A one-pot enzymatic approach to the O-fluoroglucoside of N-methylanthranilinate

Lorenzo Caputi a,∗,†, Martin Rejzek b,∗,†, Thomas Louveau c, Ellis C. O’Neill b, Lionel Hill c, Anne Osbourn c, Robert A. Field b,∗

a Laboratory of Bioorganic Chemistry and Crystallography, Faculty of Science and Technology, Free University of Bolzano, Piazza Università S. 39100 Bolzano, Italy
b Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
c Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK

ABSTRACT

In connection with prospective 18F-PET imaging studies, the potential for enzymatic synthesis of fluorine-labelled glycosides of small molecules was investigated. Approaches to the enzymatic synthesis of anomeric phosphates of α-glucos-configured fluorosugars proved ineffective. In contrast, starting in the α-galacto series and relying on the consecutive action of Escherichia coli galactokinase (GalK), galactose-1-phosphate uridylyltransferase (GalPUT), uridine-5’-diphosphoglucose 4-epimerase (GaLe) and oat root glucosyltransferase (SAD10), a quick and effective synthesis of 6-deoxy-6-fluoro-α-glucosyl N-methylanthranilinate ester was achieved.

© 2013 The Authors. Published by Elsevier Ltd. Open access under CC BY license.

1. Introduction

Fluorine is an effective probe substituent that has found applications in a variety of different fields. Its chemical and physical properties make this element particularly interesting for NMR studies in organic and biological structural analysis and for bio-imaging techniques, such as magnetic resonance imaging (MRI) and positron emission tomography (PET), providing a wider range of chemical shifts and greater sensitivity when compared to hydrogen.1 In particular, 18F-PET has emerged as an important technique, not only for medical diagnosis and evaluation of treatment progress but also for understanding the mechanisms by which a biological activity is elicited. In this context, it represents a promising approach for imaging and quantitative assessment of the metabolic fate and accumulation sites of bioactive compounds, including drugs and nutraceuticals. 18F-PET enables non-invasive in vivo analysis without tissue destruction and without being influenced by the composition of the tissue studied.2 In this context, great effort has recently been devoted to the development of new and efficient strategies for the introduction of 18F atoms into peptides3–8 and metabolites of interest.3,10 The majority of the developed methodologies rely on the use of [18F]fluorosugars for labelling. Although the most widely used is 2-deoxy-2-[18F]fluoro-α-glucose, since is the common tracer for PET imaging and it is the primary source of 18F for nuclear medicine, other isomers of deoxy-fluoroglucose11,12 as well as other fluorosugars,13 may be considered.

As the demand for new and effective strategies for introduction of 18F into tracers is increasing, the use of enzymatic routes is becoming more appealing due to the specificity of the reaction, leading to straightforward recovery of the desired products. Glycosyltransferases (GTs) are widespread enzymes in Nature with thousands of sequences already reported in different organisms (CAZy database).14 They catalyse the transfer of a sugar residue from an activated sugar donor, such as a nucleoside diphosphate sugar, to an acceptor. The acceptor substrates utilized by GTs are commonly other sugars, but can also be lipids, proteins, nucleic acids, antibiotics, or other small molecules. The glycosylation reaction can occur with –OH groups (most commonly) but it can also occur with –COOH, –NH2, –SH, and activated aromatic groups.15–18 Some GTs are highly specific and are able to recognise only one or a limited range of acceptor substrates, whereas other GTs are promiscuous and can glycosylate a broad range of acceptors. GTs are considered useful synthetic tools for the preparation of natural oligosaccharides, glycoconjugates and their analogues;19 they are potentially interesting catalyst candidates for 18F radiochemistry, although their use may depend on the availability and suitability of an activated sugar donor.

Although fluorinated sugars have proved to be invaluable probes and inhibitors of glycosidases,20 the impact of sugar fluorination on glycosyltransferase-mediated glycosyl transfer is rather...
transfer 6-deoxy-6-fluoro-\(\alpha\)-galactose from the corresponding UDP-sugar adduct onto the glycosylated macrolide oleandomycin and, operating in the reverse sense, the OleD TDP-16 variant is able to produce UDP-6-deoxy-6-fluoro-\(\alpha\)-galactose from the corresponding 2-chloro-4-nitro-phenyl glucoside. Further, UDP-5-deoxy-5-fluoro- and UDP-6-deoxy-6-fluoro-\(\alpha\)-galactofuranose have been shown to serve as donor substrates and acceptor chain termination agents for Mycobacterial Glt2.

As is evident from this brief survey, the impact of donor substrate fluorination on glycosyltransferase-mediated glycosyl transfer is somewhat unpredictable. We were therefore minded to further investigate the potential of enzymatic synthesis to prepare sugar nucleotides substituted with fluorine, eventually settling on substrates substituted at the 6-position of the sugar to be transferred. The 6-fluorinated compound was also evaluated as a donor substrate for a representative glycosyltransferase, in this case the oat transferase SAD10, the physiological role of which is associated with the generation of an \(\alpha\)-glucosyl \(N\)-methylanthranilate ester. Here we report an assessment of enzymatic approaches to 1-\(\alpha\)-(N-methylanthraniloyl)-6-deoxy-6-fluoro-\(\beta\)-D-glucopyranose (6F-Glc-NMA). We report a convenient multi-enzyme biotransformation approach for generation of UDP-6-deoxy-6-fluoro-\(\alpha\)-glucose (UDP-6F-Glc) and the subsequent glycosyltransferase-catalysed transfer of 6-deoxy-6-fluoro-\(\alpha\)-glucose onto \(N\)-methylanthranilate. The strategy developed and the associated timeframes are compatible with ambitions to synthesise \(^{18}\)F-labelled materials for PET imaging studies.

2. Results and discussion

In order to investigate the ability of GTs to produce fluorine-labelled glycosides, we had a need to generate the corresponding

Figure 1. Outline of enzymatic approaches. (A) Hexokinase-phosphoglucomutase approach from Glc. (B) Mutant galactokinase-uridylyltransferase approach from Glc. (C) Galactokinase-uridylyltransferase-epimerase approach from Gal.
fluorine-labelled UDP-sugar nucleotides. Taking into account the precedent for efficient C-2 fluorination via glycal chemistry, but the detrimental impact of installation of the electronic withdrawing fluorine adjacent to the anomeric centre, we surmised that ease and speed of fluorination at the hexose primary alcohol would represent a practical way forward. With this in mind, a number of enzymatic strategies were trialled (Fig. 1), with the aim of identifying the approaches that would be compatible with the short half-life of an 18F-labelled sugar (18F half-life 110 min).

2.1. The hexokinase-phosphoglucomutase approach

We initially explored the possibility of combining the phosphorylating activity of hexokinase to generate the glucose-6-phosphates (incompatible with the use of the 6-fluorosugar) with that of phosphoglucomutase, which transfers the phosphate from the 6-position to the 1-position. Subsequent action of galactose-1-phosphate uridylyltransferase would then give the desired sugar nucleotide (Fig. 1A). Employing the commercial yeast hexokinase and rabbit muscle phosphoglucomutase enzymes, this approach provided only very low conversion when starting from 3-deoxy-3-fluoro-D-glucose or 4-deoxy-4-fluoro-D-glucose. A similar approach has been reported by Prante et al., when synthesizing UDP-2-deoxy-2-fluoro-D-glucose. However, the authors reported a conversion of 50% of the substrate in 6 days—far too long for applications involving the use of 18F. The ineffectiveness of the hexokinase-phosphoglucomutase approach could be ascribed to the fact that fluorosugars act as slow substrates for the hexokinase and phosphoglucomutase.

2.2. The mutant galactokinase-uridylyltransferase approach

A multi-enzyme method with recycling of the co-factors developed by Liu et al., later modified by Errey et al., starting from the reducing sugars was also evaluated (Fig. 1B). This method relies on two key enzymes, galactokinase (GalK) and galactose-1-phosphate uridylyltransferase (GalPUT). As shown before GalPUT possesses a broad substrate promiscuity. GalK, however, displays a high stringency for the C4-axialD-galacto-configuration of the sugar substrate, not recognizing d-glucose, for example. In a first set of experiments, the M173L-Y371H Escherichia coli GalK double mutant was investigated to directly phosphorylate fluorinated monosaccharides at the C1 position. This enzyme has previously been shown to possess relatively relaxed substrate recognition, allowing the direct anomeric phosphorylation of sugars with the C4-equatorial d-gluco-configuration. However, in our hands this approach was not effective in producing d-gluco-configured anomeric phosphates from glucose substituted with fluorine at the 3, 4 or 6 position, although the recombinant enzyme proved to be a competent galactokinase. In this instance perhaps the kinetic...
competence of the mutant is insufficient to support the efficient biotransformation of fluorinated D-gluco-configured sugars.

2.3. The galactokinase-uridylyltransferase-epimerase approach

Unable to achieve either the indirect or direct anomerichemical phosphorylation of gluco-configured fluorosugars, we next approached the problem from a different angle (Fig. 1C). 6-Deoxy-6-fluoro-D-galactose, which we have previously shown to be a good substrate for wild-type GalK, was successfully converted into UDP-6-deoxy-6-fluoro-D-galactose (UDP-6F-D-Gal) (Fig. 3) following a multi-enzyme protocol, as reported previously.35,37 This sugar nucleotide was then transformed into UDP-6F-D-Glc by the action of uridine-5'-diphosphogalactose 4-epimerase (GalE). This enzyme catalyzes the final step of the highly conserved Leoloi pathway of galactose metabolism, epimerising the C4 position of UDP-galactose (UDP-Gal) to give UDP-glucose (UDP-Glc). GalE from galactose-adapted yeast was used and a control reaction, the epimerisation of UDP-α-Gal into UDP-α-Glc, was shown by 1H NMR (Fig. 2A) to progress rapidly until equilibrium was reached (UDP-Gal:UDP-Glc, ~1:4). When UDP-6F-Gal was used as substrate, the enzyme retained its activity (Fig. 2B) and the equilibrium (reached in 3 h) of the reaction was strongly in favour of the gluco-configured product (UDP-6F-Gal:UDP-6F-Glc, ~1:3), as is the case in the control reaction.

2.4. Glycosyltransferase action with fluorinated and non-fluorinated donor substrates

In order to evaluate the potential of transferring the fluoro-sugar from UDP-6F-D-Glc onto a small molecule acceptor, we examined the plant glucosyltransferase SAD10.31 This GT1 family soluble enzyme is responsible for glycosylation of N-methylanthranilic acid using UDP-D-glucose as a sugar donor, which in our conversion was generated in situ from UDP-D-galactose using the epimerase GalE (Fig. 2A). The control experiment with the natural UDP-glucose substrate showed gradual formation of a broad doublet (5.69 ppm, 1H, dd, $J_{1,2} = 6.8$ Hz, H1, $J_{1,2} = 3.9$ Hz, H1') gradually becoming a set of two overlapping doublets (5.67 ppm, 0.5H, d, $J_{1,2} = 5.6$ Hz, H1 and 5.66 ppm, 0.5H, d, $J_{1,2} = 5.8$ Hz, H1) indicative of two rotamers of 1-O-(N-methylanthraniloyl)-β-D-glucopyranoside (Glc-NMA) with conversion of about 12% at time point 60 min. The broadening of the anomeric signal is probably due to a restricted rotation along the Ar-COOR bond at ambient temperature. Extended incubation (20 h) resulted in equilibrium with a conversion of about 20%. Further experiments starting from Glc-NMA and monitoring the conversion to UDP-D-glucose and N-methylanthranilic acid showed that the equilibrium position for SAD10 lies at ca 30% Glc-NMA. These observations are in keeping with the ability of at least some glycosyltransferases to generate sugar nucleotides, not just to consume them.36,38

Subsequent investigation of the SAD10-catalysed reaction of UDP-6F-D-Glc, generated above (Fig. 2B), and N-methylanthranilic acid was monitored by 1H NMR, showing the anomeric proton in UDP-6F-D-Glc (5.52 ppm, 1H, dd, $J_{1,2} = 6.8$ Hz, $J_{1,2} = 3.9$ Hz, H1') undergoing a conformational exchange process. The conversion of UDP-6F-D-Glc into the product was about 21% at time point 60 min. Extended incubation (20 h) resulted in an equilibrium with conversion of about 31%, in keeping with that observed for the corresponding non-fluorinated substrate. An analytical sample of the product was purified by a combination of strong anion exchange chromatography (Poros HQ 50) and reverse phase HPLC (C18) and the compound was characterised by a combination of 1H and 19F NMR and LC-MS, the latter showing the expected molecular ion at m/z 316 [M+H$^+$], 100% and with characteristic fragment arising from sequential loss of water molecules (m/z 298, 280, 262) and liberation of N-methylanthranilate at m/z 152 ([NMA+H$^+$]).

3. Conclusions

In summary, our efforts have identified a convenient galactokinase-uridylyltransferase-epimerase approach for the generation of UDP-6-deoxy-6-fluoro-β-D-glucose. Initial studies also confirmed that O-glucosyltransferase SAD10 is able to utilise this sugar nucleotide for the production of the fluoroglucosyl ester of N-methylanthranilate. Combining these observations, we were able to devise a two-stage, one-pot, multi-enzyme protocol that enables the rapid enzymatic synthesis of milligram quantities of the desired fluorine labelled natural product glycoside in a matter of minutes (Fig. 3). While the approach is dependent upon an expedient purification method, which we have demonstrated, the potential for the enzymatic generation of fluorosugar-containing small molecules in a timeframe compatible with 19F-labelling is clear.

4. Experimental

4.1. General methods

4.1.1. NMR spectroscopy

NMR spectroscopy was performed on a Bruker Avance III spectrometer operating at 400 MHz (1H) or 376 MHz (19F). 1H signals were referenced to residual HDO at δ_{1}H 4.70 ppm. Chemical shifts of 1H-decoupled 19F NMR signals recorded in D$_2$O are reported with respect to external CFCl$_3$ at δ_0 0 ppm.

4.1.2. Chemicals

3-Deoxy-3-fluoro-β-D-glucose, 4-deoxy-4-fluoro-β-D-glucose, 6-deoxy-6-fluoro-β-D-glucose and 6-deoxy-6-fluoro-α-D-galactose were purchased from Carbosynth. Uridine-5′-triphosphate (UTP), phosphoenol pyruvate (PEP), adenosine-5′-triphosphate (ATP), and UDP-glucose were obtained from Sigma.

4.1.3. Enzymes

Inorganic pyrophosphatase, pyruvate kinase, uridine-5′-diphosphogalactose 4-epimerase (GalE, from galactose-adapted yeast), yeast hexokinase and rabbit muscle phosphoglucomutase were obtained from Sigma–Aldrich. The E. coli GalK and GalPUT enzymes were over-expressed and purified as described in Erry et al.35 Oat root glucosyltransferase SAD10 was cloned and over-expressed in E. coli as described in Owaþworakiet al.31

4.2. Analytical and preparative HPLC-DAD

Analyses were performed on a Dionex Ultimate 3000 instrument equipped with a DAD detector. Analytical samples (50 μl) were collected at time points and quenched by addition of methanol (50 μl). The samples were centrifuged at 10,000 rpm and the supernatant was filtered through 0.2 μm disc filter. A sample (50 μl) was applied on a Poros HQ 50 strong anion-exchange column (L/D 50/10 mm, CV = 3.9 ml). The column was first eluted with 5 CV of 5 mM ammonium bicarbonate buffer, followed by a linear gradient of ammonium bicarbonate from 5 mM to 250 mM in 15 CV, then held for 5 CV, and finally back to 5 mM ammonium bicarbonate in 3 CV at a flow rate of 8 ml/min and detection with an on-line detector to monitor absorbance at 265 nm. After multiple injections, the column was washed with 3 CV of 1 M ammonium bicarbonate followed by 3 CV of MQ water. Further purification was performed on a Dionex Ultimate 3000 instrument equipped with a DAD detector.
A solution of a sample in water was applied on a Phenomenex Luna 5 μm C18(2) column (L/D 250/10 mm, CV = 19.6 ml) and eluted with a gradient of acetonitrile at water at flow rate 5 ml/ min: from 0% to 90% over 30 min then held for 2 min, then back to 0% acetonitrile over 3 min and equilibrated for 6 min. The on-line UV detector was used to monitor R_f and R_{g}. Fractions containing the product were pooled and freeze-dried.

4.3. Enzymatic synthesis of UDP-6-deoxy-6-fluoro-α-galactose

The synthesis of UDP-6-deoxy-6-fluoro-galactose was performed using a multi-enzyme reaction adapted from Errey et al. Briefly, 6-deoxy-6-fluoro-α-galactose (1 mg, 5.5 μmol), UTP (3.4 mg, 7.7 μmol), PEP (1.68 mg, 7.2 μmol), ATP (0.08 mg, 0.15 μmol) and UDP-glucose (0.094 mg, 0.15 μmol) were dissolved in 50 mM HEPES buffer (pH 8.0) containing 5 mM KCl and 10 mM MgCl$_2$ (1 ml). After addition of GalK (10 μg), GalU (10 μg), GalPUT (10 μg), pyruvate kinase (2 U) and alkaline phosphatase (0.5 U) the reaction was incubated at 30°C and monitored by HPLC-DAD (Poros HQ 50). Following the diagnostic anomeric signals at $\delta = 5.6$ Hz, H1, and $\delta = 5.66$ (0.5H, d, $\nu = 5.8$ Hz, H1). An analytical HPLC (C18) with a gradient of acetonitrile against water at flow rate 5 ml/min. Full ESI-MS: m/z 240, the title compound was obtained after 2.3 min at flow rate 0.4 ml/min. Detection was performed by positive electrospray MS with spray-chamber conditions of 350°C capillary temperature, 50 μ sheath gas, 5 μ aux gas, and a spray voltage of 3.8 kV using a steel needle kit. In addition to full MS from m/z 100–1500, the instrument was set up to collect data-dependent MS2 and MS3 of the most abundant precursor ions with collision energy of 35% and an isolation width of m/z 4.0. Dynamic exclusion was used to ensure that after two spectra had been acquired the precursor would be ignored for 0.3 min in favor of the next most abundant signal.

Acknowledgments

This work was supported by the UK BBSRC Institute Strategic Programme Grant on Understanding and Exploiting Metabolism (MET) [BB/J004561/1] and the John Innes Foundation.

References and notes

1. Galik, Y. G.; Galik, A. A.; Gronenborn, A. M. Magn. Reson. Chem. 2000, 38, 551.
2. Bergmann, R.; Pietzsch, J. Amino Acids 2005, 29, 355.
3. Wuest, F.; Hultsch, C.; Berndt, M.; Bergmann, R. Bioorg. Med. Chem. Lett. 2009, 19, 5426.
4. Maschauer, S.; Einsiedel, J.; Haubner, R.; Hocke, C.; Ocker, M.; Hubner, H.; Kuwert, T.; Greiner, P.; Pianta, O. Angew. Chem., Int. Ed. 2004, 43, 9796.
5. Bottourera, O.; D’Hooge, F.; Fernandez-Gonzalez, M.; Bernurdes, G. J. L.; Sanchez-Navarro, M.; Koepeje, J. R.; Davis, B. G. Chem. Commun. 2010, 46, 8142.
6. Bottourera, O.; Bernurdes, G. J. L.; D’Hooge, F.; Davis, B. G. Chem. Commun. 2010, 47, 10701.
7. Simpson, M.; Trembleau, L.; Cheyne, R. W.; Smith, T. A. D. Appl. Radiat. Isot. 2011, 69, 418.
8. Namavi, M.; Cheng, Z.; Zhang, R.; De, A.; Levi, J.; Hoerner, J. K.; Yaghoubi, S. S.; Syud, F. A.; Gambhir, S. S. Bioconjugate Chem. 2009, 20, 432.
9. Gester, S.; Wuest, F.; Pawelke, B.; Bergmann, R.; Pietzsch, J. Amino Acids 2005, 29, 415.
10. Ono, M.; Watanebe, R.; Kawashima, H.; Kawai, T.; Watanebe, H.; Haratake, M.; Saji, H.; Nakayama, M. Bioorg. Med. Chem. 2009, 17, 2069.
11. Tweson, T. J.; Welch, J. M.; Raichle, M. E. J. Nucl. Med. 1978, 19, 1339.
12. Landau, B. R.; Spring-Robinson, C. L.; Muzic, R. F.; Rachdauoi, N.; Rubin, D.; Berridge, M. S.; Schumann, W. C.; Chandramouli, V.; Kern, T. S.; Ismail-Beigi, F. J. Am. Physiol. Endocrinol. Metab. 2007, 293, E237.
13. Onega, M.; Domarkas, J.; Deng, H.; Schweiger, L. F.; Smith, T. A. D.; Welch, A. E.; Plisson, C.; Gee, A. D.; O’Hagan, D. Chem. Commun. 2010, 46, 139.
14. Cantarel, B. L.; Coutinho, P. M.; Rancurel, C.; Bernardi, T.; Lombard, V.; Henrissat, B. Nucleic Acids Res. 2009, 37, D231.
15. Bowles, D.; Lim, E. K.; Poppenberger, B.; Vaistt, F. E. Annu. Rev. Plant Biol. 2005, 56, 576.
16. Desmet, T.; Soetaert, W.; Bojarova, P.; Kreen, V.; Dijkhuizen, L.; Eastwood-Field, V.; Schiller, A. Chem. Eur. J. 2012, 18, 10786.
17. Singh, S.; Phillips, G. N.; Thorsom, J. S. Nat. Prod. Rep. 2012, 29, 1201.
18. Osmani, S. A.; Bak, S.; Mollier, B. L. Phytochemistry 2009, 70, 325.
19. Paicic, M. M. Curr. Opin. Chem. Biol. 2011, 15, 226.
20. Rempel, B. P.; Withers, S. G. Glycobiology 2008, 18, 570.
21. Burkart, M. D.; Vincent, S. P.; Dufiefs, A.; Murray, B. W.; Ley, S. V.; Wong, C. H. Bioorg. Med. Chem. 2000, 8, 1937.
22. Hartman, M. C. T.; Jiang, S.; Rush, J. S.; Waechter, C. J.; Coward, J. J. Biochemistry 2007, 46, 11630.
23. Frantom, P. A.; Coward, J. K.; Blanchard, J. S. J. Am. Chem. Soc. 2010, 132, 6626.
24. Baish, G.; Orhelein, R.; Katopodis, A.; Streifl, M.; Kolbinger, F. Bioorg. Med. Chem. Lett. 1997, 7, 2447.
25. Nishimura, S. I.; Hato, M.; Hyugaji, S.; Feng, F.; Amano, M. Angew. Chem. 2010, 6626.
26. Schengrund, C. L.; Kovaç, P. Carbohydr. Res. 1999, 319, 24.
27. Street, I. P.; Rupitz, K.; Withers, S. G. Biochemistry 1983, 28, 1581.
28. Yang, M.; Proctor, M. R.; Bolam, D. N.; Errey, J. C.; Field, R. A.; Gilbert, J. H.; Davis, B. G. J. Am. Chem. Soc. 2005, 127, 9336.
29. Curtin, R. W.; Pettet-Pain, P.; Cournoyer, W. J.; Thorson, J. S. Nat. Chem. Biol. 2011, 7, 685.
30. Brown, C. D.; Rusek, M. S.; Keissling, L. J. Am. Chem. Soc. 2012, 134, 6552.
31. Baisch, G.; Ohrlein, R.; Katopodis, A.; Streiff, M.; Kolbinger, F. Bioorg. Med. Chem. 2012, 20, 10786.
31. Owatworakit, A.; Townsend, B.; Louveau, T.; Jenner, H.; Rejzek, M.; Hughes, R. K.; Saalbach, G.; Qi, X.; Bakht, S.; Roy, A. D.; Mugford, S. T. M.; Goss, R. J. M.; Field, R. A.; Osbourn, A. J. Biol. Chem. 2013, 288, 3696.
32. Nyffeler, P. T.; Daron, S. C.; Burkart, M. D.; Vincent, S. P.; Wong, C. H. Angew. Chem., Int. Ed. 2005, 44, 192.
33. Prante, O.; Hamacher, K.; Coenen, H. H. J. Label. Compd. Radiopharm. 2007, 50, 55.
34. Liu, Z. Y.; Zhang, J. B.; Chen, X.; Wang, P. G. ChemBioChem 2002, 3, 348.
35. Errey, J. C.; Mukhopadhyay, B.; Kartha, K. P. R.; Field, R. A. Chem. Commun. 2004, 2706.
36. Yang, J.; Fu, X.; Liao, J. C.; Liu, L.; Thorson, J. S. Nat. Chem. Biol. 2005, 12, 657.
37. Errey, J. C.; Mann, M. C.; Fairhurst, S. A.; Hill, L.; McNeil, M. R.; Naismith, J. H.; Percy, J. M.; Whitfield, C.; Field, R. A. Org. Biomol. Chem. 2009, 7, 1009.
38. Field, R. A. Nat. Chem. Biol. 2011, 7, 658.