Oxygen radical formation does not have an impact in the treatment of severe acute experimental pancreatitis using free cellular hemoglobin

Helge Kleinhans, Oliver Mann, Paulus G Schurr, Jussuf T Kaifi, Bente Hansen, Jakob R Izbicki, Tim Strate

Abstract

AIM: Microcirculatory dysfunction and free oxygen radicals are important factors in the pathogenesis of severe acute pancreatitis. Additional oxygen delivery might enhance lipid peroxidation but may also improve pancreatic microcirculation. This study assesses the effect of free cellular bovine hemoglobin on the formation of oxygen radicals and microcirculation in a rodent model of severe acute pancreatitis.

METHODS: Fifteen minutes after induction of acute pancreatitis Wistar rats received either 0.8 ml bovine hemoglobin (HBOC-200), hydroxyethyl starch (HES) or 2.4 ml of normal saline to ensure normovolemic substitution. After 6 h of examination the pancreas was excised and rapidly processed for indirect measurement of lipid peroxidation products malondialdehyde (MDA) and reduced glutathione (GSH) in pancreatic tissue.

RESULTS: The single application of HBOC-200 improved pancreatic microcirculation and reduced histopathological tissue damage significantly. Tissue concentration of MDA did not differ between the groups. Also no differences in GSH levels were detected.

CONCLUSION: Though the single application of HBOC-200 and HES improve pancreatic microcirculation, no differences in lipid peroxidation products were detected. The beneficial effect of additional oxygen supply (HBOC-200) does not lead to enhanced lipid peroxidation.

Key words: Hemoglobin-based-oxygen-carrier; HBOC; Blood substitutes; Severe acute pancreatitis; Free oxygen radicals; Oxidative stress

INTRODUCTION

Microcirculatory dysfunction and free oxygen radicals are important factors in the pathogenesis of acute experimental pancreatitis. Oxygen free radicals are formed during aerobic cellular metabolism. Under physiological conditions they are eliminated by a system of enzymatic and non-enzymatic antioxidants. Under conditions of imbalance like in acute pancreatitis between antioxidants and oxidants as in hyperoxygenation, ischemia and reperfusion and tissue inflammation “oxidative stress” occurs.

Oxygen species initiate a pronounced peroxidation of membrane lipids, detectable after 30 min by a significant rise in the lipid peroxidation marker malondialdehyde (MDA), persisting up to 16 h. At the same time a significant decrease in glutathione thiols (GSH, potent antioxidant in the pancreas) occurs. In the human, acute pancreatitis increases the amount of lipid peroxidation products and decreases antioxidants.

It has been shown that pancreatic microcirculatory deficits can be treated with bovine haemoglobin, which improves fluidity due to its colloid effects and delivers cell free oxygen to oxygen deprived tissue. However, additional application of cell free oxygen might potentially enhance detrimental O2 radical products, which could limit the positive value of bovine haemoglobin in the treatment of severe acute pancreatitis.

This study assesses the relationship between free oxygen radicals and pancreatic microcirculation in a rodent model of severe acute pancreatitis after therapeutic application of a hemoglobin based oxygen carrier (HBOC).

MATERIALS AND METHODS

The experimental protocol was approved by the Ethical
Committee of the Hamburg Federal Board of Veterinary Medicine and Animal Care. After overnight fasting with free access to water containing 20% glucose, thirty female Wistar rats (230-250 g) were randomly assigned to three groups (n = 10). Anesthesia was induced by intraperitoneal pentobarbital (40 mg/kg BW) and ketamine (10 mg/kg BW) allowing spontaneous breathing by tracheostomy. Ringer lactate was infused for fluid resuscitation keeping the central venous pressure between 4 and 6 mmHg and heart rate as well as mean arterial pressure within 10% of baseline frequency throughout the experiment (Datex AS/3 monitoring system; Hoyer, Bremen, Germany).

Acute pancreatitis was induced according to a standardised regimen17 using a combination of intravenous cerulein infusion (5 mg/kg per hour; Takus, Pharmacia, Erlangen, Germany) at a rate of 1 mL/h over 6 h and intraductal infusion of glycodeoxycholic acid (GDOC: 10 mmol/L; 1 mL/kg for 300 s; infusion pressure 25 to 30 mmHg).

Fifteen minutes after induction the animals received either 0.8 mL bovine hemoglobin (HBOC-group) (HBOC-200, Biopure MD, USA), 0.8 mL hydroxyethyl starch (HES-group 3) or 2.4 mL of normal saline (NaCl-group) to ensure normovolemic substitution. In vivo fluorescence microscopy was performed with an epi-illumination unit (Zeiss, Germany). Microcirculation was observed for 6 h, measurements were performed in the head of the pancreas: 0 min was defined as the intraductal infusion of GDOC. Leucocyte adherence (area of adherent leucocytes in a percentage of the vein cross section) and functional capillary density (number of perfused capillaries to the total number of capillaries) were studied. After 6 h of examination the animals were sacrificed by an intravenous injection of pentobarbital. Pancreatic tissue samples were excised for determination of tissue damage and malondialdehyde (Lipid Peroxidation Assay Kit, Calbiochem, San Diego, USA) and GSH concentrations (Glutathione Assay Kit, Calbiochem, San Diego, USA) specified in µmol/L/g tissue protein concentration was detected by using the BCA Protein Assay Reagent Kit (Pierce, Rockford, IL, USA). The BCA Protein Assay is a detergent-compatible formulation based on bicinchoninic acid (BCA) for the colometric detection and quantitation of total protein. This method combines the reduction of Cu2+ to Cu1+ by protein in an alkaline medium (the biuret reaction) with the colometric detection of the cuprous cation (Cu1+) using a unique reagent containing bicinchoninic acid18.

The histopathological scoring was analyzed by light microscopy using a validated score quantifying acinar necrosis, fat necrosis and hemorrhage, leucocyte infiltration and edema19.

Statistical analysis
Statistical analysis of the changes from baseline values in each group of animals utilized the paired Student’s t-test. Significances between the groups were assessed by the unpaired t-test. P < 0.05 was considered significant. All data are presented as mean ± SD.

RESULTS
Results of pancreatic microcirculation and tissue damage have been reported elsewhere18.

Microcirculation19
In essence pancreatic microcirculation improved in the HBOC-200-group when compared to NaCl-group [functional capillary density (fccd): 0.7 (SD 0.3) vs 0.33 (0.12); P < 0.05]; leucocyte adherence (la): 0.27 (0.14) vs 0.54 (0.19); P < 0.05). HES also improved pancreatic microcirculation when compared to NaCl-group (fccd: 0.49 (0.15) vs 0.33 (0.12); P < 0.05 and la: 0.39 (0.11) vs 0.54 (0.19); P < 0.05).

Tissue damage19 (Figures 1-4)
The histological score showed significantly less tissue damage in HBOC-group (Figure 1) versus NaCl-group (6.25 vs 9.25) (range 3-8.5 vs 8-10.75); P < 0.001. The overall score is reflected within all subgroups. Comparing HES and HBOC-therapy significantly less tissue damage was found (6.25 vs 8) (range 3.85 vs 6.5-10.25); P = 0.006 in the HBOC group. When comparing HES (Figure 2) and NaCl (Figure 3) less necrosis and hemorrhaging (1.75 vs 2.75) (range 1.5-2.75 vs 2.25-3.5) was found in the HES therapy group(Figure 4).

Oxygen radicals
Tissue concentration of MDA did not differ between the groups (HBOC-200-group: 4.37 ± 1.11 µmol/L per g protein; HES-group: 3.77 ± 1.45 µmol/L per g protein; NaCl-group: 4.31 ± 1.19 µmol/L per g protein. MDA-tissue levels (n = 10) of sham operated rats were 5.41 ± 2.12 µmol/L per g protein.

Also no differences in GSH levels were detected HBOC-group: 2.93 ± 1.72 µmol/L per g; HES-group: 4.46 ± 3.55 µmol/L per g; NaCl-group: 3.7 ± 3.5 µmol/L per g. Control GSH-tissue levels (n = 10) of sham operated rats were 12.19 ± 7.04 µmol/L per g protein (Figure 5).

DISCUSSION
Clinical investigations with free hemoglobin solutions have
been performed since the late 1800 s. Over the years complications like renal toxic effects and short circulation time have been reduced. The new blood substitutes are able to replace blood, colloid and crystalloid solutions act as oxygen transporter in many experimental settings. The ability of potent oxygen transport to oxygen deprived tissue has been shown in different animal models [15,20]. Vincent et al investigated the influence of heme-binding proteins in heme-catalyzed oxidations. They confirmed previous studies that heme acts as a catalyst of H₂O₂-dependent lipid peroxidation [21]. It has been shown that diene conjugation caused by oxygen radicals gives an adequate assessment of lipid peroxidation in tissue extracts. Several studies emphasize the role of oxygen free radicals in the pathogenesis of experimental acute pancreatitis [1,3,22-26]. Oxygen radicals are generated by different biological systems. Sources are reperfusion injury as well as the respiratory burst of PMN-leucocytes [27-30]. Local tissue damage has successfully been treated by the use of radical scavengers [31,32]. However increased heme and oxygen availability like in HBOC-therapy might lead to higher generation of oxygen radicals and tissue damage caused by lipid peroxidation.

A single application of a hemoglobin based oxygen carrier in this model of severe acute pancreatitis reduces the tissue damage and ensures a stable microcirculation. Colloids like HES and Dextrane have also been proven to be an effective therapy for microcirculatory dysfunctions [33-36]. The superiority of HBOC [34,36,37] might be explained by the combining effect of a colloid and noncorpuscular oxygen carrier. HBOC releases oxygen in areas of poor perfundation and ensure tissue oxygenation. However, the hypothesis that hyperoxygenation and additional oxygen supply might lead to an increased production of oxygen free radicals was not supported by this data. This study could not confirm former publications suggesting that increased heme availability promotes the enhancement of lipid peroxidation. Dunne et al demonstrated the reactivity of various modified hemoglobins to hydrogen peroxide in terms of free radical formation. They compared PHP hemoglobin (crosslinked between the β-subunits
and conjugated with polyoxymethylene) with DBBF hemoglobin (crosslinked between the β-subunits using dibromosacil fluoride, and control HaA). All the blood substitutes generated free radicals. MDA- levels were equal in nearly all groups. When compared to sham operated animals MDA-levels in the HBOC groups reached the same levels. One explanation of this finding could be that the level of MDA and GSH might have reached their peak within the first hours of pancreatitis and decreased to normal levels after 6 h. This theory is underlined by former studies. Schoenberg et al determined the peroxidation products, conjugated dienes and MDA in hemorrhagic pancreatitis induced by retrograde injection of sodium-taurocholate. The tissue levels of MDA increased, reaching their highest level after 1 h. Two hours later the lipid peroxides had returned to control levels.

GSH-tissue levels also showed no statistically relevant differences in the groups. Compared to GSH-levels of sham operated rats a decrease was found which might be an indication for oxidative stress in all groups. Dabrowski et al were able to show a decrease in pancreatic GSH at an early stage of cerulein-induced pancreatitis in rats.

Other researchers were able to prevent local tissue damage in experimental pancreatitis by the use of radical scavenging therapy.[26,31-32] Since we could not detect differences in oxidative stress markers we would explain the reduced histopathological damage by an improved pancreatic microcirculation. An excess formation of free oxygen radicals in the setting of additional oxygen supply was not detected.

REFERENCES

1 Dabrowski A, Gabryelewicz A. Oxidative stress. An early phenomenon characteristic of acute experimental pancreatitis. Int J Pancreatol 1992; 12: 193-199
2 Koivai T, Oguchi H, Kawa S, Yanagisawa Y, Kobayashi T, Homma T. The role of oxygen free radicals in experimental acute pancreatitis in the rat. Int J Pancreatol 1989; 3: 135-143
3 Sanfey H, Sarr MG, Bulky GB, Cameron JL. Oxygen-derived free radicals and acute pancreatitis: a review. Acta Physiol Stand Suppl 1986; 548: 109-118
4 Sies H, Cadenas E. Oxidative stress: damage to intact cells and organs. Philos Trans R Soc Lond B Biol Sci 1985; 311: 617-631
5 Sies H. Role of reactive oxygen species in biological processes. Klin Wochenschr 1991; 69: 965-968
6 Sies H. Oxidative stress: oxidants and antioxidants. Exp Physiol 1997; 82: 291-295
7 Halliwell B, Gutteridge JM. Free radicals, aging and diseases. In: Free Radicals in Biology and Medicine. ed 2.Oxford: Clarendon Press, 1989: 416-508
8 Weber H, Merkord J, Jonas L, Wagner A, Schröder H, Käding U, Werner A, Dummler W. Oxygen radical generation and acute pancreatitis: effects of dibutyltin dichloride/ethanol and ethanol on rat pancreas. Pancreas 1995; 11: 382-388
9 Weber H, Roesser JP, Nebe B, Rychlik J, Werner A, Schröder H, Jonas L, Lehmann P, Schneider KP, Dummler W. Increased cytosolic Ca2+ amplifies oxygen radical-induced alterations of the ultrastructure and the energy metabolism of isolated rat pancreatic acinar cells. Digestion 1998; 59: 175-185
10 Luethen R, Quante M, Schoep C, Haussinger D, Niederau C. Auswirkungen der Arginin-Pankreatitis auf den Thiol- und NO-Metabolismus des Pankreas. Z Gastroenterol 1996; 34: 624
11 Luethen R, Quante M, Schoep C, Haussinger D, Niederau C. Thiolmetabolismus und oxidativer Stress in der Fruehphase einer experimentellen Pankreatitis. Hepato-Gastroenterology 1999; 46: 2751-2756
12 Guyan PM, Uden S, Braganza JM. Heightened free radical activity in pancreatitis. Free Radic Biol Med 1990; 8: 347-354
13 Schoenberg MH, Büchler M, Pietrzyk C, Uhl W, Birk D, Eisene S, Marzinig M, Beger HG. Lipid peroxidation and glutathione metabolism in chronic pancreatitis. Pancreas 1995; 10: 36-43
14 Schoenberg MH, Birk D, Beger HG. Oxidative stress in acute and chronic pancreatitis. Am J Clin Nutr 1995; 62: 1306S-1314S
15 Strate T, Mann O, Kleinhaus H, Schneider C, Knoefel WT, Yekubas E, Standl T, Bloechle C, Izbiicki JR. Systemic intra-venous infusion of bovine hemoglobin significantly reduces microcirculatory dysfunction in experimentally induced pancreatitis in the rat. Ann Surg 2003; 238: 76S-77S
16 Simoni J, Feola M, Canizaro PC. Generation of free oxygen radicals and the toxicity of hemoglobin solutions. Biomater Artif Cells Artif Organs 1990; 18: 189-202
17 Bloechle C, Kusterer K, Kuehn RM, Schneider C, Knoefel WT, Izbiicki JR. Inhibition of bradykinin B2 receptor preserves microcirculation in experimental pancreatitis in rats. Am J Physiol 1998; 274: G42-G51
18 Smith PK, Krohn RI, Hermantson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goekoe NM, Olson BJ, Klenk DC. Measurement of protein using bicinchoninic acid. Anal Biochem 1985; 150: 76-85
19 Schmidt J, Ratnner DW, Lewandrowski K, Compton CC, Mandavalli U, Knoefel WT, Warshaw AL. A better model of acute pancreatitis for evaluating therapy. Ann Surg 1992; 215: 44-56
20 Standl T, Horn P, Wilhelm S, Greim C, Freitag M, Freitag U, Spattek T, Jacobs E, Schulte am Esch J. Bovine haemoglobin is more potent than autologous red blood cells in restoring muscular tissue oxygenation after profound isovolaemic haemodilution in dogs. Can J Anaesth 1996; 43: 714-723
21 Vincent SH, Grady RW, Shaklai N, Snider JM, Muller-Eberhard U. The influence of heme-binding proteins in heme-catalyzed oxidations. Arch Biochem Biophys 1988; 265: 539-550
22 Closa D, Bulbena O, Hotter G, Rosello-Catafau J, Fernandez-Cruz L, Gelpi E. Xanthine oxidase activation in cenulin- and taurocholate-induced acute pancreatitis in rats. Arch Int Physiol Biochim Biochem 1994; 102: 167-170
23 Nonaka A, Manabe T, Tamura K, Asano N, Imanishi K, Tebe T. Changes of xanthine oxidase, lipid peroxide and superoxide dismutase in mouse acute pancreatitis. Digestion 1989; 43: 41-46
24 Sanfey H, Buikley GB, Cameron JL. The role of oxygen-derived free radicals in the pathogenesis of acute pancreatitis. Ann Surg 1984; 200: 405-413
25 Schoenberg MH, Büchler M, Helfen M, Beger HG. Role of oxygen radicals in experimental acute pancreatitis. Eur Surg Res 1992; 24 Suppl 1: 74-84
26 Steer ML, Rutledge PL, Powers RE, Saluja M, Saluja AK. The role of oxygen-derived free radicals in two models of experimental acute pancreatitis: effects of catalase, superoxide dismutase, dimethyldisulfide, and allopurinol. Klin Wochenschr 1991; 69: 1012-1017
27 Babior BM. Oxygen-dependent microbial killing by phagocytes (first of two parts). N Engl J Med 1978; 298: 659-668
28 Cotichia JM, Lessler MA, Ellison EC, Carey LC. Mitochondrial dysfunction induced by pancreatitis-associated ascitic fluid. Proc Soc Exp Biol Med 1983; 172: 412-418
29 Southorn PA, Powis G. Free radicals in medicine. II. Involvement in human disease. Mayo Clin Proc 1988; 63: 390-408
30 Southorn PA, Powis G. Free radicals in medicine. I. Chemical nature and biological reactions. Mayo Clin Proc 1988; 63: 383-389
31 Pooh B, Gansauge F, Rau B, Wittel U, Gansauge S, Nüssler AK, Schoenberg M, Beger HG. The role of polymorphonuclear leukocytes and oxygen-derived free radicals in experimental acute pancreatitis: mediators of local destruction and activators of inflammation. FEBS Lett 1999; 461: 268-272
32 Schoenberg MH, Büchler M, Gaspar M, Stinner A, Younes M, Melzer I, Büttmann B, Beger HG. Oxygen free radicals in acute pancreatitis of the rat. Gut 1990; 31: 1138-1143
33 Horn EP, Standl T, Wilhelm S, Jacobs EE, Freitag U, Freitag M, Schulte am Esch J. Bovine hemoglobin. HBOC-201 causes a reduction of the oxygen partial pressure in poststenotic skel-
34 Hotz HG, Schmidt J, Ryschich EW, Foitzik T, Buhr HJ, Warschaw AL, Herfarth C, Klar E. Isovolemic hemodilution with dextran prevents contrast medium induced impairment of pancreatic microcirculation in necrotizing pancreatitis of the rat. *Anaesthesist* 1998; 47: 116-123

35 Klar E, Herfarth C, Messmer K. Therapeutic effect of isovolemic hemodilution with dextran 60 on the impairment of pancreatic microcirculation in acute biliary pancreatitis. *Ann Surg* 1995; 211: 161-166

36 Klar E, Foitzik T, Buhr H, Messmer K, Herfarth C. Isovolemic hemodilution with dextran 60 as treatment of pancreatic ischemia in acute pancreatitis. Clinical practicability of an experimental concept. *Ann Surg* 1990; 211: 346-353

37 Horn EP, Standl T, Wilhelm S, Jacobs EE, Freitag U, Freitag M, Schulte am Esch J. Bovine hemoglobin increases skeletal muscle oxygenation during 95% artificial arterial stenosis. *Surgery* 1997; 121: 411-418

38 Dabrowski A, Konturek SJ, Konturek JW, Gabryelewicz A. Role of oxidative stress in the pathogenesis of caerulein-induced acute pancreatitis. *Eur J Pharmacol* 1999; 377: 1-11

39 Schoenberg MH, Büchler M, Schädlich H, Younes M, Büttmann B, Beger HG. Involvement of oxygen radicals and phospholipase A2 in acute pancreatitis of the rat. *Klin Wochenschr* 1989; 67: 166-170

40 Dabrowski A, Chwiecko M. Oxygen radicals mediate depletion of pancreatic sulfhydryl compounds in rats with cerulein-induced acute pancreatitis. *Digestion* 1990; 47: 15-19

41 Dabrowski A, Gabryelewicz A, Wereszczyńska-Siemiatkowska U, Chyczewski L. Oxygen-derived free radicals in cerulein-induced acute pancreatitis. *Scand J Gastroenterol* 1988; 23: 1245-1249