q-Fourier Transform and its inversion-problem

M. C. Rocca1,2 and A. Plastino1

1 Instituto de Física (IFLP-CCT-Conicet)
Universidad Nacional de La Plata (UNLP)
C.C. 67 (1900) La Plata, Argentina

2 Departamento de Física
Fac. de Ciencias Exactas, UNLP

December 1, 2011

Abstract

Tsallis’ q-Fourier transform is not generally one-to-one. It is shown here that, if we eliminate the requirement that q be fixed, and let it instead “float”, a simple extension of the F_q—definition, this procedure
restores the one-to-one character.

KEYWORDS: q-Fourier transform, generalization, one to one character, statistical mechanics, nonextensive statistical mechanics.
1 Introduction

Nonextensive statistical mechanics (NEXT) [1, 2, 3], a current generalization of the Boltzmann-Gibbs (BG) one, is actively studied in diverse areas of Science. NEXT is based on a nonadditive (though extensive [4]) entropic information measure characterized by the real index q (with $q = 1$ recovering the standard BG entropy). It has been applied to variegated systems such as cold atoms in dissipative optical lattices [5], dusty plasmas [6], trapped ions [7], spin glasses [8], turbulence in the heliosheath [9], self-organized criticality [10], high-energy experiments at LHC/CMS/CERN [11] and RHIC/PHENIX/Brookhaven [12], low-dimensional dissipative maps [13], finance [14], galaxies [15], Fokker-Planck equation’s applications [16], etc.

NEXT can be advantageously expressed via q-generalizations of standard mathematical concepts (the logarithm and exponential functions, addition and multiplication, Fourier transform (FT) and the Central Limit Theorem (CLT) [17, 22, 25]). The q-Fourier transform F_q exhibits the nice property of transforming q-Gaussians into q-Gaussians [17]. Recently, plane waves, and the representation of the Dirac delta into plane waves have been also generalized [18, 19, 21, 22].

A serious problem afflicts F_q. It is not generally one-to-one. A detailed
example is discussed below. In this work we show that by recourse to a rather simple but efficient stratagem that consists in

- eliminating the requirement that q be fixed and instead
- let it “float”,

one restores the one-to-one character.

2 Generalizing the q-Fourier transform

We define, following [17], a q-Fourier transform of $f(x) \in L^1(\mathbb{R})$, $f(x) \geq 0$ as

$$F(k, q) = [H(q - 1) - H(q - 2)] \times
\int_{-\infty}^{\infty} f(x)\{1 + i(1 - q)kx[f(x)]^{(q-1)}\} \frac{1}{1-q} \, dx$$

(2.1)

where $H(x)$ is the Heaviside step function.

The only difference between this definition and that given in [17] is that q is not fixed and varies within the interval $[1, 2)$. Herein lies the hard-core of our presentation. This simple change of perspective makes it is easy to find the inversion-formula for (2.1) by recourse to the inverse Fourier transform

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left[\lim_{\epsilon \to 0^+} \int_{1}^{2} \frac{1}{F(k, q)\delta(q - 1 - \epsilon) \, dq} \right] e^{-ikx} \, dk.$$ (2.2)
As a consequence, we see that this q-Fourier transform is one-to-one, unlike what happens in [23], [24]. In the next section we give an illustrative example.

3 Example

As an illustration we discuss the example given by Hilhorst in Ref. ([22]).

Let $f(x)$ be

$$
f(x) = \begin{cases}
(\frac{1}{x})^\beta; & x \in [a, b]; \ 0 < a < b; \ \lambda > 0 \\
0; & x \text{ outside } [a, b].
\end{cases}
$$

(3.1)

The corresponding q-Fourier transform is

$$
F(k, q) = \lambda^\beta \int_a^b x^{-\beta} \left\{1 + i(1 - q)k\lambda^{\beta(q-1)}x^{1-\beta(q-1)}\right\} \frac{1}{1-q} \, dx.
$$

(3.2)

Effecting the change of variables

$$
y = x^{1-\beta(q-1)},
$$

we have for (3.2)

$$
F(k, q) = [H(q - 1) - H(q - 2)] \times \\
\frac{\lambda^\beta}{1 - \beta(q - 1)} \int_{a^{1-\beta(q-1)}}^{b^{1-\beta(q-1)}} y^{\frac{\beta(q-2)}{1-q}} \left\{1 + i(1 - q)k\lambda^{\beta(q-1)}y\right\} \frac{1}{1-q} \, dy.
$$

(3.3)
Now, (3.3) can be rewritten in the useful form

\[
F(k, q) = [H(q - 1) - H(q - 2)] \times \\
\left\{ \left\{ H(q - 1) - H \left[q - \left(1 + \frac{1}{\beta} \right) \right] \right\} \times \\
\frac{\chi^{\beta}}{1 - \beta(q - 1)} \int_{a^{1-\beta(q-1)}}^{b^{1-\beta(q-1)}} y^{\frac{\beta(2-q)}{1-\beta(q-1)}} \left\{ 1 + i(1 - q)k\lambda^{\beta(q-1)}y \right\}^{\frac{1}{1-q}} dy + \\
\left\{ H \left[q - \left(1 + \frac{1}{\beta} \right) \right] - H(q - 2) \right\} \times \\
\frac{\chi^{\beta}}{\beta(q - 1) - 1} \int_{b^{1-\beta(q-1)}}^{a^{1-\beta(q-1)}} y^{\frac{\beta(q-2)}{1-\beta(q-1)}} \left\{ 1 + i(1 - q)k\lambda^{\beta(q-1)}y \right\}^{\frac{1}{1-q}} dy \right\}.
\]

Taking into account that the involved integrals are defined in a finite interval, we can cast (3.4) as

\[
F(k, q) = [H(q - 1) - H(q - 2)] \times \\
\left\{ \left\{ H(q - 1) - H \left[q - \left(1 + \frac{1}{\beta} \right) \right] \right\} \times \\
\frac{\chi^{\beta}}{1 - \beta(q - 1)} \lim_{\epsilon \to 0^+} \int_{a^{1-\beta(q-1)}}^{b^{1-\beta(q-1)}} y^{\frac{\beta(2-q)}{1-\beta(q-1)}} \left\{ 1 + i(1 - q)(k + i\epsilon)\lambda^{\beta(q-1)}y \right\}^{\frac{1}{1-q}} dy + \\
\left\{ H \left[q - \left(1 + \frac{1}{\beta} \right) \right] - H(q - 2) \right\} \times \\
\frac{\chi^{\beta}}{\beta(q - 1) - 1} \lim_{\epsilon \to 0^+} \int_{b^{1-\beta(q-1)}}^{a^{1-\beta(q-1)}} y^{\frac{\beta(q-2)}{1-\beta(q-1)}} \left\{ 1 + i(1 - q)(k + i\epsilon)\lambda^{\beta(q-1)}y \right\}^{\frac{1}{1-q}} dy \right\}.
\]

(3.5)
We now use results of the Integral's table [26] to evaluate (3.5) and get

\[
\lim_{\epsilon \to 0^+} \int_{\alpha^{1-\beta(q-1)}}^{\infty} y^{-\frac{\beta(2-q)}{1-\beta(q-1)}} \left\{ 1 + i(1 - q)(k + i\epsilon)\lambda^{\beta(q-1)}y \right\}^{\frac{1}{1-\beta}} dy =
\]

\[
\frac{(q - 1)[1 - \beta(q - 1)]\alpha^{\frac{2-q}{q-1}}}{(2-q)[(1-q)i(k+i0)\lambda^{\beta}]^{\frac{1}{q-1}}} \times
\]

\[
F \left(\frac{1}{q - 1}, \frac{2-q}{(q - 1)[1 - \beta(q - 1)]}, \frac{1}{q - 1} + \frac{\beta(2-q)}{1 - \beta(q - 1)} \right) - \frac{1}{(1-q)i(k+i0)\lambda^{\beta(q-1)}a^{1-\beta(q-1)}}
\]

\[
F \left(\frac{1}{q - 1}, \frac{\beta - 1}{\beta(q - 1) - 1}, \frac{\beta q - 2}{\beta(q - 1) - 1} \right) - (q - 1)i(k+i0)\lambda^{\beta(q-1)}a^{1-\beta(q-1)}
\]

and

\[
\lim_{\epsilon \to 0^+} \int_{0}^{\infty} y^{\frac{\beta(2-q)}{q-1-1}} \left\{ 1 + i(1 - q)(k + i\epsilon)\lambda^{\beta(q-1)}y \right\}^{\frac{1}{1-\beta}} dy =
\]

\[
\frac{[\beta(q - 1) - 1]a^{1-\beta}}{\beta - 1} \times
\]

\[
F \left(\frac{1}{q - 1}, \frac{\beta - 1}{\beta(q - 1) - 1}, \frac{\beta q - 2}{\beta(q - 1) - 1} \right) - (q - 1)i(k+i0)\lambda^{\beta(q-1)}a^{1-\beta(q-1)}
\]

where \(F(a, b, c; z) \) is the hypergeometric function. Thus we obtain for \(F(k, q) \)

\[
F(k, q) = [H(q - 1) - H(q - 2)] \times
\]

\[
\left\{ \left\{ H(q - 1) - H \left[q - \left(1 + \frac{1}{\beta} \right) \right] \right\} \right\} \times
\]

\[
\frac{(q - 1)\lambda^{\beta}}{(2-q)[(1-q)i(k+i0)\lambda^{\beta}]^{\frac{1}{q-1}}} \times
\]

\[
\left\{ a^{\frac{2-q}{q-1}} F \left(\frac{1}{q - 1}, \frac{2-q}{(q - 1)[1 - \beta(q - 1)]}, 1 + \frac{\beta(2-q)}{1 - \beta(q - 1)} \right) \right\}
\]

7
\[b^{\frac{q-2}{q-1}} F \left(\frac{1}{q-1}, \frac{2 - q}{(q - 1)(1 - \beta(q-1))}, \frac{1}{q - 1} \right) \frac{\beta(2 - q)}{1 - \beta(q-1)} \]

\[+ \left\{ H \left[q - \left(1 + \frac{1}{\beta} \right) \right] - H(q - 2) \right\} \frac{\lambda^\beta}{\beta - 1} \times \]

\[\left\{ a^{1 - \beta} F \left(\frac{1}{q - 1}, \frac{\beta - 1}{\beta(q - 1) - 1}, \frac{\beta q - 2}{\beta(q - 1) - 1} \right) \right\} \]

\[(q - 1)i(k + i0)\lambda^{\beta(q-1)}a^{1 - \beta(q-1)} - \]

\[b^{1 - \beta} F \left(\frac{1}{q - 1}, \frac{\beta - 1}{\beta(q - 1) - 1}, \frac{\beta q - 2}{\beta(q - 1) - 1} \right) \]

\[(q - 1)i(k + i0)\lambda^{\beta(q-1)}b^{1 - \beta(q-1)} \} \right\} \). \tag{3.8} \]

As we can see from (3.8), \(F(k, q) \) is dependent of \(a \) and \(b \), and, as consequence, one-to-one as has been shown in Section 2.

However, and this is the crucial issue, if we fix \(q \) and select \(\beta = 1/(q - 1) \), (3.8) simplifies and adopts the appearance

\[F(k, q) = \lambda^{\frac{q}{q-1}} \frac{q - 1}{2 - q} [H(q - 1) - H(q - 2)] \times \]

\[\left[a^{\frac{q-2}{q-1}} F \left(\frac{1}{q - 1}, \frac{2 - q}{q - 1}, \frac{2 - q}{q - 1}; (q - 1)i(k + i0)\lambda \right) \right. - \]

\[b^{\frac{q-2}{q-1}} F \left(\frac{1}{q - 1}, \frac{2 - q}{q - 1}, \frac{2 - q}{q - 1}; (q - 1)i(k + i0)\lambda \right) \]

\[\left. (q - 1)i(k + i0)\lambda^{\beta(q-1)}a^{1 - \beta(q-1)} \right\}. \tag{3.9} \]
With the help of the result given in [27] for

\[F(-a, b, b, -z) = (1 + z)^a, \]

we obtain for (3.9):

\[F(k, q) = \lambda^{q^{-1}} q^{-1} [H(q - 1) - H(q - 2)] \]
\[\left(a^{q^{-1}} - b^{q^{-1}} \right) \left[1 + (1 - q)ik\lambda \right]^{1/q}. \]

(3.10)

Using now the expression for \(\lambda \) of [22], i.e.,

\[\lambda = \left[\left(\frac{q - 1}{2 - q} \right) \left(a^{q^{-1}} - b^{q^{-1}} \right) \right]^{1-q}, \]

we have, finally,

\[F(k, q) = [H(q - 1) - H(q - 2)] \left[1 + (1 - q)ik\lambda \right]^{1/q}, \]

(3.11)

which is the result given by Hilthorst in [22], demonstrating that \(F(k, q) \) is not one-to-one. As a conclusion we can say that for fixed \(q \) the q-Fourier transform is NOT one-to-one. On the contrary, as we have shown in section 2, when \(q \) is NOT fixed, the q-Fourier transform is indeed one-to-one.

Conclusions

In the present communication we have discussed the NOT one-to-one nature of the q-Fourier transform \(F_q \). We have shown that, if we eliminate the
requirement that q be fixed and let it “float” instead, such simple extension of the F_q—definition restores the desired one-to-one character.

Acknowledgments The authors thank Prof. C. Tsallis for having called our attention to the present problem.
References

[1] C. Tsallis, J. Stat. Phys. 52 (1988) 479.

[2] M. Gell-Mann, C. Tsallis (Eds.), Nonextensive Entropy Interdisciplinary Applications, Oxford University Press, New York, 2004; C. Tsallis, Introduction to Nonextensive Statistical Mechanics Approaching a Complex World, Springer, New York, 2009.

[3] A. R. Plastino, A. Plastino, Phys. Lett A 177 (1993) 177.

[4] C. Tsallis, M. Gell-Mann, Y. Sato, Proc. Natl. Acad. Sci. USA 102 (2005) 15377; F. Caruso, C. Tsallis, Phys. Rev. E 78 (2008) 021102.

[5] P. Douglas, S. Bergamini, F. Renzoni, Phys. Rev. Lett. 96 (2006) 110601; G.B. Bagci, U. Tirnakli, Chaos 19 (2009) 033113.

[6] B. Liu, J. Goree, Phys. Rev. Lett. 100 (2008) 055003.

[7] R.G. DeVoe, Phys. Rev. Lett. 102 (2009) 063001.

[8] R.M. Pickup, R. Cywinski, C. Pappas, B. Farago, P. Fouquet, Phys. Rev. Lett. 102 (2009) 097202.

[9] L.F. Burlaga, N.F. Ness, Astrophys. J. 703 (2009) 311.
[10] F. Caruso, A. Pluchino, V. Latora, S. Vinciguerra, A. Rapisarda, Phys. Rev. E 75 (2007) 055101(R); B. Bakar, U. Tirnakli, Phys. Rev. E 79 (2009) 040103(R); A. Celikoglu, U. Tirnakli, S.M.D. Queiros, Phys. Rev. E 82 (2010) 021124.

[11] V. Khachatryan, et al., CMS Collaboration, J. High Energy Phys. 1002 (2010) 041; V. Khachatryan, et al., CMS Collaboration, Phys. Rev. Lett. 105 (2010) 022002.

[12] Adare, et al., PHENIX Collaboration, Phys. Rev. D 83 (2011) 052 004; M. Shao, L. Yi, Z.B. Tang, H.F. Chen, C. Li, Z.B. Xu, J. Phys. G 37 (8) (2010) 085104.

[13] M.L. Lyra, C. Tsallis, Phys. Rev. Lett. 80 (1998) 53; E.P. Borges, C. Tsallis, G.F.J. Ananos, P.M.C. de Oliveira, Phys. Rev. Lett. 89 (2002) 254103; G.F.J. Ananos, C. Tsallis, Phys. Rev. Lett. 93 (2004) 020601; U. Tirnakli, C. Beck, C. Tsallis, Phys. Rev. E 75 (2007) 040106(R); U. Tirnakli, C. Tsallis, C. Beck, Phys. Rev. E 79 (2009) 056209.

[14] L. Borland, Phys. Rev. Lett. 89 (2002) 098701.

[15] A. R. Plastino, A. Plastino, Phys. Lett A 174 (1993) 834.
[16] A. R. Plastino, A. Plastino, Physica A 222 (1995) 347.

[17] S. Umarov, C. Tsallis, S. Steinberg, Milan J. Math. 76 (2008) 307; S. Umarov, C. Tsallis, M. Gell-Mann, S. Steinberg, J. Math. Phys. 51 (2010) 033502.

[18] M. Jauregui, C. Tsallis, J. Math. Phys. 51 (2010) 063304.

[19] A. Chevreuil, A. Plastino, C. Vignat, J. Math. Phys. 51 (2010) 093502.

[20] M. Mamode, J. Math. Phys. 51 (2010) 123509.

[21] A. Plastino and M.C.Rocca: J. Math. Phys 52, 103503 (2011).

[22] H.J.Hilhorst: J. Stat. Mech. P10023 (2010)

[23] M.Jauregui and C.Tsallis: Phys. Lett. A 375, 2085 (2011).

[24] M.Jauregui, C.Tsallis and E.M.F. Curado: arXiv:1108.2690v1.

[25] M. Jauregui, C, Tsallis, Phys. Lett. A 375 (2011) 2085.

[26] L. S. Gradshtein and I. M. Ryzhik : Table of Integrals, Series, and Products. Fourth edition, Academic Press (1965) 3.194 1 and 3.194 2 pages 284 and 285.
[27] M. Abramowitz and I. A. Stegun: *Handbook of Mathematical Functions.*
National Bureau of Standards. Applied Mathematical Series 55 Tenth Printing (1972), 15.1.8 page 556.

[28] L. S. Gradshtein and I. M. Ryzhik: *Table of Integrals, Series, and Products.* Fourth edition, Academic Press (1965) 3.194 3 page 285.