For the Quantum Heisenberg Ferromagnet, Some Conjectured Approximations

Paul Federbush
Department of Mathematics
University of Michigan
Ann Arbor, MI 48109-1109
(pfed@math.lsa.umich.edu)

Abstract

We present some conjectured approximations for spin expectations in a Quantum Heisenberg system. The conjectures are based on numerical experimentation, some theoretical insights and underpinning, and aesthetic value. We hope theoretical developments will follow from these ideas, even leading to a proof of the phase transition (in three dimensions).
We organize this paper into three sections. The first presents preliminary definitions and the conjectures. The second contains a rigorous theoretical development of a useful framework for the system. The final section introduces an “average-field” structure that may lead to an understanding, and hopefully a proof, of the conjectures.

I) THE CONJECTURES.

We consider a lattice, Λ, and the associated Quantum Heisenberg Hamiltonian

$$H = - \sum_{i \sim j} (I_{ij} - 1)$$

where I_{ij} interchanges the spins of the two neighboring sites i and j in the lattice Λ. We let p_i be the projection onto spin up at site i.

$$p_i = \frac{1}{2} (\sigma_{zi} + 1).$$

We consider a state ψ_0 with spin up at sites in S_0, and spin down at the complementary sites.

$$p_i \psi_0 = \begin{cases}
\psi_0, & i \in S_0 \\
0, & i \notin S_0
\end{cases}$$

We assume there are N spin ups,

$$\# \{S_0\} = N.$$

We let $\phi_{\mu}(i)$ be a solution of the lattice heat equation

$$\frac{\partial}{\partial \mu} \phi_{\mu}(i) = (\Delta \phi_{\mu})(i)$$

with initial conditions

$$\phi_0(i) = \begin{cases}
1, & i \in S_0 \\
0, & i \notin S_0
\end{cases}$$

We define

$$\rho_{\mu}(i) = \frac{\phi_{\mu}^2(i)}{\phi_{\mu}^2(i) + (1 - \phi_{\mu}(i))^2}$$
and

\[< p_i >_\mu = \frac{\langle e^{-\mu H} \psi_0, p_i e^{-\mu H} \psi_0 \rangle}{\langle e^{-\mu H} \psi_0, e^{-\mu H} \psi_0 \rangle} \].

(8)

Conjecture 1.

\[| < p_i >_\mu - \rho_\mu(i) | < c_d < 1. \]

(9)

Conjecture 2.

\[| < p_i >_\mu - \phi_\mu(i) | < c_d < 1. \]

(10)

In one-dimension the corresponding \(c_1 \) may be picked to be \(\frac{1}{2} \), according to our numerical studies.

Conjecture 3.

\[\lim_{\mu \to 0} \frac{1}{\mu} | < p_i >_\mu - \rho_\mu(i) | = 0 \]

(11)

the limit taken in \(\ell^\infty(\Lambda) \), and convergence independent of \(S_0 \) and \(N \). In one-dimension the \(\mu \) in (11) may be replaced by \(\mu^{2-\varepsilon} \).

Contrary to our earlier expectations (as presented in a previous version of this note) the behavior of \(< p_i >_\mu \) as \(\mu \) becomes large is not simple. A better approximation than \(\rho_\mu(i) \) or \(\phi_\mu(i) \) when \(\mu \) is large is realized in \(\phi_{\frac{\mu}{2}}(i) \). We present in our next conjecture the result of our numeric study:

Conjecture 4.

For \(\mu \geq 4 \) one has

\[| < p_i >_\mu - \phi_{\frac{\mu}{2}}(i) | < .1. \]

(12)
We have been specific with numbers in (12) to give the flavor of the estimate’s quality.
We have some theoretical understanding of the reason $\phi_\mu(i)$ is a good approximation to
$<p_i>\mu$, but we do not discuss it in this note, restricting our attention to $\rho_\mu(i)$ and $\phi_\mu(i)$
in later sections.

Implicit in all these estimates is a locality property of $<p_i>\mu$. We state a very weak form
of this in the following conjecture.

Conjecture 5.

For any $\varepsilon > 0$, there is an $L_{\varepsilon,\mu}$, such that $<p_i>\mu$ is determined within ε by knowledge
of the spin configuration (as specified in (3)) in a region within distance $L_{\varepsilon,\mu}$ of site i, i.e.
changing spins outside this distance cannot effect $<p_i>\mu$ by more than ε

Conjecture 5 is the most basic of our assertions, and should fit into some very general
theoretical framework.

Cave Adfirmationes: Most of the numerical investigation was on a one-dimensional lattice. (But also in periodic two-dimensional sets and three-dimensional sets.)

II) SOME SIMPLE THEORY.

The Hilbert space of the system is naturally viewed as a direct sum

$$\mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_1 \oplus \mathcal{H}_2 \oplus \cdots \oplus \mathcal{H}_{|\Lambda|}$$

where in \mathcal{H}_N there are N spin ups. We write H_N for H restricted to \mathcal{H}_N. The space \mathcal{H}_N
is an invariant subspace of H, the set of N spin waves.

We let Q be an operator interchanging spin up and spin down, Q a unitary operator commuting with H. Q interchanges H_N and $H_{|\Lambda|−N}$ as follows

$$Q \left(\bigotimes_{i \in S} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \bigotimes_{j \not\in S} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right) = \bigotimes_{i \in S} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \bigotimes_{j \not\in S} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

(13)
Vectors in \mathcal{H}_N are described by symmetric functions on N distinct lattice sites. $f = f(\ldots)$ is associated to vectors in \mathcal{H}_N as follows

$$f \leftrightarrow \sum_{i_1 \ldots i_N} f(i_1, \ldots, i_N) \bigotimes_{i \in \{i_1, \ldots, i_N\}} \left(\begin{array}{c} 1 \\ 0 \end{array} \right) \bigotimes_{i \not\in \{i_1, \ldots, i_N\}} \left(\begin{array}{c} 0 \\ 1 \end{array} \right). \tag{14}$$

The sum in (14) is over distinct indices.

For $N > M$ there is a linear map from \mathcal{H}_N to \mathcal{H}_M called $P_{N,M}$. Let f be in \mathcal{H}_N, then we define $P_{N,M}f$ in \mathcal{H}_M by

$$(P_{N,M}f)(i_1, \ldots, i_M) = \sum_{i_{M+1}, \ldots, i_N} f(i_1, \ldots, i_M, i_{M+1}, \ldots, i_N) \tag{15}$$

$P_{N,M}$ commutes with H and interlaces H_N and H_M

$$P_{N,M}H_N = H_M P_{N,M}. \tag{16}$$

If $2N \leq |\Lambda|$ then it is easy to show $P_{N,M}$ is onto. The preceding structure is related to the invariance of the system under global rotations.

For f in any \mathcal{H}_N we define

$$f_\mu \equiv e^{-\mu H} f . \tag{17}$$

Of course

$$e^{-\mu H} P_{N,M} = P_{N,M} e^{-\mu H_N}. \tag{18}$$

In \mathcal{H}_1, f_μ satisfies the heat equation

$$\frac{\partial}{\partial \mu} f_\mu = -H_1 f_\mu = \Delta f_\mu . \tag{19}$$

So for f in \mathcal{H}_N we note the amusing fact that $P_{N,1}f_\mu$ satisfies the heat equation.

III) AN AVERAGE-FIELD APPROXIMATION.

Let ψ_0 be a state in \mathcal{H}_N, sharp in the spins, with spin up at i if $i \in S_0$, spin down if $i \not\in S_0$, S_0 a set of N sites.

$$\psi_0 \leftrightarrow \bigotimes_{i \in S_0} \left(\begin{array}{c} 1 \\ 0 \end{array} \right) \bigotimes_{i \not\in S_0} \left(\begin{array}{c} 0 \\ 1 \end{array} \right). \tag{20}$$
and
\[\psi_{\mu} = e^{-\mu H_N} \psi_0. \]

(21)

We define
\[\phi_{\mu} = N \, P_{N,1} \, \psi_{\mu} \]

(22)

\(\phi_{\mu} \) in \(H_1 \), satisfies the heat equation and
\[\phi_0(i) = \begin{cases}
1, & i \in S_0 \\
0, & i \notin S_0
\end{cases} \]

(23)

We introduce an “average-field”-like “approximation” to \(\psi_{\mu} \).

\[\psi_{\mu}^{AP} = \bigotimes_i \left(\begin{array}{c}
\phi_{\mu}(i) \\
1 - \phi_{\mu}(i)
\end{array} \right). \]

(24)

This approximation has two nice features.

1) The approximation is “invariant and \(Q \)”. That is, it is \(Q \) of the approximation obtained starting with \(Q \psi_0 \) instead of \(\psi_0 \).

2) The approximation is not sharp in spin wave number. (It does not lie in a single \(H_N \).) But in a reasonable sense it projects using \(\{P_{N,1}\} \) onto \(\phi_{\mu}(i) \) in \(H_1 \), that does satisfy the heat equation.

We note that \(\rho_{\mu}(i) \), from equation (7), is given by
\[\rho_{\mu}(i) = \frac{\langle \psi_{\mu}^{AP} : P_{\mu} \psi_{\mu}^{AP} \rangle}{\langle \psi_{\mu}^{AP} : \psi_{\mu}^{AP} \rangle}. \]

(25)

Thus our approximate wave function, the “average-field” function (24) yields the spin up probabilities of approximation 1, equation (9'). The “average-field” wavefunction satisfies the equation
\[\frac{d}{d\mu} \psi_{\mu}^{AP} = -H \psi_{\mu}^{AP}. \]

(26)
in the limit of nearly constant $\phi_\mu(i)$. We expect there is some truth to the average field wavefunction; perhaps enough, so that its study (objective genitive) leads towards a proof of the phase transition for magnetization. We note that $\phi_\mu(i)$ and $\rho_\mu(i)$ differ by less than .16. Both $\phi_\mu(i)$ and $\rho_\mu(i)$ are “invariant under Q” as approximations.