NORMAL SPLIT SUBMANIFOLDS OF RATIONAL HOMOGENEOUS SPACES

ENRICA FLORIS AND ANDREAS HÖRING

Abstract. Let $M \subset X$ be a submanifold of a rational homogeneous space X such that the normal sequence splits. We prove that M is also rational homogeneous.

1. Introduction

Let $M \subset \mathbb{P}^n$ be a projective manifold such that the normal sequence

$$0 \to T_M \to T_{\mathbb{P}^n} \otimes \mathcal{O}_M \to N_{M/\mathbb{P}^n} \to 0$$

splits. Since the tangent bundle of the projective space is ample, the existence of a splitting map $T_{\mathbb{P}^n} \otimes \mathcal{O}_M \to T_M$ yields that T_M is also ample, hence $M \simeq \mathbb{P}^{\dim M}$ by Mori’s theorem [Mor79]. In fact a theorem of van de Ven [vdV59] states that $M \subset \mathbb{P}^n$ is a linear subspace. It is natural to expect that similar statements exist for submanifolds of arbitrary homogeneous spaces. The case of tori has been solved by Jahnke [Jah05, Thm.3.2], so we consider the following

1.1. Problem. Let $X \simeq G/P$ be a rational homogeneous space. Let $i : M \hookrightarrow X$ be a submanifold such that the normal sequence

$$(1) \qquad 0 \to T_M \xrightarrow{\tau_i} T_X \otimes \mathcal{O}_M \to N_{M/X} \to 0$$

splits, i.e. there exists a morphism $s_M : T_X \otimes \mathcal{O}_M \to T_M$ such that $s_M \circ \tau_i = \text{id}_{T_M}$.

- Describe M up to isomorphism.
- Describe the embedding $i : M \hookrightarrow X$.

Both problems have been solved for special classes of rational homogeneous spaces like hyperquadrics, Grassmannians [Jah05, Thm.4.7, Prop.5.2], irreducible compact Hermitian symmetric spaces [Din22, Thm.2.3] or certain blow-ups of the projective space [Jah05, Li22]. In this paper we focus on the first problem and prove a structure result that holds without further assumptions on X, thereby improving [Jah05, Prop.2.2] and [Din22, Thm.2.1]:

1.2. Theorem. Let $X \simeq G/P$ be a rational homogeneous space, and let $M \subset X$ be a submanifold that is normal split (cf. Definition 2.1). Then M is rational homogeneous.

Since the vector bundle $T_X \otimes \mathcal{O}_M$ is globally generated and $M \subset X$ is normal split, the tangent bundle of T_M is globally generated. Thus M is homogeneous and by [BR62, Satz 1] we have

$$M \simeq A \times Y$$

Date: October 24, 2022.
where A is an abelian variety and Y is rational homogeneous. Thus in order to prove Theorem 1.2 we can assume without loss of generality that $M \simeq A$ is abelian (cf. Lemma 2.2). Since the tangent bundle of the rational homogeneous space T_X is big [Ric74] and the tangent bundle of an abelian variety is not, one is tempted to argue as in the case of the projective space. Note however that the quotient of a big vector bundle is in general not big, so a priori neither $T_X \otimes O_A$ nor its quotient T_A are big. Therefore our argument proceeds in a different fashion: denote by

$$\pi : \mathbb{P}(T_X) \to X$$

the Grothendieck projectivisation of the tangent bundle. The global sections of T_X define a morphism

$$(2) \quad \varphi_X : \mathbb{P}(T_X) \to \mathbb{P}(H^0(X, T_X))$$

that is generically finite onto its image. Since A is abelian, the splitting map allows to define a lifting $A \to \mathbb{P}(T_X)$ such that the image \tilde{A} is contracted by φ_X. If the fibres of φ_X are smooth and rationally connected the existence of \tilde{A} is often enough to obtain a contradiction, cp. [Jah05]. For an arbitrary rational homogeneous space X the fibres of φ_X are not necessarily smooth (cf. also Remark 3.1), but we show in Lemma 3.2 that manifolds contracted by φ_X are always integral submanifolds with respect to the contact structure on $\mathbb{P}(T_X)$. Theorem 1.2 then follows without too much difficulty.

Our result can be extended to normal split submanifolds of projective manifolds such that the tangent bundle T_X is nef and big, cf. Remark 3.6. By a well-known conjecture of Campana and Peternell [CP91], these are exactly the rational homogeneous spaces.

Acknowledgements. The authors thank B. Fu, J. Liu, L. Manivel, B. Pasquier and R. Śmiech for answering their ignorant questions about homogeneous spaces and contact manifolds. The second-named author thanks the Institut Universitaire de France for providing excellent working conditions.

2. Notation and basic facts

We work over the complex numbers, for general definitions we refer to [Har77]. Varieties will always be supposed to be irreducible and reduced. We use the terminology of [Deb01] [KM98] for birational geometry and notions from the minimal model program. We follow [Laz04] for algebraic notions of positivity.

Given a morphism $\varphi : A \to B$ between complex manifolds we denote by

$$\tau_\varphi : T_A \to \varphi^*T_B$$

the tangent map. For a submanifold $M \hookrightarrow X$ of a complex manifold X, we will simply denote the tangent map by

$$\tau_M : T_M \to T_X \otimes O_M.$$

2.1. Definition. Let X be a complex manifold, and let $i : M \to X$ be a submanifold. We say that the M is normal split in X if the inclusion

$$0 \to T_M \xrightarrow{\tau_M} T_X \otimes O_M$$

admits a splitting morphism $s_M : T_X \otimes O_M \to T_M$ such that $s_M \circ \tau_i = \text{id}_{T_M}$.

Remark. While τ_i is determined by the embedding, the splitting morphism s_M is not unique. Our statements will not depend on the choice of s_M.

2.2. Lemma. Let $X \simeq G/P$ be a rational homogeneous space, and let $M \subset X$ be a submanifold that is normal split. If M is not rational homogeneous, there exists an abelian variety of positive dimension $A \subset X$ that is normal split.

Proof. Since M is homogeneous, we have by [BR62, Satz 1] that $M \simeq A \times Y$ with A an abelian variety and Y rational homogeneous. Since M is not rational homogeneous, we have $\dim A > 0$. Yet M is a product, so the abelian variety A is normal split in M. Thus by [Jah05, 1.2.2] the abelian variety A is normal split in X. □

3. Geometry of the projectivised tangent bundle

Let X be a complex manifold, denote by $\pi : P(T_X) \to X$ the Grothendieck projectivisation of its tangent bundle. Let

$$0 \to \mathcal{O}_{P(T_X)} \to \pi^* \Omega_X \otimes \mathcal{O}_{P(T_X)}(1) \to T_{P(T_X)}/X \to 0$$

be the relative Euler sequence. Dualising and tensoring by $\mathcal{O}_{P(T_X)}(1)$ we obtain the canonical quotient map

$$q : \pi^* T_X \to \mathcal{O}_{P(T_X)}(1).$$

The composition of the tangent map $\tau_{\pi} : T_{P(T_X)} \to \pi^* T_X$ with the canonical quotient map q defines an exact sequence

$$0 \to F \to T_{P(T_X)} \xrightarrow{q \circ \tau_{\pi}} \mathcal{O}_{P(T_X)}(1) \to 0.$$

The corank one distribution $F \subset T_{P(T_X)}$ is a contact distribution [Bla10, Sect.13.2], i.e. the map

$$2 \bigwedge \mathcal{F} \to T_{P(T_X)}/\mathcal{F} \simeq \mathcal{O}_{P(T_X)}(1)$$

induced by the Lie bracket on $P(T_X)$ is surjective.

Assume now that $X \simeq G/P$ is rational homogeneous, so the tautological bundle $\mathcal{O}_{P(T_X)}(1)$ is nef and big [Ric74].

Since T_X is globally generated, the tautological line bundle $\mathcal{O}_{P(T_X)}(1)$ is globally generated and defines a morphism

$$\varphi|_{\mathcal{O}_{P(T_X)}(1)} : P(T_X) \to P(H^0(X,T_X))$$

such that $\mathcal{O}_{P(T_X)}(1) \simeq \varphi^*|_{\mathcal{O}_{P(T_X)}(1)} \mathcal{O}_{P(H^0(X,T_X))}(1)$. We denote by

$$\varphi_X : P(T_X) \to Y$$

the Stein factorisation of $\varphi|_{\mathcal{O}_{P(T_X)}(1)}$ and by L the pull-back of $\mathcal{O}_{P(H^0(X,T_X))}(1)$ to Y. By construction L is ample and $\mathcal{O}_{P(T_X)}(1) \simeq \varphi_X^* L$.

3.1. Remark. Since $\mathcal{O}_{P(T_X)}(1)$ is nef and big, the morphism φ_X is birational. The canonical bundle of $P(T_X)$ is isomorphic to $\mathcal{O}_{P(T_X)}(-n)$, so it is trivial on the fibres of φ_X. Thus we have

$$K_Y^* \simeq L^\otimes n$$
and Y is a Fano variety with canonical Gorenstein singularities. In fact it is not difficult to see that Y has an induced singular contact structure \cite{CF02} given by a global section of $H^0(Y, \Omega_Y^1 \otimes L)$.

We can apply \cite[Thm.2]{Kaw91} to see that the irreducible components of φ_X-fibres are uniruled. We also know by \cite[Cor.1.5]{HM07} that the fibres are rationally chain-connected. Note however that this does not imply that the irreducible components are rationally chain-connected \cite[p.119]{HM07}.

The following statement, inspired by \cite[Prop.5.9]{MOSC+15} is certainly well-known to experts, we give a detailed proof for the convenience of the reader:

\textbf{3.2. Lemma.} Let $X \simeq G/P$ be a rational homogeneous space, and let $\pi : \mathbb{P}(T_X) \to X$ be its projectivised cotangent bundle. Let $F \subset \mathbb{P}(T_X)$ be a smooth quasi-projective subvariety that is contracted by the birational map \eqref{5} onto a point. Then F is an integral variety with respect to the contact distribution $\mathcal{F} \subset T_{\mathbb{P}(T_X)}$, i.e. one has $T_F \subset \mathcal{F} \otimes \mathcal{O}_F$.

We will see that this lemma is a translation of the fact that fibres of a symplectic resolution are isotropic with respect to the symplectic form \cite[Thm.1.2]{Wie03}, \cite[Lemma 4.1]{Nam01}, a strategy that appears in the literature at several places, e.g. \cite{Bea00, SCW04}.

Let us recall the relation between the two setups: let $Y \to Y$ be the total space of L^* with the zero section removed, and set $X := \mathbb{P}(T_X) \times_Y Y$. Denote the natural maps by $\tilde{\varphi}_X : X \to Y$, $\tau : X \to \mathbb{P}(T_X)$. Then $X \to \mathbb{P}(T_X)$ is a \mathbb{C}^*-bundle and in fact the total space of $\mathcal{O}_{\mathbb{P}(T_X)}(-1)$ with the zero section removed \cite[Lemma 4.1]{Fu06}. The spaces X and Y are symplectic and $\tilde{\varphi}_X$ is a symplectic resolution \cite[Lemma 4.2]{Fu06}. More precisely the contact form on $\mathbb{P}(T_X)$ is obtained from the symplectic form $\tilde{\omega}$ on X by contracting with a vector field generated by the \mathbb{C}^*-action (cf. proof of \cite[Lemma 4.2]{Fu06}).

\textit{Proof of Lemma 3.2.} By \cite{1} the contact distribution \mathcal{F} is the kernel of the contact map $T_{\mathbb{P}(T_X)} \to \mathcal{O}_{\mathbb{P}(T_X)}(1) \to 0$.

We identify the contact map with a section

$$\theta \in H^0(\mathbb{P}(T_X), \Omega_{\mathbb{P}(T_X)} \otimes \mathcal{O}_{\mathbb{P}(T_X)}(1)).$$

Since $\mathcal{O}_{\mathbb{P}(T_X)}(1) \simeq \varphi_X^*L$ we can find an analytic neighbourhood U of $\varphi^{-1}_X(F)$ such that $\mathcal{O}_{\mathbb{P}(T_X)}(1)$ is trivial on U. Hence

$$\theta|_U \in H^0(U, \Omega_U)$$

and we are done if we show that

$$\theta|_F \in H^0(F, N^*_F/\mathbb{P}(T_X)),$$

where $N^*_F/\mathbb{P}(T_X) \subset \Omega_U \otimes \mathcal{O}_F$ is the conormal bundle of F.

\textit{Proof of the claim.} We will reduce the claim to the corresponding statement for the symplectic forms: let $T \simeq \mathbb{C}^*$ be the fibre of $Y \to Y$ over $\varphi_X(F)$. Then $F \times_Y T \simeq F \times T \subset X$ and we set

$$\sigma : F \times T \to T,$$
where σ is the restriction of $\tilde{\varphi}_X$ to $F \times T$. Then by [Kal06, Lemma 2.9] there exists a dense open subset $T_0 \subset T$ and a holomorphic two-form ω_T on T_0 such that

$$\sigma^* \omega_T = \eta|_{F \times T_0}$$

where η is the image of $\tilde{\omega}$ under the restriction map

$$H^0(X, \Omega^2_X) \to H^0(F \times T, \Omega^2_X \otimes \mathcal{O}_{F \times T}) \to H^0(F \times T, \Omega^2_{F \times T})$$

Since T_0 is a curve, the holomorphic two-form ω_T is zero, hence $\eta = 0$. By [Har77, II, Ex. 5.16] the conormal sequence

$$0 \to N^*_{F \times T/X} \to \Omega_X \otimes \mathcal{O}_{F \times T} \to \Omega_{F \times T} \to 0$$

induces a filtration of the kernel \mathcal{K} of the surjection $\Omega^2_X \otimes \mathcal{O}_{F \times T} \to \Omega^2_{F \times T}$:

$$0 \to \bigwedge^2 N^*_{F \times T/X} \to \mathcal{K} \to N^*_{F \times T/X} \otimes \Omega_{F \times T} \to 0.$$

By what precedes we know that

$$\tilde{\omega}|_{F \times T} \in H^0(F \times T, \mathcal{K}),$$

we will now deduce $\theta|_F \in H^0(F, N^*_F/\mathcal{P}(T_X))$: by the discussion before the proof $\theta|_F$ is obtained from $\tilde{\omega}|_{F \times T}$ by contracting with a vector field v generated by the \mathbb{C}^*-action. Since this vector field is mapped onto zero by τ, the contraction with a 2-form that is a pull-back from F is equal to zero. Since

$$N^*_F = \tau^* N^*_F/\mathcal{P}(T_X)$$

we obtain from (3) that the contraction map $\mathcal{K} \xrightarrow{\iota^*} \Omega_{\mathcal{P}(T_X)/F}$ factors through a morphism

$$N^*_F \otimes \Omega_{F \times T} \xrightarrow{\iota^*} \Omega_{\mathcal{P}(T_X)/F}.$$

Yet

$$\Omega_{F \times T} \cong \tau^* \Omega_F \oplus \varphi^*_X \Omega_T,$$

so if we decompose $\tilde{\omega}|_{F \times T} = \tilde{\omega}_1 + \tilde{\omega}_2$ according to the direct sum

$$N^*_F \otimes \Omega_{F \times T} \cong \left(\tau^* N^*_F/\mathcal{P}(T_X) \otimes \tau^* \Omega_F \right) \oplus \left(\tau^* N^*_F/\mathcal{P}(T_X) \otimes \varphi^*_X \Omega_T \right)$$

we see that $\tilde{\omega}_1 \cdot v = 0$ while

$$\tilde{\omega}_2 \cdot v \in H^0(F, N^*_F/\mathcal{P}(T_X)).$$

Since $\theta|_F = (\tilde{\omega}|_{F \times T})|F = \tilde{\omega}_2|F$ this shows the claim.

The following example shows that the crucial point in Lemma 3.2 is that the contact form on $\mathbb{P}(T_X)$ is a reflexive pull-back from the singular space Y, i.e. we use that T_X is nef and big.

3.3. Example.

Let $X = \mathbb{C}^2/\Lambda$ be an abelian surface, so X is homogeneous and the natural map $\tilde{\varphi}_X$ is given by the projection

$$\varphi_X : \mathbb{P}(T_X) \cong X \times \mathbb{P}^1 \to \mathbb{P}^1.$$

We will now follow the notation of [Bla10, Sect. 13.2] for the local computation of the contact form θ: for linear coordinates z_1, z_2 on \mathbb{C}^2 the contact form on $\mathbb{P}(T_X)$ is

$$\theta = \sum_{i=1}^2 \frac{dz_i \otimes \zeta_i}{5}$$
where \(\sum_{i=1}^{2} \zeta_i dz_i \) are fibrewise coordinates on \(\mathbb{P}(T_{X,x}) \simeq \mathbb{P}(\Omega_{X,x}) \) (where \(\mathbb{P}(\Omega_{X,x}) \) is the space of lines in \(\Omega_{X,x} \)).

Assume now that \(A \subset X \) is an elliptic curve corresponding to the linear subspace \(\mathbb{C}z_1 \subset \mathbb{C}^2 \), then

\[
\frac{\partial}{\partial z_1} \mapsto \frac{\partial}{\partial z_1}, \quad \frac{\partial}{\partial z_2} \mapsto 0
\]

defines a splitting \(T_X \otimes O_A \to T_A \) of the tangent map \(\tau_A \). The curve \(\tilde{A} \subset \mathbb{P}(T_X) \) is contained in \(X \times \mathbb{P}(dz_1) \subset X \times \mathbb{P}(\Omega_X) \), so it is contracted by \(\varphi_X \). The restriction of \(\theta \) to \(X \times \mathbb{P}(dz_1) \) is simply the form \(dz_1 \), in particular the composition

\[
T_{\tilde{A}} \hookrightarrow T_{\mathbb{P}(T_X)} \otimes O_{\tilde{A}} \xrightarrow{\nu \mapsto dz_1(\nu)} O_{\tilde{A}}
\]

is surjective.

We make a basic observation:

3.4. Lemma. Let \(X \) be a projective manifold, and let \(\pi : \mathbb{P}(T_X) \to X \) be its projectivised cotangent bundle. Let \(A \subset X \) be an abelian variety that is normal split with splitting map \(s_A : T_X \otimes O_A \to T_A \) and fix a quotient \(q_A : T_A \to O_A \). Let \(\sigma_A : A \to \mathbb{P}(T_X) \) be the lifting determined by the quotient line bundle

\[
q_A \circ s_A : T_X \otimes O_A \to O_A,
\]

and denote by \(\tilde{A} \subset \mathbb{P}(T_X) \) its image. Since \(\tilde{A} \) maps isomorphically onto its image in \(X \), we can consider the tangent morphism

\[
\tau_A : T_{\tilde{A}} \simeq T_A \to T_X \otimes O_A \simeq \pi^*(T_X) \otimes O_{\tilde{A}}.
\]

Then the composition with the canonical quotient map gives a surjective map

\[
q \circ \tau_A : T_{\tilde{A}} \simeq T_A \to \pi^*(T_X) \otimes O_{\tilde{A}} \to O_{\mathbb{P}(T_X)}(1) \otimes O_{\tilde{A}}.
\]

Proof of Lemma 3.4. The lifting \(\sigma_A \) is determined by the quotient line bundle \(q_A \circ s_A : T_X \otimes O_A \to O_A \), so by the universal property of the projectivisation [Laz04] App.A| the pull-back of the canonical quotient map \(q : \pi^*T_X \to O_{\mathbb{P}(T_X)}(1) \) via \(\sigma_A \) identifies to \(q_A \circ s_A \). Since \(s_A \) is a splitting map for \(\tau_A : T_A \to T_X \otimes O_A \), the composition \(q_A \circ s_A \circ \tau_A = q_A \) is surjective. \(\Box \)

3.5. Remark. It is instructive to compare the situation with liftings of rational curves: let \(X \) be a smooth quadric surface, and let \(l \subset X \) be a line of a ruling. Then \(l \subset X \) is normal split: we have

\[
T_X \otimes O_l \simeq T_l \oplus O_l,
\]

so the trivial quotient \(T_X \otimes O_l \to O_l \) determines a lifting of \(l \) to \(\mathbb{P}(T_X) \) such that the image \(\tilde{l} \) is contained in a \(\varphi_X \)-fibre. However the morphism

\[
T_l \to \pi^*(T_X) \otimes O_l \to O_l
\]

is not surjective: we have \(T_l \simeq O_{\mathbb{P}^1}(2) \), so any morphism to a trivial bundle must vanish. The difference to Lemma 3.4 is that the trivial quotient \(T_X \otimes O_l \to O_l \) does not factor through a morphism \(T_X \otimes O_l \to T_l \).
Proof of Theorem 1.2. We argue by contradiction and assume that the submanifold
\(M \subset X \) is not rational homogeneous. By Lemma 2.2 we can assume without loss of
generality that \(M \cong A \) is an abelian variety. We fix a splitting map \(s_A : T_X \otimes O_A \to T_A \) and a trivial quotient \(q_A : T_A \to O_A \). Denote by \(\tilde{A} \subset \mathbb{P}(T_X) \) the lifting of \(A \) to \(\mathbb{P}(T_X) \) determined by the quotient \(q_A \circ s_A \). By Lemma 3.4 the map
\[
q \circ \tau_A : T_{\tilde{A}} \to O_{\mathbb{P}(T_X)}(1) \otimes O_{\tilde{A}}
\]
is surjective. Since \(\tilde{A} \subset \mathbb{P}(T_X) \) the tangent map \(\tau_A \) factors through the
tangent map
\[
\tau_{\tilde{A}} : T_{\tilde{A}} \to T_{\mathbb{P}(T_X)} \otimes O_{\tilde{A}}
\]
and we have a commutative diagram
\[
\begin{array}{ccc}
T_{\tilde{A}} & \xrightarrow{\tau_A} & T_{\mathbb{P}(T_X)} \otimes O_{\tilde{A}} \\
\downarrow{=} & & \downarrow{\tau_\pi} \\
T_A & \xrightarrow{\tau_A} & \pi^* T_X \otimes O_A \xrightarrow{q} O_{\mathbb{P}(T_X)}(1) \otimes O_{\tilde{A}}
\end{array}
\]
By construction the contact map (4) is the composition \(q \circ \tau_\pi \). Since \(q \circ \tau_A \) is
surjective, we obtain that \(q \circ \tau_\pi \circ \tau_{\tilde{A}} \) is surjective, in particular \(\tilde{A} \subset \mathbb{P}(T_X) \) is not
integral with respect to the contact structure. Yet the lifting \(A \to \mathbb{P}(T_X) \) is given
by a trivial line bundle, so
\[
\varphi_X^* L \otimes O_A \cong O_{\mathbb{P}(T_X)}(1) \otimes O_{\tilde{A}} \cong O_{\tilde{A}}.
\]
Since \(L \) is an ample line bundle on \(Y \), we see that \(\tilde{A} \) is contracted by \(\varphi_X \) onto a
point. Thus we have a contradiction to Lemma 3.2. \(\square \)

3.6. Remark. Let us conclude by indicating a variant of Theorem 1.2 under the
weaker assumption that \(T_X \) is nef and big. We claim that in this case a normal
split submanifold \(M \subset X \) is a Fano manifold with semiample tangent bundle.

Proof. The basepoint-free theorem implies that \(T_X \) is semiample in the sense of
\cite{Fuj}, cf. \cite[Prop.5.5]{MOS} for a proof. In particular we can define the birational
morphism \(5 \) using the global sections of some positive multiple of \(O_{\mathbb{P}(T_X)}(1) \), and
Lemma \ref{lem:3.2} holds for this morphism.

Since \(M \subset X \) is normal split, its tangent bundle \(T_M \) is also semi-ample. Moreover,
by \cite[Main Thm.]{DPS} there exists a finite étale cover \(\eta : M' \to M \) such that
\(M' \) admits a smooth fibration \(f : M' \to A \) onto an abelian variety such that the
general fibre is Fano. Arguing by contradiction we assume that \(A \) is not a point.
Since \(\eta \) is étale, the splitting map \(s_M : T_X \otimes O_M \to T_M \) lifts to splitting map
\[
\bar{s}_M : \eta^*(T_X \otimes O_M) \to \eta^* T_M \cong T_{M'}.
\]
Since \(T_{M'} \) is semiample \cite[Lemma 1]{Fuj} the tangent map \(\tau_f : T_{M'} \to T_A \) splits by
\cite[Cor.4]{Fuj}. Thus we have \(T_{M'} \cong T_{M'/A} \otimes O_{M'}^{\dim A} \) and we can use a quotient line
bundle \(T_{M'} \to O_{M'} \) to define a lifting \(M' \to \mathbb{P}(T_X) \) such that the image is contracted
by \(\varphi_X \) onto a point. Now the proof of Theorem 1.2 yields a contradiction. \(\square \)
References

[Bea00] Arnaud Beauville. Symplectic singularities. Invent. Math., 139(3):541–549, 2000.
[Blair10] David E. Blair. Riemannian geometry of contact and symplectic manifolds, volume 203 of Prog. Math. Boston, MA: Birkhäuser, 2nd ed. edition, 2010.
[BR62] A. Borel and R. Remmert. Über kompakte homogene Kählersche Mannigfaltigkeiten. Math. Ann., 145:429–439, 1961/62.
[CF02] Frédéric Campana and Hubert Flenner. Contact singularities. Manuscr. Math., 108(4):529–541, 2002.
[CP91] Frédéric Campana and Thomas Peternell. Projective manifolds whose tangent bundles are numerically effective. Math. Ann., 289(1):169–187, 1991.
[Deb01] Olivier Debarre. Higher-dimensional algebraic geometry. Universitext. Springer-Verlag, New York, 2001.
[Din22] Cong Ding. Splitting submanifolds in rational homogeneous spaces of Picard number one. Mathematische Zeitschrift, 301(1):1211–1235, Jan 2022.
[DPS94] Jean-Pierre Demailly, Thomas Peternell, and Michael Schneider. Compact complex manifolds with numerically effective tangent bundles. J. Algebraic Geom., 3(2):295–345, 1994.
[Fu06] Baohua Fu. Contact resolutions of projectivised nilpotent orbit closures. arXiv preprint, 0602088, 2006.
[Fuj92] Tsuyoshi Fujitake. Varieties of small Kodaira dimension whose cotangent bundles are semiample. Compositio Math., 84(1):43–52, 1992.
[Har77] Robin Hartshorne. Algebraic geometry. Springer-Verlag, New York, 1977. Graduate Texts in Mathematics, No. 52.
[HM07] Christopher D. Hacon and James McKernan. On Shokurov's rational connectedness conjecture. Duke Math. J., 138(1):119–136, 2007.
[Ja05] Priska Jahnke. Submanifolds with splitting tangent sequence. Math. Z., 251(3):491–507, 2005.
[Kaled06] D. Kaledin. Symplectic singularities from the Poisson point of view. J. Reine Angew. Math., 600:135–156, 2006.
[Kaw91] Yujiro Kawamata. On the length of an extremal rational curve. Invent. Math., 105(3):609–611, 1991.
[KM98] János Kollár and Shigefumi Mori. Birational geometry of algebraic varieties, volume 134 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1998. With the collaboration of C. H. Clemens and A. Corti.
[Laz04] Robert Lazarsfeld. Positivity in algebraic geometry. I, volume 48 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag, Berlin, 2004. Classical setting: line bundles and linear series.
[Li22] Duo Li. Submanifolds of $\mathbb{P}^n(l)$ with splitting tangent sequence. Acta Math. Sin., Engl. Ser., 38(2):397–405, 2022.
[Mori79] Shigefumi Mori. Projective manifolds with ample tangent bundles. Ann. of Math. (2), 110(3):593–606, 1979.
[MOSC+15] Roberto Muñoz, Gianluca Occhetta, Luis E. Solá Conde, Kiwamu Watanabe, and Jaroslaw A. Wiśniewski. A survey on the Campana-Peternell conjecture. Rend. Ist. Mat. Univ. Trieste, 47:127–185, 2015.
[Nam01] Yoshinori Namikawa. Extension of 2-forms and symplectic varieties. J. Reine Angew. Math., 539:123–147, 2001.
[Ric74] R. W. jun. Richardson. Conjugacy classes in parabolic subgroups of semisimple algebraic groups. Bull. Lond. Math. Soc., 6:21–24, 1974.
[SCW04] Luis Eduardo Solá Conde and Jaroslaw A. Wiśniewski. On manifolds whose tangent bundle is big and 1-ample. Proc. London Math. Soc. (3), 89(2):273–290, 2004.
[VdV59] A. Van de Ven. A property of algebraic varieties in complex projective spaces. Centre Belge Rech. Math., Colloque Géom. Différ. Globale, Bruxelles du 19 au 22 Déc. 1958, 151-152 (1959)., 1959.
[Wie03] Jan Wierzba. Contractions of symplectic varieties. J. Algebr. Geom., 12(3):507–534, 2003.
Enrica Floris, Université de Poitiers, Laboratoire de Mathématiques et Applications, UMR CNRS 7348, Téléport 2, Boulevard Marie et Pierre Curie, BP 30179, 86962 Futuroscope Chasseneuil Cedex, France
Email address: enrica.floris@univ-poitiers.fr

Andreas Höring, Université Côte d’Azur, CNRS, LJAD, France, Institut universitaire de France
Email address: Andreas.Hoering@univ-cotedazur.fr