ALGEBRAIC ASPECTS OF HYPERGEOMETRIC DIFFERENTIAL EQUATIONS

THOMAS REICHELT, MATHIAS SCHULZE, CHRISTIAN SEVENHECK, AND ULI WALther

Abstract. We review some classical and modern aspects of hypergeometric differential equations, including A-hypergeometric systems of Gel’fand, Graev, Kapranov and Zelevinsky. Some recent advances in this theory, such as Euler-Koszul homology, rank jump phenomena, irregularity questions and Hodge theoretic aspects are discussed with more details. We also give some applications of the theory of hypergeometric systems to toric mirror symmetry.

Contents

1. Introduction 2
1.1. Hypergeometric functions 2
1.2. From univariate to GKZ and back 5
1.3. Solutions 8
2. Torus action and Euler-Koszul complex 10
2.1. Torus action and A-grading 10
2.2. Toric category and Euler-Koszul technology 11
2.3. Fourier transformed GKZ-systems 12
2.4. Holonomicity, Rank, and Singular Locus 13
2.5. Better behaved systems and contiguity 17
3. Irregularity 17
3.1. The Fuchs criterion and regularity 18
3.2. Initial ideals and triangulations 19
3.3. Slopes and the (A,L)-umbrella 21
3.4. L-characteristic varieties 24
4. Hodge theory of GKZ-systems 25
4.1. Section setup, and basics on mixed Hodge modules 26
4.2. Geometric interpretation of GKZ-systems 27
4.3. Hodge-filtration on GKZ-systems 30
4.4. Weight filtration on GKZ systems 34
5. Application to toric mirror symmetry 35
5.1. Gromov–Witten invariants and Dubrovin connection 36
5.2. Landau–Ginzburg models 39
5.3. Reduced quantum \mathcal{D}-modules and intersection cohomology 44
Table of Symbols 50
References 52
1. Introduction

Notational conventions. We use Italic letters M for rings, variables and modules; calligraphic letters \mathcal{D} for sheaves; Roman letters Fl for functors; Gothic letters for prime ideals p and points x of spaces.

Lattice elements a are in Roman bold; coordinate sets t and other sets of functions or operators ∂ in Italic bold.

1.1. Hypergeometric functions. The study of hypergeometric functions started more than two centuries ago and formed an important part of the work of Euler and Gauß. A power series

$$f(z) = \sum_{i=0}^{\infty} \frac{a_i z^i}{i!}$$

is hypergeometric if the quotient a_{i+1}/a_i of consecutive coefficients is a rational function in i. Traditional convention dictates that the exponential function is regarded as the standard hypergeometric function (to a_{i+1}/a_i constant); this “explains” the choice of $a_i/i!$ over a_i as series coefficient. Further examples include Bessel, Airy, trigonometric and (higher) logarithmic as well as all other special functions, and the hypergeometric functions that express roots of algebraic equations [Stu00].

The continuing interest in hypergeometric functions stems to some extent from the fact that they are often solutions to very appealing linear differential equations taken from physics. For example, the Bessel functions $J_{\pm}(x)$ of the first kind arise as solutions to a linear second order equation that shows up in heat and electromagnetic propagation in a cylinder, vibrations of circular membranes, and more generally when solving the Helmholtz or Laplace equation. Indeed, such connections to physics through differential equations prompted the first studies of (specific) hypergeometric functions. However, hypergeometric functions also appear in many other parts of mathematics: as we will see soon, each time an action of an algebraic torus on a space is observed, one can expect to find some differential equation of hypergeometric type connected to this situation. The abundance of toric varieties in geometry explains why there are so many different interesting hypergeometric functions. We discuss in Section 5 below one prominent case where hypergeometric differential equations prove to be useful: the so-called mirror symmetry phenomenon for certain smooth toric varieties. Other recent applications that are beyond the scope of this article include the holonomic gradient method in algebraic statistics ([HNT17]) or Feynman integral computations in quantum field theory ([Nas16],[Kla19],[de 19],[FCCZ20]).

As it turns out, it is exactly the type of differential equation satisfied by a function that determines whether the function should be considered as hypergeometric, since these force the right kind of recursions on the series. The most successful approach to generalize hypergeometric differential equations to several variables was initiated by Gel’fand, Graev, Kapranov and Zelevinsky in the 1980s, and some of the features of this theory form the topic of this article. We start with some motivating examples.

Example 1.1 (The error function, part I). The (Gauß) error function $\text{erf}(x)$ is defined by

$$\text{erf}(z) = \frac{2}{\sqrt{\pi}} \int_0^z \exp(-t^2) \, dt.$$
While this integral cannot be solved in closed form, it can be developed into a convergent Taylor series

\[\text{erf}(z) = \frac{2}{\sqrt{\pi}} \sum_{i=0}^{\infty} \frac{(-z^2)^i}{i!}, \]

where \(a_i = 1/(2i + 1) \), so that

\[\text{erf}(z) = \frac{2z}{\sqrt{\pi}} \left(1 - \frac{z^2}{3} + \frac{(z^2)^2}{10} - \frac{(z^2)^3}{42} + \frac{(z^2)^4}{216} + \frac{(z^2)^5}{1320} + \cdots \right) \]

is hypergeometric.

The univariate hypergeometric functions are classified by the rational function \(a_{i+1}/a_i \). More precisely, suppose that \(a_{i+1}/a_i = P(i)/Q(i) \) where \(P, Q \in \mathbb{C}[i] \) are monic with \(P = \prod_{j=1}^{p}(i + \alpha_j) \) and \(Q = \prod_{j=1}^{q}(i + \beta_j) \). Then the univariate hypergeometric function associated to \(P, Q \) is

\[{}_pF_q(\alpha_1, \ldots, \alpha_p; \beta_1, \ldots, \beta_q; z) = \sum_{i=0}^{\infty} \frac{a_i z^i}{i!} \]

where \(a_0 = 1 \) and

\[\frac{a_{i+1}}{a_i} = \frac{(i + \alpha_1)(i + \alpha_2) \cdots (i + \alpha_p)}{(i + \beta_1)(i + \beta_2) \cdots (i + \beta_q)}. \]

Example 1.2 (The error function, part II). It follows from (1) that \(\text{erf}(z) \) is, up to the factor \(2z/\sqrt{\pi} \), equal to \({}_1F_1(1/2; 3/2; -z^2) \), where

\[{}_1F_1(1/2; 3/2; z) = 1 + \frac{z}{3} + \frac{z^2}{10} + \frac{z^3}{42} + \frac{z^4}{216} + \frac{z^5}{1320} + \cdots \]

is the Kummer confluent function which encodes all intrinsic analytic and combinatorial properties of \(\text{erf}(z) \) and, with \(\theta_z = z\frac{d}{dz} \), satisfies the differential equation

\[\theta_z(\theta_z + 1/2) \bullet (f) - z(\theta_z - 1/2) \bullet (f) = 0. \]

The particular shape of this equation will be used in the next section for a conversion process from univariate hypergeometric functions to \(A \)-hypergeometric ones.

In the following example we document how hypergeometric functions arise naturally from differential forms with parameters. The computation was apparently already known to Kummer; compare [BK86] for details. In modern terms, it represents the birth of the notion of a variation of Hodge structures.

Example 1.3 (Hypergeometry and Hodge filtrations). The equation \(f_z = 0 \) with

\[f_z(u, v) = v^2 - u(u - 1)(u - z) \]

defines for each \(z \in \mathbb{C} \setminus \{0, 1\} \) a smooth curve \(E_z \) over \(\mathbb{C} \). Its projective closure \(\overline{E_z} \subseteq \mathbb{P}_\mathbb{C}^3 \) meets the line at infinity in a single point and is smooth as long as \(z \not\in \{0, 1, \infty\} \). The natural projection from \(E_z \) to \(\mathbb{C} \) via “forgetting \(v \)” is generically \(2:1 \) and branches at \(0, 1, \infty \); the induced map \(\overline{E_z} \to \mathbb{P}_\mathbb{C}^2 \) also branches at infinity.

The differential 1-form \(\omega_z := du/v \) is everywhere holomorphic and nowhere zero on \(\overline{E_z} \); the existence of this “form of the first kind” in Riemann’s language makes the elliptic curve \(\overline{E_z} \) a Calabi-Yau manifold in modern terms. The “form of the
second kind” $\omega'_2 := \omega_2/(u - z)$ has a unique pole, at $u = z$, at which it is residue-free. Considering $v = v(u, z)$ as dependent variable and writing ω_2, ω'_2 in terms of u and z, one notes that \(\frac{\partial}{\partial z}(\omega_2) = \frac{1}{2}\omega'_2 \), and (compare especially [BK86, Page 685])

\[
\frac{\partial}{\partial z}(\omega'_2) = \frac{3du}{4v(u - z)^2} + \frac{1}{4z(1 - z)} \omega_2 + \frac{-1 + 2z}{z(1 - z)} \omega'_2 + d \left(\frac{v}{2(u - z)^2z(1 - z)} \right),
\]

the differential on the right being taken in u, v with z constant (and noting that on E one has $d(u(u - 1)(u - z)) = 2vdv$).

Let $\lambda \in H_1(\mathcal{E}_z; \mathbb{Z}) \simeq \mathbb{Z} \oplus \mathbb{Z}$ and set $I_1(\lambda) = \int_\lambda \omega_2$ and $I_2(\lambda) = \int_\lambda \omega'_2$, multi-valued functions on \mathcal{E}_z defined via elliptic integrals. The differential equations for ω_2, ω'_2 imply (compare [BK86, Lemma 12]) that $I_1(\lambda)$ and $I_2(\lambda)$ are solutions to

\[
f'' - qf' = pf,
\]

with singularities at 0, 1 and ∞. It is the special case $1 = 2a = 2b = c$ of the general Gauß hypergeometric differential equation

\[
f'' + \frac{c - (a + b + 1)t}{z(1 - z)}f' = \frac{ab}{z(1 - z)}f
\]

with solution space basis given by Gauß’ hypergeometric functions

\[
F_1 = \sum_{n=0}^{\infty} \frac{[a]_n[b]_n [1 - z]^n}{[c]_n n!}, \\
F_2 = -\sqrt{-1} \sum_{n=0}^{\infty} \frac{[a]_n[b]_n (1 - z)^n}{[c]_n n!},
\]

which have singularities at 0, ∞ and 1, ∞ respectively.

Suppose λ_z, λ'_z are the standard basis (the minimal geodesics) for the first homology group of the torus \mathcal{E}_z. Then two elementary (but non-trivial) computations reveal:

1. analytic continuation of the solution space basis $F = (F_1, F_2)^T$ around the points $z = 0$ and $z = 1$ corresponds to multiplication of F by $M_0 = \begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix}$ and $M_1 = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ respectively;

2. the map

\[
\pi: \mathbb{P}^2_\mathbb{C} \setminus \{(1, 0, 0), (1, 1, 0), (0, 0, 1)\} \longrightarrow \mathbb{P}^1_\mathbb{C}, \\
wv(u - w) \leftrightarrow z_0, \\
wv^2 - w^3 - u^2w \leftrightarrow z_1,
\]

is a bundle with fiber \mathcal{E}_{z_1}/z_0 that admits an Ehresmann connection. In particular, the cohomology classes of the fibers allow parallel transport. The induced vector bundle with fiber $H_1(\mathcal{E}_z; \mathbb{Z}) = \mathbb{Z}\lambda_z + \mathbb{Z}\lambda'_z$ admits a monodromy action, lifting the loops around $z = (0, 1)$ and $z = (1, 1)$. Analysis of the geometry of π shows that this monodromy is given again by the actions of M_1 and M_2 respectively.

More abstractly, the D-module on the base of π corresponding to the derived direct image of the structure sheaf on the source of π, also known as the Gauß-Manin system, has monodromy action via M_1, M_2.
On the complement of the points $0, 1, \infty$ this D_n-module is a vector bundle with a flat connection. The fibers of this vector bundle are the cohomology groups $H^1(\mathcal{F}_{\mathbb{Z}_0/\mathbb{Z}_0}; \mathbb{C})$. This vector bundle is actually a variation of pure Hodge structures of weight 1 where the $(1, 0)$-part is generated by the differential form ω_z, the variation of this $(1, 0)$-subbundle being described by (4).

It follows that, up to scalars, $I_1(\lambda_z) = F_1(z)$, $I_2(\lambda_z) = F_2(z)$. In particular, the ratio $r(z) = I_1(\lambda_z)/I_2(\lambda_z)$ is the modulus of the elliptic curve in the sense that the fiber over z is isomorphic to the quotient of \mathbb{C} by $\mathbb{Z} + \sqrt{-1} \tau \cdot \mathbb{Z}$.

We will take up the discussion of Hodge structures associated to more general univariate hypergeometric operators (see equation (7) below) later in Section 4 (see page 33).

1.2. From univariate to GKZ and back. In the 1980s, the Russian school around I.M. Gel‘fand found a universal way of encoding univariate hypergeometric functions by way of certain systems of PDEs that arise from an integer matrix A and complex parameter vector β. We start with the general definition and then explain how univariate hypergeometric functions arise as solutions of these D-modules.

Notation 1.4. In the first three sections of this article,

$$A = (a_1, \ldots, a_n) \in \mathbb{Z}^{d \times n}$$

denotes an integer matrix with d rows and n columns. In the last two sections, A will still be integer, but at least sometimes of size $(d + 1) \times (n + 1)$.

For convenience, we place the following constraints on the matrix A: they make concise statements possible, or at least easier to make.

Convention 1.5 (Standard assumptions on A). With A as above, A spans a semigroup

$$\mathbb{N}A := \sum_{j=1}^n \mathbb{N}a_j \subseteq \mathbb{Z}A$$

inside \mathbb{Z}^d. Throughout we assume that

- the group $\mathbb{Z}A$ generated by A agrees with \mathbb{Z}^d (A is full);
- the semigroup $\mathbb{N}A$ contains no units besides 0 (A is pointed). We note that pointedness of A is equivalent to the existence of a group homomorphism from \mathbb{Z}^d to \mathbb{Z} that is positive on every a_j.

We now give the definition of the main character of our story.

Definition 1.6 (A-hypergeometric system, [GGZ87]). Fix $A \in \mathbb{Z}^{d \times n}$ as in Convention 1.5 and choose $\beta \in \mathbb{C}^d$. Let

$$D_A := \mathbb{C}[x] \langle \partial \rangle$$

be the n-th Weyl algebra over \mathbb{C}. Here $x = x_1, \ldots, x_n$, $\partial = \partial_1, \ldots, \partial_n$, and ∂_j is identified with the partial differentiation operator $\frac{\partial}{\partial x_j}$. We also let

$$R_A := \mathbb{C}[\partial] \subseteq D_A$$

denote the polynomial subring.
Letting \(\theta_j \) stand for \(x_j \partial_j \), the Euler operator \(E_i \) is
\[
E_i = \sum_{j=1}^{n} a_{i,j} \theta_j.
\]
For each \(u \in \mathbb{Z}^n \) in the kernel of \(A \) its box operator is
\[
\Box u = \partial^{u^+} - \partial^{u^-},
\]
where \((u^+)_j = \max\{0, u_j\}\) and \((u^-)_j = \max\{0, -u_j\}\). The toric ideal \(I_A \) is the \(\mathbb{R}A \)-ideal generated by all \(\Box u \) with \(u \in \ker A \). Finally, the hypergeometric ideal and module to \(A, \beta \) are
\[
H_A(\beta) := \mathcal{D}_A(\mathcal{I}_A, \{E_i - \beta_i\}^d_1), \quad M_A(\beta) := \mathcal{D}_A / H_A(\beta).
\]

Before we embark on a general discussion of these modules we wish to distinguish two special subclasses that will play a lead role.

Definition 1.7. The matrix \(A \) is **homogeneous** if the following equivalent properties are satisfied:
- there is a group homomorphism from \(\mathbb{Z}^d \) to \(\mathbb{Z} \) that sends every \(a_j \) to \(1 \in \mathbb{Z} \);
- the vector \((1, 1, \ldots, 1)\) is in the row span of \(A \);
- the ideal \(I_A \) is standard graded and thus defines a projective variety inside projective \((n-1)\)-space.

Definition 1.8. The semigroup \(NA \) is **saturated** if \(NA \) agrees with the intersection of \(ZA \) with the cone \(\mathbb{R}_{\geq 0}A \) spanned by the columns of \(A \) viewed as elements of \(\mathbb{R}^n = \mathbb{Z}^n \otimes \mathbb{Z} \mathbb{R} \).

In a series of articles, including \([GGZ87, GZK89, GKZ90]\), I.M. Gel’fand and his collaborators M. Graev, M. Kapranov and A. Zelevinsky developed the basic theory of these systems of linear PDEs. The initial motivation came from Aomoto type integrals
\[
Y(\beta; x) = \int_C t^\beta \exp \left(\sum_{i=1}^{n} x_i t^{a_i} \right) \frac{dt_1}{t_1} \cdots \frac{dt_d}{t_d}
\]
depending on a complex parameter vector \(\beta \in \mathbb{C}^d \). It is not hard to verify that a hypergeometric function defined by the integral (5) is annihilated by both the Euler operators and the box operators \([GKZ90, Ado94]\) but it took a decade to arrive at the general formulation given here.

It turns out that every univariate hypergeometric function arises as a solution of an \(A \)-hypergeometric system; we sketch next the steps to construct the proper \(A, \beta \). The general hypergeometric univariate differential equation is
\[
\prod_{v_j > 0} \prod_{\ell=0}^{v_j-1} (v_j \theta_z + c_j - l) = \prod_{v_j < 0} \prod_{\ell=0}^{v_j-1} (v_j \theta_z + c_j - l).
\]

It is elementary, but not always trivial, to bring a differential equation derived from a series expansion of a hypergeometric function into this shape; it may require
changes of variables in \(z \). Note that \(_pF_q(\alpha; \beta; z) \) is a solution to the special form

\[
\theta_z \prod_{j=1}^q (\theta_z + \beta_j - 1) = z \prod_{j=1}^p (\theta_z + \alpha_j)
\]

as one can see from applying the two operators to the power series (2).

Let \(v \) and \(c \) be the vectors with entries \(v_j \) and \(c_j \) respectively. For \(_2F_1 \) (equal to the function \(F_1 \) in Example 1.3), \(v = (1, 1, -1, -1) \) while for the Kummer confluent function \(_1F_1 \), \(v = (1, 1) \).

Now, in order to manufacture \(A \) and \(\beta \) from equation (6), choose an integral matrix \(A \) such that \(Z \cdot v = \ker A \) and set \(\beta = A \cdot c \). Then the solutions of \(H_A(\beta) \) (in other words, the functions annihilated by every operator in this left ideal) “contain the solutions to (6)” in the following sense.

Example 1.9 (The GKZ-system to the Kummer confluent function). Consider the system of partial differential equations

\[
\begin{align*}
(1\theta_1 + 1\theta_3) \bullet (u) &= (-1/2)u \\
(1\theta_2 + 1\theta_3) \bullet (u) &= (0)u \\
(\partial_1\partial_2 - \partial_3) \bullet (u) &= 0
\end{align*}
\]

in \(x_1, x_2, x_3 \). This is the \(A \)-hypergeometric system to

\[
A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}, \quad \beta = \begin{pmatrix} -1/2 \\ 0 \end{pmatrix},
\]

since \(v = (1, 1, -1) \) is the \(Z \)-kernel of \(A \).

Equation (8) forces any solution \(u \) to be homogeneous (and of degree \(-1/2\)) under the grading that attaches the weights \((1, 0, 1)\) to \((x_1, x_2, x_3)\). Similarly, Equation (9) asserts that \(u \) is homogeneous of weight zero if \((x_1, x_2, x_3) \mapsto (0, 1, 1)\). It follows that one can write

\[
u(x_1, x_2, x_3) = x_1^a x_2^b x_3^c g(x_1 x_2 / x_3)
\]

where the monomial \(x_1^a x_2^b x_3^c \) is of bi-degree \((-1/2, 0)\), and \(g \) is a univariate function.

Set \(z = x_1 x_2 / x_3 \) and write

\[
g(z) = \sum_{i=0}^{\infty} g_i z^i.
\]

Enforcing the vanishing of \(\partial_1\partial_2 - \partial_3 \) on \(u(x_1, x_2, x_3) \) as suggested by Equation (10) implies the recurrence relations

\[(c - i)g_i = (a + i + 1)(b + i + 1)g_{i+1}\]

for all \(i \), and the starting condition

\[
\partial_1\partial_2 \bullet (x_1^a x_2^b) = 0.
\]

For \(a = 0 \), observing that \(x_1^a x_2^b x_3^c \) is of bi-degree \((-1/2, 0)\), we infer \(b = -c = 1/2 \) and thus the recurrence is

\[
(-1/2 - i)g_i = (i + 1)(1/2 + i + 1)g_{i+1},
\]

showing that \(g(z) \) essentially agrees with the Kummer confluent function. \(\diamond \)
Example 1.10 (GKZ-system to \(2F_1\)). Take the equation (7) with \(p = q = 2\) and \(c = (1, c, a, b)\). Then \(\mathbf{v} = (1, 1, -1, -1)\) and the matrix \(A\) can be chosen as
\[
A = \begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1
\end{pmatrix},
\]
so that \(\beta = A \cdot c = (c - 1, -a, -b)\). The three Euler operators \(\{\sum_{j=1}^{4} a_{i,j} \theta_j - \beta_i\}_{i=1}^{3}\) annihilate each solution, so every monomial \(x^u\) in the power series expansion of every solution to the \(A\)-hypergeometric system must satisfy the three conditions
\[
\begin{align*}
(u_1 + u_2 + u_3 + u_4) &= \beta_1; \\
(u_1 + u_4) &= \beta_2; \\
(u_2 + u_4) &= \beta_3.
\end{align*}
\]
For a monomial \(x^u\), we call \(A \cdot u \in \mathbb{Z}A\) the \(A\)-degree of \(x^u\). Then, every solution \(u(x_1, x_2, x_3, x_4)\) can be written as a univariate function \(g\) in \(x_1 x_4\), multiplied by a monomial of \(A\)-degree \(\beta\). As in the previous example, one can use the fact that \(\Box_\mathbf{v}\) kills \(u\) to show that \(g\) satisfies the Gauß hypergeometric differential equation.

Of course, the kernel of \(A\) being \(\mathbb{Z} \cdot \mathbf{v}\) means that \(A \in \mathbb{Z}^{(n-1) \times n}\) and \(I_A = (\Box_\mathbf{v})\) is principal. On the other hand, the \(A\)-hypergeometric paradigm also encodes multivariate hypergeometric series of higher rank (namely \(n - d\)) when \(d < n - 1\). The solutions to \(H_A(\beta)\) use \(n\) variables and satisfy \(d\) homogeneities, so that effectively they are functions in \(n - d\) independent quantities. Some aspects of the translation between the two setups is discussed in [BMW19b]. The advantage of the \(A\)-hypergeometric point of view is that it allows hypergeometric functions to be studied with methods coming from algebraic geometry, commutative algebra, and the theory of torus actions. We describe in the following sections some of the advances and some of the new problems that have been created through these new techniques.

1.3. Solutions. While we do not focus very much on solutions of \(A\)-hypergeometric systems in this survey, it is only fair to indicate to some extent the development of the understanding of their solution space over time. We also refer the reader to Remark 3.14 below, where we list and discuss some more references, after having explained issues like irregularity and slopes of hypergeometric systems.

Classically, functions were considered as hypergeometric if they could be developed into a hypergeometric series. They typically arose from specific differential equations and the hypergeometricity was a consequence of the recurrence relations that came out of the differential equation. While introducing \(A\)-hypergeometric systems, Gel’fand and his collaborators Graev, Kapranov and Zelevinsky developed a similar paradigm for the multi-variable homogeneous case, see Definition 1.7. With setup as in Section 2, so \(A \cdot \gamma = \beta\) and \(L_A\) the kernel of \(A\), the series
\[
\sum_{a \in L_A} x^{\gamma+a} / \prod_{1 \leq j \leq n} \Gamma(\gamma_j + a_j + 1)
\]
formally is a solution of \(H_A(\beta)\). Assuming a certain amount of genericity for \(\gamma\) (such as non-resonance, see Definition 2.7) the article [GZK89] also finds that the regions of convergence of these series contain an open cone of the same shape as \(\mathbb{R}_{\geq 0}\).
The series approach to solving differential equations of hypergeometric type was then taken further by Sturmfels, Saito and Takayama in their book [SST00] through the technique of Gröbner bases. As part of this mechanism, triangulations arise. The connection between certain special solution series on one side and triangulations on the other appears already in [GZK89]. In the homogeneous normal case (see Definition 1.7) it can be used to count the number of solutions as the simplicial volume of the convex hull of the columns of A; [SST00] provides various generalizations.

The first functions that were identified as hypergeometric were the Γ-type integrals $\int t^a(1-t)^b(1-zt)^c dt$ of Euler for the Gauss hypergeometric function. In [GKZ90], the authors consider integrals

$$\int_{\sigma} t^\beta \prod P_i(t)^{\alpha_i} dt_1 \ldots dt_d$$

where $P_i(t)$ are Laurent polynomials and the integrals are functions in the coefficients of the polynomials P_i. Here, σ is a k-cycle; in the Euler integrals σ is a curve. Gel’fand, Kapranov and Zelevinsky show that the above integrals are A-hypergeometric and under suitable conditions span the solution space. This approach generalizes Aomoto’s integrals on complements of generic hyperplane arrangements [Aom77], a source of inspiration in the search for the right definition of A-hypergeometric systems.

There has always been a strong trend towards the study of “special” hypergeometric systems, namely those for which the solution space is spanned by special classes of functions. This starts with Gauss’ observation [Gau73, page 125, Formel I.-V.] that some parameter choices in the Gauss hypergeometric differential equation yield algebraic solutions. Kummer in [Kum36], Riemann, and Gauss [Gau73, page 207] developed tools to search for other such instances. Then Schwarz constructed his famous list [Sch73] of the Euler–Gauss hypergeometric differential equations whose solution space is spanned by algebraic functions. The case of all pF_{p-1} was dealt with much later by Beukers and Heckman in [BH89] as part of their study of the monodromy. For irreducible such equations with real parameters $\alpha_1, \ldots, \alpha_p, \beta_1, \ldots, \beta_{p-1}$ set $\beta_p = 1$. Their exponentials on the unit circle are interlaced provided that the images of α_i and β_j are encountered alternatingly on a trip around the unit circle. Then [BH89] shows that interlacing is equivalent to the solution space of the differential equation being spanned by algebraic functions. Other cases were characterized in [Sas77, BCW92] (Appell–Lauricella F_D), [Kat00, Kat97] (Appell F_2, F_4).

For saturated irreducible homogeneous A-hypergeometric systems $M_A(\beta)$ with rational β, Beukers discovered the following fact about the number of algebraic solutions. Let $C_{A,\beta} = (\beta + \mathbb{Z}A) \cap (\mathbb{R}_{\geq 0}A)$ and consider it as a module over the semigroup NA. Let $\sigma_A(\beta)$ be the number of generators of $C_{A,\beta}$ over NA. Then, Beukers shows in [Beu10] that $\sigma_A(\beta)$ never exceeds the volume of A, and equality of $\sigma_A(k\beta) = \text{vol}(A)$ for all $1 \leq k \leq D$ coprime to the least common denominator D of β_1, \ldots, β_d happens precisely when the solution space is spanned by algebraic functions. We remark that irreducibility is linked to non-resonance (compare Definition 2.7) by [Beu11, Sai11, SW12].

The story for inhomogeneous (i.e., confluent) systems is more complicated, both theoretically and algorithmically. Since the solutions do not need to lie in the Nilsson ring, a systematic search in the sense of [SST00] using Gröbner bases is not
possible. Nonetheless, in [ET15] an idea of Adolphson [Ado94] is completed that casts solutions of non-resonant A-hypergeometric systems as integrals

$$\int_{\gamma} \exp \left(\sum_{j=1}^{n} x_j t^{a_j} \right) t_1^{c_1-1} \cdots t_d^{c_d-1} dt_1 \cdots dt_d.$$

Here, γ is a continuous family of real d-dimensional topological cycles in the torus, on which the integrand decays rapidly at infinity in the sense of Hien [Hie09]. This was also already studied in the context of integrals from hyperplane arrangements by [KHT92].

2. Torus action and Euler-Koszul complex

In this section we start exploring algebraic properties of the system $H_A(\beta)$ by introducing a homological tool from [MMW05] that has proved to be very successful: the Euler–Koszul complex. It has been used to study the number of solutions, their monodromy, and several other aspects. We refer to the start of Subsection 1.2 for basic notations and assumptions regarding A.

2.1. Torus action and A-grading. Given a D_A-module Q, its Fourier transform \hat{Q} is equal to Q as a C-vector space and carries a $\hat{D}_A := C[\xi] \langle \partial \rangle$ structure given by

$$\xi_j \cdot m := \partial_{x_j} \cdot m, \quad \partial_{\xi_j} \cdot m := -x_j \cdot m,$$

for any $m \in Q$.

The polynomial ring R_A is naturally identified with the coordinate ring $C[\xi]$ of the Fourier-dual space \hat{C}^n of C^n. The matrix A defines an algebraic action

$$\mathbb{T} \times \hat{C}^n \longrightarrow \hat{C}^n$$

of the d-torus

$$\mathbb{T} := (C^*)^d = \text{Spec}(C[t_1^{a_1}, \ldots, t_d^{a_d}])$$

with coordinates $t = t_1, \ldots, t_d$ on \hat{C}^n by

$$(\eta, \xi) \mapsto \eta \cdot \xi := (\eta^{a_1} \xi_1, \ldots, \eta^{a_n} \xi_n).$$

This action induces a grading

$$R_A = \bigoplus_{a \in \mathbb{Z}^A} (R_A)_a$$

on R_A, where

$$\deg(\partial_j) = a_j;$$

we refer to this as the A-grading. There is a natural extension to D_A if one sets

$$\deg(x_j) = -a_j$$

that makes every Euler operator A-graded of degree zero.

The coordinate ring of the orbit closure through $(1, \ldots, 1)$ is the toric ring

$$S_A := C[t^{a_1}, \ldots, t^{a_n}] = C[\mathbb{N}A] = R_A/I_A.$$

Remark 2.1. The semigroup ring S_A is normal (and hence Cohen–Macaulay by Hochster’s theorem) if and only if $\mathbb{N}A$ is saturated in the sense of Definition 1.8.
We shall identify subsets of columns of A with subsets of column indices or submatrices. For such a subset $\tau \subset A$, set

$$(1_\tau)_j := \begin{cases} 1 & \text{if } a_j \in \tau, \\ 0 & \text{if } a_j \notin \tau, \end{cases}$$

denote by O_A^τ the orbit of 1_τ, and its Zariski closure by $\overline{O_A}^\tau$. Moreover, we write S^τ_A for the coordinate ring of $\overline{O_A}^\tau$.

Let I_A^τ be the R_A-ideal generated by I_A and all ∂^u with $A \cdot u \notin \tau$. It is A-graded and prime and we have $S_\tau = R_A/I_A^\tau$. Note that

$$O_A^\tau = \Var(I_A^\tau) \setminus \bigcup_{\tau' \subset \tau} \Var(I_A'^\tau),$$

with $\dim(\tau) = \dim(\Var(I_A^\tau)) = \dim(O_A^\tau)$.

The following sets are then in one-to-one correspondence:

\{faces τ of $\mathbb{R}_{\geq 0} \cdot A$\} \leftrightarrow \{A-graded primes $I_A^\tau \supseteq I_A$ of R_A\} \leftrightarrow \{\mathbb{T}-orbits O_A^τ\}.

2.2. Toric category and Euler–Koszul technology.

The following set of constructions and results is taken from [MMW05].

Note that $E_i - \beta_i \in D_A$ can be viewed as a left D-linear endomorphism on A-graded D_A-modules M by sending a ZA-homogeneous $y \in M$ to

$$(14) \quad (E_i - \beta_i) \circ y := (E_i - \beta_i - \deg_i(y))y,$$

and that these morphisms commute with one another.

Definition 2.2 (Degrees and Euler–Koszul complex). Let

$$N = \bigoplus_{a \in ZA} N_a$$

be a A-graded R_A-module and pick $\beta \in \mathbb{C}^d$. Let $\text{tdeg}_A(M)$ be the true A-degrees of N, given as the set of points $A \cdot u$ in ZA for which the graded component N_u is nonzero,

$$\text{tdeg}_A(N) := \{a \in Z^d \mid N_a \neq 0\}.$$

Write $\text{qdeg}_A(N)$ for the Zariski closure of $\text{tdeg}_A(N) \subseteq ZA$ inside \mathbb{C}^d.

The Euler–Koszul complex $K_{A,\bullet}(N; \beta)$ is the Koszul complex of the endomorphisms $E - \beta$ on the left D_A-module $D_A \otimes_R N$ equipped with the natural A-grading. Its i-th homology

$$H_{A,i}(N; \beta) := H_i(K_{A,\bullet}(N; \beta))$$

is the i-th Euler–Koszul homology of N. Note that $H_{A,0}(SA; \beta) = M_A(\beta)$. \(\diamond\)

Remark 2.3. A (commutative graded) precursor of the Euler–Koszul complex when $N = SA$ appears already in [GZK89] for proving holonomicity of $M_A(\beta)$ when SA is a Cohen–Macaulay ring, and in Adolphson [Ado94, Ado99] a modified version of the complex is discussed. \(\diamond\)

The properties of the Euler–Koszul complex are most pleasant when N is in the category of toric modules. These are A-graded R_A-modules that have a finite composition series whose successive quotients are ZA-shifted quotients of SA.

Remark 2.4. There is a generalization in [SW09] to quasi-toric (i.e., certain non-Noetherian A-graded) modules that is useful for the interplay of Euler–Koszul complexes on local cohomology modules or on localizations such as $\mathbb{C}[ZA]$. \(\diamond\)
By [MMW05], short exact sequences $0 \to N' \to N \to N'' \to 0$ of toric modules give rise to long exact sequences of Euler–Koszul homology modules that are all holonomic (see Definition 2.12). Moreover, vanishing of $H_{A,0}(N; \beta)$ implies vanishing of all $H_{A,i}(N; \beta)$ and this vanishing is equivalent to $-\beta$ not being in the quasi-degrees of N.

Remark 2.5. Euler–Koszul complexes were initially defined for the study of the size of the solution space of A-hypergeometric systems [MMW05], but have turned out to be remarkably successful when investigating other issues such as irregularity (see section 3 and [SW08]), reducibility of the monodromy [Wal07, FF19], comparisons with direct image functors (see the next subsection as well as [SW09, Ste19a, Ste19b]), the study of Horn hypergeometric systems [BMW19a, SW12], or Hodge theoretic aspects (see sections 4 and 5 as well as [Rei14, RS15, RS17, RS20, RW]).

2.3. Fourier transformed GKZ-systems. We noted in section 2.1 that the torus \mathbb{T} acts on the Fourier-dual space $\hat{\mathbb{C}}^n$. The orbit closure through $(1, \ldots, 1)$ is an affine toric variety $X_A := \text{Spec}(S_A)$. We identify its dense open orbit O_A with the torus \mathbb{T}. This gives rise to the embeddings $\mathbb{T} \xrightarrow{j_A} X_A \xrightarrow{i_A} \hat{\mathbb{C}}^n$ where j_A resp. i_A is an open resp. closed embedding. We set

$$h_A := i_A \circ j_A. \quad (15)$$

We denote the Fourier transform of $M_A(\beta)$ by $\hat{M}_A(\beta)$ and its corresponding quasi-coherent sheaves by $\mathcal{M}_A(\beta)$ and $\hat{\mathcal{M}}_A(\beta)$ respectively. Using the definition of the Fourier transform one easily sees that $\hat{\mathcal{M}}_A(\beta)$ has support on the toric variety X_A. In [SW09] the parameters β were identified for which there is an isomorphism $\mathcal{M}_A(\beta) \simeq (h_A)_* \mathcal{O}^\beta_+ \mathbb{T}$ between the Fourier transform of $\mathcal{M}_A(\beta)$ and the direct image under h_A of the twisted structure sheaf

$$\mathcal{O}^\beta_+ = \mathcal{O}_\mathbb{T}/\mathcal{O}_\mathbb{T}(\partial_{t_1} t_1 + \beta_1, \ldots, \partial_{t_d} t_d + \beta_d).$$

The relevant definition is the following one.

Definition 2.6. [SW09] The elements of

$$\text{sRes}(A) := \bigcup_{j=1}^n \text{sRes}_j(A)$$

where

$$\text{sRes}_j(A) := \{ \beta \in \mathbb{C}^d \mid \beta \in -(N + 1)a_j + q\deg_A(S_A/(t^a)) \}$$

are the strongly resonant parameters of A.

Strong resonance, as the language suggests, is a strengthening of resonance, defined next.

Definition 2.7. The parameter β is resonant for A if $\beta + \mathbb{Z}^d$ meets the complexified boundary hyperplanes of the cone $\mathbb{R}_{\geq 0} A$.

\[\square\]
Remark 2.8. The strongly resonant parameters all lie on complexified hyperplanes that are parallel to the ones defining $\mathbb{R}_{\geq 0}A$ and pass through a lattice point.

The resonant parameters are dense in the parameter space, even in the analytic topology. The strongly resonant ones are not. For example, if the semigroup $\mathbb{N}A$ is saturated, then $\mathbb{N}A \cap \text{sRes}(A) = \emptyset$ and in particular 0 is not an element of $\text{sRes}(A)$.

Example 2.9. Consider the matrix

$$A = \begin{pmatrix} -1 & 0 & 1 & 2 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

the sets $\text{tdeg}_A(S_A)$ and $\text{sRes}(A)$ and the cone $\mathbb{R}_{\geq 0}A$ are sketched below. Since $d = 2$, fullness of A implies that we have $\text{qdeg}_A(S_A) = \mathbb{C}^2$.

![Figure 1: Cone, true, and strongly resonant degrees.](image)

Theorem 2.10. Let $A \in \mathbb{Z}^{d \times n}$ be as above, then the following statements are equivalent

1. $\beta \notin \text{sRes}(A)$
2. $\hat{\mathcal{M}}_A(\beta) \simeq (h_A)_+ \mathcal{O}_\mathbb{T}^{\beta}$
3. Left multiplication with ξ_i is invertible on $\hat{M}_A(\beta)$.

Remark 2.11. The idea of linking $\hat{M}_A(\beta)$ to the direct image $(h_A)_+ \mathcal{O}_\mathbb{T}^{\beta}$ originates with [GGZ87] where it was shown that β non-resonant gives the desired isomorphism. The precise computation in Theorem 2.10 comes from [SW09]. These results were refined and extended to the strongly resonant case in [Ste19a, Ste19b] where Steiner uses a combination of direct and proper direct image functors.

2.4. Holonomicity, Rank, and Singular Locus. Suppose $M = D_A/I$ is some left D_A-module, and $\mathcal{M} = D_{\mathbb{C}^n}/\mathcal{I}$ the associated sheaf of $D_{\mathbb{C}^n}$-modules. Then its analytification $\mathcal{M}^{\text{an}} = D_{\mathbb{C}^{\text{an}}}/\mathcal{I}^{\text{an}}$ is obtained by replacing $D_{\mathbb{C}^{\text{an}}}$ by the sheaf $\mathcal{D}_{\mathbb{C}^{\text{an}}}$ of analytic linear differential operators on \mathbb{C}^n where now $\mathcal{I} \subset \mathcal{D}_{\mathbb{C}^n} \subset \mathcal{D}_{\mathbb{C}^{\text{an}}}$ generates a left ideal of analytic linear differential operators.

Choose $r \in \mathbb{C}^n$ and denote stalks by subscripts. Consider the functor

$$\text{Sol}_r(-) = \text{Hom}_{\mathcal{D}_{\mathbb{C}^{\text{an}},r}}(-, \mathcal{O}_{\mathbb{C}^n,r}^{\text{an}})$$
from germs of left \(\mathcal{D}^\text{an}_{\mathcal{A}} \)-modules to vector spaces (Notice that we do not consider derived solutions here, the use of the symbol \(\text{Sol} \) differs from many other texts on \(\mathcal{D} \)-modules). If \(\mathcal{M}^\text{an} = \mathcal{D}^\text{an}_{\mathcal{C}^n}/\mathcal{D}^\text{an}_{\mathcal{I}} \) then \(\eta \in \text{Sol}_{\mathfrak{x}}(\mathcal{M}^\text{an}) \) corresponds to the analytic solution \(\eta(1 + \mathcal{D}^\text{an}_{\mathcal{C}^n}/\mathcal{I}) \) near \(\mathfrak{x} \). The dimension of the vector space of solutions to \(\mathcal{M} \) at \(\mathfrak{x} \) is the *rank* of \(\mathcal{M} \) at \(\mathfrak{x} \). When we mean the rank at a generic point \(\mathfrak{x} \) we speak of just the *rank* of \(\mathcal{M} \).

Typically, \(\text{Sol}_{\mathfrak{x}}(\mathcal{M}^\text{an}) \) is infinitely generated. But for the select class of *holonomic* modules it is always finite.

Definition 2.12. Any principal \(\mathcal{D}_{\mathcal{A}} \)-module (resp. \(\mathcal{D}^\text{an}_{\mathcal{C}^n} \)-module) \(\mathcal{M} \) (resp. \(\mathcal{M}^\text{an} \)) with generator \(m \) has a natural order filtration \(F^\text{ord}_k(\mathcal{M}) \) (or, on the stalk, \(F^\text{ord}_k(\mathcal{M}_\mathfrak{x}) \)) generated by the cosets of \(\partial^u \) with \(|u| \leq k \). The notion readily extends to any module with chosen set of generators and is well-behaved under analytification.

If \(\mathcal{M} = \mathcal{D}^\text{an}_{\mathcal{C}^n} \) is the sheaf of differential operators itself, the associated graded object on the stalk isomorphic to the regular ring \(\mathcal{O}_\mathfrak{x}[y] \) where \(y = y_1, \ldots, y_n \) is the set of symbols to \(\partial_1, \ldots, \partial_n \). For any \(\mathcal{M} \) (resp. \(\mathcal{M}^\text{an} \)), the associated graded object \(\text{gr}F(\mathcal{M}) \) becomes a module over \(\text{gr}F(\mathcal{D}_{\mathcal{A}}) \) (resp. \(\text{gr}F(\mathcal{D}^\text{an}_{\mathcal{C}^n}) \)).

The module is *holonomic* if the associated graded module has Krull dimension \(n \).

It was shown in [GGZ87, GZK89] that many, and then in [Ado94] that in fact all \(\mathcal{A} \)-hypergeometric systems are holonomic. This was extended in [MMW05, SW09] to all Euler–Koszul homology modules derived from quasi-toric input.

By [SKK73, Gab81], the characteristic variety is always involutive and has all components of dimension \(n \) or larger. This implies that holonomic modules have finite length and satisfy a Krull–Remak–Schmidt theorem (have well-defined sets of simple composition factors with multiplicity taken into account). Moreover, the quantity

\[
\text{rk}(\mathcal{M}) := \dim_{\mathbb{C}}(\mathbb{C}(x) \otimes_{\mathbb{C}[x]} M)
\]

agrees with the rank of \(\mathcal{M} \) in a generic point \(\mathfrak{x} \in \mathbb{C}^n \) by the Cauchy–Kovalevskaya–Kashiwara Theorem [SST00, p. 37].

For many important \(\mathcal{A} \)-hypergeometric systems, a search of explicit natural power series solutions leads to rank many independent solutions, compare [GGZ87, SST00]. It was claimed in [GZK89] that the rank of \(\mathcal{M}(\beta) \) is

\[
\text{rk}(\mathcal{M}(\beta)) = \text{vol}(\mathcal{A}),
\]

where \(\text{vol}(\mathcal{A}) \) is the (simplicial) *volume* of \(\mathcal{A} \), a purely combinatorial quantity given by the quotient of the measure of the convex hull of the origin and the columns of \(\mathcal{A} \), divided by the measure of the standard \(n \)-simplex. Adolphson [Ado94] pointed at a possible flaw in the argument, and [ST98] eventually provided a counter-example that is worth looking at.

Example 2.13 (The 0134-curve, [ST98]). Let \(A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 3 & 4 \end{pmatrix} \). The volume of \(A \) is 4, equal to the volume of the interval \((0, 4)\) inside \(\mathbb{R} \). (Since the interval is 1-dimensional, usual volume—length—and simplicial volume agree).

The toric ideal \(I_A \) is homogeneous here, defining the pinched rational normal space curve. In [SST00] it is shown that series solution methods based on weight vectors and the computation of certain initial ideals of \(H_A(\beta) \) always lead to volume
many independent series solutions, as long as A is homogeneous. This generalized the naïve series written out in [GGZ87, GZK89] to the case where logarithmic terms can appear in the series solutions.

For almost all β, the rank of $M_A(\beta)$ in a generic point is 4, spanned by functions

$$
x_1^{(4\beta_1 - \beta_2)/4} x_4^{\beta_2/4} + \ldots, \quad x_1^{(4\beta_1 - \beta_2 - 3)/4} x_2 x_4^{(\beta_2 - 1)/4} + \ldots, \\
x_1^{(4\beta_1 - \beta_2 - 1)/4} x_3 x_4^{(\beta_2 - 3)/4} + \ldots, \quad x_1^{(4\beta_1 - \beta_2 - 6)/4} x_2^2 x_4^{(\beta_2 - 2)/4} + \ldots,
$$

where the dots indicate a (usually infinite) series of terms ordered by the weight vector $(0, 1, 2, 0)$. (The particular weight is immaterial, but it needs to be sufficiently generic; this one is so for this example). If one now deforms β into $(1, 2)$ then the four independent solutions above degenerate into a linearly dependent set of rank three. On the other hand, the functions

$$
x_2^2 / x_1, \quad x_3^2 / x_4
$$

are new, not-deforming (in β) solutions to $M_A((1, 2))$. It follows that the “rank jumps at $\beta = (1, 2)$”, from 4 to 5 = 4 − 1 + 2.

Shortly after the discovery of rank jumps, the case of homogeneous monomial curves was completely discussed in [CDD99]: the “holes” of $\mathcal{N}A$ (the finitely many elements of $(\mathbb{R}_{\geq 0} A \cap \mathbb{Z} A) \setminus \mathcal{N}A$) are exactly the rank-jumping parameters, and each rank jump is by 1. It was then shown in [MMW05] that as β varies, the rank of $M_A(\beta)$ is upper-semicontinuous, so that it can only go up under specialization (formation of a limit) of β. In fact, [MMW05, Cor. 9.3] shows that the exceptional set \mathcal{E}_A of points where rank exceeds volume is Zariski closed and equals a certain subspace arrangement. To understand the origins of \mathcal{E}_A one must view the local cohomology modules $H^i_\partial(S_A)$ with $i < d$ as quasi-toric modules; their elements are then witnesses to the failure of S_A to be Cohen–Macaulay, while the union of their quasi-degrees forms the exceptional arrangement. The fact, also observed in [MMW05], that this arrangement has codimension at least two explains why finding rank-jumps at all turned out to be very hard and involved extensive computer experiments in [ST98].

Example 2.14 (Continuation of Example 2.13). In Example 2.13, $d = 2$ and so \mathcal{E}_A can be at most a finite set of isolated points. The local cohomology $H^0_\partial(S_A)$ is zero and $H^1_\partial(S_A)$ is a 1-dimensional vector space generated by the Čech cocycle $(\partial_2^2 / \partial_1, \partial_2^3 / \partial_4)$. To see this, note that (∂_1, ∂_4) is primary to ∂ in S_A. Thus, $H^1_\partial(S_A)$ can be computed A-degree by A-degree from the Čech complex on S_A induced by ∂_1, ∂_4. Each degree component in S_A and its monomial localizations are 1-dimensional \mathbb{C}-spaces; we use this to depict these localizations in the Čech complex by dots as follows:
In this picture, the blue area indicates the directions in which the semigroup in question extends, black dots are the elements of A and the red dot indicates a "missing" element in the semigroup. Taking cohomology "dot-by-dot" one identifies the local cohomology groups $H^1_m(S_A)$, $H^2_m(S_A)$ as claimed.

It is remarkable that the components of the $H^1_m(S_A)$-cocycle are precisely the "new" solutions that appear at $\beta = (1, 2)$ that do not deform to other β. While this is not always literally true, a weaker form is typical and an explanation of this phenomenon involving Laurent polynomials is given in [BFM18, BZFM16a], especially for $d = 2$. Compare also Remark 3.14.

Remark 2.15. In [Ber11] it is proved that there is a purely combinatorial recipe (involving the relative positioning of β to the degrees of NA) that determines the rank of $M_A(\beta)$. The procedure to arrive at the exact rank is very involved.

The only known closed rank formula is for non-jumping parameters, where the rank is just the volume. The best known general bound is exponential [SST00], in the sense that the rank of $M_A(\beta)$ is bounded above by $2^{d^3 \text{vol}(A)}$. sharp. It was shown in [MW07] that rank jump examples of the form $\text{rk}(M_A(\beta)) = \text{vol}(A) + d - 1$, for any d. This is improved in [FF13] to the existence of $a \in \mathbb{R}$ greater than 1 and families of matrices $A_{(d)}$ of size $d \times n_d$ and with parameters $\beta_{(d)}$ such that the rank of $M_{A_{(d)}}(\beta_{(d)})$ exceeds $a^d \text{vol}(A)$. It would be interesting to know how far the bound from [SST00] is from the the worst examples that exist.

There is an open subset of \mathbb{C}^n on which the solutions for $M_A(\beta)$ form a vector bundle of rank $\text{rk}(M_A(\beta))$. The complement (the singular locus of the module) of this set is algebraic, cut out by the A-discriminant, a product of individual discriminants to polynomial systems, one for each face of the cone over A. For a very detailed discussion on this, see the books [GKZ94], and [SST00]. If one moves from general to special x, rank can go down due to singularities in the solutions. In contrast to rank in generic points, rank at special x is not known to be upper-semicontinuous. For the case of A as in Example 2.13, this is worked out in [Wal18], which discusses the more general question of stratifying \mathbb{C}^n by the restriction diagrams, which encode the behavior of the D-module theoretic (derived) pull-back to $x \in \mathbb{C}^n$; the elementary pull-back just counts rank at x.
2.5. Better behaved systems and contiguity. For each $\beta' = a_j + \beta$ there is a natural contiguity morphism

$$c_{\beta, \beta' + a_j}: M_A(\beta) \xrightarrow{\partial_j} M_A(\beta')$$

of degree a_j, induced by right multiplication with ∂_j on S_A through the Euler–Koszul functor. The existence of these morphisms is a consequence of the fact that $(E_i - \beta_i) \cdot \partial_j = \partial_j(E_i - \beta_i - a_{i,j})$; this is a special case of Equation (14) when $y = \partial_j$.

Since elements in I_A act as zero on S_A, any composition of contiguity morphisms of fixed total degree $\gamma \in M_A$ acts the same way as morphism $c_{\beta, \beta + \gamma}$ from $M_A(\beta)$ to $M_A(\beta + \gamma)$.

Contiguity morphisms have turned out to be a very useful tool in the study of A-hypergeometric systems since for $k \gg 0$, $c_{\beta + k a, \beta + (k+1)a}$ and $c_{\beta - (k+1)a, \beta - ka}$ are isomorphisms (and one can determine explicit bounds in terms of A, β for k being sufficiently big). Contiguity maps have been used in [Sai01] to identify combinatorially the isomorphism classes of A-hypergeometric systems, in [Wal07] to study irreducibility and holonomic duality of $M_A(\beta)$ as D_A-module, and in [Rei14, RS20] for investigating the Hodge module structure on certain $M_A(\beta)$. For a study of Gauß hypergeometric functions via contiguity operators see [Beu07].

On the level of solutions, a map in the reverse direction is induced that literally takes the derivative by x_j. For certain applications in mirror symmetry it is desirable to know that every contiguity operator induces an isomorphism on (the solutions of) $M_A(\beta)$. In case one has a generic β, this is automatic. But in practical situations it is more likely that β is integer, or at least resonant. In the present context, resonance encapsulates the lack of genericity of a parameter β to admit contiguity isomorphisms (in both directions). Resonance and contiguity operators were refined and used in [Ado94, Sai01, Sai11, Oku06, CDRV11, SW12, Beu11, Beu16] to study reducibility and general structure of $M_A(\beta)$.

Now consider the quasi-toric module F_A equal to the ring $\mathbb{C}[Z_A]$. It arises as the localization of S_A at all ∂_j, or alternatively at one monomial whose degree is in the interior of $\mathbb{R}_{>0} A$. By definition, multiplication by ∂_j on F_A is an isomorphism, and therefore the same applies to the generalized A-hypergeometric system that arises as the Euler–Koszul homology $H_{A,0}(F_A; \beta)$, for every β. Since F_A is a maximal Cohen–Macaulay S_A-module, there is no other Euler–Koszul homology, [MMW05, SW09].

This module $H_{A,0}(F_A; \beta)$ was studied in [BPH13, BH06] and termed better behaved GKZ-system. A variant of these systems, considered in [Moc15b], can be described as the Euler–Koszul homology of the normalization of S_A, i.e. as $H_{A,0}(\mathbb{C}[\mathbb{R}_{>0} A \cap \mathbb{Z}^d]; \beta)$. We will make below in section 4 some comments on how the Hodge theoretic considerations described there relies to the main result of [Moc15b].

3. Irregularity

In this section we discuss regularity issues of hypergeometric D-modules; this is a multi-variate form of essential singularities. We start with discussing more general filtrations than the one by order. A combinatorial object can be derived from this process that governs the convergence behavior of solutions to A-hypergeometric systems near coordinate hyperplanes. Via results of Laurent and Mekhout we discuss a generalized classical Fuchs criterion this gives information on the irregular solutions.
3.1. The Fuchs criterion and regularity. A univariate function \(f(t) \), analytic on a small open disk around \(t = 0 \) but singular at \(t = 0 \), can behave in two essentially different ways: the growth of \(f(t) \) as \(t \to 0 \) could be bounded by a polynomial, or not. In the former case, \(f \) has a pole, in the latter an essential singularity. If \(f \) arises as solution to a differential equation we say 0 is a regular singular point of the equation in the first, and an irregular singular point in the second case.

For linear differential equations \(P \cdot f(z) = 0 \) in the local parameter \(z \), Fuchs gave the following practical procedure for determining regularity of the origin. If \(\mathcal{O}_0 := \mathbb{C}\{z\} \) is the ring of convergent power series near \(z = 0 \), write \(P \) as a linear combination

\[
P = \sum_{k=0}^{m} p_k(z) \cdot \frac{\partial^k}{\partial z^k},
\]

\(m \) being the order of \(P \), and \(p_k = \sum_{i=n_k}^{\infty} c_{k,i} z^i \in \mathcal{O}_0 \) with \(c_{k,n_k} \neq 0 \) indicating the lowest order term of \(p_k(z) \). Writing \(\partial_z \) for differentiation by \(z \), for a monomial \(z^r \partial_z^s \) we use the two weights

\[
V(z^r \partial_z^s) := s - r \quad \text{V-filtration at 0;}
\]

\[
F(z^r \partial_z^s) := s \quad \text{order filtration.}
\]

Then plot for each \(k \) the weights of \(c_{k,n_k} \partial_z^k \) in the \((F,V)\)-plane:

![Figure 3: Two Fuchs polygons](image)

The shaded region (the Fuchs polygon of the operator) is the lower left convex hull of the (finitely many) points so obtained. It is, by definition, stable under shifts in negative \(F \)- and \(V \)-direction, and hence unchanged under analytic automorphisms that keep the origin fixed (this is a consequence of taking the lower left hull).

Two cases arise, indicated in the picture:

1. The Fuchs polygon has one vertex, in the upper right corner (left).
2. There are two or more corners. This is tantamount to the boundary of the shaded region having one or more finite boundary segments with slopes different from 0 and \(-\infty \) (right).

Fuchs’ criterion (see [Gra84, Inc44] for a detailed account) states that \(P \) has a regular singularity at the origin if and only if the Fuchs polygon of \(P \) has no slopes.

Regular differential equations are much better behaved than irregular ones, both theoretically and practically. On the theoretic side, they form an ingredient of the Riemann–Hilbert correspondence that links regular holonomic \(D \)-modules to perverse sheaves, which for irreducible modules restricts to a bijection with intersection cohomology complexes; on the practical side regular differential equations are amenable to the Frobenius method since their solutions come from the Nilsson ring [Kas84, Meb80, Meb84, SST00].
In higher dimensions, the concept of regularity is more difficult. One way of defining it proceeds via pullbacks: the \(\mathcal{D} \)-module \(\mathcal{M} \) on the analytic space \(\mathbb{C}^n \) is regular if and only if the pullback of \(\mathcal{M} \) along any analytic morphism \(\iota : \Delta^* \rightarrow \mathbb{C}^n \), where \(\Delta^* \) is a punctured disk, leads to a module with regular singularities at the origin on \(\Delta^* \). The problem is that there are many such morphisms to be tested.

Laurent [Lau87] and later with Mebkhout [LM99] found a way to translate regularity in more than one variable into a condition that resembles the Fuchs criterion. For that, we need to discuss filtrations and initial ideals on \(D \)-modules in more detail.

3.2. Initial ideals and triangulations.

A general technique to understand (non-commutative) algebraic structures is the reduction to a simpler (commutative) situation by applying a grading with respect to a filtration. For \(D \)-modules, the filtration by the order of differential operators leads to the characteristic variety which carries various bits of information on the \(D \)-module. The process of grading is rather cumbersome but can be performed algorithmically in various situations using Gröbner basis methods. The simplest case is that of a generic weight vector because the resulting graded ideal will be monomial. The content of this subsection is based on [SST00] and [Stu96].

So, let \(L = (L_1, \ldots, L_n) \in \mathbb{Q}^n \) be a generic weight vector on \(R \); genericity is needed to assure that \(\text{gr}^L(I_A) \) is a monomial ideal. (Over \(\mathbb{R} \) there are weights \(L \) that are generic for all ideals of \(R \) simultaneously. There is no rational weight with this property, but for a finite number of ideals a Zariski open set of the weight space consists of generic weights.)

Example 3.1. For the matrix \(A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \), with columns indicated with bullets, the following picture sketches the possible initial ideals that arise from the weights in the family \(L^t = (1 \ 1 \ t) \), \(t > 0 \). Plotted left, with hollow bullets, are the points \(a_j/L^t_j \).

\[
I_A = \langle \partial_1 \partial_2 - \partial_3 \rangle = \text{gr}^L(I_A)
\]

Collinearity of all three plotted points equates with \(L \)-homogeneity of \(I_A \).

Definition 3.2. Associated to the generic weight \(L \) and the \(R_A \)-ideal \(I \) is an initial simplicial complex \(\Sigma^L_I \) that arises as follows. A collection \(\tau \) of indices contained in \([n]\) forms a face of \(\Sigma^L_I \) if and only if there is no monomial in \(\text{gr}^L(I) \) whose support is precisely \(\tau \). Put another way, \(\Sigma^L_I \) is the simplicial complex whose Stanley–Reisner ideal is the radical of \(\text{gr}^L(I) \).

If \(I = I_A \) we write \(\Sigma^L_A \) for \(\Sigma^L_I \).

For example, suppose \(I_A \) is the principal ideal generated by \(\partial_1 \partial_2 \partial_3 - \partial_4 \partial_2^2 \). Then \(I_A \) admits two distinct monomial initial ideals whose corresponding simplicial complexes are:
(a) The join of a line segment with a 3-cycle, \(\text{gr}^L(I_A) = \partial_1 \partial_2 \partial_3 \).

(b) The join of two points with a triangle, \(\text{gr}^L(I_A) = \partial_4 \partial_5 \).

Figure 4: The initial simplicial complexes \(\Sigma^L_A \) for \(I_A = \langle \partial_1 \partial_2 \partial_3 - \partial_4 \partial_5 \rangle \).

The generic weight \(L \) also induces a triangulation of \([n]\) as follows. Consider the points \(\hat{A} = \{(a_j, L_j) \in \mathbb{R}^d \times \mathbb{R} \}_{1 \leq j \leq n} \). The faces of the triangulation are those faces of the cone \(\mathbb{R}^d \geq 0 \) of \(\hat{A} \) that are visible from the point \((0, -\infty)\); these are exactly those faces whose outer normal vectors have negative last component. A triangulation of \([n]\) is regular (or coherent) if it arises this way for some \(L \). This property is strongly tied to \(A \), and not all triangulations of \(A \) have to be regular.

Figure 5: A non-regular triangulation of a triangle.

The collection of regular triangulations of \(A \) turns out to be in (the obvious) bijection with the initial complexes of \(A \). There is a third combinatorial object associated to \(L \) and \(A \), namely the collection \(\mathcal{S}(\text{gr}^L(I_A)) \) of standard pairs of \(\text{gr}^L(I_A) \). A standard pair \((\partial^b, \sigma) \) of the monomial ideal \(I \) is a monomial and a subset of \([n]\) such that

- \(\text{supp}(b) \cap \sigma = \emptyset \),
- \(\partial^b \mod I \) is not \((\prod_{j \in \sigma} \partial_j) \)-torsion, but
- \(\partial^b \mod I \) is \(\partial_k (\prod_{j \in \sigma} \partial_j) \)-torsion for all \(k \not\in \sigma \).

For example, if the monomial ideal is \(\langle \partial_4 \partial_5 \rangle \) the standard pairs are \((1, \{1, 2, 3, 4\})\), \((\partial_5, \{1, 2, 3, 4\})\), and \((1, \{1, 2, 3, 5\})\). The standard pairs yield immediately a decomposition into irreducible ideals by

\[
\mathcal{T} = \bigcap_{(\partial^b, \sigma) \in \mathcal{S}(\mathcal{T})} \langle \{\partial^b_{j+1} \mid j \not\in \sigma\} \rangle.
\]

For \(\mathcal{T} \) as above we obtain \(\mathcal{T} = (\partial_5) \cap (\partial_5^2) \cap (\partial_4^2) \).

The standard pairs hence contain all information needed to recover \(\mathcal{T} \) and its triangulations. In particular, the facets of \(\Sigma^L_A \) are precisely the subsets \(\sigma \) that are listed in the standard pairs.

Example 3.3. We consider Example 3.1 from this new angle. We fix the weights \(L_1 = L_2 = 1 \) and vary the weight \(t = L_3 \). For \(L_3 < 2 \), \(\text{gr}^L I_A = \langle \partial_1 \partial_2 \rangle \) and the facets of \(\Sigma^L_A \) are \{1, 3\}, \{2, 3\}. We could interpret this as the complex of faces, not containing \(0 \), of the convex hull of \(0 \) and the columns of \(A \). Similarly we obtain \(\Sigma^L_A = \{1, 2\} \) for \(L_3 > 2 \), which can be read as a convex hull as before, but with
a₃ not in the picture. For \(L₃ = 2 \), \(\text{gr} L I_A = I_A \) is prime and \(\Sigma_A^\prime \) should now equal \{1, 2, 3\}; we would like to view \(a₃ \) as “collinear with \(a₁, a₂ \)” in this case. This is the topic of the next section; the following is a teaser: in order to view the three cases from a unifying angle, note that scaling a weight component \(L_i \) by \(\lambda \) and “scaling the degree \(a_i \) of \(\partial_i \)” by \(1/\lambda \) have the same effect on the initial terms (and also on the face complex of \(\Sigma_A^\prime \)). One is thus lead to replace \(a₃ \) by \(a₃/L₃ \); then the resulting convex hull yields the face complex generated by \{1, 2, 3\} if \(L₃ = 2 \), by \{1, 2\} if \(L₃ > 2 \), and by \{1, 3\} and \{2, 3\} if \(L₃ < 2 \).

3.3. **Slopes and the \((A, L)\)-umbrella.** In case of a \(D_A \)-module \(M = D_A/J, J \) an ideal in \(D_A \), we will want to grade with respect to a filtration on \(D_A \) defined by (and identified with) a weight vector \(L \in \mathbb{Q}^d \times \mathbb{Q}^d \) for the variables \(x₁, \ldots, xₙ, \partial₁, \ldots, \partialₙ \). We denote the \(L \)-leading term of \(P \in D_A \) by \(a(L)(P) \) and call it the \(L \)-symbol.

Convention 3.4. We assume that there is a positive real constant \(c \) such that

\[Lx_j + L\partial_j = c > 0 \]

for each \(j \).

This hypothesis has the effect that

\[W_A := \text{gr} L(D_A) \cong \mathbb{C}[x, \partial] \]

is a (commutative) polynomial ring whose spectrum is naturally identified with the total space of the cotangent bundle \(T^*\mathbb{C}^n \) of \(\mathbb{C}^n \). Moreover, each \(E_i \) is \(L \)-homogeneous of positive degree.

The \(W_A \)-ideal \(\text{gr} L(J) \) defines the \textit{L-characteristic variety} \(\text{ChV}_L(M) \) of the module \(M \); for a holonomic module \(M \) it is purely \(n \)-dimensional by a result of G.G. Smith [Smi01].

We record the special case

\[\text{ChV}_L(MA(\beta)) = \text{Var}(\text{gr} L(H_A(\beta))) \subseteq T^*\mathbb{C}^n \]

when \(M = MA(\beta) \). Our plan is to connect this construction to analytic information as follows.

Suppose \(X' \subseteq X = \mathbb{C}^{n,an} \) is an analytic subspace with a smooth point \(\mathfrak{r} \in X' \). Then in suitable local coordinates at \(\mathfrak{r} \) one can write \(X' \) as the zero set of the first \(n - \dim X' \) coordinates on \(X \). In the stalk at \(\mathfrak{r} \) consider the grading of the \(D \)-module \(M \) by the filtrations induced by the weights \(L_p/q := pF + qV \) where as always \(F \) is the order filtration and \(V \) is the \(V \)-filtration along \(X' \) (compare Subsection 3.1):

\[V(x_i) = V(\partial_i) = 0 \text{ if } i > n - \dim(X'); \quad -V(x_i) = V(\partial_i) = 1 \text{ if } i \leq n - \dim(X'). \]

(There is an obvious identification of graded objects for \(L_p/q \) and \(L_p'/q' \) when \(p/q = p'/q' \).)

Definition 3.5. With notation as just introduced, \(p/q \in \mathbb{Q} \) is a **slope of \(M \)** along \(X' \) if \(\text{ChV}_L(M) = \text{supp}(\text{gr} L(M)) \) jumps at \(p/q \). This means that \(\text{ChV}_L^{L'}(M) \) is for small \(\varepsilon \in \mathbb{R}_+ \) constant on \((-\varepsilon + \frac{p}{q}, \frac{p}{q}) \) and \((\frac{p}{q}, \frac{p}{q} + \varepsilon) \) but not on \((-\varepsilon + \frac{p}{q}, \frac{p}{q} + \varepsilon) \).

This definition is taken from [Lau87]. By [LM99], Laurent’s algebraic slopes constructed from filtrations agree with Mebkhout’s transcendental slopes given as jumps of the Gevrey filtration on the irregularity sheaf and hence provide a measure of growth for the solutions of \(M \). The central question in this section is to study the behavior of \(\text{ChV}_L(MA(\beta)) \) under changes of \(L \) and \(\beta \).
We illustrate the link of slopes of $M_A(\beta)$ with Fuchs’ criterion in an example.

Example 3.6. It is clear from the series expansion (2) that the Kummer confluent series $\text{I}_1(a; b; z)$ is analytic at every finite z for all a, b. On the other hand, it follows from the integral definition of the error function that at $z = \infty$ there is an essential singularity (and algebraic changes of coordinates do not eradicate essential singularities). If we denote $-1/z$ by u, then the differential operator $\theta z(\theta z + 1/2) - z(\theta z - 1/2)$ turns into $u\theta u(\theta u - 1/2) - (\theta u + 1/2)$ for the resulting inverse Kummer confluent series.

The Fuchs polygons are:

![Fuchs polygon for Kummer (left) and inverse Kummer (right)](image)

Figure 6: Fuchs polygon for Kummer (left) and inverse Kummer (right)

So, the Kummer series has (of course) regular “singularities” at the origin, while the inverse Kummer series has a slope of -1. This reflects the fact that, up to multiplication by a function bounded by a polynomial, the Kummer series at 0 behaves like $\exp(z^0)$, while the inverse Kummer series behaves like $\exp(z^{-1})$: the Kummer series grows (up to polynomially bounded factors) near ∞ like $\exp(z)$.

For the translation to the A-hypergeometric setting we can use in both cases $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$, with v being $(1, 1, -1)$ or $(-1, -1, 1)$. The toric ideal is then $I_A = \langle \partial_1\partial_2 - \partial_3 \rangle$.

We know from Example 3.1 that for the family $L^t = (1, 1, t)$ there is a jump at $t = 2$ in the L^t-graded ideal of I_A since at that moment \square_v becomes L-homogeneous. It turns out that the L^t-characteristic variety of $H_A(\beta)$ for any β also changes at $t = 2$, so that $M_A(\beta)$ has a slope of 2 along the hyperplane $x_3 = 0$.

The correspondence between these numbers is encapsulated by the equation $1/s_F = 1/s_L - 1$, where s_F is the slope of the Fuchs polygon (and indicates exponential growth behavior with exponent s_F), and s_L is the slope at which Laurent’s filtrations jump.

We now discuss “regular triangulations to non-monomial graded toric ideals” coming from non-generic weight vectors in greater generality, the details being taken from [SW08]. For the transition, suppose J is generated by elements inside $R_A \subseteq D_A$. Then one can restrict the weight to L_A on R_A and compute $\text{gr}^{L_A}(J \cap R_A)$ in the commutative situation of Subsection 3.2. Note that then $\text{gr}^{L_A}(J) = \text{gr}^{L}(D_A) \cdot \text{gr}^{L_A}(J \cap R_A)$. Specifically, we write

$I^L_A := \text{gr}^{L_A}(I_A) \cap R_A, \quad S^L_A := \text{gr}^{L}(S_A) \cong R_A/I^L_A$.

Let $L = (L_1, \ldots, L_n) \in \mathbb{Q}^n$ be any weight vector on R_A. As L may have zero components, possible division (as suggested in Example 3.3) by $L_i = 0$ forces us into work in a projective space:

$a_1, \ldots, a_d \in \mathbb{Z}A \subseteq \mathbb{Q}^d \subseteq \mathbb{P}^d$.
In \mathbb{P}_d^d, any two distinct points $a, b \in \mathbb{P}_d^d$ are joined by two line segments. If the hyperplane H in \mathbb{P}_d^d contains neither a nor b, one may define the convex hull of a, b as the as the line segment not intersecting H. Similarly one can define the convex hull $\mathrm{conv}_H(S)$ of a subset $S \subseteq \mathbb{P}_d^d$ disjoint from H as the convex hull of S in the affine space $\mathbb{P}_d^d \setminus H$.

Definition 3.7 (The (A, L)-umbrella Φ_A^L). We set $a_j^L := a_j / L_j \in \mathbb{P}_Q^d$. Choose a linear functional $f : \mathbb{Z}A \rightarrow \mathbb{Z}$ for which $f(a_j) > 0$ for all j and $\varepsilon > 0$ such that $|f(a_j)| > \varepsilon \cdot |L_j|$; such form exists since A is pointed. Let $H_\varepsilon := f^{-1}(\varepsilon)$ and call

$$\Delta_A^L := \mathrm{conv}_{H_\varepsilon}(\{0, a_1^L, \ldots, a_n^L\}) \subseteq \mathbb{P}_Q^d$$

the (A, L)-polyhedron. Let the (A, L)-umbrella be the set Φ_A^L of faces of Δ_A^L which do not contain 0; write $\Phi_A^{L,k}$ for its k-skeleton.

The matrix A is called L-homogeneous if all a_j^L lie on a common hyperplane of \mathbb{P}_Q^d. Every A is 0-homogeneous and we call $\Phi_A := \Phi_A^0$ the A-umbrella. Note that Φ_A can be identified with the face lattice of the polyhedral cone $\mathbb{R}_{\geq 0}A$.

Parts of this definition, taken from [SW08] are foreshadowed by [GZK89, Prop. 4].

Example 3.8. Figure 7 shows the (A, L)-umbrella for the matrix $A = \begin{pmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 1 & 3 \end{pmatrix}$ for various filtrations in the family $L^t = (1, 1, 1, t)$. While moving the parameter, Φ_A^L jumps exactly at $t = 2$ and $t = 3$. For the intervals $t < 2, t = 2, 2 < t < 3, t = 3, t > 3$, the corresponding complexes Φ_A^L are generated by $\{(1, 4), (2, 4), (3, 4)\}, \{(1, 3), (3, 4)\}, \{(1, 3)\}$.

![Figure 7: (A, L)-umbrellas for Example 3.8. (Blue Δ_A^L with boundary Φ_A^L)](image-url)

Remark 3.9. In order to see how Φ_A^L generalizes Σ_A^L for positive weights, embed $\mathbb{P}_Q^d \subseteq \mathbb{P}_Q^{d+1}$ as the hyperplane $\{a_d+1 = a_0\}$, and assume that L is positive and generic. A subset of $\{a_1^L, \ldots, a_n^L\} \subseteq A^d_Q \subseteq \mathbb{P}_Q^d$ maximizes a linear functional $q(t_1/t_0, \ldots, t_d/t_0)$ with value c if and only if the corresponding subcollection of $\{a_j, L(a_j)\}_1^d \subseteq A^d_Q \subseteq \mathbb{P}_Q^d$ maximizes with value zero the linear functional $q(t_1/t_0, \ldots, t_d/t_0) - t_{d+1}/t_0$. So, the faces of $\Delta_A^L \times \{1\} \subseteq A^d_Q$ are in bijection with those of the cone spanned by it from the origin in A^d_Q that have outer normal vector “pointing down”, and this is the same cone as the one spanned by the appropriate collection inside $\{(a_j, L(a_j))\}_1^n$.

\diamondsuit
Just like Σ^L_A in the monomial case, Φ^L_A corresponds to minimal prime ideals of $\text{gr}^L(I_A)$. More precisely the following holds.

Theorem 3.10 ([SW08, Thm. 2.14]). The set of A-graded prime ideals containing I^L_A equals \{ I^L_A | $\tau \in \Phi^L_A$ \} and so

$$\text{Spec}(S^L_A) = \text{Var}(I^L_A) = \bigcup_{\tau \in \Phi^L_A} \overline{O}_A = \bigcup_{\tau \in \Phi^L_A} O^\tau_A \subset \mathbb{C}^n.$$

In particular, the (A,L)-umbrella encodes the geometry of S^L_A. \hfill \Box

3.4. L-characteristic varieties.

Equipped with the knowledge from the previous section, we can return to the question of describing

$$\Upsilon^L_A := \text{ChV}^L(M_A(\beta)).$$

For a weight $L \in \mathbb{Q}^n \times \mathbb{Q}^n$, the L-symbols $\sigma^L(E_i)$ span the tangent spaces of every torus orbit and hence impose the conormal condition to O_A^τ for all $\tau \in \Phi^L_A$ (compare [GZK89, SW08]). The inclusion

$$\text{gr}^L(H_A(\beta)) \supseteq \langle \sigma^L(E) \rangle + \text{gr}^L(D_A \cdot I^L_A)$$

appears already in [GZK89, Ado94] and shows that $\text{ChV}^L(M_A(\beta))$ must be contained in the union of the closures of all these conormals.

One might hope that (16) is always an equality; this would simplify the problem of describing $\text{ChV}^L(M_A(\beta))$. The right hand side is the fake initial ideal and equality holds if I^L_A is Cohen–Macaulay, [SST00, Thm. 4.3.8]. Unfortunately, this inclusion can be strict in general as the following example shows.

Example 3.11. For $A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 3 & 4 \end{pmatrix}$ and $L = (0,1)$ inducing the order filtration one has $\text{gr}^L(H_A(\beta)) = \text{gr}^L(D_A \cdot I_A) + \langle \sigma^L(E) \rangle$ for $\beta = (1,2)$, but in fact for all parameters

$$\text{gr}^L(H_A(\beta)) = \text{gr}^L(D_A \cdot I_A) + \langle \sigma^L(E) \rangle + \langle P \rangle$$

where

$$P = (\beta_2 - 2)x_1\partial_1^2 + (\beta_2 - \beta_1 - 1)x_2\partial_1\partial_3 + (\beta_2 - 3\beta_1 + 1)x_3\partial_2\partial_4 + (\beta_2 - 4\beta_1 + 2)x_4\partial_2^2.$$

Notwithstanding this example, the following is true.

Theorem 3.12. The L-characteristic variety of the A-hypergeometric system is

$$\Upsilon^L_A = \text{ChV}^L(M_A(\beta)) = \bigcup_{\tau \in \Phi^L_A} \Upsilon^\tau_A = \bigcup_{\tau \in \Phi^L_A} \Upsilon^\tau_A,$$

where for $\tau \in \Phi^L_A$, we denote by $\Upsilon^\tau_A \subseteq T^*\mathbb{C}^n$ the conormal to the orbit $O^\tau_A \subseteq \mathbb{C}^n$, and where we use the identification $T^*\mathbb{C}^n \cong T^*\mathbb{C}^n$.

By Theorem 3.12 the two ideals in (16) differ along minimal components only by their multiplicities. Taking into account this information turns the L-characteristic variety $\text{ChV}^L(M_A(\beta))$ into the L-characteristic cycle $\text{ChC}^L(M_A(\beta))$ of $M_A(\beta)$. Let $\mu^L_A(\beta)$ be the multiplicity of Υ^L_A in $\text{ChC}^L(H_A(\beta))$. This number is bounded from below by the intersection multiplicity $\mu^{L,\tau}_A$ of the Euler variety $\text{Var}(\text{gr}^L(E_1,\ldots,E_d)) \subseteq \mathbb{C}^n$ with the component of $\text{gr}^L(I_A)$ along Υ^τ_A. Moreover, it agrees with this estimate
for a Zariski-open set of parameters β, but may exceed it for special values of β, see [SW08].

For $\tau \subseteq \tau' \in \Phi_{L,d}^{\ell,d-1}$, denote
\[
\pi_{\tau,\tau'} : \mathbb{Z}\tau' \to \mathbb{Z}\tau' / (\mathbb{Z}\tau' \cap \mathbb{Q}\tau)
\]
the natural projections, and define the polyhedra
\[
P_{\tau,\tau'} := \text{conv}(\pi_{\tau,\tau'}(\tau' \cup \{0\})), \quad Q_{\tau,\tau'} := \text{conv}(\pi_{\tau,\tau'}(\tau' \setminus \tau)).
\]
Using this notation, with volume functions normalized such that they return unity on the standard simplex,
\[
\mu^{L,\tau}_{A} = \sum_{\tau \subseteq \tau' \in \Phi_{L,d}^{\ell,d-1}} [A : \mathbb{Z}\tau'] \cdot [(\mathbb{Z}\tau' \cap \mathbb{Q}\tau) : \mathbb{Z}\tau] \cdot \text{vol}_{\tau,\tau'}(P_{\tau,\tau'} \setminus Q_{\tau,\tau'}) \geq 1.
\]
In particular, this formula proves that the slopes of the D-module $M_{A}(\beta)$ are determined entirely by combinatorics of A_{L}, since this is true for their L-characteristic varieties. (For the empty face τ, if NA is saturated, this simplifies to the formula already in [GZK89] that rank is then equal to the volume of A).

Remark 3.13. If an A-hypergeometric system is homogeneous, it can have no slopes since it is regular holonomic [Hot98]. On the other hand, an inhomogeneous $H_{A}(\beta)$ has at least one slope along the subspace cut out by the variables corresponding to any of the faces of the umbrella of A that do not touch the boundary of the umbrella, as moving it will eventually change the shape of the umbrella. By Laurent’s results, regularity of $M_{A}(\beta)$ is hence equivalent to homogeneity and independent of β.

Remark 3.14. A natural question is whether one can find a stratification of the parameter space such that rank is constant on each stratum and one can give a family of parametric solutions that deform analytically to rank many solutions on the chosen stratum. This is indeed so, the details are worked out in [BFP14, BZFM16b, BFM18].

For confluent systems, when the Nilsson ring does not contain all solutions, the approach of Gevrey series can be used. Early focus was on the irregularity sheaves of Mebkhout introduced in [Meb90]. In a series of papers, Castro-Jimenez and Fernandez-Fernandez [FF10, FFCJ11b, FFCJ11a, FFCJ12], study theory and construction of solutions. Another point of interest is asymptotics. In [CJG15] it is worked out how this plays out in the $d = 1$ case (A is a single row matrix): Gevrey series solution along the singular locus of the system appear as asymptotes of holomorphic solutions along suitable paths of integration. A similar result for modified systems is proved in [CJFFKT15].

A related problem is that of determining the monodromy of A-hypergeometric systems. This turns out to be an extraordinarily difficult problem, and only limited information is available at this point. We mention the work of Ando, Esterov and Takeuchi [AET15] that determines the monodromy at infinity for confluent (inhomogeneous) systems, building on [Tak10] for the homogeneous case. Hien’s rapid decay cycles ([Hie09]) make an entry here via [ET15], replacing the classical integral representations of Gel’fand et al.

4. Hodge theory of GKZ-systems

In this section we show that certain GKZ-systems carry a mixed Hodge module structure in the sense of [Sai90] and investigate some consequences of this fact.
Since the definition of mixed Hodge modules (MHM) is rather involved, we give here a simplified version which is enough for our purpose. Assuming the reader to be at least somewhat acquainted with the Riemann–Hilbert correspondence, we start with a brief outline of the cornerstones of the theory of mixed Hodge modules. We then give (certain) A-hypergeometric systems an interpretation as Gauß–Manin systems and derive from that a MHM structure. We then discuss two induced filtrations on these GKZ-systems.

4.1. Section setup, and basics on mixed Hodge modules. An algebraic mixed Hodge module on a smooth algebraic variety X is an algebraic, regular holonomic D_X-module M together with an increasing filtration by coherent O_X-modules $F_{\text{Hodge}}^k M$ called the Hodge filtration and an increasing D_X-module filtration $W_{\text{W}}^k M$ called the weight filtration. The D_X-module M and the filtrations $F_{\text{Hodge}}^k M$ and $W_{\text{W}}^k M$ are required to satisfy rather subtle compatibility conditions, in particular there are strong conditions concerning the boundary behavior along every divisor of X. The category $\text{MHM}(X)$ of algebraic mixed Hodge modules on X is Abelian. Given a mixed Hodge M, its graded parts $\text{Gr}^W_k (M) := W_k M / W_{k-1} M$ are pure Hodge modules. The category $\text{HM}(X)$ of pure Hodge modules is semi-simple, i.e. each graded part is a sum a simple objects. The simple $\text{HM}(X)$-objects correspond via the de Rham functor to intersection complexes $\text{IC}_Y(L)$ supported on an irreducible subvariety Y of X, where L is an irreducible local system on an open, smooth subset of Y. In particular, the restriction of a pure Hodge module to the Zariski open set on which the underlying D-module is smooth turns it to a variation of pure Hodge structures on that smooth locus.

The standard example of a (mixed) Hodge module on a smooth variety X is the structure sheaf O_X: it carries a canonical mixed Hodge module structure, which satisfies

$$\text{Gr}^p_{\text{Hodge}} O_X := F^p_{\text{Hodge}} O_X / F^{p-1}_{\text{Hodge}} O_X = 0 \quad \text{if } p \neq 0,$$

$$\text{Gr}^W_p O_X = 0 \quad \text{for } p \neq \dim X.$$

Our starting point is section 2.3, where we have seen that if $\beta \not\in s\text{Res}(A)$ then $\hat{A}(\beta) \simeq (\mathcal{H}^A, O_X^A)$. However, for each morphism $f : X \to Y$ there are functors

$$f_*, f_! : D^b \text{MHM}(X) \to D^b \text{MHM}(Y),$$

$$f^!, f^* : D^b \text{MHM}(Y) \to D^b \text{MHM}(X)$$

which lift the corresponding functors $f_+, f_!, f^+, f^\dag$ on the category of regular holonomic \mathcal{D}-modules. So, in particular, if O_X^A is in $\text{MHM}(X)$ then so is $\hat{A}(\beta)$ whenever $\beta \not\in s\text{Res}(A)$.

In order to have $\hat{A}(\beta)$ be a mixed Hodge module, it should of course in particular be regular holonomic. By Remark 3.13 and Definition 1.7, this is equivalent to I_A being homogeneous. In other words, we must require that the vector $(1, 1, \ldots, 1)$ is in the row span of A. This required homogeneity of A coincidentally provides the solution to an issue not mentioned yet: the (inverse) Fourier transform does in general not preserve mixed Hodge modules. In order to construct a mixed Hodge module structure on a GKZ-system via $\hat{A}(\beta)$, we use a Radon transform, which
does carry mixed Hodge structures and which only makes sense in the homogeneous context.

In order to simplify the statement of some formulas in the remainder of the article, we make now the following convention on \(A \).

Convention 4.1. From now on, \(A \) is in \(\mathbb{Z}^{(d+1) \times (n+1)} \) and we assume that \(A \) is homogeneous, full, pointed, and generates a saturated semigroup.

Since a GKZ-system derived from a pair \((A, \beta)\) is unchanged under an invertible \(\mathbb{Z} \)-linear transformation of the rows we can moreover assume that the matrix \(A \) has the following shape

\[
A = \begin{pmatrix}
1 & 1 & \ldots & 1 \\
0 & & & \\
\vdots & & & B \\
0 & & & \\
\end{pmatrix}
\]

where \(B \in \mathbb{Z}^{d \times n} \) is full but is not necessarily pointed or homogeneous. Notice also that if \(NA \) is saturated, then so is \(NB \), however, the converse implication is not true in general.

4.2. Geometric interpretation of GKZ-systems

The aim of this section is to express certain GKZ systems as objects which are built from consecutive applications of (possibly proper) direct image and (possibly exceptional) inverse image functors applied to a structure sheaf. From the discussion above it follows then that these GKZ systems carry a mixed Hodge module structure. In order to achieve this we have to introduce various integral transformations and their relations.

Define a pairing

\[
\langle -, - \rangle : \hat{\mathbb{C}}^{n+1} \times \mathbb{C}^{n+1} \to \mathbb{C}
\]

\[
(\eta, \xi) \mapsto \sum_{j=0}^{n} \eta_j \xi_j,
\]

and a free rank one \(\mathcal{O}_{\hat{\mathbb{C}}^{n+1} \times \mathbb{C}^{n+1}} \)-module

\[
\mathcal{L} := \mathcal{O}_{\hat{\mathbb{C}}^{n+1} \times \mathbb{C}^{n+1}} \cdot \exp (-1) \cdot \langle -, - \rangle
\]

which acquires a \(\mathcal{D}_{\hat{\mathbb{C}}^{n+1} \times \mathbb{C}^{n+1}} \)-module structure via the product rule. We denote by \(p_1 \) and \(p_2 \) the projections from \(\mathbb{C}^{n+1} \times \hat{\mathbb{C}}^{n+1} \) to the first and second factor respectively. The sheafified version of the Fourier transform is given by

\[
\text{FL}(\mathcal{N}) := p_2^+(p_1^* \mathcal{N} \otimes \mathcal{L})[n+1]
\]

and one has \(\text{FL} \circ \text{FL} = - \text{id} \). Although defined at the level of derived categories, \(\text{FL} \) is an exact functor, and an instructive exercise shows that on the level of global sections it is given by formula (12). Theorem 2.10 now implies that, whenever \(\beta \notin s\text{Res}(A) \), we have

\[
\text{FL}((h_A)_+ \mathcal{O}_I^B) \simeq \text{FL}^2(\mathcal{M}_A(\beta)) \simeq \mathcal{M}_A(\beta).
\]

Here, the final identification holds due to the homogeneity of \(I_A \) even though \(\text{FL}^2 \) is not the identity.
The second type of transformation we will need is the *Radon transformation* of \mathcal{D}-modules introduced by Brylinski \[Bry86\]; some variations were later discussed by d’Agnolo and Eastwood \[DE03\].

Let
\[
U := \left\{ \sum_{j=1}^{n} \eta_j f_j \neq 0 \right\} \subseteq \mathbb{P}(\mathbb{C}^{n+1}) \times \mathbb{C}^{n+1}
\]
be the complement of the universal hypersurface
\[
Z := \left\{ \sum_{j=1}^{n} \eta_j f_j = 0 \right\} \subseteq \mathbb{P}(\mathbb{C}^{n+1}) \times \mathbb{C}^{n+1}
\]
defined by the vanishing of the pairing $(-,-)$. For the sake of readability, we denote $\mathbb{P}(\mathbb{C}^{n+1})$ form now on simply by \mathbb{P}^n. Consider the following commutative diagram

\[
\begin{array}{ccc}
U & \xrightarrow{\pi^U} & \mathbb{P}^n \\
\downarrow{\pi_1^U} & & \downarrow{\pi_2^U} \\
\pi_0^Z & \xleftarrow{\pi_0^Z} & \mathbb{C}^{n+1} \\
\end{array}
\]

The Radon transformation is the functor $\text{RT} : D^b_{\text{rh}}(\mathcal{D}_{\mathbb{P}^n}) \rightarrow D^b_{\text{rh}}(\mathcal{D}_{\mathbb{C}^{n+1}})$ given by
\[
\text{RT}(\mathcal{N}) := (\pi_Z^0 + (\pi_1^Z)^+) \mathcal{N} \simeq (\pi_2^0 + (i_Z^0 + i_Z^1)^+ \pi_1^0)^+ \mathcal{N},
\]
and it permits variations $\text{RT}^0, \text{RT}^\text{cst} : D^b_{\text{rh}}(\mathcal{D}_{\mathbb{P}^n}) \rightarrow D^b_{\text{rh}}(\mathcal{D}_{\mathbb{C}^{n+1}})$ given by
\[
\text{RT}^0(\mathcal{N}) := (\pi_2^0 + (\pi_1^0)^+) \mathcal{N} \simeq (\pi_2^0 + (i_Z^0 + i_Z^1)^+ \pi_1^0)^+ \mathcal{N}
\]
\[
\text{RT}^\text{cst}(\mathcal{N}) := (\pi_2^0 + \pi_1^0)^+ \mathcal{N}
\]
The adjunction triangle $(j_U)^! j_U^! \rightarrow \text{id} \rightarrow (i_Z^0 + i_Z^1)^+ \xrightarrow{1} $ gives rise to a triangle
\[
\begin{array}{ccc}
\text{RT}^0 & \rightarrow & \text{RT}^\text{cst} \rightarrow \text{RT}^+ \rightarrow \\
\end{array}
\]
Let
\[
\pi : \mathbb{C}^{n+1} \setminus \{0\} \rightarrow \mathbb{P}^n
\]
be the canonical projection and denote by
\[
\pi_V : \mathcal{V} \rightarrow \mathbb{P}^n
\]
the total space of the tautological bundle $\mathcal{O}_{\mathbb{P}^n}(-1)$. Recall that \mathcal{V} can be identified with the blow-up of the point $\{0\}$ of \mathbb{C}^{n+1} and \mathbb{P}^n with the exceptional divisor E. We denote by $\pi_{V,E} : E \rightarrow \{0\} \rightarrow \mathbb{C}^{n+1}$ the restriction of the blow up map $\pi_V : \mathcal{V} \rightarrow \mathbb{C}^{n+1}$. The following proposition relates the Fourier and Radon transformations.

Proposition 4.2. \[DE03, Proposition 1\] Let $\mathcal{N} \in D^b_{\text{rh}}(\mathcal{D}_{\mathbb{P}^n})$. There are the following isomorphisms
\[
\begin{align*}
\text{RT}(\mathcal{N}) & \simeq \text{FL}((\pi_V^0 + (\pi_V)^+) \mathcal{N}), \\
\text{RT}^0(\mathcal{N}) & \simeq \text{FL}(j + \pi^+ \mathcal{N}), \\
\text{RT}^\text{cst}(\mathcal{N}) & \simeq \text{FL}((\pi_{V,E}^0 + \mathcal{N}),
\end{align*}
\]
where \(j : \mathbb{C}^{n+1} \setminus \{0\} \hookrightarrow \mathbb{C}^{n+1} \) is the canonical inclusion.

In particular, if \(\mathcal{N} \) is a mixed Hodge module, then the above isomorphisms allow us to equip the right hand sides with induced MHM structures.

To simplify the presentation, we will focus now (and this until Definition 4.5 below) primarily on the case \(\beta = 0 \). For \(\beta \neq 0 \) a twisted variant of the Radon transformation is needed: see [RS20] for details. We start with the following commutative diagram

\[
\begin{array}{cccccc}
\mathbb{T} & \xrightarrow{h_A} & \mathbb{C}^{n+1} \setminus \{0\} & \xrightarrow{j} & \mathbb{C}^{n+1} \\
\downarrow{\pi_0} & & \downarrow{j} & & \\
\mathbb{T} & \xrightarrow{g_B} & \mathbb{P}^n
\end{array}
\]

(21)

where

\[
\pi_0: (\mathbb{C}^*)^{d+1} = \mathbb{T} \longrightarrow (\mathbb{C}^*)^d =: \mathbb{T}
\]
is the projection to the last \(d \) variables and where

\[
g_B: \mathbb{T} \hookrightarrow \mathbb{P}^n
\]

(22)

\[
(t_1, \ldots, t_d) = t \mapsto (1 : t^{b_1} : \ldots : t^{b_n}).
\]

In particular,

\[
h_A: \mathbb{T} \longrightarrow \mathbb{C}^{n+1}
\]
is as in (15) earlier (with the caveat that now \(A \) is as in Convention 4.1). We then observe that \((h_A)_\ast \mathcal{O}_\mathbb{T} \simeq (h_A)_\ast \pi_0^\ast \mathcal{O}_\mathbb{T} \simeq j_\ast \pi_0^\ast (g_B)_\ast \mathcal{O}_\mathbb{T}\), and with Proposition 4.2, the isomorphisms

\[
\mathcal{M}_A(0) \simeq \text{FL}(h_A)_\ast \mathcal{O}_\mathbb{T} \simeq \text{RT}_c^\ast ((g_B)_\ast \mathcal{O}_\mathbb{T})
\]

endow the GKZ-system \(\mathcal{M}_A(0) \) with the structure of a mixed Hodge module.

We now consider a part of the long exact sequence of the adjunction triangle (20) applied to \((g_B)_\ast \mathcal{O}_\mathbb{T}\). In order to identify the individuals terms we introduce a family of Laurent polynomials defined on \((\mathbb{C}^*)^d \times \mathbb{C}^n = \mathbb{T} \times \mathbb{C}^n\) using the columns \(b_1, \ldots, b_n \) of the matrix \(B \) from (17). We define

\[
\varphi: \mathbb{T} \times \mathbb{C}^n \longrightarrow \mathbb{C}^{n+1}
\]

(24)

\[
(t, \mathbf{r}) \mapsto (- \sum_{j=1}^n r_j t^{b_j}, r_1, \ldots, r_n)
\]

Theorem 4.3 ([Rei14, Cor. 2.3]). There is the following commutative diagram with exact rows where all vertical maps are all isomorphisms; just for this statement we abbreviate for typesetting reasons \(g_B \) by \(g \) and denote the Radon transform by just \(R \).

\[
\begin{array}{cccccc}
\mathcal{H}^0(R_{\text{cod}}(g_\ast \mathcal{O}_\mathbb{T})) & \longrightarrow & \mathcal{H}^0(R(g_\ast \mathcal{O}_\mathbb{T})) & \longrightarrow & \mathcal{H}^0(R_{\text{cod}}(g_\ast \mathcal{O}_\mathbb{T})) & \longrightarrow & \mathcal{H}^0(R_{\text{cod}}(g_\ast \mathcal{O}_\mathbb{T})) \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
H^{d-1}(\mathbb{T}, \mathbb{C}) \otimes \mathcal{O}_{\mathbb{C}^{n+1}} & \longrightarrow & \mathcal{H}^0(\varphi_\ast \mathcal{O}_{\mathbb{T} \times \mathbb{C}^{n+1}}) & \longrightarrow & \mathcal{M}_A(0) & \longrightarrow & H^d(\mathbb{T}, \mathbb{C}) \otimes \mathcal{O}_{\mathbb{C}^{n+1}}
\end{array}
\]

As a consequence, the lower exact sequence underlies a sequence of mixed Hodge modules. \qed
4.3. Hodge-filtration on GKZ-systems. Although the isomorphism (23) equips the GKZ system \(\mathcal{M}_A(0) \) with the structure of a mixed Hodge module, it is far from clear what the Hodge and weight filtrations look like. The first step in this direction was carried out by Stienstra [Sti98], relying heavily on work of Batyrev [Bat93], who computed the Hodge and weight filtration on the smooth part of the GKZ system. Denote

\[\Delta := \text{conv}(a_0, \ldots, a_n) \]

the convex hull of the points \(a_0, \ldots, a_n \), and note that this is the decone of the \(A \)-polyhedron from Definition 3.7. Let \(\tau \subseteq \Delta \) be a face of \(\Delta \), let \(x \in \mathbb{C}^n \), and set

\[F_{A,\tau}^x := \sum_{j:a_j \in \tau} t_j \tau^{a_j}. \]

The Laurent polynomial \(F_{A,\tau}^x := F_{A,\tau}^x \) is called non-degenerate (see, e.g., [Bat93, Definition 3.3]) if for every face \(\tau \) of \(\Delta \) the equations

\[F_{A,\tau}^x = t_0 \frac{\partial}{\partial t_0}(F_{A,\tau}^x) = \ldots = t_d \frac{\partial}{\partial t_d}(F_{A,\tau}^x) = 0 \]

have no common solutions in \(\mathbb{T} \). Then, for \(0 \leq i \leq d \), define the differential operators

\[P_i := \sum_{j=0}^n (a_i j t^{a_j} t_j) \]

which are elements of the Weyl algebra \(D_{\mathbb{C}[t^\pm 1]} \) on \(t_0, \ldots, t_d \) localized at \(t_0 \cdots t_d \). One checks that these operate on the semigroup ring \(S_A \subseteq \mathbb{C}[t_0^\pm 1, \ldots, t_d^\pm 1] \), \(P_i(S_A) \subseteq S_A \), so they are differential operators on the affine toric variety \(X_A = \text{Spec}(S_A) \).

Before we can state Stienstra’s result mentioned in the introduction to this section, we need some more terminology. Let

\[I_0(\Delta) \subseteq I_1(\Delta) \subseteq \ldots \subseteq I_{d+1}(\Delta) \subseteq I_{d+2}(\Delta) = S_A \]

be the ascending sequence of homogeneous ideals in \(S_A \) where \(I_{d+1}(\Delta) \) is generated by all elements \(t^a \) with \(a \in NA \) that are not contained in any codimension \(k \) face of \(\mathbb{R}_{\geq 0}A \). Define a decreasing sequence of \(\mathbb{C} \)-vector spaces in \(S_A \)

\[\ldots \supseteq \mathcal{E}^{-k} \supseteq \mathcal{E}^{-k+1} \supseteq \ldots \supseteq \mathcal{E}^{-1} \supseteq \mathcal{E}^0 \supseteq \mathcal{E}^1 = 0 \]

where \(\mathcal{E}^{-k} \) is spanned by monomials \(t^c \) such that \(c = (c_0, \ldots, c_d) \in NA \) satisfies \(c_0 \leq k \).

Stienstra proved the following result

Theorem 4.4. [Bat93, Sti98, RS15] Let \(x \in \mathbb{C}^{n+1} \) be such that the Laurent polynomial \(F_{A,\tau}^x \) is non-degenerate and consider the canonical inclusion \(i_{\tau} : \{ x \} \hookrightarrow \mathbb{C}^{n+1} \), then

\[H^d(\mathbb{T}, \varphi^{-1}(x); \mathbb{C}) \simeq i_{\tau}^+ \mathcal{M}_A(0) \simeq S_A/\sum_{i=0}^d P_i S_A, \]

recall that \(\varphi \) is the family defined in (24). Under this isomorphism, the Hodge filtration is given by

\[F^{d-k}H^d(\mathbb{T}, \varphi^{-1}(x); \mathbb{C}) \simeq \text{im} \left(\mathcal{E}^{-k} \to S_A/\sum_{i=0}^d P_i S_A \right). \]
If the matrix $B \in \mathbb{Z}^{d \times n}$ is homogeneous, then the weight filtration on $H^d(\mathbb{T}, \varphi^{-1}(x); \mathbb{C})$ is given by

$$W_{k+d-1}H^d(\mathbb{T}, \varphi^{-1}(x); \mathbb{C}) \simeq \operatorname{im} \left(I^{(k)}_{\Delta} \to S_B / \sum_{i=1}^{d} P_i S_B \right),$$

where the semigroup ring S_B, the ideals $I^{(k)}_{\Delta}$ and the differential operators P_i are now derived from B. □

Notice that equation (26) is shown in [Sti98] only for the case where A is homogeneous, the general case is treated in [RS20].

The surjection $D_A \to M_A(\beta)$ induces from the order filtration F_{ord} on D_A a filtration on $M_A(\beta)$ which we denote by $F_{\text{ord}} M_A(\beta)$; we proceed similarly to define a filtration F_{ord} on the sheaf $\mathcal{M}_A(\beta)$. The following theorem gives a comparison between this order filtration and the Hodge filtration F_{Hodge} in the sense of mixed Hodge modules, this extends the first part of the above Theorem 4.4. Since we will formulate the result for certain parameter vectors β different from 0, we first need to introduce the following definition.

Definition 4.5. The set of admissible parameters $\beta \in \mathbb{R}^{d+1} \subseteq \mathbb{C}^{d+1}$ is defined by

$$\mathfrak{A}_A := \bigcap_{\tau: \tau \text{ facet}} \{ R \cdot \tau - [0, \frac{1}{e_\tau}] \cdot \varepsilon_A \}$$

where $\varepsilon_A := a_0 + \ldots + a_n$, $e_\tau := \langle n_\tau, \varepsilon_A \rangle \in \mathbb{Z}_{>0}$ and n_τ is the unit, inward pointing, normal vector of τ. ◊

Example 4.6. For the matrix

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & -1 & 1 & 2 \end{pmatrix},$$

the following picture

![Picture](image)

shows the sets $\text{sRes}(A)$ (see Definition 2.6 above) and \mathfrak{A}_A. ◊

We can now state a result, taken from [RS20, Theorem 5.35] which describes the Hodge filtration on the GKZ-systems in a rather precise way.

Theorem 4.7. Let $A \in \mathbb{Z}^{(d+1) \times (n+1)}$ be as in Convention 4.1, $\beta \in \mathfrak{A}_A$ and $\beta_0 \in (-1, 0)$. Then the Hodge filtration on $\mathcal{M}_A(\beta)$ is given by the shifted order filtration, i.e. we have the following equality of filtered \mathbb{C}^{n+1}-modules

$$(\mathcal{M}_A(\beta), F_{\text{Hodge}}) = (\mathcal{M}_A(\beta), F_{\text{ord}}^{\mathfrak{A}_A})$$
It has been shown in [RS20, Theorem 5.43] that the first part of the above
Theorem 4.4, i.e., Formula (26) is a rather direct consequence of the comparison
between the Hodge and the order filtration on $\mathcal{M}_A(0)$.

Remark 4.8. As already noted in Section 2 above, a variant of Borisov–Horja’s
better behaved GKZ-systems has been considered in [Moc15b]. If we suppose that
A is normal (as we do throughout this section), then the definition in [Moc15b]
coincides with the one for ordinary GKZ-systems as given in 1.6 above. However,
the matrix A is not supposed to be homogeneous in [Moc15b]. The module
$\mathcal{M}_A(\beta)$ will have irregular singularities then, as discussed in Section 3 above. One may ask
what kind of Hodge theoretic information can be derived from $\mathcal{M}_A(\beta)$ in this case.
This is similar to the statements on the ordinary versus irregular Hod ge filtration
on univariate hypergeometric systems that we will discuss below.

In [Moc15b, Prop. 1.4], Mochizuki proves the following statement which can
be considered as an irregular variant of Theorem 4.7 above. Let $B \in \mathbb{Z}^{d \times n}$ be such
that $\mathbb{Z}B = \mathbb{Z}^d$. Suppose for the simplicity of the exposition that
$N_B = \mathbb{R}_{\geq 0}B \cap \mathbb{Z}^d$. Consider the non-commutative “Rees ring”

$$R_{\mathbb{C} \times \mathbb{C}^n} = \mathbb{C}[z, x_1, \ldots, x_n](z, \partial z, z, \partial x_1, \ldots, z, \partial x_n)$$

and the corresponding sheaf $\mathcal{R}_{\mathbb{C} \times \mathbb{C}^n}$. Let $\mathcal{H}_A(0)$ be the left $\mathcal{R}_{\mathbb{C} \times \mathbb{C}^n}$-ideal generated by

$$\hat{E}_0 := z^2 \partial z + \sum_{j=1}^n z x_j \partial x_j;$$

$$\hat{E}_i := \sum_{j=1}^n a_{i,j} z x_j \partial x_j \quad \text{for} \quad k = 1, \ldots, d;$$

$$\hat{\eta}_u := \prod_{j: u_j > 0} (z \partial x_j)^{u_j} - \prod_{j: u_j < 0} (z \partial x_j)^{-u_j} \quad \text{for all} \quad u \in \ker(B).$$

Then the left $\mathcal{R}_{\mathbb{C} \times \mathbb{C}^n}$-module $\mathcal{R}_{\mathbb{C} \times \mathbb{C}^n}/\mathcal{H}_A(0)$ underlies a mixed twistor module on
\mathbb{C}^n, a notion that in many respects is the correct replacement of a mixed Hodge
module in the irregular setup. In particular, any mixed Hodge module can be
considered as a special mixed twistor module, and therefore the case $\beta = 0$ of
Theorem 4.7 can be deduced from Mochizuki’s result. Using a filtered variant of
the Fourier–Laplace transformation (compare the discussion in Section 5 below),
one can also obtain the latter from Theorem 4.7, as has been demonstrated in
[MnDRS19, Corollary 4.8].

As another application of Theorem 4.7, we will describe some results about
the Hodge structure of univariate hypergeometric equations (see the discussion in
Subsection 1.2 above). Consider again the operator

$$P = \prod_{i=1}^m (\theta_z - \lambda_i) - z \cdot \prod_{j=1}^m (\theta_z - \mu_j) \in \mathbb{C}[z] \langle \partial_z \rangle$$

(compare with equation (7), where $m' = q + 1$, $m = p$ and where $\lambda_1 = 0, \lambda_i = 1 - \beta_{i-1}, \mu_j = -\alpha_j$) for some real numbers λ_i, μ_j. The corresponding cyclic module

$$\mathcal{H}(\lambda; \mu) := \mathcal{D}_{h^1}/\mathcal{D}_{h^1} \cdot P,$$
is irreducible if and only if for all \(i, j\) we have \(\lambda_i - \mu_j \notin \mathbb{Z}\). The modules \(\mathcal{H}(\lambda; \mu)\) are the most basic examples of rigid \(\mathcal{D}\)-modules (see [Kat90, Ari10]). A first consequence of this property is that if \(\mathcal{H}(\lambda; \mu)\) is irreducible, then it is isomorphic to some \(\mathcal{H}(\lambda'; \mu')\) whenever \(\mu - \mu'\) and \(\lambda - \lambda'\) are integer vectors. We can thus assume that \(0 \leq \lambda_1 \leq \ldots, \lambda_m < 1, 0 \leq \mu_1 \leq \ldots \leq \mu_m < 1\) and that \(\lambda_i \neq \mu_j\) for all \(i, j\). It is obvious that \(\mathcal{H}(\lambda; \mu)\) is regular exactly when \(m' = m\) and in that case it has the three singular points \(\{0, 1, \infty\}\). On the other hand, if \(m' \neq m\) then \(\text{Sing}(\mathcal{H}(\lambda; \mu)) = \{0, \infty\}\).

In the regular case, that is, if \(m' = m\), the rigidity property can be stated at the level of the (the) local system \(\mathcal{L}\) on \(\mathbb{P}^1 \setminus \{0, 1, \infty\}\) of solutions of \(P\). It simply says that the local monodromies around the singular points determine the (global) monodromy representation defined by \(\mathcal{L}\). From there it follows by [Sim90, Cor. 8.1] and also [Del87, Prop. 1.13] that \(\mathcal{L}\) underlies a complex variation of Hodge structures. Then the following formula for its Hodge numbers has been shown in [Fed18, Thm. 1]

\[
\dim \text{gr}^\text{Hodge}_k \mathcal{L} := \dim(F^\text{Hodge}_k \mathcal{L} / F^\text{Hodge}_{k+1} \mathcal{L}) = \# \{s : 1 \leq s \leq m', k = \# \{i : \lambda_i < \mu_s\} - s\}. \tag{31}
\]

The Picard-Fuchs equation of the family of elliptic curves in Example 1.3 corresponds, as we computed there, to the hypergeometric differential equation given by the module \(\mathcal{H}(0, 0; 1/2, 1/2)\). Applying Fedorov’s formula yields \(\dim(\text{gr}^F_0 \mathcal{L}) = \dim(\text{gr}^F_1 \mathcal{L}) = 1\), confirming our computation in Example 1.3. Notice also that in this case the local system \(\mathcal{L}\) underlies a real (and even rational) variation of Hodge structures, which is consistent with [Fed18, Theorem 2].

If \(m' \neq m\) (and, up to a change of the coordinate \(z \mapsto 1/z\) we can assume that \(m' > m\)), then \(\mathcal{H}(\lambda; \mu)\) is irregular and can no longer support a variation of Hodge structures. In [Sab18], a category of irregular Hodge modules is developed, which can roughly be seen as lying between the category of mixed Hodge modules and the category of mixed twistor modules. A possibly irregular \(\mathcal{D}_X\)-module \(\mathcal{M}\) on a complex manifold \(X\) underlying an irregular Hodge module comes equipped with an irregular Hodge filtration, an increasing filtration \(F^{\text{irr}}_\alpha \mathcal{M}\) by coherent \(\mathcal{O}_X\)-modules indexed by the real numbers (contrarily to the regular case); we write \(F^{\text{irr}}_{<\alpha} \mathcal{M} := \bigcup_{\beta < \alpha} F^{\text{irr}}_\beta \mathcal{M}\). However, the indexing set is determined by a finite set \(I \subseteq [0, 1)\) having the property that

\[
\text{gr}^\text{irr}_\alpha \mathcal{M} := F^{\text{irr}}_\alpha \mathcal{M} / F^{\text{irr}}_{<\alpha} \mathcal{M} = 0 \quad \text{if} \quad \alpha \notin I + \mathbb{Z}. \tag{32}
\]

In [SY19], the following formula for the irregular Hodge numbers has been found (see also [CDS19] and [CnDRS19], where the Hodge filtration itself is determined in some cases, using Theorem 4.7 from above):

\[
\dim \text{gr}^\text{irr}_\alpha \mathcal{H}(\lambda; \mu) = \# \{s : 1 \leq s \leq m', \alpha = \# \{i : \mu_i < \lambda_s\} + (m' - m)\alpha_s - s\}. \tag{33}
\]

For \(m' = m\), this gives back the formula (31) up to the fact that the local system \(\mathcal{L}\) is in the regular case in [Fed18] the one of the solutions of \(\mathcal{H}(\lambda; \mu)\), whereas formula (32) gives (for \(m' = m\)) Hodge numbers of a filtration defined on the dual local system of flat sections.
4.4. Weight filtration on GKZ systems. In the remainder of this section, we discuss results concerning the weight filtration on GKZ-systems. Recall that we equipped the GKZ-system $\mathcal{M}_A(0)$ in subsection 4.2 with a mixed Hodge module structure by rewriting it as certain Randon transform of a direct image of a structure sheaf (cf. (23)). In this subsection we endow the GKZ systems with an apriori different mixed Hodge module structure. If the matrix A is chosen to be homogeneous then the GKZ-system $\mathcal{M}_A(0)$ is a monodromic \mathcal{D}-module. In this case the Fourier-Laplace transformation can be replaced by the Fourier-Sato transformation (or monodromic Fourier Laplace transformation) (cf. [Bry86, Théorème 7.24]) which happens to be a functor of mixed Hodge modules.

Denote by
\[\theta : \mathbb{C}^* \times \mathbb{C}_{n+1} \to \mathbb{C}_{n+1} \]
the standard \mathbb{C}^*-action on \mathbb{C}_{n+1}. We refer to the push-forward $\theta_*(z\partial_z)$ as the Euler vector field \mathcal{E}, where z is a coordinate on \mathbb{C}^*. A regular holonomic \mathcal{D}-module \mathcal{M} is called monodromic, if the Euler field \mathcal{E} acts finitely on the global sections of \mathcal{M}.

Consider the diagram
\[\xymatrix{ \mathbb{C}^* \times \mathbb{C}_{n+1} \ar[dr]_\omega \ar[rd]^{p_1} & & \mathbb{C} \times \mathbb{C}_{n+1} \ar[d]^{i_0} \ar[dl]_\omega \ar[d] \ar[r] & \mathbb{C} \times \mathbb{C}_{n+1} \times \{0\} \times \mathbb{C}_{n+1} \ar[l]_{i_0} \ar[r] & \mathbb{C} \times \mathbb{C}_{n+1} \ar[d] \ar[r]_\omega & \mathbb{C} \times \mathbb{C}_{n+1} \times \{0\} \times \mathbb{C}_{n+1} \ar[l]_{i_0} \ar[r] & \mathbb{C} \times \mathbb{C}_{n+1} } \]
where p_1 is the projections to the first factor, i_0 is the canonical inclusion and the map ω is given by
\[\omega : \mathbb{C}^* \times \mathbb{C}_{n+1} \to \mathbb{C}_z \times \mathbb{C}_{n+1} \]
\[(\eta, \xi) \mapsto (\bar{z} = \sum_i \eta_i \xi_i, \xi) \]

The Fourier-Sato transformation (or monodromic Fourier transformation) is defined by
\[\text{FS} : \text{MHM}(\mathbb{C}^*) \to \text{MHM}(\mathbb{C}^{n+1}) \]
\[\mathcal{M} \mapsto \phi_z \omega \cdot p_1^* \mathcal{M}[n+1] \]
where ϕ_z is the vanishing cycle functor along $z = 0$.

It was shown in [RW, Proposition 4.12] that the Fourier-Sato transformation respects the weight filtration of monodromic \mathcal{D}-modules which are localized along $\{0\} \in \mathbb{C}_{n+1}$ (up to a shift). Hence, a weight filtration on the GKZ-system is induced by the following isomorphisms:
\[W_{k+n+1} \mathcal{M}_A(0) := W_{k+n+1} \text{FS}((h_A)_+ \mathcal{O}_T) \simeq \text{FS}(W_k (h_A)_+ \mathcal{O}_T) \]

Since the Fourier-Sato transform is an equivalence of categories it is therefore enough to compute the weight filtration on $\mathcal{M}_A(0) = (h_A)_+ \mathcal{O}_T$ which will be done below.

Recall that the graded parts $\text{Gr}^W_k \mathcal{M}$ of a mixed Hodge module are pure Hodge modules and as such are semi-simple, i.e. they are direct sums of intersection complexes. Because the number of simple objects (counted with multiplicity) is independent on the chosen (weight) filtration this also gives us the simple objects occurring in the weight filtration induced by the Radon transform (but possibly in
another order). However, we conjecture that the Fourier-Sato transformation and the Radon transformation are isomorphic on the level of mixed Hodge modules, i.e.

Conjecture 4.9. For $N \in \text{MHM}(\mathbb{P}^n)$:

$$\text{FS}(j_* \pi^1 N) \simeq \text{RT}_c(N)$$

We will now proceed to state the result on the weight filtration of $\hat{M}_A(0) = (h_A)_+ \mathcal{O}_\sigma$:

Let $\tau \subseteq \gamma \subseteq \sigma$ be faces of a cone $\sigma \subset \mathbb{R}^{d+1}$. The quotient face of γ by τ is defined as:

$$\gamma/\tau := (\gamma + \tau_R)/\tau_R \subseteq \mathbb{R}^{d+1}/\tau_R$$

where τ_R is the linear span of the cone τ. Define

$$\gamma^U := \{ f \in \text{Hom}_R(\mathbb{R}^{d+1}, \mathbb{R})/\gamma^- \mid f(\mathbf{x}) \geq 0 \ \forall \mathbf{x} \in \gamma \}$$

The cone γ^U is the dual of γ in its own span, hence independent of σ. For cones $\tau \subseteq \gamma$ denote by $X_{\gamma/\tau}$ the spectrum of the semigroup ring induced by the cone γ/τ in its natural lattice. Set $Y_{\gamma/\tau} := X_{(\gamma/\tau)^{n}}$.

In the following, we denote the cone $\mathbb{R}_{\geq 0}A$ by σ. The Fourier transformed GKZ system $\hat{M}_A(0)$ is isomorphic to $(h_A)_+ \mathcal{O}_\sigma$ and has support on the affine toric variety $X_A = X_\sigma$. For a face τ of σ write d_τ for its dimension. We have seen in Subsection 2.1 that the d_τ-dimensional T-orbits $O_{\tau}A$ in X_σ are in one-to-one correspondence with the faces τ of σ. The closure of an orbit $O_{\tau}A$ is X_{τ}.

It turns out that the varieties X_{τ} are exactly those which occur as support varieties of the summands in the semisimple decompositions of the graded parts $\text{gr}^W \hat{M}_A(0)$.

Let $\mathcal{L}_{(\tau,d+e)}$ be the constant local system of rank $\dim \text{IH}^{d+1-d_e}(Y_{\gamma/\tau})$ on $O_{\tau}A$. In order to simplify the notation, we use the symbol $\text{IC}_Y(\mathcal{L})$ for the intersection cohomology \mathcal{D}-module on some smooth variety X with support on the closed subset $Y \subseteq X$, and where \mathcal{L} is a local system on a Zariski open subset of Y.

Theorem 4.10. Let $A \in \mathbb{Z}^{(d+1) \times (n+1)}$ be full, pointed, saturated, but not necessarily homogeneous. The weight graded parts of the mixed Hodge module $\hat{M}_A(0)$ are given by

$$\text{gr}^W \hat{M}_A(0) \simeq \bigoplus_{\tau \subseteq \sigma} \text{IC}_{X_{\tau}}(\mathcal{L}_{(\tau,d+1+e)})$$

Corollary 4.11. Let $A \in \mathbb{Z}^{(d+1) \times (n+1)}$ be as above. The length of the GKZ system $\hat{M}_A(0)$ is

$$\sum_{\tau \subseteq \sigma} \sum_{e=0}^{d+1-d_\tau} \dim \text{IH}^e(Y_{\gamma/\tau}) = \sum_{\tau \subseteq \sigma} \dim \text{IH}^e(Y_{\sigma/\tau})$$

5. APPLICATION TO TORIC MIRROR SYMMETRY

The aim of this final section is to discuss some results concerning the so-called mirror symmetry phenomenon, which links enumerative geometry of projective algebraic, and more generally symplectic varieties (called A-model) to complex geometry, in particular, Hodge theory of their so-called B-models. The B-model is usually given by a family of algebraic varieties which may have singularities and
which need not be projective (which forces one to consider compactifications, see below). Often these families on the \mathcal{B}-side are referred to as Landau–Ginzburg models.

The first example of mirror symmetry was given by Candelas, de la Ossa, Green and Parkes [CdOGP91] who predicted a virtual number of rational curves on a quintic threefold (later referred to as the genus 0 Gromov–Witten invariants) by period computations for the mirror partner, i.e. the \mathcal{B}-model. These predictions were verified and also generalized to numerically effective smooth complete intersections in toric varieties by Givental [Giv96], [Giv98]. His celebrated mirror theorem shows that the J-function, a generating function for the genus 0 GW-invariants of such varieties, is computable in terms of a cohomology-valued hypergeometric function. Givental also conjectured that the components of this function are given as oscillating integrals. This was much later proved by Iritani in [Iri09] (even treating the case where the toric variety in question is an orbifold), some details of the construction described below are parallel to his paper. However, an algebraic construction of the correct Hodge theoretic \mathcal{B}-model was still missing. Our purpose in this section is to give an overview of techniques and results (mainly referring to [RS15], [RS17], [RS20] as well as to [Moc15b]), where the machinery of GKZ-systems as discussed in the previous sections is used to obtain a purely algebraic Hodge theoretic (and \mathcal{D}-module based) mirror correspondence for certain smooth toric varieties resp. subvarieties of them.

5.1. Gromov–Witten invariants and Dubrovin connection. Let X be a toric smooth projective variety. For the purpose of this exposition, we assume further that X is Fano, so the anticanonical class $-K_X$ is ample. A good part of the results discussed below also applies if one considers weak Fano manifolds, meaning that $-K_X$ is a numerically effective (nef) class. There are however a few technical modifications needed in the nef case, which is why we refrain from discussing it here. Developing the mirror symmetry picture described below in the absence of any positivity assumption on X remains a subject of active current research (see, e.g., [Iri08], [GKR17], [Iri17]).

Let $\beta \in H_2(X, \mathbb{Z})$ and choose $\gamma_1, \gamma_2, \gamma_3 \in H^*(X, \mathbb{Q})$. The genus zero, three point Gromov–Witten invariants $\langle I_{0,3}, \beta \rangle : H^*(X, \mathbb{Q})^\otimes 3 \to \mathbb{Q}$ intuitively count the number of stable maps f from rational curves C with—in this case—three marked points, satisfying $f_*(\lfloor C \rfloor) = \beta$ and $f(C) \cap \text{PD}(\gamma_i) \neq \emptyset$ for $i = 1, 2, 3$. (Here and elsewhere, PD($-$) denotes the Poincaré dual). Technically, they are obtained as follows: pull back the (three) arguments of $\langle I_{0,3}, \beta \rangle$ to the moduli space of such maps (along the three induced evaluation maps to X), take their cup product and evaluate against this product by integration over a certain virtual fundamental class on the moduli space. Constructing this latter class is a major issue in Gromov–Witten theory (see, e.g. [FP97] and [BF97]).

We choose a homogeneous basis $T_0, T_1, \ldots, T_r, T_{r+1}, \ldots, T_s$ of $H^*(X; \mathbb{Z})$ such that $T_0 \in H^0(X; \mathbb{Z})$, the classes $T_1, \ldots, T_r \in H^2(X; \mathbb{Z})$ lie in the nef cone of X and $T_{r+1}, \ldots, T_s \in H^{2,2}(X; \mathbb{Z})$. Let $g_{ij} := (T_i, T_j)$ be the Poincaré pairing between the
elements T_i and T_j and define
\[T^i := \sum_j g_{ij} T_j. \]

With $\delta \in H^2(X; \mathbb{C})$, the three point Gromov–Witten invariants can be used as structure constants for a family of multiplications
\[(33) \quad \gamma_1 \ast \gamma_2 := \sum_{\beta \in H_2(X, \mathbb{Z})} \sum_{i=0}^{s} \exp(\delta(\beta)) \cdot \langle I_{0,3,\beta} \rangle (\gamma_1, \gamma_2, T_i) T^i \]
on $H^\ast(X; \mathbb{C})$. This product structure is the \textit{small quantum product} of X and parameterized by the cosets of δ in the \textit{complexified Kähler moduli space}
\[\mathcal{K} := H^2(X; \mathbb{C})/2\pi \sqrt{-1} \cdot H^2(X, \mathbb{Z}). \]

\textbf{A priori} it is far from clear that the sum in (33) is convergent. However, the Gromov–Witten invariants satisfy (among others) the following properties:

\textbf{Effectivity} : \quad $\langle I_{0,3,\beta} \rangle = 0$ if β does not lie in the Mori cone

\textbf{Degree} : \quad $\langle I_{0,3,\beta} \rangle (T_i, T_j, T_k) = 0$ unless $\sum_{i=1}^{3} \deg(T_i) = 2 \dim X - 2c_1(X)(\beta)$

\textbf{Point Mapping} : \quad $\langle I_{0,3,0} \rangle (T_i, T_j, T_k) = (T_i \cup T_j \cup T_k)([X])$

where we recall that the Mori cone is the cone in $H_2(X; \mathbb{R})$ of effective classes of curves. It is dual to the cone of nef divisors in $H^2(X; \mathbb{R})$. The effectivity axiom together with our assumption that X is Fano (i.e. that the class $c_1(X)$ is ample) show that $\langle I_{0,3,\beta} \rangle$ is zero unless $c_1(X)(\beta) \geq 0$. The degree axiom now tells us that for fixed T_i, T_j, T_k there are only finitely many β in the Mori cone such that $\langle I_{0,3,\beta} \rangle (T_i, T_j, T_k)$ is non-zero. Hence the product defined in (33) is finite and therefore defined on the whole space \mathcal{K}.

It can be seen from other axioms that the small quantum product is commutative, associative and that T_0 acts as identity. Let $\eta_1, \ldots, \eta_r \in H_2(X, \mathbb{Z})$ such that $T_i(\eta_j)$ is the Kronecker $\delta_{i,j}$ for $1 \leq i, j \leq r$. If we write
\begin{align*}
\delta &= t_1 T_1 + \ldots + t_r T_r \in H^2(X; \mathbb{C}), \\
\beta &= \beta_1 \eta_1 + \ldots + \beta_r \eta_r \in H_2(X; \mathbb{C}),
\end{align*}
and set $q_i := \exp(t_i)$ for $i = 1, \ldots, r$, we get
\[\exp(\delta(\beta)) = q_1^{\beta_1} \cdots q_r^{\beta_r}. \]

Then, under the exponential map from $H^2(X; \mathbb{C})$ to \mathcal{K}, $q = \{q_i\}_{i=1}^{r}$ become coordinates on \mathcal{K} corresponding to $t = \{t_i\}_{i=1}^{r}$ on $H^2(X; \mathbb{C})$ and induce an explicit isomorphism $\mathcal{K} \simeq (\mathbb{C}^*)^r$. Since T_1, \ldots, T_r lie in the nef cone, the cone generated by the dual basis $\{\eta_j\}_{j=1}^{r}$ contains the Mori cone and therefore all monomials $q_1^{\beta_1} \cdots q_r^{\beta_r}$ have non-negative exponents. Hence the quantum product extends to the partial compactification
\[(34) \quad \bar{\mathcal{K}} := \mathbb{C}^r \leftrightarrow (\mathbb{C}^*)^r = \mathcal{K}. \]

The point mapping property of the Gromov–Witten invariants shows that the small quantum product degenerates to the ordinary cup product at $q = 0$.
Example 5.1. Consider the first Hirzebruch surface F_1 which is induced by the following fan (left); on the right is shown the space $H^2(F_1; \mathbb{R})$ using the coordinate system given by the classes of D_1 and D_2. (See the start of Subsection 5.2 for information on how to view $H^2(X; \mathbb{Z})$).

We choose the homogeneous basis $T_0 = 1$, $T_1 = [D_1]$, $T_2 = [D_2]$, $T_3 = \text{PD}(\{pt\})$. The small quantum cohomology product of F_1 is determined by

$$T_1 * T_0 = T_1, \quad T_1 * T_1 = -q_1 T_1 + q_1 T_2, \quad T_1 * T_2 = T_3, \quad T_1 * T_3 = q_1 q_2 T_0$$

$$T_2 * T_0 = T_2, \quad T_2 * T_1 = T_3, \quad T_2 * T_2 = q_2 T_0 + T_3, \quad T_2 * T_3 = q_2 T_1 + q_1 q_2 T_0$$

since one can conclude that

$$T_3 * T_3 = T_3 * (T_1 * T_2) = (T_3 * T_1) * T_2 = q_1 q_2 T_0 * T_2 = q_1 q_2 T_2.$$

The small quantum cohomology ring of F_1 is therefore given by

$$\mathbb{C}[q_1, q_2, T_1, T_2]/(T_1^2 + q_1 T_1 - q_2 T_2, T_2^2 - T_3 T_2 - q_2 T_1 + T_3 T_1 - q_1 q_2).$$

Restricting this ring to $q_1 = q_2 = 0$ gives $\mathbb{C}[T_1, T_2]/(T_1^2 - T_3 T_2 - T_1 T_2, T_1 T_3^2 - q_2 T_1 - q_1 q_2)$ which is isomorphic to the cohomology ring (cf. [Ful93, Section 5.2]),

$$H^*(F_1; \mathbb{C}) \equiv \mathbb{C}[D_1, D_2, D_3, D_4]/(D_1 D_3, D_2 D_4, D_1 D_2 D_4, D_1 - D_3, D_2 - D_3 - D_4)$$

under the map $T_1 \mapsto D_1$, $T_2 \mapsto D_2$.

We are going to give a reformulation of the quantum cohomology algebra in terms of certain differential systems. The intrinsic reason of the appearance of differential equations in this context is best understood when studying the big quantum product instead of the small one as we have done above. It basically means to have a product on $H^*(X; \mathbb{C})$ which is parameterized by any class $\delta \in H^*(X; \mathbb{C})$ instead of a class in $H^2(X; \mathbb{C})$ (more precisely, instead of a representative of a coset in \mathcal{K}). One can show that the structure constants of the big quantum product can be obtained as third derivatives of a generating function, referred to as the Gromov-Witten potential. This fact reveals an intrinsic integrability property of the (big) quantum product. Moreover, the associativity then boils down to a famous third order non-linear partial differential equation satisfied by the GW-potential, abbreviated as WDVV-equation (after Witten, Dijkgraaf, Verlinde, Verlinde, see, e.g. [Man99]). It turns out that using the next definition, this equation can be rewritten as a flatness
property of a system of linear differential equations, that is, a vector bundle with a connection.

Definition 5.2. The small Dubrovin connection \((H^A, \nabla^A)\) of \(X\) is a flat meromorphic connection \(\nabla^A\) on a trivial, holomorphic vector bundle \(H^A\) over \(\mathbb{P}^1 \times \mathcal{K}\) with fiber \(H^*(X; \mathbb{C})\). The connection is given by

\[
\nabla^A_{\partial q_i}(T_j) := \frac{1}{z} T_i \ast T_j
\]

\[
\nabla^A_{\partial z}(T_j) := -\frac{1}{z^2} c_1(X) \ast T_j + \frac{1}{z} \deg(T_j) T_j
\]

where we denote by \(z\) the coordinate centered at \(0 \in \mathbb{C} \subseteq \mathbb{P}^1\).

Notice however that this convention from quantum cohomology literature leads to some slight clash of notation. Namely, the variable \(z\) from above (a coordinate on \(\mathbb{P}^1\)) is different from the variable \(z\) used for univariate hypergeometric equations in Section 1 as well as in Formula (30). In order to be consistent with the literature, we stick to these conventions and hope that it does not lead to confusion.

It is an easy but instructive exercise to check that the flatness of the connection \(\nabla^A\) implies the associativity and commutativity of the small quantum product.

Example 5.3. The small Dubrovin connection of the first Hirzebruch surface is given by

\[
\nabla^A = d + \begin{pmatrix}
0 & 0 & 0 & q_1 q_2 \\
1 & -q_1 & 0 & 0 \\
0 & q_1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{pmatrix} \frac{dq_1}{z q_1} + \begin{pmatrix}
0 & 0 & q_2 & q_1 q_2 \\
0 & 0 & 0 & q_2 \\
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0
\end{pmatrix} \frac{dq_2}{z q_2}
\]

\[
+ \begin{pmatrix}
0 & 0 & -2 q_2 & -3 q_1 q_2 \\
-1 & q_1 & 0 & -2 q_2 \\
-2 & -q_1 & 0 & 0 \\
0 & -2 & -3 & 0
\end{pmatrix} \frac{dz}{z^2} + \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 2
\end{pmatrix} \frac{dz}{z}
\]

5.2. Landau–Ginzburg models. Let \(\Sigma_X\) be the fan of the toric smooth projective Fano variety \(X\) defined on the \(d\)-dimensional vector space \(N \otimes \mathbb{R}\) (\(N \cong \mathbb{Z}^d\) being a lattice), with \(\Sigma_X(1)\) the set of one-dimensional cones whose primitive elements in \(N\) form the columns of the matrix \(B \in \mathbb{Z}^{d \times n}\). Denote by \(M = \text{Hom}_{\mathbb{Z}}(N, \mathbb{Z})\) the dual of \(N\) which is identified with the group of torus-invariant principal divisors and by \(\text{Div}_T(X)\) the group of torus-invariant Weil divisors. There is the following (split) exact sequence

\[
0 \longrightarrow M \longrightarrow \text{Div}_T(X) \longrightarrow H^2(X, \mathbb{Z}) \longrightarrow 0
\]

Applying \((-) \otimes \mathbb{Z} \mathbb{C}^*\) one obtains the (split) exact sequence

\[
1 \longrightarrow M \otimes \mathbb{Z} \mathbb{C}^* \xrightarrow{\pi} \text{Div}_T(X) \otimes \mathbb{Z} \mathbb{C}^* \xrightarrow{\epsilon} H^2(X, \mathbb{Z}) \otimes \mathbb{Z} \mathbb{C}^* \longrightarrow 1
\]

of algebraic tori, where \(\pi\) is the monomial map encoded by the transpose of \(B\), \(\mathcal{K}\) is as in Subsection 5.1, and \(\pi\) as in (22). Recall that the standard basis \(e_1, \ldots, e_d\) of \(M\) gives coordinates \(t = (t_1, \ldots, t_d)\) on \(\mathbb{T}\).
The canonical basis of torus-invariant divisors D_1, \ldots, D_n for $\text{Div}_T(X)$ corresponding to the one-dimensional cones induces an isomorphism $\text{Div}_T(X) \otimes \mathbb{Z} C^* \cong (\mathbb{C}^*)^n$. Let $W : \text{Div}_T(X) \otimes \mathbb{Z} C^* = (\mathbb{C}^*)^n \rightarrow \mathbb{C}$ be the function given by summing the coordinates.

Definition 5.4. The Landau–Ginzburg model associated to the smooth, toric, Fano variety X is the map

$$(W, c) : \text{Div}_T(X) \otimes \mathbb{Z} C^* \rightarrow \mathbb{C} \times K.$$

If we view K as an abstract algebraic torus, defining the morphism (W, c) requires only the matrix B (that is, the generators of $\Sigma_X(1)$), but not the full data of the fan Σ_X. We shall later wish to (partially) compactify K, as we have done before (see Formula (34)). For this, we need to equip K with the coordinate system $\{q_i\}_{i=1, \ldots, r}$, corresponding to the basis $\{T_i\}_{i=1, \ldots, r}$ on $H^2(X; \mathbb{C})$. The compactification is designed to contain the point $q_1 = \ldots = q_r = 0$, since there the quantum product collapses to the cup product. This will be the case if the basis $\{T_i\}_{i=1, \ldots, r}$ of $H^2(X; \mathbb{R})$ consists of nef classes (this choice has already been made above at the beginning of Subsection 5.1). Hence, fixing such a good coordinate system $\{q_i\}_{i=1, \ldots, r}$ on K depends on the geometry of the toric variety X and not just on the ray generators given by the matrix B (see [RS15, Section 3.1] for a more detailed discussion).

Since (37) splits, we can find a section of the map $\text{Div}_T(X) \rightarrow H^2(X, \mathbb{Z})$ which then induces a section

$$(38) \quad s : K \rightarrow \text{Div}_T(X) \otimes \mathbb{Z} C^*.$$

Again, s, seen as a monomial map from $(\mathbb{C}^*)^r$ to $(\mathbb{C}^*)^n$, will depend on the fan structure of Σ_X via the choice of coordinates on K. From now on, we will always fix such coordinates and consider K as the concrete r-dimensional torus $(\mathbb{C}^*)^r$. The isomorphism

$$(b, s) : \mathbb{T} \times K \rightarrow \text{Div}_T(X) \otimes \mathbb{Z} C^*$$

gives a different presentation of the Landau–Ginzburg model, namely as a family of Laurent polynomials

$$(39) \quad \psi := (F, pr_2) : \mathbb{T} \times K \rightarrow \mathbb{C} \times K$$

$$(t_1, \ldots, t_d, q_1, \ldots, q_r) \rightarrow \left(\sum_{j=1}^{n} q^{s_j(t_{b_j})} q_1, \ldots, q_r \right)$$

where $S = (s_1, \ldots, s_n) \in \mathbb{Z}^{r \times n}$ and $B = (b_1, \ldots, b_n) \in \mathbb{Z}^{d \times n}$ represent the maps s and b respectively.

Example 5.5. We continue Example 5.1. The exact sequence (37) is given by

$$0 \rightarrow \mathbb{Z}^2 \xrightarrow{\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -1 & -1 \\ 0 & -1 \end{pmatrix}} \mathbb{Z}^4 \xrightarrow{\begin{pmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & 0 & 1 \end{pmatrix}} \mathbb{Z}^2 \rightarrow 0$$

where we have chosen the basis $T_1 = [D_1], T_2 = [D_2]$ as a basis in $H^2(X; \mathbb{Z})$, as we did in Example 5.1. The Landau–Ginzburg model is given on the level of coordinate
functions by

\[
(W, e) : \text{Div}_T(X) \otimes \mathbb{C}^* = (\mathbb{C}^*)^4 \rightarrow \mathbb{C} \times (\mathbb{C}^*)^2 = \mathbb{C} \times \mathcal{K}
\]

\[
(w_1 + \cdots + w_4, w_1w_3, w_2w_4) \leftrightarrow (t, q_1, q_2).
\]

The corresponding family of Laurent polynomials is

\[
\psi : \mathbb{T} \times \mathcal{K} = (\mathbb{C}^*)^2 \times (\mathbb{C}^*)^2 \rightarrow \mathbb{C} \times (\mathbb{C}^*)^2 = \mathbb{C} \times \mathcal{K}
\]

\[
(t_1, t_2, q_1, q_2) \rightarrow (q_1t_1 + q_2t_2 + \frac{1}{t_1t_2} + \frac{1}{t_2}, q_1, q_2),
\]

where we have chosen the section \(s : \mathcal{K} \rightarrow \text{Div}_T(X) \otimes \mathbb{C}^* \) as the one induced from the map

\[
H^2(X; \mathbb{Z}) \cong \mathbb{Z}^2 \xrightarrow{\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}} \mathbb{Z}^4 \cong \text{Div}_T(X).
\]

It was conjectured by Givental (see, e.g. [Giv98]) that oscillating integrals over Lefschetz thimbles with respect to the Landau–Ginzburg model give flat sections of the Dubrovin connection. An algebraic replacement of these oscillating integrals, localized and partially Fourier transformed Gauß–Manin systems of the Landau–Ginzburg model.

We briefly explain this version of the ordinary Fourier transformation functor (see Formula (19) above). In the following, \(\mathcal{O}_{\mathbb{C} \times \mathbb{C}_r \times \mathcal{Y}} \cdot \exp(-t\tau) \) denotes a free rank 1 module with twisted differential given by the product rule.

Definition 5.6. Given a smooth variety \(\mathcal{Y} \) and a holonomic \(\mathcal{D}_{\mathbb{C} \times \mathcal{Y}} \)-module \(\mathcal{N} \), the **localized, partial Fourier transform** of \(\mathcal{N} \) is the sheaf

\[
(40) \quad \text{FI}_{\mathcal{Y}, \mathcal{N}} := (j_+)_*(p_2)_*(p_1^+\mathcal{N} \otimes \mathcal{O}_{\mathbb{C} \times \mathbb{C}_r \times \mathcal{Y}} \cdot \exp(-t\tau))[-1]
\]

where \(p_1 : \mathbb{C}_r \times \mathbb{C}_r \times \mathcal{Y} \rightarrow \mathbb{C}_r \times \mathcal{Y} \) and \(p_2 : \mathbb{C}_r \times \mathbb{C}_r \times \mathcal{Y} \rightarrow \mathbb{C}_r \times \mathcal{Y} \) are the indicated projections, and where \(j_+ : \mathcal{C}_r^+ \times \mathcal{Y} \rightarrow \mathbb{C}_r \times \mathcal{Y} \) and \(j_2 : \mathcal{C}_r^+ \times \mathcal{Y} \rightarrow (\mathbb{P}^1_\mathbb{C} \setminus \{0\}) \times \mathcal{Y} = \mathbb{C}_r \times \mathcal{Y} \) are the canonical open embeddings with the understanding that \(z = 1/\tau \).

The name “localized” comes from the fact that by using the direct image \((j_+)_* \), the action of \(z \) is invertible on the resulting module (and so is the action of \(\tau \)).

The localized, partial Fourier transformed Gauß–Manin system of the Landau–Ginzburg model \(\psi \) is then defined as

\[
\mathscr{G}^\psi := \text{FI}_{\mathcal{K}}(\psi_\mathcal{Y} \cdot \mathcal{O}_{\mathbb{T} \times \mathcal{K}}).
\]

It is an exercise (using the definition of the direct image functor, see, e.g. [HTT08, Sections 1.3, 1.5]) to show that the module of global sections \(G^\psi \) of \(\mathscr{G}^\psi \) has the following presentation in terms of relative differential forms

\[
G^\psi \simeq H^0\left(\frac{\Omega^{\bullet+d}_{\mathbb{T} \times \mathcal{K}/\mathcal{K}}[z^\pm]}{z \partial - dF \wedge}, \partial \right),
\]

where \(\partial \) is the differential on the complex \(\Omega^{\bullet+d}_{\mathbb{T} \times \mathcal{K}/\mathcal{K}} \). Following an idea from singularity theory (see [Bri70, Sai89, Sab06]), one defines the **Fourier transformed Brieskorn**
lattice by
\[
G_0^\psi := H^0 \left(\Omega^*_{\mathbb{T} \times K/K}, z \, d \mathcal{F} \wedge \right) \subseteq G^\psi.
\]
We will see below, using GKZ-systems, that G_0^ψ is $\mathcal{O}_{C \times K}$-free. In order to connect G^ψ to a GKZ-system we observe that the family of Laurent polynomials ψ is a pullback of a larger family
\[
\varphi: \mathbb{T} \times \mathbb{C}^n \to \mathbb{C} \times \mathbb{C}^n
\]
\[
((t_1, \ldots, t_d), (x_1, \ldots, x_n)) \mapsto (-\sum_{j=1}^n t_j^b_j, (x_1, \ldots, x_n))
\]
by the map
\[
\iota: C \times K \xrightarrow{id \times (-s)} C \times \text{Div}_T(X) \otimes_\mathbb{Z} \mathbb{C}^* \xrightarrow{\varphi} C \times (\mathbb{C}^*)^n \xrightarrow{\text{can}} C \times C^n
\]
where $s: K \hookrightarrow \text{Div}_T(X) \otimes_\mathbb{Z} \mathbb{C}^* \cong (\mathbb{C}^*)^n$ is as in \ref{equation:29} and the middle map is the identification induced from the standard basis on M.

In Theorem \ref{theorem:4.3} we have connected the Gauß–Manin system of φ to a GKZ system via the 4-term sequence
\[
0 \to H^{d-1}(\mathbb{T}; \mathbb{C}) \otimes \mathcal{O}_{C^{n+1}} \to \mathcal{H}^0(\varphi, \mathcal{O}_{\mathbb{T} \times C^n}) \to \mathcal{M}_A(0) \to H^d(\mathbb{T}; \mathbb{C}) \otimes \mathcal{O}_{C^{n+1}} \to 0,
\]
where $A \in \mathbb{Z}^{(d+1) \times (n+1)}$ is the homogenization of the matrix B constructed from the ray generators of the fan Σ_X. Since the outer two terms are free $\mathcal{O}_{C^{n+1}}$-modules, they are in the kernel of the localized partial Fourier transform. Indeed, on the level of global sections, FL_Y^loc is the composition the localization at ∂_t with the ordinary Fourier transformation FL_Y, and $\mathbb{C}[t] = D_t/D_t \partial_t$ naturally localizes to zero. Thus, the localized Fourier transform being the composition of two exact functors, the previous display implies
\[
\mathcal{G}^\psi = \text{FL}_C^\text{loc} \mathcal{H}^0(\varphi, \mathcal{O}_{\mathbb{T} \times C^{n+1}}) \cong \text{FL}_C^\text{loc}(\mathcal{M}_A(0)).
\]
The module of global sections of $\text{FL}_C^\text{loc}(\mathcal{M}_A(0))$ is the cyclic left module $D_{C \times C^n}[z^\pm]/I$ over the ring
\[
D_{C \times C^n}[z^\pm] := C[z^\pm, x_1, \ldots, x_n] \langle \partial_z, \partial_{x_1}, \ldots, \partial_{x_n} \rangle,
\]
where I is generated by the operators $\vec{E}_{0}, (\vec{E}_i)_{i=1, \ldots, d}, (\vec{u}_a)_{u \in \ker(B)}$ from Equation (29). We like to compare this computation to a presentation for the Fourier transformed Brieskorn lattice \mathcal{G}_0^ψ for the map φ instead of ψ. For this, we use again the Rees ring $R_{C \times C^n} = C[z, x_1, \ldots, x_n][z^2 \partial_z, z \partial_{x_1}, \ldots, z \partial_{x_n}]$ from Equation (28). The module of global sections of the Fourier transformed Brieskorn lattice G_0^ψ can then be described as $R_{C \times C^n}/H_B^0(0)$, recalling from Section \ref{section:4} that $H_B^0(0)$ is the left $R_{C \times C^n}$-ideal generated by the operators $\vec{E}_{0}, (\vec{E}_i)_{i=1, \ldots, d}, (\vec{u}_a)_{u \in \ker(B)}$.

Using techniques borrowed from \cite{Ado94} one can show:

\textbf{Lemma 5.7.} \cite[Lemma 2.12]{RS15} The restriction of the Fourier transformed Brieskorn lattice \mathcal{G}_0^ψ to the Zariski open subset $C \times (\mathbb{C}^*)^n \subseteq C \times \mathbb{C}^n$ is a free $\mathcal{O}_{C \times (\mathbb{C}^*)^n}$-module. \hfill \ensuremath{\square}
One can prove by base change that the Fourier transformed Brieskorn lattice \mathcal{G}_0^ψ is the inverse image of \mathcal{G}_0^ψ under the map ι in (42). We therefore arrive at the following result where, for $u \in \ker(B)$, we read it as an element of $H_2(X; \mathbb{C})$ via the dual of the sequence (37):

Parallel to $\mathcal{A}_{\mathbb{C} \times \mathbb{C}^r}$ from (28), we define

$$R_{\mathbb{C} \times \mathbb{K}} := \mathbb{C}[z, q_1^\pm, \ldots, q_r^\pm](z^2 \partial_z, z \partial_{q_1}, \ldots, z \partial_{q_r})$$

and denote by $\mathcal{A}_{\mathbb{C} \times \mathbb{K}}$ the associated sheaf on $\mathbb{C} \times \mathbb{K}$.

Proposition 5.8. The localized Fourier transformed Brieskorn lattice \mathcal{G}_0^ψ is $\mathcal{O}_{\mathbb{C} \times \mathbb{K}}$-free. As a sheaf over $\mathcal{A}_{\mathbb{C} \times \mathbb{K}}$, it is isomorphic to the cyclic module $\mathcal{A}_{\mathbb{C} \times \mathbb{K}}/\mathcal{J}$ where the left ideal \mathcal{J} is generated by (here, u runs through $\ker(B)$ and $\{q_a\}_{a=1,\ldots,r}$ are coordinates on \mathbb{K} as always)

$$\bar{E} := z^2 \partial_z + \sum_{a=1}^r c_1(X)_a z q_a \partial_{q_a}$$

$$\bar{\Delta}_u := \left(\prod_{a: T_a(u) > 0} \frac{q_a^{T_a(u)}}{u} \right) \left[-u_j - 1 \sum_{a=1}^r [D_i]_a z q_a \partial_{q_a} - \nu z \right]$$

where $[D_i] = \sum_{a=1}^r [D_i]_a T_a$ and $c_1(X) = \sum_{a=1}^r c_1(X)_a T_a$.

Set

$$R_{\mathbb{C} \times \mathbb{K}}^{\log} := \mathbb{C}[z, q_1, \ldots, q_r](z^2 \partial_z, z q_1 \partial_{q_1}, \ldots, z q_r \partial_{q_r})$$

and denote by $\mathcal{A}_{\mathbb{C} \times \mathbb{K}}^{\log}$ the associated sheaf on $\mathbb{C} \times \mathcal{K}$. Then the following statements on some cyclic $\mathcal{A}_{\mathbb{C} \times \mathbb{K}}^{\log}$-modules are proved in [RS15] using methods from toric geometry, including the notions of primitive collections and relations (see, e.g., [CvR09, CLS11]).

Proposition 5.9. Let $\mathcal{J}^{\log} \subseteq \mathcal{A}^{\log}$ be the left ideal generated by \bar{E} and $\bar{\Delta}_u$ from Proposition 5.8. Then

- $\mathcal{A}_{\mathbb{C} \times \mathbb{K}}^{\log}/\mathcal{J}^{\log}$ is $\mathcal{O}_{\mathbb{C} \times \mathcal{K}}$-free.
- $\left(\mathcal{A}_{\mathbb{C} \times \mathcal{K}}^{\log}/\mathcal{J}^{\log}\right)_{\mathbb{C} \times \mathbb{K}} \simeq \mathcal{A}_{\mathbb{C} \times \mathbb{K}}^{\log}/\mathcal{J}^{\log}$.

In order to construct an object which matches the small Dubrovin connection coming from the Gromov–Witten invariants of X we have to go one step further. Recall that the small Dubrovin connection (35) is a family of vector bundles on \mathbb{P}^1, parameterized by \mathcal{K}, equipped with a certain connection operator. As of yet, starting from the Landau–Ginzburg model ψ from (39) of X, we have constructed a vector bundle $\mathcal{A}_{\mathbb{C} \times \mathcal{K}}^{\log}/\mathcal{J}^{\log}$ on $\mathbb{C} \times \mathcal{K}$ with a differential structure, and it is easily verified that the behavior along the poles $(\{0\} \times \mathcal{K}) \cup (\mathbb{C} \times (\mathcal{K} \setminus \mathcal{K}))$ of the connection operators on both bundles are of the same type. If we want to compare $\mathcal{A}_{\mathbb{C} \times \mathcal{K}}^{\log}/\mathcal{J}^{\log}$ to the small Dubrovin connection, it thus remains to extend this bundle (together with its connection operator) over the divisor $\{\infty\} \times \mathcal{K}$ to all of $\mathbb{P}^1 \times \mathcal{K}$. This is of course always possible if no other condition is imposed. However, if we want
to reconstruct the Dubrovin connection, this extension needs to satisfy two strong conditions simultaneously: the resulting object must be a family of trivial \mathbb{P}^1-bundles and the connection must have a logarithmic pole at infinity. Fulfilling both requirements is not always possible, and goes under the name (Riemann-Hilbert-)Birkhoff problem; for a modern account see [Sab98, Chapter IV]. However, under the current circumstances, a solution to the Birkhoff problem can be found locally near the boundary $\mathbb{K}\setminus\mathcal{K}$, as the following result shows.

Theorem 5.10. ([RS15, Proposition 3.10]) There exists a Zariski open neighborhood U of $0 \in \mathbb{K}$ and sections Q_0, \ldots, Q_s of $(\mathcal{R}_{\mathbb{C}^\times\mathbb{K}}/\mathcal{J}_{\log})|_{\mathbb{C} \times U}$ which extend $(\mathcal{R}_{\mathbb{C}^\times\mathbb{K}}/\mathcal{J}_{\log})|_{\mathbb{C} \times U}$ as a (trivial) holomorphic vector bundle over $\mathbb{P}^1 \times U$, called H^B, such that the associated connection ∇^B has a logarithmic pole along the normal crossing divisor $\{(z = \infty) \times U\} \cup (\mathbb{P}^1_2 \times (\mathbb{K}\setminus\mathcal{K}))$.

With all these preparations, we can state the following result, which can be considered as the Hodge theoretic mirror statement for smooth toric Fano varieties.

Theorem 5.11. ([RS15, Proposition 4.10]) Let, as before, X be a smooth projective toric Fano variety, (H^A, ∇^A) the small Dubrovin connection and (H^B, ∇^B) the solution to the Birkhoff problem from Theorem 5.10. Then there is an isomorphism of holomorphic bundles over $\mathbb{P}^1 \times U$ with meromorphic connections
\[
(H^A, \nabla^A)|_{\mathbb{P}^1 \times U} \simeq (H^B, \nabla^B)
\]

We remark that in [RS15, Proposition 4.10] a similar result for the more general case of weak Fano toric manifolds is given, albeit with a weaker conclusion: the extension H^B there only exists on an analytic open subset of \mathcal{K} (see the remark after [RS15, Proposition 3.10]).

Example 5.12. When X is the Hirzebruch F_1 surface, the Fourier transformed Brieskorn lattice of the Landau–Ginzburg model is given by
\[
G_0^v \simeq \mathbb{C}[z, q_1^\pm, q_2^\pm]/J
\]
where the left ideal J is generated by the operators
\[
\tilde{E} = z^2 \partial_z + z q_1 \partial_{q_1} + 2 z q_2 \partial_{q_2}, \quad \tilde{d}_{u_1} = (z q_1 \partial_{q_1})^2 + q_1(z q_1 \partial_{q_1}) - q_1(z q_2 \partial_{q_2}),
\]
\[
\tilde{d}_{u_2} = (z q_1 \partial_{q_1})^2(z q_2 \partial_{q_2}) - q_1 q_2, \quad \tilde{d}_{u_3} = -(z q_1 \partial_{q_1})(z q_2 \partial_{q_2}) + (z q_2 \partial_{q_2})^2 - q_2,
\]
where $u_1 = (1, 0, 1, -1)$, $u_2 = (1, 1, 1, 0)$, $u_3 = (0, 1, 0, 1)$ generate the integer kernel of B.

The logarithmic extension is equal to $\mathbb{C}[z, q_1, q_2]/(z^2 \partial_z, z q_1 \partial_{q_1}, z q_2 \partial_{q_2})/J_{\log}$ where J_{\log} is generated by the same operators as J.

The basis which solves the (Riemann-Hilbert-)Birkhoff problem is $Q_0 = 1, Q_1 = z q_1 \partial_{q_1}, Q_2 = z q_2 \partial_{q_2}, Q_3 = (z q_1 \partial_{q_1})(z q_2 \partial_{q_2})$. These sections are identified with the sections T_0, T_1, T_2, T_3 of H^A under the mirror isomorphism from Theorem 5.11.

5.3. Reduced quantum \mathcal{D}-modules and intersection cohomology

In this section, we are going to discuss a mirror statement that concerns weak Fano smooth complete intersections inside smooth projective toric, possibly non-Fano, varieties. From the point of view of physics, this is an even more important class of examples than the one considered previously since it includes Calabi–Yau manifolds that are subvarieties of toric manifolds, although they are not toric themselves. The most prominent example, namely, the quintic in \mathbb{P}^4 (where the first enumerative
predictions using the mirror symmetry principle were made, see [CdlOGP91]) is of this type. We will discuss a non-affine version of the Landau–Ginzburg models introduced above. The mirror statement that we aim for will relate (part of) the quantum cohomology of the complete intersection subvariety to the lowest weight filtration step of a GKZ-system. It follows from the results in Section 4.3 that the lowest weight filtration step is a single intersection cohomology \mathcal{D}-module which arises as the image under a natural morphism from the holonomic dual of the GKZ system to the GKZ system itself. In the cases we discuss here this holonomic dual is isomorphic to a GKZ system with the same matrix A but different parameter vector β. Hence the intersection cohomology \mathcal{D}-module can be described as the image of a morphism between two GKZ-systems by a contiguity morphism. Our main reference in this section is [RS17]. We start with setting the notation.

Notation 5.13. As before, X will be a smooth projective toric variety of Picard rank r attached to the fan Σ_X of dimension d, whose primitive rays form the columns of the matrix B. In contrast to the previous case we do in this subsection not make any positivity assumption on X here. Let $\mathcal{O}(L_1), \ldots, \mathcal{O}(L_c)$ be globally generated line bundles; since X is toric, this amounts to asking that each L_i be nef—their classes should lie in the nef cone in $H^2(X, \mathbb{R})$. We shall assume also that

$$-K_X - L_1 - \ldots - L_c \text{ is nef.} \quad (43)$$

If D_1, \ldots, D_n are the torus invariant divisors on X we can write

$$L_j = \sum_{i=1}^{n} d_{ij} D_j \quad (44)$$

for suitable non-negative integers d_{ij}. Set

$$\mathcal{E} := \mathcal{O}(L_1) \oplus \ldots \oplus \mathcal{O}(L_c),$$

and consider a generic global section $\gamma \in \Gamma(X, \mathcal{E})$. Our assumptions imply that

$$Y := \gamma^{-1}(0) \subset X$$

is a smooth complete intersection subvariety for which $-K_Y$ is nef; we call this property weak Fano.

In this paragraph we briefly review a variant of the above quantum product that is designed to encode enumerative information about stable maps to Y. The first point is that one can generalize the definition of Gromov–Witten invariants (5.1) to the twisted (three-point) GW-invariants; these are also maps from $H^*(X, \mathbb{Q})^{\otimes 3} \to \mathbb{Q}$, but Chern classes of certain tautological bundles (on the moduli space of stable maps) derived from \mathcal{E} come into play. We denote by $\langle I_{0,3,\beta} \rangle(\gamma_1, \gamma_2, \gamma_3) \in \mathbb{Q}$ the value of such a three point twisted GW-invariant for given cohomology classes $\gamma_1, \gamma_2, \gamma_3 \in H^*(X, \mathbb{Q})$ (see, e.g. [RS17, Section 4.1] for a more detailed discussion, including an explanation for the process $\gamma_3 \rightsquigarrow \gamma_3$). Then one defines in complete analogy to Formula (33) the twisted (small) quantum product by

$$\gamma_1^{\text{tw}} \ast \gamma_2 := \sum_{a=0}^{s} \sum_{\beta \in H_2(X, \mathbb{Z})} q^\beta \langle I_{0,3,\beta} \rangle(\gamma_1, \gamma_2, T_a) T^a \quad (45)$$

where, as before, q are coordinates on K and $q^\beta := \exp(\delta(\beta))$ for $\beta \in H_2(X; \mathbb{C})$.

ALGEBRAIC ASPECTS OF HYPERGEOMETRIC DIFFERENTIAL EQUATIONS

We now follow the definition of the small Dubrovin connection, Equation (35), and define the twisted quantum \mathcal{D}-module, denoted by $\text{QDM}(X, \mathcal{E})$, as the vector bundle on $\mathbb{P}^1 \times K$ with fiber $H^*(X; \mathbb{C})$ together with the connection given by

\[
\nabla^\text{tw}_{\partial_{q_i}} T_j := \frac{1}{z} T_j \text{tw} \ast T_j
\]

\[
\nabla^\text{tw}_{z \partial_i} T_j := \frac{1}{z} (i_0 T_0 + c_1(X) - c_1(\mathcal{E})) \text{tw} \ast T_j + \frac{\deg(T_j) - \dim(X) + \text{rk}(\mathcal{E})}{2} T_j
\]

Notice that, unlike in the Fano case discussed in Subsection 5.2, the convergence of the twisted quantum product is not automatic. We will therefore later restrict to some analytic neighborhood $U \subset K$ of the point $q_1 = \ldots = q_r = 0$ in K, on which tw is convergent.

As we are interested in enumerative information about maps to $Y := \gamma^{-1}(0)$, the cohomology space $H^*(X; \mathbb{C})$ is not a well suited object for a quantum cohomology theory of Y. We therefore consider the Gysin morphism

\[
m_\mathcal{E} : H^*(X) \to H^*(X)
\]

\[
\alpha \to c_{\text{top}}(\mathcal{E}) \cup \alpha
\]

and define the reduced cohomology of (X, \mathcal{E}) to be

\[
\overline{H}^*(X) := H^*(X) / \ker(m_\mathcal{E}).
\]

One checks that the twisted quantum \mathcal{D}-module $\text{QDM}(X, \mathcal{E})$ has a quotient bundle $\text{QDM}(X, \mathcal{E})$ with fiber $\overline{H}^*(X)$, and that the connection ∇^tw on $\text{QDM}(X, \mathcal{E})$ descends to $\overline{\text{QDM}}(X, \mathcal{E})$. We call this vector bundle on $\mathbb{P}^1 \times K$ with connection $(\overline{\text{QDM}}(X, \mathcal{E}), \nabla^\text{tw})$ the reduced quantum \mathcal{D}-module (see [RS17, Definition 4.3] for more details).

We proceed by describing the relevant Landau–Ginzburg models attached to the given data (X, \mathcal{E}). Denote by \mathcal{E}^\vee the dual bundle of \mathcal{E}, and by $V := \mathcal{V}(\mathcal{E}^\vee) \to X$ its total space. Then V is a (non-compact) toric variety, whose fan

\[
\Sigma_V \subseteq (N \oplus \mathbb{Z}^c) \otimes \mathbb{R}
\]

is given as follows: The set of rays of Σ_V are the columns of the matrix

\[
B' = (b'_1, \ldots, b'_{n+c}) := \begin{pmatrix} B & 0_{n,c} \\ (d_{ji}) & \text{Id}_c \end{pmatrix} \in \mathbb{Z}^{d+c} \times (n+c),
\]

where B is the $d \times n$-matrix constructed from the primitive rays in Σ_X and where d_{ji} are as in (44). Then the fan Σ_V consists of all cones

\[
\mathbb{R}_{\geq 0} b'_1 + \ldots + \mathbb{R}_{\geq 0} b'_{n+c} + \mathbb{R}_{\geq 0} b_{j_1} + \ldots + \mathbb{R}_{\geq 0} b_{j_l}
\]

such that $\mathbb{R}_{\geq 0} b_{j_1} + \ldots + \mathbb{R}_{\geq 0} b_{j_l} \in \Sigma_X$ and $j_1, \ldots, j_l \in \{n+1, \ldots, n+c\}$. Notice that we have $H^2(V; \mathbb{Z}) \cong H^2(X, X) \cong \mathbb{Z}^r$ and that $\text{Div}_V(V) \cong \mathbb{Z}^{n+c}$. Similarly to the discussion in Section 5.2 we then consider a family of Laurent polynomials associated to these toric data.

Definition 5.14. ([RS17, Definition 6.3.]) Let (X, \mathcal{E}) be as in Notation 5.13 and consider the complexified Kähler moduli space $K \cong H^2(X; \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{C}^* \cong H^2(V; \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{C}^*$ of both X and V. Write $\mathbb{T}_V := (\mathbb{C}^*)^{d+c}$ for the $(d+c)$-dimensional torus. Then the affine Landau–Ginzburg model of (X, \mathcal{E}) is the morphism
\[\psi = (F, \text{pr}_2) : \mathbb{P}_\psi \times \mathbb{K}^o \to \mathbb{C} \times \mathbb{K}^o \]

(48) \[(n, q) \mapsto -\sum_{j=1}^{n} q^{s_j} \cdot y^{b_j} + \sum_{j=n+1}^{n+c} q^{s_j'} \cdot y^{b_j'}, q \),

where

\[\mathbb{K}^o \subseteq \mathbb{K} \]

is a Zariski open subset on which the Laurent polynomials \(\psi(-, q) \) satisfy a non-degeneracy condition (see [RS17, Section 3.2]) and where \((s'_1, \ldots, s'_{n+c}) \in \mathbb{Z}^{r \times (n+c)} \) is a section of the projection \(\text{Div}_T(V) \to H^2(X, \mathbb{Z}) \).

One can establish a mirror symmetry theorem for the twisted quantum \(\mathcal{D} \)-module which involves the affine Landau–Ginzburg model, very much in the same spirit (without looking at logarithmic extensions over the boundary \(\mathbb{K} \setminus \mathbb{K} \) though, and also neglecting the extension to families of bundles over \(\mathbb{P}^1 \)) as Theorem 5.11 above (see [RS17, Theorem 6.13, 6.16] and also [Moc15b]). However, in order to reconstruct the reduced quantum \(\mathcal{D} \)-module \(\text{QDM}(X, E) \), we are forced to look at a compactification of the morphism \(\psi \). In order to define it, consider the map \(g_{B'} : \mathbb{P}_V = (\mathbb{C}^*)^{d+c} \hookrightarrow \mathbb{P}^{n+c} \) (see Formula (22) above). Then define

(49) \[Z^o := \Gamma_F \]

to be the closure in \(\mathbb{P}^{n+c} \times \mathbb{C} \times \mathbb{K}^o \) of the graph \(\Gamma_F \subseteq \mathbb{P}_V \times \mathbb{C} \times \mathbb{K} \) of the function \(F : \mathbb{P}_V \times \mathbb{K}^o \to \mathbb{C} \) defined in (47). Notice that \(Z^o \) is a partial compactification of \(\mathbb{P}_V \times \mathbb{K}^o \), that is, quasi-projective but in general not smooth.

\textbf{Definition 5.15.} Let \((X, \mathcal{E})\) be as above. Then we call the restriction

\[\Psi : Z^o \to \mathbb{C} \times \mathbb{K}^o \]

of the projection

\[\text{pr} : \mathbb{P}^{n+c} \times \mathbb{C} \times \mathbb{K}^o \to \mathbb{C} \times \mathbb{K}^o \]

the non-affine Landau–Ginzburg model of \((X, \mathcal{E})\).

Clearly, \(\Psi \) is a projective morphism, and hence should be considered as a partial compactification of the affine Landau–Ginzburg model \(\psi \).

In a rather similar way to the case of Landau–Ginzburg models of projective toric varieties, we obtain the following description of the relevant Gauss–Manin cohomologies by GKZ-type systems. As a matter of notation, consider the the matrix \(A' \in \mathbb{Z}^{1+d+c, 1+n+c} \) obtained by homogenizing the matrix \(B' \) defined in equation (46), that is

\[A' = \begin{pmatrix} 1 & 1_{1,n+c} \\ 0_{d+c,1} & B' \end{pmatrix} = \begin{pmatrix} 1_{1,n} & 1_{1,c} \\ 0_{d,1} & B \\ 0_{c,1} & (d_{ji}) \end{pmatrix} \begin{pmatrix} 1 & 0_{1,n} \\ \ldots & \ldots \\ 1_{1,c} & 0_{1,n} \end{pmatrix} \]

We choose the parameter vector

\[\gamma := (-c, 0, \ldots, 0, -1, \ldots, -1) \in \mathbb{Z}^{1+d+c} \]

With these definitions, we have the contiguity morphism (see Section 2.5)

\[c_{\gamma,0} : \mathcal{M}_{A'}(\gamma) \to \mathcal{M}_{A'}(0), \]
due to the special shape of the matrix A'. Notice that here we use the coordinates $(x_0, x_1, \ldots, x_{n+c})$ on $\mathbb{C} \times \mathbb{C}^{n+c}$ and $\partial_0, \partial_1, \ldots, \partial_{n+c}$ for the corresponding partials.

We can now formulate the following statement about the non-affine Landau-Ginzburg.

Theorem 5.16 ([RS17, Lemma 6.4 and Proposition 6.7]). There is an isomorphism of $\mathcal{R}_{\mathbb{C} \times \mathbb{K}^0}$-modules

$$\text{FL}_{K^0}^{\text{loc}} \mathcal{H}^0 \psi_+ \mathcal{E}_{\mathbb{P}^n} \cong \iota^+ \text{FL}_{\mathbb{C}^{n+c}}^{\text{loc}} \mathcal{M}_{A'}(0)$$

where we denote (with a slight abuse of notation) by $\iota : \mathbb{C} \times \mathbb{K}^0 \hookrightarrow \mathbb{C} \times \mathbb{C}^{n+c}$ the embedding already used above (see Equation (42)). Moreover, there is an isomorphism of $\mathcal{R}_{\mathbb{C} \times \mathbb{K}^0}$-modules

$$\text{FL}_{K^0}^{\text{loc}} \mathcal{H}^0 \text{pr}_+ \text{IC}(\mathbb{P}^n \times \mathbb{K}^0) \cong \iota^+ \text{FL}_{\mathbb{C}^{n+c}}^{\text{loc}} \text{im}(c_{\gamma, 0} : \mathcal{M}_{A'}(\gamma) \longrightarrow \mathcal{M}_{A'}(0)).$$

Notice that by definition, the intersection cohomology module $\text{IC}(\mathbb{P}^n \times \mathbb{K}^0)$ to the constant sheaf on $\mathbb{P}^n \times \mathbb{K}^0$ becomes a $\mathcal{R}_{\mathbb{P}^n \times \mathbb{C} \times \mathbb{K}^0}$-module via Kashiwara equivalence (using the locally closed embedding $\mathbb{P}^n \times \mathbb{K}^0 \cong \Gamma_F \hookrightarrow \Gamma_{\mathbb{P}^n} \hookrightarrow \mathbb{P}^{n+c} \times \mathbb{C} \times \mathbb{K}^0$); this is the reason for using the direct image by pr from Definition 5.15. Since it has support on the subvariety Z°, the corresponding perverse sheaf under the Riemann–Hilbert correspondence is the (zeroth perverse cohomology of the) direct image under the morphism Ψ applied to the intersection complex of Z°.

Finally, we want to state a mirror statement close in spirit to Theorem 5.11 which concerns the reduced quantum \mathcal{R}-module. For this, we first need an extension of the localized partial Fourier–Laplace transformation functor $\text{FL}_{K^0}^{\text{loc}}$ as defined in Formula (40) to a functor acting on the category of filtered \mathcal{D}-modules. Without giving the actual details (see, e.g. [SY15, Appendix A] or [RS20, Definition 6.2]), let us just state that starting from a filtered \mathcal{D}_Y-module (\mathcal{M}, F_\bullet), this version of the Fourier–Laplace transformation yields an \mathcal{R}-module, where again \mathcal{R} is the sheaf of Rees rings, as discussed in Section 4.3 (see Formula (28)). We denote this \mathcal{R}-module by $\text{FL}_{\mathcal{R} \times \mathcal{Y}}(\mathcal{M}, F_\bullet)$.

Moreover, in order to properly state the mirror theorem for nef complete intersections, we have to take into account the so-called mirror map, which was not present in Theorem 5.11 since we restricted our attention to the Fano case there. For a sufficiently small $\varepsilon \in \mathbb{R}_+$, write $\Delta^\circ_{\varepsilon} := \{ t \in (\mathbb{C}^*)^n \mid 0 < |t| < \varepsilon \} \subseteq \mathbb{K}^0$. Then the mirror map is a morphism

$$\text{Mir} : \Delta^\circ_{\varepsilon} \longrightarrow H^0(X; \mathbb{C} \times U)$$

that has been defined in [Giv98, CG07]. Here, $U \subseteq \mathcal{K}$ is the set on which the twisted quantum product $*_{qw}$ is defined (converges).

With these preparations, our final mirror theorem can be stated as follows.

Theorem 5.17. ([RS17, Conjecture 6.15], [RS20, Theorem 6.5, Theorem 6.6]) We have an isomorphism of $\mathcal{R}_{\mathbb{C} \times \Delta^\circ_{\varepsilon}}$-modules

$$\text{FL}_{K^0}^{\text{loc}}(\mathcal{H}^0 \text{pr}_+ \text{IC}(\mathbb{P}^n \times \mathbb{K}^0), F_\bullet^{\text{Hodge}})|_{\mathbb{C} \times \Delta^\circ_{\varepsilon}} \cong (\text{id}_{\mathbb{C} \times \Delta^\circ_{\varepsilon}})^* \text{QDM}(X, \varepsilon').$$

This result depends in an essential way on the computation of the Hodge filtration on GKZ-systems, that is, on Theorem 4.7, since the expression of the Hodge filtration as the shifted order filtration on the modules $\mathcal{M}_{A'}(\beta)$ for various parameters β allows us to describe explicitly the left hand side of (50).
Notice that, by the very definition of the Dubrovin connection, the restriction of the (reduced) quantum \mathcal{D}-module to $\mathbb{C} \times \Delta^*_{\mathcal{L}}$ has the structure of an $\mathcal{R}_{\mathcal{C} \times \Delta^*_{\mathcal{L}}}$-module. A consequence of Theorem 5.17 is the following Hodge theoretic property of the reduced quantum \mathcal{D}-module.

Corollary 5.18. ([RS20, Theorem 6.6]) Suppose X, \mathcal{E}, Y are as in Notation 5.13. Then the reduced quantum \mathcal{D}-module $QDM(X, \mathcal{E})$ underlies a smooth pure polarizable twistor \mathcal{D}-module on \mathcal{K}° (in the sense of [Moc15a]); that is, a (pure) non-commutative Hodge structure in the sense of [HS07, HS10, KKP08].

Example 5.19. We discuss a concrete example taken from [RS17, Section 1]: a $(2, 3)$-intersection in \mathbb{P}^5 (i.e., $Y \subseteq \mathbb{P}^5$ is the intersection of zero loci of generic sections of $\mathcal{L}_1 = \mathcal{O}_{\mathbb{P}^5}(2H)$ and $\mathcal{L}_2 = \mathcal{O}_{\mathbb{P}^5}(3H)$, where H is the hyperplane class). The adjunction formula shows that this is a Fano variety. The (fan of the) total space of the bundle $\mathcal{E} = \mathcal{L}_1 \oplus \mathcal{L}_2$ has ray generators corresponding to the columns of the matrix

$$B' = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \end{pmatrix} \in \mathbb{Z}^{7 \times 8}.$$

Then $\overline{\nu}_{\mathcal{V}} = (\mathbb{C}^*)^7$, $\mathcal{K}^{\circ} = \mathbb{C}^*$ and the quasi-projective subvariety Z° of $\mathbb{P}^8 \times \mathbb{C} \times \mathbb{C}^* = \text{Proj}(\mathbb{C}[w_0, \ldots, w_8]) \times \text{Spec}(\mathbb{C}[\lambda, q^\pm])$ is given by

$$Z^\circ = \left\{ w_0w_7^2w_8^3 - w_1w_2w_3w_4w_5w_6 = 0, \lambda w_0 + w_1 + \ldots + w_5 + qw_6 + w_7 + w_8 = 0 \right\} \subseteq \mathbb{P}^8 \times \mathbb{C} \times \mathbb{C}^*.$$

The affine and the non-affine Landau–Ginzburg models of $(\mathbb{P}^5, \mathcal{E})$ are given by

$$\psi: (\mathbb{C}^*)^7 \times \mathbb{C}^* \longrightarrow \mathbb{C} \times \mathbb{C}^*$$

$$(t_1, \ldots, t_7, q) \longmapsto \left(-t_1 - t_2t_6 - t_3t_6 - t_4t_7 - t_5t_7 - \frac{t_7}{t_1 \ldots, t_5} - t_6 - t_7, q \right)$$

and

$$\psi: Z^\circ \longrightarrow \mathbb{C} \times \mathbb{C}^*$$

$$(w_0 : \ldots : w_8, l, q) \longmapsto (l, q)$$

It follows from the calculations presented in [RS17, Section 1] that we have the following explicit representations of the \mathcal{D}-modules mentioned above: First define the operators $P_1, P_2 \in \mathcal{D}_{\mathbb{C}^*}$

$$P_1 = q \cdot (3q \partial_q + 1)(3q \partial_q + 2)(3q \partial_q + 3)(2q \partial_q + 1)(2q \partial_q + 2) + (q \partial_q)^6$$

$$= (q \partial_q)^2 \cdot (6q \cdot (3q \partial_q + 1)(3q \partial_q + 2)(2q \partial_q + 1) + (q \partial_q)^4) =: (q \partial_q)^2 \cdot Q^{(2, 3)}$$

$$P_2 = q \cdot (3q \partial_q)(3q \partial_q + 1)(3q \partial_q + 2)(2q \partial_q)(2q \partial_q + 1) + (q \partial_q)^6$$

$$= \frac{(6q \cdot (3q \partial_q + 1)(3q \partial_q + 2)(2q \partial_q + 1) + (q \partial_q)^4 \cdot (q \partial_q)^2}{Q^{(2, 3)}} \cdot (q \partial_q)^2$$

$$= \frac{(q \partial_q)^2 \cdot Q^{(2, 3)} (q \partial_q)^2}{Q^{(2, 3)}}$$
Then we have (we denote by τ the Fourier-dual variable of λ, and consider the restriction to $\{\tau = 1\}$ for simplicity)

$$
H^0 \left(\mathcal{C}^* , [\text{FL}_{K^{\circ}}^{\text{loc}} \mathcal{H}^0 \psi + \partial_{\tau} \partial_{\kappa^*}]|_{\tau = 1} \right) \cong D_{\mathcal{C}^*}/(P_2)
$$

and

$$
H^0 \left(\mathcal{C}^* , [\text{FL}_{K^{\circ}}^{\text{loc}} \mathcal{H}^0 \partial_{\lambda} \lambda + \partial_{\tau} \partial_{\kappa^*}]|_{\tau = 1} \right) \cong \text{im}(D),
$$

where D is the left $\mathcal{D}_{\mathcal{C}^*}$-linear map

$$
D : \mathbb{C}[q^{\pm}]/(\partial_q)/(P_1) \rightarrow \mathbb{C}[q^{\pm}]/(\partial_q)/(P_2)
Q \rightarrow Q \cdot (q\partial_q)^2.
$$

The map D is well defined, its kernel is generated by $Q^{(2,3)}$ and we see that

$$
\text{im}(D) \cong \frac{\mathbb{C}[q^{\pm}]/(\partial_q)/(P_1)}{\ker(D)} \cong \mathbb{C}[q^{\pm}]/(\partial_q)/(Q^{(2,3)}).
$$

The operator $Q^{(2,3)}$ is confluent, univariate and hypergeometric (compare Subsection 1.2) with a regular singularity at $q = 0$ and irregular singularity at $q = \infty$.

Notice that if instead we consider a (2, 4)-complete intersection $Y \subset \mathbb{P}^5$, then Y is a Calabi-Yau manifold, and we have

$$
H^0 \left(\text{FL}_{K^{\circ}}^{\text{loc}} \mathcal{H}^0 \partial_{\lambda} \lambda + \partial_{\tau} \partial_{\kappa^*} \mathcal{H}^0 \partial_{\lambda} \lambda + \partial_{\tau} \partial_{\kappa^*} \right)|_{\tau = 1} \cong D_{\mathcal{C}^*}/(Q^{(2,4)}),
$$

where

$$
Q^{(2,4)} = 8q \cdot (2q\partial_q + 1)(4q\partial_q + 1)(4q\partial_q + 2)(4q\partial_q + 3) - (q\partial_q)^4
$$

is a homogeneous, hence, regular (non-confluent) hypergeometric operator, with singularities at $q = 0, 2^{-10}, \infty$. In this case, the Hodge theoretic result Corollary 5.18 simply states that $\mathcal{D}_{\mathcal{C}^*}/\mathcal{D}_{\mathcal{C}^*} \cdot Q^{(2,4)}$ underlies a pure polarized variation of Hodge structures; this is consistent with [Sim90, Corollary 8.1] and [Del87, Prop. 1.13] (see the discussion on page 33 above).

Finally, let us remark that unlike in the previous example(s), it is in general not easy to give a cyclic description of the intersection cohomology \mathcal{D}-module $\text{FL}_{K^{\circ}}^{\text{loc}} \mathcal{H}^0 \partial_{\lambda} \lambda + \partial_{\tau} \partial_{\kappa^*} \mathcal{H}^0 \partial_{\lambda} \lambda + \partial_{\tau} \partial_{\kappa^*}$, In other words, even though we know that it has a description as an (Fourier–Laplace transform of an) image of a contiguity morphism, it is not clear how to describe the kernel of this morphism and how to give a presentation of the image as a quotient of \mathcal{D} (see also [MM17, Section 6] for some examples and conjectures).

Table of Symbols

Single letters (by alphabet)
$A \in \mathbb{Z}^{d \times n}$, with columns a_1, \ldots, a_n that span $\mathbb{Z}A = \mathbb{Z}^d$ and permit a linear functional having positive values on them.
B a $d \times n$ submatrix of A in final two sections, Convention 4.1
D_1, \ldots, D_n torus invariant divisors on X, Subsection 5.2
j counts columns (and hence x_j, ∂_j, a_j), i counts rows (hence E_i).
K the complexified Kähler moduli space, the image of $H^2(X; \mathbb{C})$ under the exponential map, hence the quotient by the integer cohomology lattice scaled by $2\pi \sqrt{-1}$, Subsection 5.1

\(K \) partial compactification of \(K \), Subsection 5.1
\([n] = \{1, 2, \ldots, n\}\)
\(q \) coordinates on \(K \) inherited from chosen nef basis on \(H^2(X; \mathbb{C}) \), 5.1
\(r = \dim_\mathbb{C} H^2(X; \mathbb{C}) \)
\(\mathbb{T} \) the \(d \)-torus, Subsection 2.1, but see Convention 4.1 and (21) for the final sections
\(\mathbb{T} \) the quotient torus modulo 0-th component of \(\mathbb{T} \) in final two sections
\(\mathbb{U} \) complement of \(\mathcal{Z} \)
\(\mathbb{V} \) total space of tautological bundle \(\mathcal{O}_{\mathbb{P}^n}(-1) \)
\(\mathbb{X} \) smooth projective toric variety to fan \(\Sigma \), Subsection 5.1,
\(\mathbb{Y} \) complete intersection in \(\mathbb{X} \) of codimension \(c \),
\(\mathbb{Z} \) tautological hypersurface in \(\mathbb{P}^n \times \mathbb{C}^{n+1} \)
\(\mathbb{Z}^\circ \) the closure in \(\mathbb{P}^{n+c} \times \mathbb{C} \times \mathbb{K}^o \) of the graph of the function defined in (47), see (49)

Compounds (by alphabet of first occurring letter):

- \(\mathfrak{A}_A \) the admissible parameters, Definition 4.5
- \(\text{conv}(S) \) the convex hull of \(S \), before Definition 3.7
- \(c_{\beta, \beta'} : M_A(\beta) \to M_A(\beta') \) contiguity operators, Subsection 2.5
- \(\text{Div}_{T}(X) \) equivariant divisor group of toric variety \(X \), isomorphic to actual divisor group, generated by rays of fan \(\Sigma_X \), (37)
- \(E_i \) Euler operators, Definition 1.6
- \(F_{\text{Hodge}} \) the Hodge filtration on the mixed Hodge module \(\mathcal{M} \), Subsections 4.1, 4.3, (31), (32)
- \(F_{\text{rad}} \) the order filtration on rings of differential operators
- \(G^\psi, G^\psi_0 \) Fourier transformed Brieskorn lattice and variations, (41) and following page
- \(h_A : \mathbb{T} \to \mathbb{C}^n \) the monomial map induced by \(A \), Subsection 2.3
- \((H^A, \nabla^A) \) small Dubrovin connection, (35)
- \(H_{A,i}(N; \beta) \) the \(i \)-th Euler–Koszul homology of the toric module \(N \) for the parameter \(\beta \)
- \(H^A_\beta(\beta) \) the hypergeometric ideal, 1.6
- \(\mathcal{M} \) the Fourier–Laplace transform of the module \(\mathcal{M} \)
- \(M_A(\beta) \) the hypergeometric module, 1.6
- \(q\text{deg}_A(N) \) the quasi-degrees of an \(A \)-graded module, Definition 2.2
- \(R, \mathcal{R} \) the twisted Rees ring/sheaf of differential operators on various spaces, Definition 28, Proposition 5.8
- \(\text{RT}(\mathcal{M}) \) the Radon transform, Proposition 4.2
- \(S_A \) the semigroup ring \(\mathbb{C}[\mathbb{N} A] \), Subsection 2.1
- \(S^L_A \) the \(L \)-graded ring of \(S_A \), Theorem 3.10
- \(\text{sRes}(A) \) the strongly resonant parameters for \(A \), Definition 2.6
- \(t\text{deg}_A(N) \) the true degrees of an \(A \)-graded module, Definition 2.2
- \(T^c_v \) the \((\mathbb{n} + c) \)-torus, Definition 5.14
- \((W, \mathfrak{c}) \) Landau–Ginzburg model on \(\mathcal{K} \), Definition 5.4, (39)
- \(W_k \mathcal{M} \) the weight filtration on the mixed Hodge module \(\mathcal{M} \), Subsections 4.1 and 4.4
• X_A affine toric variety and spectrum of S_A, closure of T-orbit through $(1,\ldots,1)$, Subsection 2.3

Greek letters and other symbols:
• $\square_u = \partial^{u+} - \partial^{u-}$ for $u \in \ker A$.
• \ast^w twisted quantum product, (45)
• Δ_a^p the (A,L)-polyhedron, the convex hull of the origin and all a^L_j, Δ_A special case to $L = 0$, Definition 3.7 and Subsection 4.3
• Δ_X^p small ball around origin in K^0
• Σ^L_A initial complex of ideal for generic weight L, Definition 3.2
• Σ^X fan of X
• $\phi: T \to \mathbb{C}^n$ family of Laurent polynomials, Theorem 4.3
• Φ^L_A the (A,L)-umbrella, Definition 3.7
• ψ affine Landau–Ginzburg model on $T(V \times K)$, Definition 5.14
• Ψ non-affine Landau–Ginzburg model on $\mathbb{C} \times K^0$, Definition 5.15

References

[Ado94] Alan Adolphson, Hypergeometric functions and rings generated by monomials, Duke Math. J. 73 (1994), no. 2, 269–290.

[Ado99] Higher solutions of hypergeometric systems and Dwork cohomology, Rend. Sem. Mat. Univ. Padova 101 (1999), 179–190.

[AET15] Kana Ando, Alexander Esterov, and Kiyoshi Takeuchi, Monodromies at infinity of confluent A-hypergeometric functions, Adv. Math. 272 (2015), 1–19.

[Aom77] Kazuhiko Aomoto, On the structure of integrals of power product of linear functions, Sci. Papers College Gen. Ed. Univ. Tokyo 27 (1977), no. 2, 49–61.

[Ari10] D. Arinkin, Rigid irregular connections on \mathbb{P}^1, Compos. Math. 146 (2010), no. 5, 1323–1338.

[Beu07] Frits Beukers, Gauss’ hypergeometric function, Arithmetic and geometry around hypergeometric functions, Progr. Math., vol. 260, Birkhäuser, Basel, 2007, pp. 23–42.

[Beu10] F. Beukers, Irreducibility of A-hypergeometric systems, Indag. Math. (N.S.) 21 (2010), no. 1-2, 30–39.

[BFM18] Christine Berkesch, Jens Forsgård, and Laura Felicia Matusevich, On the parametric behavior of A-hypergeometric series, Trans. Amer. Math. Soc. 370 (2018), no. 6, 4089–4109.

[BFP14] Christine Berkesch, Jens Forsgård, and Mikael Passare, Euler-Mellin integrals and A-hypergeometric functions, Michigan Math. J. 63 (2014), no. 1, 101–123.

[BH89] F. Beukers and G. Heckman, Monodromy for the hypergeometric function ϕ_{n-1}, Invent. Math. 95 (1989), no. 2, 325–354.
of G. D. Mostow on his sixtieth birthday held at Yale University, New Haven, Conn., March 23–25, 1984, pp. 1–19. MR 900821

[178x666]4.3, 5.19

[DMM10] Alicia Dickenstein, Laura Felicia Matusevich, and Ezra Miller, Binomial D-modules, Duke Math. J. 151 (2010), no. 3, 385–429. MR 2605866

[ET15] Alexander Esterov and Kiyoshi Takeuchi, Confluent A-hypergeometric functions and rapid decay homology cycles, Amer. J. Math. 137 (2015), no. 2, 365–409. MR 3337798

[FCCZ20] Tai-Fu Feng, Chao-Hsi Chang, Jian-Bin Chen, and Hai-Bin Zhang, GKZ-hypergeometric systems for Feynman integrals, Nuclear Physics B 953 (2020), 114952.

[Fed18] Roman Fedorov, Variations of Hodge structures for hypergeometric differential operators and parabolic Higgs bundles, Int. Math. Res. Not. IMRN (2018), no. 18, 5583–5608.

[FF10] Marïa-Cruz Fernández-Fernández, Irregular hypergeometric D-modules, Adv. Math. 224 (2010), no. 5, 1735–1764. MR 2646108

[FF13] Exponential growth of rank jumps for A-hypergeometric systems, Rev. Mat. Iberoam. 29 (2013), no. 4, 1397–1404. MR 3148608

[FF19] On the local monodromy of A-hypergeometric functions and some monodromy invariant subspaces, Rev. Mat. Iberoam. 35 (2019), no. 3, 949–961. MR 3960265

[FFCJ11a] M. C. Fernández-Fernández and Francisco-Jesús Castro-Jiménez, Gevrey solutions of irregular hypergeometric systems in two variables, J. Algebra 339 (2011), 320–335.

[FFCJ11b] Gevrey solutions of the irregular hypergeometric system associated with an affine monomial curve, Trans. Amer. Math. Soc. 363 (2011), no. 2, 923–948. MR 2728590

[FFCJ12] Maria-Cruz Fernández-Fernández and Francisco-Jesús Castro-Jiménez, On irregular binomial D-modules, Math. Z. 272 (2012), no. 3-4, 1321–1337. MR 2995170

[FP97] W. Fulton and R. Pandharipande, Notes on stable maps and quantum cohomology, Algebraic geometry—Santa Cruz 1995 (János Kollár, Robert Lazarsfeld, and David R. Morrison, eds.), Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 45–96. MR 1492534

[Ful93] William Fulton, Introduction to toric varieties, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993, The William H. Roever Lectures in Geometry.

[Gab81] Ofer Gabber, The integrability of the characteristic variety, Amer. J. Math. 103 (1981), no. 3, 445–468. MR 618321

[Gau73] Carl Friedrich Gauß, Werke. Band III, Georg Olms Verlag, Hildesheim, 1973, Reprint of the 1866 original. MR 616131

[GGZ87] I. M. Gel’fand, M. I. Graev, and A. V. Zelevinsky, Holonomic systems of equations and series of hypergeometric type, Dokl. Akad. Nauk SSSR 295 (1987), no. 1, 14–19. MR 902936

[Giv96] Alexander Givental, Equivariant Gromov-Witten invariants, Internat. Math. Res. Notices (1996), no. 13, 613–663.

[Giv98] A mirror theorem for toric complete intersections, Topological field theory, primitive forms and related topics (Kyoto, 1996), Progr. Math., vol. 160, Birkhäuser Boston, Boston, MA, 1998, pp. 141–175.

[GKR17] Mark Gross, Ludmil Katzarkov, and Helge Ruddat, Towards mirror symmetry for varieties of general type, Adv. Math. 308 (2017), 208–275. MR 3600059

[GKZ90] Israel M. Gel’fand, Mikhail M. Kapranov, and Andrei V. Zelevinsky, Generalized Euler integrals and A-hypergeometric functions, Adv. Math. 84 (1990), no. 2, 255–271.

[GKZ94] Discriminants, resultants, and multidimensional determinants, Mathematics: Theory & Applications, Birkhäuser Boston Inc., Boston, MA, 1994.

[Gra84] J. J. Gray, Fuchs and the theory of differential equations, Bull. Amer. Math. Soc. (N.S.) 10 (1984), no. 1, 1–26. MR 722855
[GZK89] I. M. Gel’fand, A. V. Zelevinsky, and M. M. Kapranov, *Hypergeometric functions and toric varieties*, Funktsional. Anal. i Prilozhen. **23** (1989), no. 2, 12–26. MR 1011353 1.2, 1.3, 2.3, 2.4, 2.13, 3.3, 3.4, 3.4, 3.4

[Hie09] Marco Hiem, *Periods for flat algebraic connections*, Invent. Math. **178** (2009), no. 1, 1–22. MR 2534091 1.3, 3.14

[HNT17] Takayuki Hibi, Kenta Nishiyama, and Nobuki Takayama, *Pfaffian systems of A-hypergeometric equations I: Bases of twisted cohomology groups*, Adv. Math. **306** (2017), 303–327. MR 3581304 1.1

[Hot98] Ryoshi Hotta, *Equivariant D-modules*, Preprint math.RT/9805021, 1998.

[HS07] Claus Hertling and Christian Sevenheck, *Nilpotent orbits of a generalization of Hodge structures*, J. Reine Angew. Math. **609** (2007), 23–80. MR 3581304 1.1

[HTT08] Ryoshi Hotta, Kiyoshi Takeuchi, and Toshiyuki Tanisaki, *D-modules, perverse sheaves, and representation theory*, Progress in Mathematics, vol. 236, Birkhäuser Boston Inc., Boston, MA, 2008, Translated from the 1995 Japanese edition by Takeuchi. 5.2

[Inc44] E. L. Ince, *Ordinary Differential Equations*, Dover Publications, New York, 1944. MR 0010757 3.1

[Iri08] Hiroshi Iritani, *Quantum D-modules and generalized mirror transformations*, Topology **47** (2008), no. 4, 225–276. MR 2416770 5.1

[Iri09] Hiroshi Iritani, *An integral structure in quantum cohomology and mirror symmetry for toric orbifolds*, Adv. Math. **222** (2009), no. 3, 1016–1079. 5

[Iri17] Hiroshi Iritani, *A mirror construction for the big equivariant quantum cohomology of toric manifolds*, Math. Ann. **368** (2017), no. 1-2, 279–316. MR 3651574 5.1

[Kas84] Masaki Kashiwara, *The Riemann-Hilbert problem for holonomic systems*, Publ. Res. Inst. Math. Sci. **20** (1984), no. 2, 319–365. MR 743382 (86j:58142) 3.1

[Kat90] Nicholas M. Katz, *Exponential sums and differential equations*, Annals of Mathematics Studies, vol. 124, Princeton University Press, Princeton, NJ, 1990. 4.3

[Kat97] Mitsuo Kato, *Appell’s F4 with finite irreducible monodromy group*, Kyushu J. Math. **51** (1997), no. 1, 125–147. MR 1437312 1.3

[Kat00] Mitsuo Kato, *Appell’s hypergeometric systems F2 with finite irreducible monodromy groups*, Kyushu J. Math. **54** (2000), no. 2, 279–305. MR 1793170 1.3

[KHT92] Hironobu Kimura, Yoshishige Haraoka, and Kyouichi Takano, *The generalized confluent hypergeometric functions*, Proc. Japan Acad. Ser. A Math. Sci. **68** (1992), no. 9, 290–295. MR 1202635 1.3

[KKP08] Ludmil Katzarkov, Maxim Kontsevich, and Tony Pantev, *Hodge theoretic aspects of mirror symmetry*, From Hodge theory to integrability and TQFT tt*-geometry (Providence, RI) (Ron Y. Donagi and Katrin Wendland, eds.), Proc. Sympos. Pure Math., vol. 78, Amer. Math. Soc., 2008, pp. 87–174. 5.18

[Kla19] René Pascal Klausen, *Hypergeometric Series Representations of Feynman Integrals by GZK Hypergeometric Systems*, arXiv e-prints (2019), arXiv:1910.08651. 1.1

[Kum36] E. E. Kummer, *Über die hypergeometrische Reihe*, J. Reine Angew. Math. **15** (1863), 39–83. MR 1578088 1.3

[Lau87] Yves Laurent, *Polygône de Newton et b-fonctions pour les modules microdifférentiels*, Ann. Sci. École Norm. Sup. (4) **20** (1987), no. 3, 391–441. MR 925721 3.1, 3.3

[LM99] Yves Laurent and Zoghman Mebkhout, *Pentes algébriques et pentes analytiques d’un D-module*, Ann. Sci. École Norm. Sup. (4) **32** (1999), no. 1, 39–69. MR 1670595 3.1, 3.3

[Man99] Yuri I. Manin, *Frobenius manifolds, quantum cohomology, and moduli spaces*, American Mathematical Society Colloquium Publications, vol. 47, American Mathematical Society, Providence, RI, 1999. 5.1

[Meb80] Zoghman Mebkhout, *Sur le problème de Hilbert-Riemann*, Complex analysis, microlocal calculus and relativistic quantum theory (Proc. Internat. Colloq., Centre Phys., Les Houches, 1979), Lecture Notes in Phys., vol. 126, Springer, Berlin-New York, 1980, pp. 90–110. MR 579742 3.1
Conf., Katata, 1971; dedicated to the memory of André Martineau), 1973, pp. 265–529. Lecture Notes in Math., Vol. 287. MR 0420735

[Smi01] Gregory G. Smith, Irreducible components of characteristic varieties, J. Pure Appl. Algebra 165 (2001), no. 3, 291–306. MR 1864474

[SST00] Mutsumi Saito, Bernd Sturmfels, and Nobuki Takayama, Gröbner deformations of hypergeometric differential equations, Algorithms and Computation in Mathematics, vol. 6, Springer-Verlag, Berlin, 2000. MR 1734566

[Ste19a] Avi Steiner, A-hypergeometric modules and Gauss-Manin systems, J. Algebra 524 (2019), 124–159. MR 3904304

[Stu96] Bernd Sturmfels, Gröbner bases and convex polytopes, University Lecture Series, vol. 8, American Mathematical Society, Providence, RI, 1996. MR 1363949

[SY15] Claude Sabbah and Jeng-Daw Yu, On the irregular Hodge filtration of exponentially twisted mixed Hodge modules, Forum Math. Sigma 3 (2015), e9, 71. MR 3376737

[SY19] , Irregular Hodge numbers of confluent hypergeometric differential equations, Épijournal Geom. Algébrique 3 (2019), Art. 7, 9. MR 3978394

[Tak16] Kiyoshi Takeuchi, Monodromy at infinity of A-hypergeometric functions and toric compactifications, Math. Ann. 348 (2010), no. 4, 815–831. MR 2721642

[Wal18] Uli Walther, Experiments with the restriction functor, 2018, www.math.purdue.edu/~walther/research

[Wal07] Uli Walther, Duality and monodromy reducibility of A-hypergeometric systems, Math. Ann. 338 (2007), no. 1, 55–74. MR 2285762
