Bacterial infections and cancer

Daphne van Elsland & Jacques Neefjes*

Abstract

Infections are estimated to contribute to 20% of all human tumours. These are mainly caused by viruses, which explains why a direct bacterial contribution to cancer formation has been largely ignored. While epidemiological data link bacterial infections to particular cancers, tumour formation is generally assumed to be solely caused by the ensuing inflammation responses. Yet, many bacteria directly manipulate their host cell in various phases of their infection cycle. Such manipulations can affect host cell integrity and can contribute to cancer formation. We here describe how bacterial surface moieties, bacterial protein toxins and bacterial effector proteins can induce host cell DNA damage, and thereby can interfere with essential host cell signalling pathways involved in cell proliferation, apoptosis, differentiation and immune signalling.

Keywords bacteria; cancer; effectors; infection; signalling

Introduction

Cancer development is the result of a series of genetic modifications that alter the normal control of cell growth and survival. These genetic alterations can be induced by a wide variety of external factors [1], including smoking, alcohol [2] and sunlight [3,4]. At least 75% of the head and neck cancers are caused by tobacco and alcohol [5] and 65–86% of the skin cancer risk can be attributed to sun exposure [4]. In addition to these external factors, viral genomes have been retrieved from a variety of tumour samples [6] and this link has been further substantiated by many epidemiological studies (Table 1). For example, viral infections such as human papillomavirus and hepatitis B virus and hepatitis C virus have been associated with ~90% of cervical cancer cases [7] and ~80% of hepatocellular carcinoma cases [8], respectively.

An even more compelling case for the link between viral infections and cancer arose from experiments showing that viruses exploit the host cell niche for their infection cycle and as a result stimulate mammalian growth-inducing genes, leaving the cells in a cancerous state of uncontrolled cell division. It is now understood how viruses such as hepatitis B virus and human papillomavirus types 5 and 8 cause cellular transformation by inducing genetic instability through viral integration and through the activation of a large number of signalling pathways and cellular genes involved in oncogenesis, proliferation, inflammation and immune responses [9,10].

Viruses do, however, represent only one segment of the microbiome that exploits the mammalian host during its infection cycle. Pathogenic moulds, helminths and bacteria intensively interact with mammalian host cells to ensure their survival. Although these microorganisms usually do not leave a genetically recognizable trait or piggyback on mammalian genes, such as illustrated by viral infections, strong epidemiological links exist between various micro-biological infections and cancers (Table 1). Examples include connections between Schistosoma haematobium infections and bladder cancer [11], Helicobacter pylori (H. pylori) infections and gastric cancer [12], chronic Salmonella Typhi (S. Typhi) infections and gallbladder carcinoma [13], and Salmonella Enteritidis (S. Enteritidis) infections and colon carcinoma [14]. Moreover, studies in germ-free and antibiotic-treated animals have indicated cancer-promoting effects of microbiota in various experimental systems, varying from gastric [15,16], colon [17,18] and liver [19] cancers.

However, since microbiome–host interactions are extremely diverse, their exact contributions to cancer development are hard to pinpoint. Especially, pathogenic bacteria have been shown to manipulate and exploit the human host cell niche in various ways throughout various stages of their infection cycle. In this review, we will discuss how bacterial surface moieties, bacterial protein toxins and bacterial effector proteins interact with host cells, and how such encounters can result in the modification of essential host cell signalling pathways involved in cancer formation.

Bacterial cell-surface components and cancer development

The bacterial outer surface directly contacts host cells and consists of complex structures that include various antigenic moieties that activate host innate and adaptive immune responses. As a consequence, pathogenic bacteria have evolved a wide variety of outer-surface modifications that ensure immune escape to afford significant survival opportunities. To abolish immune recognition and clearance, Gram-negative bacteria cover their complex outer-surface macromolecules with a polysaccharide-rich capsule. These capsules

*Corresponding author. Tel: +31 70 5168722; E-mail: j.j.c.neefjes@lumc.nl

© 2018 The Authors. Published under the terms of the CC BY 4.0 license

EMBO reports 19: e46632 | 2018 1 of 11
limit complement activation by shielding deeper structures on the membranes of pathogenic variants of *Escherichia coli* (*E. coli*), *Streptococcus pneumoniae*, *Haemophilus influenzae* type b, *Neisseria meningitidis* and others, and prevent engulfment by professional phagocytes [20–23]. Unencapsulated mutants of these bacteria rarely cause an invasive infection and are highly attenuated in various infection models due to better opsonophagocytic clearance [22,24,25].

In addition to their shielding capsules, many bacterial pathogens have modified their surface-exposed molecules, including lipopolysaccharides (LPS), flagella and peptidoglycans, to limit immune recognition. For example, *H. pylori* has LPS surface molecules that harbour “underacylated” lipid A molecules that are a poor immune recognition. For example, lipopolysaccharides (LPS), flagella and peptidoglycans, to limit

In addition to their shielding capsules, many bacterial pathogens have modified their surface-exposed molecules, including lipopolysaccharides (LPS), flagella and peptidoglycans, to limit immune recognition. For example, *H. pylori* has LPS surface molecules that harbour “underacylated” lipid A molecules that are a poor immune recognition. For example, lipopolysaccharides (LPS), flagella and peptidoglycans, to limit

Pathogenic bacteria that favour an intracellular lifestyle express surface proteins that promote both host cell attachment and internalization. For example, pathogenic species of the *Neisseria* family express a variety of surface adhesins that mediate selective interaction with certain cell types, thereby allowing the exploitation of specialized host cell niches [30]. In a similar fashion, fibronectin-binding proteins of *Staphylococcus aureus* and *Borrelia burgdorferi* mediate the interaction between bacterium and host cell through the formation of tandem β-zippers that stimulate bacterial engulfment by non-phagocytic cells [31,32].

In general, these surface-mediated assault strategies are aimed at facilitating bacterial survival within the host through both immune evasion and host invasion. However, to further control the host cell machinery, bacterial surface molecules also manipulate host cell signalling cascades and affect host cell integrity, which can coincidentally induce cellular malignancies. CagL is a type IV pilus adhesin of *H. pylori* that ensures the adherence of *H. pylori* to gastric epithelial cells and then controls a signalling cascade that induces upregulation of gastrin secretion. This results in hypergastrinemia, a major risk factor for the development of gastric adenocarcinoma. CagL binds β5-integrin thus manipulating integrin-linked kinase complexes and the downstream rapidly accelerated fibrosarcoma (Raf) kinase, the mitogen-activated protein kinase kinase (MEK) and the extracellular signal-regulated kinase (ERK) pathways (Fig 1A) [33]. The outer inflammatory protein A (OipA) of *H. pylori* activates EGFR (epidermal growth factor receptor) and stimulates Akt and β-catenin signalling, a phenotype observed in a number of different cancers, including gastric cancer (Fig 1B) [34,35]. OipA inactivation decreases β-catenin nuclear localization *in vitro* and reduces the incidence of cancer in animal models [36]. In addition, the blood group antigen-binding adhesin BabA of *H. pylori* can bind human Lewis(b) surface epitopes which indirectly increases mRNA levels of proinflammatory cytokines chemokine (C-C motif) ligand 5 (CCL5) and IL-8, and the precancer-related factors CDX2 and MUC2 (Fig 1C) [37]. The fusobacterium adhesion A (FadA) of *Fusobacterium nucleatum* (*F. nucleatum*) can bind the extracellular domain of E-cadherin, thereby inducing phosphorylation and internalization of E-cadherin. This then releases β-catenin to activate β-catenin–T-cell factor (Tcf)/LEF, downstream in the Wnt signalling pathway to control transcription of genes involved in apoptosis, cell proliferation and transformation (Fig 1D) [38]. In patients with colon adenomas or adenocarcinomas, high expression levels of *F. nucleatum* fadA have been associated with upregulated expression of oncogenic and inflammatory genes associated with the Wnt signalling pathway [39,40].

The major surface-exposed component of Gram-negative bacteria, LPS additionally activates signalling cascades that promote cancer development. LPS is present in both pathogenic and commensal bacteria and plays a central role in the activation of TLR4. TLR4-mediated signalling is critical for the downstream activation of numerous signalling pathways that underlie a variety of inflammatory and immune responses, and can promote the development of adenomatous polyposis coli (Apc)-dependent colorectal cancers and inflammation-associated colorectal cancers in mice. The role of TLR signalling in intestinal tumorigenesis has been studied through the crossing of myeloid differentiation primary response 88 (MyD88)-deficient mice that have impaired TLR4 signalling, with Apc (*Apc^{Min/−}*) mice that mimic sporadic cancer and familial adenomatous polyposis. These MYD88-deficient × *Apc^{Min/−}* mice showed a reduction in both tumour number and size compared to the

Glossary	
Apc	Adenomatous polyposis coli
BFT	Bacteroides fragilis toxin
CagA	Cytoxin-associated gene A
CCL5	Chemokine (C-C motif) ligand S
CDK1	Cyclin-dependent kinase 1
CDT	Cytolethal distending toxin
DDRs	Double-strand DNA breaks
EF-2	Elongation factor 2
EGFR	Epidermal growth factor receptor
ER	Endoplasmic reticulum
FadA	Fusobacterium adhesion A
FCP	Francisella-containing phagosome
IKK	IκB kinase
IL	Interleukin
JNK	C-jun N-terminal kinase
LPS	Lipopolysaccharides
MALT	Mucosa-associated lymphoid tissue
MAPK	Mitogen-activated protein kinase
MEK	Mitogen-activated protein kinase
MyD88	Myeloid differentiation primary response 88
NET1	Neuroepithelial cell-transforming gene 1 protein
NF-κβ	Nuclear factor-κB
OipA	Outer inflammatory protein A
PAK	p21-activated kinase
Pks	Polyketide synthetase
Raf	Rapidly Accelerated Fibrosarcoma
SCV	Salmonella-containing Vacuole
Tcf	T-cell factor
TLR	Toll-like receptor
VacA	Vacuolating cytoxin A

Escherichia coli, *Streptococcus pneumoniae*, *Haemophilus influenzae* type b, *Neisseria meningitidis* and others, and prevent engulfment by professional phagocytes [20–23]. Unencapsulated mutants of these bacteria rarely cause an invasive infection and are highly attenuated in various infection models due to better opsonophagocytic clearance [22,24,25].

In addition to their shielding capsules, many bacterial pathogens have modified their surface-exposed molecules, including lipopolysaccharides (LPS), flagella and peptidoglycans, to limit immune recognition. For example, *H. pylori* has LPS surface molecules that harbour “underacylated” lipid A molecules that are a poor substrate for host Toll-like receptor (TLR)4 and as such evade innate immune sensing [26,27]. *Helicobacter pylori* also produces modified flagellin molecules that are not recognized by TLR5 to prevent TLR5-mediated interleukin (IL)-8 secretion and subsequent immune signalling [28]. *Salmonella typhimurium* (*S. typhimurium*) expresses lipid A deacetylase PagP and a lipid A palmitoyltransferase PagP to modify lipid A, resulting in a 100-fold decrease in lipid A-mediated TLR4 activation and nuclear factor-κB (NF-κB) activation [29]. These examples illustrate how bacterial pathogens modify their outer surface to escape immune recognition.

Pathogenic bacteria that favour an intracellular lifestyle express surface proteins that promote both host cell attachment and internalization. For example, pathogenic species of the *Neisseria* family
elongation factor 2 (EF-2) protein. The diphtheria toxin consists of three subunits and is secreted by Corynebacterium diphtheriae as a single polypeptide chain. Diphtheria toxin then binds to the host’s heparin-binding epidermal growth factor-like surface receptor that is overexpressed on tumour cells [15]. Binding of the toxin to this receptor leads to the translocation of the C-domain into the cytoplasm, where it inhibits protein synthesis, ultimately resulting in cell death of the host.

Bacterial toxin-mediated host cell transformation

To ensure immune escape, rapid replication and spreading, pathogenic bacteria do not only use immune-evasion strategies to avoid host cell clearance, but are also capable of immune cell elimination. One of the strategies employed by bacteria is the secretion of protein toxins that have cytolytic properties. Bacteria can express protein toxins from their pathogenicity islands and secrete them through specialized secretion systems for transport across bacterial outer membranes [46]. The interaction of proteins toxins with the host generally occurs in an ordered series of events and can be illustrated by the mode of action of the diphtheria toxin that inhibits the synthesis of host cell proteins through the inactivation of the host

Table 1. Epidemiological and experimental evidence for a link between microbial infections and cancer.

Infectious agent	Type of micro-organism	Cancer type
Epstein–Barr virus	Virus	Nasopharyngeal carcinoma, Burkitt lymphoma, immune suppression-related non-Hodgkin lymphoma, Hodgkin lymphoma, extranodal natural killer/T-cell lymphoma (nasal type) [102]
Hepatitis B virus	Virus	Hepatocellular carcinoma [102]
Hepatitis C virus	Virus	Hepatocellular carcinoma, non-Hodgkin lymphoma [102]
Kaposi sarcoma herpesvirus	Virus	Kaposi sarcoma, primary effusion lymphoma [102]
Human immunodeficiency virus 1	Virus	Kaposi sarcoma, non-Hodgkin lymphoma, Hodgkin lymphoma, carcinoma of the cervix, anus, conjunctiva [102]
Human papillomavirus type 16	Virus	Carcinoma of the cervix, vulva, vagina, penis, anus, oral cavity, and oropharynx and tonsil [102]
Human T-cell lymphotropic virus type 1	Virus	Adult T-cell leukaemia and lymphoma [102]
Merkel cell polyomavirus	Virus	Merkel cell carcinoma [103]
Opisthorchis viverrini	Trematode	Cholangiocarcinoma [102]
Clonorchis sinensis	Helminth	Cholangiocarcinoma [102]
Schistosoma heamatobium	Trematode	Urinary bladder cancer [102]
Helicobacter pylori	Bacterium	Non-cardia gastric carcinoma, low-grade B-cell MALT gastric lymphoma [102]
Alfatoxin (B1)	Mould (Aspergillus flavus)	Liver cancer [102]
Salmonella Typhi	Bacterium	Gastric cancer in the ascending and transverse parts of the colon [14]
Salmonella Enteritidis	Bacterium	Colon carcinoma in the ascending and transverse parts of the colon [14]
Chlamydia trachomatis	Bacterium	Carcinoma of the cervix and ovaries [104,105]

ApcMin/+ control mice, suggesting that TLR4 signalling further promotes tumour growth [41,42]. Tumour tissues of mice lacking MyD88 showed lower expression of the Cox2 gene that is involved in inflammation, indicating a role of this gene in reduced tumour formation [43]. It has furthermore been shown that Cox2 inhibitors, such as aspirin, reduce colorectal cancer risk in people that overexpress the 15-PGDH gene which encodes for an enzyme that disrupts Cox2 activity [44]. Studies with germ-free and wild-type mice showed that TLR4 activation by LPS from the intestinal microbiota pool contributes to the promotion of inflammatory and inflammation-driven hepatocellular carcinoma by activating proliferative and antiapoptotic signals [19]. Findings from these animal studies were further corroborated by human studies in which enhanced expression of the TLR4/MyD88 complex was detected in 20% of colorectal patient samples [45].
subunits CdtA and CdtC, CdtB undergoes retrograde transport via the endosomes and Golgi to the endoplasmic reticulum (ER), where it undergoes ER-associated protein degradation-mediated translocation into the cytosol. The CdtB subunit is then imported in the nucleus where it induces DSBs [49]. These DSBs result in DNA damage responses (DDR) that cause G1-S cell cycle arrest in endothelial and epithelial cells, and both G1-S and G2-M cell cycle arrest in fibroblasts and apoptosis in haematopoietic cells that are

Figure 1. Bacterial outer-surface components that manipulate host cell signalling cascades involved in cellular malignancy. (A) Helicobacter pylori CagL binds β5-integrin and induces downstream signalling of Raf, MEK and ERK pathways that play a central role in H. pylori-induced gastrin production and cellular transformation. (B) H. pylori OipA activates EGFR and stimulates Akt and β-catenin signalling, causing cell proliferation. (C) H. pylori BabA binds human Lewis(b) surface epitopes which increases levels of CCL5, IL-8, CDX2 and MUC2, causing cell proliferation. (D) Fusobacterium nucleatum FadA binds to E-cadherin, which releases β-catenin that activates transcription factor Tcf/LEF which controls the transcription of genes involved in apoptosis, cell proliferation and transformation.

© EMBO
particulars sensitive to these toxins. As a result, this toxin can locally eliminate immune cells, providing an obvious advantage for the bacteria. However, prolonged exposure to sublethal doses of CDT can impair DDR sensor functionality, resulting in impaired detection of DNA damage and the accumulation of mutations. At the same time, mitogen-activated protein kinase (MAPK) activity is upregulated by activation of the neuroepithelial cell-transforming gene 1 protein (NET1) and the GTPase RhoA, which supports survival of the toxin-exposed cells (Fig 2A) [50]. As a consequence, these cells can propagate with DNA mutations and deletions that arise during the repair process, thus inducing genomic errors that underlie cancer formation.

In addition to the CDT toxins, the DNA interacting colibactin toxin has also been associated with the formation of DSBs and the introduction of genomic instability. Colibactin is secreted by E. coli strains of the phylogenetic group B2 that harbours the polyketide synthetase (pks) island [51]. Bacteria that harbour the pks genomic island are able to induce DSBs in eukaryotic cells, which results in the activation of the DNA damage checkpoint pathways ATM, CHK1 and CHK2. This then results in CDC25 and cyclin-dependent kinase 1 (CDK1)-mediated G2- to M-phase cell cycle arrest and finally in apoptotic cell death. As a side effect of their mode of action, colibactin-producing bacteria also induce incomplete DNA repair, chromosomal instability and anchorage-dependent colony formation, phenotypes that can promote cancer formation [52,53]. This is further substantiated by epidemiological studies showing that colibactin-producing E. coli bacteria appear with high prevalence in biopsies of patients with human colorectal tumours [54,55]. Moreover, colitis-susceptible IL-10-deficient mice showed increased formation of invasive carcinoma when colonized with E. coli secreting colibactin, whereas deletion of the pks genotoxic island from these E. coli strains decreased tumour multiplicity and invasion [56].

Besides toxins that contribute to carcinogenesis by introducing DSBs and genomic instability, toxins have been reported that promote carcinogenesis by inducing resistance to cell death signalling and by promoting proliferative signalling. These toxins are generally secreted by pathogenic bacteria that favour an intracellular host cell life as part of their infectious cycle and thus directly benefit from host cell survival. An example of such a toxin is the Bacteroides fragilis (B. fragilis) toxin (BFT) that binds to intestinal epithelial cell receptors and stimulates cell proliferation by cleavage of the tumour suppressor protein E-cadherin [57,58]. E-cadherin is involved in the formation of intercellular adhesion junctions in the intestinal epithelium and is involved in cellular signalling, proliferation and differentiation via activation of the β-catenin/Wnt and NF-κβ signalling pathways (Fig 2B) [59–61]. BFT induced acute and chronic colitis in C57BL/6 six mice, and colon tumours in the multiple intestinal neoplasia (Apc^{Min/+}) mouse model for human colon carcinoma. This is the same mouse model where H. pylori triggers a pro-carcinogenic multi-step inflammatory cascade that requires IL-17R, NF-κβ and STAT3 signalling in colonic epithelial cells [62,63]. These mouse experiments are further substantiated by epidemiology, indicating that infections with enterotoxigenic variants of B. fragilis, as opposed to non-toxigenic variants, are more prevalent in people with colorectal cancers. More specifically, the enterotoxigenic variant is present in only 10–20% of the healthy population, whereas 40% of CRC patients present enterotoxigenic B. fragilis in their faeces [64]. In addition to BFT, multiple biologically plausible mechanisms have been reported that explain how the vacuolating
cytotoxin A (VacA) of *H. pylori* enhances gastric cancer risk. Similar as the *H. pylori* outer membrane protein OipA, VacA activates the EGFR receptor that triggers PI3K–Akt signalling, and inactivates glycogen synthase kinase 3β [34,65]. As a result, β-catenin degradation is abolished, which promotes Tcf/Lef-controlled transcription that promotes cell growth and transformation [34,65,66]. Another *H. pylori* virulence factor, cytotoxin-associated gene A (CagA), which depends on the type IV pilus cell-surface adhesion CagL for its host cell targeting, interacts with the c-Met receptor to activate epithelial proliferation, as shown in human gastric organoids [67]. Phosphorylated and unphosphorylated CagA can also interact with a variety of host proteins involved in the MEK, ERK, NF-κB and β-catenin pathways that are all involved in host cell proliferation and cancer formation [68,69].

Bacterial effector proteins that mediate host cell transformation

Various intracellular bacterial pathogens have developed molecular mechanisms to ensure a persistent infection within the protective environment of the host cell’s interior. This requires host cell control at various steps of the intracellular infection cycle, including host cell internalization through receptor-mediated endocytosis or phagocytosis, intracellular survival and growth, and release from the infected host cell.

After host cell internalization bacterial-cargo generally routes across the endosomal system that usually terminates in a highly degradative organelle, the phagolysosome. To avoid phagolysosomal degradation, intracellular bacterial pathogens have evolved various mechanisms that can be broadly grouped into pathways where pathogenic bacteria either escape the phagosome or enter in the cytosol, and pathways where the phagosome is hijacked and tailored to the preferences of the bacteria. Cytosolic pathogens like *Listeria*, *Shigella*, *Salmonella*, and *Francisella* are known to rapidly escape the phagosome to enter the host cytosol and thereby avoid lysosomal fusion and degradation [70]. This generally involves secretion of bacterial effector proteins that induce pore formation of the endolysosomal vacuole and ensure its subsequent rupture. It has, for example, been shown that *S. flexneri* secretes the effector protein Invasion plasmid antigen B that forms ion channels in eukaryotic membranes and can mediate potassium influx and subsequent endolysosomal leakage [71]. In addition, *Listeria* can secrete the listeriolysin-O protein that induces small-membrane perforations, which causes calcium leakage from vacuoles and an increase in the vacuolar pH. Subsequently, vacuolar maturation is prevented [72,73]. *Francisella tularensis* (F. tularensis) also escapes into the host cytoplasm. After phagocytic uptake by macrophages, *F. tularensis* resides in the *Francisella*-containing phagosome (FCP) that over time matures from a phagosome with an early endosomal character into a more acidic late endosomal phagosome. Since inhibition of FCP acidification delays the escape of *F. tularensis* into the cytosol, further acidification during phagosome maturation apparently stimulates *F. tularensis* to express unique, as-yet-undefined factors to disrupt the phagosomal membrane [74–76].

In contrast to bacteria that escape the phagosome, pathogenic bacteria have been reported that hijack the phagosome to ensure a favourable replication niche. An example of such a pathogen is *Legionella pneumophila* that redirects the *Legionella*-containing phagosome to the ER via the secretion of bacterial proteins through the Dot/Icm secretion system. This rearrangement prevents lysosomal degradation and ensures *Legionella* replication within the phagosome [77,78]. Bacterial control of phagosomal maturation has also been reported for the intracellular pathogen *Salmonella*. After its host cell internalization, *Salmonella* ends up in a membrane-bound phagosome-like vacuolar compartment called the Salmo-nella-containing vacuole (SCV). The SCV then matures and acquires characteristics of late endocytic compartments including acidification. It does, however, not become bactericidal. Under control of the *Salmonella* effectors, SifA, SseJ, SseE, SseF, SopD2, and PipB2, cellular host processes are manipulated to turn the SCV into a compartment that facilitates *Salmonella* replication [79]. SifA, which is critical in this process [80], interacts with the host cell effector of the GTPase Arl8b, the SifA and kinesin-interacting protein SKIP. This interaction results in the formation of a tubular membrane network, known as *Salmonella*-induced filaments, that is essential for the supply of nutrients to the SCV and prevents endosomal antimicrobial activities due to constant mixing of antimicrobial agents with late endosomes and lysosomes [81,82].

Intracellular pathogenic bacteria that engage effector proteins during their intracellular life cycle manipulate host cell integrity in a major way. To this end, some of these infections have been epidemiologically linked to particular cancer types. Infections by two food-borne *Salmonella* serovars, *S. Typhi* and *S. Enteritidis*, are linked to gallbladder carcinoma and colon cancer, respectively [13,14]. These bacteria introduce a series of effector proteins in the host cell to take over host cell biology and—depending on host pathway affected—can contribute to cancer formation. A *Salmonella* effector protein that has been linked to colon cancer formation is the acetyltransferase AvrA that alters a variety of host-signalling pathways and modulates immune responses, apoptosis and proliferation [83,84]. AvrA modifies and stabilizes β-catenin, thereby enhancing signalling and promoting epithelial cell proliferation (Fig 3A) [85–87]. AvrA also suppresses the host immune system and its apoptotic defences via the inhibition of the c-Jun N-terminal kinase (JNK) and NF-κB signalling pathways (Fig 3A) [88]. In addition to AvrA, three *Avr* orthologues have been reported that similarly interact with essential host cell signalling pathways. However, in contrast to AvrA these orthologues have primarily only inhibitory effects on the host immune system. YopJ is expressed by *Yersinia pestis* and attenuates the ERK, p38 and JNK pathways involved in the c-Jun N-terminal kinase (JNK) and NF-κB pathway (Fig 3A). In addition, YopJ inhibits the IKK pathway [91]. YopJ can contribute to cancer formation [92]. YopJ interacts with the IKK pathway [92]. AopP of *Vibrio para-haemolyticus* can similarly inhibit host ERK, p38 and JNK signalling, but not the IKK pathway [90,91]. AopP of *Aeromonas salmonicida* interacts with the IKK pathway [92].

In epithelial cells infected with *S. typhimurium*, the effector proteins SopE, SopE2 and SopB can manipulate host Rho-family GTPases, p21-activated kinase (PAK) and ABL tyrosine kinase to activate STAT3 and alter transcription regulation, which [93] can mediate transformation of cells (Fig 3B). In addition, cellular transformation can occur through *Salmonella* effector SopE, SopE2, SopB and SptP-mediated activation of the MAPK and AKT pathways (Fig 3B) [94]. The activation of these signalling pathways enable the transformation of fibroblasts and gallbladder organoids that harbour a pre-transformed phenotype whereby the tumour suppressor gene p53 is inactivated and the MYC oncogene is overexpressed. These findings...
are supported by pathology on gallbladder carcinoma samples from Indian patients that contain both S. Typhi DNA and the pre-transformed modifications also observed in the laboratory experiments, and by an ApcMin/+ mouse model in which oral infection with S. typhimurium results in the development colorectal adenocarcinomas in a Salmonella effector-dependent manner [13].

Conclusions
Although bacterially induced host cell manipulation can promote cancer formation, it is unlikely that bacterial pathogens themselves experience any evolutionary benefit from their carcinogenic actions. Bacterially induced cancer formation is more likely an unfortunate
cancer formation will become more apparent and accepted (see also metabolites [98]. When the role of defined bacterial mechanisms in rect routes, as, for example, via the formation of carcinogenic damage and signalling pathways, but may also include more indi-
expansion of mechanisms involved in immune evasion, DNA
new and surprising mechanisms for host cell manipulation, some of cancer are uncovered, it is likely that bacteria will provide many
and further contribute to the complexity of bacterial contributions to
cancer.

While the first examples of bacterial mechanisms contributing to cancer are uncovered, it is likely that bacteria will provide many new and surprising mechanisms for host cell manipulation, some of which may participate in cell transformation. These may include an expansion of mechanisms involved in immune evasion, DNA damage and signalling pathways, but may also include more indirect routes, as, for example, via the formation of carcinogetic metabolites [98]. When the role of defined bacterial mechanisms in cancer formation will become more apparent and accepted (see also Box 1), studies on their prevention or control can help reduce
cancer formation. On this note, antibiotic therapy during cancer treatment, which is already a standard of care in patients with gastric mucosa-associated lymphoid tissue (MALT) lymphoma [99], might become a valuable addition to current tumour-targeting thera-
pies. This, however, may only help when the presence of a bacterial species is required to continuously provide signals to maintain the transformed state. Otherwise, patients diagnosed with a bacterial pathogen known to participate in cancer formation—but not neces-
sarily maintenance—may be incorporated in cancer screening programs.

Acknowledgements
This work is supported by an ERC Advanced grant and a grant from the Dutch Cancer Society KWF to JN.

Conflict of interest
The authors declare that they have no conflict of interest.

References
1. Wu S, Powers S, Zhu W, Hannun YA (2015) Substantial contribution of extrinsic risk factors to cancer development. Nature 529: 43
2. Siegel RL, Jacobs EJ, Newton CC, Feskanich D, Freedman ND, Prentice RL, jemal A (2015) Deaths due to cigarette smoking for 12 smoking-
related cancers in the United States. JAMA Intern Med 175: 1574–1576
3. Koh HK, Geller AC, Miller DR, Grossbart TA, Lew RA (1996) Prevention and early detection strategies for melanoma and skin cancer. Current status. Arch Dermatol 132: 436–443
4. Parkin DM, Mesher D, Sasieni P (2011) 13. Cancers attributable to solar (ultraviolet) radiation exposure in the UK in 2010. Br J Cancer 105 (Suppl 2): 566–569
5. Blot WJ, McLaughlin JK, Winn DM, Austin DF, Greenberg RS, Preston-Martin S, Bernstein L, Schoenberg JB, Sternhagen A, Fraumeni JF Jr (1988) Smoking and drinking in relation to oral and pharyngeal cancer. Can Res 48: 3282–3287
6. Khoury JD, Tannir NM, Williams MD, Chen Y, Yao H, Zhang J, Thompson EJ, TCGA Network, Meric-Bernstam F, Medeiros LJ et al (2013) Landscape of DNA virus associations across human malignant cancers: analysis of 3,775 cases using RNA-seq. J Virol 87: 8916–8926
7. Bosch FX, Manos MM, Munoz N, Sherman M, Jansen AM, Peto J, Schiffman MH, Moreno V, Kurman R, Shah KV (1995) Prevalence of human papillomavirus in cervical cancer: a worldwide perspective. International biological study on cervical cancer (IBSCC) Study Group. J Natl Cancer Inst 87: 796–802
8. El-Serag HB (2012) Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology 142: 1264–1273.e1
9. Neuveut C, Wei Y, Buendia MA (2010) Mechanisms of HBV-related hepatocarcinogenesis. J Hepatol 52: 594–604
10. Münger K, Baldwin A, Edwards KM, Hayakawa H, Nguyen CL, Owens M, Grace M, Huh K (2004) Mechanisms of human papillomavirus-
induced oncogenesis. J Virol 78: 11451–11460
11. Mostafa MH, Shewelta SA, O’Connor PJ (1999) Relationship between schistosomiasis and bladder cancer. Clin Microbiol Rev 12: 97–111
12. Kikuchi S (2002) Epidemiology of Helicobacter pylori and gastric cancer. Gastric Cancer 5: 6–15
13. Scanal T, Spaapen RM, Bakker JM, Pratap CB, Wu LE, Hofland I, Broeks A, Shulda VK, Kumar M, Janssen H et al (2015) Salmonella manipulation of host signalling pathways provokes cellular transformation associated with gallbladder carcinoma. Cell Host Microbe 17: 763 – 774

14. Mughini-Gras L, Schaapveld M, Kramers J, Mooij S, Neefjes-Borst EA, Pelt WV, Neefjes J (2018) Increased colon cancer risk after severe Salmonella infection. PLoS One 13: e0189721

15. Logfren JL, Whary MT, Ge Z, Muthupalani S, Taylor NS, Mobley M, Potter A, Varro A, Ibach D, Suerbaum S et al (2011) Lack of commensal flora in Helicobacter pylori-infected INS-GAS mice reduces gastritis and delays intraepithelial neoplasia. Gastroenterology 140: 210 – 220

16. Lee CW, Rickman B, Rogers AB, Ge Z, Wang TC, Fox JC (2008) Helicobacter pylori infection prevents progression of gastric cancer in hypergastrinemic INS-GAS mice. Can Res 68: 3540 – 3548

17. Vannucci L, Stepankova R, Kozakova H, Fiserova A, Rossmann P, Talska-lova-Hogenova H (2008) Colorectal carcinogenesis in germ-free and conventionally reared rats: different intestinal environments affect the systemic immunity. Int J Oncol 32: 609 – 617

18. Li Y, Kundu P, Seow SW, de Matos CT, A, Shukla V, Kumar M, Janssen H (2012) Promotion of hepatocellular carcinoma by Helicobacter pylori infection is prevalent in human colorectal carcinoma. Cell Microbiol 14: 195 – 206

19. Dapito Dianne H, Mencin A, Gwak G-Y, Pradere J-P, Jang M-K, Meder-acke I, Caviglia Jorge M, Hadyem H, Abejemi A, Bataller R et al (2012) Colorectal carcinogenesis. Infect Immun 80: 401 – 409

20. Pluschke G, Mayden J, Actman M, Levine RP (1998) Role of the capsule and the O antigen in resistance of O118:K1 Escherichia coli to complement-mediated killing. Infect Immun 62: 907 – 913

21. Abeaya M, Handa GG, Yotcher J (2003) Genetic alteration of capsule type but not PspA type affects accessibility of surface-bound complement and surface antigens of Streptococcus pneumoniae. Infect Immun 71: 218 – 225

22. Brown EJ, Hensea SW, Frank MM (1988) The role of antibody and complement in the reticuloendothelial clearance of pneumococci from the bloodstream. Rev Infect Dis 5(Suppl 4): S797 – S805

23. Winkelsink JA, Tomasz A (1978) Activation of the alternative complement pathway by pneumococcal cell wall teichoic acid. J Immunol 120: 174 – 178

24. Watson DA, Mushier DM (1990) Interruption of capsule production in Streptococcus pneumoniae serotype 3 by insertion of transposon Tn916. Infect Immun 58: 3135 – 3138

25. Geno KA, Gilbert GL, Song JY, Skovsted IC, Klugman KP, Jones C, Konrad-Lofgren JL, Whary MT, Ge Z, Muthupalani S, Taylor NS, Mobley M, Kawasaki K, Ernst RK, Miller SI (2012) Helicobacter pylori virulence factors in Helicobacter pylori infection is prevalent in human colorectal carcinoma. Cell Microbiol 14: 195 – 206

26. Kostic AD, Gevers D, Pedamallu CS, Michaud M, Duke F, Earl AM, Quesina AI, Jung J, Bass AJ, Tabernero J et al (2012) Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res 22: 292 – 298

27. Castellarin M, Warren RL, Freeman JD, Drobinski L, Krzywinski M, Strauss J, Barnes R, Watson P, Allen-Vercoe E, Moore RA et al (2012) Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res 22: 299 – 306

28. Coleman OL, Haller D (2017) Bacterial signaling at the intestinal epithelial interface in inflammation and cancer. Front Immunol 8: 1927

29. Abreu MT (2010) Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat Rev Immunol 10: 131 – 144

30. Fink SP, Yamauchi M, Nishihara R, Jung S, Kuchiba A, Wu K, Cho E, Giovannucci E, Fuchs CS, Ogino S et al (2014) Aspirin and the risk of colorectal cancer in relation to the expression of 15-hydroxyprosta- glandin dehydrogenase (15-PGDH, HPGD). Sci Transl Med 6: 233re2

31. Costa TLR, Kellog-Judrige C, Meir A, Prevost MS, Redzea A, Trol-ler M, Waksman G (2015) Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat Rev Microbiol 13: 343

© 2018 The Authors
47. Murphy JR (2011) Mechanism of diphtheria toxin catalytic domain delivery to the eukaryotic cell cytosol and the cellular factors that directly participate in the process. Toxins 3: 294 – 308

48. Rosadi F, Fiorentini C, Fabbrì A (2016) Bacterial protein toxins in human cancers. Pathog Dis 74: ftv105

49. Cortes-Bratti X, Chaves-Olarte E, Lagergard T, Thelestad M (2000) Cellular internalization of cytotoxic distending toxin from Haemophilus ducreyi. Infect Immun 68: 6903 – 6911

50. Guerra L, Carr HS, Richter-Dahlfors A, Musacci MG, Thelestad M, Frost JA, Frisan T (2008) A bacterial cytotoxin identifies the RhoA exchange factor Net1 as a key effector in the response to DNA damage. PLoS One 3: e2254

51. Putze J, Hennequin C, Nougayrede JP, Zhang W, Homburg S, Karch H, Bringr MA, Fayolle C, Carniel E, Rabsch W et al (2009) Genetic structure and distribution of the colibactin genomic island among members of the family Enterobacteriaceae. Infect Immun 77: 4696 – 4703

52. Nougayrede JP, Homburg S, Taieb F, Boury M, Brzuszkiewicz E, Gottschalk G, Buchrieser C, Hacker J, Dobrindt U, Oswald E (2006) Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science 313: 848 – 851

53. Cuevas-Ramos G, Petit CR, Marcq I, Boury M, Oswald E, Nougayrede JP (2010) Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc Natl Acad Sci USA 107: 11537 – 11542

54. Buc E, Dubois D, Sauvanet P, Paisch J, Delmas J, Darfeuille-Michaud A, Pezet D, Bonnet R (2013) High prevalence of mucosa-associated E. coli producing cyclomodulin and genotoxin in colon cancer. PLoS One 8: e56964

55. Dejea CM, Fathi P, Craig JM, Boleij A, Taddese R, Geis AL, Wu X, DeStefano Shields CE, Hechenleiner EM, Hsuo DL et al (2018) Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science 359: 592 – 597

56. Arthur JC, Perez-Chanona E, Lagergard T, Thelestad M (2012) Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338: 120 – 123

57. Wu S, Rhee Kj, Zhang M, Franco A, Sears CL (2007) Bacteroides fragilis toxin stimulates intestinal epithelial cell shedding and gamma-secretase-dependent E-cadherin cleavage. J Cell Sci 120: 1944 – 1952

58. Sears CL (2009) Enterotoxigenic Bacteroides fragilis: a rogue among symbiotics. Cln Microbiol Rev 22: 349 – 369, Table of Contents

59. Wu S, Lim KC, Huang J, Saidi RF, Sears CL (1998) Bacteroides fragilis enterotoxin cleaves the zonula adherens protein, E-cadherin. Proc Natl Acad Sci USA 95: 14979 – 14984

60. Wu S, Powell J, Mathioudakis N, Kane S, Fernandez E, Sears CL (2004) Bacteroides fragilis enterotoxin induces intestinal epithelial cell secretion of interleukin-8 through mitogen-activated protein kinases and a tyrosine kinase-regulated nuclear factor-kappaB pathway. Infect Immun 72: 5832 – 5839

61. Nelson WJ, Nusse R (2004) Convergence of Wnt, beta-catenin, and cadherin pathways. Science 303: 1483 – 1487

62. Wu S, Rhee Kj, Albesiano E, Rabizadeh S, Wu X, Yen HR, Hsuo DL, Brancati FL, Wick E, McAllister F et al (2009) A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med 15: 1016 – 1022

63. Rhee Kj, Wu S, Wu X, Hsuo DL, Karim B, Franco AA, Rabizadeh S, Golub JE, Mathews LE, Shin J et al (2009) Induction of persistent colitis by a human commensal, enterotoxigenic Bacteroides fragilis, in wild-type C57BL/6 mice. Infect Immun 77: 1708 – 1718

64. Toprak NU, Yagci A, Gulluglu BM, Akin ML, Demirkalem P, Celenk T, Soylertir G (2006) A possible role of Bacteroides fragilis enterotoxin in the aetiology of colorectal cancer. Clin Microbiol Infect 12: 782 – 786

65. Nakayama M, Hisatsune J, Yamasaki E, Isomoto H, Kurazono H, Hatakayama M, Azuma T, Yamaoka Y, Yahiru K, Moss J et al (2009) Helicobacter pylori VacA-induced inhibition of GSK3 through the PI3K/Akt signaling pathway. J Biol Chem 284: 1612 – 1619

66. Sokolova O, Bozko PM, Naumann M (2008) Helicobacter pylori suppresses glycogen synthase kinase 3beta to promote beta-catenin activity. J Biol Chem 283: 29867 – 29874

67. McCracken KW, Cata EM, Crawford FM, Sinagoga KL, Schumacher M, Rockich BE, Tsai YH, Mayhew CN, Spence JR, Zavros Y et al (2014) Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature 516: 400 – 404

68. Xu X, Liu Z, Fang M, Yu H, Liang X, Li X, Liu C, Chen C, Jia J (2012) Helicobacter pylori CagA induces ornithine decarboxylase upregulation via Src/MEK/ERK/c-Myc pathway: implication for progression of gastric diseases. Exp Biol Med (Maywood) 237: 435 – 441

69. Wang F, Meng W, Wang B, Qiao L (2014) Helicobacter pylori-induced gastric inflammation and gastric cancer. Cancer Lett 345: 196 – 202

70. Fredlund J, Enninga J (2014) Cytosplasmic access by intracellular bacterial pathogens. Trends Microbiol 22: 128 – 137

71. Senerovic L, Tsunoda SP, Goosmann C, Brinkmann V, Zychlinsky A, Meissner F, Kolbe M (2012) Spontaneous formation of IPαβ ion channels in host cell membranes reveals how Shigella induces pyroptosis in macrophages. Cell Death Dis 3: e384

72. Henry R, Shaughnessy L, Loessner MJ, Alberti-Segui C, Higgins DE, Swanson JA (2006) Cytosolin-dependent delay of vacuole maturation in macrophages infected with Listeria monocytogenes. Cell Microbiol 8:107 – 119

73. Shaughnessy LM, Lipp P, Lee K-D, Swanson JA (2007) Localization of protein kinase C ε to macropage vacuoles perforated by Listeria monocytogenes cytolsin. Cell Microbiol 9: 1695 – 1704

74. Santic M, Asare R, Skrobonja I, Jones S, Abu Kwaik Y (2008) Acquisition of the vacuolar ATPase proton pump and phagosomes acidification are essential for escape of Francisella tularensis into the macrophage cytosol. Infect Immun 76: 2671 – 2677

75. Oznac M, Marecic V, Abu Kwaik Y, Santic M (2015) The divergent intracellular lifestyle of Francisella tularensis in evolutionarily distinct host cells. PLoS Pathog 11: e1005208

76. Chong A, Wehrly TD, Nair V, Fischer ER, Barker JR, Klose KE, Celii J (2008) The early phagosomal stage of Francisella tularensis determines optimal phagosomal escape and Francisella pathogenicity island protein expression. Infect Immun 76: 5488 – 5499

77. Nagai H, Kagan JC, Zhu X, Kahn RA, Roy CR (2002) A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes. Science 295: 679 – 682

78. Tinley LG, Harb OS, Connelly PS, Roeb Roy CR (2001) How the parasitic bacterium Legionella pneumophila modifies its phagosome and transforms it into rough ER: implications for conversion of plasma membrane to the ER membrane. J Cell Sci 114: 4637 – 4650

79. Rajashekar R, Liebl D, Chikabballi D, Liss V, Hensel M (2014) Live cell imaging reveals novel functions of Salmonella enterica SPI2-T3SS effector proteins in remodeling of the host cell endosomal system. PLoS One 9: e115423
80. Beuzon CR, Meresse S, Unsworth KE, Ruiz-Albert J, Garvis S, Waterman SR, Ryder TA, Boucrot E, Holden DW (2000) Salmonella maintains the integrity of its intracellular vacuole through the action of Sifa. EMBO J 19: 3235 – 3249

81. Sindhwani A, Arya SB, Kaur H, Jagga D, Tuli A, Sharma M (2017) Salmonella exploits the host endolysosomal tethering factor HOPS complex to promote its intravacuolar replication. PLoS Pathog 13: e1006700

82. Stein MA, Leung KY, Zwick M, Garcia-del Portillo F, Finlay BB (2016) Inhibition of the mitogen-activated protein kinase kinase superfamily by a Yersinia effector. Cell Host Microbe 20: 323–324

83. Lu R, Wu S, Zhang YG, Xia Y, Zhou Z, Kato I, Dong H, Bissonnette M, Sun J (2016) Salmonella protein AvrA activates the STAT3 signaling pathway in colon cancer. Neoplasia 18: 307 – 316

84. Lu R, Bosland M, Xia Y, Zhang YG, Kato I, Sun J (2017) Presence of Salmonella AvrA in colorectal tumor and its precursor lesions in mouse intestine and human specimens. Oncotarget 8: 55104 – 55115

85. Lu R, Wu S, Zhang YG, Xia Y, Liu X, Zheng Y, Chen H, Schaefer KL, Zhou Z, Bissonnette M et al (2014) Enteric bacterial protein AvrA promotes colonic tumorigenesis and activates colonic beta-catenin signaling pathway. Oncogenesis 3: e105

86. Ye Z, Petrov EO, Boone D, Claud EC, Sun J (2007) Salmonella effector AvrA regulation of colonic epithelial cell inflammation by deubiquitination. Am J Pathol 171: 882 – 892

87. Sun J, Hobert ME, Rao AS, Neish AS, Madara JL (2004) Bacterial activation of beta-catenin signaling in human epithelia. Am J Physiol Gastrointest Liver Physiol 287: G220 – G227

88. Jones RM, Wu H, Wentworth C, Luo L, Collier-Hyams L, Neish AS (2008) Salmonella AvrA coordinates suppression of host immune and apoptotic defenses via JNK pathway blockade. Cell Host Microbe 3: 233 – 244

89. Orth K, Palmer LE, Bao ZQ, Stewart W, Rudolph AE, Bliska JB, Dixon JE (1999) Inhibition of the mitogen-activated protein kinase kinase superfamily by a Yersinia effector. Science 285: 1920 – 1923

90. Trostky JE, Mukherjee S, Burdette DL, Roberts M, McCarter L, Siegel RM, Orth K (2004) Inhibition of MAPK signaling pathways by VopA from Vibrio parahaemolyticus. J Biol Chem 279: 51953 – 51957

91. Trostky JE, Li Y, Mukherjee S, Keitany C, Ball H, Orth K (2007) VopA inhibits ATP binding by acetylylating the catalytic loop of MAPK kinases. J Biol Chem 282: 34299 – 34305

92. Fehr D, Casanova C, Liverman A, Blazkova H, Orth K, Dobelaeere D, Frey J, Burr SE (2006) AopP, a type III effector protein of Aeromonas salmonicida, inhibits the NF-kappaB signalling pathway. Microbiology 152: 2809 – 2818

93. Hannemann S, Gao B, Galán JE (2013) Salmonella modulation of host cell gene expression promotes its intracellular growth. PLoS Pathog 9: e1003668

94. Kuijl C, Savage ND, Marsman M, Tuin AW, Janssen L, Egan DA, Ketema M, van den Nieuwendijk R, van den Eeden SJ, Geluk A et al (2007) Intracellular bacterial growth is controlled by a kinase network around PKB/AKT1. Nature 450: 725 – 730

95. Kuo SC, Hu YY, Liu CJ, Lee YT, Chen YT, Chen TL, Chen TJ, Fung CP (2013) Association between tuberculosis infections and non-pulmonary malignancies: a nationwide population-based study. Br J Cancer 109: 229

96. Melenotte C, Million M, Audoly G, Corse A, Dutronc H, Roland G, Dekel M, Moreno A, Cammillieri S, Carriero MP et al (2016) B-cell non-Hodgkin lymphoma linked to Coxella burnetii. Blood 127: 113 – 112

97. Fulbright LE, Eilermann M, Arthur JC (2017) The microbiome and the hallmarks of cancer. PLoS Pathog 13: e1006480

98. Louis P, Hold GL, Flint HJ (2014) The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 12: 661

99. Wundisch T, Thiede C, Morgan A, Dimpflie A, Gunther A, Liu H, Ye H, Du MQ, Kim TD, Bayerdorffer E et al (2009) Long-term follow-up of gastric MALT lymphoma after Helicobacter pylori eradication. J Clin Oncol 23: 8018 – 8024

100. Dmitrieva O, Grivennikov SI (2017) Microbiota and cancer: a complex equation with a lot of exciting unknowns. Semin Immunol 32: 1 – 2

101. Erdman SE, Poutahidis T (2015) Gut bacteria and cancer. Biochem Biophys Acta 1856: 86 – 90

102. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (2012) Biological agents. Volume 100 B. A review of human carcinogens. IARC Monogr Eval Carcinog Risks Hum 100: 1 – 441

103. Liu W, MacDonald M, You J (2016) Merkel cell polyomavirus infection and Merkel cell carcinoma. Curr Opin Virol 20: 20 – 27

104. Zhu H, Shen Z, Luo H, Zhang W, Zhu X (2018) Chlamydia trachomatis infection-associated risk of cervical cancer: a meta-analysis. Medicine (Baltimore) 95: e3077

105. Trabert B, Waterboer T, Idahl A, Brenner N, Brinton LA, Butt J, Coburn SB, Hartge P, Hufnagel K, Inturrisi F et al (2018) Antibodies against Chlamydia trachomatis and ovarian cancer risk in two independent populations. J Natl Cancer Inst 111: djy084

License: This is an open access article under the terms of the Creative Commons Attribution 4.0 License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.