Medical Image Fusion Based on Transformation Domain Approaches

Raja Krishnamoorthi¹, Annapurna Bai², and A. Srinivas³
¹,³Department of ECE, CMR Engineering College, Hyderabad, India
krajameae@gmail.com srinivas.amgoth916@gmail.com
²Department of ECE, St. Martin’s Engineering College, Secunderabad, India
pannapurnabai@smec.ac.in

Abstract. Combining material from two or more images in a solo image is called a mixture of images and may preserve all the basic features of the first images. The key aim of the image mix is to produce an image that displays a desired scene or much higher than an image that provides a useful image to any essential characteristics. This approaches are the most essential for the detection and management of development in the fields of therapy. This article discusses the development and study of different algorithms, such as discrete transform wavelets (DWT), stationary transformation wavelets (SWT), fast and discrete transform curvelets (F-DCT) and transforming sampled dis-sub shapelets (DS-ST). Furthermore, fused picture quality has been measured with a number of efficiency indicators known as IQA.

1. Introduction
The fundamental point of combination [1] is to integrate two or more images into a solitary image to get more applicable information than any of the information images. Image combination concept can be utilized to distinguish the items obviously better than the first info images. Indeed, even it has been demonstrated for all intents and purposes in old days. Because of its reliability and magnificence, this innovation has been pulled in by numerous scientists, for example, image analysis and understanding, video analysis, PC vision, satellite imaging, therapeutic determination and machine adapting even in the field of optical remote detecting, route help. The principle thought process of image combination is to build up an upgraded scene by incorporating the caught information from various sensors without presenting the antiques. Satellite images show very emotionally with low spatial resolution or the other way round due to the sensor restrictions. Any remote detection applications involve a single image of high spatial and stunning resolution that can’t be easily obtained by the camera. Doctors discover characteristics that can not usually be seen in pictures in numerous ways that are difficult to focus. This is how Picture Fusion is arranged. Structure the previous decades there are such a variety of algorithms have been produced for image combination applications by utilizing spatial and transformation areas.

All the condition of workmanship algorithms is based on previously mentioned classes. In any case, they were experiencing couple of constraints, for example, higher multifaceted nature, less solid, more calculations and less precision. Here, we made a study on all the current image combination algorithms furthermore presented a novel therapeutic image combination plan utilizing MR and CT images based on DS-ST to enhance the execution of the combination framework.
2. Related Work

Image mix methods can also be comprehensively categorised in spatial and international space approaches depending on the writing. In [2] the creator spoke of spatial combination technology that generates entangled images of space bends; moreover, these spatial challenges can be dealt of throughout by phantom space strategies. In order to preserve strategic distance from contortion, for example, pyramid transformation can be used in phantom space.

2.1. Spatial Domain Fusion Methods

The key strategies of the space field are shown below. However, the appropriateness of these methods varies with the form of mixture pictures. The information is a combination of two or more images from the same scene taken in each of these strategies from several ways. The output is a combined image that needs a superior visual quality compared with the info images.

2.2. Spectral Domain Fusion Methods

Both spatial strategies have symptoms such as lowering the entire image gap. In any event, it is much helpful and smoother if high separation and magnificent images happen. As a consequence, the execution of fantastic space-based combined techniques is important to analyse.

2.3. Wavelet Transform Algorithms

Figure 1 disclose the block diagram of DWT based image fusion approach. Fused image has been obtained by taking the inverse DWT for the addition of extracted features of fusion images i.e., approximated, horizontal, vertical and diagonal coefficients.

![DWT based image fusion system](image)

We also tested un-decimated wavelet transform i.e., stationary wavelet transform (SWT), which does not have decimation operation while decomposing the input image into subbands.

2.4. Fast Discrete Curvelet Transform (F-DCT)

Since Wavelet Transform is centred on block C^2, it can interact isotropically; the geometry of the peculiarity is ignored. In order to approach the particularity of C^2, the curvelet Transformation is wedge dependent. It has a contrasting directivity with Wavelet and is communicated with anisotropy. When the direction of the comfortable foundation correlates to the geometry of individual qualities, the curvelet coefficients become greater. First, we need pre-handling, after which we cut the same
amount of images as per the region chosen. Then, we divide images into sub-images that differ on Wavelet Transform scales. Subsequently, each sub-image must be taken Curvelet Transform neighbourhood; the sub-blocks are special due to sizes.

- We should change uniform pictures and distortions to the resample and list of specific images so that they provide a comparative dissemination of likelihood. In this case, the comparable component wavelet coefficient will remain the same in size.
- The turning of a wavelet into legit levels to deteriorate specific pictures. There will be one rough low frequency component and three high frequency components in each level.
- Curvelet Transformation of the individual components from both images from the low frequency and the subtle high frequency elements, the neighbourhood interjection technique is used, and dim points of interest can not be modified.

The local region variation opts for calculating the meaning of the low frequency variable, according to the definite norm to fuse photos. First divide a low-frequency C_{j0} into four-square subblocks, that are N_1 through M_1 (3 through 5), then comput the current subblock’s local area variance:

$$STD = \sqrt{\frac{\sum_{i=-(N_1-1)/2}^{(N_1-1)/2} \sum_{j=-(M_1-1)/2}^{(M_1-1)/2} [C_{j0}(k_1+i,k_2+j) - \bar{C}_{j0}(k_1,k_2)]^2}{N_1 \times M_1}}$$

If the difference is greater, it means the local contrast of the original picture is higher. The following was expressed:

$$C_{j0}^F(k_1,k_2) = \begin{cases} C_{j0}^A(k_1,k_2), & STD^A \geq STD^B \\ C_{j0}^B(k_1,k_2), & STD^A < STD^B \end{cases}$$

Ej. l (k_1, k_2) Regional operation shall be specified as the high frequency component fusion norm. Divide sub-band in sub-blocks first of all, and measure sub-block regional activity

$$E_{j,l}(k_1,k_2) = \sum_{i=-(N_1-1)/2}^{(N_1-1)/2} \sum_{j=-(M_1-1)/2}^{(M_1-1)/2} [G_{j,l}(k_1+i,k_2+j)]^2$$

The pictures reconstructed would be fused pictures in reverse transition of coefficients following fused.

3. Proposed Implementation

The images can be combined in three levels, particularly the combination of pixel level, function level combination and option level combination. This paper contains a pixel level mix. We can work directly on pixel and can have an image combined afterwards. We will hold more details from source images as logically anticipated.

Authors in [9] addressed the concept of Contourlet transform (CT) in 2005, which is good enough for building the expansions of multiresolution with numerous directions and potential to identify the edge element discontinuity and the fluency across the contours. CT employ Laplacian pyramidal filter banks (LPFBs) [10] and directional filter banks (DFBs) in the first and latter stages at angular decomposition. But, shift invariancy and structural info wasn’t rendered by CT, Therefore, fusion performance might get degraded. Recently, several methodologies have been addressed to innovate the fusion approaches with image transforms. In [11], authors introduced octave band DFBs which produce the decompositions in eight bands rather than four. Another approach is named as critically sampled CT, that utilized a single level filter bank with on-separable function [12]. Another problem with the CT is the existence of objects, introduced by fixing multiple transformation coefficients at zero for approximations in nonlinear during the production of fusion. Thus, the substantial data might
be lost after completion of the fusion procedure. Hence, DS-ST innovated in this article to improve the fusion performance.

The DS-ST consist a structure of filter bank which decomposes a 2-D image into couple of shift invariant sections as follows:

- A Dis-sub sampled structure of pyramid which ensures the properties of multi scaling.
- A Dis-sub sampled structure of DFB which allows the multiscale directionality.

Following are the attributes of DS-ST:

- Multi-resolution.
- Multi-directionality.
- Shift invariancy.
- Regularity.
- J+1 redundancy, where J is number of decomposition levels.

The following is the implementation of the DS-ST fusion method.

Step-I: Auto captured images A and B of different sensors are subjected to DS-ST independently, and coefficients of bandwidth passes are obtained in figure. 2a

Step-II: An additional decomposition level as shown in the Figure will provide further directional components. 2b. One approx. and 8 informative directional elements after three stages of breaking down are the final decomposed components.

Step-III: The decomposed coefficients apply fusion laws.

Step-IV: Final fused output image will be obtained by applying inverse DS-ST

3.1. **Quantitative Analysis of IQA**

Here, we used image quality metrics to measure the output fused image quality which is obtained by using existing and proposed algorithms. Those are:

1. Mean Square Error (MSE)

\[MSE = \frac{1}{m \times n} \sum_{i=0}^{m} \sum_{j=0}^{n} (A_{i,j} - B_{i,j})^2 \]

Where, A= first input image

B=Second input image

i, j= number of rows and columns

2. Peak Signal to Noise Ratio (PSNR)

\[PSNR = 10 \times \log_{10} \left(\frac{255^2}{MSE} \right) \text{ (For grayscale)} \]

\[PSNR = 10 \times \log_{10} \left(\frac{1}{MSE} \right) \text{ (For binary)} \]

4. **Experimental Results**

All tests performed in MATLAB are described in this segment. Various images have been tested with existing and proposed image fusion algorithms. Figure 2 shows that the original images to be fused and wavelet fused image,
Figure 2. MR, CT images and wavelet fused image

Figure 3. FDCT and DS-ST fused images

Figure 4. Comparison of PSNR values
Figure 5. Performance evaluation using IQA

Figure 3 shows that the output fused images obtained by F-DCT and DS-ST respectively. Comparison of PSNR values is given in figure 4, where the proposed fusion algorithm has got 76.99 dB with well enhanced quality. Other quality metrics has given in figure 5. By observing all the simulation results, we can conclude that the proposed algorithm has got the better performance over all existing schemes.

5. Conclusion

The proposed method of image fusion is preferable to traditional image fusion. We have measured few consistency parameters for the performance of the proposed fusion technique by the experiments. It illustrates greater PSNR, RMSE, CC, and Entropy robustness and effectiveness. Future studies will concentrate on the use of recent advances of 3D image medical analysis fusion in the area of multi-resolution analysis.

6. References

[1] Kingsbury, N. G, “The dual – tree complex wavelet transform: a new technique for shift invariance and directional filters”, proc. 8 IEEE DSP Workshop, Bryce Canyon, UT, USA, paper no. 86
[2] Petrovic V, Xydeas C. Gradient based Multi resolution Image Fusion, IEEE Transaction on Image Processing. Vol.13, No.2, 2012.
[3] Andrews, H, Patterson, C.L, “Singular Value Decomposition (SVD) for Image Coding,” IEEE Transaction on Communication. Vol. 24 ,425-432, 1976.
[4] Fusetool - An Image Fusion Toolbox for MATLAB 5.x, http://www.metapix.de/toolbox.htm
[5] The Online Resource for Research in Image Fusion www.imagefusion.org
[6] Lindsay I Smith, “A Tutorial on Principal Component Analysis” http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf
[7] Zhang Zhong, “Investigations on Image Fusion”, Ph.D Thesis, University of Lehigh, USA, May1999.
[8] ShrivastavaKrishnamoorthy, Soman K. P, “Implementation and Comparative Study of Image Fusion Algorithms”, International Journal of Computer Applications, Vol. 19, no. 2, Nov. 2013
[9] Mohd. Shahid, Suman Gupta, “Novel Masks for multimodality image fusion using DT-CWT”, 9th International Conference on Information Fusion, 2014.
[10] C. Sydney, Burrus Ramesh, A. Gopinath and Haitao Guo, Introduction to wavelets and wavelets transforms – A Primer, *Prentice Hall*, 1998.

[11] N G Kingsbury, “Complex wavelets for shift invariant analysis and filtering of signals”, *Journal of Applied and Computational Harmonic Analysis*, Vol. 10, no 3, pp.234-253, 2001.

[12] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From error visibility to structural similarity”, *IEEE Transactions on Image Processing*, Vol. 13, no. 4, pp.600-612, Apr. 2004.

[13] N. Gokulraj, K. Umapathy, “5G Wireless Mesh Network 802.11s Load Balancing Architecture for 802.11 bgn Radio-PCI Interface”, *Procedia Computer Science, Science Direct (Elsevier)*, ISSN: 1877 – 0509, pp. 252-257, 2016.

[14] Deepali Sale, Rajashree and Dr. Madhuri A Joshi, “Multi Resolution Image Fusion Approach for Image Enhancement”, *International Conference on Computing Communication, Control and Automation*, 2015.

[15] Sujath, R., Chatterjee, J. M., & Hassanien, A. E. “A machine learning forecasting model for COVID-19 pandemic in India,” *Stochastic Environmental Research and Risk Assessment*, 2020.

[16] Shahada SA, Hreijji SM, Atudu SI, Shamsudheen S. Multilayer Neural Network Based Fall Alert System Using IOT. *International Journal of MC Square Scientific Research*, 11(4), 1-5, 2019.