Psychometric Properties of the 37-item Functional
Assessment of Cancer Therapy-Cognitive Function
(FACT-Cog) scale in Cancer Patients.

Aline Hajj (aline.hajj@hotmail.com)
Universite Saint-Joseph

Pascale Salameh
INSPECT-LB

Rita Khoury
Saint-Joseph University

Roula Hachem
Saint-Joseph University

Hala Sacre
INSPECT-LB

Georges Chahine
Hotel-Dieu De France

Joseph Kattan
Hotel-Dieu De France

Lydia Khabbaz
Saint-Joseph University

Research article

Keywords: Cancer patient; Chemotherapy; Cognitive function; FACT-Cog; Factor analysis; Multi-tasking.

DOI: https://doi.org/10.21203/rs.3.rs-52087/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background: The Functional Assessment of Cancer Therapy-Cognitive Function (FACT-Cog) scale is a self-assessment scale validated in routine clinical practice to assess cognitive function in cancer patients. This study aimed to validate the 37-item version of FACT-Cog exploring particularly the psychometric properties of four items related to multitasking that were not previously included in the scoring algorithm and assess its correlates in Lebanese cancer patients.

Methods: A cross-sectional study was carried out including 261 patients with breast, colorectal and lung cancers undergoing chemotherapy (Ethics: CEHDF1016). Validity was confirmed using a factor analyses using the principal component analysis technique with a varimax rotation. Analyses of internal consistency, “test-retest” reliability, and convergent validity were also performed. Finally, a multiple linear regression was conducted, using the total cognition scale as a dependent variable.

Results: The scale had an appropriate construct validity, and items loaded on subscales with adequate sample adequacy to factor analyses outcomes. The test-retest reliability was appropriate for the total cognition score/all sub-scores except for the FACT-Cog QOL. Moreover, a weak but significant and inverse correlation between the FACT-Cog scores and patient’s pain, fatigue, anxiety and depression. Finally, better cognition functioning was noted with age and in working patients, whereas lower functioning was observed in previous smokers and in patients with ovary/brain metastasis.

Conclusions: The 37-item tool is valid and reliable. Questions related to multitasking could be included in the scoring system.

Background

Cancer-related cognitive changes and impairment have long been documented but frequently misdiagnosed despite their negative impact on patient’s daily functioning and quality of life [1, 2]. Cancer induced cognitive impairment is defined as dysfunction in memory, learning, concentration, perception, executive function, visual-spatial abilities, and information processing, during or after the discontinuation of chemotherapy [3, 4]. These changes could lead to daily challenges, impaired familial and community functioning, worse outcomes on decision-making, and poor adherence to treatment, leading to reduced quality of life and increased burden on caregivers. Cognitive assessment is not yet performed as part of the routine evaluation and management of cancer patients. Hence, studies are needed to develop and validate tools to systematically include cognitive screening into clinical oncology practice [1]. These tools would adequately assess cognitive function and the different factors affecting it as part of a comprehensive care plan. Several instruments, including objective and subjective measures, were primarily designed to evaluate cognitive impairment in cancer patients, including neuropsychological tests, considered as the golden standard for objective measures. However, self-evaluation of cognitive function based on the patients’ description of their symptoms could help clinicians better understand the
impact of cancer and its treatment on patients’ quality of life. This hypothesis was supported by neuroimaging studies that confirmed the correlation between the self-reported cognitive decline and alteration in the central nervous system. Also, self-reported measures were more sensitive in assessing the association between anxiety and depression than neuropsychological tests.

The FACT-Cog scale is a self-assessment scale validated in routine clinical practice to assess cognitive function and quality of life in various cancer populations [5]. It is of particular interest since it focuses on the noticeability and functional interference of multiple specific domains associated with perceived cognitive functioning [6]. The initial scale consisted of 33 questions evaluating four different components of the perceived cognitive function, i.e., impairments, abilities, comments from others, and the impact on quality of life. In 2016, FACT-Cog scoring directions were updated to include four items related to multitasking (MT), not previously included in the scoring algorithm: “I have trouble keeping track of what I am doing if I am interrupted”; “I have trouble shifting back and forth between different activities that require thinking”; “I am able to shift back and forth between two activities that require thinking”; and “I am able to keep track of what I am doing, even if I am interrupted”. However, the internal consistency and correlation coefficients between individual items and the total score were not calculated. Moreover, studies have shown that ethnicity and cultural preferences can affect patients’ perception of their cognitive function [7, 8]. In the absence of a validated version in Lebanon, it was deemed essential to validate the French version of FACT-Cog, in a country whose second mother language is French, to use it in future epidemiological and clinical studies.

Therefore, this study aimed to validate the 37-item French version of FACT-Cog and assess its correlates in Lebanese cancer patients.

Methods

Study Design

A prospective clinical study was conducted between November 2017 until December 2019 at Hôtel-Dieu de France (HDF) Hospital, including 261 cancer patients. Patients had to be over 18 with a primary diagnosis of breast, colorectal, or lung cancer (all stages for all three types) and be treated with chemotherapy to be eligible. Patients were recruited during their outpatient chemotherapy at the daycare hospital.

Non-inclusion criteria consisted of patients with relapse/other types of cancer, who have had neurosurgeries or suffer from disorders of the central nervous system (dementia, multiple sclerosis, epilepsy, Parkinson’s disease, and mental retardation) that may affect cognitive evaluation. Patients who received adjuvant hormone therapy (especially for breast cancer patients) were also excluded.

The final sample was divided into three groups: patients receiving their first chemotherapy ever, those who have already had several sessions, and those undergoing palliative chemotherapy (for patients
requiring more than 10 sessions of chemotherapy). None of the participants received any financial incentive.

Ethical aspect

The study was approved by Hôtel-Dieu de France Hospital ethical committee (HDF, CEHDF1016, July 2017) and Medical Direction (Protocol N.DAM-2017/288, November 2017). All patients gave their written informed consent before enrollment.

Sample Size Calculation

Comrey and Lee suggested that a minimum of 10 observations per variable is necessary to perform an exploratory factor analysis [9]. Since the FACT-Cog (PCI subscale) is a 20-item questionnaire, a minimum of 200 patients was required for this study. Other subscales have fewer items, and thus necessitate smaller samples.

Sociodemographic information

Clinical and demographic data were collected, including age, gender, weight and height (to calculate the body mass index, BMI), Body Surface Area (BSA, calculated using the Mosteller formula) [10], ethnicity/nationality, marital status, education level, and the use of alcohol, tobacco, and medications.

Cancer-related clinical features were also recorded from patients' medical records. It included information on the type and stage of cancer, metastases, and the number of chemotherapy cycles.

FACT-Cog validation

David Cella, PhD, who holds the copyright of the scale, approved the use of the French and English versions of the Functional Assessment of Cancer Therapy - Cognitive Function (FACT-Cog, version 3) to evaluate cognitive function (Licensing agreement granted on November 2, 2017). The FACT-Cog scale was reliable and valid in assessing the cognitive function before, during, and after chemotherapy, in different cancer populations, including breast, colorectal, and lung cancer (The Functional Assessment of Chronic Illness Therapy system of Quality of Life questionnaires and all related subscales, translations, and adaptations (“FACIT System’’)).

The questionnaire was administered twice (noted Test and Retest) in 108 patients three weeks apart, corresponding to the time between two sessions of chemotherapy. A trained research assistant performed data collection and made sure that all questions were answered.

FACT-Cog scale scoring

This instrument assesses patients’ memory, attention, concentration, language, and thinking skills and the impact of cognition disturbances on their quality of life. It consists of 37 questions exploring four different subscales of the cognitive function: perceived cognitive impairments (CogPCI: 20 items); perceived cognitive abilities (CogPCA: 9 items); comments from others (CogOth: 4 items); and the impact of perceived cognitive impairments on quality of life (CogQOL: 4 items). The patient must answer the
questions by referring to the last seven days, expressing how many times a given situation has occurred during this period.

The total FACT-Cog score is the sum of the four subscales and ranges from 0-148. The higher the total score, the better the cognitive function, and the lower the impact on patients' quality of life. The detailed FACIT's recommended scoring method is presented in Supplementary file 1.

Other assessment measures
Pain was assessed using the visual analogue scale (VAS) ranging from 0 (no pain) to 10 (maximum pain). The self-report Hospital Anxiety and Depression Scale was used to evaluate anxiety and depression (HADS-A and HADS-D, respectively). Symptoms of the previous week were reported on a scale from 0 (not at all) to 3 (most of the time). Finally, the level of fatigue was measured following the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire (EORTC-QLQ C30 scale).

Statistical analysis
Statistical analyses were performed using SPSS software version 25.0. Descriptive statistics were calculated for all the variables. The Kolmogorov-Smirnov test verified the normality of the variables within each group: all the variables were not normally distributed, except for the total scale at the first cycle. Thus, the Spearman's correlation test was used to examine the association between scales and subscales. A $p \leq 0.05$ was considered statistically significant.

The validity of the subscales’ construct in this sample was confirmed, by launching four factor analyses for the items of the subscales. Using the principal component analysis technique, a varimax rotation was applied when extracted factors were not significantly correlated, and a promax rotation was applied when factors were correlated.

The Kaiser-Meyer-Olkin (KMO) measurement and the Bartlett sphericity test were performed to ensure the adequacy of the sampling. The number of factors retained corresponded to Eigenvalues greater than one.

Cronbach's alpha was recorded for reliability analysis of the total scale and subscales: $\alpha \geq 0.7$ and ≥ 0.8 were considered as acceptable and excellent internal consistency values, respectively [11]. The “test-retest” reliability was evaluated by the intra-class correlation coefficient (ICC, mean measurement) for the scores of the scales. Values less than 0.5, between 0.5 and 0.75, between 0.75 and 0.9, and greater than 0.90 were indicative of poor, moderate, good, and excellent reliability, respectively [12].

Finally, studies have shown that self-reported questionnaires, such as FACT-Cog tend not to be associated with neuropsychological performance but rather depression and anxiety [5, 6, 13]. We therefore performed a convergent validity analysis to explore this hypothesis using Spearman correlations; this measure allowed examining to what extent the FACT-Cog scale/subscales correlated not only with depression and anxiety but also with pain and fatigue. An absolute correlation coefficient value (IRI) of 0.70 and above
indicates a strong correlation, a moderate correlation between 0.40 and 0.70, and a weak correlation for values below 0.4 [14].

Multiple linear regression was conducted to answer the secondary objective, using the total cognition scale as a dependent variable; a backward LR method was applied to choose the most parsimonious model and decrease confounding. Assumptions of the model adequacy, linearity, normality, and homoscedasticity were assessed before adopting the final presented model. Bootstrapping was conducted to improve the stability of coefficients’ confidence intervals.

Results

3.1. Demographic and clinical data of patients

Our study included 261 cancer patients (70.9% women). The mean age of patients was 59.32 ± 12.1 years with an average BMI of 25.55 ± 4.23 Kg/m². Patients were receiving chemotherapy for breast cancer (51%), colorectal cancer (25.2%), and lung cancer (25.8%). The median number of chemotherapy cycles was 2 [1–7].

3.2. Validation of the FACT-Cog scale

3.2.1. FACT-Cog PCI Test results (Table 2):
Table 1
– Sociodemographic and other characteristics of the patients (N = 261)*.

Characteristic	Frequency (%)
Gender	
Female	185 (70.9%)
Male	76 (29.1%)
Nationality	
Lebanese	249 (95.4%)
Syrian	8 (3.1%)
Other	4 (1.5%)
Marital status	
Single	36 (13.8%)
Married	211 (80.8%)
Widowed	9 (3.4%)
Divorced	5 (1.9%)
Level of education*	
Primary	47 (18.2%)
Secondary	125 (48.45%)
University	86 (33.33%)
Profession/Work	
No	126 (48.5%)
Yes	134 (51.5%)
Socioeconomic status	
Low	18 (6.9%)
Middle	222 (85.1%)
High	21 (8%)
Alcohol consumption	
No	222 (85.1%)
Yes	39 (14.9%)
Smoking	
No	156 (59.8%)
Yes	79 (30.2%)
Previous smoker	26 (10%)
Allergy	
No	249 (95.4%)

* Some variables did not sum up to 261 due to missing data.

† Some patients have several metastases localizations; therefore, the number exceeds the number of patients with metastases.

‡ The variables distribution being not normal, we used the median and interquartile range.
	Frequency (%)	
Hypertension		
Yes	12 (4.6%)	
No	173 (66.3%)	
Yes	88 (33.7%)	
Diabetes		
No	216 (82.8%)	
Yes	45 (17.2%)	
Dyslipidemia		
No	189 (72.4%)	
Yes	72 (27.6%)	
Type of cancer		
Breast	133 (51%)	
Colorectal	66 (25.2%)	
Lung	62 (23.8%)	
Presence of metastases		
No	217 (83.1%)	
Yes	44 (16.9%)	
Type of metastases †		
Bone	14 (29.2%)	
Lung	12 (25%)	
Hepatic	16 (33.3%)	
Ovarian	5 (10.4%)	
Brain	1 (2.2%)	
Type of chemotherapy		
Adjuvant	127 (48.7%)	
Neoadjuvant	63 (24.1%)	
Palliative	71 (27.2%)	
Mean ± Standard Deviation (SD)	**Median [25–75 Percentiles] ‡**	
Age (years)	59.32 ± 12.1	60 [52–67]
Body Mass Index (BMI; Kg/m²)	25.55 ± 4.23	25.39 [22.92–27.98]
Body Surface Area (BSA; m²)	1.78 ± 0.19	1.78 [1.66–1.91]

* Some variables did not sum up to 261 due to missing data.

† Some patients have several metastases localizations; therefore, the number exceeds the number of patients with metastases.

‡ The variables distribution being not normal, we used the median and interquartile range.
Variable	Frequency (%)	
CogPCI score	58.51 ± 13.26	61 [48-69.87]
CogPCA score	23.35 ± 5.53	23 [20-26.75]
CogOth score	13.45 ± 3.17	12 [14–16]
CogQOL score	10.88 ± 4.68	12 [8–15]
Total FACT-Cog score	106.48 ± 21.52	111 [95.5–120]
Pain VAS score	2.02 ± 2.87	0 [0–3]
Number of chemotherapy cycles	7.11 ± 12.57	2 [1–7]

* Some variables did not sum up to 261 due to missing data.

† Some patients have several metastases localizations; therefore, the number exceeds the number of patients with metastases.

‡ The variables distribution being not normal, we used the median and interquartile range.
Table 2
– Factor analysis with VARIMAX rotation for FACT-CogPCI subscale.

Item*	Questions	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5	Total Subscale†
CogA3¹	My thinking has been slow	0.813					0.529
CogA1¹	I have had trouble forming thoughts	0.777					0.548
CogC32¹	My thinking has been slower than usual	0.759					0.574
CogF25⁵	My reactions in everyday situations have been slow	0.751					0.513
CogC7²	I have had trouble concentrating	0.648					0.640
CogC31²	I have had to work harder than usual to keep track of what I was doing	0.647					0.534
CogV15⁴	I have had trouble finding the right word(s) to express myself		0.784				0.665
CogV13⁴	I have had trouble recalling the name of an object while talking to someone		0.766				0.561
CogV16⁴	I have used the wrong word when I referred to an object			0.761			0.602
CogV17b⁴	I have had trouble saying what I mean in conversations with others			0.658			0.644
CogF24⁵	I have forgotten names of people soon after being introduced				0.738		0.515

* The classification of items taking into account the cognitive domains allows the identification of six reclassified domains of interest¹,²: 1- Mental acuity; 2- Attention & Concentration; 3- Memory; 4- Verbal fluency/ability; 5- Functional interference; and 6- Multitasking ability.

† p < 0.001 for all correlation for items with total subscale and for Cronbach’s alpha.

‡ Items in bold (CogMT1 and CogMT2) are the new items included in the algorithm scoring.
Item*	Questions	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5	Total Subscale†
CogM12³	I have had trouble remembering new information, like phone numbers or simple instructions	0.734					0.575
CogMT1⁶‡	I have trouble keeping track of what I am doing if I am interrupted	0.525					0.522
CogF23⁵	I have had to work really hard to pay attention or I would make a mistake	0.508					0.633
CogF19⁵	I have walked into a room and forgotten what I meant to get or do there	0.496					0.541
CogC33c³	I have had to use written lists more often than usual so I would not forget things		0.834				0.272
CogC33a⁴	I have had to work harder than usual to express myself clearly		0.786				0.453
CogMT2⁶‡	I have trouble shifting back and forth between different activities that require thinking		0.5				0.420
CogM9³	I have had trouble finding my way to a familiar place			0.728			0.444
CogM10³	I have had trouble remembering where I put things, like my keys or my wallet			0.544			0.598
Cronbach alpha for factors and total scale							**0.887**

* The classification of items taking into account the cognitive domains allows the identification of six reclassified domains of interest ¹,²: 1- Mental acuity; 2- Attention & Concentration; 3- Memory; 4- Verbal fluency/ability; 5- Functional interference; and 6- Multitasking ability.

† p < 0.001 for all correlation for items with total subscale and for Cronbach's alpha.

‡ Items in bold (CogMT1 and CogMT2) are the new items included in the algorithm scoring.
A factor analysis was carried out over the whole sample, using the Varimax rotation since the factors were not highly correlated. A KMO measure of sampling adequacy of 0.870 was found, with a significant Bartlett’s test of sphericity (p < 0.001). The sample was adequate, and communalities were all higher than 0.3. None of the FACT-CogPCI subscale items were removed; items converged over a solution of five factors that had an Eigenvalue > 1, explaining a total of 64.39% of the variance (Table 2). Items loaded on five factors: mental acuity, memory and attention, verbal fluency, functional interference, and spatial orientation. Table 2 shows the mapping with the objective cognitive domains of the neuropsychological tests. The Quartimax rotation gave similar results, with slight variation in the loading of one item, the CogM9 that is related to the “memory” domain (See Supplementary file 2).

As for the reliability analysis, results were in the acceptable range according to the number of included items. The only item that showed a low correlation coefficient of 0.272 was the item CogC33c “I have had to use written lists more often than usual so I would not forget things”. The Cronbach alpha values of the two newly evaluated items CogMT1 and CogMT2, were 0.522 and 0.420, respectively.

3.2.2. FACT-CogPCA Test results (Table 3)
Table 3 – Factor analysis for FACT-CogPCA.

Item*	Questions	Memory/Mental acuity	Multitasking/verbal ability/concentration	Total subscale correlation	P-value
CogPM1³	I have been able to remember things, like where I left my keys or wallet	0.826	0.529		P < 0.001
CogPCH1¹	My mind is as sharp as it has always been	0.691	0.56		P < 0.001
CogPCH2³	My memory is as good as it has always been	0.686	0.743		P < 0.001
CogPM2³	I have been able to remember to do things, like take medicine or buy something I needed	0.658	0.560		P < 0.001
CogPMT2⁶†	I am able to keep track of what I am doing, even if I am interrupted	0.894	0.650		P < 0.001
CogPMT1⁶†	I am able to shift back and forth between two activities that require thinking	0.88	0.533		P < 0.001
CogPV1⁴	I have been able to bring to mind words that I wanted to use while talking to someone	0.519	0.533		P < 0.001
CogPC1²	I have been able to concentrate	0.45	0.627		P < 0.001
CogPF1²	I am able to pay attention and keep track of what I am doing without extra effort	0.428	0.659		P < 0.001

Cronbach alpha 0.813 P < 0.001

* The classification of items taking into account the cognitive domains allows the identification of six reclassified domains of interest ¹,²: 1- Mental acuity; 2- Attention & Concentration; 3- Memory; 4- Verbal fluency/ability; 5- Functional interference; and 6- Multitasking ability.

† Items in bold (CogPMT1 and CogPMT2) are the new items included in the algorithm scoring.

A factor analysis, using the principal component analysis, was carried out. A KMO measure of sampling adequacy of 0.805 was found, with a significant Bartlett’s test of sphericity (p < 0.001). The sample was adequate and communalities were all higher than 0.3. None of the FACT-CogPCA subscales items were removed; items converged over a solution of two factors that had an Eigenvalue > 1, explaining a total of 53.55% of the variance. A Promax rotation was used since factors were correlated (Table 3). As for the
reliability analysis, results were in the acceptable range according to the number of included items. The correlation coefficient values of the two newly evaluated items CogPMT1 and CogPMT2, were 0.650 and 0.533, respectively. Table 3 presents the comparison with the objective cognitive domains of the neuropsychological tests: items related to the same domain loaded into the same factor.

3.2.3. FACT-CogOTH Test results (Table 4)

Item	Questions	Factor loading	Total subscale correlation	p-Value
CogO3	Other people have told me I seemed to have trouble thinking clearly	0.902	0.814	P < 0.001
CogO2	Other people have told me I seemed to have trouble speaking clearly	0.866	0.72	P < 0.001
CogO4	Other people have told me I seemed confused	0.816	0.779	P < 0.001
CogO1	Other people have told me I seemed to have trouble remembering information	0.762	0.814	P < 0.001
Cronbach alpha		0.847		P < 0.001

A factor analysis, using the principal component analysis, was carried out; no rotation was necessary since all items loaded on the same factor. A KMO measure of sampling adequacy of 0.780 was found, with a significant Bartlett’s test of sphericity (p < 0.001). The sample was adequate, and communalities were all higher than 0.3. Items loaded on one factor. None of the FACT-Cog OTH subscale items were removed; items converged over a solution of one factor that had an Eigenvalue > 1, explaining a total of 70.28% of the variance (Table 4). As for the reliability analysis, results were in the acceptable range according to the number of included items.

3.2.4. FACT-CogQOL Test results (Table 5)
Table 5
- Factor analysis for FACT-CogQOL

Item	Questions	Factor loading	Total subscale correlation	P-Value
CogQ41	These problems have interfered with the quality of my life	0.96	0.954	< 0.001
CogQ35	I have been upset about these problems	0.94	0.941	< 0.001
CogQ37	These problems have interfered with my ability to work	0.927	0.921	< 0.001
CogQ38	These problems have interfered with my ability to do things I enjoy	0.922	0.914	< 0.001
Cronbach alpha		0.954		< 0.001

A factor analysis, using the principal component analysis, was carried out; no rotation was necessary since all items loaded on the same factor. A KMO measure of sampling adequacy of 0.868 was found, with a significant Bartlett’s test of sphericity (p < 0.001). The sample was adequate, and communalities were all higher than 0.3. None of the FACT-CogQOL subscale items were removed; items converged over a solution of one factor that had an Eigenvalue > 1, explaining a total of 87.87% of the variance (Table 5).

As for the reliability analysis, results were in the acceptable range according to the number of included items.

3.3. Test-retest analysis of total scale and subscales
High test-retest correlation was found between Cycle 1 and Cycle 2, for the scale and all subscales, except for the QOL subscale that had a relatively lower value (Table 6).

Table 6
- Test-Retest reliability of FACT Cognition subscales and total scale.

	Average ICC	95% Confidence Interval	p-value
FACT CogPCI	0.818	0.734; 0.875	< 0.001
FACT CogOTH	0.823	0.741; 0.879	< 0.001
FACT CogPCA	0.773	0.669; 0.845	< 0.001
FACT CogQOL	0.541	0.328; 0.686	< 0.001
Total Cognition	0.866	0.805; 0.909	< 0.001

3.4. Scale and subscales reliability and correlations
A borderline internal consistency was found between subscales (p < 0.700). All correlations were significant (p < 0.001) and were moderate to high between the total scale and subscales; however, correlations between subscales were of lower magnitude (Table 7).

FACT CogPCI	FACT-CogOTH	FACT-CogPCA	FACT-CogQOL	Total Cognition	
FACT CogPCI	1	0.566	0.627	0.307	0.898
FACT CogOTH	0.566	1	0.489	0.312	0.659
FACT CogPCA	0.627	0.489	1	0.386	0.783
FACT CogQOL	0.307	0.312	0.386	1	0.605

*Cronbach Alpha between subscales = 0.667; †p < 0.001 for all correlations

3.5. Convergent validity with pain, depression, anxiety, fatigue

The convergent validity with pain, fatigue, anxiety, and depression was also evaluated: inverse, weak but significant correlations between the FACT-Cog total score/subscales scores were found (IrI = 0.206–0.351; p-values less than 0.05). For the subscales, PCI correlated with depression, OTH with anxiety, and depression, and PCA with fatigue, anxiety, and depression. A detailed description is presented in Table 8.

Scale	Total cognition	PCI subscale	OTH subscale	PCA subscale	QOL subscale
EVA	-0.145 (p = 0.020)*	-0.102 (p = 0.104)	0.044 (p = 0.486)	-0.096 (p = 0.124)	-0.225 (p < 0.001)*
Fatigue score†	-0.209 (p = 0.009)*	-0.028 (p = 0.731)	-0.171 (p = 0.033)*	-0.274 (p = 0.001)*	-0.344 (p < 0.001)*
HADS-A score‡	-0.351 (p < 0.001)*	-0.338 (p < 0.001)*	-0.218 (p < 0.001)*	-0.206 (p < 0.001)*	-0.306 (p < 0.001)*
HADS-D score§	-0.322 (p < 0.001)*	-0.300 (p < 0.001)*	-0.253 (p < 0.001)*	-0.241 (p < 0.001)*	-0.283 (p < 0.001)*

† Fatigue as evaluated by the EORTC-QLQ C30 scale;
‡ Hospital Anxiety and Depression Scale (anxiety);
§ Hospital Anxiety and Depression Scale (depression);
* Statistically significant results.
3.6. Correlates of total cognition: multivariable analysis

A multivariable analysis, taking the total cognition score as a dependent variable, showed that higher cognition scores were significantly associated with older age (Beta = 0.252) and in those who work compared to those who do not (Beta = 8.415), whereas lower scores were noted in previous smokers versus non-smoker (Beta=-13.484), in patients having ovary metastasis (Beta=-21.285), and brain metastasis (Beta=-8.283) versus those without metastasis (Table 9).

Correlate	Unstandardized Beta	95% Confidence Level	p-value
Chemotherapy cycle number	-0.090	-0.359; -0.120	0.462
Age	0.252	0.036; 0.474	0.025
Body Mass Index (BMI)	-0.601	-1.290; 0.014	0.067
Working versus not working	8.415	3.346; 13.642	0.002
Previous tobacco smoking versus non-smoking	-13.484	-25.321; -1.944	0.024
Allergy	8.737	-2.508; 19.613	0.110
Ovary Metastasis vs No Metastasis	-21.285	-36.670; 5.063	0.017
Brain Metastasis vs No Metastasis	-8.283	-13.385; -3.122	0.023
Lung Metastasis vs No Metastasis	-6.012	-17.804; 5.307	0.915
Bone Metastasis vs No Metastasis	-5.382	-20.458; 7.551	0.300

*Model Summary: $R = 0.333; R^2 = 0.111$ – All variables introduced at baseline: socio-demographics, chronic diseases risk factors, chronic treatments, cancer types and chemotherapy types. Confidence levels were calculated through bootstrapping. Numbers in bold represent significant results.

REFERENCES

1. Cheung YT, Lim SR, Shwe M, et al. Psychometric properties and measurement equivalence of the English and Chinese versions of the functional assessment of cancer therapy-cognitive in Asian patients with breast cancer. *Value Health*. 2013;16(6):1001–1013.

2. Costa DSJ, Loh V, Birney DP, et al. The Structure of the FACT-Cog v3 in Cancer Patients, Students, and Older Adults. *J Pain Symptom Manage*. 2018;55(4):1173–1178.

Discussion
To the best of our knowledge, this is the first study to validate the French version of the 37-item FACT-Cog scale in a population of Lebanese cancer patients, using exploratory factor analysis for the four subscales (FACT-Cog PCI, PCA, OTH, and QOL domains) as per scoring recommendations. Previous validations of the original English, the French, and the Korean version of FACT-Cog were performed on the 33-item scale without the multitasking components nor factor analysis, except for the Korean study [5, 15, 16]. Thus, comparing our results to theirs was not possible.

Only two studies investigated the 37-items scales [6, 17]. The first examined the psychometric properties and measurement equivalence of the English and Chinese FATC-Cog based on the cognitive domains drawing items from the four subscales [6]. The second performed confirmatory structure analysis of the 37-item scale in three populations: 158 cancer patients, community older adults, and undergraduate students using the scoring recommendation in one of the models [17]. Hence, the need to validate the French 37-item Fact-Cog scale on a large sample of cancer patients, and evaluate the internal consistency and the correlation between individual items and the total score, following the scoring recommendation [5]. In our study, none of the items were removed from factor analyses of the four subscales, consistent with research that confirmed the traditional four-factor structure of the 37-item FACT-Cog [17].

When mapping the loading of items to the objective cognitive domains of neuropsychological tests, items related to the same domain loaded to the same factor for FACT-Cog PCA, OTH, and QOL, but not for the FACT-PCI subscale: questions related to mental acuity and concentration loaded together on the same factor, but questions related to memory and multitasking ability loaded over several factors, and items CogF25 and CogC33a did not load with their related questions over the “functional interference” or “verbal acuity” domains, respectively. Our results are similar to those of the original validation article that identified borderline properties for the memory items [5] and to those of the English and Chinese versions of the FACT-Cog, where authors failed at identifying unidimensionality for the memory domain [6]. A possible explanation for such results could be cross-cultural differences and perceptions of these questions.

Furthermore, of all studied items, the only that presented a poor correlation was the CogC33c, related to the memory domain: “I have had to use written lists more often than usual, so I would not forget things”. This is not surprising since this item has been previously revised to capture if the patients noted an increase in the use of such methods to help them remember things, not only implying a simple organizational style [5]. However, even after revision, this item might still capture, to some extent, a personality characteristic rather than a cognitive function. Moreover, as stated in both Chinese [6] and Korean [16] validation studies, this item and the CogM12 “I have had trouble remembering new information, like phone numbers or simple instructions” might not be suitable for today’s context where technological advances reduce our need to recall information or use to-do lists. Therefore, memory items deserve to be revised again [5].
Also, items related to multi-tasking fit their respective subscales (CogMT1 and CogMT2 for FACT-CogPCI; CogPMT1 and CogPMT2 for FACT-CogPCA) with acceptable Cronbach’s alpha values for all items except for the CogMT2 that had a value less than 0.5. Furthermore, there was a high correlation between each item of the subscales and the total cognition score.

The scale had excellent internal consistency values: each of the subscales had excellent Cronbach’s alpha values (over 0.8), supporting the appropriate reliability of this version. The values for the FACT-CogOTH and FACT-CogQOL were even higher than those reported in the first validated French version (0.847 versus 0.7, and 0.954 versus 0.85, respectively) [15], and the Korean validation [16]. The test-retest reliability was also appropriate; the ICC between the test and retest was good for the total cognition score and all sub-scores, except for the FACT-Cog-QOL that had poor reliability, showing that the impact of cognition on QOL may differ across patients between chemotherapy cycles [2].

Convergent validity with pain, depression, anxiety, fatigue

Our results demonstrated a weak but significant and inverse correlation between the FACT-Cog scores and patients’ pain, fatigue, anxiety, and depression, similar to previously reported weak to moderate correlations [5, 6] in the 33-item scale, likely due to the multifactorial nature of cognitive decline and the possible interaction between psychological, psychosocial, and demographic factors in the chemo brain [6, 18].

However, regardless of the version used, the language, or the number of items assessed in previous studies, our results are overall consistent with previous research, highlighting sufficient reliability and validity for FACT-Cog. These results further confirm that the English, French, Chinese, and Korean versions of the questionnaire are effective tools to assess cognitive function in cancer patients at any stage of their treatment [5, 6, 15, 16].

Baseline factors affecting the cognitive function

The mean total FACT-Cog score in our sample was 106.48 ± 21.52, slightly lower than what was published in the English and Chinese 37-item versions (127 ± 19.6 and 126.6 ± 18, respectively) [19]. The lower cognitive function could be due to the difference in the studied population; our sample included patients with breast, colorectal, and lung cancer (17% having metastatic cancer) versus patients with only breast cancer and 7% metastasis. Better cognitive function was noted with younger patients and those who work compared to those who do not; lower capacity was observed in previous smokers versus non-smokers and patients with ovarian and brain metastasis versus those without metastasis.

Surprisingly, higher cognition scores were significantly associated with older age, although aging is a known risk factor for cognitive impairment, especially in older adults with pre-existing cognitive decline [1]. One hypothesis that can explain our results is the exclusion of patients with major cognitive disorders such as dementia or other capacity-limiting disorders preventing patients from completing the questionnaire. Another explanation could be our sample: almost 80% were married, and more than half of
the patients were diagnosed with breast cancer. In these women, particularly, studies have shown that psychological distress is higher than in other groups of cancer [20, 21], which could impact both subjective and objective measures of cognitive impairment [22, 23]. Indeed, patients who had a more altered body image (scarring, hair loss, and weight gain), lower less self-esteem, and lower self-efficacy (mothers with breast cancer, not being able to take care of their families/professional life), had higher levels of anxiety and depression [24–26]. In all cases, the FACT-Cog should be administered to a broader age group to examine the exact effect of age over a lifespan and determine the need for adjusting age scores [15].

To the best of our knowledge, no studies have explored the effect of smoking and working on the cognitive function of cancer patients, as evaluated by the FACT-Cog. However, research established the harmful effect of smoking on cognition, with ever-smokers having a reduced cognitive function compared to never-smokers [27–29], this risk persisting even after smoking cessation [27].

Recent guidelines have emphasized the importance of physical activity and social rehabilitation, both acquired in the workplace, to improve cognition in cancer patients [30–32]. The positive effect could be mediated by several biological mechanisms [33, 34] but also by improved psychological factors such as anxiety and depression [32, 35, 36].

Finally, expectedly, lower FACT-Cog scores were seen in patients with brain metastases since the cognitive decline is among the most reported symptoms [37]. Additionally, cognitive dysfunction in patients presenting ovarian metastases might be consequent to their treatment (adjuvant endocrine therapy for metastatic breast cancer [38–40] or targeted therapy such as bevacizumab for metastatic colorectal cancer [41]).

Limitations and Strengths

We acknowledge some limitations related to the study design. In the absence of an Arabic version, we used the French version in a group of French-speaking patients, but some misunderstandings might have happened. Also, we did not include a control group of healthy individuals to explore the normative validation of the scale. Nevertheless, despite all these limitations, and to the best of our knowledge, this study is the largest to validate the FACT-Cog, enrolling a heterogeneous sample of patients with different cancer conditions, treatment statuses, and ages, which allows the generalizability of the results. Moreover, it includes essential components evaluating the desired constructs of the cognitive function [19]. Nevertheless, a study with a larger sample and broader patients’ distribution is suggested to confirm our findings; a confirmatory factor analysis would be interesting to assess the current structure suitability in the French-speaking Lebanese population.

Conclusions

Our study validated the 37-item FACT-Cog tool and confirmed its validity and reliability in a population of Lebanese cancer patients. The four new multitasking questions could be easily included in the new
scoring system. In the absence of a validated Arabic version, the French self-reported scale can be easily used in clinical research and practice to optimize the diagnosis and management of cognitive impairment in cancer survivors which could facilitate the pooling of data from multinational studies into a single analytical framework in clinical trials or cognitive research [19].

Abbreviations

BMI: Body mass index
BSA: Body Surface Area
CogPCA: Perceived cognitive abilities subscale
CogPCI: Perceived cognitive impairments
CogOth: Comments from others
CogQOL: Impact of perceived cognitive impairments on quality of life
EORTC-QLQ C30 scale: European Organization for Research and Treatment of Cancer
FACIT: Functional Assessment of Chronic Illness Therapy system of Quality of Life questionnaires
FACT-Cog: Functional Assessment of Cancer Therapy-Cognitive Function
HADS-A: Hospital Anxiety and Depression Scale; anxiety subscale
HADS-D: Hospital Anxiety and Depression Scale; depression subscale
HDF: Hôtel-Dieu de France
ICC: Intra-class correlation coefficient
KMO: Kaiser-Meyer-Olkin
VAS: Visual analogue scale

Declarations

Ethics Approval and consent to participate: The study was approved by Hôtel-Dieu de France Hospital ethical committee (HDF, CEHDF1016, July 2017). Participants were fully informed of the purpose and procedures of the study and had the adequate time to ask questions and ponder about their voluntary participation. All patients gave their written informed consent before enrollment.

Consent for publication: Not applicable.
Availability of data and materials: Any data or material required are available upon demand.

Competing interests: The authors have no conflicts of interest to disclose.

Funding: This work was supported by the “Conseil de la recherche” of the Saint-Joseph University (FPH71).

Authors’ contributions: Aline HAJJ (AH), Pascale SALAMEH (PS), Rita KHOURY (RK), Roula HACHEM (RH), Hala SACRE (HS), Georges CHAHINE (GC), Joseph KATTAN (JK), Lydia RABBAA KHABBAZ (LRK).

AH and PS designed the study and wrote the protocol. LRK contributed to the design. AH and PS managed the literature search and analyses. RK, RH, GC and JK included the patients and performed the clinical assessment. PS undertook the statistical analysis. AH and PS wrote the first draft of the manuscript. HS critically reviewed and edited the manuscript. LRK and JK supervised the whole process and critically reviewed the article. All authors reviewed and approved the final version of the manuscript.

Acknowledgement: We would like to thank all physicians and students that helped us recruit the patients at Hôtel-Dieu de France Hospital (Beirut, Lebanon).

References

1. Magnuson A, Mohile S, Janelins M: Cognition and Cognitive Impairment in Older Adults with Cancer. Curr Geriatr Rep 2016, 5(3):213-219.

2. Pendergrass JC, Targum SD, Harrison JE: Cognitive Impairment Associated with Cancer: A Brief Review. Innov Clin Neurosci 2018, 15(1-2):36-44.

3. Hodgson KD, Hutchinson AD, Wilson CJ, Nettelbeck T: A meta-analysis of the effects of chemotherapy on cognition in patients with cancer. Cancer Treat Rev 2013, 39(3):297-304.

4. Boykoff N, Moieni M, Subramanian SK: Confronting chemobrain: an in-depth look at survivors’ reports of impact on work, social networks, and health care response. J Cancer Surviv 2009, 3(4):223-232.

5. Wagner L, Sweet J, Butt Z, Lai JS, Cella D: Measuring Patient Self-Reported Cognitive Function: Development of the Functional Assessment of Cancer Therapy–Cognitive Function Instrument. The Journal of Supportive Oncology 2009, 7:W32-W39.

6. Cheung YT, Lim SR, Shwe M, Tan YP, Chan A: Psychometric properties and measurement equivalence of the English and Chinese versions of the functional assessment of cancer therapy-cognitive in Asian patients with breast cancer. Value Health 2013, 16(6):1001-1013.

7. Hedden T, Ketay S, Aron A, Markus HR, Gabrieli JD: Cultural influences on neural substrates of attentional control. Psychol Sci 2008, 19(1):12-17.

8. Ketay S, Aron A, Hedden T: Culture and attention: evidence from brain and behavior. Prog Brain Res 2009, 178:79-92.
9. Comrey AL, Lee HB: **A first course in factor analysis**: Psychology press; 2013.

10. Medscape, Body Surface Area Based Dosing, last assessed May 1, 2020 at: https://reference.medscape.com/calculator/bsa-dosing

11. Dunn TJ, Baguley T, Brunsden V: *From alpha to omega: a practical solution to the pervasive problem of internal consistency estimation*. *Br J Psychol* 2014, 105(3):399-412.

12. Koo TK, Li MY: **A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research**. *J Chiropr Med* 2016, 15(2):155-163.

13. Jacobs SR, Jacobsen PB, Booth-Jones M, Wagner LI, Anasetti C: **Evaluation of the functional assessment of cancer therapy cognitive scale with hematopoietic stem cell transplant patients**. *J Pain Symptom Manage* 2007, 33(1):13-23.

14. Taylor R: **Interpretation of the correlation coefficient: a basic review**. *JDMS* 1990, 6:35-39.

15. Joly F, Lange M, Rigel O, Correia H, Giffard B, Beaumont JL, Clisant S, Wagner L: **French version of the Functional Assessment of Cancer Therapy-Cognitive Function (FACT-Cog) version 3**. *Support Care Cancer* 2012, 20(12):3297-3305.

16. Park JH, Bae SH, Jung YS, Jung YM: **The psychometric properties of the Korean version of the functional assessment of cancer therapy-cognitive (FACT-Cog) in Korean patients with breast cancer**. *Support Care Cancer* 2015, 23(9):2695-2703.

17. Costa DSJ, Loh V, Birney DP, Dhillon HM, Fardell JE, Gessler D, Vardy JL: **The Structure of the FACT-Cog v3 in Cancer Patients, Students, and Older Adults**. *J Pain Symptom Manage* 2018, 55(4):1173-1178.

18. Cheung YT, Shwe M, Chui WK, Chay WY, Ang SF, Dent RA, Yap YS, Lo SK, Ng RC, Chan A: **Effects of chemotherapy and psychosocial distress on perceived cognitive disturbances in Asian breast cancer patients**. *Ann Pharmacother* 2012, 46(12):1645-1655.

19. Cheung YT, Chan A: **Linguistic validation of Functional Assessment of Cancer Therapy-Cognitive Function (FACT-Cog): methodological concerns**. *Support Care Cancer* 2013, 21(3):655-656.

20. Jadoon NA, Munir W, Shahzad MA, Choudhry ZS: **Assessment of depression and anxiety in adult cancer outpatients: a cross-sectional study**. *BMC Cancer* 2010, 10:594.

21. Sanford SD, Beaumont JL, Butt Z, Sweet JJ, Cella D, Wagner LI: **Prospective longitudinal evaluation of a symptom cluster in breast cancer**. *J Pain Symptom Manage* 2014, 47(4):721-730.

22. Hermelink K, Kuchenhoff H, Untch M, Bauerfeind I, Lux MP, Buhner M, Manitz J, Fensterer V, Munzel K: **Two different sides of 'chemobrain': determinants and nondeterminants of self-perceived cognitive dysfunction in a prospective, randomized, multicenter study**. *Psychooncology* 2010, 19(12):1321-1328.

23. Koppelmans V, Breteler MM, Boogerd W, Seynaeve C, Gundy C, Schagen SB: **Neuropsychological performance in survivors of breast cancer more than 20 years after adjuvant chemotherapy**. *J Clin Oncol* 2012, 30(10):1080-1086.
24. Cobo-Cuenca AI, Martin-Espinosa NM, Rodriguez-Borrego MA, Carmona-Torres JM: Determinants of satisfaction with life and self-esteem in women with breast cancer. *Qual Life Res* 2019, **28**(2):379-387.

25. Cieslak K, Golusinski W: Coping with loss of ability vs. emotional control and self-esteem in women after mastectomy. *Rep Pract Oncol Radiother* 2018, **23**(3):168-174.

26. Lovelace DL, McDaniel LR, Golden D: Long-Term Effects of Breast Cancer Surgery, Treatment, and Survivor Care. *J Midwifery Womens Health* 2019, **64**(6):713-724.

27. Mons U, Schottker B, Muller H, Kliegel M, Brenner H: History of lifetime smoking, smoking cessation and cognitive function in the elderly population. *Eur J Epidemiol* 2013, **28**(10):823-831.

28. Stewart MC, Deary IJ, Fowkes FG, Price JF: Relationship between lifetime smoking, smoking status at older age and human cognitive function. *Neuroepidemiology* 2006, **26**(2):83-92.

29. Anstey KJ, von Sanden C, Salim A, O’Kearney R: Smoking as a risk factor for dementia and cognitive decline: a meta-analysis of prospective studies. *Am J Epidemiol* 2007, **166**(4):367-378.

30. Hartman SJ, Weiner LS, Nelson SH, Natarajan L, Patterson RE, Palmer BW, Parker BA, Sears DD: Mediators of a Physical Activity Intervention on Cognition in Breast Cancer Survivors: Evidence From a Randomized Controlled Trial. *JMIR Cancer* 2019, **5**(2):e13150.

31. National Comprehensive Cancer Network, NCCN Guidelines® & Clinical Resources, Last assessed MAY 6, 2020 at: https://www.nccn.org/professionals/physician_gls/default.aspx.

32. Swartz MC, Lewis ZH, Lyons EJ, Jennings K, Middleton A, Deer RR, Arnold D, Dresser K, Ottenbacher KJ, Goodwin JS: Effect of Home- and Community-Based Physical Activity Interventions on Physical Function Among Cancer Survivors: A Systematic Review and Meta-Analysis. *Arch Phys Med Rehabil* 2017, **98**(8):1652-1665.

33. Huang T, Larsen KT, Ried-Larsen M, Moller NC, Andersen LB: The effects of physical activity and exercise on brain-derived neurotrophic factor in healthy humans: A review. *Scand J Med Sci Sports* 2014, **24**(1):1-10.

34. Raz N, Rodrigue KM, Kennedy KM, Land S: Genetic and vascular modifiers of age-sensitive cognitive skills: effects of COMT, BDNF, ApoE, and hypertension. *Neuropsychology* 2009, **23**(1):105-116.

35. Mustian KM, Sprod LK, Janelsins M, Peppone LJ, Mohile S: Exercise Recommendations for Cancer-Related Fatigue, Cognitive Impairment, Sleep problems, Depression, Pain, Anxiety, and Physical Dysfunction: A Review. *Oncol Hematol Rev* 2012, **8**(2):81-88.

36. Bedillion MF, Ansell EB, Thomas GA: Cancer treatment effects on cognition and depression: The moderating role of physical activity. *Breast* 2019, **44**:73-80.

37. Noh T, Walbert T: Brain metastasis: clinical manifestations, symptom management, and palliative care. *Handb Clin Neurol* 2018, **149**:75-88.

38. Phillips KA, Aldridge J, Ribi K, Sun Z, Thompson A, Harvey V, Thurlimann B, Cardoso F, Pagani O, Coates AS et al: Cognitive function in postmenopausal breast cancer patients one year after completing adjuvant endocrine therapy with letrozole and/or tamoxifen in the BIG 1-98 trial. *Breast Cancer Res Treat* 2011, **126**(1):221-226.
39. Bender CM, Merriman JD, Gentry AL, Ahrendt GM, Berga SL, Brufsky AM, Casillo FE, Dailey MM, Erickson KI, Kratofil FM et al: Patterns of change in cognitive function with anastrozole therapy. *Cancer* 2015, 121(15):2627-2636.

40. Ganz PA, Petersen L, Castellon SA, Bower JE, Silverman DH, Cole SW, Irwin MR, Belin TR: Cognitive function after the initiation of adjuvant endocrine therapy in early-stage breast cancer: an observational cohort study. *J Clin Oncol* 2014, 32(31):3559-3567.

41. Fathpour P, Obad N, Espedal H, Stieber D, Keunen O, Sakariassen PO, Niclou SP, Bjerkvig R: Bevacizumab treatment for human glioblastoma. Can it induce cognitive impairment? *Neuro Oncol* 2014, 16(5):754-756.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SUPPLEMENTARYFILE1.docx
- SUPPLEMENTARYFILE2..docx