INTRODUCTION

Curcuma pseudomontana J. Graham belongs to the family Zingiberaceae, commonly known as hill turmeric. It is an endemic to the Western and Eastern Ghats, of peninsular India. *C. pseudomontana* rhizome is beneficial against leprosy, dysentery, and cardiac diseases. The Savara, Bagata, and Valmiki tribes of Andhra Pradesh use tuber extracts to cure jaundice and Bagata tribes use this plant for diabetes. In the present study, the preliminary phytochemical study and antioxidant activity of the rhizome extracts of *C. pseudomontana* were evaluated. Phytochemical screening indicated that the rhizomes are rich in a variety of primary and secondary metabolites such as carbohydrates, alkaloids, Vitamin C, Vitamin E, flavonoids, phenols, glycosides, and saponins. The study highlights the biochemical and ethnopharmacological significance of an endemic *C. pseudomontana*. The results of pharmacognostic analysis will be helpful in developing standards for quality, purity, and sample identification. The current review summarizes the pharmacognostic parameters such as macroscopic, microscopic, physicochemical constituents, fluorescence analysis, nutritive value, behavior analysis of rhizome powder, and pharmacological activities prove it is a useful medicinal plant.

Keywords: *Curcuma pseudomontana*, J. Graham, Phytochemical properties, Endemic, Hill turmeric.

© 2018 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) DOI: http://dx.doi.org/10.22159/ajpcr.2018.v11i12.28131
Tamil: Kattumanjal
Malayalam: Kattumanjal
Ayurveda: Tavaksheera
Telegu: Adavi pasupu

Synonyms [27]
Curcuma grahaimiana Voigt
Curcuma ranadei Prain

Habitat
This species is a rhizomatous herbaceous perennial, which is found in usually moist shady places on the fringes of wet forests or grasslands, in riparian areas, at moderately high altitude along the western side of the Western Ghats [28]. The taxon occurs both in moist deciduous forest and semi-evergreen forest [29]. Mycorrhizal associations have been found [30]. Curcuma is a taxonomically difficult genus and problematic for plant hunters, herbarium technicians, as well as taxonomists. This taxon, originally described from the Western Ghats, has a confused taxonomy as it closely resembles C. montana for the side corms. C. pseudomontana and C. montana share many common floral and vegetative characters and occur in similar habitats. The inflorescence of C. pseudomontana is lateral in the early part of the rainy season and terminal later in the season. The color of the coma is variable within the species [28]. Molecular marker-based genetic diversity analysis has not yet been conclusive on the legitimacy of both taxa as species. A close relook into the morphotaxonomic traits of the two species is warranted before according a permanent separate status to them [30].

PHARMACOGNOSTIC EVALUATION
It is known that plants are rich in a variety of secondary metabolites such as tannins, terpenoids, alkaloids, flavonoids, phenols, steroids, glycosides, saponins, and volatile oils. It is necessary to identify the phytochemical components of local medicinal plants usually employed by herbalists in the treatment of diseases [31].

Phytochemical screening of the rhizome extracts of C. pseudomontana revealed the presence of different phytochemicals. Indeed, phytochemical investigations of this plant have resulted in occurrences of carbohydrates, alkaloids, glycosides, saponins, flavonoids, phenols, Vitamin E, and Vitamin C. The qualitative analysis of carbohydrates (Benedict’s reagent test) and glycosides (Borntrager’s reagent) was carried out in all extracts, i.e., aqueous (s1), methanol (s2), acetone (s3), and chloroform (s4) extracts. The solutions turning red and pink confirmed the presence of carbohydrates and glycosides, respectively.

The hydrophilic carbohydrates and glycosides were present in water, whereas hydrophobic carbohydrates and glycosides were detected in rest of the organic solvents (s2, s4). The Mayer’s test of extract (S2) displayed appearance of white turbidity for alkaloids. The alkaloids were absent in S1, S3, and S4 extracts. The dark brown coloration test for phenols was observed in S2-S4 extracts. The water-soluble phenols were absent in all the extracts. The extracts S1-S4 were shaken with distilled water. The persistence of froth in S1 and S2 was observed, indicated the presence of saponins. The hydrophilic flavonoids were detected in extract S1. The water-soluble Vitamin C was found in S1 and the Vitamin E was qualitatively analyzed by high-performance liquid chromatography method in extracts S3 of C. pseudomontana. The rhizome powder of C. pseudomontana showed the presence of steroids, tannins, starch, alkaloids, flavonoids, and protein [32]. Flavonoids such as luteolin, rutin, epiginerin, saponins, hesperidin, and Coumaric acid by

Table 1: Physicochemical analysis

Sr. no.	Physicochemical parameter	Result % (w/w)
1	Ash value	
	Total ash value	13.98
	Water-soluble ash value	4.25
	Acid-insoluble ash value	1.40
2	Extractive value	
	Chloroform extractives	2.0
	Alcohol-soluble extractives	13.68
	Water-soluble extractives	18.95
3	Moisture content	4.0
4	pH	3.8

Table 2: Fluorescence analysis

Sr. no.	Treatment	Visible light	UV short (254 nm)	UV long (365 nm)
1	Powder	Brown	Brown	Brown
2	Powder + NaOH	Pale yellow	Yellowish-green	Dark blue
3	Powder + 1N HCl	Pale orange	Dark brown	Brown
4	Powder + nitric acid	Pale yellow	Pale green	Dark green
5	Powder + sulfuric acid	Brownish-red	Brown	Blackish-brown
high-performance thin-layer chromatography reveal strong medicinal value in all the rhizome extracts [33].

PHYSICOCHEMICAL EVALUATION [34]

Physicochemical evaluation of the rhizome of C. pseudomontana is given in Table 1.

FLUORESCENCE ANALYSIS [35,36]

Fluorescence analysis of the rhizome of C. pseudomontana is given in Table 2.

ANALYSIS OF NUTRITIVE VALUE AND MINERAL CONTENT [37]

Nutritive value and mineral contents are given in Table 3.

BEHAVIOR OF C. PSEUDOMONTANA [38]

Behavior of C. pseudomontana is given in Table 4.

TRADITIONAL USE

Rhizomes of C. pseudomontana are said to be a traditional source, used in the treatment of leprosy, dysentery, cardiac disease, jaundice, diabetes, lactation antimicrobial, and antioxidant. In terms of traditional medicinal uses, they have been used for the treatment of enlarged liver, spleen, stomach ulcer, diabetes, cough, hepatic disorders, chest pain, skin diseases, boils, blood purifier, and rheumatism [39-42].

Curcumin is primary active compound of all curcuma plant, it is responsible for yellow color of curcuma [43], older investigation shows that curcumin has antimicrobial [44-46], anti-inflammatory [47], dyspepsia and gastric ulcer [48], irritable bowel syndrome [49-51], pancreatitis, rheumatoid arthritis [52,53], osteoarthritis [54], and antioxidant [55].

PHARMAEOLOGICAL ACTIVITY

Antimicrobial activity

All extracts of rhizome of C. pseudomontana were screened in vitro for their antimicrobial activities against clinically isolated bacterial and fungal strains such as Staphylococcus aureus, Salmonella typhi, Escherichia coli, and Aspergillus terreus. In result, it is found that methanolic extract showed 4 mm zone of inhibition against S. typhi, 6 mm against S. aureus, and 8 mm against E. coli. There were 2 mm zone of inhibition in acetone, 6 mm in methanol, and aqueous against A. terreus. There were no zone of inhibition in chloroform against all the microorganisms and acetone as well as aqueous against Salmonella typhi, S. aureus, and E. coli conducted by Begam et al. [56].

Antitubercular activity

Rhizome extract exhibited significant antitubercular activity against Mycobacterium tuberculosis H37 RV conducted by Hiremath et al. [57].

Anticancer activity

Cancer is the second leading cause of death in the world [58]. Plants play an important role as a source of effective anticancer agents. Currently, over 60% of anticancer agents are derived from natural sources including plants, marine organisms, and microorganisms [59]. Different extracts of C. pseudomontana contain certain types of active compounds; these active compounds show anticancer activity. These active compounds are extracted with appropriate solvent (organic/ inorganic). Selection of solvent depends on the type of active compound conducted by Bisht et al. [60].

Antifertility activity

Methanolic extract of C. pseudomontana showed antifertility activity. However, when compared to both Curcuma longa and C. pseudomontana, C. longa is shown more significant. In spermatogenic activity, there is no significance at lower dose of 100 mg/kg bw of C. pseudomontana compared to higher dose of 200 mg/kg bw of C. pseudomontana and C. longa. The anti-implantation and abortifacient activity also showed more significance with C. longa 200 mg/kg bw when compared to other treatment groups conducted by Promod Reddy et al. [61].

CONCLUSION

C. pseudomontana is very useful for treating various types of disease; various studies have demonstrated that C. pseudomontana possess antioxidant, anti-inflammatory healing, antimicrobial, and anticancer activity. The chemical constituents such as phenolic acid, flavonoid, and other important constituents are responsible for these activities. Review of the literature concluded that C. pseudomontana is considered to be useful herbal medicinal plant.

ACKNOWLEDGMENT

We are grateful to our Principal Dr. (Mrs.) Sudha Rathod, Prof. Imtiyaz Ansari for their guidance and support as well as to Pharmacology Department, Oriental College of Pharmacy, Navi Mumbai.

AUTHORS’ CONTRIBUTIONS

We declare that this work was done by the authors named in this article and all liabilities pertaining to claims relating to the content of this article will be borne by the authors. Miss. Jyoti Sing collected the data and analyzed the data. Dr. (Mrs.) Vanita Kanase proofread the whole manuscript, and suggested the necessary changes, and helped in designing manuscript.

CONFLICTS OF INTEREST

The authors declare that there are no conflicts of interest regarding the publication of this paper.
Beneficial effects of the bioflavonoids curcumin Curcuma longa table

Zingiberaceae

31. Molur S, Walker S. Conservation Assessment and Management Plan. J Pharm Assoc 1949;38:324-33.

32. Indrayan AK, Sharma S, Durgapal D, Kumar N, Kumar M. Determination of nutritive value and analysis of mineral elements for some medicinally valued plants from Uttarakhand. Current Sci 2005;99:1252-5.

33. Rasmussen HB, Christensen SB, Kvist LP, Karazmi A. A simple and sensitive assay for measuring curcumin content and antimicrobial properties of four species of Curcuma pseudomontana with special reference to multi drug resistant tuberculosis. Eur J Biomed Pharm Sci 2015;2:588-99.

34. Pharmoceopia of India: Ministry of Health and family Welfare, Government of India. 4th ed. New Delhi: Controller of Publications; 1996. p. A53, 54, 89, 95.

35. Kokashi CJ, Kokashi RJ, Sharma M. Fluorescence of powdered vegetable drugs in ultra-violet radiation. J Am Pharm Assoc 1958;47:715-7.

36. Pratt RJ, Chase CR. Fluorescence of powdered vegetable drug with particular reference to development of a system of identification. J Am Pharm Assoc 1949;38:324-33.

37. Duhamel CM, Rattan S, Singh P, Singh U, Setia V. Recent Progress in Medicinal Plants: Ethnomedicine and Pharmacognosy. Texas: SCI Tech Publishing LIC; 2002. p. 325.

38. Abas F, Lajis NH, Shaari K, Israfa DA, Stanislas J, Yusuf UK, et al. A labdane diterpene glucoside from the rhizomes of Curcuma mangga. J Nat Prod 2005;68:1090-3.

39. Sing VK, Goyel GS. Recent Progress in Medicinal Plants: Ethnomedicine and Pharmacognosy. Texas: SCI Tech Publishing LIC; 2002. p. 325.

40. Abas F, Lajis NH, Shaari K, Israfa DA, Stanislas J, Yusuf UK, et al. A labdane diterpene glucoside from the rhizomes of Curcuma mangga. J Nat Prod 2005;68:1090-3.

41. Saikia B, Borthakur SK. Use of medicinal plants in animal healthcare—a case study from Gohpur, Assam, India. J Trad Knowl 2010;9:49-51.

42. Devi NB, Singh PK, Das AK. Ethnomedical utilization of Zingiberaceae in the valley districts of Manipur. J Environ Sci Toxicol Food Technol 2014;8:21-3.

43. Lampe V, Milobedžkā J. Studien über Curcumin. Ber Dtsch Chem Ges 1892;25:1893-9.

44. Gukovsky I, Reyes CN, Vaquero EC, Gukovskaya AS, Pandol SJ. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals. Down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat Res 2001;480:471-83.

45. Bhat AV, Prabhu GN. A review and what's new. Rev Gastroenterol Disord 2001;1:2-17.

46. Prucksunand C, Indrasukhsri B, Leethochawalit M, Hungspreugs K. Curcumin ameliorates ethanol and nonethanol experimental pancreatitis. Am J Physiol Gastrointest Liver Physiol 2003;284:G85-95.

47. Surh YJ, Chun KS, Cha HH, Han SS, Keum YS, Park KK, et al. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals. Down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat Res 2001;480:471-83.

48. Prucksunand C, Indrasukhsri B, Leethochawalit M, Hungspreugs K. Curcumin ameliorates experimental pancreatitis. Am J Physiol Gastrointest Liver Physiol 2003;284:G85-95.

49. Barbara G, De Giorgio R, Stanghellini V, Cremon C, Corinaldesi R. A role for inflammation in irritable bowel syndrome? Gut 2002;51 Suppl:141-4.

50. Bundy R, Walker AF, Middleton RW, Booth J. Turmeric zextract may improve bowel syndrome symptomology in otherwise healthy adults: A pilot study. J Altern Complement Med 2004;10:1015-8.

51. Camilleri M. Dyspepsia, irritable bowel syndrome, and constipation: Review and what's new. Rev Gastroenterol Disord 2001;1:2-17.

52. Gokovssky I, Reyes CN, Vaquero EC, Gokovskaya AS, Pandol SJ. Curcumin ameliorates ethanol and nonethanol experimental pancreatitis. Am J Gastrointest Liver Physiol 2003;284:G85-95.

53. Vaquero E, Gukovsky I, Zaninovic V. Anti-inflammatory properties of curcumin and curcuminoids. J Pharm Pharm Sci 2015;7:511-4.

54. Barbara G, De Giorgio R, Stanghellini V, Cremon C, Corinaldesi R. A role for inflammation in irritable bowel syndrome? Gut 2002;51 Suppl:141-4.

55. Saikia B, Borthakur SK. Use of medicinal plants in animal healthcare—a case study from Gohpur, Assam, India. J Trad Knowl 2010;9:49-51.

56. Devi NB, Singh PK, Das AK. Ethnomedical utilization of Zingiberaceae in the valley districts of Manipur. J Environ Sci Toxicol Food Technol 2014;8:21-3.

57. Lampe V, Milobedžkā J. Studien über Curcumin. Ber Dtsch Chem Ges 1892;25:1893-9.

58. Gukovsky I, Reyes CN, Vaquero EC, Gukovskaya AS, Pandol SJ. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals. Down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat Res 2001;480:471-83.

59. Prucksunand C, Indrasukhsri B, Leethochawalit M, Hungspreugs K. Curcumin ameliorates experimental pancreatitis. Am J Physiol Gastrointest Liver Physiol 2003;284:G85-95.

60. Vaquero E, Gukovsky I, Zaninovic V. Anti-inflammatory properties of curcumin and curcuminoids. J Pharm Pharm Sci 2015;7:511-4.

61. Bhat AV, Prabhu GN. A review and what's new. Rev Gastroenterol Disord 2001;1:2-17.

62. Gokovssky I, Reyes CN, Vaquero EC, Gokovskaya AS, Pandol SJ. Curcumin ameliorates ethanol and nonethanol experimental pancreatitis. Am J Gastrointest Liver Physiol 2003;284:G85-95.

63. Vaquero E, Gukovsky I, Zaninovic V. Anti-inflammatory properties of curcumin and curcuminoids. J Pharm Pharm Sci 2015;7:511-4.

64. Barbara G, De Giorgio R, Stanghellini V, Cremon C, Corinaldesi R. A role for inflammation in irritable bowel syndrome? Gut 2002;51 Suppl:141-4.

65. Bundy R, Walker AF, Middleton RW, Booth J. Turmeric zextract may improve bowel syndrome symptomology in otherwise healthy adults: A pilot study. J Altern Complement Med 2004;10:1015-8.
resistant pathogens. Int J Pharmacol Screen Methods 2014;4:127-30.
57. Hiremath GB, Kaliwal BB. Anti-tubercular activity of the rhizome of Curcuma pseudomontana j. Graham. Int J Pharm Health Care Res 2013;1:178-83.
58. Madhusudan S, Middle MR. The emerging role of DNA repair proteinsas predictive, prognostic and therapeutic targets in cancer. Cancer Treat Rev 2005;31:603-617.
59. Newman DJ, Cragg GM, Snader KM. Natural products as sources of new drugs over the period 1981-2002. J Nat Prod 2003;66:1022-37.
60. Bisht VS, Kandwal S, Kanan D, Som D. Anticancerous and antiproliferative/cytotoxic activity of Curcuma pseudomontana (hill turmeric) collected from the sub Himalayan region of Uttrakhand, India. Asian J Plant Sci Res 2014;4:25-31.
61. Aloor PR, Reddy KN, Goverdhan P, Reddy CH, Hariprasad M, Kumar PK, et al. Antifertility activity of C. pseudomontana in comparison with Curcuma longa. Res Rev J Botanical Sci 2018.