Disruption of the Orion molecular core 1 by wind from the massive star θ¹ Orionis C

C. Pabst1, R. Higgins2, J. R. Goicoechea3, D. Teyssier4, O. Berne5, E. Chambers6, M. Wolfire7, S. T. Suri2, R. Guesten8, J. Stutzki2, U. U. Graf2, C. Risacher8,9 & A. G. G. M. Tielens1*

Massive stars inject mechanical and radiative energy into the surrounding environment, which stirs it up, heats the gas, produces cloud and intercloud phases in the interstellar medium, and disrupts molecular clouds (the birth sites of new stars4,5). Stellar winds, supernova explosions and ionization by ultraviolet photons control the lifetimes of molecular clouds3–7. Theoretical studies predict that momentum injection by radiation should dominate that by stellar winds5, but this has been difficult to assess observationally. Velocity-resolved large-scale images in the fine-structure line of ionized carbon ([C ii]) provide an observational diagnostic for the radiative energy input and the dynamics of the interstellar medium around massive stars. Here we report observations of a one-square-degree region (about 7 parsecs in diameter) of Orion molecular core 1—the region nearest to Earth that exhibits massive-star formation—at a resolution of 16 arcseconds (0.03 parsecs) in the [C ii] line at 1.9 terahertz (158 micrometres). The results reveal that the stellar wind originating from the massive star θ¹ Orionis C has swept up the surrounding material to create a ‘bubble’ roughly four parsecs in diameter with a 2,600-solar-mass shell, which is expanding at 13 kilometres per second. This finding demonstrates that the mechanical energy from the stellar wind is converted very efficiently into kinetic energy of the shell and causes more disruption of the Orion molecular core 1 than do photo-ionization and evaporation or future supernova explosions.

We surveyed a one-square-degree region of the Orion molecular cloud, centred on the Trapezium cluster (θ¹ Orionis) and the Orion molecular core 1 (OMC-1) behind it. The survey was conducted in the 1.9-THz (158-μm) [C ii] fine-structure line using the 14-pixel, heterodyne, high-spectral-resolution spectrometer upGREAT10 on board the Stratospheric Observatory For Infrared Astronomy (SOFIA; Methods). In Fig. 1 we compare the [C ii] integrated intensity map with the mid-infrared and far-infrared maps that result from ultraviolet-pumped fluorescence by polycyclic aromatic hydrocarbon molecules and thermal dust continuum emission, respectively. Each map clearly shows the interaction of the Trapezium cluster with the dense molecular core (centre), the large, wind-blown bubble associated with the Orion Veil (south) and the bubble created by the B stars illuminating the reflection nebulae NGC 1973, NGC 1975 and NGC 1977 (north). Here, we focus on the prominent Veil bubble associated with the stellar wind from θ¹ Ori C. This shell consists of neutral atomic H gas and is very prominent in the [C ii] map; however, there is no detectable counterpart in carbon monoxide, H₂ or other molecular tracers because the shell is too tenuous for these species to persist (for example, H₂/He < 2 × 10⁻⁴ and C/C⁺ = 10⁻⁴)10,11. Likewise, the complex pattern of absorption and emission features and the presence of multiple (foreground) components preclude recognition of the large-scale structure of the shell in 21-cm H I studies12. X-ray observations13 have shown that this bubble is filled with tenuous (about 1 cm⁻³) hot (2 × 10⁶ K) gas created by the strong stellar wind (mechanical luminosity, \(L_v = 8 \times 10^{35} \text{erg s}^{-1} \)) from the most massive star in the region, θ¹ Ori C (Extended Data Fig. 5).

Although each infrared image (Fig. 1) traces the morphology of the Veil, only [C ii] probes the kinematics, because it can use the Doppler effect to measure gas velocities. The high spectral resolution of upGREAT allows a detailed investigation of the dynamics of the gas, revealing the kinematic signature of an expanding half-shell as, with increasing velocity, it displaces further away from the centre of the projected shell (Extended Data Fig. 6). The kinematic data demonstrate good agreement between the observed velocity structure and a simple model of a half-shell expanding at 13 km s⁻¹ towards us while expansion into OMC-1 is stopped by its high density (\(n = 10^{4}–10^{5} \text{ cm}^{-3} \); Fig. 2, Extended Data Fig. 7). The small velocity difference (about 1 km s⁻¹ towards us) between C⁺ and CO emission from the OMC-1 gas represents a slow photo-evaporative flow of atomic gas (H and C⁺) into the bubble, where H is then ionized by extreme-ultraviolet (energy \(E > 13.6 \text{ eV} \)) photons from θ¹ Ori C before flowing into the cavity at about 17 km s⁻¹ (ref. 10). We determined the mass of gas in the Veil to be between 1,700 M₀ and 3,400 M₀, where M₀ is the mass of the Sun, with a most likely value of 2,600 M₀ from an analysis of the far-infrared dust emission (Methods). Analysis of the weak [12C ii] hyperfine line component that is apparent after averaging over the shell results in a very similar value. This mass estimate is about twice the mass derived from the H I column densities observed along pencil beams towards the Trapezium cluster, which probably reflects known fluctuations in the shell thickness in these directions. The Veil mass that we derive is comparable to the mass of gas in OMC-1 (about 3,000 M₀)17 and to the mass of the (newly formed) stellar cluster in OMC-1 (about 1,800 M₀)18, and greatly exceeds the mass of ionized gas (2 M₀ in the dense Hii regions and 20 M₀ in total)19 and the mass of the X-ray-emitting hot plasma (0.07 M₀)19, (Extended Data Table 1). A schematic of the region is shown in Fig. 3.

Adopting a homogeneous cloud and a size of 2 pc, the mass of swept-up material corresponds to an initial H₂ density of \(1.4 \times 10^6 \text{ cm}^{-3} \). The radius of the shell is \(R(t) = (125/\sqrt{\pi t)^{3/5}} \), where \(\rho_0 \) is the initial density and \(t \) is time20, from which we derive an age of 0.2 Myr. This age is in the range of previous (uncertain) estimates of \(3 \times 10^4–10^6 \text{ yr} \) based on the expansion of the H II region and on the ages of the protoplanetary disks in the Orion nebula and of the stars in the Orion nebula cluster21; however, it exceeds the typical dynamical lifetime expected for Trapezium-type multiple systems, 10–50 kyr (ref. 22). The lifetime of the bubble that we derived (0.2 Myr) and the mass loss rate of θ¹ Ori C imply a total injected stellar mass of 0.08 M₀ close to the mass of the hot plasma estimated from X-ray observations23.

We compare the mass, energy and luminosity of the shell to those of other relevant components in Extended Data Table 1. The total kinetic energy of the expanding half-shell is roughly \(4 \times 10^{48} \text{ erg} \), comparable to the total mechanical energy delivered by the wind over the age...
Fig. 1 | Three infrared images of the Orion region of massive star formation. Each of these images shows very similar morphology but in different tracers of the dust and gas in the molecular cloud. a. The dust continuum, observed by the Herschel Space Observatory in far-infrared (blue; using PACS [photodetector array camera and spectrometer]) and sub-millimetre (red; using SPIRE [spectral and photometric imaging receiver]) emission, measures the conversion of far-ultraviolet radiation from massive stars to dust emission in the photodissociation region. b. The integrated 1.9-THz (158-μm) \([\text{C} \, \text{ii}]\) emission, observed by the upGREAT instrument on board SOFIA, traces the cooling and kinematics of the gas in the photodissociation region. c. The 8-μm polycyclic aromatic hydrocarbon emission, observed by the IRAC instrument on board the Spitzer Space Telescope, outlines the far-ultraviolet-illuminated surfaces of the photodissociation region. A comparison between the three panels does not do justice to the richness of the \([\text{C} \, \text{ii}]\) data: we can use the roughly 2,200,000 spectra that we obtained to turn this two-dimensional image into a three-dimensional one, enabling a detailed study of the kinematics of the gas.

Fig. 2 | Position–velocity diagrams of the \([\text{C} \, \text{ii}]\) emission along selected cuts across the Veil. a. The Veil bubble in the integrated intensity of the 1.9-THz \([\text{C} \, \text{ii}]\) emission. The red lines delineate the region over which the spectra were collapsed to produce the east–west cut shown in b and c. The origin (yellow star) corresponds to the position of \(0^\circ \) Ori C; right ascension RA(J2000) = 5 h 35 min 16.46 s and declination dec.(J2000) = −5° 23′ 22.8″. The orange star indicates the position of an unrelated star, \(0^\circ \) Ori A: RA(J2000) = 5 h 35 min 22.90 s and dec.

(b) Position–velocity diagram of the \([\text{C} \, \text{ii}]\) emission in the east–west cut indicated in a. The velocity shown is measured in the frame of the local standard of rest. Other horizontal and vertical cuts yield similar diagrams (Extended Data Fig. 7).

c. A simple model of a spherical half-shell expanding at a constant velocity of 13 km s\(^{-1}\) (red dashed lines) is fitted to the data in b. All of the observational position–velocity diagrams are in good agreement with this simple model.
the polycyclic aromatic hydrocarbon emission features that so prominently outline the shell (Fig. 1).

The velocity of the shell that we derived (13 km s⁻¹) exceeds the escape velocities of OMC-1 (about 2 km s⁻¹) and the Orion molecular cloud A (about 8 km s⁻¹). Eventually, the wind bubble will break open and vent the hot gas and the ionized gas into the surrounding, tenuous Orion–Eridanus superbubble (Methods). The coating, neutral shell will then dissolve into the hot plasma. Supernovae typically occur every 1 Myr in the Orion OB 1a and 1b sub-associations (see Methods section 'Orion' for details of the sub-associations) and sweep up all the 'loose' material that has been deposited in the superbubble by bubbles such as the Veil bursting and transport it to the wall of the superbubble. In essence, mechanical energy from a supernova (about 10²⁵ erg) will go into rejuvenation of the hot gas in the superbubble and transportation of the swept-up gas towards its walls; very little will couple to the Orion molecular clouds A and B. Barnard’s loop may be the latest episode in this process. Estimates of the proper motion of θ¹ Ori C with respect to the molecular cloud range from about 5 km s⁻¹ to 15 km s⁻¹, with the latest evidence pointing towards the lower value. Therefore, θ¹ Ori C will move about 25 pc away from the cloud before it explodes as a supernova. Hence, like the Orion OB 1a and 1b stars, as a supernova θ¹ Ori C will not affect the evolution of its ‘birth’ core, OMC-1. Three-dimensional hydrodynamic simulations reveal that, from a theoretical perspective, stellar winds are key to the regulation of star formation through their effect on molecular clouds. Here we have analysed one specific case of the interaction of a wind from a massive star with its environment; whether our conclusions apply more generally still needs

Fig. 3 | Sketch of the structure of the Orion stellar–wind bubble. The stellar wind (black arrows) from the massive star θ¹ Ori C drives a shock (the reverse shock; purple-grey) into the surrounding gas which sweeps up the gas. At the same time, this swept-up gas drives another shock (the reverse shock; purple-grey) into the stellar wind, which converts the kinetic motion of the stellar wind into thermal energy, creating a hot (about 2 × 10⁶ K), tenuous (about 1 cm⁻³), X-ray-emitting plasma (yellow). Adiabatic expansion of this hot gas has swept up the surrounding gas into a slowly expanding (13 km s⁻¹) bubble. This excavation turns the [C ii] line and the far-infrared and CO fluorescence emission (Fig. 1a, c). Far-ultraviolet photons will ionize carbon and heat the largely neutral gas in the surface layers of the photodissociation region to about 200 K, causing a gentle (1 km s⁻¹) photo-evaporative flow (small red double arrows). This gas cools through the 1.9-THz [C ii] line. On a much larger scale (about 350 pc), the Orion molecular cloud (dark blue) and the Veil bubble (red) are embedded in the Orion–Eridanus superbubble (blue-grey; not to scale).

The velocity of the shell that we derived (13 km s⁻¹) exceeds the escape velocities of OMC-1 (about 2 km s⁻¹) and the Orion molecular cloud A (about 8 km s⁻¹). Eventually, the wind bubble will break open and vent the hot gas and the ionized gas into the surrounding, tenuous Orion–Eridanus superbubble (Methods). The coating, neutral shell will then dissolve into the hot plasma. Supernovae typically occur every 1 Myr in the Orion OB 1a and 1b sub-associations (see Methods section 'Orion' for details of the sub-associations) and sweep up all the 'loose' material that has been deposited in the superbubble by bubbles such as the Veil bursting and transport it to the wall of the superbubble. In essence, mechanical energy from a supernova (about 10²⁵ erg) will go into rejuvenation of the hot gas in the superbubble and transportation of the swept-up gas towards its walls; very little will couple to the Orion molecular clouds A and B. Barnard’s loop may be the latest episode in this process. Estimates of the proper motion of θ¹ Ori C with respect to the molecular cloud range from about 5 km s⁻¹ to 15 km s⁻¹, with the latest evidence pointing towards the lower value. Therefore, θ¹ Ori C will move about 25 pc away from the cloud before it explodes as a supernova. Hence, like the Orion OB 1a and 1b stars, as a supernova θ¹ Ori C will not affect the evolution of its ‘birth’ core, OMC-1. Three-dimensional hydrodynamic simulations reveal that, from a theoretical perspective, stellar winds are key to the regulation of star formation through their effect on molecular clouds. Here we have analysed one specific case of the interaction of a wind from a massive star with its environment; whether our conclusions apply more generally still needs
to be assessed. 1.9-THz [C ii] observations with SOFIA are ideal for such studies.

Galaxy formation and evolution result from the combined effects of a complicated set of physical processes that affect the baryons in a ΛCDM (Lambda cold dark matter) cosmology dominated by dark matter. In particular, stellar feedback controls the evolution of galaxies. Stellar winds from O-type massive stars are very effective at disrupting molecular cores and star formation. Because energy input from stellar wind is dominated by the most massive stars in a cluster whereas that from supernovae is dominated by the more numerous B-type stars, the predominance of the disruption caused by stellar winds has a direct effect on cosmological simulations. As our study shows, relevant stellar feedback processes act on much smaller scales (0.2–2 pc) than are resolved by hydrodynamic studies of the evolution of the interstellar medium (more than 2 pc) or cosmological simulations (more than 50 pc)^2,4–7. 1.9-THz [C ii] studies on the dynamic interaction of massive stars through stellar winds with nearby molecular clouds can provide validation for theoretical studies.

Online content
Any methods, additional references, Nature Research reporting summaries, source data, statements of data availability and associated accession codes are available at https://doi.org/10.1038/s41586-018-0844-1.

Received: 20 August 2018; Accepted: 5 December 2018; Published online 7 January 2019.

1. McKee, C. F. & Ostriker, J. P. A theory of the interstellar medium: three components regulated by supernova explosions in an inhomogeneous substrate. Astrophys. J. 218, 146–169 (1977).

2. Kim, C.-G., Ostriker, E. C. & Kim, W.-T. Three-dimensional hydrodynamic simulations of multiphase galactic disks with star formation feedback. I. Regulation of star formation rates. Astrophys. J. 776, 1 (2013).

3. Williams, J. P. & McKee, C. F. The galactic distribution of OB associations in molecular clouds. Astrophys. J. 476, 166–183 (1997).

4. Wareing, C. J., Pittard, J. M., Wright, N. J. & Falle, S. A. E. G. A new mechanical stellar wind feedback model for the Rosette nebula. Mon. Not. R. Astron. Soc. 475, 3596–3612 (2018).

5. Naiman, J. P., Ramirez-Ruiz, E. & Lin, D. N. C. Stellar wind retention and expulsion in massive star clusters. Mon. Not. R. Astron. Soc. 478, 2794–2811 (2018).

6. Peters, T. et al. The SILCC project – IV. Impact of dissociating and ionizing radiation on the interstellar medium and H2 emission as a tracer of the star formation rate. Mon. Not. R. Astron. Soc. 466, 3293–3308 (2017).

7. Dale, J. E., Ngoumou, J., Ercolano, B. & Bonnell, I. A. Before the first supernova: combined effects of HII regions and winds on molecular clouds. Mon. Not. R. Astron. Soc. 442, 694–712 (2014).

8. Haid, S. et al. The relative impact of photoionizing radiation and stellar winds on different environments. Mon. Not. R. Astron. Soc. 478, 4799–4815 (2018).

9. Risacher, C. et al. The upGREAT 1.9 THz multi-pixel high resolution spectrometer for the SOFIA observatory. Astron. Astrophys. 595, A34 (2016).

10. Welty, D. E., Xu, R. & Wong, T. Interstellar H I and H2 in the Magellanic clouds: an expanded sample based on ultraviolet absorption-line data. Astrophys. J. 745, 173 (2012).

11. Jenkins, E. B. & Tripp, T. M. The distribution of thermal pressures in the diffuse, cold neutral medium of our Galaxy. II. An expanded survey of interstellar [C II] fine-structure excitations. Astrophys. J. 734, 65 (2011).

12. van der Werf, P. P., Goss, W. M. & O’Dell, C. R. Tearing the Veil: interaction of the Orion nebula with its neutral environment. Astrophys. J. 762, 101–126 (2013).

13. Güdel, M. et al. Million-degree plasma pervading the extended Orion nebula. Science 319, 309–312 (2008).

14. Howarth, I. D. & Prinja, R. K. The stellar winds of 203 Galactic O stars: a quantitative ultraviolet survey. Astrophys. J. Suppl. Ser. 69, 527–592 (1989).

15. Stahl, O. et al. Phase-locked photospheric and stellar-wind variations of ζ Orionis C. Astron. Astrophys. 312, 539–548 (1996).

16. O’Dell, C. R., Ferland, G. J. & Perinbere, M. Structure and physical conditions in the Huygens region of the Orion nebula. Mon. Not. R. Astron. Soc. 464, 4835–4857 (2017).

17. Buckle, J. V. et al. The JCMT legacy survey of the Gould belt: mapping C18O and C18O in Orion A. Mon. Not. R. Astron. Soc. 422, 521–541 (2012).

18. Hillenbrand, L. A. On the stellar population and star-forming history of the Orion nebula cluster. Astron. J. 113, 1733–1768 (1997).

19. Wilson, T. L., Filipps, L., Codella, C., Reich, W. & Reich, P. Kinematics and electron temperatures in the core of Orion A. Astron. Astrophys. 327, 1177–1184 (1997).

20. Weaver, R., McCray, R., Castor, J., Shapiro, P. & Moore, R. Interstellar bubbles. II. Structure and evolution. Astrophys. J. 218, 377–395 (1977).

21. Henney, W. J. & O’Dell, C. R. A Keck high-resolution spectroscopic study of the Orion nebula proplyds. Astron. J. 118, 2350–2368 (1999).

22. Allen, C., Costero, R., Ruelas-Mayorga, A. & Sanchez-L. J. On the dynamical evolution of the Orion Trappism. Mon. Not. R. Astron. Soc. 466, 4937–4953 (2017).

23. Flower, D. R. & Pineau Des Forêts, G. Excitation and emission of H2, CO and H2O molecules in interstellar shock waves. Mon. Not. R. Astron. Soc. 406, 1745–1758 (2010).

24. Ochsendorf, B., Brown, A., Bally, J. & Tielens, A. G. M. Nested shells reveal the rejuvenation of the Orion-Eridanus superbubble. Astrophys. J. 810, 111 (2015).

25. Kraus, S. et al. Tracing the young massive high-eccentricity binary system ζ Orionis C through passerin gastron. Astron. Astrophys. 497, 195–207 (2009).

26. Gatto, A. et al. The SILCC project – III. Regulation of star formation and outflows by stellar winds and supernovae. Mon. Not. R. Astron. Soc. 466, 1903–1924 (2017).

27. Naab, T. & Ostriker, J. P. Theoretical challenges in galaxy formation. Annu. Rev. Astron. Astrophys. 55, 59–109 (2017).

Acknowledgements We acknowledge the work during the upGREAT square-degree survey of Orion of the USRA and NASA staff of the Armstrong Flight Research Center in Palmdale and of the Ames Research Center in Mountain View, and the Deutsches SOFIA Institut, Research on the interstellar medium at Leiden Observatory is supported through a Spinoza award. We thank the ERC and the Spanish MCIU for funding support under grants ERC-2013-Syg-610256-NANOCOSMOS and AYA2017-85111-P, respectively.

Reviewer information Nature thanks J. Fischer, L. Lopez and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author contributions J.R.G., D.T., O.B., M.W. and A.G.G.M.T. conceived the Orion square-degree survey and wrote the proposal for SOFIA. R.H., D.T., E.C. and J.R.G. optimized the observing strategy for the survey. R.G., J.S., U.U.G., R.H., C.R. and C.P. carried out the observations. E.C. was responsible for the data reduction. C.P. was responsible for the analysis and interpretation of the [C II] and Herschel data. S.T.S. compared the [C II] data with molecular observations. A.G.G.M.T. provided overall guidance and wrote the paper, with contributions from all co-authors.

Competing interests The authors declare no competing interests.

Additional information Extended data is available for this paper at https://doi.org/10.1038/s41586-018-0844-1.

Reprints and permissions information is available at http://www.nature.com/reprints.

Correspondence and requests for materials should be addressed to A.G.G.M.T.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
uncertainty in the distance of OMC-1 does not affect our main results regarding and the Veil region, the distance is well determined at 414. The upGREAT receiver is a heterodyne array receiver with 21 pixels. Two hexagonal arrays each with seven pixels are found in the low-frequency array (LFA), covering a frequency range from 1.81 THz to 2.08 THz. The other seven pixels are found in the high-frequency array (HFA), in a similar hexagonal pattern. The HFA is tuned primarily to the atomic oxygen transition at 4.744 THz. A heterodyne receiver achieves a spectral resolving power of up to $\nu_2/\Delta \nu_1 = 10^7$ by mixing a locally generated monochromatic signal close in frequency to the astronomical signal of interest with the broadband sky signal. The beat tone between the two signals contains the astronomical signal, but at microwave frequencies that can be amplified and sampled using microwave (GHz) electronic components. The original data at a resolution of about 0.04 km s$^{-1}$ was rebinned to 0.2 km s$^{-1}$ to increase the signal-to-noise ratio.

The data was collected using a special array on-the-fly (OTF) mapping mode. This differs from a classical OTF mode in which a single pixel is traced through the map dimensions and a fully sampled map is generated. In the array OTF observing mode, we use the hexagonal array geometry to generate a fully sampled map. With this approach, each receiver pixel does not cover every map point, but we can map larger regions in the same time as using a classical OTF approach. However, the signal-to-noise ratio is lower and there is some loss of pixel redundancy.

The full map region was broken into 78 square tiles of length 435.6 arcsec (Extended Data Fig. 1). Each tile took 22 min to complete. A tile is made up of 84 scan lines separated by 5.2 arcsec. Each tile is covered twice, once in the X and once in the Y direction. Each OTF scan line is made up of 84 dumps of 0.3 s. This returns root-mean-square noise of $T_{\text{mb}} = 1.14$ K per map pixel for a spectral resolution of 0.3 km s$^{-1}$.

The raw data are recorded by a digital spectrometer and come in the form of integer counts per spectrometer channel. These values are converted to antenna temperature using internal hot and cold reference measurements, which establish a scale for the sky measurements. The observation of detected off positions, free from C II emission, is required to remove instrumental artefacts from the data.

The next step in the calibration process is to establish the atmospheric transmission and apply it to the astronomical signal. Although SOFIA flies above most of the atmosphere, there are some atmospheric features that need to be considered in the final calibration. The atmospheric emission is determined by fitting an atmospheric model to the off minus internal hot data. The process of atmospheric deghosting is described in the details elsewhere.

Once the atmospheric transmission is applied to each spectrum, a channel map can be generated. In total 2.2 million spectra were measured. This dataset is converted to a map by defining a map grid; each map pixel is then generated by the distance-weighted sum of all spectra within a given distance of the pixel centre. This begins an iterative process whereby map artefacts are identified and then a correction is applied to the individual spectra and the map is regenerated.

The data quality from the upGREAT instrument was exceptional, with 90% of spectra requiring no post-processing. Nominal, problematic spectra could be dropped while still leaving enough for a completely sampled map; however, with the array OTF mapping mode this may not be the case. To recover problematic spectra we developed a spline correction method. The classic approach in heterodyne data processing would be to use a polynomial to remove ‘baseline’ artefacts from the spectra. However, this can be problematic and is difficult to constrain.

We adopted an approach first implemented in the Herschel/HIFI instrument, which used a catalogue of splines generated from data with no astronomical signal. These splines can then be scaled to astronomical data to more effectively remove the baseline. Representative spectra are shown in Extended Data Fig. 2.

Orion. Orion is the nearest site of massive star formation and has long been used to study the interaction of massive stars with molecular clouds. The region contains two molecular clouds, Orion molecular cloud A and B. OMC-1 is one of four cores that have condensed out in the so-called integral-shaped filament that forms the densest part of the Orion molecular cloud A. The distance to the Orion molecular cloud A is known to vary by about 30 pc on a scale of 50 pc, but on the scale of the Orion nebula cluster, the H II region, M42 (the Orion nebula) and the Veil region, the distance is well determined at 414 ± 7 pc. This small uncertainty in the distance of OMC-1 does not affect our main results regarding mass or kinetic energy.

The Orion OB associations represent the effects of the ongoing formation (massive) stars in this region and their interaction with the environment over 10 Myr. The oldest sub-associations, Orion OB 1a and OB 1b, consist of the stars in the Orion Belt and just north of it (see Extended Data Figs. 3 and 4 for an overview of the region). These subgroups have produced several supernovae that have swept up their environment, creating the 350-pc-diameter Orion–Eridanus superbubble. The Orion OB 1c subgroup in the sword is younger (5–8 Myr), and the youngest (less than 1 Myr) stellar subgroup, Orion OB 1d, represents still-active massive star formation associated with the prominent H II regions, M42, M43 and NGC 1977. Part of this subgroup is still embedded in OMC-1.

The Trapezium cluster is a multiple system in itself. θ Ori C is a binary in which the primary has a mass of 34M\odot and the companion is only 12M\odot. The spectral type of the primary is O7Vp, with an effective temperature of 39,000 K. θ Ori A and θ Ori D both have much lower mass (14M\odot and 16M\odot), with spectral type B0.5V. Both are also binary systems with a lower-mass companion. θ Ori B is only 7M\odot. The radiative energy input in the region is dominated by the most massive star, θ Ori C, with the other stars contributing less than 20% of the luminosity of the region. θ Ori C also dominates the ionizing radiation of the cluster (more than 90%). It has a strong stellar wind, with a mass-loss rate of 4×10^{-7} M\odot yr$^{-1}$, and a terminal velocity of 2,500 km s$^{-1}$, which corresponds to a mechanical luminosity of $L_w = 8 \times 10^{16}$ erg s$^{-1}$ (ref. 15). Previous estimates43 suggested $L_w = 7 \times 10^{15}$ erg s$^{-1}$, but this small difference has no influence on our discussion.

B0.5 stars have very weak stellar winds and the mechanical energy input by the other Trapezium stars is negligible. The wind from θ Ori C has blown a bubble filled with hot, tenuous gas (density, $n = 1$ cm$^{-3}$; temperature, $T \approx 2 \times 10^4$ K)14. This hot gas dominates the diffuse emission at X-ray wavelengths (Extended Data Fig. 5). This bubble is well outlined in the mid-infrared image obtained in the polycyclic aromatic hydrocarbon emission bands and in the far-infrared image of the dust thermal emission (Fig. 1). These images trace the interaction of far-ultraviolet (less than 13.6 eV) radiation from θ Ori C with these species in the neutral photodissociation region that separates the hot-bubble gas from the cold material in the molecular cloud.

Kinematics of the Gas. Analysis of the individual velocity-channel maps reveals the kinematic signature of an expanding half-shell: with increasing velocity, the shell displaces further away from the centre (Extended Data Fig. 6). We estimate the expansion velocity of the expanding shell of the Orion nebula from position–velocity diagrams. Across the range of the velocity-resolved [C II] map (Fig. 2), we build position–velocity diagrams by averaging spectra over cuts that are each 45.5° wide, along the horizontal and vertical directions (C.P. et al., manuscript in preparation). In Fig. 2 we show a representative example of one such diagram; four additional ones are provided in Extended Data Fig. 7. The expanding shell has a clear arc structure that is visible in most of the cuts. From the single position–velocity diagrams that most exhibit this arc, we estimate the expansion velocity by calculating the centroid velocity within the velocity range 5 km s$^{-1}$ to 15 km s$^{-1}$ for the [C II] background velocity (at the surface of the molecular cloud) and –10 km s$^{-1}$ to 5 km s$^{-1}$ for the surface of the expansion front relative to the background molecular cloud. All [C II] position–velocity diagrams are well described by an expanding-shell model with one central origin and an expansion velocity of 13 ± 1 km s$^{-1}$ (C.P. et al., manuscript in preparation). Corresponding 12CO(2–1) and 13CO(2–1) position–velocity diagrams46 along the same spatial cut do not show any sign of an expanding shell. This is consistent with the low concentration of molecules in the Veil derived from ultraviolet absorption lines towards the Trapezium stars41. The position–velocity diagrams reveal that molecular gas is shifted towards slightly higher velocity compared to the [C II] line (11 km s$^{-1}$ versus 9 km s$^{-1}$).

Mass estimates of the Veil. We estimated the gas mass in the expanding shell from fits to the far-infrared observations of the dust emission using standard dust–gas conversion factors2. We used Herschel far-infrared photometric images in the PACS bands at 70 μm, 100 μm and 160 μm, and the SPIRE bands at 250 μm, 350 μm and 500 μm. We convolved all images to the spatial resolution of the SPIRE 500-μm image (36′). We then fitted the spectral energy distribution (SED) per pixel, using a modified blackbody distribution:

$$I(\lambda) = B(\lambda, T) (1 - e^{-\tau(\lambda)})$$

where $\tau(\lambda) = \int_0^\infty \int_0^\infty \int_0^\infty \frac{\lambda}{\mu m} \frac{\mu m}{\lambda}$, $B(\lambda, T)$ is the Planck black-body spectrum at temperature T and wavelength λ, and τ_{160} the optical depth at 160 μm. The optical depth of the dust varies with wavelength; this is parameterized by the grain emissivity index β. Typically, β is in the range 1–2. Here, we have chosen $\beta = 2$, in accordance with the standard dust models for $R_{\odot} = 5.5$, which are appropriate for the Orion molecular cloud (C.P. et al., manuscript in preparation). Representative fits to the SEDs and the resulting map of the optical depth of the dust are shown in the Extended Data Fig. 8.

The expanding shell dominates the dust emission in the region in between the two large circles in Extended Data Fig. 8 (see also Fig. 1a). The dust emission in the Huijgens region, directly surrounding the Trapezium stars, is dominated by
the dense photodissociation region that separates the ionized gas from the molecular core. Because this is not part of the expanding shell, we excluded this region (inside the small circle in Extended Data Fig. 8) from our analysis. Using theoretical extinction coefficients\(^47\), we obtain a shell mass of \(M = 1.700 M_\odot\). There is considerable uncertainty in the SED fit, associated with the exact choice of \(\beta\). Choosing \(\beta = 1.5\), as suggested by the Planck survey\(^48\), decreases \(\tau_{\odot}\) by about 50%, resulting in a derived mass of \(900 M_\odot\) using the same theoretical conversion factor as before. Extended Data Fig. 8 shows SED fits towards single points scattered throughout the Orion nebula. Because these are well fitted using \(\beta = 2\), the mass estimate of \(1.700 M_\odot\) is appropriate. Finally, we have to make a geometric correction because we included the mass only in the limb-brightened shell. Taking the thickness of the shell as 40% of the radius, we obtain a shell mass of \(2.600 M_\odot\). Decreasing the thickness of the shell to 20%, the inferred mass increases to \(3.400 M_\odot\). Although there is [C ii] emission (almost) everywhere, the Veil shows variations in thickness (see below) and the ‘front’ surface seems to be thinner than the limb-brightened edge.

The shell mass can also be estimated from the \([^{13}C\,\text{ii}]\) lines, which are shifted from the \([^{12}C\,\text{ii}]\) line owing to hyperfine splitting. Comparison of the strength of the \([^{13}C\,\text{ii}]\) hyperfine lines with the (main-component) \([^{12}C\,\text{ii}]\) line provides the [C ii] optical depth and the excitation temperature with an adopted \(^{12}C/^{13}C\) abundance of 1.6\(^\text{52}\). This is an upper limit on the total mass because the dense photodissociation region that separates the ionized gas from the molecular core is uncertain by a factor of two.

Data availability

The datasets analysed during this study are available through the SOFIA Data Cycle System (https://dcs.arc.nasa.gov/dataRetrieval/SearchScienceArchivesInfoBasic.jsp) and can be retrieved by searching for the PI (Alexander Tiellens) and instrument (GREAT).

31. Young, E. T. et al. Early science with SOFIA, the Stratospheric Observatory For Infrared Astronomy. Astrophys. J. 749, L17 (2012).
32. Guan, X. et al. GREAT/SOFIA atmospheric calibration. Astron. Astrophys. 542, L4 (2012).
33. Mangum, J. G., Emerson, D. T. & Greisen, E. W. The on the fly imaging technique. Astron. Astrophys. 474, 679–687 (2007).
34. Kester, D., Avruch, I. & Teyssier, D. Correction of electric standing waves. AIP Conf. Proc. 1636, 62–67 (2014).
35. Higgins, D. R. Advanced Optical Calibration of the Herschel HIIF Heterodyne Spectrometer. PhD thesis, National University of Ireland (2011).
36. Elmegreen, B. G. & Lada, C. J. Sequential formation of subgroups in OB associations. Astrophys. J. 214, 725–741 (1977).
37. Genzel, R. & Stutzki, J. The Orion molecular cloud and star-forming region. Annu. Rev. Astron. Astrophys. 27, 41–85 (1989).
38. Grofā'schel, J. E. et al. 3D shape of Orion A from Gaia DR2. Astron. Astrophys. 619, A108 (2016).
39. Menten, K. M., Reid, M. J., Forbrich, J. & Brunthaler, A. The distance to the Orion nebula. Astron. Astrophys. 474, 515–520 (2007).
40. Zari, E., Brown, A. G. A., de Bruijne, J., Manara, C. F. & de Zeeuw, P. T. Mapping young stellar populations toward Orion with Gaia DR1. Astron. Astrophys. 608, A148 (2017).
41. Bally, J. in Handbook of Star Forming Regions: Volume I, The Northern Sky (ed. Reipurth, B.) 483–543 (ASP, San Francisco, 2008).
42. Balega, Yu. Yu., Chentsov, E. L., Razev, A. Kh. & Weigelt, G. Physical properties of the massive magnetic binary \(60\) Ori C components. ASP Conf. Ser. 494, 57–62 (2015).
43. Grellmann, R. et al. The multiplicity of massive stars in the Orion nebula cluster as seen with long-baseline interferometry. Astron. Astrophys. 550, A28 (2013).
44. Muench, A., Getman, K., Hillenbrand, L. & Preibisch, T. in Handbook of Star Forming Regions: Volume I, The Northern Sky (ed. Reipurth, B.) 483–543 (ASP, San Francisco, 2008).
45. Leitherer, C. Observational and theoretical mass-loss rates of O stars in the Magellanic clouds. Astron. J. 334, 626–638 (1998).
46. Berné, O., Marcelino, N. & Cernicharo, J. IRAM 30 m large scale survey of \(^{12}CO\,\text{(2-1)}\) and \(^{13}CO\,\text{(2-1)}\) emission in the Orion molecular cloud. Astrophys. J. 795, 13 (2015).
47. Wengenrath, J. C. & Drain, B. T. Dust grain-size distributions and extinction in the Milky Way, Large Magellanic Cloud, and Small Magellanic Cloud. Astron. J. 548, 296–309 (2001).
48. Lombardi, M., Bouy, H., Alves, J. & Lada, C. J. Herschel-Planck dust optical-depth and column-density maps. I. Method description and results for Orion. Astron. Astrophys. 556, A45 (2014).
49. Ossenkopf, V. et al. Herschel/HIFI observations of \([C\,\text{ii}]\) and \([C\,\text{ii}]\) in photon-dominated regions. Astron. Astrophys. 550, A57 (2013).
50. Tiellens, A. G. G. M. & Hollenbach, D. J. Photodissociation regions. I. Basic model. Astrophys. J. 291, 722–746 (1985).
51. Penzias, A. A., Jefferts, K. B. & Wilson, R. W. 13C16O/12C18O ratios in nine H II regions. Astrophys. J. 128, L35–L38 (1972).
52. Sofia, U., Lauroesch, J. T., Meyer, D. M. & Cottrell, S. I. B. Interstellar carbon in the Milky Way, Large Magellanic Cloud, and Small Magellanic Cloud. Astron. J. 573, 94 (2013).
53. O'Dell, C. R., Walter, D. K. & Dufour, R. J. Extinction and scattering in the Orion nebula: comparison of optical and VLA 21 centimeter studies. Astrophys. J. 399, L67–L70 (1992).
54. Zari, E., Brown, A. G. A., de Bruijne, J., Manara, C. F. & de Zeeuw, P. T. Mapping young stellar populations toward Orion with Gaia DR1. Astron. Astrophys. 608, A148 (2017).
55. Menten, K. M., Reid, M. J., Forbrich, J. & Brunthaler, A. The distance to the Orion nebula. Astron. Astrophys. 474, 515–520 (2007).
56. Zari, E., Brown, A. G. A., de Bruijne, J., Manara, C. F. & de Zeeuw, P. T. Mapping young stellar populations toward Orion with Gaia DR1. Astron. Astrophys. 608, A148 (2017).
Extended Data Fig. 1 | Outline of the region mapped in the 1.9-THz [C ii] line with upGREAT on SOFIA. The 78 tiles indicated were used to construct the final map. The background image is the 70-μm Herschel/PACS dust emission. The yellow contours correspond to an approximated far-ultraviolet radiation field of $G_0 = 50$ (in Habing units). The colour of each tile indicates its corresponding OFF position: blue tiles use the COFF-SE1 position, red tiles use COFF-OFF1 and green tiles use COFF-C. Each square tile has a side length of 435.6 arcsec. The black box at the centre indicates the region mapped by the single-pixel Herschel/HIFI instrument in 9 h8. The total observing time for the SOFIA/upGREAT map was 42 h.
Extended Data Fig. 2 | Sample 1.9-THz [C II] spectra in our data cube. a, Spectrum obtained at the map centre (RA = 5 h 35 min 17 s; dec. = −5° 22’ 16.9″). b, Average spectrum over the entire map.
Extended Data Fig. 3 | Schematic of the large-scale (about 350 pc) structure of Orion. The locations of the massive stars of the Orion constellation are marked with green stars (shoulders and knees; the belt is indicated by a single star; M42 is at the tip of the sword). The two giant molecular clouds A and B are shown in blue, and the prominent H ii regions are indicated by the green area, which includes M42 and the Trapezium cluster. Barnard’s loop, which is very prominent in Hα, is indicated by the red line. The bubble surrounding λ Ori (grey) is also indicated (red, ionized gas; blue, swept-up molecular shell), as are the boundaries of the superbubble (yellow dashed and dotted lines). Diffuse ionized gas is indicated in grey. The approximate locations of the Orion OB sub-associations—la, lb, lc and ld—are marked in green. The dotted line labelled $b = 0$ indicates the Galactic plane.
Extended Data Fig. 4 | Overview of the star-forming region in Orion. The approximate boundaries of the Orion OB associations Ib and Ic are indicated by dashed ellipses. The Orion Id association is directly associated with the molecular cloud behind the Orion nebula, M42. The reddish glow is due to the Hα line, which originates from recombinations in the ionized gas of Barnard's loop. The belt stars and the knees are obvious. The size of the image is approximately 10° on the sky.
Extended Data Fig. 5 | Composite infrared and X-ray views of the Orion region of massive star formation. The [C ii] integrated intensity map is shown by the colour scale. The X-ray emission (from XMM-Newton) is outlined by a green contour. The hot gas probably entirely fills the bubble, but absorption by the Veil extinguishes the left side. The position of θ¹ Ori C (RA(J2000) = 5 h 35 min 16.46 s, dec.(J2000) = −5° 23′ 22.8″) is indicated by a blue star.
Extended Data Fig. 6 | Composite figure showing the \([\text{C\ ii}]\) emission in different velocity channels. With increasing \(v_{\text{LSR}}\), the shell is displaced outwards, away from the centre of the bubble. This is the kinematic signature of an expanding half-shell. Each colour outlines the emission boundaries of channels 1 km s\(^{-1}\) wide from \(v_{\text{LSR}} = 0\) to \(v_{\text{LSR}} = 7\) km s\(^{-1}\). The origin (magenta star) corresponds to the position of \(\theta^1\) Ori C (RA(J2000) = 5 h 35 min 16.46 s, dec.(J2000) = −5° 23′ 22.8″). In the velocity range 4–7 km s\(^{-1}\), \([\text{C\ ii}]\) emission associated with OMC-4 starts to fill in the interior of the bubble. OMC-4 is a star-forming core near the front of the background molecular cloud and is not part of the Veil bubble.
Extended Data Fig. 7 | Four exemplary position–velocity diagrams of the \([\text{C}\,\text{ii}]\) emission from selected cuts across the Veil. Each position–velocity diagram exhibits a clear arc structure extending over about 2,500", which corresponds to the expanding Veil shell (C.P. et al., manuscript in preparation). The left (right) two panels are cuts along the horizontal (vertical) axis.
Extended Data Fig. 8 | Far-infrared dust emission in Orion. Left, optical depth map of the dust emission at 160 μm (τ_{160}), which traces the mass of the shell. The two large circles indicate the extent of the shell used to determine the mass of the limb-brightened shell. The small circle ('OMC1') circumscribes the Huijgens region associated with the Trapezium stars. We estimated the mass that is enclosed between the two large circles, excluding the Huijgens region. Right, SED of the dust emission observed for different positions in Orion; F, is the observed flux. These SEDs are analysed to determine the dust and gas mass. Data and curves represent observed SEDs and model fits for β = 2, respectively. The legend shows the resulting dust temperature T_d and τ_{160}. These SED fits were analysed for each spatial point and the resulting τ_{160} values were used to construct the map shown in the left panel.
Extended Data Fig. 9 | Average spectra from the shell. These spectra are dominated by the [C II] line from the main isotope and show the weak hyperfine component of 13C$^+$ near $v_{\text{LSR}} = 20$ km s$^{-1}$. This line is used to estimate the optical depth of the main isotope line and thus the mass of the emitting gas. The red spectrum corresponds to the area between the two large circles in Extended Data Fig. 8, but excluding Huijgens region in the small circle. The blue spectrum is an average over the bright parts in the eastern shell, in the declination range -5° 35’ to -5° 45’. The inset shows a close-up of the (faint) $[^{13}\text{C II}]$ line in the average shell spectrum.
Extended Data Table 1 | Masses, energetics and luminosities in Orion

Component	Mass	Energy	Luminosity	Ref	
	M⊙	Thermal 10⁴⁶ erg	Kinetic 10⁴⁶ erg	L⊙	
OMC-1 molecular gas	3000	0.6	20	17	
Veil	2600	3	400	a	
Stellar cluster	1800	–	–	18	
Ionized gas	20	3	6	16,19	
Huijgens region	2	0.3	2	16,19	
Hot gas	0.07	10	–	13	
Stellar wind	–	–	500ᵇ	200ᶜ	14,15
θ¹ Ori C	–	–	–	2.5×10⁵	14
Far-IR dust emission	–	–	–	6×10⁴ᵈ	a
[CII] 1.9 THz	–	–	–	200	a
X-ray	–	–	–	1.4×10⁻²	13

ᵇThis study (other data are from refs 13–19).
ᶜOver the calculated lifetime of the bubble.
ᵈMechanical luminosity of the wind.