WS₂ Nanotubes, 2D Nanomeshes, and 2D In-Plane Films Through One Single Chemical Vapor Deposition Route

Zichen Liu¹,³,⁴, Alexander William Allen Murphy²,³,⁴, Christian Kuppe²,³,⁴, David Charles Hooper²,³,⁴, Ventsislav Kolev Valev²,³,⁴, and Adelina Ilie¹,³,⁴,*

¹ Centre for Graphene Science, University of Bath, Bath, BA2 7AY, U.K.
² Centre for Photonics and Photonic Materials, University of Bath, Bath, BA2 7AY, U.K.
³ Centre for Nanoscience & Nanotechnology, University of Bath, Bath, BA2 7AY, U.K.
⁴ Department of Physics, Claverton Down, Bath, BA2 7AY, U.K.

* Corresponding author: a.ilie@bath.ac.uk

ABSTRACT: We demonstrate a versatile, catalyst free Chemical Vapor Deposition (CVD) process on insulating substrates capable of producing in one single stream one dimensional (1D) WO₃-x suboxides leading to a wide range of substrate-supported 2H-WS₂ polymorphs: a tunable class of out-of-plane (of the substrate) nanophases, with 1D nanotubes and a pure WS₂, two dimensional (2D) nanomesh (defined as a network of webbed, micron-size, few-layer 2D sheets) at its extremes; and in-plane (parallel to the substrate) mono- and few-layer 2D domains. This
entails a two-stage approach in which the \(2\text{WO}_3 + 7\text{S} \rightarrow 2\text{WS}_2 + 3\text{SO}_2\) reaction is intentionally decoupled: first, various morphologies of nanowires or nanorods of high stoichiometry, \(\text{WO}_{2.92}/\text{WO}_{2.9}\) suboxides (belonging to the class of Magnéli’s phases) were formed, followed by their sulfurization to undergo reduction to the aforementioned WS\(_2\) polymorphs. The continuous transition of WS\(_2\) from nanotubes to the out-of-plane 2D nanomesh, \(\text{via}\) intermediary, mixed 1D-2D phases, delivers \textit{tunable} functional properties; \textit{e.g.} linear and non-linear optical properties, such as reflectivity (linked to optical excitations in the material), and second harmonic generation (SHG) and onset of saturable absorption. The SHG effect is very strong across the entire tunable class of WS\(_2\) nanomaterials, weakest in nanotubes, and strongest in the 2D nanomesh. Furthermore, a mechanism \textit{via} suboxide (WO\(_{3-x}\)) intermediate as a possible path to 2D domain growth is demonstrated. 2D, in-plane WS\(_2\) domains grow \textit{via} “\textit{self-seeding and feeding}” where short \(\text{WO}_{2.93}/\text{WO}_{2.9}\) nanorods provide both the nucleation sites and the precursor feed-stock. Understanding the reaction path (here, in the W-O-S space) is an emerging approach towards controlling the nucleation, growth and morphology of 2D domains and films of transition metal dichalcogenides (TMDs).

KEYWORDS: WS\(_2\) and WO\(_{3-x}\) suboxides, transition metal dichalcogenides, two-dimensional layered materials, nanotubes, chemical vapor deposition (CVD) growth, linear and non-linear optical properties, second harmonic generation

Two-dimensional (2D) transition metal dichalcogenides (TMDs), the inorganic analogues of graphene, have attracted significant attention in recent years.\(^{1-5}\) Chemical vapor deposition (CVD) has emerged as one of the most efficient and versatile methods for the large area synthesis of a
wide range of 2D TMDs. By varying deposition parameters and improving the CVD apparatus, larger and larger domain TMD mono- and few-layer films have been recently reported.

Among the more than forty varieties of TMDs, WS₂ and WSe₂ have attracted significant attention due to their giant spin-orbit splitting, a property of particular interest for spintronics, as well as optical materials. In the case of WS₂, WO₃ and S powders are the precursors most widely used for growth by CVD. WO₃ is converted into WS₂ by sulfurization with the proposed reaction being 2WO₃ + 7S → 2WS₂ + 3SO₂. However, this conversion process is not trivial, as the W-atom sites in the WO₃ monoclinic cell differ significantly from those in the WS₂ hexagonal unit cell, requiring the nearest W-W inter-atomic distances along the a and c axes to change significantly, i.e. from 0.38 nm in WO₃ to 0.315 nm in WS₂ along the a axis, and from 0.38 nm in WO₃ to 0.62 nm in WS₂ along the c axis. An intermediate WO₃−x suboxide stage, which would allow for partial displacement of W atoms and facilitate the conversion was demonstrated in the growth of WS₂ nanotubes, but has never been exploited so far for 2D growth. In general, in conventional in-plane (parallel to substrate) 2D growth, where WO₃ is rapidly reduced and sulfurized in an optimal S atmosphere, a couple of studies have reported oxi-sulfides instead of suboxides as the reaction intermediates, though no common growth mechanism has emerged.

In conventional 2D growth via CVD, the operational window for optimal, monolayer growth is very narrow. In general, it is necessary to avoid premature mixing of the WO₃ with S vapor as this interferes with WO₃ sublimation, causing a deficit of W precursor and, hence, precluding WS₂ formation on the growth substrate. If S is introduced too late, however, an excess of WO₃ precursor will arrive at the substrate resulting in the growth of thick multi-layer WS₂ or W-nanowires. The question is then: how early (late) is too early (late)? Hu et al. reported that introducing S six minutes before the WO₃ precursor reaches the target temperature provides
optimal conditions for maximum size growth of WS$_2$ (with \sim 150 μm lateral size of domains). However, if S was introduced only four minutes before the WO$_3$ precursor reaches the target temperature, the WS$_2$ domains became thicker and much smaller (20-30 μm in lateral size).25 In contrast, in most of the reported works for CVD growth of WS$_2$, S was introduced simultaneously with WO$_3$:,$^{26-34}$ this corresponds to the case of “too late” in references.24,25 It is clear that the conditions for optimal CVD growth of monolayer WS$_2$ are very sensitive to the specific CVD configuration. It is thus of interest to explore if other 2D growth regimes exist that rely less on the precise timing of S and WO$_3$ introduction into the gas phase.

Here, we intentionally created an initial S-deficient environment, in order to decouple the overall CVD reaction into a two-stage process. We thus took the decoupling idea to the extreme and created a WO$_{3-x}$ phase and nanorod morphologies as precursors, which we then sulfurized. This approach has similarities with the concept underpinning the synthesis of WS$_2$ nanotubes, obtained by sulfurization of WO$_{3-x}$ nanowires.35,36 As a result of stage decoupling, which does not occur in conventional CVD of 2D TMDs, we were able to show that 2D growth of WS$_2$ can occur via the WO$_{2.92}$/WO$_{2.9}$ suboxides, and hence demonstrate a viable suboxide path to 2D growth. This approach also allowed us to demonstrate a facile, tunable CVD route capable of flexibly producing in a single process stream a variety of WS$_2$ phases, spanning from 1D to 2D, as well as grown in-plane or out-of-plane. Through this process, a 2D nanomesh, described as an out-of-plane network of webbed 2D sheets (of mainly one to three WS$_2$ layers) with large, μm-range lateral domain size was created; this is the ultimate stage in an evolutionary process started with the WO$_{2.92}$/WO$_{2.9}$ nanowires, from which WS$_2$ nanotubes with WO$_{3-x}$ cores formed, which then gave rise to 2D sheets as the S-mediated reduction process progressed. The tunability and functionality of this class of WS$_2$ materials is demonstrated through comparative investigations of the optical properties of
representative phases obtained at progressing stages: the 1D, nanotube-based phase, vs an intermediary phase of mixed 1D/2D content, and finally, vs the 2D nanomesh. We thus measured (i) reflectivity and correlated it with optical excitations, as well as (ii) non-linear optical properties, i.e. second harmonic generation (SHG) and onset of saturable absorption, in the three types of materials. All the WS\(_2\) materials in the class showed strong non-linear optical properties, with the 2D nanomesh being most SHG-active. Finally, we showed that in this decoupled, two-stage growth, in-plane 2D mono- and few-layer WS\(_2\) can be grown in a “self-seeding and feeding” process, where the nucleation sites and the source of precursor material are provided by the same phase; unlike in heterogeneous seeding processes demonstrated so far, where organic molecular species were used as seeds.\(^6,8,37\)

Results and discussion

Figure 1 presents the flow chart for the catalyst-free CVD processes discussed in this work, showing the inter-relation, and contrasting differences, between the conventional growth of 2D domains\(^38\) and the processes and phases enabled by the decoupling of the overall reaction into two distinct stages.

During 2D growth the reaction ideally happens in the vapor phase: WO\(_3\) is partially reduced by the sulfur vapor to form volatile WO\(_{3-x}\) suboxide species, which are then further sulfurized to form large crystalline domains of mono- and few-layer WS\(_2\) on substrates. However, the reaction occurs too fast for any intermediary stages to be observed and confirmed. In contrast, here we intentionally decouple the reaction into two stages. In our decoupled reaction, we engineered a first reaction stage (WO\(_3\) partial reduction performed below atmospheric pressure, blue arrows on Figure 1) where the vapor phase is S-deficient, leading to the initial growth of one-dimensional
(1D) WO$_{3-x}$ morphologies, such as nanowires or short nanorods. Then, in a second stage (sulfurization at atmospheric pressure, red arrows on Figure 1), the nanowires/nanorods are reacted in an S-rich atmosphere for varying amounts of time, ultimately leading to the formation of pure WS$_2$ nanophases characterized by the emergence of 2D domains and crystallites. It is apparent (see Figures 2-5) that the type of 1D suboxide morphology in the first stage and the period of sulfurization in the second stage control the resulting WS$_2$ nanophases: (i) using long, out-of-plane WO$_{3-x}$ nanowires as precursors yielded WS$_2$ nanotubes, a hybrid 1D/2D film, or an out-of-plane 2D nanomesh, while (ii) short nanorod precursors yielded in-plane 2D WS$_2$ growth. By performing further structural analysis, we were able to demonstrate that the two growth stages map onto the two hypothesized reaction stages:\cite{39,40} (1) $2\text{WO}_3 + x\text{S} \rightarrow 2\text{WO}_{3-x} + x\text{SO}_2$, and (2) $2\text{WO}_{3-x} + (7-x)\text{S} \rightarrow 2\text{WS}_2 + (3-x)\text{SO}_2$. We thus confirm this two-stage reaction mechanism, and the involvement of suboxides as intermediary sub-species.
Figure 1. Flow-chart describing the decoupled, two stage strategy for synthesis of crystalline WS$_2$ nanophases starting from WO$_3$ and sulfur powders as precursors, mapped onto a two-stage reaction. Stage 1 (blue arrows), a low-pressure CVD (LPCVD) process, where partial reduction of WO$_3$ takes place in an S deficient atmosphere, leads to the formation of various WO$_{3-x}$ morphologies, *i.e.* long out-of-plane nanowires, short in-plane nanorods, and short nanorod bundles. From each of these morphologies, distinct, pure WS$_2$ nanophases result after sulfurization in stage 2 (red arrows), such as an out-of-plane 2D nanomesh, as well as 2D in-plane domains of various sizes; this is an atmospheric pressure CVD (APCVD) process. Conventional in-plane 2D domain growth, obtained by WO$_3$ fast reduction in an optimal S atmosphere, is indicated by the green arrow.
WO₃₋ₓ nanowire/nanorod morphologies were obtained in the first reaction stage (Figure 1), using a home-built low-pressure CVD (LPCVD) reactor involving a horizontal furnace with a temperature gradient (Methods and Supporting Information, Figure S1). The boat containing the WO₃ precursor was placed in the center of the furnace, within its constant temperature zone; temperature was ramped to 1030 °C, at a pressure below 10⁻¹ mBar, and then held constant for 20 minutes, to ensure sufficient sublimation. Subsequently, the sulfur powder, placed in a boat 40 cm upstream of the WO₃ boat, was heated to 200 °C over 10 minutes, and then co-evaporated together with the WO₃ over 15 minutes. Another boat with four pockets, each 2 cm long, and containing SiO₂/Si substrates, was placed 6 cm downstream of the WO₃ boat, in a zone with a temperature gradient. Only argon was used for transporting the WO₃ and sulfur vapor to the SiO₂/Si substrates. According to the temperature profile of the furnace, there is a temperature drop of about 60 °C between each substrate-containing pocket. This enabled a W precursor concentration gradient across the various substrate locations,²¹,²² leading to a continuous variation in the growth conditions. In contrast, the long separation distance between the S and substrate boats ensured that the S vapor concentration gradient across the Si/SiO₂ substrates can be ignored, unlike that of WO₃.

Depending on the position and temperature of the substrate relative to the W precursor, different WO₃₋ₓ morphologies were obtained (Figures 2 and 5, see also Supporting Information, Figure S1). (i) In the pocket furthest from the W precursor, the relatively low temperature of around 780 °C, induces a low diffusion rate of the precursor, leading to the precursor being trapped at many random sites on the substrate. After the nucleation sites become saturated with precursor, further trapping of precursor results in crystallization and growth. A high carrier gas flow rate (~150 sccm) promotes mass transfer, which contributes to a fast crystal growth rate²¹ leading to the formation
of long, out-of-plane nanowires (Figures 2(a) and 3(a), and Supporting Information, Figure S2).

(ii) The pocket closer to the WO$_3$ boat was reached by a higher concentration of W precursor, while also being held at the highest temperature, 1000 °C, of all the substrates. In general, a high temperature induces a high diffusion rate of the precursor, favoring film growth. On the other hand, too high a temperature causes large thermal turbulence, resulting in an instability of as-grown nucleation sites and hindering growth. Hence, under these conditions of temperature and W precursor concentration short nanorod bundles were formed (Figure 5(d), and Supporting Information, Figure S2).

(iii) In between these high and low temperature regimes, in a pocket located in an intermediate position at about 960 °C, the decrease in precursor concentration results in a crystal growth rate slow-down: the positive influence of a high flow rate balanced by a moderate diffusion rate of precursor at a moderate temperature leads to stable, while slow, crystal growth under thermodynamic control. Hence, short, in-plane nanorods could be grown (Figure 5(b)).

We now analyze the outcome of stage 2 – sulfurization – of the decoupled reaction diagrammatically shown in Figure 1, where each of the three nanowire/nanorod morphologies described above are reacted with sulfur.

WO$_{3-x}$ long nanowires as precursors. Figure 2(a) shows the WO$_{3-x}$ nanowires grown on the SiO$_2$/Si substrate (Methods): their diameters fall in a narrow range, 10 to 30 nm, and they can reach several microns in length. A combination of X-ray diffraction (XRD) (Supporting Information, Figure S2) and high-resolution transmission electron microscopy (HRTEM) showed that WO$_{2.92}$ ($W_{25}O_{73}$) and WO$_{2.9}$ ($W_{20}O_{58}$) are the phases encountered in the nanowires (Supporting Information, Figure S2 (a-d)). Indeed, Fast Fourier Transform (FFT) analysis of the examples given in Figures S2 (c-d) show periodicities along the long axis of the nanorods that correspond to
3.82 Å and 3.78 Å, respectively, which are in good agreement with the \(b \) lattice parameters of monoclinic \(\text{WO}_{2.92} \) and \(\text{WO}_{2.9} \). Both these suboxides belong to the sub-stoichiometric Magnéli’s phases, which have the series formula of \(\text{W}_n\text{O}_{3n-2} \). Most importantly, both suboxides are non-volatile (see Methods) but can be reduced further into volatile suboxides (see discussion below) at the temperatures used in the subsequent sulfurization stage from Figure 1; this is consequential, as it strongly influences the type of \(\text{WS}_2 \) nanostructures that can be obtained by sulfurization, as demonstrated in the following.

The as-grown \(\text{WO}_{2.92}/\text{WO}_{2.9} \) nanowires on \(\text{SiO}_2/\text{Si} \) were sulfurized as described in Methods, at atmospheric pressure (an APCVD process), in the first instance over \(\sim 10 \) minutes. Figure 2(b) shows a scanning electron microscopy (SEM) image of the resulting post-sulfurized nanowires: two types of material, with different electronic contrast, can be observed. The brighter areas have very broad Raman peaks at 271, 326, 714 and 803 cm\(^{-1} \) (Figure 2(d)). Peaks centered at 714 and 803 cm\(^{-1} \) are attributed to W-O stretching vibration modes, while the two lower peaks at 272 and 326 cm\(^{-1} \) are induced by O-W-O bending vibration modes, identifying these regions as non-converted, pure suboxide phases. Raman spectroscopy confirms that the regions that appear dark in both optical and SEM images are 2H-\(\text{WS}_2 \) (Figure 2(c), and Supporting Information, Figure S3): the 352.5 and 418 cm\(^{-1} \) peaks correspond to the \(\text{E}^{1}_{2g} \) and \(\text{A}_{1g} \) vibrational modes, respectively, of this phase, while their spectral distance of \(\sim 65.5 \) cm\(^{-1} \) shows that the phase is made up of few-layer \(\text{WS}_2 \) nanotubes. HRTEM (Figures 2(e-f)) confirms that the sulfurized nanowire-shaped morphologies are actually the suboxide nanowires transforming into multi-layered \(\text{WS}_2 \) nanotubes. The HRTEM images and their associated FFTs (inset panels) give a spacing between the layers of the nanotubes of about 0.62 nm, consistent with the (002) d-spacing within a multilayer 2H-\(\text{WS}_2 \) crystal. The nanotubes are partially filled with \(\text{WO}_{2.92} \) or \(\text{WO}_{2.9} \) suboxides cores, as demonstrated
by Figure 2(f); the associated FFT identifies the core inside the nanotube as $\text{WO}_2.92$ based on its b lattice parameter. However, despite the presence of W suboxide cores inside some of the nanotubes, Raman spectroscopy does not detect any of their W-O vibration modes; a similar behavior was previously reported for other core-shell systems.48,49 The coexistence of WS$_2$ nanotubes and W suboxides is reminiscent, in this respect, of the work from Tenne’s group on the synthesis of MoS$_2$ and WS$_2$ nanotubes.36,50 Therefore, it is reasonable to assume that the WS$_2$-rich areas from Figure 2(b) are actually a proto-stage of the growth of WS$_2$ nanotubes around the suboxide nanowire cores.

Figure 2. Long, out-of-plane nanowires of $\text{WO}_2.92$ and $\text{WO}_2.9$ suboxide, Magnéli phases leading to the formation of few-layer multi-walled nanotubes with suboxide cores. (a-b) SEM of pure WO_{3-x} nanowires before and after 10 minutes of sulfurization, respectively. The example in (b) shows a predominant WS$_2$-rich phase (labelled “2”), interspersed with a residual pure WO_{3-x} phase (labelled “1”). Their respective Raman spectra (excitation wavelength of 532 nm) are shown in (c)
and (d). (e-f) TEM images of the sulfurized nanorods showing multi-walled nanotubes of large diameter and relatively few layers. In (e), the highlighted FFT inset vectors correspond to 0.27 nm, the distance between the (100) planes of 2H-WS\textsubscript{2} crystals, and to 0.62 nm, the van der Waals inter-tube distance. In (f), the WO\textsubscript{2.92} suboxide core nanowire is still visible. The FFT inset highlights, in addition to the distances identified in (e), 0.382 nm along the long axis of the suboxide core, which corresponds to the distance between the (010) planes of monoclinic WO\textsubscript{2.92}.

In contrast to here, previous works on the synthesis of WS\textsubscript{2} nanotubes mainly used W oxide nanowires formed by the hydrothermal method, which primarily consisted of the non-volatile, low-stoichiometry WO\textsubscript{2.72} (W\textsubscript{18}O\textsubscript{49}) phase: this is the so-called reduction-resistance phase, and will not undergo further reduction.36,51 In their work based on vapor phase reaction in a fluidized bed reactor, Tenne \textit{et al.}35 have found that several intermediate, higher stoichiometry suboxides could also be present during the formation of their WO\textsubscript{3-x} nanowires; however, the non-volatile WO\textsubscript{2.72} was identified as the resulting stable phase in the nanowires, which then served as a template for the subsequent sulfurization reaction yielding WS\textsubscript{2} nanotubes. The transformation of the suboxide nanowires into WS\textsubscript{2} nanotubes is then diffusion-controlled, and such conversion takes place slowly and layer-by-layer relying on the sulfur diffusing to the core. In our case, however, with further annealing in a S-rich environment the high stoichiometry WO\textsubscript{2.92} or WO\textsubscript{2.9} nanowire cores, rather than being sulfurized layer-by-layer, are able to transform to lower stoichiometry, volatile WO\textsubscript{3-x} phases; 3-x could be 2.89 (\textit{i.e.} WO\textsubscript{2.89} (W\textsubscript{19}O\textsubscript{55}))52 or in the range 2.72 – 2.83 that contains volatile phases.36,51,52 Such phases can then escape through the open/defective ends of the nanotubes. This results in a higher conversion rate to WS\textsubscript{2}, which can then nucleate and grow as 2D sheets outside the nanotubes (see Figure 4 and related discussion).
Hence, sulfurization, in the first stage, produces single- or few-wall WS2 nanotubes, with partial cores of suboxide still present; the layer-by-layer conversion does not continue long enough to involve full transformation of the WO2.92/WO2.9 cores into the nanotube phase as suboxide material leaves the nanotubes. In contrast, from the non-volatile WO2.72 phase thick multi-layered nanotubes with empty cores are generated. For instance, as shown by HRTEM in Figures 2 (e-f), we could obtain tri-layer WS2 nanotubes of diameter more than 25 nm using the WO2.92/WO2.9 precursors; while from the lower stoichiometry, reduction-resistant, WO2.72 precursor, nanotubes of around 20 nm in diameter have more than 10 layers.53

In order to determine the ultimate effect of the sulfurization, the long, out-of-plane nanowires were continuously sulfurized under the same conditions for a large period, typically less than three hours. A final morphology was then achieved: Figure 3(b) shows a two-dimensional (2D) nanomesh structure of webbed 2D crystallites, extending out-of-plane for microns (up to ~ 10 µm), and with a very large specific surface area. Figure 3(c) presents the TEM image, and associated FFT, of a typical crystallite: this has a hexagonal lattice structure with 0.27 nm periodicity resulting from the (100) planes of 2H-WS2,54 and two layers are visible. A representative nanomesh XRD spectrum is shown in Figure 3(d): all the diffraction peaks are indexed relative to the hexagonal P63/mmc space group, indicating that the structure of the WS2 phase is 2H-WS2, while there is almost no trace of W suboxide peaks. The sharpness of the peaks demonstrates the good crystallinity of the sample overall.
Figure 3. Full sulfurization of long, out-of-plane WO$_{2.92}$ and WO$_{2.9}$ suboxide nanowires, shown in (a), leads to a pure WS$_2$ 2D nanomesh, shown in (b). The sulfurization was typically performed over a period Δt of 3 hours. The emergence and purity of the 2H-WS$_2$ phase was verified by a combination of (c) HRTEM (and associated FFT, example shown in inset), and (d) XRD, where the identified crystallographic planes are also shown. In (c), a typical WS$_2$ crystallite with 2 layers is shown.

Between these two extremes, the WS$_2$ material can be evolved in a continuous manner, with a variable proportion of nanotube (1D) and 2D phases, as depicted by stages (i-v) on Figure 4(a). Figures 4 (b-e) shows TEM images of the material at different stages of sulfurization: after the formation of an initial nanotube sheath around the WO$_{2.92}$/WO$_{2.9}$ cores, volatile WO$_{3-x}$ suboxide
(obtained by subsequent reduction of the non-volatile WO$_{2.92}$/WO$_{2.9}$) forms and then leaves the nanotubes through their open ends (or, alternatively, through wall defects that sometimes develop) (Figure 4(b)), and nucleates 2D crystallites at the nanotubes’ ends (Figure 4(c)). The nanotube exterior provides an ideal surface for subsequent epitaxial growth of 2D domains, the evolution of which is often accompanied by a gradual opening of the nanotubes, presumably catalyzed by stresses on the nanotube bonds induced by the 2D growth (Figures 4(d-e)). “Un-zipping” of WS$_2$ nanotubes was previously reported, though based on Li intercalation.55 Once opened, the 2D sheets and the nanotube edge can also fuse, as shown in the inset of Figure 4(d). Figure 4(a) shows diagrammatically the various stages of this evolution, from WO$_{2.92}$/WO$_{2.9}$ nanowires, through WS$_2$ nanotubes (with partial suboxide cores), then hybrid 1D/2D materials, and finally into a pure WS$_2$ 2D nanomesh.

Figure 4. Evolution with sulfurization time, Δt, of the suboxide cores into WS$_2$ nanophases. (a) Several stages (i-v) were identified, mapping onto representative TEM images (c-e): WO$_{2.92}$/WO$_{2.9}$
nanowires (i) become covered with few-layer nanotube sheaths (ii) in a layer-by-layer conversion of suboxide into 2H-WS$_2$, (iii) WO$_{2.92}$/WO$_{2.9}$ core suboxide reduces to a lower stoichiometry, volatile suboxide which leaves the tubes and nucleates into 2H-WS$_2$ sheets at the tube apex, (iv) WS$_2$ 2D domains grow by epitaxy on the body of the nanotubes, which are then subjected to gradual opening, (v) finally, nanotubes fully open and merge with extended 2D 2H-WS$_2$ sheets. (b) The emergence of the volatile suboxide phase, with 1, 2 and 4 showing crystalline suboxide, while 3 and 5 showing regions of reduced crystallinity (boundary between the two regions shown with dashed line). (c) WS$_2$ nanotubes (2 and 3) with no suboxide filling and nucleated 2H-WS$_2$ sheets at the apex of the tube, while (1) shows the breached end of a nanotube through which filling material can escape. (d) Large 2D WS$_2$ sheets nucleated all along the body of the nanotube, which is still partially filled. The unfilled region shows gradual nanotube opening, while the zoomed area highlighted in the inset figure shows the nanotube layers fusing with the grown 2D sheets. (e) Extended, micron-wide 2D sheets grown all along the nanotubes’ bodies.

The formation of the pure WS$_2$ 2D nanomesh, with extensive 2D content (Figure 3(b)) is in contrast to other recently reported hybrid phases which were a mixture of 2D WS$_2$ crystallites and WO$_3$, or had a mixed 1D-2D character, with a main nanowire phase and a small 2D phase content. Temperature-dependent conductivity measurements on our pure WS$_2$ 2D nanomesh (Supporting Information, Figure S5) demonstrate the semiconducting nature of this phase, while an activation energy $E_a \approx 0.33$ eV indicates thermally activated transport, via a defect band, around (and just below) room temperature. Further optical properties of this nanomesh are presented in the last section.
WO$_{3-x}$ short nanorods as precursors. Figure 5(a) shows the results of atmospheric pressure sulfurization in a region of lower density of suboxide nanowires. It is clear that less dense nanowires yield relatively larger and more separated, out-of-plane 2D WS$_2$ crystallites. This suggests that if the W suboxide nanowires are well-separated and oriented in plane they may be used as seeds for the growth of in-plane 2D WS$_2$ films.

Hence, as-grown in-plane, single, short WO$_{2.92}$/WO$_{2.9}$ nanorods on SiO$_2$/Si were similarly sulfurized (Methods) and Figures 5(b-c) show the result of such a scenario: in-plane, triangular, few-layer 2D domains grow from the nanorods at their basis. This root growth is enabled by the same transformation stage sequence shown in Figure 4(a), with the volatile suboxide emerging from the WS$_2$ nanotubes and converting to WS$_2$ domains that nucleate directly onto the SiO$_2$/Si substrate, thus keeping the material localized around the original nanorod. Raman spectroscopy confirms that the domains grown are WS$_2$, albeit thicker than monolayers (Figure 5(f) and Supporting Information, Figure S5(b)). This result demonstrates the feasibility of using W suboxide nanorods as seeds for the 2D in-plane growth of WS$_2$. Seeded growth of 2D WS$_2$ domains has been studied by using either large aromatic molecules (e.g. perylene-3,4,9,10-tetracarboxylic acid tetra-potassium salt (PTAS)6,8,37 or patterned oxide precursor particles58 as externally introduced nucleation sites, over which W- and S-carrying species were subsequently introduced. However, in our case, the seed is provided by the suboxide nanorods without introducing other external contamination. Moreover, the 2D domain growth can be treated as a “self-seeding and feeding” one, in which the suboxide nanorods provide both the nucleation sites and the W precursor feed-stock for the growth of layers.
Figure 5. Effect of sulfurization of sparse WO$_{2.92}$/WO$_{2.9}$ nanorods revealing seeded growth of in-plane 2H-WS$_2$ domains. (a) Sulfurization of low density out-of-plane nanowires leads to extended and more separated WS$_2$ 2D crystallites; shown by SEM. (b-c) In-plane, individual, short nanorods lead to seeded, root-growth of polygonal domains of multi-layered WS$_2$; shown by SEM. (d-e) Bundles of short nanorods lead to seeded, in-plane growth of larger single-layered 2D WS$_2$ domains: (e) is a bright field, optical image, while (d) and inset of (e) are SEM images. (f) Raman spectroscopy (at 532 nm excitation) of single-layered WS$_2$ from (e), in top panel; and of multi-layered WS$_2$ from (c), in bottom panel. The spectral distance $\Delta \omega$ between the E$_{12g}^{1/2}$ (Γ) and A$_{1g} (\Gamma)$ vibrational modes of WS$_2$ is used to identify the number of layers within the 2D domains.

In “self-seeding and feeding”, the size of the in-plane 2D domains that can be grown is constrained by the amount of W precursor available in the seeds. Hence, larger 2D domains could be grown by increasing the amount of precursor delivered by the nanorod seeds. Therefore, as shown in Figure 5(d), we used clusters of short W suboxide nanorods as the precursors in the
sulfurization stage; these clusters have also been confirmed by XRD to be a mixture of WO$_{2.92}$ and WO$_{2.9}$ phases (Supporting Information, Figure S2). Optical/SEM images (Figure 5(e)) and Raman characterization (Figure 5(f) and Supporting Information, Figure S5(a)) show that their sulfurization resulted in the growth of in-plane triangular domains of predominantly mono-layer 2D WS$_2$ domains; these domains are also substantially larger than the multi-layer domains shown in Figure 5(c) obtained from single nanorods as seeds. As the amount of precursor and distance to the substrate increased compared to the case of single, in-plane nanorods, the WS$_2$ domains now grow via a mixture of reaction mechanisms: root growth (as observed in Figure 5(c)) competes with gas phase transport and reaction. Indeed, by the reduction of WO$_{2.92}$/WO$_{2.9}$ to lower-stoichiometry, volatile WO$_{3-x}$ phases (as per the mechanism depicted in Figure 4(a)), the latter can readily transfer to vapor phase as in-situ precursor to supply the conversion reaction. The W suboxide seed growth demonstrated above is distinct from a recently shown process where WS$_2$ nanotubes were sublimated in order to induce WS$_2$ monolayer growth by vapor phase transport and surface diffusion.59,60

“Self-seeding and feeding” from precursor nanowires could potentially be harnessed by controlling nanowire growth via substrate engineering, thereby allowing for the positional control of WS$_2$ domain growth; while the limited feed-stock of material would limit the resulting domain size and facilitate patterning. For example, when sapphire, a substrate frequently used in TMD growth,$^{19,61-63}$ with unstable orientations is annealed at high temperature, it spontaneously becomes periodically faceted.64 Specifically, the mis-cut C plane (0001) (2° toward [1\(\overline{1}00\)]) facets into L-shaped nanosteps; while the M plane (10\(\overline{1}0\)) facets into V-shaped nanogrooves. It has been demonstrated that various types of nanowires (e.g. of ZnO,65 GaAs,66 or GaN67) etc.) could be
grown with a good degree of alignment on both these facets. Furthermore, tungsten oxide nanorods have been reported to epitaxially grow on mica using a simple vapor–solid growth process.68

Figure 6 shows as a corollary the various pathways uncovered so far in previous works for the 2D growth of TMDs from transition metal tri-oxides.9,23,69,70 On paths 2 and 3, corresponding to conventional 2D growth, W or Mo oxi-sulfide nanoparticles first formed and were adsorbed on substrates as nucleation cores for further reduction. No common growth mechanism has emerged from these studies, the various proposed scenarios being inconsistent with each other and resulting in different and complex reactions paths. In contrast, path 1 highlights the suboxide route to 2D growth demonstrated in this work. A common mechanism can explain both in-plane and out-of-plane 2D growth processes: these rely on the initial formation of WO\textsubscript{2.92} and WO\textsubscript{2.9} (blue arrow on the W-O-S phase diagram). Our process of 2D WS\textsubscript{2} synthesis always starts with the formation of few-layer WS\textsubscript{2} nanotubes around the WO\textsubscript{2.92}/WO\textsubscript{2.92} cores. Nanotube formation is controlled by the specific crystallographic structure of the Magnéli suboxide phases which contain crystallographic shear (CS) planes (Supporting Information, Figure S6) created as result of oxygen vacancies introduced by reduction. At atomic level, the shear process is equivalent to the diffusion of an atom to a neighboring lattice vacancy; however it was previously proposed that the octahedra hop as a whole during the process leading to the formation of edge sharing octahedral units, i.e. the CS planes (Supporting Information, Figure S6), as opposed to corner sharing ones.20,71 While the reaction progresses, regions of such edge-sharing octahedral units develop across the crystal. The edge-sharing octahedral units in WO\textsubscript{2.92} and WO\textsubscript{2.9} are now similar to the 1T-WS\textsubscript{2} octahedral structure (Supporting Information, Figure S6). As the sulfurization proceeds, O atoms are released from the lattices of the Magnéli phases and replaced by S atoms, leading to the expansion of the unit cell along the \textit{c} axis, while the W-W bond length in the edge-sharing octahedral units of
WO$_{2.92}$/WO$_{2.9}$ is already very similar to that of 2H-WS$_2$ (Supporting Information, Figure S6). This process is depicted by the dotted arrow on the W-O-S phase diagram of path 1 on Figure 6. This WO$_{2.92}$/WO$_{2.9}$ route is supported by recent findings that starting directly from WO$_{2.9}$ as a precursor (as opposed to WO$_3$ and without controlling the intermediary reaction) promotes 2D growth of larger and more uniform domains of WSe$_2$/WS$_2$. Finally, in our scenario, the 2D WS$_2$ sheets always form after the formation of the nanotubes, and the reaction path is depicted by the green-red path on the W-O-S phase diagram: thus, the residual WO$_{2.92}$/WO$_{2.9}$ from inside the nanotubes converts into lower stoichiometry, volatile Magnéli WO$_{3-x}$ phases, which can then escape the nanotubes and nucleate as WS$_2$ outside them, and then evolve into extended 2D sheets as described in Figure 4(a).

Figure 6. W–O–S ternary phase diagrams showing reaction pathways to 2D 2H-WS$_2$ during CVD growth from WO$_3$ and sulfur precursors. Path 1 (left diagram) describes a reaction mechanism via the non-volatile WO$_{2.92}$/WO$_{2.9}$ phases and their subsequent reduction to lower stoichiometry, volatile WO$_{3-x}$ phases, as shown in this work. 2D growth corresponds to the blue-green-red path, while the black, dotted path corresponds to 1D (nanotube) phase synthesis. Paths 2 (middle) and 3 (right), identified in conventional 2D growth of WS$_2$, highlight reaction mechanisms where oxo-sulfides are the intermediary compounds.
Finally, we investigated some of the opportunities afforded by the tunability of the relative 1D to 2D content of the material. Hence, we measured and contrasted the linear optical properties (Methods) of out-of-plane, nanotube-rich and 2D nanomesh samples, as well as an intermediary sample with mixed 1D/2D content, and related them to the relevant optical excitations that can occur in them. The non-linear optical behavior of these three samples was subsequently tested (Methods). Figure 7(a), left, shows a photograph of the 2D nanomesh sample, demonstrating its homogeneity over a large area (> 8 × 8 mm²); while at a magnification ×100, randomly distributed structures appear well resolved in dark-field illumination (Figure 7(a), right). In order to obtain reflectance spectra, illumination was switched to bright-field and measurements were taken at normal incidence with unpolarized light; Figure 7(b) shows characteristic optical reflection spectra from all three samples, (i) nanotube-rich, (ii) with intermediary 1D/2D content, and (iii) the 2D nanomesh, normalized to the reflectivity of the SiO₂/Si substrate. Over the 400 – 650 nm range, all three samples exhibit dips in reflectivity, marked with A, B, and C, corresponding to increased extinction; these can be attributed to excitonic resonances, for A and B, and optical absorption between density of states peaks in the valence and conduction bands for C, in agreement with previous reports. For the nanotube-rich sample, these spectral features are located at 628, 521.7, and around 450 nm, respectively, and red-shifted relative to the intermediary 1D/2D content sample, and the 2D nanomesh. The intermediary, mixed 1D/2D content sample has spectral features close to the 2D nanomesh, owing to its large 2D content, though its non-linear optical properties are distinctive compared to the other two samples in the series (see Figure 8(b)). For the 2D nanomesh, A, B and C are located at 622.5, 515.8 and ~ 443 nm, respectively, in good agreement with spectra of mechanically exfoliated mono- and bi-layer WS₂ sheets, indicating the prevalence of mono- and bi-layer WS₂ sheets in our material; in comparison, thicker 2D sheets...
have their spectral features red-shifted. The broadening of the A, B, and C features relative to those measured on mechanically exfoliated WS\textsubscript{2} 2D layers of well-defined thickness73 likely reflects the (thickness) polydisperse nature of all three samples, as well as the presence of defects in these materials. Above 700 nm, in the nanotube-rich sample there is a very broad spectral feature centered around 760 nm, and a counterpart can be seen around 840 nm in both the 2D nanomesh sample and the one with mixed 1D/2D content. Due to their broadness and the large spectral difference (~ 80 nm) between their location for the three samples, as well as the lack of known possible excitations in this spectral region in (perfect) laterally extended WS\textsubscript{2} sheets (mono- or few-layer) or bulk crystals, it is more likely that these spectral features are caused by geometrical/morphological characteristics of the two samples. For nanotubes of diameters comparable with the excitation light wavelength, and with many layers (\textit{i.e.} creating a material with high refractive index), cavity mode resonances can be excited: for example, 760 nm excitation can excite cavity modes in a 70 nm radius WS\textsubscript{2} multi-layer nanotube, while by decreasing the nanotube radius the wavelength of the light that can excite cavity modes decreases.74 Consequently, as the nanotube diameters in our nanotube-rich sample are in the 10 to 30 nm range, no cavity resonances can be excited in the spectral range investigated here, and such excitations can thereby be ruled out. Most likely, the broad spectral features are sample geometry- or morphology-related, for example the result of a collective behavior of the material. Tentatively, we propose an explanation based on the nanotube-rich material and the 2D nanomesh being approximated as homogenous films with distinctive effective refractive indices, \(n_{\text{eff}}\), of about 4 for the pure WS\textsubscript{2} 2D nanomesh,74 and moving closer to 2 for the nanotube-rich sample where the cores of the nanotubes are air or WO\textsubscript{3-x}.75 In this approximation, the broad spectral features in the near-infrared region can be interpreted as antiresonances (manifested as dips in reflectivity) resulting
from interference of light reflected from the top and bottom interfaces of the effective WS$_2$ film, and the wavelength at which an antiresonance occurs increases with n_{eff}. In addition, the morphology of the film can affect how pronounced an antiresonance is: it is expected that the homogenous film approximation works better for the nanotube-rich sample than for the 2D nanomesh where the multiple 2D planes produce more scattering and higher overall reflectivity. Hence the antiresonance effect would manifest at larger wavelength and be weaker in the 2D nanomesh, which appears to agree with the experimental findings. More investigations are needed to clarify the origin of these broad spectral features.

Figure 7(d) presents spectral maps of the reflection intensity of each of the nanotube-rich and 2D nanomesh samples, as a function of the angle of incidence; measurements were taken with polarized light using the setup from Figure 7(c) (Methods). For both P-polarized light (upper panels) the spectral signatures appear to correlate well with those in Figure 7(b), including the A, B, and C features, and do not change significantly upon varying the angle of incidence. Consequently, these spectral signatures are specific to WS$_2$ as a material. For S-polarized light, the spectral maps are also modulated by the features shown in Figure 7(b), however there is a stronger contribution from the broad spectral features located above 700 nm. This suggests that the S-polarized light couples more effectively with the sample as a whole, hence these maps reflect more the geometric/morphologic characteristics of the two types of samples rather than being specific to their common WS$_2$ constituent material.
Figure 7. Linear optical properties of the class of out-of-plane WS$_2$ phases, showing representative phases: nanotube-rich (1D); intermediary, with mixed 1D/2D content; and 2D nanomesh. (a) Left, a photograph of the 2D nanomesh; right, a dark-field microscopy image from the 2D nanomesh, via a x100 objective. (b) Reflectivity spectra obtained in bright field microscopy at normal incidence with unpolarized light, from the three types of phases. (c) Experimental setup for the angular-dependent reflectivity measurements shown in (d). (d) Reflectivity spectral maps, as a function of angle of incidence, from the nanotube-rich (1D) and 2D nanomesh samples, and for P- and S-polarized light.

Because of their large second-order nonlinear susceptibility, 2D materials such as WS$_2$, are of significant interest for nonlinear optical devices. We measured the second harmonic generation (SHG) for the same three types of samples investigated in Figure 7(b), in the reflection geometry, using the setup from Figure 8(a). SHG is a nonlinear optical technique whereby two
photons at the fundamental frequency are annihilated to create a third photon, at double the frequency. Because this frequency-doubling process is exquisitely symmetry-sensitive, it is used to characterize symmetry breaking effects, such as externally applied electric80 and magnetic81 fields, strain,82 chirality,83 localized surface electric fields,84 and surface roughness, down to the atomic monolayer.85

The experiments were conducted using a fundamental (incident) light of 800 nm wavelength, and 100 fs laser pulses. Figure 8(b) shows the SHG intensity (at 400 nm) as a function of incident power of the fundamental light (at 800 nm), for the nanotube-based (1D-rich), intermediary with mixed 1D/2D content, and the 2D nanomesh samples, respectively. As a reference, the SHG signal generated by the Si substrate, which is a centrosymmetric material with low SHG response,86,87 is also shown. All three types of WS\textsubscript{2} samples are extremely non-linear, showing between 104 to 105 larger SHG intensity than Si at a given power. It should be noted that our SHG setup is built for sensitivity, with a detector upper limit set to about 105 counts/s, which imposes an experimental limit on the power incident on the sample. Figure 8(b) also unambiguously shows the SHG response is influenced by the type of WS\textsubscript{2} phase making up the sample: it is lowest, though still sizeable, in the nanotube sample, increases for the sample with intermediary 1D/2D mixed content, and is largest in the 2D nanomesh. Indeed, the WS\textsubscript{2} 2D nanomesh has several symmetry-breaking attributes that favor SHG: (i) it is made of mono- to three-layer sheets, as confirmed by TEM images and location of excitonic features in the reflectivity spectra, (ii) has considerable roughness arising from the formation of 2D platelets spreading around the initial 1D skeleton (as depicted in Figure 4(a)), and finally (iii) WS\textsubscript{2}, in particular, benefits from the strong electric dipole established in the unit cell and linked to strong spin-orbit interaction. It is known that SHG is strongly enhanced in transition metal dichalcogenides (TMDs) with odd number of layers where the unit
cell lacks inversion symmetry, and is strongest in the monolayer limit,88 and for this reason, for non-linear optics applications, such materials are exfoliated by various methods in order to then create stacks of isolated sheets.16,76 In the case of our WS\textsubscript{2} 2D nanomesh, the material grows directly on the substrate as “exfoliated” sheets of mono- or low number of layers, and large quantities within a high-density film of several microns in thickness, hence favouring non-linear optical response.

Figure 8(b) also shows that, while the Si reference response follows the expected quadratic curve for the SHG power as a function of the fundamental excitation power,89 this is not the case for the WS\textsubscript{2} samples. All three WS\textsubscript{2} samples (nanotubes, with mixed 1D/2D content, and 2D nanomesh) deviate from the quadratic dependence and the deviation is strongest for the 2D nanomesh. This can be observed visually, but is clearly reflected by the differing R^2 values of the fit curves (see caption of Figure 8(b)). This power-dependent divergence can be attributed to the onset of saturable absorption, which correlates with increasing presence of edge states90 induced by the finite lateral sizes/domains of 2D nanosheets that form when the material progresses from 1D form to full 2D content.

The very large values of SHG and promising saturable absorption properties in these materials, in particular in the 2D nanomesh, together with the ability to be grown on insulating, transparent substrates (demonstrated here on SiO\textsubscript{2}) point towards promising nonlinear optical applications, which will be the subject of future work.
Figure 8. Nonlinear optical properties of the class of out-of-plane WS$_2$ phases, showing representative phases: nanotube-rich (1D); intermediary, with mixed 1D/2D content; and 2D nanomesh. (a) Experimental setup. HWP designates a half wave-plate and PMT stands for photo multiplier tube. (b) Second harmonic generation (SHG) intensity as a function of the incident power, for the three types of WS$_2$ samples (left Y axis) and for the Si substrate used as a reference (right Y axis, indicated by black arrow). Error bars representative for the experiment can be seen in the low signal data from Si; these are too small to be visible on the WS$_2$ data. The continuous lines are fits to quadratic functions characteristic of SHG behavior ($R^2 = 0.91; 0.97; 0.98; \text{and} 0.998$ for the 2D nanomesh, mixed 1D/2D content, nanotube-rich (1D) samples, and Si substrate, respectively); deviations of data from these lines demonstrate onset of saturable absorption.

Conclusions

In conclusion, we demonstrated the sequential growth by CVD of a wide range of nanostructured materials, ranging from 1D WO$_{3-x}$ suboxides to WS$_2$ nanophases with tunable 1D to 2D content, by intentionally decoupling into two stages (first stage, partial reduction; second stage, sulfurization) a reaction from WO$_3$ to WS$_2$ in order to enhance and reveal the role played by W
suboxides in CVD growth of WS$_2$. In this process, we created WO$_{2.92}$/WO$_{2.92}$ morphologies, such as nanowires and nanorods, grown in-plane (i.e. parallel to the substrate) or out-of-plane of the substrate; the stoichiometry of these suboxides being found instrumental in the subsequent creation of many WS$_2$ polymorphs. We were, thus, able to exploit a WO$_{3-x}$ – intermediate route that is very versatile, in that it is able to create by relatively simple tuning of the CVD growth process, and in a single process stream, a rich variety of 2H-WS$_2$ phases: a tunable class of materials, ranging from nanotubes, to mixed 1D and 2D WS$_2$ phases, to an out-of-plane (of the substrate), pure WS$_2$ 2D nanomesh with extended 2D few-layer crystallites; as well as in-plane (parallel to the substrate), self-seeded 2D domains. Regarding the in-plane 2D WS$_2$ films, our study showed that their growth can be routed via WO$_{3-x}$ suboxides, a different route than via W oxi-sulfides as previously demonstrated in conventional 2D growth. Moreover, their growth proceeds via a “self-seeding and feeding” mechanism from 1D WO$_{2.92}$/WO$_{2.92}$ nanorod precursors which may be able to take advantage of the positional and orientational growth within the substrate that can be achieved in growth of such 1D precursors.

The CVD route enables the growth of microns-thick WO$_{3-x}$ suboxide nanowire films and WS$_2$ phases with tunable 1D/2D content directly on substrates, in an evolutionary manner, and on areas of at least several cm2 (limited here by the dimensions of our furnace). WO$_{3-x}$ suboxide nanowire films can find their own applications as sensing materials. The morphological tunability of the WS$_2$ phases can be exploited to tune their opto-electronic properties. In the examples given here, the evolution from WS$_2$ nanotubes with WO$_{3-x}$ cores into a pure WS$_2$ 2D nanomesh phase results in changes in the optical absorption/reflection spectra, and can provide media with tunable effective refractive index. All WS$_2$ nanophases in the class have very strong non-linear optical properties, with the 2D nanomesh being extremely SHG active. Films obtained by condensation
of TMD suspensions, or composites of nanoscale TMD flakes with polymers have been suggested in other works for non-linear optical applications. The 2D nanomesh demonstrated here, however, has a “ready-made” sheet-exfoliated morphology, large overall effective thickness of the film, and ability to be grown directly on optically compatible substrates (i.e. insulators and transparent, as opposed to metallic) which are all important advantages in terms of ease of coupling with optical systems and devices, as well as improved material stability.
Methods

Synthesis of nanophases and nanostructures. A home-built setup involving a horizontal furnace with a temperature gradient (Supporting Information, Figure S1) was used to first produce a variety of W suboxide nanowires/nanorods (by partially reducing WO$_3$ to suboxides) – stage 1; which were then sulfurized for conversion to WS$_2$ nanophases – stage 2.

Synthesis of W suboxide nanowires and nanorods (stage 1). This is a Low-pressure CVD (LPCVD) process. The geometrical configuration of the furnace and position of boats with precursor materials are shown in Supporting Information, Figure S1. Differences in process substrate position/temperature, discussed in the main text, led to the formation of (i) long, out-of-plane nanowires, (ii) clusters of short nanorods, and (iii) in-plane nanorods of suboxides, as described below.

WO$_{3-x}$ nanowires/nanorods were synthesized on SiO$_2$/Si (i.e. 300 nm thermal oxide), without any catalysts. Typically, 60 mg tungsten (VI) oxide (99.998%, Alfa Aesar) and 400 mg sulfur powder (99.5%, Alfa Aesar) were used as precursors. The SiO$_2$/Si substrates were cleaned by sonication in acetone, isopropanol (both HPLC grade), and deionized water, in sequence, prior to loading them in the furnace. A rotary pump pumped the tube during the whole process. Only argon (flow rate 150 sccm) was used for transporting the WO$_3$ and sulfur vapor to the Si/SiO$_2$ substrates. This LPCVD stage has two distinct periods: (i) an initial period where just WO$_3$ is sublimed (without S vapor being introduced into the reactor), a set of typical conditions being 1030 °C, at a pressure below 10$^{-1}$ mBar, and for 20 minutes; followed by (ii) a period where S is introduced and co-evaporated together with the WO$_3$ over 15 minutes, leading to partial reduction of the WO$_3$ vapor, and, then, its condensation on the substrate as WO$_{2.92}$ and WO$_{2.9}$ nanostructures.
We have verified in dedicated experiments that in the conditions described at (i) WO\textsubscript{3} is volatile during our LPCVD process: after annealing (non-hydrated) WO\textsubscript{3} powder for 45 minutes, its weight decreased by two thirds, while the remaining powder in the furnace pocket was verified by XRD to still be entirely WO\textsubscript{3} (\textit{i.e.} did not undergo any unexpected reduction) at the end of the annealing period. No nanowires were formed on the SiO\textsubscript{2}/Si substrates after just this process.

\textit{Synthesis of out-of-plane WS\textsubscript{2} nanotubes, mixed 1D and 2D phases, and 2D nanomesh (stage 2).} This is an Atmospheric pressure CVD (APCVD) process. Out-of-plane WO\textsubscript{2.92}/WO\textsubscript{2.9} nanowires on SiO\textsubscript{2}/Si were heated in the 850 - 925 °C range, under atmospheric pressure in the furnace center, whereas 400 mg sulfur powder (99.5\%, Alfa Aesar) was heated upstream (about 40 cm) at 180 °C. Argon, at a flow rate of 100 sccm, was used to transport the sulfur vapor to the nanowires on SiO\textsubscript{2}/Si sample. The same furnace geometry as above was employed. For generating Figure 4, where the transition between nanotube and 2D nanomesh phases was monitored, identical parts of the same initial WO\textsubscript{2.92}/WO\textsubscript{2.9} nanowire sample were reacted at 850 °C in S environment (in the conditions described above), each for an increasing amount of time (\(\Delta t\)) up to three hours, to form the series described in the figure caption.

We have also verified (by a combination of SEM, TEM and XRD) that WO\textsubscript{2.9} and WO\textsubscript{2.92} are non-volatile in the conditions of our APCVD process by annealing the WO\textsubscript{2.92}/WO\textsubscript{2.9} nanowires (supported by their SiO\textsubscript{2}/Si substrate) for one hour just in an Ar atmosphere (\textit{i.e.} without the presence of S) in APCVD conditions, and over the same temperature range at which the various WS\textsubscript{2} phases were obtained (as described above).

\textit{Synthesis of in-plane, 2D WS\textsubscript{2} domains (stage 2).} As-grown WO\textsubscript{2.92}/WO\textsubscript{2.9} short nanorods on SiO\textsubscript{2}/Si were heated in the 850 - 925 °C range in the center of the furnace, under atmospheric pressure (\textit{i.e.} in an APCVD process), while 400 mg sulfur powder (99.5\%, Alfa Aesar) was heated
upstream (about 40 cm) at 180 °C. Argon, at 100 sccm flow rate, was used to transport the sulfur vapor to the nanorods on SiO2/Si sample. The same furnace geometry as above was employed.

Structural characterization of grown nanophases and nanostructures.

X-ray diffraction (XRD). WO3-x nanowires/nanorods and WS2 nanomesh as grown on their SiO2/Si substrates were characterized by XRD performed on a BRUKER AXS D8 Advance instrument, equipped with a Vantec-1 detector, and using CuKα radiation at λ= 1.5418 Å.

High resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED). Complementary HRTEM and SAED were performed on a JEOL JEM-2100Plus microscope operated at 200 kV and using a bottom-mounted CCD camera. A drop of nanowires/nanotubes/nanomesh suspension in ethanol was drop-cast onto a mesh TEM support grid.

Raman spectroscopy. All nanostructures, as grown on their SiO2/Si substrates – WO3-x nanowires/nanorods, WS2 nanomesh, and in-plane, WS2 2D domains – were characterized by Raman spectroscopy performed with a Renishaw inVia Raman microscope, using 532 nm excitation laser. Samples were illuminated through a ×50 objective lens (1.9 μm diameter spot size), at a laser power of 0.7 mW, while spectra were acquired with an exposure time of 1 s and using 200 accumulations.

Scanning electron microscopy (SEM). The nanostructured samples, as grown on the SiO2/Si substrates, were observed using a JEOL SEM6480LV microscope in secondary electrons (SE) mode with acceleration voltages in the 5-15 kV range depending on the penetration depth needed for the various morphologies.

Linear and non-linear optical properties.
Microscopy and normal incidence reflection measurements. An Axioplan 2 microscope (ZEISS) with a halogen lamp and a 100x microscope objective were used, measurements being performed in brightfield mode. Microscope colour images were taken with an Axiocam 105 color camera, while optical spectra were taken over the 400 – 950 nm spectral range with an Ocean Optics QE Pro spectrometer, using an integration time of 1 s and averaging over 10 scans. The spectra were normalized with respect to the untreated silicon wafer.

Angle-dependent linear optical characterization. A Fianium SC400-2 2 W laser source with a 1064 nm output wavelength and 20 MHz repetition rate and a 5 ps pulse spliced to an in-house fabricated supercontinuum fibre capable of a 450-2400 nm spectral range was used. Two uncoated Glan-Laser polarizers were used to control the power output and polarization of the incident light. The reflected light from the sample was collected via a 200 μm diameter SMA fibre (0.22 NA) mounted on a fibre launch stage and measured with an Ocean Optics QE Pro spectrometer over 450 – 950 nm, using an integration time of 300 ms and averaging over 10 scans. An automated setup was used to determine the reflected light angle. The spectra were normalized with respect to the untreated silicon wafer.

Second harmonic generation (SHG) measurements. A femtosecond laser (MaiTai HP from Spectra Physics), tuned to a wavelength of 800 nm, provided the incident fundamental beam. The laser produced pulses at a repetition rate of 80 MHz, which are approximately 100 fs long in time with a bandwidth of 10 nm. Two crossed polarizers (Glan-laser calcite anti-reflection coated) controlled the laser power. An achromatic half-waveplate ensured that the incident beam is P-polarized (horizontal polarization). Two colored glass bandpass filters were used to reject any spurious light at the second harmonic. An achromatic lens (focal length 150 mm, anti-reflection coated) focused the beam onto the sample at an incident angle of 45° relative to the sample.
Another achromatic lens (focal length 150 mm, anti-reflection coated) collimated the SHG in reflection, while a colored bandpass filter rejected the fundamental beam, leaving only the SHG. The signal beam was focused into a cooled photomultiplier tube (PMT) using an anti-reflection coated lens (focal length 200 mm). The PMT produced current pulses, which were pre-amplified and fed into a gated photon counter. The data point for each incident power was the average of 20 measurements, where the counting duration of each measurement was 5 seconds.

Supporting Information

(i) CVD setup for nanostructure synthesis, and phase diagram for WO$_{3-x}$ phases. (ii) Characterization (XRD, SEM and HRTEM) of grown WO$_{3-x}$ nanowires and nanorods. (iii) Raman characterization of WS$_2$ nanophases. (iv) Electrical characterization of WS$_2$ 2D nanomesh. (v) Atomistic description of layer-by-layer evolution from WO$_3$ to WS$_2$ via WO$_{2.92}$/WO$_{2.9}$ Magnéli phases.

Author Contributions

AI and ZL designed the material growth-related program of work, while AI supervised the work; ZL performed the experiments; ZL and AI analyzed the data and co-wrote the growth part of the paper. VKV and AI selected the optical measurements performed. VKV supervised the optics-related work. AWAM, CK, DCH performed the optics experiments; together with VKV and AI (with contributions from ZL), they analyzed the data and co-wrote the optics-related part of manuscript.

Acknowledgments
ZL gratefully acknowledges a studentship from the University of Bath. VKV acknowledges a Royal Society University Research Fellowship, and Royal Society grants CHG\R1\170067, PEF\170015 and RGF\EA\180228, as well as STFC ST/R005842/1. DCH acknowledges funding and support from the Engineering and Physical Sciences Research Council, UK, via the Centre for Doctoral Training in Condensed Matter Physics (CDTCMP), Grant No. EP/L015544/1. We thank Kei Takashina and Alessandro Narduzzo for assistance with the electrical characterization of the 2D nanomesh, and William Wadsworth and Andriy Gorbach for useful discussions on saturable absorption and cavity modes.

References

(1) Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically Thin MoS2: a New Direct-Gap Semiconductor. *Phys. Rev. Lett.* **2010**, *105*, 136805.

(2) Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C.-Y.; Galli, G.; Wang, F. Emerging Photoluminescence in Monolayer MoS2. *Nano Lett.* **2010**, *10*, 1271-1275.

(3) Ramakrishna Matte, H.; Gomathi, A.; Manna, A. K.; Late, D. J.; Datta, R.; Pati, S. K.; Rao, C. MoS2 and WS2 Analogues of Graphene. *Angew. Chem. Int. Ed.* **2010**, *49*, 4059-4062.

(4) Ding, Y.; Wang, Y.; Ni, J.; Shi, L.; Shi, S.; Tang, W. First Principles Study of Structural, Vibrational and Electronic Properties of Graphene-Like MX2 (M= Mo, Nb, W, Ta; X= S, Se, Te) Monolayers. *Phys. B* **2011**, *406*, 2254-2260.
(5) Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides. *Nat. Nanotechnol.* **2012**, 7, 699-712.

(6) Lee, Y. H.; Zhang, X. Q.; Zhang, W.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T. W.; Chang, C. S.; Li, L. J.; Lin, T.-W. Synthesis of Large-Area MoS$_2$ Atomic Layers with Chemical Vapor Deposition. *Adv. Mater.* **2012**, 24, 2320-2325.

(7) Huang, J.-K.; Pu, J.; Hsu, C.-L.; Chiu, M.-H.; Juang, Z.-Y.; Chang, Y.-H.; Chang, W.-H.; Iwasa, Y.; Takenobu, T.; Li, L.-J. Large-Area Synthesis of Highly Crystalline WSe$_2$ Monolayers and Device Applications. *ACS Nano* **2013**, 8, 923-930.

(8) Ling, X.; Lee, Y.-H.; Lin, Y.; Fang, W.; Yu, L.; Dresselhaus, M. S.; Kong, J. Role of the Seeding Promoter in MoS$_2$ Growth by Chemical Vapor Deposition. *Nano Lett.* **2014**, 14, 464-472.

(9) Cong, C.; Shang, J.; Wu, X.; Cao, B.; Peimyoo, N.; Qiu, C.; Sun, L.; Yu, T. Synthesis and Optical Properties of Large-Area Single-Crystalline 2D Semiconductor WS$_2$ Monolayer from Chemical Vapor Deposition. *Adv. Opt. Mater.* **2014**, 2, 131-136.

(10) Zhou, H.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Huang, X.; Liu, Y.; Weiss, N. O.; Lin, Z.; Huang, Y.; Duan, X. Large Area Growth and Electrical Properties of P-Type WSe$_2$ Atomic Layers. *Nano Lett.* **2015**, 15, 709-713.

(11) Wang, X.; Gong, Y.; Shi, G.; Chow, W. L.; Keyshar, K.; Ye, G.; Vajtai, R.; Lou, J.; Liu, Z.; Ringe, E.; Tay, B. K.; Ajayan, P. M. Chemical Vapor Deposition Growth of Crystalline Monolayer MoSe$_2$. *ACS Nano* **2014**, 8, 5125-5131.
(12) Gong, Y.; Ye, G.; Lei, S.; Shi, G.; He, Y.; Lin, J.; Zhang, X.; Vajtai, R.; Pantelides, S. T.; Zhou, W.; Li, B.; Ajayan, P. M. Synthesis of Millimeter-Scale Transition Metal Dichalcogenides Single Crystals. Adv. Funct. Mater. 2016, 26, 2009-2015.

(13) Wang, S.; Pacios, M.; Bhaskaran, H.; Warner, J. H. Substrate Control for Large Area Continuous Films of Monolayer MoS$_2$ by Atmospheric Pressure Chemical Vapor Deposition. Nanotechnology 2016, 27, 085604.

(14) Wilson, J.; Yoffe, A. The Transition Metal Dichalcogenides Discussion and Interpretation of the Observed Optical, Electrical and Structural Properties. Adv. Phys. 1969, 18, 193-335.

(15) Zhu, Z.; Cheng, Y.; Schwingenschlögl, U. Giant Spin-Orbit-Induced Spin Splitting in Two-Dimensional Transition-Metal Dichalcogenide Semiconductors. Phys. Rev. B 2011, 84, 153402.

(16) Mao, D.; Zhang, S.; Wang, Y.; Gan, X.; Zhang, W.; Mei, T.; Wang, Y.; Wang, Y.; Zeng, H.; Zhao, J. WS$_2$ Saturable Absorber for Dissipative Soliton Mode Locking at 1.06 and 1.55 µm. Opt. Express 2015, 23, 27509-27519.

(17) Lin, X.; Liu, Y.; Wang, K.; Wei, C.; Zhang, W.; Yan, Y.; Li, Y. J.; Yao, J.; Zhao, Y. S. Two-Dimensional Pyramid-Like WS$_2$ Layered Structures for Highly Efficient Edge Second-Harmonic Generation. ACS Nano 2018, 12, 689-696.

(18) Shi, Y.; Li, H.; Li, L.-J. Recent Advances in Controlled Synthesis of Two-Dimensional Transition Metal Dichalcogenides via Vapour Deposition Techniques. Chem. Soc. Rev. 2015, 44, 2744-2756.
(19) Zhang, Y.; Zhang, Y.; Ji, Q.; Ju, J.; Yuan, H.; Shi, J.; Gao, T.; Ma, D.; Liu, M.; Chen, Y.; Song, X.; Hwang, H. Y.; Cui, Y.; Liu, Z. Controlled Growth of High-Quality Monolayer WS₂ Layers on Sapphire and Imaging Its Grain Boundary. *ACS Nano* **2013**, 7, 8963-8971.

(20) Whitby, R.; Hsu, W.; Boothroyd, C.; Brigatti, K.; Kroto, H.; Walton, D. WS₂ Layer Formation on Multi-Walled Carbon Nanotubes. *Appl. Phys. A* **2003**, 76, 527-532.

(21) Feldman, Y.; Frey, G.; Homyonfer, M.; Lyakhovitskaya, V.; Margulis, L.; Cohen, H.; Hodes, G.; Hutchison, J.; Tenne, R. Bulk Synthesis of Inorganic Fullerene-Like MS₂ (M= Mo, W) from the Respective Trioxides and the Reaction Mechanism. *J. Am. Chem. Soc.* **1996**, 118, 5362-5367.

(22) Sloan, J.; Hutchison, J. L.; Tenne, R.; Feldman, Y.; Tsirlina, T.; Homyonfer, M. Defect and Ordered Tungsten Oxides Encapsulated inside 2H–WX₂ (X= S and Se) Fullerene-Related Structures. *J. Solid State Chem.* **1999**, 144, 100-117.

(23) Cain, J. D.; Shi, F.; Wu, J.; Dravid, V. P. Growth Mechanism of Transition Metal Dichalcogenide Monolayers: The Role of Self-Seeding Fullerene Nuclei. *ACS Nano* **2016**, 10, 5440-5445.

(24) Rong, Y.; Fan, Y.; Koh, A. L.; Robertson, A. W.; He, K.; Wang, S.; Tan, H.; Sinclair, R.; Warner, J. H. Controlling Sulphur Precursor Addition for Large Single Crystal Domains of WS₂. *Nanoscale* **2014**, 6, 12096-12103.

(25) Hu, S.; Wang, X.; Meng, L.; Yan, X. Controlled Synthesis and Mechanism of Large-Area WS₂ Flakes by Low-Pressure Chemical Vapor Deposition. *J. Mater. Sci.* **2017**, 52, 7215-7223.
(26) Elías, A. L.; Perea-López, N.; Castro-Beltrán, A.; Berkdemir, A.; Lv, R.; Feng, S.; Long, A. D.; Hayashi, T.; Kim, Y. A.; Endo, M.; Gutiérrez, H. R.; Pradhan, N. R.; Balicas, L.; Mallouk, T. E.; López-Urías, F.; Terrones, H.; Terrones, M. Controlled Synthesis and Transfer of Large-Area WS$_2$ Sheets: from Single Layer to Few Layers. *ACS Nano* 2013, 7, 5235-5242.

(27) Liu, P.; Luo, T.; Xing, J.; Xu, H.; Hao, H.; Liu, H.; Dong, J. Large-Area WS$_2$ Film with Big Single Domains Grown by Chemical Vapor Deposition. *Nanoscale Res. Lett.* 2017, 12, 558.

(28) Xie, Y.; Wang, Z.; Zhan, Y.; Zhang, P.; Wu, R.; Jiang, T.; Wu, S.; Wang, H.; Zhao, Y.; Nan, T.; Ma, X. Controllable Growth of Monolayer MoS$_2$ by Chemical Vapor Deposition via Close MoO$_2$ Precursor for Electrical and Optical Applications. *Nanotechnology* 2017, 28, 084001.

(29) Rossi, A.; Büch, H.; Di Rienzo, C.; Miseikis, V.; Convertino, D.; Al-Temimy, A.; Voliani, V.; Gemmi, M.; Piazza, V.; Coletti, C. Scalable Synthesis of WS$_2$ on Graphene and h-BN: an All-2D Platform for Light-Matter Transduction. *2D Mater.* 2016, 3, 031013.

(30) Gao, Y.; Liu, Z.; Sun, D.-M.; Huang, L.; Ma, L.-P.; Yin, L.-C.; Ma, T.; Zhang, Z.; Ma, X.-L.; Peng, L.-M.; Cheng, H.-M.; Ren, W. Large-Area Synthesis of High-Quality and Uniform Monolayer WS$_2$ on Reusable Au Foils. *Nat. Commun.* 2015, 6, 8569.

(31) Wu, D.; Min, T.; Zhou, J.; Li, C.; Ma, G.; Lu, G.; Xia, M.; Gu, Z. Effect of Substrate Symmetry on the Dendrite Morphology of MoS$_2$ Film Synthesized by CVD. *Sci. Rep.* 2017, 7, 15166.

(32) Chen, J.; Liu, B.; Liu, Y.; Tang, W.; Nai, C. T.; Li, L.; Zheng, J.; Gao, L.; Zheng, Y.; Shin, H. S.; Jeong, H. Y.; Loh, K. P. Chemical Vapor Deposition of Large-Sized Hexagonal WSe$_2$ Crystals on Dielectric Substrates. *Adv. Mater.* 2015, 27, 6722-6727.
(33) Özden, A.; Şar, H.; Yeltik, A.; Madenoğlu, B.; Sevik, C.; Ay, F.; Perkgöz, N. K. CVD Grown 2D MoS2 Layers: a Photoluminescence and Fluorescence Lifetime Imaging Study. *Phys. Status Solidi RRL* **2016**, *10*, 792-796.

(34) Özden, A.; Ay, F.; Sevik, C.; Perkgöz, N. K. CVD Growth of Monolayer MoS2: Role of Growth Zone Configuration and Precursors Ratio. *Jpn. J. Appl. Phys.* **2017**, *56*, 06GG05.

(35) Rothschild, A.; Sloan, J.; Tenne, R. Growth of WS2 Nanotubes Phases. *J. Am. Chem. Soc.* **2000**, *122*, 5169-5179.

(36) Zak, A.; Sallacan-Ecker, L.; Margolin, A.; Feldman, Y.; Popovitz-Biro, R.; Albu-Yaron, A.; Genut, M.; Tenne, R. Scaling up of the WS2 Nanotubes Synthesis. *Fullerenes, Nanotubes, Carbon Nanostruct.* **2010**, *19*, 18-26.

(37) Lee, Y.-H.; Yu, L.; Wang, H.; Fang, W.; Ling, X.; Shi, Y.; Lin, C.-T.; Huang, J.-K.; Chang, M.-T.; Chang, C.-S.; Dresselhaus, M.; Palacios, T.; Li, L.-J.; Kong, J. Synthesis and Transfer of Single-Layer Transition Metal Disulfides on Diverse Surfaces. *Nano Lett.* **2013**, *13*, 1852-1857.

(38) Füchtbauer, H. G.; Tuxen, A. K.; Moses, P. G.; Topsøe, H.; Besenbacher, F.; Lauritsen, J. V. Morphology and Atomic-Scale Structure of Single-Layer WS2 Nanoclusters. *Phys. Chem. Chem. Phys.* **2013**, *15*, 15971-15980.

(39) Li, X. L.; Li, Y. D. Formation of MoS2 Inorganic Fullerenes (IFs) by the Reaction of MoO3 Nanobelts and S. *Chem. Eur. J.* **2003**, *9*, 2726-2731.

(40) Ji, Q.; Zhang, Y.; Zhang, Y.; Liu, Z. Chemical Vapour Deposition of Group-VIb Metal Dichalcogenide Monolayers: Engineered Substrates from Amorphous to Single Crystalline. *Chem Soc. Rev.* **2015**, *44*, 2587-2602.
(41) Wang, S.; Rong, Y.; Fan, Y.; Pacios, M.; Bhaskaran, H.; He, K.; Warner, J. H. Shape Evolution of Monolayer MoS$_2$ Crystals Grown by Chemical Vapor Deposition. *Chem. Mater.* **2014**, *26*, 6371-6379.

(42) Yang, P.; Zou, X.; Zhang, Z.; Hong, M.; Shi, J.; Chen, S.; Shu, J.; Zhao, L.; Jiang, S.; Zhou, X.; Huan, Y.; Xie, C.; Gao, P.; Chen, Q.; Zhang, Q.; Liu, Z.; Zhang, Y. Batch Production of 6-Inch Uniform Monolayer Molybdenum Disulfide Catalyzed by Sodium in Glass. *Nat. Commun.* **2018**, *9*, 979.

(43) Fu, Q.; Wang, W.; Yang, L.; Huang, J.; Zhang, J.; Xiang, B. Controllable Synthesis of High Quality Monolayer WS$_2$ on a SiO$_2$/Si Substrate by Chemical Vapor Deposition. *RSC Adv.* **2015**, *5*, 15795-15799.

(44) Ling, M.; Blackman, C. Growth Mechanism of Planar or Nanorod Structured Tungsten Oxide Thin Films Deposited via Aerosol Assisted Chemical Vapour Deposition (AACVD). *Phys. Status Solidi C* **2015**, *12*, 869-877.

(45) Shen, Z.; Zhao, Z.; Qian, J.; Peng, Z.; Fu, X. Synthesis of WO$_3$–X Nanomaterials with Controlled Morphology and Composition for Highly Efficient Photocatalysis. *J. Mater. Res.* **2016**, *31*, 1065-1076.

(46) Rieck, G. D., *Tungsten and Its Compounds*. Elsevier: 2013.

(47) Garcia-Sanchez, R. F.; Ahmido, T.; Casimir, D.; Baliga, S.; Misra, P. Thermal Effects Associated with the Raman Spectroscopy of WO$_3$ Gas-Sensor Materials. *J. Phys. Chem. A* **2013**, *117*, 13825-13831.
(48) Wang, X. H.; Zheng, C. C.; Ning, J. Q. Influence of Curvature Strain and Van Der Waals Force on the Inter-Layer Vibration Mode of WS$_2$ Nanotubes: a Confocal Micro-Raman Spectroscopic Study. *Sci. Rep.* **2016**, *6*, 33091.

(49) Polyakov, B.; Kuzmin, A.; Smits, K.; Zideluns, J.; Butanovs, E.; Butikova, J.; Vlassov, S.; Piskunov, S.; Zhukovskii, Y. F. Unexpected Epitaxial Growth of a Few WS$_2$ Layers on {1100} Facets of ZnO Nanowires. *J. Phys. Chem. C* **2016**, *120*, 21451-21459.

(50) Feldman, Y.; Wasserman, E.; Srolovitz, D.; Tenne, R. High-Rate, Gas-Phase Growth of MoS$_2$ Nested Inorganic Fullerenes and Nanotubes. *Science* **1995**, *267*, 222-225.

(51) Polyakov, A. Y.; Zak, A.; Tenne, R.; Goodilin, E. A.; Solntsev, K. A. Nanocomposites Based on Tubular and Onion Nanostructures of Molybdenum and Tungsten Disulfides: Inorganic Design, Functional Properties and Applications. *Russ. Chem. Rev.* **2018**, *87*, 251.

(52) Qian, J.; Zhao, Z.; Shen, Z.; Zhang, G.; Peng, Z.; Fu, X. Oxide Vacancies Enhanced Visible Active Photocatalytic W$_{19}$O$_{55}$ NMRS via Strong Adsorption. *RSC Adv.* **2016**, *6*, 8061-8069.

(53) Chen, Y.; Li, Y.; Wang, Y.; Tian, T.; Qin, L.-C. Thin WS$_2$ Nanotubes from W$_{18}$O$_{49}$ Nanowires. *Mater. Res. Lett.* **2017**, *1*-8.

(54) Zeng, Z.; Yin, Z.; Huang, X.; Li, H.; He, Q.; Lu, G.; Boey, F.; Zhang, H. Single-Layer Semiconducting Nanosheets: High-Yield Preparation and Device Fabrication. *Angew. Chem. Int. Ed.* **2011**, *50*, 11093-11097.

(55) Nethravathi, C.; Jeffery, A. A.; Rajamathi, M.; Kawamoto, N.; Tenne, R.; Golberg, D.; Bando, Y. Chemical Unzipping of WS$_2$ Nanotubes. *ACS Nano* **2013**, *7*, 7311-7317.
(56) Huo, N.; Yue, Q.; Yang, J.; Yang, S.; Li, J. Abnormal Photocurrent Response and Enhanced Photocatalytic Activity Induced by Charge Transfer between WS₂ Nanosheets and WO₃ Nanoparticles. *ChemPhysChem.* **2013**, 14, 4069-4073.

(57) Asres, G. A.; Dombovari, A.; Sipola, T.; Puskás, R.; Kukovecz, A.; Kónya, Z.; Popov, A.; Lin, J.-F.; Lorite, G. S.; Mohl, M.; Toth, G.; Spetz, A. L.; Kordas, K. A Novel WS₂ Nanowire-Nanoflake Hybrid Material Synthesized from WO₃ Nanowires in Sulfur Vapor. *Sci. Rep.* **2016**, 6, 25610.

(58) Najmaei, S.; Liu, Z.; Zhou, W.; Zou, X.; Shi, G.; Lei, S.; Yakobson, B. I.; Idrobo, J.-C.; Ajayan, P. M.; Lou, J. Vapour Phase Growth and Grain Boundary Structure of Molybdenum Disulphide Atomic Layers. *Nat. Mater.* **2013**, 12, 754.

(59) Kumar, P.; Balakrishnan, V. Growth and Microstructural Evolution of WS₂ Nanostructures with Tunable Field and Light Modulated Electrical Transport. *Appl. Surf. Sci.* **2018**, 436, 846-853.

(60) Kumar, P.; Balakrishnan, V. Nanosculpting of Atomically Thin 2D Materials for Site-Specific Photoluminescence Modulation. *Adv. Opt. Mater.* **2018**, 6, 1701284.

(61) Lin, Y.-C.; Zhang, W.; Huang, J.-K.; Liu, K.-K.; Lee, Y.-H.; Liang, C.-T.; Chu, C.-W.; Li, L.-J. Wafer-Scale MoS₂ Thin Layers Prepared by MoO₃ Sulfurization. *Nanoscale* **2012**, 4, 6637-6641.

(62) Wu, S.; Huang, C.; Aivazian, G.; Ross, J. S.; Cobden, D. H.; Xu, X. Vapor–Solid Growth of High Optical Quality MoS₂ Monolayers with Near-Unity Valley Polarization. *ACS Nano* **2013**, 7, 2768-2772.
(63) Xu, Z.-Q.; Zhang, Y.; Lin, S.; Zheng, C.; Zhong, Y. L.; Xia, X.; Li, Z.; Sophia, P. J.; Fuhrer, M. S.; Cheng, Y.-B.; Bao, Q. Synthesis and Transfer of Large-Area Monolayer WS2 Crystals: Moving Toward the Recyclable Use of Sapphire Substrates. ACS Nano 2015, 9, 6178-6187.

(64) Gabai, R.; Ismach, A.; Joselevich, E. Nanofacet Lithography: a New Bottom-up Approach to Nanopatterning and Nanofabrication by Soft Replication of Spontaneously Faceted Crystal Surfaces. Adv. Mater. 2007, 19, 1325-1330.

(65) Nikoobakht, B. Toward Industrial-Scale Fabrication of Nanowire-Based Devices. Chem. Mater. 2007, 19, 5279-5284.

(66) Fortuna, S. A.; Wen, J.; Chun, I. S.; Li, X. Planar GaAs Nanowires on GaAs (100) Substrates: Self-Aligned, Nearly Twin-Defect Free, and Transfer-Printable. Nano Lett. 2008, 8, 4421-4427.

(67) Tsivion, D.; Schwartzman, M.; Popovitz-Biro, R.; von Huth, P.; Joselevich, E. Guided Growth of Millimeter-Long Horizontal Nanowires with Controlled Orientations. Science 2011, 333, 1003-1007.

(68) Gillet, M.; Delamare, R.; Gillet, E. Growth of Epitaxial Tungsten Oxide Nanorods. J. Cryst. Growth 2005, 279, 93-99.

(69) Zhu, D.; Shu, H.; Jiang, F.; Lv, D.; Asokan, V.; Omar, O.; Yuan, J.; Zhang, Z.; Jin, C. Capture the Growth Kinetics of CVD Growth of Two-Dimensional MoS2. npj 2D Mater. Appl. 2017, 1, 8.
(70) Zhou, D.; Shu, H.; Hu, C.; Jiang, L.; Liang, P.; Chen, X. Unveiling the Growth Mechanism of MoS$_2$ with Chemical Vapor Deposition: From Two-Dimensional Planar Nucleation to Self-Seeding Nucleation. *Cryst. Growth Des.* **2018**, 18, 1012-1019.

(71) Feldman, Y.; Lyakhovitskaya, V.; Tenne, R. Kinetics of Nested Inorganic Fullerene-Like Nanoparticle Formation. *J. Am. Chem. Soc.* **1998**, 120, 4176-4183.

(72) Li, S.; Wang, S.; Tang, D.-M.; Zhao, W.; Xu, H.; Chu, L.; Bando, Y.; Golberg, D.; Eda, G. Halide-Assisted Atmospheric Pressure Growth of Large WSe$_2$ and WS$_2$ Monolayer Crystals. *Appl. Mater. Today* **2015**, 1, 60-66.

(73) Zhao, W.; Ghorannevis, Z.; Chu, L.; Toh, M.; Kloc, C.; Tan, P.-H.; Eda, G. Evolution of Electronic Structure in Atomically Thin Sheets of WS$_2$ and WSe$_2$. *ACS Nano* **2013**, 7, 791-797.

(74) Yadgarov, L.; Višić, B.; Abir, T.; Tenne, R.; Polyakov, A. Y.; Levi, R.; Dolgova, T. V.; Zubyuk, V. V.; Fedyanin, A. A.; Goodilin, E. A.; Ellenbogen, T.; Tenne, R.; Oron, D. Strong Light–Matter Interaction in Tungsten Disulfide Nanotubes. *Phys. Chem. Chem. Phys.* **2018**, 20, 20812-20820.

(75) Madhavi, V.; Kondaiah, P.; Hussain, O. M.; Uthanna, S. Structural, Optical, and Luminescence Properties of Reactive Magnetron Sputtered Tungsten Oxide Thin Films. *ISRN Opt.* **2012**, 2012, 8.

(76) Wang, K.; Wang, J.; Fan, J.; Lotya, M.; O’Neill, A.; Fox, D.; Feng, Y.; Zhang, X.; Jiang, B.; Zhao, Q.; Zhang, H.; Coleman, J. N.; Zhang, L.; Blau, W. J. Ultrafast Saturable Absorption of Two-Dimensional MoS$_2$ Nanosheets. *ACS Nano* **2013**, 7, 9260-9267.
(77) Fu, X.; Qian, J.; Qiao, X.; Tan, P.; Peng, Z. Nonlinear Saturable Absorption of Vertically Stood WS$_2$ Nanoplates. *Opt. Lett.* **2014**, *39*, 6450-6453.

(78) Mao, D.; Zhang, S.; Wang, Y.; Gan, X.; Zhang, W.; Mei, T.; Wang, Y.; Wang, Y.; Zeng, H.; Zhao, J. WS$_2$ Saturable Absorber for Dissipative Soliton Mode Locking at 1.06 and 1.55 µm. *Opt. Express* **2015**, *23*, 27509-27519.

(79) Fan, X.; Jiang, Y.; Zhuang, X.; Liu, H.; Xu, T.; Zheng, W.; Fan, P.; Li, H.; Wu, X.; Zhu, X.; Zhang, Q.; Zhou, H.; Hu, W.; Wang, X.; Sun, L.; Duan, X.; Pan, A. Broken Symmetry Induced Strong Nonlinear Optical Effects in Spiral WS$_2$ Nanosheets. *ACS Nano* **2017**, *11*, 4892-4898.

(80) Lee, C. H.; Chang, R. K.; Bloembergen, N. Nonlinear Electroreflectance in Silicon and Silver. *Phys. Rev. Lett.* **1967**, *18*, 167-170.

(81) Kirilyuk, A.; Rasing, T. Magnetization-Induced-Second-Harmonic Generation from Surfaces and Interfaces. *J. Opt. Soc. Am. B* **2005**, *22*, 148-167.

(82) Jeong, J.-W.; Shin, S.-C.; Dadoenkova, N. N.; Lyubchanskii, I. L.; Valev, V. K.; Rasing, T. Direct Observation of Controlled Strain-Induced Second Harmonic Generation in a Co$_{0.25}$Pd$_{0.75}$ Thin Film on a Pb(ZrTi)O$_3$ Substrate. *Appl. Phys. Lett.* **2007**, *90*, 044108.

(83) Collins, J. T.; Rusimova, K. R.; Hooper, D. C.; Jeong, H. H.; Ohnoutek, L.; Pradaux-Caggiano, F.; Verbiest, T.; Carbery, D. R.; Fischer, P.; Valev, V. K. First Observation of Optical Activity in Hyper-Rayleigh Scattering. *Phys. Rev. X* **2019**, *9*, 011024.

(84) Hooper, D. C.; Kuppe, C.; Wang, D.; Wang, W.; Guan, J.; Odom, T. W.; Valev, V. K. Second Harmonic Spectroscopy of Surface Lattice Resonances. *Nano Lett.* **2019**, *19*, 165-172.
(85) Valev, V. K.; Kirilyuk, A.; Dalla Longa, F.; Kohlhepp, J. T.; Koopmans, B.; Rasing, T. Observation of Periodic Oscillations in Magnetization-Induced Second Harmonic Generation at the Mn/Co Interface. *Phys. Rev. B* 2007, 75, 012401.

(86) Bloembergen, N.; Chang, R. K.; Jha, S. S.; Lee, C. H. Optical Second-Harmonic Generation in Reflection from Media with Inversion Symmetry. *Phys. Rev.* 1968, 174, 813-822.

(87) Litwin, J. A.; Sipe, J. E.; van Driel, H. M. Picosecond and Nanosecond Laser-Induced Second-Harmonic Generation from Centrosymmetric Semiconductors. *Phys. Rev. B* 1985, 31, 5543-5546.

(88) Li, Y.; Rao, Y.; Mak, K. F.; You, Y.; Wang, S.; Dean, C. R.; Heinz, T. F. Probing Symmetry Properties of Few-Layer MoS2 and h-BN by Optical Second-Harmonic Generation. *Nano Lett.* 2013, 13, 3329-3333.

(89) Janisch, C.; Wang, Y.; Ma, D.; Mehta, N.; Elías, A. L.; Perea-López, N.; Terrones, M.; Crespi, V.; Liu, Z. Extraordinary Second Harmonic Generation in Tungsten Disulfide Monolayers. *Sci. Rep.* 2014, 4, 5530.

(90) Woodward, R.; Kelleher, E.; Howe, R.; Hu, G.; Torrisi, F.; Hasan, T.; Popov, S.; Taylor, J. Tunable Q-Switched Fiber Laser Based on Saturable Edge-State Absorption in Few-Layer Molybdenum Disulfide (MoS2). *Opt. Express* 2014, 22, 31113-31122.

(91) Stone, J. M.; Knight, J. C. Visibly “White” Light Generation in Uniform Photonic Crystal Fiber Using a Microchip Laser. *Opt. Express* 2008, 16, 2670-2675.