Морфологічне обґрунтування радіомодифікації передопераційної променевої терапії у хворих на розповсюджений рак ендометрія

Міхановський О. А., Сухіна О. М., Харченко Ю. В., Щит Н. М., Федоренко Н. В., Теплова М. А., Моісеєнко Ю. А. Морфологічне обґрунтування радіомодифікації передопераційної променевої терапії у хворих на розповсюджений рак ендометрія. Український радіологічний та онкологічний журнал. 2020. Т. 28. № 2. С. 87–105.
Keywords: endometrial cancer, neoadjuvant chemotherapy, radiomodification, apoptosis, combination treatment.

For citation: Mikhanovskij OA, Sukhina OM, Kharchenko YuV, Shchyt NM, Fedorenko NV, Teplova MA, Moiseyenko YuA. Morphological substantiation radiomodification of preoperative radiation therapy in patients with advanced endometric cancer. Ukrainian journal of radiology and oncology. 2020. T. 28. № 2. Pp. 87–105. DOI: https://doi.org/10.46879/ukroj.2.2020.87–105

For correspondence: Kharchenko Yuliia Volodymyrivna State Organization «Grigoriev Institute for Medical Radiology and Oncology of the National Academy of Medical Sciences of Ukraine», Oncosurgery Department of Gynecologic Oncology Group; 82 Pushkinska Str., Kharkiv, Ukraine 61024; e-mail: medradiologia@amnu.gov.ua

© Mikhanovskij O. A., Sukhina O. M., Kharchenko Yu. V., Shchyt N. M., Fedorenko N. V., Teplova M. A., Moiseyenko Yu. A., 2020

Summary
Relevance. Endometrial cancer ranks first among oncogynecological diseases, however, 5-year survival can be achieved only in 67.7 % of patients, while 22.4 % of patients die during this period from the continuation of the tumor process. Therefore, improving the complex therapy of patients with EC is very important.

Purpose of the study. To investigate therapeutic pathomorphosis in patients with advanced endometrial cancer with neoadjuvant chemoradiation therapy.

Materials and methods. In order to study radiation pathomorphosis, 26 patients with ER T1-3N0-1M0-1 were examined. Group I consisted of 11 patients with a preoperative course of external radiation therapy SOD 30 Gy without radiomodification, II – 15 patients with a preoperative course of external radiation therapy SOD 30 Gy with radiomodification.

Results and discussion. When conducting a comparative assessment of radiation pathomorphism in patients of the study groups, it was found that when using the preoperative course of TFD on Gy 30 with radiomodification, a significant decrease in the mitotic index occurs. There is also a tendency to an increase in the degree of tumor regression, the number of pathological mitoses and stromal reactions during the preoperative course of TFD on 30 Gy with radiomodification.

Conclusions. It was found that radiation therapy with EC with radiomodification gives a more positive effect and regression of more than 50.0 % of the tumor volume, a decrease in its biological potential. The volume of the damaged tumor was 58.0 %, and the volume of the residual tumor was 42.0 %, that is, most of the tumor mass underwent regression.

INTRODUCTION

Connection with research programs, plans and projects
The data for the study have been accumulated in the scope of the planned research project performed at SO «Grigoriev Institute for Medical Radiology and Oncology of the National Academy of Medical Sciences of Ukraine» that is «To Elaborate Measures to Improve Combination Therapy Outcomes in Patients with Advanced Endometrial Cancer and Disease Recurrence»; The research project code: NAMS (Ukraine) 05.18. State registration No 0118U003211.

Over the past two decades, Ukraine has experienced an increase in the incidence of endometrial cancer (EC), which, according to the Bulletin of the National Chancellor of the Register of Ukraine, currently accounts for 28 cases per 100,000 of the female population (26.4 in 2007) while the mortality rate indicator reached 6.8 per 100,000 female in 2008 [1, 2].

The annual mortality due to cancer of this localization in Ukraine is about 2,000 females; in the USA it reaches 5,500, in Great Britain it is 750. According to the summary of the International Federation of Obstetricians and Gynecologists, five-year survival with EC
Матеріали та методи

З метою вивчення променевого патоморфозу було обстежено 26 хворих на РЕ T1-3N0-1М0-1. Із них
І групу склали 11 пацієнтів з передоперативним курсом дистанційної променевої терапії СОД 30 Гр без радіомодифікації, II – 15 хворих з передоперативним курсом дистанційної променевої терапії СОД 30 Гр з радіомодифікацією.

Передоперативний курс ДПТ проводився на апараті РОКУС-АМ або Clinac-600 у режимі класичного фракціонування на ділянку малого таза та шляхі регіонарного метастазування СОД на точки А/В 30 Гр. Опомірення проводилося щодня (5 разів на тиждень), разова осередкова доза складала (РОД) 2 Гр. За методом радіомодифікації передоперативного курсу ДПТ хворим на РЕ досліджувана група одержувала один раз на тиждень внутрішньовенно вводився ручиці цисплатину 100 мг.

Хірургічне втручання виконували в об’ємі розширеної екстирпації матки з придатками та резекцію сальника.

У всіх обстежених хворих діагноз було визначено морфологічно до операції. При морфологічному дослідженнях враховували характер зростання пухлин (екзофітний, ендофітний, змішаний), гістологічну структуру, диференціювання пухлин, глибину інвазії пухлин в міометрі, мітотичну активність, кількість патологічних мітозів, характер клітинних реакцій у стромі пухлин, наявність і ступінь вираженості дистрофічних і регресивних змін у пухлині, а також наявність некрозів, апоптозу.

Операційний матеріал для морфологічного дослідження брали з центральних та периферичних ділянок і виготовляли препарати за стандартними методиками. Гістологічні препарати забарвлювали гематоксиліном та еозином і за методом Ван-Гізона. Для визначення об’єму залишкової пухлини використовували окулярну лінійку [55].

Мітотичний індекс і кількість патологічних мітозів визначали за методом І. А. Алова і А. І. Казанцевої, променевий патоморфоз, ступінь променевого ураження пухлин і характер клітинних стромальних реакцій визначали за методом Т. П. Якимовою [60].

Ступінь променевого патоморфозу визначали за 4-балляною шкалою:

I ступінь променевого ушкодження приймали за 1 умовну одиницю. Вона відповідала незначним змінам структури пухлин і репресії поодиноких комплексів.

II ступінь променевого ушкодження визначався в тих випадках, коли спостерігалося осередкове зникнення паренхими, поява некрозів і нерівномірне збільшення об’єму строми. Їм давали оцінку в 2 умовних одиницях.

III ступінь променевого ушкодження визначали в тих випадках, коли об’єм строми превалював над об’ємом пухлин з осередковим збереженням ділянок пухлин, що оцінювалося 3 умовними одиницями.

IV ступінь променевого ушкодження відповідав повній репресії пухлин і оцінювався в 4 умовних одиницях.

Дистрофічні зміни в пухлинах визначали трьома ступенями вираженості, тобто за 3-балльною шкалою. Ушкодження пухлин на клітинному рівні, тобто

Of these, Group I consisted of 11 patients with a preoperative course of remote radiation therapy of TFD 30 Gy without radiomodification, Group II was represented by 15 patients with a preoperative course of remote radiation therapy of TFD 30 Gy with radiomodification.

The preoperative course of remote radiation therapy was carried out using ROKUS-AM or Clinac-600 apparatus via classical fractionation mode into the pelvic area and regional metastasis pathway, the total focal dose of TFD at A/B points of 30 Gr. Irradiation was performed (5 times a week), a single focal dose (SFD) of 2 Gr. In order to radiomodify the preoperative course of distant radiation therapy, patients with EC of the study group were administered a solution of cisplatin 100 mg once a week.

Surgical treatment was performed in the amount of expanded hysterectomy with appendages and omentum resection. In all examined patients, the diagnosis was verified morphologically before surgery. The morphological study took into account the nature of the tumor growth (exophytic, endophytic, mixed), histological structure, tumor differentiation degree, depth of tumor invasion into the myometrium, mitotic activity, the number of pathological mitoses, nature of cellular reactions in the tumor stroma, presence and severity of dystrophic and regressive changes in the tumor, as well as presence of necrosis, apoptosis.

Surgical material for morphological studies was taken from the central and peripheral areas and preparations were prepared according to standard methods. Histological preparations were stained with hematoxylin and eosin and according to the Van Giesson method. An ocular ruler was used to determine the volume of the residual tumor [55].

The mitotic index and the number of pathological mitoses were determined by the method of I. A. Alov and A. I. Kazantseva, radiation pathomorphism, the degree of radiation damage to the tumor, and the nature of cellular stromal reactions were determined by the method of T. P. Yakimova [60].

The degree of radiation pathomorphism was assessed in accordance with a 4-point scale:

Degree I of radiation damage was taken as 1 relative unit. It corresponded to minor changes in the structure of the tumor and regression of single complexes.

Degree II of radiation damage was determined in those cases when there was focal disappearance of the parenchyma, appearance of necrosis and uneven increase in the volume of the stroma. They were given a rating of 2 relative units.

Degree III of radiation damage was assessed in those cases when the volume of the stroma prevailed over the volume of the tumor with focal preservation of the tumor areas, which was estimated by 3 relative units.

Degree IV of radiation damage corresponded to complete tumor regression and was evaluated by 4 relative units. Dystrophic changes in tumors were determined by three degrees of severity, that is based on a 3-point scale. Damage to the tumor at the cellular level, i.e.,
дистрофічні зміни клітин пухлини I ступеня оцінювали як 1 умовну одиницю в тих випадках, коли дистрофічні зміни були незначними і характеризувались незначним збільшенням розмірів клітин і ядер, конденсацією хроматину з розміщенням його по краю ядра, слабкою гіпертрофією ядер, незначною вакуолізацією цитоплазм, помірною гетероромією.

Помірно виражена дистрофія пухлинних клітин оцінювалася в 2 умовні одиниці у тому випадку, коли розвивався чіткий поліморфізм клітин, спостерігалася збільшення об’єму клітин і ядер, фрагментация ядер і появи багатодірності, гіантозму клітин і ядер, пікноз останніх, нечистість між клітинами і ядрами, лізис клітин, також визначалися зруйновані групи клітин, дискомплексування окремих пухлинних структур.

Різко виражена дистрофія пухлинних клітин визначалася при вакуолізації і лізисі ядер, вираженій жировій дистрофії цитоплазми, з різким поліморфізмом і руйнуванням комплексів з утворенням кріброзних структур і оцінювалася 3 умовними одиницями.

Стромальні клітинні реакції ложа пухлини також оцінювалися за 3-бальною системою залежно від морфологічного стану сполучної тканини, враховуючи стан волокон і основної речовини сполучної тканини. За наявності склеротичних змін, малої кількості фіброчитів і відсутності фібробластів клітинні стромальні реакції оцінювалися 1 умовною одиницю.

При збереженні практично нормальної будови сполучної тканини, волокнистих структур і фібробластних клітинних елементів стан клітинної реакції строми оцінювали в 2 умовні одиниці. При вираженийй місцевій імунній клітинній реакції характер стромальних змін відповідав 3 умовним одиницям [48]. Індекс апоптозу розраховувався за кількістю апоптозних клітин на 100 клітин пухлини.

Лікування хворих на РЕ було хірургічним, комбінованим та комплексним у залежності від стадії захворювання та гістологічної структури пухлини.

Показаннями до проведення хірургічного втручання були: РЕ T1a-3N0-1M0-1; загальний заподійний стан хворого; поширення РЕ з фіброміому матки або пухлинами придатків матки; хронічне запалення придатків із частими загостреннями; піометра; загроза перфорації унаслідок проростання пухлиною всіх шарів матки.

Після лапаротомії оглядали органи черевної порожнини, також та парааортальні лімфатичні вузли.

Забір матеріалу для цитологічного дослідження з метою уточнення стадії захворювання виконували з Дугласового простору безпосередньо після лапаротомії, з ділянки операционного поля після видалення матки та з поверхні піхового рубця – після закінчення операції.

Видалений препарат піддавали макроскопічному огляду зовні та на розрізі. При цьому оцінювали розміри матки, товщину міометрію, локалізацію і форму зростання пухлини, глибину інваzia в міометрії.

При обробці зон регіонарного метастазування видалений препарат піддавали макроскопічному огляду зовні та на розрізі. При цьому оцінювали розміри матки, глибину інвалізації у міометрії, розташування в пухлини.

При обробці зон регіонарного метастазування видалений препарат піддавали макроскопічному огляду зовні та на розрізі. При цьому оцінювали розміри матки, глибину інвалізації у міометрії, розташування в пухлини.

При обробці зон регіонарного метастазування видалений препарат піддавали макроскопічному огляду зовні та на розрізі. При цьому оцінювали розміри матки, глибину інвалізації у міометрії, розташування в пухлини.

При обробці зон регіонарного метастазування видалений препарат піддавали макроскопічному огляду зовні та на розрізі. При цьому оцінювали розміри матки, глибину інвалізації у міометрії, розташування в пухлини.
або 18 × 18 см на клубову та крижово-сідничну ділянки до СОД 15 Гр. Далі при статичному опромінюванні використовували чотири протилежних поля (два на клубову та два на крижово-сідничну розміром 6 × 16 см, попарно, паралельно розташованими, з відстанню між медіальними межами в 2 см). Хворим на РЕ T2-3N0-1M0 обох груп додатково проводили опромінювання піхового рубця на апараті АГАТ-В шляхом підведення до нього системи овоїдів. Розрахована доза складала 3,5 Гр, СОД – 28 Гр за 8 фракцій.

РЕЗУЛЬТАТИ ТА ЇХ ОБГОВОРЕННЯ
Дані щодо розподілу хворих I і II групи залежно від гістологічної структури РЕ наведено в таблиці 1.

Таблиця 1. Гістологічна структура пухлин у хворих на РЕ I і II груп

| Група хворих | Гістологічна структура пухлин | Аденокарцинома | Рідкісні форми |
|--------------|-------------------------------|----------------|----------------|
| Пациент груп | Histological structure of the tumor | Adenocarcinoma | Rare forms |
| Patient group | | | abs. | abs. | % | abs. | % | abs. | % |
| I (n = 11) | Highly differentiated | Moderately differentiated | Low-grade differentiated | | | | |
| 2 | 18,2 | 5 | 45,5 | 3 | 27,3 | 1 | 9,1 |
| II (n = 15) | 2 | 13,3 | 7 | 46,7 | 4 | 26,7 | 2 | 13,3 |
| Всього n = 26 | 4 | 15,4 | 12 | 46,1 | 7 | 26,9 | 3 | 11,5 |

При морфологічному дослідженні було встановлено, що частіше у хворих обох груп мала місце помірно диференційована адено карцинома ендометрія – 45,5 та 46,7 %. У цілому адено карцинома була виявлена майже у 90 % хворих.

Розподіл хворих на РЕ I і II груп залежно від форми зростання пухлини представлено в таблиці 2.

Таблиця 2. Розподіл хворих на РЕ I і II груп залежно від форми зростання пухлини

| Група хворих | Форма зростання пухлин | Екзофітна | Ендофітна | Змішана | В межах слизової оболонки |
|--------------|--------------------------|-----------|-----------|----------|--------------------------|
| Patient group | Tumor growth form | Exophytic | Endophytic | Mixed | Within the mucous membrane |
| | | abs. | % | abs. | % | abs. | % | abs. | % |
| I (n = 11) | 2 | 18,2 | 6 | 44,5 | 2 | 18,2 | 1 | 9,1 |
| II (n = 15) | 2 | 13,3 | 7 | 41,2 | 5 | 33,3 | 1 | 6,7 |
| Всього n = 26 | 4 | 15,4 | 13 | 50,0 | 7 | 26,9 | 2 | 7,7 |

A morphological study made it possible to find that more often in patients of both groups there was a moderately differentiated endometrial adenocarcinoma: 45.5 and 46.7 %. In general, adenocarcinoma was detected in almost 90 % of patients.

The distribution of patients with EC into Group I and Group II depending on the form of tumor growth are presented in Table 2.

RESULTS AND DISCUSSION
The data on classifying patients into Group I and Group II depending on the histological structure of EC are presented in Table 1.
Таблиця 3. Показники променевого патоморфозу РЕ хворих І групи
Table 3. Indicators of radiation pathomorphosis of EC patients of Group 1

| Показник Indice | Значення Value |
|-----------------|----------------|
| Ступінь рергеції пухлин, ум. од. Tumor regression degree, relative units | 2,24 ± 0,86 |
| Ступінь дистрофії клітин пухлин, ум. од. Degree of tumor cells dystrophy, relative units | 1,91 ± 0,48 |
| Мітотичний індекс, % Mitotic index, % | 4,58 ± 1,10 |
| Патологічні мітози, % Pathological mitoses, % | 79,01 ± 10,00 |
| Характер стромальних клітинних реакцій, ум. од. Nature of stromal cell reactions, relative units | 2,53 ± 0,96 |

Як видно, ступінь променевого ушкодження пухлин на тканинному рівні був помірно вираженим. Пухлинна маса, що піднімалась рергеції, зазнікла знов утвореною сполучною тканиною.

Ступінь дистрофічних змін ПК також був помірно вираженим. (9,1 %) спостерігалась повна (IV ступінь) рергеції пухлин і ще в 2 (18,2 %) – значний ступінь променевого ушкодження пухлин, коли на її місці залишилися окремі осередки ПК, що становили 12–13 % пухлинної маси.

Як видно, ступінь променевого ушкодження пухлин на тканинному рівні був помірно вираженим. Пухлинна маса, що піднімалась рергеції, зазнікла знов утвореною сполучною тканиною.

Ступінь дистрофічних змін ПК також був помірно вираженим. (9,1 %) спостерігалась повна (IV ступінь) рергеції пухлин і ще в 2 (18,2 %) – значний ступінь променевого ушкодження пухлин, коли на її місці залишилися окремі осередки ПК, що становили 12–13 % пухлинної маси.

Це виражається і в збільшенні розмірів ПК у ряді випадків, частково в цитоліз та каріолізі. У 2 відріжках (18,2 %) у пухлинах виявлені великі некрози. В одному випадку це була низькодиференційована аденокарцинома, а в другому – аденокарцинома помірного ступеня диференціювання. Слід зазначити, що ступінь променевого ушкодження пухлин на тканинному рівні, тобто рергеція пухлин, не корелював із наявністю некрозів, тоді як у всіх випадках спостережалися за наявності некрозів у пухлинах мала місце виражена дистрофія ПК.

Проліферативна активність РЕ після променевої терапії в СОД 30 Гр значно пригнічена, про що свідчить величина мітотичного індексу (4,58 ± 1,10 %).
Рис. 1. Виражена дистрофія і десквамація ПК помірнодиференційованої аденокарциноми після передоперативого курсу ДПТ, СОД 30 Гр, × 280

Fig. 1. Severe dystrophy and desquamation of the TC of moderately differentiated adenocarcinoma after a preoperative course of remote radiation therapy, TFD 30 Gy, × 280

і значна кількість патологічних мітозів (79,01 ± 10,00 %), що в 1,72 разу нижче за мітотичний індекс (7,86 ± 1,26 %) і в 1,18 разу більше кількості патологічних мітозів (66,94 ± 6,20 %) в інших неопромінених пухлинах.

Що стосується індексу апоптозу, то середня величина його вельми низька – 2,96 ± 0,94, що в 1,8 разу вище за цей показник в інших пухлинах – 1,46 ± 0,33. Отже, роль апоптозу в регресії пухлини ендометрія залишається незначною.

Характер стромальних клітинних та імунних реакцій при РЕ був активним і за 3-бальною системою складав 2,53 ± 0,96 ум. од. При цьому у 54,5 % пухлин (6 із 11) виявлена інфільтрація пухлинні і навколишніх тканин імунокомпетентними клітинами, серед яких переважали лімфоцити. Отже, половина пухлин РЕ мають клітинний характер реакцій строми.

Променевий патоморфоз РЕ у групах I групи залишався від форми зростання пухлини наведений в таблиці 4.

Аналіз результатів дослідження (табл. 4) свідчить про те, що найбільший ступінь променевого ушкодження пухлини на тканинній рівні спостерігається при локалізації пухлини в межах слизової оболонки. І це зрозуміло, оскільки пухлина, потрапляючи під дію променевої терапії, не екранується навколишніми тканинами. Крім того, на пухлину впливають компенсаторно-захисні та імунні реакції строми. При цьому характері зростання спостерігається найвищий показник ступеня вираженості дистрофічних змін у ПК.

При такому характері зростання РЕ повністю пригнічені проліферативні властивості пухлини, а строма густо інфільтрована імунокомпетентними клітинами, які чинять на пухлину цитотоксичну дію. Індекс апоптозу при цьому є помірним.

При екзофітній формі РЕ також виявлений значний ступінь променевого ушкодження пухлини, але проліферативна активність при цьому досить висока. Проте ступінь стромальних імунних реакцій та індекс апоптозу в цій групі пухлин також високі, що в сукупності з прямою дією ПТ дає хороший протипухлинний ефект. При ендометріальній, найчастішій, формі and a great number of pathological mitoses (79.01 ± 10.00 %), which is 1.72 times lower than the mitotic index (7.86 ± 1.26 %) and 1.18 times higher than the number of pathological mitoses (66.94 ± 6.20 %) in intact non-irradiated tumors.

Regarding apoptosis index, its average value is very low, i.e. 2.96 ± 0.94, which is still 1.8 times higher than this value in intact tumors, 1.46 ± 0.33. Therefore, the role of apoptosis in the regression of endometrial tumors remains insignificant.

The nature of stromal cellular and immune reactions in EC was quite active and according to a 3-point scale it has 2.53 ± 0.96 relative units. Upon that, in 54.5 % of tumors (6 out of 11) infiltration of the tumor and surrounding tissues by immunocompetent cells, lymphocytes predominantly, was revealed. Thuswise, half of EC tumors have a cellular nature of stroma reactions.

Radiation pathomorphosis of EC in patients of Group I depending on the form of tumor growth is shown in Table 4.

The analysis of the study outcomes (Table 4) shows that the greatest degree of radiation damage of the tumor at the tissue level is observed when a tumor is localized within the mucous membrane. This is quite clear, since a tumor, being under radiation therapy influence, is not shielded by the surrounding tissues. In addition, it is affected by compensatory-protective and immune reactions of the stroma. With this nature of growth, the highest rate of degenerative changes in TC is observed.

Being characterized by such nature of EC growth, the proliferative properties of the tumor are completely suppressed, and the stroma is densely infiltrated by immunocompetent cells, which have a cytotoxic effect on the tumor. The apoptosis index is moderate.

In exophytic EC, a significant degree of radiation damage to the tumor was also detected, but, at the same time, the proliferative activity was quite high. However, the degree of stromal immune responses and apoptosis index in this group of tumors is also high, which,
Зростання РЕ, спостерігаються помірний ступінь променевого ушкодження пухлини на тканинному рівні, помірно виражений ступінь дистрофічних змін ПК, значне зниження мітотичної активності пухлинної тканини, помірно виражений ступінь клітинних стромальних реакцій. Це позитивні результати, і вони досягаються, швидше за все, як променевою дією, так і захисно-компенсаторними реакціями в міометрії. При екзофітно-ендофітному характеру зростання пухлини ступінь її регресії найменший.

Залежність променевого патоморфозу РЕ у хворих I групи від гістологічної структури пухлин подано в таблиці 5.

Як видно із наведених в таблиці 5 даних, на тканинному рівні помірно виражений ступінь регресії настали у аденоакріномах з помірним і низьким ступенем диференціювання, а виражені дистрофічні зміни, як і в інших інших групах, були характерні для низько-диференційованої аденоакріноми і рідкісних форм. Водночас проліферативна активність пухлин була найбільш пригніченою в аденоакріномах високого і помірного ступені диференціювання.

Слід зазначити, що вираженість клітинних стромальних, зокрема й інших патологічних реакцій, найбільш в аденоакріномах помірного і низького ступені диференціювання. І ця місцева імунна реакція не пригнічується ДПТ СОД 30 Гр.

Результати дослідження апоптозу показали, що регресія пухлин під впливом променевої терапії відбувається шляхом дистрофії і некрозів, причому пухлини низького ступеня диференціювання найбільше схильні до саме такої дії. in combination with direct action of PT, provides a good antitumor effect. In endophytic EC, which is the most common one, the following is observed: moderate degree of radiation damage to the tumor at the tissue level, moderate degree of dystrophic changes in the TC, significant decrease in mitotic activity of tumor tissue and moderate degree of cellular stromal reactions. They are considered to be positive outcomes and they are most likely achieved by both radiation and protective-compensatory reactions in the myometrium. In mixed tumor growth, tumor regression degree is the lowest.

The dependence of EC radiation pathomorphism in patients of Group I on the histological structure of the tumor is presented in Table 5.

The data provided in Table 5 show, that at the tissue level, a moderate degree of regression occurred in adenocarcinomas with moderate and low degree of differentiation, while pronounced dystrophic changes, like in other groups, were typically occurring in low-grade differentiated adenocarcinoma and rare forms. At the same time, the proliferative activity of tumors was mostly inhibited in highly and moderately differentiated adenocarcinomas.

It is to be emphasized that the intensity of cellular stromal reactions, including immune ones, is the highest in adenocarcinomas of moderate and low degree of differentiation. And this local immune response is not suppressed by RRT TFD 30 Gy.

Apoptosis study outcomes have showed that the regression of tumors influenced by radiation therapy occurs via dystrophy and necrosis. Moreover, low-grade differentiated tumors mostly tend to be affected.
Таблиця 5. Показники променевого патоморфозу РЕ у хворих I групи залежно від гістологічної структури пухлини

Table 5. Indices of EC radiation pathomorphosis in patients of Group I depending on the histological structure of the tumor

| Гістологічна структура пухлини | Ступінь променевого ушкодження пухлини, ум. од. | Ступінь дистрофії пухлинних клітин, ум. од. | Мітотичний індекс, % | Кількість патологічних мітозів, % | Вираженість клітинних стромальних реакцій, ум. од. | Індекс апоптозу, % |
|-------------------------------|-----------------------------------------------|---------------------------------------------|----------------------|----------------------------------|---------------------------------------------|-------------------|
| Високодиференційована аденоакарцинома, n = 2 | 1,00 | 1,75 | 4,00 | 50,00 | 2,0 | 2,4 |
| Помірно диференційована аденоакарцинома, n = 5 | 2,11 ± 0,72 | 1,55 ± 0,34 | 3,61 ± 0,95 | 80,93 ± 6,15 | 2,55 ± 0,89 | 1,54 ± 0,19 |
| Низькодиференційована аденоакарцинома, n = 3 | 1,75 ± 0,58 | 2,75 ± 0,35 | 6,00 ± 1,14 | 91,67 ± 8,12 | 2,50 ± 0,68 | 9,86 ± 2,14 |
| Рідкісні форми, n = 1 | | | | |

Таблиця 6. Показники променевого патоморфозу РЕ хворих I групи залежно від глибини інвазії пухлини в міометрій

Table 6. Indices of radiation pathomorphosis of EC patients of Group I depending on the depth of tumor invasion into the myometrium

| Глибина інвазії пухлини в міометрії, см | Ступінь променевого ушкодження пухлини, ум. од. | Ступінь дистрофії пухлинних клітин, ум. од. | Мітотичний індекс, % | Кількість патологічних мітозів, % | Характер клітинних стромальних реакцій, ум. од. | Індекс апоптозу, % |
|----------------------------------------|-----------------------------------------------|---------------------------------------------|----------------------|----------------------------------|---------------------------------------------|-------------------|
| < 0,5 | 2,10 ± 0,37 | 1,83 ± 0,55 | 4,00 ± 0,61 | 76,27 ± 11,18 | 2,66 ± 0,49 | 4,64 ± 0,83 |
| Від 0,6 до 1,0 From 0.6 to 1,0 | 1,75 ± 0,16 | 2,75 ± 0,83 | 5,50 ± 0,41 | 78,57 ± 9,94 | 2,50 ± 0,98 | 0,53 ± 0,59 |
| > 1,0 | 1,20 ± 0,32 | 2,15 ± 0,82 | 5,30 ± 1,1 | 88,33 ± 12,31 | 2,00 ± 0,63 | 2,82 ± 0,09 |
Таблиця 7. Показники променевого патоморфозу РЕ у хворих II групи

| Показник | Значення |
|-----------|----------|
| Ступінь регресії пухлин, ум. од. | 2,32 ± 0,56 |
| Тumor regression degree, relative units | |
| Ступінь дистрофії пухлинних клітин, ум. од. | 1,74 ± 0,32 |
| Degree of tumor cells dystrophy, relative units | |
| Мітотичний індекс, % | 3,14 ± 0,73 |
| Mitotic index, % | |
| Число патологічних мітозів, % | 80,23 ± 6,14 |
| Amount of pathological mitoses, % | |
| Нативар стромальних реакцій, ум. од. | 2,62 ± 0,56 |
| Nature of stromal cell reactions, relative units | |
| Індекс апоптозу, % | 1,42 ± 0,44 |
| Apoptosis index, % | |
| Глибина інвазії пухлин в міометрій, см | 0,34 ± 0,06 |
| Depth of tumor invasion into the myometrium, cm | |

З даних таблиці 7 видно, що ступінь променевого ушкодження пухлин на тканинному рівні помірний. При цьому об’єм ушкодженої пухлини складав 58,0 %, а об’єм залишкової пухлини – 42,0 %, тобто більша частина пухлиной маси піддавалася регресії. Ступінь дистрофічних змін ПК також був помірним, а мітотичний індекс, що характеризує проліферативні потенції РЕ, у 2 рази нижчий у порівнянні з інконтактними пухлинами. Ступінь регресії пухлин також був помірним. Індекс апоптозу в опромінених пухлинах мав практично таку ж величину, як і в неопромінених. Глибина інвазії пухлин в міометрій була меншою порівняно з неопроміненими пухлинами.

The outcomes presented in Table 7 indicate that the degree of radiation damage to the tumor at the tissue level is moderate. The volume of the damaged tumor was 58.0 %, and the volume of the residual tumor was 42.0 %, i.e., most of the tumor mass was subjected to regression. The degree of dystrophic changes in the TC was also moderate, and the mitotic index, characterizing the proliferative potentials of EC, was 2 times lower in comparison with intact tumors, where the mitotic index was 7.86 ± 1.26 %. The degree of radiation damage is the lowest, as well as the level of cellular stromal reactions. A moderate index of apoptosis in invasive tumors may be associated with the fact of being exposed to radiation as well as the factors that act on body level.

Thus, preoperative RRT of endometrial cancer by TFD 30 Gy leads to moderate regression of tumors with loss of 56 % of its volume, moderate dystrophy of the remaining TC, reduction of TC mitotic activity by 1.72 times compared to intact tumors. One patient (9.1 %) shows full regression and two patients (18.2 %) show rather significant regression of tumors after RRT.

Indices of radiation pathomorphosis of EC patients of Group II are presented in Table 7.
Залежність результатів комбінованого лікування РЕ від його гістологічної структури і ступеня диференціювання відома. Уважається, що злозкісним пухлинам (ЗП) з високими проліферативними потенціями і низьким ступенем диференціювання властива значна радіочутливість, але на практиці це не завжди так, що пов’язано з багатьма властивостями самої пухлини.

Хіміорадіоморфоз РЕ хворих II групи залежно від гістологічної структури пухлини представлений у таблиці 8.

The dependence of EC combined treatment outcomes on the histological structure and differentiation degree is known. It is believed that a malignant tumor (MT) with high proliferative potencies and low-grade differentiation degree is characterized by significant radiosensitivity, but in practice, this is not always the case, due to many properties of the tumor itself.

Chemoradiation pathomorphosis of EC patients of Group II depending on the histological structure of the tumor is presented in Table 8.

### Таблиця 8. Показники променевого патоморфозу РЕ хворих II групи залежно від гістологічної структури пухлини

**Table 8. Indices of radiation pathomorphosis of EC patients of Group II depending on the histological structure of the tumor**

| Гістологічна структура пухлини | Ступінь регресії пухлини, ум. од. | Ступінь дистрофії пухлинних клітин, ум. од. | Мітотичний індекс, % | Кількість патологічних мітозів, % | Ступінь вираженості стромальних клітинних реакцій, ум. од. | Індекс апоптозу, % |
|-------------------------------|----------------------------------|---------------------------------|-----------------|----------------|---------------------------------|-----------------|
| Високодиференційована аденоакарцинома, n = 2 | 1,00 ± 0,16 | 0,65 ± 0,14 | 1,50 ± 0,14 | 66,50 ± 8,17 | 2,25 ± 0,96 | 1,73 ± 0,17 |
| Помірнодиференційована аденоакарцинома, n = 7 | 2,00 ± 0,73 | 1,46 ± 0,39 | 3,17 ± 0,66 | 90,00 ± 12,11 | 2,50 ± 0,57 | 1,63 ± 0,36 |
| Низькодиференційована аденоакарцинома, n = 4 | 1,33 ± 0,58 | 2,17 ± 0,98 | 4,00 ± 0,92 | 64,44 ± 8,07 | 3,00 ± 0,92 | 0,90 ± 0,48 |
| Рідкісні форми (недиференційований рак), n = 2 | 3,50 ± 0,86 | 1,00 ± 0,45 | 0 | 0 | 3,00 ± 1,34 | 3,50 ± 0,99 |
Отримані результати свідчать про найбільшу резистентність кистоукраїнської ПЕ і повне пригнічення його проліфераційної активності, що відповідає даним літератури [29]. Найвищий мітотичний індекс виявлений у високодиференційованих аденоакарциномах (1,50 ± 0,14 %). Проліфераційна активність досягає пригнічення в низько- і помірнодиференційованих аденоакарциномах ендометрії, у порівнянні із іншими пухлинами (7,86 ± 1,26 %).

Ступінь дистрофії ПК високою варіював як у межах однієї гістологічної форми пухлин, так і в пухлинах різної гістологічної структури. Проте навираженіший ступінь дистрофічних змін ПК спостерігається при низькодиференційованій аденоакарциномі.

Найвищий індекс апоптозу спостерігається в недиференційованих пухлинах (3,50 ± 0,99 %). Тобто в механізмі їх резистентності відіграє роль пригнічення проліфераційної активності пухлин.

Показники променевого патоморфозу РЕ хворих II групи залежно від форми зростання пухлин наведені в таблиці 9.

| Форма зростання пухлини | Ступінь регресії пухлин, ум. од. | Ступінь дистрофії пухлини, клітин, ум. од. | Мітотичні індекси, % | Вираженість клітинних реакцій строми, ум. од. | Глибина інвазії у міометрії, см |
|-------------------------|---------------------------------|---------------------------------|-------------------------|---------------------------------|---------------------------------|
| Екзофітна, n = 2       | 2,46 ± 0,85                     | 2,03 ± 0,96                     | 1,83 ± 0,41             | 88,83 ± 10,12                   | 0,2 ± 0,03                      |
| Exophytic, n = 2       |                                 |                                |                         |                                 |                                 |
| Ендофітна, n = 7       | 1,83 ± 0,71                     | 2,16 ± 0,88                     | 4,0 ± 0,63              | 77,78 ± 6,48                    | 0,99 ± 0,55                     |
| Endophytic, n = 7      |                                 |                                |                         |                                 |                                 |
| Ексфітно-ендофітна, n = 5 | 1,50 ± 0,89                     | 1,25 ± 0,48                     | 3,5 ± 0,92              | 55,00 ± 9,19                    | 0,83 ± 0,06                     |
| Exophytic-endophytic, n = 5 |                             |                                |                         |                                 |                                 |
| У межах слизової оболонки, n = 1 | 2,75 ± 0,99                     | 1,13 ± 0,53                     | 3,5 ± 0,73              | 88,33 ± 11,31                   | 0,1 ± 0,01                      |
| Within mucous membrane, n = 1 |                             |                                |                         |                                 |                                 |

Як свідчать дані, ступінь променевого ушкодження на ткачному рівні найбільший в ексофітних пухлинах і в пухлинах, локалізованих у межах слизової оболонки. Ступінь дистрофії також найбільший при цій формі зростання РЕ. В ексофітних пухлинах спостерігається найвищий мітотичний індекс. Глибина їх інвазії в міометрії не перевищувала 0,2 см, тобто була мінімальною, не враховуючи локалізацію пухлин у межах слизової оболонки.

Мінімальній ступінь ушкодження пухлини на ткачному рівні виявлений при їх ексофітно-ендофітній формі зростання. При цій формі зростання виявляється самий незначний ступінь ушкодження пухлини.

The obtained results indicate the highest regression of undifferentiated EC and full suppression of its proliferative activity, which corresponds to the literature data [29]. The lowest mitotic index was revealed in highly differentiated adenocarcinomas (1.50 ± 0.14%). Proliferative activity is rather suppressed in low- and moderately differentiated endometrial adenocarcinomas, in comparison with intact tumors (7.86 ± 1.26%).

TC dystrophy degree varied greatly within one histological tumor form as well as in tumors of different histological structure. However, the most pronounced degree of dystrophic changes in TC is observed in low-grade differentiated adenocarcinoma.

The highest apoptosis index was observed in undifferentiated tumors (3.50 ± 0.99 %). In other words, inhibiting proliferative activity of tumors is important in the mechanism of regression.

Indices of radiation pathomorphosis of EC patients of Group II depending on tumor growth form are presented in Table 9.

| Form of tumor growth | Tumor regression degree, relative units | Tumor cells dystrophy degree, relative units | Mitotic index, % | Pathological mitosis, % | Stromal cellular reaction intensity, relative units | Depth of tumor invasion into the myometrium, cm |
|----------------------|----------------------------------------|---------------------------------------------|------------------|-------------------------|-----------------------------------------------|-----------------------------------------------|
| Exophytic, n = 2     | 2.46 ± 0.85                            | 2.03 ± 0.96                                 | 1.83 ± 0.41      | 88.83 ± 10.12           | 0.2 ± 0.03                                    |                                               |
| Endophytic, n = 7    | 1.83 ± 0.71                            | 2.16 ± 0.88                                 | 4.0 ± 0.63       | 77.78 ± 6.48            | 0.99 ± 0.55                                   |                                               |
| Exophytic-endophytic, n = 5 | 1.50 ± 0.89                      | 1.25 ± 0.48                                 | 3.5 ± 0.92       | 55.00 ± 9.19            | 0.83 ± 0.06                                   |                                               |
| Within mucous membrane, n = 1 | 2.75 ± 0.99                 | 1.13 ± 0.53                                 | 3.5 ± 0.73       | 88.33 ± 11.31           | 0.1 ± 0.01                                    |                                               |

According to the data, the degree of radiation damage at the tissue level is greatest in exophytic tumors and in tumors localized within the mucosa. The dystrophy degree is also the highest in EC growth form. The lowest mitotic index is observed in exophytic tumors. The depth of invasion into the myometrium did not exceed 0.2 cm, i.e. it was minimal, ignoring the localization of the tumor within the mucosa.

The minimum degree of tumor damage at the tissue level was detected in exophytic-endophytic (mixed) form of growth. This form of growth reveals the minor degree of tumor damage, both at the cellular and tissue level, i.e. mild dystrophic changes.
Як бачимо, помірний ступінь променевого ушкодження новоутворення на тканинному рівні спостерігається при глибині інвазії пухлини до 0,5 см. При інвазії пухлини в міометрію більше 0,5 см ступінь її променевого ушкодження на тканинному рівні зменшується вдвічі. У нашому дослідженні найчастіше мали місце випадки з неглибокою інвазією пухлини в міометрію, а найбільшою була глибина прогоріння 1,2 см.

Ступінь дистрофічних змін у ПК змінювався – найбільший визначався в поверхневому розташованих пухлинах. У пухлинах з глибокою інвазією ступінь дистрофії клітин пухлині виявився помірною, що не є рідкістю, оскільки в цій частині вони піддаються некрозам у зв'язку з недосконалим ангіогенезом, а прогоріння так глибоко зазвичай низько-диференційовані пухлини. Міототичний індекс після ДПТ з радіомодифікацією СОД 30 Гр належний у поверхневому розташованіх пухлинах, як і найбільша кількість патологічних мітозів і високий ступінь вираженості клітинних і імунних стромальних реакцій. Індекс апоптозу завжди найбільший у пухлинах із низьким рівнем і дистрофії ПК досить виражені, в пухлинах, які мали глибоку інвазію в міометрій (табл. 10).

Таблиця 10. Показники променевого патоморфозу РЕ

| Глибина інвазії в міометрію, см | Ступінь регресії пухлин, ум. од. | Ступінь дистрофії пухлинних клітин, ум. од. | Міототичний індекс, % | Патологічні мітози, % | Вираженість клітинних реакцій строми, ум. од. | Индекс апоптозу, % | Апоптозис index, % |
|---------------------------------|---------------------------------|---------------------------------|----------------------|----------------------|-----------------------------------|------------------|------------------|
| До 0,5                          | 2,03 ± 0,33                     | 1,74 ± 0,38                     | 3,7 ± 0,67           | 79,39 ± 9,69         | 2,79 ± 0,56                       | 1,19 ± 0,19      | 1,47 ± 0,49      |
| 0,5 and less                    |                                |                                |                      |                      |                                    |                  |                  |
| > 0,5                           | 1,0 ± 0,24                      | 2,0 ± 0,56                      | 4,0 ± 0,42           | 41,67 ± 6,16         | 2,0 ± 0,47                        |                  |                  |

Як бачимо, помірний ступінь променевого ушкодження новоутворення на тканинному рівні спостерігається при глибині інвазії пухлини до 0,5 см. При інвазії пухлини в міометрію більше 0,5 см ступінь її променевого ушкодження на тканинному рівні зменшується вдвічі. У нашому дослідженні найчастіше мали місце випадки з неглибокою інвазією пухлини в міометрію, а найбільшою була глибина прогоріння 1,2 см.

Ступінь дистрофічних змін у ПК змінювався – найбільший визначався в поверхневому розташованих пухлинах. У пухлинах з глибокою інвазією ступінь дистрофії клітин пухлині виявився помірною, що не є рідкістю, оскільки в цій частині вони піддаються некрозам у зв'язку з недосконалим ангіогенезом, а прогоріння так глибоко зазвичай низько-диференційовані пухлини. Міототичний індекс після ДПТ з радіомодифікацією СОД 30 Гр належний у поверхневому розташованіх пухлинах, як і найбільша кількість патологічних мітозів і високий ступінь вираженості клітинних і імунних стромальних реакцій. Індекс апоптозу завжди найбільший у пухлинах із низьким рівнем і дистрофії ПК досить виражені, в пухлинах, які мали глибоку інвазію в міометрій (табл. 10).

Table 10. Indices of radiation pathomorphosis of EC patients of Group II depending on the depth of tumor invasion into the myometrium

| Depth of invasion into the myometrium, cm | Tumor regression degree, relative units | Tumor cells dystrophy degree, relative units | Mitotic index, % | Pathologic mitoses, % | Stromal cellular response, relative units | Apoptosis index, % |
|------------------------------------------|----------------------------------------|------------------------------------------|----------------|-----------------------|----------------------------------------|------------------|
| 0,5 and less                              | 2.03 ± 0.33                            | 1.74 ± 0.38                             | 3.7 ± 0.67     | 79.39 ± 9.69          | 2.79 ± 0.56                           | 1.19 ± 0.19      |
| > 0.5                                     | 1.0 ± 0.24                             | 2.0 ± 0.56                              | 4.0 ± 0.42     | 41.67 ± 6.16          | 2.0 ± 0.47                            | 1.47 ± 0.49      |

Evidently, a moderate degree of radiation damage to the tumor at the tissue level is observed when the depth of tumor invasion is 0.5 cm and less. When this criterion is more than 0.5 cm, the degree of radiation damage at the tissue level is reduced by half. In our study, the most common cases were the ones characterized by a shallow invasion of the tumor into the myometrium, and the invasion depth reaching 1.2 cm was the deepest.

The degree of dystrophic changes in TC varied; it was the most pronounced in superficial tumors. In the tumors with deep invasion, a moderate degree of TC dystrophy is common, because in this part they are subjected to necrosis due to imperfect angiogenesis, and it is typical for the poorly differentiated tumors to grow so deep.

The mitotic index after RRT with radiomodification TFD 30 Gy is the lowest in superficial tumors along with the largest number of pathological mitoses and a high degree of cellular and immune stromal reactions. The apoptotic index is always the highest in tumors with a low-graded differentiation and a high malignancy degree. It stands to reason that, the deepest invasion of the myometrium is typical for fast-growing tumors with a high malignancy level. At the same time, chemoradiation has an antiblastoma effect on such tumors reducing proliferative properties. The mitotic index in tumors with deep invasion of the myometrium was 1.5 times lower than in intact ones (7.87 ± 1.26 %).

Thus, preoperative RRT with radiomodification of TFD 30 Gy leads to a moderate degree of radiation damage to the tumor at the tissue level and decreased TC proliferative activity. In 2 cases (13.3 %) there was almost full regression of the tumor. The applied treatment mode was mostly
У 2 випадках (13.3 %) настає майже повна регресія пухлини. Використана схема лікування найефективніша при недиференційованому раку. У регресії пухлини апоптоз має місце тільки при недиференційованих пухлинах, але його роль, судячи з рівня індексу апоптозу, знеціна. Пухлини з ексофітою формою зростання і обмежені межами слизової оболонки найбільше схильні до променевої дії. Пухлини з великою глибиною інвазії в міометрію і ексофіто-ендофітою формою зростання найменш чутливі до променевої терапії. Проте незалежно від глибини інвазії в пухлинах пригінчуються проліферативні потенції і знижується міто-тичний індекс, незважаючи на слабкий ступінь променевого ушкодження пухлини на тканинному рівні.

Таким чином, на підставі проведеного дослідження можна зробити висновки.

При проведенні порівняльної оцінки променевого патоморфозу у хворих досліджуваних груп (табл. 11) видно, що при використанні передоперативного курсу ДПТ 30 Гр з радіомодифікацією відбувається вірогідне зниження мітотичного індексу (p < 0.01) (4.58 ± 1.10 та 3.14 ± 0.73 % відповідно) у порівнянні з першою групою. Між такими показниками, як ступінь регресії пухлини, кількість патологічних мітозів, характер стромальних реакцій існує тенденція до їх збільшення при проведенні передоперативного курсу ДПТ 30 Гр з радіомодифікацією.

Таблиця 11. Показники променевого патоморфозу ПЕ хворих I–II групи з передоперативним курсом променевої терапії

Table 11. Indices of radiation pathomorphosis of EC patients of Group I and Group II with a preoperative course of radiation therapy

| Показник          | I група (n = 11) | II група (n = 15) |
|-------------------|-----------------|------------------|
| Д ступень регресії пухлини, ум. од. | 2.24 ± 0.86 | 2.32 ± 0.56 |
| Д ступень дистрофії ум. од. | 1.91 ± 0.48 | 1.74 ± 0.32 |
| Мітотичний індекс, % | 4.58 ± 1.10 | 3.14 ± 0.73* |
| Кількість патологічних мітозів (п. м.), % | 79.01 ± 10.0 | 80.23 ± 6.14 |
| Характер стромальних реакцій, ум. од. | 2.53 ± 0.96 | 2.62 ± 0.44 |
| Об’єм ушкодженої пухлини, % | 56.0 | 58.0 |

* Відмінності вірогідні відносно даного показника між I і II групами, p < 0.01, t-критерій Ст’юдента.
* Differences are probable towards this index between Group 1 and Group 2, p < 0.01, Student's t-test.
ВИСНОВКИ
1. Установлено, що променевий патоморфоз РЕ залежить від:
   • гістологічної форми пухлини: в adenokarциномах з помірним і низьким ступенем диференціювання – помірно виражений ступінь регресії, а виражені дистрофічні зміни були характерні для низькодиференційованої adenokarциноми і рідкісних форм.
   • глибини інвазії пухлини в міометрії: найбільший ступінь променевого ушкодження відзначено в пухлинах з інвазією в міометрії до 0,5 см.
   • форми зростання РЕ: мінімальний ступінь ушкодження пухлини на тканинному рівні виявлений при їх екзофітно-ендофітній формі зростання.
2. Доведено, що променева терапія РЕ:
   • без радіомодифікації приводить до променевого ушкодження на тканинному рівні та повної регресії лише 27,3 % пухлин;
   • з радіомодифікацією дає позитивний ефект і реґресію більше 50,0 % об’єму пухлини, зниження її біологічних потенції.
3. У хворих на РЕ з радіомодифікацією променевої терапії ступінь дистрофічних змін ПК був помірним, але мітотичний індекс був у 2 рази нижчий порівняно з інтактними пухлинами.

ПЕРСПЕКТИВИ ПОДАЛЬШИХ ДОСЛІДЖЕНЬ
Ураховуючи отриманий позитивний ефект від проведення передоперативного курсу променевої терапії з радіомодифікацією, дослідження має перспективний напрямок для підвищення ефективності лікування та покращення виживаності хворих на РЕ.

CONCLUSIONS
1. EC (endometrial cancer) radiation pathomorphosis has been established to depend on:
   • histological grade of a tumor: in adenocarcinomas with moderate and low differentiation degree, the regression degree is moderate while pronounced dystrophic changes are typical for low-grade adenocarcinoma and rare forms;
   • depth of tumor invasion into the myometrium: the highest degree of radiation damage was observed in tumors with invasion of the myometrium up to 0.5 cm;
   • EC growth forms: the minimum degree of tumor damage at the tissue level was detected in their exophytic-endophytic growth form.
2. EC radiation therapy has been proved to:
   • without radiomodification lead to radiation damage at the tissue level and complete regression of only 27.3% of tumors
   • with radiomodification have a positive effect and regression of more than 50.0% of the tumor volume, reducing its biological potential.
3. In EC patients with radiation therapy radiomodification, the degree of dystrophic changes in TC (tumor cells) was moderate, but the mitotic index was 2 times lower in comparison with intact tumors.

PROSPECTS FOR FURTHER RESEARCH
Given the positive effect of the preoperative course of radiation therapy with radiomodification, the study has a promising direction to increase the effectiveness of treatment and improve the survival of patients with PE.
ВІДОМОСТІ ПРО АВТОРИВ
Міхановський Олександр Альбертович – завідувач відділення онкологічної гінекології, доктор медичних наук, професор, провідний науковий співробітник відділу онкологічної хірургії групи онкологічної гінекології Державної установи «Інститут медичної радиології та онкології ім. С. П. Григор’єва Національної академії медичних наук України»; вул. Пушкінська, 82, Харків, Україна, 61024;
e-mail: medradiologia@amnu.gov.ua,
моб.: +38(095) 420-57-36

Внесок автора: загальне керування проектом.

Сухіна Олена Миколаївна – доктор медичних наук, професор, лікар – променевий терапевт відділення променевої терапії Державної установи «Інститут медичної радиології та онкології ім. С. П. Григор’єва Національної академії медичних наук України»; вул. Пушкінська, 82, Харків, Україна, 61024;
e-mail: medradiologia@amnu.gov.ua,
моб.: +38 (067) 570-06-78

Внесок автора: розробка концепції та дослідження, написання тексту статті.

Шіт Наталія Миколаївна – лікар гінеколог-онколог відділення онкологічної гінекології Державної установи «Інститут медичної радиології та онкології ім. С. П. Григор’єва Національної академії медичних наук України»; вул. Пушкінська, 82, Харків, Україна, 61024;
e-mail: medradiologia@amnu.gov.ua,
моб.: +38(066) 759-61-75

Внесок автора: збір та обробка матеріалів, статистична обробка.

Федоренко Наталія Вікторівна – лікар гінеколог-онколог відділення онкологічної гінекології Державної установи «Інститут медичної радиології та онкології ім. С. П. Григор’єва Національної академії медичних наук України»; вул. Пушкінська, 82, Харків, Україна, 61024;
e-mail: medradiologia@amnu.gov.ua,
моб.: +38(095) 799-25-81

Внесок автора: збір та обробка матеріалів, статистична обробка.

INFORMATION ABOUT THE AUTHORS
Mikhanovskij O. A. – head of the department of oncological gynecology, doctor of Medical Sciences, professor, leading researcher department of oncological surgery group of oncological gynecology State Organization «Grigoriev Institute for Medical Radiology and Oncology of the National Academy of Medical Sciences of Ukraine»; Pushkinskaya str. 82, Kharkiv, Ukraine, 61024;
e-mail: medradiologia@amnu.gov.ua,
tel.: +38(095) 420-57-36

Author’s contribution: project management.

Sukhina O. M. – doctor of Medical Sciences, professor, doctor radiation therapist, radiation therapy department State Organization «Grigoriev Institute for Medical Radiology and Oncology of the National Academy of Medical Sciences of Ukraine»; Pushkinskaya str. 82, Kharkiv, Ukraine, 61024;
e-mail: medradiologia@amnu.gov.ua,
tel.: +38 (067) 570-06-78

Author’s contribution: development of study concept and design, article writing.

Kharchenko Yu. V. – Candidate of Medical Sciences State Organization «Grigoriev Institute for Medical Radiology and Oncology of the National Academy of Medical Sciences of Ukraine»; Pushkinskaya str. 82, Kharkiv, Ukraine, 61024;
e-mail: medradiologia@amnu.gov.ua,
tel.: +38(066) 759-61-75

Author’s contribution: development of study concept and design, article writing.

Shehyt N. M. – gynecologist oncologist department of oncological gynecology State Organization «Grigoriev Institute for Medical Radiology and Oncology of the National Academy of Medical Sciences of Ukraine»; Pushkinskaya str. 82, Kharkiv, Ukraine, 61024;
e-mail: medradiologia@amnu.gov.ua,
tel.: +38 (067) 737-34-50

Author’s contribution: sample collection and processing, statistical analysis.

Fedorenko N. V. – gynecologist oncologist department of oncological gynecology State Organization «Grigoriev Institute for Medical Radiology and Oncology of the National Academy of Medical Sciences of Ukraine»; Pushkinskaya str. 82, Kharkiv, Ukraine, 61024;
e-mail: medradiologia@amnu.gov.ua,
tel.: +38(095) 799-25-81

Author’s contribution: sample collection and processing, statistical analysis.
Теплова Марина Анатоліївна – лікар гінеколог-онколог відділення онкологічної гінекології Державної установи «Інститут медичної радіології та онкології ім. С. П. Григор’єва Національної академії медичних наук України»; вул. Пушкінська, 82, Харків, Україна, 61024; e-mail: medradiologia@amnu.gov.ua, моб.: +38(066) 92-13-486

Внесок автора: збір та обробка матеріалу.

Моїсеєнко Юлія Анатоліївна – лікар гінеколог-онколог відділення онкологічної гінекології Державної установи «Інститут медичної радіології та онкології ім. С. П. Григор’єва Національної академії медичних наук України»; вул. Пушкінська, 82, Харків, Україна, 61024; e-mail: medradiologia@amnu.gov.ua, моб.: +38(050) 912-35-40

Внесок автора: збір та обробка матеріалу.

Теплова М. А. – gynecologist oncologist department of oncological gynecology State Organization «Grigoriev Institute for Medical Radiology and Oncology of the National Academy of Medical Sciences of Ukraine»; Pushkinskaya str. 82, Kharkiv, Ukraine, 61024; e-mail: medradiologia@amnu.gov.ua, tel.: +38(066) 92-13-486

Author’s contribution: sample collection and processing.

Moiseyenko Yu. A. – gynecologist oncologist department of oncological gynecology State Organization «Grigoriev Institute for Medical Radiology and Oncology of the National Academy of Medical Sciences of Ukraine»; Pushkinskaya str. 82, Kharkiv, Ukraine, 61024; e-mail: medradiologia@amnu.gov.ua, tel.: +38(050) 912-35-40

Author’s contribution: sample collection and processing.