Small Molecule Regulators of Protein Arginine Methyltransferases*

Donghang Cheng‡, Neelu Yadav‡, Randall W. King§, Maurice S. Swanson¶, Edward J. Weinstein***, and Mark T. Bedford‡‡

From ‡‡The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957, the §Department of Cell Biology, Institute of Chemistry and Cell Biology and the ¶Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, and the ||Department of Molecular Genetics and Microbiology, Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, Florida 32610-0266

Here we report the identification of small molecules that specifically inhibit protein arginine N-methyltransferase (PRMT) activity. PRMTs are a family of proteins that either monomethylate or dimethylate the guanidino nitrogen atoms of arginine side chains. This common post-translational modification is implicated in protein trafficking, signal transduction, and transcriptional regulation. Most methyltransferases use the methyl donor, S-adenosyl-L-methionine (AdoMet), as a cofactor. Current methyltransferase inhibitors display limited specificity, indiscriminately targeting all enzymes that use AdoMet. In this screen we have identified a primary compound, AMI-1, that specifically inhibits arginine, but not lysine, methyltransferase activity in vitro and does not compete for the AdoMet binding site. Furthermore, AMI-1 prevents in vivo arginine methylation of cellular proteins and can modulate nuclear receptor-regulated transcription from estrogen and androgen response elements, thus operating as a brake on certain hormone actions.

Protein arginine N-methyltransferases (PRMTs) have been implicated in a variety of processes, including nuclear receptor-regulated transcription and protein trafficking (1). The methylation of arginine residues is catalyzed by Type I enzymes that facilitate the formation of asymmetric ω-N\(^\text{3}\),ω-N\(^\text{6}\)-dimethylarginine (aDMA) residues, and by Type II enzymes that generate symmetric ω-N\(^\text{3}\),ω-N\(^\text{3}\)-dimethylarginine (sDMA) residues (2). The cloning of the yeast Type I arginine methyltransferase enzyme (3, 4), Hmt1p (also known as Rmt1p), provided the molecular framework for the identification of six homologues in mammals (PRMT1–6). Currently, known mammalian Type I enzymes include PRMT1 (5, 6), the zinc finger-containing enzyme PRMT3 (7), the coactivator-associated arginine methyltransferase PRMT4/CARM1 (8), and the nuclear enzyme PRMT6 (9). The only mammalian Type II PRMT identified to date is the Janus kinase-binding protein Janus kinase-binding protein 1/PRMT5 (10, 11). Activity for the SH3 domain-containing arginine methyltransferase, PRMT2, has yet to be clearly demonstrated.

PRMTs target a wide array of different proteins for post-translational modification. The majority of aDMA residues occur within glycine- and arginine-rich (GAR) domains (12). Proteins with methylated GAR domains include Sam68, hnRNP K, hnRNP U, ILF3, FUS, and PABPN1 (13–16). PRMT4/CARM1 displays more specificity than other Type I enzymes and does not methylate GAR domains. PRMT4 substrates include CBP/p300, PAPB1, TARPP, histone H3, and HrU (8, 16–20). Known substrates that contain aDMA (Type II PRMT targets) are myelin basic protein (21) and Sm ribonucleoproteins D1 and D3 (10, 22, 23).

Work in yeast unveiled the first identified biological role of arginine methyltransferase: nuclear cytoplasmic shuttling of the hnRNP protein Npl3p requires Hmt1p activity (24). Recently, it was shown that protein-protein interactions are regulated by arginine methylation. The asymmetric dimethylation of arginine residues flanking proline-rich motifs can inhibit the binding of SH3 domains in vitro but does not interfere with the binding of the WW domains (a domain with two conserved tryptophans that binds proline-rich sequences) to the same motif (13). An opposite effect is seen with interactions between the survival of motor neurons protein (SMN) and the SnRNP proteins SmD1 and SmD3, where symmetrical arginine dimethylthiylation of the SnRNP proteins enhances their binding to the Tudor domain of SMN (22).

Apart from regulating protein-protein interactions and protein trafficking, arginine methylation has also been implicated in the regulation of transcription. This became evident with the finding that the coactivator-associated arginine methyltransferase (PRMT4) binds the p160 family of nuclear hormone receptor coactivators. The presence of PRMT4 enhances transcriptional activation by nuclear receptors, possibly as a result

* The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

** Current address: Dept. of Molecular Profiling, Merck & Co., Inc., West Point, PA 19486.

† Supported by National Institutes of Health (NIH) Grant DK52248-01, Welch Foundation Grant G-1495, and institutional grants NEIHES, NIH ES07784 and NIH CA16672. To whom correspondence should be addressed: The University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, P. O. Box 389, Smithville, TX 78957. Tel.: 512-237-9539; Fax: 512-237-2475; E-mail: mtbedford@mdanderson.org.

‡‡ Current address: Dept. of Molecular Profiling, Merck & Co., Inc., West Point, PA 19486.

§ Supported by National Institutes of Health (NIH) Grant DK562248-01, Welch Foundation Grant G-1495, and institutional grants NEIHES, NIH ES07784 and NIH CA16672. To whom correspondence should be addressed: The University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, P. O. Box 389, Smithville, TX 78957. Tel.: 512-237-9539; Fax: 512-237-2475; E-mail: mtbedford@mdanderson.org.

¶ Supported by National Institutes of Health (NIH) Grant DK52248-01, Welch Foundation Grant G-1495, and institutional grants NEIHES, NIH ES07784 and NIH CA16672. To whom correspondence should be addressed: The University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, P. O. Box 389, Smithville, TX 78957. Tel.: 512-237-9539; Fax: 512-237-2475; E-mail: mtbedford@mdanderson.org.

†† Supported by National Institutes of Health (NIH) Grant DK52248-01, Welch Foundation Grant G-1495, and institutional grants NEIHES, NIH ES07784 and NIH CA16672. To whom correspondence should be addressed: The University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, P. O. Box 389, Smithville, TX 78957. Tel.: 512-237-9539; Fax: 512-237-2475; E-mail: mtbedford@mdanderson.org.

‡‡‡ Current address: Dept. of Molecular Profiling, Merck & Co., Inc., West Point, PA 19486.

§§ Supported by National Institutes of Health (NIH) Grant DK562248-01, Welch Foundation Grant G-1495, and institutional grants NEIHES, NIH ES07784 and NIH CA16672. To whom correspondence should be addressed: The University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, P. O. Box 389, Smithville, TX 78957. Tel.: 512-237-9539; Fax: 512-237-2475; E-mail: mtbedford@mdanderson.org.

¶¶ Supported by National Institutes of Health (NIH) Grant DK562248-01, Welch Foundation Grant G-1495, and institutional grants NEIHES, NIH ES07784 and NIH CA16672. To whom correspondence should be addressed: The University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, P. O. Box 389, Smithville, TX 78957. Tel.: 512-237-9539; Fax: 512-237-2475; E-mail: mtbedford@mdanderson.org.
of the specific methylation of histone H3 by PRMT4 (8). PRMT1, like PRMT4, can also bind p160, and these two PRMTs have been shown to act in a synergistic manner to enhance reporter gene activation by nuclear receptors (25). The arginine modification of histone H4 by PRMT1 facilitates the subsequent acetylation of H4 tails by p300 (26). In addition, PRMT4 can regulate the activity of p300/CREB (17, 18). Thus, lysine acetylation and arginine methylation work together to enhance nuclear receptor-regulated transcription.

Further attempts to elucidate the biological roles of arginine methylation have included the targeted disruption of the Prmt1 and Prmt4 genes in mice (20, 27) and the use of broad-spectrum inhibitors of methylation. Studies involving small molecule inhibitors have revealed that a loss of methylation can change the subcellular localization of methylated proteins (28, 29), prevent nerve growth factor-induced neuronal differentiation of PC12 cells (30–32), and inhibit the membrane ruffling seen within seconds after nerve growth factor is added to PC12 cells (33). However, interpretation of these findings is impaired by the global nature of methylation inhibition, which makes it difficult to assign specific cellular functions to a distinct methylation event. The compounds used in these studies are of two types: first, small molecules that inhibit S-adenosyl-l-homocysteine (AdoHcy) hydrolase, like adenosine dialdehyde (AdOx), result in a marked intracellular accumulation of AdoHcy. Most methylation reactions are affected through feedback inhibition by elevated levels of AdoHcy. Second, analogues of AdoMet like sinefungin and methylthioadenosine also function as inhibitors of methylation. The inhibition of AdoHcy hydrolase by small molecules and the use of AdoMet analogues can affect cellular methylation of phospholipids, proteins, DNA, and RNA. Recently, analogues of AdoMet were used to selectively inhibit a mutant form of the yeast protein methyltransferase, Hmt1p, using a "bump-and-hole" approach (34).

To date, no specific chemical modifiers of endogenous protein methyltransferases or of specific arginine methyltransferases have been identified. Here we identify such molecules that will help elucidate the biological role of arginine methylation and perhaps serve as lead compounds for future drug development.

EXPERIMENTAL PROCEDURES

Antibodies and Plasmids—The αGFP antibody was purchased (Clontech, Palo Alto, CA). The characterization of the IE4 monoclonal antibody has been described previously (35). The αSam68 and αPRMT1 antibodies were a gift from Stéphane Richard. All GST fusion proteins were subcloned in pGEX-6P-1 (Amersham Biosciences), which allows for the induced production of recombinant proteins fused to the C-terminal end of glutathione S-transferase. GST-PARP1 (18) and GST-Sam68 (36) have been described. GST-PRMT1, GST-PRMT3, GST-PRMT4, and GST-PRMT6 have been described previously (9). GST-Suv39H1 and GST-Suv39H2 were a gift from Thomas Jenuwein and were described previously (37). GST-SET7 and GST-DOT1 are gifts from Yi Zhang (38). GST-Npl3 and GST-Hmt1p were a gift from Pam Silver and have been previously described (37). For the GST-Npl3 fusion construct, full-length Npl3 from pGEX-Npl3 was amplified by PCR primer 1 (5′-ACATTGCTTGAACACCAAGGCTTTTGCAG-3′) and primer 2 (5′-CAAGGCACCATCATACGAGGAGT-3′). The 5′ primer introduced a mammalian “Kozak” sequence (CACC) just upstream to the initiator AUG. The fragments were subcloned in pd2EFP-N1 (Clontech) to generate a N-terminal fusion of GST-Npl3 and GST-H3 and H4 (calf thymus) were purchased from Roche Applied Science.

Compound Screening—The IE4 antibody was used to establish an ELISA-based high throughput screen for small molecule inhibitors of arginine methylation. We used a 384-well high binding plates (Costar) coated with 100 ng of GST-Npl3 (the substrate). The plates were blocked with 5% BSA and incubated with GST-Hmt1p (500 ng of enzyme). Small molecules were then robotically transferred to individual wells to a final concentration of 10–15 μM. Finally, the enzyme reaction was initiated by the addition of the methyl donor, AdoMet (10 μM). The reaction was incubated for 1 h at room temperature. The wells were then washed twice with TBST (25 mM Tris (pH 7.5), 150 mM NaCl, 0.1% Tween 20) and blocked in TBST containing 2% BSA for 30 min. A mix of methyl-specific primary antibody (1E4 at 1:1000) and secondary antibody (a mouse-anti-rabbit antibody at 1:10,000) was added to each well and incubated at room temperature for an additional hour. The wells were then washed three times with TBST and subjected to enhanced chemiluminescence. The chemiluminescent signal from each plate was detected by autoradiography and a Wallac multilabel counter. The antibodies were solubilized in Me2SO to generate antibody stock solutions. The molecular mass of AMI-1 (the primary compound) and AMI-5 were confirmed by mass spectrometric analysis, thus establishing that the structures are correct.

Colorimetric Assay to Establish IC50 Values—A colorimetric assay was established to determine the IC50 of compounds. Briefly, 500 ng of GST-Npl3 in 50 μl of TBS was added to each well of a clear 96-well plate (Corning Inc., Corning, NY). After incubation at 4°C overnight, the plate was rinsed with TBST and once with 20 mM Tris buffer (pH 8.0). The compounds were added to the GST-Npl3-coated plates. After a 15-min incubation, 200 ng of PRMT1 or Hmt1p and 1 μl of AdoMet (from a 5 mM stock) were added into each well in a final volume of 50 μl of Tris buffer (pH 8.0). The plate was washed with TBST and then blocked with 5% BSA in TBST buffer for 2 h at room temperature. Anti-Npl3 antibody 1E4 (1:5,000) was then added to each well and shaken for 2 h at room temperature. The wells were washed with TBST. Secondary antibody (a mouse-anti-rabbit antibody at 1:10,000) was then added to each well, and the mixture was incubated for 1 h at room temperature. The wells were again rinsed with TBST. The peroxidase substrate solution, ABTS, was added to each well, and the mixture was incubated for 1 h. The absorbance was measured at 415 nm with a plate reader (Bio-Rad). IC50 for compounds was calculated by linear regression analysis of percentage inhibition.

In Vitro Methylation Assay—All methylation reactions were carried out in the presence of [3H]AdoMet (methionine-methyl-H)methionine ([3H]AdoMet, 79 Ci/mmol from a 12.6 μM stock solution in dilute HCl: ethanol 9:1, pH 2.0–2.5, Amersham Biosciences) and PBS (137 mM NaCl, 2.7 mM KCl, 4.3 mM NaH2PO4, 1.4 mM KH2PO4, pH 7.4). The reactions were performed in a 30-μl volume in the presence of 5 μg of the small molecule inhibitors, this translates into the following concentrations of each compound: AMI-1, 303 μM; AMI-2, 642 μM; AMI-3, 690 μM; AMI-4, 520 μM; AMI-5, 257 μM; AMI-6, 336 μM; AMI-7, 265 μM; AMI-8, 247 μM; AMI-9, 325 μM; AMI-10, 503 μM; and sinefugin, 437 μM. Additional information pertaining to individual reaction conditions is described in each of the figure legends. The samples were separated on 10% SDS-PAGE, transferred to nitrocellulose membrane, sprayed with Enhance (PerkinElmer Life Sciences, Boston, MA), and exposed to film overnight. Band intensities were calculated using a Kodak Image Station 440 and 1D Image Analysis Software (Eastman Kodak Co.).

In Vivo Methylation Assay—HeLa cells were labeled using a previously described in vivo methylation assay (40). The cells were lysed in a "mild" buffer (150 mM NaCl, 5 mM EDTA, 1% Triton X-100, 10 mM Tris-HCl, pH 7.5), and immunoprecipitations were performed with αSam68 antibodies. Samples were then subjected to fluorography.

Luciferase Assays and Transient MCF7 Transfections—ERE-TK-firefly has a single vitellogenin estrogen response element containing a basal thyminidine kinase (TK) promoter linked to firefly luciferase (41). AdoMet and AR were a gift from Mickey Hu (42). pRL-CMV has been humanized Renilla luciferase driven by CMV promoter (Promega, Madison, WI). MCF7s were maintained in phenol red-free Dulbecco’s modified Eagle’s medium supplemented with 5% charcoal stripped fetal bovine serum. Approximately 20 h before transfection, 40,000 cells were seeded into each well of 12-well culture dishes. The cells in each well were transfected with FuGENE6 transfection reagent (Roche Applied Science) according to the manufacturer’s protocol. For each transfection, 5 ng of phRL-CMV and 295 ng of ERE-TK-Luc were used for estrogen response and 5 ng of phRL-CMV, 148 ng of AR, and 148 ng of ARE were used for androgen response. After 4 h of transfection, cells were treated with either 10 nM estradiol (Sigma) or 10 nM R1881. Luciferase activity was determined by chemiluminescence (Perkin Elmer Life Sciences) and the indicated amounts of GFP-PRMT1 and pCAGGS-PRMT1 were used for the rescue experiments. In all cases DNA in each well was adjusted to 250 ng with Bluescript plasmid. The reporter was constitutively active under these conditions. After 42–44 h, the cells were washed twice with
PBS and harvested to perform luciferase assay using the Dual Luciferase Assay System (Promega).

Photoaffinity Competition Labeling of Methyltransferase Enzymes—UV cross-linking of \(S\)-adenosyl-L-[methyl-\(^3\)H]methionine to Hmt1p was performed as previously described (43, 44). A CL-1000 UV cross-linker was used (UVP, Upland, CA). GST-Hmt1p (10 \(\mu \)g) without any competitor or with 200 \(\mu \)M sinefungin, 200 \(\mu \)M AdOx, 200 \(\mu \)M AMI-1, and AMI-5, respectively, was exposed to UV light (254 nm) at a distance of 1 cm for 30 min at 4°C in the presence of 10–15 \(\mu \)M \([\text{3H}]\text{AdoMet}\) (79 Ci/mmol, from a 12.6 \(\mu \)M stock solution in dilute HCl/ethanol 9:1, pH 2.0–2.5, Amersham Biosciences) and 5 mM dithiothreitol in a total volume of 50 \(\mu \)l of PBS. After UV cross-linking, samples were run on SDS-PAGE and subjected to fluorography.

RESULTS

Chemical Screening for Arginine Methyltransferase Inhibitors—The Saccharomyces cerevisiae RNA-binding protein, Npl3p, is arginine-methylated \textit{in vivo} (35). A monoclonal antibody, 1E4, was raised against Npl3p (45), and it was later found that the epitope recognized by 1E4 is generated by an arginine methylation event (35). The 1E4 antibody does not recognize bacterial recombinant Npl3p. However, recombinant Npl3p that is methylated \textit{in vitro} either with the yeast (Hmt1p) or the human (PRMT1) recombinant arginine methyltransferases generates the 1E4-binding epitope (Fig. 1A). These properties make the 1E4 antibody superlative for use in a small molecule screen for inhibitors of this post-translational modification.

Using the 1E4 antibody, we established an ELISA-based method that was suitable for a high throughput small molecule screen for inhibitors of arginine methyltransferase activity. We used a 384-well plate format to immobilize GST-Npl3. The plates were then blocked with BSA and incubated with GST-Hmt1p. Small molecules were robotically transferred to individual wells to a final concentration of 10–15 \(\mu \)M, and the enzyme reaction was initiated by the addition of the methyl donor, 10 \(\mu \)M AdoMet. Following the reaction, the wells were incubated with a mixture of primary antibody (1E4 at 1:1,000) and secondary antibody (mouse-HRP at 1:10,000) and washed with TBST three times, and the horseradish peroxidase signal was detected with the ECL kit (Amersham Biosciences). Autoradiography film was placed over the ELISA plate for 30 s and then developed. The autoradiograph of one set of 52 plates screened is shown. Circles mark the position of “hits” on the plate. The primary identification of two inhibitors and one activator is shown. C, chemical structure of AdoMet, sinefungin, the nine most potent inhibitors (AMIs), and two activators (AMAs) of the Hmt1p arginine methyltransferase.
in the screen for arginine methyltransferase inhibitors we used the methylation-sensitive antibody, 1E4. 1E4 binding was detected using peroxidase-conjugated secondary antibodies followed by enhanced chemiluminescence. The chemiluminescent signal from each plate was detected by autoradiography (Fig. 1B) and a Wallac multilabel counter. This screen was performed in duplicate, on 9000 individual compounds from a diverse collection of synthetic chemicals (ChemBridge), with very reproducible results (Fig. 1B). In this manner, we identified nine compounds that inhibited the methylation of Npl3p by Hmt1p (Fig. 1C). We have called these compounds AMIs for arginine methyltransferase inhibitors. As would be expected from this type of screen, we found analogues of AdoMet (AMI-2) as well as compounds that are structurally related (AMIs-4, -5, and -6). Unexpectedly, we identified two compounds that enhance the in vitro methylation of Npl3p by Hmt1p (Fig. 1B, lane A1 and C2), and we refer to these compounds as AMAs for arginine methyltransferase activators.

The IC50 (the concentration of compound required to reduce the enzyme activity by 50%) values for the AMIs ranged from 0.15 to 7 μM, and they were able to inhibit the mammalian orthologue of Hmt1p, PRMT1 (Table I). The activators stimulated methylation by both the yeast and the human enzymes up to 3-fold.

AMI-1 Inhibits Arginine, but Not Lysine, Methyltransferases in Vitro—To determine which of the AMIs to further analyze, we tested the specificity of these compounds on a panel of arginine methyltransferases. All the arginine methyltransferases (Hmt1p and PRMT1, -3, -4, and -6) that are active as GST fusion proteins were assayed against two different substrates each (Fig. 2). The nine AMIs inhibited all the tested PRMTs.

The major protein methylation sites within cells are not only on arginine residues but also on the side-chain nitrogens of the amino acid lysine (46). Mono-, di-, and trimethylation of lysine residues is catalyzed by a unique family of methyltransferases that harbor SET domains (47). The cofactor-binding region of the SET domain is structurally distinct from the AdoMet binding folds of arginine and DNA methyltransferases (48). The fact that the active domains of SET domain-containing proteins and arginine methyltransferases are dissimilar increases the possibility of identifying specific inhibitors. Thus, we tested the ability of the AMIs to compromise lysine methyltransferase function. The SET domain-containing proteins Suv39H1, Suv39H2, and SET7 were assayed in the presence of the AMIs for their ability to methylate histones H3. In addition, the potency of the inhibitors was also assessed on the non-SET domain-containing lysine methyltransferase, DOT1 (49). AMI-2, -3, -4, -5, -7, -8, and -9 were able to inhibit both lysine and arginine methyltransferases (Fig. 3) or displayed a lack of specificity and are, therefore, of less interest to us than the PRMT-specific inhibitors. Compounds that inhibited the tested arginine methyltransferases but not the tested SET domain-containing enzymes (Figs. 3, AMI-1 and -6) were the focus of further investigation. In addition, AMI-5 was used as an example of a nonspecific small molecule inhibitor in the following experiments. AMI-5 inhibits the tested PRMT enzyme set (Figs. 2 and 3) and the lysine methyltransferases DOT1 and SET7, but not Suv39H1 and -2 enzymes (Fig. 3).

AMI-1 Inhibits Methylation of GFP-Npl3 and Cellular Proteins—To determine whether the compounds that showed specific arginine methyltransferase inhibitory properties (AMI-1 and -6) were able to inhibit PRMT activity within a cellular context, we generated a fusion between the green fluorescence protein (GFP) and the yeast protein Npl3. We have established that mammalian PRMT1 can methylate Npl3 in vitro (Fig. 1A),...
In vitro methylation reactions were performed with recombinant PRMTs and a set of different substrates, in the presence of the small molecules. GST-Hmt1p was incubated with GST-Npl3 as substrate. GST-PRMT1, PRMT3, and PRMT6 were incubated with GST-Npl3 and GST-GAR as substrates. GST-PRMT4 was incubated with GST-PABP and GST-SmB\(^*\) as substrate. Substrates (0.5 \(\mu\)g) were incubated with recombinant enzymes (0.2 \(\mu\)g) in the presence of 0.5 \(\mu\)M \(^{[3]}\)HAdoMet and the indicated small molecule (5 \(\mu\)g) for 90 min at 30 °C in a final volume of 30 \(\mu\)l of PBS. Reactions were separated on a 10% SDS-PAGE, transferred to a PVDF membrane, sprayed with Enhance\(^\text{TM}\), and exposed to film overnight. The fluorographs are shown in the left panel, and the quantification of the methylation levels is depicted in the right panel. Reactions were performed in the presence (+) and absence (−) of Me\(_2\)SO (the small molecule solvent) at 3.3% v/v. Sinefungin (Sin) is included as an AdoMet analogue. AMIs (lanes 1–9) and AMAs (lanes A1 and A2) are indicated.

Thus we reasoned that this reaction would also take place within a mammalian cell line. A destabilized GFP variant was used that displays rapid turnover rates. This shorter half-life makes destabilized variants suitable for use in quantitative reporter assays. The GFP-Npl3 was transiently transfected into HeLa cells and post-transfection the cells were treated for 24 h with 20-fold the IC\(_{50}\) of AMI-1, -5, and -6. Because GFP and Npl3 are fused, the αGFP antibody was used to establish equal loading and αNpl3 antibody (1E4) acted as the methylation sensor (Fig. 4A). Thus, the relative degree of arginine methylation in the presence of different inhibitors can be established. Using this assay system we demonstrated that AMI-1 and AMI-5 were able to inhibit methylation levels of GFP-Npl3 fusion, however AMI-6 exhibited a minimal effect on GFP-Npl3 fusion methylation levels (data not shown). We thus focused our attention on AMI-1 as a lead compound (AMI-5 is included in subsequent experiments as a control; it, however, also inhibits SET7 and DOT1 activity (Fig. 3)).

A concentration gradient of AMI-1 (2–10 \(\mu\)M) and AMI-5 (0.2–2 \(\mu\)M) was used to treat GFP-Npl3 transiently transfected HeLa cells for 24 h. The concentration ranges reflect the IC\(_{50}\) values of the compounds. Total cell extracts were then subjected to Western analysis with αGFP and 1E4 (methyl-sensitive αNpl3) antibodies. Both AMI-1 and -5 inhibited the methylation of Npl3 within a cell (Fig. 4B). In addition, the inhibitors of global methylation, AdOx and Sinefungin, also reduced the methylation status of this reporter. It should be noted that this is not an assay for the cell permeability of the compounds, because the transfection agent (LipofectAMINE) may still be present on the cell surface and could facilitate small molecule uptake.

To determine if AMI-1 was indeed cell-permeable we generated a HeLa cell line that stably expressed GFP-Npl3. This cell line was treated with the arginine methylation inhibitor for 7 days. Over this period AMI-1 is not cytotoxic to HeLa cells even at 20-fold the IC\(_{50}\) value (data not shown), here we used concentrations of 30 \(\mu\)M (≧3.5 x IC\(_{50}\)), 60 \(\mu\)M (≧7 x IC\(_{50}\)), and 120 \(\mu\)M (≧14 x IC\(_{50}\)). Again, total cell extracts were then subjected to Western analysis with the 1E4 (methyl-sensitive αNpl3) antibody (Fig. 4C, upper panel), after which the blot was
Fig. 4. Effects of compounds on cellular arginine methyltransferase activity. A, a depiction of the GFP-Npl3 fusion protein with the position of methylated region and the antibodies that recognize it. B, HeLa cells were grown in 12-well plates and then transiently transfected with d2GFP-Npl3. Three hours post-transfection, the cells were incubated with the indicated compounds for 24 h. The cells were lysed in RIPA buffer, and Western analysis was performed with either the 1E4 antibody (top panel) or αGFP antibody (bottom panel). The effects of the compounds on GFP-Npl3 methylation status were established with the methyl-specific antibody, 1E4. The αGFP antibody showed the protein levels of GFP-Npl3. MeSO (0.25% v/v) was the vehicle for the compounds (lane 1). The concentrations of the compounds are 2 μM AdOx (lane 2), 10 μM AdOx (lane 3), 20 μM sinefungin (lane 4), AMI-1 (2, 4, 6, and 10 μM) (lanes 5-8), AMI-5 (0.2, 0.4, 0.8, and 2.0 μM) (lanes 9-12). C, HeLa cells were stably transfected with GFP-Npl3. Cells were incubated with either AdOx or three different concentrations of AMI-1 for 7 days. Cell growth medium was replaced every day and supplemented with 10% fetal bovine serum. Western analysis was performed with the indicated compounds. Following treatment, cells were lysed in RIPA buffer, and Western analysis was performed with either the 1E4 antibody (top panel) or αGFP antibody (middle panel). The effects of the compounds on GFP-Npl3 methylation status were established with the methyl-specific antibody, 1E4. Quantification of the methylation levels of compound-treated samples, relative to vehicle-treated sample, is depicted in the right panel. The αGFP antibody showed equal protein levels of GFP-Npl3. The αPRMT1 antibody showed that the protein levels of PRMT1 are unaffected by AMI-1 (bottom panel). MeSO (0.3% v/v) was the vehicle for the compounds (lane 1). The concentrations of the compounds are 20 μM AdOx (lane 2), AMI-1 (30, 60, and 120 μM) (lanes 3-5). D, in vivo methylation of Sam68 is inhibited by AMI-1. Methylated proteins were labeled in vivo in the presence of AdOx or AMI-1. Immunoprecipitations were performed with αSam68 antibodies. The 3H-labeled proteins were visualized by fluorography (1-day exposure time) (upper panel), and the same membrane was subsequently immunoblotted with an αSam68 antibody (lower panel). Quantification of the methylation levels of compound-treated samples, relative to vehicle-treated sample, is depicted in the right panel. The Western analysis with the αSam68 antibody showed equal protein levels. MeSO (0.3% v/v) was the vehicle for the compounds (lane 3). The concentrations of the compounds are AdOx (20 and 4 μM, lanes 1 and 2), AMI-1 (30, 60, and 120 μM, lanes 4-6).

Fig. 5. AMI-1 does not compete for AdoMet binding to Hmt1p. GST-Hmt1p was UV cross-linked to [3H]AdoMet in the absence of any competitor (lane 1). Cross-linking in the presence of potential competitors was performed with: 200 μM sinefungin (lane 2), 200 μM AdOx (lane 3), 200 μM AMI-1 (lane 4), and 200 μM AMI-5 (lane 5). Samples were separated on a 10% SDS-PAGE, transferred to a PVDF membrane, sprayed with Enhance™, and exposed to film overnight.
likely recognizes a substructure in the AdoMet-binding fold and this may explain its ability to inhibit not only PRMT activity but also SET7 and DOT1 action (Fig. 3).

AMI-1 Inhibits Nuclear Receptor Reporter Gene Activation—

The identification of PRMT4 (CARM1) as a GRIP1 (SRC2) binding protein led to studies showing that this methyltransferase can stimulate transcriptional activation by nuclear receptors (8). Subsequent work has demonstrated that PRMT1 also has coactivator activity, which functions synergistically with PRMT4 (25, 52). Recently, it was shown that with the engineered loss of PRMT4 function estrogen-regulated transcription is attenuated (20). We thus tested the effect that AMI-1 has on an estrogen response element (ERE) and an androgen response element (ARE) in reporter assays. MCF-7 cells were transiently transfected with either an ERE reporter or an ARE reporter, then the cells were treated with different concentrations of AMI-1. Luciferase activity was measured, and the results are expressed as mean ± S.D. of representative experiment done in triplicate.

DISCUSSION

In this study we have identified nine compounds that inhibit the *in vitro* methylation of the substrate, Npl3p, by the yeast arginine methyltransferase, Hmt1p. In addition, two compounds were identified that enhance the activity of the enzyme toward the substrate. As would be expected from such a screen we did identify a compound with structural similarity to AdoMet (Fig. 1C, AMI-2) and a set of molecules that are structurally similar to each other (Fig. 1C, AMI-4, -5, and -6). Two of the compounds (Fig. 1C, AMI-1 and -9) are structurally symmetrical, and this may reflect the fact that PRMT1 and Hmt1p (39, 50) are dimers and that the active sites are symmetrical. Thus, a single symmetrical compound could inhibit both PRMT molecules within the active dimer. AMI-1, which is a symmetrical sulfonated urea, was identified as the lead compound from this screen for the following reasons: 1) it inhibits arginine methylation but not lysine methylation (Figs. 2 and 3); 2) it does not interfere with AdoMet-binding (Fig. 5); 3) it can inhibit endogenous cellular PRMT activity (Fig. 4, B–D); 4) it can inhibit cellular coactivator functions of PRMTs (Fig. 6); and 5) it is cell-permeable (Fig. 4, C and D). In addition, AMI-1 shares some similarity to peptidyl arginine: the urea is similar to a neutral guanidino group; the hydrophobic naphthalene ring is similar to the alkyl chain of arginine, and the sulfonic acid could be aligned close to a carbonyl group of peptidyl arginine. However, there is no evidence that AMI-1 is competitive with peptidyl arginine binding or if it actually inhibits through another mechanism.

An interesting observation is that, apart from enzyme specificity, certain compounds can inhibit enzyme action on some substrates but not others. This phenomenon is observed with AMI-2, -3, and -4, which inhibit the *in vitro* enzyme action of all the PRMTs on all substrates tested (Fig. 2), except PRMT4 methylation of histone H3. Of particular interest is AMI-3, which like AMI-1 does not inhibit any of the lysine methyltransferases (Fig. 3). Similar selective specificity with regard to substrate choice is seen for the PRMT1/Hmt1p activator, AMA-2. PRMT4 methylation of PABP1 (Fig. 2) is unaffected by AMA-2, but the same compound inhibits SmB' methylation by this enzyme. AMA-2 displays similar properties on PRMT6, where it inhibits GAR but not Npl3 methylation (Fig. 2). These selective inhibitory properties of certain compounds may reflect different ways in which substrates present themselves to the enzyme active site.

AMI-1 can inhibit the *in vitro* methylation reactions performed by all five recombinantly active PRMTs (PRMT1, -3, -4, and -6 and Hmt1p). It is likely that AMI-1 binds the protein substrate-binding pocket of these enzymes, because it does not compete for the AdoMet-binding domain (Fig. 5). Structural information has demonstrated that the substrate-binding surface of Hmt1p, PRMT1, and PRMT3 are very similar thus facilitating the binding of a common compound (39, 50, 51). Although similar, the structures of the active sites are not identical (50). This raises the possibility that structural ana-
logues of AMI-1 can be generated that may be specific for individual PRMTs. Cocrysatls with AMI-1 bound to PRMTs will provide valuable information on basic enzyme/inhibitor mechanism and will allow for the structural based drug design of PRMT-specific inhibitors. To increase potency of the AMIs, it may be possible to generate bisubstratre inhibitors by synthetically linking AMI-1 and an AdoMet analogue, with adjustment of the spacer arm length possibly providing varying degrees of specificity for the different PRMTs.

PRMT5 and PRMT2 were not used in this study, because they are not active as recombinant proteins (fused to GST). PRMT5, in particular, will be an important target for small molecule development because of its distinctive niche within the PRMT family (11). The unique properties of PRMT5 include: 1) its ability to generates sDNA residues (10); 2) this modification (and not AdoMet) stimulates binding to Tudor domains (22); and 3) unlike PRMT1 and PRMT4, PRMT5 is reported to be involved in transcriptional repression (25).

Recently, AMI-1 was identified as a selective HIV-1 reverse transcriptase inhibitor (54). In this study structural analogues of AMI-1 were developed that had IC50 values up to two orders of magnitude lower than AMI-1 itself. This suggests that synthetic extracts (56), and although these HAT inhibitors are reported to be involved in transcriptional repression (25), inhibition of either activity will likely have a profound effect on transcription. Small molecule inhibitors of HAT activity have been synthesized by design (55), and purified from natural extracts (56), and although these HAT inhibitors are effective in vitro they are not cell-permeable. Thus, the identification of AMI-1 as a cell-permeable PRMT inhibitor is an important step in anti-neoplastic drug development. Future refinement of this primary compound will be important, and inhibitors of PRMT4/CARM1 action are of particular interest to the medical community because of its function as a nuclear receptor coactivator.

Acknowledgments—We thank Drs. Adam Frankel for critical discussion and advice in the early stages of this project. Maria Person performed the mass spectrometry analysis.

REFERENCES
1. McBride, A. E., and Silver, P. A. (2001) J. Biol. Chem. 276, 62862–62869
2. Henry, M. F., and Silver, P. A. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 10986–10988
3. Bedbrook, J. R., and Beddows, D. W., and Stallcup, M. R. (1999) J. Biol. Chem. 274, 45899–45903
4. Henry, M. F., and Silver, P. A. (1996) Mol. Cell. Biol. 16, 3525–3533
5. Caroll, D., Scherthan, H., Hwang, M. C. (2000) J. Biol. Chem. 275, 16026–16030
6. Bannister, A. J., Schneider, R., and Kouzarides, T. (2002) Cell 109, 485–497
7. Hurst, J. H., Billingsley, M. L., and Lovenberg, W. (1984) Biochem. Biophys. Res. Commun. 122, 499–508
8. Wilson, S. M., Datar, K. V., Paddy, M. R., Swedlow, J. R., and Swanson, M. S. (1994) J. Cell Biol. 127, 1173–1184
9. Wenzel, C., Moulard, M., Lobner-Olesen, A., and Guschlbauer, W. (1991) FERNS Lett. 280, 147–151
10. Bannister, A. J., Schneider, R., and Kouzarides, T. (2002) Cell 109, 10602–10607
11. Rawal, N., Rajpurush, R., Lischwe, M. A., Williams, K. R., Paik, W. K., and Arnold, E., Gao, H. Q., Buckheit, R., Boyer, P. L., Hughes, S. H., Kuntz, T. J., Muscate, A., Davioud-Charvet, E., Medaglia, M. V., Fisher, R. J., Scherthan, H., Peters, A. H., Opravil, S., Haynes, A. R., Laible, G. H., Rechler, M., Mandel, M., Yaffe, M., and Eng, L. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 1248–1252
12. Rawal, N., Rajpurush, R., Lischwe, M. A., Williams, K. R., Paik, W. K., and Arnold, E., Gao, H. Q., Buckheit, R., Boyer, P. L., Hughes, S. H., Kuntz, T. J., Muscate, A., Davioud-Charvet, E., Medaglia, M. V., Fisher, R. J., Scherthan, H., Peters, A. H., Opravil, S., Haynes, A. R., Laible, G. H., Rechler, M., Mandel, M., Yaffe, M., and Eng, L. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 1248–1252
13. Kim, S. (1995) J. Biol. Chem. 270, 13229–13234
14. Liu, O. D., Kundu, T. K., Soccio, R. E., Ait-Si-Ali, S., Khalil, E. M., Vassilev, A., Wolfe, A. P., Nakatani, Y., Roeder, R. G., and Cole, P. A. (2000) Mol. Cell 5, 395–405
15. Balasubramanian, K., Swaminathan, V., Ranganathan, A., and Kundu, T. K. (2003) J. Biol. Chem. 278, 19134–19140
16. Chemical Modulators of Arginine Methylation
