EVIDENCE FOR CIRCUMSTELLAR DISKS AROUND YOUNG BROWN DWARFS IN THE TRAPEZIUM CLUSTER

August A. Muench, João Alves, Charles J. Lada, and Elizabeth A. Lada

ABSTRACT

We report the results of deep infrared observations of brown dwarf candidates in the Trapezium Cluster in Orion. Analysis of the JHK color-color diagram indicates that a large fraction (~65% ± 15%) of the observed sources exhibit infrared-excess emission. This suggests the extreme youth of these objects and, in turn, provides strong independent confirmation of the existence of a large population of substellar objects in the cluster. Moreover, this suggests that the majority of these substellar objects are presently surrounded by circumstellar disks similar to the situation for the stellar population of the cluster. This evidence for a high initial disk frequency (>50%) around cluster members of all masses, combined with the smooth continuity of the cluster's initial mass function across the hydrogen-burning limit, suggests that a single physical mechanism is likely responsible for producing the entire cluster mass spectrum down to near the deuterium-burning limit. The results may also indicate that even substellar objects are capable of forming with systems of planetary companions.

Subject headings: circumstellar matter — infrared: stars — open clusters and associations: individual (Trapezium) — stars: low-mass, brown dwarfs — stars: pre–main-sequence

On-line material: color figures

1. INTRODUCTION

Among the most fundamental issues raised by the existence of brown dwarfs is the question of their origin and genetic relationship to planets and stars. Are brown dwarfs giant planets, small failed stars, or something else altogether different? The critical test needed to resolve this question is to determine whether brown dwarfs primarily form within circumstellar disks as companions to stars, similar to planets, or whether they form from their own individual cloud cores or fragments, like stars. To date, the most important observations bearing on this question have been (1) the observed lack of close brown dwarf companions found in radial velocity surveys of nearby field stars (the so-called brown dwarf desert; e.g., Marcy & Butler 1998) and (2) the existence of free-floating brown dwarfs in young clusters (e.g., Bouvier et al. 1998). Both facts would appear to implicate a stellar (nonplanet-like) origin for these objects, i.e., formation from independent, contracting fragments of the parental molecular cloud. However, our understanding of the origin of substellar objects is far from complete. For example, an alternative formation scenario has been recently proposed by Reipurth & Clarke (2001), who suggest that most freely floating brown dwarfs did not form from their own protostellar fragments but instead were initially formed as companions to other protostars and then were dynamically ejected via three-body encounters before they could grow into stellar mass objects.

The most direct way to address the question of the origin and nature of brown dwarfs is to investigate the properties of extremely young substellar objects in regions of active star and planet formation. For example, finding young brown dwarfs surrounded by their own circumstellar accretion disks would likely implicate a stellar-like formation mechanism (from individual cloud fragments) and place strong constraints for the theoretical models of their origin (e.g., Reipurth & Clarke 2001). Moreover, such a finding would raise the interesting question of whether planetary companions can form around such objects.

Recently, Lada et al. (2000) used near-infrared (1–3 μm) color-color diagrams to show that a large fraction (~80%–85%) of the stars in the young Trapezium Cluster display thermal infrared excess indicative of circumstellar disks. Furthermore, they found that the fraction of stars with disks remained high with decreasing mass to near the hydrogen-burning limit (HBL). Below this limit, their observations became incomplete. Does the incidence of circumstellar disks also continuously extend across the HBL to substellar mass objects?

Deeper infrared observations reveal a substantial population of faint sources that could be free-floating substellar objects in this cluster (McCaughean et al. 1995; Muench, Lada, & Lada 2000; Lucas & Roche 2000; Hillenbrand & Carpenter 2000; Luhrman et al. 2000). However, the identifications of these sources as substellar objects are not secure because observations of nearby unextincted control fields reveal significant numbers of field stars in the corresponding brightness range (A. A. Muench, E. A. Lada, C. J. Lada, & J. A. Alves 2001, in preparation, hereafter MLLA2001), suggesting that field star contamination could be a severe problem, especially for the faintest candidates. Reasonable attempts to account for the effects of the screen of extinction provided by the molecular cloud behind the Trapezium do suggest that the vast majority of the brown dwarf candidates are not reddened field stars (Hillenbrand & Carpenter 2000; MLLA2001). However, independent confirmation of membership is clearly important and could be provided by indications of extreme youth, such as the presence of infrared excess and dusty disks surrounding these objects.

In this Letter, we present an observational analysis of a deeper and more complete set of near-infrared observations for the candidate brown dwarf population in the Trapezium Cluster.
We find that a relatively large fraction of the candidates exhibit infrared excess indicative of circumstellar disks. This confirms both their membership in the cluster and their status as substellar objects and perhaps suggests an origin for them that is more stellar-like than planetary-like.

2. OBSERVATIONS

We obtained deep JHK_s images of the central 5$''$ × 5$''$ region of the Trapezium Cluster during 1 hr on 2000 March 14 using the SOFI (Son of ISAAC) infrared camera on the ESO 3.5 m New Technology Telescope (NTT) in La Silla, Chile. The NTT uses an active optics platform to achieve ambient seeing and high image quality, and the SOFI camera employs a large format 1024 × 1024 pixel Hawaii HgCdTe array. We configured SOFI to have a 4.95 × 4.95 field of view with a plate scale of 0.29 pixel$^{-1}$. Seeing conditions were superb (∼0.55$''$), and our 90% completeness limit is estimated at $K_s ∼ 17.5$. These NTT observations were obtained as part of a larger program to catalog the infrared JHK_s luminosities of sources over the entire mass spectrum in the Trapezium Cluster. The brighter portion of this catalog was presented in Lada et al. (2000), and only the NTT observations are discussed in this Letter. A complete description and analysis of these observations are presented in the forthcoming paper by MLLA2001.

3. RESULTS AND ANALYSIS

In Figure 1, we construct the infrared color-magnitude diagrams for those NTT Trapezium sources that were simultaneously detected at JHK_s wavelengths. In these diagrams, we compare the locations of these sources to the location of the theoretical isochrone from the Baraffe et al. (1998, hereafter BCAH98) nongray evolutionary models at the assumed mean age (1 Myr) and distance (400 pc) of this cluster. The BCAH98 theoretical isochrone closely follows the near-IR colors of the Trapezium sources, forming an excellent left-hand boundary to the source distribution in this color-magnitude space. The Trapezium sources are reddened away from this boundary with implied extinctions of $A_V ∼ 1–35$ mag.

We identified candidate brown dwarfs in the Trapezium Cluster by comparing the infrared luminosities of detected sources with those predicted by the theoretical evolutionary models. We selected all the NTT sources in the $J−H/H − K_s$ diagram (Fig. 1a) fainter than the predicted luminosity of the HBL (0.08 $M_⊙$) but brighter than the luminosity of an 0.02 $M_⊙$ object. This lower limit was chosen because the current theoretical evolutionary models do not extend much below this mass and because we wish to exclude cooler, lower mass objects whose intrinsic colors are not well constrained. Between these two mass/luminosity limits, we identified 112 candidate brown dwarfs in the $J−H/H − K_s$ diagram. We also indicate in Figure 1 the locations of 10 Trapezium Cluster members with spectral types equal to or later than M6 in Hillenbrand (1997). The spectral type M6 is an important boundary because recent spectroscopic studies have suggested that it represents the HBL in very young (τ ≤ 10 Myr) clusters (Luhman 1999). In Figure 1a, these late-type sources are on average 1 mag brighter than our adopted HBL. The faintness of our IR-selected brown dwarfs relative to these late-type

The predicted colors and magnitudes of the HBL for this distance/age combination are essentially identical to those for a younger assumed age (0.4 Myr) but at a larger distance (470 pc).
sources confirms that we are likely selecting sources below the HBL.

We refine our selection of brown dwarf candidates by plotting the $J−H/H$ candidates in the $H−K_s/K_s$ color-magnitude diagram in Figure 1b. In this diagram, a number of candidates are brighter and redder than the HBL. We retain these as likely brown dwarf candidates because they have photometric errors that are much too small to have scattered them to this location, because they are fainter than most of the M6+ dwarfs, and because excess 2 μm flux from circumstellar disks could act to brighten and redden such sources out of the brown dwarf regime in the $H−K_s/K_s$ color-magnitude diagram. A few very faint candidates scatter below the 0.02 M_\odot limit in the $H−K_s/K_s$ diagram, and we exclude these sources from our final sample.

In Figure 2, we plot the $H−K_s/J−H$ color-color diagram for the 109 candidate brown dwarfs. We also plot for comparison the loci of colors for giants and for main-sequence dwarfs from Bessell & Brett (1988). We extended the loci of M dwarf colors in Figure 2 from M6 to M9 using the empirical brown dwarf colors compiled in Kirkpatrick et al. (2000). The predicted effective temperatures of 1 Myr brown dwarfs from the BCAH98 evolutionary models are quite warm, e.g., T_{eff} \geq 2500 K for masses greater than our 0.02 M_\odot limit. Therefore, we expect that the intrinsic infrared colors of such young brown dwarfs are no redder than those of M9 dwarfs ($J−H = 0.72$ and $H−K_s = 0.46$; Kirkpatrick et al. 2000), which agree well with the $H−K_s$ colors predicted by current model atmospheres of low surface gravity, 2600 K sources (Allard et al. 2001).

We find that 65% ± 15% (71/109) of our candidates fall to the right of the reddening band for M dwarfs and into the infrared excess region of the color-color diagram. We further determine that 54% of the candidates have an infrared excess that is greater than their 1 σ photometric uncertainties in color. In addition to normal photometric uncertainties, the measured colors of these sources could be corrupted by the presence of the strong nebular background, and we performed an extensive set of artificial star photometry experiments to test this possibility. We found that nebular contamination can introduce some additional scatter to a star’s measured $J−H$ color and that this can explain in part the $J−H$ colors of \sim25% of the excess sources that are bluer than expected for late-type sources ($J−H < 0.6$). However, blueward $J−H$ scatter can produce a false excess fraction (\sim10%–20%) for only the faintest artificial stars, i.e., $H = K_s \sim 16$ mag. Furthermore, we find that such nebular contamination never produces as large a dispersion of the $H−K_s$ colors as is found in our observations of the candidate brown dwarfs, and we conclude that the observed infrared excesses are an intrinsic property of these objects.

4. DISCUSSION AND CONCLUSIONS

From analysis of their near-infrared colors, we find that \sim50% of the candidate brown dwarfs in the Trapezium Cluster display significant near-infrared excess. This is similar to the behavior of the stellar population of this cluster and suggests the extreme youth of these low-luminosity sources. This, in turn, provides independent confirmation of their membership in the cluster and their nature as bona fide substellar objects. As is the case for the more massive stellar members, the most likely explanation for the observed near-infrared excesses around the brown dwarfs in this cluster is the presence of circumstellar disks. Strong, independent support for the disk interpretation derives from the fact that we find 21 of the candidate brown dwarfs to be spatially coincident with optically identified Hubble Space Telescope “proplyds” (Bally, O’Dell, & McCaughrean 2000; O’Dell & Wong 1996), which are known to be photoevaporating circumstellar disks. We note that the proplyd brown dwarfs display a JHK excess fraction of 71%, while the brown dwarf candidates unassociated with known proplyds have a slightly lower excess fraction of 63%. The proplyd brown dwarfs also display bluer $J−H$ colors than the remaining brown dwarf candidates and account for half the excess sources with $J−H$ color less than 0.6. Despite their relatively blue $J−H$ colors, the proplyd nature of these sources affirms the hypothesis that the observed JHK infrared excess is intrinsic and a signature of the presence of a circumstellar disk.

The hypothesis that the observed near-IR excess is caused by circumstellar disks is further supported by observations of brown dwarf candidates in other clusters. Late-type brown dwarf candidates in the ρ Ophiuchi cluster were identified by their water vapor absorption features and display evidence for veiling in their infrared spectra as well as evidence for infrared excesses in their $H−K_s/J−H$ color-color diagrams (Wilking, Greene, & Meyer 1999; Cushing, Tokunaga, & Kobayashi 2000). Infrared Space Observatory (6.7 μm) observations reveal four brown dwarf candidates with mid-infrared excesses in Chamaeleon (Comerón, Neuhausser, & Kaas 2000). Luhman (1999) identified seven brown dwarf candidates in the IC 348 cluster that, after dereddening, fall to the right of the main-sequence reddening band but below the classical T Tauri star locus that is similar to the locus of brown dwarfs identified here. Luhman also identified strong Hα emission [W(Hα) >

7 See also ftp://ftp.ens-lyon.fr/pub/users/CRAL/Allard.
of the 10 M6 photometry, these authors found a much higher, displays When we select candidates at low reddenings (relative sample that would act to decrease the derived disk fraction. we may have included reddened background field stars in the result of selecting candidate brown dwarfs at all reddenings, a reason. First, JHK observations trace the innermost regions disks, and the particular disk geometry (inclination, presence inner disk holes, etc.) can act to reduce the efficiency of detecting disks from JHK photometry, especially for late-type sources (Hillenbrand et al. 1998; Lada & Adams 1992). For example, the ~50% excess fraction that we find for brown dwarfs is nearly identical to the excess fraction found in the JHK diagram of Lada et al. (2000) for objects in the cluster that are above the HBL. However, by employing 3 μm photometry, these authors found a much higher, ~85%, disk frequency even for the faintest members they detected. Indeed, of the 10 M6+ sources shown in Figure 2, nine were detected at the L band, and although only one of these sources clearly displays H−K excess, eight display K−L excess. Second, as a result of selecting candidate brown dwarfs at all reddenings, we may have included reddened background field stars in the sample that would act to decrease the derived disk fraction. When we select candidates at low reddenings (A < 5 relative to the isochrone in the Fig. 1a) in order to exclude background field stars, we find that 77% (57/74) of this sample displays infrared excess. Furthermore, this sample is an extinction-limited sample that is complete at all masses in our selected range and therefore is likely representative of the population as a whole.

We conclude from our current study and from the findings of Lada et al. (2000) that circumstellar disks are present around a high fraction of Trapezium Cluster members across the entire mass spectrum. This implies that brown dwarfs and higher mass stars form via a similar mechanism, e.g., from individual contracting fragments of the parental molecular cloud that, via conservation of angular momentum, form a central star accompanied by a circumstellar disk (Shu, Adams, & Lizano 1987). Low & Lynden-Bell (1976) showed that within the conditions of molecular clouds, the minimum Jeans mass for a cloud fragment could be as small as 0.007 M⊙, well below the mass necessary to create the Trapezium brown dwarfs. The free-floating nature of these brown dwarfs rules out their formation as companions in a circumstellar disk. Thus, our results seem to implicate a formation mechanism for brown dwarfs in which such objects are formed with circumstellar disks from individual protosubstellar cores. Consequently, even substellar objects may be capable of forming with systems of planetary companions. Confirmation of our hypothesis that a substantial fraction of the brown dwarfs in the Trapezium are surrounded by circumstellar disks requires additional data. Deep 3 μm ground-based observations such as those used by Lada et al. (2000) are necessary to permit a more accurate measurement of the excess fraction for the brown dwarf population. Longer wavelength infrared observations, such as those that will be possible with the Space Infrared Telescope Facility, would enable the construction of more complete spectral energy distributions for these sources that could then be compared directly with theoretical disk predictions. Estimates of the masses of the disks would have interesting implications for the possibility of forming planetary companions around brown dwarfs. Finally, high-resolution spectra of these objects would enable searches for accretion indicators, such as Hα emission, veiling, etc., that could yield accretion rates and information about the growth and early evolution of these interesting objects.

We thank John Stauffer for his suggestion to examine the colors predicted by nongray model atmospheres and Kevin Luhman for comments and suggestions on an earlier version of this work. A. A. M. was supported by a Smithsonian Predoctoral Fellowship and by the NASA Graduate Student Research Program. E. A. L. and A. A. M. acknowledge support from a Research Corporation Innovation Award and a Presidential Early Career Award for Scientists and Engineers (NSF AST 97-33367) to the University of Florida.

REFERENCES

Allard, F., Hauschildt, P. H., Alexander, D. R., Tamanai, A., & Schweitzer, A. 2001, ApJ, 565, 357
Bally, J., O’Dell, C. R., & McCaughrean, M. J. 2000, AJ, 119, 2919
Baraffe, I., Chabrier, G., Allard, F., & Hauschildt, P. H. 1998, A&A, 337, 403 (BCAH98)
Bessel, M. S., & Brett, J. M. 1988, PASP, 100, 1134
Bouvier, J., Stauffer, J. R., Martin, E. L., Barrado y Navascues, D., Wallace, B., & Bejar, V. J. S. 1998, A&A, 336, 490
Cohen, J. G., Frogel, J. A., Persson, S. E., & Elias, J. H. 1981, ApJ, 249, 481
Comérom, F., Neuhausen, R., & Kaas, A. A. 2000, A&A, 359, 269
Cushing, M. C., Tokunaga, A. T., & Kobayashi, N. 2000, AJ, 119, 3019
Hillenbrand, L. A. 1997, AJ, 113, 1733
Hillenbrand, L. A., & Carpenter, J. M. 2000, ApJ, 540, 236
Hillenbrand, L. A., Strom, S. E., Calvet, N., Merrill, K. M., Gally, I., Makidon, R., Meyer, M. R., & Skrutskie, M. F. 1998, AJ, 116, 1816
Kirkpatrick, J. D., et al. 2000, AJ, 120, 447
Lada, C. J., & Adams, F. C. 1992, ApJ, 393, 278
Lada, C. J., Muench, A. A., Haisch, K. J., Jr., Lada, E. A., Alves, J. F., Tollestrup, E. V., & Willner, S. P. 2000, AJ, 120, 3162
Low, C., & Lynden-Bell, D. 1976, MNRAS, 176, 367
Lucas, P. W., & Roche, P. F. 2000, MNRAS, 314, 858
Luhman, K. L. 1999, ApJ, 525, 466
Luhman, K. L., Reike, G. H., Young, E. T., Cota, A. S., Chen, H., Rieke, M. J., Schneider, G., & Thompson, R. I. 2000, ApJ, 540, 1016
Marcy, G. W., & Butler, R. P. 1998, ARA&A, 36, 57
McCaughrean, M. J., Zinnecker, H., Rayner, J., & Stauffer, J. 1995, in Proc. ESO Workshop, The Bottom of the Main Sequence—and Beyond, ed. C. G. Tinney (Heidelberg: Springer), 207
Meyer, M. R., Calvet, N., & Hillenbrand, L. A. 1997, AJ, 114, 288
Muench, A. A., Lada, E. A., & Lada, C. J. 2000, ApJ, 533, 385
Muzerolle, J., Briere, C., Calvet, N., Hartmann, L., Hillenbrand, L., & Gulbin, E. 2000, ApJ, 545, L141
O’Dell, C. R., & Wong, K. 1996, AJ, 111, 846
Reipurth, B., & Clarke, C. 2001, AJ, 122, 432
Shu, F. H., Adams, F. C., & Lizano, S. 1987, ARA&A, 25, 23
Wilking, B. A., Greene, T. P., & Meyer, M. R. 1999, AJ, 117, 469