Reliable Method and Multistage Process Involved in the Production of Activated Carbon Based on Raw Material- A Systematic Review

S Muzarpaar1, A M Leman1*, K A Rahman2 and S Z A Rahim3

1Occupational Safety, Health and Working Environment (OSH-WE) Research Group, University of Tun Hussein Onn Malaysia (UTHM), Higher Education Hub of Pagoh, KM 1, 84600, Muar, Johor, Malaysia
2Department of Petro Chemical, Politeknik Tun Syed Nasir (PTSN), Higher Education Hub of Pagoh, KM 1, 84600, Muar, Johor, Malaysia
3Green Design and Manufacture Research Group, Centre of Excellence Geopolymer and Green Technology (CEGeoGTech), Universiti Malaysia Perlis, 01000 Kangar, Perlis, Malaysia

*E-mail: mutualib1480@gmail.com

Abstract. Activated carbon (AC) has versatile usage in modern days for water treatment, air filtration and for multipurpose adsorption. Carbonaceous material with highly developed porosity known as AC after some process took place. AC also known as artificial materials characterized by the high surface area and the extensive surface chemistry. Significant adsorptive properties of the materials according to extensive surface chemistry which are responsible for the surface properties. Nowadays, AC are widely used in a large range of applications, for example medical uses, catalysis, gas storage, removal of pollutants and odors, gas separation and purification. Important Character for based materials of AC, it must accessible, affordable price, and with valorization potential in agricultural residues and industrial base. The most important raw materials for the production of AC is lignocellulosic materials. Over the time researcher around the world conducting research to improvised and perfecting the method for producing the AC. The aim of this paper is to critical review the reliable method for AC production. The process involved in the production of activated were pre- carbonization process (PCP), carbonization process (CP), and activation process (AP). Carbonization either using furnace or microwave. For AP, there are two main activation used namely chemical activation (CA) and physical activation (PA). However there also combination of chemical and physical activation which called physiochemical activation (PCA).

1. Introduction
Activated carbon (AC) has versatile usage in modern days for water treatment, air filtration and also for multipurpose adsorption applications. AC is a carbon-based material that undergoes several types of process which eventually develop high porosity that could be function as adsorbent and catalyst [1]. João M. Valente Nabais et al. stated that, AC are materials which characterized by mean of high surface area with weak van der waal’s forces surrounding them [2]. Nowadays, AC become the high significant usage and widely used especially in the area of medication, pollutant and odour removal, catalysis, gas storage, separation of gas and purification. Characteristic for based materials of AC must affordable, accessible
and with valorization potential, such as agricultural residues and industrial [3]. The production of 300,000 tons/year of AC were reported, as the result of corresponding usage of this material. General domestic application, metal ore processing, and removal of both organic and inorganic trace contaminants makes AC considered as one of the best available technology for this particular area [4].

2. Production flow process of activated carbon
There is a lot of technique to make an AC, but the common process is shown in Figure 1.

![Figure 1. The general flow process of activated carbon production.](image)

2.1. Pre- Carbonization process
Pre carbonization process (PRB) is an optional process. The process include in pre carbonization process were, raw material selection, material cleaning, and drying the material before proceed with the carbonization process. To remove the excessive dirt that stick to the material surface, the raw material were cleaned intensively by using distilled water. The precursor then heated at 110 °C until dried, with sized of 4 mm [5]. For material selection, certain criteria should be followed such as the availability of material and cost of material. Meanwhile drying of the material before carbonization process will helps in reducing the moister content [6].

2.2. Carbonization/ burning process of activated carbon
Carbonization process (CP) was describe by many researchers as the process of burning the raw materials with specific temperature to convert them into charcoal. CP could be done either using furnace, microwave or any device that generate heat. Carbonization of any biomass will produce charcoal, that later on be activate using chemical reagent to obtain AC [7]. Charcoal or the carbon based can be retrieved throughout carbonization process in electrical tubular furnace at 450 °C with a ramp temperature 10 °C/min, after that it will be cooled to room temperature, washed and dried under vacuum at 70 °C for the period of 24 hours [8].

2.2.1. Carbonization using furnace. The process of carbonization using furnace were the most dominant method for converting the raw material to charcoal. Usually this method involved in high
temperature usage under controlled environment. Continuous flow of nitrogen gas with the
temperature of 700°C using vertical furnace were used to carbonize the agricultural wastes [9]. Before
activation process, the precursor will leaved for a while in the furnace for cooling purposed. Hence,
the carbon or charcoal were soak into activated agents such as H₃PO₄, HNO₃, K₂CO₃, NaOH or KOH [10].

![Diagram of AC process]

Figure 2. The process of AC using furnace with physical activation [13].

These processes were supported by other researcher which mention in production of AC the CP of
the bamboo particles were heated to 500 °C [11]. Furthermore, to obtained large amount of charcoal,
CP must be conducted with the absence of oxygen in temperature range between 600–900 °C, with
the absence of oxygen. The absence of oxygen surrounding can be achieve by purging the inert gas such
as argon or nitrogen inside the furnace [12]. Figure 2 show the process of AC furnace with physical
activation.

2.2.2. **Carbonization using microwave.** Method for carbonization of carbon can be done using
microwave [14]. Dipolar and interfacial polarization effect resulting from the material receiving
energy. The process will determine the successful rate of dielectric mechanism. Dipolar polarization
occurs when water molecule rotates and align in both permanent at certain frequency cause by the
electric component of microwave. Microwave heating and heat loss were the result from molecular
rotation and moving throughout the increase of friction and collision generated by molecule.
Indication of volumetric characteristic and uniformity of microwave were generally describe as the
higher of the induced polarity. It is the main and important characteristic for the influence of
microwave [15, 16]. From the preliminary experiment the performance of different microwave heating
time and temperature condition were selected. Recently, Microwave assisted pyrolysis for AC
preparation commonly reported as a reliable process [17]. Shorter treatment time which is less than 10
minutes show the microwave heating advantages as compared to conventional heating, simultaneously
reduce the energy consumption and expenses during the pyrolysis process [18, 19]. The biomass will
never have direct contact with the radiation sources using microwave heating [20]. Figure 2 show the
Activated carbon Preparation conventional and microwave technique [21]. Figure 3 show the AC
preparation using conventional and microwave technique.

3. ** Activation process**
Activation of AC is a process whereby the enhancement of pore structure in AC, this pore will
determine the adsorption of the AC. The higher the pore formation the higher the adsorption power.
Activation process will highly determine the dependency of pore structure and adsorption properties of
AC [22]. Physical activation (PA) and chemical activation (CA) were the common method to produce AC. PA of AC consists of two steps. Elimination of oxygen and hydrogen content through carbon base pyrolysis material at high temperature with the absence of oxygen were the first step in PA. The second step involved is activation process.

![Diagram of AC preparation using conventional and microwave technique](image)

Figure 3. AC preparation using conventional and microwave technique [21].

The charcoal in the present of CO$_2$ or steam which will act as oxidizing agent at a certain high temperature. Throughout endothermic reaction, structure of porous of the carbon were extracted by these agents. The usage of gas phase entirely in these activation methods formally known as thermal or PA [23]. The example of PA reactions are as follow:

$$C + CO_2 \rightarrow 2CO$$ \hspace{1cm} (1)

$$C + H_2O \rightarrow CO + H_2$$ \hspace{1cm} (2)

CA will generate porosity of carbon by mean of the treated of the material base with chemical reagent. It was followed by heat treatment during CP. For lignocellulosic and cellulosic ACs precursor, most common dehydrating agent were phosphoric acid and zinc chloride [24]. Single step activation process at low temperature can be accomplish by carrying out thermal decomposition normally using dehydration agents. Among the necessary process for the ACs preparation were base and acid washing at first and last process respectively. Surface area and pore volume could be improved effectively by the base-leaching procedure. Residual activating agent could be cleaned using the acid-washing procedure [25]. Example of the reaction for chemical activation are as follow:

$$C + 2KOH \rightarrow 2K + H_2 + CO_2$$ \hspace{1cm} (3)

$$C + 2KOH \rightarrow 2K + H_2O + CO$$ \hspace{1cm} (4)

$$CO_2 + 2KOH \rightarrow K_2CO_3 + H_2O$$ \hspace{1cm} (5)
Physiochemical activation (PCA) were the correlation process between PA and CA. These complex processes encourage formation of AC with different chemical characteristics and textural from single activation method [26]. Pore blockage after washing due to eliminated chemical agent can be solved through PCA process. In order to promote the pore formation, present of steam and CO₂ was important using further gasification. The combination reaction are as follow:

\[\text{CO}_2 + 2\text{KOH} \rightarrow \text{K}_2\text{CO}_3 + \text{H}_2\text{O} \quad (6)\]
\[\text{H}_2\text{O} + \text{C} + 2\text{KOH} \rightarrow \text{K}_2\text{CO}_3 + \text{H}_2 \quad (7)\]

3.1. Physical activation (PA)
PA of AC was conducted without using any chemical reaction there were many techniques for these types of activation. Due to low reactivity at high temperature PA make easier, the usage of CO₂ was preferred among researcher. CO₂ and steam play different role in PA, CO₂ will excite the formation of microporosity whereas, the steam will encourage microporosity widening. Gasifying agent in PA plays a major role in development of the micropores structure depending on partial pressure and activation condition. For high grade of AC produced, both carbon dioxide and steam can be acting as suitable activation agent. [27]. Removing the oxygen during carbonization process at specific temperature by purging the inert gas can also be classified as PA.

3.2. Chemical activation (CA)
CA process were the most recognized among researcher in activating the carbon, this process occurs after the CP and involved the usage of chemical agent. Carbon containing materials usually activated using CA [28]. Process in CA begin with blending the precursor with chemical agent, then the material were heated to desired temperature for carbonization process with inert atmosphere. Dehydration and degradation of AC with the present of chemical agent helps to promote and develop the AC porosity. There were several types of chemical agent that can be used for activating the carbon such as KOH, NaOH, and ZnCl₂. Normally, considering the lower activation temperature the CA was preferable compared to PA. BET (Brunauer Emmett Teller) method determine that AC produce using CA exhibit high specific surface area with good pore formation and carbon yield [29]. Among the CA process, using KOH as chemical reagent will produce high micropore as compared to ZnCl₂ or H₃PO₄ activation.

3.3. Physical and chemical activation (PCA)
Combination of PCA would produce a better AC. Moreover, the complicated process makes these methods much difficult to produce the AC. However, this process proven to be the best method for producing the AC. It was reported that for methane adsorption, the efficient method was activating the palm oil shell using ZnCl₂ followed by CO₂ stream for extra PA [30]. Alternatively, conventional method either PA or CA can be improvised by involving the CA raw material followed by PA process for better result. With using the horizontal furnace sample was activate under CO₂ at 800 °C in range of 1 to 5 hours and finally collected sample were cleaned with ionized water and dried at 100°C for another period of 24h.

4. Conclusion
After review from the various source in, the information of reliable method of activated carbon production has been summarized. The process involved in the production of activated were pre-carbonization process, carbonization process, and activation process. Carbonization could be either using furnace or microwave. There are two main activation process respectively, physical activation (PA) and chemical activation (CA). Other than that there also combination of physical and chemical activation (PCA) which called physiochemical activation.
Acknowledgement

The authors express thanks to Faculty of Engineering Technology, University of Tun Hussein Onn Malaysia and UTHM Center for Graduate Studies (CGS). Also to Green Design and Manufacture Research Group, Center of Excellence Geopolymer and Green Technology (CEGeoGTech), UNiMAP.

5. References

[1] Zhang X, Li Y, Li G and Hu C 2015 RSC. Adv. 5 4984– 4992
[2] Valente Nabais J M, Laginhas C E C, Carrott P J M and Ribeiro Carrott M M L 2011 Fuel Processing Technology 92 234–240
[3] Activated Carbon usage retrieved from, http://www.roskill.com/reports/activated, (2008). On 1st May 2020
[4] Sekirifa M L, Hadj-Mahammeda M, Pallier S, Baameura L, Richard D and Al-Dujaili A H 2013 Journal of Analytical and Applied Pyrolysis 99 155–160
[5] Köseoǧlu E and Akmil-Baras C 2015 Advanced Powder Technology 26 811–818
[6] Hunaidah M A, Undu A, Fayanto S, Sulwan K and Setiawan Y 2019 Journal of Physics: Conference Series. 1321
[7] Hakan D, İknur D, Belgin K and Fatma T 2011 Chemical Engineering Research and Design 89 206–213
[8] Akshay J, Balasubramanian R and Madapusi P S 2015 Microporous and Mesoporous Materials 203 178–185
[9] Foo K Y and Hameed B H 2012 Chemical Engineering Journal 184 57–65
[10] Koo W K, Gani N A, Shamsuddin M S, Subki N S and Sulaiman M A 2015 Journal of Tropical Resources and Sustainable Science 3 54–60
[11] Deng S, Niea Y, Dua Z, Huanga Q, Menga P, Bin Wanga J H and Yua G 2014 Journal of Hazardous Materials 2014 282 150-157
[12] Subramani T and Revathi P K 2015 IOSR Journal of Engineering (IOSRJEN) 5 5 54-63
[13] Activated Carbon Manufacture: Steam Activation retrieved on 6th May 2020, https://www.acarbons.com/activated-carbon-manufacture-steam-activation/
[14] Wenya A, Jie F, Xiao M, Qinhao K, Chunmei R, Yang L, Hedong Z, Zuopeng G, Jing L, Guangqing L and Jianjun D 2018 Renewable and Sustainable Energy Reviews 92 958–979
[15] Fernandez Y and Menendez J A 2011 Journal of Analytical and Applied Pyrolysis 91 316–322
[16] Shoujie R, Hanwu L, Lu W, Quan B, Shulin C, Joan W, James J and Roger R 2012 Journal of Analytical and Applied Pyrolysis 94 163–169
[17] Chayid M A and Ahmed M J 2015 Journal of Environmental Chemical Engineering 3 1592-1601
[18] Hesas R H, Arami-Niya A, Daud W M A W, Sahu J N 2013a Chemical Engineering Research and Design 9 2447-2456
[19] Hesas R H, Daud W M A W, Sahu J N, Niya A A 2013b Journal of Analytical and Applied Pyrolysis 100 1–11
[20] Puchana-Rosero M J, Adebayo M A, Lima E C, Machado F M, Thue P S, Vaghetto J C P, Umpiéres C S and Gutterres M 2016 Colloids and Surfaces A: Physicochemical and Engineering Aspects 504 105-115
[21] dos Reis G S, Wilhelm M, de Almeida Silva T C, Rezwan K, Hoffmann Sampaio C, Lima E C and Guelli Ulson de Souza S M A 2016 Applied Thermal Engineering 93 590–597
[22] Arami-Niya A, Wan Daud W M A and Mjalli F S 2011 Chemical Engineering Research and Design 89 657–664
[23] Rodríguez-Reinoso M 2006 Activated Carbon Elsevier Science & Technology Books
[24] Nakagawa M S and Reinoso R 2007 Microporous Mesoporous Mater. 103 29–34
[25] Soltani N, Bahrami A, Pech-Canul M I and González L A 2015 Chemical Engineering Journal 264 899–935
[26] Bashir M J, Ibrahim N, Ismail M N and Jaya M A T Physical treatment technologies for landfill leachate: performance and limitation. Control and Treatment of Landfill Leachate for Sanitary Waste Disposal 2015 IGI Global, USA 250-285

[27] Chiung-Fen C, Ching-Yuan C and Wen-Tien T 2000 Journal of Colloid and Interface Science 232 45–49

[28] Yorgun S and Yildiz D 2015 Journal of the Taiwan Institute of Chemical Engineers 100 1–10

[29] Patil B S and Kulkarni K S 2012 International Journal Advance Engineering Research Study 1 109

[30] Arami-Niya A, Wan Daud W M A and Mjalli F S 2010 Journal of Analytical and Applied Pyrolysis 89 197–203