Hemophagocytic histiocytosis in severe SARS-CoV-2 infection: A bone marrow study

Himanshu Dandu2  |  Geeta Yadav1  |  Hardeep Singh Malhotra3  |  Saurabh Pandey2  |  Ruovinuo Sachu1  |  Kinjalk Dubey2

1Department of Pathology, King George’s Medical University, Lucknow, India
2Department of Internal Medicine, King George’s Medical University, Lucknow, India
3Department of Neurology, King George’s Medical University, Lucknow, India

Correspondence
Geeta Yadav, Department of Pathology, King George’s Medical University, Lucknow, India. Email: euphoricgeeta@gmail.com

Abstract
Introduction: The clinical and laboratory features of severe COVID-19 infection overlap with those of hemophagocytic lymphohistiocytosis (HLH), a hyperinflammatory disorder often associated with several viral infections. The clinical syndrome of HLH encompasses fever, organomegaly, cytopenias, hyperferritinemia, hypertriglyceridemia, raised transaminases, hypofibrinogenemia, absent natural killer (NK) cell activity, increased soluble CD25 and hemophagocytic lymphohistiocytosis in bone marrow, spleen, and lymph nodes.

Methods: We analyzed clinicopathological and laboratory features of thirteen patients with severe COVID-19 infection suspected to have HLH and found to have hemophagocytic histiocytosis on bone marrow examination (BME).

Results: Five of thirteen (38.46%) patients fulfilled five of eight HLH 2004 criteria and/or had a H-score ≥169. Three (23.08%) satisfied four of eight and remainder five (38.46%) satisfied three of eight HLH 2004 criteria. Fever, raised serum ferritin (13/13, 100%), transaminases (9/13, 69.23%), triglycerides (4/13, 30.76%), cytopenias (5/13, 38.46%), hypofibrinogenemia (2/13, 15.38%), and organomegaly (1/13, 7.69%) were observed in our patients. BME showed hemophagocytic histiocytosis without lymphocytosis in all. Contrary to HLH, lymphocytopenia (11/13, 84.61%), leukocytosis (7/13, 53.84%), neutrophilia (7/13, 53.84%), and hyperfibrinogenemia (7/13, 53.84%) were observed. Serum CRP, LDH, and plasma D-dimer were elevated in all, while serum albumin was decreased in 12 of 13 (92.3%) patients. Five patients recovered with high-dose pulsed corticosteroid therapy.

Conclusion: The immune response associated with severe COVID-19 infection is similar to HLH with few differences. HLH should be suspected in severe COVID-19 infection although all patients may not fulfill required HLH diagnostic criteria. BME should be done in suspected cases so that appropriate therapy may be initiated early.

KEYWORDS
bone marrow examination, Hemophagocytic lymphohistiocytosis, hemophagocytosis, histiocytosis, SARS-CoV-2
Coronavirus disease 2019 (COVID-19), a disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a pandemic with massive disease burden. As of November 10, 2020, COVID-19 has been confirmed in 51.5 million people worldwide, with a mortality rate of approximately 3.4%. In India, 8.64 million confirmed cases have been recorded with an estimated mortality of 1.6% as of November 10, 2020. It commonly presents with fever, cough, dyspnea, and myalgia. Although the majority of patients with COVID-19 have mild symptoms, some progress to serious outcomes including pneumonia, acute respiratory distress syndrome (ARDS), multiorgan failure and even death. Some of the serious patients admitted in the intensive care unit (ICU) have clinical and laboratory features mimicking hemophagocytic lymphohistiocytosis (HLH) a condition characterized by a cytokine storm with severe life-threatening hyperinflammation. The early identification of this HLH-like picture is crucial for the management of these patients. In this study, we evaluated clinicopathological and laboratory parameters in thirteen patients with serious SARS-CoV-2 infection who underwent bone marrow examination (BME) for suspected HLH based on clinical and laboratory parameters and were found to have hemophagocytic histiocytosis on BME.

### Table 1: Diagnostic criteria for hemophagocytic lymphohistiocytosis (HLH). Adapted from Henter et al and Fardet et al

#### HLH 2004 criteria (5 of the 8 criteria below are required for a diagnosis of HLH)

| Clinical variables | Biochemical variables | Cytological variables | Other variables |
|--------------------|-----------------------|-----------------------|-----------------|
| Fever ≥38.5°C      | Serum triglycerides >265 mg/dL and/or Plasma fibrinogen <150 mg/dL | Cytopenia in ≥2 series ○ Hemoglobin <9 g/dL ○ Platelet count <100 × 10⁹/L ○ Absolute neutrophil count <1 × 10⁹/L | Low or absent NK cell activity |
| Splenomegaly       | Serum ferritin >500 ng/mL | Hemophagocytosis in bone marrow, spleen, lymph nodes, liver | Soluble CD25 (soluble interleukin-2 receptor) > 2400 U/mL |

#### H-score (H-score values ≥169 favors a diagnosis of HLH)

| Clinical variables | Biochemical variables | Cytological variables | Other variables |
|--------------------|-----------------------|-----------------------|-----------------|
| Immunosuppression  | Serum triglycerides (mmol/L) ○ <1.5: 0 points ○ 1.5-4.0: 44 points ○ 4.0-6.4: 64 points ○ Plasma fibrinogen (g/L) ○ 2.5: 0 points ○ ≤2.5: 30 points | Cytopenia ○ Single series: 0 points ○ Two series: 24 points ○ Three series: 34 points | |
| Fever (°C)         | Ferritin ng/mL ○ <2000: 0 points ○ 2000-6000: 35 points ○ >6000: 50 points | Hemophagocytosis in the bone marrow ○ Absent: 0 points ○ Present: 35 points | |
| Splenomegaly       | Serum AST IU/L ○ <30: 0 points ○ ≥30: 19 points | | |
(HSV). Prior to BME, all patients had at least four of the following mentioned features (fever, organomegaly, hypertriglyceridemia, hypofibrinogenemia, hyperferritinemia, raised transaminases, and cytopenias). All patients had at least one chest X-ray and CT scan done during the period of admission in the ICU.

All patients underwent BME after obtaining written, informed consent from their close relatives. BMA and BMB were done from the posterior superior iliac spine or the anterior superior iliac spine, under aseptic precautions while using personal protective equipment including N-95 mask. 16-gauge Salah needle and 11-gauge Jamshidi needle were used for obtaining BMA and BMB specimens, respectively. Smears were made from BMA specimens and were stained with Leishman stain. BMB specimens were fixed in 10% buffered formalin; decalcified in EDTA for 48 hours, and paraffin embedded using standard procedures. Sections (4 μm thick) were made from paraffin-embedded BMB specimens and stained separately with hematoxylin and eosin to assess morphology and with immunohistochemical stain (monoclonal mouse anti-human anti-CD68 antibody (clone PG-M1, MO876, Dako, Agilent) at a dilution of 1:200) for identification of histiocytes.

We used the method described by Ho et al for quantification of hemophagocytosis in BMA smears. For each case, two BMA smears were examined initially at low power magnification (40x) for the detection of histiocytes, followed by counting of hemophagocytes per slide at high power magnification (1000x). The average number of hemophagocytes per slide was estimated by dividing the total number of hemophagocytes observed in both the slides by two. Only those histiocytes showing engulfment of intact nucleated red cells, neutrophils, granulocytic precursors, lymphocytes, or plasma cells were counted. BMB sections in each patient were examined for cellularity, presence of hemopoietic precursors and hemophagocytes. The study was approved by the Institutional Ethics Committee.

Statistical analysis was done using Statistical Package for Social Sciences, version 23 (SPSS-23, IBM, Chicago, USA). The intergroup data were compared using the independent sample t test for parametric and the Mann-Whitney U test for nonparametric distributions.

### RESULTS

#### 3.1 Demography, baseline clinical characteristics and co-morbidities

The study included seven males and six females with age ranging from forty-one to seventy-four years. Fever was present in all thirteen patients. Organomegaly (hepato-megaly) was seen in only one patient. Nine (69.23%) patients had chronic underlying health conditions. Six (46.15%) patients had hypertension, four (30.76%) patients had diabetes and coronary artery disease and one patient had bronchial asthma. All patients had varying extent of bilateral ground glass opacities and/or consolidation in predominantly peripheral and basal locations on their chest radiographs and CT scans.
fulfilled ≥5/8 HLH 2004 criteria, four patients had a H-score ≥169 and two patients satisfied both HLH diagnostic criteria. Of the eight patients who could not be classified to have HLH by either of the two criteria, three patients (23.08%, n = 3/13) fulfilled 4/8 HLH 2004 criteria and five patients (38.46%, n = 5/13) fulfilled 3/8 HLH 2004 criteria. All patients received high flow nasal oxygen (40 L/min to maintain a FiO$_2$ of 100), intravenous steroid therapy (Dexamethasone 6 mg/day), broad-spectrum antibiotics, and low molecular weight heparin as part of the institutional COVID-19 ICU treatment protocol. On finding hemophagocytic histiocytosis on BME, all patients were shifted to high-dose intravenous pulsed steroid therapy (Methyl Prednisolone 500 mg/day). Two patients were also administered intravenous immunoglobulin G. Eight patients required ventilatory support and succumbed to the illness. Of the five patients who survived, one patient required noninvasive ventilation. Demographic details, clinical features, laboratory findings, findings on BME, outcome and cause of death of patients in our study are enumerated in Table 2.

3.3 | Comparative data between patient groups (patients satisfying ≥4/8 vs patients satisfying <4/8 HLH 2004 criteria) and (patients with H-score ≥163 vs patients with H-score <163)

Although all patients in our study had bone marrow hemophagocytic histiocytosis, only five of thirteen patients satisfied ≥5/8 HLH 2004 criteria and/or had H-score ≥169. We compared the laboratory parameters of patients in our series who fulfilled ≥4/8 HLH 2004 criteria vs those who satisfied <4/8 HLH 2004 criteria and patients in our series who had H-score ≥163 vs those with H-score <163 to determine whether the association of hemophagocytic histiocytosis with these groups was incidental or not. No statistically significant differences were observed between the compared groups (Table 3).

4 | DISCUSSION

Hemophagocytic lymphohistiocytosis is a rapidly progressive often fatal hyperinflammatory systemic disorder characterized by excessive cytokine release and multisystem involvement. It can be primary or genetic and secondary or acquired. Acquired HLH is associated with viral infections, malignancies, autoimmune disease, and allo-genic hematopoietic stem cell transplantation. The diagnosis of HLH is made when ≥5/8 HLH 2004 criteria are fulfilled, or the H-score is ≥169. Histopathological examination of reticuloendothelial organs (bone marrow, liver, spleen, lymph node) shows lymphocytosis and histiocytosis with hemophagocytosis. The hyperinflammatory immune response in severe SARS-CoV-2 infection has the lung at its epicenter and is characterized by fever, ARDS, and systemic tissue damage involving particularly the liver, cardiovascular system, and kidneys. A number of variables of the severe SARS-CoV-2 immune response overlap with HLH diagnostic criteria variables including fever, hyperferritinemia, raised transaminases and
**TABLE 2** Demographic details, clinical features, laboratory and bone marrow examination findings, outcome and cause of death in patients with severe COVID-19 infection

| Patient No. | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   | 13   | Mean ± SD Median (range) |
|-------------|------|------|------|------|------|------|------|------|------|------|------|------|------|--------------------------|
| **Demographic parameters** |      |      |      |      |      |      |      |      |      |      |      |      |      |                          |
| Age (years) | 53   | 65   | 65   | 59   | 55   | 74   | 52   | 41   | 65   | 57   | 52   | 65   | 52   | 58.07 ± 8.58 57(41-74) |
| Sex         | M    | M    | M    | M    | F    | M    | F    | M    | F    | F    | F    | M    | F    | -                        |
| **Clinical Features** |      |      |      |      |      |      |      |      |      |      |      |      |      |                          |
| Comorbidities | HTN  | HTN, BA | DM, CAD | HTN | DM, HTN | None | None | None | CAD, HTN | DM, TB | DM, CAD, Hypothyroidism | DM, CAD | None | -                       |
| Fever       | +    | +    | +    | +    | +    | +    | +    | +    | +    | +    | +    | +    | +    |                          |
| Organomegaly | Nil | Nil | Nil | Nil | Hepatomegaly | Nil | -                       |
| O₂ support | HFNO, IV | IV | HFNO | IV | NIV | IV | IV | IV | HFNO | IV | HFNO | HFNO | IV | -                       |
| **Laboratory Parameters (normal value)** |      |      |      |      |      |      |      |      |      |      |      |      |      |                          |
| Serum Triglycerides (70-200 mg/dL) | 98   | 512  | 99   | 294  | 228  | 129  | 634  | 252  | 284  | 187  | 213  | 79   | 219  | 248.30 ± 162.20 219(79-634) |
| Plasma Fibrinogen (200-400 mg/dL) | 210  | 168  | 484  | 395  | 422  | 439  | 509  | 371  | 459  | 499  | 673  | 383  | 46   | 389.07 ± 164.21 422(46-634) |
| Serum Ferritin (11-336 ng/mL) | 60000 | 1200 | 2667 | 1543 | 795  | 1260 | 7283 | 1429 | 812  | 1322 | 3685 | 979  | 2100 | 6544.23 ± 157.66 1429(795-60000) |
| Serum AST (0-40 IU/L) | 4556 | 58   | 216  | 27   | 63.59 | 56.56 | 1486 | 29   | 424  | 135  | 27   | 31   | 135  | 557.24 ± 1265.09 63.59(27-4556) |
| Serum ALT (0-40 IU/L) | 2866 | 82   | 412  | 37   | 91.88 | 128.55 | 1178 | 36   | 166  | 55   | 22   | 56   | 65   | 395.11 ± 804.65 82.00(22-2866) |
| Hb (12-16 gm/dL) | 12.7 | 13.7 | 10.8 | 14.4 | 7.3   | 8.8   | 10.5 | 11.9 | 6.5  | 10.5 | 8.2  | 8.9  | 6.4  | 10.04 ± 2.63 10.5(6.4-14.4) |
| TLC (4000-11 000 / mm³) | 1400 | 12 600 | 8200 | 19 000 | 7500 | 6700 | 17 500 | 22 900 | 15 800 | 19 400 | 13 800 | 691 | 4800 | 11 560.84 ± 7206.63 12 600(691-22 900) |
| ANC (1500-8000 / mm³) | 644  | 11 970 | 7708 | 17 290 | 6450 | 6200 | 16 100 | 21 526 | 14 378 | 16 878 | 9108 | 476 | 4224 | 10 227.07 ± 6693.16 9108(476-21 526) |
| ALC (1000-4000 / mm³) | 462  | 126  | 610  | 950  | 600  | 300  | 525  | 916  | 948  | 1940  | 3588 | 145 | 432 | 887.84 ± 938.29 600.00(126-3588) |
| Platelet count (1.5-4.0 lakhs/mm³) | 0.10 | 1.6  | 3.5  | 2.0  | 2.4  | 0.79 | 1.9  | 2.6  | 1.5  | 0.50  | 0.95 | 1.2  | 0.50 | 1.5 ± 0.96 1.5(0.10-3.5) |
| N/L ratio (1-3) | 1.39 | 95   | 12.6 | 18.2 | 10.2 | 20.6 | 30.6 | 23.5 | 15.1 | 8.7   | 2.5  | 3.2  | 9.7  | 19.33 ± 24.30 12.6(1.39-95) |

(Continues)
| Patient No. | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  | 13  | Mean ± SD Mean (range) |
|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------------------------|
| Bone Marrow Examination | Pauci cellular | Hyper cellular | Hyper cellular | Pauci cellular | Hyper cellular | - |
| Average number of hemophagocytes per slide | 2  | 3  | 5  | 4  | 3  | 5  | 5  | 7  | 2  | 5  | 4  | 3  | 7  | 4.23 ± 1.64 (4) |
| Number of HLH 2004 criteria fulfilled | 5 of 8 | 3 of 8 | 3 of 8 | 3 of 8 | 3 of 8 | 4 of 8 | 4 of 8 | 4 of 8 | 3 of 8 | 5 of 8 | 4 of 8 | 5 of 8 | - |
| H-score | 177 | 158 | 138 | 147 | 170 | 127 | 197 | 128 | 128 | 163 | 108 | 198 | - |
| Other parameters of inflammation/tissue injury evaluated | | | | | | | | | | | | | | |
| Serum CRP (0-6 mg/L) | 178 | 50 | 36 | 186 | 29 | 345 | 224 | 10.4 | 22.9 | 11.5 | 214 | 13.5 | 50 | 105.40 ± 109.89 (50.00) |
| Plasma D-dimer (<500 ng/mL) | 2100 | 1892 | 1800 | 2726 | 1720 | 4124 | 1720 | 2899 | 1650 | 1075 | 4000 | 826 | 2320 | 2219.38 ± 995.75 (1892-4124) |
| Serum LDH (240-480 U/L) | 7046 | 1500 | 625 | 1212 | 1143 | 1285 | 1319 | 1334 | 1645 | 1391 | 1104 | 784 | 1632 | 1693.84 ± 1634.82 (1319.00) |
| Serum Albumin (3.5-5 gm/dL) | 2.83 | 3.12 | 1.3 | 2.86 | 2.43 | 2.64 | 3.4 | 3.7 | 3.08 | 2.5 | 3.3 | 2.6 | 2.53 | 2.79 ± 0.59 (2.83-3.7) |
| Serum Creatinine (0.5-1.4 mg/dL) | 0.74 | 0.81 | 0.6 | 1.34 | 1.19 | 1.36 | 0.74 | 0.85 | 2.14 | 0.78 | 2.29 | 1.42 | 1.17 ± 0.53 (1.00) |
| Outcome | D | D | S | D | S | D | D | D | S | D | S | S | D | - |
| Cause of death | MOF | RF | - | RF | - | RF | MOF | RF | - | RF | - | - | MOF | - |

Abbreviations: ALC, Absolute lymphocyte count; ALT, Alanine transferase; ANC, Absolute neutrophil count; AST, aspartate transferase; BA, Bronchial asthma; CAD, Coronary artery disease; O₂, Oxygen; CRP, C-reactive protein; D, died; F, Female; Hb, Hemoglobin; HFNO, High flow nasal oxygen; HTN, Hypertension; IV, Invasive ventilation; LDH, Lactate dehydrogenase; M, Male; MOF, Multi organ failure; N/L ratio, Neutrophil/lymphocyte ratio; NIV, Noninvasive ventilation; RF, Respiratory failure; S, survived; SD, Standard deviation; TLC, Total leukocyte count.
| Parameter                  | Comparison of laboratory parameters in COVID-19 patients satisfying ≥4/8 HLH 2004 criteria vs those satisfying <4/8 HLH 2004 criteria | Comparison of laboratory parameters in COVID-19 patients with H-score ≥163 vs those with H-Score <163 |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
|                           | Cases satisfying ≥4/8 HLH 2004 criteria (n = 7) Mean ± SD (Median range) | Cases satisfying <4/8 HLH 2004 criteria (n = 6) Mean ± SD (Median range) | Cases with H-Score ≥163 (n = 5) Mean ± SD (Median range) | Cases with H-score <163 (n = 8) Mean ± SD (Median range) | P          |
| Serum Triglyceride (mg/dL) | 254.14 ± 184.02 (219 (79-634)) | 241.5 ± 149.69 (207.5 (99-512)) | 278.40 ± 205.75 (219 (98-634)) | 229.5 ± 140.93 (219.5 (79-512)) | 0.945     |
| Plasma Fibrinogen (mg/dL)  | 378.71 ± 203.82 (383 (46-509)) | 401.16 ± 120.58 (430.5 (168-499)) | 372 ± 247.17 (422 (46-673)) | 399.75 ± 104.77 (417 (168-484)) | 0.818     |
| Serum Ferritin (ng/mL)     | 10 898 ± 21 768.80 (2100 (812-60 000)) | 1464 ± 637.57 (1291 (795-2667)) | 14 773 ± 25 399.38 (3685 (795-60 000)) | 1401.5 ± 562.55 (1291 (812-2667)) | 0.295     |
| Serum AST (IU/L)           | 955 ± 1672.12 (135 (27-4556)) | 92.69 ± 70.23 (60.80 (27-216)) | 1253.51 ± 1944.98 (135 (27-4556)) | 122.07 ± 138.63 (57.28 (27-424)) | 0.628     |
| Serum ALT (IU/L)           | 627 ± 1071.32 (65 (22-2866)) | 124.57 ± 116.26 (86.94 (37-353)) | 844.58 ± 1229.66 (91.88 (22-2866)) | 114.19 ± 106.85 (69.0 (36-353)) | 1         |
| Hemoglobin (gm/dL)         | 9.30 ± 2.50 (8.9 (6.4-12.7)) | 10.9 ± 2.74 (10.65 (7.3-14.4)) | 9.02 ± 2.56 (8.2 (6.4-12.7)) | 10.69 ± 2.63 (10.65 (6.4-14.4)) | 0.29      |
| TLC (cells/mm³)            | 10 984 ± 8675.76 (13 800 (691-22 900)) | 12 233 ± 5771.88 (10 400 (6700-19 400)) | 9000 ± 6575.33 (7500 (1400-17 500)) | 13 161.38 ± 7530.91 (14 200 (691-19 400)) | 0.77   |
| ANC (cells/mm³)            | 9494 ± 8163.24 (9 108 (476-21 526)) | 11 083 ± 5091.06 (9839 (6200-17 290)) | 7305.20 ± 5813.67 (6450 (644-10 100)) | 12 053.25 ± 6897.42 (13 174 (476-21 526)) | 0.688  |
| ALC (cells/mm³)            | 1002 ± 1174.46 (525 (145-3588)) | 754 ± 646.52 (605 (126-1940)) | 1121.40 ± 1380.37 (525 (432-3588)) | 741.88 ± 597.59 (763 (126-1940)) | 1       |
| Platelet count (x 10⁵/ mm³) | 1.25 ± 0.84 (1.2 (0.10-2.60)) | 1.79 ± 1.10 (1.8 (0.50-3.50)) | 1.17 ± 0.96 (0.96 (0.10-2.40)) | 1.71 ± 0.98 (1.55 (0.50-3.50)) | 0.332  |
| N/L ratio                  | 12.28 ± 11.35 (9.7 (1.39-30.6)) | 27.55 ± 33.36 (15.4 (8.7-95)) | 10.88 ± 11.74 (9.7 (1.39-30.6)) | 24.61 ± 29.18 (16.65 (3.2-95)) | 0.332  |
| Serum CRP (mg/L)           | 101.82 ± 98.64 (50 (10.4-224)) | 109.58 ± 131.41 (43 (11.5-345)) | 139 ± 92.72 (178 (29-224)) | 84.41 ± 120.33 (29.45 (10.4-186)) | 0.836  |
| Plasma D- dimer (ng/mL)    | 2216.42 ± 1014.22 (2100 (826-2899)) | 2222.83 ± 1070.16 (1846 (1075-4124)) | 2372 ± 945.68 (2100 (1720-4000)) | 2124 ± 1077.81 (1846 (826-4124)) | 0.991  |
| Serum LDH (IU/L)           | 2123.43 ± 2191.10 (1334 (784-7046)) | 1192.67 ± 305.74 (1248.5 (625-1500)) | 2448.88 ± 2578.34 (1319 (1104-7046)) | 1222 ± 348.39 (1309.5 (625-1645)) | 0.366  |
| Serum Albumin (gm/dL)      | 3.06 ± 0.43 (3.08 (2.53-3.70)) | 2.48 ± 0.63 (2.59 (1.30-3.12)) | 2.89 ± 0.44 (2.83 (2.43-3.40)) | 2.720 ± 0.69 (2.75 (1.3-3.12)) | 0.101  |
| Serum Creatinine (mg/dL)   | 1.310.66 ± 0.66 (1.0 (0.74-2.29)) | 1.01 ± 0.33 (1.0 (0.6-1.36)) | 1.19 ± 0.64 (1.0 (0.74-2.29)) | 1.16 ± 0.50 (1.10 (0.60-2.14)) | 0.338  |

Abbreviations: ALC, Absolute lymphocyte count; ALT, Alanine transferase; ANC, Absolute neutrophil count; AST, Aspartate transferase; CRP, C-reactive protein; Hb, Hemoglobin; LDH, Lactate dehydrogenase; N/L ratio, Neutrophil/lymphocyte ratio; SD, Standard deviation; TLC, Total leukocyte count.
## TABLE 4  Comparison of recent COVID-19 studies associated with HLH where antemortem bone marrow examination was done

| Demographic and clinical characteristics | Deblquis et al (June 2020) | Prieto-Perez et al (July 2020) | Present study |
|-----------------------------------------|---------------------------|-----------------------------|---------------|
| Number of patients                      | 3                        | 3                          | 13            |
| (Mean ± SD)                              | Median (range)            | (Mean ± SD) Median (range)  | (Mean ± SD) Median (range) |
| Age (years)                             | 69.33 ± 7.76 (63-78)     | 58.33 ± 12.58 (45-70)      | 58.07 ± 8.58 (41-74) |
| Male: Female ratio                      | 2:1                      | 1:2                        | 7.6:7         |
| Fever (% of patients)                   | 33.33%                   | 100%                       | 100%          |
| Splenomegaly (% of patients)            | Absent                   | Absent                     | Absent        |
| Hepatomegaly (% of patients)            | Absent                   | No data                    | 7.69%         |
| Laboratory parameters                   |                           |                             |               |
| Serum Triglyceride (mg/dL)              | 228.81 ± 204.99          | No data                    | 248.30 ± 162.20 |
| Plasma Fibrinogen (mg/dL)               | 343.33 ± 275.38          | No data                    | 389.07 ± 164.21 |
| Serum Ferritin (ng/mL)                  | 2047 ± 2469.32           | No data                    | 6544.23 ± 157.66 |
| Serum AST (IU/L)                        | 79.66 ± 51.39            | No data                    | 557.24 ± 126.59 |
| Serum ALT (IU/L)                        | No data                  | No data                    | 422 (46-673) |
| Hemoglobin (gm/dL)                      | 10.4 ± 1.95              | 7.25 ± 0.21                | 10.0 ± 1.95  |
| TLC (cells/mm$^3$)                      | 14 046.66 ± 8986.76     | 7.25 (7.1-74)              | 7.25 (7.1-74) |
| ALC (cells/mm$^3$)                      | 1167.33 ± 522.12         | 0.38 ± 0.22                | 1.5 ± 0.96   |
| Platelet count (× 10$^9$/mm$^3$)        | 0.40 ± 0.43              | 0.38 (0.23 - 0.54)         | 1.50 (0.10-3.5) |
| Serum CRP (mg/L)                        | 224.3 ± 172.86           | No data                    | 105.40 ± 109.89 |
| Plasma D-dimer (ng/mL)                  | 15 057 ± 11 691.52      | No data                    | 2219.38 ± 995.75 |
| Serum LDH (U/L)                         | 463.66 ± 211.89          | No data                    | 1693.84 ± 1634.82 |
| Serum Albumin (gm/dL)                   | No data                  | No data                    | 1693.84 ± 1634.82 |
| Serum Creatinine (mg/dL)                | No data                  | No data                    | 1693.84 ± 1634.82 |
| Soluble CD25 (U/mL)                     | No data                  | No data                    | 1693.84 ± 1634.82 |
| Bone marrow Hemophagocytosis (%)        | 100%                     | 100%                       | 100%          |
| HLH diagnostic criteria                  |                           |                             |               |
| Number of patients satisfying ≥5/8 HLH 2004 criteria | 1 | 1 | 3 |
| Number of patients with H-score ≥169    | 1 | 0 | 4 |

(Continues)
hypertriglyceridemia, raising the suspicion that severe SARS-CoV-2 infection is associated with a HLH like cytokine storm.\textsuperscript{4,6,11,14} Few clinical studies have observed that the immune response in severe SARS-CoV-2 infection is unlike that in HLH as it is not associated with organomegaly, cytopenias, or hypofibrinogenemia. On the contrary, it is associated with hyperfibrinogenemia, neutrophilia, and lymphopenia.\textsuperscript{15-17}

Unlike HLH, we observed hyperfibrinogenemia in 53.84%, peripheral blood neutrophilia in 53.84%, peripheral blood lymphopenia in 84.61%, and absence of bone marrow lymphocytosis in 100% of our COVID-19 patients. However, a small number of our patients had hypofibrinogenemia (15.8%), cytopenias (38.46%), and organomegaly (7.69%) similar to HLH. All patients in our study had hemophagocytic histiocytosis on BME. Although the clinical picture in our patients showed similarities to HLH, only five of thirteen patients fulfilled HLH diagnostic criteria. It is possible that a few more of our patients could have fulfilled HLH diagnostic criteria, had the estimation of soluble CD25 and NK cell activity also been done. Although the mere finding of hemophagocytosis on BME may not be sufficient to diagnose HLH, it is an important criteria to diagnose HLH.\textsuperscript{10} Gars et al observed that 23% of their HLH patients needed the finding of hemophagocytosis on BME to satisfy 5/8 HLH 2004 criteria and it was the only HLH 2004 criteria variable that was observed in all their HLH patients.\textsuperscript{12} BME may be even more necessary in patients with severe COVID-19 infection with clinically suspected HLH as the frequent occurrence of hyperfibrinogenemia, neutrophilia, and infrequent occurrence of cytopenias in severe COVID-19 infection may contribute to lesser number of HLH diagnostic criteria points. A standardized method for quantification of hemophagocytosis is not well described in literature. Ho et al counted the number of hemophagocytes over the entire smear in two slides and after averaging, obtained the number of hemophagocytes per smear.\textsuperscript{9} Singh et al considered hemophagocytosis to be significant if there were ≥2 hemophagocytes per slide.\textsuperscript{18} Gars et al suggested that the presence of ≥1 hemophagocyte with an ingested granulocyte, ≥2 hemophagocytes with ingested nucleated red cells and ≥1 hemophagocyte with ingested lymphocytes together in the bone marrow has a 100% accuracy for predicting HLH.\textsuperscript{12}

Table 4 compares our study with two recent COVID-19 studies with fewer patients (n = 3, in both studies) where antemortem BME was done. All patients in our study and the study by Prieto-Perez et al\textsuperscript{5} presented with fever, while only one patient had fever in the study by Debliquis et al.\textsuperscript{19} Splenomegaly was observed in one patient in the study by Prieto-Perez et al\textsuperscript{7} while we observed hepatomegaly in one patient. Hyperferritinemia and bone marrow hemophagocytic histiocytosis were observed in all patients in all three studies. Elevated mean serum AST, LDH and CRP, mean plasma fibrinogen and D-dimer, mean TLC along with decreased mean ALC were observed in our study and in the study by Debliquis et al.\textsuperscript{29} Data on these parameters were not available in the study by Prieto-Perez et al.\textsuperscript{5} Bicytopenia was observed in five of thirteen patients in our study, two of three patients in the study by Prieto-Perez et al\textsuperscript{5}...
and in one of three patients in the study by Debliquis et al. Soluble CD25 was elevated in one patient in the study by Prieto-Perez et al. Soluble CD25 was not evaluated in our study and in the study by Debliquis et al. NK cell activity was not evaluated in all three studies. Five of thirteen patients in our study satisfied 5/8 HLH 2004 criteria and/or had H-score ≥169. In the study by Debliquis et al one of three patients satisfied 5/8 HLH 2004 criteria and had a H-score of 207 and two patients satisfied 2/8 HLH 2004 criteria and had H-score <169. In the study by Prieto-Perez et al one patient satisfied 5/8 HLH 2004 criteria and two patients fulfilled 4/8 HLH 2004 criteria.

The clinical and laboratory manifestations of severe COVID-19 infection are caused by a cytokine storm associated with increased interleukin-6 levels. Increased interleukin-6 levels induce a persistent inflammatory state which is responsible for the increased levels of acute phase reactants including plasma fibrinogen. Increased levels of pro-inflammatory cytokines interleukin-6, interleukin-10 and tumor necrosis factor–alpha (TNF-α) induce apoptosis of cytotoxic T cells and NK cells and are thought to be responsible for the lymphopenia observed in severe COVID-19 infection. Sequestration of lymphocytes in lungs, gastrointestinal tract, and lymphoid tissues has also been proposed as a cause of lymphopenia in severe COVID-19 infection although autopsy studies do not show excessive lymphocytic infiltration in these organs, rather lymphocyte depletion has occasionally been documented. Along with reduced numbers, functional defects and exhaustion of cytotoxic T cells and NK cells have also been reported in severe COVID-19 infection although autopsy studies do not show excessive lymphocytic infiltration in these organs, rather lymphocyte depletion has occasionally been documented. Along with reduced numbers, functional defects and exhaustion of cytotoxic T cells and NK cells have also been reported in severe COVID-19 infection although autopsy studies do not show excessive lymphocytic infiltration in these organs, rather lymphocyte depletion has occasionally been documented.

5 | CONCLUSION

The immune response associated with severe COVID-19 infection is similar to HLH with a few differences. It is associated with lymphopenia in the peripheral blood and hemophagocytic histiocytosis without lymphocytosis in the bone marrow. Cytopenia, organomegaly, and hypofibrinogenemia are rare though not unseen in the severe COVID-19 immune response. On the contrary, hyperfibrinogenemia and neutrophilic leukocytosis are frequently observed. All patients with severe COVID-19 infection may not fulfill HLH 2004 criteria or have a H-score >169. We suggest that HLH should be suspected in patients with severe COVID-19 infection or worsening of COVID-19 infection. BME should be done where the diagnosis is in doubt so that appropriate therapy may be initiated as early as possible.

CONFLICT OF INTEREST

The authors have no competing interests.

AUTHOR CONTRIBUTION

All authors participated substantially so as to be considered authors in this manuscript. All authors read and approved the final manuscript. H. Dandu and G. Yadav designed the research study. S. Pandey, R. Sachu and K. Dubey collected the data and performed the research. HS Malhotra analyzed the data. H. Dandu, G. Yadav, and HS Malhotra wrote the paper.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID

Geeta Yadav https://orcid.org/0000-0001-8193-8436

REFERENCES

1. COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU)*; [updated 2020; cited Nov 10] available from https://coronavirus.jhu.edu/map.html. Accessed November 10, 2020.
2. Home – Ministry of Health and Family Welfare – GOI*; [updated 2020; cited Nov 11] available from https://coronavirus.jhu.edu/map.html. Accessed November 10, 2020.
3. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507-513.
4. Opoka-Winiarska V, Grywalska E, Roliński J. Could hemophagocytic lymphohistiocytosis be the core issue of severe COVID-19 cases? BMC Med. 2020;18(1):214.
5. Prieto-Pérez L, Fortes J, Soto C, et al. Histiocytic hyperplasia with hemophagocytosis and acute alveolar damage in COVID-19 infection. Mod Pathol. 2020;33:2139-2146.
6. Alunno A, Carubbi F, Rodríguez-Carrio J. Storm, typhoon, cyclone or hurricane in patients with COVID-19? Beware of the same storm that has a different origin. RMD Open. 2020;6(1):e001295.
7. Henter JI, Horne A, Arico M, et al. Histiocytic hyperplasia with hemophagocytosis and acute alveolar damage in COVID-19 infection. Mod Pathol. 2020;33:2139-2146.
8. Fardet L, Galicier L, Lambotte O, et al. Development and validation of H score, a score for the diagnosis of reactive hemophagocytic syndrome. Arthritis Rheumatol. 2014;66:2613-2620.
9. Ho C, Yao X, Tian L, Li FY, Podoltsev N, Xu ML. Marrow assessment for hemophagocytic lymphohistiocytosis demonstrates poor correlation with disease probability. Am J Clin Pathol. 2014;141(1):62-71.
10. Rosado FG, Kim AS. Hemophagocytic lymphohistiocytosis: an update on diagnosis and pathogenesis. Am J Clin Pathol. 2013;139(6):713-727.
11. Lima R, Filho CC, Ferreira Filho CM, et al. Hemophagocytic syndrome and COVID-19. Respir Med Case Rep. 2020;31:101162.
12. Gars E, Purington N, Scott G, et al. Bone marrow histomorphological criteria can accurately diagnose hemophagocytic lymphohistiocytosis. Haematologica. 2018;103(10):1635-1641.
13. Gavriatopoulou M, Korompayi E, Fotiou D, et al. Organ-specific manifestations of COVID-19 infection. Clin Exp Med. 2020;20(4):493-506.
14. Soy M, Atagündüz P, Atagündüz İ, Sucak GT. Hemophagocytic lymphohistiocytosis: a review inspired by the COVID-19 pandemic. Rheumatol Int. 2020;41:1-12. https://doi.org/10.1007/s00296-020-04636-y
15. Wood H, Jones J, Hui K, et al. Secondary HLH is uncommon in severe COVID-19. Br J Haematol. 2020;190(5):e283-e285.
16. Caricchio R, Gallucci M, Dass C, et al. Preliminary predictive criteria for COVID-19 cytokine storm. Ann Rheum Dis. 2020;80:1-8.
17. Lorenz G, Moog P, Bachmann Q, et al. Cytokine release syndrome is not usually caused by secondary hemophagocytic lymphohistiocytosis in a cohort of 19 critically ill COVID-19 patients. Sci Rep. 2020;10:18277.
18. Singh ZN, Rakheja D, Yadav TP, Shome DK. Infection-associated haemophagocytosis: the tropical spectrum. Clin Lab Haematol. 2005;27:312-315.
19. Deblquis A, Harzallah I, Mootien JY, et al. Haemophagocytosis in bone marrow aspirates in patients with COVID-19. Br J Haematol. 2020;190(2):e70-e73.
20. Ranucci M, Ballotta A, Di Dedda U, et al. The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome. J Thromb Haemost. 2020;18(7):1747-1751.
21. Friedrich MS, Studt JD, Braun J, Spahn DR, Kaserer A. Coronavirus-induced coagulopathy during the course of disease. PLoS One. 2020;15(12):e0243409.
22. Chen Z, John WE. T cell responses in patients with COVID-19. Nat Rev Immunol. 2020;20(9):529-536.
23. Mazzoni A, Salvati L, Maggi L, et al. Impaired immune cell cytotoxicity in severe COVID-19 is IL-6 dependent. J Clin Invest. 2020;130(9):4694-4703.
24. Prilutskiy A, Kritselis M, Shevtsov A, et al. SARS-CoV-2 infection associated hemophagocytic lymphohistiocytosis. Am J Clin Pathol. 2020;154(4):466-474.
25. Diao B, Wang C, Tan Y, et al. Reduction and functional exhaustion of T Cells in patients with Coronavirus disease 2019 (COVID-19). Front Immunol. 2020;11:827.
26. Tavakolpour S, Rakhshandehroo T, Wei EX, Rashidian M. Lymphopenia during the COVID-19 infection: what it shows and what can be learned. Immunol Lett. 2020;225:31-32.
27. Zheng M, Gao Y, Wang G, et al. Reduction and functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol Immunol. 2020;17(5):533-535.
28. Gao Z, Wang Y, Wang J, Zhang J, Wang Z. The inhibitory receptors on NK cells and CTLs are upregulated in adult and adolescent patients with secondary hemophagocytic lymphohistiocytosis. Clin Immunol. 2019;202:18-28.

How to cite this article: Dandu H, Yadav G, Malhotra HS, Pandey S, Sachu R, Dubey K. Hemophagocytic histiocytosis in severe SARS-CoV-2 infection: A bone marrow study. Int J Lab Hematol. 2021;00:1-11. https://doi.org/10.1111/ijlh.13619