Multiplexed single-cell autism modeling reveals convergent mechanisms altering neuronal differentiation

Matthew A. Lalli1,2, Denis Avey1,2, Joseph D. Dougherty1,3, Jeffrey Milbrandt1,*, Robi D. Mitra1,2,*

1. Department of Genetics, Washington University in St. Louis School of Medicine, St. Louis MO 63110, USA
2. Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, St. Louis MO 63110, USA
3. Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis MO 63110, USA

*Correspondence: jmilbrandt@wustl.edu (J.M.) rmitra@wustl.edu (R.D.M.)

Abstract

Autism spectrum disorders (ASD) are phenotypically and genetically diverse, which complicates our understanding and ability to develop treatments. If subsets of the genetically diverse forms of ASD were to converge on downstream cellular consequences, as has been suggested by Gene Ontology and co-expression analysis, then each subset might be amenable to a common treatment strategy. To find such convergent molecular mechanisms across diverse ASD-associated genes, we applied multiplexed transcriptional repression coupled to single-cell RNA sequencing in a model of human neuron differentiation and uncovered two functionally convergent modules of ASD genes: one that delays neuron differentiation and one that accelerates it. Five genes that delay neuron differentiation (\textit{ADNP, ARID1B, ASH1L, CHD2, and DYRK1A}) mechanistically converge, as they all dysregulate genes involved in cell-cycle and progenitor cell proliferation. Live-cell imaging after individual ASD gene repression validated this functional module, confirming that these genes reduce neural progenitor cell proliferation and neurite growth. Finally, these functionally convergent ASD gene modules predicted shared clinical phenotypes among individuals with mutations in these genes.
Introduction

Autism spectrum disorder (ASD) afflicts 1 in 59 individuals in the United States and represents a substantial emotional and financial burden on our society\(^1\). Recent exome sequencing studies have identified over 100 genes that cause ASD when a single copy is mutated to a loss-of-function allele\(^2\)–\(^5\). While human genetic studies continue to associate an ever-growing number of genes with ASD, a caveat to this remarkable progress is that each casual gene is mutated in only a small number of affected individuals. This genetic heterogeneity provides a substantial challenge to the development of broadly useful therapeutics. If, at an extreme, each ASD-associated gene follows a separate mechanistic route to disease, then each will require the development of an independent therapeutic. On the other hand, if subsets of these genes converge in their mechanisms, then these points of convergence would be logical targets for more broadly applicable therapeutics that apply to the entire subset.

Despite the genetic heterogeneity in ASD, a large fraction of causative genes can be classified as either synaptic proteins or transcriptional regulators, suggesting convergent causal mechanisms at these levels\(^3\)\(^,\)\(^6\). Further, while the developmental timing of ASD pathogenesis and the exact cell types implicated are not fully known, many ASD genes share high expression in developing fetal neural stem cells, fetal neurons, adult excitatory neurons, and medium spiny neurons\(^7\)\(^,\)\(^8\). In addition, elegant integrative
genomics approaches have clustered ASD genes into modules by their cell-type specific developmental expression trajectories and network connectivity6,8–10. These studies implicitly predict that genes in the same module are functionally convergent; however, it is critical to test these predictions empirically. Testing these predictions requires establishing a high-throughput and disease-relevant model system to both perturb numerous ASD genes and systematically assess the functional consequences to identify convergent mechanisms.

While animal models and patient-derived induced pluripotent stem cell (iPSC) models can be used to study some of the relevant phenotypes of ASD, these systems are low-throughput, require long generation times, and can vary greatly across laboratories, strains, or individuals11,12. These caveats make it difficult to directly compare results across different models to assess mechanistic convergence. Fortunately, recent technological advancements coupling CRISPR/Cas9 transcriptional repression to single-cell RNA sequencing (scRNA-seq) enable high-throughput perturbation of multiple genes in a single batch with a parallel functional readout of the transcriptional consequences13–16. Such an approach holds great promise for efficiently defining the functional consequences of loss-of-function mutations in ASD genes, as transcriptional repression could phenocopy haploinsufficiency. Further, since many ASD genes are transcriptional regulators, insights into the mechanisms by which they contribute to ASD
can be gleaned by measuring the transcriptional consequences of their perturbation. As the pathology of many ASD genes likely arises during neural development, when proliferating progenitors are differentiating into post-mitotic neurons17, we have applied such a scalable approach to a human cellular model of neuron differentiation.

Here, we used catalytically inactive Cas9-based transcriptional repression (dCas9-KRAB) to knock down the expression of 14 ASD-related genes in a human cellular model of neurodevelopment and captured the resulting transcriptional consequences using scRNA-seq. For all candidate genes, we identified individual transcriptional signatures after repression. We found that many ASD genes altered the trajectory of neuronal differentiation when repressed. Furthermore, by clustering the disease genes by their shared transcriptional changes after perturbation, we identified two functional modules comprising sets of diverse autism genes that acted either by delaying or accelerating neuronal differentiation, respectively. Transcriptional convergence of these functional modules generated specific mechanistic hypotheses which we then tested and confirmed by combining individual knock-down experiments with live-cell imaging. Integrating our data across modalities, we found a functional module of 5 ASD genes that act to delay neuron differentiation by disrupting cell-cycle and neural progenitor cell proliferation. We replicated these results in an orthogonal system using iPSC-derived neural progenitor cells. Finally, we show that the functionally convergent ASD
gene modules discovered by our experimental data predicted shared clinical phenotypes of individuals with mutations in these genes. These results demonstrate the promise of this approach to identify convergently disrupted cellular pathways across diverse causative genes and ultimately link them to clinical phenotypes.

Results

Establishing a human neurodevelopmental model for high-throughput evaluation of ASD gene perturbation

Human neuronal models are needed for studying neurodevelopmental disorders such as ASD12. While human iPSC-derived neurons are a powerful cellular model system, the genetic heterogeneity, variability of neuronal differentiation, and technical difficulties achieving efficient transcriptional modulation in these cells complicate transcriptomic and phenotypic analyses 18,19. Therefore, we aimed to establish a tractable, diploid human neuronal model amenable to differentiation and transcriptional perturbation to enable high-throughput evaluation of the consequences of ASD-gene repression. We selected the LUHMES neural progenitor cells as such a model for their capacity for rapid differentiation into post-mitotic neurons, potential relevance to neurological disorders, and suitability for high-content imaging20–24. To further validate the relevance of these cells, we performed RNA sequencing (RNA-seq) analysis of LUHMES cells at multiple time points after inducing differentiation. Hierarchical clustering analysis of differentially expressed genes across the differentiation time-course revealed that
differentiation of LUHMES was rapid and reproducible (Pearson’s r^2 between replicates > 0.99), with biological replicates clustering together and samples arranged temporally by their day of differentiation (Figure 1a, Supplementary Figure 1A). Genes that turned off during differentiation were enriched for cell-cycle markers such as $CCND2$, genes involved in proliferation ($MKI67$ and $TP53$), as well as the canonical neural stem cell marker gene $SOX2$. Genes that increased expression during differentiation included known neuronal markers $MAP2$ and DCX, and were heavily enriched for critical neurodevelopmental pathways including axon development and neuron migration (Fig 1b Left). Importantly, genes expressed during differentiation were strongly enriched for genes implicated in neurological disorders, including ASD (Fig 1b Right). Cell type-specific expression analysis (CSEA) of differentiated LUHMES revealed that these neurons have transcriptional profiles that are highly similar to a number of neuronal subtypes relevant to neurological disorders (Supp Figure 1B). To assess the extent to which in vitro differentiation of LUHMES cells captures aspects of human brain development, we performed a transition-mapping approach comparing differentially expressed genes during LUHMES differentiation to the BrainSpan Atlas of Developing Human Brain (Methods) 25,26. We found that in vitro differentiation gene expression changes closely match transcriptional differences that occur in the early developing human fetal neocortex (Pearson’s $r = 0.69$, Fig 1c). This strong overlap suggests that LUHMES differentiation faithfully recapitulates many of the transcriptional pathways
that are utilized during this critical neurodevelopmental window that has been implicated in the onset of neurodevelopmental and psychiatric disorders8.

To establish that this model is specifically appropriate for the study of ASD genes, we analyzed the 25 highest-confidence autism-causing genes in the SFARI database (category 1), a manually curated database of ASD-associated genes27. We found that 22/25 (88\%) were highly expressed in these cells across differentiation time points. We selected 11 of these genes, plus 2 additional syndromic ASD genes (\textit{CTNND2} and \textit{MECP2})28,29, and \textit{HDAC5} for perturbation experiments (Table 1, Fig 1d). Selected genes were enriched for roles in transcriptional regulation (10/14), and are all highly likely to act through haploinsufficiency30,31. Although many of these genes are putative regulators of gene expression, integrative bioinformatics approaches have assigned the majority of genes into either no module (NA) or generic modules (ME2) (Table 1), precluding straight-forward predictions about possible molecular convergence using currently available data.

Gene Symbol	Gene Name	Annotated Function†	SFARI score	LoF intolerance (pLI‡)	Module Prediction (\$/$)
\textit{ADNP}	Activity dependent neuroprotector homeobox	Transcription factor	1S	1.00	M2/ME2
\textit{ARID1B}	AT-rich interaction domain 1B	SWI/SNF chromatin remodeling	1S	1.00	M3/ME2
\textit{ASH1L}	ASH1 like histone lysine methyltransferase	Trithorax transcriptional activator	1	1.00	NA/ME17
\textit{CHD2}	Chromodomain helicase DNA binding protein 2	SNF2-related chromatin remodeling	1S	1.00	NA/ME19
\textit{CHD8}	Chromodomain helicase DNA binding protein 8	SNF2-related chromatin remodeling	1S	1.00	M5/ME2
\textit{CTNND2}	Catenin delta 2	Adhesive junction protein	2	1.00	NA/ME31
\textit{Dyrk1A}	Dual specificity tyrosine phosphorylation regulated kinase 1A	Nuclear expressed kinase	1S	1.00	M5/ME20
\textit{HDAC5}	Histone deacetylase 5	Histone deacetylase	NA	1.00	NA/ME37
MECP2	Methyl-CpG binding protein 2	Methylated DNA binding protein	2S	0.78	M5/ME22
MYT1L	Myelin transcription factor 1 like	Transcription factor	1	1.00	NA/ME10
POGZ	Pogo transposable element derived with ZNF domain	Transcription factor	1S	1.00	M2/ME9
PTEN	Phosphatase and tensin homolog	Phosphatase	1S	0.82	NA/ME2
RELN	Reelin	Secreted ECM protein	1	1.00	NA/ME11
SETD5	SET domain containing 5	Histone methyltransferase	1S	1.00	M6/ME9

LoF: Loss-of-function, pLI: probability that a gene is intolerant to LoF, SFARI: Simons Foundation Autism Research Initiative, S: Syndromic, M/ME: Module, NA: Not available
† RefSeq Annotations32 ‡ ref. 30 ¥ ref. 6 § ref. 8

Table 1: Description of ASD candidate genes selected for perturbation experiments

We next sought to determine whether the expression of these ASD genes could be efficiently knocked down in LUHMES cells. Three guide RNAs (gRNAs) per candidate gene were cloned into a CRISPR-repression optimized vector that also allows recovery of the gRNA from scRNA-seq33–35. We validated the efficacy of repression for 2 gRNAs targeting each of 6 candidate genes using quantitative real-time PCR (qPCR) in LUHMES neural progenitor cells constitutively expressing dCas9-KRAB. All tested gRNAs induced significant downregulation of their target gene, with 11/12 eliciting a knockdown greater than 50% (Fig 1e), a level that should phenocopy the autosomal-dominant loss-of-function modes of our candidate genes. Altogether, these data support LUHMES as a relevant and facile cellular model to evaluate the downstream consequences of transcriptional perturbation of ASD genes.
Figure 1: LUHMES are a tractable, disease-relevant model of human neurodevelopment amenable to perturbation. a) Hierarchical clustering of bulk RNA-seq time-course expression data indicates rapid and reproducible neuronal differentiation. Two replicates for each timepoint were performed. b) Genes induced during LUHMES differentiation are enriched for relevant biological processes (Left) and neurological disorders (Right). c) Differentially expressed genes during LUHMES differentiation are highly correlated with transcriptional changes during early human fetal corticogenesis. d) High-confidence autism-causing genes, selected for perturbation...
experiments, are highly expressed at baseline or are increasingly expressed in LUHMES during differentiation and are enriched for roles in transcriptional regulation. e) Efficient dCas9-KRAB repression of individual target genes using the designated guide RNAs. n = 3 biological replicates for all qPCR experiments. Values represent mean ± SEM. NT1: Nontargeting control guide RNA. G1: Guide RNA 1, G2: Guide RNA 2. pcw: post-conception week.

Pooled repression of ASD genes and scRNA-seq

Given the high success rate of gene knockdown in dCas9-KRAB LUHMES by individual gRNAs, we proceeded to produce pooled lentiviruses targeting all 14 candidate genes (3 gRNAs per gene), along with 5 non-targeting control gRNA sequences, for a total of 47 gRNAs. We infected dCas9-KRAB expressing LUHMES neuronal progenitors at a low multiplicity of infection such that most cells received 0 or 1 gRNAs according to a Poisson distribution. Following selection for gRNA-containing cells by puromycin for 4 days, neural progenitor cells were differentiated according to published protocols (Methods). To ensure efficient CRISPR repression, we differentiated LUHMES for 7 days, a timepoint when RNA-seq indicated differentiation is largely complete in a population of cells. We then profiled the transcriptomes of more than 14,000 cells using droplet-based scRNA-seq across two replicate experiments (Figure 2a,b).

We were able to detect gRNA expression for the vast majority (~80%) of cells and restricted our analysis to the 8777 cells with only a single gRNA to ensure only one perturbation per cell (Fig 2b). To demonstrate the efficacy of ASD-gene repression in the pooled experiment, we grouped single cells by their detected gRNAs and visualized
expression of all targeted genes across these groups (Fig 2c)37,38. This analysis revealed efficient repression for \(13/14\) genes in our library, with the expression of \textit{RELN} too sparse in single-cell data to evaluate efficiency of repression. We used the MIMOSCA pipeline to further evaluate the knock-down efficiency of gRNAs on their target genes, which confirmed strong on-target repression16 (Supplementary Figure 2A). Almost all gRNAs elicited significant repression of their target genes (Sup Fig 2B-D), and estimated knock-down efficiencies were highly reproducible between replicate experiments (Fig 2d).

Figure 2: Single-cell RNA-sequencing is an efficient readout of multiplexed gene repression in a human model of neurodevelopment. a) Schematic of pooled repression of ASD genes in LUHMES. b) The number of total single cells that were collected (purple area), that express at least one gRNA (red), and express a single unique gRNA (yellow)
demonstrates the efficient recovery of gRNAs from single-cell RNA-seq data. c) DotPlot representation of the expression of ASD candidate genes (columns) across cells grouped by targeted gene (rows). Expression values are Z-normalized within a column across cells grouped by targeted gene. All circles represent reduced gene expression, with darker values indicating lower expression. The dark diagonal reflects efficient repression in cells with a guide targeting a given gene. RELN was excluded from this plot since it was not appreciably detected in scRNA-seq data. d) MIMOSCA Beta estimates (log2 fold change) for individual gRNA knock-down efficiencies are highly reproducible across replicate experiments.

ASD-gene repression alters neurodevelopmental trajectory

Having demonstrated the efficient repression of targeted ASD genes in the pooled experiment, we next sought to assess the unique and shared downstream consequences of ASD-gene repression in human neurons. Our approach of performing pooled repression in the context of human neuron differentiation allowed us to directly test the hypothesis that some of the ASD genes might alter the dynamics of neuronal differentiation. To this end, we reconstructed a pseudo-temporal trajectory reflecting gene expression changes in our dataset and projected cells onto this pseudotime path (Figure 3a)\(^{39}\). Recent single-cell CRISPR experiments have shown the advantages of trajectory analysis over global clustering based approaches, which can be insensitive to detecting more subtle phenotypes in pooled experiments (Supplementary Figure 3, Methods)\(^{40-42}\). Two neuronal marker genes (*MAP2* and *DCX*) showed a gradual increase in expression across pseudotime. In contrast, two genes known to be important for neural progenitor cell proliferation (*TP53* and *CDK4*) showed a rapid drop in expression across pseudotime. These observations suggested the axis of pseudotime corresponds
to the progression of neuronal differentiation (Fig 3b). Consistent with this notion, these four genes exhibit a similar pattern of expression over a time-course of LUHMES differentiation (Fig 3c). To further examine the relationship between pseudotime and neuron differentiation, we discovered the marker genes for each pseudotime state and plotted their expression across the differentiation time-course RNA-seq dataset. This analysis showed that marker genes of early pseudotime states (1-3) are highly expressed in early neuron differentiation (days 0-4) (Supplementary Figure 4A-C). Marker genes of later pseudotime states (4-6) are highly expressed during later neuron differentiation (days 4-8) (Sup Figure 4D-F). Importantly, more than 99% of single cells were post-mitotic as assessed by the absence of proliferation markers MKI67 and TOP2A.

Altogether, these data support the interpretation of pseudotime as an axis corresponding to the progression of neuronal differentiation after cells have completed their final division.

To test whether ASD-gene knockdowns shifted the developmental trajectory of the differentiating neurons, we computed the proportions of cells in each pseudotime state for each knockdown condition. Indeed, we found that several perturbations significantly altered the proportions of cells in specific pseudotime states. Specific enrichment or depletion of pseudotime state clusters for each target gene are shown in Fig 3d (chi-squared tests, $p < 0.01$). As an indicator of differentiation status, we next computed the
average value of pseudotime across all cells in each knockdown condition. By this metric, we found that four of the ASD genes (CHD2, ASH1L, ARID1B, and DYRK1A) delayed neuronal differentiation when repressed whereas two genes (PTEN and CHD8) accelerated neuronal differentiation (Fig 3e, p < 0.01, t-test). These results suggested that CHD2, ASH1L, ARID1B, and DYRK1A form a functional module of ASD genes converging at the level of delayed neuronal differentiation and that CHD8 and PTEN form a functional module promoting neuronal maturation.
Figure 3: Pseudotime analysis reveals ASD-gene repression induced alterations in differentiation trajectory and modules of ASD-genes delaying or accelerating neuronal differentiation. **a**) Pseudotime ordering of all single cells reveals a continuous trajectory of cell states corresponding to neuronal differentiation. **b**) Neuronal markers (MAP2 and DCX) increase along the pseudotime trajectory, while progenitor markers (TP53 and CDK4) decrease. **c**) These marker genes exhibit correlated patterns in time-course bulk RNA expression. n = 2 replicates for each timepoint. Expression values = mean ± SEM. **d**) Repression of some ASD genes alter pseudotime state membership proportions. Significant enrichments and depletions are marked with asterisks (chi-squared test, p < 0.01). **e**) Significantly decreased or increased average pseudotime scores relative to cells with non-targeting gRNAs (t-test, p < 0.01), indicate delayed or accelerated neuronal differentiation.
maturation. Boxed in purple is a module of ASD genes that delay neuronal differentiation by this metric. Boxed in red is a module of *CHD8* and *PTEN* that promote neuronal maturation.

Recurrent dysregulated genes highlight convergent mechanisms of ASD genes

Notably, within each functional module of ASD genes defined by pseudotime analysis, specific state enrichment or depletion were not perfectly shared among module members (Fig 3d). This raises the possibility that although the genes in a functional module may all act similarly to promote (or delay) neuron differentiation, they may do so through different molecular mechanisms. We therefore sought to further dissect the transcriptional networks affected by gene perturbation to learn whether they converge across the ASD genes within each module using differential gene expression analysis. Our system is especially amenable to this type of analysis because all 14 genes are repressed in parallel in a completely isogenic model, overcoming many of the primary sources of variation in other models. Due to the low number of cells available for analysis of *SETD5* and *POGZ*, we excluded these cells from differential expression analyses. For the remaining genes, we found dozens to hundreds of differentially expressed genes for each knock-down (Supplementary Table 1).

To identify transcriptionally convergent modules of diverse ASD-causing genes, we grouped cells by targeted gene and clustered them by the expression of genes that were found to be differentially expressed across three or more ASD-gene knockdowns.
Hierarchical clustering reflected modules of ASD genes that alter genes involved in neuronal differentiation, largely recapitulating the results of pseudotime analysis, and nominated *ADNP* as another member of the ‘Delayed Differentiation’ module (Supplementary Figure 5A). Further supporting these results, Gene Ontology analysis of the set of dysregulated genes showed an enrichment of neuronal differentiation processes in the perturbed transcriptomes (Sup Fig 5B). From this analysis, it appears that *ANDP, ASH1L, CHD2*, and *DYRK1A* repression acts through a shared transcriptional pathway to delay neuronal differentiation. However, pseudotime analysis revealed heterogeneity in neuronal differentiation progression so the shared changes could also be secondary to distinct transcriptional changes that occurred early in neuronal differentiation. To address this possibility, we leveraged the power of single-cell data to explicitly account for differences in neuronal maturity by stratifying samples based on pseudotime (Sup Fig 5C, Methods). To retain enough cells per group for differential gene expression analysis, we dichotomized pseudotime status as either ‘early’ or ‘late’ and then recomputed differentially expressed genes for each ASD-gene knockdown within each group (Supplementary Tables 2 and 3).

Clustering pseudotime-stratified samples based on recurrently dysregulated genes (*i.e.* genes that were differentially expressed in three or more ASD-gene knockdown samples) revealed shared and distinct patterns of transcriptional dysregulation (Figure 4a). Clustering separated samples by early and late pseudotime status, and then by
stage-specific transcriptional modules of ASD genes. Because the ‘Delayed Differentiation’ module genes clustered tightly at the early stage, we can infer that the decreased neuronal maturation detected by pseudotime analysis is a consequence of early-stage transcriptional dysregulation. To further resolve the molecular convergence of this module at the early stage, we extracted the overlapping differentially expressed genes across the five members of the module. As expected by the clustering results, the sets of transcriptional targets of all module members shared significant overlap (all pairwise hypergeometric p-values < 10^{-22}, Fig 4b). Differential gene expression analysis also indicated potential epistasis between some module members, with CHD2 downregulated by ADNP or ARID1B repression, and ASH1L downregulated by ARID1B repression. Despite these cells being post-mitotic, Gene Ontology enrichment of the recurrently dysregulated genes in the early stage samples highlighted specific processes disrupted, namely the G2/M transition of cell cycle and negative regulation of cell development (Fig 4c). The disrupted genes themselves are not core cell-cycle regulators so this signature may rather reflect cell-cycle disruptions that occurred earlier in the differentiation protocol (Supplementary Table 4). Together these results suggest that CHD2, ASH1L, ARID1B, DYRK1A, and ADNP modulate a shared gene regulatory pathway active in early neurodevelopment, and that their haploinsufficiency causes cell-cycle disruption and impedes neuronal differentiation.
Notably, *ADNP, CHD2*, and *ASH1L* were also tightly clustered in late stage cells. This implies that not only do they influence a shared transcriptional network early in neurodevelopment, but they continue to share downstream molecular targets in maturing neurons. In contrast, hierarchical clustering does not support a convergence of *PTEN* and *CHD8* at either the early or late stages. We found that dysregulated genes driving the clustering of late stage samples were enriched for processes specific to neuron maturation such as synapse organization, neuron projection, and regulation of axon diameter (Fig 4d). The specificity of these terms highlights the added molecular resolution we achieved by accounting for differences in pseudotime in our analysis. To generate specific predictions regarding the effects of ASD-gene repression on neuronal projections (axons and dendrites), we clustered samples by the expression of these genes. We found that the tight clustering of *ADNP, CHD2*, and *ASH1L* was driven by the decreased expression of neuron maturation markers such as *MAPT, NEFL*, and *MAP1B* with concomitant up-regulation of annotated negative regulators of neuron projection and differentiation (Fig 4e). These genes were driven in the opposite direction by *PTEN*. From these results, we predict that knockdown of *ADNP, CHD2*, and *ASH1L* would decrease neuronal projections, whereas knockdown of *PTEN* would enhance this process.
Figure 4: Single-cell differential gene expression analysis identifies early and late stage convergent modules of ASD genes. a) Hierarchical clustering of genes differentially expressed by 3 or more ASD-candidate perturbations reveal convergence of ASD genes on transcriptional dysregulation at early and late stages. At the early stage (left column), ADNP, CHD2, ASH1L, DYRK1A, and ARID1B form a transcriptionally convergent module of ‘Delayed Differentiation’ (purple). At the late stage (right column), ADNP, CHD2, and ASH1L continue to converge. B) Venn diagram shows significant overlap of differentially expressed genes across 5 ASD-genes at the early stage. All pairwise overlaps have p-values $< 10^{-22}$ by hypergeometric testing. C) Gene Ontology enrichment analysis of early-stage recurrently dysregulated genes highlights relevant biological processes disrupted and predicts disrupted G2/M transition and cellular maturation for ‘Delayed Differentiation’ genes. d) Enrichment analysis of late-stage recurrently dysregulated genes highlights relevant biological processes disrupted. E) Expression of neuron projection genes (Gene Ontology 0010975) in the late stage samples predicts disrupted neurite extension for PTEN but an enhanced phenotype for ADNP, CHD2, and ASH1L.
Live-cell imaging reveals abnormalities in proliferation and neurite extension and confirms transcriptome-based predictions

Our single-cell transcriptional analyses allowed us to make several explicit predictions about the consequences of ASD-gene repression on cellular phenotypes. Specifically, we predicted that if any of the genes in the ‘Delayed Differentiation’ module comprising \textit{ADNP}, \textit{ARID1B}, \textit{ASH1L}, \textit{CHD2}, and \textit{DYRK1A} are repressed, then we would observe a reduction in proliferation. In contrast, we expected \textit{PTEN} repression to promote proliferation. For neurite extension, we predicted that repression of at least \textit{ADNP}, \textit{CHD2}, and \textit{ASH1L} will decrease outgrowth, whereas repression of \textit{PTEN} would enhance extension. To test these predictions, we implemented live-cell imaging to measure cellular proliferation and neurite extension after individual knock-down of ASD genes (Figure 5a). We produced lentivirus expressing individual gRNAs that target candidate ASD genes and used them individually to infect dCas9-KRAB neuronal progenitor cells in an arrayed format. We imaged cells under both proliferative or differentiative conditions every 4 hours for 3 or 5 days, respectively, using the IncuCyte live-cell imaging system. Representative images for proliferation and neurite extension are shown (Fig 5b-c, Supplementary Figure 6).
Figure 5: Live-cell imaging after repression of individual ASD genes confirms defects in cellular proliferation and neurite extension. A) Schematic overview of arrayed guide RNA (gRNA) screening. Cells infected with a single gRNA are assayed by time-course imaging for confluence and neurite extension. B) Representative images of neural progenitor cell proliferation assay at the start and end-points (day 0 and day 3). Neural progenitor cell proliferation is measured by creating a cell mask (orange) and computing the area of confluence at each time point. C) Representative image of neurite extension
assay at 5 days post-differentiation. Neurite extension is measured with the NeuroTrack assay in the IncuCyte software. Neurite masks are shown (purple). Neurite extension lengths are normalized by cell cluster area. Scale bars = 200 µm. d) Time-lapse imaging of cellular proliferation (left), assessed by the percentage of confluence, reveals significant decreases or increases (right, * p < 0.01, dotted horizontal line indicates average in control cells). E) Time-lapse imaging of neurite extension (left) and quantification (right, * p < 0.01, dotted horizontal line indicates average in control cells). All values in (d) and (e) represent mean ± SEM. n = 2 for each experiment with 9 fields captured per well. Each experiment was repeated at least twice.

Remarkably, in these live-cell imaging experiments, we observed decreased proliferation after repression of each member of the ‘Delayed Differentiation’ module of ASD genes (Fig 5d). In contrast, PTEN repression caused a major increase in proliferation, consistent with our prediction and its known function of inhibiting neural stem cell proliferation43. For the neurite extension assay, most of our predictions were also confirmed (Fig 5e), as repression of many genes in the ‘Delayed Differentiation’ module (ASH1L, ADNP, ARID1B, and DYRK1A) caused modest to severe reductions in neurite outgrowth.

Conversely, PTEN repression increased neurite extension in this assay, consistent with its role in enhancing the length of regenerating axons in vivo 44. Together, proliferation and neurite extension assays confirmed the consequences of ASD-gene repression predicted by scRNA-seq analyses, offering further support for a module of ASD genes that act at an early-stage to delay neuron differentiation and decreasing proliferation.

CRISPR repression in iPSC neural progenitor cells confirms ASD gene modules and transcriptional convergence at cell-cycle dysregulation
To validate the early transcriptional convergence and effects on cellular proliferation of putative ASD gene modules in an orthogonal cellular model system, we performed CRISPR repression of individual genes in human iPSC-derived neural progenitor cells. First, we confirmed that dCas9-KRAB repression was efficient in these cells for a subset of genes using qPCR (Figure 6a). Next, we performed RNA-seq after knockdown of seven individual ASD genes and a non-targeting control (Methods). RNA-seq confirmed efficient knockdown for at least 5/7 target genes (Supplementary Figure 7A). Clustering transcriptomes using principal component analysis closely reproduced the modules discovered in LUHMES, namely the clustering of four members of the ‘Delayed Differentiation’ module (ADNP, ARID1B, ASH1L, and DYRK1A) and the clustering of ‘Accelerated Differentiation’ module genes CHD8 and PTEN (Fig 6b). These clusters were also observed by unsupervised hierarchical clustering of transcriptomes using highly variable genes (Supplementary Figure 7B). As in LUHMES, the ‘Delayed Differentiation’ genes strongly converged at the level of transcriptional dysregulation (Fig 6c), affecting genes enriched for roles in chromatin remodeling, Wnt signaling and cell-cycle regulation (Fig 6d). Likewise, the ‘Accelerated Differentiation’ genes had strongly overlapping transcriptional consequences on both down- and up-regulated genes (Sup Fig 7C) leading to misregulation of cell-cycle genes and increased cell division pathways (Sup Fig 7D). A proliferation assay in these cells after individual gene repression functionally confirmed that ASH1L and CHD2 decreased proliferation and CHD8
repression enhanced it (Fig 6e). These results broadly confirm both the membership and functional interpretation of ASD-genes modules in a second human neural progenitor system.

Figure 6: CRISPR repression in iPSC neural progenitor cells confirms modules of ASD genes and transcriptional convergence at cell-cycle dysregulation. a) Efficient dCas9-KRAB repression of individual target genes using the designated gRNAs in iPSC-NPCs. N = 3 biological replicates for all qPCR experiments. Values represent mean ± SEM. b) Clustering of RNA-seq profiles by principal component analysis reveals clustering of ‘Delayed’- and ‘Accelerated Differentiation’ module ASD genes c) ‘Delayed Differentiation’ module gene repression elicits strongly overlapping transcriptional consequences. d) Gene Ontology analysis of downregulated genes shows enrichment for chromatin remodeling and cell-cycle genes. e) Cellular proliferation measured by cell number after individual gene repression reveals significant decreases or increases (* indicates p < 0.01, n = 4).

Functionally convergent ASD gene modules predict shared clinical phenotypes
We next sought to determine if the functional convergence of ASD genes observed in our cellular model could predict the convergence of clinical phenotypes for these genes. To do so, we first created a comprehensive model of the functional convergence of ASD genes in our system by integrating the results of our pseudotime analysis, transcriptional clustering, and functional profiling by hierarchical clustering (Figure 7a). This analysis again clearly separated the ‘Delayed Differentiation’ module genes from those in the ‘Accelerated Differentiation’ module. Next, we collated clinical phenotypes from individuals with dominant loss-of-function mutations in these genes and performed hierarchical clustering on these data. Strikingly, clustering by clinical phenotypes fully recapitulated our proposed convergent modules and supports mechanistic links of convergent pathways to shared clinical outcomes (Fig 7b). For example, individuals with mutations in the ‘Delayed Differentiation’ module genes were highly likely to have intellectual disability, consistent with increased severity owing to early neurodevelopmental dysregulation. This cohort has a higher incidence of microcephaly, consistent with the proliferation defects we observed. Likewise, individuals with PTEN and CHD8 mutations have a comparatively reduced prevalence of intellectual disability but a high prevalence of macrocephaly, consistent with the observed functional convergence of these genes on promoting neuronal differentiation, proliferation, and neurite outgrowth.
Figure 7: Experimental and clinical convergence of functional ASD gene modules. A) Integrating transcriptional and functional assays reveals and refines two functionally convergent modules of ASD genes. B) Clinical phenotype data reveals the same two modules of ASD genes. %: Prevalence of phenotype (percentage) in individuals from.

Discussion

The genetic and phenotypic heterogeneity of autism and other neurodevelopmental disorders challenge both the understanding and treatment of these disorders. Identifying convergent pathogenic mechanisms across diverse causative genes would facilitate the development of therapeutic interventions, but this requires a rapid, scalable, and disease-relevant model system in which tens to hundreds of ASD genes can be modulated in parallel and their effects measured in a robust manner. Here we have taken major steps toward establishing such a system by coupling pooled dCas9-based transcriptional repression to single-cell RNA-sequencing in a tractable human model of neuron differentiation. Using this approach, we perturbed the expression of 14 distinct autism-associated genes and uncovered unique and
overlapping consequences on transcriptional networks, pathways, growth, and neurite extension.

Integrating pseudotime analysis, transcriptional clustering, and cellular phenotyping of individual ASD genes uncovered two consistent modules of genes with opposing functionality in altering the course of neuron differentiation. Such heterochronicity of neurodevelopmental gene expression networks and consequent dysregulation of neuron differentiation is a plausible mechanism underlying ASD pathology, and has been observed in cellular models of ASD. We identified a ‘Delayed Differentiation’ module comprised of 5 ASD-genes and predicted that the knockdown of these genes would decrease neural progenitor cell proliferation. We further predicted, for a subset of this ‘Delayed Differentiation’ module, that individual gene knockdown would decrease neuron projection. Finally, we also predicted that PTEN repression would increase both proliferation and neuron projection. We confirmed these predictions by performing live-cell imaging of cell proliferation and neurite extension after gene knockdown, providing experimental functional validation for these ASD genes. Convergence of ASD genes at the regulation of cell-cycle genes was supported in an orthogonal model using human iPSC-derived NPCs.

We demonstrated that LUHMES cells enable the rapid and robust generation of post-mitotic human neurons with transcriptional profiles that correspond closely to early human cortical development, a critical period of neurodevelopment that has been
implicated in the etiology of ASD and other neurodevelopmental disorders. Validation of our results in human iPSC-derived NPCs further supports the utility of LUHMES for discovering early neurodevelopmental mechanisms of ASD-associated genes. Alternative human neurodevelopmental models, such as iPSC-derived neurons and organoids, may be better suited for investigating genes and pathways involved in cell-fate specification, neuronal migration, and neuronal activity but are significantly more heterogeneous and are more experimentally challenging.

Compared to traditional single ASD-gene knock-out or repression experiments in mice or human cells (e.g. refs. 47–51), our approach increases the number of genes that can be assayed in parallel while also overcoming many of the primary sources of variation in such models. This enables direct comparison of results across genes to discover convergent mechanisms. Current single-cell technology enables pathway-level inferences of transcriptional dysregulation and prioritization of candidate genes for further functional validation in a rapid and cost-effective manner for tens of disease implicated genes. Noise and sparsity in single cell RNA-seq data limit its power to detect differentially expressed genes, but improvements in the sensitivity and throughput of scRNA-seq will enhance its utility in future experiments.

A major strength of our approach is its extensibility across any gene set, cell type of interest, and cellular phenotype measurable by imaging, which should facilitate higher throughput disease modeling efforts. Although we only measured proliferation
and neurite extension with live-cell imaging, the integration of these data with pooled transcriptomes revealed gene modules that were also convergent at the level of clinical phenotypes in individuals with mutations in these genes, illustrating the potential of this approach in linking molecular pathways to clinical phenotypes. Furthermore, while not implemented in this study, this approach is amenable to screening of chemical libraries to discover effective pharmaceutical interventions for any observed defects, and to determine whether convergent genetic modules will respond to common treatments. Such high-content imaging and screening in future experiments will enable detailed characterization of perturbation-induced neuronal phenotypes and the discovery of convergent molecular endophenotypes of disease pathogenesis.

Materials and Methods

Cell culture

HEK293T cells were maintained in Dulbecco’s Modified Eagle Media (DMEM) supplemented with 10% fetal bovine serum and 1% penicillin-streptomycin, and passaged every 3-4 days after enzymatic dissociation using trypsin. LUHMES cells (ATCC cat# CRL-2927) were cultured according to established protocols with minor modifications. Proliferating LUHMES cells were maintained in DMEM/F12 media supplemented with 1% N2 and 40 ng/mL basic fibroblast growth factor (bFGF) and 1% penicillin-streptomycin. Cells were grown in T25 flasks coated with poly-ornithine and fibronectin. For differentiation, bFGF was withdrawn from the media and tetracycline
was added (1 µg/mL) to repress the v-Myc transgene. For time-course RNA-sequencing experiments, neurotrophic factors (cAMP and GDNF) were added to the differentiation media. These factors were withheld from repression experiments to increase the sensitivity to detect perturbations. For time-course differentiation, two replicates of LUHMES cells were differentiated for each time point and total mRNA was purified. RNA was sent for sequencing at the Genome Technology Access Center (GTAC) at Washington University School of Medicine. Polyclonal dCas9-KRAB-blast expressing LUHMES were generated by infecting cells with lentivirus and selecting using blasticidin (10 µg/mL). Lenti-dCas9-KRAB-blast was a gift from Gary Hon (Addgene #89567)52. dCas9-KRAB LUHMES were maintained in blasticidin-containing media to prevent transgene silencing.

Human iPSC-derived neural progenitor cells (XCL4) were acquired from STEMCELL technologies (cat #70902) and grown in Neural Progenitor Medium 2. Tetracycline inducible dCas9-KRAB NPCs were generated after neomycin selection (200 µg/mL). pHAGE TRE dCas9-KRAB was a gift from Rene Maehr and Scot Wolfe (Addgene #50917)53. Cells were plated at a density of 200,000 cells per well in a 12-well plate on Matrigel and infected in triplicate with individual guide RNAs targeting ASD genes. Next day, media containing doxycycline (2µg/mL) and puromycin (1 µg/mL) was added to induce dCas9-KRAB and select for guide-containing cells. Cells were passaged 4 days after selection. mRNA was collected 4 days after replating (8 days of repression), and 3’
RNA-seq libraries were prepared by BRB-seq54. For proliferation assays, TRE dCas9-KRAB XCL4 cells were infected in quadruplicate with gRNAs targeting 7 ASD-genes and 1 non-targeting gRNA. After puromycin selection and doxycycline induction, cells were grown for 8 days and total cells were counted using a hemocytometer.

\textit{gRNA Cloning}

For each target gene, we selected three gRNAs optimized for repression from the Dolcetto library34. These gRNAs direct dead Cas9 (dCas9) to a window 25-75 nucleotides downstream of the gene’s transcription start site. gRNAs were screened for sequence features predicting high activity and no off-target effects. gRNAs were cloned into a CRISPR-repression optimized vector to enable pooled lentiviral preparation without guide-barcode swapping33–35. Lentiviral gRNA expression vectors were created by annealing two complementary oligonucleotides encoding gRNAs at 100 \mu M (IDT DNA) with sticky-ends and ligating annealed products into BsmB1 digested CROP-seq-opti vector using Golden Gate assembly. CROP-seq-opti was a gift from Jay Shendure (Addgene #106280)33. Each Golden Gate assembly reaction contained 6.5 \mu L water, 1 \mu L 1:10 diluted annealed oligos, 1 \mu l T4 ligase, 1 \mu l T4 ligase buffer, and 0.5 \mu L BsmB1. Reactions were incubated at 16 °C for 10 minutes (ligation) and 55 °C for 10 minutes (restriction) for 4 cycles. 1 \mu L of Golden Gate mixture was transformed into 30 \mu L Stellar Competent cells and plated onto ampicillin-containing agar plates. Individual colonies
were miniprepped after colony PCR and all constructs were verified by Sanger sequencing (Genewiz).

Lentivirus production of individual gRNAs and pooled gRNA libraries

Lentivirus was produced according to established protocols. In brief, HEK293T cells were seeded at a density of one million cells per well of a 6 well plate and transfected with 2 micrograms of DNA comprising 1 µg gRNA-transfer plasmid, 750 ng psPAX2 and 250 ng pMD2.G. psPAX2 and pMD2.G were gifts from Didier Trono (Addgene #12259 & #12260). Cells were transfected using the PEI method (Polysciences). Media was changed 12 hours after transfection and viral-containing supernatant was collected 24 and 48 hours later. Lentivirus was concentrated using LentiX reagent and resuspended in 50 µL aliquots for each mL of original supernatant (20X concentration). Lentivirus was titered on LUHMES cells by infecting cells with serial dilutions of virus, followed by antibiotic selection (puromycin for gRNAs, 1 µg / mL). For pooled gRNA libraries, equal amounts of DNA for each gRNA were mixed prior to transfection.

Lentiviral transduction of gRNAs

For individual or pooled gRNAs, LUHMES cells were infected with serial dilutions of virus. Virus-containing media was removed after 4-6 hours of transduction. Antibiotic selection with puromycin (1 µg/mL) was applied 24 hours after infection. Wells in which no more than 25% of cells survived, corresponding to multiplicity of infection < 0.3,
were used for experiments. Cells were expanded for 4 days before plating for
differentiation. After re-plating, cells were differentiated for 6 to 8 days in the presence
of tetracycline to allow efficient repression and differentiation. Puromycin and
blasticidin were maintained for the duration of all experiments to ensure gRNA and
dCas9-KRAB expression in all cells.

Quantitative real-time PCR

RNA was purified from 6-8 day differentiated LUHMES using Trizol. 1 µg of RNA was
reverse-transcribed into cDNA using qScript cDNA Supermix (Quantabio). Quantitative
real-time PCR (qRT-PCR) was performed on an ABI 7900HT using Sybr Green SuperMix
(Quantabio). Relative expression levels were determined using the comparative
threshold (ΔΔCT) method55. Beta-actin (ACTB) mRNA levels were used as a
normalization control. Sequences for qRT-PCR primers are:

ADNP qPCR fw: CATGGGAGGATGAGACTGT
ADNP qPCR rv: ATGGACATTGCCGAAATGACT

CTNND2 qPCR fw: AGGTCCCCGTCCATTGATAG
CTNND2 qPCR rv: ACTGGTGCTGCAACATCTGAA

PTEN qPCR fw: TTTGAAGACCATAACCCACCAC
PTEN qPCR rv: ATTACCAGGTCGTCCCTTTC

DYRK1A qPCR fw: AAGAAGCGAAGACACCAACAG
DYRK1A qPCR rv: TTTCGTAACGATCCATCCACTTT

CHD8 qPCR fw: CTGCACAGTCACCTCGAGAA
CHD8 qPCR rv: TGGTTCTTGCACTGGTTCA
HDAC5 qPCR fw: GTACCCAGTCCTCCCCTGC
HDAC5 qPCR rv: GCACATGCACTGGTGCTTTA

ACTB qPCR fw: CATGTACGTTGCTATCCAGGC
ACTB-qPCR rv: CTCCTTAATGTACGCACGAT

Single cell transcriptome capture

12,000 cells were loaded per lane of a 10X Chromium device using 10X V2 Single Cell 3’ Solution reagents (10X Genomics, Inc). Two biological replicates of pooled single-cell experiments were performed independently. Each replicate was loaded across 1 or 2 lanes of a 10X Single Cell A Chip V2. Single cell libraries were prepared following the Single Cell 3’ Reagent Kits v2 User Guide (Rev B). Single cell cDNA libraries were amplified for 12 initial cycles after reverse transcription. A fraction of the pre-fragmented cDNA libraries was reserved for gRNA-specific enrichment PCR.

gRNA-transcript enrichment PCR

Three gRNA-specific enrichment PCR replicates were performed for each single cell library. Each reaction used 1 µL of the single-cell libraries as a template to amplify captured gRNA sequences. A single-step PCR reaction was used to amplify gRNA from total captured cDNA libraries using custom primers:

P5-index-Seq1-fw:

AATGATACGGCGACCACCGAGATCTACACAGGACAACACTCTTTCCCTACACGACGCTCTTCCG ATCT
P7-Index-Seq2-10x-sgRNA:

CAAGCAGAAGACGGCATACGAGATCGGGCAACGGTGACTGGAGTTCAGACGTGTGCTCTTCCG
ATCTGTGGAAAGGACGAAACA*C*C*G

* denotes phosphorothioate modification to reduce mispriming due to proof-reading polymerase

gRNA Depletion Analysis

Almost all of the gRNAs in our lentiviral pool (43/47) were well-represented in perturbed cells at similar frequencies, yet 4 gRNAs (targeting ASH1L, POGZ gRNAs 1 and 2, and SETD5) were significantly depleted (chi-squared test, $p < 0.01$, Supplementary Figure 8A). We hypothesized that their depletion was the result of fitness defects caused by the repression of these genes56,57. To test this, we infected neural progenitor cells individually with three of the depleted gRNAs and monitored cell proliferation using live-imaging. Compared to a non-targeting gRNA, all of the depleted gRNAs caused a significant reduction in cellular proliferation, explaining why few cells with these gRNAs were detected in our pooled experiment (Supp Fig 8B).

Bioinformatic Analyses

Sequencing data corresponding to single-cell transcriptomes were processed using the 10X software package Cell Ranger (v 2.1.0). We used this software to map reads to hg38 using STAR (v2.5.1b). The output filtered gene expression matrices were imported into R...
(v 3.5.1) for further analysis. Most analyses were performed using the Seurat (v3.0) and Monocle (v2.10.0) packages. Individual cells were sequenced to an average depth of 50,208 ± 7,310 mapped reads per cell (2,145 ± 448 genes detected, 6,625 ± 1766 unique molecular identifiers (UMIs)). Quality control was performed in Seurat by computing the number of transcripts per cell and the percentage of mitochondrial gene expression. Cells with more than 500 but fewer than 7500 detected genes, and less than 8% mitochondrial gene expression were retained. gRNAs were detected by next-generation sequencing of the custom gRNA-enrichment PCR. Look-up tables of gRNA and cell barcodes were generated using custom Python scripts with a detection threshold of 20 UMIs per gRNA-cell barcode combination. Cell barcodes from filtered high-quality cells were matched against this table and only cells with a single gRNA were retained for analysis. Differences in total UMIs, experimental batch, and mitochondrial percentage were accounted for during data normalization. Normalized filtered data were used for the remaining analyses. For each perturbation, we grouped all cells with any of the three gRNAs targeting the same gene, as we have demonstrated that all three gRNAs typically have strong on-target activity (Sup Fig 2D).

Clustering Analysis

Dimensionality reduction was performed by running principal component analysis (PCA) and clustering cells by the first 6 PCAs using UMAP. To assess global variation in
transcriptional states, we visualized all single cell transcriptomes on the UMAP. This revealed that over 99% of all cells formed a single cluster of post-mitotic neurons as defined by the absence of proliferative marker expression (Sup Fig 3A-B). This is consistent with our experimental design capturing a single timepoint (day 7) in a rapid isogenic model of neuronal differentiation. Within the major cluster, however, the expression of markers of neuronal differentiation showed variable patterns across the UMAP (Sup Fig 3C-F). Moreover, the most variably expressed genes in single-cell transcriptomes were enriched for functional roles in neurogenesis and axon projection, suggesting heterogeneity of neuronal differentiation at the single-cell level.

Pseudotime Analysis

We projected cells in pseudotime in Monocle by ordering cells by highly variable genes. Dimensionality reduction was performed using the “DDRTree” method. Trajectories based on different sets of highly variable genes were qualitatively similar, showing a single trajectory with only minor branching. To ensure high correlation between pseudotime and neuron differentiation status, we computed the stage-specific genes in the bulk RNA-seq dataset for each day of differentiation and used these genes for pseudotime ordering. We then transferred pseudotime state labels into Seurat to discover marker genes for each pseudotime state. Transferring pseudotime labels onto the UMAP plot showed distinct banding patterns representing subtle transcriptional
state differences within the main cluster (Supplementary Figure 9A). Re-clustering the earliest and latest pseudotime labeled cells revealed two completely distinct cell states expressing either differentiation (\textit{NEUROD1}) or maturation (\textit{STMN2}) markers59,60 (Supp Fig 9C-E). This confirms that pseudotime is more sensitive to detect biologically relevant transcriptional patterns than UMAP clustering in our dataset. We tested for altered pseudotime state membership proportions for each gRNA using chi-squared test. We computed the distribution of pseudotime state scores for each gRNA, and compared their averages using t-test.

\textit{Transition Mapping of LUHMES Differentiation}

Transition mapping allows the comparison of \textit{in vitro} neuron differentiation to \textit{in vivo} development by computing the overlap of differentially expressed genes at selected time points across datasets25. We compared the \textit{in vitro} LUHMES differentiation timepoints day 0 to day 8 to transcriptional changes across brain regions and developmental timepoints in the BrainSpan Atlas of the Developing Human Brain. LUHMES differentiation had the strongest overlap with transcriptional changes occurring in the cortex of post-conception week 8-10 embryos and week 10-13 embryos.

\textit{Differential Gene Expression Analysis}
Differential gene expression testing was performed using the FindMarkerGenes function in Seurat using the Wilcoxon Rank Sum test and a relaxed log2FC threshold of 0.1 to increase the number of differentially expressed genes. This cutoff was calibrated against a ‘gold standard’ dataset comparing single-cell and bulk RNA-seq data to identify differentially expressed genes61. To find marker genes of pseudotime state clusters, only positive markers were returned.

Pseudotime state by was binarized with states 1-3 labeled as ‘early’ and states 4-6 as ‘late’. We next created another label combining the targeted gene with binary pseudotime state (e.g. CHD8\textunderscore early). Averaged profiles were re-computed for each group based on these new labels and differentially expressed genes were also re-calculated. Principal component analysis and hierarchical clustering were performed on these samples. As expected, unsupervised clustering of the stratified profiles by principal component analysis perfectly discriminated between ‘early’ and ‘late’ samples (Sup Fig 5C). This analysis showed that the first principal component corresponds to pseudotime status and explains almost 20\% of the total variance in the dataset. Gene Ontology and pathway enrichment analyses were performed using WebGestalt62.

\textit{Live-cell Imaging}

Cells were imaged using an IncuCyte S3 live imaging system (Essen BioScience) For each experiment, dCas9-KRAB LUHMES were infected in duplicate with individual gRNAs and were plated in duplicate in wells of a 24 well plate in either self-renewing or
differentiation conditions. 9 fields per well were imaged every 4 hours for either 3 or 5 days for proliferation or differentiation respectively. Images were analyzed using the IncuCyte Software. Specifically, we performed the Proliferation Analysis and NeuroTrack neurite tracing analyses. Cell bodies and neurites were detected from phase contrast images. Representative images are shown in Supplementary Figure 4.

Acknowledgments

This work was supported by:

5T32HL125241-05 (NHLBI)
5U54HD087011-04 (NICHD)
1R21NS087230-01A1 (NINDS) (RM & JM)
RF1MH117070 and U01MH109133 (NIMH)(RM and JD)
SFARI Explorer #: 500661 (RM & JD)
2T32CA009547-33 (NCI) (DA)

GTAC is partially supported by National Institutes of Health (NIH) grants P30 CA91842 and UL1 TR000448

Author contributions

M.A.L. performed experiments, analyzed data, designed the study, and wrote the manuscript. D.R.A. performed experiments and wrote the manuscript. J.D.D., J.M., and R.D.M analyzed data, designed the study, and wrote the manuscript.
References

1. Baio, J. Prevalence of Autism Spectrum Disorder Among Children Aged 8 Years — Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2014. *MMWR Surveill. Summ.* **67**, (2018).

2. O’Roak, B. J. *et al.* Sporadic autism exomes reveal a highly interconnected protein network of *de novo* mutations. *Nature* **485**, 246–250 (2012).

3. De Rubeis, S. *et al.* Synaptic, transcriptional and chromatin genes disrupted in autism. *Nature* **515**, 209–215 (2014).

4. Iossifov, I. *et al.* The contribution of *de novo* coding mutations to autism spectrum disorder. *Nature* **515**, 216–221 (2014).

5. Satterstrom, F. K. *et al.* Novel genes for autism implicate both excitatory and inhibitory cell lineages in risk. *bioRxiv* 484113 (2018) doi:10.1101/484113.

6. Parikshak, N. N. *et al.* Integrative Functional Genomic Analyses Implicate Specific Molecular Pathways and Circuits in Autism. *Cell* **155**, 1008–1021 (2013).

7. Xu, X., Wells, A. B., O’Brien, D. R., Nehorai, A. & Dougherty, J. D. Cell Type-Specific Expression Analysis to Identify Putative Cellular Mechanisms for Neurogenetic Disorders. *J. Neurosci.* **34**, 1420–1431 (2014).

8. Li, M. *et al.* Integrative functional genomic analysis of human brain development and neuropsychiatric risks. *Science* **362**, eaat7615 (2018).

9. Willsey, A. J. *et al.* Coexpression Networks Implicate Human Midfetal Deep Cortical Projection Neurons in the Pathogenesis of Autism. *Cell* **155**, 997–1007 (2013).
10. Pinto, D. et al. Convergence of Genes and Cellular Pathways Dysregulated in Autism Spectrum Disorders. *Am. J. Hum. Genet.* **94**, 677–694 (2014).

11. Kilpinen, H. et al. Common genetic variation drives molecular heterogeneity in human iPSCs. *Nature* **546**, 370–375 (2017).

12. Zhao, X. & Bhattacharyya, A. Human Models Are Needed for Studying Human Neurodevelopmental Disorders. *Am. J. Hum. Genet.* **103**, 829–857 (2018).

13. Qi, L. S. et al. Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression. *Cell* **152**, 1173–1183 (2013).

14. Adamson, B. et al. A Multiplexed Single-Cell CRISPR Screening Platform Enables Systematic Dissection of the Unfolded Protein Response. *Cell* **167**, 1867-1882.e21 (2016).

15. Datlinger, P. et al. Pooled CRISPR screening with single-cell transcriptome read-out. *bioRxiv* 083774 (2016) doi:10.1101/083774.

16. Dixit, A. et al. Perturb-Seq: Dissecting Molecular Circuits with Scalable Single-Cell RNA Profiling of Pooled Genetic Screens. *Cell* **167**, 1853-1866.e17 (2016).

17. Schafer, S. T. et al. Pathological priming causes developmental gene network heterochronicity in autistic subject-derived neurons. *Nat. Neurosci.* **1** (2019) doi:10.1038/s41593-018-0295-x.

18. Ho, S.-M. et al. Evaluating Synthetic Activation and Repression of Neuropsychiatric-Related Genes in hiPSC-Derived NPCs, Neurons, and Astrocytes. *Stem Cell Rep.* **9**, 615–628 (2017).

19. Hoffman, G. E. et al. Transcriptional signatures of schizophrenia in hiPSC-derived NPCs and neurons are concordant with post-mortem adult brains. *Nat. Commun.* **8**, 2225 (2017).
20. Scholz, D. et al. Rapid, complete and large-scale generation of post-mitotic neurons from the human LUHMES cell line. *J. Neurochem.* **119**, 957–971 (2011).

21. Shah, R. R. et al. Efficient and versatile CRISPR engineering of human neurons in culture to model neurological disorders. *Wellcome Open Res.* **1**, (2016).

22. Höllerhage, M. et al. Protective efficacy of phosphodiesterase-1 inhibition against alpha-synuclein toxicity revealed by compound screening in LUHMES cells. *Sci. Rep.* **7**, 11469 (2017).

23. Tong, Z.-B. et al. Characterization of three human cell line models for high-throughput neuronal cytotoxicity screening. *J. Appl. Toxicol.* **37**, 167–180 (2017).

24. Pierce, S. E., Tyson, T., Booms, A., Prahl, J. & Coetzee, G. A. Parkinson’s disease genetic risk in a midbrain neuronal cell line. *Neurobiol. Dis.* **114**, 53–64 (2018).

25. Stein, J. L. et al. A Quantitative Framework to Evaluate Modeling of Cortical Development by Neural Stem Cells. *Neuron* **83**, 69–86 (2014).

26. BrainSpan Atlas of the Developing Human Brain [Internet]. Funded by ARRA Awards 1RC2MH089921-01, 1RC2MH090047-01, and 1RC2MH089929-01. ©2011. Available from: http://brainspan.org. http://brainspan.org/.

27. Abrahams, B. S. et al. SFARI Gene 2.0: a community-driven knowledgebase for the autism spectrum disorders (ASDs). *Mol. Autism* **4**, 36 (2013).

28. Amir, R. E. et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. *Nat. Genet.* **23**, 185–188 (1999).
29. Medina, M., Marinescu, R. C., Overhauser, J. & Kosik, K. S. Hemizygosity of δ-Catenin (CTNND2) Is Associated with Severe Mental Retardation in Cri-du-Chat Syndrome. *Genomics* **63**, 157–164 (2000).

30. Karczewski, K. J. *et al.* Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-function intolerance across human protein-coding genes. *bioRxiv* 531210 (2019) doi:10.1101/531210.

31. Lek, M. *et al.* Analysis of protein-coding genetic variation in 60,706 humans. *Nature* **536**, 285–291 (2016).

32. O’Leary, N. A. *et al.* Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. *Nucleic Acids Res.* **44**, D733–D745 (2016).

33. Hill, A. J. *et al.* On the design of CRISPR-based single-cell molecular screens. *Nat. Methods* **15**, 271–274 (2018).

34. Sanson, K. R. *et al.* Up, down, and out: next generation libraries for genome-wide CRISPRa, CRISPRi, and CRISPR-Cas9 knockout genetic screens. *bioRxiv* 356626 (2018) doi:10.1101/356626.

35. Xie, S., Cooley, A., Armendariz, D., Zhou, P. & Hon, G. Frequent sgRNA-barcode Recombination in Single-cell Perturbation Assays. *bioRxiv* 255638 (2018) doi:10.1101/255638.

36. Zheng, G. X. Y. *et al.* Massively parallel digital transcriptional profiling of single cells. *Nat. Commun.* **8**, 14049 (2017).

37. Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. *Nat. Biotechnol.* **33**, 495–502 (2015).
38. Stuart, T. et al. Comprehensive integration of single cell data. bioRxiv 460147 (2018)
doi:10.1101/460147.

39. Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).

40. McFaline-Figueroa, J. L. et al. A pooled single-cell genetic screen identifies regulatory checkpoints in the continuum of the epithelial-to-mesenchymal transition. Nat. Genet. 51, 1389–1398 (2019).

41. Yang, L. et al. Linking genotypes with multiple phenotypes in single-cell CRISPR screens. bioRxiv 658146 (2019) doi:10.1101/658146.

42. Duan, B. et al. Model-based understanding of single-cell CRISPR screening. Nat. Commun. 10, (2019).

43. Groszer, M. et al. PTEN negatively regulates neural stem cell self-renewal by modulating G0-G1 cell cycle entry. Proc. Natl. Acad. Sci. 103, 111–116 (2006).

44. Park, K. K. et al. Promoting Axon Regeneration in the Adult CNS by Modulation of the PTEN/mTOR Pathway. Science 322, 963–966 (2008).

45. Stessman, H. A. F. et al. Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases. Nat. Genet. advance online publication, (2017).

46. Marchetto, M. C. et al. Altered proliferation and networks in neural cells derived from idiopathic autistic individuals. Mol. Psychiatry (2016) doi:10.1038/mp.2016.95.

47. Cotney, J. et al. The autism-associated chromatin modifier CHD8 regulates other autism risk genes during human neurodevelopment. Nat. Commun. 6, ncomms7404 (2015).
48. Durak, O. et al. Chd8 mediates cortical neurogenesis via transcriptional regulation of cell cycle and Wnt signaling. Nat. Neurosci. 19, 1477–1488 (2016).

49. Katayama, S., Moriguchi, T., Ohtsu, N. & Kondo, T. A Powerful CRISPR/Cas9-Based Method for Targeted Transcriptional Activation. Angew. Chem. Int. Ed. 55, 6452–6456 (2016).

50. Bellmaine, S. F. et al. Inhibition of DYRK1A disrupts neural lineage specification in human pluripotent stem cells. eLife 6, e24502 (2017).

51. Jung, E.-M. et al. Arid1b haploinsufficiency disrupts cortical interneuron development and mouse behavior. Nat. Neurosci. 20, 1694 (2017).

52. Xie, S., Duan, J., Li, B., Zhou, P. & Hon, G. C. Multiplexed Engineering and Analysis of Combinatorial Enhancer Activity in Single Cells. Mol. Cell 66, 285-299.e5 (2017).

53. Kearns, N. A. et al. Cas9 effector-mediated regulation of transcription and differentiation in human pluripotent stem cells. Development 141, 219–223 (2014).

54. Alpern, D. et al. BRB-seq: ultra-affordable high-throughput transcriptomics enabled by bulk RNA barcoding and sequencing. Genome Biol. 20, 71 (2019).

55. Livak, K. J. & Schmittgen, T. D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 25, 402–408 (2001).

56. Shalem, O. et al. Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells. Science 343, 84–87 (2014).

57. Wang, T., Wei, J. J., Sabatini, D. M. & Lander, E. S. Genetic Screens in Human Cells Using the CRISPR-Cas9 System. Science 343, 80–84 (2014).

58. Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. (2018) doi:10.1038/nbt.4314.
59. Polioudakis, D. et al. A Single-Cell Transcriptomic Atlas of Human Neocortical Development during Mid-gestation. *Neuron* 0, (2019).

60. Dennis, D. J., Han, S. & Schuurmans, C. bHLH transcription factors in neural development, disease, and reprogramming. *Brain Res.* 1705, 48–65 (2019).

61. Avey, D. et al. Single-Cell RNA-Seq Uncovers a Robust Transcriptional Response to Morphine by Glia. *Cell Rep.* 24, 3619-3629.e4 (2018).

62. Wang, J., Vasaikar, S., Shi, Z., Greer, M. & Zhang, B. WebGestalt 2017: a more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit. *Nucleic Acids Res.* 45, W130–W137 (2017).