. \textit{bla}_{OXA-40-like} and \textit{bla}_{OXA-58-like} are less common and usually confer low activity against carbapenems. This study reported that ABC isolates carry up to four \textit{bla}_{OXA} genes, making them highly resistant to carbapenems. Although other resistance mechanisms were not investigated, it is likely that a combination of resistance determinants attributed to the extreme resistance phenotype in ABC.

The worldwide SENTRY surveillance program demonstrated that CDR-\textit{P. aeruginosa} had a declining rate and was most susceptible to colistin, followed by amikacin (29). A previous study in Thailand among hospitalized patients during 2014 showed a higher rate of XDR-\textit{P. aeruginosa} but a lower rate of MDR-\textit{P. aeruginosa} compared to this study, suggesting a decreasing trend of XDR-\textit{P. aeruginosa} but not MDR-\textit{P. aeruginosa} (30). Amikacin was shown in the SENTRY report and this study to be most active against MDR-\textit{P. aeruginosa}, yet with a modest susceptibility rate. Most CDR-\textit{P. aeruginosa} isolates were resistant to carbapenems. The carbapenem resistance rate among \textit{P. aeruginosa} isolates tends to be stable or decreasing over time in many regions (29, 31). \textit{P. aeruginosa} often intrinsically harbors several \(\beta\)-lactam resistance mechanisms, including membrane modification, efflux pump, and AmpC enzyme hyperproduction (32). MBL enzymes were sporadically studied among carbapenem-resistant \textit{P. aeruginosa}, of which IMP and VIM were the most common carbapenemases (33, 34). We reported that \textit{bla}_{AMP} was detected at approximately similar rates in both MDR-\textit{P. aeruginosa} and XDR-\textit{P. aeruginosa}, while \textit{bla}_{VIM} was detected 2.7-fold more often in XDR-\textit{P. aeruginosa}.
aeruginosa than MDR-P. aeruginosa. In addition, XDR-P. aeruginosa isolates that carried both blaIMP and blaVIM genes were 4.3-fold more common than MDR-P. aeruginosa. Therefore, blaVIM could contribute to extended resistance to multiple drugs among P. aeruginosa isolates, especially when cocarrying blaIMP. Despite a lesser proportion of resistant isolates than other CDRGNB, both MDR-P. aeruginosa and XDR-P. aeruginosa remain a severe threat because of their high resistance to commonly used antipseudomonal drugs and their critical role in nosocomial infection. Carbapenem resistance in P. aeruginosa is often mediated by MBL genes acquireable through a mobile plasmid and is significantly associated with high mortality (34).

This study has limitations in exploring specific and additional resistance genes and other mechanisms that could contribute to resistance due to a large number of study isolates. In addition, susceptibility to some alternative drugs, e.g., colistin, was not tested because the recommended testing methods were not available at all participating hospitals. Although A. baumannii is the most common species of ABC, this study used blaOXA-51-like as a marker for A. baumannii but did not specifically differentiate all species. Therefore, phenotypic and genotypic resistance profiles of each species of ABC were not analyzed separately. These limitations would be further studied in selected groups to understand the evolving resistance among CDRGNB and their possible relatedness of resistance clones in various geographic regions. We emphasize in this report a high prevalence of CDRGNB in Thailand in eight CDR groups, raising concern for a severe threat in the Asia-Pacific region. These CDRGNB isolates are usually encountered in various infections, mainly associated with hospitalized patients. The threat of bacterial resistance should be critically addressed in Thailand and in the region for the necessity of appropriate antimicrobial prescription in clinical practice. In addition, the public policy regarding the self-consumption of antibacterial agents should be emphasized to reduce the risk of acquiring drug-resistant infections. Continuously prospective surveillance is an active measure to monitor and control the spread of resistance and to support the importance of antimicrobial stewardship programs. Further studies are recommended to investigate the impact of CDRGNB on various clinical aspects, such as community-acquired infections, nosocomial infections, and treatment outcomes. Multiple organizations and professionals are needed to build a scholarly society to prevent spreading resistance.

MATERIALS AND METHODS

Study design and study sites. Forty-seven hospitals participated as study sites were located across all regions of Thailand (Fig. 2). The Faculty of Medicine, Siriraj Hospital, Mahidol University (Bangkok), served as the study center, and an additional six major university hospitals served as the study hubs. The other 40 hospitals were designated satellite hospitals. Isolates and data from four clinically significant Gram-negative bacteria (E. coli, K. pneumoniae, ABC, and P. aeruginosa) were collected from blood, respiratory, urine, and sterile site (including cerebrospinal fluid, pleural fluid, abdominal fluid, joint fluid, and other fluids from sterile body parts) samples from patients between October 2017 and January 2019. Isolate collection was inclusive for all patient groups at each hospital without stratification according to disease onset or illness history. Isolates were evaluated for prevalence, antimicrobial susceptibility, and molecular characteristics. Each hospital performed bacterial identification and antimicrobial susceptibility testing, including quality control testing, at its laboratory based on standardized microbiological procedures, and additional external quality assessment was provided. Repeated isolates from the same patient were excluded. Random CDRGNB isolates were sent to a study hub or selected study centers for molecular study. The molecular study included the first three isolates of the month, if available, for each CDRGNB group in every clinical specimen from all hospitals for up to 12 months during the collection period. This procedure ensured that isolates were enrolled without selection bias of patient demography, geographic area, or time of collection. This study was approved by the Institution Review Board or Ethical Committee of all participating hospitals.

Resistance definitions. CDRGNB isolates were divided into eight CDR groups, including ESCR-E. coli, CR-E. coli, ESK-P. aeruginosa, CR-K. pneumoniae, MDR-ABC, XDR-ABC, MDR-P. aeruginosa, and XDR-P. aeruginosa. As defined by the Centers for Disease Control and Prevention, ESCR isolates of E. coli and K. pneumoniae were resistant to at least one of these cephalexin; cefotaxime, ceftazidime, and cefepime. CR isolates were resistant to at least one of these carbapenem agents: imipenem, meropenem, doripenem, and ertapenem (35). A. baumannii and P. aeruginosa were classified according to their resistance as MDR and XDR. MDR isolates were nonsusceptible to at least one agent in at least
three antibacterial agent categories, and XDR isolates were nonsusceptible to at least one agent in all but two or fewer antimicrobial categories (1).

Molecular characterization of bla genes. Eight groups of CDRGNB from various specimens were collected for further molecular characterization. Each CDRGNB group was randomized monthly to ensure suitable distribution and that isolates collected each month during the study period were included. Bacterial DNA was extracted from colonies using the boiling method. PCR was used for the detection of beta-lactamase (bla) genes, including blaCTX-M, blaKPC, blaNDM, blaIMP, blaVIM, blaOXA-23-like, blaOXA-40-like, blaOXA-48-like, blaOXA-51-like, and blaOXA-58-like. The multiplex PCR primer sets (M1, M2, M3, and M4) and simplex PCR primer (S) were used to detect various specific genes, as detailed in Table 6. According to the corresponding reference, PCR was performed under the relevant conditions except where indicated, and the amplified targets were verified by DNA sequencing if necessary.

Antimicrobial susceptibility testing. Susceptibility testing was performed by using a standard disk diffusion assay or an automated system, either Sensititre (Thermo Fisher Scientific, OH, USA), Vitek2 (bioMérieux, Marcy-L’Etoile, France), or Phoenix (Becton, Dickinson, MD, USA), available at each study site. Results were interpreted according to the Clinical and Laboratory Standards Institute (CLSI) guidelines (36). All bacterial identification and antimicrobial susceptibility test results were submitted electronically and verified according to the resistance definitions.

FIG 2 Location of study sites. Forty-seven hospitals across Thailand were enrolled in this study, including in the Northern (n = 7), Central (n = 22), Northeastern (n = 12), and Eastern/Southern (n = 6) regions. Hospitals were categorized into study center (n = 1), study hubs (n = 6), and satellite hospitals (n = 40).
ACKNOWLEDGMENTS

This project is supported by Mahidol University under the Research University Network (RUN) Initiative. We are deeply thankful to all collaborating universities and hospitals for supporting research facilities, collecting bacterial isolates, and contributing data. We are also grateful to the following hospitals and their staff (in parentheses) for participating in this project: Angthong Hospital (Pakpiengpen Sornwiboonsak, Nanthawadee Thongnark), Banpong Hospital (Niporn Thepchai), Bhumibol Adulyadej Hospital (Pattraporn Ponglorpisit, Pimpa Rungnobhakhun), Buengkan Hospital (Wijittraporn Onraj), Chum Phae Hospital (Piyanat Pitakwong), Hatyai Hospital (Watchanarat Nitchot, Jareerat Saensud), Kamphaeng Phet Hospital (Jintana Phimsen, Theerasak Jaifoo), Khon Kean Hospital (Nuttiya srisurat, Krittika Kamlangharn), King Chulalongkorn Memorial Hospital (Napawan Punakabutra, Sirirat Lukin), King Narai Hospital (Nalinwan Wongsawat, Supat Nantasan), Lampang Hospital (Kanokwan Saengsawang), Lerdsin Hospital (Thitirat Tangkosakul, Parichat Boonrod), Maesot Hospital (Nattagam Chuenchom, Thanee Wongchai), Maharaj Nakorn Chiang Mai Hospital (Phadungkiat Khamnoi, Khuanuemngn Nuket), Maharat Nakorn Ratchasima Hospital (Wilawan Thipmontri, Athita Riwlord), Nakhon Pathom Hospital (Sutas Boonyong, Pongpol Rerknawarat), Nakhon Phanom Hospital (Narinwong Ponplung, Phirunpapond), Nakhon Si Thammarat Hospital (Nutthapon Chongpaisri, Nuchadon Wongsawat), Naresuan University Hospital (Sirinporn Phawarawong, Phakdechan Deskul), Nonthaburi Hospital (Thetassa Areeyoth, Nattawas Vongsawasdi), Police General Hospital (Sirin Surawongsawat, Pirunwong Potheewong), Prachinburi Hospital (Timmakorn Chongphak, Supak Chalermkrong), Pranburi Hospital (Limsakulpitak Y.TH., Pirunthong Potheewong), Ramkhamhaeng Hospital (Sarobon Chudakshetrin, Somjit Chinpak), RatChaburi Hospital (Narisorn Lorchirachoonkul, Puncharut Wongut-sa), Roi Et Hospital (Tidarat Suttirakra, Sakonnakhon Hospital (Pachara Kasemsiri), Saraburi Hospital (Waranya Srichunta), Sawang Dandin Crown

Primer set	Target organism	Target gene	Primer sequence	Amplicon size (bp)	Reference
M1	ESCR- E. coli and ESCR-K. pneumoniae	blaCTX-M	(F) 5'-GCAGATGTGACGACCCAGTCAA-3' (R) 5'-GGTGGAGGGCGTTGGTGAAGTA-3'	605	37
		16S rRNA	(F) 5'-AGATTTGTGATCGGTGCTAG-3' (R) 5'-CGTGGACTACAGGTTGATC-3'	802	38
M2	CR-E. coli, CR-K. pneumoniae, MDR-A. baumannii, XDR-A. baumannii, MDR-P. aeruginosa and XDR-P. aeruginosa	blaIMP	(F) 5'-GAATAGAGTGGCTTAAYTCTC-3' (R) 5'-CCAAAYACTAASGTATCT-3'	188	39
M3a	ESCR- E. coli and ESCR-K. pneumoniae	blaKPC	Similar to M1	802	38
M4	MDR-A. baumannii and XDR-A. baumannii	blaOXA-48-like	(F) 5'-GTGTGGTGACGTCGTCACGAC-3' (R) 5'-CATGAAAATGGAGAACCAC-3'	438	40
Sb	CR-E. coli, CR-K. pneumoniae, MDR-P. aeruginosa, XDR-P. aeruginosa, MDR-A. baumannii, and XDR-A. baumannii	blaOXA-48-like	(F) 5'-GTGTGGTGACGTCGTCACGAC-3' (R) 5'-CATGAAAATGGAGAACCAC-3'	390	25

*The PCR conditions were 94°C for 5 min, 30 cycles of 95°C for 45 s/56°C for 45 s/72°C for 1 min, and 72°C for 5 min.
*aOnly for A. baumannii, the PCR conditions were 94°C for 5 min, 30 cycles of 94°C for 25 s/62°C for 40 s/72°C for 50 s, and 72°C for 6 min.

TABLE 6 PCR primers used in this study

ACKNOWLEDGMENTS

This project is supported by Mahidol University under the Research University Network (RUN) Initiative. We are deeply thankful to all collaborating universities and hospitals for supporting research facilities, collecting bacterial isolates, and contributing data. We are also grateful to the following hospitals and their staff (in parentheses) for participating in this project: Anghithong Hospital (Pakpiengpen Sornwiboonsak, Nanthawadee Thongnark), Banpong Hospital (Niporn Thepchai), Bhumibol Adulyadej Hospital (Pattaraporn Ponglprisit, Pimpa Rungnobhakhun), Buengkan Hospital (Wijittraporn Onraj), Chun Phae Hospital (Piyanat Pittakong), Chutai Hospital (Witchanarat Nitchot, Jareerat Saensud), Kamphaeng Phet Hospital (Jintana Phimsen, Theerasak Jaifoo), Khon Kaen Hospital (Nutiya Sirisurat, Kritkita Kamlangharn), King Chulalongkorn Memorial Hospital (Napawan Punakabutra, Sirirat Lukin), King Narai Hospital (Nalinwan Wongsawat, Supat Nantasan), Lampang Hospital (Kanokwan Saengsawang), Leansin Hospital (Thirat Tangkosakul, Parichat Boonrod), Maesot Hospital (Nattagam Chuenchom, Thanee Wongchai), Maharaj Nakorn Chiang Mai Hospital (Phadungkiat Khamnoi, Khuanuemngn Nuket), Maharat Nakorn Ratchasima Hospital (Wilawan Thipmontri, Athita Riwlord), Mongkutwattana Hospital (Surachai Jirapornchai, Patcharee Runapong), Nakhon Pathom Hospital (Sutas Boonyong, Pongpol Rerknawarat), Nakhon Phanom Hospital (Uraiwan Surin), Nakomping Hospital (Poramed Winichakoorn, Pisiphoon Chanmangkholg), Naresuan University Hospital (Siriyu Srijuntongsrir, Tanaporn Chuenkesorn, Patsanporn Nontaratnon), Panyananthaphikshu Chonprathan Medical Center (Palakorn Srinwit, Khoriah Cheede), Phaya Hospital (Viicha Yavichai, Phayun Namburak), Police General Hospital (Jirayu Visuthranukul, Ummat Klarmm), Pranangkla Hospital (Nithiophar Bamburungsri, Pathanith Aranyar), Prapokkla Hospital (Mallie Techapornrungr, Sasatorn Thaicharon), Queen Sangwan Vadhana Memorial Hospital (Teerarat Shanthachal, Suwimol Chooprayoon), Ramkhamhaeng Hospital (Sarobon Chudakshetrin, Somjitt Chinpak), RatChaburi Hospital (Narisorn Lorchirachoonkul, Puncharut Wongut-sa), Roi Et Hospital (Tidarat Suttirakra, Sakonnakhon Hospital (Pachara Kasemsiri), Saraburi Hospital (Waranya Srichunta), Sawang Dandin Crown

September 2021 Volume 65 Issue 9 e00675-21 aac.asm.org 10
REFERENCES

1. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Hamant TN, Hindler JF, Kahlmeter G, Olsson-Liljeqvist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL. 2012. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18:268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x.

2. Zhen X, Stålsby LC, Sun X, Hu X, Dong H. 2019. The clinical and economic impact of antibiotic resistance in China: a systematic review and meta-analysis. Antibiotics 8:115. https://doi.org/10.3390/antibiotics8030115.

3. World Health Organization. 2017. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. WHO, Geneva, Switzerland. https://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb_ET_NM_WHO.pdf.

4. Kangcharoensathien V, Sattayawitthipong W, Kanjanapimai S, Kanpravidth P, Holzinger M, Wannarat P, Mangkorn-Pangnakorn, Vajira Hospital (Tananun Tanpaibule, Daranee Nutalai), Vichaiyut Hospital (Narissara Mungkornkaew), Trang Hospital (Chitprasong Saowarat Deekae), Taksin Hospital (Huttaya Thuncharon, Patcharee Choochur), Thammasat University Hospital (Narissara Mungkornkaew), Trang Hospital (Chitprasong Malaisri, Yaowares Panjakun), Udon Thani Hospital (Adisak Sangchanoom, Sarochin Pangnakorn), Vajira Hospital (Tananun Tanpaibule, Daranee Nutalai), Vichaiyut Hospital (Pannawadee Uppathannarakom, Warattaya Upeaphathanaphanich), Wichianburi Hospital (Nuttawiy Chumson, Narumol Boonchoyai).

9. Jean SS, Coombs G, Ling T, Balaji V, Rodrigues C, Mikamo H, Kim MJ, Chung MY, Hsueh PR. 2016. Epidemiology and antimicrobial susceptibility profiles of Gram-negative urinary tract pathogens causing urinary tract infections in the Asia-Pacific region: results from the Study for Monitoring Antimicrobial Resistance Trends (SMART), 2010–2013. Int J Antimicrob Agents 47:328–334. https://doi.org/10.1016/j.ijantimicag.2016.01.008.

10. Chang YT, Coombs G, Ling T, Balaji V, Rodrigues C, Mikamo H, Kim MJ, Rajasekaram DG, Mendoza M, Tan TY, Kiratits R, Ni Y, Weinman B, Xu Y, Hsueh PR. 2016. Epidemiology and antimicrobial susceptibility profiles of pathogens causing urinary tract infections in the Asia-Pacific region: results from the Study for Monitoring Antimicrobial Resistance Trends (SMART), 2010–2013. Int J Antimicrob Agents 47:734–739. https://doi.org/10.1016/j.ijantimicag.2017.01.030.

11. Diekema DJ, Hsueh PR, Mendes RE, Pfaller MA, Rolston KV, Sader HS, Jones RN. 2019. The microbiology of bloodstream infection: 20-year trends from the SENTRY antimicrobial surveillance program. Antimicrob Agents Chemother 63:e00355-19. https://doi.org/10.1128/AAC.00355-19.

12. NetoNet T, Kiratits R, Pfaller MA. 2015. Genetic characterization of carbapenem-resistant Enterobacteriaceae and the spread of carbapenem-resistant Klebsiella pneumoniae ST340 at a university hospital in Thailand. PLoS One 10: e0139116. https://doi.org/10.1371/journal.pone.0139116.

13. National Antimicrobial Resistance Surveillance Center, Thailand. 2019. Antibigrams. http://narst.dmsc.moph.go.th/antibigrams.html.

14. Yang P, Chen Y, Jiang S, Shen P, Lu X, Xiao Y. 2018. Association between antibiotic consumption and the rate of carbapenem-resistant Gram-negative bacteria from China based on 153 tertiary hospitals data in 2014. Antimicrob Resist Infect Control 7:137. https://doi.org/10.1186/s13756-018-0430-1.

15. Malchione MD, Torres LM, Hartley DM, Koch M, Goodman JL. 2019. Carbapenem and colistin resistance in Enterobacteriaceae in Southeast Asia: review and mapping of emerging and overlapping challenges. Int J Antimicrob Agents 54:381–399. https://doi.org/10.1016/j.ijantimicag.2019.07.019.

16. Morrill HJ, Pogue JM, Kaye KS, LaPlante KL. 2015. Treatment options for carbapenem-resistant Enterobacteriaceae infections. Open Forum Infect Dis 2:eof050. https://doi.org/10.1093/ofid/ofo050.

17. Lee CR, Lee JH, Park KS, Kim YB, Jeong BC, Lee SH. 2016. Global dissemination of carbapenemase-producing Klebsiella pneumoniae: epidemiology, genetic context, treatment options, and detection methods. Front Microbiol 7:895. https://doi.org/10.3389/fmicb.2016.00895.

18. van Duijn D, Doi Y. 2017. The global epidemiology of carbapenemase-producing Enterobacteriaceae. Virulence 8:460–469. https://doi.org/10.1080/21505594.2016.1222343.

19. Li Y, Sun QL, Shen Y, Zhang Y, Yang JW, Shu LB, Zhou HW, Wang Y, Wang B, Zhang R, Wang S, Shen Z. 2018. Rapid increase in prevalence of carbapenem-resistant Enterobacteriaceae (CRE) and emergence of colistin resistance gene mec-1 in CRE in a hospital in Henan. J Clin Microbiol 56:e01932-17. https://doi.org/10.1128/JCM.01932-17.

20. Sugawara Y, Akeda Y, Hagiyama H, Sakamoto N, Takeuchi D, Shunmugakani RK, Motooka D, Nishi I, Zin KN, Aye MM, Miyata T, Tomono K, Hamada S. 2019. Spreading patterns of NDM-producing Enterobacteriaceae in clinical and environmental settings in Yangon, Myanmar. Antimicrob Agents Chemother 63:e01924-18. https://doi.org/10.1128/AAC.01924-18.

21. Rimrang B, Chanawong A, Lulitanond A, Williacuka C, Charoenri N, Sribenjalux P, Phumsrikaew W, Wonglakorn L, Kerdsin A, Chetchotisakd P. 2017. TRA3001021.2016.1222343.

22. Poirel L, Potron A, Nordmann P. 2012. OXA-48-like carbapenemases: the phantom menace. J Antimicrob Chemother 67:1597–1603. https://doi.org/10.1093/jac/dks267.

23. Mohamed N, Said H, Hussin H, Abdul Rahman N, Hashim R. 2018. Carbapenem-resistant Enterobacteriaceae: clinico-epidemiological perspective. Trop Biomed 35:300–307.

24. Turton JF, Woodford N, Glover J, Yarde S, Kaufmann ME, Pitt TL. 2006. Identification and antimicrobial susceptibility profiles of carbapenem-resistant Acinetobacter baumannii blood isolates from patients with intra-abdominal infections in the Asia-Pacific region, 2010–2013. Int J Antimicrob Agents 29:265–269. https://doi.org/10.1016/j.ijantimicag.2010.04.007.

25. Wang TH, Leu YS, Wang NY, Liu CP, Yan TR. 2018. Prevalence of different carbapenem genes among carbapenem-resistant Acinetobacter baumannii blood isolates in Taiwan. Antimicrob Resist Infect Control 7:123. https://doi.org/10.1186/s13756-018-0410-5.

26. Evans BA, Amyes SG. 2014. OXA-51-like carbapenemases. Clin Microbiol Rev 27:241–263. https://doi.org/10.1128/CMR.00017-13.

27. Bou G, Oliver A, Martinez-Beltran J. 2000. OXA-24, a novel class D β-lacta-}

Drug-Resistant Gram-Negative Bacteria in Thailand

Antimicrobial Agents and Chemotherapy

September 2021 Volume 65 Issue 9 e00675-21 aac.asm.org 11
28. Heritier C, Poirel L, Lambert T, Nordmann P. 2005. Contribution of acquired carbapenem-hydrolyzing oxacillinases to carbapenem resistance in Acinetobacter baumannii. Antimicrob Agents Chemother 49:3198–3202. https://doi.org/10.1128/AAC.49.8.3198-3202.2005.

29. Shortridge D, Gales AC, Streit JM, Huband MD, Tsakris A, Jones RN. 2019. Geographic and temporal patterns of antimicrobial resistance in Pseudomonas aeruginosa over 20 years from the SENTRY antimicrobial surveillance program, 1997–2016. Open Forum Infect Dis 6:563–568. https://doi.org/10.1093/ofid/ofy343.

30. Palavutitotai N, Jitmuang A, Tongsai S, Kiratisin P, Angkasekwinai N. 2018. Epidemiology and risk factors of extensively drug-resistant Pseudomonas aeruginosa infections. PLos One 13:e0193431. https://doi.org/10.1371/journal.pone.0193431.

31. European Centre for Disease Prevention and Control. 2019. Surveillance of antimicrobial resistance in Europe. Annual report of the European Antimicrobial Resistance Surveillance Network (EARSNet) 2019. https://www.ecdc.europa.eu/sites/default/files/documents/surveillance-antimicrobial-resistance-Europe-2019.pdf.

32. Castanheira M, Mills JC, Farrell DJ, Jones RN. 2014. Mutation-driven β-lactam resistance mechanisms among contemporary ceftazidime-nonsusceptible Pseudomonas aeruginosa isolates from U.S. hospitals. Antimicrob Agents Chemother 58:6844–6850. https://doi.org/10.1128/AAC.03681-14.

33. Kazmierczak KM, Rabine S, Hackel M, McLaughlin RE, Biedenbach DJ, Bouchillon SK, Sahm DF, Bradford PA. 2016. Multiyear, multinational survey of the incidence and global distribution of metallo-β-lactamase-producing Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob Agents Chemother 60:1067–1078. https://doi.org/10.1128/AAC.02379-15.

34. Brink AJ. 2019. Epidemiology of carbapenem-resistant Gram-negative infections globally. Curr Opin Infect Dis 32:609–616. https://doi.org/10.1097/QCO.0000000000000608.

35. Centers for Disease Control and Prevention. Patient safety atlas. https://www.cdc.gov/hai/surveillance/ar-patient-safety-atlas.html.

36. Clinical and Laboratory Standards Institute. 2017. Performance standards for antimicrobial susceptibility testing, 27th ed. CLSI supplement M100. CLSI, Wayne, PA.

37. Kiratisin P, Apisarnthanarak A, Laesripa C, Saifon P. 2008. Molecular characterization and epidemiology of extended-spectrum-beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates causing health care-associated infection in Thailand, where the CTX-M family is endemic. Antimicrob Agents Chemother 52:2818–2824. https://doi.org/10.1128/AAC.00171-08.

38. Srinivasan R, Karaoz U, Volegova M, Maekitchan J, Kato-Maeda M, Miller S, Nadarajan R, Brodie EL, Lynch SV. 2015. Use of 16S rRNA gene for identification of a broad range of clinically relevant bacterial pathogens. PLos One 10:e0117617. https://doi.org/10.1371/journal.pone.0117617.

39. Ellington MJ, Kistler J, Livermore DM, Woodford N. 2007. Multiplex PCR for rapid detection of genes encoding acquired metallo-beta-lactamases. J Antimicrob Agents Chemother 59:321–322. https://doi.org/10.1093/jac/dkl481.

40. Poirel L, Walsh TR, Cuvillier V, Nordmann P. 2011. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis 70:119–123. https://doi.org/10.1016/j.diagmicrobio.2010.12.002.

41. Woodford N, Ellington MJ, Coelho JM, Turton JF, Ward ME, Brown S, Amyes SG, Livermore DM. 2006. Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int J Antimicrob Agents 27:351–353. https://doi.org/10.1016/j.ijantimicag.2006.01.004.