Linear Matrix Inequalities for Ultimate Boundedness of Dynamical Systems with Conic Uncertain/Nonlinear Terms

Behçet Açıkmese
Department of Aerospace Engineering and Engineering Mechanics
The University of Texas at Austin, USA
June 9, 2015

Abstract
This note introduces a sufficient Linear Matrix Inequality (LMI) condition for the ultimate boundedness of a class of continuous-time dynamical systems with conic uncertain/nonlinear terms.

1 Introduction
This note introduces an LMI [1] result for the ultimate boundedness of dynamical systems with conic uncertain/nonlinear terms. Earlier research developed necessary and sufficient conditions for quadratic stability for systems with similar characterizations for uncertainties and nonlinearities [2, 3, 4, 5, 6, 7]. Incremental version of these characterizations are used in the synthesis of nonlinear observers [8, 9, 10, 11, 12, 13, 14] and to design robust Model Predictive Control (MPC) algorithms [15, 16, 17, 18]. The following results first appeared in [17].

Notation: The following is a partial list of notation used in this paper: $Q = Q^T > (\geq) 0$ implies Q is a positive-(semi-)definite matrix; $Co\{G_1, \ldots, G_N\}$ represents the convex hull of matrices G_1, \ldots, G_N; \mathbb{Z}^+ is the set of non-negative integers; $\|v\|$ is the 2-norm of the vector v; $\lambda_{\text{max}}(P)$ and $\lambda_{\text{min}}(P)$ are maximum and minimum eigenvalues of symmetric
matrix P; $\mathcal{E}_P := \{ x : x^T P x \leq 1 \}$ is an ellipsoid (possibly not bounded) defined by $P = P^T \geq 0$; for a bounded signal $w(\cdot)$, $\|w\|_{[t_1,t_2]} := \sup_{\tau \in [t_1,t_2]} \|w(\tau)\|$; for a compact set Ω, $\text{diam}(\Omega) := \max_{x,y \in \Omega} \|x - y\|$; and, for $V : \mathbb{R}^N \to \mathbb{R}$, $\nabla V = [\partial V/\partial x_1 \ldots \partial V/\partial x_n]$. A set Ω is said to be invariant over $[t_0, \infty)$ for $\dot{x} = f(x,t)$ if: $x(t_0) \in \Omega$ implies that $x(t) \in \Omega$, $\forall t \geq t_0$. Ω is also attractive if for every $x(t_0)$, $\lim_{t \to \infty} \text{dist}(x(t), \Omega) = 0$.

2 A General Analysis Result on Ultimate Boundedness

The following lemma gives a Lyapunov characterization for the ultimate boundedness of a nonlinear time-varying system, which is used in the proof of main result.

Lemma 1. Consider a system with state η and input σ described by

$$\dot{\eta} = \phi(t, \eta, \sigma), \quad t \geq t_0. \quad (1)$$

Suppose there exists a positive definite symmetric matrix P with, $V(\eta) = \eta^T P \eta$, and a continuous function W such that for all η, σ and $t \geq 0$

$$\dot{V} = 2 \eta^T P \phi(t, \eta, \sigma) \leq -W(\eta) < 0 \quad \text{when} \quad \eta^T P \eta > \|\sigma\|^2. \quad (2)$$

Then for every bounded continuous input signal $\sigma(\cdot)$, the ellipsoid $\mathcal{E} := \{ \eta : \eta^T P \eta \leq \|\sigma(\cdot)\|^2_{[t_0,\infty)} \}$ is invariant and attractive for system (1). Furthermore, for any solution $\eta(\cdot)$ we have

$$\limsup_{t \to \infty} [\eta(t)^T P \eta(t)] \leq \|\sigma(\cdot)\|^2_{[t_0,\infty)}. \quad (3)$$

See [19] for a proof of the above lemma.

3 Analysis of Systems with Conic Uncertainty/Nonlinearity

In this section we consider the following system

$$\dot{x} = Ax + Ep(t, x) + Gw \quad (4)$$
where x is the state, p represents the uncertain/nonlinear terms, and w is a bounded disturbance signal, and $p \in F(M)$ with

$$q = C_q x + Dp. \quad (5)$$

To define $p \in F(M)$, let

$$F(M) := \{ \phi : \mathbb{R}^{n_q+1} \to \mathbb{R}^{n_p} : \phi \text{ satisfies QI (7)} \}.$$

(6)

where the following QI (Quadratic Inequality) is satisfied

$$\begin{bmatrix} q \phi(t,v) \\ \phi(t,v) \end{bmatrix}^T M \begin{bmatrix} q \\ \phi(t,v) \end{bmatrix} \geq 0, \quad \forall M \in M, \quad \forall v \in \mathbb{R}^{n_q}, \quad \text{and} \quad \forall t. \quad (7)$$

where M is a set of symmetric matrices.

The following condition, which is instrumental in the control synthesis, is assumed to hold for the incrementally-conic uncertain/nonlinear terms.

Condition 1. There exist a nonsingular matrix T and a convex set \mathcal{N} of matrix pairs (X, Y) with $Y \in \mathbb{R}^{n_p \times n_p}$ and X, Y symmetric and nonsingular such that for each $(X, Y) \in \mathcal{N}$, the matrix

$$M = T^T \begin{bmatrix} X^{-1} & 0 \\ 0 & -Y^{-1} \end{bmatrix} T \in M \quad \text{with} \quad T = \begin{bmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{bmatrix}, \quad (8)$$

where $T_{22} + T_{21}D$ is nonsingular, $T_{21} \in \mathbb{R}^{n_p \times n_q}$ and $T_{22} \in \mathbb{R}^{n_p \times n_p}$. Furthermore, the set \mathcal{N} can be parameterized by a finite number of LMIs.

It is also assumed that the set of multipliers \mathcal{M} satisfies Condition 1. The following theorem, the main result of this note, presents an LMI condition guaranteeing ultimate boundedness of all the trajectories of the system (4).

Theorem 1. Consider the system given by (4) with $p \in F(M)$ where the multiplier set \mathcal{M} satisfies Condition 1. Suppose that there exist $Q = Q^T > 0$, $(X, Y) \in \mathcal{N}$, $\lambda > 0$, and $R = R^T > 0$ such that the following matrix inequality holds

$$\begin{bmatrix} (A - E \Gamma^{-1} T_{21} C_q) Q + Q (A - E \Gamma^{-1} T_{21} C_q)^T + \lambda Q + R & E \Gamma^{-1} Y & Q C_q \Sigma \Sigma^T & G \\ Y \Gamma^{-T} E^T & -Y & Y \Lambda^T & 0 \\ \Sigma C_q Q & \Lambda Y & -X & 0 \\ G^T & 0 & 0 & -\lambda I \end{bmatrix} \leq 0 \quad (9)$$

3
where

\[\Gamma = T_{21}D + T_{22}, \quad \Lambda = (T_{11}D + T_{12})\Gamma^{-1}, \quad \Sigma = T_{11} - (T_{11}D + T_{12})\Gamma^{-1}T_{21}. \]

Then, letting \(V(x) := x^TQ^{-1}x \), we have

\[\dot{V}(x) + x^TQ^{-1}RQ^{-1}x \leq 0, \quad \forall V(x) \geq \|\omega\|^2. \tag{10} \]

Proof. First pre- and post-multiply (9) by

\[
\begin{bmatrix}
I & 0 & 0 & 0 \\
0 & I & 0 & 0 \\
0 & 0 & 0 & I \\
0 & 0 & I & 0
\end{bmatrix}
\]

and then pre- and post-multiply the resulting matrix inequality with \(\text{diag}(Q^{-1}, Y^{-1}, I, I) \) to obtain

\[
\begin{bmatrix}
Q^{-1}(A - ET^{-1}T_{21}C_q) + (A - ET^{-1}T_{21}C_q)^TQ^{-1} & Q^{-1}E \Gamma^{-1} & 0 & C_q\Sigma^T \\
\Gamma^{-T}E^TQ^{-1} & -Y^{-1} & 0 & \Lambda^T \\
G^TQ^{-1} & 0 & -\lambda I & 0 \\
\Sigma C_q & \Lambda & 0 & -X
\end{bmatrix} \leq 0
\]

By using Schur complements the above inequality implies that

\[
\begin{bmatrix}
Q^{-1}(A - ET^{-1}T_{21}C_q) + (A - ET^{-1}T_{21}C_q)^TQ^{-1} + \lambda Q^{-1} + Q^{-1}RQ^{-1} & Q^{-1}E \Gamma^{-1} & 0 & Q^{-1}G \\
\Gamma^{-T}E^TQ^{-1} & -Y^{-1} & 0 & \Lambda^T \\
G^TQ^{-1} & 0 & -\lambda I & 0 \\
\Sigma C_q & \Lambda & 0 & -X
\end{bmatrix} \leq 0
\]

which then implies that

\[
\begin{bmatrix}
Q^{-1}(A - ET^{-1}T_{21}C_q) + (A - ET^{-1}T_{21}C_q)^TQ^{-1} + \lambda Q^{-1} + Q^{-1}RQ^{-1} & Q^{-1}E \Gamma^{-1} & 0 & Q^{-1}G \\
\Gamma^{-T}E^TQ^{-1} & 0 & 0 & \Lambda^T \\
G^TQ^{-1} & 0 & -\lambda I & 0 \\
\Sigma C_q & \Lambda & 0 & -X
\end{bmatrix} \leq 0
\]

\[
\begin{bmatrix}
\Sigma C_q & \Lambda & 0 \\
0 & I & 0
\end{bmatrix}^T \begin{bmatrix}
X^{-1} & 0 \\
0 & -Y^{-1}
\end{bmatrix} \begin{bmatrix}
\Sigma C_q & \Lambda & 0 \\
0 & I & 0
\end{bmatrix} \leq 0.
\]

4
Now post- and pre-multiply the earlier matrix inequality with the following matrix and its transpose

$$
\begin{bmatrix}
I & 0 & 0 \\
T_{21}C_q & \Gamma & 0 \\
0 & 0 & I
\end{bmatrix}
$$

to obtain

$$
\begin{bmatrix}
Q^{-1}A + A^TQ^{-1} + \lambda Q^{-1} + Q^{-1}RQ^{-1} & Q^{-1}E & Q^{-1}G \\
E^TQ^{-1} & 0 & 0 \\
G^TQ^{-1} & 0 & -\lambda I
\end{bmatrix}\
\begin{bmatrix}
C_q & 0 & 0 \\
T_{21}C_q & \Gamma & 0 \\
0 & 0 & I
\end{bmatrix}^T
\begin{bmatrix}
\Sigma & \Lambda \\
0 & I
\end{bmatrix}^T
\begin{bmatrix}
X^{-1} & 0 \\
0 & -Y^{-1}
\end{bmatrix}\
\begin{bmatrix}
\Sigma & \Lambda \\
0 & I
\end{bmatrix}
\begin{bmatrix}
C_q & 0 & 0 \\
T_{21}C_q & \Gamma & 0
\end{bmatrix} \leq 0,
$$

where

$$
\begin{bmatrix}
\Sigma & \Lambda \\
0 & I
\end{bmatrix}^T
\begin{bmatrix}
C_q & 0 & 0 \\
T_{21}C_q & \Gamma & 0
\end{bmatrix} =
\begin{bmatrix}
T_{11}C_q & T_{11}D + T_{12} & 0 \\
T_{21}C_q & T_{21}D + T_{22} & 0
\end{bmatrix} = T
\begin{bmatrix}
C_q & D & 0 \\
0 & I & 0
\end{bmatrix}.
$$

By using Condition Π,

$$
M = T^T
\begin{bmatrix}
X^{-1} & 0 \\
0 & -Y^{-1}
\end{bmatrix} \in \mathcal{M}
$$

This implies that, for some $M \in \mathcal{M}$, we have

$$
\begin{bmatrix}
Q^{-1}A + A^TQ^{-1} + \lambda Q^{-1} + Q^{-1}RQ^{-1} & Q^{-1}E & Q^{-1}G \\
E^TQ^{-1} & 0 & 0 \\
G^TQ^{-1} & 0 & -\lambda I
\end{bmatrix} +
\begin{bmatrix}
C_q & D & 0 \\
0 & I & 0
\end{bmatrix}^T
\begin{bmatrix}
C_q & D & 0 \\
0 & I & 0
\end{bmatrix} \leq 0.
$$

Pre- and post-multiplying the above inequality with $[x^T \ p^T \ w^T]$ and its transpose and using $V = x^TQ^{-1}x$, we obtain

$$
2x^TQ^{-1}(Ax + Ep + Gw) + x^TQ^{-1}RQ^{-1}x + \lambda(V - ||w||^2) +
\begin{bmatrix}
q \\
p
\end{bmatrix}^T
\begin{bmatrix}
q \\
p
\end{bmatrix} \leq 0, \text{ for all } \begin{bmatrix}
x \\
p \\
w
\end{bmatrix}.
$$

Since $p \in \mathcal{F}(\mathcal{M})$ with $q = Cx + Dp$, by using the S-procedure Π, the above inequality implies that the system \mathcal{H} satisfies: $\dot{V} \leq -x^TQ^{-1}RQ^{-1}x < 0, \ \forall V \geq ||w||^2$. \blacksquare
The following corollary gives a matrix inequality condition for the quadratic stability of the system (10) (when $w = 0$), that is, existence of a quadratic Lyapunov function $V = x^T P x$ proving the exponential stability by establishing

$$
\dot{V} + x^T Q^{-1} R Q^{-1} x \leq 0 \quad (11)
$$

for all trajectories of the system (10). The proof of the lemma follows from a straight adaption of the proof of Theorem 1.

Corollary 1. Consider the system given by (4) with $w \equiv 0$ and $p \in \mathcal{F}(\mathcal{M})$ where the multiplier set \mathcal{M} satisfies Condition 1. Suppose that there exist $Q = Q^T > 0$, $(X, Y) \in \mathcal{N}$ and $\lambda > 0$ such that the following matrix inequality holds

$$
\begin{bmatrix}
(A - E \Gamma^{-1} T_{21} C_q) Q + Q (A - E \Gamma^{-1} T_{21} C_q)^T + R & E \Gamma^{-1} Y & Q C_q^T \Sigma^T \\
Y \Gamma^{-T} E^T & -Y & Y \Lambda^T \\
\Sigma C_q Q & \Lambda Y & -X
\end{bmatrix} \leq 0 \quad (12)
$$

where Γ, Σ, Λ are as given in Theorem 1. Then the system (4) is quadratically stable with a Lyapunov function $V = x^T Q^{-1} x$ and all the trajectories satisfy

$$
V(x(t)) \leq V(x(t_0)), \quad \forall t \geq t_0, \quad (13)
$$

$$
\dot{V}(x) + x^T Q^{-1} R Q^{-1} x \leq 0, \quad \forall x. \quad (14)
$$

References

[1] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. *Linear Matrix Inequalities in System and Control Theory*. SIAM, 1994.

[2] B. Açıkmeşe and M. Corless. Stability analysis with quadratic Lyapunov functions: Some necessary and sufficient multiplier conditions. *System and Control Letters*, 57:78–94, 2008.

[3] V. Balakrishnan. Construction of lyapunov functions in robustness analysis with multipliers. *Proceedings of the Conference on Decision and Control*, pages 2021–2025, 1994.
[4] V. Balakrishnan and L. Kashyap. Robust stability and performance analysis of uncertain systems using linear matrix inequalities. *Journal of Optimization Theory and Applications*, 100(3):457 – 478, 1999.

[5] V. A. Yakubovich. Solution of certain matrix inequalities occurring in the theory of automatic control. *Dokl. Acad. Nauk. SSSR*, 149(2):1304–1307, 1963.

[6] A. Rantzer. On the kalman-yakubovich-popov lemma. *System and Control Letters*, 28(41):7–10, 1996.

[7] S. M. Swei. Quadratic stabilization of uncertain systems: Reduced gain controllers, order reduction, and quadratic controllibility. *Ph. D. Thesis, Purdue University*, 1993.

[8] M. Arcak and P. Kokotovic. Observer-based control of systems with slope-restricted nonlinearities. *IEEE Transactions on Automatic Control*, AC-46(7):1146–1150, 2001.

[9] M. Arcak and P. Kokotovic. Nonlinear observers: A circle criterion design and robustness analysis. *Automatica*, 37(12):1923–1930, 2001.

[10] M. Arcak and P. Kokotovic. Feasibility conditions for circle criterion designs. *System and Control Letters*, 42:405–412, 2001.

[11] B. Açıkmeşe. *Stabilization, Observation, Tracking and Disturbance Rejection for Uncertain/Nonlinear and Time-Varying Systems*. PhD thesis, Purdue University, December 2002.

[12] Ashwin P Dani, Soon-Jo Chung, and Seth Hutchinson. Observer design for stochastic nonlinear systems using contraction analysis. In *CDC*, pages 6028–6035, 2012.

[13] Behçet Açıkmeşe and Martin Corless. Observers for systems with nonlinearities satisfying an incremental quadratic inequality. In *American Control Conference, 2005. Proceedings of the 2005*, pages 3622–3629. IEEE, 2005.

[14] Behçet Açıkmeşe and Martin Corless. Observers for systems with nonlinearities satisfying incremental quadratic constraints. *Automatica*, 47(7):1339–1348, 2011.
[15] Behçet Açıkmese and JM Carson. A nonlinear model predictive control algorithm with proven robustness and resolvability. In Proceedings of the American control conference, pages 887–893, 2006.

[16] JM Carson and Behçet Açıkmese. A model predictive control technique with guaranteed resolvability and required thruster silent times for small-body proximity operations. In Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit, 2006.

[17] Behçet Açıkmese, John M Carson, and David S Bayard. A robust model predictive control algorithm for incrementally conic uncertain/nonlinear systems. International Journal of Robust and Nonlinear Control, 21(5):563–590, 2011.

[18] John M. Carson, Behçet Açıkmese, Richard M Murray, and Douglas G MacMartin. A robust model predictive control algorithm augmented with a reactive safety mode. Automatica, 49(5):1251–1260, 2013.

[19] B. Açıkmese and M. Corless. Robust tracking and disturbance rejection of bounded rate signals for uncertain/non-linear systems. International Journal of Control, 76(11):1129–1141, 2003.