Association between coronal caries and malocclusion in an adult population

Olaf Bernhardt1 · Karl-Friedrich Krey2 · Amro Daboul3 · Henry Völzke4 · Christian Splieth1 · Thomas Kocher1 · Christian Schwahn3

Received: 10 February 2020 / Accepted: 22 October 2020 / Published online: 18 December 2020
© The Author(s) 2020

Abstract

Purpose Only a few but conflicting results have been reported on the association between malocclusions and caries. We investigated this association using data from the population-based cross-sectional Study of Health in Pomerania (SHIP).

Methods Sagittal, vertical and transversal intermaxillary relationship, space conditions and sociodemographic parameters of 1210 dentate subjects (median age 30 years, interquartile range 25–35 years) were collected. Caries was assessed with the Decayed-Missing-Filled Surfaces index but analyzed as ordered outcome (four levels: sound, enamel caries, caries, tooth loss) in ordinal multilevel models, taking into account subject, jaw, and tooth level simultaneously.

Results Anterior open bite ≤3 mm (odds ratio [OR] = 2.08, 95% confidence interval [CI]: 1.19–3.61), increased sagittal overjet of 4–6 mm (OR = 1.31, CI: 1.05–1.64), distal occlusion of ½ premolar width (OR = 1.27, CI: 1.05–1.53) and distal 1 premolar width (OR = 1.31, CI: 1.06–1.63) were associated with adjusted increased odds for a higher outcome level (caries). Anterior spacing (OR = 0.24, CI: 0.17–0.33), posterior spacing, (OR = 0.69, CI: 0.50–0.95), posterior crowding (OR = 0.57, CI: 0.49–0.66) and buccal nonocclusion (OR = 0.54, CI: 0.33–0.87) were associated with a lower outcome level (caries).

Conclusion The results from this population-based study suggest that a connection between caries and malocclusion exists to a limited extent in young adults. The associations with caries are contradictory for several malocclusion variables. Distal occlusion (OR = 1.31, CI: 1.06–1.63) and related skeletal anomalies displayed positive associations with caries whereas crowding did not. Orthodontic treatment of anterior crowding would probably not interfere with caries experience. These aspects should be considered for patient information and in treatment decisions.

Keywords Dental occlusion · Orthodontics · Caries risk assessment · Epidemiology · Multilevel analysis

Availability of data and material All variables and data of the Study of Health in Pomerania (SHIP) can be requested under: https://www.fvcm.med.uni-greifswald.de/dd_service/data_use_intro.php.

Olaf Bernhardt
obernhar@uni-greifswald.de

1 Department of Restorative Dentistry, Periodontology, Endodontology, Preventive Dentistry and Pediatric Dentistry, University Medicine Greifswald, Walther-Rathenau-Str. 42a, 17475 Greifswald, Germany

2 Department of Orthodontics, University Medicine Greifswald, Walther-Rathenau-Str. 42a, 17475 Greifswald, Germany

3 Department of Prosthetic Dentistry, Gerodontology and Biomaterials, University Medicine Greifswald, Walther-Rathenau-Str. 42a, 17475 Greifswald, Germany

4 Institute for Community Medicine, University Medicine Greifswald, Walther-Rathenau-Str. 48, 17475 Greifswald, Germany
Zusammenhang zwischen Kronenkaries und Malokklusionen in einer Erwachsenenpopulation

Zusammenfassung

Ziel Da über den Zusammenhang zwischen Malokklusionen und Karies bislang nur wenige und widersprüchliche Ergebnisse bekannt sind, haben wir diese Fragestellung anhand von Daten aus der bevölkerungsbezogenen Querschnittsstudie „Study of Health in Pomerania“ (SHIP) untersucht.

Methoden Die sagittale intermaxilläre Kieferrelation, Variablen der Malokklusion und soziodemographische Parameter von 1210 Probanden (Durchschnittsalter 30 Jahre, Interquartilbereich 25–35) wurden in die Analyse einbezogen. Karies wurde mit dem DMFS(„Decayed-Missing-Filled Surfaces“)-Index erfasst und als geordnetes Ereignis (4 Stufen: gesund, Schmelzkaries, Karies, Zahnverlust) in ordinalen Mehrebenenmodellen unter gleichzeitiger Berücksichtigung von Personen-, Kiefer- und Zahnebene analysiert.

Ergebnisse Anterior offener Biss ≤3 mm (Odds Ratio [OR] = 2,08, 95 %-Konfidenzintervall [KI]: 1,19–3,61), vergrößerte sagittale Stufe von 4–6 mm (OR = 1,31, KI: 1,05–1,64), distale Okklusion von einer halben Prämolarenbreite (OR = 1,27, KI: 1,05–1,53) und distale Okklusion von 1 Prämolarenbreite (OR = 1,31, KI: 1,06–1,63) waren mit einem erhöhten Risiko für Karies assoziiert. Lückige Zahnstellung in der Front (OR = 0,24, KI: 0,17–0,33), lückige Zahnstellung im posterioren Bereich (OR = 0,69, KI: 0,5–0,95), Engstand im posterioren Bereich (OR = 0,57, KI: 0,49–0,66) und bukkale Non-Okklusion (OR = 0,54, KI: 0,33–0,87) waren mit einem geringeren Risiko für Karies assoziiert.

Schlussfolgerungen Die Ergebnisse dieser bevölkerungsbezogenen Studie legen nahe, dass bei jungen Erwachsenen in begrenztem Umfang ein Zusammenhang zwischen Karies und Malokklusion besteht. Die Assoziationen mit Karies sind bei den einzelnen Malokklusionsvariablen nicht gleichgerichtet. Die distale Okklusion (OR = 1,31, KI: 1,06–1,63) und verwandte skelettale Anomalien zeigten positive Assoziationen mit Karies, während dies beim Engstand nicht der Fall war. Eine kieferorthopädische Behandlung des frontalen Engstandes würde das Kariesrisiko wahrscheinlich nicht beeinflussen. Diese Aspekte sollten bei der Patienteninformation und bei Behandlungsentscheidungen berücksichtigt werden.

Schlüsselwörter Okklusion · Kieferorthopädie · Kariesrisikobewertung · Epidemiologie · Mehrebenenanalyse

Introduction

Proper alignment and function of teeth as well as neutral occlusion are primary goals of orthodontic treatment. This should lead to an appealing aesthetic appearance, ensure chewing efficiency and last but not least, has been proposed to be associated with periodontal and dental health [3]. There has been a long-lasting debate about the impact of malocclusion on the progression of caries and periodontal disease [23, 24]. Although an association between malocclusion and periodontitis was established and does not seem to be negligible [4], periodontal health after orthodontic treatment does not seem to improve [6]. Regarding caries, the association with malocclusion seems to be even smaller [12].

Conflicting data have been reported in the past as to whether dental crowding increases caries scores [20]. Some studies reported higher interproximal caries prevalence, whereas others did not. Most of the studies focused on anterior teeth [2]. Differences in caries risk were also found between the upper and lower jaws [20]. Regarding caries, results from intervention studies are also heterogeneous [5, 12]. A recent publication on caries prevalence and former orthodontic treatment on 448 Australians at the age of 30 years did not provide any measurable benefits from orthodontic treatment with respect to improved dental health later in life [12]. No distinction was made in that study, however, for different forms of malocclusion, which was established with the Dental Aesthetic Index and orthodontic treatment had been performed mainly to resolve aesthetic problems [12]. In a retrospective German evaluation, 75 former Angle class II patients seemed to benefit from orthodontic treatment based on Decayed-Missing-Filled Surfaces (DMFS) values when compared to a population-based age cohort [5].

In contrast to crowding, much less is known about the relationship between overjet, overbite, crossbite, and spacing to caries. Studies in primary and mixed dentitions delivered inconsistent results [15, 19, 35, 40]. In an early study, Helm and Petersen considered different forms of malocclusion but did not find any association with caries prevalence in an adult sample [23].

To the best of our knowledge, there are no epidemiological data on the association between caries and the different forms of malocclusion including sagittal intermaxillary relationships in an adult population. Thus, we aimed to analyze cross-sectional data from the Study of Health of Pomerania (SHIP) to assess the association between caries prevalence and various forms of malocclusion in a statistical model on tooth, jaw and subject levels.
Advertisement placed here.
Materials and methods

Study participants

The aim of the population-based SHIP was to estimate the prevalence of a broad range of diseases, risk factors, and health-related factors for the Northeast German population. The baseline examination SHIP-0, whose sampling method was adopted from the World Health Organization MONICA (Monitoring Trends and Determinants in Cardiovascular Disease) Project in Augsburg, Germany, was approved by the local ethics committee and performed between 1997 and 2001 [28]. The net sample (without migrated or deceased subjects) comprised 6265 subjects with an age range from 20 to 79 years. Finally, 4308 subjects—all were Caucasian—gave written, informed consent and participated in SHIP-0, which corresponded to a response rate of 68.8%. SHIP-0 comprised a medical examination, a clinical dental examination (including periodontal, orthodontic, functional, and cariologic components), an interview, and a questionnaire completed by each participant [26, 28].

Assessment of malocclusion

The occlusal status was assessed according to selected occlusal parameters including the sagittal intermaxillary relationship in the canine region. This relationship was registered separately for the right and left canine regions and determined as neutral, distal by the width of ½ premolar and 1 premolar, and mesial by at least a ½ premolar width [25]. The following signs were recorded as being either present or absent: frontal and lateral crowding, ectopic position of canines, widely spaced teeth without approximal tooth contact, frontal and lateral crossbite, buccal nonocclusion, excessive overjet and overbite, edge-to-edge bite, open bite, negative overjet and retruded position of maxillary incisors. Orthodontic status was not recordable when in 2 or more sextants of the dentition (2 anterior and 4 posterior tooth regions), 3 or more teeth per sextant were missing, regardless of whether the gaps were restored or not. Third molars were not included in the evaluation.

Dental examination

According to the WHO recommendations [42], coronal caries findings (cavitated carious defects into the enamel and dentine), fillings, secondary caries on the surface level, and missing teeth, were registered by surface with the exception of third molars according to the half-mouth method (quadrants 1 and 4, or quadrants 2 and 3 in alternating sequence) using a periodontal probe (PCP 11, Hu Friedy, Frankfurt am Main, Germany) [26, 39]. Cavitated carious lesions (D component) were subdivided into lesions confined to enamel and those involving dentine. The number of cavitated lesion solely in enamel was absolutely minimal (n = 72). Initial caries lesions without cavitation were not recorded or counted for the caries scores. In detail, caries was defined in the manual of SHIP-0 as follows:

0. Sound: no caries, discoloration without carious defect, wedge-shaped defects, fissure sealings, tooth brushing defects
1. Enamel caries or carious defect into the enamel: visible or detectable defects of the enamel; if enamel caries is in doubt, do not opt for it
2. Dentine caries ≤3 mm: the defect into the dentin does not exceed 3 mm in length and width measured with the periodontal probe PCP11
3. Dentine caries >3 mm: the defect into the dentin exceeds 3 mm in length and width measured with the periodontal probe PCP11
4. Filling: filled surfaces of teeth (without secondary caries) and crowns
5. Secondary caries: visible or detectable caries at the margin of fillings
6. Missing: all missing teeth except third molars
7. Others: missing anterior teeth due to trauma, missing premolars due to orthodontic treatment, crowns due to trauma (proband were ask for the reason of tooth loss), persistent teeth of the first dentition

This was the basis for the calculation of the DMFS index to characterize the SHIP sample in Tables 1 and 2, and to analyze the data using four ordered outcome levels on tooth level as described in more detail in the statistical analyses section.

Visual inspection and probing with the dental probe PCP11 determined the presence or absence of plaque and calculus on test teeth 1, 3, and 6 in the selected quadrants, and the proportion of sites with plaque was calculated per participant. If a test tooth was missing, the distal adjacent tooth was examined instead. Each of these teeth was scored at four sites: distobuccal, midbuccal, mesiobuccal, midlingual.

Quality control

Eight experienced and calibrated dentists performed the dental examinations. Training of examiners and consensus discussions were carried out before the study started and training/calibration sessions were repeated twice yearly while the study was ongoing. Orthodontic calibration of the examiners was based on the examination of 30 pairs of casts showing complex symptoms of malocclusion, examination was repeated after several days. Intra- and interexaminer agreement were measured by Cohen’s kappa (κ) [25, 26].
Table 1 Demographic characteristics of participants aged 20–39 years of the Study of Health in Pomerania (SHIP), 1997–2001, n = 1210

Variable	n	DMFS (half mouth)	n	Plaque (%)
		Median (IQR)		Median (IQR)
Age group				
20–24 years	255	6 (4–8)	254	33 (17–63)
25–29 years	305	7 (5–9)	305	38 (17–63)
30–34 years	333	8 (6–10)	331	40 (20–67)
35–39 years	317	8 (6–10)	316	42 (25–67)
Gender				
Men	573	7 (5–9)	572	42 (21–67)
Women	637	8 (6–10)	634	38 (17–63)
School education				
<10 years	95	7 (5–9)	94	55 (30–80)
10 years	826	8 (6–10)	825	42 (21–67)
>10 years	289	7 (4–9)	287	29 (8–50)
Marital status				
Married	518	8 (6–10)	517	42 (21–63)
Married, living separately	20	9 (6–11)	20	50 (18–75)
Single	614	7 (5–9)	612	36 (17–63)
Divorced	55	8 (6–10)	54	46 (29–65)
Widowed	3	2 (0–4)	3	33 (29–67)
Household income (€/month)				
≤475	224	7 (5–9)	224	45 (21–69)
475 <x ≤700	237	7 (5–9)	235	40 (17–67)
700 <x ≤950	211	7 (5–9)	211	42 (17–63)
950 <x ≤1,250	264	8 (6–10)	262	42 (21–63)
>1,250	235	8 (6–9)	235	33 (15–58)
Smoking				
Never	376	5 (9–4)	374	33 (15–58)
Ex, <1 cig./day	142	7 (6–9)	142	33 (17–60)
Ex, 1–14 cig./day	64	7 (5–9)	64	29 (8–52)
Ex, ≥15 cig./day	85	7 (5–9)	85	42 (25–69)
Current, <1 cig./day	80	7 (5–9)	80	35 (17–54)
Current, 1–14 cig./day	214	7 (5–9)	214	42 (21–67)
Current, ≥15 cig./day	247	8 (5–10)	245	50 (29–75)
Orthodontic treatment				
Never	837	7 (6–9)	834	40 (20–63)
Currently	4	7 (5–8)	4	10 (4–25)
Formerly	360	7 (5–9)	359	38 (17–63)

DMFT Decayed-Missing-Filled Teeth index, **Ex** Former smoker, number of cigarettes (cig.) per day, **IQR** interquartile range

Cohen’s κ values ranged from 0.66–0.81, meaning “good agreement” [41]. The calibration exercises for the caries scores consisted of each examiner performing two examinations on each of 10 and 5 test participants one to two weeks apart. Examiners applied the eight categories for caries as described in the manual for SHIP-0. On surface level, which was the basis for calibration and certification, very good Cohen’s κ values were reached for intra- and interexaminer reliability (0.9–1.0 and 0.93–0.96, respectively [26, 39]). On the tooth level as used herein, good κ values were reached for intra- and interexaminer reliability (0.69–1.0 and 0.70–1.0, respectively).

Statistical analyses

To avoid selection bias, subject’s age range was restricted to 20–39 years; older subjects have a higher proportion of missing orthodontic variables due to missing teeth. As shown for the relationship between malocclusion and periodontal disease [4], confounding by tooth type across jaws required modelling on subject, jaw, and tooth levels. As is common in multilevel analyses [16], the outcome (caries) is measured on the tooth level, whereas some covariates are at the subject level, for example gender, and other covariates are at the tooth level, including all malocclusion variables except distal and mesial occlusion [4]. Thus, the 33 malocclusion variables on the subject level were transformed into 18 corresponding variables on the tooth level [4]. Thus, ectopic canines on the tooth level could occur only at 13, 23, 33, or 43 [4]. For crowding (and spacing as well), a single variable instead of two variables for anterior and posterior regions may be desirable. We addressed this coding scheme only in sensitivity analyses because the six joint tests for the global malocclusion conditions, including space conditions in the anterior region and lateral malocclusions, were clearly of clinical and statistical interest. Moreover, crowding was assessed differently in the anterior and posterior regions. The malocclusion variables were simultaneously fitted in ordinal logistic multilevel models using the “meologit” procedure (Stata software, release 14.2; Stata Corporation, College Station, TX, USA). The four ordered outcome levels were (1) sound, (2) carious defects into the enamel, (3) caries (dentine caries ≤3 mm, dentine caries >3 mm, filling, or secondary caries), and (4) tooth loss. Because pitfalls of ignoring the hierarchy in dental research (subject, tooth, surface; subject, jaw, tooth) have been well-known for 20 years [17], multilevel models have been widely used for answering complex research questions, especially when the tooth type is a confounder on a level different from the subject level [4, 18]. Herein, the three hierarchical levels subject, jaw, and tooth were included as random effects [36]; age, gender, school education (3 levels in accordance with the former east German
Table 2 Decayed-Missing-Filled Teeth index (DMFT) and plaque according to malocclusion variables of participants aged 20–39 years of the Study of Health in Pomerania (SHIP), 1997–2001, \(n = 1210 \)

Variable	\(n \)	DMFT (half mouth)	Plaque (%), \(n = 1206 \)
Space conditions in the anterior region			
Anterior crowding, upper arch lack of space			
No anterior crowding	643	8 (5–10)	639 42 (20–65)
≤½ lateral incisor width	483	7 (5–9)	483 38 (17–63)
½ < x ≤ 1 lateral incisor width	68	6 (5–8)	68 38 (21–71)
>1 lateral incisor width	6	6 (4–8)	6 33 (29–38)
Anterior crowding, lower arch lack of space			
No anterior crowding	444	8 (6–10)	442 42 (17–63)
≤½ lateral incisor width	628	7 (5–9)	626 38 (17–63)
½ < x ≤ 1 lateral incisor width	129	8 (6–9)	129 46 (20–75)
>1 lateral incisor width	9	8 (6–9)	9 33 (29–42)
Ectopic canine 13			
No	1089	7 (5–9)	1085 38 (17–63)
Yes	120	7 (5–9)	120 42 (21–70)
Ectopic canine 23			
No	1083	7 (5–9)	1079 38 (17–63)
Yes	127	7 (4–9)	127 38 (21–63)
Ectopic canine 33			
No	1108	7 (5–9)	1104 38 (17–63)
Yes	102	7 (5–9)	102 42 (25–70)
Ectopic canine 43			
No	1090	7 (5–9)	1086 38 (17–63)
Yes	120	7 (6–9)	120 42 (18–75)
Anterior spacing upper arch			
No	1056	8 (5–10)	1053 38 (17–63)
Yes	154	7 (5–8)	153 38 (20–63)
Anterior spacing lower arch			
No	1110	7 (5–9)	1106 38 (17–63)
Yes	100	8 (6–10)	100 42 (20–64)
Space conditions in the posterior region			
Posterior crowding right upper jaw			
No	958	7 (5–9)	954 38 (17–63)
Yes	252	7 (5–9)	252 38 (21–58)
Posterior crowding left upper jaw			
No	972	7 (5–10)	968 40 (17–63)
Yes	236	7 (5–9)	236 38 (21–58)
Posterior crowding left lower jaw			
No	898	8 (5–10)	894 40 (17–67)
Yes	312	7 (5–9)	312 38 (21–58)
Posterior crowding right lower jaw			
No	914	7 (5–9)	911 38 (17–65)
Yes	296	7 (5–9)	295 40 (25–60)
Posterior spacing right upper jaw			
No	1175	7 (5–9)	1171 38 (17–63)
Yes	35	6 (4–9)	35 30 (10–58)
Table 2 (Continued)

Variable	n	DMFT (half mouth) Median (IQR)	n	Plaque (%), n = 1206 Median (IQR)
Posterior spacing left upper jaw				
No	1168	7 (5–9)	1164	38 (18–63)
Yes	42	6 (4–8)	42	30 (8–50)
Posterior spacing left lower jaw				
No	1166	7 (5–9)	1162	38 (17–63)
Yes	44	8 (6–10)	44	40 (25–63)
Posterior spacing right lower jaw				
No	1160	7 (5–9)	1156	38 (17–63)
Yes	50	7 (5–9)	50	39 (21–60)
Vertical overbite				
Anterior open bite				
No	1165	7 (5–9)	1161	38 (17–63)
≤3 mm	37	7 (6–9)	37	38 (21–63)
>3 mm	8	10 (8–11)	8	85 (65–97)
Anterior edge to edge bite				
No	1132	7 (5–9)	1128	38 (17–63)
Yes	78	7 (6–9)	78	42 (21–69)
Deep anterior overbite				
No	912	7 (5–9)	909	38 (17–63)
Without gingival contact	211	7 (6–9)	210	39 (21–63)
With gingival contact	87	8 (5–10)	87	38 (17–63)
Sagittal overjet				
Retroclination/inversion of the upper incisors				
No	827	7 (5–9)	824	42 (21–67)
Yes	381	7 (5–9)	380	33 (17–58)
Anterior crossbite				
No	1150	7 (5–9)	1146	38 (17–63)
Yes	60	8 (5–9)	60	40 (29–65)
Negative overjet				
No	1196	7 (5–9)	1192	38 (17–63)
Yes	14	8 (6–9)	14	46 (29–67)
Increased sagittal overjet				
<4 mm	807	7 (5–9)	803	40 (17–65)
4–6 mm	304	8 (5–10)	304	35 (20–63)
>6 mm	97	7 (6–9)	97	42 (17–70)
Lateral malocclusion				
Left lateral crossbite				
No	1036	7 (5–9)	1033	38 (17–63)
Yes	174	8 (6–10)	173	42 (25–65)
Right lateral crossbite				
No	1035	7 (5–9)	1031	38 (17–63)
Yes	175	8 (6–10)	175	46 (25–71)
Left buccal nonocclusion				
No	1180	7 (5–9)	1176	38 (20–63)
Yes	30	6 (3–8)	30	23 (8–50)
Right buccal nonocclusion				
No	1181	7 (5–9)	1177	38 (20–63)
Yes	29	8 (5–9)	29	25 (8–54)

Table 2 (Continued)

Variable	\(n \)	DMFT (half mouth) Median (IQR)	\(n \)	Plaque (%), \(n = 1206 \) Median (IQR)
Left lateral open bite				
No	1198	7 (5–9)	1194	38 (17–63)
≤3 mm	11	6 (5–9)	11	46 (17–63)
>3 mm	1	10 (10–10)	1	70 (70–70)
Right lateral open bite				
No	1198	7 (5–9)	1195	38 (17–63)
≤3 mm	11	7 (5–9)	10	38 (25–63)
>3 mm	1	10 (10–10)	1	70 (70–70)
Left lateral edge to edge bite				
No	1023	7 (5–9)	1019	38 (17–63)
Yes	187	8 (5–10)	187	46 (21–67)
Right lateral edge to edge bite				
No	1018	7 (5–9)	1015	38 (17–63)
Yes	192	8 (6–10)	191	46 (21–71)

Sagittal intermaxillary relationship in the canine region

Occlusion status left canine area

Neutral	713	7 (5–9)	709	40 (17–65)
Distal ½ premolar width	276	8 (5–10)	276	38 (17–63)
Distal 1 premolar width	152	7 (5–9)	152	36 (17–58)
Mesial	69	7 (6–9)	69	50 (29–71)
Occlusion status right canine area				
Neutral	747	7 (5–9)	743	38 (17–63)
Distal ½ premolar width	246	7 (5–10)	246	38 (20–63)
Distal 1 premolar width	139	8 (6–10)	139	33 (15–55)
Mesial	78	7 (6–10)	78	59 (33–79)
Asymmetry				
Symmetry	713	7 (5–9)	709	38 (17–63)
Neutral and distal ½	230	8 (5–10)	230	42 (17–63)
Neutral and distal 1	94	8 (5–9)	94	33 (15–50)
Neutral and mesial	64	8 (6–10)	64	53 (29–84)
Distal ½ and distal 1	76	7 (5–10)	76	33 (17–55)
Distal ½ and mesial	22	7 (5–10)	22	63 (33–75)
Distal 1 and mesial	11	7 (6–8)	11	63 (29–75)

IQR interquartile range

school system), marital status (5 categories), jaw, tooth type (7 levels), the interaction between jaw and tooth type [21], and monthly household equivalence income (1 € = 1.956 German marks) were included as fixed effects [30]. Restricted cubic splines with three knots were used to allow for departures from linearity for age and income. Income was considered only in additional analyses because, unlike school education, it was linked with adulthood rather than childhood and, therefore, not assumed to be a confounder. As orthodontic treatment is part of the effect to be studied, it was not included into the model because “a confounder must not be an effect of the exposure” [37]. Odds ratios (OR) with 95% confidence intervals (CI) and \(p \)-values are provided. For any cut point of the outcome on four levels, ORs in ordinal logistic regression models can be interpreted as those in binary logistic regression models; note that the ordinal logistic regression model has fewer assumptions than the ordinary least squares regression model [22].

Results

The analysis sample consisted of 1210 participants with a median age of 30 years (interquartile range [IQR] 25–35 years). Of these patients, 30% had previously undergone orthodontic treatment. Four patients (<0.5%) were under treatment at the time of examination. (Fig. 1). The median DMFT half mouth was 7 (IQR 5–9 teeth). Partici-
pants’ general characteristics according to caries (DMFT) and plaque are shown in Table 1. Notably, the difference in plaque was very small comparing never and former orthodontic treatment (median: 40 and 38%, respectively). The orthodontic characteristics are shown in Table 2. The most common malocclusion was anterior crowding of the lower jaw in 766 of the 1210 subjects. Lateral open bite was observed in 12 subjects and was the least common malocclusion. According to intermaxillary relationships in the canine area, 44.3% of the subjects showed a neutral occlusion on both sides. Table 3 displays malocclusion in relation to orthodontic treatment for nontreated participants and participants who had previously undergone orthodontic treatment.

On the tooth level, out of the 16,675 teeth half mouth, 1196 teeth were missing, 7521 displayed caries into the dentin, and 72 revealed clinically detectable enamel caries lesions (7.2, 45.1, and 0.4%, respectively, Fig. 2; Table 4). Caries differs considerably by tooth type and jaw, especially for incisors and canines (Fig. 2).

Caries model

On the tooth level, the following malocclusions were associated with an increased odds ratio for caries, or more exactly, for tooth loss versus no tooth loss; or tooth loss or caries versus no caries; or tooth loss, caries, or enamel caries versus sound (Table 4): anterior open bite ≤3 mm (OR = 2.08, CI: 1.19–3.61, frequency among all incisors 2.9%) and increased sagittal overjet of 4–6 mm (OR = 1.31, CI: 1.05–1.64, frequency among all incisors 25.0%). Increased sagittal overjet of >6 mm (OR = 1.45, CI: 1.00–2.11, frequency among all incisors 8%) displayed a p-value of <0.1. Distal occlusion according to the sagittal intermaxillary relation in the canine region also displayed higher odds for caries with distal ½ premolar width (OR = 1.27, CI: 1.05–1.53, frequency among all teeth 28.9%) and distal 1 premolar width (OR = 1.31, CI: 1.06–1.63, frequency among all teeth 19.4%). For negative overjet, the data are consistent with a true OR between 0.84 and 5.62 (frequency among all incisors 1.1%). Some malocclusions were associated with a significantly reduced odds for caries: anterior spacing (OR = 0.24 CI: 0.17–0.33, frequency among all in-
Table 3
Malocclusion and orthodontic treatment in participants aged 20–39 years of the Study of Health in Pomerania (SHIP), 1997–2001, \(n=1187\) (4 subjects with current treatment, 9 missing treatment values)

Tab. 3 Malokklusionen und kieferorthopädische Behandlung der Probanden im Alter von 20–39 Jahren der “Study of Health in Pomerania” (SHIP), 1997–2001, \(n=1187\) (4 Probanden mit aktueller Behandlung, 9 fehlende Behandlungswerte)

Variable	No \((n=837)\)	%	Formerly \((n=360)\)	%
Space conditions in the anterior region				
Anterior crowding, upper arch lack of space				
No anterior crowding	478	57.7	158	44.1
\(\leq \frac{1}{2}\) lateral incisor width	311	37.5	167	46.6
\(\frac{1}{2}<x\leq 1\) lateral incisor width	37	4.5	31	8.7
>1 lateral incisor width	3	0.4	2	0.6
Anterior crowding, lower arch lack of space				
No anterior crowding	333	39.8	107	29.7
\(\leq \frac{1}{2}\) lateral incisor width	425	50.8	194	53.9
\(\frac{1}{2}<x\leq 1\) lateral incisor width	73	8.7	56	15.6
>1 lateral incisor width	6	0.7	3	0.8
Ectopic canine 13				
No	760	90.9	316	87.8
Yes	76	9.1	44	12.2
Ectopic canine 23				
No	761	90.1	309	85.8
Yes	76	9.1	51	14.2
Ectopic canine 33				
No	779	93.1	317	88.1
Yes	58	6.9	43	11.9
Ectopic canine 43				
No	779	93.1	298	82.8
Yes	58	6.9	62	17.2
Anterior spacing upper arch				
No	726	86.7	321	89.2
Yes	111	13.3	39	10.8
Anterior spacing lower arch				
No	759	90.7	339	94.2
Yes	78	9.3	21	5.8
Space conditions in the posterior region				
Posterior crowding right upper jaw				
No	681	81.4	267	74.2
Yes	156	18.6	93	25.8
Posterior crowding left upper jaw				
No	681	81.5	280	80.0
Yes	155	18.5	79	22.0
Posterior crowding left lower jaw				
No	644	76.9	244	67.8
Yes	193	23.1	116	32.2
Posterior crowding right lower jaw				
No	653	78.0	250	69.4
Yes	184	22.0	110	30.6
Posterior spacing right upper jaw				
No	812	97.0	350	97.2
Yes	25	3.0	10	2.8
Table 3 (Continued)

Variable	No ($n=837$)		Formerly ($n=360$)	
	n	$\%$	n	$\%$
Posterior spacing left upper jaw				
No	806	96.3	349	96.9
Yes	31	3.7	11	3.1
Posterior spacing left lower jaw				
No	806	96.3	347	96.4
Yes	31	3.7	13	3.6
Posterior spacing right lower jaw				
No	803	95.9	345	95.8
Yes	34	4.1	15	4.2
Vertical overbite				
Anterior open bite				
No	815	97.4	338	93.9
\leq3 mm	19	2.3	17	4.7
>3 mm	3	0.4	5	1.4
Anterior edge to edge bite				
No	786	93.9	335	93.1
Yes	51	6.1	25	6.9
Deep anterior overbite				
No	635	75.9	267	74.2
Without gingival contact	141	16.8	68	18.9
With gingival contact	61	7.3	25	6.9
Sagittal overjet				
Retroclination/inversion of the upper incisors				
No	566	67.8	254	70.6
Yes	269	32.2	106	29.4
Anterior crossbite				
No	805	96.2	333	92.5
Yes	32	3.8	27	7.5
Negative overjet				
No	831	99.3	352	97.8
Yes	6	0.7	8	2.2
Increased sagittal overjet				
<4 mm	571	68.3	228	63.5
4–6 mm	212	25.4	89	24.8
>6 mm	53	6.3	42	11.7
Lateral malocclusions				
Left lateral crossbite				
No	727	86.9	298	82.8
Yes	110	13.1	62	17.2
Right lateral crossbite				
No	725	86.6	300	83.3
Yes	112	13.4	60	16.7
Left buccal nonoclusion				
No	816	97.5	351	97.5
Yes	21	2.5	9	2.5
Right buccal nonoclusion				
No	815	97.4	353	98.1
Yes	22	2.6	7	1.9
Variable	No (n = 837)	%	Formerly (n = 360)	%
--	--------------	----	-------------------	----
Left lateral open bite				
No	832	99.4	355	98.6
≤3 mm	5	0.6	4	1.1
>3 mm	0	0.0	1	0.3
Right lateral open bite				
No	830	99.2	355	98.6
≤3 mm	7	0.8	4	1.1
>3 mm	0	0.0	1	0.3
Left lateral edge to edge bite				
No	708	84.6	305	84.7
Yes	129	15.4	55	15.3
Right lateral edge to edge bite				
No	710	84.8	299	83.1
Yes	127	15.2	61	16.9

Sagittal intermaxillary relationship in the canine region

Occlusion status left canine area

	No (n = 837)	%	Formerly (n = 360)	%
Neutral	500	59.7	203	56.4
Distal ½ premolar width	185	22.1	90	25.0
Distal 1 premolar width	107	12.8	44	12.2
Mesial	45	5.4	23	6.4

Occlusion status right canine area

	No (n = 837)	%	Formerly (n = 360)	%
Neutral	522	62.4	216	60.0
Distal ½ premolar width	167	20.0	76	21.1
Distal 1 premolar width	101	12.1	37	10.3
Mesial	47	5.6	31	8.6

Asymmetry

	No (n = 837)	%	Formerly (n = 360)	%
Symmetry	483	57.7	221	61.4
Neutral and distal ½	161	19.2	68	18.9
Neutral and distal 1	77	9.2	16	4.4
Neutral and mesial	38	4.5	25	6.9
Distal ½ and distal 1	52	6.2	23	6.4
Distal ½ and mesial	19	2.3	3	0.8
Distal 1 and mesial	7	0.8	4	1.1

Joint effects occurred for space conditions in the anterior region ($p<0.0001$ for the global test with 5 degrees of freedom; Table 4), space conditions in the posterior region ($p<0.0001$), vertical overbite ($p=0.0412$), sagittal overjet ($p=0.0325$), lateral malocclusions ($p=0.0051$), and sagittal intermaxillary relationship in the canine region ($p=0.0200$). The joint effect for increased sagittal overjet and distal occlusion, which were correlated, was statistically significant ($p=0.0011$ for the global test with 4 degrees of freedom).

Sensitivity analyses using a single variable for crowding and spacing, respectively

Whereas anterior and posterior spacing can be combined into a single spacing variable in a natural way, posterior crowding can be combined with different levels of anterior crowding. Counting posterior crowding as the lowest level of the presence of anterior crowding, the ORs were 0.65 (95% CI: 0.58–0.74; $p<0.0001$), 0.64 (95% CI: 0.43–0.95; $p<0.0255$), and 0.60 (95% CI: 0.17–2.14; $p=0.4348$) from the lowest to the highest crowding level, respectively. The
OR of spacing was 0.38 (95% CI: 0.30–0.48; \(p < 0.0001 \)). Counting posterior crowding as the middle level of anterior crowding, the OR of the middle level was 0.56 (95% CI: 0.49–0.65; \(p < 0.0001 \)). Of note, the 95% CIs for anterior and posterior spacing did not overlap in the main analysis (Table 4).

Sensitivity analyses including household income

Including household income did not lead to a change >10% in the ORs of malocclusion variables in the reduced sample of 1171 subjects.

Discussion

Capitalizing on a large sample size from the general population, this is the first study to investigate the association between malocclusions and caries on tooth, jaw and subject levels in adults in a single model. The benefit of orthodontic treatment on oral health including caries prevention is a matter of ongoing debate in the literature as well as in political demands for scientific proof [2, 5, 8, 12]. The extensive dataset of SHIP enables analyses with multilevel models that consider the nested character of the data (tooth level under consideration of the jaw and subject level) [36]. Such extensive analyses including all forms of malocclusion have not been possible in the past.

Although a marked decline in caries has been noticed during the last 30 years in Western countries, caries still represents a relevant dental problem [29, 38, 39]. DMFT values of our subsample are not comparable to other population-based surveys due to the selection criteria described above. Caries prevalence of the sample from SHIP, which has been published previously, is higher compared to other nationwide data from Western European countries in the same decade [27, 31, 38, 39]. Higher numbers of filled and missing teeth in seniors compared to Swedish and US surveys may be based on limited caries prevention programs or unavailability of fluoridated tooth paste before 1989 [39]. DMFT values in the comparable age group of the 35–44 year olds are slightly elevated compared to a German nationwide survey, which was conducted in 2005 [39, 43]. The Fourth German Health Study also reported elevated values for the former East Germany [43].

Besides socioeconomic or cohort effects, several local factors such as improper tooth alignment have also been connected to an increased caries prevalence [1]. Although
accumulation in these cases that might lead to higher caries incidence, high plaque scores were found in 12-year-old children with extreme maxillary overjet. The authors assumed that mandibular overjet was associated with higher bite could be established at least for the mixed dentition instance increased sagittal overjet [34]. To avoid this influence, the examination in SHIP 0 did not count traumatic events and tooth loss due to trauma or orthodontic tooth extractions as missing teeth in assessing the DMFS. However, the caries risk was increased in persons with an overjet of more than 6 mm compared to an overjet of 4–6 mm. Furthermore, because periodontal disease that finally leads to tooth loss has been linked with increased sagittal overjet [4], we chose our sample within an age range of 20 to
Table 4 Caries (four ordered levels: sound, enamel caries, caries, tooth loss): ordinal multilevel model on 1210 subjects, 2420 jaws, and 16,675 teeth (4727 incisors, 2410 canines, and 9538 premolars and molars); odds ratios (OR) on tooth level are adjusted for age, gender, school education, marital status, jaw, tooth type, and the interaction between jaw and tooth type, and for the subject and jaw level Tab. 4 Karies (4 geordnete Ebenen: gesund, Schmelzkaries, Karies, Zahnverlust): ordinales Mehrebenenmodell bei 1210 Probanden, 2420 Kiefern und 16.675 Zähnen (4727 Schneidezähne, 2410 Eckzähne und 9538 Prämolaren und Molaren); Chancenverhältnisse (Odds Ratios, OR) auf Zahn­ebene wurden an Alter, Geschlecht, Schulbildung, Familienstand, Kiefer, Zahntyp und die Wechselwirkung zwischen Kiefer und Zahntyp sowie an Personen- und Kieferebene angepasst

Variable	Teeth	Caries	Relative effect	Related test
	Frequency	Frequencies for enamel caries; caries; tooth loss	OR (95% CI)	P value (P_{trend})
Space conditions in the anterior region	–	–	–	<0.0001
Anterior crowding, lack of space	14,055	61; 6915; 1190	1 (reference)	–
No anterior crowding	–	–	(0.0350)	
≤½ lateral incisor width	2202	11; 531; 6	0.84 (0.68–1.03)	0.0958
>½ ≤ 1 lateral incisor width	388	0; 69; 0	0.68 (0.45–1.03)	0.0660
>1 lateral incisor width	30	0; 6; 0	0.63 (0.18–2.26)	0.4824
Ectopic canines	214	3; 35; 0	1.25 (0.8–1.95)	0.3229
Anterior spacing	493	3; 85; 5	0.24 (0.17–0.33)	<0.0001
Space conditions in the posterior region	–	–	–	<0.0001
Posterior crowding	2675	9; 1418; 115	0.57 (0.49–0.66)	<0.0001
Posterior spacing	444	0; 197; 57	0.69 (0.5–0.95)	0.0230
Vertical overbite	–	–	–	0.0412
Anterior open bite	–	–	(0.0073)	
No	16,507	72; 7461; 1193	1 (reference)	–
≤3 mm	136	0; 46; 2	2.08 (1.19–3.61)	0.0096
>3 mm	32	0; 14; 1	2.19 (0.74–6.51)	0.1582
Anterior edge to edge bite	307	3; 74; 6	0.90 (0.6–1.35)	0.6272
Deep anterior overbite	–	–	–	(0.0441)
No	15,519	64; 7207; 1176	1 (reference)	–
Without gingival contact	819	7; 217; 15	1.23 (0.95–1.60)	0.1179
With gingival contact	337	1; 97; 5	1.39 (0.95–2.04)	0.0888
Sagittal overjet	–	–	–	0.0325
Retroclination upper incisors	734	5; 353; 11	0.91 (0.71–1.16)	0.4492
Anterior crossbite	297	3; 67; 4	1.05 (0.66–1.69)	0.8249
Negative overjet	54	0; 18; 2	2.17 (0.84–5.62)	0.1107
Increased sagittal overjet	–	–	–	(0.0090)
No	15,114	66; 7073; 1171	1 (reference)	–
4–6 mm	1.182	5; 338; 17	1.31 (1.05–1.64)	0.0191
>6 mm	379	1; 110; 8	1.45 (1.00–2.11)	0.0517
Lateral malocclusions	–	–	–	0.0051
Lateral crossbite	1670	13; 891; 202	1.16 (0.94–1.43)	0.1742
Buccal nonocclusion	158	0; 82; 6	0.54 (0.33–0.87)	0.0116
Lateral open bite	–	–	–	(0.1119)
No	16,559	71; 7457; 1183	1 (reference)	–
≤3 mm	106	1; 58; 11	1.61 (0.77–3.39)	0.2085
>3 mm	10	0; 6; 2	3.47 (0.34–35.3)	0.2932
Lateral edge to edge bite	1885	11; 997; 238	1.21 (0.99–1.47)	0.0624
Sagittal intermaxillary relationship in the canine region	–	–	–	0.0200
Distal occlusion	–	–	–	(0.0047)
Neutral or mesial occlusion	8626	53; 3813; 556	1 (reference)	–
that associations between caries and malocclusion depend on the kind of malformation. Anterior open bite (OR = 2.08, CI: 1.19–3.61), increased sagittal overjet (OR = 1.31, CI: 1.05–1.64) and distal occlusion (OR = 1.31, CI: 1.06–1.63) were positively associated with caries, whereas spacing, posterior crowding and buccal nonocclusion were negatively associated. Caries and malocclusion, however, were not far reaching associated. Anterior crowding was not associated with caries nor displayed higher plaque scores compared to no crowding. Causality of the detected associations have to be examined in longitudinal analyses.

Acknowledgements All contributions to the SHIP data collection by dental and medical examiners, technicians, interviewers and assistants are gratefully acknowledged.

Funding This study is part of the Community Medicine Research net (CMR) of the University of Greifswald, Germany, which is funded by the German Federal Ministry of Education and Research (BMBF grant no. 01ZZ9603), the Ministry of Cultural Affairs as well as the Social Ministry of the Federal State of Mecklenburg–West Pomerania. The CMR comprises several research projects that share data of the population-based Study of Health in Pomerania (SHIP) (www.medizin.uni-greifswald.de/cm).

Funding Open Access funding enabled and organized by Projekt DEAL.

Compliance with ethical guidelines

Conflict of interest O. Bernhardt, K.-F. Krey, A. Daboul, H. Völzke, C. Splieth, T. Kocher and C. Schwahn declare that they have no conflict of interest and no competing interest.

Ethical standards All procedures performed in this study were in accordance with the ethical standards of the Medical Ethics Committee, University Medicine Greifswald, and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Approval was granted by the Medical Ethics Committee, University Medicine Greifswald. Written informed consent was obtained from all individual participants included in the study.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes...
References

1. Addy M, Griffiths GS, Dummer PM, Kingdon A, Hicks R, Hunter ML, Newcombe RG, Shaw WC (1988) The association between tooth irregularity and plaque accumulation, gingivitis, and caries in 11–12-year-old children. Eur J Orthod 10:76–83
2. Alsulaiman AA, Briss DS, Parsi GK, Will LA (2019) Association between incisor irregularity and coronal caries: a population-based study. Am J Orthod Dentofacial Orthop 155:372–379. https://doi.org/10.1016/j.ajodo.2018.04.029
3. Andrews LF (1972) The six keys to normal occlusion. Am J Orthod 62:296–309
4. Bernhardt O, Krey KF, Daboul A, Volzke H, Kindler S, Kocher T, Schwahn C (2019) New insights in the link between malocclusion and periodontal disease. J Clin Periodontol 46:144–159. https://doi.org/10.1111/jcpe.13062
5. Bock NC, Saffar M, Hudel H, Evalahti M, Heikinheimo K, Rice DPC, Ruf S (2018) Long-term effects of class II orthodontic treatment on oral health. J Orofac Orthop 79:96–108. https://doi.org/10.1007/s00056-018-1025-5
6. Bollen AM, Cunha-Cruz J, Bakko DW, Huang GJ, Hujoel PP (2008) The effects of orthodontic therapy on periodontal health: a systematic review of controlled evidence. J Am Dent Assoc 139:413–422
7. Borzabadi-Farahani A, Eslamipour F, Asgari I (2011) Association between orthodontic treatment need and caries experience. Acta Odontol Scand 69:2–11. https://doi.org/10.3109/00016357.2010.516732
8. Bundesrechnungshof (2018) Bemerkungen 2017 zur Haushalts- und Wirtschaftsführung des Bundes. Ergänzungsband
9. Cernei ER, Maxim DC, Zegan G (2016) The study of the association of decay risk with malocclusions in mixed dentition at children from northeast Romania. A transversal retrospective study. Rev Med Chir Soc Med Nat Iasi 120:932–941
10. Cirulli N, Cantore S, Ballini A, Perillo L, Giannico OV, Tafuri S, De Vito D (2019) Prevalence of caries and dental malocclusions in the Apulian paediatric population: an epidemiological study. Eur J Paediatr Dent 20:100–104. https://doi.org/10.23804/ejp.2019.20.02.03
11. Davies TM, Shaw WC, Addy M, Dummer PM (1988) The relationship of anterior overjet to plaque and gingivitis in children. Am J Orthod Dentofacial Orthop 93:303–309
12. Dogramaci EJ, Brennan DS (2019) The influence of orthodontic treatment on dental caries: an Australian cohort study. Community Dent Oral Epidemiol. https://doi.org/10.1111/cdoe.12446
