A computational workflow for predicting cancer neo-antigens

Sandeep Kasaragod¹, Chinmaya Narayana Kotimoole¹, Sumrati Gurtoo¹, Thottethodi Subrahmanya Keshava Prasad¹, Harsha Gowda¹,², * & Prashant Kumar Modi¹, *

¹Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India; ²Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India; *Corresponding authors - Harsha Gowda & Prashant Kumar Modi

Author contacts:
Sandeep Kasaragod - E-mail: sandeepk@yenepoya.edu.in
Chinmaya Narayana Kotimoole - E-mail: chinmaya_k@yenepoya.edu.in
Sumrati Gurtoo - E-mail: sumrati@yenepoya.edu.in
Thottethodi Subrahmanya Keshava Prasad - E-mail: keshav@yenepoya.edu.in
Harsha Gowda - E-mail: harshahc@gmail.com
Prashant Kumar Modi - E-mail: prashantmodi@yenepoya.edu.in
Abstract:
Neo-antigens presented on cell surface play a pivotal role in the success of immunotherapies. Peptides derived from mutant proteins are thought to be the primary source of neo-antigens presented on the surface of cancer cells. Mutation data from cancer genome sequencing is often used to predict cancer neo-antigens. However, this strategy is associated with significant false positives as many coding mutations may not be expressed at the protein level. Hence, we describe a computational workflow to integrate genomic and proteomic data to predict potential neo-antigens.

Keywords: Neoantigens, proteogenomics, cancer proteogenomics, multi-omics.

Background:
Cancer is the second leading cause of morbidity and mortality worldwide. As per a survey conducted by Cancer Research UK in 2018, there are 17 million new cases worldwide, and cancer-related death has risen to 9.6 million [1]. Cancer is heterogeneous. As cancer cells proliferate, they create tumors with genetically heterogeneous cells making it challenging to treat [2], [3]. Chemotherapy and targeted therapies are effective only in select cancer types. The advent of immunotherapy has revolutionized cancer treatment in the last decade [4]. For example, checkpoint blockade-based treatments have significantly improved cancer survival [5], [6]. Other immunotherapy treatments such as adoptive cell transfer therapy and small molecule inhibitors are widely used to treat various cancer types [7], [8]. The success of immunotherapy strategies is dependent on presentation of neo-antigens on cancer cell surface. These neo-antigens are presented by MHC complex on the cell surface, which are recognized by T cells [9]. Cancer genome sequencing has revealed thousands of mutations associated with various cancers [10], [11], [12]. Mutation data from cancer genome sequencing is often used to predict cancer neo-antigens. However, this approach can result in false positives as many mutations may not be expressed at the protein level [13], [14]. We previously developed a computational workflow to integrate genomic and proteomic data to identify coding variations [15]. Therefore, we describe a workflow to predict cancer neo-antigens.

Methods:
Genomics and proteomics data analysis:
Genomics datasets [18], [19], [20], [21] were analyzed using the CusVarDB tool. A custom protein database was developed by incorporating coding mutations that was used to carry out proteomics searches. Proteomics searches were carried out using Proteome Discoverer 2.3 (Thermo Fisher Scientific, Bremen, and Germany). The cancer type-specific raw files were searched against the corresponding customized variant protein database using Sequest-HT search engine [22]. The search parameters were set as reported in the original studies [23], [24], [25]. False discovery rate (FDR) was set to 1% at PSM, peptide, and protein levels. (Figure 1-a) describes the proteogenomics workflow used in our study.

Workflow development:
The workflow is created using snakemake version 6.12.3 [16]. All the supporting scripts for the workflow are written in Python 3.9. This snakemake workflow requires variant annotation results from ANNOVAR [17] and proteomics search results. Proteomics data is searched against a custom database that incorporates coding mutations identified in genomics data. Peptides that do not have sequence variations are filtered by matching sequences to reference protein sequence database. Variant peptides are assigned unique accessions and are provided as a tab-delimited or comma-separated file that can be queried using SQL.

Prediction of neoantigens:
Neoantigen prediction was performed using offline version of netMHCpan 4.1 [26]. We kept a window of ± 15 amino acid sequence from the variant amino acid. It created an overall sequence length of 30 amino acids. These sequences were stored in FASTA format to perform predictions. HLA allele information for corresponding cell lines was taken from the literature [27], [28], and Expasy (https://web.expasy.org/cellosaurus/).

Code availability:
Workflow is available at Github (https://github.com/sandeepkasaragod/Proteogenomics_workflow)

Table 1: List of proteomics and genomics datasets used in the present study.

Sl. No	Cell lines	Cancer type	Genomics	Proteomics
1	BT20	TNBC	SRR925751	PXD008222
2	BT474	TNBC	SRR925752	PXD008222
3	BT549	TNBC	SRR925754	PXD008222
4	HCC1143	TNBC	SRR925765	PXD008222
5	HCC1806	TNBC	SRR925771	PXD008222
6	HCC1937	TNBC	SRR925772	PXD008222
7	HCC38	TNBC	SRR925778	PXD008222
8	HCC70	TNBC	SRR925780	PXD005295
9	MDAMB157	TNBC	SRR925788	PXD008222
10	MDAMB231	TNBC	SRR925790	PXD008222
11	MDAMB468	TNBC	SRR925794	PXD008222
12	SKBR3	TNBC	SRR925800	PXD008222
13	SUM229	TNBC	SRR925807	PXD005295
14	T47D	TNBC	SRR925811	PXD005390
15	COLO205	Colon	SRR7366613	PXD009946
16	HCT-116	Colon	SRR7366622	PXD009946
17	HCT-15	Colon	SRR7366619	PXD009946
18	HT29	Colon	SRR1232556	PXD009946
19	KM-12	Colon	SRR7366594	PXD009946
20	SW-620	Colon	SRR7366632	PXD009946
21	OVCAR-3	Ovarian	SRR7366635	PXD009946
22	OVCAR-4	Ovarian	SRR8657373	PXD009946
23	OVCAR-5	Ovarian	SRR7366818	PXD009946
24	OVCAR-8	Ovarian	SRR7366617	PXD009946
25	SK-OV-3	Ovarian	SRR8657398	PXD009946
Results and Discussion:
Our study was carried out using datasets from twenty-five cancer cell lines. Fourteen datasets were from TNBC, five from ovarian cancer, and six from colon cancer. The exome datasets were subjected to variant analysis. We identified 125,687 unique non-synonymous variants from 25 datasets. Non-synonymous variants were incorporated into protein sequences from RefSeq database to create a custom variant protein database to perform proteomics data analysis. Proteomics searches identified 231,886 unique peptides from 25 datasets. Overall, we identified 4,673 variant peptides corresponding to 1,249 genes. We also identified 1,297 variants that correspond to 295 genes reported in COSMIC and ClinVar. These include well-known cancer-related genes such as TP53, KRAS, EGFR, AARS, ACTN4, SAMHD1, and many other genes. Enrichment analysis showed genes involved in important functions including cell division, cellular metabolic process, cellular localization, and other events.

Conclusions:
Identification of cancer neoantigens is important to develop effective immunotherapy strategies. Predicting cancer neoantigens using genomic data alone can result in several false positives. In this study, we present an integrated approach combining genomic and proteomic data to predict cancer neoantigens. This computational workflow can be used on any dataset where both genomic and proteomic data is available.

Conflict of interest:
None declared

Acknowledgment:
SK was a recipient of the Indian Council of Medical Research (ICMR) Senior Research Fellow (SRF) application number
SG is a recipient of the Indian Council of Medical Research (ICMR) Senior Research Fellow (SRF).

References:
[1] Bray F et al. CA Cancer J Clin. 2018 68:394. [PMID: 30207593]
[2] Bedard PL et al. Nature. 2013 501:355. [PMID: 24048068]
[3] Pucci C et al. Ecmancermedicalsce. 2019 13:961. [PMID: 31537986]
[4] Han X-J et al. Front Cell Dev Biol. 2020 8:728. [PMID: 32850843]
[5] Sharma P & Allison JP. Science 2015 348:56. [PMID: 25838373]
[6] Brahmer JR et al. N Engl J Med. 2012 366:2455. [PMID: 22658128]
[7] Efremova M et al. Front Immunol. 2017 8:1679. [PMID: 29234329]
[8] Wu W et al. Oncol Lett. 2020 20:123 [PMID: 32934692]
[9] Roudko V et al. Front Immunol. 2020 11:27 [PMID: 32117226]
[10] ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium Nature. 2020 578:82. [PMID: 32025007]
[11] Alexandrov LB et al. Nature. 2020 578:94. [PMID: 32025018]
[12] Yuan Y et al. Nat Genet. 2020 52:342. [PMID: 32024997]
[13] Geiger T et al. PLoS Genet. 2010 6:e1001090. [PMID: 20824076]
[14] Zhang B et al. Nature. 2014 513:382. [PMID: 25043054]
[15] Kasaragod S et al. F1000Res. 2020 9:344. [PMID: 33274046]
[16] Molder F et al. F1000Res. 2021 10:33 [PMID: 34035898]
[17] Wang K et al. Nucleic Acids Res. 2010 38:e164. [PMID: 20601685]
[18] Abaan OD et al. Cancer Res. 2013 73:4372. [PMID: 23856246]
[19] Daemen A et al. Genome Biol. 2013 14:R110. [PMID: 24176112]
[20] Barretina J et al. Nature. 2012 483:603. [PMID: 22460905]
[21] Ghandi M et al. Nature. 2019 569:503. [PMID: 31068700]
[22] Eng JK et al. J Proteome Res. 2008 7:4598. [PMID: 18774840]
[23] Lawrence RT et al. Cell Rep. 2015 11:990. [PMID: 28843283]
[24] Yen TY et al. J Proteome Res. 2017 16:1391. [PMID: 28287265]
[25] Gholami AM et al. Cell Rep. 2013 4:609. [PMID: 23933261]
[26] Reynisson B et al. Nucleic Acids Res. 2020 48:W449. [PMID: 32406916]
[27] Adams S et al. J Transl Med. 2005 3:11 [PMID: 15748285]
[28] Robinson J et al. Nucleic Acids Res. 2020 48:D948. [PMID: 31665055]
[29] Tate JG et al. Nucleic Acids Res. 2019 47:D941. [PMID: 30371878]
[30] Landrum MJ et al. Nucleic Acids Res. 2018 46:D1062. [PMID: 29165669]
