Strong effects of uniaxial pressure and short-range correlations in Cr$_2$Ge$_2$Te$_6$

S. Spachmann1,a, A. Elghandour1, S. Selter2, B. Büchner2,3, S. Aswartham2,b, R. Klingeler1,c

1Kirchhoff Institute for Physics, Heidelberg University, INF 227, 69120 Heidelberg, Germany
2Leibniz Institute for Solid State and Materials Research (IFW), Helmholtzstr. 20, 01069 Dresden, Germany and
3Institute of Solid State and Materials Physics and Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, 01062 Dresden, Germany

(Dated: May 23, 2022)

Cr$_2$Ge$_2$Te$_6$ is a quasi-two-dimensional semiconducting van der Waals ferromagnet down to the bilayer with great potential for technological applications. Engineering the critical temperature to achieve room-temperature applications is one of the critical next steps on this path. Here, we report high-resolution capacitance dilatometry studies on Cr$_2$Ge$_2$Te$_6$ single crystals which directly prove significant magnetoelastic coupling and provide quantitative values of the large uniaxial pressure effects on long-range magnetic order ($\partial T_C/\partial p_a = 24.7$ K/GPa and $\partial T_C/\partial p_{ab} = -15.6$ K/GPa) derived from thermodynamic relations. Moderate in-plane strain is thus sufficient to strongly enhance ferromagnetism in Cr$_2$Ge$_2$Te$_6$ up to 200 K. Moreover, unambiguous signs of short-range magnetic order up to 200 K are found.

Strain is a versatile parameter to engineer electronic, optical, thermal, or chemical properties of materials in semiconductor technology [1–5]. When technologically relevant phenomena in unstrained single crystals or epitaxial films appear only at low temperatures, it can be used particularly to tune the relevant phenomena toward room temperature [6–8]. The quasi-two-dimensional (quasi-2D) van der Waals (vdW) semiconducting ferromagnet Cr$_2$Ge$_2$Te$_6$ is such an example of great potential for technological applications as it shows ferromagnetism in bilayers at around 30 K [9]. The precise determination of uniaxial strain effects as demonstrated by gigantic uniaxial pressure dependencies reported here is hence mandatory to engineer T_C to the room temperature as a next step towards applications.

In particular due to groundbreaking recent discoveries of long-range magnetic order in bilayers of Cr$_2$Ge$_2$Te$_6$ [9] and down to the monolayer in CrI$_3$ [10], quasi-2D layered vdW materials are at the forefront of research. The layered structure with weak bonding between individual layers makes these materials very attractive for both fundamental research and application-oriented communities. Fundamental research on magnetic vdW materials is focused on the origin and control of their magnetic anisotropy and spin-coupling mechanisms [11, 12], whereas research on applications ranges from integration into vdW heterostructures [13, 14], vdW-materials-based spintronic devices [15–17], and field effect transistors, e.g., using layered NiPS$_3$ [18], to thermoelectric devices [19].

In bulk Cr$_2$Ge$_2$Te$_6$, ferromagnetism evolves at $T_C \approx 65$ K [20, 21]. It crystallizes in the trigonal space group $R3$ (No. 148) and belongs to the class of layered vdW transition metal trichalcogenides (TMTCs). The edge-sharing transition metal chalcogenides form a honeycomb network. These honeycomb layers are stacked along the c axis with a vdW gap between adjacent layers (Fig. S1 of the Supplemental Material). A key feature in the layered magnetic vdW materials is magnetic anisotropy, which enables the persistence of long-range magnetic order down to the bilayer or monolayer limit. It originates from the crystallographic lattice, which is connected to the electronic spins via spin-orbit coupling [12, 21]. Previous studies investigated the control of magnetic anisotropy in Cr$_2$Ge$_2$Te$_6$ by hydrostatic pressure, discussing the possibility of switching the uniaxial anisotropy under pressure from the crystallographic c axis in the unstrained system to an in-plane anisotropy [22, 23]. Moreover, spin correlations in Cr$_2$Ge$_2$Te$_6$ up to 160 K, i.e., about 2.5 times T_C, were inferred from static magnetic susceptibility and X-band electron spin resonance (ESR) measurements [20, 24], and angle-resolved photoemission spectroscopy (ARPES) spectra of Cr$_2$Ge$_2$Te$_6$ at 150 K rather suggest a ferromagnetic than a paramagnetic state [25].

These findings motivated us to investigate Cr$_2$Ge$_2$Te$_6$ by means of high-resolution capacitance dilatometry to study lattice changes under changing temperature or magnetic field at an extremely high resolution [26]. What is more, in conjunction with specific heat measurements it enables the derivation of the uniaxial pressure dependencies of T_C from thermodynamic relations, providing the means to quantify the magnetoelastic coupling in a material. In contrast to hydrostatic pressure, uniaxial pressure dependencies are otherwise hard to access experimentally and have not been reported previously for Cr$_2$Ge$_2$Te$_6$.

Single crystals of Cr$_2$Ge$_2$Te$_6$ have been grown by the self-flux technique and were characterized in detail as reported in Refs. 20 and 21. High-resolution dilatometry measurements were performed by means of two three-terminal high-resolution capacitance dilatometers from Kuechler Innovative Measurement Technology in a home-built setup placed inside a variable-temperature insert in an Oxford magnet system [26–28]. The ca-
Capacitance readout was facilitated by Andeen-Hagerling’s AH 2550A Ultra-Precision 1-kHz capacitance bridge [29].

With the dilatometers, the uniaxial thermal expansion $\Delta L_i(T)/L_i$ and the linear thermal expansion coefficients $\alpha_i = 1/L_i \times \Delta L_i(T)/\Delta T$ both along the c axis and along the in-plane direction, i.e., $\parallel ab$, were studied at temperatures between 2 and 300 K in zero field and in magnetic fields up to 15 T applied along the direction of the measured length changes. In addition, the field-induced length changes $\Delta L_i(B)$ were measured at various fixed temperatures between 2 and 204 K in magnetic fields up to 15 T [30]. The crystals measured in this study were cut to cuboid shapes with lengths of the order of 300 μm along the c axis. In-plane measurements were performed on a crystal with dimensions of 1.3×2.0 mm2 $(l_{ab} = 1.29$ mm) in the ab plane. Zero-field specific heat was determined in a Physical Property Measurement System (PPMS) from Quantum Design.

Thermal expansion measurements evidence strong magnetoelastic coupling in Cr$_2$Ge$_2$Te$_6$ as shown by pronounced kinks in $\Delta L/L$ (Fig. 1) and corresponding peaks in the thermal expansion coefficients at T_C, in zero magnetic field (Fig. 2(a)). The anomalies signal a continuous phase transition with an increase (decrease) in the in-plane (out-of-plane) lattice parameters at T_C upon cooling. As pressure stabilizes the phase with smaller lattice, this implies negative dependence of T_C on pressure applied within the ab plane whereas pressure applied along the c axis will increase T_C. The anomalies in the thermal expansion data in Fig. 2 are very pronounced at T_C, but extend from the lowest measured temperatures up to at least 200 K, which can easily be seen for the c axis: Phononic contributions to the thermal expansion coefficient are expected to monotonically increase with temperature, whereas α_c decreases until about 200 K, where it reaches a plateau. This behavior suggests a large regime of nonphononic precursory length changes above the long-range ferromagnetic ordering temperature. The precursory length changes are associated with negative in-plane thermal expansion up to nearly 95 K whereas α_c is positive in the whole temperature regime under study [31].

Applying an external magnetic field of 15 T yields distinct field-induced effects on the length changes (Fig. 1, green and brown symbols). Note that the 15 T data for each axis in Fig. 1 are shifted vertically to coincide at highest temperatures with the respective 0 T data where magnetostriction is vanishing. The field effect at 15 T becomes distinguishable upon cooling below roughly 210 K. Experimentally determined magnetostriction $\Delta L(B)/L(0)$ unambiguously confirms the magnetic field effect (vertical lines in Fig. 1 showing $(L(15\text{ T}) - L(0))/L(0)$ at various temperatures; see also Fig. S5). In line with this large field effect, the peak in the thermal expansion coefficients shifts to higher temperatures upon application of the magnetic field for both directions, i.e., to 90 K (in-plane) and 103 K (c axis), and broadens substantially (Fig. S3). For $B \parallel c$, the data imply shrinking of the c axis at 30 K $\lesssim T \lesssim 210$ K and only very small magnetostriction outside this temperature regime. In contrast, magnetostriction is positive for $B \parallel ab$ but changes sign at ~ 37 K (see inset of Fig. 1). The magnetostriction coefficient is given by $\lambda_i = 1/L_i \partial L_i/\partial B = -\partial M/\partial p_i$, where M is the magnetization and p_i is the stress applied along i. This ob-

![Figure 1](image1.png)

Figure 1. Thermal expansion at 0 and 15 T with nonmagnetic background estimate. Relative length changes in zero field (black and blue circles) and at $B = 15$ T (green and brown symbols) for $B \parallel ab$ and $B \parallel c$. Left and right ordinates have been shifted and scaled. The red curve shows the estimated phonon background (see the text). Vertical lines indicate the length changes between 0 and 15 T obtained from magnetostriction measurements at selected temperatures. The inset highlights the low-temperature behavior of $\Delta L_{ab}(T)$.

![Figure 2](image2.png)

Figure 2. (a) Thermal expansion coefficients $\alpha_{i,c}$, $i = c, ab$ and (b) specific heat at $B = 0$ T. The red curves show the background fits as explained in the text.
ervation implies a sign change of the uniaxial pressure dependence of the magnetization from $\partial M/\partial p_{ab} > 0$ to $\partial M/\partial p_{ab} < 0$ at low temperatures. The c axis pressure dependence $\partial M/\partial p_c$, on the other hand, is very small at lowest temperatures.

In order to estimate nonphononic contributions to the thermal expansion of Cr$_2$Ge$_2$Te$_6$ an estimate of the phononic contributions is necessary [32]. In general, the phononic contribution to the linear thermal expansion coefficient α_i is related to the specific heat of a phonon mode j, $c_{ph,j}$ (in J mol$^{-1}$ K$^{-1}$), by the compressibility κ (in GPa$^{-1}$) and a Grüneisen parameter $\gamma_{i,j}$ (dimensionless) as

$$\alpha_{i,ph}(T) = \frac{\kappa}{3V_m} \cdot \sum_j \gamma_{i,j} \cdot c_{ph,j}(T) \quad (1)$$

where $V_m = 1.67 \times 10^{-4}$ m3/mol is the molar volume for Cr$_2$Ge$_2$Te$_6$, calculated from the unit cell volume $V_0 = 811.43$ [33] and $M_{mol} = 1014.87$ g/mol with three formula units per unit cell. The specific heat of a phonon mode can be modeled in different ways. Often a Debye approximation (for formula, see Supplemental Material), which assumes a linear dispersion of a phonon branch, is used to model acoustic phonons and low-temperature behavior, whereas an Einstein approximation is applied when optical phonons dominate. We tried different combinations of Debye and Einstein modes. The best fit to the specific heat data (Fig. 2(b)) was achieved by (1) optimizing for a total magnetic entropy in line with a spin-$\frac{1}{2}$ system, $S_{mag} \approx S_{mag,theo} = 2R\ln(4)$ (with 2 moles of Cr atoms per mole of Cr$_2$Ge$_2$Te$_6$ and R being the molar gas constant), as well as (2) assuming that the peak shape of $c_{p,mag}$ should resemble that of the thermal expansion coefficient and (3) assuming that the magnetic entropy should vanish around 200 K as indicated by the plateau in α_c (Fig. 2(a)) as explained above. With these assumptions we obtained the best fit for a combination of only two Debye modes with Debye temperatures $\Theta_{D,1} = 150$ K and $\Theta_{D,2} = 410$ K and a Sommerfeld coefficient $\gamma_{el} = 60$ mJ mol$^{-1}$ K$^{-2}$ (obtained from the low-temperature behavior; see Supplemental Material). The magnetic specific heat (Fig. 3, black squares) results from subtracting the phonon fit from c_p. The related magnetic entropy shows that only 56% of the full magnetic entropy is contained below T_C. Phonon fits to the thermal expansion coefficients (Fig. 2(a)) are obtained according to Eq. (1) by multiplying the phononic specific heat by a constant, the effective Grüneisen parameter $\gamma_{i,eff} = \kappa\gamma_i/(3V_m)$, to fit the high-temperature behavior of α_i. With this approach we assume a constant bulk compressibility, $\kappa(T) =$ const, as well as a constant Grüneisen parameter which is the same for both Debye modes, $\gamma_{i,1} = \gamma_{i,2} = \gamma_i$, $i = c, ab$. This results in $\gamma_{c,eff} = 8.05(10) \times 10^{-8}$ mol/J and $\gamma_{ab,eff} = 4.5(1) \times 10^{-8}$ mol/J. Bulk compressibilities for Cr$_2$Ge$_2$Te$_6$ have not been determined experimentally, but a bulk modulus $B = 1/\kappa = 14$ GPa has been reported from density functional theory (DFT) calculations [34], i.e., $\kappa = 0.071$ GPa$^{-1}$. Applying this result from calculations yields an estimate of the Grüneisen parameters $\gamma_c = 0.56$ and $\gamma_{ab} = 0.32$. The estimated nonmagnetic background in Fig. 1 is obtained by integration of these fits with respect to temperature.

As seen in Figs. 1 and 2, above 205 K the thermal expansion is described very well by the phonon background. Upon cooling below 205 K, in contrast, nonphononic thermal expansion evolves which is anisotropic in nature. We attribute the non-phonon behavior to magnetic degrees of freedom. A comparison of these magnetic contributions to the specific heat and thermal expansion reveals that they scale over the full range from 0 to 200 K except at the Curie temperature (Fig. 3; see also Fig. S4). This scaling implies the presence of only one dominant energy scale [35, 36]. While the c axis
for the \(ab\) plane, especially between 70 and 130 K. The effective magnetic Gr"uneisen parameter for the \(c\) axis is \(\gamma_{c,\text{mag},\text{eff}} = 1.6 \times 10^{-6}\) mol/J and \(\gamma_{ab,\text{mag},\text{eff}}\) varies from \(-6 \times 10^{-7}\) mol/J to \(-1.1 \times 10^{-6}\) mol/J between 120 and 30 K. With \(\kappa = 0.071/\text{GPa}\) as before this yields large magnetic Gr"uneisen factors \(\gamma_{c, \text{mag}} = 11.3\) and \(\gamma_{ab, \text{mag}} = 4.2 - 7.8\). These values are of the same magnitude as other magnetic Gr"uneisen factors, e.g., \(\gamma_{\text{mag}} \approx -18\) for \(\alpha\)-Mn [37]. A part of the deviations around \(T_C\) stems from the fact that the specific heat was measured by a relaxation method and thus averages over a temperature range, whereas the thermal expansion data are measured closer to thermal equilibrium, with a warming rate of 0.3 K/min. Effects of uniaxial pressure and strain, as well as domain formation, presumably contribute further to the deviations. Furthermore, the bulk modulus may change around \(T_C\) and lead to additional differences between thermal expansion and specific heat.

On top of the analysis of Gr"uneisen scaling, the uniaxial pressure dependence of the ordering temperature can be determined by the method suggested by Souza et al. for continuous phase transitions exhibiting critical behavior [38]. This method has been applied to a number of materials, and was verified in comparison to experimental pressure dependencies by studies on LaMnO\(_4\) and CaMnO\(_4\) [39, 40], as well as Na\(_x\)CoO\(_2\) [41–43]. The pressure dependence is obtained by subtracting from the specific heat a constant offset as well as a linear term to obtain

\[
c_p^* \equiv c_p - a - bT
\]

and subsequently superimposing \(c_p^*\) with the rescaled thermal expansion coefficients \(\eta_i \alpha_i T\) (in J mol\(^{-1}\) K\(^{-1}\)) in a small temperature regime around \(T_C\) [44]. The uniaxial pressure dependence is then given by

\[
dT_C/dp_i = \left(\frac{dp_i}{dT}\right)^{-1}_C = \frac{\eta_i \alpha_i T}{c_p^*}.
\]

Analyzing our data this way we obtain scaling factors \(\eta_i = 6750(400)\) J mol\(^{-1}\) K\(^{-1}\) and \(\eta_{ab} = -10700(600)\) J mol\(^{-1}\) K\(^{-1}\) (Fig. 4). From \(\partial T_C/\partial p_i = \frac{\eta_i}{\kappa}\) we then obtain \(\partial T_C/\partial p_c = 24.7(1.8)\) K/GPa and \(\partial T_C/\partial p_{ab} = -15.6(1.1)\) K/GPa. Assuming that the hydrostatic pressure dependence can be calculated by superimposing the uniaxial ones in the three main directions yields an estimate of \(dT_C/dp \rightarrow 0 = 2 \cdot \partial T_C/\partial p_c + \partial T_C/\partial p_{ab} = -6.5(8)\) K/GPa.

Our observation of nonphononic lattice changes up to 200 K visible in the thermal expansion (Fig. 2) confirms the presence of short-range magnetic order far above \(T_C\) and provides a macroscopic measurement of high temperature magneto-structural correlations in Cr\(_2\)Ge\(_2\)Te\(_6\). This observation strongly supports the expected quasi-2D nature of magnetism in Cr\(_2\)Ge\(_2\)Te\(_6\) and suggests low-dimensional exchange interactions [45, 46]. While the lattice response has not been resolved before, deviations from purely paramagnetic behavior up to around 150 K were previously observed in the static susceptibility [24], in X-band ESR spectra [20], and in ARPES [25]. Moreover, temperature dependent Raman spectra of Cr\(_2\)Ge\(_2\)Te\(_6\) show a mode around 122 cm\(^{-1}\) broadening strongly upon cooling between 200 and 250 K [47]. Direct investigation of magnetic correlations on the isostructural ferromagnet Cr\(_2\)Si\(_2\)Te\(_6\), which also possesses uniaxial \(c\)-axis magnetic anisotropy, revealed static and dynamic magnetic in-plane correlations at least up to 300 K, almost ten times the long-range ordering temperature \(T_C = 33\) K [46].

Low-dimensional high-temperature correlations are especially of interest from a fundamental perspective. The effects of pressure on the critical temperatures and other physical properties in magnetic vdW compounds, on the other hand, are a field of intense research with an eye on precisely tuning material properties for technological applications. Accordingly, the effects of stress and strain on Cr\(_2\)Ge\(_2\)Te\(_6\) [23, 47, 48] and related materials [49–56] have been intensively studied both experimentally and numerically. Previous experimental studies on Cr\(_2\)Ge\(_2\)Te\(_6\) were restricted to hydrostatic pressure \(p_0\), the effect of which...
on the layered structure is not a priori clear and is supposed to mainly modify the interlayer structure \cite{57}. Hydrostatic pressure is found to decrease T_C, the response being stronger for small applied pressure than for larger pressures. In the ranges from 0 to 0.25 GPa \cite{47} and from 0 to 0.1 GPa \cite{48} a drop in T_C of about -14 K/GPa was observed, compared with about -4 K/GPa for pressures of 1 GPa and above \cite{23}, which is in good agreement with $dT_C/\partial p_{\text{hydro}} = -6.5(8)$ K/GPa derived from our thermal expansion and specific heat data. A more recent study found smaller changes of about -12 K between 0 and 4.5 GPa, i.e., a drop by about 2.7 K/GPa \cite{58}. The changes in T_C under hydrostatic pressure have been ascribed to the interplay of a decrease in Cr–Cr and Cr–Te bond lengths and an increase in Cr–Te–Cr bond angle away from 90° upon increasing p_h, i.e., the complex competition between antiferromagnetic (AFM) direct exchange between Cr ions and superexchange mediated by the Te ions \cite{23, 49, 59}. In this respect, our observation (uniaxial) in-plane pressure yields a drastic decrease in T_C is particularly relevant as it suggests that the observed $dT_C/\partial p_h$ is much more moderate due to the out-of-plane pressure components. This conclusion is supported by recent numerical studies of in-plane and out-of-plane exchange couplings, J_{in} and J_{out}, which show a strong increase in J_{out} upon application of hydrostatic pressure, with an initial effect of about 35%/GPa, whereas J_{in} was found to decrease by about -10/GPa \cite{48}. The data presented here are also consistent with recent density functional theory calculations on Cr$_2$Si$_2$Te$_6$ where a strong enhancement of T_C by in-plane biaxial tensile strain was found \cite{49}.

Our study experimentally evidences and quantifies by thermodynamic relations large uniaxial pressure effects in Cr$_2$Ge$_2$Te$_6$. These large effects underline the feasibility of using the material for potential applications, as tailoring of the transition temperature is made possible by applying moderate in-plane tensile strain. Especially, enhancing T_C with the goal of room-temperature applications is essential for actual devices, e.g., for sensing, data storage, or computing. The practical feasibility of such T_C enhancement in Cr$_2$Ge$_2$Te$_6$ has been shown by Wang et al., who managed to enhance T_C to 208 K by electrochemical intercalation of organic molecules into the van der Waals gap \cite{60}. Adding to this result the large in-plane pressure dependence which we report here, in particular, suggests an exceptional feasibility of using Cr$_2$Ge$_2$Te$_6$ for strain-tailoring ferromagnetism. Although there are quite a number of theoretical studies on the effects of strain and stress on Cr$_2$Ge$_2$Te$_6$ and other magnetic vdW materials as mentioned above, experimental results for the uniaxial pressure dependencies of these materials are very rare. To the best of our knowledge such measurements only exist for CrI$_3$ \cite{61} and α-RuCl$_3$ \cite{62}. CrI$_3$ also exhibits ferromagnetic layers but shows a much smaller uniaxial pressure dependence of only $\partial T_C/\partial p_{\text{ab}} = -0.4(1)$ K/GPa \cite{61}, i.e., of the same sign, but drastically, by more than one order of magnitude, smaller than in Cr$_2$Ge$_2$Te$_6$. In contrast, the Kitaev spin liquid candidate α-RuCl$_3$ exhibits uniaxial pressure dependencies for its different transitions of $\partial T_N/\partial p_a = -3.5$ K/GPa to $\partial T_N/\partial p_c = -14.5$ K/GPa. These values are much larger than those found for CrI$_3$ and yet still about two to four times smaller than what we report here for Cr$_2$Ge$_2$Te$_6$. Note that this drastic difference is not reflected in the initial hydrostatic pressure dependencies of either CrI$_3$ or α-RuCl$_3$ which are reported to be of similar size to that in Cr$_2$Ge$_2$Te$_6$, $dT_C/\partial p = 12$ K/GPa \cite{63} and $dT_N/\partial p \approx -13$ to -24 K/GPa \cite{62}, respectively. In order to further emphasize the size of pressure dependencies found in Cr$_2$Ge$_2$Te$_6$, it is instructive to compare our results also with hydrostatic pressure dependencies of other quasi-2D magnetic materials with a honeycomb lattice, such as VI$_3$ \cite{64, 67}, FePS$_3$ \cite{65}, Na$_3$Ni$_2$SbO$_6$ \cite{28}, and β-Li$_2$IrO$_3$ \cite{66}. These materials exhibit a large range of pressure dependencies differing by two orders of magnitude. Very small hydrostatic pressure dependencies have been reported for the vdW compound VI$_3$ \cite{64, 67}, with $dT_C/\partial p \approx 0$ at small pressures, and for Na$_3$Ni$_2$SbO$_6$, with $dT_N/\partial p = -0.5$ K/GPa \cite{28}. Dilatometric studies of the Kitaev hyperhoneycomb iridate β-Li$_2$IrO$_3$ yield larger values of $dT_N/\partial p = 0.7$ K/GPa \cite{66}. Finally, a hydrostatic pressure dependence of $dT_N/\partial p = 7.7$ K/GPa, is observed in the vdW antiferromagnet FePS$_3$ \cite{65}.

In conclusion, the quasi-2D layered van der Waals compound Cr$_2$Ge$_2$Te$_6$ shows strong magnetoelastic coupling giving rise to large uniaxial pressure dependencies of T_C. These results confirm that moderate in-plane tensile strain is sufficient to strongly enhance the long-range ferromagnetic ordering temperature. Our high-resolution thermal expansion data in addition unambiguously prove short-range magnetic order up to 200 K. The large uniaxial pressure effects and quasi-2D nature of magnetism in Cr$_2$Ge$_2$Te$_6$ present an intriguing playground for Cr$_2$Ge$_2$Te$_6$-based technological applications, bringing into reach room-temperature ferromagnetism in 2D materials.

We acknowledge financial support by BMBF via the project SpinFun (13XP5088) and by Deutsche Forschungsgemeinschaft (DFG) under Germany’s Excellence Strategy EXC2181/1-390900948 (the Heidelberg STRUCTURES Excellence Cluster) and through Projects No. KL 1824/13-1 (R.K.) and No. AS 523/4-1 (S.A.). B.B. acknowledges the Würzburg-Dresden Cluster of Excellence on Complexity and Topology in Quantum Matter – ct.qmat (EXC 2147, Project No. 390858490).
[1] S. Chen, A. Sood, E. Pop, K. E. Goodson, and D. Donadio, Strongly tunable anisotropic thermal transport in MoS2 by strain and lithium intercalation: first-principles calculations, 2D Materials 6, 025033 (2019).

[2] Z. Peng, X. Chen, Y. Fan, D. J. Srolovitz, and D. Lei, Strain engineering of 2D semiconductors and graphene: from strain fields to band-structure tuning and photonic applications, Light: Science & Applications 9, 190 (2020).

[3] Y. Chen, Y. Lei, Y. Li, Y. Ju, J. Cai, M.-H. Chiu, R. Rao, Y. Gu, C. Wang, W. Choi, H. Hu, C. Wang, Y. Li, J. Song, J. Zhang, B. Qi, M. Lin, Z. Zhang, A. E. Islam, B. Maruyama, S. Dayeh, L.-J. Li, K. Yang, Y.-H. Lo, and S. Xu, Strain engineering and epitaxial stabilization of halide perovskites, Nature 577, 209 (2020).

[4] G. Tsutsui, S. Mochizuki, N. Loubet, S. W. Bedell, and D. K. Sadana, Strain engineering in functional materials, AIP Advances 9, 030701 (2019).

[5] J. Cenker, S. Sivakumar, K. Xie, A. Miller, P. Thijssen, Z. Liu, A. Dismukes, J. Fonseca, E. Anderson, X. Zhu, X. Roy, D. Xiao, J.-H. Chu, T. Cao, and X. Xu, Reversible strain-induced magnetic phase transition in a van der Waals material, Nature Nanotechnology 10.1038/s41565-021-01052-6 (2022).

[6] D. G. Schlom, L.-Q. Chen, C. J. Fennie, V. Gopalan, D. A. Muller, X. Pan, R. Ramesh, and R. Ucker, Elastic strain engineering of ferroic oxides, MRS Bulletin 39, 118 (2014).

[7] T. Wang, A. Prakash, Y. Dong, T. Truttmann, A. Bucsek, R. James, D. D. Fong, J.-W. Kim, P. J. Ryan, H. Zhou, T. Birol, and B. Jalan, Engineering SrSnO3 Phases and Electron Mobility at Room Temperature Using Epitaxial Strain, ACS Applied Materials & Interfaces 10, 43802 (2018).

[8] P. Homm, M. Menghini, J. W. Seo, S. Peters, and J.-P. Locquet, Room temperature Mott metal-insulator transition in V2O3 compounds induced via strain-engineering, APL Materials 9, 021116 (2021).

[9] C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Wang, Y. Wang, Z. Q. Qiu, R. J. Cava, S. G. Louie, J. Xia, and X. Zhang, Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals, Nature 546, 265 (2017).

[10] B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. McGuire, D. H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, and X. Xu, Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit, Nature 546, 270 (2017).

[11] X. Zhang, Y. Zhao, Q. Song, S. Jia, J. Shi, and W. Han, Magnetic anisotropy of the single-crystalline ferromagnetic insulator Cr2Ge2Te5, Japanese Journal of Applied Physics 55, 033001 (2016).

[12] D.-H. Kim, K. Kim, K.-T. Ko, J. H. Seo, J. S. Kim, T.-H. Jang, Y. Kim, J.-Y. Kim, S.-W. Cheong, and J.-H. Park, Giant magnetic anisotropy induced by ligand ls coupling in layered cr compounds, Physical Review Letters 122, 207201 (2019).

[13] H. Izduchi, A. E. Laaschahunga Allicca, X. C. Pan, K. Tanigaki, and Y. P. Chen, Increased curie temperature and enhanced perpendicular magneto anisotropy of Cr2Ge2Te5/NiO heterostructures, Applied Physics Letters 115, 232403 (2019).

[14] M. Blei, J. L. Lado, Q. Song, D. Dey, O. Ertzen, V. Pardo, R. Comin, S. Tongay, and A. S. Botana, Synthesis, engineering, and theory of 2D van der Waals magnets, Applied Physics Reviews 8, 021301 (2021).

[15] D. Zhong, K. L. Seyler, X. Linpeng, R. Cheng, N. Sivadas, B. Huang, E. Schmidgall, T. Taniguchi, K. Watanabe, M. A. McGuire, W. Yao, D. Xiao, K.-M. C. Fu, and X. Xu, Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics, Science Advances 3, e1603113 (2017).

[16] Z. Wang, I. Gutiérrez-Lezama, N. Ubrig, M. Kroner, M. Gilbertini, T. Taniguchi, K. Watanabe, A. Imamoglu, E. Giannini, and A. F. Morpurgo, Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3, Nature Communications 9, 2516 (2018).

[17] M. Alghamdi, M. Lohmann, J. Li, P. R. Jothi, Q. Shao, M. Aklosary, T. Su, B. P. T. Fokwa, and J. Shi, Highly Efficient Spin–Orbit Torque and Switching of Layered Ferromagnet Fe2Ge2Te5, Nano Letters 19, 4400 (2019).

[18] R. N. Jenjeti, R. Kumar, M. P. Austeria, and S. Sampath, Field Effect Transistor Based on Layered NiP3, Scientific Reports 8, 8586 (2018).

[19] X. Tang, D. Fan, K. Peng, D. Yang, L. Guo, X. Lu, J. Dai, G. Wang, H. Liu, and X. Zhou, Dopant Induced Impurity Bands and Carrier Concentration Control for Thermoelectric Enhancement in p-Type Cr2Ge2Te5, Chemistry of Materials 29, 7401 (2017).

[20] J. Zeisner, A. Alfonsov, S. Selter, S. Aswartham, M. P. Ghimire, M. Richter, J. van den Brink, B. Büchner, and V. Kataev, Magnetic anisotropy and spin-polarized two-dimensional electron gas in the van der waals ferromagnet Cr2Ge2Te5, Physical Review B 99, 165109 (2019).

[21] S. Selter, G. Bastien, A. U. B. Wolter, S. Aswartham, and B. Büchner, Magnetic anisotropy and low-field magnetic phase diagram of the quasi-two-dimensional ferromagnet Cr2Ge2Te5, Physical Review B 101, 014440 (2020).

[22] Z. Lin, M. Lohmann, Z. A. Ali, C. Tang, J. Li, W. Xing, J. Zhong, S. Jia, W. Han, S. Coh, W. Beyermann, and J. Shi, Pressure-induced spin reorientation transition in layered ferromagnetic insulator Cr2Ge2Te5, Physical Review Materials 2, 051004(R) (2018).

[23] T. Sakurai, B. Rubrech, L. T. Corredor, R. Takehara, M. Yasutani, J. Zeisner, A. Alfonsov, S. Selter, S. Aswartham, M. P. Ghimire, M. Richter, J. van den Brink, B. Büchner, and V. Kataev, Magnetic anisotropy and spin-polarized two-dimensional electron gas in the van der waals ferromagnet Cr2Ge2Te5, Physical Review B 109, 024404 (2021).

[24] Y. Sun, W. Tong, and X. Luo, Possible magnetic correlation above the ferromagnetic phase transition temperature in Cr2Ge2Te5, Phys. Chem. Chem. Phys. 21, 25220 (2019).

[25] M. Suzuki, B. Gao, K. Koshiishi, S. Nakata, K. Hagiwara, C. Lin, Y. X. Wan, H. Kunitagisha, K. Ono, S. Kang, S. Kang, J. Yu, M. Kobayashi, S.-W. Cheong, and A. Fujimori, Coulomb-interaction effect on the two-dimensional electronic structure of the van der waals ferromagnet Cr2Ge2Te5, Physical Review B 99, 161401(R) (2019).

[26] R. Küchler, T. Bauer, M. Brando, and F. Steglich, A compact and miniaturized high resolution capacitance dilatometer for measuring thermal expansion and magne-
striction, Review of Scientific Instruments 83, 095102 (2012).
[27] R. Küchler, A. Würl, P. Gegenwart, M. Berben, B. Bryant, and S. Wiedmann, The world’s smallest capacitive dilatometer, for high-resolution thermal expansion and magnetostriction in high magnetic fields, Review of Scientific Instruments 88, 083903 (2017).
[28] J. Werner, W. Hergett, M. Gertig, J. Park, C. Koo, and R. Klingeler, Anisotropy-governed competition of magnetic phases in the honeycomb quantum magnet Na3Ni2SbO6 studied by dilatometry and high-frequency esr, Physical Review B 95, 214414 (2017).
[29] Andeen-Hagerling Inc., AH 2550A 1 kHz Ultra-Precision Capacitance Bridge.
[30] S. Spachmann, PhD Thesis, Heidelberg University (2021).
[31] Due to the softness of the material, in-plane sample mounting is very susceptible to pressure inevitably applied in the capacitance dilatometer and in-plane length changes display larger error bars than out-of-plane data. In particular, different mounting of the sample yields a somewhat smaller anomaly in αab at Tc.
[32] A phonon background correction using the nonmagnetic analog In2Ge2Te5 was unsuccessful, see supplemental material.
[33] V. Carteaux, D. Brunet, G. Ouvrard, and G. Andre, Crystallographic, magnetic and electronic structures of a new layered ferromagnetic compound Cr3Ge2Te6, Journal of Physics: Condensed Matter 7, 69 (1995).
[34] K. Persson, Materials Data on CrGeTe3 (SG:148) by Materials Project (2016).
[35] P. Gegenwart, Grüneisen parameter studies on heavy fermion quantum criticality, Rep. Prog. Phys. 79, 114502 (2016).
[36] R. Klingeler, J. Geck, S. Arumugam, N. Tristan, P. Reutler, B. Büchner, L. Pinsard-Gaudart, and A. Revcolevschi, Pressure-induced melting of the orbital polaron lattice in La(1−x)Sr(x)MnO3, Physical Review B 73, 214432 (2006).
[37] B. D. White, R. K. Bollinger, and J. Neumeier, Thermal expansion and thermodynamic characterization of antiferromagnetic phase transition in elemental α-Mn, physica status solidi (b) 252, 198 (2015).
[38] J. A. Souza, Y.-K. Yu, J. J. Neumeier, H. Terashita, and R. F. Jardim, Method for analyzing second-order phase transitions: Application to the ferromagnetic transition of a polaronic system, Physical Review Letters 94, 207209 (2005).
[39] J.-S. Zhou and J. B. Goodenough, Exchange interactions in the perovskites ca1−sr,mmn03 and rmmn03 (r = La, Pr, Sm), Physical Review B 73, 054103 (2006).
[40] J. A. Souza, J. J. Neumeier, B. D. White, and Y.-K. Yu, Analysis of the critical behavior associated with the antiferromagnetic transitions of LaMnO3 and CaMnO3, Physical Review B 81, 174410 (2010).
[41] Y. V. Sushko, O. B. Korneta, S. O. Leontsev, R. Jin, B. C. Sales, and D. Mandrus, Dependence of magnetic and superconducting transitions in sodium cobalt oxides Na4Co2O9, arXiv preprint cond-mat/0509308 (2005).
[42] J. Wooldridge, D. M. Paul, G. Balakrishnan, and M. R. Lees, The magnetic field and pressure dependence of the magnetic ordering transition in Na4Co2O9 (0.6≤x≤0.72), Journal of Physics: Condensed Matter 18, 4731 (2006).
[43] C. A. M. dos Santos, J. J. Neumeier, Y.-K. Yu, R. K. Bollinger, R. Jin, D. Mandrus, and B. C. Sales, Thermodynamic nature of the antiferromagnetic transition in Na4Co2O9, Physical Review B 74, 132402 (2006).
[44] Note that the temperature for αs was rescaled by subtracting 0.8 K, because the peak value is reached at 64.7 K for the specific heat data and αab whereas it is reached at 65.5 K for αc.
[45] S. Calder, A. V. Haglund, A. I. Kolesnikov, and D. Mandrus, Magnetic exchange interactions in the van der waals layered antiferromagnet MnPSe3, Physical Review B 103, 024414 (2021).
[46] T. J. Williams, A. A. Aczel, M. D. Lumsden, S. E. Nagler, M. B. Stone, J.-Q. Yan, and D. Mandrus, Magnetic correlations in the quasi-two-dimensional semiconducting ferromagnet CrSiTe3, Physical Review B 92, 144404 (2015).
[47] Y. Sun, R. C. Xiao, G. T. Lin, R. R. Zhang, L. S. Ling, Z. W. Ma, X. Luo, W. J. Lu, Y. P. Sun, and Z. G. Sheng, Effects of hydrostatic pressure on spin-lattice coupling in two-dimensional ferromagnetic Cr3Ge2Te6, Applied Physics Letters 112, 072409 (2018).
[48] A. O. Funegia, S. Blanco-Canosa, H. Babu-Vasili, P. Gargiani, H. Li, J.-S. Zhou, F. Rivadulla, and V. Pardo, Electronic structure and magnetic exchange interactions of cr-based van der waals ferromagnets, a comparative study between CrBr3 and Cr2Ge2Te6, J. Mater. Chem. C 8, 13582 (2020).
[49] X. Chen, J. Qi, and D. Shi, Strain-engineering of magnetic coupling in two-dimensional magnetic semiconductor CrSiTe3: Competition of direct exchange interaction and superexchange interaction, Physics Letters A 379, 60 (2015).
[50] X. Zhao, Z. Ding, J. Chen, J. Dan, S. M. Poh, W. Fu, S. J. Pennycook, W. Zhou, and K. P. Loh, Strain modulation by van der waals coupling in bilayer transition metal dichalcogenide, ACS Nano 12, 1940 (2018).
[51] S. Huang, G. Zhang, F. Fan, C. Song, F. Wang, Q. Xing, C. Wang, H. Wu, and H. Yan, Strain-tunable van der Waals interactions in few-layer black phosphorus, Nature Communications 10, 2447 (2019).
[52] A. M. León, J. W. González, J. Mejía-López, F. Crasto de Lima, and E. Suárez Morell, Strain-induced phase transition in CrI3 bilayers, 2D Materials 7, 035008 (2020).
[53] Y. Wang, C. Wang, S.-J. Liang, Z. Ma, K. Xu, X. Liu, L. Zhang, A. S. Admasu, S.-W. Cheong, L. Wang, M. Chen, Z. Liu, B. Cheng, W. Ji, and F. Miao, Strain-Sensitive Magnetization Reversal of a van der Waals Magnet, Advanced Materials 32, 2004533 (2020).
[54] F. Xue, Z. Wang, Y. Hou, L. Gu, and R. Wu, Control of magnetic properties of MnBi2Te4 using a van der waals ferroelectric ill2-VI4 film and biaxial strain, Physical Review B 101, 184426 (2020).
[55] Z. Zhang, J.-Y. You, E. Gu, and G. Su, Emergent magnetic states due to stacking and strain in the van der waals magnetic trilayer CrI3, Physical Review B 104, 174433 (2021).
[56] M. Zhu, Y. You, G. Xu, J. Tang, Y. Gong, and F. Xu, Strain modulation of magnetic coupling in the metallic van der waals magnet Fe2GeTe2, Intermetallics 131, 107085 (2021).
[57] T. Li, S. Jiang, N. Sivadas, Z. Wang, Y. Xu, D. Weber, J. E. Goldberger, K. Watanabe, T. Taniguchi, C. J. Fennie, K. Fai Mak, and J. Shan, Pressure-controlled in-
terlayer magnetism in atomically thin CrI$_3$, Nature Materials 18, 1303 (2019).

[58] D. Bhoi, J. Gouchi, N. Hiraoka, Y. Zhang, N. Ogita, T. Hasegawa, K. Kitagawa, H. Takagi, K. H. Kim, and Y. Uwatoko, Nearly Room-Temperature Ferromagnetism in a Pressure-Induced Correlated Metallic State of the van der Waals Insulator CrGeTe$_3$, Physical Review Letters 127, 217203 (2021).

[59] J. B. Goodenough, Magnetism and the Chemical Bond (Interscience Publishers, New York, London, 1963).

[60] N. Wang, H. Tang, M. Shi, H. Zhang, W. Zhuo, D. Liu, F. Meng, L. Ma, J. Ying, L. Zou, Z. Sun, and X. Chen, Transition from Ferromagnetic Semiconductor to Ferromagnetic Metal with Enhanced Curie Temperature in Cr$_2$Ge$_2$Te$_6$ via Organic Ion Intercalation, Journal of the American Chemical Society 141, 17166 (2019).

[61] J. Arneth, M. Jonak, S. Spachmann, M. Abdel-Hafiez, Y. O. Kvashnin, and R. Klingeler, Uniaxial pressure effects in the two-dimensional van der waals ferromagnet cri$_3$, Physical Review B 105, L060404 (2022).

[62] M. He, X. Wang, L. Wang, F. Hardy, T. Wolf, P. Adelmann, T. Brückel, Y. Su, and C. Meingast, Uniaxial and hydrostatic pressure effects in α-RuCl$_3$ single crystals via thermal-expansion measurements, Journal of Physics: Condensed Matter 30, 385702 (2018).

[63] S. Mondal, M. Kannan, M. Das, L. Govindaraj, R. Singh, B. Satpati, S. Arumugam, and P. Mandal, Effect of hydrostatic pressure on ferromagnetism in two-dimensional CrI$_3$, Physical Review B 99, 180407(R) (2019).

[64] J. Valenta, M. Kratochvílová, M. Mšek, K. Carva, J. Kaštil, P. Doležal, P. Opletal, P. Čermák, P. Proschek, K. Uhlířová, J. Prchal, M. J. Coak, S. Son, J.-G. Park, and V. Sechovský, Pressure-induced large increase of curie temperature of the van der Waals ferromagnet Vi$_3$, Physical Review B 103, 054424 (2021).

[65] M. J. Coak, D. M. Jarvis, H. Hamidov, A. R. Wildes, J. A. M. Paddison, C. Liu, C. R. S. Haines, N. T. Dang, S. E. Kichanov, B. N. Savenko, S. Lee, M. Kratochvílová, S. Klotz, T. C. Hansen, D. P. Kozlenko, J.-G. Park, and S. S. Saxena, Emergent magnetic phases in pressure-tuned van der waals antiferromagnet FePS$_3$, Physical Review X 11, 011024 (2021).

[66] M. Majumder, R. S. Manna, G. Simutis, J. C. Orain, T. Dey, F. Freund, A. Jesche, R. Khasanov, P. K. Biswas, E. Bykova, N. Dubrovinskaia, L. S. Dubrovinsky, R. Yadav, L. Hozoi, S. Nishimoto, A. A. Tsirlin, and P. Gegenwart, Breakdown of Magnetic Order in the Pressurized Kitaev Iridate β–Li$_2$IrO$_3$, Physical Review Letters 120, 237202 (2018).

[67] S. Son, M. J. Coak, N. Lee, J. Kim, T. Y. Kim, H. Hamidov, H. Cho, C. Liu, D. M. Jarvis, P. A. C. Brown, J. H. Kim, C.-H. Park, D. I. Khomski, S. S. Saxena, and J.-G. Park, Bulk properties of the van der Waals hard ferromagnet V13, Physical Review B 99, 041402(R) (2019).
Supplemental Material: Strong effects of uniaxial pressure and short-range
correlations in Cr$_2$Ge$_2$Te$_6$

S. Spachmann$^{1, a}$, A. Elghandour1, S. Selter2, B. Büchner$^{2, 3}$, S. Aswartham$^{2, b}$, R. Klingeler$^{1, c}$

1Kirchhoff Institute for Physics, Heidelberg University, INF 227, 69120 Heidelberg, Germany
2Leibniz Institute for Solid State and Materials Research (IFW), Helmholtzstr. 20, 01069 Dresden, Germany and
3Institute of Solid State and Materials Physics and Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, 01062 Dresden, Germany

(Dated: May 23, 2022)

In the following

- the crystal structure
- specific heat data and its background subtraction for Cr$_2$Ge$_2$Te$_6$ and the non-magnetic analog In$_2$Ge$_2$Te$_6$
- the thermal expansion coefficients at 0 and 15 T
- effective magnetic Grüneisen parameters
- high temperature magnetostriction data

are shown supporting the results of our manuscript.

I. CRYSTAL STRUCTURE

The crystal structure of Cr$_2$Ge$_2$Te$_6$ is shown in Fig. S1.

Figure S1. Crystal structure of Cr$_2$Ge$_2$Te$_6$ in the space group $R\bar{3}$ (no. 148) as reported in Ref. [1]. (a) Unit cell of Cr$_2$Ge$_2$Te$_6$. (b) Van der Waals layers and stacking along the c axis with Cr octahedra shown. (c) View onto the ab plane with one unit of the honeycomb network indicated by the red hexagon.

a sven.spachmann@kip.uni-heidelberg.de
b s.aswartham@ifw-dresden.de
c klingeler@kip.uni-heidelberg.de
II. SPECIFIC HEAT DATA

As explained in the main text, the thermal expansion data (Fig. 2) suggest – without any assumption about phonon-backgrounds or the like – that short-range correlations in Cr$_2$Ge$_2$Te$_6$ extend to at least 200 K. This makes a reliable background correction difficult since the extent of the anomaly in T_C can not be determined easily. Any phononic background fit to the specific heat or thermal expansion coefficient of Cr$_2$Ge$_2$Te$_6$ will thus contain a large uncertainty. Trying to improve the uncertainty of a background fit, we measured the specific heat of In$_2$Ge$_2$Te$_6$, a non-magnetic analog to Cr$_2$Ge$_2$Te$_6$(Fig. S2(a)). The background fitting procedure to In$_2$Ge$_2$Te$_6$ and Cr$_2$Ge$_2$Te$_6$ is described in the following.

In principle, separating out the phononic and electronic contributions from the specific heat of such an analog should enable determining the excess specific heat, i.e., the magnetic contributions, of the magnetic compound. The phonon part of the specific heat can usually be modeled well with a combination of Debye and Einstein modes:

$$c_{V, ph} = \sum_i c_{V, ph, i}^D + \sum_j c_{V, ph, j}^E$$

with the Debye part given as

$$c_{V, ph, i}^D = 9 \cdot n_{D, i} \cdot k_B \left(\frac{T}{\Theta_{D, i}} \right)^3 \cdot \int_0^{\Theta_{D, i}/T} x^4 e^x \left(e^x - 1 \right)^2 dx$$

and the Einstein part given by

$$c_{V, ph, j}^E = 3 \cdot n_{E, j} \cdot k_B \left(\frac{\Theta_{E, j}}{T} \right)^2 \cdot e^{\Theta_{E, j}/T} \left[e^{\Theta_{E, j}/T} - 1 \right]^2$$

At sufficiently low temperatures the measured specific heat at constant pressure, c_p, is approximately the same as the specific heat at constant volume, c_V,

$$c_p \approx c_V$$

The difference between c_p and c_V is given by,

$$c_p - c_V = TVB\beta^2$$

with a molar volume $V = V_m = 1.67 \times 10^{-4}$ m3/mol, the volume expansion $\beta \propto 10^{-5}$/K and the bulk modulus $B \approx 14$ GPa (Cr$_2$Ge$_2$Te$_6$, see Ref. 2), such that

$$c_p - c_V < 0.1 \text{ J/(mol K) @300 K}.$$
Deviations between c_p and c_V are thus roughly on the order of 0.1 J/(mol K) around room temperature and even smaller as the temperature is decreased.

A. Low Temperature Fits

For an estimate of (1) the (linear) electronic contribution to the specific heat as well as (2) the Debye temperature we performed a low-temperature fit (Fig. S2(b)). For this fit we used the formula

$$c_p = \gamma T + \beta T^3 + \delta T^5$$

where $\gamma = \gamma_{el}$ is the Sommerfeld coefficient and β and δ are low temperature lattice contributions to the specific heat. β can be used to calculate an estimate of the Debye temperature by

$$\Theta_D = \left(\frac{12\pi^4 nR}{5\beta} \right)^{1/3}$$

with R being the molar gas constant and n the number of atoms per formula unit.

Fitting the specific heat of In$_2$Ge$_2$Te$_6$ in the temperature range from 2 K to 7 K (Fig. S2(b)) we obtained $\gamma = 0$, $\beta = 4.72$ mJ/(mol K2) and $\delta = 36.6$ mJ/(mol K4). From β we then obtained $\Theta_D = 160.3$ K. A fit in the range from 2 K to 10 K yielded $\gamma = 0$, $\beta = 5.74$ mJ/(mol K4) ($\Theta_D = 150.2$ K) and $\delta = 11.7$ mJ/(mol K6), but with a worse agreement to the data at low temperatures.

A fit to the Cr$_2$Ge$_2$Te$_6$ specific heat from 1.8 K to 10.5 K yielded $\gamma = 0$, $\beta = 3.66$ mJ/(mol K4) ($\Theta_D = 174.5$ K) and $\delta = 0$. For comparison, at fit from 1.8 K to 14.5 K yielded $\gamma = 91(8)$ mJ/(mol K2), $\beta = 3.23$ mJ/(mol K4) ($\Theta_D = 181.9$ K) and also $\delta = 0$, but with a worse fit quality.

From these low-temperature fits we adopted the Sommerfeld coefficients $\gamma_{el} = 0$ for In$_2$Ge$_2$Te$_6$ and $\gamma_{el} = 60$ mJ/(mol K2) for Cr$_2$Ge$_2$Te$_6$ for the fitting up to high temperatures which is shown in the next sections.

B. In$_2$Ge$_2$Te$_6$ High Temperature Fitting

The In$_2$Ge$_2$Te$_6$ specific heat data in Fig. S2(a) shows a minor step around 102 K, indicating a small negative offset of all data points above 102 K, probably from a slight decoupling of the sample from the calorimeter. Therefore, the data was only fitted in the range from 2 K to 100 K. The Best fit was achieved using two Debye modes (Eq. (2)) and one Einstein mode (Eq. (3)) with $\Theta_D = 134.4$ K, $n_{D,1} = 4.58$, $\Theta_D = 286.5$ K, $n_{D,2} = 4.47$, $\Theta_E = 44.5$ K and $n_E = 0.459$. The sum over the weights n_i is 9.51, close to the expected value of 10 for 10 atoms per formula unit. As seen in Fig. S2(a) and (b) this fit describes both the low-temperature and the high temperature ranges very well.

C. Cr$_2$Ge$_2$Te$_6$ High Temperature Fitting

Bouvier et al. [3] suggested a simple scaling of the specific heat data of two ternary compounds by the ratio of their Debye temperatures. However, this scaling is only valid for low temperatures, up to roughly $T \lesssim \Theta_D/10$. Accordingly, the specific heat of Cr$_2$Ge$_2$Te$_6$ crosses the specific heat of In$_2$Ge$_2$Te$_6$ around 120 K and it is obvious that such a simple scaling by $\Theta_D,\text{CGT}/\Theta_D,\text{CGT} = 0.952$ fails. The intended Cr$_2$Ge$_2$Te$_6$ background subtraction by the non-magnetic analog In$_2$Ge$_2$Te$_6$ is thus not possible. Instead, we tried several combinations of Debye and Einstein modes before we ended up with the combination of two Debye modes with fixed $\gamma = 60$ mJ/(mol K2) as described in the main text. For fits with the different combinations of Debye and Einstein modes, the resulting Debye and Einstein temperatures strongly depend on the applied fitting range and vary roughly around 60 K $< \Theta_{D,1} < 200$ K and 250 K $< \Theta_{D,2} < 400$ K. The Debye temperatures of In$_2$Ge$_2$Te$_6$ together with the three assumptions mentioned in the main text served as a starting point to arrive at the final values. For these final values the Debye temperatures and weights $n_{D,i}$ were incrementally changed to achieve (1) a total magnetic entropy in line with a spin-$1/2$ system, i.e., $S_{\text{mag, theo}} = 2Rn(4) = 23.05$ J/(mol K) (with two moles of Cr atoms per mole of Cr$_2$Ge$_2$Te$_6$, and R being the molar gas constant), (2) a peak shape of c_p,mag resembling that of the thermal expansion coefficient and (3) a magnetic entropy vanishing around 200 K as indicated by the plateau in α_e (Fig. 2(a)). The final best fit values we arrived at were $\Theta_{D,1} = 150$ K, $n_{D,1} = 4.8$, $\Theta_{D,2} = 410$ K, and $n_{D,2} = 5.024$.

The magnetic entropy resulting after subtraction of the phononic and electronic fit is shown in Fig. S2(e).

Note that both the In$_2$Ge$_2$Te$_6$ and the Cr$_2$Ge$_2$Te$_6$ data do not reach the expected classical Dulong-Petit limit of $c_p = 3nR \approx 249.4$ J/(mol K) at high temperatures, where n is the number of atoms per formula unit and R is
the molar gas constant. The In$_2$Ge$_2$Te$_6$ data reach 233 J/(mol K) at 230 K and the Cr$_2$Ge$_2$Te$_6$ data reach about 230 J/(mol K) at 195 K, with both curves still increasing. Looking at $\sum n_i$ from the fit results, the experimental error can thus be estimated to amount to about 5% for In$_2$Ge$_2$Te$_6$ and about 2% for Cr$_2$Ge$_2$Te$_6$.

III. THERMAL EXPANSION COEFFICIENTS AT 0 AND 15 T

The thermal expansion coefficients derived from the relative length changes in Fig. 1 in the main text are presented in Fig. S3. The effective Gruneisen parameter $\gamma_{c,\text{eff}} = 7.0 \times 10^{-8}$ is slightly different from the one extracted from the mini-dilatometer in Fig. 2(a) (8.05×10^{-8}).

Figure S3. Thermal expansion coefficients α_i of Cr$_2$Ge$_2$Te$_6$ at 0 T and 15 T derived from the data in Fig. 1, measured in the standard dilatometer. [4]
IV. EFFECTIVE MAGNETIC GRÜNEISEN FACTORS

The absolute value of the effective magnetic Grüneisen factors, \(\gamma_{i, \text{mag, eff}} = |\alpha_{i, \text{mag}}|/c_{p, \text{mag}} = \kappa_{i, \text{mag}}/(3V_m) \) up to 130 K is shown in Fig. S4. Above 130 K the absolute values of \(\alpha_{i, \text{mag}} \) and \(c_{p, \text{mag}} \) become small which leads to large error bars and fluctuations in the data, which is why they are not shown. Along the c axis (red closed circles) a nearly constant value is assumed between 40 K and 130 K except between 64 K and 76 K, i.e., at and just above \(T_C \). In this latter temperature regime a sharp peak can be seen with a jump on the low temperature side and a tail on the high temperature side. Below 40 K \(\gamma_{c, \text{mag, eff}} \) rises strongly.

\(\gamma_{ab, \text{mag, eff}} \) (black closed circles) exhibits a nearly constant value only between 90 K and 125 K, below which it has a rising "background". Here also a rise can be seen in \(|\gamma_{ab, \text{mag, eff}}| \) around \(T_C \), but of opposite behavior. The tail is on the low temperature side (roughly 53 K to 65.3 K) whereas the jump can be seen on the high temperature side, between 65.3 K and 67 K.

Figure S4. Absolute value of the effective magnetic Grüneisen ratios \(\alpha_{i, \text{mag}}/c_{p, \text{mag}} \).
V. HIGH TEMPERATURE MAGNETOSTRICTION

Magnetostriction measurements above $T_C = 65$ K up to 204 K for both $B \parallel ab$ and $B \parallel c$ are shown in Fig. S5. It can be seen that (1) magnetostriction is of opposite sign within the ab plane and along the c axis, (2) magnetostriction along the c axis is about 1.5 times larger than within the ab plane, and (3) at around 150 K (125 K for $B \parallel c$) a sizeable magnetostriction is still present which nearly vanishes around 200 K. The relative length changes from 0 T to 15 T from these measurements as well as measurements below T_C are shown in Fig. 1 in the main text.

Figure S5. (a, b) Magnetostriction coefficients and (c, d) magnetostrictive relative length changes for $B \parallel ab$ (a, c) and $B \parallel c$ (b, d) at temperatures $T > T_C$. Only up-sweep data is shown.

[1] V. Carteaux, D. Brunet, G. Ouvrard, and G. Andre, Crystallographic, magnetic and electronic structures of a new layered ferromagnetic compound Cr$_2$Ge$_2$Te$_6$, Journal of Physics: Condensed Matter 7, 69 (1995).
[2] K. Persson, Materials Data on CrGeTe$_3$ (SG:148) by Materials Project (2016).
[3] M. Bouvier, P. Lethuillier, and D. Schmitt, Specific heat in some gadolinium compounds. i. experimental, Physical Review B 43, 13137 (1991).
[4] R. Küchler, T. Bauer, M. Brando, and F. Steglich, A compact and miniaturized high resolution capacitance dilatometer for measuring thermal expansion and magnetostriction, Review of Scientific Instruments 83, 095102 (2012).