Low and high postpubertal ethanol use: damage on adulthood reproduction and offspring

Vanessa Caroline Fioravante, Alana Rezende Godoi, Victória Mokarzel de Barros Camargo, Patricia Fernanda Felipe Pinheiro, Marcelo Martinez, Carlos Roberto Padovani and Francisco Eduardo Martinez

1Department of Structural and Functional Biology, Institute of Biosciences of Botucatu (IBB), UNESP – Univ Estadual Paulista, São Paulo, Brazil
2Department of Morphology and Pathology, Univ Federal de São Carlos (UFSCar), São Carlos, Brazil
3Department of Biostatistics, Institute of Biosciences of Botucatu (IBB), UNESP – Univ Estadual Paulista, São Paulo, Brazil

Correspondence should be addressed to F E Martinez: fe.martinez@unesp.br

Graphical abstract

Abstract

The relationship between adolescent ethanol uses and its impacts throughout life are not conclusive. Thus, we evaluated if the low and high consumption of ethanol at postpuberty interferes with the reproduction and ethanol-naïve offspring and if the effects are dose-related. Female and male rats were divided into three groups: low drinker (L), high drinker (H) and control (C). The L and H groups were exposed to ethanol up to 10 % from 65 to 80 days with withdrawal after this period. The ethanol consumed by low drinkers was 1.41 ± 0.21 g/kg/day and by high drinkers 4.59 ± 0.45 g/kg/day. The study was conducted in two phases. The first phase verified the reproductive capacity in adulthood on generations (litter size and sex ratio). Data were collected over 10 years. The second phase analyzed the parent reproductive parameters (body weight, reproductive organ weight, sperm parameters and estrous cycle) and the pup development. We observed a reduced litter size in both drinker groups. Gestational body weight gain and feed consumption were lower in L and H. We observed an alteration in reproductive organs weight in both sexes of H. Females presented a longer estrous cycle.

This work is licensed under a Creative Commons Attribution 4.0 International License.
duration. Males presented an increase in abnormal sperm, a decrease in sperm count and accelerated transit time. The ethanol-naive offspring development was also impaired. We conclude that low and high postpubertal alcohol use impairs long-term reproductive parameters, even after alcohol withdrawal. There is also impaired ethanol-naive offspring. Besides, the effects are dose-related.

Lay summary

The effects of alcohol use have been reported in several studies. However, better knowledge about early alcohol use and its impact on reproduction in adulthood, after abstinence and on ethanol-naive offspring could help improve preventive measures and mechanisms of action. One of the methods used was retrospective analysis which allows to evaluate the effects of postpubertal ethanol use on the reproductive capacity of rats over generations. Despite our limitations, we verified that the post-adolescent period acts as a susceptibility window, and lifestyle at this age modulates the long-term reproductive parameters. The early ethanol use impairs reproduction function since sperm parameters and the estrous cycle have been altered. The dose of alcohol also contributes to damage on the drinkers' reproduction and on the physical development of ethanol-naive offspring. Future studies are necessary to identify the mechanism involved in long-term alcohol use effects, even in withdrawal, as well as ethanol-naive offspring outcomes.

Key Words: ► alcohol ► puberty ► preconception ► reproduction ► litter size ► offspring.

Introduction

Ethanol is one of the main abuse drugs ingested worldwide (Rehm et al. 2009, Baldin et al. 2018), and it is responsible for approximately 5.2% of global deaths (GBD 2018). Alcohol use prevails among adolescents and young adults, and it is the leading risk factor for disability among those aged 15–49 years, accounting for 10% of global deaths in this age group (Harding et al. 2016, WHO 2018). The implications of consumption must consider the age, the amount ingested and the consumers’ characteristics (Baldin et al. 2018).

Approximately 15% of couples show signs of infertility (Sharlip et al. 2002, Barazani et al. 2014), being the daily habits, including diet and exposure to toxicants responsible for modulating reproductive health (Asimes et al. 2018). Ethanol is a toxic agent that disturbs not only the integrity of biochemical and physiological functions but also the development of structures involved in reproduction, causing severe damage to the signaling of hypothalamic-pituitary–gonadal/adrenal axes (HPG/HPA) (Wallock-Montelius et al. 2007). Therefore, alcohol intake can result in female and male reproductive pathologies confirmed in experimental models (Oremosu & Akang 2015, Srivastava et al. 2018) and humans (Eggert et al. 2004, Sansone et al. 2018) since ethanol could lead to lower sperm quality and ovulatory irregularities (Sengupta et al. 2017). Besides, ethanol-induced epigenetic mechanisms can modify the expression pattern of different tissues on drinkers, as well as it is the major mechanism related to descendants’ phenotype alterations (Asimes et al. 2017).

Studies highlight that heavy drinking during gestation can reduce litter size, increase the mortality rate and impair the offspring; however, the results are inconclusive regarding the sex ratio (Anderson et al. 1978, Cicero et al. 1994, Vaglenova & Petkov 1998, Gardebjer et al. 2014, Liang et al. 2014). Although heavy drinking has greater effects on reproduction, low to moderate intake has been still under discussion, requiring constant research (Barazani et al. 2014, Sansone et al. 2018). Rodent’s prepubertal and preconception ethanol exposure can also be harmful to drinkers and their pups. Nevertheless, there is no evidence that it occurs in the postpuberty period. Thus, studies that aim to verify postpubertal ethanol and its effects on reproduction can help to elucidate the degree of damage of early ethanol intake and the mechanisms involved in this process. The UCh rats, which are voluntary ethanol-drinking models derived from original Wistar rats (Mardones & Segovia-Riquelme 1983), were used. This strain represents a special model to understand the basis of alcoholism-linked characteristics. We hypothesized that the high and low ethanol drinking during postpuberty negatively influences the parameters of reproduction in adulthood, even after ethanol withdrawal, and affects the ethanol-naive offspring with dose-related effects. Therefore, we evaluated whether the low and high ethanol...
impairs reproductive capacity, function, organ weight of the animal early exposure and the ethanol-naive offspring development. Part of this study was carried out by a collection of data over 10 years, allowing us to assess different generations.

Materials and methods

Animals and experimental design

The experiments were in accordance with the Ethical Principles in Animal Research and approved by the Bioscience Institute/UNESP Ethical Committee for Animal Research (protocol nº 051/04). Female (171 ± 6.3 g) and male (231 ± 10.7 g) rats (*Rattus norvegicus albinus*) at 55 days old were obtained from the Department of Structural and Functional Biology of Botucatu Bioscience Institute/UNESP. The animals were housed in polypropylene cages (32 cm × 40 cm × 18 cm) and maintained under controlled conditions (25 ± 1°C, humidity 55 ± 5%, and light from 6 to 18 h) with access to commercial feed and water *ad libitum*. We employed a voluntary model for ethanol exposure, UCh rat strain, avoiding the stress associated with forced feeding and providing knowledge about the effects of voluntary ethanol consumption as observed in society (Gapp *et al.* 2014, Martinez *et al.* 2016).

The rats were divided into three groups: low drinker (L) constituted by UChA rat strain, high drinker (H) constituted by UChB rat strain and control rats (C) without access to ethanol. The ethanol-drinking groups, L and H, were exposed to ethanol for 15 consecutive days for voluntary consumption, period referring to the selection of drinker animals (Mardones & Segovia-Riquelme 1983). Thus, the rats were offered free access to a bottle containing ethanol up to 10% from the postnatal day (PND) 65 to 80, corresponding to postpuberty (Picut *et al.* 2015). The low drinker rats (UChA strain) should drink from 0.1 to 1.9 g/kg/day of ethanol and high drinkers (UChB strain) should drink more than 2.0 g/kg/day. Only rats which drank the stipulated ethanol consumption (low and high ethanol drinkers) were selected to continue in the experiment (Mardones & Segovia-Riquelmi 1983). The ethanol consumption was calculated by consumed ethanol (mL)/15 × 100)/body weight (g). The animals were maintained in individual cages during the period of free access to ethanol for consumption measurement. Female average consumption was 1.56 ± 0.25 g/kg/day for L and 4.90 ± 1.89 g/kg/day for H and the male average consumption was 1.27 ± 0.34 g/kg/day for L and 4.27 ± 1.53 g/kg/day for H. The average total ethanol consumption during the 15 days of exposure was 78.14 mL ± 82.52 for L females and 176.30 mL ± 95.52 for H females and 91.45 mL ± 97.15 for L males and 205.69 mL ± 106.47 for H males.

The ethanol bottle was withdrawn after 15 days of free access to allow mating in order to ensure that the observed effects were from postpubertal ethanol consumption. Females of C, L and H groups were mated to males of C, L and H, respectively, at 100 days old, age deemed sexually mature. This study was conducted in two experimental phases (Fig. 1). The first one utilized the retrospective analysis to verify litter size and sex ratio of offspring from control and from low and high ethanol drinkers’ groups over generations. The data were collected over 10 years (2005–2015) at Anatomy’s Bioterium (IBB/UNESP) to analyze the postpuberty ethanol use effects on adulthood reproductive capacity. Due to significant results from the first phase, we additionally analyzed the gestational parameters (body weight and feed and water consumption), maternal and paternal reproductive parameters (reproductive organs weight, sperm count and morphology and estrous cycle) and the initial development of ethanol-naive offspring (landmarks of physical development and body weight) in the second phase (Fig. 1).

First experimental phase reproductive capacity

Litter size and sex ratio of offspring

The count of female and male pups per dam at offspring birth (PND 0) was realized. The litter size and sex ratio of offspring were analyzed from C, L and H (n = 110 litters/group). The sex ratio of offspring was verified by the count of females and males at birth since sex dimorphism in neonates is evidenced by the shorter distance between the anus and the genital tubercle of females (Gallavan *et al.* 1999). Only the first generation (F1) data were considered in this analysis. The long-term reproductive capacity was determined by the litter size from the first and second-generation (F1 and F2, n = 15 couples/generation/group).

The data about litter size and offspring sex ratio were collected over 10 years.

Second experimental phase parent reproductive parameters and offspring development

Dam parameters on gestation

In order to evaluate the evolution of pregnancy, females of C (n = 8), L (n = 8) and H (n = 8) were mated to males of C (n = 8), L (n = 8) and H (n = 8), respectively, at 100 days old at overnight (one female and one male/cage). A vaginal smear was carried out daily in the morning, and the first
day of pregnancy was considered when spermatozoa were found. After the pregnancy detection, gestational day (GD) 0, the dams were individualized and monitored. Body weight and feed and water consumption during gestation were measured weekly and weighed on an analytical balance.

Parents reproductive organs weight and adiposity index

The females \(n = 8/\text{group} \) and males \(n = 8/\text{group} \) from control (C) and high ethanol drinker (H) were weighed and euthanized by \(\text{CO}_2 \) inhalation followed by decapitation. Males were killed at PND 150 while females were killed from the PND 150 in the estrous phase. The testis, epididymis, ventral prostate and seminal vesicle (with fluid) in the males and ovaries and uterus in the females were removed, dissected and weighed on an analytical balance. The relative organs weight was calculated by organ weight (mg)/body weight (g). The adiposity index was also calculated by \(\frac{[\text{retroperitoneal fat} + \text{visceral fat} + \text{epididymal/ovarian fat}]}{\text{final body weight}} \times 100 \).

Maternal estrous cycle

The estrous cycle from C and H females was assessed based on vaginal smears collected every morning for 10 days from PND 140. The samples were analyzed under a light microscope, and estrous cycle phases were classified as metestrus (leukocytes and cornified and nucleated epithelial cells), diestrus (leukocytes), proestrus (nucleated epithelial cells) and estrus (anucleate cornified cells) \((\text{Marcondes et al. 2002})\). The estrous cycle duration was calculated by the number of days between one estrous phase to the next and the number of estrous cycles during the assay \((\text{Borges et al. 2017})\).

Paternal sperm count, daily sperm production and epididymal transit time

Sperm count was performed in C and H males. Homogenization-resistant testicular spermatids and sperm in the caput/corpus and cauda epididymal were obtained from testis and epididymis (left side) and were counted as described by \(\text{Robb et al. (1978)} \). The sperm count was determined using the Neubauer chambers. Two Neubauer
chambers, divided into 2 antimeres, were prepared per animal, accounting for 20 fields/animal. Spermatid numbers were obtained by sperm count mean multiplied by the dilution factor. Sperm concentration (spermatids/g testis) was obtained by the spermatid counts mean divided by the weight of testicular parenchyma. Daily sperm production was obtained dividing the total number of homogenization-resistant spermatids per testis by 6.1, the number of days in which these spermatids are present on germinative epithelium (Robb et al. 1978). Transit time through the caput/corpus and cauda epididymis was calculated dividing the number of sperm within each of these regions by the daily sperm production (Robb et al. 1978).

Paternal sperm morphology

The sperm from C and H groups were obtained by a wash of vas deferens with a PBS solution. The volume of 10 µL was obtained from vas deferens, allocated on Eppendorf and maintained on a refrigerator (20°C) until analyzed. Spermatic fluid was placed on the slide, dried at room temperature for 10 min and evaluated under phase-contrast microscopy (400×, total magnification). Two hundred sperm per animal were evaluated for head or flagellar defects (Seed et al. 1996). Anomalies were classified into head anomalies (neither typical nor isolated hook) or tail anomalies (broken or tail headless), and the data were expressed in percentage (Filler 1993).

Offspring body weight and landmarks of physical development

At birth, the offspring were cut to eight pups (four females and four males) per dam. The body weight of offspring was measured on birth from C, L and H (n = 32 sex/group) and the litter body weight (n = 8/litter/group) was weekly monitored, from PND 1 to 21, the period that includes the neonatal (PND 0–7), early infantile (PND 8–14) and late infantile (PND 15–21) phases. The pups were weighed on an analytical balance. To evaluate the initial physical development, pinna unfolding, hair growth and eye-opening were also daily observed.

Statistical analysis

The data were analyzed by the software GraphPad Prism® (version 7, GraphPad Software). A one-way ANOVA (parametric data) was used in physical development of offspring. Post hoc analysis was performed by Tukey’s multiple comparison test. A Kruskal–Wallis (non-parametric data) test was used in determining litter size and offspring sex ratio. Post hoc analysis was performed by multiple comparison Dunn’s test. A two-way ANOVA was employed in dams’ parameters on gestation and offspring body weight gain. Post hoc analysis was performed by Sidak’s multiple comparison test. Time, treatment and interaction values were expressed in the figure and table legends. Unpaired t-test (parametric data) was employed in parent reproductive parameters. Results were expressed as mean ± s.d. or median and interquartile range. The differences were considered significant when P < 0.05.

Results

First experimental phase reproductive capacity

Postpuberty ethanol uses reduced litter size with dose-related effects but did not impact the sex ratio of offspring

The litter size from L and H groups was lower compared to C. We observed reduced litter size in the H (Fig. 2A) between drinkers’ groups. Thus, the greater ethanol use was the most damaging to the litter size. The comparison of litter size among generations is represented in Fig. 2B. Only the H group showed reduced litter size comparing F1 to the F2.

There were no differences in the sex ratio of offspring from C, L and H groups (females: C = 51.38 % ± 15.82;
High postpubertal ethanol use impaired parent reproductive organs weight on adulthood and compromised the reproductive function

In this analysis, only data from the control and high drinker groups were compared due to insufficient data from the low drinker group. Regarding female reproduction function, we observed a greater estrous cycle duration in females previously exposed to ethanol (C: 4.6 ± 0.4; H: 5.1 ± 0.4). There was no change in the sequence of the estrous cycle classified as metestrus, diestrus, proestrus and estrus. On the other hand, 62.5% of the H group had prolonged estrous and proestrous phases for 2 days. There was lower absolute and relative uterine weight and adiposity index in the females from the H group, but the body weight did not alter (Table 1).

In the males, we verified lower body weight and absolute testis and epididymis weight while the relative epididymis and seminal vesicle weight were greater on H (Table 1). The sperm parameters were also altered in males exposed early to ethanol. There was a decrease in sperm count in the cauda epididymal and acceleration of total sperm transit time (Table 2). Furthermore, an increase in the percentage of sperm with morphologic abnormalities was observed, including a higher incidence of head and tail defects (Table 3).

Table 1 Comparison of body weight, relative and absolute reproductive organs weight and adiposity index at postnatal day 150 in the females and males from control (C) and high drinkers (H) groups (n = 8/sex/group). Values expressed as mean ± s.d.

Parameters	Groups		
Females			
Body weight (g)	C	315.01 ± 30.99	287.2 ± 8.77
Ovaries (mg/g)	C	0.30 ± 0.06	0.25 ± 0.01
Uterus (g)	C	0.67 ± 0.61	0.46 ± 0.04*
Uterus (mg/g)	C	2.13 ± 0.12	1.62 ± 0.15*
Adiposity index	C	3.99 ± 0.73	3.00 ± 0.31*
Males			
Body weight (g)	C	506.05 ± 12.22	408.00 ± 16.37*
Testis (g)	C	3.71 ± 0.28	3.27 ± 0.21*
Testis (mg/g)	C	3.67 ± 0.29	4.02 ± 0.29
Epididymis (g)	C	1.56 ± 0.05	1.40 ± 0.12*
Epididymis (mg/g)	C	1.50 ± 0.09	1.72 ± 0.02*
Ventral prostate (g)	C	1.56 ± 0.12	1.34 ± 0.27
Ventral prostate (mg/g)	C	3.08 ± 0.22	3.28 ± 0.67
Seminal vesicle (g)	C	2.01 ± 0.50	2.30 ± 0.34
Seminal vesicle (mg/g)	C	3.95 ± 0.95	5.62 ± 0.77*
Adiposity index	C	2.93 ± 0.62	2.85 ± 0.46

P-values were calculated using a t-test.

Significant difference between groups (P < 0.05).

Low and high postpubertal parental ethanol use impaired body weight and physical development of ethanol-naive offspring, with dose-related effects

Figure 4 represents the parameters of female and male offspring from C, L and H groups. The pups sired by low...
and high postpubertal parental ethanol use had a lower body weight at birth and throughout the infant period (PND 1–21) compared to control (Fig. 4A). The damages on the offspring were correlated to the amount of ethanol consumed by parents since the offspring from the high drinker group showed lower body weight compared to offspring from the low drinker group.

The landmarks of physical development were changed on the offspring from low and high drinker groups. Earlier eye-opening in the offspring from L and delayed hair growth in the H was observed (Table 4).

Discussion

This is the first study to conduct a retrospective analysis of postpubertal ethanol use and its effects on the reproductive capacity in adulthood, even after alcohol withdrawal. The reproductive function of males and females exposed early to ethanol was altered in adulthood as we observed changes in weight of reproductive organs in both sexes, a greater estrous cycle duration in females, and a decrease in sperm parameters in males. The landmarks of physical development and body weight of ethanol-naive offspring were also impaired. Taken together, our data indicate lifestyle after adolescence, such as ethanol use, could modulate long-term reproduction, even after ethanol withdrawal, and future generations.

Postpubertal alcohol use led to lower weight gain and feed consumption on gestation in the L and H dams, with dose-related effects. Increased plasma leptin during abstinence (Kiefer et al. 2005) contributes to decreased

Table 2 Paternal sperm count, daily sperm production and epididymal transit time at postnatal day 150 in the males from control (C) and high drinkers (H) groups (n = 8/group). Values expressed as mean ± s.d.

Parameters	Groups		
		C	H
Testis		86.69 ± 11.33	97.27 ± 21.77
Spermatid number (×10⁶/g/day)		14.21 ± 1.85	15.95 ± 3.57
Daily sperm production (×10⁶//testis/day)		235.4 ± 45.87	198.30 ± 43.49
Caput/epididymal		3.91 ± 0.77	3.62 ± 1.25
Sperm number (×10⁶/g/organ)		698.6 ± 139.10	539.4 ± 116.30*
Sperm transit time (days)		7.73 ± 1.85	5.29 ± 2.96
Cauda epididymal		12.24 ± 1.83	9.13 ± 2.08*
Sperm number (×10⁶/g/organ)			
Sperm transit time (days)			
Total sperm transit time (days)			

P-values were calculated using a t-test.
*Significant difference between groups (P < 0.05).

Table 3 Paternal sperm morphology at postnatal day 150 in the males from control (C) and high drinkers (H) groups (n = 8/group).

Parameters (%)	Groups		
		C	H
Normal sperm		91.25 (90.38–92.63)	75 (70.38–81.25)*
Abnormal sperm		8.75 (7.37–9.62)	25 (18.75–29.63)*
Broken tail		0.56 (0.50–0.71)	0.75 (0.00–3.00)
Headless		1.56 (0.87–2.09)	4.00 (2.87–4.12)*
Isolated head		5.87 (4.50–6.87)	19.75 (12.50–23.75)*

Values expressed as median and interquartile range (IQR1–IQR3). P-values were calculated using a t-test.
*Significant difference between groups (P < 0.05).

Figure 4 Parameters of female and male offspring from control (C), low drinker (L) and high drinker (H) groups. (A) Body weight on birth of females and males (n = 32/group). Values expressed as median and interquartile range. P-values were calculated using a Kruskal–Wallis test. a, b, c Different letters represent significant differences among groups (P < 0.05) from post hoc Dunn's multiple comparisons test. (B) Litter body weight (females and males) on postnatal day 1–21 (n = 8/litter/group). Values expressed as mean ± s.d. P-values were calculated using a two-way ANOVA. a, b’ Different letters represent significant differences among groups (P < 0.05) from post hoc Sidak’s multiple comparison test.

Figure 3B: P<0.0001, P<0.0001, P<0.0001.
In this perspective, we found that besides the preconception ethanol exposure can reduce litter size, especially in the high drinkers (Cicero et al. 1994, Ojeda et al. 2009, Li et al. 2013). Interestingly, we found that ethanol consumption only on postpuberty also decreased litter size but did not alter offspring sex ratio. Impacts on blastocyst implantation, oxidative damage to germline DNA compromising the embryo cells, abnormal fetal development and increased rates of resorption and abortion may be mechanisms contributing to these results (Cicero et al. 1994, Emanuele et al. 2001b, Jana et al. 2010, Jensen et al. 2014). We hypothesized that the reproductive capacity of high drinkers was chronically affected, as there was a decreased litter size between the first and second generation.

In this perspective, we observed that besides the impairment on the gestational parameters of dams early exposed to ethanol, the offspring also showed reduced body weight, with dose-related effects. Studies highlight that preconception ethanol exposure can influence the descendants’ phenotype. Reduction in the gestational sac weight and placental efficiency and function due to maternal and paternal ethanol use (Chang et al. 2017, Gardebjor et al. 2014) could explain our results partially. Preconception nutrition, body weight index, gestational weight gain and food consumption also influence maternal metabolic response in pregnant and fetal outcomes (Kind et al. 2006, Brett et al. 2014). Associated, the paternal experiences play an additional role (Robertson 2005, Rando & Simmons 2015) since the seminal fluid stimulates the female reproductive tract to produce growth factors and cytokines which protect the embryo (Robertson 2005), and changes in the seminal signaling can also influence descendants (Bromfield et al. 2014). The landmarks of physical development of offspring sired by alcoholic parents were altered in our study, similar to results by Fioravante et al. (2021). The insulin-like growth factor (IGF) is important for fetal and postnatal development, and IGF deficiency implicates signaling pathways and normal body growth (Kanaka-Gantenbein et al. 2003). Similarly, the EGF plays a role in regulating the activity of epidermal and epithelial tissues such as eye-opening and hair growth (Calamandrei & Alleva 1989, Smart et al. 1989). The alterations in the postnatal development of offspring can also be associated with maternal care (Amorim et al. 2011) since alcohol withdrawal accentuates depressive behaviors and reduced time spent on nursing (Pang et al. 2013, Workman et al. 2015). We hypothesized a possible endocrine and metabolic programming of the offspring, with the parental ethanol dose as decisive in the course of this programming.

Regarding females and males exposed to high ethanol, we found impairment in reproductive function and parameters in both sexes. The reproductive organs’ weight has been used to evaluate the toxicity of the reproductive system (Clegg et al. 2001). In this perspective, we found lower absolute and relative uterine weight and prolonged estrous cycle in H females. The ovary can often respond to cyclic alterations promoting a constant estrus as verified by Krueger et al. (1983) who observed a disruption in the estrous cycle by alcohol use. Our previous laboratory studies also verified a reduction of luteinizing hormone and follicle-stimulating hormone, follicular atresia, and damage in uterine endometrial cells in drinker females of UCh strain, with dose-related effects; however, ovulation and luteogenesis were present (Chuffa et al. 2009, Martinez et al. 2016). The increase of acetaldehyde and oxidative stress by ethanol impairs HPG/HPA axis, and they are mechanisms that change reproductive hormones balance and, consequently, uterine and ovarian tissues (Buthet et al. 2013, Rachdouai & Sarkar 2017). We suggested that lower uterine weight in H females could be related to a hormonal imbalance with damage to uterine structure and function while estrous prolongation could be associated with estradiol disbalance. Although we did not analyze this hormone to corroborate this hypothesis, studies already observed an alteration in their levels (Emanuele et al. 2001a, Chuffa et al 2009). The lower adiposity index

Table 4 Comparison of the mean day of physical development landmarks in days in the offspring (n = 8/litter/group) from control (C), low drinker (L) and high drinker (H) groups.

Parameters (days)	Groups		
	C	L	H
Pinna unfolding	2.5 ± 0.5	2.3 ± 0.8	3.1 ± 0.8
Hair growth	4.7 ± 0.4	4.8 ± 0.5 a	5.7 ± 0.4 a
Eye-opening	14.2 ± 0.3	13.6 ± 0.3 a	14.3 ± 0.5 a

Values expressed as mean ± S.D. P-values were calculated using a one-way ANOVA.

a Different letters represent significant differences among groups (P < 0.05) from post hoc Tukey’s multiple comparison test.

https://raf.bioscientifica.com
https://doi.org/10.1530/RAF-22-0009
Published by Bioscientifica Ltd
© 2022 The authors
This work is licensed under a Creative Commons Attribution 4.0 International License.
observed in females from the H group could also highlight possible malnutrition related to loss of muscle or fat mass (Dasarathy 2016).

Relating to male reproductive parameters, studies have verified that ethanol exerts a direct effect on both testosterone metabolism and spermatogenesis (Sansone et al. 2018). In contrast to the literature that reports atrophy of reproductive organs in drinkers (Martinez et al. 2000, 2001), we found an increase in the epididymis and seminal vesicle relative weight. This finding could be partially associated with lower body weight on H males since it is necessary to use the body weight to calculate the relative weight. Besides, no difference was noticed in the absolute seminal vesicle and there was a decrease in testis and epididymis absolute weight in the H group, corroborating our hypothesis. Analysis of body weight carries out information on the general toxicity of a substance and its possible implications for health (Fernandez et al. 2008) and could indicate estrogen imbalance (Heywood & Wadsworth 1980, Hart 1990). The lower body weight on H highlights a possible systemic compromise. Regarding reproductive function, we found decreased sperm count on epididymis and accelerated total transit time. Sperm transit time has an important role in the maturation of spermatozoa, and the acceleration of sperm transit impairs the necessary time for this process (Klinefelter 2002). Additionally, the lower sperm reserve observed in the epididymis could be explained by the acceleration of transit time throughout this organ. Associated, there was an increased percentage of sperm with morphologic abnormalities similar to clinical (Pajarinen et al. 1996, La Vignera et al. 2013, Sansone et al. 2018) and experimental (Jana et al. 2010) studies. These abnormalities can be due to failures either in the spermatogenic process or in sperm maturation due to acceleration of transit time. Inadequate signalization of epididymal factors which plays a role in maturation or low testosterone levels can also drive to this (Koch et al. 2015, Zi et al. 2015). The abnormal testosterone/estradiol ratio has been also associated with decreased semen parameters as well as harm to accessory sex glands (Schulter et al. 2016). Taken together, we hypothesized that the quality of the spermatozoa was harmed, reducing fertility potential since damage to reproductive organs and testosterone had already been observed even on alcoholic withdrawal (Candido et al. 2007). Although additional analysis is needed to validate the real harm of ethanol, our data indicate that early high alcohol use can impair reproductive function in both sexes. Low doses are also harmful; nevertheless, their impacts are lesser than the high doses (Patra et al. 2011, Rahimipour et al. 2013).

In summary, the results presented here highlight the alarming possibility that exposure to ethanol during postpuberty produces long-term effects on adulthood reproductive capacity, even in ethanol withdrawal. The ethanol consumption decreased body weight, gestational feed intake and litter size. In addition, there were impairments on reproductive function as well as altered reproductive organs weights in females and males exposed to ethanol early. Besides the impairments on consumers, the offspring development and growth were also affected. However, we cannot distinguish which parent contributed the most to observed changes. However, our previous laboratory studies along with published data strongly suggest maternal influence as the main factor. The reproductive capacity (litter size) of parents and body weight and physical development of ethanol-naive offspring show a dose–effect relationship.

Despite our limitations, we highly believe that the post-adolescent period acts as a susceptibility window. Future studies are needed to identify the mechanisms involved in long-term effects on drinkers’ reproduction as well as ethanol-naive offspring outcomes. Possibly, the effects are associated with epigenetic germline modifications, metabolism activity and HPG/HPA axis.

Declaration of interest
The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funding
This study was financed by the Grant 2018/12354-5, São Paulo Research Foundation (FAPESP), and Coordination for the Improvement of Higher Education Personnel – Brazil (CAPES) – Finance Code 001.

Author contribution statement
V C F conceived the study, performed experiments, analyzed and finished data and wrote the paper. A R G and V M B C performed experiments. P F F P, M M, C R P and F E M provided training to perform the experiments and contributed the intellectual input for the experimental design and data analysis. All authors contributed to editing the paper.

References
Amorim JP, Chuffa LG, Teixeira GR, Mendes LO, Fiorucci BA, Martins A & Martinez FE. 2011 Variations in maternal care alter corticosterone and 17beta-estradiol levels, estrous cycle and folliculogenesis and stimulate the expression of estrogen receptors alpha and beta in the ovaries of UCh rats. Reproductive Biology and Endocrinology 9 1–12. (https://doi.org/10.1186/1477-7827-9-160)
Andersson RA, Beyler SA & Zaneveld LJD 1978 Alterations of male reproduction induced by chronic ingestion of ethanol: development of an animal model. Fertility and Sterility 30 103–105. (https://doi.org/10.1016/s0015-0282(64)34006-0)

Asimes A, Torcaso A, Pinceti E, Kim CK, Zelcznik-le NJ & Pak TR 2017 Adolescent binge-pattern alcohol exposure alters genome-wide DNA methylation patterns in the hypothalamus of alcohol-naïve male offspring. Alcohol 60 179–189. (https://doi.org/10.1016/j.alcohol.2016.10.010)

Asimes A, Kim CK, Cuarenta A, Auger AP & Pak TR 2018 Binge drinking and intergenerational implications: parental preconception alcohol impacts offspring development in rats. Journal of the Endocrine Society 2 672–686. (https://doi.org/10.1210/js.2018-00051)

Baladin J, Berglund KJ, Berggren U, Wennberg P & Fahlke C 2014 Male offspring. DNA methylation patterns in the hypothalamus of alcohol-naïve offspring development and reproduction. Epigenetics 9 379–383. (https://doi.org/10.1080/15592294.2013.815201)

Cicero TJ, Nock B, Connor L, Adams ML, Sewing BN & Meyer ER 1994 Acute alcohol exposure markedly influences male fertility and fetal outcome in the male rat. Life Sciences 55 901–910. (https://doi.org/10.1016/0024-3205(94)00835-4)

Clegg ED, Perreault D & Kleinfeelter GR 2001 Assessment of male reproductive toxicity. In Principles and Methods of Toxicology, pp. 1263–1300. Eds AE Hayes. Philadelphia: Taylor & Francis.

Dasarathy S 2016 Nutrition and alcoholic liver disease: effects of alcoholism on nutrition, effects of nutrition on alcoholic liver disease, and nutritional therapies for alcoholic liver disease. Clinics in Liver Disease 20 535–550. (https://doi.org/10.1016/j.cld.2016.02.010)

Eggett JD, Theobald H & Engfeldt P 2004 Effects of alcohol consumption on female fertility during an 18-year period. Fertility and Sterility 81 379–383. (https://doi.org/10.1016/j.fertnstert.2003.06.018)

Emanuele NV, Lapaglia N, Steiner J, Kestirnans L & Emanuele MA 2001a Effect of chronic ethanol exposure on female rat reproductive cyclicity and hormone secretion. Alcoholism, Clinical and Experimental Research 25 1025–1029. (https://doi.org/10.1111/j.1530-0277.2001.tb02312.x)

Emanuele NV, Lapaglili N, Steiner J, Colantoni A, Van Thiel DH & Emanuele MA 2001b Peripartum paternal EtOH exposure. Endocrine 14 213–219. (https://doi.org/10.1385/endo:14:2:213)

Fernandez CDB, Porto EM, Arena AC & Kempinas Wde G 2008 Effects of altered epididymal sperm transit time on sperm quality. International Journal of Andrology 31 427–437. (https://doi.org/10.1111/j.1.1365-2605.2007.02088.x)

Filler R 1993 Methods for evaluation of rats epididymal sperm morphology. In Methods in Toxicology: Male Reproductive Toxicology, pp. 334–343. Eds RE Chapin & JH Heindel. San Diego: Academic Press.

Fioravante VC, Godoi AR, Camargo VMB, Nascimento RS, Filler R & Emanuele MA 2008 Reproductive disorders in female rats after ethanol-naive offspring development and reproduction. Reproduction 161 195–204. (https://doi.org/10.1530/REP-20-0316)

Gallavan RH, Holson JF, Stump DG, Knapp JF & Reynolds VL 1999 Interpreting the toxicologic significance of alterations in anogenital distance: potential for confounding effects of progeny body weights. Reproductive Toxicology 13 383–390. (https://doi.org/10.1016/s0890-6283(99)00036-2)

Gapp K, Jawaid A, Sarkies P, Bohacke J, Pelcarz P, Prados J, Farinelli L, Miska E & Mansuy IM 2014 Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nature Neuroscience 17 667–669. (https://doi.org/10.1038/nn.3695)

Gardeberjer EM, Cuffee JSM, Pantaleon M, Wlodek ME & Moritz KM 2014 Periconceptual alcohol consumption causes fetal growth restriction and increases glycogen accumulation in the late gestation rat placenta. Placenta 35 50–57. (https://doi.org/10.1016/j.placenta.2013.10.008)

GBD 2016 Alcohol Collaborators 2018 Alcohol use and burden for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 392 1015–1035. (https://doi.org/10.1016/S0140-6736(18)31310-2)

Harding SM, Mollé N, Reyes-Fondeur L & Karanian JM 2016 The effects of repeated forced ethanol consumption during adolescence on reproductive behaviors in male rats. Alcohol 55 61–68. (https://doi.org/10.1016/j.alcohol.2016.08.004)

Hart JE 1990 Endocrine pathology of estrogens: species differences. Pharmacology and Therapeutics 47 203–218. (https://doi.org/10.1016/0163-7258(90)90087-4)

Heywood R & Wadsworth PF 1980 The experimental toxicology of estrogens. Pharmacology and Therapeutics 8 125–142. (https://doi.org/10.1016/0163-7258(80)90062-5)

Jana K, Jana N, Kumar DK & Guha SK 2010 Ethanol induces mouse spermatogenic cell apoptosis in vivo through over-expression of fas/L, p53, and caspase-3 along with cytchrome c translocation and glutathione depletion. Molecular Reproduction and Development 77 820–833. (https://doi.org/10.1002/mrd.21227)

Jensen TK, Gottschau M, Madsen JOB, Andersson AM, Lassen TH, Skakkebaek NE & Jørgensen N 2014 Habitual alcohol consumption associated with reduced semen quality and changes in reproductive
hormones: a cross-sectional study among 1221 young Danish men. BMJ Open 4 5462–5462. (https://doi.org/10.1136/bmjopen-2014-005462)

Kanaka-Gantenbein C, Mastorakos G & Chrousos GP 2003 Endocrine-related causes and consequences of intrauterine growth retardation. Annals of the New York Academy of Sciences 997 150–157. (https://doi.org/10.1196/annals.1290.017)

Kiefer F, Jahn H, Otte C, DMiralay C, Wolf K & Wiedemann K 2005 Increasing leptin precedes craving and relapse during pharmacological abstinence maintenance treatment of alcoholism. Journal of Psychiatric Research 39 545–551. (https://doi.org/10.1016/j.jpsychires.2004.11.005)

Kind KL, Moore VM & Davies MJ 2006 Diet around conception and during pregnancy-effects on fetal and neonatal outcomes. Reproductive Biomedicine Online 12 532–541. (https://doi.org/10.1016/j.rbmo.2010.07.010)

Klinefelter GR 2002 Actions of toxins on the structure and function of the epididymis. In The Epididymis – From Molecules to Clinical Practice, pp. 353–369. Ed B Robaire. New York: Hinton Kluwer Academic/Plenum Publisher.

Koch S, Acebron SP, Herbst J, Hatiboglu G & Niehrs C 2015 Post-transcriptional Wnt signaling governs epididymal sperm maturation. Cell 163 1225–1236. (https://doi.org/10.1016/j.cell.2015.10.029)

Krueger WA, Bo WJ & Rudeen PK 1983 Estrus cyclicity in rats fed an ethanol diet for four months. Pharmacology, Biochemistry, and Behavior 19 583–585. (doi:10.1016/0091-3057(83)90331-3.)

La Vignera S, Condorelli RA, Balercia G, Vicari E & Calogero AE 2013 Alcohol intake induces diminished ovarian reserve in childbearing age women. Journal of Obstetrics and Gynecology Research 39 516–521. (https://doi.org/10.1111/j.1471-0140.2012.01992.x)

Liang F, Diao L, Liu J, Jiang N, Zhang J, Wang H, Zhou W, Huang G & Ma D 2016 Dose-response relationship between alcohol consumption before and during pregnancy and the risks of low birthweight, preterm birth and small for gestational age (SGA)-a systematic review and meta-analyses. BJOG 118 1411–1421. (https://doi.org/10.1111/1471-0528.13050.x)

Picut CA, Dixon D, Simons ML, Stump DG, Parker GA & Remick AK 2015 Postnatal ovary development in the rats: morphologic study and correlation of morphology to neuroendocrine parameters. Toxicologic Pathology 43 343–353. (https://doi.org/10.1177/0192667214543480)

Rachdoua N & Sarkar DK 2017 Pathophysiology of the effects of alcohol abuse on the endocrine system. Alcohol Research: Current Reviews 38 255–276.

Rahimipour M, Talebi AR, Anvari M, Sarcheshmeh AA & Omidi M 2013 Effects of different doses of ethanol on sperm parameters, chromatin structure and apoptosis in adult mice. European Journal of Obstetrics, Gynecology, and Reproductive Biology 170 423–428. (https://doi.org/10.1016/j.ejogrb.2013.06.038)

Randz OJ & Simmons RA 2015 I’m eating for two: parental dietary effects on offspring metabolism. Cell 161 93–105. (https://doi.org/10.1016/j.cell.2015.02.021)

Rehm J, Mathers C, Popova S, Thavorncharoensap M, Teerawattananon Y & Patra J 2009 Global burden of disease and injury and economic cost attributable to alcohol use and alcohol-use disorders. Lancet 373 2223–2233. (https://doi.org/10.1016/S0140-6736(09)60746-7)

Robb GW, Amann RP & Killian GJ 1978 Daily sperm production and epididymal sperm reserves of puberal and adult rats. Reproduction 54 103–107. (https://doi.org/10.1530/jpt.0.0540103)

Robertson SA 2005 Seminal plasma and male factor signalling in the female reproductive tract. Cell and Tissue Research 322 43–52. (https://doi.org/10.1007/s00441-005-1127-3)

Sansone A, Di Dato C, de Angelis C, Menafra D, Pozza C, Pivonello R, Isidori A & Gianfrilli D 2018 Smoke, alcohol and drug addiction and male fertility. Reproductive Biology and Endocrinology 16 3. (https://doi.org/10.1186/s12255-018-0320-7)

Schulster M, Bernie AM & Ramasamy R 2016 The role of estradiol in male reproductive function. Asian Journal of Andrology 18 435–440. (https://doi.org/10.4103/1008-682X.173932)

Seed J, Chapin RE, Clegg ED, Dostal LA, Foote RH, Hurtt ME, Klinefelter GR, Makris SL, Perreault SD, Schrader S, et al. 1996 Methods for assessing sperm motility, morphology, and counts in the rat, rabbit, and dog: a consensus report. Reproductive Toxicology 10 237–244. (https://doi.org/10.1016/0890-6239(96)00028-7)

Sengupta P, Borges E, Dutta S & Krajewska-Kulak E 2018 Decline in sperm count in European men during the past 50 years. Human and Reproductive Toxicology 37 247–255. (https://doi.org/10.1097/15327717073690)

Sharlip ID, Jarow JP, Belker AM, Lipshultz LI, Sigman M, Thomas AJ, Schlegel PN, Howards SS, Nehra A, Damewood MD, et al. 2002 Best practice policies for male infertility. Fertility and Sterility 77 873–882. (https://doi.org/10.1016/S0015-0262(02)03105-9)
Smart JL, da Silva VA, Malheiros LR, Paumgarten FJ & Massey RF 1989 Epidermal growth factor advances some aspects of development but retards others in both rats and hamsters. *Journal of Developmental Physiology* **11** 153–158.

Srivastava VK, Hiney JK & Dees WL 2018 Alcohol delays the onset of puberty in the female rat by altering key hypothalamic events. *Alcoholism: Clinical and Experimental Research* **42** 1166–1176. (https://doi.org/10.1111/acer.13762)

Vaglenova J & Petkov VV 1998 Fetal alcohol effects in rats exposed pre-and-postnatally to a low dose of ethanol. *Alcoholism: Clinical and Experimental Research* **22** 691–103.

Wallock-Montelius LM, Villanueva JA, Chapin RE, Conley AJ, Nguyen HP, Ames BN & Halsted CH 2007 Chronic ethanol perturbs testicular folate metabolism and dietary folate deficiency reduces sex hormone levels in the Yucatan micropig. *Biology of Reproduction* **76** 455–465. (https://doi.org/10.1095/biolreprod.106.053959)

Workman JL, Raineke C, Weinberg J & Galea LAM 2015 Alcohol and pregnancy: effects on maternal care, HPA axis function, and hippocampal neurogenesis in adult females. *Psychoneuroendocrinology* **57** 37–50. (https://doi.org/10.1016/j.psyneuen.2015.03.001)

World Health Organization 2018 Global Status Report on Alcohol and Health 2018, 472 p. World Health Organization.

Zi Z, Zhang Z, Li Q, An W, Zeng L, Gao D & Wu J 2015 CCNYL1, but not CCNY, cooperates with CDK16 to regulate spermatogenesis in mouse. *PLoS Genetics* **18** e1005485. (https://doi.org/10.1371/journal.pgen.1005485)

Received in final form 29 June 2022
Accepted 28 July 2022
Accepted Manuscript published online 28 July 2022