Learning Convolutional Sparse Coding on Complex Domain for Interferometric Phase Restoration

Jian Kang, Member, IEEE, Danfeng Hong, Member, IEEE, Jialin Liu, Member, IEEE, Gerald Baier, Member, IEEE, Naoto Yokoya, Member, IEEE, and Begüm Demir, Senior Member, IEEE

Abstract—Interferometric phase restoration has been investigated for decades and most of the state-of-the-art methods have achieved promising performances for InSAR phase restoration. These methods generally follow the nonlocal filtering processing chain, aiming at circumventing the staircase effect and preserving the details of phase variations. In this article, we propose an alternative approach for InSAR phase restoration, that is, Complex Convolutional Sparse Coding (ComCSC) and its gradient regularized version. To the best of the authors’ knowledge, this is the first time that we solve the InSAR phase restoration problem in a deconvolutional fashion. The proposed methods can not only suppress interferometric phase noise, but also avoid the staircase effect and preserve the details. Furthermore, they provide an insight into the elementary phase components for the interferometric phases. The experimental results on synthetic and realistic high- and medium-resolution data sets from TerraSAR-X StripMap and Sentinel-1 interferometric wide swath mode, respectively, show that our method outperforms those previous state-of-the-art methods based on nonlocal InSAR filters, particularly the state-of-the-art method: InSAR-BM3D. The source code of this article will be made publicly available for reproducible research inside the community.

Index Terms—Convolutional dictionary learning, nonlocal filtering, SAR interferometry (InSAR), sparse coding (SC).

I. INTRODUCTION

A. Interferometric Phase Restoration

Due to its all-weather capability, up to decimeter spatial resolution and high sensitivity to deformation and height changes, synthetic aperture radar (SAR) plays an important role in remote sensing from airborne and spaceborne platforms. By creating interferograms of SAR images acquired at different points in time or from changing platform positions, geophysical parameters, such as heights and displacement rates, can be extracted by analyzing the interferometric phase.

As a result of the coherence loss between acquisitions, the interferometric phase is corrupted by noise. Noise removal is consequently an almost obligatory step, not only to increase the measurements’ accuracy but also to ease the subsequent phase unwrapping. One of the most straightforward methods of noise mitigation is averaging all phases inside a predefined spatial neighborhood, the so-called boxcar filtering. Although easy to implement and fast to compute, the penalty is a degradation of the spatial resolution. For overcoming such limitations, many advanced filters have been introduced, such as Lee’s sigma filter [1], FIXME [2] which utilizes statistical test for the pixel selection during the averaging, and Goldstein filter [3], which leverages the local power spectrum estimation of the signal for lowering the noise component. In recent years, nonlocal-filtering-based approaches, which were first applied to optical natural images [4], have received great attention from the image processing community. Fundamentally, by averaging a group of similar pixels selected in a nonlocal manner, noise can be efficiently mitigated without degrading image details. Such method also became a topic of extensive research in the SAR community, such as SAR amplitude imagery denoising [5]–[8], interferometric phase denoising [9]–[14], and PolSAR imagery restoration [10], [15], [16]. The nonlocal processing chain has also been extended for phase restoration of SAR stacks with the application of differential SAR interferometry [17] and the preprocessing step of 3-D reconstruction based on TomoSAR [18].

Although nonlocal-filtering-based approaches are very popular in the field of InSAR denoising, Hao et al. [19] proposed a sparse coding (SC) model for approximating InSAR phase patches based on the linear combination of the learned atoms in a dictionary. In particular, given a signal $s \in \mathbb{C}^N$ and a dictionary matrix $D \in \mathbb{C}^{N \times M}$, s can be represented by a linear combination of only few of the columns in D, that is, $s \approx Dx$, where $x \in \mathbb{C}^M$ is sparse. The problem of computing the sparse representation x for s, given the dictionary D is termed as SC. It can be formulated as Basis Pursuit Denoising (BPDN) problem as follows [20]:

$$\arg\min_x \frac{1}{2}\|Dx - s\|_2^2 + \lambda\|x\|_1.$$

(1)

Such sparse representation model has been a well-established tool for a very broad range of signal and image processing...
applications [21]–[27]. Also, extensive research for SAR data modeling based on sparse representations have also been done in recent years, such as image classification [28]–[33] and imagery denoising [34], [35].

Due to the computational cost, the signal s in Problem (1) is usually a small patch rather than the entire image in practice. In order to compute a sparse representation for an entire image, those conventional methods based on solving the problem (1) should be processed independently on a set of overlapping blocks covering the image. For reconstructing the whole image, the restored results of such overlapping blocks are stitched together by averaging the overlapping parts.

However, such a process ignores the consistency of image pixels, that is, any two patches should share the same pixel values on their overlapping area. Moreover, the local structures and textures may be inevitably changed due to the application of aggregation and averaging strategies to the final value of each pixel. Also, these strategies can induce the over-smoothing of details in images [36], [37].

Recently, to fix these issues, convolutional sparse coding (CSC) is proposed [38]–[44]. By replacing the dictionary D with a set of convolutional filters $\{d_m\}$, the associated reconstruction of s from sparse representations $\{x_m\}$ is

$$s \approx \sum_m d_m \ast x_m,$$

where s can be an entire image rather than a small image patch and \ast denotes the convolutional operator. Since the convolutional operator is computationally cheap in the Fourier domain [45], [46], such convolutional representation can be obtained by a global optimization in the entire image space, that is, convolutional basis pursuit denoising (CBPDN)

$$\arg\min_{\{x_m\}} \frac{1}{2} \left\| \sum_m d_m \ast x_m - s \right\|_2^2 + \lambda \left\| x_m \right\|_1. \tag{2}$$

Based on the success of the CSC model in natural image processing [36], [47]–[49], we seek to propose the corresponding approach in the complex domain to: 1) investigate the sparse representation for InSAR phase in a convolutional manner and 2) evaluate its performance for InSAR phase restoration.

B. Contributions of This Article

The contributions of this article can be summarized as follows.

1) To avoid the staircase effect and preserve the details of phase variations, we propose a complex CSC ComCSC algorithm and its gradient regularized version (ComCSC-GR) for interferometric phase restoration. To the best of the authors’ knowledge, this is the first time to investigate the problem of the phase restoration in a deconvolutional manner.

2) Superior to the CSC model in (1) processed on image patches, the proposed ComCSC-based methods can progressively decompose the image from local attention to global aggregation by means of the deconvolutional manner, which can provide an insight into the elementary phase components for the interferometric phases.

3) Beyond the conventional CSC model, the resulting ComCSC and its variant perform the image coding on the complex domain. In particular, we theoretically prove the feasibility of complex-valued SC and provide the corresponding update rule. Additionally, the proposed ComCSC model is an extended version targeting at processing complex signals effectively, which enables the CSC to be applicable on the complex domain.

4) The effectiveness and superiority of the proposed methods have been quantitatively demonstrated on synthetic and real data sets and compared to other state-of-the-art methods. We will open the source codes to enable reproducible research.

C. Structure of This article

The rest of this article is organized as follows. Section II introduces the proposed convolutional dictionary learning model in complex domain. In Section III, we propose a complex convolutional dictionary learning model with the regularization of gradients. Simulated experiments and real case studies are conducted in Section IV. Section V draws the conclusion of this article.

II. Complex Convolutional Dictionary Learning

Before solving CBPDN (2), we should learn a set of convolutional filters $\{d_m\}_{m=1}^M$ from a batch of clean interferograms $\{s_k\}_{k=1}^K$, which are also termed as training interferograms. To achieve this point, we propose the complex convolutional dictionary learning (CCDL) problem

$$\arg\min_{\{d_m\}, \{s_k\}} \frac{1}{2} \sum_{k=1}^{K} \sum_{m=1}^{M} d_m \ast x_{m,k} - s_k \right\|_2^2 + \lambda \sum_{m=1}^{M} \left\| x_{m,k} \right\|_1$$

s.t. $\|d_m\|_2 = 1 \quad \forall m \tag{3}$$

where $s_k \in \mathbb{C}^N$ is one of the training interferograms with N pixels, K is the total number of training interferograms, $\{x_{m,k}\} \in \mathbb{C}^N$ and $\{d_m\} \in \mathbb{C}^L$ denote the sets of complex sparse coefficient maps and complex filters, respectively, M is the number of filters, L is the size of each filter d_m, and the constraint indicates the normalization of learned filters. (For notation simplicity, interferograms and the coefficient maps are considered to be N-dimensional vectors, and filters are L-dimensional vectors.) In this article, given a complex-valued vector $x \in \mathbb{C}^N$, the norms are defined as

$$\|x\|_1 = \sum_{i=1}^{N} |x_i|, \quad \|x\|_2 = \sqrt{\sum_{i=1}^{N} |x_i|^2}$$

where $x_i \in \mathbb{C}$ is the ith element of vector x, and $|\cdot|$ means the amplitude value of a complex number. It is worth noting that different from the conventional convolutional dictionary learning models, the sparse coefficient maps $\{d_m\}$ and the convolutional kernels are all set in complex domain. The main idea for convolutional dictionary learning is to decompose the input signal s_k in a deconvolutional manner. If the signal lies in complex domain, one can also constrain the sparse coefficient maps as real numbers, and the convolutional kernels
are complex, or the convolutional kernels are real and the sparse coefficient maps are complex. However, we found that both the kernels and the sparse coefficient maps are expected to be complex in order to maintain the information from the original complex signals as much as possible. More specifically, on the one hand, the phase information of the signal is not lost through the convolutional decomposition. On the other hand, since a real number can be considered as a complex number with zero on its imaginary part, it can also be learned during the optimization of those learnable variables. Therefore, the proposed complex convolutional dictionary learning model can be considered as a generalization of the normal one.

An usual, the optimization strategy to solve problem (3) is alternately updating the sparse coefficient maps \(\{x_{m,k}\} \) and the dictionary \(\{d_m\} \).

A. Sparse Coefficients Update

We first fix the filters \(\{d_m\} \) and update the sparse coefficient maps \(\{x_{m,k}\} \) in (3) with

\[
\arg\min_{\{x_{m,k}\}} \frac{1}{2} \sum_{k=1}^K \sum_{m=1}^M d_m \cdot x_{m,k} - s_k \right\|^2_2 + \lambda \sum_{m=1}^M \|x_{m,k}\|_1.
\]

By defining

\[
X = \begin{bmatrix} x_{0,0} & \cdots & x_{0,K} \\ \vdots & \ddots & \vdots \\ x_{M,0} & \cdots & x_{M,K} \end{bmatrix} \in \mathbb{C}^{MN \times K},
\]

\[
S = [s_0 \ldots s_K] \in \mathbb{C}^{N \times K},
\]

\[
D = [d_0 \ldots d_M] \in \mathbb{C}^{N \times MN}
\]

where \(D_m \) is the matrix form of the convolutional operator that satisfies \(D_m x_m = d_m \cdot x_m \), we can reformulate (4) in the form

\[
\arg\min_X \frac{1}{2} \|DX - S\|_F^2 + \lambda \|X\|_{1,1}.
\]

To solve the problem (6), we utilize the alternating direction method of multipliers (ADMM) \([50]–[53]\) in this article. We refer the readers to \([54]\) for other algorithms to solve this problem. By introducing dual variable \(U \), penalty parameter \(\rho \) and auxiliary variable \(Y \), the corresponding scaled augmented Lagrangian function is defined as \([50]\)

\[
L_\rho(X, Y, U) = \frac{1}{2} \|DX - S\|_F^2 + \lambda \|Y\|_{1,1} + \frac{\rho}{2} \|X - Y + U\|_F^2.
\]

(7)

Accordingly, the minimization of \(L_\rho \), with respect to each variable, can be solved by the following optimization subproblems.

1) \(X \) subproblem for reconstructing sparse coefficients

\[
\arg\min_X \frac{1}{2} \|DX - S\|_F^2 + \frac{\rho}{2} \|X - Y + U\|_F^2.
\]

The minimization of this quadratic function can be calculated by setting the associated derivative to zero, which leads to the following linear system:

\[
(D^H D + \rho I)X = D^H S + \rho (Y - U).
\]

By applying fast Fourier transform (FFT) \([55]\), this linear system can be efficiently solved in the frequency domain as

\[
(\hat{D}^H \hat{D} + \rho I)\hat{X} = \hat{D}^H \hat{S} + \rho (\hat{Y} - \hat{U})
\]

(10)

where \(\hat{A} \) denotes the DFT version of variable \(A \). The solution of this linear system can be obtained by exploiting the Sherman-Morrison formula \([42]\).

2) \(Y \) subproblem for calculating auxiliary variable

\[
\arg\min_Y \lambda \|Y\|_{1,1} + \frac{\rho}{2} \|X - Y + U\|_F^2.
\]

(11)

In real domain, this subproblem has a closed-form solution defined as

\[
Y := S_\gamma(X + U)
\]

(12)

where \(S(\cdot) \) is the soft-thresholding function

\[
S_\gamma(A) = \text{sign}(A) \odot \max(0, |A| - \gamma)
\]

(13)

with the two elementwise operators \(\text{sign}(\cdot) \) and \(|\cdot| \), and \(\odot \) denotes the elementwise multiplication.

However, the soft-thresholding function (12) cannot be directly applied to the data in complex domain. Thus, in this article, we propose the corresponding soft-thresholding function in complex domain, termed as complex soft-thresholding. For \(A \in \mathbb{C} \), we define \(|A| \) in complex domain as \((\text{real}(A)^2 + \text{imag}(A)^2)^{1/2} \), where \(\text{real}(\cdot) \) and \(\text{imag}(\cdot) \) extract real and imaginary parts of \(A \), \(\sqrt{\cdot} \), and \((\cdot)^2 \) denote the square root and square, with element-wise manner, respectively. Furthermore, \((A/|A|) \) means elementwise division. Correspondingly, complex soft-thresholding function is defined as

\[
C_{S_\gamma}(A) = \frac{A}{|A|} \odot \max(0, |A| - \gamma).
\]

(14)

The interpretation of complex soft-thresholding is demonstrated in Fig. 1. In complex domain, the operator preserves the direction of the complex vector and shrinks its associated amplitude by \(\gamma \). Specifically, within the range of \(\gamma \), the complex vector is projected to the original point and outside the circle, the phase of the complex vector is kept and its amplitude is shrunk.
Actually, the closed-form solution of (11) in the complex domain is defined as
\[
Y := CS_{\frac{1}{2}}(X + U). \tag{15}
\]

3) Multiplier Update: the dual variable \(U \) can be updated as
\[
U := U + X - Y. \tag{16}
\]

B. Dictionary Update

Fixing the sparse coefficient maps\(^2\) \(\{s_{x_k,m}\} \) in (3), the dictionary update problem can be posed as
\[
\arg\min_{d_m} \frac{1}{2} \sum_{k=1}^{K} \left\| \sum_{m=1}^{M} s_{x_k,m} \cdot d_m - s_k \right\|_2^2 \quad \text{s.t.} \quad \|d_m\|_2 = 1. \tag{17}
\]

In order to solve (17) in the frequency domain, the \(L \)-dimensional filter \(d_m \) should be zero-padded to the common spatial dimensions of \(s_{x_k,m} \) and \(s_k \). \(P \) denotes the projection operator that zeros the regions of the filters outside the desired support. We introduce the indicator function \(\iota_{C_{pn}} \) as
\[
\iota_{C_{pn}}(d) = \begin{cases}
0, & \text{if } d \in C_{pn} \\
\infty, & \text{if } d \notin C_{pn}
\end{cases} \tag{18}
\]
and the constraint set \(C_{pn} \) is denoted as
\[
C_{pn} = \{ d \in \mathbb{C}^N : (1 - PP^T)d = 0, \|d\|_2 = 1 \}. \tag{19}
\]

Similar to the formulation in SC, the problem (17) can be expressed as
\[
\arg\min_{d} \frac{1}{2} \|Xd - s\|_2^2 + \iota_{C_{pn}}(d) \tag{20}
\]
where \(s \) and \(d \) are defined as
\[
s = \begin{bmatrix} s_0 \\ \vdots \\ s_K \end{bmatrix} \in \mathbb{C}^{NK}, \quad d = \begin{bmatrix} d_0 \\ \vdots \\ d_M \end{bmatrix} \in \mathbb{C}^{NM}. \tag{21}
\]

By introducing dual variable \(u \), penalty parameter \(\sigma \), and auxiliary variable \(y \), the corresponding scaled augmented Lagrangian function of (20) is defined as
\[
L_{\sigma}(d, y, u) = \frac{1}{2} \|Xd - s\|_2^2 + \iota_{C_{pn}}(y) + \frac{\sigma}{2} \|d - y + u\|_2^2. \tag{22}
\]

By applying ADMM, the minimization of \(L_{\sigma} \), with respect to each variable, can be solved by the following optimization subproblems.

1) \(d \) subproblem for calculating complex convolutional filters
\[
\arg\min_{d} \frac{1}{2} \|Xd - s\|_2^2 + \frac{\sigma}{2} \|d - y + u\|_2^2. \tag{23}
\]

Similar with the subproblem in (8), this minimization problem can be reformulated by solving the linear system as
\[
(X^H X + \sigma I)\hat{d} = X^H s + \sigma (y - u) \tag{24}
\]
which can also be transformed into the frequency domain as follows:
\[
(X^H X + \sigma I)\hat{d} = X^H \hat{s} + \sigma (\hat{y} - \hat{u}). \tag{25}
\]

\(^3\)We will prove this conclusion in the Appendix.

\(^4\)For convenience, we switch the indexing of \(x_{m,k} \) as \(x_{k,m} \).

Algorithm 1 CCDL Solved by Alternate Minimization

Require: Clean interferograms used for training: \(\{s_k\}_{k=1}^{K} \)

1. Initialize \(\{d_m\}, L, \lambda, \rho, \sigma \).
2. while not convergent do
3. Sparse Coding:
4. Update \(X \) by solving the subproblem in (10).
5. Update \(Y \) by complex soft-thresholding in (15).
6. Update \(U \) by (16).
7. Dictionary Update:
8. Update \(d \) by solving the subproblem in (25).
9. Update \(y \) by utilizing proximal operator of indicator function in (27).
10. Update \(u \) by (28).
11. end while

Ensure: \(\{d_m\}_{m=1}^{M} \)

This linear system can be solved by the iterated Sherman-Morrison algorithm [42].

2) \(y \) subproblem for calculating the auxiliary variable
\[
\arg\min_{y} \iota_{C_{pn}}(y) + \frac{\sigma}{2} \|d - y + u\|_2^2 \tag{26}
\]
which is the proximal operator of the indicator function \(\iota_{C_{pn}} \) at the point \(d + u \). In particular, this proximal operator can be determined as
\[
y = \operatorname{prox}_{\iota_{C_{pn}}}(d + u) = \frac{PP^T(d + u)}{\|PP^T(d + u)\|_2}. \tag{27}
\]

3) Multiplier Update: The dual variable \(u \) can be updated by
\[
u := u + d - y. \tag{28}
\]

To this end, based on the previous optimization procedure, convolutional filters \(d_m \) can be learned from the training interferograms. The algorithm for CCDL (3) is summarized in Algorithm 1.

C. Computational Complexity

The complexities of CCDL and the normal convolutional dictionary learning [42] are actually of the same order and listed below item by item.

1) (10): \(O(KMN) + O(KMN \log(N)) \).
2) (15): \(O(KMN) \).
3) (16): \(O(KMN) \).
4) (25): \(O(K^2MN) + O(KMN \log(N)) \).
5) (27): \(O(KMN) \).
6) (28): \(O(KMN) \).

Among the six steps of CCDL, (25) has the dominant computational complexity. Therefore, the complexity of CCDL (Algorithm 1) can be summarized as
\[
O\left(T \left(K^2MN + KMN \log(N)\right) \right)
\]
where \(T \) is the number of iterations that Algorithm 1 takes before convergence. Typically, \(T = 200, K = 80, M = 96, \).
$N = 100 \times 100$, and Algorithm 1 takes around 3 h to stop.\(^3\) However, we have to note that a common set of filters $\{d_m\}_{m=1}^M$ can be used for all images in a data set, not only for one image. Thus, we conduct CCDL only once and store the dictionary $\{d_m\}$ before denoising since CCDL is expensive compared with ComCSC.

III. COMPLEX CONVOLUTIONAL SPARSE CODING WITH GRADIENT REGULARIZATION

Given the noisy interferogram \tilde{s} and the learned filters $\{d_m\}_{m=1}^M$, the sparse coefficient maps $\{x_m\}$ can be obtained by applying CBPDN and the restored interferogram \hat{s} can be described as the convolutional sparse representation, that is, $\hat{s} := \sum_{m=1}^M d_m \ast x_m$. In the following, we term this method as ComCSC.

A. ComCSC-GR

As introduced in [56], convolutional sparse representations can provide good restorations for high-pass components of images. In order to also well reconstruct the low-pass components of images, gradient regularization on the sparse coefficient maps can be further exploited. In this article, aiming for adapting to both the high-pass and low-pass components of interferograms, we also extend ComCSC with the regularization of gradients, denoted as ComCSC-GR and investigate its performance for interferometric phase restoration. Such model can be represented as\(^4\)

$$
\begin{align*}
\argmin_{\{x_m\}} \frac{1}{2} \sum_m d_m \ast x_m - \tilde{s} \| \| s \|_2^2 + \lambda \sum_m \|x_m\|_1 & + \frac{\mu}{2} \sum_m \| \sqrt{g_0} \ast x_m \|^2_2 \quad + \frac{\lambda}{2} \sum_m \|g_1 \ast x_m \|^2_2
\end{align*}
$$

(29)

where g_0 and g_1 are the filters which compute the gradients along image rows and columns, respectively. By introducing linear operators G_0 and G_1, that is, $G_l x_m = g_l \ast x_m$ ($l = 0, 1$), problem (29) can be rewritten as

$$
\begin{align*}
\argmin_x \frac{1}{2} \|Dx - s\|_2^2 + \lambda \|x\|_1 & + \frac{\mu}{2} \left(\|G_0 x\|_2^2 + \|G_1 x\|_2^2 \right)
\end{align*}
$$

(30)

where

$$
\begin{bmatrix}
G_0 & \cdots & 0 \\
0 & G_1 & \cdots \\
\vdots & \vdots & \ddots
\end{bmatrix} \in \mathbb{C}^{M \times N} \\
\begin{bmatrix}
x_0 \\
\vdots \\
x_M
\end{bmatrix} \in \mathbb{C}^{M}.
$$

(31)

This problem can also be solved by introducing dual variable u, auxiliary variable y, and the associated penalty parameter ρ in the ADMM optimization procedure. The corresponding scaled augmented Lagrangian function is defined as

$$
L_\rho(x, y, u) = \frac{1}{2} \|Dx - s\|_2^2 + \lambda \|y\|_1 & + \frac{\mu}{2} \left(\|G_0 x\|_2^2 + \|G_1 x\|_2^2 \right) + \frac{\rho}{2} \|x - y + u\|_2^2.
$$

(32)

\(^3\)The codes are implemented by MATLAB and the experiments are conducted on a PC with Intel Core i7-8850H CPU at 2.60 GHz.

\(^4\)In ComCSC-GR (29), we should use notation \tilde{s} and $\{x_m\}$ to represent noisy interferograms and the corresponding sparse codes. In this section, we use s and $\{x_m\}$ for simplicity.

Algorithm 2 ComCSC Solved by ADMM

Require: s, $\{d_m\}$

1. Initialize λ, μ, ρ, let $g_0 = 0$, $g_1 = 0$.
2. **while** not convergent **do**
 3. Update x by (34).
 4. Update y by (35).
 5. Update u by (36).
6. **end while**

Ensure: $\hat{s} := \sum_{m=1}^M d_m \ast x_m$

Algorithm 3 ComCSC-GR Solved by ADMM

Require: s, $\{d_m\}$, g_0, g_1

1. Initialize λ, μ, ρ.
2. **while** not convergent **do**
 3. Update x by solving the subproblem in (34).
 4. Update y by complex soft-thresholding in (35).
 5. Update u by (36).
6. **end while**

Ensure: $\hat{s} := \sum_{m=1}^M d_m \ast x_m$

The subproblems of L_ρ with respect to each variable can be written as follows.

1) **x** subproblem for reconstructing the sparse coefficients

$$
\argmin_x \frac{1}{2} \|Dx - s\|_2^2 + \frac{\mu}{2} \left(\|G_0 x\|_2^2 + \|G_1 x\|_2^2 \right) + \frac{\rho}{2} \|x - y + u\|_2^2.
$$

(33)

The solution of this subproblem can be obtained by solving the following linear system in the frequency domain

$$
\left(\hat{D}^H \hat{D} + \mu \hat{G}_0^H \hat{G}_0 + \mu \hat{G}_1^H \hat{G}_1 + \rho I \right) \hat{x} = \hat{D}^H \hat{s} + \rho (\hat{y} - \hat{u}).
$$

(34)

2) **y** subproblem for calculating the auxiliary variable

$$
\argmin_y \|y\|_1 + \frac{\rho}{2} \|x - y + u\|_2^2.
$$

(35)

Identically to (11), this subproblem can be solved by the soft-thresholding in complex domain.

3) **Multiplier update:** the dual variable u can be updated by

$$u := u + x - y.
$$

(36)

The corresponding pseudocode of ComCSC and ComCSC-GR are summarized in Algorithm 2 and 3, respectively.

In a similar vein, given the noisy interferogram \tilde{s} and the filters learned by CCDL, the sparse coefficient maps $\{x_m\}$ can be obtained by applying ComCSC-GR and the restored interferogram \hat{s} can be described as the convolutional sparse representation, that is, $\hat{s} := \sum_{m=1}^M d_m \ast \hat{x}_m$. Comparing to ComCSC, its gradient-regularized version can not only maintain the performance of the reconstruction results on the high-pass components, but also the low-pass components can be well restored. Such advantages can be beneficial for the InSAR phase restoration, since the observed scene is usually characterized by both low- and high-frequency phase variations.
B. Computational Complexity

Similar with the argument in Section II-C, the complexities of ComCSC-GR and CSC-GR [56] are in the same order. We list them item by item here.\(^5\)

1) \(O(MN) + O(MN \log(N))\),
2) \(O(MN)\),
3) \(O(MN)\),

where (34) has the dominant computational complexity. Therefore, the complexity of ComCSC-GR (Algorithm 3) can be summarized as

\[O\left(TMN \log(N) \right)\]

where \(T\) is the number of iterations that Algorithm 3 takes before convergence. Typically, \(T = 150, M = 96, N = 256 \times 256\), and Algorithm 3 takes 140 seconds to stop.

IV. EXPERIMENTAL RESULTS

A. Simulations

The covariance matrix of two correlated complex normal distributed scatterers of two single look complex (SLC) images is defined as

\[
C = \begin{bmatrix}
 a^2 & a^2 e^{j\phi} \\
 a^2 e^{-j\phi} & a^2
\end{bmatrix}
\]

where \(a\) is the amplitude, \(\phi\) denotes the interferometric phase, and \(\gamma\) is the coherence. Given two independent complex normal distributed scatterers \(r_1\) and \(r_2\) of zero mean and unit variance, the synthetic samples \(u_1\) and \(u_2\) with the desired correlation can be obtained by

\[
\begin{bmatrix}
 u_1 \\
 u_2
\end{bmatrix} = L \begin{bmatrix}
 r_1 \\
 r_2
\end{bmatrix} = a \begin{bmatrix}
 1 & 0 \\
 e^{-j\phi} & 1 - \gamma^2
\end{bmatrix} \begin{bmatrix}
 r_1 \\
 r_2
\end{bmatrix}
\]

where \(L\) represents the Cholesky decomposition of \(C\). Then, the interferogram can be available by \(s = u_1 \times \text{conj}(u_2)\), where \(\text{conj}(\cdot)\) is the conjugation operator.

In order to learn the convolutional filters \(d_m\), we simulate a benchmark data set of 80 interferograms \(\{s_k\}_{k=1}^{K=80}\) with different patterns. Some examples are illustrated in Fig. 2. The spatial size of the filters is set as 20 \times 20 pixels and the number of filters is 96. The parameter \(\lambda\) can be set to a small value since the data set utilized here is noiseless. Thus, we selected it as 0.2. Based on CCDL, the learned filters are shown in Fig. 3. For the visualization of complex data, the real and imaginary parts are mapped into red and green colors, respectively. It can be obviously observed that reliable interferometric phase components, such as curves, lines, rectangles, and smooth planes, can be learned based on the proposed method. The following experiments are based on such learned filters.

For evaluating the performance of the proposed method, we first compare it with other state-of-the-art methods by restoring a step function. This experiment can give us intuition about the various filters’ capabilities of resolution and detailed structure preservation. Ten thousand Monte-Carlo simulations of the phase step function from \(-(\pi/3)\) to \((\pi/3)\), with the coherence of 0.3 and the constant amplitude, are made for the experiment. The parameters of the referenced methods are introduced as follows.

1) The window size for Boxcar is 5 \times 5.
2) The patch size and \(\alpha\) in Goldstein filter [3] is 16 and 0.9, respectively.
3) The parameters are automatically chosen as stated in NL-InSAR [10].
4) The search window and patch sizes in NL-InSAR [9] are 21 and 5, respectively.
5) The parameters of InSAR-BM3D [13] are set the same as the original article.

As shown in Fig. 4 (left), under the coherence of 0.3, the proposed ComCSC-GR can achieve the best approximation of the step function. ComCSC-GR outperforms the state-of-the-art InSAR filters, that is, InSAR-BM3D, in terms of the detail preserving of fringes. Although phase jump can also be well modeled by the ComCSC, the homogeneous areas cannot be restored by it. The reason is that high-pass components can be well reconstructed by CSC, with the sacrifice of homogeneous components. In comparison, with the gradient

\(5\) The bounds given here are theoretical upper bounds for the worse cases. In practice, the computational cost is also related with the filter size \(L\); smaller \(L\) leads to a smaller cost than the upper bound. This phenomenon is due to the implementation of zero-padding and FFT. We will discuss this point in the text following Fig. 10.

Fig. 2. Interferogram examples utilized for complex convolutional dictionary learning.

Fig. 3. Ninety-six convolutional filters learned on the ground truth interferograms. For the visualization of complex data, the real and imaginary parts are mapped into red and green colors, respectively.
regularization of sparse coefficient maps, low-pass components can be very well preserved by ComCSC-GR. Therefore, both the homogeneous and phase jump areas can be well modeled by ComCSC-GR. Besides, both NL-InSAR and NL-SAR demonstrate their weakness on the edge preservation due to their intentionally oversmooth behaviors and no guidance filtering based on amplitude change in such areas. As illustrated in its right, without the low-pass regularization, the ComCSC performs the worst on the variances of the restoration. For the homogeneous area, the InSAR-BM3D achieves the best performance in terms of stability for the restoration. For the phase jump area, owing to the proficient detail preservation, ComCSC-GR narrows the variances better than the NL-SAR.

For a more exhaustive analysis, we generate four different images with 256×256 pixel size with typical interferometric patterns: 1) mountain mimics the interferometric phases in mountainous terrains; 2) peaks simulate a complex scenery with varied geometry; 3) shear plane includes constant phase and rapid phase variation; and 4) squares replicate phase jump occurred in urban areas. Based on (37) and (38), the noisy interferograms with spatially varied coherence map are generated. The coherence grows linearly from 0.3 (leftmost) to 0.9 (rightmost). The ground truth and noisy interferograms are depicted in Fig. 5.

For a visual comparison, all the reconstruction results and the associated residual phases are shown in Fig. 6. Besides, we also make a quantitative evaluation based on the metric of peak signal-to-noise ratio (PSNR) [19] defined as

$$\text{PSNR} := 10 \log_{10} \frac{4N\pi^2}{\| \text{angle}(\text{conj}(s) \odot \delta))^2 \|_F^2} [\text{dB}]. \quad (39)$$

All the PSNR values of the overall images are illustrated in Table I. Moreover, as shown in Fig. 7, we plot the PSNR values calculated on the restored images in a sliding window manner with respect to the coherence values. As observed in Fig. 6, for high coherence areas, all the methods can give reliable restoration results, since the residual phase maps are dark on such areas. However, the performances of all the methods are varied in the low coherence areas. For example, Boxcar and Goldstein cannot recover the interferometric patterns in such areas. All the other methods demonstrate better robustness in terms of coherence variation. Consistent with the previous experiment, oversmooth phenomenon can be found in the phase jump areas of nonlocal-based approaches, that is, NL-InSAR, NL-SAR, and InSAR-BM3D. For example, as shown by the residual maps of peaks, contours of edges are displayed in the results of NL-InSAR, NL-SAR, and InSAR-BM3D. Similarly, the phase change line can also be clearly seen in the reconstructed results of shear plane, as indicated in the corresponding residual maps. In contrast, those edge areas can be better preserved by ComCSC-GR, also indicated by its higher PSNR values in comparison to all other methods, as shown in Fig. 7. From the numerical analysis in Table I, among all the methods, ComCSC-GR can achieve the best performance not only for the homogeneous pattern, for example, mountain, but also the heterogeneous pattern, for example, squares. It is worth noting that, for the patterns except squares, the performances of ComCSC-GR and InSAR-BM3D are comparable. However, for the sharply changing area (squares), ComCSC-GR can surpass the other nonlocal-based methods with a large margin (around 2dB), demonstrating the superiority of the proposed ComCSC-GR in modeling the sharp changes of fringes based on its learned convolutional kernels.

To further investigate the performances of the comparing methods, the filtered interferometric results are transformed into the unwrapped phases with the same unwrapping method. As demonstrated in Fig. 8, the staircase effect can be evidently observed in both NL-InSAR and NL-SAR methods, especially in the examples of peaks and shear plane. Compared with InSAR-BM3D, continuous variation of real phases can be smoothly reconstructed by ComCSC-GR. As illustrated in the linear increasing part of shear plane and the bell-shape area of peaks, the continuous variation of the real phases can be more smoothly reconstructed by ComCSC-GR than InSAR-BM3D. Moreover, for the example of squares, with the powerful capability of detail preservation, ComCSC-GR can reconstruct more correct squares compared with the other methods.

One of the advantages of the proposed method than the nonlocal-based methods is that it can provide an insight into the elementary phase components for the study data set. As demonstrated in Fig. 9, we calculate the summation of the amplitude values of the sparse coefficient maps, which present the contributions of the learned convolutional filters. Accordingly, the top five phase components are shown in Fig. 9. It can be obviously seen that different interferometric patterns have different codes of filters. For example, the most contributions of mountain and peaks are low-pass components, since the corresponding dominant filters are smooth. For the shear plane, the interferometric phase is mainly composed of both phase jumps and phase planes. As for squares, the filter
Fig. 6. Filtered interferograms based on several comparing algorithms and their residual phases referenced with the ground truth images.
Table I
Numerical Analysis of the Compared Methods on the Simulated Data Set

Method	mountain	peaks	shear plane	squares
Boxcar	25.61	25.35	25.21	22.57
Goldstein	19.79	18.69	20.29	18.04
NL-InSAR	31.26	31.00	30.58	21.79
NL-SAR	31.08	27.62	29.82	22.80
ComCSC	27.87	27.59	28.50	23.94
InSAR-BM3D	32.77	32.68	33.69	23.16
ComCSC-GR	32.79	32.71	33.70	25.36

with the rectangle shape becomes one of the dominant phase components.

There are mainly four parameters to be tuned in the proposed method, that is, λ, μ, the number of filters M, and the filter size L. In our experiments, λ is set to 0.2 in the dictionary learning step, whereas in the phase restoration step given the noisy phase input λ is set to 2.5. μ in ComCSC-GR is set in the range of [2, 10] as the penalty parameter of the gradient regularization. Of course, the parameter setting is not limited to this, when a different data set is processed. It is important to note here that the performances of phase reconstruction with respect to the other two parameters, that is, M and L. Based on ComCSC-GR, we demonstrate the efficiency study of different parameter settings in Fig. 10. It can be seen that larger number and larger size of filters can improve the reconstruction results of the interferometric phases. The plausible reason is that the representation capability can be enhanced as the number of parameters to be learned increases. Moreover, not surprisingly,
larger M and L lead to higher computational time. Fig. 10 shows that the time consumption is nearly linear to M, which supports our theoretical complexity bound $O(TMN \log(N))$ given in Section III-B. The quantitative relationship between L and computational cost is not obvious. In our algorithm, each filter d_m of size L is zero-padded to size N ($L < N$) and FFT is conducted on the padded kernel. Since there are many zeros in the padded kernel, FFT can be faster than the theoretical upper bound $O(N \log(N))$. This is why the computational cost is related to L. However, it highly depends on the implementation rather than the algorithm itself. Thus, we just give a worst case upper bound in Section III-B.

B. Real Data

The first experiment is carried out on a TerraSAR-X StripMap data set provided by AIRBUS Sample Imagery. The images are acquired from Grand Canyon National Park, Arizona, USA, with an incidence angle of 39.2 on March 10, 2008, and March 21, 2008. Fig. 11 shows the acquired mountainous area. The spatial size of this area is 1670 × 2420. The interferogram is processed with ESA SNAP toolbox and the original unfiltered interferogram is illustrated in its bottom. Since there is no ground truth reference available, we first show the filtered results of the four comparing methods, that is, NL-InSAR, NL-SAR, InSAR-BM3D, and ComCSC-GR, in the top row of Fig. 12 under a similar parameter setting as the simulations. By utilizing the same phase unwrapping algorithm, the bottom row of Fig. 12 demonstrates the corresponding unwrapped phases. Furthermore, the profiles of the unwrapped phases delineated by the red arrow are plotted in Fig. 13 (left) and one zoomed-in area of the profile is illustrated to its right.

As shown in Fig. 12, even though all the methods can greatly mitigate the noise, the result of NL-InSAR still contains noisy artifacts, compared with the other methods. Therefore, the corresponding topography revealed by the unwrapped phase is much noisier than the other methods. NL-SAR and InSAR-BM3D achieve visually, appealing filtering performance, owing to the noise suppression and smoothness preservation. However, as illustrated in the unwrapped phases, the topographic variations of the mountain are indicated more clearly in the proposed method than NL-SAR and InSAR-BM3D. Moreover, as observed in the extracted profiles of the unwrapped phase (Fig. 13), very sharp variations of the phases exist in the result of NL-InSAR and cannot correctly indicate the elevations of the mountain. Also, the staircase effect of the NL-InSAR method is evidently observed in the zoomed-in profile plot, especially in the decreasing and increasing slopes of the mountain. Consistent with the simulation, InSAR-BM3D cannot smoothly reconstruct the continuous variations of real phases. As illustrated in the zoomed-in profile, the real phase vibration can be clearly observed and it will lead to the noisy DEM product. In comparison, the proposed method can greatly suppress the noise, maintain the details of phase fringes, and avoid the staircase effect.

In order to evaluate the filtered interferograms without the high-resolution DEM ground truth of this area, we utilize the Collinearity Criterion proposed in [57], which is defined as

$$C_i = \frac{\sum_{p \in M_i} \exp(j(\phi_i - \phi_p))}{M^2 - 1} \times \frac{\sum_{p \in M_i} |\exp(j(\phi_i - \phi_p))|}{M^2 - 1}$$

(40)

where i is the index of the pixel to be assessed, $p \in M_i$ denotes the close neighborhood pixels surrounding the ith pixel, the local window size M is set to 7 (around 21×21 area), and ϕ represents the real interferometric phase. This criterion measures the similarity of the phase history of the study pixel with respect to its surrounding ones. It is a measurement of homogeneity or smoothness given the neighboring pixels of interferometric phases. Higher values indicate better homogeneity of the filtered InSAR phases. To some extent, it can be regarded as a quality assessment for the filtered interferogram, especially for the areas with homogeneous geophysical parameters. For this mountainous area, the main interferometric phase contribution is from the topography of this area. Within the area of 21×21, the collinearity should achieve high values, since the elevations of this small area are homogeneous. As displayed in Fig. 14, most points can achieve a collinearity above 0.9 in all the methods. However, the best homogeneity of the filtered interferogram can be obtained by the proposed method, which can indicate that the underlying continuous variation of the elevation in this area can be smoothly reconstructed by ComCSC-GR.

The second experiment is conducted on another data set of Alps mountains acquired by Sentinel-1 with the Interferometric Wide (IW) swath mode. The acquisition dates of the two images are October 9, 2018, and October 15, 2018, respectively. Fig. 15 displays the amplitude SAR image and its original interferogram. The spatial size is of 650×700 pixels. Compared with the first area, this interferogram is much denser and more heterogeneous. Similar to the above experiment, we filter the interferogram based on the four methods, that is, NL-InSAR, NL-SAR, InSAR-BM3D, and ComCSC-GR and demonstrate the filtered results in Fig. 16 (top). One zoomed-in area at the bottom-left of the filtered results based on InSAR-BM3D and the proposed method is cropped and displayed in Fig. 17. At its bottom, the unwrapped phases are also calculated. One unwrapped phase profile is extracted to further compare the visualized performance among all the methods (Fig. 18).
Fig. 12. Filtered results of the four comparing methods (top row) and the corresponding unwrapped phases (bottom row). As indicated by the red arrow, the profiles of the unwrapped phases are plotted in Fig. 13 (left) and one zoomed-in area of the profile is illustrated to its right.

Fig. 13. Profiles extracted on the unwrapped phases in Fig. 12 (indicated by the red arrow) and one zoomed-in view area.

Fig. 15. Left: Mountainous study area of Sentinel-1 IW data shown by the amplitude (log scale). Right: Corresponding unfiltered interferogram processed with ESA SNAP toolbox.

Fig. 14. Collinearity probability density functions of the comparing methods, which are calculated based on the filtered interferograms.

As shown in Fig. 16, for this dense fringe area, NL-SAR result is oversmoothed, especially in the heterogeneous areas. For example, at the bottom part of the result, the fringes filtered by NL-SAR are blurred and cannot reflect the correct topography. Additionally, due to the oversmoothing issue, the unwrapped phase of the extracted profile is also incorrect (Fig. 18). As a comparison, based on the learned high-frequency convolutional kernels, the proposed method can very well preserve such heterogeneous characteristic of the data set and mitigate the noise simultaneously. Although NL-InSAR can also preserve the phase details, the staircase effect in the restoration seriously influences the quality of the result, as illustrated by the unwrapped phases in Fig. 16 and the profiles in Fig. 18. Both InSAR-BM3D and ComCSC-GR can very well restore the underlying phases for this area with the dense fringe preservation and the noise mitigation. However, as the results shown in the zoomed-in area of Fig. 17, InSAR-BM3D cannot efficiently reconstruct the phases near the fringe edges. It can be clearly observed that some vertical or horizontal artifacts exist in the filtered interferograms. In contrast, not only the details of the fringe edges can be protected but also the regions nearby can be more consistently reconstructed. As demonstrated, the collinearity assessment in Fig. 19, due to the oversmoothing effect of NL-SAR, achieves the highest scores of the collinearity. However, NL-SAR loses the structural information of the topography in this area. Slightly better collinearity performance can be
achieved by the proposed method than InSAR-BM3D. Due to
the staircase effect of NL-InSAR, the similarities among the
pixels of the neighborhood cannot be high.

V. Conclusion

In this article, the CSC algorithm and its gradient regular-
ized version are proposed in the complex domain. They can
be exploited for interferometric phase restoration, which can
avoid the staircase effect and preserve the details of phase
variations. Moreover, ComCSC can decompose the global
image in a deconvolutional manner, which can provide insights
for the elementary phase components for the interferometric
phases. The corresponding performance is validated on both
the synthetic and realistic high- and medium-resolution data
sets from TerraSAR-X StripMap and Sentinel-1 IW mode,
respectively, with a comparison of the other state-of-the-art
methods.

As indicated by the experiments, more accurate phase
restoration can be achieved as the filter number and filter size
increase. However, considering the computational costs, those
two parameters cannot be set too big, since more parameters
should be learned with the support of more training data.
In our experiments, appealing results of both simulations and
real data sets can be obtained with the 96 filters and 20×20
filter size. Moreover, theoretically, the proposed method can be directly operated on the whole interferogram rather than patch-wisely as the conventional dictionary learning. In practice, when the spatial dimension of the studied data set is too large for processing, the algorithm can also be carried out in a sliding-window manner.

As future work, we plan to investigate the extension of the algorithm on InSAR stacks for simultaneously denoising multitemporal interferograms. Also, in order to improve the performance of the SC step, learning convolutional filters with multiple sizes can be further researched.

APPENDIX

DISCUSSION OF (15)

In this section, we want to prove that the \(Y \) given by (15) is a solution of problem (11).

Before the main proof, we start with a simple case.

Lemma 1: The minimizer of the following problem:

\[
\min_y \| y \| + \frac{1}{2} |y - z|^2
\]

(41)

where \(y, z \in \mathbb{C} \) are both complex numbers, is

\[
y = \frac{z}{|z|} \cdot \max(0, |z| - \gamma).
\]

(42)

Proof: First, we use the polar form to represent complex numbers \(y, z \)

\[y = \rho e^{i\theta}, \quad z = \rho_0 e^{i\theta_0}, \quad \rho, \rho_0 \geq 0, \quad \theta, \theta_0 \in \mathbb{R}\]

where \(\rho, \rho_0 \) are the amplitude values and \(\theta, \theta_0 \) are the phases. Then (41) can be written as

\[
\min_{\rho, \theta} \| y \| + \frac{1}{2} |y - z|^2
\]

\[= \min_{\rho, \theta} \gamma \rho + \frac{1}{2} |\rho e^{i\theta} - \rho_0 e^{i\theta_0}|^2
\]

\[= \min_{\rho \geq 0, \theta} \gamma \rho + \frac{1}{2} \left(|\rho e^{i\theta} - \rho_0 e^{i\theta_0}|^2 + |\rho e^{i\theta} + \rho_0 e^{i\theta_0}|^2 \right)
\]

\[= \min_{\rho \geq 0} \gamma \rho + \frac{1}{2} \left(\rho^2 + \rho_0^2 + 2 \rho_0 \rho \cos(\theta - \theta_0) \right)
\]

\[= \min_{\rho \geq 0} \gamma \rho + \frac{1}{2} (\rho^2 - \rho_0^2)^2
\]

(42)

The above equations show that the optimal \(\theta = \theta_0 \). Furthermore, since \(\arg\min_{\rho \geq 0} \gamma \rho + (\rho - \rho_0)^2/2 = \max(0, \rho_0 - \gamma) \), we have the solution of (41)

\[y = \max(0, \rho_0 - \gamma) e^{i\theta_0}.
\]

In another word, \(y = (z/|z|) \cdot \max(0, |z| - \gamma) \), (42) is proven. \(\square \)

Given Lemma 1 in hand, we can solve (11) now.

Recall problem (11)

\[
\min_{\gamma, \rho, \theta} \lambda \| Y \|_{1,1} + \frac{\rho}{2} \| X - Y + U \|_F^2.
\]

By definition (5), tensors \(X, Y, U \) are all obtained by concatenating several vectors. Based on the definition of norms \(\| \cdot \|_1 \) and \(\| \cdot \|_F \), problem (11) is equivalent with

\[
\min_{\gamma, \rho, \theta} \sum_{m=1}^{M} \sum_{k=1}^{K} \left(\lambda \| y_{m,k} \|_1 + \frac{\rho}{2} \| x_{m,k} - y_{m,k} + u_{m,k} \|_F^2 \right)
\]

where \(x_{m,k}, y_{m,k}, u_{m,k} \) are \(N \)-dimensional complex-valued vectors. By definition of norms \(\| \cdot \|_1 \) and \(\| \cdot \|_2 \), the above problem can be further decomposed into

\[
\min_{\gamma, \rho, \theta} \sum_{m=1}^{M} \sum_{k=1}^{K} \sum_{i=1}^{N} \left(\frac{\lambda}{2} \| y_{m,k,i} \|_1 + \frac{\rho}{2} \| x_{m,k,i} - y_{m,k,i} + u_{m,k,i} \|_2 \right)
\]

where \(x_{m,k,i}, y_{m,k,i}, u_{m,k,i} \) are the \(i \)th element of vectors \(x_{m,k}, y_{m,k}, u_{m,k} \), respectively. Since the function to minimize is totally separable among \(m, k, i \), solving the above minimization problem is equivalent with solving the following problem independently for \(1 \leq m \leq M, 1 \leq k \leq K, 1 \leq i \leq N \):

\[
\min_{\gamma, \rho, \theta} \sum_{m=1}^{M} \sum_{k=1}^{K} \sum_{i=1}^{N} \left(\frac{\lambda}{2} \| y_{m,k,i} \|_1 + \frac{\rho}{2} \| x_{m,k,i} - y_{m,k,i} + u_{m,k,i} \|_2 \right).
\]

Appendix

References

[1] J.-S. Lee, “A simple speckle smoothing algorithm for synthetic aperture radar images,” IEEE Trans. Syst., Man, Cybern., vol. SMC-13, no. 1, pp. 85–89, Jan. 1983.

[2] J.-S. Lee, K. P. Papanastassiou, T. L. Ainsworth, M. R. Grunes, and A. Reigber, “A new technique for noise filtering of SAR interferometric phase images,” IEEE Trans. Geosci. Remote Sens., vol. 36, no. 5, pp. 1456–1465, Sep. 1998.

[3] R. M. Goldstein and C. L. Werner, “Radar interferogram filtering for geophysical applications,” Geophys. Res. Lett., vol. 25, no. 21, pp. 4035–4038, Nov. 1998.

[4] A. Buades, B. Coll, and J.-M. Morel, “A non-local algorithm for image denoising,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR), vol. 2, Jun. 2005, pp. 60–65.

[5] C.-A. Deledalle, L. Denis, and F. Tupin, “Iterative weighted maximum likelihood denoising with probabilistic patch-based weights,” IEEE Trans. Image Process., vol. 18, no. 12, pp. 2661–2672, Dec. 2009.

[6] S. Parrilli, M. Poderico, C. V. Angelino, and L. Verdoliva, “A nonlocal SAR image denoising algorithm based on LMMSE wavelet shrinkage,” IEEE Trans. Geosci. Remote Sens., vol. 50, no. 2, pp. 606–616, Feb. 2012.

[7] D. Cozzolino, S. Parrilli, G. Scarpa, G. Poggi, and L. Verdoliva, “Fast adaptive nonlocal SAR despeckling,” IEEE Geosci. Remote Sens. Lett., vol. 11, no. 2, pp. 524–528, Feb. 2014.

[8] G. Di Martino, A. Di Simone, A. Iodice, and D. Riccio, “Scattering-based nonlocal means SAR despckling,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 6, pp. 3574–3588, Jun. 2016.

[9] C.-A. Deledalle, L. Denis, and F. Tupin, “NL-InSAR: Nonlocal interferogram estimation,” IEEE Trans. Geosci. Remote Sens., vol. 49, no. 4, pp. 1441–1452, Apr. 2011.

[10] C.-A. Deledalle, L. Denis, F. Tupin, A. Reigber, and M. Jäger, “NL-SAR: A unified nonlocal framework for resolution-preserving (Pol)InSAR denoising,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 4, pp. 2021–2038, Apr. 2015.
[11] R. Chen, W. Yu, R. Wang, G. Liu, and Y. Shao, “Interferometric phase denoising by pyramid nonlocal means filter,” IEEE Geosci. Remote Sens. Lett., vol. 10, no. 4, pp. 826–830, Jul. 2013.

[12] X. Lin, F. Li, D. Meng, D. Hu, and C. Ding, “Nonlocal SAR interferometric phase filtering through higher order singular value decomposition,” IEEE Geosci. Remote Sens. Lett., vol. 12, no. 4, pp. 806–810, Apr. 2015.

[13] F. Sica, D. Cozzolino, X. X. Zhu, L. Verdoliva, and G. Poggi, “InSAR-BM3D: A nonlocal filter for SAR interferometric phase restoration,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 6, pp. 3456–3467, Jun. 2018.

[14] Y. Gao, S. Zhang, T. Li, L. Guo, Q. Wu, and S. Chen, “A novel two-step noise reduction approach for interferometric phase images,” Opt. Lasers Eng., vol. 121, pp. 1–10, Oct. 2019.

[15] J. Chen, Y. Cui, W. An, and J. Yang, “Nonlocal filtering for polarimetric SAR data: A pretest approach,” IEEE Trans. Geosci. Remote Sens., vol. 49, no. 5, pp. 1744–1754, May 2011.

[16] O. D’Hondt, S. Guillaso, and O. Hellwich, “Iterative bilateral filtering of polarimetric SAR data,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 6, no. 3, pp. 1628–1639, Jun. 2013.

[17] F. Sica, D. Reale, G. Poggi, L. Verdoliva, and G. Fornaro, “Nonlocal adaptive multilooking in SAR multipass differential interferometry,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 4, pp. 1727–1742, Apr. 2015.

[18] O. D’Hondt, C. López-Martinez, S. Guillaso, and O. Hellwich, “Non-local filtering applied to 3-D reconstruction of tomographic SAR data,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 1, pp. 272–285, Jan. 2018.

[19] H. Hongxing, J. M. Bioucas-Dias, and V. Katkovnik, “Interferometric phase image estimation via sparse coding in the complex domain,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 5, pp. 2587–2602, May 2015.

[20] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by basis pursuit,” SIAM Rev., vol. 43, no. 1, pp. 129–159, Jan. 2001.

[21] A. M. Bruckstein, D. L. Donoho, and M. Elad, “From sparse solutions of systems of equations to sparse modeling of signals and images,” SIAM Rev., vol. 51, no. 1, pp. 34–81, Feb. 2009.

[22] D. Hong, W. Liu, J. Su, Z. Pan, and G. Wang, “A novel hierarchical approach for multispectral palpint recognition,” Neurocomputing, vol. 151, pp. 511–521, Mar. 2015.

[23] J. Kang, Y. Wang, M. Korner, and X. X. Zhu, “Robust object-based multipass InSAR deformation reconstruction,” IEEE Trans. Geosci. Remote Sens., vol. 55, no. 8, pp. 4239–4251, Aug. 2017.

[24] D. Hong and X. X. Zhu, “SULoRA: Subspace unmixing with low-rank tensor decomposition,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 6, pp. 3062–3077, Jun. 2018.

[25] D. Hong, N. Yokoya, J. Chanussot, and X. X. Zhu, “An augmented linear mixing model to address spectral variability for hyperspectral unmixing,” IEEE Trans. Image Process., vol. 28, no. 9, 2019.

[26] H. Yang, C. Chen, S. Chen, F. Xi, and Z. Liu, “Non-common band SAR interferometry via compressive sensing,” IEEE Trans. Geosci. Remote Sens., early access, Jan. 20, 2020, doi: 10.1109/TGRS.2020.2964701.

[27] L. Zhang, L. Sun, B. Zou, and W. M. Moon, “Fully polarimetric SAR image classification via sparse representation and polarimetric features,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 8, pp. 3923–3932, Aug. 2015.

[28] W. Yang, N. Zhong, X. Cui, and A. Cherian, “Riemannian sparse coding for classification of PoSAR images,” in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), Jul. 2016, pp. 5698–5701.

[29] D. Hong, N. Yokoya, and X. X. Zhu, “Learning a robust local manifold representation for hyperspectral dimensionality reduction,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 6, pp. 2960–2975, Jun. 2017.

[30] J. Zhang, W. Yang, A. Cherian, X. Yang, G.-S. Xia, and M. Liao, “Unsupervised classification of polarimetric SAR images via Riemannian sparse coding,” IEEE Trans. Geosci. Remote Sens., vol. 55, no. 9, pp. 5381–5390, Sep. 2017.

[31] B. Ren, B. Hou, Z. Wen, W. Xie, and L. Jiao, “PoSAR image classification via multimodal sparse representation-based feature fusion,” Int. J. Remote Sens., vol. 39, no. 22, pp. 7861–7880, Nov. 2018.

[32] R. Han, Q. Liu, D. Hong, and P. Ghamisi, “Deep recurrent neural networks for hyperspectral image classification,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 8, pp. 5384–5394, Aug. 2019.
Jian Kang (Member, IEEE) received the B.S. and M.E. degrees in electronic engineering from the Harbin Institute of Technology (HIT), Harbin, China, in 2013 and 2015, respectively, and the Dr.-Ing. degree from Signal Processing in Earth Observation (SiPEO), Technical University of Munich (TUM), Munich, Germany, in 2019.

In August 2018, he was a Guest Researcher with the Institute of Computer Graphics and Vision (ICG), TU Graz, Graz, Austria. He is currently with the Faculty of Electrical Engineering and Computer Science, Technische Universität Berlin (TU-Berlin), Berlin, Germany. His research focuses on signal processing and machine learning, and their applications in remote sensing. In particular, he is interested in multidimensional data analysis, geophysical parameter estimation based on InSAR data, SAR denoising, and deep learning-based techniques for remote sensing image analysis.

Dr. Kang won the first place of the Best Student Paper Award in EUSAR 2018, Aachen, Germany.

Danfeng Hong (Member, IEEE) received the B.Sc. degree in computer science and technology from the Neusoft College of Information, Northeastern University, Dalian, China, in 2012, the M.Sc. degree (summa cum laude) in computer vision from the College of Information Engineering, Qingdao University, Qingdao, China, in 2015, and the Dr.-Ing degree (summa cum laude) from Signal Processing in Earth Observation (SiPEO), Technical University of Munich (TUM), Munich, Germany, in 2019.

Since 2015, he has been a Research Associate with the Remote Sensing Technology Institute (IMF), German Aerospace Center (DLR), Oberpfaffenhofen, Germany. He is currently a Research Scientist and leads the Spectral Vision Group, EO Data Science, IMF, DLR, and also a Visiting Scientist with the GIPSA-lab, Grenoble INP, CNRS, University of Grenoble Alpes, Grenoble, France. In 2018 and 2019, he was a Visiting Scholar with the GIPSA-lab, Grenoble INP, CNRS, University of Grenoble Alpes, and RIKEN Artificial Intelligent Project (AIP), RIKEN, Tokyo, Japan. His research interests include signal/image processing and analysis, pattern recognition, machine/deep learning and their applications in Earth Vision.

Jialin Liu received the B.S. degree in automation and control from Tsinghua University, Beijing, China, in 2015. He is currently pursuing the Ph.D. degree in applied mathematics with the University of California at Los Angeles (UCLA), Los Angeles, CA, USA.

His current research interest lies in the machine learning and optimization algorithms with applications in signal/image processing.

Dr. Liu won the Best Student Paper: Third Place at the 2017 International Conference on Image Processing (ICIP).

Gerald Baier received the M.Sc. degree in electrical engineering from the Universität Catholique de Louvain, Louvain-la-Neuve, Belgium, and the Karlsruhe Institute of Technology, Karlsruhe, Germany, in 2012, and the Ph.D. degree in synthetic aperture radar interferometry from the Technical University of Munich, Munich, Germany, in 2018.

From 2014 to 2018, he was with the Department for SAR Signal Processing, German Aerospace Center’s (DLR) Remote Sensing Technology Institute, Oberpfaffenhofen, Germany. Since 2018, he has been a Post-Doctoral Researcher with the Geoinformatics Unit, RIKEN Center for Advanced Intelligence Project (AIP), Tokyo, Japan. His research interests include signal processing, machine learning, synthetic aperture radar and high-performance computing.

Naoto Yokoya (Member, IEEE) received the M.Eng. and Ph.D. degrees in aerospace engineering from the University of Tokyo, Tokyo, Japan, in 2010 and 2013, respectively.

He is currently a Unit Leader with the RIKEN Center for Advanced Intelligence Project (AIP), Tokyo, where he has been leading the Geoinformatics Unit since 2018. He has been a Visiting Associate Professor with the Tokyo University of Agriculture and Technology since 2019. He was an Assistant Professor with the University of Tokyo, from 2013 to 2015. From 2015 to 2017, he was an Alexander von Humboldt Fellow with the German Aerospace Center (DLR), Oberpfaffenhofen, Germany, and the Technical University of Munich (TUM), Munich, Germany. His research is focused on the development of image processing, data fusion, and machine learning algorithms for understanding remote sensing images, with applications to disaster management.

Dr. Yokoya won the first place in the 2017 IEEE Geoscience and Remote Sensing Society (GRSS) Data Fusion Contest organized by the Image Analysis and Data Fusion Technical Committee (IADF TC). He is the Chair from 2019 to 2021 and was a Co-Chair from 2017 to 2019 of the IEEE GRSS IADF TC and also the Secretary of the IEEE GRSS All Japan Joint Chapter since 2018. He is an Associate Editor of the IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING since 2017. From 2015 to 2017, he was an Alexander von Humboldt Fellow with the German Aerospace Center (DLR), Oberpfaffenhofen, Germany, and the Technical University of Munich (TUM), Munich, Germany. His research is focused on the development of image processing, data fusion, and machine learning algorithms for understanding remote sensing images, with applications to disaster management.

Begüm Demir (Senior Member, IEEE) received the B.S., M.Sc., and Ph.D. degrees in electronic and telecommunication engineering from Kocaeli University, Kocaeli, Turkey, in 2005, 2007, and 2010, respectively.

She was an Associate Professor with the Department of Computer Science and Information Engineering, University of Trento, Trento, Italy. She is currently a Full Professor and Head of the Remote Sensing Image Analysis (RSI) Group, Faculty of Electrical Engineering and Computer Science, Technische Universität Berlin, Berlin, Germany. Her research activities lie at the intersection of machine learning, remote sensing and signal processing. Specifically, she performs research on developing innovative methods for addressing a wide range of scientific problems in the area of remote sensing for Earth observation.

Dr. Demir is a Scientific Committee Member of several international conferences and workshops, such as Conference on Content-Based Multimedia Indexing, Conference on Big Data from Space, Living Planet Symposium, International Joint Urban Remote Sensing Event, SPIE International Conference on Signal and Image Processing for Remote Sensing, Machine Learning for Earth Observation Workshop organized within the ECML/PKDD. She was a recipient of a Starting Grant from the European Research Council (ERC) with the Project BigEarth-Accurate and Scalable Processing of Big Data in Earth Observation in 2017, and the 2018 Early Career Award presented by the IEEE Geoscience and Remote Sensing Society. She is a Referee for several journals such as the PROCEEDINGS OF THE IEEE, the IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, the IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, the IEEE TRANSACTIONS ON IMAGE PROCESSING, Pattern Recognition, the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, the IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, the International Journal of Remote Sensing, and several international conferences. She is currently an Associate Editor for the IEEE GEOSCIENCE AND REMOTE SENSING LETTERS and Journal of Remote Sensing.