Steps toward community health promotion: Application of transtheoretical model to predict stage transition regarding smoking

Maryam Emadzadeh, Veda Vakili

Abstract:

BACKGROUND: Recently, the Iranian Ministry of Health estimated about 750,000 deaths are attributed smoking complications. The aim of this study was to apply the transtheoretical model (TTM) on general population of Mashhad city to evaluate the stages of change and possible cultural factors regarding smoking cessation.

METHODS: This descriptive, cross-sectional population-based study was conducted in Mashhad, Iran. A total number of 562 participants selected by multistage sampling. They were asked about stages of change for smoking cessation for both hookah and cigarette smoking. Stages of change refer to an orderly sequence of changes in smoking behavior that people progress through according to the TTM. Its six stages are as follows: precontemplation (PC) (no intention to quit smoking within 6 months), contemplation (planning to quit smoking in the following 6 months), preparation (planning to stop smoking within 1 month), action (quit smoking for <6 months), maintenance (stopped smoking for 6 months or more), and termination (will never smoke again). Data were analyzed using tests such as Chi-square, Kruskal–Wallis, and logistic regression by SPSS 11.5.

RESULTS: About 18% and 19% of people in this study were regular hookah and cigarette smokers, respectively. There was significant difference between cigarette smoking and sex ($P < 0.001$) and marital status ($P = 0.01$). There was a statistically significant difference between stages of change in men and women from the point of cigarette smoking ($P < 0.001$). Male sex, hookah smoking, and alcohol abuse were predictors of PC, and age was the only predictor of termination stage for cigarette smoking. Sex did not have any role in hookah smoking.

CONCLUSION: Targeted education based on gender and marital status warrant attention. Community-wide education and interventions such as increasing the price of cigarettes are desired.

Keywords:
Health promotion, Iran, smoking, tobacco, transtheoretical model

Introduction

Smoking is a negative health behavior with large influences economically.\(^1\) It also increases the risk of physical impairment.\(^2\) Cigarette smoking is the largest preventable cause of death in the world.

The WHO reported that death due to tobacco were five million people in the year 2008 and would be about eight million a year by 2030.\(^3,4\) Nowadays, almost one-third of the world population are smokers.\(^3\) Around 35% of males and 22% of females in developed countries and about 50% of males and 9% of females in developing countries smoke.\(^5\) Although it is reported that the prevalence of smoking is reduced in developed countries, this issue is now more highlighted in some developing countries. In Iran, the prevalence of smoking has

How to cite this article: Emadzadeh M, Vakili V. Steps toward community health promotion: Application of transtheoretical model to predict stage transition regarding smoking. J Edu Health Promot 2020;9:177.
The transtheoretical model (TTM) was first introduced by Prochaska and DiClemente.[10] This is a model of intentional change with special attention to the decision-making capacities of the people rather than the social effects on behavior. This model covers different behaviors in the various populations. The behavioral change includes six stages (precontemplation [PC], contemplation, preparation, action, maintenance, and termination). People need stage-targeted programs to progress through the stages successfully.[10-13] The TTM enables the use of suitable interventions for each stage.[14] Behaviors that have been studied using this model include quitting smoking and cocaine, weight control, safer sex and condom use, sunscreen use, exercise acquisition, and mammography screening.[13] The model was found to be effective in research studies of smoking cessation.[11] The TTM has been widely accepted by both clinicians and scientists working in the field of public health.[14] Although this model is practical for any health behavior, it has been used most in the field of smoking cessation.[15]

The main goal of the current study was to assess the usage of the TTM to evaluate the stages of change and possible culturally important factors regarding smoking cessation.

Methods

This was a descriptive, cross-sectional population-based study conducted in Mashhad, Iran. Mashhad, with the population of more than three million, is located in the north east of Iran. This city is the capital of Razavi Khorasan Province and is also one of the largest religious cities in the world and the second largest metropolis in Iran.[16-18]

In this survey, a total number of 562 participants were enrolled. Multistage sampling was allied. At first step according to municipal maps, public centers randomly selected from all over the city. Public transport stations, public parking lots, shopping centers, banks, and universities all around the city were assigned for collecting data. In each sampling unit, the researchers tried not to miss any city district and cover all districts and crowded parts of the city. The survey was conducted using a checklist including sociodemographic characteristics, factors related to smoking behavior, and stages of change.[19] Stages of change refer to an orderly sequence of changes in smoking behavior that people pass through based on the TTM. Due to this model, individuals in PC stage have no intention to quit smoking within 6 months. A contemplator is a person who smokes, but is planning to quit in the following 6 months. Someone in preparation stage is planning to stop smoking within 1 month and has done some initial practices toward it. A person is in action when he/she has quit smoking for <6 months. Those in maintenance phase have stopped smoking for 6 months or more, and finally, individuals in termination stage will never smoke again.[19,20]

The Ethics Committee of Mashhad University of Medical Sciences approved the study (IR.MUMS. fm.REC.1395.443). The interviewers described the research goals to participants. Participants were assured about the privacy of their individual information, and once they consented, then they completed the checklist.

We used SPSS 11.5 software (SPSS Inc., Chicago, Illinois, USA) for all statistical analyses. Descriptive statistics were used to describe the pattern of the data. Chi-square test was applied to test the statistical significance of the association between categorical data. The Kruskal–Wallis test was used in nonnormal distributions. Logistic regressions were used to predict factors influence on PC and termination stages. All tests were two-tailed, and $P < 0.05$ was considered statistically significant.

Results

A total of 562 persons enrolled in this survey. The youngest participant was 11 and the oldest was 84 years old. About 50% of participants were under 28. Table 1 shows participants’ characteristics in detail for men and women separately. About 45% of participants were single, 44% of men and 66% of women were married. We divided job status into four groups: self-employed, employee, jobless, and students. About 61% of participants had academic degree or studied at university, whereas only 0.5% of participants were illiterate.

It is shown that 10.5% of participants consumed alcohol. The frequencies of smoking hookah and cigarette were 18% and 19%, respectively.

The median age of smokers and nonsmokers was 31 and 28, respectively ($P = 0.018$). All cigarette smokers smoked hookah too. There was a significant difference in cigarette smoking by gender ($P < 0.001$). About 86.9% of smokers were male. 56% of cigarette smokers were single and about one-fourth were students (24.5%). Significant difference was found in cigarette smoking by marital status ($P = 0.01$), but Chi-square test did not indicate any significant difference in smoking by educational level ($P = 0.4$).
From the perspective of cigarette smoking TTM, we found that 53 (19.1%) of participants were in PC stage, 22 (7.9%) were in contemplation, 20 (7.2%) were in preparation, 4 (1.4%) were in action, 11 (4%) were in maintenance, and 168 (60.4%) were in termination stage of change. Stages of change for hookah smoking were also examined; 62 (22.3%) of participants were in PC stage, 12 (4.3%) were in contemplation, 17 (6.1%) were in preparation, 11 (4%) were in action, 14 (5%) were in maintenance, and 162 (53.8%) were in termination stage.

Table 1: Demographic characteristics of participants by gender

Variable	Men (n=316), n (%)	Women (n=246), n (%)	P
Age (median) years			
	26	30	0.04*
Marital status			
Single	175 (55.4)	80 (32.5)	<0.001b
Married	140 (44.3)	162 (65.8)	
Occupation			
Self employed	90 (72.6)	34 (27.4)	<0.001b
Employee	59 (55.7)	47 (44.3)	
Jobless/housekeeper	34 (25)	102 (75)	
Student	100 (72.5)	38 (27.5)	
Education			
Nonacademic	126 (59.4)	86 (40.6)	0.19p
Academic	183 (53.8)	157 (46.2)	
Medical history			
Diabetes	12 (60)	8 (40)	0.73p
CVD	18 (66.7)	9 (33.3)	0.26p
Hepatobiliary system	8 (66.7)	4 (33.3)	0.46p
Respiratory	10 (66.7)	5 (33.3)	0.41p
Cancer	1 (20)	4 (80)	0.10p
BMI (median) (mg/m²)	23.87	23.51	0.72a
Cigarette smoking	93 (29.4)	14 (5.7)	<0.001b
Hookah smoking	70 (22.1)	31 (12.6)	0.004p
Alcohol	43 (13.6)	16 (6.5)	0.007p
Addiction	7 (2.2)	3 (1.2)	0.38b

*Mann-Whitney test, bChi-square test. BMI=Body mass index, CVD=Cardiovascular disease

Demographic characteristics are listed in Tables 3 and 4 by different stages of TTM in both cigarette and hookah smoking. Median age and marital status were significantly different between stages of change in cigarette smoking TTM. As shown in Tables 3 and 4, the median age in precontemplation and contemplation in cigarette smokers is higher than other stages.

To indicate predicted factors of PC and termination stages of both cigarette and hookah smoking, we applied logistic regression analysis. The negative state of variables considered as reference. As shown in Table 5, male gender, hookah smoking, and alcohol abuse were predictors of PC ($R^2=0.172$), and only male gender was predictor of termination stage ($R^2=0.034$) for cigarette smoking. Gender did not have any role in hookah smoking, whereas alcohol abuse, addiction, and cigarette smoking were predictors of hookah smoking for both PC and termination stages [Table 5].

Discussion

Smoking is a well-known risk factor for many noncommunicable diseases and a great health threat with increasing prevalence in developing countries. It is responsible for many premature deaths worldwide and has increased in recent years.[21-23]

To the best of our knowledge, the current study is the first conducted in Iran using TTM to describe both hookah and cigarette smoking patterns.

Near one-fifth of participants in this study reported smoking cigarettes. Reported prevalence of cigarette smoking is really wide across the world. Al-Zalabani and Kasim reported that smoking prevalence was about 16% in Medina, Saudi Arabia, whereas it was reported to be about 19% in Brazil.[21,24] The highest prevalence of smoking in the general population of North Africa was noted in Tunisia (about 25%).[25]
A recent meta-analysis conducted in Nigeria reported that the pooled prevalence of smoking is 10.4% and 17.7% for the current and ever smokers, respectively. This study indicated considerable variation across geographical areas, from 5.4% in North-west to 32.1% in North-East. The range across Iran is also quite wide. A meta-analysis conducted by Moosazadeh in 2013 found that smoking prevalence was estimated to be 22.9 (20.6–25.2) in men and 0.6 (0.3–0.9) in women. He also reported that more than one-fifth of men from 15 to 64-years-old from west of Iran smoked cigarettes. Our result was higher than many studies previously conducted in Iran, for example, smoking prevalence in Shiraz and Shahrood were 9.7% and 11.3%, respectively. Likewise, Boskabady et al. found a 12.7% smoking prevalence in Mashhad in 2010.

In this study, the prevalence of hookah and cigarette smoking was approximately equal (18% vs. 19%). These rates were higher than the first study of prevalence in Mashhad which reported that hookah and cigarette smoking prevalence was about 8.6% and 12.7%, respectively. Not only did the rate of hookah smoking double in the past 4 years in Mashhad, but also it was higher than that found in other studies in other parts of Iran. According to Iran’s sixth national surveillance of risk factors of noncommunicable diseases (SuRFNCD-2011) on 10,572 individuals, the prevalence of hookah smoking was 3.4%. It also has higher rates than in developed countries such as the United States and Britain. These differences may be because of differences in study population, for example, Mohammadpoor and Rahman studies only included students. Our result is, however, much lower than Combrink et al.’s study in Johannesburg found the rate of hookah smoking was 60%. Hoseainrezae et al. also found the prevalence of 21.2% but they only included doctors and nurses. In another study conducted by Maziak et al., it is shown that Iran ranked the third among middle eastern countries in point of the prevalence of

Table 2: Stages of change for cigarette and hookah smoking by gender

Variable	Men, n (%)	Women, n (%)	P
Cigarette smoking			
PC	45 (84.9)	8 (15.1)	<0.001a
C	19 (86.4)	3 (13.6)	
P	18 (90)	2 (10)	
Smokers	82	13	
A	4 (100)	0 (0)	
M	10 (90.9)	1 (9.1)	
T	95 (56.9)	72 (43.1)	
Quitters	109	73	
Hookah smoking			
PC	41 (66.1)	21 (33.9)	0.27b
C	9 (75)	3 (25)	
P	13 (76.5)	4 (23.5)	
Smokers	63	28	
A	10 (90.9)	1 (9.1)	
M	9 (64.3)	5 (35.7)	
T	97 (60.2)	64 (39.8)	
Quitters	116	70	

Variable	PC	C	P	A	M	T	P
Age (median)	28	23.5	24	28	26	27	0.77a
Marital status							
Single	34 (22.2)	8 (5.2)	10 (6.5)	7 (4.6)	8 (5.2)	86 (56.2)	0.92a
Married	28 (22.4)	4 (3.2)	7 (5.6)	4 (3.2)	6 (4.8)	76 (60.8)	
Education, n (%)							
Nonacademic	28 (28.6)	7 (7.1)	3 (3.1)	3 (3.1)	3 (3.1)	54 (55.1)	0.11b
Academic	34 (19.2)	5 (2.8)	13 (7.3)	8 (4.5)	11 (6.2)	106 (59.9)	
Sleep duration (median) (h/day)	8	8.5	7	7	7	8	0.23a
BMI (median) (mg/m^2)	24.15	24.05	25.52	24.8	24.87	23.45	0.61a

Table 4: Demographic characteristics by cigarette smoking stage

Variable	PC	C	P	A	M	T	P
Age (median)	32	42	23.5	22	30	27	<0.001a
Marital status							
Single	30 (20.3)	9 (6.1)	17 (11.5)	4 (2.7)	4 (2.7)	84 (56.8)	0.01b
Married	23 (17.7)	13 (10)	3 (2.3)	0 (0)	7 (5.4)	84 (64.6)	
Education, n (%)							
Nonacademic	21 (20.8)	12 (11.9)	9 (8.9)	1 (1)	3 (3)	55 (54.5)	0.36b
Academic	31 (17.8)	10 (5.7)	11 (6.3)	3 (1.7)	8 (4.6)	111 (63.8)	
Sleep duration (median) (h/day)	7	7	7	9	7	8	0.83a
BMI (median) (mg/m^2)	24.09	24.62	23.83	20.17	26.23	23.66	0.06a

*Chi-square test. PC=Precontemplation, C=Contemplation, P=Preparation, A=Action, M=Maintenance, T=Termination, BMI=Body mass index
waterpipe smoking (more than 25%), but this result only included data of 13–15 years old.[39]

We found that both hookah and cigarette smoking were more common among men than women especially cigarette smoking. This finding is consistent with other studies reporting that men smoke cigarettes at higher rates than women.[24,40-42] Cigarette smoking prevalence was six times higher in men compared to women whereas hookah smoking was about two times higher. This difference between genders in hookah smoking (compared with cigarette smoking) could be due to both the cultural acceptance of hookah in families and the hookah’s lower stigma. In our study, the frequency of men in each stage of TTM for cigarette smoking was statistically significantly higher than women, whereas we did not find this pattern in hookah smoking. This point can also be explained by previous reason.

There was no significant relationship between educational level and smoking. This result replicated what Kaleta found in his study, but in many studies, we can see inverse relationship between educational attainment and smoking.[43-46] In the systematic review by Lu et al., the pooled prevalence of current smoking among 68253 medical students was 10.93% which was lower than what found in Chinese undergraduates (22.8%). This study also showed that the rate of the current smoking in male medical students (24.09%) was higher than the estimated rates in Chinese adolescent males. It showed that the relation between education and smoking status was more complicated than what is though.[47-49] Educational programs focusing on smoking harm reduction for all educational levels would be of interest.

Just as observed earlier, in this study male gender was one of the predictors of cigarette smoking. Agrawal et al. found that gender was the strongest predictor for smoking. Other predictors in this study were area of residence, education and age. In another study conducted in India, poverty and poor education were strong risk factors for smoking.[46,50] In the study conducted by Coban et al. in the European Union, smoking onset in the younger age and lower academic achievement were related with nicotine dependence.[51] The same risk factors for both hookah and cigarette smoking reported.[52] Etter in the United States showed that higher prevalence of cigarette smoking was associated with lower intention to quit smoking.[53] Linde’s study on the U. S. Air Force military recruits showed that hookah use was associated with cigarette smoking and ethnicity; and age and married status had inverse associations with hookah use.[54]

Our results indicated that about one-fourth of the current cigarette and hookah smokers have low or no intention to quit smoking (PC stage). While more than half of the smokers quit successfully (termination stage). This could relate to the current advertising bans and increasing the price of tobacco products after Iran’s economic crash in 2012 results of Global sanctions. Previous studies showed price increase was the strongest predictor of smoking cessation as well.[55] Furthermore, the role of quit smoking campaigns and complete smoke-free home policy are indicated in some studies.[56,57] The Global

Variable	B	SE	Wald	df	P	Exp(B)
Cigarette smoking						
Precontemplation						
Male	1.488	0.542	7.541	1	0.006	4.427
Hookah	-0.885	0.402	4.856	1	0.028	0.413
Alcohol	-1.95	0.428	20.783	1	<0.001	0.142
Constant	-0.531	0.585	0.825	1	0.364	0.588
Termination						
Male	-0.995	0.444	5.023	1	0.025	0.413
Constant	1.139	0.406	7.869	1	0.005	3.125
Hookah smoking						
Precontemplation						
Male	1.924	0.323	31.924	1	<0.001	7.215
Hookah	-1.153	0.376	9.395	1	0.002	0.316
Alcohol	-1.241	0.432	8.242	1	0.004	0.289
Constant	1.759	0.939	3.509	1	0.061	5.805
Termination						
Male	1.318	0.469	7.885	1	0.005	3.737
Hookah	-21.348	15324.637<0.001	1	<0.001	0.999<0.001	
Alcohol	-1.348	0.356	14.382	1	<0.001	3.851
Constant	-1.642	0.452	13.230	1	<0.001	0.194

\textsuperscript{aR^2=0.172, bR^2=0.034, cR^2=0.13, dR^2=0.188. SE=Standard error, PC=Precontemplation
Conclusion

Due to the high affinity of smoking and also not wanting to quit it, policymakers should focus on preventing smoking and its predictors. Targeted education based on gender and marital status warrant attention. Community-wide education and interventions such as increasing the price of cigarettes are desired.

Acknowledgment

The cooperation of Clinical Research Development Unit of Ghaem Hospital is highly appreciated.

Financial support and sponsorship

This study was funded by Mashhad University of Medical Sciences (code: 941246).

Conflicts of interest

There are no conflicts of interest.

References

1. Macnee CL, McCabe S. The transtheoretical model of behavior change and smokers in Southern Appalachia. Nurs Res 2004;53:243-50.
2. Amiri S, Behnezhad S. Smoking as a risk factor for physical impairment: A systematic review and meta-analysis of 18 cohort studies. J Addict Dis 2019;38:1-4.
3. Maysamie A, Ghaletaki R, Zhand N, Abbasi M. Cigarette smoking in Iran. Iran J Public Health 2012;41:1-4.
4. World Health Organization. WHO Report on the Global Tobacco Epidemic: The MPOWER Package. Geneva: World Health Organization; 2008.
5. Slama K. Current challenges in tobacco control. Int J Tuberc Lung Dis 2004;8:1160-72.
6. Mackay J, Eriksen M. The Tobacco Atlas. Geneva: World Health Organization; 2002.
7. Roohafza H, Sadeghi M, Shahnam M, Shokouh F, Teimori S, Amirpour A, et al. Social norms of cigarette and hookah smokers in Iranian universities. ARYA Atheroscler 2013;9:45-50.
8. Akbari ME, Naghavi M, Soori H. Epidemiology of deaths from injuries in the Islamic Republic of Iran. East Mediterr Health J 2006;12:382-90.
9. Charkazi A, Shahnazi H, Ghourchaei AB, Mirkarimi K. Smoking behaviors in Iranian male students: An application of transtheoretical model. J Educ Health Promot 2012;1:22.
10. Prochaska JO, DiClemente CC. Transtheoretical therapy: Toward a more integrative model of change. Psychother: Theory, Res Pract 1982;19:276.
11. Panteawpn P, Kengganpanich M, Tanasugarn C, Tansakul S, Termsirikulchai L, Nityasuddhi D. Three intervention levels for improving smoking behavior among royal Thai army conscripts. Southeast Asian J Trop Med Public Health 2012;43:1018-24.
12. Roberts B, Gilmore A, Stickley A, Rotman D, Prohoda V, Haerpfel C, et al. Changes in smoking prevalence in 8 countries of the former Soviet Union between 2001 and 2010. Am J Public Health 2012;102:1320-8.
13. Velicer WF, Prochaska JO, Fava JL, Rossi JS, Redding CA, Laforge RG, et al. Using the transtheoretical model for population-based approaches to health promotion and disease prevention. Homeost Health Dis 2012;40:174-95.
14. Plummer BA, Velicer WF, Redding CA, Prochaska JO, Rossi JS, Pallonen UE, et al. Stage of change, decisional balance, and temptations for smoking: Measurement and validation in a large, school-based population of adolescents. Addict Behav 2001;26:551-71.
15. Andersen S, Keller C. Examination of the transtheoretical model in current smokers. West J Nurs Res 2002;24:282-94.
16. Razavi Khorasan (Iran): Counties & Cities – Population Statistics in Maps and Charts. City Population De. Available from: http://www.citypopulation.de/php/iran-khorasannerazavi.php?cityid=091605. [Last accessed on 2020 Mar 24].
17. Hosseinzadeh S, Jahadi TM. The effects of expansion of Mashhad Metropolis on the natural drainage patterns and increase of urban floods. GEOGRAPHICAL RESEARCH QUARTERLY 2007;39:145-159.
18. Mousavi Bazzaz M, Zarifian A, Emadzadeh M, Vakili V. Driving behaviors in Iran: A descriptive study among drivers of Mashhad City in 2014. Glob J Health Sci 2015;7:39-45.
19. Marcus BH, Selby VC, Niaura RS, Rossi JS. Self-efficacy and the stages of exercise behavior change. Res Q Exerc Sport 1992;63:60-6.
20. Robert B. Wallace NK, John M. Last Public Health and Preventive Medicine. 15th ed. United States of America: Mc Graw Hill; 2008.
21. Al-Zalabani A, Kasim K. Prevalence and predictors of adolescents inverted question mark cigarette smoking in Madinah, Saudi Arabia: A school-based cross-sectional study. BMC Public Health 2015;21:15-7.
22. Baheiraei A, Hamzehgardeshi Z, Mohammad M, Nadjati S, Mohammad E. Personal and family factors affecting life time cigarette smoking among adolescents in Tehran (Rahman, #19): A community based study. Oman Med J 2013;28:184-90.
23. Ebrahim H, Sahebighagh MH, Ghofranipour F, Sadegh Tabrizi J. Initiation and continuation of smoking in Iran: A qualitative content analysis. Int J Community Based Nurs Midwifery 2014;2:220-30.
24. Barreto RB, Pinelli MP, Steinwandter R, Silva AP, Manes J, Steidle LJ. Smoking among patients hospitalized at a university hospital in the South of Brazil: Prevalence, degree of nicotine dependence, and motivational stage of change. J Bras Pneumol 2012;38:72-80.
25. Serhier Z, Bendahhou K, Soulimane A, Bennani Othmani M, Ben Abdelaziz A. Prevalence of smoking in the Maghreb:
A systematic review and meta-analysis. Tunis Med 2018;96:545-56.
26. Adeloye D, Auta A, Fawibe A, Gadanya M, Ezeigwe N, Mpazanje RC, et al. Current prevalence pattern of tobacco smoking in Nigeria: A systematic review and meta-analysis. BMC Public Health 2019;19:1719.
27. Moosazadeh M. Meta-analysis of prevalence of smoking in 15-64-year-old population of west of Iran. Int J Prev Med 2013;4:1108-14.
28. Abdollahifard G, Vakili V, Danaei M, Askarian M, Romito L, Palenik CJ. Are the predictors of hookah smoking different from those of cigarette smoking? Report of a population-based study in Shiraz, Iran, 2010. Int J Prev Med 2013;4:459-66.
29. Boskabady MH, Mahmoudinia M, Eslamizade MJ, Boskabady M, Shakeri MT, Heydari GR. The prevalence of smoking among the population in the city of Mashhad (north east of Iran) and pulmonary function tests among smokers. Pneumonol Alergol Pol 2011;79:21-5.
30. Hamra HS, Harun-Or-Rashid M, Hiroswa T, Sakamoto J, Hashemi H, Emanian MH, et al. Smoking and associated factors among the population aged 40-64 in Shahroud, Iran. Asian Pac J Cancer Prev 2013;14:1919-23.
31. Boskabady MH, Farhang L, Mahmoodinia M, Boskabady M, Heydari GR. Prevalence of water pipe smoking in the city of Mashhad (North East of Iran) and its effect on respiratory symptoms and pulmonary function tests. Lung India 2014;31:237-43.
32. Ghelichkhani P, Yaseri M, Yousefifard M, Baikpour M, Asady H, Orai A, et al. The gap of cigarette and hookah smoking between socioeconomic groups in Iran: Effect of inequalities on socioeconomic position. Arch Iran Med 2018;21:418-24.
33. Goodwin RD, Grinberg A, Shapiro J, Keith D, McNeil MP, Taha F, et al. Hookah use among college students: Prevalence, drug use, and mental health. Drug Alcohol Depend 2014;134:16-20.
34. Grant A, Morrison R, Dockrell MJ. Prevalence of waterpipe (Shisha, Narghille, Hookah) use among adults in great Britain and factors associated with waterpipe use: Data from cross-sectional online surveys in 2012 and 2013. Nicotine Tob Res 2014;16:931-8.
35. Mohammadpoorasl A, Abbasi-Ghahramanloo A, Allahverdipour H, Modaresi Esfeh J. Prevalence of Hookah smoking in relation to religiosity and familial support in college students of Tabriz, northwest of Iran. J Res Health Sci 2014;14:268-71.
36. Rahman S, Chang L, Hadgu S, Salinas-Miranda AA, Corvin J. Prevalence, knowledge, and practices of hookah smoking among university students, Florida, 2012. Prev Chronic Dis 2014;11:E214.
37. Combrink A, Irwin N, Laudin G, Naidoo K, Plagerson S, Rahman S, Chang L, Hadgu S, Salinas-Miranda AA, Corvin J. The gap of cigarette and hookah smoking between socioeconomic groups in Iran: Effect of inequalities on socioeconomic position. Arch Iran Med 2018;21:418-24.
38. Heidari GR. Prevalence of water pipe smoking in the city of Mashhad (North East of Iran) and its effect on respiratory symptoms and pulmonary function tests. Lung India 2014;31:237-43.
39. Etter JF. Associations between smoking prevalence, stage of change, cigarette consumption, and quit attempts across the United States. Prev Med 2004;38:369-73.
40. Linde BD, Ebbert JO, Packer CK, Wayne Talcott G, Schroeder DR, Hanson AC, et al. Prevalence and predictors of hookah use in US Air Force military recruits. Addict Behav 2015;47:5-10.
41. Hopkins DP. The guide to community preventive services: Tobacco use prevention and control: Reviews recommendations, and expert commentary. Am J Prev Med 2001;20:1-88.
42. Owusu D, Quinn M, Wang K, Williams F, Mamudu HM. Smokefree home rules and cigarette smoking intensity among smokers in different stages of smoking cessation from 20 low- and middle-income countries. Prev Med 2020;132:106000.