Abstract

The tri-rotors are more recent kinds of drones, as compared with the mostly used quad-rotors because of the numerous special characteristics over the other types of multi-copters. Many technical features specialize tri-copters like small volume that is useful in slender places, light weight, extended battery existence, and agility in translation and turns. In this paper, (single tri-rotor) design is theorized and the nonlinear mathematical model is derived completely by Newton-Euler formula then the Proportional-Integral and Derivative (PID) controller is utilized to control the rotational and translational equations, six PID controllers are used for six Degrees of Freedom (DOF) equations of the model with the associated parameters are tuned by Particle Swarm Optimization (PSO) method to minimize the whole Integral Time Absolute Errors for the tri-rotor model and the effects are gained by Simulink in MATLAB. The results were satisfactory with the stability of the system and with little delay.
1. B. H. Sababha, H. M. A. Zu’bi, and O. A. Rawashdeh, 2015. A rotor- Tilt-Free Tricopter UAV: Design, Modelling, and Stability Control, Int. J. Mechatronics Autom., Vol. 5, No. 2/3, pp. 107–113.
2. O. Ayokunle, 2016. Simulation of a Tricopter UAV for Parcel Delivery with SimMechanics and SolidWorks3D, Researchgate.
3. Z. Song, K. Li, Z. Cai, Y. Wang, and N. Liu, 2016. Modeling and Maneuvering Control for Tricopter Based on The Back-stepping Method, Proceedings of 2016 IEEE Chinese Guidance, Navigation and Control Conference, pp. 889–894.
4. Ali, D. Wang, M. Aamir, and S. Masroor, 2017. Trajectory Tracking of a Tri-Rotor Aerial Vehicle Using
5. an MRAC-Based Robust Hybrid Control Algorithm, Aerospace, Vol. 4, No. 3, pp. 1–17
6. S. K. Sai and H. M. Tun, 2015. Modeling and Analysis of Tri-Copter (VTOL) Aircraft, Vol. 3, No. 6, pp. 54–62.
7. D. Yoo, H. Oh, D. Won, and M. Tahk, 2010. Dynamic Modeling and Stabilization Techniques for Tri-Rotor Unmanned Aerial Vehicles, Int. J. Aeronaut. Sp. Sci., Vol. 11, No. 3, pp. 167–174.
8. Singiresu S. Rao, 2009. Engineering Optimization: Theory and Practice.
9. P Venkata Vishal, V. Natarajan, 2016. Control System Design for Tricopter using Filters and PID controller.
10. A. B. Arega, 2016. Design of Super twisting Sliding Mode Controller for Hovering Stabilization of Tricopter UAV, M.Sc thesis, Addis Ababa University/Addis Ababa Institute of Technology.
11. N. A. Selamat, N. A. Wahab, and S. Sahlan, 2013. Particle Swarm Optimization for Multivariable PID Controller Tuning, IEEE International Colloquium on Signal Processing and Its Applications. pp. 170–175.
12. M. N. Alam, 2016. Particle Swarm Optimization: Algorithm and its Codes in MATLAB, pp. 1–10.

Index Terms

Computer Science
Data Structures

Keywords

Tri-rotor, Particle Swarm Optimization algorithm, Integral Time Absolute Error, Proportional-Integral-Derivative control, Cost Function
