Bioinformatics analysis of the predicted polyprenol reductase genes in higher plants

M Basyuni*, R Wati†
†Department of Forestry, Faculty of Forestry, Universitas Sumatera Utara, Jl. Tri Dharma Ujung No. 1 Medan, North Sumatera 20155, Indonesia
m.basyuni@usu.ac.id

Abstract. The present study evaluates the bioinformatics methods to analyze twenty-four predicted polyprenol reductase genes from higher plants on GenBank as well as predicted the structure, composition, similarity, subcellular localization, and phylogenetic. The physicochemical properties of plant polyprenol showed diversity among the observed genes. The percentage of the secondary structure of plant polyprenol genes followed the ratio order of α-helix > random coil > extended chain structure. The values of chloroplast but not signal peptide were too low, indicated that few chloroplast transit peptide in plant polyprenol reductase genes. The possibility of the potential transit peptide showed variation among the plant polyprenol reductase, suggested the importance of understanding the variety of peptide components of plant polyprenol genes. To clarify this finding, a phylogenetic tree was drawn. The phylogenetic tree shows several branches in the tree, suggested that plant polyprenol reductase genes grouped into divergent clusters in the tree.

1. Introduction
Higher plants are known to produce long-chain polyisoprenoids, which is classified into polyprenol and dolichol concerning the α-isoprene unit [1]. The occurrence of polyisoprenoids has been reported in various plant tissues: leaves [2-3], roots [2-5], flowers [5], fruits [6], shoots [7], seeds [5-7], and needles [8]. These studies revealed the omnipresent distribution of polyisoprenoids in the plant kingdom. Polyprenols are predominant polyisoprenoids in plant photosynthetic tissues, and few dolichols occurred [1]. On the other hand, dolichols were found abundantly in plant roots, yeast, and animal (livers) tissues [2-5,9-10].

However, recently dolichols have been shown as the primary polyisoprenoid alcohols in mangrove and coastal plants [2-4]. The presence of abundant dolichols even in the mangroves leaves implies that the enzyme of polyprenol reductase might be energetic in the mangrove. This enzyme corresponding to the SRD5A3 protein in animals has been shown to catalyze the final step of polyprenol converted to dolichols in the biosynthesis of dolichol [11].

In this circumstance, it is crucial to further understand the polyprenol reductase genes in higher plants. Two polyprenol reductase genes from Arabidopsis thaliana have been reported [11]. Nonetheless, bioinformatics information on the plant polyprenol reductase is scarce. The present study aimed to analyze the predicted polyprenol reductase from higher plants using the bioinformatics method.
2. Materials and method

2.1. Materials

A total of twenty-one predicted polyprenol reductase genes, were collected, along with predicted polyprenol reductase gene from *Kandelia obovata: KoPPRDI* (1192 bp, encoding for 382 amino acids). The Genebank accession numbers of the DNA and amino acid sequence used in this analysis are as follows: XM_016081788 (*Arachis duranensis* polyprenol reductase 2), XM_021109944 (*A. ipaensis* polyprenol reductase 2), XM_020359734 (*Cajanus cajan* polyprenol reductase 2), XM_019849699 (*Elaeis guineensis* polyprenol reductase 1), XM_018861897 (*Eucalyptus grandis* polyprenol reductase 2), XM_003537780 (*Glycine max* polyprenol reductase 2), XM_017765134 (*Gossypium arboreum* polyprenol reductase 2-like), XM_016848239 (*G. hirsutum* polyprenol reductase 2-like), XM_012601789 (*G. raimondii* polyprenol reductase 2-like), XM_019302562 (*Ipomoea nil* polyprenol reductase 2-like), XM_012210100 (*Jatropha curcas* polyprenol reductase 2), XM_018985852 (*Juglans regia* polyprenol reductase 2-like), XM_017330714 (*Malus x domestica* polyprenol reductase 2-like), XM_017840866 (*Phoenix dactylifera* polyprenol reductase 1), XM_011038928 (*Populus euphratica* polyprenol reductase 2-like), XM_007200320 (*Prunus persica* polyprenol reductase 2), XM_018642260 (*Pyrus x bretschneideri* polyprenol reductase 2-like), XM_015715302 (*Ricinus communis* polyprenol reductase 2), XM_018128982 (*Theobroma cacao* polyprenol reductase 2), XM_014668834 (*Vigna radiata* var. *radiata* polyprenol reductase 2), and XM_016036804 (*Ziziphus jujuba* polyprenol reductase 2).

2.2. Physicochemical properties of the polyprenol reductase

The physical and chemical properties of DNA and amino acid sequences of polyprenol reductase were analyzed using ProtParam online analysis (web.expasy.org/protparam/). The computed parameters consist of the molecular weight, theoretical isoelectric point values, composition of amino acid, atomic composition, extinction coefficient, estimated half-life, instability index, fat coefficient, and overall average hydropopicity as previously described [12].

2.3. Potential transit of peptide and subcellular localization of predicted polyprenol reductase

The targetP 1.1 server online (www.cbs.dtu.dk/services/targetp) was used to determine the prediction of transit peptide. The location assignment is according to the predicted presence of any of the N-terminal pre-sequences chloroplast transit peptide (cTP), mitochondrial targeting peptide (mTP) and secretory pathway signal peptide (SP). The subcellular localization of plant polyprenol reductase was predicted using PSORT Prediction online (psort.hgc.jp/form.html) as previously reported [13].

2.4. Phylogenetic analysis of predicted polyprenol reductase

The amino acid sequences were aligned, and similarity scores were obtained using the FASTA ver. 3.4t26 [14] of the DNA Data Bank of Japan (Mishima, Shizuoka, Japan). Phylogenetic analysis of deduced amino acid alignment from polyprenol reductase genes was conducted with CLUSTAL W ver. 1.83 [15] of the DNA Data Bank of Japan followed by drawing with TREEView ver. 1.6.6 [16] based on a neighbour-joining method. Bootstrap analysis with 1000 replications was used to increase the strength of the nodes in the tree [17]. The GenBank accession numbers of the DNA and amino acid sequence of using this analysis is described in the Materials subsection.

3. Results and Discussions

3.1. Physical and chemical properties and secondary structure of the polyprenol reductase gene

Table 1 shows the initiation codon of plant polyprenol reductase genes was ATG, where the stop codons consisted of TGA and TAG. The open reading frame length was varied among the genes observed. A number of encoded amino acids were 101 to 357. It is noteworthy to note the diversity of relative molecular mass, theoretical isoelectric point value, positively or negatively charged residues,
extinction coefficient, Fat coefficient, and overall average hydrophilicity among the evaluated genes. *M. x domestica* was distinguishable from other plant polyprenol reductase genes in the total number of atoms, as there is at least one ambiguous position (B, Z or X) in the sequence considered, the atomic composition, therefore, cannot be computed.

The estimated half-life period was accurately same among the genes and was much longer that triterpenoid and cycloartenol synthase genes, the members of oxidoqualene cyclase (OSC) genes [13] and mangrove actin genes [19]. Based on stability coefficients, only three plant polyprenol reductase genes namely *G. max*, *G. arboretum*, and *G. raimondii* were stable proteins, the mostly remaining genes were non-stable proteins. These results suggested the importance of understanding the diversity and function of physicochemical properties of the different amino acids in plant polyprenol reductase genes [19].

Table 1. Physical and chemical properties of the plant polyprenol reductase in the database

Plant species	A. duranensis	A. ipaensis	C. cajan	E. grandis	E. guineensis
Length of genes/bp	2031	1556	1411	1320	1229
Open reading frame length/bp	1915	1415	1165	1057	909
Start site and codon	902ATG	402ATG	122ATG	41ATG	239ATG
Stop site and codon	1915TGA	1415TGA	1165TGA	1057TGA	909TGA
Number of encoded amino acids	337	337	347	338	223
Relative molecular mass	38916.89	38998.16	40210.04	39149.63	24760.07
Theoretical isoelectric point values	9.11	9.34	9.35	8.58	8.23
Positively charged residues	24	26	26	26	16
Negatively charged residues	18	17	18	23	14
Total number of atoms	5527	5550	5692	5509	3512
Extinction coefficient	2.456	2.310	2.448	2.480	2.334
Half-life period	30h	30h	30h	30h	30h
Instability coefficient	48.48	48.13	51.95	57.23	112.06
Fat coefficient	109.35	110.21	105.07	99.79	112.06
Overall average hydrophilicity	0.487	0.478	0.349	0.326	0.537

Table continued

Plant species	G. arboreum	G. hirsutum	G. max	G. raimondii	I. nil
Length of genes/bp	1348	1310	1682	1438	2755
Open reading frame length/bp	1151	1036	1441	1229	2143
Start site and codon	81ATG	128ATG	413ATG	180ATG	1244ATG
Stop site and codon	1151TGA	1036TGA	1441TGA	1229TGA	2143TGA
Number of encoded amino acids	357	302	342	349	299
Relative molecular mass	40749.35	34808.15	39109.94	39842.36	34118.14
Theoretical isoelectric point values	7.25	9.45	9.23	8.17	9.30
Positively charged residues	24	27	24	24	28
Negatively charged residues	24	17	17	22	17
Total number of atoms	5737	4953	5550	5611	4830
Extinction coefficient	2.520	2.819	2.227	2.578	2.063
Half-life period	30h	30h	30h	30h	30h
Instability coefficient	37.89	55.65	36.13	38.36	46.07
Fat coefficient	100.59	107.55	106.81	98.97	102.11
Overall average hydrophilicity	0.432	0.428	0.488	0.437	0.381
	J. curcas	J. regia	Ko PPRD1	M. domestica	P. dactylifera
------------------	----------	----------	----------	--------------	---------------
Length of genes/bp	1333	1727	1193	1464	928
Open reading frame length/bp	1175	1369	nd	1306	633
Start site and codon	261ATG	353ATG	nd	290ATG	145ATG
Stop site and codon	1175TGA	1369TGA	nd	1306TGA	633TGA
Number of encoded amino acids	304	338	357	338	162
Relative molecular mass	35067.13	38978.60	41140.93	38483.31	18250.43
Theoretical isoelectric point values	8.61	8.88	8.44	9.31	9.30
Positively charged residues	22	26	30	27	13
Negatively charged residues	19	21	25	18	9
Total number of atoms	4969	5507	5739	-	2600
Extinction coefficient	2.569	2.952	2.350	2.523	2.688
Half-life period	30h	30h	1.3h	30h	30h
Instability coefficient	40.65	57.59	49.02	47.79	53.92
Fat coefficient	111.64	105.30	1306TGA	107.57	116.91
Overall average hydrophilicity	0.481	0.400	0.185	0.441	0.530

	P. euphratica	P. persica	Pyrus x	R. communis	T. cacao
Length of genes/bp	1335	1569	472	1288	1317
Open reading frame length/bp	1117	1340	321	1133	1083
Start site and codon	197ATG	339ATG	16ATG	258ATG	58ATG
Stop site and codon	1117TGA	1340TGA	321TGA	1133TGA	1083TGA
Number of encoded amino acids	306	333	101	291	341
Relative molecular mass	35383.78	38143.66	11555.41	33656.41	38280.72
Theoretical isoelectric point values	9.33	9.41	5.88	9.33	8.09
Positively charged residues	26	27	7	26	23
Negatively charged residues	16	17	10	18	21
Total number of atoms	5009	5409	1639	4768	5395
Extinction coefficient	2.498	2.401	2.202	2.381	2.465
Half-life period	30h	30h	30h	30h	30h
Instability coefficient	49.75	42.98	47.89	47.90	41.75
Fat coefficient	105.13	103.00	110.99	102.51	102.90
Overall average hydrophilicity	0.549	0.401	0.319	0.390	0.481

	V. radiata	Z. jujuba
Length of genes/bp	1548	1724
Open reading frame length/bp	1309	1510
Start site and codon	287ATG	494ATG
Stop site and codon	1309TGA	1510TGA
Number of encoded amino acids	340	338
Relative molecular mass	39015.67	39208.84
Theoretical isoelectric point values	9.03	9.31
Positively charged residues	25	28
Negatively charged residues	20	18
Total number of atoms	5544	5539
Extinction coefficient	2.268	2.730
Half-life period	30h	30h
Instability coefficient	43.61	49.24
Fat coefficient	108.97	99.79
Overall average hydrophilicity	0.465	0.330
Table 2 depicts the percentage of the secondary structure of plant polyprenol genes followed the proportion order of α helix > random coil > extended chain structure. This similar pattern has been previously reported in the oxidosqualene cyclase genes [13] and mangrove actin genes [18]. The variation was notable among the genes observed, implied that the important function of secondary structure analysis of plant polyprenol reductase in the plant kingdom. Polyprenol may play a key role in early steps of protein N-linked glycosylation, the enzyme was required for the alteration of polyprenol into dolichol [10].

Table 2. Secondary structure analysis of plant polyprenol reductase

Protein accession number	α helix number	α helix ratio (%)	Extended chain structure number	Extended chain structure ratio (%)	Random coil number	Random coil ratio (%)
XP_003537828	159	46.49	63	18.42	120	35.09
XP_007200382	159	47.75	63	18.92	111	33.33
XP_011037230	167	54.58	52	16.99	87	28.43
XP_012065490	181	59.54	31	10.20	92	30.26
XP_012457243	190	54.44	45	12.89	114	32.66
XP_014524320	173	50.88	59	17.35	108	31.76
XP_015570788	154	52.92	43	14.78	94	32.30
XP_015892290	186	55.03	49	14.50	103	30.47
XP_015937274	177	52.52	59	17.51	101	29.97
XP_016703728	173	57.28	31	10.26	98	32.45
XP_017186203	175	51.78	50	14.79	113	33.43
XP_017620623	190	53.37	49	13.76	117	32.87
XP_017696355	99	61.11	12	7.41	51	31.48
XP_017984471	147	43.11	67	19.65	127	37.24
XP_018497776	30	29.70	32	31.68	39	38.61
XP_018717442	175	51.78	48	14.20	115	34.02
XP_018841397	175	51.78	52	15.38	111	32.84
XP_019158107	163	54.52	42	14.05	94	31.44
XP_019705258	122	54.71	21	9.42	80	35.87
XP_020215323	181	52.16	58	16.71	108	31.12
XP_020965603	180	53.41	53	15.73	104	30.86
KoPPRD1	157	43.98	51	14.29	149	41.74

3.2. Potential transit of peptide and subcellular localization of OSC gene

Table 3 shows the possibility of the possible transit peptide in plant polyprenol reductase genes. There are four reliabilities analyzed: chloroplast transit peptide, mitochondrial target peptide, the signal peptide of the secretory pathway, and the prediction probability. The values of chloroplast but not signal peptide were too low, indicated that few chloroplast transit peptide or relatively high signal peptide of secretion pathway in twenty-four plant polyprenol reductase genes. It is interesting to note that target peptide value of mitochondria diversified from 0.042 to 0.540, indicating that it likely existed. The highest mitochondrial target peptide was KoPPRD 1, a candidate of K. obovata polyprenol reductase gene. This result supported the previous report on the highest mitochondrial target peptide among the OSC genes from mangrove plants, was found in KcCAS, K. candel cycloartenol synthase gene with the product of 100% cycloartenol [13, 20].
Table 3. Possibility of the potential transit peptide in polyprenol reductase genes

Protein accession number	Chloroplast transit peptide	Mitochondrial target peptide	Signal peptide of secretory pathway	Reliability prediction
XP_003537828	0.011	0.056	0.399	4
XP_007200382	0.005	0.376	0.364	5
XP_011037230	0.025	0.094	0.242	5
XP_012065490	0.037	0.308	0.024	5
XP_012457243	0.027	0.075	0.197	5
XP_014524320	0.036	0.042	0.286	5
XP_015570788	0.004	0.181	0.371	5
XP_015892290	0.006	0.264	0.296	5
XP_015937274	0.021	0.059	0.098	4
XP_016703728	0.002	0.217	0.313	5
XP_017186203	0.004	0.225	0.380	5
XP_017602623	0.015	0.025	0.184	3
XP_017696355	0.024	0.276	0.806	3
XP_017984471	0.072	0.069	0.287	5
XP_018497776	0.014	0.100	0.129	1
XP_018717442	0.006	0.477	0.118	4
XP_018841397	0.023	0.422	0.084	4
XP_019158107	0.002	0.105	0.687	3
XP_019705258	0.026	0.393	0.308	5
XP_020215323	0.037	0.435	0.025	4
XP_020965603	0.013	0.084	0.128	4
KoPPRD1	0.000	0.540	0.922	4

Table 4 shows subcellular localization of plant polyprenol reductase genes in higher plants. The subcellular localization of these genes mostly resided in Golgi bodies, plasma membrane, and endoplasmic reticulum. A few genes were chloroplast thylakoid membrane and microbody. Recently, it has been reported that the expression of two triterpenoid synthases, BgbAS and RsM1 under a GAL1 promoter in GIL77 enhanced the triterpenoid content of plasma membrane portions [13]. In the present data (Table 4), both gene BgbAS and RsM1 were located at the plasma membrane, supported previous results on their subcellular localization situated in the plasma membrane [13].

3.3. Phylogenetic analysis of polyprenol reductase gene

To confirm the similarity among the plant polyprenol reductase gene, a phylogenetic tree was drawn on the source of their amino acid sequences (Figure 1). The phylogenetic tree shows that there are five clusters in the tree. The first branch was Z. juja; the second cluster consisted G. hirsutum. The third branch comprised five members of polyprenol reductase genes. The fourth cluster was the largest members consisting of 13 genes. This cluster was the center of the phylogenetic tree in term of evolution.

A new member of KoPPRD1 K. obovata polyprenol reductase joined in the center branch. This gene joined with other plant polyprenol reductase in higher plants: R. communis, I. nil, P. euphratica, and E. grandis. Our present result, therefore, suggested that KoPPRD1 gene is a new member of plant polyprenol reductase.

The close relationship between KoPPRD1 gene with plant as mentioned earlier polyprenol reductase can be explained by their habitat in the tropical forests [2,3]. The apparent similarity and joining these five genes in the tree may due to the result of tropical or subtropical climatic conditions [2,21]. Mangrove forests are distributed in the tropical and sub-tropical area as well as R. communis, I. nil, P. euphratica, and E. grandis.species [21].
Figure 1. Phylogenetic tree of plant polyprenol reductase. Phylogenetic tree of deduced amino acid sequences was constructed with the neighbour-joining method of the CLUSTAL W [15]. The indicated scale represents 0.1 amino acid substitutions per site. Numbers point out bootstrap value from 1000 replicates. The GenBank accession numbers of the amino acid sequence of using this analysis are mentioned in the Materials subsection.
Table 4. Subcellular localization of plant polyprenol reductase

Protein accession number	Chloroplast thylakoid membrane	Golgi bodies	Plasma membrane	Endoplasmic reticulum	Microbody	Mitochondrial inner membrane
XP_003537828	0.426	0.400	0.600	0.300	nd	nd
XP_007200382	nd	0.460	0.640	0.685	nd	nd
XP_011037230	nd	0.460	0.640	0.685	nd	0.822
XP_012065490	nd	0.460	0.640	0.685	nd	nd
XP_012457243	nd	0.400	0.600	nd	nd	0.340
XP_014524320	0.375	0.400	0.600	nd	nd	nd
XP_015570788	nd	0.460	0.640	0.685	nd	nd
XP_015892290	nd	nd	0.730	0.640	0.388	nd
XP_015937274	0.438	0.400	0.600	0.300	nd	nd
XP_016703728	nd	0.460	0.640	0.685	nd	nd
XP_017186203	nd	0.460	0.640	0.685	nd	nd
XP_017620623	nd	0.400	0.600	0.300	0.300	nd
XP_017696355	nd	0.460	0.640	0.685	nd	nd
XP_017984471	0.354	0.400	0.600	0.300	nd	nd
XP_018497776	0.249	nd	0.700	0.200	0.640	nd
XP_018717442	nd	0.460	0.640	0.685	nd	nd
XP_018841397	nd	nd	0.460	0.100	0.388	nd
XP_019158107	nd	0.460	0.640	0.685	nd	nd
XP_019705258	nd	0.460	0.640	0.685	nd	nd
XP_020215323	0.426	0.400	0.600	0.300	nd	nd
XP_020965603	0.438	0.400	0.600	0.300	nd	nd
KoPPRD1	nd	0.460	0.640	0.685	nd	nd

nd= not detected

4. Conclusions
The present study confirmed the diversity and function of physicochemical properties of the plant polyprenol reductase genes. Furthermore, our data supported previous results on the subcellular localization of triterpenoid synthase genes located in the plasma membrane.

Acknowledgment
A part of this study was supported by an International Research Collaboration and Scientific Publication Grant 2017 (No. 003/SP2H/LT/DRPM/IV/2017 to MB) from the Directorate for Research and Community Service, Ministry of Research, Technology and Higher Education, Republic of Indonesia.

References
[1] Surmacz L and Swiezewska E 2011 Polyisoprenoids—Secondary metabolites or physiologically important superlipids? Biochem. Biophys. Res. Commun. 407 627–632.
[2] Basyuni M, Sagami H, Baba S, Iwasaki H and Oku H 2016 Diversity of polyisoprenoids in ten Okinawan mangroves Dendrobiology 75 167–175.
[3] Basyuni M, Sagami H, Baba S and Oku H 2017 Distribution, occurrence, and cluster analysis of new polypropenyl acetones and other polysoprenoids from North Sumatran mangroves *Dendrobiology* **78** 18–31.

[4] Basyuni M, Wati R, Sagami H, Sumardi, Baba S and Oku H 2018 Diversity and abundance of polysoprenoid composition in coastal plant species from North Sumatra, Indonesia *Biodiversitas* **19** 1–11.

[5] Tateyama S, Wititsuwannakul R, Wititsuwannakul D, Sagami H and Ogura K 1999 Dolichols of rubber plant, ginkgo and pine *Phytochemistry* **51** 11–15.

[6] Arifiiyanto D, Basyuni M, Sumardi, Putri LAP, Siregar ES, Risnasari I and Oku H 2018 Diversity and abundance of polyprenoid composition in coastal plant species from North Sumatra, Indonesia *Biodiversitas* **19** 1–11.

[7] Kurisaki A, Sagami H and Ogura K 1997 Distribution of polyprenols and dolichols in soybean plant *Phytochemistry* **44** 45–50.

[8] Yu J, Wang Y, Qian H, Zhao Y, Liu B and Fu C 2012 Polypropenyls from the needles of *Taxus chinensis var. mairei* *Fitoterapia* **83** 831–837.

[9] Sagami H, Kurisaki O, Oguro K and Chojnacki T 1992. Separation of dolichol from dehydrodolichol by a simple two-plate thin layer chromatography. *J. Lipid Res.* **33**: 1857–1862.

[10] Grabinska K and Palamarczyk G 2002 Dolichol biosynthesis in the yeast *Saccharomyces cerevisiae*: an insight into the regulatory role of farnesyl diphosphate synthase *FEBS Yeast Res.* **2** 259–265.

[11] Jozwiak A, Gutkowska M, Gawarecka K, Surmacz L, Buckzkowska A, Lichocka M, Nowakowska J and Swiezewska E 2015 Polyprenol reductase2 deficiency is lethal in *Arabidopsis* due to male sterility *Plant Cell* **27**: 3336–3353.

[12] Basyuni M and Sumardi 2017 Bioinformatics approach of salt tolerance gene in mangrove plant *Rhizophora stylosa* *J. Phys.: Conf. Ser.* **801** 012012.

[13] Basyuni M and R Wati 2017 Bioinformatics analysis of the oxidosqualene gene and the amino acid sequence in mangrove plants *J. Phys.: Conf. Ser.* **801** 012011.

[14] Pearson WR and Lipman DJ 1988 Improved tools for biological sequence comparison *Proc. Natl. Acad. Sci. USA* **85**: 2444–2448.

[15] Page RD 1996 *TreeView*: an application to display phylogenetic trees on personal computers *Comput. Appl. Biosci.* **12**: 357–358.

[16] Felsenstein J 1985 Confidence limits on phylogenies: an approach using the bootstrap *Evolution* **39**: 783–791.

[17] Basyuni M, Wasilah M and Sumardi 2017 Bioinformatics study of the mangrove actin genes *J. Phys.: Conf. Ser.* **801** 012013.

[18] Swiezewska E and Danikiewicz W 2005. Polysoprenoids: Structure, biosynthesis, and function. *Prog. Lipid Res.* **44**: 235–258.

[19] Basyuni M, Oku H, Tsujimoto E and Baba S 2007 Cloning and functional expression of cycloartenol synthases from mangrove species *Rhizophora stylosa* Griff. and *Kandelia candel* (L.) Druce *Biosci. Biotechnol. Biochem.* **71**: 1788–1792.

[20] Basyuni M, Baba S, Kinjo Y, Putri LAP, Hakim L and Oku H 2012 Salt-dependent increase in triterpenoids is reversible upon transfer to fresh water in mangrove plants *Kandelia candel* and *Bruguiera gymnorrhiza* *J. Plant Physiol.* **169**: 1903–1908.