Phytochemical Screening, GC-MS Analysis and Antioxidant Activity of *Curcurbita pepo* L. using Its Leaf Sample

Ezekwe Ahamefula Sunday¹*, Nwadike Constance Nnedimma², Wokocha Gift Peter¹ and George Boma Orlando¹

¹Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Rivers State University, Nkpolu Oroworokwo, Port Harcourt, Nigeria.
²Department of Medical Laboratory Science, Imo State University, Owerri, Nigeria.

Authors’ contributions

This work was carried out in collaboration among all authors. Authors EAS and NCN designed the study, performed the statistical analysis, wrote the protocol and wrote the first draft of the manuscript. Authors EAS, WGP and GBO managed the analyses of the study. Authors EAS, NCN and GBO managed the literature searches. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AJOB/2021/v11i430151
Editor(s):
(1) Dr. Md. Abdulla Al Mamun, The University of Tokyo, Japan.
(2) Barkat A Khan, Gomal University, Pakistan.
Reviewers:
(1) Barkat A Khan, Gomal University, Pakistan.
(2) Zubaida Yousaf, Lahore College for Women University, Pakistan.
Complete Peer review History: http://www.sdiarticle4.com/review-history/63381

Received 30 September 2020
Accepted 06 December 2020
Published 08 May 2021

ABSTRACT

This study evaluated the phytochemical screening, gas chromatography-mass spectrometry (GC-MS) analysis and antioxidant activity of *Curcurbita pepo* L. using its leaf sample with standard methods. The sample used for the study was procured from Imo State University school farm and was properly identified. Result of phytochemical screening revealed the presence of saponins, flavonoids, alkaloids, steroids, phlobactannins, proteins, and anthraquinones, while the GC-MS analysis revealed a total of 78 compounds, out which Bis(2-ethylhexyl) phthalate (C₂₄H₃₈O₄) had the highest molecular weight, 2,4,6-Octatriene, 2,6-dimethyl- (C₁₀H₁₈) had the highest peak area of 10.21% while Morphinan-6-ol, 4,5-epoxy-N-methyl- (5α 6α- (C₁₇H₂₀NO₂) had the highest retention time. The antioxidant activity of the studied sample was enhanced against the control. Some of the compounds as revealed by GC-MS analysis could be of healthcare or industrial importance.

*Corresponding author: E-mail: ezekweahamefulaaimsu@gmail.com;
is need for further studies on the leaf sample to ascertain further the observations of the present study. This study has evaluated the phytochemical screening, GC-MS analysis and antioxidant activity of C. pepo L. using its leaf sample.

Keywords: Antioxidants activity; C. pepo; medicinal plants; phytochemical screening; “ugboguru”.

1. INTRODUCTION

The benefits of plants to man and his environment have long been recognized [1-9]. The use of products from plants transversed different human endeavors [10-18]. They contribute to the survival of man through provision of food substances [19-29], raw materials for industries [7,30], manures for agriculture and salvage the environment for man [3,7,9,30]. The use of plants in complementary and natural healthcare in recent years, has opened the door for numerous research studies on plants in relation to their efficacy over diseases and disease causing pathogens. Studies on plants have revealed many biologically active substances and compounds that are physiologically active against disease causing microorganisms [31-39]. Plants with such constituents and with disease salvaging potency are collective known as medicinal plants. Different authors have defined medicinal plants in acceptable terms within the research community [40-51].

Some medicinal plants also have potency against excessive production of reactive oxygen species (ROS) [52] and are said to have antioxidant capacity [53-55]. Various stresses associated with the excessive production of reactive oxygen species have been recognized. Some medicinal plants have also been with the capacity to boost a group of complex antioxidative system comprising ascorbate (AsA) and glutathione (γ-glutamyl-cysteinyl-glycine, GSH) as well as tocopherol, carotenoids, phenolic compounds, superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (GPX), enzymes of ascorbate-glutathione (AsA-GSH) cycle ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and glutathione reductase (GR) [56-59]. These group of complex antioxidants scavenge and as well combat the activities of ROS and prevent them from causing peroxidation of lipids, oxidation of proteins, damage to nucleic acids, enzyme inhibition, activation of programmed cell death (PCD) pathway and ultimately leading to death of the cells [60-61].

Curcurbita pepo from Cucurbitaceae family, popularly known as “ugboguru” among the Igbo of Southeastern Nigeria, could be amongst the plants defined as medicinal plants. It is a herbaceous vine that grows to about 3-9 long and branches occasionally [62]. The vine can sprawl across the ground, but can as well climb adjacent vegetation and objects with the help of its tendrils [62]. It bears a light green stem with short-hairy stout or bluntly angular-grooved. The plant has been cultivated for its edible fruits for thousands of years. It remains a crop plants with great economic importance till date. The matured and immature flowers, fruits, and young leaves are used as vegetables [62]. The matured fruits are used as animal fodder while the large seeds, also known as pumpkin nuts are edible [62]. The seeds are rich in zinc [62-63]. The sap and pulp of C. pepo have long been used as a medicinal plant in the North and Central American [62]. The sap and pulp are applied to burns while the seeds are used as a diuretic and as a de-worming agent [62-64]. The plant is also recognised in Ayurvedic medicine where its fruit is considered as cooling and astringent agents. It is believed to cure the thirst for water and fatigue on consumption. It is also believed to purify blood fluid [62-65]. The leaves are used in the treatment of nausea, as a painkiller, and act as boost to haemoglobin content of the blood [62-66]. The seeds of C. pepo are affective against bronchitis and fever, and are considered very nutritious [62-67].

Much is not known on the possible bioactive constituents of C. pepo that could be physiologically active, and with the recent need to discover more medicinal plants within the context acceptable by the research community. There is urgent need for a detailed scientific study on C. pepo. This study evaluated the phytochemistry and antioxidant activity of C. pepo.

2. MATERIALS AND METHODS

2.1 Sample Collection and Identification

The C. pepo leaves used in this study were collected from Imo State University school farm.
and got identified in the Department of Plant Science and Biotechnology of the same institution by a Botanist in the Department. The leaves of interest were collected, properly cleaned, shade dried and coarsely powdered for further usage.

2.2 Aqueous Extract Preparation

The extraction was carried out as described by Ezekwe et al. [68]. Ten grams (10 g) of each sample was extracted by maceration in 50 mL of water for 3 days with frequent agitation at a speed of 280 rpm at 28°C in dark. Between extractions, the samples were centrifuged for 10 min with 2000 rpm. The combined supernatants were collected, filtered through Whatman No. 1 filter paper and concentrated in vacuum. They were kept in a vacuum desiccator for complete removal of solvent. The yield extract was thus used for some of phytochemical screening, GC-MS analysis and assessment of antioxidant activity.

2.3 Qualitative Phytochemical Determinations

2.3.1 Test for tannins

To 1 mL of the extract, equal volume of bromine water was added. The formation of a greenish to red precipitate was taken as the presence of tannins.

2.3.2 Test for saponins

One mL of the extract was boiled with 5 mL of distilled water for 5 min. and decanted while hot. 4 mL of distilled water was added to 1 mL of the filtrate before it was shaken vigorously for observation of stable froth on standing.

2.3.3 Test for flavonoids

0.5 g of the extract was added, in a test tube and 10 ml of distilled water, 5 mL of dilute ammonia solution were added to a portion of the aqueous filtrate of the extract followed by addition of 1 mL concentrated H$_2$SO$_4$. Indication of yellow color shows the presence of flavonoid in each extract.

2.3.4 Test for alkaloids

One (1) mL each of the extract was shaken with 5 mL of 2% HCl on a steam bath and then filtered. To 1 mL of the filtrate, Wagner’s reagent (iodine in potassium –iodide solution) was added and reddish brown precipitates was observed for positive result.

2.3.5 Test for steroids

Half (0.5 g) gram of the extract was dissolved in 10 mL anhydrous chloroform and filtered. The filtrate was divided into two equal portions for the following tests. The first portion of the solution above was mixed with one mL of acetic anhydride followed by the addition of 1 mL of concentrated sulphuric acid down the side of the test tube to form a layer underneath. The test tube was observed for green colouration as indicative of steroids.

2.3.6 Test for terpenoids

One gram of seed sample was shaken in a test tube with 10 mL of methanol, and then filtered. 5 mL extract was then mixed with 2 mL of chloroform and 3 mL of sulphuric acid was added. Formation of reddish brown color indicates the presence of terpenoids in the selected plants.

2.3.7 Cardiac glycosides

One mL of the seed extract was dissolved in 2 mL of chloroform in a test tube. 1 mL conc. H$_2$SO$_4$ was carefully added to the test tubes through the side and was observed for a red or reddish brown colouration at the interphase, which indicates positive result.

2.3.8 Test for phlobatannins

One percent aqueous hydrochloric acid was added to the seed extract in a test tube (about 2 mL), and then boiled with the help of Hot plate stirrer. Formation of red coloured precipitate confirmed a positive result.

2.3.9 Test for phenolic compounds

To 2 mL of the seed extract, 1% FeCl$_3$ was added and observation was made for blue, violet, purple, green or red-brown colour.

2.3.10 Test for proteins

Five drops of 1% hydrated copper sulphate was added to 2 mL the seed extract in a test tubes. Two mL of 40% NaOH was also added, and the test tube was shaken vigorously to mix the content and presence of purple colouration indicated the presence of proteins.
2.3.11 Test for reducing sugars

One mL of ethanol was mixed with 2 mL each of the plant extract, after which 1 mL each of Fehling solution A and B were added to the test tubes. The test tubes were heated to boiling while observation was made for presence of reddish brown colouration which indicates positive results.

2.3.12 Test for anthraquinones

One gram of the seed extract was placed in a dry test tube and 20 mL of chloroform was added. This was heated in steam bath for 5 min. The extract was filtered while hot and allowed to cool. To the filtrate was added with an equal volume of 10% ammonia solution. This was shaken and the upper aqueous layer was observed for bright pink colouration, which for the presence of anthraquinones. This was repeated with all the plant samples.

2.4 GC-MS Analysis of the Extracts

GC-MS analysis of the aqueous extracts was carried out using AOC-20i auto sampler and gas chromatograph interface to a mass spectrometer (GC-MS) instrument. Employing the following conditions; column Elite-1 fused silica capillary column (30 mm×0.25 mm ID×1μM df, composed of 100% Dimethyl poly siloxane), operating in electron impact mode at 70 eV; helium (99.999%) was used as carrier gas at a constant flow of 1 ml/ min, and an injection volume of 0.5μl, Split ratio of 10:1), with injector temperature 250°C; and ion-source temperature 280°C. The oven temperature was programmed from 110°C (Isothermal for 2 min), with an increase of 10°C/min to 200°C, then 5°C/min to 280°C, ending with a 9 mins isothermal at 280°C. Mass spectra were taken at 70 eV; a scan interval of 0.5 seconds and fragments from 45 to 450Da. Total GC running time was 36 mins. The plant extract was dissolved in aqueous and filtered with polymeric solid phase extraction (SPE) column and analyzed in GC-MS for different components. Interpretation of mass spectrum GC-MS was conducted using the database of National Institute Standard and Technology (NIST) having more than 62 000 patterns. The spectrum of the unknown components was compared with the spectrum of the known components stored in the NIST library. The name, molecular weight and structure of the components of the test were ascertained.

2.5 Determination of Antioxidant Activity

2.5.1 DPPH (1, 1-Diphenyl 2-picrylhydrazyl) radical scavenging assay

The free radical scavenging activity was measured by DPPH assay method. Four mg of DPPH (0.1 mM) was dissolved in 100 mL of distill water to obtain working solution. One mL of each extract was mixed separately with 2.0 mL of 0.1 mM DPPH followed by 30 min incubation in dark. The reduction of the DPPH free radical was measured by taking the absorbance at 517 nm [61]. Colour of DPPH was reduced from purple to yellow. The antioxidant activity of each extracts was evaluated by calculating the inhibition % of free radical formation using the formula:

% inhibition = [(A-A1)/A] x 100; A= absorbance of the blank (DPPH); A1= absorbance of the extract (DPPH+ extract).

2.6 Results and Discussion

Result of phytochemical screening of C.pepo as presented in Table 1 shows that tannins, saponins, flavonoids, flavonoids, alkaloids, steroids, terpenoids, cardiac glycosides, phlobactannins, phenolic compounds, proteins, reducing sugars, and anthraquinones were screened. However, only saponins, flavonoids, alkaloids, steroids, phlobactannins, proteins, and anthraquinones were found present at different concentrations. Flavonoids, phlobactannins and proteins were present in high concentrations. The strategic roles of saponins [68-70], flavonoids [68], alkaloids [68,72], steroids [68, 73], phobactannins [68, 74-75], proteins [68,76], and anthraquinones [68,76] in plants, on pathogenic organisms, and humans have been long been reported.

Result of GC-MS analysis of C.pepo showing retention time, molecular formula, molecular weight and peak area as presented on Table 2, revealed the presence of 78 constituents, which include Benzene, 1,1’S- (oxydi-2,1-ethanediy)bis [3-ethyl-, Piperidinone, Divinyl sulfurate, Benzofuran, 2,3-dihydro-, 1H-Pyrrole-2,5-dione, 3-ethyl-4-methyl-, Methyl cis-2-bromo-3-chloropropenate, 3-Hexyne, Benzenepropanoic acid, methyl ester, indole, 4-Hdroxy-3-methylacetophenone, Benzaldehyde, 3-hydroxyoxime, 2-Cyclopenten-1-one, 2-methyl-, Butanoic acid, 3-methyl-2-methylpropyl ester, 1,4-Hexadiene, 2,3,4,5-tetramethyl, 2,5,10-Undecatrienoic acid, methyl ester, 2-Hydroxy-4-
hydroxylaminopirimidine, Benzeneacetamide, α-ethyl-, 3,5-Octadiene, 4,5-diethyl-, (E,Z)-, Allyl undecenylate, (Cyclopropyl)trimethylsilane, Silane, ethényldiethylmethylyl-, 3,6-Dimethyl-2,3,3a,4,5,7a-hexahydro1-1-benzofuran, Benzene, 1-ethylxy-4-fluoro-, 1-Methoxy-1,4-cyclohexadiene, Propanenitrile, (1,2,2-trimethylpropylidene)-, Ethanol, 2-bromo-, 3-Hydroxy-beta-damascone, 3-Hydroxy-7,8-dihydro-β-ionol, 1,6-Octadien-3-ol, 3,7-dimethyl-4-Picoline, 3-(tert-butythio)-, 2,4,6-Octatriene, 2,6-dimethyl-, 7-Oxabicyclo[4.1.0]heptane, 1-methyl-4-(2-methoxyiraryl)-, 3H-Pyrazol-3-one, 1,2-dihydro-1,2,5-trimethyl-, 2(3H)-Benzo[b]furanoanone, hexahydro-4,4,7a-trimethyl-2-Cyclohexen-1-one, 4-(3-hydroxybutyl)-3,5,5-trimethylpyridine, 2H-Pyran-2-one, 4-hydroxy-6-(2-oxopropyl)-, 7-Oxabicyclo[4.1.0]heptan-3-ol, 6-(3-hydroxy-1-butanyl)-1,5,5-trimethyl-, 2-Cyclopenten-1-one, 4-hydroxy-3-methyl-2-(2,4-pentadienyl)-, (Z)-(Z)-, Cyclotridecane, 5-Ethyl-2-furaldehyde, 2-Cyclohexen-1-one, 4-hydroxy-3,5,6-trimethyl-4-(3-oxo-1-butanyl)-, 2,4,6-Octatriene, 2,6-dimethyl-2H-Inden-2-one, octahydro-3a-methyl-, cis-, 7,8-Epoxy-α-ionone, 2-Heptenal, 2-propyl-, 7-Oxabicyclo[4.1.0]heptane, 1-methyl-4-(2-methoxyiraryl)-, 6-Octenal, 3,7-dimethyl-, Solavetivone, 5,9-Dimethyl-2-(1-methylethylidene)-1-cyclohexanol, Hexadecanoic acid, methyl ester, 1-Cyclohexene-1-carboxaldehyde, 2,6,6-trimethyl-2(1H)-Azulenone, 4,5,6,7,8,8a-hexahydro-8a-methyl-, (S)-, 2,3-Dioxabicyclo[2.2.2]oct-6-ene, 1-methyl-4-(1-methylethyl)-, 1,3-Oxathiane, 2-ethyl-2,6-dimethyl-, cis-, 1,6-Dimethyl-9-(1-methylethylidene)-5,12-dioxaatricyclo[9.1.0.0(4,6)]dodecan-8-one, 2-Dodecan-1-y(-)-succinic anhydride, Ethanone, 1-(3,3-dimethylbicyclo[2.2.1]hept-2-yl)-, endo-, 9-Octadecenoic acid (Z)-, methyl ester, Phytol, Octadecanoic acid, methyl ester, 2-Allyl-2-methyl-1,3-cyclopanetadione, β-l-Arabinoxyranoside, methyl, p-Menth-8(10)-en-9-ol, cis-, (R)-()-14-Methyl-8-hexadecyn-1-ol, 1H-Indene, 5-butyl-6-hexyloctahydro-, Eicosanoic acid, methyl ester, 2,3-Dioxolan-3-ol, 4-bromom-3,5,5-trimethyl-, Nonadecanoic acid, methyl ester, Bis(2-ethylhexyl) phthalate, 5,9-Dimethylene-2-(1-methylethylidene)-1-cyclohexanol, Hexadecanoic acid, methyl ester, 2,6,10-

Dodecatrien-1-ol, 3,7,11-trimethyl-3-(3,4-Dimethoxyphenyl)propylamine, PFP, Benzenamine, 3-methoxy-2,4,6-trimethyl-, Temazepam, 4-Dehydroxy-N-(4,5-methylenedioxy-2-nitrobenzylihdene) tyramine, and Morphinan-6, 4,5-epoxy-N-methyl-, (5α 6α-

Bis(2-ethylhexyl) phthalate (C₂₄H₃₈O₄) had the highest molecular weight of 390 g mol⁻¹ with a retention time of 10.301 secs. 2,4,6-Octatriene, 2,6-dimethyl- (C₁₀H₁₈) had the highest peak area of 10.21% while Morphinan-6-ol, 4,5-epoxy-N-methyl-, (5α 6α- (C₁₇H₂₄NO₂) had the highest retention time of 16.816 secs. These constituents in totally could be contributing to the few known medicinal efficacy of C.pepo in traditional healthcare system. Ezekwe et al. [68] noted that the compounds revealed by GC-MS in the plants and those of phytochemical screening become important when their functions and contributions in nature are considered.

Table 1. Phytochemical Screening of C. pepo

Phytochemical	C. pepo
Tannins	-
Saponins	+
Flavonoids	++
Alkaloids	+
Steroids	+
Terpenoids	-
Cardiac glycosides	-
Phlobatannins	++
Phenolic compounds	-
Proteins	-
Reducing sugars	-
Anthraquinones	+

+++: present in high concentration; +: present in moderate concentration; -: absent

C. pepo leaf tends to have a better antioxidant activity against that of ascorbic acid as observed in the present study (Fig. 1). Some of the observed GC-MS constituents could no doubt aid such activity. The antioxidant activities of plants such as Gongronema latifolium [54-55]; Gongronema latifolium Benth [68], Petrocarpus mildbraedii Harms [68] and Piper guineense [68] have been reported by different authors.
Table 2. Result of GC-MS analysis of *C. pepo* showing retention time, molecular formula, molecular weight and peak area

SN	Retention time	Name of compound	Formula	Molecular weight	Peak Area %
1	3.688	Benzene, 1,1’-(oxydi-2,1-ethanediyl)bis[3-ethyl-]	C₂₀H₂₉O₆	282	1.85
2	3.827	Piperidinone	C₇H₁₄NO	99	1.91
3	3.894	Divinyl sulfide	C₆H₁₀S	86	0.57
4	3.995	Benzoferan, 2,3-dihydro-	C₈H₈O	120	8.96
5	4.082	1H-Pyrrole-2,5-dione, 3-ethyl-4-methyl-	C₁₀H₁₂NO₂	137	2.02
6	4.145	Methyl cis-2-bromo-3-chloropropenate	C₄H₃BrClO₂	198	0.55
7	4.217	3-Hexyne	C₆H₁₀	82	0.87
8	4.337	Benzenepropanoic acid, methyl ester	C₁₀H₁₂O₂	164	0.94
9	4.483	Indole	C₉H₇N	117	1.07
10	4.584	4-Hydroxy-3-methylacetophenone	C₈H₁₀O₂	150	2.35
11	4.659	Benzaldehyde, 3-hydroxy-, oxime	C₉H₈NO₂	137	0.29
12	4.723	2-Cyclopenten-1-one, 2-methyl-	C₆H₆O₄	96	0.54
13	4.813	Butanoic acid, 3-methyl-, 2-methylpropyl ester	C₈H₁₂O₂	158	1.54
14	5.023	1,4-Hexadiene, 2,3,4,5-tetramethyl	C₁₀H₁₈	138	0.38
15	5.075	2,5,10-Undecatrienoic acid, methyl ester	C₁₂H₁₈O₂	194	0.28
16	5.150	2-Hydroxy-4-hydroxylaminopirimidine	C₆H₉NSO₂	127	0.41
17	5.315	Benzenacacetamide, α-ethyl-	C₁₀H₁₃NO	163	0.25
18	5.427	3,5-Octadiene, 4,5-diethyl-, (E,Z)-	C₁₂H₁₄	166	0.37
19	5.521	Allyl undecylenate	C₁₄H₂₄O₂	224	0.29
20	5.566	(Cyclopentyl)trimethylenesilane	C₁₀H₁₄Si	150	0.89
21	5.604	Silane, ethenylidythymethyl-	C₁₀H₁₆Si	128	1.26
22	5.832	3,6-Dimethyl-2,3,3a,4,5,7a-hexahydro1-1-benzofuran	C₁₀H₁₆O	152	0.62
23	6.023	Benzene, 1-ethynyl-4-fluoro-	C₆H₅F	120	0.42
24	6.072	1-Methoxy-1,4-cyclohexadiene	C₁₀H₁₀	110	0.68
25	6.128	Propanedithrile, (1,2,2-trimethylpropyridene)-	C₁₀H₁₂N₂	148	0.36
26	6.181	Ethanol, 2-bromo-	C₂H₅BrO	124	1.11
27	6.241	3-Hydroxy-3-methylbut-2,3,4-trimethylphenol	C₁₀H₁₄O₂	208	1.54
28	6.297	3-Hydroxy-3,4,7-dihydro-β-iodine	C₁₀H₁₄O₂	208	2.27
29	6.342	1,6-Octadien-3-ol, 3,7-dimethyl-	C₁₀H₁₈O	154	0.36
30	6.391	4-Picoline, 3-(tert-butylthio)-	C₁₀H₁₅NS	181	0.98
31	6.462	2,4,6-Octatriene, 2,6-dimethyl-	C₁₀H₁₆	136	10.21
32	6.514	7-Oxabicyclo[4.1.0]heptane, 1-methyl-4-(2-methoxyiranyl)-	C₁₀H₁₆O₂	168	3.31
SN	Retention time	Name of compound	Formula	Molecular weight	Peak Area %
----	----------------	------------------	---------	------------------	-------------
33	6.593	3H-Pyrazol-3-one, 1,2-dihydro-1,2,5-trimethyl-	C₉H₁₀N₂O	126	1.36
34	6.649	2(3H)-Benzofuranone, hexahydro-4,4,7a-trimethyl-	C₁₁H₁₄O₂	182	0.28
35	6.698	2-Cyclohexen-1-one, 4-(3-hydroxybutyl)-3,5,5-trimethyl-	C₁₃H₁₄O₂	208	0.71
36	6.784	2H-Pyran-2-one, 4-hydroxy-6-(2-oxopropyl)-	C₆H₁₀O₣	168	0.74
37	6.822	7-Oxabicyclo[4.1.0]heptan-3-ol, 6-(3-hydroxy-1-butenyl)-1,5,5-trimethyl-	C₁₃H₁₂O₃	226	1.44
38	6.904	2-Cyclopenten-1-one, 4-hydroxy-3-methyl-2-(2,4-pentadienyl)-, (Z)-(+)	C₁₁H₁₄O₂	178	1.02
39	6.964	Cyclotridecane	C₁₃H₁₄O₂	182	1.76
40	7.028	5-Ethyl-2-furaldehyde	C₆H₁₀O₂	124	3.9
41	7.111	2-Cyclohexen-1-one, 4-hydroxy-3,5,6-trimethyl-4-(3-oxo-1-butenyl)-	C₁₃H₁₈O₃	222	1.32
42	7.178	2,4,6-Octatriene, 2,6-dimethyl-	C₁₀H₁₆	136	4.56
43	7.242	2H-Inden-2-one, octahydro-3a-methyl-, cis	C₁₀H₁₆O	152	0.39
44	7.275	7,8-Epoxy-α-ionone	C₁₀H₁₂O₂	208	0.79
45	7.324	2-Heptenal, 2-propyl-	C₁₀H₁₈O	154	1.42
46	7.373	7-Oxabicyclo[4.1.0]heptane, 1-methyl-4-(2-methylxiranyl)-	C₁₀H₁₂O₂	168	2.14
47	7.399	6-Octenal, 3,7-dimethyl-	C₁₀H₁₈O	154	5.84
48	7.542	Solavetivone	C₁₅H₂₂O	218	0.29
49	7.579	5,9-Dimethyl-2-(1-methylethylidene)-1-cyclodecanol	C₁₅H₂₄O	224	0.31
50	7.617	Hexadecanoic acid, methyl ester	C₁₇H₃₅O₂	270	2.25
51	7.677	1-Cyclohexene-1-carboxaldehyde, 2,6,6-trimethyl-	C₁₀H₁₆O	152	1.05
52	7.703	2(1H)-Azulenone, 4,5,6,7,8a-hexahydro-8a-methyl-, (S)-	C₁₁H₁₈O	164	1.08
53	7.774	2,3-Dioxabicyclo[2.2.2]oct-5-ene, 1-methyl-4-(1-methylthyl)-	C₁₀H₁₂O₂	168	1.93
54	7.905	1,3-Oxathiane, 2-ethyl-2,6-dimethyl-, cis-	C₁₆H₂₄O	160	0.29
55	7.995	1,6-Dimethyl-9-(1-methylethylidene)-5,12-dioxatricyclo[9.1.0.0(4,6)]decanoic acid-8-oxo	C₁₅H₂₂O₃	250	0.30
56	8.201	2-Dodecen-1-yl(cis)-sucinic anhydride	C₁₈H₂₆O₃	266	0.50
57	8.314	Ethanone, 1-(3,3-dimethylbicyclo[2.2.1]hept-2-yl)-, endo-	C₁₁H₁₈O	166	0.83
58	8.363	9-Octadeconoic acid (Z)-, methyl ester	C₁₉H₃₆O₂	296	2.93
59	8.419	Phytol	C₂₀H₄₀O	296	1.43
60	8.460	Octadecanoic acid, methyl ester	C₁₉H₃₆O₂	298	1.03
61	8.535	2-Allyl-2-methyl-1,3-cyclopentanedione	C₉H₁₂O₂	152	0.46
SN	Retention time	Name of compound	Formula	Molecular weight	Peak Area %
----	----------------	------------------	---------	-----------------	-------------
62	8.587	β-l-Arabinopyranoside, methyl	C₆H₁₂O₅	164	0.33
63	8.655	p-Menth-8(10)-en-9-o1, cis-	C₁₀H₁₈O	154	0.26
64	8.715	(R)-(−)-14-Methyl-8-hexadecyn-1-ol	C₁₇H₃₂O	252	0.55
65	9.221	1H-Indene, 5-butyl-6-hexyloctahydro-	C₁₉H₃₆	264	0.21
66	9.300	Eicosanoic acid, methyl ester	C₂₁H₄₂O₂	326	0.37
67	9.465	1,2-Dioxolan-3-ol, 4-bromo-3,5,5-trimethyl-	C₆H₁₁BrO₃	211	0.46
68	10.166	Nonadecanoic acid, methyl ester	C₂₀H₄₀O₂	312	0.55
69	10.301	Bis(2-ethylhexyl) phthalate	C₂₄H₃₈O₄	390	0.61
70	10.994	5,9-Dimethyl-2-(1-methylethylidene)-1-cyclodecanol	C₁₅H₂₈O	224	0.28
71	11.189	Heneicosanoic acid, methyl ester	C₂₂H₄₄O₂	340	0.23
72	11.841	2,6,10-Dodecatrien-1-ol, 3,7,11-trimethyl-	C₁₅H₂₈O	222	0.44
73	13.536	3-(3,4-Dimethoxyphenyl)propylamine, PFP	C₁₄H₁₆F₅NO₃	341	0.37
74	14.237	Benzenamine, 3-methoxy-2,4,6-trimethyl-	C₁₀H₁₅NO	165	0.86
75	16.029	Temazepam	C₁₆H₁₃ClN₂O₂	300	1.21
76	16.445	4-Dehydroxy-N-(4,5-methylenedioxy-2-nitrobenzylidene)tyramine	C₁₆H₁₄N₂O₄	298	0.21
77	16.625	4-Dehydroxy-N-(4,5-methylenedioxy-2-nitrobenzylidene)tyramine	C₁₆H₁₄N₂O₄	298	0.55
78	16.816	Morphinan-6-ol, 4,5-epoxy-N-methyl-, (5α 6α-)	C₁₇H₂₁NO₂	271	0.70
3. CONCLUSION

This study has shown the phytochemical constituents of *C. pepo* leaf. The GC-MS analysis further revealed detailed compounds, majority of which could be very useful in healthcare and industries. The leaf also had an enhanced antioxidant activity than ascorbic acid used as the control. However, there is need for further studies on the leaf sample to ascertain further the observations of the present study.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Okwu DE. Phytochemicals and vitamin content of indigenous species of South Eastern Nigeria. J. Sustain. Agric Environ. 2004;6:30-34.
2. Monago-Ighorodje C, Duru M, Adindu E, Nwauche K, Ezekwe A, Nosiri I, Odika P, Onyeabo C, Ogar I, Berezi EP, Ugoh AI, Eboagwu I, Otta E. Effect of ethanolic leaf extract of *Vinca major* L. on biochemical parameters and glucose level of alloxan induced diabetic rats. African Journal of Biotechnology. 2019;18(32):1054-1068.
3. Abulude FO. Phytochemical screening and mineral contents of leaves of some Nigeria woody plants. Research Journal of phytochemistry. 2007;1(1):33-39.
4. Nwachukwu MI, Duru MKC, Nwachukwu IO, Obasi CC, Uzoechi AU, Ezenwa CM, Anumodu CK. In-vitro phytochemical characterization and antibacterial activity of *Newbouldia laevis* (boundary tree) on *Escherichia coli* and *Staphylococcus aureus*. Asian Journal of Microbiology and Biotechnology. 2017;2(1):30-36.
5. Duru MKC, Arukwe U, Amadi BA. Bioactive constituents and macronutrients composition of anti-malarial concoction used in Umunchi village in Isiala Mbano L.G.A of Imo State, Nigeria. International Science Research Journal. 2011;3:61–64.
6. Ibegbulem CO, Eyong EU, Essien EU. Biochemical effects of drinking *Terminalia catappa* Linn. decoction in Wistar rats. African Journal of Biochemistry Research. 2011;5(8):237-243.
7. Aju PC, Popoola, L. Trees in the traditional farming system in Southeastern Nigeria. A case study of Imo State. J. Environ. Ext. 2005;5:25-31.
8. Ugbogu AE, Okezie E, Uche-Ikonne C, Duru M, Atasie OC. Toxicity Evaluation of the aqueous stem extracts of *Senna alata* in wistar rats. American Journal of Biomedical Research. 2016;4 (4):80-86.
9. Abulude FO, Onibon VO, Oluwatoba F. Nutritional and antinutritional compositions of some tree bark. Nig. J. Basic Applied Sci. 2004;13:43-49.
10. Duru M, Amadi B, Ugbogu A, Eze A. Effect of “udu” an antimalarial herbal preparation on visceral organ weight and blood lipid.
11. Amadi B, Onuoha N, Amadi C, Ugbogu A, Duru M. Elemental, amino acid and phytochemical constituents of fruits of three different species of eggplants. International Journal of Medicinal and Aromatic Plants. 2013;3(2):200-202.

12. Nwachukwu MI, Duru MKC, Amadi BA, Nwachukwu IO. Comparative evaluation of phytoconstituents, antibacterial activities and proximate contents of fresh, oven-dried uncooked and cooked samples of *Buchholzia coriacea seed* and their effects on hepatocellular integrity. International Journal of Pharmaceutical Science Invention. 2014;3(6):41-4.

13. Nwachukwu MI, Duru MKC, Nwachukwu IO. Antifungal properties and effect of fresh, oven dried uncooked and cooked seeds of *Buchholzia coriacea* on haematology and kidney. Elixir Food Science. 2013;64:19350-19356.

14. Duru MKC, Amadi BA, Eze AE, Ugbogu AE, Onuoha N. In vivo studies of *Solanum aethiopicum* fruit on some biochemical parameters using rats. Journal of Chemical and Pharmaceutical Research. 2013;5(2):1-4.

15. Amadi BA, Agomuo EN, Duru, MKC. Toxicological studies of *Amisma trifolia* leaves on haematology, liver, kidney using rat model. International Science Research Journal. 2013;4(2):11-17.

16. Agoha RC. Medicinal plants of Nigeria. Offset Drik Keriji Facultyteider Wiskunde. 1976; 3:102-103.

17. Morebise O, Fafunso MA, Makinde JM, Olajide OA, Awe EO. Anti-inflammatory property of *Gongronema latifolium*. Phytother. 2002;16(1):S75-S77. DOI: 10.1002/ptr.784.

18. Okwu D.E. Phytochemicals, vitamins and mineral contents of two Nigerian medicinal plants. Int. J. Mol. Adv. Sci. 2005;1(4):375-381.

19. Amadi B, Duru M, Agomuo E, Amadi P, Onedibe O. Nutritional, phytochemical and sensory evaluation of *Mberiagworagwo* traditional food of Uruaguunnewi people in Anambra State, Nigeria. Journal of Advances in Biology & Biotechnology. 2017;14(1):1-8.

20. Duru M, Amadi C, Ugbogu A, Eze A, Amadi B. Phytochemical, vitamin and proximate composition of *Dacryodes edulis* fruit at different stages of maturation. Asian Journal of Plant Science and Research. 2012;2(2):437-441.

21. Duru M, Amadi B, Eze A, Ugbogu A. Evaluation of “mbagam” traditional food on haematological profile and some selected biochemical parameters following consumption. Elixir Food Science. 2013;64:19345-19349.

22. Duru M, Ugbogu A, Amadi B. Effect of *Solanum macrocarpon* fruit on haematology, hepatic and renal function. Advances in Biochemistry. 2013;(2):28-32.

23. Duru MKC, Agomuo EN, Amadi BA. Biochemical studies on ‘Udu’ an antimalarial concoction used in Umunchi village, Isiala Mbano L.G.A of Imo State, Nigeria. Continental Journal of Pharmacology and Toxicology Research. 2012;5(2):28-34.

24. Duru MKC, Agomuo EA, Amadi BA. Nutrient composition of “Nduduagworagwo”, a traditional food of Akokwa people in Ideato North L.G.A of Imo State, Nigeria. Continental J. Food Science and Technology. 2012;6(3):27-32.

25. Amadi BA, Arukwe U, Duru MKC, Amadi CT, Adindu EA, Egejuru L, Odika PC. Phytonutrients and antinutrients screening of *D.edulis* fruits at different maturation stages. J. Nat. Prod. Plant Resour. 2012; 2(4):530-533.

26. Amadi BA, Arukwe U, Duru MKC, Adindu EA, Ufornwa EC, Odika PC. The effect of fermentation on anti-nutrients, carbohydrates and vitamin contents of *Pentaclethra macrophylla* Seed. International Science Research Journal. 2011;3:74-77.

27. Duru M, Nwadike C, Ezekwe A, Nwaogwugwu C, Eboagwu I, Odika P, Njoku S, Chukwudoruo C. Evaluation of nutritional, anti-nutritional and some biochemical studies on *Pleurotus squarrosulus* (Mont.) singer using rats. African Journal of Biochemistry Research. 2018;12(2):7-27.

28. Duru M, Eboagwu I, Kalu W, Odika P. Nutritional, anti-nutritional and biochemical studies on the oyster mushroom, *Pleurotus ostreatus*. EC Nutrition. 2019;14(1):36-59.

29. Amadi B, Agomuo E, Duru M, Anyanwu E, Onyeabo C, Odika P. Amino acid profiles, antinutrients, concentrations, of minerals and Clinical Sciences. 2014;8:1-7.
and antinutrient-mineral molar ratios of “akidiagworagwo” and "nwagbarao" traditional foods. Polish Journal of Natural Sciences. 2020;35(1):57-74.

30. Gibson EL, Wardel J, Watts CJ. Fruit and vegetable consumption, Nutritional Knowledge and beliefs in mothers and children. Appetite. 1998;31:205-228.

31. Akinnifesii FK, Kang BT, Ladipo DO. Structural root form and fine root distribution of some woody species evaluated for agroforestry systems. Agroforestry Systems. 1998;42:121–138.

32. Agomuo EN, Duru MKC, Amadi BA. Some bioactive constituents of Asmina triflora (paw paw variety). International Science Research Journal. 2013;4(2):18-22.

33. Anaso HU, Onochie CC. A comparative study of nutrients in Gongronema latifolium, Piper Guidneense and Piper nigrum, to testify high acceptability in local dishes. J. Sci. Eng. Technol. 1999;6(2):1321–1832.

34. Okoroh PN, Duru MKC, Onuoha SC, Amadi BA. Proximate composition, phytochemical and mineral analysis of the fruit of Ficus capensis. International Journal of Innovative Research and Development. 2019;8(8):84-88.

35. Nwinyi OC, Chinedu NS, Ajani OO. Evaluation of antibacterial activity of Psidium guajava and Gongronema latifolium. J. Med. Plants Res. 2008; 2(8):189-192.

36. Duru M, Amadi B, Agomuo E, Eze A. Chemical profile of an anti-malarial concoction “Udu” used in Umunchi autonomous community in Isiala Mbano L.G.A of Imo State, Nigeria. Journal of Emerging Trends in Engineering and Applied Sciences (JETEAS). 2012;3(3): 444-447.

37. Duru M, Ugbofu A, Amadi B, Odika P, Chima-Ezika R, Anudike J, Osuocha K. Chemical constituents of Buchholzia coriacea seed. Proceedings of the 35th Annual International Conference, Workshop & Exhibition of Chemical Society of Nigeria. 2012;2:39-45.

38. Amadi BA, Duru MKC, Agomuo EN. The chemical profiles of leaf, stem, and flower of Ageratum conyzoides. Asian Journal of Plant Sciences and Research. 2012; 2(4):428-43.

39. Edim, EH, Egomi, UG, Uwem EF, Archibong OE. Review on Gongronema latifolium (Utasi): A novel antibiotic against Staphylococcus aureus related infections. International Journal of Biochemistry and Biotechnology. 2012;1(8):204-208.

40. Eleyimhi AF. Chemical composition and antibacterial activity of Gongronema latifolium. Journal of Zhejiang University Science B. 2007;8(5):352-358.

41. Oyigbo RN, Mmeka EC. An appraisal of phytomedicine in Africa. KMITL Sci. Tech. J. 2006;6(2):83-94.

42. Sofowora A. Medicinal plants and traditional medicine in Africa. Spectrum Books Limited, Ibadan; 2006.

43. Gill LS. Ethnomedical uses of plants in Nigeria. University of Benin Press, Nigeria. 1992;215.

44. Ross IA. Medicinal plants of the world, Chemical Constituents, Traditional and Modern Uses. Humane Press, Totowa NJ 07512. 2001;2:487.

45. Burkhill HM. The useful plants of West Tropical Africa. 2nd Edition. Families J-L. Royal Botanic Gardens, Kew, Richmond, United Kingdom. 1995;3:857.

46. Iwu MM. Handbook of African medicinal plants, 1st edition, CRC press Inc, Florida. 1993;239-239.

47. Ken F. Tropical plants database tropical thefrens info tropical thefrens info/ view tropical .php?id=Piper+guineense (Accessed on 7/07/ 2020).

48. Hasler CM, Blumberg JB. Symposium on phytochemicals: Biochemistry and physiology. Journal of Nutrition.1999;129: 756S-757S.

49. Sofowora EA. Medicinal plants and transitional medicine in Africa, John Wiley and Sons Ltd, New York.1982;191-234.

50. Duru MKC, Amadi BA, Amadi CT, Lele KC, Anudike JC, Chima-Ezika OR, Osuocha K. Toxic effect of carica papaya bark on body weight, haematology and some biochemical parameters. Biokemistri. 2012; 24(2):67-71.

51. Agomuo E, Duru M, Amadi B, Amadi P, Ugwokaegeb P. Effect of caffeine on some selected biochemical parameters using rat model. Advances in Biology; 2017. Article ID 9303276, 8 pages. DOI: https://doi.org/10.1155/2017/9303276

52. Saxena, M, Saxena J, Nema R, Singh D, Gupta A. Phytochemistry of medicinal plants. Journal of Pharmacognosy and Phytochemistry. 2013;1(6):161-182.
53. Duru MKC, Akubugwo EI, Chinyere GC, Alisa CO, Nwaogwugwu JC. Effect of seasonal water fluctuation of a water body on antioxidant activity of selected plants of lower phylum (A case study of Nche stream). Academic Journal of Chemistry. 2018;8:2519-7045.

54. Ugocukwu NH, Babady NE. Antioxidant effects of Gongronema latifolium in hepatocytes insulin dependent diabetes mellitus Filoterapia. 2002;73(7-8):612-618.

55. Nwanjo HU, Okafor MC, Oze GO. Anti-lipid peroxidative activity of Gongronema latifolium In Strpotozotin-induced diabetic rats. Nig. J. Physiol. Sci. 2006;21(1-2):61-65.

56. Noctor G, Foyer CH. Ascorbate and glutathione: Keeping active oxygen under control. Annual Review of Plant Biology. 1998;49:249-279.

57. Sulekha M, Satish Y, Sunita Y, Rajesh N. Antioxidants: A review. Journal of Chemical and Pharmaceutical Research. 2009;1(1):102-104.

58. Halliwell B. How to characterize an antioxidant: An update. Biochem. Soc. Symp.1995;61:73-101.

59. Halliwell B, Gutteridge JMC. Free Radical in Biology and Medicine", 2nd Ed., Clarendon Press, Oxford University Press, Oxford; 1998.

60. Sharma P, Jha AB, Dubey RS, Pessarakli M. Active oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany. 2012;26. Article ID 217037.

61. Brand-Williams W, Cuvelier ME, Barset C. Use of free radical method to evaluate antioxidant activity. LWT-Food Science and Technology. 1995;28(1):25-30.

62. Bernal, R., Gradstein, S.R. & Celis, M. (Eds.). Catálogo de plantas y líquenes de Colombia. Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá. DOI:http://catalogoplantasdecolombia.unal.edu.co.2013 (Accessed on 30/July/2020)

63. Stevenson DG, Eller FJ, Wang L, Jane JL, Wang T, Inglett GE. Oil and tocopherol content and composition of pumpkin seed oil in 12 cultivars. J Agric Food Chem. 2007;55:4005–13.

64. Procida G, Stancher B, Cateni F, Zacchigna M. Chemical composition and functional characterisation of commercial pumpkin seed oil. J Sci Food Agric. 2012;93:1035–41.

65. Nawirska-Olszańska A, Kita A, Biesiada A, Sokół-Lętowska A, Kucharska AZ. Characteristics of antioxidant activity and composition of pumpkin seed oils in 12 cultivars. Food Chem. 2013;139:155–61.

66. Rabrenovic BB, Dimic EB, Novakovic MM, Tesvec VV, Basic ZN. The most important bioactive components of cold pressed oil from different pumpkin (Cucurbita pepo L.) seeds. LWT Food Sci Technol. 2014;55:521–7.

67. Zuhair HA, Abd El-Fattah AA, El-Sayed MI. Pumpkin-seed oil modulates the effect of felodipine and captopril in spontaneously hypertensive rats. Pharmacol Res. 2000;41:555–63.

68. Ezekwe AS, Ordu KS, Oruamabo RS. Phytochemical screening, GC-MS analysis and antioxidant activity of three medicinal plants from Nigeria. Asian Journal of Applied Chemistry Research. 2020;6(3):14-26.

69. Akpanyung EO, Udoh AP, Akpan EJ. Chemical composition of the edible leaves of Pterocarpus mildbraedii. Plant Foods and Human Nutrition. 1995;48(3):209–215.

70. Arukwe U, Amadi BA, Duru MKC, Agomuo EN, Adindu EA, Odika PC, Lele KC, Egejuru L, Anudike J. Chemical composition of Persea americana leaf, fruit and seed. IJRAA. 2012;11(2):355-358.

71. Schneider C, Rotscheidt K., Breitmaier E. 4 new pregnane glycosides from Gongronema latifolium (Asckepiadaceae). Liebig's Annalen Der Chemie. 1993;10:1057-1062.

72. Rao RVK, Ali N, Reddy MN. Occurrence of both sapogenins and alkaloid lycorine in Curculigo orchioides. Indian Journal Pharma Science. 1978;40:104-105.

73. Dudareva N, Pichersky E, Gershenzon J. Biochemistry of plant volatiles. Plant Physiology. 2004;135:1893–1902.

74. Serrano J, Puupponen-Pimia R, Dauer A, Aura A, Saura-Calixto F. Tannins: Current knowledge of food sources, intake, bioavailability and biological effects. Molecular Nutrition Food Research. 2009;53:S310–29.

75. De Bruyne T, Pieters L, Deelstra H, Vlietinck A. Condensed vegetables...
tannins: Biodiversity in structure and biological activities. Biochemical System Ecology, 1999;27:445–59.

Iwu MM. Handbook of African medicinal plants, 1st edition, CRC press Inc., Florida. 1993;239-239.

Peer-review history:
The peer review history for this paper can be accessed here: http://www.sdiarticle4.com/review-history/63381