Mixed results with baricitinib in biological-resistant adult-onset Still’s disease and undifferentiated systemic autoinflammatory disease

Mark Kacar,1 John Fitton,2 Andrew K Gough,3 Maya H Buch1,2
Dennis G McGonagle,2 Sinisa Savic4

INTRODUCTION
Adult-onset Still’s disease (AOSD) is a rare systemic autoinflammatory disorder characterised by a combination of fever, generalised evanescent salmon-pink rash, pharyngodynia, arthritis/synovitis, lymphadenopathy, serositis and splenomegaly. None of these clinical features are disease-specific, and a wide spectrum of conditions including autoimmune, infectious and malignant diseases need to be considered as part of differential diagnosis. Several classification criteria have been developed for research purposes that can aid the diagnosis of AOSD. The most commonly used are Yamaguchi’s1 and Fautrel’s2 criteria with the latter one not requiring exclusion of other conditions for diagnosis of AOSD to be made. The diagnosis can be particularly difficult in patients with pre-existing conditions such as myelodysplastic syndrome (MDS) or in patients who do not fulfil all classification criteria, but have a condition closely resembling AOSD and who are ultimately treated and respond to therapies used for AOSD. A frequently used diagnostic label in such cases is that of undifferentiated systemic autoinflammatory disease (uSAID).3

Treatment of AOSD has been revolutionised by the introduction of biologicals DMARD particularly those targeting interleukin (IL)-1 and IL-6.4–7 The Janus kinase (JAK) inhibitors—ifakicitinib, baricitinib and others—are highly effective in refractory inflammatory arthritis, including patients who have failed biological therapy.8,9 Here, we describe our experience using the JAK-1/JAK-2 inhibitor baricitinib in two patients with biological-resistant AOSD meeting Yamaguchi’s diagnostic criteria, as well as in one patient suffering from an AOSD-like disorder in the context of low-grade MDS. Results of relevant investigations are shown in table 1, a summary of medications used (and their doses) are shown in table 2, and clinical characteristics, laboratory results and concomitant medication prebaricitinib and postbaricitinib implementation are shown in table 3.

CASE REPORT
A 43-year-old Sudanese woman (P1) was first treated at in Sudan (at 41 years) for fever and flitting arthralgia. She relapsed in the UK...
despite maintenance therapy with prednisolone and hydroxychloroquine, presenting with fever, arthritis/synovitis and evanescent rash in the context of neutrophilia and elevated inflammatory markers. She remained steroid-dependent (multiple unsuccessful tapers below 15 mg prednisolone daily) despite combination therapy with anakinra and

Table 1 Demographics, clinical characteristics and results

	Patient 1 (P1)	Patient 2 (P2)	Patient 3 (P3)
Gender	F	M	F
Age at presentation (years)	41	29	58

Clinical characteristics at presentation

	P1	P2	P3
Fevers >39°C*	+	+	+
Joint involvement†	+	+	+
Rash‡	+	+	-
Sore throat	+	-	+
Lymphadenopathy	-	-	-
Splenomegaly	+	-	-
Serositis	+	-	-

Laboratory results

	P1	P2	P3
WBC >10.000/mL	+		
Elevated LFTs (>1.5X ULN)	+ (ALT, AP, LDH)	+ (ALT)	+ (AP)
Maximum CRP (<10 mg/L)	231 mg/L (on 35 mg Pred/day)	94 mg/L (on 40 mg Pred/day)	239 mg/L (on 20 mg Pred/day)
Maximum ESR (1–15 m/hour)	125 mm/hour	16 mm/hour	NA
Maximum ferritin (10–332 ng/mL)	38 940 ng/mL	679 ng/mL	2695 ng/mL**

Other investigations

PET CT — borderline splenomegaly, traces of pericardial effusion, reactive mediastinal lymphadenopathy

PET CT — no inflammatory arthritis, vasculitis, infection or malignancy

PET CT — no infection, malignancy or vasculitis; USS abdomen — no abnormalities detected

*Lasting 1 week or longer.
†Arthritis/synovitis/arthralgia.
‡Evanescent, salmon-pink maculopapular rash.
‘P3 has been pancytopenic since presentation due to underlying myelodysplasia; however, flares were associated with tripling of neutrophil counts. ‘The elevation of ferritin does not correspond to disease flares but likely reflects increased transfusion dependence. ‘WBC over 13.000 but 77% PBMC.
ALT, alanine aminotransferase; ANA, antinuclear antibody assay; AP, alkaline phosphatase; CRP, C reactive protein; ESR, erythrocyte sedimentation rate; F, female; LDH, lactate dehydrogenase; LFT, liver function test; NA, not available; M, male; PET, positron emission tomography; Pred, prednisolone; RF, rheumatoid factor; ULN, upper limit of normal; USS, ultrasound scan; WBC, white blood cell count.

Table 2 Treatments used before baricitinib implementation and their efficacy

	P1	P2	P3
Prednisolone PR	30–40 mg OD	40 mg OD	20 mg OD
Methotrexate NR*	7.5 mg 1 weekly	25 mg 1 weekly	/
Ciclosporin PR	100 mg BD	150 mg BD	/
Anakinra PR	300 mg BD	100 mg BD	100 mg OD
Tocilizumab NR	8 mg/kg 2 weekly	8 mg/kg 2 weekly	CR — vasculitis
Sarilumab /	/	/	CR — vasculitis

Other medications / Rituiximab — NR

Infliximab — PR

Rituiximab for vasculitis — CR

*In addition to lack of response, P1 experienced a severe generalised toxic drug eruption with MTX.
CR — complete response defined as resolution of all symptoms/absence of flares with normalisation of laboratory parameters.
PR — partial response defined as >50% reduction in frequency/severity of symptoms.
NR — no response.
OD — one time per day.
BD — two times per day.
ciclosporin or methotrexate. Anakinra was briefly replaced with two-weekly intravenous tocilizumab infusions but was restarted due to primary non-response. The disease evolved into a predominantly oligoarthritic phenotype with significant synovial hypertrophy of both 2nd metacarpophalangeal (MCP) joints, multiple proximal interphalangeal joint (PIP) joints and both knee supra-patellar pouches. In addition, there was evidence of bilateral tibialis posterior and extensor carpi ulnaris tenosynovitis with evidence of multiple bone erosions on ultrasound. Baricitinib was started at this point and the patient has remained in clinical and biochemical remission while on baricitinib monotherapy for 15 months.

A 32-year-old Caucasian male (P2) presented at 29 years with a flitting inflammatory polyarthritis (affecting hands, wrists, elbows, shoulders and knees) associated with a non-pruritic, evanescent rash, fevers, rigours and sweating. The condition was responsive to high-dose prednisolone. A diagnosis of AOSD was made and steroid-sparing immunomodulatory therapy was initiated with ciclosporin, with methotrexate added subsequently. Anakinra was added as prednisolone requirement remained at least 15 mg/day, with marked initial improvement but subsequent relapses despite doubling and then tripling the dose. Two-weekly intravenous tocilizumab was commenced in combination with methotrexate, resulting in complete biochemical and partial clinical response. After 6 months, he developed a persistent urticaria-like rash, which improved only transiently with the anti-IgE therapeutic, omalizumab. The patient developed severe synovitis and baricitinib was added without improvement. After 9 months, both drugs were discontinued. Since then, the patient has received one cycle of rituximab (to no effect) and more recently infliximab with modest improvement in symptoms.

A 63-year-old Caucasian woman (P3) was diagnosed with AOSD-like condition (uSAID) after presenting at 58 years with pharyngitis, fever and arthralgias. The patient had pre-existing myelodysplasia diagnosed 2 years previously. Haematologist input deemed that her symptoms were not due to MDS, which was low grade and according to the MDS International Prognostic Scoring System had low scores and therefore minimal possibility of malignant transformation. Her MDS has remained clinically unchanged to this date. The initial flare was treated with high-dose corticosteroids. DMARDs were omitted due to the patient’s MDS. She was established on high-dose methotrexate but her symptoms persisted with marked elevations of ferritin levels that were attributed to transfusion dependence and did not correspond to disease flares. After 4 months, high-dose intravenous tocilizumab was commenced but the patient was unable to tolerate it. He was then established on infliximab with persistent but moderate clinical improvement.

Table 3 Clinical characteristics, lab results and concomitant medication prebaricitinib and postbaricitinib implementation

	P1	P2	P3
Inflammatory erosive polyarthritis			
PrebaricitinibX clinical characteristics			
PrebaricitinibX results			
CRP (<10 mg/L)	231 mg/L	94 mg/L	48 mg/L
ESR (1–15 m/hour)	125 mm/hour	16 mm/hour	NA
Ferritin (10–332 ng/mL)	38 940 ng/mL	679 ng/mL	1812 ng/mL
PostbaricitinibY clinical characteristics			
PostbaricitinibY results			
CRP (<10 mg/L)	<5 mg/L	56 mg/L	2 mg/L
ESR (1–15 m/hour)	17 mm/hour	9 mm/hour	NA
Ferritin (10–332 ng/mL)	18 ng/mL	304 ng/mL	1708 ng/mL
PostbaricitinibY therapy			
Prednisolone	/	30 mg OD	15 mg OD
Methotrexate	/	20 mg 1 weekly	/
Other DMARD	/	/	/

*At time of baricitinib implementation. **At first follow-up (8±2 weeks) after implementation of a stable dose of baricitinib. The elevation of ferritin does not correspond to disease flares but likely reflects increased transfusion dependence.
BD, two times per day; CRP, C reactive protein; DMARD, disease modifying antirheumatic drugs; ESR, erythrocyte sedimentation rate; NA, not available; OD, one time per day.

Kacar M, et al. RMD Open 2020;6:e001246. doi:10.1136/rmdopen-2020-001246
on two-weekly intravenous tocilizumab monotherapy, successfully resulting in complete symptomatic control for 4 years. Subsequently, the patient developed chilblain vasculitis, deemed to have been caused by IL-6 blockade itself (and replicated after receiving subcutaneous sarilumab). The vasculitis, although seronegative, responded to rituximab, but AOSD symptoms remained problematic. A trial of anakinra failed due to intolerance; therefore, baricitinib was gradually introduced with careful monitoring. The patient has remained in biochemical and clinical remission for 9 months. At 7 months, she developed Pneumocystis jirovecii pneumonia, which responded to trimethoprim-sulfamethoxazole and she remains on it prophylactically.

DISCUSSION

AOSD remains a diagnostic and therapeutic challenge due to its myriad clinical manifestations and the confounding effects of comorbidities, partially effective therapies and continually evolving phenotypes. Our experience with baricitinib in biological-resistant AOSD is highly variable, perhaps reflecting the varied clinical presentation of this disease. One patient had pre-existing MDS and subsequently developed a clinical syndrome, which clinically resembled AOSD. Considering that there was significant time interval (2 years) between diagnosis of MDS and eventual emergence of AOSD-like condition, it could be argued that this was simply coincidence, particularly since it is often considered that AOSD tends to precede an eventual diagnosis of malignancy. However, a number of studies have already reported that autoimmune/autoinflammatory conditions are more common in MDS than in the general population, although with no clear classification of these inflammatory disorders. The range of autoimmune/autoinflammatory disorders in patients with MDS is highly variable with a prevalence rate ranging from 7% to 30% according to the different studies. Therefore, it is also reasonable to assume that AOSD-like condition in P3 is possibly a complication of underlying MDS. Considering that a JAK1/2 inhibitor (ruxolitinib) is already used in haematology to treat myelofibrosis, P3 response to baricitinib might not be surprising. However, ruxolitinib is typically approved for the treatment of intermediate-risk and high-risk myelofibrosis and associated symptoms. Interestingly, P3 also developed an opportunistic infection with pneumocystis while on baricitinib, a complication previously described only once in the context of myelofibrosis therapy with ruxolitinib.

The response to baricitinib in two other patients with AOSD was mixed. Nonetheless, JAKi remains a promising therapeutic option for patients otherwise dependent on high-dose corticosteroids. A recent report from China describes the successful use of tofacitinib in 14 patients with AOSD; however, not all patients had a complete response and some were still needing to take steroids on a long-term basis. The success of JAKi in patients who have failed IL-1-directed and IL-6-directed therapies might be explained by the ability of these medications to block other likely relevant cytokines such as IL-12/IL-23 and interferon-γ. However, the optimal therapeutic dose of JAKi used for AOSD might be different from what is used for licenced indication. This point was illustrated by a recent report of baricitinib use in the treatment of interferonopathies by Sanchez et al where larger, treat-to-effect, dosages were used, raising the possibility of undertreatment in our cases.

REFERENCES

1 Yamaguchi M, Ohta A, Tsunematsu T, et al. Preliminary criteria for classification of adult Still’s disease. J Rheumatol 1992;19:424–30.
2 Fautrel B, Zing E, JL G, et al. Proposal for a new set of classification criteria for adult-onset Still disease. Medicine (Baltimore) 2002;81:194–200.
3 Harrison SR, McGonagle D, Nizami S, et al. Anakinra as a diagnostic challenge and treatment option for systemic autoinflammatory disorders of undefined etiology. JCI Insight 2016;1:1–15.
4 Alten R, Gomez-Reino J, Durez P, et al. Efficacy and safety of the human anti-IL-1beta monoclonal antibody canakinumab in rheumatoid arthritis: results of a 12-week, phase II, dose-finding study. BMC Musculoskelet Disord 2011;12.
5 Fleischmann RM, Schechtman J, Bennett R, et al. Anakinra, a recombinant human interleukin-1 receptor antagonist (r-metHuIL-1ra), in patients with rheumatoid arthritis: a large, international, multicenter, placebo-controlled trial. Arthritis Rheum 2003;48:927–34.
6 Smolen JS, Beaulieu A, Rubbert-Roth A, et al. Effect of interleukin-6 receptor inhibition with tocilizumab in patients with rheumatoid arthritis (OPTION study): a double-blind, placebo-controlled, randomised trial. Lancet 2008;371:987–97.
7 Huizinga TWJ, Fleischmann RM, Jasson M, et al. Sarilumab, a fully human monoclonal antibody against IL-6R α, in patients with rheumatoid arthritis and an inadequate response to methotrexate: efficacy and safety results from the randomised SARIL-RA-MOBILITY part a trial. Ann Rheum Dis 2014;73:1626–34.
8 Genovese MC, Kremer J, Zamani O, et al. Baricitinib in patients with refractory rheumatoid arthritis. N Engl J Med 2016;374:1243–52.
9 Taylor PC, Keystone EC, van der Heijde D, et al. Baricitinib versus placebo oradalumab in rheumatoid arthritis. N Engl J Med 2017;376:652–62.
10 Hofheinz K, Schett G, Manger B. Adult onset Still’s disease associated with malignancy-cause or coincidence? Semin Arthritis Rheum 2016;46:621–6.
11 Wolach O, Stone R. Autoimmunity and inflammation in myelodysplastic syndromes. Acta Haematol 2016;136:108–17.

Contributors Data collection—MK, JF. Preparing the manuscript—MK, SS. Contribution of clinical cases—MBH, AKG, DGM and SS. Manuscript editing and final approval—MK, JF, AKG MBH, DGM.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests Yes, there are competing interests for one or more authors and I have provided a Competing Interests statement in my manuscript.

Patient consent for publication Consent obtained directly from patient(s).

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement For further queries related to the cases presented here please contact the corresponding author.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/licenses/by/4.0/.

ORCID iDs Maya H Buch http://orcid.org/0000-0002-8962-5642
Sinisa Savic http://orcid.org/0000-0001-7910-0554

Kacar M, et al. RMD Open 2020;6:e001246. doi:10.1136/rmdopen-2020-001246
12 Seguier J, Gelsi-Boyer V, Ebbo M, et al. Autoimmune diseases in myelodysplastic syndrome favors patients survival: a case control study and literature review. *Autoimmun Rev* 2019;18:36–42.

13 Quintás-Cardama A, Vaddi K, Liu P, et al. Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms. *Blood* 2010;115:3109–17.

14 Hu Q, Wang M, Jia J, et al. Tofacitinib in refractory adult-onset Still’s disease: 14 cases from a single centre in China. *Ann Rheum Dis* 2020; pii:annrheumdis-2019-216699.

15 Montealegre Sanchez GA, Reinhardt A, Ramsey S, et al. JAK1/2 inhibition with baricitinib in the treatment of autoinflammatory interferonopathies. *J Clin Invest* 2018;128:3041–52.