Toward Interpretable Topic Discovery via Anchored Correlation Explanation

Kyle Reing
David Kale
Greg Ver Steeg
Aram Galstyan

USC Information Sciences Institute, Marina del Rey, CA, USA

Abstract

Many predictive tasks, such as diagnosing a patient based on their medical chart, are ultimately defined by the decisions of human experts. Unfortunately, encoding experts’ knowledge is often time consuming and expensive. We propose a simple way to use fuzzy and informal knowledge from experts to guide discovery of interpretable latent topics in text. The underlying intuition of our approach is that latent factors should be informative about both correlations in the data and a set of relevance variables specified by an expert. Mathematically, this approach is a combination of the information bottleneck and Total Correlation Explanation (CorEx). We give a preliminary evaluation of Anchored CorEx, showing that it produces more coherent and interpretable topics on two distinct corpora.

1. Introduction

A clinician can look at a patient’s electronic health record (EHR) and not only decide whether the patient has diabetes but also produce a succinct summary of the clinical evidence. Replicating this feat with computational tools has been the focus of much research in clinical informatics. There are major initiatives underway to codify clinical knowledge into formal representations, most often as deterministic rules that can be applied in a semi-automated fashion (Newton et al., 2013). However, representing the intuitive judgments of human experts can be challenging, particularly when the formal system does not match the expert’s knowledge. For example, many deterministic disease classifiers used in clinical informatics rely heavily upon administrative codes not available at time of diagnosis. Further, developing and testing such systems is time- and labor-intensive.

We propose instead a lightweight information theoretic framework for codifying informal human knowledge and then use it to extract interpretable latent topics from text corpora. For example, to discover patients with diabetes in a set of clinical notes, a doctor can begin by specifying disease-specific anchor terms (Arora et al., 2012; Halpern et al., 2014), such as “diabetes” or “insulin.” Our framework then uses these to help discover both latent topics associated with diabetes and records in which diabetes-related topics occur. The user can then add (or remove) additional anchor terms (e.g., “metformin”) to improve the quality of the learned (diabetes) topics.

In this workshop paper, we introduce a simple approach to anchored information theoretic topic modeling using a novel combination of Correlation Explanation (CorEx) (Ver Steeg & Galstyan, 2014) and the information bottleneck (Tishby et al., 2000). This flexible framework enables the user to leverage domain knowledge to guide exploration of a collection of documents and to impose semantics onto latent factors learned by CorEx. We present preliminary experimental results on two text corpora (including a corpus of clinical notes), showing that anchors can be used to discover topics that are more specific and relevant. What is more, we demonstrate the potential for this framework to perform weakly supervised learning in settings where labeling documents is prohibitively expensive (Chen et al., 2013; Agarwal et al., 2016).

With respect to interpretable machine learning, our contributions are twofold. First, our framework provides a way for human users to share domain knowledge with a statistical learning algorithm that is both convenient for the human user and easily digestible by the machine. Second, our experimental results confirm that the introduction of simple anchor words can improve the coherence and human interpretability of topics discovered from data. Both are essential to successful and interactive collaboration between machine learning and human users.
2. Methods

Anchored Correlation Explanation can be understood as a combination of Total Correlation Explanation (CorEx) (Ver Steeg & Galstyan, 2014; 2015) and the multivariate information bottleneck (Tishby et al., 2000; Slonim et al., 2006). We search for a set of probabilistic functions of the inputs $p(y_j|x)$ for $j=1,...,m$ that optimize the following information theoretic objective:

$$\max_{p(y_j|x), j=1,\ldots,m} TC(X;Y) + \beta \sum_{i,j \in \mathcal{R}} I(X_i;Y_j)$$

The first term is the CorEx objective $TC(X;Y) \equiv TC(X) - TC(X|Y)$, which aims to construct latent variables Y that best explain multivariate dependencies in the data X. Here the data consist of n-dimensional binary vectors $[X_1,\ldots,X_n]$. Total correlation, or multivariate mutual information (Watanabe, 1960), is specified as $TC(X_1,\ldots,X_n) = KL(p(x_1,\ldots,x_n)||\prod p(x_i))$ where KL is the KL divergence. Maximizing $TC(X;Y)$ over latent factors $\{Y_j\}_{j=1}^m$ amounts to minimizing $TC(X|Y)$, which measures how much dependence in X is explained by Y. At the global optimum, $TC(X|Y)$ is zero and the observations are independent conditioned on the latent factors. Several papers have explored CorEx for unsupervised hierarchical topic modeling (Ver Steeg & Galstyan, 2014; Chen et al., 2015; Hodas et al., 2015).

The second term involves the mutual information between pairs of latent factors Y_j and anchor variables X_j specified in the set $\mathcal{R} = \{(i,j)\}$. This is inspired by the information bottleneck (Tishby et al., 2000; Slonim et al., 2006), a supervised information-theoretic approach to discovering latent factors. The bottleneck objective $\max_{p(y|x)} -I(X;Y) + \beta I(Z;Y)$ constructs latent factors Y that trade off compression of X against preserving information about relevance variables Z.

Anchored CorEx preserves information about anchors while also explaining as much multivariate dependence between observations in X as possible. This framework is flexible: we can attach multiple anchors to one factor or one anchor to multiple factors. We have found empirically that $\beta = 1$ works well and does not need to be tuned.

Anchors allow us to both seed CorEx and impose semantics on latent factors: when analyzing medical documents, for example, we can anchor a diabetes latent factor to the word “diabetes.” The TC objective then discovers other words associated with “diabetes” and includes them in this topic.

While there is not space here for a full description of the optimization, it is similar in principle to the approaches in Ver Steeg & Galstyan (2014; 2015). Two points are worth noting: first, the TC objective is replaced by a lower bound to make optimization feasible (Ver Steeg & Galstyan, 2015). Second, we impose a sparse connection constraint (each word appears in only one topic) to speed up computation. Open source code implementing CorEx is available on github (Ver Steeg, 2016).

3. Related Work

There is a large body of work on integrating domain knowledge into topic models and other unsupervised latent variable models, often in the form of constraints (Wagstaff et al., 2001), prior distributions (Andrzejewski et al., 2009), and token labels (Andrzejewski & Zhu, 2009). Like Anchored CorEx, seeded latent dirichlet allocation (SeededLDA) allows the specification of word-topic relationships (Jagarlamudi et al., 2012). However, SeededLDA assumes a more complex latent structure, in which each topic is a mixture of two distributions, one unseeded and one seeded.

Arora et al. (2012) first proposed anchors in the context of topic modeling: words that are high precision indicators of underlying topics. In contrast to our approach, anchors are typically selected automatically, constrained to appear in only one topic, and used primarily to aid optimization (Nguyen et al., 2014). In our information theoretic framework, anchors are specified manually and more loosely defined as words having high mutual information with one or more latent factors. The effects of anchors on the interpretability of traditional topic models are often mixed (Lee & Mimno, 2014), but our experiments suggest that our approach yields more coherent topics.

In health informatics, “anchor” features chosen based on domain knowledge have been used to guide statistical learning (Halpern et al., 2014). In Agarwal et al. (2016), anchors are used as a source of distant supervision (Craven & Kumlien, 1999; Mintz et al., 2009) for classifiers in the absence of ground truth labels. While Anchored CorEx can be used for discriminative tasks, it is essentially unsupervised. Recent work by Halpern et al. (2015) is perhaps most similar in spirit to ours: they exploit predefined anchors to help learn and impose semantics on a discrete latent factor model with a directed acyclic graph structure. We utilize an information theoretic approach that makes no generative modeling assumptions.

4. Results and Discussion

To demonstrate the utility of Anchored CorEx, we run experiments on two document collections: 20 Newsroups and the i2b2 2008 Obesity Challenge (Uzuner, 2009) data set. Both corpora provide ground truth labels for latent classes that may be thought of as topics.
4.1. 20 Newsgroups

The 20 Newsgroups data set is suitable for a straightforward evaluation of anchored topic models. The latent classes represent mutually exclusive categories, and each document is known to originate from a single category. We find that the correlation structure among the latent classes is less complex than in the Obesity Challenge data. Further, each category tends to exhibit some specialized vocabulary not used extensively in other categories (thus satisfying the anchor assumption from Arora et al. (2012)).

To prepare the data, we removed headers, footers, and quotes and reduced the vocabulary to the most frequent 20,000 words. Each document was represented as a binary bag-of-words vector. In all experiments, we used the standard training/test split. All CorEx models used three layers of 40, 3, and 1 factors. Figure 1 shows an example hierarchical topic model extracted by Anchored CorEx.

4.2. i2b2 Obesity Challenge 2008

The Obesity Challenge 2008 data set\(^1\) includes 1237 de-identified clinical discharge summaries from the Partners HealthCare Research Patient Data Repository. All summaries have been labeled by clinical experts with obesity and 15 other conditions commonly comorbid with obesity, ranging from Coronary Artery Disease (663 positives) to Depression (247) to Hypertriglyceridemia (62).

We preprocessed each document with a standard biomedical text pipeline that extracts common medical terms and phrases (grouping neighboring words where appropriate) and detecting negation (“not” is prepended to negated terms) (Dai et al., 2008; Chapman et al., 2001). We converted each document to a binary bag-of-words with a vocabulary of 4114 (possibly negated) medical phrases. We used the 60/40 training/test split from the competition.

We are primarily interested in the ability of Anchored CorEx to extract latent topics that are unambiguously associated with the 16 known conditions. We train a series of CorEx models with 32 latent topics in the first layer, each using a different anchor strategy. Table 1 shows the Obesity and Obstructive Sleep Apnea (OSA) topics for three iterations of Anchored CorEx with the ten most important terms (highest weighted connections to the latent factor) listed for each topic. Unsupervised CorEx (first row) does not discover any topics obviously related to obesity or OSA, so we choose the topics to which the terms *obesity* and *obstructive sleep apnea* are assigned. No unambiguous Obesity or OSA topics emerge even as the number of latent factors is decreased or increased.

In the second iteration (second row), we add the common name of each of the 16 diseases as an anchor to one factor (16 total). Adding obesity as an anchor produces a clear Obesity topic, including several medications known to cause weight gain (e.g., acetylosol, klonopin). The anchored OSA topic, however, is quite poor and in fact resembles the rather generic topic to which obstructive sleep apnea is assigned by Unsupervised CorEx. It includes many spurious or non-specific terms like drug.

This is likely due to the fact that obesity is a major risk factor of OSA, and so OSA symptoms are highly correlated with obesity and its other symptoms. Thus, the total correlation objective will attempt to group obesity and OSA-related terms together under a single latent factor. The sparse connection constraint mentioned in section 2 prevents them from being connected to multiple factors. Indeed, sleep apnea appears in the obesity topic, suggesting the two topics are competing to explain OSA terms.

In the third iteration, we correct this by adding sleep apnea as a second anchor to the OSA topic, and the resulting topic is clearly associated with OSA, including terms related to respiratory problems and medications used to treat (or believed to increase risk for) OSA. There is no noticeable

\(^1\) https://www.i2b2.org/NLP/DataSets/Main.php
Toward Interpretable Topic Discovery via Anchored Correlation Explanation

Table 1

Anchors	Topic	AUC	Anchors	Topic	AUC
	not fever, not chill, not diarrhea, not dysuria, not cough,	0.600		use, drug, complication, allergy, sodium, infection, furosemide,	0.686
	not abdominal pain, not guarding, not rebound, not palpitation,			docusate, shortness of breath, esomeprazole	
	not night sweats				
One per	obesity, sleep apnea, morbid obese, obese, labor, acetylosol,	0.762		use, complication, drug, allergy, sodium, infection, furosemide,	0.546
topic	vaginal bleeding, klonopin, valproic acid, bacteruria			docusate, shortness of breath, obstructive sleep apnea	
for each					
disease					
Add	obesity, morbid obese, obese, labor, not non-compliant,	0.757		sleep apnea, obstructive sleep apnea, oxygen, duoneb, desaturation,	0.826
second	acetylosol, vaginal bleeding, problem, not deep venous thrombosis,			singular, pulmonary hypertension, hypoxemia, pap smear, vicodin	
OSA	overweight				
anchor					

Table 1. Evolution of Obesity and Obstructive Sleep Apnea (OSA) topics as anchors are added. Colors and font weight indicate anchors, spurious terms, and intruder terms from other known topics. Multiword and negated terms are the result of the preprocessing pipeline.

reduction in quality in the Obesity topic.

4.3. Anchored CorEx for Discriminative Tasks

In a series of follow-up experiments, we investigate the suitability of using anchored CorEx to perform weakly supervised classification. We interpret each anchored latent factor as a classifier for an associated class label and then compute test set F1 (using a threshold of 0.5) and area under the curve (AUC) scores (Obesity Challenge only).

Anchors	F_1 Anch	F_1 Unsup
Jesus	0.42	0.45
God	0.49	0.43
Jesus, Christian	**0.55**	0.45
Naive Bayes	0.75	

Table 2. F_1 scores on soc.religion.christianity.

Table 2 compares the classification performance of Unsupervised and Anchored CorEx on the soc.religion.christianity category from 20 Newsgroups for different choices of anchors. For both types of CorEx, the topic containing the corresponding terms is used as the classifier, but for Anchored CorEx those terms are also used as anchors when estimating the latent factor. Unsupervised CorEx does a reasonable job of discovering a coherent religion topic that already contains the terms God, Christian, and Jesus. However, using the terms Jesus and Christian as anchors yields a topic that better predicts the actual soc.religion.christianity category.

Table 3 shows the Macro-AUC and F1 scores (averaged across all diseases) on the Obesity Challenge data for the final anchored CorEx model and a Naive Bayes (NB) baseline, in which we train a separate classifier for each disease. Surprisingly, Anchored CorEx outperforms Naive Bayes (NB) by a large margin. Of course, Anchored CorEx is not a replacement for supervised learning: NB beats Anchored CorEx on 20 Newsgroups and does not represent a “strong” baseline for Obesity 2008 (teams scored above 0.7 in Macro-F1 during the competition). It is nonetheless remarkable that Anchored CorEx performs as well as it does given that it is fundamentally unsupervised.

Table 3

Classifier	Macro-AUC	Macro-F1
Naive Bayes	0.7120	0.4638
Anchored CorEx	0.7445	0.5328

Table 3. Classification performance on Obesity 2008.

5. Conclusion

We have introduced a simple information theoretic approach to topic modeling that can leverage domain knowledge specified informally as anchors. Our framework uses a novel combination of CorEx and the information bottleneck. Preliminary results suggest it can extract more precise, interpretable topics through a lightweight interactive process. We next plan to perform further empirical evaluations and to extend the algorithm to handle complex latent structures present in health care data.

Acknowledgements

This work was partially supported by DARPA award HR0011-15-C-0115. David Kale was supported by the Alfred E. Mann Innovation in Engineering Doctoral Fellowship.
References

Agarwal, V., Podchiyska, T., Banda, J. M., Goel, V., Leung, T. I., Minty, E. P., Sweeney, T. E., Gyang, E., and N.H., Shah. Learning statistical models of phenotypes using noisy labeled training data. *Journal of the American Medical Informatics Association (JAMIA)*, 2016.

Andrzejewski, David and Zhu, Xiaojin. Latent dirichlet allocation with topic-in-set knowledge. In *Proceedings of the NAACL HLT 2009 Workshop on Semi-Supervised Learning for Natural Language Processing*, pp. 43–48, 2009.

Andrzejewski, David, Zhu, Xiaojin, and Craven, Mark. Incorporating domain knowledge into topic modeling via dirichlet forest priors. In *Proceedings of the 26th Annual International Conference on Machine Learning*, pp. 25–32, 2009.

Arora, Sanjeev, Ge, Rong, and Moitra, Ankur. Learning topic models – going beyond svd. In *Proceedings of the 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science*, FOCS ’12, pp. 1–10, 2012.

Chapman, Wendy W., Bridewell, Will, Hanbury, Paul, Cooper, Gregory F., and Buchanan, Bruce G. A simple algorithm for identifying negated findings and diseases in discharge summaries. *Journal of Biomedical Informatics*, 34(5):301 – 310, 2001. ISSN 1532-0464.

Chen, Peixian, Zhang, Nevin L, Poon, Leonard KM, and Chen, Zhourong. Progressive EM for latent tree models and hierarchical topic detection. *arXiv preprint arXiv:1508.00973*, 2015.

Chen, Yukun, Carroll, Robert J, Hinz, Eugenia R McPeek, Shah, Anush, Eyler, Anne E, Denny, Joshua C, and Xu, Hua. Applying active learning to high-throughput phenotyping algorithms for electronic health records data. *Journal of the American Medical Informatics Association*, 20(e2):e253–e259, 2013.

Craven, Mark and Kumlien, Johan. Constructing biological knowledge bases by extracting information from text sources. In *Proceedings of the Seventh International Conference on Intelligent Systems for Molecular Biology*, pp. 77–86, 1999.

Dai, Manhong, Shah, Nigam H, Xuan, Wei, Musen, Mark A, Watson, Stanley J, Athey, Brian D, Meng, Fan, et al. An efficient solution for mapping free text to ontology terms. *AMIA Summit on Translational Bioinformatics*, 21, 2008.

Halpern, Y., Horng, S., and Sontag, D. Anchored Discrete Factor Analysis. *ArXiv e-prints*, November 2015.

Halpern, Yoni, Choi, Youngduck, Horng, Steven, and Sontag, David. Using anchors to estimate clinical state without labeled data. In *Proceedings of the American Medical Informatics Association (AMIA) 2015 Annual Symposium*, 2014.

Hodas, Nathan, Ver Steeg, Greg, Harrison, Joshua, Chikkagoudar, Satish, Bell, Eric, and Corley, Courtney. Disentangling the lexicons of disaster response in twitter. In *The 3rd International Workshop on Social Web for Disaster Management (SWDM’15)*, 2015.

Jagarlamudi, Jagadeesh, Daumé III, Hal, and Udupa, Raghavendra. Incorporating lexical priors into topic models. In *Proceedings of the 13th Conference of the European Chapter of the Association for Computational Linguistics*, pp. 204–213, 2012.

Lee, Moontae and Mimno, David. Low-dimensional embeddings for interpretable anchor-based topic inference. In *Proceedings of Empirical Methods in Natural Language Processing*, 2014.

Mintz, Mike, Bills, Steven, Snow, Rion, and Jurafsky, Dan. Distant supervision for relation extraction without labeled data. In *Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP: Volume 2 - Volume 2, ACL ’09*, pp. 1003–1011, 2009.

Newton, Katherine M, Peissig, Peggy L, Kho, Abel Ngo, Bielinski, Suzette J, Berg, Richard L, Choudhary, Vidhu, Basford, Melissa, Chute, Christopher G, Kullo, Ifikhar J, Li, Rongling, Pacheco, Jennifer A, Rasmussen, Lake V, Spangler, Leslie, and Denny, Joshua C. Validation of electronic medical record-based phenotyping algorithms: results and lessons learned from the emerge network. *Journal of the American Medical Informatics Association*, 20(e1):e147–e154, 2013.

Nguyen, Thang, Hu, Yuening, and Boyd-Graber, Jordan L. Anchors regularized: Adding robustness and extensibility to scalable topic-modeling algorithms. In *Association for Computational Linguistics*, pp. 359–369, 2014.

Slatin, Noam, Friedman, Nir, and Tishby, Naftali. Multivariate information bottleneck. *Neural Computation*, 18(8):1739–1789, 2006.

Tishby, Naftali, Pereira, Fernando C, and Bialek, William. The information bottleneck method. In *Proceedings of the 37th Annual Allerton Conference on Communication, Control, and Computing*, pp. 368–377, 2000.

Uzuner, ¨Ozlem. Recognizing obesity and comorbidities in sparse data. *Journal of the American Medical Informatics Association*, 16(4):561–570, 2009.

Ver Steeg, Greg. Open source project implementing hierarchical topic models on sparse data, 2016. URL http://github.com/gregversteeg/corex_topic.

Ver Steeg, Greg and Galstyan, Aram. Discovering structure in high-dimensional data through correlation explanation. *Advances in Neural Information Processing Systems (NIPS)*, 2014.

Ver Steeg, Greg and Galstyan, Aram. Maximally informative hierarchical representations of high-dimensional data. In *Proceedings of the Sixteenth International Conference on Artificial Intelligence and Statistics (AISTATS)*, 2015.

Wagstaff, Kiri, Cardie, Claire, Rogers, Seth, Schrödl, Stefan, et al. Constrained k-means clustering with background knowledge. In *ICML*, volume 1, pp. 577–584, 2001.

Watanabe, Satoshi. Information theoretical analysis of multivariate correlation. *IBM Journal of research and development*, 4(1): 66–82, 1960.