Production vacuum-evaporation unit for increasing humic suspension concentration

A V Fominykh1, N S Sergeew2, D P Ezdin1, R R Khaibrakhmanov3, S I Artyukhova4 and V N Khlusov5

1Kurgan State Agricultural Academy by T.S. Maltsev, Lesnikovo village, Ketovsky district, Kurgan region, Russian Federation
2South-Ural State Agrarian University, 13 Gagarina st., Troitsk, Russian Federation
3State University of Land Use Planning; 15 Kazakova st., Moscow, Russian Federation
4Omsk State Technical University, prospect Mira, 11, Omsk region, Omsk, Russian Federation
5Moscow State Academy of Veterinary Medicine and Biotechnology - MVA named after K.I. Skryabin, 23 Akademika Skryabina str., Moscow, Russian Federation

E-mail: EzdinDP@mail.ru

Abstract. Humic preparations belong to natural growth regulators. Humic preparations eliminate the negative effects of factors unfavorable for the development of plants, normalize the processes of intracellular metabolism. Humic substances are adsorbed on the cell wall of the animal organism, increasing the elasticity of its membrane and increasing the surface of the cell, this leads to an increase in the amount of oxygen and metabolism entering it. With the introduction of humic substances in the diet of cattle, the average daily increase in live weight increases by 14.4%. When used as an additive in chickens feed, the average daily increase increases by 11.85%, the weight of the heart, liver, spleen, and gall bladder up to 20.7%. The average daily gain in sucking piglets is increased by 8.3%. A line with a vacuum evaporator was developed to increase the concentration of humic suspension. The installation consists of a heating chamber, a steam pipeline, a steam condenser, a condensate tank, a water-air ejector, a cooler, a water tank, a centrifugal pump, a hot water supply pipe to the heating jacket, a water drain pipe from the shirt, a working water pipe, a pressure gauge, vacuum gauges, a thermometer.

1. Introduction
It is possible to increase crop yields and improve product quality with the help of plant growth and development regulators [1, 2]. Humic preparations are natural growth regulators [3, 4]. They change the course of all physiological and biochemical processes of plants (photosynthesis, respiration, carbohydrate and protein metabolism, transpiration, the intensity of mineral nutrition), morphogenesis, and the rate of passage of phenological phases. In addition, they have anti-stress and antimutagenic properties. The highest effect of the drugs is observed when deviating from the optimum of at least one of the factors of plant growth and development. Humic preparations eliminate the negative impact of factors unfavorable for plant development, normalizing the processes of intracellular metabolism [5]. It is possible to use humic preparations to increase the effectiveness of biological reclamation of contaminated territories [6]. Non-root treatment of plants by Rostcom reduced the content of heavy metals in potato tubers [7].
Engineering support in the implementation of socio-economic and environmental programs of the agro-industrial complex provides for the improvement of technologies and technical means for the production of animal feed and BMVD for farm animals and poultry [8-15]. Humic substances are endowed with a wide spectrum of biological activity, they are adsorbed on the cell wall of animals, increasing the elasticity of its membrane and increasing the surface of the cell, this leads to an increase in the amount of oxygen entering it, and as a result, an increase in metabolic rate and growth processes.

The use of humic substances leads to an absolute increase in live weight, accelerate the growth of animals, increase the safety of offspring, reduce morbidity, as well as increase their body's resistance to adverse environmental conditions. So with the introduction of humic substances in the diet of cattle, the average daily increase in live weight increases by 14.4%. Erythropoiesis (the formation of red blood cells in the body) and the synthesis of immunoglobulins are enhanced, and the activity of leukocyte phagocytosis increases by 10%.

2. Development of an experimental line

2.1 Materials and methods
At the Department of General Chemistry, LLC “SPC” Evrika "of the State Agrarian University of Northern Trans-Urals, a natural humic preparation from peat - ROSTOK was developed and produced [16, 17]. Together with employees of the Eureka enterprise, it was proved that with an increase in the concentration of humic suspension by evaporation at a temperature of 60...65 °C, the beneficial properties of ROSTOK are better preserved than with an increase in concentration in precipitation centrifuges [18].

2.2 Experimental line
Based on a review of literature [19, 20] and search experiments, we developed and patented a line with a vacuum evaporator to increase the concentration of humic suspension [21]. Modification of the experimental line is shown in figure 1 [22–24].
2.3 Line work
A ripened humic suspension is poured into the heating chamber 1, water with a temperature of 80...90 °C is introduced into the jacket of the heating chamber through the nozzle 9, the cooled water is discharged through the nozzle 10. When the suspension temperature reaches 65 °C, a centrifugal pump is turned on to supply water to the air-water ejector 5. A water-airless ejector creates a vacuum of 75...80 kPa in the heating chamber. The steam from the heating chamber is removed through the steam line 2 and condenses in the steam condenser 3. The condensate drains into the tank 4. After the ejector 5, water enters the cooler 6 and is drained into the tank 7. From the tank, the centrifugal pump 8 returns water to the ejector. After increasing the concentration of the suspension to the desired value, the water supply to the jacket is shut off and the centrifugal pump is turned off. The pressure in the heating chamber with atmospheric is equalized. After all operations are completed, the suspension merges. To control the pressure, a manometer 12 and vacuum gauges 13 and 15 are used. To control the temperature, a thermometer 14 is used.

2.4 Calculation method
To calculate the diameters of the nozzle and mixing chamber of a water-air ejector based on literature [25–30], provided that the maximum volumetric coefficient of injection is ensured, we obtained the formula:
\[
f_{p1} = \frac{G_w R_w (273 + t_p)}{3600 (P_n - P_{np})} \left(\frac{\rho_v}{2 (P_p - P_n)} \right)^{1/2}
\]

\(f_{p1}\) – area of the working nozzle, m\(^2\);
\(G_w\) – mass flow rate of injected air, kg/h;
\(P_p\) – water pressure in front of the working nozzle, Pa;
\(P_n\) – pressure of injected air, Pa;
\(\rho\) – density of working water, kg/m\(^3\);
\(P_c\) – pressure after the ejector, Pa;
\(P_{np}\) – saturated steam pressure, Pa.

The diameter of the working nozzle, mm, is determined by the formula:

\[
d_{p1} = 2000 \sqrt{\frac{f_{p1}}{\pi}}
\]

The area, m\(^2\), and diameter, mm, of the mixing chamber are determined by the formulas:

\[
f_3 = \frac{\Delta P_p}{\Delta P_c} f_1.
\]

\[
d_3 = 2000 \sqrt{\frac{f_3}{\pi}}
\]

3. Results and discussion
The results of calculations using the obtained formulas for the diameters of the mixing chamber and the working nozzle are shown in figure 2.

![Figure 2. Dependence of the diameters of the mixing chamber \(d_3\), mm, and working nozzle \(d_{p1}\), mm, from the flow rate of injected air \(G_w\), kg/h.](image)

For example, when the flow rate of injected air is \(G_w = 1\) kg/h, the diameter of the working nozzle is \(d_{p1} = 14\) mm and the diameter of the mixing chamber is \(d_3 = 28\) mm.

A vacuum evaporation unit for increasing the concentration of humic suspension was developed and tested. In the heating chamber, the absolute pressure must be maintained in the range \(P = 20...25\) kPa. The boiling point of the suspension is \(t_n = 65...68\) °C, and the specific heat of water vaporization is \(r = 2350...2336\) kJ/kg.
4. Conclusion
Provided that the maximum volumetric coefficient of injection was ensured, the dependences of the diameters of the working nozzle and the mixing chamber of the air-water ejector as a function of:

\[G_n \] – mass flow rate of injected air, kg/h;
\[P_p \] – water pressure in front of the working nozzle, Pa;
\[P_n \] – pressure of injected air, Pa;
\[\rho \] – density of working water, kg/m³;
\[P_c \] – pressure after the ejector, Pa;
\[P_{sv} \] – saturated vapor pressure, Pa;
\[t_r \] – working water temperature, ºС;
\[t_n \] – temperature of the injected air, ºС.

References
[1] Orlov D S, Sadovnikova L K and Sukhanova N I 2005 Soil chemistry (Moscow: High school) 558
[2] Bogoslovskiy V N and Levinsky B V 2004 Agrotechnologies of the future (Moscow: RIF Antikva) 163
[3] Humates: industrial humic preparations Retrieved from http://www.rodonit.ua/stati/gumaty-promyslyennye-guminovyeprerapaty
[4] Perminova I V 2008 Humic substances - a challenge to the chemists of the XXI century Chemistry and life http://elementy.ru/lib/430559
[5] Grekhova I V Kurtova A V and Fedotova O V 2018 Reaction of cultures to use humic preparations Vestnik Bashkir Agrarian University 4 (48) 18–22
[6] Gilmanova M V and Grekhova I V 2018 Evaluation application of humic preparations for biological reclamation World of innovation 1–2 4–9
[7] Grekhova I V and Kurtova A V 2017 Influence of organic preparations on the productivity and quality of potato tubers Modern scientific and practical solutions in agroindustrial complex: Russian national scientific and practical Conf. (Tyumen: FSBEI HE Northern Trans-Ural State Agricultural University) 1 605–10
[8] Alexandrova S S, Prokopiv L N and Sadvokasova A A 2015 The use of sodium humate “Rostock” in calves rations Achievements of science and technology of agribusiness 10 83–5
[9] Alexandrova S S 2016 Sodium humate "Rostock" in the diets of repair heifers Agrarian Bulletin of the Urals 11 (153) 8–12
[10] Bezuglova O S and Zinchenko V E 2016 The use of humic preparations in animal husbandry (review) Achievements of science and technology of agribusiness 2 89–93
[11] Fominykh A V, Nikolaychik I N, Ovchinnikova Yu I and Ovchinnikov D N 2017 Improvement of technologies and technical means for the production of animal feed and BMVD for farm animals and poultry Farm animal feeding and feed production 7 46–8
[12] Morozov A L, Morozova L A, Kakikalo V G, Ovchinnikova L Yu, Yarmots L P, Karmatskikh Yu A and Charykov V I 2020 Microbiological supplements for the metabolic rate correction in calves International Transaction Journal of Engineering, Management and Applied Sciences and Technologies 2 11
[13] Duskaev G K, Rakhmatullin S G, Kazachkova N M, Sheida Y V, Nikolaychik I N, Morozova L A and Galiev B H 2018 Effect of the combined action of quercus cortex extract and probiotic substances on the immunity and productivity of broiler chickens Veterinary World 10 1416–22
[14] Sergeev N S, Nikolaev V N, Sudakov K V and Zyazev E V 2018 Resource-saving and import substitution - the basis for the creation of new generation equipment and machines for preparing feed Actual issues of the agricultural engineering sciences: theory and practice (Chelyabinsk: FSBEI HE South Ural State Agrarian University) vol 1 ed M F Yudin 93–101
[15] Sergeev N S and Nikolaev V N 2015 Technology and technical means for the preparation of animal feed on farms Conservation of natural resources and engineering solutions (Ulan – Bator: Mongolian GAU) 1 3–7
[16] Grekhova I V 2017 History of creation of the gum preparation and its role in improving the productivity of cultures in the Tyumen region Agriculture Science and education of the Tyumen region: connection of times: Int. scientific and practical Conf.(Tyumen: FSBEI HE
Northern Trans-Ural State Agricultural University) 2 116–9

[17] Grekhova I V 2017 Peculiarities of production and applications of humic substances Modern scientific and practical solutions in agroindustrial complex: Russian national scientific and practical Conf. (Tyumen: FSBEI HE Northern Trans-Ural State Agricultural University) part 1 600–4

[18] Fominykh F V and Ovchinnikov D N 2015 Comparative evaluation of methods for producing humic concentrate Farm animal feeding and feed production 7 18–20

[19] Sorokin K N 2014 Technical problems in the production of humic fertilizers Agricultural machinery and technology 1 43–5

[20] Fathutdinova R A, Bezrukova M V, Lubyanova A R and Shakirova F M 2008 The study of humic preparations Agrochemical Bulletin 3 33–5

[21] Fominykh F V, Ovchinnikov D N and Ezdin D P 10.09.2013 Production line for a humic-containing drug. Patent of Russia RU132071

[22] Fominykh F V and Ovchinnikov D N 2016 The production line for the humic-containing drug Chief livestock specialist 12 39–43

[23] Fomina S V and Strekalovskikh N S 2017 Increased concentration of liquid feed additives at low boiling points Technical support of agricultural production technologies 131–5

[24] Fominykh F V, Fomina S V and Strekalovskikh N S 2017 Installation for increasing the concentration of liquid feed additives Bulletin of the Kurgan SAA 3 (23) 75–7

[25] Ovchinnikov D N, Fomina S V and Strekalovskikh N S 2017 Choosing a vacuum pump in an evaporator Priority areas for energy development in the agro-industrial complex 464–8

[26] Fomina S V and Strekalovskikh N S 2017 Steam removal system for increasing the concentration of liquid feed additives Scientific support for the implementation of state support programs for agriculture and rural areas 465–8

[27] Sokolov E Ya and Zinger N M 1989 Inkjet machines (Moscow: Energoatomizdat) 352

[28] Spiridonov E K 2005 Liquid-Gas Jet Pump Designs Bulletin of SUSU 1 94–104

[29] Ismagilov A R and Spiridonov E K 2016 Workflow and characteristics of liquid-gas jet pumps with ejected vapor-gas medium 2nd International Scientific and Technical Conference “Prom-Engineering” 32–5

[30] Fominykh F V, Ezdina A A and Ponomareva O A 2018 Modeling control device with swirling flow Polzunovsky Bulletin 1 106–10