Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Efficacy and Safety of Integrated Traditional Chinese and Western Medicine for Corona Virus Disease 2019 (COVID-19): a systematic review and meta-analysis

Ming Liu (MD)a,1, Ya Gao (MD)a,1, Yuan Yuan (MD)b, Kelu Yang (MD)c, Shuzhen Shi (MD)a, Junhua Zhang (Prof)d,2,*, Jinhui Tian (Prof)a,2,*

a Evidence Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu, China
b Wuwei Hospital of Traditional Chinese Medicine, Wuwei 733000, Gansu, China
c School of Nursing, Lanzhou University, Lanzhou 730000 Gansu, China
d Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, Tianjin, China

ARTICLE INFO

Keywords:
Efficacy
Safety
Integrated Traditional Chinese and Western Medicine
COVID-19
Meta-analysis

ABSTRACT

Corona virus disease (COVID-19) has now spread to all parts of the world and almost all countries are battling against it. This study aimed to assess the efficacy and safety of Integrated Traditional Chinese and Western Medicine (Hereinafter referred to as “Integrated Medicine”) to COVID-19. We searched six major Chinese and English databases to identify randomized controlled trials (RCTs) and case-control studies (CCSs) of Integrated Medicine on COVID-19. Two reviewers independently screened, identified studies, and extracted data. Cochrane Risk of Bias tool and the Newcastle-Ottawa Scale were used to assess the quality of included RCTs and CCSs, respectively. Stata (version 13.0; StataCorp) was used to perform meta-analyses with the random-effects model. Risk ratio (RR) was used for dichotomous data while the weighted mean difference (WMD) was adopted for continuous variables as effect size, both of which were demonstrated in effect size and 95\% confidence intervals (CI). A total of 11 studies were included. Four were RCTs and seven were CCSs. The sample size of including studies ranged from 42 to 200 (total 982). The traditional Chinese medicine included Chinese medicine compound drugs (QingFei TouXie FuZhengFang) and Chinese patent medicine (e.g. Shufeng Jiedu Capsule, Lianhua Qingwen granules). Compared with the control group, the overall response rate [RR = 1.230, 95\%CI (1.113, 1.359), \textit{P} = 0.002], cure rate [RR = 1.604, 95\%CI (1.181, 2.177), \textit{P} = 0.002], severity illness rate [RR = 0.350, 95\%CI (0.154, 0.792), \textit{P} = 0.012], and hospital stay [WMD = -1.991, 95\%CI (-3.278, -0.703), \textit{P} = 0.002] of the intervention group were better. In addition, Integrated Medicine can improve the disappearance rate of fever, cough, expectoration, fatigue, chest tightness and anorexia and reduce patients’ fever, and fatigue time (\textit{P} < 0.05). This review found that Integrated Medicine had better effects and did not increase adverse drug reactions for COVID-19. More high-quality RCTs are needed in the future.

Abbreviations: COVID-19, Corona Virus Disease 2019; NCP, Novel Coronavirus Pneumonia; SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus-2; α-INF, alpha-interferon; TCM, Traditional Chinese Medicine; WBC, White blood cell; CRP, C-Reactive Protein; TNF-α, Tumor Necrosis Factor-α; RCTs, Randomized Controlled Trials; CCSs, Case-Control Studies; RoB, Risk of Bias; NOS, Newcastle-Ottawa Scale; RR, Risk Ratio; WMD, Weighted Mean Difference; CI, Confidence Intervals

* Corresponding author at: Evidence-Based Medicine Center, School of BasicMedical Sciences, Lanzhou University, No.199, Donggang West Road, Lanzhou City 730000,Gansu Province, China.
E-mail addresses: zjhtcm@foxmail.com (J. Zhang), tjh996@163.com (J. Tian).

1 Joint first author: Ming Liu (ORCID: https://orcid.org/0000-0001-7796-7197) and Ya Gao, Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, No.199, Donggang West Road, Lanzhou City 730000, Gansu Province, China.

2 Joint Corresponding author: Jinhui Tian, Evidence-Based Medicine Center, School of BasicMedical Sciences, Lanzhou University, No.199, Donggang West Road, Lanzhou City 730000,Gansu Province, China (Email: tjh996@163.com); Junhua Zhang, Evidence-Based MedicineCenter, Tianjin University of Traditional Chinese Medicine, No. 312 Anshaxi Street, NankaiDistrict, Tianjin 300193, China (Email: zjhtcm@foxmail.com).

https://doi.org/10.1016/j.phrs.2020.104896

Received 9 April 2020; Received in revised form 3 May 2020; Accepted 4 May 2020
Available online 11 May 2020

1043-6618/ © 2020 Elsevier Ltd. All rights reserved.
1. Introduction

As a member of coronavirus subfamily Coronaviridae, the coronavirus can infect human beings, many kinds of mammals and birds. Some coronavirus can spread between humans, livestock, and poultry. In December 2019, many cases of Novel Coronavirus Pneumonia (NCP) patients have appeared in Wuhan, Hubei, China [1]. The cause is possibly related to contact with a local fish and wild animal market (Huanan Seafood Wholesale Market). WHO named it as Coronavirus Disease 2019 (COVID-19), and the International Classification Committee named the virus as Severe Acute Respiratory Syndrome coronavirus-2 (SARS-CoV-2) [2,3]. So far, although transmission in China has been gradually controlled, the rate of infections outside China is rising rapidly, especially in the United States, Italy, and Spain. Till 27 March 2020, about 531,806 cases of COVID-19 and 24,073 deaths have reported [4]. The COVID-19 has posed significant threats to international health. So the effective prevention and treatment of COVID-19 are a very urgent task.

1.1. Western medicine for COVID-19

China has accumulated a lot of experience in prevention, diagnosis, and treatment of COVID-19. So far, China has issued seven versions of COVID-19 clinical guidelines (Trial Version). According to the latest seventh edition, the treatments of COVID-19 still don’t have specific medicine [5]. The treatment of COVID-19 involves multiple disciplines, and the current recommendations are mainly based on Western Medicine including supportive care, respiratory assisted ventilation, anti-infection (mainly antiviral agents), and glucocorticoid therapy [5]. Suggested antiviral agents are alpha-interferon (a-INF), lopinavir, ribavirin, chloroquine phosphate, and abidol. At present, there is no evidence to support the general or routine use of Western Medicine, nor is there any evidence to prove the risks and benefits of Western Medicine for COVID-19.

1.2. Integrated Traditional Chinese and Western Medicine for COVID-19

Traditional Chinese Medicine (TCM) has a history of thousands of years and has saved the Chinese from major infectious diseases on many occasions. Now, TCM has been practiced worldwide. During the SARS epidemic in 2003, TCM played a huge role [6-8]. COVID-19 belongs to the category of “Pestilence” in TCM. Its main clinical manifestations are fever, fatigue, dry cough, and the disease is situated in the lung and related to the spleen, stomach, and heart. Like the SARS period, TCM played a major role in the “Fight against the Pestilence in China”, saving many people’s lives [5,9,10]. Existing evidence showed that compared with the simple treatment of Western Medicine; Integrated Traditional Chinese and Western Medicine (Hereinafter referred to as “Integrated Medicine”) for COVID-19 may have better effects [11-15]. However, these studies have small sample sizes, and no convincing evidence is available to demonstrate the benefits and risks of Integrated Medicine for COVID-19.

This study summarized controlled trials and methods of Integrated Medicine treatment of COVID-19, including the changes of clinical symptoms. The secondary objective is to investigate the changes of laboratory indicators and the safety of Integrated Medicine of COVID-19.

2. Materials and Methods

This meta-analysis was based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) [16]. In addition, we also performed this study according to some other methodological study on meta-analysis [17-19]. The protocol for this study has been registered in the International Prospective Register of Systematic Reviews (PROSPERO, CRD42020177097).

2.1. Literature search

A pre-developed search strategy was used to identify all relevant clinical trials, regardless of languages or types of publication (excluded unpublished trials). We searched the following six databases: PubMed, Embase.com, Cochrane Library, CNKI (China National Knowledge Infrastructure), WanFang and CBM (Chinese Biomedical Database). The search time was limited from December 01, 2019 to March 24, 2020. Search terms included “traditional Chinese medicine”, “Western medicine”, “Integrated traditional Chinese and Western medicine”, “novel coronavirus pneumonia”, “2019-nCoV”, “COVID-19”, “SARS-CoV-2” and “NCP”. The search strategy of the PubMed database is presented in Appendix Table 1.

2.2. Inclusion criteria and study selection

Inclusion criteria: (1) Patients: confirm diagnosed COVID-19 patients (Age ≥18 years) by laboratory; (2) Intervention: patients in treatment groups were given TCM therapy in addition to the baseline medication similar to the control group (the TCM therapy included Chinese medicine compound drugs, Chinese patent medicine); (3) Comparison: the patients of the control group were given modern Western conventional treatments; (4) Outcomes: a. clinical efficacy (e.g. overall response rate, cure rate, hospital stay), b. clinical symptoms (e.g. fever, cough, expectoration, fatigue, myalgia), c. laboratory indicators (e.g. lymphocyte percentage, white blood cell (WBC) count, C-reactive protein (CRP), tumor necrosis factor-α (TNF-α)), d. adverse drug reactions (e.g. nausea and vomit, diarrhea, liver damage); (5) Study types: randomized controlled trials (RCTs) and case-control studies (CCSs) were included. This followings were excluded: review, abstract, letter, case reports, case series reports, and animal experiments. Two reviewers independently screened the title/abstract of each record by the inclusion criteria. For the indistinguishable record of the title/abstract, we retrieved the full text for further assessment. Finally, resolve any disagreements through discussion between two reviewers or consultation with a third reviewer.

2.3. Data extraction and quality assessment

A pre-designed data form was used to extract the relevant information, including the author, journal, study type, study location, study time, interventions, the dose of drugs, and outcomes. Primary outcomes including the clinical efficacy and the changes of clinical symptoms, such as cure rate, total effective rate, nausea disappearance rate, fever disappearance rate, and fatigue disappearance rate. Second outcomes including the changes of laboratory indicators and the safety of Integrated Medicine of COVID-19, such as CRP, TNF-α, WBC count, liver damage and diarrhea. The Risk of Bias (RoB) assessment tool from the Cochrane Handbook was used to assess the methodological quality of RCTs [20], and the Newcastle-Ottawa Scale (NOS) was used to assess the quality of CCSs [21]. Each RCT was assessed at low risk, high risk, or unclear risk relating to following the items: sequence generation, allocation concealment, blinding of outcome assessors, incomplete outcome data, selective outcome reporting, and other sources of bias. The NOS assesses the quality of CCSs with eight questions in three broad categories: (1) patient selection; (2) comparability of study groups; (3) assessment of the outcome. The total score is 9, the higher the score, the better the quality of the study. Two reviewers independently completed the data extraction and quality assessment. Any disagreements between reviewers were resolved by discussion or consultation with a third reviewer.

2.4. Statistical analysis

Stata (version 13.0; StataCorp) was used to perform the statistical analysis. Risk ratio (RR) was used for dichotomous data while weighted
3. Results

3.1. Eligible studies

Fig. 1 showed the study selection process. A total of 11 studies were included in our study. All the articles were published by Chinese, among them, four studies were RCTs [12,23–25] and seven were CCSs [11,12,26–30].

The detail of included studies is shown in Table 1. Except for two studies that did not provide the range of study time [23,24], the study time was from January 01, 2020 to March 02, 2020. The sample size of the included studies ranged from 42 to 200 (total 982). The duration of treatment ranges from 5 to 30 days, with an average of 13.55 days. Two studies did not provide specific Chinese medicine compound drugs and Chinese patent medicine [11,13]. One study intervention groups were Chinese medicine compound drugs (QingFei YouXie FuZhengFang) [24]. And the other studies were Chinese patent medicine (such as Shufeng Jiedu Capsule, Lianhua Qingwen granules). The drugs used in the control group were Lopinavir, Ribavirin, Arbidol and et al. In addition, both groups of patients received basic treatment, such as oxygen inhalation and nutritional support.

3.2. Study quality

The quality of the included RCTs is shown in Table 2 [12,23–25]. Four RCTs described the adequate random sequence generation process, but only one RCT [25] described the methods used for allocation concealment. Only one RCT [25] described the blinding of participants and personnel and blinding of outcome assessment (High risk), and none described how the incomplete outcome data were processed and reported selective outcome reporting. Overall, the quality of the included RCTs was low.

Seven CCSs were assessed for quality by the NOS [11,13,26–30]. The maximum quality score is 9 and the range of scores was 3 to 7 (Table 3), with a median of 6 (5.4 ± 1.4). Only one study did not report the case definition [13], and all study reported the definition of controls and comparability of cases and controls [11,13,26–30]. None of the studies reported representativeness of the cases and selection of controls [11,13,26–30]. The reporting for exposure was better, but only one study reported non-response rate [30]. These studies showed a moderate quality.

3.3. Clinical Efficacy

Four studies demonstrated the overall response rate: Integrated Medicine was better than Western Medicine alone (RR = 1.230, 95%CI (1.113, 1.359), P = 0.000) (Fig. 2). Four studies compared the cure rate of the COVID-19 between Integrated Medicine and Western Medicine. The outcome indicated the cure rate in Integrated Medicine was higher than Western Medicine (Fig. 3). The difference was statistically significant [RR = 1.604, 95%CI (1.181, 2.177), P = 0.002]. Besides, Integrated Medicine can reduce the severity of illness rate [RR = 0.350, 95%CI (0.154, 0.792), P = 0.012] (Fig. 4). And compared with Western Medicine treatment, the Integrated Medicine treatment can shorten the hospital stay [WMD = -1.991, 95%CI (-3.278, -0.703), P = 0.002] (Fig. 5).

3.4. Symptoms disappearance rate or time

We compared the effects of Integrated Medicine and Western Medicine on the clinical symptoms. The results showed that Integrated Medicine can better improve the symptoms disappearance rate and reduced the symptoms disappearance time than Western Medicine (Table 4). Except for the difference in myalgia and nausea is not statistically significant, Integrated Medicine significantly increased the disappearance rate of fever, cough, expectation, fatigue, chest tightness and anorexia in patients (P < 0.05). In addition, Integrated Medicine can reduce patients’ fever, and fatigue time (P < 0.05).

3.5. Laboratory indicators

Meta-analyses revealed that the Integrated Medicine was more beneficial to the recovery of laboratory indicators. We found that Integrated Medicine was beneficial for IFN-a [WMD = -3.13, 95%CI (-4.23, -2.04), P = 0.000] and lymphocyte percentage [WMD = 1.59, 95%CI (0.61, 2.58), P = 0.002] to return to normal. And these differences were statistically significant (P < 0.05). Besides, as for the CRP and WBC count, there were no significant differences between Integrated Medicine and Western Medicine (P > 0.05) (Table 5).

3.6. Adverse Drug Reaction

The common adverse drug reactions of Integrated Medicine were nausea and vomiting, diarrhea, liver damage, and reduced blood cell count. As showed in Table 6, there was no significant difference in the
First author	Type of study	Location of study	Rang of time (2020)	Type of disease	Samples (male)	Treatment	Control	Duration	
Zhou WM [23]	RCTs	ChangSha	Light	52(32)	Diammonium glycyrrhizinate enteric coated capsules (150 mg, tid) + Lopinavir tablets (500 mg, bid)	52(28)	Lopinavir tablets (500 mg, bid)	14d	
Ding XJ [24]	RCTs	WuHan	Light/Severe/Severe	51(39)	Qingfetouxi fuzhengfang (150 ml, bid) + IFN-α (5 million U, bid) + Ribavirin (0.5 g, bid)	49(39)	IFN-α (5 million U, bid) + Ribavirin (0.5 g, bid)	10d	
Qu XK [26]	CCSs	HaoZhou	01.31-02.11	Light/Severe	40(25)	Shufeng Jiedu Capsule (2.08 g, tid) + Arbidol (0.2 g, tid)	30(16)	Arbidol (0.2 g, tid)	10d
Xia WG [11]	CCSs	WuHan	01.15-02.08	Common/Severe	34(17)	Integrated Traditional Chinese and Western Medicine	18(6)	Western Medicine	23d
Yao KT [27]	CCSs	WuHan	01.11-01.30	Light/Severe	21(16)	Lianhua Qingwen granules (6 g, tid) + Western Medicine	21(12)	Western Medicine	19d
Xiao Q [28]	CCSs	WuHan	01.24-01.30	Light/Severe	100(64)	Shufeng Jiedu Capsule (2.08 g, tid) + Arbidol (0.2 g, tid)	100(66)	Arbidol (0.2 g, tid)	14d
Cheng DZ [29]	CCSs	WuHan	01.01-01.30	Common/Severe	51(26)	Lianhua Qingwen granules (6 g, tid) + Western Medicine	51(27)	Western Medicine	7d
Shi J [13]	CCSs	ShangHai	01.01-02.01	Light/Severe	49(26)	Traditional Chinese Medicine	49(28)	Western Medicine	30d
Yang MB [30]	CCSs	GuangZhou	01.21-03.02	Light/Severe	26(16)	Reyunying mixture (10-20 ml, bid) + Lopinavir (100 mg, bid) + IFN-α (5 million U, bid) + Ribavirin (0.5 g, bid)	23(9)	Lopinavir (100 mg, bid) + IFN-α (5 million U, bid) + Ribavirin (0.5 g, bid)	7d
Fu X [12]	RCTs	GuangZhou	01.20-02.23	Common/Severe	37(19)	Tongjiqunwan granule formula (150 ml, bid) + Arbidol (0.2 g, tid)	36(19)	Arbidol (0.2 g, tid) + Ribavirin (0.5 g, bid)	10d
Duan C [25]	RCTs	WuHan	02.01-02.05	Light	82(39)	Jinhua Qinggan granules (10 g, tid) + Western Medicine	41(23)	Western Medicine	5d
Study	Random sequence generation (selection bias)	Allocation concealment (selection bias)	Blinding of participants and personnel (performance bias)	Blinding of outcome assessment (detection bias)	Incomplete outcome data (attrition bias)	Selective reporting (reporting bias)	Other bias		
------------	--	--	---	---	--	-----------------------------------	-----------		
Fu XX [12]	L	U	U	U	U	U	U		
Zhou WM [23]	L	U	U	U	U	U	U		
Ding XJ [24]	L	U	U	U	U	U	U		
Duan C [25]	L	L	H	U	U	U	U		

H: High risk, L: Low risk, U: Unclear risk

Study	Is the Case Definition Adequate?	Representativeness of the Cases	Selection of Controls	Definition of Controls	Comparability of Cases and Controls	Ascertainment of Exposure	Use the same method to determine case and control exposure factors	Non-Response Rate	Total
Qu XK [26]	★	⭐	⭐	⭐	⭐	⭐	⭐	6	6
Xia WG [11]	★	⭐	⭐	⭐	⭐	⭐	⭐	6	6
Yao KT [27]	★	⭐	⭐	⭐	⭐	⭐	⭐	4	4
Xiao Q [28]	★	⭐	⭐	⭐	⭐	⭐	⭐	6	6
Cheng DZ [29]	★	⭐	⭐	⭐	⭐	⭐	⭐	6	6
Shi J [13]	★	⭐	⭐	⭐	⭐	⭐	⭐	3	3
Yang MB [30]	★	⭐	⭐	⭐	⭐	⭐	⭐	7	7
adverse drug reactions caused by the two different interventions ($P > 0.05$).

3.7. Subgroup analysis of the primary outcomes

Results of subgroup analyses of the Chinese medicine compound drugs and Chinese patent medicine for the primary outcome were shown in Appendix Tables 2 and 3. When the Integrated Medicine included Diammonium glycyrrhizinate enteric coated capsules, it can improve the cure rate compared with Western Medicine ($P = 0.036$). Lianhua Qingwen granules can improve the total effective rate ($P = 0.037$), fever disappearance rate ($P = 0.003$), fatigue disappearance rate ($P = 0.032$), myalgia disappearance rate ($P = 0.025$), expectoration disappearance rate ($P = 0.004$), and chest tightness...
In addition, Lianhua Qingwen granules shorten the fever \((P = 0.01)\), fatigue \((P = 0.02)\), and cough \((P = 0.038)\) time. Shufeng Jiedu Capsule can improve the total effective rate \((P = 0.02)\) and shorten the fever \((P = 0.003)\) time. Tongjiequwen granule formula can improve the total effective rate \((P = 0.044)\). Jinhua Qinggang granules can improve fever disappearance rate \((P = 0.02)\), cough disappearance rate \((P = 0.023)\), and expectoration disappearance rate \((P = 0.003)\). Qingfeitouxie fuzhengfang can improve cough disappearance rate \((p = 0.032)\) and chest tightness disappearance rate \((P = 0.025)\).

3.8. Publication bias

Since the number of studies in any comparative analysis did not exceed ten, we did not assess the publication bias.
Comparison of the laboratory indicators between integrated Chinese and Western medicine.

Outcome measure	No. of studies	Samples	Statistical method	Effect estimate	P-value
			RR (Random)	95%CI	
CRP	4	326	WMD (Random)		
Tumor Necrosis Factor-α	2	204	WMD (Random)	95%CI	
Lymphocyte percentage	2	273	WMD (Random)	95%CI	
WBC	2	273	WMD (Random)	95%CI	

Table 4

Comparison of the symptoms disappearance rate or time between integrated Chinese and Western medicine.

Table 5

Comparison of the laboratory indicators between integrated Chinese and Western medicine.
RR, Risk Ratio; CI, Confidence Intervals

some high-quality RCTs are needed to evaluate the effect of Integrated Medicine for COVID-19.

5. Conclusion

The study results showed that compared with Western Medicine, the Integrated Medicine for COVID-19 has better effects and did not increase adverse drug reactions. However, due to the low number of included studies, low quality, and inadequate methodologies, high-quality RCTs are needed to evaluate the effect of Integrated Medicine for COVID-19 in future.

Ethical approval

Ethical approval and patient consent are not required since this is an overview based on published studies.

Funding

The authors received no financial support for the research, authorship, and publication of this article.

Conflicts of Interest

The authors declare that they have no competing interests.

Author Contributions

Jinhui Tian, and Junhua Zhang designed this study; Ming Liu and Ya Gao ran the search strategy; Ming Liu and Yuan Yuan collected data, Shuzhen Shi and Ya Gao re-checked data; Ya Gao performed analysis and Jinhui Tian re-checked; Ming Liu and Kelu Yang assess the quality of studies, Shuzhen Shi and Junhua Zhang re-checked; Ming Liu wrote the manuscript, Ya Gao, Jinhui Tian and Junhua Zhang edited. All listed authors reviewed and revised the manuscript.

Acknowledgement

None.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.phrs.2020.104896.

Table 6

Outcome measure	No. of studies	Samples	Statistical method	Effect estimate	P-value
Nausea and vomiting	2	172	9/92	5/80	RR (Random) 95%CI 0.915(0.267,3.138) 0.888
Diarrhoea	2	225	32/134	3/91	RR (Random) 95%CI 5.598(0.267,166.774) 0.320
Liver damage	2	202	3/103	12/99	RR (Random) 95%CI 0.281(0.046,1.706) 0.168

References

[1] D.S. Hui, E.I. Azhar, T.A. Madani, et al., The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health-the latest 2019 novel coronavirus outbreak in Wuhan, China, Int. J. Infect. Dis. 91 (2020) 264–266.

[2] W.H.O., Clinical management of severe acute respiratory infection when Novel coronavirus (nCoV) infection is suspected: interim guidance. Jan 11, 2020. https://www.who.int/internal-publications-detail/clinical-management-of-severe-acute-respiratory-infection-when-novel-coronavirus-(ncov)-infection-is-suspected (accessed 24 March 2020).

[3] J.H. Nie, Q.Q. Li, J.J. Wu, et al., Establishment and validation of a pseudovirus neutralization assay for SARS-CoV-2, Emerg. Microbes. Infect. 9 (2020) 680–685.

[4] Coronavirus Outbreak, available at: https://www.worldometers.info/coronavirus/ (accessed 27 March 2020).

[5] General Office of the National Health and Health Commission, Office of the State Administration of Traditional Chinese Medicine. Notice on Issuing a New Coronary Virus Pneumonia Diagnosis and Treatment guidelines (Trial Version 7) [EB/OL], http://www.nhc.gov.cn/yzygj/s7653p/202003/46f9294a7-7e4e4ec0d776912cb2b989.shtml, (accessed 4 April 2020).

[6] X. Hai, Clinical experience of treating SARS in Guangdong hospital of TCM, TianJin ZhongYiYao FeiDian ZhanZhi 20 (2003) 24–25.

[7] P.G. Xiao, Y.I. Wang, H.S. Cheng, Some research clues on Chinese herbal medicine for SARS prevention and treatment, ZhongGao ZhongYao ZaZhi 28 (2003) 481–483.

[8] X.H. Xiao, J.B. Wang, C.S. He, On the rational exaction for the prescriptions and drugs of TCM in prevention and treating SARS, ZhongGao ZhongYao ZaZhi 28 (2003) 664–668.

[9] S.F. Shi, Q.Q. Liu. To explore the value of Chinese medicine in the treatment of COVID-19 from the perspective of “Jiangxi square cabin Chinese Medicine Model”, Jiangxi ZhongYiYao http://kns.cnki.net/kcms/detail/32.1630.r.20200325.0908.001.html, (accessed 27 March 2020).

[10] H. Huang, Y. Zhao, X.H. Zuo, et al., Treatment of COVID-19 by Pneumonia No.1 Prescription and Pneumonia No.2 Prescription, Zhong Yi XueBao http://kns.cnki.net/kcms/detail/44.1411.r.20200523.1016.002.html, (accessed 27 March 2020).

[11] W.F. Xia, C.Q. An, C.J. Zhang, et al., Clinical study on 34 cases of COVID-19 treated by integrated Chinese and western medicine, ZhongYi ZaZhi http://kns.cnki.net/kcms/detail/11.2166.r.20200217.1502.004.html, (accessed 27 March 2020).

[12] X.K. Fu, L.P. Lin, X.H. Tan, Clinical study on 37 cases of COVID-19 treated by integrated Chinese and western medicine, ZhongYao XinYao & LinChuang YaoLi http://kns.cnki.net/kcms/detail/44.1430.r.20200319.1644.002.html, (accessed 27 March 2020).

[13] J. Shi, Z.G. Yang, C. Ye, et al., Clinical observation of 49 cases of non-critical COVID-19 treated by integrated Chinese and Western medicine in Shanghai, ShangHai ZhongYi ZaZhi http://kns.cnki.net/kcms/detail/31.1276.r.20200304.1127.001.html, (accessed 27 March 2020).

[14] R.F. Li, Y.L. Hou, J.C. Huang, et al., Lianhuaqingwen exerts anti-viral and anti-inflammatory activity against novel coronavirus (SARS-CoV-2), Pharmacol. Res. (2020 20 March) 104761, https://doi.org/10.1016/j.phrs.2020.104761 (Epub ahead of print).

[15] J.L. Ren, A.H.K.J. Zhang, Wang, Traditional Chinese medicine for COVID-19 treatment, Pharmacol. Res. 55 (2020 4 March) 104734, https://doi.org/10.1016/j.phrs.2020.104734 [Epub ahead of print].

[16] D. Moher, A. Liberati, J. Tetzlaff, et al., Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement, Ann. Intern. Med. 152 (2009) 264–269.

[17] J. Tian, J. Zhang, L. Ge, et al., The methodological and reporting quality of systematic reviews from China and the USA are similar, J. Clin. Epidemiol. 85 (2017) 50–58.

[18] L. Li, J. Tian, H. Tian, et al., Network meta-analyses could be improved by searching more sources and by involving a librarian, J. Clin. Epidemiol. 67 (2014) 1001–1007.

[19] X.X. Li, Y. Zhang, Y.L. Chen, et al., The reporting characteristics and methodological quality of Cochrane reviews about health policy research, Health Policy 119 (2014) 503–510.

[20] J.P. Higgins, D.G. Altman, P.C. Gotzsche, et al., The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials, BMJ 343 (2011) d5928.

[21] G.A. Wells, B. Shea, D. O’Connell, et al., The Newcastle-Ottawa Scale (NOS) for assessing the quality of non-randomised studies in metaanalysis, Ottawa Health Research Institute, Ottawa, Ontario, 2004.

[22] J.P. Higgins, S.G. Thompson, J.J. Deeks, et al., Measuring inconsistency in meta-analyses, BMJ 332 (2006) 557–560.

[23] W.M. Zhou, F.M. Zhao, B.L. Li, et al., Clinical value of glycyrrhizinate in the treatment of patients with common new coronavirus pneumonia, BingXue XueBao http://kns.cnki.net/kcms/detail/11.1856.r.20200228.1135.001.html, (accessed 27 March 2020).

[24] X.J. Ding, Y. Zhang, D.C. He, et al., Clinical Effect and Mechanism of Qingfei Fuzheng Recipe in the Treatment of Novel Coronavirus Pneumonia, YiXue DaoBao http://kns.cnki.net/kcms/detail/11.1266.r.20200322.1615.002.html, (accessed 27 March 2020).

[25] C. Duan, W.G. Xia, C.J. Zheng, et al., Clinical Observation of Jinhua Qinggan Granule in Treating Pneumonia Infected by New Coronavirus, ZhongYi ZaZhi http://kns.cnki.net/kcms/detail/44.1308.r.20200323.0853.002.html, (accessed 27 March 2020).

[26] X.K. Qun, S.L. Hao, J.H. Ma, et al., Observation on the clinical effect of Shufeng
Jiedu Capsule combined with Arbidol Hydrochloride Capsules in the treatment of COVID-19, ZhongCaoYao http://kns.cnki.net/kcms/detail/12.1108.r.20200225.1549.008.html, (accessed 27 March 2020).

[27] K.T. Yao, M.Y. Liu, X. Li, et al., Retrospective Clinical Analysis on Treatment of Novel Coronavirus-infected Pneumonia with Traditional Chinese Medicine Lianhua Qingwen, ZhongGuo ShiYan FangJiXue http://kns.cnki.net/kcms/detail/11.3495.R.20200206.1500.004.html, (accessed 27 March 2020).

[28] Q. Xiao, Y.J. Jiang, S.S. Wu, et al., Analysis of the value of Shufeng Jiedu capsules combined with Abidol in the treatment of mild new type of coronary toxin pneumonia, ZhongGuo ZhongYi JiZheng http://kns.cnki.net/kcms/detail/50.1102.R.20200309.1528.004.html, (accessed 27 March 2020).

[29] D.Z. Cheng, W.J. Wang, Y. Li, et al., Analysis of 51 cases of new coronavirus pneumonia treated with traditional Chinese medicine Lianhua Qingwen: a multi-center retrospective study, TianJin ZhongYiYao http://kns.cnki.net/kcms/detail/12.1349.R.20200310.1024.004.html, (accessed 27 March 2020).

[30] M.B. Yang, S.S. Dang, S. Huang, et al., Multi-center Clinical Observation of Reyanning Mixture in Treatment of Novel Coronavirus Pneumonia, ZhongGuo ShiYan FangJiXue ZaZhi http://kns.cnki.net/kcms/detail/11.3495.R.20200318.1327.001.html, (accessed 27 March 2020).

[31] M.M. Zhang, X.M. Liu, L. He, Effect of integrated traditional Chinese and Western medicine on SARS: a review of clinical evidence, World J. Gastroenterol. 10 (23) (2004) 3500–3505.

[32] L. Qiao, W.Q. Chen, Atheroprotective Effects and Molecular Targets of Bioactive Compounds from Traditional Chinese Medicine, Pharmacol. Res. 135 (2018) 212–229.

[33] Y. Zhong, M.C. Menon, Y. Deng, et al., Recent Advances in Traditional Chinese Medicine for Kidney Disease, Am. J. Kidney. Dis. 66 (3) (2015) 513–522.

[34] C.Y. Shen, J.G. Jiang, L. Yang, et al., Anti-ageing active ingredients from herbs and nutraceuticals used in traditional Chinese medicine: pharmacological mechanisms and implications for drug discovery, Br. J Pharmaco. 174 (11) (2017) 1395–1425.

[35] D.G. Altman, The revised consort statement for reporting randomized trials: explanation and elaboration, Ann. Intern. Med. 134 (2001) 663–694.