Optimal placement of distributed generation using firefly algorithm

G. V. Naga Lakshmi¹, A. Jayalaxmi² and Venkataramana Veeramsetty³

¹Department of Electrical Engineering, University College of Engineering, Osmania University, Hyderabad, Telangana, India.
²Department of Electrical and Electronics Engineering, JNTU, Hyderabad, Telangana, India.
³Center for Artificial Intelligence and Deep Learning, Department of Electrical and Electronics Engineering, S R Engineering College, Warangal, Telangana, India.

E.Mail: dr.vvr.research@gmail.com

Abstract. Optimal placement of Distributed Generation (DG) is an important activity for distribution network operator to operate the network with more optimal in terms of real power losses (RPL). In this paper, a meta-heuristic algorithm called firefly algorithm has been used find optimal location and size of DG units based on RPL. The proposed approach is implemented on IEEE 15 bus and PG & E 69 bus distribution systems in MATLAB environment. Based on simulation results, it has been observed that firefly algorithm is performing well to identify optimal location and size with minimum RPL.

Keywords. Distributed Generation, Firefly Algorithm, Real power losses, Bio-inspired algorithms.

1. Introduction

Distributed generation (DG) penetration into the distribution network is increasingly growing due to some benefits including reducing real power losses (RPL), improvement of voltage profile, government schemes to reduce global warming, increasing reinforcement horizon, and reliability improvement [1]. Appropriate location and size for each DG unit to integrate into the distribution network is required else it will cause a negative impact on the above parameters.

Many researchers are working optimal placement of DG problem with various conventional and meta-heuristic algorithms by considering various objective functions as listed in Table1. All the literature works presented in Table 1 provides great contribution towards optimal placement of DG units using meta-heuristic algorithms. However, these have some limitations like premature convergence and results are not guaranteed.

In this paper, the optimization problem i.e. optimal placement of DG in terms of position and generation capacity is mathematically modeled by considering minimization of RPL as an objective function and the constraints are voltage limits and thermal limit of the feeders. A meta-heuristic
algorithm called "firefly algorithm" has been used solve this constrained optimization problem. Backward and forward sweep load flow method [16] has been used to do distribution network load flow analysis as it uses full use of the distribution network ladder system, good convergence characteristics and required less memory space [17].

Table 1. Literature report DG units placement

Reference	Test System	Objectives	Algorithm
[2]	6,14,30	Optimize power losses	GA
[3]	33,69	Optimize power losses	GA
[4]	69	Optimize power losses	GA
[5]	33	Optimize power losses	GA
[6]	16,37	Optimize power losses	GA
[7]	69	Optimize power losses	GA
[8]	69	Optimize power losses	PSO
[9]	30	Optimize power losses	PSO
[10]	13,33	Multiple objectives	ACO
[11]	69	Optimize voltage limit	ABC
[12]	33,69	Optimize DG capacity	HS
[13]	6,14,30	Optimize DG capacity	PH
[14]	31	Optimize power losses	PH
[15]	11/0.4kV	Optimize reliability	MCS

The remainder of the paper was structured as follows: Section 2 outlines the problem formulation, Section 3 presents the simulation findings of the suggested approach and Section 4 summarizes the conclusions of this paper.

2. Methodology
The mathematical modeling of an objective function of the studying optimization problem is presented in equation (1) and the subjected constraints are shown in equation (2).

\[
\text{Maximize Brightness} = \frac{1}{1 + p_{\text{loss}}} \quad (1)
\]

\[
\begin{align*}
V_{\text{min}} & \leq V_i \leq V_{\text{max}} \\
l_i & \leq I_i \leq I_{\text{max}} \\
p_{g,\text{min}} & \leq P_g \leq p_{g,\text{max}} \\
2 & \leq loc \leq n
\end{align*} \quad (2)
\]

2.1. Firefly Algorithm
Current classical algorithms have drawbacks, such as a highly receptive initial stage, and frequently converge to a local optimal solution. Bio-inspired algorithms have been developed to solve these particular problems [18, 19, 20, 21]. Firefly Algorithm (FA) [22] was one of the bio-inspired algorithms that evolved based on Fireflies swarming behavior. Fireflies are moving towards the more brighter firefly. Brightness of the firefly has been evaluated based on objective function value and the amount of attraction depends on brightness and distance between fireflies. The step by step procedure for firefly algorithm is presented in Algorithm 1.
Algorithm 1 Firefly Algorithm for DG placement

Inputs
1: Read n, \(P_{h_{\text{max}}} = 1 \text{MW}, P_{h_{\text{min}}} = 0, n_{DG} = 2 \)
2: Set epochs = 100, \(\gamma = 1, \beta_0 = 1, \alpha = 0.2, \text{pop} = 40 \)

Steps
1: Initialize fireflies \([X]\) randomly \(<\text{firefly}[X] = [\text{loc}(DG1), \text{loc}(DG2), \text{Size}(DG1), \text{Size}(DG2)]\>
2: Find RPL for each firefly
3: Find brightness for each firefly using equation (1)
4: Set iteration \(t = 1 \)
5: Set firefly \(i = 1 \)
6: Set firefly \(j = 1 \)
7: while \(t \leq \text{epochs} \) do
8: while \(i \leq \text{pop} \) do
9: while \(j \leq \text{pop} \) do
10: Compute \(r = \sqrt{\sum_{f=1}^{4} (X[i,f] - [j,f])^2} \)
11: if Brightness\((X[i]) < \text{Brightness}(X[j])\) then
12: \(X' [i] = X[i] + \beta_0 \times e^{-\gamma r^2} \times (X[j] - X[i]) + \alpha \times (\text{rand} - 0.5) \)
13: Impose boundary limits
14: Find brightness for firefly "i" using equation (1)
15: if \(\text{Brightness}(X'[i]) \geq \text{Brightness}(X[i]) \) then
16: Set \(X[i] = X'[i] \)
17: end if
18: end if
19: \(j = j + 1 \)
20: end while
21: \(i = i + 1 \)
22: end while
23: \(X_{\text{best}} = X_{\text{best}} + \alpha \times \text{rand} \) Exploitation
24: \(t = t + 1 \)
25: end while

3. Results and discussion
The proposed method was implemented on IEEE 15 and PG & E 69 bus distribution test systems for optimally placing two DG units with 0.9 lagging power factor having maximum capacity 1MW each under MATLAB environment [23]. IEEE 15 and PG & E 69 bus distribution test systems data are drawn from [24].

3.1. Performance of firefly algorithm in stochastic environment
The proposed firefly algorithm is simulated 10 times to classify the position and generation potential of DG units. Out of the 10 best simulations in terms of the minimal RPL, the position and generation power of the DG units shall be considered. Interpretation of the proposed approach is observed in probabilistic framework is presented in Table 2. From the Table 2, it has been observed that standard deviation is almost near to zero that shows less uncertainty in the solution given by firefly algorithm. Convergence characteristics of firefly algorithm on the discussing problem i.e. optimal placement of DG units for IEEE 15 and PG & E 69 bus distribution test systems are presented in Figure 1. From the Figure 1, can visualize the uncertainty in solution provided by firefly algorithm.
3.2. Optimal location and capacity for DG units

The optimal position and capacity for the two DG units for IEEE 15 and PG& E 69 bus distribution test systems are presented in Table 3. From the Table 3, it has been observed that IEEE 15 bus distribution network will operate with minimum RPL i.e. 13.6 kW if two DG units with 386kW and 1MW generation capacity connected at bus 9 and 3 respectively. Similarly PG& E 69 bus distribution network will operate with minimum RPL i.e. 43.8 kW if two DG units with 566kW and 855kW generation capacity connected at bus 63 and 61 respectively.

Parameter	PG & E 69	IEEE 15
DG1 location	63	9
DG2 location	61	3
DG1 size (kW)	566	386
DG2 size (kW)	1000	855
RPL (kW)	43.8	13.6
Base case loss (kW)	221.8	60.1

Table 2. Stochastic behaviour of FA

Simulation	Real Power Losses (MW) PG & E 69	IEEE 15
1	0.081	0.014
2	0.059	0.016
3	0.068	0.016
4	0.081	0.015
5	0.07	0.014
6	0.044	0.015
7	0.048	0.016
8	0.057	0.018
9	0.084	0.014
10	0.063	0.014
Min.	0.044	0.014
Max.	0.084	0.018
Mean	0.065	0.015
Std.	0.014	0.0012

Figure 1. Converging characteristics

(a) IEEE 15 Bus Test System: Convergence characteristics
(b) PG& E 69 Bus Test System: Convergence characteristics

Table 3. Optimal location and size of DG units
3.3. Voltage profile comparison
Voltage profile in base case and with DG unit for both IEEE 15 bus and PG&E 69 bus distribution systems is presented in Figure 2. From the Figure 2, it has been observed that voltage profile for both test systems is improved with DG units.

![Voltage profile comparison](image)

Figure 2. Voltage profile

3.4. Comparative analysis
The proposed firefly algorithm based approach for DG placement optimization problem is validated by comparing with genetic algorithm [25] in stochastic environment as shown in Table 4.

Simulation	FA	GA[25]
1	0.081	0.0784
2	0.059	0.0461
3	0.068	0.0689
4	0.081	0.0951
5	0.07	0.0469
6	0.044	0.0743
7	0.048	0.0722
8	0.057	0.0723
9	0.084	0.0732
10	0.063	0.0588
Min.	0.044	0.0461
Max.	0.084	0.0951
Mean	0.065	0.0686
Std.	0.014	0.0147

Comparative analysis between Genetic Algorithm (GA)[25] and the proposed approach is presented in terms of converging characteristics is presented in Figure 3. From Figure 3, it has been observed that the proposed approach reaches better solution. GA is trapped by some suboptimal point even though it is converging fast comparing to firefly algorithm.
Figure 3. Comparison between GA [25] and proposed approach in terms of converging characteristics

4. Conclusions
Distributed generation integration into the distribution system is increasing rapidly due to some technical, economical and environmental advantages. This integration will provide positive impact if it is installed at proper location else leads negative impact on the system. There is a need of designing an efficient algorithm to integrate DG units to distribution system.

In this article, firefly algorithm was used to solve the optimum DG placement optimization problem on the basis of the RPL reduction that was subjected to constraints such as the voltage limits and thermal limits of the feeders. The suggested approach is tested by comparing with the genetic algorithm in the probabilistic framework. Firefly algorithm reaches more near to global optimum solution comparing to genetic algorithm. IEEE 15 and PG&E 69 bus test systems have been used to simulate the proposed approach.

The discussed DG optimal placement problem can be extended by considering the objectives like emission reduction, maximize reliability and reinforcement horizon.

5. References
[1] Rakesh R, Venkata Papana P and Keerthi S 2017 A hybrid algorithm for optimal allocation of dg in radial distribution system IEEE Region 10 Symposium (TENSYMP) 1-5.
[2] Kim J O, Nam S W, Park S and Singh C 1998 Dispersed generation planning using improved hereford ranch algorithm Electric Power Systems Research 47 47–55
[3] Gandomkar M, Vakilian M and Ehsan M. 2005 A genetic–based tabu search algorithm for optimal dg allocation in distribution networks Electric Power Components and Systems 33 1351–1362
[4] Haesen E, Driesen J and Belmans R 2007 Robust planning methodology for integration of stochastic generators in distribution grids IET Renewable power generation 1 25–32
[5] Singh R and Goswami S 2009 Optimum siting and sizing of distributed generations in radial and networked systems Electric Power Components and Systems 37 127–145
[6] Singh D, Singh D and Verma K 2009 Multiobjective optimization for DG planning with load models IEEE transactions on power systems 24 427–436
[7] Veeramsetty V, Lakshmi G N and Jayalaxmi A 2012 Optimal allocation and contingency analysis of embedded generation deployment in distribution network using genetic algorithm
International Conference on computing, Electronics and Electrical Technologies (ICCEET) 86–91.

[8] Prommee W and Ongsakul W 2011 Optimal multiple distributed generation placement in microgrid system by improved reinitialized social structures particle swarm optimization European Transactions on Electrical Power 21 489–504

[9] El-Zonkoly A 2011 Optimal placement of multi-distributed generation units including different load models using particle swarm optimisation IET generation, transmission & distribution 5 760–771

[10] Wang L and Singh C 2008 Reliability-constrained optimum placement of reclosers and distributed generators in distribution networks using an ant colony system algorithm IEEE Transactions on Systems 38 757–764

[11] Abu-Mouti F S and El-Hawary M 2011 Optimal distributed generation allocation and sizing in distribution systems via artificial bee colony algorithm IEEE transactions on power delivery 26 2090–2101

[12] Rao R S, Ravindra K, Satish K and Narasimham S 2012 Power loss minimization in distribution system using network reconfiguration in the presence of distributed generation IEEE transactions on power systems 28 317–325

[13] Ghosh S, Ghoshal S P and Ghosh S 2010 Optimal sizing and placement of distributed generation in a network system International Journal of Electrical Power & Energy Systems 32 849–856

[14] Koutroumpezis G and Safijiani A 2010 Optimum allocation of the maximum possible distributed generation penetration in a distribution network Electric Power Systems Research 80 1421–1427

[15] Mohd Ikhwan R R, Muhammad Ridzuan1 and Nur Nabihah, NoorFatin Farhanie M F and Muhammad Adib Z R 2020 Reliability based dg location using monte carlo simulation technique SN Applied Sciences 2 742, 2020

[16] Shirmohammadi D, Hong H W, Semlyen A and Luo G 1988 A compensation-based power flow method for weakly meshed distribution and transmission networks IEEE Transactions on power systems 3 753–762

[17] Veeramsetty V, Chintham V and DM V K 2018 Lmp computation at dg buses in radial distribution system International Journal of Energy Sector Management 12 364-385

[18] Sudhakar A V and Karri C 2017 Bio inspired algorithms in power system operation: A review International Conference on Recent Trends in Electrical, Electronics and Computing Technologies IEEE 113–119

[19] Basetti V, Chandel A K and Subramanyam K 2018 Power system static state estimation using jade-adaptive differential evolution technique Soft Computing 22 7157–7176

[20] Vedik B, Shiva C and Harish P 2020 Reverse harmonic load flow analysis using an evolutionary technique SN Applied Sciences 2 1–11

[21] Chatterjee S, Shiva C K and Mukherjee V 2019 Automatic generation control of multi-area hydro power system using moth flame optimization technique 3rd International Conference on Recent Developments in Control, Automation & Power Engineering (RDCAPE). IEEE 395–403

[22] Apostolopoulos T and Vlachos A 2011 Application of the firefly algorithm for solving the economic emissions load dispatch problem International journal of combinatorics 2011

[23] Release M 2013 The math works 488

[24] Veeramsetty V, Venkaiah C and Kumar D V 2017 Hybrid genetic dragonfly algorithm based optimal power flow for computing Lmp at dg buses for reliability improvement Energy Systems 9 709–757

[25] Goldberg D E and Holland J H 1988 Genetic algorithms and machine learning Machine learning 3 95–99