Role of 2-series prostaglandins in the pathogenesis of type 2 diabetes mellitus and non-alcoholic fatty liver disease (Review)

WEIXUAN WANG1-4*, XIN ZHONG1-4* and JIAO GUO1-4

1Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University; 2Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; 3Institute of Chinese Medicine, Guangdong Pharmaceutical University; 4Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong 510006, P.R. China

Received December 4, 2020; Accepted March 24, 2021

DOI: 10.3892/ijmm.2021.4947

Abstract. Nowadays, metabolic syndromes are emerging as global epidemics, whose incidence are increasing annually. However, the efficacy of therapy does not increase proportionately with the increased morbidity. Type 2 diabetes mellitus (T2DM) and non-alcoholic fatty liver disease (NAFLD) are two common metabolic syndromes that are closely associated. The pathogenic mechanisms of T2DM and NAFLD have been studied, and it was revealed that insulin resistance, hyperglycemia, hepatic lipid accumulation and inflammation markedly contribute to the development of these two diseases. The 2-series prostaglandins (PGs), a subgroup of eicosanoids, including PGD₂, PGE₂, PGF₂α, and PGI₂, are converted from arachidonic acid catalyzed by the rate-limiting enzymes cyclooxygenases (COXs). Considering their wide distribution in almost every tissue, 2-series PG pathways exert complex and interlinked effects in mediating pancreatic β-cell function and proliferation, insulin sensitivity, fat accumulation and lipolysis, as well as inflammatory processes. Previous studies have revealed that metabolic disturbances, such as hyperglycemia and hyperlipidemia, can be improved by treatment with COX inhibitors. At present, an accumulating number of studies have focused on the roles of 2-series PGs and their metabolites in the pathogenesis of metabolic syndromes, particularly T2DM and NAFLD. In the present review, the role of 2-series PGs in the highly intertwined pathogenic mechanisms of T2DM and NAFLD was discussed, and important therapeutic strategies based on targeting 2-series PG pathways in T2DM and NAFLD treatment were provided.

Contents

1. Introduction
2. PG biosynthesis
3. PGs and insulin resistance
4. PGs and hyperglycemia
5. PGs and hepatic lipid accumulation
6. PGs and inflammation
7. Conclusion and future perspectives

1. Introduction

Type 2 diabetes mellitus (T2DM) and non-alcoholic fatty liver disease (NAFLD), two common metabolic syndromes, are emerging as global epidemics, whose incidence are rising annually (1,2). T2DM is predominantly characterized by an assembly of hyperglycemia, hyperinsulinemia, insulin resistance and insulin deficiency (3). According to the Diabetes Atlas 9th edition published by the International Diabetes Federation (IDF), 463 million adults aged 20-79 years are suffering from diabetes mellitus worldwide, with the prevalence of diabetes mellitus in that age group being ~9.5%, and the total number of diabetic patients predicted to rise to 700 million (10.9%) by 2045 (1). In total, >90% of
the diabetic patients belong to T2DM, as estimated by IDF. NAFLD, currently the most common chronic liver disease, covers a wide disease spectrum, ranging from simple steatosis to non-alcoholic steatohepatitis (NASH), hepatic fibrosis, cirrhosis and hepatocellular carcinoma (HCC), which finally causes liver-associated mortality (4). A meta-analysis on NAFLD epidemiology reported a global prevalence of 25.24% in 2016 (2). In China, the prevalence has risen from 25.4% in 2008-2010 to 32.3% in 2015-2018 (5).

T2DM and NAFLD are closely associated. According to clinical data, the overall incidence of NAFLD is 55.5% among patients with T2DM (6), and NAFLD is an independent risk factor for T2DM, indicating a strong bi-directional relationship between T2DM and NAFLD (7,8). T2DM is a risk factor for progression from simple steatosis to NASH and advanced fibrosis. T2DM is associated with a high morbidity of NASH (9,10). Patients with simple steatosis often have a benign prognosis, whereas NASH can progress to cirrhosis, with patients eventually developing HCC (11,12). The prevalence of HCC is ~5-fold higher when the disease progresses from simple steatosis to NASH, leading to a markedly higher mortality rate (13,14). In addition, the presence of NAFLD in patients with T2DM is highly associated with the incidence of macro- and micro-vascular diabetic complications (15). It is harder to control blood glucose levels in patients with T2DM with NAFLD, compared with patients with only T2DM (16).

Both T2DM and NAFLD can be caused by metabolic disorders, and share familiar or even the same risk factors and pathological mechanisms. Although studies have shown that the existing pathogenic mechanisms of T2DM and NAFLD include insulin resistance, hyperglycemia, hepatic lipid accumulation, inflammation and metabolism (28-32). Linoleic acid can alter glucose and lipid metabolism (28-32). Therefore, n-6 PUFAs and n-3 PUFAs exert various vital metabolic effects, and the levels of n-6 and n-3 PUFAs, which can be mediated by similar dietary patterns of T2DM and NAFLD (particularly a Western diet) are important for the pathological development of these two diseases.

As important derivatives of n-6 PUFAs, 2-series PGs are widely distributed in almost every tissue. In the PG synthesis pathway, four principal bioactive 2-series PGs are generated, including PGE2, PGF2α, PGD2, and PGI2 (33). Clinical and experimental evidence has indicated that 2-series PGs are involved in the initiation and progression of numerous diseases, including diabetes mellitus (34), hypertension (35), obesity (36), fatty liver disease (37), vascular diseases (38), cancer (39), inflammatory bowel disease (40), rheumatoid arthritis (41), asthma and allergic diseases (42) and Alzheimer's disease (43). Studies have revealed that 2-series PGs play complex and interlinked roles in mediating metabolic homeostasis and systemic chronic inflammation (34,44-48). Moreover, 2-series PGs have bidirectional effects on insulin secretion and pancreatic β-cell proliferation during hyperglycemia (34). As PPAR-γ modulators, 2-series PGs regulate adipogenesis and lipolysis in lipid metabolism, leading to excessive fat deposit (44-46). In addition, 2-series PGs are involved in immune response by affecting various cytokines and immune cells, such as macrophages and monocytes, under insulin resistance, hyperlipidemic and diabetic status (44,47,48). Of note, the nonsteroidal anti-inflammatory drugs (NSAIDs) and cyclooxygenase-2-selective inhibitors (COXIBs) can interfere with 2-series PG synthesis by inhibiting cyclooxygenases (COXs), and have been widely used in anti-inflammation, analgesia, antiplatelet aggregation and anti-tumorigenesis treatment (49-51). However, the potential application of NSAIDs and COXIBs in the treatment of T2DM and NAFLD requires further investigation.

To the best of our knowledge, 2-series PGs play an important role in the development of T2DM and NAFLD. However, few studies have focused on the therapeutic effect of targeting the 2-series PG pathway in these two metabolic syndromes. Herein, the way in which 2-series PGs exert multifunctional effects on the highly intertwined pathogenesis of T2DM and NAFLD, including insulin resistance, hyperglycemia, hepatic lipid accumulation and inflammation, were systematically reviewed, and it was revealed that targeting the 2-series PG pathway may be an important therapeutic strategy in T2DM and NAFLD treatment.

2. PG biosynthesis

PGs belong to eicosanoids and have 1-, 2- and 3-series homologues. Each series of PGs is biosynthesized from different PUFAs, including dihomo-γ-linolenic acid (DGLA), AA and eicosapentaenoic acid (EPA) (52). DGLA is catalyzed by COXs.
to produce 1-series PGs (such as PGE\(_2\), PGG\(_3\) and PGD\(_2\)), and can also be converted to AA by the enzyme \(\Delta^5\) desaturase (53). AA is the precursor of multiple important bioactive lipid mediators, including the 2-series PGs (such as PGE\(_2\), PGD\(_2\), PGE\(_3\) and PGJ\(_2\)) lipoxins, leukotrienes, resolvins, protectins and maresins (54).

To the best of our knowledge, the 1-series metabolites may be less closely associated with the correlation between T2DM and NAFLD, since a limited number of studies have been conducted. Furthermore, the 3-series PGs (such as PGE\(_3\) and PGE\(_5\)) produced by EPA generally have a lower biological activity than their 1- and 2-series homologues (55). Therefore, the present review focused on the 2-series PGs that are the principal PGs derived from AA with a biological significance in T2DM and NAFLD.

The synthesis of 2-series PGs is precisely regulated (Fig. 1). Apart from being produced from DGLA, AA is mainly derived from cellular membrane phospholipids. Membrane phospholipids are esterified by PLA\(_2\)s to generate free AA. AA is subsequently converted to PGG\(_2\), followed by a peroxidase reaction that immediately reduces PGG\(_2\) to PGH\(_2\) by the rate-limiting enzymes COXs (56). COXs mainly have two isoforms, COX-1 and COX-2. COX-1 is a constitutive isoform expressed in most tissues and involved in most physiological events, while COX-2 is highly expressed in response to physical, chemical and inflammatory stimuli (57). However, COX-2 is constitutively expressed in several tissues that are not associated with inflammation, such as the brain, kidney, thymus and gut (58,59). Then, PGH\(_2\) is metabolized to PGE\(_2\), PGD\(_2\), PGE\(_3\) and PGI\(_2\) through different PG synthases (56,60). Next, a wide variety of PGs exert their biological functions by binding to their respective G protein-coupled receptors. PGE\(_2\) is converted from PGH\(_2\) by PGE synthase (PGES) and performs pleiotropic effects by binding to four distinct membrane PGE receptors (EP1-4). PGD synthases, including lipocyan-type PGDS (L-PGDS) and hematopoietic PGDS (H-PGDS), catalyze the isomerization of PGH\(_2\) to PGD\(_2\), which binds to PGD receptors (DP1 and DP2). PGI\(_2\), an agonist of PGI receptor (IP), is generated by PGI synthase. PGF\(_3\), is converted by PGF synthase and binds to PGF receptor (FP) (33).

The synthesized 2-series PGs affect various physiological and pathological processes, particularly the important pathogenesis of T2DM and NAFLD, which includes insulin resistance, hyperglycemia, hepatic lipid accumulation and inflammation (Fig. 2) (17-19). In the next section, the role of PGs in these pathogenic mechanisms will be further reviewed (Fig. 3).

3. PGs and insulin resistance

Insulin resistance is regarded as a key pathogenic mechanism that accounts for the interplay between T2DM and NAFLD. Insulin resistance is characterized by an impaired insulin sensitivity of liver and peripheral tissues, including skeletal muscle and adipose tissue. It is a crucial contributor to the other related pathogeneses, which includes hyperinsulinemia, hyperglycemia, dyslipidemia, ectopic lipid accumulation (such as in the liver) and inflammation (Fig. 2) (61). More specifically, first, insulin resistance contributes to hyperglycemia. Hepatic insulin resistance markedly increases hepatic glucose production, while peripheral insulin resistance enhances circulating non-esterified fatty acids (NEFAs) and decreases glucose uptake, together leading to elevated glycemia (62-65). Secondly, hepatic de novo lipogenesis, a primary initiation mechanism of liver fat formation, is facilitated by compensatory hyperinsulinemia and increased substrates (such as glucose and NEFAs) under insulin-resistant status in liver (64). Thirdly, insulin resistance is of great significance in the steatosis-to-NASH progression, as it is closely linked to aggravated inflammation, apoptosis and fibrogenesis in the liver (66). As for peripheral insulin resistance, adipose insulin resistance also triggers chronic low-grade inflammation by the release of adipokines and cytokines, which in turn maintains or even exacerbates the development of T2DM and NAFLD (67,68).

Accumulating evidence has revealed the important role of 2-series PGs in the development of insulin resistance (Fig. 3A) (37). Herein, the role of 2-series PGs in both hepatic and peripheral insulin resistance was discussed.

Hepatic insulin resistance. Hepatic insulin resistance is the key pathophysiological event during the development of T2DM and NAFLD, which is characterized by suppressed glycogenesis, increased gluconeogenesis and glycogenolysis, and augmented de novo lipogenesis (62-64). Insulin signaling has a different effect on hepatic glucose and lipid metabolism. Under insulin resistance, glucose metabolism becomes resistant to insulin action, while lipid metabolism remains sensitive to insulin or even enhanced by hyperinsulinemia (69). In combination, these metabolic alterations enhance hepatic glucose production, finally leading to hyperglycemia and liver lipid accumulation.

PGs have a dual effect on mediating hepatic insulin signaling; however, their impact remains inconclusive. These metabolites can be generated in hepatocytes, such as parenchymal hepatocytes (70) and Kupffer cells (71), acting as negative mediators for insulin signaling. Previous experimental research has shown that the use of COX-2 inhibitors in an obese rat model resulted in decreased PGE metabolites and improved systemic insulin sensitivity by increasing glucose uptake, repressing hepatic glucose production and decreasing hepatic triglyceride (TG) contents (37). Furthermore, PGE\(_3\) can disrupt hepatic insulin signaling, which most likely resembles the IL-6-induced interference on insulin signaling (72). Via EP3 receptor, PGE\(_2\) activates extracellular signal-regulated kinase 1/2 (ERK1/2) and subsequently promotes serine phosphorylation of insulin receptor substrate (IRS) 1. This finally prevents glycogen synthesis in cultured hepatocytes by interfering with insulin-dependent serine/threonine kinase (Akt) activation (72). Another study revealed that PGE\(_3\)-induced oncostatin M (OSM) production in liver Kupffer cells attenuated insulin-dependent IRS/PI3K/Akt signaling, leading to a repressed glucokinase expression and increased TG accumulation in hepatocytes (71). The intrinsic mechanism is that increased OSM promotes phosphorylation of signal transducer and activator of transcription 3 (STAT3) to induce transcription of cytokine signaling 3 (SOCS3) (71). Consistent with in vitro results, this mechanism is also responsible for the development of hepatic insulin resistance, steatosis and elevated plasma glucose level in murine NAFLD models. It is recommended
Figure 1. Overview of 2-series PG biosynthesis pathways. AA is generated by PLA2 from membrane phospholipids. Both COX-1 and COX-2 convert AA to PGG2, and subsequently PGH2. PGH2 is metabolized by different PG synthases (PGDS, PGFS, PGES and PGIS) to produce PGD2, PGE2, PGF2α, and PGI2, respectively. PGs act by binding to their specific receptors, including PGD receptors (DP1-2), PGF receptor (FP), PGE receptors (EP1-4) and PGI receptor (IP), and are involved in various physiological and pathological processes. AA, arachidonic acid; PLA2, phospholipase A2; COX, cyclooxygenase; PG, prostaglandin; PGG2, prostaglandin G2; PGH2, prostaglandin H2; PGD2, prostaglandin D2; PGF2α, prostaglandin F2α; PGE2, prostaglandin E2; PGI2, prostacyclin; DP1-2, PGD receptor 1-2; FP, PGF receptor; EP1-4, PGE receptor1-4; IP, PGI receptor; PGDS, PGD synthase; PGFS, PGE synthase; PGES, PGI synthase; PGIS, PGI synthase.

Figure 2. Schematic diagram of the 2-series PGs influence on the pathogenesis of T2DM and NAFLD. 2-Series PGs can affect four critical and highly intertwined important pathogenic mechanisms of T2DM and NAFLD, including IR, hyperglycemia, hepatic lipid accumulation and inflammation. The whole-body IR initiates or exacerbates the other three pathogenic mechanisms by increasing HGP, NEFAs, hyperinsulinemia, inflammatory mediator release (such as adipokines and cytokines) and decreasing glucose uptake. Hyperglycemia directly results from β-cell damage and decreased insulin secretion, which leads to glucotoxicity and induces both inflammation and hepatic lipid storage. Hepatic lipid accumulation is mainly caused by increased TG storage and diminished TG output. The induced lipotoxicity in the liver can accelerate hepatic or systemic inflammation. Inflammation is triggered under these metabolic stresses and responds with increased levels of inflammatory factors and immune cell recruitment in IR, β-cell damage and progression from hepatic steatosis to NASH and advanced fibrosis. T2DM, type 2 diabetes mellitus; NAFLD, non-alcoholic fatty liver disease; IR, insulin resistance; HGP, hepatic glucose production; NEFAs, non-esterified fatty acids; TG, triglyceride; NASH, non-alcoholic steatohepatitis.
that the PGE2-dependent feed-forward loop for NAFLD development is most likely due to the suppression of fatty acid and TG consuming pathways (fatty acid oxidation and TG export), independently of the inhibition of insulin-induced fatty acid synthesis (71).

The negative effects of PGs on insulin signaling are closely associated with hepatic glucose homeostasis (particularly gluconeogenesis). Gluconeogenic action is considerably increased under insulin resistance (73). A previous study revealed that the suppression of the hepatic PGF2α-FP axis improved insulin resistance and glucose homeostasis in ob/ob mice partially via decreased hepatic gluconeogenesis (74). Under fasting conditions, PGF2α activates FP receptors in hepatocytes to upregulate gene expression levels of gluconeogenic rate-limiting enzymes, phosphoenolpyruvate carboxykinase (PCK1), and glucose-6-phosphatase (G6Pase) (74). The precise underlying mechanism is that FP receptor coupling with G protein Gq facilitates Ca2+ release and subsequently activates Ca2+/calmodulin-dependent protein kinase II γ, which accelerates p38-dependent forkhead box protein O1 (FOXO1) nuclear translocation (74). Another study revealed that treatment with high doses of acetylsalicylic acid suppressed hepatic gluconeogenesis through the inhibition of the COX-2/PGI2/IP axis for further improvement of diabetes (75). Hepatic gluconeogenesis was revealed to be inhibited by the downregulation of PGI2 or disruption of IP receptor in a mouse model of T2DM through the activation of the Gαs/protein kinase A (PKA)/cAMP-response element binding protein pathway and inhibition of Gp130/P3K-γ/-protein kinase C (PKC)-γ/tribbles homolog 3/Akt/FOXO1 pathway, which is involved in insulin signaling, both of which subsequently repressed the expression of G6Pase and PCK1 in hepatocytes (75). These results demonstrated that PGs can promote gluconeogenesis under insulin resistance.

Of note, PGs can also exert a protective effect on hepatic insulin signaling through the regulation of COX-2 under the stress of lipid overload, although COX-2 is widely recognized as a pro-inflammatory mediator. Hepatic COX-2 overexpression in mice fed with high-fat diet (HFD) caused a threefold increase of PGE2 and elicited preservation against hepatic insulin resistance. COX-2-dependent PG synthesis has been revealed to mediate insulin signaling by increasing the Akt and AMP-activated protein kinase phosphorylation level and decreasing the protein tyrosine phosphatase-1β expression level in fatty livers or hepatocytes exposed to fatty acids (76).

Peripheral insulin resistance. Insulin action in adipocytes and muscles is closely correlated with glucose and lipid metabolism in T2DM and NAFLD. The adipocyte insulin resistance can decrease intracellular TG storage and induce lipolysis, which decreases fat content and increases the release of NEFAs. Elevated circulating NEFAs can further lead to a redistribution of fat depot from adipose tissue into the liver and muscles, namely ectopic fat accumulation (65). Furthermore, adipose insulin resistance facilitates the release of adipokines (such as adiponectin, leptin and resistin) and cytokines [such as tumor necrosis factor α (TNF-α), IL-6 and IL-1β], leading to chronic low-grade inflammation in T2DM and NAFLD (67,68). On the other hand, insulin resistance primarily impairs glucose uptake in muscle tissue, which results in hyperglycemia and subsequently increases glucose delivery to the liver for further hepatic lipogenesis (77).
PGs mostly exert preventive effects against adipose insulin resistance and mediate adipogenesis in adipocytes. PGs may improve insulin sensitivity by altering inflammatory status, alleviating hepatic steatosis and overweight under obese status (78). In both subcutaneous and epididymal adipose tissues, the increased COX-2 activity enhances various PGs levels, including PGE$_2$, which further improves the inflammatory profile including increased levels of TNF-α, IL-33 and IL-4. This subsequently contributes to increased insulin sensitivity in adipocytes and downregulates mRNA levels of PPAR-γ and CCAAT/enhancer-binding protein α (37,78). In addition, particularly under HFD treatment, mice with selective COX-2 overexpression in adipocytes resulted in a mass reduction of inguinal white adipose tissue (WAT) and decreased hepatic steatosis when compared with the littermate control (78). This finding suggested that COX-2-derived PGs may be benign mediators of type 2 immunity cues in subcutaneous WAT under deranged metabolism.

Consistent findings are shown in studies examining PGE$_2$-EP3 signaling, which has a benefit for preventing insulin resistance and reducing fat deposit in adipose tissue. EP3 gene knockout in mice has been revealed to result in diabetes and obesity (79). The EP3$^{-/-}$ mice gained more weight than the EP3$^{+/+}$ mice when fed with an HFD, and were endowed with more severe insulin resistance and adipose accumulation in the epididymis and liver. The increased fat mass and enlarged adipocyte size in epididymal WAT are associated with evoked inflammatory status, characterized by increased macrophage infiltration, upregulated TNF-α, monocyte chemoattractant protein-1 (MCP-1) and IL-6 expression levels and necrosis. The underlying mechanism involves the EP3 receptor knockout-induced interruption of PGE$_2$ signaling attenuating the PGE$_2$-evoked inhibition of isoproterenol-stimulated lipolysis (79,80). In addition, abnormal lipid distribution occurred alongside insulin resistance following the disruption of the PGE$_2$-EP3 pathway when exposed to an HFD challenge. Among the group of EP3$^{-/-}$ mice fed with HFD, the increase of adipocyte mass and size in WAT was lower in those heavier mice, leading to a relatively increased redistribution of fat depot in liver and skeletal muscle. However, this was not observed in the group of EP3$^{+/+}$ mice (79). This also suggested that in obese cases, PGE$_2$-EP3 signaling may prevent excessive ectopic lipid deposition, which can subsequently cause lipid-induced hepatic and muscle insulin resistance.

Similar improvement on insulin resistance has also been observed with PGD$_2$ action. A previous study has reported that PGD$_2$ overproduction improved insulin sensitivity in transgenic mice overexpressing human H-PGDS (81). Furthermore, PGD$_2$ in WAT was majorly generated by H-PGDS in macrophages (82). PGD$_2$ polarized macrophages from an inflammatory M1 state towards its anti-inflammatory M2 state. This polarization of macrophages was positively correlated with adipose insulin sensitivity (82). These results suggested that PGD$_2$ may improve adipose insulin resistance by regulating macrophage polarization.

However, PGD$_2$-mediated adipose insulin sensitivity is associated with increased body weight, adipocyte size and lipid deposition (81,83-86). Augmented H-PGDS-mediated PGD$_2$ increase is observed in adipose tissue in obese cases and remains high even after weight loss, which indicates that PGD$_2$ may act as a biological driver to regain weight (83). Furthermore, L-PGDS-induced PGD$_2$ in WAT was found to deteriorate adipose insulin resistance, increase adipose size, enhance serum cholesterol and TG levels in a study using fatty acid-binding protein 4 (aP2)-Cre/L-PGDS$^{lox/lox}$ mice (84). The underlying mechanism of the PGD$_2$-induced weight gain has been studied, and has revealed pronounced adipogenesis in WAT through the activation of the transcription and expression levels of adipogenic genes, such as PPAR-γ, aP2 and lipoprotein lipase (81,84). Similarly, an in vitro study revealed that Δ^{12}-PGJ$_2$, a metabolite of PGD$_2$, could accelerate adipogenesis in a PPAR-γ-dependent and -independent manner in differentiated 3T3-L1 cells (85). In addition, the PGD$_2$-mediated lipogenic process can also be due to its function in adipose lipolysis. PGD$_2$ increases intracellular TG levels by suppressing lipolysis through repressing cyclic adenosine monophosphate (cAMP)-PKA-hormone-sensitive lipase (HSL) axis via Gi-coupled DP2 receptor, which is dominantly expressed in adipocytes (86). This process prevents intracellular TGs in lipid droplets from hydrolytic action of HSL that may result in elevated circulating TGs. Briefly, PGD$_2$-mediation on lipolysis is likely to improve individual metabolic disturbances including insulin resistance, dyslipidemia and hyperglycemia, despite the presence of worsening fat accumulation in peripheral tissue and weight gain (86). In combination, these results suggested that PGD$_2$ can induce weight gain and adipose accumulation by facilitating adipogenesis and inhibiting lipolysis, which is associated with the improvement in insulin sensitivity. However, the altered fat topography and disturbed adipocyte metabolism caused by PGs may gradually predispose to the glucose intolerance in T2DM and NAFLD (87-89). The underlying mechanism is that the excessive lipid storage in adipose tissue can induce adipocyte insulin resistance and further evokes lipolysis, leading to elevated circulating NEFAs and exacerbated whole-body insulin sensitivities (87-89).

In addition to their impacts on adipose insulin resistance, PGs are also correlated with muscle insulin resistance. During the development of T2DM and NAFLD, increased delivery of NEFAs can accelerate intramyocellular lipid accumulation, which causes muscle insulin resistance. In addition, insulin-stimulated glucose transport is impaired in insulin-resistant muscles, which can happen prior to the occurrence of overt T2DM (90-92). PGs have been implicated in the translation of insulin-dependent glucose uptake into skeletal muscle (93) and, meanwhile, PGE$_2$ enhances insulin sensitivity to increase muscle glycolysis (94). In addition, COX-2-induced PGE$_2$ production alleviates the fatty acid-induced inflammatory process in skeletal muscle cells (95). Furthermore, intramuscular fat accumulation was observed in global deletion of EP3 receptors in diabetic mice with diet-induced obesity (79). These results suggested that the PGE$_2$ signaling pathway may improve muscle insulin resistance. However, the intrinsic mechanism remains poorly understood.

In the aforementioned pathogenic mechanisms, 2-series PGs are most likely to aggravate hepatic insulin resistance but prevent peripheral insulin resistance. The aggravated hepatic insulin resistance eventually initiates or exacerbates hyperglycemia, hepatic lipid accumulation and inflammation, which in turn can be affected by these metabolic stresses during the
progressive disease course. Moreover, the improved peripheral insulin resistance ameliorates blood biochemical indexes and inflammatory status, but leads to excess fat storage in muscle or adipose tissue. To date, the understanding of how 2-series PGs affect the insulin signaling pathway and the underlying molecular mechanism is lacking. Further investigations of key molecular targets will shed light onto the translational application in the treatment of T2DM and NAFLD.

4. PGs and hyperglycemia

Hyperglycemia is a hallmark of dysregulated glucose metabolism that contributes to the initiation and progression of T2DM and NAFLD (Fig. 2). When insulin resistance occurs, chronic hyperglycemia can induce insulin release by pancreatic β-cells, thus contributing to hyperinsulinemia (96). Under insulin resistance and hyperinsulinemia, elevated glycemia and circulating NEFAs can cause the deleterious impairment of various organs and tissues, processes that are referred to as glucotoxicity and lipotoxicity, respectively (97,98). In the pancreas, glucotoxicity and lipotoxicity can account for β-cell failure and subsequent insulin secretion deficiency (97-99). In addition, hepatic gluconeogenesis can be facilitated by insulin resistance, most likely contributing to hyperglycemia by increasing the hepatic glucose output. These mechanisms collectively contribute to hyperglycemia during the development of T2DM and NAFLD.

A previous study has demonstrated the close correlation between 2-series PG action and the development of hyperglycemia (Fig. 3B). First, COX-1 and COX-2 participate in the control of glycemia (100). In a 2-week clinical trial of high-dose aspirin treatment among nine patients with T2DM, aspirin treatment was revealed to reduce fasting plasma glucose and improves insulin sensitivity in cases with diabetes (101). In addition, the increased formation of PGs and PG metabolites has been observed in T2DM, including PGE$_2$, PGJ$_2$, in islet or blood, and 15-keto-dihydro-PGF$_{2α}$, 8-iso-PGF$_{2α}$ in urine (102-106). However, interference with the PGE$_2$/EP3 signaling pathway through the blockade of the EP3 receptor in mice has been reported to predispose to systemic insulin resistance; in addition, insulin secretion also increases, finally contributing to hyperglycemia (79,107). These observations imply the multifunctional involvement of 2-series PGs in the development of hyperglycemia.

β-cell failure includes β-cell dysfunction and β-cell mass deficiency, which remain the two major causes of hyperglycemic pathogenesis. β-cell dysfunction and apoptosis reduce insulin secretion and deplete β-cell mass, respectively (108). Due to their involvement in inflammation and oxidative stress signaling pathways, PGs mainly act as an initial and deteriorative pathological element for β-cell failure, leading to hyperglycemia.

Glucose-stimulated insulin secretion (GSIS) commonly occurs when β-cells are constantly exposed to high glucose stimulation (109). To a certain extent, PGs act as a potential negative modulator of GSIS. A number of studies have demonstrated that PGE$_2$ attenuates GSIS. PGE$_2$ is the predominant E-series PG in islets formed by COX-2, the dominant form of COX in the pancreas (110-112). COX-2 expression is significantly upregulated in pancreatic islets under hyperglycemic conditions (113,114). COX-2-dependent PGE$_2$ generation is augmented by group X secretory phospholipase A$_2$, and eventually suppresses GSIS in vitro and in vivo (115). PGE$_2$ equally inhibits both two phases of GSIS in HIT cells, which is associated with reduced cAMP accumulation mediated by pertussis toxin-sensitive G protein (Gi) (116). Among PGE receptors, EP3 receptor is the most abundant PGE receptor type in islets (112), which is overexpressed in islets from patients with T2DM (117,118). Previous research has indicated that PGE$_2$ coupling with EP3 receptor is highly associated with a reduction of insulin secretion in terms of β-cell dysfunction. Meng et al (118) revealed that the PGE$_2$-stimulated gene expression of PG EP3 receptor subtype led to intracellular cAMP reduction, accompanied by a downregulated phosphorylation level of Akt and forkhead box ‘Other’ (Foxo) in HIT-T15 cells (118). Kimple et al (103) confirmed that this active PGE$_2$/EP3 receptor pathway in islets depended on coupling to G-proteins of the Gi subfamily in vivo. In addition, EP3 receptor agonists can antagonize glucagon-like peptide-1 (GLP-1) signaling, leading to reduced cAMP production and attenuated GSIS (103). Hence, since GLP-1 treatment is not effective in all patients with T2DM (119), as a non-competitive antagonist of GLP-1 receptor, EP3 receptor may be a potent target for improving the GLP-1 effect in anti-diabetic therapeutics (103,120). Another observation revealed that PGE$_2$ presents an impotent influence on GSIS suppression in rat islets exposed to epinephrine-induced glucose overload (121). Under hyperglycemic states, crosstalk between PGs and other inflammatory factors has a profound effect on glycemic control. Systemic inflammatory responses are upregulated in T2DM individuals (122), characterized by elevated levels of lipid molecules, including PGs and cytokines such as TNF-α (123), IL-1β (124), IL-6 (125) and IL-8 (126), in correspondence with the decline of their natural antibodies (127). In PG signaling, COX-2 is involved in IL-1β-induced auto-stimulation in islets (111). The COX-2 expression and activity are upregulated by IL-1β-induced NF-κB activation, resulting in a negative effect on GSIS caused by increased PGE$_2$ via EP3 receptor (112). Recently, the IL-1β/COX-2/PGE$_2$ pathway loop has been revealed as the underlying mechanism for the onset and progression of diabetes, which leads to β-cell inflammatory impairments by downregulating the expression of β-cell functional genes pancreatic and duodenal homeobox 1, NK6 homeobox 1 and MAF bZIP transcription factor A (124). As previously mentioned, PGE$_2$ can impact GSIS through different receptors and also by interacting with inflammatory reaction in hyperglycemia.

Considering other PGs, PGI$_2$ also plays a pivotal role in the protection of β-cell function and survival via IP receptor signaling. The IP receptor/cAMP/PKA/nephlin signaling pathway participates in the preservation of β-cell function and mass in vitro and in vivo. IP receptor agonism augments insulin release in pancreatic β-cells and promotes the viability of MIN6 β-cells as a consequence of intracellular cAMP increase, PKA activation and subsequent nephlin phosphorylation (104). Consistently, a study revealed that selelexipag, a prodrug form of IP receptor agonist, exerted a similar improvement on GSIS and β-cell mass in diabetic mice (104).

Deficient β-cell mass is recognized as another essential event that results in elevated glycemia in T2DM
progression (128,129). Apart from delaying the GSIS process, COX-2/PGE$_2$ signaling also plays a role in the regulation of β-cell proliferation and apoptosis. In a model of transgenic mice overexpressing COX-2 and microsomal prostaglandin E synthase 1 (mPGES-1), increased PGE$_2$ appeared to be associated with a significant reduction in the number of β-cells and further caused severe hyperglycemia (130). A different study concluded that the blockade of EP3 receptor and activation of EP4 receptor enhanced human β-cell proliferation and survival ex vivo, suggesting a reciprocal effect of different EP receptors on the mediation of β-cell failure in T2DM (117). Furthermore, an EP3 receptor antagonist improved β-cell proliferation partly by enhancing phospholipase C-γ1 activity in young mouse islets rather than in old ones, while the EP4 receptor was activated to exert the same protective effect in human β-cells only with combination of EP3 inhibition. In terms of promotion of β-cell survival, forkhead box protein M1, a critical β-cell proliferation factor, is upregulated by EP3 antagonist and EP4 agonist in islets from obese T2DM individuals (117). However, EP4 has further been revealed to be involved in PKA signaling activation through a G$_{i/o}$‑coupled mechanism in the survival of mouse β-cells, which is proposed to facilitate the phosphorylation of eukaryotic initiation factor 4E and PKC-ε in a putative downstream mechanism (117). In addition, α-subunit of the heterotrimeric G protein (G$_{i/o}$), a member of the G$_{i/o}$ family, may couple to EP3 in pancreatic β-cells (131). The global deletion of G$_{i/o}$ can block the PGE$_2$/EP3 pathway, which subsequently results in a robust increase in β-cell mass and augments GSIS by cAMP upregulation in mice with both insulin resistance and glucose intolerance (120). In addition, EP3 receptor knockout in HFD-fed mice was revealed to promote β-cell proliferation (79), which is consistent with the aforementioned G$_{i/o}$-null data. Notably, in human islets from patients with T2DM and MIN6 β-cells, palmitate can upregulate the expression levels of COX-2 and EP3 receptor, which initiates β-cell apoptosis through the COX-2/PGE$_2$/EP3 pathway (132). These results demonstrated that the PGE$_2$ pathway can inhibit proliferation and induce apoptosis in β-cells exposed to glucotoxicity and lipotoxicity.

Based on the available studies of 2-series PG-mediated glycemic control, the PGE$_2$ and PGI$_2$ signaling pathways are considered crucial pathogenic contributors in the regulation of β-cell function and proliferation, although PGE$_2$ exerts completely different effects on hyperglycemia through EP3 and EP4 receptors. Furthermore, PGs, mainly PGF$_{2α}$ and PGI$_2$, can enhance circulating blood glucose by accelerating gluconeogenesis and glycogenolysis through insulin signaling (described in Hepatic insulin resistance). Enhanced glycemia can be predisposed to excessive glucose accumulation in the liver which can be converted to lipid formation. Therefore, targeting the 2-series PG pathway can be a promising therapeutic strategy for the protection and recovery of both β-cell and liver abnormalities.

5. PGs and hepatic lipid accumulation

Elevated circulating lipid contents (such as cholesterol, TG and NEFAs) are a characteristic of T2DM and NAFLD (Fig. 2) (133-135). Lipotoxicity alone or in combination with glucotoxicity is highly associated with the impairment of insulin sensitivity in various organs. Previous clinical studies have revealed that lipid infusion contributes to hepatic insulin resistance (136). In addition, the accumulation of hepatic lipid contents, particularly TGs, is an initiation of liver steatosis. Liver steatosis is the first hit in the progression of NAFLD, whose onset is due to insulin resistance (19,137). The direct contributors to excess lipid storage in the liver include increased circulating NEFAs, accelerated de novo lipogenesis, overloaded dietary fat and inadequate lipid oxidation (64,65,134,138). In turn, hepatic steatosis induces subacute intrahepatic inflammation through the NF-κB pathway as a pathogenic mechanism for exacerbated hepatic and systematic insulin resistance both in NAFLD and T2DM (19,139).

PGs markedly contribute to the dysregulation of the lipid metabolism in hepatic lipid accumulation (Fig. 3C). PGE$_2$ acts synergistically with insulin in the pathogenesis of hepatic steatosis, but their roles remain discordant and controversial. PGE$_2$ decreases the activity of lipogenic enzymes in primary hepatocytes in vitro through sustained ERK1/2 activation, thereby attenuating insulin-dependent phosphorylation of Akt kinase. This finally abrogates insulin signaling and further alleviates SREBP-1c pathway in hepatic de novo lipogenesis (140). Furthermore, short-term blockade of PGE$_2$ signaling by EP3 antagonist in mice with diet-induced obesity caused a significant reduction of TG content in skeletal muscle and slightly increased hepatic TGs (107). As a result, it can be hypothesized that PGE$_2$ elicits preservation against hepatic steatosis. However, other observations vary from this hypothesis. A previous study has indicated that extracellular PGE$_2$, PGE$_2$, and PGE$_{2α}$ diminish the secretion of very low-density lipoprotein (VLDL)-apolipoprotein B (apoB) to promote steatosis in primary hepatocytes (141). The reduction of VLDL-apoB is correlated with decreased TG transportation and impaired cellular TG recycling, which finally results in a reduced TG output. In addition, only PGE$_2$ can completely antagonize the IL-6-induced secretion of VLDL-apoB in hepatocytes (141). Furthermore, PGE$_2$ acts synergistically with insulin and enhances the incorporation of glucose into TGs in hepatocytes. PGE$_2$ and insulin synergistically inhibit lipolysis, mitochondrial β-oxidation and VLDL synthesis, which are mediated by PGE$_{2α}$-dependent suppression of adipose TG lipase, carnitine palmitoyltransferase-1 and apoB-mediated lipidation, respectively (140). Moreover, apoB and microsomal transfer protein are downregulated by PPAR-γ-coactivator-1α and PCK1 in insulin-dependent and PGE$_2$-dependent manners. In combination, these events contribute to a reduced TG breakdown and increased fat droplets in hepatocytes (140). In terms of NAFLD development in vivo, under HFD feeding, increased COX-2 activity and PGE$_2$ concentration also results in hepatic steatosis in mice mostly through NF-κB activation and lipid peroxidation enhancement. An aggravation of insulin resistance also appears with increased levels of serum alanine aminotransferase and total hepatic fatty acids (142). Another putative mechanism of hepatic steatosis formation involves CD36-mediated PG levels in the liver. Although the expression level of CD36 was 5-fold higher in hepatic steatosis liver than in normal liver, the global deletion of CD36 in ob/ob mice aggravated hepatic lipid accumulation by significantly suppressing the outputs of VLDL, apoB and TGs by increasing hepatic PGD$_2$, PGE$_2$ and PGF$_{2α}$ (143). Based on
these experiments, PGs including PGD₂, PGE₂ and PGF₂α, may accelerate the initiation and progression of hepatic steatosis.

Conversely, beraprost sodium, a PGI₂ analog, was revealed to be effective in ameliorating metabolic disturbances in obesity and obesity-associated T2DM. Various manifestations were revealed to be improved by PGI₂ analog treatment, including hepatic steatosis, adipose hypertrophy, glucose intolerance, hyperglycemia, hyperinsulinemia and other related complications, such as pancreatic fibrosis and nephropathy (144). This suggests that PGI₂ can be beneficial to the treatment of obesity-associated T2DM and NAFLD.

Since the mediation of PGs on hepatic lipid accumulation is ambiguous, the precise mechanism requires further study. Considering the findings of the aforementioned studies, it can be hypothesized that various PGs (PGD₂, PGE₂ and PGF₂α) promote hepatic lipid accumulation, mostly through facilitating TG storage and inhibiting TG output by repressing lipolysis, fatty acid oxidation and VLDL synthesis. In addition, under insulin resistance, PGs can increase de novo lipogenesis and promote the development of hepatic steatosis. As hepatic lipid accumulation is the initial step of NAFLD as well as a risk factor for T2DM, the inhibition of the 2-series PG pathway may be a potential option for treating NAFLD.

6. PGs and inflammation

Systemic chronic inflammation is a health-damaging phenotype that plays a central role in multiple metabolic syndromes, including T2DM and NAFLD (Fig. 2) (145,146). 2-Series PGs have multifunctional effects on the promotion and resolution of inflammation following the occurrence of insulin resistance, β-cell failure and hepatic steatosis (Fig. 3D) (37,71,78,82,112,142). PGs, TNF-α, IL-1β and IL-6 have been recognized as the major inflammatory mediators in T2DM and NAFLD (102,145-148). There are multifaceted interactions between PGs and other inflammatory molecules or cells in the pathogenic mechanisms of T2DM and NAFLD. As aforementioned, COX-2-derived PGs disrupt insulin signaling by activating the STAT3/ SOCS3 signaling pathway in the liver or interacting with TNF-α and ILs in WAT (37,71,78), whereas, in obesity, PGD₂ and PGE₂ mediate macrophage polarization and infiltration with downregulated TNF-α, MCP-1 and IL-6 in WAT, leading to an unregulated peripheral insulin resistance (79,82). In turn, when peripheral insulin resistance occurs, adipokines and cytokines are released from dysfunctional adipose tissues and subsequently induce inflammation, which is associated with β-cell failure and hepatic steatosis. COX-2-derived PGE₂ contributes to β-cell dysfunction in GSIS via IL-1β-induced NF-κB activation (112), and hepatic lipid accumulation via NF-κB activation (142). NF-κB-mediated inflammation is important in the pathogenesis of T2DM and NAFLD. PGs may be involved in inflammatory processes mostly through NF-κB pathway activation with or without coaction with other inflammatory factors. The inhibitor κB kinase β (IKK-β)/NF-κB pathway plays a critical role in chronic hepatic inflammation, leading to insulin resistance and steatohepatitis, in which TNF-α and IL-1β are also involved (19,139).

Hepatic inflammation is a landmark in the development of NASH, which is also triggered by progressed insulin resistance and other injurious stimuli, such as glucotoxicity and lipotoxicity (149-152). Progressively, NASH-related hepatic fibrosis and cirrhosis become long-term manifestations of NAFLD. Hepatic fibrosis is characterized by high-density extracellular matrix protein deposition (153). Both NASH and liver fibrosis can be exacerbated in NAFLD with comorbidity of T2DM (154,155). T2DM-promoted NASH is attributed to peripheral insulin resistance, intrahepatic lipotoxicity and M1 macrophage recruitment in adipose tissue (156-158). The activated M1 macrophages secrete pro-inflammatory cytokines, including MCP-1, TNF-α and IL-1β, which induce systemic inflammation. These cytokines are further delivered to the liver and cause steatohepatitis (159). Therefore, insulin resistance, hyperglycemia, hyperinsulinemia and hyperlipidemia are key factors for pro-inflammatory status in hepatic inflammation, in which PGs are involved as inflammatory mediators. In addition, the upregulation of transforming growth factor-β (TGF-β) and connective tissue growth factor in T2DM can lead to NAFLD-related fibrosis progression (160,161).

PGs are correlated with the progression from hepatic steatosis to NASH. The upregulated expression of COX-2 and mPGES-1, the key enzymes of PGE₂ synthesis, is closely associated with NASH activity score in human liver from patients with NASH (162). Lipidomics profiling was performed in a clinical cohort that attempted to describe the hepatic inflammatory characteristic of NASH. As a result, the plasma PGE₂ level was revealed to be elevated only in patients with NASH, while the level of 13,14-dihydro-15-keto-PG₂, a metabolite degraded from PGD₂, was found to be remarkably higher in the NASH group, compared with the simple steatosis or control groups (163). As a consequence, it is reasonable to suggest that PGs, particularly PGE₂, may aggravate the course of NAFLD.

However, there are some discrepancies in the impact of PGs and COX-2 activity on the development of NASH under dietary nutritious stress. An in vivo study revealed that hepatocyte-specific COX-2 transgenic mice (hCOX-2-Tg) with an increased level of PGE₂ improved intrahepatic steatosis, ballooning and inflammation (164). This was partially achieved by decreasing the plasma levels of pro-inflammatory cytokines (such as IL-1β, IL-6, TNF-α and MCP-1), and inhibiting macrophage recruitment and infiltration in steatohepatitis liver induced by a methionine- and choline-deficient diet (MCDD) (164). In addition, there are ameliorations of augmented oxidative stress and apoptosis in liver samples with NASH (164). Similarly, under a NASH diet, hepatic PGE₂ production derived from mPGES-1 is increased to potently inhibit monocyte-derived macrophage infiltration, which is associated with PGE₂-induced suppression of TNF-α-triggered responses in hepatocytes. These responses consist of pro-inflammatory cytokine IL-1β production and hepatocyte apoptosis (162). These results suggest a combined action of PGs and other inflammatory factors in NASH development. Furthermore, the blockade of L-PGDS in PG₂ signaling rapidly accelerates non-alcoholic simple steatosis to severe steatohepatitis in nutrition overload or normal conditions (165). This progression to NASH is also accompanied by enhanced lipogenic gene expression (such as SREBP-1c and liver X receptor α) and deranged metabolic features, including progressed insulin resistance and increased fasting glucose, insulin and lipid levels in the blood (165). With
regards to the PGI$_2$/IP pathway, under MCDD conditions, IP-receptor-knockout (IP-KO) mice had accelerated progression to steatohepatitis, with greater iron deposition due to marked oxidative stress. PGI$_2$/IP signaling prevents the development of NASH in anti-inflammatory response, as evidenced by the suppressed expression of MCP-1 and TNF-α in lipopolysaccharide-stimulated Kupffer cells in vitro. Consistently, the Kupffer cell-induced expression levels of MCP-1 and TNF-α were progressively increased in IP-KO mice, and the oxidative stress-induced hepatic iron deposition was reduced in the MCDD-induced steatohepatitis liver, suggesting that PGI$_2$ signaling inhibits inflammation and influences the antioxidant reaction in NASH (166). Thus, PG appears to play a protective role against hepatic steatohepatitis, most likely under disturbed metabolism in NAFLD and T2DM progression.

The key mechanisms of hepatic fibrosis include a disbalance between fibrogenesis and fibrolysis and the activation of hepatic stellate cells (HSCs) and Kupffer cells in response to various stimuli (167,168). Numerous studies have revealed that PGs facilitate the development of hepatic steatosis, steatohepatitis and fibrosis (169-171). In a prospective cohort research of 361 patients with NAFLD, daily aspirin use induced less severity of histologic characteristics of NAFLD and significantly decreased the risk of fibrosis initiation and progression in a duration-dependent manner, when compared with the non-regular use of aspirin (172). It was further suggested that the anti-inflammatory effect of long-term aspirin treatment is attributed to its involvement in inhibiting NF-κB and IKK-β signaling (173). Furthermore, plasma bioactive lipids, such as PGE$_2$ and PGI$_2$, have been regarded as useful markers for prognosis in liver cirrhosis (174). In accordance with clinical evidence, the upregulation of COX-2 was positively correlated with fibrosis formation in liver from a carbon tetrachloride (CCL$_4$)-induced fibrotic mouse model (175). Conversely, it was revealed that COX-2-derived PGE$_2$ could suppress fibrogenesis and NASH progression (176,177). In hCOX-2 Tg mice with diet-induced NASH, PGE$_2$ attenuated CCL$_4$-induced liver fibrosis by decreasing the activation and proliferation of HSCs and increasing apoptosis by suppressing microRNA (miR)-23a and miR-28a expression (164,178). In addition, COX-2-derived PGE$_2$ was revealed to suppress collagen synthesis through the downregulation of collagen type I α1, α smooth muscle actin and collagen binding protein-1 in HSCs under TGF-β1-induced conditions (178,179). These results demonstrated that the COX-2/PGE$_2$ pathway prevents the development of liver fibrosis through growth-suppressive and pro-apoptotic effects on HSCs.

To sum up, during the progression of T2DM and NAFLD, PGs may primarily act by interacting with other inflammatory factors, as well as mediating the NF-κB signaling pathway, which plays an important role in the chronic inflammation caused by glucotoxicity and lipotoxicity in a variety of organs. PGs can serve as pro-inflammatory mediators in the impairment of insulin sensitivity, glycemia and hepatic lipid metabolism. However, PGD$_2$, PGE$_2$, and PGI$_2$ also exert anti-inflammatory effects and improve peripheral insulin resistance, NASH and related fibrosis. Due to the complex action of PGs in the inflammatory process, the use of COX inhibitors in T2DM and NAFLD treatment should be given more consideration, and further explorations are highly warranted.

7. Conclusion and future perspectives

The comorbidity of T2DM and NAFLD is well recognized and has become an area of increased investigation over past decades. Nowadays, considerable evidence has highlighted the roles of 2-series PGs in the pathogenesis of T2DM and NAFLD. 2-Series PGs are important lipid molecules that are widely distributed in various organs. These exert multifunctional effects on the four highly intertwined pathogeneses of T2DM and NAFLD, including insulin resistance, hyperglycemia, hepatic lipid accumulation and chronic inflammation. PGs potently mediate insulin resistance, which subsequently induces pathological alterations including hyperinsulinemia, hyperglycemia, dyslipidemia and ectopic lipid accumulation. In addition, PGs can directly impact hyperglycemia by decreasing insulin secretion, pancreatic β-cell proliferation and increasing gluconeogenesis. In addition, PGs contribute to hepatic lipid accumulation by enhancing hepatic lipogenesis and decreasing TG output. Moreover, PGs distinctly establish a close interaction with inflammatory processes in the progression of T2DM and NAFLD.

Most 2-series PGs exert negative effects on the progression of T2DM and NAFLD. Therefore, the application of COX inhibitors such as aspirin and celecoxib beyond their conventional use on vascular diseases, rheumatoid arthritis and pain is emerging as a promising option for T2DM and NAFLD treatment. However, certain aspects of the application of PG pathways should be considered. First, some PGs are beneficial to the prevention of T2DM and NAFLD development to a certain extent, suggesting that the clinical use of COX inhibitors requires careful consideration and highlighting the potential therapeutic use of PGs and their derivates in the prevention and control of T2DM and NAFLD. Secondly, since the existing NSAIDs and COXIBs are associated with several side effects, it is meaningful to perform molecular modification of these drugs and develop new treatment strategies, to aim to accurately modulate the PG pathway in related organs such as the pancreas, liver and adipose tissues. Overall, due to the important role of 2-series PGs in T2DM and NAFLD, additional studies associated with the molecular mechanisms of PGs in the pathogenesis of T2DM and NAFLD are highly warranted. These studies will provide new and more precise therapeutic strategies based on targeting PG pathways in the treatment of these two diseases.

Acknowledgements

The authors would like to thank Professor Lexun Wang from the Institute of Chinese Medicine Sciences, Guangdong Pharmaceutical University, Guangzhou, China for editing and reviewing our manuscript.

Funding

This work was supported by the National Key R&D plan ‘Research on modernization of traditional Chinese medicine’ (grant no. 2018YFC1704200), the Major Basic And Applied Basic Research Projects of Guangdong Province of China (grant no. 2019B030302005), the Basic and Applied Basic Research fund of Guangdong Province (grant no. 2021A1515012553), the Innovative Strong School
Project of Guangdong Pharmaceutical University (grant no. 2018QKNCX130), the Basic and Applied Basic Research Fund of Guangdong Province (grant no. 2019A151510123), and the Medical Science and Technology Research Fund of Guangdong Province (grant no. A2019531).

Availability of data and materials
Not applicable.

Authors’ contributions
JG, WW and XZ conceived the study. WW and XZ wrote and prepared the original manuscript. JG and WW contributed to the review of the manuscript. JG and WW were responsible for the funding acquisition. All authors read the final manuscript and agree to be accountable for the content of the work.

Ethics approval and consent to participate
Not applicable.

Patient consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

References
1. International Diabetes Federation (IDF): IDF diabetes atlas, 9th edition. IDF, Brussels, 2019.
2. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L and Koenig AB: IDF diabetes atlas, 9th edition. IDF, Brussels, 2019.
3. Chatterjee S, Khunti K and Davies MJ: Type 2 diabetes. Lancet 389: 2239–2251, 2017.
4. Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M, George J and Bugianesi E: Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol 15: 11–20, 2018.
5. Marchesini G, Brizi M, Biagini E, Lelii N, McCullough AJ, Natale S, Forlani G and Melchionda N: Nonalcoholic fatty liver disease: A feature of the metabolic syndrome. Diabetes 50: 1844–1850, 2001.
6. Cai D, Yuan M, Frantz DF, Melendez PA, Hansen L, Lee J and Shoelson SE: Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med 11: 183–190, 2005.
7. Sun G, Jackson CV, Zimmerman K, Zhang LK, Finnearty CM, Sandusky GE, Zhang G, Peterson RG and Wang YJ: The FATZ0 mouse, a next generation model of type 2 diabetes, develops NAFLD and NASH when fed a Western diet supplemented with fructose. BMC Gastroenterol 19: 41, 2019.
8. Garcia-Jaramillo M, Spooner MH, Lohr CV, Wong CP, Zhang W and Jump DB: Lipidomic and transcriptomic analysis of western diet-induced nonalcoholic steatohepatitis (NASH) in female Ldlr−/−mice. PLoS One 14: e0214387, 2019.
9. Verboven M, Deluyker D, Ferfeiere V, Lambirchts I, Hansen D, Eijnde BO and Bito V: Western diet given to healthy rats mimics the human phenotype of diabetic cardiomyopathy. J Nutr Biochem 61: 140–146, 2018.
10. Hernandez-Rodas MC, Valenzuela R and Videla LA: Relevant aspects of nutritional and therapeutic interventions in nonalcoholic fatty liver disease. Int J Mol Sci 16: 25168–25198, 2015.
11. Valenzuela R and Videla LA: The importance of the long-chain polyunsaturated fatty acid n-6/n-3 ratio in development of non-alcoholic fatty liver associated with obesity. Food Funct 2: 644–648, 2011.
12. Taha AY, Cheon Y, Faurot KF, Macintosh B, Majchrzak-Hong SF, Mann JD, Hibbeln JR, Ringel A and Ramsden CE: Dietary omega-6 fatty acid lowering increases bioavailability of omega-3 polyunsaturated fatty acids in human plasma lipid pools. Prostaglandins Leukot Essent Fatty Acids 90: 153–157, 2014.
13. Wang J, Xu J, Li S and Sun X: Western diet given to healthy rats mimics the human phenotype of diabetic cardiomyopathy. J Nutr Biochem 61: 140–146, 2018.
14. Edward C, Kuan E, Gibson RA, Ross JG, CE and Hulsbergen BS: A low omega-6 polyunsaturated fatty acid (n-6 PUFA) diet increases omega-3 (n-3) long chain PUFA status in plasma phospholipids in humans. Prostaglandins Leukot Essent Fatty Acids 90: 133–138, 2014.
15. Xiao F, He C, Ren M, Xu FG and Wan JB: Quantitative profiling of eicosanoids derived from n-6 and n-3 polyunsaturated fatty acids by twin derivatization strategy combined with LC-MS/MS in patients with type 2 diabetes mellitus. Anal Chim Acta 1120: 24–35, 2020.
16. Li N, Yue H, Jia M, Liu W, Qiu B, Hou H, Huang F and Xu T: Effect of low-ratio n-6/n-3 PUFA on blood glucose: A meta-analysis. Food Funct 10: 4557–4565, 2019.
17. Liu H, Qiu Y, Mu Y, Zhang XJ, Liu L, Hou XH, Zhang L, Xu XN, Ji AL, Cao R, et al: A high ratio of dietary n-3/n-6 polyunsaturated fatty acids improves obesity-linked inflammation and insulin resistance through suppressing activation of TLR4 in SD rats. Nutr Res 33: 849–858, 2013.
30. Shrestha N, Cuffe JSM, Holland OJ, Perkins AV, McAinch AJ and Hryciw DH: Linoleic acid increases prostaglandin E2 release and reduces mitochondrial respiration and cell viability in human immortalized HL-1 cardiac cells. Cell Physiol Biochem 52: 94-102, 1999.
31. Kliwer SA, Lenhard JM, Willson TM, Patel I, Morris DC and Lehmann JM: A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation. Cell 83: 813-819, 1995.
32. Hesse H, Böni B, Moschi-Burmeier S, Barger SW, Barve S, Mattson MP and McClain CJ: Linoleic acid activates nuclear transcription factor-kappa B (NF-kappa B) and induces NF-kappa B-dependent transcription in cultured endothelial cells. J Clin Nutr 63: 322-328, 1996.
33. Seo MJ and Oh OH: Prostaglandins synthesize: Molecular characterization and involvement in prostaglandin biosynthesis. Prog Lipid Res 66: 50-68, 2017.
34. Schaid MD, Zhu Y, Richardson NE, Patibandla A, Ong IM, Kao Y, McQuaid SE, Neville MJ, Denis AL, Cheeseman J, Kassouf WS, Schultz RA, Cobelli C, Cline GW, Shulman GI, Waldhaeusl W, Krssak M, Brehm A, Bernroider E, Anderwald C, Nowotny P, Oakes ND, Cooney GJ, Camilleri S, Chisholm DJ and Rizza RA: Systemic metabolic alterations correlate with islet-level prostaglandin E2 production and signaling mechanisms that predict β-cell dysfunction in a mouse model of type 2 diabetes. Metabolites 11: 58, 2021.
35. Rouf SJ, Karsh J and Hébert RL: Celcoxib modifies glomerular basement membrane, mesangium and podocytes in OVE26 mice, but ibuprofen is more detrimental. Clin Sci (Lond) 124: 685-694, 2013.
36. Chan PC, Hsiao FC, Chang HM, Wabitsch M and Hsieh PS: Identification of adipocyte cyclooxygenase-2 and prostaglandin E2-prostaglandin E receptor 3 signaling in the development of obesity-induced adipose tissue inflammation and insulin resistance. FASEB J 30: 2282-2297, 2016.
37. Hsieh PS, Jin JS, Chiang FC, Chan PC, Chen CH and Shih KC: COX-2-dependent inflammation in fat is crucial for obesity-linked insulin resistance and fatty liver. Obesity (Silver Spring) 17: 1150-1157, 2009.
38. Szerafin T, Erdei N, Fulop T, Pasztor ET, Edes I, Koller A and Bagi Z. Increased cyclooxygenase-2 expression and prostaglandin-induced mediator production in coronary artery of patients with diabetes mellitus. Circ Res 99: e12-e17, 2006.
39. Wang T, Cai H, Zheng W, Michel A, Pawlita M, Milne G, Xiang YB, Gao YT, Li HL, Rothman N, et al: A prospective study of urinary prostaglandin E2 metabolite, heilloeceptor-pyrolri antibody and gastric cancer risk. Clin Infect Dis 64: 1308-1386, 2017.
40. Na YR, Jung D, Stabenorg M, Jang H, Gu GE, Jeong D, Stakenborg M, Jang H, Gu GJ, Jeong MR, Suh SY, Kim HJ, Kwon YH, Sung TS, et al: Systemic cyclooxygenase-2 and prostaglandin synthase 2 expression defines an antigen-presenting cell defect for insulin-dependent diabetes mellitus. J Clin Invest 109: 651-658, 2002.
41. Feingold KR, Doerrler W, Dinarello CA, Fiers W and Grunfeld C: Import of adipocyte cyclooxygenase-2 and prostaglandin synthase are key players in obesity-linked inflammation and insulin resistance. PLoS One 8: e69524, 2013.
42. Kliwer SA, Lenhard JM, Willson TM, Patel I, Morris DC and Lehmann JM: A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation. Cell 83: 813-819, 1995.
43. Hesse H, Böni B, Moschi-Burmeier S, Barger SW, Barve S, Mattson MP and McClain CJ: Linoleic acid activates nuclear transcription factor-kappa B (NF-kappa B) and induces NF-kappa B-dependent transcription in cultured endothelial cells. J Clin Nutr 63: 322-328, 1996.
44. Seo MJ and Oh OH: Prostaglandins synthesize: Molecular characterization and involvement in prostaglandin biosynthesis. Prog Lipid Res 66: 50-68, 2017.
45. Schaid MD, Zhu Y, Richardson NE, Patibandla A, Ong IM, Kao Y, McQuaid SE, Neville MJ, Denis AL, Cheeseman J, Kassouf WS, Schultz RA, Cobelli C, Cline GW, Shulman GI, Waldhaeusl W, Krssak M, Brehm A, Bernroider E, Anderwald C, Nowotny P, Oakes ND, Cooney GJ, Camilleri S, Chisholm DJ and Rizza RA: Systemic metabolic alterations correlate with islet-level prostaglandin E2 production and signaling mechanisms that predict β-cell dysfunction in a mouse model of type 2 diabetes. Metabolites 11: 58, 2021.
74. Wang Y, Yan S, Xiao B, Zuo S, Zhang Q, Chen G, Yu Y, Chen D,
73. 81.
72. 69.
71. Cook JR, Langlet F, Kido Y and Accili D: Pathogenesis of selective
inulin resistance in isolated hepatocytes. J Biol Chem 290: 1107‑1117, 2005.
70. 68. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA and Chen H: Chronic
inflammation in fat plays a crucial role in the development of
obesity-related insulin resistance. J Clin Invest 112: 1821‑1830,
79. ceddia RP, Lee D, Maulis MF, Carboneau BA, Threadgill DW,
77. Petersen KF, Dufour S, Savage DB, Bilz S, Solomon G,
76. 82.
75. Hernandez‑carretero A, Weber N, La Frano MR, Ying W, Lantero
84. 787‑794, 1999.
83. 703‑711, 2007.
82. 73‑79, 2013.
81. 1796‑1808, 2004.
80. 4682‑4691, 2012.
79. 578‑586, 2000.
78. 781‑790, 2009.
77. 1776‑1783, 2004.
76. 1748‑1760, 2018.
75. 1254‑1531, 2015.
74. 12587‑12594, 2007.
73. 1776‑1783, 2004.
72. 1321‑1326, 2002.
71. 1904‑1912, 2013.
70. 781‑790, 2009.
69. 7186‑7193, 2014.
68. 1321‑1326, 2002.
67. 2001.
66. 1903‑1912, 2013.
65. 1321‑1326, 2002.
64. 7897‑7929, 2015.

13

47: 114, 2021

INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 47: 114, 2021

101. 12305‑1314, 2020.

100. Solini A, Rossini C, Durante M, Natali P, Virdis A: L‑PGdS‑produced PGd2 in premature, but not in mature, adipocytes increases obesity and insulin resistance. Sci Rep 9: 1931, 2019.

85. Fujimori K, Maruyama T, Kamauchi S and Urade Y: Activation of adipogenesis by lipopolysaccharide promotes D2 synthase in mature adipocytes via PKA and inhibition of AKT. diabetes 63: 2911‑2923, 2014.

84. 97. Solomon TP, Knudsen SH, Karstoft K, Winding K, Holst JJ et al: Association of remnant lipoprotein lipase with decreased insulin‑stimulated insulin receptor substrate‑1 tyrosine phosphorylation. diabetes 50: 2572‑2578, 2001.

83. 1729‑1734, 2004.

82. 1903‑1912, 2013.
81. 73‑79, 2013.
80. 787‑794, 1999.
79. 781‑790, 2009.
78. 1776‑1783, 2004.
77. 787‑794, 1999.
76. 1023‑1033, 2007.

88. Groop LC, Bonadonna RC, DeFronzo RA and Mandarino LJ: Skeletal muscle insulin resistance in normoglycemic subjects with a strong family history of type 2 diabetes is associated with decreased insulin‑stimulated insulin receptor substrate‑1 tyrosine phosphorylation and activation of adipogenesis by lipocalin‑type prostaglandin d synthase‑generated Δ¹²‑PGJ2 acting through PPARγ. Cell Metab 20: 913‑925, 2014.

87. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL and Ferrante AW Jr: Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112: 1796‑1808, 2003.

86. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL and Ferrante AW Jr: Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112: 1796‑1808, 2003.

85. Fujimori K, Maruyama T, Kamauchi S and Urade Y: Activation of adipogenesis by lipopolysaccharide promotes D2 synthase in mature adipocytes via PKA and inhibition of AKT. diabetes 63: 2911‑2923, 2014.

84. 97. Solomon TP, Knudsen SH, Karstoft K, Winding K, Holst JJ et al: Association of remnant lipoprotein lipase with decreased insulin‑stimulated insulin receptor substrate‑1 tyrosine phosphorylation. diabetes 50: 2572‑2578, 2001.

83. 1729‑1734, 2004.

82. 1903‑1912, 2013.
81. 73‑79, 2013.
80. 787‑794, 1999.
79. 781‑790, 2009.
78. 1776‑1783, 2004.
77. 787‑794, 1999.
76. 1023‑1033, 2007.

88. Groop LC, Bonadonna RC, DeFronzo RA and Mandarino LJ: Skeletal muscle insulin resistance in normoglycemic subjects with a strong family history of type 2 diabetes is associated with decreased insulin‑stimulated insulin receptor substrate‑1 tyrosine phosphorylation and activation of adipogenesis by lipocalin‑type prostaglandin d synthase‑generated Δ¹²‑PGJ2 acting through PPARγ. Cell Metab 20: 913‑925, 2014.

87. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL and Ferrante AW Jr: Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112: 1796‑1808, 2003.

86. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL and Ferrante AW Jr: Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112: 1796‑1808, 2003.
104. Batchu SN, Majumder S, Bowskill BB, White KE, Advani SL, Brjmohan AS, Liu Y, Thai K, Azizi PM, Lee WL and Advani A: Prostaglandin 12 receptor agonism preserves β-cell function and attenuates albuminuria through nephrin-dependent mecha-

106. Zhu CF, Li GZ, Peng HB, Zhang F, Chen Y and Li Y: Treatment with marine collagen peptides modulates glucose and lipid metabolism in Chinese patients with type 2 diabetes mellitus. Appl Physiol Nutr Metab 35: 797-804, 2010.

106. Zhu CF, Li GZ, Peng HB, Zhang F, Chen Y and Li Y: Treatment with marine collagen peptides modulates glucose and lipid metabolism in Chinese patients with type 2 diabetes mellitus. Appl Physiol Nutr Metab 35: 797-804, 2010.

107. ceddia RP, downey JD, Morrison RD, Kraemer MP, davis SE, Zhang F, Chen Y and Li Y: Treatment with marine collagen peptides modulates glucose and lipid metabolism in Chinese patients with type 2 diabetes mellitus. Appl Physiol Nutr Metab 35: 797-804, 2010.

108. Weir GC, Gaglia J and Bonner-Weir S: Inadequate ceddia RP, downey JD, Morrison RD, Kraemer MP, davis SE, Zhang F, Chen Y and Li Y: Treatment with marine collagen peptides modulates glucose and lipid metabolism in Chinese patients with type 2 diabetes mellitus. Appl Physiol Nutr Metab 35: 797-804, 2010.

109. Persaud SJ, Muller D, Belin V, Kitsou-Mylona I, Hans. diabetes 56: 197‑203, 2007.

110. Tran PO, Gleason CE, Poitout V and Robertson RP: Interleukin‑8, ferritin and soluble transferrin receptors in type II diabetes mellitus. J Pharm Pharmacol 55: 1357‑1362, 2003.

111. Shanmugam N, Todorov IT, Nair I, Omori K, Reddy MA and Diraison F, Moulin P and Beylot M: Contribution of hepatic β-cell mass to the pathogenesis of type 2 diabetes. Diabetologia 56: 1398‑1409, 2013.

112. Igoillo-Esteve M, Larsen JL, Yang W, Yang M, Shimizu H, Daniel YY, Truchan NA, Pasker R, Newgard CB and Casey PJ: Deletion of Gα12‑18, 2007.

113. Amior L, Srivastava R, Nano R, Bertuzzi F and Melloul D: The role of Cox‑2 and prostaglandin E2 receptor EP3 in pancreatic β‑cell death. FASEB J 33: 4975‑4986, 2019.

114. Wang G, Liang R, Liu T, Wang L, Zou J, Liu N, Liu Y, Cai X, Liu Y, Ding X, et al: Opposing effects of IL‑1β/COX‑2/PGE2 pathway loop on islets in type 2 diabetes mellitus. Endocr J 66: 693‑709, 2019.

115. Pradhan AD, Manson JE, Rifai N, Buring JE and Ridker PM: C‑reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 286: 327‑334, 2001.

116. Wang G, Liang R, Liu T, Wang L, Zou J, Liu N, Liu Y, Cai X, Liu Y, Ding X, et al: Opposing effects of IL‑1β/COX‑2/PGE2 pathway loop on islets in type 2 diabetes mellitus. Endocr J 66: 693‑709, 2019.

117. Pradhan AD, Manson JE, Rifai N, Buring JE and Ridker PM: C‑reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 286: 327‑334, 2001.

118. Zheng J, Guo R, Goebls RM, Sempoux C and Henquin JC: Pancreatic beta-cell mass in European subjects with type 2 diabetes. Diabetes Obes Metab 10 (Suppl 4): S32‑S42, 2008.

119. Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA and Butler PC: β-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52: 102‑110, 2003.

120. Oshima H, Taketo MM and Oshima M: Destruction of pancreatic beta‑cells by transgenic induction of prostaglandin E2 in the islets. J Biol Chem 281: 29330‑29336, 2006.

121. Kimple ME, Nixon AB, Kelly P, Bailey CL, Young KH, Fields TA and Casey PJ: A role for Gα12‑18, 2007.

122. Kimple ME, Nixon AB, Kelly P, Bailey CL, Young KH, Fields TA and Casey PJ: A role for Gα12‑18, 2007.

123. Amior L, Srivastava R, Nano R, Bertuzzi F and Melloul D: The role of Cox‑2 and prostaglandin E2 receptor EP3 in pancreatic β‑cell death. FASEB J 33: 4975‑4986, 2019.

124. Lewis B, Mancini M, Mattock M, Chait A and Fraser TR: Plasma triglyceride and monocyte chemotactic protein in diabetes mellitus. Eur J Clin Invest 2: 445‑453, 1972.

125. Abou-Shousha S, Abd El-Megeed MH and Sultan HK: C‑reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 286: 327‑334, 2001.

126. Arkan MC, Hevener AL, Greten FR, Madra S, Li ZW, Long JM, Wynshaw-Boris A, Poli G, Olefsky J and Karin M: IKK-beta links inflammation to obesity‑induced insulin resistance. Nat Med 11: 191‑198, 2005.

127. Sakurai M, Takamura T, Ota A, Ando H, Akahori H, Kaji K, Sakata S, Nakamura Y, Miura K and Kaneko S: Liver steatosis, but not fibrosis, is associated with insulin resistance in nonalcoholic fatty liver disease. J Gastroenterol 42: 312‑317, 2007.

128. Vepriaradon Balouci, Gaccham M, Rydhick C, Agistinelli L, De Minics S, Canderesi C, Faraci G, Pascetti D, Vivarelli M, Nicolini D, et al: The 2‑series prostaglandins suppress VLDR secretion in an inflammatory condition-dependent manner in primary rat hepatocytes. Biochem Biophys Acta 1761: 160‑171, 2006.

129. Ohno Y, Kobayashi T, Mizoguchi K and Akazawa R: The role of carbonic anhydrase IV in the pathogenesis of type 2 diabetes. J Diabetes 10: 299‑308, 2018.

130. Feinberg M, Pasker RL, Newgard CB and Casey PJ: Deletion of Gα12‑18, 2007.

131. Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA and Butler PC: β-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52: 102‑110, 2003.

132. Amior L, Srivastava R, Nano R, Bertuzzi F and Melloul D: The role of Cox‑2 and prostaglandin E2 receptor EP3 in pancreatic β‑cell death. FASEB J 33: 4975‑4986, 2019.

133. Lewis B, Mancini M, Mattock M, Chait A and Fraser TR: Plasma triglyceride and monocyte chemotactic protein in diabetes mellitus. Eur J Clin Invest 2: 445‑453, 1972.

134. Diaz‑López G, Gómez‑López A, Cebrián‑Etayo J, Pizarro‑Fernández P, Montoro‑Sanchez MA, Pintado‑Martín S, Sánchez‑Castillo R and Galán‑Bernal A: Effects of low‑intensity red light and the anti‑inflammatory drugs sulindac and ibuprofen on liver inflammation. J Endocrinol Invest 41: 1069‑1076, 2018.

135. Ito M, Yano Y, Ono M, Nakayama K, Akasaka T, Saito T, Okazaki K and Horie K: Prostaglandin E2 suppresses vascular smooth muscle cell proliferation. J Cell Physiol 225: 219‑227, 2010.

136. Sakurai M, Takamura T, Ota A, Ando H, Akahori H, Kaji K, Sakata S, Nakamura Y, Miura K and Kaneko S: Liver steatosis, but not fibrosis, is associated with insulin resistance in nonalcoholic fatty liver disease. J Gastroenterol 42: 312‑317, 2007.

137. Vepriaradon Balouci, Gaccham M, Rydhick C, Agistinelli L, De Minics S, Canderesi C, Faraci G, Pascetti D, Vivarelli M, Nicolini D, et al: The 2‑series prostaglandins suppress VLDR secretion in an inflammatory condition-dependent manner in primary rat hepatocytes. Biochem Biophys Acta 1761: 160‑171, 2006.

138. Ohno Y, Kobayashi T, Mizoguchi K and Akazawa R: The role of carbonic anhydrase IV in the pathogenesis of type 2 diabetes. J Diabetes 10: 299‑308, 2018.

139. Ito M, Yano Y, Ono M, Nakayama K, Akasaka T, Saito T, Okazaki K and Horie K: Prostaglandin E2 suppresses vascular smooth muscle cell proliferation. J Cell Physiol 225: 219‑227, 2010.
154. Angulo P, Keach J c, Batts KP and Lindor K d: Independent
155. Hossain N, Afendy A, Stepanova M, Nader F, Srishord M,
157. Itani SI, Ruderman NB, Schmieder F and Boden G:
148. Masters SL, dunne A, Subramanian SL, Hull RL, Tannahill GM,
145. NetworksA list of members of the Nonalcoholic Steatohepatitis
ch r on ic i n fla m m a t ion i n non a lc ohol ic fa t t y l ive r d i s e a s e (NA F L D):
et al
151. Ren LP, c han SM, Zeng XY, Laybutt dR, Iseli TJ, Sun RQ,
149. Rafiq N, Goodman Z and Younossi Z: Independent predictors
152. Vidaud M, conti M, Huet S, Ba N, Buffet c and Bedossa P:
of fibrosis in patients with nonalcoholic fatty liver disease. Clin
146. Haukeland JW, Damås JK, Olinga P and Friedman SL: Prostaglandin E2 inhibits transformation of
150. Sukovoy A, Breslin J, Kita Y, Numata T, Yoshida Y, Mooney MA:
inflammation in nonalcoholic fatty liver disease. Gastroenterology 143: 765‑776.e3, 2012.
156. Itani SI, Ruderman NB, Schmieder F and Boden G: Lipid‑in‑duced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB‑alpha. Diabetes 51: 2005‑2011, 2002.
158. Hofmann‑Schulz MP, Arner P, CF Johnston RL and Spiegelmann BM: Increased adipose tissue expression of tumor necrosis factor‑alpha in human obesity and insulin resistance. J Clin Invest 95: 2409‑2415, 1995.
159. de Plessis J, van Pelt J, Korf H, Mathieu C, van der Schuuringen, Lannoos M, Oyen T, Topal B, Fetter G, Nayler S, et al: Association of adipose tissue inflammation with histologic severity of nonalcoholic fatty liver disease. Gastroenterology 149: 635‑648.e14, 2015.
160. Paradis V, Perlemuter G, Bonvoult F, Dargere D, Parfait B, Vidalud M, Conti M, Huet S, Na B, Buffet C and Bedossa P: Histologic and hyperinsulinemia‑mediated connective tissue growth factor expression: A potential mechanism involved in progression to fibrosis in nonalcoholic steatohepatitis. Hepatology 34: 738‑744, 2001.
161. Ota T, Takamura T, Kurita S, Matsozawa N, Kita Y, Uno M, Akahori H, Nakanishi M, Sakurai M, Zen Y, et al: Insulin resistance accelerates a dietary rat model of nonalcoholic steatohepatitis. Gastroenterology 132: 282‑293, 2007.