Unscrambling phylogenetic effects and ecological determinants of chromosome number in major angiosperm clades

Angelino Carta, Gianni Bedini & Lorenzo Peruzzi

As variations in the chromosome number are recognized to be of evolutionary interest but are also widely debated in the literature, we aimed to quantitatively test for possible relationships among the chromosome number, plant traits, and environmental factors. In particular, the chromosome number and drivers of its variation were examined in 801 Italian endemic vascular plants, for a total of 1364 accessions. We estimated phylogenetic inertia and adaptation in chromosome number - based on an Ornstein-Uhlenbeck process - and related chromosome numbers with other plant traits and environmental variables. Phylogenetic effects in chromosome number varied among the examined clades but were generally high. Chromosome numbers were poorly related to large scale climatic conditions, while a stronger relationship with categorical variables was found. Specifically, open, disturbed, drought-prone habitats selected for low chromosome numbers, while perennial herbs, living in shaded, stable environments were associated with high chromosome numbers. Altogether, our findings support an evolutionary role of chromosome number variation, and we argue that environmental stability favours higher recombination rates in comparison to unstable environments. In addition, by comparing the results of models testing for the evolvability of \(2n \) and of \(x \), we provide insight into the presumptive ecological significance of polyploidy.

Chromosome evolution is an integral part of plant speciation\(^2\), and chromosome variations, such as polyploidy and dysploidy, provide genetic support for ecological differentiation and adaptation\(^3\). The crucial role of polyploidy has been widely demonstrated\(^4\)–\(^7\), while more recently, the study of Escudero et al.\(^8\) highlighted that dysploidy can have a higher evolutionary impact than polyploidy, in the long run.

Several models have been proposed to account for the observed patterns of chromosome number variation. Some models hypothesised a progressive change from a starting number in a decreasing ('Fusion Hypothesis')\(^9\), increasing ('Fission Hypothesis')\(^10,11\) or diverging series ('Modal Hypothesis')\(^12\). Bickham and Baker\(^13\) advocated a 'Canalisation Model', in which rapid karyotype evolution occurs immediately after a lineage enters a new adaptive zone and is followed by slower changes through time. Imai et al.\(^14,15\) developed the 'Minimum Interaction Theory' (MIT hereafter), which postulates that the only evolutionary relevant mutations are those linked to germinal cells, where non-homologous chromosomes are fixed during meiosis on the nuclear membrane by telomeres forming "suspension arches". In these cells, interactions among non-homologous chromosomes would be counter-selected in two possible ways: by an increase in the nuclear volume and/or by an increase in chromosome number paralleled by a decrease of chromosome sizes. The same authors\(^14,15\) demonstrated that, indeed, in some animal taxa, a trend can be observed from low to high chromosome numbers, mediated by an imbalanced fission-to-fusion ratio, at least up to a theoretical maximum\(^16\).

Several works recorded a negative correlation between genome size and chromosome number in plants\(^17,18\) but a positive correlation between genome size and nuclear volume\(^19\). An increase in chromosome number by recurrent polyploidy can be counteracted by reductions brought about by descending dysploidy\(^20\). Accordingly, a chromosome duplication after polyploidiisation, causing an increase in genome size, should be followed by an increase in nuclear volume, in agreement with MIT. Fewer and larger chromosomes, e.g., those originated through descending dysploidy, should be accompanied by larger nuclear volumes to reduce non-homologous
chromosome interactions during meiosis consistent with MIT14. However, in this case no obvious increases in genome size should be expected, unless caused by massive appearance of repetitive non-coding DNA which is very frequent in plants2.

Although a generalised model of chromosome number variation is lacking and despite the failure of models to fully predict available experimental evidence, the development of such a diverse range of models is suggestive, \textit{per se}, of the high evolutionary interest of chromosome number variation.

Despite the interest in chromosome number evolution over the last decades21-24, in the absence of studies linking changes of chromosome number to natural selection, it is impossible to identify the adaptive function of such variation. At present, an adaptive role has been demonstrated for other genomic phenotypic traits, such as genome size25-27 showing that species with large genomes may be at a selective disadvantage in extreme or unstable environmental conditions. However, for chromosome number variation, evolutionary hypotheses have been raised by a limited set of preliminary works28. It is generally admitted that chromosome number and genome size are not positively correlated in angiosperms and gymnosperms, while such a correlation is highly significant in ferns and lycophytes29. Further, Grant30 argued that in angiosperms, species with a basic chromosome number higher than 14 should be considered paleo-polyploid, thus linking high chromosome numbers with multiple ancient rounds of whole genome duplications. In addition, a series of recent studies suggested that paleo-polyploidy is widespread across angiosperms31 and seed plants32 in general, irrespective of their chromosome number. Unbalanced (i.e., odd) chromosome numbers often cause significant phenotypic changes and severely impact plant growth and sexual fitness33, with the exception of apomictic plants and those with holocentric chromosomes, for which no deleterious effect (i.e., counter-selection) is expected34,35. It has been postulated that descendant dysploid chromosome number changes, coupled with the transition to an annual life form, are the main trend in angiosperms36; however, this trend is not generalizable, like many other karyological assumptions concerning, for instance, the direction of variation in karyotype asymmetry36. Stebbins1 also hypothesized that a chromosome number reduction by dysploidy should be expected in plants occupying pioneer habitats to avoid excessive segregation and recombination of genes. Nevertheless, protection of favourable allelic co-occurrences through recombination is also achieved by inversions - with no effects on chromosome number - in some animal taxa37. However, high chromosome numbers carry an increased risk of mis-segregation during nuclear division38. Stebbins1 and Darlington38, together with Grant2, agreed that low recombination rates should be favoured in individuals living in unstable environments to quickly develop populations; in contrast, environmental stability is expected to select for increased recombination rates because loss of alleles is overbalanced by those rare allelic combinations with high fitness.

In particular, given that genetic recombination acts as a trade-off between the opposing needs of immediate fitness and evolutionary adaptability39, chromosome number should clearly play a central role in this balance39.

To date, the possible relationship among chromosome number, plant traits, and environmental parameters has scarcely been investigated quantitatively. According, the main aim of our study was to use a dataset of 801 Italian endemic vascular plants (1364 accessions) to test these relationships. Italian endemics represent an ideal case study because complete information is available for basic chromosome number (x), and they share a common geographical evolutionary history40. Whilst we expect a significant phylogenetic signal in chromosome numbers, we specifically aim to quantitatively test the hypothesis that environmental stability and longer life cycles select for higher chromosome numbers, while unstable habitats select for lower chromosome numbers. To this end, we used a phylogenetic comparative approach that estimates phylogenetic inertia and adaptation in chromosome number based on an Ornstein-Uhlenbeck process41. The method considers a single trait adapting to optima influenced by continuous, randomly changing predictor variables or in response to fixed categorical niches. One of the main parameters returned by the model is the phylogenetic half-life (t\textsubscript{1/2}), indicating the time it takes for half the ancestral influence on a trait to evolve towards the predicted optimal phenotype42. Using this method, we were able to estimate relationships between chromosome numbers, plant traits and environmental factors in an evolutionary framework. Finally, by comparing the results of the different models testing for evolvability of 2n and of x, we were able to assess the relative contribution of polyploidy to 2n and provide insight into its presumptive ecological significance.

Results

Phylogenetic effect in chromosome number. The phylogenetic effects in chromosome number varied among the examined clades, but were generally moderate to large (Table 1), thus rejecting the hypothesis of species independence. Diploid chromosome numbers (2n) exhibited significant phylogenetic effects (t\textsubscript{1/2} > 0), and the supported values (values within two log-likelihood units lower than the maximum log-likelihood) ranged from a moderate to strong phylogenetic effect, not exceeding 1.0 total length (t\textsubscript{1/2} < 1), with the exceptions of Malvids and Caryophyllales. Indeed, the estimate for Malvids was t\textsubscript{1/2} = 0.01, with a support region from 0 to 0.05, suggesting that the trait evolved rapidly, nearly instantly on the timescale of this phylogeny. In contrast, the half-life value for Caryophyllales was many times the total tree length (infinity), indicating that 2n evolved as if by Brownian motion in this clade.

Compared to diploid combers, the basic chromosome number (x) showed stronger phylogenetic effects with a half-life that included t\textsubscript{1/2} > 1 and a supporting region that included t\textsubscript{1/2} = \infty in all clades. Furthermore, the wider support regions suggested that estimates of t\textsubscript{1/2} for x were more uncertain than those for 2n.

The stronger phylogenetic effects exhibited by x were associated with coefficients of variation (CV) lower than 0.5, while the CV calculated for 2n was larger and was followed by weaker phylogenetic effects (Table 2).

Adaptation and inertia in chromosome number. We found clear evidence for adaptation of chromosome number to environmental and morphological predictors, but in several cases, and especially for basic
Monocots

Predictor	n	t_s (support region)	v_y	Intercept (±SE)	Phyllogenetic regression slope (±SE)	R²	AICc	Simple AICc*	Global AICc**
Mean Temperature	132	0.14 (0.09–0.27)	0.36	3.37 ± 0.103	—	—	192.26	—	0.1249
Temperature seasonality	132	0.12 (0.08–0.24)	0.32	4.41 ± 0.576	−0.389 ± 0.209	0.026	191.14	0.2498	0.2186
Temperature continentality	132	0.13 (0.09–0.27)	0.34	0.063 ± 2.836	0.523 ± 0.448	0.011	192.97	0.1000	0.8876
Annual precipitation	132	0.12 (0.08–0.24)	0.32	1.46 ± 0.941	0.627 ± 0.308	0.031	190.46	0.3509	0.3071
Precipitation seasonality	132	0.13 (0.08–0.25)	0.32	4.23 ± 0.479	−0.222 ± 0.120	0.024	191.14	0.2498	0.2186

Fabids

Predictor	n	t_s (support region)	v_y	Intercept (±SE)	Phyllogenetic regression slope (±SE)	R²	AICc	Simple AICc*	Global AICc**
Mean Temperature	166	0.26 (0.14–0.70)	0.22	3.23 ± 0.103	—	—	96.63	—	0.2571
Temperature seasonality	166	0.28 (0.14–0.72)	0.22	2.63 ± 0.402	0.237 ± 0.154	0.026	96.61	0.3496	0.2597
Temperature continentality	166	0.28 (0.14–0.72)	0.22	7.68 ± 3.080	−0.703 ± 0.486	0.022	96.81	0.3163	0.2550
Annual precipitation	166	0.28 (0.14–0.72)	0.22	5.52 ± 1.449	−0.731 ± 0.463	0.026	97.93	0.1807	0.1342
Precipitation seasonality	166	0.26 (0.14–0.70)	0.22	4.02 ± 1.075	−0.120 ± 0.163	0.006	99.67	0.0757	0.0562

Malvids

Predictor	n	t_s (support region)	v_y	Intercept (±SE)	Phyllogenetic regression slope (±SE)	R²	AICc	Simple AICc*	Global AICc**
Mean Temperature	67	0.01 (0.00–0.05)	0.2	3.11 ± 0.057	—	—	94.07	—	0.1671
Temperature seasonality	67	0.01 (0.00–0.06)	0.2	3.68 ± 0.956	−0.210 ± 0.351	0.013	94.93	0.1305	0.1087
Temperature continentality	67	0.01 (0.00–0.06)	0.2	4.20 ± 1.232	−0.985 ± 0.653	0.021	75.40	0.8053	0.4441
Annual precipitation	67	0.01 (0.00–0.06)	0.2	2.39 ± 1.075	−0.120 ± 0.163	0.006	99.78	0.0757	0.0562
Precipitation seasonality	67	0.01 (0.00–0.06)	0.2	2.89 ± 0.457	0.089 ± 0.117	0.006	99.65	0.0765	0.0568

Caryophyllales

Predictor	n	t_s (support region)	v_y	Intercept (±SE)	Phyllogenetic regression slope (±SE)	R²	AICc	Simple AICc*	Global AICc**
Mean Temperature	140	∞ (0.28–∞)	0.18	3.20 ± 0.163	—	—	99.16	—	0.1851
Temperature seasonality	140	∞ (0.28–∞)	0.18	3.40 ± 0.184	—	—	98.2 ± 0.515	0.4203	
Temperature continentality	140	∞ (0.28–∞)	0.18	3.46 ± 3.411	−0.008 ± 0.538	0.007	100.92	0.0942	0.0768
Annual precipitation	140	∞ (0.32–∞)	0.16	4.22 ± 1.082	−0.129 ± 0.164	0.017	100.32	0.1272	0.1036
Precipitation seasonality	140	∞ (0.28–∞)	0.18	3.08 ± 0.619	0.085 ± 0.155	0.003	101.11	0.0857	0.0698

Continued
Table 1. Phylogenetic regression results of the evolution of log-transformed chromosome numbers (2n and x) on climatic variables in each angiosperm clade (as indicated). All phylogenetic trees are scaled to 1.0 total length. Predictor variables are given in the committed column, except when a Brownian motion or a single equilibrium O–U was fit, which has only an intercept. In the latter case, the phylogenetic half-life (t½ with 2-unit support interval in parentheses) is a measure of the overall effect of the phylogeny on the response variable (phylogenetic signal). In models with predictors, t½ indicates the time it takes the trait to evolve half the way from an ancestral state to the optimal state (rate of adaptation). Stationary variance (v½), intercept (±SE), slope (±SE) from phylogenetic regression and the amount of variance explained by the model (R²), Akaike Information Criterion (AIC) and Akaike Information Criterion weights (AICw) in comparison with the no-specific-adaptation model (single-equilibrium O–U model: 2n ~ 1 or x ~ 1) are shown. *Simple AICw is the AIC weight for each model relative to the no-predictor O–U model. **Global AICw is the AIC weight for each model relative to all models tested. For each set of models, the highest simple AICw is in bold when associated with a reduction of the phylogenetic half-life.

Clade	Trait	Predictor	n	ts (support region)	v½	Intercept (±SE)	Phylogenetic regression slope (±SE)	R²	AICc	Simple AICw*	Global AICw**	
Lamids		(single-equilibrium O–U)	94	0.28 (0.16–0.84)	0.24	3.285 ± 0.106	—	—	114.43	—	0.2434	
x	(Brownian motion)	—	—	—	3.338 ± 0.302	—	—	119.99	—	0.0199	0.0151	
	Mean Temperature	0.28 (0.16–0.82)	0.24	3.39 ± 0.609	—	0.039 ± 0.225	—	—	116.59	—	0.1092	0.0826
	Temperature seasonality	0.28 (0.14–0.82)	0.24	1.162 ± 3.119	0.334 ± 0.49	0.055	116.18	—	0.1341	0.1014		
	Temperature continentality	0.26 (0.14–0.80)	0.22	1.35 ± 1.069	0.628 ± 0.346	0.037	113.48	—	0.5172	0.3913		
	Annual precipitation	0.28 (0.16–0.84)	0.24	2.969 ± 1.431	0.048 ± 0.216	0.001	116.57	—	0.1103	0.0835		
	Precipitation seasonality	0.28 (0.16–0.82)	0.24	3.366 ± 0.483	—	0.022 ± 0.128	—	—	116.59	—	0.1092	0.0826
Campanulids	x (single-equilibrium O–U)	200	0.14 (0.09–0.24)	0.16	3.142 ± 0.069	—	—	150.75	—	0.1777		
x	(Brownian motion)	—	—	—	3.206 ± 0.152	—	—	25.87	—	0.4199	0.3195	
	Mean Temperature	0.92 (0.24–∞)	0.12	2.559 ± 0.442	—	0.097 ± 0.16	—	—	28.35	—	0.1215	0.0925
	Temperature seasonality	0.92 (0.24–∞)	0.12	3.985 ± 2.242	—	0.265 ± 0.352	—	—	28.17	—	0.1330	0.1012
	Temperature continentality	0.88 (0.24–∞)	0.12	2.364 ± 0.783	—	0.021 ± 0.253	—	—	28.62	—	0.1062	0.0808
	Annual precipitation	0.88 (0.24–∞)	0.12	2.048 ± 0.993	0.038 ± 0.149	0.001	28.57	—	0.1089	0.0828		
	Precipitation seasonality	0.88 (0.24–∞)	0.12	2.191 ± 0.354	0.03 ± 0.092	0.002	28.54	—	0.1105	0.0841		

Chromosome number (x), a pure Brownian motion model best explained the evolution of chromosome number on the phylogeny (Tables 1 and 3).

The effects of the continuous (climatic) predictors were generally weak. Indeed, only eight of the 60 models that used climatic predictors had lower AICc and lower half-life (indicating that not all the phylogenetic effect was due to phylogenetic inertia) compared to the model without the predictor (Table 1). Nevertheless, even in these cases (all these models refer to 2n), the half-life reduction was small and the AICc decrease never exceeded 2 units which indicated that there was a weak tendency for chromosome numbers to evolve towards the optimum. Hence, these results should be regarded with caution as they represent only a tentative indication of climatic effects on chromosome numbers.

In the eight models mentioned above, the climatic variables that explained variation in chromosome number, at least marginally, were mean temperature, temperature continentality and precipitation seasonality. Overall, the association of mean temperature with chromosome number was negative with the slope of the phylogenetic regression nearly flat in Caryophyllales and Lamids, while it was steeper in other clades, despite explaining less than 4% of the variance. However, although the relationship was not significant, it was positive in Fabids. A negative relationship with chromosome number was also found for precipitation seasonality, while temperature continentality was generally positively associated with chromosome number.
Scientific Reports | (2018) 8:14258 | DOI:10.1038/s41598-018-32515-x

	$2n$ Mean ± sd	x Mean ± sd
Monocots	53.7 ± 25.1	10.8 ± 5.2
Fabids	32.1 ± 17.9	10.5 ± 2.8
Malvids	26 ± 20.3	8.8 ± 2.4
Caryophyllales	27 ± 11.3	10.2 ± 2.2
Lamids	29.7 ± 18.4	9.89 ± 3.6
Campanulids	25.6 ± 14.1	10.6 ± 4.4

Table 2. Mean chromosome numbers (±SD) and coefficient of variation (CV) for major clades of Italian endemics.

For categorical predictors, the relationship with both $2n$ and x was overall robust with 32 out of the 84 models outperforming the model without the predictor (Table 3). Chromosome number was mostly affected by the habitat categories (light, moisture and nutrients), but in some clades, also by morphological categories (growth form and flower size). The gain in AICc values for the outperforming models attained more than 2 units with the percentage of the variance explained largely exceeding 5%. These models also exhibited a significant reduction in half-life, which indicated that chromosome number evolved in response to categorical variables while some, but not all, of the phylogenetic effects in chromosome number is due to phylogenetic inertia. Specifically, open habitat selected for low chromosome numbers while shaded, stable environments (e.g., forest) selected for higher chromosome numbers in Monocots, Fabids, and Campanulids (for both $2n$ and x) and in Malvids and Lamids (for $2n$ only) (Fig. 1). Habitat moisture and nutrient availability were positively associated with chromosome number, although some optimal values (0) had little biological meaning. In particular, this lack of biological meaning applies to eutrophic and wet categories owing to the low number of branches attributed to these categories. Hence, we regard these results with caution; nevertheless, the overall patterns of the models were robust and understandable. Chromosome number was also positively related with plant morphological traits, namely growth form (life forms with longer life cycles had higher chromosome numbers) and flower size but in a few cases, was also negatively associated with flowers clustered into a flower-like inflorescence.

Discussion

Adaptation and inertia in chromosome number. We found evidence for adaptation of chromosome number to environmental and morphological predictors, especially for $2n$, while, not surprisingly, x exhibited a lower degree of variation and less significant adaptive evidence, providing insight into the possible ecological significance of polyploidy. Therefore, although the majority of variation remains unexplained, a Brownian motion process alone is certainly inadequate to explain the evolution of chromosome number.

Our study indicates that phylogenetic inertia is a significant component in all models ($r_{xy} > 0$). Nevertheless, categorical predictors and, to a lesser extent, some climatic variables (mean temperature and precipitation seasonality) supported the hypothesis that environmental instability and seasonality select for low chromosome numbers (i.e., decreased recombination rates). Specifically, open, disturbed, drought-prone habitats selected for low chromosome numbers, while shaded, stable environments with good availability of water and nutrients selected for high chromosome numbers and consequently for increased recombination rates.

In addition, in agreement with Bell and Stebbins, who argued that rapid reproductive cycles correlate with low chromosome numbers, we found that low chromosome numbers are associated with small flowers densely clustered in inflorescences. In contrast, we found that higher chromosome numbers are linked to perennial herbs, especially geophytes, in agreement with previous studies.

From our results, it seems that chromosome number is poorly related to large scale climatic conditions. Only three climate variables had a relationship with the chromosome number, so that species with higher chromosome numbers tend to occur in sites with lower annual temperature, lower precipitation seasonality and higher continentality, consistent with previous work. Nevertheless, the effects of climatic predictors are best explained by models of $2n$ evolution, indicating the relative contribution of polyploidy and its ecological significance to diploid chromosome number. In addition, among categorical predictors, models fit on $2n$ exhibited stronger association with environmental and morphological predictors than the models fit on x, again suggesting a putative ecological significance of polyploidy. The increase of polyploid taxa with latitude and in colder sites with continental climates has been already shown by previous studies, albeit questioned by others. The recent availability of large chromosome number databases has spurred further research on this subject, spanning a substantially wider taxonomic space and confirming this trend across the whole Arctic flora and at other geographical scales.

Phylogenetic effect in chromosome number and clade-specific implications. In this study, we found phylogenetic effects in chromosome number ranging from moderate to large. This finding is congruent with data published previously, which highlighted that closely related species share similar patterns of chromosome number variation. Despite this, chromosome number per se has little systematic significance, because it is well known that many taxa share the same chromosome number across different groups. Further, the use of other analytical approaches to measuring phylogenetic signal (e.g., Blomberg’s K and Pagel’s lambda) returned highly congruent results with patterns of phylogenetic effects higher for basic chromosome number (x) than those for $2n$ (Table S3).
Clade	Trait	Predictor	n	\(\nu_\alpha \) (support region)	\(\nu_\alpha \)	Primary optimum (0 ± SE)	\(R^2 \)	AICc	Simple AICc*	Global AICc**
Monocots	2n	(single-equilibrium O–U)	132	0.14 (0.09–0.27)	0.36	3.377 ± 0.103	—	192.26	—	0.0003
		(Brownian motion)	—	—	—	3.656 ± 0.584	—	226.9	—	0.0000
		Growth form	0.14 (0.09–0.27)	0.36	Geophyte = 3.397 ± 0.117	0.001	194.26	—	0.0001	
		Flower size	0.13 (0.09–0.27)	0.34	Incospicuous = 3.362 ± 0.202	0.010	195.26	—	0.0001	
		Inflorescence	0.13 (0.09–0.27)	0.34	Single = 3.339 ± 0.118	0.001	194.24	—	0.0001	
		Habitat light	0.1 (0.07–0.16)	0.26	Open = 3.096 ± 0.091	0.154	175.75	—	0.9844	
		Habitat nutrient	0.1 (0.07–0.18)	0.28	Oligotrophic = 3.198 ± 0.097	0.099	184.23	—	0.9842	
		Habitat moisture	0.11 (0.08–0.20)	0.3	Dry = 3.116 ± 0.12	0.058	189.26	—	0.0011	

Fabids	2n	(single-equilibrium O–U)	132	1.48 (0.48–∞)	0.33	2.498 ± 0.16	—	—	—	0.1314
		(Brownian motion)	—	—	—	2.514 ± 0.213	—	—	—	0.1737
		Growth form	1.48 (0.48–∞)	0.33	Geophyte = 2.509 ± 0.175	0.000	—	—	0.0460	
		Flower size	1.48 (0.48–∞)	0.33	Incospicuous = 2.684 ± 0.875	0.001	—	—	0.0462	
		Inflorescence	1.48 (0.48–∞)	0.33	Single = 2.485 ± 0.191	0.000	—	—	0.1067	
		Habitat light	0.64 (0.24–∞)	0.15	Open = 2.28 ± 0.13	0.068	—	—	0.6257	
		Habitat nutrient	1.00 (0.40–∞)	0.23	Oligotrophic = 2.068 ± 0.33	0.017	—	—	0.5435	
		Habitat moisture	0.92 (0.40–∞)	0.21	Dry = 1.828 ± 0.41	0.040	—	—	0.1605	

		(single-equilibrium O–U)	106	0.26 (0.14–0.70)	0.22	3.231 ± 0.103	—	96.63	—	0.0379
		(Brownian motion)	—	—	—	3.315 ± 0.267	—	107.91	—	0.0001
		Growth form	0.22 (0.1–0.48)	0.20	Annual = 2.346 ± 0.672	0.064	—	—	0.0725	
		Flower size	0.22 (0.12–0.50)	0.20	Incospicuous = 3.066 ± 0.118	0.051	—	—	0.0438	
		Inflorescence	0.26 (0.14–0.70)	0.20	Single = 3.238 ± 0.109	0.000	—	—	0.0431	
		Habitat light	0.22 (0.12–0.46)	0.18	Open = 3.079 ± 0.1	0.104	—	—	0.6568	
		Habitat nutrient	0.24 (0.12–0.50)	0.20	Oligotrophic = 3.037 ± 0.125	0.060	—	—	0.6319	
		Habitat moisture	0.24 (0.14–0.52)	0.20	Dry = 3.043 ± 0.122	0.070	—	—	0.1244	
Clade	Trait	Predictor	n	t_0 (support region)	v_0	Primary optimum (± SE)	R^2	AICc	Simple AICw*	Global AICw**
Fabids		(single-equilibrium O–U)	106	0.76 (0.32–∞)	0.13	2.351 ± 0.088	—	—	—	0.1643
		(Brownian motion)	—	—	—	2.367 ± 0.145	—	—	—	0.0033
	Growth form	0.64 (0.32–∞)	0.11	Annual = 1.654 ± 0.848	0.043	—	—	—	0.1780	
						Perennial = 2.231 ± 0.101				
						Woody = 2.671 ± 0.181				
	Flower size	0.64 (0.28–∞)	0.11	Incospicuous = 2.278 ± 0.103	0.026	—	—	—	0.0731	
						Small = 2.362 ± 0.379				
						Large = 2.614 ± 0.226				
	Inflorescence	0.76 (0.32–∞)	0.13	Single = 2.36 ± 0.09	0.002	—	—	—	0.0613	
						Inflorescence = 2.139 ± 0.492				
	Habitat light	0.64 (0.32–∞)	0.11	Open = 2.268 ± 0.088	0.052	—	—	—	0.2890	
						Semi = 2.753 ± 0.445				
	Habitat nutrient	0.64 (0.28–∞)	0.11	Oligotrophic = 2.2 ± 0.106	0.046	—	—	—	0.2068	
						Mesotrophic = 2.659 ± 0.176				
						Eutrophic = 2.982 ± 0.688				
	Habitat moisture	0.76 (0.32–∞)	0.13	Dry = 2.305 ± 0.108	0.005	—	—	—	0.0243	
						Moist = 2.494 ± 0.239				
						Wet = 2.511 ± 0.456				
Malvids		(single-equilibrium O–U)	67	0.01 (0.00–0.05)	0.2	1.117 ± 0.057	—	—	—	0.0335
		(Brownian motion)	—	—	—	1.271 ± 0.7	—	—	—	0.0000
	Growth form	0.01 (0.00–0.04)	0.2	Annual = 2.83 ± 0.313	0.072	—	—	—	0.0406	
						Perennial = 3.093 ± 0.057				
						Woody = 3.53 ± 0.2				
	Flower size	0.01 (0.00–0.05)	0.2	Small = 3.028 ± 0.141	0.007	—	—	—	0.0137	
						Large = 3.134 ± 0.062				
	Habitat light	0.01 (0.00–0.02)	0.16	Open = 3.083 ± 0.054	0.153	—	—	—	0.0439	
						Semi = 3.122 ± 0.188				
	Habitat nutrient	0.01 (0.00–0.04)	0.18	Oligotrophic = 3.047 ± 0.065	0.083	—	—	—	0.0455	
						Mesotrophic = 3.466 ± 0.167				
						Eutrophic = 3.331 ± 0.278				
	Habitat moisture	0.01 (0.00–0.05)	0.18	Dry = 3.063 ± 0.062	0.053	—	—	—	0.0210	
						Moist = 3.352 ± 0.135				
						Wet = 3.181 ± 0.223				
	(single-equilibrium O–U)	67	0.38 (0.14–∞)	0.09	2.303 ± 0.105	—	—	—	0.0006	
	(Brownian motion)	—	—	2.306 ± 0.267	—	—	—	—	0.0000	
	Growth form	0.16 (0.10–0.66)	0.05	Annual = 2.053 ± 0.33	0.096	—	—	—	0.0005	
						Perennial = 2.139 ± 0.073				
						Woody = 2.471 ± 0.103				
	Flower size	0.38 (0.14–∞)	0.09	Small = 2.253 ± 0.27	0.001	—	—	—	0.0002	
						Large = 2.309 ± 0.111				
	Habitat light	0.28 (0.12–∞)	0.07	Open = 2.264 ± 0.091	0.015	—	—	—	0.0001	
						Semi = 2.207 ± 0.487				
	Habitat nutrient	0.22 (0.10–0.42)	0.05	Oligotrophic = 2.151 ± 0.073	0.263	—	—	—	0.9971	
						Mesotrophic = 2.919 ± 0.168				
						Eutrophic = 3.195 ± 0.361				
	Habitat moisture	0.2 (0.12–0.90)	0.05	Dry = 2.153 ± 0.079	0.110	—	—	—	0.0016	
						Moist = 2.462 ± 0.105				
						Wet = 2.922 ± 0.384				

Continued
Clade	Trait	Predictor	n	\(t_k \) (support region)	\(\nu \)	Primary optimum (±SE)	R²	AICc	Simple AICc*	Global AICc*
Caryophyllales		(single-equilibrium O–U) 140	0.18	3.402 ± 0.163	—	99.16	0.1270			
	(Brownian motion)	140	0.18	3.402 ± 0.184	—	97.52	0.3304	0.2884		
	Growth form	140	0.18	3.408 ± 0.165	—	101.43	0.0468	0.0408		
	Flower size	140	0.18	3.569 ± 0.966	—	101.24	0.0514	0.0449		
	Habitat light	140	0.18	3.360 ± 0.286	—	101.28	0.0504	0.0440		
	Habitat nutrient	140	0.16	3.344 ± 0.164	—	102.12	0.0331	0.0289		
	Habitat moisture	1	0.06	3.058 ± 0.54	—	96.74	0.4879	0.4259		
Lamiastrae		(single-equilibrium O–U) 94	0.07	3.737 ± 0.991	—	258.67	0.0006			
	(Brownian motion)	94	0.07	2.364 ± 0.147	—	267.43	0.0462	0.0461		
	Growth form	94	0.04	2.341 ± 0.072	—	273.48	0.9520	0.9515		
	Flower size	94	0.07	1.794 ± 0.364	—	258.96	0.0007	0.0007		
	Habitat light	94	0.07	2.486 ± 0.125	—	256.61	0.0002	0.0002		
	Habitat nutrient	94	0.06	2.407 ± 0.117	—	256.87	0.0006	0.0006		
	Habitat moisture	94	0.07	3.028 ± 0.584	—	257.84	0.0004	0.0004		
	(single-equilibrium O–U) 94	0.28	3.285 ± 0.106	—	114.43	0.0796				
	(Brownian motion)	94	0.24	3.338 ± 0.302	—	119.99	0.0054	0.0049		
	Growth form	94	0.22	2.636 ± 0.561	—	115.60	0.0482	0.0443		
	Flower size	94	0.22	2.789 ± 0.416	—	115.22	0.0582	0.0536		
	Inflorescence	94	0.22	3.306 ± 0.099	—	114.32	0.0913	0.0841		
	Habitat light	94	0.22	3.149 ± 0.105	—	111.38	0.3972	0.3656		
	Habitat nutrient	94	0.22	3.146 ± 0.102	—	111.91	0.3047	0.2805		
	Habitat moisture	94	0.22	3.085 ± 0.466	—	114.24	0.0950	0.0875		
	(single-equilibrium O–U) 94	0.88	2.301 ± 0.108	—	114.24	0.3292	0.3261			
	(Brownian motion)	94	0.12	2.306 ± 0.152	—	25.87	0.0488	0.0470		
	Growth form	94	0.16	0.96 ± 1.719	—	24.58	0.0930	0.0897		
	Flower size	94	0.12	0.356 ± 0.782	—	22.53	0.2591	0.2500		
	Inflorescence	94	0.12	2.325 ± 0.108	—	23.85	0.1339	0.1292		
	Habitat light	94	0.12	2.237 ± 0.111	—	22.14	0.3149	0.3038		
	Habitat nutrient	94	0.06	2.198 ± 0.077	—	24.02	0.1230	0.1187		
	Habitat moisture	94	0.08	1.928 ± 0.198	—	27.02	0.0274	0.0265		
Table 3. Primary optima (±SE) of log-transformed chromosome numbers (2n and x) for each categorical predictor variable in each angiosperm clade (as indicated). The niches of each predictor variable were mapped onto the internal branches of the phylogeny using a parsimony reconstruction. All phylogenies are scaled to a total length of 1. Predictor variables are given in the column, except when a Brownian motion or a single-equilibrium O–U process was fitted. Stationary variance (σ²) and the amount of variance explained by the model (R²) are also shown. *Simple AICw is the AIC weight for each model relative to the no-specific-adaptation model (single-equilibrium O–U model: 2n ~ 1 or x ~ 1). **Global AICw is the AIC weight for each model relative to all models tested. For each set of models, the highest simple AICw is in bold when associated with a reduction of the phylogenetic half-life.

Clade	Trait	Predictor	n	σ²	Primary optimum (±SE)	R²	AICc	Simple AICw*	Global AICw**
Campanulids 2n	(single-equilibrium O–U)	1.96 (0.44–∞)	0.24	2.415 ± 0.134	—	—	—	0.0000	
	(Brownian motion)	—	—	2.44 ± 0.229	—	—	—	1.0000	
	Growth form	1.88 (0.44–∞)	0.22	Annual = 2.317 ± 2.277	0.006	—	—	0.0000	
	Flower size	∞ (0.36–∞)	0.22	Small = 2.345 ± 0.130	0.051	—	—	0.0000	
	Inflorescence	∞ (0.36–∞)	0.24	Single = 3.836 ± 1.114	0.011	—	—	0.0000	
	Habitat light	1.16 (0.32–∞)	0.14	Open = 2.284 ± 0.197	0.044	—	—	0.0000	
	Habitat nutrient	1.16 (0.32–∞)	0.14	Oligotrophic = 2.294 ± 0.123	0.049	—	—	0.0000	
	Habitat moisture	1.88 (0.40–∞)	0.22	Dry = 2.321 ± 0.139	0.029	—	—	0.0000	

The degree of chromosome number variation detected here allows for the investigation of possible mechanisms regulating chromosome number together with genome size. Indeed, the six considered clades, despite their origin from ancestors with very small genomes, show remarkable differences in genome size, which is larger on average in Monocots (1C = 11.9 pg) and Campanulids (1C = 4.03 pg) than in Fabids (1C = 2.35 pg), Lamids (1C = 2.32), Caryophyllales (1C = 1.7 pg), and Malvids (1C = 1.45 pg) (data from14). Hence, in the first two clades, large nuclear volumes allow an increase in chromosome numbers and/or chromosome sizes, in agreement with the MIT14. In contrast, in the remaining four clades, an increase in chromosome number should be paralleled by the occurrence of smaller chromosomes in the absence of significantly larger genomes and nuclear volumes, again consistent with the MIT14. Accordingly, a reduction of chromosome number by descending dysploidy should be seriously constrained by limited nuclear volumes in Fabids, Lamids, Caryophyllales, and Malvids. Indeed, in our dataset, these clades show smaller CV values concerning x, linked to a lower frequency of dysploidy than that observed in Monocots and Campanulids. Monocots exhibit a higher variation in chromosome number and include genera (e.g., in Poales) in which holocentric chromosomes occur, which is a peculiar condition allowing for rapid diversification and an extended...
range of chromosome numbers. However, the high frequency of geophytes in this clade also explains the obtained results, especially for 2n. Indeed, in geophytes, large cells are assumed to be an advantage during the rapid development of the plant body and cell expansion, as a consequence, they show higher tolerance to genome duplication with a high frequency of polyploids. Under the assumptions of the large genome constraint hypothesis, the occurrence of polyploidy in Monocots and Campanulids should be accompanied by significantly larger nuclear volumes, given their higher occurrence of polyploids in these two clades should not be subjected to selective constraint under MIT. Finally, in Monocots the occurrence of massive polyploidisation and large genome size variation points towards evolutionary phenomena linked to the large genome constraint hypothesis.

The performance of the models on Malvids might be biased by low sampling, while in Fabids, the results are partly obscured by the occurrence of dysploidy and polyploidy phenomena in our dataset, especially in Mediterranean taxa (e.g., Genista). In Caryophyllales, results are biased by the predominance of taxa belonging to the genus Limonium, but model fits on 2n and x are largely comparable. In this latter clade, habitat patchiness/stochasticity and high frequency of hybridization, rather than polyploidy, might have influenced speciation and chromosome number changes.

In the present study, several associations among chromosome number, plant traits and environmental factors were found. However, as mentioned by other authors, there is no reason to expect chromosome number per se to affect plant fitness. Instead, chromosome number variation can be driven by cellular processes that affect meiosis and mitosis. Hence, we also interpret the evolution towards an optimal state as a karyotypic equilibrium determined by mutation rates, by nuclear division dynamics, and possibly by epigenomic surveillance systems, rather than an adaptive optimum.

Albeit limited in sample size, at first glance, our results showed that the evolutionary process is homogeneous across the phylogeny among different clades of Italian endemics. Yet, having demonstrated that phylogenetic inertia is a significant component in chromosome number evolution, future studies can be extended to larger samples and also using different approaches, where not only the primary optima but also the α-parameter (strength of selection) and σ-parameter (strength of drift) differ among niches, allowing clade-dependent rates of adaptation to be tested.

In conclusion, our study presents non-stochastic demonstrations for chromosome number variation, and we argue that environmental stability favors higher recombination rates in comparison to unstable environments. In addition, whilst phylogeny is a strong predictor of trait values, especially for x, we highlight that a simple phylogenetic explanation is inadequate to account for its variation in 2n and x.

Methods
Chromosome data. Chromosome counts for 1364 accessions of 801 vascular plants endemic to Italy have been extracted from Chrobase.it (http://bot.biologia.unipi.it/chrobase/) and Chrobase.it is an online dataset of chromosome counts for the Italian vascular flora, hosting cytogenetic data for endemic and non-endemic species. For this study we only selected counts of endemic plants because they are the most sensitive components of a flora, often being restricted to ecologically selective habitats, for which we are confident that the environmental variables calculated in the present study can be a good proxy for the total ecological requirements of the species. Most counts in Chrobase.it are associated with an exact geographic locality. For those chromosome counts lacking precise information (<10%), we identified an approximate locality based on the restricted distribution range of the species.

Mean chromosome numbers were estimated for each species, while within-species variation to be incorporated into the phylogenetic analysis was not estimated separately for each species, because within-species samples were limited to a few counts. Hence, we estimated the pooled variance across the species and used it, weighted by sample size, to estimate the observation variance of the individual species, as recommended by. Preliminary analyses revealed that log transformation improved model fit by over 500 log-likelihood units relative to untransformed data, thus mean chromosome numbers were log transformed prior to analysis.

Chromosome number evolution was analysed on a dataset separated into 6 major angiosperm clades (Monocots, Fabids, Malvids, Caryophyllales, Lamiiids, and Campanulids) to guarantee an adequate number of taxa per clade (ranging from a minimum of 67 to a maximum of 200). This analysis allowed us to evaluate...
whether chromosome number evolution proceeded differently or homogeneously along different evolutionary histories. The complete data set assembled for the present study is reported in supplementary Table S2.

Phylogeny. We compiled a phylogeny using the dated, ultrametric supertree for 4685 European vascular plants (DaPhnE 1.0 supertree) based on 518 recent molecular phylogenies. We first completed this supertree for the 281 species in our data set that were absent from the supertree (or for which related species were missing in the supertree) following the methods of Durka and Michalski, using more than 90 phylogenetic and systematic studies. We then reduced this tree to the 801 species in our dataset. The complete list of sources used in this paper is reported in supplementary Table S1. Mean diploid ($2n$) and basic (x) chromosome numbers for each taxon were visualized on the phylogenetic tree (Figs 2 and S1) with the plotsimmap function in the package phytools of R. Basic chromosome numbers (x) were obtained by a taxon by taxon screening of relevant karyological literature previously published by.

Climatic, ecological and morphological data. Climatic data associated with the sampling sites were downloaded from the Worldclim database at 2.5 min scale (http://www.worldclim.org). The climate data considered were: mean annual temperature (°C), temperature seasonality ($SD \times 100$), temperature continentality (°C), mean annual precipitation (mm) and precipitation seasonality (coefficient of variation). Means and standard deviations were estimated for each species within a buffer of 10 min over georeferenced sites using QGIS v. 2.18 (Quantum GIS, http://www.qgis.org).

Figure 2. Ultrametric phylogenetic tree of 801 vascular plants endemic to Italy. The clades considered in this study are coloured and named according to. Bars at the tips of the tree are proportional to the mean value of $2n$ and x per species (as indicated).
Phylogenetic comparative analysis. We investigated whether the evolution towards optima of diploid (2n) and basic (x) chromosome numbers is influenced by climatic variables (continuous predictors), habitat characteristics or plant traits (categorical predictors) within different angiosperm clades. Thus, we used the phylogenetic comparative method implemented in the R program SLOUCH, established to study adaptive evolution of a trait along a phylogenetic tree. The method assumes that the response trait evolves as if by an Ornstein–Uhlenbeck model of adaptive evolution towards a primary optimum 0, defined as the optimal state that species will approach in a given niche.

Whilst we illustrated the overall evolutionary relationships among clades in Fig. 2, the phylogenetic comparative analyses were run only on the subtrees associated with each clade. Phylogenetic trees are scaled to 1.0 (from the root to the tip of the ultrametric tree) for an easier interpretation of parameter estimates. The two main parameters returned by the model are the phylogenetic half-life (t_{1/2}) and the stationary variance (\(\nu \)). Phylogenetic half-life indicates the time it takes for half the ancestral influence on a trait to evolve towards the predicted optimal phenotype. A half-life greater than zero means that adaptation is not instantaneous, while \(t_{1/2} = 0 \) means that there is no evolutionary lag. The stationary variance is the stochastic component of the model and can be considered as evolutionary changes in the response trait induced by genetic drift.

Phylogenetic half-life in a model that only includes the intercept is an estimate of the phylogenetic effect in the response trait. In such a model, a half-life = zero means that the response variable is not phylogenetically clustered, while a half-life >0 suggests that there is an influence of phylogeny on the data; a half-life with high values can be attributed to an underlying continuous Brownian motion process.

The intercept-only model is contrasted with a model that also includes a predictor variable. This type of model is regarded as an adaptation model because it tests whether the response traits evolve towards optima influenced by a predictor. By comparing a model with and without the inclusion of predictor variables, it is possible to determine how much of the phylogenetic signal can be attributed to phylogenetic inertia (i.e., resistance to adaptation). No reduction in \(t_{1/2} \) suggests that the phylogenetic signal can be entirely attributed to phylogenetic inertia; in contrast, when a trait evolves in response to a variable, a reduction in the half-life for the response trait (and/or of its support interval) should be observed.

The adaptation models, which include continuous predictors (i.e., the climatic variables in our study), are fitted using maximum likelihood for estimation of \(t_{1/2} \) and \(\nu \), and generalized least squares for estimation of the regression parameters in an iterative procedure. In addition, the SLOUCH model assumes that the predictors have a longer phylogenetic half-life than the model residuals, and this is well supported by the variables involved in our study. The model returns parameters of an optimal regression and of a phylogenetic regression. The former is the relationship between the response and predictor variable that is predicted to evolve free of ancestral influence (absence of inertia). Therefore, the slope of this regression must be steeper than that of the phylogenetic regression.

To evaluate the effect of the categorical predictors on the evolution of chromosome number, the ANOVA and ANCOVA extensions implemented in SLOUCH were used. Categorical predictors were mapped onto the phylogeny using parsimony reconstruction.

We used Akaike’s Information Criterion (AIC) and AIC weights (AICw) to compare intercept-only models to the adaptation models. Use of AICw standardizes the weight of evidence in favour of each alternative model between 0 and 1. We also reported AIC weights for each model relative to the set of models evaluated.

Finally, model interpretations were based on comparisons of \(t_{1/2} \) and \(\nu \) of the adaptation models with the intercept-only model and with a pure Brownian motion model, along with the amount of variation in chromosome state that species will approach in a given niche.

Data Availability
All data analysed during this study are included in this published article (and its Supplementary Information files).

References
1. Stebbins, G. L. Chromosomal variation and evolution. Science 152, 1463–1469 (1966).
2. Grant, V. The regulation of recombination in plants. Cold Spring Harb. Symp. Quant. Biol. 23, 337–363 (1958).
3. Levin, D. A. The role of chromosomal change in plant evolution. (Oxford University Press, 2002).
4. Solit, P. S. & Solits, D. E. Polyplody and genome evolution. (Springer, 2012).
5. Cuypers, T. D. & Hogeweg, P. A synergism between adaptive effects and evolvability drives whole genome duplication to fixation. PLOS Computat. Biol. 10, e1003547 (2014).
6. Shimizu-Inashugi, R., et al. Plant adaptive radiation mediated by polyploid plasticity in transcriptomes. Mol. Ecol. 26, 193–207 (2016).
7. McIntyre, P. J. & Strauss, S. An experimental test of local adaptation among cytotypes within a polyploid complex. Evolution 71, 1960–1969 (2017).
8. Escudero, M. et al. Karyotypic changes through dysploidy persist longer over evolutionary time than polyploid changes. PLOS One 9, e85266 (2014).
9. White, M. J. D. Animal Cytology and Evolution. (Cambridge University Press, 1973).
10. Todd, N. B. Karyotypic fissioning and canid phylogeny. J. Theor. Biol. 26, 445–480 (1970).
11. Todd, N. B. Chromosomal mechanisms in the evolution of artiodactyls. Paleobiology 1, 175–188 (1975).
12. Matthey, R. The chromosome formulae of eutherian mammals in Cytotaxonomy and Vertebrate Evolution (eds Chiarelli, A. B. & Capanna, E.) 331–616 (London Academic Press, 1973).
13. Bickham, J. W. & Baker, R. J. Canalization model of chromosomal evolution. Syst. Biol. 34, 69–75 (1979).
14. Imai, H. T., Maruyama, T., Gojobori, T., Inoue, Y. & Crozier, R. H. Theoretical bases for karyotype evolution. 1. The Minimum-Interaction Hypothesis. Am. Nat. 128, 900–920 (1986).
15. Imai, H. T., Satta, Y. & Takahata, N. Integrative study on chromosome evolution of mammals, ants and wasps based on the Minimum Interaction Theory. J. Theor. Biol. 210, 475–497 (2001).
16. Imai, H. T., Satta, Y., Wada, M. & Takahata, N. Estimation of the highest chromosome number of eukaryotes based on the Minimum Interaction Theory. J. Theor. Biol. 217, 61–74 (2002).
17. Vinogradov, A. E. Mirrored genome size distributions in monocot and dicot plants. *Acta Biotheor.* 49, 43–51 (2001).
18. Michael, T. P. Plant genome size variation: bloating and purging DNA. *Brief. in Funct. Genomics* 13, 308–317 (2014).
19. Bennett, M. D. & Leitch, I. J. Genome size evolution in plants in *The evolution of the genome* (ed Gregory, T. R.) 89–162 (Elsevier, 2005).
20. Schubert, I. & Vu, G. T. H. Genome stability and evolution: attempting a holistic view. *Trends in Plant Sci.* 21, 749–757 (2016).
21. Peruzzi, L., Caparelli, K. F. & Bedini, G. Online resources for chromosome number databases. *Caryologia* 67, 292–295 (2014).
22. Bedini, G. & Peruzzi, L. A comparison of plant chromosome number variation among Corsica, Sardinia and Sicily, the three largest Mediterranean islands. *Caryologia* 68, 289–293 (2015).
23. Bedini, G., Garbari, F. & Peruzzi, L. Does chromosome number count? Mappings karyological knowledge on Italian flora in a phylogenetic framework. *Plant Syst. Evol.* 298, 739–750 (2012).
24. Peruzzi, L., Caparelli, K. F. & Bedini, G. A new index for the quantification of chromosome number variation: an application to selected animal and plant groups. *J. Theor. Biol.* 353, 55–60 (2014).
25. Vidic, T., Greilhuber, J., Vilhar, B. & Dermastia, M. Selective significance of genome size in a plant community with heavy metal pollution. *Ecol. Appl.* 19, 1515–1521 (2009).
26. Kang, M. et al. Adaptive and nonadaptive genome size evolution in Karst endemic flora of China. *New Phytol.* 202, 1371–1381 (2014).
27. Carta, A. & Peruzzi, L. Testing the large genome constraint hypothesis: plant traits, habitat and climate seasonality in Liliaceae. *New Phytol.* 210, 709–716 (2016).
28. Escudero, M., Hipp, A. L., Hansen, T. F., Voje, K. L. & Luceño, M. Selection and inertia in the evolution of holocentric chromosomes in sedges (*Carex, Cyperaceae*). *New Phytol.* 195, 237–247 (2012).
29. Nakazato, T., Barker, M. S., Rieseberg, L.H. & Gastony, G. J. Evolution of the nuclear genome of ferns and lycophytes in *The evolution of genetic systems* (Oliver and Boyd, 1958).
30. Ellis, T. H. N. & Moore, G. Recombination, and chromosomes in a changing environment. *New Phytol.* 195, 8–9 (2012).
31. Bedini, G., Garbari, F. & Peruzzi, L. Chromosome number variation of the Italian endemic vascular flora. State-of-the-art, gaps in knowledge and evidence for an exponential relationship among even ploidy levels. *Comp. cytogenet.* 6, 192–211 (2012).
32. Hansen, T. F., Pienaar, J. & Orzack, S. H. A comparative method for studying adaptation to a randomly evolving environment. *Evolution* 62, 1965–1977 (2008).
33. Hansen, T. F. Stabilizing selection and the comparative analysis of adaptation. *Evolution* 51, 1341–1351 (1997).
34. Felsenstein, J. Phylogenies and the comparative method. *Am. Nat.* 125, 1–15 (1985).
35. Bell, G. The masterpiece of nature: the evolution and genetics of sexuality. *University of California Press*, 1982.
36. Gustafsson, Å. Polyploidy, life-form and vegetative reproduction. *Hereditas* 34, 1–22 (1948).
37. Peruzzi, L., Goralski, G., Joachimiak, A. J. & Bedini, G. Does actually mean chromosome number increase with latitude in vascular plants? An answer from the comparison of Italian, Slovak and Polish floras. *Comp. Cytogenet.* 6, 371–377 (2012).
38. Love, A. & Love, D. Arctic polyploidy. *Proceedings of the Genetics Society of Canada* 2, 23–27 (1957).
39. Hair, J. B. Biosystematics of the New Zealand flora 1945–1964. *New Zeal. J. Bot.* 4, 559–595 (1966).
40. Hansen, T. F., Pienaar, J. & Orzack, S. H. A comparative method for studying adaptation to a randomly evolving environment. *Evolution* 62, 1965–1977 (2008).
41. Hansen, T. F. Stabilizing selection and the comparative analysis of adaptation. *Evolution* 51, 1341–1351 (1997).
42. Felsenstein, J. Phylogenies and the comparative method. *Am. Nat.* 125, 1–15 (1985).
43. Bell, G. The masterpiece of nature: the evolution and genetics of sexuality. *University of California Press*, 1982.
44. Gustafsson, Å. Polyploidy, life-form and vegetative reproduction. *Hereditas* 34, 1–22 (1948).
45. Peruzzi, L., Goralski, G., Joachimiak, A. J. & Bedini, G. Does actually mean chromosome number increase with latitude in vascular plants? An answer from the comparison of Italian, Slovak and Polish floras. *Comp. Cytogenet.* 6, 371–377 (2012).
46. Love, A. & Love, D. Arctic polyploidy. *Proceedings of the Genetics Society of Canada* 2, 23–27 (1957).
47. Hair, J. B. Biosystematics of the New Zealand flora 1945–1964. *New Zeal. J. Bot.* 4, 559–595 (1966).
48. Hanelt, P. Polyploidy-Frequency and geographical Verbreitung bei hoheren Pflanzen. *Biologische Rundschau* 4, 183–196 (1966).
49. Stebbins, G. L. Polyploidy and the distribution of the arctic-alpine flora: new evidence and a new approach. *Bot. Helvetica* 94, 1–13 (1984).
50. Pettal, C. & Thompson, J. D. Species diversity and ecological range in relation to ploidy level in the flora of the Pyrenees. *Evol. Ecol.* 3, 45–65 (1999).
51. Ramsey, J. & Ramsey, T. S. Ecological studies of polyploidy in the 100 years following its discovery. *Phil. Trans. R. Soc. B* 369, 20130352 (2014).
52. Rice, A. et al. The Chromosome Counts Database (CCDB) – a community resource of plant chromosome numbers. *New Phytol.* 206, 19–26 (2015).
53. Brocchmann, C. et al. Polyploidy in arctic plants. *Biol. J. Linn. Soc.* 82, 521–536 (2004).
54. Solits, D. E., Solits, P. S., Bennett, M. D. & Leitch, I. J. Evolution of genome size in angiosperms. *Am. J. Bot.* 90, 1596–1603 (2003).
55. Leitch, I. J., Solits, D. E., Solits, P. S. & Bennett, M. D. Evolution of DNA amounts across land plants (Embryophyta). *Ann. Bot.* 95, 207–217 (2005).
56. Leitch, I. J., Chase, M. W. & Bennett, M. D. Phylogenetic analysis of DNA C-values provides evidence for a small ancestral genome size in flowering plants. *Ann. Bot.* 82, 85–94 (1998).
57. Escudero, M., Márquez-Corro, J. I. & Hipp, A. L. The phylogenetic origins and evolutionary history of holocentric chromosomes. *Syst. Biol.* 41, 580–585 (2016).
58. Grime, J. P. & Mowforth, M. A. Variation in genome size—an ecological interpretation. *Nature* 299, 151–153 (1982).
59. Veselý, P., Buré, P., Šmrčka, P. & Pavlíček, T. Genome size and DNA base composition of geophytes: the mirror of phytology and ecology? *Ann. Bot.* 109, 65–75 (2011).
60. Cooper, N., Berrill, C. A., Meade, A. & Freckleton, R. P. A cautious note on the use of Ornstein Uhlenbeck models in macroevolutionary studies. *J. Biol. Syst.* 118, 64–77 (2016).
61. Hopp, A. L. Noneuniform processes of chromosome evolution in sedges (*Carex, Cyperaceae*). *Evolution* 61, 2175–2194 (2007).
62. Pardo-Manuel de Villena, F. & Sapienza, C. Recombination is proportional to the number of chromosome arms in mammals. *Mamm. Genome* 12, 318–322 (2001).
63. Mayrose, I., Barker, M. S. & Otto, S. P. Probabilistic models of chromosome number evolution and the inference of polyploidy. *Syst. Biol.* 59, 132–144 (2009).
64. Beaulieu, J. M., Jhwueng, D. C., Boettiger, C. & O’Meara, B. C. Modeling stabilizing selection: expanding the Ornstein–Uhlenbeck model of adaptive evolution. *Evolution* 66, 2369–2383 (2012).
65. Bedini, G., Garbari, F. & Peruzzi, L. *Chromosome base - I Chromosome numbers for the Italian flora*. (2010 onwards), http://bot.biologia.unipi.it/chromosome/ [accessed 12 May 2016].
66. Thompson, J. D. *Plant evolution in the Mediterranean*. (Oxford University Press, 2005).
67. Peruzzi, L. et al. An inventory of the names of vascular plants endemic to Italy, their loci classici and types. *Phytotaxa* 196, 1–217 (2015).
69. Brundu, G. et al. At the intersection of cultural and natural heritage: distribution and conservation of the type localities of the Italian endemic vascular plants. *Biol. Cons.* 214, 109–118 (2017).

70. Garamszegi, L. Z. Uncertainties due to within-species variation in comparative studies: measurement errors and statistical weights in *Modern phylogenetic comparative methods and their application in evolutionary biology* (ed Garamszegi, L. Z.) 157–199 (Springer, 2014).

71. Hansen, T. F. & Bartoszek, K. Interpreting the evolutionary regression: the interplay between observational and biological errors in phylogenetic comparative studies. *Syst. Biol.* 61, 413–425 (2012).

72. Angiosperm Phylogeny Group. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. *Bot. J. Linn. Soc.* 181, 1–20 (2016).

73. Durka, W. & Michalski, S. G. Daphne: a dated phylogeny of a large European flora for phylogenetically informed ecological analyses. *Ecology* 93, 2297–2297 (2012).

74. Peruzzi, L. “x” is not a bias, but a number with real biological significance. *Plant Biosyst.* 147, 1238–1241 (2013).

75. Revell, L. J. *phytools*: an R package for phylogenetic comparative biology (and other things). *Methods Ecol. Evol.* 3, 217–223 (2012).

76. R Development Core Team. *R: a language and environment for statistical computing*. Vienna, Austria: R Foundation for Statistical Computing (2015).

77. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. *Int. J. Climatol.* 25, 1965–1978 (2005).

78. Pignatti, S. *Flora d’Italia* (Edagricole, 1982).

79. Pignatti, S., Menegoni, P. & Pietrosanti, S. Indicazione attraverso le piante vascolari. Valori di indicazione secondo Ellenberg (Zeigerwerte) per le specie della Flora d’Italia. *Braun-Blanqueta* 3, 91–97 (2005).

80. Burnham, K. P. & Anderson, D. R. Multimodel inference understanding AIC and BIC in model selection. *Sociol. Methods Res.* 33, 261–304 (2004).

Acknowledgements
We thank Thomas F. Hansen (Oslo) for his help in using the SLOUCH program.

Author Contributions
A.C. planned and designed the research, analysed data and wrote part of the manuscript. L.P. and G.B. contributed to successive versions of the manuscript and assisted in solving theoretical and nomenclatural issues and chromosome numbers acquisition. All authors read and approved the final manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-32515-x.

Competing Interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018