Arginase strongly impairs neuronal nitric oxide-mediated airway smooth muscle relaxation in allergic asthma

Harm Maarsingh*, John Leusink, I Sophie T Bos, Johan Zaagsma and Herman Meurs

Address: Department of Molecular Pharmacology, University Centre for Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands

Email: Harm Maarsingh* - h.maarsingh@rug.nl; John Leusink - j.leusink@student.rug.nl; I Sophie T Bos - i.s.t.bos@rug.nl; Johan Zaagsma - j.zaagsma@rug.nl; Herman Meurs - h.meurs@rug.nl

* Corresponding author

Abstract

Background: Using guinea pig tracheal preparations, we have recently shown that endogenous arginase activity attenuates inhibitory nonadrenergic noncholinergic (iNANC) nerve-mediated airway smooth muscle relaxation by reducing nitric oxide (NO) production – due to competition with neuronal NO-synthase (nNOS) for the common substrate, L-arginine. Furthermore, in a guinea pig model of allergic asthma, airway arginase activity is markedly increased after the early asthmatic reaction (EAR), leading to deficiency of agonist-induced, epithelium-derived NO and subsequent airway hyperreactivity.

In this study, we investigated whether increased arginase activity after the EAR affects iNANC nerve-derived NO production and airway smooth muscle relaxation.

Methods: Electrical field stimulation (EFS; 150 mA, 4 ms, 4 s, 0.5 – 16 Hz)-induced relaxation was measured in tracheal open-ring preparations precontracted to 30% with histamine in the presence of 1 µM atropine and 3 µM indomethacin. The contribution of NO to EFS-induced relaxation was assessed by the nonselective NOS inhibitor Nω-nitro-L-arginine (L-NNA, 100 µM), while the involvement of arginase activity in the regulation of EFS-induced NO production and relaxation was investigated by the effect of the specific arginase inhibitor Nω-hydroxy-nor-L-arginine (nor-NOHA, 10 µM). Furthermore, the role of substrate availability to nNOS was measured in the presence of exogenous L-arginine (5.0 mM).

Results: At 6 h after ovalbumin-challenge (after the EAR), EFS-induced relaxation (ranging from 3.2 ± 1.1% at 0.5 Hz to 58.5 ± 2.2% at 16 Hz) was significantly decreased compared to unchallenged controls (7.1 ± 0.8% to 75.8 ± 0.7%; P < 0.05 all). In contrast to unchallenged controls, the NOS inhibitor L-NNA did not affect EFS-induced relaxation after allergen challenge, indicating that NO deficiency underlies the impaired relaxation. Remarkably, the specific arginase inhibitor nor-NOHA normalized the impaired relaxation to unchallenged control (P < 0.05 all), which effect was inhibited by L-NNA (P < 0.01 all). Moreover, the effect of nor-NOHA was mimicked by exogenous L-arginine.

Conclusion: The results clearly demonstrate that increased arginase activity after the allergen-induced EAR contributes to a deficiency of iNANC nerve-derived NO and decreased airway smooth muscle relaxation, presumably via increased substrate competition with nNOS.
Background

Nitric oxide (NO) is an important endogenous bronchodilator and is generated by a family of NO synthase (NOS) isoforms that utilize the semi-essential amino acid L-arginine, oxygen and NADPH as substrates to produce NO and L-citrulline [1]. In the airways, constitutive NOS (cNOS) isoforms – neuronal (nNOS) and endothelial NOS (eNOS) – are mainly expressed in inhibitory non-adrenergic noncholinergic (iNANC) neurons (nNOS), endothelium (eNOS) and epithelium (nNOS and eNOS), whereas inducible NOS (iNOS), which is induced by proinflammatory cytokines during airway inflammation, is mainly expressed in macrophages and epithelial cells [2].

Both in animal models and in patients it has been demonstrated that a deficiency of cNOS-derived NO is importantly involved in the development of airway hyperreactivity in allergic asthma [3-9]. Recent studies have indicated that alterations in L-arginine homeostasis play a major role in allergen-induced NO deficiency and airway hyperreactivity [10]. Thus, in a guinea pig model of allergic asthma we have demonstrated that a limitation of L-arginine to NOS underlies the allergen-induced NO deficiency observed after the early asthmatic reaction (EAR) [11].

One mechanism that may be of particular importance in relation to reduced bioavailability of L-arginine in the airways is increased activity of arginase, which hydrolyzes L-arginine into L-ornithine and urea [10]. Arginase is expressed in the airways [12] and has been shown to functionally involved in the regulation of airway responsiveness to methacholine by competition with cNOS for the common substrate, L-arginine [13]. In a guinea pig model of allergic asthma, we have demonstrated that arginase activity in the airways is markedly increased after the allergen-induced EAR, thereby contributing to the observed NO deficiency and subsequent airway hyperreactivity to methacholine [14]. Remarkably, inhibition of arginase activity by the specific inhibitor Nω-hydroxy-nor-L-arginine (nor-NOHA) completely reversed the airway hyperreactivity to the level of unchallenged controls by restoring NO production [14]. In line with these observations, increased arginase expression and/or activity have similarly been found in murine models of allergic asthma [15] and in asthmatic patients [15,16].

In a guinea pig model of asthma, a deficiency of cNOS-derived NO has previously also been implicated in reduced activity of the iNANC nervous system in the airways [17], which is the most effective bronchodilating neural pathway in both guinea pig and human airways [18-22]. Moreover, in guinea pig tracheal preparations we have recently demonstrated that endogenous arginase activity attenuates iNANC nerve-mediated NO production and airway smooth muscle relaxation under basal conditions, via competition with nNOS for L-arginine [23]. Therefore, in the present study we investigated the hypothesis that increased arginase activity in the airways induced by allergen challenge may also cause a deficiency of iNANC nerve-mediated NO and reduced airway smooth relaxation.

Methods

Animals

Male specified pathogen free Dunkin Hartley guinea pigs (Harlan Hillcrest, UK), weighing 500 – 800 g, were used. The animals were group-housed in individual cages in climate-controlled animal quarters and given water and food ad libitum, while a 12-h on/12-h off light cycle was maintained. The animals were IgE-sensitized to ovalbumin with Al(OH)₃ as adjuvant as described [24] and used experimentally 4 to 6 weeks later.

All protocols described in this study were approved by the University of Groningen Committee for Animal Experimentation.

Allergen provocation

Allergen provocations were performed by inhalation of an aerosolized solution of 0.5 mg/ml ovalbumin in saline as described [25]. Allergen inhalations were discontinued when the first signs of respiratory distress were observed. The animals were sacrificed 6 h after allergen provocation, i.e. after the EAR [26]. Nonchallenged animals served as controls.

Tissue preparation

Guinea pigs were sacrificed by a sharp blow on the head followed by rapid exsanguination. The trachea was removed and prepared free of serosal connective tissue in a Krebs-Henseleit buffer solution of 37°C, gassed with 95% O₂ and 5% CO₂. The composition of the Krebs-Henseleit-solution in mM was: NaCl 117.50; KCl 5.60; MgSO₄ 1.18; CaCl₂ 2.50; NaH₂PO₄ 1.28; NaHCO₃ 25.0 and D-glucose 5.50; pH 7.4. Twelve single proximal tracheal open-ring preparations were mounted for isotonic recording (0.3 g preload) between two parallel platinum point-electrodes in 20 ml organ baths containing gassed Krebs-Henseleit solution and indomethacin (3 µM) to eliminate any influence of prostanoids.

Electrical field stimulation-induced relaxation experiments

After 30 min equilibration, tracheal preparations were relaxed with isoprenaline (0.1 µM) to establish basal tone. No difference in basal tone was observed in the preparations obtained from allergen challenged animals as compared to unchallenged animals. After thorough washout,
maximal contraction to histamine was determined with cumulative additions of the agonist (0.1, 1, 10 and 100 µM). After washout, the preparations were precontracted with histamine to 30% of maximal histamine-induced tone in the presence of atropine (1 µM) to prevent electrical field stimulation (EFS)-induced cholinergic airway contraction. On the plateau, biphasic EFS (150 mA, 4 ms, 4 s, 0.5 – 16 Hz) was applied and one frequency-response curve (0.5 – 16 Hz in doubling steps) per preparation was recorded. When used, the nonselective NOS inhibitor Nω-nitro-L-arginine (L-NNA; 100 µM), the specific arginase inhibitor nor-NOHA (10 µM), a combination of the two inhibitors, or L-arginine (5.0 mM) were applied 30 min prior to histamine-administration. In line with previous observations [3,23], neither the NOS inhibitor, nor the arginase inhibitor and L-arginine affected agonist-induced contraction in the open-ring preparations. After the final EFS-induced relaxation, followed by washout, isoprenaline (10 µM) was added to re-establish basal tone. All measurements were performed in triplicate.

Data analysis

All relaxations were estimated as peak height of the EFS-induced response, and were expressed as a percentage of maximal relaxation, as established in the presence of isoprenaline. The contribution of NO to the EFS-induced relaxation was determined by the effect of the NOS inhibitor L-NNA. Similarly, the role of arginase activity in the modulation of EFS-induced airway relaxation was determined by the effect of the arginase inhibitor nor-NOHA. The role of substrate availability in EFS-induced airway relaxation was assessed by measuring the response in the presence of exogenous L-arginine.

All data are expressed as means ± s.e.m. of n experiments. Statistical significance of differences was evaluated using a paired or unpaired two-tailed Student’s t-test as appropriate, and significance was accepted when P < 0.05.

Chemicals

Ovalbumin (grade III), aluminium hydroxide, histamine dihydrochloride, indomethacin, atropine sulphate, L-arginine hydrochloride, Nω-nitro-L-arginine and (-)-isoprenaline hydrochloride were obtained from Sigma Chemical Co. (St. Louis, MO, USA). Nω-hydroxy-nor-L-arginine was kindly provided by Dr J.-L. Boucher (Université Paris V, France).

Results

In line with our previous study [23], EFS (0.5 – 16 Hz) induced a frequency-dependent relaxation of histamine-induced tone of tracheal open-ring preparations from unchallenged guinea pigs, ranging from 7.1 ± 0.8% at 0.5 Hz to 75.8 ± 0.7% at 16 Hz. Incubation with the NOS inhibitor L-NNA (100 µM) caused a marked attenuation of the EFS-induced relaxation at 0.5 to 8 Hz, particularly at the lower frequencies (P < 0.05 all; Fig. 1).

At 6 h after ovalbumin-challenge (after the EAR), EFS-induced relaxations were significantly decreased at all frequencies as compared to unchallenged controls (values ranging from 7.1 ± 0.8% at 0.5 Hz to 75.8 ± 0.7% at 16 Hz; P < 0.05 all), to a similar extent as observed in L-NNA-treated preparations from unchallenged animals (Fig. 1). In contrast to tracheal preparations from unchallenged animals, L-NNA did not affect EFS-induced relaxations of the allergen-challenged preparations (Fig. 1), indicating deficiency of nNOS-derived NO after the allergen-induced EAR.

Interestingly, the impaired relaxations after allergen challenge were markedly increased by the specific arginase inhibitor nor-NOHA (10 µM) at all, but particularly the lower, frequencies (P < 0.05 all; Fig. 2). At 0.5 to 8 Hz, the iNANC relaxations were completely normalized to the level of unchallenged controls. The effect of the arginase inhibitor was reversed after coincubation with L-NNA at all frequencies (P < 0.01 all; Fig. 2).

Similar to nor-NOHA, administration of exogenous L-arginine (5.0 mM) reversed the impaired relaxations after the EAR, also particularly at the lower frequencies (Fig. 3).
experiments for each condition. Compared to unchallenged control, the inhibitor L-NNA (100 µM) resulted in the most pronounced inhibition of EFS-induced iNANC relaxations of guinea pig tracheal preparations.

In line with previous studies [18,23], it was demonstrated that the NOS inhibitor L-NNA inhibited EFS-induced iNANC nerve-mediated airway smooth muscle relaxation. This inhibition was most pronounced at the lower frequencies (0.5 to 4 Hz), indicating a prominent role of nNOS-derived NO at these frequencies. Remarkably, allergen challenge resulted in reduced iNANC relaxations compared to unchallenged control, indicating a deficiency of nNOS-derived NO underlies the impaired iNANC relaxations.

Inhibition of arginase activity restored the impaired iNANC relaxations particularly at lower frequencies, indicating that increased arginase activity strongly restricts iNANC nerve-mediated airway smooth muscle relaxation. The increased relaxation after arginase inhibition was completely reversed by L-NNA, demonstrating that arginase activity attenuates iNANC nerve-mediated airway smooth muscle relaxation by limiting NO production. Since arginase activity in guinea pig airway preparations is markedly increased after the EAR [14], it seems obvious that increased competition with nNOS for L-arginine underlies the deficiency of nNOS-derived NO and subsequently impaired relaxations. That a limitation of endogenous L-arginine is involved indeed, was indicated by the effect of exogenous L-arginine, which, as nor-NOHA, normalized iNANC relaxations at the lower frequencies to the level of unchallenged controls. Using perfused tracheal preparations, we have previously demonstrated that L-arginine limitation due to increased arginase activity after the EAR also contributes to deficiency of agonist-induced, epithelium-derived NO and subsequent airway hyperreactivity [3,11,14]. Taken together, increased arginase activity upon allergen challenge causes a deficiency of both neural and nonneural cNOS-derived NO in the airways, which strongly contributes to the development of allergen-induced airway hyperreactivity after the EAR.

Although arginase is classically considered to be an enzyme of the urea cycle in the liver, it also occurs in many extrahepatic cells and tissues [29], where it may regulate NO synthesis by limiting the availability of intracellular L-arginine to nNOS [12,29-31]. Two distinct isoforms of arginase have been identified: the cytosolic enzyme arginase I, highly expressed in the liver, and the mitochondrial arginase II, mainly expressed in extrahepatic tissues [29]. Both arginase isoforms are constitutively expressed in the airways, particularly in the bronchial epithelium and in fibroblasts from peribronchial connective tissue [12]. It has been demonstrated that the Th2 cytokines IL-4 and IL-13 increase arginase activity and expression of both isoforms in mouse lung [15] and in rat airway fibroblasts [32]. Increased arginase expression and activity was also found in a murine model of allergic asthma, both after challenge with ovalbumin and with Aspergillus fumigatus. Moreover, among the 291 common genes induced by these allergens, arginase I and II belonged to the most pre-

Discussion

In both guinea pigs and humans, the iNANC nervous system is the most effective bronchodilating neural pathway of the airways, in which NO and vasoactive intestinal polypeptide act as neurotransmitters [18-22,27,28]. Recently, we have demonstrated that endogenous arginase activity is functionally involved in the regulation of iNANC nerve activity in the airway wall [23]. Thus, using guinea pig tracheal preparations, it was shown that arginase attenuates iNANC nerve-mediated airway smooth muscle relaxation specifically by inhibition of NO generation, presumably by limiting L-arginine availability to nNOS [23]. In a guinea pig model of allergic asthma, we have now shown that increased arginase activity, which is present in the airways after the allergen-induced EAR [14], may cause a considerably reduced iNANC relaxation of airway smooth muscle, due to deficiency of NO production. This reduced iNANC activity and deficiency of neuronal NO may contribute to the observed airway hyperreactivity in allergic asthma.

In line with previous studies [18,23], it was demonstrated that the NOS inhibitor L-NNA inhibited EFS-induced iNANC relaxations of guinea pig tracheal preparations. This inhibition was most pronounced at the lower frequencies (0.5 to 4 Hz), indicating a prominent role of nNOS-derived NO at these frequencies. Remarkably, allergen challenge resulted in reduced iNANC relaxations to the level of control preparations in the presence of L-NNA. Moreover, the reduced relaxations after allergen-challenge were not affected by L-NNA, indicating that a deficiency of nNOS-derived NO underlies the impaired iNANC relaxations.

Inhibition of arginase activity restored the impaired iNANC relaxations particularly at lower frequencies, indicating that increased arginase activity strongly restricts iNANC nerve-mediated airway smooth muscle relaxation. The increased relaxation after arginase inhibition was completely reversed by L-NNA, demonstrating that arginase activity attenuates iNANC nerve-mediated airway smooth muscle relaxation by limiting NO production. Since arginase activity in guinea pig airway preparations is markedly increased after the EAR [14], it seems obvious that increased competition with nNOS for L-arginine underlies the deficiency of nNOS-derived NO and subsequently impaired relaxations. That a limitation of endogenous L-arginine is involved indeed, was indicated by the effect of exogenous L-arginine, which, as nor-NOHA, normalized iNANC relaxations at the lower frequencies to the level of unchallenged controls. Using perfused tracheal preparations, we have previously demonstrated that L-arginine limitation due to increased arginase activity after the EAR also contributes to deficiency of agonist-induced, epithelium-derived NO and subsequent airway hyperreactivity [3,11,14]. Taken together, increased arginase activity upon allergen challenge causes a deficiency of both neural and nonneural cNOS-derived NO in the airways, which strongly contributes to the development of allergen-induced airway hyperreactivity after the EAR.

Although arginase is classically considered to be an enzyme of the urea cycle in the liver, it also occurs in many extrahepatic cells and tissues [29], where it may regulate NO synthesis by limiting the availability of intracellular L-arginine to nNOS [12,29-31]. Two distinct isoforms of arginase have been identified: the cytosolic enzyme arginase I, highly expressed in the liver, and the mitochondrial arginase II, mainly expressed in extrahepatic tissues [29]. Both arginase isoforms are constitutively expressed in the airways, particularly in the bronchial epithelium and in fibroblasts from peribronchial connective tissue [12]. It has been demonstrated that the Th2 cytokines IL-4 and IL-13 increase arginase activity and expression of both isoforms in mouse lung [15] and in rat airway fibroblasts [32]. Increased arginase expression and activity was also found in a murine model of allergic asthma, both after challenge with ovalbumin and with Aspergillus fumigatus. Moreover, among the 291 common genes induced by these allergens, arginase I and II belonged to the most pre-
dominantly overexpressed genes [15]. Furthermore, in sensitized mice challenged with *Schistosoma mansoni* eggs increased arginase I gene expression was observed in wild type and Th2 polarized mice, but not in Th1 polarized animals [33].

The importance of arginase activity in the pathophysiology of allergic asthma has been indicated by the finding that arginase I protein expression is increased in bronchial alveolar lavage cells of asthmatic patients [15]. In addition, enhanced mRNA expression of arginase I was observed in the airway epithelium and in inflammatory cells in bronchial biopsies of these patients [15]. Morris and coworkers demonstrated that while plasma L-arginine levels are decreased in asthmatic patients during exacerbation, serum arginase activity is markedly increased [16], thus supporting the hypothesis that a disturbed L-arginine homeostasis due to increased arginase activity underlies airway hyperreactivity in allergic asthma [10].

A deficiency of iNANC nerve-derived NO has previously also been demonstrated by Miura *et al.* in sensitized guinea pigs airways at 24 h after the last of three consecutive daily ovalbumin-challenges. This could be restored in part by incubation with superoxide dismutase, indicating that scavenging of NO by superoxide could be involved [17]. In the present study, we demonstrated that NO-induced iNANC relaxation is already impaired at 6 h after single allergen-challenge. Using the same model, we have previously found that superoxide anions are not involved in the deficiency of nonneural, agonist-induced cNOS-derived NO at 6 h after single challenge [34], making its possible role in the reduced iNANC activity at this time-point unlikely.

In addition to arginase, downregulation of nNOS could also be involved in reduced iNANC activity. However, an effect of allergen challenge on the expression of nNOS was not found by Miura and coworkers [17]. Moreover, in the present study we demonstrated that increasing the availability of L-arginine – by arginase inhibition or exogenous addition of the amino acid – reversed impaired iNANC nerve-mediated airway smooth muscle relaxations, indicating that downregulation of nNOS does not underlie the impaired iNANC activity. This is line with previous studies, showing that nNOS expression is not affected by (repeated) allergen challenge [8,35,36], although some reduced expression of nNOS has been observed in one study [9].

Another mechanism which might contribute to L-arginine limitation after the EAR is impaired uptake of L-arginine caused by polycations. It has been reported that the major basic protein analogue poly-L-arginine inhibits L-arginine uptake [37] and causes airway hyperreactivity to methacholine in perfused guinea pig tracheal preparations by causing a deficiency of agonist-induced NO [38]. We have also demonstrated that endogenous (eosinophil-derived) polycations may be involved in allergen-induced NO deficiency and airway hyperreactivity after the EAR [39]. Thus, incubation with the polyanion heparin – acting as a scavenger of polycations – restored the production of NO and normalized airway reactivity to unchallenged control, presumably by restoration of cellular L-arginine uptake through cationic amino acid transporters [39].

Several studies have indicated that NO is the major neurotransmitter in iNANC nerve-mediated relaxations of guinea pig airways at lower frequencies [20,23,40,41], while EFS-induced relaxations at the higher frequencies may involve vasoactive intestinal polypeptide [20,41] as well as sympathetic nerve-derived noradrenaline [42]. This is in line with our observation that iNANC-mediated relaxations are more sensitive to L-NNA at the lower frequencies and very well explains why nor-NOHA is most effective at these frequencies.

A deficiency of iNANC nerve-derived NO has recently also been implicated in the pathophysiology of cystic fibrosis. Thus, in a mouse model of cystic fibrosis, impaired EFS-induced NO mediated airway smooth muscle relaxation
was observed, which was reversed by L-arginine [43]. Moreover, it has recently been shown that arginase activity is increased in sputum obtained from patients with cystic fibrosis as compared to healthy controls [44]. In addition, a negative correlation between sputum arginase activity and levels of exhaled NO as well as FEV1 was observed in these patients [44]. A role for arginase by restricting the L-arginine availability to nNOS in iNANC nerves has also been proposed in the pathophysiology of erectile dysfunction [45]. In support, increased expression and activity of arginase II contributing to reduced iNANC nerve-derived NO production has been demonstrated in diabetic cavernosal tissue [46]. Moreover, neuronal arginase has shown to be involved in gastrointestinal motility disorders, by reducing nNOS-mediated iNANC relaxation in the internal anal sphincter [47].

Conclusion
Using a guinea pig model of allergic asthma we have established that iNANC relaxations are markedly reduced after the allergen-induced EAR, due to a deficiency of nNOS-derived NO. Increased arginase activity is a major cause of the NO deficiency and impaired iNANC relaxation, presumably via increased substrate competition with nNOS.

Abbreviations
cNOS, constitutive nitric oxide synthase; EAR, early asthmatic reaction; EFS, electrical field stimulation; eNOS, endothelial nitric oxide synthase; iNANC, inhibitory non-adrenergic non-cholinergic; iNOS, inducible nitric oxide synthase; L-NNA, Nω-nitro-L-arginine; NADPH, nicotinamide adenine dinucleotide phosphate; nNOS, neuronal nitric oxide synthase; nor-NOHA, Nω-hydroxy-nor-L-arginine

Competing interests
The author(s) declare that they have no competing interests.

Authors’ contributions
HMa designed and coordinated the study, performed part of the experiments, performed the statistical analysis and drafted the manuscript. II performed part of the experiments. ISTB assisted substantially in performing the experiments. IZ participated in the design of the study, interpretation of results and final revision of the manuscript. HMe conceived of the study, participated in its design and direction, as well as in preparing the manuscript. All authors read and approved the final manuscript.

Acknowledgements
We thank the Netherlands Asthma Foundation for financial support (grant 00.24).

References
1. Moncada S, Palmer RM, Higgs EA: Biosynthesis of nitric oxide from L-arginine. A pathway for the regulation of cell function and communication. Biochem Pharmacol 1989, 38:1709-1715.

2. Ricciardolo FL: Multiple roles of nitric oxide in the airways. Thorax 2003, 58:175-182.

3. De Boer J, Meurs H, Coers W, Koopal M, Botonne AE, Visser AC, Timens W, Zaagasma J: Deficiency of nitric oxide in allergen-induced airway hyperreactivity to contractile agonists after the early asthmatic reaction: an ex vivo study. Br J Pharmaco 1996, 119:1109-1116.

4. Ricciardolo FL, Di Maria GU, Mistretta A, Sapienza MA, Geppetti P: Impairment of bronchoprotection by nitric oxide in severe asthma. Lancet 1997, 350:1297-1298.

5. Mehta S, Drizen JH, Ljunggren DE: Induction of arginase isoforms in the lung during hyperoxia. Am J Physiol 2003, 284:L450-L455.

6. Meurs H, Zuidhof AB, Bonouvrive MA, Venema N, Zaagasma J, Meurs H: Role of nitric oxide in the development and partial reversal of allergen-induced airway hyperreactivity in conscious, unrestrained guinea-pigs. Br J Pharmaco 1998, 123:1450-1456.

7. Schuiling M, Zuidhof AB, Dinh-Xuan AT, Ouksel H, Callebert J, Lisdero C, Aubier M, Boczkowski J: Decreased pulmonary and tracheal smooth muscle expression and activity of type I nitric oxide synthase (nNOS) after ovalbumin immunization and multiple aerosol challenge in guinea pigs. Am J Respir Crit Care Med 2001, 164:149-154.

8. Schuiling M, Meurs H, Zuidhof AB, Venema N, Zaagasma J: Dual action of iNOS-derived nitric oxide in allergen-induced airway hyperreactivity in conscious, unrestrained guinea pigs. Am J Respir Crit Care Med 1998, 158:1442-1449.

9. De Boer J, Duyvendak M, Schuurman FE, Pouw FM, Zaagasma J, Meurs H: Role of L-arginine in the deficiency of nitric oxide and airway hyperreactivity after the allergen-induced early asthmatic reaction in guinea-pigs. Br J Pharmaco 1999, 128:1114-1120.

10. Que LG, Kantrow SP, Jenkinson CP, Piantadosi CA, Huang YC: Induction of arginase isoforms in the lung during hyperoxia. Am J Physiol 1998, 275:L96-102.

11. Meurs H, Hamer MA, Pedie S, Vadoan-Le GS, Boucher JL, Zaagasma J: Modulation of cholinergic airway reactivity and NO production by endogenous arginase activity. Br J Pharmaco 2000, 130:1793-1798.

12. Meurs H, McKay S, Maarsingh H, Hamer MA, Macic L, Molendijk N, Zaagasma J: Increased arginase activity underlies allergen-induced deficiency of cNOS-derived nitric oxide and airway hyperresponsiveness. Br J Pharmaco 2002, 136:391-398.

13. Meurs H, Maarsingh H, Zaagasma J: Arginase and asthma: novel insights into nitric oxide homeostasis and airway hyperresponsiveness. Trends Pharmacol Sci 2003, 24:450-455.

14. Meurs H, Maarsingh H, Zaagasma J: Arginase and asthma: novel insights into nitric oxide homeostasis and airway hyperresponsiveness. Trends Pharmacol Sci 2003, 24:450-455.

15. Meurs H, Maarsingh H, Zaagasma J: Arginase and asthma: novel insights into nitric oxide homeostasis and airway hyperresponsiveness. Trends Pharmacol Sci 2003, 24:450-455.

16. Meurs H, Maarsingh H, Zaagasma J: Arginase and asthma: novel insights into nitric oxide homeostasis and airway hyperresponsiveness. Trends Pharmacol Sci 2003, 24:450-455.

17. Meurs H, Maarsingh H, Zaagasma J: Arginase and asthma: novel insights into nitric oxide homeostasis and airway hyperresponsiveness. Trends Pharmacol Sci 2003, 24:450-455.

18. Meurs H, Maarsingh H, Zaagasma J: Arginase and asthma: novel insights into nitric oxide homeostasis and airway hyperresponsiveness. Trends Pharmacol Sci 2003, 24:450-455.
21. Belvisi MG, Stretton CD, Yacoub M, Barnes PJ: Nitric oxide is the endogenous neurotransmitter of bronchodilator nerves in humans. *Eur J Pharmacol* 1992, 210:221-222.

22. Ellis JL, Undem BJ: Inhibition by L-NG-nitro-L-arginine of non-adrenergic-noncholinergic-mediated relaxations of human isolated central and peripheral airway. *Am Rev Respir Dis* 1992, 146:1543-1547.

23. Maarsingh H, Tio MA, Zaagsma J: Arginase attenuates inhibitory nonadrenergic-noncholinergic nerve-induced nitric oxide generation and airway smooth muscle relaxation. *Respir Res* 2005, 6:23.

24. Van Amsterdam RG, Brouwer F, Zaagsma J: Analysis of the beta-adrenoceptor mediated inhibition of IgG1 and IgE dependent guinea-pig anaphylactic tracheal smooth muscle contraction. *Agents Actions* 1989, 28:48-51.

25. Santing RE, Meurs H, van der Mark TW, Remie R, Oosterom WC, Brouwer F, Zaagsma J: A novel method to assess airflow function parameters in chronically instrumented, unrestrained guinea-pigs. *Palm Pharmacol* 1992, 5:265-272.

26. Ellis JL, Farmer SG: Effects of peptidases on non-adrenergic, non-cholinergic inhibitory responses of tracheal smooth muscle: a comparison with effects on VIP- and PHI-induced relaxation. *Br J Pharmacol* 1989, 96:521-526.

27. Ellis JL, Farmer SG: The effects of vasoactive intestinal peptide (VIP) antagonists, and VIP and peptide histidine isoleucine antiserum on non-adrenergic, non-cholinergic relaxations of tracheal smooth muscle. *Br J Pharmacol* 1989, 96:513-520.

28. Wu G, Morris SMJ: Arginine metabolism: nitric oxide and beyond. *Biochem J* 1998, 336 (Pt 1):1-17.

29. Hey C, Boucher JL, Vadon-Le GS, Ketterer G, Wessler I, Racke K: Inhibition of arginase in rat and rabbit alveolar macrophages by N omega-hydroxy-D,L-indospicine, effects on L-arginine utilization by nitric oxide synthase. *Br J Pharmacol* 1997, 121:395-400.

30. Boucher JL, Moali C, Tenu JP: Nitric oxide biosynthesis, nitric oxide synthase inhibitors and arginase competition for L-arginine utilization. *Cell Mol Life Sci* 1999, 55:1015-1028.

31. Lindemann D, Racke K: Glucocorticoid inhibition of interleukin-4 (IL-4) and interleukin-13 (IL-13) induced up-regulation of arginase in rat airway fibroblasts. *Naunyn Schmiedeberg’s Arch Pharmacol* 2003, 368:546-550.

32. Sandler NG, Mentink-Kane MM, Cheever AW, Wynn TA: Global gene expression profiles during acute pathogen-induced pulmonary inflammation reveal divergent roles for Th1 and Th2 responses in tissue repair. *J Immunol* 2000, 171:3655-3667.

33. De Boer J, Pouw FM, Zaagsma J, Meurs H: Effects of endogenous superoxide anion and nitric oxide on cholinergic constriction of normal and hyperreactive guinea pig airways. *Am J Respir Crit Care Med* 1998, 158:1784-1789.

34. Eynott PR, Gronberg DA, Caramori G, Adcock IM, Donnelly LE, Khartitonov S, Barnes PJ, Chung KF: Role of nitric oxide in allergic inflammation and bronchial hyperresponsiveness. *Eur J Pharmacol* 2002, 452:123-133.

35. Eynott PR, Pasvolainen N, Gronberg DA, Noble A, Salmon M, Nath P, Leung SY, Chung KF: Role of nitric oxide in chronic allergen-induced airway cell proliferation and inflammation. *J Pharmacol Exp Ther* 2003, 304:22-29.

36. Hammermann R, Hirschmann J, Hey C, Morsner J, Folkerd G, Niikamp FP, Wessler I, Racke K: Cationic proteins inhibit L-arginine uptake in rat alveolar macrophages and tracheal epithelial cells. Implications for nitric oxide synthesis. *Am J Respir Cell Mol Biol* 1991, 21:155-162.

37. Meurs H, Schuurman FE, Duyvendak M, Zaagsma J: Deficiency of nitric oxide in polycation-induced airway hyperresponsivity. *Br J Pharmacol* 1999, 126:559-562.

38. Maarsingh H, de BJ, Kauffman HF, Zaagsma J, Meurs H: Heparin normalizes allergen-induced nitric oxide deficiency and airway hyperresponsiveness. *Br J Pharmacol* 2004, 142:1293-1299.

39. Maarsingh H, de BJ, Kauffman HF, Zaagsma J, Meurs H: Arginase attenuates inhibitory nonadrenergic-noncholinergic nerve-induced nitric oxide generation and airway smooth muscle relaxation. *Respir Res* 2005, 6:23.

40. Ellis JL, Conanan ND: Modulation of relaxant responses evoked by a nitric oxide donor and by nonadrenergic, noncholinergic stimulation by isozyme-selective phosphodiesterase inhibitors in guinea pig trachea. *J Pharmacol Exp Ther* 1995, 272:997-1004.

41. Tanihata S, Uchiyama T: Role of nitric oxide in nonadrenergic, noncholinergic relaxation of whole tracheal tube preparations isolated from guinea pigs. *Gen Pharmacol* 1996, 27:827-832.

42. de Haas JR, Terpstra JS, van der ZM, Kockelbergh PG, Roffel AF, Zaagsma J: Facilitatory beta2-adrenoceptors on cholinergic and adrenergic nerve endings of the guinea pig trachea. *Am J Physiol* 1999, 276:L420-L425.

43. Mhanna MJ, Ferkol T, Martin RJ, Dreshaj IA, van Heeckeren AM, Kelty TL, Haxhiu MA: Nitric oxide deficiency contributes to impairment of airway relaxation in cystic fibrosis mice. *Am J Respir Cell Mol Biol* 2001, 24:621-626.

44. Grasemann H, Schwizert R, Matthiessen S, Racke K, Rasten F: Increased Arginase Activity in Cystic Fibrosis Airways. *Am J Respir Crit Care Med* 2005, 170:1523-1528.

45. Cox JD, Kim NN, Triash AM, Christianson DW: Arginase-boronic acid complex highlights a physiological role in erectile function. *Nat Struct Biol* 1999, 6:1043-1047.

46. Bivalacqua TJ, Heststrom WJ, Kadowitz PJ, Champion HC: Increased expression of arginase II in human diabetic corpus cavernosum: in diabetic-associated erectile dysfunction. *Biochem Biophys Res Commun* 2001, 283:923-927.

47. Baggio R, Emig FA, Christianson DW, Ash DE, Chakler S, Rastan S: Biochemical and functional profile of a newly developed potent and isozyme-selective arginase inhibitor. *J Pharmacol Exp Ther* 1999, 290:1409-1416.