THE IDEAL-VALUED INDEX OF FIBRATIONS WITH TOTAL SPACE A G_2 FLAG MANIFOLD

NOÉ BÁRCENAS AND JAIME CALLES LOPERENA

Abstract. Using the cohomology of the G_2-flag manifolds $G_2/U(2)_\pm$, and their structure as a fiber bundle over the homogeneous space $G_2/\text{SO}(4)$, we compute the \mathbb{Z}_2 Fadell-Husseini index of such fiber bundles for the \mathbb{Z}_2 action given by complex conjugation.

Also, considering the tautological bundle γ over $G_2(\mathbb{R}^7)$, we compute the \mathbb{Z}_2 Fadell-Husseini index of the pullback bundle of $s\gamma$ along the composition of the fiber bundle $G_2/U(2)_+ \to G_2/\text{SO}(4)$, the embedding between $G_2/\text{SO}(4)$ and $G_3(\mathbb{R}^7)$, and the map that takes the orthogonal complement of a subspace. Here $s\gamma$ means the associated sphere bundle of γ. Furthermore, we derive a general formula for the n-fold product bundle $s\gamma^n$ for which we make the same computations. We finish our work with an application of our computations in a problem concerning discrete geometry.

Keywords and phrases: Fadell-Husseini index, Fiber bundle, G_2 flag manifold, Serre spectral sequence.

2010 Mathematics Subject Classification: (Primary) 55N91; (Secondary) 55T10, 57R20, 14M15.

1. Introduction.

A generalized flag manifold is an homogeneous space of the form $G/C(T)$, where G is a semisimple, compact and connected Lie group, and $C(T)$ is the centralizer of a torus $T \subset G$. In case that T is the maximal torus, then $T = C(T)$ and we call G/T a complete flag manifold.

The group in which we want to focus is the exceptional Lie group G_2, which is the automorphism group of the \mathbb{R}-algebra homomorphisms of the octonions \mathbb{O}. From all the possible G_2 flag manifolds, we are particularly interested in the spaces $G_2/U(1) \times U(1)$ and $G_2/U(2)_\pm$. In the following diagram of fiber bundles we appreciate how they are related:

\[
\begin{array}{ccc}
G_2/U(1) \times U(1) & \overset{\rho_4}{\longrightarrow} & G_2/U(2)_+ \\
\rho_1 & \downarrow & \rho_2 \\
G_2/\text{SO}(4) & \overset{\rho_3}{\longrightarrow} & G_2/U(2)_-
\end{array}
\]

In fact, those flag manifolds are precisely the only three twistor spaces of the homogeneous space $G_2/\text{SO}(4)$, see [25, Sec. 2.3].

Previous to this work, several authors studied the integral cohomology of all the homogeneous spaces appearing in diagram 1.1. In sections 3 and 4 we calculate their cohomology with \mathbb{F}_2 coefficients, and the Stiefel-Whitney classes of the fiber.
bundles ρ₁ and ρ₂. Moreover, because of these calculations, in section 4 we show that the cohomology rings with \(\mathbb{F}_2 \) coefficients of \(G_2/U(2)_± \) and \(G_2/U(2)_± \) are isomorphic. For that reason we will not distinguish between them and we will just write \(G_2/U(2)_± \).

Considering the action of \(\mathbb{Z}_2 \) on \(G_2/U(2)_± \) by complex conjugation, in section 4.3 we prove our first main result.

Theorem 4.6. The Fadell-Husseini index of \(ρ_1 \) and \(ρ_2 \) is given by

\[
\text{Index}_{\mathbb{Z}_2}^{G_2} = \text{Index}_{\mathbb{Z}_2}^{G_2}(\rho_2; \mathbb{F}_2) = \langle t^3 + u_2 t + u_3 \rangle,
\]

where \(H^*(B\mathbb{Z}_2; \mathbb{F}_2) = \mathbb{F}_2[t] \) with \(\deg(t) = 1 \). Consequently, the Borel cohomology of \(G_2/U(2)_± \) is given by

\[
H^*(E\mathbb{Z}_2 \times \mathbb{Z}_2, G_2/U(2)_±; \mathbb{F}_2) = H^*(B\mathbb{Z}_2 \times G_2/\text{SO}(4); \mathbb{F}_2) / \langle t^3 + u_2 t + u_3 \rangle.
\]

On the other hand, let us consider the tautological bundle over the oriented Grassmann manifold \(\tilde{G}_k(\mathbb{R}^n) \):

\[
\gamma_k = (E(\gamma_k^d), \tilde{G}_k(\mathbb{R}^d), E(\gamma_k^d) \xrightarrow{\sigma} \tilde{G}_k(\mathbb{R}^d), \mathbb{R}^k),
\]

and the \(n \)-fold product associated to sphere bundle \(s\gamma_k^d \):

\[
(s\gamma_k^n) = (E(s\gamma_k^n), \tilde{G}_k(\mathbb{R}^d)^n, E(s\gamma_k^n) \xrightarrow{(s\gamma_k^n)} \tilde{G}_k(\mathbb{R}^d)^n), (S^{k-1})^n).
\]

Given the pullback bundle of \((s\gamma_k^n)^\Delta_n \) along the diagonal map \(\Delta_n \):

\[
E \left(\Delta_n^*(s\gamma_k^n) \right) \xrightarrow{\Delta_n} E(s\gamma)^n
\]

the total space of \(\Delta_n^*(s\gamma_k^n) \) has been an excellent candidate to be the configuration spaces of several geometric problems which uses the configuration space/test map scheme. This means that, the more we know about the pullback bundle \(\Delta_n^*(s\gamma_k^n) \), the better chance we have of solving any related problem.

Motivated by this situation, and by some calculations over Grassmann manifolds presented in [5] and [6], in this work we will study the following situation: Let us consider the sphere bundle of the \(n \)-fold product \(\gamma^n \), where \(\gamma \) represents the tautological bundle over \(\tilde{G}_4(\mathbb{R}^7) \):

\[
\sigma \gamma = (E(\gamma), \tilde{G}_4(\mathbb{R}^7), E(\gamma) \xrightarrow{\sigma} \tilde{G}_4(\mathbb{R}^7), S^3).
\]

Since there is an embedding \(i \) between \(G_2/\text{SO}(4) \) and \(\tilde{G}_3(\mathbb{R}^7) \), we consider the map \(f = c \circ i \), where \(c: \tilde{G}_3(\mathbb{R}^7) \to \tilde{G}_4(\mathbb{R}^7) \) assign to every linear subspace its orthogonal complement. We are interested on the pullback bundle of \((\sigma \gamma)^n \) along the map \(\Delta_n \circ f \circ \rho_j \), where \(\Delta_n : G_4(\mathbb{R}^7) \to G_4(\mathbb{R}^7) \) is the diagonal map:

\[
\zeta_n = (E(\zeta_n) = S^n_\gamma, G_2/U(2)_±, S^n_\gamma \xrightarrow{\rho} G_2/U(2)_±, (S^3)^n).
\]

An example of this kind of constructions appears in [6]. The total space \(S^n_\gamma \) considers now collections of unit vectors inside 4-dimensional subspaces of \(\mathbb{R}^7 \), which are exactly the orthogonal complement of spaces which we usually called associative subspaces. The specific details about the construction of \(S^n_\gamma \), as well as some topological properties of the bundle \(\zeta_n \), are discussed further in section 4.4. We will prove then the following results:
Theorem 4.9. Consider the action of \mathbb{Z}_2^n on S^n_γ where each summand in \mathbb{Z}_2^n acts antipodally on a unit vector. Then the Fadell-Husseini index of $\phi_n : S^n_\gamma \to G_2/U(2)$ is given by

$$\text{Index}_{G_2/U(2)}(\phi_n ; F_2) = \langle y^2 + yt^2 + t^4, \ldots, y^2 + yt^2 + t^4 \rangle.$$

where $H^*(\mathbb{Z}_2^n ; F_2) = F_2[t_1, \ldots, t_n]$ with $\deg(t_1) = \cdots = \deg(t_n) = 1$.

At the end of the work we present an application of our computations to a mass partition problem, a classical problem in discrete geometry.

Acknowledgements. The first author thanks Manuel Sedano for enlightening conversations concerning homogeneous spaces and their almost complex structures, and Gregor Weingart about the cohomology and characteristic classes of G_2-homogeneous manifolds. The first author thanks the support by PAPIIT Grant IA 100119 and IN 100221, as well as a Sabbatical Fellowship by DGAPA-UNAM for a stay at the University of the Saarland and the SFB TRR 195 Symbolic Tools in Mathematics and their Application.

The second author was supported by the UNAM Postdoctoral Scholarship Program (DGAPA). The authors thank the support of CONACYT through grant CF-2019 217392 and Hood Chatham for his support concerning the latex package spectralsequences.

2. The Exceptional Lie Group G_2.

In this section we will recall three equivalent definitions of the real form of the exceptional Lie group G_2. Let us fix now the notation. General references for the upcoming discussion include [4] and [14].

2.1. Octonions algebra. Given a normed division algebra A, the Cayley-Dickinson construction creates a new algebra A' with elements $(a, b) \in A^2$ and conjugation $(a, b)^* = (\bar{a}, -b)$. The addition in A' is done component-wise, and multiplication goes like

$$(a, b)(c, d) = (ac - db, \bar{a}d + cb),$$

where juxtaposition indicates multiplication in A. An equivalent way to define the new algebra A' is to add an independent square root of -1, i, that multiplies the second named element on each pair (a, b). Now the conjugation in A' uses the original conjugation of A and $i^* = -i$. Then the construction becomes an algebra of elements $a + ib$ for some $a, b \in A$.

Starting with \mathbb{R}, the complex numbers are defined via the Cayley-Dickinson construction to be elements $a + ib$, with a and b real numbers. Similarly, the quaternions are generated as a real algebra by $\{1, i, j, k\}$, subject to the relations $i^2 = j^2 = k^2 = ijk = -1$. Having this in mind, we get the following definition

Definition 2.1. The octonions are generated as a quaternionic algebra via the Cayley-Dickinson construction as $\mathbb{H} \oplus \mathbb{H}[l]$, where l denotes an independent square root of -1.

Even if the Cayley-Dickinson construction is an excellent method to produce other normed division algebras, we lost very nice properties in the process. The multiplication in \oplus turns out to be non-commutative and non-associative. As a real vector space, \oplus is generated by $\{1, i, j, k, l, li, lj, lk\} = \{1, e_1, \ldots, e_7\}$, where e_1, e_2, \ldots, e_7 are imaginary units, which square to -1, switch sign under complex conjugation and anticommute. They span the seven dimensional real subspace which we will denote as the purely imaginary part of the octonions, $\text{Im } \mathbb{O}$.
Denote by \(\cdot \) the product furnishing the octonions with the structure of real division algebra. The product \(\cdot \) determines a cross product in \(O \), expressed as
\[
x \times y := \frac{1}{2} (x \cdot y - y \cdot x),
\]
which contains all the non-trivial algebraic information about the octonions, and turns \(\text{Im } O \) into an algebra. In case that \(x \) and \(y \) are imaginary cotonions, the relation \(x \cdot y + (x, y) = x \times y \) holds, where \((x, y) \) represents the scalar product.

As will be discussed below, the algebra \((\text{Im } O, \times) \) provides a new definition of the group \(G_2 \).

2.2. The exceptional Lie group \(G_2 \): three equivalent definitions. Now that we are familiar with the \(\mathbb{R} \)-algebra \(O \), we are ready to introduce the main ingredient of this work.

Definition 2.2. The exceptional Lie group \(G_2 \) is defined to be the group of all \(\mathbb{R} \)-algebra automorphisms of the octonions.

We will consider an alternative but equivalent definition of \(G_2 \): Given two orthogonal and unit imaginary octonions \(x \) and \(y \), the cross product \(x \times y \) is orthogonal to both of them, and the subalgebra generated by \(\{1, x, y, x \times y\} \) is isomorphic to \(H \). If we consider another unit imaginary octonion \(z \), orthogonal to the subspace generated by \(\{1, x, y, x \times y\} \), then the subalgebra over the quaternions \(H \oplus H[z] \) is isomorphic to the octonions. This has the consequence that an element \(g \in G_2 \) can be characterized by prescribing three unit imaginary octonions \(\{x, y, z\} \), with \(z \) orthogonal to \(x, y \) and \(x \times y \). The element \(g \) is then the unique automorphism of the imaginary part of the octonions, which sends \(\{x, y, z\} \) to \(\{i, j, l\} \). Then the exceptional Lie group \(G_2 \) is defined to be the automorphism group of the algebra \((\text{Im } O, \times) \).

On \(\text{Im } O \) one can define a cross product three-form on the generators \(e_i, e_j, e_k \) as
\[
\phi(e_i, e_j, e_k) = f^{ijk},
\]
where \(e_i \times e_j = \sum_k f^{ijk} e_k \). If we consider the dual basis \(\{w^i := e_i^*\} \) of the generators \(\{e_i\} \) given above, then the three-form \(\phi \) is given by
\[
\phi = w^{123} - w^{145} - w^{167} - w^{246} + w^{257} - w^{347} - w^{356},
\]
where the notation \(w^{ijk} \) denotes the wedge product \(e^i \wedge e^j \wedge e^k \). Notice that \(\phi \) encodes the multiplicative structure of the cross product in the imaginary part of the octonions. Then, using the above considerations, we obtain a third equivalent definition of the exceptional Lie group \(G_2 \) as follows:
\[
G_2 = \{g \in \text{GL}(\text{Im } O) \mid g^* \phi = \phi \}.
\]

The following result summarizes the previous discussion about the real form of \(G_2 \), besides some of its properties presented by Bryant in [11, Theorem 1].

Theorem 2.3. The real form of the group \(G_2 \) has dimension 14. It is simple, simply connected, and is isomorphic to one and hence to all of the following Lie groups:

- (i) The group of all \(\mathbb{R} \)-algebra automorphisms of the octonions.
- (ii) The automorphism group of the subalgebra \((\text{Im } O, \times) \).
- (iii) The subgroup of \(\text{SO}(7) \) which preserves the cross product three form.
3. \(G_2\) FLAG MANIFOLDS

The flag manifolds on \(G_2\) have received recently a lot of attention from several viewpoints. From riemannian geometry ([11], [25]), algebraic topology relevant to global analysis [1], complex and Kähler geometry ([19], [23]), and from the classical computations of their characteristic classes via representation theory by Borel and Hirzebruch ([10], [16]). The combination of the above facts, excellently produced in [19], aroused our interest in the subject and gave us the idea to calculate the Fadell-Husseini index of some fiber bundles over \(G_2/\text{SO}(4)\) with total space a \(G_2\)-flag manifold.

In this section we introduce some flag manifolds associated to the exceptional Lie group \(G_2\). Since we are particularly interested on the \(G_2\)-flag manifolds which fiber over \(G_2/\text{SO}(4)\), we are going to start introducing the \(G_2\)-homogeneous space \(G_2/\text{SO}(4)\) in order to define the fiber bundles for which we want to calculate their Fadell-Husseini indices.

3.1. The space of associative subspaces \(G_2/\text{SO}(4)\). Now that we have introduced the exceptional Lie group \(G_2\) with some equivalent definitions, we are ready to study the \(G_2\)-homogeneous space that we are going to use.

Definition 3.1. A 3-dimensional subspace \(\xi \subset \text{Im } O\) is said to be associative if it is the imaginary part of a subalgebra isomorphic to the quaternions.

Notice that the subspace \(\xi\) acquires a canonical orientation from that of the quaternions. On the other hand, in terms of the three-form defined in 2.2, we can also define an associative subspace as the 3-dimensional real subspace of \(\mathbb{R}^7 \cong \text{Im } O\) in which the three-form \(\phi\) agrees with the volume form \(\text{Vol}(\xi)\).

The group \(G_2\) stabilizes 1, and since the scalar product is the real part of the octonionic multiplication \(\cdot\), it acts by isometries on \(\text{Im } O\). Since also preserves the vector product, it preserves orientation so that

\[
G_2 \subset \text{SO}(\text{Im } O) \cong \text{SO}(7).
\]

Every associative subspace \(\xi\) admits an orthonormal basis \(\{e_1, e_2, e_3\}\) with \(e_1 \times e_2 = e_3\). Then, given such a triple \(\{e_1, e_2, e_3\}\), there exists a unique automorphism in \(\text{Im } O\) taking the ordered triple \(\{i, j, l\}\) to it. This induces a transitive action of \(G_2\) on the Grassmannian of associative 3-dimensional subspaces of \(\text{Im } O \cong \mathbb{R}^7\), with stabilizer \(\text{SO}(4)\). Then \(G_2/\text{SO}(4)\) is the set of all associative 3-dimensional subspaces of \(\text{Im } O \cong \mathbb{R}^7\). Finally, since every associative subspace has a canonical orientation, there is an embedding of \(G_2/\text{SO}(4)\) in the 3-dimensional oriented Grassmannian manifold \(G_3(\mathbb{R}^7)\), with \(\mathbb{R}^7 \cong \text{Im } O\).

Borel and Hirzebruch studied in [10] the cohomology with \(\mathbb{F}_2\)-coefficients and the Stiefel-Whitney classes of \(G_2/\text{SO}(4)\). They proved the following result:

Proposition 3.2. The homogeneous space of associative 3-dimensional real subspaces, denoted by \(G_2/\text{SO}(4)\), is an 8-dimensional manifold for which \(H^*(G_2/\text{SO}(4); \mathbb{F}_2)\) is generated by two elements \(u_2, u_3\) of degrees 2 and 3 respectively, with the relations

\[
u_2^3 = u_3^2 \quad \text{and} \quad u_3u_2^2 = 0.
\]

Also, the Stiefel-Whitney classes of \(G_2/\text{SO}(4)\) are non-zero only in dimensions 0, 4, 6 and 8.

On the other hand, Shi and Zhou in [24, Section 10], Thung in [19, Section 2], and Akbulut and Kalafat [1, Theorem 10.3], studied the integral cohomology of \(G_2/\text{SO}(4)\), and the relations between the corresponding generators to write it as a truncated polynomial algebra.
Proposition 3.3. The integral cohomology of $G_2/\text{SO}(4)$ is a truncated polynomial algebra generated by two elements a and b, of degree 3 and 4 respectively, subject to the relations
\[\{2b = 0, \ b^3 = 0, \ a^3 = 0, \ ab = 0\} \]

3.2. The six dimensional sphere $G_2/\text{SU}(3)$. We are going to start with a G_2-flag manifold that, even if it do not fibre over $G_2/\text{SO}(4)$, it is a good first example of this type of spaces.

Remember that, by theorem 2.3(part ii), G_2 can be characterized by triples \{x, y, z\} of mutually orthogonal unitary vectors in $\text{Im} \mathcal{O}$, where z is also orthogonal to $x \times y$. This means that the six dimensional sphere, which can be seen as the unitary vectors in the seven dimensional real subspace $\text{Im} \mathcal{O}$, carries a transitive action of G_2.

To determine the isotropy group of an element $l \in S^6$, consider the subspace V defined as the orthogonal complement of l inside \text{Im} \mathcal{O}, and the complex structure on V given by the left multiplication by l. The identification with \mathbb{C}^3, equipped with its standard Hermitian scalar product, induces a scalar product on V defined as
\[(v, w)_V = (v, w) + l(v, lw), \]
where $(-, -)$ denote the standard real product. Since $g \in (G_2)_l$ preserves $(-, -)$, it also preserves $(-, -)_V$, and $(G_2)_l \subset U(V) \cong U(3)$. Calculating the determinant of $g \in (G_2)_l$, can be proved that actually the isotropy group is isomorphic to $SU(3)$.

We have obtained the following result:

Proposition 3.4. There is a transitive action of G_2 on S^6 with isotropy group isomorphic to $SU(3)$, i.e. $S^6 \cong G_2/\text{SU}(3)$.

3.3. The space of complex coassociative 2-planes $G_2/\text{U}(2)_+$. We will consider now the complexification of the purely imaginary subspace of the octonions, which is isomorphic as complex vector space \mathbb{C}^7, in symbols $\text{Im} \mathcal{O} \otimes_{\mathbb{R}} \mathbb{C} \cong \mathbb{C} \mathbb{C}^7$.

Definition 3.5. We call a complex 2-dimensional subspace $W \subset \mathbb{C}^7$ coassociative if $v \times w = 0$ for all $v, w \in W$.

Notice that the coassociative subspace W is automatically isotropic. Also, the associative three-form $\phi \otimes \text{id}$ defines a complex three-form ϕ_C on the complex space \mathbb{C}^7. So, in terms of the three-form defined in 2.2, a complex vector subspace $W \subset \mathbb{C}^7$ is called coassociative if the complexified form ϕ_C vanishes on V. We will consider coassociative complex lines (1-dimensional complex subspaces) and coassociative planes (2-dimensional complex subspaces).

On the other hand, let J be an orthogonal almost complex structure on ξ^\perp with $(1, 0)$-space W, where ξ is an associative subspace in $\text{Im} \mathcal{O}$, and W is the eigenspace associated to the eigenvalue i of J. Choose now an orthonormal basis \{e_1, e_2, e_3, e_4\} of ξ^\perp with $J(e_1) = e_2$ and $J(e_3) = e_4$. We say that J, or the corresponding $(1, 0)$-space W, is positive (resp. negative) according as the basis of ξ^\perp is positive (resp. negative).

The following result, which connects the notion of complex-coassociative and positive subspaces, is proved in [25, Lemma 2.2, page 293].

Lemma 3.6. Let ξ be an associative 3-dimensional subspace in $\text{Im} \mathcal{O}$, and let $W \subset \xi^\perp \otimes \mathbb{C}$ be a maximally isotropic subspace. Then W is positive if and only if it is complex coassociative.
Consider the space of all complex coassociative 2-dimensional subspaces of \mathbb{C}^7. Since such space has a transitive action of G_2 with stabilizer isomorphic to $U(2)$, then we have the following definition.

Definition 3.7. The space of complex coassociative 2-planes in $\text{Im} \, \hat{\Omega} \otimes \mathbb{C}$ will be denoted by $G_2/U(2)_+$.

The reason for the notation comes from lemma 3.6. Moreover, there is a map

$$\rho_1 : G_2/U(2)_+ \rightarrow G_2/SO_4,$$

given by $W \mapsto (W \oplus \overline{W})^\perp$, which exhibits $G_2/U(2)_+$ as the total space of a locally trivial smooth fibration with fiber $\mathbb{C}P^1 \approx S^2$. By lemma 3.6 the fiber of any $\xi \in G_2/SO(4)$ is all positive maximally isotropic subspaces of $\xi^\perp \otimes \mathbb{C}$, equivalently, all positive orthogonal almost complex structures on ξ^\perp. Actually, by [25, section 4.4] there is an identification of $G_2/U(2)_+$ with a quaternionic twistor space of G_2/SO_4.

As is exposed in [19, Prop. 3], the cohomology of $G_2/U(2)_+$ with integral coefficients is generated by classes $g_i \in H^2(G_2/U(2)_+, \mathbb{Z})$, for $i = 1, \ldots, 5$, and the multiplicative structure is determined by the relations

$$g_1^2 = 3g_2, \quad g_1g_2 = 2g_3, \quad g_2^2 = 2g_4, \quad g_4g_4 = g_5.$$

The cohomology with coefficients in \mathbb{F}_2 will be calculated in subsection 4.3.

3.4. The space of complex non-coassociative 2-planes $G_2/U(2)_-$.

Definition 3.8. The space of all 2-planes in $\text{Im} \, \hat{\Omega} \otimes \mathbb{C}$ which are not complex coassociative will be denoted by $G_2/U(2)_-$.

Similarly to $G_2/U(2)_+$, the reason for the notation comes from lemma 3.6. A 2-dimensional real subspace W, which is a $(1,0)$-space for a negative orthogonal almost complex structure in ξ^\perp, is said to be negative and is still a maximally isotropic subspace of $\xi^\perp \otimes \mathbb{C}$.

Alternatively, we can think the space $G_2/U(2)_-$ as follows: Let Q^5 be the complex quadric

$$\left\{[z_1, \ldots, z_7] \in \mathbb{C}P^6 \mid \sum_{i=1}^7 z_i^2 = 0 \right\}$$

consisting of all 1-dimensional isotropic subspaces of $\text{Im} \, \hat{\Omega} \otimes \mathbb{C}$. There is a G_2-equivariant isomorphism from Q^5 to $G_2/U(2)_-$ given by $\ell \mapsto \ell^\perp \cap \ell^0$, with inverse $W \mapsto W \times W$, where $\ell^0 = \{x \in \text{Im} \, \hat{\Omega} \otimes \mathbb{C} \mid x \times \ell = 0\}$ is the annihilator of ℓ.

Since $G_2(\mathbb{R}^7)$ is also diffeomorphic to the complex quadric Q^5, we can identify every element in $G_2/U(2)_-$ as an oriented plane P with oriented, orthonormal basis $\{x, y\}$. Then there is a well defined map $\rho_6 : G_2/U(2)_- \rightarrow S^6$ which sends $P \mapsto x \times y$. Actually, the oriented plane P can be identified, via the standard almost complex structure of S^6, with a complex line in $T_{xy}S^6$. Recall that the standard almost complex structure on S^6 at the point $v \in S^6$ is given by the left-multiplication L_v. On the other hand, given an element $k \in S^6$, there is an oriented orthonormal basis $\{x, y\}$ of a complex line in T_kS^6 that satisfies $k = xy$. This means that the fiber over an element $v \in S^6$ is precisely $\mathbb{P}(T_vS^6)$. This exhibits $G_2/U(2)_-$ as $\mathbb{P}(TS^6)$ with ρ_6 as the base point projection. We can also think of ρ_6 as a fibration with fibers diffeomorphic to $\mathbb{C}P^2$.

Finally, the isomorphism $TS^6 \cong T^*S^6$ as real vector bundles induces a diffeomorphism $\mathbb{P}(TS^6) \cong \mathbb{P}(T^*S^6)$. The following result resumes all the diffeomorphic definitions of $G_2/U(2)_-$. See [19, Prop. 8].

Proposition 3.9. The following 10-dimensional manifolds are all diffeomorphic to each other:
(i) The space of all 2-planes in \(\text{Im} \mathcal{O} \oplus \mathbb{C} \) which are not complex coassociative.

(ii) The Grassmannian \(\tilde{G}_2(\mathbb{R}^7) \) of oriented 2-planes in \(\mathbb{R}^7 \).

(iii) The complex quadric

\[
Q^5 = \left\{ [z_1, \ldots, z_7] \in \mathbb{C}P^6 \mid \sum_{i=1}^{7} z_i^2 = 0 \right\}
\]

(iv) The projectivization of the tangent and cotangent bundle \(\mathbb{P}(T^6) \) and \(\mathbb{P}(T^*S^6) \) for any almost complex structure in \(S^6 \).

The cohomology with integral coefficients of \(G_2/U(2)_- \) is calculated in [19, Prop. 11]. It is the quotient of a polynomial algebra with generators \(x \) in degree 6, and \(y \) in degree 2, satisfying the relations \(x^2 = 0 \) and \(y^3 = -2x \). Unlike \(G_2/U(2)_+ \), using the bundle \(\rho_6 \) we can calculate the cohomology ring of \(G_2/U(2)_- \) with \(\mathbb{F}_2 \) coefficients as follows:

Proposition 3.10. The cohomology of \(G_2/U(2)_- \) with coefficients in \(\mathbb{F}_2 \) is given by

\[
H^*(G_2/U(2)_-, \mathbb{F}_2) = \mathbb{F}_2[x, y]/(x^2, y^3),
\]

where \(\deg(y) = 2 \), \(\deg(x) = 6 \).

Proof. Consider the fiber bundle

\(\mathbb{C}P^2 \hookrightarrow G_2/U(2)_- \to S^6 \)

and the corresponding Serre spectral sequence. Since \(S^6 \) is simply connected, there are no local coefficients and the \(E_2 \)-term is given by

\[
E_2^{p,q} = H^p(S^6; H^q(\mathbb{C}P^2; \mathbb{F}_2)).
\]

Let us denote the cohomology of the fiber \(\mathbb{C}P^2 \) and the base space \(S^6 \) as follows:

\[
H^*(\mathbb{C}P^2; \mathbb{F}_2) = \mathbb{Z}_2[x]/(x^2) \quad \text{and} \quad H^*(S^6; \mathbb{F}_2) = \mathbb{F}_2[y]/(y^3).
\]

For an illustration of the \(E_2 \)-term see Figure 1. Then, since all the possible differentials are trivial, \(E_2^{p,q} \cong E_\infty^{p,q} \) and

\[
H^n(G_2/U(2)_-, \mathbb{F}_2) = \mathbb{F}_2[x, y]/(x^2, y^3).
\]

\[\begin{array}{cccccccc}
\text{H}^0(\mathbb{C}P^2; \mathbb{F}_2) & & & & & & & \\
\text{H}^1(\mathbb{C}P^2; \mathbb{F}_2) & & & \text{x} & & & & \\
\text{H}^2(\mathbb{C}P^2; \mathbb{F}_2) & & & \text{x} & & & & \\
\text{H}^3(\mathbb{C}P^2; \mathbb{F}_2) & & & & & & & \\
\text{H}^4(\mathbb{C}P^2; \mathbb{F}_2) & & & & & & & \\
\text{H}^5(\mathbb{C}P^2; \mathbb{F}_2) & & & & & & & \\
\text{H}^6(\mathbb{C}P^2; \mathbb{F}_2) & & & & & & & \\
\text{H}^7(\mathbb{C}P^2; \mathbb{F}_2) & & & & & & & \\
\text{H}^8(\mathbb{C}P^2; \mathbb{F}_2) & & & & & & & \\
\end{array}\]

\[\begin{array}{cccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\text{H}^0(S^6; \mathbb{F}_2) & & & & & & & \\
\text{H}^1(S^6; \mathbb{F}_2) & & & & & & & \\
\text{H}^2(S^6; \mathbb{F}_2) & & & & & & & \\
\text{H}^3(S^6; \mathbb{F}_2) & & & & & & & \\
\text{H}^4(S^6; \mathbb{F}_2) & & & & & & & \\
\text{H}^5(S^6; \mathbb{F}_2) & & & & & & & \\
\text{H}^6(S^6; \mathbb{F}_2) & & & & & & & \\
\text{H}^7(S^6; \mathbb{F}_2) & & & & & & & \\
\text{H}^8(S^6; \mathbb{F}_2) & & & & & & & \\
\end{array}\]

Figure 1. \(E_2^{p,q} = H^p(S^6; H^q(\mathbb{C}P^2; \mathbb{F}_2)) \Rightarrow H^*(G_2/U(2)_-; \mathbb{F}_2) \).
Similar to $G_2/U(2)_+$, there exists a map

$$\rho_2: G_2/U(2)_- \to G_2/SO_4,$$

given by $W \mapsto (W \oplus \bar{W})^\perp$, which exhibits $G_2/U(2)_-$ as the total space of a locally trivial smooth fibration with fiber $\mathbb{C}P^1 \approx S^2$. By lemma 3.6, the fiber at any $\xi \in G_2/SO(4)$ consist of all negative maximally isotropic subspaces of $\xi^\perp \oplus \mathbb{C}$, or equivalently, all negative orthogonal almost complex structures on ξ^\perp.

3.5. The full flag manifold $G_2/U(1) \times U(1)$. Given a complex isotropic line $\ell \subset \text{Im} \mathcal{O} \otimes \mathbb{R} \mathbb{C}$, consider the annihilator ℓ^a, that is the subspace of $\text{Im} \mathcal{O} \otimes \mathbb{R} \mathbb{C}$ described as $\{x \in \text{Im} \mathcal{O} \otimes \mathbb{R} \mathbb{C} \mid x \times \ell = 0\}$. Notice that this is a complex 3-dimensional isotropic subspace of $\text{Im} \mathcal{O} \otimes \mathbb{R} \mathbb{C}$. Since the maximal torus in G_2 is of rank 2, the complete flag manifold $G_2/U(1) \times U(1)$ is a smooth complex manifold of dimension 6 that can be described as follows: The space of pairs (ℓ, D) where ℓ is a complex isotropic line, D is a 2-plane containing ℓ, and both are contained in ℓ^a.

For every pair (ℓ, D) in $G_2/U(1) \times U(1)$, we write $D = \ell \oplus q$, where q is the orthogonal complement of ℓ. Then we get a fibration

$$\rho_3: G_2/U(1) \times U(1) \to G_2/SO(4)$$

given by $(\ell, D) \mapsto \xi$, where $\xi \otimes \mathbb{R} \mathbb{C} = q \oplus \bar{q} \oplus (q \times \bar{q})$. The map ρ_3 factors through a fibration over $G_2/U(2)_\pm$, which sends (ℓ, D) to the positive (resp. negative) maximally isotropic subspace of $\xi^\perp \otimes \mathbb{R} \mathbb{C}$ which contains ℓ, and ρ_1 (resp. ρ_2) defined above.

$$\begin{align*}
G_2/U(1) \times U(1) & \xrightarrow{\rho_3} G_2/U(2)_- \cong Q_5 \\
G_2/U(2)_+ & \xrightarrow{\rho_1, \rho_2} G_2/SO(4) \\
& \xrightarrow{\rho_5, \rho_6} \mathbb{S}^6
\end{align*}$$

(3.11)

To summarize, all the maps ρ_i in the commutative diagram 3.11 are fibrations, with fiber diffeomorphic to $\mathbb{C}P^1 \cong S^2$ (except ρ_3 and ρ_6). Furthermore, ρ_1, ρ_2 and ρ_3 are fiber bundles over $G_2/SO(4)$. In the case of ρ_6 the fiber is diffeomorphic to $\mathbb{C}P^2$. This means that, using the map ρ_5, we can also calculate the cohomology of $G_2/U(1) \times U(1)$ with \mathbb{F}_2 coefficients.

Proposition 3.12. The cohomology of $G_2/U(1) \times U(1)$ with \mathbb{F}_2 coefficients is given by

$$H^n(G_2/U(1) \times U(1), \mathbb{F}_2) = \begin{cases}
\mathbb{Z}_2 & \text{if } n = 0, 12 \\
\mathbb{Z}_2 \oplus \mathbb{Z}_2 & \text{if } n = 2, 4, 6, 8, 10 \\
0 & \text{otherwise}.
\end{cases}$$

Proof. Consider the fibration

$$S^2 \hookrightarrow G_2/U(1) \times U(1) \xrightarrow{\rho_5} G_2/U(2)_-,$$

and the corresponding Serre spectral sequence, where the cohomology of the fiber is described as $H^*(S^2; \mathbb{F}_2) = \mathbb{F}_2[z]/z^2$. Since $\pi_1(G_2/U(2)_-)$ is trivial, there are no local coefficients and the E_2-term is given by

$$E_2^{p,q} = H^n(G_2/U(2)_-; H^q(S^2; \mathbb{F}_2)).$$
For an illustration of the E_2-term see Figure 2. The rest of the proof is similar to the one in 3.10, since all the possible differentials are trivial. □

\[
\begin{array}{ccccccccccc}
3 & & & & & & & & & & \\
2 & z & z@y & z@y^2 & z@x & z@xy & z@xy^2 \\
1 & & y & y^2 & x & zy & \\
0 & & & & & & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\end{array}
\]

\[H^*(G_2/U(2); \mathbb{F}_2)\]

\textbf{Figure 2.} $E_2^{p,q} = H^p(G_2/U(2); H^q(S^2; \mathbb{F}_2)) \Rightarrow H^*(G_2/U(1) \times U(1); \mathbb{F}_2)$.

4. **Calculations of Fadell-Husseini Index.**

We start by recalling the definition of the Fadell-Husseini index.

4.1. **The Fadell-Husseini Index.** Let G be a finite group, and let R be a commutative ring with unit. For a G-equivariant map $p: X \to B$, the Fadell-Husseini index of p with coefficients in R is defined to be the kernel ideal of the following induced map

\[
\text{Index}_{G}^B(p; R) = \text{ker} \left(p^*: H^*_{EG \times_G B; R} \to H^*_{X; R} \right)
\]

Here $H^*_G(\cdot)$ stands for the Borel cohomology defined as the Čech cohomology of the Borel construction $EG \times_G \cdot$.

The most important property of the Fadell-Husseini index is the monotonicity which states the following: If $p: X \to B$ and $q: Y \to B$ are G-equivariant maps, and $f: X \to Y$ is a G-equivariant map such that $p = q \circ f$, then

\[
\text{Index}_{G}^B(p; R) \supseteq \text{Index}_{G}^B(q; R).
\]

The monotonicity of the index is usually the key ingredient to verify the existence of equivariant maps. It is common to relate the Fadell-Husseini index with spectral sequences since, under certain conditions, by [20, Theorem 5.19] the Serre spectral sequence computes the kernel of induced homomorphisms in cohomology.

In the case when B is a point we simplify notation and write $\text{Index}_{G}^B(p; R) = \text{Index}_{G}(X; R)$. From here on we will be considering \mathbb{F}_2 coefficients. For more details see [15]

4.2. **Dold’s argument.** In order to compute the Fadell-Husseini index of some of the fibrations exposed in section 3, we present a result of Albrecht Dold [13] which allow us to deduce some differentials of the Serre spectral sequence associated to a particular kind of fiber bundles. Let us start with the general argument.

Let $E \xrightarrow{\pi} B \xleftarrow{\pi'} E'$ be vector bundles of fiber-dimension n, m over the same paracompact space B, and let $f: S(E) \to E'$ be an odd map ($f(-x) = -f(x)$),
where $S(E)$ is the total space of the sphere bundle associated to π, such that

$$S(E) \xrightarrow{f} E' \xrightarrow{\pi'} B$$

commutes. Let us define $Z_f = \{ x \in S(E) \mid f(x) = 0 \}$, where 0 stands for the zero section of π', and the projection maps

$$S(E) \to \tilde{S}(E) = S(E)/\mathbb{Z}_2 \quad \text{and} \quad Z \to \tilde{Z} = Z/\mathbb{Z}_2,$$

where we are considering the antipodal action.

Cohomology H^* is understood in the Čech sense with mod 2 coefficients, and $H^*(B)[t]$ is the polynomial ring over $H^*(B)$ in one indeterminate t of degree 1. Since the antipodal action is fixed point free in $S(E)$ and Z, the projection maps $S(E) \to S(E)$ and $Z \to \tilde{Z}$ are 2-sheeted covering maps. Their characteristic classes are denoted by u, resp. $u \mid \tilde{Z}$, which can be replaced by the indeterminate t and obtain an homomorphism of $H^*(B)$-algebras

$$\sigma : H^*(B)[t] \longrightarrow H^*(\tilde{S}(E)) \longrightarrow H^*(\tilde{Z})$$
given by $t \mapsto u \mapsto u \mid \tilde{Z}$. Dold proved the following result.

Proposition 4.1. If $q(t) \in H^*(B)[t]$ is such that $\sigma(q(t)) = 0$, then

$$q(t)W(\pi'; t) = W(\pi; t)q'(t)$$

for some $q'(t) \in H^*(B)[t]$, where $W(\pi; t) = \sum_{j=0}^n w_j(\pi) \otimes t^{n-j}$.

The last theorem means that, under the last conditions, $W(\pi; t)$ divides $q(t)W(\pi'; t)$. We show the effectiveness of this theorem in the following remark.

Remark 4.2. Under the same hypothesis, consider the fiber bundles

$$S^{n-1} \xrightarrow{\pi} S(E) \quad \text{and} \quad \{0\} \xleftarrow{\text{proj}_1} B \times \{0\}$$

where \mathbb{Z}_2 acts antipodally on $S(E)$ and trivial on B. Let $f : S(E) \to B \times \{0\}$ be a \mathbb{Z}_2-equivariant map given by $f(e) = (\pi(e), 0)$, such that the following diagram commutes:

$$S(E) \xrightarrow{f} B \times \{0\} \xleftarrow{\text{proj}_1} B$$

Since $Z_f = S(E)$ and $W(\text{proj}_1, t) = 1$, if we consider $q(t)$ as the image of the transgression map $d^0_{n,n-1}$ of the Serre spectral sequence associated to the sphere bundle

$$S^{n-1} \to E \mathbb{Z}_2 \times \mathbb{Z}_2 \to B \mathbb{Z}_2 \times B,$$

by proposition 4.1,

$$q(t) = d^0_{n,n-1}(z) = \sum_{j=0}^n w_j(\pi) \otimes t^{n-j},$$

where $H^*(S^{n-1}) = \mathbb{F}_2[z]/\langle z^2 \rangle$.

We are going to use Dold’s argument in some of the computations that we present.
4.3. The Fadell-Husseini index of ρ_1 and ρ_2. Following the idea presented in section 4.2, we are going to start studying the Stiefel-Whitney classes of ρ_1 and ρ_2 to deduce their corresponding Serre spectral sequences.

Since $G_2/\text{SO}(4)$ is a quaternionic Kähler manifold, and the bundles ρ_1 and ρ_2 are twistors fibrations over $G_2/\text{SO}(4)$, we can think of each ρ_i as the associated sphere bundle of a 3 rank vector bundle η_i: $H \rightarrow G_2/\text{SO}(4)$ with non-trivial Euler class. In this way, we are considering the Stiefel-Whitney classes of the vector bundle η_i. For more detail about the bundle $S\eta_i$ see [25] and [21].

Let us start describing the induced homomorphism ρ_2^\ast.

Lemma 4.3. The induced homomorphism in cohomology with \mathbb{F}_2 coefficients, denoted by ρ_2^\ast, maps the class u_2 to y.

Proof. Let us start analyzing the Gysin exact sequence associated to the sphere bundle ρ_2,

\[\cdots \rightarrow H^{i-3}(G_2/\text{SO}(4); \mathbb{F}_2) \xrightarrow{\cup y} H^i(G_2/\text{SO}(4); \mathbb{F}_2) \rightarrow \]

\[\epsilon_2^\ast \ H^i(G_2/U(2)_-; \mathbb{F}_2) \rightarrow H^{i-2}(G_2/\text{SO}(4); \mathbb{F}_2) \rightarrow \cdots . \]

Since $H^3(G_2/\text{SO}(4), \mathbb{F}_2) = 0$, by the exactness of the sequence, $\rho_2^\ast: H^4(G_2/\text{SO}(4); \mathbb{F}_2) \rightarrow H^4(G_2/U(2)_-; \mathbb{F}_2)$ is a monomorphism. This means that $\rho_2^\ast(u_2) = y^2$ and consequently $\rho_2^\ast(u_2) = y$. □

Now, since we already know the cohomology of $G_2/U(2)_+$, we are going to start with the characteristic classes of ρ_2.

Lemma 4.4. The Stiefel-Whitney classes of the fiber bundle $\rho_2: G_2/U(2)_+ \rightarrow G_2/\text{SO}(4)$ are non-zero in dimensions 0, 2 and 3.

Proof. Consider again the Gysin exact sequence applied to the sphere bundle ρ_2,

\[\cdots \rightarrow H^{i-3}(G_2/\text{SO}(4); \mathbb{F}_2) \xrightarrow{\cup y} H^i(G_2/\text{SO}(4); \mathbb{F}_2) \xrightarrow{\epsilon_2^\ast} H^i(G_2/U(2)_-; \mathbb{F}_2) \rightarrow \]

\[\rightarrow H^{i-2}(G_2/\text{SO}(4); \mathbb{F}_2) \rightarrow \cdots . \]

Since $H^3(G_2/U(2)_-; \mathbb{F}_2) = 0$, we get an epimorphism $H^0(G_2/\text{SO}(4); \mathbb{F}_2) \twoheadrightarrow H^3(G_2/\text{SO}(4); \mathbb{F}_2)$ that by proposition 3.2 can be seen as $\mathbb{Z}_2 \twoheadrightarrow \langle u_3 \rangle$. Hence, $w_3(\rho_2) = u_3$. Considering the definition of the Stiefel-Whitney classes, this means that $\phi^{-1} \circ Sq^3(th) \neq 0$,

where th is the Thom class associated to ρ_2. Then, since

$Sq^3 = Sq^1 \circ Sq^2$,

$Sq^3(th) \neq 0$ and consequently $w_2 \neq 0$. It is not hard to see that $w_2(\rho_2) = u_2$. □

Considering the Gysin exact sequence associated to ρ_1, by proposition 3.2 we get that $H^3(G_2/U(2)_+; \mathbb{F}_2)$ is also trivial. Then, using the same arguments in lemma 4.4, ρ_1 has the same Stiefel-Whitney classes than ρ_2.

Now that we know the Stiefel-Whitney classes of ρ_1, we can calculate the cohomology of $G_2/U(2)_+$ with \mathbb{F}_2 coefficients as follows: Consider the Serre spectral sequence associated to ρ_1, with E_2-term given by

$E_2^{p,q} = H^p(G_2/\text{SO}(4); \mathbb{H}^q(S^2; \mathbb{F}_2))$.

For an illustration of the E_2-term see Figure 3. Notice that, for the same reason exposed in 3.10, there are no local coefficients. Then, applying the Gysin sequence to ρ_1 [20, Example 5.C], and by lemma 4.4, we get that
d_3^{0,2}(z) = w_3(\rho_1) = u_3,
where $H^2(S^2; \mathbb{F}_2) = \langle z \rangle$. Finally, using the Leibniz rule, $d_3^{0,2}$ determinen the complete cohomology of $G_2/U(2)_+$. We conclude then the following result.

\[
\begin{array}{|c|c|c|c|c|c|c|c|c|}
\hline
 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline
0 & z_2 & u_2 & u_3 & u_2^2 & x \otimes u_2 u_3 & x \otimes u_2^3 & x \otimes u_2 u_3^2 & x \otimes u_2^3 u_3 & x \otimes u_2 u_3^2 u_3 & x \otimes u_2^3 u_3^2 \\
\hline
1 & d_3 & & & & & & & & & \\
\hline
2 & & & & & & & & & & \\
\hline
3 & & & & & & & & & & \\
\hline
\end{array}
\]

\[
H^*(G_2/\text{SO}(4); \mathbb{F}_2)
\]

\[
\text{Figure 3. } E_2^{p,q} = H^p(G_2/\text{SO}(4); H^q(S^2; \mathbb{F}_2)) \Rightarrow H^*(G_2/U(2)_+; \mathbb{F}_2).
\]

Corollary 4.5. The G_2 flag manifolds $G_2/U(2)_+$ and $G_2/U(2)_-$ have isomorphic cohomology rings when we consider \mathbb{F}_2 coefficients. Moreover, the result in lemma 4.3 applies in the same way to ρ_1^*.

From now on, since ρ_1 and ρ_2 have the same topological properties considering \mathbb{F}_2 coefficients, we will not make any distinction between them and we will write $G_2/U(2)_\pm$ and ρ_1. As shown in [19], the similarity mentioned in corollary 4.5 does not happens if we consider the cohomology rings with integer coefficients.

Consider the action of \mathbb{Z}_2 on $G_2/U(2)_\pm$ by complex conjugation. Since $\rho_1(W) = \rho(j)(W)$ for every coassociative subspace W, and $j \in \{1, 2\}$, then both maps are \mathbb{Z}_2-equivariant, with \mathbb{Z}_2 acting trivial on $G_2/\text{SO}(4)$. This means that we can ask for the Fadell-Husseini index of such bundles. Before we prove our first main result, we fix the notation for the cohomology of the group \mathbb{Z}_2 as

\[
H^*(B\mathbb{Z}_2; \mathbb{F}_2) = \mathbb{F}_2[t],
\]

with $\deg(t) = 1$.

Theorem 4.6. The Fadell-Husseini index of ρ_1 and ρ_2 with respect to the introduced \mathbb{Z}_2 action is given by \[
\text{Index}_{\mathbb{Z}_2}^{G_2/\text{SO}(4)}(\rho_1; \mathbb{F}_2) = \text{Index}_{\mathbb{Z}_2}^{G_2/\text{SO}(4)}(\rho_2; \mathbb{F}_2) = \langle t^3 + u_2 t + u_3 \rangle.
\]

Consequently, the Borel cohomology of $G_2/U(2)_\pm$ is given by

\[
H^*(B\mathbb{Z}_2 \times G_2/U(2)_\pm; \mathbb{F}_2) = H^*(B\mathbb{Z}_2 \times G_2/\text{SO}(4); \mathbb{F}_2)/\langle t^3 + u_2 t + u_3 \rangle.
\]

Proof. Consider the Borel construction of the bundle ρ_i, for $i \in \{1, 2\}$,

\[
S^2 \xrightarrow{\rho_i} EZ_2 \times_{\mathbb{Z}_2} G_2/U(2)_{\pm}
\]

\[
EZ_2 \times_{\mathbb{Z}_2} G_2/\text{SO}(4),
\]
where the base space can be written as $B\mathbb{Z}_2 \times G_2/\text{SO}(4)$. Since the fundamental group
\[\pi_1(B\mathbb{Z}_2 \times G_2/\text{SO}(4)) \cong \pi_1(B\mathbb{Z}_2) \times \pi_1(G_2/\text{SO}(4)) \cong \pi_1(B\mathbb{Z}_2) \cong \mathbb{Z}_2 \]
acts trivially on the cohomology of the fiber, then the E_2-terms of the associated Serre spectral sequence looks as follows:
\[E_2^{p,q} = H^p(B\mathbb{Z}_2 \times G_2/\text{SO}(4); H^q(S^2; \mathbb{F}_2)). \]

Using proposition 4.1 and lemma 4.4, we get that the transgression map $d_3^{0,2}$ is given by
\[d_3^{0,2}(z) = t^3 + u_2 t + u_3, \]
where $H^2(S^2; \mathbb{F}_2) = \langle z \rangle$. Finally, by the Leibniz rule, $d_3^{0,2}$ determines the complete cohomology of $E\mathbb{Z}_2 \times \mathbb{Z}_2 G_2/U(2)_{k}$ and the Fadell-Husseini index of ρ_1 and ρ_2 with coefficients in \mathbb{F}_2.

4.4. The Fadell-Husseini index of the pullback bundle ζ_n. Let us consider the sphere bundle associated the tautological bundle γ over $\tilde{G}_4(\mathbb{R}^7)$,
\[s\gamma = (E(s\gamma), \tilde{G}_4(\mathbb{R}^7), E(s\gamma) \xrightarrow{\pi} \tilde{G}_4(\mathbb{R}^7), S^3), \]
and the map $f = c \circ i,$ where i denotes the embedding of $G_2/\text{SO}(4)$ on $\tilde{G}_4(\mathbb{R}^7)$ and $c: \tilde{G}_4(\mathbb{R}^7) \rightarrow \tilde{G}_4(\mathbb{R}^7)$ assign to every linear subspace its orthogonal complement. Then, using the map f and the fiber bundle ρ_j defined in 3.3 and 3.4, we construct the following commutative diagram:
\[
\begin{array}{ccc}
S^3_1 & \xrightarrow{\phi_1} & E(f^*(s\gamma)) & \xrightarrow{E(s\gamma)} & E(S\gamma) \\
\downarrow{\phi_1} & & \downarrow{\phi_1} & & \downarrow{\phi_1} \\
G_2/U(2)_{\pm} & \xrightarrow{\rho_j} & G_2/\text{SO}(4) & \xrightarrow{f} & \tilde{G}_4(\mathbb{R}^7),
\end{array}
\]
where the map on the left is the pullback bundle of $s\gamma$ along the map $f \circ \rho_j$,
\[\zeta_1 = (E(\zeta_1) = S^3_1, G_2/U(2)_{-}, S_1^3 \xrightarrow{\phi_1} G_2/U(2)_{-}, S^3). \]

To be more precise, the total space of ζ_1 is given by
\[S^3_1 = \{(W; \xi^\perp, v) \mid W \in G_2/U(2)_{\pm}, \rho_j(W) = \xi, v \in \xi^\perp \text{ and } \deg(v_1) = 1\}. \]

The construction of the bundle ζ_1 can be easily generalized as follows: Consider the the n-fold product bundle $(s\gamma)^n$, and the pullback along the diagonal map $\Delta_n: \tilde{G}_4(\mathbb{R}^7) \rightarrow \tilde{G}_4(\mathbb{R}^7)^n$:
\[
\begin{array}{ccc}
E(\Delta_n(s\gamma)^n) & \xrightarrow{(s\gamma)^n} & E(s\gamma)^n \\
\downarrow{\Delta_n} & & \downarrow{(s\gamma)^n} \\
\tilde{G}_4(\mathbb{R}^7) & \xrightarrow{\Delta_n} & \tilde{G}_4(\mathbb{R}^7)^n.
\end{array}
\]

Applying the last construction to the fiber bundle $\Delta_n^*(s\gamma)^n$, we get a new bundle
\[\zeta_n = (E(\zeta_n) = S^n_1, G_2/U(2)_{\pm}, S^n_1 \xrightarrow{\phi_1} G_2/U(2)_{\pm}, (S^3)^n). \]

where
\[S^n_1 = \{(W; \xi^\perp, v_1, \ldots, v_n) \mid W \in G_2/U(2)_{\pm}, \rho_j(W) = \xi, v_1, \ldots, v_n \in \xi^\perp \text{ and } \deg(v_1) = \cdots = \deg(v_n) = 1\}. \]
To describe the Fadell-Husseini index of S^n_1, the first step is to calculate the Stiefel-Whitney classes of ζ_1. Notice that since $H^1(G_2/U(2)_{\pm}; \mathbb{F}_2) = H^2(G_2/U(2)_{\pm}; \mathbb{F}_2) = 0$, we are just looking for $w_2(\zeta_1)$ and $w_4(\zeta_1)$. Then we have the following result.

Lemma 4.7. The Stiefel-Whitney classes of the pullback bundle ζ_1 are non-zero only in the dimensions 0, 2 and 4. Moreover, $w_2(\zeta_1) = y$ and $w_4(\zeta_1) = y^2$.

Proof. Let $p : \tilde{G}_4(\mathbb{R}^7) \to G_4(\mathbb{R}^7)$ be the map that forgets the orientation of the 4-plane in \mathbb{R}^7. It is well known that p is a 2-fold covering map, and that the induced homomorphism in cohomology satisfies

$$p^*(w_i) = \tilde{w}_i,$$

where \tilde{w}_i are Stiefel-Whitney classes of $\tilde{G}_4(\mathbb{R}^7)$. In this way, $\text{im}(p^*)$ is a subalgebra of $H^*(\tilde{G}_4(\mathbb{R}^7); \mathbb{F}_2)$ generated by $\{\tilde{w}_2, \tilde{w}_3, \tilde{w}_4\}$, except by \tilde{w}_1 which is trivial since $\tilde{G}_4(\mathbb{R}^7)$ is simply connected.

By the naturality of the Stiefel-Whitney classes it is enough to describe the image of \tilde{w}_2 and \tilde{w}_4 along the composition

$$G_2/U(2)_{\pm} \xrightarrow{\rho} G_2/\text{SO}(4) \xrightarrow{f} \tilde{G}_4(\mathbb{R}^7).$$

Akbahlt & Kalafat in [1, Theorem 2.11] proved that the embedding $f : G_2/\text{SO}(4) \to \tilde{G}_4(\mathbb{R}^7)$ maps the euler class of γ, which reduces to \tilde{w}_4, to the integral generator in dimension 4, which reduces to u_2. Notice that, since $\tilde{w}_1 = 0$, $\tilde{w}_4 = \tilde{w}_2^2$. In this way, f^* maps \tilde{w}_2 to u_2.

On the other hand, by lemma 4.3, $\rho_j^*(w_2) = y$ and $\rho_j^*(w_2^2) = y^2$. This means that

$$w_2(\zeta_1) = (f \circ \rho_j)^*(\tilde{w}_2) = y$$

and

$$w_4(\zeta_1) = (f \circ \rho_j)^*(\tilde{w}_4) = y^2,$$

for $j \in \{1, 2\}$. \hfill \Box

There is an action of \mathbb{Z}_2^n on S^n_1 defined as follows:

$$(\beta_1, \ldots, \beta_n) \cdot (W; \xi^\perp, v_1, \ldots, v_n) = (W; \xi^\perp, (-1)^{\beta_1}v_1, \ldots, (-1)^{\beta_n}v_n),$$

for $(\beta_1, \ldots, \beta_n) \in \mathbb{Z}_2^n$ and $(W; \xi^\perp, v_1, \ldots, v_n) \in S^n_1$. Notice that the action of \mathbb{Z}_2^n on $G_2/U(2)_{\pm}$ is trivial. Also, with this action, the projection map ϕ_n is \mathbb{Z}_2^n-equivariant and we can ask for its Fadell-Husseini index. We will start then with the case $n = 1$.

For the cohomology of $(S^3)^n$ and $B\mathbb{Z}_2^n$ we fix the following notation:

$$H^*((S^3)^n; \mathbb{F}_2) \cong H^*(S^3; \mathbb{F}_2)^{\otimes n}$$

$$\cong \mathbb{F}_2[z_1]/(z_1^2) \otimes \cdots \otimes \mathbb{F}_2[z_n]/(z_n^2),$$

where $\text{deg}(z_1) = \cdots = \text{deg}(z_n) = 1$, and

$$H^*(B\mathbb{Z}_2^n; \mathbb{F}_2) = \mathbb{F}_2[t_1, \ldots, t_n],$$

where $\text{deg}(t_1) = \cdots = \text{deg}(t_n) = 1$.

Proposition 4.8. Consider the action of \mathbb{Z}_2 on S^n_1 introduced before. Then the Fadell-Husseini index of $\phi_1 : S^1_1 \to G_2/U(2)_{\pm}$ is given by

$$\text{Index}_{S^1_1}^{G_2/U(2)_{\pm}}(\phi_1; \mathbb{F}_2) = \langle y^2 + yt_1^2 + t_1^4 \rangle.$$

Consequently, the Borel cohomology of S^n_1 is described as follows:

$$H^*(E\mathbb{Z}_2 \times_{\mathbb{Z}_2} S^n_1; \mathbb{F}_2) = H^*(E\mathbb{Z}_2 \times_{\mathbb{Z}_2} G_2/U(2)_{\pm}; \mathbb{F}_2) \big/ \langle y^2 + yt_1^2 + t_1^4 \rangle.$$
Proof. Consider the Serre spectral sequence associated to the bundle

\[
S^3 \hookrightarrow E\mathbb{Z}_2 \times_{\mathbb{Z}_2} S^1_\gamma \xrightarrow{id \times_{\mathbb{Z}_2} \phi_1} E\mathbb{Z}_2 \times_{\mathbb{Z}_2} G_2/U(2)_\pm,
\]

with \(E_2\)-term given by

\[
E_2^{p,q} \equiv H^p(E\mathbb{Z}_2 \times_{\mathbb{Z}_2} G_2/U(2)_\pm; H^q(S^3; F_2)) \\
\equiv H^p(B\mathbb{Z}_2 \times G_2/U(2)_\pm; H^q(S^3; F_2)).
\]

Since the fundamental group \(\pi_1(B\mathbb{Z}_2 \times G_2/U(2)_\pm) \cong \mathbb{Z}_2\) acts trivially on the cohomology of the fiber, then the \(E_2\)-terms simplify and looks as follows:

\[
E_2^{p,q} = H^p(B\mathbb{Z}_2 \times G_2/U(2)_\pm; F_2) \otimes H^q(S^3; F_2).
\]

Notice that the first differential of the spectral sequence associated to \(id \times_{\mathbb{Z}_2} \phi_1\) appears on the \(E_1\)-term. Then, by proposition 4.1 and lemma 4.7, it is given by

\[
d_4^{3,1}(\xi) = y^2 + yt_1^2 + t_1^4.
\]

For an illustration of the \(E_4\)-term see Figure 4. This describes the Fadell-Husseini index of \(\phi_1: S^1_\gamma \rightarrow G_2/U(2)_\pm\), and by the Leibniz rule, also the cohomology of \(E\mathbb{Z}_2 \times_{\mathbb{Z}_2} S^1_\gamma\).

![Figure 4. \(E_4^{p,q} = E_2^{p,q} = H^p(B\mathbb{Z}_2 \times G_2/U(2)_\pm; F_2) \otimes H^q(S^3; F_2)\)](image)

Using the projection of \(S^1_\gamma\) on \(S^1_\gamma\), and proposition 4.8, we can prove now our second main result.

Theorem 4.9. Consider the action of \(\mathbb{Z}_2^n\) on \(S^1_\gamma^n\) introduced before. Then the Fadell-Husseini index of \(\phi_n: S^1_\gamma^n \rightarrow G_2/U(2)_\pm\) is given by

\[
\text{Index}^{G_2/U(2)_\pm}_{\mathbb{Z}_2^n}(\phi_n; F_2) = (y^2 + yt_1^2 + t_1^4, \ldots, y^2 + yt_n^2 + t_n^4).
\]

Proof. Let \(i_k: \mathbb{Z}_2 \hookrightarrow \mathbb{Z}_2^n\) be the inclusion into the kth summand, with \(1 \leq k \leq n\). The map \(i_k\) induces a morphism between Borel constructions

\[
\begin{array}{ccc}
E\mathbb{Z}_2^n \times_{\mathbb{Z}_2} S^1_\gamma & \xrightarrow{id \times_{\mathbb{Z}_2} \phi_1} & E\mathbb{Z}_2 \times_{\mathbb{Z}_2} S^1_\gamma \\
\downarrow & & \downarrow \\
B\mathbb{Z}_2^n \times G_2/U(2)_\pm & \xrightarrow{id \times_{\mathbb{Z}_2} \phi_1} & B\mathbb{Z}_2 \times G_2/U(2)_\pm
\end{array}
\]

where \(\mathbb{Z}_2^n\) acts on \(S^1_\gamma\) as follows: The kth summand acts antipodally on the unitary element. We will refer to this action as the one induced by \(i_k\). This morphism of
Borel constructions induces a morphism between the corresponding Serre spectral sequences, which on the zero column of the E_2-term is an isomorphism. Then, by proposition 4.8 and the commutativity of the differentials with the morphism between spectral sequences, the transgression map $d^{0,3}_4$ of the spectral sequence associated to $id \times \mathbb{Z}_2 \phi_1$ is given by

$$d^{0,3}_4(z) = y^2 + yt^2 + t^4,$$

for every $1 \leq k \leq n$.

Consider now the projection $p_k: S^n_\gamma \to S^n_\gamma$ given by

$$p_k(W; \xi^\perp, v_1, \ldots, v_n) = (W; \xi^\perp, v_k),$$

for $1 \leq k \leq n$. With respect to the \mathbb{Z}_2^n-action on S^n_γ induced by i_k, the map p_k induces a morphism of Borel constructions

$$B\mathbb{Z}_2^n \times G_2/U(2)_{\pm} \to B\mathbb{Z}_2^n \times G_2/U(2)_{\pm}.$$

This morphism of Borel constructions, in turn, induces a morphism between the corresponding Serre spectral sequences, which on the zero column of the E_2-term is a monomorphism. For an illustration of the morphism between the corresponding Serre spectral sequences see Figure 5. Then, by the commutativity of the differentials, the map $d^{0,3}_4$ of the spectral sequences associated to $id \times \mathbb{Z}_2 \phi_n$ is given by

$$d^{0,3}_4(z_k) = d^{0,3}_4(p_k(z)) = \text{id}(d^{0,3}_4(z)) = y^2 + yt^2 + t^4,$$

for every generator z_k in $H^3((S^1)^n; \mathbb{F}_2)$, with $1 \leq k \leq n$. Then, by the Leibnitz rule, this describes the Fadell-Husseini index of $\phi_n: S^n_{\gamma^\perp} \to G_2/U(2)_{\pm}$.

\[
\begin{align*}
\text{Figure 5.} \quad \text{Morphism of spectral sequences induced by } p_k.
\end{align*}
\]

5. APPLICATION: ASSOCIATIVE SUBSPACES IN DISCRETE GEOMETRY.

Ones we studied the associative and coassociative subspaces of $\text{Im}(\mathcal{O})$, as well as the Fadell-Husseini index of the fibrations defined in the previous sections, in this section we will show how this kind of subspaces appears within a classical problem in discrete geometry known as the Grünbaum mass partition problem [17].
Then there exist a vector subspace \(L \), and for a collection of oriented affine hyperplanes \(H_1, H_2, \ldots, H_n \) in \(\mathbb{R}^n \), called \(n \)-arrangement, such that each of the \(2^n \) resulting orthants contains the same amount of the mass \(\mu \), i.e.,

\[
\mu(H_1^{\sigma_1} \cap \cdots \cap H_n^{\sigma_n}) = \frac{1}{2^n} \mu(\mathbb{R}^n)
\]

for every \((\sigma_1, \ldots, \sigma_n) \in \mathbb{Z}_2^n \), where \(H_i^{\sigma_i} \) denotes the appropriate closed halfspace deterinated by \(H_i \). In that case we said that the collection of hyperplanes equipart the mass \(\mu \).

While the case \(n = 2 \) is the well-known ham sandwich theorem, the positive answer for the case \(n = 3 \) was given by Hadwiger in [18]. On the other hand, in [2], Avis showed that in every dimension \(n \geq 5 \) there is a mass which cannot be equiparted by an \(n \)-arrangement. The problem becomes more complicated in the case \(n = 4 \), which, to this very day, is still open. The best approach to the solution was given by Dimitrijević Blagojević in [12], where she considers an almost equipartition. To be more precise, given a \(4 \)-arrangement \(\{H_1, H_2, H_3, H_4\} \) in \(\mathbb{R}^4 \), and consequently sixteen orthants \(O_{\sigma_1, \sigma_2, \sigma_3, \sigma_4} = H_1^{\sigma_1} \cap H_2^{\sigma_2} \cap H_3^{\sigma_3} \cap H_4^{\sigma_4} \), an almost equipartition means that

\[
\mu(O_{0000}) = \mu(O_{0010}) = \mu(O_{0100}) = \mu(O_{0110}) = \mu(O_{1000}) = \mu(O_{1010}) = \mu(O_{1100}) = \mu(O_{1110})
\]

For more details on the history and discussion of solution methods regarding Grünbaum’s mass partition problem consult [9], and for the currently best known results see [8].

In this section, motivated by the computations presented by Blagojević, Calles Loperena, Crabb & Dimitrijević Blagojević in [7], we will show that the solutions provided by Dimitrijević Blagojević in [12] can be considered, in a sense, as the orthogonal complement of an associative subspace in \(\text{Im}(O) \). More precisely, we prove the following result

Theorem 5.1. Let \(\mu \) be a mass assignment on the Grassmann manifold \(\tilde{G}_4(\mathbb{R}^7) \). Then there exist a vector subspace \(L \in \tilde{G}_4(\mathbb{R}^7) \), which is the orthogonal complement of an associative subspace in \(\text{Im}(O) \), and a \(4 \)-arrangement \(\{H_1, H_2, H_3, H_4\} \) in \(L \) which almost equipart the mass \(\mu^L \).

Here we define a mass assignment on a Grassmann manifold as a cross section of the fibre bundle

\[
M'_+(\mathbb{R}^\ell) \xrightarrow{\rho} \mathcal{M}'_+(\ell, d) \xrightarrow{\phi} \tilde{G}_\ell(\mathbb{R}^d),
\]

(5.2)

where \(M'_+(\mathbb{R}^\ell) \) denotes the subspace of all masses on \(\mathbb{R}^\ell \), the total space is given by

\[
\mathcal{M}'_+(\ell, d) := \{ (L, \nu) \mid L \in \tilde{G}_\ell(\mathbb{R}^d) \text{ and } \nu \in M'_+(L) \}
\]

and the map \(\rho \) is give by \((L, \nu) \mapsto L \). This means that \(\mu \) assigns to each subspace \(L \) a mass \(\mu^L \) in \(L \). For more details about mass assignments see [22], [3] and [7].
5.1. **Proof (Theorem 5.1).** The proof is based on the configuration space test map scheme (CS/TM - scheme), developed in numerous papers and formalized by Živaljević in [26, 27]. The main idea is to reduce the problem to the question about the non-existence of a particular equivariant map. We will consider a map \(f: C \to Z \), where \(C \) is the space of all candidates to be a solution of our problem, also called the configuration space, \(Z \) is called the test space, \(f \) is called the test map, and there is a subspace \(V \subseteq Z \) such that \(x \in C \) is a solution of the problem if and only if \(f(x) \in V \). In addition there is a group \(G \), of symmetries of the problem, which acts on \(C \) and \(Z \), keeping the subspace \(V \) \(G \)-invariant. Moreover, the test map \(f \) is equivariant. In this way, if we prove that \(f: C \to Z \setminus V \) does not exist, we guarantee that there is a solution of our problem.

In order to apply topological methods and derive an appropriate configuration test map scheme for our problem we make an additional assumption on the mass assignment. We assume that for every linear subspace \(L \in \mathcal{G}_4(\mathbb{R}^2) \) the associated mass \(\mu^L \) has compact and connected support. This means that for every direction in \(L \) there exists a unique oriented affine hyperplane orthogonal to the direction equi-parting \(\mu^L \).

5.1.1. **Configuration space.** To construct the equivariant map of the test map scheme, let us start considering a coassociative subspace \(W \in G_2/U(2)_\pm \) such that \(\rho_i(W) = \xi \), with \(\xi \in G_2/\text{SO}(4) \) an associative subspace of \(\text{Im}(\mathcal{O}) \). Since \(W \) corresponds to an orthogonal almost complex structure \(J \) of \(\xi^\perp \), given two unit vectors \(v_1, v_2 \in \xi^\perp \), we obtain a collection \(\{ v_1, J(v_1), v_2, J(v_2) \} \), which by the extra assumption over the mass assignment \(\mu \), induces a 4-arrangement of oriented affine hyperplanes \(\{ H_{v_1}, H_{J(v_1)}, H_{v_2}, H_{J(v_2)} \} \) equi-parting the mass \(\mu^{\perp} \) in \(\xi^\perp \). In that way, \(S^2_{\xi} \), the total space of the pullback bundle \(\phi_2 \) defined in section 4.4, represent the space of all candidates to be a solutions of our problem.

5.1.2. **Test map.** Consider now the bundle map \(f: S^2_{\xi} \to G_2/U(2)_\pm \times \mathbb{R}^{16} \), between \(\phi_2 \) and the projection into the first factor \(\pi \), given by

\[
(W; \xi^\perp, v_1, v_2) \mapsto \left(W; \left(\mu^{\xi^\perp}(H^{\sigma_1}_{v_1} \cap H^{\sigma_2}_{J(v_1)} \cap H^{\sigma_3}_{v_2} \cap H^{\sigma_4}_{J(v_2)}) \right)_\pi \right),
\]

where \(\mathbb{R}^{16} \) is indexed by the elements of the group \(\mathbb{Z}^4_2 \). Notice that, by the extra assumption over the mass assignment \(\mu \), the codomain of the map \(f \) is a subspace \(\mathcal{U} \) of \(\mathbb{R}^{16} \) defined by the following equalities:

\[
\begin{align*}
\sum x_{0\sigma_1, \sigma_2, \sigma_3} &= \sum x_{1\sigma_1, \sigma_2, \sigma_3}; & \sum x_{\sigma_1, 0\sigma_2, \sigma_3} &= \sum x_{\sigma_1, 1\sigma_2, \sigma_3}, \\
\sum x_{\sigma_1, \sigma_2, 0\sigma_3} &= \sum x_{\sigma_1, \sigma_2, 1\sigma_3}; & \sum x_{\sigma_1, \sigma_2, \sigma_3, 0} &= \sum x_{\sigma_1, \sigma_2, \sigma_3, 1}, \\
\sum x_{\sigma_1, \sigma_2, \sigma_3, \sigma_4} &= 0,
\end{align*}
\]

for \((\sigma_1, \sigma_2, \sigma_3) \in \mathbb{Z}^3_2 \) and \((\sigma_1, \sigma_2, \sigma_3, \sigma_4) \in \mathbb{Z}^4_2 \).

As shown in section 4.4, the group \(\mathbb{Z}^3_2 \) acts antipodally on the unit vectors of \(S^2_{\xi} \). There is also an action of \(\mathbb{Z}^2_2 \) on \(\mathbb{R}^{16} \) given by permuting the elements in the following way:

\[
(\beta_1, \beta_2): x_{\sigma_1, \sigma_2, \sigma_3, \sigma_4} = x_{\beta_1+\sigma_1, \beta_2+\sigma_2, \beta_3+\sigma_3, \beta_4+\sigma_4},
\]

where \((\beta_1, \beta_2) \in \mathbb{Z}^2_2 \) and \(x_{\sigma_1, \sigma_2, \sigma_3, \sigma_4} \in \mathbb{R}^{16} \). All this makes the bundle map \(f: \mathbb{Z}^3_2 \)-equivariant over the codomain \(G_2/U(2)_\pm \times \mathcal{U} \).
5.1.3. Test space. Let us consider the \mathbb{Z}_2^4-invariant subspace L of \mathbb{R}^{16} generated by the equalities

\[
\begin{align*}
x_{0000} &= x_{0010} = x_{0100} = x_{0110} = x_{1001} = x_{1011} = x_{1101} = x_{1111}, \\
x_{0001} &= x_{0011} = x_{0101} = x_{0111} = x_{1000} = x_{1010} = x_{1100} = x_{1110}.
\end{align*}
\]

Notice that the previous equations determine the condition of “almost equipartition” of our 4-arrangement. In this way, the test space of our problem is the subspace $U \cap L$ of codimension 10 inside U.

All of this leads us to the following result, which relates our mass partition problem with a problem about the existence of an equivariant map (the main idea of the CS/TM scheme).

Proposition 5.3. If there is no \mathbb{Z}_2^4-equivariant map

\[S^2_\gamma \to G_2/U(2)_\pm \times (U \setminus L), \]

with the already defined actions, then our problem stated in Theorem 5.1 has a solution.

To make the upcoming computations more manageable, we consider a \mathbb{Z}_2^4 deformation retraction between $U \setminus L$ and $S((U \cap L)\perp)$, where $S((U \cap L)\perp)$ is a sphere of dimension 9.

5.1.4. The non-existence of the equivariant map. For the previously mentioned reasons, the problem reduces to the non-existence of the bundle map

\[f: S^2_\gamma \to G_2/U(2)_\pm \times S((U \cap L)\perp) \]

between ϕ_2 and the corresponding sphere bundle $S\pi$. If we suppose that such map exists, by the monotonicity of the index

\[\text{Index}^G_{\mathbb{Z}_2^4/\mathbb{Z}_2^4}(\phi_2; \mathbb{F}_2) \geq \text{Index}^G_{\mathbb{Z}_2^4/\mathbb{Z}_2^4}(S\pi; \mathbb{F}_2), \]

which by theorem 4.9, and the computations made in [12, Section 3.2], as well as [15, Proposition 3.1], simplifies to

\[(y^2 + yt_1^2 + t_1^2; y^2 + yt_2^2 + t_2^2) \supseteq H^*(G_2/U(2)_\pm; \mathbb{F}_2) \otimes (t_1^2t_2^2 + t_1^2t_4^2 + t_2^2t_4^2). \]

For a more details about the index of a projection see [7, Section 3.2]. Notice that the index of the sphere representation differs from the original result because of the number of masses we are considering, as well as the action of \mathbb{Z}_2^4 on the codomain. However, removing the additional information, and assuming that $t_1 = t_2$ and $t_3 = t_4$ on the generator of $H^*(B\mathbb{Z}_2^4; \mathbb{F}_2)$ in [12, Section 3.2], we get with the desired result.

Finally, using a computational package like SINGULAR or SAGE we confirm that

\[t_1^2t_2^2 + t_1^2t_3^2 + t_2^2t_3^2 + t_1^2t_4^2 \not\in \langle y^2 + yt_1^2 + t_1^2, y^2 + yt_2^2 + t_2^2, y^2 + yt_3^2 + t_3^2, y^2 + yt_4^2 + t_4^2 \rangle, \]

which means that the \mathbb{Z}_2^4-equivariant bundle map f does not exist. As a consequence, there exist an associative subspace ξ and a 4-arrangement (H_1, H_2, H_3, H_4) in ξ^\perp which almost equipart the mass μ^{ξ^\perp} in ξ^\perp.

References

[1] Selman Akbulut and Mustafa Kalafat, Algebraic topology of G_2 manifolds, Expo. Math. 34 (2016), no. 1, 106–129. MR 3463686
[2] David Avis, Nonpartitionable point sets, Inform. Process. Lett. 19 (1984), no. 3, 125–129.
[3] Ilani Axelrod-Fried and Pablo Soberón, Bisections of mass assignments using flags of affine spaces, Discrete & Computational Geometry (2022), 1–19.
[4] John C. Baez, The octonions, Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 2, 145–205. MR 1886087
[5] Djordje Baralić, Pavle VM Blagojević, Roman Karasev, and Aleksandar Vučić, Index of grassmann manifolds and orthogonal shadows, Forum Mathematicum 30, no. 6.

[6] Somnath Basu and Prateep Chakraborty, On the cohomology ring and upper characteristic rank of grassmannian of oriented 3-planes, Journal of Homotopy and Related Structures 15 (2020), no. 1, 27–60.

[7] Pavle V. M. Blagojević, Jaime Calles Loperena, Michael C. Crabb, and Aleksandra S. Dimitrijević Blagojević, Topology of the grünbaum-hadwiger-ramos problem for mass assignments, Topological Methods in Nonlinear Analysis 61 (2023), no. 1, 107–133.

[8] Pavle V. M. Blagojević, Florian Frick, Albert Haase, and Günter M. Ziegler, Hyperplane mass partitions via relative equivariant obstruction theory, Doc. Math. 21 (2016), 735–771.

[9] , Topology of the Grünbaum-Hadwiger-Ramos hyperplane mass partition problem, Trans. Amer. Math. Soc. 370 (2018), no. 10, 6795–6824.

[10] A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces. I, Amer. J. Math. 80 (1958), 458–538. MR 102800

[11] Robert L. Bryant, Metrics with exceptional holonomy, Ann. of Math. (2) 126 (1987), no. 3, 525–576. MR 916718

[12] Aleksandra S Dimitrijević Blagojević, A mass partition problem in \mathbb{R}^4, Matematichki Vesnik 61 (2009), no. 1, 61–69.

[13] Albrecht Dold, Parametrized borsuk-ulam theorems, Commentarii Mathematici Helvetici 63 (1988), no. 1, 275–285.

[14] Tevian Dray and Corinne A. Manogue, The geometry of the octonions, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015. MR 3361898

[15] Edward Fadell and Sufian Husseini, An ideal-valued cohomological index theory with applications to Borsuk-Ulam and Bourgin-Yang theorems, Ergodic Theory Dynam. Systems 8* (1988), no. Charles Conley Memorial Issue, 73–85. MR 967630

[16] Lino Grama, Caio J. C. Negreiros, and Ailton R. Oliveira, Invariant almost complex geometry on flag manifolds: geometric formality and Chern numbers, Ann. Mat. Pura Appl. (4) 196 (2017), no. 1, 165–200. MR 3600863

[17] Branko Grünbaum, Partitions of mass-distributions and of convex bodies by hyperplanes, Pacific J. Math. 10 (1960), 1257–1261.

[18] Hugo Hadwiger, Simultane Vierteilung zweier Körper, Arch. Math. (Basel) 17 (1966), 274–278.

[19] Dieter Kotschick and DK Thung, The complex geometry of two exceptional flag manifolds, Annales di Mathematica Pura ed Applicata (1923-) 199 (2020), no. 6, 2227–2241.

[20] John McCleary, A user’s guide to spectral sequences, no. 58, Cambridge University Press, 2001.

[21] Simon Salamon, Quaternionic kähler manifolds, Inventiones mathematicae 67 (1982), no. 1, 143–171.

[22] Patrick Schnider, Ham-Sandwich Cuts and Center Transversals in Subspaces, Discrete Comput. Geom. 64 (2020), no. 4, 1192–1209.

[23] Uwe Semmelmann and Gregor Weingart, An upper bound for a Hilbert polynomial on quaternionic Kähler manifolds, J. Geom. Anal. 14 (2004), no. 1, 151–170. MR 2030579

[24] Jin Shi and Jianwei Zhou, Characteristic classes on grassmannians, Turkish Journal of Mathematics 38 (2014), no. 3, 492–523.

[25] Martin Svensson and John C. Wood, Harmonic maps into the exceptional symmetric space $G_2/\SO(4)$, J. Lond. Math. Soc. (2) 91 (2015), no. 1, 291–319. MR 3383615

[26] Rade T. ˇZivaljević, User’s guide to equivariant methods in combinatorics, Publ. Inst. Math. (Beograd) (N.S.) 59(73) (1996), 114–130.

[27] , User’s guide to equivariant methods in combinatorics. II, vol. 64(78), 1998, 50th anniversary of the Mathematical Institute, Serbian Academy of Sciences and Arts (Belgrade, 1996), pp. 107–132.

Centro de Ciencias Matemáticas. UNAM, AP. Postal 61-3 Xangari, Morelia, Michoacán, México C.P. 58089

Email address: barcenas@matmor.unam.mx

Instituto de Matemáticas, Universidad Nacional Autónoma de México, C.U., CDMX 04510, México.

Email address: calles@im.unam.mx