ADDITIONAL FILE 1: Supplemental Information

belonging to the manuscript

A novel locus for mycelial aggregation forms a gateway to improved *Streptomyces* cell factories

by

Dino van Dissel¹, Dennis Claessen¹, Martin Roth², and Gilles P. van Wezel¹.

¹Molecular Biotechnology, Institute of Biology, Leiden University, PO Box 9505, 2300RA, Leiden, The Netherlands;
²Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Adolf-Reichwein-Str. 23, 07745 Jena, Germany

To whom correspondence should be addressed. Tel: +3171527430; email: g.wezel@biology.leidenuniv.nl

Running title: Morphological engineering of *Streptomyces*
Figure S1. Phenotypes of disruption mutants of *S. lividans* in submerged cultures.

SLI_2849, Sli_5273, Sli_6469, Sli_3391, Sli_6143, Sli_6089 and Sli_6232 were disrupted by a transposon insertion. The region of Sli_3306a-Sli_3306 was removed by homologous recombination replacement. J1681 (*S. coelicolor* Δ*bldA*) was published previously [1].

Cultures were grown in baffled shake flasks in TSBS for 48 h. Scale bar, 200 μm.
Figure S2: Identification of suppressor mutations in *S. lividans* PM01 and PM02. SLI_3391 and SLI_6143 were identified by SNP analysis as the major changes during evolution of PM02 from PM01. Note that mutation of SLI_3391 enhanced dispersed growth of PM01, giving a phenotype similar to that observed for PM02. Scale bar, 100 µm.
Table S1. Bacterial strains.

Strain	Description and genotype	Reference
Streptomyces lividans 66 (1326)	SLP2+ SLP3+	[2]
PM01	Evolved from *S. lividans* 66	[3]
PM02	Evolved from PM01	[4]
J1681	J1501 \(\Delta \)bldA	[1]
GAD01	*S. lividans* 66 \(\Delta \)SLI_3306a::aacC4 Apr\(^R \)	This study
GAD02	*S. lividans* 66 \(\Delta \)SLI_3306a\(^\text{clean} \)	This study
GAD03	*S. coelicolor* M145 \(\Delta \)SCO2962::aacC4 Apr\(^R \)	This study
GAD04	*S. lividans* 66 \(\Delta \)SLI_3306a-Sli_3306::aacC4 Apr\(^R \)	This study
GAD05	*S. lividans* 66 \(\Delta \)SLI_3306a-SLI_3306\(^\text{clean} \)	This study

IFD, in-frame deletion mutant; Apr\(^R \) apramycin resistant.

Table S2. Transposon-mediated gene-replacement cosmids.

Cosmid nomenclature refers to the *Streptomyces coelicolor* genome database (strepdb.streptomyces.org.uk). The genomic location of the insertion of the apramycin cassette is given for the *S. coelicolor* genome.

Cosmid name	target gene	Cosmids location in genome	Start gene	position relative to start
SCI7.2.C04	SCO1907	2043368	2044163	795
C121.1.E05	SCO2513	2709849	2709485	364
E34.2.E04	SCO3043	3331409	3331178	231
2SCK36.1.F01	SCO4998	5437068	5437222	154
SC5B8.1.F05	SCO5821	6369817	6369367	450
SC2E9.1.F02	SCO5871	6426513	6426319	194
7H1.2.H01	SCO5952	6521053	6520547	506
SC9B1.2.C03	SCO6076	6670727	6670057	670
Table S3. Plasmids and constructs.

Plasmid or construct	Description	Reference
pWHM3	Cloning vector, colE1 replicon, pSG5 replicon, Thio^R, Amp^R	[5]
pSET152	Complementation vector, oriT RK2, pUC18 replicon, Apra^R	[6]
pUWLcre	pUWLoriT derivative with creA gene under ermE* promoter, Thio^R	[7]
pMAT1	pWHM3 containing flanking regions of S. coelicolor SCO2963 and SCO2962 with a aac(3)IV-loxP Xbal inserted between them in pWHM3 EcoRI-HindIII	this work
pMAT2	pWHM3 containing flanking regions of S. coelicolor SCO2963 with a aac(3)IV-loxP Xbal inserted between them in pWHM3 EcoRI-HindIII	this work
pMAT3	Cosmid StE59 derivative in which the matB coding sequence was replaced by the aac(3)IV resistance cassette	this work
pMAT4	pSET152 containing SCO2963 with the 500bp upstream (promoter) region	this work

Table S4. Oligonucleotides.

Name	Primer Sequence ▲
matB_+2190	AGTCCTCTAGAAGCCGGTCGGATGACCACC
matB_+3610	AGTCAGCTTCCTTGTTGTAACCCTGGCAACCCG
matA_+1326	AGTGAATTCAAGCCGGTGAGAGCACCCCTGGATG
matA_+43	AGCTTCAGAGAGCACCCCTGGATG
matA_2809	AGCTAACGGTGAGATCAGAGGGTGTTCTCCGGGGATCCGTCGACC
matA_+1466	AGCTGCTAGACCCGGAGAACCCCTGGATG
matA_-54	TTCTTGGCCGAGACGGGTGATG
matB_+1528	TTCTTGGCCGAGACGGGTGATG
pmatA_-537	AGCTGAATTCAAGCCGGTGAGAGCACCCCTGGATG
pmatA_+1485	ATCTTCAGAGAGCACCCCTGGATG
matB_FW_REDIRECT	CCGGGGTGCGCCGGTGGCAGCGA ▲Restriction sites are underlined. TCTAGA, XbaI; AAGCTT, HindIII; GAATTC, EcoRI.
References

1. Leskiw BK, Bibb MJ, Chater KF. The use of a rare codon specifically during development? *Mol Microbiol* 1991, 5:2861-7.

2. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA. *Practical Streptomyces genetics*. 2000.

3. Roth M, Noack D, Geuther R. Maintenance of the recombinant plasmid pIJ2 in chemostat cultures of *Streptomyces lividans* 66 (pIJ2). *J Basic Microbiol* 1985, 25:265-71

4. Roth M, Hoffmeier C, Geuther R, Muth G, Wohlleben W. Segregational stability of pSG5-derived vector plasmids in continuous cultures of *Streptomyces lividans* 66. *Biotechnol lett* 1994, 16:1225-30.

5. Vara J, Lewandowska-Skarbek M, Wang YG, Donadio S, Hutchinson CR. Cloning of genes governing the deoxysugar portion of the erythromycin biosynthesis pathway in *Saccharopolyspora erythraea* (*Streptomyces erythreus*). *J Bacteriol* 1989, 171:5872-81.

6. Bierman M, Logan R, O’Brien K, Seno ET, Rao RN, Schoner BE. Plasmid cloning vectors for the conjugal transfer of DNA from *Escherichia coli* to *Streptomyces* spp. *Gene* 1992, 116:43-9.

7. Fedoryshyn M, Welle E, Bechthold A, Luzhetskyy A. Functional expression of the Cre recombinase in actinomycetes. *Appl Microbiol Biotechnol* 2008, 78:1065-70.