The handle http://hdl.handle.net/1887/20120 holds various files of this Leiden University dissertation.

Author: Bogaard, Simon Johannes Adrianus van den
Title: Huntington's disease : quantifying structural brain changes
Date: 2012-11-14
CHAPTER 8

Magnetization Transfer Imaging in premanifest and manifest Huntington’s disease: a 2 year follow up

Simon JA van den Bogaard1, Eve M Dumas1, Ellen P Hart1, Julien Milles2, Ralf Reilmann3, Julie C Stout4, David Craufurd5, Sarah J Tabrizi6, Mark A van Buchem7, Jeroen van der Grond7, Raymund AC Roos1

1. Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
2. Division of Image Processing (LKEB), Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
3. Department of Neurology, University of Munster, Munster, Germany
4. School of Psychology and Psychiatry, Monash University, Victoria, Australia
5. University of Manchester, Manchester Academic Health Sciences Centre and Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
6. Department of Neurology, UCL Institute of Neurology, University College London, Queen square, London, UK
7. Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands

American Journal of Neuroradiology, in press
Abstract

Background and Purpose
Magnetization transfer imaging (MTI) is a quantitative MRI technique which has recently demonstrated structural integrity differences between controls and Huntington’s disease (HD) patients. Potentially MTI can be used as a biomarker for monitoring disease progression. To establish the value of MTI as a biomarker, we aimed to examine the change of these measures during the course of HD.

Method
From the Leiden TRACK-HD study 25 controls, 21 premanifest gene carriers and 21 manifest HD patients, participated at baseline and during a 2 year follow up visit. Brain segmentation of cortical grey matter, white matter, caudate nucleus, putamen, pallidum, thalamus, amygdala, and hippocampus was performed using FSL’s automated tools FAST and FIRST. Individual MTR values were calculated from these regions and MTR histograms constructed.

Results
In the premanifest HD group stage “far from disease onset” a significant increase in MTR peak height of the putamen was observed over time. During the manifest HD stage neither the mean MTR nor the MTR peak height showed a significant change during a 2 year follow up.

Conclusion
MTI derived measures are not suitable for disease monitoring in Huntington’s disease over a 2 year period as there is no decrease in structural integrity detected in any of the manifest HD groups longitudinally. The finding of increased putaminal MTR peak height in the premanifest “far from disease onset” group could relate to a pre-degenerative process, compensatory mechanisms or aberrant development, but should be interpreted with caution until future studies confirm this finding.
Introduction

Magnetization transfer imaging (MTI) is a MRI technique which has been developed to perform structural imaging in a different, possibly more sensitive way, as it has demonstrated abnormalities in the normal appearing grey and white matter on conventional MRI in MS research\(^1\,^2\). The technique of MTI is based on the exchange of two pools of protons: one bound to macromolecular structures and one bound to free water molecules\(^3\). MTI has first and foremost been applied in patients with MS, however many other diseases have been studied using MTI, such as Alzheimer’s disease\(^4\), Parkinson’s disease\(^5\) and Huntington’s disease (HD)\(^6\,^7\).

Previous MRI studies in HD mainly focused on the search for a biomarker for monitoring disease progression. In this field lays a great opportunity to study the potential of MTI at very early stages of neurodegeneration. The genetic defect which is responsible for HD is located on the short arm of chromosome 4 and has an autosomal dominant inheritance pattern with full penetrance\(^8\). Therefore when the gene defect has been established in an individual, this inevitably leads to a certain clinical diagnosis at some point in their life. Mean disease onset is approximately 35-40 years of age with a wide range partly depended on the length of the abnormal CAG-repeat\(^9\). The ability to establish the gene defect well before any symptoms are present, gives an unique opportunity to study asymptomatic gene carriers, commonly referred to as “premanifest gene carriers” (PMGC).

In previous structural MRI studies significant brain disturbances in terms of striatal atrophy\(^10\,^11\), white matter disturbances\(^12\,^13\), cortical thickness reductions\(^14\) and whole brain volume reduction\(^10\,^15\) have been described. These studies all used either conventional MRI or DTI. Some of these measures are well established, however no golden standard for disease monitoring by MRI is currently present. In essence, what technique and what region are most suitable as a biomarker? Possible problems in HD are non-linear and non-uniformly affected brain regions. The need for further research into a robust and sensitive MRI measure to monitor disease onset and progression is still evident.

Previous work in HD using MTI consists of four reports, all cross-sectional in design\(^6\,^7\,^16\,^17\). The main outcome measures used were mean Magnetization Transfer Ratio (MTR) and MTR peak height and are thought to represent structural integrity\(^17\,^19\). Mean MTR represents the average MTR value of all voxels in a region of interest, with a lower mean MTR corresponding to loss of tissue integrity. MTR peak height reflects the most frequently occurring MTR value in a region of interest when all the MTR values are set out in a MTR histogram, again with
lower peak height being associated with loss of structural integrity. Results from these previous studies show reduced structural integrity in manifest HD patients (MHD) compared to healthy controls or PMGC in multiple regions, namely the white matter, cortical grey matter, caudate nucleus, putamen, pallidum, thalamus and amygdala. The results are suggestive of the potential of MTI as a biomarker6,7. However no longitudinal reports are available.

TRACK-HD is specifically designed to determine the most valuable measures to monitor disease progression20. This study allows following both PMGC as MHD over several years. To determine the true value of any potential (MRI) biomarker, longitudinal confirmation is crucial. Therefore we aim to examine whether MTI measures change over a 2 year period during the progressive course of HD. Secondly, if any longitudinal change in a group is present, we sought to determine the correlation to clinical measures of disease progression.

Methods

Subjects
Participants were recruited from the Leiden site of the TRACK-HD study. From the baseline cohort (n=90) in 2008 a total of 78 participants could be included. This cohort consisted of three groups: 28 healthy controls, 25 PMGC and 25 MHD. Inclusion criteria for the PMGC consisted of genetically confirmed expanded CAG repeat ≥40, a disease burden score (calculated as: ((CAG repeat length–35.5) x Age) of >25021 and absence of motor abnormalities on the UHDRS, defined as a TMS of ≤5. Inclusion criteria for MHD consisted of genetically confirmed CAG repeat ≥40, presence of motor abnormalities on the UHDRS-TMS of >5. Also a TFC of 7 or higher was required to ensure that the MHD group was in the early disease stage. Subdivision of the premanifest group was made on the basis of their expected years to onset, calculated by the formula from Langbehn et al.(2004)9. This results in a premanifest HD group “far from expected disease onset” (PreHD-A) and premanifest HD group “close to expected disease onset” (PreHD-B). Subdivision of the manifest group was made by their staging according to the Shoulson and Fahn Scale, based on the TFC score, resulting in a manifest HD group stage 1 (HD 1) and manifest group stage 2 (HD 2). HD 1 describes a group of manifest HD in the earliest stage after disease onset, with only minor symptoms. HD 2 is the next stage in the disease with increased symptoms and impact on daily activities, but these patients are still considered “early manifest”. Healthy gene negative family members, spouses or partners were recruited as control subjects. Exclusion criteria consisted of significant (neurological) co-
morbidity, active major psychiatric disturbance and MRI incompatibility. Full
details on recruitment are available in the TRACK-HD baseline paper. Local IRB
approval and written informed consent were obtained from all participants.

The same cohort was scanned 24 months later within a 6 week window of their
follow up date. Of the 78 participants, 67 participants were available for follow
up scanning in 2010 with the MTI-protocol included. Reasons for unavailability
included too advanced disease stage, time restraints on the full TRACK-HD
scanning protocol and unspecified reasons of withdrawal.

Imaging sequences
At both time points exactly the same study protocol was enforced. The scanning
protocol described in our cross-sectional report was performed in an identical
manner two years after the baseline visit. In short all participants underwent
scanning on a 3 Tesla Philips whole body scanner (Philips, Best, The Netherlands)
with an 8-channel receive and transmit coil. 3D T1-weighted sequences
(TR = 7.7ms, TE= 3.5ms, FA= 8°, matrix size 224x224x164 mm, voxel size
1.0x1.0x1.0mm, acquisition time ~9min) and 3D gradient MTI sequences (TR =
100 ms, TE = 11 ms, FA = 9°, matrix 224x180x144 mm, voxel size1.0x1.0x7.2 mm,
acquisition time ~3min) were acquired. For the MTI sequences two consecutive
imaging sets were acquired, one with and one without a saturation pulse. A sinc
pulse of 25 ms with a maximal B1 of 10 uT and 2 sidelobes on an off-resonance
frequency of 1100 Hz was applied. Total scanning time for T1-w and MTI
sequences was maximally 12 minutes.

Post-processing
The post-processing pipeline was identical to that described previously in the cross
sectional result paper. T1-weighted images were segmented using FAST and
FIRST from FMRIB’s Software Library (Oxford, United Kingdom). This provided
individual brain masks for: total white matter, cortical grey matter, caudate nucleus,
putamen, pallidum, thalamus, amygdala, hippocampus and whole brain. To correct
for possible partial volume effects, an eroded mask of these segmentations was
created by removing one voxel in plane for all above named VOI’s. All brain masks
were then registered to the MTI volumes using the transform obtained from linear
registration of the T1-w volume with 7 degrees of freedom (FSL-FLIRT). MTR
was calculated per voxel as M0-Ms / M0, whereby Ms is the saturated image and
M0 the unsaturated image. The mean MTR per VOI was calculated. Additionally,
to represent the variations of voxel based MTR within each VOI we constructed
MTR histograms. The MTR peak height was normalized for the size of the volume
of interest. MTR peak height and mean MTR were the primary outcome variables. For correction of the (largely unknown) influence of age on MTI values, the MTR parameters were calibrated to the control values, assuming no changes in the control subjects. This entailed scaling the individual premanifest and manifests values according to the mean MTR parameter difference between baseline and follow up of the control group, which could either be an increase or a decrease over time. In the supplementary materials (table 3) actual values of the control group on both time points are available.

To compare the biomarker potential of MTI to volumetric analysis, volumes were calculated for all subcortical regions, white matter volume and whole brain volume using the FSL tools of FIRST23 and SIENAX25. The volume calculation and a correction for intracranial volume was performed as described previously17.

Clinical Measures

A total measure of motor dysfunction was obtained with the UHDRS-TMS (range 0-124). TFC score (range: 0-13) and MMSE for global assessment of cognitive functioning (range: 0-30) were obtained. Cognitive scores included the total scores from the SDMT and the Stroop word reading card. For assessment of psychiatric disturbances the PBA-s was used. For a more detailed description of these clinical assessments see Tabrizi et al. (2009)10.

Statistics

To examine the longitudinal change in clinical, MTI and volumetric values (corrected for intracranial volumes) per group, paired T-testing per group was used. Alpha was set to 0.05 to be significant. Secondly, to account for multiple testing (15 regions) a Bonferroni correction was applied, resulting in an alpha < 0.0033 for the strongest findings. For correlation analysis between significant longitudinal findings, a Pearson correlation was applied to the difference between the 2 time points of the clinical and MTI values.

Results

Group characteristics and clinical measures on both the baseline visit as the follow up visit are shown in table 1. A significant longitudinal increase in motor disturbances is evident in PreHD-B, HD 1 and HD 2. Global functioning as measured by the TFC significantly decreases in 2 years in the HD 2 group as does the cognitive measure of Stroop word reading.
	Controls	PreHD-A	PreHD-B	Manifest 1	Manifest 2
N	25	10	11	9	12
Age					
baseline	48.3 (7.6)	45.5 (5.2)	42.9 (11.2)	47.7 (11.8)	50.9 (9.4)
CAG					
baseline	n.a.	41.3 (1.3)	44.0 (3.1)	43.8 (3.5)	43.2 (1.9)
YTO					
baseline	2.4 (2.4)	2.3 (1.7)	3.0 (1.1)	16.9 (8.8)	26.2 (11.7)
follow up	1.7 (1.4)	6.0 (6.9)	6.3 (2.5)	* 23.0 (9.0)	* 37.8 (14.3)
TMS					
baseline	12.9 (0.2)	12.7 (0.7)	12.6 (0.9)	12.0 (1.0)	8.6 (1.2)
follow up	12.8 (12.5 (0.9)	12.4 (1.2)	11.2 (2.0)	6.0 (3.3)
TFC					
baseline	29.2 (1.2)	29.0 (1.2)	28.4 (1.9)	29.0 (0.9)	26.5 (3.1)
follow up	29.1 (1.2)	29.3 (0.8)	28.6 (1.7)	28.7 (1.1)	27.0 (3.9)
MMSE					
baseline	50.1 (9.6)	52.7 (7.4)	46.9 (12.0)	42.0 (8.1)	31.2 (11.1)
follow up	51.5 (10.8)	52.7 (9.5)	48.3 (9.9)	39.6 (10.7)	27.9 (13.3)
SDMT					
baseline	99.8 (13.4)	97.1 (10.5)	86.9 (16.3)	88.4 (13.6)	69.4 (21.5)
follow up	102.7 (16.9)	92.5 (7.5)	83.4 (19.3)	89.8 (18.9)	55.6 (22.6)
Stroop					
baseline	6.4 (8.4)	6.7 (8.7)	7.4 (7.1)	11.7 (11.7)	14.0 (11.8)
follow up	6.6 (9.0)	6.1 (11.9)	7.8 (9.70)	9.7 (11.7)	22.6 (16.3)

Values are Mean (SD). PreHD-A = premanifest HD far from expected disease onset, PreHD-B = premanifest HD close to expected disease onset, CAG = CAG-repeat length, YTO = expected years to disease onset, TMS = total motor score, TFC = total functional capacity, MMSE = mini mental state exam, SDMT = symbol digit modality test, Stroop = stroop word reading test, PBA = problem behaviour assessment - short version.* = p < 0.005 significant longitudinal change

All MTI-values for 15 VOI’s are displayed in the supplementary material table 1 for the premanifest HD groups and in supplementary material table 2 for the Manifest HD groups. In PreHD-A five subcortical grey matter regions show an increase in MTI parameters, namely the mean MTR of the right caudate nucleus (p=0.049), the MTR peak height of the right putamen (p=0.003), MTR peak height of the left pallidum (p=0.032), mean MTR of the right thalamus (p=0.047) and MTR peak height of the right amygdala (p=0.050). However, after Bonferroni correction, the only statistically significant variation was the MTR peak height of the right putamen. In the PreHD-B group the cortical grey matter shows a longitudinal reduction in mean MTR (p=0.020) and the left hippocampus an increase in MTR histogram peak height (p=0.037). For the HD 1 group the right amygdala mean MTR decreases (p=0.036) in the 2 year follow up period. Only the left amygdala
mean MTR shows a reduction ($p=0.022$) in the HD 2 group. None of the results in the PreHD-B, HD 1 or HD 2 group are statistically significant after correction for multiple comparisons.

The statistical analysis procedure was also applied to a 3 group division instead of the 5 group division, encompassing the total premanifest group (PreHD A + B) and the total manifest group (HD 1 + 2) and the control group. This was performed in order to increase the power of the study, however in essence no additional information can be gathered from this analysis. The supplementary material contains exact details of the findings. The results also display subcortical MTR parameter increases in the premanifest group and a decrease in MTR parameters of the amygdala in the manifest HD group. The subdivision of groups is therefore more informative as it gives more exact disease stage related changes.

Correlation analysis of the significant longitudinal findings (without correction for multiple comparison) in MTI values with clinical measures resulted in two significant findings, namely in the PreHD-B group the MTR peak height of the left hippocampus correlated to TFC reduction ($R = -.622$, $p=0.043$) and in the HD 2 group the reduction of mean MTR correlated to the reduction in SDMT performance ($R = -.667$, $p=0.018$). Both findings did not survive Bonferoni correction for multiple comparisons.

All volumetric values are shown in the supplementary materials table 3. Significant volumetric decline of several VOI’s was seen in premanifest (caudate nucleus and putamen) and manifest groups (caudate nucleus, putamen, thalamus, white matter and whole brain).
Discussion

The main finding of this study is the fact that MTI parameters do not change over a two year follow up period in manifest HD. The expected decline in structural integrity in this group could not be detected with MTI. However an interesting finding in the premanifest “far from expected disease onset” was made, namely an increase in MTR value in the putamen, which possibly can be interpreted as a form of aberrant development or compensatory mechanism. There is no relationship of changing MTR parameters to increasing clinical symptoms in any of the groups. Clinical progression was evident in premanifest close to disease onset group and the manifest HD groups.

Previous cross-sectional observations with MTI in HD showed promising results for both mean MTR as MTR histogram peak height for these measures to serve as a disease monitoring biomarker6,7,17. Mean MTR was found to be lower in several brain regions in manifest HD6 or in a combined cohort of premanifest and manifest HD7 compared to controls. Also MTR peak height in several regions was found to be lower in manifest HD6 and, although there was no group difference, the MTR peak height related to subtle motor abnormalities and higher CAG repeat length in a premanifest HD cohort17. To date no longitudinal MTI studies in HD were available. In fact there is relatively little longitudinal research of MTI values available at all. Only in multiple sclerosis, optic neuritis and systemic lupus erythematosus reports are available, suggesting a good potential for MTI to examine both grey and white matter as lesion evolution26-29. In normal aging Ge et al. (2008) described, via a histogram analysis, reduction of MTR values after the age of 40 and significant group differences after the age of 50 years30. The groups in our study span exactly this age range. We therefore calibrated our MTR values of the HD groups to the control values.

The goal of this study was to examine the potential of MTI to detect loss of structural integrity in HD to ultimately serve as an outcome measure in future therapeutic trials, as is the overall main goal of the TRACK-HD study10. This current study and the recently published 24-month analysis of the main TRACK-HD study demonstrate that volumetric MRI measures are sensitive for detecting change over a 2 year period31. In our MTI study no statistically strong changes were seen in any of the regions. Three regions did show longitudinal reduction, namely the cortical grey matter in PreHD-B and the amygdala in HD 1 and 2, however these findings did not survive correction for multiple comparison, thus should be interpreted with extreme caution. These regions are shown to be affected at these disease
stages10,11, however other regions such as the caudate nucleus or putamen or pallidum are known to be more severely affected in terms of atrophy. Noteworthy is the fact that MTR histogram peak height was normalised for volume and mean MTR is non-dependent on atrophy; only the number of voxels from which this mean is calculated could have an influence. The measures used are therefore relatively non-influenced by atrophy. We must conclude from our study, based on the group comparisons of MTI-parameters, group comparisons of volumes and the lack of correlation of MTI to clinical measures, that MTI is inferior to volumetric measures to serve as a biomarker to detect longitudinal change in a 2 year follow up. It is noteworthy to mention that clinical trials from a practical point of view will not last longer than two years, hence a longer follow up period may be of interest scientifically, but the impact on biomarker research in HD will be limited.

The interesting finding in this study in PreHD-A is that an increase in MTI values was observed. This pattern was seen in 5 subcortical grey matter structures, with the finding of increased MTR histogram peak height in the putamen, one of the most heavily involved structures in HD, surviving the stringent correction for multiple comparisons. The explanation of this increase could be sought in an earlier postulated theory by Paulsen et al. They gave two possible explanations when their group detected increased cortical volume in premanifest HD. These explanations consist of either a predegenerative process, such as swelling of tissue, or alternatively it may be a reflection of aberrant brain development or maturation32.

Furthermore, evidence from fMRI studies point towards another possible explanation. Two reports exist on increased activation in premanifest HD, which is thought to represent cortical recruitment as compensatory strategies, this was specifically true for premanifest HD far from expected onset and not in the close to onset group33,34. In our view any of these proposed explanations could be true, however we should be extremely cautious not to overly interpret the findings as the correction for multiple comparisons reduced the number and strength of the findings. This finding could however lead to broader examination of MTI and other MRI measures in the premanifest far from disease onset group as this potentially can lead to better understanding of the neuropathology in HD.

Limitations of our study lay in the fact that not all participants were retained for the follow up period. However, those lost to follow up were evenly divided over the groups; hence we do not believe this ultimately influenced our results. Furthermore the group sizes were relatively small, possibly suggesting the study could be
underpowered, however combining the groups did not result in any additional findings. On the other hand aggregated groups could be too heterogeneous to yield additional significant findings.

Conclusion

We believe MTI derived measures are not suitable for disease monitoring in HD as there is no significant decrease in structural integrity in any of the groups over two years and there is no significant relation to clinical measures. The finding of increased MTI measures in the premanifest far from disease onset group could relate to a pre-degenerative process, compensatory mechanisms or aberrant development, but should be interpreted with caution until confirmation of these findings in future studies is made.

Acknowledgement

We wish to thank Mr. B. Mertens from the Department of Medical Statistics for his input in the statistical analysis and Rachael Scahill for her input in the volumetric analysis. We wish to thank all TRACK-HD participants, and the “CHDI/High Q Foundation”, a not-for-profit organization dedicated to finding treatments for HD, for providing financial support, and all TRACK-HD investigators for their efforts in conducting this study.
References

1. Dehmeshki J, Chard DT, Leary SM, et al. The normal appearing grey matter in primary progressive multiple sclerosis: a magnetisation transfer imaging study. J Neurol 2003;250(1):67-74

2. Filippi M, Rocca MA. Magnetization transfer magnetic resonance imaging of the brain, spinal cord, and optic nerve. Neurotherapeutics 2007;4(3):401-13

3. McGowan JC. The physical basis of magnetization transfer imaging. Neurology 1999;53(Suppl 3):S3-S7

4. Ridha BH, Tozer DJ, Symms MR, et al. Quantitative magnetization transfer imaging in Alzheimer disease. Radiology 2007;244(3):832-37

5. Eckert T, Sailer M, Kaufmann J, et al. Differentiation of idiopathic Parkinson’s disease, multiple system atrophy, progressive supranuclear palsy, and healthy controls using magnetization transfer imaging. Neuroimage 2004;21(1):229-35

6. van den Bogaard SJ, Dumas EM, Milles J, et al. Magnetization Transfer Imaging in Premanifest and Manifest Huntington Disease. AJNR Am J Neuroradiol 2012 Jan[Epub ahead of print]

7. Ginestroni A, Battaglini M, Diciotti S, et al. Magnetization Transfer MR Imaging Demonstrates Degeneration of the Subcortical and Cortical Gray Matter in Huntington Disease. AJNR Am J Neuroradiol 2010;31:1807-12

8. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell 1993;72(6):971-83

9. Langbehn DR, Brinkman RR, Falush D, et al. A new model for prediction of the age of onset and penetrance for Huntington’s disease based on CAG length. Clin Genet 2004;65:267-77

10. Tabrizi SJ, Langbehn DR, Leavitt BR, et al. Biological and clinical manifestations of Huntington’s disease in the longitudinal TRACK-HD study: cross-sectional analysis of baseline data. Lancet Neurol 2009;8:791-801

11. van den Bogaard SJ, Dumas EM, Acharya TP, et al. Early atrophy of pallidum and accumbens nucleus in Huntington’s disease. J Neurol 2011;258:412-20

12. Dumas EM, van den Bogaard SJ, Ruber ME, et al. Early changes in white matter pathways of the sensorimotor cortex in premanifest Huntington’s disease. Hum Brain Mapp 2012;33(1):203-12

13. Rosas HD, Tuch DS, Hevelone ND, et al. Diffusion tensor imaging in presymptomatic and early Huntington’s disease: Selective white matter pathology and its relationship to clinical measures. Mov Disord 2006;21:1317-25

14. Rosas HD, Hevelone ND, Zaleta AK, et al. Regional cortical thinning in preclinical Huntington disease and its relationship to cognition. Neurology 2005;65:745-47

15. Henley SM, Frost C, Macmanus DG, et al. Increased rate of whole-brain atrophy over 6 months in early Huntington disease. Neurology 2006;67:694-96

16. Mascalchi M, Loli F, Della NR, et al. Huntington disease: volumetric, diffusion-weighted, and magnetization transfer MR imaging of brain. Radiology 2004;232:867-73

17. Jurgens CK, Bos R, Luyendijk J, et al. Magnetization transfer imaging in ‘premanifest’ Huntington’s disease. J Neurol 2010;257(3):426-32

18. van Waesberghhe JH, Kamphorst W, De Groot CJ, et al. Axonal loss in multiple sclerosis lesions: magnetic resonance imaging insights into substrates of disability. Ann Neurol 1999;46(5):747-54

19. Filippi M, Rocca MA, Comi G. The use of quantitative magnetic-resonance-based techniques to monitor the evolution of multiple sclerosis. The Lancet Neurology 2003;2:337-46

20. Tabrizi SJ, Scahill RI, Durr A, et al. Biological and clinical changes in premanifest and early stage Huntington’s disease in the TRACK-HD study: the 12-month longitudinal analysis. Lancet Neurol 2011;10:31-42

21. Penney JB, Jr., Vonsattel JP, MacDonald ME, et al. CAG repeat number governs the development rate of pathology in Huntington’s disease. Ann Neurol 1997;41(5):689-92
22. Zhang Y, Brady M, Smith S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 2001;20:45-57
23. Patenaude B, Smith SM, Kennedy DN, et al. A Bayesian model of shape and appearance for subcortical brain segmentation. Neuroimage 2011;56:907-22
24. Smith SM, Jenkinson M, Woolrich MW, et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 2004;23 Suppl 1:S208-S219
25. Smith SM, Zhang Y, Jenkinson M, et al. Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. Neuroimage 2002;17:479-89
26. Melzi L, Rocca MA, Marzoli SB, et al. A longitudinal conventional and magnetization transfer magnetic resonance imaging study of optic neuritis. Mult Scler 2007;13(2):265-68
27. Mesaros S, Rocca M, Sormani M, et al. Bimonthly assessment of magnetization transfer magnetic resonance imaging parameters in multiple sclerosis: a 14-month, multicentre, follow-up study. Mult Scler 2010;16(3):325-31
28. Filippi M, Inglese M, Rovaris M, et al. Magnetization transfer imaging to monitor the evolution of MS: a 1-year follow-up study. Neurology 2000;55(7):940-46
29. Emmer BJ, Steens SC, Steup-Beekman GM, et al. Detection of change in CNS involvement in neuropsychiatric SLE: a magnetization transfer study. J Magn Reson Imaging 2006;24(4):812-16
30. Ge Y, Grossman RI, Babb JS, et al. Age-related total gray matter and white matter changes in normal adult brain. Part II: quantitative magnetization transfer ratio histogram analysis. AJNR Am J Neuroradiol 2002;23(8):1334-41
31. Tabrizi SJ, Reilmann R, Roos RA, et al. Potential endpoints for clinical trials in premanifest and early Huntington’s disease in the TRACK-HD study: analysis of 24 month observational data. Lancet Neurol 2012;11:42-53
32. Paulsen JS, Magnotta VA, Mikos AE, et al. Brain structure in preclinical Huntington’s disease. Biol Psychiatry 2006;59:57-63
33. Zimbelman JL, Paulsen JS, Mikos A, et al. fMRI detection of early neural dysfunction in preclinical Huntington’s disease. J Int Neuropsychol Soc 2007;13:758-69
34. Paulsen JS, Zimbelman JL, Hinton SC, et al. fMRI biomarker of early neuronal dysfunction in presymptomatic Huntington’s Disease. AJNR Am J Neuroradiol 2004;25:1715-21
Supplementary Material

Results

Control values
The control values displayed a significant change over time in three regions, as shown in table 4. In the left thalamus and the left caudate nucleus a significant decrease in mean MTR was seen and in the right putamen a significant increase in mean MTR was observed. To ensure that our most significant longitudinal finding, namely MTR peak height of the right putamen, was not affected by the potential influence of calibration, we also examined the difference over time of this value without calibration to controls. As expected, the MTR peak height from the right putamen in the premanifest far from onset group also displayed a very significant ($p=0.005$) increase over the 2 year follow up.

Premanifest versus manifest in three group division
When the two premanifest and two manifest groups were combined there were six noteworthy increases: the MTR peak height of the right putamen ($p=0.010$), the MTR peak height of the left pallidum ($p=0.001$), MTR peak height of cortical grey matter ($p=0.024$), mean MTR of the left amygdala ($p=0.024$) and mean MTR of the right thalamus ($p=0.048$). Furthermore a decrease is seen in mean MTR of the left caudate nucleus ($p=0.030$) and in the manifest HD group the left and right amygdale show a decrease in mean MTR (left amygdale $p=0.042$, right amygdale $p=0.025$). However, when the Bonferroni correction for multiple testing was applied, only the increase in MTR peak height of the left pallidum remains statistically significant.
Table 1: MTI derived values in 14 different regions on both baseline and follow up visit for the premanifest HD A and premanifest HD B group.

Region	Baseline	Follow up	Premanifest A	Premanifest B
	Mean	SD	Mean	SD
			Mean	SD
			Mean	SD
			Mean	SD
White matter				
Peak height	1.144	0.161	1.176	0.223
Mean MTR	0.387	0.013	0.389	0.010
Cortical grey matter				
Peak height	0.752	0.107	0.796	0.109
Mean MTR	0.326	0.014	0.329	0.013
Caudate Right				
Peak height	0.852	0.133	0.910	0.184
Mean MTR	0.339	0.018	0.346	0.020
Caudate Left				
Peak height	0.974	0.245	1.046	0.085
Mean MTR	0.357	0.021	0.351	0.016
Putamen Right				
Peak height	1.132	0.235	1.375	0.206
Mean MTR	0.329	0.015	0.335	0.012
Putamen Left				
Peak height	1.291	0.199	1.340	0.181
Mean MTR	0.352	0.013	0.356	0.015
Pallidum Right				
Peak height	1.569	0.333	1.740	0.272
Mean MTR	0.381	0.006	0.382	0.007
Pallidum Left				
Peak height	1.471	0.285	1.721	0.218
Mean MTR	0.386	0.010	0.386	0.009
Thalamus Right				
Peak height	1.013	0.139	1.083	0.159
Mean MTR	0.359	0.015	0.367	0.018
Thalamus Left				
Peak height	1.166	0.279	1.197	0.098
Mean MTR	0.372	0.018	0.380	0.014
Amygdala Right				
Peak height	1.297	0.116	1.405	0.191
Mean MTR	0.357	0.017	0.358	0.011
Amygdala Left				
Peak height	1.530	0.190	1.613	0.212
Mean MTR	0.374	0.016	0.370	0.015
Hippocampus Right				
Peak height	1.346	0.219	1.298	0.224
Mean MTR	0.360	0.015	0.363	0.009
Hippocampus Left				
Peak height	1.010	0.195	1.059	0.170
Mean MTR	0.381	0.022	0.387	0.018
Whole brain				
Peak height	0.923	0.123	0.963	0.141
Mean MTR	0.352	0.013	0.355	0.011

MTR = Magnetization Transfer Ratio. **Bold** = significant finding at p<0.05
Table 2: MTI derived values in 14 different regions on both baseline and follow up visit for the manifest HD 1 and manifest HD 2 group.

Region	Manifest 1 Baseline	Manifest 1 Follow up	Manifest 2 Baseline	Manifest 2 Follow up	p						
	Mean	SD	p								
White matter	0.747	0.274	0.824	0.243	0.388	0.866	0.263	0.916	0.245	0.560	
Cortical grey matter	0.589	0.174	0.587	0.137	0.961	0.602	0.127	0.632	0.097	0.239	
Caudate Right	0.726	0.234	0.704	0.182	0.762	0.777	0.204	0.703	0.200	0.371	0.866
Caudate Left	0.784	0.240	0.798	0.156	0.852	0.833	0.244	0.898	0.236	0.311	0.580
Putamen Right	0.877	0.326	1.018	0.287	0.152	0.961	0.282	1.082	0.334	0.221	0.963
Putamen Left	0.941	0.332	1.037	0.178	0.415	1.029	0.295	1.177	0.275	0.106	0.801
Pallidum Right	1.178	0.466	1.325	0.359	0.203	1.307	0.409	1.356	0.394	0.714	
Pallidum Left	0.941	0.389	1.200	0.390	0.203	1.307	0.409	1.356	0.394	0.714	
Thalamus Right	0.825	0.297	0.826	0.208	0.988	0.874	0.234	0.838	0.205	0.667	
Thalamus left	0.884	0.311	0.901	0.183	0.856	0.933	0.285	0.993	0.280	0.477	
Amygdala Right	1.076	0.366	1.100	0.336	0.875	1.131	0.277	1.080	0.325	0.536	
Amygdala Left	0.361	0.019	0.333	0.029	0.036	0.351	0.024	0.349	0.017	0.686	
Hippocampus Right	0.974	0.264	0.976	0.233	0.994	1.097	0.235	0.948	0.249	0.131	
Hippocampus Left	0.717	0.226	0.798	0.181	0.142	0.957	0.256	1.062	0.232	0.350	
Whole brain	0.661	0.217	0.696	0.184	0.579	0.719	0.174	0.762	0.153	0.428	

MTR = Magnetization Transfer Ratio. Bold = significant finding at p≤0.05
Table 3: Volumetric analysis of 14 brain regions in premanifest and manifest HD

Premanifest A	**Premanifest B**
Baseline	**Follow up**
Mean	SD
---	---
Caudate	
Right	3.907
Left	3.797
Putamen	
Right	4.832
Left	4.916
Pallidum	
Right	2.056
Left	1.931
Thalamus	
Right	8.155
Left	8.492
Amygdala	
Right	1.689
Left	1.772
Hippocampus	
Right	5.519
Left	5.315
White matter	
673.9	36.2
Whole brain	
1486.4	38.7
---	---
Manifest 1	
---	---
Baseline	**Follow up**
Mean	SD
---|---|---|---|---|---|---|---|---|---|---
Caudate | | | | | | | | | | |
Right | 3.290 | 0.530 | 3.165 | 0.621 | 0.046 | 3.302 | 0.495 | 3.223 | 0.624 | 0.219
Left | 3.178 | 0.478 | 3.002 | 0.481 | 0.019 | 3.094 | 0.472 | 2.916 | 0.515 | 0.001
Putamen | | | | | | | | | | |
Right | 4.002 | 0.603 | 3.839 | 0.602 | 0.009 | 3.518 | 0.325 | 3.296 | 0.392 | 0.012
Left | 4.176 | 0.548 | 3.962 | 0.593 | 0.004 | 3.455 | 0.479 | 3.285 | 0.437 | 0.003
Pallidum | | | | | | | | | | |
Right | 1.834 | 0.086 | 1.790 | 0.058 | 0.029 | 1.845 | 0.248 | 1.751 | 0.226 | 0.014
Left | 1.866 | 0.207 | 1.793 | 0.201 | 0.117 | 1.769 | 0.288 | 1.679 | 0.324 | 0.141
Thalamus | | | | | | | | | | |
Right | 7.603 | 0.703 | 7.427 | 0.661 | 0.003 | 7.285 | 0.593 | 7.207 | 0.435 | 0.352
Left | 7.745 | 0.729 | 7.567 | 0.728 | 0.001 | 7.358 | 0.897 | 7.176 | 0.892 | 0.018
Amygdala | | | | | | | | | | |
Right | 1.643 | 0.258 | 1.732 | 0.194 | 0.257 | 1.623 | 0.149 | 1.633 | 0.279 | 0.918
Left | 1.654 | 0.311 | 1.676 | 0.357 | 0.707 | 1.638 | 0.106 | 1.594 | 0.115 | 0.295
Hippocampus | | | | | | | | | | |
Right | 5.127 | 0.511 | 5.063 | 0.374 | 0.354 | 4.961 | 0.579 | 4.807 | 0.578 | 0.018
Left | 5.096 | 0.591 | 5.033 | 0.556 | 0.557 | 4.542 | 0.440 | 4.446 | 0.550 | 0.233
White matter | | | | | | | | | | |
632.9 | 52.9 | 619.4 | 53.9 | 0.001 | 633.8 | 35.8 | 616.1 | 34.8 | 0.009
Whole brain | 1396.6 | 95.3 | 1371.9 | 93.8 | 0.001 | 1383.1 | 77.8 | 1350.6 | 81.4 | 0.001

Volumes (mm³) of 14 VOI’s on both baseline and follow up. **Bold** = significant finding after Bonferroni correction (p<0.0033)
Table 4: control values of MTR parameters

Control group (n = 25)	MTR peak height	Mean	SD
White matter			
	Baseline	1.109	0.220
	Follow up	1.125	0.231
	Baseline	0.391	0.012
	Follow up	0.394	0.012
Cortical grey matter			
	Baseline	0.769	0.119
	Follow up	0.735	0.132
	Baseline	0.329	0.013
	Follow up	0.330	0.014
Caudate nucleus			
	Baseline	0.799	0.192
	Follow up	0.830	0.224
	Baseline	0.349	0.026
	Follow up	0.343	0.025
Putamen			
	Baseline	0.892	0.188
	Follow up	0.831	0.198
	Baseline	0.369	0.018
	Follow up	**0.354**	0.018
	Baseline	0.340	0.019
	Follow up	**0.351**	0.017
Pallidum			
	Baseline	1.494	0.343
	Follow up	1.435	0.230
	Baseline	0.382	0.015
	Follow up	0.388	0.014
	Baseline	1.601	0.301
	Follow up	1.266	0.265
	Baseline	0.360	0.015
	Follow up	0.357	0.016
Thalamus			
	Baseline	1.476	0.307
	Follow up	1.328	0.269
	Baseline	0.370	0.021
	Follow up	0.370	0.026
Amygdala			
	Baseline	1.240	0.273
	Follow up	1.287	0.289
	Baseline	0.360	0.020
	Follow up	0.363	0.025
Hippocampus			
	Baseline	0.917	0.152
	Follow up	0.906	0.156
Whole brain			
	Baseline	0.356	0.011
	Follow up	0.359	0.012

MTR = Magnetization Transfer Ratio. **Bold** = significant finding after bonferroni correction ($p<0.0033$)
