CBMS-05
COMPREHENSIVE METABOLOGENIC ANALYSIS OF IDH1R132H CLINICAL GLIOMA SAMPLES REVEALS SUPPRESSION OF β-OXIDATION DUE TO CAROTIDINE DEFICIENCY.
Satsuki Miyata1, Kaoru Tsuchida1, Eiji Sakuhashita1, Masashi Urabe2, Yoshiyuki Onuki1, Akira Gomi3, Takashi Yamaguchi4, Makiko Mieno5, Hiroaki Mizukami5, Akhiro Kume6, Kenya Ozawa7, Eijyu Watanabe8,1
Kensuke Kawai1, Hitoshi Endou1; 1Department of Neurosurgery, Jichi Medical University, Tochigi, Japan

BACKGROUND: Gliomas with isocitrate dehydrogenase 1 (IDH1) mutation have alterations in several enzyme activities, resulting in various metabolic changes. The objective of this study was to investigate the mechanism for the better prognosis of gliomas with IDH1 mutation by performing metabolomic analysis.

METHODS: To comprehensively understand the metabolic state of human gliomas, we analyzed clinical samples obtained from surgical resection of glioma patients (grades II-IV) with or without the IDH1 mutation, and compared them with US7 glioblastoma cells expressing IDH1 or IDH1R132H dDNA. We used capillary electrophoresis and liquid chromatography time-of-flight mass spectrometry for these analyses. RESULTS: In clinical samples of gliomas with IDH1 mutation, levels of 2-hydroxyglutarate (2HG) were significantly increased compared with gliomas without IDH1 mutation. Gliomas with IDH1 mutation also showed decreased 2-oxoglutarate and downstream intermediates in the tricarboxylic acid cycle and increased levels of amino acids, which are involved in production of energy, amino acids, and nucleic acids. The marked difference in the metabolic profile in IDH1 mutant clinical glioma samples compared with that of mutant IDH1 expressing cells includes a decrease in β-oxidation due to acyl-carnitine and carnitine deficiency. CONCLUSIONS: These metabolic changes may explain the lower necrosis. Serine-dependent one-carbon metabolism has a key role for glioma cells to survive glutamine starvation. These results may suggest a new therapeutic strategy targeting critical glioma cells adapting the tumor microenvironment.

CBMS-07
SERINE SYNTHESIS AND ONE-CARBON METABOLISM IN GLIOMA CELLS TO SURVIVE GLUTAMINE STARVATION
Kazuhiro Tanaka1, Takashi Sasayama1, Takiko Uno1, Yuichi Fujita1, Mitsuhiro Hashiguchi1, Yasuhiro Inmo1, Eiji Kohmura1; 1Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe, Japan

Cancer cells optimize nutrient utilization to supply energetic and biosynthetic pathways. These metabolic processes also include reductive maintenance and epigenetic regulation through nucleic acid and protein metabolism, enhancing tumorigenicity and clinical resistance. However, less is known about how cancer cells exhibit metabolic flexibility to sustain cell growth and survival from nutrient starvation. Here, we identify a key role for serine availability and one-carbon metabolism in the survival of glialoma cells from glutamine deprivation. To identify metabolic response to glutamine deprivation in glioma cells, we analyzed metabolites using gas chromatography and mass spectrometry (GC/MS) in glioma cells cultured in glutamine-deprived medium and examined gene expression of key enzymes for one-carbon units using RT-PCR and western blotting methods. These expressions were also confirmed by immunohistochemical staining in glioma clinical samples. Metabolism studies indicated serine, cysteine, and methionine as key differentiating amino acids between control and glutamine-deprived groups. Serine synthesis was mediated through autophagy rather than glycolysis. Gene expression analysis identified upregulation of Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) to regulate serine synthesis and one-carbon metabolism. Importantly, suppression of this metabolite impaired glioma cell survival in glutamine deprivation. In human glioma samples, MTHFD2 expressions were higher in poorly nutrient regions around “pseudopalisading necrosis”. Serine-dependent one-carbon metabolism has a key role for glioma cells to survive glutamine starvation. These results may suggest the new therapeutic strategies targeting critical glioma cells adapting the tumor microenvironment.

CBMS-08
INVESTIGATION FOR NICOTINIC EFFECTS ON STEM CELL'S PROPERTY IN HSV-TK/GCV GENE THERAPY
Haruki Kominami1, Tomohiro Yamasaki1, Tomoya Oishi1, Makoto Horikawa1, Taisuke Yamamoto1, Shinichiro Koizumi1, Tetsuo Samehama1, Hiroki Namba1; 1Department of Neurosurgery, Seirei Mikatahara General Hospital

BACKGROUND: Herpes simplex virus-thymidine kinase/ganciclovir (HSV-tk/GCV) system is one of feasible therapeutic strategies for defeating malignant gliomas. Stem cells with intrinsic tumor tropism are used for suicide gene vehicles, which make this therapy further realistic. Nicotine is known to affect cellular migration capacity in variety types of cells but whether nicotine impacts on stem cells' migration capacity to gliomas is not scrutinized. In this research, we investigated nicotinic impact on stem cells' properties including tumor tropism and gap junctional intercellular communication (GJIC), which is crucial to this therapeutic strategy.

METHODS: Mouse induced pluripotent stem cell (iPSC)-derived neural stem cells (iPSC-NSCs) and human dental pulp mesenchymal stem cells (hDPSCs) were used. Nicotine cytotoxicity for 24 hours was evaluated by MTT assay for stem cells and glioma cells; GS-9L and C6 (rat), GL261 (mouse), U251 and U87 (human). Tumor tropism to glioma-conditioned medium (GCM) with or without non-toxic nicotine concentrations was assessed using Matrigel Invasion Chamber. Nicotine effect on GJIC was evaluated with scrape loading/dye transfer assay (SLDT assay) for co-culture of stem cells and glioma cells; stem cell/glioma cell or paracrine assay for glioma cells alone using high-content analysis. RESULTS: MTT assay revealed a 1 μM nicotine, equivalent to a cigarette smoking, is the maximum safe concentration for stem cells and glioma cells. Tumor tropism (iPSC-NSCs to GL261-CM, hDPSCs to U251- or U87-CM) and GJIC of co-culture of stem cells and glioma cells (iPSC-NSC/GL261, hDPSC/U251) or glioma cells alone (GS-9L, C6, GL261 and U251) were not affected by 1 μM of nicotine. CONCLUSIONS: Physiological nicotine presence did not affect (1) stem cells' tumor tropism to gliomas and (2) GJIC between stem cells and glioma cells or within glioma cells. HSV-tk/GCV therapy may retain its therapeutic efficacy against gliomas even under physiological nicotine concentrations.

CBMS-10
FUNCTIONAL ROLE OF MYCN IN SHH TYPE TP53 MUTATED MB’S METABOLISM
Kiyotaka Yokogami1, Takashi Watanabe1, Shinji Yamashita2, Asaka Mizuguchi3, Hideo Takeda3,1; 1Department of Neurosurgery, Section of Clinical Neuroscience, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan

BACKGROUND: Medulloblastoma is classified in 4 subgroups. Prognosis and therapeutic option were different from each subgroups. Thus, we need subgroup-specific in vitro models for investigating new therapeutic targets. Little established medulloblastoma cell-lines, which have been subgrouped is available. Especially, commercially available SHH type TP53 mutated cell-line is only DAOY. We established new cell lines 505CSC / 507FBS from the patient with SHH type with TP53 mutated MB. This matched pair cell line showed high expression of MYCN in serum free conditioned medium. To know the functional role of N-MYC in MB, we used 507CSC and DAOY. MATERIAL AND METHODS: Using chemical inhibitor of MYCN in 507CSC and DAOY, proliferation assay, mRNA expression and measurements of ex vivo metabolic phenotype were performed. RESULTS: MYCN inhibition leads to cell death in both cell lines. MYCN regulated glucose, glutamine and methionine metabolism. Especially the targets were PKM2, GLS2, MAT2A, DNMT1 and 3A. CONCLUSION: MYCN is a target of therapy in a patient with SHH type TP53 mutated medulloblastoma.

CBMS-12
PENTAMIDINE: TRANSLATIONAL RESEARCH FOR A NEW CHEMOTHERAPY TARGETING ON GLIOMA CELLS AND GLIOMA STEM CELLS USING DRUG REPOSITIONING
Sho Tamai1, Sabit Hemragul1, Jaipar Shabierjiang1, Guangtao Zhang1, Jiaxiang Zhang1, Yi Wang1, Shingo Tanaka1, Masashi Kimoshita1, Atsushi Hiroa, Mitsutoshi Nakada1; 1Department of Neurosurgery Kanazawa University

INTRODUCTION: Glioblastoma (GBM) is primary malignant brain tumor with poor prognosis. Despite aggressive chemoradiotherapies, GBM has recurrence and finally relapses. Recently, it is revealed that glioma stem cells (GSCs) are forming tumors and induce the recurrence. However, there is no effective therapy for GSCs. Herein, we newly identified pentamidine, an antiprotozoal drug, is effective for not only glioma cells but also GSCs by drug repositioning approach. METHOD: We investigated pentamidine impact on stem cell lines, A172 and T98, and patient-derived glioma stem cell lines KG051, KG057 which were established at Kanazawa University. We investigated proliferation ability, stemness and intracellular signal change by proliferation assay, sphere forming assay and western blotting methods, respectively. Cytotoxicity assay was performed using MTT assay. RESULTS: Pentamidine inhibited proliferation and induced cell death in both subgroups. Pentamidine effectively inhibited cell proliferation and induced cell death in both subgroups. Pentamidine concentration of 1 μM in both cell lines. Pentamidine suppressed tumor volume in a xenograft model. CONCLUSION: Pentamidine is known as the therapeutic drug for pneumocystis.

CBMS-13
FUNCTIONAL ROLE OF MYCN IN SHH TYPE TP53 MUTATED MB'S METABOLISM
Kiyotaka Yokogami1, Takashi Watanabe1, Shinji Yamashita2, Asaka Mizuguchi3, Hideo Takeda3,1; 1Department of Neurosurgery, Section of Clinical Neuroscience, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan

BACKGROUND: Medulloblastoma is classified in 4 subgroups. Prognosis and therapeutic option were different from each subgroups. Thus, we need subgroup-specific in vitro models for investigating new therapeutic targets. Little established medulloblastoma cell-lines, which have been subgrouped is available. Especially, commercially available SHH type TP53 mutated cell-line is only DAOY. We established new cell lines 505CSC / 507FBS from the patient with SHH type with TP53 mutated MB. This matched pair cell line showed high expression of MYCN in serum free conditioned medium. To know the functional role of N-MYC in MB, we used 507CSC and DAOY. MATERIAL AND METHODS: Using chemical inhibitor of MYCN in 507CSC and DAOY, proliferation assay, mRNA expression and measurements of ex vivo metabolic phenotype were performed. RESULTS: MYCN inhibition leads to cell death in both cell lines. MYCN regulated glucose, glutamine and methionine metabolism. Especially the targets were PKM2, GLS2, MAT2A, DNMT1 and 3A. CONCLUSION: MYCN is a target of therapy in a patient with SHH type TP53 mutated medulloblastoma.