Semiclassical wave functions and energy levels of Bose-condensed gases in spherically symmetric traps

András Csordás¹, Robert Graham², Péter Szépfalusy³

¹ Research Group for Statistical Physics of the Hungarian Academy of Sciences, Múzeum krt. 6–8, H-1088 Budapest, Hungary
² Fachbereich Physik, Universität-Gesamthochschule Essen, 45117 Essen, Germany
³ Institute for Solid State Physics, Eötvös University, Múzeum krt. 6–8, H-1088 Budapest, Hungary, and Research Institute for Solid State Physics, P.O. Box 49, H–1525 Budapest, Hungary, (October 9, 1998)

The WKB-approximation for the Bogoliubov-equations of the quasi-particle excitations in Bose-gases with condensate is worked out in the case of spherically symmetric trap potentials on the basis of the resulting quantization rule. The excitation spectrum is calculated numerically and also analytically in certain limiting cases. It is found that the energy levels of a Bohr-Sommerfeld type quantization may be considerably shifted when the classical turning point gets close to the surface of the condensate.

03.75Fj,67.40Dh,03.65Sq

The experimental realization and study of Bose-Einstein condensates in alkali atom gases confined by magnetic traps has induced a vivid activity in the theoretical investigation of such systems (See for a recent review and for further references). From a theoretical point of view the existence of the external potential requires new methods for calculating the physical properties of the quantum gases with Bose-condensation. Our aim is to solve the Bogoliubov-equations in WKB-approximation and to determine the excitation spectrum on the basis of the resulting quantization rule.

In the Bogoliubov-theory the field operator can be expressed as a linear combination of quasiparticle creation and annihilation operators. The corresponding (nonuniform) expansion coefficients $u_j(r)$ and $v_j(r)$ obey the coupled linear Bogoliubov eigenvalue equations

$$\begin{pmatrix} \hat{H}_{HF} & -K(r) \\ -K^*(r) & \hat{H}_{HF} \end{pmatrix} \begin{pmatrix} u_j(r) \\ v_j(r) \end{pmatrix} = E_j \begin{pmatrix} u_j(r) \\ -v_j(r) \end{pmatrix}, \quad (1)$$

where j denotes one of the quasiparticle states and E_j is the corresponding quasiparticle energy. The Hartree-Fock operator \hat{H}_{HF} takes the form

$$\hat{H}_{HF} = -\frac{\hbar^2}{2m} \nabla^2 + U(r) + 2|K(r)| - \mu, \quad (2)$$

where $U(r)$ is the trap potential, μ is the chemical potential,

$$K(r) = \frac{4\pi \hbar^2 a}{m} \psi_0(r)^2 \quad (3)$$

denotes the potential-like contribution of the condensate, whose wave-function $\psi_0(r)$ is normalized as

$$\int d^3r |\psi_0(r)|^2 = N_0. \quad N_0$$

is the number of particles in the condensate and a is the s-wave scattering length. In the following we shall assume that $a > 0$. The quasiparticle amplitudes $u_j(r)$ and $v_j(r)$ are normalized according to

$$\int d^3r (u_j^*(r)u_k(r) - v_j^*(r)v_k(r)) = \delta_{jk}. \quad (4)$$

For the sake of simplicity we choose the external potential as spherically symmetric. Moreover we shall take $\psi_0(r)$ and hence also $K(r)$ as real and shall also make frequent use of the Thomas-Fermi approximation, which leads to

$$|\psi_0(r)|^2 = \begin{cases} m \frac{\mu_{TF}}{4\pi \hbar^2 a} (\mu_{TF} - U(r)) & \text{if } r < r_{TF} \\ 0 & \text{otherwise} \end{cases} \quad (5)$$

Here, $U(r_{TF}) = \mu_{TF}$ and μ_{TF} is fixed by normalization.

One can introduce spherical coordinates r, θ, ϕ and separate variables in the usual way:

$$\begin{pmatrix} u_j(r) \\ v_j(r) \end{pmatrix} = \frac{1}{r} \begin{pmatrix} u_{nl}(r) \\ v_{nl}(r) \end{pmatrix} Y_{lm}(\theta, \phi), \quad (6)$$

where j denotes the usual quantum numbers (n, l, m) for isotropic problems and the Y_{lm} are the spherical harmonics.

To solve the coupled, radial equations obtained from it is advantageous to use the linear combinations

$$G_{nl}^\pm(r) = (u_{nl}(r) \pm v_{nl}(r)), \quad (7)$$

which satisfy the uncoupled equations

$$\left(\hat{H}_{HF}^2 - K(r)^2 - E^2 \mp [\hat{H}_{HF}, K(r)] \right) G_{nl}^\pm(r) = 0. \quad (8)$$

Here $[,]$ denotes the commutator. (For brevity we have omitted the indices n and l). Furthermore, it follows from the original equations that

$$G_{nl}^\pm = \frac{1}{E} \left(\hat{H}_{HF} \pm K(r) \right) G_{nl}^\mp, \quad (9)$$

which is compatible with equations.

Now the operator \hat{H}_{HF} has the form

$$\hat{H}_{HF} = -\frac{\hbar^2}{2m} \frac{d^2}{dr^2} + U_{eff}(r), \quad (10)$$
radial Bogoliubov equations are obtained in the form
\begin{equation}
G G
\end{equation}
\begin{equation}
U_{\text{eff}}(r) = \frac{\hbar^2(l + 1)}{2m r^2} + U(r) + 2K(r) - \mu. (11)
\end{equation}
In our WKB treatment we use Langer’s rule by replacing \(l(l+1)\) by \((l+1/2)^2\). In the following \(U_{\text{eff}}(r)\) is considered as a classical potential.

We shall consider two types of solutions
\begin{equation}
G^+(r) = e^{\mp(S_0 + \frac{i}{\hbar} \tilde{S}_1 + ...)}, \quad G^-(r) = e^{-\mp(S_0 + \tilde{S}_1 + ...)}, \quad \text{(12)}
\end{equation}
with real functions \(S_0(r), S_1(r), \ldots\) and \(\tilde{S}_0(r), \tilde{S}_1(r), \ldots\) respectively. Gathering terms having different powers of \(\hbar\) one gets first order ordinary differential equations for the unknown quantities occurring in (13) and (14).

First we consider solutions of the form (12). The \(O(\hbar^0)\) equation is the classical Hamilton-Jacobi equation for the radial action \(S_0(r)\), from which one can express the classical radial momenta as
\begin{equation}
[p_r] \equiv \frac{dS_0}{dr} = \sqrt{2m(\pm \sqrt{E^2 + K^2} - U_{\text{eff}})} \quad \text{(14)}
\end{equation}
We shall assume that \(U_{\text{eff}} > 0\) in which case only the plus sign is allowed to have \(p_r\) real. This is the case for instance in the Thomas-Fermi approximation (4). We introduce the radial velocity in the usual way \(v_r = \partial H/\partial p_r\) by regarding \(E\) in (14) as the classical Hamiltonian \(H(p_r, r)\). The obtained expression (15)
\begin{equation}
v_r = \frac{\sqrt{E^2 + K^2(r)}}{E} \frac{p_r}{m}, \quad \text{(15)}
\end{equation}
reflects the peculiarity of the classical quasi particle dynamics in traps. The effective quasi-particle mass, which can be read off from (15), is energy and space-dependent. It approaches the particle mass at the boundary of the condensate, but can become much smaller yet remains non-zero even in the center of very large condensates in traps. This is a fundamental difference to the untrapped case, where the limit \(E \to 0\) can be taken, in which the quasi-particle mass vanishes.

By solving (8) with the ansatz (12) up to \(S_1\), then using (4) for \(G^-\) (r), and finally transforming back from the radial Bogoliubov equations are obtained in the form
\begin{equation}
\left(\begin{array}{c} u_{nl}(r) \\ v_{nl}(r) \end{array}\right) \simeq \text{Const} \times \left(\begin{array}{c} u_B(r) \\ v_B(r) \end{array}\right) \frac{1}{\sqrt{|v_r|}} e^{\pm \int p_r(r) \, dr}, \quad \text{(16)}
\end{equation}
where \(u_B^2 = \sqrt{1 + (K(r)/E)^2} + 1 / 2\), \(u_B^2 - v_B^2 = 1\) are the generalizations of the usual Bogoliubov-coefficients for the case without trapping potential. Note that the classical probability distribution is inversely proportional to \(|v_r|\) as expected physically.

Solutions (16) are valid in the classically allowed region, i.e., between the classical turning points \(r_{1j}\) and \(r_{2j}\) defined by the condition \(p_r(r_{1j}) = 0\), \(i = 1, 2\). We shall assume that there are two turning points only. There may be three cases. Case A: if \(r_{1j} < r_{TF} < r_{2j}\), in other words, the classical particle enters the condensate, then leaves it, and returns back again eventually. Case B: if \(r_{TF} < r_{1j} < r_{2j}\), i.e., we have only a simple classical motion in the trapping potential; Case C: if \(r_{1j} < r_{2j} < r_{TF}\), in which case the classical motion is confined to the condensate.

Next we construct solutions of the form (13) proceeding similarly as before. Using the ansatz (13) in Eq. (8), there can exist two different solutions for \(S_0\),
\begin{equation}
\left|q_r^{(i)}\right| \equiv \left|\frac{dS_0^{(i)}}{dr}\right| = 2m(U_{\text{eff}} + (-1)^i \sqrt{E^2 + K^2}), \quad i = 1, 2. \quad \text{(17)}
\end{equation}
Both signs are allowed for example in the Thomas-Fermi approximation (4). The solution for \(i = 1\) is defined only outside the classically accessible region, while the other one \((i = 2)\) is permissible for all \(r\)-values, if \(U_{\text{eff}} > 0\) (as we suppose), and represents a solution which can only occur in the two component quasi-particle dynamics. Let us define furthermore quantities \(w_r^{(i)}\) similar as in (13) by the relations
\begin{equation}
w_r^{(i)} = \frac{\sqrt{E^2 + K^2(r)}}{E} \frac{q_r^{(i)}}{m}. \quad \text{(18)}
\end{equation}
For a smooth potential \(U_{\text{eff}}(r)\) it can be shown that normalizable eigenfunctions cannot contain \(\tilde{S}_0^{(2)}\) in a WKB solution. However for states whose radial wavelength near the characteristic radius of the condensate is large compared to the width of the boundary layer there, the effective potential can no longer be treated as smooth. Furthermore, such a type of contribution must always be present in \(v(r)\) asymptotically, if the condensate is restricted to a finite region.

Let us now consider the allowed solutions in case A. Requiring normalizibility and performing turning point matching at \(r_{1j}\) one obtains
\begin{equation}
\left(\begin{array}{c} u_{nl} \\ v_{nl} \end{array}\right) \simeq \frac{C_{1j}}{\sqrt{|w_r^{(2)}|}} \left(\begin{array}{c} v_B(r) \\ -u_B(r) \end{array}\right) \frac{1}{\sqrt{|v_r|}} e^{\pm \int p_r(r) \, dr} \int_{r_{TF}} v_B(r) F(r), \quad \text{(19)}
\end{equation}
where \(j = 1\) and \(j = 2\) correspond to \(r < r_{TF}\) and \(r > r_{TF}\) respectively. \(C_{1j}\) and \(C_{2j}\) are arbitrary constants and
\begin{equation}
F(r) = \exp \left[\frac{(-1)^j}{\hbar} \int_{r_{1j}} r_{1j}^{(i)}(r) \, dr \right], \quad \text{for} \quad \left\{ \begin{array}{ll} 0 < r < r_{1j} & (j = 1), \\ r_{1j} < r < r_{2j} & (j = 2), \end{array} \right. \quad \text{(20)}
\end{equation}
and

\[F(r) = 2\sin \left[\frac{(-1)^j}{\hbar} \int_{r_{1j}}^{r_{2j}} p_r(r) \, dr + \frac{\pi}{4} \right], \]

\[Z_r = v_r, \quad \text{for} \quad \begin{cases} \quad r_{1j} < r < r_{TF} & (j = 1), \\ \quad r_{TF} < r < r_{t2} & (j = 2). \end{cases} \] (21)

Requiring that \(u(r) \), \(v(r) \) and their first derivatives are continuous at \(r_{TF} \) one gets four homogeneous linear equations for the four unknown constants. In order to get non-trivial solutions the determinant of the coefficient matrix should vanish. This leads to the semiclassical quantization rule

\[0 = -\frac{p_{A}}{\hbar} \cos \left(\frac{I_A + I_B}{\hbar} \right) + \sin \left(\frac{I_A}{\hbar} + \frac{\pi}{4} \right) \sin \left(\frac{I_B}{\hbar} + \frac{\pi}{4} \right) \]

\[\times \left(\frac{mL}{p_A^2} - \frac{(L)}{2E} \right)^2 \left(\frac{\hbar p_B^2}{2p_B^2 + \hbar mL} \right), \] (22)

where we have introduced the notations \(p_A \equiv p_r(r_{TF}) \), \(p_B \equiv q_r^{(2)}(r_{TF}) \), \(L = (\partial K/\partial r)_{TF+0} - (\partial K/\partial r)_{TF-0} \), \(I_A = \int_{r_{TF}}^{r_{t2}} p_r \, dr \), \(I_B = \int_{r_{1j}}^{r_{TF}} p_r \, dr \).

Keeping only the first term on the right hand side of (22) leads to the usual Bohr-Sommerfeld quantization rule

\[\left(n + \frac{1}{2} \right) = \frac{1}{\pi} \int_{r_{1j}}^{r_{2j}} \sqrt{2m \left(\sqrt{E^2 + K^2(r)} - U_{\text{eff}}(r) \right)} \]

(23)

with the integer radial quantum number \(n \geq 0 \) and including the Maslov-indices due to the two turning points in the radial motion. The case B can be treated in an analogous way leading to the quantization rule (22) with \(K(r) = 0 \) within the range of integration.

We discuss first the energy levels on the basis of (23) and will turn back to the consequences of the general expression (22) afterwards. To evaluate (22) we choose a harmonic potential \(U(r) = m\omega_0^2 r^2/2 \) often used in theoretical consideration (13). To distinguish between cases A and B let us use the dimensionless variables \(\tilde{J} = h\omega_0(l+1/2)/(2\mu) \), \(\tilde{E} = E/\mu \). For energies and angular momenta in the region \(1 < \tilde{J} < \tilde{E} < J^2 \) case B occurs and the energy spectrum is simply that of a harmonic oscillator shifted by \(\mu \)

\[E_{n,l}^{(osc)} = \hbar\omega_0 \left(2n + l + \frac{3}{2} \right) - \mu. \] (24)

The self-consistency condition for case B is then \(l+1/2 > 2\mu/\hbar\omega_0 + \sqrt{4\mu(2n+1)/\hbar\omega_0} \). One can check that case C, i.e., the classical motion is entirely inside the condensate, is not possible.

Considering the nontrivial case A in region \(0 < \tilde{J}^2 < \tilde{E} \) the action integral in Eq. (23) can still be performed analytically (For the details see Ref. (14)), but the result is rather cumbersome, and the energies \(E_{n,l} \) cannot be expressed explicitly. However, due to (23) the semiclassical energies fulfill the scaling relation \(E_{n,l} = \hbar\omega_0 N_{0l}(\mu/\hbar\omega_0) \). We discuss here some limiting cases. One interesting limit is when one considers the high-lying levels, i.e., when \(E_{n,l} \gg \mu \) is fulfilled. Then the main contribution to the action integral in (23) comes from the region outside of the condensate, leading to a spectrum which is almost that of a harmonic oscillator. Expanding the action integral to the next to leading correction in \(\mu/E_{n,l} \) one gets:

\[E_{n,l} = E_{n,l}^{(osc)} + \hbar\omega_0 \delta_{n,l}, \]

\[\delta_{n,l} \simeq \frac{1}{3\pi} \frac{\mu}{\hbar\omega_0} \left(2n + l + \frac{3}{2} \right)^{3/2} \left(2n + l + \frac{3}{2} - \frac{\mu}{\hbar\omega_0} \right)^{1/2}. \] (25)

This result and that of the perturbation theoretical calculation (13) agree for large \((2n + l) \) values.

The other interesting limit is the region of excitation energies small compared with the chemical potential. To reach it formally, the angular momentum and the radial quantum numbers \(n \) and \(l \) are kept fixed but \(\mu/\hbar\omega_0 \) tends to infinity. The main contribution to the radial action integral (23) comes from those \(r \) values, which are within the condensate. To leading order:

\[E_{n,l} \simeq \hbar\omega_0 \left[2n^2 + 2nl + 3n + l + 1 \right]^{1/2}. \] (26)

Our result (24) almost coincides with that of Stringari’s hydrodynamic calculation (11), except for the last constant 1 within \([...]^{1/2}\) in (24), which has an appreciable effect only on the lowest levels. It is, of course, not unexpected that a WKB approach may fail there. For somewhat higher energies at fixed but large chemical potential there is a considerable region where the two spectra calculated in WKB and in hydrodynamical approximations, respectively, overlap. For even higher energies the applicability of the hydrodynamical approach looses its validity. The task of solving (23) for \(E \) can be carried out numerically in a straightforward manner for given scattering length \(a \), trapping potential (i.e. \(\omega_0 \)) and number \(N_0 \) of atoms in the condensate, fixing the single parameter \(2\mu/\hbar\omega_0 = (15N_0a^3/\sqrt{\hbar/m\omega_0^2})^{2/5} \) on which the spectrum depends. An example of the results obtained is depicted in Figure 1.

Let us turn now to the discussion of (22). By solving (22) numerically for the energies we have found that the corrections \(\Delta E_{n,l} \) to the levels defined by (23) are small except when the classical inner turning point \(r_{1j} \) gets close to the surface of the condensate (the border between regions A, B in the \((n,l)\)-plane), in which case the radial wavenumber \(p_A \) goes to zero. \(\Delta E_{n,l} \) then becomes large but decreases rapidly when going away from
this situation. Note that in this case the classical orbits are just glancing at the surface of the condensate. The solution of the Bogoliubov equations then contains an anomalous contribution, namely, the first term on the right hand side of (13), which is exponentially localized at the surface. The effect remains even for high energies when the anomalous part of u and the usual part of v become negligible. At such energies it is generally assumed that the Bogoliubov equations go over to the Hartree-Fock equations. Our results suggest that there are exceptional states at the border of region A and B for which this is not true due to the disturbance at the surface.

Physically, the effect is caused by the narrow boundary layer of the condensate which looks effectively sharp for orbits glancing on the surface. Its qualitative aspects can therefore be expected to be independent from the WKB and Thomas-Fermi approximations. Experimentally such anomalous states could be observed by their excitation via modulations of the trapping potentials as in \[8\] or by light scattering.

In this paper we have restricted ourselves, for the sake of simplicity, to the case of the spherically symmetric trap potential. Calculations along these lines for anisotropic harmonic oscillator trap potentials as they are used in the experiments \[8\] will be published in a separate paper. Here we only mention that the corresponding classical Hamiltonian shows chaotic behavior \[14\], especially for energies comparable to the chemical potential.

We are indebted for useful discussions to A. Voros and G. Vattay. This work has been supported by the project of the Hungarian Academy of Sciences and the Deutsche Forschungsgemeinschaft under grant No. 95. One of us (R.G.) wishes to acknowledge support by the Deutsche Forschungsgemeinschaft through the Sonderforschungsbereich 237 "Unordnung und große Fluktuationen". Two of us (A.Cs., P.Sz.) would like to acknowledge support by the Hungarian Academy of Sciences under grant No. AKP 96-12/12 and by the Ministry of Education of Hungary under grant No. MKM 337. The work has been partially supported by the Hungarian National Scientific Research Foundation under grant Nos. OTKA T017493 and F020094.

\[1\] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wiemann and E. A. Cornell, Phys. Rev. Lett. \textbf{77}, 988 (1996).
\[2\] D. S. Jin, J. R. Ensher, M. R. Matthews, C. E. Wiemann and E. A. Cornell, Phys. Rev. Lett. \textbf{77}, 420 (1996).
\[3\] A. L. Fetter, cond-mat/9609257 (unpublished).
\[4\] A. L. Fetter, Ann. Ph. \textbf{70}, 67 (1972).
\[5\] G. Baym and C. J. Pethick, Phys. Rev. Lett. \textbf{76}, 6 (1996).
\[6\] A. L. Fetter, Phys. Rev. A\textbf{53}, 4245 (1996) W.-C. Wu and A. Griffin, Phys. Rev. A\textbf{54}, 4204 (1996); found a similar linear combination useful for clarifying the connection between the quantum hydrodynamical and the Bogoliubov approach \[8\].

It is worth noting that the classical current related to the velocity field has a quantum mechanical counterpart also in this quasi-particle dynamics. To obtain it one has to substitute for the energy eigenvalue the time derivative $\hbar \partial / \partial t$ in \[5\] in order to consider the time dependent solutions $u(r,t), v(r,t)$. Through the usual steps one arrives at the continuity equation $(\partial \rho / \partial t) + \text{div} j = 0$, with $\rho = |u|^2 - |v|^2$ and $j = (\hbar / m) \text{Im}(u^* \nabla u + v^* \nabla v)$. The appearence of different signs for the contributions of v in the expressions for ρ and j leads to the unusual relation \[8\] between velocity and momentum in the classical limit.

\[9\] A. Csordás, R. Graham, P. Szépfalusy, "Quasi-particle excitations of trapped Bose-condensates in the WKB approximation", unpublished.
\[10\] A. Csordás, R. Graham, P. Szépfalusy, Phys. Rev. A\textbf{54}, R2543 (1996).

\[11\] A. Csordás, R. Graham, P. Szépfalusy, "Quasi-particle excitations of trapped Bose-condensates in the WKB approximation", unpublished.
\[12\] A. Csordás, R. Graham, P. Szépfalusy, Phys. Rev. A\textbf{54}, 2360 (1996).
\[13\] A. Csordás, R. Graham, P. Szépfalusy, "Quasi-particle excitations of trapped Bose-condensates in the WKB approximation", unpublished.
\[14\] M. Fliesser, A. Csordás, R. Graham and P. Szépfalusy (unpublished).

FIG. 1. Energy levels $E(n,l) = E_n/l\omega_0$ obtained numerically from \[8\] for an isotropic harmonic oscillator trap potential $U(r) = m\omega_0^2 r^2/2$ as a function of the radial quantum number n and of the angular momentum quantum number l. The chemical potential was chosen to be $8\hbar \omega_0$.
