ORNSTEIN-UHLENBECK PROCESSES ON LIE GROUPS

FABRICE BAUDOIN, MARTIN HAIRER, JOSEF TEICHMANN

ABSTRACT. We consider Ornstein-Uhlenbeck processes (OU-processes) related to hypoelliptic diffusion on finite-dimensional Lie groups: let L be a hypoelliptic, right invariant “sum of the squares”-operator on a Lie group G with associated Markov process X, then we construct OU-type processes by adding horizontal gradient drifts of functions U. In the natural case $U = -\log p(1, x)$, where $p(1, x)$ is the density of the law of the X_1 starting at the identity e with respect to the left-invariant Haar measure on G, we show the Poincaré inequality by applying the Driver-Melcher inequality for “sum of the squares” operators on Lie groups.

The Markov process associated to $-\log p(1, x)$ is called the OU-process related to the given hypoelliptic diffusion on G. We prove the global strong existence of this OU-process on G. The Poincaré inequality for a large class of potentials U is then shown by perturbation methods and used to obtain a hypoelliptic equivalent of the standard result on cooling schedules for simulated annealing. The relation between local results on L and global results for the constructed OU-process is widely used in this study.

1. Preparations from functional analysis

We consider a finite-dimensional Lie group G with Lie algebra \mathfrak{g}, its right-invariant Haar measure μ and a family of left-invariant vector fields $V_1, \ldots, V_d \in \mathfrak{g}$. We assume that Hörmander’s condition holds, i.e. the sub-algebra generated by V_1, \ldots, V_d coincides with \mathfrak{g}.

We consider furthermore a stochastic basis (Ω, \mathcal{F}, P) with a d-dimensional Brownian motion B and the Lie group valued process

$$dX^x_t = \sum_{i=1}^d V_i(X^x_t) \circ dB^i_t, \quad x \in G.$$ (1.1)

The generator of this process is denoted by L and we have

$$L = \frac{1}{2} \sum_{i=1}^d V_i^2,$$

where we interpret the vector fields as first order differential operators on $C^\infty(G, \mathbb{R})$. Furthermore, we define a semigroup P_t acting on bounded measurable functions $f : G \to \mathbb{R}$ by

$$P_t f(x) = \mathbb{E}(f(X^x_t)).$$

This semigroup can be extended to a strongly continuous semigroup on $L^2(G, \mu)$, which we will denote by the same letter P_t. The carré du champ operator Γ is defined for functions f, where it makes sense, by

$$\Gamma(f, g) = L(fg) - fLg - gLf.$$

(1.2)
In our particular case, we obtain immediately

$$\Gamma(f, f) = \sum_{i=1}^{d} (V_i f)^2 .$$

Notice that the carré du champ operator does not change if we add a drift to the generator L.

Due to the right invariance of the Haar measure μ and the left-invariance of the vector fields V_i, the operator L is symmetric (reversible) with respect to μ and therefore μ is an infinitesimal invariant measure in the sense that $\int L f(x) \mu(dx) = 0$ for all smooth compactly supported functions f. Furthermore, due to the symmetry of L and the invariance of μ, we have from (1.2) the relation

$$2 \int f L g \mu = - \int \Gamma(f, g) \mu$$

(1.3) for all $f, g \in C_0^\infty(G)$.

Let now $U : G \to \mathbb{R}$ be an arbitrary smooth function such that

$$\int_G \exp(-U(x)) \mu(dx) < \infty ,$$

and consider the modified generator

$$L^U := L - \frac{1}{2} \Gamma(U, \cdot) .$$

Notice that $\mu^U = \exp(-U)\mu$ is an invariant (finite) measure for L^U, since, by (1.3),

$$\int L^U f \mu^U = \int (L f) \exp(-U) \mu - \frac{1}{2} \int \Gamma(U, f) \exp(-U) \mu$$

$$= -\frac{1}{2} \int \Gamma(f, \exp(-U)) \mu - \frac{1}{2} \int \Gamma(f, U) \exp(-U) \mu = 0 .$$

Here, the last step uses the fact that $\Gamma(f, \cdot)$ is a derivation.

We have the following observation on the existence of a spectral gap at 0:

Proposition 1.1. The operator L^U has a spectral gap at 0 of size $a > 0$ if and only if

$$\int_G \Gamma(f, f)(x) \mu^U(dx) \geq 2a \int_G f(x)^2 \mu^U(dx) ,$$

for all compactly supported smooth functions f on G satisfying

$$\int_G f(x) \mu^U(dx) = 0 .$$

Proof. L^U has a spectral gap of size $a > 0$ at 0 if

$$\int_G f(x) L^U f(x) \mu^U(dx) \leq -a \int_G f(x)^2 \mu^U(dx)$$

for test functions with $\int_G f(x) \mu^U(dx) = 0$. Now, by construction, the integral on the left hand side can be partially integrated, hence

$$-\frac{1}{2} \int_G \Gamma(f, f)(x) \mu^U(dx) \leq -a \int_G f(x)^2 \mu^U(dx)$$

for any test function satisfying the integral constraint. This proves the desired inequality. \qed
Remark 1.2. Assume that there is a spectral gap. Then the largest $a > 0$ in the previous inequality is the modulus of the smallest non-zero spectral value of L^U.

Remark 1.3. If we want to write an inequality for all test functions f, it reads like

$$\int_G \Gamma(f,f)(x)\mu^U(dx) \geq 2a\left(\int_G f(x)^2\mu^U(dx) \int_G \mu^U(dx) - \left(\int_G f(x)\mu^U(dx)\right)^2\right)$$

for all test functions $f \in C^\infty_0(G)$.

2. Strong existence of OU-processes with values in Lie groups

We consider now the special case where we take as our 'potential' $W_t(x) = -\log p(t,x)$, $t > 0$, where $p(t,x)$ is the density of the law of X_t with respect to μ. By Hörmander’s Theorem [Hör67, Hör07], the function $(t,x) \mapsto p(t,x)$ is a positive and smooth function, hence the potential W_t is as in the previous section. We write for short L_t instead of $L^U_{W_t}$ and we call the associated Markov process the **OU-process on G**. We show that we have in fact global strong solutions for the corresponding Stratonovich SDE with values in G. The next proposition is slightly more general.

Proposition 2.1. Consider a smooth potential $U : G \to \mathbb{R}$ such that

$$\int \exp(-U(x))\mu(dx) < \infty.$$

Consider the following Stratonovich SDE with values in G:

$$dY^y_t = V_0(Y^y_t)dt + \sum_{i=1}^d V_i(Y^y_t) \circ dB^i_t, \quad Y^y_0 = y \in G,$$

where $V_0f = -\frac{1}{2}\Gamma(U,f)$ for smooth test functions f. Then there is a global strong solution to (2.1) for all initial values $y \in G$.

Proof. Since the coefficients defining (2.1) are smooth by assumption, there exists a unique strong solution up to the explosion time

$$\zeta_y = \inf\{t : \lim_{\tau \to t} Y^y_\tau = \infty\}.$$

We then define a semigroup P_t on $L^2(G,\mu^U)$ by

$$(P_t f)(y) = \mathbb{E}\{f(Y^y_t) 1_{\zeta_t < \infty}\}.$$

(2.2)

It can be shown in the exact same way as in [Che73, Li92] that P_t is a strongly continuous contraction semigroup and that its generator A coincides with L^U on the set $C^\infty_0(G)$ of compactly supported smooth functions.

On the other hand, setting $D(L^U) = C^\infty_0(G)$, one can show as in [Che73, Li92] that L^U is essentially self-adjoint, so that one must have $A = L^U = (L^U)^*$. In particular, since the constant function 1 belongs to $L^2(G,\mu^U)$ by the integrability of $\exp(-U)$ and since $\int (L^U \psi)(x)\mu^U(dx) = 0$ for any test function $\psi \in C^\infty_0(G)$, 1 belongs to the domain of $(L^U)^*$ and therefore also to the domain of A. This then implies that $P_t 1 = 1$ by the same argument as in [Li92]. In particular, coming back to the definition (2.2) of P_t, we see that $P(\zeta_y = \infty) = 1$ for every y, which is precisely the non-explosion result that we were looking for.

□
Remark 2.2. While this argument shows that, given a fixed initial condition y, there exists a unique global strong solution Y^y_t to (2.1), it does not prevent more subtle kinds of explosions, see for example [Elw78].

By Proposition 2.1 and since $p(t,x)$ is smooth and integrable, it follows immediately that the OU-process exists globally in a strong sense.

Corollary 2.3. For any given $\tau > 0$, the process

$$dY^y_t = V_0(Y^y_t)dt + \sum_{i=1}^{d} V_i(Y^y_t) \circ dB^i_t, \quad Y^y_0 = y \in G,$$

with $V_0f = -\frac{1}{2} \Gamma(W_t, f)$ has a global strong solution.

Remark 2.4. More traditional Lyapunov-function based techniques seem to be highly non-trivial to apply to this situation, due to the lack of information on the behaviour of $U(y)$ at large y. In view of [BA88, Léa87b, Léa87a], it is tempting to conjecture that one has the asymptotic

$$\lim_{t \to 0} t^2 \log \partial_t p(t,y) = -d^2(e,y), \quad (2.3)$$

and that the limit holds uniformly over compact sets K that do not contain the origin e. (Note that it follows from [BA88] that this is true provided that K does not intersect the cut-locus.) If it were the case that (2.3) holds, the space-time scaling properties of $p(t,x)$ would imply that, for every $t > 0$, there exists a compact set K such that $Lp(t,x) = \partial_t p(t,x) > 0$ for $x \notin K$. On the other hand, one has

$$\mathcal{L}^t W_t = -\frac{1}{2} \Gamma(W_t, W_t) + \mathcal{L} W_t = -\frac{Lp(t,\cdot)}{p(t,\cdot)},$$

so that this would imply that W_t is a Lyapunov function for the corresponding OU-process.

3. Spectral Gaps for OU-processes

Next we consider the question if \mathcal{L}^t admits a spectral gap, which turns out to be a consequence of the Driver-Melcher inequality.

Theorem 3.1. The following assertions are equivalent:

- The operator \mathcal{L}^t has a spectral gap of size $a_t \geq 0$ for $t > 0$ and a positive H^1-function $a : \mathbb{R}_{>0} \to \mathbb{R}_{>0}$.

- The local estimate

$$P_t(\Gamma(f, f))(g) \geq 2a_t(\langle P_t f \rangle^2(g) - \langle (P_t f) \rangle^2)$$

holds true for all test functions $f : G \to \mathbb{R}$, $t > 0$ and a positive H^1-function $a : \mathbb{R}_{>0} \to \mathbb{R}_{>0}$ at one (and therefore all) point $g \in G$.

Furthermore, if we know that

$$\Gamma(P_t f, P_t f)(e) \leq \varphi(t) P_t(\Gamma(f, f))(e)$$

holds true for all test functions $f \in C_0^\infty(G)$, all $t \geq 0$, and a strictly positive locally integrable function $\varphi : \mathbb{R}_{>0} \to \mathbb{R}_{>0}$, then we can choose a_t by

$$a_t \int_0^t \varphi(t-s)ds = \frac{1}{2},$$

for $t > 0$ and the two equivalent assertions hold true.
Proof. Since μ^W_t is equal to the law of X_t^e, one has $\int f \mu^W_t = P_t f(e)$ for every $f \in C_0^\infty(G)$. The equivalence of the first two statements then follows from (1.4) and the fact that the translation invariance of (1.1) implies that if the bound holds at some g, it must hold for all $g \in G$. We fix a test function $f : G \to \mathbb{R}$ as well as $t > 0$ and consider

$$H(s) = P_s((P_{t-s}f)^2)$$

for $0 \leq s \leq t$. The derivative of this function equals

$$H'(s) = P_s(\Gamma(P_{t-s}f, P_{t-s}f))$$

and therefore – assuming the third statement – we obtain

$$H'(s) \leq \varphi(t-s)P_t(\Gamma(f, f)).$$

Whence we can conclude

$$H(t) - H(0) \leq \int_0^t \varphi(t-s)ds P_t(\Gamma(f, f)),$$

which is the second of the two equivalent assertions for an appropriately chosen a. □

Remark 3.2. We can replace the Lie group G by a general manifold M, on which we are given a hypo-elliptic, reversible diffusion X with “sum of the squares” generator L. Then the completely analogous statement holds on M, in particular local Poincaré inequalities on M for L lead to a spectral gap for the OU-type process L^t with $t > 0$.

Corollary 3.3. Let G be a free, nilpotent Lie group with d generators e_1, \ldots, e_d and denote by X the canonical diffusion process on G, i.e.

$$dX_t = \sum_{i=1}^d X_t e_i \circ dB_t^i.$$

Then the operator L^t has a spectral gap of size $a_t = \frac{1}{2Kt}$ for some constant $K > 0$.

Proof. Due to the very interesting thesis [DM07], there is a constant K such that the bound

$$\Gamma(P_t f, P_t f)(e) \leq K P_t(\Gamma(f, f))(e)$$

holds true for all test functions $f \in C_0^\infty(G)$ and for all times $t \geq 0$. Furthermore, due to the scaling properties of P_t, there exists a best constant K such that this bound is sharp for all $t \geq 0$. This shows that $a_t Kt = \frac{1}{2}$, due to the assertions of Theorem 3.1. □

3.1. Generalisation to homogeneous spaces. Consider now M a homogeneous space with respect to the Lie group G, i.e. we have a (right) transitive action $\hat{\pi} : G \times M \to M$ of G on M. We assume that there exists a measure μ^M on M which is invariant with respect to this action. We also assume that we are given a family V_1, \ldots, V_d of left-invariant vector fields on G that generate its entire Lie algebra \mathfrak{g} as before. These vector fields induce vector fields V_i^M on M by means of the action $\hat{\pi}$.

By choosing an ‘origin’ $o \in M$, we obtain a surjection $\pi : G \to M$ by $\pi(g) = \hat{\pi}(g, o)$. Due to the invariance of μ^M with respect to the action $\hat{\pi}$, the vector fields V^M_i are anti-symmetric operators on $L^2(\mu^M)$ and the generator
\[L^M = \frac{1}{2} \sum_{i=1}^{d} (V^M_i)^2 \]
is consequently symmetric on $L^2(\mu^M)$. In particular we have
\[(V^M_i f) \circ \pi = V_i (f \circ \pi) \]
for $i = 1, \ldots, d$. The local Driver-Melcher inequality on G translates to the same inequality on M by means of
\[P^M_t(f) \circ \pi = P_t(f \circ \pi) \]
for test functions $f : M \to \mathbb{R}$, hence we obtain the corresponding Driver-Melcher inequality on M.

4. A SIMPLE RESULT ON SIMULATED ANNEALING

For applications to simulated annealing, our main tool will be the following simple Theorem:

Theorem 4.1. Let $U : G \to \mathbb{R}$ be a potential U with
\[|U + \log p(\varepsilon, \cdot)| \leq D \varepsilon \]
for some $\varepsilon > 0$ and some constant $D > 0$. Assume furthermore that a Poincaré inequality holds for L^2, i.e.
\[P_\varepsilon(f^2)(e) \leq K_\varepsilon P_\varepsilon(\Gamma(f, f))(e) \]
for test functions $f \in C_0^\infty(G)$ with $P_\varepsilon f(e) = 0$ and some constant $K > 0$. Then one has $\exp(-U) \in L^1(\mu(dx))$ and the Poincaré inequality
\[\int f^2(x) \exp(-U(x)) \mu(dx) \leq C \int \Gamma(f, f)(x) \exp(-U(x)) \mu(dx) \]
holds for all test functions $f \in C_0^\infty(G)$ with $\int f(x) \exp(-U(x)) \mu(dx) = 0$ and some constant $C = K_\varepsilon \exp(2D \varepsilon) > 0$. In particular, this leads to a spectral gap of size at least $\frac{1}{C_\varepsilon}$ for L^U.

Proof. It follows immediately from the inequality
\[p(\varepsilon, x) = \exp(-U(x)) \exp(U(x)) p(\varepsilon, x) \geq \exp(-D) \exp(-U(x)) \]
that $\exp(-U) \in L^1(\mu)$. Furthermore,
\[\exp(-U(x)) = \frac{1}{p(\varepsilon, x) \exp(U(x))} p(\varepsilon, x) \geq \exp(-D) p(\varepsilon, x) \]
for all $x \in G$ by assumption. Hence we deduce (4.2) with $C_\varepsilon = K_\varepsilon \exp(2D \varepsilon)$ from (4.1).

Remark 4.2. See [BLW07] for results on unbounded perturbations, where one can hope for similar conclusions.
Throughout the remainder of this section we assume that M is a nilmanifold, that is a homogeneous space with respect to a nilpotent Lie group G. We consider the same structures as in Section 3.1 on M, but we omit the index M in the vector fields and measures in order to improve readability. We shall furthermore assume that M satisfies the following global estimate:

Assumption 4.3. There is a constant $	ilde{D}$ such that

$$|d(x_0, x)^2 + t \log p(t, x_0, x)| \leq \tilde{D} \quad (4.3)$$

for all $0 < t < 1$ and all $x \in M$ and some (and therefore all by translation invariance) $x_0 \in M$. Here, d denotes the lift of the Carnot-Carathéodory distance from G to M.

Remark 4.4. If M is a compact nilmanifold, we can apply Léandre’s beautiful result [Léa87b, Léa87a] that

$$\lim_{t \to 0} t \log p(t, x_0, x) = -d(x_0, x)^2$$

holds true uniformly on M, which implies Assumption 4.3.

A non-compact example of a nilmanifold, where this estimate still holds true is given by the Heisenberg group G^2_d. Notice that this is an example of dimension $d + \frac{d(d-1)}{2}$.

We prove a quantitative simulated annealing result under the previous assumption on the nilmanifold M. The idea is to introduce a parameter ε in the operators,

$$\mathcal{L}^U, \varepsilon = \mathcal{L} - \frac{1}{2} \Gamma \left(\frac{U}{\varepsilon^2}, \cdot \right),$$

such that the associated invariant measure $\exp(-\frac{U}{\varepsilon^2})\mu$ concentrates around the minima of U. Notice that the previous operator satisfies

$$\varepsilon^2 \mathcal{L}^U, \varepsilon = \varepsilon^2 \mathcal{L} - \frac{1}{2} \Gamma(U, \cdot),$$

hence a spectral gap for $\varepsilon^2 \mathcal{L}^U, \varepsilon$ leads to a spectral gap for the diffusion process

$$dY^\mu_t = V_0(Y^\mu_t)dt + \sum_{i=1}^d \varepsilon V_i(Y^\mu_t) \circ dB^i_t, \quad Y^\mu_0 = y \in G,$$

with $V_0f = -\frac{1}{2} \Gamma(U, f)$. Consequently we know – given strong existence – that the law of Y^μ_t converges to $\exp(-\frac{U}{\varepsilon^2})\mu$ and concentrates a posteriori around the minima of U.

In the following theorem we try to quantify this behaviour. We denote by $\mu^{U, \varepsilon}$ the probability measure invariant for $\mathcal{L}^{U, \varepsilon}$ and we use the notation

$$\var_{\varepsilon}(f) = \langle (f - \langle f \rangle_{\varepsilon})^2 \rangle_{\varepsilon}$$

with $\langle f \rangle_{\varepsilon} = \int_M f(g) \mu^{U, \varepsilon}(dg)$.

Theorem 4.5. Let $U : M \to \mathbb{R}$ be a smooth function such that there exist a constant D and a point $x_0 \in M$ such that

$$|U(x) - d(x_0, x)^2| \leq D,$$

for all $x \in M$. Then there exist constants $R, c > 0$ such that for $\varepsilon(t) = \frac{\varepsilon}{\sqrt{\log(R+t)}}$

and

$$\var_{\varepsilon(t)}(f) \leq K(R + t)\langle \Gamma(f, f) \rangle_{\varepsilon(t)},$$
for all test functions \(f \in C_0^\infty(M) \) and \(t \geq 0 \).

Proof. We can start to collect results. Combining Corollary 3.3 and Assumption 4.3 with Theorem 4.1, we obtain that spectral gap for the operator \(\mathcal{L}^{U,\varepsilon} \) has size at least

\[
\frac{1}{K\varepsilon^2} \exp\left(-\frac{2(D + \tilde{D})}{\varepsilon^2}\right)
\]

for \(0 < \varepsilon < 1 \), so that \(\varepsilon^2 \mathcal{L}^{U,\varepsilon} \) has a spectral gap of size at least

\[
\frac{1}{K} \exp\left(-\frac{2(D + \tilde{D})}{\varepsilon^2}\right).
\]

We choose \(\varepsilon^2 = 2(D + \tilde{D}) \) and \(R \) sufficiently big so that \(\varepsilon(t) < 1 \) for \(t \geq 0 \), and we conclude that

\[
K \exp\left(\frac{2(D + \tilde{D})}{\varepsilon(t)^2}\right) \leq K(R + t)
\]

for all \(t \geq 0 \), which is the desired result. \(\square \)

We denote by \(Z \) the process with cooling schedule \(t \mapsto \varepsilon(t) \) as in the previous theorem,

\[
dZ_t = V_0(Z_t)dt + \sum_{i=1}^d \varepsilon(t)V_i(Z_t) \circ dB^i_t.
\]

Then the previous conclusion leads to the following Proposition.

Proposition 4.6. Let \(f_t \) denote the Radon-Nikodym derivative of the law of \(Z_t^\varepsilon \) with respect to \(\mu_t = \mu^{U,\varepsilon(t)} \) and let

\[
u(t) := \|f_t - 1\|^2_{L^2(\mu_t)}
\]

denote the distance in \(L^2(\mu_t) \), then

\[
u'(t) \leq -\frac{1}{K(R + t)} \nu(t) + \frac{1}{c^2(R + t)} \nu(t) + \frac{1}{c^2(R + t)} \sqrt{\nu(t)}
\]

for the constants \(R, c, K \) from Theorem 4.5.

Remark 4.7. If we choose \(c^2 > K \), which is always possible, we conclude that \(\sup_{t \geq 0} \nu(t) \) is bounded from above by a constant depending on \(f_0, c, R \) and \(K \).

Proof. The proof follows closely the lines of [HS88]. By assumption we know that \(\nu(t) = \|f_t\|^2_{L^2(\mu_t)} - 1 \) and hence with the notation \(\beta(t) = \frac{1}{\varepsilon(t)^2} \),

\[
u'(t) \leq -2(\Gamma(f_t, f_t))_{\varepsilon(t)} - \beta'(t) \int (U - \langle U \rangle_{\varepsilon(t)}) f_t^2 \mu_t
\]

\[
= -2(\Gamma(f_t, f_t))_{\varepsilon(t)} - \beta'(t) \int (U - \langle U \rangle_{\varepsilon(t)})(f_t - 1)^2 \mu_t
\]

\[
- 2\beta'(t) \int (U - \langle U \rangle_{\varepsilon(t)})(f_t - 1) \mu_t
\]

\[
\leq -\frac{1}{K(R + t)} \nu(t) + \frac{1}{c^2(R + t)} \nu(t) + \frac{1}{c^2(R + t)} \sqrt{\nu(t)}.
\]

Here, we used the Cauchy-Schwarz inequality and the conclusions of the previous Theorem 4.5. \(\square \)
Theorem 4.8. Assume that we are in the previous settings with $c^2 > K$, so that $\sup_{t \geq 0} \|f_t\|_{L^2(\mu_t)} \leq M < \infty$. Define $U_0 = \inf_{x \in M} U(x)$ and, for every $\delta > 0$, denote by A_δ the set $A_\delta = \{ x \in M \mid U(x) \geq U_0 + \delta \}$. Then we can conclude that

$$P(Z_t^i \in A_\delta) \leq M \sqrt{\mu_t(A_\delta)}$$

for every $t > 0$ and every $\delta \geq 0$.

Proof. It follows from the Cauchy-Schwarz inequality that

$$P(Z_t^i \in A_\delta) = \int_{A_\delta} f_t \mu_t \leq M \sqrt{\mu_t(A_\delta)},$$

as required. □

Remark 4.9. Since $\lim_{\varepsilon \to 0} \mu_{U,\varepsilon}(A_\delta) = 1$ for every $\delta > 0$, we obtain that for all continuous bounded test functions f, we have

$$E(f(Z_t^i)) \to f(x_0),$$

provided that there is only one element $x_0 \in M$ such that $U(x_0) = U_0$.

References

[BA88] G. Ben Arous. Développement asymptotique du noyau de la chaleur hypoelliptique hors du cut-locus. Ann. Sci. École Norm. Sup. (4) 21, no. 3, (1988), 307–331.

[BLW07] D. Bakry, M. Ledoux, and F.-Y. Wang. Perturbations of functional inequalities using growth conditions. J. Math. Pures Appl. (9) 87, no. 4, (2007), 394–407.

[Che73] P. R. Chernoff. Essential self-adjointness of powers of generators of hyperbolic equations. J. Functional Analysis 12, (1973), 401–414.

[DM07] B. K. Driver and T. Melcher. Hypoelliptic heat kernel inequalities on Lie groups. Stoc. Proc. Appl.

[Elw78] K. D. Elworthy. Stochastic dynamical systems and their flows. In Stochastic analysis (Proc. Internat. Conf., Northwestern Univ., Evanston, Ill., 1978), 79–95. Academic Press, New York, 1978.

[Hör67] L. Hörmander. Hypoelliptic second order differential equations. Acta Math. 119, (1967), 147–171.

[Hör07] L. Hörmander. The analysis of linear partial differential operators. III. Classics in Mathematics. Springer, Berlin, 2007. Pseudo-differential operators, Reprint of the 1994 edition.

[HS88] R. Holley and D. Stroock. Simulated annealing via Sobolev inequalities. Comm. Math. Phys. 115, no. 4, (1988), 553–569.

[Léa87a] R. Léandre. Majoration en temps petit de la densité d’une diffusion dégénérée. Probab. Theory Related Fields 74, no. 2, (1987), 289–294.

[Léa87b] R. Léandre. Minoration en temps petit de la densité d’une diffusion dégénérée. J. Funct. Anal. 74, no. 2, (1987), 399–414.

[L92] X.-M. Li. Stochastic flows on noncompact manifolds, 1992. Ph.D. thesis.

Université Paul Sabatier, Institut des Mathématiques, 118, Rue de Narbonne, Toulouse, Cedex 31062, France; The University of Warwick, Mathematics Department, CV4 7AL Coventry, United Kingdom; Vienna University of Technology, Wiedner Hauptstrasse 8–10, A-1040 Wien, Austria

E-mail address: fbaudoin@cict.fr, m.hairer@warwick.ac.uk, jteichma@fam.tuwien.ac.at