Simulations of the formation of stellar discs in the Galactic Centre via cloud–cloud collisions

Alexander Hobbs* and Sergei Nayakshin

Department of Physics & Astronomy, University of Leicester, Leicester LE1 7RH

Accepted 2008 December 8. Received 2008 December 8; in original form 2008 September 8

ABSTRACT

Young massive stars in the central parsec of our Galaxy are best explained by star formation within at least one, and possibly two, massive self-gravitating gaseous discs. With help of numerical simulations, we here consider whether the observed population of young stars could have originated from a large angle collision of two massive gaseous clouds at $R \simeq 1 \text{ pc}$ from Sgr A* . In all the simulations performed, the post-collision gas flow forms an inner, nearly circular gaseous disc and one or two eccentric outer filaments, consistent with the observations. Furthermore, the radial stellar mass distribution is always very steep, $\Sigma_\ast \propto R^{-2}$, again consistent with the observations. All of our simulations produce discs that are warped by between 30° and 60°, in accordance with the most recent observations. The three-dimensional velocity structure of the stellar distribution is sensitive to initial conditions (e.g. the impact parameter of the clouds) and gas cooling details. For example, the runs in which the inner disc is fed intermittently with material possessing fluctuating angular momentum result in multiple stellar discs with different orbital orientations, contradicting the observed data. In all the cases the amount of gas accreted by our inner boundary condition is large, enough to allow Sgr A* to radiate near its Eddington limit over $\sim 10^5 \text{ yr}$. This suggests that a refined model would have physically larger clouds (or a cloud and a disc such as the circumnuclear disc) colliding at a distance of a few parsecs rather than 1 pc as in our simulations.

Key words: accretion, accretion discs – stars: formation – Galaxy: centre – galaxies: active.
Section 7.3 we argue that our simulation results suggest $\beta = N/\beta \sim M/M_u/\Omega_1$ and $\beta \sim M \times \text{yr}$. Therefore, the one-off star formation event in the region where $\alpha = 1$ for conditions appropriate for our GC (albeit with a rather simple cooling prescription) and found a top-heavy mass function for the stars formed there. Alexander, Armitage & Cuadra (2008) extended numerical studies to the fragmentation of eccentric accretion discs.

However, the in situ model has not so far addressed in detail the origin of the gaseous discs themselves, although similar discs are believed to exist in active galactic nucleus (AGN) and quasars. Indeed, subparsec massive gaseous discs are invoked as means of feeding SMBHs’ immense appetite for gaseous fuel (e.g. Frank, King & Raine 2002). Such discs are actually observed as the sites of maser emission in some of the nearby galactic centres (Miyoshi et al. 1995). However, Sgr A* is currently not a member of the AGN club, let alone the even more powerful and elitist quasar community. Indeed, Sgr A*’s bolometric luminosity is around $\sim 10^{-9}$ of its Eddington limit (e.g. Narayan 2002; Baganoff et al. 2003). The amount of ionized gas currently present in the inner parsec is estimated to be a mere hundred solar masses (Paumard, Maillard & Morris 2004). There are also tight observational constraints (Falcke & Melia 1997; Cuadra, Nayakshin & Sunyaev 2003) on the presence of an optically thin disc on smaller scales (say 0.01 pc or less).

We believe that the requisite gaseous discs could not have been assembled by viscous transport of angular momentum as is expected to be the case in other systems (Shakura & Sunyaev 1973; Frank et al. 2002). The viscous time-scale of a thin, marginally self-gravitating disc can be estimated as $t_{\text{visc}} = (M_{\text{visc}}/M_{\text{disc}})^2(\alpha \Omega)^{-1}$, where $M_{\text{visc}} \approx 3 \times 10^4 M_\odot$ and M_{disc} are masses of the black hole and the disc, respectively, and Ω is the Keplerian angular frequency. For $\alpha = 0.1$ and $M_{\text{disc}} \approx 10^4 M_\odot$ (reasons for this choice of mass are discussed in Nayakshin et al. 2006), $t_{\text{visc}} \approx 3 \times 10^7$ yr at $r = 0.03$ pc, the inner edge of the discs (Paumard et al. 2006), and 10^8 yr at 0.3 pc. These times are very long compared with the age of the stellar systems. In fact, the gaseous discs would have to evolve even faster as the two stellar systems are co-egal within 1 Myr (Paumard et al. 2006).

It is also not clear that one should expect any sort of a viscous quasi-steady state for the gas in our GC. There is no strong evidence for other similar star formation events in the central parsec within the last $\sim 10^8$ yr. Therefore, the one-off star formation event appears to be best explained by a one-off deposition of gas within the central parsec. There are several ways in which this could have happened, e.g. a giant molecular cloud (GMC) with a subparsec impact parameter (in relation to Sgr A*) could have self-collided and become partially bound to the central parsec (e.g. Nayakshin & Cuadra 2005). Alternatively, GMCs could be disrupted by the presence of an optically thin disc (CNT) located a few parsecs away from Sgr A*, and then create gas streams that settled into the central parsec. It is very hard to estimate the probability of a cloud–cloud collision in the central part of the Galaxy. Hasegawa et al. (1994) estimated the rate of GMC collisions as one per 20 Myr in the central 100 pc, but the estimate is uncertain by at least an order of magnitude in either direction due to the lack of knowledge about the size distribution of GMCs. However, there is observational evidence that GMCs can be put on orbits significantly different from the simple circular orbits seen in the inner Galaxy. Stolte et al. (2008) recently measured the proper motions of the Arches star cluster. This star cluster is about 2.5 Myr old and has a mass in excess of $10^4 M_\odot$ (e.g. Figer 2004). It is presently about 30 pc away from Sgr A* in projection. Its orbit must be strongly non-circular as its three-dimensional (3D) velocity is over 200 km s$^{-1}$ in the region where the circular velocity is only ~ 110 km s$^{-1}$. Therefore, this suggests that massive GMCs can be on highly non-circular orbits. It does not seem implausible that one of these clouds would pass within a few parsecs of Sgr A*.

In this paper we explore such a one-off collision event in a very simple set-up (Section 3). We allow two massive, uniform and spherical clouds on significantly different orbits to collide with each other 1 pc away from Sgr A*. The resulting gas dynamics, in particular the way in which gas settles into the inner parsec, is the focus of our effort here. We find that the collision forms streams of gas with varying angular momentum, both in magnitude and direction. Parts of these streams collide and coalesce to form a disc, and remaining parts form one or more orbiting filaments. As the gas cools, it becomes self-gravitating and stars are born, usually in both the disc and the filaments. This overall picture is discussed in Section 4.1. A reader mainly interested in a comparison between the simulations and observations may find Sections 5, 6 and 7 most relevant. In Section 7.3 we argue that our simulation results suggest that the location of the original impact was somewhat further away from Sgr A* than we assumed here, e.g. perhaps a few parsecs.

2 NUMERICAL METHODS

The numerical approach and the code used in this paper is the same as in Nayakshin et al. (2007) with only slight modifications. We employ GADGET-2, a smoothed particle hydrodynamic (SPH)/N-body code (Springel 2005). The Newtonian N-body gravitational interactions of particles in the code are calculated via a tree algorithm. Artificial viscosity is used to resolve shocks in the gas. Gas cools according to $du/dt = -u/t_{\text{cool}}(R)$, where cooling time depends on radius as

$$t_{\text{cool}}(R) = \beta t_{\text{dyn}}(R),$$

where $t_{\text{dyn}} = 1/\Omega$ and $\Omega = (GM_{\text{bh}}/R)^{1/2}$ is the Keplerian angular velocity, and β is a dimensionless parameter. This approach is motivated by simulations of marginally stable self-gravitating gaseous discs, where β is expected to be of the order of a few (Gammie 2001; Rice, Lodato & Armitage 2005). In the problem at hand, β would most likely be much smaller than this during the collision phase of the clouds as gas can heat up to high temperatures (see Appendix A), but it could be much larger than unity when gas cools into a geometrically thin disc or a thin filament. In the framework of our simplified approach, and given numerical limitations, we only consider two values for β. The $\beta = 1$ tests approximate the situation when cooling is inefficient, whereas $\beta = 0.3$ cases correspond to rapid cooling. Each of our runs used between three and six months of integration time on 12 processors in parallel.

Gas moves in the gravitational potential of Sgr A*, modelled as a motionless point mass with $M_{\text{bh}} = 3.5 \times 10^6 M_\odot$ (Reid et al. 1999) at the origin of the coordinate system, and a much older relaxed isotropic stellar cusp. For the latter component we use the stellar density profile derived from near-infrared (IR) adaptive optics

1 For movies of the simulations the reader is directed to http://www.astro.le.ac.uk/~aph11/movies.html
The formation of stellar discs in the GC

3 INITIAL CONDITIONS

Simulations were performed for several sets of initial conditions, all of which comprise a collision between two gas clouds at the edge of the inner parsec of the GC. 2625 000 SPH particles were used in each simulation. The specific parameters for each run, labelled S1 to S6, can be found in Table 1. Each cloud is spherically symmetric and of uniform density, containing less than 1 per cent of the mass of Sgr A*.

For $R = R_\odot$, this yields an Eddington accretion rate limit of $\sim 5 \times 10^{-4} \, M_\odot \, yr^{-1}$. The actual gas particles that are then accreted by the sink particle are chosen from its neighbours via the stochastic SPH method of Springel (2005). The mass and momentum of the SPH particles accreted are added to that of the respective sink particle.

Finally, we shall acknowledge that this plausible star formation prescription cannot possibly do justice to the full complexity of the physical star formation process. Therefore, the stellar mass function obtained in our simulations should not be trusted in detail. However, our focus is on the dynamics of gas as it settles into a disc or a filamentary structure. When star formation does occur, the gas temperature is very much smaller than the virial temperature in the simulated region ($\gtrsim 10^5 \, K$). Gas orbits thus determine the resulting stellar orbits which we compare to the observed ones. We believe that this important aspect of our simulations is reliably modelled.

The set of units used in the simulations is $M_\odot = 3.5 \times 10^6 \, M_\odot$, the mass of Sgr A* (e.g. Schödel et al. 2002), $R_a = 1.2 \times 10^{17} \, cm \approx 0.04 \, pc$, equal to 1 arcsec when viewed from the $\approx 8 \, kpc$ distance to the GC and $t_a = 1/\Omega (R_a)$, the dynamical time evaluated at R_a, approximately 60 yr. We use R to signify distance in physical units and the dimensionless $r = R/R_a$ throughout the paper interexchangably.

3 INITIAL CONDITIONS

Simulations were performed for several sets of initial conditions, all of which comprise a collision between two gas clouds at the edge of the inner parsec of the GC. 2625 000 SPH particles were used in each simulation. The specific parameters for each run, labelled S1 to S6, can be found in Table 1. Each cloud is spherically symmetric and of uniform density, containing less than 1 per cent of the mass of Sgr A*.

For $R = R_\odot$, this yields an Eddington accretion rate limit of $\sim 5 \times 10^{-4} \, M_\odot \, yr^{-1}$. The actual gas particles that are then accreted by the sink particle are chosen from its neighbours via the stochastic SPH method of Springel (2005). The mass and momentum of the SPH particles accreted are added to that of the respective sink particle.

Finally, we shall acknowledge that this plausible star formation prescription cannot possibly do justice to the full complexity of the physical star formation process. Therefore, the stellar mass function obtained in our simulations should not be trusted in detail. However, our focus is on the dynamics of gas as it settles into a disc or a filamentary structure. When star formation does occur, the gas temperature is very much smaller than the virial temperature in the simulated region ($\gtrsim 10^5 \, K$). Gas orbits thus determine the resulting stellar orbits which we compare to the observed ones. We believe that this important aspect of our simulations is reliably modelled.

The set of units used in the simulations is $M_\odot = 3.5 \times 10^6 \, M_\odot$, the mass of Sgr A* (e.g. Schödel et al. 2002), $R_a = 1.2 \times 10^{17} \, cm \approx 0.04 \, pc$, equal to 1 arcsec when viewed from the $\approx 8 \, kpc$ distance to the GC and $t_a = 1/\Omega (R_a)$, the dynamical time evaluated at R_a, approximately 60 yr. We use R to signify distance in physical units and the dimensionless $r = R/R_a$ throughout the paper interexchangably.

3 INITIAL CONDITIONS

Simulations were performed for several sets of initial conditions, all of which comprise a collision between two gas clouds at the edge of the inner parsec of the GC. 2625 000 SPH particles were used in each simulation. The specific parameters for each run, labelled S1 to S6, can be found in Table 1. Each cloud is spherically symmetric and of uniform density, containing less than 1 per cent of the mass of Sgr A*.

For $R = R_\odot$, this yields an Eddington accretion rate limit of $\sim 5 \times 10^{-4} \, M_\odot \, yr^{-1}$. The actual gas particles that are then accreted by the sink particle are chosen from its neighbours via the stochastic SPH method of Springel (2005). The mass and momentum of the SPH particles accreted are added to that of the respective sink particle.

Finally, we shall acknowledge that this plausible star formation prescription cannot possibly do justice to the full complexity of the physical star formation process. Therefore, the stellar mass function obtained in our simulations should not be trusted in detail. However, our focus is on the dynamics of gas as it settles into a disc or a filamentary structure. When star formation does occur, the gas temperature is very much smaller than the virial temperature in the simulated region ($\gtrsim 10^5 \, K$). Gas orbits thus determine the resulting stellar orbits which we compare to the observed ones. We believe that this important aspect of our simulations is reliably modelled.

The set of units used in the simulations is $M_\odot = 3.5 \times 10^6 \, M_\odot$, the mass of Sgr A* (e.g. Schödel et al. 2002), $R_a = 1.2 \times 10^{17} \, cm \approx 0.04 \, pc$, equal to 1 arcsec when viewed from the $\approx 8 \, kpc$ distance to the GC and $t_a = 1/\Omega (R_a)$, the dynamical time evaluated at R_a, approximately 60 yr. We use R to signify distance in physical units and the dimensionless $r = R/R_a$ throughout the paper interexchangably.

3 INITIAL CONDITIONS

Simulations were performed for several sets of initial conditions, all of which comprise a collision between two gas clouds at the edge of the inner parsec of the GC. 2625 000 SPH particles were used in each simulation. The specific parameters for each run, labelled S1 to S6, can be found in Table 1. Each cloud is spherically symmetric and of uniform density, containing less than 1 per cent of the mass of Sgr A*.

For $R = R_\odot$, this yields an Eddington accretion rate limit of $\sim 5 \times 10^{-4} \, M_\odot \, yr^{-1}$. The actual gas particles that are then accreted by the sink particle are chosen from its neighbours via the stochastic SPH method of Springel (2005). The mass and momentum of the SPH particles accreted are added to that of the respective sink particle.

Finally, we shall acknowledge that this plausible star formation prescription cannot possibly do justice to the full complexity of the physical star formation process. Therefore, the stellar mass function obtained in our simulations should not be trusted in detail. However, our focus is on the dynamics of gas as it settles into a disc or a filamentary structure. When star formation does occur, the gas temperature is very much smaller than the virial temperature in the simulated region ($\gtrsim 10^5 \, K$). Gas orbits thus determine the resulting stellar orbits which we compare to the observed ones. We believe that this important aspect of our simulations is reliably modelled.

The set of units used in the simulations is $M_\odot = 3.5 \times 10^6 \, M_\odot$, the mass of Sgr A* (e.g. Schödel et al. 2002), $R_a = 1.2 \times 10^{17} \, cm \approx 0.04 \, pc$, equal to 1 arcsec when viewed from the $\approx 8 \, kpc$ distance to the GC and $t_a = 1/\Omega (R_a)$, the dynamical time evaluated at R_a, approximately 60 yr. We use R to signify distance in physical units and the dimensionless $r = R/R_a$ throughout the paper interexchangably.

3 INITIAL CONDITIONS

Simulations were performed for several sets of initial conditions, all of which comprise a collision between two gas clouds at the edge of the inner parsec of the GC. 2625 000 SPH particles were used in each simulation. The specific parameters for each run, labelled S1 to S6, can be found in Table 1. Each cloud is spherically symmetric and of uniform density, containing less than 1 per cent of the mass of Sgr A*.
is expected for molecular gas falling into the potential well of a SMBH.

We ran tests with cooling parameter $\beta = 1$ and 0.3 (see equation 1). These values are low enough so that fragmentation would occur if and when regions of the gas became self-gravitating (Gammie 2001; Rice et al. 2005). Since the faster cooling runs were expected to require on average shorter time-steps the accretion radius for $\beta = 0.3$ was set to $r_{\text{acc}} = 0.33$ whilst for $\beta = 1$ a smaller value of $r_{\text{acc}} = 0.06$ was used.

We have performed convergence tests (at the referee’s request) on the numerical viscosity parameter α and on N_{grid}. We find that there is good convergence on the distribution of gas when varying either of these parameters, although there are minor differences within the innermost part of the computational domain, namely the inner 0.5–1 arcsec around the central black hole. These differences are small and can be explained by a different amount of gas being accreted on to the black hole when either viscosity or resolution are changed.

4 SIMULATIONS

4.1 Overall picture

In all of our simulations, the clouds undergo an off-centre collision at time $t \sim 10$ in code units (~ 600 yr). As the cooling time is longer than the collision time, $t_{\text{cool}} \sim (R_1 + R_2)/(|v_1 - v_2|)$, the clouds heat up significantly and hence initially expand considerably. This thermal expansion also modifies the velocity of the different parts of the clouds by giving the gas velocity ‘kicks’. The net result is a distribution of gas velocities that is much broader than what one would get if the two clouds simply stuck together, i.e. in an inelastic collision.

The collision and resultant mixing of the clouds leads to angular momentum cancellation in some parts of the gas. Regions of gas that acquire smaller angular momenta infall to the respective circularization radius on the local dynamical time. A small-scale disc that changes its orientation by about 30° is formed in two distinct locations – in the disc around the black hole and in the outer filament(s). Disc populations generally have top-heavy mass functions whilst filament populations always consist entirely of low-mass stars; however, as noted in Section 2, the mass spectrum of stars formed depends on a very simple prescription (e.g. see Nayakshin et al. 2007). We expect the mass spectrum of our models to change when more realistic cooling and feedback physics is included.

4.2 Simulation S1

4.2.1 Gas dynamics

Fig. 1 presents four snapshots of simulation S1 showing gas column density and positions of the stars viewed along the z-axis.

The initial mass deposition into the central few arcseconds forms a small-scale disc that changes its orientation by about 30° with time, stabilizing by $t \sim 300$. As a result of the small impact parameter of the cloud collision, the secondary cloud is largely destroyed and does not collapse into a coherent filament. Instead, the diffuse gas left over from the impact gradually accretes on to the disc that forms around the black hole, growing it in mass and radius. The inner disc therefore ends up extending out to $r \sim 10$ in code units. The gas left over from the primary cloud collapses into a filament which orbits at a larger radius, separate from the disc.

It is useful to analyse the redistribution of the gas as a result of the collision in terms of orbital parameters, namely, angular momentum and eccentricity. Gas with specific angular momentum $l = |r \times v|$ circularizes at the circularization radius, r_c, given by the relation $l^2 = GM(r_c)r_c$, where $M(r)$ is the total enclosed mass within radius r. Fig. 2 shows the distribution of gas particles as a function of the circularization radius of their orbits as a histogram for several snapshots. At time $t = 0$, the distribution is highly peaked around the clouds’ initial circularization radii. Because of the collision, however, a tail to small r_c appears in the distribution very quickly. This is not due to viscous angular momentum transport, as in thin accretion discs, but is rather due to cancellation of oppositely directed angular momentum components in shocks. Some of the gas particles acquire particularly small angular momenta and hence fall to small radial separations from Sgr A* on nearly radial trajectories. Particle with $r_c < r_{\text{acc}}$ are in general accreted by Sgr A* in our formalism (unless their orbit is changed by interactions before they make it inside r_{acc}). Particles with $r_c > r_{\text{acc}}$ settle into a thin rotationally supported disc, or into

Table 1. Initial conditions of the simulations presented in the paper. The meaning of the symbols in the table are as follows: β is the cooling parameter; r_1, r_2, v_1, v_2 are the initial positions and velocity vectors of the two clouds, respectively; r_{pe} and r_{ap} are the pericentres and the apocentres of the two clouds; e is their orbit’s eccentricity; θ is the angle between the orbital planes of the clouds and b is the impact parameter.

| ID | β | r_1 | r_2 | v_1 | v_2 | $|v_1 - v_2|$ | r_{pe} | r_{ap} | r_{pe} | r_{ap} | e_1 | e_2 | θ (°) | b |
|----|--------|------|------|------|------|-------------|-------------|-------------|-------------|-------------|------|------|-------------|----|
| S1 | 1 | (25,0,0) | (22.6,7) | (0.0,2.0) | (0,-0.11,-0.21) | 0.37 | 25 | 31.5 | 12.8 | 29.5 | 0.12 | 0.39 | 116 | 3.8 |
| S2 | 1 | (25,0,0) | (22.6,7) | (0.0,2.0) | (0,-0.21,-0.11) | 0.42 | 25 | 31.5 | 13.2 | 29.1 | 0.12 | 0.38 | 151 | 6.8 |
| S3 | 0.3 | (25,0,0) | (22.6,7) | (0.0,2.0) | (0,-0.11,-0.21) | 0.37 | 25 | 31.5 | 12.8 | 29.5 | 0.12 | 0.39 | 116 | 3.8 |
| S4 | 0.3 | (25,0,0) | (22.6,7) | (0.0,2.0) | (0,-0.21,-0.11) | 0.42 | 25 | 31.5 | 13.2 | 29.1 | 0.12 | 0.38 | 151 | 6.8 |
| S5 | 1 | (25,0,0) | (22.6,7) | (0.0,2.0) | (0.16,-0.11,-0.21) | 0.41 | 25 | 31.5 | 21.8 | 43.1 | 0.12 | 0.33 | 120 | 2.4 |
| S6 | 1 | (25,0,0) | (22.6,7) | (0.0,2.0) | (0.16,-0.21,-0.11) | 0.45 | 25 | 31.5 | 21.3 | 43.4 | 0.12 | 0.34 | 147 | 5.3 |
The formation of stellar discs in the GC

Figure 1. Gas surface density and star locations (in the bottom right-hand panel) for snapshots from simulation S1 taken at times \(t = 0, 100, 250 \) and 1000, left to right and top to bottom, respectively. Sgr A* is located at (0,0), and the line of sight is along the \(z \)-direction.

Sheared out filaments (the remains of the clouds). Note that due to the complicated geometry, some gas particles pass through shocks several times before reaching their final destination (i.e. the disc).

Fig. 3 shows the profiles of orbital eccentricity (defined on radial shells) plotted for several snapshots. These profiles again show that soon after the collision the inner part of the computational domain is dominated by gas on plunging – high eccentricity – orbits. At later times finite net angular momentum of gas and shocks force the gas to circularize outside the inner boundary of the simulation domain. It is notable that gas circularizes faster at smaller radii, which is naturally expected as the orbital time is shortest there. Therefore, towards later times, nearly circular gaseous orbits are established in the innermost few arcseconds, whereas eccentric ones dominate at larger radii.

4.2.2 Structures in angular momentum space

The various structures that are formed in the simulation can also be identified by the orientation of the angular momentum vector \(\mathbf{L} \) of a particle’s orbit. We define two angles, \(\theta \) and \(\phi \), so that \(L_z = |\mathbf{L}| \cos \theta \), where \(L_z \) is the \(z \)-component of \(\mathbf{L} \), and \(\tan \phi = L_y/L_x \). We then plot the values of these angles for individual SPH particles and stars in the Aitoff projection. As the number of SPH particles is too large to show each particle, we show only a small fraction of these, randomly chosen from the total number. This procedure keeps the resulting maps reasonably clear while also preserving the shape of the distribution.

The result is shown in Fig. 4 for a selection of times. At \(t = 0 \) all the gas particles are concentrated in the two clouds, with the finite
Figure 2. The distribution of SPH particles over the circularization radius of their orbits. The black, cyan, blue and red curves (figure is grey-scale in print, colour online) correspond to times \(t = 0, 25, 50, 500 \) respectively. As the result of angular momentum cancellation due to shocks, particles ‘leak’ to small radii, establishing there a disc that eventually forms stars.

Figure 3. Gas eccentricity defined on radial shells as a function of the shell’s radius at different times. Black, blue and red curves (figure is grey-scale in print, colour online) correspond to time \(t = 50, 100 \) and 250. Note that initially only gas on near-plunging high eccentricity orbits arrives in the innermost region, but with time this gas circularizes to \(e \ll 1 \).

spread in the distribution arising as a result of all the particles within a cloud having the same velocity whilst possessing a finite spread in positions about the centre. The difference in the orbital orientations of the two clouds is almost 120° (cf. Table 1). By \(t = 100 \), the clouds have collided and the gas particles have experienced ‘kicks’ in different directions, filling the entire range in \(\theta \). The \(\phi \) values are restricted to a rather narrow band running about \(\phi = +90° \) and \(-90° \) lines. Note that this band structure forms a plane \(L_\phi \approx 0 \) in \(L \)-space. This is expected since gas particles experience the collision close to the \(x \)-axis, i.e. where \(y/x \approx z/x \approx 0 \). Therefore, the \(x \)-component of the resulting angular momentum, \(L_x = yv_x - zv_y \), is very small.

The plots are colour coded to show the behaviour of the gas in the inner arcsecond (red), the inner 5 arcsec (orange) and outside the inner 5 arcsec (blue). Whilst the distribution just after the collision is fairly spread out for all the three regions, we note a clear difference at later times. In particular, the innermost disc occupies a region positioned in between the two clouds’ original positions. It is also the least spread out structure, defining a thin disc which is only slightly warped by \(t = 1000 \). The innermost disc orientation does evolve with time, however, as we noted already in Section 4.1, since matter infall on the disc continues throughout the simulation.

The gas coloured in orange demonstrates a greater extent of warping, and the region outside this (\(>5 \) arcsec) cannot even be classified into a single structure (cf. Fig. 1). Nevertheless, it is clear that the inner and outer gas distributions are similarly oriented with respect to each other, with the majority of the outer gas angular momentum distributed in \(\theta \) and \(\phi \) between the initial values of the clouds.

4.2.3 Star formation

Stars in S1 form in both the disc and the primary filament. In the disc, stars form first in the inner arcsecond at \(t \sim 900 \) and later at a radius of \(\sim 5–8 \) arcsec at \(t \sim 1700 \). In the filament, star formation is approximately co-eval with the inner arcsecond population and occurs at a radius of \(\sim 15–25 \) arcsec. Mass functions in the disc become top-heavy relatively quickly (as the dynamical time is short), with high-mass stars (\(M \sim 100 \mathrm{M}_\odot \)) appearing by \(t \approx 1100 \), whilst stars in the filament remain entirely low mass (\(\sim 0.1–1 \mathrm{M}_\odot \)) for the duration of the simulation. The disc and filament stellar orbits are inclined to each other by \(\sim 60° \), similar to the gas orbital inclination.

All three stellar populations can be seen in Fig. 5; the ‘inner disc’ population (within the inner 1–2 arcsec), the ‘mid-range disc’ population (5–8 arcsec) and the ‘filament’ population. The orbits in the inner disc population are almost circular, \(e \sim 0.05 \), whilst stars in the mid-range disc have eccentricities of \(e \sim 0.2 \). Both of these are therefore in good agreement with the clockwise feature of the observations (Lu et al. 2006), the orbits of which are only mildly eccentric. The orbit of the filament population is also eccentric, with \(e \gtrsim 0.2 \). This is in reasonable agreement with the corresponding counter-clockwise feature of the observations, although the eccentricity of the latter is considered to be somewhat higher with \(e \sim 0.8 \) (Paumard et al. 2006).

4.3 Simulation S2

4.3.1 Gas dynamics

The simulation S2 is set up identically to S1 except for the initial velocity of the secondary cloud (cf. Table 1). As the result, the angle between the orbital plane of the two clouds is greater, \(\theta \sim 150° \), and the collision between the clouds is more grazing (i.e. the impact parameter \(b \) is greater).

Smaller fractions of the clouds’ mass are therefore involved in a bodily collision, and as a result the two clouds survive the initial collision better. Indeed, comparing the S1 and S2 simulations in Fig. 5 (gas column density) and Fig. 6 (orientation of \(L \)), one sees that in the latter simulation most of the secondary cloud actually does survive the collision. This cloud forms a clockwise filament which was largely absent in simulation S1. Both S2 filaments contain a greater amount of mass than their S1 counterpart.

On the other hand, the parts of the clouds involved in the direct collision experience a stronger shock in S2 than they do in S1 as the velocity vectors in the former are almost directly opposing. Thus, despite the larger impact parameter, the stronger angular momentum cancellation in S2 creates an inner \(r < 1 \) disc as massive as that in S1. However, the ‘mid-range’ disc largely fails to form in S2.
Another difference between S1 and S2 is the evolution and the structure of the inner gaseous disc. In both simulations the angular momentum of the gas infalling on to the discs evolves with time, and hence the mid-planes of both discs undergo a change of orientation in both θ and ϕ (we refer to this as ‘mid-plane rotation’). However, the infalling gas seems to be more intermittent in S2 compared to S1, possessing a larger range of angular momentum. Whilst in S1 the accreting gas largely adds to the existing disc, creating one large, relatively warped disc, in S2 the infalling gas causes enhanced disc mid-plane rotation, and at later times ($t \sim 400$), actually creates a second disc around the first at a different orientation. Over time, the first (inner) disc aligns somewhat with the second one. This process repeats at larger radii as gas continues to fall in with a different orientation of angular momenta to that of the existing disc. The eventual result is that the S2 disc is significantly more warped than its S1 counterpart. Fig. 7 compares the inner discs of S1 and S2 in the process of forming.

The difference in gas distribution between the two simulations can be also noted by looking at the respective histogram plots of circularization radius (Figs 2 and 8, respectively). A tail to small r_c appears faster in S2, by $t = 25$ rather than $t = 50$ in S1. The radial profile of gas in S2 by $t = 500$ has a gap between the inner and outer distributions, and is far more peaked than the flatter, more even distribution of S1 at an equivalent time.

4.3.2 Star formation

Stars form earlier in S2 than in S1, and they form in the disc first, by $t = 400$. The preferential sites of star formation in the disc appear to be dense concentric ring structures – see Fig. 7 – we discuss these in more detail in Section 4.6. Owing to the significantly peaked distribution of gas (Fig. 8) in S2, there is a far greater amount of star formation at both small and large radii compared to S1 at an equivalent time. This can be seen in Fig. 5. The stars formed in the disc are again top-heavy and in the filaments are again low mass. The stars in the filaments show a tendency to form inside clusters – this effect is discussed in more detail in Section 4.4.

4.3.3 Structures in angular momentum space

Fig. 6 shows the orientation of the angular momentum vectors for orbits of gas (in grey) and stars (in colour) in the Aitoff projection, for S1 and S2 at the same times as in Fig. 5. We identify stars of different masses using different colours; green (0.1–$1 M_\odot$), cyan (1–$10 M_\odot$), blue ($>10 M_\odot$) and magenta ($>150 M_\odot$). As already noted, in S2 the secondary cloud largely survives the collision and forms a stream, which later collapses into stars. These stars can be found at the original orientation of that cloud in the right-hand panel in Fig. 6 (green at around $\theta = -60^\circ$). The primary and secondary outer stellar populations are therefore inclined at a large angle of $\theta \simeq 150^\circ$ to each other, as is expected since they are the stellar remnants of the original clouds. The angular momentum vector of the disc stellar population is oriented at an angle in between that of the two outer stellar populations.

The other interesting feature of these plots is that the stellar disc is strongly warped. The origin of this warp is in the warping of the gaseous disc rather than any secular evolution once the stars have formed.

4.4 Simulations S3 and S4

S3 and S4 are identical to S1 and S2, respectively, except for the value of the cooling parameter β which is set to a lower value of 0.3.
4.4.1 Gas dynamics

To show the effect of the faster cooling, Fig. 9 contrasts gas surface density plots of simulations S1 and S3 at time $t = 150$. The bulk dynamics of S3 are the same as in S1, but apart from the innermost few arcseconds, maximum gas densities are higher in S3 than they are in S1. This is natural as faster cooling gas can be compressed to higher densities through shocks and gravity. For the same reason, the filaments are much better defined in S3 than they are in S1. Similar conclusions can be drawn from comparison of runs S2 and S4.

4.4.2 Star formation

Star formation occurs earlier in S3 than it does in S1. In particular, the first stars appear at $t = 150$ in S3 and only at $t \approx 1000$ in S1. This is expected since faster cooling facilitates faster gravitational collapse (e.g. Gammie 2001; Rice et al. 2005). The S2 to S4 comparison is less extreme but still significant, with stars forming in S2 by $t = 400$ and in S4 by $t = 100$. In both $\beta = 0.3$ runs the initial sites of star formation were the orbiting gas filaments, with the disc stellar populations forming slightly later, at $t = 350$ (S3) and 180 (S4).

The clearly defined concentric ring structures of the S1 and S2 discs were also seen in S3 and S4, although they did not provide the sites of star formation in the latter cases, as fragmentation into sink particles occurred some time before the rings began forming. In terms of the stellar mass spectra all the stars formed in S3 and S4 are low mass (~ 0.1–$1 M_\odot$), both in the filament populations and in the disc. Again, this is a natural consequence of a short cooling time (Shlosman & Begelman 1989; Nayakshin 2006).
The formation of stellar discs in the GC

4.4.3 Clustered star formation

The top panel of Fig. 10 shows the surface density of S4 some time after stars have begun to form. The bottom panel shows the orientation of the angular momentum of gas and star particles for the same snapshot. In contrast to the equivalent plots for S1 and S2, one notices extended linear structures, ‘filaments’ or ‘arms’ in Fig. 10. These structures, extended in angular momentum space, are in fact produced by the most compact features in coordinate space – the star clusters. These clusters are seen visually in the top panel of Fig. 10. The velocity dispersion of the stars in these very dense clusters is high; some are comparable to the orbital velocities of the clusters themselves. For example, in the bottom panel of Fig. 10, the two longest continuous ‘filaments’, separated by 180° in φ, are produced by the densest and most massive cluster located at z ≈ 0, x = 4, y ≈ −28 in the top panel. Because of its location close to the y-axis, the y-component of the angular momentum of any star that belongs to the cluster, \(l_y = -xv_z + zv_x \approx 0 \). Therefore, the cluster’s stars form an incomplete plane \(l_y \approx 0 \) in the angular momentum space, producing the two (actually one) very long ‘filaments’ in the bottom panel of Fig. 10. This cluster is a remnant of cloud 1, and its mass is \(\sim 3000 M_\odot \).

In fact most of the stars in simulations S3 and S4 belong to a cluster. This clustered mode of star formation in the fast-cooling runs is due to the gas collapsing promptly and thus forming very massive dense gas haloes. We suspect that these results would have been different had we been able to treat radiative feedback from star formation in our simulations. We note that in such a dense environment, any feedback from star formation activity, such as radiation or outflows, would not have been able to escape easily and would therefore have heated the surrounding gas, suppressing further fragmentation and increasing the Jeans mass (Nayakshin 2006; Krumholz & Bonnell 2007). Rather than the multiple low-mass stars in a cluster we would perhaps have seen fewer but higher mass stars. The mass spectrum of stars would probably also change if the colliding clouds had net rotation (spin) or a turbulent structure before the collision, providing some stability against collapse. All these effects are however minor as far as orbital motion of the stars is concerned, which is the focus of our paper.

4.4.4 Inner fluctuating disc

Simulation S4 is the fast-cooling equivalent of S2. As such, the inner gaseous disc in S4 is subject to a similar intermittent infall of gas from larger radii. The newly arriving gas tweaks the disc orientation significantly, causing it to undergo mid-plane rotation (refer back to Section 4.3.1). The difference here however is that disc is fragmenting into stars whilst its orientation is changing. Interestingly, these stars do not follow the evolving disc orientation but rather remain in their original configuration. This is clearly seen in Fig. 11, where the stellar disc remembers the ‘old’ orientation of the gaseous disc in which the stars were born, whereas the gaseous disc evolves to
A. Hobbs and S. Nayakshin

150. Note that filamentary structures are denser and better defined in S3 than they are in S1.

Figure 9. Comparison of projected gas density for simulation S1 (left-hand panel, $\beta = 1$) and S3 (right-hand panel, $\beta = 0.3$) at $t = 150$. Note that filamentary structures are denser and better defined in S3 than they are in S1.

4.5 Simulations S5 and S6

Simulation S5 is somewhat distinct from all the rest due to its small impact parameter, b, between the gas clouds (see Table 1). As a result of this fact and the relatively large value of β, a higher degree of mixing is achieved. Fig. 12 shows a snapshot from this simulation, showing both gas and stars. Compared with all the other runs, the accretion disc extends out to as much as $r \sim 20$ and represents a very coherent disc with little warping. Outer gas filaments do not form due to an almost complete mixing of the original gas clouds.

This simulation is an excellent example of how just a small change in initial conditions can yield drastically different results. Comparing the parameters for S5 with those for S2 (refer to Table 1), we see that there are only relatively minor differences (the largest one being the different in impact parameter). However, towards later times the behaviour of the gas diverges considerably, with S5 ending up with a single, extended disc and similarly oriented stellar populations and S2 possessing a small, highly warped disc together with outer stellar populations inclined at a large angle from each other.

Simulation S6 is again different in that it possesses the largest collision velocity of all the simulations, whilst retaining a cooling parameter of $\beta = 1$. One therefore expects the resulting thermal expansion of the clouds to significantly modify the velocities of the particles and encourage mixing. However, since the impact parameter is relatively large, this simulation actually has more in common with S2 than with S5, particularly in the inner parts where the gas forms into a double disc structure (refer back to Section 4.3.1). The gas dynamics are therefore largely equivalent to S2, and as such we will not discuss this simulation in detail.

4.6 Star formation in rings

One particular interesting feature of our simulations is that the disc surface density exhibits slightly eccentric ‘rings’ in the inner 0.5–1 arcsec. Star formation occurs preferentially in these rings (see Fig. 7) in the slower cooling runs. The inner discs in runs S1–S6 are eccentric, warped, with a radial gradient in both of these properties, and evolving under the influence of a continuous but variable infall of material from larger radii, in a fixed (BH + stellar cusp) potential. It is difficult to disentangle these various effects from one another to understand the origin of the rings in detail, but we believe that they are partly a consequence of a fast cooling time (since $t_{\text{cool}} \propto \beta R^{3/2}$) coupled with most likely a number of the above properties of the gas in the inner parts. We base this conclusion on our unsuccessful attempts to reproduce the rings in cleaner purpose-designed simulations. In particular we ran simulations with eccentric and circular, flat or warped discs, but found no ring structures. Similarly, Nayakshin et al. (2007) did not encounter any such structures in their simulations of circular or eccentric self-gravitating discs. We plan to continue to investigate the cause of the rings, and in particular to determine whether they are a numerical or physical artifact. It should be noted at this point that the effect of the rings on our model...
and overall conclusions is (fortunately) negligible, as they only affect star formation within the inner ~0.5 arcsec, a region in which fragmentation would be suppressed through accretion luminosity (Nayakshin 2006), if we were to include this in our model.

5 RADIAL DISTRIBUTION OF STARS

Interestingly, the most robust result from all of the six runs completed is the fact that distribution of stellar mass in an annulus, \(\Delta M_\ast = \Sigma_\ast(R) 2\pi R \, dR \), versus radius roughly follows the law

\[\Sigma_\ast(R) \propto \frac{1}{R^2}. \]

(10)

We show these distributions for runs S1, S2, S3 and S5 (all the simulations that have progressed far enough to transform a significant fraction of the gas into stars) in Fig. 13. To facilitate comparison with observational data, we use projected radius instead of the proper 3D radius, which is not directly known in observations of young stars in the GC (e.g. Genzel et al. 2003). As the viewing angle of the stellar system modelled here is arbitrary, we chose to plot the distributions along the three axes of the simulations, so that \(r = \sqrt{x^2 + y^2} \) for the triangle symbols, \(r = \sqrt{y^2 + z^2} \) for the diagonal symbols and \(r = \sqrt{x^2 + z^2} \) for the square symbols. The lines in the figure show \(r^{-2} \) (dotted) and \(r^{-3/2} \) (dashed) power laws. The latter corresponds to that predicted by non-self-gravitating standard accretion disc theory.

This result is remarkable given very large differences in the 3D arrangements of the stellar structures in our simulations. The \(1/R^2 \) law is in good agreement with the observed distribution of ‘disc’ stars (Paumard et al. 2006). We have not been able to attribute a simple analytical explanation to this scaling, other than to suggest that cancellations of angular momenta in shocks appear to be very efficient in driving gas to smaller radii. On the referee’s request however we have looked at the distribution of the gas for a given N-body velocity profile emerging from the initial cloud collision, and have attempted to fit the resulting circularization radius \(r_c \) distribution to our result for \(\Sigma_\ast(R) \). The thermal expansion of our clouds as they collide can be modelled to a first approximation as an isotropic, \(\delta \)-function velocity profile, which for small values of \(r_c \) yields a slope of \(\Sigma \propto R^{-1} \). Introducing a Gaussian velocity profile into the isotropic distribution, centred about low velocities, acts to steepen this slope closer to the desired \(R^{-2} \). Beyond this simple N-body model, shocks and small-scale collisions elsewhere in the simulation will drive gas deeper into the potential well, increasing the slope even further. It would be interesting to explore a larger parameter space to quantify the robustness of these results.

6 SGR A* FEEDING DURING AND AFTER THE CLOUD COLLISION

Fig. 14 shows the mass accretion rate for the central black hole for simulations S1–S4. Formally, the figure indicates that our simulations provide a sustained super-Eddington accretion rate (the Eddington accretion rate for Sgr A* being \(\sim 0.03 \, M_\odot \, \text{yr}^{-1} \)), in some cases for between \(10^4 \) and \(10^5 \) yr. However, it must be remembered that we do not resolve gas dynamics inside the accretion radius. We expect that material will form a disc there, and accretion will proceed viscously. The viscous time-scale, \(t_{\text{visc}} \), depends on the temperature in the disc mid-plane and the viscosity parameter, \(\alpha \) (Shakura & Sunyaev 1973). The mid-plane temperature in the inner arcsecond is around \(10^3 \) K in both the standard (non-self-gravitating; e.g. Nayakshin & Cuadra 2005) and the self-gravitating regimes (Nayakshin 2006), yielding \(H/R \sim 0.01 \). Hence the viscous time is

\[t_{\text{visc}} = 6 \times 10^6 \, \text{yr} \, \alpha_{0.1}^{-1} \left(\frac{R}{100 \, \text{H}} \right)^2 R^{3/2}, \]

(11)

where \(\alpha_{0.1} = \alpha/0.1 \) and \(R \) is the radius of the disc in arcseconds. With these fiducial numbers, the viscous time-scale coincides with the age of the young massive stars in the GC (e.g. Krabbe et al. 1995; Paumard et al. 2006). As \(\alpha \) is highly uncertain, we shall then consider the two opposite cases. If \(\alpha = 0.1 \), \(t_{\text{visc}} \lesssim 0.01 \) million years (\(\approx 10^5 \) yr at 0.2 arcsec), and we expect that gas would have mainly accreted on to Sgr A* by now. This accretion rate would be a significant fraction of the Eddington accretion rate. Standard disc accretion would then generate as much as \(2 \times 10^{36} \, \text{erg} \, M_{\text{acc},3} \) of radiative energy, where \(M_{\text{acc},3} \) is the gas mass accreted by Sgr A* in units of \(10^3 \, M_\odot \). A similar amount of energy could have been released as energetic outflows. There is currently no evidence for
such a bright and relatively recent period of accretion activity for Sgr A*.

In the opposite limit, i.e. if $\alpha \ll 0.1$, and $t_{\text{visc}} \gtrsim$ a few million years, a gaseous disc should still be present as self-consistent modelling predicts that stars should not be forming inside $R \lesssim 0.3$–1 arcsec (Levin 2007; Nayakshin 2006). There are however very strong observational constraints on the absence of such a massive gaseous disc in the inner arcsecond of our Galaxy (e.g. Falcke & Melia 1997; Narayan 2002; Cuadra et al. 2003).

Therefore, our simulations seem to overpredict the amount of gaseous material deposited in the inner \sim0.3 arcsec. We take this as an indication that a better model would perhaps involve a gaseous cloud of a larger geometric size, thus shifting all spatial scales outwards (see further discussion of this in Section 7.3).

7 DISCUSSION

7.1 Summary of main results

In terms of the final distribution of gas and resulting stellar populations, our results can be divided into two main categories.

(i) For those runs with a relatively small impact parameter, namely S1, S3 and S5, the initially small-scale disc around the black hole grows by steady accumulation of gas to extend out to $R \sim 15$ arcsec. As a result, more than one stellar population is seen in the disc. In addition to the ubiquitous stars in the inner few arcseconds, a ‘mid-range’ population is seen, at $R \sim 5$–8 arcsec. Populations in the filaments vary: in S1, only the primary filament forms a stellar population, as the secondary has accreted on to the disc by the time stars begin to form; in S3, although the gas dynamics are the same, the secondary filament forms stars before it can accrete, resulting in two filamentary populations and in S5, due to the small impact parameter a single large disc is created, resulting in three disc stellar populations all at a similar orientation.

(ii) For the runs with a larger impact parameter, namely S2, S4 and S6, the small-scale disc grows very little over the course of the simulation, staying within a radius of a few arcseconds. The feeding of the disc is far from steady, generating enhanced mid-plane rotation, which, coupled with star formation (particularly in the case of faster cooling, e.g. S4), results in geometrically thick stellar populations. Both the primary and secondary filaments survive, and each form stellar populations inclined at a large angle to each other.

The other results of our simulations, presented roughly in the order of their commonality to the six simulations, are the...
The formation of stellar discs in the GC

Figure 13. Stellar surface density, Σ_*, versus projected radius, for runs S1 (top left, at $t = 1955$), S2 (top right, at $t = 2243$), S3 (bottom left, at $t = 1396$) and S5 (bottom right, at $t = 2696$). Different symbols show the three different orientations, along z, x and y axes (black, red and blue triangles, respectively; note that this figure is only in colour online). Power laws are overlaid for r^{-2} (dotted) and $r^{-3/5}$ (dashed). All four plots correspond to the maximum time to which each simulation has been run.

following. First, the formation of a gaseous nearly circular disc in the inner region of the computational domain is common to all runs, as is the ensuing formation of stars on similar near-circular orbits. This is natural as the dynamical time in the innermost disc is only $\sim 60r^{3/2}$ yr. On the scale of the inner disc, $r \sim 1$, the disc makes tens to hundreds of revolutions during the simulation, allowing for a near circularization of the gaseous orbits. Conversely, the outer gaseous stream becomes self-gravitating much faster than it could circularize (or even become an eccentric disc), and hence orbits of stars in that region are more eccentric. This division on inner near-circular and outer eccentric orbits is in broad agreement with the properties of the observed orbits (Paumard et al. 2006). One discrepancy however is the eccentricity of the counter-clockwise feature of the observations compared to the outer stellar populations as seen in our model; the former is believed to possess a value of $e \sim 0.6$–0.8 whilst the latter we find is only $e \sim 0.2$–0.4. We believe that simulations that use a strongly eccentric initial orbit for one of the clouds should be able to match the observations more closely.

Another robust result of our simulations is that all of the gaseous and ensuing stellar discs are significantly warped, by between 30° and 60° measured from the inner to the outer radii. Interestingly, most recent analysis of the observations reveals strong warps in the clockwise disc system (Bartko et al., private communication).

We also found that the radial distribution of stellar mass closely follows the observed $\Sigma_* \propto 1/R^2$ profile of the disc stellar populations (Paumard et al. 2006). This was observed for all the simulations, although we expect these results would change if the colliding clouds moved in similar directions, significantly reducing the angular momentum cancellation in the shock and the thermal ‘kick’ velocity due to the shock. Of course, this latter set-up would prevent the formation of stellar populations at a large angle of inclination with respect to each other (one of the most prominent features of the observational data), so it is reasonable that we have not tested this possibility in our model.

For the same initial configurations, simulations with a comparatively long cooling time parameter, $\beta = 1$, lead to kinematically less dispersed stellar populations than those with faster cooling (i.e. $\beta = 0.3$). As a result, the longer the cooling time, the more closely the resulting stellar system can be fit by planar systems in velocity space. The innermost stellar disc is then reminiscent of the observed clockwise thin stellar system (Paumard et al. 2006) in terms of stellar orbits. Rapid cooling produces clumpier gas flows that lead to significant gaseous disc orientation changes during the simulations. Rapidly cooling gas flows naturally form less coherent discs; such geometrically thick systems are incompatible with the observations. Interestingly, with the chosen initial conditions, faster cooling promotes survival of the gaseous streams corresponding to the orbits.
of the original clouds. These streams fragment and form stars mainly in a clustered mode, although this might be expected to depend on the details of the radiation feedback from young stars, which is not modelled in this set of simulations.

Our slower cooling runs produce inner and outer stellar systems that are inclined to each other by only about 40°, which is much smaller than the observed angle of ~110° between the discs (Paumard et al. 2006). This is a natural consequence of angular momentum conservation in a ‘viscous’, well-mixed gas flow – the disc orientation in our model will always lie in-between the positions of the initial clouds in angular momentum space.

7.2 Origin of the observed stars: one or two clouds?

None of our runs reproduces the observed properties of stars and their orbits in detail. This is not surprising as the parameter space for initial conditions is quite large, and we have explored only a tiny fraction of it here. We feel, however, that the agreement with the observations is encouraging and that the model is promising. To quantify this discussion here, we must note that the observational picture itself is still not entirely clear. Whereas Genzel et al. (2003) and Paumard et al. (2006) classify the orbital stellar distribution as two discs, the statistical significance of the second disc is disputed by Lu et al. (2006, 2008). Although we tend to agree with the first opinion, we shall consider both of these possibilities without bias here.

Let us first discuss the origin of the clockwise stellar disc in the inner parsec of the GC. The existence of this disc is not in question since the work of Genzel et al. (2003) and Levin & Beloborodov (2003). Concentrating on this feature only, a viable model can be simplified to a self-collision of a large molecular cloud rather than collision of two clouds. Recently, Wardle & Yusef-Zadeh (2008) argued that a viable progenitor for the stellar discs is a large-scale molecular cloud, such as the 50 km s\(^{-1}\) GMC actually observed near the GC. In this model, the cloud infalls almost radially on to Sgr A∗, temporarily engulfing the SMBH. While most of the cloud nearly passes by, gas within 1 pc or so gets captured by the SMBH and settles into a bound disc of gas. This model may be also useful in explaining not only the observed stellar disc within the inner parsec but also the CND further out at ~10 pc.

Even more recently, Bonnell & Rice (2008) have performed numerical simulations of a scenario similar to that suggested by Wardle & Yusef-Zadeh (2008). In particular, an infalling turbulent molecular cloud was set on a subparsec impact parameter with respect to the SMBH. While their numerical method did not include radiative transfer directly (it is of course also not included here), they did use an effective equation of state that to some degree mimics the radiative effects. It was found that the cloud becomes tidally disrupted and forms an eccentric disc around the SMBH. This disc later fragmented into stars with a top-heavy initial mass function resulting from inefficient cooling. Therefore, the one cloud scenario appears to be attractive both qualitatively and quantitatively as an explanation for the origin of the clockwise stellar disc.

Now, considering the rest of the young massive stars that do not belong to the clockwise disc kinematically, we note that these account for no less than 50 per cent of the overall stellar population. Whether the majority of these stars form the second disc or not, their velocity vectors differ from the clockwise disc by up to ~10°.
a few hundred kilometres per second (which is the order of circular velocity at these distances). The velocity dispersion even in a very compact GMC, with mass of say $3 \times 10^8 \, M_\odot$ and size of 1 pc, is only $\sim 10 \, \text{km s}^{-1}$. Thus the only way to create the observed kinematically distinct population of stars would be to postulate the existence of two or more streams (filaments) inside the cloud that pass on opposite sides of Sgr A* and do not get completely mixed before forming stars. Given our numerical experiments in this paper, this does not seem implausible if the cooling time is short $\beta \lesssim 1$. What is interesting in this scenario is that the massive stars of the counter-clockwise population would then have to form very quickly, i.e. on a dynamical time-scale, or else gaseous orbits would be mixed. The rotation period scales approximately as $T_{\text{rot}} = 3000(5/\text{arcsec})^{3/2} \, \text{yr}$, so this is quite fast indeed.

It should also be noted that recent N-body simulations (Alexander, Begelman & Armitage 2007; Cuadra, Armitage & Alexander 2008) imply that it would have been very difficult for the high eccentricities and inclinations of the dynamically hotter counter-clockwise feature to have been formed from a flat, cold disc via scattering processes. A single disc progenitor for both GC stellar features is therefore largely ruled out. In contrast, in the case of the collision of two clouds as considered here, it is almost too easy to obtain an inner near-circular disc and a kinematically diverse stellar population farther out. We therefore favour a model where a GMC collided with a pre-existing cloud or structure, such as a massive larger-scale disc, e.g. similar to the observed CND.

7.3 Size of the cloud(s)

The observed well-defined, flat, geometrically thin and near-circular/mildly eccentric clockwise stellar system (Paumard et al. 2006) is best created via a gentle accumulation of gas. Several independent major gas deposition events lead to a warped disc, and/or mixed systems consisting of several stellar rings or discs co-existing at the same radius. To avoid this happening, the inner disc must be created on time-scale longer than the critical rotation time, which is estimated at $t_{\text{crit}} \sim 10^4 \, \text{yr}$.

While these results are based on analytical arguments (Nayakshin & Cuadra 2005) and our simplified one-parameter β-cooling model, we note that the results of Bonnell & Rice (2008) corroborate this as their inner stellar disc appears to be too eccentric to match the data of Paumard et al. (2006).

Deposition of gas in the inner disc takes place on the longest of two time-scales: the cooling time t_{cool} and the collision time, $t_{\text{coll}} \sim R_{\text{cl}}/v_{\text{d}}$, where R_{cl} and v_{d} are the cloud’s size and velocity magnitude. In the appendix we estimate the realistic cloud cooling time during the collision, and show that it is always much shorter than the dynamical time unless magnetic fields are very important.

We are thus left with the only option to require the collision itself be more prolonged than t_{cool}. Estimating the velocity of the cloud at $v_{\text{d}} \sim 150 \, \text{km s}^{-1}$, which is of order of circular velocities in the inner Galaxy outside the inner parsec, we find $t_{\text{coll}} = R_{\text{cl}}/v_{\text{d}} \sim 10^3 \, \text{yr} \, R_{\text{cl}, \odot}$, where $R_{\text{cl}, \odot}$ is the size of the cloud in parsecs. We hence require the cloud to be larger than a few parsecs to satisfy $t_{\text{coll}} \gtrsim t_{\text{crit}}$. Note that this size is not necessarily the original size of the cloud if the cloud gets tidally disrupted before it makes the impact. In the latter case we can take R_{cl} to be the radial distance to the centre of the Galaxy at which the tidal disruption took place. Finally, the location of the collision should not be too far from the central parsec, or else too much angular momentum would have to be lost to deposit a significant amount of gas at $\sim 0.1 \, \text{pc}$.

Another argument going in the same direction comes from a comparison of the radial distribution of gas and stars in our simulations with the observed stellar distribution (Paumard et al. 2006). The former is too compact, i.e. all of our simulations deposited too much mass within the inner arcsecond. In addition, if that was indeed the case 6 Myr ago, then Sgr A* would have received a significant amount of fuel, enough to become at least a bright AGN. Given the long viscous times in the inner arcsecond, Sgr A* could actually continue to accrete this fuel now. However, it is well known that there is no geometrically thin and optically thick disc inside the inner arcsecond of Sgr A* (Falcke & Melia 1997; Narayan 2002; Cuadra et al. 2003). Eliminating the gaseous disc by star formation is not an option as there are not enough massive young stars observed there.

Taking all these constraints together, we believe that the most realistic scenario would be a GMC of the order of a few parsecs in size striking the CND at the distance of a few parsecs from Sgr A*. This scenario could perhaps explain the origin of the inner edge of the CND at $R \sim 2 \, \text{pc}$ if the refill time-scale is longer than the age of the young stars. Alternatively, such a cloud could self-collide if the impact parameter with respect to Sgr A* is small enough, but the cloud needs to be very structured, e.g. essentially consist of several smaller clouds or filaments.

8 Conclusions

In this paper we presented several simulations of cloud-cloud collisions aimed at reproducing gas flows that could have formed gaseous disc(s) in the central parsec of our Galaxy, as well as the resulting star formation. We found the gas cooling time and the impact parameter of the collision to influence the outcome significantly. Nevertheless, there are several robust results: (a) the inner near-circular and outer eccentric orbital structure of the stars formed there; (b) a sharply peaked mass distribution of stars $\Sigma_* (R) \sim 1/R^2$; (c) that the gaseous and stellar discs are warped. These results are in good accordance with the observations. The breakdown of the stellar system into one or more components is sensitive to the initial conditions and also the cooling parameter.

It appears that a GMC with a size of one to a few parsecs, self-colliding on a nearly radial orbit, or striking the CND at the distance of a few parsecs from Sgr A* could explain the known observational data satisfactorily. Future observations and modelling might put interesting upper limits on the time-scale over which the massive stars formed in the GC, and detail the structure and orbit of such a GMC.

Acknowledgments

We acknowledge useful discussions with Peter Cossins, Giuseppe Lodato and Yuri Levin, and we thank the referee for their comments on the draft.

References

Alexander R. D., Begelman M. C., Armitage P. J., 2007, ApJ, 654, 907
Alexander R. D., Armitage P. J., Cuadra J., 2008, MNRAS, 389, 1655
Bagnanoff F. K. et al., 2003, ApJ, 591, 891
Bate M. R., Bonnell I. A., Price N. M., 1995, MNRAS, 277, 362
Bonnell I. A., Rice W. K. M., 2008, Sci, 321, 1060
Collin S., Zahn J., 1999, A&A, 344, 433
Cuadra J., Nayakshin S., Sunyaev R., 2003, A&A, 411, 405
Cuadra J., Armitage P. J., Alexander R. D., 2008, MNRAS, 388, L64

© 2009 The Authors. Journal compilation © 2009 RAS, MNRAS 394, 191–206
would again be K. The clouds’ optical depth to such radiation is of the order of $t \sim a$ few tens of g cm$^{-2}$, the latter being chosen parameters for the initial conditions, the clouds are Compton thick, i.e. $\Sigma \sim$ a few tens of g cm$^{-2}$. The shock would emit soft X-rays through Bremsstrahlung, which would have an absorption opacity much higher than that of the Thompson opacity, i.e. $k_T = 0.4$ cm2 g$^{-1}$. These X-rays would therefore be completely absorbed within the colliding clouds. This would not lead to a significant increase in the cooling time, however, as the absorbed X-rays would be re-emitted as thermalized blackbody emission at the effective temperature of the radiation. The latter is estimated to be around 10^3 K. The clouds’ optical depth to such radiation is of the order of a few tens, meaning that the clouds would still be able to cool effectively via blackbody emission. The cooling time for the cloud in its entirety would therefore remain short (using the Stefan–Boltzmann law for radiative emission, t_{cool} would again be \sim three orders of magnitude shorter than t_{dyn}).

However, as was pointed out to us by Yuri Levin, these considerations completely neglect magnetic fields that are most likely present in the pre-collision clouds. If the radiative cooling time is short, then the shock is essentially isothermal, and we can expect the gas to be compressed in the shock by a few orders of magnitude for our typical conditions. A frozen-in magnetic field would then be amplified by similar factors, and magnetic pressure by four to six orders of magnitude. The strongly increased magnetic pressure might prevent another form of energy and pressure support against gravitational collapse. If magnetic flux is then removed from the cloud by magnetic buoyancy instability, this happens on time-scales longer than dynamical, effectively implying large values of β.

Summarizing, a realistic value of β during the initial cloud–cloud collision would be very small if magnetic fields are not important, or large if strong field amplification occurs due to the shock.

This paper has been typeset from a TeX/LaTeX file prepared by the author.