RESEARCH ARTICLE

Microevolution of Virulence-Related Genes in Helicobacter pylori Familial Infection

Yoshikazu Furuta1,2, Mutsuko Konno3, Takako Osaki4, Hideo Yonezawa4, Taichiro Ishige5, Misaki Imai5, Yuh Shiwa5, Mari Shibata-Hatta5, Yu Kanesaki5, Hirofumi Yoshikawa5,6, Shigeru Kamiya4, Ichizo Kobayashi1,2 *

1 Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Tokyo, Japan, 2 Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan, 3 Department of Pediatrics, Sapporo Kosei General Hospital, Sapporo-shi, Hokkaido, Japan, 4 Department of Infectious Diseases, Kyorin University School of Medicine, Mitaka-shi, Tokyo, Japan, 5 Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan, 6 Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan

* ikobaya@ims.u-tokyo.ac.jp

Abstract

Helicobacter pylori, a bacterial pathogen that can infect human stomach causing gastritis, ulcers and cancer, is known to have a high degree of genome/epigenome diversity as the result of mutation and recombination. The bacteria often infect in childhood and persist for the life of the host. One of the reasons of the rapid evolution of H. pylori is that it changes its genome drastically for adaptation to a new host. To investigate microevolution and adaptation of the H. pylori genome, we undertook whole genome sequencing of the same or very similar sequence type in multi-locus sequence typing (MLST) with seven genes in members of the same family consisting of parents and children in Japan. Detection of nucleotide substitutions revealed likely transmission pathways involving children. Nonsynonymous (amino acid changing) mutations were found in virulence-related genes (cag genes, vacA, hcpDX, tnfα, gat, htrA and the collagenase gene), outer membrane protein (OMP) genes and other cell surface-related protein genes, signal transduction genes and restriction-modification genes. We reconstructed various pathways by which H. pylori can adapt to a new human host, and our results raised the possibility that the mutational changes in virulence-related genes have a role in adaptation to a child host. Changes in restriction-modification genes might remodel the methylome and transcriptome to help adaptation. This study has provided insights into H. pylori transmission and virulence and has implications for basic research as well as clinical practice.

Introduction

The pathogenic epsilon-proteobacterium Helicobacter pylori is a major cause of human gastric diseases [1]. The H. pylori genome sequence exhibits a high degree of diversity even between closely related strains because of the high rate of mutation and recombination [2–6]. The
epigenome is also diverse owing to changes in methyltransferase genes through various mechanisms [7–12].

The significance of such extreme genome/epigenome diversity is not understood in detail, although the ability to adapt to the human host has been often suggested. Evidence for effects of DNA modification on gene transcription in bacteria has been limited primarily because of lack of techniques to sensitively and accurately detect methylated DNA bases and to accurately measure transcripts. The Single-Molecule Real-Time (SMRT) sequencing technology now allows methylome decoding at the single base resolution [13, 14]. On the other hand, RNA-seq method in the next-generation sequencers allows accurate and sensitive measurements of transcriptome changes [15]. As a result, there are now an increasing number of reports on relationship between DNA methylation by modification enzymes and transcriptome in bacteria. For example, Type II restriction-modification (RM) systems affect global gene expression in Escherichia coli [16] and in H. pylori [17]. Type III restriction-modification systems affect expression of various genes in Neisseria, Haemophilus and H. pylori [10, 18, 19]. Type I restriction-modification systems affect gene expression in H. pylori [7] and Streptococcus pneumoniae [20]. There is also evidence that Type II modification enzymes affect H. pylori physiology [21–23].

There have been many studies of human familial transmission in attempts to identify transmission pathways. Early studies used electrophoresis-based methods or multi-locus sequence typing (MLST) based on seven conserved genes (~3 kb in total) [24, 25]. Recently, more sensitive whole genome (~1.6 Mb) sequencing was used to analyze the process of familial infection [26–28].

In order to gain insight into H. pylori adaptive evolution in a new human host, especially in a child who was supposed to be newly infected, we used whole genome sequencing of very closely related H. pylori strains from the same family, which are difficult to distinguish by standard MLST analysis [29] and estimated the order of intrafamilial infection and then investigated which genes have experienced amino acid changes.

Results

Families infected with H. pylori of the same or very similar MLST sequence type

In all, 19 H. pylori strains were isolated from five families (one strain per person) visiting a pediatrician in a hospital in Hokkaido, Japan (Table 1). Each family member was infected with H. pylori strains of the same or very similar sequence type as judged by standard MLST analysis (S1 Table): the mother and the offspring in families K-1 and K-2, the parents and offspring in families K-3 and K-4, and the children in family K-5 [29]. The likely direction of familial transmission in families K-1 and K-2 was from mother to offspring. The allele type numbers of some of the seven MLST genes were different in families K-3 and K-4; this is based on a single nucleotide substitution, however, so we regard them as very similar sequences. The MLST results did not make it clear whether the father or the mother was the H. pylori donor to the offspring. In family K-5, transmission was likely from outside the family, which might be independent among children from the same reservoir or might have been followed by inter-child transmission.

All these strains were shotgun sequenced by an Illumina high-throughput sequencer and mapped onto the known genome sequence of H. pylori strain F30 (Table 1), which belongs to the hspEAsia population (as do most isolates in Japan) [4, 30]. About 90% of nucleotides were mapped with coverage of more than five reads, with detection of ~35,000 nucleotide substitutions per strain. A lower mapping rate in the strains found in family K-4 can be explained by
the lack of a cag pathogenicity island in their genomes. Little difference was observed when other hspEAasia genomes (F16, F32 and F57) \[4\] were used as a reference genome for mapping (S2 Table), so we used the mapping on H. pylori strain F30 for further analysis.

Estimation of transmission pathways from the number of nucleotide substitutions

Nucleotide substitutions between each strain pair within a family were counted and used as the distance between compared strains (S3 Table) to construct a phylogenetic tree for each family (Fig 1). As expected, the number of nucleotide substitutions between strains of distantly related MLST sequence types was greater compared to the same or very similar MLST sequence type by one to three orders of magnitude. From the whole genome sequence information, various evolutionary relations were inferred between multiple strains of the same or very similar MLST sequence type within a family.

In family K-2, comparison of three strains with the same MLST sequence type showed the distance between the two strains from children K36 and K37 was, on average, 1.7-fold smaller compared to K35 (from mother) and K36 (from child) and to K35 (from mother) and K37 (from child) (Fig 1B(ii)). The difference was statistically significant (P < 10^{-5}), supporting the hypothesis that the latest infection (transfer) occurred between the hosts of K36 and K37; i.e. transmission between children. (This inference is discussed in Discussion, below.)

A comparison of three strains with the same MLST sequence type in family K-3 showed the distance between K27 (from mother) and K28 (from child) is about half compared to K26 (from father) and K27 (from mother) and to K26 (from father) and K28 (from child) (Fig 1C). The difference is significantly greater compared to assuming a random distribution of

Family	Strain\(^a\)	Relationship	Age	Mapped nt (> x5)	Mapped %	Variation \(^b\)
K-1	K16	Father	39	1456954	92.8	35242
	K17	Mother	38	1456823	92.8	34456
	K15	Child	10	1457425	92.8	34540
K-2	K34	Father	51	1459303	92.9	35271
	K35	Mother	46	1419326	90.4	37269
	K36	Child	17	1419365	90.4	37305
	K37	Child	14	1419197	90.4	37288
K-3	K26	Father	43	1459932	93.0	35041
	K27	Mother	28	1460893	93.0	34981
	K28	Child	6	1458283	92.9	34968
K-4	K29	Father	48	1379964	87.9	37440
	K30	Mother	44	1378891	87.8	37389
	K32	Child	14	1377440	87.7	37387
	K33	Child	13	1378456	87.8	37422
K-5	K21	Father	46	1462911	93.1	35064
	K22	Mother	47	1452079	92.5	34581
	K23	Child	17	1455829	92.7	33890
	K24	Child	15	1457747	92.8	33882
	K25	Child	5	1457010	92.8	33823

\(^a\) Strains with same sequence type within a family are underlined.

\(^b\) Number of variations compared with F30 genome.

doi:10.1371/journal.pone.0127197.t001
Fig 1. Phylogenetic trees of *H. pylori* genomes in the families. The number of nucleotide substitutions was used as the distance matrix. The relation and age of the host is added next to the strain name. (A) Family K-1. (B)(i) Family K-2. (ii) Strains with the same MLST sequence type in Family K-2. (C) Family K-3. (D) Family K-4. (E)(i) Family K-5. (ii) Strains with the same MLST sequence type in Family K-5. The bar indicates the number of nucleotide substitutions.

doi:10.1371/journal.pone.0127197.g001
substitution mutations \((P < 10^{-5})\), suggesting the latest infection occurred between the hosts of K27 (mother) and K28 (child); i.e. transmission between mother and child. The likely direction is from mother to child, considering the general pathway of \textit{H. pylori} infection. (See Discussion, below.)

No significant difference between distances was found for the four strains of very similar MLST sequence type in family K-4 \((P > 0.01, \text{Fig 1D})\).

There were three MLST sequence types corresponding to father, mother and offspring in family K-5 (see the preceding section). No significant difference between distances was detected for the three strains isolated from the offspring \((P > 0.01, \text{Fig 1E (ii)})\).

Detection and classification of strain-specific nucleotide substitutions

All the nucleotide variations in strains with the same or very similar MLST sequence type were compared within each family for the detection of strain-specific nucleotide substitutions. Bases corresponding to the same site were compared, and assigned as a strain-specific substitution when only a single strain had a base different from the other strains in the comparison. In the case of family K-1, there were only two strains with the same sequence type, so we could not distinguish K15-specific from K17-specific substitutions and treated all the substitutions as strain-specific mutations.

We classified base substitutions to single nucleotide variations (SNVs) or clusters of nucleotide polymorphisms (CNPs) in order to estimate the frequency of recombination (Table 2). CNP is defined as a cluster of two or more substitutions separated by \(<200\) bp and flanked by \(>200\) bp of identical sequence on both sides and is considered as a sign of substitution by a recombination event [31]. Substitutions not clustered as CNPs were assigned as SNVs. A large number of CNPs was observed in family K-1, which accounted for about 85% of substitutions. The number of substitutions included in a CNP was, on average, about 11 for those of family K-1 but less than three in all the other strains.

Table 2. Strain specific nucleotide substitutions.

Family	Strain	Relationship	age	Strain specific nucleotide substitution	SNV/CNP	Substitution per CNP	non-synonymous/non-coding	Mutation rate a
K-1	K17 & K15	Mother and Child	N/A²	1213	183/95	10.8	437/695/83	N/A
K-2	K35	Mother	46	182	154/12	2.3	96/62/24	N/A
K-3	K26	Father	43	291	214/27	2.9	186/64/41	N/A
K-4	K29	Father	48	69	64/2	2.5	39/20/10	N/A
K-5	K23	Child	13	97	78/9	2.1	68/23/6	3.8 \times 10^{-6}
K-5	K24	Child	17	17	37/6	2.2	19/13/18	1.3 \times 10^{-6}
K-5	K25	Child	5	46	30/6	2.7	25/10/11	3.8 \times 10^{-6}

a Rate of SNV per site per year.

b K15 and K17 were counted together because we cannot assign strain specific substitutions by comparison of two strains.

c N/A, not applicable.

doi:10.1371/journal.pone.0127197.t002
Strain-specific nucleotide substitutions were classified into nonsynonymous (changing amino acid), synonymous (retaining amino acid) and substitutions in noncoding regions. The mutation rate was calculated for isolates from children by dividing the number of SNVs (substitutions not included in CNPs) by their age in years, assuming *H. pylori* infection occurred soon after birth. The rate ranged from 0.7×10^{-6}–5.2×10^{-6} per year per site (*S4 Table*). The value is comparable to those reported for earlier estimations for intra-family evolution [26, 31, 32].

Table 3. COG enrichment of genes with strain specific non-synonymous substitutions.

COG	Function	K-1	K-2	K-3	K-4	K-5
C	Energy production and conversion	75	8	2	1	3
D	Cell cycle control and mitosis	20	0	2	1	1
E	Amino Acid metabolism and transport	97	9	3	2	0
F	Nucleotide metabolism and transport	39	3	1	2	1
G	Carbohydrate metabolism and transport	43	3	2	0	0
H	Coenzyme metabolism	77	5	2	2	1
I	Lipid metabolism	42	4	2	1	0
J	Translation	122	7	6	1	2
K	Transcription	33	5	2	2	1
L	Replication and repair	88	9	7	1	2
M	Cell wall/membrane/envelope biogenesis	98	16	8	4	5
N	Cell motility	52	5	2	5	2
O	Post-translational modification	63	3	5	3	0
P	Inorganic ion transport and metabolism	62	10	4	1	2
Q	Secondary Structure	15	2	0	0	0
R	General Functional Prediction only	131	17	10	3	3
S	Function Unknown	72	7	1	1	0
T	Signal Transduction	25	5	2	5	1
U	Intracellular trafficking and secretion	51	1	1	2	2
Z	Cytoskeleton	1	0	0	0	0
OMP	Outer membrane protein	46	18*	11*	3	4
N/A		355	31	16	9	6

Table 3. COG enrichment of genes with strain specific non-synonymous substitutions.

Function	K-1	K-2	K-3	K-4	K-5
Energy production and conversion	75	8	2	1	3
Cell cycle control and mitosis	20	0	2	1	1
Amino Acid metabolism and transport	97	9	3	2	0
Nucleotide metabolism and transport	39	3	1	2	1
Carbohydrate metabolism and transport	43	3	2	0	0
Coenzyme metabolism	77	5	2	2	1
Lipid metabolism	42	4	2	1	0
Translation	122	7	6	1	2
Transcription	33	5	2	2	1
Replication and repair	88	9	7	1	2
Cell wall/membrane/envelope biogenesis	98	16	8	4	5
Cell motility	52	5	2	5	2
Post-translational modification	63	3	5	3	0
Inorganic ion transport and metabolism	62	10	4	1	2
Secondary Structure	15	2	0	0	0
General Functional Prediction only	131	17	10	3	3
Function Unknown	72	7	1	1	0
Signal Transduction	25	5	2	5	1
Intracellular trafficking and secretion	51	1	1	2	2
Cytoskeleton	1	0	0	0	0
Outer membrane protein	46	18*	11*	3	4
N/A	355	31	16	9	6

a Strain used as reference strain for mapping.

b K15 and K17 were counted together because we cannot assign strain specific substitutions by comparison of two strains.

* Counts were tested by Fischer’s exact test, P < 0.01

doi:10.1371/journal.pone.0127197.t003

Genes with an amino acid substitution

We investigated which genes had experienced an amino acid substitution using function-based gene grouping with clusters of orthologous groups (COG) [33] (*Table 3, S5 Table*). The number of genes with at least one nonsynonymous substitution was counted. We found enrichment of amino acid substitutions in COG categories of M (cell wall/membrane/envelope biogenesis).
and T (signal transduction) genes in multiple strains. The category M genes included those for outer membrane proteins (OMPs), lipopolysaccharide biosynthesis, lipoprotein-related proteins, penicillin-binding proteins in the cell wall and cell division proteins (S6 Table). Category T genes included spoT (included also in category K) and chemotaxis-related genes (included also in category N) (S6 Table). The genes with nonsynonymous substitutions included those decayed in hspEastAsia, including molybdenum-related genes (mogA and modB), and those decayed in hpEurope, including ackA for acetate formation [4]. The substitution mutations might represent a step in their decay.

Genes not assigned to a COG category were also analyzed. Genes annotated as encoding OMPs [34] were the most frequently enriched with the amino acid changing mutations among the strains after transmission, as reported [27]. These included alpAB, hofABDEF, horD, hopADFGINQZ, homBD, babAB and other hypothetical OMPs (Table 4 and S6 Table).

Various known virulence factors were identified among them (Table 4). The cagACTWY genes reside on the cag pathogenicity island [35]; vacA is known to cause vacuolation in host cells [36] and virB2 and comH are included in Type IV secretion systems, which are used for DNA import from the surrounding environment [37]. Cysteine-rich proteins [38] and HtrA protease [39] are involved in host interaction. The tnfα gene induces tumor necrosis factor alpha in the host [40] and gamma-glutamyltranspeptidase promotes pathogenesis [41–43]. The fucT gene is used for Lewis antigen mimicry and is important for immunity avoidance [44]. We also found amino acid substitutions in several restriction-modification genes (Table 4).

Common and different patterns of evolution in familial transmission

We focused on three families involving children to gain insight into the steps of H. pylori adaptation to a human child host (Table 5 and S6 Table). We emphasize that each lineage has a unique pattern of amino acid changing mutations but they all showed a change in cag and other virulence-related genes.

(i) Family K-2: K36 and K37. K36 had specific nonsynonymous nucleotide substitutions in five motility genes, five signal transduction genes, cagA, tnfα, hcpD, fucT, rfaJ-1/2, and one Type III R (restriction) gene. K37 had these types of mutations in cagA, hcpD, the RNA
Table 5. Genes with non-synonymous mutations and annotations in *H. pylori* from children.

Family	Strain	Group/ COG category	Gene	Annotation	Locus tag of F30 ortholog
K-5	K23	Virulence-related	cagA	Cag pathogenicity island protein	HPF30_0779
			cagC	Cag pathogenicity island protein	HPF30_0780
		Outer membrane protein	hopQ	Outer membrane protein	HPF30_0214
		Outer membrane protein	hopI	Outer membrane protein HopI	HPF30_0234
		Outer membrane protein	alpB	Outer membrane protein AlpB	HPF30_0426
	J		sfhB	Pseudouridine synthase	HPF30_0951
	M		ftsI	Cell division protein	HPF30_1449
	NT	Methyl-accepting chemotaxis protein	mcpB	Methyl-accepting chemotaxis protein	HPF30_0728
	NO	Flagellar basal body P-ring biosynthesis protein FlgA	flgA	FlgA	HPF30_1345
	P	Iron dicitrate transport protein	feca_2	Iron dicitrate transport protein	HPF30_0524
	R	Ribonuclease Y	my	HPF30_0573	
			hpaA	Flagellar sheath adhesin HpaA	HPF30_0534
K24		Virulence-related	cagC	Cag pathogenicity island protein	HPF30_0780
	Outer membrane protein	alpB	Outer membrane protein AlpB	HPF30_0426	
		Outer membrane protein	hopN-2	Outer membrane protein HopN2	HPF30_1068
	V	Type I restriction enzyme R protein	hsdR_2	Type I restriction enzyme R protein	HPF30_0485
	MU	Outer membrane protein HefA	hefA	Outer membrane protein HefA	HPF30_0721
	P	Catalase-related peroxidase		Catalase-related peroxidase	HPF30_0836
	H	Glutamyl-tRNA reductase	hemA	Glutamyl-tRNA reductase	HPF30_1056
	F	Adenylosuccinate lyase	purB	Adenylosuccinate lyase	HPF30_0276
K25		Outer membrane protein	babB	Outer membrane protein BabB	HPF30_0154
		Outer membrane protein	hopL	Outer membrane protein HopL	HPF30_0233
		Outer membrane protein	alpB	Outer membrane protein AlpB	HPF30_0426
		Outer membrane protein	alpA	Outer membrane protein AlpA	HPF30_0427
		Outer membrane protein	babA	Outer membrane protein BabA	HPF30_0441
		Outer membrane protein	hopF	Outer membrane protein HopF	HPF30_1043
	Virulence-related	cagC	Cag pathogenicity island protein	HPF30_0780	
	O	Protein-beta-aspartate methyltransferase	pcm	Protein-beta-aspartate methyltransferase	HPF30_0297
	M	Cyclopropane fatty acid synthase	cfa	Cyclopropane fatty acid synthase	HPF30_0349
	C	F-ATPase subunit 6	atpB	F-ATPase subunit 6	HPF30_0502
	H	Molybdenum cofactor biosynthesis protein	mogA	Molybdenum cofactor biosynthesis protein	HPF30_0532
	M	Putative outer membrane protein		Putative outer membrane protein	HPF30_0673
	C	Pyrophosphate phospho-hydrolase	ppa	Pyrophosphate phospho-hydrolase	HPF30_0706
	H	Glutamyl-tRNA reductase	hemA	Glutamyl-tRNA reductase	HPF30_1056
	M	Putative lipopolysaccharide biosynthesis protein	rfaJ-1	Putative lipopolysaccharide biosynthesis protein	HPF30_1136
	R	Probable GTP-binding protein	engB	Probable GTP-binding protein EngB	HPF30_1459
		Flagellar sheath adhesin HpaA	hpaA	Flagellar sheath adhesin HpaA	HPF30_0534

(Continued)
Table 5. (Continued)

Family	Strain	Group/ COG category	Gene	Annotation	Locus tag of F30 ortholog
K-2	K36	Outer membrane protein	hopQ	Outer membrane protein	HPF30_0214
		Outer membrane protein	alpA	Outer membrane protein AlpA	HPF30_0427
		Outer membrane protein	hopA	Outer membrane protein HopA	HPF30_1066
		Virulence-related	fucT	Alpha-(1,3)-fucosyltransferase	HPF30_0677
		Virulence-related	cagA	Cag pathogenicity island protein	HPF30_0779
		Restriction-modification	res-2	Type III restriction enzyme R protein	HPF30_0333
		O	groS	Protein Cpn10	HPF30_0009
		H	pnuC	Nicotinamide mononucleotide transporter	HPF30_0110
		K	cobB	Regulatory protein SIR2 homolog	HPF30_0138
		V	hofG	Putative outer membrane protein	HPF30_0425
		C	bisC-frg	Biotin sulfoxide reductase BisC	HPF30_0341
		M	capJ	Type 1 capsular polysaccharide biosynthesis protein J	HPF30_0354
		R	hypA	Probable hydrogenase nickel incorporation protein HypA	HPF30_0464
		O	tig	PPase	HPF30_0536
		TK	spoT	Penta-phosphate guanosine-3’-pyrophosphohydrolase	HPF30_0555
		M	prsA	Phosphoribosyl pyrophosphate synthase	HPF30_0592
		NT	bioF	8-amino-7-oxononanoate synthase	HPF30_0728
		H	pldA	Phospholipase A1	HPF30_0822
		N	fitG	Flagellar motor switch protein G	HPF30_0946
		I	dxr	2-C-methyl-D-erythritol 4-phosphate synthase	HPF30_1079
		M	fadJ-2	Putative lipopolysaccharide biosynthesis protein	HPF30_1087
		M	fadJ-1	Putative lipopolysaccharide biosynthesis protein	HPF30_1136
		P	fadJ-1	Putative lipopolysaccharide biosynthesis protein	HPF30_1152
		NT	ftaA	Methyl-accepting chemotaxis protein	HPF30_1179
		NT	mcpB	Methyl-accepting chemotaxis protein	HPF30_1183
		NT	mcpB	Methyl-accepting chemotaxis protein	HPF30_1218
		P	topA	DNA topoisomerase I	HPF30_1195
		U	comB1	ComB8 competence protein	HPF30_1259
		U	comB6	NADH-ubiquinone oxidoreductase subunit	HPF30_1260
		F	rpsB	Putative endonuclease, split and separated by inversion, N-terminus part	HPF30_1272
		J	rpsB	30S ribosomal protein S2	HPF30_1429

(Continued)
Family Strain Group/ COG category	Gene	Annotation	Locus tag of F30 ortholog
Restriction-modification	Type IIG restriction-modification enzyme	HPF30_0661	
F	pyrF	Orotidine 5'-phosphate decarboxylase	HPF30_0005
M	tonB	Siderophore-mediated iron transport protein	HPF30_0059
J	rpsK	30S ribosomal protein S11	HPF30_0105
K	rpoB	DNA-directed RNA polymerase subunit beta/beta	HPF30_0196
P		Carbonic anhydrase	HPF30_0205
M		Putative lipopolysaccharide biosynthesis protein	HPF30_0284
C	bisC- frg	Biotin sulfoxide reductase BisC	HPF30_0341
		Acetokinase	HPF30_0435
		Iron(III) dicarboxate transport protein	HPF30_0645
L	mnhA	Ribonuclidean H	HPF30_0667
V	hflC	Cytoplasmic pump protein of the hflABC efflux system HflC	HPF30_0719
MU	hflA	Outer membrane protein HflA	HPF30_0721
M	ppp-1a	Penicillin-binding protein 1A	HPF30_0730
NU	flhA	Flagellar biosynthesis protein FlhA	HPF30_0891
J	intB	Translation initiation factor IF-2	HPF30_0898
D	minC	Septum formation inhibitor	HPF30_0903
L	ruvB	Holliday junction ATP-dependent DNA helicase RuvB	HPF30_0909
R		Oligopeptide permease integral membrane protein	HPF30_1044
NT	mcpB	Methyl-accepting chemotaxis protein	HPF30_1183
C		Ferrodoxin-like protein	HPF30_1378
K-3 K28	hopQ	Outer membrane protein	HPF30_0214
	alpB	Outer membrane protein AlpB	HPF30_0426
	hofE	Outer membrane protein HofE	HPF30_0548
	hofB	Outer membrane protein HofB	HPF30_0932
	hopN-2	Outer membrane protein HopN2	HPF30_1068
Virulence-related	cagV	Cag pathogenicity island protein	HPF30_0794
Virulence-related	cagW	Cag pathogenicity island protein	HPF30_0795
Virulence-related	cagY	Cag pathogenicity island protein	HPF30_0797
Virulence-related	cag5	Cag pathogenicity island protein	HPF30_0800
Virulence-related	vacA	Vacuolating cytotoxin A	HPF30_0448
Restriction-modification	mod-4	Putative type III restriction enzyme M protein	HPF30_1273
Restriction-modification		Type I restriction enzyme R protein	HPF30_0858
Restriction-modification	hsdR_3	Type I restriction enzyme R protein	HPF30_1407
	dnaG	DNA primase	HPF30_0010
R		Lipid A phosphoethanolamine transferase	HPF30_0020
O	cipX	ATP-dependent Clp protease ATP-binding subunit ClpX	HPF30_0030
I		Isoprenyl transferase	HPF30_0175
J	valS	Valyl-tRNA synthetase	HPF30_0237
E	nifS_2	NifS-like protein	HPF30_0338
S	truD	tRNA-uridine isomerase D	HPF30_0415

(Continued)
polymerase subunit gene (rpoB) and two restriction-modification genes (Type IIG and Type III R) as well as four OMP genes.

(ii) Family K-3: K28. Among the 49 genes with at least one nonsynonymous nucleotide substitution specific to the child strain, there are four cag genes (cagV, cagW, cagY and cag5), vacA, htrA, five OMP genes, three restriction-modification genes (two Type I R and one Type III M) and clpX/clpP protease genes (Table 5).

(iii) Family K-5: K23, K24 and K25. Among the three strains isolated from the three children in family K-5, K24 had the fewest (n = 12) genes with an amino acid change, among which are a virulence-related gene (comH), a restriction-modification gene (Type I R), purB for nucleotide metabolism, a peroxidase gene and a heme biosynthesis gene. K23 had nonsynonymous substitutions in cagAC genes, four genes related to motility and chemotaxis and two genes related to signal transduction. K25 had nonsynonymous mutations in cagC, three genes (ppa, rfaJ-1 and cfa) related to lipids, atpB for membrane ATP synthase and pcm for protein repair.

Discussion

H. pylori is known for sequence diversity between different strains, but strains from the same lineage can be difficult to distinguish by the standard MLST analysis using only seven genes. We undertook whole genome sequencing and distinguished the strain-specific nucleotide substitutions for isolates with the same or very similar MLST sequence type from the same family. On the basis of sequence difference, we revealed the likely pathway of evolution between these strains in some cases. Furthermore, after analyzing the nonsynonymous mutations, we suggested the strategy of *H. pylori* evolution during infection.

Following the construction of phylogenetic trees based on SNPs in the whole genome sequences. We inferred the direction of transfer between family members and other details (Fig 1). However, a recent study revealed a broad diversity in genome sequences in strains isolated from one specimen from one person [45]. The diversity represented in the above phylogenetic trees might well be accounted for by the diversity of lineages within an individual. In Fig 1B (ii), for example, the mother might have transferred one lineage (the ancestor of K36) to one child and transferred another, well diversified strain (the ancestor of K37) to the other child. In...
order to clarify transmission pathways accurately, we need genome sequences of multiple
strains from one host.

The mutation rate was calculated on the basis of strain-specific SNVs. Most of the value was
included with the mutation rate range in earlier calculations from whole genome information
[26, 31, 32] and only the K24 strain was a little below the range (S4 Table). This difference
might reflect the origin of \textit{H. pylori} strains. Earlier work using whole genome sequences was
with strains from South Africa [26], whereas strains isolated in Japan were used in the present
study. Another possibility is recombination between lineages [45]. By contrast, work using 78
genes for analysis gave a much lower value for the mutation rate, using strains derived from
USA, UK, Colombia, the Netherlands and South Korea [32]. This result might be related to the
large difference in sequence diversity among genes: indeed, different genes can evolve at very
different rates [4, 5]. More analysis of whole genomes and individual genes in strains from vari-
ous regions is required to fully understand the apparent variation of mutation rate.

Genes with an amino acid change might provide insight into the adaptation process. Many
of these genes are related to the surface structure of the \textit{H. pylori} cell, including OMP genes, li-
poprotein-related genes and \textit{fucT}, as found in other work on intrafamilial transmission and
intrahost transmission [27, 31]. \textit{H. pylori} can attach to human gastric epithelial cells through
various kinds of adhesion factors, including BabA (HopS), BabB, SabA (HopP), SabB, AlpA
and AlpB. Protein BabA is one of the major adhesion molecules associated with severe patho-
gensis in \textit{H. pylori} infection, although \textit{babA} expression was reported to disappear by six
months after infection of Mongolian gerbils with nucleotide changes introducing a stop codon
of the gene [46]. AlpA and AlpB were shown to contribute to laminin binding of \textit{H. pylori} and
to induction of inflammatory changes of gastric mucosa [47]. HopQ might be important in ini-
tial colonization and long-term persistence of \textit{H. pylori} in the stomach by modulating the ad-
herence to gastric epithelial cells [48]. Two different alleles of \textit{hopQ} were shown to be
associated significantly with the positivity of other virulence genes, including \textit{cagA} and \textit{vacA}
[49, 50].

An unexpected finding was the occurrence of amino acid substitutions in many virulence
genes other than OMP genes and other surface-related genes. The genes of \textit{vacA} and \textit{cagA} are
well known as important virulence-related genes of \textit{H. pylori}. Mutations in these virulence
genes were detected in \textit{H. pylori} isolates of one or two family member(s) in each family but not,
in general, in the isolates of all members of a family. One interesting possibility responsible for
this observation is that these changes in virulence factors are related to adaptation to children
in intrafamilial transmission. A related finding is that CagA is the most reactive antigen recog-
nized by \textit{H. pylori}-positive sera from children [51].

Amino acid changes in restriction-modification systems were detected in the three families
involving children (see the last section in Results). A restriction-modification system consists
of DNA methyltransferase, a modification enzyme, and a restriction endonuclease. DNA
methyltransferase transfers a methyl group to a specific DNA sequence in the genome, which
likely affects global gene expression among others. The restriction enzyme destroys DNA lack-
ing such specific methylation resulting in genetic isolation. Recent work demonstrated the re-
striction-modification systems in \textit{H. pylori} frequently change their presence/absence, sequence
specificity and expression to remodel the methylome [7, 10]. The mutations mentioned above
could be related to adaptation to a new host through such epigenetics-driven adaptive evolu-
tion [52]. Substitution of target recognition domains of restriction-modification systems un-
derlying drastic changes in recognition sequence [11, 12], however, cannot be detected, in
principle, by the present method based on mapping a genome sequence and SNP analysis.

Mutations were found in earlier work comparing whole genome sequences of closely related
strains, especially in OMP genes, which is consistent with the results presented here [27, 28, 31,
Comparison of whole genome sequences of *H. pylori* isolated from grandfather, son and grandson of a family in England found amino acid changes in OMP genes [28]. Substitution mutations in OMP genes were found in inter-spouse transmission in Australia [27]. A mutation burst was found during the acute phase of *H. pylori* infection leading to mutational changes in OMPs and *cag*-related genes in humans and primates [53]. These results are consistent with the present study and we additionally found mutations commonly observed in isolates from children in two categories; i.e. virulence factors other than *cag*-related and restriction-modification enzymes. This difference might be caused because of isolation in young children, compared to isolation from adults in other studies, but we cannot exclude the possibility it is caused by differences in environment.

We assumed that the individual human hosts have driven the bacterial mutations in the above genes. Our procedures involved culturing the bacteria *ex vivo* as in almost all the works on bacterial variations. Have the *ex vivo* steps, as opposed to *in vivo* steps, induced or selected the mutations we observed here? We think that most of the strain-specific nonsynonymous substitutions were generated *in vivo* for the following reasons. First, many of the genes with those mutations also show rapid sequence changes in phylogeny giving long branches in their phylogenetic tree [4, 5]. A simplest interpretation is the host adaptation through a nonsynonymous mutation is repeated for many generations to result in the rapid evolutionary rate. Second, comparable mutation rates per year were obtained in this and other studies based on strain culture *ex vivo* (Table 2). This indicates that the number of mutations is approximately proportional to the years within a human body. This cannot be expected only through mutagenesis and selection *in vivo*. Third, the strain-specific nonsynonymous mutations are unique to each of the strains. For example, K23, but no other strains, carries such mutations in multiple *cag* genes and several motility/chemotaxis-related genes among 14 genes with annotation (Table 5). Many strains carry those strain-specific nonsynonymous mutations in OMP genes, but the OMP repertoire is quite diverse among the strains. The difference is not likely a result of mutagenesis and/or selection during *ex vivo* culture, during which we used a medium of the same recipe, especially, the same batch of horse serum (see Materials and methods). From these considerations, it is, at present, natural to interpret that most of these strain-specific nonsynonymous mutations were introduced during the long-term (years of) growth in individual human stomachs although we cannot exclude some contribution of *ex vivo* growth.

In conclusion, our whole genome decoding of *H. pylori* strains from family members including children suggested adaptation of these bacteria to a new human host through mutations in virulence-related genes and restriction-modification genes in addition to OMP genes.

Materials and Methods

Ethics statement

This study was undertaken with approval from the Ethics Committees of Kyorin University, Tokyo (No. 537) and Sapporo Kosei General Hospital (H24-104). Written informed consent was obtained from the patients (5 years old or older) and also from their parents when the patients are minor.

Strains

In all, 19 *H. pylori* strains were obtained from five families during April 2011—December 2012 in Sapporo Kosei General Hospital, Sapporo, Hokkaido, Japan. A single colony was isolated and subcultured on Brucella medium supplemented with 1.5% (w/v) agar and 7% (v/v) horse serum (BHS medium) under microaerobic conditions. The same batch of horse serum was
used for the culture to minimize possible variation between cultures. Typing of strains was done initially by seven-gene MLST for all five families [29].

Genome sequencing and mapping

After incubation for 48 h under microaerobic conditions at 37°C on BHS medium, the culture of *H. pylori* (about 5×10⁸ colony-forming units) was collected. A Wizard Genomic DNA purification kit (Promega, Madison, WI, USA) was used according to the manufacturer’s instructions to isolate genomic DNA. A DNA library for genome sequencing was constructed by Nextera XT (Illumina, CA, USA) and sequenced by HiSeq2500 (Illumina, CA, USA).

About 1.4×10⁶ reads (~×200 coverage) with a length of 100 bp in the form of paired ends were selected from each read data (DRA accession no. 002504) and mapped against the genome sequence of *H. pylori* strain F30 (accession no. NC_017365) by BWA [54]. Nucleotide substitutions were detected by SAMtools software [55] without misalignment filtering to avoid pseudo-negative detection. Lists of nucleotide substitutions were compared by customized Perl scripts for calculation of the distance between strain pairs and for detection of strain-specific nucleotide substitutions. Nucleotide sites with coverage of more than five reads for all the members of a family with the same or very similar MLST sequence type were used for the detection of nucleotide substitution. Classification of nucleotide substitution to nonsynonymous, synonymous or substitutions at noncoding regions were done according to the gene annotation of *H. pylori* F30 [4]. For the calculation of strain-specific substitutions, the substitutions in strains K17 and K15 in family K-1 were counted together because the family has only two strains with the same MLST sequence type and it is not possible to assign substitutions to either of the strains.

The significance of differences between distances among strains with the same or very similar sequence type was analyzed by generating a matrix assuming the same probability of nucleotide substitution accumulation for all strain pairs. Matrices were constructed 1×10⁶ times and the rank list of standard deviation was compared with the standard deviation of distances in the real data for calculation of the *P* value.

COG enrichment

COG of genes in the *H. pylori* F30 genome was annotated by rpsblast [56]. Genes with strain-specific nonsynonymous substitutions were counted and the significance of COG enrichment was tested by Fisher’s exact test. A gene was counted only once even if it had more than two strain-specific nonsynonymous substitutions.

Supporting Information

S1 Table. Sequence type.
(XLSX)

S2 Table. Mapping and nucleotide variation detection.
(XLSX)

S3 Table. Distance matrix.
(XLSX)

S4 Table. Comparison of mutation rate.
(XLSX)

S5 Table. COG of genes in *H. pylori* strain F30 whole genome.
(XLSX)
S6 Table. Strain-specific nonsynonymous nucleotide substitutions.
(XLSX)

Acknowledgments
We thank Koji Yahara for discussions.

Author Contributions
Conceived and designed the experiments: YF TO SK IK. Analyzed the data: YF. Contributed reagents/materials/analysis tools: MK TO H. Yonezawa. Wrote the paper: YF TO IK. Genome sequencing: TI MI YS MSH YK H. Yoshikawa.

References
1. Suerbaum S, Michetti P. Helicobacter pylori infection. N Engl J Med. 2002; 347(15):1175–86. PMID: 12374879
2. Bjorkholm B, Sjolund M, Falk PG, Berg OG, Engstrand L, Andersson DI. Mutation frequency and biological cost of antibiotic resistance in Helicobacter pylori. Proc Natl Acad Sci U S A. 2001; 98(25):14607–12. PMID: 11717398
3. Falush D, Kraft C, Taylor NS, Correa P, Fox JG, Achtmann M, et al. Recombination and mutation during long-term gastric colonization by Helicobacter pylori: estimates of clock rates, recombination size, and minimal age. Proc Natl Acad Sci U S A. 2001; 98(26):15056–61. PMID: 11742075
4. Kawai M, Furuta Y, Yahara K, Tsuru T, Oshima K, Handa N, et al. Evolution in an oncogenic bacterial species with extreme genome plasticity: Helicobacter pylori East Asian genomes. BMC Microbiol. 2011; 11:104. doi:10.1186/1471-2180-11-104 PMID: 21575176
5. Yahara K, Kawai M, Furuta Y, Takahashi N, Handa N, Tsuru T, et al. Genome-wide survey of mutual homologous recombination in a highly sexual bacterial species. Genom Biol Evol. 2012; 4(5):628–40. doi:10.1093/gbe/evs043 PMID: 22934164
6. Alm RA, Ling LS, Moir DT, King BL, Brown ED, Doig PC, et al. Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature. 1999; 397(6715):176–80. PMID: 9923682
7. Furuta Y, Namba-Fukuyo H, Shibata TF, Nishiyama T, Suzuki Y, et al. Methylome diversification through changes in DNA methyltransferase sequence specificity. PLoS Genet. 2014; 10(4):e1004272. doi:10.1371/journal.pgen.1004272 PMID: 24722038
8. Krebes J, Morgan RD, Bunk B, Sproer C, Luong K, Parusel R, et al. The complex methylome of the human gastric pathogen Helicobacter pylori. Nucleic Acids Res. 2014; 42(4):2415–32. doi: 10.1093/nar/gkt1201 PMID: 24302578
9. Vale FF, Megraud F, Vitor JM. Geographic distribution of methyltransferases of Helicobacter pylori: evidence of human host population isolation and migration. BMC Microbiol. 2009; 9:193. doi:10.1186/1471-2180-9-193 PMID: 19737407
10. Srikhanta YN, Gorrell RJ, Steen JA, Hawthose JA, Kwok T, Grimmond SM, et al. Phasevarion mediated epigenetic gene regulation in Helicobacter pylori. PLoS One. 2011; 6(12):e27569. doi:10.1371/journal.pone.0027569 PMID: 22162751
11. Furuta Y, Kawai M, Uchiyama I, Kobayashi I. Domain movement within a gene: A novel evolutionary mechanism for protein diversification. PLoS One. 2011; 6(4):e18819. doi:10.1371/journal.pone.0018819 PMID: 21533192
12. Furuta Y, Kobayashi I. Movement of DNA sequence recognition domains between non-orthologous proteins. Nucleic Acids Res. 2012; 40(18):9215–32. doi: 10.1093/nar/gks681 PMID: 22821560
13. Clark TA, Murray IA, Morgan RD, Kislyuk AO, Spittle KE, Boitano M, et al. Characterization of DNA methyltransferase specificities using single-molecule, real-time DNA sequencing. Nucleic Acids Res. 2012; 40(4):e29. doi: 10.1093/nar/gkr1146 PMID: 22156058
14. Flusberg BA, Webster DR, Lee JH, Travers KJ, Olivares EC, Clark TA, et al. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nature methods. 2010; 7(6):461–5. doi: 10.1038/nmeth.1459 PMID: 20453866
15. Pinto AC, Melo-Barbosa HP, Miyoshi A, Silva A, Azevedo V. Application of RNA-seq to reveal the transcript profile in bacteria. Genet Mol Res. 2011; 10(3):1707–18. PMID: 21863565
16. Fang G, Munera D, Friedman D, Mandlik A, Chao MC, Banerjee O, et al. Genome-wide mapping of methylated adenine residues in pathogenic Escherichia coli using single-molecule real-time sequencing. Nat Biotechnol. 2012; 30(12):1232–9. doi: 10.1038/nbt.2432 PMID: 23138224

17. Vitoriano I, Vitor JMB, Oleastro M, Roxo-Rosa M, Vale FF. Proteome variability among Helicobacter pylori isolates clustered according to genomic methylation. J Appl Microbiol. 2013; 114(6):1817–32. doi: 10.1111/jam.12187 PMID: 21355374

18. Manso AS, Chai MH, Atack JM, Furi L, De Ste Croix M, Haigh R, et al. A random six-phase switch regulating pneumococcal virulence via global epigenetic changes. Nat Commun. 2014; 5:5055. doi: 10.1038/ncomms6055 PMID: 25268848

19. Donahue JP, Israel DA, Miller GG. Inactivation of a Helicobacter pylori DNA methyltransferase alters DNA operon expression following host-cell adherence. FEMS Microbiol Lett. 2002; 208(2):295–301. PMID: 11959452

20. Kumar R, Mukhopadhyay AK, Ghosh P, Rao DN. Comparative transcriptomics of H. pylori strains AM5, SS1 and their hpyAVIBM deletion mutants: possible roles of cytosine methylation. PLoS One. 2012; 7(8):e42303. doi: 10.1371/journal.pone.0042303 PMID: 22879937

21. Takeuchi H, Israel DA, Miller GG, Donahue JP, Krishna U, Gaus K, et al. Characterization of expression of a functionally conserved Helicobacter pylori methyltransferase-encoding gene within inflamed mucosa and during in vitro growth. J Infect Dis. 2002; 186(8):1186–9. PMID: 12355374

22. Burucoa C, Lhomme V, Fauchere JL. Performance criteria of DNA fingerprinting methods for typing of Helicobacter pylori isolates: experimental results and meta-analysis. J Clin Microbiol. 1999; 37(12):4071–80. PMID: 10565934

23. Parkhill J, Wren BW. Bacterial epidemiology and biology—lessons from genome sequencing. Genome Biol. 2011; 12(10):230. doi: 10.1186/gb-2011-12-10-230 PMID: 22027015

24. Didelot X, Neil S, Yang I, Woltemate S, van der Merwe S, Suerbaum S. Genomic evolution and transmission of Helicobacter pylori in two South African families. Proc Natl Acad Sci U S A. 2011; 108(12):4155–60. doi: 10.1073/pnas.1009981108 PMID: 21355172

25. Linz B, Windsor HM, Gajewski JP, Hake CM, Drautz DI, Schuster SC, et al. Helicobacter pylori genomic microevolution during naturally occurring transmission between adults. PLoS One. 2013; 8(12):e82187. doi: 10.1371/journal.pone.0082187 PMID: 24340004

26. Krebes J, Didelot X, Krennemann L, Suerbaum S. Bidirectional genomic exchange between Helicobacter pylori strains from a family in Coventry, United Kingdom. Int J Med Microbiol. 2014; 304(8):1135–46. doi: 10.1016/j.ijmm.2014.08.007 PMID: 25218701

27. Osaki T, Konno M, Yonezawa H, Hojo F, Zaman C, Takahashi M, et al. Analysis of intra-familial transmission of Helicobacter pylori in Japanese families. J Med Microbiol. 2014; 2013; 304(8):1135–46. doi: 10.1016/j.ijmm.2014.08.007 PMID: 25218701

28. Falush D, Wirth T, Linz B, Pritchard JK, Stephens M, Kidd M, et al. Traces of human migrations in Helicobacter pylori populations. Science. 2003; 299(5612):1582–5. PMID: 12624269

29. Kennemann L, Didelot X, Aebischer T, Kuhn S, Drescher B, Droegemeier M, et al. Helicobacter pylori genome evolution during human infection. Proc Natl Acad Sci U S A. 2011; 108(12):5033–8. doi: 10.1073/pnas.1018444108 PMID: 23551712

30. Morelli G, Didelot X, Kusecek B, Schwarz S, Bahlawane C, Falush D, et al. Microevolution of Helicobacter pylori during prolonged infection of single hosts and within families. PLoS Genet. 2010; 6(7):e1001036. doi: 10.1371/journal.pgen.1001036 PMID: 20661309

31. Tatusov RL, Koonin EV, Lipman DJ. A genomic perspective on protein families. Science. 1997; 278(5338):631–7. PMID: 9381173

32. Alm RA, Bina J, Andrews BM, Doig P, Hancock RE, Trust TJ. Comparative genomics of Helicobacter pylori: analysis of the outer membrane protein families. Infect Immun. 2000; 68(7):4155–6. PMID: 10858232

33. Fischer W, Pulz J, Buhrdorf R, Geber B, Odenbreit S, Haas R. Systematic mutagenesis of the Helicobacter pylori cag pathogenicity island: essential genes for CagA translocation in host cells and induction of interleukin-8. Mol Microbiol. 2001; 42(5):1337–48. PMID: 11886563
36. Atherton JC, Peek RM Jr., Tham KT, Cover TL, Blaser MJ. Clinical and pathological importance of heterogeneity in vacA, the vacuolating cytotoxin gene of *Helicobacter pylori*. Gastroenterology. 1997; 112(1):92–9. PMID: 8978347

37. Hofreuter D, Odenbreit S, Haas R. Natural transformation competence in *Helicobacter pylori* is mediated by the basic components of a type IV secretion system. Mol Microbiol. 2001; 41(2):379–91. PMID: 11489125

38. Roschitzki B, Schauer S, Mittl PR. Recognition of host proteins by *Helicobacter* cysteine-rich protein C. Curr Microbiol. 2011; 63(3):239–49. doi: 10.1007/s00284-011-9969-2 PMID: 21735226

39. Hoy B, Lower M, Weydig C, Carra G, Tegtmeier N, Geppert T, et al. *Helicobacter pylori* HtrA is a new secreted virulence factor that cleaves E-cadherin to disrupt intercellular adhesion. EMBO reports. 2010; 11(10):798–804. doi: 10.1038/embor.2010.114 PMID: 20814423

40. Suganuma M, Watanabe T, Yamaguchi K, Takahashi A, Fuji H. Human gastric cancer development with TNF-alpha-inducing protein secreted from *Helicobacter pylori*. Cancer Lett. 2012; 322(2):133–8. doi: 10.1016/j.canlet.2012.03.027 PMID: 22459353

41. Rimbara E, Mori S, Kim H, Shibayama K. Role of gamma-glutamyltranspeptidase in the pathogenesis of *Helicobacter pylori* infection. Microbiol Immunol. 2013; 57(10):665–73. doi: 10.1111/1348-0421.12089 PMID: 23937242

42. Gong M, Ling SS, Lui SY, Yeoh KG, Ho B. *Helicobacter pylori* gamma-glutamyl transpeptidase is a pathogenic factor in the development of peptic ulcer disease. Gastroenterology. 2010; 139(2):564–73. doi: 10.1053/j.gastro.2010.03.050 PMID: 20347814

43. Oertli M, Noben M, Engler DB, Seppi S, Maxeiner J, et al. *Helicobacter pylori* gamma-glutamyl transpeptidase and vacuolating cytotoxin promote gastric persistence and immune tolerance. Proc Natl Acad Sci U S A. 2013; 110(8):3047–52. doi: 10.1073/pnas.1211248110 PMID: 23382221

44. Wang G, Ge Z, Rasko DA, Taylor DE. Lewis antigens in *Helicobacter pylori*: biosynthesis and phase variation. Mol Microbiol. 2000; 36(6):1187–96. PMID: 10931272

45. Cao Q, Didelot X, Wu Z, Li Z, He L, Li Y, et al. Progressive genomic convergence of two *Helicobacter pylori* strains during mixed infection of a patient with chronic gastritis. Gut. 2014; 64(4):554–61. doi: 10.1136/gutjnl-2014-307345 PMID: 25007814

46. Ohno T, Vallstrom A, Ruggo M, Ota H, Graham DY, Arnqvist A, et al. Effects of blood group antigen-binding adhesion expression during *Helicobacter pylori* infection of Mongolian gerbils. J Infect Dis. 2011; 203(5):726–35. doi: 10.1093/infdis/jiq090 PMID: 21227917

47. Senkovich OA, Yin J, Ekshyyan V, Conant C, Traylor J, Adegboyea P, et al. *Helicobacter pylori* AlpA and AlpB bind host laminin and influence gastric inflammation in gerbils. Infect Immun. 2011; 79(8):3106–16. doi: 10.1128/IAI.00275-10 PMID: 21576328

48. Loh JT, Torres VJ, Algood HM, McClain MS, Cover TL. *Helicobacter pylori* HopQ outer membrane protein attenuates bacterial adherence to gastric epithelial cells. FEMS Microbiol Lett. 2008; 289(1):53–8. PMID: 19065710

49. Sicinschi LA, Correa P, Bravo LE, Peek RM Jr., Wilson KT, Loh JT, et al. Non-invasive genotyping of *Helicobacter pylori* cagA, vacA, and hopQ from asymptomatic children. Helicobacter. 2012; 17(2):96–106. doi: 10.1111/j.1348-0421.2011.01091.x PMID: 22440439

50. Cao P, Cover TL. Two different families of hopC alleles in *Helicobacter pylori*. J Clin Microbiol. 2002; 40(12):4504–11. PMID: 12451443

51. Akada J, Okuda M, Hiramoto N, Kitagawa T, Zhang X, Kamei S, et al. Proteomic characterization of *Helicobacter pylori* CagA antigen recognized by child serum antibodies and its epitope mapping by peptide array. PLoS One. 2014; 9(8):e104611. doi: 10.1371/journal.pone.0104611 PMID: 25141238

52. Furuta Y, Kobayashi I. Mobility of DNA sequence recognition domains in DNA methyltransferases suggests epigenetics-driven adaptive evolution. Mobile genetic elements. 2012; 2(6):292–6. PMID: 23481556

53. Linz B, Windsor HM, McGraw JJ, Hansen LM, Gajewski JP, Tomsho LP, et al. A mutation burst during the acute phase of *Helicobacter pylori* infection in humans and rhesus macaques. Nat Commun. 2014; 5:4165. doi: 10.1038/ncomms5165 PMID: 24924186

54. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009; 25(14):1754–60. doi: 10.1093/bioinformatics/btp324 PMID: 19451168

55. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009; 25(16):2078–9. doi: 10.1093/bioinformatics/btp352 PMID: 19505943

56. Marchler-Bauer A, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Feng JH, et al. CDD: specific functional annotation with the Conserved Domain Database. Nucleic Acids Res. 2009; 37(Database issue):D205–10. doi: 10.1093/nar/gkn845 PMID: 18984618