Foundations of Traversal Based Query Execution over Linked Data

Extended Version*

Olaf Hartig
Humboldt-Universität zu Berlin
Unter den Linden 6, 10099 Berlin, Germany
hartig@informatik.hu-berlin.de

Johann-Christoph Freytag
Humboldt-Universität zu Berlin
Unter den Linden 6, 10099 Berlin, Germany
freytag@informatik.hu-berlin.de

1. INTRODUCTION

During recent years an increasing number of data providers adopted the Linked Data principles for publishing and interlinking structured data on the World Wide Web (WWW) [10]. The Web of Linked Data that emerges from this process enables users to benefit from a virtually unbounded set of data sources and, thus, opens possibilities not conceivable before. Consequently, the Web of Linked Data has spawned research to execute declarative queries over multiple Linked Data sources. Most approaches adapt techniques that are known from the database literature (e.g. data warehousing or query federation). However, the Web of Linked Data is different from traditional database systems; distinguishing characteristics are its unbounded nature and the lack of a database catalog. Due to these characteristics it is impossible to know all data sources that might contribute to the answer of a query. In this context, traditional query execution paradigms are insufficient because those assume a fixed set of potentially relevant data sources beforehand. This assumption presents a restriction that inhibits applications to tap the full potential of the Web; it prevents a serendipitous discovery and utilization of relevant data from unknown sources.

An alternative to traditional query execution paradigms are exploration approaches that traverse links on the Web of Linked Data. These approaches enable a query execution system to automatically discover the most recent data from initially unknown data sources. The prevalent example of an exploration based approach is link traversal based query execution. The idea of this approach is to intertwine the traversal of data links with the construction of the query result and, thus, to integrate the discovery of data into the query execution process [7].

We argue that a well-defined query semantics is essential to compare different query execution approaches and to verify implementations. Furthermore, a proper theoretical foundation enables a formal analysis of fundamental properties of queries and query executions. For instance, studying the computability of queries may answer whether particular query executions are guaranteed to term-
SELECT ?p ?l WHERE

{ <http://bob.name> <http://.../knows> ?p .
 ?p <http://.../CurrentProject> ?pr
 ?pr <http://.../label> "!l" .
}

Figure 1: Sample query presented in the language SPARQL.

Figure 2: Excerpts from Linked Data retrieved from the Web.

SPARQL queries consist of RDF graph patterns that contain query variables, denoted with the symbol ‘?’. The semantics of SPARQL is based on pattern matching [16]. Figure 1 provides a SPARQL representation of a query that asks for projects of acquaintances of user Bob, who is identified by URI http://bob.name. In lines 2 to 4 the query contains a conjunctive query represented as a set of three SPARQL triple patterns. In the following we outline a link traversal based execution of this conjunctive query.

Link traversal based query execution usually starts with an empty, query-local dataset. We obtain some seed data by looking up the URIs mentioned in the query: For the URI http://bob.name in our sample query we may retrieve a set G_0 of RDF triples (cf. Figure 2), which we add to the local dataset. Now, we alternate between i) constructing valuations from RDF triples that match a pattern of our query in the query-local dataset, and ii) augmenting the dataset by looking up URIs which are part of these valuations. For the triple pattern in line 2 of our sample query the local dataset contains a matching triple, originating from G_0. Hence, we can construct a valuation $\mu_1 = \{ ?p \rightarrow \text{http://alice.name} \}$ that maps query variable ?p to the URI http://alice.name. By looking up this URI we may retrieve a set G_a of RDF triples, which we also add to the query-local dataset. Based on the augmented dataset we can extend μ_1 by adding a binding for ?pr. We obtain $\mu_2 = \{ ?p \rightarrow \text{http://alice.name}, ?pr \rightarrow \text{http://.../AlicesPrj} \}$, which already covers the pattern in line 2 and 3. Notice, constructing μ_2 is only possible because we retrieved G_a. However, before we discovered and resolved the URI http://alice.name, we neither knew about G_a nor about the existence of the data source from which we retrieved G_a. Hence, the traversal of data links enables us to answer queries based on data from initially unknown sources.

We proceed with our execution strategy as follows: We discover and retrieve G_p by looking up the URI http://.../AlicesPrj and extend μ_2 to $\mu_3 = \{ ?p \rightarrow \text{http://alice.name}, ?pr \rightarrow \text{http://.../AlicesPrj}, !l \rightarrow "Alice’s Project" \}$, which now covers the whole, conjunctive query. Hence, μ_3 can be reported as the result of that query.

3. MODELING A WEB OF LINKED DATA

In this section we introduce theoretical foundations which shall allow us to define and to analyze queries over Linked Data. In particular, we propose a data model and a computation model. For these models we assume a static view of the Web; that is, no changes are made to the data on the Web during the execution of a query.

3.1 Data Model

The WWW is the most prominent implementation of a Web of Linked Data and it shows that the idea of Linked Data scales to a virtually unlimited dataspace. Nonetheless, other implementations are possible (e.g. within the boundaries of a closed, globally distributed corporate network). Such an implementation may be based on the same technologies used for the WWW (i.e. HTTP, URIs, RDF, etc.) or it may use other, similar technologies. Consequently, our data model abstracts from the concrete technologies that implement Linked Data in the WWW and, thus, enables us to study queries over any Web of Linked Data.

As a basis for our model we use a simple, triple based data model for representing the data that is distributed over a Web of Linked
Data (similar to the RDF data model that is used for Linked Data on the WWW). We assume a countably infinite set \(I \) of possible identifiers (e.g. all URIs) and a countably infinite set \(L \) of all possible constant literals (e.g. all possible strings, natural numbers, etc.). \(I \) and \(L \) are disjoint. A data triple is a tuple \(t \in I \times I \times (I \cup L) \). To denote the set of all identifiers in a data triple \(t \) we write \(\text{ids}(t) \).

We model a Web of Linked Data as a potentially infinite structure of interlinked documents. Such documents, which we call Linked Data documents, or LD documents for short, are accessed via identifiers in \(I \) and contain data that is represented as a set of data triples. The following definition captures our approach:

Definition 1. A Web of Linked Data \(W \) is a tuple \((D, data, adoc)\) where:
- \(D \) is a set of symbols that represent LD documents; \(D \) may be finite or countably infinite.
- \(data : D \rightarrow 2^{I \times I \times (I \cup L)} \) is a total mapping such that \(data(d) \) is finite for all \(d \in D \).
- \(adoc : I \rightarrow D \) is a partial, surjective mapping.

While the three elements \(D, data, \) and \(adoc \) completely define a Web of Linked Data in our model, we point out that these elements are not directly available to a query execution system. However, by retrieving LD documents, such a system may gradually obtain information about the Web. Based on this information the system may (partially) materialize these three elements. In the remainder of this section we discuss the three elements and introduce additional concepts that we need to define our query model.

We say a Web of Linked Data \(W = (D, data, adoc) \) is infinite if and only if \(D \) is infinite; otherwise, we say \(W \) is finite. Our model allows for infinite webs to cover the possibility that Linked Data about an infinite number of identifiable entities is generated on the fly. The following example illustrates such a case:

Example 1. Let \(u_i \) denote an HTTP scheme based URI that identifies the natural number \(i \). There is a countably infinite number of such URIs. The WWW server which is responsible for these URIs may be set up to provide a document for each natural number. These documents may be generated upon request and may contain RDF data including the RDF triple \((u_i, \text{http}://\text{host}, u_{i+1})\). This triple associates the natural number \(i \) with its successor \(i+1 \) and, thus, links to the data about \(i+1 \). An example for such a server is provided by the Linked Open Numbers project\(^1\).

Another example were data about an infinite number of entities may be generated is the LinkedGeoData project\(^2\) which provides Linked Data about any circular and rectangular area on Earth\(^3\). These examples illustrate that an infinite Web of Linked Data is possible in practice. Covering these cases enables us to model queries over such data and analyze the effects of executing such queries. Even if a Web of Linked Data is infinite, we require countability for \(D \). We shall see that this requirement has nontrivial consequences: It limits the potential size of Webs of Linked Data in our model and, thus, allows us to use a Turing machine based model for analyzing computability of queries over Linked Data (cf. Section \(5.2\)). We emphasize that the requirement of countability does not restrict us in modeling the WWW as a Web of Linked Data: In the WWW we use URIs to locate documents that contain Linked Data. Even if URIs are not limited in length, they are words over a finite alphabet. Thus, the infinite set of all possible URIs is countable, as is the set of all documents that may be retrieved using URIs.

The mapping \(data \) associates each LD document \(d \in D \) in a Web of Linked Data \(W = (D, data, adoc) \) with a finite set of data triples. In practice, these triples are obtained by parsing \(d \) after \(d \) has been retrieved from the Web. The actual retrieval mechanism depends on the technologies that are used to implement the Web of Linked Data. To denote the potentially infinite (but countable) set of all data triples in \(W \) we write \(\text{AllData}(W) \); i.e. it holds:

\[
\text{AllData}(W) = \bigcup_{d \in D} data(d)
\]

Since we use elements in the set \(I \) as identifiers for entities, we say that an LD document \(d \in D \) describes the entity identified by an identifier \(id \in I \) if \(\exists (s, p, o) \in data(d) : (s = id \lor o = id) \). Notice, while there might be multiple LD documents in \(D \) that describe an entity identified by \(id \), we do not assume that we can enumerate the set of all these documents; i.e., we cannot discover and retrieve all of them. The possibility to query search engines is out of scope of this paper. It is part of our future work to extend the semantics in our query model in order to take data into account, that is reachable by utilizing search engines. However, according to the Linked Data principles, each \(id \in I \) may also serve as a reference to a specific LD document which is considered as an authoritative source of data about the entity identified by \(id \). We model the relationship between identifiers and authoritative LD documents by mapping \(adoc \). Since some LD documents may be authoritative for multiple entities, we do not require injectivity for \(adoc \). The “real world” mechanism for dereferencing identifiers (i.e. learning about the location of the corresponding, authoritative LD document) depends on the implementation of the Web of Linked Data and is not relevant for our model. For each identifier \(id \in I \) that cannot be dereferenced (i.e. “broken links”) or that is not used in the Web it holds \(id \notin \text{dom}(adoc) \).

An identifier \(id \in I \) with \(id \in \text{dom}(adoc) \) that is used in the data of an LD document \(d_1 \in D \) constitutes a data link to the LD document \(d_2 = adoc(id) \in D \). To formally represent the graph structure that is formed by such data links, we introduce the notion of a Web link graph. The vertices in such a graph represent the LD documents of the corresponding Web of Linked Data; the edges represent data links and are labeled with a data triple that denotes the corresponding link in the source document. Formally:

Definition 2. Let \(W = (D, data, adoc) \) be a Web of Linked Data. The Web link graph for \(W \), denoted by \(G^W \), is a directed, edge-labeled multigraph \((V, E)\) where \(V = D \) and

\[
E = \{(d_h, d_t, t) | d_h, d_t \in D \land t \in data(d_h) \land \exists id \in \text{ids}(t) : adoc(id) = d_t \}
\]

In our query model we introduce the concept of reachable parts of a Web of Linked Data that are relevant for answering queries; similarly, our execution model introduces a concept for those parts of a Web of Linked Data that have been discovered at a certain point in the query execution process. To provide a formal foundation for these concepts we define the notion of an induced subweb which resembles the concept of induced subgraphs in graph theory.

Definition 3. Let \(W = (D, data, adoc) \) be a Web of Linked Data. A Web of Linked Data \(W’ = (D’, data’, adoc’) \) is an induced subweb of \(W \) if:
1. \(D’ \subseteq D \),
2. \(\forall d \in D’ : data’(d) = data(d) \), and
3. \(\forall id \in \{id \in I | adoc(id) \in D’\} : adoc’(id) = adoc(id) \).
It can be easily seen from Definition 3 that specifying \(D' \) is sufficient to define an induced subweb \((D', data', adoc')\) of a given Web of Linked Data unambiguously. Furthermore, it is easy to verify that for an induced subweb \(W' \) of a Web of Linked Data \(W \) it holds \(\text{AllData}(W') \subseteq \text{AllData}(W) \).

3.2 Computation Model

Usually, functions are computed over structures that are assumed to be fully (and directly) accessible. A Web of Linked Data, in contrast, is a structure in which accessibility is limited: To discover LD documents and access their data we have to dereference identifiers, but the full set of those identifiers for which we may retrieve documents is unknown. Hence, to properly analyze queries over a Web of Linked Data we require a model for computing functions on such a Web. This section introduces such a model.

In earlier work about computation on the WWW, Abiteboul and Vianu introduce a specific Turing machine called Web machine [1]. Mendelzon and Milo propose a similar machine model [15]. These machines formally capture the limited data access capabilities on the WWW and thus present an adequate abstraction for computations over a structure such as the WWW. We adopt the idea of such a Web machine to our scenario of a Web of Linked Data. We call our machine a **Linked Data machine** (or LD machine, for short).

Encoding (fragments of) a Web of Linked Data \(W = (D, data, adoc) \) on the tapes of such a machine is straightforward because all relevant structures, such as the sets \(D \) or \(I \), are countably infinite. In the remainder of this paper we write \(\text{enc}(x) \) to denote the encoding of some element \(x \) (e.g. a single data triple, a set of triples, a full Web of Linked Data, etc.). For a detailed definition of the encodings we use in this paper, we refer to Appendix A.

We now define our adaptation of the idea of Web machines:

Definition 4. An **LD machine** is a multi-tape Turing machine with five tapes and a finite set of states, including a special state called *expand*. The five tapes include two, read-only input tapes: i) an ordinary input tape and ii) a right-infinite Web tape which can only be accessed in the expand state; two work tapes: iii) an ordinary, two-way infinite work tape and iv) a right-infinite *link traversal* tape; and v) a right-infinite, append-only output tape.

Initially, the work tapes and the output tape are empty, the Web tape contains a (potentially infinite) word that encodes a Web of Linked Data, and the ordinary input tape contains an encoding of further input (if any). Any LD machine operates like an ordinary multi-tape Turing machine except when it reaches the expand state. In this case LD machines perform the following **expand procedure**: The machine inspects the word currently stored on the link traversal tape. If the suffix of this word is the encoding \(\text{enc}(id) \) of some identifier \(id \in I \) and the word on the Web tape contains \(\sharp \text{enc}(id) \text{enc}(adoc(id)) \sharp \), then the machine appends \(\text{enc}(adoc(id)) \sharp \) to the (right) end of the word on the link traversal tape by copying from the Web tape; otherwise, the machine appends \(\sharp \) to the word on the link traversal tape.

Notice how an LD machine is limited in the way it may access a Web of Linked Data that is encoded on its Web (input) tape: Any LD document and its data is only available for the computation after the machine performed the expand procedure using a corresponding identifier. Hence, the expand procedure models a URI based lookup which is the (typical) data access method on the WWW.

In the following sections we use the notion of an LD machine for analyzing properties of our query model. In this context we aim to discuss decision problems that shall have a Web of Linked Data \(W \) as input. For these problems we assume that the computation may only be performed by an LD machine with \(\text{enc}(W) \) on its Web tape:

Definition 5. Let \(W \) be a (potentially infinite) set of Webs of Linked Data; let \(\mathcal{X} \) be an arbitrary (potentially infinite) set of finite structures; and let \(DP \subseteq \mathcal{X} \times \mathcal{X} \). The decision problem for \(DP \), that is, to decide for any \((W, X) \in \mathcal{W} \times \mathcal{X}\) whether \((W, X) \in DP\), is **LD machine decidable** if there exist an LD machine whose computation on any \(W \in \mathcal{W} \) encoded on the Web tape and any \(X \in \mathcal{X} \) encoded on the ordinary input tape, has the following property: The machine halts in an accepting state if \((W, X) \in DP\); otherwise the machine halts in a rejecting state.

Obviously, any (Turing) decidable problem that does not have a Web of Linked Data as input, is also LD machine decidable because LD machines are Turing machines; for these problems the corresponding set \(W \) is empty.

4. QUERY MODEL

This section introduces our query model by defining semantics for conjunctive queries over Linked Data.

4.1 Preliminaries

We assume an infinite set \(V \) of possible query variables that is disjoint from the sets \(I \) and \(L \) introduced in the previous section. These variables will be used to range over elements in \(V \cup L \). Thus, *valuations* in our context are total mappings from a finite subset of \(V \) to the set \(V \cup L \). We denote the domain of a particular valuation \(\mu \) by \(\text{dom}(\mu) \). Using valuations we define our general understanding of queries over a Web of Linked Data as follows:

Definition 6. Let \(W \) be a set of all possible Webs of Linked Data (i.e. all 3-tuples that correspond to Definition 1) and let \(\Omega \) be a set of all possible variables. A **Linked Data query** \(q \) is a total function \(q : W \to 2^\Omega \).

To express conjunctive Linked Data queries we adapt the notion of a SPARQL basic graph pattern [17] to our data model:

Definition 7. A **basic query pattern (BQP)** is a finite set \(B = \{tp_1, ..., tp_n\} \) of tuples \(tp_i \in (V \cup \mathcal{I}) \times (V \cup \mathcal{I}) \times (V \cup \mathcal{I} \cup L) \) (for \(1 \leq i \leq n \)). We call such a tuple a **triple pattern**.

In comparison to traditional notions of conjunctive queries, triple patterns are the counterpart of atomic formulas; furthermore, BQPs have no head, hence no bound variables. To denote the set of variables and identifiers that occur in a triple pattern \(tp \) we write \(\text{vars}(tp) \) and \(\text{ids}(tp) \), respectively. Accordingly, the set of variables and identifiers that occur in all triple patterns of a BQP \(B \) is denoted by \(\text{vars}(B) \) and \(\text{ids}(B) \), respectively. For a triple pattern \(tp \) and a valuation \(\mu \) we write \(\mu[tp] \) to denote the triple pattern that we obtain by replacing the variables in \(tp \) according to \(\mu \). Similarly, a valuation \(\mu \) is applied to a BQP \(B \) by \(\mu[B] = \{\mu[tp] \mid tp \in B\} \).

The result of \(\mu[tp] \) is a data triple if \(\text{vars}(tp) \subseteq \text{dom}(\mu) \). Accordingly, we introduce the notion of matching data triples:

Definition 8. A data triple \(t \) matches a triple pattern \(tp \) if there exists a valuation \(\mu \) such that \(\mu[tp] = t \).

While BQPs are syntactic objects, we shall use them as a representation of Linked Data queries which have a certain semantics. In the remainder of this section we define this semantics. Due to the openness and distributed nature of Webs such as the WWW we cannot guarantee query results that are complete w.r.t. all Linked Data on a Web. Nonetheless, we aim to provide a well-defined semantics. Consequently, we have to limit our understanding of completeness. However, instead of restricting ourselves to data from a fixed set of sources selected or discovered beforehand, we introduce an approach that allows a query to make use of previously unknown data.
and sources. Our definition of query semantics is based on a two-phase approach: First, we define the part of a Web of Linked Data that is reached by traversing links using the identifiers in a query as a starting point. Then, we formalize the result of such a query as the set of all valuations that map the query to a subset of all data in the reachable part of the Web. Notice, while this two-phase approach provides for a straightforward definition of the query semantics in our model, it does not correspond to the actual query execution strategy of integrating the traversal of data links into the query execution process as illustrated in Section 4.

4.2 Reachability

To introduce the concept of a reachable part of a Web of Linked Data we first define reachability of LD documents. Informally, an LD document is reachable if there exists a (specific) path in the Web link graph of a Web of Linked Data to the document in question; the potential starting points for such a path are LD documents that are authoritative for entities mentioned (via their identifier) in the queries. However, allowing for arbitrary paths might be questionable in practice because it would require following all data links (recursively) for answering a query completely. A more restrictive approach is the notion of query pattern based reachability where a data link only qualifies as a part of paths to reachable LD documents, if that link corresponds to a triple pattern in the executed query. The link traversal based query execution illustrated in Section 2 applies this notion of query pattern based reachability (as we show in Section 5.2). Our experience in developing a link traversal based query execution system suggests that query pattern based reachability is a good compromise for answering queries without crawling large portions of the Web that are likely to be irrelevant for the queries. However, other criteria for specifying which data links should be followed might prove to be more suitable in certain use cases. For this reason, we do not prescribe a specific criterion in our query model; instead, we enable our model to support any possible criterion by making this concept part of the model.

Definition 9. Let \mathcal{T} be the infinite set of all possible data triples; let \mathcal{B} be the infinite set of all possible BQPs. A reachability criterion c is a total computable function $c: \mathcal{T} \times \mathcal{I} \times \mathcal{B} \rightarrow \{\text{true}, \text{false}\}$.

An example for such a reachability criterion is c_{All} which corresponds to the approach of allowing for arbitrary paths to reach LD documents; hence, for each tuple $(t, id, B) \in \mathcal{T} \times \mathcal{I} \times \mathcal{B}$ it holds $c_{\text{All}}(t, id, B) = \text{true}$. The complement of c_{All} is c_{None} which always returns false. Another example is c_{Match}, which corresponds to the aforementioned query pattern based reachability. We define c_{Match} based on the notion of matching data triples:

$$c_{\text{Match}}(t, id, B) = \begin{cases} \text{true} & \text{if } \exists \ t' \in B : t \text{ matches } t' \\ \text{false} & \text{else.} \end{cases}$$ (1)

We call a reachability criterion c_1 less restrictive than another criterion c_2 if $i)$ for each tuple $(t, id, B) \in \mathcal{T} \times \mathcal{I} \times \mathcal{B}$ for which $c_2(t, id, B) = \text{true}$, also holds $c_1(t, id, B) = \text{true}$ and ii) there exist a $(t', id', B') \in \mathcal{T} \times \mathcal{I} \times \mathcal{B}$ such that $c_1(t', id', B') = \text{true}$ but $c_2(t', id', B') = \text{false}$. It can be seen that c_{All} is the least restrictive criterion, whereas c_{None} is the most restrictive criterion.

Using the concept of reachability criteria for data links we formally define reachability of LD documents:

Definition 10. Let $\mathcal{W} = (D, \text{data}, \text{adoc})$ be a Web of Linked Data; let $S \subseteq \mathcal{I}$ be a finite set of seed identifiers; let c be a reachability criterion; and let B be a BQP. An LD document $d \in D$ is (c, B)-reachable from S in \mathcal{W} if either

1. there exists an $id \in S$ such that $\text{adoc}(id) = d$; or
2. there exist another LD document $d' \in D$, a $t \in \text{data}(d')$, and an $id \in \text{id}(t)$ such that i) d' is (c, B)-reachable from S in \mathcal{W}, ii) $c(t, id, B) = \text{true}$, and iii) $\text{adoc}(id) = d$.

We note that each LD document which is authoritative for an entity mentioned (via its identifier) in a finite set of seed identifiers S, is always reachable from S in the corresponding Web of Linked Data, independent of the reachability criterion and the BQP used.

Based on reachability of LD documents we now define reachable parts of a Web of Linked Data. Informally, such a part is an induced subweb covering all reachable LD documents. Formally:

Definition 11. Let $\mathcal{W} = (D, \text{data}, \text{adoc})$ be a Web of Linked Data; let $S \subseteq \mathcal{I}$ be a finite set of seed identifiers; let c be a reachability criterion; and let B be a BQP. The (S, c, B)-reachable part of \mathcal{W} is the induced subweb $W_c(S, B) = (D_B, \text{data}_B, \text{adoc}_B)$ of \mathcal{W} that is defined by

$$D_B = \{ d \in D \mid d \text{ is } (c, B)\text{-reachable from } S \text{ in } \mathcal{W} \}$$

4.3 Query Results

Based on the previous definitions we define the semantics of conjunctive Linked Data queries that are expressed via BQPs. Recall that Linked Data queries map from a Web of Linked Data to a set of valuations. Our interpretation of BQPs as Linked Data queries requires that each valuation μ in the result for a particular BQP B satisfies the following requirement: If we replace the variables in B according to μ (i.e. we compute $\mu[B]$), we obtain a set of data triples and this set must be a subset of all data in the part of the Web that is reachable according to the notion of reachability that we apply. Since our model supports a virtually unlimited number of notions of reachability, each of which is defined by a particular reachability criterion, the actual result of a query must depend on such a reachability criterion. The following definition formalizes our understanding of conjunctive Linked Data queries:

Definition 12. Let $S \subseteq \mathcal{I}$ be a finite set of seed identifiers; let c be a reachability criterion; and let B be a BQP; let \mathcal{W} be a Web of Linked Data; let $W_c(S, B)$ denote the (S, c, B)-reachable part of \mathcal{W}. The conjunctive Linked Data query (CLD query) that uses B, S, and c, denoted by $Q_c^{B, S}$, is a LD Data query defined as:

$$Q_c^{B, S}(\mathcal{W}) = \{ \mu \mid \mu \text{ is a valuation with } \text{dom}(\mu) = \text{vars}(B) \text{ and } \mu[B] \subseteq \text{AllData}(W_c(S, B)) \}$$

Each $\mu \in Q_c^{B, S}(\mathcal{W})$ is a solution for $Q_c^{B, S}$ in \mathcal{W}.

Since we define the result of queries w.r.t. a reachability criterion, the semantics of such queries depends on this criterion. Thus, strictly speaking, our query model introduces a family of query semantics, each of which is characterized by a reachability criterion. Therefore, we refer to a CLD query for which we use a particular reachability criterion c as a CLD query under c-semantics.

5. PROPERTIES OF THE QUERY MODEL

In this section we discuss properties of our query model. In particular, we focus on the implications of querying Webs that are infinite and on the (LD machine based) computability of queries.

5.1 Querying an Infinite Web of Linked Data

From Definitions 10 and 11 in Section 4 it can be easily seen that any reachable part of a finite Web of Linked Data must also be finite, independent of the query that we want to answer and the
reachability criterion that we use. Consequently, the result of CLD queries over such a finite Web is also guaranteed to be finite. We shall see that a similarly general statement does not exist when the queried Web is infinite such as the WWW.

To study the implications of querying an infinite Web we first take a look at some example queries. For these examples we assume an infinite Web of Linked Data \(W_{\infty} = (\mathcal{D}_{\text{inf}}, \text{data}_{\text{inf}}, \text{adoc}_{\text{inf}}) \) that contains LD documents for all natural numbers (similar to the documents in Example 1). The data in these documents refers to the successor of the corresponding number and to all its divisors. Hence, for each natural number \(k \in \mathbb{N}^+ \), identified by \(\text{no}_k \in \mathcal{I} \), exists an LD document \(\text{adoc}_{\text{inf}}(\text{no}_k) = d_k \in \text{data}_{\text{inf}} \) such that

\[
\text{data}_{\text{inf}}(d_k) = \left\{ (\text{no}_k, \text{succ}, \text{no}_k) \right\} \cup \bigcup_{y \in \text{Div}(k)} \left\{ (\text{no}_k, \text{div}, \text{no}_y) \right\}
\]

where \(\text{Div}(k) \) denotes the set of all divisors of \(k \in \mathbb{N}^+ \). \(\text{succ} \in \mathcal{I} \) identifies the successor relation for \(\mathbb{N}^+ \), and \(\text{div} \in \mathcal{I} \) identifies the relation that associates a number \(k \in \mathbb{N}^+ \) with a divisor \(y \in \text{Div}(k) \).

Example 2. Let \(B_1 = \{(\text{no}_2, \text{succ}, ?x) \} \) be a BQP (\(?x \in \mathcal{V}\)) that asks for the successor of \(2 \). Recall, \(\text{data}_{\text{inf}}(d_2) \) contains three data triples: \((\text{no}_2, \text{succ}, \text{no}_3), (\text{no}_2, \text{div}, \text{no}_1), \) and \((\text{no}_2, \text{div}, \text{no}_2) \).

We consider reachability criteria \(\text{ca}, \text{cMatch}, \) and \(\text{cNone} \) (cf. Section 2.2 and \(S_1 = \{ \text{no}_2 \} \): The \((S_1, \text{ca}, B_1)\)-reachable part of \(W_{\infty} \) is infinite and consists of all the LD documents \(d_1, d_2, \ldots \).

In contrast, the \((S_1, \text{cMatch}, B_1)\)-reachable part \(W^{(S_1, B_1)}_{\text{Match}} \) and the \((S_1, \text{cNone}, B_1)\)-reachable part \(W^{(S_1, B_1)}_{\text{None}} \) are finite: \(W^{(S_1, B_1)}_{\text{Match}} \) consists of \(d_2 \) and \(d_3 \), whereas \(W^{(S_1, B_1)}_{\text{None}} \) only consists of \(d_2 \). The query result in all three cases contains a single solution \(\mu \) for which \(\text{dom}(\mu) = \{?x\} \) and \(\mu(?x) = \text{no}_3 \); i.e. \(\mu = (?x \to \text{no}_3) \).

Example 3. We now consider the BQP \(B_2 = \{(\text{no}_2, \text{succ}, ?x), (\text{no}_2, \text{div}, ?y), (\text{succ}, ?y), (?x, \text{div}, ?y)\} \) with \(?x, ?y \in \mathcal{V} \) and \(S_2 = \{\text{no}_2\} \).

Under \(\text{cNone} \)-semantics the query result is empty because the \((S_2, \text{cNone}, B_2)\)-reachable part of \(W_{\infty} \) only consists of LD document \(d_2 \) (as in the previous example). For \(\text{ca} \) and \(\text{cMatch} \) the reachable parts are infinite (and equal); both consist of the documents \(d_1, d_2, \ldots \) (as was the case for \(\text{ca} \) but not for \(\text{cMatch} \) in the previous example). While the query result is equal for both criteria, it differs significantly from the previous example because it is infinite: \(Q^{B_2, S_2}_{\text{Match}}(W_{\infty}) = Q^{B_2, S_2}_{\text{None}}(W_{\infty}) = \{\mu_1, \mu_2, \ldots \} \) where

\[
\mu_1 = \{?x \to \text{no}_3, ?y \to \text{no}_4, ?z \to \text{no}_3\}, \mu_2 = \{?x \to \text{no}_3, ?y \to \text{no}_4, ?z \to \text{no}_5\}
\]

and, in general: \(\mu_i = \{?x \to \text{no}_3, ?y \to \text{no}_4, ?z \to \text{no}_3(i)\} \).

A special type of CLD queries not covered by the examples are queries that use an empty set of seed identifiers. However, it is easily verified that answering such queries is trivial:

Fact 1. Let \(W \) be a Web of Linked Data. For each CLD query \(Q^{c, S}_{(S, c, B)} \) for which \(S = \emptyset \), it holds: The set of LD documents in the \((S, c, B)\)-reachable part of \(W \) is empty and, thus, \(Q^{c, S}_{(S, c, B)}(W) = \emptyset \).

Due to its triviality, an empty set of seed identifiers presents a special case that we exclude from most of our results. We now summarize the conclusions that we draw from Examples 2 and 3.

Proposition 1. Let \(S \subset \mathcal{I} \) be a finite but nonempty set of seed identifiers; let \(c \) and \(c' \) be reachability criteria; let \(B \) be a BQP; and let \(W \) be an infinite Web of Linked Data. It holds:

1. \(W^{(S, B)}_{\text{None}} \) is always finite; so is \(Q^{B, S}_{(S, c, B)}(W) \).
2. If \(W^{(S, B)}_{\text{Match}} \) is finite, then \(Q^{B, S}_{(S, c, B)}(W) \) is finite.
3. If \(Q^{B, S}_{(S, c, B)}(W) \) is finite, then \(W^{(S, B)}_{\text{Match}} \) is infinite.
4. If \(c \) is less restrictive than \(c' \) and \(W^{(S, B)}_{\text{Match}} \) is finite, then \(W^{(S, c', B)}_{\text{Match}} \) is infinite.
5. If \(c' \) is less restrictive than \(c \) and \(W^{(S, B)}_{\text{Match}} \) is infinite, then \(W^{(S, c', B)}_{\text{Match}} \) is infinite.
6. If \(c' \) is less restrictive than \(c \), then \(Q^{B, S}_{(S, c', B)}(W) \subset Q^{B, S}_{(S, c, B)}(W) \).

Proposition 1 provides valuable insight into the dependencies between reachability criteria, the (in) finiteness of reachable parts of an infinite Web, and the (in) finiteness of query results. In practice, however, we are primarily interested in the following questions: Does the execution of a given CLD query reach an infinite number of LD documents? Do we have to expect an infinite query result? We formalize these questions as (LD machine) decision problems:

Problem: FinitenessReachabilityPart
Web Input: a (potentially infinite) Web of Linked Data \(W \)
Ordin. Input: a CLD query \(Q^{B, S}_{(S, c, B)} \) where \(S \) is nonempty and \(c \) is less restrictive than \(\text{cNone} \)
Question: Is the \((S, c, B)\)-reachable part of \(W \) finite?

Problem: FinitenessQueryResult
Web Input: a (potentially infinite) Web of Linked Data \(W \)
Ordin. Input: a CLD query \(Q^{B, S}_{(S, c, B)} \) where \(S \) is nonempty and \(c \) is less restrictive than \(\text{cNone} \)
Question: Is the query result \(Q^{B, S}_{(S, c, B)}(W) \) finite?

Unfortunately, it is impossible to define a general algorithm for answering these problems as our following result shows.

Theorem 1. The problems FinitenessReachabilityPart and FinitenessQueryResult are not LD machine decidable.

5.2 Computability of Linked Data Queries

Example 2 illustrates that some CLD queries may have a result that is infinitely large. Even if a query has a finite result it may still be necessary to retrieve infinitely many LD documents to ensure that the computed result is complete. Hence, any attempt to answer such queries completely induces a non-terminating computation.

In what follows, we formally analyze feasibility and limitations for computing CLD queries. For this analysis we adopt notions of computability that Abiteboul and Vianu introduce in the context of queries over a hypertext-centric view of the WWW [1]. These notions are: finitely computable queries, which correspond to the traditional notion of computability; and eventually computable queries whose computation may not terminate but each element of the query result will eventually be reported during the computation. While Abiteboul and Vianu define these notions of computability using their concept of a Web machine (cf. Section 2.2), our adaptation for Linked Data queries uses an LD machine:

Definition 13. A Linked Data query \(q \) is finitely computable if there exists an LD machine which, for any Web of Linked Data \(W \) encoded on the Web tape, halts after a finite number of steps and produces a possible encoding of \(q(W) \) on its output tape.

Definition 14. A Linked Data query \(q \) is eventually computable if there exists an LD machine whose computation on any Web of Linked Data \(W \) encoded on the Web tape has the following two
properties: 1.) the word on the output tape at each step of the computation is a prefix of a possible encoding of \(q(W) \) and 2.) the encoding \(\text{enc}(\mu') \) of any \(\mu' \in q(W) \) becomes part of the word on the output tape after a finite number of computation steps.

We now analyze the computability of CLD queries. As a preliminary we identify a dependency between the computation of a CLD query over a particular Web of Linked Data and the (in)finiteness of the corresponding reachable part of that Web:

Lemma 1. The result of a CLD query \(Q^{B,S}_{C} \) over a (potentially infinite) Web of Linked Data \(W \) can be computed by an LD machine that halts after a finite number of computation steps if and only if the \((S,c,B)\)-reachable part of \(W \) is finite.

The following, immediate consequence of Lemma 1 is trivial.

Corollary 1. CLD queries that use an empty set of seed identifiers and CLD queries under \(c_{\text{None}} \)-semantics are finitely computable.

While Corollary 1 covers some special cases, the following result identifies the computability of CLD queries in the general case.

Theorem 2. Each CLD query is either finitely computable or eventually computable.

Theorem 2 emphasizes that execution systems for CLD queries do not have to deal with queries that are not even eventually computable. Theorem 2 also shows that query computations in the general case are not guaranteed to terminate. The reason for this result is the potential infiniteness of Webs of Linked Data. However, even if a CLD query is only eventually computable, its computation over a particular Web of Linked Data may still terminate (even if this Web is infinite). Thus, in practice, we are interested in criteria that allow us to decide whether a particular query execution is guaranteed to terminate. We formalize this decision problem:

Problem:	ComputabilityCLD
Web Input:	a (potentially infinite) Web of Linked Data \(W \)
Ordin. Input:	a CLD query \(Q^{B,S}_{C} \) where \(S \) is nonempty and \(c \) is less restrictive than \(c_{\text{None}} \)
Question:	Does an LD machine exist that i) computes \(Q^{B,S}_{C}(W) \) and ii) halts?

Unfortunately:

Theorem 3. ComputabilityCLD is not LD machine decidable.

As a consequence of the results in this section we note that any system which executes CLD queries over an infinite Web of Linked Data (such as the WWW) must be prepared for query executions that do not terminate and that discover an infinite amount of data.

6. QUERY EXECUTION MODEL

In Section 5 we use a two-phase approach to define (a family of) semantics for conjunctive queries over Linked Data. A query execution system that would directly implement this two-phase approach would have to retrieve all LD documents before it could generate the result for a query. Hence, the first solutions could only be generated after all data links (that qualify according to the used reachability criterion) have been followed recursively. Retrieving the complete set of reachable documents may exceed the resources of the execution system or it may take a prohibitively long time; it is even possible that this process does not terminate at all (cf. Section 5.2). The link traversal based query execution that we demonstrate in Section 5 applies an alternative strategy: It intertwines the link traversal based retrieval of data with a pattern matching process that generates solutions incrementally. Due to such an integration of link traversal and result construction it is possible to report first solutions early, even if not all links have been followed and not all data has been retrieved. To describe link traversal based query execution formally, we introduce an abstract query execution model. In this section we present this model and use it for proving soundness and completeness of the modeled approach.

6.1 Preliminaries

Usually, queries are executed over a finite structure of data (e.g. an instance of a relational schema or an RDF dataset) that is assumed to be fully available to the execution system. However, in this paper we are concerned with queries over a Web of Linked Data that may be infinite and that is fully unknown at the beginning of a query execution process. To learn about such a Web we have to dereference identifiers and parse documents that we retrieve. Conceptually, dereferencing an identifier corresponds to achieving partial knowledge of the set \(D \) and mapping \(\text{adoc} \) with which we model the queried Web of Linked Data \(W = (D, \text{data}, \text{adoc}) \). Similarly, parsing documents retrieved from the Web corresponds to learning mapping \(\text{data} \). To formally represent what we know about a Web of Linked Data at any particular point in a query execution process we introduce the concept of discovered parts.

Definition 15. A discovered part of a Web of Linked Data \(W \) is an induced subweb of \(W \) that is finite.

We require finiteness for discovered parts of a Web of Linked Data \(W \). This requirement models the fact that we obtain information about \(W \) only gradually; thus, at any point in a query execution process we only know a finite part of \(W \), even if \(W \) is infinite.

The (link traversal based) execution of a CLD query \(Q^{B,S}_{C} \) over a Web of Linked Data \(W = (D, \text{data}, \text{adoc}) \) starts with a discovered part \(D^{S,W}_{\text{init}} \) (of \(W \)) which contains only those LD documents from \(W \) that can be retrieved by dereferencing identifiers from \(S \); hence, \(D^{S,W}_{\text{init}} = (D_0, \text{data}_0, \text{adoc}_0) \) is defined by:

\[
D_0 = \{ \text{adoc}(id) \mid id \in S \text{ and } id \in \text{dom}(\text{adoc}) \} \tag{2}
\]

In the remainder of this section we first define how we may use data from a discovered part to construct (partial) solutions for a CLD query in an incremental fashion. Furthermore, we formalize how the link traversal approach expands such a discovered part in order to construct further solutions. Finally, we discuss an abstract procedure that formally captures how the approach intertwines the expansion of discovered parts with the construction of solutions.

6.2 Constructing Solutions

The query execution approach that we aim to capture with our query execution model constructs solutions for a query incrementally (cf. Section 5). To formalize the intermediate products of such a construction we introduce the concept of partial solutions.

Definition 16. A partial solution for CLD query \(Q^{B,S}_{C} \) in a Web of Linked Data \(W \) is a pair \((P, \mu)\) where \(P \subseteq B \) and \(\mu \in Q^{P,S}_{C}(W) \).

According to Definition 16 each partial solution \((P, \mu)\) for a CLD query \(Q^{P,S}_{C} \) is a solution for the CLD query \(Q^{P,S}_{C} \) that uses \(\text{BQP} \ P \) (instead of \(B \)). Since \(P \) is a part of \(B \) we say that partial solutions cover only a part of the queries that we want to answer.

The (link traversal based) execution of a CLD query \(Q^{B,S}_{C} \) over a Web of Linked Data \(W \) starts with an empty partial solution \(\sigma_0 = (P_0, \mu_0) \) which covers the empty part \(P_0 = \emptyset \) of \(B \) (i.e. \(\text{dom}(\mu_0) = \emptyset \)). During query execution we (incrementally) extend partial solutions to cover larger parts of \(B \). Those partial solutions that cover the whole query can be reported as solutions for
We motivate the expansion of discovered parts of a queried Web has been expanded based on (previously constructed) partial solution for \(\mathcal{Q}^{B,S}_P \) in \(W \). If a discovered part \(W_B \) of \(W \) is an induced subweb of \(W^{B,S}_P \), \(\text{then } exp_W(W_B) \) is also an induced subweb of \(W^{B,S}_P \).

We explain the restriction to \(c_{\text{Match}}\)-semantics in Proposition 5 as follows: During link traversal based query execution we expand the discovered part of the queried Web only by using valuations that occur in partial solutions (cf. Section 5). Due to this approach, we only dereference identifiers for which there exists a data triple that matches a triple pattern in our query. Hence, this approach indirectly enforces query pattern based reachability (cf. Section 4.2). As a result, link traversal based query execution only supports CLD queries under \(c_{\text{Match}}\)-semantics; so does our query execution model.

6.4 Combining Construction and Traversal

Although incrementally expanding the discovered part of the reachable subweb and recursively augmenting partial solutions may be understood as separate processes, the idea of link traversal based query execution is to combine these two processes. We now introduce an abstract procedure which captures this idea formally.

As a basis for our formalization we represent the state of a query execution by a pair \((\Psi, D)\); \(\Psi \) denotes the (finite) set of partial solutions that have already been constructed at the current point in the execution process; \(D \) denotes the currently discovered part of the queried Web of Linked Data. As discussed before, we initialize \(\Psi \) with the empty partial solution \(\sigma_0 \) (cf. Section 6.2) and \(D \) with \(\emptyset \) (cf. Section 6.1). During the query execution process \(\Psi \) and \(D \) grow monotonically: We augment partial solutions from \(\Psi \) and add the results back to \(\Psi \); additionally, we use partial solutions from \(\Psi \) to expand \(D \). However, conceptually we combine these two types of tasks, augmentation and expansion, into a single type:

Definition 19. Let \(Q^{B,S}_{C_{\text{Match}}} \) be a CLD query (under \(c_{\text{Match}}\)-semantics); let \((\Psi, D) \) represent a state of a (link traversal based) execution of \(Q^{B,S}_{C_{\text{Match}}} \). An AE task for \((\Psi, D)\) is a tuple \((\sigma, t, tp)\) for which it holds i) \(\sigma = (P, \mu) \in \Psi \), ii) \(t \in \text{AllData}(D) \), iii) \(tp \in B \setminus P \), and iv) \(t \) matches \(tp \).

Performing an AE task \((\sigma, t, tp)\) for \((\Psi, D)\) comprises two steps: 1.) changing \(\Psi \) to \(\Psi \cup \{(P', \mu')\} \), where \((P', \mu') = aug_{\Psi, t, tp}(\sigma) \) is the \((t, tp)\)-augmentation of \(\sigma \) in \(D \), and 2.) expanding \(D \) to the \(\mu' \)-expansion of \(D \) in \(W \). Notice, constructing the augmentation in the first step is always possible because the prerequisites for AE tasks, as given in Definition 19 correspond to the prerequisites for augmentations (cf. Definition 17). However, not all possible AE tasks may actually change \(\Psi \) and \(D \); instead, some tasks \((\sigma, t, tp)\) may produce an augmentation \(aug_{\Psi, t, tp}(\sigma) \) that turns out to be a partial solution which has already been produced for another task. Thus, to guarantee progress during a query execution process we must only perform those AE tasks that produce new augmentations. To identify such tasks we introduce the concept of open AE tasks.

Definition 20. An AE task \((\sigma, t, tp)\) for the state \((\Psi, D)\) of a link traversal based query execution is open if \(aug_{\Psi, t, tp}(\sigma) \notin \Psi \). To denote the set of all open AE tasks for \((\Psi, D)\) we write Open \((\Psi, D)\).

We now use the introduced concepts to present our abstract procedure \(\text{lthExec} \) (cf. Algorithm 1) with which we formalize the general idea of link traversal based query execution. After initializing \(\Psi \) and \(D \) (lines 1 and 2 in Algorithm 1), the procedure amounts to a continuous process by a loop (lines 3 to 9); each iteration of this loop performs an open AE task (lines 5 to 7) and checks whether the newly constructed partial solution \((P', \mu')\) covers the executed a discovered part of \(\Psi \) in \(W \). However, to extend a partial solution we may data only from LD documents that we have already discovered. Consequently, the following definition formalizes the extension of a partial solution based on a discovered part of a Web of Linked Data.

Definition 17. Let \(W_B \) be a discovered part of a Web of Linked Data \(W \); let \(\mathcal{Q}^{B,S}_P \) be a CLD query; and let \(\sigma = (P, \mu) \) be a partial solution for \(\mathcal{Q}^{B,S}_P \) in \(W \). If there exist a triple pattern \(tp \in B \setminus P \) and a data triple \(t \in \text{AllData}(W_B) \) such that \(t \) matches \(tp \) then the \((t, tp)\)-augmentation of \(\sigma \) in \(W_B \), denoted by \(aug_{W_B}(\sigma, t) \), is a pair \((P', \mu')\) such that \(P' = P \cup \{tp\} \) and \(\mu' \) extends \(\mu \) as follows: 1.) \(\text{dom}(\mu') = \text{vars}(P') \) and 2.) \(\mu'[P'] = \mu[P] \cup \{t\} \).

The following propositions show that the result of augmenting a partial solution is again a partial solution, as long as the discovered part of the Web that we use for such an augmentation is fully contained in the reachable part of the Web.

Proposition 2. Let \(W_B \) be a discovered part of a Web of Linked Data \(W \) and let \(\mathcal{Q}^{B,S}_P \) be a CLD query. If \(W_B \) is an induced subweb of the \((S, c, B)\)-reachable part of \(W \) and \(\sigma \) is a partial solution for \(\mathcal{Q}^{B,S}_P \) in \(W \), then \(aug_{W_B}(\sigma) \) is also a partial solution for \(\mathcal{Q}^{B,S}_P \) in \(W \), for all possible \(t \) and \(tp \).

6.3 Traversing Data Links

During query execution we may traverse data links to expand the discovered part. Such an expansion may allow us to compute further augmentations for partial solutions. The link traversal based approach implements such an expansion by dereferencing identifiers that occur in valuations \(\mu \) of partial solutions (cf. Section 6.3). Formally, we define such a valuation based expansion as follows:

Definition 18. Let \(W_D = (D_B, data_B, ado_B) \) be a discovered part of a Web of Linked Data \(W = (D, data, ado) \) and let \(\mu \) be a valuation. The \(\mu \)-expansion of \(W_D \) in \(W \), denoted by \(exp_{\mu}(W_D) \), is an induced subweb \((D'_B, data'_B, ado'_B)\) of \(W \), defined by \(D'_B = D_B \cup \Delta^W(\mu) \) where

\[\Delta^W(\mu) = \{ \text{ado}c(\mu(?v)) \mid ?v \in \text{dom}(\mu) \text{ and } \mu(?v) \in \text{dom}(\text{ado}) \} \]

The following propositions show that expanding discovered parts is a monotonic operation (Proposition 3) and that the set of all possible discovered parts is closed under this operation (Proposition 4).

Proposition 3. Let \(W_B \) be a discovered part of a Web of Linked Data \(W \), then \(W_B \) is an induced subweb of \(exp_{\mu}(W_D) \), for all possible \(\mu \).

Proposition 4. Let \(W_B \) be a discovered part of a Web of Linked Data \(W \), then \(exp_{\mu}(W_D) \) is also a discovered part of \(W \), for all possible \(\mu \).

We motivate the expansion of discovered parts of a queried Web of Linked Data by the possibility that data obtained from additionally discovered documents may allow us to construct more (partial) solutions. However, Proposition 4 indicates that the augmentation of partial solutions is only sound if the discovered part that we use for the augmentation is fully contained in the corresponding reachable part of the Web. Thus, in order to use a discovered part that has been expanded based on (previously constructed) partial solutions, it should be guaranteed that the expansion never exceeds the reachable part. Under \(c_{\text{Match}}\)-semantics we have such a guarantee:

Proposition 5. Let \(\sigma = (P, \mu) \) be a partial solution for a CLD query \(\mathcal{Q}^{B,S}_{C_{\text{Match}}} \) (under \(c_{\text{Match}}\)-semantics) in a Web of Linked Data \(W \); and let \(W^{(S,B)}_{C_{\text{Match}}} \) denote the \((S, c_{\text{Match}}, B)\)-reachable part of \(W \).
CLD query as a whole, in which case the valuation μ' in (P', μ') must be reported as a solution for the query (line 8). We emphasize that the set $Open(\mathcal{P}, \mathcal{D})$ of all open AE tasks always changes when $ltbExec$ performs such a task. The loop terminates when no more open AE tasks for (the current) $(\mathcal{P}, \mathcal{D})$ exist (which may never be the case as we know from Lemma 1).

We emphasize the abstract nature of Algorithm 1. The fact that we model $ltbExec$ as a single loop which performs (open) AE tasks sequentially, does not imply that the link traversal based query execution paradigm has to be implemented in such a form. Instead, different implementation approaches are possible, some of which have already been proposed in the literature [6, 7, 13, 14]. In contrast to the concrete (implementable) algorithms discussed in this earlier work, we understand Algorithm 1 as an instrument for presenting and for studying the general idea that is common to all link traversal based query execution approaches.

6.5 Application of the Model

Based on our query execution model we now show that the idea of link traversal based query execution is sound and complete, that is, the set of all valuations reported by $ltbExec(S, B, W)$ is equivalent to the query result $Q_{\mathcal{M}atch}^{B,S}(W)$. Formally:

Theorem 4. Let W be a Web of Linked Data and let $Q_{\mathcal{M}atch}^{B,S}$ be a CLD query (under $\mathcal{M}atch$-semantics).

- **Soundness:** For any valuation μ reported by an execution of $ltbExec(S, B, W)$ holds $\mu \in Q_{\mathcal{M}atch}^{B,S}(W)$.
- **Completeness:** Any $\mu \in Q_{\mathcal{M}atch}^{B,S}(W)$ will eventually be reported by any execution of $ltbExec(S, B, W)$.

Theorem 4 formally verifies the applicability of link traversal based query execution for answering conjunctive queries over a Web of Linked Data. For experimental evaluations that demonstrate the feasibility of link traversal based execution of queries over Linked Data on the WWW we refer to [6, 7, 13, 14]. We note, however, that the implementation approaches used for these evaluations do not allow for an explicit specification of seed identifiers S. Instead, these approaches use the identifiers in the BQP of a query as seed and, thus, only support CLD queries $Q_{\mathcal{M}atch}^{B,S}$ for which $S = ids(B)$.

Theorem 5. Any iterator based execution of a CLD query $Q_{\mathcal{M}atch}^{B,S}$ (that uses $\mathcal{M}atch$) over an arbitrary Web of Linked Data W holds: The set of AE tasks performed by each iterator is finite.

Based on Lemma 2 we easily see that an iterator execution of a CLD query $Q_{\mathcal{M}atch}^{B,S}$ may not perform all possible (open) AE tasks. Thus, we may show the following result as a corollary of Lemma 2.

Theorem 5. Any iterator based execution of a CLD query $Q_{\mathcal{M}atch}^{B,S}$ (that uses $\mathcal{M}atch$) over an arbitrary Web of Linked Data W reports a finite subset of $Q_{\mathcal{M}atch}^{B,S}(W)$ and terminates.

Theorem 5 shows that the analyzed implementation of link traversal based query execution trades completeness of query results for the guarantee that all query executions terminate. The degree to which the reported subset of a query result is complete depends on the order selected for the BQP of the executed query as our experiments in [6] show. A formal analysis of this dependency is part of our future work.

7. RELATED WORK

Since its emergence the World Wide Web has spawned research to adapt declarative query languages for retrieval of information from the WWW [4]. Most of these works understand the WWW as a graph of objects interconnected by hypertext links; in some models objects have certain attributes (e.g. title, modification date) [15] or an internal structure [5, 12]. Query languages studied in this context allow a user to either ask for specific objects [12], for their attributes [15], or for specific object content [5]. However, there is no explicit connection between data that may be obtained from different objects (in contrast to the more recent idea of Linked Data). Nonetheless, some of the foundational work such as [11] and [15] can be adapted to query execution over a Web of Linked Data. In this paper we analyze the computability of CLD queries by adopting Abiteboul and Vianu’s notions of computability [11] for which we have to adapt their machine model of computation on the Web.

In addition to the early work on Web queries, query execution over Linked Data on the WWW has attracted much attention recently. In [2] we provide an overview of different approaches and refer to the relevant literature. However, the only work we are
Our model (although, Bouquet et al. do not define that graph explicitly) method the authors define a notion of reachability that allows a graphs which are “relevant” for a given query. For the navigational rect access method which assumes an oracle that provides all RDF gographical method which corresponds to our query model, and a di-

query execution system to follow all data links. Hence, the seman-

space”, that is, a set of RDF graphs, each of which is associated with a URI that, when dereferenced on the WWW, allows a system to obtain that graph. Hence, RDF graphs in Bouquet et al.’s graph space correspond to the LD documents in our data model; the URIs associated with RDF graphs in a graph space have a role similar to that of those identifiers in our data model for which the corresponding mapping $adoc$ returns an actual LD document (i.e. all identifiers in $\text{dom}(adoc)$). Therefore, RDF graphs in a graph space form another type of (higher level) graph, similar to the Web link graph in our model (although, Bouquet et al. do not define that graph explicitly). Based on their data model, Bouquet et al. define three types of query methods for conjunctive queries: a bounded method which only uses those RDF graphs that are referred to in queries, a navigational method which corresponds to our query model, and a di-

rect access method which assumes an oracle that provides all RDF graphs which are “relevant” for a given query. For the navigational method the authors define a notion of reachability that allows a query execution system to follow all data links. Hence, the semantics of queries using this navigational method is equivalent to CLD queries under cag-semantics in our query model. Bouquet et al.’s navigational query model does not support other, more restrictive notions of reachability, as is possible with our model. Furthermore, Bouquet et al. do not discuss the computability of queries and the infiniteness of the WWW.

8. CONCLUSIONS AND FURTHER WORK

Link traversal based query execution is a novel query execution ap-

proach tailored to the Web of Linked Data. The ability to discover data from unknown sources is its most distinguishing advantage over traditional query execution paradigms which assume a fixed set of potentially relevant data sources beforehand. In this paper we provide a formal foundation for this new approach.

We introduce a family of well-defined semantics for conjunctive Linked Data queries, taking into account the limited data access cap-

abilities that are typical for the WWW. We show that the execution of such queries may not terminate (cf. Theorem 4) because –due to the existence of data generating servers– the WWW is infinite (at any point in time). Moreover, queries may have a result that is in-

finity large. We show that it is impossible to provide an algorithm for deciding whether any given query (in our model) has a finite result (cf. Theorem 4). Furthermore, it is also impossible to decide (in general) whether a query execution terminates (cf. Theorem 5), even if the expected result would be known to be finite.

In addition to our query model we introduce an execution model that formally captures the link traversal based query execution par-

adigm. This model abstracts from any particular approach to imple-

ment this paradigm. Based on this model we prove that the general idea of link traversal based query execution is sound and complete for conjunctive Linked Data queries (cf. Theorem 3).

Our future work focuses on more expressive types of Linked Data queries. In particular, we aim to study which other features of query languages such as SPARQL are feasible in the context of querying a Web of Linked Data and what the implications of supporting such features are. Moreover, we will extend our models to capture the dynamic nature of the Web and, thus, to study the implications of changes in data sources during the execution of a query.

9. ACKNOWLEDGEMENTS

We thank our colleague Matthias Sax for a fruitful discussion that led to one of the proofs in this paper.

10. REFERENCES

[1] S. Abiteboul and V. Vianu. Queries and computation on the Web. Theoretical Computer Science, 239(2), 2000.
[2] S. Auer, J. Lehmann, and S. Hellmann. LinkedGeoData – adding a spatial dimension to the Web of Data. In Proc. of the 8th Int. Semantic Web Conference (ISWC), 2009.
[3] P. Bouquet, C. Ghidini, and L. Serafini. Querying the Web of Data: A formal approach. In Proc of the 4th Asian Semantic Web Conference (ASWC), 2009.
[4] D. Florescu, A. Y. Levy, and A. O. Mendelzon. Database techniques for the world-wide Web: A survey. SIGMOD Record, 27(3), 1998.
[5] T. Guan, M. Liu, and L. V. Saxton. Structure-based queries over the world-wide Web. In Proc. of the 17th Int. Conference on Conceptual Modeling (ER), 1998.
[6] O. Hartig. Zero-knowledge query planning for an iterator implementation of link traversal based query execution. In Proc. of the 8th Ext. Semantic Web Conference (ESWC), 2011.
[7] O. Hartig, C. Bizer, and J.-C. Freytag. Executing SPARQL queries over the Web of Linked Data. In Proc. of the 8th Int. Semantic Web Conference (ISWC), 2009.
[8] O. Hartig and J. C. Freytag. Foundations of traversal based query execution over Linked Data. In Proc. of the 23rd ACM Conference on Hypertext and Social Media (HT), Semantic Data Track, 2012.
[9] O. Hartig and A. Langegger. A database perspective on consuming Linked Data on the Web. Datenbank-Spektrum, 10(2), 2010.
[10] T. Heath and C. Bizer. Linked Data: Evolving the Web into a Global Data Space. Morgan & Claypool, 1st edition, 2011.
[11] G. Klyne and J. J. Carroll. Resource description framework (RDF): Concepts and abstract syntax. W3C Rec., Online at http://www.w3.org/TR/rdf-concepts/, Feb. 2004.
[12] D. Konopnicki and O. Shmueli. W3qs: A query system for the world-wide Web. In Proc. of 21th Int. Conference on Very Large Data Bases (VLDB), 1995.
[13] G. Ladwig and D. T. Tran. Linked Data query processing strategies. In Proc. of the 9th Int. Semantic Web Conference (ISWC), 2010.
[14] G. Ladwig and D. T. Tran. SIHJoin: Querying remote and local linked data. In Proc. of the 8th Ext. Semantic Web Conference (ESWC), 2011.
[15] A. O. Mendelzon and T. Milo. Formal models of Web queries. Information Systems, 23(8), 1998.
[16] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and complexity of SPARQL. ACM Transactions on Database Systems, 34, 2009.
[17] E. Prud’hommeaux and A. Seaborne. SPARQL query language for RDF. W3C Rec., Online at http://www.w3.org/TR/rdf-sparql-query/, Jan. 2008.
[18] F. Schmedding. Incremental SPARQL evaluation for query answering on Linked Data. In Proc. of the 2nd Int. Workshop on Consuming Linked Data (COLD) at ISWC, 2011.
[19] D. Vrandecic, M. Krötzsch, S. Rudolph, and U. Lösch. Leveraging non-lexical knowledge for the linked open data web. In RAFT, 2010.
APPENDIX

The Appendix is organized as follows:

- Appendix A describes how we encode relevant structures (such as a Web of Linked Data and a valuation) on the tapes of Turing machines.

- Appendix B contains the full technical proofs for all results in this paper.

A. ENCODING

To encode Webs of Linked Data and query results on the tapes of a Turing machine we assume the existence of a total order \(\prec \), \(\prec_\mathcal{L} \), and \(\prec_\mathcal{V} \) for the identifiers in \(\mathcal{I} \), the constants in \(\mathcal{L} \), and the variables in \(\mathcal{V} \), respectively; in all three cases \(\prec \) could simply be the lexicographic order of corresponding string representations. Furthermore, we assume a total order \(\prec_t \) for data triples that is based on the aforementioned orders.

For each \(\text{id} \in \mathcal{I} \), \(\text{c} \in \mathcal{L} \), and \(\text{v} \in \mathcal{V} \) let \(\text{enc}(\text{id}) \), \(\text{enc}(\text{c}) \), and \(\text{enc}(\text{v}) \) be the binary representation of \(\text{id} \), \(\text{c} \), and \(\text{v} \), respectively. The encoding of a data triple \(t = (s, p, o) \), denoted by \(\text{enc}(t) \), is a word \(\langle \text{enc}(s), \text{enc}(p), \text{enc}(o) \rangle \).

The encoding of a finite set of data triples \(T = \{t_1, \ldots, t_n\} \), denoted by \(\text{enc}(T) \), is a word \(\langle \text{enc}(t_1), \text{enc}(t_2), \ldots, \text{enc}(t_n) \rangle \) where the \(\text{enc}(t_i) \) are ordered as follows: For each two data triples \(t_x, t_y \in T \), \(\text{enc}(t_x) \) occurs before \(\text{enc}(t_y) \) in \(\text{enc}(T) \) if \(t_x \prec_t t_y \).

For a Web of Linked Data \(W = (D, \text{data}, \text{adoc}) \), the encoding of LD document \(d \in D \), denoted by \(\text{enc}(d) \), is the word \(\text{enc}(\text{data}(d)) \).

The encoding of \(W \) itself, denoted by \(\text{enc}(W) \), is a word

\[
\{ \langle \text{enc}(\text{id}_1), \text{enc}(\text{adoc}(\text{id}_1)) \rangle \ldots \langle \text{enc}(\text{id}_i), \text{enc}(\text{adoc}(\text{id}_i)) \rangle \rangle \ldots
\]

where \(\text{id}_1, \ldots, \text{id}_i, \ldots \) is the (potentially infinite but countable) list of identifiers in \(\text{dom(\text{adoc})} \), ordered according to \(\prec \).

The encoding of a valuation \(\mu \) with \(\text{dom}(\mu) = \{v_1, \ldots, v_n\} \), denoted by \(\text{enc}(\mu) \), is a word

\[
\langle \text{enc}(v_1) \rightarrow \text{enc}(\mu(v_1)), \ldots, \text{enc}(v_n) \rightarrow \text{enc}(\mu(v_n)) \rangle
\]

where the \(\text{enc}(\mu(v_i)) \) are ordered as follows: For each two variables \(v_x, v_y \in \text{dom}(\mu) \), \(\text{enc}(\mu(v_x)) \) occurs before \(\text{enc}(\mu(v_y)) \) in \(\text{enc}(\mu) \) if \(v_x \prec v_y \).

Finally, the encoding of a (potentially infinite) set of valuations \(\Omega = \{\mu_1, \mu_2, \ldots\} \), denoted by \(\text{enc}(\Omega) \), is a word \(\text{enc}(\mu_1) \text{enc}(\mu_2) \ldots \) where the \(\text{enc}(\mu_i) \) may occur in any order.

B. PROOFS

B.1 Additional References for the Proofs

[Par93] C. H. Papadimitriou. Computational Complexity. Addison Wesley, 1993.

B.2 Proof of Proposition 1

Let:

- \(S \subset \mathcal{I} \) be a finite but nonempty set of seed identifiers;
- \(\text{c} \) and \(\text{c}' \) be reachability criteria;
- \(B \) be a BQP such that \(\mathcal{Q}_{B,S}^{c} \) and \(\mathcal{Q}_{B,S}^{c'} \) are CLD queries;
- \(W = (D, \text{data}, \text{adoc}) \) be an infinite Web of Linked Data.

1. \(W_{\Omega_{\text{none}}}^{(S,B)} \) is always finite; so is \(\mathcal{Q}_{\Omega_{\text{none}}}^{B,S}(W) \).

Let \(D_{\Omega} \) denote the set of all LD documents in \(W_{\Omega}^{(S,B)} \). Since \(\text{none} \) always returns false it is easily verified that there is no LD document \(d \in D \) that satisfies case 2 in Definition 10. Hence, it must hold \(D_{\Omega} = \{ \text{adoc}(\text{id}) \mid \text{id} \in S \text{ and } \text{id} \in \text{dom(\text{adoc})} \} \) (cf. case 1 in Definition 10). Since \(S \) is finite we see that \(D_{\Omega} \) is guaranteed to be finite (and so is \(W_{\Omega_{\text{none}}}^{(S,B)} \)). The finiteness of \(\mathcal{Q}_{\Omega_{\text{none}}}^{B,S}(W) \) can then be shown based on Proposition 1, case 2.

2. If \(W_{\Omega}^{(S,B)} \) is finite, then \(\mathcal{Q}_{\Omega}^{B,S}(W) \) is finite.

If \(W_{\Omega}^{(S,B)} \) is finite, there exist only a finite number of different possible subsets of \(\text{AllData}(W_{\Omega}^{(S,B)}) \). Hence, there can only be a finite number of different valuations \(\mu \) with \(\mu[B] \varsubsetneq \text{AllData}(W_{\Omega}^{(S,B)}) \).

3. If \(\mathcal{Q}_{\Omega}^{B,S}(W) \) is infinite, then \(W_{\Omega}^{(S,B)} \) is infinite.

If \(\mathcal{Q}_{\Omega}^{B,S}(W) \) is infinite, we have infinitely many valuations \(\mu \in \mathcal{Q}_{\Omega}^{B,S}(W) \). For each of them exists a unique subset \(\mu[B] \varsubsetneq \text{AllData}(W_{\Omega}^{(S,B)}) \) (cf. Definition 12). Hence, there are infinitely many such subsets. Thus, \(W_{\Omega}^{(S,B)} \) must be infinite.

4. If \(\text{c} \) is less restrictive than \(\text{c}' \) and \(W_{\text{c}}^{(S,B)} \) is finite, then \(W_{\text{c}'}^{(S,B)} \) is finite.

If \(W_{\text{c}}^{(S,B)} \) is finite, then exists finitely many LD documents \(d \in D \) that are \((c,B)\)-reachable from \(S \) in \(W \). A subset of them is also \((c',B)\)-reachable from \(S \) in \(W \) because \(c \) is less restrictive than \(c' \). Hence, \(W_{\text{c}'}^{(S,B)} \) must also be finite.
If c' is less restrictive than c and $W_{c'}^{(S,B)}$ is infinite, then $W_c^{(S,B)}$ is infinite. If $W_c^{(S,B)}$ is infinite, then exists infinitely many LD documents $d \in D$ that are (c,B)-reachable from S in W. Each of them is also (c',B)-reachable from S in W because c' is less restrictive than c. Hence, $W_{c'}^{(S,B)}$ must also be infinite.

If c' is less restrictive than c, then $Q_{c}^{B,S}(W) \subseteq Q_{c'}^{B,S}(W)$. If c' is less restrictive than c, then each LD document $d \in D$ that is (c,B)-reachable from S in W is also (c',B)-reachable from S in W. Hence, $\text{AllData}(W_{c'}^{(S,B)}) \subseteq \text{AllData}(W_{c}^{(S,B)})$ and, thus, $Q_{c}^{(S,B)}(W) \subseteq Q_{c'}^{(S,B)}(W)$.

B.3 Proof of Theorem 1

We prove the theorem by reducing the halting problem to \textsc{FinitenessReachablePart} and to \textsc{FinitenessQueryResult}.

The halting problem asks whether a given Turing machine (TM) halts on a given input. For the reduction we assume an infinite Web of Linked Data W_{TM} which we define in the following. Informally, W_{TM} describes all possible computations of all TMs. For a formal definition of W_{TM} we adopt the usual approach to unambiguously describe TMs and their input by finite words over the (finite) alphabet of a universal TM (e.g. [Pap93]). Let W be the countably infinite set of all words that describe TMs. For each $w \in W$ let $M(w)$ denote the machine described by w and let $c^{w,x}$ denote the computation of $M(w)$ on input x. Furthermore, let $d^{w,x}_k$ denote an identifier for the k-th step in $c^{w,x}$. To denote the (infinite) set of all such identifiers we write $\mathcal{I}_{TMsteps}$. Using the identifiers $\mathcal{I}_{TMsteps}$ we may unambiguously identify each step in each possible computation of any TM on any given input. However, if an identifier $id \in \mathcal{I}$ could potentially identify a computation step of a TM on some input (because id adheres to the pattern used for such identifiers) but the corresponding step may never exist, then $id \notin \mathcal{I}_{TMsteps}$. For instance, if the computation of a particular TM $M(w)$ on a particular input x halts with the i-th step, then $\forall i \in \{1, \ldots, i\} : id^{w,x}_i \in \mathcal{I}_{TMsteps}$ and $\forall i \in \{i+1, \ldots\} : id^{w,x}_i \notin \mathcal{I}_{TMsteps}$. Notice, while the set $\mathcal{I}_{TMsteps}$ is infinite, it is still countable because i) W is countably infinite, ii) the set of all possible input words for TMs is countably infinite, and iii) i is a natural number.

We now define W_{TM} as a Web of Linked Data ($D_{TM}, \text{data}_{TM}, \text{adoc}_{TM}$) with the following elements: D_{TM} consists of $\mathcal{I}_{TMsteps}$ different LD documents, each of which corresponds to one of the identifiers in $\mathcal{I}_{TMsteps}$ (and, thus, to a particular step in a particular computation of a particular TM). Mapping data_{TM} is bijective and maps each $id^{w,x}_k \in \mathcal{I}_{TMsteps}$ to the corresponding $d^{w,x}_k \in D_{TM}$, hence, $\text{dom}(\text{data}_{TM}) = \mathcal{I}_{TMsteps}$. We emphasize that mapping data_{TM} is (Turing) computable because a universal TM may determine by simulation whether the computation of a particular TM on a particular input halts before a particular number of steps (i.e. whether the i-th step in computation $c^{w,x}$ for a given identifier $id^{w,x}_i$ may actually exist). Finally, mapping adoc_{TM} is computed as follows: The set $\text{data}_{TM}(d^{w,x}_k)$ of data triples for an LD document $d^{w,x}_k$ is empty if and only if $c^{w,x}$ halts with the i-th computation step. Otherwise, $\text{data}_{TM}(d^{w,x}_k)$ contains a single data triple $(id^{w,x}_k, \text{next}, id^{w,x}_{i+1})$ which associates the computation step $id^{w,x}_k$ with the next step in $c^{w,x}$ (next denotes an identifier for this relationship). Formally:

$$\text{data}_{TM}(d^{w,x}_k) = \begin{cases} \emptyset & \text{if } c^{w,x} \text{ halts with the } i \text{-th computation step}, \\ \{(id^{w,x}_k, \text{next}, id^{w,x}_{i+1})\} & \text{else}. \end{cases}$$

We emphasize that mapping data_{TM} is also (Turing) computable because a universal TM may determine by simulation whether the computation of a particular TM on a particular input halts after a given number of steps.

Before we come to the reduction we highlight a property of W_{TM} that is important for our proof. Each data triple $(id^{w,x}_i, \text{next}, id^{w,x}_{i+1})$ establishes a data link from $d^{w,x}_i$ to $d^{w,x}_{i+1}$. Due to such links we recursively may reach all LD documents about all steps in a particular computation of any TM. Hence, for each possible computation $c^{w,x}$ we have a (potentially infinite) simple path $(id^{w,x}_{i_1}, \ldots, id^{w,x}_{i_n}, \ldots)$ in the Web link graph of W_{TM}. Each such path is finite iff the corresponding computation halts. Finally, we note that each of these paths forms a separate subgraph of the Web link graph of W_{TM}, because we use a separate set of step identifiers and LD documents for each computation.

We now reduce the halting problem to \textsc{FinitenessReachablePart}. The input to the halting problem is a pair (w, x) consisting of a TM description w and a possible input word x. For the reduction we need a computable mapping f_1 that, given such a pair (w, x), produces a tuple (W, S, c, B) as input for \textsc{FinitenessReachablePart}. We define f_1 as follows: Let w be the description of a TM, let x be a possible input word for $M(w)$, and let $?r \in V$ be an arbitrary query variable, then $f_1(w, x) = (W_{TM}, S_{w,x}, c_{All}, B_{w,x})$ where $S_{w,x} = \{id^{w,x}_1\}$ and $B_{w,x} = \{(id^{w,x}_1, \text{next}, ?r)\}$. Given that c_{All} and W_{TM} are independent of (w, x), it can be easily seen that f_1 is computable by TMs (including LD machines).

To show that \textsc{FinitenessReachablePart} is not LD machine decidable, suppose it were LD machine decidable. In such case an LD machine could answer the halting problem for any input (w, x) as follows: $M(w)$ halts on x if and only if the $(S_{w,x}, c_{All}, B_{w,x})$-reachable part of W_{TM} is finite. However, we know the halting problem is undecidable for TMs (which includes LD machines). Hence, we have a contradiction and, thus, \textsc{FinitenessReachablePart} cannot be LD machine decidable.

The proof that \textsc{FinitenessQueryResult} is not LD machine decidable is similar to that for \textsc{FinitenessReachablePart}. Hence, we only outline the idea: Instead of reducing the halting problem to \textsc{FinitenessReachablePart} based on mapping f_1, we now reduce the halting problem to \textsc{FinitenessQueryResult} using a mapping f_2 that differs from f_1 in the BQP it generates: $f_2(w, x) = (W_{TM}, S_{w,x}, c_{All}, B_{w,x}')$ where $B_{w,x}' = \{(id^{w,x}_1, \text{next}, ?x), (?y, \text{next}, ?z)\}$. Notice, the two triple patterns in $B_{w,x}'$ have no variable in common. If \textsc{FinitenessQueryResult} were LD machine decidable then an LD machine could answer the halting problem for any (w, x): $M(w)$ halts on x if and only if $Q_{c_{All}}^{(S_{w,x}, W_{TM})}(W_{TM})$ is finite.

B.4 Proof of Lemma 1

As a preliminary to prove Lemma 1 we introduce a specific LD machine for CLD queries:
Definition 21. Let $Q^{B,S}_c$ be a CLD query. The (B,S,c)-machine is an LD machine that implements Algorithm 2. This algorithm makes use of a subroutine called lookup. This subroutine, when called with an identifier $id \in T$, i) writes $\text{enc}(id)$ to the right end of the word on the link traversal tape, ii) writes $\text{enc}(id)$ to the right end of the word on the link traversal tape, and iii) performs the expand operation as specified in Definition 3.

Algorithm 2 The program of a (B,S,c)-machine.

1: Call lookup for each $id \in S$.
2: for $j = 1, 2, \ldots$ do
3: Let T_j denote the set of all data triples currently encoded on the link traversal tape. Use the work tape to enumerate a set Ω_j that contains all valuations μ for which $\text{dom}(\mu) = \text{vars}(B)$ and $\mu[B] \subseteq T_j$.
4: For each $\mu \in \Omega_j$ check whether μ is already encoded on the output tape; if not, then add $\text{enc}(\mu)$ to the output.
5: Scan the link traversal tape for a data triple that contains a identifier $id \in \text{id}s(t)$ such that i) $c(t,id,P) = \text{true}$ and ii) the word on the link traversal tape neither contains $\text{enc}(id)\text{enc}(\text{adoc}(id))$ nor $\text{enc}(id)\text{enc}(\text{id}(id))$. If such t and id exist, call lookup for id; otherwise halt the computation.
6: end for

As can be seen in Algorithm 2, the computation of each (B,S,c)-machine (with a Web of Linked Data W encoded on its Web tape) starts with an initialization (cf. line 1). After the initialization, the machine enters a (potentially non-terminating) loop. During each iteration of this loop, the machine generates valuations using all data that is currently encoded on the link traversal tape. The following proposition shows that these valuations are part of the corresponding query result (find the proof for Proposition 6 below in Section B.5).

Proposition 6. Let $M^{B,S,c}(W)$ be a (B,S,c)-machine with a Web of Linked Data W encoded on its Web tape. During the execution of Algorithm 2 by $M^{B,S,c}(W)$ it holds $\forall j \in \{1, 2, \ldots\} : \Omega_j \subseteq Q^{B,S}_c(W)$.

Proposition 6 presents the basis to prove the soundness of query results computed by Algorithm 2. To verify the completeness of these results it is important to note that (B,S,c)-machines prioritize result construction over link traversal. Due to this feature we show that for each solution in a query result exists an iteration during which that solution is computed (find the proof for Proposition 7 below in Section B.6).

Proposition 7. Let $M^{B,S,c}(W)$ be a (B,S,c)-machine with a Web of Linked Data W encoded on its Web tape. For each $\mu \in Q^{B,S}_c(W)$ exists a $j_{\mu} \in \{1, 2, \ldots\}$ such that during the execution of Algorithm 2 by $M^{B,S,c}(W)$ it holds $\forall j \in \{j_{\mu}, j_{\mu}+1, \ldots\} : \mu \in \Omega_j$.

So far our results verify that i) the set of query solutions computed after any iteration is sound and ii) that this set is complete after a particular (potentially infinite) number of iterations. We now show that the computation definitely reaches each iteration after a finite number of computation steps (find the proof for Proposition 8 below in Section B.7).

Proposition 8. Let $M^{B,S,c}(W)$ be a (B,S,c)-machine with a Web of Linked Data W encoded on its Web tape. For any possible iteration it of the main processing loop in Algorithm 2 it requires only a finite number of computation steps before $M^{B,S,c}(W)$ starts it.

We now prove Lemma 1. Let:

- $W = (D, data, adoc)$ be a potentially infinite Web of Linked Data;
- $Q^{B,S}_c$ be a CLD query; and
- $W_{c}^{(S,B)}(W) = (D_{B}, data_{B}, adoc_{B})$ denote the (S,c,B)-reachable part of W.

If: Let $W_{c}^{(S,B)}$ be finite. Hence, $Q^{B,S}_c(W)$ is finite as well (cf. Proposition 1). We have to show that there exists an LD machine that computes $Q^{B,S}_c(W)$ and halts after a finite number of computation steps. Based on Propositions 5 to 8 it is easy to verify that the (B,S,c)-machine (with $\text{enc}(W)$ on its Web tape) is such a machine: It computes $Q^{B,S}_c(W)$ and it is guaranteed to halt because $W_{c}^{(S,B)}$ is finite.

Only if: W.l.o.g., let M be an LD machine (not necessarily a (B,S,c)-machine) that computes $Q^{B,S}_c(W)$ and halts after a finite number of computation steps. We have to show that $W_{c}^{(S,B)}(W)$ is finite. We show this by contradiction, that is, we assume $W_{c}^{(S,B)}$ is infinite. In this case D_{B} is infinite. Since M computes $Q^{B,S}_c(W)$, M must (recursively) expand the word on its link traversal tape until it contains the encodings of (at least) each LD document in D_{B}. Such an expansion is necessary to ensure that the computed query result is complete. Since D_{B} is infinite the expansion requires infinitely many computing steps. However, we know that M halts after a finite number of computation steps. Hence, we have a contradiction and, thus, $W_{c}^{(S,B)}$ must be finite.

B.5 Proof of Proposition 6

Let:

- $W = (D, data, adoc)$ be a Web of Linked Data;
- $M^{B,S,c}(W)$ be a (B,S,c)-machine (cf. Definition 21) with $\text{enc}(W)$ on its Web tape;
- $W_{c}^{(S,B)}$ denote the (S,c,B)-reachable part of W.
To prove Proposition5 we use the following result.

Lemma 3. During the execution of Algorithm2 by $M^{(B,S,c)}$ on (Web) input $\text{enc}(W)$ it holds $\forall j \in \{1,2,\ldots\} : T_j \subseteq \text{AllData}(W_{c,i}^{(S,B)})$.

Proof of Lemma3 Let w_j be the word on the link traversal tape of $M^{(B,S,c)}$ when the j-th iteration of the main processing loop in Algorithm2 (i.e. lines 2 to 6) starts.

To prove $\forall j \in \{1,2,\ldots\} : T_j \subseteq \text{AllData}(W_{c,i}^{(S,B)})$ it is sufficient to show for each w_j (where $j \in \{1,2,\ldots\}$) exists a finite sequence $id_{d_1}, \ldots, id_{w_j}$ of n_j different identifiers ($\forall i \in [1,n_j] : id_i \in T$) such that w_j is

$$\text{enc}(id_1)\text{enc}(adoc(id_1))\cdots\text{enc}(id_{n_j})\text{enc}(adoc(id_{n_j})) \notin$$

and ii) for each $i \in [1,n_j]$ either $id_i \notin \text{dom}(adoc)$ (and, thus, $\text{enc}(id_i)$ is undefined) or $adoc(id_i)$ is an LD document which is (c,B)-reachable from S in W. We use an induction over j for this proof.

Base case ($j = 1$): The computation of $M^{(B,S,c)}$ starts with an empty link traversal tape. Due to the initialization, w_1 is a concatenation of sub-words $\text{enc}(id)\text{enc}(adoc(id))$ for all $id \in S$ (cf. line 4 in Algorithm2). Hence, we have a corresponding sequence id_1, \ldots, id_{n_1} where $n_1 = |S|$ and $\forall i \in [1,n_1] : id_i \in S$. The order of the identifiers in that sequence depends on the order in which they have been looked up and is irrelevant for our proof. For all $id \in S$ it holds either $id \notin \text{dom}(adoc)$ or $adoc(id)$ is (c,B)-reachable from S in W (cf. case 2 in Definition10).

Induction step ($j > 1$): Our inductive hypothesis is that there exists a finite sequence $id_{d_1}, \ldots, id_{w_{j-1}}$ of n_{j-1} different identifiers ($\forall i \in [1,n_{j-1}] : id_i \in T$) such that w_{j-1} is

$$\text{enc}(id_1)\text{enc}(adoc(id_1))\cdots\text{enc}(id_{n_{j-1}})\text{enc}(adoc(id_{n_{j-1}})) \notin$$

and ii) for each $i \in [1,n_{j-1}]$ either $id_i \notin \text{dom}(adoc)$ or $adoc(id_i)$ is (c,B)-reachable from S in W. In the $(j-1)$-th iteration the (B,S,c)-machine finds a data triple d encoded as part of w_{j-1} such that $\exists id \in \text{ids}(t) : c(t, id, B) = \text{true}$ and lookups has not been called for id. The machine calls lookups for id, which changes the word on the link traversal tape to w_j. Hence, w_j equals to $w_{j-1}\text{enc}(id)\text{enc}(adoc(id))$ and, thus, our sequence of identifiers for w_j is $id_{d_1}, \ldots, id_{w_{j-1}}, id_j$. It remains to show that if $id_j \in \text{dom}(adoc)$ then $adoc(id)$ is (c,B)-reachable from S in W.

Assume $id \in \text{dom}(adoc)$. Since data triple t is encoded as part of w_{j-1} we know, from our inductive hypothesis, that t must be contained in the data of an LD document d^* that is (c,B)-reachable from S in W (and for which exists $i \in [1,n_{j-1}]$ such that $\text{enc}(id_i) = d^*$). Therefore, t and id satisfy the requirements as given in case 2 of Definition10 and, thus, $adoc(id)$ is (c,B)-reachable from S in W.

Proposition5 is an immediate consequence of Lemma3.

B.6 Proof of Proposition7

Let:

- $W = (D, data, adoc)$ be a Web of Linked Data;
- $M^{(B,S,c)}$ be a (B,S,c)-machine (cf. Definition31) with $\text{enc}(W)$ on its Web tape;
- $W_{c,i}^{(S,B)}$ denote the (S,c,B)-reachable part of W.

To prove Proposition7 we use the following result.

Lemma 4. For each data triple $t \in \text{AllData}(W_{c,i}^{(S,B)})$ exists a $j_t \in \{1,2,\ldots\}$ such that during the execution of Algorithm2 by $M^{(B,S,c)}$ it holds $\forall j \in \{j_t, j_t+1,1,\ldots\} : t \in T_j$.

Proof of Lemma4 Let w_j be the word on the link traversal tape of $M^{(B,S,c)}$ when $M^{(B,S,c)}$ starts the j-th iteration of the main processing loop in Algorithm2 (i.e. lines 2 to 6).

W.l.o.g., let t' be an arbitrary data triple $t' \in \text{AllData}(W_{c,i}^{(S,B)})$. There must exist an LD document $d \in D$ such that i) $t' \in \text{data}(d)$ and ii) d is (c,B)-reachable from S in W. Let d' be such a document. Since $M^{(B,S,c)}$ only appends to the link traversal tape we prove that there exists a $j_{t'} \in \{1,2,\ldots\}$ with $\forall j \in \{j_t, j_t+1,\ldots\} : t' \in T_j$ by showing that there exists $j_{t'} \in \{1,2,\ldots\}$ such that $w_{j_{t'}}$ contains the sub-word $\text{enc}(d')$.

Since d' is (c,B)-reachable from S in W, the Web link graph for W contains at least one finite path (d_0,\ldots, d_n) of LD documents d_i where i) $n \in \{0,1,\ldots\}$, ii) $\exists id \in S : \text{adoc}(id) = d_0$, ii) $d_n = d'$, and iii) for each $i \in \{1,\ldots,n\}$ it holds:

$$\exists t \in \text{data}(d_{i-1}) : \left(\exists id \in \text{ids}(t) : \text{adoc}(id) = d_i \text{ and } c(t, id, B) = \text{true} \right)$$

(3)

Let (d'_0,\ldots, d'_n) be such a path. We use this path for our proof. More precisely, we show by induction over $i \in \{0,\ldots,n\}$ that there exists $j_t \in \{1,2,\ldots\}$ such that w_{j_t} contains the sub-word $\text{enc}(d'_{i-1})$ (which is the same as $\text{enc}(d')$ because $d'_n = d'$).

Base case ($i = 0$): Since $\exists id \in S : \text{adoc}(id) = d'_0$ it is easy to verify that w_1 contains the sub-word $\text{enc}(d'_0)$.

Induction step ($i > 0$): Our inductive hypothesis is: There exists $j_t \in \{1,2,\ldots\}$ such that w_{j_t} contains sub-word $\text{enc}(d'_{i-1})$. Based on this hypothesis we show that there exists a $j_t' \in \{j_t, j_t+1,\ldots\}$ such that $w_{j_t'}$ contains the sub-word $\text{enc}(d'_{i-2})$. We distinguish two cases: either

\footnote{We assume $\text{enc}(\text{adoc}(id))$ is the empty word if $\text{adoc}(id)$ is undefined (i.e. $id_i \notin \text{dom}(adoc)$).}
enc(d_i) is already contained in w_j or it is not contained in w_j. In the first case we have j' = j; in the latter case we have j' > j. We have to
talk about the latter case only.

Due to (3) exist t* ∈ data(d_{i-1}) and id* ∈ ids(t*) such that adoc(id*) = d_i and c(t*, id*, B) = true. Hence, there exists a δ ∈ N
such that M^{(B,S,c)} finds t* and id* in the (j+δ)-th iteration (cf. line 5 in Algorithm 2). Since M^{(B,S,c)} calls lookahead for id* in that iteration, it
holds that w_{j+δ+1} contains enc(d_i) and, thus, j' = j + δ + 1.

Proposition 7 is an immediate consequence of Lemma 4.

B.7 Proof of Proposition 8

Let:

- W be a Web of Linked Data;
- M^{(B,S,c)} be a (B, S, c)-machine (cf. Definition 11) with enc(W) on its Web tape.

To show that it requires only a finite number of computation steps before M^{(B,S,c)} starts any possible iteration of the main processing loop in
Algorithm 2 we first emphasize that 1) each call of the subroutine lookahead terminates because the encoding of W is ordered following the
order of the identifiers used in W and that 2) the initialization in line 1 of Algorithm 2 finishes after a finite number of computation steps
because S is finite.

Hence, it remains to show that each iteration of the loop also finishes after a finite number of computation steps: Let m denote the word on
the link traversal tape at any point in the computation. m is always finite because M^{(B,S,c)} only gradually appends (encoded) LD documents
to the link traversal tape (one document per iteration) and the encoding of each document is finite (recall the set of data triples data(d) for
each LD document d is finite). Due to the finiteness of m, each Ω_j (for j = 1, 2, ...) is finite, resulting in a finite number of computation
steps for lines 3 and 4 during any iteration. The scan in line 5 also finishes after a finite number of computation steps because m is finite.

B.8 Proof of Corollary 1

Corollary 1 immediately follows from Lemma 1 and Fact 1 (for CLD queries that use an empty set S of seed identifiers) as well as from
Lemma 1 and Proposition 1 case 1 (for CLD queries under c_{NonF}-semantics).

B.9 Proof of Theorem 2

To prove the theorem we only have to show that all CLD queries are at least eventually computable. Corollary 1 shows that some of them are
even finitely computable.

To show that all CLD queries (using any possible reachability criterion) are at least eventually computable we use the notion of a (B, S, c)-machine (cf. Definition 11 in Section 8.4) and show that all computations of (B, S, c)-machines have the two properties as prescribed in
Definition 14.

W.l.o.g., let M^{(B,S,c)} be an arbitrary (B, S, c)-machine with an arbitrary Web of Linked Data W encoded on its Web tape; let W^{(S,B)}
be the (S, c, B)-reachable part of W. During the computation, M^{(B,S,c)} only writes to its output tape when it adds (encoded) valuations
µ ∈ Ω_j (for j = 1, 2, ...). Since all these valuations are solutions for Q^{B,S}_c in W (cf. Proposition 6 in Section 8.4) and line 4 in
Algorithm 2 ensures that the output is free of duplicates, we see that the word on the output tape is always a prefix of a possible encoding of Q^{B,S}_c(W).

Hence, the computation of M^{(B,S,c)} has the first property specified in Definition 14. Property 2 readily follows from Propositions 7 and 8
(cf. Section 8.4).

B.10 Proof of Theorem 3

We prove the theorem by reducing FINITENESSREACHABLEPART to COMPUTABILITYCLD. For the reduction we use an identity function f_3 that,
for any Web of Linked Data W, set S ⊆ T of seed identifiers, reachability criterion c, and BQP B, is defined as follows: f_3(W, S, c, B) = (W, S, c, B).

Obviously, f_3 is computable by TMs (including LD machines).

To obtain a contradiction, we assume that COMPUTABILITYCLD is LD machine decidable. If that were the case an LD machine could
immediately use Lemma 1 to answer FINITENESSREACHABLEPART for any (potentially infinite) Web of Linked Data W and CLD query
Q^{B,S}_c where S is nonempty and c is less restrictive than c_{NonF}. Since we know FINITENESSREACHABLEPART is not LD machine decidable (cf. Theorem 1), we have a contradiction.

B.11 Proof of Proposition 2

Let:

- W be a Web of Linked Data;
- Q^{B,S}_c be a CLD query;
- W^{(S,B)} be the (S, c, B)-reachable part of W;
- W_D be a discovered part of W and an induced subweb of W^{(S,B)};
- σ = (P, µ) be a partial solution for Q^{B,S}_c in W; and
- σ' = (P', µ') be a (t, tp)-augmentation of σ in W_D.

To show that σ' is a partial solution for Q^{B,S}_c in W, we have to show: (1) P' ⊆ B and (2) µ' is a solution for CLD query Q^{P',S}_c in W (cf. Definition 16).
(1) holds because i) $\sigma = (P, \mu)$ is a partial solution for $Q^P \in W$ and, thus, $P \subseteq B$, and ii) $P' = P \cup \{tp\}$ with $tp \in B \setminus P$ (cf. Definition 17).

To show (2) we note that $\text{dom}(\mu') = \text{vars}(P')$ (cf. Definition 17). It remains to show $\mu'[P'] \subseteq \text{AllData}(W^{(S,B)})$ (cf. Definition 12). Due to Definition 17 we have $\mu'[P'] = \mu[P] \cup \{t\}$ with $t \in \text{AllData}(W_B)$. It holds $t \in \text{AllData}(W^{(S,B)})$ because W_B is an induced subweb of $W^{(S,B)}$, and, therefore, $\text{AllData}(W_B) \subseteq \text{AllData}(W^{(S,B)})$. Furthermore, $\mu[P] \subseteq \text{AllData}(W^{(S,B)})$ because (P, μ) is a partial solution for $Q^P \in W$ and, thus, μ is a solution for $Q^P \in W$. Therefore, $\mu'[P'] \subseteq \text{AllData}(W^{(S,B)})$.

B.12 Proof of Proposition 3

Let:

- $W = (D, \text{data}, \text{adoc})$ be a Web of Linked Data;
- $W_D = (D_D, \text{data}_D, \text{adoc}_D)$ be a discovered part of W;
- μ be a valuation; and
- $W'_D = (D'_D, \text{data}'_D, \text{adoc}'_D)$ be the μ-expansion of W_D.

To show that W_D is an induced subweb of W'_D we have to show that W_D satisfies the three requirements in Definition 13 w.r.t. W'_D.

For requirement 1 we have to show $D_D \subseteq D'_D$, which holds because $D'_D = D_D \cup \Delta^W(\mu)$ (cf. Definition 18).

For requirement 2 we have to show:

$$\forall d \in D'_D : \text{data}'_D(d) = \text{data}_D(d)$$

(4)

Since W'_D is an induced subweb of W (cf. Definition 13) it holds:

$$\forall d \in D'_D : \text{data}'_D(d) = \text{data}(d)$$

and with $D_D \subseteq D'_D$ (which we have shown before):

$$\forall d \in D'_D : \text{data}'_D(d) = \text{data}(d)$$

W_D is also an induced subweb of W (cf. Definition 18). Hence:

$$\forall d \in D_D : \text{data}_D(d) = \text{data}(d)$$

and, thus, holds (4).

For requirement 3 we have to show:

$$\forall id \in \{id \in \mathcal{I} \mid \text{adoc}'_D(id) \in D_D\} : \text{adoc}_D(id) = \text{adoc}'_D(id)$$

Since W_D is an induced subweb of W (cf. Definition 13) it holds:

$$\forall id \in \{id \in \mathcal{I} \mid \text{adoc}(id) \in D_D\} : \text{adoc}_D(id) = \text{adoc}(id)$$

(5)

Furthermore, W'_D is an induced subweb of W (cf. Definition 18). Hence:

$$\forall id \in \{id \in \mathcal{I} \mid \text{adoc}(id) \in D'_D\} : \text{adoc}'_D(id) = \text{adoc}(id)$$

Since $D_D \subseteq D'_D$ (which we have shown before) we rewrite (5) by using adoc'_D instead of adoc:

$$\forall id \in \{id \in \mathcal{I} \mid \text{adoc}'_D(id) \in D_D\} : \text{adoc}_D(id) = \text{adoc}'_D(id)$$

B.13 Proof of Proposition 4

Let:

- $W = (D, \text{data}, \text{adoc})$ be a Web of Linked Data;
- $W_D = (D_D, \text{data}_D, \text{adoc}_D)$ be a discovered part of W;
- μ be a valuation; and
- $W'_D = (D'_D, \text{data}'_D, \text{adoc}'_D)$ be the μ-expansion of W_D.

To show that W_D is a discovered part of W we have to show that W_D is finite (cf. Definition 13), which holds iff D'_D is finite.

We have $D'_D = D_D \cup \Delta^W(\mu)$ (cf. Definition 18). D'_D is finite because W_D is a discovered part of W. $\Delta^W(\mu)$ is also finite because it contains at most as many elements as we have variables in $\text{dom}(\mu)$, which is always a finite number.
B.14 Proof of Proposition 5

Let:

- $W = (D, data, adoc)$ be a Web of Linked Data;
- Q_{clmatch} be a CLD query (under σ_{clmatch}-semantics);
- $W_{\text{clmatch}}^{B,S}$ denote the (S, c_{match}, B)-reachable part of W;
- $W_2 = (D_2, data_2, adoc_2)$ be a discovered part of W and an induced subweb of $W_{\text{clmatch}}^{B,S}$;
- $\sigma = (P, \mu)$ be a partial solution for $\mathcal{Q}_{\text{clmatch}}^{B,S}$ in W; and
- $W'_2 = (D'_2, data'_2, adoc'_2)$ be the μ-expansion of W_2.

To show that W'_2 is an induced subweb of $W_{\text{clmatch}}^{B,S}$ we have show that W'_2 satisfies the three requirements in Definition 8 with respect to $W_{\text{clmatch}}^{B,S}$.

For requirement 1 we have to show $D'_2 \subseteq D_R$. Due to Definition 8 we have $D'_2 \subseteq D_2 \cup \Delta^W(\mu)$. It also holds $D_2 \subseteq D_R$ because W_2 is an induced subweb of $W_{\text{clmatch}}^{B,S}$. Hence, it remains to show $\Delta^W(\mu) \subseteq D_R$. We show $\Delta^W(\mu) \subseteq D_R$ by contradiction, that is, we assume $\exists d \in \Delta^W(\mu) : d \notin D_R$.

According to the definition of $\Delta^W(\mu)$ must exist $\nu' \in \text{dom}(\mu)$ such that $\mu(\nu') \in I$ and $\text{adoc}(\mu(\nu')) = d$ (cf. Definition 8).

Since $\sigma = (P, \mu)$ is a partial solution for $\mathcal{Q}_{\text{clmatch}}^{B,S}$ in W, we know that μ is a solution for $\mathcal{Q}_{\text{clmatch}}^{P,S}$ in W (cf. Definition 16) and, thus, $\mu[P] \subseteq \text{AllData}(W_{\text{clmatch}}^{B,S})$ (cf. Definition 12). Together with $\nu' \in \text{dom}(\mu)$ (see above) we have $\exists \nu' \in P : \nu' \in \text{vars}(\nu')$ and $\exists \nu' \in \text{AllData}(W_{\text{clmatch}}^{B,S})$: $\mu[\nu'] = \nu'$. Since $\nu' \in I$ and $\nu' \in \text{vars}(\nu')$ it must hold $\mu(\nu') \in \text{id}(\nu')$.

Because of $\nu' \in \text{AllData}(W_{\text{clmatch}}^{B,S})$ we also have $\exists \nu' \in D_R : \nu' \in \text{data}(\nu')$. Notice, ν' is (c_{match}, B)-reachable (from S in W). Furthermore, it must hold $c_{\text{match}}(\nu', \nu', B) = \nu'$ true because μ matches $\nu' \in P \subseteq B$.

Putting everything together, we have $\exists \nu' \in D_2 \cup \Delta^W(\mu) : \nu' \in \text{data}(\nu') \subseteq \text{id}(\nu')$ and we know that ν' is (c_{match}, B)-reachable from S in W. ii) $c_{\text{match}}(\nu', \nu') = \nu'$ is true, and iii) $\text{adoc}(\mu(\nu')) = d$. Thus, d must be (c_{match}, B)-reachable from S in W (cf. Definition 13), i.e. $d \in D_R$. This contradicts our assumption $d \notin D_R$.

We omit showing that W'_2 satisfies requirement 2 and requirement 3 w.r.t. $W_{\text{clmatch}}^{B,S}$; the proof ideas are the same as those that we use in the proof of Proposition 2 (cf. B.12).

B.15 Proof of Theorem 4

As a basis for proving the soundness we use the following lemma, which may be verified based on Propositions 2, 4, and 5 (find the proof for the following lemma below in Section B.16).

Lemma 5. Let W be a Web of Linked Data and let $\mathcal{Q}_{\text{clmatch}}^{B,S}$ be a CLD query. During an (arbitrary) execution of $\text{ltxbExec}(S, B, W)$ it always holds: i) each $\sigma \in \mathcal{P}$ is a partial solution for $\mathcal{Q}_{\text{clmatch}}^{B,S}$ in W and ii) \mathcal{D} is a discovered part of W and an induced subweb of $W_{\text{clmatch}}^{B,S}$.

Analogous to Lemma 5 the following lemma provides the basis for our proof of completeness (find the proof for the following lemma below in Sections B.17 and B.18).

Lemma 6. Let $W = (D, data, adoc)$ be a Web of Linked Data and let $\mathcal{Q}_{\text{clmatch}}^{B,S}$ be a CLD query. i) For each $d \in D$ that is (c_{match}, B)-reachable from S in W there will eventually be an iteration in any execution of $\text{ltxbExec}(S, B, W)$ after which d is part of \mathcal{D}. ii) For each partial solution σ that may exist for $\mathcal{Q}_{\text{clmatch}}^{B,S}$ in W, there will eventually be an iteration in any execution of $\text{ltxbExec}(S, B, W)$ after which $\sigma \in \mathcal{P}$.

We now use Lemmas 5 and 6 to prove Theorem 4. Let:

- W be a Web of Linked Data;
- $\mathcal{Q}_{\text{clmatch}}^{B,S}$ be a CLD query (under σ_{clmatch}-semantics);
- $W_{\text{clmatch}}^{B,S}$ denote the (S, c_{match}, B)-reachable part of W;
- \mathcal{P} be the set of partial solutions (for $\mathcal{Q}_{\text{clmatch}}^{B,S}$ in W) that is used in $\text{ltxbExec}(S, B, W)$; and
- \mathcal{D} be the discovered part of W that is used in $\text{ltxbExec}(S, B, W)$.

Soundness: W.l.o.g., let μ^* be a valuation that an arbitrary execution of $\text{ltxbExec}(S, B, W)$ reports in some iteration i_T. We have to show $\mu^* \in \mathcal{Q}_{\text{clmatch}}^{B,S}(W)$. μ^* originates from the pair (P^*, μ^*) that the execution of $\text{ltxbExec}(S, B, W)$ constructs and adds to \mathcal{P} in iteration i_T. Since (P^*, μ^*) is a partial solution for $\mathcal{Q}_{\text{clmatch}}^{B,S}$ in W (cf. Lemma 5 and ltxbExec reports μ^* only if $P^* = B$ (cf. line 8 in Algorithm 1), it holds that μ^* is a solution for $\mathcal{Q}_{\text{clmatch}}^{B,S}$ in W (cf. Definition 18); i.e. $\mu^* \in \mathcal{Q}_{\text{clmatch}}^{B,S}(W)$.

Completeness: W.l.o.g., let μ^* be an arbitrary solution for $\mathcal{Q}_{\text{clmatch}}^{B,S}$ in W; i.e. $\mu^* \in \mathcal{Q}_{\text{clmatch}}^{B,S}(W)$. We have to show that any execution of $\text{ltxbExec}(S, B, W)$ will eventually report μ^*. For μ^* exists a partial solution $\sigma^* = (P^*, \mu^*)$ (for $\mathcal{Q}_{\text{clmatch}}^{B,S}$ in W) such that $P^* = B$. Due to Lemma 6 we know that during any execution of $\text{ltxbExec}(S, B, W)$ there will be an iteration in which this partial solution σ^* is constructed and added to \mathcal{P}. This iteration will report μ^* because $P^* = B$ (cf. line 8 in Algorithm 1).
B.16 Proof of Lemma 5

Let W be a Web of Linked Data and let $Q_{\text{match}}^{B,S}$ be a CLD query (under c_{match}-semantics). We show Lemma 5 by induction over the iterations of the main processing loop (lines 3 to 9 in Algorithm 1 in $\text{ltbExec}(S, B, W)$).

Base case ($i = 0$): Before the first iteration, $\text{ltbExec}(S, B, W)$ initializes \mathcal{D} as a set containing a single element: $\sigma_0 = (P_0, \mu_0)$ where $P_0 = \emptyset$ (cf. line 1 in Algorithm 1). σ_0 is a partial solution for $Q_{\text{match}}^{B,S}$ in W because it holds:

- $P_0 \subseteq B$,
- $\text{dom}(\mu_0) = \emptyset = \text{vars}(P_0)$, and
- $\mu_0[P_0] = \emptyset \subseteq \text{AllData}(W(S,B))$.

\mathcal{D} is initialized with $\mathcal{D}^{SW}_{\text{init}} = (D_0, data_0, adoc_0)$ (cf. line 2 in Algorithm 1). Recall the definition of D_0 (cf. 2 in Section 6.1):

$$D_0 = \{ \text{adoc}(id) \mid id \in S \text{ and id} \in \text{dom(adoc)} \}$$

Hence, D_0 contains at most $|S|$ LD documents. Therefore, $\mathcal{D}^{SW}_{\text{init}}$ is finite and, thus, a discovered part of W. $\mathcal{D}^{SW}_{\text{init}}$ is also an induced subweb of W_{match} because each $d \in D_0$ satisfies case 1 in Definition 10.

Induction step ($i > 0$): Our inductive hypothesis is that after the $(i-1)$-th iteration it holds i) each $\sigma \in \mathcal{D}$ is a partial solution for $Q_{\text{match}}^{B,S}$ in W and ii) \mathcal{D} is a discovered part of W and an induced subweb of $W_{\text{match}}^{(S,B)}$. We show that these two assumptions still hold after the i-th iteration. Let (σ, t, tp) be the open AE task selected in the i-th iteration (cf. line 4 in Algorithm 1).

$l\text{tbExec}(S, B, W)$ extends \mathcal{D} by adding (P', μ') (cf. line 6), the (t, tp)-augmentation of σ in \mathcal{D}. According to Proposition 3 (P', μ') is a partial solution for $Q_{\text{match}}^{B,S}$ in W because \mathcal{D} is an induced subweb of $W_{\text{match}}^{(S,B)}$ (inductive hypothesis) and σ is a partial solution for $Q_{\text{match}}^{B,S}$ in W (cf. Definition 12).

Furthermore, the result of the μ'-expansion $\exp_{\mu'}^{W}(\mathcal{D})$ of \mathcal{D} becomes the new \mathcal{D} (cf. line 7). According to Proposition 4 $\exp_{\mu'}^{W}(\mathcal{D})$ is again a discovered part of W; and, according to Proposition 5 it is also an induced subweb of $W_{\text{match}}^{(S,B)}$.

B.17 Proof of Assertion i) in Lemma 6

Let $W = (D, data, adoc)$ be a Web of Linked Data and let $Q_{\text{match}}^{B,S}$ be a CLD query (under c_{match}-semantics). At any point in the execution of $\text{ltbExec}(S, B, W)$ let D_0 denote the set of LD documents in the currently discovered part \mathcal{D} of W.

W.l.o.g., let d^* be an arbitrary LD document that is (c_{match}, B)-reachable from S in W. We have to show that during any possible execution of $\text{ltbExec}(S, B, W)$ there will eventually be an iteration after which $d^* \in D_0$. In correspondence to Definition 10 we distinguish two cases: 1.) $\exists id \in S : \text{adoc}(id) = d^*$ and 2.) $\not\exists id \in S : \text{adoc}(id) = d^*$.

Case 1.) Before the first iteration, any execution of $\text{ltbExec}(S, B, W)$ initializes \mathcal{D} with $\mathcal{D}^{SW}_{\text{init}} = (D_0, data_0, adoc_0)$ (cf. line 2 in Algorithm 1). Recall the definition of D_0 (cf. 2 in Section 6.1):

$$D_0 = \{ \text{adoc}(id) \mid id \in S \text{ and id} \in \text{dom(adoc)} \}$$

Since $\exists id \in S : \text{adoc}(id) = d^*$ it holds $d^* \in D_0$. Due to the initialization $D_0 = D_0$ we have $d^* \in D_0$ before the first iteration.

Case 2.) If $\not\exists id \in S : \text{adoc}(id) = d^*$, it must hold that the Web link graph for W contains at least one finite path (d_0, \ldots, d_n) of (c_{match}, B)-reachable LD documents d_i where i) $\exists id \in S : \text{adoc}(id) = d_0$ ii) $d_0 = d^*$, and iii) for each $i \in \{1, \ldots, n\}$ it holds:

$$\exists t \in \text{data}(d_{i-1}) : \left(\exists id \in \text{ids}(t) : (\text{adoc}(id) = d_i \land c_{\text{match}}(t, id, B) = \text{true}) \right)$$

(6)

Let (d_1^*, \ldots, d_n^*) be such a path. In the following, we show by induction over $i \in \{0, \ldots, n\}$ that there will eventually be an iteration (during any possible execution of $\text{ltbExec}(S, B, W)$) after which D_0 contains $d_n^* = d^*$.

Base case ($i = 0$): We have already shown for case 1.) that $d_0^* \in D_0$ before the first iteration in any possible execution of $\text{ltbExec}(S, B, W)$.

Induction step ($i > 0$): W.l.o.g., for the following discussion we assume a particular execution of $\text{ltbExec}(S, B, W)$. Our inductive hypothesis is that during this execution there will eventually be an iteration it_j after which $d_{i-1}^* \in D_0$. Based on this hypothesis we show that there will be an iteration it_{j+1} after which $d_i^* \in D_0$. We distinguish two cases: either after iteration it_j it already holds $d_i^* \in D_0$ or it still holds $d_i^* \not\in D_0$. We have to discuss the latter case only.

Due to (4) exist $t^* \in \text{data}(d_{i-1})$ and $id^* \in \text{ids}(t^*)$ such that $\text{adoc}(id^*) = d_i^*$ and $c_{\text{match}}(t^*, id^*, B) = \text{true}$. Hence, there must be at least one triple pattern $tp^* \in B$ such that t^* matches tp^*. Let $tp^* \in B$ be such a triple pattern. Since t^* matches tp^*, there exists a partial solution $\sigma^* = (\{tp^*\}, \mu^*)$ with $\mu^*[tp^*] = t^*$ and $\exists \varphi \in \text{dom}(\mu^*) : \mu^*[\varphi] = id^*$. After iteration it_j this σ^* has either been constructed (and added to P) or there exists an open AE task (σ_0, t^*, tp^*) which will eventually be executed in some iteration it_{j+1}, resulting in the construction of σ^*. Let it_j be the iteration in which σ^* has been or will be constructed. In this iteration $\text{ltbExec}(S, B, W)$ expands \mathcal{D} to $\exp_{\mu^*}^{W}(\mathcal{D})$. This expansion results in adding each $d \in \Delta^W(\mu^*)$ to D_0 (cf. Definition 13). Since $\exists \varphi \in \text{dom}(\mu^*) : \mu^*[\varphi] = id^*$ and $\text{adoc}(id^*) = d_i^*$ it holds $d_i^* \in \Delta^W(\mu^*)$. Hence, d_i^* will be added to D_0 in iteration it_{j+1} (if it has not been added before).

B.18 Proof of Assertion ii) in Lemma 6

Let $W = (D, data, adoc)$ be a Web of Linked Data and let $Q_{\text{match}}^{B,S}$ be a CLD query (under c_{match}-semantics). At any point in the execution of $\text{ltbExec}(S, B, W)$ let D_0 denote the set of LD documents in the currently discovered part \mathcal{D} of W.
W.l.o.g., let $\sigma^* = (P^*, \mu^*)$ be an arbitrary partial solution for $Q_{\text{Match}}^{B,S}$ in W. The construction of σ^* comprises the iterative construction of a finite sequence $(\sigma_0 = (P_0, \mu_0), \ldots, \sigma_n = (P_n, \mu_n))$ of partial solutions where i) σ_0 is the empty partial solution (cf. Section 6.2), ii) $\sigma_n = \sigma^*$, and iii) for each $i \in \{1, \ldots, n\}$ it holds

$$\exists tp \in B \setminus P_{i-1} : P_i = P_{i-1} \cup \{tp\} \quad \text{and} \quad \mu_{i-1}[P_{i-1}] = \mu_i[P_i]$$

We show by induction over $i \in \{0, \ldots, n\}$ that there will eventually be an iteration (during any possible execution of $\text{ltbExec}(S, B, W)$) after which \mathcal{Q} contains $\sigma_n = \sigma^*$.

Base case ($i = 0$): Any execution of $\text{ltbExec}(S, B, W)$ adds σ_0 to \mathcal{Q} before it starts the first iteration (cf. line 1 in Algorithm 1).

Induction step ($i > 0$): W.l.o.g., for the following discussion we assume a particular execution of $\text{ltbExec}(S, B, W)$. Our inductive hypothesis is that there will eventually be an iteration i_t after which $\sigma_{i_t-1} \in \mathcal{Q}$. Based on this hypothesis we show that there will be an iteration $i_{\tau, i} = \delta$ after which $\sigma_i \in \mathcal{Q}$. We distinguish two cases: either after iteration i_t it already holds $\sigma_i \in \mathcal{Q}$ or it still holds $\sigma_i \notin \mathcal{Q}$. We have to discuss the latter case only.

Let $tp^* \in B$ be the triple pattern for which $P_i = P_{i-1} \cup \{tp^*\}$. Since $\sigma_{i_t} = (P_i, \mu_i)$ is a partial solution for $Q_{\text{Match}}^{B,S}$ in W, it holds that μ_i is a solution for $Q_{\text{Match}}^{B,S}$ in W and, thus, there exists a (c_{Match}, B)-reachable LD document $d^* \in D$ such that $\mu_i[tp^*] = t^* \in \text{data}(d^*)$. According to Assertion i) in Lemma 8 there will eventually be an iteration after which $d^* \in D_B$. By then, σ_i has either already been constructed and added to \mathcal{Q} or there exists an open AE task $(\sigma_{i-1}, t^*, tp^*)$. In the latter case, this task will eventually be executed, resulting in the construction and addition of σ_i.

B.19 Proof of Lemma 2

Let $S \subseteq T$ be a finite set of seed identifiers and let $B = \{tp_1, \ldots, tp_n\}$ be a BQP such that $Q_{\text{Match}}^{B,S}$ is a CLD query (under c_{Match}-semantics). Furthermore, let $W = (D, \text{data}, \text{adoc})$ be the Web of Linked Data over which $Q_{\text{Match}}^{B,S}$ has to be executed using the iterator based implementation of link traversal based query execution that we introduce in \cite{7}.

As a preliminary for proving Lemma 2, we introduce the iterator based implementation approach using the concepts and the formalism that is part of our query execution model.

For the iterator based execution of $Q_{\text{Match}}^{B,S}$ over W we assume an order for the triple patterns in B; w.l.o.g. let this order be denoted by the indices of the symbols that denote the triple patterns; i.e. $tp_i \in B$ precedes $tp_{i+1} \in B$ for all $i \in \{1, \ldots, n-1\}$. Accordingly, we write P_k to denote the subset of B that contains the first k triple patterns in the ordered B, that is, for all $k \in \{1, \ldots, n\}$ holds $P_k = \{tp_i \in B \mid 1 \leq i \leq k\}$.

Furthermore, let I_0, I_1, \ldots, I_n be the chain of iterators used for the iterator based execution of $Q_{\text{Match}}^{B,S}$ over W. Iterator I_0 is a special iterator that provides a single, empty partial solution σ_0 (cf. Section 6.2). For all $k \in \{1, \ldots, n\}$ iterator I_k is responsible for triple pattern tp_k from the ordered BQP. We shall see that each I_k provides partial solutions (P, μ) (for $Q_{\text{Match}}^{B,S}$ in W) for which $P = P_k$, that is, the valuation μ of each such partial solution is a solution for CLD query $Q_{\text{Match}}^{P,S}$ (in W). As a consequence, for each partial solution (P, μ) provided by the last iterator I_n, valuation μ can be reported as a solution for $Q_{\text{Match}}^{B,S}$ in W.

During query execution all iterators access and change the (currently) discovered part \mathcal{D} of the queried Web of Linked Data W. Before the execution, \mathcal{D} is initialized as $\mathcal{D}_{\text{init}}$ (cf. Section 6.1). This initialization may be performed in the Open function of the aforementioned special iterator I_0.

Algorithm 3 presents the GetNext function \cite{4} implemented by each iterator I_k (for all $k \in \{1, \ldots, n\}$). In order to compute partial solutions iterator I_k first consumes a partial solution $\sigma_{\text{pred}} = (P_{k-1}, \mu_{\text{pred}})$ from its predecessor I_{k-1} (cf. line 2 in Algorithm 3). Lines 7 and 8 may be understood as a (combined) performance of multiple (open) AE tasks: For each data triple $d^* \in D_B$ discovered so far and that ii) matches triple pattern $tp_k = \mu_{\text{pred}}[tp_k]$, iterator I_k adds a partial solution σ_{new} to $\mathcal{D}_{\text{init}}$; each σ_{new} is the (t', μ')-augmentation of σ_{pred} in \mathcal{D} (cf. line 7).

Due to the construction of tp_k from tp_{k-1} (cf. line 6), any data triple t' that matches tp_k also matches tp_{k-1} and, thus, each σ_{new} is the (t', μ')-augmentation of σ_{pred} in \mathcal{D}. After populating \mathcal{D}_{new}, iterator I_k uses all $\sigma_{\text{new}} \in \mathcal{D}_{\text{new}}$ to expand the currently discovered part of W incrementally (cf. line 8). Hence, lines 7 and 8 may be understood as a (combined) performance of all those (open) AE tasks (σ, t, t') for which $\sigma = \sigma_{\text{pred}}, tp = tp_k$, and t' is a data triple that has the aforementioned properties. Due to the finiteness of \mathcal{D} (cf. Definition 13 and Proposition 4) there is only a finite number of such data triples t' and, thus, the number of AE tasks iterator I_k performs for σ_{new} is also finite. As a consequence, to prove Lemma 2 it suffices to show that each iterator I_k only consumes a finite number of partial solutions from its predecessor I_{k-1}. Hence, it suffices to prove the following lemma.

Lemma 7. The overall number of partial solutions provided by each iterator via its GetNext function is finite.

Proof of Lemma 2 We prove the lemma by induction over the chain of iterators I_0, I_1, \ldots, I_n.

Base case (I_0): The special iterator provides a single partial solution σ_0.

Induction step (I_k for $k \in \{1, \ldots, n\}$): Our inductive hypothesis is that iterator I_{k-1} provides a finite number of partial solutions via its GetNext function. Based on this hypothesis we show that iterator I_k provides a finite number of partial solutions via its GetNext function. Due to our inductive hypothesis it is sufficient to show that for each partial solution which I_k consumes from I_{k-1}, I_k provides a finite number of partial solutions. Let $\sigma_{\text{pred}} = (P_{\text{pred}}, \mu_{\text{pred}})$ be such a partial solution that I_k consumes from I_{k-1} (line 2 in Algorithm 3). I_k applies μ_{pred} to its triple pattern tp_k (line 6) and uses the resulting triple pattern $tp'_k = \mu_{\text{pred}}[tp_k]$ to generate set M_k (line 7). Hence, this set contains exactly those partial solutions that I_k provides based on σ_{pred} (line 10 to 12). However, M_k is finite because I_k generates M_k on a particular snapshot of the discovered part \mathcal{D} of W and \mathcal{D} is finite at any point during query execution.

2From the three versions of the iterator based implementation approach that we introduce in \cite{7} Algorithm 3 corresponds to the first, most naive version. That is, Algorithm 3 neither applies the idea of URI prefetching nor the idea of non-blocking iterators.\cite{7}
Algorithm 3 GetNext: function for iterator I_k in our iterator based implementation of link traversal based query execution [7].

Require:
- a triple pattern tp_k;
- a predecessor iterator I_{k-1};
- the currently discovered part \mathcal{D} of the queried Web of Linked Data W (note, all iterators have access to \mathcal{D});
- an initially empty set M_k that allows the iterator to keep (precomputed) partial solutions between calls of this GetNext function

1: while $M_k = \emptyset$ do
2: $\sigma_{\text{pred}} := I_{k-1}.\text{GetNext}$ // consume partial solution from direct predecessor I_{k-1}
3: if $\sigma_{\text{pred}} = \text{ENDOFFILE}$ then
4: return ENDOFFILE
5: end if
6: $tp_k := \mu_{\text{pred}}[tp_k]$ // μ_{pred} is the valuation in $\sigma_{\text{pred}} = (P_{\text{pred}}, \mu_{\text{pred}})$
7: $M_k := \{\text{aug}_{tp_k}^\mathcal{D}(\sigma_{\text{pred}}) \mid t^* \text{ matches } tp_k \text{ and } t^* \in \text{AllData}(\mathcal{D})\}$ // construct partial solutions
8: for all $\sigma' = (P', \mu') \in M_k$ do $\mathcal{D} := \exp_{\mu'}^W(\mathcal{D})$ end for // expand \mathcal{D} using all newly constructed partial solutions
9: end while
10: $\sigma' := \text{an element in } M_k$
11: $M_k := M_k \setminus \{\sigma'\}$
12: return σ'

B.20 Proof of Theorem 5

The guarantee for termination is a direct consequence of Lemma 8. The whole chain of iterators performs a finite number of AE tasks only. The performance of each AE task terminates because all operations in Algorithm 3 are synchronized and are guaranteed to terminate.

It remains to show that the set of valuations reported by any iterator based execution is always a finite subset of the corresponding query result: Let $S \subseteq I$ be a finite set of seed identifiers and let $B = \{tp_1, \ldots, tp_n\}$ be a BQP such that $Q^{B,S}_{\text{Match}}$ is a CLD query (under c_{Match} semantics). Furthermore, let $W = (D, data, adoc)$ be the Web of Linked Data over which $Q^{B,S}_{\text{Match}}$ has to be executed.

For the iterator based execution of $Q^{B,S}_{\text{Match}}$ over W we assume an order for the triple patterns in B; w.l.o.g. let this order be denoted by the indices of the symbols that denote the triple patterns; i.e. $tp_i \in B$ precedes $tp_{i+1} \in B$ for all $i \in \{1, \ldots, n-1\}$. Furthermore, let I_0, I_1, \ldots, I_n be the chain of iterators as introduced in the proof for Lemma 8 (cf. Section B.19).

For our proof we use the following lemma.

Lemma 8. For any partial solution $\sigma = (P, \mu)$ provided by the GetNext function of iterator I_n holds $P = P_n$.

Proof of Lemma 8 We prove the lemma by induction over the chain of iterators I_0, I_1, \ldots, I_n.

Base case (I_0): The special iterator provides a single partial solution $\sigma_0 = (P_0, \mu_0)$ which covers the empty part $P_0 = \emptyset$ of B.

Induction step (I_k for $k \in \{1, \ldots, n\}$): Our inductive hypothesis is that for any partial solution $\sigma = (P, \mu)$ provided by the GetNext function of iterator I_{k-1} holds $P = P_{k-1}$. Based on this hypothesis we show that for any partial solution $\sigma' = (P', \mu')$ provided by the GetNext function of iterator I_k holds $P' = P_k$. However, this is easily checked in Algorithm 3. As we discuss in Section B.19 each partial solution $\sigma' = (P', \mu')$ added to (any σ_{pred}-specific version of) M_k (cf. line 7) and returned later (cf. line 12) is a (t^*, tp_k)-augmentation of some partial solution $\sigma_{\text{pred}} = (P_{\text{pred}}, \mu_{\text{pred}})$ consumed from I_{k-1}. According to our inductive hypothesis $P_{\text{pred}} = P_{k-1}$. Therefore, $P' = P_{k-1} \cup \{tp_k\} = P_k$ (cf. Definition 7).

Lemma 8 shows that each partial solution (P_n, μ) computed by the last iterator of the chain of iterators covers the whole BQP of the executed CLD query $Q^{B,S}_{\text{Match}}$ (recall, $B = P_n$). Hence, each valuation μ that the iterator based execution reports from such a partial solution (P_n, μ), is a solution for $Q^{B,S}_{\text{Match}}$ over W.

It remains to show that the iterator based execution may always only report a finite number of such solutions. This result, however, is a direct consequence of Lemma 7 (cf. Section B.19).