5,8-Dimethoxy-2-Nonylamino-Naphthalene-1,4-Dione Inhibits Vascular Smooth Muscle Cell Proliferation by Blocking Autophosphorylation of PDGF-Receptor β

Yohan Kim¹, Jung-Jin Lee¹,², Sang-Gil Lee¹, Sang-Hyuk Jung¹, Jo-Hui Han¹, So Young Yang¹,², Eunju Yun³, Gyu-Yong Song³, and Chang-Seon Myung¹,²

¹Department of Pharmacology, College of Pharmacy, ²Institute of Drug Research & Development, ³Department of Medicinal Chemistry, College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea

As the abnormal proliferation of vascular smooth muscle cells (VSMCs) plays a critical role in the development of atherosclerosis and vascular restenosis, a candidate drug with antiproliferative properties is needed. We investigated the antiproliferative action and underlying mechanism of a newly synthesized naphthoquinone derivative, 5,8-dimethoxy-2-nonylamino-naphthalene-1,4-dione (2-nonylamino-DMNQ), using VSMCs treated with platelet-derived growth factor (PDGF). 2-Nonylamino-DMNQ inhibited proliferation and cell number of VSMCs induced by PDGF, but not epidermal growth factor (EGF), in a concentration-dependent manner without any cytotoxicity. This derivative suppressed PDGF-induced [³H]-thymidine incorporation, cell cycle progression from G0/G1 to S phase, and the phosphorylation of phosphor-retinoblastoma protein (pRb) as well as the expression of cyclin E/D, cyclin-dependent kinase (CDK) 2/4, and proliferating cell nuclear antigen (PCNA). Importantly, 2-nonylamino-DMNQ inhibited the phosphorylation of PDGF receptor β (PDGF-R β) enhanced by PDGF at Tyr579, Tyr716, Tyr751, and Tyr1021 residues. Subsequently, 2-nonylamino-DMNQ inhibited PDGF-induced phosphorylation of STAT3, ERK1/2, Akt, and PLCγ1. Therefore, our results indicate that 2-nonylamino-DMNQ inhibits PDGF-induced VSMC proliferation by blocking PDGF-R β autophosphorylation, and subsequently PDGF-R β-mediated downstream signaling pathways.

Key Words: 2-Nonylamino-DMNQ, Cardiovascular diseases, Platelet-derived growth factor receptor-β, Proliferation, Vascular smooth muscle cell

INTRODUCTION

Abnormal vascular smooth muscle cell (VSMC) proliferation and migration play important roles in the development and progression of proliferative cardiovascular diseases, including restenosis and atherosclerosis [1,2]. Thus, determination of the mechanisms by which growth factors control cell proliferation is critical for the discovery of compounds capable of intervening in the abnormal proliferation of VSMCs. Receptor tyrosine kinases, including platelet-derived growth factor (PDGF) receptor (PDGF-R), play important roles in VSMC proliferation [3], and so inhibition of abnormal hyperactive PDGF-R-mediated signaling pathways is a major target for the management of abnormal VMSC proliferation.

The binding of PDGF produced by activated macrophages, VSMCs, and endothelial cells with PDGF-R leads to receptor autophosphorylation, subsequently activating phosphatidylinositol 3-kinase (PI3K), phospholipase Cγ (PLCγ), and extracellular regulated kinases 1/2 (ERK1/2) [4]. Active PI3K is coupled to its downstream target, Akt kinase [5], and this PI3K-Akt pathway is involved in the antiapoptotic activity of PDGF in VSMCs [6]. PLCγ1 is a downstream molecule in the PDGF-dependent signal transduction pathway [7]. ERK1/2 mediates PDGF-stimulated VSMC proliferation [8]. As these three major signaling molecules are involved in PDGF-induced VSMC proliferation, inhibition of signaling pathways at the PDGF-R level may be a good strategy for control of VSMC proliferation.

Naphthoquinone derivatives are known to have antitumor, antiviral, antifungal, antymycobacterial, and anti-platelet activities [9-13]. Although the naphthoquinone analog, 2,3-dimethoxy-1,4-naphthoquinone (DMNQ), is cytotoxic [14-18], a recent report indicated that 2-decylamino-DMNQ has an inhibitory effect on PDGF-induced VSMC ABBREVIATIONS: STAT3, signal transducer and activator of transcription 3; ANOVA, analysis of variance; MAPK, mitogen-activated protein kinase.
proliferation with no cytotoxicity at the concentration tested [19]. This derivative acts via cell cycle arrest at the G1/S phase. This observation provides a compelling reason to synthesize new naphthoquinone derivatives with anti-proliferative actions at the PDGF-R level. Therefore, the aim of this study was to investigate the ability of a newly synthesized naphthoquinone derivative, 5,8-dimethoxy-2-nonylamino-naphthalene-1,4-dione (2-nonylamino-DMNQ) (Fig. 1A), to inhibit PDGF-stimulated VSMC proliferation with the blockade of PDGF-R. Our results reveal that 2-nonylamino-DMNQ inhibits PDGF-dependent receptor autophosphorylation and downstream signaling pathways. These results suggest that 2-nonylamino-DMNQ may be a candidate agent for the prevention and treatment of abnormal VSMC proliferation.

METHODS

Materials

Cell culture materials were purchased from Invitrogen (Carlsbad, CA, USA). PDGF-BB and epidermal growth factor (EGF) were obtained from Upstate Biotechnology (Lake Placid, NY, USA). Digitonin and SU6656 were acquired from Sigma Aldrich Inc. (St. Louis, MO, USA). [3H]-Thymidine was purchased from AgenBio, Ltd. (Seoul, Korea). Anti-β-actin, anti-cyclin E, anti-cyclin D, anti-cdk2, anti-cdk4, anti-phospho-retinoblastoma protein (pRb), and anti-phospho-proliferating cell nuclear antigen (PCNA) antibodies were purchased from AbFrontier (Gumcheon, Seoul, Korea). Anti-PDGF-R β, anti-phospho-PDGF-R β chain (Tyr752), Tyr752), anti-phospho-STAT3 (Tyr705), anti-ERK1/2, anti-phospho-ERK1/2, anti-Akt, anti-phospho-Akt, anti-PLCγ1, and anti-phospho-PLCγ1 antibodies were obtained from Cell Signaling Technology, Inc. (Beverly, MA, USA). Other chemicals were of analytical grade.

Cell culture

Rat aortic VSMCs were isolated by enzymatic dispersion, as described previously [20]. Cell culture conditions were as described previously [19,21,22]. The purity of VSMCs was confirmed by immunocytochemical localization of β-smooth-muscle actin. VSMCs were used in this experiment at passage 5–8.

Cell proliferation and viability assays

Both direct cell counting and nonradioactive colorimetric WST-1 assay (premix WST-1, Takara, Japan) were used to measure VSMC proliferation, as described previously [19,21,22]. For direct cell counting, VSMCs were treated with various concentrations of 2-nonylamino-DMNQ for 24 h in serum-free medium and stimulated with PDGF-BB (25 ng/ml). 2-Nonylamino-DMNQ was dissolved in dimethylsulfoxide (DMSO), the final concentration of which in medium did not exceed 0.05%. After 24 h, the trypsinized VSMCs were counted using a hemocytometer under a light microscope. For nonradioactive colorimetric WST-1 assays, VSMCs were treated with PDGF-BB (25 ng/ml) or EGF (10 ng/ml) and all experimental procedures were performed as recommended by the respective manufacturers. Results are expressed as percentages of controls (VSMCs treated with either growth factor, but not test compound). Cell viability assays were performed as described previously [19,21,22]. The absorbance at 450 nm of VSMCs treated with 0.5 μM 2-nonylamino-DMNQ or 100 μg/ml digitonin, as a cytotoxic control, for a given time were measured using a microplate reader. (A) The chemical structure of 2-nonylamino-DMNQ. (B) The ability of 2-nonylamino-DMNQ to regulate both PDGF- and EGF-induced VSMC proliferation. VSMCs cultured in serum-free medium were incubated with various concentrations of 2-nonylamino-DMNQ (0.05–0.5 μM) for 24 h and then stimulated with PDGF-BB (25 ng/ml) or EGF (10 ng/ml). The optical density at 450 nm was determined using a microplate reader. (C) The ability of 2-nonylamino-DMNQ to regulate cell counts. VSMCs cultured in serum-free medium were treated with various concentrations of 2-nonylamino-DMNQ for a further 24 h, stimulated with PDGF-BB (25 ng/ml), and counted using a hemocytometer. (D) Effects of 2-nonylamino-DMNQ on cell viability. VSMCs cultured in serum-free medium were incubated with control (DMSO, 1%), or 2-nonylamino-DMNQ (0.5 μM) or digitonin (100 μg/ml) for the indicated periods, and optical densities at 450 nm were measured. Values are expressed as means±S.E.M. of four similar and independent experiments. *p<0.01, statistically significant differences compared to PDGF control (PDGF-BB-stimulated, but no 2-nonylamino-DMNQ) or EGF control (EGF-stimulated, but no 2-nonylamino-DMNQ).

[3H]-Thymidine incorporation assay

[3H]-Thymidine incorporation assay was performed to measure DNA synthesis, as described previously [19,21,22]. Under the stimulatory condition with addition of PDGF-BB (25 ng/ml) in serum-free medium, VSMCs were treated with [3H]-thymidine (2 μCi/ml) for 4 h, which was terminated by washing with phosphate-buffered saline (PBS) containing 10% trichloracetic acid and ethanol/ether (1:1, v/v). Acid-insoluble [3H]-thyminde was collected, mixed with 3 ml of scintillation cocktail (UltimaGold; Packard Bioscience, Meriden, CT, USA), and quantified using a liquid scintillation counter (LS8301; Beckman, Düsseldorf, Germany).

Analysis of cell cycle progression

Cell cycle progression was determined as described previously [19,21,22]. VSMCs were treated with PDGF-BB (25 ng/ml) for 24 h, trypsinized, and centrifuged at 1,500×g for
7 min. The pellets were suspended in 1 ml of 1×PBS, washed twice, and fixed with 70% ethanol for 48 h. After centrifuging the fixed cells at 15,000×g for 5 min, the pellets were stained with 500 μl of propidium iodide (PI) solution (50 μg/ml PI in sample buffer containing 100 μg/ml of RNase A), and the fluorescence intensity of incorporated PI reflecting the individual nuclear DNA content was measured with a FACSCalibur flow cytometer (Becton & Dickinson Co., Fullerton, CA, USA). The ratio of G0/G1, S, and G2/M phases of the cell cycle was determined using ModFit LT software (Verity Software House, Topsham, ME, USA).

Western blotting

Western blotting was performed as described previously [19,21,22]. VSMCs were treated with 25 ng/ml PDGF-BB for phosphorylation of PDGF-R β (3 min), ERK 1/2 and PLC γ 1 (5 min), STAT3 (10 min), Akt (15 min), and pRb (24 h), and for the expression of cyclin D1/E, CDK2/4, and PCNA (24 h), respectively. The detected proteins were normalized relative to β -actin or the respective total proteins. Band intensities were quantified using the Quantity One program (Bio-Rad, Hercules, CA, USA).

Statistical analysis

Data are expressed as means±standard error of the mean (S.E.M.). One-way ANOVA was used for multiple comparisons (GraphPad, San Diego, CA, USA). If a significant variation between treated groups was found, Dunnett’s test was applied. In all analyses, p<0.05 was taken to indicate statistical significance.

RESULTS

Effects of 2-nonylamino-DMNQ on VSMC proliferation and viability

To examine the effects of 2-nonylamino-DMNQ on VSMC proliferation, a nonradioactive colorimetric WST-1 assay was performed in VSMCs stimulated with PDGF-BB (25 ng/ml) or EGF (10 ng/ml). The data shown in Fig. 1B indicate that 2-nonylamino-DMNQ inhibited PDGF-BB-stimulated proliferation of VSMCs in a concentration-dependent manner. Interestingly, 2-nonylamino-DMNQ did not inhibit EGF-stimulated proliferation of VSMCs. These results suggest that the inhibitory action of 2-nonylamino-DMNQ may be selective for PDGF-induced VSMC proliferation.

Fig. 1C shows that the number of VSMCs was significantly increased after 25 ng/ml PDGF-BB treatment (20.6±1.9×10⁴ cells/well) compared to the non-stimulated control (12.1±0.5×10⁴ cells/well). As expected, the inhibitory action of 2-nonylamino-DMNQ in PDGF-treated VSMCs was concentration-dependent. As the concentration of 2-nonylamino-DMNQ was increased to 0.05, 0.1, and 0.5 μM, cell numbers were significantly reduced to 19.5±1.3, 15.0±1.1, and 12.2±1.0×10⁴ cells/well, respectively. These results indicate that 2-nonylamino-DMNQ inhibits PDGF-stimulated VSMC proliferation.

To investigate the negative influence of 2-nonylamino-DMNQ on cell viability, VSMCs were incubated with the highest concentration of this compound for various times up to 48 h. As shown in Fig. 1D, 0.5 μM 2-nonylamino-DMNQ did not exert any cytotoxicity irrespective of incubation time. Digitonin (100 μg/ml) was used as a positive cytotoxic control. These results indicate that the anti-proliferative action of 2-nonylamino-DMNQ in VSMCs was not attributable to cytotoxicity.

Effects of 2-nonylamino-DMNQ on DNA synthesis and cell cycle progression

To determine the effects of 2-nonylamino-DMNQ on DNA synthesis, [³H]-thymidine incorporation was measured in PDGF-treated VSMCs. The data shown in Fig. 2A indicate that 2-nonylamino-DMNQ inhibited [³H]-thymidine incorporation in a dose-dependent manner. PDGF (25 ng/ml) stimulated [³H]-thymidine cpm/well values by 192,885.5±2,886.5/well compared to the control (non-PDGF-treated, 1,322.3±445.6/well). The inhibition rates of 0.05, 0.1, and 0.5 μM 2-nonylamino-DMNQ were 25.92±8.79%, 50.73±15.0±1.1, and 12.2±1.0×10⁴ cells/well, respectively.
To investigate the mechanism of the anti-proliferative action of 2-nonylamino-DMNQ, a cell cycle progression study was carried out in PDGF-stimulated VSMCs. As shown in Fig. 2B, 2-nonylamino-DMNQ dose-dependently increased the proportion of cells in G0/G1 phase. VSMC serum deprivation resulted in an approximately 87.0±1.9% block of cells in G0/G1 phase, and addition of PDGF decreased the G0/G1 phase and the percentage of cells in the S phase increased from 20.1±2.2% to 16.2±2.7%. This cell cycle progression was significantly blocked by 2-nonylamino-DMNQ; the percentage of cells in the S phase was reduced by 13.2±1.8%, 9.3±1.7% and 8.1±1.6% at concentrations of 0.05, 0.1, and 0.5 μM, respectively. This observation suggests that 2-nonylamino-DMNQ may act in the early events of the cell cycle to affect DNA synthesis induced by PDGF.

To further examine the effects of 2-nonylamino-DMNQ on phosphorylation of four different tyrosine residues in PDGF-stimulated PDGF-R β, antibodies were applied to PDGF-stimulated VSMCs in the absence or presence of 2-nonylamino-DMNQ (0.5 μM) for times up to 30 min. The data shown in Fig. 3A present that 2-nonylamino-DMNQ completely blocked the phosphorylation of four tyrosine residues (Tyr579, Tyr716, Tyr751, and Tyr1021) in PDGF-R β at 5 min, and Tyr 1021 at 10 min. These results indicate that 2-nonylamino-DMNQ inhibited the phosphorylation of four tyrosine residues (Tyr 579, Tyr716, Tyr751, and Tyr1021) in PDGF-R β.

Effects of 2-nonylamino-DMNQ on the activation of PDGF receptor tyrosine kinase

To investigate the molecular mechanism underlying the inhibitory action of 2-nonylamino-DMNQ in PDGF-induced proliferation, the phosphorylation of PDGF-R β (Tyr1021) was measured as described in Methods. Images are representative blots of four similar and independent experiments.

Fig. 4. Effects of 2-nonylamino-DMNQ on the phosphorylation of STAT3, ERK1/2, Akt and PLC γ 1 in PDGF-stimulated VSMCs. (A) The ability of 2-nonylamino-DMNQ to regulate STAT3 activation. VSMCs cultured in serum-free medium were incubated with or without the indicated concentrations of 2-nonylamino-DMNQ or SU6656, a Src family kinase inhibitor, for 24 h, stimulated with 25 ng/ml PDGF-BB for 10 min, and the phosphorylation of STAT3 was measured as described in Methods. Images are representative blots of four similar and independent experiments. (B) The ability of 2-nonylamino-DMNQ to regulate ERK1/2, Akt, and PLC γ 1 phosphorylation. Serum-starved VSMCs were treated with or without the indicated concentrations of 2-nonylamino-DMNQ for 24 h, stimulated with 25 ng/ml PDGF-BB for 5 min (ERK1/2 and PLC γ 1) or 15 min (Akt), and the ERK1/2, Akt and PLC γ 1 phosphorylation were measured as described in Methods. Images are representative blots of four similar and independent experiments.

Effects of 2-nonylamino-DMNQ on the phosphorylation of STAT3, ERK1/2, Akt, and PLC γ 1

To examine the influence of 2-nonylamino-DMNQ on the PDGF-R β-mediated downstream signaling pathway, the phosphorylation of STAT3, ERK1/2, Akt, and PLC γ 1 was determined in PDGF-stimulated VSMCs. The data shown in Fig. 4A indicate that 2-nonylamino-DMNQ concentration-dependently inhibited the STAT3 phosphorylation.
transduction pathway for the management of abnormal 2-nonylamino-DMNQ may be an effective tool to control with the underlying mechanism at the receptor level in action of a novel DMNQ-derivative, 2-nonylamino-DMNQ, pathways. This is the first report linking the antiproliferative consequently suppressing PDGF-R β chain. The G1 phase of the cell cycle is a major point of con-

portant for the G 1-S phase transition [26]. These complexes cyclin E/CDK 2 and cyclin D/CDK 4 complexes are im-
trol for cell proliferation in mammalian cells [25] and the PCNA expression, and the phosphorylation of pRb (Fig. 2C). to the inhibition of cyclin E, cyclin D, CDK2, CDK4, and (Fig. 2A), and that this inhibition of DNA synthesis is due to the inhibition of cyclin E, cyclin D, CDK2, CDK4, and PCNA, and the phosphorylation of pRb. The mechanism underlying this antiproliferative action is the in-

hibition of autophosphorylation of PDGF-R at four different tyrosine residues and leads to the regulation of downstream signaling pathways, including STAT3, ERK1/2, Akt, and PLC γ 1, which is an important mechanism for the antiproliferative action of 2-nonylamino-DMNQ in PDGF-stimulated VSMCs.

The DMNQ toxic effects previously reported were mainly in liver and lung by inducing oxidative stress. DMNQ caused an extensive glutathione (GSH) depletion accom-
panied by glutathione disulfide (GSSG) formation, prece-
ding loss of viability in isolated hepatocytes [14], and more-
over, decreased in intracellular adenosine 5′-triphosphate (ATP) in γ-glutamyl transpeptidase (GGT)-overexpressing stable cell line, causing continuously generate H2O2 and ox-
idative injury [15]. Another quinonoid drug, menadione (2-methyl-1,4-naphthoquinone), also showed cytotoxicity in isolated hepatocytes [16]. Similarly, in lung epithelial cells, DMNQ increased GGT mRNA content accompanied by in-

greased GGT specific activity [17], and γ-glutamylcysteine synthetase (γ-GCS) activity [18]. Although this study did not cover these cytotoxicities in both organs, our results in-
dicated that the highest concentration of 2-nonylamino-

DMNQ showed the maximal antiproliferative action in PDGF-stimulated VSMCs did not exert any cytotoxicity at least within 48 h incubation (Fig. 1D). This indicates that 2-nonylamino-DMNQ has an antiproliferative property in PDGF-stimulated VSMCs without any toxicity.

Acknowledgements

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science, and Technology (2009-0093815).

REFERENCES

1. Bailey SR. Coronary restenosis: a review of current insights and therapies. Catheter Cardiovasc Interv. 2002;55:265-271.
2. Ross R. Cell biology of atherosclerosis. Annu Rev Physiol. 1995;57:791-804.
3. Shimokado K, Yokota T, Kosaka C, Zen K, Sasaeguri T, Masuda
18. Shi MM, Kugelman A, Iwamoto T, Tian L, Forman HJ, Lee JJ, Yi H, Kim IS, Kim Y, Nham NX, Kim YH, Myung CS. (2S)-Naringenin from Typha angustata inhibits vascular smooth muscle cell proliferation via S/S. J Ethnopharmacol. 2012;139:873-878.

19. Banai S, Wolf Y, Golomb G, Porale A, Wanenburg J, Fishbein I, Schneider A, Gazit A, Perez L, Huber R, Lazarovich G, Rabinovich L, Levi-Tziki A, Gertz SD. PDGF-receptor tyrosine kinase blocker AG1295 selectively attenuates smooth muscle cell growth in vitro and reduces neointimal formation after balloon angioplasty in swine. Circulation. 1998;97:1960-1969.

20. Schwaiberger AV, Heiss EH, Cabardad M, Oberan T, Zajec J, Schachner D, Uhrin P, Atanasov AG, Breus JM, Binder BR, Diesch VM. Indirubin-3'-mononitride blocks vascular smooth muscle cell proliferation by inhibition of signal transducer and activator of transcription 3 signaling and reduces neointima formation in vivo. Arterioscler Thromb Vasc Biol. 2010;30:2475-2481.

21. Fung F, Newport JW. Evidence that the G1-S and G2-M transitions are controlled by different cdc2 proteins in higher eukaryotes. Cell. 1991;66:731-742.

22. Moore GD, Lear SC, Wills-Frank LA, Martin AW, Snyder JW, Nelson CM. Differential expression of cdk inhibitors p16, p21cip1, p27kip1, and cyclin E in cervical cytological smears prepared by the ThinPrep method. Diagn Cytopathol. 2005;32:82-87.

23. Dauv DJ, Braun-Dulhaeus RC, Sedding DG. Vascular proliferation and atherosclerosis: new perspectives and therapeutic strategies. Nat Med. 2002;8:1249-1256.

24. Tozita H, Osai T, Toki T, Maeda N, Mukurakri R, Chen Z, Yamabe H, Osawa H, Yasujima M, Okumura K. Roxithromycin is an inhibitor of human coronary artery smooth muscle cells proliferation: a potential for a prevalent coronary heart disease. Atherosclerosis. 2005;187:97-106.

25. Beier I, Dissing R, Vetter H, Schmitz U. Epidermal growth factor stimulates Rac1 and p21-activated kinase in vascular smooth muscle cells. Atherosclerosis. 2008;196:92-97.

26. Morigi S, Rönnstrand L, Yokote K, Engström A, Couraizade SA, Claesson-Welsh L, Heldin CH. Identification of two juxtamembrane autophosphorylation sites in the PDGF β-receptor; involvement in the interaction with Src family tyrosine kinases. EMBO J. 1993;12:2257-2264.

27. Bowman T, Bronze MA, Simihadi D, Wharton W, Pledger WJ, Sedivy J, Farny Y, Yeatman T, Couraizade SA, Jove R. Stat3-mediated Myc expression is required for Src transformation and PDGF-induced mitogenesis. Proc Natl Acad Sci U S A. 2001;98:7319-7324.

28. Arvidsson AK, Rupp E, Närberg E, Downward J, Rönnstrand L, Wennström S, Schlessinger J, Heldin CH, Claesson-Welsh L. Tyr-716 in the platelet-derived growth factor β-receptor kinase insert is involved in GRB2 binding and Ras activation. Mol Cell Biol. 1994;14:6713-6726.

29. Dance M, Montagner A, Salpes JP, Yart A, Raynal P. The molecular functions of Shp2 in the Ras/Mitogen-activated protein kinase (ERK1/2) pathway. Cell Signal. 2008;20:453-459.

30. Panayotou G, Rux B, Gout I, Federwisch M, Wroblowski B, Dhond R, Fry MJ, Blundell TL, Wollmer A, Waterfield MD. Interaction of the p85 subunit of PI 3-kinase and its N-terminal SH2 domain with a PDGF receptor phosphorylation site: structural features and analysis of conformational changes. EMBO J. 1992;11:4261-4272.

31. Kashishian A, Kadlouskas A, Cooper JA. Phosphorylation sites in the PDGF receptor with different specificities for binding GAP and PI 3 kinase in vivo. EMBO J. 1992;11:1373-1382.