DOUBLE AFFINE HECKE ALGEBRA IN LOGARITHMIC CONFORMAL FIELD THEORY

G. MUTAFYAN AND I.YU. TIPUNIN

ABSTRACT. We construct the representation of Double Affine Hecke Algebra whose symmetrization gives the center of the quantum group $\overline{U}_q\mathfrak{sl}(2)$ and by Kazhdan–Lusztig duality the Verlinde algebra of $(1, p)$ models of logarithmic conformal field theory.

1. INTRODUCTION

Recently, quantum group methods led (see the recent review [1]) to a progress in logarithmic conformal field theory [2]. For the $(1, p)$ models [3], an equivalence between representation categories of the chiral algebra and the quantum group $\overline{U}_q\mathfrak{sl}(2)$ was established [4] in the general framework of the Kazhdan–Lusztig duality [5]. Remarkably, the KL duality extends to an isomorphism between modular group representations on the quantum group center and on the space of generalized characters [6] of a $(1, p)$ model. Moreover, the Verlinde algebra of $(1, p)$ models [7, 8] (see also [9]) coincides [6] with the Grothendieck ring of $\overline{U}_q\mathfrak{sl}(2)$.

An unusual property of logarithmic conformal field theory is the nonsemisimplicity of the Verlinde algebra. However, this phenomenon does not look extraordinary in the Double affine Hecke algebra representation framework [11] of the Verlinde algebra classification. It leads to a natural conjecture [12] that the $(1, p)$ model Verlinde algebra can be realized in terms of a DAHA representation. Indeed, the representation of DAHA whose symmetrization gives the center of the quantum group $\overline{U}_q\mathfrak{sl}(2)$ and therefore the Verlinde algebra of $(1, p)$ models is identified in the present paper.

1.1. DAHA. We consider the symplest DAHA [11] generated by X, Y, and T with the relations

\begin{align}
TXT &= X^{-1}, \quad TY^{-1}T = Y, \quad XY = qYXT^2, \\
(T - t^{\frac{1}{2}})(T + t^{-\frac{1}{2}}) &= 0, \quad t = q^2.
\end{align}

In the paper we fix the deformation parameter

\begin{align}
q &= e^{\frac{i\pi}{p}}, \quad q^\frac{1}{2} = e^{\frac{i\pi}{2p}},
\end{align}

where $p = 3, 4, 5, 6, \ldots$. We let \mathcal{H} denote this algebra. The group $PSL(2, \mathbb{Z})$ acts by automorphisms on \mathcal{H}

\begin{align}
\tau_+: \quad Y \rightarrow q^{-1/2}XY, \quad X \rightarrow X, \quad T \rightarrow T
\end{align}
\[\tau_- : X \to q^{1/2}YX, \quad Y \to Y, \quad T \to T \]

where
\[
\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \to \tau_+, \quad \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \to \tau_-.
\]

We note that the Fourier transform is given by
\[\sigma : X \to Y^{-1}, \quad Y \to XT^2, \quad T \to T, \]
\[\sigma = \tau_+ \tau_- \tau_+^{-1} = \tau_-^{-1} \tau_+ \tau_-^{-1}. \]

1.2. The representation. We consider a \(6p - 4\)-dimensional reducible but indecomposable representation \(Z\) of \(\mathcal{H}\). The representation \(Z\) contains the maximal subrepresentation \(V^{-2}\), which in notations of [11] is defined as the quotient \(V^{-2} = \mathcal{P}/(X^{2p} + X^{-2p} - 2)\), where \(\mathcal{P} = \mathbb{C}[X, X^{-1}]\) is the standard representation of \(\mathcal{H}\) in the Laurent polynomials. The \(2p - 4\)-dimensional irreducible quotient \(M = Z/V^{-2}\) is isomorphic to the representation \(V_{2p-4}\) from [11] given by the quotient \(\mathcal{P}/\epsilon_{-p+2}\), where \(\epsilon_{-p+2} = \prod_{j=2}^{p-1} (q^{-j}X - q^jX^{-1})\).

We note also that \(V^{-2}\) is also reducible and contains the maximal \(2p + 4\)-dimensional irreducible subrepresentation \(W\) and the quotient \(E = V^{-2}/W\) is isomorphic to \(M\).

In Sec. 2 we describe the representation \(Z\) by the explicit action of operators \(T, X\) and \(Y\) in a basis. Then we describe its structure and explicitly find the subrepresentation and quotients.

The representation \(Z\) bears a commutative associative multiplication, which is described in Sec. 1.5. The multiplication gives further the multiplication in the Verlinde algebra.

The \(PSL(2, \mathbb{Z})\) generators \(\sigma\) and \(\tau_+\) are realized as a conjugation with some operators \(S\) and \(v\) respectively, acting in \(Z\). The operator \(v\) acts by a multiplication with an element from \(Z\), which is abusing notation denoted by the same symbol \(v\). By analogy with [11] we call \(v\) the Gaussian element.

1.3. Symmetrization. The operator \(T\) has two different eigenvalues \(q\) and \(-q^{-1}\) in \(Z\). The eigenspace of \(T\) with the eigenvalue \(q\) is \(3p - 1\)-dimensional. We let \(T_q\) denote this eigenspace. In accordance with the general theory [11], \(T_q\) is an associative commutative algebra with multiplication induced by the multiplication in \(Z\) and at the same time a representation of \(SL(2, \mathbb{Z})\) induced by the \(PSL(2, \mathbb{Z})\)-action in \(Z\). The operators \(S, v, C = -(X + X^{-1})\) and \(H = -(Y + Y^{-1})\) have well defined restrictions on \(T_q\). Now we are ready to formulate the main result of the paper (the reader can find all needed quantum group definitions in [6]).

1.4. Theorem. \(\bullet T_q\) is isomorphic to the center of the \(\mathbb{C}_q\) algebra and as \(SL(2, \mathbb{Z})\) representation.
Under the isomorphism the eigenvectors of C correspond to Radford images and eigenvectors of H correspond to Drinfeld images of the characters of $\mathfrak{U}_q\mathfrak{sl}(2)$ irreducible representations.

The Gaussian element v coincides with the ribbon element of $\mathfrak{U}_q\mathfrak{sl}(2)$.

In Sec. 4, we describe the subspace of T with the eigenvalue q, and in Sec. 5 we give the proof of theorem 1.4. The notations in this part correspond to the same notations in [6].

1.5. Structure of Z. The very important information about the representation Z is encoded in the spectra of operators X and Y. These operators are not diagonalizable but both have Jordan blocks of dimension 2. In order to describe their Jordan structure we introduce two basises in which operators X and Y^{-1} have a Jordan form. We call the first basis the X-basis and the second one the Y-basis. Jordan forms of X and Y^{-1} coincide in Z.

1.5.1. X-basis. The representation Z has the basis

\[(1.7)\]

\[w_1 \ldots w_{2p}, e_1, e_p, e_{p+1}, e_{2p}; \quad e_2 \ldots e_{p-1}, e_{p+2} \ldots e_{2p-1}; \quad m_2 \ldots m_{p-1}, m_{p+2} \ldots m_{2p-1}.\]

The subrepresentation W is spanned by elements $w_1 \ldots w_{2p}, e_1, e_p, e_{p+1}$ and e_{2p}. The elements $e_2 \ldots e_{p-1}, e_{p+2} \ldots e_{2p-1}$ give a basis in E (in M) under the canonical projection. In basis (1.7) we have

\[(1.8)\]

\[Xw_s = q^s w_s, \quad Xe_s = q^s (e_s + w_s), \quad Xm_s = q^s m_s.\]

We call (1.7) the X-basis.

1.5.2. The multiplication in Z. The representation Z is endowed with a commutative associative multiplication, which is naturally written in basis (1.7) as

\[(1.9)\]

\[e_i e_j = \delta_{i,j} e_j, \quad e_i w_j = \delta_{i,j} w_j, \quad e_i m_j = \delta_{i,j} m_j, \quad w_i w_j = w_i m_j = m_i m_j = 0.\]

1.5.3. Y-basis. The representation Z contains the basis

\[(1.10)\]

\[u_1 \ldots u_{2p}, f_1, f_p, f_{p+1}, f_{2p}; \quad f_2 \ldots f_{p-1}, f_{p+2} \ldots f_{2p-1}; \quad k_2 \ldots k_{p-1}, k_{p+2} \ldots k_{2p-1}\]

in which Y^{-1} acts as follows

\[(1.11)\]

\[Y^{-1} u_s = q^s u_s, \quad Y^{-1} f_s = q^s (f_s + u_s), \quad Y^{-1} k_s = q^s k_s.\]

We call (1.10) the Y-basis.

In Subsec. 2.3 we find the Y-basis and give decompositions of elements from the Y-basis in the X-basis.
1.5.4. $PSL(2, \mathbb{Z})$-action. The operator S maps the X-basis to the Y-basis

\begin{equation}
Sw_s = u_s, \quad Se_s = f_s, \quad Sm_s = k_s.
\end{equation}

In Subsec. 3.1, we establish properties of the S-operator. By a direct calculation, using the decompositions of the Y-basis in the X-basis, we check that this operator satisfies all relations (1.6) and $S^2 = qT^{-1}$.

In terms of the X-basis, the Gaussian element is

\begin{equation}
v = \sum_{s=1}^{2p} q^{-\frac{1}{2}(s^2-1)}e_s - w_1 + q^{-\frac{2}{2}}w_{p+1} + \left(\sum_{s=2}^{p-1} + \sum_{s=p+2}^{2p-1}\right) q^{-\frac{1}{2}(s^2-1)}((p-s)w_s + pm_s).
\end{equation}

The properties of this element are described in Subsec. 3.2.

In the end of Sec. 3, we prove the $PSL(2, \mathbb{Z})$ relations.

1.6. Notation. We introduce Chebyshov polynomials

\begin{equation}
U_s(x) = x^s - 1 + x^{-(s-3)} + \cdots + x^{-(s-3)} + x^{-(s-1)}.
\end{equation}

In what follows we often use the numbers

\begin{equation}
\{s\} = \frac{q^s + q^{-s}}{q - q^{-1}}, \quad [s] = \frac{q^s - q^{-s}}{q - q^{-1}},
\end{equation}

\begin{equation}
\omega_s = \frac{p\sqrt{2p}}{[s]^2}(-1)^{p+s+1}, \quad \xi_s = \frac{-(p-s)p\sqrt{2p}}{q^s - q^{-s}},
\end{equation}

\begin{equation}
[s, j] \equiv \begin{cases} s, & j = 0, 2p, \\ (-1)^{s-1}s, & j = p, \\ \frac{[s]}{[j]}, & j \ mod \ p \neq 0, \end{cases} \quad \{s, j\} \equiv \begin{cases} 0, & j \ mod \ p = 0, \\ \{sj\} \mod p, & \text{otherwise}. \end{cases}
\end{equation}

2. Representation

In this section, we recall the representation V^{-2} [11] and then define the representation Z, which is an extension of V^{-2}. Then we find a Jordan basis for Y in which Y^{-1} acts by (1.11).

2.1. Polynomial representation V^{-2}. The representation Z is an extension of the representation V^{-2} from [11]. To describe V^{-2} we recall the standard representation [11] of \mathcal{H} in the space of Laurent polynomials $\mathcal{P} = \mathbb{C}[X, X^{-1}]$. The \mathcal{H} generators act as follows

\begin{equation}
T \to t^{\frac{1}{2}} s + \frac{t^{\frac{1}{2}} - t^{-\frac{1}{2}}}{X^2 - 1}(s - 1), \quad t = q^k,
\end{equation}

\begin{equation}
Y \to -spT,
\end{equation}
where

\[sf(X) = f(X^{-1}), \quad pf(X) = f(qX) \]

and \(X, X^{-1} \) act by multiplication. (We note that these formulas differ from \[11\] by the sign in the definition of \(Y \rightarrow s \rho T \).) The representation \(V^{-2} \) is the 4p-dimensional representation in the quotient space \(\mathcal{P}/(X^{2p} + X^{-2p} - 2) \).

2.1.1. Proposition.

- The operators \(X \) and \(Y \) have in \(V^{-2} \) eigenvalues \(q^s, s = 1 \ldots 2p \), each with multiplicity 2.
- The Jordan basis of \(X \) contains functions \(e_s \) and \(w_s \) for \(s = 1 \ldots 2p \).
- The Jordan basis of \(Y \) contains functions \(u_s \) for \(s = 1 \ldots 2p \) and \(k_s \) for \(s = 2 \ldots p - 1, p + 2 \ldots 2p - 1 \), and functions \(f_1, f_p, f_{p+1}, f_{2p} \).

The action of \(X \) and \(Y^{-1} \) in these basises is

\[
X w_s = q^s w_s, \quad X e_s = q^s (e_s + w_s),
\]

\[
Y^{-1} u_s = q^s u_s, \quad Y^{-1} f_s = q^s (f_s + u_s), \quad Y^{-1} k_s = q^s k_s.
\]

Proof. To describe the spectra of these operators, we introduce functions

\[
w_s = \frac{1}{4p^2} (X^{2p} - 1) \sum_{j=0}^{2p-1} q^{-sj} X^j, \quad s = 1 \ldots 2p,
\]

\[
e_s = \frac{1}{2p} + \frac{1}{4p^2} \sum_{j=1}^{2p-1} (2p - j) (q^{-sj} X^j + q^{sj} X^{-j}),
\]

and

\[
u_s = \frac{(-1)^s}{p \sqrt{2p}} \left(q^s U_{p-s}(X) + U_{p+s}(X) \right) + \frac{q^s (q^{-1} X) + U_{p+s}(q^{-1} X)}{2}, \quad s = 1 \ldots p,
\]

\[
u_{p+s} = \frac{(-1)^{p+s}}{p \sqrt{2p}} \left(q^{p+s} U_s(X) + U_{2p-s}(X) \right) + \frac{q^s (q^{-1} X) + U_{2p-s}(q^{-1} X)}{2},
\]

\[
k_s = \frac{(-1)^{s+1}}{p \sqrt{2p}} \left(q^s U_{p-s}(X) + q U_{p-s}(q^{-1} X) \right), \quad s = 2 \ldots p - 1
\]

\[
k_p+s = \frac{(-1)^{p+s}}{p \sqrt{2p}} \left(q^{p+s} U_s(X) + q U_s(q^{-1} X) \right),
\]

\[
f_s = \frac{1}{p \sqrt{2p}} \begin{cases}
\frac{(-1)^{p+1} U_{2p}(X)}{2}, & s = p, \\
U_p(X), & s = 2p, \\
\frac{(-1)^p q X U_{2p}(X)}{2}, & s = p + 1, \\
-q X U_p(X), & s = 1.
\end{cases}
\]
Then, (2.4) is checked by a direct calculation. It is easy to see that \(1 = \sum_{s=1}^{2p} e_s\). Together with (2.4) this gives
\[
X^j = \sum_{s=1}^{2p} q^{e_j}(e_s + jw_s), \quad j = 0, \pm 1, \pm 2, \ldots
\]
i.e. functions \(e_s\) and \(w_s\) are linearly independent and form a basis in \(V^{-2}\).

(2.5) is also checked by a direct calculation using the following relations
\[
Y U_s(q^{-1}X) = (q^s + q^{-s}) U_s(q^{-1}X) - q^{-1} U_s(X),
Y U_s(X) = q U_s(q^{-1}X).
\]
The linear independence of these vectors is proved by the standard technic (See definition 2.5.4 and theorems 2.5.9 and 2.9.3 from [11]).

The representation \(V^{-2}\) is reducible. It has a \(2p + 4\)-dimensional subrepresentation \(W\) spanned by functions \(w_1 \ldots w_{2p}, e_1, e_p, e_{p+1}\) and \(e_{2p}\). The quotient \(\mathcal{E} = V^{-2}/W\) is isomorphic to \(V_{2p-4}\) from [11]. The representation \(V_{2p-4}\) is defined in [11] as the quotient \(V_{2p-4} = \mathcal{P}/\mathcal{E}_{-p+2}\), where \(\mathcal{E}_{-p+2} = \prod_{j=2}^{p-1} (q^{-j}X - q^jX^{-1})\).

Decomposition of any polynomial \(f(X)\) in the basis \(e_s, w_s\) is given by
\[
(2.10) \quad f(X) = \sum_{s=1}^{2p} \left(f(q^s)e_s + \left. \frac{X df(X)}{dX} \right|_{X=q^s} w_s \right).
\]
Using it, we check that \(u_1 \ldots u_{2p}, f_1, f_p, f_{p+1}\) and \(f_{2p}\) belong to \(W\) and therefore in \(W\) Jordan forms of \(X\) and \(Y^{-1}\) coincide. But in the whole \(V^{-2}\) they do not coincide, hence automorphism (1.6) cannot be realized as a conjugation. To recover this, we find an extension of \(V^{-2}\) to a \(6p - 4\)-dimensional representation \(\mathcal{Z}\) by adding vectors \(m_2, \ldots, m_{p-1}\) and \(m_{p+2}, \ldots, m_{2p-1}\). The action of \(X\) on them is \(X m_s = q^s m_s\). The whole \(\mathcal{Z}\) cannot be realized in a space of polynomials in 1 variable. We describe \(\mathcal{Z}\) in terms of an abstract vector space.

2.2. The representation \(\mathcal{Z}\) in the \(X\)-basis. We assume the following definition of \(\mathcal{Z}\). The representation \(\mathcal{Z}\) is a \(6p - 4\)-dimensional vector space with the basis consisting of \(4p\) vectors \(e_s\) and \(w_s\) with \(s = 1 \ldots 2p\), and \(2p - 4\) vectors \(m_s\) with \(s = 2 \ldots p - 1, p + 2 \ldots 2p - 1\). The action of \(\mathcal{H}\)-operators in this basis is defined by the formulas:
\[
(2.11) \quad Xw_s = q^s w_s, \quad Xe_s = q^s (e_s + w_s), \quad Xm_s = q^s m_s,
\]
\[
(2.12) \quad Tw_p = -q^{-1} w_p - (q - q^{-1}) e_p, \quad Tw_{2p} = -q^{-1} w_{2p} - (q - q^{-1}) e_{2p},
\]
\[
(2.13) \quad Tw_s = -q^{-s} \left[\frac{s}{2p} \right] w_s - \left[\frac{s - 1}{2p} \right] w_{2p-s}, \quad s \neq 0, p,
\]
\[
(2.14) \quad Te_p = q e_p, \quad Te_{2p} = q e_{2p},
\]
2.3.1. Proposition.

\[T s = \frac{2}{(q - q^{-1})[s]^2} (w_s - w_{2p-s}), \quad s \neq 0, p, \]

2.2.2. Proposition.

\[T m_{2p-1} = q m_{2p-1} - (q + q^{-1}) w_1, \]

\[T m_{p-1} = q m_{p-1}, \]

\[T m_s = -q^{-s} m_s + \frac{[s-1]}{[s]} m_{2p-s} \quad s = 2 \ldots p - 2, p + 2 \ldots 2p - 2, \]

\[Y w_p = -q^{-1} w_{p+1} + (q - q^{-1}) e_{p+1}, \quad Y w_{2p} = -q^{-1} w_1 + (q - q^{-1}) e_1, \]

\[Y w_s = -\frac{q^{-s}}{[s]} w_{2p-s+1} - \frac{[s-1]}{[s]} w_{s+1}, \quad s \neq 0, p, \]

\[Y e_p = -q e_{p+1}, \quad Y e_{2p} = -q e_1, \]

We define a commutative associative multiplication in \(\mathbb{Z} \) by formulas (1.9).

2.2.2. Proposition. \(\mathbb{Z} \) is reducible. The 2p + 4-dimensional subspace

\[\mathcal{W} \equiv \{ w_1 \ldots w_{2p}, e_1, e_p, e_{p+1}, e_{2p} \} \]

is invariant under the \(\mathcal{H} \)-action and is therefore a subrepresentation. The quotient is a direct sum: \(\mathbb{Z}/\mathcal{W} = \mathcal{E} \oplus \mathcal{M} \), where \(\mathcal{E} \equiv \{ e_2 \ldots e_{p-1}, e_{p+2} \ldots e_{2p-1} \} \) and \(\mathcal{M} \equiv \{ m_2 \ldots m_{p-1}, m_{p+2} \ldots m_{2p-1} \} \).

Proof. Immediately follows from (2.11)–(2.24). \hfill \Box

2.3. \(Y \)-basis. In this subsection we prove that the Jordan form of \(Y \) is (1.11).

2.3.1. Proposition. A Jordan basis of \(Y \) consists of 6p - 4 vectors: 4p vectors \(f_s, u_s \) for \(s = 1, \ldots, 2p \), and 2p - 4 vectors \(k_s \) for \(s = 2, \ldots, p - 1, p + 2 \ldots 2p - 1 \). The action of \(Y^{-1} \) on these vectors is given by (1.11).
Proof. We define in the X-basis the vectors

$$(2.26) u_s = \sum_{j=1}^{2p} u_{j,s}^{(w)} w_j + \sum_{j=1}^{2p} u_{j,s}^{(e)} e_j, \quad s = 1 \ldots 2p,$$

where coefficients are

$$u_{j,s}^{(w)} = \frac{(-1)^{s+j}}{\sqrt{2p}} \left(q^s \{s, j\} - q \{s, j-1\} \right), \quad j = 1 \ldots 2p;$$

$$u_{j,s}^{(e)} = (1)^s \frac{q}{\sqrt{2p}}; \quad u_{j,s}^{(e)} = (-1)^s \frac{q^s}{\sqrt{2p}};$$

$$u_{j,s} = (1)^{p+1} \frac{q}{\sqrt{2p}}; \quad u_{j,s} = (-1)^{p+1} \frac{q^s}{\sqrt{2p}};$$

$$u_{j,s}^{(e)} = 0, \quad j \neq 1, p, p + 1, 2p,$$

the vectors

$$(2.28) k_s = \sum_{j=1}^{2p} k_{j,s}^{(w)} w_j + \sum_{j=1}^{2p} k_{j,s}^{(e)} e_j, \quad s = 2 \ldots p - 1, p + 2 \ldots 2p - 1,$$

where coefficients are

$$k_{j,s}^{(w)} = \frac{(p - s)}{p} u_{j,s}^{(w)} - \frac{(-1)^{s+j}}{p\sqrt{2p}} \left(q^s \{s, j\} \{1, j\} - q \{s, j-1\} \{1, j-1\} \right),$$

$$k_{j,s}^{(e)} = (-1)^s + 1 \frac{q^s [s] + q(p - s)}{p\sqrt{2p}}, \quad k_{j,s}^{(m)} = (-1)^{p+1} \frac{q^s + q^s(p - s)}{p\sqrt{2p}};$$

$$k_{p+1,s}^{(e)} = (-1)^{p+1} \frac{q^s + q(p - s)}{p\sqrt{2p}}, \quad k_{j,s}^{(m)} = (-1)^{s+1} \frac{q^s + q^s(p - s)}{p\sqrt{2p}};$$

$$k_{j,s} = \frac{(1)^{s+j}}{p\sqrt{2p}} \left(q^s [s, j] - q [s, j-1] \right), \quad j \neq 1, p, p + 1, 2p,$$

and the vectors

$$(2.30) f_s = \sum_{j=1}^{2p} f_{j,s}^{(w)} w_j + \sum_{j=1}^{2p} f_{j,s}^{(e)} e_j + \left(\sum_{j=2}^{p-1} + \sum_{j=p+2}^{2p-1} \right) f_{j,s}^{(m)} m_j, \quad s = 1 \ldots 2p,$$

where coefficients are

$$f_{1,s}^{(w)} = \frac{2(-1)^s + 1}{(q - q^{-1})\sqrt{2p}}, \quad f_{p,s}^{(w)} = \frac{q(-1)^{p+1}[s]}{\sqrt{2p}}, \quad f_{p+1,s}^{(w)} = \frac{2(-1)^p q^2}{(q - q^{-1})\sqrt{2p}},$$

$$f_{1,j,s}^{(w)} = \frac{q(-1)^s [s]}{\sqrt{2p}},$$

$$(2.31) f_{j,s}^{(w)} = -p(p - j)k_{j,s}^{(e)} + \frac{(-1)^{s+j}}{\sqrt{2p}} \left(q^s [s, j-1] + q^s \{s, j\} \right), \quad j \neq 1, p, p + 1, 2p,$$

$$f_{p,s}^{(e)} = (-1)^{p+1} f_{j,s}^{(e)} = (-1)^p \frac{q^s}{\sqrt{2p}}, \quad f_{j,s}^{(e)} = 0, \quad j \neq 2, p,$$

$$f_{j,s}^{(m)} = -p^2 k_{j,s}^{(e)}, \quad j \neq 1, p, p + 1, 2p.$$
and the coefficient \(f_{j,s}^{(m)} \) in (2.30) is 0 for \(s = 1, p, p + 1, 2p \).

Then, (1.11) is checked by a simple calculation using formulas (2.19)–(2.24).

The linear independence of these vectors is proved in the following way. From the decompositions in the \(X \)-basis, we obtain that vectors \(u_s, f_1, f_p, f_{p+1}, f_{2p} \) belong to \(\mathcal{W} \), vectors \(k_s \) belong to \(\mathcal{W} + \mathcal{E} \), and vectors \(f_s \) with \(s = 2 \ldots p - 1, p + 2 \ldots 2p - 1 \) belong to \(\mathcal{W} + \mathcal{M} \). We recall, that under the isomorphism \(\mathcal{W} + \mathcal{E} \sim \mathcal{V}^{-2} \) vectors \(u_s, k_s, f_1, f_p, f_{p+1}, f_{2p} \) correspond to the linearly independent functions (2.7)–(2.9) in \(\mathcal{V}^{-2} \), and therefore the vectors are also linearly independent. In particular, vectors \(u_s, f_1, f_p, f_{p+1}, f_{2p} \) form a basis in \(\mathcal{W} \) and therefore images of the vectors \(k_s \) under the canonical projection to \(\mathcal{E} = (\mathcal{W} + \mathcal{E})/\mathcal{W} \) form a basis in \(\mathcal{E} \). We let abusing notations \(k_s \) denote these images. We recall that the isomorphism \(\mathcal{E} \sim \mathcal{M} \) maps vectors \(k_s \) (images under the canonical projections of \(k_s \in \mathcal{Z} \)) to \(f_s \) (images under the canonical projections of \(f_s \in \mathcal{Z} \)), and therefore \(f_s \) with \(s = 2 \ldots p - 1, p + 2 \ldots 2p - 1 \) are linearly independent. Thus, the linear independence of all vectors \(u, f, k \) is established. \(\square \)

3. \(PSL(2, \mathbb{Z}) \) ACTION IN \(\mathcal{Z} \)

In this section we define operators \(S \) and \(v \) and prove that they satisfy \(PSL(2, \mathbb{Z}) \) relations. Conjugations with operators \(S \) and \(v \) give automorphisms \(\sigma \) and \(\tau_+ \) respectively.

3.1. \(\sigma \). We define the \(S \)-operator that maps the \(X \)-basis to the \(Y \)-basis by formulas (1.12).

3.1.1. Proposition. \(S \) satisfies relations

\[
\begin{align*}
(3.1) & \quad SXS^{-1} = Y^{-1}, \\
(3.2) & \quad SYS^{-1} = XT^2, \\
(3.3) & \quad STS^{-1} = T, \\
(3.4) & \quad S^3 = qT^{-1}.
\end{align*}
\]

Proof.

- (3.1) follows from the definition of \(S \).
- (3.4) follows from a direct calculation of \(TS^2 \)-action in the \(X \)-basis. We give a detailed calculation of \(TS^2 e_s \). The calculation of \(TS^2 w_s \) and \(TS^2 m_s \) is similar and is omitted. We check that \(TS^2 e_s = q e_s \). We begin with

\[
S^2 e_s = S f_s = S \left(\sum_{r=1}^{2p} f_{r,s}^{(w)} u_r + f_{p,s}^{(e)} e_p + f_{2p,s}^{(e)} e_{2p} + \left(\sum_{r=2}^{p} + \sum_{r=p+2}^{2p-1} \right) f_{r,s}^{(m)} m_r \right) = \]

\[
= f_{1,s}^{(w)} u_1 + f_{p,s}^{(w)} u_p + f_{p+1,s}^{(w)} u_{p+1} + f_{2p,s}^{(w)} u_{2p} + f_{p,s}^{(e)} e_p + f_{2p,s}^{(e)} e_{2p} + \]

\[
+ \left(\sum_{r=2}^{p-1} + \sum_{r=p+2}^{2p-1} \right) f_{r,s}^{(m)} m_r = f_{r,s}^{(m)} m_r .
\]
Then we calculate coefficients in front of e_j and w_j in (3.5) using (2.26)-(2.31). This calculation is cumbersome and is given in Appendix A. The result of the calculation is

$$S^2 e_s = \frac{-q^{s+1}}{s} e_s + q \frac{[s - 1]}{s} e_{2p-s} + \frac{2(q^2 - 1)}{(q^s - q^{-s})^2} (w_s - w_{2p-s}), \quad s \neq p, 2p,$$

$$S^2 e_p = e_p, \quad S^2 e_{2p} = e_{2p}.$$

A simple calculation using (2.12)-(2.15) gives

$$TS^2 e_s = q e_s, \quad s = 1 \ldots 2p.$$

- (3.3) is checked as follows
 $$S^2 = q T^{-1} \Rightarrow ST = TS = q S^{-1} \Rightarrow STS^{-1} = T.$$

- (3.2) is checked as follows
 $$S X S^{-1} Y^{-1} \Rightarrow S X S^{-1} = Y \Rightarrow SY S^{-1} = S^2 X^{-1} S^{-2} \Rightarrow T^{-1} X^{-1} T \equiv XT^2.$$

3.2. τ_\pm. The automorphism τ_\pm can be realized as a conjugation with the element $v \in \mathbb{Z}$ given by (1.13).

3.2.1. Proposition. For v given by (1.13), the operator

$$\tau_+ (x) = v^{-1} x v, \quad \forall x \in \mathcal{H}$$

satisfies relations (1.4).

Proof. A direct calculation.

3.2.2. Proposition. The map

$$\left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right) \rightarrow s, \quad \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right) \rightarrow v.$$

gives a $PSL(2, \mathbb{Z})$ action in \mathcal{Z}.

Proof. Relations (3.1)-(3.4) and (1.4) are sufficient to check the $PSL(2, \mathbb{Z})$ relations.

4. EIGENSPACE OF T WITH EIGENVALUE q

In this section, we describe the representation of the symmetrized DAHA. In section 5, we prove that it is isomorphic to the centre of $\overline{U}_q \mathfrak{sl}(2)$.

We let \mathcal{J}_q denote the eigenspace of T with the eigenvalue q. It is $3p - 1$ dimensional. Operators X and Y have no well-defined restriction to \mathcal{J}_q but "symmetrized" operators $C = -(X + X^{-1})$ and $H = -(Y + Y^{-1})$ have. Indeed, for a given $a \in \mathcal{J}_q$, we have

$$T(X + X^{-1}) a = (X^{-1}T^{-1} + TX^{-1}) a = (q^{-1} + T)X^{-1} a.$$
Thus, \((X + X^{-1})a \in \mathcal{T}_q\) and a similar calculation shows that \(H\) has the well-defined restriction to \(\mathcal{T}_q\) as well.

4.1. \(C\)-basis. The eigenvectors of \(C = -(X + X^{-1})\) are

\[
e_0 = e_p, \quad e_p = e_{2p}, \quad e_s = e_{p+s} + e_{p-s},
\]

\[
w^+_1 = \frac{1}{q-q^{-1}} m_{p-1}, \quad w^-_1 = \frac{1}{q-q^{-1}} (w_{p+1} - w_{p-1} - m_{p-1}),
\]

\[
w^+_s = \frac{[s]}{q-q^{-1}} (m_{p-s} + m_{p+s}), \quad w^-_s = \frac{[s]}{q-q^{-1}} (w_{p+s} - w_{p-s} - m_{p-s} - m_{p+s}),
\]

\[
w^+_{p-1} = \frac{1}{q-q^{-1}} (m_{2p-1} - w_1), \quad w^-_{p-1} = \frac{1}{q-q^{-1}} (w_{2p-1} - m_{2p-1}),
\]

\[
w_s = w^+_s + w^-_s = \frac{[s]}{q-q^{-1}} (w_{p+s} - w_{p-s}), \quad s = 1 \ldots p - 1.
\]

The action of \(C\) on them follows from (2.11)

\[
(4.2) \quad C e_0 = \mu_0 e_0, \quad C e_p = \mu_p e_p,
\]

\[
(4.3) \quad C e_s = \mu_s e_s + (q - q^{-1})^2 w_s, \quad s = 1 \ldots p - 1
\]

\[
(4.4) \quad C w^+_s = \mu_s w^+_s, \quad s = 1 \ldots p - 1,
\]

where

\[
(4.5) \quad \mu_s = q^s + q^{-s}, \quad 0 \leq s \leq p.
\]

The multiplication in \(\mathcal{T}_q\) is induced by (1.9)

\[
(4.6) \quad e_r w^+_s = \delta_{r,s} w^+_s, \quad e_r e_s = \delta_{r,s} e_s, \quad w^+_r w^+_s = 0.
\]

4.2. \(H\)-basis. The eigenvectors of \(H = -(Y + Y^{-1})\) are

\[
f_0 = f_p, \quad f_p = f_0, \quad f_s = f_{p+s} + f_{p-s},
\]

\[
u^+_1 = \frac{1}{q-q^{-1}} k_{p-1}, \quad v^-_1 = \frac{1}{q-q^{-1}} (u_{p+1} - u_{p-1} - k_{p-1}),
\]

\[
u^+_s = \frac{[s]}{q-q^{-1}} (k_{p-s} + k_{p+s}), \quad v^-_s = \frac{[s]}{q-q^{-1}} (u_{p+s} - u_{p-s} - k_{p-s} - k_{p+s}),
\]

\[
u^+_{p-1} = \frac{1}{q-q^{-1}} (k_{2p-1} - u_1), \quad v^-_{p-1} = \frac{1}{q-q^{-1}} (u_{2p-1} - k_{2p-1}),
\]

\[
u_s = v^+_s + v^-_s = \frac{[s]}{q-q^{-1}} (u_{p+s} - u_{p-s}), \quad s = 1 \ldots p - 1.
\]

The action of \(H\) on them follows from (1.11)

\[
(4.7) \quad H f_0 = \mu_0 f_0, \quad H f_p = \mu_p f_p,
\]

\[
(4.8) \quad H f_s = \mu_s f_s + (q - q^{-1})^2 u_s, \quad s = 1 \ldots p - 1,
\]

\[
pp' \text{ models and quantum groups} – \text{February 1, 2008} – 14:40
\]
where eigenvalues are given by (4.5).

4.3. $SL(2, \mathbb{Z})$ action. Operators S and v have well-defined restrictions to T_q. This endows T_q with a representation of $SL(2, \mathbb{Z})$. In more detail, S-operator in T_q satisfies

\begin{align}
S e_s = f_s, & \quad s = 0 \ldots p, \\
S u_s^\pm = u_s^\pm, & \quad s = 1 \ldots p - 1
\end{align}

(4.10)

and because $T = q$ in T_q, we have $S^2 = 1$. We note also that in T_q relations (4.11) lead to

\begin{align}
S C S^{-1} = H.
\end{align}

5. Proof of Theorem 1.4

We note that T_q and the center of $\overline{U}_q sl(2)$ from [6] have the same dimension equal to $3p - 1$. Then we identify C-basis (H-basis) in T_q with the Radford images (Drinfeld images) of q-characters of irreducible representations

\begin{align}
\hat{\phi}^+(s) = \omega_s w_s^+, & \quad \hat{\phi}^-(s) = \omega_{p-s} w_{p-s}, \quad s = 1 \ldots p - 1, \\
\hat{\phi}^+(p) = p \sqrt{2p} e_p, & \quad \hat{\phi}^-(p) = (-1)^{p+1} p \sqrt{2p} e_0, \\
\chi^+(s) = \omega_s u_s^+, & \quad \chi^-(s) = \omega_{p-s} u_{p-s}, \quad s = 1 \ldots p - 1, \\
\chi^+(p) = p \sqrt{2p} f_p, & \quad \chi^-(p) = (-1)^{p+1} p \sqrt{2p} f_0.
\end{align}

(5.1)

This identification establishes an isomorphism between T_q and the center of $\overline{U}_q sl(2)$ as associative commutative algebras.

Under the identification (5.1), T_q coincides with the center of $\overline{U}_q sl(2)$ as the representation of $SL(2, \mathbb{Z})$. In particular, the relations $S(\chi^+(s)) = \hat{\phi}^+(s)$ for $s = 0 \ldots p$ in the center are parallel to the relations (4.10) in T_q. The Gaussian element v in notations of [6]

\begin{align}
v = \sum_{s=0}^{p} (-1)^{s+1} q^{-\frac{1}{2}(s^2-1)} e_s + \sum_{s=1}^{p-1} (-1)^{p} q^{-\frac{1}{2}(s^2-1)} \frac{q^s - q^{-s}}{\sqrt{2p}} \hat{\phi}(s),
\end{align}

(5.2)

where $\hat{\phi}(s) = \frac{p-s}{p} \hat{\phi}^+(s) - \frac{s}{p} \hat{\phi}^-(p-s)$ for $1 \leq s \leq p-1$ coincides with the ribbon element of $\overline{U}_q sl(2)$.

6. Discussion

We identified the representation of DAHA that gives the Verlinde algebra of $(1, p)$ logarithmic conformal field models. The center of $\overline{U}_q sl(2)$ coincides with the symmetrization of \mathcal{Z} and $C = -(X + X^{-1})$ coincides with the $\overline{U}_q sl(2)$ Casimir element. Probably the
whole representation \mathbb{Z} can be realized in $\overline{U}_q\mathfrak{sl}(2)$ such that X would be realized by a multiplication with a $\overline{U}_q\mathfrak{sl}(2)$ element.

Another interesting direction of investigations is to find a realization of \mathcal{H} on $(1, p)$ logarithmic conformal field model conformal blocks. This can also be useful in boundary conformal field theories. The Ishibashi and Cardy boundary states can probably be identified with eigenvectors of operators $C = -(X + X^{-1})$ and $H = -(Y + Y^{-1})$ respectively.

Acknowledgments. We are grateful to T. Suzuki, M. Kasatani and T. Kuwabara for many valuable discussions and A.M. Semikhatov for the useful discussions and comments on a presentation of our results. The work of GM was supported by the RFBR Grant 07-01-00523. The work of IYuT was supported in part by LSS-4401.2006.2 grant, the RFBR Grant 05-02-17217 and the “Dynasty” foundation.

Appendix A. Proof of $S^2 = qT^{-1}$

We calculate coefficient in front of e_j in (A.1) and coefficient in front of w_j in (A.2).

A.1. The coefficient in front of e_j. The substitution of (2.26), (2.28), (2.30) in (3.5) gives the coefficient in front of e_j

\[
(A.1) \quad f_1^{(w)} u^{(e)}_{j,1} + f_{p,s}^{(w)} u^{(e)}_{j,p} + f_{p+1,s}^{(w)} u^{(e)}_{j,p+1} + f_{2p,s}^{(w)} u^{(e)}_{j,2p} + f_{p,s}^{(e)} + f_{p+1,s}^{(e)} + f_{2p,s}^{(e)} + f_{2p+1,s}^{(e)} + \left(\sum_{r=2}^{p-1} \sum_{r=p+2}^{2p-1} f_r^{(w)} u_{j,r}^{(e)} + f_r^{(e)} k_r^{(e)} \right)
\]

where all numbers u, k, f are given in (2.27), (2.29), (2.31). A simplification of the underbraced expression gives

for $j \neq 1, p, p + 1, 2p$:

\[
A = \frac{(-1)^{s+j} q^2}{2p} \left(q^{r-1}[s, r-1][r, j] - [s, r-1][r, j-1] \right) + \frac{(-1)^{s+j} q^s}{2p} \left(q[s, r][r, j-1] - q^s[s, r][r, j] \right),
\]

for $j = 1$:

\[
A = \frac{(-1)^{s+1} q^2}{2p} \left(q^{r-1}[s, r-1][r, 1] - [s, r-1][r, 1] \right) + \frac{(-1)^{s+1} q^s}{2p} \left(-q[s, r] - q^s[s, r][r, 1] \right),
\]

for $j = p + 1$:

\[
A = \frac{(-1)^{s+p+1} q^2}{2p} \left(q^{r-1}[s, r-1][r, p+1] - [s + p, r - 1] \right) + \frac{(-1)^{s+p+1} q^s}{2p} \left(-q[s, r] - q^s[s, r][r, 1] \right),
\]
\[A = \frac{(-1)^{s+p}q^p}{2p} \left(q^{-1}[s, r - 1] - [s, r - 1][r, p - 1] \right) + \frac{(-1)^{s+p}q^p}{2p} \left(q[s, r][r, p - 1] - q^r\{s + p, r\} \right). \]

For \(j = p \):

\[A = \frac{(-1)^{s+p}q^p}{2p} \left(q^{-1}[s, r - 1] - [s, r - 1][r, p - 1] \right) + \frac{(-1)^{s+p}q^p}{2p} \left(q[s, r][r, p - 1] - q^r\{s + p, r\} \right). \]

For \(j = 2p \):

\[A = \frac{(-1)^{s}q^2}{2p} \left(q^{-1}[s, r - 1] - [s, r - 1][r, 2p - 1] \right) + \frac{(-1)^{s}q^2}{2p} \left(q[s, r][2p - 1] + q^r\{s, r\} \right). \]

Then the summation in \(r \) of different terms in \(A \) is given by

\[
\sum_{r=2}^{p} \left(\sum_{r=p+2}^{2p-1} \right) q^{-1}[s, r - 1][r, j] = \left(p - \frac{1}{4}((s + j + 1 \mod 2p) + (s - j + 1 \mod 2p) + (s + j - 1 \mod 2p) + (s - j - 1 \mod 2p)) \right) \left(1 + (-1)^{s+j} \right) + \frac{p}{(s - j \mod 2p)}, \]

\[
\sum_{r=2}^{p} \left(\sum_{r=p+2}^{2p-1} \right) [s, r - 1][r, j] = \left(1 + (-1)^{s+j+1} \right) \left(p - \frac{1}{2}((s + j \mod 2p) + (s - j \mod 2p)) \right), \]

\[
\sum_{r=2}^{p} \left(\sum_{r=p+2}^{2p-1} \right) q^{-1}[s, r][r, j] = \frac{2p \left(\delta_{s, 2p-j} - \delta_{s, j} \right)}{q^j - q^{-j}} - q[s] \left(1 + (-1)^{j+s} \right), \quad j \neq p, 2p, \]

\[
\sum_{r=1}^{2p} \left(\sum_{r=p+1}^{2p-1} \right) [s, r] = (1 - (-1)^{s})(p - (s \mod 2p)), \]

\[
\sum_{r=1}^{2p} \left(\sum_{r=p+1}^{2p-1} \right) q^{-1}[s, r] = (1 + (-1)^{s}) \left(p - \frac{(s + 1 \mod 2p) + ((s - 1 \mod 2p))}{2} \right), \]

\[
\sum_{r=1}^{2p} q^{-1}[s, r] = (1 + (-1)^{s}) \left(\frac{(s - 1 \mod 2p) - ((s + 1 \mod 2p))}{2} \right). \]
A.2. The coefficient in front of w_j. The substitution of (2.26), (2.28), (2.30) in (3.5) gives the coefficient in front of w_j

\[(A.2) \quad \begin{align*}
\frac{q^2(-1)^{s+j+1}}{p(q^{j-1} + q^{j+1})} & \left[s, r-1 \right] [r-1, j-1] + \frac{(-1)^{s+j+1}}{p(q^{j-1} + q^{j-1})} q_r^{-1} [s, r-1] [r-1, j] + \\
& + \frac{q^s(-1)^{s+j}}{2p} \left(q^r \left\{ s, r \right\} \{r, j\} - q \left\{ s, r \right\} \{r, j-1\} + q^r\{s, r\}[r, j]\right) - q\{s, r\}[r, j-1]\left\{1, j-1\right\} - q [s, r] [r, j-1] \left\{1, j-1\right\}
\end{align*}\]

Then the simplification of (A.2) gives coefficients in (3.5) in front of w_s. Explicitly, the summation in r of different terms in (A.3) is given by

\[(A.3) \quad \begin{align*}
\left(\sum_{r=2}^{p-1} + \sum_{r=p+2}^{2p-1} \right) \left[s, r-1 \right] [r-1, j] & = [s](1 - (-1)^{s+j}), \quad j \neq p, 2p, \\
\left(\sum_{r=2}^{p-1} + \sum_{r=p+2}^{2p-1} \right) q_r^{-1} [s, r-1] [r-1, j] & = \frac{2p(\delta_{s,2p-j} - \delta_{s,j})}{q^j - q^{-j}} + q^{-1}[s](1 - (-1)^{j+s}, \quad j \neq p, 2p, \\
\left(\sum_{r=2}^{p-1} + \sum_{r=p+2}^{2p-1} \right) q^r \left\{ s, r \right\} \{r, j\} & = \left\{ s, 1 \right\} \{1, j\} ((-1)^{s+j} - 1), \\
\left(\sum_{r=2}^{p-1} + \sum_{r=p+2}^{2p-1} \right) q^r [s, r] [r, j] & = \frac{2p(\delta_{s,2p-j} - \delta_{s,j})}{q^j - q^{-j}} - q[s](1 - (-1)^{j+s}, \quad j \neq p, 2p, \\
\left(\sum_{r=2}^{p-1} + \sum_{r=p+2}^{2p-1} \right) [s, r] [r, j] & = [s] ((-1)^{s+j} - 1), \quad j \neq p, 2p.
\end{align*}\]

REFERENCES

[1] A.M. Semikhatov, Factorizable ribbon quantum groups in logarithmic conformal field theories, [hep-th/0705.4267].
[2] V. Gurarie, Logarithmic operators in conformal field theory, Nucl. Phys. B410 (1993) 535 [hep-th/9303160].

pp' models and quantum groups – February 1, 2008 – 14:40
[3] M.R. Gaberdiel and H.G. Kausch, *A rational logarithmic conformal field theory*, Phys. Lett. B386 (1996) 131–137 [hep-th/9606050].

[4] B.L. Feigin, A.M. Gainutdinov, A.M. Semikhatov, and I.Yu. Tipunin, *Kazhdan–Lusztig correspondence for the representation category of the triplet W-algebra in logarithmic CFT*, math.QA/0512621.

[5] D. Kazhdan and G. Lusztig, *Tensor structures arising from affine Lie algebras*, I, J. Amer. Math. Soc. 6 (1993) 905–947; II, J. Amer. Math. Soc. 6 (1993) 949–1011; III, J. Amer. Math. Soc. 7 (1994) 335–381; IV, J. Amer. Math. Soc. 7 (1994) 383–453.

[6] B.L. Feigin, A.M. Gainutdinov, A.M. Semikhatov, and I.Yu. Tipunin, *Modular group representations and fusion in logarithmic conformal field theories and in the quantum group center*, Commun. Math. Phys. 265 (2006) 47–93 [hep-th/0504093].

[7] M.R. Gaberdiel and H.G. Kausch, *Indecomposable fusion products*, Nucl. Phys. B477 (1996) 293–318 [hep-th/9604026].

[8] J. Fuchs, S. Hwang, A.M. Semikhatov, and I.Yu. Tipunin, *Nonsemisimple fusion algebras and the Verlinde formula*, Commun. Math. Phys. 247 (2004) 713–742 [hep-th/0306274].

[9] M. Flohr and H. Knuth, *On Verlinde-Like Formulas in c_p,1 Logarithmic Conformal Field Theories*, math-ph/0705.0545.

[10] M. Flohr, *Bits and pieces in logarithmic conformal field theory*, Int. J. Mod. Phys. A18 (2003) 4497–4592 [hep-th/0111228].

[11] I. Cherednik, *Double Affine Hecke Algebras*, 2004.

[12] I. Cherednik, Private communication, Kyoto, 2004.