Topical Photodynamic Therapy for Localized Scleroderma

SIGRID KARRER, CHRISTOPH ABELS, MICHAEL LANDTHALER and ROLF-MARKUS SZEIMIES
Department of Dermatology, University of Regensburg, Regensburg, Germany

Therapy of localized scleroderma is unsatisfactory, with numerous treatments being used that have only limited success or considerable side-effects. The aim of this trial was to determine whether topical photodynamic therapy would be effective in patients with localized scleroderma. Five patients with progressive disease, in whom conventional therapies had failed, were treated by application of a gel containing 3% 5-aminolevulinic acid followed by irradiation with an incoherent lamp (40 mW/cm², 10 J/cm²). The treatment was performed once or twice weekly for 3–6 months. In all patients the therapy was highly effective for sclerotic plaques, as measured by a quantitative durometer score and a clinical skin score. The only side-effect was a transient hyperpigmentation of the treated area which resolved within 2 weeks. In 1 patient hair regrowth was achieved in a plaque located on the lower legs, impaired joint mobility was markedly improved. And itching associated with the lesions significantly decreased during therapy. In 2 patients with sclerotic plaques on the lower legs, impaired joint mobility was markedly improved. Five patients aged between 21 and 63 years with biopsy-proven localized scleroderma (morphoea) were studied. All patients had evidence of progressive disease, i.e. lesions showed an inflammatory reaction and increase in size. In each patient the condition had previously failed to respond to potent topical corticosteroids, systemic therapy with penicillin and/or PUVA bath photochemotherapy. Patients were required to discontinue all therapy at least 4 weeks before study initiation. The most affected sclerotic plaque of each patient was judged at baseline and then every 2 weeks during treatment. Sclerotic plaques were assessed by a clinical skin score and the durometer score (11). The clinical skin score assesses the degree of thickening and induration by palpation of the skin on an analogue scale graded from 0 (normal skin folding) to 10 (severe sclerosis, no folding, wooden hard). The durometer score (12) is based on a weighted linear scale from 0 (normal skin folding) to 100 (severe sclerosis, no folding, wooden hard) (10). In larger plaques, the most affected part of the plaque determined the score. The hardness of the lesion was examined by means of a hand-held durometer with a calibrated gauge that registers linearly divided units on a scale from 0 to 100 (10). Final hardness is defined as that recorded within 15 s of firm contact of the durometer (a small dull inferior indentor is retractable and is responsible for the measurements registered on the gauge) with the skin (12). In each patient (except for patient 1 who had only 2 plaques which were both treated) 1 plaque was not treated and used as a control lesion which was scored at baseline and after therapy. The patient data are summarized in Table I.

MATERIAL AND METHODS

Patients

Five patients aged between 21 and 63 years with biopsy-proven localized scleroderma (morphoea) were studied. All patients had evidence of progressive disease, i.e. lesions showed an inflammatory reaction and increase in size. In each patient the condition had previously failed to respond to potent topical corticosteroids, systemic therapy with penicillin and/or PUVA bath photochemotherapy. Patients were required to discontinue all therapy at least 4 weeks before study initiation. The most affected sclerotic plaque of each patient was judged at baseline and then every 2 weeks during treatment. Sclerotic plaques were assessed by a clinical skin score and the durometer score (11). The clinical skin score assesses the degree of thickening and induration by palpation of the skin on an analogue scale graded from 0 (normal skin folding) to 10 (severe sclerosis, no folding, wooden hard) (10). In larger plaques, the most affected part of the plaque determined the score. The hardness of the lesion was examined by means of a hand-held durometer with a calibrated gauge that registers linearly divided units on a scale from 0 to 100 (10). Final hardness is defined as that recorded within 15 s of firm contact of the durometer (a small dull inferior indentor is retractable and is responsible for the measurements registered on the gauge) with the skin (12). In each patient (except for patient 1 who had only 2 plaques which were both treated) 1 plaque was not treated and used as a control lesion which was scored at baseline and after therapy. The patient data are summarized in Table I.

Photodynamic therapy (PDT)

Several plaques were treated in each patient, the most affected site was chosen for evaluation of therapy effect (durometer and clinical skin score). A gel containing 3% ALA was applied to each lesion and kept under occlusion and impervious to light for 6 h. Irradiation of the lesions was then performed using an incoherent light source (PDT 1200, Waldmann, Germany, light dose 40 mW/cm², power density 10 J/cm²). The patients were treated once or twice weekly for 3–6 months, the duration of therapy depending on the clinical response.

RESULTS

ALA-PDT was well tolerated, there was only a slight stinging by the end of irradiation. In all patients sclerosis regressed greatly, skin score markedly decreased and durometer measurements objectively showed a reduction of skin hardness (Fig. 1). Untreated control lesions did not show any improvement when looking at the skin and durometer scores at baseline and at the end of therapy. All patients evaluated therapy subjectively as effective and well tolerable, discomfort and itching associated with the lesions significantly decreased during therapy. In 2 patients with sclerotic plaques on the lower legs, impaired joint mobility was markedly improved. In 1 patient hair regrowth was achieved in a plaque located on the lower leg. The only side-effect was a transient hyperpigmentation in the treated area which resolved within some weeks after cessation of ALA-PDT in all patients. We did not observe recurrence or worsening of the disease within a follow-up of up to 2 years after treatment.

Acta Derm Venereol 2000; 80: 26–27

© 2000 Scandinavian University Press. ISSN 0001-5555
Table I. Characteristics of patients with localized scleroderma treated with photodynamic therapy using 5-aminolevulinic acid

Age/sex	Duration of disease	No. lesions	Duration (months)	Treatments (no.)
21/M	9 months	2	6	35
63/M	5 years	8	6	43
53/F	3 years	4	3	26
41/M	1 year	6	3	25
68/M	1 year	3	3	25

M: male; F: female.

DISCUSSION

This preliminary clinical trial documents for the first time the beneficial effect of ALA-PDT in patients with localized scleroderma in whom other therapies, such as PUVA bath photochemotherapy and intravenous penicillin, had failed.

Photochemotherapy using photosensitizing psoralen derivatives and UVA (PUVA) is one of the most effective and widely applied therapies for localized scleroderma (2, 4, 13). However, PUVA is associated with an increased risk of squamous cell carcinoma and other skin tumours (14). So far, the pathogenesis of localized scleroderma is not well understood. It has been shown that type I collagen synthesis is elevated in scleroderma fibroblasts, whereas collagenase activity and production is remarkably reduced (1, 16). This may result in excessive accumulation of collagen in patients with localized scleroderma or systemic sclerosis. Photosensitization of human dermal fibroblasts with uroporphyrin followed by long-wave ultraviolet irradiation resulted in an increase in collagenases (matrix metalloproteinases: MMP 1 and MMP 3) with singlet oxygen being the major intermediate in the upregulation of MMPs (17).

Topical PDT with ALA, which induces the synthesis of porphyrins, has demonstrated a very good efficacy and tolerability in our series of patients with localized scleroderma. To rule out the possibility that clinical improvement is based on spontaneous remission, in 4 of the treated patients 1 untreated control plaque was observed which did not show any improvement at the end of PDT. The mechanisms of action of ALA-PDT in scleroderma, e.g. induction of collagenase, remain to be investigated. Additionally, prospective, double-blind placebo-controlled trials with larger numbers of patients are essential in order to confirm the value of ALA-PDT for the treatment of localized scleroderma.

REFERENCES

1. Hunzelmann N, Scharreretter-Kochanek K, Hager C, Krieg T. Management of localized scleroderma. Sem Cutan Med Surg 1998; 17: 34–40.
2. Kerscher M, Meurer M, Sander C, Volkenandt M, Lehmann P, Plewig G, Röcken M. PUVA bath photochemotherapy for localized scleroderma. Arch Dermatol 1996; 132: 1280–1282.
3. Stege H, Bernburg M, Humke S, Klammer M, Grewel G, Grether-Beck S, et al. High-dose UVA1 radiation therapy for localized scleroderma. J Am Acad Dermatol 1997; 36: 938–944.
4. Morison WL. Psoralen UVA therapy for linear and generalized morphea. J Am Acad Dermatol 1997; 37: 657–659.
5. Wach F, Ulrich H, Schmitz G, Landthaler M, Hein R. Treatment of severe localized scleroderma by plasmapheresis – report of three cases. Br J Dermatol 1995; 133: 605–609.
6. Peng Q, Warloe T, Berg K, Moan J, Kongskaug M, Giercksky KE, Nesland JM. 5-Aminolevulinic acid-based photodynamic therapy. Clinical research and future challenges. Cancer 1997; 79: 2282–2308.
7. Szeimies RM, Calzavara-Pinton P, Karrer S, Ortel B, Landthaler M. Topical photodynamic therapy in dermatology. J Photochem Photobiol 1996; 36: 213–219.
8. Bohmcke WH, Sterry W, Kaufmann R. Treatment of psoriasis by topical photodynamic therapy with polychromatic light. Lancet 1994; 343: 801.
9. Hillemanns P, Untch M, Prove F, Baumgartner R, Hillemanns M, Korell M. Photodynamic therapy of vulvar lichen sclerosus with 5-aminolevulinic acid. Obstet Gynecol 1999; 93: 71–74.
10. Rook AH, Freundlich B, Jegasothy BV, Perez MI, Barr WG, Jimenez SA, et al. Treatment of systemic sclerosis with extracorporeal photochemotherapy. Arch Dermatol 1992; 128: 337–346.
11. Seyger MMB, van den Hoogen FJJ, De Boo T, De Jong EMJ. Reliability of two methods to assess morphea: skin scoring and the use of a durometer. J Am Acad Dermatol 1997; 37: 793–796.
12. Falanga V, Bucalo B. Use of a durometer to assess skin hardness. J Am Acad Dermatol 1993; 29: 47–51.
13. Kanekura T, Fukumura S, Matsushita S, Terasaki K, Mizoguchi S, Kanzaki T. Successful treatment of scleroderma with PUVA therapy. J Dermatol 1996; 23: 155–159.
14. Morison WL, Prove F, Baumgartner R, Hillemanns M, Korell M. Photodynamic therapy of vulvar lichen sclerosus with 5-aminolevulinic acid. Obstet Gynecol 1999; 93: 71–74.
15. Ru¨nger TM. Genotoxizita¨t, Mutagenita¨t und Karzinogenita¨t von Methoxsalen (psoralen) und UV-A und UV-B. Z Hautkr 1995; 70: 877–881.
16. Takeda K, Hatamotoch A, Ueki H, Nakata M, Oishi Y. Decreased collagenase expression in cultured systemic sclerosis fibroblasts. J Invest Dermatol 1994; 103: 359–363.
17. Herrmann G, Wlashek M, Bohns K, Prezel K, Goerz G, Scharreretter-Kochanek K. Photosensitization of uroporphyrin augments the ultraviolet A-induced synthesis of matrix metalloproteinases in human dermal fibroblasts. J Invest Dermatol 1996; 107: 398–403.