ON THE REMOVABLE SINGULARITIES FOR MEROMORPHIC MAPPINGS

E.M. Chirka

Abstract. If \(E \) is a nonempty closed subset of the locally finite Hausdorff \((2n-2)\)-measure on an \(n \)-dimensional complex manifold \(\Omega \) and all points of \(E \) are nonremovable for a meromorphic mapping of \(\Omega \setminus E \) into a compact Kähler manifold, then \(E \) is a pure \((n-1)\)-dimensional complex analytic subset of \(\Omega \).

1. This paper was inspired by the following question of E.L. Stout [7]: Let \(E \) be a closed subset of the complex projective space \(\mathbb{P}^n \) \((n \geq 2)\) such that the Hausdorff \((2n-2)\)-measure of \(E \) (with respect to the Fubini-Study metric) is less than that of any complex hyperplane of \(\mathbb{P}^n \). If it is true that \(E \) is then a removable singularity for meromorphic functions? Using natural projections of \(\mathbb{P}^n \) onto hyperplanes G. Lupacciolu [5] has shown the removability of \(E \) under additional conditions on the sizes of \(E \) and a maximal ball in the complement. (The projection of \(\mathbb{P}^n \) onto a hyperplane does not decrease Hausdorff measures, as it take place in the Euclidean space.)

Using an Oka–Nishino theorem [6] on pseudoconcave sets we prove here the following.

Theorem. Let \(E \) be a closed subset of the locally finite Hausdorff \((2n-2)\)-measure on an \(n \)-dimensional complex manifold \(\Omega \) and let \(f \) be a meromorphic mapping of \(\Omega \setminus E \) into a complex manifold \(X \). If \(X \) has the meromorphic extension property and \(E \) does not contain any \((n-1)\)-dimensional closed analytic subset of \(\Omega \) then \(f \) is continued to a meromorphic mapping of \(\Omega \) into \(X \).

Here we say that \(X \) has the meromorphic extension property, if any meromorphic map \(\varphi : T \to X \) of the "squeezed polydisc"

\[
T = (z, w) \in \mathbb{C}^{n-1}_z \times \mathbb{C}_w : |z| < r, |w| < 1 \text{ or } |z| < 1, 1 - r < |w| < 1,
\]

\(0 < r < 1, \, n \geq 2 \), extends to a meromorphic map \(\tilde{\varphi} : U \to X \) of the unit polydisc \(U : |z| < 1, |w| < 1 \). By a recent result of S.M. Ivashkovich [3] every compact Kähler manifold \(X \) has the meromorphic extension property, so we have a lot of nice examples of such \(X \). The case of meromorphic functions \((X = \mathbb{P}^1)\) is almost trivial in the consideration: every meromorphic function in a squeezed polydisc is represented as a ratio of two holomorphic functions (see [4]) and thus it is meromorphically continued into \(U \). So the answer on the question of Stout is..
positive because the mentioned E cannot contain any complex analytic subset of \mathbb{P}^n (by a Chow theorem such a set is algebraic, and the Hausdorff $(2n - 2)$-measure of it is not less then the measure of a complex hyperplane (see, e.g. [C]). As pointed me E.L.Stout, this question was solved already by his student Mark Lawrence by a similar method.

2. A closed subset Σ of a complex manifold is called locally pseudoconcave if for every point $a \in \Sigma$ there exists a Stein neighbourhood V such that $V \setminus \Sigma$ is Stein.

Let E' be the set of points $a \in E$ such that f meromorphically extends into a neighbourhood of a. Then $S := E \setminus E'$ is closed. As the complement to E is locally connected in Ω, these local meromorphic continuations of f in points of E' glue together into the unique meromorphic map $f : \Omega \setminus S \to X$ (we preserve the notation f).

The proof of the Theorem is accomplished now in two steps. Firstly we prove that S is locally pseudoconcave (Lemma 1), and secondly we prove that S is complex analytic (Lemma 2).

Lemma 1. S is locally pseudoconvex in Ω.

Proof. Let $a \in S$, $V \ni a$ is biholomorphic to a ball in \mathbb{C}^n and $\varphi : T \to V \setminus S$ is a holomorphic embedding. Then (V is Stein) φ extends to a holomorphic embedding $\tilde{\varphi} : U \to V$ (see [2]). As X has the meromorphic extension property, the meromorphic map $f \circ \varphi : T \to X$ extends to a meromorphic map of U into X and thus f meromorphically continues into the domain $\tilde{\varphi}(U) \subset V$. By the definition of S, $\tilde{\varphi}(U)$ does not intersect S, and thus we have proved that $V \setminus S$ satisfies the condition "p^r-convexity" of Docquier–Grauert [2]. It follows that $V \setminus S$ is Stein.

Lemma 2. Let S be a nonempty locally pseudoconcave subset of the finite Hausdorff $(2n - 2)$-measure on an n-dimensional complex manifold Ω. Then S is a pure $(n - 1)$-dimensional complex analytic subset of Ω.

Proof. The statement is local, so we can assume that Ω is a domain in \mathbb{C}^n. Let $a \in S$ and coordinates (z, w), $z = (z_1, \ldots, z_{n-1})$ in \mathbb{C}^n are chosen in such a way that $a = 0$ and the set $S \cap \{z = 0\}$ is finite or countable (it can be done obviously). Then there exists a neighbourhood $V = V' \times V_n \ni 0$ such that the projection of $S \cap V$ into V' is proper. It follows that fibres $S \cap V \cap \{z = c\}$ are finite for almost every $c \in V'$. By an Oka–Nishino theorem [6] $S \cap V$ is then a complex analytic set of pure dimension $n - 1$.

I would like to thank G.Lupacciolu for the reprint of his paper [5], which stimulated this work.

References

1. E. M. Chirka, *Complex analytic sets*, “Nauka”, Moscow, 1985 (Russian); English transl., Kluwer Acad. Publishers, Dordrecht-Boston-London, 1989.
2. F. Docquier and H. Grauert, *Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten*, Math. Ann. 140 (1960), 94–123.
3. S. M. Ivashkovich, *The Hartogs-type extension theorem for meromorphic maps into compact Kähler manifolds*, preprint (1990), Bochum, 1–13.
4. J. Kajiwara and E. Sakai, *Generalization of Levi–Oka’s theorem concerning meromorphic functions*, Nagoya Math. J. 29 (1967), 75–84.
5. G. Lupacciolu, *Meromorphic continuation in projective space*, Bollettini U. M. I. (7) 4-A (1990), 391–397.
6. T. Nishino, *Sur les ensembles pseudoconcaves*, J. Math. Kyoto Univ. **1-2** (1962), 225–245.
7. E. L. Stout, *Removable sets for holomorphic functions of several complex variables*, Publ. Math. **33** (1989), 345–362.

Steklov Mathematical Institute, Vavilov st. 42, Moscow GSP-1, 117966 Russia
E-mail address: chirka@mph.mian.su