Correlação entre Risco de Apneia Obstrutiva do Sono e Parâmetros do Ecocardiograma

Risk of Obstructive Sleep Apnea and Echocardiographic Parameters

Adson Renato Leite, Diana Maria Martinez, Maria Luiza Garcia-Rosa, Erica de Abreu Macedo, Antonio José Lageiro, Wolney de Andrade Martins, Delvo Vasques-Netto, Cárita Cunha dos Santos

Universidade Federal Fluminense - Medicina Clínica, Niterói, RJ – Brasil

Resumo

Fundamento: A apneia obstrutiva do sono (AOS) é um transtorno crônico, progressivo, com alta morbimortalidade e associado às doenças cardiovasculares (DCV), entre elas a insuficiência cardíaca (IC). As alterações fisiopatológicas relacionadas com a AOS podem impactar diretamente a função diástólica do ventrículo esquerdo.

Objetivo: Estimar a associação entre risco de AOS, avaliada pelo Questionário de Berlim (QB), e parâmetros do ecocardiograma, relacionados com a função diástólica, em indivíduos sem IC na atenção primária.

Métodos: Estudo transversal que incluiu 354 indivíduos (51% mulheres) com idade igual ou superior a 45 anos. Todos os indivíduos selecionados foram submetidos a uma avaliação que constou dos seguintes procedimentos: consulta, preenchimento do QB e exame clínico, realização de exames laboratoriais e ecocardiograma Doppler transtorácico (EDT).

Os dados contínuos são apresentados em medianas e intervalos interquartílicos e os categóricos em frequências absolutas e relativas. As variáveis que apresentaram associação ao risco de AOS em nível de 0,05 integraram os modelos de regressão gama com função de ligação log link.

Resultados: Dos 354 indivíduos analisados, 63% foram classificados como tendo alto risco para AOS. Os pacientes com alto risco para AOS apresentam alterações significativas dos parâmetros que avaliam a função diástólica. Alto risco para AOS confirmou sua associação positiva e estatisticamente significativa, após ajuste, a indicadores de disfunção diastólica – VAE-i (p = 0,02); E’/A’ (p < 0,01); A (p = 0,02); E/A (p < 0,01).

Conclusão: Nossos dados mostram que pacientes com alto risco de AOS apresentam piora dos parâmetros de função diástólica medidos pelo EDT. (Arq Bras Cardiol. 2019; 113(6):1084-1089)

Palavras-chave: Doenças Cardiovasculares; Apneia Obstrutiva do Sono; Indicadores de Morbimortalidade; Insuficiência Cardíaca; Ecocardiografia/métodos; Polissonografia/métodos; Fatores de Risco.

Abstract

Background: Obstructive sleep apnea (OSA) is a chronic progressive disorder with high mortality and morbidity rate, associated with cardiovascular diseases (CVD), especially heart failure (HF). The pathophysiological changes related to OSA can directly affect the diastolic function of the left ventricle.

Objectives: To assess the association of the risk of OSA, evaluated by the Berlin Questionnaire (BQ), and echocardiographic (ECHO) parameters related to diastolic dysfunction in individuals without HF assisted in primary care.

Methods: A cross-sectional study that included 354 individuals (51% women) aged 45 years or older. All individuals selected were submitted to an evaluation that included the following procedures: consultation, filling out the BQ, clinical examination, laboratory examination and transthoracic Doppler echocardiography (TDE). Continuous data are presented as medians and interquartile intervals, and categorical variables in absolute and relative frequencies. The variables associated with risk of OSA and at the 0.05 level integrated the gamma regression models with a log link function. A value of p < 0.05 was considered an indicator of statistical significance. Exclusion criteria were presence of HF, to fill out the BQ and patients with hypertension and obesity not classified as high risk for OSA by other criteria. All individuals were evaluated on a single day with the following procedures: medical appointment, BQ, laboratory tests and ECHO.

Results: Of the 354 individuals assessed, 63% were classified as having high risk for OSA. The patients with high risk for OSA present significantly altered diastolic function parameters. High risk for OSA confirmed positive and statistically significant association, after adjustments, with indicators of diastolic function, such as indexed left atrium volume LAV-i (p = 0.02); E’/A’ (p < 0.01); A (p = 0.02); E/A (p < 0.01).

Conclusion: Our data show that patients at high risk for OSA present worsened diastolic function parameters measured by TDE. (Arq Bras Cardiol. 2019; 113(6):1084-1089)

Keywords: Cardiovascular Diseases; Sleep Apnea, Obstruction; Indicators, Morbimortality; Heart Failure; Ecocardiography/methods; Polissonography/methods.

Correspondência: Diana Maria Martinez Ceron • Universidade Federal Fluminense - Rua Marques do Paraná, 303. CEP 24033-900, Centro, Niterói, RJ – Brasil E-mail: mcdianamaria@gmail.com Artigo recebido em 19/06/2018, revisado em 27/01/2019, aceito em 13/02/2019

DOI: 10.5935/abc.20190181
Introdução

A apneia obstrutiva do sono (AOS) é um transtorno crônico, progressivo, com alta mortalidade e morbidade e está associado às doenças cardiovasculares (DCV), entre elas a insuficiência cardíaca (IC). A interação fisiopatológica de AOS com doença cardiovascular é complexa e compreende ativação simpática, inflamação, estresse oxidativo, disfunção endotelial e disfunção do gene do relógio circadiano.

Além da polissonografia, considerada como padrão-ouro para diagnóstico de AOS, existem diferentes escalas que não diagnosticam o transtorno, mas indicam pessoas em risco, entre as quais encontra-se o Questionário de Berlim (QB). Metanálise publicada em 2017 estimou que a sensibilidade do questionário para detectar AOS foi de 76%, 77% e 84% e a especificidade foi de 59%, 44% e 38% para pacientes com AOS leve, moderada e grave, respectivamente. Ressalta-se a adequada sensibilidade que habilita o QB como ferramenta de rastreio, possibilitando o diagnóstico precoce da AOS. A sensibilidade e especificidade foram 59%, 44% e 38% para pacientes com AOS leve, moderada e grave, respectivamente. Ressalta-se a adequada sensibilidade que habilita o QB como ferramenta de rastreio, possibilitando o diagnóstico precoce da AOS.

A prevalência de disfunção diastólica em pacientes com AOS varia de 23% a 56%, havendo uma relação dose-resposta entre a gravidade da disfunção diastólica e a gravidade da AOS, tendo sido demonstrada uma base fisiopatológica forte para um contínuo de disfunção diastólica e insuficiência cardíaca em seus dois fenótipos, que significa maior risco de esses pacientes evoluírem para IC. A associação entre AOS e disfunção diastólica foi observada em estudos em estágios iniciais.

Não encontramos estudos da associação dos parâmetros ecocardiográficos que avaliam a função diastólica e a presença de risco de AOS em pacientes sem sinais ou sintomas de insuficiência cardíaca. Este trabalho teve como objetivo estimar a associação de risco de AOS e parâmetros do ecocardiograma, relacionados com disfunção diastólica, em indivíduos sem IC assistidos pelo Programa Médico de Família de Niterói (PMF).

Método

Estudo transversal integrante do Estudo Digitalis, que incluiu 633 indivíduos (51% mulheres) com idades de 45 a 99 anos, cadastrados no PMF na cidade de Niterói (RJ). Os dados foram colhidos no período de julho de 2011 a dezembro de 2012.

A metodologia aplicada foi descrita previamente. Todos os indivíduos selecionados para o estudo foram submetidos a uma avaliação realizada em um único dia e que constou dos seguintes procedimentos: aplicação de questionário, consulta e exame clínico, realização de exames laboratoriais e ecocardiograma Doppler transtorácico (EDT).

Dos 633 participantes examinados pelo Estudo Digitalis, 64 foram excluídos por terem sido diagnosticados como portadores de IC, um por não ter respondido ao QB na íntegra e 214 por não terem sido classificados como de risco para AOS por outro critério. Para a presente análise foram então, incluídos 354 indivíduos (Figura 1).

Os exames de EDT foram realizados por dois ecocardiógrafos com o conhecimento prévio dos resultados dos demais exames, utilizando dois equipamentos (Acuson Cypress™ 20, Siemens, EUA e AU3 Partner, Esaote, Itália). Os exames foram realizados segundo as recomendações da American Society of Echocardiography (ASE) e da European Association of Echocardiography (EAE). A função sistólica foi avaliada pela medida da fração de ejeção do ventrículo esquerdo (FEVE), segundo o método de Simpson.

Os participantes foram categorizados em positivo ou negativo para risco de AOS com base em suas respostas aos itens individuais do QB e suas pontuações totais nas categorias de sintomas.

Análise estatística

A análise estatística foi realizada utilizando-se o SPSS Statistics v. 21.0 (IBM, EUA). Os dados contínuos são apresentados em medianas e intervalos interquartilícios e os categóricos, em frequências absolutas e relativas. As diferenças entre os grupos com e sem risco para AOS foram avaliadas com o teste não paramétrico de Mann-Whitney e os categóricos, com o teste do qui quadrado. Os exames ecocardiográficos são muito correlacionados entre si, optou-se por ajustar um modelo para cada parâmetro (desfecho) associado à presença ou não de risco de AOS na análise bruta, em nível de 0,05. São apresentados os exponentiais dos coeficientes interpretados como a razão das médias aritméticas do desfecho, entre expostos e não expostos. Um valor de p < 0,05 foi considerado como indicador de significância estatística.

Considerações éticas

Este estudo foi conduzido de acordo com os princípios estabelecidos na Declaração de Helsinki e revistos em 2000 (Escócia, 2000). O protocolo do estudo foi aprovado pelo Comitê de Ética em Pesquisa da Instituição sob o número CAAE:0077.0.258.000-10.

Resultados

Dos 354 indivíduos analisados, 63% foram classificados como tendo risco para AOS. A Tabela 1 apresenta as características clínicas segundo a presença de risco para AOS. Os indivíduos com risco eram na maioria mulheres, mais idosos, com maiores níveis de índice de massa corporal (IMC), glúteos, ácido úrico, triglicérides, relação albumina/creatinina urinária e pressão arterial.

Os pacientes com risco para AOS, em relação aos sem risco, apresentavam mais alterações dos parâmetros que avaliam a função diastólica: volume do átrio esquerdo indexado (VAE-i) (+); tempo de desaceleração da onda E (TD) (+); velocidade do fluxo mitral no início da diástole (E) (+); relação E’/A’ (+); relação E/E’ (+); velocidade do fluxo mitral no início da contração atrial (A) (+); relação E/A (+); espessura da parede anterior indexada (IEPP) (+); e septo interventricular (SIV) (+), o que pode indicar função diastólica menos adequada. Tais diferenças foram estatisticamente significativas (Tabela 2).
Os exponenciais dos coeficientes para cada modelo de regressão gama são apresentados na Tabela 3. Em todos os casos os exponenciais dos coeficientes foram ajustados para sexo, idade, IMC, glicose de jejum, triglicerídeos, ácido úrico, relação albumina/creatinina urinária, pressão arterial sistólica e diastólica em suas formas contínuas. A associação do alto risco para AOS a função diastólica menos adequada foi confirmada pelos seguintes parâmetros: VAE-i (+); relação E/A (+); relação E'/A'(+); A (+); TD (+); e E' (+) alcançaram uma significância de 0,10 (Tabela 3).

Discussão
O presente estudo avaliou a presença de alterações do EDT, associadas à disfunção diastólica, em indivíduos sem sinais ou sintomas de IC, segundo a presença de risco para AOS. Utilizou-se como ferramenta o QB e excluíram-se os indivíduos com obesidade e hipertensão arterial que não apresentavam outros critérios para AOS. Na atenção básica, métodos de triagem para AOS são mais facilmente aplicáveis do que a polissonografia padrão, sendo úteis na estratificação de risco, pois têm baixo custo e são de fácil acesso. A aplicação do QB na população atendida em programas na atenção básica como o Médico de Família ajudaria a selecionar pacientes em risco para AOS. Estes poderiam, então, ser encaminhados para realização do EDT e investigação pela polissonografia.

A AOS está relacionada a diferentes mecanismos fisiopatológicos que são deflagrados por hipoxia e fragmentação do sono. Ela envolve hiperatividade simpática, inflamação, disfunção endotelial e estresse oxidativo, entre outros fatores que estão no comando de desfechos como hipertensão, fibrilação atrial, acidente vascular encefálico e IC.

Vários estudos têm mostrado alterações de diferentes marcadores da função diastólica do ventrículo esquerdo (VE) em pacientes com AOS como aumento do volume do átrio esquerdo indexado (VAE-i), relação E/A alterada, velocidade do anel mitral no início da diástole (E') e aumento da relação E/E'. Nossos dados mostram alterações de alguns desses marcadores: VAE-i, relação E'/A', onda A, E' e relação E/A em pacientes com risco de AOS.

Observamos que o VAE-i, marcador de disfunção diastólica, apresenta forte associação com a presença de alto risco para AOS, identificado pelo QB, independentemente da presença de hipertensão ou obesidade, quando não associada a outro indicador de risco de AOS. Wachter et al. investigaram se a AOS afeta a função diastólica em uma coorte na atenção primária e observaram que disfunção diastólica é associada de modo independente à AOS em pacientes com fatores de risco cardiovascular. Gottlieb et al. observaram que, em pacientes sem IC e doença arterial coronariana, a presença de AOS foi um preditor independente de IC em homens e não em mulheres. Em outro estudo, Usui et al. demonstraram que a gravidade da AOS pode contribuir diretamente para a disfunção diastólica do VE independentemente de geometria do VE, rigidez arterial e obesidade, e está associada a fatores de risco cardiovascular.

Em pacientes com hipertensão arterial controlada, Lisi et al. observaram que a AOS leve a moderada, diagnosticada pela polissonografia, está associada a disfunção diastólica, independentemente de idade, sexo e valores médios da pressão arterial e na ausência de hipertrofia do VE concêntrica ou aumento do átrio esquerdo. Os autores sugerem que a hipoxemia noturna possa ser o fator-chave para o desenvolvimento da disfunção diastólica.

A hipertensão é a principal causa de disfunção diastólica, sendo também uma das maiores consequências de AOS. Dois estudos excluíram indivíduos obesos da análise e pelo menos um excluiu obesos e hipertensos.
Tabela 1 – Mediana com intervalo interquartílico* ou frequência absoluta e relativa** de características clínicas segundo a presença de alto risco para AOS modificado***

	Alto risco para AOS modificado*	Valor de p	
	Sim n = 223	Não n = 131	
Sexo			
Masculino	79 (35,4)	66 (50,4)	
Feminino	114 (64,6)	65 (49,6)	
Idade (anos)	57,0 (51,0-63,0)	54,0 (49,0-61,0)	0,01
IMC kg/m²	29,4 (26,1-33,0)	24,6 (22,4-27,3)	< 0,01
Glucose (mg/dL)	102,5 (92,0-117,2)	97,0 (88,0-108,0)	< 0,02
Ureia (mg/dL)	31,0 (28,0-37,0)	31,0 (25,2-36,0)	0,69
Creatinina (mg/dL)	0,82 (0,71-0,99)	0,85 (0,74-0,96)	0,56
Ácido úrico (mg/dL)	5,6 (4,4-6,6)	4,7 (3,9-5,6)	< 0,01
Colesterol (mg/dL)	219,0 (193,0-250,0)	213,0 (187,0-238,0)	0,17
LDL-colesterol (mg/dL)	135,8 (117,7-163,5)	134,1 (107,3-159,1)	0,19
HDL-colesterol (mg/dL)	41,0 (51,5-63,0)	55,0 (44,0-63,0)	0,23
Triglicerídeos (mg/dL)	126,5 (96,0-183,7)	106,0 (73,0-153,0)	< 0,01
Relação albumina/creatinina urinária	9,9 (5,7-22,3)	7,7 (4,7-13,6)	< 0,01
Frequência cardíaca média (bpm)	71,0 (63,0-80,0)	69,0 (62,5-76,5)	0,19
Pressão arterial sistólica (mmHg)	137,33 (122,5-152,0)	122,0 (113,3-129,5)	< 0,01
Pressão arterial diastólica (mmHg)	84,0 (76,3-92,67)	75,5 (70,3-80,7)	< 0,01
Infarto do miocárdio			
Sim	9 (4,0)	4 (3,1)	0,86
Não	214 (96,4)	127 (96,9)	
AVE			
Sim	11 (4,9)	1 (0,8)	0,07
Não	212 (95,1)	130 (99,2)	

AOS: apneia obstrutiva do sono; IMC: índice de massa corporal; bpm: batimento por minuto; LDL: lipoproteína de baixa densidade; HDL: lipoproteína de alta densidade; AVE: acidente vascular encefálico. *Diferenças avaliadas pelo teste de Mann-Whitney. **Diferenças avaliadas pelo teste do qui quadrado de Pearson com correção de continuidade ou teste exato de Fisher quando necessário. ***Excluídos os indivíduos que foram classificados como de risco somente na categoria 3. Adaptada de Netzer et al., 1999.³

Estudaram somente indivíduos com AOS e compararam o grupo de AOS moderada com o grupo de AOS grave. Nos dois estudos, a associação à relação E/A foi estatisticamente significativa. No estudo de Imai et al., 21 Os dados desses dois estudos mostram que a associação de AOS e alteração da função diastólica pode ocorrer em não obesos e não hipertensos. Dada a alta prevalência das duas condições, no presente estudo, não foi possível excluir da análise para confirmar a associação independente do risco de AOS aos indicadores de disfunção diastólica.

O presente estudo avaliou a contribuição de diversos parâmetros ecocardiográficos, os quais representam com maior chance as anormalidades estruturais ou da função cardíaca que podem ser associadas ao diagnóstico de AOS. As alterações de VAE-i, TD, relação E/A, relação E’/A e onda A em indivíduos com AOS indicaram função diastólica menos adequada em pacientes com distúrbio do sono, compatíveis com achados que definiram AOS pela polissonografia.

Limitações

O QB não confirma a AOS, apontando somente os pacientes em risco para a síndrome. O questionário apresenta sensibilidade e especificidade reduzidas, com reprodutividade questionável, pois a percepção e a documentação do que é informado pode não ser estimadas precisamente, já que envolvem limitações decorrentes do nível de alfabetização e doenças cerebrovasculares preexistentes, que dificultam a compreensão do QB, principalmente em idosos. Devido à limitação de recursos e por se tratar de estudo sobre rastreio, cada paciente foi examinado somente por um ecocardiografista, impedindo o exame da concordância inter ou intraexaminador. Apesar dessas limitações, os resultados quanto às diferenças nos parâmetros do EDT entre os grupos de risco foram concordantes com os da literatura.

Por ser um estudo transversal, não foi possível estabelecer nexo causal. Embora tenha excluído do estudo indivíduos hipertensos e obesos que não satisfezsem outros critérios para risco de AOS de acordo com o QB, entre aqueles com risco houve maiores mediana de IMC, pressão arterial sistólica e diastólica, que apesar de controle (inclusão nos modelos múltiplos) ainda podem ter exercido um confundimento residual.
Conclusões
A avaliação da associação de AOS à presença de anormalidades estruturais e funcionais cardíacas obtidas pelo EDT poderá contribuir para a discussão da adoção do QB na comunidade para selecionar indivíduos com risco cardiovascular e que deveriam realizar o EDT, apesar de suas limitações.

Essa estratégia de rápida execução pode ser facilmente incorporada na rotina da abordagem dos pacientes com fatores de risco para desenvolvimento de IC, mas ainda necessita de acompanhamento detalhado e seguimento em longo prazo para sua definitiva recomendação.

Contribuição dos autores
Concepção e desenho da pesquisa: Leite AR, García-Rosa ML, Lagoeiro AJ; Obtenção de dados: Leite AR, Macedo EA, Vasques Netto D, Santos CC, Martínez DM; Análise e interpretação dos dados: García-Rosa ML, Lagoeiro AJ; Análise estatística: García-Rosa ML; Redação do manuscrito: Leite AR,
Garcia-Rosa ML, Macedo EA, Lagoeiro AJ, Martins WA, Vasques Netto D, Santos CC, Martínez DM; Revisão crítica do manuscrito quanto ao conteúdo intelectual importante: Garcia-Rosa ML, Lagoeiro AJ, Martins WA.

Potential conflito de interesses
Declaro não haver conflito de interesses pertinentes.

Fontes de financiamento
O presente estudo não teve fontes de financiamento externas.

Referências

1. Loke YK, Brown JW, Niruban A, Myint PK. Association of obstructive sleep apnea with risk of serious cardiovascular events: a systematic review and meta-analysis. Circ Cardiovasc Qual Outcomes. 2012;5(5):720-8.

2. Drager LF, McEvoy RD, Barbe F, Lorenzi-Filho G, Redline S; INCOSACT Initiative (International Collaboration of Sleep Apnea Cardiovascular Trials). Sleep apnea and cardiovascular disease: lessons from recent trials and need for team science. Circulation. 2017;136(19):1840-50.

3. Wachter R, Lüthje L, Klemmstein D, Lüers C, Stahrenberg R, Edelmann F; et al. Impact of obstructive sleep apnoea on left ventricular mass and global function. Eur Respir J. 2005;26(2):283-8.

4. Baguet JP, Barone-Rochette G, Tamisier R, Levy P, Pépin JL. Mechanisms of cardiac dysfunction in obstructive sleep apnea. Nat Rev Cardiol. 2012;9(12):679-88.

5. Netzer NC, Stoohs RA, Netzer CM, Clark K, Strohl KP. Using the Berlin Questionnaire to identify patients at risk for the sleep apnea syndrome. Ann Intern Med. 1999;131(7):485-91.

6. Chiu HY, Chen PY, Chuang LP, Chen NH, Tu YK, Hsieh YJ, et al. Diagnostic accuracy of the Berlin questionnaire, STOP-BANG, STOP, and Epworth sleepiness scale in detecting obstructive sleep apnea: a bivariate meta-analysis. Sleep Med Rev. 2017 Dec;36:57-70.

7. Bodez D, Damy T, Soutal-Dufour L, Meuleman C, Cohen A. Consequences of obstructive sleep apnoea syndrome on left ventricular geometry and diastolic function. Arch Cardiovasc Dis. 2016;109(8-9):494-503.

8. Jorge AJL, Rosa MLG, Fernandes LCM, Freire MDC, Rodrigues RC, Correia JA; et al. Impact of obstructive sleep apnoea syndrome on left ventricular geometry and diastolic function. Eur Respir J. 2005;26(2):283-8.

9. Kepe A, Niksereshty LF, Hazratan T Ranci O, Kabal HK, Demir AU, et al. Early myocardial functional alterations in patients with obstructive sleep apnea syndrome. Echocardiography. 2009;26(4):388-96.

10. Shahar E, Whitney-CW, Redline S, Lee ET, Newman AB, Nieto FJ; et al. Sleep-disordered breathing and cardiovascular disease: cross-sectional results of the Sleep Heart Health Study. Am J Respir Crit Care Med. 2001;163(1):19-25

11. Dursunoglu D, Dursunoglu N, Evrengül H, Ozkurt S, Kuru O, Kiliç M; et al. Impact of obstructive sleep apnoea on left ventricular mass and global function. Eur Respir J. 2005;26(2):283-8.

12. Kepe A, Niksereshty LF, Hazratan T Ranci O, Kabal HK, Demir AU, et al. Early myocardial functional alterations in patients with obstructive sleep apnea syndrome. Echocardiography. 2009;26(4):388-96.

13. Shivalkar B, Van de Heyning C, Kerremans M, Rinkevich D, Verbraecken J, De Backer W; et al. Obstructive sleep apnea syndrome: more insights on structural and functional cardiac alterations, and the effects of treatment with continuous positive airway pressure. J Am Coll Cardiol. 2006;47(7):1433-9.

14. Butt M, Dwivedi G, Shantiša A, Khair OA, Lip GY. Left ventricular systolic and diastolic function in obstructive sleep apnea: impact of continuous positive airway pressure therapy. Circ Heart Fail. 2012;5(2):226-33.

15. Akar Bayram N, Ciftçi B, Dürmaz T, Keles T, Yeter E, Akçay M; et al. Effects of continuous positive airway pressure therapy on left ventricular function assessed by tissue Doppler imaging in patients with obstructive sleep apnoea syndrome. Eur J Echocardiogr. 2009;10(3):376-82.

16. Kawanishi Y, Ito T, Okuda N, Emura N, Hayashi T, Futai R; et al. Alteration of myocardial characteristics and function in patients with obstructive sleep apnea. Int J Cardiol. 2009;133(1):129-31.

17. Kim SH, Cho GY, Shin C, Lim HE, Kim YH, Song WH; et al. Impact of obstructive sleep apnea on left ventricular diastolic function. Am J Cardiol. 2008;101(11):1663-8.

18. Alchanatis M, Paradellis G, Pini H, Tourkohoriti G, Jordanoglou J. Left ventricular function in patients with obstructive sleep apnoea syndrome before and after treatment with nasal continuous positive airway pressure. Respiration. 2000;67(4):367-71.

19. Gottlieb DJ, Yenokyan G, Newman AB, O’Connor GT, Punjabi NM, Quan SF; et al. Prospective study of obstructive sleep apnea and incident coronary heart disease and heart failure: the sleep heart health study. Circulation. 2010;122(4):352-60.

20. Usui Y, Takata Y, Inoue Y, Tomiyama H, Kurohane S, Hashimura Y; et al. Severe obstructive sleep apnea impairs left ventricular diastolic function in non-obese men. Sleep Med. 2013;14(2):155-9.

21. Lisi E, Faini A, Bilò G, Lonati LM, Revera M, Salerno S; et al. Diastolic dysfunction in controlled hypertensive patients with mild-to-moderate obstructive sleep apnea. Int J Cardiol. 2015;187:686-92.

22. Hogg K, Swedberg K, McMurray J. Heart failure with preserved left ventricular systolic function: epidemiology, clinical characteristics, and prognosis. J Am Coll Cardiol. 2004;43(3):317-27.

23. Imai Y, Tanaka N, Usui Y, Takahashi N, Kurohane S, Takei Y; et al. Severe obstructive sleep apnea increases left atrial volume independently of left ventricular diastolic impairment. Sleep Breath. 2015;19(4):1249-55.

Vinculação acadêmica
Este artigo é parte de dissertação de mestrado de Adson Renato Leite pela Universidade Federal Fluminense.

Aprovação ética e consentimento informado
Este estudo foi aprovado pelo Comitê de Ética do Hospital Universitário Antônio Pedro sob o número de protocolo 0077.0258.000-10. Todos os procedimentos envolvidos nesse estudo estão de acordo com a Declaração de Helsinki de 1975, atualizada em 2013. O consentimento informado foi obtido de todos os participantes incluídos no estudo.

Este é um artigo de acesso aberto distribuído sob os termos da licença de atribuição pelo Creative Commons Attribution 4.0 International License.