Zero-bias anomaly and Kondo-assisted quasi-ballistic 2D transport

A. Ghosh, M. H. Wright, C. Siegert, M. Pepper, I. Farrer, C. J. B. Ford, D. A. Ritchie
Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom
(Dated: March 23, 2022)

Nonequilibrium transport measurements in mesoscopic quasi-ballistic 2D electron systems show an enhancement in the differential conductance around the Fermi energy. At very low temperatures, such a zero-bias anomaly splits, leading to a suppression of linear transport at low energies. We also observed a scaling of the nonequilibrium characteristics at low energies which resembles electron scattering by two-state systems, addressed in the framework of two-channel Kondo model. Detailed sample-to-sample reproducibility indicates an intrinsic phenomenon in unconfined 2D systems in the low electron-density regime.

PACS numbers: 72.25.-b, 71.45.Gm, 71.70.Ej

Zero-bias anomaly (ZBA) in the non-equilibrium characteristics of ballistic systems provides additional insight into the coupling mechanism of a conduction electron with its surroundings. For example, a maximum in the differential conductance \((dI/dV_{SD}) \) at the Fermi energy \((E_F) \) in case of tunnelling via magnetic impurities \(\delta \), or through artificially confined quantum dots \(\delta \), has been explained by a Kondo-like antiferromagnetic coupling of the electron to localized impurity spin. Similar enhancement observed in clean quantum point contacts in semiconductor heterostructures has led to much controversy regarding the spin-structure and effects of lateral confinement in such systems \(\delta \). On the other hand, in quasi-ballistic metallic nanobridges the ZBA shows in a local cusp-like minimum in \(dI/dV_{SD} \) at \(E_F \), which has been interpreted in terms of nonmagnetic two-channel Kondo (2CK) framework arising from the interaction of the electrons with local two-state atomic defects \(\delta \). The interest in this lies in the prediction that in particle-hole symmetric case, such a model flows to a \(T = 0 \) fixed point, giving rise to quantum critical behavior and non-Fermi liquid effects \(\delta \).

Investigation of nonequilibrium ballistic transport in spatially extended 2D systems is primarily impeded by greater scattering from background disorder. The small level spacing requires relatively larger sample dimensions, resulting in significant momentum relaxation during the course of transport. Even though recent nonequilibrium studies in mesoscopic 2D electron systems (2DES) have shown an unexpected ZBA at low background disorder \(\delta \), the mechanism of transport in this regime remains unclear. Here we report the experimental observation of a new and unexpected feature in the nonequilibrium quasi-ballistic 2D transport. At zero magnetic field in unconfined samples of mesoscopic dimensions, we find a strong zero-bias enhancement in \(dI/dV_{SD} \), which splits at very low \(T \) (\(\lesssim 150 \) mK) by a gate voltage \((V_g) \)-dependent magnitude. This modifies the linear transport properties by introducing intermittent low-energy nonmonotonicity in the linear conductance \(G = dI/dV_{SD} \) at \(V_{SD} = 0 \), where \(V_{SD} \) is the source-drain bias), as a function of both \(T \) and in-plane magnetic field \((B_\|) \). At low \(V_{SD} \), an intriguing scaling behavior of \(dI/dV_{SD} \) in \(T \) is also observed, which indicates a 2CK-type scattering of electrons in these systems at low \(T \).

The devices were fabricated from Si \(\delta \)-doped GaAs/AlGaAs heterostructures. In order to minimize the disorder arising from Coulomb potential of ionized dopants, we used a thick layer (\(\approx 80 \) nm) of undoped AlGaAs spacer, and adopted a slow cooling procedure \(\delta \) to maximize the correlations in the donor layer. The as-grown mobility of the wafers range over \(\mu \approx 1 \times 10^6 \) cm\(^2\)/V s, depending on the donor \((n_\delta) \) and electron \((n_e) \) density. Over the experimental temperature range, the momentum relaxation rate was typically \(\tau^{-1} \lesssim (0.1-1) \times k_B T/\hbar \), indicating a quasi-ballistic nature of the transport \(\delta \). The elastic scattering length\(\lambda \approx v_F \tau \approx 10 \) \(\mu \)m, where \(v_F \) is the Fermi velocity, provided an upper cutoff to the device dimensions, restricting the number of elastic scattering events to very few or none. Measurement of \(dI/dV_{SD} \) was carried out using standard mixed low-frequency ac/dc technique with ac excitation \(\lesssim k_B T \) at each \(T \) inside a top-loading dilution refrigerator with base electron temperature \(\approx 32 \) mK.

Fig. 1(a), (b) and (c) show the \(B_\| = 0 \) nonequilibrium characteristics of three samples with different dimensions and doping profile. We varied both the total geometrical area, as well as the aspect ratio in samples \(T45 (2 \times 8\mu m^2, n_\delta \approx 2.5 \times 10^{12} \) cm\(^{-2}\)\), \(T46 (5 \times 8\mu m^2, n_\delta \approx 1.9 \times 10^{12} \) cm\(^{-2}\)\) and \(T48 (5 \times 5\mu m^2, n_\delta \approx 0.9 \times 10^{12} \) cm\(^{-2}\)\). The dimensions are chosen in order to ensure small single-particle level spacing with \(\Delta \epsilon_x \Delta \epsilon_y \sim h^2/8m*L^2 \lesssim k_B T \) for each \(T \). While no consistent feature in \(G \) as a function of \(V_g \) could be identified (not shown), the ZBA around \(V_{SD} = 0 \) is evident for all samples \(\delta \). We focus on some of the common features of the ZBA shown in Fig. 1: (1) At \(|V_{SD}| \lesssim 0.15 - 0.2 \) meV, \(dI/dV_{SD} \) shows an enhancement at all \(V_g \). This energy scale varies only weakly with \(V_g \), and also \(\lesssim E_F \) at all \(n_\delta \). (2) Over certain ranges of \(V_g \), the ZBA splits by \(2\Delta \), leading to a double-peak structure around \(E_F \). (3) \(\Delta \) is oscillatory in \(V_g \), and when normalized for series conductance, in particular for \(G \gtrsim 2e^2/h \),
the splitting is strongest when G lies close to an even integral multiple of e^2/h, becoming unresolvable around odd multiples. (4) While no clear dependence of the energy scales on size/shape of the samples was observed, the amplitude of the ZBA was found to depend on n_g. Note that the ZBA is strongest in T48 ($n_g = 6.5 \times 10^{10}$ cm$^{-2}$ at $V_g = 0$), and weakest in T45 ($n_g = 10.1 \times 10^{10}$ cm$^{-2}$ at $V_g = 0$). Such weakening is also observed in a given sample as V_g (or n_g) is increased.

The single- and double-peak regions show distinct behavior in the presence of external in-plane magnetic field ($B_{||}$). As shown in Fig. 1(d) and (e), while the single-peak splits by the Zeeman energy $\Delta_Z = 2g^*\mu_B B_{||}$ from $B_{||} = 0$, Zeeman splitting of the double peak appears only at relatively large (sample-dependent) $B_{||}$-scale ($\sim 0.5-2$ Tesla) [8]. Such a splitting of ZBA is taken as a distinctive feature of Kondo-type dynamics [1, 2]. The effective g-factor g^* was found to be both sample- and n_g-dependent $g^*/g_0 \sim 1 - 3$, where $|g_0| = 0.44$, consistent with exchange-induced enhancement at low n_g [8, 11].

Kondo-type dynamics also lead to a suppression of the ZBA with increasing T. Indeed, such a suppression is observed in all our samples as shown in Fig. 2a for nine different V_g’s in T46. In case of single peaks (sets 2, 3, 7 and 8), the suppression is monotonic as T is increased from ≈ 30 mK to ≈ 800 mK. For $\Delta \neq 0$, the T dependence of dI/dV_{SD} is nonmonotonic in T close to E_F (see sets 1, 4, 5, 6, and weakly in 9). Fig. 2b shows the T-dependence of G from the traces in Fig. 2a. Qualitatively, the high-T regime (typically $T \gtrsim 300$ mK) is similar for all cases, where G shows a “metallic”-like decrease with increasing T. For $T \lesssim 100-150$ mK, the increasing behavior of G with T appears intermittently, at values of V_g where dI/dV_{SD} shows resolvable double-peak structure (Fig. 2b and 3b-e). This reentrant nature is crucial, because even if the high-T suppression of G is attributed to various combinations of phonon contribution, the interaction correction, or the Altshuler-Aronov-type correction from electron scattering by Friedel oscillations [12], the repeated change in the sign of dG/dT is clearly inconsistent with standard weak-localization/interaction-based mechanisms having a single transition from localized to “metallic” state transport. However, in the Zeeman split regime at high $B_{||}$, G increases with T at all V_g, indicating standard localized state transport.

Most striking aspect of the double-peak structure is the collapse of $\Delta G(V_{SD}, V_g, T) = dI/dV_{SD}(V_{SD}, V_g, T) -$

![FIG. 1](Image1)

(a)-(c) Nonequilibrium characteristics in three different samples. Each differential conductance trace is obtained for a fixed V_g. (See text for sample details) (d), (e) $B_{||}$-dependence of the nonequilibrium characteristic at the single peak and double peak regime ($T = 32$ mK). Traces are vertically shifted for clarity. The vertical bars denote a conductance change of $0.2 \times e^2/h$.

![FIG. 2](Image2)

(a) Suppression of the zero-bias anomaly with increasing temperature (T). Each of the nine sets was recorded at a fixed gate voltage (V_g) and $B_{||} = 0$. (b) Dependence of the linear conductance G on T at different V_g. The length of the vertical bar denote $0.1 \times e^2/h$. (c), (d) Collapse of ΔG onto a single trace at low-V_{SD} as a function of eV_{SD}/k_BT, at two regimes of zero-bias conductance (G). The insets show the unscaled original data. (e) T-dependence of individual peaks in a double-peak pattern.
$G(V_g, T)$, onto a single V_g-dependent trace when V_{SD} is scaled by T. In Fig. 2(c) and (d) this is illustrated for ZBA’s at two different G (and hence V_g), indicating a common underlying mechanism. The insets contain the actual data prior to subtraction of $G(V_g, T)$, showing the thermal broadening of dI/dV_{SD}, and the suppression of the ZBA splitting with increasing T. In Fig. 2e we show the T-dependence of individual peaks in dI/dV_{SD} in the double-peak region at the given V_g. For comparison, the individual T-dependences are normalized by the dI/dV_{SD} at lowest T. Note the approximately logarithmic T-dependence of both peaks at $T \gtrsim 150$ mK, which is also expected in the Kondo-framework.

The low-V_{SD} scaling of dI/dV_{SD} indicates nonequilibrium conductance of the form,

$$\frac{dI}{dV_{SD}}(V_{SD}, V_g, T) = G(V_g, T) + AT^\alpha F \left[V_g, \frac{eV_{SD}}{kB T} \right] \tag{1}$$

where A is a phenomenological constant, and $\alpha = 0$ gives the best collapse onto the single-sample-dependent function $F(V_g, eV_{SD}/kB T)$. The dependence of F on V_g will be discussed later. The scaling form of Eq. 1 has been observed in the context of the scattering of electrons from bistable systems \cite{13,14,15}, and addressed in a two-channel Kondo (2CK) framework \cite{13,15}. In quasi-ballistic nanostructures, 2CK dynamics may arise from two possibilities: (1) Electron scattering off systems with quasi-degenerate orbital states acting as pseudospins, while the real spins act as the channel index. The nature of this orbital degeneracy can however vary from equivalent lattice defects in metallic nanobridges \cite{15}, to singlet-triplet degeneracy in multilevel quantum dots \cite{14,15}. (2) An underscreened high-spin (S) ground state coupled to M ($< 2S$) conduction channels \cite{14,15}. When parametrized in terms of a two-impurity Kondo problem, two spins S_1 and $S_2 (S = S_1 + S_2)$ interact with conduction electrons with antiferromagnetic exchange parameters J_1 and J_2 ($J_2 \neq J_1$), and a direct exchange $I (J_1, J_2 \gg I) \tag{17}$. A two-stage screening process can then decouple the spins from the conduction band by forming S_1-S_2 singlet if I exceeds some critical magnitude. Since both stages can be suppressed by lifting the spin degeneracy with Zeeman energy, a distinctive feature of this mechanism is the non-monotonicity of G in both T and B_\parallel, with a quantitative correspondence between the respective energy scales \cite{16}.

In Fig. 3, we compare the T-dependence of G to its B_\parallel-dependence in T45 (on a separate cooldown). Four representative V_g, with corresponding nonequilibrium traces at $T \approx 32$ mK and $B_\parallel = 0$ T, are identified as V_{g1} to V_{g4} in Fig. 3a. Figs. 3b-e show the ($B_\parallel = 0$) T-dependence of G at these V_g-s, while Figs. 3f-i show the B_\parallel-dependence at the base $T \approx 32$ mK. We note that apart from the qualitative nonmonotonic behavior of G as a function of both T and B_\parallel at V_{g1} and V_{g3}, there is also a quantitative agreement in the energy-scales over which the double-peak structures are suppressed. For example, as the half width $\Delta/2$ reduces from ≈ 0.03 meV at V_{g1} to ≈ 0.017 mV at V_{g2}, we find a corresponding decrease in the characteristic thermal and Zeeman energy scales (denoted by the vertical arrows) from ~ 0.023 meV and ~ 0.028 meV respectively at V_{g1}, to ~ 0.011 meV and ~ 0.02 meV respectively at V_{g2}. Since B_\parallel is applied in the plane of the 2DES (to an accuracy better than 0.2°), conventional weak-localization effects are unlikely to contribute to the observed behavior \cite{19}. Coupling of B_\parallel to orbital degree of freedom through spin-orbit interaction \cite{20} or finite thickness effect \cite{21} are also excluded since neither antilocalization to weak-localization crossover, nor a stronger suppression of G with increasing B_\parallel at lower n_s were observed.

The Kondo-type enhancement in mesoscopic 2D nonlinear transport in the ultra-clean limit indicates an unexpected scattering mechanism of the lead electrons. Moreover, intermittent splitting of the ZBA implies a two-state nature of the scatterer that becomes resolvable only at very low T ($\lesssim 150$ mK). In view of the quasi-ballistic nature of transport, the non-equilibrium conductance can represent the tunnelling characteristics between the source and drain across the potential barrier formed by the gate. Presence of localized magnetic states within the barrier region of traditional tunnel junctions has been shown to result in Kondo-type enhancement in the tunnelling conductance \cite{17}. In nanostructures fabricated from MBE-grown high-quality GaAs/AlGaAs heterostructure, localized acceptor sites close to the system can significantly modify the transport through ca-
pacitive coupling\cite{22}. This could lead to a Kondo-assisted tunnelling, similar to that observed in metallic nanobridges \cite{23}, and also in semiconductor-metal junctions \cite{24}. Arguments against such a scenario are, (1) reproducibility, and insensitivity of the relevant energy scales to sample-specific details, and (2) enhancement in the amplitude of ZBA at lower disorder.

Alternatively, dependence of the effect on n_s, i.e. relatively strong amplitude of ZBA in samples with low-n_s, and also weakening of the effect with increasing n_s within a given sample, indicates a possible role of Coulomb interaction. Typically in our systems, the low magnitude of n_s ($\sim 0.8 - 3 \times 10^{10}$ cm$^{-2}$) results in a large interaction parameter, $r_s = 1/a_B \sqrt{n_s} \sim 3.5 - 6$, where a_B is the effective Bohr radius. This corresponds to an exchange energy that can lead to strong many-body spin fluctuations with magnetic moment $\gg 1/2$\cite{25}. Under-screening of such spin fluctuations when Kondo-coupled to lead electrons can result in split Kondo resonance, which would be strongly V_g-dependent. Exchange splitting of Kondo-resonance in presence of itinerant electron ferromagnetism has been observed experimentally \cite{26}. Here, the suppression of the double peak pattern in $B_{||}$ provides further evidence of the dynamics to be related to real spin, rather than pseudospin resulting from quasi-degenerate orbital states. Indeed, similar ZBA observed in quasi-1D quantum point contacts have been interpreted in terms of enhanced spin-polarization of the electrons within the 1D channel \cite{4}.

Finally, we discuss the intermittent collapse of Δ observed in Fig. 1. If the scaling relation of Eq. 1 originates from proximity of a 2CK fixed point \cite{2,13}, the low-T V_g-dependence of Δ indicates that such scaling should also be possible in terms of a V_g-dependent energy-scale $\Gamma(V_g)$. This implies an asymptotic form of the scaling function $F \rightarrow F(V_{SD}/\Gamma(V_g))$ as $T \rightarrow 0$. Theoretically, Γ is analogous to the energy asymmetry in case of orbital degeneracy, or the direct exchange parameter J in the two-impurity Kondo parametrization $\Gamma \propto J$, which depends implicitly on V_g through the exchange interaction magnitude J\cite{27}. Indeed, in Fig. 4a and 4b we have shown the low-energy scaling of $\Delta G(V_{SD}, V_g) = dI/dV_{SD}(V_{SD}, V_g) - G(V_g)$ in T46 and T48 at the base $T \approx 32$ mK. In the absence of an absolute scale, we have expressed $\Gamma(V_g)$ with respect to its minimum value $\Gamma(V_g)^{\text{min}}$ observed around $G \approx 3.5 \times e^2/h$ in both samples (Fig. 4c and 4d). The scalability of ΔG close to the collapse of Δ strongly indicates the possibility of a quantum critical dynamics. However, a satisfactory explanation of its reentrant nature and the fundamental mechanism of the 2CK-type scattering forms the basis of ongoing investigations.

A.G. acknowledges fruitful discussions with G. Gumbs and V. I. Fal’ko. This work was supported by an EPSRC funded project. C.S. acknowledges financial support from Gottlieb Daimler- and Karl Benz-Foundation.

\begin{thebibliography}{100}
\bibitem{1} L. Y. L. Shen and J. M. Rowell, Phys. Rev. \textbf{165}, 566 (1968); P. Nielsen, Phys. Rev B \textbf{2}, 3819 (1970); S. Bermon, D. E. Paraskievopoulos and P. M. Tedrow, \textit{ibid.} \textbf{17}, 2110 (1978).
\bibitem{2} D. Goldhaber-Gordon \textit{et al.}, Nature \textbf{391}, 156 (1998); S. M. Cronenwett, T. H. Oosterkamp and L. P. Kouwenhoven, Science \textbf{281}, 540 (1998).
\bibitem{3} N. S. Wingreen and Y. Meir, Phys. Rev. B \textbf{49}, 11040 (1994).
\bibitem{4} S. M. Cronenwett \textit{et al.}, Phys. Rev. Lett. \textbf{88}, 226805 (2002).
\bibitem{5} D. C. Ralph and R. A. Buhrman, Phys. Rev. B \textbf{51}, 3554 (1995).
\bibitem{6} A. W. W. Ludwig and I. Affleck, Phys. Rev. Lett. \textbf{67}, 3160 (1991); I. Affleck and A. W. W. Ludwig, Phys. Rev. B \textbf{48}, 7297 (1993).
\bibitem{7} K. A. Matveev, Phys. Rev. B \textbf{51}, 1743 (1995).
\bibitem{8} A. Ghosh, C. J. B. Ford, M. Pepper, H. E. Beere, and D. A. Ritchie, Phys. Rev. Lett. \textbf{92}, 116601 (2004).
\bibitem{9} B. L. Altshuler and A. G. Aronov, in Electron-Electron Interaction in Disordered Systems, edited by A. L. Efros and M. Pollak (North-Holland, Amsterdam, 1985); A. M. Finkelstein, Sov. Phys. JETP \textbf{57}, 97 (1983).
\bibitem{10} The ZBA becomes suppressed in a sample-dependent manner at stronger background disorder in systems with thinner spacers ($\lesssim 40 - 60$ nm), or larger sample dimensions ($L \gtrsim 10\mu m$), or at low-n_s localized regime where $G \ll 2e^2/h$ with weak disorder screening.
\bibitem{11} J. Zhu \textit{et al.}, Phys. Rev. Lett. \textbf{90}, 056805 (2003); E. Tuttuc, S. Melinte and M. Shayegan, \textit{ibid.} \textbf{88}, 036805 (2002).
\bibitem{12} Y. Y. Proskuryakov \textit{et al.}, Phys. Rev. Lett. \textbf{89}, 076406 (2002); G. Zala, B. N. Narozhny and I. L. Aleiner, Phys. Rev. B \textbf{64}, 214204 (2001).
\end{thebibliography}
[13] D. C. Ralph, A. W. W. Ludwig, J. von Delft and R. A. Buhrman, Phys. Rev. Lett. 72, 1064 (1994).
[14] W. G. van der Wiel et al., Phys. Rev. Lett. 88, 126803 (2002).
[15] W. Hofstetter and H. Schoeller, Phys. Rev. Lett. 88, 016803 (2002).
[16] M. Pustilnik and L. I. Glazman, Phys. Rev. Lett. 87, 216601 (2001).
[17] M. Vojta, R. Bulla, and W. Hofstetter, Phys. Rev. B 65, 140405 (2002); I. Affleck, A. W. W. Ludwig, and B. A. Jones, ibid. 52, 9528 (1995); K. Kikoin and Y. Avishai, Phys. Rev. Lett. 86, 2090 (2001); P. Nozières and A. Blandin, J. Phys. (Paris) 41, 193 (1980).
[18] M. Pustilnik, L. Borda, L. I. Glazman, and J. von Delft, Phys. Rev. B 69, 115316 (2004).
[19] P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys 57, 287 (1985); G. Bergmann, Phys. Rev. Lett. 48, 1046 (1982).
[20] J. A. Folk et al., Phys. Rev. Lett. 86, 2102 (2001); I. L. Aleiner and V. I. Fal’ko, ibid. 87, 256801 (2001).
[21] S. Das Sarma and E. H. Hwang, Phys. Rev. Lett. 84, 5596 (2000).
[22] D. H. Cobden et al., Phys. Rev. B 44, R1938 (1991).
[23] D. C. Ralph and R. A. Buhrman, Phys. Rev. Lett. 72, 3401 (1994).
[24] E. L. Wolf and D. L. Losee, Phys. Rev. B 2, 3660 (1970).
[25] D. Varsano, S. Moroni, and G. Senatore, Europhys. Lett. 53, 348 (2001); M. W. C. Dharma-wardana and F. Perrot, Phys. Rev. Lett. 90, 136601 (2003).
[26] A. N. Pasupathy et al., Science 306, 86 (2004).
[27] S. Tarucha et al., Phys. Rev. Lett. 84, 2485 (2000).