Supplementary Table 1. EC\textsubscript{50} values of TGR5 agonists

Compound	Class	EC\textsubscript{50} (µM)	Reference(s)
CA7S (Cholic acid -7-sulfate)	Endogenous bile acid	0.17 µM	This work
CA (Cholic acid)	Endogenous bile acid	12.22 µM [7.72 – 27.00 µM]	This work [1-5]
TDCA (Tauro-deoxycholic acid)	Endogenous bile acid	0.10 µM [0.53 µM]	This work [6,7]
LCA (Lithocholic acid)	Endogenous bile acid	0.03 – 3.70 µM	1,2,5,8,9
DCA (Deoxycholic acid)	Endogenous bile acid	0.58 – 1.01 µM	1,2
CDCA (Chenodeoxycholic acid)	Endogenous bile acid	4.00 – 6.71 µM	1,2,5
GCDCA (Glyco-chenodeoxycholic acid, 24)	Endogenous bile acid	1.00 µM	6,7
GDCA (Glyco-deoxycholic acid, 25)	Endogenous bile acid	0.45 µM	6,7
UDCA (Ursodeoxycholic acid)	Endogenous bile acid	36.4 µM	5
TLCA (Tauro-lithocholic acid, 26)	Endogenous bile acid	0.33 µM	1
Oleanolic acid	Natural product	1.42 – 2.25 µM	8
Betulinic acid	Natural product	1.04 µM	10
INT-747 (obeticholic acid)	Synthetic bile acid derivative	20.00 µM	9
INT-767	Synthetic bile acid derivative	0.68 µM	9
INT-777	Synthetic bile acid derivative	0.82 – 0.90 µM	3,4,9

All EC\textsubscript{50} values reported were obtained from cAMP measurement as a TGR5-activation readout.
Kawamata, Y. et al. A G protein-coupled receptor responsive to bile acids. *J Biol Chem* **278**, 9435-9440, doi:10.1074/jbc.M209706200 (2003).

Maruyama, T. et al. Identification of membrane-type receptor for bile acids (M-BAR). *Biochem Biophys Res Commun* **298**, 714-719, doi:10.1016/s0006-291x(02)02550-0 (2002).

Pellicciari, R. et al. Discovery of 6alpha-ethyl-23(S)-methylcholic acid (S-EMCA, INT-777) as a potent and selective agonist for the TGR5 receptor, a novel target for diabesity. *J Med Chem* **52**, 7958-7961, doi:10.1021/jm901390p (2009).

Thomas, C. et al. TGR5-mediated bile acid sensing controls glucose homeostasis. *Cell Metab* **10**, 167-177, doi:10.1016/j.cmet.2009.08.001 (2009).

Sato, H. et al. Novel potent and selective bile acid derivatives as TGR5 agonists: biological screening, structure-activity relationships, and molecular modeling studies. *J Med Chem* **51**, 1831-1841, doi:10.1021/jm7015864 (2008).

Christiansen, C. B. et al. Bile acids drive colonic secretion of glucagon-like-peptide 1 and peptide-YY in rodents. *Am J Physiol Gastrointest Liver Physiol* **316**, G574-G584, doi:10.1152/ajpgi.00010.2019 (2019).

Kuhre, R. E. et al. Bile acids are important direct and indirect regulators of the secretion of appetite- and metabolism-regulating hormones from the gut and pancreas. *Mol Metab* **11**, 84-95, doi:10.1016/j.molmet.2018.03.007 (2018).

Sato, H. et al. Anti-hyperglycemic activity of a TGR5 agonist isolated from Olea europaea. *Biochem Biophys Res Commun* **362**, 793-798, doi:10.1016/j.bbrc.2007.06.130 (2007).

Rizzo, G. et al. Functional characterization of the semisynthetic bile acid derivative INT-767, a dual farnesoid X receptor and TGR5 agonist. *Mol Pharmacol* **78**, 617-630, doi:10.1124/mol.110.064501 (2010).

Genet, C. et al. Structure-activity relationship study of betulinic acid, a novel and selective TGR5 agonist, and its synthetic derivatives: potential impact in diabetes. *J Med Chem* **53**, 178-190, doi:10.1021/jm900872z (2010).
Supplementary Table 2. Cholic acid-7-sulfate (CA7S) concentration in cecum, portal vein, and blood

Treatment	Tissue/blood	CA7S concentration (mean ± SEM)	
DIO mice; sham surgery			
	Cecum	1726 ± 267 pmol/mg	
	Portal vein	n.d.	
	Systemic blood	n.d.	
DIO mice; sleeve gastrectomy			
	Cecum	2661 ± 331 pmol/mg	
	Portal vein	n.d.	
	Systemic blood	n.d.	
DIO mice; enteral PBS			
	Cecum	161.1 ± 46.4 pmol/mg	
	Portal vein	0.07 ± 0.06 pmol/mg	
	Systemic blood	n.d.	
DIO mice; enteral CA7S			
	Cecum	2577 ± 185 pmol/mg	
	Portal vein	6.13 ± 2.11 pmol/mg	
	Systemic blood	0.5 ± 0.2 pmol/µL	
DIO mice; acute PBS gavage			
	Cecum	947 ± 349 pmol/mg	
	Portal vein	n.d.	
	Systemic blood	n.d.	
DIO mice; acute CA7S gavage			
	Cecum	14345 ± 1451 pmol/µL	
	Portal vein	13.2 ± 7.7 pmol/mg	
	Systemic blood	n.d.	
DIO mice; chronic PBS gavage			
	Cecum	9122 ± 3274 pmol/mg	
	Portal vein	0.53 ± 0.53 pmol/mg	
	Systemic blood	n.d.	
	CECUM	Portal vein	Systemic blood
---------------------	-------	-------------	----------------
DIO mice; chronic CA7S gavage	29735 ± 3956 pmol/µL	2.52 ± 1.0 pmol/mg	0.09 ± 0.09 pmol/µL

n.d. not detected, all data are presented as mean ± SEM.
Supplementary Figure 1. DIO mice post-SG show loss of body weight

a. SG-operated mice displayed a decrease in body weight post-surgery (a) despite no significant change in their food intake (b) compared to sham mice (SG, n=7; sham, n=6; for **a**, day 0 not significant *p*=0.19, day 1 not significant *p*=0.37, day 2 not significant *p*=0.24, day 3 not significant *p*=0.06, day 4 *p*=5.77x10^{-4}, day 5 *p*=3.17x10^{-4}, day 6 *p*=1.19x10^{-5}, day 7 *p*=2.62x10^{-4}, day 11 *p*=2.97x10^{-3}, day 14 *p*=2.86x10^{-3}, day 18 *p*=7.87x10^{-4}, day 22 *p*=1.27x10^{-4}, day 25 *p*=3.06x10^{-4}, day 29 *p*=5.16x10^{-4}, day 32 *p*=1.84x10^{-3}, day 35 *p*=2.07x10^{-3}, day 39 *p*=9.04x10^{-4}, day 42 *p*=6.93x10^{-4}, two-tailed Student’s t-test; for **b**, total food intake ns=not significant, *p*=0.60, two-tailed Student’s t-test). All data are presented as mean ± SEM.
Supplementary Figure 2. UPLC-MS analysis of cholic acid-7-sulfate

a, Commercially available cholic acid-7-sulfate (CA7S) (Cayman Chemical) and **b**, CA7S purified from the cecal contents of SG mice have the same mass (m/z 487.2) and elute at 9.2 minutes.
Supplementary Figure 3. Bile acid concentrations in circulating blood of mice post-sham or post-SG. Six weeks following surgery, blood was collected from sham or SG mice after an overnight fast. Bile acids were quantified using UPLC-MS (sham, n=12, SG, n=15, data not marked with asterisk(s) are not significant). All bile acids with measurable concentrations above the limit of detection are shown. Total bile acids (BAs), *p=0.03 Tα/βMCA, tauro-alpha- and tauro-beta-muricholic acid, p=0.11; TCA, tauro-cholic acid, p=0.17; TωMCA, tauro-omega-muricholic acid, p=0.08; α/βMCA, alpha- and beta-muricholic acid, p=0.19; UDCA, ursodeoxycholic acid,
\(p = 0.53 \); CA, cholic acid, \(p = 0.25 \); DCA, deoxycholic acid, \(p = 0.96 \); TDCA, tauro-deoxycholic acid, \(p = 0.20 \); TCDCA, tauro-chenodeoxycholic acid, \(p = 0.21 \); CDCA, chenodeoxycholic acid, \(p = 0.50 \), 3-oxo-CA, 3-oxo-cholic acid \(p = 0.09 \), two-tailed Welch’s t-test. All data are presented as mean ± SEM.
Supplementary Figure 4. Bile acid concentrations in livers of mice post-sham or post-SG.

Six weeks following surgery, livers were collected from sham or SG mice after an overnight fast. Bile acids were quantified using UPLC-MS (n=11 per group, data not marked with asterisk(s) are not significant). All bile acids with measurable concentrations above the limit of detection are shown. Tα/βMCA, tauro-alpha- and tauro-beta-muricholic acid, \(p=0.62 \); ToMCA, tauro-omega-muricholic acid, \(p=0.82 \); αMCA, alpha-muricholic acid, \(p=0.08 \); βMCA, beta-muricholic acid, \(p=0.20 \); TCA, tauro-cholic acid, \(p=0.81 \); TCDCA, tauro-chenodeoxycholic acid, *\(p=0.01 \); TDCA, tauro-deoxycholic acid, \(p=0.94 \); CA, cholic acid, \(p=0.46 \); 3-oxo-CA, 3-oxo-cholic acid, \(p=0.2 \); UDCA, ursodeoxycholic acid, \(p=0.31 \); CDCA, chenodeoxycholic acid, *\(p=0.02 \), two-tailed Welch’s t-test. All data are presented as mean ± SEM.
Supplementary Figure 5. Bile acid concentrations in gallbladders of mice treated enterally with CA7S. Gallbladders were collected from mice after enteral treatment with CA7S or PBS and bile acids were quantified using UPLC-MS (PBS, n=7, CA7S, n=8, data not marked with asterisk(s) are not significant). All bile acids with measurable concentrations above the limit of detection are shown. Total BAs without CA7S, $p=0.39$; Total bile acids (BAs), $p=0.39$; T_α/βMCA, tauro-alpha- and tauro-beta-muricholic acid, $p=0.45$; TCA, tauro-cholic acid, $p=0.48$; $T\gamma$MCA, tauro-gamma-muricholic acid, $p=0.36$; TCDCA, tauro-chenodeoxycholic acid, $p=0.86$; 7-oxo-TCDCA, 7-oxo-tauro-chenodeoxycholic acid $p=0.20$; $\alpha\beta$MCA, alpha-muricholic acid and βMCA, beta-muricholic acid, $p=0.80$; CA, cholic acid, $p=0.13$; TDCA, tauro-deoxycholic acid, $p=0.66$;
TUDCA, tauro-ursodeoxycholic acid, $p=0.82$; CA7S, $p=0.14$, two-tailed Welch’s t-test. All data are presented as mean ± SEM.
Supplementary Figure 6. Bile acid concentrations in livers of mice treated enterally with CA7S. Livers were collected from mice after enteral treatment with CA7S or PBS and bile acids were quantified using UPLC-MS (PBS, n=7, CA7S, n=8, data not marked with asterisk(s) are not
significant). All bile acids with measurable concentrations above the limit of detection are shown. Total BAs without CA7S, $p=0.81$; Total bile acids (BAs), $p=0.52$; $\mathrm{T\alpha/\beta MCA}$, tauro-alpha- and tauro-beta-muricholic acid, $p=0.30$; $\mathrm{T\gamma MCA}$, tauro-gamma-muricholic acid, $p=0.28$; TCA, taurocholic acid, $p=0.92$; TUDCA, tauro-ursodeoxycholic acid, $p=0.22$; TCDCA, taurochenodeoxycholic acid, $p=0.67$; CDCA, chenodeoxycholic acid, $p=0.08$; $\alpha\beta MCA$, alphamuricholic acid and beta-muricholic acid, $p=0.16$; CA, cholic acid, $p=0.25$; TDCA, taurodeoxycholic acid, $p=0.98$; UDCA, ursodeoxycholic acid, $p=0.05$; 3-oxo-CA, 3-oxo- cholic acid $p=0.31$; CA7S, $^*p=0.02$, two-tailed Welch’s t-test. All data are presented as mean ± SEM.
Supplementary Figure 7. Bile acid concentrations in gallbladders of mice gavaged with one dose of CA7S. Fasted DIO mice were gavaged with CA7S or PBS and gallbladders were collected from mice 5 hours post-gavage. Bile acids were quantified using UPLC-MS (n=8 in each group, data not marked with asterisk(s) are not significant). All bile acids with measurable concentrations above the limit of detection are shown. Total BAs without CA7S, \(p = 0.47 \); Total bile acids (BAs), \(p = 0.47 \); Ta/βMCA, tauro-alpha- and tauro-beta-muricholic acid, \(p = 0.50 \); TyMCA, tauro-gamma-muricholic acid, \(p = 0.55 \); TCA, tauro-cholic acid, \(p = 0.30 \); TUDCA, tauro-ursodeoxycholic acid, \(p = 0.72 \); TCDCA, tauro-chenodeoxycholic acid, \(p = 0.24 \); αβMCA, alpha-
muricholic acid and beta-muricholic acid, \(p=0.70 \); CA, cholic acid, \(p=0.57 \); TDCA, tauro-deoxycholic acid, \(p=0.41 \); CA7S, \(**p=8.10 \times 10^{-3} \), two-tailed Welch’s t-test. All data are presented as mean ± SEM.
Supplementary Figure 8. Bile acid concentrations in livers of mice gavaged with one dose of CA7S. Fasted DIO mice were gavaged with CA7S or PBS and livers were collected from mice 5 hours post-gavage. Bile acids were quantified using UPLC-MS (PBS, n=8, CA7S, n=7, data not marked with asterisk(s) are not significant). All bile acids with measurable concentrations above the limit of detection are shown. Total BAs without CA7S, $p=0.40$; Total bile acids (BAs), $p=0.39$; $T\alpha/\beta$MCA, tauro-alpha- and tauro-beta-muricholic acid, $p=0.51$; TyMCA, tauro-gamma-muricholic acid, $p=0.41$; TCA, tauro-cholic acid, $p=0.31$; TUDCA, tauro-ursodeoxycholic acid, $p=0.29$;
TCDCA, tauro-chenodeoxycholic acid, $p=0.46$; $\alpha\beta$MCA, alpha-muricholic acid and beta-muricholic acid, $p=0.70$; CA, cholic acid, $p=0.78$; TDCA, tauro-deoxycholic acid, $p=0.41$; 3-oxo-CA, 3-oxo-cholic acid, $p=0.75$; CA7S, $p=0.053$, two-tailed Welch’s t-test. All data are presented as mean ± SEM.
Supplementary Figure 9. *Glp1r* and *Tgr5* shRNA knockdown efficiency

a,b, Quantitative real time PCR analysis in mice corresponding to Fig. 5f-i. Animals were injected with lentiviral shRNA targeting *Glp1r* or PBS (a) or with lentiviral shRNA targeting *Tgr5* or PBS (b). Expression of mouse *Glp1r* (a) and TGR5 (b) in indicated tissues of mice was measured following OGTT, which was performed 3 days post-injection (SI = small intestine, PBS, n=2; *Glp1r* LVP shRNA n=22; *Tgr5* LVP shRNA n=18). All data are presented as mean ± SEM.
Supplementary Figure 10. Chronic feeding with CA7S improves hyperglycemia

a, b, Chronic administration of CA7S via daily gavage for 48 days resulted in initial weight loss in all groups but did not affect percent body weight change or total food intake compared to PBS-gavaged mice (n=7 mice per group). (For a, ns=not significant p=0.50, for b, ns=not significant p=0.07, two-tailed Welch’s t-test). c, In vivo change in fasted serum glucose upon chronic dosing with CA7S via daily gavage for 48 days compared to PBS-gavaged mice (PBS, n=7; CA7S (100 mg/kg), n=7; PBS *p=0.03, CA7S (100 mg/kg) ns=not significant p=0.59, two-tailed paired t-test).

All data are presented as mean ± SEM.
Supplementary Figure 11. Bile acid concentrations in gallbladders of mice gavaged chronically with CA7S. Gallbladders were collected from mice following an overnight fast after 48 days of daily gavage with CA7S or PBS. Bile acids were quantified using UPLC-MS (PBS, n=7, CA7S, n=6, data not marked with asterisk(s) are not significant). All bile acids with measurable concentrations above the limit of detection are shown. Total BAs without CA7S, \(p = 0.33 \); Total bile acids (BAs), \(p = 0.33 \); \(\text{T}_\alpha/\beta\text{MCA} \), tauro-alpha- and tauro-beta-muricholic acid, \(p = 0.43 \); \(\text{T}_\gamma\text{MCA} \), tauro-gamma-muricholic acid, \(p = 0.34 \); TCA, tauro-cholic acid, \(p = 0.31 \); TUDCA, tauro-ursodeoxycholic acid, \(p = 0.35 \); TCDCA, tauro-chenodeoxycholic acid, \(p = 0.29 \); \(\alpha\beta\text{MCA} \),
alpha-muricholic acid and beta-muricholic acid, \(p = 0.84 \); CA, cholic acid, \(p = 0.20 \); TDCA, tauro-deoxycholic acid, \(p = 0.35 \); CA7S, \(p = 0.06 \), two-tailed Welch’s t-test. All data are presented as mean ± SEM.
Supplementary Figure 12. Bile acid concentrations in livers of mice gavaged chronically with CA7S. Livers were collected from mice following an overnight fast after 48 days of daily gavage with CA7S or PBS. Bile acids were quantified using UPLC-MS (PBS, n=7, CA7S, n=6, data not marked with asterisk(s) are not significant). All bile acids with measurable concentrations above the limit of detection are shown. Total BAs without CA7S, \(p=0.53 \); Total bile acids (BAs),
$p=0.53$; $\text{T} \alpha/\beta \text{MCA}$, tauro-alpha- and tauro-beta-muricholic acid, $p=0.71$; $\text{T} \gamma \text{MCA}$, tauro-gamma-muricholic acid, $p=0.38$; TCA, tauro-cholic acid, $p=0.73$; TUDCA, tauro-ursodeoxycholic acid, $p=0.58$; TCDDA, tauro-chenodeoxycholic acid, $p=0.39$; $\alpha/\beta \text{MCA}$, alpha-muricholic acid and beta-muricholic acid, $p=0.71$; CA, cholic acid, $p=0.60$; TDCA, tauro-deoxycholic acid, $p=0.94$; 3-oxo-CDA, 3-oxo-cholic acid, $p=0.39$; CDCA, chenodeoxycholic acid, $p=0.49$; UDCA, ursodeoxycholic acid, $p=0.13$; $\text{CA}7\text{S}$, $p=0.74$, two-tailed Welch’s t-test. All data are presented as mean ± SEM.
Supplementary Figure 13. Bile acid concentrations in gallbladders of mice post-sham or post-SG. Gallbladders were collected from fasted sham or SG mice 6 weeks post-op and bile acids were quantified using UPLC-MS (n=8 per group, data not marked with asterisk(s) are not significant). All bile acids with measurable concentrations above the limit of detection are shown. Total bile acids (BAs), $p=0.46$; $\text{T}^{\alpha/\beta}\text{MCA}$, tauro-alpha- and tauro-beta-muricholic acid, $p=0.52$; TCA, tauro-cholic acid, $p=0.73$; $\text{T}^{\gamma}\text{MCA}$, tauro-gamma-muricholic acid, $p=0.49$; TUDCA, tauro-ursodeoxycholic acid, $p=0.77$; TCDCA, tauro-chenodeoxycholic acid, $p=0.92$; CA7S, $p=0.45$, two-tailed Welch’s t-test. All data are presented as mean ± SEM.
Supplementary Figure 14. CA7S treatment does not have toxic effects

a, b, Apical treatment of the epithelial monolayer with 1 mM CA7S led to nearly undetectable amounts of CA7S in the basolateral chamber as measured by UPLC-MS analysis (a), and no significant change to the epithelial barrier integrity (b) (3 biological replicates per condition, not significant, p=0.21, two-tailed Welch’s t-test). c, Percentage cell viability upon treatment of Caco-2 cells with CA7S in vitro (3 biological replicates per condition, not significant, p≥0.97 one-way ANOVA followed by Dunnett’s multiple comparisons test). All data are presented as mean ± SEM.

d, UPLC-MS traces of CA7S after incubation at 37 °C in buffer at the indicated physiological pHs. All data are presented as mean ± SEM.
CA7S did not agonize or antagonize a panel of 19 nuclear hormone receptors (NhRs).
CA7S (designated as HARV-SD-0000) was tested at 100 µM by DiscoverX for activity against a panel of NhRs. CA7S did not appreciably agonize (>40%) or antagonize (>30%) any of the 19 NhRs tested.

CA7S did not agonize or antagonize a panel of 169 G protein-coupled receptors (GPCRs).
CA7S (designated as HARV-SD-0000) was tested at 100 µM by DiscoverX for activity against a panel of GPCRs. CA7S did not appreciably agonize (>40%) or antagonize (>30%) any of the 169 GPCRs tested.
Study Report

Requester(s): Snehal Chaudhari
Company: Harvard Medical School
Report Date: 10/04/2019
Quote ID: US073-000775-Q
Order ID: US073-000775-O
Service: nhrSCAN
Number of Compounds Tested: 1
Number of Assays Tested: 38

Director, PathHunter Services: Dr. Neil Charter
Phone: (510) 771-3542
Project Manager: Sharon Irelan / Melinda Stampfl
Phone: (858) 224-6925 / (858) 224-6933
www.services.discoverx.com

DiscoveRx Corporation
42501 Albrae Street
Fremont, CA 94538
Report Summary

Target (s): nhrMAX Panel

Compounds: 1

Objective: Agonist and Antagonist Primary Screen

Summary: DiscoveRx successfully profiled 1 compound with the nhrMAX Biosensor Panel.

The results are given on page 6 and the graphical results are provided in an appendix at the end of this report. The data is also provided in an accompanying spreadsheet file.
Technology Principle

Nuclear Hormone Receptor Assays

PathHunter® NHR Protein Interaction (Pro) and Nuclear Translocation (NT) assays monitor the activation of a nuclear hormone receptor in a homogenous, non-imaging assay format using a technology developed by DiscoveRx called Enzyme Fragment Complementation (EFC).

The NHR Pro assay is based on detection of protein-protein interactions between an activated, full length NHR protein and a nuclear fusion protein containing Steroid Receptor Co-activator Peptide (SRCP) domains with one or more canonical LXXLL interaction motifs.

The NHR is tagged with the ProLink™ component of our EFC assay system, and the SRCP domain is fused to the enzyme acceptor component (EA) expressed in the nucleus. When bound by ligand, the NHR will migrate to the nucleus and recruit the SRCP domain, whereby complementation occurs, generating a unit of active β-Galactosidase (β-Gal) and production of chemiluminescent signal. Benefits associated with this approach include reduced compound incubation times, direct measurement of the NHR target, use of full-length human NHR sequences, and the ability to select novel compound classes based on disruption of protein-protein interactions.

The NHR NT assay monitors movement of a NHR between the cytoplasmic and nuclear compartments. The receptor is tagged with the ProLabel™ component of our EFC assay system, and EA is fused to a nuclear location sequence that restricts the expression of EA to the nucleus. Migration of the NHR to the nucleus results in complementation with EA generating a unit of active β-Gal and production of a chemiluminescent signal.
Assay Design: NHR

Cell Handling
1. PathHunter NHR cell lines were expanded from freezer stocks according to standard procedures.
2. Cells were seeded in a total volume of 20 µL into white walled, 384-well microplates and incubated at 37°C for the appropriate time prior to testing. Assay media contained charcoal-dextran filtered serum to reduce the level of hormones present.

Compound Handling
1. Sample was diluted into assay buffer shortly before adding to assay.

Agonist Format
1. For agonist determination, cells were incubated with sample to induce response.
2. Intermediate dilution of sample stocks was performed to generate 5X sample in assay buffer.
3. 5 µL of 5X sample was added to cells and incubated at 37°C or room temperature for 3-16 hours. Final assay vehicle concentration was 1%.

Antagonist Format
1. For antagonist determination, cells were pre-incubated with antagonist followed by agonist challenge at the EC₈₀ concentration.
2. Intermediate dilution of sample stocks was performed to generate 5X sample in assay buffer.
3. 5 µL of 5X sample was added to cells and incubated at 37°C or room temperature for 60 minutes. Vehicle concentration was 1%.
4. 5 µL of 6X EC₈₀ agonist in assay buffer was added to the cells and incubated at 37°C or room temperature for 3-16 hours.

Signal Detection
1. Assay signal was generated through a single addition of 12.5 or 15 µL (50% v/v) of PathHunter Detection reagent cocktail, followed by a one hour incubation at room temperature.

2. Microplates were read following signal generation with a PerkinElmer Envision™ instrument for chemiluminescent signal detection.

Data Analysis
1. Compound activity was analyzed using CBIS data analysis suite (Chem Innovation, CA).
2. For agonist mode assays, percentage activity was calculated using the following formula:
 \[
 \text{% Activity} = \frac{100\% \times (\text{mean RLU of test sample} - \text{mean RLU of vehicle control})}{(\text{mean MAX control ligand} - \text{mean RLU of vehicle control})}
 \]
3. For antagonist mode assays, percentage inhibition was calculated using the following formula:
 \[
 \text{% Inhibition} = \frac{100\% \times (1 - (\text{mean RLU of test sample} - \text{mean RLU of vehicle control})}{(\text{mean RLU of EC₈₀ control} - \text{mean RLU of vehicle control})}}
 \]
4. Note that for select assays, the ligand response produces an decrease in receptor activity (inverse agonist with a constitutively active target). For those assays inverse agonist activity was calculated using the following formula:
 \[
 \text{% Inverse Agonist Activity} = \frac{100\% \times ((\text{mean RLU of vehicle control} - \text{mean RLU of test sample})}{(\text{mean RLU of vehicle control} - \text{mean RLU of MAX control})}}
 \]
Table 1: Summary of control agonist dose response curves for nhrMAX Biosensor Panel

Agonist dose curves were performed for the nhrMAX Biosensor Panel. Assay type, ligand and EC50 obtained are summarized. The EC80 challenge agonist concentration is also provided. Graphical results for the control curves are provided at the end of this report.
Table 2: Compound activity with the nhrMAX Panel

Compounds were tested in agonist and antagonist mode with the nhrMAX Panel. For agonist assays, data was normalized to the maximal and minimal response observed in the presence of control ligand and vehicle. For antagonist assays, data was normalized to the maximal and minimal response observed in the presence of EC80 ligand and vehicle.
Summary

DiscoverRx successfully profiled 1 compound with the nhrMAX Biosensor Panel.

The results are given on page 6 and the graphical results are provided in an appendix at the end of this report. The data is also provided in an accompanying spreadsheet file.

This is to certify that the data contained within this report was conducted as described above.

Dr. N. W. Charter

Director, Profiling Services
Compound	Project ID	Assay Name	Assay Format	Assay Target	Result Type	EC50 (uM)	Hill Curve	Bottom Curve	Top Max Response	Result Graph
6a-Fluorotestosterone	Sep 2019 NHR Panel	NHR Protein Interaction	Agonist	AR	EC50	0.012655	0.46	0	108.7	113.81
17-B-estradiol	Sep 2019 NHR Panel	NHR Protein Interaction	Agonist	Ers	EC50	0.3022795	0.78	-1.2	102.4	99.841
GW4064	Sep 2019 NHR Panel	NHR Protein Interaction	Agonist	FXR	EC50	0.54311	1.01	1	101.2	96.355
Dexamethasone	Sep 2019 NHR Panel	NHR Protein Interaction	Agonist	GR	EC50	0.022521	0.97	-0.8	95.1	97.806
TO901317	Sep 2019 NHR Panel	NHR Protein Interaction	Agonist	LXRa	EC50	0.089596	1.01	1	99.2	97.309
TO901317	Sep 2019 NHR Panel	NHR Protein Interaction	Agonist	LXRb	EC50	0.042858	0.95	2	97.4	103.12
TO901317	Sep 2019 NHR Panel	NHR Protein Interaction	Agonist	LXRB-NCOR1	EC50	0.1425	1.01	5	98.4	98.77
Aldosterone	Sep 2019 NHR Panel	NHR Protein Interaction	Agonist	MR	EC50	0.301679	0.63	-2.6	104.3	102.52
Compound	Year	Panel	Protein Interaction	Agonist	EC50	Slope	Max	Min	EC50%	
-------------------	------	-------	---------------------	---------	----------	-------	------	-------	-------	
9 Cis Retinoic acid	2019	NHR	NHR Protein Interaction	RXRγ	0.006438	0.93	0.83	1.1	99.6	
Triiodothyronine	2019	NHR	NHR Protein Interaction	THRa	0.029444	1.45	0.7	93.6	95.825	
Triiodothyronine	2019	NHR	NHR Protein Interaction	THRB	0.007639	1.44	3.3	101.4	102.13	

![Graphs](image-url)
Study Report

Requester: Snehal Chaudhari

Company: Harvard Medical School

Date: 11/6/2019

Quote ID: US073-0007752-Q

Order ID: US073-0007752-O

Service: gpcrMAX

Number of Compounds Tested: 1

Number of Targets Tested: 168

Associate Director, LeadHunter Services: Lakshmi Anantharaman

Phone: (510) 7713548

Project Manager: Sharon Irelan

Phone: (858) 224-6925

www.services.discoverx.com

Eurofins Discovery Services
42501 Albrae Street
Fremont, CA 94538
Customer Information

Company: Harvard Medical School
Client Name: Snehal Chaudhari
Address: 240 Longwood Ave

Email: snehal_chaudhari@hms.harvard.edu

Report Summary

Targets: gpcr MAX Panel
Compounds: 1 Compound
Objective: Agonist and Antagonist Primary Screen
Summary: DiscoveRx successfully profiled 1 compound against the gpcrMAX Panel.

The assays were performed utilizing the PathHunter beta-arrestin enzyme fragment complementation (EFC) technology. Results are summarized in this report and the data is provided in accompanying Excel spreadsheet files.
Technology Principle

Arrestin Pathway

The PathHunter® β-Arrestin assay monitors the activation of a GPCR in a homogenous, non-imaging assay format using a technology developed by DiscoveRx called Enzyme Fragment Complementation (EFC) with β-galactosidase (β-Gal) as the functional reporter. The enzyme is split into two inactive complementary portions (EA for Enzyme Acceptor and ED for Enzyme Donor) expressed as fusion proteins in the cell. EA is fused to β-Arrestin and ED is fused to the GPCR of interest.

When the GPCR is activated and β-Arrestin is recruited to the receptor, ED and EA complementation occurs, restoring β-Gal activity which is measured using chemiluminescent PathHunter® Detection Reagents.

Endocytosis Pathway

Using EFC technology, DiscoveRx has developed several methods to study receptor internalization.

PathHunter® Activated GPCR Internalization Assays provide a quantitative measurement of arrestin-mediated GPCR internalization, allowing you to monitor the movement of unlabeled, arrestin-bound GPCRs from the plasma membrane in live cells. In this system, EA is fused to arrestin (EA-Arrestin) and ED is localized exclusively to the surface of early endosomes. Enzyme activity is restored upon GPCR activation and arrestin-mediated trafficking to early endosomes. Activity is measured using PathHunter® Detection Reagents.

PathHunter® Total GPCR Internalization Assays provide a quantitative measurement of total GPCR protein internalized into endosomes and is measured using PathHunter® Detection Reagents.

There are two Total GPCR Internalization assay formats. In the first, one of the EFC components is localized exclusively to the endosome and the other component is fused to the GPCR of interest. When stimulation of the target receptor results in receptor internalization and trafficking to early endosomes, complementation of the two enzyme fragments occurs, reflected as an increase in enzyme activity.

In the second format, EA is localized exclusively to the plasma membrane (EA-Membrane) and ED is fused to the GPCR of interest. Membrane-bound receptors will complement with EA, resulting in high levels of enzyme activity. When activation of the GPCR results in receptor internalization, loss of receptor at the cell surface is reflected as a loss of enzyme activity.
Calcium mobilization in PathHunter® cell lines or other cell lines stably expressing Gq-coupled GPCRs is monitored using a calcium-sensitive dye that is loaded into cells. GPCR activation by a compound results in the release of calcium from intracellular stores and an increase in dye fluorescence that is measured in real-time.

Profile Overview
DiscoverX was contracted by Dr. Snehal Chaudhari at Harvard Medical School to profile 1 compound with the gpcrMAX Panel biosensor assays. Compound was tested in agonist and antagonist mode.

CAMP Secondary Messenger Pathway
DiscoverX has developed a panel of cell lines stably expressing non-tagged GPCRs that signal through cAMP. Hit Hunter® cAMP assays monitor the activation of a GPCR via Gi and Gs secondary messenger signaling in a homogenous, non-imaging assay format using a technology developed by DiscoverX called Enzyme Fragment Complementation (EFC) with β-galactosidase (β-Gal) as the functional reporter.

The enzyme is split into two complementary portions: EA for Enzyme Acceptor and ED for Enzyme Donor. ED is fused to cAMP and in the assay competes with cAMP generated by cells for binding to a cAMP-specific antibody. Active β-Gal is formed by complementation of exogenous EA to any unbound ED-cAMP. Active enzyme can then convert a chemiluminescent substrate, generating an output signal detectable on a standard microplate reader.

CaM1 Secondary Messenger Pathway
The Calcium No WashPLUS assay monitors the activation of a GPCR via Gq secondary messenger signaling in a live cell, non-imaging assay format.
Assay Design: GPCR Arrestin

Cell Handling
1. PathHunter cell lines were expanded from freezer stocks according to standard procedures.
2. Cells were seeded in a total volume of 20 µL into white walled, 384-well microplates and incubated at 37°C for the appropriate time prior to testing.

Agonist Format
1. For agonist determination, cells were incubated with sample to induce response.
2. Intermediate dilution of sample stocks was performed to generate 5X sample in assay buffer.
3. 5 µL of 5X sample was added to cells and incubated at 37°C or room temperature for 90 or 180 minutes. Final assay vehicle concentration was 1%.

Antagonist Format
1. For antagonist determination, cells were pre-incubated with antagonist followed by agonist challenge at the EC80 concentration.
2. Intermediate dilution of sample stocks was performed to generate 5X sample in assay buffer.
3. 5 µL of 5X sample was added to cells and incubated at 37°C or room temperature for 30 minutes. Vehicle concentration was 1%.
4. 5 µL of 6X EC80 agonist in assay buffer was added to the cells and incubated at 37°C or room temperature for 90 or 180 minutes.

Signal Detection
1. Assay signal was generated through a single addition of 12.5 or 15 µL (50% v/v) of PathHunter Detection reagent cocktail, followed by a one hour incubation at room temperature.
2. Microplates were read following signal generation with a PerkinElmer EnvisionTM instrument for chemiluminescent signal detection.

Data Analysis
Compound activity was analyzed using CBIS data analysis suite (ChemInnovation, CA).

1. For agonist mode assays, percentage activity was calculated using the following formula:
 \[
 \% \text{Activity} = 100\% \times \frac{\text{mean RLU of test sample} - \text{mean RLU of vehicle control}}{\text{mean MAX control ligand} - \text{mean RLU of vehicle control}}.
 \]
2. For antagonist mode assays, percentage inhibition was calculated using the following formula:
 \[
 \% \text{Inhibition} = 100\% \times \frac{1 - (\text{mean RLU of test sample} - \text{mean RLU of vehicle control})}{\text{mean RLU of EC80 control} - \text{mean RLU of vehicle control}}.
 \]
Results:

Compound Name	Assay Name	Assay Format	Assay Target	Result Type	EC50 (uM)	Hill	Curve Bottom	Curve Top	Max Response EC80 (uM)
PACAP-27	Arrestin	Arrestin	ARPC2A	Result Type	EC50 (uM)	Hill	Curve Bottom	Curve Top	Max Response EC80 (uM)
2-Octyl-4-Methylpentanoate	Arrestin	Arrestin	ADRB3	Result Type	EC50 (uM)	Hill	Curve Bottom	Curve Top	Max Response EC80 (uM)
Phenylephrine	Arrestin	Arrestin	ADRB3	Result Type	EC50 (uM)	Hill	Curve Bottom	Curve Top	Max Response EC80 (uM)
UK-44,304	Arrestin	Arrestin	ADRB2B	Result Type	EC50 (uM)	Hill	Curve Bottom	Curve Top	Max Response EC80 (uM)
UK-14,345	Arrestin	Arrestin	ADRB2B	Result Type	EC50 (uM)	Hill	Curve Bottom	Curve Top	Max Response EC80 (uM)
Isopropenol	Arrestin	Arrestin	ADRB2	Result Type	EC50 (uM)	Hill	Curve Bottom	Curve Top	Max Response EC80 (uM)
Isopropenol	Arrestin	Arrestin	ADRB2	Result Type	EC50 (uM)	Hill	Curve Bottom	Curve Top	Max Response EC80 (uM)
Apelin-13	Arrestin	Arrestin	AGTR1	Result Type	EC50 (uM)	Hill	Curve Bottom	Curve Top	Max Response EC80 (uM)
Thapsiquin	Arrestin	Arrestin	CCR9	Result Type	EC50 (uM)	Hill	Curve Bottom	Curve Top	Max Response EC80 (uM)
TSA Receptor Agonist (Short Fragment)	Arrestin	Arrestin	CXCR5	Result Type	EC50 (uM)	Hill	Curve Bottom	Curve Top	Max Response EC80 (uM)
Complement C3a	Arrestin	Arrestin	C3	Result Type	EC50 (uM)	Hill	Curve Bottom	Curve Top	Max Response EC80 (uM)
Complement C3a	Arrestin	Arrestin	C5	Result Type	EC50 (uM)	Hill	Curve Bottom	Curve Top	Max Response EC80 (uM)
Calcitonin	Arrestin	Arrestin	C3AR1	Result Type	EC50 (uM)	Hill	Curve Bottom	Curve Top	Max Response EC80 (uM)
Calcitonin	Arrestin	Arrestin	C3AR2	Result Type	EC50 (uM)	Hill	Curve Bottom	Curve Top	Max Response EC80 (uM)
Adrenomedullin	Arrestin	Arrestin	CCR1	Result Type	EC50 (uM)	Hill	Curve Bottom	Curve Top	Max Response EC80 (uM)
Adrenomedullin	Arrestin	Arrestin	CCR1	Result Type	EC50 (uM)	Hill	Curve Bottom	Curve Top	Max Response EC80 (uM)
Calcitonin	Arrestin	Arrestin	C5L2	Result Type	EC50 (uM)	Hill	Curve Bottom	Curve Top	Max Response EC80 (uM)
Calcitonin	Arrestin	Arrestin	C5AR1	Result Type	EC50 (uM)	Hill	Curve Bottom	Curve Top	Max Response EC80 (uM)
Calcitonin	Arrestin	Arrestin	C5AR2	Result Type	EC50 (uM)	Hill	Curve Bottom	Curve Top	Max Response EC80 (uM)
CCK	Arrestin	Arrestin	CCK1	Result Type	EC50 (uM)	Hill	Curve Bottom	Curve Top	Max Response EC80 (uM)
CCK	Arrestin	Arrestin	CCK2	Result Type	EC50 (uM)	Hill	Curve Bottom	Curve Top	Max Response EC80 (uM)
Vasopressin	Arrestin	Arrestin	AVPR1B	Result Type	EC50 (uM)	Hill	Curve Bottom	Curve Top	Max Response EC80 (uM)
Vasopressin	Arrestin	Arrestin	AVPR2	Result Type	EC50 (uM)	Hill	Curve Bottom	Curve Top	Max Response EC80 (uM)
Apelin	Arrestin	Arrestin	RAMP1	Result Type	EC50 (uM)	Hill	Curve Bottom	Curve Top	Max Response EC80 (uM)
Apelin	Arrestin	Arrestin	RAMP2	Result Type	EC50 (uM)	Hill	Curve Bottom	Curve Top	Max Response EC80 (uM)
Dihydroxycholesterol	Arrestin	Arrestin	EBI2	Result Type	EC50 (uM)	Hill	Curve Bottom	Curve Top	Max Response EC80 (uM)
Dihydroxycholesterol	Arrestin	Arrestin	EBI2	Result Type	EC50 (uM)	Hill	Curve Bottom	Curve Top	Max Response EC80 (uM)
Endothelin II	Arrestin	Arrestin	AGTR1	Result Type	EC50 (uM)	Hill	Curve Bottom	Curve Top	Max Response EC80 (uM)
Endothelin II	Arrestin	Arrestin	AGTR1	Result Type	EC50 (uM)	Hill	Curve Bottom	Curve Top	Max Response EC80 (uM)
Calcitonin	Arrestin	Arrestin	CALCRL	Result Type	EC50 (uM)	Hill	Curve Bottom	Curve Top	Max Response EC80 (uM)
CCL‐P Arrestin Agonist (EDG5)	Arrestin	Arrestin	EDG5	Result Type	EC50 (uM)	Hill	Curve Bottom	Curve Top	Max Response EC80 (uM)
CCL‐P Arrestin Agonist (EDG6)	Arrestin	Arrestin	EDG6	Result Type	EC50 (uM)	Hill	Curve Bottom	Curve Top	Max Response EC80 (uM)
Vasoactive peptide	Arrestin	Arrestin	EDG6	Result Type	EC50 (uM)	Hill	Curve Bottom	Curve Top	Max Response EC80 (uM)
CCL‐P Arrestin Agonist (EDG5)	Arrestin	Arrestin	EDG5	Result Type	EC50 (uM)	Hill	Curve Bottom	Curve Top	Max Response EC80 (uM)
CCL‐P Arrestin Agonist (EDG6)	Arrestin	Arrestin	EDG6	Result Type	EC50 (uM)	Hill	Curve Bottom	Curve Top	Max Response EC80 (uM)

Table 1: Summary of agonist control data for targets tested in gp(o)MAX Panel

Agonist dose curves were performed for the targets tested in the study. Assay type, ligand and EC50 obtained and EC80 concentration used are summarized. Graphical results for the control curves are provided at the end of this report.
Results:

Table 1: Summary of agonist control data for targets tested in gPCRmax Panel

Compound Name	Assay Name	Assay Format	Assay Target	Result Type	EC50 (nM)	Hill	Curve Bottom	Curve Top	Max Response	EC50 (nM)

Agnostic dose curves were performed for the targets tested in the study. Assay type, ligand and EC50 obtained and EC80 concentration used are summarized. Graphical results for the control curves are provided at the end of this report.

Confidential

7

11/5/2019
Table 2: Agonist activity for compounds tested in gpcrMAX Panel

Compounds were tested at the concentration shown in the table. Basal and maximal agonist response control values are given. Raw activity (RLU units) of individual replicates and mean RLU and percentage activity are shown. Percentage activity was calculated relative to the basal and maximal control agonist values for each GPCR target.
Results:

Agonist	VPC ID	Customer	Control	Mean RLU	SD	%CV
Agonist 100,000	85871	85712	3\%	8910	2%	2%
Agonist 100,000	86474	35040	1%	35040	0%	0%
Agonist 100,000	85807	85807	0%	85807	0%	0%
Agonist 100,000	85804	85804	0%	85804	0%	0%
Agonist 100,000	85805	85805	0%	85805	0%	0%
Agonist 100,000	85806	85806	0%	85806	0%	0%
Agonist 100,000	85803	85803	0%	85803	0%	0%
Agonist 100,000	85802	85802	0%	85802	0%	0%
Agonist 100,000	85801	85801	0%	85801	0%	0%
Agonist 100,000	85800	85800	0%	85800	0%	0%
Agonist 100,000	85799	85799	0%	85799	0%	0%
Agonist 100,000	85798	85798	0%	85798	0%	0%
Agonist 100,000	85797	85797	0%	85797	0%	0%
Agonist 100,000	85796	85796	0%	85796	0%	0%
Agonist 100,000	85795	85795	0%	85795	0%	0%
Agonist 100,000	85794	85794	0%	85794	0%	0%
Agonist 100,000	85793	85793	0%	85793	0%	0%

Table 2: Agonist activity for compounds tested in gpcrMAX Panel

Compounds were tested at the concentration shown in the table. Basal and maximal agonist response control values are given. Raw activity (RLU units) of individual replicates and mean RLU and percentage activity are shown. Percentage activity was calculated relative to the basal and maximal control agonist values for each GPCR target.
Results:

ID	Customer	Assay	Antagonist	Basal	HARV	% Basal	% HARV	% CV	% SD	% inhibition
EDG4	Harvard	EDG4	0.000001	4.415	4.415	1.7%	4.415%	5%	5%	99%
EDG3	Harvard	EDG3	0.000001	4.415	4.415	1.7%	4.415%	5%	5%	99%
CRTH2	Harvard	CRTH2	0.000001	4.415	4.415	1.7%	4.415%	5%	5%	99%
CRHR2	Harvard	CRHR2	0.000001	4.415	4.415	1.7%	4.415%	5%	5%	99%
CHRM3	Harvard	CHRM3	0.000001	4.415	4.415	1.7%	4.415%	5%	5%	99%
F2RL3	Harvard	F2RL3	0.000001	4.415	4.415	1.7%	4.415%	5%	5%	99%
F2RL1	Harvard	F2RL1	0.000001	4.415	4.415	1.7%	4.415%	5%	5%	99%
F2R	Harvard	F2R	0.000001	4.415	4.415	1.7%	4.415%	5%	5%	99%
EDG6	Harvard	EDG6	0.000001	4.415	4.415	1.7%	4.415%	5%	5%	99%
CX3CR1	Harvard	CX3CR1	0.000001	4.415	4.415	1.7%	4.415%	5%	5%	99%
CCR7	Harvard	CCR7	0.000001	4.415	4.415	1.7%	4.415%	5%	5%	99%
CCR5	Harvard	CCR5	0.000001	4.415	4.415	1.7%	4.415%	5%	5%	99%
CCKBR	Harvard	CCKBR	0.000001	4.415	4.415	1.7%	4.415%	5%	5%	99%
CCKAR	Harvard	CCKAR	0.000001	4.415	4.415	1.7%	4.415%	5%	5%	99%
CALCR	Harvard	CALCR	0.000001	4.415	4.415	1.7%	4.415%	5%	5%	99%
BDKRB1	Harvard	BDKRB1	0.000001	4.415	4.415	1.7%	4.415%	5%	5%	99%
AVPR2	Harvard	AVPR2	0.000001	4.415	4.415	1.7%	4.415%	5%	5%	99%
ADRB2	Harvard	ADRB2	0.000001	4.415	4.415	1.7%	4.415%	5%	5%	99%
RAMP3	Harvard	RAMP3	0.000001	4.415	4.415	1.7%	4.415%	5%	5%	99%
RAMP2	Harvard	RAMP2	0.000001	4.415	4.415	1.7%	4.415%	5%	5%	99%

Table 3: Antagonist activity for compounds tested in gPCRMAX Panel

Compounds were tested at the concentration shown in the table. Basal and EC80 agonist response control values are given. Raw activity (RLU units) of individual replicates and mean RLU and percentage inhibition are shown. Percentage inhibition was calculated relative to the basal and EC80 control agonist values for each GPCR target.
Confidential 11 11/6/2019

Results:

ID	Assay	Compound	EC80	%CV	% Inhibition	CV	Compounds	% CV
1	TBXAR	Harvard	1201 2%	12%	1003	7%	P2YR1	
2			1201 2%	12%	1003	7%	P2YR1	
3			1201 2%	12%	1003	7%	P2YR1	
4			1201 2%	12%	1003	7%	P2YR1	

Table 3: Antagonist activity for compounds tested in gpcRX Panel

Compounds were tested at the concentration shown in the table. Basal and EC80 agonist response control values are given. Raw activity (RLU units) of individual replicates and mean RLU and percentage inhibition are shown. Percentage inhibition was calculated relative to the basal and EC80 control agonist values for each GPCR target.
Table 4: Summary of agonist activity for compounds tested in gpcrMAX Panel
Table 5: Summary of antagonist activity for compounds tested in gpcrMAX Panel

Compound ID	Concentration (µM)	Assay Mode	Conc (µM)	% Inhibition
ADRB2	Harvard Uni	500000	100	75
ADRB2	Harvard Uni	200000	100	55
ADRB2	Harvard Uni	100000	100	35
ADRB2	Harvard Uni	50000	100	15
ADRB2	Harvard Uni	10000	100	5
ADRB2	Harvard Uni	5000	100	2
ADRB2	Harvard Uni	1000	100	1
ADRB2	Harvard Uni	500	100	0
ADRB2	Harvard Uni	250	100	0
ADRB2	Harvard Uni	125	100	0
ADRB2	Harvard Uni	62.5	100	0
ADRB2	Harvard Uni	31.25	100	0
ADRB2	Harvard Uni	15.625	100	0
ADRB2	Harvard Uni	7.8125	100	0
ADRB2	Harvard Uni	3.90625	100	0
ADRB2	Harvard Uni	1.953125	100	0
ADRB2	Harvard Uni	0.9765625	100	0
ADRB2	Harvard Uni	0.48828125	100	0
ADRB2	Harvard Uni	0.24414062	100	0
ADRB2	Harvard Uni	0.12207031	100	0
ADRB2	Harvard Uni	0.06103515	100	0
ADRB2	Harvard Uni	0.03051758	100	0
ADRB2	Harvard Uni	0.01525879	100	0
ADRB2	Harvard Uni	0.00762939	100	0
ADRB2	Harvard Uni	0.00381469	100	0
ADRB2	Harvard Uni	0.00190735	100	0
ADRB2	Harvard Uni	0.00095367	100	0
ADRB2	Harvard Uni	0.00047684	100	0
ADRB2	Harvard Uni	0.00023842	100	0
ADRB2	Harvard Uni	0.00011921	100	0
ADRB2	Harvard Uni	0.00005960	100	0
ADRB2	Harvard Uni	0.00002980	100	0
ADRB2	Harvard Uni	0.00001490	100	0
ADRB2	Harvard Uni	0.00000745	100	0
ADRB2	Harvard Uni	0.00000373	100	0
ADRB2	Harvard Uni	0.00000187	100	0
ADRB2	Harvard Uni	0.00000093	100	0
ADRB2	Harvard Uni	0.00000046	100	0
ADRB2	Harvard Uni	0.00000023	100	0
ADRB2	Harvard Uni	0.00000012	100	0
ADRB2	Harvard Uni	0.00000006	100	0
ADRB2	Harvard Uni	0.00000003	100	0
ADRB2	Harvard Uni	0.00000001	100	0
ADRB2	Harvard Uni	0.00000000	100	0
Summary

DiscoveRx successfully profiled 1 compound against the gpcrMAX Panel.

The assays were performed utilizing the PathHunter beta-arrestin enzyme fragment complementation (EFC) technology. Results are summarized in this report and the data is provided in accompanying Excel spreadsheet files.

This is to certify that the data contained within this report was conducted as described above.

Lakshmi Anantharaman
Associate Director, LeadHunter Services
Compound Name	Assay Name	Assay Format	Assay Target	Result Type	EC50 (uM)	Hill	Curve Bottom	Curve Top	Max Response	Result Graph											
PACAP-27	Arrestin	Agonist	ADCYAP1R1	EC50	0.0027627	1.68	-1.6	98.9	100.64												
2-Cl-IB-MECA	Arrestin	Agonist	ADORA3	EC50	0.017318	1.25	-11.2	102.6	103.45												
Phenylephrine	Arrestin	Agonist	ADRA1B	EC50	0.21859	0.87	-1.7	102.9	101.32												
UK 14,304	Arrestin	Agonist	ADRA2A	EC50	0.0036845	0.68	-7.9	100	100.65												
UK 14,304	Arrestin	Agonist	ADRA2B	EC50	0.17656	1.52	-7.5	97.9	101.55												
UK 14,304	Arrestin	Agonist	ADRA2C	EC50	0.07799	1.19	-12.4	98.6	102.1												
Compound Name	Assay Name	Assay Target	EC50 (nM)	Hill	Curve Bottom	Curve Top	Max Response														Result Graph
---------------	------------	--------------	-----------	------	--------------	----------	--------------	---	---	---	---	---	---	---	---	---					
Isoproterenol	Arrestin	ADRB1	0.078654	1.13	-5.1	100.3	101.79	[Graph](image)													
Isoproterenol	Arrestin	ADRB2	0.060695	1.3	-0.5	100.4	100.17	[Graph](image)													
Angiotensin II	Arrestin	AGTR1	0.0008429	0.97	-3.3	97.3	100.4	[Graph](image)													
Apelin-13	Arrestin	AGTRL1	0.00050701	1.39	-3.9	99	103.09	[Graph](image)													
Vasopressin	Arrestin	AVPR1A	0.0015681	0.8	-5.4	102	100.26	[Graph](image)													
Vasopressin	Arrestin	AVPR1B	0.00017909	0.8	-3.3	103.5	100.68	[Graph](image)													
Compound Name	Assay Name	Assay Format	Assay Target	Result Type	EC50 (µM)	Hill	Curve Bottom	Curve Top	Max Response												
--------------	------------	--------------	--------------	-------------	-----------	------	--------------	-----------	--------------												
Vasopressin	Arrestin	EC50	AVPR2	0.00029239	1.32	96.6	100.04														
LDA-Bradykinin	Arrestin	EC50	BDKRB1	0.0002469	1.16	-4.9	100.6	101.54													
Bradykinin	Arrestin	EC50	BDKRB2	0.00040968	1.54	-0.9	99.9	100.48													
TAPN-Bombesin	Arrestin	EC50	BRS3	0.0007402	0.68	-22.2	104.6	107.74													
C3A Receptor Agonist (Short Fragment)	Arrestin	EC50	C3AR1	0.28745	1.18	-1.2	102.1	106.9													
Complement C5a	Arrestin	EC50	CSAR1	0.000015412	2.98	0.5	101.7	106.11													
Compound Name	Assay Name	Assay Target	Result Type	EC50 (µM)	Hill	Curve Bottom	Curve Top	Max Response	Result Graph												
---------------	------------	--------------	-------------	-----------	------	--------------	----------	--------------	-------------												
Complement C5a	Arrestin Agonist	CSL2	EC50	0.00070387	1.52	-13.7	104.8	100.84													
Calcitonin	Arrestin Agonist	CALCR	EC50	0.041237	1.21	-1.1	105.3	103.35													
beta CGRP	Arrestin Agonist	CALCRL-RAMP1	EC50	0.0011776	1.46	8.1	98.4	100.01													
Adrenomedullin	Arrestin Agonist	CALCRL-RAMP2	EC50	0.0010833	1.5	0.8	99.7	100.4													
Adrenomedullin	Arrestin Agonist	CALCRL-RAMP3	EC50	0.003256	1.17	0.1	98.1	100.21													
Calcitonin	Arrestin Agonist	CALCR-RAMP2	EC50	0.01494	0.95	-0.2	99.5	102.69													
Compound Name	Assay Name	Assay Target	Assay Format	Result Type	EC50 (uM)	Hill	Curve Bottom	Curve Top	Max Response	Result Graph											
---------------	------------	--------------	--------------	-------------	-----------	------	--------------	-----------	-------------	--------------											
Calcitonin	Arrestin	Agonist	CALCR-RAMP3	EC50	0.081074	0.72	16.3	100	105.5	Calcitonin-RAMP3											
CCK-8	Arrestin	Agonist	CCKAR	EC50	0.0048874	1.03	-2	100.7	101.23	CCK-8 CCKAR											
	CCK-8	Agonist	CCKBR	EC50	0.00026335	1.6	-1.4	97	101.1	CCK-8 CCKBR											
CCL27	Arrestin	Agonist	CCR10	EC50	0.017333	1.84	0.7	100.9	102.41	CCL27 CCR10											
CCL3	Arrestin	Agonist	CCR1	EC50	0.00042576	1.59	-10.9	97.5	101.37	CCL3 CCR1											
CCL2	Arrestin	Agonist	CCR2	EC50	0.0050205	0.99	-3.9	102	105.82	CCL2 CCR2											
Compound Name	Assay Name	Assay Format	Assay Target	Result Type	EC50 (µM)	Hill	Curve Bottom	Curve Top	Max Response	Result Graph											
---------------	------------	--------------	--------------	-------------	-----------	------	--------------	-----------	--------------	--------------											
CCL13	Arrestin	Agonist	CCR3	EC50	0.018495	1.07	-12.1	100	107.71												
CCL22	Arrestin	Agonist	CCR4	EC50	0.004488	0.77	-1.4	100	103.17												
CCL3	Arrestin	Agonist	CCR5	EC50	0.0092168	0.7	-4.9	110.1	107.65												
CCL20	Arrestin	Agonist	CCR6	EC50	0.0073553	0.76	-4.8	106.1	105.49												
CCL19	Arrestin	Agonist	CCR7	EC50	0.005935	1.93	-1	99	100.74												
CCL1	Arrestin	Agonist	CCR8	EC50	0.026054	1.24	-1	102.2	103.71												
Compound Name	Assay Name	Assay Format	Assay Target	Result Type	EC50 (uM)	Slope	Curve Bottom	Curve Top	Max Response	Result Graph											
---------------	------------	--------------	--------------	-------------	-----------	-------	--------------	----------	--------------	--------------											
CCL25 Arrestin Agonist CCR9	EC50	0.17787	1.67	0.6	100	100															
Acetylcholine Arrestin Agonist CHRM1	EC50	2.4485	0.78	-6.8	104.2	102.24															
Acetylcholine Arrestin Agonist CHRM2	EC50	5.6576	1.03	-3.2	102.1	100.33															
Acetylcholine Arrestin Agonist CHRM3	EC50	0.7922	0.78	-4.5	103.3	103.96															
Acetylcholine Arrestin Agonist CHRM4	EC50	1.9964	1.38	-16.9	104.6	102.18															
Acetylcholine Arrestin Agonist CHRM5	EC50	0.26794	0.89	-7.8	97	100.01															
Compound Name	Assay Name	Assay Format	Assay Target	Result Type	EC50 (uM)	Hill Curve	Bottom Curve	Top Max Response	Result Graph												
---------------	------------	--------------	--------------	-------------	-----------	-----------	--------------	-----------------	-------------												
Chemerin	Arrestin	Agonist	CMKL1	EC50	0.004443	1.4	-1.2	97.3	102.14												
CP55940	Arrestin	Agonist	CNR1	EC50	0.011297	1.13	-2.3	102.6	101.64												
CP55940	Arrestin	Agonist	CNR2	EC50	0.001426	1.12	-15	109.5	107.56												
Sauvagine	Arrestin	Agonist	CRHR1	EC50	0.004258	2.99	2.9	101.3	100.14												
Sauvagine	Arrestin	Agonist	CRHR2	EC50	0.0066575	1.42	-0.1	99.3	101.84												
PGD2	Arrestin	Agonist	CRTH2	EC50	0.0049044	0.74	0	97.6	102.1												
Compound Name	Assay Name	Assay Format	Assay Target	Result Type	EC50 (µM)	Hill	Curve Bottom	Curve Top	Max Response	Result Graph											
---------------	------------	--------------	--------------	-------------	-----------	------	--------------	-----------	--------------	-------------											
Fractalkine	Arrestin	Agonist	CX3CR1	RC50 (µM)	0.00073446	1.53	-0.2	97.3	102.59	Fractalkine											
CXCL8	Arrestin	Agonist	CXCR1	EC50	0.0036628	1.09	-1.6	101.4	100.23	CXCL8											
CXCL8	Arrestin	Agonist	CXCR2	EC50	0.00073033	0.84	-12.4	99.8	109.95	CXCL8											
CXCL11	Arrestin	Agonist	CXCR3	EC50	0.025161	1	-14.6	111.2	105.39	CXCL11											
CXCL12	Arrestin	Agonist	CXCR4	EC50	0.00168	0.92	0	106.4	108.15	CXCL12											
CXCL13	Arrestin	Agonist	CXCR5	EC50	0.046452	1.05	-1.2	117.7	110.26	CXCL13											
Compound Name	Assay Name	Assay Format	Assay Target	Result Type	EC50 (uM)	Hill	Curve Bottom	Curve Top	Max Response	Result Graph											
---------------	------------	--------------	--------------	-------------	-----------	------	---------------	-----------	---------------	--------------											
CXCL16	Arrestin	Agonist	CXCR6	EC50	0.0007772	1.54	-4	100	97.619												
CXCL12	Arrestin	Agonist	CXCR7	EC50	0.014645	1.84	-1.1	100.8	101.95												
Dopamine	Arrestin	Agonist	DRD1	EC50	0.45512	1.3	-1.4	104.4	104.15												
Dopamine	Arrestin	Agonist	DRD2L	EC50	0.097055	1.1	-3.4	102.4	100.24												
Dopamine	Arrestin	Agonist	DRD2S	EC50	0.082691	1.39	-5.3	101.2	109.01												
Dopamine	Arrestin	Agonist	DRD3	EC50	0.007335	1.21	-10	105.3	102.25												
Compound Name Assay Name Assay Format Assay Target Result Type RC50 (μM) Hill Curve Bottom Curve Top Max Response Result Graph

Compound Name	Assay Name	Assay Format	Assay Target	Result Type	RC50 (μM)	Hill	Curve Bottom	Curve Top	Max Response	Result Graph
Dopamine	Arrestin	Agonist	DRD4	EC50	0.17021	1.7	-6.6	98.7	100.2	Dopamine DRD4
Dopamine	Arrestin	Agonist	DRD5	EC50	0.11691	1.5	-1.1	100.6	103.22	Dopamine DRD5
7α,25-Dihydroxycholesterol	Arrestin	Agonist	EBI2	EC50	0.054752	0.91	-1.2	101.9	104.97	7α,25-Dihydroxycholesterol EBI2
S-1-P	Arrestin	Agonist	EDG1	EC50	0.025379	0.76	0	90.3	107.15	S-1-P EDG1
S-1-P	Arrestin	Agonist	EDG3	EC50	0.024481	1.06	-4.5	101.5	102.65	S-1-P EDG3
Oleoyl LPA	Arrestin	Agonist	EDG4	EC50	0.76268	0.93	-12.8	102.6	103.67	Oleoyl LPA EDG4
Compound Name	Assay Name	Assay Target	Result Graph							
---------------	------------	--------------	--------------							
S-1-P	Arrestin	EDG5	![Graph](image1.png)							
	Arrestin	EDG6	![Graph](image2.png)							
Oleoyl LPA	Arrestin	EDG7	![Graph](image3.png)							
Endothelin 1	Arrestin	EDNRA	![Graph](image4.png)							
Endothelin 3	Arrestin	EDNRB	![Graph](image5.png)							
TFFLR-NH2	Arrestin	F2R	![Graph](image6.png)							
Compound Name	Assay Name	Assay Name	Assay Format	Assay Target	Result Type	EC50 (uM)	Slope	Min	Max	
---------------------	----------------	------------	--------------	--------------	-------------	-----------	---------	---------	---------	
SLIGRL-NH2	Arrestin	Agonist	F2RL1	EC50		0.66847	1.03	-2.4	103.4	104.5
AYPGKF-NH2	Arrestin	Agonist	F2RL3	EC50		3.32	2.13	0.5	99	103.95
GW5508	Arrestin	Agonist	FFAR1	EC50		2.5318	0.92	-12.7	108.9	110.88
WKYMVm-NH2	Arrestin	Agonist	FPR1	EC50		0.0054478	1.12	-10.1	98.7	100.61
WKYMVm-NH2	Arrestin	Agonist	FPRL1	EC50		0.0020325	2.23	1	104.7	103.7
FSH	Arrestin	Agonist	FSHR	EC50		0.002265	1.02	-4.6	103.5	100.09
Compound Name	Assay Name	Assay Format	Assay Target	Result Type	EC50 (nM)	Hill	Curve Bottom	Curve Top	Max Response	Result Graph
---------------	------------	--------------	--------------	-------------	-----------	------	---------------	-----------	--------------	-------------
Galanin	Arrestin	Agonist	GALR1	EC50	0.0062252	1.54	1.7	98.3	100.77	![Galanin GALR1 Graph](image)
Galanin	Arrestin	Agonist	GALR2	EC50	0.017215	0.85	5.6	99.7	102.79	![Galanin GALR2 Graph](image)
Glucagon	Arrestin	Agonist	GCGR	EC50	0.0073343	1.7	1.3	104	102.61	![Glucagon GCGR Graph](image)
Ghrelin	Arrestin	Agonist	GHSR	EC50	0.0073928	1.77	-5	99.4	101.43	![Ghrelin GHSR Graph](image)
GIP	Arrestin	Agonist	GIPR	EC50	0.01461	1.18	-1.3	103	106	![GIP GIPR Graph](image)
Exendin-4	Arrestin	Agonist	GLP1R	EC50	0.0037954	1.41	1.2	98.8	101.44	![Exendin-4 GLP1R Graph](image)
Compound Name	Assay Name	Assay Format	Assay Target	Result Type	EC50 (μM)	Hill	Curve Bottom	Curve Top	Max Response	
------------------------	------------	--------------	--------------	-------------	-----------	------	--------------	-----------	--------------	
GLP II (1-33)	Arrestin	Agonist	GLP2R	EC50	0.0017774	1	11.1	98.6	104.11	
Chemerin	Arrestin	Agonist	GPR1	EC50	0.0027464	1.64	1.3	98.6	104.03	
QRFP-26	Arrestin	Agonist	GPR103	EC50	0.0030523	1.4	-6.6	101.4	106.5	
Nicotinic Acid	Arrestin	Agonist	GPR109A	EC50	4.1858	1.04	-2.2	115.8	108	
3-Hydroxyoctanoic Acid	Arrestin	Agonist	GPR109B	EC50	571.32	1.33	1.5	100	100	
Oleoyl Ethanolamide	Arrestin	Agonist	GPR119	EC50	1.9228	0.98	-10.4	105.2	112.24	
Compound Name	Assay Name	Assay Format	Assay Target	Result Type	EC50 (nM)	Hill	Curve Bottom	Curve Top	Max Response	Result Graph
---------------	------------	--------------	--------------	-------------	-----------	------	---------------	-----------	--------------	--------------
GW9508	Arrestin	Agonist	GPR120	EC50	18.319	1	-8.1	137	114.71	GW9508 GPR120
Zaprinast	Arrestin	Agonist	GPR35	EC50	1.7611	0.94	-4.3	100	112.56	Zaprinast GPR35
Oleoyl LPA	Arrestin	Agonist	GPR92	EC50	0.77293	1.05	-5.8	100.3	103.27	Oleoyl LPA GPR92
GRP	Arrestin	Agonist	GRPR	EC50	0.001761	1.97	1.3	102.7	100.63	GRP GRPR
Orexin A	Arrestin	Agonist	HCRTR1	EC50	0.0069909	1.41	-1.1	99	103.44	Orexin A HCRTR1
Orexin A	Arrestin	Agonist	HCRTR2	EC50	0.0092783	1.34	-0.4	100.3	101.87	Orexin A HCRTR2
Compound Name	Assay Name	Assay Target	EC50 (µM)	Hill	Curve Bottom	Curve Top	Max Response			
---------------	------------	--------------	-----------	------	--------------	----------	--------------			
Histamine	Arrestin	HRH1	0.04675	1.24	0.4	99.9	104.68			
Histamine	Arrestin	HRH2	4.4267	1.18	-5	105.6	100.65			
R-a-methylhistamine	Arrestin	HRH3	0.077177	1.27	-4.9	100.2	103.72			
Histamine	Arrestin	HRH4	0.065634	1.19	0	107.7	103.38			
Serotonin / 5-HT	Arrestin	HTR1A	0.055226	1.53	-5.3	101.8	101.41			
Serotonin / 5-HT	Arrestin	HTR1B	0.071379	1.38	-5.5	106.1	102.08			
Compound Name / 5-HT	Assay Name	Assay Format	Assay Target	Result Type	EC50 (uM)	Hill	Curve Bottom	Curve Top	Max Response	Result Graph
----------------------	------------	--------------	--------------	-------------	-----------	------	--------------	-----------	--------------	--------------
Serotonin / 5-HT	Arrestin Agonist	HTR1E	EC50	0.0053768	1.9	-1.5	118.2	112.49		
Serotonin / 5-HT	Arrestin Agonist	HTR1F	EC50	0.025647	1.45	-10.3	109.3	112.92		
Serotonin / 5-HT	Arrestin Agonist	HTR2A	EC50	0.040728	0.95	-1.5	102.4	101.36		
Serotonin / 5-HT	Arrestin Agonist	HTR2C	EC50	0.0043118	1.35	-5.5	100.1	101.05		
Serotonin / 5-HT	Arrestin Agonist	HTR5A	EC50	0.012722	0.98	-4.6	99.9	104.38		
Kisspeptin-10	Arrestin Agonist	KISS1R	EC50	0.015141	0.98	-6.8	98.9	104.68		
Compound Name	Assay Name	Assay Format	Assay Target	Result Type	EC50 (nM)	Hill	Curve Bottom	Curve Top	Max Response	Result Graph
---------------	------------	--------------	--------------	-------------	-----------	------	--------------	-----------	--------------	-------------
hCG Arrestin	Agonist	LHCGR	EC50	0.0016121	0.8	-0.6	100	109.33		
Leukotriene B4	Arrestin	LTB4R	EC50	0.37873	0.64	3	100	100		
Melanotan II	Arrestin	MC1R	EC50	0.0002796	1.33	-1.2	100.6	106.83		
Melanotan II	Arrestin	MC3R	EC50	0.0010303	0.81	-3.1	103.7	103.24		
Melanotan II	Arrestin	MC4R	EC50	0.00058887	1.08	-3.5	101.4	102.09		
Melanotan II	Arrestin	MC5R	EC50	0.012762	0.77	-5.5	105.1	104.96		
Compound Name	Assay Name	Assay Format	Assay Target	Result Type	RC50 (uM)	Hill	Curve Bottom	Curve Top	Max Response	Result Graph
---------------	------------	--------------	--------------	-------------	-----------	------	--------------	-----------	--------------	-------------
MCH Arrestin	Agonist MCHR1	EC50	0.056883	1.14	-2.4	108.2	104.43			
MCH Arrestin	Agonist MCHR2	EC50	0.0056083	1.09	-0.5	100.7	100.79			
Motilin Arrestin	Agonist MLNR	EC50	0.005208	0.92	-3.2	100.6	100.79			
BAM(8-22) Arrestin	Agonist MRGPRX1	EC50	3.7895	1.27	1.5	108.8	103.14			
Cortistatin 14 Arrestin	Agonist MRGPRX2	EC50	0.23897	0.85	-3	106.9	101.95			
2-Iodomelatonin Arrestin	Agonist MTNR1A	EC50	0.00056431	1.18	-10	101	102.19			
Compound Name	Assay Name	Assay Format	Assay Target	Result Type	EC50 (uM)	Hill	Curve Bottom	Curve Top	Max Response	Result Graph
---------------	------------	--------------	--------------	-------------	-----------	------	---------------	-----------	--------------	--------------
Neuromedin B	Arrestin	Agonist	NMBR	EC50	0.0019177	1.3	-3.5	97.5	100.48	Neuromedin-B NMBR
Neuromedin U-25	Arrestin	Agonist	NMU1R	EC50	0.0028749	1.3	-1.7	100.3	101.27	Neuromedin-U-25 NMU1R
Neuropeptide W23	Arrestin	Agonist	NPBWR1	EC50	0.0001835	1.77	1.1	100.9	100.17	Neuropeptide-W23 NPBWR1
Neuropeptide W23	Arrestin	Agonist	NPBWR2	EC50	0.00095104	1.84	-1.4	102.2	101.13	Neuropeptide-W23 NPBWR2
RFRP-3	Arrestin	Agonist	NPFFR1	EC50	0.059757	0.93	-10	102.2	102.19	RFRP-3 NPFFR1
Neuropeptide S	Arrestin	Agonist	NPSR1B	EC50	0.021951	0.82	-8.7	101.8	100.76	Neuropeptide-S NPSR1B
Compound Name	Assay Name	Assay Target	Result Type	EC50 (nM)	Hill	Curve Bottom	Curve Top	Max Response		
---------------	------------	--------------	-------------	-----------	------	--------------	----------	-------------		
Peptide YY	Arrestin	NPY1R	EC50	0.0028894	0.82	-7.7	99.1	100.41		
Peptide YY	Arrestin	NPY2R	EC50	0.0021196	1.96	-0.5	100.2	100.79		
[Lys 8,9] Neurtensin	Arrestin	NTSR1	EC50	0.000085067	1.59	2.3	99.9	102.15		
DADLE	Arrestin	OPRD1	EC50	0.0016588	1.28	-4	100.2	101.54		
Dynorphin A	Arrestin	OPRK1	EC50	0.049033	1.16	1.9	103.6	100.9		
Orphanin FQ	Arrestin	OPRL1	EC50	0.012725	1.21	-4.9	100.8	101.49		
Compound Name	Assay Name	Assay Format	Assay Target	Result Type	EC50 (uM)	Hill	Curve Bottom	Curve Top	Max Response	Result Graph
---------------	------------	--------------	--------------	-------------	-----------	-------	--------------	-----------	--------------	--------------
[Met] Enkephalin	Arrestin Agonist	OPRM1	EC50	0.6347	0.87	-4.7	101.3	106.46		
5-OxoETE	Arrestin Agonist	OXER1	EC50	1.8185	1.01	-0.7	100	100		
Oxytocin	Arrestin Agonist	OXTR	EC50	0.005696	1.22	1.3	107.2	101.81		
2-methylthio-ADP	Arrestin Agonist	P2RY1	EC50	0.016643	0.82	2.6	100.3	100.21		
ATP	Arrestin Agonist	P2RY11	EC50	394.93	5.17	-0.1	100	100		
2-methylthio-ADP	Arrestin Agonist	P2RY12	EC50	0.00094391	1	-6	98.3	102.49		
Compound Name	Assay Name	Assay Target	Result Type	EC50 (uM)	Hill	Curve Bottom	Curve Top	Max Response	Result Graph	
---------------	------------	--------------	-------------	-----------	------	--------------	-----------	--------------	--------------	
UTP Arrestin	Agonist	P2RY2	EC50	0.5924	1.66	-5.6	98	103.1		
UTP Arrestin	Agonist	P2RY4	EC50	0.39628	1.06	-1.2	106.3	101.3		
UTP Arrestin	Agonist	P2RY6	EC50	0.09423	1.12	1.1	103	103.32		
Pancreatic Polypeptide	Arrestin	Agonist	PPYR1	EC50	0.0016037	1.13	-3.6	98.3	104.4	
PrRP-31	Arrestin	Agonist	PRLHR	EC50	0.0026408	0.82	-10	100	104.4	
EG VEGF	Arrestin	Agonist	PROKR1	EC50	0.039994	0.9	-1.3	120.1	110.86	
Compound Name	Assay Name	Assay Format	Assay Target	Result Type	EC50 (uM)	Hill	Curve Bottom	Curve Top	Max Response	Result Graph
---------------	------------	--------------	--------------	-------------	-----------	------	--------------	----------	--------------	-------------
EG VEGF	Arrestin	Anti-agonist	PROKR2	EC50	0.012877	-0.9	102.4	101.12	98.74	EG VEGF PROKR2
PAF	Arrestin	Anti-agonist	PTAFR	EC50	0.0065525	1.87	97.9	101.24	99.32	PAF PTAFR
Prostaglandin E2	Arrestin	Anti-agonist	PTGER2	EC50	1.4375	0.9	1.9	100	106.77	Prostaglandin E2 PTGER2
Prostaglandin E2	Arrestin	Anti-agonist	PTGER3	EC50	0.009949	1.19	-1.8	99.5	101.36	Prostaglandin E2 PTGER3
Prostaglandin E2	Arrestin	Anti-agonist	PTGER4	EC50	0.001753	1.25	-8.4	99.3	101.82	Prostaglandin E2 PTGER4
Cloprostenol	Arrestin	Anti-agonist	PTGFR	EC50	0.009351	1.15	-2.9	95.6	107.94	Cloprostenol PTGFR
Compound Name	Assay Name	Assay Format	Assay Target	Result Type	EC50 (nM)	Hill	Curve Bottom	Curve Top	Max Response	Result Graph
---------------	------------	--------------	--------------	-------------	-----------	------	--------------	-----------	--------------	--------------
Beraprost	Arrestin	Agonist	PTGIR	EC50	0.7705	0.81	-2.4	104.8	103.14	![Beraprost Graph](image)
PTH(1-34)	Arrestin	Agonist	PTHR1	EC50	0.001234	1.64	0.1	96.9	102.22	![PTH(1-34) Graph](image)
TIP-39	Arrestin	Agonist	PTHR2	EC50	0.0007699	1.4	-1.8	95.7	101.06	![TIP-39 Graph](image)
Relaxin-3	Arrestin	Agonist	RXFP3	EC50	0.023973	1.07	-4.7	103.7	109.71	![Relaxin-3 Graph](image)
Secretin	Arrestin	Agonist	SCTR	EC50	0.001206	1.85	-0.5	99	103	![Secretin Graph](image)
Somatostatin 28	Arrestin	Agonist	SSTR1	EC50	0.0061574	0.71	-7.8	111	104.21	![Somatostatin Graph](image)
Compound Name	Assay Name	Format	Assay Target	Result Type	EC50 (µM)	Hill	Curve Bottom	Curve Top	Max Response	
---------------	------------	--------	--------------	--------------	-----------	------	--------------	-----------	--------------	
I-BOP	Arrestin	Agonist	TBXA2R	EC50	0.05836	0.82	-5.5	109.4	108.03	
TRH	Arrestin	Agonist	TRHR	EC50	0.0015109	0.89	-2.7	105.2	102.87	
TSH	Arrestin	Agonist	TSHR(L)	EC50	0.023069	0.98	0	105.6	104.84	
Urotensin II	Arrestin	Agonist	UTR2	EC50	0.0015978	1.32	-4.7	100.7	101.95	
VIP	Arrestin	Agonist	VIPR1	EC50	0.0010821	1.98	5.2	100.5	102.25	
VIP	Arrestin	Agonist	VIPR2	EC50	0.0014456	2.09	0.6	100	102.28	