Hybrid dark energy

J S Alcaniz1, R Silva2,3, F C Carvalho3 and Z-H Zhu4

1 Observatório Nacional, 20921-400 Rio de Janeiro—RJ, Brazil
2 Universidade Federal do Rio Grande do Norte, 59072-970 Natal—RN, Brazil
3 Universidade do Estado do Rio Grande do Norte, 59610-210, Mossoró—RN, Brazil
4 Department of Astronomy, Beijing Normal University, Beijing 100875, People’s Republic of China

E-mail: alcaniz@on.br, raimundosilva@uern.br, fabiocc@das.inpe.br and zhuzh@bnu.edu.cn

Received 4 March 2009, in final form 6 April 2009
Published 5 May 2009
Online at stacks.iop.org/CQG/26/105023

Abstract
We explore the cosmological implications of a new quintessence scenario driven by a slow rolling homogeneous scalar field whose equation of state behaved as freezing over the entire cosmic evolution is approaching \(-1\) today, but will become thawing in the near future, thereby driving the universe to an eternal deceleration. We argue that such a mixed behavior, named \textit{hybrid}, may reconcile the slight preference of current observational data for freezing potentials with the impossibility of defining observables in the string/M-theory context due to the existence of a cosmological event horizon in asymptotically de Sitter universes as, e.g., pure freezing scenarios.

PACS numbers: 98.80.Cq, 95.36.+x

1. Introduction

Astronomical observations including distance measurements to intermediary and high-\(z\) Type Ia supernovae (SNe Ia) \cite{1–4}, measurements of the cosmic microwave background (CMB) anisotropies \cite{5} and the current observations of the large-scale structure (LSS) in the universe \cite{6, 7} seem to indicate consistently that we live in a nearly flat, accelerating universe composed of \(~25\%\) of pressureless matter (baryonic + dark) and \(~75\%\) of an exotic component with large negative pressure, the so-called dark energy. In particular, this component is theoretically identified by its equation-of-state (EoS) parameter \(w = p/\rho\), i.e., the ratio of the pressure \(p\) to its energy density \(\rho\). The simplest and most theoretically appealing candidate for dark energy is the constant cosmological \(\Lambda\), for which \(w = -1\). Another possibility is a dynamical field \(\Phi\), the so-called quintessence field, whose spatially averaged EoS \(-1 \leq w \leq -1/3\) is a time-dependent quantity (see \cite{8} for recent reviews).

For this latter class of models, the physics behind the phenomenon of cosmic acceleration is the dynamics of a scalar field \(\Phi\) rolling down its potential \(V(\Phi)\), whose Lagrangian is simply...
given by $\mathcal{L} = \frac{1}{2} \partial^{\mu} \Phi \partial_{\mu} \Phi - V(\Phi)$. In fact, this idea has received much attention over the past few years, and a considerable effort has been made in understanding the role of quintessence fields on the dynamics of the universe [9–12]. Although from a physical viewpoint all these quintessence scenarios are based on the very same premise that fundamental physics provides motivation for light scalar fields in nature, in what concerns the dynamics and evolution of the universe, it is well known that they may differ significantly among themselves.

In this regard, an interesting classification for the behavior of the quintessence field in terms of the time variation of its EoS ($w' = dw / dl n$) has been discussed in [11, 13]. Thawing models describe a scalar field whose EoS increases from $w \sim -1$, as it rolls down toward the minimum of its potential, whereas cooling scenarios describe an initially $w > -1$ EoS decreasing to more negative values. A special case of this latter class of scenarios is the so-called freezing models, which correspond to the situation in which the potential has a minimum at $\Phi = \infty$.

Another possibility would be that in which the scalar field EoS behaved as freezing over all the past cosmic evolution, is approaching the value -1 today (in agreement with current observations), will become thawing in the near future and will behave as such over the entire future evolution of the universe. This mixed behavior is particularly interesting because, in principle, it could reconcile current observational and theoretical arguments about the dark energy EoS as, e.g., the slight preference of the SNe Ia + LSS data for freezing EoS [14–16] (which, in turn, leads to an eternally accelerating universe), and the impossibility of constructing a conventional S-matrix describing particle interactions in the string/M-theory context due to the existence of a cosmological event horizon in such freezing scenarios [17].

In this paper, by following the arguments of [12], and taking into account the theoretical and observational constraints on the behavior of the dark energy EoS mentioned above, we study a class of field potentials which gives origin to a mixed (freezing/thawing) EoS behavior, named here as hybrid. We show that such a class of potentials may have a conventional dependence on the scalar field Φ, i.e., $V(\Phi) \sim f_\kappa(\Phi) e^{g_\kappa(\Phi)}$ and may be obtained through a simple ansatz on the scale factor derivative of the field energy density. Besides, it fully reproduces the exponential potential studied by Ratra and Peebles in [9] for the dimensionless index $\kappa = 0$, and admits a wider range of solutions $\forall \kappa \neq 0$. Due to the future thawing behavior ($w \to +1$ for $a \to \infty$), we also show that a transient accelerating phase is another interesting feature of this class of potentials, which, in turn, reconcile the observed acceleration of the universe with the requirements of string/M-theories discussed in [17].

2. A hybrid model

The action for the model is given by

$$S = \frac{m_{pl}^2}{16\pi} \int d^4 x \sqrt{-g} \left[R - \frac{1}{2} \partial^{\mu} \Phi \partial_{\mu} \Phi - V(\Phi) + \mathcal{L}_m \right],$$

where R is the Ricci scalar, and $m_{pl} \equiv 1/\sqrt{G}$ is the Planck mass. The scalar field is assumed to be homogeneous such that $\Phi = \Phi(t)$ and the Lagrangian density \mathcal{L}_m includes all matter fields. The conservation equation for this Φ component takes the form $\dot{\rho}_\Phi + 3H (\rho_\Phi + p_\Phi) = 0$, or, equivalently, $\Phi + 3H \dot{\Phi} + V'(\Phi) = 0$, where $\rho_\Phi = \frac{1}{2} \dot{\Phi}^2 + V(\Phi)$ and $p_\Phi = \frac{1}{2} \dot{\Phi}^2 - V(\Phi)$ are, respectively, the field energy density and pressure. In the above expressions as well as in the subsequent ones, dots and primes denote, respectively, derivatives with respect to time and to the field (we work in units where $\hbar = c = 1$).
Following [12], we will adopt here the following ansatz on the scale factor derivative of the energy density:

\[
\frac{1}{\rho} \frac{\partial \rho}{\partial a} = -A \left(\frac{\alpha^{x-1/2} + \alpha^{-x-1/2}}{2} \right)^2,
\]

where \(\kappa \) is a real parameter, \(A \) is a positive number, and the other numeric factors were introduced for mathematical convenience.

For a dark-energy-dominated universe \((L_m = 0) \), a direct combination of the above ansatz with the conservation law for the field and the Friedmann equation provides

\[
\Phi(a) - \Phi_0 = \frac{1}{\sqrt{\sigma}} \ln_\kappa(a),
\]

where \(\Phi_0 \) is the current value of the scalar field \(\Phi \), \(\sigma = 8\pi/m^2 A \), and the function \(\ln_\kappa \) is a one-parameter generalized logarithmic function, defined as

\[
\ln_\kappa(x) \equiv \frac{(x^\kappa - x^{-\kappa})}{2\kappa},
\]

with \(|\kappa| \leq 1\), which reduces to the ordinary logarithmic as \(\kappa \to 0 \) [18].

The potential \(V(\Phi) \) for the above scenario is obtained by inserting the scale factor \(a(\Phi) = \exp\left[\sqrt{\sigma}(\Phi(a) - \Phi_0)\right] \) (from equation (3)) into the above definitions of \(\rho \) and \(p \). The resulting potential is given by

\[
V(\Phi) = f_\kappa(\Phi) \exp \left[-A\sqrt{\sigma}(1 + \kappa^2 \Phi^2)g_\kappa(\Phi)\right],
\]

where

\[
f_\kappa(\Phi) = 1 - \frac{A}{6} \left[\frac{1 - \kappa^2 \Phi^2 + \kappa \sqrt{\sigma} g_\kappa(\Phi)}{\sqrt{1 + \kappa^2 \Phi^2 + \kappa \sqrt{\sigma} \Phi}} \right]^2,
\]

and \(g_\kappa(\Phi) \equiv \sqrt{1 + \kappa^2 \Phi^2 + 2\kappa \sqrt{\sigma} \Phi} \). In the limit \(\kappa \to 0 \), equations (3) and (5) reduce to \(\Phi(a) - \Phi_0 = \frac{1}{\sqrt{\sigma}} \ln(a) \) and \(V(\Phi) \propto \exp(-A\sqrt{\sigma} \Phi) \), which fully reproduce the exponential potential studied in [9]. ∀ \(\kappa \neq 0 \), however, the scenario described above represents a generalized model which admits a much wider range of solutions, as described below (for the determination of the scalar field potential from the knowledge of cosmic expansion, see [19] and references therein).

For the realistic case of a dark matter–dark energy dominated universe \((L_m \neq 0) \), a direct combination of the above equations provides the following expression for the field \(\Phi \) as a function of the scale factor:

\[
\Phi - \Phi_0 = \frac{1}{\sqrt{2\sigma}} \int_{a_0}^{a} \frac{a^{x-1} - a'^{-x-1}}{\sqrt{\left[1 + \frac{\Omega_m(a)}{\Omega_\Phi(a)}\right]}} \, da',
\]

where \(\Omega_m(a) \) and \(\Omega_\Phi(a) \) stand for the matter and quintessence density parameters, respectively. As one may easily check, the above expression for \(\Phi(a) \) reduces to \(\Phi(a) \) of equation (3) for \(\Omega_m = 0 \). Note also that, when combined numerically with the above definitions of \(\rho \) and \(p \), it also provides the potential \(V(\Phi) \) for this realistic dark matter/energy scenario, which belongs to the same class of potentials as given in equation (5) and shown in figure 1(a).

5 Note that, in the inversion of equation (3), we have used the one-parameter deformation of the exponential function \(\exp_{[1]}(x) \equiv (1 + e^{2x} + e^{-x})^{1/2} \), which not only reduces to an ordinary exponential in the limit \(\xi \to 0 \) but also is the inverse function of the deformed logarithmic \(\ln_\xi \).
Finally, by integrating out equation (2) we obtain the energy density of the field Φ, i.e.,
\[\rho_\Phi = \rho_{\Phi,0} a^{-A} \exp(-A \ln_2 a), \]
where \(\rho_{\Phi,0} \) is the current value of the energy density. Clearly, in the limit \(\kappa \rightarrow 0 \) equation (8) reduces to an usual power law, i.e., \(\rho_\Phi(a) \propto a^{-2A} \), as expected for ordinary exponential potentials.

3. Freezing/thawing (hybrid) EoS

The EoS parameter for this generalized field is easily derived by combining the conservation equation for \(\Phi \) with equation (8), i.e.,
\[w(a) = -1 + \frac{A}{12} (a^\kappa + a^{-\kappa})^2. \]

Figure 1(b) shows \(w \) as a function of the redshift \(z \) for some selected values of the index \(\kappa \) (without loss of generality to the subsequent discussions, from now on we particularize our analyses to the case \(A = 10^{-1} \)). As shown, the scalar field EoS above behaved as freezing over all the past cosmic evolution is approaching the value \(-1 \) today (e.g., it is \(w(a_0) \approx -0.96 \) for the above value of \(A \)), will become thawing in the near future and will behave as such over the entire future evolution of the universe. In particular, at \(a \approx 9^{1/\kappa} \), \(w(a) \) crosses the value \(-1/3 \), which roughly means the beginning of the future decelerating phase. Clearly, this mixed behavior arises from a competition between the double scale factor terms in equation (9), which, in turn, is a direct consequence of the generalized logarithmic function used in our ansatz (2). Note also that, similarly to the EoS above, all the expressions derived in this paper are symmetric relative to the sign of the index \(\kappa \), which means that one may restrict the \(\kappa \) interval to \(0 \leq \kappa \leq 1 \).

An important aspect worth emphasizing at this point concerns the current observational and theoretical constraints on the behavior of \(w(a) \). Although there is so far no concrete observational evidence for a time or redshift dependence of the dark energy EoS (the current data are fully compatible with the standard ΛCDM model), some recent analyses using current data from SNe Ia, LSS and CMB have explored possible variations in the \(w=a \)
plane and indicated a slight preference for a freezing behavior over the thawing one [14–16]. For instance, [16] uses the Monte Carlo reconstruction formalism to scan a wide range of possibilities for $w(a)$ and find that $\sim 74\%$ are for freezing whereas only $\sim 0.05\%$ are for thawing. Similar conclusions are also obtained in [15] by using the so-called maximum entropy method, where the HST/GOODS SNe data showed $\sim 1\sigma$ level preference for $w > -1$ at $z \sim 0.5$ with a drift toward $w > -1$ at higher redshifts. These results amount to saying that, if such a preference for freezing potentials persists even after a systematically more homogeneous and statistically more powerful data sets become available, the future of the universe should be an everlasting acceleration toward a de Sitter phase, which seems to be in conflict with the string/M-theories requirements discussed in [17]. This, however, is not the case in the scenario under discussion here because, differently from pure freezing models, the hybrid EoS given by equation (9), although freezing in the past (and, therefore, possibly in agreement with the data), will becoming thawing in the future, so that the phenomenon of a transient acceleration may take place. In what follows, and in connection with the results of [17], we explore the thawing branch of equation (9).

4. Eternal deceleration

Reference [17] has seriously pointed out a possible conflict between an eternally accelerating universe and our best candidate for a consistent quantum theory of gravity, i.e., string/M-theories. The reason for that is because the only known formulation of string theory is in terms of S-matrices which require infinitely separated, noninteracting in and out states. As is well known, if the universe is dominated by dark energy (for instance, a positive cosmological constant or a freezing potential), it will asymptotically become a de Sitter space, which has a cosmological event horizon Δ_{1h} with physics confined to a finite region. In other words, this means that in eternally accelerating universes there are no isolated states.

In this regard, given the future thawing behavior of the hybrid EoS (9), the quintessence scenario discussed here must lead to a transient acceleration. To study this phenomenon, let us consider the deceleration parameter $q = -\ddot{a}/\dot{a}^2$, given by

$$q(z) = \frac{\Omega_m (1+z)^3 + \frac{4}{3} (1 + \Omega_m)(1+z)^{4/3} [2 + (1+z)^{2\kappa} + (1+z)^{-2\kappa}] \exp\left[-\frac{A (1+z)^{-3\kappa} - (1+z)^{3\kappa}}{4}\right]}{\Omega_m (1+z)^3 + (1 - \Omega_m)(1+z)^{4/3} \exp\left[-\frac{A (1+z)^{-3\kappa} - (1+z)^{3\kappa}}{4}\right]}$$

and shown in figure 1(c) as a function of the redshift for some values of the index κ and $\Omega_{m,0} = 0.27$. As can be seen from this figure, for a large interval of values of κ the universe was decelerated in the past, switched to the current accelerating phase at $z_d \simeq 1$ and will eventually decelerate again at some $z_d < -1$. As expected, this latter transition is becoming more and more delayed as $\kappa \rightarrow 0$. With such a behavior, it is straightforward to show that the cosmological event horizon for this hybrid scenario $\Delta_{th} = \int da/a^2 H(a)$ diverges, thereby alleviating the potential theoretical and observational conflict discussed above. It is worth emphasizing that, differently from the results of [12] for a pure thawing EoS, the transient acceleration here is driven by the hybrid EoS of equation (9), which behaved as freezing over the entire evolution of the universe until recently, at $z \simeq 0$. Examples of transiently accelerating models driven by a quintessence field or in the context of braneworld models can be found in [20].
5. Observational status and conclusions

In order to place some observational bounds on the $\Omega_m-\kappa$ space, we use a combined sample of 192 SNe Ia events compiled in [1], which consists of the best quality light-curves SNe Ia of ESSENCE [2] and SNLS [3] collaborations and the high-z SNe team [4], plus the measurement of the baryon acoustic oscillation (BAO) from the Sloan Digital Sky Survey [7]. Figure 2 shows 68.3%, 95.4% and 99.7% confidence contours in the $\Omega_m,0-\kappa$ plane. Note that, similarly to what happens with the time-dependent part of several EoS parameterizations, the current bounds on the index κ are weak (with the entire interval $0 \leq \kappa \leq 1$ compatible at 1σ level), whereas for the matter density parameter we have found $\Omega_m,0 = 0.27 \pm 0.02$ at 95.4% (C.L.). We expect, however, that more theoretical effort along with the next generation of experiments dedicated to probe the dark energy EoS as, for instance, the Joint Efficient Dark-energy Investigation (JEDI) [21], the Dark Universe Explore (DUNE) [22], among others will have sufficient accuracy to decide which (if pure freezing, thawing or hybrid) EoS behavior is preferable from both theoretical and observational viewpoints.

Acknowledgments

JSA and RS are supported by CNPq, Brazil. FCC is supported by FAPESP. Z-HZ is supported by the National Science Foundation of China under the distinguished Young Scholar Grant 10825313, the Key Project Grant 10533010, and by the Ministry of Science and Technology national basic science Program (Project 973) under Grant Ab. 2007CB81540.

References

[1] Davis T M et al 2007 Astrophys. J. 666 716
[2] Wood-Vasey W M et al 2007 Astrophys. J. 666 694
[3] Astier P et al 2006 Astron. Astrophys. 447 31
[4] Riess A G et al 2007 Astrophys. J. 659 98
[5] Spergel D N et al 2007 Astrophys. J. (Suppl.) 170 377
Dunkley J et al 2009 Astrophys. J. Suppl. 180 306
[6] Tegmark M et al 2004 Phys. Rev. D 69 103501
[7] Eisenstein D J et al 2005 Astrophys. J. 633 560
[8] Peebles P J E and Ratra B 2003 Rev. Mod. Phys. 75 559

Padmanabhan T 2003 Phys. Rep. 380 235
Copeland E J, Sami M and Tsujikawa S 2006 Int. J. Mod. Phys. D 15 1753
Alcaniz J S 2006 Braz. J. Phys. 36 1109
[9] Ratra B and Peebles P J E 1988 Phys. Rev. D 37 3406
[10] Peebles P J E and Ratra B 1988 Astrophys. J. Lett. 325 L17

Wetterich C 1988 Nucl. Phys. B 302 668
Caldwell R R, Dave R and Steinhardt P J 1998 Phys. Rev. Lett. 80 1582
Ferreira P G and Joyce M 1998 Phys. Rev. D 58 023503
Carroll S M 1998 Phys. Rev. Lett. 81 3067
Dodelson S, Kaplinghat M and Stewart E 2000 Phys. Rev. Lett. 85 5276
Albrecht A and Skordis C 2000 Phys. Rev. Lett. 84 2076
Balaji K R S and Brandenberger R H 2005 Phys. Rev. Lett. 94 031301
[11] Caldwell R R and Linder E V 2005 Phys. Rev. Lett. 95 141301
[12] Carvalho F C, Alcaniz J S, Lima J A S and Silva R 2006 Phys. Rev. Lett. 97 081301
[13] Barger V, Guarnaccia E and Marfatia D 2006 Phys. Lett. B 635 61
Scherrer R J 2006 Phys. Rev. D 73 043502
Chiba T 2006 Phys. Rev. D 73 063501
[14] Krauss L M, Jones-Smith K and Huterer D 2007 New J. Phys. 9 141
[15] Zunckel C and Trotta R 2007 Mon. Not. R. Astron. Soc. 380 865
[16] Huterer D and Peiris H V 2007 Phys. Rev. D 75 083503
[17] Fischler W, Kashani-Poor A, McNees R and Paban S 2001 J. High Energy Phys. JHEP03(2001)07
Hellerman S, Kaloper N and Susskind L 2001 J. High Energy Phys. JHEP03(2001)06
Cline J M 2001 J. High Energy Phys. JHEP5(2001)08
Halyo E 2001 J. High Energy Phys. JHEP25(2001)10
[18] Silva R 2006 Eur. Phys. J. B 54 499
[19] Sahni V and Starobinsky A 2006 Int. J. Mod. Phys. D 15 2105
[20] Frieman J A, Hill C T, Stebbins A and Waga I 1995 Phys. Rev. Lett. 75 2077

Starobinsky A A 2000 Grav. Cosmol. 6 157
Barrow J, Bean R and Magueijo J 2000 Mon. Not. R. Astron. Soc. 316 L41
Kallosh R, Linde A, Prokushkin S and Shmakova M 2002 Phys. Rev. D 66 123503
Sahni V, Sami M and Starobinsky A A 2003 J. Cosmol. Astropart. Phys.
Sahni V and Shtanov Y 2003 J. Cosmol. Astropart. Phys. JCAP11(2003)014
[21] http://jedi.nhn.ou.edu/
[22] http://www.dune-mission.net/