Abstract

Spondias pinnata (L.f.) Kurz., belongs to the Anacardiaceae family, generally referred to as Indian Hog plum, a deciduous, glabrous tree with a healthy fruit to eat. Hog plum is a mild deciduous tree plant of high nutritional value, stubby calories and abundant in vegetable proteins, zinc, chitin, starch, vitamins and minerals. Traditional use of various parts of *S. pinnata* includes diarrhea, dysentery, stomach troubles, hyperacidity, wounds, sprain, rheumatism, gonorrhoea, tuberculosis, aphrodisiac, arrow poison antidote, dyspepsia, dysentery, ring worms, abscess painful joints, refrigerant, tonic, antiseptic, astringent, mental disorders, tuberculosis, vomiting and many more. A number of pharmacological activities were reported from several extracts of *S. pinnata* and its parts that include hypoglycemic, anti-cancer, ulcer-protective, anti-diarrhoeal, anti-microbial, hepatoprotective, thrombolytic, anti-inflammatory, antiarthritic, analgesic, antipyretic, anti-hypertensive, anthelmintic, diuretic and laxative, anti-tuberculosis, cytotoxic, antioxidant, anti-hyperlipidemic, ischemia reperfusion injury and preconditioning of heart, anxiolytic, reduce side effects of chemotherapy, ameliorating, platelet aggregation inhibitory activity and acute and sub-chronic toxicity. A few phytochemicals were detailed on this plant. The chemical components of *S. pinnata* include different amino acids, carbohydrates, terpenoids, flavonoids, polysaccharides, steroids and so on. Various solvent extract and their gas chromatography-mass spectrometry analysis have confirmed the structures of a number of important phytoconstituents. Hence this review can be a good reference for researchers who would undertake further investigation about *S. pinnata*.

Keywords: Hog Plum, Pharmacological Activities, Phytoconstituents, *Spondias pinnata*, Traditional Use

1. Introduction

Now-a-days medicinal plants and herbs are playing a significant role in the progress of human culture. Since the Vedic period, plants and herbs have been used to cure and prevent different kinds of diseases alongside epidemics. Many medicinal plants are often used as good condiments, to taste, to dye, to preserve food, etc. Nearly every part of the plant has its own medicinal heritage. Herbal medicines have traditionally been used as tinctures, powders, poultices and teas accompanied by formulas and eventually, as an angel compound. Information about the use of medicinal plants resides within cultures, within the local traditions open to communities, tribes and societies, and is passed on from generation to generation.

In recent years, there has been an increase in the use of plant-derived health products in developed countries as well as in developing countries, which has resulted in an exponential growth of herbal products holistically.
alongside upward trend, which has also been observed in herbal exploration. Hog-plum is a small deciduous tree species with a beneficial nutritional quality, low in calories and high in vegetable protein, zinc, chitin, fiber, nutrients and minerals, domestically called 'Ambate' or 'Ambade Kaai'. This tree has received non secular significance as it is worshiped in Nakshatra Vana for 'Hastha' nakshatra. It incorporates very good quantity of citric acid and ascorbic acid (Vitamin C). Hog-plums are typically consumed uncooked and can be used to prepare pickles, chutneys and processed foods; however, the use of hog-plum remains unorganized and primitive. The shelf-life of shimmering hog-plums is also constrained by bacterial spoilage and enzymatic browning.

The Spondias is one of the first genera of the Anacardiaceae family consisting of 70 genera and six hundred species and is endogenous primarily in the tropics and subtropics globally but also extends to the temperate field, which is useful in traditional medicinal products for the treatment of many diseases. Spondias has records of use going returned as a minimum as far as 6500 B.C., in Tehuacan valley of Mexico and it consists of 18 species, particularly, S. acida, S. admirabilis, S. chinensis, S. dulcis, S. expeditionaria, S. globosa, S. macrocarpa, S. malayana, S. mombin, S. novoguineensis, S. pinnata, S. purpurea, S. mexicana, S. radlkoferi, S. tefyi, S. testudinis, S. tuberosa, S. venulosa, and S. xerophila.

Pharmacological studies of different species of Spondias have shown that they possess vegetation, hypoglycemic, cytotoxic, antioxidant, ulcer protective, hepatoprotective, photo-protective, analgesic, antipyretic, anti-inflammatory, antiarthritic, anti hypertensive, antimicrobial, anti-dementia, antifertility, thrombolytic and anthelmintic activities due to the massive variety of phytoconstituents that may be found in this genus. Plants of the genus Spondias include tannins, flavonoids, sterols, triterpenes, saponins, essential oils, amino acids and polysaccharides.

Spondias pinnata (L.f.) Kurz., (family: Anacardiaceae) commonly referred to as Indian Hog plum, a deciduous, glabrous tree with edible fruit growing up to 25 m in height. The unripe fruits are salty, even as the ripe ones are tangy-twisty in taste. The fruits are utilized in worship, as a vegetable and for flavouring in curry, these and are also eaten up by herbivorous mammals. In the Western Ghats of Karnataka, flower buds and culmination of S. pinnata are used in pickling, while the leaves possess fragrant, acidic and astringent properties. The bark is beneficial to treat dysentery and diarrhea, and is also consumed to prevent vomiting. The roots are consumed for regulating menstruation. This is a crucial medicinal plant having usages in conventional, folk medicines and ethnomedical programs.

S. pinnata is in great demand in natural habitats owing to domestic consumption by locals. Commercial exploitation of this species often exists on a day-to-day basis for fruit and other medicinal usage by locals. This defines S. pinnata, with particular focus on diverse ethno-anomotabotanical usage.

2. Taxonomic Position and Synonyms

Indian Hog plum, Spondias pinnata (L.f.) Kurz, belongs to the Anacardiaceae family. The genus Spondias is a flowering flora consisting of 18 species described, of which eight are native to the Neotropics and approximately 10 are native to the tropics. The information of the taxonomic function and synonyms of S. pinnata are indexed in Table 1.

3. Vernacular Names

S. pinnata is a species of tree first described by Carl Linnaeus the Younger. This species is now and again loosely known as the "wild (or forest) mango" and has been positioned within the genus Mangifera. S. pinnata is considerably grown all over India and is known by numerous names at various locations and commonly it’s by far called Wild Mango, Andaman mombin, Indian hog plum, Indian mombin. Etymology of S. pinnata derived from Greek words Spondias or spodias "ashes", the classical name for the wild plum tree (Theophrastus) and Pinnata with pinnate leaves. The information of vernacular names is listed in Table 2.

4. Geographical Distribution and Cultivation

The S. pinnata is native to Central America and Southern Mexico and herbal populations are observed in both dry and wet regions, such as an extensive range of semi deciduous forests. It is also distributed extensively within the tropics and abundantly in the eastern and northeast location of Indian. Indian Hog Plums are discovered to grow as wild or cultivated up to 1500 m altitude, at some places in the tropical Indian subcontinent, Sri Lanka, Andaman Islands, Thailand, China, Myanmar and Malaysia, also widely dispensed inside the Philippines. In Florida, this plant grows abundantly. There has been a great strive to introduce this species to the semiarid conditions of Anand, Gujarat. However, the saplings
Table 1. Taxonomical classification and synonyms of S. pinnata^{10,15-17}

Kingdom	Plantae
Subkingdom	Viridiplantae
Infrakingdom	Streptophyta
Division	Tracheophyta
Subdivision	Spermatophytina
Infradivision	Angiospermae
Class	Magnoliopsida
Subclass	Rosidae
Superorder	Rosanae
Order	Sapindales
Family	Anacardiaceae
Genus	Spondias
Species	pinnata
Binomial name	Spondias pinnata (L.f) Kurz

Synonyms
Spondias paniculata Roxb.ex Wight & Arn.,
Spondias mangifera Willd.,
Spondias macrophylla Wall.,
Spondias bivenomarginalis K.M. Feng & P.Y. Mao,
Spondias amara Lam.,
Spondias acuminata Roxb.,
Poupartia pinnata (L. f.) Blanco,
Evia amara Comm. ex Bl.,
Mangifera pinnata L. f.,
Tetrastigma megalocarpum W. T. Wang,
Wirtgenia decandra Jungh.

were heavily infested with leaf spots (Colletotrichum spp.) leading to mortality of the plants²³. In India, this vegetation is observed to be developing thoroughly in the tropical and Himalayas areas, however it is seldom discovered in western India, despite growing wild in the wooded area of Karnataka²⁴.</p>

S. pinnata is not grown on a wide scale due to its high pressure in the natural environment due to its increased demand for local domestic consumption. Because of its hard seed coat, it is prone to attack by various pests, pathogens and insects and the seed radical tends to dry easily and there is a problem in seed germination and breeding activities¹⁴. The trees grow best in fertile, well-drained soils but if adequate nutrition is provided, they can grow satisfactorily in a variety of poorer soils. The species Spondias is best adapted to areas with a marked dry season. Mature trees are quite drought resistant, and do not require additional irrigation. Some irrigation is suitable for established order of young timber at some point of the primary year after planting. These days Anita et al.,²⁵ pronounced the impact of seed orientation on germination of wild mango for monetary benefit. Every year a major crop is produced. From June to October the fruits mature and are generally harvested at maturity. This wild edible fruit tree has been added to the local people making chutney, jam and pickle. By manufacturing and selling these goods, the field of people's socio-economic
5. Botanical Characters

S. pinnata belongs to the group of deciduous ornamental trees which grow 10-15 m tall (sometimes up to 25 m tall) with a division of a small branch colored yellowish brown [Figure 1a,b] [Table 3]. With irregular cracks, the surface of the bark is smooth, gray to light reddish brown, exuding a clear, sticky sap with a turpentine smell [Figure 2]26. The bark has general thickness of 2.6 mm and differentiated into outer bark (periderm) and internal bark (secondary phloem). Simple homogenous cork cells are found in outer bark; calcium oxalate crystals are distributed at random in the internal bark’s axial parenchyma. The phloem ray cells are closely loaded with tannins. In powder barks are fibrous flesh, brown in shade with slight turpentinic odour and mucilaginous astringent flavour, starch grains are also present and cork cells are stratified and seem like benzene ring, whereas stone cells have an elongated shape in groups and barrels, and phloem fibers are found in linear fusiform27. The wood has a fine textured luminous colour, no lustre and is odourless. Growth rings are indistinct, the grain is straight and the vessels are medium in size, with yellow deposits visible to the naked eye. The wood with more solitary pores is diffuse-porous, and there are few multiple pores which are also present. The vessels are shaped round to oval and arranged in tangential bands and a section diagonally. Tyloses and gummy deposits have been found in vessels. Rays encompass numerous rows of procumbent cells. Starch grains are typically located in ray cells. The wooden is mild weight with 0.45 specific gravity and 0.44 g/cm³ density at 12% moisture content and hardness is 2795.85 N28.

Leaves of *S. pinnata* are imparipinnate compound leaf, 25-45 cm long, alternating and spiral, elliptic-oblong leaflets (4-6 pairs), acuminate apex, sub-rounded base, sometimes asymmetric, with wonderful marginal vein and along with entire margin [Figure 3a–d]; Midrib flat above, obtuse secondary veins, widely parallel, reticulating tertiary veins and stipules are absent14,29. The leaves are green in colour, while the dried leaves are brownish green in color with characteristics odour and slightly bitter or astringent in taste. Reported anatomical structure of the leaf can be seen in both adaxial and abaxial surfaces, consisting of simple and short unicellular trichomes. An intramarginal vein is hardly ever present. Resin canals are to be found in leaves and reproductive structures of Anacardiaceae. Resin canals in leaf petioles and major lamina veins run parallel to the phloem, and are absent handiest in the most minor veins30. The midrib has biconvex symmetry with collateral vascular bundles. The dermis blanketed with an epicuticular wax layer on both aspects and the mesophyll is found in dorsiventral palisade layers. In the intercellular spaces several layers of spongy parenchyma are loosely associated. The angular collenchyma is present, externally surrounding via the xylem and phloem. The reported microscopic powder character of the leaves is composed of fibres, calcium oxalate prismatic crystals along with starch grains and elongated stone cells. There are also distinct stomata, sclereids, palisade cells, upper and lower epidermal cells27,31,32.
The thickness of the matured root is not uniform but cylindrical [Figure 4]. In colour, it’s whitish grey, fissures. Taproot is branched, and there are true rootlet forms. The powder of the root is odourless and without taste. Root bark can’t be effortlessly scraped. In mature root of the tree extended up to 5-8 metres. Documented microscopic characters of the *S. pinnata* root measuring five mm thickness have wide periderm and stable vascular cylinder. The periderm is membranous with shallow irregular fissured crevices containing phellem and phellogen. The phellem cells are rectangular brick fashioned, skinny walled and arranged radially. There is a narrow phellogen stripe inside the phellem. The wide cortex consists of tangentially elongated parenchyma cells along with secondarily wide phloem containing sieve tubes and phloem parenchyma. Xylem vessels are present between the medullary rays. The root powder also consists of vessel components, fibers and few cork cells.

The fruit is simple 1.5-2.5 cm long and 0.7-1.13 cm in diameter, rounded, succulent and a single-seeded type of drupe, fleshy with a pulp that’s finely flavoured and safe to eat. The Epicarp is thin, greenish yellow when ripe [Figure 4].

Seeds	Stone semi woody, fibrous with many cavities outside.
Fruits	Drupe, ovoid or oblong, fleshy, smooth, yellow when ripe.
Inflorescence	Panicle, terminal, glabrous, and basal
Flowers	Polygamous tiny white to cream colour, stalk-less, triangular sepals, pointed ovate-oblong petals and dusty pollen grains.
Leaves	Compound leaf, imparipinnate, alternate, spiral, distinct marginal vein, and flat midrib, with a tapering tip.
Trunk and Bark	Bole straight, bark pale grey, smooth with rounded knobs
Branches and twigs	Terete and hairy.
Root	Deep tap roots

Table 3. General botanical description of *S. pinnata*
Mesocarp is gentle acidic, juicy when ripe, aromatic, 6-8 celled inner part of endocarp is tough, woody and grooved, outer part is fibrous. The unripe fruits are extremely sour while the ripe ones have a tangy twist with pleasant aroma [Figure 5b]. The seeds bear ridges, semi-woody, outside fibrous and pitted with cavity [Figure 6].

Flowers are stalk-less and white in coloration, sepals are triangular, while petals are ovate-oblong and pointed [Figure 7a, b]. The calyx consists of five caducous, triangular and short, inexperienced-colored, light lobes. The corolla consists of five white and glamorous petals. The ovate petals are acutely apex, 2 mm long and 1.5 mm wide. The androecium consists of 5 stamens, which are inserted into the disk base. The filaments are thin (1 mm), and the anthers are globose. The ovary is 5-celled with five stout patterns. The pollen grains are dusty. Inflorescences with first order branches are paniculate, terminal, glabrous and basal [Figure 7c]. Flowers arranged on the same tree (polygamous plant) in a multi flowered inflorescence, in upper axils, bisexual and unisexual flowers, and pedicels up to 3 mm in length. Flowers appear earlier than the leaves or accompanied via very younger ones [Table 4]. The time of blooming and fruiting is from June through October. With the advent of the spring season the flowering takes place on naked shoots.

The seasonal natural phenomena and pharmacognostic parameters of S. pinnata are depicted in Tables 5 and 6.
Sex distribution	Polygamous (male, female and bisexual flowers on the same plant)
Mode of pollination | Pollinated by a wide variety of insects.
Dispersal of seed | Dispersed by way of numerous fruit-ingesting birds and mammals.

Table 5. Seasonal natural phenomena of *S. pinnata*

Parameter	Blossoming season	Fruity season	Seeding season	Leaves falling
	February to May.	August to November.	August to November.	During the winter season.

Table 6. Pharmacognostic parameters of *S. pinnata*

Parameter	Fruit (% w/w)	Leaf (% w/w)	Bark (% w/w)	Root (% w/w)
Total Ash Values	5.49	10.42	12.87	4.8
Acid Insoluble Ash Values	0.81	0.20	2.46	2.5
Water Soluble Ash Values	4.62	3.23	7.33	1.48
Loss on Drying	13.77	6.23	13.40	9.86
Water Soluble Extractive Values	2.96	23.2	4.17	7.5
Alcohol Soluble Extractive Values	1.55	10.97	11.67	3.8

6. Nutritive and Mineral Potential

Drupaceous fruit of *S. pinnata*, is maximum popular within the food and nutraceutical industries for its taste and fitness advantages with low in energy, high in vegetable proteins, minerals (zinc, calcium, iron), chitin, fibers, vitamins like A, B₁ and B₂. It incorporates superb amount of vitamin C (ascorbic acid) and half of what is found in sparkling one. The plant’s green fruit is pickled in brine and widely used in culinary preparations such as condiments, jams, curries, sherbet and as soothing drinks prepared by Assam’s Ahum people and some other North-eastern Indian tribes. *S. pinnata* end results are slightly acidic in nature. The fresh *S. pinnata* fruits commonly used for sauce preparation indicated that sugar, vinegar and their interactions have a major effect on the usual acceptability of Hog plum sauce improvement. Sugar had a superior influence on universal acceptability instead of vinegar. The nutritional potential suggested with biochemical profile of *S. pinnata* is shown in Table 7.

7. Aboriginal Drug Programmes

Spondias pinnata is utilized in Ayurveda, Unani and Siddha drugs. The bark is utilized in treatments of dysentery, diarrhea, biliousness, menstrual disarranges, joint pain, tuberculosis and for skin rubbing over sore joints. The bark paste is also used to treat stomach and frame discomfort or outline throb. The bark paste is used externally in articular and muscular rheumatism. The bark juice is consumed to treat diarrhoea and dysentery and additionally applied on ringworm, pores and skin diseases. The juice from the leaves is dropped in the ear to treat earache. The fruit is used as an astringent, antiscorbutic, blood purifier, and in opposition to dyspepsia. The fruit juice is used to treat earache and often used to avoid blood dysentery. The root has been used to control menstruation. The dried stem bark of *S. pinnata* possesses Rasa, Guna, Virya and Karma characteristics. In essence the therapeutic uses of *S. pinnata* are ksata, ksaya, raktapitta and daha, in Ayurveda. Dosage of stem bark is 5–10 g powder for decoction and 1–3 g powder for medicinal purposes. It is not ideal for consumption by people with high pitta and kapha dosha, since the unripe fruit is sour and can increase kapha and pitta dosha. In gastritis it is not suitable whereas ripe fruit is perfect for gastritis. The Indigenous system benefits and indications of *S. pinnata* are summarized in Table 8.
8. Ethnobotanical Information

The plant is known to play an important economical, ecological, as well as medicinal role. Several parts of S. pinnata are used to treat a number of health hazards. Each and every plant part is used for the preparation of several medicines.

The juice of the leaves is dropped in the ears and externally applied for earache. The powder of the dried leaves is used in diarrhoea and dysentery treatment. The stem bark decoction is also used similarly. New, tender leaf juice is used to treat stomach disorders. The tender, fresh leaves are used in hyperacidity along with raw sugar candy and the fruit paste is applied externally on wounds. The bark paste is applied topically for sprain and rheumatism. The bark decoction is used in gonorrhea treatment. S. pinnata fruits, leaves, and bark are effective anti-scorbutic agents. The fruit and the root serve as a remedy against thirst. The young flowers and leaves are used to prepare curries14,25,52,53.

All parts of this plant were used in folkloric remedy as an anti-tubercular agent, whereas the unripe fruits were used as an aphrodisiac. Powdered ripe Spondias pinnata fruits are used as poison arrow antidote in India54. The tribes of Mayurbhanj District of Odisha were the historic users of this fruit, as a medicinal agent to treat diverse ailments like madhumeha, amlapitta and uttaravaruni55.

The fruit juice is beneficial antiscorbutic. The pulp of the fruit prevents rheumatism and is utilized in bilious dyspepsia56. At the same time 10 g of gentle fruit juice blended with 50 g of candy sugar and 0.6-0.8 g of black pepper powder is used as a home-made remedy for biliousness57. The Sonowal Kachari Tribe of Dibrugarh district of Assam consume the fruit for curing dyspepsia and dysentery. The fresh seed paste is externally applied to skin diseases such as ring worms, abscesses58.

In India, the bark of Spondias pinnata is used as a rubefacient for the treatment of sore joints, refrigerant, tonic, antisepetic, astringent, psychological illnesses, tuberculosis and vomiting by various ethnic groups15. It is additionally used to treat looseness of the bowels and diarrhoea and to prevent vomiting. Once rubbed to the skin, the paste or lotion of the bark extract provides relief from the sprain and strain, it is also beneficial for both

Table 7. Nutritional potential with biochemical profile of S. pinnata43–47

Parameters	Fruit	Bark	Leaf
Total protein (g%)	17.32	3.21	11.04
Crude fat (g%)	12.23	5.14	4.8
Carbohydrate (g%)	23.54	16.3	68.9
Crude fibres (g%)	42.53	33.9	10.5
Flavonoids (mg%)	710.23	350.5	76.03
Polyphenol (mg%)	634.53	91.47	27.76
Moisture (%)	82.02	23.6	15.13
pH	3.93	-	-
Calcium (mg%)	115	72	10.85
Iodine (mg%)	24	9	-
Iron (mg%)	150	128	0.09
Sodium (mg%)	96	-	0.85
Potassium (mg%)	1.78	3.05	9.50
Copper (mg%)	123	90	-
Aluminium (mg%)	87	58	-
Phosphorous (mg%)	0.68	-	0.24
Riboflavin (mg%)	0.09	-	-
Niacin (mg%)	0.16	-	-
Ascorbic acid (mg%)	87.45	-	59.05
Thiamine (mg%)	1.8	0.8	-
Food energy value (kcal/g)	168.76	-	-
Table 9. Chemical constituents obtained from various parts of *Spondias pinnata*

Plant Parts	Chemical Constituents
Fruit	**β-amyrin, Oleanolic acid, Glycine, Cystine, Cysteine, Serine, Alanine, Leucine, Arginine, Polysaccharide, Stigmaster-4-en-3-one, β-sitosterol, Oleanic acid, Daucosterol, Cycloartane-24-methylene, Lignoceric acid, Ellagitannins, Galloyl-geraniin, β-carotene, D-Galactose, D-Xylose, L-Arabinose, 2,3,4,6-Tetra-O-methyl glucose, 2,3,6-Tri-O-methylglucose, 2,3-Di-O-methylglucose, 3-O-Methylglucose, 1,2,3,6-tetra-O-methyl-D-glucose, Propan-1,2-dioic acid-3-carboxyl-β-D-glucopyranosyl-(6’1”)-β-D-glucofuranoside. Apigenin. Ascorbic acid, Riboflavin, Niacin, Galacturonic acid.**
Fruit Peel	Hexanal, Furfural, 2-Hexanal, (Z)-3-Hexen-1-ol, 2-furyl methyl, α-Pinene, Camphene, 5-Methyl-2-furaldehyd, β-Pinene, β-Mycene, 3-Carene, (3E)-Hexenyl acetate, Isocineole, p-Cymene, Limonene, Benzeneacetaldehyde, (E)-β-Ocimene, γ-Terpine, 2-Furaldehyd diethyl acetate, (E)-Linalool oxide, Furanoid, Benzoic acid, Methyl ester, Linalool, Nonanal, 2-Fenchanol, β-Terpineol, Ocinemol, Ethyl benzote, Terpinen-4-ol, α-Terpineol, methyl salicylate, γ-Terpineol, (E)-2-Decenal, β-(E)-Damascenone, Caryophyllene, Ethyl cinnamate, γ-Eudesmol, Ethyl hexadecanoate, 5-hydroxy methyl furfural, 1,4-pentadiene, 3,5-dihydroxy-2-methyl-5,6-dihydropyrany-4-one, Hexadecanoic acid, 9,12,15-octadecatrien-1-ol.
Aerial Parts	β-Sitosterol-β-D-glucoside, Daucosterol, Cycloartane-24-methylene, Lignoceric Acid, Stigmast-4-en-3-one.
Bark	Gallic acid, Methyl gallate, 7-hydroxy-6-methoxyquinoline-2(1H)-one, Quinoline, cinnamic acid, Ergosteryl triterpene 1, Ergosteryl triterpene 2, Ellagitannins, lignoceric acid, β-sitosterol.
Roots	Echinocystic acid-3-O-β-D-galactopyranosyl-(1→5)-O-β-D-xylurfuranoside.
Whole plant	Cycloartane-24-methylene, Stigmaster-4-en-3-one, Lignoceric acid, β-sitosterol, Ellagitannins, Galloyl geraniin, Lignoseric acid, β-carotene, Naringenin, Apigenin, Stigmasterol, Campesterol, D-galactose, D-galacturonic acid, L-arabinose.
A Tangy Twist Review on Hog-Plum: *Spondias pinnata* (L.f.) Kurz

Types of Compound	Name of Chemicals
Carboxylic acids and esters	Gallic acid, Salicylic acid, Chlorogenic acid, 6-hydroxy-2,5,7,8-tetramethyl chroman-2-carboxylic acid (Trolox), Ellagic acid, p-coumaric acid, Tetradecanoic acid, Ethyl decanoate, Ethyl-3-phenylpropenoate, Hexadecanoic acid, Methyl-14-methylpentadecanoate.
Alcohols	cis-3-hexenol, Hept-5-en-2-ol, 9,12,15-octadecatrien-1-ol.
Aldehydes and Ketones	Furfural, 6,10,14-trimethyl-2-pentadecanone.
Isopropyl myristinate and aromatic hydrocarbons	1-methyl-4-propan-2-ylcyclohexa-1,3-diene.

Table 11. GC-MS analysis of *Spondias pinnata* extracts

Extract name	Chemical Constituents
Hexane fraction of *S. pinnata* leaves	Methylbenzene, Nonane, 1,2,3-trimethylbenzene, Dodecane, 1,2,4,5-tetramethylbenzene, 1-dodecene, Tetradecane, 2,3,5,8-tetramethyldecane, 1-hexadecanol, Hexadecane, 1-hexadecene, Eicosanoic acid methyl ester, Eicosane, 9,12-octadecadienoic acid methyl ester, 9-octadecenoic acid methyl ester, Octadecanoic acid methyl ester, Tricosane, Heptadecane, Triacontane, Octacosane.
Ethyl acetate fraction of *S. pinnata* leaves	2,5-dimethyl-2-hexene, Acetic acid-2-methyl Ipropyl ester, 2-propionic acid-2-methyl ethyl ester, 1-undecene, Dodecane, 1-Dodecene, Dodecane, 1-tetradecene, 1-(1,5-dimethyl-4-hexanyl)-4-methyl benene, 1-tetradecene, Pentadecane, 1-pentadecane, Heptadec-8-ene.

Table 12. Details phytoconstituents structures isolated form *S. pinnata*

(i) Flavonoids	(ii) Sterols
![Flavonoids](image)	![Sterols](image)
Naringenin	Stigmasterol
Apigenin	Stigmast-4-en-3-one
Cycloartane-24-methylene

Campesterol

Daucosterol

β-Sitosterol

(iii) Monoterpenes (acyclic)

Myrcene	(E)-β-Ocimene	Linalool

(iv) Monocyclic Monoterpenes

p-Cymene	Limonene	α-Terpineol
γ-Terpinene	Terpinen-4-ol	β-Terpineol

(v) Bicyclic Monoterpenes

α-Pinene	β-pinene	Iso-cineole	
3-Carene	Camphene	Isoborneol	2-Fenchanol
A Tangy Twist Review on Hog-Plum: *Spondias pinnata* (L.f.) Kurz

Bicyclic Sesquiterpenes

Chemical	Structure
Caryophyllene	![Caryophyllene](image)
\(\beta\)-caryophyllene	![\(\beta\)-caryophyllene](image)
\(\gamma\)-Eudesmol	![\(\gamma\)-Eudesmol](image)

Pentacyclic triterpenoids

Chemical	Structure
\(\beta\)-amyrin	![\(\beta\)-amyrin](image)
Oleanic acid	![Oleanic acid](image)
Oleanolic acid	![Oleanolic acid](image)

Quinoline derivatives

Chemical	Structure
7-hydroxy-6-methoxyquinoline-2(1H)-one	![7-hydroxy-6-methoxyquinoline-2(1H)-one](image)
\(\beta\)-(E)-Damascenone	![\(\beta\)-(E)-Damascenone](image)

Rose ketones

Chemical	Structure
7-hydroxy-6-methoxyquinoline-2(1H)-one	![7-hydroxy-6-methoxyquinoline-2(1H)-one](image)
\(\beta\)-(E)-Damascenone	![\(\beta\)-(E)-Damascenone](image)

Saccharides and their derivatives

Chemical	Structure
3-O-Methylglucose	![3-O-Methylglucose](image)
2,3-Di-O-methyl-D-glucose	![2,3-Di-O-methyl-D-glucose](image)
2,3,6-Tri-O-methyl-D-glucose	![2,3,6-Tri-O-methyl-D-glucose](image)
1,2,3,6-tetra-O-methyl-D-glucose	![1,2,3,6-tetra-O-methyl-D-glucose](image)
2,3,4,6-Tetra-O-methyl glucose	![2,3,4,6-Tetra-O-methyl glucose](image)
Galacturonic acid	![Galacturonic acid](image)
D-Galactose	![D-Galactose](image)
D-Xylose	![D-Xylose](image)
L-Arabinose	![L-Arabinose](image)
(xi) Geraniin

![Geraniin molecule diagram](image)

(xii) Amino acids

Amino Acid	Structure	Properties
Leucine	![Leucine structure](image)	
Arginine	![Arginine structure](image)	
Cystine	![Cystine structure](image)	
Glycine	![Glycine structure](image)	
Cysteine	![Cysteine structure](image)	
Alanine	![Alanine structure](image)	
Serine	![Serine structure](image)	

(xiii) Carotenoids

- β-carotene

![β-carotene molecule diagram](image)

(xiv) Vitamins

- Ascorbic acid
- Thiamine
- Riboflavin
- Trolox (analog of vitamin E)

![Vitamins molecule diagrams](image)
Furan derivatives compounds

	![Image](image1.png)	![Image](image2.png)	![Image](image3.png)
	Furanoid	2-Furaldehyde diethyl acetal	Furfural
	![Image](image4.png)	![Image](image5.png)	
	5-Methyl-2-furaldehyde	5-hydroxy methyl furfural	

Polyphenolic compounds

	![Image](image6.png)	![Image](image7.png)
	Gallic acid	Ellagic acid
	![Image](image8.png)	![Image](image9.png)
	Chlorogenic acid	Methyl gallate

Derivative of cinnamic acid

	![Image](image10.png)	![Image](image11.png)	![Image](image12.png)
	p-coumaric acid	Ethyl cinnamate	Cinnamic acid
	![Image](image13.png)	![Image](image14.png)	

Benzoic acid and its Derivative

	![Image](image15.png)	![Image](image16.png)	![Image](image17.png)
	Benzoic acid	Ethyl benzoate	Methyl salicylate
	![Image](image18.png)	![Image](image19.png)	

Miscellaneous Compounds

	![Image](image20.png)	![Image](image21.png)	![Image](image22.png)
	(E)-Linalool oxide	2-Hexanal	Ocimenol
10. Pharmacological Activities

S. pinnata is proved to be useful in treating various ailments of mankind. A number of pharmacological activities were reported from several extracts of *S. pinnata* and its parts that include hypoglycemic, anti-cancer, ulcer-protective, anti-microbial, hepatoprotective, thrombolytic, anti-inflammatory, antiarthritic, analgesic, antipyretic, antihypertensive, anthelmintic, diuretic and laxative, cytotoxic, antioxidant and anti-hyperlipidemic activity. The detailed reported pharmacological activities of *S. pinnata* are given in Table 13.

10.1 Hypoglycemic Activity

Diabetes is the foremost winning metabolic clutter, thereby Mondal *et al.*, 64 detailed the hypoglycemic activity of the various extracts of the barks of *S. pinnata* on adult Wistar albino rats at dose tiers of 300 mg/kg p.o., the usage of normoglycaemic, glucose loaded and alloxan induced hyperglycaemic rats. Among the extracts tested, the methanol extract has been found to produce promising effects this is akin to that of the reference widespread glibenclamide.

Table 13. Reported pharmacological activities of *Spondias pinnata*

Plant Parts	Pharmacological activities
Resin	Anti-microbial.
Fruit	Antidiarrhoeal, thrombolytic, anti-inflammatory, analgesic, antihypertensive, cytotoxic, antisidemic, anti-hyperlipidemic, anxiolytic, platelet aggregation inhibitory.
Fruit pulp	Hypoglycemic.
Bark	Hypoglycemic, anti-cancer, ulcer-protective, antidiarrhoeal, anti-microbial, anti-inflammator, analgesic, antipyretic, anthelmintic, diuretic and laxative, cytotoxic, reduce side effects of chemotherapy, acute and sub-chronic toxicity.
Stem Bark	Anti-tuberculosis, antioxidant, ischemia reperfusion injury and preconditioning of heart, ameliorating.
Stem heart wood	Hepatoprotective, anthelmintic.
Leaf	Ulcer-protective, thrombolytic, anti-inflammatory, antioxidant, acute and sub-chronic toxicity.
Root	Hypoglycemic, antioxidant.
Whole plant	Antiarthritic.
Further, Acharyya et al.,65 also documented hypoglycemic activity of chloroform, methanol and aqueous extracts of *S. mangifera* root at varying doses (100, 200 and 400 mg/kg, p.o.) on Wistar albino rats by way of following normoglycaemic study, glucose tolerance test and antihyperglycemic trial from which only methanol extract generated promising action.

Devi et al.,66 additionally studied the hypoglycemic impact of *S. pinnata* fruit pulp ethanolic extract on experimental animal models. This research concludes potent hypoglycemic activity of ethanolic extract fruit pulp.

10.2 Anti-Cancer Activity

Recent study by Ghate et al.,67 has been shown to have an anti-cancer activity on the bark of *S. pinnata*. Apoptosis in human lung adenocarcinoma cell line (A549) and human breast adenocarcinoma cell line (MCF-7) is promoted by 70% methanol extract of *S. pinnata* bark. It confirmed significant cytotoxicity to both A549 and MCF-7 cells with an IC₅₀ value of 147.84 and 149 μg/mL respectively. In addition, two isolated compounds (gallic acid and methyl gallate) showed promising cytotoxic activity with IC₅₀ value of 59.28 and 8.44 μg/mL reported by Chaudhuri et al.,68 respectively; Gallic acid induced cell death in HL-60RG cells with promyelocytic leukemia69 and treatment with methyl gallate delayed tumor development in tumor-bearing animals and extended survival by inhibiting tumor infiltration of CD4⁺ CD25⁺ Treg cells.70 Similarly Das et al.,71 reported that the chloroform and ethanolic extracts of the bark were tested for anticancer activity by using brine shrimp lethality bioassay test. Ethanolic extract produced LC₅₀ and LC₉₀ as 65μg/ml and 160 μg/ml whereas chloroform extract produced LC₅₀ and LC₉₀ as 170 μg/ml and 325 μg/ml respectively. Major compounds obtained from ethyl acetate fraction of *S. pinnata* and their compounds were used for anticancer potential against U87 cells. Two compounds namely gallic acid and methyl gallate showed promising activities by spectroscopic methods. Methyl gallate induces an activation and apoptosis in human glioblastoma U87 sustained by extracellular signal-regulated kinase72.

10.3 Ulcer-Protective Activity

Arif et al.,73 recorded that the *S. pinnata* bark methanolic extract had substantial ulcer-protective efficacy, the extract induced a dose-dependent inhibition of the indomethacin ulcer effect, reducing the ulcer index from 17.7 (control) to 8.7 and 6.7 for 100 and 200 mg/kg, p.o., respectively, resulting in a preventive ratio of 50.4 and 62.0, respectively. At the same time Mondal et al.,74 stated that in laboratory animal models the ethanol extract of the leaf also possesses ulcer defensive activities. The decline in ulcer index dose based on hard liquor induced ulcer and ulcer induced in the pylorus ligation. In the case of ulcer caused by pylorus ligation, there are reductions in the volume of gastric juice, free acidity, total acidity and pH changes in gastric content by the extract at a dosage of 100 and 200mg / kg, p.o.

10.4 Antidiarrhoeal Activity

The *S. pinnata* bark methanol extract has also been found to possess promising anti-diarrhoeal properties in adult Wister rats against castor oil induced diarrhea. The activity was measured against standard diphenoxylate hydrochloride (5mg/kg). After 1 hour of treatment the animals were orally treated with 1 ml of castor oil and examined for the quality of the faecal matter, the animals were treated with extract at doses of 100 and 200 mg/kg, p.o. The extract additionally inhibits intestinal agitation and hydro electrolytic secretion, which are prominent in diarrhoeal conditions and this extract is viable as it exemplifies the antidiarrhoeal effect because of the presence of the flavonoids 59.

The *S. pinnata* fruit’s aqueous extract also recorded in albino Wistar rats for anti-diarrhoeal activity. The aqueous extract was administered by using the oral path at a concentration of 100, 200 and 400 mg/kg, showing substantial dose-dependent anti-diarrheal activity in castor oil and magnesium sulphate induced diarrhea. The anti-diarrhoeal efficacy of the extract assessed was equivalent to that of the wellknown drug Loperamide74.

10.5 Anti-Microbial Activity

S. pinnata barks methanol and aqueous extracts develop *in-vitro* antibacterial activity by method of cup-plate diffusion at concentrations of 50, 100 and 150 mg against three Gram-negative bacteria. They used penicillin and streptomycin as standard drugs. The methanol extract also displayed beneficial antibacterial activity, while the aqueous extract displayed only moderate antibacterial activity against *E. coli, V. cholera, and S. typhimurium* 59,75. The antimicrobial activity of *S. pinnata* resin has also been evaluated on *Saccharomyces cerevisiae, Bacillus subtilis, Escherichia coli, Enterobacter sakazakii and Acinetobacter baumannii*. Disc diffusion method and macrodilution assays were used to study *in-vitro* antimicrobial activities of the resin extracts. The most susceptible microorganism to the resin extract was found to be *B. Subtilis*. The extracts did not impede the growth of Gram (-) bacteria and *S. cerevisiae* 66. *S. pinnata* was additionally observed to have anti-microbial activity against fish pathogens 77. At the
same time ethanol and chloroform extract from the roots of *S. pinnata* also demonstrated promising antibacterial activity against *S. Typhi* and *V. cholera* while chloroform extract demonstrated an excellent antibacterial activity against *S. Typhi* and less activity against *S. aureus* and *V. cholerae*78–80.

10.6 Hepatoprotective Activity

Ethyl-acetate and methanol extract of *S. pinnata* stem heartwood has detailed hepatoprotective impact against carbon tetrachloride actuated rats. The hepatic damage levels were tested by applying several biochemical markers such as Alanine transaminase (ALT), Aspartate Aminotransferase (AST), Alkaline phosphatase (ALP), and bilirubin in both treated and untreated groups. Ethyl acetate extract administered orally at a dosage of 100, 200, 400 mg/kg decreases ALT, AST, ALP and complete bilirubin. This action has been compared as a standard drug against silymarin. This could be due to the presence of bioflavonoids which have hepatoprotective homes. Histopathological examination became also accomplished on

10.7 Thrombolytic Activity

The exocarp of *S. pinnata* fruit delivered thrombolytic action. This was performed employing a strategy created by Daginawala utilizing streptokinase as standard. The test showed that the exocarp of the fruit has factually critical thrombolytic action.85 Ethanol extract of *S. pinnata* produced marked inhibition of haemolysis.86 The fraction of ethyl acetate exercised the highest thrombolytic activity and stabilised membrane activity.87 Concurrently *S. pinnata* leaf extract changed into additionally evaluated for thrombolytic interest by using streptokinase as trendy drug. Ethyl acetate soluble fraction produced highest percentage of clot lysis compared to streptokinase and aqueous extract.88

10.8 Anti-Inflammatory Activity

Ghate et al.,89 reported that Quinoline SPE2 and 7-hydroxy-6-methoxyquinoline-2(1H)-one were isolated from ethyl acetate fraction of *S. pinnata* bark and the anti-inflammatory activity was performed in the lipopolysaccharide-stimulated murine macrophage model, indicating that Quinoline SPE2 has anti-inflammatory activity by inhibiting NF-κB activation. In addition, *S. pinnata* leaf extract was also mentioned for anti-inflammatory activity the usage of 2-acetoxybenzoic acid as a standard drug for activity comparison. Ethyl acetate soluble fractions considerably inhibits the haemolysis of human erythrocyte membrane every in induced by hypotonic solution and by heat respectively in comparison to 2-acetoxybenzoic acid.89 Fruit peel extract of *S. pinnata* also produce sturdy anti-inflammatory activity with the aid of drastically inhibiting nitric oxide (NO) production prompted by means of lipopolysaccharide (LPS) in RAW 264.7 cell strains at 0.08% without an effect on cellular viability.90

10.9 Antiarthritic Activity

In some inflammatory processes the nitric oxide plays a dominant role. Bibhabasu et al.,91 proved that the methanolic extract of *S. pinnata* prevents nitrite formation *in-vitro* by interacting directly with oxygen in the nitric oxide reaction. The consequences showed that the methanol extract IC50 value was 716.32 µg/ml and reference well-known gallic acid was 876.24 µg/ml. For *S. pinnata* and gallic acid the scavenging percentages were 22.3 and 15.8 respectively. This stated study proved that the extract exhibited stronger peroxynitrite radical scavenging activity than the standard gallic acid.

10.10 Analgesic Activity

Panda et al.,92 using acetic acid, formalin test, and hot plate model reported the analgesic activity of *S. pinnata* bark ethanolic extract. The extract produced dose dependant analgesic impact (50-100 mg/kg, p.o.). The crude methanolic fruit extract was also recorded for analgesic activity using acetic acid triggered writhing reflex method and formalin triggered licking method. On
the idea of consequences, the methanolic fruit extract had potent dose-dependent analgesic activity99.

10.11 Antipyretic Activity

Panda et al.,94 tested the antipyretic activity of the S. pinnata bark ethanol extract (200 and 400 mg/kg, p.o.). The extract showed a substantial decrease in pyrexia that persisted for five hours after drug administration.

10.12 Antihypertensive Activity

The stated aqueous extract of S. pinnata fruit (20 μg/ml) produces in-vitro antihypertensive activity. Inhibitory behaviour of angiotensin-converting-enzyme (ACE) has been studied using ACE from rabbit and N-hippuryl-L-histidyl-L-leucine as a substrate. This confirmed the inhibition of ACE enzymes by 50% 95.

10.13 Anthelmintic Activity

The suggested ethanolic and acetone extracts of S. pinnata bark confirmed promising anthelmintic activity. Kumar et al.,96 also demonstrated that the ethanol extract with a concentration range of 50 and 100 mg/ml exhibited extra amazing activity than the acetone extract. Mondal et al.,97 tested anthelmintic activity of chloroform extract of the bark (10, 15, and 20 mg/ml) and showed promising outcomes in opposition to Indian earthworms. Similarly, on Pheretima posthuma, methanolic extract from stem heartwood and bark of S. pinnata was tested for in-vitro anthelmintic activity. Stem-heartwood methanolic extract was more potent than the bark extract92.

10.14 Diuretic and Laxative Activity

Mondal et al.,98 argued that the administration of methanol and chloroform extracts of S. pinnata bark (300 mg/kg) to Wister albino rats developed substantial diuretic and laxative activity compared to the reference requirements for furosemide and agar.

10.15 Anti-Tuberculosis Activity

According to Gupta et al.,99 the anti-tuberculosis activity has been documented using proportion process. Chloroform and ethanol extracts of S. pinnata stem bark were added separately into Lowestei-Jensen (L-J) medium in a serial concentration of extract of 1, 10 and 100mg/mL. In the control group only 1% dimethyl sulfoxide was applied. Mycobacterium tuberculosis was inoculated and incubated in 5% CO\textsubscript{2} incubator at 37°C for 6 weeks. Colonial growth was observed from 3rd to 6th week after inoculation on L-J medium. The results suggested that increased concentration of chloroform and ethanol extract on the medium, results in increased growth inhibition of M. tuberculosis100.

10.16 Cytotoxic Activity

The documented cytotoxic activity of the ethanol extract from S. pinnata fruit was determined by the lethality test of Brine shrimp. Use vincristine sulphate as standard, DMSO solutions of ethanolic extract were applied against Artemia salina in a one-day in-vivo study. After 24 hours of exposure the extract’s lethality was determined. The cytotoxicity of ethanol crude extract was found to be significant; LC\textsubscript{50} values were found to be 2.12 μg/mL for crude ethanol extract and 0.32 μg/mL for vincristine sulphate.56 In addition, Nikhil et al.,101 stated the role of methanol extract of the bark in promoting apoptosis in human lung adenocarcinoma cell line (A549) and human breast adenocarcinoma cell line (MCF-7). This study proved the methanolic extract’s anticancer potential against human lung and breast cancer by inducing apoptosis by modulating the Bcl-2 family proteins.

10.17 Antioxidant Activity

The free radical scavenging potential by using DPPH method of methanol and aqueous extracts of S. pinnata root showed dose dependant effect upto 250 μg/ml102. Similarly, methanolic extract of S. pinnata fruit also produced promising scavenging effect on ABTS free radical by using standard as Trolox. This activity was mentioned as a percentage with IC\textsubscript{50} and Trolox Equivalent Antioxidant Capacity (TEAC). The IC\textsubscript{50} value showed by Trolox is 10.14 and TEAC is 1.0 whereas fruit extract reported IC\textsubscript{50} was 3769.18 and TEAC is 0.00460. Simultaneously, stem bark methanolic extract also possess antioxidant activity using various in-vitro models which showed the TEAC value of 0.78±0.02. Increase in reducing power was proportional directly to the amount of extract91. The antioxidant activity (In-vitro) of hexane, ethanol and ethyl acetate extracts of S. pinnata dried leaves were evaluated using multiple models. The results showed that ethanol extract produced high scavenging activity whereas ethyl acetate and hexane extract produced medium and poor scavenging activity. The reducing power was increased in the manner of dose dependent in all the cases45. The ethanol fraction of S. pinnata dried fruit produced antioxidant activity using modified DPPH assay method. The results indicated scavenging activity with an IC\textsubscript{50} value 48.0 μg/mL. The increasing concentration of sample promoted the in-vitro antioxidant activity103,104.

10.18 Anti-Hyperlipidemic Activity
Raju et al.,105 pronounced anti-hyperlipidemic activity of \textit{S. pinnata} fruits methanolic extract against Triton induced hyperlipidemia in rats. Fenofibrate was used as reference well-known. It was concluded from this analysis that 100 and 200 mg/kg, p.o., extract was successful decreased cholesterol, PL, TG, VLDL, LDL and HDL level in dose-dependent manner.

10.19 Ischemia Reperfusion Injury and Preconditioning of Heart

The impact of \textit{Spondias pinnata} stem bark ethanolic extract (100 mg/kg or 200 mg/kg) was once located on ischemia reperfusion injury and ischemic preconditioning of heart. The extract decreased ischemia reperfusion triggered myocardial damage however does not accelerate cardio shielding effect of ischemic preconditioning106.

10.20 Anxiolytic activity

Jannatun et al.,107 reported anxiolytic activity of \textit{S. pinnata} fruit methanolic crude extract using hole broad test method and elevated plus maze test method in mice. The diazepam was utilised as a standard. The results of the methanolic extract of \textit{S. pinnata} fruit showed an increase of head dipping and time spent in open arms in mice which exhibits a significant effect of anxiolytic activity.

10.21 Reduce Side Effects of Chemotherapy

Beena et al.,108 exposed rats with etoposide and studied their protective effects using different doses of \textit{Spondias pinnata} bark extracts. Levels of alanine and aspartate aminotransferases had been decided the use of semi-auto analyser and Reduced Glutathione, Glutathione-S-Transferase, overall antioxidants and Lipid peroxidation using spectrophotometry. Variations in parameters were found between control, chemotherapy and \textit{S. pinnata} groups. Reported findings showed substantial increase in levels of Thiobarbituric acid reactive substances that could be recovered via \textit{S. pinnata} therapy. Sudarshan et al.,109 showed that histopathological studies of \textit{S. pinnata} bark extract intervention was able to repair the regular morphology and intestinal sodium potassium ATPase activity.

10.22 Ameliorating Effect

Hazra et al.,82 decided iron overloaded liver damage using 70% methanol extract of \textit{S. pinnata} (SPME) stem bark. Swiss albino mice were administered iron-dextran through intraperitoneal route that outcomes liver damage manifested by using growth in serum enzyme markers and reduction in liver antioxidants. The extract was administered via oral direction at extraordinary doses. Extract produced a dose dependant inhibition of lipid peroxidation, protein oxidation, and liver fibrosis and so on. The liver iron content material becomes observed to be less in SPME induced group as compared to control group.

10.23 Platelet Aggregation Inhibitory Activity

Sivaprasad et al.,110 evaluated \textit{S. pinnata} fruit ethyl acetate and methanol extracts for inhibitory activity in platelet aggregation. Ethyl acetate extract demonstrated activity for antagonists including collagen and ADP with an IC\textsubscript{50} value of 0.33 mg and 0.43 mg, respectively. Methanol extract produced high activity for antagonists such as collagen and ADP, with low IC\textsubscript{50} values of 0.26 mg and 0.35 mg respectively111.

10.24 Acute and Sub-Chronic Toxicity

Attanayake et al.,112 pronounced that no mortality or morbidity was observed in rats for the 14-day duration following single oral administration of the selected doses (0.25–2.00 mg/kg, p.o.) of the \textit{S. pinnata} bark aqueous extract. Similarly, the daily administration of 1.00 mg/kg, p.o., plant extract to Wistar rats for 30 days determined sub-chronic toxicity. The extract in healthy rats produces no marked changes in food consumption and water intake, as well as biological parameters, hematological parameters and histopathology. The results indicate that toxicologically safe aqueous extract of the \textit{S. pinnata} bark.

Mondal et al.,64 additionally examined the acute in-vivo toxicity of chloroform, methanol, and aqueous extracts of \textit{Spondias pinnata} bark upto 3000 mg/kg, p.o., of the extracts and it was found that the chloroform and methanol extract initiated sedation, diuresis, and purgation at all tried measurements. Nevertheless, by the end of the evaluation period there was no mortality in any of the extracts at the doses assessed.

Further Kumar and Sastry113 completed acute toxicity of ethanolic extract of \textit{S. pinnata} leaf that was found to be safe at 2000 mg/kg dose frame weight orally as per OECD guidelines No. 423. In continual toxicity studies, the extract was orally administered at doses 100, 200 and 400 mg/kg as soon as in a week for six weeks. After six weeks, biochemical and hematological parameters were determined. No toxicity or deaths were observed in acute toxicity study. No massive remedy related changes inside the tiers of renal, hepatic and haematological parameters were observed after the end of chronic toxicity study. It
can be concluded that the ethanolic extract of *S. pinnata* leaf does not seem to have tremendous toxicity profile.

11. Conclusion

Several parts of *S. pinnata* extracts contain a wide variety of phytoconstituents that belongs to amino acids, carbohydrates, terpenoids, flavonoids, polysaccharides, steroids, and others out of which few chemical constituents were identified and structures were determined. These substances are responsible for various pharmacological activities that include hypoglycemic, anti-cancer, ulcer-protective, anti-diarrhoeal, anti-microbial, hepatoprotective, thrombolytic, anti-inflammatory, anti-arthritis, analgesic, antipyretic, antihypertensive, anti-inflammation, diuretic and laxative, anti-tuberculosis, cytotoxic, antioxidant, anti-hyperlipidemic, ischemia reperfusion injury and preconditioning of heart, anti-oxidative, reduce side effects of chemotherapy, ameliorating, platelet aggregation inhibitory activity and acute and sub-chronic toxicity. Various solvent extract and their gas chromatography-mass spectrometry analysis have confirmed the structures of some important phytoconstituents. This review mainly focused on pharmacological and phytochemical studies that have explained therapeutic potential and phytoconstituents of *S. pinnata* which needs further research work for identification of phytoconstituents and their structures.

12. Acknowledgements

The authors are thankful to GITAM Institute of Pharmacy, GITAM (Deemed to be university), Visakhapatnam, Andhra Pradesh, India, for making centers available to conduct this review.

13. Financial Support and Sponsorship

This study was supported by GITAM Institute of Pharmacy, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India.

14. Conflicts of Interest

The authors claim no conflicts of interest.

15. References

1. Mahesh B, Satish S. Antimicrobial activity of some important medicinal plant against plant and human pathogens. World J Agr Sci. 2008; 4(S):839–43.

2. Suresh K, Surender P, Yogesh KW, Aditya K, Parul S. Therapeutic potential of medicinal plants: A review. J Biol Chem Chron. 2015; 1(1):46–54.

3. Sumanta M, Debjit G, Ramakrishna K. A complete profile on blind your eye mangrove Excoecaria agallocha L. (Euphorbiaceae): ethnobotany, phytochemical, and pharmacological aspects. Phcog Rev. 2016; 10(20):123–38. https://doi.org/10.4103/0973-7847.194049. PMid:28082796 PMCid:PMC5214557

4. Pargiter FE. The Markandeya Purana. Kolkata: The Baptist Mission Press and Asiatic Society; 1904.

5. Bhuiyan MHR. Pickle and chutney development from fresh Hog Plum (*Spondias dulcis*). J Environ Sci Nat Resour. 2012; 5(2):67–72. https://doi.org/10.3329/jesnr.v5i2.14604

6. Leonardo DSS, Paulo RRS, Márcia PPN, Solange MDF, Almerinda ARA. Fruit flies (Diptera: Tephritidae) and their parasitoids associated with different hog plum genotypes in Teresina, Piauí. Revista Brasileira de Fruticultura. 2017; 39(4):1–11. https://doi.org/10.1590/0100-294520177725

7. Fred-Jaiyesimi A, Kio A, Richard W. α-Amylase inhibitory effect of 3β-olean-12-en-3-yl (9Z)-hexadec-9-enoate isolated from *Spondias mombin* leaf. Food Chem. 2009; 116(1):285–88. https://doi.org/10.1016/j.foodchem.2009.02.047

8. John DM, Douglas CD. A revision of *Spondias* L. (Anacardiaceae) in the neotropics. PhytoKeys. 2015; 55(1):1–99.

9. Salma S, Al-Sayed E, Rola ML, Abdel NS. Genus *Spondias*: A phytochemical and pharmacological review. Evid base Compl Alternative Med. 2018; 1–13. https://doi.org/10.1155/2018/5382904. PMid:29785194 PMCid:PMC5896409

10. Florida HB, Cortigueria FF. Indian Hog plum. In: lesser known edible tree species. Research Information Series on Ecosystems. 2003; 15(3):1–8.

11. Chadah KL, Patel VB. Prospect of indigenous perennial plants as source of vegetable. Acta Horticul. 2007; 752(4):49–54. https://doi.org/10.17660/ActaHortic.2007.752.4

12. Lancaster SP. The sacred plants of the Hindus. Bulletin of National Botanic Garden. 1965; 113:1–56.

13. Darshana N. Blossom biology of hog-plum (*Spondias pinnata* Kurz). Journal of Applied Horticulture. 2001; 2(1):34–6. https://doi.org/10.37855/jah.2000.v02i01.10

14. Badoni A, Bisht C. Importance and problems in natural regeneration of *Spondias pinnata*. Report and Opinion. 2009; 1(5):12,13.
15. Nilutpal SB, Bibhuti BK, Barnali G, Ashis KG. Ethnomedical Claims, phytochemistry and pharmacology of Spondias pinnata: A Review. Int J Pharmaceut Sci Res. 2014; 5(4):1138–145.
16. Cronquist A. An Integrated System of Classification of Flowering Plants. New York: Columbia University Press; 1981.
17. Anonymous. The Ayurvedic Pharmacopoeia of India. Vol: II (I). Department of Ayush: Government of India Ministry of Health and Family Welfare; 1999.
18. Kiritikar KR, Basu BD. Indian medicinal plants. India: Lalit Mohan Basu; 1993.
19. Mahanta RK, Rout SD, Sahu HK. Ethnomedicinal plant resources of Similipal biosphere reserve, Orissa, India. Zoos Print Journal. 2006; 21:2372–74. https://doi.org/10.11609/JoTT.ZPJ.1435.2372-4
20. Pell SK, Mitchell JD, Miller AJ, Lobova TA. Anacardiaceae. Flowering Plants. Eudicots: Sapindales, Cucurbitales, Myrtaceae. The family and Genera of Vascular plants. New York: Springer Heidelberg Dordrecht; 2011.
21. Anonymous. The useful plants of India. CSIR. New Delhi: National institute of Science communication; 2000.
22. Barfod A. Anacardiaceae. Flora of Ecuador 30: Harling G, Andersson L. Sweden: Arlöv; 1987.
23. Samanta JN, Mandal K. First report of hogplum (Spondias pinnata) leaf spot disease. Australas Plant Dis Notes. 2012; 7:33–4. https://doi.org/10.1007/s13314-011-0040-8
24. Almeida CCD, Carvalho PCDL, Guerra M. Karyotype differentiation among Spondias species and the putative hybrid Umbucaja (Anacardiaceae). Bot J Linn Soc. 2007; 155(4):541–7. https://doi.org/10.1111/j.1095-8339.2007.00721.x
25. Anita T, Anubha S. Effect of seed orientation on germination of wild mango Spondias pinnata. The Allahabad Farmer. 2017; 73(1):55–7.
26. Anonymous. The wealth of India. Vol. X. New Delhi: CSIR Publishers; 1976.
27. Muhammad A, Zaman K, Sheeba F. Pharmacognostical studies and evaluation of total phenolic contents of trunk bark of Spondias mangifera Wildl. Natural Product Radiance. 2009; 8(2):146–50.
28. Renupha P, Srunya V, Prasart K. Wood anatomy and properties of three species in the genus Spondias lakonensis (Anacardiaceae) found in Thailand. Agri culture and Natural Resources. 2016; 50(1):14–19. https://doi.org/10.1016/j.anres.2015.09.001
29. Pal DC, Jain SK. Tribal medicine. New Delhi. India: Naya Prakash; 2000.
30. Anisuzzaman M., Rahman AH, Rashid M, Naderuzzaman ATM, Islam AKM. An ethnobotanical study of Madhupur, Tangail. J Appl Sci Res. 2007; 3(7):519–30.
31. Annapoornima S, Pushpendra K, Alok K, Ravindra S, Manoj T. Pharmacognostical studies on leaves of S. pinnata Linn. Journal of Pharmacognosy and Phytochemistry. 2016; 5(6):93–7.
32. Vijetha PK, Karunakar H, Shabaraya AR. Pharmacological review on Spondias pinnata: The Indian hog plum. Int J Pharma Chem Res. 2018; 41(2):141–5.
33. Tandon S, Rastogi RP, Mehrotra BN. Compendium of Indian medicinal plants. Vol. II. Lucknow. UP: India: Central drug research institute; 1993.
34. Suman A, Gouri KD, Santosh KD. Pharmacognostic studies on the root of Spondias mangifera Wildl. Journal of Natural Remedies. 2011; 11(2):150–7.
35. Shabana K, Siddiqui HH, Talib H, Hina F. Botanical and phytochemical evaluation of fruits of Spondias pinnata. Der Pharmacia Lettre. 2015; 7(5):276–80.
36. Campbell CW, Sauls JW. Spondias in Florida. Fact Sheet HS-63, a series of the Horticultural Sciences Department. University of Florida: Florida Cooperative Extension Service. Institute of Food and Agricultural Sciences; 1994.
37. Gardner S, Sidisunthorn P, Anusarnsunthorn V. A field guide to Forest Trees of Northern Thailand. Thailand: Kobfai Publishing Project; 2000.
38. Longman O. Indian medicinal plant (Vol 1). Thailand: South Asia Publications Limited; 2005.
39. Tianlu M, Barfod A. Anacardiaceae. In Flora of China; Flora of China Editorial Committee; (Vol 1) Science Press: Beijing, China, St. Louis, MO, USA: Missouri Botanical Garden Press; 2008.
40. Sivaprasad M, Policegoudra RS, Aradhya SM. Biochemical changes associated with hardening of endocarp in Spondias mangifera Wildl., fruits during developmental stages. Scientia Horticulturae. 2010; 126(2):192–9. https://doi.org/10.1016/j.scienta.2010.07.008
41. Akther S, Shahriar SMS, Akter F, Morshed S, Islam MN. Study on chemical composition of fresh mymensingh and barishal hog-plum (Spondias mangifera) and developed leather and jelly and sensory evaluation. Journal of Environmental Science
and Natural Resources. 2012; 5(2):29–36. https://doi.org/10.3329/jesnr.v5i2.14598
42. Shankaran M, Jai Prakash, Singh NP, Suklabaidya A. Wild edible fruits of Tripura. Natural Product Radi ance. 2006; 5(4):302–05.
43. Andola HC, Purohit VK. Evaluation of nutritive and mineral value in ripe fruits of Spondias pinnata from two location of Western Himalaya, India. Medicinal Plants. 2010; 2(3):233–6. https://doi.org/10. 5958/j.0975-4261.2.3.037
44. Hafizur RBM, Nushrat Y, Ahmadul IM, Easdanii M. Development of sauce from locally available hog plum in Bangladesh. Fundamental and Applied Agriculture. 2017; 2(2):267–70.
45. Preeti J, Khondker RH, Tamanna RM, Hasan MR. Antioxidant and antibacterial activities of Spondias pinnata Kurz., leaves. European Journal of Medicinal Plants. 2014; 4(2):183–95. https://doi.org/10.9734/EJMP/2014/7048
46. Dey K, Ghosh A, Dey AN, Bhowmick N, Bauri FK. Evaluation of nutritive and mineral value in ripe fruits of Indian hog plum (Spondias pinnata Linn.) from four different location of northern parts of West Bengal. Vegetos. 2016; 29(4):11–16. https://doi.org/10.5958/2229-4473.2016.00094.X
47. Muhammad Arif, Md. Azizur R, Mohammed Imran, Mohammed Khalid, Mohammed Khushtar. An insight of Spondias mangifera Willd: An underutilized medicinal plant with immense nutraceutical and therapeutics potentials. Int J Res Pharm Sci. 2015; 6(2):100–9.
48. Sushma K, Shyamananda A, Guruaribam SD. Nutritional profiling of two underutilized wild edible fruits Elaeagnus pyriformis and Spondias pinnata. Annals of Agricultural Sciences. New Series. 2014; 35(2):129–35.
49. Changkija S. Folk medicinal plants of the Nagas in India. Asian Folklore Studies. 1999; 58(1):205–30. https://doi.org/10.2307/1178894
50. Borthakur SK. Native phytotherapy for child and women disease from Assam. Fitoterapia. 1992; 63:483–8.
51. Bhabajit D, Gajurel PR, Rethy P, Buragohain R. Uses of trees as medicine by the ethnic communities of Arunachal Pradesh, India. Res J Med Plant. 2014; 8(24):857–63. https://doi.org/10.5897/JMPR10.768
52. Grosvenor PW, Supriono A, Gray D. Medicinal plants from Riau Province, Sumatra, Indonesia. Part I: Uses. J Ethnopharmacol. 1995; 45(2):75–95. https://doi.org/10.1016/0378-8741(94)01209-I
53. Meléndez PA, Capriles VA. Antibacterial properties of tropical plants from Puerto Rico. Phyto medicine. 2006; 13(4):272–6. https://doi.org/10.1016/j.phymed.2004.11.009 PMid:16492531
54. Chopra RN, Nayar SL, Chopra IC. Glossary of Indian medicinal plants. New Delhi: Council of Scientific and Industrial Research; 1956.
55. Panda BK, Patro VJ, Mishra US, Panigrahi BK. Comparative study of anthelmintic activity between acetone and ethanolic stem bark extracts of Spondias pinnta (Linn.) Kurz. International Journal of Research in Ayurveda and Pharmacy. 2011; 2(4): 1383–5.
56. Mohammad A, Rahman MS, Kabir ANMH, Hussain MK. Antibacterial and cytotoxic activities of Spondias pinnta (Linn. f.) Kurz fruit extract. Indian Journal of Natural Products and Resources. 2011; 2(2):265–7.
57. Arif M, Fareed S. Pharmacognostic investigation and authentication of potentially utilized fruit Spondias mangifera (wild). Int J Curr Pharmaceut Clin Res. 2010; 2(1):31–5. https://doi.org/10.4314/ ijhr.v1i4.55367
58. Sonowal R. Indigenous knowledge on the utilization of medicinal plants by the Sonowal Kachari tribe of Dibrugarh district in Assam, North-East India. Int Res J Biol Sci. 2013; 2(4):44–50.
59. Arif M, Zaman K, Fareed S, Badruddeen, Hussain MS. Antibacterial, antidiarrhoeal and ulcer-protective activity of methanolic extract of Spondias mangifera bark. International Journal of Health Research. 2008; 1(4):177–82. https://doi.org/10.4314/ijhr.v1i4.55367
60. Wettwityaklung P, Charoenteeraboon J, Limmatvap irat C, Phaechamud T. Antioxidant Activities of Some Thai and Exotic Fruits Cultivated in Thailand. Res J Pharmaceut Biol Chem Sci. 2012; 3(1):12–21.
61. Valsaraj R. Pushpangadan P, Smith UF, Adersen A, Nyman U. Antimicrobial screening of selected medicinal plants from India. J Ethnopharmacol. 1997; 58(2):75–83. https://doi.org/10.1016/S0378-8741(97)00085-8
62. Acharyya S, Dash GK, Mondal S, Dash SK. Studies on hypoglycaemic activity of the different extracts of Spondias mangifera Willd., root. Asian J Pharmaceut Sci Tech. 2010; 2(3):184–90.
63. Salma S, Eman AS, Rola ML, Abdel NBS. Comparative metabolic profiling of essential oils from Spondias pinnta (Linn. F.) Kurz and characterization of their antibacterial activities. Ind Crop Prod. 2019; 137:468– 74. https://doi.org/10.1016/j.indcrop.2019.05.060
64. Mondal S, Dash GK. Hypoglycemic activity of the bark of Spondias pinnata Linn. Kurz. Pharmacognosy Magazine. 2009; 5(19):42–5.

65. Acharyya S, Dash GK, Mondal S, Dash SK. Studies on Hypoglycaemic activity of the different extracts of Spondias mangifera Willd., root. Asian J Pharmaceut Sci Tech. 2010; 2(3):184–90.

66. Diptimayee D, Prasanjit KD, Ratan L. To evaluate the hypoglycaemic effect of the fruit pulp extract of Spondias pinnata Linn. Kurz on experimental model of diabetes mellitus. Asian J Pharmaceut Clin Res. 2016; 9(1):113–16.

67. Ghate NB, Hazra B, Sarkar R, Mandal N. In vitro anticancer activity of Spondias pinnata bark on human lung and breast carcinoma. Cytotechnology. 2014; 66(2):209–18. https://doi.org/10.1007/s10616-013-9553-7. PMID:23686547 PMCID:PMC3918266

68. Chaudhuri D, Ghate NB, Singh SS, Mandal N. Methyl gallate isolated from Spondias pinnata exhibits anticancer activity against human glioblastoma by induction of apoptosis and sustained extracellular signal-regulated kinase ½ activation. Phcog Mag. 2015; 11(42):269–76. https://doi.org/10.4103/0973-1296.153078 PMID:25829764 PMCID:PMC4378123

69. Inoue M, Suzuki R, Koide T, Sakaguchi N, Ogihara Y, Yabu Y. Antioxidant, gallic acid, induces apoptosis in HL-60RG cells. Biochem Biophys Res Comm. 1994; 204(2):898–904. https://doi.org/10.1006/bbrc.1994.2544. PMID:7980558

70. Heekyung L, Hyojung L, Youngjoo K, Jun-Ho L, Jinju K, Min-Kyu S, Sung-Hoon K, Hyunsu B. Methyl gallate exhibits potent antitumor activities by inhibiting tumor infiltration of CD4+CD25+ regulatory T cells. Journal of Immunology. 2010; 185(11):6698–705. https://doi.org/10.4049/jimmunol.1001373. PMID:21048105

71. Das J, Mannan A, Md Mominur R, Md Abu MD, Erfan UM, Irfan NK, et al. Chloroform and ethanol extract of Spondias pinnata and its different pharmacological activity like antioxidant, cytotoxic, antibacterial potential and phytochemical screening through in-vitro method. International Journal of Research in Pharmaceutical and Biomedical Sciences. 2011; 2(4):1805–12.

72. Dipankar C, Nikhil BG, Sudhir SS. Mandal N. Methyl gallate isolated from Spondias pinnata exhibits anticancer activity against human glioblastoma by induction of apoptosis and sustained extracellular signal regulated kinase ½ activation. Phcog Mag. 2015; 11(42):269–76. https://doi.org/10.4103/0973-1296.153078. PMID:25829764 PMCID:PMC4378123

73. Mondal S, Dash GK. Ulcer protective activity of ethanol extract from Spondias pinnata leaf. Annual Conference of Indian Pharmacological Society, India. Gujarat: RK University; 2008.

74. Mondal S, Chhetree RR, Dash GK. Anti-diarrhoeal activity of S. pinnata fruits. Bio Med. 2009; 05(01):16–18.

75. Chetia B, Gogoi S. Antibacterial activity of the methanolic extract of stem barks of Spondias pinnata, Moringa oleifera and Alstonia scholaris. Asian Journal of Traditional Medicines. 2011; 6(4):163–7.

76. Gupta VK, Roy A, Nigam VK, Mukherjee K: Antimicrobial activity of Spondias pinnata resin. Journal of Medicinal Plants Research. 2010; 4(16):1656–61.

77. Foysal MJ, Rahman MM and Alam M. Antibiotic sensitivity and in vitro antimicrobial activity of plant extracts to pseudomonas fluorescens isolates collected from diseased fish. International Journal of Natural Sciences. 2011; 1(4):82–8. https://doi.org/10.3329/ijns.v1i4.9733

78. Bauer AW, Kirbey WMM, Sherries JC, Truck M. Antibiotic susceptibility testing by standardized single disc method. Am J Clin Pathol. 1996; 45(4):493–6. https://doi.org/10.1093/ajcp/45.4_ts.493. PM id:5325707

79. Barry AL. Procedures for testing antimicrobial agents in agar media. Antibiotics in laboratory medicine; (V. Lorian Ed.). Baltimore. USA: Williams and Wilkins Company; 1980.

80. Joysree D, Adnan M, Md Mominur R, Md Abu MD, Muhammad EU, Irfan NK, Md Razibul H, Nahid H. Chloroform and ethanol extract of Spondias pinnata and its different pharmacological activity like antioxidant, cytotoxic, antibacterial potential and phytochemical screening through in-vitro method. International Journal of Research in Pharmaceutical and Biomedical Sciences. 2011; 2(4):1805–12.

81. Rao BG, Raju NJ. Investigation of hepatoprotective activity of Spondias pinnata. International Journal of Pharma Sciences and Research. 2010; 1(3):193–8.

82. Hazra B, Sarkar R, Mandal N. Spondias pinnata stem bark extract lessens iron overloaded liver toxicity due to hemosiderosis in Swiss albino mice. Ann Hepatol. 2013; 12(1):123–9. https://doi.org/10.1016/S1665-2681(19)31394-8

83. Chaudhuri D, Ghate NB, Panja S, Mandal N. Role of phenolics from Spondias pinnata bark in amelioration of iron overload induced hepatic damage in Swiss
albino mice. BMC Pharmacol Toxicol. 2016; 17(1): 1–14. https://doi.org/10.1186/s40360-016-0077-6. PMID:27459849 PMCID:PMC4962386

84. Seyed FN, Seyed Mohammad N, Solomon H, Akbar HM, Antoni S, Mahtab J, Ali Mohammad L. Hematoprotective effect of gallic acid isolated from Peltophyllum ellatum against sodium fluoride-induced oxidative stress. Ind Crop Prod. 2013; 44:50–5. https://doi.org/10.1016/j.indcrop.2012.10.024

85. Manik MK, Islam SMA, Wahid MA, Morshed MM, Kamal S, Islam MS, Ahmed KT. Investigation of in-vitro antioxidant, antimicrobial and thrombolytic activity of the exocarp of Spondias pinnata (Anacardiaceae). Can Chem Trans. 2013; 11(3):191–201. https://doi.org/10.13179/canchemtrans.2013.01.03.0029

86. Sonia K, Rumana A, Nazma AT, Md. Abdul W, Syeda NN, Mohammad S, et al. Biological investigation of the leaf extract of Spondias pinnata. Int J Pharmaceut Sci Res. 2015; 6(8):3351–8.

87. Uddin J, Islam MN, Ali MH, Khan SA, Labu ZK. Correlation of thrombolytic and membrane stabilizing activities with total flavonoid content aerial parts of Spondias pinnata. Bangladesh Pharm. J. 2016; 19(1):48–52. https://doi.org/10.3329/bpj.v19i1.29238

88. Jalal U, Md Nurul I, Md Haider A, Shah AK, Zubair KL. Correlation of thrombolytic and membrane stabilizing activities with total flavonoids content aerial parts of Spondias pinnata. Bangladesh Pharmaceutical Journal. 2016; 19(1):48–52. https://doi.org/10.3329/bpj.v19i1.29238

89. Ghate NB, Chaudhuri D, Panja S, Singh SS, Gupta G, Lee CY, et al. In-vitro mechanistic evaluation of the anti-inflammatory activity of a quinoline isolated from Spondias pinnata bark. J Nat Prod. 2018; 81(9):1956–61. https://doi.org/10.1021/acs.jnatprod.8b00036

90. Ren L, Jing JY, Xing ZS, Yuan FW, Richard TC, You KX, et al. Chemical composition and the cytotoxic, antimicrobial and anti-inflammatory activities of the fruit peel essential oil from Spondias pinnata (Anacardiaceae) in Xishuangbanna. South west China. Molecules. 2020; 25(343):1–13. https://doi.org/10.3390/molecules25020343 PMid:31952118 PMCID:PMC7024216

91. Bibhabasu H, Santau B, Nripendranath M. Antioxidant and free radical scavenging activity of Spondias pinnata. BMC Compl Alternative Med. 2008; 8(1):63–75. https://doi.org/10.1186/1472-6882-8-63. PMid:19068130 PMCID:PMC2636748

92. Panda BK, Patra VJ, Mishra US, Kar S, Panda BR, Hati MR. Analgesic activities of the stem bark extract of Spondias pinnata (Linn. f) Kurz. J Pharm Res. 2009; 2(5):825–7.

93. Jannatun N, Jasmin AN, Irin BA, Md Saddam H, Latifa B. Evaluation of analgesic activity of methanol extract from the Spondias pinnata. World J Pharm Pharmaceut Sci. 2016; 4(12):260–5.

94. Panda BK, Patro VJ, Mishra US. Comparative study of anti-pyretic activity between acetone and ethanol stem bark extracts of Spondias pinnata (Linn.F) Kurz. Chemical and Biological Sciences. 2014; 1(1):26–32.

95. Das S, De B. Evaluation of Angiotensin I-Converting Enzyme (ACE) inhibitory potential of some underutilized indigenous fruits of West Bengal using an in-vitro model. Fruits. 2013; 68(6):499–506. https://doi.org/10.1051/fruits/20130902

96. Kumar R, Elumalai A, Eswariah MC. An updated review on anthelmintic plants. Journal of Pharma ceutical and Scientific information. 2012; 1(1):32–4.

97. Mondal S, Dash GK, Chhetree RR. Anthelmintic activity of Spondias pinnata (Linn. F) Kurz. Research Journal of Pharmacognosy and Phytochemistry. 2010; 2(2):129–30.

98. Mondal S, Dash GK, Acharyya S, Braham DK, Bal S. Studies on diuretic and laxative activity of bark extracts of Spondias pinnata (Linn. f) Kurz. Phcog Mag. 2009; 5(19):28–31.

99. Gupta R, Thakur B, Singh P, Singh HB, Sharma VD, Katoch VM, Chauhan SVS. Anti-tuberculosis Activity of selected medicinal plants against multi-drug resistant Mycobacterium Tuberculosis isolates. International Journal Medicine Research. 2010; 131(6):809–13.

100. Putra DIBN, Mita A, Ni Putu A. Anti-tuberculosis activity of forest Kedondong (Spondias pinnata) stem bark extract against Multiple Drug Resistance (MDR) strain of Mycobacterium tuberculosis. Bali Medical Journal. 2016; 5(1):23–6. https://doi.org/10.15562/bmj.v5i1.190

101. Nikhil BG, Bibhabasu H, Rhitajit S, Nripendranath M. In-vitro anticancer activity of Spondias pinnata bark on human lung and breast carcinoma. Cyto technology. 2014; 66(2): 209–18. https://doi.org/10.1007/s10616-013-9553-7 PMid:23686547 PMCID:PM C3918266

102. Suman A, Gauri KD, Sumanta M, Santosh KD. Antioxidative and antimicrobial study of Spondias
mangifera Willd root. Int J Pharm Pharmaceut Sci. 2010; 2(4):68–71.

103. Chen Y, Lawless C, Gillespie CS, Wu J, Boys RJ, Wilkinson DJ. CaliBayes and BASIS: integrated tools for the calibration, simulation and storage of biological simulation models. Briefings in Bioinformatics. 2010; 11(3):278–89. https://doi.org/10.1093/bib/bbp072 PMid:20056731

104. Supawadee P, Jureerut D, Amonrat K, Chia YL. Tyrosinase inhibitory effect, antioxidant and Anti cancer activities of bioactive compounds in ripe hog plum (Spondias pinnata) fruit extracts. Orient J Chem. 2019; 35(3):916–26. https://doi.org/10.13005/ojc/350302

105. Raju NJ, Pawar VS, Vishala TC. Anti-hyperlipidemic activity of Spondias pinnata fruit extracts. International Journal of Pharmaceutical Science and Drug Research. 2017; 9(4):178–81. https://doi.org/10.25004/IJPSDR.2017.090404

106. Kishore H, Kaur B, Kalsi V, Surtee A. Effect of ethanolic extract of Spondias pinnata on ischemia reperfusion injury and ischemic preconditioning of heart. International Journal of Pharmacognosy and Phytochemical Research. 2016; 8(5):865–70.

107. Jannatun N, Jasmin AN, Rafat J, Md Saddam H, Safiqul I, Latifa B. Screening anxiolytic activities of methanolic fruit extracts of Spondias pinnata plant. Int Res J Pharm. 2016; 7(11):15–18. https://doi.org/10.7897/2230-8407.0711121

108. Beena S, Gayathri R, Abhineetha, Niha B, Preethika, Sudarshan R. Study of protective action of Spondias pinnata bark extract on rat liver and kidney against etoposide induced chemical stress. Phcog J. 2016; 8(1):24–7. https://doi.org/10.5530/pj.2016.1.5

109. Sudarshan RC, Beena VS, Gayathri MR. Oral ingestion of Spondias pinnata bark extract trim down severity of small intestinal mucositis in etoposide treated rats. Journal of Cancer Science & Therapy. 2015; 7(2):30–3. https://doi.org/10.4172/1948-5956.1000321

110. Sivaprasad M, Policegoudra RS, Swaroop Kumar HM, Aradhya SM. Platelet aggregation inhibitory activity and radical scavenging activity of Spondias mangifera Willd. South Asian Journal of Experimental Biology. 2011; 1(1):1–6.

111. Mohammad KM, Islam Shawkat MA, Wahid Md A, Mohammed MM, Kamal S, Islam Md, Ahmed KhT. Investigation of in-vitro antioxidant, antimicrobial and thrombolytic activity of the exocarp of Spondias pinnata (Anacardiaceae). Can Chem Trans. 2013; 1(3):191–201. https://doi.org/10.13179/canchemtrans.2013.01.03.0029

112. Attanayake AP, Jayatilaka KA, Pathirana C, Mudduwa LK. Toxicological investigation of Spondias pinnata (Linn. F.) Kurz. (Family: Anacardiaceae) bark extract in Wistar rats. Int J Green Pharm. 2015; 9(1):26–31. https://doi.org/10.4103/0973-8258.150918

113. Kumar PK, Sastry VG. Toxicity studies of ethanolic extract of Spondias pinnata Kurz., in experimental animals. Int J Med Chem Anal. 2013; 1(1):17–22.