The European Journal of Health Economics (2023) 24:1271–1283
https://doi.org/10.1007/s10198-022-01540-z

The effect of hepatitis C—associated premature deaths on labour productivity losses in Spain: a ten-year analysis

L. M. Peña-Longobardo1 · J. Oliva-Moreno1 · C. Fernández-Rodriguez2

Received: 8 July 2021 / Accepted: 11 October 2022 / Published online: 10 November 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Hepatitis C virus (HCV) infection causes a substantial economic burden, not only in terms of healthcare costs, but also in labour productivity losses. The main objective of this study is to provide objective and comparable information about the trend in labour productivity losses caused by premature HCV-associated deaths in Spain in recent years (2009–2018). We used nationwide data from several official sources to create a simulation model based on the human capital approach and to estimate the flows in labour productivity losses due to deaths identified in the period considered. Based on a pessimistic scenario, the annual number of deaths due to HCV infections decreased by 19.7% between 2009 and 2018. The years of potential labour productive life lost (YPLPLL) decreased by 38.1%. That reduction led to a decrease in annual labour productivity losses from €236 million in 2009 to €156 million in 2018 (−33.8%). The aggregate HCV-related labour productivity losses between 2009 and 2018 ranged from €1742 million (optimistic scenario) to €1949 million (pessimistic scenario), with an intermediate estimation of €1846 million (moderately optimistic scenario). These results show a substantial reduction in annual deaths, working-age deaths, YPLPLL, and labour productivity losses associated with HCV infection over this period.

Keywords Hepatitis C · Labour productivity losses · Labour losses · Premature death · Social costs · Spain

JEL Classification I0 · I1 · I30

Introduction
Chronic hepatitis C is a lifelong liver disease caused by an RNA virus infection, whose manifestations can range from mild to severe chronic illness, with systemic involvement and liver-related complications frequently leading to cirrhosis and hepatocellular carcinoma (HCC). In recent decades, this condition has represented an important challenge to public health and healthcare systems worldwide. In fact, it is currently estimated that there are 70 million people with active hepatitis C virus (HCV) infection worldwide, representing a global prevalence of chronic infection of 1%, with a wide geographic variability [1, 2].

Although many patients with HCV remain asymptomatic for years, in many countries HCV is the most frequent cause of liver cirrhosis, HCC, and liver transplantation. In addition, many patients develop nonspecific symptoms, such as fatigue, muscle and osteoarticular pain, disturbed mental concentration and sleep, anxiety, depression, appetite changes, and digestive disorder, with different grades of severity [3, 4], affecting their health-related quality of life [5]. Between 55 and 85% of cases of acute HCV infection progress to chronic hepatitis C [6], which, without adequate treatment, may lead to advanced liver fibrosis and the above-mentioned complications [7].

The serious health effects of hepatitis C result in a heavy burden on individual and social well-being. The strong economic effect of the virus has been analysed in the literature. The perspective of the healthcare payer is more prevalent [8], although there is a notable number of works that have analysed other social costs. One of the most affected dimensions is the reduced work capacity of people infected with HCV due to the HCV-related symptoms and the progression to end-stage liver disease. HCV reduces patient productivity in the workplace through both absenteeism and presenteeism [9], as well...
as through long-term or permanent sick leave [10] and the premature death of working-age people [11]. Although the results vary widely between countries [12] and depend on the severity of the disease [13], a recent review of the literature indicates that the non-healthcare costs caused by hepatitis C could be as high as the healthcare costs [14].

A paradigm shift in the treatment of HCV infection occurred with the introduction of the second-generation Direct-Action Antivirals (DAAs) [15, 16]. These drugs, which are highly effective with virtually no side effects, have drastically improved recovery rates, survival, and quality of life; delayed or prevented the onset of severe disease complications, such as cirrhosis, decompensation, and HCC [17–21]; and helped prevent HCV transmission. These results have led to the consideration of strategies to eliminate HCV infection, and the World Health Organization (WHO) global target is a reduction of 90% in incident cases and a reduction of 65% in mortality by 2030 [22], but only a few countries are likely to reach this target [23]. Thus, improvements in HCV screening and treatment uptake are needed globally to make HCV elimination attainable.

Recent studies indicate that the second-generation DAAs are associated with lower labour productivity loss through reductions in both absenteeism and presenteeism [4, 24–27]. However, there are no studies addressing the recent changes in level of labour productivity caused by premature deaths associated with HCV.

The management of HCV in Spain is quite interesting in several respects. First, the recently estimated prevalence of HCV antibodies in the general population aged 20–80 years was 0.85% (95% CI 0.64–1.08) and that of active infection was 0.22% (95% CI 0.12–0.32) [28], a sharp contrast with the incidence rates before the introduction of DAAs (incidence rate estimated at 1.15% [29]). Spain was one of the first countries to introduce the second-generation DAAs and has treated HCV infection aggressively. In addition, these figures reflect the considerable investment in health resources directed towards HCV infection in recent years [30, 31]. However, no study has analysed the social effects of increased labour productivity loss caused by premature death [11]. Therefore, the aim of this paper is to estimate the labour productivity loss caused by premature deaths associated with HCV in Spain from 2009 through 2018.

Methods and data

Theoretical framework

The underlying theoretical framework was the Human Capital approach (HC) [32, 33]. This method considers that a person’s labour productivity can be measured by his/her earnings. It assumes that the withdrawal of an individual’s labour due to premature death or disability is a loss to society because of that individual’s future lost production.

Based on the HC theory, a simulation model was used to estimate the present and future labour production loss due to premature deaths caused by hepatitis C, considering the age of death of each individual as well as the employment rate and wage by gender and age. We restrict our estimate to labour productivity losses, and we do not consider in our estimate the productivity losses due to unpaid work or leisure time.

The number of deaths in each age group was then multiplied by the average of the remaining life expectancy for that age and gender.

Second, the number of years of potential labour productive life lost (YPLL) through the premature deaths of n individuals was calculated as follows:

\[\text{YPLL} = \sum_{i=1}^{n} L_i \]

where \(L \) is the average remaining life expectancy for that age and gender.

Finally, the calculated YPLL was multiplied by sex- and age-specific wages, adjusting by employment rate, between age of death and retirement age. Labour productivity losses (LPL) can thus be estimated as follows:

\[\text{LPL} = \sum_{i=1}^{n} \text{YPPLL}_i \times S_i \times e_i \]

where \(S \) is the wage adjusted by gender and age, and \(e \) is the employment rate adjusted by gender and age.

Data

Three different databases were used to estimate the labour productivity losses associated with premature deaths among patients with hepatitis C. The first, the Spanish Structural Wage Survey was performed by the National Statistics Institute for the period considered in this analysis (2009–2018). The purpose of this survey was to provide information about
earnings (both cash and payments in kind) for work done. The gross earnings included social security contributions made by employers and were adjusted by gender and age group.

The second database used was the Labour Force Survey which is performed by the National Statistical Institute and gives information about the employment rate. This was defined as the number of people employed (i.e. those individuals aged 16 or older who had been working for at least one hour during the reference week) expressed as a percentage of the number of working-age people. This employment rate was also adjusted by gender and age for each year considered. To obtain the employment rate of people with HIV (considered as a subcategory), the Hospital Survey on HIV-AIDS was used, provided by the General Secretariat of the AIDS Plan. This is a cross-sectional containing clinical and sociodemographic information about individuals living with HIV for the period considered.

The Death Registry, maintained by the National Statistics Institute, was used to obtain information about deaths due to hepatitis C and other HCV-related illness by cause of death. The Death Registry also indicates the age and gender of the deceased person.

Method for estimating the number of deaths attributable to HCV

To ascertain the direct contribution of HCV infection to liver-related deaths, we applied the attributable fraction (AF) method so that we only consider those liver-related deaths attributable to chronic hepatitis C [34–39]. The AF is the difference between overall average risk of the entire population (exposed and unexposed people) and average risk in the unexposed, expressed as a fraction of the overall average risk. One of the most frequent interpretations of the AF is the proportion of disease risk or incidence (premature deaths in our study) that could be eliminated from the population if exposure (to HCV) were eliminated [40, 41]. The AF is then calculated from the prevalence of hepatitis C infection in some specific underlying diseases such as cirrhosis, HCC, other hepatic diseases or HCV co-infection [42].

For the imputation of AF, we followed the recent work of Duarte et al. [43]. These authors appraised the quality of the data, highlighting gaps in the current data, and estimated mortality attributable to hepatitis B virus and HCV, for thirty-one EU/European Economic Area countries, including Spain, from 2010 to 2015. However, the time horizon of the chosen study did not allow the incorporation of the changes in AFs derived from the recent therapeutic improvements. Because we did not find any works updating this information, we worked with three complementary frameworks. The first of them, the pessimistic scenario, assuming that the introduction of second-generation DAAs did not involve changes in the AFs of deaths due to cirrhosis, HCC, other hepatic diseases or HCV/HIV co-infection. A second scenario, moderately optimistic, which involves assuming a favourable relative change of 25% in the AFs indicated from 2016 onwards. A third scenario, optimistic, which involves assuming a favourable relative change of 50% in the AFs indicated from 2016 onwards. Table 1 summarizes the codes from the International Classification of Diseases, Tenth Revision, that were analysed and the AFs for the diseases considered, indicating the values used from 2009 to 2015 and 2016 to 2018.

In sum, we estimated labour productivity losses by multiplying the number of premature deaths associated with HCV in the period 2009–2018 by the present value of future lifetime earnings. Estimated labour earnings consider 10 age-group classification (16–19; 20–24; 25–29; 30–34; 35–39; 40–44; 45–49; 50–54; 55–59; 60–64 years old for men and women) and estimations are adjusted by labour force participation rates for each group.

Sensitivity analysis

For the baseline case, an annual discount rate of 3% and an annual labour productivity growth rate of 1% were applied to the values obtained for future income. Two alternative discount rates (0% and 6%) were also applied as a sensitivity analysis, as well as two alternative productivity growth rates (0% and 2%). Monetary values were converted to constant 2018 euros (the base year), applying the gross domestic product deflator for Spain.

Results

Pessimistic scenario

Based on the pessimistic scenario associated with attributed risk fractions, there were 39,640 deaths directly attributable to HCV and to diseases directly attributable to that infection. Of these, 6942 deaths (17.5%) were recorded as being directly due to hepatitis C, 16,276 (41.1%) to HCC, 12,308 (31.0%) to cirrhosis, 3960 (10.0%) to other HCV-associated liver conditions, and 155 (0.4%) to HIV-HCV co-infection. There were 13,498 working-age deaths directly attributable to HCV and to diseases directly attributable to that infection. Of these, 2285 (16.9%) were recorded as being directly due to hepatitis C, 4772 (35.4%) to HCC, 4884 (36.2%) to cirrhosis, 1404 (10.4%) to other HCV-associated liver conditions, and 152 (1.1%) to HIV-HCV co-infection (Table 2). These deaths resulted in 146,181 YPLLPLL, of which 29,330 (20.1%) were directly attributable to hepatitis C, 45,111 (30.9%) to HCC, 32,298 (35.8%) to cirrhosis,
16,614 (11.4%) to other HCV-related hepatic disorders, and 2827 (1.9%) to HIV-HCV co-infection.

Once correction factors were applied to labour productivity losses attributable to HCV infection between 2009 and 2018, the labour productivity losses caused by premature deaths associated with hepatitis C in Spain amounted to €1949 million, ranging from €236 million in 2009 to €156 million in 2018. Of the estimated total losses, €401 million (20.6%) were recorded as being due to hepatitis C, €608 million (31.2%) to HCC, €696 million (35.7%) to cirrhosis, €213 million (10.9%) to other liver diseases, and €31 million (1.6%) to HIV-HCV co-infection (Table 2).

Moderately optimistic scenario

With regard to the changes in the numbers of working-age deaths, as well as the YPLPLL and the labour productivity loss associated with hepatitis C, all were evaluated favourably, having shown a decreasing trend in Spain between 2009 and 2018. More precisely, after applying the AF, the results obtained show that between 2009 and 2018 there were 37,299 deaths directly attributable to HCV and to diseases directly attributable to that infection. Of these, 6942 deaths (18.6%) were recorded as being directly due to hepatitis C, 15,061 (40.4%) to HCC, 11,457 (30.7%) to cirrhosis, 3681 (9.9%) to other HCV-associated liver conditions, and 152 (0.4%) to HIV-HCV co-infection (Table 3). There were 12,710 working-age deaths directly attributable to HCV and to diseases directly attributable to that infection. Of these, 2285 deaths were recorded as being directly due to hepatitis C (18.0% of total working-age deaths), 4409 (34.7%) to HCC, 4556 (35.8%) to cirrhosis, 1310 (10.3%) to other HCV-associated liver conditions, and 149 (1.2%) to HIV-HCV co-infection (Table 3). These deaths resulted in 138,735 YPLPLL, of which 29,330 (21.1%) were directly attributable to hepatitis C, 42,022 (30.3%) to HCC, 49,019 (35.3%) to cirrhosis, 15,592 (11.2%) to other HCV-related hepatic disorders, and 2772 (2.0%) to HIV-HCV co-infection (Table 3).

Once correction factors were applied to labour productivity losses attributable to HCV infection between 2009 and 2018, the labour productivity losses caused by premature deaths associated with hepatitis C in Spain were estimated at €1846 million, ranging from €236 million in 2009 to €122
The effect of hepatitis C—associated premature deaths on labour productivity losses in Spain:…

Of the total loss estimated, €401 million (21.7%) were recorded as being directly due to hepatitis C, €565 million (30.6%) to HCC, €650 million (35.2%) to cirrhosis, €199 million (10.8%) to other liver diseases, and €31 million (1.7%) to HIV-HCV co-infection (Table 3).

Optimistic scenario

Based on an optimistic scenario in relation to attributed risk fractions, there were 34,958 deaths directly attributable to HCV and to diseases directly attributable to that infection. Of these deaths, 6942 (19.9%) were recorded as being due to hepatitis C, 13,858 (39.6%) to HCC, 10,606 (30.3%) to cirrhosis, 3403 (9.7%) to other HCV-associated liver conditions, and 148 (0.4%) to HIV–HCV co-infection (Table 4). Moreover, the results show that throughout the period considered, there were 11,922 working-age deaths directly attributable to HCV and to diseases directly attributable to that infection. Of these, 2285 deaths (19.2%) were recorded as being directly due to hepatitis C, 4046 (33.9%) to HCC, 4229 (35.5%) to cirrhosis, 1216 (10.2%) to other HCV-related hepatic disorders, and 146 (1.2%) to HIV-HCV co-infection.
million (10.6%) to other liver diseases, and €30 million (1.70%) to HIV-HCV co-infection (Table 4).

Sensitivity analysis

Two alternative discount rates (0% and 6%) and two alternative labour productivity growth rates (0% and 2%) were also applied as a sensitivity analysis.

Considering the first sensitivity analysis (2–0%), the labour loss attributable to HCV infection between 2009 and 2018 was valued at €2559 million, ranging from €318 million in 2009 to €198 million in 2018 under the pessimistic scenario. In the case of the moderately optimistic scenario, the loss reached €2481 million, ranging from €318 million to €155 million in 2009 and 2018, respectively. Finally, under the optimistic scenario for the same period, the loss was €2302 million, ranging from €318 million to €113 million (Table 5).

Considering the second sensitivity analysis (0–6%), the labour loss attributable to HCV infection between 2009 and 2018 was valued at €1571 million, ranging from €187 million in 2009 to €129 million in 2018 under the pessimistic scenario. In the case of the moderately optimistic scenario, the loss reached €1486 million, ranging from €187 to €101 million in 2009 and 2018, respectively. Finally, under the optimistic scenario for the same period, the loss was €1401 million, ranging from €187 million to €73 million (Table 6).

Discussion

The results show that throughout the period considered, annual deaths, working-age deaths, YPLPLL, and labour productivity losses associated with HCV infection experienced a substantial reduction. Despite that reduction, the
The effect of hepatitis C—associated premature deaths on labour productivity losses in Spain:…

Aggregate labour productivity losses associated with HVC between 2009 and 2018 ranged from €1742 million (optimistic scenario) to €1949 million (pessimistic scenario; moderately optimistic scenario, €1846 million). Under the pessimistic scenario, the total number of deaths related to HCV infections decreased by 19.7% from 2009 (with 4338 deaths attributed to HCV) to 2018 (3482 deaths). The deaths under the moderately optimistic and the optimistic scenarios decreased by 37.5% and 55.2%, respectively. The working-age HCV deaths decreased by 19.3% between 2009 and 2018 (pessimistic scenario). The reductions in working-age deaths under the moderately optimistic and the optimistic scenarios were of 37.0% and 54.8%, respectively. This represented a 38.1% reduction in YPLPLL directly attributable to HCV, especially from 2016 onwards (pessimistic scenario). The reductions in YPLPLL under the moderately optimistic and the optimistic scenarios were of 51.5% and 65.0%, respectively. These reductions translated into a decrease in labour productivity losses from €236 million in 2009 to €156 million in 2018, equivalent to a reduction of 33.8% (pessimistic scenario). The related labour productivity losses were of 48.1% and 62.4% under the moderately optimistic and the optimistic scenarios, respectively.

The theoretical framework on which this work is based is the human capital approach which assume efficient labour markets, from which the identification of the price of the labour factor (wages) with its marginal productivity is derived. But the reality is much more complex, with labour markets far from an efficiency scenario [44–47]. There is an alternative approach to assess labour productivity losses, the friction cost method [48]. In the case of premature deaths, this method restricts labour productivity losses to a “friction period”, related to the time required to employ and train a new worker, after which it is considered that there is no effect on labour productivity. As can be seen, this approach is very far from the theoretical framework of human capital.
and it has been strongly disputed in the literature [49, 50]. The methodologic debate has not been definitively settled [51, 52], although the human capital method is the most widely accepted, except in the Netherlands and Canada, where the health technology assessment agencies have postulated in favour of the friction cost method [53]. Obviously, estimates of labour losses obtained by applying the friction cost approach are notably lower than those obtained by applying the human capital method, especially in cases of premature mortality and permanent sick leave [54–64]. It is noteworthy that in the studies that have estimated labour productivity losses associated with hepatitis C, the human capital method was used in all studies that explicitly identified the approach used [14].

One of the main innovations in this study (in comparison with a previous study [11]) is a methodologic improvement in the employment data used. The employment rates used had a more precise age-group classification (10 age-group classifications compared with the four age-group classifications used in the previous study), and information was included about employed populations aged 16 years or older and working-age people. This innovation enabled us to record more robust results because employment rates are widely heterogeneous among the different age groups in Spain.

In this study we used the AFs that appear in the work of Duarte et al. for the years 2009–2015 [43]. The decision to use that study was based on its quality, on the fact that the estimated values for Spain were expressly shown, and on the recent nature of the study. However, as the authors pointed out, “The lack of a systematic literature review for AF is a limitation of our study. The convenience literature search found published estimates to be rare, and available estimates mostly predated 2000, highlighting the need for more and newer studies”. Indeed, other studies reviewed include estimates for AF that do not coincide with the values collected in our study [42]. Likewise, we found that there are important differences between the AFs estimated for different countries. In the study by Duarte et al., the mortality rate per 100,000 inhabitants due to hepatitis C in European countries ranged from 32.8 in Romania to 1.7 in Norway. The rate for Spain is 9.0, slightly above the average rate of the 30 European countries analysed. It is important to consider this when interpreting our results to avoid the mistake of extrapolating them directly to other countries.

We found no applicable information about AF estimates for Spain for the last years of the period analysed (2016–2018). However, in view of the extensive literature published in recent years on the major improvement that DAAs have brought to patient health, it was not possible to

Table 5	Sensibility analysis [2–0%] by different scenarios, labour productivity losses										
	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	Total
Pessimistic											
Group 1: hepatitis C	76,023	66,793	60,483	56,082	54,099	60,650	55,860	45,170	30,650	27,347	533,156
Group 2: HCC	83,535	88,578	80,644	76,362	78,617	77,681	82,412	70,014	56,890	52,455	747,188
Group 3: cirrhosis	112,663	110,310	101,603	93,792	87,386	79,536	85,856	84,327	75,155	56,367	870,996
Group 4: other	36,612	38,033	34,386	32,687	32,692	26,591	26,441	24,381	21,084	18,410	283,782
Group 5: HIV	9,498	8,438	7,880	6,483	4,598	3,294	2,321	1,202	1,157	663	45,536
Total	318,330	312,153	284,996	265,406	251,391	247,751	225,094	212,988	197,874	195,243	2,568,874
Moderately optimistic											
Group 1: hepatitis C	76,023	66,793	60,483	56,082	54,099	60,650	55,860	45,170	30,650	27,347	533,156
Group 2: HCC	83,535	88,578	80,644	76,362	78,617	77,681	82,412	70,014	56,890	52,455	747,188
Group 3: cirrhosis	112,663	110,310	101,603	93,792	87,386	79,536	85,856	84,327	75,155	56,367	870,996
Group 4: other	36,612	38,033	34,386	32,687	32,692	26,591	26,441	24,381	19,551	18,410	283,782
Group 5: HIV	9,498	8,438	7,880	6,483	4,598	3,294	2,321	1,202	1,157	663	45,536
Total	318,330	312,153	284,996	265,406	251,391	247,751	225,094	167,403	155,243	145,283	2,480,658
Optimistic											
Group 1: hepatitis C	76,023	66,793	60,483	56,082	54,099	60,650	55,860	45,170	30,650	27,347	533,156
Group 2: HCC	83,535	88,578	80,644	76,362	78,617	77,681	82,412	70,014	56,890	52,455	747,188
Group 3: cirrhosis	112,663	110,310	101,603	93,792	87,386	79,536	85,856	84,327	75,155	56,367	870,996
Group 4: other	36,612	38,033	34,386	32,687	32,692	26,591	26,441	24,381	12,190	12,273	258,938
Group 5: HIV	9,498	8,438	7,880	6,483	4,598	3,294	2,321	601	772	442	44,328
Total	318,330	312,153	284,996	265,406	251,391	247,751	225,094	135,132	121,819	112,611	2,302,479

HCC, hepatocellular carcinoma

aThousands of euros updated to 2018
The effect of hepatitis C—associated premature deaths on labour productivity losses in Spain:…

ignore a reduction of the AF of HCV-related deaths. However, the precise effect of the new treatments on the reduction of HCV-related mortality remains unknown. For this reason, we proposed three hypothetical scenarios: one moderately optimistic; another more optimistic; and the starting point, where we assume that the AFs remain unchanged, the pessimistic scenario.

Another important matter that requires further explanation is why 2016, rather than an earlier year, was chosen as the year of change in the AFs. Although the second-generation DAAs were introduced in Spain in January 2014, the number of patients initially treated was very small. The figures published by the Spanish Ministry of Finance indicate that in 2014 hospital pharmaceutical expenditure on hepatitis C amounted to €110 million (2.1% of total expenditure on drugs for hospital use). This figure increased to €1190 million in 2015 (18.1%). After sales peaked in 2015, annual expenditure for the treatment of HCV infection decreased owing to declining volumes of prescriptions and a large reduction in the price of drugs: €408 million (6.6% of total spending on drugs for hospital use) in 2016 and €235 million (3.7%) in 2017 [31]. Thus, although the largest investment of resources was made in 2015, it could have been expected that the return on that investment would not be immediate but would take a few months to translate into results that were beneficial for health. In fact, if we observe the changes in the numbers of total deaths and working-age deaths directly caused by HCV, we notice a strong reduction from the year 2016 that continued into 2017 and 2018. It is more difficult to establish this relationship with other diseases related to the HCV because there are other elements to consider in relation to the treatments and to other causes of these illnesses [65–67]. For these reasons, we considered it appropriate to fix the year of change in the AF to HCV as 2016 and not earlier.

Overall, the results of this study should be relevant for healthcare decision-makers. We have shown that HCV had a considerable effect on labour productivity losses throughout the period analysed. Fortunately, that effect has been steadily decreasing since the beginning of the period studied, with an accelerated decrease in recent years. However, this does not mean that in 2018 (the last year of the period studied) the labour losses identified were not noteworthy: they amounted to €122 million even in our moderately optimistic scenario. When looking at the breakdown of the causes of labour losses (either by working-age deaths or by YPLLPLL), we observe that more than two-thirds are specific to HCC and liver cirrhosis. This indicates that there is still a wide margin for improvement in the detection and care of patients with active HCV.

Table 6: Sensitivity analysis [0%-6%] by different scenarios, labour productivity losses

Scenario, €a	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	Total
Pessimistic											
Group 1: hepatitis C	43,465	37,733	35,011	32,526	33,001	37,141	34,108	28,015	19,632	17,613	318,244
Group 2: HCC	50,464	54,254	50,084	48,432	50,026	49,824	53,678	46,788	48,812	47,716	500,078
Group 3: cirrhosis	67,464	65,830	60,981	57,741	54,727	50,235	54,752	52,621	49,884	48,452	562,688
Group 4: other	20,820	21,163	18,438	17,055	16,070	14,768	14,875	13,974	14,976	14,976	167,114
Group 5: HIV	4,582	4,176	4,008	3,364	2,441	1,676	1,166	591	777	472	23,252
Total	186,797	183,156	168,521	159,118	156,266	153,643	158,578	141,984	134,081	129,229	1,571,377
Moderately optimistic											
Group 1: hepatitis C	43,465	37,733	35,011	32,526	33,001	37,141	34,108	28,015	19,632	17,613	318,244
Group 2: HCC	50,464	54,254	50,084	48,432	50,026	49,824	53,678	39,091	36,609	35,787	464,249
Group 3: cirrhosis	67,464	65,830	60,981	57,741	54,727	50,235	54,752	39,466	37,413	36,339	524,949
Group 4: other	20,820	21,163	18,438	17,055	16,070	14,768	14,875	10,480	11,232	11,232	156,133
Group 5: HIV	4,582	4,176	4,008	3,364	2,441	1,676	1,166	443	583	354	22,792
Total	186,797	183,156	168,521	159,118	156,266	153,643	158,578	113,495	105,469	101,325	1,486,367
Optimistic											
Group 1: hepatitis C	43,465	37,733	35,011	32,526	33,001	37,141	34,108	28,015	19,632	17,613	318,244
Group 2: HCC	50,464	54,254	50,084	48,432	50,026	49,824	53,678	23,394	24,406	23,858	428,420
Group 3: cirrhosis	67,464	65,830	60,981	57,741	54,727	50,235	54,752	26,311	24,942	24,226	487,209
Group 4: other	20,820	21,163	18,438	17,055	16,070	14,768	14,875	6987	7488	7488	145,152
Group 5: HIV	4,582	4,176	4,008	3,364	2,441	1,676	1,166	296	389	236	22,332
Total	186,797	183,156	168,521	159,118	156,266	153,643	158,578	85,001	76,857	73,421	1,401,357

HCC, hepatocellular carcinoma

aThousands of euros updated to 2018
In any case, the extrapolation of our results to other countries should be interpreted with caution for several reasons. First, because of epidemiological issues as higher or lower prevalence rates will have consequences on deaths caused by HCV, and hence, the results and conclusions could differ. Second, the quality of the health system can condition the results, in the sense that the higher the quality of the health system, the lower the number of expected deaths would be. And finally, labour factors can also affect the figures as the higher wages and the higher employment rates, the greater impact on lost labour productivity.

Of note, our analysis is based on labour productivity losses caused by premature deaths at working age. The lack of availability of data about other types of labour losses associated with absenteeism, presenteeism, and permanent sick leave has precluded their inclusion in the analysis. However, there is extensive literature that indicates the importance of these labour losses [4, 9, 14, 68, 69]. Similarly, recent studies indicate that this type of labour loss has been reduced in recent years because of therapeutic improvements [25, 26, 70], which is consistent with the results seen in this study for mortality-associated losses.

Focussing on labour losses associated with hepatitis C deaths, the estimated results should be interpreted as conservative values. On the one hand, we censored estimated labour productivity losses at age 65. Although it is true that a small part of the population continues in the labour market after this age in Spain (7% of men and 5% of women between the ages of 65 and 69 had a paid job in 2018; above that age, the figures drop to 1% in the case of men and 0.4% in the case of women), this methodology is common to most works with objectives similar to ours.

An issue that deserves a comment is that the Spanish Structural Wage Survey used in our analysis shows important differences between the salaries of men and women. Although this gap decreases consistently over the years, the difference in wages between men and women after adjusting for age, experience, educational level, economic sector and firm’s characteristics, stood at 12.7% in 2014 [71]. Given that our model attempts to estimate labour losses related to HCV-associated deaths, using the labour earnings/salaries of the deceased as a proxy, our estimates could vary if the wage discrimination component were eradicated from the Spanish labour market. Unfortunately, the models commonly used to estimate labour losses caused by illness do not capture all the complexity of the labour market, and even those simulation models, with both micro and macroeconomic features [72, 73], do not offer a definitive solution to these problems. We have applied a consistent approach with that adopted by most recent studies in this field. Then, we have tried to show as transparently as possible the assumptions, methods and data used to facilitate reproducibility and comparability between studies, and we recognized the limitations of these models, without claiming that such estimates are an exact and perfect reflection of economic reality.

Additionally, we focus exclusively on labour productivity losses. This does not mean that the productivity of people disappears when they leave the labour market. However, we recognize as a limitation of the analysis the fact that, due to the data availability, we cannot extend our results to labour losses derived from absenteeism or presenteeism, neither to the field of productivity losses due to unpaid work or other losses of time (leisure). The assessment of the time of unpaid care have received very little attention in the field of the economic impact of disease [74], although the instruments available to measure lost unpaid labour is increasing [75] and some recent works highlight its potential relevance [76]. In addition, another very relevant cost is the non-professional care provided to people with limitations on their autonomy, mainly by caregivers in their affective environment. With other diseases, such as neuro-degenerative disease, cancer, mental, vascular and other invalidating illnesses, the number of studies that analyse the costs associated with informal care is growing [77–84], but this subject has been scarcely studied in relation to hepatitis C. A future line of research would be to broaden the field of analysis to include other types of social costs, such as unpaid productivity and informal care.

Finally, another issue that needs to be considered is the fact that at the time of this writing, according to the WHO [85], 102.9 million confirmed cases of coronavirus disease (COVID-19) have been counted and 2.23 million people died from March 2020 to early February 2021. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is also responsible for causing another series of serious health problems, such as those derived from the delay in the care of chronic patients because of the overload in the healthcare systems. The current effect of the COVID-19 pandemic on the HCV elimination plans is still under analysis. Preliminary data suggest a delay in detecting high-risk HCV patients in Spain [86] and other European countries [87, 88]. Patients with chronic liver diseases are at higher risk of developing worse outcomes [89]. It is important to stress that people with active HCV, and especially those with greater liver damage, may be within the group of particularly affected chronic patients, so the positive trend identified in this study could be truncated in 2020. Likewise, the available studies indicate that hepatic dysfunction occurs in 14–53% of patients with COVID-19, particularly in those with severe disease [90].

In conclusion, these results should underscore the need to re-double the effort to achieve, in the medium term, the goal of eradicating hepatitis C. According to Razavi et al. [23], Spain could meet the WHO 2030 target by 2023. Because COVID-19 is an added impediment that will probably delay the achievement of that goal, we may have to
re-think existing strategies and ask ourselves what resources and organization we can provide to eradicate hepatitis C, once COVID-19 has remitted.

Acknowledgements The authors thank Belén Ferro (former AbbVie employee) and Alicia Huerta (AbbVie employee) for their comments and support. We also thank the valuable comments received from anonymous reviewers.

Authors' contributions JOM designed the study. LMPL carried out the data preparation and the quantitative analysis. LMPL and JOM analysed the results. JOM and LMPL wrote the first draft of the manuscript. All authors contributed to the drafting and revising of the manuscript. All authors read and approved the final manuscript.

Funding This study was funded by AbbVie Inc. AbbVie participated in the review of the publication. All content decisions remained with the authors. No honoraria or payments were made for authorship.

Availability of data and material and code availability Data come from general official records (anonymized official statistics of the National Statistical Institute). All the data used are freely accessible at www.ine.es.

Declarations

Conflict of interest L. M. Peña-Longobardo and J. Oliva-Moreno declare no financial and non-financial conflict of interest. C. Fernández-Rodriguez has received fees for lectures and advisory boards consultancy from AbbVie.

References

1. World Health Organization: Global report on access to hepatitis C treatment. Focus on overcoming barriers. World Health Organization (2016). Available from: https://apps.who.int/iris/bitstream/handle/10665/250625/WHO-HIV-2016.20-eng.pdf
2. Polaris Observatory HCV Collaborators: Global prevalence and genotype distribution of hepatitis C virus infection in 2015: a modelling study. Lancet Gastroenterol. Hepatol. 2(3), 161–176 (2017). https://doi.org/10.1016/S2468-1253(16)30181-9
3. Younossi, Z.M., Kanwal, F., Saab, S., Brown, K.A., El-Serag, H.B., Kim, W.R., Kleinman, N.L., Brook, R.A.: Costs and absence of HCV-infected employees by disease stage. J. Med. Econ. 18(9), 691–703 (2015)
4. Pascual-Aragné, N., Puig-Junoy, J., Llagostera-Punzano, A.: Non-healthcare costs of hepatitis C: a systematic review. Expert Rev. Gastroenterol. Hepatol. 12(1), 19–30 (2018)
5. Poordad, F., Lawitz, E., Kowdley, K.V., Cohen, D.E., Podsdecki, T., Siggelkow, S., Heckman, M., Larsen, L., Menon, R., Koev, G., Tripathi, R., Pilot-Matias, T., Bernstein, B.: Exploratory study of oral combination antiviral therapy for hepatitis C. N. Engl. J. Med. 368, 45–53 (2013)
6. Lawitz, E., Mangia, A., Wyles, D., Hasanein, T., Gordon, S.C., Schultz, M., Davis, M.N., Kayali, Z., Reddy, K.R., Jacobson, I.M., Kowdley, K.V., Nyberg, L., Subramanian, G.M., Hyland, R.H., Artburn, S., Jiang, D., McNally, J., Brainard, D., Symonds, W.T., McHutchison, J.G., Sheikh, A.M., Younossi, Z., Gane, E.J.: Sofosbuvir for previously untreated chronic hepatitis C infection. N. Engl. J. Med. 368, 1878–1887 (2013)
7. Suwanthawornkul, T., Anothaisintawee, T., Sohonslidsuk, A., Thakkinstian, A., Teerawattananon, Y.: Efficacy of second generation direct-acting antiviral agents for treatment naive hepatitis C genotype 1: a systematic review and network meta-analysis. PLoS One. 10, e0145953 (2015)
8. Zhang, J., Nguyen, D., Hu, K.Q.: Chronic hepatitis C virus infection: a review of current direct-acting antiviral treatment strategies. N. Am. J. Med Sci. (Boston) 9(2), 47 (2016)
9. Pérez-Pitarch, A., Guglieri-López, B., Ferriols-Lisart, R., Merino-Sanjuán, M.: A model-based meta-analysis of sofosbuvir-based treatments in chronic hepatitis C patients. Int. J. Antimicrob. Agents 47(3), 184–194 (2016)
10. Younossi, Z., Park, H., Henry, L., Adeyemi, A., Stepanova, M.: Extra-hepatic manifestations of hepatitis C: A meta-analysis of prevalence, quality of life, and economic burden. Gastroenterology 150(7), 1599–1608 (2016)
11. Jakobsen, J.C., Nielsen, E.E., Feinberg, J., Katakam, K.K., Fobian, K., Hauser, G., Poropat, G., Djuirissi, S., Weiss, K.H., Bjelakovic, M., Bjelakovic, G., Klingeberg, S.L., Liu, J.P., Nikolova, D., Koretz, R.L., Gluud, C.: Direct-acting antivirals for chronic hepatitis C. Cochrane Database Syst. Rev. 6(6), CD012143 (2017)
12. Dore, G.J., Martinello, M., Alavi, M., Grebely, J.: Global elimination of hepatitis C virus by 2030: why not? Nat. Med. 26, 157–160 (2020)
23. Younossi, Z.M., Chan, H.L.Y., Dan, Y.Y., Lee, M.H., Lim, Y.S., Kruger, E., Tan, S.C.: Impact of ledipasvir-sofosbuvir on the work productivity of genotype 1 chronic hepatitis C patients in Asia. J. Viral Hepat. 25(3), 228–235 (2018)

24. Younossi, Z.M., Stepanova, M., Henry, L., Gane, E., Jacobson, I.M., Lawitz, E., Nelson, D., Gerber, L., Nader, F., Hunt, S.: Effects of sofosbuvir-based treatment, with and without interferon, on outcome and productivity of patients with chronic hepatitis C. Clin. Gastroenterol. Hepatol. 12(8), 1349–1359 (2014)

25. Landgren, P., Löfvendahl, S., Brådvik, G., Weiland, O.: Reduced work absenteeism in patients with hepatitis C treated with second-generation direct-acting antivirals. J. Viral Hepat. 28(1), 142–146 (2020)

26. Younossi, Z.M., Stepanova, M., Esteban, R., Jacobson, I., Zeuzem, S., Sulkowski, M., Henry, L., Nader, F., Cable, R., Afendy, M., Hunt, S.: Superiority of interferon-free regimens for chronic hepatitis C: the effect on health-related quality of life and work productivity. Medicine (Baltimore) 96(7), e5914 (2017)

27. Groupo de trabajo del estudio de prevalencia de la infección por hepatitis C en población general en España; 2017–2018. Resultados del 2º Estudio de Seroprevalencia en España (2017–2018). Ministerio de Sanidad, Consumo y Bienestar Social (2019)

28. Fernández Rodriguez, C.M., Gutierrez Garcia, M.L.: Impacto del Tratamiento antiviral en la historia natural del virus de la hepatitis C. Gastroenterol. Hepatol. 37, 583–592 (2014)

29. Sicras-Mainar, A., Navarro-Artieda, R., Sáez-Zafra, M.: Comorbidity, concomitant medication, use of re-sources and healthcare costs associated with chronic hepatitis C virus carriers in Spain. Gastroenterol. Hepatol. 41(4), 234–244 (2018)

30. Airef-Autoridad Independiente de Responsabilidad Fiscal (Spanish Independent Authority for Fiscal Responsibility). Hospital expenditure of the National Health System: pharmacy and investment in capital goods (in Spanish). Madrid, (2020). Available from: https://www airef es/wp-content/uploads/2020/10/SANIDAD/PDF WEB Gasto hospitaleario del SNS.pdf

31. Grossman, M.; The demand for health: a theoretical and empirical investigation. Columbia University Press, New York (1972)

32. Grossman, M.; The human capital model of the demand for health. In: Culyer Ayn, J.P. (ed) Handbook of health economics. Amsterdam: North-Holland-Springer (2000)

33. García-Ortuazarras, A., García-Ortu, R., García-Ortuaz, V.: Health investigation investment and the burden of disease because of hepatitis B and C. Rev Esp Salud Publica. 83, 587–588 (2009)

34. García-Fulgueiras A., García-Pina R., Morant C., de Larrea-Baz N.F., Alvarez E.: Burden of disease related to hepatitis C and hepatitis B in Spain: a methodological challenge of an unfolding health problem. J. Viral. Hepat. 18(10), e453–e460 (2011)

35. Perz, J.F., Armstrong, G.L., Farrington, L.A., Hutin, Y.J., Bell, B.P.; The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J. Hepatol. 45, 529–538 (2006)

36. Hutchinson, S.J., Bird, S.M., Goldberg, D.J.; Modeling the current and future disease burden of hepatitis C among injection drug users in Scotland. Hepatology 42, 711–723 (2005)

37. Degos, F., Christidis, C., Ganne-Carrie, N., Farmachidi, J.P., Degott, C., Guettier, C., Trinchet, J.C., Beaugrand, M., Chevert, S.; Hepatitis C virus related cirrhosis: time to occurrence of hepatocellular carcinoma and death. Gut 47, 131–136 (2000)

38. Steenland, K., Armstrong, B.: An overview of methods for calculating the burden of disease due to specific risk factors. Epidemiology 17, 512–519 (2006)

39. Levine, B.: What does the population attributable fraction mean? Prev. Chronic Dis. 4(1), A14 (2007)

40. Miettinen, O.S.: Proportion of disease caused or prevent-ed by a given exposure, trait or intervention. Am. J. Epidemiol. 99, 325–332 (1974)

41. Mühlberger, N., Schwarzer, R., Lettmeyer, B., Sroczyński, G., Zeuzem, S., Siebert, U.: HCV-related burden of disease in Europe: a systematic assessment of incidence, prevalence, morbidity, and mortality. BMC Public Health 9(1), 1–14 (2009)

42. Duarte, G., Williams, C.J., Vasconcelos, P., Nogueira, P.: Capacity to report on mortality attributable to chronic hepatitis B and C infections by Member States: an exercise to monitor progress towards viral hepatitis elimination. J. Viral Hepat. 25(7), 878–882 (2018)

43. Layard, P.R.G., Layard, R., Nickell, S.J., Jackman, R.: Unemployment: Macroeconomic Performance and the Labour Market. Oxford University Press on Demand (2005)

44. Card, D., Klue, J., Weber, A.: Active labour market policy evaluation: a meta-analysis. Econ. J. 120(548), F452–F477 (2010)

45. Phelps, E.S.: A review of unemployment. J. Econ. Lit. 30(3), 1476–1490 (1992)

46. Koopmanschap, M.A., Rutten, F.F., van Ineveld, B.M., van Roijen, L.: The friction cost method for measuring indirect costs of disease. J. Health Econ. 14(2), 171–189 (1995)

47. Johansson, M., Karlsson, G.: The friction cost method: a comment. J. Health Econom. 16, 249–255 (1997)

48. Liljas, B.: How to calculate indirect costs in economic evaluation. Pharmacoconomics 13, 1–7 (1998)

49. Kigozi, J., Jowett, S., Lewis, M., Barton, P., Coast, J.; Estimating productivity costs using the friction cost approach in practice: a systematic review. Eur. J. Health Econ. 17(1), 31–44 (2016)

50. Krol, M., Papenburg, J., Koopmanschap, M., Brouwer, W.: Do productivity costs matter?: the impact of including productivity costs on the incremental costs of interventions targeted at depressive disorders. Pharm. Econ. 7(29), 601–619 (2011)

51. Oliva, J., Rodriguez-Sanchez, B., Pena-Longobardo, L., Aranda-Reneno, I., Lopez-Bastida, J.: Impact HTA: Revising the Methodological Aspects Applied to the Identification, Measurement and Valuation of Social Costs in Economic Evaluations (2019). https://www.impact-hta.eu/work-package-4. Accessed 23 October 2020.

52. Hutubessy, R.C., van Tulder, M.W., Vondeling, H., Bouter, L.M.: Indirect costs of back pain in The Netherlands: a comparison of the human capital method with the friction cost method. Pain 80, 201–207 (1999)

53. Oliva, J., Lobo, F., Lopez-Bastida, J., Zozaya, N., Romay, R.: Indirect costs of cervical and breast can-cer in Spain. Eur. J. Health Econ. 6, 309–313 (2005)

54. Loftland, J.H., Lock lear, J.C., Frick, K.D.; Different approaches to valuing the lost productivity of patients with migraine. Pharmacoeconomics 19, 917–925 (2001)

55. Marcotte, D.E., Wilcox-Gok, V.; Estimating the employment and earnings costs of mental illness: re-cent developments in the United States. Soc. Sci. Med. 53, 21–27 (2001)

56. Zhang, W., Bansback, N., Anis, A.H.; Measuring and valuing productivity loss due to poor health: a critical review. Soc. Sci. Med. 72(2), 185–192 (2011)

57. Wieser, S., Horisberger, B., Schmidhauser, S., Eisinger, C., Bru’gger, U., Rückstuhl, A., Dietrich, J., Mannion, A.F., Elfering, A., Tamcan, O., Muller, U.: Cost of low back pain in Switzerland in 2005. Eur. J. Health Econ. 12(5), 455–467 (2010)

58. van den Hout, W.B.: The value of productivity: human-capital versus friction-cost method. Ann. Rheumatic Dis. 69, i89–i91 (2010)

59. Pike, J., Grosse, S.D.: Friction cost estimates of productivity costs in cost-of-illness studies in comparison with human capital
estimates: a review. Appl. Health Econ. Health Policy 16, 765–778 (2018).

62. Ortega-Ortega, M., Oliva-Moreno, J., de Dios, J.-A., Romero-Aguilar, A., Espigado-Tocino, I.: Productivity loss due to premature mortality caused by blood cancer: a study based on patients undergoing stem cell transplantation. Gac Sanit. 29(3), 178–183 (2015).

63. Achelrod, D., Blankart, C.R., Linder, R., von Kodolitsch, Y., Stargardt, T.: The economic impact of Marfan syndrome: a non-experimental, retrospective, population-based matched cohort study. Orphanet J Rare Dis. 9(1), 12 (2014).

64. Dee, A., Callinan, A., Doherty, E., O’Neill, C., McVeigh, T., Sweeney, M.R., Staines, A., Kearns, K., Fitzgerald, S., Sharp, L., Kee, F., Hughes, J., Balanda, K., Perry, I.J.: Overweight and obesity on the island of Ireland: an estimation of costs. BMJ Open 5(3), e006189 (2015).

65. Cardoso, A.C., Moucari, R., Figueiredo-Mendes, C., Ripault, M.P., Giuly, N., Castelnau, C., Boyer, N., Asselah, T., Martino, M., Maylin, S., Carvalho-Filho, R.J., Valla, D., Bedossa, P., Marcellin, P.: Impact of peginterferon and ribavirin therapy on hepatocellular carcinoma: incidence and survival in hepatitis C patients with advanced fibrosis. J Hepatol. 52(5), 652–657 (2010).

66. Ward, J.W., Mermin, J.H.: Simple, effective, but out of reach? Public health implications of HCV drugs. N. Engl. J. Med. 373(5), 2678–2680 (2015).

67. Stahmeyer, J.T., Rossol, S., Krauth, C.: Outcomes, costs and cost-effectiveness of treating hepatitis C with direct acting antivirals. J. Comp. Eff. Res. 373(3), 267–277 (2015).

68. Su, J., Brook, R.A., Kleinman, N.L., Corey-Lisle, P.: The impact of hepatitis C virus infection on work absence, productivity, and healthcare benefit costs. Hepatology 52, 436–442 (2010).

69. Manne, V., Sassi, K., Allen, R., Saab, S.: Hepatitis C and work impairment: a review of current literature. J. Clin. Gastroenterol. 48(7), 595–599 (2014).

70. Suikowski, M., Ionescu-Ittu, R., Macaulay, D., Sanchez-Gonzalez, Y.: The economic value of improved productivity from treatment of chronic hepatitis C virus infection: a retrospective analysis of earnings, work loss, and health insurance data. Adv. Ther. 37(11), 4709–4719 (2020).

71. Brindusa, A., Conde-Ruiz, J.I.: Brechas Salariales de Género en España Hacienda Pública Española. Rev. Public Econ. 229, 87–119 (2019).

72. Carter, H.E., Schofield, D., Shrestha, R.: Productivity costs of cardiovascular disease mortality across disease types and socio-economic groups. Open Heart. 6(1), e000939 (2019).

73. Carter, H.E., Schofield, D., Shrestha, R.: The long-term productivity impacts of all cause premature mortality in Australia. Aust. N. Z. J. Public Health 41(2), 137–143 (2017).

74. Krol, M., Brouwer, W., Rutten, F.: Productivity costs in economic evaluations: past, present, future. Pharmacoeconomic 31, 537–544 (2013).

75. Krol, M., Brouwer, W.: Unpaid work in health economic evaluations. Soc. Sci. Med. 144, 127–137 (2015).

76. Ortega-Ortega, M., Hanly, P., Pearce, A., Soerjomataram, I., Sharp, I.: Paed and unpaid productivity losses due to premature mortality from cancer in Europe in 2018. Int. J. Cancer. 150(4), 580–593 (2022).

77. Oliva-Moreno, J., Trapero-Bertran, M., Peña-Longobardo, L.M., Del Pozo-Rubio, R.: The valuation of informal care in cost-of-illness studies: a systematic review. Pharmacoeconomics 35(3), 331–345 (2017).

78. Joo, H., Zhang, P., Wang, G.: Cost of informal care for patients with cardiovascular disease or diabetes: current evidence and research challenges. Qual. Life Res. 26(6), 1379–1386 (2017).

79. Coumoundouros, C., Ould Brahim, L., Lambert, S.D., McCusker, J.: The direct and indirect financial costs of informal cancer care: a scoping review. Health Soc. Care Community 27(5), e622–e636 (2019).

80. Kobelt, G., Thompson, A., Berg, J., Gannedahl, M., Eriksson, J.: New insights into the burden and costs of multiple sclerosis in Europe. Multiple Scler. 23(8), 1123–1136 (2017).

81. Diminic, S., Lee, Y.Y., Hielserch, E., Harris, M.G., Kealton, J., Whiteford, H.A.: Quantifying the size of the informal care sector for Australian adults with mental illness: caring hours and replacement cost. Soc. Psychiatry Psychiatr. Epidemiol. 56(3), 386–400 (2021).

82. López-Bastida, J., Oliva-Moreno, J., Linertová, R., Serrano-Aguilar, P.: Social/economic costs and health-related quality of life in patients with rare diseases in Europe. Eur J Health Econ. 17(1), 1–5 (2016).

83. Alvarez-Sabin, J., Quintana, M., Masjuan, J., Oliva-Moreno, J., Mar, J., Gonzalez-Rojas, N., Becerra, V., Torres, C., Yebenes, M.: Economic impact of patients admitted to stroke units in Spain. Eur. J. Health Econ. 18(4), 449–458 (2017).

84. Delgado, J.F., Oliva, J., Llano, M., Pascual-Figal, D., Grillo, J.J., Comin-Colet, J., Díaz, B., Martínez de La Concha, L., Martí, B., Peña, L.M.: Health care and nonhealth care costs in the treatment of patients with symptomatic chronic heart failure in Spain. Rev. Esp. Cardiol. 67(8), 643–650 (2014).

85. WHO Coronavirus (COVID-19) Dashboard. Available at: https://covid19.who.int/.

86. Buti, M., Domínguez-Hernández, R., Casado, M.A.: Impact of the COVID-19 pandemic on HCV elimination in Spain. J. Hepatol. 74(1), 1246–1248 (2021).

87. Hüppe, D., Niederau, C., Serfert, Y., Hartmann, H., Wedemeyer, H.: für das HC–R. Problems in treating patients with chronic HCV infection due to the COVID-19 pandemic and during the lockdown phase in Germany. Z. Gastroenterol. 58, 1182–1185 (2020).

88. Kondili, L.A., Marcellusi, A., Ryder, S., Craxi, A.: Will the COVID-19 pandemic affect HCV disease burden? Dig. Liver Dis. 52, 947–949 (2020).

89. Ampuero, J., Sanchez, Y., Garcia Lozano, M.R., Maya-Miles, D.: Impact of liver injury on the severity of COVID-19: systematic review with meta-analysis. Rev. Esp. Enf. Dig. 113(2), 125–135 (2021).

90. Jothimani, D., Venugopal, R., Abedin, M.F., Kaliampoomthy, I., Rela, M.: COVID-19 and the liver. J Hepatol. 73(5), 1231–1240 (2020).