A Note on Bayesian Modeling Specification of Censored Data in JAGS

Xinyue Qi
The University of Texas MD Anderson Cancer Center
and
Shouhao Zhou*
Pennsylvania State University
and
Martyn Plummer
University of Warwick

Abstract

Just Another Gibbs Sampling (JAGS) is a convenient tool to draw posterior samples using Markov Chain Monte Carlo for Bayesian modeling. However, the built-in function `dinterval()` to model censored data misspecifies the computation of deviance function, which may limit its usage to perform likelihood based model comparison. To establish an automatic approach to specify the correct deviance function in JAGS, we propose a simple alternative modeling strategy to implement Bayesian model selection for analysis of censored outcomes. The proposed approach is applicable to a broad spectrum of data types, which include survival data and many other right-, left- and interval-censored Bayesian model structures.

Keywords: Bayesian data analysis, censoring, deviance function, exact likelihood, JAGS, model selection

*The corresponding author: szhou1@phs.psu.edu
1 Introduction

Censored data are commonly observed in different disciplines such as economics, engineering and life sciences (Lewbel and Linton, 2002; Hamada and Wu, 1991; Chen et al., 2012). Given the uncertainty in censored data, the modeling and analysis fit naturally in the Bayesian framework by using expectation–maximization (EM), data-augmentation (DA) and Markov chain Monte Carlo (MCMC) algorithms (Dempster et al., 1977; Tanner and Wong, 1987). For example, in highly fractionated experiments, frequentist likelihood-based estimates may not even exist for simple models consisting of only main effects, while Bayesian approach offers a straightforward implementation strategy (Hamada and Wu, 1995). When the outcome cannot be fully observed, censored data can be treated as additional parameters from a fully Bayesian perspective, with a likelihood function specifying joint modeling for both observed and censored data. The Bayesian approach has multiple advantages in the presence of censored data or inadequate sample size, and for nested/non-nested model comparisons (Ibrahim et al., 2013). Compared with multiple imputation, Bayesian modeling is robust in statistical inference even when a large proportion of missing data is present (Jakobsen et al., 2017; Qi, 2020).

Just Another Gibbs Sampling (JAGS) is an object-oriented software to generate posterior samples using MCMC simulations (Plummer, 2003). It simplifies the implementation of Bayesian modeling by only requiring the specification of likelihood functions and prior distributions, making it unnecessary to specify the conditional distributions for model parameters, especially when the closed form expressions are not available. JAGS also clarifies certain confusing aspects for missing data in BUGS (Spiegelhalter et al., 2003; Lunn et al., 2012). To distinguish the concepts of censoring and truncation, it introduces a degenerate dinterval distribution function for general interval-censored data (Plummer, 2003).
Some existing R packages, including \texttt{rjags} (Plummer, 2019), \texttt{r2jags} (Su et al., 2015) and \texttt{runjags} (Denwood et al., 2016), provide a user-friendly interface for R users to conduct Bayesian data analysis via JAGS. Most importantly, these R packages for JAGS, together with \texttt{coda} (Plummer et al., 2006) and \texttt{MCMCpack} (Martin et al., 2011), not only make it easy to process the output of Bayesian models implemented using JAGS, but also further help (1) visualize the posterior samples via plots, (2) predict new data based on posterior predictive distributions, and (3) calculate the deviance using posterior samples from JAGS models.

For Bayesian inference especially with complicated model features, model selection is a critical component to identify an approximate model best describing the information in the data. Among many popular approaches, the seminal work of deviance information criterion (DIC) by Spiegelhalter et al. (2002) was proposed based on Kullback-Leibler (K-L) divergence (Kullback and Leibler, 1951) and embedded in JAGS as part of the \texttt{dic} module based on the posterior samples obtained from MCMC simulations. However, when the outcome variables are censored, the built-in function \texttt{dinterval()} returns a constant value of 1 for the likelihood calculation (Kruschke, 2014; Plummer, 2017), which is equivalent to ignoring all of the censored observations in the deviance monitor of the \texttt{dic} module. As a result, it fails to calculate DIC for model comparison, which may limit the broader usage of JAGS for Bayesian modeling of censored data (Plummer, 2012).

Therefore, we propose an alternative model specification for analysis of censored outcomes in JAGS. It is a universal approach that automatically returns the correct deviances for both observed and censored data, such that DIC and penalized expected deviance (Plummer, 2008) can be properly and simultaneously calculated using posterior samples from MCMC simulations; thus Bayesian model selection for censored data modeling can be conducted using JAGS without analytical customization of the deviance of the model.
The proposed approach is applicable to many different Bayesian model structures, such as Bayesian tobit regression model (Chib, 1992), semiparametric accelerated failure time (AFT) models for censored survival data (Ghosh and Ghosal, 2006), illness-death model using Bayesian approach for semicompeting risks data (Han et al., 2014), Bayesian hierarchical model for censored normal outcome (Carvajal et al., 2017), and Bayesian Thurstonian models for ranking data (Johnson and Kuhn, 2013), among many.

The rest of the paper is organized as follows. The default approach for censored data modeling using built-in function in JAGS is introduced in Section 2. The alternative strategy for correct deviance computation is proposed in Section 3. In Section 4, we use a right-censored survival example to illustrate the discrepancy in deviance functions using both approaches, and applied Bayesian model selection using the correctly specified likelihood in an application to drug safety for cancer immunotherapy. Concluding remarks and discussions are given in Section 5.

2 Default procedure for censored data modeling in JAGS

Censoring occurs when the value of an observation is only partially observed, which is common in Bayesian modeling. We first briefly review the standard approach to model censored data in JAGS with its limitation in model assessment.

A default approach for analysis of censored observations in JAGS is to use the built-in `dinterval` distribution function for model specification and posterior sampling. The Model 1 below illustrates a general form of model specification for censored data analysis in JAGS. It helps modeling three types of censoring: right-censoring, left-censoring and interval-censoring (Plummer, 2017).
model{ # Model 1
 for (o in 1:O){ # O is the number of observed cases;
 Y[o] ~ f(theta[o]) # f need to be specified for JAGS
 }

 for (j in 1:J){ # J is the number of censored observations;
 # Left censoring (R=0): lim[j,:] = c(cut[j], inf);
 # Right censoring (R=2): lim[j,:] = c(-inf, cut[j]);
 # Interval censoring (R=1): lim[j,:] = c(cut1[j], cut2[j]);
 R[j] ~ dinterval(Y[j], lim[j,:])
 Y[j] ~ f(theta[j])
 }

 # prior for theta's
}

where the outcome of interest, Y, which can be either observed or censored (coded as NA in the data table), follows density distribution f with parameter \(\theta \). \(R \) is a censoring variable following an interval distribution. If \(R = 1 \), then the outcome is interval-censored; If \(R = 0 \), the data is left-censored while outcome contains partial information which is less than a lower limit; If \(R = 2 \), the data is right-censored, which is above a certain cutoff value. \(\text{lim[,]\,} \) is a vector of length 2, which contains a pair of cutoff values for each unobserved outcome data, as illustrated in the comment lines above.

However, \texttt{dinterval()} function has a limitation in deviance calculation when we assess model fit based upon deviance-based statistics. For example, when we apply an existing function, \texttt{dic.samples()}, in the \texttt{rjags} package (Plummer, 2019) to call the \texttt{dic} module
and to generate penalized deviance samples within R (R Core Team, 2020), the following warning message appears.

Warning message:
In dic.samples(model=model, n.iter=n.iter, type="pD"):
 Failed to set mean monitor for pD
 Support of observed nodes is not fixed

By default, the dic module was created to monitor and record the likelihood/deviance of a JAGS model at each iteration and calculate the deviance-based model selection criteria such as DIC or penalized expected deviance. In the presence of censored outcomes, even though the dinterval() function can generate the proper posterior distribution of the parameters in JAGS, the likelihood function is misspecified with the wrong focus of inference on the censored outcome variable (Plummer, 2012). Instead, a constant value of 1 for the likelihood function, or equivalently, a constant value of 0 for the deviance function, is misspecified for the censored outcomes in the deviance monitor. Therefore, the posterior mean deviance computed from the dic module using the default procedure dinterval() is mistakenly reported by the posterior mean deviance of observed data only. It suggests that the posterior mean deviance extracted from the dic module in JAGS should not be used in model assessment (Kruschke, 2014).

3 Alternative modeling strategy in JAGS

The goal is simply to derive the deviance and associated model selection criteria in JAGS without any manual calculation by definition. Rather than handling censored data with the dinterval() function in the JAGS Model 1, we present an alternative modeling strategy to specify the proper deviance based on the type of censoring.
We divide the data into 3 subgroups: observed, left- or right-censored, and interval-censored. For incomplete observations, we introduce ancillary indicator variables Z_1 for left- and right-censored data and Z_2 for interval-censored data. Hence, the alternative JAGS model specification (Model 2) can be written in a general form as follows:

```jags
model{  # Model 2
    # block 1: fully-observed
    for (o in 1:O){
        Y[o] ~ f(theta[o])  # f need to be specified for JAGS
    }

    # block 2: left/right censoring
    for (c in 1:C){
        Z1[c] ~ dbern(p[c])
        p[c] <- F(cut[c], theta)
    }

    # block 3: interval censoring
    for (i in 1:I){
        Z2[i] ~ dbern(p[i])
        p[i] <- F(cut2[i], theta) - F(cut1[i], theta)
    }

    # prior for theta's
}
```

Every subgroup is self-blocked with a separate section of the likelihood in JAGS, where
\(O \) is the set of observed data, \(C \) is the set of left/right-censored observations, and \(I \) is the set of interval-censored observations. \(Z_1 \) is a binary random variable, where \(Z_1 = 1 \) if it is left-censored, or \(Z_1 = 0 \) if right-censored. The probability of success \(p \) in Bernoulli distribution of \(Z_1 \) is defined by the cumulative distribution \(F \) for the censored outcomes, which neatly identifies the probabilities for both left-censored and right-censored data with properly specified cutoffs. For interval censored observations, we set \(Z_2 = 1 \) and the probability of success in Bernoulli distribution is the incremental change of the values in \(F \) function between the cutoffs, corresponding to the unobserved outcome which lies in a semi-closed interval.

Proposition 1 in Appendix A demonstrates that the proposed alternative modeling strategy in the JAGS Model 2 has a correctly specified likelihood function for censored data. Therefore, it is warranted that the JAGS Model 2 can generate proper posterior samples and deliver valid Bayesian posterior inference.

In addition, the JAGS Model 2 automatically specifies correct deviances in the \texttt{dic} module for model assessment of censored observations. For K-L based model comparison, especially when there are complicated model features, it is convenient to have an automatic algorithm to avoid any manual calculation of deviance function and model selection criteria. Because the computation is implemented \textit{via} the built-in \texttt{dic} module, we empirically compare the deviance reported from the JAGS Model 2 to the deviance manually calculated using posterior samples in the next Section and illustrate that the proposed model can report the correct deviance values.

The JAGS Model 2 encompasses a broad range of model structures. The censored regression models, which are also called tobit models, usually have data both in blocks 1 and 2 with normally distributed or \(t \)-distributed errors (Chib, 1992; Long, 1997). Some extensions include time-series analysis (Lee, 1999), longitudinal data analysis (Twisk, 2013)
and spatial analysis (Xu and Lee, 2015). In the context of survival data analysis, some commonly assumed parametric distributions F include exponential, Weibull, generalized gamma, log-normal, and log-logistic (Klein and Moeschberger, 2006; Kalbfleisch and Prentice, 2011), since the event times are positively valued with a skewed distribution, making the symmetric normal distribution a poor choice for fitting the data closely. Additionally, it is unnecessary to assume a known censoring time. Because the cutoff can be either pre-specified with a fixed value or modeled as a random variable, the proposed approach naturally accommodates models with unobserved, stochastic censoring thresholds (Nelson, 1977).

Even for non-censored data, the proposed modeling strategy can still be useful in some situations for computational advantages. After converting the standard model to a latent-variable formulation, we can adapt logit, probit or complementary log-log models as a type of block 2 data with Z_1 defined as the binary outcome and cut (cutoff) treated as fixed at 0 (Freedman, 2009). It is also possible to extend the proposed approach for ordered probit analysis (Albert and Chib, 1993), which accommodates many applications in economics and marketing (Koop, 2003).

4 Illustrative Examples

In this section, two real data applications are examined with the proposed approach. The first example in Section 4.1 applies both the default approach and the alternative strategy to model time-to-event outcome with right censoring. The reported deviance of the model is assessed with the true value calculated manually based on the full likelihood function. It demonstrates that the alternative strategy not only properly draws posterior samples in JAGS, but also automatically delivers the correct deviance for model assessment. The
second example in Section 4.2 shows that the proposed approach is capable of comparing censored data models by DIC (Spiegelhalter et al., 2002) and penalized expected deviance (PED, Plummer 2008) simultaneously, using a drug safety subset (Wang et al., 2019) in which some of the outcome data are missing not at random (MNAR).

4.1 survival data

Right censoring is common in the time-to-event data of survival analysis. The first example is from a classical right-censored survival dataset on acute myeloid leukemia (Miller Jr, 2011). Individual patient-level data were collected along with survival or censoring time to test whether the standard course of chemotherapy should be maintained for additional cycles or not. The Bayesian survival analysis is conducted using MCMC simulation and implemented in JAGS 4.3.0 software (Plummer, 2017) and R version 3.4.1. The JAGS codes for both models are attached in Appendix B. We run three parallel chains for the model and discard 30,000 iterations of burn-in, followed by 10,000 posterior samples of hazard rates per MCMC chain with thinning in the exponential survival regression model. Once the posterior samples are obtained, the deviance function of the model based on the exact likelihood function is manually calculated, and compared with the calculated deviance using dic.samples() function in the rjags package with additional 10,000 iterations.

Figure 1(a) on the left and 1(b) in the middle compare the kernel density plots of posterior samples for coefficients in the exponential survival regression model between the default approach using dinterval() and the alternative strategy. The proposed approach has almost identical distribution to the default approach using dinterval() in estimation of the coefficient parameters. The output of dic.samples() function for mean deviance estimation is plotted in Figure 1(c) on the right, where the solid vertical line shows the mean deviance using dinterval() function and the dashed vertical line using the proposed
alternative strategy. Based on 30,000 posterior samples of each method, we also manually calculate the deviance based on the exact likelihood (1) and plot their kernel density curves displayed in the last panel. The result demonstrates that the proposed JAGS Model 2 provides the correct value of mean deviance, while the estimate using `dinterval()` function is significantly biased due to the deviances ignored for censored outcomes.

4.2 binomial data

The second example is from an application to assess drug safety for cancer immunotherapy, known as programmed cell death protein 1 (PD-1) and programmed death-ligand 1 (PD-L1) inhibitors. In clinical practice, it is important to investigate the incidences of
treatment-related adverse events (AEs) and to better understand the safety profiles of these immuno-oncology drugs. In this illustrative example, we apply the alternative strategy after extracting all-grade pneumonitis (a specific type of AE for inflammation of lung tissue) data from a recent meta-analysis (Wang et al., 2019). The primary response is a binomial outcome for the number of pneumonitis cases that could be censored; some rare pneumonitis data may be missing due to low incidence. Usually, the less frequently observed AEs are less likely to be disclosed, given the prevalent manuscript word count limitations for clinical trial publications in medical journals. For each censored AE, a study-specific cutoff value can be identified; only the AEs either of special interest or with observed incidence exceeding the cutoff were reported. To take those non-ignorable censored data into account, we considered study-level rare binomial AE outcome data within the data coarsening framework (Heitjan and Rubin, 1991) to examine the impact of stochastic censoring mechanism. If the data are coarsened at random, then we can construct the resultant likelihood ignoring the coarsening mechanism and model the outcome data only, as is presented below. The complete likelihood can be represented and modeled using selection model factorization including sensitivity analysis (Little and Rubin, 2019). More technical details can be found in Qi (2020).

In the Bayesian context, we compare seven distinct censored binomial models for all-grade pneumonitis data to examine the model performance using the proposed strategy. To apply the JAGS Model 2, an outcome variable Z_1 is incorporated for censoring status in block 2. In Model A, a baseline beta-binomial model by complete pooling is to estimate the overall incidence of AE, in which no additional effect is included. In Model B, two-group drug effect is incorporated into the baseline model, and then we can estimate the AE incidences for two drug groups (PD-1 vs. PD-L1 inhibitors). To allow for five drug-specific (Nivolumab vs. Pembrolizumab vs. Atezolizumab vs. Avelumab vs. Durvalumab) effect on
the incidence of AE, we begin with modeling drug effects without any link function as Model C, and then extend to specify half-Cauchy prior (Gelman, 2006) to the standard deviation of drug effect with logit, cloglog, and probit link functions in Model D-F, respectively. Lastly, we include a saturated model G to estimate the incidence rate corresponding to each study without pooling. Mean deviance (\bar{D}), effective number of parameters (p_D), DIC, optimism (p_{opt}), and PED are all calculated and compared based on the seven candidate models described above. The model assessment results obtained from the proposed JAGS models are summarized in Table 1.

Model	\bar{D}	p_D	DIC	p_{opt}	PED
A	380.85	0.99	381.84	2.05	382.90
B	371.11	1.99	373.10	4.26	375.37
C	343.14	4.61	347.75	10.65	353.79
D	343.35	4.56	347.91	11.02	354.37
E	343.39	4.54	347.93	13.19	356.58
F	343.38	4.61	347.99	10.28	353.66
G	269.30	94.60	363.90	865.69	1134.99

Table 1: Model Comparison: posterior mean deviance (\bar{D}), effective number of parameters (p_D), deviance information criterion (DIC), optimism (p_{opt}), and penalized expected deviance (PED) from modeling observed and censored all-grade AE (pneumonitis) data. $DIC = \bar{D} + p_D$, $PED = \bar{D} + p_{opt}$.

Per the results summarized in Table 1, there is no significant discrepancy on either DICs or PEDs among Model C-F, indicating that the data are not sensitive to the choice of link functions. In general, models with drug-specific effects (Model C-F) outperform the baseline model with complete pooling (Model A) and the model with PD-1/PD-L1 effect (Model B); the beta-binomial model without pooling (Model G) overfits the data. All results are simultaneously computed from `dic.samples()` function in the `rjags` package from R.
5 Discussion

In this paper we propose an alternative strategy to apply Bayesian modeling for censored data in JAGS. It specifies the correct deviances for censored observations such that the model selection methods DIC and PED can be easily calculated from the built-in dic module. The proposed approach can also simplify the calculation of other popular Bayesian K-L based measures such as the Bayesian predictive information criterion (BPIC, Ando 2007) and the widely applicable information criterion (WAIC, Watanabe 2010). Though not explicitly specified, the proposed approach can be easily extended to model truncated data, for example, left-truncated right-censored observations in survival analysis. Even for non-censored data such as binary outcomes, the proposed approach can still be useful for computational advantages.

The proposed method may have a similar model presentation to the EM algorithm (Dempster et al., 1977) to handle censored data, for example, in tobit or probit regression modeling (Bock and Aitkin, 1981; Liu et al., 1998). In Bayesian contexts, the EM-type algorithms are designed to apply parameter optimization in the posterior mode estimation, while the goal is to achieve the automatic calculation of deviance with the posterior distribution estimation. DA is another relevant approach to estimate the posterior distribution, which constructs computationally convenient iterative sampling via the introduction of unobserved data or latent variables (Tanner and Wong, 1987; Chib, 1992; Albert and Chib, 1993). Different from our approach, it requires the sampling of the unobserved data, which may alter the deviance in application of K-L based model selection (Spiegelhalter et al., 2002).

Censoring is frequently observed in real-world data analysis. In addition to normally distributed data in censored regression models, various types of outcome, including survival
data (Ibrahim et al., 2013), binomial data (Wang et al., 2019), count data (de Oliveira et al., 2017) and ranking data (Johnson and Kuhn, 2013), can all be modeled by the proposed alternative strategy when censoring occurs. Not only to the medical sciences, the proposed strategy can also be applied to many other fields, such as, in measuring the performance of timing asynchronies using censored normal sensorimotor synchronization data in behavioral science (Bååth, 2016), comparing industrial starch grain properties with ordered categorized data in agriculture (Onofri et al., 2019), exploring forest genetics by modeling censored growth strain data for narrow-sense heritability estimation in environmental science (Davies et al., 2017), determining the importance of influential factors to lower the risk of food contamination for censored microbiological contamination data in food science (Busschaert et al., 2011), and modeling the interval-censored as well as right-censored time to dental health event in primary school children for public health science (Wang et al., 2013). In summary, the proposed JAGS Model 2 can encompass a broad range of popular model structures and be utilized in a wide spectrum of applications.
Appendix A: Alternative Modeling Strategy

We justify that the proposed alternative procedure constructs the correct likelihood function for censored outcomes. In likelihood-based inference, the full likelihood for observed and censored data comprises four key components: observed case, left-censored case, right-censored case and interval-censored case. For observed data, the likelihood is simply a product of individual probability density/mass function of observed outcome. For any type of censored cases, the likelihood can be presented in a form of $F_Y(b) - F_Y(a)$, defining the probability of a censored outcome Y observed in the semi-closed interval, $(a, b]$. Here, $F_Y(y) = P(Y \leq y)$ denotes the cumulative distribution function of the random outcome variable if it is fully observed. If the outcome variable is left-censored at a cutoff, y_l, then $F_Y(b) = F_Y(y_l)$ and $F_Y(a) = F_Y(-\infty) = 0$. If data is right-censored with a lower bound, y_r, then $F_Y(a) = F_Y(y_r^-)$ and $F_Y(b) = F_Y(+\infty) = 1$. For interval-censored data, the likelihood function is the product of $Pr(u_i \leq Y \leq v_i) = F_Y(v_i) - F_Y(u_i^-)$, where u_i and v_i are a pair of interval thresholds, which could vary for every observation. Therefore, the exact likelihood function is given by:

$$L_{exact}(\theta; y) = \prod_{o \in O} f_Y(y_o) \prod_{l \in L} F_Y(y_l) \prod_{r \in R} \left[1 - F_Y(y_r^-)\right] \prod_{i \in I} \left[F_Y(v_i) - F_Y(u_i^-)\right], \quad (1)$$

where O is the set of observed outcome, L (or R) is the set of left (or right) censored observations, and I is the set of interval-censored data with u_i and v_i denoting the lower and upper bound of the ith interval-censored observation.

In the JAGS Model 2, we can specify the cutoff value $\text{cut} = y_l$ if data are left-censored, $\text{cut} = y_r$ if data are right-censored, and $(\text{cut}1, \text{cut}2) = (u_i^-, v_i)$ if data are interval censored. Defining $F = F_Y$, we have the following property for the likelihood from the proposed JAGS model.
Proposition 1. The likelihood generated from the JAGS Model 2 using Bernoulli distribution with the cumulative probabilities for censored data is identical to the exact likelihood (1).

Proof. To illustrate that the likelihood from the JAGS Model 2, L_{jags}, is identical to its exact likelihood, L_{exact}, we start with deriving the formula for the likelihood presented in the censored JAGS model, which has three major components: observed case, one-sided censored case, and interval-censored case. The full likelihood, L_{jags}, can be written as:

$$L_{jags}(\theta; y) = \prod_{o \in O} f_Y(y_o) \prod_{c \in C} \{ [F(\text{cut}_c)]^{I(Z_{1,c}=1)} [1 - F(\text{cut}_c)]^{I(Z_{1,c}=0)} \}$$

$$\prod_{i \in I} [F(\text{cut2}_i) - F(\text{cut1}_i)]^{I(Z_{2,i}=1)}$$

$$= \prod_{o \in O} f_Y(y_o) \prod_{c \in C} F(\text{cut}_c) \prod_{c \in C} \{ [1 - F(\text{cut}_c)] \} \prod_{i \in I} [F(\text{cut2}_i) - F(\text{cut1}_i)]$$

$$= \prod_{o \in O} f_Y(y_o) \prod_{l \in L} F_Y(y_l) \prod_{r \in R} \left[1 - F_Y(y_r^-) \right] \prod_{i \in I} \left[F_Y(v_i) - F_Y(u_i^-) \right].$$

Appendix B: JAGS code for survival example

The following is the JAGS code for survival regression model in Section 4.1.

```jags
# The default approach implemented in JAGS
model{
  for (j in 1:J){
```
R[j] ~ dinterval(Y[j], lim[j]) # right-censored
Y[j] ~ dexp(lambda[j])
lambda[j] <- exp(b0 + b1*group[j])

b0 ~ dnorm(0, tau0) # tau0 fixed at 0.01
b1 ~ dnorm(0, tau1) # tau1 fixed at 0.01

The proposed approach implemented in JAGS
model{
 for (o in 1:O){
 Y[o] ~ dexp(lambda.adj[o]) # observed
 lambda[o] <- exp(b0 + b1*group[o])
 }
 for (c in 1:C){
 Z[c] ~ dbern(p.adj[c]) # censoring status
 p[c] <- pexp(cut[c], lambda[c+O]) # cumulative exp. dist.
 lambda[c+O] <- exp(b0 + b1*group[c+O])
 }
 b0 ~ dnorm(0, 0.01)
b1 ~ dnorm(0, 0.01)
References

Albert, J. H. and S. Chib (1993). Bayesian analysis of binary and polychotomous response data. *Journal of the American statistical Association* 88(422), 669–679.

Ando, T. (2007). Bayesian predictive information criterion for the evaluation of hierarchical bayesian and empirical bayes models. *Biometrika* 94(2), 443–458.

Bååth, R. (2016). Estimating the distribution of sensorimotor synchronization data: A bayesian hierarchical modeling approach. *Behavior research methods* 48(2), 463–474.

Bock, R. D. and M. Aitkin (1981). Marginal maximum likelihood estimation of item parameters: Application of an em algorithm. *Psychometrika* 46(4), 443–459.

Busschaert, P., A. Geeraerd, M. Uyttendaele, and J. Van Impe (2011). Hierarchical bayesian analysis of censored microbiological contamination data for use in risk assessment and mitigation. *Food microbiology* 28(4), 712–719.

Carvajal, G., A. Branch, S. A. Sisson, D. J. Roser, B. van den Akker, P. Monis, P. Reeve, A. Keegan, R. Regel, and S. J. Khan (2017). Virus removal by ultrafiltration: understanding long-term performance change by application of bayesian analysis. *Water research* 122, 269–279.

Chen, D.-G. D., J. Sun, and K. E. Peace (2012). *Interval-Censored Time-to-Event Data: Methods and Applications*. CRC Press.

Chib, S. (1992). Bayes inference in the tobit censored regression model. *Journal of Econometrics* 51(1-2), 79–99.
Davies, N. T., L. A. Apiolaza, and M. Sharma (2017). Heritability of growth strain in eucalyptus bosistoana: a bayesian approach with left-censored data. *New Zealand Journal of Forestry Science* 47(1), 5.

de Oliveira, G. L., R. H. Loschi, and R. M. Assunção (2017). A random-censoring poisson model for underreported data. *Statistics in medicine* 36(30), 4873–4892.

Dempster, A. P., N. M. Laird, and D. B. Rubin (1977). Maximum likelihood from incomplete data via the em algorithm. *Journal of the Royal Statistical Society: Series B (Methodological)* 39(1), 1–22.

Denwood, M. J. et al. (2016). runjags: An r package providing interface utilities, model templates, parallel computing methods and additional distributions for mcmc models in jags. *Journal of Statistical Software* 71(9), 1–25.

Freedman, D. A. (2009). *Statistical models: theory and practice*. cambridge university press.

Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models. *Bayesian analysis* 1(3), 515–534.

Ghosh, S. K. and S. Ghosal (2006). Semiparametric accelerated failure time models for censored data. *Bayesian Statistics and its Applications* 15, 213–229.

Hamada, M. and C. Wu (1991). Analysis of censored data from highly fractionated experiments. *Technometrics* 33(1), 25–38.

Hamada, M. and C. Wu (1995). Analysis of censored data from fractionated experiments: a bayesian approach. *Journal of the American Statistical Association* 90(430), 467–477.
Han, B., M. Yu, J. J. Dignam, and P. J. Rathouz (2014). Bayesian approach for flexible modeling of semicompeting risks data. *Statistics in medicine* 33(29), 5111–5125.

Heitjan, D. F. and D. B. Rubin (1991). Ignorability and coarse data. *The annals of statistics*, 2244–2253.

Ibrahim, J. G., M.-H. Chen, and D. Sinha (2013). *Bayesian survival analysis*. Springer Science & Business Media.

Jakobsen, J. C., C. Gluud, J. Wetterslev, and P. Winkel (2017). When and how should multiple imputation be used for handling missing data in randomised clinical trials—a practical guide with flowcharts. *BMC medical research methodology* 17(1), 162.

Johnson, T. R. and K. M. Kuhn (2013). Bayesian thurstonian models for ranking data using jags. *Behavior research methods* 45(3), 857–872.

Kalbfleisch, J. D. and R. L. Prentice (2011). *The statistical analysis of failure time data*, Volume 360. John Wiley & Sons.

Klein, J. P. and M. L. Moeschberger (2006). *Survival analysis: techniques for censored and truncated data*. Springer Science & Business Media.

Koop, G. M. (2003). *Bayesian econometrics*. John Wiley & Sons Inc.

Kruschke, J. (2014). *Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan*. Academic Press.

Kullback, S. and R. A. Leibler (1951). On information and sufficiency. *The annals of mathematical statistics* 22(1), 79–86.
Lee, L.-F. (1999). Estimation of dynamic and arch tobit models. *Journal of Econometrics* 92(2), 355–390.

Lewbel, A. and O. Linton (2002). Nonparametric censored and truncated regression. *Econometrica* 70(2), 765–779.

Little, R. J. and D. B. Rubin (2019). *Statistical analysis with missing data*, Volume 793. John Wiley & Sons.

Liu, C., D. B. Rubin, and Y. N. Wu (1998). Parameter expansion to accelerate em: the px-em algorithm. *Biometrika* 85(4), 755–770.

Long, J. S. (1997). Regression models for categorical and limited dependent variables (vol. 7). *Advanced quantitative techniques in the social sciences*, 219.

Lunn, D., C. Jackson, N. Best, A. Thomas, and D. Spiegelhalter (2012). *The BUGS book: A practical introduction to Bayesian analysis*. CRC press.

Martin, A. D., K. M. Quinn, and J. H. Park (2011). Mcmcpack: Markov chain monte carlo in r.

Miller Jr, R. G. (2011). *Survival analysis*, Volume 66. John Wiley & Sons.

Nelson, F. D. (1977). Censored regression models with unobserved, stochastic censoring thresholds. *Journal of econometrics* 6(3), 309–327.

Onofri, A., H.-P. Piepho, and M. Kozak (2019). Analysing censored data in agricultural research: A review with examples and software tips. *Annals of applied biology* 174(1), 3–13.
Plummer, M. (2003). Jags: A program for analysis of bayesian graphical models using gibbs sampling. In Proceedings of the 3rd international workshop on distributed statistical computing, Volume 124. Vienna, Austria.

Plummer, M. (2008). Penalized loss functions for bayesian model comparison. Biostatistics 9(3), 523–539.

Plummer, M. (2012). SOURCEFORGE JAGS: Just Another Gibbs Sampler help forum: dinterval(). https://sourceforge.net/p/mcmc-jags/discussion/610037/thread/fd7f3f7e/.

Plummer, M. (2017). Jags version 4.3. 0 user manual.

Plummer, M. (2019). rjags: Bayesian Graphical Models using MCMC. R package version 4-10.

Plummer, M., N. Best, K. Cowles, and K. Vines (2006). Coda: convergence diagnosis and output analysis for mcmc. R news 6(1), 7–11.

Qi, X. (2020). Bayesian modeling of censored data with application to meta-analysis of immunotherapy trials. Ph. D. thesis, University of Texas School of Public Health.

R Core Team (2020). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.

Spiegelhalter, D., A. Thomas, N. Best, and D. Lunn (2003). Winbugs user manual.

Spiegelhalter, D. J., N. G. Best, B. P. Carlin, and A. Van Der Linde (2002). Bayesian measures of model complexity and fit. Journal of the royal statistical society: Series b (statistical methodology) 64(4), 583–639.
Su, Y.-S., M. Yajima, M. Y.-S. Su, and J. SystemRequirements (2015). Package ‘r2jags’.
R package version 0.03-08, URL http://CRAN. R-project. org/package= R2jags.

Tanner, M. A. and W. H. Wong (1987). The calculation of posterior distributions by data
augmentation. Journal of the American statistical Association 82(398), 528–540.

Twisk, J. W. (2013). Applied longitudinal data analysis for epidemiology: a practical guide.
cambridge university press.

Wang, X., M.-H. Chen, and J. Yan (2013). Bayesian dynamic regression models for inter-
val censored survival data with application to children dental health. Lifetime data
analysis 19(3), 297–316.

Wang, Y., S. Zhou, F. Yang, X. Qi, X. Wang, X. Guan, C. Shen, N. Duma, J. V. Aguilera,
A. Chintakuntlawar, et al. (2019). Treatment-related adverse events of pd-1 and pd-l1
inhibitors in clinical trials: a systematic review and meta-analysis. JAMA oncology 5(7),
1008–1019.

Watanabe, S. (2010). Asymptotic equivalence of bayes cross validation and widely app-
licable information criterion in singular learning theory. Journal of Machine Learning
Research 11(Dec), 3571–3594.

Xu, X. and L.-f. Lee (2015). Maximum likelihood estimation of a spatial autoregressive
tobit model. Journal of Econometrics 188(1), 264–280.