Biocontrol Activity of *Aspergillus terreus* ANU-301 against Two Distinct Plant Diseases, Tomato *Fusarium* Wilt and Potato Soft Rot

Hyong Woo Choi * and S. M. Ahsan

Department of Plant Medicals, College of Life Sciences and Biotechnology, Andong National University, Andong 36729, Korea

(Received on December 26, 2021; Revised on January 10, 2022; Accepted on January 11, 2022)

To screen antagonistic fungi against plant pathogens, dual culture assay (DCA) and culture filtrate assay (CFA) were performed with unknown soil-born fungi. Among the different fungi isolated and screened from the soil, fungal isolate ANU-301 successfully inhibited growth of different plant pathogenic fungi, *Colletotrichum acutatum*, *Alternaria alternata*, and *Fusarium oxysporum*, in DCA and CFA. Morphological characteristics and rDNA internal transcribed spacer sequence analysis identified ANU-301 as *Aspergillus terreus*. Inoculation of tomato plants with *Fusarium oxysporum* f. sp. *lycopersici* (*FOL*) induced severe wilting symptom; however, co-inoculation with ANU-301 significantly enhanced resistance of tomato plants against *FOL*. In addition, culture filtrate (CF) of ANU-301 not only showed bacterial growth inhibition activity against *Dickeya chrysanthemi* (*Dc*), but also demonstrated protective effect in potato tuber against soft rot disease. Gas chromatography-tandem mass spectrometry analysis of CF of ANU-301 identified 2,4-bis(1-methyl-1-phenylethyl)-phenol (MPP) as the most abundant compound. MPP inhibited growth of *Dc*, but not of *FOL*, in a dose-dependent manner, and protected potato tuber from the soft rot disease induced by *Dc*. In conclusion, *Aspergillus terreus* ANU-301 could be used and further tested as a potential biological control agent.

Keywords: *Aspergillus terreus*, biological control agent, *Dickeya chrysanthemi*, *Fusarium oxysporum* f. sp. *lycopersici*, 2,4-bis(1-methyl-1-phenylethyl)-phenol

To ensure food security in the foreseeable coming decades, agricultural production must boost to keep pace with the expanding human population. There is currently a tremendous drive to create low-input and more sustainable agricultural strategies that include replacements to chemicals for pest and disease management. Thus, it is crucial to investigate the function of soil microorganisms which can stimulate growth and prohibit disease, as well as their use as biological control agent (Ab Rahman et al., 2018).

The *Fusarium* genus is one of the most sophisticated and versatile in the Eumycota, and the *Fusarium oxysporum* species group features plant, animal, and human diseases, as well as a varied diversity of non-pathogens (Gordon, 2017). Members of the *Fusarium* genus are a widespread soil-borne pathogen that infects a broad variety of horticultural and food crops, causing devastating vascular wilts, rots, and damping-off diseases (Bodah, 2017). *F. oxysporum* penetrates the root epidermis, spreads through the vascular tissue, and conquers the plant's xylem vessels, resulting in vessel blockage and severe water stress (Singh et al., 2017). The tomato (*Lycopersicon esculentum*) is a crop grown on a global scale and is eaten raw or processed in a variety of products (Brookie et al., 2018; Srinivas et al., 2019) and its production is largely hampered by *Fusarium* wilt caused by *F. oxysporum* f. sp. *lycopersici* (Borisade et al., 2017).

Dickeya chrysanthemi (*Dc*, formerly *Erwinia chrysan-
Aspergillus] is an enterobacteria that causes blackleg and soft rot diseases on a wide variety of agricultural and aesthetic plants, most notably banana, Chrysanthemum spp., Dianthus spp., maize, potato, and tomato (Ma et al., 2007; Toth et al., 2011). The signs of soft rot are mostly produced by secreted pectinases that breakdown pectin in the intermediate lamella and primary cell walls (Hugouvieux-Cotte-Pattat et al., 2014). Dc is a serious bacterial pathogen associated with potato soft rot disease (Cating et al., 2008; Pérombelon, 2002; Potrykus et al., 2016; Samson et al., 2005; Sławiak et al., 2009; Toth et al., 2011; Van der Wolf et al., 2014; Végh et al., 2014).

Rhizosphere-resident fungi that benefit plants are often referred to as ‘Plant growth promoting fungi’ (PGPF). They are also a major source of biotic inducers known to confer several benefits on their host plants, and hence play a critical role in sustainable agriculture (Murali et al., 2010). The well-known fungal genera Aspergillus, Fusarium, Penicillium, Piriformospora, Phoma, and Trichoderma are the most commonly reported PGPF when it comes to ensuring improved plant development and induced systemic resistance (Hossain et al., 2017). Current findings have shown that Aspergillus spp. isolated from soil increases the synthesis of indole-3-acetic acid (Abri et al., 2015; Kumar et al., 2017; Ozimek et al., 2018), phoshorus solubilization (Li et al., 2016), and zinc oxide solubilization (Šebesta et al., 2020). Siderophore fermentation (Ghosh et al., 2017; Mahmoud and Abd-Alla, 2001; Nenwani et al., 2010; Patel et al., 2017; Salas-Marina et al., 2011), starch hydrolysis (Tsukagoshi et al., 2001) and antimicrobial secondary metabolites production (Lenartowicz et al., 2015). Secondary metabolites are low molecular weight molecules generated by fungi that are not essential for growth or reproduction but impose a competitive advantage on the organism. For instance, they may limit the development of organisms with which they interact, so impairing often vital biochemical reactions (Mosunova et al., 2020). The genus Aspergillus is the most prevalent, yielding an abundance of beneficial bioactive antimicrobial secondary metabolites (El-hawary et al., 2020; Ortega et al., 2021).

Aspergillus terreus is a significant saprophytic filamentous fungus found in soil that performs a variety of growth-promoting roles and produces antimicrobial secondary metabolites such as phenols and flavanoids (Javed et al., 2020; Vassileva et al., 2020). Additionally, some studies indicate that it has antifungal (Abdallah et al., 2015; Al-Shibli et al., 2019; Joncy et al., 2019; Waqas et al., 2015) and antibacterial properties (Cazar et al., 2005; Liu et al., 2018; Zaman et al., 2020). Additional research is required to determine its potential not only as a growth promoter for plants, but also as a biocontrol agent against a number of vital plant diseases.

The objective of the present study is to isolate fungal strain with biocontrol activities from the soil. ANU-301 isolated from the screening was identified as A. terreus by morphological and molecular analysis. Importantly, ANU-301 significantly suppressed tomato Fusarium wilt and potato soft rot. To our knowledge, it is the first report of biological control activity of A. terreus against F. oxysporum and Dc.

Materials and Methods

Plant pathogens. Fungal (Colletotrichum acutatum, Alternaria alternata, and F. oxysporum) and bacterial (Dc) plant pathogens were used in this study. F. oxysporum f. sp. lycopersici strain KACC 40038 (FOL) was generously provided by Korean Agricultural Culture Collection (KACC), Korea. Fungal and bacterial strains were grown at potato dextrose agar (PDA) and nutrient agar (NA) media, respectively.

For tomato Fusarium wilt assay, FOL was grown at PDA for 10 days at 28°C. Surface of fungal mycelia on PDA medium was filled with 5 ml of sterile distilled water (SDW), fungal spores were collected using a spreader, and filtered through cheesecloth. The spore concentration was adjusted to 1×10^8 conidia/ml by using a hemocytometer (Paul Marienfeld Superior, Lauda-Königshofen, Germany).

For potato soft rot assay, Dc was grown at nutrient broth (MBcell, Kisanbio, Seoul, Korea) medium for 2 days at 28°C. Bacterial cells were collected by centrifugation at 13,000 rpm and suspended in sterile tap water (10^7 cfu/ml) (OD_{600} of 1.0 = 10^7 cfu/ml).

Isolation and screening of the antagonistic activity of ANU-301. Soils were sampled from Agisan in Andong, South Korea. One gram of soil samples was suspended with 10 ml SDW, vortexed for 10 min and sieved with cheesecloth to remove large soil particle. Supernatant was serially diluted and spread on PDA medium containing 50 µg/ml streptomycin. Different fungal colonies were recovered and grown at PDA media.

Fungal isolates were screened for their antagonistic activity against different plant pathogenic fungi by using dual culture and culture filtrate assays (DCA and CFA, respectively). DCA and CFA were performed as previously described with minor modifications (Park et al., 2021; Shin et al., 2019). The pathogen and soil-isolated fungi were grown at PDA media, and agar-mycelium discs (6 mm diameter) were taken from the edge of an actively grow-
ing fungal colony for DCA. Each agar-mycelium disc was placed on PDA with 40 mm distance and incubated at 25°C for 7 days. One of the soil-isolated fungi named Andong National University-301 (ANU-301) showed significant inhibition activity against different fungal pathogens. To prepare the culture filtrate (CF), ANU-301 was cultured in potato dextrose broth (PDB) at 25°C for 5 days, centrifuged at 13,000 rpm for 10 min, and supernatant was filtered with 0.22 μm filters. For CFA, agar-mycelium discs of pathogens were placed in the middle of PDA media with or without 10% CF, then measured diameter of fungal mycelium after growing at 25°C for 5 days. To prepare the PDA with 10% CF, filter sterilized CF was added to autoclaved PDA after cooling to about 60°C. For DCA and CFA, three replicates were prepared for each experiment, and plates inoculated only with the pathogen were used as control. The antagonistic activity of ANU-301 or its CF was expressed as the percentage of pathogen mycelium growth inhibition compared to the control.

Identification of ANU-301. For microscopic observation of conidiophore and conidia, ANU-301 was grown at PDA medium and observed by using the microscope (BX50, Olympus, Tokyo, Japan). The obtained image was analyzed by using ImageJ software. For molecular identification, the rDNA genes containing highly conserved internal transcribed spacer (ITS) regions were amplified by polymerase chain reaction (PCR) and sequenced. Genomic DNA (gDNA) was extracted from mycelia of ANU-301 using HiGene Genomic DNA Prep Kit (BIOFACT, Daejeon, Korea) according to the manufacturer’s instructions. The PCR amplification and sequencing of the ITS rDNA was performed using the following primer set: ITS1: 5′-TCCGTAGGTGAACCTGCGG-3′ and ITS4: 5′-TCTTCCGCTTATTGATATGC-3′ (White et al., 1990). PCR was performed in a 30 μl reaction mixture containing 15 μl of 2× Taq PCR Pre-Mix (Solgent, Daejeon, Korea), 1 μl of 10 pmol/μl of ITS1 and ITS4 primers, and 1 μg of gDNA. PCR amplification was carried out using thermal cycler (Multigene Gradient, Labnet, Edison, NJ, USA) by following amplification conditions: denatured at 95°C for 5 min, 33 cycles of 94°C for 30 s, 56°C for 10 s, 72°C for 40 s, and final extension at 72°C for 10 min. PCR products were analyzed by gel electrophoresis and purified using PCR purification Kit (BIOFACT) according to the manufacturer’s instructions for sequencing. The resulting sequence of the ITS rDNA of ANU-301 was analyzed with NCBI’s GenBank sequence database (http://www.ncbi.nlm.nih.gov) to identify the closest species relatives and phylogenetic tree was constructed by MEGA-X software using maximum likelihood method (Kumar et al., 2018). The resulting sequence of the complete ITS rDNA of ANU-301 has been deposited in the NCBI (accession no. OL831165).

Biocontrol activity of ANU-301 in tomato and potato. Tomato (Solanum lycopersicum L. cv. Seogwang) plants were grown in plastic tray (55 × 35 × 15 cm) containing soil mix (peat moss, perlite, and vermiculite; 5:3:2, v/v/v) at 28°C with a day length of 16 h at a light intensity of 70 μmol photons/m²/s. Six seedlings at the two-leaf stage were transplanted to a plastic pot (5 × 15 × 10 cm) containing the same soil mix. Two-week-old tomato plants were used for pathogen inoculation experiment. For biological control assay, tomato plants were uprooted and submerged into 1 × 10⁶ conidia/ml of FOL in the absence or presence of 1 × 10⁸ conidia/ml of ANU-301 and planted back. The infected plants were incubated in a controlled chamber at 28°C with 100% relative humidity for 2 weeks. Potato (Solanum tuberosum L. cv. Sumi) tubers were surface sterilized by immersing sequentially in 1% NaOCl (5 min), 70% ethanol (5 min) and washed 3 times with SDW. To prepare the inoculum, 2 × 10⁶ cfu/ml of Dc was mixed with or with our 1:50 diluted CF of ANU-301 in 1:1 ratio (Final concentrations were 10⁶ cfu/ml Dc and 1/100 diluted CF of ANU-301). For pathogenicity assay, 10 μl of each mixture was directly injected into potato tubers by using the pipette. The inoculated potato tubers were placed in plastic container and incubated at 25°C with 100% relative humidity. The diseased area in all cases was calculated from area of the macerated region by using the ImageJ program to calculate percent disease severity. Three independent trials were carried out with three replicates. For control experiments, potato tubers were injected with 10 μl of sterilized distilled water.

Gas chromatography-tandem mass spectrometry analysis. ANU-301 was inoculation in 1 l of PDB medium for 5 days. After cultivation, broth medium was centrifuged at 10,000 ×g for 10 min and supernatant transferred to the conical flasks. In each conical flask, ethyl acetate were added to supernatant in a 1:1 ratio, shaken, and kept for overnight. Then, extraction solution were dried using a rotary evaporator. Extracts were dissolved in methanol for gas chromatography-tandem mass spectrometry (GC-MS/MS) analysis and in DMSO for antifungal test. For GC-MS/MS analysis, 5977A Series GC/MSD System (Agilent Technologies, Santa Clara, CA, USA) was used. Temperature program of 40°C (1 min hold) to 300°C (10 min hold) at a rate of 10°C/min. The injector and mass interface
temperature was 300°C, and the gas flow rate of the carrier gas, helium, was 1.0 ml/min. Injection mode was split and mass range was 50 to 400 (m/z). The result was analyzed using the National Institute of Standards and Technology spectral library version 11 (NIST 11 spectral library).

MPP against pathogens. MPP (2,4-bis(1-methyl-1-phenylethyl)-phenol) was purchased from Tokyo Chemical Industry (TCI; Cat. No. B2772). MPP was dissolved in DMSO to prepare 100× stock solutions, and then mixed with pathogen containing media to the final concentrations.

Results

Screening of fungi with antifungal activity. To screen the soil fungi with biocontrol activity against different plant pathogens, unknown fungal isolates were recovered from the soil by plating on PDA media, then screened by DCA and CFA (Fig. 1). One of the fungal isolate, ANU-301, showed distinct growth inhibition activity (GIA) against different plant pathogenic fungi, such as *C. acutatum*, *A. alternata*, and *F. oxysporum*, in DCA and CFA (Fig. 1A). In DCA, GIA of ANU-301 against *F. oxysporum* was about 58.5%, then followed by *C. acutatum* (40.1%) and *A. alternata* (27.3%) (Fig. 1B). By contrast, ANU-301 showed the highest GIA against *C. acutatum* (62.5%), whereas much lower GIA against *A. alternata* (21.7%) and *F. oxysporum* (20.2%), in CFA. Although ANU-301 showed different levels of antifungal activity against different plant pathogens, it seems likely have broad spectrum control efficiency against different fungal pathogens.

Identification of ANU-301. To identify the ANU-301, morphological characteristics under the microscope and ITS sequencing-based phylogenetic analysis was performed (Fig. 2). ANU-301 incubated in PDA grew well and produced white-colored mycelial mat (Fig. 2A and B). Under the microscope, mycelia have a septum and asexual...
conidia were observed arising from globose-shaped conidiophores, which is a characteristic of *Aspergillus* spp. (Fig. 2C and D). To further identify the ANU-301, ITS region was amplified by PCR and sequenced for phylogenetic analysis (Fig. 2E and F). From the analysis, ANU-301 showed the highest sequence homology with *A. terreus* and formed distinct clade from the other *Aspergillus* spp. Based on these procedures, it is named as *A. terreus* isolate ANU-301 (ANU-301 from now on).

Biocontrol activity of ANU-301 against tomato *Fusarium* wilt disease. As ANU-301 showed the highest GIA against *FOL* in DCA, its biocontrol activity against tomato *Fusarium* wilt disease was examined (Fig. 3). Two-week-old tomato plants were inoculated by submerging the roots in 10⁶ conidia/ml of *FOL* with or without 10⁸ conidia/ml of ANU-301. Mock or ANU-301 treated plants showed no significant differences in growth rate; however, tomato plants showed very severe growth retardation and wilting phenotype at 2 weeks after inoculation with *FOL* (Fig. 3A and B). Importantly, tomato plants co-inoculated with *FOL* and ANU-301 showed significantly reduced disease symptoms.

To confirm whether ANU-301 has direct effect, mycelial growth of *FOL* in the absence or presence of ANU-301 was observed microscopically (Fig. 3C). Abnormal large vesicle formation was observed inside the hyphae of *FOL* at the contact point with ANU-301, and purple-colored pigmentation of *FOL* mycelium was observed during the DCA. These findings suggest that ANU-301 somehow
Fig. 3. Biocontrol activity of ANU-301 against tomato *Fusarium* wilt disease. (A) Representative picture of disease symptom developed on tomato plants inoculated with *F. oxysporum* f. sp. *lycopersici* (*FOL*) with or without ANU-301. (B) Fresh weight of tomato plants 7 dpi with *FOL* in the absence or presence of ANU-301. (C) Microscopic observation of mycelia of *FOL* during the dual culture assay with ANU-301. To show mycelial growth of *FOL* during DCA against ANU-301, part of Fig. 1A was enlarged. Scale bars = 20 μm.

Fig. 4. Biocontrol activity of ANU-301 against potato soft rot disease. (A) Antibacterial activity of ANU-301 against *Dickeya chrysanthemi* (*Dc*) by agar plug diffusion assay. Diameter of zone of inhibition (ZOI) is shown below. (B) Growth inhibition of *Dc* by ANU-301 culture filtrate (CF). Plus (+) and minus (−) symbols mean presence and absence of 10% CF of ANU-301, respectively. (C, D) Biocontrol activity of CF of ANU-301 against potato soft rot disease caused by *Dc*. Representative disease symptoms (C) and severity (D) of potato tuber 2 weeks after inoculation with *Dc* in the presence or absence of CF of ANU-301. N/S, no symptom.
Biocontrol Activity of *Aspergillus terreus* alters physiology of *FOL*, thereby reducing their growth. Taken together, ANU-301 not only showed antifungal activity against *FOL in vitro*, but also successfully suppressed tomato *Fusarium* wilt disease in pot experiments.

Biocontrol activity of ANU-301 against potato soft rot disease. To further examine whether ANU-301 has antibacterial activity, agar plug diffusion assay was performed against *Dc*, a causal agent of potato soft rot disease. Interestingly, ANU-301 also showed antibacterial activity as developed clear zone in *Dc* grown NA media (Fig. 4A). Diameter of zone of inhibition (ZOI) was 19.67 ± 0.57 mm. Antibacterial activity of CF of ANU-301 was examined. In this assay, 1:100 diluted CF of ANU-301 was mixed with 10⁶ cfu/ml of *Dc*, incubated for 1 h, then serially diluted and plated on NA media. As shown in Fig. 4B, CF of ANU-301 successfully suppressed the growth of *Dc*, suggesting ANU-301 also has antibacterial activity against *Dc*.

As CF of ANU-301 showed antibacterial activity against *Dc*, its biological control activity against potato soft rot disease was also analyzed. As expected co-treatment of CF of ANU-301 significantly reduced disease symptom developed by *Dc* in potato tuber (Fig. 4C and D). In mock- and ANU-301 CF-treated potato, none of visible symptoms were observed, whereas *Dc*-inoculated potato developed soft rot symptoms. Co-treatment with ANU-301 CF significantly reduced the diseased severity in potato by 79.1% (Fig. 4D). Taken together, ANU-301 showed biological control activity against two distinct plant pathogens, *FOL* and *Dc*.

Identification of MPP as a major antibacterial secondary metabolite in the CF of ANU-301. To further examine the major antimicrobial secondary metabolites in CF of ANU-301, GC-MS/MS experiment was performed. From the different compounds identified, MPP was the most abundant from the CF of ANU-301 (abundance: 15.05%), and followed by 2,3,4,5-tetraphenyl-1H-pyrrole (abundance: 14.01%), 2,6-bis(1,1-dimethylethyl)-4-(1-methyl-1-phenylethyl)-phenole, octadecane and tetracosane (Table 1, Fig. 5).

MPP successfully suppressed bacterial growth of *Dc*, in NA media as developed clear zone in filter disk diffusion assay (10 μl of 400 ppm MPP or 1/100 diluted CF were used) (Fig. 6A), but not of *FOL* (Supplementary Fig. 1). MPP-induced diameter of ZOI was 14.04 ± 0.09 mm. Bacterial growth was measured by using the spectrophotometer at OD₆₀₀ in the presence of different concentrations of MPP.

Table 1. List of 20 most abundant chemical compounds identified from CF of ANU-301 by GC-MS/MS analysis

No.	Compounds	R.T. (min)	Chemical formula	Abundance (%)
1	2,4-bis(1-methyl-1-phenylethyl)-phenol	11.94	C₂₄H₂₃O	15.05
2	2,3,4,5-tetraphenyl-1H-pyrrole	12.092	C₂₈H₂₁N	14.01
3	2,6-bis(1,1-dimethylethyl)-4-(1-methyl-1-phenylethyl)-phenol	9.383	C₂₀H₂₂O	7.18
4	Octadecane	12.6	C₁₈H₃₃	4.83
5	Tetracosane	11.156	C₂₆H₃₀	4.21
6	Phenol, 2-(1,1-dimethylethyl)-4-(1-methyl-1-phenylethyl)-	9.144	C₁₉H₂₄O	3.8
7	Methyl stearate	9.585	C₁₇H₃₄O₂	3.74
8	Tricosane	10.536	C₂₃H₄₈	3.63
9	Docosane	9.974	C₂₅H₄₈	3.44
10	Hexadecanoic acid, methyl ester	8.598	C₁₇H₃₂O₂	2.7
11	Eicosane	14.915	C₁₉H₃₄I	2.66
12	Octadecane, 1-iodo-	14.693	C₁₉H₃₂I	1.77
13	Heneicosane	9.456	C₁₉H₄₄	1.51
14	3H-Pyrrolo[3,2-f]quinoline, 1,2,3,5,7,9-hexamethyl-	9.878	C₁₈H₂₉N₂	1.46
15	Benzeneepiaproic acid, 3,5-bis(1,1-dimethylethyl)-4-hydroxy-, methyl ester	8.695	C₁₈H₃₂O₃	1.24
16	10,18-Bisnorabieta-8,11,13-triene	9.261	C₁₈H₃₂	1.17
17	1-Methyl-10,18-bisnorabieta-8,11,13-triene	8.968	C₁₈H₃₂	1.1
18	Pyridine-3-carbonitrile, 2-amino-4-(4-methoxypyphenyl)-5-methyl-6-propyl-	9.482	C₁₇H₃₃N₂O	0.93
19	Phenol, 2,4-bis(1,1dimethylethyl)-	6.323	C₁₇H₃₂O₅	0.688
20	2,4-Diphenyl-4-methyl-2(E)-pentene	8.193	C₁₇H₃₂O₅	0.46

CF, culture filtrate; GC-MS/MS, gas chromatography‒tandem mass spectrometry; R.T., retention time.
Fig. 5. Gas chromatography-tandem mass spectrometry chromatogram of culture filtrate of ANU-301. Chemical structure of the most abundant chemical compound 2,4-bis(1-methyl-1-phenylethyl)-phenol was shown above the peak (see Table 1 for the list of 20 most abundant chemical compound identified).

![Gas chromatography-tandem mass spectrometry chromatogram of culture filtrate of ANU-301. Chemical structure of the most abundant chemical compound 2,4-bis(1-methyl-1-phenylethyl)-phenol was shown above the peak (see Table 1 for the list of 20 most abundant chemical compound identified).](image)

Fig. 6. Biocontrol activity of 2,4-bis(1-methyl-1-phenylethyl)-phenol (MPP) against *Dickeya chrysanthemi* (*Dc*). (A) Antibacterial activity of culture filtrate and MPP (400 ppm) against *Dc* by disc diffusion assay. Diameter of zone of inhibition (ZOI) is shown below. (B) Concentration-dependent growth inhibition of MPP on *Dc* growth in nutrient broth (NB) media. Cell growth was measured by spectrophotometer at OD$_{600}$. Calculated IC$_{50}$ was 505.9 ppm. (C, D) Biocontrol activity of MPP against potato soft rot disease caused by *Dc*. Representative disease symptoms (C) and severity (D) of potato tuber 2 weeks after inoculation with *Dc* in the presence or absence of MPP. N/S, no symptom.
Biocontrol Activity of Aspergillus terreus

Discussion

Aspergillus, a well-known saprophytic filamentous fungal genus, play different biological roles in different niche, with Aspergillus niger and Aspergillus flavus being the most studied and significant species for their secondary metabolites (Hossain et al., 2017; Park et al., 2017; Yu et al., 2021). A. terreus, a less well-known and explored microbe, was recently discovered to be a significant biological control agent and plant growth promoting microorganism (Frisvad and Larsen, 2015; Vassileva et al., 2020). The biological control capabilities of A. terreus (ANU-301) against several plant diseases are addressed in this work.

The closely related phenolic compounds, such as MPP, 2,4-Di-tert-butylphenol (2,4-DTBP), and 2,6-bis(1,1-dimethylethyl)-4-(1-methyl-1-phenylethyl)-phenol, are known to be toxic secondary metabolite produced by various group or organisms (Melappa et al., 2017; Shaaan et al., 2021; Zhao et al., 2020). 2,4-DTBP is a lipophilic pheno- nol that has been identified as a lethal secondary metabolite in 169 species of organisms, including A. terreus (Aissaoui et al., 2019; Akshatha et al., 2016; Belghit et al., 2016; Lenartowicz et al., 2015; Varsha et al., 2015; Viszwapriya et al., 2016; Zhang et al., 2008; Zhao et al., 2020). 2,4-DTBP is efficient against the agriculturally significant root rot fungus F. oxysporum by suppressing spore germination and hyphal outgrowth through a possible interaction with β-tubulin in microtubules (Dharni et al., 2014). 2,4-DTBP also known to inhibit the production of quorum sensing (QS)-mediated biofilm formation, while it increases the hydration of the cell wall, resulting in decreased biofilm formation (Padmavathi et al., 2014). Intercellular communication in bacteria, technically referred to as QS, is a critical factor in disease spread and pathogenesis because it regulates biofilm formation. Reportedly, it plays an important role in the development of Dickeya-induced potato soft rot (Baltenneck et al., 2021). ANU-301 was also identified as a source of MPP and 2,6-bis(1-methyl-1-phenylethyl)-phenol by GC-MS/MS analysis as the first and third most abundant chemical compounds, respectively. Unexpectedly, MPP did not show significant antifungal activity against FOL (Supplementary Fig. 1). In accordance with this result, CF of ANU-301 showed much lower antifungal activity against FOL in CFA compared to its antifungal activity in DCA (Fig. 1). This may suggest that (1) antifungal activity of ANU-301 against FOL is not dependent on MPP production, and/or (2) ANU-301 can produce specific antifungal compounds against FOL in the presence of the pathogen (Note that CF of ANU-301 prepared from the pathogen-free media show little antifungal activity against FOL, but still effective to restrict the growth of FOL in DCA).

In GC-MS/MS analysis, we discovered 2,3,4,5-tetraphenyl-1H-pyrrole as the second highest peak from the analysis of CF of ANU-301. Pyrrole is a five-membered aromatic ring having the chemical formula C H N (Ahmad et al., 2018). Pyrrole is a fundamental building block of biochemistry due to its flat electron-rich ring, which is particularly vulnerable to electrophilic assault and may react with a wide variety of biomolecules through hydrogen bonding and π–π stacking interactions (Domagala et al., 2015). Analogs of pyrrole are being investigated as possible sources of antifungal and antibacterial activity (Bhardwaj et al., 2015). The antibacterial activity of this compound is controlled by substituting alternative molecules, scaffolds, or moiety, groups in the pyrrole ring following attached analogs, including the phenyl (diaryl) moiety (Wang et al., 2011; Arumugam et al., 2012; Bhosale et al., 2013; Jana et al., 2005; Raimondi et al., 2006; Thach et al., 2016; Varshney et al., 2017). 2,3,4,5-tetraphenyl-1H-pyrrole is a pyrrole derivative with four phenyl rings that has recently been shown to have antibacterial (mycobacterial) activity (Bhardwaj et al., 2015).

As fourth and fifth peak in GC-MS/MS analysis ANU-301 shows octadecane and tetracosane respectively. Octadecane (C H) and tetracosane (C) are aliphatic hydrocarbon (alkane) maintaining its general formula C H , is a dangerous environmental toxic chemicals in petroleum-contaminated soil consisting of recalcitrant compound make it non-degradable (Bajagain et al., 2018; Campo et al., 2017; Hamouda et al., 2016; Hussain et al., 2018; Meckenstock et al., 2016). Some recent reports proved that they also have significant antimicrobial properties (Abiona et al., 2019; Barupal et al., 2019; Bouhla et al., 2020; Li et al., 2021; Rajaofera et al., 2019; Ramirez et al., 2021; Wang et al., 2020).

Tomato is a widely grown vegetable crop in the Solana-
Aissaoui, N., Mahjoubi, M., Nas, F., Mghirbi, O., Arab, M., Souissi, Y., Hoceini, A., Masmoudi, A. S., Mosbah, A., Cherif, A. and Klouche-Khelil, N. 2019. Antibacterial potential of 2,4-di-tert-butyphenol and calixarene-based prodrugs from thermophilic Bacillus licheniformis isolated in Algerian hot spring. *Geomicrobiol. J.* 36:53-62.

Akshatha, J. V., Prakash, H. S. and Nalini, M. S. 2016. *Actinomycete* endophytes from the ethno medicinal plants of Southern India: antioxidant activity and characterization studies. *J. Biol. Act. Prod. Nat.* 6:166-172.

Al-Shibli, H., Dobretsov, S., Al-Nabhani, A., Maharachchikumbura, S. N., Rethinasmamy, V. and Al-Sadi, A. M. 2019. *Aspergillus terreus* obtained from mangrove exhibits antagonistic activities against *Pythium aphanidermatum*-induced damping-off of cucumber. PeerJ 7:e7884.

Arumugam, N., Raghu Nathan, R., Almansour, A. I. and Karama, U. 2012. An efficient synthesis of highly functionalized novel chromeno[4,3-b]pyrroles and indolizino[6,7-b]indoles as potent antimicrobial and antioxidant agents. Bioorg. Med. Chem. Lett. 22:1375-1379.

Bajagain, R., Park, Y. and Jeong, S.-W. 2018. Feasibility of oxidation-biodegradation serial foam spraying for total petroleum hydrocarbon removal without soil disturbance. *Sci. Total Environ.* 626:1236-1242.

Baltenneck, J., Reverchon, S. and Hommais, F. 2021. Quorum sensing regulation in phytopathogenic bacteria. *Microorganisms* 9:239.

Barupal, T., Meena, M. and Sharma, K. 2019. Inhibitory effects of leaf extract of Lawsonia inermis on *Curvularia lunata* and characterization of novel inhibitory compounds by GC-MS analysis. *Biotechnol. Rep.* 23:e00335.

Belghit, S., Driche, E. H., Bijani, C., Zitouni, A., Sabaou, N., Badjji, B. and Mathieu, F. 2016. Activity of 2,4-Di-tert-butyphenol produced by a strain of Streptomyces mutabilis isolated from a Saharan soil against Candida albicans and other pathogenic fungi. *J. Mycol. Med.* 26:160-169.

Bhardwaj, V., Gumber, D., Abbot, V., Dhiman, S. and Sharma, P. 2015. Pyrrole: a resourceful small molecule in key medicinal hetero-aromatics. *RSC Adv.* 5:15233-15266.

Bhosale, J. D., Shirodkar, A. R., Pete, U. D., Zade, C. M., Mahajan, D. P., Hadole, C. D., Pawar, S. D., Patil, U. D., Dabur, R. and Bendre, R. S. 2013. Synthesis, characterization and biological activities of novel substituted fomarnazats of 3,4-dimethyl-1H-pyrrole-2-carboxyhydrazide derivatives. *J. Pharm. Res.* 7:582-587.

Bodah, E. T. 2017. Root rot diseases in plants: a review of common causal agents and management strategies. *Agric. Res. Technol. Open Access J.* 5:555661.

Borisade, O. A., Uwaidem, Y. I. and Salami, A. E. 2017. Preliminary report on *Fusarium oxysporum* f. sp. lycopersici (Sensu lato) from some tomato producing agroecological areas in Southwestern Nigeria and susceptibility of F1-resistant tomato hybrid (F1-Lindo) to infection. *Annu. Res. Rev. Biol.* 18:1-9.
Biocontrol Activity of Aspergillus terreus

Bouhlal, F., Aqil, Y., Chamkhi, I., Belmaghraoui, W., Labjar, N., Hajjaji, S. E., Benabdellah, G. A., Auran, J., Lotfi, E. M. and Mahi, M. E. 2020. GC-MS analysis, phenolic compounds quantification, antioxidant, and antibacterial activities of the hydro-alcoholic extract of spent coffee grounds. J. Biol. Act. Prod. Nat. 10:325-337.

Brooke, K. L., Best, G. I. and Conner, T. S. 2018. Intake of raw fruits and vegetables is associated with better mental health than intake of processed fruits and vegetables. Front. Psychol. 9:487.

Campo, R., Giusta, M. G., De Marchis, M., Freni, G. and Di Bella, G. 2017. Characterization and treatment proposals of shipboard slop wastewater contaminated by hydrocarbons. Water 9:581.

Cating, R. A., Hong, J. C., Palmateer, A. J., Stiles, C. M. and Dickstein, E. R. 2008. First report of bacterial soft rot on Vanda orchids caused by Dickeya chrysanthemi (Erwinia chrysanthemi) in the United States. Plant Dis. 92:977.

Cazor, M. E., Schmeda-Hirschmann, G. and Astudillo, L. 2005. Antimicrobial butyrolactone I derivatives from the Ecuadorian soil fungus Aspergillus terreus Thorn. var terreus. World J. Microbiol. Biotechnol. 21:1067-1075.

Chakraborty, N. and Acharya, K. 2017. “NO way”' says the plant to abiotic stress. Plant Gene 11:99-105.

Dharni, S., Sanchita, Maurya, A., Samad, A., Srivastava, S. K., Sharma, A. and Patra, D. D. 2014. Purification, characterization, and in vitro activity of 2,4-Di-tert-butylphenol from Pseudomonas monteiili PsF84: conformational and molecular docking studies. J. Agric. Food Chem. 62:6138-6146.

Domagala, A., Jarosz, T. and Lapkowski, M. 2015. Living on pyrrolic foundations: advances in natural and artificial bioactive pyrrole derivatives. Eur. J. Med. Chem. 100:176-187.

El-hawary, S. S., Moawad, A. S., Bahr, H. S., Abdelmohsen, U. R. and Mohammed, R. 2020. Natural product diversity from the endophytic fungi of the genus Aspergillus. RSC Adv. 10:22058-22079.

Frisvad, J. C. and Larsen, T. O. 2015. Chemodiversity in the genus Aspergillus. Appl. Microbiol. Biotechnol. 99:7859-7877.

Galeano, R. M. S., Franco, D. G., Chaves, P. O., Giannes, G. C., Masui, D. C., Ruller, R., Corrêa, B. O., da Silva Brasil, M. and Zanoelo, F. F. 2021. Plant growth promoting potential of endophytic Aspergillus niger 9-p isolated from native forage grass in Pantanal of Nhecolândia region, Brazil. Rhizosphere 18:100332.

Ghosh, S. K., Banerjee, S. and Sengupta, C. 2017. Bioassay, characterization and estimation of siderophores from some important antagonistic fungi. J. Biopestic. 10:105-112.

Gordon, T. R. 2017. Fusarium oxysporum and the Fusarium wilt syndrome. Annu. Rev. Phytopathol. 55:23-39.

Hamouda, R. A. E. F., Sourour, N. M. and Yeheia, D. S. 2016. Biodegradation of crude oil by Anabaena oryzae, Chlorella kessleri and its consortium under mixotrophic conditions. Int. Biodeterior. Biodegrad. 112:128-134.

Hossain, M. M., Sultana, F. and Islam, S. 2017. Plant growth-promoting fungi (PGPF): phytostimulation and induced systemic resistance. In: Plant-microbe interactions in agro-ecological perspectives, eds. by D. Singh, H. Singh and R. Prabha, pp. 135-191. Springer, Singapore.

Hugouvieux-Cotte-Pattat, N., Condemine, G. and Shevchik, V. E. 2014. Bacterial pacte lyases, structural and functional diversity. Environ. Microbiol. Rep. 6:427-440.

Hussain, F., Hussain, I., Khan, A. H. A., Muhammad, Y. S., IQbal, M., Soja, G., Reichenauer, T. G. and YousaF, S. 2018. Combined application of biochar, compost, and bacterial consortia with Italian ryegrass enhanced phytoremediation of petroleum hydrocarbon contaminated soil. Environ. Exp. Bot. 153:80-88.

Jana, G. H., Jain, S., Arora, S. K. and Sinha, N. 2005. Synthesis of some diguanidino 1-methyl-2,5-diaryl-1H-pyroles as antifungal agents. Bioorg. Med. Chem. Lett. 15:3592-3595.

Javed, A., Shah, A. H., Hussain, A., Shinwari, Z. K., Khan, S. A., Khan, W. and Jan, S. A. 2020. Potential of endophytic fungus Aspergillus terreus as potent plant growth promoter. Pak. J. Bot. 52:1083-1086.

Joncy, A. M., Angappan, K., Nakkeeran, S., Tilak, M. and Umapathy, G. 2019. Exploration of antifungal metabolites of Aspergillus terreus (ENF12), an endophytic fungus isolated from mulberry (Morus Indica L.) leaf. Curr. J. Appl. Sci. Technol. 38:1-15.

Kumar, N. V., Rajam, K. S. and Rani, M. E. 2017. Plant growth promotion efficacy of indole acetic acid (IAA) produced by a mangrove associated fungi-Trichoderma viride VKF3. Int. J. Curr. Microbiol. Appl. Sci. 6:2692-2701.

Kumar, S., Stecher, G., Li, M., Knayz, C. and Tamura, K. 2018. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 35:1547-1549.

Lenartowicz, P., Kafarski, P. and Lipok, J. 2015. The overproduction of 2,4-DTBP accompanying to the lack of available form of phosphorus during the biodegradative utilization of amino phosphonates by Aspergillus terreus. Biodegradation 26:65-76.

Li, W., Long, Y., Mo, F., Shu, R., Yin, X., Wu, X., Zhang, R., Zhang, Z., He, L., Chen, T. and Chen, J. 2021. Antifungal activity and biocontrol mechanism of Fusicolla violacea J-1 against soft rot in kiwifruit caused by Alternaria alternata. J. Fungi 7:937.

Li, Z., Bai, T., Dai, L., Wang, F., Tao, J., Meng, S., Hu, Y., Wang, S. and Hu, S. 2016. A study of organic acid production in contrasts between two phosphate solubilizing fungi: Penicillium oxalicum and Aspergillus niger. Sci. Rep. 6:25313.

Liu, M., Sun, W., Wang, J., He, Y., Zhang, J., Li, F., Qi, C., Zhu, H., Xue, Y., Hu, Z. and Zhang, Y. 2018. Bioactive secondary metabolites from the marine-associated fungus Aspergillus terreus. Bioorg. Chem. 80:525-530.

Ma, B., Hibbing, M. E., Kim, H.-S., Reedy, R. M., Yedidia, I., Breuer, J., Breuer, J., Glasner, J. D., Perna, N. T., Kelman, A. and Charkowski, A. O. 2007. Host range and molecular phylogenies of the soft rot enterobacterial genera Pectobacterium.
and Dickeya. Phytopathology 97:1150-1163.

Mahmoud, A.-L. E. and Abd-Alla, M. H. 2001. Siderophore production by some microorganisms and their effect on Bradyrhizobium-mung bean symbiosis. Int. J. Agric. Biol. 3:157-162.

Meckenstock, R. U., Boll, M., Mouttaki, H., Koelschbach, J. S., Cunha Tarouco, P., Weyrauch, P., Dong, X. and Himmelberg, A. M. 2016. Anaerobic degradation of benzene and polycyclic aromatic hydrocarbons. J. Mol. Microbiol. 26:92-118.

Melappa, G., Shilpashree, C. B., Channabasava and Prakash, B. 2017. In vitro antimiotic, antiproliferative and GC-MS studies on the methanolic extract of endophytic fungi, penicillium species of Tabebuia argentea bur & k. Sch. Farmacia 65:301-309.

Mosunova, O., Navarro-Muñoz, J. C. and Collemare, J. 2020. The biosynthesis of fungal secondary metabolites: from fundamentals to biotechnological applications. In: Reference module in life sciences, ed. by B. D. Roitberg, pp. 1-19. Elsevier Inc., London, UK.

Murali, M., Naziya, B., Ansari, M. A., Alomary, M. N., AlYahya, S., Almatroudi, A., Thriveni, M. C., Gowtham, H. G., Singh, S. B., Aiyaz, M., Kalegowda, N., Lakshmidevi, N. and Amtech, I. S., Almatroudi, A., Thriveni, M. C., Gowtham, H. G., Singh, S. B., Aiyaz, M., Kalegowda, N., Lakshmidevi, N. and Amtech, I. S. 2016. Bioprospecting of rhizosphere-resident fungi: their role and importance in sustainable agriculture. J. Fungi 7:314.

Mortal, A., Nap, S., Allo, M. A., Almady, M. N., AlYahya, S., Almatroudi, A., Thriveni, M. C., Gowtham, H. G., Singh, S. B., Aiyaz, M., Kalegowda, N., Lakshmidevi, N. and Amtech, I. S., Almatroudi, A., Thriveni, M. C., Gowtham, H. G., Singh, S. B., Aiyaz, M., Kalegowda, N., Lakshmidevi, N. and Amtech, I. S. 2016. Bioprospecting of rhizosphere-resident fungi: their role and importance in sustainable agriculture. J. Fungi 7:314.

Nahar, K. and Ullah, S. M. 2012. Morphological and physiological characters of tomato (Lycopersicon esculentum Mill) cultivars under water stress. Bangladesh J. Agric. Res. 37:355-360.

Nenwani, V., Doshi, P., Saha, T. and Rajkumar, S. 2010. Isolation and characterization of a fungal isolate for phosphate solubilization and plant growth promoting activity. J. Yeast Fungal Res. 1:009-014.

Ortega, H. E., Torres-Mendoza, D., Caballero E. Z. and Cubillarios, L. 2021. Structurally uncommon secondary metabolites derived from endophytic fungi. J. Fungi 7:570.

Ozimek, E., Jaroszuk-Ściel, J., Bobacz, J. J., KorniHowicz-Kowalska, T., Tyśkiewicz, R., Slomka, A., Nowak, A. and Hanaka, A., 2018. Synthesis of indoleacetic acid, gibberelic acid and ACC-deaminase by Mortierella strains promote winter wheat seedlings growth under different conditions. Int. J. Mol. Sci. 19:3218.

Padmanavathi, A. R., Abinaya, B. and Pandian, S. K. 2014. Phenol, 2,4-bis(1,1-dimethyllethyl) of marine bacterial origin inhibits quorum sensing mediated biofilm formation in the uropathogen Serratia marcescens. Biofueling 30:1111-1122.

Péron, J., Schaeerer, S., Kellenberger, I. and Van Gijssegem, F. 2021. Early emergence of Dickeya solani revealed by analysis of Dickeya diversity of potato blackleg and soft rot causing pathogens in Switzerland. Microorganisms 9:1187.

Péroumbelon, M. C. M. 2002. Potato diseases caused by soft rot erwinias: an overview of pathogenesis. Plant Pathol. 51:1-12.

Potrykus, M., Golanowska, M., Sledz, W., Zoledowska, S., Motyka, A., Kolodziejśka, A., Butrynowicz, J. and Lojkowska, E. 2016. Biodiversity of Dickeya spp. isolated from potato plants and water sources in temperate climate. Plant Dis. 100:408-417.

Raimondi, M. V., Cascioferro, S., Schillacci, D. and Petruso, S. 2006. Synthesis and antimicrobial activity of new bromine-rich pyrrole derivatives related to monodeoxypullulactoerin. Eur. J. Med. Chem. 41:1439-1445.

Rajaofera, M. J. N., Wang, Y., Dahar, G. Y., Jin, P., Fan, L., Xu, L., Liu, W. and Miao, W. 2019. Volatile organic compounds of Bacillus atrophaeus HAB-5 inhibit the growth of Colletotrichum gloeosporioides. Pestic. Biochem. Physiol. 156:170-176.

Ramírez, V., Martinez, J., Bustillos-Cristales, M. D. R., Catañeda-Antonio, D., Munive, J.-A. and Baez, A. 2021. Bacillus cereus MH778713 elicits tomato plant protection against Fusarium oxysporum. J. Appl. Microbiol. 132:470-482.

Salas-Marina, M. A., Silva-Flores, M. A., Cervantes-Badillo, M. G., Rosales-Saavedra, M. T., Islas-Osuna, M. A. and Casas-Flores, S. 2011. The plant growth-promoting fungus Aspergillus ustus promotes growth and induces resistance against different lifestyle pathogens in Arabidopsis thaliana. J. Microbiol. Biotechnol. 21:686-696.

Samson, R., Legendre, J. B. and Christen, R., Fischer-Le Saux M., Potrykus, M., Golanowska, M., Sledz, W., Zoledowska, S., Motyka, A., Kolodziejśka, A., Butrynowicz, J. and Lojkowska, E. 2016. Biodiversity of Dickeya spp. isolated from potato plants and water sources in temperate climate. Plant Dis. 100:408-417.

Shin, D. J., Yoo, S.-J., Hong, J. K., Weon, H.-Y., Song, J. and Sang, M. K. 2019. Effect of Bacillus aryabhattai H26-2 and
Biocontrol Activity of Aspergillus terreus

B. siamensis H30-3 on growth promotion and alleviation of heat and drought stresses in Chinese cabbage. Plant Pathol. J. 35:178-187.

Singh, V. K., Singh, H. B. and Upadhyay, R. S. 2017. Role of fusaric acid in the development of ‘Fusarium wilt’ symptoms in tomato: physiological, biochemical and proteomic perspectives. Plant Physiol. Biochem. 118:320-332.

Slawiak, M., van Beckhoven, J. R., Spexnijder, A. G. C. L., Czajkowski, R., Grabe, G. and van der Wolf, J. M. 2009. Biochemical and genetical analysis reveal a novel clade of biobar 3 Dickeya spp. strains isolated from potato in Europe. Eur. J. Plant Pathol. 125:245-261.

Srinivas, C., Devi, D. N., Murthy, K. N., Mohan, C. D., Lakshmeesha, T. R., Singh, B., Kalagatur, N. K., Niranjana, S. R., Hashem, A., Alqarawi, A. A., Tabassum, B., Abd. Allah, E. F., Nayakaa, S. C. and Srivastava, R. K. 2019. Fusarium oxysporum f. sp. lycopersici causal agent of vascular wilt disease of tomato: biology to diversity—a review. Saudi J. Biol. Sci. 26:1315-1324.

Thach, O., Mieleczarek, M., Ma, C., Kutty, S. K., Yang, X., Black, D. S., Griffith, R., Lewis, P. J. and Kumar, N. 2016. From indole to pyrrole, furan, thiophene and pyridine: search for novel small molecule inhibitors of bacterial transcription initiation complex formation. Bioorg. Med. Chem. 24:1171-1182.

Toth, I. K., Van der Wolf, J. M., Saddler, G., Lojkowska, E., Hélias, V., Pirhonen, M., Tsror, L. and Elphinstone, J. G. 2011. Dickeya species: an emerging problem for potato production in Europe. Plant Pathol. 60:385-399.

Tsukagoshi, N., Kobayashi, T. and Kato, M. 2001. Regulation of the amylolytic and (hemi-) cellulolytic genes in asperlilli. J. Gen. Appl. Microbiol. 47:1-19.

van der Wolf, J. M., Nijhuis, E. H., Kowalew ska, M. J., Saddler, G. S., Parkinson, N., Elphinstone, J. G., Pritchard, L., Toth, I. K., Lojkowska, E., Potrykus, M., Waieron, M., de Vos, P., Cleenwercr, I., Pirhonen, M., Garlant, L., Hélias, V., Po thier, J. F., Pfüger, V., Duffy, B., Tsror, L. and Manulis, S. 2014. Dickeya solani sp. nov., a pectinolytic plant-pathogenic bacterium isolated from potato (Solanum tuberosum). Int. J. Syst. Evol. Microbiol. 64:767-774.

Varsha, K. H., Devendra, L., Shilpa, G., Priya, S., Pandey, A. and Nampoothiri, K. M. 2015. 2,4-Di-tert-butyl phenol as the antifungal, antioxidant bioactive purified from a newly isolated Lactococcus sp. Int. J. Food Microbiol. 211:44-50.

Varshney, H., Ahmad, A., Rauf, A., Husain, F. M. and Ahmad, I. 2017. Synthesis and antimicrobial evaluation of fatty chain substituted 2,5-dimethyl pyrrole and 1,3-benzoxazin-4-one derivatives. J. Saudi Chem. Soc. 21(Suppl 1):S394-S402.

Vassileva, M., Malusá, E., Eichler-Löbermann, B. and Vassilev, N. 2020. Aspergillus terreus: from soil to industry and back. Microorganisms 8:1655.

Végh, A., Némethy, Z., Salamon, P., Mándoki, Z. and Palkovics, L. 2014. First report of bacterial wilt on chrysanthemum caused by Dickeya chrysanthemi (syn. Erwinia chrysanthemi) in Hungary. Plant Dis. 98:988.

Viszwa priya, D., Prithika, U., Dee bika, S., Balamurugan, K. and Pandian, S. K. 2016. In vitro and in vivo antibiofilm potential of 2,4-Di-tert-butylphenol from seaweed surface associated bacterium Bacillus subtilis against group A streptococcus. Microbiol. Res. 191:19-31.

Wang, M.-Z., Xu, H., Liu, T-W., Feng, Q., Yu, S.-J., Wang, S.-H. and Li, Z.-M. 2011. Design, synthesis and antifungal activities of novel pyrrole alkaloid analogs. Eur. J. Med. Chem. 46:1463-1472.

Wang, X., Li, C., Wang, M., Zhao, T. and Li, W. 2020. Bifunctional microcapsules with n-octadecane/thyme oil core and polyurea shell for high-efficiency thermal energy storage and antibiosis. Polymers 12:2226.

Waqas, M., Khan, A. L., Hamayun, M., Shahzad, R., Kang, S.-M., Kim, J.-G. and Lee, I.-J. 2015. Endophytic fungi promote plant growth and mitigate the adverse effects of stem rot: an example of Penicillium citrinum and Aspergillus terreus. J. Plant Interact. 10:280-287.

White, T. J., Bruns, T., Lee, S. and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols: a guide to methods and applications, eds. by M. A. Innis, D. H. Gelfand, J. J. Sninsky and T. J. White, pp. 315-322. Academic Press, New York, USA.

Yu, R., Liu, J., Wang, Y., Wang, H. and Zhang, H. 2021. Aspergillus niger as a secondary metabolite factory. Front. Chem. 9:701022.

Zaman, K. A. U., Hu, Z., Wu, X., Hou, S., Saito, J., Kondratyuk, T. P., Pezzuto, J. M. and Cao, S. 2020. NF-κB inhibitory and antibacterial helvolic and fumagilic derivatives from Aspergillus terreus. J. Nat. Prod. 83:730-737.

Zhang, D., Gong, C. and Wei, H. 2008. Chemical constituents of Bacillus subtilis. Saudi J. Biol. Sci. 15:35.

Zhao, F., Wang, P., Lucardi, R. D., Su, Z. and Li, S. 2020. Natural sources and bioactivities of 2,4-di-tert-butylphenol and its analogs. Toxins 12:35.