Architrypethelium barrerae sp. nov.
from a cloud forest in Veracruz, Mexico

Jorge Guzmán-Guillermo* & Régulo Carlos Llarena-Hernández

Facultad de Ciencias Biológicas y Agropecuarias, Universidad Veracruzana,
Peñuela, Amatlán de los Reyes, Veracruz, 94945 México

*Correspondence to: qwerty.guzmi@gmail.com

ABSTRACT—A new species of corticolous microlichen, Architrypethelium barrerae, is described from the cloud forest in the ecological park ‘El Haya’ in Xalapa, Veracruz, Mexico. It is characterized by two-spored asci, cortex UV+ yellow, and an internal K+ pigment in its pseudostromata. Photographs of macro- and microscopic structures are presented.

KEY WORDS—tropical lichens, Trypetheliales, Trypetheliaceae

Introduction

Cloud forests contain the highest vascular plant diversity in Mexico (Rzedowski 1996). Despite the rich documentation of the vascular flora there, lichen diversity from these, as with other tropical regions in Mexico, is poorly known. Although some monographs and synopses have improved our understanding of tropical lichens for some genera (e.g., Ahti 2000, Kurokawa 1962, Lücking 2008), overall little is known about the entire tropical lichen flora. New species have been described from tropical regions (e.g., Córdova-Chávez & al. 2014, Guzmán-Guillermo & al. 2019, Hodkinson & al. 2014) at a rather fast rate considering the paucity of specimens from such regions. This highlights the potential for a great number of overlooked species yet to be described.

Tropical Mexican lichens such as Trypetheliaceae are very poorly known, and few reports have been published. This family comprises 16 mostly corticolous genera with perithecioid ascomata, with or without stromatic tissues, and
sometimes with xanthones and anthraquinones (Aptroot & Lücking 2016). Within this family, *Architrypethelium* Aptroot contains perithecioid crustose lichens similar to *Astrotelium* Eschw., but with large (>100 µm), brown, often 3-septate ascospores (Aptroot 1991). To date, this genus includes eight accepted species, of which six are known to occur in the neotropics (Aptroot & al. 2008, Aptroot & Lücking 2016, Flakus & al. 2016, Lücking & al. 2016), one is paleotropical (Luangsuphabool & al. 2018), and one has a pantropical distribution (Aptroot & Lücking 2016).

As part of a larger project, a survey was carried out to collect microlichens in the megadiverse region in the center of Veracruz, a state of Mexico. We collected corticolous microlichens in tropical vegetation, such as the cloud forest in the ecological park ‘El Haya’ in Xalapa city. One result of our efforts was the discovery of a previously unknown *Architrypethelium*, which we propose as the new species *A. barrerae*.

Materials & methods

The material studied is preserved in the mycology collections in the herbarium of Universidad Veracruzana, Xalapa, Veracruz, Mexico (XALU) and the herbarium of Escuela Nacional de Ciencias Biológicas, Mexico City, Mexico (ENCB). Specimens were collected in El Haya ecological park in Xalapa, Veracruz, México, located at 19.5181°N 96.9436°W and 1300 m a.s.l. Terminology is based on Aptroot & al. (2008) and Aptroot & Lücking (2016), and morphological analysis was conducted by conventional lichenological techniques following Brodo & al. (2001). Sections for anatomical examination were made by hand under a Zeiss Stemi Dv4 stereoscope and microscopical measurements were taken in Lugol’s solution using a Zeiss Primo Star microscope. Thin layer chromatography (TLC) was performed using solvent C following conventional chromatography techniques described in Elix (2014). Spot tests used were C (NaClO) and K (KOH 5%). To test hymenium amyloidity, sections of ascomata were mounted with I (Lugol’s solution) and resultant coloration was observed.

Taxonomy

Architrypethelium barrerae Guzm.-Guill. & Llar.-Hern., sp. nov.

MB 837958

Differs from *Architrypethelium hyalinum* by its larger ascospores, its two-spored asci, and K+ internal pigment in its pseudostromata.

Type: México, Veracruz. Municipio de Xalapa, Parque Ecológico ‘El Haya,’ 19.5181°N 96.9436°W. 3 October 2020, Guzmán-Guillermo 1968 (Holotype, XALU 25326).

Etymology: dedicated to Dr. Clementina Barrera-Bernal who supported the lichenological studies by the first author.
Architrypethelium barrerae sp. nov. (Mexico)

Thallus corticate, green to yellowish, smooth to uneven. Ascomata trypethelioid, with apical ostioles, 0.7–1.2 mm diam., erumpent to prominent, covered by thallus except for the ostiolar area. Ascomata internally with a yellow pigment. Wall fully carbonized and K+ olive green, apical and lateral portions thick, base thin and touching the substrate. Hamathecium not inspersed. Ascii cylindrical, longer than 300 µm. Ascospores two per ascus, 160–200 × 50–75 µm, oblong-ellipsoid, triple-septate, outer lumina much smaller than inner lumina, lumina rounded in the corners, brown when free from the ascomata.

Chemistry—Cortex UV+ yellow, thallus K−, yellow pigment K+ yellow to dark red. TLC: lichexanthone and an unidentified anthraquinone.

Ecology & Distribution—Corticolous in open areas, in cloud forest at 1300 m a.s.l. Sometimes covered with moss. Known only from the type locality in the El Haya ecological park in Xalapa city, Veracruz, Mexico.

Fig. 1. Architrypethelium barrerae (holotype, XALU 25326): A, B. Immature ascospores; C. Mature ascospore; D. Ascus with two spores. Scale bar: A–C = 20 µm; D = 40 µm.
Comments—Architrypehelium barrerae is morphologically similar to the other Architrypehelium species but contains lichexanthone in its cortex. Within the genus, only A. hyalinum Aptroot is known to have this chemistry, but its spores are shorter (160–200 × 30–50 µm) and its asci are 4–8-spored (Aptroot & Lücking 2016). Another characteristic only found in A. barrerae is the pseudostromata with a conspicuous internal yellow pigment which is K+ yellow to dark red.

Additional material studied: MÉXICO, VERACRUZ. Municipio de Xalapa, Parque Ecológico 'El Haya', 19.5181°N 96.9436°W, 1300 m a.s.l., 3 October 2020, Guzmán-Guillermo 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1976, 1977 (XALU).

Acknowledgments.

We thank Dr. André Aptroot (Universidad Federal de Mato Grosso do Sul, Brazil) for his review of this work and for the help provided in the study of microlichens in Veracruz and Dr. Curtis Björk (University of British Columbia, Vancouver, Canada) for his presubmission manuscript review. We also thank the Environmental Quality Laboratory and the herbarium XALU in the Facultad de Biología of Universidad Veracruzana for providing the resources needed to analyze the lichen samples studied here and Subdirección de Recursos Naturales y Cambio Climático of Municipio de Xalapa for providing permission to collect lichen samples from El Haya Ecological Park.

Literature cited

Ahti T. 2000. Cladoniaceae. Flora Neotropica 78. 362 p.

Aptroot A. 1991. A monograph of the Pyrenulaceae (excluding Anthracothecium and Pyrenula) and the Requienellaceae, with notes on the Pleomassariaceae, the Trypetheliaceae and Mycomicrothelia (lichenized and non-lichenized Ascomycetes). Bibliotheca Lichenologica 44. 178 p.

Aptroot A, Lücking R. 2016. A revisionary synopsis of the Trypetheliaceae (Ascomycota: Trypetheliales). Lichenologist 48(6): 763–982. https://doi.org/10.1017/S0024282916000487

Aptroot A, Lücking R, Sipman HJ, Umana L, Chaves JL. 2008. Pyrenocarpous lichens with bitunicate asci. Bibliotheca Lichenologica 97. 161 p.

Brodo IM, Sharnoff SD, Sharnoff S. 2001. The lichens of North America. Yale University Press. New Haven, USA.

Córdova-Chávez O, Aptroot A, Castillo-Camposa G, da Silva Cáceres ME, Pérez-Pérez RE. 2014. Three new lichen species from cloud forest in Veracuz, Mexico. Cryptogamie, Mycologie 35(2): 157–162. https://doi.org/10.7872/crym.v35.iss2.2014.157

Elix JA. 2014. A catalogue of standardized chromatographic data and biosynthetic relationships for lichen substances. 3rd edition. Canberra, Australia. Published by the author.

Flakus A, Kukwa M, Aptroot A. 2016. Trypetheliaceae of Bolivia: an updated checklist with descriptions of twenty-four new species. Lichenologist 48(6): 661–692. https://doi.org/10.1017/S0024282915000559
Architrypehelium barrerae sp. nov. (Mexico)...

Fig. 2. Architrypehelium barrerae (holotype, XALU 25326): A. Thallus; B. Thallus with UV reaction; C. Pseudostroma detail; D. Arrow shows the yellow pigment inside of pseudostroma; E. Yellow pigment reacting to K. Scale bars: A, B = 2 mm; C = 0.4 mm.

Guzmán-Guillermo J, Díaz-Escandón D, Medel-Ortiz R. 2019. Leucodermia guzmaniana sp. nov. (Physciaceae, Lecanorales) a new species from Mexican cloud forest, and a key of Leucodermia in Mexico. Asian Journal of Mycology 2(1): 209–212. https://doi.org/10.5943/ajom/2/1/1

Hodkinson BP, Moncada B, Lücking R. 2014. Lepidostromatales, a new order of lichenized fungi (Basidiomycota, Agaricomycetes), with two new genera, Ertzia and Sulzbacheromyces, and one new species, Lepidostroma winklerianum. Fungal Diversity 64(1): 165–179. https://doi.org/10.1007/s13225-013-0267-0

Kurokawa S. 1962. A monograph of the genus Anaptychia. Beihefte zur Nova Hedwigia 6. 116 p.

Luangsuphabool T, Lumbsch HT, Piapukiew J, Sangvichien E. 2018. Architrypehelium murisporum (Ascomycota, Trypetheliaceae), a remarkable new lichen species from Thailand challenging ascospore septation as an indicator of phyllogenetic relationships. MycoKeys 34: 25–34. https://doi.org/10.3897/mycokeys.25.23836

Lücking R. 2008. Follicolous lichenized fungi. Flora Neotropica 103. 867 p.

Lücking R, Nelsen MP, Aptron A, Benatti MN, Binh NQ, Gueidan C, Moncada B. 2016. A potpourri of new species of Trypetheliaceae resulting from molecular phylogenetic studies. Lichenologist 48(6): 639–660. https://doi.org/10.1017/S0024282916000475

Rzedowski J. 1996. Análisis preliminar de la flora vascular de los bosques mesófilos de montaña de México. Acta Botánica Mexicana 35: 25–44. https://doi.org/10.21829/abm35.1996.955