AN L^2 HARTOGS-TYPE EXTENSION THEOREM FOR UNBOUNDED DOMAINS

BO-YONG CHEN

ABSTRACT. In this note, we prove an L^2 Hartogs-type extension theorem for unbounded domains.

1. INTRODUCTION

In the landmark paper [9], Hartogs proved the following celebrated result.

Theorem 1.1 (Hartogs, 1906). Let Ω be a domain in \mathbb{C}^n with $n \geq 2$ and E a compact subset in Ω. If $\Omega \setminus E$ is connected, then every holomorphic function on $\Omega \setminus E$ can be extended holomorphically to Ω.

There are at least three approaches for the Hartogs extension theorem. The first one, which is the original proof of Hartogs, was completed only recently by Merker-Porton [12]; the second one is based on the Bochner-Martinelli formula (cf. [3], [11]); the third one, which is the most popular, is by using the $\bar{\partial}$-method (cf. [8]). Generalizations to complex manifolds and complex spaces are also available (see e.g., [7], [13, 14, 15]). We refer to the paper of Range [16] for a very interesting historical recollection on this topic.

The Hartogs extension phenomenon for the case when E is an unbounded closed subset seems to be more involved. A classic example in this direction is the following tube theorem obtained by Bochner [2].

Theorem 1.2 (Bochner, 1938). Every holomorphic function defined on the tube $D \times i\mathbb{R}^n$, where D is an open set in \mathbb{R}^n, can be extended holomorphically to $(\text{convex hull of } D) \times i\mathbb{R}^n$.

There are some generalizations to certain "tube-like" domains (cf. [4, 5]). In particular, [5] indicates the complexity of the Hartogs extension phenomenon for unbounded cases.

Actually, Bochner had proved an L^2 version of Theorem 1.2 in an earlier paper [1], which seems to be less known.

Theorem 1.3 (Bochner, 1937). Every L^2 holomorphic function defined on $D \times i\mathbb{R}^n$ can be extended to an L^2 holomorphic function on $(\text{convex hull of } D) \times i\mathbb{R}^n$.

Motivated by this theorem, we shall prove the following L^2 Hartogs extension theorem.

Theorem 1.4. Let Ω be a domain in \mathbb{C}^n and E a closed set in \mathbb{C}^n such that

1. there exists $r > 0$ such that $E_r := \{z \in \mathbb{C}^n : d(z, E) \leq r\} \subset \Omega$;
2. there exist an affine-linear subspace $H \subset \mathbb{R}^{2n} = \mathbb{C}^n$ of real codimension ≥ 3 and a number $R > 0$ such that
 \[E \subset H_R := \{z \in \mathbb{C}^n : d(z, H) < R\}; \]
(3) $\Omega \backslash E$ is connected. Then every L^2 holomorphic function defined on $\Omega \backslash E$ can be extended to an L^2 holomorphic function on Ω.

Theorem 1.1 follows directly from Theorem 1.4. To see this, first take a domain $\Omega' : E \subset \Omega' \subset \subset \Omega$ and $H = \{0\}$, then apply Theorem 1.4 to the pair (Ω', E). It is also easy to see that Theorem 1.4 contains some special cases of Theorem 1.3, e.g., $D = D' \backslash E$ where D' is a convex domain in \mathbb{R}^n and E is a compact subset in D'.

The proof of Theorem 1.4 relies heavily on the classic Hardy inequality, which also reveals that the basic reason for the Hartogs extension phenomenon is nothing but the non-parabolicity of $\mathbb{C}^n = \mathbb{R}^{2n}$ when $n \geq 2$.

2. A L^2-estimate for the $\bar{\partial}$-equation in \mathbb{C}^n

Let ∇ and Δ denote the standard gradient and real Laplacian. We shall prove the following

Theorem 2.1 (compare [6]). Suppose that there exists a measurable function $\omega \geq 0$ on \mathbb{C}^n such that

$$\int_{\mathbb{C}^n} \phi^2 \omega \leq \int_{\mathbb{C}^n} |\nabla \phi|^2 \tag{2.1}$$

holds for any real-valued smooth function ϕ with compact support in \mathbb{C}^n. Then for any $\bar{\partial}$-closed $(0, q)$-form v on \mathbb{C}^n with $\int_{\mathbb{C}^n} |v|^2 < \infty$ and $\int_{\mathbb{C}^n} |v|^2 / \omega < \infty$, there exists a $(0, q - 1)$-form u on \mathbb{C}^n such that $\bar{\partial} u = v$ and

$$\int_{\mathbb{C}^n} |u|^2 \leq 4 \int_{\mathbb{C}^n} |v|^2 / \omega.$$

Remark. (2.1) is usually called a Hardy-type inequality in literature (the special case when $\omega = (n-1)^2 / |z|^2$ is the standard Hardy inequality), which is of particular importance in real analysis and partial differential equations.

Proof. Let $\phi = \phi_1 + i\phi_2$, where ϕ_1, ϕ_2 are real-valued smooth functions with compact supports in \mathbb{C}^n. By (2.1) we have

$$\int_{\mathbb{C}^n} |\phi|^2 \omega = \int_{\mathbb{C}^n} \phi_1^2 \omega + \int_{\mathbb{C}^n} \phi_2^2 \omega \leq \int_{\mathbb{C}^n} (|\nabla \phi_1|^2 + |\nabla \phi_2|^2) = -\int_{\mathbb{C}^n} (\phi_1 \Delta \phi_1 + \phi_2 \Delta \phi_2) \quad (\text{Stokes formula})$$

$$= -\int_{\mathbb{C}^n} \phi \Delta \overline{\phi}, \tag{2.2}$$

where the last equality follows from

$$\int_{\mathbb{C}^n} \phi_1 \Delta \phi_2 = -\int_{\mathbb{C}^n} \nabla \phi_1 \cdot \nabla \phi_2 = \int_{\mathbb{C}^n} \phi_2 \Delta \phi_1.$$
Let \(D_{(0,q)}(\mathbb{C}^n) \) denote the set of smooth \((0,q)\)-forms with compact supports in \(\mathbb{C}^n \) and \(L^2_{(0,q)}(\mathbb{C}^n) \) the completion of \(D_{(0,q)}(\mathbb{C}^n) \) with respect to the standard \(L^2 \) norm. Let \(\bar{\partial} \) be the formal adjoint of \(\partial \) and \(\Box := \bar{\partial} \partial + \bar{\partial} \partial \bar{\partial} \) the complex Laplacian. In what follows we shall use standard terminologies in Hörmander’s classic book [10]. For any \(u = \sum_{I,J} u_{IJ} dz_I \wedge d\bar{z}_J \in D_{(0,q)}(\mathbb{C}^n) \), we infer from (2.2) that

\[
\int_{\mathbb{C}^n} |u|^2 \omega \leq - \sum_{I,J} \int_{\mathbb{C}^n} u_{IJ} \Delta u_{IJ}
\]

(2.3)

Now we can apply the standard duality argument. Consider the mapping (2.4)

\[
\int_{\mathbb{C}^n} |u|^2 \omega \leq 4 \liminf_{j \to \infty} \int_{\mathbb{C}^n} |u_j|^2 \omega
\]

\[
= 4 \left(\|\bar{\partial} u_j\|^2 + \|\bar{\partial}^* u_j\|^2 \right)
\]

(2.4)

Note that \(\bar{\partial} : L^2_{(0,q)}(\mathbb{C}^n) \to L^2_{(0,q+1)}(\mathbb{C}^n) \) gives a densely defined and closed operator. Let \(\bar{\partial}^* \) be the Hilbert space adjoint of \(\bar{\partial} \). It is well-known that \(D_{(0,q)}(\mathbb{C}^n) \) lies dense in \(\text{Dom} \bar{\partial} \cap \text{Dom} \bar{\partial}^* \) under the following graph norm:

\[
u \mapsto \|u\| + \|\bar{\partial} u\| + \|\bar{\partial}^* u\|.
\]

Thus for any \(u \in \text{Dom} \bar{\partial} \cap \text{Dom} \bar{\partial}^* \) there exists a sequence \(\{u_j\} \subset D_{(0,q)}(\mathbb{C}^n) \) such that \(u_j \to u \) under the graph norm. Replace \(\{u_j\} \) by a subsequence, we may assume furthermore that \(u_j \to u \) a.e. in \(\mathbb{C}^n \). It follows from Fatou’s lemma that

\[
\int_{\mathbb{C}^n} |u|^2 \omega \leq \liminf_{j \to \infty} \int_{\mathbb{C}^n} |u_j|^2 \omega
\]

\[
\leq 4 \liminf_{j \to \infty} \left(\|\bar{\partial} u_j\|^2 + \|\bar{\partial}^* u_j\|^2 \right)
\]

(2.4)

Now we can apply the standard duality argument. Consider the mapping

\[
T : \bar{\partial}^* w \mapsto (w, v), \quad w \in \text{Dom} \bar{\partial}^* \cap \text{Ker} \bar{\partial}.
\]

The Cauchy-Schwarz inequality gives

\[
|\langle w, v \rangle|^2 \leq \int_{\mathbb{C}^n} |w|^2 \omega \cdot \int_{\mathbb{C}^n} |v|^2 / \omega
\]

(2.5)

in view of (2.4). Thus \(T \) is a well-defined continuous linear functional on \(\text{Dom} \bar{\partial}^* \cap \text{Ker} \bar{\partial} \) with

\[
\|T\|^2 \leq 4 \int_{\mathbb{C}^n} |v|^2 / \omega.
\]

(2.6)

Since \(v \in \text{Ker} \bar{\partial} \), we have \(\langle w, v \rangle = 0 \) for all \(w \perp \text{Ker} \bar{\partial} \), so that \(T \) extends to a continuous linear functional on the range of \(\bar{\partial}^* \) which still satisfies (2.6). The Hahn-Banach theorem combined with the Riesz representation theorem gives a unique \(u \in L^2_{(0,q-1)}(\mathbb{C}^n) \) such that \(\|u\| \leq 2 \|v/\sqrt{\omega}\| \) and

\[
\langle w, v \rangle = \langle \bar{\partial}^* w, u \rangle, \quad w \in \text{Dom} \bar{\partial}^*;
\]

i.e., \(\bar{\partial} u = v \) holds in the sense of distributions. \(\Box \)
Let us recall the following classic result.

Lemma 2.2 (Hardy inequality). Let $H \subset \mathbb{R}^N$ be an affine-linear subspace with codimension $m \geq 3$. Define $d_H = d(\cdot , H)$. Then we have

$$\frac{(m-2)^2}{4} \int_{\mathbb{R}^N} \phi^2 / d_H^2 \leq \int_{\mathbb{R}^N} |\nabla \phi|^2$$

for any smooth real-valued function with compact support in \mathbb{R}^N.

Proof. For the sake of completeness, we still provide a proof here. We may assume $H = \{ x' = 0 \}$ where $x' = (x_1, \cdots , x_m)$. Then we have $d_H(x) = |x'|$ and the function $\psi(x) = \psi(x') = -|x'|^{2-m}$ is subharmonic on \mathbb{R}^m, hence is subharmonic on \mathbb{R}^N (in particular, \mathbb{R}^N is non-parabolic). Thus

$$0 \leq \int_{\mathbb{R}^N} \frac{\phi^2}{\psi^2} \cdot \frac{\Delta \psi}{-\psi} = - \int_{\mathbb{R}^N} \nabla \psi \cdot \nabla \left(\frac{\phi^2}{\psi} \right) = 2 \int_{\mathbb{R}^N} \frac{\phi}{\psi} \cdot \nabla \psi \cdot \nabla \phi - \int_{\mathbb{R}^N} \frac{\phi^2}{\psi^2} \cdot |\nabla \psi|^2,$$

so that

$$\int_{\mathbb{R}^N} \frac{\phi^2}{\psi^2} \cdot |\nabla \psi|^2 \leq -2 \int_{\mathbb{R}^N} \frac{\phi}{\psi} \cdot \nabla \psi \cdot \nabla \phi \leq \frac{1}{2} \int_{\mathbb{R}^N} \frac{\phi^2}{\psi^2} \cdot |\nabla \psi|^2 + 2 \int_{\mathbb{R}^N} |\nabla \phi|^2,$$

that is

$$\int_{\mathbb{R}^N} \frac{\phi^2}{\psi^2} \cdot |\nabla \psi|^2 \leq 4 \int_{\mathbb{R}^N} |\nabla \phi|^2.$$

On the other hand, a straightforward calculation gives $|\nabla \psi|^2 / \psi^2 = (m-2)^2 |x'|^{-2}$, hence we are done. \(\square \)

Theorem 2.1 combined with **Lemma 2.2** immediately yields

Corollary 2.3. Let $H \subset \mathbb{R}^{2n} = \mathbb{C}^n$ be an affine-linear subspace with codimension $m \geq 3$. Then for any $\partial -$closed $(0, q)$–form on \mathbb{C}^n with $\int_{\mathbb{C}^n} |v|^2 < \infty$ and $\int_{\mathbb{C}^n} |v|^2 d_H^2 < \infty$, there exists a $(0, q-1)$–form u on \mathbb{C}^n such that $\bar{\partial} u = v$ and

$$\int_{\mathbb{C}^n} |u|^2 \leq \frac{16}{(m-2)^2} \int_{\mathbb{C}^n} |v|^2 d_H^2.$$

3. **Proof of Theorem 1.4**

Set $d_E(z) := d(z, E)$ and $d_H(z) := d(z, H)$. Choose a smooth function $\chi : \mathbb{R} \to [0, 1]$ such that $\chi|_{(-\infty, 1/2]} = 0$ and $\chi|_{[1, \infty)} = 1$. Given $f \in A^2(\Omega \setminus E) := L^2 \cap \mathcal{O}(\Omega \setminus E)$, define $v := \bar{\partial} \{ \chi(d_E / r) f \}$ on $\Omega \setminus E$ and $v = 0$ on $E \cup (\mathbb{C}^n \setminus \Omega)$. Clearly, v is a smooth $\partial -$closed $(0, 1)$–form on \mathbb{C}^n. Moreover, since $|\nabla d_E| \leq 1$ a.e., we have

$$\int_{\mathbb{C}^n} |v|^2 \leq \frac{\sup |\chi'|^2}{r^2} \cdot \int_{r/2 \leq d_E \leq r} |f|^2 \leq \frac{\sup |\chi'|^2}{r^2} \cdot \int_{\Omega \setminus E} |f|^2 < \infty,$$
and since $E \subset H_R$, it follows that
\[\int_{\mathbb{C}^n} |v|^2 d^2_H \leq \frac{\sup |\chi'|^2}{r^2} \cdot \int_{r/2 \leq d \leq r} |f|^2 d^2_H \]
\[\leq \frac{(R + r)^2}{r^2} \cdot \sup |\chi'|^2 \cdot \int_{\Omega \setminus E} |f|^2 < \infty. \]

Thanks to Corollary 2.3 we obtain a solution of $\bar{\partial} u = v$ which satisfies
\[\int_{\mathbb{C}^n} |u|^2 \lesssim \int_{\Omega \setminus E} |f|^2. \]

Since $\text{supp } v \subset E_r$, we conclude that $u \in O(\mathbb{C}^n \setminus E_r)$. Also, since $H_{R+r} \not\subset \mathbb{C}^n$ is convex, so there exists a real hyperplane H in \mathbb{C}^n such that $d(H, H_{R+r}) > 1$. Since $n \geq 2$, so H contains at least one complex line l. Without loss of generality, we assume $l = \{z' = 0\}$ where $z' = (z_1, \cdots, z_{n-1})$. Thus the cylinder $C := l \times \mathbb{B}^{n-1} \subset \mathbb{C}^n \setminus H_{R+r} \subset \mathbb{C}^n \setminus E_r$, where \mathbb{B}^{n-1} is the unit ball in \mathbb{C}^{n-1}. Now $u \in A^2(C)$, so $u(z', \cdot) \in A^2(\mathbb{C})$ for every $z' \in \mathbb{B}^{n-1}$, and it has to vanish in view of the (L^2) Liouville theorem. By the theorem of unique continuation, $u = 0$ in an unbounded component of $\mathbb{C}^n \setminus E_r$, which naturally intersects with $\Omega \setminus E$. Finally, the function $F := \chi(d_E/r)f - u$ is holomorphic on Ω and satisfies $F = f$ on a nonempty open subset in $\Omega \setminus E$. Since $\Omega \setminus E$ is connected, it follows that $F = f$ on $\Omega \setminus E$. Clearly,
\[\int_{\Omega} |F|^2 \leq 2 \int_{\Omega} |\chi(d_E/r)f|^2 + 2 \int_{\Omega} |u|^2 \leq \int_{\Omega \setminus E} |f|^2 + 2 \int_{\mathbb{C}^n} |u|^2 < \infty. \]

REFERENCES

[1] S. Bochner, Bounded analytic functions in several variables and multiple Laplace integrals, Amer. Math. J. 59 (1937), 732–738.
[2] S. Bochner, A theorem on analytic continuation of functions in several variables, Ann. Math. 39 (1938), 14–19.
[3] S. Bochner, Analytic and meromorphic continuation by means of Green’s formula, Ann. Math. 44 (1943), 652–673.
[4] A. Boggess, R. Dwilewicz and Z. Slodkowski, Hartogs extension for generalized tubes in \mathbb{C}^n, J. Math. Anal. Appl. 402 (2013), 574–578.
[5] A. Boggess, R. Dwilewicz and Z. Slodkowski, Hartogs-type extension for tube-like domains in \mathbb{C}^2, Math. Ann. 363 (2015), 35–60.
[6] B. Y. Chen, Hardy-Sobolev type inequalities and their applications, arXiv:1712.02044.
[7] M. Coltoiu and J. Ruppenthal, On Hartogs’ extension theorem on $(n - 1)$–complete complex spaces, J. Reine Angew. Math. 637 (2009), 41–47.
[8] L. Ehrenpreis, A new proof and an extension of Hartogs’ theorem, Bull. Amer. Math. Soc. 67 (1961), 507–509.
[9] F. Hartogs, Zur Theorie der analytischen Functionen mehrerer unabhängiger Veränderlicher insbesondere über die Darstellung derselben durch Reihen, welche nach Potenzen einer Veränderlichen fortschreiten, Math. Ann. 62 (1906), 1–88.
[10] L. Hörmander, An Introduction to Complex Analysis in Several Variables, Elsevier, 1990.
[11] E. Martinelli, Sopra una dimostrazione di R. Fueter per un teorema di Hartogs, Comm. Math. Helv. 15 (1942/43), 340–349.
[12] J. Merker and E. Porten, A Morse-theoretical proof of the Hartogs extension theorem, J. Geom. Anal. 17 (2007), 513–546.
[13] J. Merker and E. Porten, *The Hartogs extension theorem on $(n-1)-$complete complex spaces*, J. Reine Angew. Math. **637** (2009), 23–39.

[14] T. Ohsawa, *Hartogs type extension theorems on some domains in Kähler manifolds*, Ann. Polon. Math. **106** (2012), 243–254.

[15] N. Ovrelid and S. Vassiliadou, *Hartogs extension theorems on Stein spaces*, J. Geom. Anal. **20** (2010), 817–836.

[16] R. M. Range, *Extension phenomena in multidimensional complex analysis: correction of the historical record*, Math. Intelligencer **24** (2002), 4–12.

Department of Mathematical Sciences, Fudan University, Shanghai, 200433, China

Email address: boychen@fudan.edu.cn