On the Hodge Conjecture for products of certain surfaces

José J. Ramón Marí
Humboldt Uni. zu Berlin
Institut für Mathematik
Unter den Linden, 6
D - 10099 Berlin
Germany
E-mail: akalmahakal@hotmail.com, jjramon@mathematik.hu-berlin.de

October 15, 2021

Abstract

In this paper we prove the Hodge conjecture for arbitrary products of surfaces, $S_1 \times \cdots \times S_n$ such that $q(S_i) = 2, p_g(S_i) = 1$. We also prove the Hodge conjecture for arbitrary self-products of a K3 surface X such that the field $E = \text{End}_{h^2}T(X)$ is CM.

0 Notation and preliminaries

Unless otherwise stated, we use the terms curve and surface to denote smooth projective curves and surfaces, resp. The term $p_g(S) = h^{2,0}(S)$ is called the geometric genus of S, and $q(S) = h^{1,0}(S) = \dim \text{Alb}(S)$ is known as the irregularity of S. For any complex projective manifold X, $H^k(X)$ will denote the group $H^k(X, \mathbb{Q})$ regarded as a (rational) Hodge structure of (pure) weight k. All Hodge structures appearing in this paper are rational and pure $[2]$; as usual, a Hodge cycle (of codimension p) or Hodge class of a Hodge structure V is an element $v \in V^{p,p}_C \cap V$. We denote the subspace of Hodge cycles of V by $\mathcal{H}(V)$, and also $\mathcal{H}^p(X) = \mathcal{H}(H^{2p}(X))$ for X a smooth projective variety; consequently, $\mathcal{H}(X) = \bigoplus_{i=0}^{\dim(X)} \mathcal{H}^i(X)$ will denote the Hodge ring, or ring of Hodge classes of X.

We define the (rational) transcendental lattice $T(S)$ of a surface S by the following orthogonal decomposition

$$H^2(S) = T(S) \oplus NS(S)_{\mathbb{Q}}$$
with respect to the cup-product. The cup-product induces, after a change of sign, a polarisation of the Hodge structure $T(S)$.

For V and W two (pure) Hodge structures of the same weight, we denote $\text{Hom}_{\text{hg}}(V,W)$ to be the space of linear maps from V to W respecting the Hodge structures. For an introduction see [2], [5].

For a Hodge structure V as above we define the Hodge group $Hg(V)$ to be the minimal \mathbb{Q}-defined algebraic subgroup of $GL(V)$ such that $h(U(1)) \subset Hg(V)\mathbb{R}$; here h is the representation corresponding to the Hodge bigraduation as in [2]. The following is basic in this paper:

Proposition 0.1 [2] [3] Let V be a polarisable Hodge structure. Then $Hg(V)$ is reductive. As a result, the category of polarisable Hodge structures is semisimple abelian.

For an comprehensive survey on the Hodge conjecture for abelian varieties, as well as a detailed introduction on the Hodge group $Hg(A)$, we refer the reader to [9] Appendix B.

Acknowledgments: I thank Prof. Bert van Geemen for a very useful and generous tutorial on the subject. I wish to express my gratitude to Prof. B.J. Totaro for valuable suggestions on the writing of this paper. I am grateful to the EU Research Training Network 'Arithmetic Algebraic Geometry' for their financial support during my PhD. The warm hospitality of the Isaac Newton Institute is gratefully acknowledged. I finally wish to thank Prof. G. E. Welters for introducing me to this subject.

1 Introduction

The purpose of this article is to prove the Hodge conjecture in two different situations of product of surfaces. The first one is the product $S_1 \times \cdots \times S_n$, where $q(S_i) = 2$ and $p_g(S_i) = 1$. (It turns out that these surfaces are birationally equivalent to abelian or elliptic isotrivial surfaces). This result generalises the Main Theorem in the author’s PhD thesis [18].

The other case we consider is the following: take a K3 surface X; then the transcendental lattice $T(X)$ is irreducible, and its endomorphism algebra is a number field $E = \text{End}_{hg}T(X)$, which can be either CM or totally real ([25] 1.5). We will prove that the Hodge conjecture for arbitrary powers of X follows from the Hodge conjecture for $X \times X$. In the case when E is CM, we use results of Mukai [14], together with an elementary lemma, to prove the Hodge conjecture for $X \times X$, and establish the result for X^n for all n by using invariant theory (see for instance [19] for similar arguments).

2 Surfaces S with $p_g = 1, q = 2$

This section is devoted to understanding the geometry of surfaces with $p_g = 1, q = 2$. 2
Proposition 2.1 Let S be a minimal surface with $p_g = 1, q = 2$. If S is not abelian, then S is of the form

$$S = (C' \times E')/G$$

where C' is a curve, E' is an elliptic curve and G acts faithfully on both components.

Proof: One has $\chi(O_S) = 0 = 1 - q + p_g$. From Enriques’ classification we see that S is non-ruled, and $K^2 \geq 0$. Also $e(S) \geq 0$ (see [1] Th. X.4), and by Noether’s formula we get $0 = e(S)$, i.e. $b_2(S) = 6$, and so therefore $K^2 = 0$, which yields S elliptic. Finally, by [23] or [1] Exs. VI.22(4), VIII.22, we see that $S = (C' \times E')/G$ is a finite étale quotient such that $g(E') = 1$, and the proof is thus complete. ■

All the statements concerning motives are, unless otherwise stated, considered in the category of Chow motives modulo homological equivalence. We refer the reader to [21] for the basic notations and language.

Proposition 2.2 (Murre) [21] Let X be a surface. Then there exists a decomposition $h(X) = \bigoplus_{i=0}^{4} h^{i}(X)$; i.e. a Chow-Künneth decomposition exists in the case of surfaces (in fact, modulo rational equivalence).

Remark 2.3 From the above and the standard conjectures for abelian varieties [8], it follows that the Hodge classes on $X \times X$ inducing the projectors $H^{*}(X) \to H^{i}(X) \subset H^{*}(X)$ on a variety X which is a product of surfaces and abelian varieties are all algebraic, and thus X admits a decomposition $h(X) \simeq \bigoplus_{i=0}^{2\dim(X)} h^{i}(X)$ modulo homological equivalence. This result will be used throughout.

Proposition 2.4 Let S be a minimal, not abelian surface such that $p_g = 1, q = 2$. Notations being as in Proposition 2.1 the following cases hold:

(a) either $g(E'/G) = 1$ and the Albanese map α induces an isomorphism $h(S) \simeq h(\text{Alb } S)$, or

(b) $g(E'/G) = 1$ and the Albanese map α sends S onto a curve B. It turns out that $B = C'/G$ and the Albanese fibration

$$S = (C' \times E')/G \to \alpha(S) = B = C'/G$$

is the canonical projection.

Proof: The following argument holds in both cases [4] [23]: $H^1((C' \times E')/G) = H^1(C'/G) \oplus H^1(E'/G)$. Since $q(S) = \frac{1}{2}b_1(S)$, we have

$$q(S) = g(C'/G) + g(E'/G)$$

and so the following cases are possible.

(a) $g(E'/G) = 1, g(C'/G) = 1$. In this case G acts on E' by translations, and $A = C'/G \times E'/G$ is an abelian surface; the natural map

$$\phi : S = (C' \times E')/G \to C'/G \times E'/G = A$$

3
yields an isomorphism on H^1 by the above (and so on H^3); therefore $\text{Alb} \ S \sim A$, whence $h^1(S) \simeq h^1(A)$. On H^2, the following holds:

$$H^2(S) = H^2(C' \times E')^G = H^2(C'/G \times E'/G),$$

for G acts freely on $C' \times E'$ and trivially on $H^\bullet(E')$; this proves that $\phi|H^2$ is an isomorphism, thus establishing the result.

(b) Let $B = C'/G$. In this case we have $g(E'/G) = 0$ and $g(B) = 2$. The natural map

$$p : S = (C' \times E')/G \to C'/G = B$$

satisfies $q(S) = g(B)$ by Formula (2), and therefore coincides with the Albanese fibration [1]; see also [24] Ch. 9. ■

2.1 The case $g(E'/G) = 0$

Let S satisfy case (b) of Proposition 2.4 and let $H \subset G$ be the subgroup of translations on E'. Since $H - \{1\}$ coincides with the set of fixed-point-free transformations of E' in G, we have a split exact sequence (we now fix a section σ)

$$1 \to H \to G \to \mathbb{Z}_n \to 1,$$

where $\mathbb{Z}_n \hookrightarrow \text{Aut}_P(E')$ for P fixed point of a generator ϕ of $\sigma(\mathbb{Z}_n)$. Clearly $n \in \{2, 3, 4, 6\}$.

The following proposition is a reduction to the case $G = \mathbb{Z}_n, H = \{1\}$.

Proposition 2.5 Let $C = C'/H$, $E = E'/H$. If the natural action μ of $\mathbb{Z}_n = G/H$ on $C \times E$ is étale, then the natural map

$$\beta : S = (C' \times E')/G \to S' = (C \times E)/\mathbb{Z}_n$$

yields an isomorphism of motives $h(S) \simeq h(S')$.

Proof: The proof is similar to that of Proposition 2.4(b).

2.2 μ is free

We suppose $g(E'/G) = 0$, notations being as above. We are going to prove that this case meets the hypotheses of Proposition 2.5.

Remark 2.6 Consider the Hodge structure

$$V = [H^1(C') \otimes H^1(E')]^G = [H^1(C) \otimes H^1(E)]^{\mathbb{Z}_n}.$$

Then

$$H^2(S) = V \oplus \mathbb{Q}(-1)^{\oplus 2}$$

and V has Hodge numbers $\dim V^{2,0} = 1$, $\dim V^{0,2}$, $\dim V^{1,1} = 2$.

4
Consider the action of G/H on JC; let ϕ be a generator of G/H such that $\phi^n|H^1,0(E) = \omega$ where $\omega = e^{2\pi i/n}$; let $Q_n(x)$ denote the cyclotomic polynomial of order n.

Theorem 2.7 Let $P := \ker Q_n(\phi)^0 \subset JC$. Then $\dim P = 1$ for $n = 2$ and $\dim P = 2$ for $n = 3, 4, 6$. The quotient map $C \to C/Z_n = B$ is étale in all cases.

Proof of Theorem 2.7 Consider V as above. It is clear that

\[V = (H^1(P) \otimes H^1(E))^\mathbb{Z}_n. \]

In the case $n = 2$, ϕ acts on both vector spaces as $-Id$, so $V = H^1(P) \otimes H^1(E)$, whence $\dim P = 1$ by inspection. For $n = 3, 4, 6$, let χ be the character of \mathbb{Z}_n such that $H^{1,0}(E) = \chi$; then $H^{1,0}(P) = a\chi \oplus b\chi$. Inspecting Hodge numbers as above and using Remark 2.6, we find $a = b = 1$, which in turn yields $\dim P = 2$.

From the above we conclude that the action μ of \mathbb{Z}_n on C has no fixed points. This follows from \[20\] Lemma 1.5; alternatively one can derive this result from several Riemann-Hurwitz type inequalities.

Corollary 2.8 The motive of a surface $S = (C' \times E')/G$ with $G \neq H$ is isomorphic to that of a surface $(C \times E)/\mathbb{Z}_n$ with $H = \{1\}$. In other words, the conclusion of Proposition 2.5 holds true always.

2.3 $h^2(S) \simeq h^2(A)$

We now consider S as above, i.e. with cyclic $G = \mathbb{Z}_n$, such that $B = C/G$ is a genus 2 étale quotient, and find an abelian surface A such that an isomorphism of Hodge structures $H^2(S) \cong H^2(A)$ holds. The first step is to decompose P.

Lemma 2.9 The abelian surface P above splits as $P \simeq E_1 \times E_1$.

Proof: Indeed, suppose that P is simple. Then $Hg(P \times E) = Hg(P) \times Hg(E)$ (due to F. Hazama; see e.g. \[9\] B.7.6.2; see also \[11\]), whence the Hodge structure $W = H^1(P) \otimes H^1(E)$ is irreducible (with $\dim W^{2,0} = 2$). Hence W cannot contain V, which contradicts our hypothesis. Therefore P must split; using the \mathbb{Z}_n-decomposition of $H^1(P)$ from the Proof of Theorem 2.7 and an elementary argument we obtain $P \simeq E_1 \times E_1$ for E_1 an elliptic curve, thereby completing the proof.

Let us get back to our $H^2(S)$. We had by Formula (3) and Lemma 2.9

\[H^2(S) = \mathbb{Q}(-1)^2 \oplus (H^1(P) \otimes H^1(E))^\mathbb{Z}_n \subset \mathbb{Q}(-1)^2 \oplus [H^1(E_1) \otimes H^1(E)]^2. \]

Again, since the transcendental part of $H^1(E_1) \otimes H^1(E)$ has one-dimensional $(2,0)$-part (and is thus irreducible \[9\] \[23\]), by Formula (4) $H^2(S)$ and $H^2(E_1 \times E)$ differ only by powers of the Tate Hodge structure, which implies $H^2(S) \cong H^2(E_1 \times E)$ by counting dimensions. We have thus proven the following Proposition.

Proposition 2.10 Under the hypotheses of Proposition 2.4(b), the abelian surface $A = E_1 \times E$ is such that $H^2(S) \cong H^2(A)$ (as Hodge structures).
We now proceed to construct an algebraic cycle inducing the described isomorphism. The scheme is the following. Choose a \(\phi \)-equivariant projection \(u : JC \to P \), and consider the correspondence \(\beta = (u_\ast \circ (alb_C)_\ast, id_E) \circ \pi^\ast \) from \(S \) to \(P \times E \), where \(\pi : C \times E \to (C \times E)/\mathbb{Z}_m = S \) is the natural projection. This correspondence from \(S \) to \(P \times E \) realises the inclusion in Formula (4). The final step in this construction will be to cook up a correspondence from \(P \times E \sim E_1 \times E_1 \times E \) sending the image of \(V \) onto \(H^1(E_1) \otimes H^1(E) \) in \(E_1 \times E \), which after composing can be easily extended to the sought-after isomorphism.

Lemma 2.11 Let \(E_1, E_2 \) be two elliptic curves. For every Hodge substructure \(V \) of \(H^1(E_1) \otimes H^1(E_2) \) isomorphic to \(H^1(E_1) \otimes H^1(E_2) \) there exists an algebraic correspondence \(\alpha \) from \(E_1 \times E_1 \times E_2 \) to \(E_1 \times E_2 \) such that \(\alpha_*V = H^1(E_1) \otimes H^1(E_2) \).

Proof of Lemma 2.11 It suffices to prove that every Hodge correspondence between \(H^1(E_1) \otimes H^1(E_2) \) and \(H^1(E_1 \times E_1) \otimes H^1(E_2) \) is algebraic. This follows from the Hodge conjecture for products of elliptic curves, due to Imai [9] [11] (see also Proposition 2.18 below.)

We are now ready to prove the following result:

Theorem 2.12 With the assumptions of this Section, the motives \(h^2(S) \) and \(h^2(E_1 \times E) \) are isomorphic (modulo homological equivalence).

Proof: To conclude the proof, consider the correspondence \(\beta \) above, which takes \(V \) to its image inside \(H^1(P) \otimes H^1(E) \) of \(P \times E \sim E_1 \times E_1 \times E \). Choose a projection

\[
\alpha : H^1(E_1 \times E_1) \otimes H^1(E) \to H^1(E_1) \otimes H^1(E)
\]

such that \(\alpha|_V \) is a (Hodge) isomorphism. \(\alpha \) is algebraic by Lemma 2.11, and so the composition \(\alpha \circ \beta \), also algebraic, yields the desired isomorphism. \(\blacksquare \)

Remark 2.13 An explicit isomorphism could be obtained by fiddling with \(\phi^\ast \) as an element of \(M_2(\text{End}(E_1) \otimes \text{End}(E)) \), without the use of Lemma 2.11. We leave this to the reader.

2.4 The Hodge Conjecture for \(S_1 \times \cdots \times S_m \), \(p_g(S_i) = 1 \), \(q(S_i) = 2 \)

We are going to prove the following theorem:

Theorem 2.14 Let \(S_i \) be surfaces such that \(p_g(S_i) = 1 \), \(q(S_i) = 2 \) (\(S_i \) need not be minimal). Then the Hodge conjecture holds for \(S_1 \times \cdots \times S_m \).

Remark 2.15 Let \(S \) be a surface such that \(p_g = 1 \), \(q = 2 \). In the former sections we have actually proven that the motive of such a surface (minimal or not) is generated (in the Tannakian sense, see [3]) by motives of abelian surfaces and elliptic curves.

The following lemma follows easily from [3] (see also [9] Appendix B) and some linear algebra.
Lemma 2.16 Let A be an abelian variety of dimension ≥ 2. Then $Hg(H^2(A)) = Hg(A)/\mu_2$. In particular, for A an abelian surface of simple CM type (F, Φ) one has $U_F(1) \simeq Hg(T(A)) = Hg(A)/\mu_2 = U_F(1)/\mu_2$.

Let θ be a primitive element of the real quadratic extension $F(x)$ is described by θ. Indeed, the homomorphism of abstract groups $\rho : F^{\times} \to GL(H^{2,0}(A))$ is described by $x \mapsto \rho(x) = \sigma_1(x)\sigma_2(x)$ where $\sigma_i|F_0$ are different. A little Galois theory shows that if θ is described as above and $\theta_1 \neq \pm \theta$ is an algebraic conjugate then $\theta_1^2 = \tau(\alpha)$ and $E = \mathbb{Q}[\theta + \theta_1]$. One can see that the element $(\theta + \theta_1)^2$ is a primitive element of the real quadratic extension $\mathbb{Q}(\sqrt{N_{F_0}|Q(\alpha)}) \neq F_0$ since $Gal(N|Q) = D_{2,4}$. The Lemma is thus established.

Proof of Lemma 2.17 One need only observe that the subfield E of \mathbb{C} spanned by the action of F^{\times} on $T(A)$ (which can be read on $H^{2,0}(A)$) is quartic CM and not isomorphic to F. Indeed, the homomorphism of abstract groups

\[
\rho : F^{\times} \to GL(H^{2,0}(A))
\]

is described by $x \mapsto \rho(x) = \sigma_1(x)\sigma_2(x)$ where $\sigma_i|F_0$ are different. A little Galois theory shows that if θ is described as above and $\theta_1 \neq \pm \theta$ is an algebraic conjugate then $\theta_1^2 = \tau(\alpha)$ and $E = \mathbb{Q}[\theta + \theta_1]$. One can see that the element $(\theta + \theta_1)^2$ is a primitive element of the real quadratic extension $\mathbb{Q}(\sqrt{N_{F_0}|Q(\alpha)}) \neq F_0$ since $Gal(N|Q) = D_{2,4}$. The Lemma is thus established.

We state the following proposition and prove only the cases not included in Moonen and Zarhin [11]:

Proposition 2.18 Let A_i be abelian varieties of dimension 1 or 2. Then the Hodge conjecture holds for $A_1 \times \cdots \times A_r$ for r an arbitrary natural number.
Proof of Proposition 2.18: By Goursat’s Lemma and the results of Hazama and Moonen-Zarhin one needs only prove the following statement. For A_i such that $\dim A_i \leq 2$ and $\text{Hom}(A_1, A_2) = 0$, one has $Hg(A_1 \times A_2) = Hg(A_1) \times Hg(A_2)$. By Hazama, Moonen and Zarhin the only case left is the following.

Let A_i be simple abelian varieties of CM type. Then $Hg(A_i) = U_{F_i}(1)$ and $Hg(A_1 \times A_2) \subset Hg(A_1) \times Hg(A_2)$ surjects onto both components, so either $Hg(A_1 \times A_2)$ is simple (and the projections are isogenies) or the former inclusion is an equality. Suppose that the projections are isogenies; in this case, $T(A_1) \otimes T(A_2)$ has a Hodge class (in fact, four such classes), and thus there is a Hodge isomorphism $T(A_1) \cong T(A_2)$. This implies that $E_1 = \text{End}_{hg}T(A_1)$ are isomorphic number fields; in the case where the Galois group of $N_1 = F_1^{gal}$ over \mathbb{Q} is $D_{2,4}$, we have $E_1 \simeq E_2$ and it follows from Lemma 2.17 that $F_1 \simeq F_2$ as well. The Proposition follows in this case from Proposition 4.2. For the remaining cases, there is only one CM type for F up to automorphisms of $F|\mathbb{Q}$ and the proof is similar.

Now Theorem 2.14 follows easily from Proposition 2.18 and Remark 2.15.

3 The case of powers of a K3 surface

Let X be a K3 surface, and let $H^\bullet(X) \subset H^\bullet(X)$ be the ring of Hodge classes of X. Then $H^\bullet(X) = T(X) \oplus H^\bullet(X)$. $T(X)$ is an irreducible Hodge structure and if $E = \text{End}_{hg}T(X)$ we have an inclusion

$$E \hookrightarrow \text{End}_\mathbb{C}(H^{2,0}(X)) = \mathbb{C}$$

which renders E a number field. It can be shown that E is either totally real or CM.

The following proposition holds:

Proposition 3.1 The Hodge conjecture for X^n, for arbitrary n, holds if it holds for $X \times X$.

Proof: The ring of Hodge classes $H^\bullet(X^n)$ is, by the above, generated by the Hodge classes in the tensor powers of $T(X)$ up to order n and by pullbacks of algebraic classes on X via the canonical projections. Thus our result amounts to show that the ring of tensor invariants of the $Hg(X)$-module $T(X)$ is generated by those of degree 2 as an algebra; it is known (see [25]) that $Hg(X)_\mathbb{C}$ is isomorphic to a product of special orthogonal or general linear groups, which shows (see [19]) that the ring of tensor invariants of $Hg(X)$ is generated by the degree-2 invariants, thereby establishing the result.

We now prove the Hodge conjecture for self-products of a K3 surface X in the case where E is a CM field. We need the following elementary lemma.

Lemma 3.2 Let E be a CM number field. Then E is spanned as a vector space over \mathbb{Q} by elements $\alpha_i \in E$ such that $\alpha_i \overline{\alpha}_i = 1$. 8
Proof of Lemma 3.2: Let $\chi_0: E^\times \to E^\times$ be given by $\chi_0(\alpha) = \alpha/\bar{\alpha}$. Suppose that the images of χ_0 do not span E over \mathbb{Q}; then there exists $\theta \in E$ such that

$$\text{Tr}_{E|\mathbb{Q}}(\theta \chi_0(\alpha)) = 0 \text{ for all } \alpha \in E^\times.$$

Now let $\chi_\sigma = \sigma \circ \chi_0$ for $\sigma: E \hookrightarrow \mathbb{C}$ an embedding; by Artin’s linear independence of characters, there are embeddings $\sigma \neq \tau$ such that $\chi_\sigma = \chi_\tau$, which amounts to saying that $\sigma(\alpha)/\tau(\alpha)$ is always real. It is not difficult to see that, since E is non-real CM, this cannot hold if σ and τ are different; indeed, evaluating at α and $1+\alpha$ for $\alpha \in E$ neither real nor purely imaginary, we see that $1+\sigma(\alpha)$ does not belong to $\mathbb{R}(1+\tau(\alpha))$, which leads to a contradiction, thereby establishing the Lemma.

We are now ready to prove our Theorem. See Morrison [12] for an earlier result in this direction.

Theorem 3.3 Let X be a K3 surface such that $E = \text{End}_{h^0}(T(X))$ is a CM field. Then the Hodge conjecture holds for arbitrary powers of X.

Proof of Theorem 3.3 By the above Lemma 3.2, it suffices to prove algebraicity for $\alpha \in E$ such that $\alpha \cdot \bar{\alpha} = 1$, i.e. for the Hodge isometries of the polarised Hodge structure $(T(X), Q)$ [25]. This is a result established by Mukai, by refining former results on his theory of moduli:

Theorem 3.4 [14] Let X_1 and X_2 be K3 surfaces, and let $\psi: T(X_1) \to T(X_2)$ be a Hodge isometry. Then ψ is induced by an algebraic cycle.

References

[1] A. Beauville, Complex Algebraic Surfaces, 2nd English edition, Cambridge Univ. Press, 1996.
[2] P. Deligne, La Conjecture de Weil pour les surfaces K3, Inv. Math 15 (1972), 206-226.
[3] P. Deligne, J.S. Milne, A. Ogus, K.Y. Shih, Hodge cycles, motives and Shimura varieties, LNM 900. Springer-Verlag, Berlin-Heidelberg-New York, 1982.
[4] E. Freitag, Über die Struktur der Funktionenkörper zu hyperabelschen Gruppen I. J.Reine und Angew. Math 247(1971), 97-117.
[5] B.L. van Geemen, Kuga-Satake varieties and the Hodge conjecture. The Geometry and Arithmetic of Algebraic Cycles. J.D. Lewis, B.Brent Gordon, S.Müller-Stach, N.Yui (eds.), NATO Science Series 548, World Scientific 2001.
[6] F. Hazama, Algebraic cycles on nonsimple abelian varieties, Duke Math. J. Vol. 58 (1989) No. 1, pp.31-37.
[7] U. Jannsen, Motives, numerical equivalence, and semisimplicity. Inv. Math. 107 (1992) 447-452.
[8] S. Kleiman, Algebraic cycles and the Weil conjectures. In: Dix Exposés sur la Cohomologie des Schémas, North Holland, Amsterdam 1968, pp. 359-386.
[9] J. D. Lewis, *A survey of the Hodge conjecture*, 2nd Edition, AMS Providence, RI 1998 (with an Appendix by B. Brent Gordon on the Hodge conjecture on abelian varieties.)

[10] Yu I. Manin, *Correspondences, motifs and monoidal transformations*, Math. USSR Sbornik 6 (1968), 439-470.

[11] B.J.J. Moonen, Yu G. Zarhin, *Hodge cycles on abelian varieties of low dimension*. Math. Ann. 315 (1999), No. 4, 711-733.

[12] D. R. Morrison, *Algebraic cycles on products of surfaces*. In: Proceedings, Algebraic Geometry Symposium, Tôhoku Univ. 1984, pp. 194-210.

[13] S. Mukai, *On the moduli space of bundles of K3 surfaces, I*. Vector Bundles on Algebraic Varieties, Bombay Colloquium 1984, Oxford 1987.

[14] S. Mukai, *Vector Bundles on a K3 Surface*. Proceedings of the ICM, Beijing 2002, Vol. II (invited lectures), pp. 485-502. Higher Education Press – World Scientific, Beijing 2002.

[15] D. Mumford, *Abelian Varieties*, Oxford University Press, Oxford 1970.

[16] D. Mumford, *On Shimura’s paper “Discontinuous groups and abelian varieties”*. Math. Ann. 181 (1969), 345-351.

[17] J.P. Murre, *On the motive of an algebraic surface*, J. Reine und Angew. Math. 409 (1990), 190-204.

[18] J.J. Ramón Marí, *On the Hodge conjecture for products of certain surfaces*. PhD Thesis, U. Durham, UK 2003.

[19] K. Ribet, *Hodge classes on certain Abelian varieties*, Amer. J. Math. 115 (1983), 523-538.

[20] C. Schoen, *Hodge classes on self-products of a variety with an automorphism*, Comp. Math. 65 (1988) 3-32.

[21] A.J. Scholl, *Classical Motives*, Proc. Symp. Pure Math. 55 (Seattle, WA 1991), Part 1, pp. 163-187. U. Jannsen, S. Kleiman, J. P. Serre (eds.) AMS, Providence, RI 1995.

[22] G. Shimura, Y. Taniyama, *Complex Multiplication of abelian varieties*, Publ. Math. Soc. Japan, vol. 6. Math. Soc. Japan, 1961.

[23] F. Serrano, *The Picard group of a quasi-bundle*, Manuscripta Mathematica 73 (1991), 63-82.

[24] K. Ueno, *Classification Theory of Algebraic Varieties and Compact Complex Spaces*, LNM 439, Springer-Verlag, Berlin-Heidelberg, 1975.

[25] Yu. G. Zarhin, *Hodge groups of K3 surfaces*, J. Reine und Angew. Math. 341 (1983), 193-220.