Evaluation of Different Protein Blends on Growth Performance, Nutrient Utilization and Carcass Composition of Nile Tilapia (*Oreochromis niloticus*) Fingerlings

Bunmi Ronke Edem \(^a\) and Eunice Oluwayemisi Adeparusi \(^b\#\)

\(^a\) Department of Fisheries Technology, Federal College of Agriculture, Akure, Nigeria.
\(^b\) Department of Fisheries and Aquaculture Technology, Federal University of Technology, Akure, Nigeria.

Authors’ contributions

This work was carried out in collaboration between both authors. Both authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AJFAR/2022/v19i430482

Open Peer Review History: This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/91136

Received 23 June 2022
Accepted 27 August 2022
Published 06 September 2022

ABSTRACT

The effects of different protein blends (gliricidia/moringa leaf meals, soybean meal and defatted palm weevil larvae) on Nile tilapia (*Oreochromis niloticus*) fingerlings were studied for a 10-week feeding period. Six diets with 30 percent crude protein content were formulated, the protein sources were included in equal ratios. Diets were designated as fishmeal/soybean (FMS), palm weevil/soybean (PWS), palm weevil/moringa (PWM), palm weevil/gliricidia (PWG), palm weevil/soybean/moringa (PSM) and palm weevil/soybean/gliricidia (PSG). Trials were carried out in triplicates with each having ten (10) fish in a total of 18 tanks. Fish fed diet PSG had the highest mean weight gain of 4.35±0.08 and protein efficiency ratio (PER) of 1.14±0.02. These values were significantly different (P<0.05) from those recorded for fish on other diets. Fish fed diet PSG gave the lowest food conversion ratio (FCR) of 1.10±0.02, with those on diet PWG recording the least. Fish fed diets containing soybean meal (PSM and PSG) gave better performances than those without it. The carcass protein, ash and fat contents differed significantly (P<0.05). This results showed that *Oreochromis niloticus* fingerlings fed a mix of protein blends could give good performance in terms of growth, nutrient utilization and carcass constituents.
Keywords: Growth performance; nutrient utilization; Oreochromis niloticus; defatted palm weevil larvae.

1. INTRODUCTION

The output of fish has increased dramatically over the past few decades, with 179 million tonnes produced worldwide in 2018 through capture fisheries and aquaculture, of which 22 million tonnes were used to produce fishmeal and oil [1]. Fishmeal has been employed in the formulation of intensive fish feed due to its nutritional balance and high nutritional value for humans and other livestock [2]. The use of it for purposes other than feeding is limited by its economic worth, competition with human resources and environmental sustainability [3, 4]. Novel and unconventional protein sources that are cheap, readily available, insect meals and other plant proteins have been identified as possible substitutes for fishmeal that are currently thought to have little competition [5, 6].

Due to their sustainability, availability and affordability, plant protein sources have been incorporated into the formulation of intensive fish feeds. Aquatic plants such as azolla, water hyacinth, duckweeds, water lettuce, bur-reed, and water fern as well as alfalfa, mulberry, sweet potato, cassava, cucumber, squash, broad bean, papaya, moringa, leucaena, cocoyam, ipil-ipil, banana, and akee leaves have all been utilized in the fish feed industry [7]. Moringa leaves have been successfully used without compromising the performance of (Oreochromis niloticus, Linnaeus, 1758), (Cyprinus carpio, Linnaeus, 1758) and (Clarias gariepinus, Burchell, 1822) [8, 9]. Various studies have also reported that optimum inclusion level of 10-20% moringa leaves can be used in fish feed formulation [6]. Gliricidia leaves have shown growth enhancement in Clarias gariepinus [10]. The findings of Adeparusi [11] showed that the dietary supplementation of Bambara nut with leucaena and gliricidia leaf meal concentrates in the diet of Oreochromis niloticus improved fish performance and [12] also demonstrated that the inclusion of Gliricidia Maculata leaf meal in (Cirrhinus mrigala, Hamilton, 1822) improved feed efficiency and growth.

In recent years, the availability, environmental protection and cost reduction ability of insect meals have made researchers to recognize them as potential substitutes for fishmeal in aquaculture feed manufacturing [5, 13]. Insects are excellent sources of protein (45%-75%), have a balanced essential amino acid profile [5], appropriate levels of minerals [14] and are sustainable resources for nutrition. According to scientific findings, insect meals can serve as a viable alternative to fish meal, fish oil, and other traditional protein sources [8, 15, 16, 17], since interesting results have been obtained from the use of them as fishmeal substitutes in the diets of some fish species [3, 4].

Rhynchophorus phoenicis (palm weevil) is a species of palm weevil and a member of the Curculionidae family. It is an important pest of sugarcane (Saccharum officinarum), palm oil (Elaeis guineensis), coconut palms (Cocos nucifera) and date palms (Phoenix dactylifera) [18]. It contains about 25-66% crude protein and is a source of important amino acids [19, 18]. The palm weevil's nutritional value makes it an ideal fish feed supplement/replacement for fishmeal [19]. Researches have shown that palm weevil larvae meal contains amino acid content such as leucine, phenylalanine-tyrosine, trptophan etc. [20, 21]. Values of 4.51 and 3.15 have been recorded for lysine and methionine-cysteine respectively [21], these values are comparable to FAO/WHO reference standard [22]. Palm weevil larvae meal supports the healthy growth of the Clarias gariepinus [15], Heterobranchus longifilis and Clarias gariepinus, whether supplemented or consumed as a complete diet [23]. It has been demonstrated that palm weevil larvae meal can replace fishmeal up to 100% in the diet of African catfish without raising the feed conversion ratio (FCR) or reducing weight gain [15].

In our search, no previous studies have been done on Oreochromis niloticus using the blends of defatted palm weevil meal with gliricidia or moringa leaf meals as these feed ingredients are easily sourced and economical. Therefore, in order to increase fish production and solve the issue of the relatively expensive fish meal, this research was done to evaluate the growth performance, nutrient utilization and carcass composition of Nile Tilapia fed different blends of defatted palm weevil larvae and/or gliricidia/moringa leaf meals. Thereby affording small-scale farmers the ability to raise fish (tilapia) at low cost without compromising quality.
2. MATERIALS AND METHODS

2.1 Experimental Location

The experiment was carried out at the Department of Fisheries Technology, Teaching and Research Farm, Federal College of Agriculture, Akure, Ondo State, Nigeria.

2.2 Diet Preparation and Formulation

Table 1 shows the proximate composition of defatted palm weevil larvae meal (Rhynchophorus phoenicis), moringa (Moringa oleifera), gliricidia (Gliricidia sepium), with crude protein contents of 65.7%, 25.15% and 22.3% respectively.

Compositions	Gliricidia	Moringa	Palm weevil
Moisture	9.51	8.51	9.72
Crude protein	22.3	25.15	65.7
Ash	8.24	11.65	12.67
Lipid	1.41	2.91	3.9
Fibre	14.46	14.95	1.55

2.2.1 Preparation of palm weevil larva (Rhynchophorus phoenicis) and leaf meals

Live African palm weevil (Rhynchophorus phoenicis) larvae were procured from a local market at Ilaje, Ondo State, Nigeria. The insect larvae were washed, blanched and oven dried at 80°C for 24 hours [24]. The larvae were defatted by n-hexane soxhlet extraction, oven dried, and hammer milled into a fine powder (Lab Mill, screen size 0.2 mm). Proximate analysis of the defatted sample was done as described by [25]. Moringa oleifera and Gliricidia sepium leaves were obtained within the study area. The leaves were washed, strained and spread on plastic sheets to dry under shade for a week. The dried leaves were threshed from stalks and ground into fine powder by the use of a hammer mill (Lab Mill, screen size 0.2 mm) and the powder was stored in plastic bags prior to use.

2.2.2 Diet formulation

A 30% iso-nitrogenous diet was formulated using the trial and error method. Ingredients as oil, binder, vitamin and mineral premix (fixed ingredients) was kept constant for all the diets and maize was used as a filler to balance up the quantity of each diet to 100%. Blends of fishmeal/soybean (FMS) and defatted palm weevil/soybean (PWS) served as controls for the six iso-nitrogenous diets. The six diets comprised of fishmeal with soybean meal (FMS control), defatted palm weevil meal with soybean meal (PWS control), palm weevil with moringa (PWM), palm weevil with gliricidia (PWG), palm weevil meal with soybean and moringa (PSM), and palm weevil with Soybean and gliricidia (PSG). The feed composition included ingredients that were thoroughly combined with corn starch as a binder and extruded through a

Compositions	FMS	PWS	PWM	PWG	PSM	PSG	
Fishmeal	23.25	-	-	-	-	-	
Soybean meal	23.25	23	-	-	-	19.5	20.3
Palm weevil meal	-	23	29.5	30.6	19.5	20.3	
Moringa	-	-	29.5	30.6	19.5	-	
Gliricidia	-	-	-	-	-	20.3	
Maize	43.5	44	31	28.8	32.5	29.1	
Vit/Min premix	2	2	2	2	2	2	
Bone Meal	2	2	2	2	2	2	
Oil	4	4	4	4	4	4	
Corn Starch	2	2	2	2	2	2	
Total	100	100	100	100	100	100	

Vitamin premix: An animal care "optimix Aqua product for tilapia, containing the following per 5kg of premix: A=20 000 000 I U, D3= 2 000 000 I U, E= 200 000mg, K3= 10 000mg, B2= 12 000mg, B12= 9mg, Bl= 6 000mg, B6= 11 000mg, C= 50 000mg, Folic acid= 2 000mg, Niacin= 80 000mg, Calpan= 25 000mg, Biotin= 100mg x Zinc= 30 000mg, Manganese= 50 000mg, Iodine= 1000mg, Selenium= 100mg, Antioxidant= 125 000mg. Fishmeal and soybean meal (FMS), palm weevil meal with soybean meal (PWS), palm weevil with moringa (PWM), palm weevil with gliricidia (PWG), palm weevil meal with soybean and moringa (PSM), palm weevil with Soybean and gliricidia (PSG)
2-mm die (Moulinex-HV8) mincer. The pellets were then sealed in plastic bags after being sun-dried on elevated platforms.

2.2.3 Feeding trial

For this investigation, 180 Nile Tilapia (*Oreochromis niloticus*) fingerlings with an average weight of (29.15±1.5g) were obtained from the farm of the Federal College of Agriculture. Fish were acclimated to experimental conditions for 2 weeks and placed on commercial diet. Ten fish were randomly weighed into eighteen (18) plastic tanks with dimension (60 cm x 30 cm), which consisted of six treatments in triplicates. Fish were fed twice daily at 5% of their body weight between 8:00 and 9:00 and 16:00 and 17:00 for 70 days. Water renewal was done twice a week, while fish were weighed and counted fortnightly. For the 70-day period, feed intake was adjusted biweekly depending on weight gain and daily mortality checks. Selected water parameters (temperature, pH, dissolved oxygen concentration) were monitored daily to maintain optimal water quality conditions using a Yieryi Multi-parameter digital water quality tester.

Growth Parameters were assessed using the following formulas.

Mean Weight Gain (MWG)

\[MWG = WF - WI \]

Where, \(WF = \) Final weight

\(WI = \) Initial weight

Specific Growth Rate (SGR)

\[SGR = \frac{\ln(\text{final weight}) - \ln(\text{initial weight})}{\text{culture period}} \times 100 \]

Feed Conversion Ratio (FCR)

\[FCR = \frac{\text{Total Feed Intake}}{\text{Total Weight}} \]

Feed Efficiency Ratio (FER)

\[FER = \frac{\text{Weight gained}}{\text{protein fed}} \]

Protein Efficiency Ratio (PER)

\[PER = \frac{\text{Mean Weight Gain}}{\text{Mean Pi}} \]

Survival rate

\[= \frac{\text{Number of fish stoked} - \text{mortality}}{\text{Initial number of fish}} \times 100 \]

2.2.4 Sample analysis

Experimental fish carcass and feed samples were analyzed for proximate composition using the methods described by [22]. Data obtained were expressed as mean ± standard error (S.E) and subjected to a one-way ANOVA design in triplicates (SPSS 22) at statistical significance level of 95%. The variance was separated using Duncan’s multiple range test.

3. RESULTS

Fig. 1 shows the water quality parameters, the temperature ranged between 25.89°C to 26.50°C, the pH ranged between 7.07-7.20 and the dissolved oxygen ranged from 5.08 to 5.25 mg/L, there were no significant difference in the various parameters.

![Bar chart showing water quality parameters](image-url)

Fig. 1. Water quality parameters
3.1 Proximate Composition of the Experimental Diets

The result of the proximate composition of the experimental diets is presented in Fig. 2. The highest moisture content value was recorded in diet PWM and lowest in diet containing PWS respectively. The Crude protein ranged between 29.73-31.31 in diets PSM and PWM respectively. Fish fed diet PSM got the highest lipid content value of 11.78 and the lowest value of 8.91 was recorded in those fed diet PWG. There were no appreciable variations (P>0.05) across the dietary regimens.

3.2 Growth Performance and Nutrient Utilization

Table 3 below shows the growth performance and nutrient utilization of Oreochromis niloticus fed experimental diets. Fish fed diet PSG had the highest weight gain of 43.57g, this was significantly different (P< 0.05) compared to the other experimental fish. Fish fed diet PWS exhibited a lower weight gain (32.77g) than those on other experimental diets. Fish fed the PSG diet had the lowest feed conversion (FCR) and the highest SGR value (1.31±0.07), which were statistically different (P< 0.05) from fish fed other experimental diets. The PER ranged from 0.92±0.07 to 1.14±0.02, there was no significant difference (P>0.05) in the PER of fish in all the experimental units, except in fish fed diet PSG. The FER value ranged from 0.76±0.06 to 0.91±0.03 and were not significantly different (P>0.05) from each other.

There were no fish mortalities during the trial as survival rate was 100% among all experimental units.

4. DISCUSSION

Results from this study showed that the various experimental diets increased fish weight gain (WG), with fish fed diet PSG recording the best weight gain (WG) among the various experimental fish. Similarly, fish on the PSG diet also showed the best nutrient utilization in terms of feed conversion ratio, feed efficiency ratio and protein efficiency ratio. There were appreciable differences in the growth performance of fish fed diet PSG compared to those on other diets. The documented variances recorded in growth performance could have resulted from variations in the protein blends used in the diets. Fish fed the PWS diet gave the least performance in terms of growth performance. However, this did not significantly differ from the other experimental fish, except those fed diet PSG. This could be adduced to the feed composition and/or palatability. This agrees with the report of [24], who stated that adding Black Soldier fly meal and soybean to a Nile Tilapia diet stunted growth as the inclusion level rose, but disputes the report of [25], who reported that the blend of defatted palm weevil and soybean increased fish performance.
Table 3. Growth performance and nutrient utilization of *Oreochromis niloticus* fed experimental diets for 70 days (Mean ± SE)

Treatments	FMS	PWS	PWM	PWG	PSM	PSG
Initial Weight	30.23± 2.04a	28.50±1.47a	28.30±1.34a	30.93±1.07a	27.93±1.13a	28.93±1.97a
Final Weight	65.70±1.7abc	61.27±1.6a	63.73±1.93ab	66.67±1.40abc	65.03±1.01abc	72.50±1.55c
Weight Gain	35.47±1.62ab	32.77±2.57a	35.43±1.26ab	35.73±0.38ab	37.10±0.51ab	43.57±0.84c
MWG	3.55± 0.16ab	3.28±0.26a	3.54±0.13ab	3.57± 0.04ab	3.71± 0.05ab	4.35± 0.08c
SGR	1.11± 0.08a	1.10± 0.10a	1.16± 0.04ab	1.10± 0.02a	1.21± 0.04ab	1.31± 0.07b
FCR	1.21±0.05bc	1.25±0.09bc	1.15±0.04ab	1.20±0.01b	1.13±0.02a	1.10±0.02a
FER	0.83±0.04ab	0.80±0.06a	0.87±0.03ab	0.84±0.01ab	0.89±0.03ab	0.91±0.03c
PER	0.99±0.04ab	0.96±0.06ab	1.04±0.07a	1.00±0.05ab	1.07±0.03ab	1.14±0.02bc
Feed intake	79.5±0.13ab	76.6±0.12a	73.3±0.03a	73.3±0.01a	73.5±0.06a	79.8±0.01ab

MWG– Mean Weight Gain, SGR– Specific Growth Rate, FCR– Feed Conversion Ratio, FER– Feed Efficiency Ratio, PER– Protein Efficiency Ratio. Different letters within a row indicate significant differences (P< 0.05). Fishmeal and soybean meal (FMS), palm weevil meal with soybean meal (PWS), palm weevil with moringa (PWM), palm weevil with gliricidia (PWG), palm weevil meal with soybean and moringa (PSM), palm weevil with Soybean and gliricidia (PSG)
The utilization of protein blends may be constrained due to the presence of anti-nutrients and variations in feed consumption which have been shown to reduce fish weight gain [26]. However, the processing methods employed in this study (defatting, drying and sieving) could have reduced some of the anti-nutrients present in the diets, thereby enhancing feed utilization.

Our findings also imply that a diet in which defatted palm weevil completely replaced fishmeal produced superior results to the control diet. Studies have demonstrated that using a variety of protein blends increased fish performance over using a single source of protein. The findings in our study showed that the blends that contained three protein sources gave better performances compared to those that had two. This has been ascribed to the complementary effects of amino acids from the different protein sources [27, 28]. Supporting this pattern, fish fed diets comprising mixtures of PSM and PSG performed better than fish fed diets with just two protein sources. This effect corroborates those of [12], where gliricidia was used to replace FM up to 40% in *Cirrhinus mrigala* without compromising growth [8] also reported that moringa supplementation in *Clarias gariepinus* improved growth. This contrast earlier reports in which fish fed diets supplemented or replaced with fishmeal exhibited reduced growth. The works of [29] revealed that feeding diets containing Black soldier fly larvae to *Lates Calcarifer* inhibited its growth. Nile Tilapia growth was also reduced when fed diet containing *Tenebrio molitor* [14].

The FCR of the experimental diets was low and comparable, showing good utilization of the experimental diets. Fish fed diet PSG recorded the best nutrient utilization while having the lowest FCR (1.10), this is comparable to the works of [23], where *C. gariepinus* fed on palm grub-containing diets showed low FCR. The findings of [30] showed that Turbot given BSF Larvae meal had a high FCR due to the diet's poor palatability, this contradicts those gotten in our study. The protein efficiency ratio (PER) values of fish fed experimental diets were comparable between the experimental fish, indicating that the dietary protein were similar and effectively used by fish. This is in agreement with work by [23], where palm grub meal was fed to *C. gariepinus*. This contrasts the findings of [30], who found that turbot (*Psetta maxima*) fed diets containing defatted BSF larvae had poor feed utilization in comparison to the control.

4.1 Carcass Composition

In line with the findings of Opiyo [31], the initial carcass crude protein (CP) level in this study was lower than the CP levels found at the end of the feeding trial. Fish fed diet PSG had the highest crude protein content (60.80%), while fish fed diet PWG had the lowest crude protein content (50.59%). The percentage crude protein found in this study revealed a significant difference (P<0.05) between fish fed diet PSG and those fed other diets. Fish fed diet PWS (17.95) had the highest ash level, while diet PWM (13.13) had the lowest. Fish fed diet FSG (17.66) had the highest fat content, while fish fed diet FMS had the lowest (12.73). The fish carcass composition varied, which could have been caused by variations in the quality of the feed, the rate at which the muscles deposits it, the amount of nutrients in the diet and the capacity of the fish to convert food into absorbable nutrients [32]. Fish on the experimental diets had greater values for crude protein, crude fat, ash, and NFE than the baseline fish. This suggests that the experimental fish's carcass quality may have been impacted by the dietary treatments. The same patterns have been noted by [33, 12] at the conclusion of the feeding trial and lower in others [34].

The marked reduction in the protein composition of fish fed diet PWS and PWG could be due to the feed composition or imbalance EAA profile. This is in agreement with those reported by [16] when FM was replaced with black soldier fly meal in Rainbow trout, but disagrees with those of [28] where maggot meal was fed to *O. niloticus* fingerlings improving the carcass quality. There was no relationship between the dietary protein content and the carcass fat composition of *O. niloticus* in this study, this is in contrast with those reported by [35] who reported that carcass lipid content correlated with dietary lipid level in tilapia.

5. CONCLUSION

Over the years, the search for alternative protein sources as fishmeal replacement in aquaculture feed has been a subject of extensive research. The use of fishmeal in livestock feed has dwindled fish population in the wild due to overexploitation. Alternative and novel feed ingredients that meets the nutritional requirements of fish are being looked into, that would increase production and invariably reduce...
overdependence on fishmeal, which has been overused to the detriment of wild fish population. The results of this study indicate that the use of alternative protein sources had positive impacts on the growth performance, nutrient utilization and carcass composition of Nile Tilapia (*Oreochromis niloticus*). This indicates that defatted palm weevil larvae which has a crude protein content similar to fishmeal can totally replace the FM without causing any negative effect on the health of the fish especially in combination with soybean and gliricidia meals. The diet that contained the blends of PSG was the most suitable for the successful culture of the Nile tilapia fingerlings. However, further research should be carried out to know the synergy between soybean meal and gliricidia leaf meal and their combined effect on fish. It could be recommended that fish farmers be encouraged to culture palm weevil as feed supplement.

ACKNOWLEDGEMENTS

The authors acknowledge the Department of Fisheries and Aquaculture Technology, Federal University of Technology and Federal College of Agriculture, Akure, Nigeria for the use of their facilities for the study.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. FAO. The State of World Fisheries and Aquaculture 2020. In brief: Sustainability in action. Rome; 2020.
2. Gasco L, Henry M, Piccolo G, Marono S, Gai F et al. *Tenebrio molitor* meal in diets for European sea bass (*Dicentrarchus labrax*) juveniles: Growth performance, whole body composition and in vivo apparent digestibility. Animal Feed Science Technology. 2016;220:34–45.
3. Iaconisi V, Bonelli A, Pupino R, Gai F, Parisi G. Mealworm as dietary protein source for rainbow trout: body and fillet quality traits. Aquaculture. 2018;484:197–204.
4. Magalhães R, Sanchez-Lopez A, Silva LR, Martinez-Llorens S, Oliva-Teles A, Peres H. Black soldier fly (*Hermetia illucens*) prepupae meal as a fishmeal replacement in diets for European seabass (*Dicentrarchus labrax*). Aquaculture. 2017;476:79–85.
5. Nogales-Merida S, Gobbi P, Józefiak D, Mazurkiewicz J, Dudek, K, et al. Insect meals in fish nutrition. Reviews in Aquaculture. 2018;11:1080–1103.
6. David-Oku E, Anani EE, Ntaji OE, Edide RO, Obiajunwa, JI et al. Growth performance and nutritional impacts of *Moringa oleifera* leaf and shrimp meals supplemented diets on *Clarias gariepinus* (African Catfish). International Journal of Fisheries and Aquatic Studies. 2018;6(5): 23-30.
7. Mahraomai D, Raman S, Nautiyal V, Singh K. Use of Potential plant leaves as Ingredient in Fish feed – A review. International Journal of Current Microbiology and Applied Science. 2018; 7(7): 112-125.
8. Billah B, Haque E, Sarkar S, Hussain M, and Dey SK. Growth performance, hematological disorder and bacterial challenge on Nile Tilapia (*Oreochromis Niloticus*) using *Moringa oleifera* plant leaf as feed supplement. Bangladesh Journal of Zoology. 2020;48(1):151-166.
9. Adeshina I, Sani RA, Adewale YA, Tiamiyu LO, Umma SB. Effects of dietary *Moringa oleifera* leaf meal as a replacement for soybean meal on growth, body composition and health status in *Cyprinus carpio* Juveniles. Croatia Journal of Fisheries. 2018;76:174–82.
10. Ogungbesan AM, Akanji AM, Sule SO, Oyetunji TA, Eniolorunda OO. Maxigrain® enzyme supplementation effect on serological indices of African catfish *Clarias gariepinus* fed *Glicidia sepium* Leaf meal. Bangladesh Journal of Animal Science. 2020;49(1):37-44.
11. Adeparusi EO, Agbede JO. Evaluation of leucaena and gliricidia leaf protein concentrate as supplements to bambara groundnut (*Vignas subterranea*) in the diet of *Oreochromis niloticus*. Aquaculture Nutrition. 2005;12(2):335-342.
12. Vhanalakar SA, Muley, DV. Effect of dietary incorporation of *Glicidica maculata* leaf meal on growth and feed utilization of *Cirrhinus mrigala* fingerlings. Global Journal of Science Frontier Research Biological Science. 2014;14(1):47-49.
13. Van Huis A, Oonincx DGAB. The Environmental sustainability of insects as food and feed. A review: Agronomy for Sustainable Development. 2017;37(5).
14. Sánchez-Muros M J, De Haro C, Sanz A, Trenzado CE, Villareces S. Nutritional
evaluation of Tenebrio molitor meal as fishmeal substitute for Tilapia (Oreochromis niloticus) diet. Aquaculture Nutrition. 2015;22(5):943-955.

15. Agbanimu BA, Adeparusi EO. Growth performance and nutrient utilization of African catfish (Clarias gariepinus) juveniles fed varying inclusions of defatted African palm weevils (Rhynchophorus phoenicis) meal. Aquaculture Studies. 2020;20(2):73-79.

16. Dumas A, Raggi T, Barkhouse J, Lewis E, Weltzen E. The oil fraction and partially defatted meal of black soldier fly larvae (Hermetia illucens) affects differently growth performance, feed efficiency, nutrient deposition, blood glucose and lipid digestibility of rainbow trout (Oncorhynchus mykiss). Aquaculture. 2018;492:24–34.

17. Henry M, Gasco L, Piccolo G, Fountoulaki E. Review on the use of insects in the diet of farmed fish: Past and future. Animal Feed Science and Technology. 2015;203:1–22.

18. Alamu OT, Amoo AO, Nwokedi CI, Oke O A Lawa I O. Diversity and nutritional status of edible insects in Nigeria. International Journal of Biodiversity and Conservation. 2013;5:215-222.

19. Okoli IC, Olodi WB, Ogbeuwewu IP, Aladi NO, Okoli CG. Nutrient composition of African palm grub (Rhynchophorus phoenicis) larvae harvested from raphia palm trunk in the Niger-Delta Swamps of Nigeria. Asian Journal of Biological Sciences. 2019;284-290.

20. Ekpo. Nutrient composition, functional properties and anti-nutrient content of Rhynchophorus Phoenicis F larva. Annals of Biological Research. 2010;1(1):178-190.

21. Ogbuagu MN, Emodi NV. Fatty acids and amino acid composition of the larva of oil palm weevil (Rhynchophorus ferrugineus). Elixir Applied Chemistry. 2014;6:21560-21564.

22. FAO/WHO. Energy and protein requirements, report of a joint FAO/WHO Ad-Hoc Expt. Committee. Serial No. 522. WHO, Geneva, Switzerland; 1973.

23. Fakayode OS, Ugwumba A. Effects of replacement of fishmeal with palm grub (Orctyes rhinoceros) meal on the growth of Clarias gariepinus (Burchell, 1822) and Heterobranchus longifilis (Valenciennes, 1840) Fingerlings. Journal of Fisheries and Aquatic Science. 2013; 8:101-107.

24. Banjo AD, Lawa OA, Songonuga EA. The nutritional value of fifteen species of edible insects in Southwestern Nigeria. African Journal of Biotechnology. 2006;5:298-301.

25. AOAC. Official Methods of Analysis, 18th Ed. Association of Official Analytical Chemists. AOAC International, Gaitherburg. 2011;2590.

26. Burr GS, Wolters WR, Barrows FT, Hardy RW. Replacing fishmeal with blends of alternative proteins on growth performance of rainbow trout (Oncorhynchus mykiss) and early stage juvenile Atlantic Salmon (Salmo salar). Aquaculture. 2012;334-337:110-116.

27. AlegebeeyeWO, ObasaSO, OludeOO, OtubuK, JimohW. Preliminary evaluation of the nutritive value of the variegated grasshopper (Zonocerus variegatus) for African catfish Clarias gariepinus (Burchell. 1822) Fingerlings. Aquaculture Research. 2012;43(3):412–420.

28. Djissou ASM, Adjahouinou DC, Koshio S, Fiogbe ED. Complete replacement of fishmeal by other animal protein sources on growth performance of Clarias gariepinus fingerlings. International Aquaculture Research. 2016;(8):333-341.

29. Katya K, Borsra MZS, Ganesan D, Kuppusamy G, Herriman M, et al. Efficacy of insect larval meal to replace fishmeal in juvenile barramundi, Lates calcarifer reared in freshwater. International Aquaculture Research. 2017;9:303–312.

30. Kroeckel S, Harjes AGE, Roth I, Katz H, Wuerzt S et al. When a turbot catches a fly: evaluation of a pre-pupae meal of the black soldier fly (Hermetia illucens) as fishmeal substitute - growth performance and chitin degradation in juvenile turbot (Psetta maxima). Aquaculture. 2012; 364:345–352.

31. Opiyo MA, Jumbe J, Ngugi CC, Charo-Karissa H. Different levels of probiotics affect growth, survival and body composition of Nile tilapia (Oreochromis niloticus) cultured in low input pond. Scientific African. 2019; 4:e00103.

32. Mugo-Bundi J, Oyoo-Okoth E, Ngugi C C, Manguya-Lusega D, Rasowo J, et al. Utilization of Caridina nilotica (Roux) meal as a protein ingredient in feeds for Nile tilapia (Oreochromis niloticus). Aquaculture Research. 2015;46(2):346–357.
33. Belghit I, Liland NS, Waagbø R, Biancarosa I, Pelusio N, et al. Potential of insect-based diets for Atlantic salmon (Salmo salar). Aquaculture. 2018;491:72–81.

34. Kolawole AA, Ugwumba A. Economic evaluation of different enclosures for musca domestica larval production and their utilization for Clarias gariepinus fingerlings diets. Notulae Scientiae Biologicae. 2018;10(4):466.

35. Ahmad M, Qureshi TA, Singh AB, Susan M, Kamlesh et al. Effect of dietary protein, lipid and carbohydrate contents on growth, feed efficiency and carcass composition of Cyprinus carpio Fingerlings. International Journal of Fisheries and Aquaculture. 2012;4(3):30-40.