Abstract. An algorithm for determining the list of smallest volume right-angled hyperbolic polyhedra in dimension 3 is described. This algorithm has been implemented on computer using the program Orb to compute volumes, and the first 825 polyhedra in the list have been determined.

1. Introduction

In a prior paper [Ino08], I described how to organize the volumes of the infinite family of compact, right-angled hyperbolic polyhedra in hyperbolic 3-space H^3. This involves applying one of two combinatorial operations to the 1–skeleton of the polyhedron – either delete an edge (edge-surgery) or split the polyhedron along an “incompressible” polygon into a pair of polyhedra (decomposition). The effect of this modification is to reduce the average complexity of the polyhedron, while keeping it in the family of right-angled polyhedra. Repeated application of these modifications produces a chain of polyhedra which terminates in a family of right-angled polyhedra which are “atomic” with respect to these operations. These are called L"obell polyhedra. Every non-L"obell right-angled hyperbolic polyhedron can have one of these operations performed on it. In particular, every right-angled hyperbolic polyhedron can be obtained by applying these operations in reverse – either add an edge or glue two polyhedra together.

The geometry of a right-angled hyperbolic polyhedron is determined completely by its combinatorics. Once the 1–skeleton of the polyhedron is given (a trivalent planar graph with some additional conditions to be described), the geometric structure which makes the polyhedron right-angled and hyperbolic is unique in the sense that any other right-angled hyperbolic polyhedron with an isomorphic 1–skeleton is isometric to the one given. This leads one to suspect that a combinatorial approach to geometric problems, such as the ordering of volumes, is feasible.

In fact, the combinatorial operations of edge-deletion and decomposition described above have realizations as geometric operations. Edge-deletion looks like increasing the dihedral angle measure of the edge being deleted so that it goes from $\pi/2$ to π while also leaving all the other edges with right-angled dihedral angles – so a sort of continuous flattening. This deformation is analogous to 3–manifold surgery. Decomposition is like cutting all the way through the polyhedron with a knife, then molding of the resulting pieces to make them right-angled polyhedra.

It happens that each of these operations decreases the volume of the polyhedron, except in some special cases of decomposition where the splitting surface is a totally geodesic polygon (in this case, the volume does not change). It is also the case that the average number of faces of each component of the polyhedron will decrease (keep in mind that decomposition actually splits a polyhedron into pieces and I am
Figure 1. Planar projections (Tutte embeddings) of the 1–skeleta of the first six Löbell polyhedra.

blurring the distinction between a polyhedron (singular) and polyhedra (plural)). Therefore, this process will eventually terminate. In fact, this process terminates in a family of Löbell polyhedra.

So we have the following situation. Start with a non-Löbell right-angled hyperbolic polyhedron P. Repeatedly apply either edge surgery or decomposition resulting in a chain of right-angled polyhedra eventually terminating in a collection of Löbell polyhedra L:

$$P \rightarrow P_1 \rightarrow P_2 \rightarrow \ldots \rightarrow P_k = L$$

Taking the volume of each polyhedron in the above chain produces a chain of inequalities of volumes of right-angled hyperbolic polyhedra:

$$\text{Vol}(P) \geq \text{Vol}(P_1) \geq \text{Vol}(P_2) \ldots \geq \text{Vol}(P_k) = \text{Vol}(L)$$

The number $\text{Vol}(L)$ can be explicitly calculated since there are known formulas for the volumes of right-angled hyperbolic Löbell polyhedra [Ves98].

A simple corollary of this result is that the smallest and second-smallest right-angled hyperbolic polyhedra are the Löbell polyhedra L_5 and L_6 respectively. The 1–skeleta of these polyhedra are in Figure 1. Note that L_5 is the right-angled dodecahedron. The main result described in this paper is to extend this list from the two smallest polyhedra to the 825 smallest polyhedra via an algorithm implemented on computer. Also provided is a way to extend this list to many thousands of entries if certain computational obstacles can be overcome.
2. Preliminaries

The setting for the polyhedra throughout this paper is hyperbolic 3–space \mathbb{H}^3. A right-angled hyperbolic polyhedron is a compact intersection of finitely many hyperbolic half-spaces such that if the boundaries of two of these half-spaces intersect, then the intersection has a dihedral angle measure of $\frac{\pi}{2}$. Such polyhedra can be viewed as Coxeter orbifolds. The action of the group generated by reflections in the boundaries of half-spaces of right-angled polyhedra produces beautiful tilings of \mathbb{H}^3 similar to the familiar tiling of euclidean space by cubes.

In 1967, A. Pogorelov classified right-angled hyperbolic polyhedra by the combinatorics of their 1–skeleta [Pog67]:

Theorem: (Pogorelov 1967) A polyhedron P has a geometric realization in \mathbb{H}^3 as a right-angled hyperbolic polyhedron if and only if:

1. The 1–skeleton of P is trivalent.
2. There are no prismatic 3 or 4–circuits (defined below).

This geometric realization is unique up to isometry.

A prismatic k–circuit is a closed curve on the boundary of the polyhedron which intersects exactly k edges transversely such that no two of these edges share a vertex. A prismatic k–circuit can be viewed as a polyhedral analog of the notion of incompressible surfaces for 3–manifolds as it bounds a topological k–gon in the polyhedron. If the hyperbolic polyhedron is right-angled, we can understand the prohibition of prismatic 3 and 4–circuits as being analogous to the prohibition of essential spheres and irreducible tori in hyperbolic 3–manifolds since right-angled triangles are naturally spherical and right-angled quadrilaterals are euclidean.

Pogorelov’s result demonstrates that right-angled hyperbolic polyhedra are fundamentally combinatorial as they are determined completely by their 1–skeleton.

Two distinct faces F_1 and F_2 of a right-angled hyperbolic polyhedron P are edge-connected if they are nonadjacent and there exists an edge e of P connecting a vertex of F_1 to a vertex of F_2. Such an edge will be said to edge-connect F_1 and F_2. Since P has a trivalent 1–skeleton, every edge of P edge-connects a unique pair of faces.

A face F of P is large if it is a k–gon with $k \geq 6$. If an edge e edge-connects two large faces and it is not intersected by a prismatic 5–circuit, then this edge is said to be very good. It has been shown that deleting the interior of a very good edge and demoting the endpoints to non-vertices results in a new right-angled hyperbolic polyhedron with one less face, three fewer edges, and two fewer vertices. This new polyhedron has strictly less volume than the one started with. Call this process edge-deletion.

If a polyhedron P has a large face F, then we can add an edge to P by connecting two points which lie on the interiors of two different edges, as long as these edges are separated by at least two edges in F. These conditions ensure that the polyhedron which results will not have any prismatic 3 or 4–circuits, and so will have a realization as a right-angled hyperbolic polyhedron. Call this operation edge-addition.

Every right-angled hyperbolic polyhedron other than the dodecahedron has a large face. Therefore, edges can almost always be added to a polyhedron to generate

1See, for example, the video Not Knot for a guided tour of \mathbb{H}^3 tiled by right-angled hyperbolic dodecahedra [GM91].
new examples of right-angled polyhedra. Call the polyhedra which result from edge-addition edge-children and the set of all edge-children, edge-children of the edge-children, etc. the edge-descendants.

The other fundamental operation needed is composition, and its inverse, decomposition. If two polyhedra P_1 and P_2 both have a face which is a k–gon, then by choosing a combinatorial isomorphism of these k–gons, P_1 and P_2 can be glued together along these faces. Most of the time, the faces will not be isometric to one another in the geometric realization of P_1 and P_2 and so this gluing may not make so much sense geometrically. But it’s certainly fine to do topologically or combinatorially – identify the subgraphs of the 1–skeleton corresponding to the k–gons using the combinatorial isomorphism, delete the interiors of the edges of the k–gons, and denote the vertices to non-vertices. It turns out that this operation, which will be called composition, results in a right-angled hyperbolic polyhedron. The inverse operation, splitting a polyhedron into two right-angled polyhedra, is called decomposition.

Decomposition should be viewed as the polyhedral analog of decomposition of Haken hyperbolic 3–manifolds along incompressible surfaces. Note that composition along a k–gon will have a distinguished prismatic k–circuit bounding a topological k–gon in the polyhedron which is analogous to an incompressible surface. Taking this analogy a little further, a result of Agol, Storm, Thurston and Dunfield [ADST07] sheds light on the effect of composition/decomposition on volume. If P is a composition of Q_1 and Q_2, then

$$\text{vol}(P) \geq \text{vol}(Q_1) + \text{vol}(Q_2)$$

with equality occurring if and only if the polygonal gluing sites are isometric.

An infinite family of right-angled hyperbolic polyhedra called the L"obell polyhedra can be constructed as follows. Start with an n–gon where $n \geq 5$. Attach to each edge of this n–gon a pentagon, and glue the remaining edges of the pentagon together to produce a bowl shape. Two copies of this can be glued together to produce a polyhedron L_n with two n–gons, and $2n$ pentagons. These polyhedra are notable in that they have no very good edges and are not formed by the composition of any two right-angled polyhedra. See Figure 1 for pictures of the L"obell polyhedra.

The main result of [Ino08] is the following:

Theorem 1. Let P_0 be a compact right-angled hyperbolic polyhedron. Then there exists a sequence of disjoint unions of right-angled hyperbolic polyhedra P_1, P_2, \ldots, P_k such that for $i = 1, \ldots, k$, P_i is gotten from P_{i-1} by either a decomposition or edge surgery, and P_k is a set of L"obell polyhedra. Furthermore,

$$\text{vol}(P_0) \geq \text{vol}(P_1) \geq \text{vol}(P_2) \geq \cdots \geq \text{vol}(P_k).$$

Corollary 2. Every right-angled hyperbolic polyhedron can be obtained by a sequence of either edge additions or compositions applied to a set of L"obell polyhedra.

3. Description of the Algorithm

\texttt{Orb} is a program written by Damien Heard for computing geometric structures of many 3–dimensional orbifolds [Hea13]. It is an extension of Jeff Weeks’ $\texttt{Snappea}$ program for 3–manifolds [Wee01]. Orbifolds with underlying space S^3 are typically entered into \texttt{Orb} by manually drawing the singular locus of the orbifold on a planar canvas that is part of the user interface. The singular locus will be a (possibly)
Orb can compute the volume of a right-angled hyperbolic polyhedron P by constructing an orbifold double cover Q. This orbifold is easily visualized by taking two copies of P and gluing each face of one copy to the corresponding face of the other. As P is homeomorphic to a ball, this doubling operation produces an orbifold Q with underlying space S^3 whose singular locus is the 1–skeleton of P. The cone angle of each edge of the singular locus of Q is π. This orbifold Q has a hyperbolic structure, and since it is a double cover of P, the volume of Q is precisely twice that of P. All volumes reported in this paper come from Orb in this way.

The orbifolds constructed in Orb’s user interface can be saved to a plain text file which stores the triangulation of the orbifold in Casson format. If the geometric structure of the orbifold has been computed, then this data is also saved to the file.

The algorithm used here implements a highly stripped-down version of Orb called Vol (named simply to distinguish from Orb) which works from a command line interface. Vol accepts an orb file and outputs the volume to the console. This simplified console version of Orb the makes automating the computation and ordering of volumes easier.

Edge-addition is implemented as a python program. It accepts an Orb file containing a triangulation of P as input. The program will then find large faces of P and add an edge connecting points of two edges which separated by at least two edges on either side. It will then triangulate the resulting orbifold to produce an edge-child of P, then save the result as an Orb file. This function can be repeatedly invoked to produce all of the edge-children of P.

I did not bother to implement composition of polyhedra as a computer program. The justification for this is given below.

The algorithm proceeds as follows. A file L is read at the start. It serves as a plain text database containing a row for each polyhedron that has been constructed. Each invocation of the algorithm can extend the number of polyhedra represented in L by quite a large number. However, each invocation extends the list of smallest volume polyhedra by exactly one. This is because L contains the rank-ordered list of smallest polyhedra, but also contains the children of these.

If the algorithm has never been invoked on L, then L contains only certain polyhedra chosen to generate a complete list of the polyhedra whose volume is below some pre-determined value (more on this in Theorem 3). These initial polyhedra serve as seeds for the program to work from. It is clear that some of the smaller-volume Lobbell polyhedra must be included in this initial list, but there are others that must be added as well. More on this later.

The algorithm scans the list L by volume and finds the smallest polyhedron P whose edge-children have not yet been computed. This polyhedron is the next-smallest polyhedron in the list and is recorded as such by assigning it its rank-ordering in terms of smallest volume (for example, L_5 is identified as “1.orb” in the list L after the very first invocation of the algorithm). When it finds P, the algorithm computes every possible child of it. Each child C is then tested to see if it already on the list or not. This is done by checking if the 1–skeleton of C
Figure 2. The first five generations of edge-descendants of L_6 (labeled “2”). The numerical labels indicate rank ordering in the list of smallest volume polyhedra.

(a trivalent planar graph) is graph-isomorphic to the 1–skeleton of a polyhedron already on the list.

For the graph isomorphism task, the python module graph-tool is used [Pei15]. It contains a function for testing graph isomorphism. However, for the sake of efficiency, before this graph-tool function is called, the face vector of the child C is computed. This face vector is a vector of integers which keeps track of the number of pentagons, hexagons, septagons, octagons, etc. among the faces of P. So, for instance, L_8 has face vector $[16, 0, 0, 2]$ since it has 16 pentagonal faces and 2 octagonal faces. From \mathcal{L}, all of the polyhedra which have the same face vector as the child are collected – obviously those which do not have the same face vector as C cannot be isometric to C. This serves as a computationally cheap first-pass filter which cuts down on the number of graph isomorphism checks that need to be done.

However, there can be hundreds of polyhedra listed in \mathcal{L} which have the same face vector as the child C. In this case, rather than calling the graph isomorphism function hundreds of times, the algorithm will instead run the child C through Vol, then collect from \mathcal{L} all the polyhedra with the same recorded volume as C. Then the graph isomorphism test compares C with this presumably smaller family of polyhedra. If C is not found to be in the list of polyhedra with the same volume, then it is tested for graph isomorphism against the entire list of polyhedra with
the same face vector. This is to ensure that the absence of C from the list of same-volume polyhedra isn’t due to numerical error in Vol.

At this point, if C is not found to be in the list \mathcal{L}, it is run through Vol (if it has not already) to obtain its volume. A new row is added to \mathcal{L} containing the relevant information. If C is found in \mathcal{L}, then the fact that P is a parent of C is recorded in the row corresponding to P so as to record the “family tree” of right-angled polyhedra. See Figure [2]

But there is an additional wrinkle in this process. Sometimes for particular triangulations of polyhedra with a relatively large number of faces (25 or greater), Vol is unable to find a geometric solution to the gluing equations. A rejiggering of the triangulation can sometimes get Vol to find the geometric solution and hence the correct volume. However, there are still a handful of polyhedra which do not have an “Vol-certified” volume.

This is an obstacle to getting a long list of smallest-volume polyhedra. Examining the parentage of the problematic polyhedra reveals that this obstacle will limit the correctness of the list to the first 825 right-angled polyhedra. If this problem could be fixed, then the list of smallest-volume polyhedra could go from 825 polyhedra to many thousands of polyhedra long.

To summarize:

1. A file \mathcal{L} which contains a list of initial polyhedra (the seeds) and some of their edge-descendants is read into memory.
2. The smallest volume polyhedron P listed in \mathcal{L} whose edge-children have not yet been computed is found. This is the next smallest volume polyhedron. The orb file which triangulates P is read into memory.
3. A Python program finds the large faces of P and performs all possible edge-additions until all edge-children have been created.
4. Each edge-child Q is compared against the polyhedra in the list \mathcal{L} to see whether it can be found in \mathcal{L}.
 - To reduce the number of polyhedra in \mathcal{L} which need to be compared to Q, polyhedra in \mathcal{L} with the same face vector as Q are collected. Call this list \mathcal{F}.
 - If the number of polyhedra in \mathcal{F} is bigger than some threshold value, then the volume of Q is computed using Vol and all polyhedra in \mathcal{L} with the same computed volume are collected. Call this list \mathcal{V}.
 - graph-tool tests for graph isomorphism between Q and elements of \mathcal{V}.
 - If a graph isomorphism is found, go to step (5a).
 - If a graph isomorphism is not found, then Q is tested for graph isomorphism against all the elements in \mathcal{F}. If it is not found to be isomorphic to something in \mathcal{F}, go to step (5b). Otherwise, go to step (5a).
 - If the number of polyhedra in \mathcal{F} is smaller than some threshold value, then each polyhedron in \mathcal{F} is tested to see if it is isomorphic to Q.

5a. If Q is found to be in \mathcal{L}, then the fact that P is a parent of Q is recorded in the row corresponding to P, and Q is then discarded.
(5b) If Q is not found to be in \mathcal{L}, then the volume of Q is computed (if it has not already been computed), a new row is added to \mathcal{L} and the volume and face vector are recorded.

- If the volume calculation fails for Q, this is also recorded. If later a triangulation is found for which the volume calculation of Q is successful, the row in \mathcal{L} corresponding to Q is updated with the information.

(6) All polyhedra created which were found to be previously unrepresented in \mathcal{L} are written from memory into an orb file. The list \mathcal{L} with its updated information is written to a file.

All of the programs mentioned above are freely available. The Python programs and the modified version of Orb, along with the Orb files I generated running the program, are freely available upon request.

4. Composition

I decided not to include a computer implementation of composition because of the computational cost of computing all possible compositions of two polyhedra. To demonstrate this, note that every right-angled hyperbolic polyhedron has at least 12 pentagonal faces. Unless some symmetry conditions can be exploited, the number of compositions between two polyhedra is at least $12 \times 12 \times 10 = 1440$ and this only counts compositions along pentagons. There will be an even greater number if both polyhedra have hexagons, septagons, etc. Finding the complete set of compositions of every pair of polyhedra in the existing list of smallest polyhedra would be very computationally expensive, and so my decision was to forgo it.

Many polyhedra which can be obtained by composition do not need composition to be built up from the L"obell polyhedra – edge-additions alone will suffice. So such compositions will be included in the list as edge-descendants of the L"obell polyhedra. But this is not always the case. An example of a polyhedron which cannot be obtained from edge-additions on the L"obell polyhedra is the composition of the dodecahedron with itself denoted $L_5 \cup L_5$. Note that by symmetry of L_5, there is only one possible composition of these two dodecahedra. This composition can be thought of as doubling L_5 along any one of its faces. Since this polyhedron fails to have any very good edges, decomposition is required to break it down into L"obell polyhedra.

I noted above that the program needs some initial set of polyhedra (seeds) to begin computing the list of smallest polyhedra. Denote this initial set \mathcal{I} and the union of \mathcal{I} with set of all edge-descendants by $\mathcal{D}(\mathcal{I})$. If \mathcal{I} consists only of L"obell polyhedra, then $\mathcal{D}(\mathcal{I})$ will not include $L_5 \cup L_5$. Therefore, $L_5 \cup L_5$ is included in \mathcal{I}.

So the question becomes, “If \mathcal{I} consists of the L"obell polyhedra and $L_5 \cup L_5$, is $\mathcal{D}(\mathcal{I})$ the set of all right-angled hyperbolic polyhedra?” The answer to this question is no. This will be discussed more below.

I will prove the following weaker proposition:

Theorem 3. If \mathcal{I} consists of the L"obell polyhedra and $L_5 \cup L_5$, then the set of right-angled hyperbolic polyhedra whose volume is less than 15 is contained in $\mathcal{D}(\mathcal{I})$.

Proof: Corollary 2 says every right-angled polyhedron P is obtainable by edge-additions and compositions of the L"obell polyhedra and their edge-descendants. By definition, if P is obtainable from the L"obell polyhedra using only edge-additions, then it is included in $\mathcal{D}(\mathcal{I})$. In light of this, the only polyhedra which could be
excluded from $D(I)$ are compositions and their edge-descendants. The theorem is proved if it is shown that all compositions which have volume less than 15 are contained in $D(I)$.

Here is a simple result which is helpful to this end:

Lemma 4. Suppose one of the following statements holds for a right-angled polyhedron P:

1. P has a pair of very good edges e_1 and e_2 which satisfy the following conditions:
 - (a) e_1 and e_2 do not both belong to the same face,
 - (b) if e_1 edge-connects faces F_1 to F_2 and e_2 edge-connects G_1 to G_2, then $F_i \neq G_j$ for $i, j = 1, 2$,
 - (c) e_1 is not an edge of G_1 or G_2, and e_2 is not an edge of F_1 or F_2.
2. P has three very good edges, e_{12}, e_{23}, e_{31}, no two of which belong to the same face, and which edge-connect faces F_1 to F_2, F_2 to F_3, and F_3 to F_1.

Then any composition of polyhedra which involves P contains a very good edge e which has the property that edge-deleting e will result in a polyhedron which is decomposable.

The utility of this result is that if Q is the composition of two polyhedra P_1 and P_2, one of which satisfies the conditions of the lemma, then Q must have a very good edge which when deleted results in a strictly smaller-volume composition. If it has been shown that this smaller-volume composition is in our list of edge-descendants $D(I)$, then it follows that Q will also be in $D(I)$.

Proof of Lemma: This proof will begin with a sub-lemma.

Sub-Lemma 5. Suppose e is a very good edge of P. Denote the faces of P to which e belongs J_1 and J_2, and the faces that e edge-connects K_1 and K_2. Denote by eP the polyhedron which is obtained by edge-deletion of e. Then the composition $P \cup Q$ along a face $F \subset P$ other than K_1, K_2, J_1, and J_2 has a very good edge which when edge-deleted, results in the composition $eP \cup Q$.

Proof of Sub-Lemma: For ease of communication, it is useful to define topological inclusions of P and Q into the composition $P \cup Q$. The polyhedron $P \cup Q$ has a distinguished prismatic k–circuit, call it d corresponding to the boundary of the face F that was the site of the composition. The prismatic k–circuit bounds an embedded topological k–gon in $P \cup Q$ which is the site on the boundary of P where P and Q were glued. Splitting $P \cup Q$ along this topological k–gon produces two components which are topologically and combinatorially isomorphic to P and Q. This defines inclusions $i : P \to P \cup Q$ and $j : Q \to P \cup Q$.

A simple observation about a composition involving P is that it does not decrease the number of edges in any face of P which is not the gluing site F. By this I mean that if G is any face of P other than F, $i(G)$ is a face of $P \cup Q$ which has at least as many edges as G. Further, composition necessarily increases the number of edges of those faces which are adjacent to F. By this I mean that if C is a face of P adjacent to F, then $i(C)$ is contained in a face of $P \cup Q$ which has more edges than C.

Therefore, returning to the context of the sub-lemma, since composition takes place at a face other than K_1 or K_2, these faces do not see a decrease in their number of edges. Also, since the composition does not happen at J_1 or J_2, we
know that \(i(e)\) is an edge of \(P \cup Q\). Therefore, \(i(e)\) edge-connects two large faces, namely \(i(K_1)\) and \(i(K_2)\).

For the purposes of establishing a contradiction, suppose that \(i(e)\) is an edge intersected by a prismatic 5–circuit \(c\). If \(c\) does not intersect the distinguished prismatic \(k\)–circuit \(d\) described above, then \(e\) must be a prismatic 5–circuit contained entirely in \(i(P)\). This implies that \(e\) is intersected by a prismatic 5–circuit in \(P\). This is a contradiction.

So suppose \(c\) intersects \(d\). Since \(c\) and \(d\) are simple closed loops on a sphere, they must intersect in at least two points. These two points can get mapped back to \(P\) by the inverse map \(i^{-1} : i(P) \to P\). Since \(c\) is prismatic, these two points in \(P\) lie on two different edges of the face \(F\) which do not share an endpoint. These two points can then be connected by a curve lying entirely within \(F\) to connect the endpoints create a prismatic circuit in \(P\). Note that this prismatic circuit necessarily intersects fewer edges in \(P\) than \(c\) does in \(P \cup Q\). This is a contradiction.

This proves that \(i(e)\) is a very good edge of \(P \cup Q\).

Let \(R\) denote the polyhedron which is obtained by edge-deleting \(i(e)\). Note that \(d\) persists as a prismatic \(k\)–circuit in \(R\) and splitting \(R\) along the topological \(k\)–gon bounded by \(d\) results in components combinatorially isomorphic to \(eP\) and \(Q\). Therefore, \(R\) is \(eP \cup Q\).

This ends the proof of the sub-lemma. \(\square\)

Returning to the proof of the lemma, for any composition of \(P\) and \(Q\) along a face \(F \subset P\), either of the conditions on \(P\) described in the statement of the lemma guarantees the existence of a very good edge in \(P\) which is disjoint from \(F\).

Suppose \(P\) satisfies the first condition of the lemma. The faces which \(e_1\) edge-connects are denoted \(F_1\) and \(F_2\). Denote the faces to which \(e_1\) belongs by \(J_1\) and \(J_2\). If the face \(F\) where the composition is to take place is not one of these four faces, then the conclusion of the lemma follows from the sub-lemma.

So suppose \(F = F_1\). Then by condition \((b)\), \(F\) is not \(G_1\) nor \(G_2\), and by condition \((c)\), \(e_2\) is not an edge of \(F\). Therefore, this choice of edge \(e_2\) and gluing face \(F\) satisfy the conditions of the sub-lemma, from which the lemma follows. A similar argument works if \(F = F_2\).

So suppose \(F = J_1\). Then \(e_1\) is an edge of \(F\). Then by condition \((a)\), \(e_2\) is not an edge of \(F\) and by condition \((c)\), neither \(G_1\) nor \(G_2\) is \(F\). Thus, the lemma follows.

The above argument can be trivially adapted by relabeling indices to show that if \(F = G_1\), \(F = G_2\), or \(e_2\) is an edge of \(F\), then \(e_1\) and \(F\) satisfy the conditions of the sub-lemma. Hence, the conclusion of the lemma follows from condition \((1)\).

Now consider condition \((2)\) of the lemma. Suppose \(F = F_1\). Then \(F\) is neither \(F_2\) nor \(F_3\). Further, \(e_{23}\) cannot be an edge of \(F\) since trivalence would then imply \(F_1\) is adjacent to both \(F_2\) and \(F_3\) which would preclude the existence of a very good edge (or any edge at all) between them. Therefore, the choice of edge \(e_{23}\) and choice of gluing site \(F = F_1\) satisfy the conditions of the sub-lemma, and so the lemma follows. This argument can be adapted to the cases where \(F = F_2\) or \(F = F_3\) as well.

Suppose \(F\) has \(e_{12}\) as an edge. Then neither \(e_{23}\) nor \(e_{31}\) are edges of \(F\). Neither \(F_1\) nor \(F_2\) can be \(F\) since \(e_{12}\) edges connects \(F_1\) and \(F_2\). Further, \(F_3\) cannot be \(F\) trivalence would imply that \(F_3\) is adjacent to \(F_1\) and \(F_2\). Therefore, the lemma follows.

This ends the proof of the lemma. \(\square\)
Returning to the proof of the theorem, since only compositions of volume less than 15 need to be considered, I will restrict attention to compositions involving the 39 smallest-volume polyhedra in the set \(\mathcal{D}(\mathcal{I})\) – denote this subset \(\mathcal{A}\). This is because any composition that involves a polyhedron in \(\mathcal{D}(\mathcal{I})\) larger in volume than those in \(\mathcal{A}\) is necessarily larger than 15 in volume. I will denote the \(n\)th smallest polyhedron in \(\mathcal{A}\) by \(A_n\). So, for instance, \(A_1 = L_5\), \(A_2 = L_6\), and \(A_3\) is the unique polyhedron obtained by edge-addition on \(L_6\).

By manual observation of 1–skeleta, those polyhedra which satisfy the conditions of the lemma can be detected (see Appendix B for pictures of these 1–skeleta). It happens that 13 of the polyhedra in \(\mathcal{A}\) fail to satisfy the conditions of the lemma. Denote this set of 13 polyhedra \(\mathcal{B}\). Interestingly, \(\mathcal{B}\) contains exactly those polyhedra which are not edge-descendants of \(A_3 = L_6\). Figure 2 shows the family tree of edge-descendants. Notice that \(A_1, A_4, A_7, A_{11}, A_{12}, A_{18}, A_{23}, A_{26}, A_{29}, A_{30}, A_{35}, A_{39}\) are all missing from this family tree. Adding \(A_2\) completes the list \(\mathcal{B}\).

Table 1 contains the volumes of all the elements of \(\mathcal{A}\). Shaded in gray are those polyhedra which lie in \(\mathcal{B}\).

\(\text{vol}(A_1)\)	\(\text{vol}(A_{14})\)	\(\text{vol}(A_{27})\)
4.30621	9.56488	10.34848
6.02304	9.62756	10.40429
6.96701	9.67726	10.41604
7.56325	9.71117	10.42605
7.86995	9.73084	10.48885
8.00023	9.80384	10.48909
8.61241	9.81423	10.53439
8.67652	9.83568	10.56155
8.86089	9.92355	10.59201
8.9466	9.97683	10.61998
9.01905	9.97717	10.63572
9.20916	10.21991	10.67059
9.47497	10.3378	10.67059

Table 1. This table contains the volumes of the 39 smallest right-angled hyperbolic polyhedra in \(\mathcal{D}(\mathcal{I})\). Shaded cells represent polyhedra which do not satisfy the conditions of the lemma.

The task now is to show that compositions of two polyhedra in \(\mathcal{B}\) and which have volume less than 15 are elements of \(\mathcal{D}(\mathcal{I})\). Once this has been shown, the theorem will be proved.

Here is the idea for how this proves the theorem. Consider a composition of any two elements of \(\mathcal{A}\), say \(P \cup Q\). If one of them satisfies the conditions of the lemma (that is, one of them is in \(\mathcal{A} \setminus \mathcal{B}\)), then an edge-deletion will obtain \(eP \cup Q\). Note that since the volume of \(eP\) is strictly smaller than that of \(P\), \(eP\) is also in \(\mathcal{A}\). If either \(eP\) or \(Q\) satisfies the conditions of the lemma, then we can repeat this process. Repeat until both of the components of the composition fail to satisfy

\(^2\)The 40th smallest polyhedron in \(\mathcal{D}(\mathcal{I})\) has volume 10.72713 and so the smallest possible composition (which is with \(L_5\)) will have volume at least 10.72713 + 4.3062 > 15
the conditions of the lemma. Then the composition is in $\mathcal{D}(\mathcal{I})$ as are all of its edge-descendants which includes $P \cup Q$.

Certain pairs of polyhedra do not need to considered since the volume of the composition is easily determined to be larger than 15 (recall the lower bound on composition $\text{vol}(P \cup Q) \geq \text{vol}(P) + \text{vol}(Q)$). For instance, for any polyhedron in \mathcal{B} whose volume is larger than 9, only the composition with the dodecahedron A_1 needs to be considered since composing it with anything with larger volume will result in a polyhedron whose volume is larger than 15. This reduces the amount of work to do considerably.

Pairs of polyhedra in \mathcal{B} whose compositions need to be considered and shown to be in $\mathcal{D}(\mathcal{I})$ are:

- (A_1, \ast), where \ast is any element of \mathcal{B},
- (A_2, A_2, A_4, A_11), and A_{30} are the L"obell polyhedra L_5, L_6, L_7, L_8 and L_9 respectively. Also, A_7 is $L_5 \cup L_5$.

Many of these pairs have polyhedra with symmetry which reduces the number of compositions that need to be considered. For example, the symmetries of the dodecahedron A_1 mean that the number of compositions between A_1 and any other polyhedron P is determined by the number of pentagons that P has as faces.

To show that compositions of these elements of \mathcal{B} are in $\mathcal{D}(\mathcal{I})$, I constructed the composition in Orb’s graphical user interface (really, it is the double cover which I constructed). This produces an orbifold which I can compare against the set $\mathcal{D}(\mathcal{I})$ by checking for graph isomorphism.

This method shows that every composition of pairs of elements of \mathcal{B} is in $\mathcal{D}(\mathcal{I})$ except one! This exceptional composition is $A_{39} \cup A_1$ along one of A_{39}’s fifteen pentagonal faces (see Figure 3). Fortunately, this composition has volume $15.07032...$ and so does not contradict the theorem. I will discuss this interesting counterexample more below.

This proves the theorem.

So to reiterate: every right-angled hyperbolic polyhedron with volume less than 15 can be obtained by repeated edge-additions on a L"obell polyhedron or $L_5 \cup L_5$. Therefore, the list of polyhedra whose volume is less than 15 can be obtained without having to implement composition algorithmically.
5. Results

A table of volumes of the 825 smallest polyhedra appears in the appendix in this paper. The Tutte embeddings of the 100 smallest polyhedra also appear in the appendix. In Figure 4, a scatter plot of the volumes of the first 200 smallest polyhedron is given.

6. Problems and Questions

Here are some questions which I think are interesting:

(1) The list as it currently stands consists of 825 polyhedra. The 825th smallest right-angled polyhedron has volume 13.42033. But Theorem 3 implies that this list can be greatly extended without needing to introduce composition. The obstacle is that Orb is unable to compute the hyperbolic structure of certain right-angled hyperbolic polyhedra in my list and so I cannot accurately place them in the list. If a way of obtaining a reliable volume for these polyhedra comes to exist, then the list could probably be extended to many thousands of polyhedra.
(2) The claim that every right-angled hyperbolic polyhedron is an edge-descendant of the L"obell polyhedra or \(L_5 \cup L_5 \) is false – a counterexample is provided by a composition of \(A_{39} \) and \(A_1 = L_5 \) (see Figure 3). This polyhedron cannot be an edge-descendant of anything because it has no very good edges. Of course, this polyhedron could be added to \(\mathcal{I} \), and the list of smallest-volume polyhedra would then be extended without implementing composition, but there is no telling where the next such exceptional polyhedra will appear. Is there a characterization of polyhedra which are not edge-descendants?

(3) \(A_{39} \) is also notable because its \texttt{Orb}-reported volume is equal to the \texttt{Orb}-reported volume of \(A_{38} \) up to twelve digits of precision. This is not so unusual later in the list, when volumes become more dense. But two polyhedra with almost the same volume occur so early in the list is remarkable and raises the question: Why? Non-isometric polyhedra with the same volume can also arise by doubling a polyhedron across its various faces however \(A_{38} \) and \(A_{39} \) are not related in this way. See Figure 5.

(4) This list depends heavily on \texttt{Orb} and \texttt{graph-tool}. These are fantastic open-source programs but I lack the expertise to judge their numerical accuracy and correctness which are issues when working with very complicated polyhedra. Are these programs reliable enough to trust all of the information found in this list?

(5) Being able to see these hyperbolic polyhedra in their native habitat (namely \(\mathbb{H}^3 \)) would be beautiful. A nice project would be to write a program which can take the geometric triangulation data found in \texttt{Orb} and create an image of the polyhedra in, say, the Poincaré ball model. The program \texttt{Geomview} is able to render such images, so this is really just a matter of translating from \texttt{Orb}'s file format to \texttt{Geomview}.

Figure 5. A pair of non-isometric right-angled polyhedra with the same volume (up to 12 digits). What I am calling \(A_{38} \) is on the left, and \(A_{39} \) is on the right.
References

[ADST07] Ian Agol, Nathan M. Dunfield, Peter A. Storm, and William P. Thurston. Lower bounds on volumes of hyperbolic Haken 3-manifolds. *J. Amer. Math. Soc.*, 20:1053–1077, 2007.

[GM91] Charlie Gunn and Delle Maxwell. *Not Knot*. A. K. Peters, 1991. Video.

[Hea13] D. Heard. orb, 2013. http://www.ms.unimelb.edu.au/~snap/ orb.html A computer program for creating and studying 3-orbifolds.

[Ino08] Taiyo Inoue. Organizing Volumes of Right-Angled Hyperbolic Polyhedra. *Algebr. Geom. Topol.*, 8:1523–1565, 2008.

[Pei15] Tiago Peixoto. graph-tool, 2015. https://graph-tool.skewed.de/ A python module for manipulation of graphs.

[Pog67] A. V. Pogorelov. Regular decomposition of the Lobačevskii space. *Mat. Zametki*, 1:3–8, 1967. (Russian).

[Ves98] A. Yu. Vesnin. Volumes of Löbell 3-manifolds. *Mat. Zametki*, 64(1):17–23, 1998.

[Wee01] J. Weeks. SnapPea: a computer program for creating and studying hyperbolic 3-manifolds, 2001.
Appendix A: Table of Volumes

Rank	Volume
1	4.3062108
2	6.023046
3	6.9670114
4	7.5632491
5	7.8699479
6	8.0002343
7	8.6124152
8	8.6765244
9	8.8608973
10	8.8699479
11	9.0190528
12	9.2091595
13	9.4749695
14	9.5648792
15	9.6275647
16	9.6772650
17	9.7111700
18	9.7308471
19	9.8038472
20	9.8142328
21	9.8356794
22	9.9235512
23	9.9768361
24	9.9771698
25	10.2199075
26	10.338015
27	10.3484815
28	10.4042904
29	10.410438
30	10.4260522
31	10.4888519
32	10.489097
33	10.5343945
34	10.5615537
35	10.5920090
36	10.6199778
37	10.6357266
38	10.6705888
39	10.6705888
40	10.7271348
41	10.7534763
42	10.7563401
43	10.7874579
44	10.7990421
45	10.8804124
136:	11.9111339
137:	11.9130597
138:	11.9201173
139:	11.9496613
140:	11.9548014
141:	11.9562534
142:	12.0251598
143:	12.0284546
144:	12.0307865
145:	12.0421556
146:	12.0460920
147:	12.0577601
148:	12.0617133
149:	12.0251598
150:	12.0284546
151:	12.0307865
152:	12.0421556
153:	12.0460920
154:	12.0577601
155:	12.0586613
156:	12.0774156
157:	12.0816685
158:	12.0841913
159:	12.0841913
160:	12.0852099
161:	12.0984817
162:	12.1038544
163:	12.1147206
164:	12.1233416
165:	12.1269916
166:	12.1405768
167:	12.1415323
168:	12.1444998
169:	12.1517046
170:	12.1545352
171:	12.1553815
172:	12.1682871
173:	12.1781926
174:	12.1810448
175:	12.1863417
176:	12.1976346
177:	12.2001378
178:	12.2011148
179:	12.2017855
180:	12.2124156
181:	12.2156605
182:	12.2160447
---	---
280:	12.5709272
281:	12.5719055
282:	12.5770091
283:	12.5797398
284:	12.5883592
285:	12.5916877
286:	12.5919487
287:	12.5988561
288:	12.6001356
289:	12.6119078
290:	12.6127051
291:	12.6133512
292:	12.6146167
293:	12.6147991
294:	12.6159185
295:	12.6174108
296:	12.6180672
297:	12.6207832
298:	12.6246110
299:	12.6247937
300:	12.6270088
301:	12.630289
302:	12.6346334
303:	12.6372939
304:	12.646941
305:	12.6479120
306:	12.6500163
307:	12.6514822
308:	12.6578787
309:	12.6606309
310:	12.6613411
311:	12.6661597
312:	12.6664503
313:	12.6670277
314:	12.6672765
315:	12.6687087
316:	12.6693988
317:	12.6699947
318:	12.6713641
319:	12.6742252
320:	12.6753857
321:	12.6794010
322:	12.6806399
323:	12.6828872
324:	12.6832494
325:	12.6860769
326:	12.6871951
327:	12.697821

328:	12.6985894
329:	12.7025794
330:	12.7033136
331:	12.7072758
332:	12.7087943
333:	12.7089644
334:	12.7097704
335:	12.7112824
336:	12.7134298
337:	12.7157367
338:	12.7195313
339:	12.7214472
340:	12.7232730
341:	12.7262254
342:	12.7294877
343:	12.7330111
344:	12.7347908
345:	12.7384981
346:	12.7399561
347:	12.7401153
348:	12.7406675
349:	12.7432168
350:	12.7436003
351:	12.7442571
352:	12.7455923
353:	12.7455926
354:	12.7460513
355:	12.7460515
356:	12.7482225
357:	12.7558029
358:	12.7599093
359:	12.7645973
360:	12.7661321
361:	12.7667392
362:	12.7672454
363:	12.7677000
364:	12.7685012
365:	12.7693876
366:	12.776313
367:	12.779034
368:	12.7820728
369:	12.7822353
370:	12.7831954
371:	12.7833781
372:	12.7857129
373:	12.7857129
374:	12.7920778
375:	12.7925214

376:	12.7948392
377:	12.7979026
378:	12.7996480
379:	12.8016266
380:	12.8018956
381:	12.8045382
382:	12.8066760
383:	12.8107155
384:	12.8174862
385:	12.8183900
386:	12.821584
387:	12.8221324
388:	12.8226626
389:	12.8231303
390:	12.8245185
391:	12.8256219
392:	12.8272844
393:	12.8282458
394:	12.8284383
395:	12.8286006
396:	12.8365463
397:	12.8416379
398:	12.8433256
399:	12.8441243
400:	12.8447142
401:	12.8476691
402:	12.8493546
403:	12.8607115
404:	12.8609814
405:	12.8661875
406:	12.8708785
407:	12.8718074
408:	12.8718715
409:	12.8726247
410:	12.8749811
411:	12.8756532
412:	12.8763805
413:	12.8765835
414:	12.8766261
415:	12.8789947
416:	12.8792251
417:	12.8808630
418:	12.8815061
419:	12.8843508
420:	12.8885622
421:	12.8927067
422:	12.893312
423:	12.8934687
424: 12.8960354	
425: 12.902597	
426: 12.9056424	
427: 12.9077398	
428: 12.9101791	
429: 12.9114325	
430: 12.9124632	
431: 12.9127128	
432: 12.9139315	
433: 12.914183	
434: 12.9161902	
435: 12.916207	
436: 12.9186228	
437: 12.9186228	
438: 12.9205532	
439: 12.9246735	
440: 12.9250878	
441: 12.9254826	
442: 12.9316159	
443: 12.9320131	
444: 12.9322569	
445: 12.9342855	
446: 12.9379678	
447: 12.9380414	
448: 12.942748	
449: 12.9507107	
450: 12.952697	
451: 12.9542260	
452: 12.956114	
453: 12.9574588	
454: 12.9594551	
455: 12.9621565	
456: 12.9623225	
457: 12.9675033	
458: 12.9727244	
459: 12.9769842	
460: 12.9787127	
461: 12.9787488	
462: 12.978926	
463: 12.9803944	
464: 12.9810244	
465: 12.9821528	
466: 12.9826962	
467: 12.9841541	
468: 12.9852469	
469: 12.9870666	
470: 12.9871326	
471: 12.9875988	
	Value
---	---------
712:	13.3185439
713:	13.318907
714:	13.3191095
715:	13.319284
716:	13.319623
717:	13.3202038
718:	13.321566
719:	13.323716
720:	13.3239867
721:	13.3259183
722:	13.3266908
723:	13.3278201
724:	13.3279098
725:	13.3283104
726:	13.3284008
727:	13.3296515
728:	13.3315609
729:	13.3321591
730:	13.3327367
731:	13.3341648
732:	13.3355411
733:	13.3388411
734:	13.339317
735:	13.3393506
736:	13.3400671
737:	13.3407227
738:	13.3408317
739:	13.3422229
740:	13.3428668
741:	13.3453554
742:	13.3454021
743:	13.3470733
744:	13.3474075
745:	13.3475313
746:	13.3480883
747:	13.3493078
748:	13.3497468
749:	13.3502204
750:	13.3509879
Appendix B: 1-skeleta of the 100 smallest polyhedra

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16
17	18	19	20
THE 825 SMALLEST RIGHT-ANGLED HYPERBOLIC POLYHEDRA

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40
E-mail address: taiyoinoue@gmail.com