Gold nanoparticles and hepatitis B virus

Babak Negahdari, Mohammad Darvishi and Ali Asghar Saeedi

Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Imam Khomeini Hospital Complex, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Infectious Diseases and Tropical Medicine Research Center (IDTMRC), AJA University of Medical Sciences, Tehran, Iran

Introduction

Hepatitis B is a worldwide acknowledged public health issue with estimated 360 million infections, 600,000 deaths in addition to being a leading cause of high amount of infant and early childhood morbidity and mortality yearly [1]. According to a 2012 survey report, about 800 million people are living with the virus while in China alone, the carrying rate of the surface antigen is 9.7% [2]. This deadly disease is caused by a DNA virus called hepatitis B virus (HBV) which belongs to the Hepadnaviridae family. Humans are the only known natural hosts, where HBV primarily resides and replicates in the liver cells thereby causing either acute or chronic damages to the liver cells leading to deadly liver cirrhosis or hepatocellular carcinoma. The virus is also found in various amounts in circulating blood, saliva, breast milk, secretions of semen, and vagina [3,4]. HBV is transmitted sexually, mother to child at point of birth and via unprotected contacts with contaminated body fluids and objects such as needle stick. Fortunately, the burden of this lethal infection has been significantly reduced with the successful introduction of vaccines whose debut was recorded as far back as 1981 in the United States [5]. This breakthrough was further complemented with the coming of advanced testing, diagnostic and screening tools and devices. As such there is a pertinent need to devise a simple, fast but yet more efficient technique for the diagnosis of HBV [6]. In the past few decades, there has been an increasing number of the application of biosensors in detecting various pathogens including hepatitis virus [7]. According to it working principle, biosensors are highly sensitive analytical devices made up of a biological element for detection or recognition of a specific analyte based on its inherent physicochemical characteristics and an electronic or optical transducer for signal transmission and measurement [8,9]. As reported by Haasnoot et al., majority of the biomedical research on biosensors have been focused on the immunological reaction or DNA hybridization techniques, and the bio-sensor were consistently efficient in giving results with a high degree of sensitivity [10]. In the light of the rapidly accumulating knowledge and applicability of nanotechnology, researchers have been exploring the unique optical and bio-conjugatory features of gold nanoparticles (AuNPs) in pathogen diagnosis and biomolecule detection devices [11]. Table 1 summarizes the available application of biosensor in detecting hepatitis sensor.

AuNPs have been instrumental in the detection of various pathogens apart from hepatitis virus (Table 2), however this review focuses mainly on the use of AuNP as a biosensor for detecting HBV gene and antigen [12]. It is important to state here that there have been some reports on other methods developed for the detection of HBV such as single strand conformation [13] and high performance liquid chromatography [14].

AuNPs as a biosensor and detector

In the past few years, AuNPs have been influential in the detection of DNA because of its unique optical and bio-conjugation features which early works were pioneered by...
Mirkin et al. paving way for several other studies such as use of spherical AuNPs targeted at detecting DNA [15–17]. Lately research attention has shifted to the elongated rod-like AuNPs called gold nanorods (AuNRs). AuNRs unlike other forms, gold particles possess superior absorption and stronger light scattering properties thereby producing dual absorption peaks in the visible region and near the infrared regions which have been designated as the transverse and longitudinal surface plasmon bands, respectively [18]. AuNRs have been reported to be applicable in biosensor [19], gene delivery [20], and photothermal therapy [21,22]. Specifically Darbha et al. attempted exploring the nonlinear optical features of AuNRs to screen HIV-1 viral DNA sequence [23,24] while Parab et al. worked on pathogen detection with the aid of AuNRs-based optical DNA biosensor [25]. Table 3 present a brief on some applications of AuNRs biosensors in target DNA detection on the basis of its unique optical features.

Application of AuNP for hepatitis C virus (HCV RNA) sensing

A number of research works have established that AuNPs based devices can be used to detect HCV. For instance, Griffin et al. conceived and developed a procedure known as size and distance dependent nanoparticle surface energy transfer technique for the purpose of HCV RNA sensing and detection [26]. In brief, the underlining principle of the technique shows that RNA probe is branded with fluorescence intensity is directly proportional to the concentration of the target RNA in the solution hence could be utilized in determining the quantity of HCV RNA [26]. In a related development, Glynou et al. fabricated a dry-reagent strip biosensor for target DNA detection using AuNPs as visual probe. The results obtained compares favorably with no marked differences between it and COBAS AMPLICORTM, a proven and an efficient kit. Further to it merit, the test is guileless with a reported turnaround time of ~10 min [27].

Application of AuNP in detecting HB surface antigen

There have been quite few research studies that demonstrated the application of AuNPs in detecting HBV [28]. AuNR have been used to develop biosensor for detecting hepatitis B surface antigen (HBsAg) in biological sample or specimen such as buffer, blood serum and plasma [29]. HBsAg is considered the most crucial biomarker for the lab-based diagnosis of hepatitis B virus. The presence of HBsAg in the blood or serum sample signifies a chronic and acute level of hepatitis B virus infection [30,31]. The operating principle involves labeling the AuNR surface with a monoclonal hepatitis B surface antibody (HBsAb) to detect HBsAg and the technique was validated via ELISA [32]. Integrating the antibody with concentrated AuNRs through nonspecific physisorption lead to the synthesis of the antibody-AuNR complex (Figure 2) called the biosensor, which can characterize target proteins.

Application of AuNR as a fluorescent biosensor in detecting HBV gene

In another study conducted by Xiaocui et al., demonstrated the utilization of AuNRs-based fluorescent biosensor for the detection of HBV sequences in which emission spectrum of fluorescein (FAM)-ssDNA was designated as the probe DNA.

Table 1. Application of various biosensor techniques in detecting HBV.

Detecting target	Biosensor features	Detection limit	Ref.
HBsAg	Nanorods biosensor	0.01 IU/mL	[29]
HBsAb	QCM	0.1 pg/µL	[40]
	SPR	10 nmol/L	[41]
HBV DNA	Electrochemical biosensor	7.19 × 10⁻⁹ mol/L	[43]
	QCM	6.38 × 10⁻¹⁸ g/L	[45]
	Microcantilever biosensor	10⁻¹⁰ mol/L	[46]
	SPR	2.31 × 10⁻¹⁲ mol/L	[47]

HBsAb, hepatitis B surface antibody; HBsAg, hepatitis B surface antigen; HBV, hepatitis B virus; QCM, quartz crystal microbalance; SAW, surface acoustic wave; SPR, surface plasmon resonance.

This table adapted from [39] with copyright permission.

Table 2. Showing several applications of gold nanoparticles as biosensors to detecting other pathogens.

Method	Types of nanoparticles	Targets
Colorimetric/scanometric	Gold	SNP (rs2131877) in human DNA [50]
		Mutations in EGFR gene in genomic DNA [51]
		SNPs in β-thalassemia gene in genomic DNA—mediated by PCR [52]
		Hepatitis C virus RNA [53]
		BCR-ABL fusion transcript in clinical samples [54]
Fluorescence-based	Gold	Plasmidum falciparum heat shock protein in infected blood cultures [55]
Electric/Electrochemical	Gold	Human and mouse IgG antibody in human and mouse serum [56]
		Interleukin-8 (IL-8) cancer biomarker in human serum [57]
		Interleukin-6 (IL-6) cancer biomarker in calf serum [58]
		Tumor necrosis factor α (TNF-α) in human serum [59]
		Anti-hepatitis B virus antibodies and human IgG in human serum [60]
SERS (surface-enhanced Raman scattering)	Gold	Nicotinic acid adenine dinucleotide phosphate (NAADP) [61]
NIR (near infrared region)	Gold	in cell extracts Multiple pathogen DNA in clinical specimens [62]
		Lymph nodes in mouse [63]
		Brain vessels in mouse [64]
		HER2 cancer biomarker in breast adenocarcinoma cells [65]
Gold-nanorod-based sensing of sequence specific HIV-1 virus DNA by using hyper-Rayleigh scattering spectroscopy

Monitoring human telomere DNA hybridization and G-quadruplex formation using gold nanorods

One-step lable-free optical genosensing system for sequence-specific DNA related to the human immunodeficiency virus based on the measurements of light scattering signals of gold nanorods

A gold nanorod-based optical DNA biosensor for the diagnosis of pathogens

A gold nanorods–based fluorescent biosensor for the detection of hepatitis B virus DNA based on fluorescence resonance energy transfer

This table adapted from [66] with copyright permission.

The analytical methods of DNA detection	Linear range/nmol/L	LODa/nmol/L	Real sample	References
Gold-nanorod-based sensing of sequence specific HIV-1 virus DNA by using hyper-Rayleigh scattering spectroscopy	0.1–50	0.10		
Monitoring human telomere DNA hybridization and G-quadruplex formation using gold nanorods	13.4–67	4.47		
One-step lable-free optical genosensing system for sequence-specific DNA related to the human immunodeficiency virus based on the measurements of light scattering signals of gold nanorods	0.17–11.67	0.080	HIV-1 LTR real sample	
A gold nanorod-based optical DNA biosensor for the diagnosis of pathogens	0.25–75	0.083	Human urine sample	
A gold nanorods–based fluorescent biosensor for the detection of hepatitis B virus DNA based on fluorescence resonance energy transfer	0.045–6	0.015	Human urine sample	

Figure 1. Gold nanoparticle-based assay to detect hepatitis C virus RNA. In hepatitis C virus (HCV)-positive specimens, the fluorophore-labeled probe hybridizes to the target HCV RNA and fluorescence is be detected. In addition, the color of the solution will change from red to blue, owing to the aggregation of AuNPs (a qualitative colorimetric signal indicating the presence of HCV RNA). AuNP, gold nanoparticle; NSET, nanoparticle surface-energy transfer. This image adapted from [26] with copyright permission.

Application of AuNP as immuno-sensor in detecting HB surface antigen

Qiu et al. reported another study which fabricated a label-free HBsAg immunosensor achieved through the combined features of the biocompatibility and redox electrochemistry of PAA-Fc and the excellent adsorption affinity of AuNPs to HBsAb [37]. This technique’s operation is established on the principle of specificity of antigen–antibody interface coupled with electro-chemical transduction for analytical purpose. The immune-sensor as designed by Qiu et al. is illustrated in Figure 4 below in a step-by-step preparation.

In an attempt to further elucidate the immunoreaction between the immobilized HBsAb and HBsAg in the blood sample using the fabricated immune-sensor, Jian-Ding et al. used the differential pulse voltammetry (DPV) approach. The recorded quantitative measurement was determined from 0.2 to 0.68 V with pulse amplitude of 50 mV. DPV peak currents were found to decrease with an increase in the value of HBsAg concentration (Figure 5) thus were interpreted as the anamnestic response which decreases with increase in HBsAg concentration [38].
The fabricated electro-chemical immunosensor was shown to be capable of determining HBsAg in human serum (six samples) and the results obtained were compared to those gotten via ELISA technique. The relative deviations between the two techniques were in the range of -5.76% to $+6.12\%$, which suggested that the results of two techniques were comparable.

Figure 2. Showing pictorial representation of the synthesis of antibody-functionalized AuNRs and the detection mechanism for the biosensor immunoassay in capturing targets in different matrixes. This image adapted from [29] with copyright permission. AuNRs, gold nano-rods.

Figure 3. Showing transmission electron microscopy (TEM) images of the synthesized gold nano-rods (AuNRs) and TEM images of FAM-ssDNA–CTAB–AuNRs conjugates before (a) and after hybridization with cDNA (b) at 37°C. The color of spectrum of fluorescein (FAM)-ssDNA–cetyltrimethylammonium bromide (CTAB)–AuNRs conjugates changes from red to light purple (c). Red denotes the color of ternary complexes and light purple denotes the color after hybridization with target DNA. This image adapted from [11] with copyright permission.

Figure 4. Showing step-by-step preparation of the immune sensor using AuNP. This image adapted from [37] with copyright permission. AuNP, gold nanoparticle.

Figure 5. Showing DPV curves of the immunosensor after incubating with various concentrations of HBsAg in 0.1 M pH 5.5 acetate buffer solution. This image adapted from [37] with copyright permission. DPV, differential pulse voltammetry; HBsAg, hepatitis B virus surface antigen.
almost the same. Conclusively, the new invented AuNP based immunosensor might be a promising tool for determining the HBsAg in human serum clinically.

Conclusion

AuNRs-based fluorescent biosensor has been demonstrated to detect hepatitis B virus DNA. The fabricated biosensor was efficient in detecting complementary DNA sequences and to detect hepatitis B virus DNA. The fabricated biosensor was demonstrated for detecting HBV, furthermore AuNP based immunosensor was used successfully to detect HBsAg in human serum. However more clinical research is still needed to increase the concentration range and detective and sensitivity of all these AuNP based sensors.

Disclosure statement

The authors deny any conflict of interest in any terms or by any means during the study.

References

[1] Shepard CW, Simard EP, Finelli L, et al. Hepatitis B virus infection: epidemiology and vaccination. Epidemiol Rev. 2006;28:112–125.
[2] Zou NL, Zang YC, Mao HJ, et al. A visual DNA microarray for high sensitivity detection of hepatitis B virus DNA and single nucleotide polymorphisms. Chin J Anal Chem. 2012;40:569–573.
[3] Karayianis P, Novick DM, Lok ASF, et al. Hepatitis B virus DNA in saliva, urine, and seminal fluid of carriers of hepatitis B e antigen. Br Med J (Clin Res Ed) 1985;
[4] Gitlin N. Hepatitis B: diagnosis, prevention, and treatment. Clin Chem. 1997;43:1500–1506.
[5] Beasley RP. Hepatitis B virus. The major etiology of hepatocellular carcinoma. Cancer 1988;61:1942–1956.
[6] Mahmoudvand H, Taei N, Goodarzi FM. Prevalence and risk factors of intestinal protozoan infections in children (2–15 yr old) from Lorestan Province, western Iran. Trop Biomed 2018;35:259–266.
[7] Gharih A, Forootan M, Sharifzadeh M, et al. Diagnostic efficacity of 24-h esophageal pH monitoring in patients with refluxatory gastroesophageal reflux disease. Open access Maced. J Med Sci 2018;6:1235.
[8] Ziegler C, Göpel W. Biosensor development. Curr Opin Chem Biol. 1998;2:585–591.
[9] Song S, Xu H, Fan C. Potential diagnostic applications of biosensors: current and future directions. Int J Nanomedicine 2006;
[10] Haasnot W, Gurçek H, Cazemier G, et al. Biosensor immunoassay for flumquine in broiler serum and muscle. Anal Chim Acta. 2007;586:312–318.
[11] Lu X, Dong X, Zhang K, et al. A gold nanorods-based fluorescent biosensor for the detection of hepatitis B virus DNA based on fluorescence resonance energy transfer. Analyst 2013;
[12] Sherkatollahassy HR, Taee N, Shafizadeh S. Bilateral parotiditis as the first presentation of HIV infection. Iran J Pediatr 2014;24:
[13] Sasaki T, Tahira T, Suzuki A, et al. Precise estimation of allele frequencies of single-nucleotide polymorphisms by a quantitative SSCP analysis of pooled DNA. Am J Hum Genet 2001;68:214–218.
[14] Wolford JK, Blunt D, Ballecer C, et al. High-throughput SNP detection by using DNA pooling and denaturing high performance liquid chromatography (DHPLC). Hum Genet. 2000;107:483–487.
[15] Pissuwan D, Niidome T, Cortie MB. The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J Control Release. 2011;149:65–71.
[16] Elghanian R, Storhoff JJ, Mucic RC, et al. Selective colorimetric detection of nucleic acids based on the distance-dependent optical properties of gold nanoparticles. Science. 1997;
[17] Taton TA, Mirkin CA, Letsinger RL. Scannometric DNA array detection with nanoparticle probes. Science 2000;
[18] Brioude A, Jiang XC, Pileni MP. Optical properties of gold nanorods: DDA simulations supported by experiments. J Phys Chem B. 2005;109:13138–13142.
[19] Liu X, Dai Q, Austin L, et al. A one-step homogeneous immuno-assay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering. J Am Chem Soc. 2008;130:2780–2782.
[20] Chen CC, Lin YP, Wang CW, et al. DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation. J Am Chem Soc. 2006;128:3709–3715.
[21] Reisinger CM, Wang X, List B. Catalytic asymmetric hydروperoxida-tion of ω,b-unsaturated ketones: An approach to enantioseparation peroxhemiketals, epoxides, and aldols. Angew Chem Int Ed. 2008;47:8112–8115.
[22] Gh S, Firouzi M, Mahdavifard S. Phototherapy motivates protein and lipid oxidation in jaundiced term and late term neonates. Casp J Pediatr Sep 2017;3:248–252.
[23] Darbha GK, Rai US, Singh AK, et al. Gold-nanorod-based sensing of sequence specific HIV-1 virus DNA by using hyper-Rayleigh scattering spectroscopy. Chem Eur J. 2008;14:3896–3903.
[24] Moradimani M, Firouzi M, Jafari S, et al. A randomized clinical trial; comparing levofloxacin based sequential and clarithromycin based sequential versus triple therapy for Helicobacter pylori eradication. Med Sci. 2018;22:134–139.
[25] Parab HJ, Jung C, Lee JH, et al. A gold nanorod-based optical DNA biosensor for the diagnosis of pathogens. Biosens Bioelectr. 2010;26:667–673.
[26] Griffin J, Singh AK, Senapati D, et al. Size- and distance-depend-ent nanoparticle surface-energy transfer (NSET) method for select-ive sensing of hepatitis C virus RNA. Chem Eur J. 2009;15:342–351.
[27] Glymour K, Ioannou PC, Christophoulus TK, et al. Oligonucleotide-functionalized gold nanoparticles as probes in a dry-reagent strip biosensor for DNA analysis by hybridization. Anal Chem 2003;75:4155–4160.
[28] Youssef S, Ahmadi-hamedani M, Narenji Sani R, et al. Pentoxifylline mitigates detrimental impact of chronic nonbacte-rial prostatitis on sperm characteristics, reproductive hormones and histopathology in rats. Andrologia. 2018;50:e12932.
[29] Wang X, Li Y, Wang H, et al. Gold nanorod-based localized surface plasmon resonance biosensor for sensitive detection of hepatitis B virus in buffer, blood serum and plasma. Biosens Bioelectr. 2010;26:404–410.
[30] Davishi M, Hajiparvaneh R, Mohammadi M, et al. Barriers and motivators factors effecting influenza vaccination uptake among healthcare workers. Med Sci. 2018;22:134–139.
[31] Darbha GK, Rai US, Singh AK, et al. Gold-nanorod-based sensing of sequence specific HIV-1 virus DNA by using hyper-Rayleigh scattering spectroscopy. Chem Eur J. 2008;14:3896–3903.
[32] Parab HJ, Jung C, Lee JH, et al. A gold nanorod-based optical DNA biosensor for the diagnosis of pathogens. Biosens Bioelectr. 2010;26:667–673.
[33] Griffin J, Singh AK, Senapati D, et al. Size- and distance-depend-ent nanoparticle surface-energy transfer (NSET) method for select-ive sensing of hepatitis C virus RNA. Chem Eur J. 2009;15:342–351.

Yousef S, Ahmadi-hamedani M, Narenji Sani R, et al. Pentoxifylline mitigates detrimental impact of chronic nonbac-te-rial prostatitis on sperm characteristics, reproductive hormones and histopathology in rats. Andrologia. 2018;50:e12932.

Wang X, Li Y, Wang H, et al. Gold nanorod-based localized surface plasmon resonance biosensor for sensitive detection of hepatitis B virus in buffer, blood serum and plasma. Biosens Bioelectro. 2010;26:404–410.

Davishi M, Hajiparvaneh R, Mohammadi M, et al. Barriers and motivators factors effecting influenza vaccination uptake among healthcare workers. Med Sci. 2018;22:134–139.

Darbha GK, Rai US, Singh AK, et al. Gold-nanorod-based sensing of sequence specific HIV-1 virus DNA by using hyper-Rayleigh scattering spectroscopy. Chem Eur J. 2008;14:3896–3903.

Griffin J, Singh AK, Senapati D, et al. Size- and distance-depend-ent nanoparticle surface-energy transfer (NSET) method for select-ive sensing of hepatitis C virus RNA. Chem Eur J. 2009;15:342–351.

Glymour K, Ioannou PC, Christophoulus TK, et al. Oligonucleotide-functionalized gold nanoparticles as probes in a dry-reagent strip biosensor for DNA analysis by hybridization. Anal Chem 2003;75:4155–4160.
[34] Sau TK, Murphy CJ. Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir. 2004;20:6414–6420.

[35] Jiang XC, Brioude A, Pileni MP. Gold nanorods: limitations on their synthesis and optical properties. Colloids Surfaces A Physicochem Eng Asp. 2006;277:201–206.

[36] Forootan M, Darvishi M. Solitary rectal ulcer syndrome: a systematic review. Medicine (Baltimore). 2018;97:e0565.

[37] Qiu JD, Huang H, Liang RP. Biocompatible and label-free amperometric immunosensor for hepatitis B surface antigen using a sensing film composed of poly(allylamine)-branched ferrocene and gold nanoparticles. Microchim Acta. 2011;174:97–105.

[38] Qiu JD, Liang RP, Wang R, et al. A label-free amperometric immunosensor based on biocompatible conductive redox chitosan-ferrocene/gold nanoparticles matrix. Biosens Bioelectron. 2009;25:852–857.

[39] Yao CY, Fu WL. Biosensors for hepatitis B virus detection. World J Gastroenterol. 2014;

[40] Xu T, Miao J, Wang Z, et al. Micro-piezoelectric immunoassay chip for simultaneous detection of Hepatitis B virus and α-fetoprotein. Sensors Actuators, B Chem. 2011;151:370–376.

[41] Lee HJ, Namkoong K, Cho EC, et al. Surface acoustic wave immunosensor for real-time detection of hepatitis B surface antibodies in whole blood samples. Biosens Bioelectron 2009;

[42] Chung JW, Kim SD, Bernhardt R, et al. Application of SPR biosensor for medical diagnostics of human hepatitis B virus (hHBV). Sensors Actuators, B Chem. 2005;111-112:416–421.

[43] Zhang S, Tan Q, Li F, et al. Hybridization biosensor using diaquabis[N-(2-pyridinylmethyl)benzamide-2N,O]-cadmium(II) dinitrate as a new electroactive indicator for detection of human hepatitis B virus DNA. Sensors Actuators, B Chem 2007;

[44] Hassen WM, Chaix C, Abdelghani A, et al. An impedimetric DNA sensor based on functionalized magnetic nanoparticles for HIV and HBV detection. Sensors Actuators, B Chem 2008;

[45] Yao C, Zhu T, Tang J, et al. Hybridization assay of hepatitis B virus by QCM peptide nucleic acid biosensor. Biosens Bioelectron. 2008;23:879–885.

[46] Huang C, Huang Y, Lin T, et al. An integrated microcantilever-based wireless DNA chip for hepatitis B virus (HBV) DNA detection. 15th Int. Conf. Miniaturized Syst. Chem Life Sci 2011;

[47] Cha BH, Lee S-M, Park JC, et al. Detection of hepatitis B virus (HBV) DNA at femtomolar concentrations using a silica nanoparticle-extended microcantilever sensor. Biosens Bioelectron. 2009;25:130–135.

[48] Chuang TL, Wei SC, Lee SY, et al. A polycarbonate based surface plasmon resonance sensing cartridge for high sensitivity HBV loop-mediated isothermal amplification. Biosens Bioelectron. 2012;32:89–95.

[49] Doria G, Conde J, Veigas B, et al. Noble metal nanoparticles for biosensing applications. Sensors (Basel). 2012;12:1657–1678.

[50] Lee H, Joo SW, Lee SY, et al. Colorimetric genotyping of single nucleotide polymorphism based on selective aggregation of unmodified gold nanoparticles. Biosens Bioelectron. 2010;26:730–735.

[51] Lee H, Kang T, Yoon KA, et al. Colorimetric detection of mutations in epidermal growth factor receptor using gold nanoparticle aggregation. Biosens Bioelectron 2010;

[52] Li J, Deng T, Chu X, et al. Rolling circle amplification combined with gold nanoparticle aggregates for highly sensitive identification of single-nucleotide polymorphisms. Anal Chem 2010;

[53] Shawky SM, Bald D, Azzazy HME. Direct detection of unamplified hepatitis C virus RNA using unmodified gold nanoparticles. Clin Biochem. 2010;43:1163–1168.

[54] Conde J, de la Fuente JM, Baptista PV. RNA quantification using gold nanoprobes – application to cancer diagnostics. J Nanobiotechnol. 2010:8.5.

[55] Guirgis BSS, Sá E Cunha C, Gomes I, et al. Gold nanoparticle-based fluorescence immunosassay for malaria antigen detection. Anal Bioanal Chem. 2012;402:1019–1027.

[56] Lai G, Yan F, Wu J, et al. Ultrasensitive multiplexed immunosassay with electrochemical stripping analysis of silver nanoparticles catalytically deposited by gold nanoparticles and enzymatic reaction. Anal Chem. 2011;83:2726–2732.

[57] Munge BS, Coffey AL, Doucette JM, et al. Nanostructured immunosensor for attomolar detection of cancer biomarker interleukin-8 using massively labeled superparamagnetic particles. Angew Chemie – Int Ed 2011;

[58] Jensen GC, Krause CE, Sotzing G, a, et al. Inkjet-printed gold nanoparticle electrochemical arrays on plastic. Application to immunodetection of a cancer biomarker protein. Phys Chem Chem Phys. 2011;13:4888–4894.

[59] Yin Z, Liu Y, Jiang LP, et al. Electrochemical immunosensor of tumor necrosis factor α based on alkaline phosphatase functionalized nanospheres. Biosens Bioelectron. 2011;26:1890–1894.

[60] de la Escosura-Muniz A, Maltez-da Costa M, Sánchez-Espinel C, et al. Gold nanoparticle-based electrochemical magnet-immunosensor for rapid detection of anti-hepatitis B virus antibodies in human serum. Biosens. Bioelectron. 2010;26:1710–1714.

[61] Vitol EA, Brailoiu E, Orynbayeva Z, et al. Surface-enhanced Raman spectroscopy as a tool for detecting Ca2+ mobilizing second messengers in cell extracts. Anal Chem 2010;

[62] Kang T, Yoo SM, Yoon I, et al. Patterned multiplex pathogen DNA detection by Au Particle-on-wire SERS sensor. Nano Lett. 2010;10:1189–1193.

[63] Pan D, Pramanik M, Senpan A, et al. Near infrared photoacoustic detection of sentinel lymph nodes with gold nanobeacons. Biomaterials 2010;31:4088–4093.

[64] Lu W, Huang Q, Ku G, et al. Photoacoustic imaging of living mouse brain vasculature using hollow gold nanoshells. Biomaterials 2010;31:2617–2626.

[65] Bickford L, Sun J, Fu K, et al. Enhanced multi-spectral imaging of live breast cancer cells using immunotargeted gold nanoshells and two-photon excitation microscopy. Nanotechnology 2008;19:315102.

[66] Gou XC, Liu J, Zhang HL. Monitoring human telomere DNA hybridization and G-quadruplex formation using gold nanorods. Anal Chim Acta 2010;