Review: Technological Development of Heat Transfer Enhancement in Two Phase Flow by using Passive Method.

Gajanan Z. Jadhav¹, Dr. K K Gupta¹

¹SVKM’S, NMIMS, MPSTME, Shirpur, Maharashtra, India 425405.

Email: gajanan.jadhav@nmims.edu

Abstract. The Heating, Ventilation, Air conditioning & Refrigeration application always shows an opportunity to enhance the heat transfer rate. With these motives, researchers explored the use of passive methods in single phase flow which exhibits promising results of heat transfer enhancement. On the other hand, researchers investigated the effect of the passive method in Two phase flow, which also shows promising results in heat transfer enhancement. This paper focused on the review of the experimental studies conducted on the use of heat transfer enhancement in the condensation process mostly. Out of this passive method, Micro fin tube shows better heat transfer enhancement and less pressure drop compared to other methods. It has been observed that the use of porous media also showing promising effects in heat transfer enhancement and it’s fetching the attention of researchers. Therefore, this review work also reviewed the numerical studies on the use of porous media in two phase flow. It is needed to explore the different structure and optimum design of porous media, which have high heat transfer enhancement with low pressure drop penalty. Also, the use of low Global Warming Potential refrigerant effects needs to be explored, which could be a better alternative for existing refrigerants.

1. Introduction Two phase flow is a combination of Liquid-Gas, Liquid-Liquid, Liquid-Solid & Gas-Solid flows. Here we focused on Gas-Liquid Flow, again Gas-Liquid flow combination involves mainly Boiling, Condensation & Evaporation phenomenon. This review mainly features the studies and investigations performed on condensation process. Condensation refers to the process where saturated vapour comes in contact with the wall which is maintained at below saturation temperature. Vapour releases its latent heat and gets converted into the liquid. Since decade, researchers exploring the use of passive techniques in condensation, Evaporation and Boiling. Use of this techniques reveals satisfactory results in heat transfer enhancement, which encourages to researchers, to explore the effect of various parameters on HTC (Heat Transfer Coefficient) and pressure drop. With this aim, this review work focused on use of passive methods in two phase flow to improve the heat transfer rate. In the passive method researchers tried geometrical changes of tube and its parameters to improve heat transfer. Some of the active and passive techniques are shown in fig. 1. But the use of active method was not explored as much as the passive method explored therefore, most of researchers concentrates on the use of passive techniques rather than use of active techniques. This reviews considered the use of passive techniques. Researchers performs the experimental and numerical investigation to find the effect of these passive techniques. Fig. 2 Shows the main passive methods with the parameters that causes heat transfer increased in two phase flow.

On the other hand, most of researchers used numerical studies for single phase flow, but only few of researchers focused on use of these numerical studies in two phase flow [1]. With this objective, we reviewed, numerical studies on the use of metal foam in two phase flow in last section of paper.
2. Effect of Inclination

An experimental investigation was performed Kundu et al. [2] on refrigerants in a smooth copper tube by varying five different angles between 0 and 90°. Heat transfer coefficient for the evaporation process were compared with the variables mass velocity, heat flux, and vapour quality. Lips et al. [3] also performs experimentation on R134a condensation to find the inclination effect “from vertical downward to vertical upward” [3].
Experimental results found, the maximum heat transfer coefficient for downward flow with an optimum inclination angle in an inclination dependent zone. Khoeini et al. [4] Another study, which also varies inclination from -90 to +90°, investigates, the effect of mass flux and vapour qualities with corrugated tube on HTC and pressure drop. Results shows that, highest heat transfer coefficient observed at +30°, which were more than 1.27 to 1.41 times of tube with -90° with low vapour quality.

3. Effect of Dimple Tube
Aroonrat & Wongwises [5] This study experimentally investigates the effect of heat flux, saturation temperature and mass flux on the heat transfer coefficient & pressure drop. Comparison of smooth & enhanced tube were obtained, it had been observed that HTC and pressure drop increased over smooth tube. Subsequently, [6] in this experimental investigation, variation of helical pitch as well as dimple pitch with the effect of heat flux, mass flux & saturation temperature on the heat transfer coefficient and pressure drop were reported. As the helical pitch and dimple pitch decreases, it exhibits increase in HTC & pressure drop. At 5.08mm of helical pitch & 3.24 mm of dimple pitch maximum 88% & 630% higher HTC & pressure drop observed compared to smooth tube.

Solanki & Kumar [7] In this study, researchers compared the performance of straight smooth tube, helical coiled smooth tube, & helical coiled dimple tube. Effect of mass flux, vapour quality & saturation temperature on the HTC and pressure drop. Researchers also reported that smooth helical coiled tube shows high HTC than straight smooth tube. Aroonrat & Wongwises [8] Authors investigates the effect of dimple depth(0.5,0.75,1.0mm) on the HTC and pressure drop. It had been observed that, for all dimple depth, HTC & pressure drop increases significantly compared to smooth tube, highest HTC & pressure drop of 83% & 892% reported compared to smooth tube. Author also proposed correlation for Nusselt No. and friction factor.

4. Effect of Use of Micro fin
Sapali & Patil [9] Researchers conducted experimental investigation on HFC 134a & R-404A with micro fin tube, in this experimentation, effect of mass flux and condensing temp. drop were examined on pressure drop. Result shows that, the Pressure drop increased with mass flux, & condensing temperature for both smooth & micro fin tube. Sapali & Patil [10] also conducted experimental investigation work on micro fin tube with refrigerant HFC 134a, R404A. In this study researchers varies condensing temperature from 35°C to 60°C and found its effect on HTC. Results reveals that HTC improves with improving mass flux but it decreases by increasing condensing temperature. The average HTC with micro fin tube was 1.5-2.5 times greater than smooth tube for HFC 134a, whereas 1.3-2 times higher with micro fin tube of R404A compared to smooth tube.

Yang et al. [11] Examined the HTC & pressure drop through vertical upward flow in smooth and micro fin tube for the refrigerant R410A. Heat transfer enhancement factor investigated, which were reported in the range of 1.3-2.05 at saturation temp. of 40°C & 1.4-2.2 at 48°C. Researchers also developed revised correlation for vertical upward flow. Li et al. [12] In this experimental study, Authors examined four micro fin tube and compared its performance with smooth tube. Authors investigates the effect of mass velocity, Reynolds No. & condensation temp. on HTC & pressure
drop. Micro fin tube exhibits better performance over smooth tube was the conclusive remark of study.

Solanki & Kumar [13] also examined the effect of mass flux, condensing temperature, Vapour quality on HTC & pressure drop with helical coiled micro fin tube. Its performance was compared with straight smooth tube. It is reported that micro fin tube had higher HTC of 160-255% than smooth tube and 69-155% higher pressure drop than smooth tube. Ji et al. [14] In this study, condensation HTC outside plain tube & enhanced tube were investigated with the Refrigerants R134a, R1234ze (E) & R290. It had been reported that, performance of R134a was better than other two refrigerants over smooth and enhanced tube made from Titanium material. Later on, [15] HTC of R134a, R1234ze(E) & R1233zd (E) were experimentally investigated on two different enhanced tube. Here, fin on outside as well as inside of tube were used for experimentation. In this experimental work, Condensation HTC of R134a found higher than R1234zd (E).

5. Effect of Use of Porous Media

Shi et al. [16] In this experimental investigation, effect of Vapour mass flowrate, cooling water temp., inlet vapor pressure with different foam size enhanced tube on HTC and pressure drop were reported. Tube with 10PPI metal foam, exhibits high performance compared to micro fin tube. Author also obtained correlation for HTC & pressure drop for foam tube. Subsequently [17], investigates the effect of metal foam surface wettability on HTC & pressure drop with annularly partial filled hydrophobic metal foam inside tube. It is reported that, 30.158KW/m²K of HTC were obtained with mass flux of 65.8Kg/m²S and cooling water temperature of 55°C.

Nasr [18] numerically investigates the effect of porosity & thickness of porous layer on heat transfer and mass transfer for liquid film condensation. It is reported that decrease in porosity & porous layer thickness improve heat & mass transfer performances at liquid –gas interface. Wang et al. [19] In this study, researchers examined the selective laser melting fabricated enhanced tube, and compared its performance with plain tube. Effect of fin height, refrigerant flow direction and mass flux on HTC & pressure drop were investigated. HTC of foam tube were higher than that of plain tube. Preston et al. [20] In this experimental work, investigation of enhanced condensation heat transfers by wick condensation film through porous metal were examined. This study reveals that, the thermal resistance of wick condensation film is lower than the filmwise condensation which leads to higher magnitude of heat transfer enhancement.

6. Effect of Use Inserts

Moghaddam & Shafaee [21] In this experimental investigation, effect of wire coil with its diameter and three different pitch with mass flux, Vapour quality on HTC were examined. Highest HTC of 107% over plain tube were reported for coil index of 0.0185. Subsequently, Moghaddam et al. [22] researchers investigate the effect of twisted tape inserts with twist ratio of 4,10,15 with mass flux & vapor quality on HTC & pressure drop. It found that, performance factor varies from 0.39 to 1.05, which depend upon operating conditions & inserts type.

Hejazi et al. [23] In this experimental study, researchers examined the condensation HTC & pressure drop for the tube with insert tape of 6,9,12 &15 twist ratio. It is reported that HTC & pressure drop increased by 40% & 240% over the plain tube. Sajadi et al. [24] Also, examined the twisted tape
with twist ratio of 6,9,12 on R1234y, which is alternative to R134a with low GWP. Effect of mass flux, vapor quality of HTC & pressure drop was observed. An increment of 42% & 235% of HTC & pressure drop respectively over plain tube had been observed.

Table 1 Experimental studies on two phase flow by using passive method.

Author	Enhanced Tube	Working Fluid	Test Section	Mass flux/Heat Flux/Vapor Quality	$T_{sat.}$
[5]	Dimple Tube	R134a	Tube in Tube φ=8.1mm, l=1.5m	300,400,500 Kg/m2s	40,45,50 oC
[6]	Helical Dimple Tube	R134a	Tube in Tube φ=8.1mm, l=1.5m	300-500 Kg/m2s	40-50 oC
[7]	Helical coiled Dimple tube	R134a	Tube in Shell type	75,115,156,191 Kg/m2s	35 & 45 oC
[8]	Dimple tube with diff. depth	R134a	Tube in Tube φ=8.1mm, l=1.5m	300-500 Kg/m2s	40-50 oC
[9]	Microfin tube	R134a	Tube in Shell φ=8.96mm	90-800 Kg/m2s	35-60 oC
[10]	Microfin Tube	HFC-134a, R404A	φ=8.96mm	90-800 Kg/m2s	35-60 oC
[11]	Microfin	R410A	Tube φ=8.76mm	80-345 Kg/m2s	40,45,48 oC
[12]	Microfin four tube	R134a	Tube in Tube	400-1100 Kg/m2s	35 – 45 oC
[13]	Microfin	R134a	φ=8.58mm	75,115,156,191 Kg/m2s	35-45 oC
[15]	Microfin	R134a, R1234ze (E), R1233zd (E)	Tube φ=17.14 & 17.12mm	20-90 Kw/m2	36 oC
[16]	Foam Tube (10,15,20PPI)	Water	Tube in Tube type φ=22mm	20-100 Kg/hr	1-3 m3/h
[17]	Treated Foam Tube (10,15,20PPI)	Water	Tube in Tube type φ=22mm	20-100 Kg/hr	1-3 m3/h
[19]	Foam Tube	R134a	Tube φ=8.7mm	50-150 Kg/m2S	0.9,0.3
[25]	Tube (5PPI)	R1234yf & R1234ze (E)		50-200 Kg/m2S	30 oC
[26]	Foam Thickness 1.6mm & 2.5mm, 40,80,130PPI	R134a		10-60 Kw/m2	35 & 45 oC
[27]	30,60,90 PPI	DI Water		30-200 Kg/m2S	100 oC
7. Numerical Studies
In previous section, we reviewed, mostly experimental studies on the use of passive method in two phase flow, while in this section, specifically, numerical studies on the use of porous media in two phase flow are reviewed. Modelling of Two phase flow in porous media is complicated phenomenon. Here the table 2 represents the numerical studies performed with its computation domain.

Table 2 Numerical studies on two phase flow in porous media.

Author	Computation Domain	Remark
[28]	![Diagram](image1)	A copper foam of 0.94 porosity were used in thermal storage system. Effect of metal foam in heat transfer fluid and phase change material investigated. Use of metal foam shows enhancement in heat transfer.
[29]	![Diagram](image2)	The 3D numerical model of porous media developed by using Micro-CT. A Lattice-Boltzmann method at pore scale were used to obtained velocity and temperature field with the help of contact angle.
[30]	![Diagram](image3)	A Modified Separated Flow Model developed. Effect of capilarity, foam porosity and other parameters has great effect on heat &fluid flow.
[31]	![Diagram](image4)	An efficient smoothing algorithm developed for effective diffusivity. Finite volume method adopted for discretization.
[32]	![Diagram](image5)	One dimensional problem was developed for phase change heat transfer in porous media with local thermal equilibrium and Local non thermal equilibrium conditions.
8. Conclusion
1. Use of passive techniques in two phase flow are increasing at higher rate, it exhibits beneficial results in term of heat transfer enhancement with a penalty of pressure drop.
2. Out of the various passive method of heat transfer enhancement, comparatively micro fin tube was investigated extensively. It’s clearly indicates other techniques need to be explored.
3. Experimental studies and numerical studies on the use of porous media in two phase flow reveals good heat transfer enhancement, a more study is required to find optimum parameters of metal foam and effect of use tailored porous media.
4. Refrigerants R1234yf, R1234ze (E) with low GWP could be a good alternative for R134a.

9. References
[1] Baloyo, J. M. (2017). Open-cell porous metals for thermal management applications: fluid flow and heat transfer. Materials Science and Technology, 33(3), 265-276.
[2] Kundu, A., Kumar, R., & Gupta, A. (2014). Evaporative heat transfer of R134a and R407C inside a smooth tube with different inclinations. International Journal of Heat and Mass Transfer, 76, 23-533.
[3] Lips, S., & Meyer, J. P. (2012). Experimental study of convective condensation in an inclined smooth tube. Part I: Inclination effect on flow pattern and heat transfer coefficient. International Journal of Heat and Mass Transfer, 55(1-3), 395-404.
[4] Khoeini, D., Akhavan-Behabadi, M. A., & Saboonchi, A. (2012). Experimental study of condensation heat transfer of R-134a flow in corrugated tubes with different inclinations. International Communications in Heat and Mass Transfer, 39(1), 138-143.
[5] Aroonrat, K., & Wongwises, S. (2017). Experimental study on two-phase condensation heat transfer and pressure drop of R-134a flowing in a dimpled tube. International Journal of Heat and Mass Transfer, 106, 437-448.
[6] Aroonrat, K., & Wongwises, S. (2018). Condensation heat transfer and pressure drop characteristics of R-134a flowing through dimpled tubes with different helical and dimpled pitches. International Journal of Heat and Mass Transfer, 121, 620-631.
[7] Solanki, A. K., & Kumar, R. (2018). Condensation of R-134a inside dimpled helically coiled tube-in-shell type heat exchanger. Applied Thermal Engineering, 129, 535-548.
[8] Aroonrat, K., & Wongwises, S. (2019). Experimental investigation of condensation heat transfer and pressure drop of R-134a flowing inside dimpled tubes with different dimpled depths. International Journal of Heat and Mass Transfer, 128, 783-793.
[9] Sapali, S. N., & Patil, P. A. (2009). Two-phase condensation heat transfer coefficients and pressure drops of R404a for different condensing temperatures in a smooth and micro-fin tube. Int J Eng Sci Technol, 1(2), 43-58.
[10] Sapali, S. N., & Patil, P. A. (2010). Heat transfer during condensation of HFC-134a and R-404A inside of a horizontal smooth and micro-fin tube. Experimental Thermal and Fluid Science, 34(8), 1133-1141.
[11] Yang, Y., Jia, L., & Peng, Q. (2017). Investigation on condensation heat transfer and pressure drop of R410A during upward flow in vertical smooth and micro-fin tube. International Journal of Heat and Mass Transfer, 108, 2293-2302.
[12] Li, Q., Tao, L., Li, L., Hu, Y., & Wu, S. (2017). Experimental Investigation of the Condensation Heat Transfer Coefficient of R134a inside Horizontal Smooth and Micro-Fin Tubes. Energies, 10(9), 1280.
[13] Solanki, A. K., & Kumar, R. (2018). Condensation of R-134a inside micro-fin helical coiled tube-in-shell type heat exchanger. Experimental Thermal and Fluid Science, 93, 344-355.
[14] Ji, W. T., Chong, G. H., Zhao, C. Y., Zhang, H., & Tao, W. Q. (2018). Condensation heat transfer of R134a, R1234ze (E) and R290 on horizontal plain and enhanced titanium tubes. International Journal of Refrigeration, 93, 259-268.
[15] Ji, W. T., Lu, X. D., Yu, Q. N., Zhao, C. Y., Zhang, H., & Tao, W. Q. (2020). Film-wise condensation of R-134a, R-1234ze (E) and R-1233zd (E) outside the finned tubes with different fin thickness. International Journal of Heat and Mass Transfer, 146, 118829.
[16] Shi, J., Zheng, G., & Chen, Z. (2018). Experimental investigation on flow condensation in horizontal tubes filled with annular metal foam. International Journal of Heat and Mass Transfer, 116, 920-930.
[17] Shi, J., Zheng, G., Chen, Z., & Dang, C. (2019). Experimental study of flow condensation heat transfer in tubes partially filled with hydrophobic annular metal foam. International Journal of Heat and Mass Transfer, 136, 1265-1272.
[18] Nasr, A. (2018). Heat and mass transfer for liquid film condensation along a vertical channel covered with a thin porous layer. International Journal of Thermal Sciences, 124, 288-299.
[19] Wang, X. W., Ho, J. Y., Leong, K. C., & Wong, T. N. (2018). Condensation heat transfer and pressure drop characteristics of R-134a in horizontal smooth tubes and enhanced tubes fabricated by selective laser melting. International Journal of Heat and Mass Transfer, 126, 949-962.
[20] Preston, D. J., Wilke, K. L., Lu, Z., Cruz, S. S., Zhao, Y., Becerra, L. L., & Wang, E. N. (2018). Gravitationally driven wicking for enhanced condensation heat transfer. Langmuir, 34(15), 4658-4664.
[21] Moghaddam, H. A., Sarmadian, A., & Shafaee, M. (2019). An experimental study on condensation heat transfer characteristics of R-600a in tubes with coiled wire inserts. Applied Thermal Engineering, 159, 113889.
[22] Moghaddam, H. A., Sarmadian, A., Asnaashari, A., Joushani, H. A. N., Islam, M. S., Saha, S. C., & Shafaee, M. (2020). Condensation heat transfer and pressure drop characteristics of Isobutane in horizontal channels with twisted tape inserts. International Journal of Refrigeration, 118, 31-40.
[23] Hejazi, V., Akhavan-Behabadi, M. A., & Afshari, A. (2010). Experimental investigation of twisted tape inserts performance on condensation heat transfer enhancement and pressure drop. International Communications in Heat and Mass Transfer, 37(9), 1376-1387.
[24] Sajadi, B., Soleimani, M., Akhavan-Behabadi, M. A., & Hadadi, E. (2020). The effect of twisted tape inserts on heat transfer and pressure drop of R1234yf condensation flow: An experimental study. International Journal of Heat and Mass Transfer, 146, 118890.
[25] Diani, A., Mancin, S., Doretti, L., & Rossetto, L. (2015). Low-GWP refrigerants flow boiling heat transfer in a 5 PPI copper foam. International Journal of Multiphase Flow, 76, 111-121.
[26] Ji, W. T., Li, Z. Y., Qu, Z. G., Guo, J. F., Zhang, D. C., He, Y. L., & Tao, W. Q. (2015). Film condensing heat transfer of R134a on single horizontal tube coated with open cell copper foam. Applied Thermal Engineering, 76, 335-343.
[27] Ji, X., & Xu, J. (2012). Experimental study on the two-phase pressure drop in copper foams. Heat and Mass Transfer, 48(1), 153-164.
[28] Yu, J., Yang, Y., Yang, X., Kong, Q., Yanhua, L., & Yan, J. (2018). Effect of porous media on the heat transfer enhancement for a thermal energy storage unit. Energy Procedia, 152, 984-989.

[29] Liu, Z., & Wu, H. (2016). Numerical modeling of liquid–gas two-phase flow and heat transfer in reconstructed porous media at pore scale. International Journal of Hydrogen Energy, 41(28), 12285-12292.

[30] Xin, C., Rao, Z., You, X., Song, Z., & Han, D. (2014). Numerical investigation of vapor–liquid heat and mass transfer in porous media. Energy conversion and management, 78, 1-7.

[31] Alomar, O. R., Mendes, M. A., Trimis, D., & Ray, S. (2014). Numerical simulation of complete liquid–vapour phase change process inside porous media using smoothing of diffusion coefficient. International journal of thermal sciences, 86, 408-420.

[32] Alomar, O. R., Mendes, M. A., Trimis, D., & Ray, S. (2015). Simulation of complete liquid–vapour phase change process inside porous evaporator using local thermal non-equilibrium model. International Journal of Thermal Sciences, 94, 228-241.

[33] Ray, S., & Alomar, O. R. (2016). Simulation of liquid–vapour phase change process inside porous media using modified enthalpy formulation. International Journal of Thermal Sciences, 105, 123-136.

[34] Alomar, O. R. (2019). Analysis of variable porosity, thermal dispersion, and local thermal non-equilibrium on two-phase flow inside porous media. Applied Thermal Engineering, 154, 263-283.

[35] Bejan, A., & Kraus, A. D. (Eds.). (2003). Heat transfer handbook (Vol. 1). John Wiley & Sons.