RINGS OF INVARIANT MODULE TYPE AND AUTOMORPHISM-INARIANT MODULES

SURJEET SINGH AND ASHISH K. SRIVASTAVA

Dedicated to T. Y. Lam on his 70th Birthday

ABSTRACT. A module is called automorphism-invariant if it is invariant under any automorphism of its injective hull. In [Algebras for which every indecomposable right module is invariant in its injective envelope, Pacific J. Math., vol. 31, no. 3 (1969), 655-658] Dickson and Fuller had shown that if R is a finite-dimensional algebra over a field F with more than two elements then an indecomposable automorphism-invariant right R-module must be quasi-injective. In this paper we show that this result fails to hold if F is a field with two elements. Dickson and Fuller had further shown that if R is a finite-dimensional algebra over a field F with more than two elements, then R is of right invariant module type if and only if every indecomposable right R-module is automorphism-invariant. We extend the result of Dickson and Fuller to any right artinian ring. A ring R is said to be of right automorphism-invariant type (in short, RAI-type) if every finitely generated indecomposable right R-module is automorphism-invariant. In this paper we completely characterize an indecomposable right artinian ring of RAI-type.

1. Introduction

All our rings have identity element and modules are right unital. A right R-module M is called an automorphism-invariant module if M is invariant under any automorphism of its injective hull, i.e. for any automorphism σ of $E(M)$, $\sigma(M) \subseteq M$ where $E(M)$ denotes the injective hull of M.

Indecomposable modules M with the property that M is invariant under any automorphism of its injective hull were first studied by Dickson and Fuller in [5] for the particular case of finite-dimensional algebras over fields F with more than two elements. But for modules over arbitrary rings, study of such a property has been initiated recently by Lee and Zhou in [14]. The dual notion of these modules has been proposed by Singh and Srivastava in [17].

The obvious examples of the class of automorphism-invariant modules are quasi-injective modules and pseudo-injective modules. Recall that a module M is said to be N-injective if for every submodule N_1 of the module N, all homomorphisms $N_1 \to M$ can be extended to homomorphisms $N \to M$. A right R-module M is injective if M is N-injective for every $N \in \text{Mod-}R$. A module M is said to be

2000 Mathematics Subject Classification. 16U60, 16D50.

Key words and phrases. rings of invariant module type, automorphism-invariant modules, quasi-injective modules, pseudo-injective modules.
quasi-injective if M is M-injective. A module M is called pseudo-injective if every monomorphism from a submodule of M to M extends to an endomorphism of M.

Thus we have the following hierarchy;

injective \implies quasi-injective \implies pseudo-injective \implies automorphism-invariant

It is well known that a quasi-injective module need not be injective. In [18] Teply gave construction of a pseudo-injective module which is not quasi-injective. We do not know yet an example of an automorphism-invariant module which is not pseudo-injective.

Dickson and Fuller [5] studied automorphism-invariant modules in case of finite-dimensional algebras over a field F with more than two elements. They proved that if R is a finite-dimensional algebra over a field F with more than two elements then an indecomposable automorphism-invariant right R-module must be quasi-injective. We show that this result fails to hold if F is a field with two elements. A ring R is said to be of right invariant module type if every indecomposable right R-module is quasi-injective. Dickson and Fuller had further shown that if R is a finite-dimensional algebra over a field F with more than two elements, then R is of right invariant module type if and only if every indecomposable right R-module is automorphism-invariant. We extend the result of Dickson and Fuller to any right artinian ring.

We call a ring R to be of right automorphism-invariant type (in short, RAI-type), if every finitely generated indecomposable right R-module is automorphism-invariant. In this paper we study the structure of indecomposable right artinian rings of RAI-type.

Lee and Zhou in [14] asked whether every automorphism-invariant module is pseudo-injective. In this paper we show that the answer is in the affirmative for modules with finite Goldie dimension.

We also prove that a simple right noetherian ring R is a right SI ring if and only if every cyclic singular right R-module is automorphism-invariant.

Before presenting the proofs of these results, let us recall some basic definitions and facts. A module M is said to have finite Goldie (or uniform) dimension if it does not contain an infinite direct sum $\bigoplus_{n \in \mathbb{N}} M_n$ of non-zero submodules.

A module M is said to be directly-finite if M is not isomorphic to a proper summand of itself. Clearly, a module with finite Goldie dimension is directly-finite. A module M is called a square if $M \cong X \oplus X$ for some module X; and a module is called square-free if it does not contain a non-zero square.

A module M is said to have the internal cancellation property if whenever $M = A_1 \oplus B_1 = A_2 \oplus B_2$ with $A_1 \cong A_2$, then $B_1 \cong B_2$. For details on internal cancellation property, the reader is referred to [13]. Now, if an injective module M is directly-finite, then it has internal cancellation property (see [15] Theorem 1.29).

A module M is said to be uniserial if any two submodules of M are comparable with respect to inclusion. A ring R is called a right uniserial ring if R_R is a uniserial module. Any direct sum of uniserial modules is called a serial module. A ring R is said to be a right serial ring if the module R_R is serial. A ring R is called a serial ring if R is both left as well as right serial.
If A is an essential submodule of B, then we denote it as $A \subseteq_e B$. For any module M, we define $Z(M) = \{ x \in M : \text{ann}_r(x) \subseteq_e R_R \}$. It can be easily checked that $Z(M)$ is a submodule of M. It is called the singular submodule of M. If $Z(M) = M$, then M is called a singular module. If $Z(M) = 0$, then M is called a non-singular module.

Consider the following three conditions on a module M:

- **C1**: Every submodule of M is essential in a direct summand of M.
- **C2**: Every submodule of M isomorphic to a direct summand of M is itself a direct summand of M.
- **C3**: If N_1 and N_2 are direct summands of M with $N_1 \cap N_2 = 0$ then $N_1 \oplus N_2$ is also a direct summand of M.

A module M is called a continuous module if it satisfies conditions C1 and C2. A module M is called π-injective (or quasi-continuous) if it satisfies conditions C1 and C3. A module M is called a CS module (or extending module) if it satisfies condition C1.

In general, we have the following implications.

$$\text{Injective} \implies \text{Quasi-injective} \implies \text{Continuous} \implies \pi\text{-injective} \implies \text{CS}$$

The socle of a module M is denoted by $\text{Soc}(M)$. A right R-module M is called semi-artinian if for every submodule $N \neq M$, $\text{Soc}(M/N) \neq 0$. A ring R is called right semi-artinian if R_R is semi-artinian. We denote by $J(R)$, the Jacobson radical of a ring R. For any term not defined here, the reader is referred to [9], [11], [12], and [15].

2. Basic Facts about Automorphism-invariant Modules

Lee and Zhou proved the following basic facts about automorphism-invariant modules [14].

- A module M is automorphism-invariant if and only if every isomorphism between any two essential submodules of M extends to an automorphism of M.
- A direct summand of an automorphism-invariant module is automorphism-invariant.
- If for two modules M_1 and M_2, $M_1 \oplus M_2$ is automorphism-invariant, then M_1 is M_2-injective and M_2 is M_1-injective.
- Every automorphism-invariant module satisfies the property C3.
- A CS automorphism-invariant module is quasi-injective.
3. Results

Dickson and Fuller in [5] considered a finite-dimensional algebra \(R \) over a field \(F \) with more than two elements and proved that if an indecomposable right \(R \)-module \(M \) is automorphism-invariant, then \(M \) is quasi-injective. They further obtained the following.

Theorem 1. (Dickson and Fuller, [5]) Let \(R \) be a finite-dimensional algebra over a field \(F \) with more than two elements. Then the following statements are equivalent:

(i) Each indecomposable right \(R \)-module is automorphism-invariant.
(ii) Each indecomposable right \(R \)-module is quasi-injective.
(iii) Each indecomposable right \(R \)-module has a square-free socle.

We will provide an example to show that if \(R \) is a finite-dimensional algebra over a field \(F \) with two elements, then an indecomposable automorphism-invariant right \(R \)-module need not be quasi-injective.

First, note that in an artinian serial ring \(R \), any indecomposable summand of \(R_R \) of maximum length is injective. Thus if \(T_n(D) \) is the upper triangular matrix ring over a division ring \(D \), then \(e_1 T_n(D) \) is injective and uniserial.

Example. Let \(R = \begin{bmatrix} F & F & F \\ F & 0 & F \\ 0 & 0 & F \end{bmatrix} \) where \(F \) is a field of order 2.

We know that \(R \) is a left serial ring. Note that \(e_{11} R \) is a local module, \(e_{12} F \cong e_{22} R \), \(e_{13} F \cong e_{33} R \) and \(e_{11} J(R) = e_{12} F \oplus e_{13} F \), a direct sum of two minimal right ideals. So the injective hull of \(e_{11} R \) is \(E(e_{11} R) = E_1 \oplus E_2 \), where \(E_1 = E(e_{12} F) \) and \(E_2 = E(e_{13} F) \).

Now set \(A = \text{ann}_r(e_{12} F) \). Then \(A = e_{12} F + e_{33} F \). Thus \(R = R/A \cong \begin{bmatrix} F & F \\ F & 0 \\ 0 & F \end{bmatrix} = S \). Denote the first row of \(S \) by \(S_1 \). It may be checked that \(S_1 \) is injective. As \(F \) has only two elements, \(S_1 \) has only two endomorphisms, zero and the identity. Take the pre-image \(L_1 \) of \(S_1 \) in \(R \). It is uniserial with composition length 2, and \(e_{12} F \) naturally embeds in \(L_1 \). There is no mapping of \(e_{12} F \) into \(L_1 \). It follows that \(L_1 \) is \(e_{11} R \)-injective and \(e_{12} F \)-injective. As \(e_{22} R \cong e_{12} F \), \(L_1 \) is \(e_{22} R \)-injective. There is no map from \(e_{33} R \) into \(L_1 \) so it is also \(e_{33} R \)-injective. Hence \(L_1 \) is injective. Thus \(E_1 = L_1 \) and its ring of endomorphisms has only two elements.

If \(B = \text{ann}_r(e_{13} F) \), then \(B = e_{12} F + e_{22} F \). Thus \(R/B \cong \begin{bmatrix} F & F \\ 0 & F \end{bmatrix} \). The pre-image of \(S_1 \) in \(R/B \) is \(L_2 \), which is uniserial, and injective. We have \(E_2 \cong L_2 \) and its ring of endomorphism has only two elements.

Note that \(e_{11} R \) has all its composition factors non-isomorphic, both \(L_1 \) and \(L_2 \) have composition length 2 with \(\frac{L_1}{L_1 J(R)} \cong \frac{e_{11} R}{e_{11} J(R)} \), \(L_1 J(R) \cong e_{22} R \), \(\frac{L_2}{L_2 J(R)} \cong \frac{e_{12} R}{e_{11} J(R)} \), and \(L_2 J(R) \cong e_{33} R \). Thus \(L_1, L_2 \) have isomorphic tops but non-isomorphic socles.

Suppose there exists a non-zero mapping \(\sigma : L_1 \to L_2 \). Then \(\sigma(L_1) = L_2 J(R) \). Thus \(\frac{e_{11} R}{e_{11} J(R)} \cong e_{33} R \), which is a contradiction. Therefore, there is no non-zero map between \(L_1 \) and \(L_2 \).
Hence the only automorphism of \(L_1 \oplus L_2 \) is the identity. So \(e_{11}R \) is trivially automorphism-invariant but it is not uniform. Then clearly \(e_{11}R \) is not quasi-injective as an indecomposable quasi-injective module must be uniform.

Thus, this ring \(R \) is an example of a finite-dimensional algebra over a field \(F \) with two elements such that there exists an indecomposable right \(R \)-module which is automorphism-invariant but not quasi-injective. □

Next, we proceed to extend the result of Dickson and Fuller [5] to any right artinian ring. But, first we obtain a useful result on decomposition property of automorphism-invariant modules.

We will show that under certain conditions a decomposition of injective hull \(E(M) \) of an automorphism-invariant module \(M \) induces a natural decomposition of \(M \).

We will denote the identity automorphism on any module \(M \) by \(I_M \).

Lemma 2. Let \(M \) be an automorphism-invariant right module over any ring \(R \). If \(E(M) = E_1 \oplus E_2 \) and \(\pi_1 : E(M) \to E_1 \) is an associated projection, then \(M_1 = \pi_1(M) \) is also automorphism-invariant.

Proof. Let \(E(M) = E_1 \oplus E_2 \) and \(M_1 = \pi_1(M) \), where \(\pi_1 : E(M) \to E_1 \) is a projection with \(E_2 \) as its kernel. Let \(\sigma \) be an automorphism of \(E_1 \) and \(x_1 \in M_1 \).

For some \(x \in M \), and \(x_2 \in E_2 \), we have \(x = x_1 + x_2 \). Now \(\sigma = \sigma_1 \oplus I_{E_2} \) is an automorphism of \(E \). Thus \(\sigma(x) = \sigma_1(x_1) + x_2 \in M \), which gives \(\sigma_1(x_1) \in M_1 \).

Hence \(M_1 \) is automorphism-invariant. □

Lemma 3. Let \(M \) be an automorphism-invariant right module over any ring \(R \). Let \(E(M) = E_1 \oplus E_2 \) such that there exists an automorphism \(\sigma_1 \) of \(E_1 \) such that \(I_{E_1} - \sigma_1 \) is also an automorphism of \(E_1 \). Then

\[
M = (M \cap E_1) \oplus (M \cap E_2).
\]

Proof. Set \(E = E(M) \). Set \(I_E = I_{E_1} \oplus I_{E_2} \), and \(\sigma = \sigma_1 \oplus I_{E_2} \). Clearly, both \(I_E \) and \(\sigma \) are automorphisms of \(E \). Since \(M \) is assumed to be an automorphism-invariant module, \(M \) is invariant under automorphisms \(I_E \) and \(\sigma \). Consequently, \(M \) is invariant under \(I_E - \sigma \) too. Note that \((I_E - \sigma)(M) = (I_{E_1} - \sigma_1)(M) \subseteq M \). Let \(\pi_1 : E \to E_1 \) and \(\pi_2 : E \to E_2 \) be the canonical projections. Set \(M_1 = \pi_1(M) \) and \(M_2 = \pi_2(M) \). Now \(M \cap E_1 \subseteq M_1 \) and \(M \cap E_2 \subseteq M_2 \).

Let \(0 \neq u_1 \in E_1 \). For some \(r \in R \), \(0 \neq u_1r \in M \) and \(u_1r \in M_1 \). Thus \(M_1 \subseteq E_1 \). By Lemma 2, \(M_1 \) is automorphism-invariant. Therefore, \(M_1 = (I_{E_1} - \sigma)(M_1) \). Let \(x_1 \in M_1 \). Then, we have for some \(x \in M, x = x_1 + x_2, x_2 \in E_2 \).

Now, as \(I_{E_1} - \sigma_1 \) is an automorphism on \(E_1 \), there exists an element \(y_1 \in E_1 \) such that \((I_{E_1} - \sigma_1)(y_1) = x_1 \), which gives \(y_1 \in (I_{E_1} - \sigma_1)(M_1) = M_1 \). This yields an element \(y \in M \) such that \(y = y_1 + y_2 \) for some \(y_2 \in E_2 \). We get \((I_E - \sigma)(y) = (I_{E_1} - \sigma_1)(y_1) = x_1 \). Thus \(x \in (I_E - \sigma)(M) \). As \((I_E - \sigma)(M) \subseteq M \), we get \(x_1 \in M \). Hence \(M_1 \subseteq M \).

Now, let \(u_2 \in M_2 \) be an arbitrary element. For some \(u_1 \in M_1 \), we have \(u = u_1 + u_2 \in M \). But we have shown in the previous paragraph that \(M_1 \subseteq M \), so \(u_1 \in M \). Therefore \(u_2 = u - u_1 \in M \). Hence \(M_2 \subseteq M \). This gives \(M_1 \oplus M_2 \subseteq M \) and hence \(M = M_1 \oplus M_2 \). Thus \(M = (M \cap E_1) \oplus (M \cap E_2) \). □
A quasi-injective module is obviously automorphism-invariant. In the next result we give a condition under which an automorphism-invariant module must be quasi-injective.

Theorem 4. Let M be a right module over any ring R such that every summand E_1 of $E(M)$ admits an automorphism σ_1 such that $I_{E_1} - \sigma_1$ is also an automorphism of E_1, then M is automorphism-invariant if and only if M is quasi-injective.

Proof. Let M be automorphism-invariant. Set $E = E(M)$. Suppose every summand E_1 of E admits an automorphism σ_1 such that $I_{E_1} - \sigma_1$ is also an automorphism of E_1.

Let $\sigma \in \text{End}(E)$ be an arbitrary element. Since $\text{End}(E)$ is a clean ring [1], $\sigma = \alpha + \beta$ where α is an idempotent and β is an automorphism.

Let $E_1 = \alpha E$, and $E_2 = (1 - \alpha)E$. Then $E = E_1 \oplus E_2$. By Lemma 3 we have $M = M_1 \oplus M_2$ where $M_1 = M \cap E_1, M_2 = M \cap E_2$.

Then clearly $\alpha(M) \subseteq M$. Since M is automorphism-invariant, $\beta(M) \subseteq M$. Thus $\sigma(M) \subseteq M$. Hence M is quasi-injective.

The converse is obvious. \square

As a consequence of this theorem, we may now deduce the following which extends the result of Dickson and Fuller [5] to any algebra (not necessarily finite-dimensional) over a field F with more than two elements.

Corollary 5. Let R be any algebra over a field F with more than two elements. Then the following are equivalent:

(i) Each indecomposable right R-module is automorphism-invariant.

(ii) Each indecomposable right R-module is quasi-injective, that is, R is of right invariant module type.

Proof. Clearly, for any right R-module E, the multiplication by an element $u \in F$ where $u \neq 0$ and $u \neq 1$ gives an automorphism σ of E such that $I_E - \sigma$ is also an automorphism of E. Hence the result follows from the above theorem. \square

Corollary 6. ([14]) Let R be a ring in which 2 is invertible. Then any automorphism-invariant module over R is quasi-injective.

Proof. Let M be an automorphism-invariant right R-module. Let $E = E(M)$. Let E_1 be any summand of E. We have automorphism $\sigma_1 : E_1 \rightarrow E_1$, given by $\sigma_1(x) = 2x, x \in E_1$. Clearly, $I_{E_1} - \sigma_1 = -I_{E_1}$ is also an automorphism of E_1. By Theorem 4 M is quasi-injective. \square

In the next lemma we give another useful result on decomposition of automorphism-invariant modules.

Lemma 7. Let M be an automorphism-invariant right module over any ring R. If $E(M) = E_1 \oplus E_2 \oplus E_3$, where $E_1 \cong E_2$, then

$$M = (M \cap E_1) \oplus (M \cap E_2) \oplus (M \cap E_3).$$

Proof. Set $E(M) = E$. Let $E = E_1 \oplus E_2 \oplus E_3$. Let $\sigma : E_1 \rightarrow E_2$ be an isomorphism and let $\pi_1 : E \rightarrow E_1, \pi_2 : E \rightarrow E_2, \pi_3 : E \rightarrow E_3$ be the canonical projections. Then $M \cap E_1 \subseteq \pi_1(M), M \cap E_2 \subseteq \pi_2(M)$ and $M \cap E_3 \subseteq \pi_3(M)$. \square
Let $\eta = \sigma^{-1}$. Consider the map $\lambda_1 : E \to E$ given by $\lambda_1(x_1, x_2, x_3) = (x_1, \sigma(x_1) + x_2, x_3)$. Clearly, λ_1 is an automorphism of E. Since M is automorphism-invariant, M is invariant under λ_1 and I_E. Consequently, M is invariant under $\lambda_1 - I_E$. Thus $(\lambda_1 - I_E)(M) \subseteq M$. Next, we consider the map $\lambda_2 : E \to E$ given by $\lambda_2(x_1, x_2, x_3) = (x_1 + \eta(x_2), x_2, x_3)$. This map λ_2 is also an automorphism of E. Thus, as explained above, M is invariant under $\lambda_2 - I_E$ too, that is $(\lambda_2 - I_E)(M) \subseteq M$.

Let $x = (x_1, x_2, x_3) \in M$. Then $(\lambda_1 - I_E)(x) = (0, \sigma(x_1), 0) \in M$. Similarly, we have $(\lambda_2 - I_E)(x) = (\eta(x_2), 0, 0) \in M$. This gives $(\lambda_1 - I_E)(\sigma(x_2), 0, 0) = (0, \sigma\eta(x_2), 0) = (0, x_2, 0) \in M$. Thus $\pi_2(M) \subseteq M$. Similarly, $(\lambda_2 - I_E)(0, \sigma(x_1), 0) = (\eta\sigma(x_1), 0, 0) = (x_1, 0, 0) \in M$. Thus $\pi_1(M) \subseteq M$. This yields that $(0, 0, x_3) \in M$, that is, $\pi_3(M) \subseteq M$. This shows that $\pi_1(M) \oplus \pi_2(M) \oplus \pi_3(M) \subseteq M$ and therefore, $M = \pi_1(M) \oplus \pi_2(M) \oplus \pi_3(M)$. Hence $M = (M \cap E_1) \oplus (M \cap E_2) \oplus (M \cap E_3)$. □

As a consequence of the above decomposition, we have the following for socle of an indecomposable automorphism-invariant module.

Corollary 8. If M is an indecomposable automorphism-invariant right module over any ring R, then $\text{Soc}(M)$ is square-free.

Proof. Let M be an indecomposable automorphism-invariant module. Suppose M has two isomorphic simple submodules S_1 and S_2. Then $E(M) = E_1 \oplus E_2 \oplus E_3$, where $E_1 = E(S_1), E_2 = E(S_2)$ and $E_1 \cong E_2$. By Lemma 7, M decomposes as $M = (M \cap E_1) \oplus (M \cap E_2) \oplus (M \cap E_3)$, a contradiction to our assumption that M is indecomposable. Hence $\text{Soc}(M)$ is square-free. □

Next, we have the following for any indecomposable semi-artinian automorphism-invariant module.

Corollary 9. Let R be any ring and let M be any indecomposable semi-artinian automorphism-invariant right R-module. Then one of the following statements holds:

(i) M is uniform and quasi-injective.

(ii) Any simple submodule S of M has identity as its only automorphism.

Proof. Let M be an indecomposable semi-artinian automorphism-invariant right R-module. Since M is semi-artinian, $\text{Soc}(M) \neq 0$. By Corollary 8, we know that $\text{Soc}(M)$ is square-free. Suppose S is a simple submodule of M. Now $D = \text{End}(S)$ is a division ring.

Suppose $|D| > 2$. Then there exists a $\sigma \in D$ such that $\sigma \neq 0$ and $\sigma \neq I_S$. Then $I_S - \sigma$ is an automorphism of S. Let $E = E(M)$ and $E_1 = E(S) \subseteq E$. Then $E = E_1 \oplus E_2$ for some submodule E_2 of E. Let $\sigma_1 \in \text{End}(E_1)$ be an extension of σ. Then σ_1 is an automorphism of E_1 and $(I_{E_1} - \sigma_1)(S) = (I_S - \sigma)(S) \neq 0$. Hence $I_{E_1} - \sigma_1$ is an automorphism of E_1. Thus, by Lemma 8, $M = (M \cap E_1) \oplus (M \cap E_2)$. As M is indecomposable, we must have $M = M \cap E_1$. Therefore, M is uniform. Then $\text{End}(E(M))$ is a local ring. Therefore for any $\alpha \in \text{End}(E(M))$, α is an automorphism or $I - \alpha$ is an automorphism. In any case $\alpha(M) \subseteq M$. Therefore M is quasi-injective.

Now, if M is not uniform then $|D| = 2$, that is $D = \text{End}(S) \cong \mathbb{F_2}$. In this case, the only automorphism of S is the identity automorphism. □
Remark 10. Recall that an algebra \(A \) is said to be of finite module type if \(A \) has only a finite number of non-isomorphic indecomposable right modules. In regard to Corollary \[\text{5}\] we would like to mention here that Curtis and Jans proved that if \(A \) is an algebra over an algebraically closed field \(F \) any field \(\mathbb{F} \), then \(A \) is of finite module type (see \[\text{31}\]). This was extended by Dickson and Fuller who proved that if \(A \) is an algebra over any field \(\mathbb{F} \) such that \(A \) is of right invariant module type then \(A \) has finite module type \[\text{5}\].

We call a ring \(R \) to be of right automorphism-invariant type (in short, RAI-type), if every finitely generated indecomposable right \(R \)-module is automorphism-invariant. We would like to understand the structure of right artinian rings of RAI-type.

Lemma 11. Let \(R \) be a right artinian ring of RAI-type. Let \(e \in R \) be an indecomposable idempotent such that \(eR \) is not uniform. Let \(A \) be a right ideal contained in \(\text{Soc}(eR) \). Then \(\text{Soc}(eR) = A \oplus A' \) where \(A' \) has no simple submodule isomorphic to a simple submodule of \(A \) and \(eR/A' \) is quasi-projective.

Proof. As \(\text{Soc}(eR) \) is square-free, \(\text{Soc}(eR) = A \oplus A' \) where \(A' \) has no simple submodule isomorphic to a simple submodule of \(A \). If for some \(eR \in eRe, eReA' \not\subseteq A' \), then for some minimal right ideal \(S \subset A' \), \(eReS \not\subseteq A' \). This gives that \(S \) is isomorphic to a simple submodule contained in \(A \), a contradiction. Hence \(eR/A' \) is quasi-projective.

\[\square\]

Lemma 12. Let \(R \) be a right artinian ring of RAI-type. Then any uniserial right \(R \)-module is quasi-projective.

Proof. Let \(A \) be a uniserial right \(R \)-module with composition length \(l(A) = n \geq 2 \). We will prove the result by induction. Suppose first that \(n = 2 \). In this case, we can take \(J(R)^2 = 0 \). For some indecomposable idempotent \(e \in R \), we have \(A \cong eR/B \) for some \(B \subseteq \text{Soc}(eR) \). By Lemma \[\text{11}\] \(A \) is quasi-projective.

Now consider \(n > 2 \) and assume that the result holds for \(n - 1 \). Let \(0 \neq \sigma : A \rightarrow A/C \) be a homomorphism where \(C \neq 0 \). Suppose \(\sigma \) cannot be lifted to a homomorphism \(\eta : A \rightarrow A \). Let \(F = \text{Soc}(A) \). Then \(F \subseteq \text{Ker}(\sigma) \). We get a mapping \(\bar{\sigma} : \frac{A}{F} \rightarrow \frac{A}{C} \). By the induction hypothesis, there exists a homomorphism \(\bar{\eta} : \frac{A}{F} \rightarrow \frac{A}{F} \) such that \(\bar{\sigma} = \pi \bar{\eta} \), where \(\pi : \frac{A}{F} \rightarrow \frac{A}{C} \) is a natural homomorphism.

Let \(M = A \times A \), and \(N = \{(a, b) \in M : (a + F) = b + F \} \). Then \(N \) is a submodule of \(M \). Now there exist elements \(x \in A \) and indecomposable idempotent \(e \in R \) such that \(A = xR \) and \(xe = x \). Fix an element \(y \in A \) such that \(\bar{\eta}(x + F) = y + F \) and \(ye = y \). Set \(z = (x, y) \). Then \(z \in N \) and \(N_1 = zR \) is local. Let \(\pi_1, \pi_2 \) be the associated projections of \(M \) onto the first and second components of \(M \), respectively. Then \(\pi_1(N_1) = A \).

Now, we claim that \(N_1 \) is uniserial. If \(N_1 \) is not uniform, then \(\text{Soc}(N_1) = \text{Soc}(M) \). Therefore \(\text{Soc}(N_1) \) is not square-free, which is a contradiction by Lemma \[\text{8}\]. Thus \(N_1 \) is uniform. It follows that \(N_1 \) embeds in \(A \) under \(\pi_1 \) or \(\pi_2 \). Hence \(N_1 \) is uniserial. As \(\pi_1(N_1) = A \), and \(l(N_1) \leq l(A) \), it follows that \(\pi_1|_{N_1} \) is an isomorphism. Thus given any \(x \in A \), there exists a unique \(y \in A \) such that \((x, y) \in N_1 \). We get a homomorphism \(\lambda : A \rightarrow A \) such that \(\lambda(x) = y \) if and only if \((x, y) \in N_1 \). Clearly \(\lambda \) lifts \(\bar{\eta} \) and hence it also lifts \(\sigma \). This proves that \(A \) is quasi-projective.

\[\square\]
Lemma 13. Let \(R \) be a right artinian ring of RAI-type. Let \(A_R \) be any uniserial module. Then the rings of endomorphisms of different composition factors of \(A \) are isomorphic.

Proof. Let \(A \) be a uniserial right \(R \)-module with \(l(A) = 2 \). Let \(C = \text{ann}_e(A) \) and \(\overline{R} = R/C \). As \(A_R \) is quasi-projective, \(A \) is a projective \(\overline{R} \)-module. Thus there exists an indecomposable idempotent \(e \in R \) such that \(A \cong \overline{R}e \). As \(\overline{R}e \) embeds in a finite direct sum of copies of \(A \), there exists an indecomposable idempotent \(f \in R \) such that \(\text{Soc}(A) \cong \frac{\overline{R}f}{fJ(R)} \). Let \(\overline{R} = \frac{\overline{R}}{fJ(R)} \). We get an embedding \(\sigma : \frac{\overline{R}e}{fJ(R)e} \cong \frac{\overline{R}e}{fJ(R)} \) defined as \(\sigma(ere + eJ(R)e) = f\varepsilon f + fJ(R)f \) whenever \(\overline{e} \varepsilon f \overline{f} = \overline{e} \varepsilon f \overline{f} \); \(ere \in eRe, f\varepsilon f \in fRf \). Let \(z = f\varepsilon f \in fRf \). We get an \(\overline{R} \)-homomorphism \(\eta : \overline{J}(R) \to \overline{J}(R) \) such that \(\eta(\overline{e} \varepsilon f \overline{f}) = \overline{e} \varepsilon f \overline{f} \). As \(\overline{R} \) is quasi-injective, there exists an \(\overline{R} \)-homomorphism \(\lambda : \overline{R} \to \overline{R} \) extending \(\eta \). Now \(\lambda(r) = \overline{r}f \) for some \(r \in R \). Then \(\overline{e} \varepsilon f \overline{f} = \lambda(\overline{e} \varepsilon f \overline{f}) = \eta(\overline{e} \varepsilon f \overline{f}) = \overline{e} \varepsilon f \overline{f} \), which gives that \(\sigma \) is onto. Hence \(\frac{\overline{R}e}{fJ(R)e} \cong \frac{\overline{R}f}{fJ(R)} \). Thus the result holds whenever \(l(A) = 2 \). If \(l(A) = n > 2 \), the result follows by induction on \(n \). \(\square \)

Lemma 14. Let \(R \) be a right artinian ring of RAI-type. Then we have the following.

(i) Let \(D \) be a division ring and \(x \in R \). Let \(xR \) be a local module such that for any simple submodule \(S \) of \(\text{Soc}(xR) \), \(D = \text{End}(S) \). Then \(\text{End}(xR/xJ(R)) \cong D \).

(ii) Let \(xR \) be a local module and \(D = \text{End}(xR/xJ(R)) \) where \(x \in R \). Then \(\text{End}(S) \cong D \) for every composition factor \(S \) of \(xR \).

(iii) Let \(xR, yR \) be two local modules where \(x, y \in R \). If \(\text{End}(xR/xJ(R)) \not\cong \text{End}(yR/yJ(R)) \), then \(\text{Hom}(xR, yR) = 0 \).

Proof. (i) There exists an \(n \geq 1 \) such that \(xJ(R)^n = 0 \) but \(xJ(R)^n-1 \neq 0 \). If \(n = 1 \), then \(xR \) is simple, so the result holds. We apply induction on \(n \). Suppose \(n > 1 \) and assume that the result holds for \(n - 1 \). Now \(xJ(R)(J(R))^{n-1} = 0 \), but \(xJ(R)(J(R))^{n-2} \neq 0 \). Therefore there exists an element \(y \in xJ(R) \) such that \(yR \) is local and \(yJ(R)^{n-1} = 0 \) but \(yJ(R)^{n-2} \neq 0 \). By the induction hypothesis, \(\text{End}(yR/yJ(R)) \cong D \). In fact, for any simple submodule \(S' \) of \(xJ(R)/xJ(R)^2 \), \(\text{End}(S') \cong D \). Consider the local module \(M = xR/xJ(R)^2 \). Let \(S' \) be a simple submodule of \(M \). Then \(\text{Soc}(M) = S' \oplus B \) for some \(B \subset \text{Soc}(M) \). Then \(\text{End}(S') \cong D \). As \(A = M/B \) is uniserial, \(\text{Soc}(A) \cong S' \) and \(A/AJ(R) \cong xR/xJ(R) \). By Lemma 13, \(\text{End}(xR/xJ(R)) \cong D \).

(ii) Let \(S \) be a simple submodule of \(\text{Soc}(xR) \) and \(B \) be a complement of \(S \) in \(xR \). Then \(xR = xR/B \) is uniform and \(\text{Soc}(xR) \cong S \). By (i), \(\text{End}(S) \cong \text{End}(\overline{R}/J(R)) \cong \text{End}(xR/xJ(R)) \cong D \). Hence \(\text{End}(S) \cong D \) for any simple submodule \(S \) of \(xR \). Let \(S_1 \) be any composition factor of \(xR \). Then there exists a local submodule \(yR \) of \(xR \) such that \(S_1 \cong yR/yJ(R) \). By (i), \(\text{End}(S_1) \cong \text{End}(S) \cong D \), where \(S \) is a simple submodule of \(yR \).

(iii) It is immediate from (ii). \(\square \)
Now, we are ready to give the structure of indecomposable right artinian rings of RAI-type.

Theorem 15. Let R be an indecomposable right artinian ring of RAI-type. Then the following hold.

(i) There exists a division ring D such that $\text{End}(S) \cong D$ for any simple right R-module S. In particular, $R/J(R)$ is a direct sum of matrix rings over D.

(ii) If $D \not\cong \mathbb{Z}/2\mathbb{Z}$, then every finitely generated indecomposable right R-module is quasi-injective. In this case, R is right serial.

Proof. (i) Let $e \in R$ be an indecomposable idempotent and $D = eRe/eJ(R)e$. By above lemma, every composition factor S of eR satisfies $\text{End}(S) \cong D$. Now $R_R = \oplus_{i=1}^n e_iR$ where e_i are orthogonal indecomposable idempotents with $e_1 = e$. Let A be the direct sum of those e_jR for which $e_jR/e_jJ(R)e_j \cong D$. Consider any e_k for which $e_kR/e_kJ(R)e_k \not\cong D$. It follows from Lemma 14(iii) that $Ae_kR = 0 = e_kRA$. Consequently, $A = e_kR$ and we get that $R = A \oplus B$ for some ideal B. As R is indecomposable, we get $R = A$. This proves (i).

(ii) Suppose $D \not\cong \mathbb{Z}/2\mathbb{Z}$. It follows from Corollary 9 that every indecomposable right R-module is uniform and quasi-injective. In particular, if $e \in R$ is an indecomposable idempotent, then any homomorphic image of eR is uniform, which gives that eR is uniserial. Hence R is right serial.

Theorem 16. Let R be a right artinian ring such that $J(R)^2 = 0$. If every finitely generated indecomposable right R-module is local, then R satisfies the following conditions.

(a) Every uniform right R-module is either simple or is injective with composition length 2.

(b) R is a left serial ring.

(c) For any indecomposable idempotent $e \in R$ either $eJ(R)$ is homogeneous or $l(eJ(R)) \leq 2$.

Conversely, if R satisfies (a), (b), (c) and $l(eJ(R)) \leq 2$, then every finitely generated indecomposable right R-module is local.

Example. Let $R = \begin{bmatrix} F & F & F \\ 0 & F & 0 \\ 0 & 0 & F \end{bmatrix}$ where $F = \frac{Z}{2Z}$.

Then R is a left serial ring. We have already seen that $e_{11}R$ is an indecomposable module which is automorphism-invariant but not quasi-injective. It follows from Theorem 16 that every finitely generated indecomposable right R-module is local. Thus the only indecomposable modules which are not simple are the homomorphic images of $e_{11}R$, which are $e_{11}R$, $\frac{e_{11}R}{e_{11}J(R)e_{11}}$, and $\frac{e_{11}R}{e_{11}J(R)e_{11}}$. These are all automorphism-invariant. It follows from Theorem 16 that any finitely generated indecomposable right R-module is local. Thus this ring R is an example of a ring where every finitely generated indecomposable right R-module is automorphism-invariant.

\Box
Example. Let $F = \mathbb{Z}/2\mathbb{Z}$ and $R = \begin{bmatrix} F & F & F & F \\ 0 & F & 0 & 0 \\ 0 & 0 & F & 0 \\ 0 & 0 & 0 & F \end{bmatrix}$.

This ring R is left serial and $J(R)^2 = 0$. Now $e_{11}J(R) = e_{12}F \oplus e_{13}F \oplus e_{14}F$, a direct sum of non-isomorphic minimal right ideals. It follows from condition (c) in Theorem 16 that there exists a finitely generated indecomposable right R-module that is not local. We have $E_1 = E(e_{12}F)$, $E_2 = E(e_{13}F)$, $E_3 = E(e_{14}F)$, each of them has composition length 2. Now $e_{11}R$ has two homomorphic images $A_1 = \frac{e_{11}R}{e_{13}F}$ and $A_2 = \frac{e_{11}R}{e_{14}F}$ such that $\text{Soc}(A_1) \cong e_{12}F \oplus e_{13}F$ and $\text{Soc}(A_2) \cong e_{13}F \oplus e_{14}F$. So we get $B_1 \subseteq E_1 \oplus E_2 \subseteq E_1 \oplus E_2 \oplus E_3$ such that $A_1 \cong B_1$. Similarly, we have $A_2 \cong B_2 \subseteq E_2 \oplus E_3$. Let $E = E_1 \oplus E_2 \oplus E_3$. Its only automorphism is I_E. Thus any essential submodule of E is automorphism-invariant. Now $B = B_1 + B_2 \subset E$, so B is automorphism-invariant and B is not local. We prove that B is indecomposable. We have $B_1 \cap B_2 = e_{13}F$. Notice that any submodule of $E_1 \oplus E_2$ that is indecomposable and not uniserial is B_1. Suppose a simple submodule S of B is a summand of B. But $S \subset B_1$ or $S \subset B_2$, therefore B_1 or B_2 decomposes, which is a contradiction. As $l(B) = 5$, B has a summand C_1 with $l(C_1) = 2$. Then C_1 being uniserial, it equals one of E_i.

Case 1. $C_1 = E_1$. Then $B = C_1 \oplus C_2$, where $\text{Soc}(C_2) \cong B_2$. As C_2 has no uniserial submodule of length 2, the projection of B_1 in C_2 equals $\text{Soc}(C_2)$, we get B_1 is semi-simple, which is a contradiction. Similarly other cases follow. Hence B is indecomposable. \square

Now, we proceed to answer the question of Lee and Zhou [14] whether every automorphism-invariant module is pseudo-injective in the affirmative for modules with finite Goldie dimension.

Theorem 17. If M is an automorphism-invariant module with finite Goldie dimension, then M is pseudo-injective.

Proof. Let N be a submodule of M. Let $\sigma : N \to M$ be a monomorphism. Then σ can be extended to a monomorphism $\sigma' : E(N) \to E(M)$. Now, we may write $E(M) = \sigma'(E(N)) \oplus P = E(N) \oplus Q$ for some submodules P and Q of $E(M)$. Note that $\sigma'(E(N)) \cong E(N)$. Since M has finite Goldie dimension, $E(M)$ has finite Goldie dimension. Thus $E(M)$ is a directly-finite injective module, and hence $E(M)$ satisfies internal cancellation property. Therefore, $P \cong Q$. Thus, there exists an isomorphism $\varphi : Q \to P$. Now consider the mapping $\lambda : E(M) \to E(M)$ defined as $\lambda(x + y) = \sigma'(x) + \varphi(y)$ where $x \in E(N)$ and $y \in Q$. Clearly, λ is an automorphism of $E(M)$. Since M is assumed to be automorphism-invariant, we have $\lambda(M) \subseteq M$. Thus $\lambda|_M : M \to M$ extends σ. This shows that M is pseudo-injective. \square

It is well known that if R is a ring such that each cyclic right R-module is injective then R is semisimple artinian. For more details on rings characterized by properties of their cyclic modules, the reader is referred to [9]. We would like to understand the structure of rings for which each cyclic module is automorphism-invariant. In [14] it is shown that if every 2-generated right module over a ring R is automorphism-invariant, then R is semisimple artinian.
A ring R is called a right SI ring if every singular right R-module is injective [6]. In [8], Huynh, Jain, and López-Permouth proved that a simple ring R is a right SI ring if and only if every cyclic singular right R-module is π-injective. Their proof can be adapted to show that a simple right noetherian ring R is a right SI ring if and only if every cyclic singular right R-module is automorphism-invariant.

The following lemma due to Huynh et al [7, Lemma 3.1] is crucial for proving our result. This lemma is, in fact, a generalization of a result of J. T. Stafford given in [2, Theorem 14.1].

Lemma 18. ([7]) Let R be a simple right Goldie ring which is not artinian and M a torsion right R-module. If $M = aR + bR$, where bR is of finite composition length and f is a non-zero element of R then $M = (a + bxf)R$ for some $x \in R$.

We know that for a prime right Goldie ring R, singular right R-modules are the same as torsion right R-modules. Now, we are ready to prove the following.

Theorem 19. Let R be a simple right noetherian ring. Then R is a right SI ring if and only if every cyclic singular right R-module is automorphism-invariant.

Proof. Let R be a simple right noetherian ring such that every cyclic singular right R-module is automorphism-invariant. We wish to show that R is a right SI ring. If $\text{Soc}(R_R) \neq 0$, then as R is a simple ring, $R = \text{Soc}(R_R)$ and hence R is simple artinian.

Now, assume $\text{Soc}(R_R) = 0$. Let M be any artinian right R-module. Since any module is homomorphic image of a free module, we may write $M \cong F/K$ where F is a free right R-module. We first claim that K is an essential submodule of F. Assume to the contrary that K is not essential in F. Let T be a complement of K in F. Note that $\overline{M} \cong \frac{F}{K} \supseteq \frac{M}{K} \cong T$. Since M is an artinian module, $\text{Soc}(M) \neq 0$ and consequently $\text{Soc}(T) \neq 0$. This yields that $\text{Soc}(F) \neq 0$, a contradiction to the assumption that $\text{Soc}(R_R) = 0$. Therefore, K is an essential submodule of F and hence M is a singular module. Let C be a cyclic submodule of M. We have $\text{Soc}(C) \neq 0$. As R is right noetherian and C is a cyclic right R-module, C is noetherian. Thus we have $\text{Soc}(C) = \bigoplus_{i=1}^t S_i$ where each S_i is a simple right R-module. By the above lemma, it follows that $C \oplus S_1$ is cyclic. By induction, it may be shown that $C \oplus \text{Soc}(C)$ is cyclic. Now as $C \oplus \text{Soc}(C)$ is a cyclic singular right R-module, by assumption $C \oplus \text{Soc}(C)$ is automorphism-invariant. Hence $\text{Soc}(C)$ is C-injective. Therefore, $\text{Soc}(C)$ splits in C and hence $C = \text{Soc}(C) \subset M$. Thus M is semisimple. This shows that any artinian right R-module M is semisimple.

Now, we prove that every singular module over R is semisimple, or equivalently, for each essential right ideal E of R, R/E is semisimple. By the above claim, it suffices to show that R/E is artinian. Set $N = R/E$. If N is not artinian, then we get $0 \subset V_1 \subset N$ with V_1 not artinian. Now N is torsion, so is V_1. Therefore, $Q = N \oplus V_1$ is torsion and hence cyclic by Lemma 18. Thus we can write $xR = N \oplus V_1$ for some $x \in R$. By the assumption, xR is automorphism-invariant. Hence V_1 is N-injective. So $N = N_1 \oplus V_1$. Repeat the process with V_1, so $V_1 = N_2 \oplus V_2$, where $N_2 \neq 0$ and V_2 is not artinian. Continuing this process, we get an infinite direct sum of N_i in N, which is a contradiction. Thus we conclude that any singular right R-module is artinian and consequently semisimple.
Thus R is a right nonsingular ring such that every singular right R-module is semisimple. Hence, by [6], R is a right SI ring.

The converse is obvious. \qed

4. Questions

Question 1: Does every automorphism-invariant module satisfy the property C2?

Lee and Zhou [14] have shown that every automorphism-invariant module satisfies the property C3.

Question 2: What is example of an automorphism-invariant module which is not pseudo-injective?

In Theorem 17 above, we have shown that such a module cannot have finite Goldie dimension.

A module M is called skew-injective if for every submodule N of M, any endomorphism of N extends to an endomorphism of M. In [9] it is asked whether every skew-injective module with essential socle is quasi-injective. We ask the following

Question 3: Is every automorphism-invariant module with essential socle a quasi-injective module?

Call a ring R to be a right a-ring if each right ideal of R is automorphism-invariant.

Question 4: Describe the structure of a right a-ring.

Call a ring R to be a right Σ-a-ring if each right ideal of R is a finite direct sum of automorphism-invariant right ideals.

Question 5: Describe the structure of a right Σ-a-ring.

Question 6: Let R be a simple ring such that R_R is automorphism-invariant. Must R be a right self-injective ring?

In fact, this question is open even when R_R is pseudo-injective (see [3]).
References

[1] V. P. Camillo, D. Khurana, T. Y. Lam, W. K. Nicholson, Y. Zhou, Continuous modules are clean, J. Algebra, 304 (2006), 94-111.
[2] A. W. Chatters, C. R. Hajarnavis, Rings with Chain Conditions, Pitman, London, 1980.
[3] J. Clark and D.V. Huynh, Simple rings with injectivity conditions on one-sided ideals, Bull. Australian Math. Soc. 76 (2007), 315-320.
[4] C. W. Curtis and J. P. Jans, On algebras with a finite number of indecomposable modules, Trans. Amer. Math. Soc. 114 (1965), 122-132.
[5] S. E. Dickson, K. R. Fuller, Algebras for which every indecomposable right module is invariant in its injective envelope, Pacific J. Math., vol. 31, no. 3 (1969), 655-658.
[6] K. R. Goodearl, Singular torsion and the splitting properties, Memoirs Amer. Math. Soc. 124, 1972.
[7] D. V. Huynh, S. K. Jain, S. R. López-Permouth, When is a simple ring noetherian?, J. Algebra, 184 (1996), 784-794.
[8] D. V. Huynh, S. K. Jain, S. R. López-Permouth, When cyclic singular modules over a simple ring are injective, J. Algebra, 263 (2003), 185-192.
[9] S. K. Jain, A. K. Srivastava and A. A. Tuganbaev, Cyclic Modules and the Structure of Rings, Oxford Mathematical Monographs, Oxford University Press, 2012.
[10] J. P. Jans, On the indecomposable representations of algebras, Ann. of Math. (2) 66 (1957), 418-429.
[11] T. Y. Lam, A First Course in Noncommutative Rings, Second Edition, Springer-Verlag, 2001.
[12] T. Y. Lam, Lectures on Modules and Rings, Springer-Verlag, 1999.
[13] T. Y. Lam, A crash course on stable range, cancellation, substitution and exchange, J. Alg. Appl., vol. 3, no. 3 (2004), 301-343.
[14] T. K. Lee, Y. Zhou, Modules which are invariant under automorphisms of their injective hulls, J. Alg. Appl., to appear.
[15] S. H. Mohamed, B. J. Müller, Continuous and Discrete Modules, London Math. Soc. Lecture Note Ser., vol. 147, Cambridge Univ. Press, Cambridge, 1990.
[16] S. Singh, H. Al-Bleeheed, Rings with indecomposable modules local, Beiträge zur Algebra und Geometrie, 45 (2005), 239-251.
[17] S. Singh, A. K. Srivastava, Dual automorphism-invariant modules, preprint.
[18] M. L. Teply, Pseudo-injective modules which are not quasi-injective, Proc. Amer. Math. Soc., vol. 49, no. 2 (1975), 305-310.

House No. 424, Sector No. 35 A, Chandigarh-160036, India
E-mail address: ossinghpal@yahoo.co.in

Department of Mathematics and Computer Science, St. Louis University, St. Louis, MO-63103, USA
E-mail address: asrivas3@slu.edu