FINE POLAR INVARIANTS OF MINIMAL SINGULARITIES OF SURFACES

ROMAIN BONDIL

ABSTRACT. We consider the polar curves $P_{S,0}$ arising from generic projections of a germ $(S,0)$ of complex surface singularity onto \mathbb{C}^2. Taking $(S,0)$ to be a minimal singularity of normal surface (i.e. a rational singularity with reduced tangent cone), we give the δ-invariant of these polar curves, as well as the equisingularity-type of their generic plane projections, which are also the discriminants of generic projections of $(S,0)$. These two (equisingularity)-data for $P_{S,0}$ are described in term, on the one side of the geometry of the tangent cone of $(S,0)$ and on the other side of the limit-trees introduced by T. de Jong and D. van Straten for the deformation theory of these minimal singularities. These trees give a combinatorial device for the description of the polar curve which makes it much clearer than in our previous Note on the subject. This previous work mainly relied on a result of M. Spivakovsky. Here we give a geometrical proof via deformations (on the tangent cone, and what we call Scott deformations) and blow-ups, although we need Spivakovsky’s result at some point, extracting some other consequences of it along the way.

INTRODUCTION

The local polar varieties of any germ $(X,0)$ of reduced complex analytic space were introduced by Lê D.T. and B. Teissier in [17]. In particular, the multiplicities of the general polar varieties are important analytic invariants of the germ $(X,0)$.

However, as also emphasised by these authors (see also [23] p. 430–431 and [24]), there is more geometrical information to be gained on the geometry of $(X,0)$ by considering not only the multiplicity but the (e.g. Whitney)-equisingularity class of these general polar varieties, which can be also shown to be an analytic invariant.

In this work, we will focus on the polar curves of a two-dimensional germ $(S,0)$.

Our reference on equisingularity theory for space curves will be the mémoire [8]. Of course, as opposed to the case of plane curves, there is no complete set of invariants attached to a germ of space curve describing its equisingularity class. As a general rule, results on equisingularity beyond the case of plane curves only make sense by considering the constancy of invariants in given families. Here we look at the family of polar curves and will consider the following invariants:

Definition 0.1. Our equisingularity data for a germ of space curve is both:
(i) the value of the delta invariant of the curve,
(ii) the equisingularity class of its generic plane projection.

2000 Mathematics Subject Classification. Primary: 32S15, 32S25, Secondary: 14H20, 14B07.
Key words and phrases. rational surface singularity, minimal singularity, polar curve, discriminant, limit tree, deformation, tangent cone, Scott deformation.
We recall the definitions of these notions in the text (see def. 6.1 and def. 1.2). The constancy of these two invariants in a family of space curves ensures Whitney conditions and actually the stronger *equisaturation condition* (cf. [8]).

In general, this is still partial information: for example, another interesting invariant for space curves, namely the semi-group of each branch, is completely independent of this equisaturation condition.

The purpose of this paper is to describe the equisingularity data in 0.1 for the *general polar curve* of a class of normal surface singularities called *minimal*.

These *minimal* *singularities* were studied in any dimension by J. Kollár in [19]. In the normal surface cases, they are also the *rational singularities with reduced fundamental cycle* and were studied by M. Spivakovsky in [21] and T. de Jong and D. van Straten in [15].

For these surfaces, we prove that the general polar curve is a union of A_n-plane curves singularities, where the n’s and the contacts between these curves can be deduced from the resolution graph of the surface (∗). This information gives in particular a complete description of part (ii) of the data in 0.1 i.e of the general plane projection of the polar curve, which is also the discriminant of the general projection (the coincidence of these two concepts is a theorem, cf. section 1).

The information on the discriminant was already given in the Note [5] as a consequence of a result of Spivakovsky, but the statement there was clumsy.

Here we give a much nicer device that allows to read directly the information about of the discriminant (or the polar curve as well) from both the information contained in the tangent cone of these singularities and the one given by a graph deduced from the resolution graph, which is precisely the *limit tree* introduced by T. de Jong and D. van Straten in their study of the deformation theory for these minimal singularities (see [15]).

We also provide an inductive proof relying much more on the geometrical properties of these minimal singularities. This proof makes the core of the paper. It still uses Spivakovsky’s theorem however, mainly through a characterisation of generic polar curve on the resolution which we deduce along the way.

The several plane branches of the polar curve lie in distinct planes in a bigger linear space, and the value of the delta invariant (part (i) in 0.1) gives some (partial) information on the configuration of these planes in the space. We explain how this delta invariant is easily computed from the what we call the Scott deformation of the surface, which turns out to give a delta-constant deformation of the polar curve onto bunches of generic configurations of lines.

Organisation of the paper:

In section 1 we recall the definition of the general polar curve $P_{S,0}$ of a germ of surface $(S,0)$, of the discriminant $\Delta_{S,0}$ of a generic projection of $(S,0)$ onto \mathbb{C}^2 and the important result that $\Delta_{S,0}$ is a *generic* projection of the curve $P_{S,0}$.

Section 2 gives the definition of minimal singularities in general, the particular case of normal surfaces, and their characterization by their dual resolution graph. We then define in section 3 a notion of *height* on the vertices of this resolution graph, which was used in other places such as [21] and [15], and corresponds to the number of point blow-ups necessary to let the corresponding exceptional component appear. We also give there our convention in representing dual graphs with \bullet and

\[1\text{hence the information about the semi-group if the branches is obvious}\]
and define reduced dual graphs to be the ones in which the self-intersection for components of the tangent cone has the minimum absolute value.

In section 4, we give the description of generic polar curves on a resolution of a minimal singularity as proved by M. Spivakovsky (thm. 4.2). This result will play the following somehow different roles in the sections following it:

(i) Section 5 explains how, using the full strength of this result, one may derive quite quickly a description of the generic discriminant $\Delta_{S,0}$ (more precisely of the statement (*) for the polar curve). This sums-up the Note 5 in an improved way, and an mistake in an example there is corrected.

(ii) In section 6, we mention how, using a result of Giraud, theorem 4.2 also permits, at least theoretically, to deduce the δ-invariant for the general polar curve from the shape of its transform on the minimal resolution. This result is however not useful for concrete computations, for which we use another approach in section 11.

(iii) In section 7, we get, as a purely qualitative consequence of (i) and (ii), a characterisation of generic polar curves on a resolution X_N of both the singularity $(S,0)$ and its Nash-blow-up. This will be the application of Spivakovsky’s result we will use in the proof of our main result.

Section 8 to 11 form the core of the text:

- in section 8, the polar curve for the tangent cone of a minimal singularity is made geometrically explicit and through the process of deformation onto the tangent cone is also seen as part of the polar curve of the singularity.
- in section 9, we recall what we need from the limit tree construction of de Jong and van Straten. With this,
- in section 10, we give, and prove, our main theorem describing the information in (*) using the limit tree construction and the contribution of the tangent cone.
- in section 11, we show how a special deformations of minimal singularities has a nice interpretation in our descriptions of polar curves and also give a nice way to compute the delta invariant of these, completing the information in def. 0.1 (i).

This leads us to question whether (part of) the deformation theory of these minimal singularities of surfaces could be recover the one of their discriminant?

Acknowledgement – The author thanks Lê D.T. for arising the question treated here, M. Merle and M. Spivakovsky for their remarks on 5, T. de Jong for pointing to us his limit-tree construction, H. Flenner and B. Teissier for helpful conversations.

1. Polar invariants of a normal surface singularity

1.1. The general polar curve as an analytic invariant.

We recall here the definition of the local polar variety of a germ of surface following [17]:

Let $(S,0)$ be a normal complex surface singularity $(S,0)$, embedded in $(\mathbb{C}^N,0)$:

- for any $(N-2)$-dimensional vector subspace D of \mathbb{C}^N, we consider a linear projection $\mathbb{C}^N \to \mathbb{C}^2$ with kernel D and denote by $p_D : (S,0) \to (\mathbb{C}^2,0)$, the restriction of this projection to $(S,0)$.

Restricting ourselves to the D such that p_D is finite, and considering a small representative S of the germ $(S,0)$, we define, as in [17] (2.2.2), the polar curve $C(D)$ of the germ $(S,0)$ for the direction D, as the closure in S of the critical locus of the restriction of p_D to $S \setminus \{0\}$. It is a reduced analytic curve.

As explained in loc. cit., it makes sense to say that for an open dense subset of the Grassmann manifold $G(N-2,N)$ of $(N-2)$-planes in \mathbb{C}^N, the space curves $C(D)$ are equisingular e.g. in terms of Whitney-equisingularity (or strong simultaneous
resolution, but this is the same for families of space curves, cf. [8]). We call this
equisingularity class the general polar curve for \((S, 0)\) embedded in \(\mathbb{C}^N\).

One may then compare the general polar curves obtained by two distinct em-
bbeddings of the surface into a \((\mathbb{C}^N, 0)\) and it turns out that they are still Whitney-
equisingular: this is essentially proved in [23] (see p. 430) in a much more general
setting (arbitrary dimension and “relative” polar varieties). Summing-up this :

Theorem 1.1. The Whitney equisingularity-type of the general polar curve \(C(D)\)
depends only on the analytic type of the germ \((S, 0)\).

In this paper, following somehow the program in [24], we want to study this
invariant \(C(D)\) for a special class of surface singularities.

1.2. **The generic discriminant as a derived invariant.** With the same nota-
tion as before, we define the discriminant \(\Delta_{p_D}\) as (the germ at 0 of) the reduced
analytic curve of \((\mathbb{C}^2, 0)\) image of the polar curve \(C(D)\) by the finite morphism \(p_D\).

Again, one may show that, for a generic choice of \(D\), the discriminants obtained
are equisingular germs of plane curves, and that this in turn defines an analytic
invariant of \((S, 0)\).

We will denote \(\Delta_{S,0}\) the equisingularity class of the discriminant of a generic
projection of \((S, 0)\).

As it turns out, there is a very nice relationship between the general polar curve
and \(\Delta_{S,0}\). For this we recall the following :

Definition 1.2. Let \((X, 0) \subset (\mathbb{C}^N, 0)\) be a germ of reduced curve. Then a linear
projection \(p: \mathbb{C}^N \to \mathbb{C}^2\) will said to be generic with respect to \((X, 0)\) if the kernel
of \(p\) does not contain any limit of bisecants to \(X\) (cf. [8] for an explicit description
of the cone \(C_5(X, 0)\) formed by the limits of bisecants to \((X, 0)\)).

Then the equisingularity type of the germ of plane curve \((p(X), 0)\) image of
\((X, 0)\) by such a generic projection is uniquely defined by the saturation of the ring
\(\mathcal{O}_{X,0}\) (cf. [8]).

We now state the following transversality result (proved for curves on surfaces of
\(\mathbb{C}^3\) in [9] theorem 3.12 and in general as the “lemme-clé” in [23] V (1.2.2)) relating
polar curve and discriminants :

Theorem 1.3. Let \(p_D: (S, 0) \to (\mathbb{C}^2, 0)\) be as above, and \(C(D) \subset (S, 0) \subset
(\mathbb{C}^N, 0)\) be the corresponding polar curve. Then there is an open dense subset \(U\) of
\(G(N-2, N)\) such that for \(D \in U\) the restriction of \(p\) to \(C(D)\) is generic in the
sense of definition 1.2.

Definition 1.4. Let us define \(P_{S,0}\) to be not the Whitney-equisingularity class of
the general polar curve as in thm. [11] but the equisaturation class of the general
polar curve (which may be a smaller class). As we recalled after definition [11] this
class is precisely given by the constancy of the invariants there. Then, the foregoing
theorem [11] states that \(\Delta_{S,0}\) is the generic plane projection of \(P_{S,0}\).

As said in the introduction, the goal of this work is to determine \(P_{S,0}\) completely.
2. Definition of minimal singularities

We begin with a definition valid in any dimension (following [19] § 3.4):

Definition 2.1. We call a singularity \((X, 0)\) *minimal* if it is reduced, Cohen-Macaulay, the multiplicity and embedding dimension of \((X, 0)\) fulfil:

i) \(\text{mult}_0 X = \text{emdim}_0 X - \dim_0 X + 1\),

ii) and the tangent cone \(C_{X,0}\) of \(X\) at 0 is reduced.

Considering normal surfaces, one has the following characterisation:

Theorem 2.2. Minimal singularities of normal surface are exactly the rational surface singularities with reduced fundamental cycle (with the terminology of [2]).

Condition (i) follows for any rational surface singularity from Artin’s formulas for multiplicities and embedding dimension. Condition (ii) follows from the fact that the fundamental cycle of rational singularities is also the cycle defined by the maximal ideal. Conversely, the fact that minimal normal singularities are rational is proved in [19] 3.4.9. The proof that “reduced tangent cone” implies “reduced fundamental cycle” is easy (after our thm. 3.2 or see e.g. in [26] p. 245).

Taking \((S, 0)\) to be a normal surface singularity and \(\pi : (X, E) \rightarrow (S, 0)\) to be the minimal resolution of the singularity, one associates as usual to the exceptional curve configuration \(E = \pi^{-1}(0)\) a dual graph \(\Gamma\) where each irreducible component \(L_i\) in \(E\) is represented by a vertex and two vertices are connected by an edge if, and only if, the corresponding components intersect.

Each vertex \(x\) of \(\Gamma\) (we will frequently abuse notation and write \(x \in \Gamma\)) is given a weight \(w(x)\) defined as:

\[
w(x) := -L_x^2,
\]

where \(L_x^2\) is the self-intersection of the corresponding component \(L_x\) on \(X\).

For any rational surface singularity, it is well-known that all the \(L_i\) are smooth rational curves and that \(\Gamma\) is a tree. But in general, it takes some computation to check whether a given tree is the dual tree of a rational singularity (cf. [2]).

On the contrary, one reads at first sight from the dual graph that a surface singularity is minimal (cf. [21] II 2.3):

Remark 2.3. Let \(\Gamma\) be any weighted graph. It is the dual graph of resolution of a minimal singularity if, and only if, \(\Gamma\) is a tree and for each vertex \(x \in \Gamma\) one has the following inequality:

\[
w(x) \geq v(x),
\]

where \(v(x)\) denotes the valence of \(x\) i.e. the number of edges attached to \(x\).

3. More about the dual graphs

In the representation of the dual graph \(\Gamma\) of a minimal singularities we will distinguish between the vertices with \(w(x) = v(x)\) and the others.

Notation 3.1. In representing the dual graphs of minimal singularities, we chose to represent with a \(\bullet\) the vertices with \(w(x) = v(x)\) so that there is no need to mention the weight above them.

On the contrary we enumerate as \(x_1, \ldots, x_k\) the vertices with \(w(x_i) > v(x_i)\), and let them figure as \(\ast\) on the graph. One should then mention the weights of the \((x_i)\) to define the graph.
In this work, we will pay much attention to the minimal singularities with the property that for all vertices \(x_i \) with \(w(x_i) > v(x_i) \) one has in fact the equality \(w(x_i) = v(x_i) + 1 \).

Let us here call reduced the graphs with this property: it is then clear that in representing these dual graphs, there is no longer need to mention the weights.

For example, to say that the graph in figure 1 is reduced amounts to say that \(w(x_1) = w(x_n) = 2 \) and \(w(x_i) = 3 \) for \(1 < i < n \) (and the vertices with • all have weight two here).

Theorem 3.2 (Tyurina, cf. [25]). Let \((S, 0) \) be a rational surface singularity and \(\pi : (X, E) \rightarrow (S, 0) \) its minimal resolution. Let \(b : S_1 \rightarrow S \) the blow-up of \(0 \) in \(S \).

Then there is a morphism \(r : X \rightarrow S_1 \) such that \(\pi = b \circ r \) and a component \(L_i \) of \(E = \pi^{-1}(0) \) is contracted to a point by \(r \) if, and only if, the intersection \((L_i \cdot Z) = 0 \), where \(Z \) is the fundamental cycle.

Of course, the components of \(E \) which are not contracted by \(r \) are the (strict transform by \(r \)) of the components of the \(\mathbb{P}(C_{S,0}) \) appearing on \(S_1 \).

When \((S, 0) \) is a minimal singularity, the fundamental cycle is \(Z = \sum_{x \in \Gamma} L_x \) and hence for a given vertex \(y \in \Gamma \) the intersection \((L_y \cdot Z) \) is just \(v(y) - w(y) \).

This should justify the:

Definition 3.3. Let \((S, 0) \) be a minimal normal surface singularity and \(\Gamma \) be the dual graph of its minimal resolution.

We will say that a vertex \(x \) in \(\Gamma \) has height one if \(w(x) > v(x) \), which from the foregoing remarks means that the corresponding component \(L_x \) corresponds to a component of (the proj of) the tangent cone \(C_{S,0} \). Hence we will denote by \(\Gamma_{TC} = \{ x_1, \ldots, x_n \} \) the set of these vertices.

Then, we define the height of any vertex \(x \) in \(\Gamma \) as the number \(s_x \) defined by:

\[
 s_x := \text{dist}(x, \Gamma_{TC}) + 1,
\]

where dist is the distance on the graph (number of edges on the geodesic between two vertices).

The reader should check that this height corresponds to the number of blow-ups necessary to make the corresponding component “appear”.\(^2\) The notation \(s_x \) here comes from [21] II 5.1 and was the one used in the previous work [3].

Example 3.4. As an example, we let figure the heights on the graph in Figure 2, where the \((x_i) \) are as before the vertices of height one (with *):

We will also need the following:

\(^2\)This latter notion is studied more systematically for any rational singularity as “desingularization depth” in [13], of course in this general case, it is not given directly from a distance!
Definition 3.5. Let Γ be a minimal graph. The connected components Γ_i (for $i = 1, \ldots, r$) of $\Gamma \setminus \Gamma_{TC}$ are called the Tyurina components of Γ.

Theorem 3.2 hence state that the blow-up S_1 of $(S, 0)$ has exactly r singularities (S_1, O_i) which are minimal singularities with dual resolution graph Γ_i.

4. A result of Spivakovsky

To state this result, we introduce a further terminology:

Let $\pi : (X,E) \to (S,0)$ be the minimal resolution of the singularity $(S,0)$, where $E = \pi^{-1}(0)$ is the exceptional divisor, with components L_i. A cycle will be by definition a divisor with support on E i.e. a linear combination $\sum a_i L_i$ with $a_i \in \mathbb{Z}$ (or $a_i \in \mathbb{Q}$ for a \mathbb{Q}-cycle).

Let Γ be the dual graph of the minimal resolution π and for each vertex x let s_x denote the height defined in def. 3.3.

Definition 4.1. Let then x, y be two adjacent vertices on Γ : the edge (x, y) in Γ is called a central arc if $s_x = s_y$. A vertex x is called a central vertex if there are at least two vertices y adjacent to x such that $s_y = s_x - 1$ (cf. [21]).

We then define a \mathbb{Q}-cycle Z_{Ω} on the minimal resolution X of $(S, 0)$ by:

\[Z_{\Omega} = \sum_{x \in \Gamma} s_x L_x - Z_K, \]

where Γ is the dual graph, and Z_K is the numerically canonical \mathbb{Q}-cycle.\footnote{uniquely defined by the condition that for all $x \in \Gamma$, $Z_K \cdot L_x = -2 - L_x^2$ since the intersection product on E is negative-definite.}
The theorem from \cite{21} (theorem 5.4) is now:

Theorem 4.2. Let $(S,0)$ be a minimal normal surface singularity. There is a open dense subset U' of the open set U of theorem \ref{thm:1.3} such that for all $D \in U'$ the strict transform $C'(D)$ of $C(D)$ on X:

a) is a multi-germ of smooth curves intersecting each component L_x of E transversally in exactly $-Z_{Ω,L_x}$ points,
b) goes through the point of intersection of L_x and L_y if and only if $s_x = s_y$ (point corresponding to a central arc of the graph). Furthermore, the curves $C'(D)$, with $D \in U'$ do not share other common points (base points) and these base points are simple, i.e. the curves $C'(D)$ are separated when one blows up these points once.

Referring to loc. cit. for unexplained terminology, let us make the following:

Remark 4.3. Blowing-up once the base points referred to in the b) above, one gets a resolution X_N of the Nash blow-up of the germ $(S,0)$. The map from X_N to the normalized Nash blow-up $N(S)$ is simply the contraction of the exceptional components which are not intersected by a branch of the generic polar curve.

5. **First description of the polar curve and the discriminant**

This section essentially describes the results obtained in \cite{5} in an improved form. We refer to this Note for the proofs of the following lemmas:

Lemma 5.1. Let $(S,0)$ be a minimal normal surface singularity and $π : X \to (S,0)$ its minimal resolution. It is known that $π$ is (the restriction to S of) a composition $π_1 \circ \cdots \circ π_r$ of point blow-ups. Then, this composition of blow-ups is also the minimal resolution of the generic polar curve $C(D)$ for $D \in U'$ as in theorem \ref{thm:4.2}.

The following is a slightly more precise version of loc. cit. lem. 3.2:

Lemma 5.2. For $D \in U'$ as in theorem \ref{thm:4.2} the polar curve $(C(D),0)$ on $(S,0)$ is a union of germs of curves of multiplicites two. In particular, it has only smooth branches and branches of multiplicity two, the latter being exactly those for which the strict transform goes through a central arc as in b) of theorem \ref{thm:4.2}.

Let us now make a perhaps not so standard definition:

Definition 5.3. Let $(Γ_1,0)$ and $(Γ_2,0)$ be two analytically irreducible curve germs in $(C^N,0)$. We will hereafter call *contact* between the $Γ_i$ simply the number of points blow-ups necessary to separate these two branches.

For the description of the polar curve, just recall that one calls an A_n-curve a curve analytically isomorphic to the plane curve defined by $x^2 + y^{n+1} = 0$:

Proposition 5.4. Let $(S,0)$ be a minimal surface singularity and $C = C(D)$ be a generic polar curve corresponding to D in the open set U' of thm. \ref{thm:4.2}.

Then if $C = \bigcup_i Γ_i$ is the decomposition of C into analytic branches, denote $L_{Γ_i}$ the irreducible exceptional component on the minimal resolution of S which intersects the strict transform of $Γ_i$. It is unique except in the case of central arcs. In this case just choose one between the two intersecting components. Then:

(i) The contact between $Γ_i$ and $Γ_j$ in the sense of def. \ref{def:5.3} above is the minimum height in the chain between $L_{Γ_i}$ and $L_{Γ_j}$ (cf. def. \ref{def:5.3}).
(ii) We may write rather C as a union of $C = \bigcup C_i$ of curves of multiplicity two by taking by pairs branches intersecting the same exceptional component on X that we will now denote L_{C_i}.

Then, each C_i is an A_{n_i}-curve, when the number n_i equals $2.s(L_{C_i})$ if C_i goes through a central arc, and $2.s(L_{C_i}) - 1$ otherwise (which comprises the case of central vertices and components of height s equal to one).

We may obviously define the contact between these A_{n_i}-curves just by taking one branch in each, so that it is still given by (i).

Proof. The statement about the contact in (i) follows from lemma 5.1. The first statement in (ii) is lemma 5.2.

Any curve of multiplicity two is an A_n-curve, see e.g. [4] p. 62. The statement about the n_i follows from (i) just like the statement about the contacts. □

The result in prop. 5.4 gives a complete description of the equisingularity class of the discriminant plane curve in $(\mathbb{C}^2,0)$ using theorem 1.3.

Proposition 5.5. The discriminant $\Delta_{p_D} = p_D(C(D))$ has exactly the same properties as the polar curve $C(D)$ in prop. 5.4. This describes the generic discriminant $\Delta_{S,0}$ as a union of A_{n_i}-curves with the n_i and the contacts described in 5.4.

Proof. The curves C_i in prop. 5.4 being plane curves, they are their own generic plane projections. Hence by thm. 1.3 the image Δ_{p_D} of $C(D)$ by the generic projection p_D decomposes as the same union of A_{n_i}-curves.

We give here a direct argument to prove that the contact (in sense of def. 5.3) between the branches in Δ_{p_D} is the same as the one in $C(D)$ (in [5], we invoked a bilipschitz invariance which is perhaps not obvious with our definition of contact) : Considering a pair Γ_1, Γ_2 of branches in $C(D)$, we may embed $\Gamma_1 \cup \Gamma_2$ into a $(\mathbb{C}^3,0)$ and choose coordinates so that Γ_1 is parametrized by $(x = t^{e_1}, y = t^{n}, z = 0)$ and (unless the contact is one) Γ_2 is parametrized by $(x = t^{e_2}, y = 0, z = t^{m})$, with $e_i = 1$ or 2. We then leave it to the reader that the projection defined by $(x, y + z)$ is transverse to the C_5 of def. 1.2 and that the contact in our sense is preserved. □

The foregoing description of the discriminant still involves the computation of the number of branches on each central vertex by Spivakovsky’s formula. We will describe a much better and condensed one in section 10, which does not involve any computation and is geometrically more significant. Before, the author would like to make amend to the readers of [5] for a mistake in the following :

Example 5.6 (Correct version of Example 1 in [5]). Consider $(S,0)$ with dual graph Γ as on figure 3 where, following the convention of section 3 the • denote vertices with $w(x) = v(x)$, and the others form $\Gamma_{TC} = \{x_1, \ldots, x_4\}$ with the weights indicated on the graph.

The branches of the polar curve going through the components of Γ_{TC} are just four branches going through L_{x_1}, which gives in the equisingularity class $\Delta_{S,0}$ four distinct lines through the origin with contact one with any other branch of $\Delta_{S,0}$.

Then we have two central vertices (of height 3 and 2) and a central arc (with boundaries of height 2), which give respectively a A_5 a A_3 and a A_4-curve from prop. 5.4 and 5.5 above.

This is an equivalent, but more simply expressed, version of the statement in [5] Cor. 4.3.
The contact between the A_5 and the A_4 is two (and not 3 as claimed in loc. cit.) and their contact with the other A_3 is one.

Hence using coordinates, one may take as representative of the equisingularity class of $\Delta_{S,0}$ can be choosen to be:

$$\frac{(x^4 + y^4)}{(x^2 + y^3)}(x + y^2 + i y^3)(x + y^2 - i y^3)(x^2 + y^5)(y^2 + x^4) = 0.$$

The two A_4

The A_5

Figure 3:

6. The Delta invariant of the polar curve

Definition 6.1. Let $(C,0)$ be a germ of reduced complex curve singularity. Let $n : \overline{C} \to C$ be its normalisation map, which provides a finite inclusion of the local ring $\mathcal{O}_{C,0}$ into the semi-local ring $\mathcal{O}_{\overline{C}}$.

The δ-invariant of $(C,0)$ is by definition $\delta(C,0) := \dim \mathcal{O}_{\overline{C}}/\mathcal{O}_{C,0}$.

In the paper [13], J. Giraud gives a way to compute $\delta(C,0)$ for any curve on a rational surface singularity $(S,0)$ if one knows a resolution of the surface singularity where C' is a multi-germ of smooth curves.

To quote this result, we need the following lemma, proved in loc. cit. 3.6.2:

Lemma 6.2. Let $p : (X, E) \to (S,0)$ be a resolution of a normal surface singularity $(S,0)$, with $E = \pi^{-1}(0) = \bigcup E_i$. Let $D = \sum a_i E_i$ be a \mathbb{Q}-cycle on X.

There exists a unique \mathbb{Z}-cycle $V = \sum a_i E_i$ with the property that the intersection $(V \cdot E_i) \leq (D \cdot E_i)$ for all i’s, and minimum for this property.

This \mathbb{Z}-cycle will be denoted as $\lfloor D \rfloor$.

(In the previous lemma, minimum means that any other \mathbb{Z}-cycle with this property has the form $\lfloor D \rfloor + W$ with W a cycle with non-negative coefficients.)

In the situation of lemma 6.2 let’s associate to any curve $(C,0) \subset (S,0)$ a \mathbb{Q}-cycle Z_C uniquely defined by the condition that for all irreducible component E_i of E the intersection number $(E_i \cdot Z_C)$ equals $(E_i \cdot C')$ where C' denote the strict transform of C on X. We may then quote (cf. loc. cit. cor. (3.7.2)):

Theorem 6.3. Let $p : (X, E) \to (S,0)$ be a resolution of a rational surface singularity. Let $(C,0)$ be a germ of reduced curve on $(S,0)$, such that, denoting C' the strict transform of C on X, C' is a multi-germ of smooth curves on X.

Then, using the \mathbb{Q}-cycle Z_C associated C in the way defined above, and denoting $D_C := Z_C + [-Z_C]$, one has the following formula\(^5\):

$$\delta(C,0) = -\frac{1}{2}(Z_C \cdot (Z_C + Z_K)) + \frac{1}{2}(D_C \cdot (D_C + Z_K)).$$

\(^5\)Beware that in loc. cit. the + before the second term in the right hand-side of the corresponding formula (5) there is not properly printed, yet it is a plus. One should also read formula (3) there as $D := \epsilon(D_s) - [D_s] = \epsilon(D_s) + [-\epsilon(D_s)]$ which tallies my definition for D_C.

Thanks to Spivakovsky’s theorem we may apply the foregoing to \((C, 0) \subseteq (S, 0)\) a general polar curve of a minimal singularity, \(X\) the minimal resolution of \((S, 0)\), and \(Z_C = -Z_0\). As a corollary to these two theorems, we state:

Corollary 6.4. Let \((S, 0)\) be a minimal singularity of normal surface (hence rational by thm. 2.2). The \(\delta\) invariant of the generic polar curve is a topological invariant of \((S, 0)\) i.e. depends only on the data of the weighted resolution graph.

Applying the formula in 6.3 to get \(\delta\) for the polar curve in concrete cases leads to huge computations, except in very simple:

Example 6.5. Let \((S, 0)\) be the singularity at the vertex of the cone over a rational normal curve of degree \(n\). It is the minimal singularity whose (dual) resolution graph has only one vertex of weight \(n\). Assume that \(n \geq 3\). Check that denoting \(E\) the irreducible exceptional divisor, one has \(Z_\Omega = (2n - 2)/nE\), \(Z_K = -(n - 2)/nE\), \(\lfloor Z_\Omega \rfloor = 2E\) and hence \(\delta(C, 0) = 3n - 6\).

In section 8 we will get the result of the foregoing example (and more) from a geometric argument, with no use of the theorems above. The problem of computing \(\delta\) for the general polar curve of any minimal singularity is solved in 11.4.

7. **A CHARACTERISATION OF THE GENERIC POLAR CURVE IN A RESOLUTION**

As a consequence of the results of sections 5 and 6, we get the following characterisation for generic polar curves on the minimal resolution of the surface:

Theorem 7.1. Let \((S, 0)\) be a minimal normal surface singularity, and \(X\) the minimal resolution of \((S, 0)\). Let \(C(D)\) be any polar curve of \((S, 0)\) with the property that its strict transform \(C'(D)\) on \(X\) is exactly as depicted in thm. 4.2.

Then \(C(D)\) is a generic polar curve \(P_{S, 0}\) as defined in def. 1.4, i.e. has the generic invariants defined in §0.1 of the introduction.

Proof. The description of prop. 5.4 rests only on the shape of the polar curve in the resolution \(X\), and gives in particular the datum (ii) in §0.1 (cf. def 1.4 and prop. 5.5). Giraud’s theorem 6.3 gives the value of the delta invariant also from the data of the resolution. Considering the linear system of polar curves, our special polar curve is now equisingular in the sense of def. 1.4 to the generic polar curve. □

Remark 7.2. We explained in §6 how such characterisations of “general” curves on a resolution may be useful: here it will be used in rem. 10.6.

We also need the following inductive property for which we will use the explicit form of the cycle \(Z_\Omega\) in §1 before Spivakovsky’s thm. §4.2:

Proposition 7.3. Let \((S, 0)\) be a minimal singularity of normal surface, with dual resolution graph \(\Gamma\). Let \(S_1\) be the blow-up of \((S, 0)\) at 0 and \(O_i\) a singular point of \(S_1\). Let \(\Gamma_i \subset \Gamma\) be the Tyurina component corresponding to \(O_i\) as in def. §3.6. Let \(Z_{\Omega_i}\) be the cycle associated to \(\Gamma_i\) as \(Z_\Omega\) is associated to \(\Gamma\) in thm. §4.3.

Then for any vertex \(x \in \Gamma_i\) the corresponding component \(L_x\) on \(X\) satisfies the following intersection property:

\[(Z_\Omega \cdot L_x) = (Z_{\Omega_i} \cdot L_x).\]

\footnote{Ideally, we would have liked not to do so, see precisely (a) of the proof of this proposition.}
This means that the corresponding component \(L_x \) is intersected by exactly the same number of branches of the generic polar curve for \((S,0)\) or for \((S_1,O_i)\), and the central arcs in \(\Gamma_i \) are obviously also central arcs in \(\Gamma \).

Proof. Although the assertion in (2) follows easily from the explicit form of the cycles \(Z_\Omega \) and \(Z_\Omega_i \) (cf. (1) p. 7), we distinguish between:

(a) the components \(L_x \) with \(w(x) - v_{\Gamma_i}(x) \geq 2 \). Since \(x \in \Gamma_i \), \(w(x) = v_{\Gamma_i}(x) \), hence the property in \(\Gamma_i \) implies that \(x \) is a central vertex in \(\Gamma \). Hence \(L_x \) bears components of the strict transform of the general polar curve of \((S,0)\), and here we know no other reason than computing to prove (2).

(b) the central components \(L_x \) in \(\Gamma_i \) (central vertex or boundary of a central arc). Then, it is also central in \(\Gamma \), and we believe (2) should be understood without any reference to the cited formula, using the following remark in [21] p. 459 (first lines): “in the neighbourhood of \(L_x \), \(\tilde{\Omega} \) is generated by sections whose zero set is contained in the exceptional divisor near \(L_x \).” □

8. The contribution of the tangent cone in the polar curve

In section 5 we said that \(P_{S,0} \) was formed by \(A_n \)-curves. Here we explain how the bunches of \(A_1 \)-curves arise, and will be more precise about their geometry.

8.1. Discriminant and polar curve for cones over Veronese curves.

Remark 8.1. Let \((S,0)\) be the singularity of the cone over the rational normal curve of degree \(m \) in \(\mathbb{P}_C^m \), whose dual graph has just one vertex, with weight \(m \).

Denoting \(P_m \) the polar curve for a generic projection of \((S,0)\) onto \((\mathbb{C}^2,0)\), it is just the cone over the critical set of the projection of the rational normal curve onto \(\mathbb{P}_1^C \), which is a set of \(2m - 2 \) distinct points by Hurwitz formula.

Hence we know that here \(P_m \) is given by \((2m - 2) \) lines in \((\mathbb{C}^{m+1},0) \) with:

i) \(\delta \)-invariant \(3m - 6 \) as computed in example 6.5, from Giraud’s formula.

ii) obviously a set of \(2m - 2 \) distinct lines in \((\mathbb{C}^2,0) \) as generic plane projection, denoted \(\delta_m \).

We can say more on the geometry of \(P_m \) in this case, and re-find the value of \(\delta \):

Lemma 8.2. The general polar curve \(P_m \) of the singularity of a cone over a Veronese curve of degree \(m \geq 3 \), is a set of \((2m - 2) \) lines in \((\mathbb{C}^{m+1},0) \), which has the generic (minimum) value of the \(\delta \)-invariant for any set of \(2m - 2 \) lines in \((\mathbb{C}^{m+1},0) \), and this value is \(3n - 6 \).

Proof. (a) We will denote \(V = v_m(\mathbb{P}^1) \) the rational normal curve of degree \(m \) in \(\mathbb{P}_C^m \) and \(G_p(m-2,m) \) the Grassman manifold of subspaces of codimension two in this \(\mathbb{P}_C^m \), and consider the map:

\[G_p(m-2,m) \to \text{Hilb}_{\mathbb{C}}^{2m-2} \]

onto the Hilbert scheme parametrizing the set of \(2m - 2 \)-points in \(V \), which assign to each \(\Lambda \) the critical subscheme of the projection along \(\Lambda \).

Using a result of H. Flenner and M. Manaresi (in [11] 3.3-3.5) this map is generally finite, and since both spaces have dimension \(2m - 2 \) and the target space is irreducible, the image of this map is dense.

(b) Now from a result of G.M. Greuel in [13] (3.3), a set of \(r \)-lines through the origin in \(\mathbb{C}^{m+1} \), corresponding to a set \(p_1, \ldots, p_r \) of points in \(\mathbb{P}_C^m \), has the generic \(\delta \)
invariant, if for all \(d \) in some bounded set of integers, their images \(\nu_d(p_1), \ldots, \nu_d(p_r) \) by the corresponding Veronese embedding \(\nu_d : \mathbb{P}^n \rightarrow \mathbb{P}^{N_d} \) span a projective space of maximal dimension.

If we take \(V \subset \mathbb{P}^m \) to be a Veronese curve, one may always find such generic sets of points on \(V \) since by composing the Veronese embeddings in Greuel’s condition with the Veronese embedding defining \(V \) this amounts to a genericity conditions for points in \(\mathbb{P}^1 \).

Hence there is an open subset \(U \subset \text{Hilb} \mathbb{P}^{2m-2} \) with the properties that the cone over this set of points has the minimum delta invariant. Applying (a) gives that these points actually occur as critical locus.

(c) A formula for the delta invariant for such a generic configuration of \(r \) lines in \(\mathbb{C}^n \) is given by Greuel in loc. cit. We leave it to the reader to check that it gives \(3n - 6 \) in our situation. \(\square \)

8.2. Geometry of the tangent cone of a minimal singularity.

Remark 8.3. Let \((S,0)\) be a minimal normal surface singularity with embedding dimension \(N \), and \(C_{S,0} \) be its tangent cone in \((\mathbb{C}^N,0)\).

Then if \(\mathbb{P} : \mathbb{C}^N \setminus \{0\} \rightarrow \mathbb{C}^{N-1} \) denotes the standard projection, the projective curve \(\mathbb{P}(C_{S,0}) \) is a non-degenerated\(^7\) curve of minimal degree in \(\mathbb{P}^{N-1}_{\mathbb{C}} \). Indeed, condition (i) in def. 2.1 immediately passes to \(\mathbb{P}(C_{S,0}) \).

It then follows by a standard argument (cf. e.g. \cite{3} p.67–68) that each of its irreducible components is a rational normal curve of a linear subspace of \(\mathbb{P}^d_{\mathbb{C}} \).

Let \(\Gamma \) be the dual graph of the minimal resolution of \((S,0)\). From Tyurina’s thm. 3.2 and the remarks following it, an irreducible component \(L_{x_i} \) of \(\mathbb{P}(C_{S,0}) \) corresponds to a vertex \(x_i \) with \(w(x_i) > v(x_i) \) in \(\Gamma \) and it is easy to compute that the degree \(m(x_i) \) of the rational normal curve \(L_{x_i} \) is precisely \(w(x_i) - v(x_i) \).

Conclusion 8.4. Hence the tangent cone \(C_{S,0} \) is embedded in \((\mathbb{C}^N,0)\) as a union of cones over rational normal curves of degree \(m_i \) intersecting along singular lines.

8.3. Scheme-theoretic polar curves and discriminants. To study deformations of polar curves and discriminant, we need a scheme-theoretic definition for these objects, as introduced by B. Teissier in \cite{22} through the use of Fitting ideals.

We call \(P^F(S,0) \) the polar curve of a generic projection \(p \) of \((S,0)\) onto \((\mathbb{C}^2,0)\) as defined by the Fitting ideal \(F_0(\Omega_p) \) in \(\mathcal{O}_{S,0} \) and \(\Delta^F_{S,0} \) its image as defined by \(F_0(p_\ast(\mathcal{O}_{P^F(S,0)}) \) in \(\mathcal{O}_{\mathbb{C}^2,0} \).

For generic projection \(p \) of a normal surface \((S,0)\), these two schemes are generically reduced so that their divisorial parts \(\text{div} P^F(S,0) \) and \(\text{div} \Delta^F_{S,0} \) coincide with the reduced polar curves and discriminants defined in section 8.4.

Apply these definitions to the non-isolated singularity \((C_{S,0},0)\), we obtain:

Lemma 8.5. Let \((S,0)\) be a minimal normal surface singularity, with tangent cone \(C_{S,0} \), \(\Gamma \) the dual graph of the minimal resolution of \(S \). Recall that we then denote \(\Gamma_{TC} \) the set of vertices \(x_i \) in \(\Gamma \) with \(w(x_i) > v(x_i) \).

Here, we denote by \(m(x_i) \) the difference \(w(x_i) - v(x_i) \), and we have just seen that \(C_{S,0} \) is made of cones over rational normal curves of degree \(m(x_i) \) intersecting

\(^7\)i.e. non contained in a proper linear subspace of \(\mathbb{P}^{N-1}_{\mathbb{C}} \)

\(^8\)But as explicitly proved in \cite{22} 3.5.2, the Fitting polar curves and discriminants for minimal singularities do have embedded components as soon as the multiplicity is bigger than 3.
along singular lines. Hence, considering the discriminant of a projection of C^N onto C^2 restricted to $C_{S,0}$ we get that:

$$\text{div} P^F_{C_{S,0}} = \bigcup_{x_i \in \Gamma_{TC}} P_{m(x_i)} \cup \text{the singular lines in } C_{S,0} \text{ with some multiplicity},$$

and

$$\text{div} \Delta^F_{C_{S,0}} = \bigcup_{x_i \in \Gamma_{TC}} \delta_{m(x_i)} \cup \text{non reduced lines},$$

where the P_m and δ_m were defined in rem. S.1 and lem. S.2.

8.4. Deformations of the polar curves and discriminants. We first recall what we need from the construction of the deformation of $(S,0)$ onto its tangent cone $C_{S,0}$, as described in [12] chap. 5: let \mathcal{M} be the blow-up of $(0,0)$ in $S \times C$, and $\rho : \mathcal{M} \to C$ the flat map induced by composing the blow-up map with the second projection. One then shows that: for all $t \neq 0$ the fiber $M_t := \rho^{-1}(t)$ is isomorphic to S and M_0 is the sum of the two divisors on M, namely $\mathbb{P}(C_{S,0} \oplus 1) + S_1$ where S_1 stands for the blow-up of S in 0. To this deformation, we will apply the following:

Proposition 8.6. Let $\rho : X \to \mathbb{D}$ a flat map, with a section σ so that the germs $(X_t, \sigma(t))$ are isolated singularities for $t \neq 0$, X_0 is a reduced possibly non-isolated singularity, and dim X_t is two for all t.

Then, reducing the disk \mathbb{D}, one may find a projection $p : X \to C^2 \times \mathbb{D}$ compatible with ρ so that for all $t \in \mathbb{D}$ the polar curve of $p_t : X_t \to C^2 \times \{t\}$ is generic, and its image is also the generic discriminant $\Delta_{X_t,0}$ as defined in section 1.

The trick in the proposition above is well-known to specialists and may be deduced from more general results, but we don’t know an explicit reference in the literature: hence a proof will be given in [1].

Applying the proposition to the foregoing deformation $\rho : \mathcal{M} \to \mathbb{D}$ gives that $P^F_{S,0}$ deforms onto $P^F_{C_{S,0}}$ and the same statement for the Fitting discriminants. The description of the generically reduced branches of $P^F_{C_{S,0}}$ in lem. S.3 now implies:

Corollary 8.7. Let $(S,0)$ be a minimal singularity, with notation as in lem. S.5 let us denote L_x, the component of $\mathbb{P}(C_{S,0})$ corresponding to $x_i \in \Gamma_{NT}$. Then:

(i) The generic polar curve $P_{S,0}$ of $(S,0)$ contains a union:

$$P_{TC} = \bigcup_{x_i \in \Gamma_{TC}} P_{m(x_i)}$$

of generic configuration of lines $P_{m(i)}$ as described in lem. S.6. The bunch $P_{m(x_i)}$ in $P_{TC} \subset P_{S,0}$ is by definition the set of branches of $P_{S,0}$ which are deformed onto the (scheme-theoretically) smooth branches $P_{m(x_i)} \subset P^F_{C_{S,0}}$ of lem. S.7.

(ii) The same statement is true for the generic discriminant $\Delta_{S,0}$ of $(S,0)$:

denoting $\Delta_{TC} = \bigcup_{x_i \in \Gamma_{TC}} \delta_{m(x_i)}$, with $\delta_{m(x_i)}$ standing for $2m(x_i) - 2$ lines in $(C^2,0)$, we may just as well say that these smooth branches with pair-wise distinct tangents just form a Δ_{TC} part in $\Delta_{S,0}$.

(iii) Denote S_1 the blow-up of $(S,0)$. The strict transforms on S_1 of the smooth curves in $P_{m(x_i)} \subset P_{S,0}$ intersect the exceptional divisor only in L_x, and this intersection is transverse.

Proof. (i) A curve deforming onto a smooth curve is certainly smooth, hence locally a line. In lem. S.2 we said the P_m-curves are characterised by the minimality of δ.

...
By semi-continuity of this δ applied to the family deforming onto $P_{m(x_i)} \subset P_{C_{S,O}}$ we get the full conclusion for the curves in P_{S_0}. (ii) is direct from (i).

(iii) Let’s denote ρ the deformation onto the tangent cone as recalled at the beginning of this section 8.4. The fiber $\rho^{-1}(0)$ contains the blow-up S_1 of $(S,0)$ intersecting $\mathbb{P}(C_{S,O} \oplus 1)$ in $\mathbb{P}(C_{S,O})$. Since the lines $P_{m(x_i)}$ in $C_{S,O}$ are transverse to the Veronese curve L_x, in the $\mathbb{P}(C_{S,O})$ at infinity, it also follows that the strict transforms of the curves in $P_{m(x_i)} \subset P_{S,0}$ are transverse to the corresponding exceptional component $L_x, \subset \mathbb{P}(C_{S,O})$ on the blow-up S_1. □

9. LIMIT TREES

We proceed to identify the remaining part in $P_{S,0}$ besides the P_{TC}-part just exhibited. The following limit tree construction introduced by T. de Jong and D. van Straten in [15] will turn out to be much relevant to this description. Precisely, using the height function we defined in 3.3, one finds in loc. cit. (1.13) the :

Definition 9.1. Let Γ be the dual graph of minimal resolution of a minimal singularity of normal surface. A limit equivalence relation \sim is an equivalence relation on the vertices of Γ satisfying the following two conditions :

(a) Vertices x with height $s_x = 1$ i.e. with $w(x) > v(x)$ belong to different equivalence classes,

(b) for every vertex x in Γ with height $s_x = k + 1, k \geq 1$, there is exactly one vertex y connected to x with height $s_y = k$ and $y \sim x$.

Then, the tree $T = \Gamma/\sim$ is a called a limit tree associated to Γ.

It is clear that any equivalence class contains exactly one vertex x_i of height one, so that we denote this equivalences classes as vertices \tilde{x}_i in T.

In fact, we only make this construction in the particular case of minimal singularities with reduced graphs in the sense of notation 3.1, so that the definition above really correspond to the definition in loc. cit.9

Starting with Γ as in example 3.4, one may associate non-isomorphic limit trees to the same reduced graph Γ, depending on the equivalence classes chosen, namely :

\begin{itemize}
 \item $T_1 : \tilde{x}_1 \tilde{x}_4 \tilde{x}_2 \tilde{x}_3$
 \item $T_2 : \tilde{x}_1 \tilde{x}_2 \tilde{x}_4 \tilde{x}_3$
\end{itemize}

Figure 4: Two distinct limit trees for the dual graph in Figure 2

9For the non-reduced case, one has to use the extended resolution graph of loc. cit. to build the limit tree, to really get a bijection between vertices of T and element of the set \mathcal{H} considered in loc. cit. But, again, we won’t use this.
Notation 9.2. For any pair \(x, y \) of vertices on the dual graph \(\Gamma \), we denote by
\(C(x, y) \) the (minimal) chain on \(\Gamma \) joigning them (including the end points). (It is
unique since \(\Gamma \) is a tree).

We define the length \(l(x, y) \) to be the number of vertices on \(C(x, y) \) and the
overlap \(\rho(x, y; z) \) as the number of vertices on \(C(x, z) \cap C(y, z) \).

As in (10), we attach to a limit tree \(T \) the following data :
- for any edge \((\tilde{x}, \tilde{y})\) of \(T \), the length \(l(\tilde{x}, \tilde{y}) \) where \(x, y \) are the corresponding
vertices of height one in the resolution graph \(\Gamma \),
- for any pair of adjacent edges \((\tilde{x}, \tilde{z})\) and \((\tilde{z}, \tilde{y})\) in \(T \), the overlap \(\rho(\tilde{x}, \tilde{y}; \tilde{z}) \).

We use the notation \((T, l, \rho)\) for the data above. In loc. cit. lemma (1.16), it is
shown that these data determine uniquely the resolution graph \(\Gamma \).

10. DESCRIPTION OF THE POLAR CURVE USING THE LIMIT TREE

The following is our main result, we formulate it for the polar curve \(P_{S,0} \) reminding
that this implies the analogous statements for the discriminant \(\Delta_{S,0} \) :

Theorem 10.1. Let \((S, 0)\) be a minimal singularity of normal surface. Let \(\Gamma \) be
the dual graph of the minimal resolution of \(S \).

Let \(\Gamma' \) be the reduced graph associated to \(\Gamma \) in the sense of notation (8), i.e. the
same graph with the weights of the \(x_i \) of height one reduced to \(v(x_i) + 1 \), and let
\((S', 0)\) be a minimal singularity with dual resolution graph \(\Gamma' \).

Then the generic polar curve \(P_{S,0} \) decomposes into :

\[P_{S,0} = P_{TC} \cup P_{S'} \]

where the contact between any line in \(P_{TC} \) and any branch in \(P_{S',0} \) is one and \(P_{TC} \)
was described in cor. (8) as the “contribution of the tangent cone”.

Let \(T \) be limit tree for \(\Gamma' \), as defined in section 8 and \((T, l, \rho)\) the set of data
(length and overlap) associated to it at the end of that section.

These data give the following easy description of \(P_{S'} \) (as a union of \(A_\sigma \)-curves) :
- each edge \((\tilde{x}_i, \tilde{x}_j)\) in the limit tree \(T \) defines exactly one \(A_{l_{i,j}} \)-curve in \(P_{S'} \), where
\(l_{i,j} \) stands for \(l(\tilde{x}_i, \tilde{x}_j) \).
- For each pair of adjacent edges \((\tilde{x}_i, \tilde{x}_j)\) and \((\tilde{x}_k, \tilde{x}_l)\), the contact (def. (3)) between
the corresponding \(A_{l_{i,j}} \) and \(A_{l_{k,l}} \)-curves in \(P_{S'} \) is exactly the overlap \(\rho(i, k; j) \).
- For non adjacent edges \((\tilde{x}_i, \tilde{x}_j)\) and \((\tilde{x}_k, \tilde{x}_l)\), the contact between the corresponding
\(A_{l_{i,j}} \) and \(A_{l_{k,l}} \)-curves in \(P_{S'} \) is the minimum of the contacts between adjacent edges
on the chain joining them.

Let us first illustrate this on the following :

Example 10.2. (i) For a minimal singularity \((S, 0)\) with dual graph as in Figure 2
p. 7, using any of the limit trees in Figure 4, we get : \(P_{S,0} = A_5 \cup A_3 \cup A_3 \), with
contact three between the two \(A_5 \) and contact one between the \(A_5 \)'s and the \(A_3 \).
(ii) For the example 5.6, the description of the discriminant was already given there.
It is now more directly seen from the limit tree in Figure 5 given below together
with the data \((l, \rho)\), where the lengths \(l \) are put above the edges and the \(\rho \) as smaller
numbers in-between a pair of edges (following the same convention as in (1.19)).

The rest of this section is devoted to the proof of thm. 10.1 above.

First we recall the following well-known :
Lemma 10.3. Let \((S,0)\) be a minimal singularity of normal surface and \(m\) be the multiplicity of \((S,0)\). Then the multiplicity of the generic polar curve (resp. discriminant) is \(2m - 2\).

Proof. This is easily deduced from the two following facts (we refer e.g. to \([7]\) (3.9) and § 5):

(a) for any normal surface \((S,0)\) and any projection \(p : S \to \mathbb{C}^2\) whose degree equals the the multiplicity \(m\) of the surface, the multiplicity of the discriminant \(\Delta_p\) is \(m + \mu - 1\) where \(\mu\) is the Milnor number of a generic hyperplane section of \((S,0)\).

(b) When \((S,0)\) is minimal, then \(\mu = m - 1\).

The proof of thm. \([10.4]\) is by induction on the maximal height of the vertices in \(\Gamma\):

A) Initial step – The maximal height in \(\Gamma\) is one. We prove the result by a direct argument (independent from Spivakovsky’s theorem). Now, all the vertices \(x_i\) in \(\Gamma\) are in \(\Gamma_{TC}\), and the minimal resolution \(X\) of \((S,0)\) is the first blow-up.

(a) We know from the deformation onto the tangent cone that each exceptional component \(E_{x_i}\) bears the strict transform of \((2n_i - 2)\) smooth branches of the polar curve, cutting \(E_{x_i}\) transversely at general points, with \(n_i = w_i - v_i\) (cf. \([8]\) (iii)).

(b) A general theorem of J. Snoussi (in \([20]\)), valid for any normal surface singularity, describes the base points of the linear system of polar curves on the first normalized blow-up of \((S,0)\). In our situation the blow-up is already normal and even smooth, and hence Snoussi’s theorem implies that here the base points are exactly the singular points of the exceptional divisor, i.e. the intersection points of two components \(E_{x_i}\) and \(E_{x_j}\).

Let \(N\) be the number of vertices in \(\Gamma\), then \(\Gamma\) has \(N - 1\) edges (it is a tree), which represent the intersections points of exceptional components.

By Bertini’s theorem, the part of the generic polar curve \(P_{S,0}\) whose strict transform goes through a base point is singular, i.e. has multiplicity at least two.

Hence, adding the contributions of the smooth branches in (a) and the singular curves in (b), the multiplicity \(m(P_{S,0}, 0)\) of the polar curve satisfies the inequality:

\[
m(P_{S,0}, 0) \geq \sum_{i=1}^{N} (2n_i - 2) + 2(N - 1).
\]

Comparing this to the equality \(m(P_{S,0}, 0) = 2m - 2\) of lemma \([10.3]\) above, where the multiplicity \(m\) of \((S,0)\) equals the \(\sum_{i=1}^{N} n_i\), proves that \((3)\) is in fact in equality.

Hence, each point of intersection of two exceptional components bears a curve of multiplicity exactly two. We now claim that the curve in question is the strict transform of a \(A_2\)-curve singularity on \((S,0)\). Let \(C\) be such a curve.
Then, the multiplicity $m(C, 0) = 2$ is the intersection number of C with a generic hyperplane section of $(S, 0)$. This intersection number may be computed on X as the intersection number of the strict transform C' with the reduced exceptional divisor (which is the cycle defined by the maximal ideal of $(S, 0)$). Since we know C' intersects two exceptional components, the intersection of C' with each one should be transverse.

Hence C is a branch a multiplicity two resolved in one blow-up, i.e. A_2-curve. This completes the proof of the initial step A.

B) The induction step – We use first the following general lemma in [7] 6.1 :

Lemma 10.4. Let $(S, 0)$ be any normal surface singularity and $p : (S, 0) \to (C^2, 0)$ any projection with degree equal to the multiplicity $\nu = m(S, 0)$.

Then, denoting $b_0 : \overline{C^2} \to (C^2, 0)$ the blow-up of the origin, and Σ_1 the analytic fiber product of b_0 and p above $(C^2, 0)$, one proves that the normalisation of Σ_1 coincides with the normalized blow-up $\overline{S_1}$ of $(S, 0)$, which yields the following commutative diagram :

\[
\begin{array}{c}
\overline{S_1} \\
\downarrow_{\phi_1} \\
\Sigma_1 \\
\downarrow_{p_1} \\
\overline{C^2} \quad \downarrow b_0 \\
\end{array}
\]

where $\varphi_1 : \overline{S_1} \to \overline{C^2}$ is the composition of the pulled-back projection p_1 with the normalization n.

The following formula can then be obtained for the discriminant Δ_{φ_1} :

\[
\Delta_{\varphi_1} = (\Delta_p)' + (\nu - r)E,
\]

where $(\Delta_p)'$ is the strict transform of the discriminant of p, E denotes the reduced exceptional divisor, ν is the multiplicity of the germ $(S, 0)$ and r the number of branches of a general hyperplane section of $(S, 0)$.

We refer to loc. cit. for the proof, we just precise that the discriminants in the equality of the lemma are the divisorial parts of Fitting discriminants as defined in section 8.3, which are hence allowed to have non-reduced components.

Here, $(S, 0)$ being a minimal singularity, the blow-up S_1 is already normal (cf. e.g. [7] Thm. 5.9), so that $\overline{S_1}$ is just S_1. The generic projection that we consider fulfills certainly the property $\deg p = m(S, 0)$ as a necessary condition. Since the general hyperplane section of a minimal singularity of multiplicity ν is just ν lines (cf. e.g. loc. cit. lem. 5.4), formula (4) in the above lemma simply reads :

\[
\Delta_{\varphi_1} = (\Delta_p)',
\]

and similarly, denoting $C(D)$ the polar curve of the projection p, $C'(D)$ its strict transform on S_1 and C_{φ_1} the polar curve for the projection φ_1, we get :

\[
C'(D) = C_{\varphi_1}.
\]

From thm. 3.2 (see also def. 3.5), we know that the singularities O_i of S_1 are minimal singularities whose resolution graphs are the Tyurina components Γ_i.

[7] Referring to the original publication for further details.
Localising the result of (5) in O_i yields the following:

Conclusion 10.5. Let $C(D)$ be a generic polar curve for $(S,0)$ and $C'(D)$ its strict transform on the blow-up S_1 of S at 0. Let O_i a singular point of S_1. We proved that the part of $C(D)' \cap O_i$ going through O_i is the polar curve for the projection φ_1 obtained of the germ (S_1, O_i) onto a plane, as in the lemma above.

Remark 10.6. To apply induction, we need to know that the projection $\varphi_1 : (S_1, O_i) \rightarrow (C^2,0)$ in question is generic, i.e. has the generic polar curve.

Counting multiplicity as in A) gives that this projection has degree equals the multiplicity of (S_1, O_i), but this is not enough to prove that the polar curve is generic. This will be proved thanks to the results of section 7.

Indeed, once we know from conclusion 10.5 that $C'(D) \cap O_i$ is a polar curve for (S_1, O_i) we may use prop. 7.3 to see that the strict transform of $C'(D) \cap O_i$ on X which is also part of the strict transform of $C(D)$, actually fulfils the conditions of the characterisation in thm. 7.1. Then :

Conclusion 10.7. With the same notation as in conclusion 10.5, the part of $C'(D) \cap O_i$ going through O_i is the generic polar curve P_{S_1, O_i} for the germ (S_1, O_i).

Now, the induction hypothesis applied to each (S_1, O_i) yields that P_{S_1, O_i} is a union of A_n-curves described by a limit tree T_i for Γ_i as stated in theorem 10.1.

C) Reconstructing $P_{S,0}$ from its strict transform

Let $(S,0)$ be a minimal surface singularity and let S_1, be its blow-up, and E the exceptional divisor with components E_1, \ldots, E_r. We will denote by O_1, \ldots, O_s the singular points of S_1 and Q_1, \ldots, Q_t the points of intersection of components of E which are not singular points of S_1.

We already know that the generic polar curve $P_{S,0}$ of $(S,0)$ is precisely made of :

1. A_1-curves in number $\sum_{i=1}^r (m_i - 1)$, whose strict transforms intersect each E_i as $(2m_i - 2)$ lines going through generic points of E_i, for $i = 1, \ldots, r$.
2. A_2-curves singularities in number t, each one having its strict transform on S_1 intersecting a different point Q_i defined above,
3. curves whose strict transforms go through the singular point O_i of S_1.

The first two points are proved by the same reasoning as in step A). Step B) applied to curves in (3) for each O_i gives the description of the strict tranforms of these curves as A_n-curves described by the limit tree T_i associated to (S_1, O_i).

The corresponding description, for all the curves in (3) whose strict transform go through the same O_i, on $(S,0)$ itself is then obtained by adding 2 to all the n's and one to the ρ by elementary properties of these A_n-curves and our def. 5.5 of the contact.

But now from [15] (1.18) we know that the data associated to limit tree T_i of Γ_i are related to T exactly the same way (length:= length-2, overlap := overlap-1).

This completes the proof by induction for the first two points of theorem 10.1, the last point follows by definition of the contact.

11. Scott deformations and polar invariants

The following was first proved by de Jong and van Straten in [15] Thm. 2.13:
Theorem 11.1. Let \((S,0)\) be a minimal singularity of normal surface with multiplicity \(m\). Let \(S_1\) be the blow-up of 0 in \(S\), with singular points \(O_1, \ldots, O_r\). Then there exists a one-parameter deformation \(\rho : X \rightarrow \mathbb{D}\) of \((S,0)\) on the Artin component such that \(X_s\) for \(s \neq 0\) has \(r+1\) singular points isomorphic respectively to the \((S_1, O_i)\) for \(i = 1, \ldots, r\) and to the cone over the rational normal curve of degree \(m\).

This has to be compared to the a standard result for plane curves, attributed to C. A. Scott in [16], where a proof is also given (see p. 460):

Lemma 11.2. Let \((C,0) \in (\mathbb{C}^2,0)\) be a plane curve singularity of multiplicity \(m\). Let \(O_i\) for \(i = 1, \ldots, r\) be the singularities of the first blow-up \(C_1\) of \((C,0)\). There exists a one-parameter \(\delta\)-constant deformation \(\Gamma\) of \((C,0)\) such that \(\Gamma_s\) for \(s \neq 0\) is a plane curve which has \(r+1\) singular points isomorphic respectively to the \((C_1, O_i)\) for \(i = 1, \ldots, r\) and to an ordinary \(m\)-tuple point.

Beyond the formal analogy between thm. 11.1 and lem. 11.2, de Jong and van Straten prove the result in thm. 11.1 for the more general class of \emph{sandwiched singularities} as a consequence of their theory of \emph{decorated curves}: all the deformations of these surface singularities can be obtained from deformation of \emph{decorated curves} associated to the singularity. In particular, the Scott deformation of a decorated curve (conveniently adjusted) gives rise to the deformation in thm. 11.1.

As an application of our description for generic discriminants in thm. 11.1 however, we get first a new relation between these two deformations:

Corollary 11.3. Let the notation be the same as in thm. 11.1. We will also call the deformation \(X\) the Scott deformation of the surface \((S,0)\).

Considering a projection \(p : X \rightarrow \mathbb{D} \times \mathbb{C}^2\) as in prop. 8.6 i.e. compatible with \(\rho\) and such that the discriminant \(\Delta(p_t : X_t \rightarrow \mathbb{C}^2)\) is the generic discriminant \(\Delta_t\) for all the singularities in \(X_t\), for all \(t\), one gets a deformation \(\rho' : \Delta \rightarrow \mathbb{D}\) of the generic discriminant \(\Delta_{S,0}\) of \((S,0)\) which is exactly the Scott deformation of this curve as defined in lem. 11.2.

Proof. In our proof in section 11.1 it is proved that the discriminant of \((S_1, O_i)\) is the part of the strict transform of the discriminant of \((S,0)\) going through the image of \(O_i\) in the plane (it is of course also obvious from the result there).

The discriminant of the cone over the \(m\)-th Veronese curve is a \(2m - 2\)-tuple ordinary point in the plane (cf. rem. 8.1). This is indeed the last singularity occurring in the Scott deformation of \(\Delta_{S,0}\), since, by lem. 11.3 the multiplicity of the \(\Delta_{S,0}\) is \(2m - 2\).

Considering polar curves in this Scott deformation, we get the more interesting:

Theorem 11.4. Let the notation be as in cor. 11.3. Then, the polar curve for \(p_t : X_t \rightarrow (\mathbb{C}^2,0)\) is also the generic polar curve \(P_{X_t}\) (which is a multi-germ of space curves for \(t \neq 0\)). Further, \(P_{X_t}\) is a \(\delta\)-constant deformation of the generic polar curve \(P_{S,0}\). Hence iterating Scott deformations, one may compute the \(\delta\)-invariant of \(P_{S,0}\) as sum of \(\delta\)-invariants for sets of generic lines \(P_m\) as in lem. 8.4.

Proof. In theorem 11.1 the deformation \(X_t\) is said to belong to the Artin-component of \((S,0)\). This means that it has a simultaneous resolution, in which (cf. lem 11.1) the \(P_{X_t}\) are also resolved. One then has a \emph{normalisation in family} for the family \(P_{X_t}\), which is equivalent to “\(\delta\)-constant” (cf. [22] p. 609).
We illustrate the second statement in thm 11.4 by giving an:

Example 11.5. Taking a singularity with graph as in figure 6, and applying twice the Scott deformation of the surface, one gets two cones over a cubic and two cones over a conic. Hence the polar curve deforms onto two \(P_3 \) and two \(P_2 \) (in the notation of lem 8.2), which gives 8 for the \(\delta \)-invariant.\(^{10}\)

Let us end this with the following:

Remark 11.6. The information on (the resolution graph of) \((S, 0)\) given by the generic discriminant \(\Delta_{S, 0}\) is of course partial: e.g. one may permute the Tyurina components in the resolution graph of \((S, 0)\) or the weights on the tangent cone without changing \(\Delta_{S, 0}\). However, when one looks at deformations on \((S, 0)\), we believe the information on the discriminant is most valuable:

(a) As a very basic occurrence of this: a family of normal surfaces \(S_t\) with constant generic discriminant \(\Delta_{S_t, 0}\) is Whitney-equisingular and in particular has constant topological type (encoded by the minimal resolution graph). As a consequence of our result, these three equisingularity conditions are in fact equivalent for minimal singularities of surfaces (cf. \([1]\)).

(b) Much more generally, one can deform the discriminant \(\Delta_{S, 0}\) and ask which deformation of \((S, 0)\) “lies above” the curve-deformation: for example, can one deduce the existence of the Scott deformation of the surface \((S, 0)\) in the sense of thm 11.4 as deformation “lying above” the Scott deformation of \(\Delta_{S, 0}\)?

This would give a description of some deformation theory of the surface through an invariant which, as opposed to the birational join construction of Spivakovsky or the decorated tree construction of De Jong and Van Straten, is uniquely defined from \((S, 0)\).

References

[1] E. D. Akeke, R. Bondil, Equisingularity conditions for normal surfaces, applications to minimal singularities, in preparation.

[2] M. Artin, On isolated rational singularities of surfaces, Amer. J. Math 88 (1966), 129–136.

[3] M. Artin, Deformations of singularities, Tata Institute of Fund. Research, Bombay, 1976.

[4] W. Barth, C. Peters, A. Van de Ven, Compact complex surfaces, Ergeb. der Math. 4, Springer Verlag, 1984.

[5] R. Bondil, Discriminant of a generic projection of a minimal normal surface singularity, C.R. Acad. Sci. Paris, Ser. I 337 (2003) 195–200.

[6] R. Bondil, General element of an m-primary ideal on a normal surface singularity, to appear in the acts of the second french-Japanese on singularities (C.I.R.M september 2002), collection Séminaire et Congrès, S.M.F.

[7] R. Bondil, Léo D.T., Résolution des singularités de surfaces par éclatements normalisés, in Trends in Singularities, 31–81, ed. by. A. Libgober and M. Tibar, Birkhäuser Verlag, 2002.

[8] J. Briançon, A. Galligo, M. Granger, Déformations équisingulières des germes de courbes gauches réduites, Mém. Soc. Math. France 1980/81, no. 1, 69 pp.

[9] J. Briançon, J.P. Henry, Equisingularité générique des familles de surfaces à singularité isolée, Bull. Soc. math. France 108 (1980), 259–281.

[10] J. Briançon, J.P. Speder, Familles équisingulières de surfaces à singularité isolée, C.R. Acad. Sci. Paris, t. 280, Série A (1975), 1013–1016.

[11] H. Flenner, M. Mirella, Variation of ramification loci of generic projections, Math. Nachr. 194 (1998), 79–92.

[12] W. Fulton, Intersection theory. Second edition. Ergeb. Math. u. Grenzgebiete. 3, Springer-Verlag, 1998.

\(^{10}\)Beware that \(\delta(P_2) = 1\) is not given by the formula \(\delta(P_n) = 3n - 6\), valid for \(n \geq 3\).
Figure 6: Graph with weights on the vertices for example 11.35

G.M. Greuel, On deformation of curves and a formula of Deligne, Algebraic Geometry (La Rábida, 1981), 141–168, Lecture Notes in Math., 961, Springer Verlag, 1982.

J. Giraud, Intersections sur les surfaces normales, in Introduction à la théorie des singularités, ed. by Lé D.T., Travaux en cours 37, Hermann, 1988.

T. de Jong, D. van Straten, On the deformation theory of rational surface singularities with reduced fundamental cycle, J. Algebraic Geometry 3 (1994) 117–172.

T. de Jong, D. van Straten, Deformation theory of sandwiched singularities, Duke Math. J. 95 (1998), no. 3, 451–522.

Lé D.T., Teissier B., Variétés polaires locales et classes de Chern des variétés singulières, Ann. of Math. 114 (1981), 457–491.

D.T. Lê, M. Tosun, Combinatorics of rational surface singularities, Preprint I.C.T.P. Trieste (1999), 1C/99/186, to appear in Comment. Math. Helvetici.

J. Kollár, Toward moduli of singular varieties, Comp. Math. 56 (1985), 369–398.

J. Snoussi, Limites d’espaces tangents à une surface normale, Comment. Math. Helv. 73 (2001), 61-88.

M. Spivakovski, Sandwiched singularities and desingularisation of surfaces by normalized Nash transformations, Ann. math. 131 (1990), 411–491.

B. Teissier, The hunting of invariants in the geometry of discriminants, Real and complex singularities (Proc. Ninth Nordic Summer School, Oslo, 1976) 565–678, Sijthoff and Noordhoff, 1977.

B. Teissier, Variétés polaires II, Multiplicités polaires, sections planes et conditions de Whitney, in Algebraic Geometry, Proc. La Rabida 1981, 314–491, Lectures Notes in Mathematics 961, Springer Verlag, 1982.

B. Teissier, On B. Segre and the theory of polar varieties, in Geometry and complex variables (Bologna, 1988/1990), 357–367, Lecture Notes in Pure and Appl. Math. 132, Dekker, New York, 1991.

G.N. Tyurina, Absolute isolatedness of rational singularities and triple rational points, Func. Anal. Appl. 2 (1968), 324–332.

J. Wahl, Equations defining rational singularities, Ann. scient. Ec. Norm. Sup. 10 (1977), 231–264.
Fakultät für Mathematik der Ruhr-Universität, Universitätsstr. 150, Geb. NA 2/31, 44780 Bochum, Germany.

E-mail address: roomain.bondil@ruhr-uni-bochum.de