Irregular adaxial-abaxial polarity rearrangement contributes to the monosymmetric-to-asymmetric transformation of *Canna indica* stamen

Xueyi Tian¹², Xiaorong Li², Qianxia Yu¹, Haichan Zhao¹³, Juanjuan Song⁴ and Jingping Liao¹⁵*

¹ Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
² National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
³ Xinxing Vocational School of Traditional Chinese Medicine, Xinxing, Guangdong 527400, China
⁴ Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
⁵ Center of Conservation Biology/Economic Botany/Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China

* Corresponding author’s
e-mail address: liaojp@scbg.ac.cn
Abstract

In flowering plants, lateral organs including stamens develop according to the precise regulation of adaxial-abaxial polarity. However, the polarity establishment process is poorly understood in asymmetric stamens. *Canna indica* (Zingiberales: Cannaceae) is a common ornamental plant with an asymmetric stamen comprising a one-theca anther and a petaloid appendage. In this study, we depicted the monosymmetric-to-asymmetric morphogenesis of *C. indica* stamen, and the morphogenesis of the monosymmetric stamen of a sister species was used as a contrast. We chose a HD-ZIP III gene family member and a YABBY family member as the adaxial and abaxial polarity marker genes respectively and tested their expression using mRNA *in situ* hybridization. The expression patterns of the two genes changed dynamically and asymmetrically during the stamen development process. Compared with their homologs in *Arabidopsis thaliana*, these two genes exhibited some specific expression patterns. We hypothesize that the distinctive adaxial-abaxial polarity participates in the irregular morphogenesis of *C. indica* stamen, which mediates the putative stamen-to-petaloid staminode conversion in this species.

Keywords: *Canna indica*; Zingiberales; adaxial-abaxial polarity; petaloid stamen; floral asymmetry; stamen structure.
Introduction

In flowering plants, floral organs as well as other types of lateral organs are formed from the flanks of the meristems. Therefore, organ primordia have an adaxial side next to the meristem, and an abaxial one away from the meristem. When an adaxial-abaxial axis of polarity is established, it provides cues for proper structural patterning within the organ primordia (Bowman et al. 2002; Husbands et al. 2009). The morphological diversity of leaves partially relies on the differences in spatiotemporal regulation of adaxial-abaxial polarity (Fukushima and Hasebe 2014; Whitewoods et al. 2020). Adaxial and abaxial polarity identities are precisely regulated by two classes of genes in a mutually exclusive manner. In Arabidopsis thaliana (arabidopsis), ASYMMETRIC LEAVES1 (AS1) and AS2, class III homeodomain-leucine zipper (HD-ZIP III) family genes, are involved in promoting adaxial cell fate, while KANADIs (KANs), YABBYs (YABs), AUXIN RESPONSE FACTOR3/ETTIN (ARF3/ETT) and ARF4, and small RNAs, such as microRNA (miRNA) miR165 and miR166, specify abaxial identity (Siegfried et al. 1999; Kerstetter et al. 2001; McConnell et al. 2001; Semiarti et al. 2001; Kidner and Martienssen 2004; Pekker et al. 2005; Zhong and Ye 2007; Fukushima and Hasebe 2014).

In arabidopsis, the HD-ZIP III family genes, which include REVOLUTA (REV), PHABULOSA (PHB), PHAVOLUTA (PHV), CORONA (CNA), and ATHB8, are repressed by miR165/6 (McConnell et al. 2001; Emery et al. 2003; Williams et al. 2005). The gain-of-function mutant of PHB exhibits adaxialized leaves. In leaves and some other lateral organs, HD-ZIP III genes function antagonistically with the abaxial identity genes, such as the KANADI family members, which positively regulate the expression of the YABBY genes (Eshed et al. 2001; Bowman 2004; Wu et al. 2007; Zhong and Ye 2007; Liu et al. 2011; Yang et al. 2014). There are six YABBY family genes in arabidopsis: YAB1 or FILAMENTOUS FLOWER (FIL), YAB2 to YAB5, and CRABS CLAW (CRC), all of which exhibit a polar expression pattern and function to promote abaxial cell identity in one or more above-ground lateral organs (Sawa et al. 1999b; Siegfried et al. 1999). When YABBY genes are mutated, loss of normal polarity results in radialized leaves (Stahle et al. 2009; Sarojam et al. 2010). Besides arabidopsis, orthologous genes of FIL and PHB also show similar antagonistic expression patterns in other species such as Antirrhinum majus and Cabomba caroliniana (Golz et al. 2004; Yamada et al. 2011).

In contrast to flat organs such as leaves, the stamen development process undergoes substantial morphological changes. Correspondingly, the expression patterns of adaxial-
abaxial polarity marker genes also change dynamically in this process (Sessions et al. 1997; Toriba et al. 2010; Li et al. 2019). In the spherical stamen primordium of rice, the adaxial marker gene is initially expressed in the domain adjacent to the meristem, and the abaxial marker is expressed on the opposite side, as in the primordia of other lateral organs. When the theca primordium emerges, a new polarity is established, with the adaxial marker expressed in the two lateral domains of the stamen primordia where the stomium would form, while the abaxial marker is expressed in the inner side of the two thecae and the connective between them. When normal adaxial-abaxial polarity is disturbed, aberrant patterning of the stamens usually occurs. In the arabidopsis hyll mutant, up-regulated HD-ZIP III genes results in abnormalities in the two inner microsporangia; in kan and fil mutants, some stamens form radialized pin-like structures with all four microsporangia lost (Sawa et al. 1999 a; Eshed et al. 2001; Lian et al. 2013). In general, stamens are monosymmetric with the adaxial-abaxial axis as the axis of symmetry. However, asymmetrically patterned stamens exist in some mutants (Toriba et al. 2010; Li et al. 2019). In the rod-like lemma (rol) mutant of rice, three types of aberrant stamen develop. In the case of an intermediate defect, only half of the stamen primordia establishes adaxial-abaxial polarity to form one theca, which leads to the asymmetric pattern of the stamens (Toriba et al. 2010). Besides, natural asymmetric stamen can also be found in some species, such as Canna indica, a Zingiberales ornamental plant.

The Zingiberales comprises eight families, including Musaceae, Strelitziaceae, Heliconiaceae, Lowiaceae, Zingiberaceae, Costaceae, Marantaceae and Cannaceae (Tomlinson 1962; Dahlgren and Rasmussen 1983; Kress 1990; APG IV 2016). Many species in the Zingiberales are economic plants which are widely cultivated, including banana, ginger and C. indica (Bartlett and Specht 2010; Tian et al. 2016). In this order, not all the androecial members develop into fertile stamens due to the tapeloid, petaloid homeotic transformations, or total abortion of these organs. In banana families (Musaceae, Strelitziaceae, Lowiaceae, and Heliconiaceae), the number of fertile stamens is five or six, while in the other four families (the ginger families), the number reduces to one in the Costaceae and Zingiberaceae and one-half in the Marantaceae and Cannaceae. Flowers of C. indica (Cannaceae) comprise 3-4 (occasionally five) petaloid staminodes and a half-petaloid stamen. The stamen consists of a one-theca anther and an associated petaloid appendage and exhibits an asymmetric pattern (Kirchoff 1983; Rudall and Bateman 2004; Miao et al. 2014; Tian et al. 2018).

In our previous research, ectopic expression of PHB was shown to inhibit the development of microsporangium in the stamen of arabidopsis, whereas PHB normally promotes the formation of the internal boundary between inner and outer microsporangia.
within the anthers (Li et al. 2019). We have undertaken a preliminary analysis of the adaxial-abaxial polarity in the asymmetric stamen of *C. indica* (Tian et al. 2018), but the detailed structural patterning process of the asymmetric stamen which, significantly, controls the symmetry of the whole flower, is not well understood. In this study, we examined the adaxial-abaxial polarity throughout the stamen development process of *C. indica*, and used the monosymmetric stamens of *Alpinia galanga* (Zingiberaceae) and arabidopsis as necessary contrasts. The marker genes exhibited dynamic asymmetric expression patterns during the asymmetric development process of *C. indica* stamen. These results provide fundamental data for understanding the irregular stamen structural patterning of *C. indica*.

Materials and methods

Plant materials

For morphological studies, *C. indica* and *A. galanga* plants were grown in South China Botanical Garden (Guangzhou, China). For in situ hybridization, *C. indica* plants were grown in a growth chamber in the phytotron (22 °C with 16 h of light per d). The seeds of arabidopsis Landsberg erecta (Ler) were surface sterilized in 70% (v/v) ethanol for 1 min and then in 1% (v/v) NaOCl for 10 min. Then they were washed four times with sterile distilled water. The seeds were then placed on the surface of 1% (w/v) agar-solidified Murashige and Skoog medium. Plates were sealed with Parafilm, incubated at 4°C in darkness for 3 days, and moved to the growth chamber at 22 °C with a 16 h photoperiod.

Scanning electron microscopy (SEM)

Young inflorescences of *C. indica* and *A. galanga* with bracts and/or large sepals and petals removed were fixed in FAA (90 parts 70% ethyl alcohol : 5 parts glacial acetic acid : 5 parts 40% formaldehyde). The samples were dehydrated in an alcohol series (75, 85, 95, 100, and 100%) before transfer to isoamyl acetate. The samples were then critical point dried with CO₂, mounted on stubs, gold-coated in the JFC-1600 Auto Fine Coater (JEOL, Tokyo, Japan), and observed under a JSM-6360LV SEM (JEOL).
Light microscopy

C. indica flowers were fixed in FAA for 48 h, and then dehydrated for successive 30 min periods in 80%, 90%, 100%, and 100% ethanol before being embedded in paraffin. Transverse serial sections (7 μm) were cut using a microtome and mounted on slides. These sections were stained with Safranine T (50% ethanol) and fast green (95% ethanol). A Zeiss Axiophoto microscope equipped with a 5-megapixel QImaging digital camera was used to take photomicrographs.

In situ hybridization

7 μm thick sections of young inflorescences of *C. indica* (with the phyllary removed) and arabidopsis were prepared according to pretreatment and hybridization methods described previously (Brewer et al. 2006). Digoxigenin-labelled hybridization probes of *CiPHB1*, *CiFIL*, *AtPHB* and *AtFIL* were prepared by *in vitro* transcription following the manufacturer’s protocol. Gene information and primer pairs used are listed in Supporting Information—Table S1.

Results

Indirect stamen initiation from the meristem

In the flowers of *C. indica*, due to the differentiation of the androecium to fertile stamen and petaloid staminodes, there are five kinds of floral organs: sepals, petals, petaloid staminodes, stamen and carpels. Flat organs are the dominant type, including three sepals, three petals and 3-5 petaloid staminodes (Fig. 1). In the flower primordium, sepal primordia are initiated first, followed by three common primordia arranged in a ring (Fig. 2A). Androecium members and petals are initiated from the common primordia, rather than from the meristem directly. Initially, the first common primordia has an adaxial side and an abaxial side. When it has differentiated into a petal primordium and a stamen primordium, each of these two organ possesses an adaxial side and an abaxial side (Figs. 2B,C).

*Asymmetric development process of *C. indica* stamen*

The fertile stamen of *C. indica* comprises an anther and a petaloid appendage. During the differentiation process, these two structures experience significant morphological changes. In order to get a clear and comprehensive understanding of the pattern change process, we
compared the differentiation process of the *C. indica* stamen with the two-thecae stamen of *A. galanga* (Figs. 2D-I).

The stamen of *A. galanga* derives from a petal-stamen common primordium, just like that in *C. indica*. In each species, when the stamen primordium has separated from the petal primordium, there is a pair of symmetric growth centers within it (Figs. 2D,G). Later, the left-hand growth center (anther primordium) of *C. indica* as well as the two stamen growth centers of *A. galanga* keeps a round shape, while the right-hand one (petaloid appendage primordium) is slightly laterally elongated, forming an oval-shaped structure (Figs. 2E,H). As the primordial connective region forms on the abaxial side of the stamen primordium in *C. indica*, the anther primordium grows apparently larger than the petaloid appendage primordium. The petaloid appendage gradually turns flat, and becomes more and more different from the spherical anther (Fig. 2F). Thus, an asymmetric pattern is established in the *C. indica* stamen. At later developmental stages before anthesis, the margin of the petaloid appendage curves clockwise and constrains the style tightly to the pollen-releasing anther (Fig. 1B), thus facilitating the secondary pollen presentation on the flat style (Maasvand and Maas 2008). On the other hand, the two parts of the *A. galanga* stamen remain identical to each other, and eventually give rise to a monosymmetric two-thecae stamen (Fig. 2I).

In summary, in the two species, the stamens are both monosymmetric in the beginning, but end up as different structures with different symmetries. However, the anther primordium of *C. indica* develops in a similar manner to the left half of the *A. galanga* stamen, and the petaloid appendage experiences unique structural changes on the right-hand side of the stamen.

Antagonistic expression of CiPHB1 and CiFIL in floral organs

We used *CiPHB1* and *CiFIL* as the marker genes for adaxial and abaxial polarities respectively (Tian et al. 2018), and examined their expression patterns in developing flowers using *in situ* hybridization.

CiPHB1 was expressed in the center of the floral meristem and on the adaxial side of the sepal primordia (Fig. 3A). Later, *CiPHB1* transcripts were detected in different organs including petals, petaloid staminodes, stamen, carpels and pedicels (Figs. 3B-E; Tian et al. 2018). Expression was also observed in the developing vascular bundles (Figs. 3B,C,E; McConnell et al. 2001). While *CiFIL* was expressed in the abaxial sides of the sepals, petals
and petaloid staminode primordia (Figs. 3G-I), *CiFIL* transcripts were also detected in the ovary and the abaxial surface of the pedicels (Figs. 3J,K).

Compared with *CiFIL*, the polarized expression patterns of *CiPHB1* were less evident and persistent (Figs. 3B,H). However, they showed antagonistic expression in several domains. In sepal primordia, *CiPHB1* was expressed in the adaxial domains, while *CiFIL* was in the abaxial domains (Figs. 3A,G,H); *CiPHB1* signals were detected in the central region of the young flower where the carpel primordia would emerge later, while *CiFIL* signals were not (Figs 3B,H). These results verified the applicability of the two genes as adaxial and abaxial markers respectively.

Dynamic expression patterns of *CiPHB1* and *CiFIL* during stamen morphogenesis

After the regular organs, we examined the expression patterns of *CiPHB1* and *CiFIL* in the irregular shaped stamen. Before the separation of petal and stamen was completed, *CiPHB1* was expressed in the adaxial side of the stamen primordium, with the exception of the fore-end of the anther region (Fig. 4A). Meanwhile, *CiFIL* transcripts were detected at the fore-end of the anther primordium but not in the other parts, exhibiting a partially antagonistic expression pattern with *CiPHB1* (Fig. 4F). After that, the *CiPHB1* expression domain extended to the front edge of the anther primordium, separating the thecae primordium into two parts, and shrank in the petaloid appendage primordium (Fig. 4B). At the same stage, *CiFIL* transcripts disappeared from the anther primordium (Fig. 4G). When the stamen primordium had completely separated with the petal primordium and obtained a free abaxial side, *CiFIL* expression was observed at this region (Fig. 4H). Meanwhile, *CiPHB1* transcripts were found on the adaxial side of the connective region. In addition, as the anther primordium grew larger, the main expression domain of *CiPHB1* was confined in the middle of the anther fore-end, where the stomium would eventually form (Fig. 4C). As the signal of *CiPHB1* faded in the connective region (Fig. 4D), *CiFIL* transcripts lost their abaxial preference, and started to accumulate in the petaloid appendage primordium slightly (Tian et al. 2018). Eventually, *CiFIL* expression contracted to the margin of the petaloid appendage (Fig. 4I). When the expression of *CiPHB1* declined in the adaxial domains of the lateral organs, the transcripts were continuously detected in the vasculature (Figs. 4A-D).
Expression patterns of AtPHB and AtFIL in the stamen of Arabidopsis

The expression patterns of the adaxial and abaxial polarity genes in the stamen of Arabidopsis were also tested as contrasts. AtPHB and AtFIL, which are the homologs of CiPHB1 and CiFIL, were used as marker genes. As the expression patterns of these two genes have been reported before (Siegfried et al. 1999; Li et al. 2019), only some typical data is shown here. In the young stamen of Arabidopsis, when the four-microsporangia pattern was established, AtPHB expression in the anther was restricted in the stomium regions between the inner and outer microsporangia (Fig. 5A). Apart from there being two symmetric thecae, the location of AtPHB expression in the stomium region was similar to that in C. indica (Fig. 4D). However, at an earlier stage, when the four medial (long) stamens were emerging from the central meristem, AtFIL was expressed in the abaxial domains of the stamen primordia (Fig. 5B), in contrast to the expression pattern observed for CiFIL in C. indica.

Discussion

Petaloidy of androecial organs is a representative character in the flowers of C. indica as well as many other Zingiberales species, and it is also an important clue for analyzing the evolution of this order (Kress et al. 2001; Wake et al. 2011; Specht et al. 2012; Fu et al. 2014). Compared with the two-thecae stamen in the Zingiberaceae, half of the stamen is replaced by a petaloid appendage in the Cannaceae (Kirchoff 1991). In addition, irregular petaloidy in the androecium results in the asymmetric one-theca stamen, and provides good material for studying organ identity specification and floral structure patterning in the Zingiberales.

Distinctive expression patterns of CiPHB1 and CiFIL in C. indica stamen

In the stamens of rice and Arabidopsis, the expression patterns of adaxial-abaxial polarity marker genes change dynamically throughout the development process (Sessions et al. 1997; Toriba et al. 2010; Li et al. 2019). Similarly, CiPHB1 and CiFIL also exhibited dynamic expression patterns in the stamen of C. indica (Fig. 6A). However, as there is only one theca in the C. indica stamen, the exact change process is clearly different from that in rice and Arabidopsis. Besides, there are species-specific features that make the change process distinctive and rather complicated.

In the stamens of rice and Arabidopsis, the adaxial-abaxial polarity is initially established as in other lateral organs, which show monosymmetric patterns (Sessions et al. 1997; Toriba
et al. 2010; Li et al. 2019). Whereas, in the stamen of *C. indica* asymmetric expression patterns occur. As the stamen primordium differentiated from the petal primordium, *CiFIL* showed expression at the fore-end of the anther primordium (Figs. 4F, 6A). Although *CiPHB1* was antagonistically expressed on the adaxial side of the remainder of the stamen primordium, it is not appropriate to regard the expression of *CiFIL* here as abaxial-type. One reason for this is that the expression domain of *CiFIL* here was on the adaxial side of the anther, and another is that a similar expression domain was not symmetrically observed in the petaloid appendage. Perhaps besides specifying abaxial identity, *CiFIL* is involved in the initiation of sporogenesis. However, the exact function of *CiFIL* here is not known, and more detailed research is needed.

In arabidopsis, *AtFIL* was expressed in the abaxial domains of stamen primordia at the initiation stage (Fig. 5B; Siegfried et al. 1999). While in *C. indica*, as the stamen originates from a common primordium rather than from the central meristem directly, *CiFIL* did not show abaxial expression in the stamen until it separated with the petal and obtained a free abaxial side for itself (Figs. 4H, 6A). This kind of expression pattern contributes to the specificity of stamen polarity in *C. indica*. At later stages, the adaxial marker was mainly expressed in the region between the two protrusions of the theca, while the abaxial marker was expressed in the opposite petaloid appendage (Tian et al. 2018). With the significant expression changes of the adaxial-abaxial polarity genes, the asymmetry of the stamen becomes more and more evident.

Adaxial-abaxial polarity-related stamen morphogenesis in C. indica

The adaxial-abaxial polarity in the *C. indica* stamen that we observed has some similarities with other species. In the rol mutant of rice, the half-abaxialized stamen primordium develops to an asymmetric one-theca stamen (Toriba et al. 2010), to which the one-theca *C. indica* stamen shows a similar pattern in morphology and adaxial-abaxial polarity (Tian et al. 2018). In arabidopsis and rice, when the two thecae primordium emerge, the adaxial polarity shifts from the adaxial side to the two lateral sides of the stamen primordium (Toriba et al. 2010; Li et al. 2019). At the corresponding stages in *C. indica*, *CiPHB1* shows similar expression patterns to those in arabidopsis and rice (Fig. 6B). Proper expression of *AtPHB* between the inner and outer microsporangia is essential for the separation of the two microsporangia and the formation of the stomium regions in arabidopsis (Li et al. 2019). The
similar expression pattern of CiPHB1 in the one-theca anther of C. indica indicates that CiPHB1 may undertake the same function (Fig. 6B).

Recently, a model was proposed that accounts for the formation of cup-shaped leaf traps of Utricularia gibba (Lentibulariaceae) through shifts in adaxial-abaxial gene expression (Whitewoods et al. 2020). In this model, growth is oriented by adaxial-abaxial domains acting throughout the leaf rather than just at the epidermal boundary. Accordingly, besides the force from outer whorl organs, the inward curling of the petaloid appendage which “traps” the style, may also be positively regulated by the expression of adaxial-abaxial polarity genes in the middle part of the petaloid appendage (Fig. 6B).

To summarize, we revealed the irregular dynamic expression patterns of adaxial-abaxial polarity marker genes during the development process of the C. indica stamen. In general, the expression patterns of markers changed simultaneously with, if not earlier than, the corresponding morphological changes in the stamen, raising the possibility that CiPHB1 and CiFIL regulate stamen morphogenesis in C. indica.
Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The authors declare that there is no conflict of interest.

Contributions by the authors

Conceptualization, J.L.; methodology, X.T.; X.L. and H.Z.; formal analysis, X.T.; resources, Q.Y. and J.S.; writing—original draft preparation, X.T.; writing—review and editing, X.L.; Q.Y. and J.L.; supervision, J.L.; funding acquisition, J.L. and X.T.. All authors have read and agreed to the published version of the manuscript.

Acknowledgments

We thank Prof. Yuke He (SIPPE) for the help in research designing and experiment conducting.

Sources of Funding

This work was supported by the National Science and Technology Infrastructure Program of China [grant number 2015FY210100] (J.L.); Guangdong Basic and Applied Basic Research Foundation [grant number 2019A1515110029] (X.T.) and South China Botanical Garden-Shanghai Institute of Plant Physiology & Ecology Joint Fund (J.L.).
Literature Cited

APG IV. 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. *Botanical Journal of the Linnean Society* 181:105-121.

Bartlett ME, Specht CD. 2010. Evidence for the involvement of GLOBOSA-like gene duplications and expression divergence in the evolution of floral morphology in the Zingiberales. *New Phytologist* 187:521-541.

Bowman JL. 2004. Class III HD-Zip gene regulation, the golden fleece of ARGONAUTE activity? *Bioessays* 26:938-942.

Bowman JL, Eshed Y, Baum SF. 2002. Establishment of polarity in angiosperm lateral organs. *TRENDS in Genetics* 18:134-141.

Brewer PB, Heisler MG, Hejátko J, Friml J, Benková E. 2006. In situ hybridization for mRNA detection in *Arabidopsis* tissue sections. *Nature Protocol* 1:1462-1467.

Dahlgren R, Rasmussen FN. 1983. Monocotyledon evolution: characters and phylogenetic estimation. *Evolutionary Biology* 16:255-395.

Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, Izhaki A, Baum SF, Bowman JL. 2003. Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. *Current Biology* 13:1768-1774.

Eshed Y, Baum SF, Perea JV, Bowman JL. 2001. Establishment of polarity in lateral organs of plants. *Current Biology* 11:1251-1260.

Fu Q, Liu H, Almeida AMR, Kuang Y, Zou P, Liao J. 2014. Molecular basis of floral petaloidy: insights from androecia of *Canna indica*. *Aob Plants* 6:plu015.

Fukushima K, Hasebe M. 2014. Adaxial–abaxial polarity: The developmental basis of leaf shape diversity. *genesis* 52:1-18.

Golz JF, Roccaro M, Kuzoff R, Hudson A. 2004. GRAMINIFOLIA promotes growth and polarity of *Antirrhinum* leaves. *Development* 131:3661-3670.

Husbands AY, Chitwood DH, Plavskin Y, Timmermans MC. 2009. Signals and prepatterns: new insights into organ polarity in plants. *Genes & Development* 23:1986-1997.

Kerstetter RA, Bollman K, Taylor RA, Bomblies K, Poethig RS. 2001. KANADI regulates organ polarity in *Arabidopsis*. *Nature* 411:706-709.

Kidner CA, Martienssen RA. 2004. Spatially restricted microRNA directs leaf polarity through ARGONAUTE1. *Nature* 428:81-84.

Kirchoff BK. 1983. Floral organogenesis in five genera of the Marantaceae and in *Canna*
(Cannaceae). *American Journal of Botany* 70:508-523.

Kirchoff BK. 1991. Homeosis in the Flowers of the Zingiberales. *American Journal of Botany* 78:833-837.

Kress WJ. 1990. The phylogeny and classification of the Zingiberales. *Annals of the Missouri Botanical Garden* 77:698-721.

Kress WJ, Prince LM, Hahn WJ, Zimmer EA. 2001. Unraveling the evolutionary radiation of the families of the Zingiberales using morphological and molecular evidence. *Systematic Biology* 50:926-944.

Li X, Lian H, Zhao Q, He Y. 2019. MicroRNA166 monitors SPOROCYTELESS/NOZZLE for building of the anther internal boundary. *Plant Physiology* 181:208-220.

Lian H, Li X, Liu Z, He Y. 2013. HYL1 is required for establishment of stamen architecture with four microsporangia in *Arabidopsis*. *J Exp Bot* 64:3397-3410.

Liu Z, Jia L, Wang H, He Y. 2011. HYL1 regulates the balance between adaxial and abaxial identity for leaf flattening via miRNA-mediated pathways. *Journal of Experimental Botany* 62:4367-4381.

Maasvand K, H, Maas PJM. 2008. The Cannaceae of the world. *Blumea Journal of Plant Taxonomy & Plant Geography* 53:247-318.

McConnell JR, Emery J, Eshed Y, Bao N, Bowman J, Barton MK. 2001. Role of PHABULOSA and PHAVALUTA in determining radial patterning in shoots. *Nature* 411:709-713.

Miao MZ, Liu HF, Kuang YF, Zou P, Liao JP. 2014. Floral vasculature and ontogeny in *Canna indica*. *Nordic Journal of Botany* 32:485-492.

Pekker I, Alvarez JP, Eshed Y. 2005. Auxin response factors mediate *Arabidopsis* organ asymmetry via modulation of KANADI activity. *Plant Cell* 17:2899-2910.

Rudall PJ, Bateman RM. 2004. Evolution of zygomorphy in monocot flowers: iterative patterns and developmental constraints. *New Phytologist* 162:25-44.

Sarojam R, Sappl PG, Goldshmidt A, Efroni I, Floyd SK, Eshed Y, Bowman JL. 2010. Differentiating Arabidopsis Shoots from Leaves by Combined YABBY Activities. *Plant Cell* 22:2113-2130.

Sawa S, Ito T, Shimura Y, Okada K. 1999 *a*. FILAMENTOUS FLOWER controls the formation and development of *Arabidopsis* inflorescences and floral meristems. *Plant Cell* 11:69-86.

Sawa S, Watanabe K, Goto K, Kanaya E, Morita EH, Okada K. 1999 *b*. FILAMENTOUS FLOWER, a meristem and organ identity gene of *Arabidopsis*, encodes a protein with a
zinc finger and HMG-related domains. *Genes & Development* 13:1079-1088.

Semiarti E, Ueno Y, Tsukaya H, Iwakawa H, Machida C, Machida Y. 2001. The *ASYMMETRIC LEAVES2* gene of *Arabidopsis thaliana* regulates formation of a symmetric lamina, establishment of venation and repression of meristem-related homeobox genes in leaves. *Development* 128:1771-1783.

Sessions A, Nemhauser JL, Mccoll A, Roe JL, Feldmann KA, Zambrski PC. 1997. ETTIN patterns the Arabidopsis floral meristem and reproductive organs. *Development* 124:4481-4491.

Siegfried KR, Eshed Y, Baum SF, Otsuga D, Drews GN, Bowman JL. 1999. Members of the *YABBY* gene family specify abaxial cell fate in *Arabidopsis*. *Development* 126:4117-4128.

Specht CD, Yockteng R, Almeida AM, Kirchoff BK, Kress WJ. 2012. Homoplasy, pollination, and emerging complexity during the evolution of floral development in the tropical gingers (Zingiberales). *Botanical Review* 78:440-462.

Stahle MI, Kuehlich J, Staron L, von Arnim AG, Golz JF. 2009. YABBYs and the transcriptional corepressors LEUNIG and LEUNIG HOMOLOG maintain leaf polarity and meristem activity in *Arabidopsis*. *Plant Cell* 21:3105-3118.

Tian X, Yu Q, Liu H, Liao J. 2016. Temporal-spatial transcriptome analyses provide insights into the development of petaloid androecium in *Canna indica*. *Frontiers in Plant Science* 7:1-11.

Tian X, Zou P, Miao M, Ning Z, Liao J. 2018. RNA-Seq analysis reveals the distinctive adaxial–abaxial polarity in the asymmetric one-theca stamen of *Canna indica*. *Molecular Genetics and Genomics* 293:391-400.

Tomlinson PB. 1962. Phylogeny of the Scitamineae-morphological and anatomical considerations. *Evolution* 16:192-213.

Toriba T, Suzuki T, Yamaguchi T, Ohmori Y, Tsukaya H, Hirano H-Y. 2010. Distinct regulation of adaxial-abaxial polarity in anther patterning in rice. *Plant Cell* 22:1452-1462.

Wake DB, Wake MH, Specht CD. 2011. Homoplasy: from detecting pattern to determining process and mechanism of evolution. *Science* 331:1032-1035.

Whitewoods CD, Gonçalves B, Cheng J, Cui M, Kennaway R, Lee K, Bushell C, Yu M, Piao C, Coen E. 2020. Evolution of carnivorous traps from planar leaves through simple shifts in gene expression. *Science* 367:91-96.

Williams L, Grigg SP, Xie M, Christensen S, Fletcher JC. 2005. Regulation of *Arabidopsis* shoot apical meristem and lateral organ formation by microRNA *miR166g* and its *AtHD-ZIP* target genes. *Development* 132:3657-3668.
Wu F, Yu L, Cao W, Mao Y, Liu Z, He Y. 2007. The N-Terminal Double-Stranded RNA Binding Domains of Arabidopsis HYPONASTIC LEAVES1 Are Sufficient for Pre-MicroRNA Processing. *the plant cell* 19:914-925.

Yamada T, Yokota Sy, Hirayama Y, Imaichi R, Kato M, Gasser CS. 2011. Ancestral expression patterns and evolutionary diversification of YABBY genes in angiosperms. *plant journal* 67:26-36.

Yang X, Ren W, Zhao Q, Zhang P, Wu F, He Y. 2014. Homodimerization of HYL1 ensures the correct selection of cleavage sites in primary miRNA. *nucleic acids research* 42:12224-12236.

Zhong R, Ye ZH. 2007. Regulation of HD-ZIP III Genes by MicroRNA 165. *Plant Signaling & Behavior* 2:351-353.
Figure legends

Fig. 1. Flower traits of *C. indica*. (A) A young flower at floral organ initiation stage. Arrowheads indicate the organs of outer androecial whorl. (B) Transverse section of an older flower. (C) A flower at anthesis. (D) Dissected floral organs of a mature flower. S: sepal; P: petal; PS: petaloid staminode; L: labellum; St: stamen; A: anther; PA: petaloid appendage; C: carpel; Sty: style. Bars = 100μm in (A,B) and 5mm in (C,D).

Fig. 2. Stamen development processes of *C. indica* and *A. galanga*. (A-C) Stamen initiation process and the corresponding adaxial-abaxial pattern changes of *C. indica*. (D-F) Asymmetric stamen development process of *C. indica*. (G-I) Monosymmetric stamen development process of *A. galanga*. The dashed circles indicate the preliminary morphological difference between anther and petaloid appendage in *C. indica* (B) and the same round shapes of the two growth centers in *A. galanga* (H). P: petal; A: anther; PA: petaloid appendage; co: connective. Bars = 50μm.

Fig. 3. Expressions of *CiPHB1* and *CiFIL* during flower development. (A-E) Expressions of *CiPHB1* in petals, stamen, labellum (A-C), ovary (D) and pedicel (E). (G-K) Expressions of *CiFIL* in sepals, petals, stamen, labellum (G-I), ovary (J) and pedicel (K). (F,L) Sections with sense probes of *CiPHB1* (F) and *CiFIL* (L) as negative controls. Arrows in (D) indicate the expression of *CiPHB1* in the ovary. Red arrowheads in (B,H) indicate the central floral region where carpel primordia would be initiated later. Sections in (E,J,K) are transverse and all the others are longitudinal. M: meristem; S: sepal; P: petal; St: stamen; L: labellum; A: anther; PA: petaloid appendage; O: ovary. Bars = 100μm.

Fig. 4. Temporal-spatial expression of adaxial and abaxial marker genes in the stamens of *C. indica*. (A-D) Expressions of *CiPHB1* during stamen development process in *C. indica*. (F-I) Expressions of *CiFIL* during stamen development process in *C. indica*. (E,J) Sections with sense probes of *CiPHB1* (E) and *CiFIL* (J) as negative controls.. Arrows in (A) and (G) indicate the adaxial and abaxial expression of *CiPHB1* and *CiFIL* in floral organs respectively. Arrows in (C,D) indicate the *CiPHB1* expression in the stomium region between the two anther locules (microsporangium). Black arrowheads in (A) and (F) indicate the fore-end of anther.
primordium. Red arrowheads in (A-D) indicate the expression of CiPHB1 in vascular bundles. All the sections are transverse. A: anther; PA: petaloid appendage; S: sepal; P: petal; PS: petaloid staminode; L: labellum; C: carpel; co: connective. Bars = 100µm.

Fig. 5. Expressions of adaxial and abaxial marker genes in the stamens of arabidopsis. (A) Expression of AtPHB in the anther of arabidopsis. (B) Expression of AtFIL at stamen initiation stage in the flower of arabidopsis. The expression domains are indicated with arrows. Ms: microsporangium; M: meristem; St: stamen. Bars in (B,C) = 20µm.

Fig. 6. Models for structural patterning in *C. indica* stamen. (A) Summary for adaxial-abaxial polarity establishment during stamen development of *C. indica*. (B) Stamen structural patterning of arabidopsis and *C. indica*. Double headed arrows indicate the separation of two microsporangia by AtPHB or CiPHB1 expression. The expression of CiPHB1 and CiFIL in the middle region of the petaloid appendage possibly promote the inward curling of this structure, which enwraps the style at later stages. The gene expression is earlier than the structural curling, yet they are combined in one presentation for simplicity. A: anther; PA: petaloid appendage; Sty: style.
Figure 2

Canna indica

Alpinia galanga

Adaxial abaxial
