Two major classes of chromosomally encoded *Escherichia coli* pili have been defined functionally by their receptor specificities. Common pili are termed "mannose-sensitive" (MS). They bind Tamm-Horsfall uromucoid and their agglutination of guinea pig erythrocytes is inhibited by D-mannose. In contrast, mannose-resistant (MR) pili agglutinate human erythrocytes in the presence of D-mannose. Most human pyelonephritis *E. coli* isolates express MR pili that bind neutral glycosphingolipid constituents of uroepithelial cells (1). They contain D-Gal β 1→4 D-Gal β 1 and a synthetic analogue of this disaccharide (Syn Gal-Gal) inhibits hemagglutination (2).

Mannose, Gal-Gal, and X pili may co-exist on the same bacterial strain (3, 4). Consequently, the pathogenic significance of functionally distinct pili may be difficult to assess with clinical isolates. Therefore, Hull et al. (4) cloned two distinct *E. coli* chromosomal fragments that encode mannose or Gal-Gal pili, into a nonpiliated K-12 derivative. The functional, serologic, and chemical properties of pili prepared from these recombinants is the subject of this report.

Materials and Methods

Bacterial Strains

E. coli J96 (O4, K6), a pyelonephritis isolate, is hemolytic, colicin V positive, motile, and can simultaneously express MS and Gal-Gal pili (4). The construction of the two recombinant strains, SH48 and HU849, which express MS or Gal-Gal pili, respectively, is described in detail elsewhere (4). P678-54 was employed as a hemagglutination-negative control.

Pili Purification

Pili from strains J96, SH48, and HU849 were purified from organisms grown on trypticase soy agar for 18 h at 37°C according to the method of Brinton (5). After three cycles of precipitation and solubilization in the appropriate buffers (5), the HU849 pilus preparation formed a single protein band in SDS-PAGE according to the method of

* This work was supported by a grant from the Cetus Corporation and Public Health Grant (NIH) AI-18719.

† Fellow of American Urological Association.

‡ Fellow of the John A. Hartford Foundation.

* To whom correspondence should be addressed at the Dept. of Medicine, Division of Infectious Diseases, Stanford University Medical School, Stanford, CA 94305.

J. Exp. Med. © The Rockefeller University Press · 0022-1007/83/11/1713/07 $1.00 1713

Volume 158 November 1983 1713–1719
Laemmli (6). SH48 pili did not enter the stacking gel under these conditions. Instead, the pilus filaments were depolymerized before electrophoresis by the addition of HCl to pH 1.8 according to the method of McMichael and Ou (7), after which two protein bands characteristic of MS pili were detected. Negatively stained pilus preparations were shown by electron microscopy to be composed of homologous filaments.

Amino Acid Analysis

The amino acid compositions of HU849 and SH48 pili were determined after 24-h hydrolysis in 5.7 N HCl at 110°C in vacuo on a Durrum model D500 amino acid analyzer. Cysteine and methionine were determined as cysteic acid and methionine sulfone, respectively after performic acid oxidation (8).

Sequence Analysis

The amino terminal amino acid sequences of HU849 and SH48 pili were determined by automated Edman degradation on a Beckman Model 890C liquid phase sequencer. Each phenylthiohydantoin (Pth) derivative was identified and quantitated by reverse-phase high pressure liquid chromatography (HPLC) and confirmed by gas-liquid chromatography (GLC) and/or thin-layer chromatography (TLC).

Enzyme-Linked Immunosorbent Assay (ELISA)

Antibody to each pilus preparation was elicited in rabbits by systemic immunization. A two-step competitive ELISA (9) was employed to deduce, from the slopes of the inhibition curves, the shared antigenicity between the two pilus proteins.

Receptor Binding Assays

A. Hemagglutination (HA) was performed with blood group P₁ human and guinea pig erythrocytes by slide agglutination: Whole bacteria (2 × 10⁵ to 2 × 10⁶ CFU/ml) or purified pili (0.1-1.0 mg/ml) were mixed with an equal volume of a 3% (vol/vol) erythrocyte suspension in phosphate-buffered saline, pH 7.2 (PBS).

B. Hapten inhibition of hemagglutination (HAI) by carbohydrate receptor analogues was performed in PBS by mixing 2% (wt/vol) α methyl mannoside (α MM) (Sigma Chemical Co., St. Louis, MO) or 4% (wt/vol) synthetic D-Gal p α l → 4 D-Gal pβ OR (Syn Gal-Gal) with whole bacteria or isolated pili. The chemical synthesis of the disaccharides D-Gal p α l → 4 D-Gal pβ OR and D-Man p α l → 2 D-Man p α OR (Syn Man-Man), vide infra, as their 8-methoxycarbonyloctyl-glycosides (R = -(CH₂)₈ COOCH₃) was performed according to the method of Lemieux (10) by Chembiomed Ltd., (Edmonton, Alberta T6G 2G2, Canada). After preincubation for 1 h at 25°C, an equal volume of a 3% (vol/vol) erythrocyte suspension was added and the reactants were gently mixed.

C. Latex agglutination (LCA) was employed to define pilus receptor specificity. Syn Gal-Gal or Syn Man-Man was adsorbed to latex beads (Chembiomed Ltd.). Lactose-adsorbed latex was used as an agglutination-negative control. Equal volumes of whole bacteria or isolated pili were mixed with a 1% (vol/vol) latex suspension in PBS. All HA, HAI, and LCA assays were read after 5 min.

Results

Pilus Protein Structure. Pili purified from strain J96 were depolymerized according to the method of McMichael and Ou (6) and three proteins of M, 19 kdaltons, 17.5 kdaltons, and 17 kdaltons were noted by SDS-PAGE. When the pili were prepared according to the method of Laemmli (5) without acid depolymerization, only the 17.5-kdalton protein was detected. HU849 Gal-Gal pili migrated with the 17.5-kdalton protein; SH48 MS pili only entered the gel after acid depolymerization and migrated with the 19- and 17-kdalton proteins.

The amino acid compositions of the pili from the recombinant strains were similar (Table I). Two cysteine residues per subunit were detected for both pilus
TABLE I
Amino Acid Composition of Mannose-Sensitive (SH48) and Gal-Gal
Binding (HU849) Pili of the Pyelonephritic E. coli Strain J96

Amino acid	Integral number: residues per subunit*	
	SH48 (MS)	HU849 (Gal-Gal)
Ala	35	17
Val	14	17
Leu	14	9
Ile	5	6
Pro	2	5
Phe	8	7
Trp	ND	ND
Met*	ND	1
Asx	18	19
Gla	16	13
Lys	4	10
Arg	2	ND
His	2	2
Gly	21	21
Ser	9	11
Thr	20	12
½ Cys*	2	2
Tyr	2	2

* Based on a mol wt of 18 kdaltons (SH48 pili) or 17.5 kdaltons (HU849 pili)
estimated by SDS-PAGE.
* ND, No amino acid was detected.
* Cysteine was analyzed as cysteic acid and methionine as methionine sulfone.

Preparations and these form an intra-chain disulfide bond since no sulfhydryl
group was detected by amino acid analysis after alkylation of unreduced pili (11).
The presence of a disulfide loop has been detected in other E. coli pili (9) and
may be a conserved feature of the tertiary structure of these proteins. The amino
acid compositions reported here and elsewhere (9) indicate the presence of one
methionine residue per Gal-Gal pilus subunit. In contrast, MS pili lack this
residue (7, 12) and cannot be intrinsically labeled with [35S]methionine (Paul
Orndorff, personal communication).

The amino-terminal amino acid sequences of the pili from the recombinant
strains were determined through residue 46 (Table II). When the cysteine
residues are aligned, 13 of the first 46 positions (27%) were homologous. The amino
acid sequences of SH48 MS pili (Table II) and E. coli BAM (9) are identical
through residue 26. In contrast, only 32% of the first 26 residues of HU849 pili
and Gal-Gal pili from the uropathic E. coli strains 3669 and 3048 (9), are
homologous. Proline exists within the first 21 residues (Table II) of the three
Gal-Gal pili for which N-terminal amino acid sequences are available (9) and may
have significance for secondary structure by helix termination or reverse-turn
nucleation.

Serologic Properties of Pili. <5% shared antigenicity was detected between the
two pilus proteins (Fig. 1); therefore, the homologous regions that exist within
the N-terminal 46 residues do not specify an immunodominant antigenic deter-
minant.

Binding Properties of Whole Bacteria and Isolated Pili. E. coli strain J96 agglutinated
human and guinea pig erythrocytes and latex particles adsorbed with Syn
Man-Man and Syn Gal-Gal. Hapten inhibition of J96 hemagglutination by αMM
and Syn Gal-Gal was demonstrated (Table III). SH48 agglutinated only guinea
TABLE II

Amino Terminal Amino Acid Sequence

Recombinant strain	Receptor specificity	Residue no. 1	2	3	4	5	6
HU849	Gal-Gal* Mannose	5	6	7	8	9	10
			11	12	13	14	15
			16	17	18	19	
SH48		20	21	22	23	24	25
		26	27	28	29	30	31
			32	33	34	35	
			36	37	38	39	40
			41	42	43	44	
			45	46			
HU849	Pro	Ala	Pro	Thr	Ile	Pro	Gln
	Gly	Ala	Thr	Ala	Thr	Thr	Val
	Gln	Gly	Gly	Lys	Val	Thr	Phe
				Phe	Pro	Gly	Thr
				Val	Val	Val	Asp
SH48	Ala	Ala	Ala	Val	Asp	Ala	Gln
	Cys	Val	Gly	(Thr)	Val	Asp	Gln
	Ser	Ser	Ser	Gln	Ser	Ala	Asp
		Ser	Gln	Ser	Leu	Ser	Lys
		Ser		Ser	Phe	Leu	Glu
		Phe	Val	Leu	Ala	Gly	
		Gly	Gln	Val	Arg	Thr	Thr
		Gly	Gln	Val	Ala	Thr	
			Gln	Ala	Gly		

* Gal-Gal: D-Gal p 1 → 4D-Gal p β1.

* Underlined residues are conserved.

* Residue identified by reverse-phase high-pressure liquid chromatography of Pth derivative, only.

FIGURE 1. The antigenic relatedness of Gal-Gal pilis from recombinant strain HU849 and MS pili from recombinant strain SH48 by a two-step competitive ELISA (15). (A) Inhibition of the binding of Gal-Gal pilis antibody to microtiter wells coated with Gal-Gal pili by increasing concentrations of soluble Gal-Gal pili (O) or MS pili (△). (B) Inhibition of the binding of MS pilis antibody to microtiter wells coated with MS pili by increasing concentrations of soluble MS pili (△) or Gal-Gal pili (O).

Pili (ng)

pig erythrocytes and latex particles adsorbed with Syn Man-Man. HU849 agglutinated only human erythrocytes and latex particles adsorbed with Syn Gal-Gal. The purified pilis exhibited the binding specificities of the recombinant strain from which they were prepared (Table III). Thus, the binding properties of the parent strain and both recombinants are conferred by two pilus proteins that are genetically, chemically, antigenically, and functionally distinct.
TABLE III
Agglutinating Properties of E. coli Strains and Isolated Pili

Bacteria	Human Erythrocyte species:	Guinea pig Erythrocyte species:	Disaccharide adsorbed latex beads:		
	HA/HAI^*	Syn Gal-Gal	Syn Man-Man	Lactose	
J96	+/Syn Gal-Gal	+/- aMM	+	+	-
HU849	+/Syn Gal-Gal	+/- aMM	+	-	-
SH48	+/-	+/-	-	+	-
P678-54	+/-	+/-	-	-	-
Pilus protein					
HU849	+/Syn Gal-Gal	+/-	+	-	-
SH48	+/-	+/aMM	-	+	-

* Hemagglutination of human or guinea pig erythrocytes: + positive; - negative. Minimal hemagglutinating concentrations of bacteria for human and guinea pig erythrocytes were 5×10^4 CFU/ml and 2.5×10^5 CFU/ml, respectively. The minimal hemagglutinating concentration of pilus protein for human and guinea pig erythrocytes was 250 µg/ml.

^ Hapten inhibition of hemagglutination by Syn Gal-Gal (4% wt/vol) or aMM (α methyl mannoside) (2% wt/vol).

^ Agglutination of latex beads adsorbed with Syn Gal-Gal or Syn Man-Man or Lactose: + positive; - negative.

Discussion

Chromosomal genes that encode MS or Gal-Gal pili have been cloned from an uropathic E. coli strain and the recombinants used in a murine urinary tract infection model (13, 14). The Gal-Gal piliated recombinant strain attached to exfoliated uroepithelial cells in vitro (15) and colonized renal tissue in vivo (13, 14). A vaccine composed of pure Gal-Gal pili blocked renal colonization and invasion by the parent strain (14). In contrast, the MS recombinant bound Tamm-Horsfall uromucoid, but did not colonize the renal epithelium (14). Furthermore, a MS pilus vaccine conferred no protection. Pili were purified from these recombinants and their chemical, functional, and serologic properties determined.

The N-terminal amino acid sequences of MS and Gal-Gal pili exhibit considerable homology and are highly homologous with the published N-terminal sequences for five MS and five MR pili from other uropathic E. coli (9, 16). Two common structural features characterize these sequences. All exhibit the pattern -Gly-X₁-Val-X₂-Phe-X₃-Gly-X₄-Val-Asx-Ala-X₅-Cys-, where the intervening residues (X) tend to be charged or polar uncharged; and all appear to possess two cysteine residues in disulfide linkage. C-terminal homology between MS and MR pili also exists. The HU849 Gal-Gal pilus C-terminal amino acid sequence was determined by automated Edman degradation of a tryptic fragment (O’Hanley, unpublished observation) and aligned for maximal homology with the published C-terminal sequence of Type IB and IC pili (16, 17). The Gal-Gal and MS sequences are -Phe-Asn-Leu-Thr-Tyr-Gln-COOH and -Thr-Phe-Asn-Val-Tyr-Gln-COOH, respectively. These structural features suggest that pili arose from a common ancestral gene and that the conserved regions are functionally or physically critical. In contrast, plasmid-encoded pili from enteropathic E. coli exhibit no apparent homology with MS or Gal-Gal pili (17) and may therefore be evolutionarily unrelated.

The functional differences between MS and Gal-Gal pili suggest that relatively little homology exists in portions of these molecules that encompass the receptor
binding domain. Distinct receptor specificities may confer a selective advantage in ecologic niches characterized by different host molecules in mucus or on cell surfaces. The discovery of chromosomally determined MR pili of "X" specificity (3) indicates that the binding repertoire of pili may be extensive.

The antigenic differences between MS and Gal-Gal pili (Fig. 1) indicate that homologous regions of the sequence are immuno-recessive. Unconserved regions must, therefore, determine the serologic diversity of these pili. This may be a concomitant of their separate carbohydrate binding specificities if their antigenic and receptor binding domains are co-extensive. However, the carbohydrate binding domains and the antigenic determinants of lectin like proteins appear to be structurally dissimilar. The carbohydrate combining site usually consists of an hydrophobic cleft in the protein's surface; whereas, antigenic determinants are frequently specified by the region of greatest average hydrophilicity. Serologic diversity may have resulted from selective pressure imposed by the host immune system. Therefore, the immunodominant antigenic determinant and the receptor binding domain of E. coli pili may be chemically and evolutionarily distinct.

Summary

Chromosomal genes encoding the MS and Gal-Gal binding properties have been cloned into separate recombinants and their respective pili characterized. Hapten inhibition of hemagglutination with synthetic carbohydrate receptor analogues and carbohydrate-adsorbed latex agglutination studies indicate that Gal-Gal and MS pili collectively exhibit the binding properties of the parent strain. MS pili migrated in SDS-PAGE with an Mr of 19 kdaltons and 17 kdaltons; the Mr of Gal-Gal pili was 17.5 kdaltons. The pili are chemically similar by amino acid composition and when the N-terminal cysteines are aligned, 8 of the 13 residues between positions 9 and 22 are homologous. Further, carboxy-terminal sequence homology was inferred from the carboxypeptidase digestion of a MS pili and the sequence of a carboxy-terminal tryptic peptide from Gal-Gal pili.

Received for publication 11 July 1983 and in revised form 6 September 1983.

References
1. Leffler, H., and C. Svanborg-Eden. 1980. Chemical identification of a glycosphin-golipid receptor for Escherichia coli attaching to human urinary tract epithelial cells and agglutinating erythrocytes. FEMS [Fed. Eur. Microbiol. Soc.] Microbiol. Lett. 8:127.
2. Kallenius, G., R. Mollby, S. B. Svenson, J. Winberg, A. Lundblad, S. Svenson, and B. Cedergren. 1980. The p antigen as receptor for the hemagglutination of pyelonephritogenic Escherichia coli. FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Lett. 7:297.
3. Vaisanen, V., J. Elo, L. G. Tallgren, A. Siitonen, P. H. Makela, C. Svanborg-Eden, G. Kallenius, S. B. Svenson, H. Hultberg, and T. L. Korhonen. 1981. Mannose resistant hemagglutination and P antigen recognition characteristic of E. coli causing primary pyelonephritis. Lancet. ii:1366.
4. Hull, R. A., R. E. Gill, P. Hsu, B. H. Minshew, and S. Falkow. 1981. Construction and expression of recombinant plasmids encoding Type 1 or D-mannose-resistant pili from a urinary tract infection Escherichia coli isolate. Infect. Immun. 33:933.
5. Brinton, C. C. 1965. The structure, function, synthesis and genetic control of bacterial pilus. Trans. NY Acad. Sci. 27:1003.
6. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. *Nature (Lond.)* 227:680.
7. McMichael, J. C., and J. T. Ou. 1979. Structure of common pili from *Escherichia coli*. *J. Bacteriol.* 138:969.
8. Simpson, R. J., R. Neuberger, and T. Y. Liu. 1976. Complete amino acid analysis of proteins from a single hydrolysate. *J. Biol. Chem.* 251:1936.
9. Svanborg Eden, C., E. C. Gotschlich, T. K. Korhonen, H. Leffler, and G. K. Schoolnik. 1983. Aspects on structure and function of pili on uropathogenic *Escherichia coli*. *Prog. Allergy.* 33:189.
10. Lemieux, R. U. 1978. Human blood groups and carbohydrate chemistry. *Chem. Rev.* 7:423.
11. Oliveira, E. B., E. C. Gotschlich, and T. Y. Liu. 1979. Primary structure of human C-reactive protein. *J. Biol Chem.* 254:489.
12. Salit, I. E., and E. C. Gotschlich. 1977. Hemagglutination by purified type 1 *Escherichia coli* pili. *J. Exp. Med.* 146:1169.
13. Haberg, L., I. Engberg, R. Freter, J. Lam, S. Olling, and C. Svanborg-Eden. 1983. Ascending, unobstructed urinary tract infection in mice caused by pyelonephritogenic *Escherichia coli* of human origin. *Infect. Immun.* 40:273.
14. O'Hanley, P. D., D. Lark, S. Falkow, and G. K. Schoolnik. 1983. A globoside binding *E. coli* pilus vaccine prevents pyelonephritis. *Clin. Res.* 31:372A.
15. Svanborg-Eden, C., R. Freter, L. Hagberg, R. Hull, S. Hull, H. Leffler, H. Lomberg, and G. Schoolnik. 1982. Adherence to uroepithelia in vitro and in vivo. *Microbiology (Wash. DC)*. 286–291.
16. Klemm, P., I. Orskov, and F. Orskov. 1982. F7 and type 1-like fimbriae from three *Escherichia coli* strains isolated from urinary tract infections: protein, chemical and immunological aspects. *Infect. Immun.* 36:462.
17. Klemm, P., and L. Mikkelsen. 1982. Prediction of antigenic determinants and secondary structures of the K88 and CFA1 fimbrial proteins from enteropathogenic *Escherichia coli*. *Infect. Immun.* 38:41.