Programming Patterns in Dataflow Matrix Machines and Generalized Recurrent Neural Nets

Michael Bukatin1, Steve Matthews2, and Andrey Radul3

1 HERE North America LLC
Burlington, Massachusetts, USA
bukatin@cs.brandeis.edu

2 Department of Computer Science
University of Warwick
Coventry, UK
Steve.Matthews@warwick.ac.uk

3 Project Fluid
Cambridge, Massachusetts, USA
aor021@gmail.com

Abstract

Dataflow matrix machines arise naturally in the context of synchronous dataflow programming with linear streams. They can be viewed as a rather powerful generalization of recurrent neural networks. Similarly to recurrent neural networks, large classes of dataflow matrix machines are described by matrices of numbers, and therefore dataflow matrix machines can be synthesized by computing their matrices. At the same time, the evidence is fairly strong that dataflow matrix machines have sufficient expressive power to be a convenient general-purpose programming platform. Because of the network nature of this platform, programming patterns often correspond to patterns of connectivity in the generalized recurrent neural networks understood as programs. This paper explores a variety of such programming patterns.

1 Introduction

There are two lines of thought which lead to dataflow matrix machines (DMMs).

One can start with dataflow programming with linear streams, i.e. streams admitting linear combinations of several streams [1]. The nodes in a dataflow graph compute both non-linear transformations of linear streams and linear combinations of those streams. If one adopts the discipline of not allowing to connect nodes computing non-linear transformations directly to each other, but only allowing to connect them via nodes computing linear combinations of streams, then one can parametrize large classes of dataflow programs by matrices [3].

Alternatively, one can start with recurrent neural networks (RNNs) and generalize them as follows.

• Allow neurons to process not just streams of reals, but a diverse collection of linear streams.
• Allow not only neurons with one linear combination as an input, but also neurons with two linear combinations as inputs, neurons with three linear combinations as inputs, etc.1
• Allow neurons to have not just one output, but also two outputs, three outputs, etc.2
• Allow neurons to have a rich collection of built-in stream transformers.

1Neurons without inputs are also allowed and serve as input streams for the network.
2Neurons without outputs are also allowed for side-effects, such as external recording of the results.
One can parametrize the large classes of so generalized RNNs by their matrices in a manner similar to parametrization of ordinary RNNs by matrices \([4, 5]\).

The matrix parametrization of the large classes of the resulting dataflow machines (DMMs) means that various methods of synthesizing and training RNNs tend to be applicable to DMMs.

At the same time, the power of DMMs makes them a convenient general-purpose programming platform. In \([5]\) we started to sketch programming idioms and constructions for DMMs.

1.1 Programming Patterns

The purpose of the present paper is to develop and present a number of such programming idioms and constructions in sufficient detail to enable the use of DMMs in daily engineering work.

It is natural to think about those idioms and constructions as connectivity patterns in our generalized neural networks. Therefore in this paper we speak in terms of programming patterns and programming with patterns in generalized neural networks.

The programming patterns we discuss include

- Identity transform and accumulators;
- Two inputs and multiplicative masks;
- Piecewise bilinear neurons and ReLU;
- Reflection facilities: a network can modify its own matrix;
- Deep copy of a subnetwork;
- Nested deep copy;
- Active data: allocating the linked structures in the body of the network.

1.2 Example of a Programming Task

The focus of this paper is on using DMMs as a programming platform for manually written code rather than on automatically learning the DMM programs, which should be the subject of a separate paper. We use the following programming task as an example.

Find whether a string has duplicate characters. This is a variant of the first coding interview problem in \([10]\). It is a simple coding problem with some subtle aspects.\(^3\) Hence we find it attractive to take this coding problem as a starting point of our exploration.\(^4\)

Characters as vectors. The standard representation of characters in neural nets is by vectors with the dimension of the alphabet in question via the “1-of-\(N\)” encoding \([8]\). A character is represented by a vector with 1 at the coordinate corresponding to this character, and with zeros at the rest of the coordinates. Our architecture is friendly to the use of sparse vectors when desired, which is particularly valuable for large alphabets such as the collection of Unicode characters.

Linear streams. For this programming task we use two kinds of linear streams: streams of numbers (we call them scalars) and streams of vectors representing characters in the “1-in-\(N\)” encoding (we call those \(c\)-vectors).

\(^3\)By “duplicate characters” we mean characters occurring more than once in the string.

\(^4\)The detailed solution is in Section 3. The comparison of the solution using DMMs versus solutions using traditional RNNs is in Section 2.
Input neuron. Let the string be emitted by an input neuron, which has no inputs of its own, emits one c-vector representing a character per clock tick, and emits the c-vector representing the end-of-string character (EOS) at the end of the string. EOS is considered to be a particular letter of the alphabet.

We allow the input neuron to emit characters at a slower rate than clock ticks. If there is no character to emit at a given clock tick, then the zero c-vector is emitted on that clock tick.

1.3 Programming Patterns: More Details

Impose the precision requirement on our number system that it has exact 0 and exact 1, that multiplication by exact 0 yields exact 0, and that addition of exact 0 to \(x\) and multiplication of \(x\) by exact 1 leave \(x\) exactly unchanged.

1.3.1 Identity Transform and Accumulators

It is extremely useful to allow neurons with the built-in transform being identity transform from the input stream to the output stream of the same kind. Usually one does not include this type of neurons in conventional neural nets. However, having neurons equipped with the identity transform yields a lot of expressive power. Consider a neuron equipped with identity transform from the input \(x\) to the output \(y\). Just like any input, the input \(x\) is a linear combination of various neuron outputs. Set the coefficient of dependency of \(x\) from \(y\) as 1. Then the neuron in question works as a memory accumulator. It accumulates the contributions of all other neuron outputs connected to \(x\) with non-zero weights.

If one sets the coefficient of dependency of \(x\) from \(y\) to be \(0 < \alpha < 1\), then the neuron in question is a leaky accumulator: during each cycle of the network the previously accumulated value is multiplied by \(\alpha\).

Using accumulators and leaky accumulators, one can easily implement integrate-and-fire and leaky integrate-and-fire schemas, and have them not as a separate network of spiking neurons, but as a part of regular conventional recurrent neural network, where some neurons happen to spike.

If one sets the coefficient of dependency of \(x\) from \(y\) to be -1, then one gets an oscillator, with input from other neurons additively modulating the oscillations.

Accumulator of c-vectors. While solving the problem of detecting duplicate characters in a string, we need to accumulate the sum of c-vectors corresponding to the characters of the input string. When the value of any coordinate of the accumulated sum exceeds 1, this would indicate the presence of duplicate characters. Hence we connect the output of the input neuron to the input of the accumulator of c-vectors with the weight 1 (Section 3).

1.3.2 Two Inputs and Multiplicative Masks

The idea of allowing neurons with two and more linear combinations as inputs has been proposed several times. In particular, it is well-known that multiple inputs allow us to have multiplicative neurons which compute polynomials and that a lot of convenience and pragmatic engineering power can be derived from it (see e.g. Section 4.6 of [11] and references therein).

A particularly important case is when one of the inputs (for a linear stream of numbers) is used as a scalar multiplicative mask. i.e. the neuron outputs are multiplied by the current value of that input.
Setting the multiplicative mask to zero allows one to suppress and turn off parts of the network in a dynamic manner, with patterns of activity suppression changing from moment to moment.

In particular, multiplicative masks can be used to express various conditional constructions, and to redirect flows of data in the network.

Setting multiplicative masks to zero allows one to express various kinds of precise orchestration. For example, one often wants to express layers typical for deep learning models within a recurrent neural network. This is done by specifying the appropriate connectivity patterns in the connectivity matrix of the network. However, in addition one often wants to prevent layers from firing all at once, but would like them to fire one after another. Multiplicative masks are ideal for this kind of orchestration.

At the same time, generally varying the values of multiplicative masks often allows to express linear combinations varying in time without modifying the network matrix itself.

Multiplicative mask for identity transform. Consider the type of an accumulator neuron having one vector input x and one scalar input a, and one vector output y which gets the value $a \cdot x$. The output y is connected to the input x by the weight 1, which makes this neuron to actually function as accumulator of its vector inputs, when a is set to 1. Here a is used as a multiplicative mask for the accumulator in question. It is normally set to 1, but when there is a need to reset the accumulator, this mask is set to 0. Setting the mask to $0 < a < 1$ makes the neuron to function as a leaky accumulator, and setting it to -1 makes the neuron to function as an oscillator.

Piecewise bilinear neurons and ReLU. The rectifier linear unit (ReLU), with the piecewise linear activation function $f(x) = \max(0, x)$, is a particularly popular type of neurons in the neural net community in recent years [9].

What should work particularly well in light of the discussion in the current subsection is the piecewise bilinear rectifier, with the activation function $g(x, y) = \max(0, x) \cdot \max(0, y)$.

With this formula, both inputs serve as multiplicative masks for each other, and this is being combined with the well known power of ReLU neurons, and well known power of bilinear neurons.

1.3.3 Reflection Facilities: a Network Can Modify Its Own Matrix

In this approach one always thinks that there is a countable number of neurons of each predefined type, and therefore any DMM over a particular signature specifying the kinds of available linear streams and the types of available neurons is determined by a countable connectivity matrix. We impose a condition that only a finite number of elements of this matrix is non-zero at any given moment of time.

One of the key achievements of [5] is that among the linear streams in question it allowed the streams of matrices shaped like the matrices controlling the network in question, and also the streams of rows and the streams of columns of such matrices.

A dedicated neuron, `Self`, equipped with the identity transform of the stream of matrices controlling the network in question is used as an accumulator. The input of `Self` adds together the updates to the network matrix made by other neurons of the network, and the action of `Self` makes those updates available for use when the inputs of the neurons are recomputed from the outputs of the neurons during the next cycle.
Therefore, Self enables other neurons to both use the network matrix as one of the inputs, and to modify the network matrix by supplying additive updates.

So in this approach, the network can meaningfully modify itself during its functioning. Both the particular values of non-zero weights, and the sparsity structure, i.e. the difference between non-zero and zero weights which defines the network topology, are subject to such modification.

1.3.4 Deep Copy of a Subnetwork

One important construction is deep copy of a subgraph. The structure of the incoming connections external to the subgraph in question is preserved for the resulting new subgraph. The outgoing connections for the resulting new subgraph might be set to zero (similarly to [2]), or copied from the outgoing connections of the original subgraph, or some of the weight of the outgoing connections of the original subgraph can be transferred to the outgoing connections of the resulting new subgraph.

In [2], we described an algorithm for this operation as a graph algorithm. Here we describe this operation in terms of matrices (Section 4), which sheds additional light on its nature.

Nested deep copy. The deep copy operation can be repeated a number of times, creating a pattern of copies of a particular subgraph.

It can also be applied in a nested fashion, thus creating intricate “pseudo-fractal” connectivity patterns.

Because we have reflection facilities, neurons of the network itself are capable of creating deep copies of the network’s subgraphs. Hence the pattern creation in the network can be controlled by the network itself.

Silent and active parts of the network. The standard approach of DMMs is that there is a countable number of neurons of each type, but only finite number of nonzero elements in the countable-sized network matrix, and all neurons which have some nonzero connectivity are active, while other neurons are silent and not present in memory.

However, it is convenient to be able to have silent parts of the network with non-zero connectivity weights. E.g. one might accumulate a library of connectivity patterns and build a network from those patterns via the deep copy facilities. It does not make sense for the library instances to also function and consume CPU.

It is also often the case that one builds a network gradually. In some contexts, one wants to gradually build or change a network, while this network is functioning (the ability to do so is a powerful and unusual feature of this approach). But in a number of contexts, it is preferable to build a silent network, then to deep copy it into the active area, so that it gets initialized and starts functioning all at once.

1.3.5 Active Data: Allocating the Linked Structures in the Body of the Network

The structure of weighted connections between neuron outputs and neuron inputs can be used to represent various linked data structures, such as variants of lists, trees, and graphs. The linked structures in question can be located both in silent and active parts of the network.

A particularly interesting case is when the linked structures are located in the active part of the network. Then there are various ways to use the functioning of the neurons involved in such data structures. In this case we can speak about active data. Because the rows (or, less frequently, the columns) of the network matrix can be used to represent the links, and because we allow types of neurons which take and emit streams of appropriately shaped rows
(or columns), one can use those streams of rows (or columns) to represent the linked structures even without using the rows (or columns) of the network matrix itself.

In particular, the accumulator metaphor is often useful to carry the payload of a node. The accumulator metaphor is also useful to hold the row (or the column) representing the links from that node in those situations where we opt not to use rows (or columns) of the network matrix itself for that purpose.

1.4 Design Philosophy: Rich Signatures

The various universality results notwithstanding, when one tries to use recurrent neural networks as a general-purpose programming platform, one finds that austere selection of linear streams (only streams of numbers with element-wise linear combinations) and typically very limited selection of types of neurons interfere with the pragmatic needs of a software engineer.

Here we follow a different design philosophy. When there seems to be a need in a new kind of linear streams or a new type of neurons, we simply add those new kinds of streams and new types of neurons to the signature of our formalism. Practically speaking, we envision that for industrial uses one would have dozens of kinds of linear streams and dozens of types of built-in neurons in the DMM signature.

Our formalism for defining new types of neurons is powerful enough to give us an option to take any subnetwork and make a new type of neurons, such that a single neuron of this new type is equivalent to the subnetwork in question.

In turn, the universality results would in many cases allow one to approximate new types of neurons by subnetworks of existing neurons with higher clock speed, but only at great computational cost.

1.5 Structure of the Paper

Section 2 discusses related work and briefly introduces the necessary notions from [5]. It also discusses the differences between programming in DMMs and programming in the traditional RNNs. Section 3 contains a complete implementation of a detector of duplicate characters as a DMM. Section 4 describes details of a few variants of the operation performing deep copy of a subnetwork in terms of transformations of a network matrix.

In Conclusion, we note that the diversity of available programming patterns means that a considerable variety of programming styles and paradigms should be possible for DMMs.

2 Related Work

This work has its roots in two fields, dataflow programming with streams of continuous data (such as, for example, LabVIEW and Pure Data dataflow programming languages [7, 6]) and recurrent neural networks.

Turing universality of recurrent neural networks seems to be known for at least 30 years [11, 12]. Nevertheless, and notwithstanding the remarkable progress in the methods of training and in applications of recurrent neural networks, they have not become a convenient general-purpose programming platform.

The example of a simple detector of duplicate characters in Section 3 of the present paper sheds some light on the underlying reasons for that. The dataflow matrix machine implementing this example in the present paper consists of 9 neurons and 10 nonzero scalar connection weights.
If one would implement the same algorithm in traditional recurrent neural nets oriented towards working with streams of numbers, then for a typical small alphabet of a few dozen allowed characters one would need a few hundred neurons and a few hundred nonzero scalar connection weights. While this is quite manageable, the inconvenience is obvious.

The situation becomes much more serious when one wants to solve the same problem for a large set of characters, such as, for example, Unicode. The DMM architecture is quite friendly to sparse high-dimensional vectors, so the same compact program would work, the only aspect which would change is the definition and implementation of the stream of c-vectors. On the other hand, the traditional recurrent neural net architecture oriented towards working with streams of numbers is not friendly towards naively handling sparse high-dimensional arrays. Given that the complete Unicode set is well above 100,000 characters, the task of making a traditional recurrent network which would solve this simple problem seems to be quite non-trivial (at the very least, it looks like one would need an algorithmic breakthrough to find an exact solution of reasonable size and efficiency).

2.1 Timeline of Dataflow Matrix Machines

The architecture oriented towards working with a variety of linear streams such as probabilistic sampling and generalized animations was proposed in [1]. The discipline of bipartite graphs allowing to represent large classes of dataflow programs working with linear streams by matrices and first variants of higher-order constructions allowing to continuously transform a dataflow program while it is running emerged in [3]. While in dataflow programming languages oriented towards work with streams of continuous data such as LabVIEW and Pure Data the programs were represented by discrete objects, dataflow matrix machines were themselves continuous.

An observation that dataflow matrix machines might be viewed as generalized recurrent neural nets was made in [4]. The systematic development of dataflow matrix machines as a programming platform was started in [5]. A particularly important new development in [5] was introduction of high-level reflection facilities via streams of appropriately shaped matrices and their rows and columns (see Section 1.3.3 of the present paper). A sketch of a programming language to describe DMMs was also started in [5].

That language included declarations of kinds of linear streams, #kind, and declarations of types of neurons, #newcelltype. The purpose of those declarations was to make names of new kinds of linear streams and types of neurons to be available to the program, and to link those names to the implementations of the corresponding linear streams and of the corresponding built-in transforms (associated with types of neurons) in the underlying conventional programming language.

That language also included declarations of particular neurons, #neuron, solely for the purpose of picking a neuron of a specific type with zero connectivity for all its inputs and outputs and giving names to this neuron and to its inputs and outputs.

The only functional operator affecting the network behavior which was introduced in [5] was an additive operator updating matrix weights. It was introduced in several forms. The most generic of those forms was

#updateweights <FiniteRowMask 1> += <ColumnMask> * <FiniteRowMask 2>;

which on the matrix level was acting as

\[a_{ij} := a_{ij} + \gamma_i \alpha_j \sum_k \beta_k a_{kj}, \]

where \(<ColumnMask>\) was vector \(\alpha\), \(<FiniteRowMask 2>\) was vector \(\beta\), and the left-hand-side \(<FiniteRowMask 1>\) was vector \(\gamma\). In our present example program only the most simple form of this operator adding 1 to a specific weight from a particular output to a particular input is used:

#updateweights <IdInputStream> += <IdOutputStream>;}
Finally, the principle of having sufficiently powerful neuron types to express the network updates available in the language describing the DMMs was formulated in [5]. This principle means that a network is supposed to have full access to all our language facilities and can use those facilities to modify itself.

3 A Version of Duplicate Characters Detector

Let’s sketch a DMM solving the coding problem described in Section 1.2. We have two kinds of linear streams, scalars and c-vectors:

\[\text{#kind real; #kind c-vector;} \]

3.1 Input Accumulator Circuit

The type of the input neuron is

\[\text{#newcelltype input-string #output c-vector:emit;} \]

The type of the accumulators (the identity transforms) of c-vectors is

\[\text{#newcelltype id-c-vector #input c-vector:in #output c-vector:out;} \]

Pick a neuron of each of these types with zero connectivity patterns, and give names to those neurons, and to their input and output streams.

\[\text{#neuron input-string:input-data emit:emit-c-vector = #transformof #dummy;} \]
\[\text{#neuron id-c-vector:accumulator out:accum-pass-through =} \]
\[\text{#transformof in:collect-sum;} \]

Link the accumulator output to the accumulator input with weight 1:

\[\text{#updateweights collect-sum += accum-pass-through;} \]

Link the emitter of the input to the input of the accumulator with weight 1:

\[\text{#updateweights collect-sum += emit-c-vector;} \]

3.2 Circuit Detecting Duplicate Characters

The type of a neuron computing the maximal absolute value of a c-vector coordinate:

\[\text{#newcelltype max-norm-of-c-vector #input c-vector:in #output real:max-norm;} \]

Pick a neuron of this type with zero connectivity patterns, and give names to this neuron and to its input and output streams:

\[\text{#neuron max-norm-of-c-vector:eval-max-char-count max-norm:max-char-count =} \]
\[\text{#transformof in:c-vector-to-measure;} \]

Link the accumulator output to the input of this neuron with weight 1:

\[\text{#updateweights c-vector-to-measure += accum-pass-through;} \]

Next, we need scalar constant 1:

\[\text{#newcelltype input-real #output real:emit;} \]
\[\text{#neuron input-real:const-1-stream emit:const-1 = #transformof #dummy;} \]

Next, we need a neuron comparing two scalars. It is convenient to equip neurons which compute conditions with two complementary output scalars:

\[\text{#newcelltype greater-than} \]
\[\text{#input real:scalar-to-be-greater #input real:scalar-to-be-smaller} \]
\[\text{#output real:true-channel #output real:false-channel;} \]
\[\text{#neuron greater-than:test-max-norm-greater-than-1} \]
\[\text{true-channel:duplicate-detected false-channel:ignore = #transformof} \]
\[\text{scalar-to-be-greater:input-norm scalar-to-be-smaller:input-const-1;} \]

Now link the norm and the const 1 to the respective inputs of this neuron with weight 1:
3.3 Circuit Detecting End-of-string

The dot product of c-vectors is a good way to detect presence of a particular character:

```plaintext
#newcelltype dot-product-of-c-vectors
    #input c-vector:in-1 #input c-vector:in-2 #output real:dot-product;
#neuron dot-product-of-c-vectors:end-of-string-detector
dot-product:end-of-string-predicate =
    #transformof in-1:c-vector-to-test in-2:const-char;
```

Now we have a choice to detect this end of string at the level of input-data neuron, or at the level of accumulator neuron. Let’s for the time being detect it at the level of the accumulator:

```plaintext
#updateweights c-vector-to-test += accum-pass-through;
```

The end-of-string constant is similar to input-string, but with a different built-in transform:

```plaintext
#newcelltype end-of-string-const #output c-vector:emit;
#neuron end-of-string-const:end-of-string-const-stream
    emit:const-eos = #transformof #dummy;
#updateweights const-char += const-eos;
```

Now we need to use another neuron comparing two scalars. The nice feature is that const zero can be omitted (one has zero linear combination on an input by default), so no explicit link to input-const-0 is required:

```plaintext
#neuron greater-than:test-eos-presence-predicate
    true-channel:eos-detected false-channel:ignore =
        #transformof scalar-to-greater:input-eos-presence-predicate
        scalar-to-be-smaller:input-const-0;
#updateweights input-eos-presence-predicate += end-of-string-predicate;
```

We are almost done. If we run the program, we shall eventually get 1 on the duplicate-detected stream or on the eos-detected stream, and then we’ll know whether the input string has a duplicate character or not.

3.4 Output neuron with side effect

Now we can optionally add the specialized neuron for recording the output and stopping the network as a side effect. It does not need to have outputs visible to the network, so it is a “dual” to an input neuron in that it has inputs, but zero outputs:

```plaintext
#newcelltype record-answer-and-stop-the-network
    #input real:positive-answer #input real:negative-answer
#neuron record-answer-and-stop-the-network:output-control #dummy =
    #transformof positive-answer:duplicates-present
        negative-answer:duplicates-absent;
#updateweights duplicates-present += duplicate-detected;
#updateweights duplicates-absent += eos-detected;
```
3.5 Real-time aspects

In the synchronous dataflow precise timing of events is often important. Let’s take note of how many clock cycles does it take for a new c-vector emitted by \texttt{input-data} to propagate to various neurons in our first version of a duplicate character detector:

- \texttt{accumulator} neuron: 1 clock cycle;
- \texttt{eval-max-char-count} and \texttt{end-of-string-detector} neurons: 2 clock cycles;
- \texttt{test-max-norm-greater-than-1} and \texttt{test-eos-presence-predicate}: 3 clock cycles;
- \texttt{output-control} neuron: 4 clock cycles.

It is important that the propagation delay to \texttt{test-max-norm-greater-than-1} is not larger than the propagation delay to \texttt{test-eos-presence-predicate}, otherwise a wrong answer might be recorded. In particular, one can prove that \texttt{duplicates-present} and \texttt{duplicates-absent} are never triggered simultaneously when those propagation delays are equal.

While programming in this style, one needs to keep those timing issues in mind. Sometimes one has to insert extra delays along certain signal propagation paths or to refrain from optimizing certain propagation paths to ensure the correct timing conditions.

4 Deep Copy of a Subnetwork via Network Matrix

We’ll need new syntax to assemble a group of neurons into a subgraph, and to access the neurons and their inputs and outputs from the deep copy of that subgraph.

\texttt{#subgraph name-of-the-new-subgraph = #cells neuron-name-1 ...neuron-name-N;}
\texttt{#new-copy name-of-the-new-subgraph = #deepcopyof old-subgraph;}

There are variants of deep copy operation, for example:

1. deep copy a subgraph, but omit the external connectivity;
2. deep copy a subgraph, copy the external incoming connections of the original subgraph into the corresponding nodes of the new copy of that subgraph, but omit the external outgoing connections (this variant was considered in [2]);
3. deep copy a subgraph and copy the external incoming and outgoing connections;
4. deep copy a subgraph and copy the external incoming connections and distribute some of the weight of the outgoing connections of the original graph into the outgoing connections of the new copy.

One needs variations of the \texttt{#new-copy} syntax to reflect these possibilities.

Names of subgraphs form namespaces. Neurons and their inputs and outputs can be referenced via those namespaces in the language describing the DMMs.

Let’s look at the variants of \texttt{#new-copy} on the level of network matrix.

Let’s imagine for the duration of this section that indices of rows and columns form a traditional one-dimensional structure, and that the rows corresponding to the inputs of the original subgraph are grouped together in the space of row indices, and that the columns corresponding to the outputs of the original subgraph are grouped together in the space of column indices. Then the original subgraph is represented by solid lines in the Figure 1.

The rows are incoming connections of the subgraph, and the columns are outgoing connections of the subgraph, with their intersection representing internal connectivity of the subgraph.
To create the new copy, find a similarly shaped patch of unused neurons. In terms of the matrix, pick the appropriate range of rows and columns such that all those rows and columns are currently zeros (dashed lines in the Figure 1).

To implement variant 1, simply copy the matrix block marked by the words “Original subgraph” to the matrix block marked by the words “The new copy”.

To implement variant 2, copy the rows of the original subgraph into the rows of the new copy, but place all zeros in the block where the copy of the internal structure of the original subgraph would be (the word “Zero” in the lower left corner of Figure 1), and instead copy the matrix block marked by the words “Original subgraph” to the matrix block marked by the words “The new copy”.

To implement variant 3, a similar operation should also be done with the columns.

To implement variant 4, one would implement variant 3 and then multiply the parts of new columns situated outside “The new copy” block by α, and multiply the parts of the original columns situated outside “The original subgraph” block by $1 - \alpha$.

4.1 Higher-order Neurons for Deep Copy

Section 3.7 of [5] describes higher-order neurons for the \#updateweights operation. Similarly, in order to conform to our principle that the language facilities should be available from within the network via higher-order neurons, we describe higher-order neurons for the \#new-copy operation. These higher-order neurons tend to be rather complex. Speaking in terms of Section 3.7 of [5], one would need the matrix as an input, two more inputs (a “row mask” and a “column mask”) to describe the subgraph to copy, and a scalar multiplicative mask to control the firing. There would be several outputs, one is an additive contribution to the matrix similar to Section 3.7 of [5]. The other two outputs are a “row mask” and a “column mask” expressing the new subgraph.

Subgraphs to be copied can contain such higher-order neurons, and it is quite legal for a higher-order neuron of this kind to copy a subgraph containing this neuron itself.
4.2 Gradual Updates and Gradual Creation of a New Subgraph Copy

It is often desirable to have continuous updates to weights rather than abrupt updates. Since we presently consider discrete time, this would mean smaller updates of weights performed during several consequent clock ticks. For the neuron implementing \texttt{updateweights} operation the most natural way to accomplish this is via small non-zero values α for its input scalar multiplicative mask.

For the neuron implementing \texttt{new-copy} the situation is more delicate, because this neuron causes allocation of a new subgraph in the unused address space of the network (the space containing neurons with zero input and output connectivity). We need to equip such a neuron with memory to make sure that this allocation happens only when the multiplicative mask changes from zero to non-zero, but that otherwise the weight changes are applied to the existing new copy. The easiest way to achieve that is to create two extra vector inputs to store the output “row mask” and “column mask” via the accumulator metaphor.

5 Conclusion

In this paper we developed a number of powerful programming patterns for dataflow matrix machines.

An example of a DMM for a simple coding problem of detecting characters occurring multiple times in a string is very compact, unlike the counterpart of the same algorithm which could be written in traditional recurrent neural networks working with streams of numbers. The difference is particularly striking for large alphabets necessitating the use of sparse arrays.

5.1 Design Philosophy: Pluralism of Programming Styles

Traditional programming architectures with programs expressed as discrete objects support a large variety of programming styles: imperative, object-oriented, functional, logical, dataflow, and many others.

We expect that the presently emerging new realm of programs expressed as continuous objects, specifically as matrices of numbers, will also support a diversity of programming styles. Some of those programming styles might be fairly conservative modifications of programming styles available in the realm of discrete programs, while other styles might be entirely novel. The emerging architecture of continuous programs seems to be sufficiently unique to allow creation of entirely new programming styles.

References

[1] M. Bukatin and S. Matthews. Linear models of computation and program learning. In G. Gottlob et al., editors, GCAI 2015, EasyChair Proceedings in Computing, vol. 36, pages 66–78, 2015. http://easychair.org/publications/download/Linear_Models_of_Computation_and_Program_Learning.

[2] M. Bukatin and S. Matthews. Almost continuous transformations of software and higher-order dataflow programming, Preprint (2015). http://arxiv.org/abs/1601.00713.

[3] M. Bukatin and S. Matthews. Dataflow graphs as matrices and programming with higher-order matrix elements, Preprint (2015). http://arxiv.org/abs/1601.01050.

[4] M. Bukatin, S. Matthews, and A. Radul. Dataflow matrix machines as a generalization of recurrent neural networks, Preprint (2016). http://arxiv.org/abs/1603.09002.
[5] M. Bukatin, S. Matthews, and A. Radul. Dataflow matrix machines as programmable, dynamically expandable, self-referential generalized recurrent neural networks, Preprint (2016). http://arxiv.org/abs/1605.05296.

[6] A. Farnell. Designing Sound. MIT Press, 2010.

[7] W. Johnston, J. Hanna, and R. Millar. Advances in dataflow programming languages. ACM Computing Surveys, 36:1–34, 2004.

[8] A. Karpathy. The unreasonable effectiveness of recurrent neural networks, 2015. http://karpathy.github.io/2015/05/21/rnn-effectiveness/.

[9] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521:436–444, 2015.

[10] G. McDowell. Cracking the Coding Interview: 5th Edition. CareerCup, Palo Alto, 2014.

[11] J. Pollack. On connectionist models of natural language processing. PhD thesis, University of Illinois at Urbana-Champaign, 1987. Chapter 4 is available at http://www.demo.cs.brandeis.edu/papers/neuring.pdf.

[12] H. Siegelmann and E. Sontag. On the computational power of neural nets. Journal of Computer and System Sciences, 50:132–150, 1995.