Acetyl-CoA carboxylase inhibitors in non-alcoholic steatohepatitis: Is there a benefit?

Georgios Neokosmidis, Evangelos Cholongitas, Konstantinos Tziomalos

FRONTIER

Acetyl-CoA carboxylase inhibitors suppress de novo lipogenesis resulting in improvement in hepatic steatosis in both animal models and in patients with non-alcoholic fatty liver disease. However, the effects of these agents on hepatic fibrosis are inconsistent and they increase plasma triglyceride levels, casting doubt on their risk/benefit profile.
Non-alcoholic fatty liver disease (NAFLD) is the commonest chronic liver disease in high-income countries, affecting 17%-46% of the general population[1]. NAFLD includes non-alcoholic fatty liver, characterized by isolated hepatic steatosis, and non-alcoholic steatohepatitis (NASH), where variable degrees of hepatic inflammation and fibrosis coexist with steatosis[2]. NASH is associated with increased risk for cirrhosis, hepatocellular cancer (HCC) and cardiovascular disease[3,4]. Diet and exercise, aiming at weight loss, is the cornerstone of management of NAFLD, but only a minority of patients achieves and maintains weight loss > 5%, which is essential for improvement in liver histology[2,5]. Several pharmacological agents have been evaluated in patients with NAFLD but none is currently licensed for use in this disease[2]. Therefore, there is an unmet need for safe and effective treatments in patients with NASH.

INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) is the commonest chronic liver disease in high-income countries, affecting 17%-46% of the general population[1]. NAFLD includes non-alcoholic fatty liver, characterized by isolated hepatic steatosis, and non-alcoholic steatohepatitis (NASH), where variable degrees of hepatic inflammation and fibrosis coexist with steatosis[2]. NASH is associated with increased risk for cirrhosis, hepatocellular cancer (HCC) and cardiovascular disease[3,4]. Diet and exercise, aiming at weight loss, is the cornerstone of management of NAFLD, but only a minority of patients achieves and maintains weight loss > 5%, which is essential for improvement in liver histology[2,5]. Several pharmacological agents have been evaluated in patients with NAFLD but none is currently licensed for use in this disease[2]. Therefore, there is an unmet need for safe and effective treatments in patients with NASH.

NON-ALCOHOLIC FATTY LIVER DISEASE

The pathogenesis of NASH is complex and multiple pathways, including insulin resistance, inflammation, oxidative stress and apoptosis are implicated[6]. De novo lipogenesis (DNL), defined as the synthesis of fatty acids from non-lipid sources, is pivotal in the development and progression of NASH. DNL is increased in patients with NAFLD and appears to be responsible for up to 38% of intrahepatic triglyceride content in this population[7]. In addition to its contribution to the development of hepatic steatosis, DNL also promotes fibrosis by activating hepatic stellate cells (HSC), which are the principal contributors to liver fibrosis[8,9]. Acetyl-CoA carboxylase (ACC) catalyzes the ATP-dependent carboxylation of acetyl-coenzyme A (CoA) to form malonyl-CoA, which is the rate-limiting and key regulatory step in DNL[10]. ACC exists as two isoenzymes that are encoded by two different genes; ACC1 is cytosolic whereas ACC2 is located at the mitochondrial membrane[10].

Given the central role of ACC in DNL and the implication of the latter in the pathogenesis of NAFLD, ACC might represent an attractive therapeutic target in this disease. Indeed, early studies showed that liver-specific, genetic inactivation of ACC protects against the development of hepatic steatosis[11,12]. More recently, several orally available, liver-specific, dual ACC1/ACC2 inhibitors have been developed and are being evaluated in the management of NAFLD (Table 1). The most promising is firsocostat, formerly known as GS-0976. In mice with NASH, this agent improved hepatic steatosis and also reduced hepatic inflammation[13-15]. However, an increase in serum triglyceride, glucose and insulin levels as well in total body fat mass was observed[13,14]. In another study, a structural analog of GS-0976 reduced hepatic steatosis and hepatic insulin resistance in high-fructose-fed rats[15]. However, a 30%-130% increase in plasma triglyceride levels was again observed, which was attributed to an increase in very low density lipoprotein production and a decrease in triglyceride clearance by lipoprotein lipase[15]. Other ACC inhibitors also showed promise in ameliorating hepatic steatosis in rodent models of NASH. ND-630 reduced hepatic steatosis in Zucker diabetic fatty rats[16]. In addition, PF-05221304 not only improved liver steatosis in a rat model of NASH but also reduced hepatic inflammation[17].

In addition to the reduction in hepatic steatosis, ACC inhibition also appears to ameliorate hepatic fibrosis (Table 1), which is the strongest predictor of mortality in NASH[18-20]. In recent studies, firsocostat and a structural analog of this agent inhibited the activation of HSCs and reduced hepatic fibrosis both in vitro and in animal models of NASH[9,13,14]. PF-05221304 also prevented the activation of primary HSCs to myofibroblasts in vitro and reduced fibrosis in choline-deficient, high-fat-fed rats[17]. In contrast, MK-4074 did not affect fibrosis in a rat model of NASH, suggesting that the effect of ACC inhibition on fibrosis might be agent-specific[21]. On the other hand, another liver-specific, dual ACC1/ACC2 inhibitor, ND-654,
not only reduced hepatic steatosis but also delayed the progression of HCC in a rat model[22].

Preliminary studies suggest that ACC inhibition might also be effective in patients with NAFLD (Table 1). In a pilot, open-label, prospective study in 10 patients with NASH, administration of firsocostat for 12 wk reduced hepatic steatosis, assessed with magnetic resonance imaging (MRI), and fibrosis, assessed with both magnetic resonance elastography (MRE) and serum levels of tissue inhibitor of metalloproteinase-1 (TIMP-1).[23]. However, serum alanine aminotransferase levels did not change[23]. In a phase 2, randomized study in 126 patients with NASH, treatment with GS-0976 for 12 wk reduced hepatic steatosis, assessed with MRI, and TIMP-1 Levels more than placebo[24]. However, changes in MRE-measured liver stiffness did not differ among groups and an 11%-13% increase in serum triglyceride levels was observed in patients treated with GS-0976[24]. In a larger, phase 2b, randomized trial in 392 patients with NASH and bridging fibrosis or compensated cirrhosis (F3-F4), the incidence of the primary endpoint (a ≥ 1-stage improvement in fibrosis without worsening of NASH) did not differ between firsocostat and placebo[25]. However, firsocostat improved steatosis, increased the proportion of patients with ≥ 1-grade improvement in liver histology and improved liver stiffness evaluated by transient elastography and the Enhanced Liver Fibrosis Test compared with placebo[25]. Notably, serum glucose and insulin levels as well as body weight did not change in patients treated with firsocostat[25]. On the other hand, a mean increase in serum triglyceride levels by 42 mg/dL was observed in the firsocostat group[25].

Other ACC inhibitors also showed promising results in pilot clinical studies (Table 1). In healthy subjects, PF-05221304 dose-dependently suppressed DNL and was well-tolerated[26]. With doses yielding ≥ 90% DNL inhibition, asymptomatic increases in serum triglyceride levels and declines in platelet count occurred but these were not observed at ≤ 80% DNL inhibition[26]. A single dose of ND-630 was also shown to suppress DNL in overweight and/or obese but otherwise healthy adult males and was well tolerated[27]. Finally, in a randomized study in 30 patients with NAFLD, treatment with MK-4074 for 4 wk decreased hepatic fat more than pioglitazone and placebo[28]. However, a 2-fold increase in plasma triglyceride levels was observed in patients treated with MK-4074 and not in the other groups[28]. It was shown that inhibition of ACC results in reduced intrahepatic content of polyunsaturated fatty acids, which in turn activates sterol regulatory element-binding protein-1c that increases hepatic production of very low density lipoprotein and therefore plasma triglyceride levels[28].
CONCLUSION

In conclusion, ACC inhibitors appear to represent a promising tool for ameliorating hepatic steatosis. The effect of these agents on hepatic fibrosis is less consistent and more studies are needed to assess their impact on NASH. In addition, given the high cardiovascular risk of patients with NASH, the increase in triglyceride levels during treatment with ACC inhibitors is a cause of concern and should be also be factored in the decision to administer them in this population.

REFERENCES

1 Vernon G, Baranova A, Younossi ZM. Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. *Aliment Pharmacol Ther* 2011; 34: 274-285 [PMID: 21623852 DOI: 10.1111/j.1365-2036.2011.04724.x]

2 European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. *J Hepatol* 2016; 64: 1388-1402 [PMID: 27062661 DOI: 10.1016/j.jhep.2015.11.004]

3 Haflidadottir S, Jonasson JG, Norland H, Einarsdottir SO, Kleiner DE, Lund SH, Björnsson ES. Long-term follow-up and liver-related death rate in patients with non-alcoholic and alcoholic related fatty liver disease. *BMC Gastroenterol* 2014; 14: 166 [PMID: 25260964 DOI: 10.1186/1471-230X-14-166]

4 Targher G, Day CP, Bonora E. Risk of cardiovascular disease in patients with nonalcoholic fatty liver disease. *N Engl J Med* 2010; 363: 1341-1350 [PMID: 20879883 DOI: 10.1056/NEJMoa0912063]

5 Vilàr-Gomez E, Martinez-Perez Y, Cal zadilla-Bertot L, Torres-Gonzalez A, Gra-Oramas B, Gonzalez-Fabian L, Friedman SL, Diago M, Romero-Gomez M. Weight Loss Through Lifestyle Modification Significantly Reduces Features of Nonalcoholic Steatohepatitis. *Gastroenterology* 2015; 149: 367-78.e5; quiz e14-5 [PMID: 25865049 DOI: 10.1053/j.gastro.2015.04.005]

6 Robinson KE, Shah VH. Pathogenesis and pathways: nonalcoholic fatty liver disease & alcoholic liver disease. *Transl Gastroenterol Hepatol* 2020; 5: 49 [PMID: 33070344 DOI: 10.21037/tgh.2019.12.05]

7 Smith GI, Shankaran M, Yoshino M, Schweitzer GG, Chondronikola M, Beals JW, Okunde AL, Patterson BW, Nyangau E, Field T, Sirlin CB, Talukdar S, Hellerstein MK, Klein S. Insulin resistance drives hepatic de novo lipogenesis in nonalcoholic fatty liver disease. *J Clin Invest* 2020; 130: 1453-1460 [PMID: 31805015 DOI: 10.1172/JCI134165]

8 Mederacke I, Hsu CC, Troeger JS, Huebener P, Mu X, Dapito DH, Pradere JP, Schwabe RF. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. *Nat Commun* 2013; 4: 2823 [PMID: 24264436 DOI: 10.1038/ncomms3823]

9 Bates J, Vatner DF, Perry RJ, Wang T, Ramirez R, Li L, Fuchs BC, Breckenridge DG. Acetyl-CoA carboxylase inhibition disrupts metabolic reprogramming during hepatic stellate cell activation. *J Hepatol* 2020; 73: 896-905 [PMID: 32376414 DOI: 10.1016/j.jhep.2020.04.037]

10 Carotti S, Aquilano K, Valentini F, Ruggiero S, Allietto F, Morini S, Picardi A, Antonelli-Incalzi R, Lettieri-Barbato D, Vespesiani-Gentilucci U. An overview of deregulated lipid metabolism in nonalcoholic fatty liver disease with special focus on lysosomal acid lipase. *Am J Physiol Gastrointest Liver Physiol* 2020; 319: G469-G480 [PMID: 32812776 DOI: 10.1152/ajpgi.00049.2020]

11 Mao J, DeMayo FJ, Li H, Abu-Elheiga L, Gu Z, Shaikenov TE, Kordari P, Chirala SS, Heird WC, Wakil SJ. Liver-specific deletion of acetyl-CoA carboxylase 1 reduces hepatic triglyceride accumulation without affecting glucose homeostasis. *Proc Natl Acad Sci U S A* 2006; 103: 8552-8557 [PMID: 16717184 DOI: 10.1073/pnas.0603115103]

12 Choi CS, Savage DB, Abu-Elheiga L, Liu ZX, Kim S, Kulkarni A, Distefano A, Hwang YJ, Reznick RM, Codelia R, Zhang D, Cline GW, Wakil SJ, Shulman GI. Continuous fat oxidation in acetyl-CoA carboxylase 2 knockout mice increases total energy expenditure, reduces fat mass, and improves insulin sensitivity. *Proc Natl Acad Sci U S A* 2007; 104: 16480-16485 [PMID: 17923673 DOI: 10.1073/pnas.0706794104]

13 Gapp B, Jourdain M, Bringer P, Kugler D, Meyer M, Zanini J, Arimzl R, Nigisch F, Sanyal AJ, Ibsensol X. Receptor Agonism, Acetyl-Coenzyme A Carboxylase Inhibition, and Back Translation of Clinically Observed Endpoints of De Novo Lipogenesis in a Murine NASH Model. *Hepatol Commun* 2020; 4: 109-125 [PMID: 31909359 DOI: 10.1002/hep4.1443]

14 Matsumoto M, Yashiro H, Ogino H, Aoyama K, Nambu T, Nakamura S, Nishida M, Wang X, Erion DM, Kaneko M. Acetyl-CoA carboxylase 1 and 2 inhibition ameliorates steatohepatitis and hepatic fibrosis in a MC4R knockout murine model of nonalcoholic steatohepatitis. *PLoS One* 2020; 15: e0228212 [PMID: 3199061 DOI: 10.1371/journal.pone.0228212]

15 Goedeke L, Bates J, Vatner DF, Perry RJ, Wang T, Ramirez R, Li L, Ellis MW, Zhang D, Wong KE,
Neokosmidis G et al. Acetyl-CoA carboxylase inhibitors in NASH

Beyesn C, Cline GW, Ray AS, Shulman GI. Acetyl-CoA Carboxylase Inhibition Reverses NAFLD and Hepatic Insulin Resistance but Promotes Hypertriglyceridemia in Rodents. *Hepatology* 2018; 68: 2197-2211 [PMID: 29702582 DOI: 10.1002/hep.30097]

16 Harriman G, Greenwood J, Bhat S, Huang X, Wang R, Paul D, Tong L, Saha AK, Westlin WF, Kapeller R, Harwood HJ Jr. Acetyl-CoA carboxylase inhibition by ND-630 reduces hepatic steatosis, improves insulin sensitivity, and modulates dyslipidemia in rats. *Proc Natl Acad Sci U S A* 2016; 113: E1796-E1805 [PMID: 26976583 DOI: 10.1073/pnas.1520686113]

17 Ross TT, Crowley C, Kelly KL, Rinaldi A, Beebe DA, Lech MP, Martinez RV, Carvajal-Gonzalez S, Boucher M, Hirenarull-Santhapanta D, Morin J, Opsahl AC, Vargas SR, Bence KK, Pfefferkorn JA, Estler WP. Acetyl-CoA Carboxylase Inhibition Improves Multiple Dimensions of NASH Pathogenesis in Model Systems. *Cell Mol Gastroenterol Hepatol* 2020; 10: 829-851 [PMID: 32526482 DOI: 10.1016/j.cmghe.2020.06.001]

18 Ekstedt M, Hagström H, Nasr P, Fredrikson M, Stål P, Kechagias S, Hultcrantz R. Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up. *Hepatology* 2015; 61: 1547-1554 [PMID: 25125077 DOI: 10.1002/hep.27368]

19 Viña-Gome JR, Calzadilla-Bertop L, Wai-Sun Wong V, Castellanos M, Aller-de la Fuente R, Metwally M, Eslam M, Gonzalez-Fabian L, Alvarez-Quiones Sanz M, Conde-Martín AF, De Boer B, McLeod D, Hung Chan AW, Chalasani N, George J, Adams LA, Romero-Gomez M. Fibrosis Severity as a Determinant of Cause-Specific Mortality in Patients With Advanced Nonalcoholic Fatty Liver Disease: A Multi-National Cohort Study. *Gastroenterology* 2018; 155: 443-457.e1 [PMID: 29733833 DOI: 10.1053.j.gastro.2018.04.034]

20 Dulai PS, Singh S, Patel J, Soni M, Prokop LJ, Younossi Z, Sebastiani G, Ekstedt M, Hagstrom H, Nasr P, Stål P, Wong VW, Kechagias S, Hultcrantz R, Loomba R. Increased risk of mortality by fibrosis stage in nonalcoholic fatty liver disease: Systematic review and meta-analysis. *Hepatology* 2017; 65: 1557-1565 [PMID: 28130788 DOI: 10.1002/hep.29085]

21 Zhang J, Muise ES, Han S, Kutchukian PS, Costet P, Zhu Y, Kan Y, Zhou H, Shah V, Huang Y, Saigal A, Akiyama TE, Shen XL, Cai TQ, Shah K, Carballo-Jane E, Zyedband E, Yi L, Tian Y, Chen Y, Imbriglio J, Smith E, Devito K, Conway J, Ma LJ, Hoek M, Sebhat IK, Peier AM, Rautaor S, Tukudakar S, McLaren DG, Previs SF, Jensen KK, Pinto S. Molecular Profiling Reveals a Common Metabolic Signature of Tissue Fibrosis. *Cell Rep Med* 2020; 1: 100056 [PMID: 33205063 DOI: 10.1016/j.xcrm.2020.100056]

22 Lally JSV, Ghoshal S, DePratack DK, Moaven O, Wei L, Masria R, Erstad DJ, Fujiwara N, Leong V, Houlde VP, Anagnostopoulous AE, Wang A, Broadfield LA, Ford RJ, Foster RA, Bates J, Sun H, Wang T, Liu H, Ray AS, Saha AK, Greenwood J, Bhat S, Harriman G, Mao W, Rocnik JL, Westlin WF, Muti P, Tsakiridis T, Harwood HJ Jr, Kapeller R, Hoshida Y, Tanabe KK, Steinberg GR, Fuchs BC. Inhibition of Acetyl-CoA Carboxylase by Phosphorylation or the Inhibitor ND-654 Suppresses Lipogenesis and Hepatocellular Carcinoma. *Cell Metab* 2019; 29: 174-182.e5 [PMID: 30244972 DOI: 10.1016/j.cmet.2018.08.020]

23 Lawitz EJ, Coste A, Poordad F, Alkhoury N, Loo N, McGoligan BJ, Tarrant JM, Nguyen T, Han L, Chung C, Ray AS, Mchutchison JG, Subramanian GM, Myers RP, Middleton MS, Sirlin C, Loomba R, Nyangau E, Fitch M, Li K, Hellestein M. Acetyl-CoA Carboxylase Inhibitor GS-0976 for 12 Weeks Reduces Hepatic De Novo Lipogenesis and Steatosis in Patients With Nonalcoholic Fatty Liver Disease. *Hepatology* 2018; 68: 1463-1473.e6 [PMID: 30059671 DOI: 10.1001/j.gastro.2018.04.042]

24 Loomba R, Kayali Z, Nourreddin M, Ruane P, Lawitz EJ, Bennett M, Wang L, Harting E, Tarrant JM, McGoligan BJ, Chung C, Ray AS, Subramanian GM, Myers RP, Middleton MS, Lai M, Charlton M, Harrison SA. GS-0976 Reduces Hepatic Fibrosis and Steatosis in Patients With Nonalcoholic Fatty Liver Disease. *Gastroenterology* 2018; 155: 1463-1473.e6 [PMID: 30059671 DOI: 10.1053.j.gastro.2018.07.027]

25 Loomba R, Nourreddin M, Kowdley KV, Kohali A, Sheikh A, Neff G, Bhandari BR, Gunn N, Caldwell SH, Goodman Z, Wapinski I, Resnick M, Beck AH, Ding D, Jia C, Chuang JC, Huss RS, Chung C, Subramanian GM, Myers RP, Patel K, Bort BB, Ghalib R, Kabher H, Poulos J, Younes Z, Elkhashab M, Hassanein T, Iyer R, Ruane P, Shiffman ML, Strasser S, Wong VW, Alkhoury N; ATLAS Investigators. Combination Therapies including Cilofexor and Firsocostat for Bridging Fibrosis and Cirrhosis Attributable to NASH. *Hepatology* 2021; 73: 625-643 [PMID: 33169409 DOI: 10.1002/hep.31622]

26 Bergman A, Carvajal-Gonzalez S, Tarabar S, Saxena AR, Esler WP, Amin NB. Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of a Liver-Targeting Acetyl-CoA Carboxylase Inhibitor (PF-05221304): A Three-Part Randomized Phase 1 Study. *Clin Pharmacol Drug Dev* 2020; 9: 514-526 [PMID: 32065514 DOI: 10.1002/cpdd.782]

27 Stiede K, Miao W, Blanchette HS, Beyesn C, Harriman G, Harwood HJ Jr, Kelley H, Kapeller R, Schmalbach T, Westlin WF. Acetyl-coenzyme A carboxylase inhibition reduces de novo lipogenesis in overweight male subjects: A randomized, double-blind, crossover study. *Hepatology* 2017; 66: 324-334 [PMID: 28470676 DOI: 10.1002/hep.29246]

28 Kim CW, Addy C, Kusunoki J, Anderson NN, Deja S, Fu X, Burgess SC, Li C, Ruddy M, Chakravarthy M, Previs S, Milestein S, Fitzgerald K, Kelley DE, Horton JD. Acetyl CoA Carboxylase Inhibition Reduces Hepatic Steatosis but Elevates Plasma Triglycerides in Mice and Humans: A Bedside to Bench Investigation. *Cell Metab* 2017; 26: 394-406.e6 [PMID: 28765177 DOI: 10.1016/j.cmet.2017.07.009]
