Review

Tuning Functionalized Ionic Liquids for CO₂ Capture

Ruina Zhang, Quanli Ke, Zekai Zhang, Bing Zhou, Guokai Cui * and Hanfeng Lu *

College of Chemical Engineering, Zhejiang University of Technology, Huzhou 313299, China
* Correspondence: gkcui@zjut.edu.cn (G.C.); luhf@zjut.edu.cn (H.L.)

Abstract: The increasing concentration of CO₂ in the atmosphere is related to global climate change. Carbon capture, utilization, and storage (CCUS) is an important technology to reduce CO₂ emissions and to deal with global climate change. The development of new materials and technologies for efficient CO₂ capture has received increasing attention among global researchers. Ionic liquids (ILs), especially functionalized ILs, with such unique properties as almost no vapor pressure, thermal- and chemical-stability, non-flammability, and tunable properties, have been used in CCUS with great interest. This paper focuses on the development of functionalized ILs for CO₂ capture in the past decade (2012–2022). Functionalized ILs, or task-specific ILs, are ILs with active sites on cations or/and anions. The main contents include three parts: cation-functionalized ILs, anion-functionalized ILs, and cation-anion dual-functionalized ILs for CO₂ capture. In addition, classification, structures, and synthesis of functionalized ILs are also summarized. Finally, future directions, concerns, and prospects for functionalized ILs in CCUS are discussed. This review is beneficial for researchers to obtain an overall understanding of CO₂-philic ILs. This work will open a door to develop novel IL-based solvents and materials for the capture and separation of other gases, such as SO₂, H₂S, NOx, NH₃, and so on.

Keywords: active site; functionalization; task-specific; separation; greenhouse gas control; CCUS; CO₂-philic sorbent; carbon neutral; chemisorption; decarbonization

1. Introduction

According to the report “State of the Global Climate 2021” recently published by the World Meteorological Organization (WMO), CO₂ mole fraction reached new high (413.2 ± 0.2 ppm in 2020, while pre-industrial mole fraction of 278 ppm [1]. The increasing concentration of CO₂ in the atmosphere during these centuries, especially since the 20th century, leads to the greenhouse effect and global climate change. A large amount of all human-produced CO₂ emissions come from the burning of fossil fuels, such as coal, natural gas, and oil, including gasoline.

In recent decades, carbon capture, utilization, and storage (CCUS) has become one of the important technologies to reduce CO₂ emissions [2]. For carbon capture, the common CCUS technologies are based on chemical sorption, physical sorption, membrane separation, calcium looping, etc. For example, aqueous monoethanolamine (30 wt%) process is the current CO₂ capture technology in industry via carbamate mechanism. Although the chemical reaction methods are more efficiency, the regeneration energy consumption of these methods is high [3]. For carbon utilization, the most effective strategy is CO₂ conversion, including thermocatalysis, photocatalysis, or electrocatalysis, of CO₂ cycloaddition reaction, CO₂ reduction reaction (CO₂RR), etc. [4,5]. For example, the final products of the CO₂RR are widely distributed from C₁ (carbon monoxide, formic acid, methane) to C₂ (ethylene, ethanol, acetone, etc.) [6]. However, the CO₂ conversion via CO₂RR approach is still steps away from widespread commercialization. For carbon storage, the widely used way to store captured CO₂ is in deep geological formations, such as oil fields, gas fields, coal seams, and saline aquifers [7]. However, the process increases the amount of energy...
required by power plants. Therefore, alternative CCUS technologies with high efficiency and low energy-consumption are highly desired.

Ionic liquids (ILs) are composed of organic cations and organic or inorganic anions with melting points below 100 °C [8–11]. Their excellent properties, including extremely low vapor pressure, high thermal and chemical stability, wide liquid temperature range, high electrical conductivity and wide electrochemical window, and good solubility for both polar and non-polar compounds, make it possible for ILs to be designed according to needs. Thus, ILs are widely used as green solvents and catalysts in such fields as energy and environment [12–14], chemistry and chemical synthesis [15,16], sorption and separation [17], and pharmaceutics and medicine [18,19]. Compared with conventional methods, ILs, especially functionalized ILs, have been used in CCUS with great interest all over the world due to the advantages of fast absorption, high capacity, low energy-consumption, good stability, and good recyclability.

Several interesting reviews for CO2 capture by ILs have been published during the last few years. For example, Zhang et al. [20] reviewed the IL-based CO2 capture systems from structure and interaction to process. Zhang and Ji et al. [21] reported the reviewing and evaluating of ionic liquids/deep eutectic solvents for CO2 capture. However, it is crucial to review this developing field from a viewpoint of functionalization of ILs with active sites, which is beneficial for researchers to obtain an overall understanding of CO2-philic ILs and grasp the development direction.

In this critical review, we mainly focus on the development of functionalized ILs for CO2 capture in the past 10 years (2012–2022). The main contents include three parts, cation-functionalized ILs, anion-functionalized ILs, and cation-anion dual-functionalized ILs for CO2 capture (Figure 1). Besides, classification, structures, and synthesis of functionalized ILs are also summarized. Finally, future directions, concerns, and prospects for functionalized ILs in CCUS are discussed.

Figure 1. A summary of different kinds of functionalized ILs for CO2 capture.

2. Classification, Structures, and Synthesis of Functionalized ILs
2.1. Classification and Structures of Functionalized ILs

Functionalized ILs (task-specific ILs, or functional ILs) can be simply classified into three categories according to the locations of active sites, including cation-functionalized ILs, anion-functionalized ILs, and cation-anion dual-functionalized ILs. The cation-functionalized ILs and anion-functionalized ILs can be divided into two categories according to the number of functional groups and the mechanism of CO2 capture, including single-site functionalized ILs and multiple-site functionalized ILs. It is clear that cation-anion dual-functionalized ILs are multiple-site functionalized ILs. The main reaction groups with active sites are listed in each category, such as amino, carboxylate, alkoxide, phenolate, and azolate. The structures of cations and anions for synthesis of functionalized ILs are collected in Figure 2.
with active sites are listed in each category, such as amino, carboxylate, alkoxide, pheno-late, and azolate. The structures of cations and anions for synthesis of functionalized ILs are collected in Figure 2.

Figure 2. Structures of typical cations and anions used for designing functionalized ILs.

2.2. Synthesis of Functionalized ILs

Generally, the synthesis of functionalized ILs includes several separated unit operations, such as quaternization, anion-exchange, acid-base neutralization, coordination, etc. According to the structure of functionalized ILs, the methods or pathway for the synthesis
can be typically classified into two categories: direct methods and indirect methods. Direct methods include one of above-mentioned operations, while indirect methods include two or more of above-mentioned operations. The typical strategies for synthesis of functionalized ILs for CO₂ capture can be found in Figure 3.

Figure 3. Typical (a) direct methods and (b) indirect methods for synthesis of functionalized ILs for CO₂ capture.

3. Functionalized ILs for CO₂ Capture

3.1. Cation-Functionalized ILs for CO₂ Capture

3.1.1. Single-Site Mechanisms

It is known that the most studied cation-functionalized ILs for CO₂ capture should be amino-functionalized ILs, which were first reported by Davis et al. [22] in 2002, two decades ago. They showed that 0.5 mole of CO₂ per mole of IL was captured by 1-propylamide-3-butyl imidazolium tetrafluoroborate ([apbim][BF₄]) via a carbamate mechanism (2 amino: 1 CO₂). Compared with conventional alkanolamine aqueous solution (30 wt% monoethanolamine) for CO₂ capture, amino grafted on cations of ILs showed high thermostability [23,24], while amino grafted on ILs showed high capture capacity compared with conventional ILs [25]. Subsequently, a number of amino-grafted cation-functionalized ILs were reported for efficient CO₂ capture [26–30]. The mechanisms of amino–CO₂ reaction in ILs are similar to those in aqueous alkanolamine solutions. Compared with primary and secondary amines, tertiary amine is considered unreactive with CO₂ under anhydrous conditions (Figure 4). However, He et al. [31] reported that tertiary amino-containing Li-chelated
cation-functionalized ILs, [PEG_{150}MeBu_2NLi][Tf_2N] and [PEG_{150}MeTMGl][Tf_2N], could achieve high CO_2 capacities, 0.66 and 0.89 mol CO_2 per mol IL, respectively, via coordination with lithium ion.

(a) primary or secondary amine

\[\text{R-NH} + \text{CO}_2 \rightleftharpoons \text{R-NCO}_2 \]

(b) tertiary amine

with water or alcohol:

\[\text{R-NH} + \text{CO}_2 + \text{H}_2\text{O} \rightarrow \text{R-NCO}_2 + \text{H}_3\text{O}^+ \]

without water or alcohol:

\[\text{R-NH} + \text{CO}_2 \rightarrow \text{R-NCO}_2 \]

Figure 4. General mechanisms of amino-CO_2 reactions for (a) primary or secondary amine, and (b) tertiary amine.

3.1.2. Multiple-Site Mechanisms

Multiple functional sites on the cations are multiple amino groups. For example, Zhang et al. [32] reported CO_2 capture by a dual amino-containing cation-functionalized IL, 1,3-di(2′-aminoethyl)-2-methylimidazolium bromide (DAIL), via a 2:1 carbamate mechanism (amino: CO_2). However, the synthesis of DAIL was not easy. Therefore, other kinds of polyamine-based ILs were developed through acid-base neutralization or metal coordination. Clyburne et al. [33] and Meng et al. [34] studied CO_2 capture by [DETA][NO_3] and [TETA][NO_3] ammonium ILs, which were prepared through acid-base neutralization of diethylenetriamine (DETA) or triethylenetetramine (TETA) with nitric acid. On the other hand, Wang and Dai et al. [35] investigated the CO_2 capture by a series of chelate ILs with multiple Li-coordinated amino groups on the cations, and up to 0.88 and 0.90 mol CO_2 per mol IL could be captured by [Li(HDA)][Tf_2N] and [Li(DOBA)][Tf_2N] at 40 °C and 1 bar, respectively, via a 2:1 mechanism. Subsequently, Wang et al. [36] reported several polyamine-based ILs ([Li(TETA)][Tf_2N], [Li(DETA)][Tf_2N] and [Li(TPEA)][Tf_2N]) and polyalcohol-based ILs ([Li(TEG)][Tf_2N] and [Li(TTEG)][Tf_2N]). The former could chemically absorb CO_2, while the latter could only physically absorb CO_2. Their results showed that CO_2 capacity of polyamine-based ILs increased when [Li(TTEG)][Tf_2N] or [Li(TEG)][Tf_2N] was added, and CO_2 capacity of [Li(TPEA)][Tf_2N]/[Li(TEG)][Tf_2N] (weight ratio is 1:2) decreased from 2.05 to 0.83 mol per CO_2 mol IL at 80 °C when CO_2 concentration was reduced from 100 vol.% to 380 ppm. Recently, Yang, Xing, and Dai et al. [37] reported the tuning of stability constants of metal-amine complexes for efficient CO_2 desorption.

The comparison of the absorption capacities, including molar capacities and corresponding mass capacities, of typical cation-functionalized ILs for CO_2 capture are listed in Table 1.
The comparison of the absorption capacities, including molar capacities and corresponding mass capacities, of typical cation-functionalized ILs for CO2 capture are listed in Table 1.

3.2. Anion-Functionalized ILs for CO2 Capture

Compared with only amino-grafted cations for efficient CO2 capture by ILs, there are numerous kinds of functional groups grafted on anions for efficient CO2 capture. According to their reaction mechanism with CO2, the anion-functionalized ILs can be classified into two categories, including single-site mechanisms and multiple-site mechanisms.

3.2.1. Single-Site Mechanisms

Functionalized ILs with single-site on anions include amino anions, carboxylate anions, alkoxide anion, phenolate anions, and azolate anions. The typical mechanisms for the reaction of non-amino anion-CO2 can be found in Figure 5a.

3.2.2. Multiple-Site Mechanisms

Figure 5. Typical (a) single-site and (b) multiple-site mechanisms of non-amino anion-CO2 reactions.

(a) typical single-site mechanisms

(b) typical multiple-site mechanisms

1. Amino anion functionalized ILs

Typical amino anions are amino acid anions that are prepared via dehydrogenation (or acid-base neutralization). For example, several amino acid ILs (AAILs) ([P4444][Gly], [P4444][Ala], [P4444][β-Ala], [P4444][Ser], and [P4444][Lys]) with high viscosity were first reported by Zhang et al. [38] for CO2 capture through supporting on SiO2, and the absorption following a 2:1 carbamate pathway. However, [P6661][Met] and [P6661][Pro] with large phosphonium cations were reported by Brennecke et al. [39,40] for equimolar absorption of CO2 via a 1:1 mechanism. In order to understand the CO2 absorption mechanisms with AAILs, Xing et al. [41] showed that the actual mechanism went beyond the apparent sto-
chiometry. Take [Gly] and [Met] anions as the examples, although the apparent chemical stoichiometry approached 1:1 and the absorption was previously considered to simply follow the 1:1 mechanism, their results indicated that more than 20% of the CO\textsubscript{2} still was absorbed in the 1:2 reaction mechanism. Recently, Mehrdad et al. [42] investigated three AAILs ([BMIm][Gly], [BMIm][Ala], and [BMIm][Val]) for CO\textsubscript{2} capture via physical and chemical sorption mechanism. However, the hydrogen bond in these AAILs resulted in high viscosity, and the viscosity increased dramatically after the absorption of CO\textsubscript{2}. Therefore, other AAILs supported on porous materials [43–46] or mixed with liquids [33,34] were reported;

(2) Carboxylate anion-functionalized ILs (O-site)

From the 1:1 mechanism of AA ILs with CO\textsubscript{2}, the carboxylate in the AA anions provides a negative charge but seemed to not interact with CO\textsubscript{2}. Through tuning the structure of carboxylate ILs, Ils can also chemically react with CO\textsubscript{2}. 1-Butyl-3-methylimidazolium acetate ([Bmim][Ac]), reported by Maginn et al. [47], was the first carboxylate IL example for efficient CO\textsubscript{2} capture. The reported mechanism of N-heterocyclic carbene – CO\textsubscript{2} was verified by NMR. However, Steckel et al. [48], Shi et al. [49], and Ruiz-López et al. [50] studied the mechanism via ab initio calculations. The results indicated that for glycinate anion, interactions with the amino and carboxylic moieties involved comparable energetics. For example, Tao et al. [51] studied a series of phosphonium carboxylate ILs for CO\textsubscript{2} capture, and butyrate IL could absorb 0.4 mol CO\textsubscript{2} per mol IL. Yunus et al. [52] investigated ammonium carboxylate ILs with different organic acid anions for CO\textsubscript{2} capture at high pressures and obtained the high capacities of ILs with heptanoate anions. Cheng et al. [53] correlated the data of CO\textsubscript{2} solubility in carboxylate-based N-ethylmorpholinium ILs ([NEMH][Ac], [NEMH][Propionate], and [TEAH][Propionate]) with Pitzer’s model and the Soave–Redlich–Kwong cubic equation of state. Similarly, Umekky et al. [54] showed that acetylace tone ILs could also chemically absorb CO\textsubscript{2}:

(3) Alkoxide anion-functionalized ILs (O-site)

The alkoxide is an anion that forms when we remove the hydrogen atom from the –OH group of an alcohol. It was known that switchable solvents, a liquid mixture of an alcohol (e.g., pKa of ethanol in DMSO is 29.8) and a strong organic base (e.g., 1,8-diazabicyclo[5.4.0]undec-7-ene, DBU), could chemically bind CO\textsubscript{2} to form an alkylcarbonate salt through proton transfer from alcohol to superbase [55,56]. Thus, alcohols with the appropriate acidity can be used to synthesize alkoxide ILs through dehydrogenation. Dai et al. [57] reported a series of superbase-derived protic ILs with trifluoroethanolate (TFE, pKa = 23.5), 1-phenyl-2,2,2-trifluoroethanolate (TFPA, pKa = 23), and 2,2,3,3,4,4-hexafluoro-1,5-pentanediolate (HFPD, pKa = 23.2) anions for equimolar CO\textsubscript{2} capture. Subsequently, Liu et al. [58] used [DBUH][TFE] (1.01 mol CO\textsubscript{2} per mol IL) to catalyze CO\textsubscript{2} conversion into quinazoline-2,4(1H,3H)-diones;

(4) Phenolate anion-functionalized ILs (O-site)

With appropriate acidity (pKa = 10 in water), the phenol could be used to form the functional anion, phenolate (or phenoxide), via removal of the hydrogen atom from the –OH group of a phenol to prepare ILs for efficient CO\textsubscript{2} capture. For example, Wang et al. [59] studied a series of phenolate anion-functionalized ILs for CO\textsubscript{2} chemisorption. Through tuning the structure of phenolate anion with different substituents, CO\textsubscript{2} absorption performance could be further regulated. For example, the absorption capacities of [P\textsubscript{66614}[4-Me-PhO], [P\textsubscript{66614}[4-H-PhO], [P\textsubscript{66614}[4-Cl-PhO], [P\textsubscript{66614}[4-CF\textsubscript{3}-PhO], [P\textsubscript{66614][4-NO\textsubscript{2}-PhO], and [P\textsubscript{66614][2,4,6-Cl-PhO] were found to be 0.91, 0.85, 0.82, 0.61, 0.30, and 0.07 mol CO\textsubscript{2} per mol IL, respectively. The same authors also found carbonyl-substituted phenolate ILs, [P\textsubscript{66614][4-Kt-PhO], [P\textsubscript{66614][4-EF-PhO], and [P\textsubscript{66614][4-CHO-PhO] could achieve 1.04, 1.03, and 1.01 mol CO\textsubscript{2} per mol IL at 20 °C and 1 bar, respectively [60]. Additionally, they also synthesized a series of conjugated phenolate ILs and investigated their CO\textsubscript{2} absorption performance [61]. The results showed that the molar ratios of CO\textsubscript{2} to [P\textsubscript{66614][PPhO] and
was an ideal substituent imidazolate IL with desirable absorption enthalpy (−0.75 mol mol⁻¹). On the other hand, the absorption molar capacity of CO₂ was systematically studied [66,69]. The structure and mechanism of azolate–CO₂ capture was found when the IL converted from the trans to cis state. They confirmed that the entropy change was the key influencing factor. Additionally, different from the aminofunctionalized ILs with the viscosity increasing during the CO₂ absorption, the viscosity of the IL [P66614][PCCPhO] was measured to decrease from 810.4 cP to 648.7 cP after absorption of CO₂. Jiang et al. [81] revealed the microscopic origin for the decrease in viscosity after CO₂ absorption by [P66614][Im] via molecular dynamics (MD) simulation. Rogers et al. [76] reviewed the ILs with azolate anions due to their desired properties, including a diffuse ionic charge, tailorable asymmetry, and synthetic flexibility. Azolate anion-functionalized ILs are also reported with the name “aprotic heterocyclic anion” ([AHA]) based ILs. Maginn et al. [82] reported [P66614][2-CN-Pyr] and [P66614][2-CF₃-Pyr] could obtain ~0.9 mol CO₂ per mol IL via a 1:1 mechanism. Brennecke et al. [83,84] investigated the influence of substituent groups on the reaction enthalpy of CO₂–[AHA], and the estimated values range between −57 and −54 kJ mol⁻¹, lower than that of CO₂–MEA (−85 kJ mol⁻¹). The structure and mechanism of azolate–CO₂ was systematically studied.
via DFT calculations, [82] ab initio MD simulation [85–87], Monte Carlo simulation [88], first principles simulations [89,90], and other computer calculations [91,92].

Another reaction pathway was reported. It should be noted that when the anion has a certain basicity for CO$_2$ capture, the basicity of the anion can cause it to pull out an active hydrogen atom on the imidazolium or phosphonium cation to form a carbene or zwitterionic compound (ylide), which could subsequently interact with CO$_2$ to form a carbene–CO$_2$ or ylide–CO$_2$ complex, respectively. Brennecke et al. [93] selected four azolate ILs with different basicity and low basicity for [Tetz] and high basicity for [3-Triz], [4-Triz], and [2-CN-Pyr]. They quantified the amounts of cation–CO$_2$ and anion–CO$_2$ complexes. For [Emim][2-CN-Pyr], 59% of the C2 acidic protons are removed, leaving the carbene to react with CO$_2$ and form the cation–CO$_2$ complex. Chen et al. [94] showed that the more basic [AHA] anion would form carbene–CO$_2$ via DFT. As the formed carbene–CO$_2$ resulted in the reduced efficiency of anions, Wang et al. [95] investigated that substituted imidazolium reduced the amount of carbene–CO$_2$ and increased the amount of azolate–CO$_2$. For the ylide–CO$_2$ pathway, Brennecke et al. [78,96] investigated the cation–anion and [AHA] –CO$_2$ interactions and the quantification of ylide–CO$_2$ in phosphonium ILs. In addition to the azolate anions, the phenolate anions and carboxylate anions can also result in carbene–CO$_2$ in imidazolium ILs [97–99] or ylide–CO$_2$ in phosphonium ILs [100], respectively.

The comparison of the absorption capacities, including molar capacities and corresponding mass capacities, of typical anion-functionalized ILs for CO$_2$ capture via single-site mechanisms are listed in Table 2.

Table 2. Typical anion-functionalized ILs for CO$_2$ capture via single-site mechanisms.

IL	T (°C)	P (bar)	M_w (g mol$^{-1}$)	n CO$_2$/n IL	n CO$_2$/kg IL	g CO$_2$/g IL	Ref.
[P$_{4444}$][Gly]	– 1	333.5	–0.6	~1.80 (0.74)	~0.08 (0.03)	~0.08 (0.03)	[38]
[P$_{4444}$][Ala]	– 1	347.5	–0.67	~1.93 (0.81)	~0.08 (0.04)	~0.08 (0.04)	[38]
[P$_{4444}$][β-Ala]	– 1	347.5	–0.6	~1.73 (0.72)	~0.08 (0.03)	~0.08 (0.03)	[38]
[P$_{66614}$][Met]	22 1	632.1	–0.9	~1.42	–0.06	–0.06	[39]
[P$_{66614}$][Pro]	22 1	598.0	–0.9	~1.51	–0.07	–0.07	[39]
[P$_{4444}$][Butyrate]	40 1	346.5	0.4	1.15	0.05	0.05	[51]
[MTBDH][TFE]	23 1	253.3	1.13	4.46	0.20	0.20	[57]
[MTBDH][TFPA]	23 1	329.4	0.93	2.82	0.12	0.12	[57]
[MTBDH$_2$][HFPD]	23 1	518.5	2.04	3.93	0.17	0.17	[57]
[DBUH][TFE]	r.t. 1	252.3	1.01	4.00	0.18	0.18	[58]
[P$_{66614}$][4-Me-PhO]	30 1	591.0	0.91	1.54	0.07	0.07	[59]
[P$_{66614}$][4-H-PhO]	30 1	577.0	0.85	1.47	0.06	0.06	[59]
[P$_{66614}$][4-Cl-PhO]	30 1	611.4	0.82	1.34	0.06	0.06	[59]
[P$_{66614}$][4-CF$_3$-PhO]	30 1	645.0	0.61	0.95	0.04	0.04	[59]
[P$_{66614}$][4-NO$_2$-PhO]	30 1	622.0	0.30	0.48	0.02	0.02	[59]
[P$_{66614}$][2,4,6-Cl$_3$-PhO]	30 1	680.3	0.07	0.10	0.0044	0.0044	[59]
[P$_{66614}$][4-Kt-PhO]	30 1	619.0	1.04	1.68	0.07	0.07	[60]
[P$_{66614}$][4-EF-PhO]	30 1	649.0	1.03	1.59	0.07	0.07	[60]
[P$_{66614}$][4-CHO-PhO]	30 1	605.0	1.01	1.67	0.07	0.07	[60]
[P$_{66614}$][PPhO]	20 1	653.1	0.93	1.42	0.06	0.06	[61]
[P$_{66614}$][PCCPhO]	20 1	679.1	0.96	1.41	0.06	0.06	[61]
[P$_{4444}$][2-F-PhO]	40 1	370.5	0.67	1.81	0.08	0.08	[62]
[P$_{4444}$][3-F-PhO]	40 1	370.5	0.74	2.00	0.09	0.09	[62]
[P$_{4444}$][4-F-PhO]	40 1	370.5	0.84	2.27	0.10	0.10	[62]
[Na(15-crown-5)][PhO]	25 1	336.4	0.75	2.23	0.10	0.10	[64]
[Na(15-crown-5)][n-C$_3$H$_7$PhO]	25 1	378.4	0.66	1.74	0.08	0.08	[64]
[Na(15-crown-5)][n-C$_6$H$_7$PhO]	25 1	448.6	0.50	1.11	0.05	0.05	[64]
[MTBDH][Im]	23 1	221.3	1.03	4.65	0.20	0.20	[57]
[(P$_2$-Et)H][Im]	23 1	407.5	0.96	2.36	0.10	0.10	[57]
Table 2. Cont.

IL	T (°C)	P (bar)	M_w (g mol$^{-1}$)	n_{CO_2}/n_{IL}	n_{CO_2}/kg_{IL}	g_{CO_2}/g_{IL}	Ref.
[P$_{66614}$][Im]	23	1	550.9	1.00	1.82	0.08	[65]
[TMGHI][Im]	23	1	183.3	1.00	5.46	0.24	[67]
[DBUHI][Im]	25	1	220.3	~0.88	~3.99	~0.18	[69]
[DBNH][Im]	25	1	192.3	0.81	4.76	0.21	[70]
[DMAPAH][Im]	22	1	170.3	0.81	4.76	0.21	[72]
[DMEDAH][Im]	22	1	156.2	0.77	4.93	0.22	[73]
[P$_{66614}$][Pyraz]	23	1	550.9	1.02	1.85	0.08	[65]
[P$_{66614}$][Tetraz]	23	1	552.9	0.08	1.14	0.01	[65]
[P$_{66614}$][Triaz]	23	1	551.9	0.95	1.72	0.08	[65]
[P$_{66614}$][4-CHO-Im]	20	1	578.9	1.24	2.14	0.09	[60]
[P$_{66614}$][4-Br-Im]	20	1	629.8	0.87	1.38	0.06	[66]
[P$_{66614}$][2-CN-Pyr]	22	1	575.0	0.9	1.57	0.07	[82]
[P$_{66614}$][2-CF$_3$-Pyra]	22	1	618.9	0.9	1.45	0.06	[82]

a Molecular weight of pure IL. b Values shown in brackets are based on the total weight of IL + support or IL + solvent. c Immobilization of IL on porous silica gel (SiO$_2$) support (molar ratio of IL: SiO$_2$ is 1:8).

3.2.2. Multiple-Site Mechanism

It is known that single-site in ILs result in up to a 1:1 stoichiometry absorption capacity. However, multiple-site in ILs may not result in doubled capacity. For multiple sites sharing one negative charge, the efficiency of a site may be decreased. Besides, even if the two sites are independent or each has a negative charge, the absorption capacity may not double, due to the complex interactions in ILs. The typical multiple-site mechanisms can be found in Figure 5b.

(1) Multiple same groups in anion-functionalized ILs

As amino group is a functional group for CO$_2$ capture, AAILs based on amino acid anions with multiple amino were developed, including [Lys], [His], [Asn], and [Gln]. For [Lys], the molar ratios of CO$_2$ to [P$_{66614}$][Lys] [101], [N$_{66614}$][Lys] [102], [C$_2$OHi mim][Lys] [103], and [N$_{1,1,6,2O4}$][Lys] [104] were 1.37, 2.1, 1.68, and 1.62, respectively, via the reaction mechanism of 1:1. Different from two amino groups in one anion, CO$_2$ capacities of several dicationic ILs with two amino acid anions [105] or azolate anions [106,107] were reported nearly twice that of the monocationic analogues. Additionally, CO$_2$ absorption capacity of a superbase-derived diolate IL [MTBDH]$^+2$[HFPD]2$^-$ reported by Dai et al. [57] was more than 2.04 mol CO$_2$ per mol IL because of two alkoxide groups. Wang et al. [108] investigated the CO$_2$ capture by a pillar[5]arene-based −10 valent carboxylate anion-functionalized phosphonium IL, [P$_{66614}$][DCP5]. Their results showed that capacities of 5.52 mol CO$_2$ per mol IL and 0.55 mol CO$_2$ per mol carboxylate could be obtained through multiple-site interactions;

(2) Pyridinolate anion-functionalized ILs

Although the N atom in neutral pyridine has poor ability for CO$_2$ capture [109], Wang et al. [110] reported CO$_2$ capture by a series of hydroxypropylene-based anion-functionalized ILs, including [P$_{66614}$][2-Op], [P$_{66614}$][4-Op], [P$_{66614}$][3-Op], etc. The CO$_2$ capacities of these ILs were more than 1 (up to 1.65) mol CO$_2$ mol$^{-1}$ IL due to the cooperative N–CO$_2$ and O–CO$_2$ interactions. Hao and Guan et al. [111] investigated the anion–CO$_2$ interaction in hydroxypropidinate ILs with [P$_{4444}$] or [N$_{4444}$] cations via quantum chemistry calculations. A viscosity as low as 193 cP with an absorption capacity as high as 1.20 mol CO$_2$ per mol IL were obtained by [P$_{4444}$][2-Op]. Lin and Luo et al. [112] investigated a series of hydroxypropylene ILs with different kinds of cations, and the enhanced CO$_2$ capacity up to 1.83 mol CO$_2$ mol$^{-1}$ IL could be obtained at 20 °C and 1 bar via reducing cation-anion interactions. Xu et al. [113] reported that the CO$_2$ capture capacity of ILs with [DBUH] and [TMGHI] cations and hydroxypropidinate anions followed the order of [2-Op]$^- > [4-Op]^- > [3-Op]^-$. The molar ratio of CO$_2$ to [DBUH][2-Op] at 40 °C was up
to ~0.90 mol CO$_2$ per mol IL, similar to azolate ILs. In order to enhance the adsorption kinetics, CO$_2$ capture by [2-Op]-based ILs were performed on porous supports with high capacities [114,115].

(3) Imide anion-functionalized ILs

Imide and amide anions reported to have nucleophilic reactivities [116]. In order to improve CO$_2$ capacity under low concentration CO$_2$ (10 vol%), Cui and Wang et al. [117] synthesized a series of imide anion-functionalized ILs, [P$_{4442}$][Suc] and [P$_{4442}$][DAA]. Through pre-organization strategy, the prepared [P$_{4442}$][Suc] showed a high efficiency on CO$_2$ capture (1.65 mol CO$_2$ mol$^{-1}$ IL for 10 vol% and 1.87 mol CO$_2$ mol$^{-1}$ IL for 100 vol%) via cooperative 3 site (O-N-O)-2–CO$_2$ interaction. Further studies showed that the electro-withdrawing phenyl group on the anion, [Ph-Suc], reduced the CO$_2$ absorption capacity, while the electro-donating cyclohexyl group on the anion, [Cy-Suc], increased the CO$_2$ absorption capacity (1.76 mol CO$_2$ mol$^{-1}$ IL for 10 vol% and 2.21 mol CO$_2$ mol$^{-1}$ IL for 100 vol%) via enhanced cooperation and physical interaction [118]. Additionally, the obtained imide-based ILs are stable in water, and the CO$_2$ absorption could be improved under low water content [119]. The results of thermodynamic studies showed that the absorption was an enthalpy-driven process [120]. Wang et al. [121] reported an aminomethyl-functionalized tetrazolate IL, [P$_{66614}$][MA-Tetz], with a CO$_2$ capacity of 1.13 mol CO$_2$ per mol IL, due to the interaction of one amino group (H-N-H) with two molecules of CO$_2$.

(4) Other multiple-site anion-functionalized ILs

When multiple sites are independent in an anion, they give an opportunity for improving CO$_2$ capture. As amino and carboxylate could both interact with CO$_2$ efficiently, Tao et al. [122] synthesized the [P$_{4442}$][IDA] with a -2 valent amino acid anion, and the improved absorption capacity was 1.69 mol CO$_2$ per mol IL through amino-CO$_2$ and carboxylate-CO$_2$ interactions. Subsequently, Pan and Zou et al. [123] reported a series of AA ILs based on -2 valent amino acid anions. Compared with hydroxyl-containing -1 valent counterparts, alkoxide anion-containing -2 valent AA ILs, [P$_{4442}$][D-Ser] and [P$_{4442}$][L-Ser], showed high CO$_2$ capacity due to the interactions of amino-CO$_2$ and alkoxide-CO$_2$. Luo and Lin et al. [124] reported kinds of -2 valent AA ILs, [P$_{66614}$][AA-R], where R was sulfonate (Su), carboxylate (Ac), imidazolate (Im), or indolate (Ind). The CO$_2$ capacities of [P$_{66614}$][AA-Su], [P$_{66614}$][AA-Ac], [P$_{66614}$][AA-Im], and [P$_{66614}$][AA-Ind] were 0.49, 1.97, 1.55, and 1.45 mol CO$_2$ per mol IL, respectively. The results presented that CO$_2$ capacity increased first and then decreased later with the continuous increase in the activity of the anion site.

On the other hand, when multiple sites are dependent in an anion, their interactions may lead to mutual restraint for CO$_2$ capture. For example, Liu et al. [125] synthesized a -3 valent carboxylate- hydroxypropyridinate- containing anion IL, [P$_{4444}$][2,4-OPym-5-Ac] and found that a CO$_2$ capacity of 1.46 mol CO$_2$ per mol IL could be obtained, lower than the theoretical value. However, Luo and Lin et al. [124] reported a -2 valent IL, [P$_{66614}$][Lam-iPA], with amino functionalized dicarboxylate anion. Their results showed that CO$_2$ capture capacity of this IL was 2.38 mol CO$_2$ per mol IL at 30 °C. Besides, multiple sites dependently shared one negative charge, resulting in decreased efficiency of CO$_2$ capture. Wang and MacFarlane et al. [126] studied CO$_2$ capture by an amino-containing hydroxypropyridinate anion-functionalized ILs with the capacity of 0.87~0.99 mol CO$_2$ per mol IL. The NMR results indicated the primary reaction of amino-CO$_2$ and the lesser reaction of phenolate-CO$_2$. Tao et al. [127] reported CO$_2$ capture by amino-functionalized triazolate anion ILs, [Bmin][ATZ] and [Emim][ATZ], with a capacity as low as 0.14 and 0.13 mol CO$_2$ per mol IL, respectively, via physical interaction.

The comparison of the absorption capacities, including molar capacities and corresponding mass capacities, of typical anion-functionalized ILs for CO$_2$ capture via multiple-site mechanisms are listed in Table 3.
Table 3. Typical anion-functionalized ILs for CO₂ capture via multiple-site mechanisms.

IL	T (°C)	P (bar)	M_w (g mol⁻¹)	n_CO₂/n_IL	n_CO₂/kg IL	g_CO₂/g IL	Ref.
[P₆₆₆₁₄][Lys]	22	1	629.0	1.37	2.18	0.10	[101]
[N₆₆₆₁₄][Lys]	22	1	612.1	2.1	3.43	0.15	[102]
[C₂OHmim][Lys]	30	1	272.3	1.68	6.17	0.27	[103]
[N₁₆₂₂₀][Lys]	20	1	375.6	1.62	4.31	0.19	[104]
[N₆₆₆₁₄][His]	22	1	612.0	1.9	3.10	0.14	[102]
[N₆₆₆₁₄][Asn]	22	1	598.0	2.0	3.34	0.15	[102]
[N₆₆₆₁₄][Gln]	22	1	612.1	1.9	3.10	0.14	[102]
[MTBDH]₂[HFPD]	23	1	518.5	2.04	3.93	0.17	[57]
[P₆₆₆₁₄][10DCP5]	50	1	6019.5	5.52	0.92	0.04	[108]
[P₆₆₆₁₄][2-Op]	20	1	578.0	1.58	2.73	0.12	[110]
[P₆₆₆₁₄][4-Op]	20	1	578.0	1.49	2.58	0.11	[110]
[P₆₆₆₁₄][3-Op]	20	1	578.0	1.38	2.39	0.11	[110]
[P₄₄₄₂][2-Op]	30	1	325.5	1.40	4.30	0.19	[112]
[N₄₄₄₂][2-Op]	30	1	308.5	1.24	4.02	0.18	[112]
[Bmim][2-Op]	30	1	233.3	1.02	4.37	0.19	[112]
[P₄₄₄₂][2-Op]	30	1	314.5	0.94	2.75	0.12	[112]
[N₄₄₄₂][2-Op]	30	1	375.9	1.69	4.45	0.20	[112]
[P₄₄₄₂][2-Op]	30	1	375.9	1.83	4.82	0.21	[112]
[P₄₄₄₂][2-Op]	40	1	247.3	~0.86	~3.48	~0.15	[113]
[TMGH][2-Op]	40	1	254.3	~0.82	~3.90	~0.17	[113]
[P₄₄₄₂][Succ]	20	1	329.5	1.87	5.68	0.25	[117]
[P₄₄₄₂][Succ]	20	0.1	329.5	1.65	5.01	0.22	[117]
[P₄₄₄₂][DA]	20	0.1	331.5	1.25	3.77	0.17	[117]
[P₄₄₄₂][DA]	20	0.1	331.5	1.12	3.38	0.15	[117]
[P₄₄₄₂][Cy-Succ]	20	0.1	383.6	2.21	5.76	0.25	[118]
[P₄₄₄₂][Ph-Succ]	20	0.1	377.5	1.0	2.65	0.12	[118]
[P₆₆₆₁₄][MA-Tetz]	30	1	581.9	1.13	1.94	0.09	[121]
[P₄₄₄₂][DA]	40	1	593.8	1.69	2.85	0.13	[122]
[P₄₄₄₂][DA]	25	1	568.8	1.06	1.87	0.08	[123]
[P₄₄₄₂][DSer]	25	1	568.8	1.10	1.94	0.09	[123]
[P₆₆₆₁₄][AA-Su]	30	1	1148.9	1.48	2.29	0.06	[124]
[P₆₆₆₁₄][AA-Ac]	30	1	1120.9	1.55	2.18	0.06	[124]
[P₆₆₆₁₄][AA-Im]	30	1	1169.9	1.45	1.24	0.05	[124]
[P₆₆₆₁₄][AA-Ind]	30	1	1146.8	2.38	2.08	0.09	[124]

3.3. Cation-Anion Dual-Functionalized ILs for CO₂ Capture

It is clear that functional groups on cations are mainly amino groups. Thus, with the combination of functional cations and functional anions, kinds of dual-functionalized ILs with multiple sites were developed for CO₂ capture.

3.3.1. Amino-Based Cation and Amino-Based Anion

The early dual-functionalized ILs were ILs with amino-functionalized cations with amino acid anions. For example, [aP₄₄₄₃][AA] (Gly, and [Ala]) [128], [aemmim][Tau] [129], [apaeP₄₄₄][AA] ([Lys], [Gly], [Ser], [Ala], [Asp], and [His]) [130], and [AEMP][AA] ([Gly], [Ala], [Pro], and [Leu]) [131], and [APmim][AA] ([Gly], and [Lys]) [132,133] were found to capture CO₂ via 2:1 mechanism (amino:CO₂). Jing et al. [134] used quantum chemical simulation for screening of multi-amino-functionalized ILs for CO₂ capture. Their experimental results confirmed the predictions and the absorption capacities of [TETAH][Lys] (5 amino groups) and [DETAH][Lys] (4 amino groups) were 2.59 and 2.13 mol CO₂ per mol IL, respectively, via 2:1 zwitterionic mechanism.

3.3. Cation-Anion Dual-Functionalized ILs for CO₂ Capture

It is clear that functional groups on cations are mainly amino groups. Thus, with the combination of functional cations and functional anions, kinds of dual-functionalized ILs with multiple sites were developed for CO₂ capture.

3.3.1. Amino-Based Cation and Amino-Based Anion

The early dual-functionalized ILs were ILs with amino-functionalized cations with amino acid anions. For example, [aP₄₄₄₃][AA] (Gly, and [Ala]) [128], [aemmim][Tau] [129], [apaeP₄₄₄][AA] ([Lys], [Gly], [Ser], [Ala], [Asp], and [His]) [130], and [AEMP][AA] ([Gly], [Ala], [Pro], and [Leu]) [131], and [APmim][AA] ([Gly] and [Lys]) [132,133] were found to capture CO₂ via 2:1 mechanism (amino:CO₂). Jing et al. [134] used quantum chemical simulation for screening of multi-amino-functionalized ILs for CO₂ capture. Their experimental results confirmed the predictions and the absorption capacities of [TETAH][Lys] (5 amino groups) and [DETAH][Lys] (4 amino groups) were 2.59 and 2.13 mol CO₂ per mol IL, respectively, via 2:1 zwitterionic mechanism.
3.3.3. Amino-Based Cation and Phenolate Anion

Based on the high reactivity of phenolate anions for CO₂ capture, Ye and Li et al. [135] reported that the CO₂ absorption capacities of supported dual functionalized phosphonium ILs [aP₄₄₄₃][2-Op] and [aP₄₄₄₃][2-Np] were 1.57 and 1.88 mol CO₂ per mol IL, respectively, via 2:1 mechanism of amino-CO₂ and 1:1 mechanism of phenolate-CO₂ mechanism. Recently, Wang et al. [136] reported two dual-functionalized protic ILs, dimethylethlenediamine 4-fluorophenolate ([DMEDA][4-F-PhO]) and dimethylethlenediamine acetate ([DMEDA][OAc]) to investigate the different chemisorption mechanisms via DFT study. Their results showed that, for [DMEDA][4-F-PhO], phenolate-CO₂ was favorable in kinetics and amino-CO₂ was thermodynamically beneficial; for [DMEDA][OAc], amino-CO₂ was favorable with proton-transfer to weak acid anion.

3.3.3. Amino-Based Cation and Azolate Anion

Based on the high reactivity of azolate anions for CO₂ capture, Ye and Li et al. [135] reported that the CO₂ absorption capacities of supported dual functionalized phosphonium IL [aP₄₄₄₃][Triz] was 1.32 mol CO₂ per mol IL via 1:1 mechanism of azolate-CO₂ mechanism. Considering the metal coordination of amino groups as well as the CO₂-pholic azolate anions, Xu et al. reported a series of polyamine-based dual-functionalized azolate ILs with different structures of polyamines, metal ions, and azolate anions. For example, CO₂ capacities of [Na(MDEA)][OAc] [137], [K(DGA)][Im] [138], and [K(AMP)][Im] [139], were 0.75 (80 °C), 1.37 (60 °C), and 1.19 (60 °C) mol CO₂ per mol IL, respectively, via reactions of amino-CO₂ and azolate-CO₂.

The comparison of the absorption capacities, including molar capacities and corresponding mass capacities, of typical cation-anion dual-functionalized ILs for CO₂ capture are listed in Table 4.

Table 4. Typical cation-anion dual-functionalized ILs for CO₂ capture.

IL	T (°C)	P (bar)	M[n] (g mol⁻¹)	n CO₂/n IL	n CO₂/g IL	g CO₂/g IL
[aP₄₄₄₃][Gly]⁺⁺	40	1	292.4	2.59	8.86	0.39 [134]
[aP₄₄₄₃][Ala]⁺⁺	30	1	285.4	1.50	6.71	0.27 [132]
[aemmim][Tau]⁺⁺	40	1	292.4	1.50	6.71	0.27 [132]
[aemme][Lys]⁻⁻	25	1	448.7	1.73	5.76 (1.35)	0.30 (0.06) [131]
[aemme][Gly]⁻⁻	25	1	377.6	1.29	4.26 (1.21)	0.21 (0.05) [131]
[aemme][Ala]⁻⁻	25	1	457.6	1.14	2.91 (1.40)	0.13 (0.06) [131]
[aemme][Asp]⁻⁻	25	1	435.6	1.07	2.46 (1.23)	0.11 (0.05) [131]
[aemme][His]⁻⁻	25	1	457.6	1.01	2.21 (1.11)	0.10 (0.05) [131]
[EEMP][Gly]⁻⁻	25	1	232.3	1.57	6.76 (1.35)	0.30 (0.06) [131]
[EEMP][Ala]⁻⁻	25	1	258.4	1.54	5.96 (1.19)	0.26 (0.05) [131]
[EEMP][Pro]⁻⁻	25	1	274.4	1.47	5.36 (1.07)	0.24 (0.05) [131]
[EEMP][Leu]⁻⁻	25	1	274.4	1.47	5.36 (1.07)	0.24 (0.05) [131]
[AFmmim][Gly]⁺⁺	30	1	214.3	1.23	4.31	0.19 [133]
[AFmmim][Lys]⁺⁺	30	1	285.4	1.80	6.71	0.27 [132]
[TETAH][Lys]⁺⁺	40	1	292.4	2.59	8.86	0.39 [134]
[DETAH][Lys]⁺⁺	40	1	249.4	2.13	8.55	0.38 [134]
[aP₄₄₄₃][2-Op]⁺⁺	30	1	353.5	1.88	5.32	0.23 [135]
[aP₄₄₄₃][2-Np]⁺⁺	30	1	328.5	1.32	4.02	0.18 [135]
[Na(MDEA)][2-Pyrz]⁺⁺	80	1	328.4	0.75	2.28	0.10 [137]
[K(DGA)][2-Op]⁺⁺	60	1	316.4	1.37	4.33	0.19 [138]
[K(AMP)][2-Im]⁺⁺	60	1	284.4	1.19	4.18	0.18 [139]

* a Molecular weight of pure IL. b Values shown in brackets are based on the total weight of IL + support or IL + solvent. c Immobilization of the IL on porous SiO₂ support (molar ratio of IL: SiO₂ is 1:8), and absorption by SiO₂ is subtracted. d Immobilization of the IL on porous SiO₂ support (mass ratio of IL: SiO₂ is 1:4). e Immobilization of the IL on porous SiO₂ support (mass ratio of IL: SiO₂ is 1:8). f Mixed with H₂O (IL concentration: 0.5 mol L⁻¹).
4. Conclusions and Outlook

It is known that functionalized ILs started in 2002, and it has been just two decades. Due to the designable and tunable structures of ILs, functionalized ILs have developed rapidly in the past ten years (2012–2022). CO$_2$-philic active sites can be tethered to the cations and anions, forming cation-functionalized ILs, anion-functionalized ILs, and cation-anion dual-functionalized ILs. Compared with conventional ILs for physisorption of CO$_2$, functionalized ILs or task-specific ILs could chemically absorb CO$_2$ through single-site mechanisms or multiple-site mechanisms. Based on the research results, we can safely conclude that efficient absorption of CO$_2$ with a high capacity, low energy consumption, and high reversibility could be reached through tuning the structures of functionalized ILs and regulating the interactions between active sites and CO$_2$. Nonetheless, for large-scale industrial application of IL-based CCUS technology, we also need to consider the following issues:

(1) Reaction mechanism of functionalized IL-CO$_2$ needs to be investigated further;
(2) A large amount of CO$_2$ absorption experiments was tested at room temperature and atmospheric pressure, but the temperature of flue gas is high (50~80 °C) and the concentration of CO$_2$ is low (10~15 vol%), there is still a big gap between laboratory research and industrial application;
(3) The selective capture of CO$_2$ and the deactivation of functionalized ILs under other gases conditions (H$_2$O, SO$_2$, NOx, etc.) should be studied;
(4) Compared with conventional absorbents such as alkanolamine aqueous solutions, pure functionalized ILs have higher viscosity and cost;
(5) It is important to investigate capture efficiency in mass absorption capacity or gravimetric capacity in order to better comparison and realize the competitive ILs. Thus, functionalized ILs with high mass absorption capacity should be developed.
(6) The regeneration of the ILs is also important and related to energetic consume and the absorption cost. Thus, the absorption enthalpies should be investigated.

Here are some suggestions or strategies to address the aforementioned issues:

(1) A combination of NMR and IR analysis and chemical calculations can be used to investigate the absorption mechanisms of active sites on the ILs with CO$_2$;
(2) The performance of CO$_2$ capture is affected by absorption temperature and CO$_2$ partial pressure. Due to the tunable structure and property of ILs, design functionalized ILs with high active sites is an efficient way to help ILs applicate in industry;
(3) H$_2$O, SO$_2$, NOx, etc. will lead to a decrease in the activity of ILs, especially ILs with strong basicity. Thus, these impurities should first be removed. For example, ILs with weak basicity for SO$_2$ or NOx removal and ILs with strong basicity for CO$_2$ removal;
(4) Functionalized ILs with a low viscosity could be synthesized through tuning the structures of cation and anion. Besides, the viscosity of amine-containing functionalized ILs or protic ILs were reported to be increased during the absorption of CO$_2$, while for amine-free functionalized ILs and aprotic ILs no obvious change during CO$_2$ capture was reported due to the absence of strong hydrogen bonded networks in these ILs (Table 5);
(5) Aqueous monoethanolamine (30 wt%) process is the current CO$_2$ capture technology in industry with a mass capacity of ~7 wt%. It can be found in Tables 1–4 that functionalized ILs with a high molecular weight resulted in a high molar capacity but a low mass capacity. Functionalized ILs with a high molar capacity open the door to developing functionalized ILs with a high mass capacity via combining functional sites and a small molecular weight;
(6) High regeneration or reversibility of the ILs for CO$_2$ capture needs weak interactions or low absorption enthalpies, which always results in low efficiency. Thus, functionalized ILs is always accompanied by high energy consumption. However, the results from CO$_2$ capture by preorganized imide-based ILs indicate that multiple weak interactions
also lead to strong adsorption and high capacity, even under low concentrations of CO₂.

Table 5. The viscosities of typical functionalized ILs before and after CO₂ capture.

IL	T (°C)	P (bar)	Viscosity of IL (cP)	Viscosity of IL + CO₂ (cP)	Viscosity Increase (fold)	Ref.
[APbim][BF₄]	22	1	-	-	Dramatic increase	[22]
[P₆₆₆₁₄][Pyr]	23	1	245.4	555.1	2.26	[65]
[P₆₆₆₁₄][Oxa]	23	1	555.5	1145.8	2.06	[65]
[P₆₆₆₁₄][PhO]	23	1	390.3	645.4	1.65	[65]
[P₆₆₆₁₄][Im]	23	1	810.4	648.7	0.84	[65]
[P₆₆₆₁₄][2-CN-Pyr]	25	1	360	370	1.03	[82]
[P₆₆₆₁₄][3-CF₃-Pyr]	25	1	270	500	1.85	[82]
[P₆₆₆₁₄][Pro]	20	1	1000	1700	1.7	[101]
[P₆₆₆₁₄][Met]	25	1	350	33,000	94	[101]
[P₆₆₆₁₄][Lys]	20	1	1000	280,000	280	[101]
[P₆₆₆₁₄][Tau]	25	1	670	44,000	66	[101]
[P₆₆₆₁₄][2-Op]	20	1	573	2273	4	[110]
[P₄₄₄₂][Suc]	20	0.1	998	629	0.63	[117]
[P₄₄₄₂][DAA]	20	0.1	605	147	0.24	[117]
[P₄₄₄₂][IDA]	40	1	66.2	961.6	14.5	[122]
[aP₄₄₄₃][Gly]	25	1	713.9	-	Dramatic increase	[128]
[Nat(MDEA)₂][Pyrz]	50	1	1310	713.9	0.54	[137]

Therefore, continuously developing novel functional IL-based CO₂-phlic solvents or sorbents and systematically studying the reaction mechanism of CO₂ with active sites under different conditions are the main concern of IL-based CCUS technologies in order to realize large-scale, rapid, economical, efficient, and reversible absorption of CO₂ in the flue gas.

Author Contributions: Conceptualization and project administration, G.C.; writing—original draft preparation and visualization, R.Z.; writing—review and editing, G.C.; funding acquisition, G.C. and H.L.; validation, Q.K. and Z.Z.; formal analysis, B.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by the National Natural Science Foundation of China (No. 22078294), the Zhejiang Provincial Natural Science Foundation of China (No. LZ21E80001 and LGF20E080018), and the Zhejiang Tiandi Environmental Protection Technology Co., Ltd. “Development of Ionic Liquid Absorbents for Carbon Dioxide Capture with Green and Low Energy Consumption” Technology Project (No. TD-KJ-22-007-W001).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. World Meteorological Organization. State of the Global Climate 2021; WMO-No. 1290; WMO: Geneva, Switzerland, 2022. Available online: https://library.wmo.int/index.php?lvl=notice_display&id=22080 (accessed on 1 August 2022).
2. Chen, S.; Liu, J.; Zhang, Q.; Teng, F.; McLellan, B.C. A critical review on deployment planning and risk analysis of carbon capture, utilization, and storage (CCUS) toward carbon neutrality. Renew. Sustain. Energy Rev. 2022, 167, 112537. [CrossRef]
3. Chen, H.; Tsai, T.-C.; Tan, C.-S. CO₂ capture using amino acid sodium salt mixed with alkanolamines. Int. J. Greenh. Gas Control 2018, 79, 127–133. [CrossRef]
4. Bhalothia, D.; Hsiung, W.-H.; Yang, S.-S.; Yan, C.; Chen, P.-C.; Lin, T.-H.; Wu, S.-C.; Chen, P.-C.; Wang, K.-W.; Lin, M.-W.; et al. Submillisecond Laser Annealing Induced Surface and Subsurface Restructuring of Cu–Ni–Pd Trimetallic Nanocatalyst Promotes Thermal CO₂ Reduction. ACS Appl. Energy Mater. 2021, 4, 14043–14058. [CrossRef]

5. Zhao, Y.; Han, B.; Liu, Z. Ionic-Liquid-Catalyzed Approaches under Metal-Free Conditions. Accounts Chem. Res. 2021, 54, 3172–3190. [CrossRef]

6. Yan, C.; Wang, C.-H.; Lin, M.; Bhalothia, D.; Yang, S.-S.; Fan, G.-J.; Wang, J.-L.; Chan, T.-S.; Wang, Y.-L.; Tu, X.; et al. Local synergistic collaboration between Pd and local tetrahedral symmetric Ni oxide enables ultra-high-performance CO₂ thermal methanation. J. Mater. Chem. A 2020, 8, 12744–12756. [CrossRef]

7. Bui, M.; Adjiman, C.S.; Bardow, A.; Anthony, E.J.; Boston, A.; Brown, S.; Fennell, P.S.; Fuss, S.; Galindo, A.; Hackett, L.A.; et al. Carbon capture and storage (CCS): The way forward. Energy Environ. Sci. 2018, 11, 1062–1176. [CrossRef]

8. Quintana, A.A.; Sztapka, A.M.; Ebinuma, V.D.C.S.; Agatemor, C. Enabling Sustainable Chemistry with Ionic Liquids and Deep Eutectic Solvents: A Fad or the Future? Angew. Chem. Int. Ed. 2022, 61, e202205609. [CrossRef]

9. Fajardo, O.Y.; Bresme, F.; Kornyshev, A.A.; Urbakh, M. Electrotunable Friction with Ionic Liquid Lubricants: How Important Is the Molecular Structure of the Ions? J. Phys. Chem. Lett. 2015, 6, 3998–4004. [CrossRef]

10. Wang, Y.; He, H.; Wang, C.; Lu, Y.; Dong, K.; Huo, F.; Zhang, S. Insights into Ionic Liquids: From Z-Bonds to Quasi-Liquids. ACS Au 2022, 2, 543–561. [CrossRef]

11. Beil, S.; Markiewicz, M.; Pereira, C.S.; Stepnowski, P.; Thöming, J.; Stolte, S. Toward the Proactive Design of Sustainable Chemicals: Ionic Liquids as a Prime Example. Chem. Rev. 2021, 121, 13132–13173. [CrossRef]

12. Roy, S. Ahmaruzzaman Ionic liquid based composite materials: A versatile materials for remediation of aqueous environmental contaminants. J. Environ. Manag. 2022, 315, 115089. [CrossRef]

13. Tang, X.; Lv, S.; Jiang, K.; Zhou, G.; Liu, X. Recent development of ionic liquid-based electrolytes in lithium-ion batteries. J. Power Sources 2022, 542, 231792. [CrossRef]

14. Sun, L.; Zhao, K.; Chen, Y.; Xu, D.; Zhang, S.; Wang, J. Ionic Liquid-Based Redox Active Electrolytes for Supercapacitors. Adv. Funct. Mater. 2022, 32, 2203611. [CrossRef]

15. Li, Z.; Han, Q.; Wang, K.; Song, S.; Xue, Y.; Ji, X.; Zhai, J.; Huang, Y.; Zhang, S. Ionic liquids as a tunable solvent and modifier for biocatalysis. Catal. Rev. 2022, 117, 1–47. [CrossRef]

16. Tan, X.; Sun, X.; Han, B. Ionic liquid-based electrolytes for CO2 electroreduction and CO2 electroorganic transformation. Natl. Sci. Rev. 2021, 9, nwab022. [CrossRef]

17. Hosseini, A.; Khoshima, A.; Sabzi, M.; Rostam, A. Toward Application of Ionic Liquids to Desulfurization of Fuels: A Review. Energy Fuels 2022, 36, 4119–4152. [CrossRef]

18. Zhuang, W.; Hachem, K.; Bokov, D.; Ansari, M.J.; Nakhjiri, A.T. Ionic liquids in pharmaceutical industry: A systematic review on applications and future perspectives. J. Mol. Liq. 2021, 349, 118145. [CrossRef]

19. Nikfarjam, N.; Ghomi, M.; Agarwal, T.; Hassanpour, M.; Sharifi, E.; Khorsandi, D.; Ali Khan, M.; Rossi, F.; Rossetti, A.; Nazarzadeh Zare, E.; et al. Antimicrobial Ionic Liquid-Based Materials for Biomedical Applications. Adv. Funct. Mater. 2021, 31, 2104148. [CrossRef]

20. Zeng, S.; Zhang, X.; Bai, L.; Zhang, X.; Wang, H.; Wang, J.; Bao, D.; Li, M.; Liu, X.; Zhang, S. Ionic-Liquid-Based CO₂ Capture Systems: Structure, Interaction and Process. Chem. Rev. 2017, 117, 9625–9673. [CrossRef] [PubMed]

21. Liu, Y.; Dai, Z.; Zhang, Z.; Zeng, S.; Li, F.; Zhang, X.; Nie, Y.; Zhang, L.; Zhang, S.; Ji, X. Ionic liquids/deep eutectic solvents for CO₂ capture: Reviewing and evaluating. Green Energy Environ. 2020, 6, 314–328. [CrossRef]

22. Bates, E.D.; Mayton, R.D.; Ntai, I.; Davis, J.H. CO₂ capture by a task-specific ionic liquid. J. Am. Chem. Soc. 2002, 124, 926–927. [CrossRef]

23. Heldebrant, D.J.; Yonker, C.R.; Jessop, P.G.; Phan, L. Organic liquid CO₂ capture agents with high gravimetric CO₂ capacity. Energy Environ. Sci. 2008, 1, 487–493. [CrossRef]

24. Rochelle, G. Conventional amine scrubbing for CO₂ capture. Science 2009, 325, 1652–1654. [CrossRef]

25. Blanchard, L.A.; Hancu, D.; Beckman, J.E.; Brennecke, J.F. Green processing using ionic liquids and CO₂. Nature 1999, 399, 28–29. [CrossRef]

26. Sistla, Y.S.; Khanna, A. Carbon dioxide absorption studies using amine-functionalized ionic liquids. J. Ind. Eng. Chem. 2014, 20, 2497–2509. [CrossRef]

27. Sharma, P.; Park, S.D.; Park, K.T.; Nam, S.C.; Jeong, S.K.; Yoon, Y.I.; Baek, I.H. Solubility of carbon dioxide in amine-functionalized ionic liquids: Role of the anions. Chem. Eng. J. 2012, 193–194, 267–275. [CrossRef]

28. Gutowsky, K.E.; Maginn, E.J. Amine-Functionalized Task-Specific Ionic Liquids: A Mechanistic Explanation for the Dramatic Increase in Viscosity upon Complexation with CO₂ from Molecular Simulation. J. Am. Chem. Soc. 2008, 130, 14690–14704. [CrossRef]

29. Cao, B.; Du, J.; Liu, S.; Zhu, X.; Sun, X.; Sun, H.; Fu, H. Carbon dioxide capture by amino-functionalized ionic liquids: DFT based theoretical analysis substantiated by FT-IR investigation. RSC Adv. 2016, 6, 10462–10470. [CrossRef]

30. Sistla, Y.S.; Khanna, A. CO₂ absorption studies in amino acid-anion based ionic liquids. Chem. Eng. J. 2015, 273, 268–276. [CrossRef]

31. Yang, Z.-Z.; He, L.-N. Efficient CO₂ capture by tertiary amine-functionalized ionic liquids through Li⁺-stabilized zwitterionic adduct formation. Beilstein J. Org. Chem. 2014, 10, 1959–1966. [CrossRef]
32. Zhang, J.; Jia, C.; Dong, H.; Wang, J.; Zhang, X.; Zhang, S. A Novel Dual Amino-Functionalized Cation-Tethered Ionic Liquid for CO2 Capture. *Ind. Eng. Chem. Res.* 2013, 52, 5835–5841. [CrossRef]

33. Doyle, K.A.; Murphy, L.J.; Paula, Z.A.; Land, M.A.; Robertson, K.N.; Clyburne, J.A.C. Characterization of a New Ionic Liquid and Its Use for CO2 Capture from Ambient Air: Studies on Solutions of Diethylenetriamine (DETA) and [DETAH][NO3] in Polyethylene Glycol. *Ind. Eng. Chem. Res.* 2015, 54, 8829–8841. [CrossRef]

34. Hu, P.; Zhang, R.; Liu, Z.; Liu, H.; Xu, C.; Meng, X.; Liang, M.; Liang, S. Absorption Performance and Mechanism of CO2 in Aqueous Solutions of Amine-Based Ionic Liquids. *Energy Fuels* 2015, 29, 6019–6024. [CrossRef]

35. Wang, C.; Guo, Y.; Zhu, X.; Cui, G.; Li, H.; Dai, S. Highly efficient CO2 capture by tunable alkanolamine-based ionic liquids with multidente cation coordination. *Chem. Commun.* 2012, 48, 6526–6528. [CrossRef]

36. Shi, G.; Zhao, H.; Chen, K.; Lin, W.; Li, H.; Wang, C. Efficient capture of CO2 from flue gas at high temperature by tunable polyamine-based hybrid ionic liquids. *AIChE J.* 2019, 66, e16779. [CrossRef]

37. Suo, X.; Yang, Z.; Fu, Y.; Do-Thanh, C.-L.; Maitsev, D.; Luo, H.; Mahurin, S.M.; Jiang, D.-E.; Xing, H.; Dai, S. New-Generation Carbon-Capture Ionic Liquids Regulated by Metal-Ion Coordination. *ChemSusChem* 2015, 15, e202102136. [CrossRef]

38. Zhang, J.; Zhang, S.; Dong, K.; Zhang, Y.; Shen, Y.; Lv, X. Supported Absorption of CO2 by Tetrabutylphosphonium Amino Acid Ionic Liquids. *Chem. A Eur. J.* 2006, 12, 4021–4026. [CrossRef] [PubMed]

39. Gurkan, B.E.; de la Fuente, J.C.; Mindrup, E.M.; Ficke, L.E.; Goodrich, B.F.; Price, E.A.; Schneider, W.F.; Brennecke, J.F. Equimolar CO2 Absorption by Anion-Functionalized Ionic Liquids. *J. Am. Chem. Soc.* 2010, 132, 2116–2117. [CrossRef] [PubMed]

40. Brennecke, J.F.; Gurkan, B.E. Ionic Liquids for CO2 Capture and Emission Reduction. *J. Phys. Chem. Lett.* 2010, 1, 3459–3464. [CrossRef]

41. Yang, Q.; Wang, Z.; Bao, Z.; Zhang, Z.; Yang, Y.; Ren, Q.; Xing, H.; Dai, S. New Insights into CO2 Absorption Mechanisms with Amino-Acid Ionic Liquids. *ChemSusChem* 2016, 9, 806–812. [CrossRef]

42. Noorani, N.; Mehrdad, A. CO2 solubility in some amino acid-based ionic liquids: Measurement, correlation and DFT studies. *Fluid Phase Equilibria* 2020, 517, 112591. [CrossRef]

43. Ren, H.; Shen, H.; Liu, Y. Adsorption of CO2 with tetraethy lammonium glycine ionic liquid modified alumina in the Rotating Adsorption Bed. *J. CO2 Util.* 2022, 58, 101925. [CrossRef]

44. Zhang, W.; Gao, E.; Li, Y.; Bernards, M.T.; Li, Y.; Cao, G.; He, Y.; Shi, Y. Synergistic Enhancement of CO2 Adsorption Capacity and Kinetics in Triethyleneetrammonium Nitrate Proton Ionic Liquid Functionalized SBA. *Energy Fuels* 2019, 33, 8967–8975. [CrossRef]

45. Wang, X.; Akhmedov, N.G.; Duan, Y.; Luebke, D.; Li, B. Immobilization of amino acid ionic liquids into nanoporous microspheres as robust sorbents for CO2 capture. *J. Mater. Chem. A* 2013, 1, 2978–2982. [CrossRef]

46. Zheng, S.; Zeng, S.; Li, Y.; Bai, L.; Bai, Y.; Zhang, X.; Liang, X.; Zhang, S. State of the art of ionic liquid-modified adsorbents for CO2 capture and separation. *AIChE J.* 2022, 68, e17500. [CrossRef]

47. Maginn, E.J. Design and Evaluation of Ionic Liquids as Novel CO2 Absorbents; Quaterly Technical Reports to DOE (Award Number: DE-FG26-04NT42122). 2005. Available online: https://www.semanticscholar.org/paper/Design-and-Evaluation-of-Ionic-Liquids-as-Novel-CO2-Maginn/ae256f654ad690eee1e3c0231154748db89adbbb#citing-papers (accessed on 1 August 2022).

48. Steckel, J.A. Ab Initio Calculations of the Interaction between CO2 and the Acetate Ion. *J. Phys. Chem. A* 2012, 116, 11643–11650. [CrossRef]

49. Shi, W.; Thompson, R.L.; Albenze, E.; Steckel, J.A.; Nulwala, H.B.; Luebke, D.R. Contribution of the Acetate Anion to CO2 Solubility in Ionic Liquids: Theoretical Method Development and Experimental Study. *J. Phys. Chem. B* 2014, 118, 7383–7394. [CrossRef]

50. Harb, W.; Ingrosso, F.; Ruiz-Lopez, M.F. Molecular insights into the carbon dioxide–carboxylate anion interactions and implications for carbon capture. *Theor. Chim. Acta.* 2015, 138, 85. [CrossRef]

51. Chen, F.-F.; Dong, Y.; Sang, X.-Y.; Zhou, Y.; Tao, D.-J. Physicochemical Properties and CO2 Solubility of Tetrabutylphosphonium Carboxylate Ionic Liquids. *Chem. A Eur. J.* 2016, 30, 6205–610. [CrossRef]

52. Zailani, N.H.Z.O.; Yunus, N.M.; Ab Rahim, A.H.; Bustam, M.A. Experimental Investigation on Thermophysical Properties of Ammonium-Based Proton Ionic Liquids and Their Potential Ability towards CO2 Capture. *Molecules* 2022, 27, 851. [CrossRef]

53. Wang, N.; Cheng, H.; Wang, Y.; Yang, Y.; Teng, Y.; Li, C.; Zheng, S. Measuring and modeling the solubility of carbon dioxide in protic ionic liquids. *J. Chem. Thermodyn.* 2017, 106, 10838. [CrossRef]

54. Umecky, T.; Abe, M.; Takamuku, T.; Makino, T.; Kanakubo, M. CO2 absorption features of 1-ethyl-3-methylimidazolium ionic liquids with 2,4-pentanefluoride and its fluorine derivatives. *J. CO2 Util.* 2019, 31, 75–84. [CrossRef]

55. Chen, Y.; Hu, X.; Chen, W.; Liu, C.; Qiao, K.; Zhu, M.; Lou, Y.; Mu, T. High volatility of superbase-derived eutectic solvents used for CO2 capture. *Phys. Chem. Chem. Phys.* 2020, 23, 2193–2210. [CrossRef]

56. Huang, Z.; Jiang, B.; Yang, H.; Wang, B.; Zhang, N.; Dou, H.; Wei, G.; Sun, Y.; Zhang, L. Investigation of glycerol-derived binary and ternary systems in CO2 capture process. *Fuel* 2017, 210, 836–843. [CrossRef]

57. Wang, C.; Luo, H.; Jiang, D.-E.; Li, H.; Dai, S. Carbon Dioxide Capture by Superbase-Derived Protonic Ionic Liquids. *Angev. Chem. Int. Ed.* 2010, 49, 5978–5981. [CrossRef] [PubMed]

58. Zhao, Y.; Yu, B.; Yang, Z.; Zhang, H.; Hao, L.; Gao, X.; Liu, Z. A Proton Ionic Liquid Catalyzes CO2 Conversion at Atmospheric Pressure and Room Temperature: Synthesis of Quinazoline-2,4(1H,3H)-diones. *Angew. Chem. Int. Ed.* 2014, 53, 5922–5925. [CrossRef] [PubMed]
59. Wang, C.; Luo, H.; Li, H.; Zhu, X.; Yu, B.; Dai, S. Tuning the Physicochemical Properties of Diverse Phenolic Ionic Liquids for Equimolar CO$_2$ Capture by the Substituent on the Anion. Chem. A Eur. J. 2012, 18, 2153–2160. [CrossRef] [PubMed]

60. Ding, F.; He, X.; Luo, X.; Lin, W.; Chen, K.; Li, H.; Wang, C. Highly efficient CO$_2$ capture by carbonyl-containing ionic liquids through Lewis acid-base and cooperative C-H-O hydrogen bonding interaction strengthened by the anion. Chem. Commun. 2014, 50, 15041–15044. [CrossRef]

61. Pan, M.; Cao, N.; Lin, W.; Luo, X.; Chen, K.; Che, S.; Li, H.; Wang, C. Reversible CO$_2$ Capture by Conjugated Ionic Liquids through Dynamic Covalent Carbon-Oxygen Bonds. ChemSusChem 2016, 9, 2351–2357. [CrossRef]

62. Zhang, X.; Huang, K.; Xia, S.; Chen, Y.-L.; Wu, Y.-T.; Hu, X.-B. Low-viscous fluorine-substituted phenolic ionic liquids with high performance for capture of CO$_2$. Chem. Eng. J. 2015, 274, 30–38. [CrossRef]

63. Zhao, T.; Zhang, X.; Tu, Z.; Wu, Y.; Hu, X. Low-viscous diamino protic ionic liquids with fluorine-substituted phenolic anions for improving CO$_2$ reversible capture. J. Mol. Liq. 2018, 268, 617–624. [CrossRef]

64. Suo, X.; Yang, Z.; Fu, Y.; Do-Thanh, C.; Chen, H.; Luo, H.; Jiang, D.; Mahurin, S.M.; Xing, H.; Dai, S. CO$_2$ Chemisorption Behavior of Coordination-Derived Phenolate Sorbents. ChemSusChem 2021, 14, 2784. [CrossRef] [PubMed]

65. Wang, C.; Luo, H.; Li, H.; Jiang, D.-E.; Li, H.; Dai, S. Tuning the Basicity of Ionic Liquids for Equimolar CO$_2$ Capture. Angew. Chem. Int. Ed. 2011, 50, 4918–4922. [CrossRef] [PubMed]

66. Cui, G.; Zhao, N.; Wang, J.; Wang, C. Computer-Assisted Design of Imidazolato-Based Ionic Liquids for Improving Sulfur Dioxide Capture, Carbon Dioxide Capture, and Sulfur Dioxide/Carbon Dioxide Selectivity. Chem. Asian J. 2017, 12, 2863–2872. [CrossRef]

67. Lei, X.; Xu, Y.; Zhu, L.; Wang, X. Highly efficient and reversible CO$_2$ capture through 1,1,3,3-tetramethylguanidinium imidazole ionic liquid. RSC Adv. 2014, 4, 7052–7057. [CrossRef]

68. Li, F.; Bai, Y.; Zeng, S.; Liang, X.; Wang, H.; Huo, F.; Zhang, X. Protic ionic liquids with low viscosity for efficient and reversible capture of carbon dioxide. Int. J. Greenh. Gas Control 2019, 90, 102801. [CrossRef]

69. Zhu, X.; Song, M.; Xu, Y. DBU-Based Protic Ionic Liquids for CO$_2$ Capture. ACS Sustain. Chem. Eng. 2017, 5, 8192–8198. [CrossRef]

70. Xu, Y. CO$_2$ absorption behavior of azole-based protic ionic liquids: Influence of the alkalinity and physicochemical properties. J. CO$_2$ Util. 2017, 19, 1–8. [CrossRef]

71. Gao, F.; Wang, Z.; Ji, P.; Cheng, J.-P. CO$_2$ Absorption by DBU-Based Protic Ionic Liquids: Basicity of Anion Dictates the Absorption Capacity and Mechanism. Front. Chem. 2019, 6, 658. [CrossRef]

72. Oncisk, T.; Vijayaraghavan, R.; MacFarlane, D.R. High CO$_2$ absorption by diamino protic ionic liquids using azolide anion. Chem. Commun. 2018, 54, 2106–2109. [CrossRef]

73. Wang, X.; Wu, C.; Yang, Z. D$_2$O Absorption Mechanism by Diamino Protic Ionic Liquids (DPIls) Containing Azolide Anions. Processes 2021, 9, 1023. [CrossRef]

74. Zhang, X.; Xiong, W.; Peng, L.; Wu, Y.; Hu, X. Highly selective absorption separation of H$_2$S and CO$_2$ from CH$_4$ by novel azole-based protic ionic liquids. AIChE J. 2020, 66, e16936. [CrossRef]

75. Zhuo, X.; Song, M.; Ling, B.; Wang, S.; Luo, X. The Highly Efficient Absorption of CO$_2$ by a Novel DBU Based Ionic Liquid. J. Solut. Chem. 2020, 49, 257–271. [CrossRef]

76. Tang, H.; Wu, C. Reactivity of Azole Anions with CO$_2$ from the DFT Perspective. ChemSusChem 2013, 6, 1050–1056. [CrossRef]

77. Fu, H.; Wang, X.; Sang, H.; Fan, R.; Han, Y.; Zhang, J.; Liu, Z. The study of bicyclic amidine-based ionic liquids as promising carbon dioxide capture agents. J. Mol. Liq. 2020, 304, 112805. [CrossRef]

78. Oh, S.; Morales-Collazo, O.; Keller, A.N.; Brennecke, J.F. Cation–Anion and Anion–CO$_2$ Interactions in Triethyl(octyl)phosphonium Ionic Liquids with Aprotic Anionic Liquids (AHAs). J. Phys. Chem. B 2020, 124, 8877–8887. [CrossRef]

79. Keller, A.N.; Bentley, C.L.; Morales-Collazo, O.; Brennecke, J.F. Design and Characterization of Aprotic N-Heterocyclic Anion Ionic Liquids for Carbon Capture. J. Phys. Chem. Eng. 2022, 6, 375–384. [CrossRef]

80. Lin, W.; Pan, M.; Xiao, Q.; Li, H.; Wang, C. Tuning the Capture of CO$_2$ through Entropic Effect Induced by Reversible Trans–Cis Isomerization of Light-Responsive Ionic Liquids. J. Phys. Chem. Lett. 2019, 10, 3346–3351. [CrossRef]

81. Li, A.; Tian, Z.; Yan, T.; Jiang, D.-E.; Dai, S. Anion-Functionalized Task-Specific Ionic Liquids: Molecular Origin of Change in Viscosity upon CO$_2$ Capture. J. Phys. Chem. B 2014, 118, 14880–14887. [CrossRef] [PubMed]

82. Gurkan, B.; Goodrich, B.F.; Mindrup, E.M.; Ficke, L.E.; Massel, M.; Seo, S.; Senfle, T.P.; Wu, H.; Glaser, M.F.; Shah, J.K.; et al. Molecular Design of High Capacity, Low Viscosity, Chemically Tunable Ionic Liquids for CO$_2$ Capture. J. Phys. Chem. Lett. 2010, 1, 3494–3499. [CrossRef]

83. Seo, S.; Quiroz-Guzman, M.; DeSilva, M.A.; Lee, T.B.; Huang, Y.; Goodrich, B.F.; Schneider, W.F.; Brennecke, J.F. Chemically Tunable Ionic Liquids with Aprotic Heterocyclic Anion (AHA) for CO$_2$ Capture. J. Phys. Chem. B 2014, 118, 5740–5751. [CrossRef] [PubMed]

84. Seo, S.; Simon, L.D.; Ma, M.; DeSilva, M.A.; Huang, Y.; Stadtherr, M.A.; Brennecke, J.F. Phase-Change Ionic Liquids for Postcombustion CO$_2$ Capture. Energy Fuels 2014, 28, 5968–5977. [CrossRef]

85. Sheridan, Q.R.; Mullen, R.G.; Lee, T.B.; Maginn, E.J.; Schneider, W.F. Hybrid Computational Strategy for Predicting CO$_2$ Solubilities in Reactive Ionic Liquids. J. Phys. Chem. C 2018, 122, 14213–14221. [CrossRef]

86. Sheridan, Q.R.; Oh, S.; Morales-Collazo, O.; Castner, J.E.W.; Brennecke, J.F.; Maginn, E.J. Liquid Structure of CO$_2$–Reactive Aprotic Heterocyclic Anion Liquids from X-ray Scattering and Molecular Dynamics. J. Phys. Chem. B 2016, 120, 11951–11960. [CrossRef]
87. Wu, H.; Shah, J.K.; Tenney, C.M.; Rosch, T.W.; Maginn, E.J. Structure and Dynamics of Neat and CO2-Reacted Ionic Liquid Tetraethylammonium Carbonate. *Ind. Eng. Chem. Res.* 2011, 50, 8983–8993. [CrossRef]

88. Mullen, R.G.; Corelli, S.A.; Maginn, E.J. Reaction Ensemble Monte Carlo Simulations of CO2 Absorption in the Reactive Ionic Liquid Triethyl(Octyl)phosphonium 2-Cyanopyrrroline. *J. Phys. Chem. Lett.* 2018, 9, 5213–5218. [CrossRef]

89. Wu, C.; Senttie, T.P.; Schneider, W.F. First-principles-guided design of ionic liquids for CO2 capture. *Phys. Chem. Chem. Phys.* 2012, 14, 13163–13170. [CrossRef]

90. Goel, H.; Windom, Z.W.; Jackson, A.A.; Rai, N. CO2 sorption in triethylbutylphosphonium 2-cyanopyrrroline ionic liquid via first principles simulations. *J. Mol. Liq.* 2019, 292, 111323. [CrossRef]

91. Firaha, D.S.; Holloczki, O.; Kirchner, B. Computer-Aided Design of Ionic Liquids as CO2 Absorbers. *Angew. Chem. Int. Ed.* 2015, 54, 7805–7809. [CrossRef] [PubMed]

92. Sheridan, Q.R.; Schneider, W.F.; Maginn, E.J. Role of Molecular Modeling in the Development of CO2–Reactive Ionic Liquids. *Chem. Rev.* 2018, 118, 5242–5260. [CrossRef]

93. Oh, S.; Morales-Collazo, O.; Brennecke, J.F. Cation–Anion Interactions in 1-Ethyl-3-methylimidazolium-Based Ionic Liquids with Aprotic Heterocyclic Anions (AHAs). *J. Phys. Chem. B* 2019, 123, 8274–8284. [CrossRef]

94. Hu, J.; Chen, L.; Shi, M.; Zhang, C. A quantum chemistry study for 1-ethyl-3-methylimidazolium ion liquids with aprotic heterocyclic anions applied to carbon dioxide absorption. *Fluid Phase Equilibria* 2018, 459, 208–218. [CrossRef]

95. Mei, K.; He, X.; Chen, K.; Zhou, X.; Li, H.; Wang, C. Highly Efficient CO2 Capture by Imidazolato Ionic Liquids Through a Reduction in the Formation of the Carbene–CO2 Complex. *Ind. Eng. Chem. Res.* 2017, 56, 8066–8072. [CrossRef]

96. Gohndrone, T.R.; Song, T.; DeSilva, M.A.; Brennecke, J.F. Quantification of Ylide Formation in Phosphonium-Based Ionic Liquids Reacted with CO2. *J. Phys. Chem. B* 2021, 125, 6649–6657. [CrossRef]

97. Gaurau, G.; Rodriguez, H.; Kelley, S.P.; Janícek, P.; Kalb, R.S.; Rogers, R.D. Demonstration of Chemisorption of Carbon Dioxide in 1,3-Dialkylimidazolium Acetate Ionic Liquids. *Angew. Chem. Int. Ed.* 2011, 50, 12024–12026. [CrossRef]

98. Zhang, X.; Xiong, W.; Tu, Z.; Peng, L.; Wu, Y.; Hu, X. Supported Ionic Liquid Membranes with Dual-Site Interaction Mechanism for Efficient Separation of CO2. *ACS Sustain. Chem. Eng.* 2019, 7, 10792–10799. [CrossRef]

99. Hu, X.; Wang, J.; Mei, M.; Song, Z.; Cheng, H.; Chen, L.; Qi, Z. Transformation of CO2 incorporated in adducts of N-heterocyclic carbene into dialkyl carbones under ambient conditions: An experimental and mechanistic study. *Chem. Eng. J.* 2021, 413, 127469. [CrossRef]

100. Lee, T.B.; Oh, S.; Gohndrone, T.R.; Morales-Collazo, O.; Seo, S.; Brennecke, J.F.; Schneider, W.F. CO2 Chemistry of Phenol-Based Ionic Liquids. *J. Phys. Chem. B* 2016, 120, 1509–1517. [CrossRef]

101. Goodrich, B.F.; de la Fuente, J.C.; Gurkan, B.E.; Lopez, Z.K.; Price, E.A.; Huang, Y.; Brennecke, J.F. Effect of Water and Temperature on Absorption of CO2 by Amine-Functionalized Anion-Tethered Ionic Liquids. *J. Phys. Chem. B* 2011, 115, 9140–9150. [CrossRef]

102. Saravanamurugan, S.; Kunov-Kruse, A.J.; Fehrmann, R.; Riisager, A. Amine-functionalized amino acid-based ionic liquids as efficient and high-capacity absorbents for CO2. *ChemSusChem* 2014, 7, 897–902. [CrossRef]

103. Li, S.; Zhao, C.; Sun, C.; Shi, Y.; Li, W. Reaction Mechanism and Kinetics Study of CO2 Absorption into [C2OHmim][Lys]. *Energy Fuels* 2016, 30, 8535–8544. [CrossRef]

104. Bhattacharyya, S.; Shah, F.U. Ether Functionalized Choline Tethered Amino Acid Ionic Liquids for Enhanced CO2 Capture. *ACS Sustain. Chem. Eng.* 2016, 4, 5441–5449. [CrossRef]

105. Ma, J.-W.; Zhou, Z.; Zhang, F.; Fang, C.-G.; Wu, Y.-T.; Zhang, Z.-B.; Li, A.-M. Ditetraalkylammonium Amino Acid Ionic Liquids as Enhanced and High-Capacity Absorbents of CO2. *Environ. Sci. Technol.* 2017, 51, 208–218. [CrossRef]

106. Zhang, Y.; Wu, Z.; Chen, S.; Yu, P.; Luo, Y. CO2 Capture by Imidazolato-Based Ionic Liquids: Effect of Functionalized Cation and Dication. *Ind. Eng. Chem. Res.* 2013, 52, 6069–6075. [CrossRef]

107. Zhang, Y.; Li, T.; Wu, Z.; Yu, P.; Luo, Y. Synthesis and thermophysical properties of imidazolato-based ionic liquids: Influences of different cations and anions. *J. Chem. Thermodyn.* 2014, 74, 209–215. [CrossRef]

108. Lin, W.; Cai, Z.; Lv, X.; Xiao, Q.; Chen, K.; Li, H.; Wang, C. Significantly Enhanced Carbon Dioxide Capture by Anion-Functionalized Liquid Pillar[5]arene through Multiple-Site Interactions. *Ind. Eng. Chem. Res.* 2019, 58, 16894–16900. [CrossRef]

109. Singh, P.; Niederer, J.P.; Versteeg, G.F. Structure and activity relationships for amine-based CO2 absorbents-II. *Chem. Eng. Res. Des.* 2009, 87, 135–144. [CrossRef]

110. Luo, X.; Guo, Y.; Ding, F.; Zhao, H.; Cui, G.; Li, H.; Wang, C. Significant Improvements in CO2 Capture by Pyridine-Containing Anion-Functionalized Ionic Liquids Through Multiple-Site Cooperative Interactions. *Angew. Chem. Int. Ed.* 2014, 53, 7053–7057. [CrossRef]

111. An, X.; Du, X.; Duan, D.; Shi, L.; Hao, X.; Lu, H.; Guan, G.; Peng, C. An absorption mechanism and polarity-induced viscosity model for CO2 capture using hydroxypyridine-based ionic liquids. *Phys. Chem. Chem. Phys.* 2016, 19, 1134–1142. [CrossRef] [PubMed]

112. Luo, X.-Y.; Chen, X.-Y.; Qiu, R.-X.; Pei, B.-Y.; Wei, Y.; Hu, M.; Lin, J.-Q.; Zhang, J.-Y.; Luo, G.-G. Enhanced CO2 capture by reducing cation–anion interactions in hydroxyl-pyridine anion-based ionic liquids. *Dalton Trans.* 2019, 48, 2300–2307. [CrossRef] [PubMed]

113. Chen, T.; Wu, X.; Xu, Y. Effects of the structure on physicochemical properties and CO2 absorption of hydroxypyridine anion-based protic ionic liquids. *J. Mol. Liq.* 2022, 362, 119743. [CrossRef]

114. Cheng, J.; Li, Y.; Hu, L.; Zhou, J.; Cen, K. CO2 Adsorption Performance of Ionic Liquid [P46614][2-Op] Loaded onto Molecular Sieve MCM-41 Compared to Pure Ionic Liquid in Biohythane/Pure CO2 Atmospheres. *Energy Fuels* 2016, 30, 3251–3256. [CrossRef]
115. Xue, Z.; Feng, L.; Zhu, H.; Huang, R.; Wang, E.; Du, X.; Liu, G.; Hao, X.; Li, K. Pyridine-containing ionic liquids loaded in large mesoporous silica and their rapid CO\textsubscript{2} gas adsorption at low partial pressure. J. CO\textsubscript{2} Util. 2019, 34, 282–292. [CrossRef]
116. Breugst, M.; Tokuyasu, T.; Mayr, H. Nucleophilic Reactivities of Imide and Amide Anions. J. Org. Chem. 2010, 75, 5250–5258. [CrossRef] [PubMed]
117. Huang, Y.; Cui, G.; Zhao, Y.; Wang, H.; Li, Z.; Dai, S.; Wang, J. Preorganization and Cooperation for Highly Efficient and Reversible Capture of Low-Concentration CO\textsubscript{2} by Ionic Liquids. Angew. Chem. Int. Ed. 2017, 56, 13293–13297. [CrossRef]
118. Huang, Y.; Cui, G.; Wang, H.; Li, Z.; Wang, J. Tuning ionic liquids with imide-based anions for highly efficient CO\textsubscript{2} capture through enhanced cooperations. J. CO\textsubscript{2} Util. 2018, 28, 299–305. [CrossRef]
119. Huang, Y.; Cui, G.; Zhao, Y.; Wang, H.; Li, Z.; Dai, S.; Wang, J. Reply to the Correspondence on “Preorganization and Cooperation for Highly Efficient and Reversible Capture of CO\textsubscript{2} by Ionic Liquids”. Angew. Chem. 2018, 58, 386–389. [CrossRef]
120. Huang, Y.; Cui, G.; Wang, H.; Li, Z.; Wang, J. Absorption and thermodynamic properties of CO\textsubscript{2} by amido-containing anion-functionalized ionic liquids. RSC Adv. 2019, 9, 1882–1888. [CrossRef]
121. Luo, X.Y.; Lv, X.Y.; Shi, G.L.; Meng, Q.; Li, H.R.; Wang, C.M. Designing amino-based ionic liquids for improved carbon capture: One amine binds two CO\textsubscript{2}. AIChE J. 2018, 65, 230–238. [CrossRef]
122. Chen, F.-F.; Huang, K.; Zhou, Y.; Tian, Z.-Q.; Zhu, X.; Tao, D.-J.; Jiang, D.-E.; Dai, S. Multi-Molar Absorption of CO\textsubscript{2} by the Activation of Carboxylic Groups in Amino Acid Ionic Liquids. Angew. Chem. Int. Ed. 2016, 55, 7166–7170. [CrossRef]
123. Pan, M.; Zhao, Y.; Zeng, X.; Zou, J. Efficient Absorption of CO\textsubscript{2} by Introduction of Intramolecular Hydrogen Bonding in Chiral Amino Acid Ionic Liquids. Energy Fuels 2018, 32, 6130–6135. [CrossRef]
124. Pan, M.; Vijayaraghavan, R.; Zhou, F.; Kar, M.; Li, H.; Wang, C.; MacFarlane, D.R. Enhanced CO\textsubscript{2} uptake by intramolecular proton transfer reactions in amino-functionalized pyridine-based ILs. Chem. Commun. 2017, 53, 5990–5993. [CrossRef]
125. Zhang, Z.; Zhang, L.; He, L.; Yuan, W.-L.; Xu, D.; Tao, G.-H. Is it Always Chemical When Amino Groups Come Across CO\textsubscript{2}? Anion–Anion-Interaction-Induced Inhibition of Chemical Adsorption. J. Phys. Chem. B 2019, 123, 6536–6542. [CrossRef]
126. Zhang, Y.; Zhang, S.; Lu, X.; Zhou, Q.; Fan, W.; Zhang, X. Dual Amino-Functionalised Phosphonium Ionic Liquids for CO\textsubscript{2} Capture. Chem. A Eur. J. 2009, 15, 3003–3011. [CrossRef]
127. Xue, Z.; Zhang, Z.; Han, J.; Chen, Y.; Mu, T. Carbon dioxide capture by a dual amino ionic liquid with amino-functionalized imidazolium cation and taurine anion. Int. J. Greenh. Gas Control 2011, 5, 628–633. [CrossRef]
128. Pan, M.; Vijayaraghavan, R.; Zhou, F.; Kar, M.; Li, H.; Wang, C.; MacFarlane, D.R. Enhanced CO\textsubscript{2} uptake by intramolecular proton transfer reactions in amino-functionalized pyridine-based ILs. Chem. Commun. 2017, 53, 5990–5993. [CrossRef]
129. Ren, J.; Wu, L.; Li, B.-G. Preparation and CO\textsubscript{2} Sorption/Desorption of N-(3-Aminopropyl)Aminethyl Tributylphosphonium Amino Acid Salt Ionic Liquids Supported into Porous Silica Particles. Ind. Eng. Chem. Res. 2012, 51, 7901–7909. [CrossRef]
130. Peng, H.; Zhou, Y.; Liu, J.; Zhang, H.; Xia, C.; Zhou, X. Synthesis of novel amino-functionalized ionic liquids and their application in carbon dioxide capture. RSC Adv. 2013, 3, 6859–6864. [CrossRef]
131. Zhou, Z.; Zhou, X.; Jing, G.; Lv, B. Evaluation of the Multi-amino Functionalized Ionic Liquid for Efficient Postcombustion CO\textsubscript{2} Capture. Energy Fuels 2016, 30, 7489–7495. [CrossRef]
132. Yu, B.; Jing, G.; Qian, Y.; Zhou, Z. An efficient absorbent of amine-based acid-functionalized ionic liquids for CO\textsubscript{2} capture: High capacity and regeneration ability. Chem. Eng. J. 2016, 289, 212–218. [CrossRef]
133. Jing, G.; Qian, Y.; Zhou, X.; Lv, B.; Zhou, Z. Designing and Screening of Multi-Amino-Functionalized Ionic Liquid Solution for CO\textsubscript{2} Capture by Quantum Chemical Simulation. ACS Sustain. Chem. Eng. 2017, 6, 1182–1191. [CrossRef]
134. Ye, C.-P.; Wang, R.-N.; Gao, X.; Li, W.-Y. CO\textsubscript{2} Capture Performance of Supported Phosphonium Dual Amino-Functionalized Ionic Liquids@MCM-41. Energy Fuels 2020, 34, 14379–14387. [CrossRef]
135. Ma, J.; Wang, Y.; Yang, X.; Zhu, M.; Wang, B. DFT Study on the Chemical Absorption Mechanism of CO\textsubscript{2} in Diamino Protonic Ionic Liquids. J. Phys. Chem. B 2021, 125, 1416–1428. [CrossRef] [PubMed]
136. Qian, W.; Xu, Y.; Xie, B.; Ge, Y.; Shu, H. Alkanolamine-based dual functional ionic liquids with multidentate cation coordination and pyrazolide anion for highly efficient CO\textsubscript{2} capture at relatively high temperature. Int. J. Greenh. Gas Control 2017, 56, 194–201. [CrossRef]
137. Shu, H.; Xu, Y. Tuning the strength of cation coordination interactions of dual functional ionic liquids for improving CO\textsubscript{2} capture performance. Int. J. Greenh. Gas Control 2020, 94, 102934. [CrossRef]
138. Zema, Z.A.; Chen, T.; Shu, H.; Xu, Y. Tuning the CO\textsubscript{2} absorption and physicochemical properties of K+ chelated dual functional ionic liquids by changing the structure of primary alkanolamine ligands. J. Mol. Liq. 2021, 344, 117983. [CrossRef]