Fluctuation-driven first order behavior near the $T = 0$ two dimensional stripe to fermi liquid transition

A. J. Millis

Department of Physics, Columbia University, 538 West 120th Street, New York, New York 10027, USA

(Dated: November 23, 2009)

The possibility is investigated that competition between fluctuations at different symmetry-related ordering wave vectors may affect the quantum phase transition between a fermi liquid and a longitudinal spin density wave state, in particular giving rise to an intermediate ‘nematic’ state with broken rotational symmetry but unbroken translational symmetry. At the marginal dimension the nematic transition is found to be preempted by a first order transition but a weak symmetry breaking field restores a second order magnetic transition with an intermediate regime in which correlations substantially enhance the broken rotational symmetry. Comparison to recent experiments is made.

PACS numbers: 71.10.Hf, 75.30.Fv, 05.30.Rt, 71.27.+a

‘Stripe’ spin density wave order occurs in many high-T_c cuprate materials. A spin density wave is a longitudinal modulation of the spin density $\vec{S}(\mathbf{R})$ characterized by a wavevector \mathbf{Q} giving the periodicity of the spin modulation. In a ‘stripe’, $2\mathbf{Q}$ is not a reciprocal lattice vector so the magnitude of the spin, as well as its direction, varies from lattice site to lattice site. If the underlying lattice has sufficient symmetry, stripe ordering may occur at one of several inequivalent wavevectors \mathbf{Q}_a. In the hole-doped high-T_c cuprates the important physics is two dimensional and the lattice has (to a good approximation) square symmetry. For dopings greater than about $x = 0.05$ and less than a material-dependent number ranging from 0.08 (in $YBa_2Cu_3O_{6+\delta}$) to 0.24 (in $Nd_{2-x}Sr_xCuO_4$) order is believed to occur at one of the two wave vectors $\mathbf{Q}_a = (\pi - \delta, \pi)$ or $\mathbf{Q}_y = (\pi, \pi - \delta)$ with δ doping-dependent and generically non-zero.

In a stripe state the expectation value of the spin density at position \mathbf{R}, $\vec{S}(\mathbf{R})$, may be written

$$\langle \vec{S}(\mathbf{R}) \rangle = \vec{A}_0 \cos (\mathbf{Q}_y \cdot \mathbf{R} + \theta_0)$$ \hspace{0.5cm} (1)

The state defined by Eq. 1 breaks spin rotation, lattice translation and lattice rotation symmetries. A phase characterized by a nonvanishing $\langle \vec{S}(\mathbf{R}) \rangle$ is also characterized by nonvanishing

$$\langle \mathcal{T}(\mathbf{R}) \rangle \equiv \langle \vec{S}(\mathbf{R}) \cdot \vec{S}(\mathbf{R}) \rangle - \langle \vec{S}(\mathbf{R}) \rangle \cdot \langle \vec{S}(\mathbf{R}) \rangle$$

$$\sim \cos (2\mathbf{Q}_a \cdot \mathbf{R} + 2\theta_0)$$ \hspace{0.5cm} (2)

where the double-bracket indicates also an average over position. \mathcal{T} is spin rotation invariant but breaks lattice translation and rotation symmetry if $2\mathbf{Q}$ is not a reciprocal lattice vector. (One may also consider bond order involving $\langle \vec{S}(\mathbf{R}) \cdot \vec{S}(\mathbf{R'}) \rangle$ but this will not be important here). \mathcal{T} couples linearly to lattice distortions and the electronic charge density, so is observable in scattering measurements and is sometimes referred to as ‘charge order’.

The ‘stripe’ state is also characterized by nonvanishing

$$\langle \eta(\mathbf{R}) \rangle = \langle \langle \vec{S}_{Q_x}(\mathbf{R}) \cdot \vec{S}_{Q_x}(\mathbf{R}) - \vec{S}_{Q_y}(\mathbf{R}) \cdot \vec{S}_{Q_y}(\mathbf{R}) \rangle \rangle$$ \hspace{0.5cm} (3)

where S_{Q_x} indicates spin fluctuations with wave vectors near Q_x. $\langle \eta \rangle$ is invariant under spin rotations and lattice translations but breaks the discrete lattice rotation symmetry and may be referred to as a nematic order parameter.

The three broken symmetries may be restored at separate transitions. (Very similar phenomena are well understood in the classical physics context of smectic and nematic liquid crystals). If spin order is destroyed by fluctuations in the direction of \mathbf{A} (as would happen in a two dimensional model with Heisenberg symmetry at any $T > 0$), $\langle \mathcal{T} \rangle$ and $\langle \eta \rangle$ may be expected to remain non-zero. If long ranged order in T is destroyed by fluctuations in θ, $\langle \eta \rangle$ may remain nonvanishing. In physical terms, the state with $\langle \vec{S} \rangle = \langle \eta \rangle = 0$ has the property that fluctuations around one of the \mathbf{Q}_a are larger than fluctuations around the other possible $\mathbf{Q}_{b\neq a}$.

Experimental evidence suggests that this sequence of transitions indeed occurs in some high T_c compounds. Many measurements indicate that in underdoped cuprates the ground state (if superconductivity is suppressed) is characterized by magnetic scattering at the wavevectors $Q_{x,y}$ and $2Q_{x,y}$ but not at $Q_x \pm Q_y$, implying that the scattering signal arises from a superposition of domains with order at either Q_x or Q_y. As temperature is raised above an ordered state the Bragg scattering at Q vanishes first, leaving an intermediate state with Bragg scattering only at $2Q_x$. Recent neutron scattering measurements on a monodomain sample of $YBa_2Cu_3O_{6.45}$ indicate a wide temperature regime where there is order neither at $Q_{x,y}$ nor at $2Q_{x,y}$ but where the fluctuations associated with ordering wavevector Q_x have much longer spatial range and stronger temperature dependence than the fluctuations associated with potential ordering wave vector Q_y. Transport measurements have detected rotational symmetry...
breaking2 and, recently, an enhancement of the Nernst effect in this temperature regime has been reported,12,13 also consistent13 with an intermediate nematic phase. Similar transport behavior in the (Nd/Sr)\textsubscript{2}CuO\textsubscript{4} family of materials has also been interpreted in terms of a nematic phase or regime.12 It is however important to note that the crystal structure of both of these materials is such that a CuO\textsubscript{2} plane is orthorhombically distorted so it may be more appropriate to describe the observed 'nematic' regime as being characterized by a strong and strongly doping and temperature-dependent enhancement of a pre-existing anisotropy.

Closely related issues have been discussed in the context of the pnictide material6,13 where 2\textit{Q} is a reciprocal lattice vector,13 so only the spin and nematic orders are relevant. Also in pnictides a strong coupling to lattice distortions believed to be important.

These and related experiments have focussed theoretical attention on 'nematicity'. A number of works consider nematic phases which are taken to be conceptually independent of any density wave ordering.2,13,14,15,17,18,19,20,21,22,23,24,25,26

This paper considers the density wave instability as prior to the nematic phase arising from it. The physical idea is straightforward: in a stripe situation, density wave ordering at one possible ordering wavevector \(\mathbf{Q}_s \) must act to suppress density wave ordering at the other possible wavevectors \(\mathbf{Q}_{\delta \parallel \delta} \).

Thus, as a putative 'stripe' quantum critical point is approached competition between fluctuations at different wavevectors may drive a 'nematic' transition at which the system chooses one wavevector at which the fluctuations will become critical, while fluctuations at the other wavevectors remain massive. Alternative possibilities are that the competition is important only for selecting the relevant state inside the density wave ordered phase, or that competition between fluctuations may drive the transition first order. In renormalization group language the question is whether there is a relevant operator at the stripe critical point and, if so, does it imply a flow to a new 'nematic' critical point or a runaway flow indicating a first order transition.

This paper approaches the physics in terms of a \(T = 0 \) instability of a disordered fermi-liquid phase using the standard 'Hertz' model of a density wave transition in a two-dimensional fermi liquid.24,25 The main finding is the phase diagram depicted in Fig 1 for lattices with square symmetry the quantum 'nematic' transition is typically preempted by a strongly first-order transition directly to a density wave state; however, a weak explicit symmetry breaking restores a continuous transition.

Incommensurate density wave transitions are the subject of an extensive literature,25,26 but the issue of interest here has been less studied. Physics similar to that of interest here has been explored in the context of classical spin models for cuprates24 and pnictides.13 Also, although their main focus was on transitions between nematic and density wave ordered states, Sun and co-workers observed22 that the basic fermi liquid to density wave transition would likely be first order. DePrato, Pelissetto and Vicari29 used renormalization group techniques to classify the quantum critical fixed points of a model of 'stripe' quantum criticality involving undamped spin excitations in two spatial dimensions, in particular identifying and analysing regimes of stable second order transitions. At these transitions there would be no intermediate nematic phase separating the density wave and disordered state.

Pelissetto, Sachdev and Vicari10 studied a spin density wave transition occurring inside a d-wave superconducting state. The most relevant perturbation involved coupling of nodal fermions to a nematic order parameter derived from the spin fluctuations in a manner very similar to what is considered here; however again the density wave transition was not preempted by a nematic one. Qi and Xu12 studied a spin-fermion model, finding a runaway flow also indicating first order transitions, but only at an exponentially long length scale.

A theory of the disordered spin density wave may be obtained from Eq 1 by regarding \(\mathbf{A} \) and \(\theta \) as slowly fluctuating quantities. We specialize to the two dimensional square (or rectangular) lattice. Because we are interested in the transition from a fermi liquid where all spin amplitudes are small we combine \(A_\alpha \) and \(\theta_\alpha \) into a new complex field

\[
\bar{\psi}_\alpha(r) = A_\alpha(r) e^{i\theta_\alpha(r)}
\]

which we assume is described
by the action $S = S_{\text{dyn}} + S_{\text{static}}$ with

$$S_{\text{static}} = \int d^2 r d\tau \sum_{a=x,y} \left(\frac{1}{2} \left| \nabla \psi_a \right|^2 + \frac{1}{2} \delta_a \left| \psi_a^\delta \right|^2 \right)$$

$$+ \int d^2 r d\tau \frac{u + v}{8} \left(\left| \psi_x^\delta \cdot \psi_x \right|^2 + \left| \psi_y^\delta \cdot \psi_y \right|^2 \right)$$

$$+ \frac{u - v}{8} \left(\left| \psi_x^\delta \cdot \psi_x \right|^2 - \left| \psi_y^\delta \cdot \psi_y \right|^2 \right)^2$$

The δ_a are control parameters (for example, doping) which tune the system through the magnetic quantum critical point and we have allowed for the possibility that deviations from tetragonal symmetry favor ordering in one direction rather than another. Because the experimental evidence in high-T_c materials indicates that spin fluctuations are strongly peaked near discrete momentum values we do not need to consider the possibility of a continuous rotation of the wavevector and any potential nematic phase would have a strong Ising anisotropy.

Of the six possible quartic nonlinearities (see [25] for a complete list) Eq (4) includes only the two which are important for the present purpose, neglecting terms which favor spiral and other non-stripe states or renormalize the basic stiffness against large amplitudes of the fields. The crucial term is the third one, which quantifies the fluctuations compete. On the mean field level stability of this theory requires that $u > 0$ and $v > -u$.

We assume standard overdamped dynamics. For ease of writing we present S_{dyn} in frequency space:

$$S_{\text{dyn}} = \frac{1}{2} \sum_{a=x,y} T \sum_n \int d^2 r \frac{1}{\Gamma} \left| \Omega_n \right| \left| \psi^n \cdot \psi^n \right|$$

The theory requires an ultraviolet cutoff. We measure energy in units of Γ and impose a hard cutoff, eliminating all processes for which $\left| \Omega \right| / \Gamma + k^2 > \Lambda$. Qi and Xu [13] studied essentially this model, but with an additional $(\psi x^\delta \cdot \psi y)^2$ coupling.

As defined the upper critical dimension of the model is $d = 2$ and the physics may be studied by a renormalization-group analysis. The required beta functions are given in Eq (3.1) of [25]. It is useful define new variables g and ϕ by $u = g \cos \phi$, $v = g \sin \phi$ which flow according to (here the dot denotes changes with renormalization group cutoff parameter)

$$\dot{g} = - \left(7 \cos^3 \phi + 11 \cos \phi \sin^2 \phi + 2 \sin^3 \phi \right) g^2$$

$$\dot{\phi} = \left(3 \sin^3 \phi - 2 \sin^2 \phi \cos \phi - \sin \phi \cos^2 \phi \right) g$$

Because $\dot{g} \sim g^2$ while $\dot{\phi} \sim g$, g flows much more rapidly than g and the content of the theory may be understood from a constant g. In Eq (7) the angle $\phi/4$ (corresponding to $u = v$) is a separatrix. For $\phi < \pi/4$ the flow is towards $\phi = 0$, but in the $\phi > \pi/4$ case relevant to stripe physics the flow is towards a fixed point value which is close to π. Noting that u turns negative at $\phi = \pi/2$ we see that the renormalization group analysis indicates that when the flow passes this point the two dimensional stripe fixed point becomes unstable towards a first order transition. The basic conclusion is perhaps not surprising: the model of two coupled order parameter fields is a textbook example of a runaway flow leading to a first order transition. De Prato et al. [25] observed that their more general renormalization group equations had only unstable fixed points near the marginal dimension and Sun et. al. noted that multicritical points of this type tend to be unapproachable due to the presence of runaway flows.

Qi and Xu [15] similarly noted the possibility of a runaway flow. The equations of [15] involve three couplings and are thus more complicated to solve. A numerical solution was presented which indicated a runaway flow, albeit beginning at an exponentially low scale, whereas what is found here is a first order transition at a scale which is not, in general, exponentially small.

The first order nature of the transition arises from competition between fluctuations associated with the two ordering wave vectors. An explicit symmetry breaking term (arising e.g. from the chains in YBCO) would grow under renormalization and if it became large enough, would quench the fluctuations at one of the two wave vectors, thereby permitting a continuous behavior. To understand the energy scales involved in this scenario we consider a self-consistent one-loop analysis, which while less rigorous than a renormalization group treatment has a transparent physical interpretation and allows for straightforward estimations of energy scales.

To implement the self consistent one loop theory we write the model as a functional integral and decouple the nonlinearities $|\psi_x|^2 + |\psi_y|^2$ and $|\psi_x|^2 - |\psi_y|^2$ by Hubbard-Stratonovich fields λ and η respectively and then integrate over the ψ fields obtaining the action

$$S[\lambda, \eta] = \frac{\lambda^2}{2(v + u)} + \frac{\eta^2}{2(v - u)} + \frac{3}{2} T r \ln[\Pi_0 + \delta x + i \lambda + \eta]$$

$$+ \frac{3}{2} T r \ln[\Pi_0 + \delta y + i \lambda - \eta]$$

with $\Pi_0 = |\Omega| + k^2$. Eq (8) is written for the paramagnetic phase; the factor of 3 is the spin degeneracy. Mean field theory corresponds to finding the λ^* and η^* which extremize S. The extremal values of λ are imaginary; we write $i \lambda = \delta - r$ with $\delta = (\delta_x + \delta_y)/2$ and introduce $\Delta = (\delta_x - \delta_y)/2$ which parametrizes any explicit breaking of tetragonal symmetry. The correlation length $\xi_{x,y}^2$ for spin fluctuations around the wavevectors $Q_{x,y}$ is $\xi_{x,y}^2 = r \pm (\eta + \Delta)$. In the paramagnetic phase $\xi_{x,y}^2 > 0$. If one of the fields, say ψ_y, orders then the Heisenberg symmetry ensures that the two transverse components are gapless $(\xi_{y,y}^2 = 0)$ while the longitudinal component has a correlation length determined by the magnetization m, $(\xi_{x,y}^2 = m^2)$ so that the term $\frac{3}{2} T r \ln[\Pi_0 + \delta y + i \lambda - \eta] \rightarrow T r \ln[\Pi_0] + \frac{1}{2} T r \ln[\Pi_0 + m^2]$.

Fang et al. presented a large-N analysis of a classical spin model which leads to a theory very similar to that defined by Eq 8 if \(\delta \) is chosen to be deep in the ordered phase so quantum fluctuations are unimportant.

Defining \(\delta_{\text{crit}} \) to be the value at which \(S \) is extremized at \(\Delta = r_x = r_y = 0 \), redefining \(\delta_{x,y} \) as the difference from \(\delta_{\text{crit}} \), introducing \(\bar{u}(\bar{v}) = 3u(v)/4\pi^2 \) and explicitly carrying out the minimization in the paramagnetic phase at \(T = 0 \) we obtain:

\[
\begin{align*}
\delta_x &= r_x \left(1 + \bar{u} \ln \frac{1}{r_x} \right) + \bar{v} r_y \ln \frac{1}{r_y} \\
\delta_y &= r_y \left(1 + \bar{u} \ln \frac{1}{r_y} \right) + \bar{v} r_x \ln \frac{1}{r_x}
\end{align*}
\] (9,10)

In the tetragonal symmetry case \(\Delta = 0 \) and at \(\bar{\delta} > 0 \) Eqs 9,10 admit an isotropic solution \(r_x = r_y > 0 \) corresponding to the conventional paramagnetic phase. However, for \(v > u \) one finds that as \(\delta \) is decreased below a critical value \(\delta_{\text{nem}} > 0 \) the isotropic solution undergoes a bifurcation to a solution with \(r_x \neq r_y \). (Fang et al. found a very similar transition, in their case thermally driven). This is a nematic phase: the nematic order parameter is \(\eta \), which goes a bifurcation to a solution with \(\eta > 0 \) at \(\delta = \delta_{\text{nem}} \) and \(\bar{\delta} > 0 \). This acts analogously to a magnetic field at a ferromagnetic transition and, if large enough, will convert the first order transition to a continuous one. The small value of \(\delta_{\text{nem}} \) suggests that the symmetry breaking field need not be large. Fig 2 presents results obtained by solving Eqs 9,10 for \(\delta_x = \delta_y + \Delta \) with anisotropy parameters \(\Delta \) as indicated and interactions \(\bar{u} = 0.3 \) and \(\bar{v} = 0.6 \).

However, within mean field theory this critical point is typically preempted by a first order transition to a state with long-ranged stripe order. The first order transition manifests itself as a failure of numerical routines to find a solution to Eqs 9,10 as \(\delta \) is decreased below a spinodal value greater than \(\delta_{\text{nem}} \), and may also be seen more directly.

We have computed the energy of a magnetized state by generalizing Eq 8 as described above. We find that if \(\delta = \delta_{\text{nem}} \) an ordered state with \(r = \pm \eta \) and \(m > 0 \) exists and has lower energy than the paramagnetic phase, provided that \(\bar{v} \) is not too large. Thus at some \(\delta > \delta_{\text{nem}} \) the system will jump from the isotropic paramagnetic phase to a phase with long ranged order. The largest \(\delta \) at which an ordered phase may be sustained may be ascertained from the \(\delta \) at which there is a solution to Eqs 9,10 with \(r_y = 0 \) and \(r_x > 0 \). This \(\delta = \delta_{1^{st}-\text{order}} \) is

\[
\delta_{1^{st}-\text{order}} = \frac{\bar{v} e^{-\frac{1}{\bar{v} - \bar{u}}} - \frac{e}{2 + \bar{v} - \frac{\bar{u}^2}{\bar{v}}} \delta_{\text{nem}}}{\bar{v} - \bar{u}}
\] (12)

By comparison of energies we find that if \(\delta_{1^{st}-\text{order}} > \delta_{\text{nem}} \) the nematic transition is preempted by a first order transition. As the second equality of Eq 12 shows, for \(\bar{v} > v_c(u) \) with \(v_c(u = 0) = e - 2 \approx 0.718 \), \(\delta_{\text{nem}} > \delta_{\text{order}} \) so that a second order transition can exist at large \(v \). However, in the large \(\bar{v} \) regime in which the transition (within the present theory) is second order, substitution into the defining equations shows that the renormalized mass \(r \) is of the order of the cutoff, indicating that the second order transition occurs in a regime beyond the range of validity of the critical theory. We interpret this result as meaning that the nematicity arising in the large \(v \) case is an intrinsic phenomenon arising from short length scale physics and not directly related to the singular magnetic critical fluctuations.

We are now in a position to consider the effects of an explicit breaking of the \(C_4 \) lattice rotational symmetry, such as occurs in \(YBa_2Cu_3O_6+x \) and \(Nd_{2-x}Sr_xCuO_4 \). This acts analogously to a magnetic field at a ferromagnetic transition (in the case where the \(Q \) model defined by Eq 4 this would occur if \(v \) is large, both absolutely and relative to \(u \)) or the first order transition preempts the \(T = 0 \) nematic phase. Models with intrinsic nematicity have been extensively discussed elsewhere, and will not be considered here. In the case where the \(T = 0 \) nematic phase
is preempted by a first order transition there remains the
possibility of nematic behavior at $T > 0$.

Indeed the model defined in Eq. [3] trivially exhibits ne-
matic behavior if parameters are chosen so that the model
is in the magnetically ordered state at temperature $T = 0$
and if charge order is not important (for example because
$2Q$ is a reciprocal lattice vector). The ordered state must
select one of the two wavevectors, say Q_x. The Heisen-
berg symmetry and two dimensionality then implies that
if temperature is slightly raised above the ordered state,
fluctuations near Q_x have a correlation length of the
'renormalized classical' form $\xi \sim \exp[\rho_s \delta/T]$ while fluctu-
ations near Q_y have a relatively short and weakly tem-
perature dependent correlation length, so the resulting
state is a 'nematic'. The question then is whether this
'thermal spin nematic' behavior vanishes via a first or a
second order transition. If a weak interlayer coupling is
added to the model one may ask if the nematic behavior
survives at temperatures higher than the three dimen-
sional ordering temperature (this issue was addressed in
the classical model of Ref [14]). If charge order is also
important, one may ask if the nematic behavior vanishes
at the charge ordering temperature or at a higher tem-
perature, and what are the orders of the transitions.

Clearly a transition which is first order at $T = 0$ re-
mains first order as the phase boundary is extended to
$T > 0$, at least within some distance of the zero temper-
ature transition, so an extension of the present results
to $T > 0$ would suggest a first order thermal transition,
for example, one may define a 'nematic susceptibility' via the correlation func-
tion $\langle \psi_x^2 - \psi_y^2 \rangle$. This correlator is closely related to the energy correlator that defines the specific heat ex-
pONENT. The gaussian model dramatically overestimates
the divergence of the specific heat near $2D$ and $3D clas-
sical transitions and may well similarly overestimate the
divergence of the 'nematic susceptibility'.

Despite these difficulties it is interesting to relate the
picture presented here to data. The essential point is that
in models in which 'nematicity' is derived from competi-
tion between density wave ordering at several wavevectors,
the nematic phase may be preempted by a first order transition, but if the lattice rotational symmetry
is explicitly broken a more continuous behavior may be
restored. There is no direct evidence that stripe order
terminates at a first order quantum critical point in any
cuprate, although we note that phase coexistence, a typ-
ical consequence of first order phase boundaries, is com-
mon in cuprate materials. The strongest evidence in
favor of a nematic regime comes from the $YBCO$ and
$(Nd/Sr)_2CuO_4$ families of materials [14], where the lat-
tice symmetry is explicitly broken. It is very tempting to
argue that the symmetry breaking pushes the system into
the continuous transition regime identified above. It may
also be worthwhile to reexamine the data to determine if a local lattice distortion (favoring one or the other wave vector) is present or if a hysteresis has been overlooked.

In summary, this paper has posed the question of the existence of an intermediate nematic phase separating a stripe and a fermi liquid phase in terms of fluctuation corrections to a putative 'stripe' quantum critical point. The physics that can lead to a nematic phase also leads naturally to a fluctuation-driven first order transition, which near the quantum critical point was found to preempt the nematic phase. The first order transition is not inevitable. If parameters were tuned so that the nematic transition occurs 'far' from the putative stripe quantum critical point so that the 'nematicity' is an intrinsic effect and not driven by critical density wave fluctuations, then the considerations of this paper are not relevant.

It was found that the first order transition could be converted to second order by a quite small anisotropy. The analysis relied on approximations including the self-consistent one-loop theory (which is uncontrolled) and the Hertz quantum critical theory (which is subject to corrections whose nature remains incompletely understood\cite{26}) but the first order behavior discussed here follows from relatively general considerations and seems likely to be robust. In systems where nematic behavior was found a re-examination of experimental data for signatures of first-order transitions (for example, hysteresis and phase coexistence) may be worthwhile. Extension of the results presented here to $T > 0$, to include coupling to the lattice, and to other situations, such as the metamagnetic transition in $Sr_3Ru_2O_7$, would be of interest.

Acknowledgements: I thank E. Fradkin, E. Kim, M. Lawler, T. Lubensky, M. Norman, S. Sachdev, J. Schmalian, L. Taillefer and C. Xu for helpful discussions and the New York University Department of Physics for hospitality. This work was supported by NSF-DMR-0705847 and benefitted in an essential way from interactions with members of the CIFAR quantum materials program.

References:

1. J. M. Tranquada, B. J. Sternlieb, J. D. Axe, Y. Nakamura, and S. Uchida, Nature 375, 561 (1995).
2. Y. Ando, K. Segawa, S. Komiyaa, and A. N. Lavrov, Phys. Rev. Lett. 88, 137005 (2002).
3. N. Doiron-Leyraud et al., Nature 447, 565 (2007).
4. V. Hinkov, D. Haug, B. Fauque, P. Bourges, Y. Sidis, A. Ivanov, C. Bernhard, C. T. Lin, and B. Keimer, Science 319, 597 (2008).
5. N. Ichikawa et al., Phys. Rev. Lett. 85, 1738-1741 (2000).
6. Daou R et al. Nat. Phys. 5, 31 (2009).
7. L. Taillefer, J. Phys.:Cond. Matt. 21, 164212 (2009).
8. E. Fradkin, S. Kivelson, M. Lawler, J. Eisenstein, and A. Mackenzie, arXiv:0910.4166.
9. R. Daou, J. Chang, David LeBoeuf, Olivier Cyr-Choiniere, Francis Lalibert, Nicolas Doiron-Leyraud, B. J. Ramshaw, Ruixing Liang, D. A. Bonn, W. N. Hardy and Louis Taillefer, arXiv:0909.4330 (2009).
10. S. A. Kivelson, E. Fradkin, and V. J. Emery, Nature 393, 550 (1998).
11. P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics, Cambridge University Press: Cambridge, UK, (1995).
12. O. Cyr-Choiniere et al., Nature 458, 743 (2009).
13. A. Hackl and M. Vojta, arXiv:0909.4534 (2009).
14. Chen Fang, Hong Yao, Wei-Feng Tsai, JiangPing Hu, and Steven A. Kivelson, Phys. Rev. B77, 224509 (2008).
15. Y. Qi and C. Xu, Phys. Rev. B80, 094402 (2009).
16. C. de la Cruz, Q. Huang, J. W. Lynn, J. Li, W. Ratcliff II, J. L. Zarestky, H. A. Mook, G. F. Chen, J. L. Luo, N. L. Wang, and P. Dai, arXiv:0804.0795 (unpublished).
17. C. J. Halboth and W. Metzner, Phys. Rev. Lett. 85, 5162 (2000).
18. H. Yamase and H. Kohno, J. Phys. Soc. of Jpn. 69, 332 (2000).
19. Huh Y, Sachdev S, Phys. Rev. B78, 064512 (2008).
20. E. Gull, O. Parcollet, P. Werner and A. J. Millis, arXiv:0909.1795.
21. M. J. Lawler and E. Fradkin, Phys. Rev. B75, 033304 (2007).
22. Kai Sun, Benjamin M. Fregoso, Michael J. Lawler, and Eduardo Fradkin, Phys. Rev. B77 224509 (2008).
23. E.-A. Kim, M. J. Lawler, P. Oreto, E. Fradkin, and S. A. Kivelson, arXiv:0705.4099.
24. J. A. Hertz, Phys. Rev. B14, 1165 (1976).
25. A. J. Millis, Phys. Rev. B48, 7183 - 7196 (1993).
26. A. Abanov, A. V. Chubukov, and J. Schmalian, Adv. Phys. 52 119 (2003).
27. E. Fawcett, H. L. Alberts, V. Yu. Galkin, D. R. Noakes, and J. V. Yakhmi, Rev. Mod. Phys. 66, 25 - 127 (1994).
28. C. Fang, J. Hu, S. Kivelson, and S. Brown, Phys. Rev. B74, 094508 (2006).
29. M. De Prato, A. Pelissetto, and E. Vicari Phys. Rev. B74 144507 (2006).
30. Andrea Pelissetto, Subir Sachdev, and Ettore Vicari, arXiv:0802.0199.
31. K. Xu, Y. Qi and S. Sachdev, Phys. Rev. B78 134507 (2008).
32. J. Rudnick, Phys. Rev. B18, 1406 (1978).
33. J. Cardy, Scaling and Renormalization in Statistical Physics, Cambridge University Press, Cambridge, UK (1996).
34. V. Barzykin and L. P. Gorkov, Phys. Rev. B79 134510 (2009).