Evaluation of Underutilized Kodo Millet (*Paspalum scrobiculatum* L.) Accessions using Morphological and Quality Traits

V. Nirubana, R. Ravikesavan¹, K. Ganesamurthy¹
DOI: 10.18805/IJARe.A-5462

ABSTRACT

Background: Kodo millet is an important drought tolerant crop and has high nutritional values, dietary fiber and antioxidant properties. It has considerable production potential in marginal and low fertility soils under diverse environmental conditions. Considering the importance of the crop, it is necessary to improve the nutritional quality along with grain yield of the crop. With this background, the investigation was aimed to study the correlation and path coefficient analysis which helps to identify the promising traits for yield and quality improvement.

Methods: One hundred and three kodo millet germplasm lines were evaluated for 13 morpho-agronomic and two grain nutritional traits. The crop was raised in randomized block design to select the promising genotypes and to study the association among the traits and the magnitude of direct and indirect effects for fifteen quantitative traits.

Result: Based on the overall mean performance the significant genotypes were identified and found wide range of variability for different traits. Character association studies indicated that days to first flowering, days to 50 per cent flowering, plant height, number of productive tillers, peduncle length, inflorescence length, length of the longest raceme and thumb length were significantly positive association with grain yield per plant. Path coefficient analysis revealed that inflorescence length, plant height, length of the longest raceme, flag leaf blade length and number of productive tillers exhibited high direct positive effect on grain yield. Therefore, giving importance of these traits during selections may be useful for developing nutritionally superior high yielding kodo millet genotypes.

Key words: Character association, Kodo millet, Path coefficient analysis, Yield.

INTRODUCTION

Kodo millet (*Paspalum scrobiculatum* (L.); Family - Poaceae), is a self pollinated crop and the species was domesticated in India about 3000 years ago (Malleshi and Hadimani, 1994). It is grown in India from Kerala and Tamil Nadu in the south, to Rajasthan, Uttar Pradesh and West Bengal in the north (de Wet et al., 1983). It is a traditional, long duration, hardy and drought resistant crop cultivated about 9 lakh hectares in India with an annual production of 3.11 lakh tonnes (Bondale, 1994; Singh, 1994). The seeds have an excellent storage life. It is a staple food for the poor in the marginal agricultural areas and it is nutritionally superior to many other cereal grains and has more dietary fibre, anti-oxidative (Chandrasekara and Shahidi, 2010) and anti-diabetic properties (Hegde et al., 2005). Keeping these views in mind, the present study was undertaken with the objectives of finding promising genotypes for yield and quality traits and to study the associations among traits which enables to identify the characters useful for higher yield and path coefficient analysis is useful in evaluating the causes, effects and relationship between yield and its contributing traits of kodo millet.

MATERIALS AND METHODS

Experimental site and design

The experiment was conducted with one hundred and three kodo millet accessions and was collected from Department of Plant Breeding and Genetics, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai- 625 104, Tamil Nadu, India.¹Tamil Nadu Agricultural University, Coimbatore-641 003, Tamil Nadu, India.

Corresponding Author: V. Nirubana, Department of Plant Breeding and Genetics, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai-625 104, Tamil Nadu, India.
Email: niru.jam@gmail.com

How to cite this article: Nirubana, V., Ravikesavan, R. and Ganesamurthy, K. (2021). Evaluation of Underutilized Kodo Millet (*Paspalum scrobiculatum* L.) Accessions using Morphological and Quality Traits. Indian Journal of Agricultural Research. 55(3): 303-309. DOI: 10.18805/IJARe.A-5462.

Submitted: 19-11-2019 **Accepted:** 21-03-2020 **Online:** 10-09-2020
Morphological characters
The following 15 quantitative characters were observed viz., days to first flowering (DF), days to 50 per cent flowering (DFF), plant height (PH), number of basal tillers (NBT), number of productive tillers (PT), flag leaf blade length (FLL), flag leaf blade width (FLW), peduncle length (PL), inflorescence length (IL), thumb length (TL), length of longest raceme (LLR), thousand grain weight (TGW), grain yield per plant (GY) (IBPGR, 1983). Grain quality traits like Zinc content (Zn) and Iron content (Fe) were estimated as per the method of Piper, 1966.

Statistical analysis
The collected quantitative data’s were subjected to correlation and path coefficient analysis.

Correlation coefficient analysis
The correlation coefficient was worked out to find out the relationship between yield and its components. The variance and covariance values were used to calculate the correlation by applying the formula as per Falconer (1964).

\[r_{xy} = \frac{\text{Cov}_{g,x,y}}{\sqrt{\text{Var}_{g,x} \cdot \text{Var}_{g,y}}} \]

Where,
- \(r_{xy} \) = Genotypic correlation co-efficient.
- \(\text{Cov}_{g,x,y} \) = Genotypic covariance between the characters ‘x’ and ‘y’.
- \(\text{Var}_{g,x} \) = Genotypic variance of x (first trait).
- \(\text{Var}_{g,y} \) = Genotypic variance of y (second trait).

Evaluation of Underutilized Kodo Millet (Paspalum scrobiculatum L.) Accessions using Morphological and Quality Traits

Table 1: List of 103 kodo millet germplasm accessions used for the study.

S. No	Name of the accessions	S. No	Name of the accessions	S. No	Name of the accessions
1	Aamo 68	35	Sel 18	69	TNAU 140
2	Aamo 83	36	Sel 19	70	TNAU 141
3	Aamo 89	37	Sel 20	71	TNAU 145
4	Aamo 90	38	Sel 21	72	TNAU 146
5	Aamo 101	39	TNAU 82	73	TNAU 148
6	Aamo 126	40	TNAU 84	74	TNAU 149
7	Aamo 258	41	TNAU 85	75	TNAU 150
8	Aamo 271	42	Sel 16	76	TNAU 151
9	RK 50	43	TNAU 90	77	TNAU 152
10	RK 51	44	TNAU 91	78	TNAU 153
11	RK 82	45	TNAU 92	79	TNAU 154
12	RK 84	46	TNAU 93	80	TNAU 155
13	RK 111	47	TNAU 96	81	TNAU 162
14	RK 162	48	TNAU 97	82	TNAU 164
15	DPS 95	49	TNAU 98	83	TNAU 165
16	DPS 368	50	TNAU 99	84	TNAU 171
17	ICK 86	51	TNAU 100	85	TNAU 172
18	ICK 1042	52	TNAU 111	86	TNAU 174
19	ICK 7114	53	TNAU 102	87	TNAU 177
20	IPS 102	54	TNAU 104	88	TNAU 179
21	IPS 113	55	TNAU 105	89	TNAU 180
22	IPS 118	56	TNAU 107	90	TNAU 187
23	IPS 122	57	TNAU 108	91	TNAU 188
24	IPS 123	58	TNAU 109	92	TNAU 190
25	IPS 125	59	TNAU 120	93	TNAU 191
26	RBK 73	60	TNAU 121	94	TNAU 194
27	RBK 155	61	TNAU 123	95	TNAU 195
28	Sel 1	62	TNAU 124	96	TNAU 197
29	Sel 7	63	TNAU 127	97	TNAU 201
30	Sel 11	64	TNAU 128	98	TNAU 236
31	Sel 12	65	TNAU 129	99	GPUK 3
32	Sel 14	66	TNAU 130	100	Sel 6
33	Sel 15	67	TNAU 133	101	CO 3
34	Sel 17	68	TNAU 137	102	APK 1
				103	TNAU 86
Test of significance

Significance of correlation coefficients was tested by comparing genotypic correlation coefficients with the correlation table values at (n-2) degrees of freedom where ‘n’ denotes the number of paired observations used in the calculation.

Path coefficient analysis

Path coefficient analysis was done as suggested by Wright (1921) and Dewey and Lu (1959). The direct and indirect effects were classified into different scales (Lenka and Mishra, 1973).

RESULTS AND DISCUSSION

Identification of promising genotypes

Among the studied accessions, the trait days to first flowering ranged from 49.00 to 77.00 with an average of 58.15. Fifty seven genotypes were found significantly earlier to flowering. The genotype TNAU 82 was early in flowering (49 days), whereas TNAU 155 and TNAU 236 were recorded to be late in flowering (77 days). The trait days to fifty per cent flowering varied from 52.00 (IPS 113 and TNAU 82) to 80.00 (TNAU 236) with an average of 61.34 and 57 genotypes were significantly earlier in flowering. The plant height ranged from 36.01 cm to 86.35 cm with an average of 59.42 cm. About 55 genotypes were found significantly dwarf in nature. The genotype, APK 1 (86.35 cm) was the tallest and GPUK 3 (36.01 cm) was at the shortest. These traits can be considered as useful in the breeding programme for developing a short duration with non-lodging plant type.

Number of basal tillers per plant ranged from 11.00 (IPS 122 and TNAU 133) to 25.22 (TNAU 107) with an average of 17.36 and number of productive tillers per plant varied from 3.83 (DPS 95) to 10.73 (Sel 21) and 50 genotypes were found significant for productive tillers with an average of 6.46. The trait flag leaf blade length, IPS 123 recorded the maximum length (17.14 cm) and genotype APK 1 (1.62 cm) recorded the maximum flag leaf width. The trait peduncle length ranged from 3.78 (Sel 19) cm to 8.25 cm (TNAU 86). CO 3 (20.80 cm) registered maximum inflorescence length, TNAU 149 (9.3 cm) recorded the highest length of the longest raceme and the genotype RK 50 (11.6 cm) registered the highest thumb length. Maximum thousand grain weight was registered by APK 1 (4.91 g) with an average of 3.68 and the total of 49 genotypes recorded significant performance.

The genotypes IPS 123 and TNAU 162 witnessed the highest Zinc content (6.87 mg/100g) with an average of 3.61 mg/100g. Significance were observed for Zn content in 55 genotypes. For Iron content, TNAU 84 (25.03 mg/100g) recorded the highest value with fifty significant genotypes.

The range of single plant yield realised in the present study ranged from 5.37 g to 31.37 g with an average of 15.19 g. Fifty one genotypes exhibited significant performance for single plant yield. Among them, the genotype Sel 21 registered as the high yielder (31.37 g). Patil et al. (2019) observed wide range of variation for quantitative traits in finger millet accessions. The identified superior genotypes for 15 traits were given in Table 2.

Table 2: Range of variability for 15 quantitative traits.

Characters	Minimum	Maximum	Mean	Significant genotypes
DF (TNAU 82)	49.00	77.00	58.15	57 genotypes
DFF (IPS 113 and TNAU 82)	52.00	80.00	61.34	57 genotypes
PH (GPUK 3)	36.01	86.35	59.42	55 genotypes
NBT (IPS 122, TNAU 133)	11.00	25.22	17.36	45 genotypes
PT (DPS 95)	3.83	10.73	6.46	50 genotypes
FLL (TNAU 84)	8.99	17.14	13.52	50 genotypes
FLW (TNAU 191)	0.57	1.62	0.70	34 genotypes
PL (Sel 19)	3.78	8.25	5.41	47 genotypes
IL (TNAU 97)	8.38	20.8	12.72	48 genotypes
LLR (TNAU 133)	3.87	9.32	6.18	39 genotypes
TL (TNAU 133)	3.47	RK 50 (11.62)	6.00	46 genotypes
TGW (TNAU 152)	2.47	APK 1 (4.91)	3.68	49 genotypes
Zn (Sel 20)	0.10	6.87 (IPS 123 and TNAU 162)	3.61	55 genotypes
Fe (TNAU 154)	5.49	25.03 (TNAU 84)	15.02	50 genotypes
GY (TNAU 133)	5.37	31.37 (Sel 21)	15.19	51 genotypes

Abbreviations used: DF- Days to first flowering (days); DFF- Days to 50 per cent flowering (days); PH- Plant height (cm); NBT-Number of basal tillers (count); PT- Number of productive tillers (count); FLL- Flag leaf blade length (cm); FLW- Flag leaf blade width (cm); PL- Peduncle length (cm); IL- Inflorescence length (cm); LLR- Length of the longest raceme (cm); TL- Thumb length (cm); TGW- Thousand grain weight (g); Zn- Zinc content (mg/100g); Fe- Iron content (mg/100g); GY- Grain yield per plant (g).
Table 3: Genotypic correlation coefficient among fifteen characters in 103 kodo millet germplasm accessions.

Character	DF	DFF	PH	NBT	PT	FLL	PL	IL	LLR	TL	TGW	Zn	Fe
DF	1												
DFF	-0.304*	1											
PH	0.308*	-1.017	1										
NBT	0.305*	0.304*	0.306*	1									
PT	-0.114	-0.119	0.313*	-0.119	1								
FLL	0.112	0.117	0.312	0.117	-0.114	1							
PL	0.082	0.092	0.301*	0.092	0.082	0.301*	1						
IL	-0.276	-0.276	0.431*	-0.276	0.276	0.431*	-0.276	1					
LLR	-0.109	-0.109	0.431*	-0.109	0.109	0.431*	-0.109	-0.276	1				
TL	-0.290	-0.290	0.431*	-0.290	0.290	0.431*	-0.290	-0.109	-0.276	1			
TGW	0.097	0.097	0.431*	0.097	0.097	0.431*	0.097	0.097	0.431*	-0.276	1		
Zn	0.173	0.173	0.554**	0.173	0.173	0.554**	0.173	0.173	0.554**	0.431*	-0.276	1	
Fe	0.058	0.058	0.431*	0.058	0.058	0.431*	0.058	0.058	0.431*	0.173	0.173	-0.276	1

Significant at 5% level; *Significant at 1% level.

Correlation coefficient analysis

Association of yield and other component traits helps plant breeders to focus on yield improvement in the desired direction. Among fifteen characters studied, the characters viz., days to first flowering \((r = 0.304)\), days to 50 per cent flowering \((r = 0.305)\), plant height \((r = 0.313)\), number of productive tillers \((r = 0.482)\), peduncle length \((r = 0.208)\), inflorescence length \((r = 0.406)\), length of the longest raceme \((r = 0.508)\) and thumb length \((r = 0.278)\) were positively and significantly correlated with grain yield per plant (Table 3).

Number of basal tillers \((r = 0.162)\), thousand grain weight \((r = 0.157)\), flag leaf length \((r = 0.090)\), flag leaf width \((r = 0.069)\), Fe content \((r = 0.035)\) and Zn content \((r = 0.014)\) expressed positive but non-significant association with grain yield. Similar results have also been reported earlier by Vishnuprabha and Vanniarajan (2018) for Zn content in barnyard millet. Hence, it might be inferred that these traits could be considered as most important yield contributing traits in kodo millet. This is in accordance with the findings of Plawani Panda (2015) who found that positive correlation of yield with days to first flowering, days to 50 per cent flowering, plant height, peduncle length and inflorescence length in barnyard millet; Jadhav et al. (2015) for days to 50% flowering, plant height and productive tillers per plant in finger millet. While Verma and Singh (1982) opined that plant height was positively correlated with grain yield in early and medium maturing genotypes in kodo millet. Yadava and Jain (2006) indicated that plant height was significantly and positively correlated with grain yield in early and late maturing genotypes of kodo millet. In foxtail millet, Pavithra (2015) registered positive correlation of yield with plant height, peduncle length and inflorescence length. Prakash and Vanniarajan (2014) in proso millet and Suryanarayana et al. (2014) in finger millet had similar findings in days to 50 per cent flowering and plant height; Rameshwarlakumar (2009) for peduncle length in little millet.

In terms of inter correlation among components studied, number of productive tillers revealed significant positive association with thumb length, length of the longest raceme, thousand grain weight, inflorescence length and peduncle length. Peduncle length showed significant and positive association with inflorescence length, thumb length, length of the longest raceme, and thousand grain weight. Similar results were reported by Plawani Panda (2015) for inflorescence length and thousand grain weight in barnyard millet; Anantharaju and Ganesan (2005) for thousand grain weight in finger millet.

Inflorescence length showed positive and significant association with thumb length, length of the longest raceme and thousand grain weight. Similar results were reported by Plawani Panda (2015) for thousand grain weight in barnyard millet. Length of the longest raceme showed a significant and positive association with thumb length and thousand grain weight. Thumb length showed positive association with thousand grain weight.
Table 4: Path analysis direct (diagonal) and indirect effects of fourteen characters on grain yield in kodo millet.

DF	DFF	PH	NBT	PT	FLL	FLW	PL	IL	LLR	TL	TGW	Zn	Fe	Correlation coefficient
0.2855	-0.7351	0.9840	0.0223	0.1140	0.0752	-0.1658	-0.8729	0.7466	0.3405	-0.4595	-0.0006	-0.0127	-0.0180	0.304**
0.2868	-0.7317	0.9957	0.0206	0.1140	0.0682	-0.1848	-0.8878	0.7836	0.3418	-0.4746	-0.0006	-0.0110	-0.0157	0.305**
0.2382	-0.6178	1.1792	0.0150	0.1112	0.0982	-0.2281	-1.2655	0.9927	0.3083	-0.4854	-0.0006	-0.0131	-0.0200	0.313**
0.0347	-0.0821	0.9066	0.1836	0.1017	-0.0230	-0.1259	-0.1322	0.1094	0.0769	-0.0741	-0.0003	0.0058	-0.0094	0.162
0.0880	-0.2256	0.3547	0.0505	0.3698	0.0265	-0.1171	-0.4147	0.4013	0.1991	-0.2114	-0.0005	0.0094	0.2899	0.482**
0.0478	-0.1112	0.2579	-0.0094	0.0218	0.4492	-0.0425	-0.4906	0.0772	-0.1300	0.0565	0.0002	-0.0272	-0.0097	0.090
0.0650	-0.1857	0.3694	0.0317	0.0595	0.0262	-0.7281	-0.3259	0.7679	0.2439	-0.2360	-0.0006	0.0063	-0.0243	0.069
0.1475	-0.3846	0.8835	0.0143	0.0908	0.1304	-0.1405	-1.6891	1.3182	0.2328	-0.3726	-0.0005	-0.0107	-0.0116	0.208*
0.1327	-0.3570	0.7290	0.0125	0.0924	0.0216	-0.3482	-1.3866	1.6058	0.3345	-0.4080	-0.0006	0.0035	-0.0182	0.406**
0.1575	-0.4052	0.5890	0.0229	0.1193	-0.0946	-0.2877	-0.6370	0.8701	0.6173	-0.4327	-0.0008	0.0002	-0.0094	0.508**
0.2190	-0.5796	0.9555	0.0227	0.1305	-0.0424	-0.2868	-1.1056	1.0935	0.4458	-0.5991	-0.0007	0.0053	-0.0239	0.278**
0.1068	-0.2799	0.4243	0.0318	0.1109	0.0565	-0.2725	-0.5296	0.5913	0.2819	-0.2434	-0.0017	-0.0112	-0.0175	0.157
0.0373	-0.0823	0.1582	0.0109	0.0356	0.1251	0.0474	-0.1849	0.0580	0.0017	0.0329	0.0002	-0.0978	-0.0404	0.014
-0.038	0.0857	-0.1753	-0.0128	-0.0797	-0.0327	0.1316	0.1468	-0.2181	-0.0435	0.1066	0.0002	0.0294	0.1344	0.035

Residual effect = 0.34

**Significant at 1% level
*Significant at 5% level

Abbreviations used: DF- Days to first flowering (days); DFF- Days to 50 per cent flowering (days); PH- Plant height (cm); NBT-Number of basal tillers (count); PT- Number of productive tillers (count); FLL- Flag leaf blade length (cm); FLW- Flag leaf blade width (cm); PL- Peduncle length (cm); IL- Inflorescence length (cm); LLR- Length of the longest raceme (cm); TL- Thumb length (cm); TGW- Thousand grain weight (g); Zn- Zinc content (mg/100g); Fe- Iron content (mg/100g); GY- Grain yield per plant (g).
Examination of correlation among component characters revealed that strong associations are present among desirable component characters viz., number of productive tillers, peduncle length, inflorescence length, length of the longest raceme and thumb length. Hence, selection criteria should consider all these characters for the improvement of grain yield. Undesirable association of some of the component characters might act as deterrent for the formulation of a comprehensive selection programme involving these traits. So, during selection programme, these factors might be considered with a caution.

Path coefficient analysis

Path coefficient analysis was undertaken to study the direct and indirect effects of the different traits on yield. The direct and indirect effects of fifteen characters on grain yield are presented in Table 4 and Fig 1. Path analysis revealed that inflorescence length (1.606) and plant height (1.179) had the highest positive direct effect on grain yield per plant which was followed by length of the longest raceme (0.617), flag leaf length (0.449) and number of productive tillers (0.370). Hence, direct selection for these traits would be rewarding for yield improvement, which will also reduce the undesirable effect of the component traits studied. The results were similar to the findings reported by Plawani Panda (2015) for plant height and inflorescence length; Prakash and Vanniarajan (2015) for plant height in barnyard millet; Shalini et al. (2010) for plant height and number of productive tillers in proso millet. Andualem and Tadesse (2011) and Suryanarayana et al. (2014) for plant height in finger millet. It is known to contribute grain yield via more number of grains per panicle which were in conformity with the findings of Sonnad et al. (2008) in finger millet.

Regarding the indirect effect of component traits on grain yield, inflorescence length had high indirect effect through peduncle length (1.318), thumb length (1.094) and plant height (0.993). Whereas for plant height had high indirect effect through days to first flowering (0.984), days to fifty percent flowering (0.996) and thumb length (0.956). High and positive indirect effect of plant height through days to 50 per cent flowering was earlier reported by Thakur and Saini (1995) and Mishra (1996) in finger millet.

CONCLUSION

On the basis of above findings it can be concluded that the characters, days to first flowering, days to 50 per cent flowering, plant height, number of productive tillers, peduncle length, inflorescence length, length of the longest raceme and thumb length exhibited highly significant positive correlation with grain yield per plant indicating the usefulness of these traits for improving upon grain yield in kodo millet. Path coefficient analysis revealed that the highest direct effect on grain yield per plant was exerted by inflorescence length followed by plant height, length of the longest raceme, flag leaf blade length and number of productive tillers, showing its more accountability for higher grain yield. Therefore, it may be possible to improve the yield and quality by selecting the genotypes based on the above characters.

REFERENCES

Anantharaju, P. and Ganesan, N. M. (2005). Studies on correlation and path coefficient analysis of yield and yield contributing characters in finger millet [Eleusine coracana (L.) Gaertn]. Crop Research. 30(2): 227-230.

Andualem, W. and Tadesse, D. (2011). Correlation and path coefficient analysis of some yield related traits in finger millet [Eleusine coracana (L.) Gaertn.] germplasms in northwest Ethiopia. African Journal of Agricultural Research. 6(22): 5099-5105.
Evaluation of Underutilized Kodo Millet (*Paspalum scrobiculatum* L.) Accessions using Morphological and Quality Traits

Bondale, K.V. (1994). Status of small millets in India. Paper presented in National Seminar on Ragi and Small Millets, held during January 6-7, 1994 at IGKV, Raipur India.

Chandrasekara, A. and Shahidi, F. (2010). Content of insoluble bound phenolics in millets and their contribution to antioxidant capacity. Journal of Agricultural and Food Chemistry. 58: 6706-6714.

de Wet, J.M.J., Rao, K.E., Mengesha, M.H., Brink, D.E. (1983). Diversity in kodo millet (*Paspalum scrobiculatum*). Economic Botany. 37: 159-163.

Dewey, D.R. and Lu, K.H. (1959). A correlation and path coefficient analysis of components of crested wheat grass seed production. Agronomy Journal. 51(9): 515-518.

Falconer, D.S. (1964). An Introduction to Quantitative Genetics - Second edition. Oliver and Boyd Ltd., Edinburgh. 312-324.

Hegde, P.S. and Chandra, T.S. (2005). ESR spectroscopic study reveals higher free radical quenching potential in kodo millet (*Paspalum scrobiculatum*) compared to other millets. Food Chemistry. 92: 177-182.

IBPGR. (1983). Kodo millet descriptors. Rome, Italy. p.23.

Jadhav, R., Ratna Babu, D., Lal Ahamed, M., Srinivasa Rao, V. (2015). Character association and path coefficient analysis for grain yield and yield components in finger millet (*Eleusine coracana* (L.) Gaertn.). Electronic Journal of Plant Breeding. 6(2): 535-539.

Lenka, D. and Mishra, B. (1973). Path coefficient analysis of yield in rice varieties. Indian Journal of Agricultural Sciences. 43: 376-379.

Malleshi, N.G. and Hadimani, N.A. (1994). Nutritional and technological characteristics of small millets and preparation of value-added products from them*. In: Riley KW, Gupta SC, Seetharman A and Mushonga JN. eds. Advances in Small Millets. New York: International Science Publisher. 271-287p.

Mishra, D. (1996). Correlation and path analysis in finger millet. Madras Agricultural Journal. 83(2): 137-138.

Patil, S., Kauthale, V., Aagale, S., Pawar, M., Nalawade, A. (2019). Evaluation of finger millet (*Eleusine coracana* (L.) Gaertn.) accessions using agro-morphological characters. Indian Journal of Agricultural Research. 53(5): 624-627.

Pavithra, N. (2015). Genetic diversity analysis in foxtail millet (*Setaria italica* (L.) Beauv.). M.Sc. Thesis, Tamil Nadu Agricultural University, Coimbatore.

Piper, J. (1966). Diffusion of Hydrogen in Copper-Palladium Alloys. Journal of Applied Physics. 37(2): 715-721.

Panda, P. (2015). Genetic diversity in barnyard millet (*Echinochloa frumentacea* Roxb.) using morphological and molecular markers. M.Sc. Thesis, Tamil Nadu Agricultural University, Coimbatore.

Prakash, R. and Vanniarajan, C. (2015). Path analysis for grain yield in barnyard millet (*Echinochloa frumentacea* (Roxb.) Link). Bangladesh Journal of Botany. 44(1): 147-150.

Prakash, R. and Vanniarajan, C. (2014). Correlation Analysis in Barnyard Millet (*Echinochloa frumentacea* (Roxb.) Link). Trends in Biosciences. 7(20): 3255-3257.

Rameshwarkumar. (2009). Genetic and molecular characterization of *M*. and *M*. mutants in little millet (*Panicum sumatrense* Roth.). M.Sc. Thesis, Tamil Nadu Agricultural University, Coimbatore.

Salini, K., Nirmalakumari, A., Muthiah, A.R., Senthil, N. (2010). Evaluation of proso millet (*Panicum milaceum* L.) germplasm collections. Electron Journal of Plant Breeding. 1(4): 489-499.

Singh, S.V. (1994). Seed improvements in small millets and role of minikit programme in their development. Paper presented in National Seminar on Ragi and Small Millets, held during January 6-7, 1994 at IGKV, Raipur India.

Sonnd, S.K., Shanthakumar, G., Salimath, P.M. (2008). Genetic variability and character association studies in white ragi (*Eleusine coracana* Gaertn.). Karnataka Journal Agricultural Sciences. 21(4): 572-575.

Suryanarayana, L., Sekhar, D., Venugopala Rao, N. (2014). Inter relationship and cause-effect analysis in Finger millet (*Eleusine coracana* (L.) Gaertn.) genotypes. International Journal of Current Microbiology and Applied Sciences. 3(4): 937-941.

Thakur, S.R. and Saini, J.P. (1995). Variation, association and path analysis in finger millet (*Eleusine coracana*) under aerial moisture stress condition. Indian Journal of Agricultural Sciences. 65: 54-57.

Verma, S.N.P. and Singh, R.P. (1982). Association analysis in three maturing groups of kodo-millet. Indian Journal of Agricultural Science. 52(8): 488-491.

Vishnuprabha, R.S. and Vanniarajan, C. (2018). Correlation and path analysis studies for parents and F1 crosses in barnyard millet (*Echinochloa frumentacea* (Roxb.) Link) for nutritional characters. Agricultural Science Digest. 38 (1): 52-54.

Wright, S. (1921). Correlation and causation. Journal Agricultural Research. 20: 557-585.

Yadava, H.S. and Jain, A.K. (2006). Advances in kodo millet research. Directorate of Information and Publications of Agriculture, Indian Council of Agricultural Research.