Local numerical range for a class of $2 \otimes d$ hermitian operators

J. Jurkowski, A. Rutkowski, D. Chruściński
Institute of Physics, Nicolaus Copernicus University
Grudziadzka 5, 87–100 Toruń, Poland

Abstract
A local numerical range is analyzed for a family of circulant observables and states of composite $2 \otimes d$ systems. It is shown that for any $2 \otimes d$ circulant operator O there exists a basis giving rise to the matrix representation with real non-negative off-diagonal elements. In this basis the problem of finding extremum of O on product vectors $|x\rangle \otimes |y\rangle \in \mathbb{C}^2 \otimes \mathbb{C}^d$ reduces to the corresponding problem in $\mathbb{R}^2 \otimes \mathbb{R}^d$. The final analytical result for $d = 2$ is presented.

1 Introduction

For any linear operator O acting in the Hilbert space \mathcal{H} one defines its numerical range \([1]\)

$$\text{NR}(O) := \{ \langle \psi | O | \psi \rangle : | \psi \rangle \in \mathcal{H}, \| \psi \| = 1 \} .$$

(1)

Clearly, $\text{NR}(O)$ defines a subset of the complex plane. Now, if O is hermitian then $\text{NR}(O) = [\lambda_{\text{min}}, \lambda_{\text{max}}]$, where λ_{min} and λ_{max} denote the minimal and maximal eigenvalue of O. Recently, more specific characterization of the hermitian operator called restricted numerical range has been introduced in order to describe the interval of expectation values for some specific sets of vectors in \mathcal{H} \([3]\). In particular, if $\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2$ one introduces the notion of local (product) numerical range \([4]\)

$$L\text{NR}(O) = \{ \langle x \otimes y | O | x \otimes y \rangle : \| x \| = \| y \| = 1 , | x \rangle \in \mathcal{H}_1 , | y \rangle \in \mathcal{H}_2 \} .$$

(2)

It is clear that if O is hermitian then

$$L\text{NR}(O) = [\gamma_{\text{min}}, \gamma_{\text{max}}] \subseteq \text{NR}(O) = [\lambda_{\text{min}}, \lambda_{\text{max}}] .$$

It turns out that the notions of various restricted numerical ranges are useful in many branches of quantum information theory (see \([3, 5, 6]\) for details). For example any entanglement witness W can be written in the following form \([7, 8, 9, 10]\)

$$W = \chi \mathbb{I} - O ,$$

for some hermitian operator O and a positive number χ. Now, the necessary condition for W to be an entanglement witness is $\chi > \gamma_{\text{max}}$. In practice, it is very hard to determine $L\text{NR}$ for a given hermitian operator. In this paper we limit ourselves to the case when O acting on $\mathbb{C}^2 \otimes \mathbb{C}^d$ belongs to a class of circulant operators \([11]\) (see also \([12, 13]\)).
The paper is organized as follows. Sect. 2 is devoted to some basic definitions and properties of circulant bipartite operators. In Sect. 3, we emphasize that it is always possible to bring a matrix representing the circulant operator to the so-called real form using a local unitary transformation. In Sect. 4 we show how to carry out calculations of the local numerical range for circulant operators. The final analytical result for $d = 2$ is presented in Sect. 5 together with some instructive examples.

2 Circulant operators in $\mathbb{C}^2 \otimes \mathbb{C}^d$

Let $\mathcal{H} = \mathbb{C}^2 \otimes \mathbb{C}^d$ and let $\{|g_i \rangle \otimes |f_k \rangle \}$ ($i = 1, 2, k = 1, \ldots, d$) be an orthonormal product basis in \mathcal{H}. One defines the family of 2-dimensional subspaces Σ_k in \mathcal{H}:

$$\Sigma_1 = \text{span}\{|g_1 \rangle \otimes |f_1 \rangle, |g_2 \rangle \otimes |f_2 \rangle\},$$

$$\Sigma_2 = \text{span}\{|g_1 \rangle \otimes |f_2 \rangle, |g_2 \rangle \otimes |f_3 \rangle\},$$

$$\vdots$$

$$\Sigma_d = \text{span}\{|g_1 \rangle \otimes |f_d \rangle, |g_2 \rangle \otimes |f_1 \rangle\}.$$

It is clear that Σ_k give rise to the direct sum decomposition $\mathcal{C}^2 \otimes \mathbb{C}^d = \bigoplus_{k=1}^{d} \Sigma_k$. (3)

We shall call (3) a circulant decomposition. Now, we call a linear operator $\mathcal{O} \in B(\mathcal{H})$ to be circulant operator with respect to a circulant decomposition (3) iff

$$\mathcal{O} = \mathcal{O}_1 \oplus \ldots \oplus \mathcal{O}_d,$$

where \mathcal{O}_k is supported on Σ_k, that is,

$$\mathcal{O}_k = \sum_{i,j=1}^{2} a^{(k)}_{ij} |g_i \rangle \langle f_{i+k} | \otimes |f_j \rangle \langle f_{j+k} |,$$

and $||a^{(k)}_{ij}||$ is a 2×2 complex matrix. In particular, for $d = 2$ and $d = 3$ we obtain the following matrix representations of the circulant operators (in the basis $|g_i \rangle \otimes |f_k \rangle$)

$$\begin{pmatrix}
 a^{(2)}_{11} & \cdot & \cdot & a^{(2)}_{12} \\
 \cdot & a^{(1)}_{11} & a^{(1)}_{12} & \cdot \\
 \cdot & a^{(1)}_{21} & a^{(1)}_{22} & \cdot \\
 a^{(2)}_{21} & \cdot & \cdot & a^{(2)}_{22}
\end{pmatrix},$$

$$\begin{pmatrix}
 a^{(3)}_{11} & \cdot & \cdot & a^{(3)}_{12} \\
 \cdot & a^{(1)}_{11} & \cdot & \cdot & a^{(1)}_{12} \\
 \cdot & \cdot & a^{(2)}_{11} & a^{(2)}_{12} & \cdot \\
 a^{(3)}_{21} & \cdot & \cdot & a^{(3)}_{22} \\
 \cdot & a^{(1)}_{21} & \cdot & \cdot & a^{(1)}_{22}
\end{pmatrix},$$

where to make the picture more transparent we replaced all zeros by dots. Interestingly for $d = 2$ the circulant matrix displays characteristic X-shape. Such 2-qubit states have been recently investigated in [14, 15, 16, 17, 18]. In the following we limit ourselves to circulant states and
Proposition 1

There exists an orthonormal product basis

\[w_{ik} = e^{i(k-i)}, \mod d, \]

for \(i = 1, 2, k = 1, \ldots, d, \) and

\[a_{12}^{(k+2)} = u_k e^{i\alpha_k}, \]

where \(u_k = |a_{12}^{(k+2)}| \geq 0, \) and \(\alpha_k \in (-\pi, \pi]. \) As a consequence, the general circulant observable reads

\[O = \sum_{i=1}^{2} \sum_{k=1}^{d} w_{ik} |g_i\rangle \langle g_i| \otimes |f_k\rangle \langle f_k| + \left(\sum_{k=1}^{d} u_k e^{i\alpha_k} |g_i\rangle \langle g_i| \otimes |f_k\rangle \langle f_k| + \text{h.c.} \right), \]

where as usual h.c. stands for hermitian conjugation.

3 Real representation of circulant operators

Let \(O \) be an hermitian circulant operator living in \(\mathbb{C}^2 \otimes \mathbb{C}^d. \) One has the following

Proposition 1 There exists an orthonormal product basis \(\{|g_i\rangle \otimes |f_k\rangle\} \) such that

1. \(O \) is circulant with respect to the circulant decomposition constructed out of \(\{|g_i\rangle \otimes |f_k\rangle\} \).
2. matrix elements of \(O \) with respect to \(\{|g_i\rangle \otimes |f_k\rangle\} \) satisfy:

\[w_{ik}' = w_{ik}, \quad a_{12}^{(k+2)'} = |a_{12}^{(k+2)}| = u_k. \]

Proof. Let \(|g_i\rangle = U_1 |g_i\rangle \) and \(|f_k\rangle = U_2 |f_k\rangle, \) where \(U_1 \) and \(U_2 \) are unitary operators with the following matrix representations in the original basis \(|g_i\rangle \) and \(|f_k\rangle: \)

\[U_1 = D[1, e^{i\mu_1}], \quad U_2 = D[1, e^{i\mu_2}, \ldots, e^{i\mu_k}], \]

where \(D[a_1, \ldots, a_k] \) denotes diagonal \(k \times k \) matrix with diagonal entries \(a_1, \ldots, a_k. \) One has

\[O = \sum_{i=1}^{2} \sum_{k=1}^{d} w_{ik}^f |g_i\rangle \langle g_i| \otimes |f_k\rangle \langle f_k| + \left(\sum_{k=1}^{d} u_k e^{i\theta_k} |g_i\rangle \langle g_i| \otimes |f_k\rangle \langle f_k| + \text{h.c.} \right), \]

where the phases \(\theta_k \) satisfying the following relations (mod(2\pi))

\[\theta_1 = \alpha_1 - \mu_1 - \mu_2, \]
\[\theta_k = \alpha_k - \mu_1 + \mu_k - \mu_{k+1}, \quad k = 2, \ldots, d - 1 \]
\[\theta_d = \alpha_d - \mu_1 + \mu_d. \]

Formulas (10) proves that \(O \) is circulant with respect the circulant decomposition constructed out of \(\{|g_i\rangle \otimes |f_k\rangle\} \). Now, we show that one can remove all the phases \(\theta_k \) by the appropriate choice of \(\mu_k. \) Note, that (11) may be rewritten as a matrix equation \(\alpha - \theta = W \mu, \) where the matrix \(W \) is defined by

\[W_{k1} = 1, \]
\[W_{kk} = -W_{k,k+1}, \quad k > 1, \]

and the remaining elements vanish. Note that taking d-vector $\mu = (\mu_1, \ldots, \mu_d)$ which satisfies the matrix equation
\[\alpha = W \mu, \] (13)
one finds $\vartheta = 0$. It can be done due to the fact that $\det W = d(-1)^{d+1} \neq 0$ which ends the proof.

We will call the corresponding matrix representation of O with respect to $\{|g'_i\otimes |f'_k\rangle\}$ real representation.

4 Local Numerical Range for a Circulant Operator

Let O be an hermitian circulant operator with respect to a fixed basis $|g_i\rangle \otimes |f_k\rangle$ in $\mathbb{C}^2 \otimes \mathbb{C}^d$, and let us define
\[F(x, y) = \frac{\langle x \otimes y |O| x \otimes y \rangle}{\langle x \otimes y | x \otimes y \rangle}. \] (14)

Now to provide $\text{LNM}(O)$ one has to find $\gamma_{\text{min}} = \inf F(x, y)$ and $\gamma_{\text{max}} = \sup F(x, y)$. Let
\[\gamma_{\text{min}} = F(x^-, y^-), \quad \gamma_{\text{max}} = F(x^+, y^+). \] (15)

One has the following

Proposition 2 The corresponding vectors $|x^\pm\rangle \in \mathbb{C}^2$ and $|y^\pm\rangle \in \mathbb{C}^d$ have the following components with respect to basis $|g'_i\rangle$ and $|f'_k\rangle$ provided in Proposition 1
\[|x^\pm\rangle = (x^\pm_1, x^\pm_2 e^{i\beta_1}), \quad |y^\pm\rangle = (y^\pm_1, \ldots, y^\pm_d e^{i\beta_d}), \] (16)

where
\[x^\pm_1 \geq 0, \quad y^\pm_k \geq 0. \] (17)

Proof. Consider e.g. γ_{min} and to simplify notation let us write simply $|x\rangle$ instead of $|x^+\rangle$ and $|y\rangle$ instead of $|y^-\rangle$, respectively. Moreover, let us introduce the following parametrization of vectors $|x\rangle \in \mathbb{C}^2$ and $|y\rangle \in \mathbb{C}^d$ in the original basis $|g_i\rangle \otimes |f_k\rangle$:
\[|x\rangle = (x_1, x_2 e^{i\beta_1}), \quad |y\rangle = (y_1, y_2 e^{i\beta_2}, \ldots, y_d e^{i\beta_d}), \quad x_1, x_2 \geq 0, \quad y_1, \ldots, y_d \geq 0. \] (18)

Using (7) one obtains
\[\langle x \otimes y |O| x \otimes y \rangle = \sum_{i=1}^{2} \sum_{k=1}^{d} w_{ik} x_i^2 y_k^2 + 2 x_1 x_2 \sum_{k=1}^{d} y_k y_{k+1} u_k \cos \varphi_k, \] (19)

where
\[\varphi_1 = \alpha_1 + \beta_1 + \beta_2, \quad \varphi_k = \alpha_k + \beta_1 - \beta_k + \beta_{k+1}, \quad k = 2, \ldots, d-1 \] \[\varphi_d = \alpha_d + \beta_1 - \beta_d. \] (20)

The extremalization procedure leads to the set of equations for real positive variables $x_1, x_2, y_1, \ldots, y_d$ and for the phases β_1, \ldots, β_d (see Appendix for details). In particular, phases β_k can be easily obtained in the generic case, i.e., for $x_i \neq 0$, and $y_k \neq 0$, as shown in (54). Using simple algebra (see the Appendix) one finds
\[\beta_k = -\mu_k, \quad k = 1, \ldots, d, \] (21)
where \(\mu_k \) are solutions of (13). Hence in the new basis \(|g'_1) \otimes |f'_k)\) the phases \(\beta_k \) are completely removed and the components of \(|x\rangle \) and \(|y\rangle \) are non-negative.

Hence, essentially LNR(\(\mathcal{O} \)) calculations can be done in \(\mathbb{R}^2 \otimes \mathbb{R}^d \) instead of \(\mathbb{C}^2 \otimes \mathbb{C}^d \). Unfortunately, solving the set of \(d + 2 \) polynomial equations (14), (15) is in general very hard. Keeping in mind that in the basis \(|g'_1) \otimes |f'_k)\) all \(\varphi_k = 0 \), we can rewrite (14) as

\[
\begin{aligned}
& (A_1(y) - \lambda_1)x_1 + B(y)x_2 = 0, \\
& B(y)x_1 + (A_2(y) - \lambda_1)x_2 = 0,
\end{aligned}
\]

with

\[A_\epsilon(y) = \sum_{k=1}^d w_{1k}y_k^2, \quad B(y) = \sum_{k=1}^d u_k y_k y_{k+1}. \]

Now, we obtain the nonzero solution for \(x_1, x_2 \) from a linear set of equations (22) if

\[\lambda^{\pm}_1 = \frac{1}{2} \left(A_1(y) + A_2(y) \pm \sqrt{(A_1(y) - A_2(y))^2 + 4B(y)^2} \right). \]

Let us write this solution as

\[x_1 = \frac{1}{\sqrt{1 + C^2_\pm}}, \quad x_2 = C_\pm x_1 = \frac{C_\pm}{\sqrt{1 + C^2_\pm}}, \]

where

\[C_\pm = \frac{\lambda^{\pm}_1 - A_1(y)}{B(y)} \]

and the normalization of \(|x\rangle\) has been taken into account. Putting (23) into (15) we arrive at the following set of \(d \) nonlinear equations for \(y_1, \ldots, y_d \):

\[\left[\frac{1}{C_\pm} w_{1k} + C_\pm w_{2k} - \lambda_2 \frac{1 + C^2_\pm}{C_\pm} y_k + u_k y_{k-1} + u_k y_{k+1} \right] = 0, \quad k = 1, \ldots, d. \]

Clearly, in general the solution of (23) is not feasible. Note however that when \(A_1(y) = A_2(y) \), i.e. \(w_{1k} = w_{2k} \) for \(k = 1, \ldots, d \), one gets \(C_\pm = \pm 1 \) and the set of equations (24) becomes linear.

Example 1 Let us consider circulant hermitian operator \(\mathcal{O} \) in \(\mathbb{C}^2 \otimes \mathbb{C}^2 \) represented in the standard computational basis by the following real matrix

\[
M_\mathcal{O} = \begin{pmatrix}
2 & 0 & 0 & 1 \\
0 & 1 & -1 & 0 \\
0 & -1 & 1 & 0 \\
1 & 0 & 0 & 2
\end{pmatrix}.
\]

The spectrum of \(M_\mathcal{O} \) is \(\{0, 1, 2, 3\} \). As a consequence, NR(\(\mathcal{O} \)) = \([0, 3] \), whereas, as we shall see, LNR(\(\mathcal{O} \)) = \([0.5, 2.5] \). Moreover, the upper bound \(\gamma_{\max} \) is achieved at complex vectors \(|x\rangle = \frac{1}{\sqrt{2}} (1, i)\) and \(|y\rangle = \frac{1}{\sqrt{2}} (1, -i)\) and when calculating expectation values on normalized vectors from \(\mathbb{R}^2 \otimes \mathbb{R}^2 \) we do not go beyond 2.

In order to proof that the upper bound of LNR(\(\mathcal{O} \)) is indeed 2.5, let us bring the observable \(\mathcal{O} \) into the real form by a local unitary transformation (which does not change the ranges but does change the extremal vectors),

\[U_1 = D[1, -i], \quad U_2 = D[1, i]. \]
Similar proof can be carried out for the lower bound γ to 5 Local Numerical Range for d

Consider now 2-qubit case corresponding to d where

\[
\tilde{M} = U_1 \otimes U_2 M \otimes U_1^d \otimes U_2^d = \begin{pmatrix}
2 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 2
\end{pmatrix}.
\] (27)

Now, it is easy to show that for $|x\rangle = (x_1, x_2) \in \mathbb{C}^2$ and $|y\rangle = (y_1, y_2) \in \mathbb{C}^2$ we get

\[
\langle x \otimes y | M' | x \otimes y \rangle = 2(|x_1|^2|y_1|^2 + |x_2|^2|y_2|^2) + |x_1|^2|y_2|^2 + |x_2|^2|y_1|^2 + 4\text{Re}(x_1 x_2^*) \text{Re}(y_1 y_2^*)
\leq 2(|x_1|^2|y_1|^2 + |x_2|^2|y_2|^2) + |x_1|^2|y_2|^2 + |x_2|^2|y_1|^2 + 1
\] (28)
due to $\text{Re}(x_1 x_2^*) \leq 1/2$ which follows from the normalization condition $|x_1|^2 + |x_2|^2 = 1$. Equality in (28) is achieved for $|x_1| = |x_2| = \frac{1}{\sqrt{2}}$ and $|y_1| = |y_2| = \frac{1}{\sqrt{2}}$ and therefore $\langle x \otimes y | O | x \otimes y \rangle = 2.5$. Similar proof can be carried out for the lower bound γ_{min}.

5 Local Numerical Range for $d = 2$

Consider now 2-qubit case corresponding to $d = 2$. The set of nonlinear equations (24) reduces to

\[
\begin{align*}
\left[\frac{1}{C_{\pm}} w_{11} + C_{\pm} w_{21} - \lambda_2 \frac{1 + C_{\pm}^2}{C_{\pm}}\right] y_1 + (u_1 + u_2) y_2 & = 0, \\
(u_1 + u_2) y_1 + \left[\frac{1}{C_{\pm}} w_{12} + C_{\pm} w_{22} - \lambda_2 \frac{1 + C_{\pm}^2}{C_{\pm}}\right] y_2 & = 0.
\end{align*}
\] (29, 30)

Consider normalized vector $|q\rangle = (q_1, q_2, q_3, q_4) \in \mathbb{R}^4$. It is separable iff $q_1 q_4 = q_2 q_3$. Hence, we define

\[
\tilde{G}(q) = \langle q | M' | q \rangle - \lambda_1 \left(\sum_{j=1}^4 q_j^2 - 1\right) - 2\lambda_2 (q_1 q_4 - q_2 q_3),
\]
where $M' \tilde{G}$ represents matrix of O in the basis $|q\rangle \otimes |f\rangle$, that is,

\[
M' = \begin{pmatrix}
w_{11} & 0 & 0 & u_1 \\
0 & w_{12} & u_2 & 0 \\
u_1 & u_2 & w_{21} & 0 \\
u_1 & 0 & 0 & w_{22}
\end{pmatrix}, \quad u_1, u_2 \geq 0, \quad w_{ij} \in \mathbb{R}.
\] (31)

Now, $d\tilde{G} = 0$ leads to a linear matrix equation

\[
\mathcal{M}|q\rangle = |0\rangle,
\] (32)

where

\[
\mathcal{M} = \begin{pmatrix}
-\lambda_1 + w_{11} & 0 & 0 & u_1 - \lambda_2 \\
0 & w_{12} - \lambda_1 & u_2 + \lambda_2 & 0 \\
u_1 - \lambda_2 & 0 & -\lambda_1 + w_{12} & 0 \\
0 & 0 & 0 & w_{22} - \lambda_1
\end{pmatrix}.
\]

Obviously, this way we arrive at two separate two-dimensional linear problems. In order to obtain nonzero solutions the following condition should be fulfilled:

\[
\det\mathcal{M} = d_1(\lambda_1, \lambda_2) \cdot d_2(\lambda_1, \lambda_2) = 0,
\]
where
\[
\begin{align*}
d_1(\lambda_1, \lambda_2) &= u_2^2 - w_{12}w_{21} + (w_{12} + w_{21})\lambda_1 - \lambda_1^2 + 2u_2\lambda_2 + \lambda_2^2, \\
d_2(\lambda_1, \lambda_2) &= u_1^2 - w_{11}w_{22} + (w_{11} + w_{22})\lambda_1 - \lambda_1^2 - 2u_1\lambda_2 + \lambda_2^2.
\end{align*}
\]

(33)

(34)

Now, assuming
\[
\begin{align*}
d_1(\lambda_1, \lambda_2) &= 0 \\
d_2(\lambda_1, \lambda_2) &\neq 0
\end{align*}
\]

or
\[
\begin{align*}
d_1(\lambda_1, \lambda_2) &\neq 0 \\
d_2(\lambda_1, \lambda_2) &= 0
\end{align*}
\]

and using the separability condition, we get four possible product vectors \(|g_i\rangle \otimes |f_j\rangle|\):
\[
\begin{align*}
\{ &\left(\begin{array}{c} 0 \\ 1 \end{array} \right) \otimes \left(\begin{array}{c} 1 \\ 0 \end{array} \right), \left(\begin{array}{c} 0 \\ 1 \end{array} \right) \otimes \left(\begin{array}{c} 0 \\ 1 \end{array} \right), \left(\begin{array}{c} 0 \\ 1 \end{array} \right) \otimes \left(\begin{array}{c} 1 \\ 0 \end{array} \right) \}
\end{align*}
\]

(35)

whereas solving
\[
\begin{align*}
d_1(\lambda_1, \lambda_2) &= 0 \\
d_2(\lambda_1, \lambda_2) &= 0
\end{align*}
\]

we obtain two solutions \((\lambda_1^+, \lambda_2^+)\) and \((\lambda_1^-, \lambda_2^-)\) which inserted into \((32)\) imply the following conditions:

\[
\begin{align*}
g_1 &= a_\pm q_4 \\
g_2 &= b_\pm q_3 \\
g_1^2 + g_2^2 + g_3^2 + g_4^2 &= 1 \\
g_1q_4 &= q_2q_3.
\end{align*}
\]

(36)

(37)

Solving \((37)\) and factorizing \(|q\rangle = |x\rangle \otimes |y\rangle\) we arrive at
\[
|q\rangle = \left(\frac{\sqrt{\kappa_\pm}}{\sqrt{1+\xi_\pm}} \right) \otimes \left(\frac{\sqrt{\xi_\pm}}{\sqrt{1+\kappa_\pm}} \right),
\]

(38)

where
\[
a_\pm = \frac{l_\pm}{m_\pm}, \quad b_\pm = \frac{g_\pm}{h_\pm}, \quad \kappa_\pm = \frac{a_\pm}{b_\pm}, \quad \xi_\pm = a_\pm \cdot b_\pm,
\]

and
\[
l_\pm = 2u_2^4 + 8u_1^3u_2 + 2u_2^4 \pm (u_1 + u_2)(-w_{11} + w_{12} + w_{21} - w_{22}) \sqrt{\Delta} \\
+ u_2^2(-w_{11}^2 - 2w_{12}w_{21} + w_{11}(w_{12} + w_{21}) + (w_{12} + w_{21})w_{22} - w_{22}^2) \\
+ 2u_1u_2(4u_2^2 - w_{11}^2 - 2w_{12}w_{21} + w_{11}(w_{12} + w_{21}) + (w_{12} + w_{21})w_{22} - w_{22}^2) \\
+ u_1^2(12u_2^2 - w_{11}^2 - 2w_{12}w_{21} + w_{11}(w_{12} + w_{21}) + (w_{12} + w_{21})w_{22} - w_{22}^2),
\]

(34)

\[
m_\pm = (u_1 + u_2)\left(\pm 2(u_1 + u_2) \sqrt{\Delta} + (w_{11} - w_{12})(w_{11} - w_{21})(w_{11} - w_{12} - w_{21} + w_{22}) \\
+ 2u_1u_2(-3w_{11} + w_{12} + w_{21} + w_{22}) + 2u_1u_2(-3w_{11} + w_{12} + w_{21} + w_{22}) + u_2^2(-3w_{11} + w_{12} + w_{21} + w_{22}) \right),
\]

\[
g_\pm = 2u_1^4 + 8u_1^3u_2 + 2u_1^4 \pm (u_1 + u_2)(w_{11} - w_{12} + w_{21} - w_{22}) \sqrt{\Delta} \\
+ u_1^2(-w_{12}^2 - w_{21}^2 + w_{11}(w_{12} + w_{21} - 2w_{22}) + (w_{12} + w_{21})w_{22}) \\
+ 2u_1u_2(4u_1^2 - w_{12}^2 - w_{21}^2 + w_{11}(w_{12} + w_{21} - 2w_{22}) + (w_{12} + w_{21})w_{22}) \\
+ u_1^2(12u_2^2 - w_{12}^2 - w_{21}^2 + w_{11}(w_{12} + w_{21} - 2w_{22}) + (w_{12} + w_{21})w_{22}),
\]

(34)

\[
h_\pm = (u_1 + u_2)\left(\pm 2(u_1 + u_2) \sqrt{\Delta} + (w_{11} - w_{12})(w_{12} - w_{22})(w_{11} - w_{12} - w_{21} + w_{22}) \\
+ u_2^2(w_{11} - w_{12} + w_{21} - w_{22}) + 2u_2u_2(w_{11} - 3w_{12} + w_{21} + w_{22}) + u_2^2(w_{11} - 3w_{12} + w_{21} + w_{22}) \right),
\]

(34)
with
\[\Delta = (u_1 + u_2)^2 + (w_{11} - w_{21})(w_{12} - w_{22}) \left((u_1 + u_2)^2 + (w_{11} - w_{12})(w_{21} - w_{22}) \right). \]

Note that, in order to have real components of \(|q\rangle\),
\[\xi_\pm \geq 0, \quad \kappa_\pm \geq 0, \]
should be fulfilled. As a consequence, either both \(a_\pm, b_\pm\) are nonnegative or both are non-positive.

Finally, for \(|q\rangle\) given by (38) we obtain
\[\langle q|M'_O|q \rangle \equiv F_\pm = 2(u_1 + u_2)\sqrt{\xi_\pm \kappa_\pm + \xi_\pm \kappa_\pm w_{11} + \xi_\pm w_{12} + \kappa_\pm w_{21} + w_{22}} \]
\[\frac{(1 + \kappa_\pm)(1 + \xi_\pm)}{1 + \xi_\pm + \kappa_\pm + a_\pm^2}. \]

Taking into account vectors (35) one obtains
\[\langle g_i \otimes f_j|M'_O|g_i \otimes f_j \rangle = w_{ij}. \]

Hence, LNR of the circulant observable \(O\) is given by \([\gamma_{\min}, \gamma_{\max}]\), where
\[\gamma_{\min} = \min \left\{ w_{ij}, F_\pm \right\} \]
\[\gamma_{\max} = \max \left\{ w_{ij}, F_\pm \right\} \]

To summarize, in order to calculate LNR for a given \(C^2 \otimes C^2\) circulant operator, we propose the following procedure

1. if in a given basis a matrix representation of an operator \(M_O\) has complex or negative off-diagonal entries then change the basis due to Proposition 1 and bring the matrix to the real form,
2. determine real vectors \(|x\rangle\) and \(|y\rangle\) (see (35)) together with \(F_\pm\) and compare these values with diagonal elements of \(M'_O\). Then \(\gamma_{\min}, \gamma_{\max} = [\gamma_{\min}, \gamma_{\max}]\), where \(\gamma_{\min}\) and \(\gamma_{\max}\) are defined in (42) and (43), respectively.

Example 2 As an illustration let us consider a two-parameter family of matrices \(Q_{t,s}, t, s \geq 0\), analyzed in [3].

\[Q_{t,s} = \begin{pmatrix} 2 & 0 & 0 & t \\ 0 & 1 & s & 0 \\ 0 & s & -1 & 0 \\ t & 0 & 0 & -2 \end{pmatrix}. \]

Denoting by \(p = t + s \geq 0\) one obtains
\[\Delta = (1 + p^2)(9 + p^2) \]
\[a_\pm = \frac{4p \pm \sqrt{\Delta}}{p^2 - 3} \]
\[b_\pm = \frac{2p \pm \sqrt{\Delta}}{p^2 + 3} \]
\[\kappa_\pm = \frac{p^4 + 2p^2 + 9 \pm 2\sqrt{\Delta}}{(p^2 - 3)(p^2 + 3)} \]
\[\xi_\pm = \frac{p^4 + 18p^2 + 9 \pm 6\sqrt{\Delta}}{(p^2 - 3)(p^2 + 3)}. \]
Note that $b_+ \geq 0$ and $b_- \leq 0$, hence $a_+ \geq 0$ and $a_- \leq 0$. Finally, $|x|$ and $|y|$ are real under the condition $p \geq \sqrt{3}$ (see (39)) and using (40) we arrive at

$$F_\pm = \pm \frac{\sqrt{\Delta}}{2p}.$$

Because the maximal and minimal values of w_{ij} are equal to 2 and -2, respectively, due to (42) and (43) we get

$$\gamma_{\text{max}} = \begin{cases} 2 & \text{for } 0 \leq p < \sqrt{3} \\ \frac{1}{2p} \sqrt{\Delta} & \text{for } p \geq \sqrt{3} \end{cases}$$

and $\gamma_{\text{min}} = -\gamma_{\text{max}}$ in complete agreement with the result of [3].

Appendix

We are going to carry out an extremalization procedure of (19) with two constraints $|x| = 1$, $|y| = 1$ using a Lagrange function $G = F - \lambda_1(|x|^2 - 1) - \lambda_2(|y|^2 - 1)$. As a result we get the following equations:

$$\frac{\partial G}{\partial x_i} = \left[\sum_{k=1}^{d} w_{ik} y_k^2 - \lambda_1 \right] + x_{i+1} \sum_{k=1}^{d} y_k y_{k+1} u_k \cos \varphi_k = 0, \quad i = 1, 2 \quad (44)$$

$$\frac{\partial G}{\partial y_k} = \left[\sum_{i=1}^{2} w_{ik} x_i^2 - \lambda_2 \right] + x_1 x_2 \left(y_{k-1} y_{k-1} \cos \varphi_{k-1} + y_{k+1} u_k \cos \varphi_k \right) = 0, \quad k = 1, \ldots, d \quad (45)$$

$$\frac{\partial G}{\partial \beta_1} = x_1 x_2 \sum_{k=1}^{d} y_k y_{k+1} u_k \sin \varphi_k = 0, \quad (46)$$

$$\frac{\partial G}{\partial \beta_k} = x_1 x_2 \left(y_k y_{k+1} u_k \sin \varphi_k - y_{k-1} y_k u_{k-1} \sin \varphi_{k-1} \right) = 0, \quad k = 2, \ldots, d. \quad (47)$$

From the last two equations one obtains in a generic case, i.e., when $x_i \neq 0$, and $y_k \neq 0$, the following set of equations

$$\begin{cases} \sum_{k=1}^{d} z_k = 0 \\ z_{k-1} - z_k = 0, \quad k = 2, \ldots, d. \end{cases} \quad (48)$$

with $z_k = y_k y_{k+1} u_k \sin \varphi_k$ or in a matrix notation $W^T z = 0$, where W^T is a transposition of the matrix given by (12). Now, according to $|\det W^T = d(-1)^{d+1} \neq 0$, the set of homogeneous equations (48) has only zero solution, hence in a generic case, $\sin \varphi_k = 0$ for $k = 1, \ldots, d$. The angles β_k can now be easily obtained. It results from $\sin \varphi_k = 0$ that

$$\alpha_1 + \beta_1 + \beta_2 = 0, \quad (49)$$

$$\alpha_k + \beta_1 - \beta_k + \beta_{k+1} = 0, \quad k = 2, \ldots, d - 1 \quad (50)$$

$$\alpha_d + \beta_1 - \beta_d = 0. \quad (51)$$

or in a matrix form

$$\alpha = -W \beta \quad (53)$$
with exactly the same W as in (13). Hence solutions for β_1, \ldots, β_d differ only by a sign from solutions for μ_1, \ldots, μ_d (see (13)) and one can easily find that

$$\begin{align*}
\beta_1 &= -\frac{1}{d} \sum_{k=1}^{d} \alpha_k = -\mu_1, \\
\beta_2 &= -\alpha_1 - \beta_1 = -\mu_2, \\
\beta_{k+1} &= -\alpha_k - \beta_1 + \beta_k = -\mu_{k+1}, \quad k = 2, \ldots, d - 1.
\end{align*}$$

(54)

Acknowledgments

This work was partially supported by the Polish Ministry of Science and Higher Education Grant No 3004/B/H03/2007/33 and Grant UMK 370-F.

References

[1] R. A. Horn, C. R. Johnson, *Topics in Matrix Analysis*, Cambridge Univ. Press, 1992.

[2] P. D. Lax, *Linear Algebra and its Applications*, Wiley, 2007.

[3] P. Gawron, Z. Puchała, J. A. Miszczak, Ł. Skowronek, and K. Życzkowski, *Restricted numerical range: a versatile tool in the theory of quantum information*, arXiv: 0905.3646v2.

[4] Z. Puchała, P. Gawron, J. A. Miszczak, Ł. Skowronek, Man-Duen Choi, and K. Życzkowski, *Product numerical range in space with tensor product structure*, arXiv: 1008.3482v1.

[5] T. Schulte-Herbrüggen, G. Dirr, U. Helmke, S. J. Glaser, *The significance of the C-numerical range and the local C-numerical range in quantum control and quantum information*, Linear and Multilinear Algebra 56, 3 (2008).

[6] G. Dirr, U. Helmke, M. Kleinsteuber, T. Schulte-Herbrüggen, *Relative C-numerical ranges for applications in quantum control and quantum information*, Linear and Multilinear Algebra 56, 27 (2008).

[7] O. Gühne, G. Toth, *Entanglement detection*, Phys. Reports 474, 1–75 (2009).

[8] G. Toth, *Entanglement witnesses in spin models*, Phys. Rev A 71 010301(R) (2005).

[9] R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, *Quantum entanglement*, Rev. Mod. Phys. 81, 865–942 (2009).

[10] J. Sperling and W. Vogel, *Necessary and sufficient conditions for bipartite entanglement*, Phys. Rev. A 79, 022318 (2009).

[11] D. Chruściński and A. Kossakowski, *Circulant states with positive partial transpose*, Phys. Rev. A 76, 032308 (2007).

[12] D. Chruściński and A. Pittenger, *Generalized Circulant Densities and a Sufficient Condition for Separability*, J. Phys. A: Math. Theor. 41 (2008) 385301.

[13] D. Chruściński and A. Kossakowski, *Multipartite Circulant States with Positive Partial Transpose*, Open Sys. Information Dyn. 15 (2008) 189-212.
[14] A. R. P. Rau, *Algebraic characterization of X-states in quantum information*, J. Phys. A: Math. Gen. **42**, 412002 (2009).

[15] F. F. Fanchini, T. Werlang, C. A. Brasil, L. G. E. Arruda, A. O. Caldeira, *Non-Markovian Dynamics of Quantum Discord*, Phys. Rev. A. **81**, 052107 (2010).

[16] M. Ali, A. R. P. Rau, G. Alber, *Quantum discord for two-qubit X-states*, Phys. Rev. A **81**, 042105 (2010).

[17] B. Bylicka, D. Chruściński, *Witnessing quantum discord in $2 \times N$ systems*, Phys. Rev. A **81**, 062102 (2010).

[18] Y.S. Weinstein, *Entanglement Sudden Death in Three Qubit X-States*, Phys. Rev. A **82**, 032326 (2010).

[19] D. Chruściński, A. Kossakowski, K. Młodawski, and T. Matsuoka, *A class of Bell diagonal states and entanglement witnesses*, Open Sys. Information Dyn. **17**, 235 (2010).