Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
A microsimulation model to assess the impact of SARS-CoV-2 on cancer outcomes, healthcare organization and economic burden

P. Van Mol1, A. Franken2, C. Dooms1, J. Yverbuit3, D. Testelmans3, P. Peersezman3, G. Hermans4, J. Wauters4, J. Gunst5, K. Nakayers6, J. Vansteenekiste7, A. Garg8, D. Lambrecht9, E. Wauters3

1Pulmonary Department, University Hospitals Leuven - Campus Gasthuisberg, Leuven, Belgium; 2Department of Human Genetics, VIB – KU Leuven Laboratory of Translational Genetics, Leuven, Belgium; 3General Internal Medicine, University Hospitals Leuven - Campus Gasthuisberg, Leuven, Belgium; 4Intensive Care, University Hospitals Leuven - Campus Gasthuisberg, Leuven, Belgium; 5Department of Cellular and Molecular Medicine, KU Leuven Laboratory of Cell Stress & Immunity, Leuven, Belgium

Background: SARS-CoV-2 pandemic has deeply modified healthcare seeking and services in Europe since February 2020 with delays in treatment delivery and changes in the hospital data, show a 2.25% increase of the 5-year risk of death and that the burden of cancer care is key. Simulations of individual projections from treatment delays and modifications will result in 49 additional 5-year cancer-specific deaths (+2.25% of 5-year deaths), mainly in liver, sarcomas and head and neck cancer pts.

Conclusions: In a resource-constrained context, optimization of the benefit-risk ratio between COVID-19 and cancer care is key. Simulations of individual projections from treatment delays and modifications will result in 49 additional 5-year cancer-specific deaths (+2.25% of 5-year deaths), mainly in liver, sarcomas and head and neck cancer pts.

Legal entity responsible for the study: The authors.

Funding: Has not received any funding.

Disclosure: A. Bardet: Advisory/Consultancy: Roche; M. Faron: Travel/Accommodation/Expenses: Ipsen; Travel/Accommodation/Expenses: Novartis; Travel/Accommodation/Expenses: Pfab; Honoraria: Honoraria (institution), AstraZeneca; Honoraria: Honoraria (institution), Bayer; Honoraria: Honoraria (institution), Bristol-Myers Squibb; Honoraria: Honoraria (institution), Boehringer-Ingehelm; Honoraria: Honoraria (institution), Eli Lilly Oncology; Honoraria: Honoraria (institution), F. Hoffman-La Roche Ltd; Honoraria: Honoraria (institution), Genentech; Honoraria: Honoraria (institution), Ipsen; Honoraria: Honoraria (institution),.AppSettings; Takeda; Research grant/Funding/institution: AstraZeneca; BMS, Merck, Pierre Fabre, F. Hoffmann-La Roche Ltd. J. Bonetonneau: Honoraria (self); Bristol-Myers Squibb; Advisory/Consultancy: Bristol-Myers Squibb; Advisory/Consultancy: MSD; Advisory/Consultancy: PharmAmar (Inst); Advisory/Consultancy: Bristol-Myers Squibb; Advisory/Consultancy: Merck Serono; Travel/Accommodation/Expenses: Bristol-Myers Squibb. All other authors have declared no conflicts of interest.

https://doi.org/10.1016/j.annonc.2020.08.2319

LBA76 Annals of Oncology

Dutch oncology COVID-19 Consortium (DOCC): Outcome of COVID-19 in patients with cancer in a nationwide cohort study

E. de Jode1, D. Dumoulin2, J. Kol3, H. Westeest4, L. Beerpoort5, F. Van den Berkmortel5, P. Mutsaers6, N. van Diemen7, O. Visser8, H.J. Bloembol9, H. van Laarhoven10, L. Hendriks11, J.B.A.G. Haenen12, E.G.E. de Vries13, A-M.C. Dingseman14, A. Van der Veldt5, 1Dutch Oncology COVID-19 Consortium17

1Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, Netherlands; 2Pulmonary Diseases, Erasmus MC Cancer Institute, Rotterdam, Netherlands; 3Internal Medicine, Jeroen Bosch Hospital, ’s-Hertogenbosch, Netherlands; 4Internal Medicine Department, Amphia Ziekenhuis–location Langendijk, Breda, Netherlands; 5Internal Medicine, Elisabeth-Tweesteden Hospital, Tilburg, Netherlands; 6Internal Medicine, Zuyderland Medical Center, Geleen, Netherlands; 7Hematology, Erasmus Medical Center, Rotterdam, Netherlands; 8Hematology, Isala Hospital, Zwolle, Netherlands; 9Medical Oncology Department, Radboud University Medical Center, Nijmegen, Netherlands; 10Medical Oncology, Cancer Center Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands; 11Pulmonary Diseases Grow, Maastro University Medical Center (MUMC), Maastricht, Netherlands; 12Medical Oncology Dept., Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital (NKI-AVL), Amsterdam, Netherlands; 13Medical Oncology Department, UMCG - University Medical Center Groningen, Groningen, Netherlands; 14Department of Pulmonary Diseases, Erasmus MC Cancer Institute, Rotterdam, Netherlands; 15Department of Medical Oncology and Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, Netherlands; 16On behalf of DOCC Investigators, Erasmus MC Cancer Institute, Rotterdam, Netherlands

Background: The coronavirus disease 2019 (COVID-19) pandemic is having significant impact on oncological care (Jodee et al, Eur J Cancer 2020;136:132-139) and patients with cancer might have an increased risk for severe outcome of COVID-19. In order to identify risk factors associated with a worse outcome of COVID-19, a nationwide registry was developed for patients with cancer and COVID-19.

Methods: This ongoing multicentre nationwide observational cohort study was designed as a quality of care registry and is executed by the Dutch Oncology COVID-19 Consortium (DOCC), a collaboration of oncology physicians in the Netherlands. A questionnaire was developed to collect pseudonymised patient data on patients’ characteristics, cancer diagnosis, cancer treatment, and outcome of COVID-19. All patients with COVID-19 and a cancer diagnosis or cancer treatment in the past 5 years were eligible for inclusion.

Results: To date, >600 cancer patients diagnosed with COVID-19 have been registered by 45 Dutch hospitals. Data of 442 registered patients with at least 4 weeks follow-up were cleaned and 351 patients could be included for the first analyses. The main cancer diagnoses were non-small cell lung cancer (13.4%), breast cancer (13.4%), and chronic lymphocytic leukaemia (8.8%). Overall, 114 (32.3%) out of 351 patients with cancer died from COVID-19. In multivariate analyses, age ≥65 years (p < 0.001), male gender (p = 0.035), prior or other malignancy (p = 0.045), and active diagnosis of haematological malignancy (p = 0.040) or lung cancer (p = 0.003) were independent risk factors for a fatal outcome of COVID-19. In a subgroup analysis of patients with active malignancy, the risk for a fatal outcome was mainly determined by tumour type (haematological malignancy or lung cancer) and age (≥65 years).

Conclusions: The findings in this registry indicate that patients with a haematological malignancy or lung cancer have an increased risk of a worse outcome of COVID-19. Further research is ongoing; COVID-19 pandemic these vulnerabilities should avoid exposure to SARS-CoV-2, whereas treatment adjustments and prioritization vaccination, when should be also considered.

Legal entity responsible for the study: Erasmus Medical Center.

Funding: Dutch Cancer Society.

Disclosure: D.W. Dumoulin: Honoraria (self), Speakers fee: MSD; Honoraria (self), Speakers fee: Roche; Honoraria (self), Speakers fee: AstraZeneca; Honoraria (self), Speakers fee: BMS; Honoraria (self), Speakers fee: Novartis; Honoraria (self), Speakers fee: Pfizer; H.M. Westeest: Honoraria (self), Speakers fee: Astellas; Honoraria (self); Roche; Travel/Accommodation/Expenses: Ipsen, L.E.H. Hendriks: Advisory/Consultancy, Mentorship program with key opinion leaders: funded by AstraZeneca; AstraZeneca; Honoraria (institution); Bristol-Myers Squibb; Advisory/Consultancy: Bristol-Myers Squibb; Advisory/Consultancy: MSD; Advisory/Consultancy: PharmAmar (Inst); Advisory/Consultancy: Bristol-Myers Squibb; Advisory/Consultancy: Merck Serono; Travel/Accommodation/Expenses: Bristol-Myers Squibb. All other authors have declared no conflicts of interest.

https://doi.org/10.1016/j.annonc.2020.08.2319

LBA79 Annals of Oncology

Annals of Oncology 2020 Volume 31 Issue S4
Background: There is ongoing controversy regarding the outcome of COVID-19 in cancer patients. This is one of few registries on the impact of COVID-19 in cancer patients in a country severely affected by the pandemic.

Methods: This cohort study is collecting data on symptomatic SARS-CoV-2 infected patients with a cancer diagnosis from 23 Swiss sites, starting March 1, 2020. The main objective of the study is to assess the outcome of COVID-19 infection in patients with solid and hematological malignancies, while the main secondary objective is to define prognostic factors of COVID-19 outcome.

Results: With a cutoff date of July 16, 2020, 357 patients with a diagnosis of cancer and symptomatic COVID-19 were included in this first analysis. The most frequent malignancies were breast in 63 cases (18%), lung in 40 cases (11%), prostate cancer in 24 cases (7%) and melanoma in 16 cases (5%), with 104 (38%) patients having non-curable disease. Anticancer treatment within 3 months prior to the diagnosis of COVID-19 included chemotherapy in 65 patients (18%), targeted therapy in 54 patients (15%), steroids in 39 (11%), checkpoint inhibitors in 22 (6%) or no anticancer treatment in 155 patients (43%). 230 patients (65%) were hospitalized for COVID-19 or were already in hospital; 167 of the hospitalized patients (73%) required oxygen therapy (Singshot, Monocle II) and stratified per condition. Pathogen- or tumor-directed T-cells were defined based on clonal selection (Zhang, Nature, 2018). To identify ICI responsive cells, we calculated a score derived from a validated gene set denoting ICI reactivity (Okamura, J. Autoimmun, 2019).

Results: We identified 3 CD8+ T-cell lineages, with ‘Naive’ T-cells transitioning into ‘Effector Memory’ cells and then branching into either ‘Recently Activated Effector Memory’ (TEMRA) or ‘Resident Memory’ (TRM) cells. In COVID-19, clonal expansion indicating a SARS-CoV-2 antigen-specific T-cell response, was mainly observed in the highly cytolytic TEMRA lineage. In contrast, tumor-specific T-cells were found in the TRM lineage. Of importance, the ICI responsiveness rate was significantly higher in the non-pathogen-directed TEMRA and TRM cells in COVID-19. In cancer, TEMRA cells were shown to be ICI responsive as expected.

Table: LBA81 Demographics and characteristics of study cohort

Description	COVID-19 pneumonia (n = 19)	Non-COVID pneumonia (n = 10)
Age (y)	60 (55.5-69)	69.5 (62.75-75.25)
Men	14 (74)	5 (50)
Women	5 (26)	5 (50)
Time from illness onset to sampling (d)	19 (16-25)	15 [9-19]
SARS-CoV-2 PCR positive	6 (32)*	0 (0)
Other viral PCR positive	4 (21)b	1 (10)c
Bacterial culture positive	3 (16)	2 (20)
PIP PCR positive	0 (0)	4 (40)
Respiratory support	10 (100)	7 (70)
Non-invasive ventilation	0 (0)	1 (10)
Invasive ventilation	15 (79)	2 (20)
Extracorporeal membrane oxygenisation	4 (21)	0 (0)
Antiviral therapy (<7d)	13 (68)d	0 (0)
Antibiotics (<7d)	19 (100)	8 (80)
Immunomodulatory therapy (<7d)	5 (26)*	0 (0)

Conclusions: We are the first to provide a mechanistic rationale for an aggravated COVID-19 disease course in ICI-treated patients. Whereas ICI reactivates tumor-directed ‘exhausted’ T-cells in cancer, it preferentially potentiates non-pathogen-directed T-cells in COVID-19, thereby contributing to lung damage without boosting the antiviral immune response.

Clinical trial identification: In-depth Immunological Investigation of COVID-19 (ConTAgiouS). - Clinical Trial identifier: NCT04327570. - Ethical approval obtained by the Ethics Committee of University Hospitals - KU Leuven. File number S63881.

Legal entity responsible for the study: University Hospitals - KU Leuven.

Funding: Kom op tegen Kanker (Stand up to Cancer).

Disclosure: All authors have declared no conflicts of interest.

https://doi.org/10.1016/j.annonc.2020.08.3232

LBA81 Keeping exhausted T-cells in check in COVID-19

P . Van Mol1, A. Franken2, C. Dooms3, J. Yserbyt1, D. Testelmans1, P. Meersseman1, G. Hermans1, J. Wauters4, J. Gunst5, K. Nacerta6, J. Vansteenkiste7, A. Garg8, D. Lambrechts9, E. Wauters1

1Pulmonology Department, University Hospitals Leuven - Campus Gasthuisberg, Leuven, Belgium; 2Department of Human Genetics, VIB - KU Leuven Laboratory of Translational Genetics, Leuven, Belgium; 3General Internal Medicine, University Hospitals Leuven - Campus Gasthuisberg, Leuven, Belgium; 4Intensive Care, University Hospitals Leuven - Campus Gasthuisberg, Leuven, Belgium; 5Department of Cellular and Molecular Medicine, KU Leuven Laboratory of Cell Stress & Immunity, Leuven, Belgium

Background: Clinical data suggest an aggravated COVID-19 disease course in cancer patients treated with immune checkpoint inhibitors (ICI). European guidelines advise to defer ICI therapy until complete resolution of COVID-19. However, mechanistic insight into how ICI impacts COVID-19 immunopathology is absent.

Methods: We performed single-cell RNA- and T-Cell Receptor-sequencing (TCR-seq) on bronchoalveolar lavage fluid of COVID-19 pneumonia (n=19) and non-COVID pneumonia (n=10), and co-analyzed CD8+ T-cells with publicly available tumor-infiltrating T-cell data of treatment-naive and ICI-treated patients (Sade-Feldman, Cell, 2018; Lambrechts, Nat Med, 2018). Cell lineages were determined by trajectory inference (Singshot, Monocle II) and stratified per condition. Pathogen- or tumor-directed T-cells were defined based on clonal selection (Zhang, Nature, 2018). To identify ICI responsive cells, we calculated a score derived from a validated gene set denoting ICI reactivity (Okamura, J. Autoimmun, 2019).

Results: We identified 3 CD8+ T-cell lineages, with ‘Naive’ T-cells transitioning into ‘Effector Memory’ cells and then branching into either ‘Recently Activated Effector Memory’ (TEMRA), ‘Exhausted’ (TEx) or ‘Resident Memory’ (TRM) T-cells. In COVID-19, clonal expansion indicating a SARS-CoV-2 antigen-specific T-cell response, was mainly observed in the highly cytolytic TEMRA lineage. In contrast, tumor-specific T-cells were found in the TRM lineage. Of importance, the ICI responsiveness rate was significantly higher in the non-pathogen-directed TEMRA and TRM cells in COVID-19. In cancer, TEx cells were shown to be ICI responsive as expected.

Conclusions: We are the first to provide a mechanistic rationale for an aggravated COVID-19 disease course in ICI-treated patients. Whereas ICI reactivates tumor-directed ‘exhausted’ T-cells in cancer, it preferentially potentiates non-pathogen-directed T-cells in COVID-19, thereby contributing to lung damage without boosting the antiviral immune response.

Clinical trial identification: In-depth Immunological Investigation of COVID-19 (ConTAgiouS). - Clinical Trial identifier: NCT04327570. - Ethical approval obtained by the Ethics Committee of University Hospitals - KU Leuven. File number S63881.

Legal entity responsible for the study: University Hospitals - KU Leuven.

Funding: Kom op tegen Kanker (Stand up to Cancer).

Disclosure: All authors have declared no conflicts of interest.

https://doi.org/10.1016/j.annonc.2020.08.3232