Global and country-level estimates of human population at high altitude

Joshua C. Tremblay*1,2 and Philip N. Ainslie*3

*Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, BC V1V 1V7, Canada

Edited by Richard G. Klein, Stanford University, Stanford, CA, and approved March 15, 2021 (received for review February 20, 2021)

Estimates of the global population of humans living at high altitude vary widely, and such data at the country level are unavailable. Herein, we use a geographic information system (GIS)-based approach to quantify human population at 500-m elevation intervals for each country. Based on georeferenced data for population (LandScan Global 2019) and elevation (Global Multiresolution Terrain Elevation Data), 500.3 million humans live at ≥1,500 m, 81.6 million at ≥2,500 m, and 14.4 million at ≥3,500 m. Ethiopia has the largest absolute population at ≥1,500 m and ≥2,500 m, while China has the greatest at ≥3,500 m. Lesotho has the greatest percentage of its population above 1,500 m, while Bolivia has the greatest at ≥2,500 m and ≥3,500 m. High altitude presents a myriad of environmental stresses that provoke physiological responses and adaptation, and consequently impact disease prevalence and severity. While the majority of high-altitude physiology research is based upon lowlanders from western, educated, industrialized, rich, and democratic countries ascending to high altitude, the global population distribution of high-altitude residents encourages an increased emphasis on understanding high-altitude physiology, adaptation, epidemiology, and public health in the ~500 million permanent high-altitude residents.

Results

Over 500 million humans live at ≥1,500 m (6.58% of the total population), 219 million at ≥2,000 m (2.88% of the total population), 81.6 million at ≥2,500 m (1.07% of the total population), 25.2 million at ≥3,000 m (0.33% of the total population), 14.4 million at ≥3,500 m (0.19% of the total population), 6.4 million at ≥4,000 m (0.084% of the total population), 2 million at ≥4,500 m (0.027% of the total population), and 0.31 million at ≥5,000 m (0.004% of the total population). Table 1 presents the standard and model atmosphere-calculated barometric pressure, partial pressure of inspired oxygen, and global populations at 500-m elevation intervals.

Discussion

We used georeferenced population and elevation data to estimate the global and country-level population of humans at high altitude. We estimate that 81.6 million humans live at ≥2,500 m, and that these humans are primarily from non-Western countries. This figure is considerably less than non-GIS-based estimates (8) and expands upon GIS-based estimates (2, 9, 10) by providing country-level estimates at 500-m elevation intervals. We present population for 500-m intervals to provide flexible interpretation of “high altitude,” as the threshold for high altitude to elicit a physiological response varies between individuals and populations. Research is encouraged in countries with considerable high-altitude populations, to understand how the environmental stress (physiological and social) of high altitude impacts physiology, adaptation, health, and disease.

Where Do Humans Live at High Altitude? Humans reside at high altitude in each continent; notably, the majority of humans at high altitude live in non-Western countries. As with medical research generally (11), high-altitude research has focused on the lowlander of European descent ascending to high altitude (12). Select permanent high-altitude populations have been studied, with considerable differences in physiological measures reported (1); however, the populations studied represent just a fraction of humans at high altitude. Among the studied populations, differences in candidate genetic variants that may be adaptive and
their phenotypic associations have been identified (1, 10). The distribution of where humans live at high altitude, presented herein, and their duration of high-altitude residence affords a broad natural experiment to better define the relationships between genotype and phenotype and provide insight into the evolutionary and mechanistic bases of physiological adaptation to high altitude. Further, an

Altitude, m	Standard atmosphere*	Model atmosphere†									
	Barometric pressure 5 ºC (mmHg)	Barometric pressure 20 ºC (mmHg)	P(O2) 5 ºC (% of sea level)	P(O2) 20 ºC (% of sea level)	Barometric pressure (mmHg)	P(O2) (mmHg)	P(O2) (% of sea level)	Population (millions)	% Population		
	>715	>717	>140	>140	>94	>94	>718	>140	>94	5,821.54	76.555
500 to 999	140 to 140	88 to 94	88 to 94	679 to 718	132 to 140	89 to 94	839.582	11.041			
1,000 to 1,499	122 to 131	123 to 132	82 to 88	641 to 679	124 to 132	83 to 89	442.937	5.825			
1,500 to 1,999	114 to 122	116 to 123	76 to 82	605 to 641	117 to 124	78 to 83	281.185	3.698			
2,000 to 2,499	563 to 599	106 to 114	108 to 115	71 to 76	72 to 77	137.585	1.809				
2,500 to 2,999	529 to 563	101 to 108	66 to 71	68 to 72	537 to 570	103 to 117	56.352	0.741			
3,000 to 3,499	497 to 529	92 to 99	94 to 101	61 to 66	63 to 68	505 to 537	96 to 109	10.786	0.142		
3,500 to 3,999	467 to 497	85 to 92	88 to 94	57 to 61	59 to 63	475 to 505	90 to 106	8.015	0.105		
4,000 to 4,499	437 to 467	79 to 85	82 to 88	53 to 57	55 to 59	447 to 475	84 to 106	4.385	0.058		
4,500 to 4,999	410 to 437	73 to 79	76 to 82	49 to 53	51 to 55	420 to 447	78 to 106	1.711	0.023		
≥5,000 ≤3,500	396 to 410	≤3,500	≤3,500	≤3,500	≤3,500	≤3,500	≤3,500	≤3,500	≤3,500	0.313	0.004

Barometric pressure is also impacted by latitude (higher at the equator) and season. P(O2) = (barometric pressure − 47 mmHg) × 0.2093.

*Barometric pressure = 760 × [1 − 0.0065 × elevation in meters/(273.15 + temperature)]^{5.255}.
†Barometric pressure = exp(6.63268 − 0.1112 × elevation in kilometers − 0.00149 × elevation in square kilometers).
expanded understanding of the potential physiological differences arising from life at high altitude will lead to improvements in the diagnosis and treatment of disease, ultimately improving the health and well-being of high-altitude populations.

Limitations. Mobile, nomadic, or pastoralist populations and those with lowest income and most at risk are underrepresented in census data (13). Therefore, we have likely underestimated the most vulnerable populations and may have disproportionately undercounted rural high-altitude populations. The LandScan Global datasets are not recommended to be used as a change or migration tool, as the LandScan database is constantly improving its input data (14). Further, the LandScan dataset provides only a population count and not demographics (e.g., age, sex, ethnicity, etc.). Nevertheless, LandScan is the community standard for global population distribution.

Materials and Methods

Population estimates were calculated using QGIS 3.4.0-Madeira software. Population data were acquired from Oak Ridge National Laboratory’s LandScan Global 2019 dataset (14). LandScan provides an ambient population count for cells with a spatial resolution of 30 arc-seconds (~1 km²). LandScan uses the best available census counts to estimate population and applies a spatial distribution model that includes land cover, roads, slope, urban areas, village locations, and high-resolution imagery analysis. The mean elevation data from the Global Multi-resolution Terrain Elevation Data (GMTED2010) were also acquired at a resolution of 30 arc-seconds (~1 km²) (15). Country borders were acquired from the Database of Global Administrative Areas (GADM, version 3.6; https://gadm.org/download_country_v3.html). Further details on the methodology are provided in SI Appendix.

Data Availability. All study data are included in the article and Dataset S1.

ACKNOWLEDGMENTS. We thank Evan Thornberry (GIS Librarian, University of British Columbia) and Paul Lesack (Data/GIS Analyst, University of British Columbia) for guidance and feedback on the GIS analysis. J.C.T. was supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) post-doctoral fellowship, Killam postdoctoral fellowship, and Michael Smith Foundation for Health Research Trainee Award. P.N.A. was supported by an NSERC Discovery Grant (Grant F16-02798) and a Canada Research Chair.

1. L. G. Moore, Measuring high-altitude adaptation. *J. Appl. Physiol.* 123, 1371–1385 (2017).
2. R. Romeo, F. Grita, F. Parisi, L. Russo, Vulnerability of Mountain Peoples to Food Insecurity: Updated Data and Analysis of Drivers (Food and Agriculture Organization, Rome, 2020).
3. R. Hock et al., “High mountain areas” in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, H.-O. Pörtner et al., Eds. (Intergovernmental Panel on Climate Change, 2019), pp. 131–202.
4. G. F. De Jong, Demography and research with high altitude populations. *Soc. Biol.* 17, 114–119 (1970).
5. P. T. Baker, “The adaptive fitness of high-altitude populations” in The Biology of High-Altitude Peoples, P. T. Baker, Ed. (Cambridge University Press, Cambridge, United Kingdom, 1978), pp. 317–350.
6. L. G. Moore, Altitude-aggravated illness: Examples from pregnancy and prenatal life. *Ann. Emerg. Med.* 16, 965–973 (1987).
7. J. E. Cohen, C. Small, Hypsographic demography: The distribution of human population by altitude. *Proc. Natl. Acad. Sci. U.S.A.* 95, 14009–14014 (1998).
8. L. G. Moore, S. Niemeyer, S. Zamudio, Human adaptation to high altitude: Regional and life-cycle perspectives. *Am. J. Phys. Anthropol.* 107, 25–64 (1998).
9. B. Huddleston et al., Towards a GIS-based analysis of mountain environments and populations. *Environment and Natural Resources Working paper No. 10*, (Food and Agriculture Organization of the United Nations, 2003). http://www.fao.org/3a-y4558e.pdf. Accessed 10 March 2021.
10. C. M. Beall, Adaptation to high altitude: Phenotypes and genotypes. *Annu. Rev. Anthropol.* 43, 251–272 (2014).
11. M. D. Gurven, D. E. Lieberman, WEIRD bodies: Mismatch, medicine and missing diversity. *Evol. Hum. Behav.* 41, 330–340 (2020).
12. V. Heggie, Blood, race and indigenous peoples in twentieth century extreme physi-ology. *Hist. Philos. Life Sci.* 41, 26 (2019).
13. R. A. Carr-Hill, Measuring progress toward the millennium development goals and the missing millions. *World Health Popul.* 14, 4–11 (2013).
14. A. N. Rose et al., “LandScan 2019” (Oak Ridge National Laboratory, Oak Ridge, TN, 2020), https://landscan.ornl.gov/. Accessed 20 November 2020.
15. J. J. Danielson, D. B. Gesch, “Global multi-resolution terrain elevation data 2010 (GMTED2010)” (US Geological Survey Open-File Report 2011–1073, 2011). https://doi.org/10.5066/F7J3BR2N. Accessed 4 January 2021.