Some structural properties of vector valued φ-function sequence space

\textbf{S N R Gultom and E Herawati}
1,2Department of Mathematics, University of Sumatera Utara, Indonesia
E-mail: 1septiannandarivald@gmail.com, 2herawaty.elv@gmail.com

\textbf{Abstract.} The sequence space $W(M)$, where M is an Orlicz function was introduced by Parashar and Choudhary \cite{1} and Maddox \cite{2}. Let f be φ-function and X be a Banach space. In this work, we introduce vector valued sequence space defined by f, denoted by $W(X, f)$. We study some topological properties and inclusion relations of this space.

1. Introduction and Preliminaries

An \textit{Orlicz function} is a continuous, convex, non-decreasing function defined from $[0, \infty)$ to itself such that $M(0) = 0$, $M(x) > 0$ for $x > 0$, and $M(x) \to \infty$ as $x \to \infty$. Lindenstrauss and Tzafriri \cite{3} introduced the sequence space $\ell^\infty(M)$ using Orlicz function M as follows:

$$\ell^\infty(M) = \{ x = (x_k) : x_k \in \mathbb{R} \forall k \in \mathbb{N} \text{ and } \exists \rho > 0 \text{ such that } \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) < \infty \}$$

The space $\ell^\infty(M)$ equipped with the Luxemburg norm

$$||x|| = \inf \left\{ \rho > 0 : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) \leq 1 \right\}$$

becomes a Banach space which is called an \textit{Orlicz sequence space}. The space $\ell^\infty(M)$ is closely related to the space ℓ_p with $1 \leq p < \infty$,

$$\ell_p = \left\{ x = (x_k) : x_k \in \mathbb{R} \forall k \in \mathbb{N} \text{ and } \sum_{k=1}^{\infty} |x_k|^p < \infty \right\}$$

which is an \textit{Orlicz sequence space} with $M(x) = x^p$. In the mathematical literature there exists various modifications of these definitions, where ℓ is replaced by another solid sequence space (see \cite{4–6}). A sequence space X is said to be solid (or normal) if $(\lambda_k x_k) \in X$, whenever $(x_k) \in X$ and for all sequences (λ_k) of scalars with $|\lambda_k| \leq 1$ for all $k \in \mathbb{N}$.

A norm $|| \cdot ||$ on a normal sequence space X is said to be \textit{absolutely monotone norm} if $x = (x_k), y = (y_k) \in X$ and $|x_k| \leq |y_k|$ for all $k \in \mathbb{N}$ implies $||x_k|| \leq ||y_k||$. The norm

$$||x||_\infty = \sup |x_k|$$
over the classical sequence space ℓ_∞, c, c_0 and the norm

$$
\|x\| = \left(\sum_{k=1}^{\infty} |x_k|^p\right)^{\frac{1}{p}}
$$

over ℓ_∞ for $p \geq 1$ are absolutely monotone.

A completed normed space X is said to be a BK-space if the function $p_k : X \to \mathbb{R}$ where $p_k(x) = x_k$ is continuous in X for every $x = (x_k) \in X$ and every $k \in \mathbb{N}$. An AK-space X with the norm $\|\cdot\|$ is a BK-space and $\|x - x[n]\| \to 0$ as $n \to \infty$ for every $x \in X$, where $x[n]$ denotes the n-th section of x.

Let X be a vector space. The collection of all vector valued sequences denoted by $\Omega(X)$. Any vector subspace of $\Omega(X)$ is called vector valued sequence space. The studies on vector valued sequence spaces are done by Rath and Srivastava [7], Das and Choudhary [8], Leonard [9], Srivastava and Srivastava [10] and many others.

A function $f : \mathbb{R} \to [0, \infty)$ which is continuous, vanishing at zero, non-decreasing on $[0, \infty)$ and even is called φ-function. A φ-function f is said to satisfy Δ_2-condition (written as $f \in \Delta_2$ for shortly), if there exists $K > 0$ such that $f(2x) \leq Kf(x)$ for every $x \geq 0$.

A functional $\rho : X \to [0, \infty)$ is called a convex modular if $\rho(x) = 0 \Rightarrow x = 0$, even, $\rho(\alpha x + \beta y) \leq \alpha \rho(x) + \beta \rho(y)$ if $\alpha + \beta = 1$ and $\alpha, \beta \geq 0$. In this case, we say that X is a convex modular space.

Let $X = (X, \|\cdot\|_X)$ be a Banach space with an absolutely monotone norm $\|\cdot\|_X$ and f is a φ-function. Using convex φ-function f, we introduce the following set, denoted by $W(X, f)$,

$$
W(X, f) = \left\{ x = (x(i)) \in \Omega(X) : \rho_f \left(\frac{x(i) - \ell}{\alpha} \right) \to 0 \text{ as } i \to \infty, \text{ for some } \alpha > 0 \text{ and } \ell \in X \right\}
$$

where

$$
\rho_f(x(i)) = \frac{1}{m} \sum_{i=1}^{m} f(\|x(i)\|_X), \text{ for every } x(i) \in X
$$

is a convex modular.

A function $g : X \to \mathbb{R}$ is said to be a paranorm if $g(\theta) = 0$, $g(x) \geq 0$, $g(x+y) \leq g(x) + g(y)$, even and every scalar sequence (λ_n) with $|\lambda_n - \lambda| \to 0$ and every sequence (x_n) with $g(x_n - x) \to 0$ implies $g(\lambda_n x_n - \lambda x) \to 0$ for all $\lambda \in \mathbb{R}$ and $x \in X$, where θ is the zero in the linear space X. The notion of paranormed sequence space was introduced by Nakano [11] and Simons [12]. Later on it was further investigated by Rath and Tripathy [13], Tripathy and Sen [14].

In this work, we investigate some of topological properties of the set $W(X, f)$ equipped with a paranorm that we will define and study some inclusion relations of this set.

2. Main Results

In this section we examine some topological properties and inclusion relations of the set $W(X, f)$.

Lemma 1. If $x, y \in X$ such that $0 \leq x \leq y$, then $\rho_f(x) \leq \rho_f(y)$.

Theorem 2.1. If φ-function f satisfies the Δ_2-condition and convex, then $W(X, f)$ is a linear space.

Proof. Let $x = (x(i))$, $y = (y(i)) \in W(X, f)$, then there exist $\alpha_1, \alpha_2 > 0$ and $\ell_1, \ell_2 \in X$ such that

$$
\rho_f \left(\frac{x(i) - \ell_1}{\alpha_1} \right) \to 0 \text{ and } \rho_f \left(\frac{y(i) - \ell_2}{\alpha_2} \right) \to 0 \text{ as } i \to \infty
$$
Proof. Since ρ_f is convex and $f \in \Delta_2$, there exists $K_1, K_2 > 0$ such that

$$\rho_f \left(\frac{(x(i) + y(i)) - \ell}{\alpha} \right) \leq K_1 \rho_f \left(\frac{x(i) - \ell_1}{\alpha_1} \right) + \frac{K_2}{2} \rho_f \left(\frac{y(i) - \ell_2}{\alpha_2} \right)$$

Consequently, $\rho_f \left(\frac{(x(i) + y(i)) - \ell}{\alpha} \right) \to 0$ as $i \to \infty$. Hence, $x + y \in W(X, f)$. Let $\beta \in \mathbb{R}$ and $x = (x(i)) \in W(X, f)$, then there exists $\alpha > 0$ and $\ell \in X$ such that

$$\rho_f \left(\frac{x(i) - \ell}{\alpha} \right) \to 0 \text{ as } i \to \infty$$

Choose $p = \beta \ell$. For $\beta = 0$, is clear that $\rho_f \left(\frac{\beta x(i) - p}{\alpha} \right) \to 0$ as $i \to \infty$. Now, assume that $\beta \neq 0$. Since $f \in \Delta_2$, then by using Archimedian there exists $n_0 \in \mathbb{N}$ and $K > 0$ such that

$$\rho_f \left(\frac{\beta x(i) - p}{\alpha} \right) \leq K^{n_0} \rho_f \left(\frac{x(i) - \ell}{\alpha} \right) \to 0 \text{ as } i \to \infty$$

Therefore, $\beta x \in W(X, f)$ and the proof is complete. \hfill \Box

Theorem 2.2. A function $g : W(X, f) \to \mathbb{R}$ with

$$g(x) = \inf \left\{ \alpha > 0 : \rho_f \left(\frac{x(i)}{\alpha} \right) \leq 1 \right\}$$

is a paranorm.

Proof. It is easy to show that $g(\theta) = 0$, $g(x) \geq 0$ and $g(-x) = g(x)$, for every $x \in W(X, f)$, where θ is the zero in the linear space $W(X, f)$. We shall now show the subadditivity of g. Let $x = (x(i)), y = (y(i)) \in W(X, f)$, then there exist $\alpha_1, \alpha_2 > 0$ such that

$$\rho_f \left(\frac{x(i)}{\alpha_1} \right) \leq 1 \text{ and } \rho_f \left(\frac{y(i)}{\alpha_2} \right) \leq 1$$

Take $\alpha = \max\{2\alpha_1, 2\alpha_2\}$. Considering Lemma 1 and using the convexity of ρ_f, we have

$$\rho_f \left(\frac{x(i) + y(i)}{\alpha} \right) \leq \frac{1}{2} \rho_f \left(\frac{x(i)}{\alpha_1} \right) + \frac{1}{2} \rho_f \left(\frac{y(i)}{\alpha_2} \right)$$

$$\leq \rho_f \left(\frac{x(i)}{\alpha_1} \right) + \rho_f \left(\frac{y(i)}{\alpha_2} \right)$$

Therefore, $g(x + y) \leq g(x) + g(y)$ for every $x, y \in W(X, f)$. Finally, we show that scalar multiplication is continuous. Let (λ_n) be any scalar sequence and $(x_n(i)) \subset W(X, f)$, with $|\lambda_n - \lambda| \to 0$ and $g(x_n(i) - x(i)) \to 0$ as $n \to \infty$. Considering Lemma 1 and using the the convexity of ρ_f, we have

$$\rho_f \left(\frac{\lambda_n x_n(i) - \lambda x(i)}{\alpha} \right) \leq \rho_f \left(\frac{|(\lambda_n - \lambda)x_n(i)|}{\alpha} \right) + \frac{\lambda |x_n(i) - x(i)|}{\alpha}$$

$$\leq \frac{1}{2} \rho_f \left(2 |\lambda_n - \lambda| \frac{x_n(i)}{\alpha} \right) + \frac{1}{2} \rho_f \left(2 |\lambda| \frac{x_n(i) - x(i)}{\alpha} \right)$$

$$\leq \rho_f \left(2 |\lambda_n - \lambda| \frac{x_n(i)}{\alpha} \right) + \rho_f \left(2 |\lambda| \frac{x_n(i) - x(i)}{\alpha} \right)$$
Therefore,

\[g(\lambda_n x_n(i) - \lambda x(i)) = \inf \left\{ \alpha > 0 : \rho_f \left(\frac{\lambda_n x_n(i) - \lambda x(i)}{\alpha} \right) \leq 1 \right\} \]

\[\leq 2|\lambda_n - \lambda| \inf \left\{ \alpha^* = \left(\frac{\alpha}{2|\lambda_n - \lambda|} \right) > 0 : \rho_f \left(\frac{x_n(i)}{\alpha^*} \right) \leq 1 \right\} \]

\[+ 2|\lambda| \inf \left\{ \alpha^{**} = \left(\frac{\alpha}{2|\lambda|} \right) > 0 : \rho_f \left(\frac{x_n(i) - x(i)}{\alpha^{**}} \right) \leq 1 \right\} \]

\[= 2|\lambda_n - \lambda| g(x_n(i)) + 2|\lambda| g(x_n(i) - x(i)) \to 0 \]

Hence, \(g(\lambda_n x_n(i) - \lambda x(i)) \to 0 \). This completes the proof of the theorem. \(\square \)

Theorem 2.3. The linear space \(W(X, f) \) is a complete paranormed sequence space.

Proof. Let \((x_n) \) be any Cauchy sequence in \(W(X, f) \) where \((x_n) = (x_n(i)) = (x_n(1), x_n(2), ...) \). This implies for any \(\epsilon > 0 \), there exists \(n_0 \in \mathbb{N} \) such that for every \(m \geq n \geq n_0 \), we get \(g(x_m - x_n) < \epsilon \). Consequently, \(\rho_f \left(\frac{x_m(i) - x_n(i)}{\epsilon} \right) \leq 1 \). Since \(\rho_f \) is convex, we have \(\rho_f(x_m(i) - x_n(i)) \leq \epsilon \).

Using the continuity of \(f \), it follows that \(\|x_m(i) - x_n(i)\|_X < \epsilon \) for every \(\epsilon > 0 \). Hence, for every fixed \(i \), the sequence \((x_n(i)) \) is a Cauchy sequence in \(X \). It converges since \(X \) is complete. Say, \(x_n(i) \to x(i) \) as \(n \to \infty \). Using these limits, we define \(x = (x(i)) \) and show that \(x \in W(X, f) \) and \(g(x_n - x) \to 0 \). Since \(X = (X, \| \cdot \|_X) \) is a Banach space, we get

\[\|x_m(i) - x(i)\|_X = \|x_m(i) - \lim_{n \to \infty} x_n(i)\|_X = \lim_{n \to \infty} \|x_m(i) - x_n(i)\|_X < \epsilon^2 \]

Since \((x_n(i)) \in W(X, f) \), there exists \(\alpha > 0 \) and \(\ell \in X \) such that

\[\rho_f \left(\frac{x_n(i) - \ell}{\alpha} \right) \to 0 \text{ as } i \to \infty \]

Using the continuity of \(f \), we obtain

\[\rho_f \left(\frac{x(i) - \ell}{\alpha} \right) = \rho_f \left(\frac{\lim_{n \to \infty} x_n(i) - \ell}{\alpha} \right) = \lim_{n \to \infty} \rho_f \left(\frac{x_n(i) - \ell}{\alpha} \right) \to 0 \text{ as } i \to \infty \]

It follows that \(x \in W(X, f) \). We will show that \(g(x_n - x) \to 0 \). Since \(f \) is continuous, then

\[\rho_f \left(\frac{x_n(i) - x(i)}{\alpha} \right) = \rho_f \left(\frac{x_n(i) - \lim_{m \to \infty} x_m(i)}{\alpha} \right) \leq 1 \]

Therefore, \(g(x_n - x) = \inf \left\{ \alpha > 0 : \rho_f \left(\frac{x_n(i) - x(i)}{\alpha} \right) \leq 1 \right\} \). Hence, there exists sequence \(\left(\frac{x_n(i)}{\alpha} \right), n \geq 1 \), for a real number \(c \) with \(g(x_n - x) < \frac{c}{\alpha} \), for every \(n \geq 1 \). Therefore, we get \(g(x_n - x) \to 0 \). We can conclude that \(W(X, f) \) is a complete paranormed space. \(\square \)

Theorem 2.4. The linear space \(W(X, f) \) is an AK space.

Proof. Let \(x = (x(i)) \in W(X, f) \), then there exists \(\alpha > 0 \) and \(\ell \in X \) such that

\[\frac{1}{m} \sum_{i=1}^{m} f \left(\left\| \frac{x(i) - \ell}{\alpha} \right\|_X \right) \to 0 \text{ as } i \to \infty \]
It follows that for every $i = 1, \ldots, m$, we have $\|x(i) - \ell\|_X \to 0$, as $i \to \infty$. Consequently,

$$\frac{1}{m} \sum_{i=1}^{m} f \left(\left\| \frac{x(i) - \ell}{\alpha} \right\|_X \right) \to 0 \text{ as } i \to \infty$$

Hence, $\rho_f \left(\frac{x-x[n]}{\alpha} \right) \to 0$ as $n \to \infty$, where $x[n]$ denotes the n-th section of x. Therefore, for $\epsilon = 1$, there exists $n_0 \in \mathbb{N}$ such that for every $n \geq n_0$, we obtain $\rho_f \left(\frac{x-x[n]}{\alpha} \right) \leq 1$. It follows that $g(x-x[n]) \to 0$ as $n \to \infty$. This completes the proof.

Theorem 2.5. Let f and g be two $\varphi -$ functions, then

(i) $W(X, f) \subseteq W(X, g \circ f)$

(ii) $W(X, f) \cap W(X, g) \subseteq W(X, f + g)$

Proof. (i) Let $x = (x(i)) \in W(X, f)$, then there exists $\alpha > 0$ and $\ell \in X$ such that

$$\frac{1}{m} \sum_{i=1}^{m} f \left(\left\| \frac{x(i) - \ell}{\alpha} \right\|_X \right) \to 0 \text{ as } i \to \infty$$

Hence, for every $\epsilon > 0$, there exists $i_0 \in \mathbb{N}$ such that for every $i \geq i_0$, we have

$$\frac{1}{m} \sum_{i=1}^{m} f \left(\left\| \frac{x(i) - \ell}{\alpha} \right\|_X \right) < \epsilon$$

It follows that for every $i = 1, \ldots, m$, we have $f \left(\left\| \frac{x(i) - \ell}{\alpha} \right\|_X \right) \to 0$ as $i \to \infty$. Since g is a $\varphi -$ function, we have $g \left(f \left(\left\| \frac{x(i) - \ell}{\alpha} \right\|_X \right) \right) \to 0$ as $i \to \infty$. Hence, $\rho_{gof} \left(\frac{x(i) - \ell}{\alpha} \right) \to 0$ as $i \to \infty$. This implies $x \in W(X, g \circ f)$. This concludes the proof.

(ii) The result of this point is obvious.

References

[1] Parashar S and Choudhary B 1994 *Indian J. Pure and App. Math.* 25 419-28.

[2] Maddox I J 1988 *Elements of Functional Analysis* (Cambridge: Cambridge University Press).

[3] Lindenstrauss J and Tzafriri L 1971 *Israel J. Math.* 10 379-90.

[4] Ghosh D and Srivastava P D 1999 *Glasnik Matematicki* 34 253-261.

[5] Malkowsky E and Savas E 2000 *Arch. Math.* 36 219-228.

[6] Kolk E 1994 *Tartu UI Toimetised* 970 65-72.

[7] Rath A and Srivastava P D 1996 *Ganita* 47 1-12.

[8] Das N R and Choudhary 1992 *Bul. Calcutta Math. Soc.* 84 47-54.

[9] Leonard I E 1976 *J. Math. Anal. App.* 54 245-65.

[10] Srivastava J K and Srivastava B K 1996 *India J. Pure App. Math.* 27 73-84.

[11] Nakano 1951 *Proc. Japan Acad.* vol 27 p 508-12.

[12] Simons S 1965 *Proc. London Math. Soc.* p 422-436.

[13] Rath D and Tripathy B C 1994 *Indian J. Pure App. Math.* 25 381-86.

[14] Tripathy B C and Sen M 2001 *Indian J. Pure App. Math.* 32 1689-94.

[15] Mahmut Isik 2011 *Tamsui Oxford J. of Information and Mathematical Sciences* 27 137-48.

[16] Özdemir M K and Solak I 2006 *Thai J. of Math.* 27 93-105.