Process Capability & Fascinating applications of Friction Stud welding

D.S.Samuvel Prem Kumar
Asst.Professor, Department of Mechanical Engineering, JP College of Engineering, Tenkasi

R.Pravin
Under Graduate Student, Department of Mechanical Engineering, Mepco Schlenk Engineering College (Autonomous), Sivakasi.

S.Kavin Raj
Under Graduate Student, Department of Mechanical Engineering, Mepco Schlenk Engineering College (Autonomous), Sivakasi.

Ms. B.Benita
Assistant Professor, Department of Computer Science & Engineering, Francis Xavier Engineering College, Tirunelveli-627002

N.Samuel Dinesh Hynes
Independent Researcher, & Former Part Time Lecturer, Department of Computer Science & Engineering, Government College of Engineering, Tirunelveli-627007.

R.Nagarajan
Under Graduate Student, Department of Mechanical Engineering, Mepco Schlenk Engineering College (Autonomous), Sivakasi.

Abstract. In earlier days, welding only involves joining two metals of same kind and dissimilar metals were usually joined by fasteners. Friction Stud welding is a true engineering marvel of making welds between dissimilar metals without any melting or fillers involved. The friction stud welding doesn’t involve heat generation from electricity and it is purely based on friction. Besides these facts the friction stud welding has numerous advantage and applications. This paper focuses on the process of stud welding, application and its limitations.

Keywords. Friction; Temperature Distribution; Stud Welding; Impact strength; Dissimilar Joints.
1. Introduction

Friction stud welding [1-23], Friction Plug Welding [24-28], Diffusion bonding [29, 30], Friction Welding [31-44] Friction Drilling [45-63], and Friction Riveting [64-67] are few processes employed for joining of dissimilar metals. Friction stud welding, a solid phase welding technique that uses a stud rotating at a high speed, being forced against a substrate and generating heat by friction [2,5]. The metal surfaces reach the temperature of plasticity and they flow plastically under pressure, surface impurities are expelled and a forged weld is formed [7]. The melting point of metals are much higher than the maximum temperatures attained. It is a unique type of friction welding process. Portable equipment for friction stud welding is available for the use on construction work sites, offshore, underwater and in workshops [12,46]. These units are portable and are lighter and smaller than the large static friction welding machines. The weld time being short, around only 4 seconds for a 10mm diameter stud. Weld quality is consistently high, and when destructively tested, failure invariably occurs in the weaker parent material and well away from the weld.

1.1 Significance of Friction Stud Welding

The friction stud welding process is well suited for deep water naval applications, short-term emergency repairs and for submarine rescue. Ocean engineers pursued the application commercially for offshore platform repairs. Moreover, Aluminum/stainless steel friction stud welded joints are inevitable in pipes of liquid propellants in Satellite Launch vehicles and rocket fuel tanks [50]. Recently, there is a need of joining a steel ear thing pin, which is in the shape of a stud to an aluminum car body. Production of burner assembly of fossil boilers and smart valve blowing system requires an irresistible need of friction stud welding of M12 steel studs [22].

2. Process Capability of Friction Stud Welding

- The relatively low temperature of weld formation indicates that the process could be adapted for applications such as welding on live pipelines and in explosive environments. Some of the potential problems encountered with arc welding such as contamination of the weld with hydrogen, nitrogen and oxygen, in the presence of electric arc and liquid phase in the metal, are avoided.
- The rapid weld cycle time is typically around 5 to 10 seconds and this method of weld formation results in a fine grain structure. In the “as welded” condition the residual stresses are compressive which tend to result in good fatigue life [9].
 2.1 Limitations
 The process can only be used for the welding of relatively small components such as studs or plugs, which can be rotated at high speed, onto a work piece.
 - The systems used are limited typically 25 mm diameter studs and plugs for filling holes up to typically 25 mm diameter (plug welding). The system requires a rigid clamp for holding the welding tool on the work piece and withstand the force applied to the stud during welding.
 2.2 Applications
 - Joining a steel ear thing pin to an aluminum car body
 - Production of burner assembly of fossil boilers and smart valve blowing system
 - Joining of anodes in an off-shore drill rig
 - Friction Stud Welding through paint in seawater discharge pipes
 - Friction Stud Welding was used to weld 150mm long M12 steel studs during hull repair.
3. Experimentation

The schematic of the experimental set-up is given in Fig. 1. In the present work, friction stud welding is carried out with 12 mm diameter aluminium stud and 12 mm diameter mild steel workpiece with processing conditions mentioned in Table 1. The lathe machine has been modified into the friction stud welding machine. The tool post has been replaced by the pneumatic cylinder and tool holder. The tool inserts for the tool holder has been prepared to hold the stud of diameter 6, 10, 12mm. Two pneumatic cylinders are used to generate axial pressure cylinder and to apply dynamic braking respectively. The brake used is band brake system. The hand braking system has been modified to pneumatic braking system to reduce the braking time because the braking time as an effect on the quality of the weld. The pneumatic circuit has been modified. The 2/2 solenoid valve has been replaced by 3/2 solenoid valve which would cut the power to the electric motor and actuates both axial pressure cylinder and pneumatic braking cylinder. The quick exhaust valve has been connected at one of the opening of pneumatic braking cylinder. The axial pressure cylinder produces the both friction pressure and forging pressure required for the process.

![Experimental arrangement](image)

Figure 1: Experimental arrangement

S.NO	PARAMETER	RANGE
1	FRICTION PRESSURE	2.0 bar
2	FORGING PRESSURE	4.0 bar
3	FRICTION TIME	6 sec
4	FORGING TIME	3 sec
5	SPEED	1600 rpm
3.1 Geometry of parts

The experiment specimens were machined from mild steel and aluminium on geometry in below. Geometry of parts is given in Fig. 2 and Fig. 3. Friction stud welding of aluminium with mild steel is characterised by extremely short welding times and high frictional and compressive forces. As a result, the joining plane is kept extremely narrow, to prevent the build up of intermetallic compounds and phases.

![Figure 2: Stud dimensions](image1) ![Figure 3: Workpiece dimensions](image2)

4. Results

4.1 Impact Strength

Impact strength is the energy need to break a specimen by an impact load. The dissimilar joints are subjected to Charpy testing to find the impact strength and their results are given in Table 2.

Table 2: Impact strength

MATERIAL	IMPACT STRENGTH (Joules)
Pure Aluminium Vs Pure Aluminium	15
Mild steel Vs Mild steel	13
Pure Aluminium Vs Mild steel	15
AA6063 Vs AISI 1030	15

4.2 Microstructure

![Figure 4: Pure Aluminium Vs Pure Aluminium](image3) ![Figure 5: Mild steel Vs Mild steel](image4)
Microstructure shows the mechanism of bonding during friction stud welding. Figure 4 shows the microstructure at the interface of friction stud welded pure aluminium-aluminium joints. Figure 6 shows the microstructure at the interface of friction stud welded aluminium-mild steel joints. Figure 7 shows the microstructure at the interface of friction stud welded AA 6063 – AISI 1030 joints.

5. Conclusion
Friction stud welding finds more applications in repair works and hole fillings. This is also suitable for welding small components. The friction stud welding can be probably exploited for particular application as the mentioned above and utilized especially in case of welding of dissimilar metals. Friction stud welding of different dissimilar materials such as Aluminium-Copper, Aluminium-Brass, and Aluminium-Stainless steel can be done by varying the critical process parameters. Online monitoring of the entire process could be carried out with a dedicated computer system.

References
[1] M.A.Arafin, M.Medraj, D.P.Turner, P.Bocher “Transient liquid phase bonding of Inconel 718 and Inconel 625 with BNi-2: Modeling and experimental investigations” Journal of Materials Science and Engineering A 447(2007) 125-133.
[2] Rajesh N et al (2014) “Ultrasonic evaluation of friction stud welded AA6063/AISI1030 steel joints” Mater Des 62:118–123.
[3] Rajesh Jesudoss Hynes N, Shenbaga Velu P, “Simulation of friction welding of alumina and steel with an aluminium interlayer”, Int J Adv Manuf Technol, Springer, DOI 10.1007/s00170-015-7874-8.
[4] Grant O.Cook.III CurtID.Sorensen “Overview of transient liquid phase and partial transient liquid phase bonding” Journal of Material Science (2011) 46:5305-5323 DOI 10.1007/s10853-011-5561-1.
[5] Hongsheng Chen, Chongsheng Long, Tianguo Wei Gao, Hongxing Xiao. Le Chen “Effect of Ni interlayer on partial transient liquid phase bonding of Zr-Sn-Nb alloy and stainless steel” Materials and Design 60 (2014) 358-362.
[6] Zhihong Zhong, Zhangjian Zhou, Changcion Gao “Brazing of doped graphite to Cu using stress relief interlayers” Journal of Materials Processing Technology 209 (2009) 2662-2670.
[7] Rajesh Jesudoss Hynes N et al, ” Numerical Simulation of Heat Flow in Friction Stud Welding of Dissimilar Metals”, Arabian Journal for Science and Engineering, 2014, 39, 3217-3224.
[8] Rajesh N et al (2014) “Ultrasonic evaluation of friction stud welded AA6063/AISI1030 steel joints” Mater Des 62:118–123.
[9] Rajesh Jesudoss Hynes N, Shenbaga Velu P, “Simulation of friction welding of alumina and steel with an aluminium interlayer”, Int J Adv Manuf Technol, Springer, DOI 10.1007/s00170-015-7874-8.
[10] Rajesh Jesudoss Hynes N et al, ” Numerical Simulation of Heat Flow in Friction Stud Welding of Dissimilar Metals”, Arabian Journal for Science and Engineering, 2014, 39, 3217-3224.
[11] V.Jalilvand, H.Omidvar, M.R.Rahimpour, H.R.Shakiri “Influence of bonding variables on transient liquid phase bonding behavior of nickel based superalloy IN-738LC” Materials and Design 52 (2013) 36-46.
[12] Rajesh N et al (2014) “Investigation on joining of aluminium & mild steel by friction stud welding” Mater Manuf Process 27:1409–1413, DOI: 10.1080/10426914.2012.667894
[13] Rajesh et al (2014) “Numerical simulation on joining of ceramics with metal by friction welding technique” Int J Mod Phys Conf Ser 22:190–195. DOI:10.1142/S201019451300118
[14] N. Rajesh Jesudoss Hynes, P. Nagaraj, J.A.Sujana, “Ultrasonic Evaluation of Friction stud welded AA6063/AISI1030 steel joints,” Materials & Design, Elsevier publications, Volume 62, pp 118–123, October 2014
[15] Rajesh Jesudoss Hynes N, Nagaraj P, Palanichamy R, Arumugham CAK & Angela Jennifa Sujana J, “Numerical Simulation of heat flow of Friction Stud Welding of Dissimilar metals,” The Arabian Journal for Science and Engineering, Springer Publications, DOI 10.1007/s13369-013-0932-3, 2014, Volume 39, Issue 4, pp 3217–3224.

[16] Rajesh Jesudoss Hynes N, Nagaraj P & Angela Jennifa Sujana J, “Mechanical Evaluation and Microstructure of Friction welded Aluminium-Mild steel joints,” The Arabian Journal for Science and Engineering Springer Publications, DOI 10.1007/s13369-014-1082-y, June 2014, Volume 39, Issue 6, pp 5017–5023.

[17] Rajesh Jesudoss Hynes N, Nagaraj P & Meby Selvaraj R (2013), “Finite Element based Thermal Modelling of Friction Welding of Dissimilar Materials,” International Journal of Modern Physics Conference Series, ISBN: 2010-1945 DOI: 10.1142/S201019451301012X, vol. 22, pp 196–202.

[18] Rajesh Jesudoss Hynes N, Nagaraj P & Vivek Prabhu M (2013), “Evaluation of Bending Strength in Friction Welded Alumina/Mild Steel Joints by Applying Factorial Technique,” International Journal of Modern Physics Conference Series, ISSN: 2010-1945, DOI: 10.1142/S2010194513010118, vol. 22, pp.184-189.

[19] Rajesh Jesudoss Hynes N, Nagaraj P & Joshua Basil S (2013), “Numerical Simulation on Joining of Ceramics with Metal by Friction Welding Technique,” International Journal of Modern Physics Conference Series,ISSN: 2010-1945, DOI: 10.1142/S2010194513010118, vol. 22, pp.190-195.

[20] Rajesh Jesudoss Hynes N, Nagaraj P and Thanga Kumar P, “Thermal Modeling of Friction Plug Welding,” International Journal of Applied Engineering Research, ISSN 0973-4562 Vol 9 No.26 (2014) pp.9031-9035.

[21] Rajesh Jesudoss Hynes N, Nagaraj P and Tharmaraj R, “Prediction of Thermal Profile During Friction Stud Welding of Aluminium – Mild Steel Joints,” International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 8 (2015), pp. 6107-6110.

[22] Rajesh Jesudoss Hynes N, Nagaraj P & Prakash P, “Numerical Modeling of Temperature Distribution in Friction Stud Welding of Dissimilar Metals,” International Journal of Applied Engineering Research, ISSN 0973-4562 Vol 9 No.26 (2014) pp. 9023-9027.

[23] Rajesh Jesudoss Hynes N, Nagaraj P & Prakash P, “Mathematical Model to Predict Heat Flow in Underwater Friction Stud Welding,” Advanced Materials Research, doi:10.4028/www.scientific.net/AMR.984-985.596, Vols.984-985 (2014), pp.596-599.

[24] Rajesh Jesudoss Hynes N, Nagaraj P & Thanga Kumar P, “Mathematical Modeling of Friction Plug Welding with Preheating effect,” Advanced Materials Research, doi:10.4028/www.scientific.net/AMR.984-985.600, Vols. 984-985 (2014), pp.600-603.

[25] Rajesh Jesudoss Hynes N, Nagaraj P & Prakash P, “Thermal Analysis on Joining of Dissimilar Metals by Friction Stud Welding,” Advanced Materials Research, doi:10.4028/www.scientific.net/AMR.984-985.592, Vols. 984-985 (2014), pp.592-595.

[26] Rajesh Jesudoss Hynes N, Tharmaraj R, “One Dimensional Thermal Model for Heat Flow in Friction Stud Welding,” Journal of Thermal Engineering and Applications, 2015, 2(2), pp. 22–27.

[27] N. Rajesh Jesudoss Hynes and P Shenbaga Velu,”Thermo Mechanical Modelling of Friction Welding using Finite Element Method,” European Journal of Advances in Engineering and Technology, 2015, 2(7), pp. 29-32.

[28] N. Rajesh Jesudoss Hynes, P. Shenbaga Velu, “Simulation on Friction Welding Of MgAZ31 / AA 6061 T6 Joints,” Recent Advances in Computer Science, Recent Advances in Computer Engineering Series, ISSN: 1790-5109, Volume 32, 2015, pp. 524-528.

[29] N. Rajesh Jesudoss Hynes, R. Tharmaraj, P. Shenbaga Velu, and R. Kumar, “Finite element based simulation on friction stud welding of metal matrix composites to steel,”American Institute of Physics (AIP) Conference Proceedings, doi: 10.1063/1.4946607, ISSN: 0094243X, Volume 1728 (2016); pp.020556-1 to 020556-4.

[30] R. Meby Selvaraj and N. Rajesh Jesudoss Hynes, Finite element approach in thermal modelling of friction stud welding, AIP Conference Proceedings 2142, 110006 (2019); https://doi.org/10.1063/1.5122466.

[31] R. Sankaranarayanan, and N. Rajesh Jesudoss Hynes, Friction riveting for joining of wide range of dissimilar materials, AIP Conference Proceedings 2142, 150004 (2019); https://doi.org/10.1063/1.5122553.

[32] N. Rajesh Jesudoss Hynes, P. Shenbaga Velu, R. Tharmaraj, R. Kumar, “Numerical investigation on friction welding of alumina / AA 6063 T6 joints,” American Institute of Physics (AIP), doi:10.1063/1.4946601, ISSN: 0094243X, Conference Proceedings, Volume 1728, (2016); pp 020550-1 to 020550-5.

[33] N. Rajesh Jesudoss Hynes, M. Abeyram Nithin, “Simulation on friction taper plug welding of AA6063-20Gr metal matrix composite”, American Institute of Physics (AIP) Conference Proceedings, doi: 10.1063/1.4946607, ISSN: 0094243X, Volume 1728, (2016); pp 020556-1 to 020556-4.

[34] N. Rajesh Jesudoss Hynes, R.Kumar, J. Angela Jennifa Sujana, “Modelling of Process Parameters of Friction Stud Welding Using Fuzzy Logic System”, International Journal of Advanced Engineering Technology-IAET, E-ISSN 0976-3945, Volume 8, Issue 1, 2016, pp. 413-417.

[35] N. Rajesh Jesudoss Hynes, P. ShenbagaVelu, “Simulation of friction welding of alumina and steel with aluminum interlayer,” The International Journal of Advanced Manufacturing Technology, DOI:10.1007/s00170-015-7874-8, ISSN 0268-7874, October 2017, Volume 93, Issue 1–4, pp 121–127.

[36] Rajesh Jesudoss Hynes N, Angela Jennifa Sujana J & Karuppasamy P, “Simulation of Friction Stud Welding Process with an inter-metallic layer,” International Journal of Applied Engineering Research, ISSN 0973-4562 Vol 9 No.26 (2014) pp. 9028-9030.

[37] N. Rajesh Jesudoss, P. Shenbaga Velu, R. Kumar, M. Karthick Raja, “Investigate the influence of bonding temperature in transient liquid phase bonding of Sc and copper”, Ceramics International, Volume 43, Issue 10, July 2017, Pages 7762–7767.

[38] N. Rajesh Jesudoss Hynes, M. Karthick Raja, “Numerical simulation on influence of bonding temperature in transient liquid phase bonding,” American Institute of Physics (AIP) Conference Proceedings, doi: 10.1063/1.4946594, ISSN: 0094243X, Volume 1728, (2016); pp 020543-1 to 020543-4.

[39] P. Shenbaga Velu, N. Rajesh Jesudoss Hynes, “Numerical Analysis of Friction Welded Titanium Joints,” Journal of Achievements in Materials and Manufacturing Engineering, Vol. 76, Issue 1 (2016), pp. 26-29.

[40] Dr.N.Rajesh Jesudoss Hynes, Mr.Shenbaga Velu, “Effect of rotational speed on Ti-6Al-4V-AA 6061 friction welded joints,” Elsevier, Journal of Manufacturing Processes, DOI: 10.1016/j.jmapro.2018.02.014; Volume No: 30, Issue No: -1; pp. 288-297.
[41] Rajendran, T.P., Hynes, N.R.J., Nikolova, M.P. et al. Influence of heat treatment on friction-welded joints made of high-carbon high-chromium tool steel/low-carbon steel for tooling applications. J Braz. Soc. Mech. Sci. Eng. 42, 87 (2020).

[42] Packiaraj Rajendran, T., Rajesh Jesudoss Hynes, N. & Christopher, T. Characterization of high-carbon high-chromium tool steel/low-carbon steel friction-welded joints for industrial tooling applications. J Braz. Soc. Mech. Sci. Eng. 40, 316 (2018).

[43] Dr.N.Rajesh Jesudoss Hynes, Mr.Shenbaga Velu, “Friction push plug welding in airframe structures using Ti-6Al-4V plug,” Springer, Journal of the Brazilian Society of Mechanical Sciences and Engineering, DOI: 10.1007/s40430-018-1086-6; Volume No: 40, Issue No: 3; pp. 158-165.

[44] Mr.Shenbaga Velu, Dr.N.Rajesh Jesudoss Hynes, “Microstructural and Mechanical properties on Friction Welding of dissimilar metals used in motor vehicles,” Materials Research Express, DOI: 10.1088/2053-1591/aaabf6; Volume No: 5, Issue No: 2; pp. 26521-26532.

[45] N. Rajesh Jesudoss Hynes, R. Kumar, R. Tharmaraj, P. Shenbaga Velu, “Production of aluminium metal matrix composites by liquid processing methods,” American Institute of Physics (AIP) Conference Proceedings, doi: 10.1063/1.4946669, ISSN: 0094243X, Volume 1728, (2016); pp 020558-1 to 020558-5.

[46] Dr.N.Rajesh Jesudoss Hynes, Mr.Vivek Prabhuj, Dr.P.Nagaraj, “Joining of hybrid AA6063-6SiCp-3Grp composite and AISI 1030 steel by friction welding,” Elsevier, Defense Technology, DOI: dx.doi.org/10.1016j; Volume No: 13, Issue No: 1; pp. 338-345.

[47] Mchy Selvaraj R, Rajesh Jesudoss Hynes N, “Assessment of Influencing Factors on Mechanical and Electrical Properties of Al/Cu Joints,” DOI: https://doi.org/10.1063/1.5033163; AIP Conference Proceedings, Volume 1953 D, Issue No: 1; pp. 1300191-1300195.

[48] Rajesh Jesudoss Hynes N, Raja S, “Experimental Study on Joining of AA6063 and AISI 1040 steel,” DOI: https://doi.org/10.1063/1.5033164; AIP Conference Proceedings, Volume 1953 D, Issue No: 1; pp. 1300201-1300204.

[49] Shenbaga Velup, Rajesh Jesudoss Hynes N, “Numerical Modeling of Friction welding of Bi-metal joints for Electrical applications,” DOI: https://doi.org/10.1063/1.5033272; AIP Conference Proceedings, Volume 1953 D, Issue No: 1; pp. 1400971-1400975.

[50] Rajesh Jesudoss Hynes N, Nagaraj P & Angela Jennifa Sujana J (2013),“Controller for friction stud welding machine,” IEEE Conference proceedings on Energy Efficient Technologies for sustainability, pp.879-882.

[51] Rajesh Jesudoss Hynes N, Nagaraj P & Angela Jennifa Sujana J (2013), “Analytical Modeling of Temperature profile in friction stud welding of dissimilar metals,” IEEE Conference proceedings on Energy Efficient Technologies for sustainability, pp.827-829.

[52] N. Rajesh Jesudoss Hynes, M. V. Maheshwaran, “Numerical analysis on thermal drilling of aluminium metal matrix composite,”American Institute of Physics (AIP) Conference Proceedings, doi: 10.1063/1.4946597, ISSN: 0094243X, Volume 1728 (2016); pp.020546-1 to 020556-4.

[53] N.Rajesh Jesudoss Hynes, M. Muthakumaran, N. Rakesh and C.K.Gurubaran, “Numerical Analysis in Friction Drilling Of AISI 1020 Steel and AA 6061 T6 Alloy,” Recent Advances in Environmental and Earth Sciences and Economics, Energy, Environmental and Structural Engineering Series, ISSN: 2227-4359, Volume 39, 2015, pp. 145-149.

[54] Mr.R.Kumar, Dr.N.Rajesh Jesudoss Hynes, “Finite-element simulation and validation of material flow in thermal drilling process,” Springer, Journal of the Brazilian Society of Mechanical Sciences and Engineering, DOI: 10.1007/s40430-018-1091-y; Volume No: 40, Issue No: 3; PageNo: 162-172.

[55] N. Rajesh Jesudoss Hynes et al, “Optimum Bushing Length in Thermal Drilling of Galvanized Steel Using Artificial Neural Network Coupled with Genetic Algorithm,”Materiali in tehnologije / Materials and technology, ISSN 1580-2949, doi:10.17222/mit.2016.290, 51 (2017) 5, pp. 813–822.

[56] Dr.N.Rajesh Jesudoss Hynes, R.Kumar, “Simulation and Experimental Validation of Al7075-T651 Flow Drilling Process,” Journal of the Chinese Society of Mechanical Engineers, 2017, Vol.38, No.4, pp. 413-420.

[57] Mr.R.Kumar, Dr.N.Rajesh Jesudoss Hynes, “Process optimization for maximizing bushing length in thermal drilling using integrated ANN-SA approach,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, DOI: 10.1007/s40430-017-0820-y; Volume No: 39, Issue No: 12; pp. 5097-5108.

[58] Kumar R, Rajesh Jesudoss Hynes N, “Numerical Analysis of Thermal Drilling Technique on Titanium sheet metal,” DOI: https://doi.org/10.1063/1.5033158; AIP Conference Proceedings, Volume 1953 D, Issue No: 1; pp. 1300141-1300144.

[59] Vijayabaskar P, Rajesh Jesudoss Hynes N, “Simulation of Friction Stir Drilling Process,” DOI: https://doi.org/10.1063/1.5033284; AIP Conference Proceedings, Volume 1953 D, Issue No: 1; pp. 1401091-1401094.

[60] Vignesh N J, Rajesh Jesudoss Hynes N, “Thermal Analysis of Friction Riveting of Dissimilar Materials,” DOI: https://doi.org/10.1063/1.5033285; AIP Conference Proceedings, Volume 1953 D, Issue No: 1; pp. 1401101-1401104.

[61] R Kumar, N Rajesh Jesudoss Hynes, J Angela Jennifa Sujana, “Multi-objective optimization of green technology thermal drilling process using grey-fuzzy logic method”, Journal of Cleaner Production (SCI Journal, IF 7.100), Volume 236, Available online 21 July 2019.

[62] R. Kumar, N. Rajesh Jesudoss Hynes, Anish Khan, Simulation of thermo-mechanical behaviour of friction drilling process, Int. J. Computational Materials Science and Surface Engineering, Vol. 9, No. 1, 2020, pp. 70-84.

[63] R.Kumar, N.Rajesh Jesudoss Hynes, “Thermal drilling processing on sheet metals: A Review”, Elsevier, International Journal of Lightweight Materials and Manufacture, Available online 19 August 2019.

[64] Vignesh N J, Rajesh Jesudoss Hynes N, “Thermal Analysis of Friction Riveting of Dissimilar Materials,” DOI: https://doi.org/10.1063/1.5033285; AIP Conference Proceedings, Volume 1953 D, Issue No: 1; pp. 1401101-1401104.

[65] Sankaranarayanan R, Rajesh Jesudoss Hynes N, “Prospects of Joining Multi-Material Structures,” DOI: https://doi.org/10.1063/1.5033165; AIP Conference Proceedings, Volume 1953 D, Issue No: 1; pp. 130021-130025.

[66] R. Sankaranarayanan, and N. Rajesh Jesudoss Hynes, Friction riveting for joining of wide range of dissimilar materials, AIP Conference Proceedings 2142, 150004 (2019); https://doi.org/10.1063/1.5122553

[67] Hynes, N.R.J., Vignesh, N.J. & Velu, P.S. Low-speed friction riveting: a new method for joining polymer/metal hybrid structures for aerospace applications. J Braz. Soc. Mech. Sci. Eng. 42, 434 (2020). https://doi.org/10.1007/s40430-020-02519-8