Topological complexity of generic hyperplane complements

Sergey Yuzvinsky

Abstract. We prove that the topological complexity of (a motion planning algorithm on) the complement of generic complex essential hyperplane arrangement of \(n \) hyperplanes in an \(r \)-dimensional linear space is \(\min\{n + 1, 2r\} \).

1. Introduction

In this paper we continue the theme started in [3] - studying the topological (motion planning) complexity \(\text{TC}(M) \) of the complement \(M \) of a complex hyperplane arrangement. The number \(\text{TC}(X) \) was defined for any path-connected topological space \(X \) by M. Farber in [1, 2]. This number is of fundamental importance for the motion planning problem: \(\text{TC}(X) \) determines character of instabilities for all motion planning algorithms in \(X \).

The main result of this paper can be stated as follows:

Theorem 1.1. Let \(M \) be the complement of a complex central essential arrangement of \(n \) hyperplanes in the linear space \(V \) of dimension \(r > 0 \). Then \(\text{TC}(M) = \min\{n + 1, 2r\} \).

2. The motion planning problem

In this section we recall the definitions and results from [1, 2] that we will use later in this paper.

Let \(X \) be a connected topological space \(X \) that is homotopy equivalent to a CW complex. Let \(PX \) be the space of all continuous paths \(\gamma : [0,1] \to X \), equipped with the compact-open topology, and let \(\pi : PX \to X \times X \) be the map assigning the end points to a path: \(\pi(\gamma) = (\gamma(0), \gamma(1)) \). The map \(\pi \) is a fibration whose fiber is the based loop space \(\Omega X \). The topological complexity of \(X \), denoted by \(\text{TC}(X) \), is the smallest number \(k \) such that \(X \times X \) can be covered by open sets \(U_1, \ldots, U_k \), so that for every \(i = 1, \ldots, k \) there exists a continuous section \(s_i : U_i \to PX, \pi \circ s_i = 1 \).

According to [2], a motion planner in \(X \) is defined by finitely many subsets \(F_1, \ldots, F_k \subset X \times X \) and continuous maps \(s_i : F_i \to PX \), where \(i = 1, \ldots, k \), such that:

(a) the sets \(F_1, \ldots, F_k \) are pairwise disjoint (i.e., \(F_i \cap F_j = \emptyset, i \neq j \)), and cover \(X \times X \);

1991 *Mathematics Subject Classification.* Primary 52C35, 55R80; Secondary 14H10, 98C83.

Key words and phrases. Topological complexity, motion planning algorithm, Schwarz genus, hyperplane arrangements.
graduated ring with the multiplication admits a motion planner with where

\[H \]

\[X \]

\[\equiv \]

\[\leq \]

\[\geq \]
Now we state Hattori's theorem [4], Theorem 5.21. Denote by T^m the (compact) torus of dimension m and for every $I \subset \mathbb{M}$ put

$$T^m_I = \{(z_1, \ldots, z_m) \in T^m | z_j = 1, \text{ for } j \notin I\}.$$

Theorem 3.1. Let $n > r > 1$. For any general position arrangement of $n - 1$ affine hyperplanes in $(r - 1)$-dimensional space its complement has the homotopy type of M_0 where M_0 is the skeleton of dimension $r - 1$ of the canonical CW-complex of T^{n-1}, i.e.,

$$M_0 = \bigcup_{|I|=r-1} T^{n-1}_I.$$

Corollary 3.2. For any generic arrangement of n linear hyperplanes in r-dimensional space its complement M has the homotopy type of M_0 where

$$M_0 = S^1 \times \bigcup_{|I|=r-1} T^{n-1}_I.$$

Proof. For $n > r$ it follows immediately from Hattori’s theorem. For $n = r$ (in particular for $r = 1$) the arrangement consists of all coordinate hyperplanes whence $M \approx (\mathbb{C}^*)^r \approx T^r = M_0$. \hfill \Box

The property (i) of $\mathbf{TC}(X)$ allows us to focus in the rest of the paper on calculating $\mathbf{TC}(M_0)$. We will always denote by n the number of hyperplanes in the generic central arrangement A we will consider and by r the dimension of the ambivalent space V.

4. Low bound

In this section we use the definition of M_0 to describe $H^*(M_0; \mathbb{C})$ and to exhibit a low bound on $\mathbf{TC}(M_0)$ using the property (iv).

Denote by $E(n) = \bigoplus_{i=0}^n E(n)_i$ the exterior algebra over \mathbb{C} with n generators of degree one. Also for every $k, 0 \leq k \leq n$, put $E(n)^k = E(n)/\bigoplus_{i>k} E(n)_i$ (a truncated exterior algebra).

From the description of M_0 in Corollary 3.2 we have

$$H^*(M_0, \mathbb{C}) = E(1) \otimes E(n-1)^{r-1}$$

where the tensor product is taken in the category of graded algebras. In particular we have the following lemma.

Denote by e_0 a generator of $H^*(S^1) = E(1)$ and by e_1, \ldots, e_{n-1} the generators of $H^*(M_0) = E(n-1)^{r-1}$. Also for every $I = \{i_1 < i_2 < \cdots < i_k\} \subset n-1$ put $e_I = e_{i_1} \cdots e_{i_k}$.

Lemma 4.1. The set $\{e_0 e_I | I \subset n-1, |I| = r-1\}$ is a basis of the linear space $H^r(M_0, \mathbb{C})$.

Now we define the elements in the ideal of zero divisors of $H^*(M_0) \otimes H^*(M_0)$ corresponding to the generators. Namely put $\overline{e_i} = 1 \otimes e_i - e_i \otimes 1$ for every $i = 0, 1, \ldots, n-1$.

Proposition 4.2. Let $k = \min\{n-1, 2r-2\}$ and $J \subset n-1$ with $|J| = k$. Then $\pi = \overline{e_0} \prod_{i \in J} \overline{e_i} \neq 0$.

Proof. The linear space $H^*(M_0) \otimes H^*(M_0)$ is double graded by the subspaces $H^s \otimes H^t$, $0 \leq s, t \leq r$. It suffices to prove that $(r, k + 1 - r)$-component $\pi_{r,k+1-r}$ of π does not vanish. Clearly this component is

$$\pi_{r,k+1-r} = \sum_{I \subseteq J, |I|=r-1} \pm e_0 e_I \otimes e_{J \setminus I}.$$

Since $|J\setminus I| = k+1-r \leq r-1$ and $H^*(\overline{M_0}) = E(n-1)^{r-1} \subset H^*(M_0)$ all monomials $e_{J \setminus I}$ belong to a basis of $H^{k+1-r}(M_0)$. The monomials $e_0 e_I$ belong to a basis of $H^{r-1}(M_0)$ by Lemma [L.1]. Hence all the summands of $\pi_{r,k+1-r}$ belong to a basis of $H^*(M_0) \otimes H^*(M_0)$ whence $\pi_{r,k-r} \neq 0$. This completes the proof. □

Now the property (iv) of $\text{TC}(X)$ immediately implies the following.

Corollary 4.3.

$$\text{TC}(M) = \text{TC}(M_0) \geq \min\{n + 1, 2r\}.$$

5. Motion planning

In this section we prove that the upper bound for $\text{TC}(M_0)$ coincides with the low bound from the previous section.

First since $M_0 \cong \overline{M_0} \times S^1$ we have by property (iii)

$$\text{TC}(M_0) \leq \text{TC}(\overline{M_0}) + 1.$$

Now suppose $n + 1 \geq 2r$. Since $\dim \overline{M_0} = r - 1$ we have using property (ii) that $\text{TC}(\overline{M_0}) \leq 2r - 1$ whence

$$\text{TC}(M_0) \leq 2r = \min\{n + 1, 2r\}.$$

Thus we have to consider only the case $n + 1 < 2r$. To find the upper bound in this case we construct an explicit motion planning for $\overline{M_0}$ with n rules.

Theorem 5.1. For arbitrary $r \leq n$ there exists a motion planning for $\overline{M_0}$ with n rules.

Proof. First for every $J \subset \overline{n-1}$ we define the close subset F'_j of $T^{n-1} \times T^{n-1}$ via

$$F'_j = \{ (u, u') | u_j = u'_j \text{ if and only if } j \in J \}$$

and put $F_J = F'_j \cap (M_0 \times \overline{M_0})$. Then we put $F_i = \bigcup_{|I|=i} F_j$ for every $i = 0, 1, \ldots, n - 1$. The sets F_i are pairwise disjoint and cover $\overline{M_0} \times \overline{M_0}$ whence we can take them as the local domains of the motion planning we are constructing. Since the sets F_j are also pairwise disjoint it suffices now to construct local rules on them, i.e., (continuous) sections $s_J : F_J \rightarrow \overline{M_0}$.

For that define an auxiliary function $\tau : S^1 \rightarrow [0, 1]$ by treating S^1 (in the rest of the proof) as the set of all complex numbers of norm 1 and putting

$$\tau(z) = \begin{cases} \frac{1}{2}(1 - \frac{|z-1|}{\sqrt{2}}) & \text{if } |z-1| \leq \sqrt{2}, \\ 0 & \text{otherwise}. \end{cases}$$

Notice that $\tau(1) = \frac{1}{2}$. Also for two points $z \neq z' \in S^1$, $z = \exp[\sqrt{-1}\phi]$, $z' = \exp[\sqrt{-1}\phi']$, where $0 \leq \phi, \phi' < 2\pi$, define the path $\zeta_{z, z'}$ on S^1 via $\zeta_{z, z'}(t) = \exp[\sqrt{-1}(t\phi + (1-t)\phi')]$ (i.e., the moving with a constant speed from z to z' along the natural orientation of C).
Now for \((u, u') = ((u_1, \ldots, u_{n-1}), (u'_1, \ldots, u'_{n-1})) \in T^{n-1} \times T^{n-1}\) we define \(s_J(t) = (s_{J,j}(t))_{j \in \mathbb{N}}\) via \(s_{J,j}(t) = u_j = u'_j\) for every \(t \in [0, 1]\) if \(j \in J\). If \(j \notin J\) we put
\[
s_{J,j}(t) = \begin{cases}
 u_j & \text{if } 0 \leq t < \tau(u_j), \\
 \zeta_{u_j,u'_j}(\frac{t-\tau(u_j)}{1-\tau(u_j)-\tau(u'_j)}) & \text{if } \tau(u_j) \leq t \leq 1 - \tau(u'_j), \\
 u'_j & \text{if } 1 - \tau(u'_j) < t \leq 1.
\end{cases}
\]

It is clear from the definition that \(s_J\) is continuous and \(s_J(0) = u, s_J(1) = u'\). Also since \(\tau\) is continuous and \(\zeta_{z,z'}\) depends continuously on \((z, z')\) on \(S^1 \times S^1\) with the diagonal deleted we see that \(s_J\) is continuously depending on \((u, u')\) on \(F_J\). It is left to check only that \(s_J(t) \in \overline{M}_0\) for every \(t \in [0, 1]\). In other words we need to check that for every \(t\) we have \(s_{J,j}(t) = 1\) for at least \(n-r\) values of \(j\).

Suppose that \(u \in T^{n-1}_I\) and \(u' \in T^{n-1}_{I'}\), \(|I| = |I'| = r - 1\). Consider the complements \(\overline{I} = n-1 \setminus I\) and \(\overline{I'} = n-1 \setminus I'\). Put \(I_0 = \overline{I} \cap \overline{I'}\) and fix a bijection \(\phi : \overline{I} \setminus I_0 \to \overline{I'} \setminus I_0\) putting \(j' = \phi(j)\) for every \(j \in \overline{I} \setminus I_0\). Then if \(j \in I_0\) we have \(j \in J\) whence \(s_{J,j}(t) = u_j = u'_j = 1\) for every \(t\). Suppose \(j \in \overline{I} \setminus I_0\). Then \(\tau(u_j) = \tau(1) = \frac{1}{2}\) whence \(s_{J,j} = u_j = 1\) for \(t \leq \frac{1}{2}\). On the other hand, \(\tau(u'_j) = \tau(1) = \frac{1}{2}\) whence \(s_{J,j}(t) = 1\) for \(t \geq \frac{1}{2}\). Collecting this data we see that indeed for arbitrary \(t\) there are \(n-r\) values of \(j\) such that \(s_{J,j}(t) = 1\) which completes the construction of the motion planning whence also the proof.

\textbf{Corollary 5.2.} \(\text{TC}(\overline{M}_0) \leq \min\{n, 2r-1\}\) whence \(\text{TC}(M) = \text{TC}(M_0) \leq \min\{n+1, 2r\}\) and Theorem [11] follows.

In all cases where the topological complexity has been computed for hyperplane arrangement complements it coincides with the low bound given by the zero-divisors-cup-length (see property iv in section 2). This justifies the following conjecture.

\textbf{Conjecture 5.3.} For every complex central hyperplane arrangement with the complement \(M\) the topological complexity \(\text{TC}(M)\) is greater by 1 than the zero-divisors-cup-length of \(H^*(M, \mathbb{C})\).

\textbf{References}

[1] M. Farber, \textit{Topological complexity of motion planning}, Discrete Comput. Geom. \textbf{29} (2003), 211-221.
[2] M. Farber, \textit{Instabilities of robot motion}, Topology Appl. \textbf{140} (2004), 245-266.
[3] M. Farber, S. Yuzvinsky, \textit{Topological Robotics: Subspace Arrangements and Collision Free Motion Planning}, Transl. of AMS \textbf{212}(2004), 145-156.
[4] P. Orlik and H. Terao, \textit{Arrangements of hyperplanes}, Springer-Verlag, 1992.
[5] A. Schwarz, \textit{The genus of a fiber space}, A.M.S. Transl. \textbf{55}(1966), 49 - 140.

University of Oregon
E-mail address: yuz@uoregon.edu