The Subcellular Organization of Madin–Darby Canine Kidney Cells during the Formation of a Polarized Epithelium

Robert Bacallao,* Claude Antony, Carlos Dotti, Eric Karsenti, Ernst H. K. Stelzer, and Kai Simons

European Molecular Biology Laboratory, D-6900 Heidelberg, Federal Republic of Germany; and *Division of Nephrology, University of California at Los Angeles Medical Center, Los Angeles, California 90024

Abstract. Studies of the developing trophectoderm in the mouse embryo have shown that extensive cellular remodeling occurs during epithelial formation. In this investigation, confocal immunofluorescence microscopy was used to examine the three-dimensional changes in cellular architecture that take place during the polarization of a terminally differentiated epithelial cell line. Madin–Darby canine kidney cells were plated at a low density on permeable filter supports. Antibodies that specifically recognize components of the tight junction, adherens junction, microtubules, centrosomes, and the Golgi complex were used to study the spatial remodeling of the cytoarchitecture during the formation of the polarized cell layer. The immunofluorescence data were correlated with establishment of functional tight junctions close to the substratum. The centrioles had split and no longer organized the microtubules which were running above and below the nucleus. The Golgi complex had spread around the nucleus. By the fifth day after plating, the final polarized state had been achieved. The junctional complex had moved >10 μm upward from its basal location. The centrioles were together below the apical membrane, and the Golgi complex formed a ribbon-like convoluted structure located in the apical region above the nucleus. The microtubules were organized in an apical web and in longitudinal microtubule bundles in the apical–basal axis of the columnar cell. The longitudinal microtubules were arranged with their minus ends spread over the apical region of the cell and their plus ends toward the basal region. These findings show that there is an extensive remodeling of epithelial cytoarchitecture after formation of cell–cell contacts. Reorganization of the microtubule network results in functional polarization of the cytoplasm.

The development of cell polarity during epithelialization is a hierarchical process where each cell undergoes a complex sequence of changes in organization before the final polarized state is reached. The decisive event seems to be the establishment of an apical–basal polarity axis. This process is initiated by signals that define the location of the basal pole of the cell through direct interactions with other cells (Fleming and Johnson, 1988) or with the underlying substratum (Hay, 1982; Rodriguez-Boulan et al., 1983; Klein et al., 1988). Subsequently, the apical pole is generated on the opposite side of the cell by little understood alterations of the intracellular organization (Johnson and Maro, 1985; Vega-Salas et al., 1987). The bipolar structure is further modified by lateral interactions between adjacent cells mediated by cell adhesion and junctional proteins (Ducibella and Anderson, 1975; Gumbiner et al., 1988). These protein–protein interactions lead to the formation of circumferential tight junctions that seal the cell layers and divide the epithelial cell surface into apical and basolateral cell surface domains (Gumbiner, 1987). The maintenance of these two surface domains requires accurate targeting and delivery of newly synthesized plasma membrane components. The Golgi complex plays an important role in this process (Griffiths and Simons, 1986; Wandinger-Ness and Simons, 1989). It is usually positioned above the nucleus in the apical part of the epithelial cell (Cajal, 1914). Newly synthesized apical and basolateral components are sorted in the trans-Golgi network into carrier vesicles (Griffiths and Simons, 1986; Bennett et al., 1988). The delivery of these carrier vesicles to the apical plasma membrane seems to be mediated by microtubules (Quaroni et al., 1979; Rindler et al., 1987; Achler et al., 1989; Eilers et al., 1989). One would, therefore, assume that microtubule organization contributes to the development of epithelial polarity. In some cell types, such as fibroblasts, microtubules are organized by the centrosome in the vicinity of the nucleus (Singer and Kupfer, 1986). This
microtubule-organizing complex also affects the localization of the Golgi complex. This interaction is dynamic and involves active movement of Golgi elements towards the minus ends of centrosome-nucleating microtubules (Thyberg and Moskalenko, 1985; Kupfer et al., 1986; Ho et al., 1989). In epithelial cells, microtubule organization is clearly different. The centrotricles are located close to the apical surface and do not seem to be major microtubule-nucleating centers (Dustin, 1984; Gorbsky and Borisy, 1985; Bré et al., 1987; Achler et al., 1989). However, the precise organization and the polarity of the microtubules are not known. The relation of microtubule organization to the location of the Golgi complex is also not clear.

In this paper, we have studied the organization of the microtubule network and the Golgi complex when epithelial cells polarize in culture. We have used the Madin-Darby canine kidney (MDCK) strain II cells as our experimental system (Balcarova-Stander et al., 1984). The cells have been plated on polycarbonate filters and they have been followed microtubule network and the Golgi complex when epithelial cells have been added to the apical and basolateral surfaces of the filters. The cells were incubated at 37°C in a 5% CO₂ hydrated atmosphere.

Primary Antibodies

Affinity-purified rabbit anti-tubulin was generously provided by Jan De Mey (European Molecular Biology Laboratory, Heidelberg, FRG). Anti-ZO-1 was a generous gift from Bruce Stevenson (Yale University, New Haven, CT). MA35 is a monoclonal antibody that recognizes a peripheral membrane protein of the Golgi complex and it was used to follow the changes in Golgi morphology (Allan and Kreis, 1986). Uvomorulin staining was performed using the monoclonal antibody rrl (Gumbiner and Simons, 1986). The monoclonal antibody 45H3, obtained by immunization of mice with purified human centrosomes, was generously provided by Michel Bornens (Gif-Sur-Yvette, France) (Bornens et al., 1987).

Measurement of the Transepithelial Resistance

Measurement of the transepithelial resistance was performed as previously described (Gumbiner and Simons, 1986). The transepithelial resistance was measured on the filter-grown cells on days 1-5 after plating. After the resistance was measured, the filters were placed back in the growth media and incubated for 1 h in the incubator before fixation.

Fixation Methodology

Cells that were stained for the centrotricles and ZO-1 were fixed by dipping the filter in PBS with 1 mM Ca²⁺ and 0.5 mM Mg²⁺ warmed to 37°C. The filters were quickly blotted on Whatman filter paper to remove excess moisture and dipped for 1 min in a bath containing −20°C methanol. The filter was transferred to a fresh bath of −20°C methanol. The cells were washed in PBS without Ca²⁺ and Mg²⁺ (PBS−) followed by a wash with PBS−, 0.1% Triton X-100.

Except for the centrotricle and ZO-1 staining, all the cells were fixed by a modification of the paraformaldehyde fixation described by Berod et al. (1981). The filter was dipped in 80 mM K-Pipes, pH 6.8, 5 mM EGTA, 2 mM MgCl₂ warmed to 37°C. The cells were incubated in 3% paraformaldehyde, 80 mM K-Pipes, pH 6.5, 5 mM EGTA, 2 mM MgCl₂ for 5 min at room temperature. This solution was added to both the apical and basal compartments of the filter holder. The solution was removed and the cells were fixed with 3% paraformaldehyde (Merck GmbH, Darmstadt, FRG), 100 mM NaB₄O₄, pH 11. The cells were incubated in this fixation solution for 10 min under continuous agitation at room temperature. The reaction was quenched by incubating the filters in 1 mg/ml NaBH₄ freshly dissolved in PBS−, pH 8, for 10 min. The pH of the PBS was brought up to 8 with 6 N NaOH to increase the half-life of the NaBH₄ in solution. The repeated treatments of the specimens with NaBH₄ resulted in a significant decrease in endogenous background fluorescence. The cells were washed three times in PBS−, pH 7.4, and the specimen was permeabilized with PBS−, 0.1% Triton X-100. Those samples that were fixed to stain for the centrotricles, in combination with microtubule or Golgi staining, were dipped in −20°C methanol for 5 s before the quenching reaction. These samples were not treated with Triton X-100.

Immunostaining

The filters were cut from the plastic support holders and were divided into four squares. Each filter square was washed twice in PBS−, 0.2% fish skin gelatin (Sigma Chemie GmbH, Deisenhofen, FRG), 0.01% NaNO₃, 0.1% Triton X-100. This solution was used to dilute all the antibodies used in this paper. Unless otherwise stated, each wash entailed an incubation on a shak-

Materials and Methods

Fluorescent Probes

Unless otherwise indicated, all fluorescent derivatized second antibodies were obtained from Dianova (Hamburg, FRG). In all cases, the optimal dilution of the secondary antibody for immunostaining was determined on methanol-fixed MDCK strain II cells. N-(7-[4-nitrobenzo-2-oxa-1,3-diazole]) aminocaproyl sphingosine (C6-NBD-ceramide) was obtained from Molecular Probes Inc. (Eugene, OR). Liposomes containing C6-NBD-ceramide were prepared as previously described (Bennett et al., 1988).

Cell Strain and Culture Conditions

MDCK strain II cells were used for all the studies. The cells were passaged as previously described (Balcarova-Stander et al., 1984). The cells were grown on polycarbonate filters (Transwell 3412; Costar, Cambridge, MA) with a 0.4-μm pore diameter kindly donated by Hank Lane (Costar). Typically, 2 × 10⁴ cells/cm² were plated per filter, and the mounted filter was placed in a polypyrlyene filter support. MEM supplemented with 2 mM glutamine, 5% FCS, 100 U/ml penicillin, and 10 μg/ml streptomycin was added to the apical and basolateral surfaces of the filters. The cells were incubated at 37°C in a 5% CO₂ hydrated atmosphere.

Fixation Methodology

Cells that were stained for the centrotricles and ZO-1 were fixed by dipping the filter in PBS with 1 mM Ca²⁺ and 0.5 mM Mg²⁺ warmed to 37°C. The filters were quickly blotted on Whatman filter paper to remove excess moisture and dipped for 1 min in a bath containing −20°C methanol. The filter was transferred to a fresh bath of −20°C methanol. The cells were washed in PBS without Ca²⁺ and Mg²⁺ (PBS−) followed by a wash with PBS−, 0.1% Triton X-100.

Except for the centrotricle and ZO-1 staining, all the cells were fixed by a modification of the paraformaldehyde fixation described by Berod et al. (1981). The filter was dipped in 80 mM K-Pipes, pH 6.8, 5 mM EGTA, 2 mM MgCl₂ warmed to 37°C. The cells were incubated in 3% paraformaldehyde, 80 mM K-Pipes, pH 6.5, 5 mM EGTA, 2 mM MgCl₂ for 5 min at room temperature. This solution was added to both the apical and basal compartments of the filter holder. The solution was removed and the cells were fixed with 3% paraformaldehyde (Merck GmbH, Darmstadt, FRG), 100 mM NaB₄O₄, pH 11. The cells were incubated in this fixation solution for 10 min under continuous agitation at room temperature. The reaction was quenched by incubating the filters in 1 mg/ml NaBH₄ freshly dissolved in PBS−, pH 8, for 10 min. The pH of the PBS was brought up to 8 with 6 N NaOH to increase the half-life of the NaBH₄ in solution. The repeated treatments of the specimens with NaBH₄ resulted in a significant decrease in endogenous background fluorescence. The cells were washed three times in PBS−, pH 7.4, and the specimen was permeabilized with PBS−, 0.1% Triton X-100. Those samples that were fixed to stain for the centrotricles, in combination with microtubule or Golgi staining, were dipped in −20°C methanol for 5 s before the quenching reaction. These samples were not treated with Triton X-100.

Immunostaining

The filters were cut from the plastic support holders and were divided into four squares. Each filter square was washed twice in PBS−, 0.2% fish skin gelatin (Sigma Chemie GmbH, Deisenhofen, FRG), 0.01% NaNO₃, 0.1% Triton X-100. This solution was used to dilute all the antibodies used in this paper. Unless otherwise stated, each wash entailed an incubation on a shak-
ing table for 15 min at room temperature. 60 μl of antibody solution was placed on paraffin, and the filter squares were placed cell side down on the antibody solution. The specimens were incubated in a humidified chamber at 24°C. After 15 min, the filter squares were removed, placed on a fresh aliquot of antibody solution, and incubated for an additional 45 min. After the antibody incubation steps, the filters were washed twice in PBS-, 0.2% fish skin gelatin, 0.01% NaN₃, 0.1% Triton X-100. This was followed by three washes in PBS-, 0.01% NaN₃, 0.1% Triton X-100. Before the second antibody incubation, the filters were washed for an additional 45 min. After the washes in PBS-, 0.2% fish skin gelatin, 0.01% NaN₃, 0.1% Triton X-100, 0.01% NaN₃, 0.1% Triton X-100, 0.01% NaN₃ until examined with the confocal microscope.

The specimens made for analysis with the confocal scanning laser beam fluorescence microscope were mounted on glass slides with four spacers made with acrylic nail polish. A drop of 50% glycerol, PBS- with 100 mg/ml 1,4 diazabicyclo-(2.2.2) octane (Sigma Chemie GmbH) was placed on the cell side of the filter, and a glass coverslip was carefully lowered onto the spacer support. This ensured that the coverslip did not compress the sample. The mount was sealed on three sides with acrylic nail polish. 1,4 Diazabicyclo-(2.2.2) octane was used as an anti-bleaching agent.

In Vivo Labeling Using C6-NBD-Ceramide

The cells were labeled with C6-NBD-ceramide as previously described with the exception that 13 nM C6-NBD-ceramide was used for labeling instead of 25 nM (van Meer et al., 1987). The cells were labeled at 37°C. Back-exchange of the fluorescent probe was performed in the form of lateral sheets along the walls of existing microtubules. The lateral sheets of the newly formed microtubules then appear as hooks in cross sections. A clockwise hook indicates that the "plus" end of a microtubule is directed towards the observer. A counterclockwise hook indicates the opposite. For this paper, all sections were made parallel to the filter starting from the basal side to analyze the polarity of vertically running microtubules. Thus, the observer always looks at the cells from the perspective of the basal surface.

Bovine brain tubulin was purified by the method described by Mitchison and Kirschner (1984). Bovine brain tubulin, 2 mg/ml, was added to MDCK cells in the following way. The apical surface was lysed with 2 ml of "lyzing polymerizing" buffer (0.5 M K-Pipes, pH 6.8, 10 mM MgCl₂, 20 mM EGTA, 0.1 mM GTP, 20% glycerol, 2.5% DMSO, 0.125% Triton X-100, 2 mg/ml tubulin) applied to the apical side of the filter for 5 min at 37°C. The buffer was removed and replaced by the same buffer without detergent. The cells were incubated for 1 h at 37°C. At the end of the incubation, the filters were carefully rinsed with 0.5 M K-Pipes, pH 6.8, 10 mM MgCl₂, 20 mM EGTA, 0.1 mM GTP, 20% glycerol, 2.5% DMSO, immediately dipped in 4% glutaraldehyde in 100 mM Na-cacodylate buffer warmed to 37°C for 15 min, and fixed and further fixed for 30 min in 2% glutaraldehyde. Excess fixative was removed by several washes in cacodylate buffer. The filters were incubated in 0.1% tannic acid for 5 min and postfixed for 2 h in 2% osmium tetroxide. The monolayers were rinsed in water and stained en bloc with 0.5% uranyl acetate at 4°C for 12 h. The sample was dehydrated by serially incubating the sample in 40% ethanol followed by solutions containing increasing amounts of ethanol until a 100% solution of ethanol was used. The filters were processed for conventional embedding in Epon by placing the filter, cell side down, onto a plastic capsule previously filled with Epon. A glass coverslip was placed on the top to flatten the filter during polymerization. After removing the coverslip by dipping the blocs in liquid nitrogen, the monolayers were cut parallel to the basal side, starting from the filter side towards the apical region of the cells. These sections were used to examine the polarity of the vertically running microtubules. The polarity of microtubules running perpendicular to the apical-basal axis was examined in sections cut perpendicular to the filter surface. After sectioning, contrast was increased by 15 min of staining in 3% uranyl acetate in 30% ethanol followed by a lead citrate staining for 1 min. Pictures were taken at 60 kV on an electron microscope (301; Philips Electronic Instruments, Inc., Mahwah, NJ).

A different approach to incorporate exogenous tubulin without producing extensive damage of the cell membrane organization was by cell electroporation. The electroporation system consisted of two round, 1.5-mm-thick stainless steel electrodes connected to a high-voltage power supply (built by W. Ansorge's group at the European Molecular Biology Laboratory). The apical electrode and the basal electrode had diameters of 22 and 30 ram, respectively. An exponentially decaying current of 700 V/cm² was applied from the apical surface and the current was applied. The electrodes were removed and the cells were incubated in polymerizing buffer for 1 h at 37°C. At the end of the incubation, the cells were fixed and processed as above.

Results

Microtubule Remodeling during the Formation of a Columnar Epithelial Cell Monolayer

1 day after plating, all the cells had spread upon the filter support. Most of the cells were isolated and had a flattened cytoplasmic region. The nucleus was centrally located, and the maximal height of the cells was 4–6 μm at the level of the nucleus (Fig. 1 A). This height corresponded to the approximate diameter of the nucleus. The predominant pattern of
microtubule organization is shown in Fig. 1 A. Note that many microtubules originated from a broad region eccentrically placed near the nucleus. This pattern, which seems to be generated by a single microtubule-organizing complex (Kronebusch and Singer, 1987), was found in 86% of the cells examined (Tables I and II). In these cells, the two centrioles were close to each other, near the nucleus, and localized in the region from where microtubules originated. In other
Microtubule-organizing Complex
cells (14% of the population), the microtubules had no single nuleating center, and the centrioles were found separated from each other in variable locations (Tables I and II).

2 d after plating, the cells established intercellular contacts, and a transepithelial resistance, ranging between 20 and 40 Ω-cm² developed. The long axis of the cell was still parallel to the substratum, and the height of the cells varied between 6 and 10 μm at the level of the nucleus. Although in some cells microtubules were still originating from a localized perinuclear region (Fig. 2 A, arrow), in most cases they formed a crisscrossed apical network and did not appear to originate from a single nucleating center (Fig. 2, A and B). The stereo images gave the impression that microtubules were rearranging parallel to the long axis of the cell below the apical plasma membrane. Removal of the apical cap by detergent extraction with the computer showed that microtubules were also present below the nucleus parallel to the basal plasma membrane (Fig. 2 C).

On the fifth day of growth, the cells were columnar, 15–18 μm high. Stereo images showed a complex microtubule pattern with the presence of cilia (Roth et al., 1988) in almost all of the cells (Fig. 3 A). Inside the cells, the microtubule staining pattern appeared as dots or fibers parallel to the apical–basal axis. Most microtubules did not seem to radiate from the centriolar region, conveniently marked by the cilium.

Because of the density of the apical staining, it was difficult to see how microtubules were organized in the basal parts of the cell. To gain visual access to this region, the first seven intercellular domains was determined by sectioning the cells parallel to the filter plane. An example of microtubule decoration by tubulin after permeabilization with Triton X-100 is shown in Fig. 5, A and B. Four out of five microtubules found in this section showed right-handed hooks. The fifth microtubule (Fig. 5 A) exhibited an equivocal orientation. A similar pattern was observed throughout the entire central region of the cells. As shown in Table III, 90% of the decorated microtubules had hooks with a clockwise orientation. This means that microtubules have their plus end directed mostly toward the basal domain. The same orientation of the microtubules was uniformly observed in sections cut close to the apical and basal cell surfaces. The vertical microtubules were often arranged in bundles running either along the cell boundaries or close to the nuclear envelope. This was found by electron microscopy of both untreated and detergent-extracted cells (data not shown).

The polarity of microtubules arranged along the apical–basal axis of the cells was also determined in the apical–most domain. As shown in Fig. 6, A and B, and Table III, 85% of the decorated microtubules had clockwise hooks, even in the apical–most region of the cells. Because detergent extraction altered the ultrastructure of the apical region, this analysis was repeated using electroporation to introduce tubulin into the cells. With this procedure, the overall intracellular organization, membrane and organelle integrity, was significantly better preserved than with detergent treatment (Fig. 6 C); we found the same polarity of apical–most microtubules as after detergent extraction. However, these microtubules were not usually bundled.

Some microtubules in the apical domain did not run along the apical–basal axis but were parallel to the apical membrane. Since the apical microtubules did not appear to have a single organizing center, it was of interest to determine whether or not, in a given section, these microtubules all had the same polarity. If the microtubules were originating from several sites, the prediction would be that the microtubules should have different polarities. For this analysis, blocks were sectioned perpendicular to the filter – i.e., parallel to the apical–basal axis. The decorated microtubules cut trans-

Table I. Centrosome Colocalization with a Single Microtubule-organizing Complex

MTOC*	Cells	Centrioles together and colocalized with MTOC	Centrioles split	Centrioles together and did not colocalize	
	Cells	n (%)	n (%)	n (%)	n (%)
Present	86 (86)	72 (84)	-	14 (16)	
Absent	14 (14)	-	10 (71)	4 (29)	

* Single microtubule-organizing complex.

Table II. Golgi Morphology and Colocalization with a Single Microtubule-organizing Complex

MTOC*	Cells	Golgi morphology		
	Cells	Contracted	Spread	Indeterminate
	n (%)	n (%)	n (%)	n (%)
Present	89 (85)	84 (94)	1 (1.1)	4 (4.6)
Absent	16 (15)	-	16 (100)	-

* Single microtubule-organizing complex.

Microtubule Polarity

The polarity of the longitudinal microtubules was determined by the hook procedure (Heideman and McIntosh, 1980). In the first series of experiments the polarity of the microtubules running vertically between the apical and basal domains was determined by sectioning the cells parallel to the filter plane. An example of microtubule decoration by tubulin after permeabilization with Triton X-100 is shown in Fig. 5, A and B. Four out of five microtubules found in this section showed right-handed hooks. The fifth microtubule (Fig. 5 A) exhibited an equivocal orientation. A similar pattern was observed throughout the entire central region of the cells. As shown in Table III, 90% of the decorated microtubules had hooks with a clockwise orientation. This means that microtubules have their plus end directed mostly toward the basal domain. The same orientation of the microtubules was uniformly observed in sections cut close to the apical and basal cell surfaces. The vertical microtubules were often arranged in bundles running either along the cell boundaries or close to the nuclear envelope. This was found by electron microscopy of both untreated and detergent-extracted cells (data not shown).

The polarity of microtubules arranged along the apical–basal axis of the cells was also determined in the apical–most domain. As shown in Fig. 6, A and B, and Table III, 85% of the decorated microtubules had clockwise hooks, even in the apical–most region of the cells. Because detergent extraction altered the ultrastructure of the apical region, this analysis was repeated using electroporation to introduce tubulin into the cells. With this procedure, the overall intracellular organization, membrane and organelle integrity, was significantly better preserved than with detergent treatment (Fig. 6 C); we found the same polarity of apical–most microtubules as after detergent extraction. However, these microtubules were not usually bundled.

Some microtubules in the apical domain did not run along the apical–basal axis but were parallel to the apical membrane. Since the apical microtubules did not appear to have a single organizing center, it was of interest to determine whether or not, in a given section, these microtubules all had the same polarity. If the microtubules were originating from several sites, the prediction would be that the microtubules should have different polarities. For this analysis, blocks were sectioned perpendicular to the filter – i.e., parallel to the apical–basal axis. The decorated microtubules cut trans-

Table II. Golgi Morphology and Colocalization with a Single Microtubule-organizing Complex

MTOC*	Cells	Golgi morphology		
	Cells	Contracted	Spread	Indeterminate
-------	-------	------------	--------	---------------
	n (%)	n (%)	n (%)	n (%)
Present	89 (85)	84 (94)	1 (1.1)	4 (4.6)
Absent	16 (15)	-	16 (100)	-

* Single microtubule-organizing complex.
versely showed hooks with the clockwise and counterclockwise orientation in equal proportions (Fig. 7). This mixed polarity suggested that there was no unique microtubule-nucleating center in the apical region of polarized cells.

Golgi Complex Relocation during the Formation of a Columnar Epithelial Cell Monolayer

The dramatic change in microtubule organization observed during the establishment of polarity in MDCK cells led us...
Figure 5. Polarity of the microtubule bundles in the perinuclear region of MDCK cells 5 d after plating. The cells were permeabilized with Triton X-100 and incubated with tubulin. (A) Horizontal section through the nuclear region of the cell. The orientation of the decorated tubulin hooks is clockwise (arrow and inset). The plus end of the microtubules is toward the basal side of the cell. (B) The orientation of the decorated tubulin hooks is clockwise (inset). Bars: (A and B) 1 μm; (insets) 0.1 μm.

Table III. Microtubule Polarity Determined in Horizontal Sections

Section site	Microtubules	Plus ends basal	Plus ends apical
	n	% (n)	% (n)
Basal	33	90.9 (30)	9.1 (3)
Middle	96	90.6 (87)	9.4 (9)
Apical	61	85.2 (52)	14.7 (9)

The microtubule polarity was determined in horizontal sections. Cross sections were made through the basal (below the nucleus), middle (nucleus), and apical (above the nucleus) regions. The hook orientation was counted in the micrographs.

Figure 4. Microtubule staining in three optical sections of columnar MDCK cells shown in Fig. 3. (A) Section through the upper apical region. A punctate pattern with short thick connecting segments of microtubules can be seen. (B) Optical section through the nuclear region. Note the thick dots, which are composed of microtubule bundles that are perpendicular to the image plane. (C) Section through the basal region of the cell. Microtubules run parallel to the basal membrane. In addition, dots are seen at this level which derive from microtubules that are perpendicular to the membrane surface. Bar, 5 μm.
to examine the possible concomitant changes in Golgi organization and positioning. The change in Golgi complex localization was followed by double staining with an antibody directed against a peripheral membrane protein on the Golgi membrane (Allen and Kreis, 1986) and anti-uvomorulin (Gumbiner and Simons, 1986) or anti-tubulin antibodies.

In isolated cells, examined 1 d after plating, the Golgi complex showed a compact organization and was located

Figure 6. Polarity of the microtubules in the apical region. Horizontal sections. (A and B) Detergent-permeabilized cells. Microtubules perpendicular to the apical plane—i.e., longitudinal microtubules—have tubulin hooks oriented clockwise (arrows). The plus ends of these microtubules are toward the basal region of the cell. (C) Polarity of the microtubules in the apical web of electroporated cells. Tubulin was incorporated by electroporation. The Golgi complex and plasma membranes are well preserved (arrows). The polarity of the microtubules perpendicular to the section is plus end basal since the hooks are oriented clockwise (arrowheads). Bars: (A and B) 0.2 μm; (C) 0.2 μm.

Figure 7. Polarity of the microtubules in the apical region. Vertical section of detergent-permeabilized cells. n, nucleus. The tubulin hooks are oriented counterclockwise and clockwise with equal frequency. Insets are blown up images of the squared areas. Bars: (A and B) 1 μm; (insets) 0.2 μm.
did not radiate from the perinuclear area (Fig. 2 B). By 3 d, the Golgi complex began to spread around the nucleus. The cells began to show a polygonal shape, and the Golgi and basolateral plasma membrane are labeled. The basolateral membrane forms the linear staining, while the apical membrane staining is intact. (B) BSA back exchange of the basolateral membrane staining. The linear staining is removed and the apical membrane staining is intact. (C) BSA back exchange on the apical side. The linear staining is present and the overlying apical staining has been removed. More transport of C6-NBD-ceramide metabolites has occurred from the Golgi complex in these cells than in A and B. Bar, 5 μm.

Figure 8. Stereo pair images of the Golgi complex and uvomorulin staining in MDCK cells. (A) 2 d after plating, the Golgi complex is contracted in a perinuclear location, although in some cells it has already begun to spread around the nucleus. Uvomorulin staining is found at the sites of cell–cell contacts and completely surrounds the cell. Transepithelial resistance is present at this stage. (B) 3 d after plating, the Golgi complex surrounds the nucleus and in some cases can be found in a more apical location. (C) The morphology of the Golgi complex in the final polarized, columnar state 5 d after plating. The Golgi complex has completed its apical migration. It extends as high as the uvomorulin staining. Bar, 5 μm.

close to the nucleus around the two centrioles as observed in fibroblast cells. Most microtubules seemed to originate from this region (Fig. 1 B and Tables I and II). At this stage, uvomorulin and ZO-1 staining were observed intracellularly (data not shown).

2 d after plating, a transepithelial resistance developed, and a complete ring of ZO-1 protein (not shown) and uvomorulin staining delineated the cell contact sites (Fig. 8 A). In some cells, the Golgi complex began to spread around the nucleus. These cells appeared more fusiform and their microtubules did not radiate from the perinuclear area (Fig. 2 B). By 3 d, the cells began to show a polygonal shape, and the Golgi complex was spread around the nucleus. In some cells, the Golgi complex began to migrate above the nucleus (Fig. 8 B). 5 d after plating, the diameter of the cells was drastically reduced, and the Golgi complex showed a convoluted tubular structure, reaching the level of the apical-most uvomorulin staining (Fig. 8 C) but not the level of the ZO-1 ring staining (data not shown).

These observations showed that the Golgi complex changed from a compact structure located in the vicinity of the nucleus in isolated cells to a tubular complex located in the apical domain of fully polarized, columnar cells. Furthermore, the data suggested that spreading of the Golgi complex around the nucleus occurred after the establishment of tight junctions.

To examine the changes in Golgi morphology and compare the timing of Golgi movement with the formation of a tight monolayer, we labeled the cells with the fluorescent lipid analogue C6-NBD-ceramide (Lipsky and Pagano, 1985). This partially water-soluble lipid partitions into cells and accumulates in the Golgi complex after conversion into C6-NBD-sphingomyelin and glucosylceramide. These metabolic products move in vesicular carriers to the cell surface, where they are introduced into the exoplasmic leaflet of both the apical and basolateral plasma membranes (van Meer et al., 1987; Bennett et al., 1988). By this method, both the Golgi complex and the plasma membranes can be labeled simultaneously. Furthermore, back exchange with BSA can be used to determine when the tight junctions start to exert their fence function, obstructing lipid diffusion across the junction (van Meer et al., 1987). Using this assay, we determined whether the generation of a transepithelial resistance was correlated with the formation of the tight junction fence.

Incubation of isolated cells with C6-NBD-ceramide resulted in labeling of the Golgi complex and the cell surface (not shown). As expected from previous immunofluorescence data, the Golgi complex showed a compact organization and was located close to the nucleus. Adding BSA either to the apical or basal side of the cells removed all the surface staining (not shown). After 2 d of growth, the Golgi complex of cells labeled with C6-NBD-ceramide began to disperse in the cytoplasm (Fig. 9, A and B). In addition to Golgi staining, there was a "haziness" overlying the Golgi complex. This was due to staining of the apical plasma membrane dome. Adding BSA to the apical side of the cells removed the dome but not the linear staining, derived from the lateral membrane which was close to the substratum (Fig. 9 C). Conversely, adding BSA to the basal side of the filters removed the linear lateral staining but not the apical dome (Fig. 9 B). This showed that after 2 d of growth, when a transepithelial resistance started to develop, the fence for lipid diffusion was already operating.

In 5-d-old cells back exchange with BSA revealed the organization of the cell surface of the fully polarized cell. The apical back exchange removed the apical plasma membrane.

Figure 9. Stereo pair images of plasma membrane and Golgi complex labeled with C6-NBD-ceramide 2 d after plating. (A) The apical and basolateral plasma membrane are labeled. The basolateral membrane forms the linear staining, while the apical membrane staining is seen as a hazy dome overlying the Golgi complex. The arrow shows a cell from which the apical cap was removed by the computer to expose the Golgi complex. (B) BSA back exchange of the basolateral membrane staining. The linear staining is removed and the apical membrane staining is intact. (C) BSA back exchange on the apical side. The linear staining is present and the overlying apical staining has been removed. More transport of C6-NBD-ceramide metabolites has occurred from the Golgi complex in these cells than in A and B. Bar, 5 μm.
Figure 11. Stereo pair images of C6-NBD-ceramide labeling of the Golgi complex forms a ribbon-like convoluted structure. Bar, 5 μm.

staining (Fig. 10 C). Basal application of BSA completely removed the lateral staining of the cells up to the apical membrane (Fig. 10 B). The Golgi complex formed a ribbon-like convoluted structure in this final polarized state which had not been described before under cell culture conditions. Since the C6-NBD-ceramide studies had been performed after release from the 20°C block, it was possible that the entire Golgi structure was not visualized in these studies. To examine the entire Golgi morphology in the final polarized state, the cells were labeled with C6-NBD-ceramide at 37°C and incubated for 1 h at 20°C. Under these conditions, exit from the Golgi complex was blocked, and the Golgi morphology could be more completely examined. Fig. 11 shows that the Golgi complex formed a convoluted tubular structure. The overall morphology matches the morphology observed by immunofluorescence labeling using antibodies to Golgi-specific markers (Fig. 8 C and data not shown).

Changes in Centriole Location during the Formation of a Columnar Epithelial Cell Monolayer

Previous work has shown that in subconfluent MDCK strain II cells grown on glass the two centrioles are separated (Brè et al., 1987). In cells grown on polycarbonate filters, the centrosomes were found together in single cells 1 d after plating (Tables I and II). This was also the case in cells that had not developed extensive cell–cell contacts, as evidenced by staining for the ZO-1 protein along the perimeter of the cell (Siliciano and Goodenough, 1988). In contrast, when the cells had developed a complete rim of ZO-1 protein, centrioles were found at a variable distance from each other. By day 5, the centrioles had moved back together and were observed in the same focal plane as the ZO-1 protein (Fig. 12). From this data and electron microscopy data, we conclude that the centrioles split and move apically during the establishment of epithelial cell polarity.

Discussion

Cells that form an epithelium in culture undergo a transition from the unpolarized to the polarized state every time that they are passaged. Our study analyzes the organizational changes in MDCK cells during the formation of a polarized monolayer. Within 12 h after plating, the majority of the isolated cells assume an organization in which the centrosome and the Golgi complex are located together in a region that appears to organize most of the microtubules. This is similar to what has been observed in fibroblasts (Singer and Kupfer, 1986). However, in these cells the microtubule-organizing material is more centered around the centrioles (Osborn and Weber, 1976).

2 d after plating, the MDCK cells reach confluence and the microtubules are not nucleated by a single microtubule-organizing complex any longer. The centrioles have split and the Golgi complex has moved around the nucleus. This occurs concomitantly with the establishment of cell junctions at the points of cell–cell contact along the cell perimeters as evidenced by the zonular assembly of uvomorulin and the ZO-1 protein. The tight junctions seem to be functional at this stage as evidenced by two different criteria. A trans-epithelial resistance develops and the fence function in the
exoplasmic leaflet of the plasma membrane bilayer operates as demonstrated by the back-exchange experiments using the C6-NBD-lipid marker. The development of cell surface polarity is known to continue after the tight junctions have been formed (Balcarova-Ständer et al., 1984; Herzlinger and Ojakian, 1984). Apical and basolateral components present on the wrong side of the fence have to be removed either by transcytosis to the correct domain or by degradation (Pesonen et al., 1984a,b; Cereijido et al., 1989). Once a confluent monolayer is formed, the cells begin to change their shapes. The tight junctions that originally formed close to the substratum move upward >10 μm to circumscribe the apex of each columnar cell in the final “differentiated” state. This change in height is accompanied by a migration of the centrioles and the Golgi complex to the apical part of the cell. The final location of the two centrioles is in close apposition to the apical membrane where they do not nucleate many microtubules. Microtubule bundles have formed and these are parallel to the apical–basal axis of the cell. Determination of the polarity of these longitudinal microtubules by the hook method (Heidemann and McIntosh, 1980) showed that they are orientated with their plus ends free or are attached to basal structures as in Drosophila wing cells is not known. The resistance of microtubules to nocodazole treatment in columnar epithelial cells suggests that they are stabilized by specific microtubule-associated proteins and/or plus end-capping factors.

The Golgi complex undergoes a complex rearrangement in parallel with the development of the longitudinal microtubule arrays (Fig. 8–10). It starts spreading around the nucleus as the centrosome splits and then extends into the apical part of the cell. The final state of the Golgi complex in MDCK cells is reminiscent of the three-dimensional structure of the Golgi complex in Sertoli cells (Rambourg et al., 1979). In these cells, the Golgi complex forms a wavy ribbon-like structure that winds from the top of the nucleus to the apex of the cell. The studies of Rambourg et al. (1981, 1987) have demonstrated that there is only one interconnected Golgi complex in each cell type studied. Whether this is the case also for MDCK cells has to await an ultrastructural analysis. The “worm-like” structure of the MDCK Golgi complex is fragmented after microtubule depolymerization and disperses in the apical part of the cell (Bacallao, R., unpublished observations). Also, in other cell types, the structure of the Golgi complex is linked to microtubule organization (Thyberg and Moskalenko, 1985). In fibroblasts, the dispersed Golgi elements recluster after microtubule repolymerization from the microtubule-organizing complex (Rogalski and Singer, 1984). The Golgi elements move along microtubules towards their minus ends (Ho et al., 1989). Another example of Golgi movement during differentiation is observed when myoblasts fuse to form myotubes (Tassin et al., 1985a,b). The microtubule-nucleating activity changes from a centrosomal location to a circumnuclear distribution. Concomitantly, the Golgi complex spreads from its position around the centrosome in myoblasts to a location surrounding the nucleus in the myotubes. Apparently, the Golgi complex followed the movement of the pericentriolar material, dissociating from the centriole pair to form the circumnuclear microtubule-organizing complex.

It seems likely that the rearrangement of the Golgi complex during MDCK cell polarization is guided by the formation of the longitudinal microtubules. Since these do not focus on one microtubule-organizing center, the movement of
the interconnected Golgi complex along the microtubules towards their minus ends could explain the spread out and intertwined Golgi structure in the apical part of the cell. Thus, the microtubule network confers polarity to the cytoplasm. Our studies suggest that in MDCK cells the formation of cell–cell contacts is necessary to reorient cytoplasmic polarity from an arrangement similar to that seen in fibroblasts and other cell types to one that is unique for epithelial cells.

It is interesting to compare the morphogenesis of the MDCK cell epithelium with the process of forming an epithelium de novo from nonepithelial precursor cells. The trophoderm cells in the developing mouse embryo have been extensively studied with markers similar to those used in this study (Fleming and Johnson, 1988). Up to the early eight-cell stage, the blastomere is organized in a symmetrical fashion except for the region of cell–cell contact. These intercellular interactions are mediated by uvomorulin (Vestweber et al., 1987) and lead to the establishment of the apical–basal axis. The cell surface polarizes and a basal pole is defined by contact to adjacent cells. The tight junction protein, ZO-1, is expressed at the eight-cell stage and is present in this study (Fleming et al., 1989). In a similar manner, the ZO-1 protein assembles at the edges of contacting MDCK cells. In the mouse embryo, the ZO-1 protein is initially organized in spots along the perimeter of the cells and assembles into zonular tight junctions at the 16–32-cell stage (Fleming et al., 1989). Exactly when the tight junction becomes functional and forms an occluding barrier between the cells as well as a molecular fence in the exoplasmic leaflet is not yet known. During the eight-cell stage, the microtubules redistribute to generate a highly concentrated meshwork underlying the developing apical pole. There is no centrosome at this stage, but pericentriolar material has been detected in the apical part of the cell using an autoantibody against human centrosomes (Houlston et al., 1987). However, in contrast to MDCK cells, the Golgi complex is located basally below the nucleus at the 16-cell stage. It is possible that the biosynthetic activity of the exocytic apparatus of the polarized trophoderm cell is directed towards the basal side into the developing blastocoeI, and therefore the Golgi complex positions there as has been suggested to occur during corneal development. Treistad (1970) has shown that the Golgi complex moves basally exactly at the time when the primary stroma and Bowman's membrane are assembled beneath the basolateral plasma membrane of the corneal epithelium.

The role of the microtubules in the polarized delivery of newly synthesized apical and basolateral proteins and lipids from the trans–Golgi network of MDCK cells has not yet been defined (Salas et al., 1986; Rindler et al., 1987). In other epithelial cells it seems likely that intact microtubules are necessary for facilitating delivery in the apical direction (Eilers et al., 1989; Achier et al., 1989). When microtubules are depolymerized by drugs, apical transport from the Golgi complex is decreased. Instead, apical proteins seem to be missorted in the basolateral direction. Apical carrier vesicles from the Golgi complex would have to be transported in the retrograde direction if the microtubular minus ends were apical. This is the opposite to the direction of polarized transport of cell surface proteins from the Golgi complex to the ruffling edge in fibroblasts. After microtubule depolymerization, polarized exocytosis in fibroblasts is abolished (Rogalski et al., 1984). However, the rate of delivery to the unpo-
The Journal of Cell Biology, Volume 109, 1989

2832

Pesonen, M., W. Ansorge, and K. Simons. 1984a. Transcytosis of the G protein. J. Cell Biol. 108: 1407-1418.

Gorbsky, G., and G. G. Borisy. 1985. Microtubule distribution in cultured cells and intact tissues: improved immunolabeling resolution through the use of reversible embedment cytochemistry. Proc. Natl. Acad. Sci. USA. 82: 6889-6893.

Griffiths, G., and K. Simons. 1986. The trans Golgi network: sorting at the exit site of the Golgi complex. Science (Wash. DC). 234:438-443.

Gumbiner, B. 1987. Structure, biochemistry, and assembly of epithelial tight junctions. Am. J. Physiol. 259:F749-F758.

Heidemann, S. R., and J. R. McIntosh. 1980. Visualization of the structural complexity of microtubules. Nature (Lond.). 286:517-519.

Herzlinger, D. A., and G. K. Ojakian. 1984. Studies on the development and maintenance of epithelial cell surface polarity with monoclonal antibodies. J. Cell Biol. 98:1777-1787.

Ho, W. C., V. J. Allan, E. G. Berger, and T. E. Kreis. 1989. Reclustering of scattered Golgi elements occurs along microtubules. Eur. J. Cell Biol. 48:250-263.

Houlston, E. J., J. Pickering, and B. Maro. 1987. Redistribution of microtubules and pericentriolar material during the development of polarity in mouse b-16 cells. J. Cell Biol. 104:1299-1308.

Johnson, M. H., and B. Maro. 1985. A dissection of the mechanisms generating and stabilizing polarity in mouse b- and c-16 cells. J. Cell Biol. 100:103-117.

Källén, L., K. Hashimoto, J. Saraste, I. Virtanen, and K. Penttinen. 1980. Membrane proteins and lipids in epithelial cells. J. Cell Biol. 87:783-801.

Klein, G., M. Langegger, R. Timpl, and P. Ekkblom. 1988. Role of lamin A chain and the development of epithelial cell polarity. Cell. 55:331-341.

Kronebusch, P. J., and S. J. Singer. 1987. The microtubule-organizing complex and the Golgi apparatus co-localized around the entire nuclear envelope of interphase cardiac myocytes. J. Cell Sci. 88:25-34.

Kupfer, A., S. J. Singer, and G. Dennert. 1986. On the mechanism of unidirectional mixing in mixtures of two cytotytic T lymphocytes: unidirectional polarization of cytoplasmic organelles and the membrane-associated cytoskeleton in the effector cell. J. Exp. Med. 163:489-498.

Lipsky, N., and R. E. Pagano. 1985. Intracellular translocation of fluorescent sphingolipids in cultured fibroblasts: endogenously synthesized sphingomyelin and glucocerebrosides analogues pass through the Golgi apparatus en route to the plasma membrane. J. Cell Biol. 100:27-34.

Mitchison, T. J., and M. W. Kirschner. 1984. Microtubule assembly nucleated by isolated centrosomes. Nature (Lond.). 312:232-236.

Mogensen, M. M., J. B. Tucker, D. A. Forrest, and M. J. Milner. 1989. Microtubule polarity: the control of protofilament number for cell surface-associated microtubules and in intracellular position during development. J. Cell Biol. 108:1445-1452.

Osborn, M., and K. Weber. 1976. Cytosplastic microtubules in tissue culture cells. Proc. Natl. Acad. Sci. USA. 73:867-871.

Paschel, B. M., H. S. Shpeter, and R. B. Vallee. 1987. MAP 1C is a microtubule-activated ATPase which translocates in vitro and has dynein-like properties. J. Cell Biol. 105:1273-1282.

Pesonen, M., W. Anaorke, and K. Simons. 1984a. Transcytosis of the G protein of vesicular stomatitis virus after implantation into the apical plasma membrane of Madin-Darby canine kidney cells. J. Cell Biol. 109:239-2399.

Rambourg, A., Y. Clermont, and L. Hermo. 1981. Three-dimensional structure of the Golgi apparatus. Methods Cell Biol. 23:155-166.

Rambourg, A., Y. Clermont, L. Hermo, and D. Segretain. 1987. Three-dimensional structure of the Golgi apparatus of noncleaved epithelial cells of the duculi efferentes in rat: an electron microscope stereoscopic study. Biol. Cell. 60:103-116.

Rodríguez-Boulan, E., K. T. Paskiet, and D. D. Sabatini. 1983. Assembly of enveloped viruses in Madin-Darby canine kidney cells: polarized budding from single attached cells and from clusters of cells in suspension. J. Cell Biol. 96:866-874.

Rogalski, A. S., and S. J. Singer. 1984. Association of the Golgi apparatus with microtubules. J. Cell Biol. 99:1092-1100.

Rogalski, A. S., E. B. Bergmann, and S. J. Singer. 1984. Effect of microtubule assembly status on the intracellular processing and surface expression of an integral protein of the plasma membrane. J. Cell Biol. 99:1101-1109.

Roth, K. E., C. L. Rieder, and S. S. Bowser. 1988. Flexible-substratum technique for viewing cells from the side: some in vivo properties of primary (9 + 0) cilia in cultured kidney epithelia. J. Cell Sci. 89:457-466.

Salas, P. J. I. D. E. Misiek, D. E. Vega-Salas, D. Gundersen, N. C. Cigado, and E. Rodriguez-Boulan. 1986. Microtubules and actin filaments are not critically involved in the biogenesis of epithelial cell surface polarity. J. Cell Biol. 102:1853-1867.

Siliciano, J. D'A., and D. A. Goodenough. 1988. Localization of the tight junction protein, ZO-1, is modulated by extracellular calcium and cell-cell contact in Madin-Darby canine kidney epithelial cells. J. Cell Biol. 107:239-2399.

Singer, S. J., and A. Kupfer. 1986. The directed migration of eukaryotic cells. Annu. Rev. Cell Biol. 2:337-365.

Stelzer, E. H. K., R. Bricker, R. Pick, C. Storz, and P. Hinninen. 1989. Confocal fluorescence microscopes for biological research. In Scanning Immings. Proc. Soc. Photo-opt. Instrum. Eng., Bellingham, WA. Tony Wilson, editor. 146-151.

Stevenson, B. R. J., D. Siliciano, M. S. Moosiker, and D. A. Goodenough. 1986. Identification of ZO-1: a high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia. J. Cell Biol. 103:755-766.

Tassin, A.-M., B. Maro, and M. Bornens. 1985a. Fate of microtubule-organizing centers during myogenesis in vitro. J. Cell Biol. 100:35-46.

Tassin, A.-M., M. Paintrand, E. G. Berger, and M. Bornens. 1986. The Golgi apparatus remains associated with microtubule-organizing centers during myogenesis. J. Cell Biol. 101:630-638.

Thyberg, J., and S. Moskalkevi. 1985. Microtubules and the organization of the Golgi complex. Exp. Cell Res. 159:1-16.

Tresters, R. L. 1970. The Golgi apparatus in chick corneal epithelium: changes in intracellular position during development. J. Cell Biol. 45:34-42.

Tucker, J. B., M. J. Milner, D. A. Currie, J. A. Muir, D. A. Forrest, and M. J. Spencer. 1986. Centrosomal microtubule organizing centers and a switch in the control of protofilament number for cell surface-associated microtubules during Drosophila wing morphogenesis. Eur. J. Cell Biol. 41:279-289.

Vale, R. D., T. S. Reese, and M. F. Scheetz. 1985. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell. 42:39-50.

van Meer, G., E. H. K. Stelzer, R. W. Wijnaeends-van-Resanand, K. Si- mons. 1987. Sorting of sphingolipids in epithelial (Madin-Darby canine kidney) cells. J. Cell Biol. 105:1623-1635.

Vega-Salas, D. E., R. J. I. Salas, D. Gundersen, and E. Rodriguez-Boulan. 1987. Formation of the apical pole of epithelial (Madin-Darby canine kidney) cells: polarity of an apical protein is independent of tight junctions while segregation of a basolateral marker requires cell-cell interactions. J. Cell Biol. 104:905-916.

Westermark, D., A. Gossler, K. Boller, and R. Kemler. 1987. Expression and distribution of cell adhesion molecule uvomorulin in mouse preimplantation embryos. Dev. Biol. 124:451-436.

Wadlinger-Ness, A., and K. Simons. 1989. The polarized transport of surface proteins and lipids in epithelial cells. In Intracellular Trafficking of Proteins. J. Hanover and C. Stern, editors. Cambridge University Press, Cambridge. In press.