Antibiotic resistance pattern and spa types of *Staphylococcus aureus* strains isolated from food business and hospital kitchen employees in Çanakkale, Turkey

Nesrin ÇAKICI1,*, Alper AKÇALI2, Nükhet Nilüfer DEMİREL ZORBA3

1Health Services Vocational School, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
2Department of Medical Microbiology, Faculty of Medicine, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
3Department of Food Engineering, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale, Turkey

Received: 02.01.2018 • Accepted/Published Online: 21.10.2018 • Final Version: 18.04.2019

Background/aim: The aim of this study was to determine antibiotic resistance profiles and spa types of *Staphylococcus aureus* strains isolated from food business employees in Çanakkale, Turkey.

Materials and methods: *S. aureus* isolates were collected from hand and nasal swabs of 300 individuals working in 17 food businesses and 9 hospital kitchens. All *S. aureus* isolates obtained from each carrier were typed by staphylococcal protein A (spa) typing method. Staphylococcal cassette chromosome mec (SCCmec) and multilocus sequence typing (MLST) of MRSA were performed by sequencing method.

Results: Of the 300 individuals, 125 (41.6%) were found to be carriers of *S. aureus*, 215 isolates of which were obtained in total. Three (1.4%) of 215 isolates were identified as MRSA. Sixty spa types were identified among the 121 MSSA isolates, the most common being t084 (9%). A novel spa type was discerned and added to the Ridom SpaServer database as t14963. The MLST type of the MRSA strains identified as spa type t186 was ST88 and as spa type t223 was ST22. All MRSA were determined to be SCCmec type IVa.

Conclusion: spa typing can be performed to screen for transmission of *S. aureus*. t786, ST88, and SCCmec IVa MRSA strains were identified for the first time in Turkey.

Key words: Food handler, food employees, *Staphylococcus aureus*, antibiotic resistance, spa typing

1. Introduction

Staphylococcus aureus is an important organism in public health, as a cause of nosocomial infections and food poisoning incidents. Owing to its potential resistance to multiple antibiotics and production of virulence factors, *S. aureus* represents an important source of both nosocomial and community-acquired infections (1,2).

Molecular typing has become increasingly important both for controlling the spread of *S. aureus* and determining the origins of epidemics associated with virulence factors (3). Staphylococcal protein A (spa) typing, which relies only on the assessment of repeats at the x region of spa, exhibits excellent discriminatory power and shares with multilocus sequence typing (MLST) the advantages of unambiguous typing results that can be compared between laboratories and over time. spa typing is also both easier and less costly to perform than MLST or PFGE (4,5). The x region exhibits high variability and may be useful for the rapid typing of MRSA, particularly in hospital environments. spa typing has been found to be a fast and practical method for identifying the causative organisms of epidemics, since it involves a single locus (5,6). A strong correlation has been demonstrated between the results of other techniques and the clonal groups obtained with spa typing. The importance of this method in epidemiological studies and the determination of clonal associations is gradually increasing (7,8).

Software such as Ridom StaphType enables the description of spa repeats and types, using consistent spa code terminology (6,9). Alternative free programs have also been developed to evaluate spa region sequencing data. The Java-based program DNAGear, developed on the NetBeans platform, is one example (5).

The aim of the present study was to determine the antibiotic resistance profiles and spa types of *S. aureus* strains isolated from catering employees in hospitals and food businesses (restaurants and catering industries) located in Çanakkale, Turkey, and to determine transmission events between hospitals and food businesses.

* Correspondence: ncakici@comu.edu.tr

This work is licensed under a Creative Commons Attribution 4.0 International License.
2. Materials and methods

2.1. Sample collection and strain isolation
Between April and December 2014, three samples were collected from each of 300 food business employees (chefs, sous-chefs, waiting staff, and kitchen cleaners) by swabbing the right and left hands (bare fingers, thumbs, and palms) and nasal mucosa. Individuals were a random sample of workers in their institutions. Of these, 228 were employed by food businesses (restaurants and catering industries), and 72 worked in hospitals in the city center and districts of Çanakkale. The swabs were used to inoculate 5 mL of sterile Brain Heart Infusion Broth (Oxoid). Inocula were then streaked onto Baird–Parker Agar medium (Merck) containing egg yolk emulsion. After incubation at 37 °C for 24 h, the purity of the resulting gray-black colonies surrounded by a 1–1.5 mm clear zone was verified before their use in further analyses. *S. aureus* isolates were identified morphologically by Gram staining and catalase and coagulase testing. The study was conducted using a protocol approved by the Local Ethics Committee of Clinical Research (Decision No. 050.99–214), and written informed consent was obtained from all participants.

2.2. Antimicrobial susceptibility testing
The disk diffusion method was performed, as described by the Clinical and Laboratory Standards Institute (CLSI), to test the susceptibility of *S. aureus* strains to methicillin (using 30 μg of cefoxitin) and 15 other antibiotics (amoxicillin/clavulanic acid, cefazolin, cefoperazone, cefotaxime, ceftazidime, cefaclor, imipenem, meropenem, gentamicin, erythromycin, tetracycline, ciprofloxacin, chloramphenicol, rifampin, and linezolid) (10).

2.3. DNA extraction
Several colonies obtained from a fresh culture were mixed thoroughly in tubes containing 50 μL of buffer solution from a stock comprising 925 μL of H₂O, 25 μL of 10% SDS (Sigma), and 50 μL of 2 M NaOH (Merck). The tubes were then incubated at 100 °C for 10 min in a TDB-120 dry heating block (Biosan) to lyse cells. Tris-EDTA buffer (50 μL; Sigma) was subsequently added and the tubes were centrifuged at 13,000 rpm for 10 min. The supernatant (40 μL) was collected from each centrifuged sample and added to 150 μL of Tris-EDTA buffer.

2.4. Detection of mecA genes
A ready-to-use mixture (2X ExPrime Taq Premix; Genet Bio) was employed for PCR amplification. Reactions were performed using mecA-F (5′-CTAGTAAAGCTCCGGAA-3′) and mecA-R (5′-CTAGTCCATTCCGGTCCA-3′) primers (Sentromer), which amplify a product of 314 bp (11).

2.5. spa typing
The polymorphic x region was amplified as previously described using primers spa 1113F (5′-TAAAGACGATCCCTCCGG-3′) and 1514R (5′-CAGCAGTAGGTTTGGTTT-3′) (Figure). Sequence analysis was performed by the Sanger sequencing method, and forward and reverse sequences were obtained.
Therefore, only one isolate of every person was taken for the isolates isolated from the nasal mucosa, right hand, individual carried S. aureus in more than one body region, an isolate was taken from each carrier for spa isolates S. aureus. 3.3. spa typing of rate among the participants of this study was 1%. Three MRSA strains were isolated from the nasal mucosa, 65 were from right hands, and 60 were from left hands. Additionally, these strains were isolated from the nasal mucosa and the right hands of 9 people (n = 18), the nasal mucosa and the left hands of 11 people (n = 22), the right and left hands of 12 people (n = 24), the right hands of 15 people (n = 15), the left hands of 8 people (n = 8), and the nasal mucosa of 41 (n = 41) people. Of the 300 participants in this study, 125 (41.6%) were found to be carriers of S. aureus, 215 isolates of which were obtained in total. Of the 215 S. aureus isolates, 90 were isolated from the nasal mucosa, 65 were from right hands, and 60 were from left hands.

Antibiotic resistance among these isolates was as follows: 19 (8.8%) were resistant to erythromycin, 15 (6.9%) to tetracycline, and 3 (1.4%) to cefoxitin. The cefoxitin-resistant isolates were obtained from nasal mucosa. These isolates were found to be susceptible to other antibiotics tested.

3.2. Determination of methicillin resistance by PCR
Three MRSA strains were isolated from the nasal mucosa of 3 food employees. Two individuals from whom MRSA strains were isolated were employees of food businesses and one worked in a hospital kitchen. The MRSA carrier rate among the participants of this study was 1%.

3.3. spa typing of S. aureus isolates
An isolate was taken from each carrier for spa typing. If one individual carried S. aureus in more than one body region, the isolates isolated from the nasal mucosa, right hand, and left hand were selected for genotyping, respectively. Therefore, only one isolate of every person was taken for genotyping studies. Of the 125 S. aureus strains subjected to spa typing, 90 (72%) were isolated from nasal mucosa, 27 (21.6%) from right hands, and 8 (6.4%) left hands. Thirty-two (25.6%) isolates were obtained from hospital kitchen workers and 93 (74.4%) from food business employees. The spa gene region of one isolate could not be amplified with the primers used in MSSA isolates.

Sixty spa types were identified among the 121 MSSA isolates, of which 11 (9.0%) were t084, 9 (7.4%) t008, 8 (6.6%) t005, 6 (4.9%) each of t012 and t267, 5 (4.1%) t091, 4 (3.3%) each of t010 and t571, and 3 (2.5%) each of t223, t189, t310, t346, and t774. Furthermore, types t065, t158, t160, t304, t537, and t3266 were detected in two isolates each. Finally, 41 spa types were represented by single isolate. The distribution of spa types according to food businesses and hospitals is given in Table 1. The distribution of 121 MSSA isolates between food businesses (restaurants and catering industries) and hospitals according to spa types is shown in Tables 2 and 3. The spa types of the MRSA (n = 3) isolates obtained from food business employees were t786 and t223, and that taken from the hospital kitchen worker was of type t223. A total of 5 isolates were identified as spa type t223. Two of these were MRSA and 3 were MSSA.

A novel, short repetitive region (04-44-33-12-16-12-33-34) determined by DNA sequence analysis to be present in isolate no. 101 has not previously been reported. This was added to the Ridom SpaServer database as “t14963” (http://spa.ridom.de/spatypes.shtml). The discriminatory power of the spa typing method in this study was calculated as 0.9736.

3.4. SCCmec and MLST typing of MRSA isolates
SCCmec analysis identified the 3 MRSA isolates as type IVA, suggesting that these strains were community-acquired MRSA (CA-MRSA). The MLST type of the MRSA strains identified as spa type t786 was ST88 and as spa type t223 was ST22 (Table 4).

4. Discussion
Recent studies have revealed that methicillin resistance is gradually increasing among CA-MRSA. A previous examination of 526 S. aureus isolates obtained from individuals employed in food businesses revealed 28 (5.3%) to be MRSA in a study performed in Antalya, Turkey, in 2013 (16). A similar investigation identified methicillin resistance in 17.1% of 169 S. aureus isolates recovered from nasal swabs of food employees in Bursa, Turkey, in 2010 (17). Another study of the carriage of this bacterium by individuals working in comparable roles reported that 0.4% of 73 isolates were MRSA in Alanya, Turkey (18). The prevalence of S. aureus methicillin resistance in our study was 1.4%, and 1% of the food employees tested carried MRSA. These values are lower than those reported by the majority of other investigations.
In the largest epidemiological survey ever done in Turkey to date, 397 MRSA strains collected from 12 hospitals in 11 cities in different geographical regions of Turkey between 2006 and 2008 and 91 MRSA strains collected from 4 hospitals in 2011 were investigated in terms of spa types and clonalities according to MLST and PFGE methods. This study showed the presence of a hospital Turkish clone TR09 (ST239-SCC\textit{mec} III-t030) and a community clone TR10 (ST737-SCC\textit{mec} IV-t005) largely disseminated in Turkey. The most common MRSA clone in Turkey was found to be ST239 (91.4\%)-SCC\textit{mec} type III (91.4\%), t030 (85.1\%) (15). In a previous report, 54 MRSA strains obtained from 8 university hospitals, geographically distributed over the 6 main regions of Turkey, were shown to be of 4 \textit{spa} types (t030, t459, t1459, and t189). t030 predominated, accounting for 89\% of the isolates. All of them were ST239, SCC\textit{mec} III (19). It was determined that all of the 48 MRSA isolates identified in the Eastern Black Sea Region except for 2 \textit{spa} types were t030. The MLST types of strains representing the 3 different \textit{spa} types were ST239 (3). In another study conducted on 9 MRSA strains isolated from blood cultures in Izmir, Turkey, it was shown

\textit{spa} type (n)	Food businesses (n)	Hospitals (n)	Total MSSA, n (%)
t002 1	0	1 (0.8)	
t004 1	0	1 (0.8)	
t005 7	1	8 (6.6)	
t008 8	1	9 (7.4)	
t010 0	4	4 (3.3)	
t012 5	1	6 (4.9)	
t018 1	0	1 (0.8)	
t026 0	1	1 (0.8)	
t065 2	0	2 (1.6)	
t084 9	2	11 (9.0)	
t091 5	0	5 (4.1)	
t136 0	1	1 (0.8)	
t153 0	1	1 (0.8)	
t156 1	0	1 (0.8)	
t158 2	0	2 (1.6)	
t160 2	0	2 (1.6)	
t186 0	1	1 (0.8)	
t189 3	0	3 (2.5)	
t197 0	1	1 (0.8)	
t223 0	3	3 (2.5)	
t267 5	1	6 (4.9)	
t284 0	1	1 (0.8)	
t295 0	1	1 (0.8)	
t304 2	0	2 (1.6)	
t310 3	0	3 (2.5)	
t335 1	0	1 (0.8)	
t338 1	0	1 (0.8)	
t346 3	0	3 (2.5)	
t359 1	0	1 (0.8)	
t537 2	0	2 (1.6)	

\textit{spa} type (n)	Food businesses (n)	Hospitals (n)	Total MSSA, n (%)
t548 1	0	1 (0.8)	
t569 1	0	1 (0.8)	
t571 0	4	4 (3.3)	
t630 0	1	1 (0.8)	
t660 1	0	1 (0.8)	
t693 1	0	1 (0.8)	
t723 1	0	1 (0.8)	
t774 3	0	3 (2.5)	
t843 1	0	1 (0.8)	
t865 0	1	1 (0.8)	
t1236 1	0	1 (0.8)	
t1313 1	0	1 (0.8)	
t1326 1	0	1 (0.8)	
t1439 0	1	1 (0.8)	
t1523 0	1	1 (0.8)	
t2243 1	0	1 (0.8)	
t2278 1	0	1 (0.8)	
t2816 1	0	1 (0.8)	
t3266 2	0	2 (1.6)	
t3906 1	0	1 (0.8)	
t4188 1	0	1 (0.8)	
t5480 1	0	1 (0.8)	
t6367 1	0	1 (0.8)	
t6811 1	0	1 (0.8)	
t9756 1	0	1 (0.8)	
t11108 0	1	1 (0.8)	
t10405 1	0	1 (0.8)	
t10907 1	0	1 (0.8)	
t12730 1	0	1 (0.8)	
t14963 0	1	1 (0.8)	

| Total 91 | 30 | 121 (100) |
that the dominant strain was t030 spa and it was a member of the clone ST239-IIIA (20). The most common spa and MLST types of 12 MRSA strains isolated from mastitic cow milk and nasal swabs of related agricultural workers in the Aydın region were t030, ST239. Ten of them were identified as SCCmec III (21). In the latest work reported from Turkey, clinical MRSA isolates were collected from 6 university hospitals. Of the 270 MRSA isolates, 91% were found as SCCmec III and 81.1% as t030. The majority of MRSA isolates reported in Turkey belonged to ST239, t30, SCCmec III (22). We identified 2 of 3 MRSA strains as t223, ST22, SCCmec IVa and one as t786, ST88, SCCmec IVa. spa type t223, which was previously determined in Aydın, has also been determined in our work (15). ST22

Table 2. Distribution of MSSA isolates among restaurants and catering industries.

Sites	spa types (n)	Most frequent spa type (%)	MSSA (n)
C1	t158 (1)	-	1
C2	t091 (1), t537 (1), t1326 (1)	-	3
C3	t091 (2), t3266 (1)	t091 (67)	3
C4	t012 (1), t091 (1)	-	2
C5	t084 (3), t2243 (1), t3266 (1)	t084 (60)	5
C6	t005 (2), t008 (1), t502 (3), t160 (2), t2278 (1)	t002 (33)	9
C7	t004 (1), t065 (1), t189 (2), t310 (1), t537 (1), t693 (1), t774 (3), t2816 (1)	t774 (27)	11
C8	t008 (2), t084 (1), t267 (1), t843 (1), t9756 (1), t1097 (1), t12730 (1)	t008 (25)	8
C9	t005 (1), t018 (1), t084 (2), t156 (1), t723 (1), t1313 (1), t3906 (1), t4188 (1)	t084 (22)	9
C10	t005 (1), t008 (4), t012 (1), t304 (1), t5480 (1)	t008 (50)	8
C11	t6367 (1), t10405 (1)	-	2
C12	t005 (1), t065 (1), t084 (1), t158 (1), t335 (1), t660 (1), t1236 (1), t6811 (1)	-	8
C13	t084 (1), t267 (2), t548 (1), t569 (1)	t267 (40)	5
C14	t008 (1), t267 (2), t304 (1), t310 (1), t338 (1), t359 (1)	t267 (28)	7
C15	t002 (1), t091 (1)	-	2
C16	t005 (1)	-	1
C17	t005 (1), t084 (1), t189 (1), t310 (1), t346 (3)	t346 (43)	7

C1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17: restaurants; C8 and C9: catering industries

Table 3. Distribution of MSSA isolates among hospitals.

Hospitals	spa types (n)	Most frequent spa type (%)	MSSA (n)
H1	t630 (1)	-	1
H2	t284 (1), t295 (1)	-	2
H3	t153 (1)	-	1
H4	t012 (1), t026 (1), t084 (1), t136 (1), t197 (1), t1439 (1), t14963 (1)	-	7
H5	t008 (1), t084 (1), t267 (1), t11108 (1)	-	4
H6	t005 (1), t186 (1), t571 (4), t1523 (1)	t571 (57)	7
H7	t865 (1)	-	1
H8	t223 (3)	t223 (100)	3
H9	t010 (4)	t010 (100)	4

H1–9: hospitals.
spread through a community via food business workers, identified in the MRSA strains obtained from a food business employee and a hospital worker. MRSA may spread through a community via food business workers, and dissemination of a strain may occur from the wider community to a hospital, as well as in the opposite direction. Moreover, there is no relation between these MRSA carriers identified with the same spa type (t223) and they may have been colonized by different sources.

Over a time span of 6 months (May to October 2006), a total of 1490 staphylococcal isolates were sent to the National Reference Center in Germany for staphylococci for further characterization and typing. Among the 283 MSSA isolations, the most common spa types were t008 (14.5%) and t091 (4.9%) (7). In Hong Kong, food handlers from 6 catering establishments were nasally sampled for S. aureus. Of 434 food handlers, 99 (22.8%) were colonized with S. aureus. Forty-one spa types were determined within 94 MSSA isolates. spa typing revealed 18% of isolates as t189, 8.5% as t127, and 7.4% as t091 (35). A randomly selected, healthy Norwegian community population was studied for nasal carriage of S. aureus to describe frequency and molecular diversity. No MRSA isolates were found. The most frequent spa type t084 was detected in 7.4% (7/95) of the individuals. In our study, the most common spa type was t084 (36). In our study, the most common spa types of 121 MSSA isolates were t084 (9%), t008 (7.4%), and t005 (6.6%).

All MSSA isolates (n = 3) obtained from 3 individuals working in one of the district hospitals (H8) were of the same spa type (t223). Moreover, all MSSA isolates (n = 4) obtained from 4 individuals working in one of the hospitals in the province center (H9) were of the same spa type (t010). Here, MSSA isolates obtained from 2 hospitals were of the same spa type (t223 at H8 and t010 at H9), which was considered significant. This shows that the same clone may have spread to other people through a single person. Furthermore, 4 of the 7 isolates obtained from hospital H6 also shared the same spa type (t571). Interestingly, spa type t571, which we identified in 4 MSSA isolates, has been frequently found in many parts of the world among ST398 MSSA isolates, including isolates causing severe human infections. The ST398 genetic background is often associated with livestock-associated MRSA (37).

Here, 60 different spa types were detected among the MSSA isolates circulating in Çanakkale, Turkey. This draws attention to the fact that spa typing is also of use for MSSA strains. spa typing of MSSA isolates may contribute to identifying the source of any future local epidemics.

In conclusion, we have shown that rates of antibiotic resistance among S. aureus isolates obtained from food business employees and the carriage of MRSA by such individuals are low. This study contributed to the epidemiological data because of the detection t786, ST88, and SCCmec IVa MRSA strains, which have not been previously reported in Turkey.
Acknowledgments
This study was supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK, SBAG Project No. 113S562). SCCmec and MLST typing was performed by Prof Dr Bülent Bozdoğan’s team at the REDPROM Center of Adnan Menderes University in Aydın, Turkey. We would like to thank Dr John WA Rossen (University of Groningen, the Netherlands) for his help in determining the novel spa type.

References
1. Hiramatsu K, Katayama Y, Yuzawa H, Ito T. Molecular genetics of methicillin-resistant Staphylococcus aureus. Int J Med Microbiol 2002; 292: 67-74.
2. Yılmaz S, Kılıç A, Karagöz A, Bedir O, Usküedar Güçlü A, Baştıaoglu AC. Investigation of various virulence factors among the hospital and community-acquired Staphylococcus aureus isolates by Real-Time PCR. Microbiol Bul 2012; 46: 532-545 (in Turkish with abstract in English).
3. Kırca Yılmaz S, Acuner IC, Strommenger B, Bek Y, Witte W. Infectivity-resistotype-genotype clustering of methicillin-resistant Staphylococcus aureus strains in the central Blacksea Region of Turkey. Microbiol Bul 2014; 48: 14-27 (in Turkish with abstract in English).
4. O’Hara FP, Suaya JA, Ray GT, Baxter R, Brown ML, Mera RM, Close NM, Thomas E, Amrine-Madsen H. spa typing and multilocus sequence typing show comparable performance in a macroepidemiologic study of Staphylococcus aureus in the United States. Microb. Drug Resist 2016; 22: 88-96.
5. Al-Tam F, Brunel AS, Bouzinbi N, Corne P, Banuls AL, Shahbazkia HR. DNAGear—a free software for spa type identification in Staphylococcus aureus. BMC Research Notes 2012; 5: 642.
6. Harmsen D, Claus H, Witte W, Rothganger J, Claus H. Turnwald D. Vogel U. Typing of methicillin-resistant Staphylococcus aureus in a university hospital setting by using novel software for spa repeat determination and database management. J Clin Microbiol 2003; 41: 5442-5448.
7. Strommenger B, Braulke C, Heuck D, Schmidt C, Pasemann B, Nübel U, Witte W. spa typing of Staphylococcus aureus as a frontline tool in epidemiological typing. J Clin Microbiol 2008; 46: 574-581.
8. Sabat AJ, Budimir A, Nashev D, Sa-Leao R, van Dijl JM, Laurent F, Grundmann H, Friedrich AW. Overview of molecular typing methods for outbreak detection and epidemiological surveillance. Euro Surveillance 2013; 18: 20380.
9. Hallin M, Friedrich AW, Struelens MJ. spa typing for epidemiological surveillance of Staphylococcus aureus. Methods Mol Biol 2009; 551: 189-202.
10. Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disc Susceptibility Testing: Twenty-Second Informational Supplement, M100-S22. Wayne, PA, USA: CLSI; 2012.
11. Choi SM, Kim SH, Kim HJ, Lee DG, Choi JH, Yoo JH, Kang JH, Shin WS, Kang MW. Multiplex PCR for the detection of genes encoding aminoglycoside modifying enzymes and meicillin resistance among staphylococcus species. J Korean Med Sci 2003; 18: 631-636.
12. Hunter PR, Gaston MA. Numerical index of the discriminatory ability of typing systems: an application of Simpson's index of diversity. J Clin Microbiol 1988; 26: 2465-2466.
13. Oliveira DC, Lencastre HD. Multiplex PCR strategy for rapid identification of structural types and variants of the mec element in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2002; 46: 2155-2161.
14. Zhang K, McClure J, Elhayed S, Louie T, Conly JM. Novel multiplex PCR assay for characterization and concomitant subtyping of staphylococcal cassette chromosome mec types I to V in methicillin-resistant Staphylococcus aureus. J Clin Microbiol 2005; 43: 5026-5033.
15. Bozdoğan B, Yıldız Ö, Oryaşın E, Kırdar S, Gülcü B, Aktepe O, Arslan U, Bayramoğlu G, Çoban AY, Coşkuner SA et al. T030 is the most common spa type among methicillin-resistant Staphylococcus aureus strains isolated from Turkish hospitals. Microbiol Bul 2013; 47: 571-581 (in Turkish with abstract in English).
16. Sepin Özen N, Tuğlu Ataman Ş, Seyman D, Aldağ H, Emek M. Investigation of nasal Staphylococcus aureus carriage and methicillin resistance rates with three different methods in food handlers working in Antalya. Turkish Bulletin of Hygiene and Experimental Biology 2013; 70: 51-58 (in Turkish with abstract in English).
17. Pala K, Özakın C, Akış N, Smurtaş M, Gedikoğlu S. Asymptomatic carriage of bacteria in food workers in Nilüfer District. Turk J Med Sci 2010; 40: 133-139.
18. Erdoğan H, Arslan H. Nasal and pharyngeal carriage of Staphylococcus aureus among hotel staff and risk assessment. Kлимik Dergisi 2011; 24: 90-93 (in Turkish with abstract in English).
19. Alp E, Klaassen C, Doğanay M, Klaassen CHW, Doğanay M, Altoparlak U, Aydin K, Engin A, Kuzucu C, Özakın C et al. MRSA genotypes in Turkey: persistence over 10 years of a single clone of ST239. J Infect 2009; 58: 433-438.
20. Ergon MC, Biçmen M, Gülay Z. Dokuz Eylül Üniversitesi Hastanesi’ndeki dominant metisiline dirençli Staphylococcus aureus suşunun moleküler yöntemlerle tiplendirilmesi. ANKEM 2010; 24: 65-70 (in Turkish).
21. Erdem Z, Türkyılmaz S. Molecular typing of methicillin-resistant Staphylococcus aureus strains isolated from cows and farm workers. Journal of the Faculty of Veterinary Medicine of Kafkas University 2013; 19: 963-968 (in Turkish with abstract in English).

22. Dündar D, Willke A, Sayan M, Koç MM, Akan OA, Sümerkan B, Saltoğlu N, Yaman A, Ayaz C, Köksal İ. Epidemiological and molecular characteristics of methicillin-resistant Staphylococcus aureus in Turkey: a multicenter study. J Global Antimicrob Resist 2016; 6: 44-49.

23. Oksuz L, Dupieux C, Tristan A, Bes M, Etienne J, Gurler N. The high diversity of MRSA clones detected in a university hospital in Istanbul. Int J Med Sci 2013; 10: 1740-1745.

24. Aqel AA, Alzoubia HM, Vickers A, Pichon B, Kearns AM. Molecular epidemiology of nasal isolates of methicillin-resistant Staphylococcus aureus from Jordan. Journal of Infection and Public Health 2015; 8: 90–97.

25. Al-Bakri AG, Al-Hadithi H, Kasabri V, Othman G, Kriegeskorte A, Becker K. The epidemiology and molecular characterization of methicillin-resistant staphylococci sampled from a healthy Jordanian population. Epidemiol Infect 2013; 141: 2384-2391.

26. Biber A, Abuelaish I, Rahav G, Raz M, Cohen L, Valinsky L, Taran D, Goral A, Elhamdany A, Regev-Yochay G. A typical hospital-acquired methicillin-resistant Staphylococcus aureus clone is widespread in the community in the Gaza Strip. PLoS One 2012; 7: e42864.

27. Biber A, Abuelaish I, Rahav G, Raz M, Cohen L, Valinsky L, Taran D, Goral A, Elhamdany A, Regev-Yochay G. A typical hospital-acquired methicillin-resistant Staphylococcus aureus clone is widespread in the community in the Gaza Strip. PLoS One 2012; 7: e42864.

28. Abou Shadya HM, Bakr AEA, Hashad ME, Alzohairyd MA. Staphylococcus aureus nasal carriage among outpatients attending primary healthcare centers: a comparative study of two cities in Saudi Arabia and Egypt. Branz J Infect Dis 2015; 19: 68-76.

29. Gostev V, Kruglov A, Kalinogorskaya O, Dmitrenchko O, Khokhlova O, Yamamoto T, Lobzin Y, Ryabchenko I, Sidorenko S. Molecular epidemiology and antibiotic resistance of methicillin-resistant Staphylococcus aureus circulating in the Russian Federation. Infect Genet Evol 2017; 53: 189-194.

30. Larsson AK, Gustafsson E, Johansson PJJ, Odenholt I, Petersson AC, Melander E. Epidemiology of MRSA in southern Sweden: strong relation to foreign country of origin, healthcare abroad and foreign travel. Eur J Clin Microbiol Infect Dis 2014; 33: 61-68.

31. Conceiçao T, Coelho C, Lencastre H, Aires-de-Sousa M. Frequent occurrence of oxacillin-susceptible mecA-positive Staphylococcus aureus (OS-MRSA) strains in two African countries. J Antimicrob Chemother 2015; 70: 3200-3204.

32. Kock R, Brakensiek L, Mellmann A, Kipp F, Henderikx M, Harmsen D, Daniels-Heardt I, Von Ellif C, Becter K, Hendrix MG et al. Cross-border comparison of the admission prevalence and clonal structure of methicillin-resistant Staphylococcus aureus. J Hosp Infect 2009; 71: 320-326.

33. Mithoe D, Rijnders MIA, Roede BM, Stobberingh E, Möller AVM. Prevalence of community-associated methicillin-resistant Staphylococcus aureus and Panton-Valentine leukocidin-positive S. aureus in general practice patients with skin and soft tissue infections in the northern and southern regions of the Netherlands. Eur J Clin Microbiol Infect Dis 2012; 31: 349-356.

34. Senn L, Basset P, Greub G, Prod’hom G, Frei R, Zhindou R, Gaia V, Balmelli C, Pfyffer GE, Muhlemann K et al. Molecular epidemiology of methicillin-resistant Staphylococcus aureus in Switzerland: sampling only invasive isolates does not allow a representative description of the local diversity of clones. Clin Microbiol Infect 2013; 19: 288-290.

35. SKJ N. O'Donoghue MM, Boost MV. Occupational exposure to raw meat: a newly-recognized risk factor for Staphylococcus aureus nasal colonization amongst food handlers. International Journal Hygiene Environmental Health 2014; 217: 347-353.

36. Skramm I, Moen AE, Bukholm G. Nasal carriage of Staphylococcus aureus: frequency and molecular diversity in a randomly sampled Norwegian community population. APMIS 2011; 119: 522-528.

37. Jimenez JN, Velez LA, Mediavilla JR, Ocampo AM, Vanegas JM. Livestock-associated methicillin-susceptible Staphylococcus aureus ST398 infection in woman, Colombia. Emerg Infect Dis 2011; 17: 1970-1971.