Galaxy clusters in the Perseus–Pisces region – I. Spectroscopic and photometric data for early-type galaxies

R.J. Smith1, J.R. Lucey1, M.J. Hudson1,2⋆, J. Steel1

1 Department of Physics, University of Durham, Science Laboratories, South Road, Durham DH1 3LE, United Kingdom.
2 Department of Physics \& Astronomy, University of Victoria, P.O. Box 3055, Victoria BC V8W 3PN, Canada (Present address).

⋆ CITA National Fellow.

ABSTRACT

We present new spectroscopic and photometric data for 137 early-type galaxies in nine clusters, and for a set of nearby standard galaxies. The clusters studied are Perseus (A0426), Pisces, A0262, A0347, J8, HMS0122+3305, 7S 21, A2199 and A2634. Our spectroscopic data comprise radial velocities (c_z), central velocity dispersions (σ) and magnesium line strength indices (Mg$_2$). Internal errors (derived from repeat observations) are 7.6 per cent on each measurement of velocity dispersion, and 0.010 mag. on each Mg$_2$ measurement.

Following Jørgensen et al., we correct our σ and Mg$_2$ results to a physical aperture size of $1.19h^{-1}$kpc. We correct the major published datasets to the same aperture size, and define a new ‘standard system’ by the aperture-corrected Lick data of Davies et al. Through extensive intercomparisons with data from the literature, we present the corrections required to bring the major published datasets onto the standard system. The uncertainty in these corrections is computed. We demonstrate that our new velocity dispersion data can be brought into consistency with the standard system, to an uncertainty of $\lesssim 0.01$ dex.

From R-band CCD photometry, we derive effective diameter (A_e), mean surface brightness within effective diameter ($\langle \mu \rangle_e$) and an R-band diameter equivalent to the D_n parameter of Dressler et al. Internal comparisons indicate an average error of 0.005 in each measurement of $\log D_n$. The combination $\log A_e - 0.3(\mu)_e$, approximately the quantity used in the Fundamental Plane distance indicator, has an uncertainty of 0.006 per measurement. The photometric data can be brought onto a system consistent with external data at the level of 0.5 per cent in distance.

These data will be used in a companion paper, to derive distance and peculiar velocity estimates for the nine clusters studied.

Key words: galaxies: clusters: general — galaxies: elliptical and lenticular, cD — galaxies: distances and redshifts — galaxies: fundamental parameters

1 INTRODUCTION

Streaming motions of galaxies are the only probe of the large-scale distribution of mass in the nearby Universe. The dominant large-scale concentrations of galaxies within a distance of 8000 km s$^{-1}$ are the Hydra-Centaurus/Great Attractor (hereafter GA) region and the Perseus–Pisces (hereafter PP) region (Saunders et al. 1991; Hudson 1993).

Strong infall into a massive concentration behind the Cen30 cluster was first claimed by Lynden-Bell et al. (1988). While there is clearly a coherent streaming motion of galaxies in the direction of Centaurus, it remains unclear whether this motion is generated locally by the GA, or whether more distant sources are responsible. The bulk streaming motion of the PP supercluster allows a test of these competing flow models. The GA infall model predicts the peculiar velocity of PP to be ~ -100 km s$^{-1}$. Alternatively, if more distant sources are responsible for the large peculiar motions in the Hydra–Centaurus direction, then PP might be expected to take part in a similarly large, but negative, bulk motion of ~ 500 km s$^{-1}$.

Previous work on motions in PP has been based mainly on application of the Tully & Fisher (1977) relation to samples of spiral galaxies. Using a field-spiral sample, Willick (1990, 1991) claimed that the PP supercluster was moving towards the local group (and therefore towards the GA) at
441 km s\(^{-1}\). Willick quotes only a random error of 49 km s\(^{-1}\) but the study is also subject to a systematic calibration error of \(\sim 100\) km s\(^{-1}\). Han & Mould (1992) analysed a sample of spirals in clusters, and reported an average peculiar motion of \(-400\) km s\(^{-1}\) for PP, in close agreement with Willick.

As compared to the spiral data, the PP region was not well-sampled in the elliptical galaxy survey of Faber et al. (1989, 7S). To date, no extensive application of the \(D_n - \sigma / \text{Fundamental Plane (FP)}\) method has been conducted in this region.

In this paper we present new spectroscopic and photometric parameters for a sample of early-type galaxies in 7 PP clusters. In a companion paper (Hudson et al. 1997; hereafter Paper II) we apply the \(D_n - \sigma\) and FP relations to deduce distances and peculiar velocities of the clusters.

Our strategy of observing cluster galaxies is motivated by the recognition that a field sample suffers from severe homogeneous and inhomogeneous Malmquist bias, particularly in the vicinity of large structures such as PP (Hudson 1994). The magnitude of this bias can be reduced by grouping galaxies into clusters. The dominance of early-type galaxies in cluster cores ensures that samples are fairly robust against contamination from the field.

The acquisition of elliptical galaxy data in the PP region will also extend the volume over which one may assess the consistency of elliptical galaxy FP/\(D_n - \sigma\) distances, as compared to Tully-Fisher distances for spirals. This comparison may reveal that the distance indicator relations are affected by systematic variations associated with environmental effects or star-formation history (see, for example, Guzmán et al. 1992, Gregg 1995). Kolatt & Dekel (1994), using a preliminary version of the Mark III compilation of velocity data (Willick et al., 1997), have shown that the motions are consistent with the hypothesis that spirals and ellipticals trace the same velocity field. This compilation is limited, however, by the less extensive data available for ellipticals. The aim of the present work is to provide new, high-quality data for ellipticals in PP clusters, for use in mapping the velocity field with the FP method.

The present paper is organised as follows. Section 2 describes the sample selection. In Section 3 details are given of the spectroscopic observations and data reduction. Particular attention is paid to the construction of a ‘standard system’ of velocity dispersion measurements, and the estimation of systematic errors in the merged data. The photometric data and reduction are described in Section 4. Section 5 concludes the paper with a summary of the data quality in terms of random and systematic errors.

2 SAMPLE SELECTION

2.1 Selection of cluster sample

We define as PP the region of the sky bounded by the limits \(0^\circ < \alpha < 4^\circ\) and \(+20^\circ < \delta < +45^\circ\). It should be noted that this definition is not identical to that of Willick (1990, 1991), whose PP region extends from \(22^\circ < \alpha < 3^\circ\). Within this region, the prominent clusters chosen for study were: Perseus (A0426), Pisces, A0262, A0347, J8, HMS0122+3305, 7S21. Of these, J8 (Jackson 1982) lies in the background of the PP ridge, at \(\sim 10000\) km s\(^{-1}\), while the remaining six form part of the main body of the supercluster, at \(4000–6000\) km s\(^{-1}\). In addition, the clusters A2199 and A2634, which do not lie inside the PP region, were observed as part of an effort to resolve the conflict between estimates of their distances (Lucey et al. 1991a, 1993, 1997). Clusters A0262, A2199, A2634 and J8 have also been observed as part of the EFAR survey (Wegner et al. 1996).

Figure 2 shows the projected distribution of galaxies in the PP region, and slightly beyond in order to show also the position of A2634. Galaxy positions are from the CfA redshift survey (Huchra, 1993). Only those with radial velocities less than 12000 km s\(^{-1}\) are plotted. The positions of our target clusters are marked by open circles. The redshift-space distribution, for galaxies in \(+20^\circ < \delta < +45^\circ\), is illustrated by Figure 3.

2.2 Selection criteria for cluster members

Galaxies were selected in a cone centred on each cluster position. The angular radius of each cone was chosen to give a physical radius of 1.0–2.5h\(^{-1}\)Mpc at the cluster, using the distance suggested by the cluster redshift in the CMB frame. In Table 1 we summarise the selection criteria used in each cluster.

For Pisces, A0262, HMS0122+3305, and J8, objects were selected from APM scans (see Irwin & McMahon 1992). The images of all objects brighter than \(B = 16\) \((B = 17\) for the more distant cluster J8) were inspected, using Palomar Sky Survey material. An initial inspection served to discriminate galaxies from close pairs of stars, merged galaxies and plate defects. In merged objects containing one or more galaxy, the magnitude of each galaxy was estimated by eye, given the total magnitude of the system. All galaxies were examined and morphological types were assigned. Only E and S0 galaxies without prominent disks were retained in the final sample. The remaining galaxies were cross-referenced with known objects at similar positions, using NED\(^{†}\). Those with literature redshifts different by more than 2000 km s\(^{-1}\) from the nominal cluster redshift were deleted from the sample.

For 7S21 and A0347, APM scans were not available at the time of selection. The HST Guide Star Catalogue was used to select non-stellar objects in these clusters. Suitable candidates were then selected and typed by inspection of sky survey plates, and cross referenced with NED.

For galaxies in the Perseus cluster, which lies at low galactic latitude, reliable E and S0 galaxies were selected from the work of Poulain, Nieto & Davoust (1992). A few extra ellipticals were added from the 7S sample.

For A2199 and A2634, galaxies were selected from Lucey et al. (1991a).

For most of the galaxies for which data is presented here, reliable positions are available through NED. Cross references are provided, with our data, to a reference number from well known catalogues (NGC, IC, UGC, CGCG) or from more specialist papers: Chincarini & Rood (1971, CR); Bucknell, Godwin & Peach (1979, BGP); Dressler (1980); Faber et al. (1989); Lucey et al. (1991a); Wegner et al.\n
\(^{†}\) NED, the NASA/IPAC extragalactic database, is operated for NASA by the Jet Propulsion Laboratory at Caltech.
Figure 1. Projected distribution of CfA survey galaxies (with $cz < 12000$ km s$^{-1}$, in the direction of PP. Clusters studied in this work are identified by open circles. The circle size is not significant. A2199 lies at $\alpha = 16^h 27^m, \delta = +40^\circ$, and is not shown. The low density of galaxies north of $+40^\circ$ is a result of the limited range of the Arecibo radio telescope. East of Perseus, obscuration by the galactic plane is apparent.

Table 1. Selection criteria for galaxies in each of the PP region clusters. cz_{nom} is the CMB-frame redshift used in calculating the projected physical radius, R_{proj} at the distance of each cluster. Under ‘source’, we refer to the catalogue and plate material used for visual inspection of candidates.

Cluster	RA (B1950)	Dec (B1950)	cz_{nom} km s$^{-1}$	Search radius	R_{proj} h^{-1}Mpc	magnitude	Source
7S21	00 18.6	+22 05	5500	1$^\circ$	1.0	$B \sim 16$	GSC + POSS II
Pisces	01 04.5	+32 10	4700	2$^\circ$	1.6	$B = 16$	APM + POSS I
HMS0122+3305	01 20.5	+35 10	4600	2$^\circ$	1.6	$B = 16$	APM + POSS I
A0262	01 49.9	+35 54	4500	2$^\circ$	1.6	$B = 16$	APM + POSS I
A0347	02 19.6	+41 25	5300	1.5$^\circ$	1.4	$B \sim 16$	GSC + POSS II
J8	02 26.0	+23 00	9800	1.5$^\circ$	2.5	$B = 17$	APM + POSS I
Perseus	03 15.0	+41 00	4800	1$^\circ$	0.8	$B = 17$	Poulain + 7S
Figure 2. Redshift space distribution of CfA survey galaxies in declination range $20^\circ < \delta < +45^\circ$. Clusters to be studied here are marked by open circles. A2199 lies well beyond the limits of this plot, at 16.5^h RA.

(1996). In Table 3, we list positions for the galaxies not included in the above lists.

As in most programmes of peculiar velocity measurement, the selection criteria described here are somewhat inhomogeneous in terms of limiting magnitudes. This non-uniformity would result in biases in the cluster distances if not handled correctly. Methods for deriving unbiased $FP/D_n - \sigma$ relations and distances will be discussed and applied in Paper II.

Note also that morphological selection from sky survey plates is necessarily subjective. Andreon (1994) has reported that, for galaxies in the Poulain et al. sample, around a half of those classified as E by visual inspection of survey plates have Poulain et al. types S0 or later.

3 SPECTROSCOPY

3.1 Observations

Spectroscopic observations were made using the 2.5m Isaac Newton Telescope (INT) on La Palma, in 1993 and 1994. Different detectors were used in each run: an EEV CCD in 1993, and the faster TEK CCD in 1994. An EEV chip was used for one night of the 1994 run, due to technical problems. This resulted in three spectroscopic datasets (hereafter denoted EEV93, EEV94, TEK94), which were each treated separately during the course of the data reduction. Instrumental details for the three datasets are summarised in Table 4.
Table 3. Spectroscopic instrumentation.

Dataset	EEV93	EEV94	TEK94
Dates	Nov. 15–22, 1993	Sep. 6, 1994	Sep. 3–5 & 7–9, 1994
Observers	JRL, MJH, JS	JRL, JS	JRL, JS
Telescope	2.5m INT	2.5m INT	2.5m INT
Spectrograph	IDS	IDS	IDS
Wavelength Range	4760–5784Å	4760–5784Å	4760–5784Å
Slit size	3 arcsec	3 arcsec	3 arcsec
CCD	EEV	EEV	TEK
CCD Dimensions	1242×1152	1242×1152	1024×1024
Effective aperture	3.0×3.3 arcsec	3.0×3.3 arcsec	3.0×3.5 arcsec
Number of Galaxy Spectra	105	16	211
Mean seeing	1.5 arcsec	1.5 arcsec	1.2 arcsec

Table 2. Positions for uncatalogued galaxies in the PP sample. For all other galaxies studied here, positions are available through NED.

Cluster	Our name	RA (B1950)	Dec (B1950)
7S21	S06	00 18 44.8	+21 42 22
Pisces	Z17005	00 56 43.0	+32 52 04
	Z16012	00 59 04.2	+33 20 51
	Z01047	01 04 12.4	+32 02 30
	Z03032	01 05 27.0	+32 11 13
	Z04035	01 05 43.7	+33 06 58
	Z10020	01 09 05.1	+31 17 37
HMS0122+3305	H01027	01 21 00.9	+33 19 29
A0262	A14050	01 47 18.8	+35 58 52
	A01094	01 47 26.5	+35 44 09
	A01076	01 49 36.2	+35 52 08
A0347	B03C	02 20 01.9	+42 45 54
J8	J07038	02 24 03.4	+23 24 06
	J09035	02 24 41.2	+21 45 40
	J08035	02 24 41.4	+22 51 29
	J01065	02 25 49.1	+22 47 23
	J03049	02 26 52.2	+23 44 03
	J01055	02 26 59.2	+22 53 12
	J01080	02 27 46.0	+22 29 54

3.2 Derivation of spectroscopic parameters

Initial reduction of the CCD frames involved bias and dark current subtraction, the removal of pixel-to-pixel sensitivity variations (using flat field exposures provided by a tungsten calibration lamp) and correction for vignetting along the slit (using twilight sky-line exposures).

The spectra obtained covered ∼4760–5784Å centred on the Mgb triplet, and were sampled with a resolution of ∼4Å FWHM.

Wavelength calibration was performed using arc-lamp exposures, taken regularly in the course of the observations, and always after movement from one cluster or region to another. A cubic fit between pixel number and wavelength for ∼18 arc lines gave a maximum rms calibration error of ∼0.1Å.

Spectra were extracted from the frames by simple co-addition of the central 5 rows of the galaxy. The resulting effective aperture size is tabulated for each dataset in Table 3. After application of a median-filter to remove cosmic ray events, the darkest rows on the frame were used to produce a sky spectrum.

For some galaxies in the EEV93 dataset, sufficient signal-to-noise could be obtained only by co-adding spectra resulting from two separate exposures. In almost all of these cases, the two exposures were taken in immediate subsequence, ensuring the validity of the co-addition.

Cosmic ray events in the galaxy spectra were removed by a combination of automatic procedures before extraction, and interactive methods applied at the one-dimensional spectrum stage. Features in the spectrum resulting from noise in the subtraction of sky-line features (especially at 5577Å) were similarly removed after extraction.

On each run, spectra were obtained for several G8 to K3 giant stars, for use as template spectra. These stars were trailed across the slit at a shallow angle during the exposure, to produce an extended illumination. Subsequent weighting of these frames, by a typical galaxy profile, effects a simulated observation of a galaxy with zero velocity dispersion. The extension of illumination has the effect of broadening the stellar spectra by ∼30 km s⁻¹.

The method used for measurement of the velocity dispersion, σ, for each galaxy, is based upon the well-known Fourier Quotient method of Sargent et al. (1977). In preparation for the application of this procedure, continuum levels were subtracted from both the template spectrum and the galaxy spectrum, and both were submitted to a cosine bell modulation to fix the spectrum ends to zero. The latter step is necessary to avoid unphysical signals appearing at all frequencies in the Fourier Transforms.

The method requires also the removal from the spectra of signals resulting from noise, inadequate continuum removal and the application of the cosine bell. Firstly, a cut is made at high frequencies, to remove noise. The results of this method seem to be fairly insensitive to the exact value, kₜₕₐᵢᵣ, chosen for the high frequency cut. kₜₕₐᵣ = 200 ≈ (5Å)⁻¹ has been used throughout. Furthermore, a low frequency filter must be applied to remove residual continuum features, and the effects of the cosine-bell modulation function described above. With the low-frequency cut, however, results are found to exhibit a clear trend: velocity dispersions are measured to be smaller when kₜₙᵢᵢₗ is higher. One must choose the cutoff frequency with care. The highest sensible kₜₙᵢᵢₗ is that which would preserve spectral features in spectra of velocity dispersion ≤ 500 km s⁻¹. This is kₜₙᵢᵢₗ = 9 ≈ (110Å)⁻¹ for our spectra. The lowest sensible kₜₙᵢᵢₗ is that
which is necessary to remove the signal of the cosine-bell modulation. This is $k_{\text{low}} = 6 \approx (170\,\text{A})^{-1}$ for our spectra. The portion of the $\sigma-k_{\text{low}}$ plot between these sensible limits is flat to \sim5 per cent for most galaxies.

After discarding a few template spectra which gave consistently discrepant results, the velocity dispersions were averaged over 13 template spectra of 6 different stars, and over values $k_{\text{low}} = 6, 7, 8, 9$ adopted for the low frequency filter.

The uncertainty on each velocity dispersion was quantified by repeatedly conducting the measurement after bootstrap resampling of the spectrum. This provides an estimate of the random, Poisson-noise error on σ.

Recession velocities (c_2) were obtained simultaneously with velocity dispersions, as a result of the Fourier Quotient fit.

The Mg$_2$ line strength index for the magnesium feature was also derived for each spectrum. In order to calculate this index, independent of the shape of the instrumental response curve, the spectra were first flux-calibrated by reference to spectrophotometric standard stars observed during the runs. For certain observations, no appropriate flux-standard was obtained, so a few galaxies have no Mg$_2$ measurement. Initial flux calibration of the EEV93 data was found to be unsatisfactory, due to a strong gradient in chip response across the spectral region being used. The calibration was improved by an extra step in which we derived the response curve of the EEV relative to the TEK, using a star common to both datasets, before calibrating to the absolute standard of flux. A similar problem for the EEV94 data could not be resolved in this manner, since there are no stars in common between that dataset and the TEK94 data. As a result there are no Mg$_2$ measurements from the EEV94 observations. Uncertainties in the Mg$_2$ indices were calculated simply from the noise characteristics of the chip employed.

3.3 Raw spectroscopic data and internal comparisons

Table 11 presents the raw spectroscopic data obtained, including formal errors. Over half of the galaxies were observed more than once. Comparisons between repeat measurements in the two large datasets (EEV93 and TEK94) are illustrated in Figures 3 and 4 for velocity dispersion and Mg$_2$ index, respectively. Note that there are no repeat observations within the EEV94 dataset. The implied observational errors in each dataset are summarised in Table 4. Weighting the σ uncertainties in TEK94 and EEV93 by the number of observations in each dataset, we obtain a typical measurement error of 0.032 dex per measurement.

For comparison, the 7S Lick data exhibit an internal uncertainty of 0.057 dex in σ. The higher quality 7S velocity dispersions are accurate to 0.036 dex (Davies et al.). The mean Poisson error on σ is 0.023 dex (TEK94) and 0.029 dex (EEV93). Non-Poissonian effects therefore account for an appreciable portion of the observed scatter, especially for the earlier dataset.

Uncertainties on the Mg$_2$ measurements are typically 0.010 mag., and are fully accounted for by the mean photon-noise error.

Table 4. Uncertainties in the EEV93 and TEK94 datasets, as judged from the scatter of repeat measurements. For each parameter, N indicates the number of galaxies for which comparisons could be made.

Dataset	N	σ (dex)	Mg$_2$ (dex)	c_2 (km s$^{-1}$)
TEK94	48	0.027	0.010	48
EEV93	20	0.041	0.011	20

![Figure 3. Scatter of repeat velocity dispersion measurements within the datasets presented here. In each panel, the horizontal axis is the mean quantity derived from the dataset; the vertical axis is the deviation of each individual measurement from that mean. Note that there are no internal repeats within the EEV94 dataset. For ease of comparison, the axis limits for this plot are the same as for the equivalent plot in Davies et al. (1987).](image)

3.4 The aperture correction

The physical size of that central part of a galaxy, observed through a fixed aperture, is larger for a more distant galaxy than for one nearby. Since galaxies, in the mean, exhibit a negative radial gradient in both $\log \sigma$ and Mg$_2$, a correction must be applied to the raw data before use. Furthermore, to compare measurements made using different aperture sizes, a similar correction is clearly necessary. Jørgensen, Franx & Kjærgaard (1995) present an analysis based on the observed radial gradients in $\log \sigma$ and Mg$_2$ for nearby galaxies. They find that a power law provides an adequate description of the required correction:

$$\frac{\sigma_{\text{corr}}}{\sigma_{\text{obs}}} = 0.04 \log \frac{r_{\text{ap}}}{r_{\text{norm}}}$$

where r_{ap} is the physical radius sampled by that circular aperture from which one obtains the same σ_{obs} as through the actual aperture used. For a rectangular aperture of angular dimensions x and y (in radians), and a galaxy at distance d, the equivalent aperture is
Table 5. Run-to-run comparisons of spectroscopic data. \(N \) indicates the number of galaxies involved in each comparison.

Comparison	\(N \)	Mean \(\Delta (\log \sigma) \)	Dispersion
EEV93 – TEK94	46	-0.009±0.006	0.042
EEV94 – TEK94	10	0.014±0.012	0.039

\[
r_{\text{ap}} \approx 1.025 \left(\frac{x_{\text{FW}}}{\pi} \right)^{1/2} d
\]

where the correction factor 1.025 is included to provide an improved match to more detailed models. An independent analysis, based on measured velocity dispersion profiles, supports the size of this correction.

For the normalisation, we follow Jørgensen et al. in adopting a physical diameter \(2r_{\text{norm}} \) of 1.19 \(h^{-1} \) kpc. This is equivalent to an angular diameter of 3.4 arcsec for Coma cluster galaxies.

Jørgensen et al. find the average radial gradient of the \(\text{Mg}_2 \) index to be so similar to that of the velocity dispersion, that equation 1 may be used for the \(\text{Mg}_2 \) aperture correction, with a simple substitution of \(\text{Mg}_2 \) for \(\log \sigma \).

3.5 Matching of spectroscopic datasets onto a new ‘standard system’

In order to construct large samples of peculiar velocity data, we require that velocity dispersions measured at different telescopes match as accurately as possible. At the PP distance, a one per cent systematic error in \(\sigma \) corresponds to 50 km s\(^{-1}\) in peculiar velocity. A systematic difference between the velocity dispersions measured on telescopes in opposite hemispheres would thus generate a spurious bulk flow. Despite careful attempts to correct the velocity dispersions for aperture effects, systematic differences between velocity dispersions measured from different datasets persist at the \(\sim 3 \) per cent level. Such offsets are present even between the three datasets presented here (as illustrated in Figures 4 and 5), despite the use of very similar observational methods and data reduction techniques.

The removal of systematic offsets can be achieved by intercomparison of results for galaxies common to two or more systems. To this end, our data include many galaxies observed to improve overlap with existing systems. In this section, we consider velocity dispersion and \(\text{Mg}_2 \) data on 19 and 16 different systems, respectively. In order to take account of zero-point differences reported by Dressler (1984), the 7S LCOHI data have been subdivided into the three constituent runs from which they derive.

Many galaxies have measurements on more than two systems. Therefore in order to determine self-consistent corrections between different systems, a simultaneous fit for all of the offsets is necessary. The fit is performed using velocity dispersion and \(\text{Mg}_2 \) data corrected to the Jørgensen et al. (1995b) standard physical aperture size of 1.19 \(h^{-1} \) kpc. We determine the corrections necessary to bring all systems into the best possible agreement with each other. We adopt the fully-corrected Lick system (Davies et al. 1987) as the standard and determine the remaining corrections as follows. Let \(s = \log_{10}(\sigma) \) and let \(i, j \) and \(k \) index the measurement, galaxy and system respectively. We obtain the corrections \(\Delta k \), needed to bring each system into agreement with Lick, by minimising a \(\chi^2 \) statistic

\[
\chi^2 = \sum_i \frac{(s_i + \Delta k - \bar{s}_k)^2}{s_k^2}
\]
Figure 6. Consistency of the merged system of velocity dispersion measurements. For each galaxy in the TEK94 panel, we compute the mean (fully corrected) TEK94 measurement, and the mean (fully corrected) value using all the other data – excluding TEK94. We plot as $\Delta \log \sigma$ the difference between the ‘TEK94-only’ and the ‘all-but-TEK94’ values. All 19 velocity dispersion systems are treated in this way. Note that we include in these plots all measurements, including those which were not used in the derivation of the corrections. The small offsets still present in some plots (indicated by dotted lines) are a result of these outlying points and low σ galaxies.

where e_k is the error in s_i (assumed to be the same for all galaxies in a given system) and \bar{s}_i is the error-weighted mean of all corrected measurements of the same galaxy.

We determine the errors e_k for each system by adjusting these so that the reduced χ^2 is unity, both when the system is included and when it is excluded from the comparisons. This external error (e_{ext}) is typically 10–25 per cent larger than the internal error (e_{int}) estimated from repeat measurements on the same system.

The overlap data set of velocity dispersion measurements (galaxies with velocity dispersions on more than one system) consists of 1281 measurements for 350 different galaxies. We exclude galaxies with $\bar{s} < 2$ as these may be subject to large random and systematic errors (Jørgensen et al. 1995b). We also exclude individual velocity dispersion measurements which are inconsistent at the 3.5σ level with the other measured velocity dispersions of the same galaxy. The velocity dispersions so excluded are A2634-F1201 (EEV93 $s = 2.0784$), A1656D-136 (INT90 $s = 2.0888$), N386 (KPNO $s = 1.7923$), N548 (LICK $s = 1.8856$) and VELA-G22 (FOCP2 $s = 1.9237$).

The overlap data set of Mg$_2$ measurements (galaxies with measurements on more than one system) consists of 1013 measurements of 270 different galaxies on 16 systems (the LC, FOCP2 and EEV94 systems have no Mg$_2$ data). In addition to the galaxies excluded in the velocity dispersion...
Figure 7. As for Figure 6, but for the 17 systems of Mg_2 measurements.

comparison, we also exclude the following data which are inconsistent with other measurements of the same galaxy at the 3.5σ level: N1282 (PAL $Mg_2 = 0.0245$), N1549 (A2 $Mg_2 = 0.342$ and JFK $Mg_2 = 0.264$) N4564 (EEV93 $Mg_2 = 0.350$) and N6702 (GONZA $Mg_2 = 0.243$ and TEK94 $Mg_2 = 0.288$).

Tables 6 and 7 summarise the required corrections to velocity dispersion and Mg_2, respectively. Note that, because of the interdependencies between the different corrections, the simple pair offsets of Table 5 are not trivially related to those derived here by simultaneous fits. In Figures 6 and 7 we illustrate the level to which systematic offsets are removed by the application of the derived corrections.

The errors are determined by bootstrap resampling the master data file and computing the corrections from the resampled file. This procedure allows us to determine not only the error on the correction to each system but also the correlation between the corrections for different systems. Using the bootstrap values of these corrections, we can generate mock merged data sets and so determine for a given cluster the error in the mean correction. This is an estimate of the mean systematic error in s, which will generally depend on the systems merged for the cluster, their relative proportions and their covariance. For the PP sample, we find that for all clusters this error is ~ 1.5 per cent in σ. This translates to a systematic error of ~ 2 per cent in distance, or ~ 100 km s$^{-1}$ at PP.

3.6 Correction and combination of spectroscopic data

In this section, we briefly summarise the recipe for converting the raw spectroscopic data tables into the corrected and
Table 6. Corrections required to bring each system of (aperture-corrected) velocity dispersion measurements into agreement with the standard system. e_\text{int} are the errors on each correction. N_{ov} represents, for each system, the number of galaxies in the overlap dataset, i.e. having measurements on other systems.

Name	Source	N	e_{\text{int}}	e_{\text{ext}}	\Delta	e_\Delta
LICK	1	276	0.052	0.055	0	0
PAL	2	23	-0.045	-0.0241	0.0116	0.0116
LCOLO	1	61	0.039	0.040	0.0115	0.0098
LCOHF	3	25	0.035	-0.0067	0.0105	
LCOHM	3	73	0.023	0.035	0.0106	0.0072
LCOHJ	3	61	0.021	0.005	0.0021	0.0086
KPNO	1	27	0.065	0.0142	0.0139	
A1	1	27	0.040	-0.0057	0.0113	
A2	1	42	0.036	0.0011	0.0102	
LC	4	72	0.033	-0.0127	0.0096	
DF	5	41	-0.044	-0.0038	0.0112	
JFK	6	76	-0.040	0.0011	0.0089	
INT90	7	59	0.038	0.0017	0.0069	
INT92	8	60	0.040	0.0080	0.0096	
FOCP2	9	67	0.034	-0.0063	0.0094	
GONZA	10	38	-0.014	0.0222	0.0054	
EEEV93	11	86	0.040	-0.0014	0.0082	
EEEV94	11	15	-0.040	-0.0115	0.0111	
TEK94	11	152	0.027	-0.0063	0.0059	

Sources:
1. Davies et al. (1987)
2. Davies et al. (1987) – Palomar observations wrongly attributed to LCOHI dataset (see Dressler et al. 1987)
3. LCOHI data subdivided according to run: Feb. 82 (LCOH), Mar. 83 (LCOHM) and Jan. 84 (LCOHJ)
4. Davies et al. (1987) – Palomar observations wrongly attributed to LCOHI dataset (see Dressler et al. 1987)
5. Dressler, Faber & Burstein (1991)
6. Jørgensen, Franx & Kjærgaard (1995b)
7. Lucey, Guzman, Carter & Terlevich (1991)
8. Lucey, Guzman, Steel & Carter (1997)
9. Lucey et al. (1998)
10. Gonzales (1993)
11. This paper

Table 7. As for Table 6, but for Mg2 measurements.

Name	Source	N	e_{\text{int}}	e_{\text{ext}}	\Delta	e_\Delta
LICK	1	274	0.008	0.011	0	0
PAL	2	22	0.014	-0.0143	0.0026	
LCOLO	1	53	0.011	-0.0032	0.0024	
LCOHM	3	68	0.004	0.0086	0.0023	
LCOHJ	3	53	0.007	-0.0185	0.0029	
KPNO	1	24	0.011	-0.0034	0.0028	
A1	1	27	0.012	0.0074	0.0053	
A2	1	33	0.005	-0.0132	0.0034	
DF	5	31	0.017	0.0040		
JFK	6	40	0.011	-0.0017	0.0024	
INT90	7	54	0.012	0.0061	0.0030	
INT92	8	51	0.013	0.0168	0.0027	
GONZA	10	37	0.007	-0.0048	0.0017	
EEEV93	11	83	0.010	0.0172	0.0021	
TEK94	11	139	0.009	0.0071	0.0016	

Combined measurements to be used in the peculiar velocity analyses.

In order to combine multiple \(\sigma \) and Mg2 observations for a galaxy, it is first necessary to ensure that all the sources of data are on a consistent system. To this end we correct the EEV93, EEV94 and TEK94 systems for aperture effects, and scale them onto our new ‘standard system’ using the offsets listed in Tables 6 and 7. The distance used in calculating the aperture correction is the median redshift of the relevant cluster, or (if not part of the cluster sample) the individual galaxy redshift.

The data for multiply-observed galaxies are then combined to give a weighted mean \(\log \sigma \), and weighted mean Mg2. The weight of each measurement is assigned according to the external error on the dataset from which it derives. In constructing the means, we exclude the (> 3.5\(\sigma \)) deviant measurements as flagged above.

It should be stressed that the external datasets (LICK, FOCP2, etc.) are used only to derive the necessary corrections, and to identify outlying measurements. The mean parameters are calculated using data drawn only from EEV93, EEV94 and TEK94.

Recession velocities are combined by correcting the EEV93 and EEV94 systems according to their offsets from TEK94, before computing a simple mean \(\text{cz} \). The relative offsets are EEV93 – TEK94 = −10 ± 5 km s\(^{-1}\) and EEV94 – TEK94 = −4 ± 10 km s\(^{-1}\), derived from 45 and 10 galaxies respectively.

We have compared the resulting mean recession velocity measurements with those adopted by 7S (Faber et al. 1989, Davies et al. 1987). The median offset is 22±13 km s\(^{-1}\), with our velocities being the larger. The comparison is displayed in Figure 8. The most discrepant point is galaxy N1272 (P17). For this galaxy, we have seven concordant measurements of \(\text{cz} \),

Table 7 presents the fully corrected and combined spectroscopic data, scaled to the ‘standard’ system, for galaxies in the cluster sample. This table includes only those galaxies for which complementary photometric data has been obtained.

4. PHOTOMETRY

4.1 Introduction

The photometric observations were made in the Kron–Cousins R bandpass. For the \(D_n - \sigma \) relation, we have defined the R-band \(D_n \) parameter to be that diameter which encloses a mean surface brightness \(\langle \mu \rangle_R = 19.23 \text{ mag. arcsec}^{-2} \). If the typical (extinction- and k-corrected) \(V - R \) colour for early-type galaxies is 0.57, as indicated by the BVR photometry of Colless et al. (1993), then our R-band \(D_n \) diameters will be well matched to the V-band system of Lucey et al. (1991b), and to the B-band work of Burstein et al. (1987). At the distance of the clusters studied here, the typical \(D_n \) diameter, so defined, is comfortably large compared to the seeing disk, yet not so large that sky subtraction errors become significant. The quantities measured for use in the FP distance indicator are the effective diameter \(A_e \), and the mean surface brightness within effective diameter, denoted \(\langle \mu \rangle_e \).
4.2 Observations and initial data reduction

CCD photometry was obtained on the 1-m Jacobus Kapteyn Telescope (JKT) on La Palma in 1993 November and 1994 September. Table 8 summarises the instrumental configuration used. The observations were made with the RGO ‘Harris’ R filter which, in combination with a typical CCD response, provides a close match to the standard Kron–Cousins R bandpass. The images covered an area of 6.6 × 6.1 arcmin², at a scale of 0.31 arcsec pixel⁻¹. The initial reduction of the CCD images followed standard procedures of bias-subtraction and flat-fielding, using Starlink software. The photometric calibration was achieved by observations of Landolt (1983, 1992) standard stars and fields. At least 12 Landolt stars/fields were observed each night and an online assessment of photometric conditions was employed to track the stability of the atmospheric extinction. For the calibration mapping we used the equation,

\[R = r_{\text{inst}} + ZP - k_R X + C(B - V) \]

where \(R \) is Landolt’s listed R-band magnitude, \(B - V \) is the listed colour, \(r_{\text{inst}} \) is the instrumental magnitude, \(X \) is the airmass, \(ZP \) is the photometric zero-point, \(k_R \) the R-band extinction per airmass and \(C \) is the colour term. We solved for the \(ZP \), \(k_R \) and \(C \) terms by minimising the residuals. Five nights (out of a total 14 allocated) were photometric.

The residual scatter of the standard stars on these nights was less than 0.015 mag. The \(k_R \) term was typically 0.10. The colour term, \(C \), was only -0.011, confirming the excellent match of the RGO ‘Harris’ R filter to the standard Kron–Cousins R system. For the limited \(B - V \) colour range of early-type galaxies in our study this colour term can be safely included in the zero-point term, and observations in R-band alone can be used. In order to assess the reliability of our photometric measurements and run-to-run variations, a large number of our target galaxies were observed more than once (see below). FWHM seeing (measured from stellar profiles on the target galaxy images) ranged from 0.7 to 3.0 arcsec, with a typical value of 1.3 arcsec.

4.3 Derivation of photometric parameters

For each galaxy, circular aperture magnitudes were determined in diameter steps of approximately 0.1 dex from 4 arcsec out to ~60 arcsec. Contaminating stars and galaxies were removed interactively from each target galaxy. Aperture magnitudes were corrected for galactic extinction and for cosmological k-dimming. For the R-band extinction, we adopt \(A_R = 2.35E(B - V) \) where \(E(B - V) \) are the reddening values of Burstein & Heiles (1984). For the k-correction, we use −1.0z (Oke & Sandage 1968, Frei & Gunn 1994). A correction for the \((1+z)^4 \) surface brightness dimming is also applied.

To derive the parameters \(D_h \), \(A_h \) and \(\langle \mu \rangle_e \), we fit a de Vaucouleurs \(R^{1/4} \) profile to the aperture photometry. Seeing effects in the aperture magnitudes cannot be ignored in this procedure, and are here corrected for by an improved version of the method first reported by Bower, Lucey and Ellis (1992). Whereas Bower et al. calculate the seeing corrections appropriate for a galaxy of true effective radius 5 arcsec, and apply these to all galaxies, we have compiled correction tables for a range of true radii, and use an iterative technique to select the table required for a given galaxy. Convergence to a corrected \(A_h \) value is very rapid. In practice this improved correction scheme leads to measurements which are in good agreement with those made using the original Bower et al. method. For only five images, out of a total 245, do we find \(D_h \) or FP parameters which change by more than 1 per cent (distance equivalent) in adopting the new corrections.

The typical rms residual from the \(R^{1/4} \) law fit is 0.02 mag. The four worst-fit galaxies have residuals of 0.05–0.09 mag. Saglia et al. (1997) have recently investigated the effect of fitting a pure \(R^{1/4} \) law to galaxies with substantial disk components. They show that such a fit to a galaxy with disk-to-bulge ratio 0.2 can result in \(A_h \) measurements which are wrong by as much as 30%. Whilst this severely affects the determination of effective radius and of surface brightness, the combination log \(A_h - 0.3\langle \mu \rangle_e \) (which enters into the Fundamental Plane) is robust against the presence of a disk, since the errors on \(A_h \) and \(\langle \mu \rangle_e \) are correlated.

The \(D_h \) parameter, defined by interpolation of the data, rather than from a global profile fit, is also insensitive to this effect. We note also, that a bias in cluster distances will only result from this effect if, from cluster to cluster, substantially different morphological proportions are sampled.

The final fully-corrected photometric parameters are...
presented in Table 9. For comparison with future work, we tabulate also the uncorrected R-band magnitude for each galaxy, as measured within an aperture of 20 arcsec.

4.4 Internal comparisons and combination of photometric data

To assess the consistency of our photometric system from year-to-year, we have compared, for each galaxy in common, the mean derived aperture magnitude from the 1993 run, with that from the 1994 data. The comparison is shown in Figure 9, for apertures of 20 arcsec and 30 arcsec diameter. At 20 arcsec, the mean offset is 0.003 ± 0.002 mag, and the scatter 0.011 mag. The offset in the 30 arcsec aperture magnitudes, is 0.002 ± 0.004 mag, with a scatter of 0.020 mag. The increased scatter for the larger aperture results from the treatment of contaminating sources, companion galaxies, etc. We are confident, therefore, that our photometric system is internally consistent to better than 0.01 mag. Applying the same year-to-year test for D_n measurements, we find an offset between the runs of 0.000 ± 0.001 dex.

Since our photometric data are on the same system, we can combine repeated measurements of log D_n, log A_e and $langle \mu_r e \rangle$, to give simple mean values. These are presented in Table 3 along with the spectroscopic parameters for each galaxy.

From a subset of 50 galaxies which have repeat observations, an estimate can be made of the typical uncertainty in our measurements of the photometric parameters. Figure 11 shows the comparison of these measurements. The scatter implies an error of 0.005 in each determination of log D_n. For the FP parameters taken individually, the scatters are larger: 0.032 dex on A_e and 0.113 mag. arcsec$^{-2}$ on $langle \mu_r e \rangle$. The errors on these parameters are correlated, however. If we construct the quantity log $A_e - 0.3(langle \mu_r e \rangle$, the combination often used to give an edge-on projection of the Fundamental Plane, we find that the uncertainty in this quantity is only 0.006, only slightly larger than that on log D_n.

4.5 External comparisons

4.5.1 Aperture photometry

Figure 12 illustrates comparisons between our CCD aperture magnitudes, and R-band magnitudes tabulated by other authors, for galaxies in common. The comparisons are quantified in Table 10.

In the comparison with the photoelectric aperture photometry of Colless et al. (1993), we find a scatter which is well matched to the quadrature sum of our internal errors quoted above, and the similar uncertainties claimed by Colless et al. There exists, however, a small but significant offset of 0.037 mag. between the two datasets.
brightenings from their paper are therefore corrected for a colour of 0.37 mag, in $r - R$.

The FP variables are compared in combination rather than separately, since the individual parameters log A_e and $\langle \mu \rangle_e$ can acquire correlated mean offsets from author to author, when the profile fit is performed over different ranges. The FP combination is, however, robust against changes to the range of fit.

The R-band photometry of Steel offers an independent validation of the present data, free from complications concerning band mis-matches, etc. The two samples agree to within 0.003 in both log D_n and the FP combination.

From the excellent agreement of the R-band D_n measurements, presented here, with the V-band data of Lucey et al., we justify, a posteriori, the definition of our R-band D_n diameter at $\langle \mu \rangle_R = 19.23$ mag. The slight trend may be a reflection of the $V - R$ colour–magnitude relation for the Coma cluster. The slope found here (converted to magnitudes) is -0.03 ± 0.01, which may be compared with the $V - K$ colour–magnitude slope of -0.08 ± 0.01 reported by Bower et al. (1992). We note that the trend is in the expected sense, such that brighter galaxies are redder.

The D_n comparison with the Gunn-r data of Jørgensen et al. exhibits a curious bimodality. This is a result of their data being presented to only two decimal places in log D_n, rather than three, as in our data. This is unfortunate, since their data is clearly more accurate than quoted, the dispersion given in Table 1 being consequently overestimated.

The significant offset found between this work and that of Jørgensen et al. is, of course, sensitive to the adopted $r - R$ colour. From a comparison of our aperture magnitudes with magnitudes predicted from their tabulated r-band parameters, we derive a mean $r - R$ colour of 0.33 mag. If a colour correction were applied based on this result, the offsets of between this work and that of Jørgensen et al. would be reduced to 0.004±0.002 in log D_n and -0.006 ± 0.003 in the FP combination.

The photoelectric data of Burstein et al. have been corrected for the $(1 + z)^4$ surface brightness dimming before comparison. The large offsets with respect to this source can be accounted for by the absence of a seeing correction in their data, as demonstrated by Jørgensen et al.

The scatter in the comparisons is sufficiently small that our D_n / FP measurements may be brought onto a system consistent with external CCD data, to within 0.003 dex in implied distance.

5 CONCLUSION

This paper has presented spectroscopic and photometric data to be used in a study of cluster peculiar motions in the Perseus–Pisces supercluster. The data comprise observations of 137 early-type galaxies in 9 clusters, and additional standard galaxies.

From intermediate-dispersion spectroscopy, the velocity dispersion σ has been derived for each galaxy, with a typical uncertainty of 7.6 per cent per measurement. The spectroscopic data also yield recession velocities (cz) (to an uncertainty of about 30 km s$^{-1}$), and Mg$_2$ indices (typical
error 0.010 mag. per measurement). Extensive external comparisons are presented, allowing the σ and Mg$_2$ data to be placed onto a new ‘standard system’, with an uncertainty of less than 0.01 dex.

R-band CCD photometry is used to derive global photometric parameters. The photometric data comprise effective diameter (A_e), mean surface brightness within effective diameter ($\langle \mu \rangle_e$), and an R-band D_n parameter, defined analogously to the B-band photometric diameter of Dressler et al. (1987). The scatter of repeat observations indicates the following uncertainties – log A_e: ±0.032; $\langle \mu \rangle_e$: ±0.113; log D_n: ±0.005; log A_e – $0.3 \langle \mu \rangle_e$: ±0.006. The aperture magnitudes, from which the profile is determined, show systematic offsets (at the level of a few 0.01 mag) with respect to literature data. The derived log D_n and Fundamental Plane parameter (log A_e – $0.3 \langle \mu \rangle_e$) show a typical scatter of ~0.010 with respect to similar data from the literature.

The scatter in the FP relation is ~0.08 dex, so that intrinsic scatter is dominant over random measurement errors. Currently, a major challenge in peculiar velocity work is to recognize and reduce the effects of systematic errors. We will defer until Paper II, a full discussion concerning such errors. For the present, we note that the high quality of the data presented here, together with the generous overlap secured with literature datasets, will allow us to address realistically the systematic errors in our peculiar velocity measurements.

ACKNOWLEDGMENTS

The Isaac Newton Telescope and Jacobus Kapteyn Telescope are operated on the island of La Palma by the Royal Greenwich Observatory in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias. Data reduction was performed using Starlink facilities at Durham. JS and RJS acknowledge financial support from the PPARC. MJH acknowledges financial support from the PPARC; from a CITA National Fellowship; and from the Natural Sciences and Engineering Research Council of Canada, through operating grants to F. D. A. Hartwick and C. J. Pritchet. Alan Dressler is thanked for providing information for the subdivision of his Las Campanas datasets.

REFERENCES

Andreon S. 1994 A&A, 284, 801
Bower R.G., Lucey J.R., Ellis R.S. 1992, MNRAS, 254, 589
Bucknell M.J., Godwin J.G., Peach J.V. 1979, MNRAS, 188, 579
Burstein D., Heiles C. 1984, ApJ, 54, 33
Burstein D., Davies R.L., Dressler A., Faber S.M., Stone R.P.S., Lynden-Bell D., Terlevich R.J., Wegner G. 1987, ApJS, 64, 601
Chincarini G., Rood H.J. 1971, ApJ, 168, 321
Colless M., Burstein D., Wegner G., Saglia R.P., McMahon R.K., Davies R.L., Bertschinger E., Baggley G. 1993, MNRAS, 262, 475
Davies R.L., Burstein D., Dressler A., Faber S.M., Lynden-Bell D., Terlevich R.J., Wegner G. 1987, ApJS, 64, 581
Dekel A. 1994, ARA&A, 32, 371
Dressler A. 1980, ApJ, 236, 351
Dressler A. 1984, ApJ, 281, 512
Dressler A., Lynden-Bell D., Burstein D., Davies R.L., Burstein D., Faber S.M., Terlevich R.J., Wegner G. 1987, ApJ, 313, 42
Dressler A., Faber S.M., Burstein D. 1991, ApJ, 368, 54
Faber S.M., Wegner G., Burstein D., Davies R.L., Dressler A., Lynden-Bell D., Terlevich R.J. 1989, ApJS, 69, 763
Frei Z., Gunn J.E. AJ, 108, 1476
González J.J. 1993, PhD thesis, University of California, Santa Cruz
Guzmán R., Lucey J.R., Carter D., Terlevich R.J. 1992, MNRAS, 257, 187
Gregg M.D. 1995, ApJ, 443, 527
Han M.-S., Mould J.R. 1992, ApJ, 396, 453
Huchra J.P., Geller M.J., Clemens C.M., Tokarz S.P., Michel A. 1993, Astronomical Data Center archives
Hudson M.J., 1993, MNRAS, 265, 43
Hudson M.J., 1994, MNRAS, 266, 468
Hudson M.J., Lucey J.R., Smith R.J., Steel J. 1997, MNRAS, submitted
Irwin M., McMahon R. 1992, Gemini (Newsletter of the Royal Greenwich Observatory), 37, 1
Jackson R. 1982, Ph.D. thesis, University of California, Santa Cruz
Jörgensen I, Franx M., Kjærgaard P. 1995a MNRAS, 273, 1097
Jörgensen I, Franx M., Kjærgaard P. 1995b MNRAS, 276, 1341
Jörgensen I, Franx M., Kjærgaard P. 1996 MNRAS, 280, 167
Kolatt T., Dekel A. 1994, ApJ, 428, 35
Landolt A.U. 1983, AJ, 88, 439
Landolt A.U. 1994, AJ, 104, 340.
Lucey J.R., Carter D. 1988, MNRAS, 235, 1177
Lucey J.R., Gray P.M., Carter D., Terlevich R.J. 1991a, MNRAS, 248, 804
Figure 12. External comparisons of D_n and FP combination ($\log A_e - 0.3(\mu_e)$). The comparison data are taken from Steel (1997) (R-band), Lucey et al. (1997) (V-band), Jørgensen et al. (1995b) (r-band) and Burstein et al. (1987) (B-band). ΔD_n and ΔFP are plotted in the sense ‘this work’ – ‘literature’, against the mean of our measurement and the literature value. The dotted line indicates the mean offset in each panel.
Table 11. Raw spectroscopic data. In addition to our reference number for each galaxy, we tabulate under ‘Other ID’ the relevant number from NGC, IC, UGC, CGCG catalogues, or from other published work. For each individual observation we list: the dataset from which values derive; $cz = \text{heliocentric recession velocity}$; $\sigma = \text{central velocity dispersion (kms}^{-1}\text{)}$; $\epsilon_{\sigma} = \text{poisson error on } \sigma$; $Mg_2 = \text{magnesium index (magnitudes)}$ and $\epsilon_{Mg_2} = \text{Poisson error on } Mg_2$.

Our ID	Other ID	Dataset	cz	σ	ϵ_{σ}	Mg_2	ϵ_{Mg_2}
S01	N0079	TEK94	5479	194	11	0.307	0.012
S02	N0085A	TEK94	6189	108	6	0.239	0.012
S03	N0083	TEK94	6263	253	14	0.321	0.013
S04	N0080	TEK94	5748	261	12	0.300	0.010
S05	I1548	TEK94	5734	249	13	0.305	0.009
S06	-	TEK94	5775	149	6	0.197	0.008
S07	CGCG457-008	TEK94	5926	115	8	0.254	0.012

Cluster : Taurus

Z01026	N0398	EEV93	4912	104	6	0.261	0.009
Z01027	N0379	EEV93	5503	225	10	0.298	0.009
Z01030	N0380	EEV93	5492	243	16	0.287	0.012
Z01032	-	EEV93	4753	104	9	0.262	0.015
Z01034	CGCG501-077	EEV93	5151	115	11	0.258	0.013
Z01035	N0383	EEV93	5082	269	11	0.293	0.008
Z01036	I1618	EEV93	4720	90	9	0.214	0.017
Z01041	N0386	EEV93	5563	145	9	0.248	0.012
Z01043	N0375	EEV93	5154	314	13	0.306	0.009
Z01046	N0388	EEV93	5243	222	10	0.275	0.009
Z01049	N0384	EEV93	4258	275	10	0.313	0.008
Z01053	CGCG501-102	EEV93	5174	172	10	0.276	0.011
Z02057	N0420	EEV93	5038	196	13	0.229	0.011
Z04035	-	EEV93	23995	261	17	0.238	0.013
Z04049	N0394	EEV93	4378	172	7	0.253	0.010
Z04050	N0392	EEV93	4684	234	8	0.291	0.008
Z04051	N0397	TEK94	4988	124	8	0.258	0.009
Z05034	I1638	EEV93	4810	141	8	0.256	0.010
Z05044	I1648	TEK94	5541	124	8	0.260	0.010
Z05052	N0410	EEV93	5315	292	11	0.344	0.007
Z10020	-	TEK94	4852	85	7	0.227	0.013
Table 11 – continued

Our ID	Other ID	Dataset	cz	σ	ϵ	ϵ_{Mg2}	ϵ_{Mg2}
Z14028	CCGG501-070 TEK94	4264	206	8	0.328	0.008	
Z16012	- EEV93	4252	192	10	0.307	0.009	
Z17005	- TEK94	4651	105	6	0.205	0.010	

Cluster: HMS0122+3305

Cluster ID	Other ID	Dataset	cz	σ	ϵ	ϵ_{Mg2}	ϵ_{Mg2}
H01022	N0528 EEV93	4806	245	9	-	-	
H01027	- TEK94	4976	99	9	0.210	0.011	
H01041	N0499 EEV93	4387	267	13	-	-	
H01044	N0501 TEK94	5010	163	15	0.304	0.011	
H01056	H1680 TEK94	4418	136	6	0.267	0.010	

Cluster: A0262

Cluster ID	Other ID	Dataset	cz	σ	ϵ	ϵ_{Mg2}	ϵ_{Mg2}
A01043	N0687 EEV93	5112	204	10	0.276	0.011	
A01047	CCGG522-048 TEK94	4151	144	7	0.263	0.008	
A01067	N0703 TEK94	5580	225	8	0.311	0.008	
A01069	N0708 TEK94	4855	219	16	0.321	0.016	
A01071	N0705 EEV93	4874	230	18	0.316	0.013	
A01074	N0704 EEV93	4709	161	10	0.296	0.013	

Cluster: J8

Cluster ID	Other ID	Dataset	cz	σ	ϵ	ϵ_{Mg2}	ϵ_{Mg2}
J01049	CCGG483-070 EEV93	8555	316	24	0.298	0.012	
J01055	- TEK94	8556	312	17	0.308	0.009	
J01056	CCGG483-068 EEV93	9438	212	17	0.333	0.016	
J01060	I1803 TEK94	9583	366	13	0.337	0.007	
J01065	- TEK94	9103	133	10	0.153	0.010	
J01067	EFAJ-8-I TEK94	9233	199	11	0.301	0.012	
Table 11 – continued

Our ID	Other ID	Dataset	cz	σ	ε	Mg2	εMg2
J01069	I1807	TEK94	9694	199	9	0.266	0.009
J01070	I1806	EEV93	9013	208	14	0.252	0.014
J01080	I1807	TEK94	10190	177	23	0.306	0.017
J01090	I1807	TEK94	10211	219	11	0.296	0.011
J01099	I1809	TEK94	10236	245	24	0.286	0.018
J01100	I1807	TEK94	9731	164	12	0.240	0.012
J01101	I1807	TEK94	9929	264	27	0.244	0.017
J01102	I1807	TEK94	9927	242	19	0.265	0.011
J02000	I1807	TEK94	9286	135	5	0.273	0.007
J02001	I1808	TEK94	10136	182	11	0.269	0.012
J02002	I1808	TEK94	10099	81	11	0.167	0.017
J02003	I1808	TEK94	9802	204	11	0.283	0.010
J02004	I1808	TEK94	9817	196	14	0.267	0.018
Cluster : Perseus (A0426)							
P01	I0293	EEV93	4704	150	11	0.260	0.015
P02	I0224	TEK94	5235	247	10	0.270	0.009
P03	B0310	TEK94	5560	218	12	0.249	0.010
P04	B0312	EEV93	4978	222	13	0.296	0.012
P05	CR19	TEK94	3544	123	10	0.239	0.015
P06	CR20	TEK94	6454	188	13	0.271	0.017
P07	CR21	TEK94	6469	215	11	0.259	0.012
P08	CR22	TEK94	4247	159	14	0.275	0.014
P09	CR23	TEK94	4965	351	16	0.350	0.008
P10	CR24	TEK94	5019	341	14	0.355	0.014
P11	PER195	TEK94	8391	163	7	0.275	0.009
P12	PER199	TEK94	8392	193	20	0.283	0.018
P13	PER199	TEK94	5078	226	16	0.275	0.016
P14	PER199	TEK94	5105	210	14	0.290	0.016
P15	PER199	TEK94	5113	213	7	0.279	0.008
P16	PER199	TEK94	8053	171	13	0.266	0.012
P17	N1272	TEK94	3802	272	16	0.331	0.011
P18	N1273	TEK94	5387	207	15	0.249	0.013
P19	I1907	EEV93	4479	195	18	0.278	0.016
P20	BGP111	TEK94	3963	86	8	0.279	0.020
P21	PER152	TEK94	3937	142	9	0.309	0.015
P22	CR36	EEV93	7460	202	14	0.280	0.012
P23	N1278	TEK94	6044	235	15	0.292	0.011
P24	N1281	TEK94	4300	276	12	0.324	0.010
P25	N1282	TEK94	2210	213	7	0.292	0.009
P26	BGP59	TEK94	5315	207	9	0.283	0.010
P27	U02673	EEV93	4424	197	14	0.288	0.013
P28	N1283	TEK94	6744	224	12	0.277	0.012
P29	N1285	TEK94	6735	204	13	0.277	0.012
P30	N1283	EEV93	6735	204	13	0.277	0.012
P31	PER153	TEK94	5483	200	11	0.293	0.013
P32	PER153	TEK94	5480	164	7	0.278	0.012
P33	BGP33	TEK94	4950	168	8	0.289	0.009
P34	B0313	TEK94	4432	242	11	0.331	0.009
P35	N1293	TEK94	4170	216	12	0.293	0.011
P36	N1293	EEV93	4149	218	23	0.307	0.015
P37	U02698	EEV93	6472	373	22	0.318	0.012
P38	U02717	EEV93	6421	364	14	0.340	0.009
P39	U02725	TEK94	6215	220	10	0.293	0.008

Table 11 – continued

Our ID	Other ID	Dataset	cz	σ	ε	Mg2	εMg2
Cluster : Coma (A1656)							
N4875	COMA-D104	EEV93	8047	168	13	0.272	0.014
N4886	COMA-D151	EEV93	6372	167	8	0.252	0.014
N4860	COMA-D194	EEV93	7944	312	27	0.324	0.015
N4881	COMA-D217	EEV93	6732	166	14	0.270	0.016
I4011	COMA-D150	EEV93	7233	113	13	0.260	0.012
COMA-D125		EEV93	6910	174	19	0.232	0.017
Cluster : A2199							
A21-F113	-	TEK94	7995	169	14	0.242	0.016
A21-F114	-	TEK94	8068	163	12	0.263	0.013
A21-F121	A2199-S26	TEK94	8783	177	15	0.270	0.013
A21-F144	A2199-S30	TEK94	8754	170	11	0.278	0.012
A21-F145	-	TEK94	7586	152	8	0.270	0.012
A21-F146	A2199-S34	TEK94	8302	154	9	0.263	0.014
A21-F164	N6166	TEK94	9329	269	25	0.321	0.014
A21-Z34A	A2199-Z34A	TEK94	8724	208	10	0.260	0.008
A21-Z34AC	-	TEK94	8949	227	9	0.297	0.008
N6158	-	TEK94	8936	197	14	0.272	0.016
Cluster : A2634							
A26-F102	A2634-D107	TEK94	9298	213	13	-	-
A26-F1201	A2634-D79	TEK94	10156	188	12	0.272	0.014
A26-F121	A2634-D80	TEK94	9547	206	16	0.284	0.014
A26-F1221	N7720	EEV93	9117	354	23	0.308	0.010
A26-F1222	A2634-D76	EEV93	8107	230	15	0.276	0.013
A26-F129	A2634-D74	EEV93	8423	199	16	0.267	0.015
A26-F134	A2634-D55	EEV93	9281	221	14	0.279	0.012
A26-F138	A2634-D58	EEV93	10883	240	18	0.287	0.012
A26-F139	A2634-D57	EEV93	9604	206	11	0.300	0.012
A26-F1482	A2634-D38	TEK94	9345	240	22	-	-

© 0000 RAS, MNRAS 000, 000–000
Table 11 – continued

Our ID	Other ID	Dataset	cz	σ	εcz	Mg2	εMg2
N0541	-	TEK94	5443	218	13	0.307	0.010
N0545	-	TEK94	5341	244	10	0.303	0.008
N0547	-	TEK94	5545	250	12	0.314	0.008
N0548	-	TEK94	5410	148	8	0.237	0.011
N0584	-	TEK94	1833	205	11	0.291	0.009
N0596	-	TEK94	1872	162	5	0.251	0.006
N0621	U01147	EEV93	5086	198	12	0.273	0.013
N0661	U01215	EEV93	3827	197	7	0.288	0.008
N0680	U01286	EEV93	3817	186	6	0	0
N0741	-	TEK94	5545	264	23	0.343	0.029
N0770	U01463	EEV93	2569	111	10	0.213	0.012
N0821	-	TEK94	1758	196	13	0.304	0.014
N0936	-	TEK94	1439	205	12	0.304	0.014
N0968	U02040	EEV93	3627	237	11	0.267	0.011
N1023	-	EEV93	614	194	18	0.326	0.014
N1198	U02533	EEV93	1592	74	6	0.113	0.008
N3377	-	EEV93	655	174	7	0.274	0.006
N3379	-	EEV93	679	129	7	0.206	0.007
N3384	-	EEV93	896	216	5	0.313	0.004
N3412	-	EEV93	735	171	4	0.310	0.006
N3489	-	EEV93	857	104	4	0.238	0.007
N3862	-	EEV93	690	96	4	0.188	0.005
N4472	-	EEV93	966	270	18	0.307	0.017
N4478	-	EEV93	1356	159	11	0.270	0.022
N4564	-	EEV93	1158	191	19	0.380	0.015
N6173	-	TEK94	8790	292	13	0.295	0.007
N6411	-	TEK94	3756	192	13	0.277	0.011
N6482	-	TEK94	3845	175	7	0.209	0.009
N6494	-	TEK94	3931	295	14	0.329	0.016
N6702	-	TEK94	4761	196	12	0.263	0.013
N6703	-	TEK94	4748	169	9	0.202	0.011
N6703	-	TEK94	4739	177	16	0.293	0.012
N6703	-	TEK94	2393	190	12	0.281	0.010
N7236	-	TEK94	2408	201	8	0.265	0.007
N7237	-	TEK94	2388	195	7	0.281	0.007
N7385	-	TEK94	7879	247	10	0.270	0.008
N7391	-	TEK94	7868	203	11	0.312	0.014
N7454	-	TEK94	7856	282	15	0.321	0.009
N7562	-	TEK94	3048	259	9	0.324	0.009
N7617	-	TEK94	3814	337	12	0.335	0.007
N7619	-	TEK94	3836	338	14	0	0
N7626	-	TEK94	3425	281	13	0.322	0.010
N7768	-	TEK94	3454	274	7	0	0
I2955	-	EEV93	6478	245	20	0.228	0.019
U02554	-	TEK94	2863	135	19	0.261	0.017
U03115	-	TEK94	3255	120	18	0.119	0.021
Q05	CGCG477-023	TEK94	8432	204	11	0.296	0.010
Table 12. Photometric data. Together with identification numbers, we tabulate: R_{20} = raw magnitude within 20 arcsec diameter aperture; A_B = B-band galactic extinction; psf = FWHM seeing (arcsec), as measured from stellar images; log A_e = log effective diameter (arcsec); $\langle \mu \rangle_e$ = mean surface brightness (mag. arcsec$^{-2}$) within A_e; rms = rms residual of galaxy profile to best-fit $R^{1/4}$ law (magnitudes); log D_n = log R-band photometric D_n parameter (arcsec).

Cluster : 7S21								
Our ID	Other ID	R_{20}	A_B	psf	log A_e	$\langle \mu \rangle_e$	rms	log D_n
S01	N0079	13.69	0.05	1.8	1.354	20.00	0.01	1.132
S02	N0085A	14.16	0.05	1.5	1.502	20.99	0.03	0.953
S03	N0083	13.10	0.09	1.5	1.659	20.43	0.04	1.318
S04	N0080	12.95	0.09	1.6	1.691	20.28	0.04	1.364
S05	I1548	14.04	0.09	1.2	0.992	18.91	0.03	1.072
S06	-	14.88	0.09	1.0	1.128	20.34	0.01	0.796
S07	CGCG457-008	14.07	0.11	1.3	1.128	19.47	0.02	1.055

Cluster : Pisces								
Z01026	N0398	14.10	0.18	1.1	1.155	19.63	0.01	1.046
Z01027	N0379	12.92	0.17	1.2	1.518	19.81	0.07	1.380
Z01030	N0380	12.86	0.17	1.1	1.341	19.03	0.03	1.385
Z01031	N0381	12.65	0.17	1.5	1.307	18.90	0.02	1.387
Z01032	-	14.78	0.18	2.0	1.100	20.08	0.01	1.852
Z01034	CGCG501-077	14.19	0.16	1.0	1.192	19.79	0.04	1.026
Z01035	N0382	12.59	0.17	1.0	1.788	20.27	0.04	1.483
Z01035C1	N0383	12.58	0.17	1.2	1.791	20.27	0.04	1.486
Z01046	N0384	13.64	0.17	1.0	1.093	19.93	0.04	1.186
Z01047	-	14.44	0.17	0.8	0.839	18.66	0.01	0.991
Z01049	N0385	13.24	0.17	1.1	1.187	18.88	0.02	1.281
Z01073	CGCG501-102	14.08	0.18	1.1	1.072	19.22	0.04	1.283
Z02057	N0420	13.08	0.16	1.1	1.523	19.87	0.02	1.330
Z04049	N0394	13.61	0.18	1.1	1.074	18.82	0.01	1.188
Z04050	N0392	13.00	0.18	1.1	1.366	19.26	0.02	1.351
Z04051	N0397	13.01	0.18	1.1	1.382	19.32	0.02	1.351
Z05034	I1638	14.36	0.18	1.0	1.005	19.25	0.01	1.350
Z05044	I1648	14.34	0.18	1.8	1.032	19.32	0.02	1.003
Z05052	N0410	13.80	0.16	1.1	1.236	19.60	0.03	1.119
Z10092	CGCG501-126	14.62	0.20	1.4	1.134	20.08	0.03	0.879
Z14028	CGCG501-070	13.78	0.18	1.2	0.928	18.39	0.02	1.143
Z16012	-	14.35	0.18	1.4	1.011	18.62	0.03	1.183
Z17005	-	14.47	0.17	1.5	0.937	19.14	0.03	0.969

Cluster : HMS0122+3305

H01022	N0528	13.05	0.17	1.2	1.330	19.20	0.01	1.338
H01041	N0499	12.55	0.17	1.2	1.545	19.44	0.01	1.481
H01044	N0501	14.14	0.16	1.2	1.029	19.16	0.02	1.041
H01051	CGCG502-043	14.08	0.13	1.1	1.100	19.41	0.01	1.048
H01056	I1680	14.03	0.17	1.1	1.035	19.05	0.03	1.073
Table 12 – continued

Cluster	Our ID	psf	log A_p	log D_n	Our ID	psf	log A_p	log D_n	
Cluster : A0262	B02	U01837	13.52	0.34	1.4	1.589	20.43	0.01	1.234
	B03	U01841	13.18	0.34	1.4	1.826	20.77	0.02	1.344
	B03C	-	13.22	0.34	1.4	1.799	20.74	0.02	1.329
	B06	U01859	13.20	0.31	1.4	1.822	19.86	0.02	1.321
	B07	CGCG538-065	13.66	0.39	1.5	1.888	19.20	0.01	1.203
	B08	N969	13.48	0.27	1.2	1.841	19.36	0.03	1.235
	B09	N910	13.42	0.27	1.4	1.025	21.66	0.01	1.227
	B10	N911	13.21	0.27	1.5	1.206	18.81	0.02	1.312
	B11	N912	13.81	0.24	1.2	1.219	19.52	0.01	1.138
	B16	CGCG539-042	13.88	0.30	1.6	1.336	19.94	0.03	1.120
Cluster : A0347	J01049	CGCG483-070	13.93	0.31	1.5	1.612	19.32	0.01	1.136
	J01055	-	14.43	0.28	1.4	1.917	22.31	0.02	0.829
	J01056	CGCG483-068	14.08	0.31	1.4	1.667	21.14	0.03	1.058
	J01060	I1803	13.43	0.28	1.8	1.278	19.22	0.02	1.273
	J01065	-	14.83	0.28	2.0	0.856	19.01	0.01	0.912
	J01067	EFAR-J8-I	14.65	0.28	1.0	0.829	19.90	0.02	0.914
	J01069	I1807	14.19	0.31	2.0	1.118	19.44	0.03	1.062
	J01070	I1806	14.37	0.31	2.4	1.299	20.22	0.01	1.004
	J01080	-	14.37	0.31	1.8	1.290	20.20	0.01	1.004
	J01082	-	15.09	0.34	1.8	0.869	19.28	0.01	0.855
	J03049	-	14.11	0.28	2.2	1.431	20.48	0.01	1.062
	J07038	-	14.11	0.28	1.6	1.445	20.53	0.02	1.062
	J08035	-	15.07	0.32	2.4	0.991	19.74	0.01	0.846
	J08036	EFAR-J8-K	14.53	0.33	1.9	1.215	20.06	0.02	0.972
	J09035	-	14.84	0.35	2.0	1.197	20.99	0.02	0.972
Cluster : Perseus (A0426)	P01	I0293	13.93	0.56	0.9	1.597	20.76	0.03	1.114
	P02	N1224	13.34	0.56	1.0	1.455	19.71	0.01	1.322
	P03	I0310	13.20	0.60	1.0	1.628	20.06	0.01	1.377
	P05	I0312	13.49	0.76	1.2	1.399	19.58	0.03	1.310
	P07	CR19	14.69	0.65	1.3	1.356	20.61	0.02	0.912
	P08	CR20	13.70	0.65	1.3	1.482	20.14	0.04	1.234
	P11	BGP44	14.25	0.60	1.1	1.726	19.94	0.02	1.072
	P12	N1270	13.00	0.65	1.2	1.656	18.23	0.02	1.419
	P13	PER195	13.01	0.65	1.5	1.145	18.17	0.02	1.416
	P14	PER199	14.10	0.69	1.1	1.052	18.88	0.02	1.147
Table 12 – continued

Cluster	Name	RA (deg)	Dec (deg)	Distance (Mpc)	Redshift	Type	Mass (M☉)	Temperature (K)	X-ray Luminosity (Lx)
Perseus	A2199	15.45	0.00	1.3	0.617	18.74	0.00	0.750	
Pisces	A2199-S26	14.43	0.00	1.7	1.265	20.38	0.00	0.924	
	A2199-S30	14.74	0.00	1.2	0.599	17.93	0.01	0.934	
	A2199-S34	14.76	0.00	1.3	0.602	17.88	0.00	0.927	
	A2199-Z34A	14.60	0.00	1.3	1.182	20.28	0.00	0.866	
	A2199-Z34B	15.30	0.00	1.3	0.696	18.93	0.01	0.779	
	A2199-Z34C	15.30	0.00	1.3	1.251	19.95	0.00	1.035	

© 0000 RAS, MNRAS 000, 000-000
Our ID	Other ID	R_{20}	A_B	psf	log A_e	$\langle \mu \rangle_e$	rms	log D_n
A26-F1201	A2634-D79	15.18	0.18	1.6	0.791	19.11	0.01	0.823
		15.17	0.18	2.5	0.803	19.16	0.01	0.819
A26-F121	A2634-D80	15.28	0.18	1.6	0.660	18.64	0.01	0.816
		15.29	0.18	2.5	0.676	18.72	0.02	0.811
A26-F1221	N7720	13.34	0.16	1.2	1.592	20.26	0.04	1.272
		13.34	0.16	1.6	1.568	20.17	0.05	1.273
A26-F1222	A2634-D76	14.62	0.16	1.3	0.788	18.59	0.02	0.963
		14.62	0.16	1.6	0.751	18.44	0.02	0.964
A26-F129	A2634-D74	14.58	0.16	1.3	1.040	19.58	0.00	0.942
		14.57	0.16	1.6	1.029	19.51	0.01	0.948
A26-F134	A2634-D55	14.25	0.16	1.2	1.112	19.51	0.02	1.031
		14.24	0.16	1.6	1.096	19.43	0.02	1.036
A26-F138	A2634-D58	14.28	0.14	1.2	1.210	19.89	0.03	1.098
A26-F139	A2634-D57	14.13	0.14	1.2	1.218	19.81	0.01	1.050

Table 12 – continued
Table 13. Combined spectroscopic and photometric parameters. For each galaxy with both spectroscopic and photometric data, we tabulate: Type = morphological type assigned from CCD images or other source (E = elliptical, S0 = S0/lenticular, R = morphological reject – spiral, disky S0 etc. – Q = unclassified); cz = heliocentric recession velocity (kms\(^{-1}\); \(N_a\) = number of velocity dispersion measurements; \(\sigma\) = central velocity dispersion (kms\(^{-1}\); corrected to standard system, see text); \(\varepsilon\) = poisson error on mean \(\sigma\) value, \(N_{Mg2}\) = number of \(Mg2\) measurements; \(Mg2\) = magnesium index (magnitudes; corrected to standard system); \(N_{D_n}\) = number of photometric observations; \(A_B\) = B-band absorption coefficient; \(\log D_n =\) log effective diameter (arcsec); \(\langle \mu \rangle_n =\) mean surface brightness within \(A_n\); \(\log D_n =\) log R-band photometric \(D_n\) parameter (arcsec).

Our ID	Other ID	Type	cz	\(N_a\)	\(\log \sigma\)	\(\log N_{Mg2}\)	\(Mg2\)	\(\log n_{Mg2}\)	\(N_{D_n}\)	\(A_B\)	\(\log \sigma\)	\(\langle \mu \rangle_n\)	\(\log D_n\)
S01	N0079	E	5479	1	2.280 0.030	1	0.312 0.009	1	0.05 1.354	20.00	1.132		
S02	N0085A	S0	6189	1	2.025 0.030	1	0.244 0.009	1	0.05 1.502	20.99	0.953		
S03	N0083	E	6262	2	2.395 0.021	2	0.326 0.009	1	0.09 1.659	20.43	1.318		
S04	N0080	E	5741	2	2.398 0.021	2	0.308 0.006	1	0.09 1.691	20.28	1.364		
S05	H548	S0	5775	1	2.165 0.030	1	0.202 0.009	1	0.09 0.992	18.91	1.072		
S06	-	S0	5646	2	2.103 0.021	2	0.211 0.009	1	0.09 1.128	20.34	0.796		
S07	CGCG457-008	S0	5926	2	2.053 0.030	1	0.259 0.009	1	0.11 1.128	19.47	1.055		

Cluster: 7S21

Cluster: Pisces

Cluster: HSM0122+3305

Cluster: A0262

© 0000 RAS, MNRAS 000, 000–000
Table 13 – continued

Cluster : A0347

Object	RA	Dec	Redshift	Distance	Velocity
B02	U01837	E	6582	1	2.286
B03	U01841	E	6373	1	2.363
B05C	-	Q	6649	2	2.473
B06	U01859	E	5917	1	2.550
B07	CCXG328-065	S0	5301	1	2.308
B08	N909	E	4978	1	2.273
B09	N9010	R	5237	2	2.391
B10	N911	S0	5766	1	2.400
B11	N912	E	4418	1	2.235
B16	CCXG339-042	E	4885	1	2.185

Cluster : J8

Object	RA	Dec	Redshift	Distance	Velocity
J07038	S0	10136	1	2.261	0.300
J09035	S0	11133	1	2.451	0.300
J08035	R	10099	1	1.910	0.300
J08036	EFAR-J8-K	E	9803	3	2.288
J01065	S0	9103	1	2.125	0.300
J01067	EFAR-J8-I	E	9237	2	2.300
J01060	I1803	E	9583	1	2.565
J01070	I1806	E	10219	3	2.332
J01049	E	9933	2	2.400	
J01055	E	9616	2	2.184	
J01056	CCXG383-068	E	9513	3	2.371
J01049	CCXG383-070	E	8562	2	2.494
J01056	I1807	S0	9058	2	2.309
J01080	S0	9731	1	2.216	0.300

Cluster : Perseus (A0426)

Object	RA	Dec	Redshift	Distance	Velocity
P01	I0293	E	4714	1	2.171
P03	N1224	S0	5235	1	2.384
P03	I0310	S0	5660	1	2.329
P05	I0312	S0	4988	1	2.342
P07	CR19	E	3544	1	2.081
P08	CR20	E	6461	2	2.294
P11	BGP44	E	4247	1	2.192
P12	N1270	E	4997	2	2.530
P13	PERI95	E	8396	2	2.231
P14	PERI99	S0	5102	3	2.233
P15	CR28	S0	8063	1	2.228
P16	CR27	S0	8063	1	2.228
P17	N1272	S0	3801	7	2.417
P18	N1273	S0	5397	1	2.311
P19	I1070	S0	4489	1	2.285
P20	BGP111	E	3963	1	1.925
P21	PER152	E	3940	2	2.134
P22	CR36	E	7470	1	2.301
P23	N1278	E	6064	3	2.411
P26	BGP59	E	5315	1	2.307
P27	U02673	E	4434	1	2.290
P28	N1281	E	4300	1	2.432
P29	N1282	E	2223	4	3.232
P30	N1283	E	6746	2	2.320
P31	PERI63	E	5481	2	2.249
P33	BGP33	S0	4950	1	2.216
P34	I0313	S0	4432	1	2.375
P36	N1293	E	4167	3	2.321
P37	U02698	E	6451	2	2.557
P38	U02717	E	3793	2	2.189
P39	U02725	S0	6215	1	2.333

Cluster : A2199

Object	RA	Dec	Redshift	Distance	Velocity									
A21-F113	-	Q	8052	4	2.217									
A21-F114	-	S0	9184	4	2.297									
A21-F121	A2199-S26	E	8768	2	2.239									
A21-F144	A2199-S30	E	8524	2	2.411									
A21-F145	R	7610	2	2.173										
A21-F146	A2199-S34	E	8314	2	2.205									
A21-F164	N6166	E	9348	2	2.442									
A21-Z34A	A2199-Z34A	E	8721	2	2.298									
A21-Z34AC	S0	8964	2	2.337										
Cluster	A2634-D58	A2634-D57	E 9591	4	2.331	0.017	4	0.327	0.005	1	0.14	1.218	19.81	1.050
---------	-----------	-----------	--------	----	--------	--------	----	--------	--------	----	-------	--------	--------	--------
A26-F129	A2634-D74	S0 8425	3	2.315	0.019	3	0.301	0.006	2	0.16	1.035	19.55	0.945	
A26-F121	A2634-D80	E 9582	4	2.262	0.017	4	0.286	0.005	2	0.18	0.668	18.68	0.814	
A26-F1201	A2634-D79	S0 10166	4	2.234	0.019	4	0.295	0.005	2	0.18	0.797	19.13	0.821	
A26-F134	A2634-D55	E 9288	3	2.342	0.019	3	0.300	0.006	2	0.16	1.104	19.47	1.034	
A26-F122	A2634-D74	S0 8425	3	2.315	0.019	3	0.301	0.006	2	0.16	1.035	19.55	0.945	
A26-F1221	N7720	E 9104	5	2.527	0.015	5	0.331	0.004	2	0.16	1.580	20.22	1.273	
A26-F1222	A2634-D76	E 8123	5	2.320	0.015	5	0.296	0.004	2	0.16	0.770	18.52	0.964	
A26-F139	A2634-D57	E 9591	4	2.331	0.017	4	0.327	0.005	1	0.14	1.218	19.81	1.050	