Remote fiber optic sensor for monitoring the radiological situation

D S Dmitrieva¹, V M Pilipova¹ and M V Diuldin², ³

¹The Bonch-Bruevich Saint Petersburg State University of Telecommunications, Saint Petersburg, Russia
²Peter the Great Saint Petersburg Polytechnic University, Saint Petersburg, 195251, Russia
³All Russian Research Institute of Phytopathology, Moscow Region 143050, Russia

E-mail: dmitrievadiana1405@gmail.com

Abstract. The necessity of remote monitoring the radiological situation in the different areas of nuclear power plants, adjacent territories, etc. is sustained. One of the most important conditions for this control is the duration of the system work (for ten or more years) without human intervention (only in a special case). It is noted that a feature of this environmental monitoring for the presence of radiation is the ability to transmit information over long distance in real time without distortion. And constant receipt of information about the value of the exposure dose in the sensor area is also important. In a case of using the system of a large number of sensors, there are no problems information processing, because it is contained in the optical signal. The design of the fiber optic communication line with using the fiber optic sensor is proposed. The measurement limits of the exposure dose of radiation are marked. The results of experimental researches of various fibers for using in these sensors are presented. The method of radiation control with their use is determined.

1. Introduction

Environmental situation in the world is one of the most discussed and actual topics [1-12]. Scientific and technological progress led to the appearance of large number of negative factors, which influence on the natural environment [11-23]. These factors mostly connect with human activities and barbaric attitude to nature [17-19, 22-34]. But there is one factor, which always increases in its volume on planet. This factor is radioactive pollution [8, 11, 23, 35-40]. People require more and more energy for their activities every year [1, 2, 4, 5, 20-23, 38-45]. Nuclear power plants (NPP) are one of the main energy sources, which provides required powers at any time [9, 11, 39, 40, 46]. Also, NPP are the source of radioactive emissions to the atmosphere, which are inevitable during their work [9, 11, 39, 40, 46]. Also, the number of industrial and scientific facilities, which work with using radioactive materials, increase in the world. Despite the creation of protecting structures and ceilings around such facilities, risk of the radioactive materials leaking into soil and water has increased. Control of radiation by different methods [11, 39-49] allows to detect it at the final formation stage. In this case the efficiency measures to prevent the consequences of radioactive pollution is reduced. It is not always possible to control it by people (fig. 1).
Moreover, it is not always possible to transfer the information about the radioactive territory state to distance. So, this is the reason, why the development of systems for remote control of the radiological situation at any time is extremely actual.

2. Research methodology and instruments
Nowadays the most effective device for controlling the radiation state of territory and facilities is multifunctional dosimeter MKS-AT1117M (fig.2).

It is difficult to integrate this device into the remote automatic radiation control system. In some cases, this device operation will depend on the temperature and humidity of the environment, in which it is located. It is also difficult to integrate another simple dosimeter into the automatic control systems for cases, when it requires to control situation on the long distance. The disadvantages of all electronics include its low resistance to the large doses of radiation influence. After such influences it functions don’t recover nothing works. Therefore, it is extremely important to endure electronic systems of devices out of the influence zone of powerful radioactive radiation.
For such purposes are best suited sensors for controlling radiological situation based on the optical fiber. Nowadays developed fiber optic sensors, which are based on the measurement changes in the laser radiation polarization under the γ-radiation influence. Such devices can register rather weak changes of the exponential radiation dose (a decrease in the laser radiation power by 0.05 dB). But, in the case of high doses, optical fiber sensors stop their work, because fiber is very sensitive to the γ-radiation influence (the optical fiber accumulates it). The relaxation processes without interventions can take 10^6 s and more, even in the case of small exposure doses of radiation. If the optical fiber is exposed to a high dose of radiation, it can’t recover to the initial state (the structure will be destroyed). So, this is the reason, why fiber optic sensors for controlling radiological situation need to be improved.

3. **Results of experimental studies and discussion.**

We have previously carried out research of the possibility of controlling the relaxation process in the optical fiber. It allowed to develop the method of the fiber optic communication lines recovery after γ-radiation influence [38, 39]. During sensors development it is necessary to find an optimal solution between its sensitivity to changes in exposure dose of radiation, resistance to powerful radiation influence and possibility to recover the optical fiber transparency.

Previously researches [38, 39] allowed to propose, as a sensor, a bundle of the optical fiber 100 m long with SiO$_2$ – GeO$_2$ core with various alloying. The sensor parameters are required to check when exposure dose of radiation will change from 0.1 to 1000 G. For optical transparency of the optical fiber, we use the additional laser radiation with wavelength $\lambda = 1310$ nm. The results of measurement of the radiation-induced losses level in sensor when exposure dose of radiation will change are showed at the fig.3.

![Figure 3](image)

Figure 3. Dependence of the radiation-induced losses α_s with exposure dose D_R at a wavelength $\lambda = 1550$ nm for a single-mode fiber with a SiO$_2$ – GeO$_2$ core at a $T = 294.2$ K. Charts 1, 2, 3 и 4 correspond to different alloying in %: 1.5; 4.0; 10.0 и 20.0.

Analysis of the results shows, that this optical fiber sensitivity is in direct proportion to the alloying percentage. It allows to register the changes of small values of the exposure dose and fix decrease of the laser radiation power at the output of the fiber optic communication line by 0.2 dB.

The obtained results confirm the work reliability of the developed sensor for controlling exposure dose of radiation in remote mode with using the method of device recovery.
4. Conclusion

Analysis of the obtained results on the change of losses in the optical fiber from the change of exposure dose confirm the possibility of using the developed sensor for environmental monitoring of radiological situation.

Highly sensitivity of sensor allows to control the background radiation changes near the radiation hazardous facilities and industries, and also in agricultural areas, where can fall the radioactive fallouts.

References

[1] Yushkova V, Kostin G, Davydov R, Dudkin V and Valiullin L 2019 IOP Conference Series: Earth and Environmental Science 390(1) 012016
[2] Nikolaev D, Chetiy V and Dudkin V 2020 IOP Conference Series: Earth and Environmental Science 578(1) 012052
[3] Grevtseva A, Davydov R, Dudkin V and Rud V 2019 Journal of Physics: Conference Series 1326(1) 012043
[4] Davydov R, Antonov V, Molodtsov D and Trebuchkin A 2018 Advances in Intelligent Systems and Computing 692 915–920
[5] Grevtseva A, Smirnov K, Greshnevivikov K, Rud V and Glinushkin A 2019 Journal of Physics: Conference Series 1368(2) 022072
[6] Grevtseva A, Smirnov K and Rud V 2018 Journal of Physics: Conference Series 1135(1) 012056
[7] Davydov R, Antonov V, Makeev S, Dudkin V and Myazin N 2019 E3S Web of Conferences 140 02001
[8] Gryzrnova E, Grebenikova N, Ivanov D and Bykov V 2019 IOP Conference Series: Earth and Environmental Science 390(1) 012044
[9] Davydov V 1999 Russian Physics Journal 42(9) 822–825
[10] Fadeenko V, Fadeenko I, Dudkin V and Nikolaev D 2019 IOP Conference Series: Earth and Environmental Science 390(1) 012022
[11] Logunov S, Rud V, Davydov R, Moroz A and Smirnov K 2019 Journal of Physics: Conference Series 1326(1) 012024
[12] Smirnova S and Nikolaev D 2020 Journal of Physics: Conference Series 1695(1) 012136
[13] Moroz A, Cheremisin A, Meshalkin A and Semenova N 2020 IOP Conference Series: Earth and Environmental Science 578(1) 012006
[14] Lukashev N 2019 Journal of Physics: Conference Series 1236(1) 012068
[15] Valov A, Davydov R, Rud V and Grevtseva A 2019 Journal of Physics: Conference Series 1326(1) 012040
[16] Baikin A, Kaplan M, Nasakina E, Kolmakov A and Sevostyanov M. 2019 Doklady Chemistry 489(1) 261–263
[17] Kalinichenko V, Glinushkin A, Sokolov M, Bakoyev S and Il’ina L 2019 Journal of Soils and Sediments 19(6) 2717–2728
[18] Glinushkin A, Motasova E, Aysuvakova T, Beloshapkina O and Dubenok N 2019 IOP Conference Series: Materials Science and Engineering 525(1) 012102
[19] Davydov V, Nikolaev, D, Bukharov G and Pavlova Z 2020 Proceedings of the 2020 IEEE International Conference on Electrical Engineering and Photonics, EExPolytech 2020 9243948 p. 227–229
[20] Davydov V, Nikolaev, D, Moroz A, Dmitrieva D and Pilipova V 2020 AIP Conference Proceedings 2308 060005
[21] Petrichenko M, Vatin N, Nemova D, Kharkov N and Staritcyna A 2014 Applied Mechanics and Materials 627 p. 297-303
[22] Van S, Cheremisin A, Davydov R and Yushkova V 2019 E3S Web of Conferences 140 09008
[23] Davydov V, Cheremiskina A, Velichko E and Karseev A 2014 Journal of Physics: Conference Series 541(1) 012006
[24] Myazin N, Davydov V, Yushkova V and Rud V 2019 *Environmental, Research, Engineering and Management* 75(2) 28-35
[25] Logunov S, Davydov R, Vysotsky M, Dudkin V and Rud V 2019 *Journal of Physics: Conference Series* 1368(2) 022056
[26] Davydov R and Antonov V 2016 *Journal of Physics: Conference Series* 769(1) 012060
[27] Myazin N, Dudkin V, Grebenikova N, Rud’ V and Podstrigaev A 2019 *Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)* 11660 LNCS 744–756
[28] Davydov V, Dudkin V and Karseev A 2015 *Journal of Applied Spectroscopy* 82(5) 794–800
[29] Podstrigaev A, Smolyakov A and Grebenikova N 2019 *Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)* 11660 LNCS 525–533
[30] Davydov V, Dudkin V, Myazin N and Rud’ V 2018 *Instruments and Experimental Techniques* 61(1) 140–147
[31] Davydov V, Velichko E, Myazin N and Rud’ V 2018 *Instruments and Experimental Techniques* 61(1) 116–122
[32] Myazin, N.S., Yushkova, V.V., Taranda, N.I., Rud, V.Yu. 2019 *Journal of Physics: Conference Series*, 2019, 1410(1), 012130
[33] Davydov V, Velichko E, Dudkin V and Karseev A 2015 *Instruments and Experimental Techniques* 58(2) 234–238
[34] Van S, Cheremisin A, Chusov A, Switala F and Davydov R 2019 *IOP Conference Series: Earth and Environmental Science* 390(1) 012011
[35] Murgul V, Vatin N and Zayats I 2015 *Procedia Engineering* 117(1) p. 819–824
[36] Vatin N, Petrichenko M and Nemova D 2014 *Applied Mechanics and Materials* 633-634 1007–1012
[37] Davydov V, Fadeenko V, Fadeenko V, Popovskiy N and Rud V 2019 *E3S Web of Conferences* 140 07006
[38] Dmitrieva D, Pilipova V, Dudkin V and Rud V 2020 *Journal of Physics: Conference Series* 1695(1) 012130
[39] Dmitrieva D, Pilipova V, Davydov V and Valiullin L 2020 *Journal of Physics: Conference Series* 1695(1) 012130
[40] Moroz A, Malanin K, Krasnov A and Rud V 2019 *Journal of Physics: Conference Series* 1400(4) 044009
[41] Moroz A 2019 *Journal of Physics: Conference Series* 1368(2) 022024
[42] Moroz A 2019 *Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)* 11660 LNCS 710–718
[43] Moroz A, Malanin and Krasnov A 2019 *Proceedings of the 2019 Antennas Design and Measurement International Conference ADMInC 2019* 8969090 114–116
[44] Moroz A 2019 *Journal of Physics: Conference Series* 1410(1) 012212
[45] Davydov V, Fadeenko V, Fadeenko V, Popovskiy N and Rud V 2019 *E3S Web of Conferences* 140 07006
[46] Smirnov K, Glagolev S and Tushavin G 2018 *Journal Physics: Conference Series* 1124(1) 022014
[47] Smirnov K, Medzakovskiy V, Vysocheky V and Glagolev S 2017 *Journal of Physics: Conference Series* 917(6) 062019
[48] Smirnov K, Glagolev S, Rodygina N and Ivanova N 2018 *Journal of Physics: Conference Series* 1038(1) 012102
[49] Smirnov K 2019 *Journal of Physics: Conference Series* 1368(2) 022073