INTRODUCTION

Myiasis is the infestation of a vertebrate with dipterous larvae that feed for a certain time period on live or dead tissues of the host, substances of the host’s body, or on the food that it ingests [1]. Myiasis can be obligatory, which occurs when larval flies develop in living tissues, or facultative, which occurs when maggots feed on decomposing matter or necrotic tissues. Obligatory myiasis is more harmful to the host, particularly mammals (including man), and is found in several countries of the Old and New Worlds [2,3]. The classification of myiasis is based on the localization within the host body (dermal, sub-dermal, nasopharyngeal, internal organs, or urogenital) or the type of host-parasite relationships (obligatory, facultative, or pseudomyiasis) [3]. The larvae that cause myiasis can be biotrophic, in which they invade tissues or natural cavities to become obligate parasites, or necrobiontophagous, in which larvae colonise pre-existing injuries and become accidental parasites [4].

Numerous species have been reported to be responsible for myiasis in livestock and occasionally in humans. One of these species, Cochliomyia hominivorax (Coquerel), is well-known to be responsible for important myiasis along its wide distribution in America and in relation to the tropical climate zones [5]. Although adult flies may be attracted to wounds or ulcers on the skin of the host, their larvae do not feed on necrotic material. The invasion of natural orifices by larvae may result in cavitary myiasis of several types, which culminates in major tissue damage or even death of the host [6,7]. The analysis of the life cycle of the species has shown that females lay 200-300

CASE REPORT

First Report of Myiasis Caused by Cochliomyia hominivorax (Diptera: Calliphoridae) in a Diabetic Foot Ulcer Patient in Argentina

María Sofía Olea1, Néstor Centeno2, Cecilia Adriana Veggiani Aybar1, Eugenia Silvana Ortega1, Guillermina Begoña Galante1, Luis Olea3, María Julia Dantur Juri1,4,*

1Instituto Superior de Entomología “Dr. Abraham Wilink”, Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, 4000 San Miguel de Tucumán, Tucumán, Argentina; 2Centro de Estudios e Investigaciones, Universidad Nacional de Quilmes, Roque Saénz Peña 180, 1876 Bernal, Buenos Aires, Argentina; 3Hospital Miguel Ángel C. Padilla, Alberdi 550, 4000 San Miguel de Tucumán, Tucumán, Argentina; 4IAMRA, Universidad Nacional de Chiloe, 9 de Julio 22, 5360 Chiloe, La Rioja, Argentina

Abstract: Myiasis is usually caused by flies of the Calliphoridae family, and Cochliomyia hominivorax is the etiological agent most frequently found in myiasis. The first case of myiasis in a diabetic foot of a 54-year-old male patient in Argentina is reported. The patient attended the hospital of the capital city of Tucumán Province for a consultation concerning an ulcer in his right foot, where the larval specimens were found. The identification of the immature larvae was based on their morphological characters, such as the cylindrical, segmented, white-yellow coloured body and tracheas with strong pigmentation. The larvae were removed, and the patient was treated with antibiotics. The larvae were reared until the adults were obtained. The adults were identified by the setose basal vein in the upper surface of the wing, denuded lower surface of the wing, short and reduced palps, and parafrentalia with black hairs outside the front row of setae. The main factor that favoured the development of myiasis is due to diabetes, which caused a loss of sensibility in the limb that resulted in late consultation. Moreover, the poor personal hygiene attracted the flies, and the foul-smelling discharge from the wound favoured the female’s oviposition. There is a need to implement a program for prevention of myiasis, in which the population is made aware not only of the importance of good personal hygiene and home sanitation but also of the degree of implication of flies in the occurrence and development of this disease.

Key words: Cochliomyia hominivorax, myiasis, diabetic foot ulcer, Argentina
eggs on wound borders, larvae eclosion occurs within 12-14 hr, and the larvae penetrate the tissues as they feed on them. The infected wounds release a smell that stimulates gravid flies to oviposit their eggs [8].

The risk factors that potentially cause myiasis are the exposure of ulcers and hemorrhoids, bacterial infection of wounds or natural cavities, poor personal hygiene, alcohol-related behaviors such as lack of sensitivity and sleeping outdoors, lesions resulting from itching in patients with pediculosis, and extreme lack of personal hygiene [9].

In this work, we provided the first demonstration of the presence of myiasis in a diabetic foot in Argentina with *C. hominivorax* as an etiological agent. This study also provides the first evidence of this species in Tucumán Province, Argentina.

CASE DESCRIPTION

A male patient aged 54 years, who is now living in Monteros City, Tucumán Province, Argentina, checked into the Angel C. Padilla Hospital in San Miguel de Tucumán for a consultation due to an ulcerous lesion in his right foot with a sanious bottom and fetid odour (Fig. 1A). The clinical examination revealed that the ulcer contained fly larvae (n = 5) with an evolution of approximately 2 days.

The lesion had a circular shape with a diameter of approximately 4 cm; the edge showed signs of inflammation, and the content consisted of foul-smelling necrotic tissues with a sanious bottom that corresponded to the deep aponeurosis of the wound (Fig. 1B).

The patient was diagnosed with grade II diabetes (under treatment with oral hypoglycemic drugs) with a disease of over 10 years of evolution, in which the neuropathic compromise predominated with an important loss of sensibility in the area (no pain), which was the reason for delayed consultation. However, the presence of peripheral pulses was determined, which indicates that the blood flow in the compromised limb was preserved. The first surgical debridement was performed in the hospital emergency services unit. During this operation, the larvae were mechanically extracted using a sulphuric ether solution (Fig. 1C). Tissue samples were extracted for culturing, germ identification, and antibiogram tests.

The patient received treatment considering his basic disease (diabetes) with broad-spectrum antibiotics until the results of the cultures were obtained. Additionally, periodic cleaning of the wound and dressing changes were conducted every other day with gauze wetted in a physiological solution. The wound, as well as the patient’s metabolic values, exhibited a favourable evolution. He was discharged from the hospital after 15 days, during which time surgical debridement was performed twice.

The larval specimens were taken to the laboratory of the Instituto Superior de Entomología "Dr. Abraham Willink", Facultad de Ciencias Naturales e Instituto Miguel Lillo (Universidad Nacional de Tucumán), where they were identified and later raised individually in flasks and fed beef liver (Fig. 2).

The collected larvae belong to the species *C. hominivorax* with the following external morphological characters: cylindri-
ing humans. It is considered that a fly has great impact on hu-
man health and on the productivity of domestic animals be-
cause it causes a decrease in their productions of meat, milk,
and wool and an increase in secondary infections [13]. In ad-
dition, C. hominivorax is responsible for the largest number of
myiasis cases in America and the most serious forms of hu-
man myiasis [14]. The larvae remain superficial but occasion-
ally migrate and cause subcutaneous nodules [15]. In general,
myiasis in humans is localized in the upper and lower extrem-
ities with a marked predominance of the latter followed in fre-
quency by the head, thorax, abdomen, and pelvis. Moreover,
underlying pathologies have been found: varicose ulcers, in-
fected wounds, and various dermatoses [16].

Visciarelli et al. [17] have cited the species incriminated in
human myiasis, C. hominivorax and Phaenicia sericata (also called
Lucilia sericata) (Meigen), to Bahía Blanca, Buenos Aires, Ar-
gentina. In all patients, myiasis occurred after traumas, lesions,
and/or infectious processes that attracted the flies. C. hominivo-
rax was the species most common found in the cases of myia-
sis and was responsible for serious lesions in the abdomen,
the lower limbs, and different parts of the head (ears and eye-
lids). P. sericata was found in lesions of the lower limbs. Among
other conditioning factors for the occurrence of myiasis, the
insensibility that may result from various pathologies, such as
diabetes, is mentioned in this work and added to the poor
personal hygiene conditions.

Exposed ulcers, bacterial infections of wounds or natural
cavities [18-20], poor personal hygiene [21], tasks related to
livestock rearing [22,23], and behaviors associated with alco-
holism, such as insensibility and sleeping outdoors [24], are
among the risk factors that promote myiasis.

Visciarelli et al. [17] also mentioned different pathologies,
such as diabetes, otitis, and alcoholism, and certain behaviors,
such as lack of body hygiene, lack of personal grooming, and/
or rural tasks, that favour the permanence of the wounds by
causing insensibility and increasing the probability of contact
with flies. In the present work, we agree with the hypothesis
that the exposed ulcer was a conditioning factor that, in com-
bination with the patient’s poor personal hygiene, rural tasks
and insensibility associated with diabetes determined the de-
gree of evolution of the myiasis in the patient.

We may conclude that the present investigation is an impor-
tant contribution to the subject of myiasis because this case is
the first evidence of C. hominivorax in a case of myiasis in a pa-
tient with a diabetic foot in Argentina. The main factor that
would determine the occurrence of this myiasis would be the

![Fig. 3](image-url)
exposure of the ulcer to flies, foul smell of the wound, individual’s lack of personal grooming, and diabetes which was responsible for the consequent loss of sensibility in the patient’s foot.

ACKNOWLEDGMENT

We wish to thank the staff of the emergency service unit of the Ángel C. Padilla Hospital at San Miguel de Tucumán, Tucumán, Argentina for supplying the larval specimens.

CONFLICT OF INTEREST

We have no conflict of interest related with this work.

REFERENCES

1. Zumpt F. Myiasis in man and animals in the Old World. London, UK. Butterworths. 1965, p 267.
2. Hall MJR, Wall R. Myiasis of humans and domestic animals. Adv Parasitol 1995; 35: 257-334.
3. Gómez RS, Perdigão PE, Pimenta FJGS, Tanos de Lacerda JC, Custódio Neto AL. Oral myiasis by screwworm Cochliomyia hominivorax. Br J Oral Maxillofac Surg 2003; 41: 115-116.
4. Visciarelli EC, Garcia SH, Salomón C, Jofre C, Costamagna SR. Un caso de miasis humana por Cochliomyia hominivorax (Diptera: Calliphoridae) asociado a pediculosis en Mendoza, Argentina. Paratossil Latinoam 2003; 58: 166-168.
5. James MT. The flies that cause myiasis in man. US Department of Agriculture. Misc Publ 1974; 631: 1-175.
6. Guimarães JH, Tucci EC, Barros-Battesti DM. Ectoparasitas de importância veterinária. Plêiade, São Paulo, Brazil. 2001, p 105-154.
7. Thysen PJ, Prado Nassu M, Uratani Costella AM, Lopes Costella M. Record of oral myiasis by Cochliomyia hominivorax (Diptera: Calliphoridae): case evidencing negligence in the treatment of incapable. Parasitol Res 2012; 111: 957-959.
8. Rossi CG, Mariluis CJ, Schanck AJ, Spinelli GR. Dipteros vectores (Culicidae y Calliphoridae) de la provincia de Buenos Aires. ProBioita 2002; 3: 1-45.
9. Velasco E, Ramírez E, Cortízcas A. Myiasis. Anal Pren Med Argent 1974; 61: 775.
10. Hall, DG. The blowflies of North America. Lafayette, Indiana, USA. Thomas Say Foundation, Entomological Society of America. 1948, p 477.
11. Mariluis JC, Schanck JA. Calliphoridae de la Argentina. Sistemática, ecología e importancia sanitaria (Diptera, Insecta) In: Salomón, OS ed. Actualizaciones en Entomología y Sanidad Argentina. Buenos Aires. Fundación Mundo Sano. 2002, p 23-37.
12. Mariluis CJ, Mulieri RP. Distribución de Calliphoridae (Diptera) en Argentina. Rev Soc Entomol Argent 2003; 62: 85-97.
13. Forero EB, Cortés JV, Villamil LJ. Problemática de gusano barrendero del ganado, Cochliomyia hominivorax (Coquerel, 1858) en Colombia. Rev MVZ Córdoba 2008; 13: 1400-1414.
14. Acha PN, Szyfres B. Zoonosis y enfermedades transmisibles comunes al hombre y a los animales. Parte V. Sección C: Artrópodos. Myiasis. O. P. S. 2ª ed. 1992, p 886-889.
15. Botero D, Restrepo M. Parasitosis Humana. Enfermedades causadas por artrópodos. 3ª ed. C. I. B. Medellín. Colomibia. 1998, p 402-405.
16. Mariluis JC, Schanck JA. Importancia sanitaria de los dípteros californios. Ser Acad Nac Agr Vet 1996; 20: 59-65.
17. Visciareli E, Costamagna S, Lucchi L, Basabe N. Miasis Humana en Bahía Blanca, Argentina: periodo 2000/2005. Neotrop Entomol 2007; 36: 605-611.
18. Maza S, Basso R. Míasis de úlcera crónica de pierna por Sarcoptes scabiei y Cochliomyia hominivorax (Diptera: Calliphoridae). Acta sheets 2000-2005. Neotrop Entomol 2007; 36: 605-611.
19. Jörg M. Miasis anal y consideraciones generales del parasitismo por larvas de mosca. Pren Acad Nac Agr Vet 1974; 631: 1-175.
20. Bacigalupo J, Villamil C. Miasis humana por Oestrus ovis Linneo 1761. Primeras Jornadas de Entomoepidemiol Arg 1959; 2: 833-836.
21. Jörg M. Conjuntivitis aguda por larvas de Oestrus ovis Linneo 1761. Primera Jornadas de Enfermedades animales. Pren Acad Nac Agr Vet 1974; 631: 1-175.
22. Basso, R. Frecuencia y naturaleza de las miasis en Mendoza. Observación n° 7 y n° 10. Investigaciones sobre dípteros argentinos, Misión de Estudios de Patología Regional Argentina (M.E.P.R.A). 1939; 41: 47-51.
23. Barcagalupo J, Villamil C. Miasis humana por Oestrus ovis Linneo 1761. Primera Jornadas de Enfermedades animales. Pren Acad Nac Agr Vet 1974; 631: 1-175.