Mar 23rd, 11:30 AM

The Effects of Integrating Lego Robotics Into a Mathematics Curriculum to Promote the Development of Proportional Reasoning

Shelli L. Casler-Failing
Georgia Southern University, scaslerfailing@georgiasouthern.edu

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/stem

Part of the [Science and Mathematics Education Commons](https://digitalcommons.georgiasouthern.edu/stem)

Recommended Citation

Casler-Failing, Shelli L., "The Effects of Integrating Lego Robotics Into a Mathematics Curriculum to Promote the Development of Proportional Reasoning" (2018). *Interdisciplinary STEM Teaching & Learning Conference*. 42.
https://digitalcommons.georgiasouthern.edu/stem/2018/2018/42

This event is brought to you for free and open access by the Conferences & Events at Digital Commons@Georgia Southern. It has been accepted for inclusion in Interdisciplinary STEM Teaching & Learning Conference by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact digitalcommons@georgiasouthern.edu.
The Effects of Integrating LEGO Robotics Into a Mathematics Curriculum to Promote the Development of Proportional Reasoning

Dr. Shelli Casler-Failing
Georgia Southern University
Department of Middle Grades and Secondary Education
Existing Research

• Development of proportional reasoning is necessary for students to progress through higher-levels of mathematics (Langrall and Swafford, 2000; Jitendra, Star, Dupuis, & Rodriguez, 2013; Larson, 2013)

• Use of robotics in mathematics has shown positive effects with problem-solving and critical thinking skills (Ardito, Mosley, & Scollins, 2014)

• An extra-curricular one-week intervention provided evidence of improved proportional reasoning skills among 5th grade students (Martinez Ortiz, 2015)
Purpose of the Study

To investigate how the carefully designed incorporation of LEGO Robotics can influence the development of proportional reasoning among seventh grade students.
Research Questions

1. How does the incorporation of LEGO robotics into a unit on ratios and proportions influence proportional reasoning?

2. In what ways do students reason about distance, rate, and time?
Theoretical Framework

• Vygotsky’s Social Constructivist Theory
 ~learning through social interactions

• Carbonaro, Rex, and Chambers Five Stages of Technology Integration
 ~engagement, exploration, investigation, creation, and evaluation

(Vygotsky, 1978; Carbonaro, Rex, and Chambers, 2004)
Methodology

- Action research
- Mixed Methods
- Case Study with Embedded Cases
Data Collection

• regular unit of study
• purposely designed students pairs
• robots required to complete investigations
• discussion before and after each investigation
• activity at end of Investigation 4
• Pre- and post-tests
• Classroom video recordings
• Student interviews
• Field notes
• Student journals and artifacts
Research Findings

Percentage Grade Received on Tests

- Student 1: Pre-Test 30, Post-Test 90
- Student 2: Pre-Test 60, Post-Test 80
- Student 3: Pre-Test 70, Post-Test 90
- Student 4: Pre-Test 50, Post-Test 60
- Student 5: Pre-Test 40, Post-Test 50
- Student 6: Pre-Test 30, Post-Test 60

Legend:
- Pre-Test
- Post-Test
Research Findings
Low-Performing Students

Test Results for Student 1

Test Results for Student 5
Research Findings
Average-Performing Students

Test Results for Student 3

Test Results for Student 6
Research Findings
High-Performing Students

Test Results for Student 2
- Pre-Test
- Post-Test

Test Results for Student 4
- Pre-Test
- Post-Test
RQ#1 - How does the incorporation of LEGO Robotics into a unit on ratios and proportions influence proportional reasoning?

- Robots create opportunities for discussion via problem-solving
- Discussions (small group and whole class) were analyzed using the four levels of Langrall and Swafford’s Proportional Reasoning Rubric (2000)
 - Non-proportional reasoning, Informal reasoning about proportional situations, quantitative reasoning, formal proportional reasoning
- The inclusion of the robots allowed students to see and experience proportionality
RQ#2 - In what ways do students reason about distance, rate, and time?

- Application of Carbonaro, Rex, and Chambers (2004) Five Stages of Technology Integration (engagement, investigation, exploration, creation, and evaluation)

- Verbal communication - both in, and among, groups - as they progress among the stages
Embedded Cases

- Two high-performers and two low-performers
- Importance of mathematics
- Enjoyed learning with LEGO robots
- Developed improved proportional reasoning skills
 - High performers - able to verbalize their understanding
 - Low-performers - had difficulty verbalizing their understanding
Implications

• Provides example of how technology integration can support learning of mathematics

• Learning with robotics allows students to see what they learning (e.g., seeing proportionality)

• Sense of play when working with robotics improves perseverance – creates a “can-do” attitude
Limitations

• Primarily qualitative, thus not generalizable to all 7th grade classrooms
• Small class size does not allow for the quantitative findings to be reliable
• Small class size limits the breadth, and depth, of the analysis
• Completed in a school environment where hands-on learning is the norm
References

Ardito, G., Mosley, P., & Scollins, L. (2014). We, Robot: Using robotics to promote collaborative and mathematics learning in a middle school classroom. *Middle Grades Research Journal, 9*(3), 73-88.

Carbonaro, M., Rex, M., & Chambers, J. (2004). Using LEGO Robotics in a project-based learning environment. *The Interactive Multimedia Electronic Journal of Computer-Enhanced Learning, 6*(1).

Langrall, C. W., & Swafford, J. (2000). Three balloons for two dollars: Developing proportional reasoning. *Mathematics Teaching in the Middle School, 6*(4), 254-261.

Jitendra, A. K., Star, J. R., Dupuis, D. N., & Rodriguez, M. C. (2013). Effectiveness of schema-based instruction for improving seventh-grade students' proportional reasoning: A randomized experiment. *Journal of Research on Educational Effectiveness, 6*, 114-136.

Larson, K. (2013). Developing children's proportional reasoning: Instructional strategies that go the distance. *Ohio Journal of School Mathematics*(67), 42-47.

Martinez Ortiz, A. (2015). Examining students' proportional reasoning strategy levels as evidence of the impact of an integrated LEGO robotics and mathematics learning experience. *Journal of Technology Education, 26*(2), 46-69.

Vygotsky, L. S. (1978). *Mind in Society.* (M. Cole, V. John-Steiner, S. Scribner, & E. Souberman, Eds.) Cambridge: Harvard University Press.
Thank you!

Questions?

scaslerfailing@georgiasouthern.edu