The Effect of Enhanced Fermentation on the Antioxidant, Proximate and Shelf Life Properties of Kunu

Oluwafemi Michael Adedire1,*, Adekunle Opeyemi Farinu1, Stephen Olufemi Olaoye1, Adebayo Olawande Osesusi2, Kudirat Olanre Ibrahim3

1Department of Agriculture, Federal College of Agriculture, Apata, Ibadan, Nigeria
2Department of Science Laboratory Technology, Ekiti State University, Ado Ekiti, Nigeria
3Department of Home and Rural Economics, Federal College of Agriculture, Apata, Ibadan, Nigeria

Email address
Fecky09@yahoo.com (O. M. Adedire)
*Corresponding author

To cite this article
Oluwafemi Michael Adedire, Adekunle Opeyemi Farinu, Stephen Olufemi Olaoye, Adebayo Olawande Osesusi, Kudirat Olanre Ibrahim. The Effect of Enhanced Fermentation on the Antioxidant, Proximate and Shelf Life Properties of Kunu. American Journal of Biology and Life Sciences. Vol. 5, No. 6, 2017, pp. 69-72.

Received: September 15, 2017; Accepted: November 2, 2017; Published: November 24, 2017

Abstract
The significance of antioxidants to human health cannot be overemphasized, owing to the brilliant advances in understanding the mechanisms of their reaction with free radicals to reduce the likelihood of disease manifestation. The effect of enhanced fermentation with species of Lactobacillus (L. reuteri, L. plantarum and L. acidophilus) on the antioxidant potentials, shelf life and nutrient composition of Kunu, a widely accepted and enjoyed local beverage in Nigeria made from millet, was investigated in this study. Proximate analysis (using the AOAC assay methods), spoilage bacterial density (aerobic colony forming unit assay) and the antioxidant potential (H2O2 scavenging assay) of Kunu produced through enhanced fermentation with Lactobacillus species were determined. At the 5th day of storage, the microbial abundance of Kunu made through natural and enhanced fermentation were 570 × 10^5 and 410 × 10^5 CFU/mL respectively. Proximate compositions (fat, total solid, acidity and crude protein) were higher in Kunu fermented with Lactobacillus species, with crude protein having the highest recorded difference (0.77%) when compared to samples produced through natural fermentation. Kunu samples (made from millet) appeared to generally possess better antioxidant activities when compared to ascorbic acid standard. At 10% stock dilution, linear regression plot revealed H2O2 inhibition by ascorbic acid, Kunu with natural and enhanced fermentation as 58, 73 and 80% respectively. It is therefore suggestive (from the results) that the improvement of nutrient qualities, shelf life properties and antioxidant potentials of Kunu could be achieved through enhanced fermentation of processed millet with species of Lactobacillus.

Keywords
Kunu, Lactobacillus, Fermentation, Antioxidants, Shelf Life

1. Introduction
Cereals are the most consumed food crop with a 2015 estimated global production of 2500 million tonnes. These crops are important sources of basic nutrients like vitamins, minerals, dietary fiber, protein, bioactive compounds and even calorie. However, the optimal exploitation of nutrients locked in these cereals is a challenge because of the natural taste, unappealing nature of the grains, presence of anti-nutritional factors, poor digestibility, as well as their deficiency in certain nutrients [1, 2]. Consequently, these grains are processed into more acceptable value-added forms.
Kunu, a traditional, non-alcoholic beverage usually made from millet (Pennisetum glaucum, a nutrient-rich cereal known to possess some level of antioxidant properties), is one of the most widely consumed beverages in Nigeria; fermentation of processed millet into Kunu offers a simple and economical means to improve the nutritional value and sensory attributes of this cereal grains [3]. This beverage became more widely accepted all over the country, owing to its refreshing qualities and nutritional benefits mostly derived from the source cereal grain and processing method [4]. Millet is more than an interesting alternative to other grains in the production of Kunu; it is a good source of some very important nutrients including copper, manganese, phosphorus and magnesium. The health benefits of millet include its heart protective properties, development and repair of body tissues, prevention of gallstones, protection against breast cancer and other antioxidant protective properties [5].

The bio-enrichment, reduction of anti-nutritional compounds, elongation of shelf-life, improvement of organoleptic and probiotic properties of Kunu can be achieved by systematically selecting microbial strains as starter cultures or to augment natural fermentation of this beverage [3], these microorganisms could be massively produced from growth media composed from agricultural waste. In addition to their ability to release protective metabolites and unlock millet-based nutrients, some lactic acid bacteria (LAB) strains (especially, species of *Lactobacillus*) have the potential to overproduce and release important nutrients during fermentation. The production of B-group vitamins such as riboflavin, folate and cobalamin by lactic acid bacteria has been extensively reviewed by LeBlanc et al. [6]. LAB species selected for millet bioprocessing are Generally Recognized as Safe (GRAS), they are probiotics whose inclusion in cereal processing are considered harmless [7] and they may, to a large extent, improve the antioxidant (free radical scavenging) potentials of the final Kunu product.

Several biochemical reactions and pathways in the body lead to the production of free radicals which have been implicated in oxidative stress and mediators of many diseases, including arthritis, vasculitis, glomerulonephritis, lupus erythematosus, adult respiratory diseases syndrome, ischemic diseases, hemochromatosis, acquired immunodeficiency syndrome, emphysema, organ transplantation, gastric ulcers, hypertension, preeclampsia, neurological disorder and many others [8]. Although, these free radicals are regularly scavenged by a number of antioxidant compounds produced *in vivo*, the endogenous antioxidants are insufficient to adequately remove the radicals and maintain a healthy balance. Consequently, dietary antioxidants are constantly required to counteract excess free radicals. Important free radicals recurrently generated in human body include the super oxide radicals, hydroxyl radicals, peroxyl radicals, and single oxygen [9]. This study was aimed at establishing the nutrient qualities, shelf life properties and antioxidant potentials of Kunu produced through enhanced fermentation of processed millet with species of *Lactobacillus*.

2. Materials and Methods

2.1. Production of Kunu

Millet (1000g) was weighed and properly washed with boiled cool (BC) water; the cereal was thereafter steeped in 2000mL BC water for 24 hours at ambient temperature. The grain was then rewashed, drained and again steeped in BC water containing ginger (6g), black pepper (2g) and clove (2g) for 5 minutes; after which, the preparation was drained and ground to paste. The paste was divided into unequal portions (1:3 v/v); while the larger portion was gelatinized with boiling water (1:1 v/v), the smaller portion was prepared for enhanced or natural fermentation. For enhanced fermentation, 20mL of 2×10^8 cfu/mL each of *L. reuteri* and *L. acidophilus* was added to the ungelatinized portion at 10% (v/v) before thoroughly mixing with the gelatinized portion and the mixture was allowed to ferment for 6 hours at ambient temperature, following which, it was sieved to remove the pomace present in the preparation [10]. Natural fermentation was achieved with the addition of sterile distilled water (10% v/v) to the ungelatinized portion in place of *Lactobacillus* species. The recovered Kunu samples in both cases (after fermentation) were subsequently regarded as the stock samples from which further dilutions were made for subsequent analysis.

2.2. Estimation of Microbial Density and Proximate Analysis

The aerobic spoilage bacterial enumeration was carried out using nutrient agar (NA; oxoid grade) with the pour-plate isolation method. The samples were serially diluted, after which, 1ml of appropriate dilutions (10^{-5} and 10^{-6}) were inoculated each on petri plates in triplicates to determine the average colony forming units (CFU). The culture plates were then incubated at 37°C for 24 h. After incubation, the colonies in each plate were counted using the Gallenkamp colony counter [5]. The pH and acidity of the beverage samples were determined, as well as other proximate parameters including the ash content, moisture content, crude fiber, crude protein and total solid; all carried out using the AOAC [11] standard methods.

2.3. Hydrogen Peroxide Scavenging Activity

The probiotic potentials of fermented Kunu and ascorbic acid (standard antioxidant) were determined using the peroxide inhibition assay. Scavenging of hydrogen peroxide by samples made through natural and enhanced fermentation processes were determined by the method of Ruch et al. [12]. Samples (4 ml each) prepared in distilled water at various concentrations were mixed with 0.6 ml of 4 mM H$_2$O$_2$ solution prepared in phosphate buffer (0.1M, pH 7.4) and incubated for 10 min. The absorbance of each reaction mixture was taken at the Soil Science Laboratory, Federal College of Agriculture, Ibadan with a spectrophotometer.
produced through enhanced fermentation. As reported by LeBlanc et al. [6], Onipede et al. [14] and Ogunremi et al. [15] all reported astonishing improvement in the nutritional qualities of cereals fermented with selected LAB strains. Some of these LAB strains were also documented to have utilized the original anti-nutritional compounds within the cereals and subsequently produced nutrient enhancing metabolites after the fermentation process.

3. Results and Discussion

3.1. Estimation of Microbial Abundance

Antibacterial fermentative LAB and secondary metabolites have been extensively reported as potential substitutes for synthetic compounds to guarantee the stability and safety of fermented cereal products [13]. These microorganisms produce excretery extracellular compounds (like lactic acid and other bioactive metabolites) that make the environment within the fermented product inhabitable for other spoilage microorganisms. After 24 hours of storage, the microbial abundance of naturally and enhanced-fermented Kunu were 233×10^5 and 153×10^5 CFU/mL respectively, while at the fifth day of storage, the aerobic bacterial abundance were 570×10^5 and 410×10^5 CFU/mL respectively (Table 1). The reduction in the aerobic colony forming units observed for Kunu samples produced through enhanced LAB fermentation might have been as a result of the antagonistic properties (through the possible production of bioprotective metabolites) of these LAB, which could in turn extend the shelf life of Kunu through the suppression of spoilage microorganisms.

Table 1. Bacterial abundance in Kunu samples.

Storage days	Natural fermentation	Enhanced fermentation
1	233×10^5	153×10^5
2	390×10^4	300×10^4
3	450×10^4	390×10^4
4	470×10^4	370×10^4
5	570×10^4	410×10^4

3.2. Proximate Analysis

The proximate analysis report (Table 2) revealed that crude protein, fat, total solid and acidity contents at 5.18, 1.22, 5.49 and 0.07% respectively were higher in Kunu samples produced through enhanced fermentation. As reported by Taiwo [5], much of the protein, fat content and other nutrients (usually concentrated in the testa and germ) in cereals and other crops are often lost through the techniques applied in their processing. Consequently, enhanced fermentation of these cereals with LAB species might provide a means of retaining more of such nutrients. Moisture content and pH were however higher in Kunu samples subjected to natural fermentation, this could have been due to the metabolic activities (including the production of acids and other extracellular metabolites) of the Lactobacillus species added to samples produced through enhanced fermentation. LeBlanc et al. [6], Onipede et al. [14] and Ogunremi et al. [15] all reported astonishing improvement in the nutritional qualities of cereals fermented with selected LAB strains. Some of these LAB strains were also documented to have utilized the original anti-nutritional compounds within the cereals and subsequently produced nutrient enhancing metabolites after the fermentation process.

Table 2. Proximate analysis of Kunu samples.

Proximate parameter	Natural fermentation	Enhanced fermentation
Crude protein (%)	4.41 ± 0.005	5.18 ± 0.006
Crude fiber (%)	0.11 ± 0.007	0.10 ± 0.000
Fat (%)	1.14 ± 0.005	1.22 ± 0.005
Ash (%)	1.59 ± 0.015	1.31 ± 0.005
Moisture content (%)	89.81 ± 0.005	89.51 ± 0.010
Total solid (%)	5.23 ± 0.035	5.49 ± 0.011
Acidity (%)	0.05 ± 0.001	0.07 ± 0.001
pH	4.53 ± 0.025	4.05 ± 0.051

Values are expressed as mean ±SE for each parameter

3.3. Hydrogen Peroxide Scavenging Activity

From the results obtained, Kunu samples (made from millet) appeared to generally possess better antioxidant activities when compared to ascorbic acid standard dilutions used in this study. Samples produced through enhanced fermentation however, appeared to possess better antioxidant potentials than those fermented naturally. At the dilution of 10% stock, sample produced through enhanced fermentation appeared to scavenge the test antioxidant (H_2O_2) better with 14% inhibition difference (Figure 1). Like the linear regression plot of the standard ascorbic acid antioxidant assay (Figure 2), percentage inhibition of hydrogen peroxide by Kunu samples decreased with increment in dilution. Inhibition of samples fermented naturally decreased from 99% to 72% with a stock dilution concentration of 60% to 10%, while Kunu produced through enhanced fermentation with Lactobacillus species inhibited H_2O_2 at a range of 99% to 80% with sample dilutions of 60% to 10% stock. Ogunremi et al. [15] also reported the possibility of better probiotic activities of cereal-based food produced with carefully selected combinations of microbial cultures used in the fermentation process.

There were significant correlations between the increments in inhibition of free radical by the ascorbic acid standard compared to the scavenging activities of Kunu samples produced through natural as well as through enhanced fermentation processes with coefficient of determinations of 0.98 and 0.96 respectively. The IC$_{50}$ defined as the linear regression plot concentration or proportion of antioxidant required to inhibit 50% of the radicals [16], for ascorbic acid standard, samples produced through natural and enhanced fermentation were all found to be at stock dilutions below 10%.
Figure 1. H$_2$O$_2$ scavenging by Kunu and standard samples.

Figure 2. Linear regression plot of H$_2$O$_2$ inhibition.

4. Conclusion

The enhanced fermentation technique used in this study is an easily applicable, economical, sustainable and consumer-friendly way to improve the nutritional value of processed millet. In addition to the improvement in antioxidant activity of Kunu revealed through H$_2$O$_2$ scavenging assay and the liner regression plot, enhanced fermentation of Kunu with L. reuteri, L. plantarum and L. acidophilus appeared to also improve its nutritional composition as well as reduce its microbial load, thereby contributing to the improvement in value and prolonging the shelf life of this beverage.

References

[1] Waters D. M., Mauch A., Coffey A., Arendt E. K., Zannini E. (2015). Lactic acid bacteria as a cell factory for the delivery of functional biomolecules and ingredients in cereal-based beverages: a review. Crit Rev Food Sci Nutr. 55: 503-520.

[2] Food and Agricultural Organization (2016). FAO Cereal Supply and Demand Brief, FAO; 2016.

[3] Omotade R. Ogunremi, Kolawole Banwo and Abiodun I Sanni (2017). Starter-culture to improve the quality of cereal-based fermented foods: trends in selection and application, Current Opinion in Food Science 13: 38-43.

[4] Abiodun O. A., Dauda A. O., Adebisi T. T. and Alonge C. D. (2017). Physico-chemical, microbial and sensory properties of kunu zaki beverage sweetened with black velvet tamarind (Dialium guineense). Croat. J. Food Sci. Technol. 9 (1): 1-11.

[5] Taiwo, A. A., Ademoyegun, J. A., Ijoma, T. A and Lawal O. (2017). Comparative study of nutritive composition and microbial level of Kunun sold in three campuses in Abeokuta, Sky Journal of Food Science 6 (1): 007–013.

[6] LeBlanc J. G., Laino J. E., del Valle M. J., Vannini V., van Sinderen D., Taranto M. P., de Valdez G. F., de Giorgi G. S. and Sesma F. (2011). B-Group vitamin production by lactic acid bacteria—current knowledge and potential applications. J Appl Microbiol, 111: 1297-1309.

[7] Bourdichon F., Casaregola S., Farrokh C., Frisvad J. C., Gerds M. L., Hammes W. P., Harrett J., Huy G., Lautus S. and Ouwend A. (2012). Food fermentations: microorganisms with technological beneficial use. Int J Food Microbiol 154: 87-97.

[8] Dilina do Nascimento Marreiro, Kyria Jayanne Climaco Cruz, Jennifer Beatriz Silva Morais, Jessica Batista Beserra, Juliana Soares Severo and Ana Raquel Soares de Oliveira (2017). Zinc and Oxidative Stress: Current Mechanisms. Antioxidants 2017, 6, 24; doi: 10.3390/antiox6020024.

[9] Arvind Preet Kaur, Kuldeep Singh and Ramandeep Kaur (2017). Evaluation of Antioxidant and Antimicrobial Activity of Syzygium cumin Leaves, Int. J. Curr. Microbiol. App. Sci 6 (2): 215-222.

[10] Agarry O. O., Nkama I. and Akoma O. (2010). Production of Kunun-zaki (A Nigerian fermented cereal beverage) using starter culture, International Research Journal of Microbiology 1 (2): 018-025.

[11] AOAC (2010). Official methods of Analysis, 15th edition, Association of Official Analytical Chemists Washington D. C., pp 210-225.

[12] Ruch R. J., Cheng S. J. and Klaunig E. (1989). Prevention of cytotoxicity and inhibition of intercellular communication by anti-oxidant catechins isolated from Chinese green tea. Carcinogenesis 10: 1003-8.

[13] Oguntoyinbo F. A. and Narbad A. (2015). Multifunctional properties of Lactobacillus plantarum strains isolated from fermented cereal foods. J Funct Foods, 17: 621-631.

[14] Onipede G. O., Banwo K., Ogunremi O. R. and Sanni A. (2014). Influence of starter culture lactic acid bacteria on the phytic acid content of sorghum-ogi (an indigenous cereal gruel). Ann Food Sci Technol 2014, 15: 121-134.

[15] Ogunremi O. R., Sanni A. I. and Agrawal R. (2015). Probiotic potentials of yeasts isolated from some cereal-based Nigerian traditional fermented food products. J Appl Microbiol, 119: 797-808.

[16] Sahoo Suprava, Ghosh Goutam, Das Debajyoti, Nayan Sanghamitra and Burtt B. L. (2013). Phytochemical investigation and in vitro antioxidant activity of an indigenous medicinal plant Alpinia nigra. Asian Pac J Trop Biomed 3 (11): 871-6.