On the Deuring-Heilbronn Phenomenon

C. Bellotti, G. Puglisi

Abstract. The aim of this work is to improve some results regarding both the Deuring-Phenomenon and the Heilbronn-Phenomenon. We will give better estimates regarding both the influence of zeros of the Riemann zeta function on the exceptional zeros and that of the non-trivial zeros of arbitrary L-functions belonging to non-principal characters on the exceptional zeros.

1 Introduction

Let $L(s, \chi_D)$ be a Dirichlet’s L-function belonging to the real primitive character χ_D modulus D satisfying $\chi_D(-1) = -1$. Let $h(-D)$ be the number of classes of the imaginary quadratic field $\mathbb{Q}(\sqrt{-D})$.

Two conjectures involving the class number $h(-D)$ of the imaginary quadratic field belonging to the fundamental discriminant $-D < 0$ were raised by Gauss, who published them in 1801 [6]. The first problem was about determining all the negative fundamental discriminants with class number one. The second problem was about proving the correctness of the relation $h(-D) \to \infty$, provided that $D \to \infty$.

Regarding the second conjecture, in 1913, Gronwall [9] proved that if the function $L(s, \chi_D)$ belonging to the real primitive character $\chi_D(n) = (\frac{D}{n})$ has no zero in the interval $\left[1 - \frac{1}{\log D}, 1 \right]$, then $h(-D) > \frac{b(\alpha)\sqrt{D}}{\log D \log \log D}$ where α is a constant and $b(\alpha)$ is a constant depending only on α.

In 1918, Hecke [13] proved that, under the same hypotheses of Gronwall’s theorem, the inequality $h(-D) > \frac{\sqrt{\log D}}{\log D}$ holds, where α is a constant and $b'(\alpha)$ is a constant depending only on α.

In 1933, Deuring [4] proved that under the assumption of the falsity of the classical Riemann Hypothesis the relation $h(-D) \geq 2$ holds for $D > D_0$, where D_0 is a constant. In 1934, Mordell [17] improved the result found by Deuring. Under the assumption of the falsity of the classical Riemann Hypothesis, Mordell proved that $\lim h(-D) = \infty$ as $D \to \infty$.

These results showed an interesting connection between the possibly existing real zeros of special L-functions and the non-trivial zeros of the ζ-function.

Better results regarding the influence of zeros of $\zeta(s)$ on the exceptional zeros, or equivalently, the Deuring-Phenomenon, were provided by the work of Pintz, who used a new approach involving some elementary methods.

In 1976, Pintz [23] proved that, assuming a relatively strong upper bound for $h(-D)$, it is possible to determine, up to a factor $1 + o(1)$, the values of the corresponding L-function in a great domain of the critical strip.

Theorem. (Pintz) Given $0 < \varepsilon < 1/8$ and $D > D_1(\varepsilon)$, where $D_1(\varepsilon)$ is an effective constant depending on ε, we define the domain $H(\varepsilon, D)$, depending on ε and on D, as the set

$$H(\varepsilon, D) = \left\{ s; s = 1 - \tau + it, |1 - s| \geq 1/\log^4 D, 0 \leq \tau \leq \frac{1}{4} - \varepsilon \right\}$$

If the inequality

$$h(-D) \leq (\log D)^{3/4}$$

holds, then neither $L(s, \chi_D)$ nor $\zeta(s)$ has a zero in $H(\varepsilon, D)$, and for $s \in H(\varepsilon, D)$, we have

$$L(s, \chi_D) = \frac{\zeta(2s)}{\zeta(s)} \prod_{p \mid D} \left(1 + \frac{1}{p^s} \right) \left[1 + O \left(\exp \left\{ -\frac{1}{8}(\log D)^{1/4} \right\} \right) \right]$$
An immediate consequence is that, except for the eventual Siegel zero, neither \(L(s, \chi_D) \) nor \(\zeta(s) \) has a zero in this domain. Also, a weakened form of Mordell’s theorem follows, namely that if \(h(-D) \to \infty \) for \(D \to \infty \), then \(\zeta(s) \) has no zero in the half-plane \(\sigma > \frac{3}{4} \).

In 1984, Puglisi [24] made some improvements, being able to extend further the domain of the critical strip in which it is possible to determine, up to a factor \(1 + o(1) \), the values of the corresponding \(L \)-function.

Theorem. (Puglisi) Let \(\alpha, \lambda > 0 \) be real numbers with \(\alpha + \lambda < 1 \). Given

\[
\ell = (\log D)^{-\lambda},
\]

we define the following set

\[
H(\ell, D) = \left\{ s = \sigma + it : |1 - s| \geq (\log D)^{-4}, 1/2 + \ell \leq \sigma \leq 1, |s| \leq D^{\ell / 10} \right\}
\]

If

\[
h(-D) \leq (\log D)^{\alpha}
\]

then for each \(s \in H(\ell, D) \) the relation

\[
L(s, \chi_D) = \frac{\zeta(2s)}{\zeta(s)} \prod_{p \mid D} \left(1 + \frac{1}{p^s} \right) \left[1 + O \left(\exp \left\{ - \frac{1}{3} (\log D)^{1-\alpha-\lambda} \right\} \right) \right]
\]

holds.

An immediate consequence of Puglisi’s improvement is a reformulation of Mordell’s Theorem, that is, if \(\zeta(\beta + i\gamma) = 0 \) with \(\beta > \frac{1}{2} \), then, for every \(\varepsilon > 0 \), the relation \(h(-D) > (\log D)^{1-\varepsilon} \) holds, provided that \(D > D_0(\beta, \gamma, \varepsilon) \).

In 1934, Heilbronn [11] solved the second Gauss’ conjecture. He proved that, under the assumption that the general Riemann Hypothesis is not true, \(h(-D) \to \infty \) if \(D \to \infty \). Heilbronn’s result is very important, as, combined with Hecke’s theorem, gives, without any assumption, that \(h(-D) \to \infty \) if \(D \to \infty \).

In 1935, Siegel [25] proved that \(h(-D) > D^{1/2-\varepsilon} \) for \(D > D_0(\varepsilon) \) for an arbitrary \(\varepsilon > 0 \), and with a constant \(D_0(\varepsilon) \) depending only on \(\varepsilon \), where the constant \(D_0(\varepsilon) \) is ineffective (for alternative proofs of Siegel’s Theorem see Estermann [5], Chowla [2], Goldfeld [7], Linnik [16], Pintz [19]).

Heilbronn played a fundamental role also in the attempt to prove the first Gauss’ conjecture. In 1934, Heilbronn and Linfoot [12] showed that, except for the known values \(-D = -3, -4, -7, -8, -11, -19, -43, -67, -163 \), there is at most a tenth negative fundamental discriminant with class number one.

In 1935 Landau [14] proved that if \(h(-D) = h \), then the inequality \(D \leq D(h) = C h^b \log^6(3h) \) holds, where \(C \) is an absolute effective constant, with the possible exception of at most one negative fundamental discriminant.

In 1950 Tatuzawa [27] proved Landau’s theorem mentioned above with \(D(h) = C h^2 \log^2(13h) \). Furthermore, Tatuzawa made some improvements regarding the effective zization of Siegel’s Theorem, showing that if \(h(-D) \leq D^{1/2-\varepsilon} \), then the inequality \(D \leq D_0(\varepsilon) = \max \{ e^{12}, \varepsilon^{1/\varepsilon} \} \) holds, with the possible exception of at most one negative fundamental discriminant.

Finally, in 1966-1967, Baker [1] and Stark [26] proved independently that there is no tenth imaginary quadratic field with class number one.

The results found by Deuring [1] and Heilbronn [11] regarding the influence of the non-trivial zeros of both \(\zeta(s) \) and \(L(s, \chi) \) (where \(\chi \) is an arbitrary real or complex character) on the real zeros of other real \(L \)-functions caught the interest of Linnik, who deeply analyzed this phenomenon, known as the Deuring-Heilbronn phenomenon, in his work concerning the least prime in an arithmetic progression, finding new important results [15].
Theorem. (Linnik) If an L-function belonging to a real non-principal character modulus D has a real zero $1 - \delta$ with
\[\delta \leq \frac{A_1}{\log D}, \]
then all the L-functions belonging to characters modulus D have no zero in the domain
\[\sigma \geq 1 - \frac{A_2}{\log D(|t| + 1)} \log \left(\frac{eA_1}{\delta \log D(|t| + 1)} \right), \quad \delta \log D(|t| + 1) \leq A_1, \]
where A_1 and A_2 are absolute constants.

Some improvements related to the Heilbronn-Phenomenon were found by Pintz in 1975 [22]. In particular, using elementary methods, he proved the following result.

Theorem (Pintz) Let $L(s, \chi_k)$ be a Dirichlet’s L-function belonging to the non principal character (real or complex) χ_k modulus k. Suppose that $L(s, \chi_k)$ has a zero $s_0 = 1 - \gamma + it$ with $\gamma < 0.05$.
Then, for an arbitrary real non-principal character χ_D mod D (for which $\chi_k \chi_D$ is also non-principal) the inequality
\[L(1, \chi_D) > \frac{1}{140 U^{6\gamma} \log^3 U} \]
holds, where $U = k |s_0| D$.

The aim of this work is to further investigate both the Deuring-Phenomenon and the Heilbronn-Phenomenon. We will find better estimates regarding the influence of zeros of $\zeta(s)$ on the exceptional zeros and that of the non-trivial zeros of arbitrary L-functions belonging to non-principal characters on the exceptional zeros, respectively.

Regarding the Deuring-phenomenon, combining elementary methods with some tools of complex analysis based on Pintz’s [23] and Puglisi’s [24] approach, we will go further into the critical strip. More precisely, we will prove the following theorem, provided that $L(s, \chi)$ is a Dirichlet’s L-function belonging to the real primitive character χ modulus q satisfying $\chi(-1) = -1$ and $h(-q)$ is the number of classes of the imaginary quadratic field $\mathbb{Q}(\sqrt{-q})$.

Theorem 1. Let $\eta, \mu > 0$ be real numbers with $\eta > \max(\mu, 1)$. Given
\[\ell = (\log \log q)^{-\mu}, \]
we define the following set
\[H(\ell, q) = \left\{ s = \sigma + it : |1 - s| \geq (\log q)^{-4}, 1/2 + \ell \leq \sigma \leq 1, |s| \leq q^{\ell/10} \right\} \]
If
\[h(-q) \leq \frac{\log q}{(\log \log q)^\eta} \]
then for each $s \in H(\ell, q)$ the relation
\[L(s, \chi) = \frac{\zeta(2s)}{\zeta(s)} \prod_{p | q} \left(1 + \frac{1}{p^s} \right) \left[1 + O \left(\exp \left\{ -\frac{1}{3} (\log \log q)^{\eta-\mu} \right\} \right) \right] \]
holds.

As an immediate consequence, a new reformulation of Mordell’s Theorem follows from Theorem 1.
Corollary 1. If \(\zeta(\beta + i\gamma) = 0 \) with \(\beta > 1/2 \), then for every \(\eta > 1 \) the relation

\[
h(q) > \frac{\log q}{(\log \log q)^\eta}
\]

holds, provided that \(q > q_0(\beta, \gamma, \eta) \).

The improvements regarding the Deuring-Phenomenon stated above make sense, as the inequality \(h(q) > c\log q/(\log \log q)^\eta \) had never been generalized to an arbitrary modulus \(q \), but it was valid only for \(q \) prime (8, 10).

Regarding the Heilbronn-phenomenon, we will improve Pintz’s theorem stated above, showing that it is possible to extend the range of values for \(\gamma \) to \(0 < \gamma < \frac{1}{4} \), as Pintz’s conjectured in 22. More precisely, we will use elementary methods based on Pintz’s approach 22 to prove the following theorem.

Theorem 2. Let \(L(s, \chi_k) \) be a Dirichlet’s \(L \)-function belonging to the non principal character (real or complex) \(\chi_k \) modulus \(k \). Suppose that \(L(s, \chi_k) \) has a zero \(s_0 = 1 - \gamma + it \) with \(0 < \gamma < \frac{1}{4} \).

Then, for an arbitrary real non-principal character \(\chi_D \) mod \(D \) (for which \(\chi_k\chi_D \) is also non-principal) the inequality

\[
L(1, \chi_D) \geq \frac{c_1}{U^{b\gamma} \log^3 U}, \quad \text{for} \quad \frac{1}{2(1 - 3\gamma)} < b < \frac{1}{2\gamma}
\]

holds, where \(U = k|s_0|D \) and \(c_1 \) is an effective constant.

Theorem 2 has some important consequences.

First of all, we can deduce that a zero in the half-plane \(\sigma > \frac{3}{4} \) implies that \(h(-D) \to \infty \). Furthermore, a weakened form of Linnik Theorem 15 can be deduced (the following theorem is an improvement of Theorem 2 of 22).

Theorem 3. If an \(L \)-function belonging to a non-principal character \(\chi_k \) modulus \(k \) has a zero \(s_0 = 1 - \gamma + it \) with \(0 < \gamma < \frac{1}{4} \), and another \(L \)-function belonging to the real non-principal character \(\chi_D \) (for which \(\chi_k\chi_D \) is also non-principal) modulus \(D \) has a real exceptional zero \(1 - \delta \), then the inequality

\[
\delta > \frac{c_1}{U^{b\gamma} \log^3 U}, \quad \text{for} \quad \frac{1}{2(1 - 3\gamma)} < b < \frac{1}{2\gamma}
\]

holds, where \(U = k|s_0|D \) and \(c_1 \) is the costant of Theorem 2.

An immediate consequence is Linnik’s Theorem, stated above, in the following form.

Corollary 2. If an \(L \)-function belonging to a real non-principal character modulus \(D \) has a real zero \(1 - \delta \) with

\[
\delta = O_\varepsilon \left(\frac{1}{\log^{3+\varepsilon} D} \right) \quad (\varepsilon > 0)
\]

then all the \(L \)-functions belonging to characters modulus \(D \) have no zero in the domain

\[
\sigma \geq 1 - \frac{1}{b \log D} \log \left(\frac{c_1}{\delta \log^5 D} \right)
\]

where \(c_1 \) and \(b \) have been defined in Theorem 2.

Furthermore, from Theorem 3 combined with Hecke’s Theorem (see Pintz 20, p. 58), we obtain the following result regarding real zeros of real \(L \)-functions (the following theorem is an improvement of Theorem 3 of 22).

Corollary 3. For an arbitrary \(\gamma \), \(0 < \gamma < \frac{1}{4} \), there is at most one \(D \), and at most one primitive real character \(\chi_D \) modulus \(D \), such that \(L(s, \chi_D) \) vanishes somewhere in the interval

\[
\left[1 - \min \left(\gamma, \frac{c_1}{32 \log^3 D \cdot D^{b\gamma}} \right), 1 \right]
\]

where both \(c_1 \) and \(b \) have been defined in Theorem 2.
2 Proof of Theorem 1

In order to prove Theorem 1 following Pintz’s [23] and Puglisi’s [24] approach to the Deuring-phenomenon, we need some lemmas.

Lemma 1. Given $\frac{1}{2} + \ell \leq \sigma \leq \frac{7}{8}$ and $x \gg q$, the relation

$$\sum_{n \leq x} \frac{g(n)}{n^s} \left(1 - \frac{n}{x}\right)^2 = L(s, \chi) + \frac{2x^{1-s}L(1, \chi)}{(1-s)(2-s)(3-s)} + O\left(|s| \log^2(2 + |s|) \exp\left(-\frac{1}{2} \frac{\log q}{\log \log q^\mu}\right)\right)$$

holds.

Proof. Following exactly the proof of Lemma 2 of [24], we obtain again that

$$\sum_{n \leq x} \frac{g(n)}{n^s} \left(1 - \frac{n}{x}\right)^2 = \frac{1}{2} \sum_{n \leq x} g(n) \left(1 - \frac{n}{x}\right)^2 \frac{1}{2\pi i} \int_{-\sigma-i\infty}^{\sigma+i\infty} L(s + w, \chi) \zeta(s + w) x^w dw + \frac{L(s, \chi) \zeta(s)}{2} + \frac{x^{1-s}L(1, \chi)}{(1-s)(2-s)(3-s)}$$

Now, using both the hypothesis of Lemma 1 and the classical estimates that were already used in the proof of Lemma 2 of [24], namely

$$\zeta(it) \ll \sqrt{|t| + 1} \log(|t| + 2)$$
$$L(it, \chi) \ll q(|t| + 1) \log(q(|t| + 1)),$$

we get

$$\left| \int_{-\infty}^{\infty} \frac{x^{-\sigma+iu}}{\sqrt{|t + u|} \log q \log^2(2 + |s|) \log q \log^2(2 + |s|)} du \right| \ll |s| q^{-\ell} \log q \log^2(2 + |s|)$$
$$\ll |s| \log^2(2 + |s|) \exp \left(-\frac{\log q}{\log \log q^\mu} + \log \log q\right) \ll$$
$$\ll |s| \log^2(2 + |s|) \exp \left(-\frac{1}{2} \frac{\log q}{\log \log q^\mu}\right)$$

Finally, from the above estimate we can conclude that the relation

$$\sum_{n \leq x} \frac{g(n)}{n^s} \left(1 - \frac{n}{x}\right)^2 = L(s, \chi) + \frac{2x^{1-s}L(1, \chi)}{(1-s)(2-s)(3-s)} + O\left(|s| \log^2(2 + |s|) \exp\left(-\frac{1}{2} \frac{\log q}{\log \log q^\mu}\right)\right)$$

holds for $\frac{1}{2} + \ell \leq \sigma \leq \frac{7}{8}$ and $x \gg q$. \[\square\]

Lemma 2. If $s \in H(\ell, q)$ and the following inequality

$$h(-q) \leq \frac{\log q}{(\log \log q)^{\eta}}$$

holds, then the relation

$$\sum_{n \leq q} \frac{g(n)}{n^s} = L(s, \chi) \zeta(s) + O\left(\exp\left(-\frac{1}{3} \frac{\log q}{(\log \log q)^{\mu}}\right)\right)$$

holds.
Proof. First of all, we suppose that $\frac{1}{2} + \ell \leq \sigma \leq \frac{7}{8}$.

We know that

$$\sum_{n \leq q} g(n) \frac{1 - n}{n^s} = q^{\frac{1}{2} - \ell} \sum_{n \leq q} g(n) \sum_{n \leq q} \frac{g(n)n}{n^s} + \frac{1}{q^2} \sum_{n \leq q} \frac{g(n)n^2}{n^s}$$

Using Lemma 11 we have

$$\sum_{n \leq q} \frac{g(n)}{n^{s-1}} = L(s, \chi) \zeta(s) + \frac{2x^{1-s}L(1, \chi)}{(1-s)(2-s)(3-s)} + \left| q^{\frac{1}{2} - \ell} \right| \left| h(q) \right| + \frac{2}{q} \sum_{n \leq q} g(n) \sum_{n \leq q} \frac{g(n)}{n^{s-2}}$$

Now, if we use Dirichlet’s Class Number Formula (see Davenport [3], chapter 6) and Lemma 1 of [24], it follows that

$$\frac{1}{q} \sum_{n \leq q} \frac{g(n)}{n^{s-1}} \leq q^{-\frac{1}{2} + \ell} \sum_{n \leq q} g(n) \ll q^{-\ell} L(1, \chi) \ll q^{-\ell} h(q) \ll q^{-\ell} \log q \ll q^{-\ell} \log q$$

In the same way, since

$$\frac{1}{q^2} \sum_{n \leq q} \frac{g(n)}{n^{s-2}} \ll q^{-\ell} L(1, \chi)$$

$$\frac{2x^{1-s}L(1, \chi)}{(1-s)(2-s)(3-s)} \ll q^{-\ell} L(1, \chi),$$

the same estimate as before holds.

Furthermore, we observe that

$$|s| \log^2 (1 + |s|) \exp \left\{ -\frac{1}{2} \log q \frac{\log q}{(\log \log q)^\mu} \right\} \leq q^{\frac{\ell}{2}} \left(\frac{\log q}{(\log \log q)^\mu} \right)^2 \exp \left\{ -\frac{1}{2} \log q \frac{\log q}{(\log \log q)^\mu} \right\}$$

As a consequence, combining all the previous estimates, we can conclude that

$$\sum_{n \leq q} \frac{g(n)}{n^s} = L(s, \chi) \zeta(s) + O \left(\exp \left\{ -\frac{1}{2} \log q \frac{\log q}{(\log \log q)^\mu} \right\} \left(1 + q^{\frac{\ell}{2}} \left(\frac{\log q}{(\log \log q)^\mu} \right)^2 \right) \right)$$

On the other hand, we have

$$q^{\frac{\ell}{2}} \left(\frac{\log q}{(\log \log q)^\mu} \right)^2 = \exp \left\{ \ell \log q + 2 \log \log q - 2 \mu \log \log \log q \right\} \ll \exp \left\{ \frac{\log q}{10 (\log \log q)^\mu} \right\}$$

As a result, the following estimate

$$\exp \left\{ -\frac{1}{2} \log q \frac{\log q}{(\log \log q)^\mu} \right\} \left(q^{\frac{\ell}{2}} \left(\frac{\log q}{(\log \log q)^\mu} \right)^2 \right) \ll \exp \left\{ -\frac{1}{2} \log q \frac{\log q}{(\log \log q)^\mu} + \frac{\log q}{10 (\log \log q)^\mu} + 2 \log \log q \right\} \ll \exp \left\{ -\frac{1}{3} \log q \frac{\log q}{(\log \log q)^\mu} \right\}$$

holds.

So, we proved the thesis for $\frac{1}{2} + \ell \leq \sigma \leq \frac{7}{8}$.

If $\frac{7}{8} < \sigma < 1$, we can conclude as in Lemma 3 of [24].

-
Now, we define the same sets used by Pintz [23] and Puglisi [24]:

$$A_j = \{ n \in N : p \mid n \Rightarrow \chi(p) = j \} \quad (j = -1, 0, 1)$$

$$R = \{ r = bm : b \in A_0, m \in A_1 \}$$

Lemma 3. If

$$\sum_{a \in A_1, 1 < a \leq \sqrt{q}/2} 1 \leq h(-q)$$

then

$$\chi(p) = 1 \Rightarrow p > \frac{1}{2} \exp \left\{ \frac{\log q}{2(h(-q) + 1)} \right\}$$

Proof. By absurd, we suppose that

$$\chi(p) = 1 \Rightarrow p \leq \frac{1}{2} \exp \left\{ \frac{\log q}{2(h(-q) + 1)} \right\}$$

Since $h(-q) \geq 1$, we have

$$p^{h(-q)+1} \leq \frac{1}{2^{h(-q)+1}} \exp \left\{ \frac{\log q}{2} \right\} \leq \frac{1}{4} \sqrt{q} \leq \frac{1}{2} \sqrt{q}$$

Then, we consider $p, p^2, \ldots, p^{h(-q)+1}$. Under these conditions, the sum

$$\sum_{a \in A_1, 1 < a \leq \sqrt{q}/2} 1$$

has at least $h(-q) + 1$ terms. Indeed, taken $a = p^j$ with $j = 1, \ldots, h(-q) + 1$, we have $p \mid p^j$ and $\chi(p) = 1$ by hypothesis. However, we have a contradiction because we got that $h(-q) + 1 \leq h(-q)$.

Lemma 4. If $\sigma \geq \frac{1}{2} + \ell$ and the inequality

$$h(-q) \leq \frac{\log q}{(\log \log q)^\eta}$$

holds, then the relation

$$\sum_{a \in A_1, 1 < a \leq q} g(a)a^{-\sigma} \ll \exp \left\{ -\frac{1}{10}(\log \log q)^\eta \right\}$$

holds.

Proof. We know that

$$\sum_{a \in A_1, 1 < a \leq q} g(a)a^{-\sigma} \leq \exp \left\{ C \sum_{p \leq q \atop \chi(p) = 1} p^{-\sigma} \right\} - 1 \quad (C > 0)$$

Furthermore, from Lemma 3 if

$$\sum_{a \in A_1, 1 < a \leq \sqrt{q}/2} 1 \leq h(-q)$$

then

$$\chi(p) = 1 \Rightarrow p > \frac{1}{2} \exp \left\{ \frac{\log q}{2(h(-q) + 1)} \right\} = R_0$$
As a result, since $\frac{1}{2} \leq \sigma < 1$, $\eta > \max(\mu, 1)$ and the inequalities

$$1 \leq h(-q) \leq \frac{\log q}{(\log \log q)^{\eta}}$$

hold, we can conclude that

$$\sum_{\chi(p) = 1} p^{-\sigma} \leq 2^\sigma h(-q) \exp \left\{ -\frac{\sigma \log q}{2(h(-q) + 1)} \right\} \leq 2 \frac{\log q}{(\log \log q)^{\eta}} \exp \left\{ -\frac{1}{2} \left(\frac{\ell}{2} + \ell \right) \log q \right\} \leq 2 \frac{\log q}{(\log \log q)^{\eta}} \exp \left\{ -\frac{1}{2} \left(\frac{\ell}{2} + \ell \right) \log q \right\} = 2 \frac{\log q}{(\log \log q)^{\eta}} \exp \left\{ -\frac{1}{8} \log q \right\} \leq 2 \frac{\log q}{(\log \log q)^{\eta}} \exp \left\{ -\frac{1}{8} \log q \right\} \ll \exp \left\{ -\frac{1}{10} \log q \right\}$$

Furthermore, for $\sigma \geq \frac{1}{2} + \ell$ we have

$$\sum_{\sqrt{q}/2 < p \leq q, \chi(p) = 1} p^{-\sigma} \ll \sum_{\sqrt{q}/2 < n \leq q} g(n)n^{-\sigma} \ll q^{-\frac{\ell}{2}} \sum_{\sqrt{q}/2 < n \leq q} g(n)n^{-\frac{1}{2}}$$

Even more, using Lemma A of [24] (for the proof see Goldfeld [8], p. 637) with $\varepsilon = \frac{1}{11}$, we have, for $0 < 10y < x,$

$$\sum_{y < n \leq x} \frac{g(n)}{\sqrt{n}} = \sum_{d \leq \sqrt{x}} \frac{1}{d} \sum_{y/d^2 < k \leq x/d^2} \nu(k)k^{-1/2} \ll L(1, \chi) \left\{ \frac{\sqrt{y}}{\sqrt{y}} + \sqrt{x} + x^{\frac{1}{11}} q^{\frac{1}{11}} \right\}$$

Following the argument used by Puglisi in [24], if we take $H = \frac{\log 4q}{\log 121}$, we obtain that

$$\sum_{\sqrt{q}/2 < p \leq q, \chi(p) = 1} p^{-\sigma} \ll q^{-\frac{\ell}{2}} \sum_{h \leq H} \sqrt{q} \sum_{\sqrt{q}(11)^{h-1} < n \leq \sqrt{q}(11)^h} g(n)n^{-\frac{1}{2}} \ll q^{-\frac{\ell}{2}} L(1, \chi) \sum_{h \leq H} \left\{ \sqrt{q} + \frac{\sqrt{q}(11)^h}{2} + \left(\frac{\sqrt{q}(11)^h}{2} \right)^{\frac{1}{11}} q^{\frac{1}{11}} q^{\frac{1}{11}} \right\} \ll \frac{\log 4q}{\log 121} q^{-\frac{1}{2}} L(1, \chi) \ll \exp \left\{ -\frac{1}{8} \log q \right\}$$

where we used the estimate

$$q^{-\ell} h(-q) \ll \exp \left\{ -\frac{1}{2} \left(\frac{\ell}{2} + \ell \right) \log q \right\}$$

Adding both the terms, the thesis follows. \hfill \square

Lemma 5. If $\sigma \geq \frac{1}{2} + \ell$ and the inequality

$$h(-q) \leq \frac{\log q}{(\log \log q)^{\eta}}$$

holds, then the relation

$$\sum_{n \leq q} g(n)n^{-s} = \sum_{r \leq R, r \leq q} g(r)r^{-s} + O \left(\exp \left\{ -\frac{1}{16} (\log \log q)^{\eta} \right\} \right)$$

holds.
Proof. First of all, we observe that
\[
\sum_{n \leq q} g(n)n^{-s} = \sum_{r \in R, r \leq q} g(r)r^{-s} + O \left(\sum_{r \in R, r \leq q} g(r)r^{-\sigma} \sum_{a \in A_1, 1 < a \leq q} g(a)a^{-\sigma} \right)
\]
and
\[
\sum_{r \in R, r \leq q} g(r)r^{-\sigma} \leq \sum_{b \in A_0} \frac{\mu^2(b)}{b^{\frac{1}{2} + \ell}} \sum_{k \geq 1} k^{-1 - 2\ell} \ll \frac{1}{\ell} \exp \left\{ \sum_{p \mid q} \frac{1}{\sqrt{p}} \right\}
\]
where \(\mu \) is Möbius’ Function.

Since \(h(-q) \leq \log q \frac{(\log \log q)^\eta}{\log 2} \) and
\[
\sum_{p \mid q} 1 \leq 1 + \frac{\log(h(-q))}{\log 2},
\]
then
\[
\exp \left\{ \sum_{p \mid q} \frac{1}{\sqrt{p}} \right\} \leq \exp \left(1 + \frac{\log(h(-q))}{\log 2} \right) \leq \exp \left(\frac{\log(h(-q))}{\log 2} \right) \ll \left(\frac{\log q}{\log \log q} \right)^{\frac{1}{\log 2}}
\]
It follows that
\[
\sum_{r \in R, r \leq q} g(r)r^{-\sigma} \ll \frac{1}{\ell} \left(\frac{\log q}{(\log \log q)^\eta} \right)^{\frac{1}{\log 2}} = \left(\frac{\log q}{(\log \log q)^\eta} \right)^{\frac{1}{\log 2}}
\]
As a result, we have
\[
\sum_{r \in R, r \leq q} g(r)r^{-\sigma} \sum_{a \in A_1, 1 < a \leq q} g(a)a^{-\sigma} \ll \left(\log q \right)^{\mu - \frac{\eta}{16}} (\log q)^{\frac{1}{16}\log 2}
\]
Lemma 6. If \(\sigma \geq \frac{1}{2} + \ell \) and the inequality
\[
h(-q) \leq \frac{\log q}{(\log \log q)^\eta}
\]
holds, then the relation
\[
\sum_{r \in R, r \leq q} \frac{g(r)}{p^s} = \zeta(2s) \prod_{p \mid q} \left(1 + \frac{1}{p^s} \right) \left[1 + O \left(\exp \left\{ -\frac{1}{3} (\log \log q)^{\eta - \mu} \right\} \right) \right] + \left[O \left(\exp \left\{ -\frac{1}{2} (\log \log q)^{\mu} \right\} \right) \right]
\]
holds.

Proof. We have already seen that
\[
\frac{1}{\ell} \sum_{h \mid q} \frac{\mu^2(h)}{\sqrt{h}} = \frac{1}{\ell} \prod_{p \mid q} \left(1 + \frac{1}{\sqrt{p}} \right) \ll \left(\log q \right)^{\mu - \frac{\eta}{2\log 2}} (\log q)^{\frac{1}{16}}.
\]
Furthermore, if $n \not\in R$, then $n > R_0$.

It follows that

$$
\sum_{r \in R, r \leq q} g(r) r^{-s} = \sum_{h \mid q} \mu^2(h) \sum_{r \in R, r \leq \sqrt{q/h}} r^{-2s} =
$$

$$
= \sum_{h \mid q} \frac{\mu^2(h)}{h^s} \left[\zeta(2s) + O \left(\sum_{r > R_0} r^{-1-2t} \right) \right] + O \left(\sum_{h \mid q} \frac{\mu^2(h)}{h^{2+\ell}} \sum_{r > \sqrt{q/h}} r^{-1-2t} \right) =
$$

$$
= \prod_{p \mid q} \left(1 + \frac{1}{p^s} \right) \left[\zeta(2s) + O \left(\frac{1}{\ell} \exp \left\{ -\frac{1}{2} (\log q)^{\eta-m} \right\} \right) \right] +
$$

$$
+ O \left(q^{-\ell} (\log q)^{\mu-\frac{1}{6m^2}} (\log q)^{\frac{1}{6m^2}} \right) =
$$

$$
= \prod_{p \mid q} \left(1 + \frac{1}{p^s} \right) \left[\zeta(2s) + O \left((\log q)^\mu \exp \left\{ -\frac{1}{2} (\log q)^{\eta-m} \right\} \right) \right] +
$$

$$
+ O \left(\exp \left\{ -\frac{\log q}{(\log q)^\mu} + \frac{1}{\log 2} \log \log q \right\} \right) =
$$

$$
= \zeta(2s) \prod_{p \mid q} \left(1 + \frac{1}{p^s} \right) \left[1 + O \left(\exp \left\{ -\frac{1}{3} (\log q)^{\eta-m} \right\} \right) \right] +
$$

$$
+ O \left(\exp \left\{ -\frac{1}{2} (\log q)^\mu \right\} \right)
$$

Now, we are ready to prove Theorem 1.

Using all the results we found previously, we can conclude that

$$
L(s, \chi) \zeta(s) = \sum_{n \leq q} g(n) \frac{n^s}{ns} + O \left(\exp \left\{ -\frac{1}{3} (\log q)^\mu \right\} \right) =
$$

$$
= \sum_{r \in R, r \leq q} g(r) r^{-s} + O \left(\exp \left\{ -\frac{1}{16} (\log q)^\eta \right\} \right) =
$$

$$
= \zeta(2s) \prod_{p \mid q} \left(1 + \frac{1}{p^s} \right) \left[1 + O \left(\exp \left\{ -\frac{1}{3} (\log q)^{\eta-m} \right\} \right) \right] +
$$

$$
+ O \left(\exp \left\{ -\frac{1}{16} (\log q)^\eta \right\} \right) =
$$

$$
= \zeta(2s) \prod_{p \mid q} \left(1 + \frac{1}{p^s} \right) \left[1 + O \left(\exp \left\{ -\frac{1}{3} (\log q)^{\eta-m} \right\} \right) \right]
$$

3 Proof of Theorem 2

Following exactly Pintz’s proof of Theorem 1 of [22], we define the following sets

$$
A_\nu = \{ n \in \mathbb{N}; \ p \mid n, p \text{ prime } \rightarrow \chi_D(p) = \nu \} \quad (\nu = -1, 0, 1) \quad C = \{ c; c = uv, u \in A_1, v \in A_0 \}
$$
and the following two multiplicative functions
\[g_{\lambda}(n) = \sum_{d \mid n} \lambda(d) = \begin{cases} 1, & \text{if } n = l^2 \\ 0, & \text{if } n \neq l^2 \end{cases} \]

(where \(\lambda(n) \) denotes Liouville’s \(\lambda \)-function) and
\[g_{r}(n) = \sum_{d \mid n} \chi_{D}(d) = \prod_{p^r \mid n} (1 + \chi(p) + \ldots + \chi^{r}(p)) \geq 0 \]

(1)

Again, from Pintz’s proof of Theorem 1 in [22], for \(n = uvm = cm, \quad u \in A_{1}, v \in A_{0}, m \in A_{-1} \), we get
\[g_{\lambda}(n) = g_{\lambda}(u)g_{\lambda}(v)g_{\lambda}(m) = \sum_{q \mid c, \frac{c}{d} \in \omega_{l}, \frac{c}{d} \in \omega_{0}} 2^{\nu(c)} \lambda(c) g_{D} \left(\frac{n}{c} \right) \]

(2)

and, for \(c \in C, \ c = uv, \ u \in A_{1}, \ v \in A_{0} \), we have
\[2^{\nu(u)} \leq g_{D}(c) \leq d(c) \]

(3)

Now, let \(b, h \) two positive real numbers, with \(1 < h < 2b \). Thus, considering (1), (2) and (3) we have

\[
\left| \sum_{n \leq U^{b}} \frac{\chi_{k}(n)}{n^{s_{0}}} \right| = \sum_{n \leq U^{b}} \frac{\chi_{k}(n)}{n^{s_{0}}} g_{\lambda}(n) = \sum_{n \leq U^{b}} \frac{\chi_{k}(n)}{n^{s_{0}}} \sum_{c \in C, \frac{c}{d} \in \omega_{l}, \frac{c}{d} \in \omega_{0}} 2^{\nu(c)} \lambda(c) g_{D} \left(\frac{n}{c} \right) \leq \sum_{n \leq U^{b}} \frac{d(n)}{n^{1-\gamma}} \sum_{r \leq U^{b}/n} \frac{\chi_{k}(r)}{r^{s_{0}}} g_{D}(r) + \sum_{U^{b}/n < n \leq U^{b}} \sum_{r \leq U^{b}/n} \frac{g_{D}(n)}{n^{1-\gamma}} \frac{d(r)}{r^{1-\gamma}} = \sum_{1} + \sum_{2} \\
= \sum_{n \leq U^{b}} \frac{\chi_{k}(n)}{n^{s_{0}}}
\]

Before trying to estimate both the two sums in (4), we find a lower bound for

\[
\left| \sum_{n \leq U^{b}} \frac{\chi_{k}(n)}{n^{s_{0}}} \right|
\]

In order to do this, we observe that

\[
\left| \sum_{n \leq U^{b}} \frac{\chi_{k}(n)}{n^{s_{0}}} \right| = \left| \sum_{n = 1}^{\infty} \frac{\chi_{k}(n)}{n^{s_{0}}} \right| - \left| \sum_{n = 1}^{U^{b}} \frac{\chi_{k}(n)}{n^{s_{0}}} \right| \geq \left| \sum_{n = 1}^{\infty} \frac{\chi_{k}(n)}{n^{s_{0}}} \right| - \left| \sum_{n = 1}^{U^{b}} \frac{\chi_{k}(n)}{n^{s_{0}}} \right|
\]

\[
\geq \sum_{n = 1}^{\infty} \frac{\chi_{k}(n)}{n^{s_{0}}} - \frac{1}{U^{b(1-\gamma)}} = \sum_{n = 1}^{\infty} \frac{\chi_{k}(n)}{n^{s_{0}}} + o(1)
\]

where we used Abel’s inequality to get

\[
\left| \sum_{n > U^{b}} \frac{\chi_{k}(n)}{n^{s_{0}}} \right| = \left| \sum_{U^{b}/2} \frac{1}{t^{s_{0}}} \right| \leq \frac{1}{U^{b(1-\gamma)}}
\]
However, using Euler’s identity,
\[\sum_{n=1}^{\infty} \frac{\chi_k(n)}{n^{s_0}} = \sum_{l=1}^{\infty} \frac{1}{l^{2s_0}} = \sum_{l=1}^{\infty} \frac{\chi_{0,k}(l)}{l^{2s_0}} = L(2s_0, \chi_{0,k}) = \prod_{p | k} \left(1 - \frac{1}{p^{2s_0}}\right)^{-1} \]

Hence, considering \(\sigma = \text{Re}(2s_0) \), which is greater than 1, as \(s_0 > 1/2 \), we get
\[\left| \sum_{n=1}^{\infty} \frac{\chi_k(n)}{n^{s_0}} \right| = \left| \prod_{p | k} \left(1 - \frac{1}{p^{2s_0}}\right)^{-1} \right| \geq \sum_{l=1}^{\infty} \frac{\mu^2(l)}{l\sigma} = \frac{\zeta(\sigma)}{\zeta(2\sigma)} \]
which is well defined, as \(\sigma > 1 \).

Since
\[\frac{\zeta(\sigma)}{\zeta(2\sigma)} \geq 1 \text{ for } \sigma > 1, \]
we get
\[\left| \sum_{n=1}^{\infty} \frac{\chi_k(n)}{n^{s_0}} \right| \geq 1 \]

As a result, since we observed that
\[\left| \sum_{n \leq Ub/n} \frac{\chi_k(n)}{n^{s_0}} \right| = \left| \sum_{n=1}^{\infty} \frac{\chi_k(n)}{n^{s_0}} \right| + o(1), \]
it follows that
\[\left| \sum_{n \leq Ub/n} \frac{\chi_k(n)}{n^{s_0}} \right| \geq \frac{\zeta(2(1-\gamma))}{\zeta(4(1-\gamma))} - \frac{1}{Ub(1-\gamma)} \geq 1 - \tilde{\varepsilon} \]
for a proper effective constant \(\tilde{\varepsilon} > 0 \).

Now, we separately estimate the two sums of (4).

We begin with the first one:
\[\sum_{n \leq Ub/n} \frac{d(n)}{n^{1-\gamma}} \sum_{r \leq Ub/n} \frac{\chi_k(r)}{r^{s_0}} g_D(r) \]

We start considering the inner sum, that is
\[\left| \sum_{r \leq Ub/n} \frac{\chi_k(r)}{r^{s_0}} g_D(r) \right| \]

Let \(y \geq Ub/n \) be a fixed number and let \(z \) be a parameter we will choose later.
Since \(U = kD|s_0| \), we have
At this point, we observe that

Now, we consider \(y \) if and only if

Using this value for \(z \), or equivalently,

\[
\sum_{r \leq z} \frac{1}{d^{1-\gamma}} \cdot \frac{2|s_0|\sqrt{k} \log k}{y^{1-\gamma}} + \sum_{l \leq y/z} \frac{1}{l^{1-\gamma}} \cdot \frac{2|s_0|\sqrt{k} \log (kD)}{z^{1-\gamma}} \leq \]

\[
\leq \frac{z \cdot 2|s_0|\sqrt{k} \log k}{y^{1-\gamma}} + 2|s_0|\sqrt{k} \log (kD) \cdot \frac{y^\gamma \log (\frac{y}{z})}{z}
\]

where, in the last passage, we used the fact that

\[
\sum_{l \leq y/z} \frac{1}{l^{1-\gamma}z^{1-\gamma}} = \frac{y^\gamma}{z} \sum_{l \leq y/z} \frac{1}{l^{1-\gamma}(\frac{y}{z})^\gamma} < \frac{y^\gamma}{z} \sum_{l \leq y/z} \frac{1}{l^{1-\gamma}l^\gamma} \leq \frac{y^\gamma \log (\frac{y}{z})}{z}
\]

Now, we choose \(z \) such that

\[
\frac{z}{y^{1-\gamma}} = \frac{\sqrt{Dy^\gamma}}{z}
\]

or equivalently,

\[
z = y^{\frac{1}{\gamma}}D^{\frac{1}{\gamma}}
\]

Using this value for \(z \), the relation (6) becomes

\[
\sum_{r \leq y} \frac{\chi_k(r)}{r^{s_0}} g_D(r) \leq 2 \cdot y^{-\frac{1}{2}}D^{\frac{1}{2}} |s_0|\sqrt{k} \log k + 2|s_0|\sqrt{k} \cdot D^{\frac{1}{2}} \cdot y^{-\frac{1}{2}} \cdot \log (kD) \log \left(\frac{\sqrt{y}}{D^{1/4}} \right)
\]

Now, we consider \(y = U^n/n \). It follows that

\[
\sum_{1} = \sum_{n \leq U^{b/n}} \frac{d(n)}{n^{1-\gamma}} \sum_{r \leq U^n/n} \frac{\chi_k(r)}{r^{s_0}} g_D(r) \ll \]

\[
\ll \sum_{n \leq U^{b/n}} \frac{d(n)}{n^{1-\gamma}} \cdot \left(\frac{U^n}{n} \right)^{\gamma - \frac{1}{2}} D^{\frac{1}{2}} \left(2|s_0|\sqrt{k} \log k + 2|s_0|\sqrt{k} \log (kD) \log \left(\frac{\sqrt{y}}{D^{1/4}} \right) \right) \ll \]

\[
\ll 2|s_0|\sqrt{k} \cdot U^{b(\gamma - \frac{1}{2}) + \frac{1}{4}} \cdot \log^2 U \sum_{n \leq U^{b/n}} \frac{d(n)}{\sqrt{n}} \ll \]

\[
\ll 2|s_0|\sqrt{k} \cdot U^{b(\gamma - \frac{1}{2}) + \frac{1}{4}} \cdot \log^3 U \cdot \left(U^{\frac{b}{2}} \right) = \]

\[
= 2|s_0|\sqrt{k} \cdot U^{b(\gamma - \frac{1}{2} + \frac{b}{2}) + \frac{1}{4}} \cdot \log^3 U
\]

At this point, we observe that

\[b \left(\gamma - \frac{1}{2} + \frac{1}{2h} \right) + \frac{1}{4} < 0 \]

if and only if

\[b > \frac{1}{4} \cdot \left(\frac{1}{2} - \gamma - \frac{1}{2h} \right) \quad \text{and} \quad \frac{1}{2} - \gamma - \frac{1}{2h} > 0 \]
Under these conditions we can conclude that
\[\sum_{i} \ll 2|s_0|\sqrt{k} \cdot U^b(\gamma - \frac{1}{2} + \frac{1}{2^n}) + \frac{1}{4} \cdot \log^3 U \] (8)
if \(U \geq U_0(\gamma) \), where \(U_0(\gamma) \) is a constant depending on \(\gamma \).

Now, we turn our attention to the second sum of (4), that is
\[\sum_{2} = \sum_{U^{b/h} < n \leq U^b} \frac{g_D(n)}{n^{1-\gamma}} \cdot \sum_{r \leq U^{b/h}/n} \frac{d(r)}{r^{1-\gamma}} \]
Since
\[\sum_{r \leq U^{b/h}/n} \frac{d(r)}{r^{1-\gamma}} \ll \left(\frac{U^b}{n} \right)^{\gamma} \sum_{r \leq U^{b/h}/n} \frac{d(r)}{r} \ll \left(\frac{U^b}{n} \right)^{\gamma} \cdot \left(\frac{1}{2} + o(1) \right) \log^2 U \]
we have
\[\sum_{2} \ll U^{b\gamma} \cdot \log^2 U \cdot \left(\frac{1}{2} + o(1) \right) \sum_{U^{b/h} < n \leq U^b} \frac{g_D(n)}{n} \]
However, from Lemma 1 of [21], we know that
\[\sum_{U^{b/h} < n \leq U^b} \frac{g_D(n)}{n} = b \left(1 - \frac{1}{h} \right) \log U \cdot L(1, \chi_D) + O \left(\sqrt{D \log D \log U} \right) = \]
\[= b \left(1 - \frac{1}{h} \right) \log U \cdot L(1, \chi_D) + O \left(U^{-(\frac{b}{2^n} - \frac{1}{4})} \log U \right) = \]
\[\log U \cdot \left(b \left(1 - \frac{1}{h} \right) L(1, \chi_D) + O \left(U^{-(\frac{b}{2^n} - \frac{1}{4})} \right) \right) \]
which is well defined, as we supposed that \(1 < h < 2b \).
Hence, we can conclude that
\[\sum_{2} \ll U^{b\gamma} \cdot \log^2 U \cdot \left(\frac{1}{2} + o(1) \right) \sum_{U^{b/h} < n \leq U^b} \frac{g_D(n)}{n} \ll \]
\[\ll U^{b\gamma} \cdot \log^2 U \cdot \left(\frac{1}{2} + o(1) \right) \log U \cdot \left(b \left(1 - \frac{1}{h} \right) L(1, \chi_D) + O \left(U^{-(\frac{b}{2^n} - \frac{1}{4})} \right) \right) \leq (9) \]
if \(U \geq U_0^*(\gamma) \), where \(U_0^*(\gamma) \) is a constant depending on \(\gamma \) and \(c_0 \) is an effective constant.

Combining together (4), (8), (9), under the conditions (7) seen above, we get
\[\frac{\zeta(2(1 - \gamma))}{\zeta(4(1 - \gamma))} - \frac{1}{U^{b(1 - \gamma)}} \leq 2|s_0|\sqrt{k} \cdot U^b(\gamma - \frac{1}{2} + \frac{1}{2^n}) + \frac{1}{4} \cdot \log^3 U + c_0 U^{b\gamma} \log^3 U \cdot L(1, \chi_D) \]
or equivalently,
\[\frac{\zeta(2(1 - \gamma))}{\zeta(4(1 - \gamma))} - \frac{1}{U^{b(1 - \gamma)}} - 2|s_0|\sqrt{k} \cdot U^b(\gamma - \frac{1}{2} + \frac{1}{2^n}) + \frac{1}{4} \cdot \log^3 U \leq c_0 U^{b\gamma} \log^3 U \cdot L(1, \chi_D) \]
Furthermore, for \(U \geq U_0(\gamma) \) sufficiently large, and so \(D \geq D_0(\gamma) \) sufficiently large, we have
\[2|s_0|\sqrt{k} \cdot U^b(\gamma - \frac{1}{2} + \frac{1}{2^n}) + \frac{1}{4} \cdot \log^3 U \leq \frac{1}{2} \]
Hence, as we have already seen that
\[\frac{\zeta(2(1 - \gamma))}{\zeta(4(1 - \gamma))} - \frac{1}{U^{b(1 - \gamma)}} \geq 1 - \varepsilon \]
for a suitable $\bar{\varepsilon}$, we can conclude that

$$L(1, \chi D) \geq \frac{1}{c_0 U^{b\gamma} \log^3 U} \geq \frac{c_1}{U^{b\gamma} \log^3 U}$$

where c_1 is an effective constant.

Finally, we observe that, in order to have a non trivial estimate, b shall satisfy $b < \frac{1}{2\gamma}$. However, due to conditions (7), we already know that

$$b > \frac{1}{4} \cdot \frac{1}{\left(\frac{1}{2} - \gamma - \frac{1}{2h}\right)}$$

and

$$\frac{1}{2} - \gamma - \frac{1}{2h} > 0$$

or equivalently,

$$\gamma < \frac{1}{2} - \frac{1}{2h}$$

where $1 < h < 2b$.

Hence, we shall have

$$\frac{1}{4} \cdot \frac{1}{\left(\frac{1}{2} - \gamma - \frac{1}{2h}\right)} < \frac{1}{2\gamma}$$

or equivalently,

$$\gamma < \frac{1}{3} - \frac{1}{3h}$$

Now, we observe that, for $h > 1$, the inequality

$$\frac{1}{3} - \frac{1}{3h} < \frac{1}{2} - \frac{1}{2h}$$

is always satisfied. As a result, provided that $h > 1$ as we supposed before, b, γ and h shall satisfy simultaneously only the following three relations:

$$b < \frac{1}{2\gamma} \quad (10)$$

$$1 < h < 2b \quad (11)$$

$$\gamma < \frac{1}{3} - \frac{1}{3h} \quad (12)$$

Now, we observe that, from (10) and (11), the inequality

$$h < \frac{1}{\gamma}$$

holds.

On the other hand, from (12) we have

$$h > \frac{1}{1 - 3\gamma}$$

As a result, we get

$$\frac{1}{\gamma} > h > \frac{1}{1 - 3\gamma} \quad (13)$$

or even better,

$$\frac{1}{\gamma} > 2b > h > \frac{1}{1 - 3\gamma} \quad (14)$$

From (13) it follows that

$$\gamma < \frac{1}{4}.$$
which makes sense, as it is stated in the hypotheses. On the other hand, (14) implies that
\[\frac{1}{2(1 - 3\gamma)} < b < \frac{1}{2\gamma}. \]
Hence, having fixed \(b \) such that
\[\frac{1}{2(1 - 3\gamma)} < b < \frac{1}{2\gamma}, \]
if we choose \(h \) such that
\[\frac{1}{1 - 3\gamma} < h < 2b, \]
we have the inequality
\[L(1, \chi_D) \geq \frac{c_1}{U^{b\gamma} \log^3 U}, \]
where \(U = k |s_0| D \) and \(c_1 \) is an effective constant. The proof of Theorem 2 is complete.

4 Proof of Theorem 3

As in the proof of Theorem 2 of [22], by a result of Page [18], given \(\chi_D \) a real non-principal character mod \(D \), we know that the greatest real zero \(1 - \delta \) of \(L(s, \chi_D) \) satisfies
\[\frac{L(1, \chi_D)}{\delta} \leq \log^2 D. \]
Furthermore, since \(U = k |s_0| D \) by hypothesis, then \(\log^2 D \leq \log^2 U. \) Hence,
\[\frac{L(1, \chi_D)}{\delta} \leq \log^2 U. \]
Now, using Theorem 2, it follows that
\[\delta > \frac{c_1}{U^{b\gamma} \log^3 U} \quad \text{for} \quad \frac{1}{2(1 - 3\gamma)} < b < \frac{1}{2\gamma}. \]

On behalf of all authors, the corresponding author states that there is no conflict of interest. Corresponding author’s e-mail address: chbellotti@gmail.com

References

[1] Baker, A., Linear forms in the logarithm of algebraic numbers. Mathematika 13, pp.204-216 (1966).
[2] Chowla, S., A new proof of a theorem of Siegel. Annals of Math. (2) 51, 120–122 (1950).
[3] Davenport, H., Multiplicative Number Theory. Third ed., Springer, New York, 2000, revised by Hugh L. Montgomery.
[4] Deuring, M., Imaginär quadratische Zahlkörper mit der Klassenzahl 1. Math. Zeitschr. 37, pp. 405-415 (1933).
[5] Estermann, T., On Dirichlet’s L functions. J. London Math. Soc. 23, pp. 275–279 (1948).
[6] Gauss, G. F., *Disquisitiones Arithmeticae* Werke, 1, Göttingen (1870).

[7] Goldfeld, D.M., *A Simple Proof of Siegel's Theorem*. Proc. Nat. Acad. Sci. USA, (4) 71, p. 1055 (1974).

[8] Goldfeld, D.M., *The class number of quadratic fields and the conjectures of Birch and Swinnerton-Dyer*. Ann. Scuola Norm. Sup. Pisa (4) 3, pp. 623-663 (1976).

[9] Gronwall, T. H., *Sur les séries de Dirichlet correspondant à des caractéres complexes*. Rendiconti di Palermo, 35, pp. 145-159 (1913).

[10] Gross, B.H. and Zagier, D.B., *Heegner points and derivatives of L-series*, Invent. Math. 84, pp. 225-320 (1986).

[11] Heilbronn, H., *On the class number in imaginary quadratic fields*. Quart. J. Math. Oxford Ser. 5, pp. 150-160 (1934).

[12] Heilbronn, H. and Linfoot, E., *On the imaginary quadratic corpora of class number one* Quart. J. Math. Oxf. Ser. 5, pp. 293-301 (1934).

[13] Landau, E., *Über die Klassenzahl imaginär-quadratischer Zahlkörper* Göttinger Nachrichten, pp. 285-295 (1918).

[14] Landau, E., *Bemerkungen zum Heilbronnschen Satz*. Acta Arith. 1, pp. 1-18 (1935).

[15] Linnik, Yu. Y., *On the least prime in an arithmetic progression II. The Deuring-Heilbronn phenomenon*. (Russian), Mat. Sb. 15 (57), pp. 3-12 (1944).

[16] Linnik, Yu. Y., *Elementary proof of Siegel’s theorem based on a method of I. M. Vinogradov*. Izdan. Akad. Nauk Ser. Matem. 14, pp. 327-342 (1950).

[17] Mordell, L. J., *On the Riemann hypothesis and imaginary quadratic fields with a given class number* J. London Math. Soc., 9, pp. 289-298 (1934).

[18] Page, A., *On the number of primes in an arithmetic progression* Proc. London Math Soc. 39, pp. 116-141 (1935).

[19] Pintz, J., *On Siegel’s theorem*. Acta Arith., 24, pp. 543-551 (1973).

[20] Pintz, J., *Elementary methods in the theory of L-functions, I. Hecke’s theorem*. Acta Arith., 31, pp. 53-60 (1976).

[21] Pintz, J., *Elementary methods in the theory of L-functions, II. On the greatest real zero of a real L-function*. Acta Arith., 31, 273-289 (1976).

[22] Pintz, J., *Elementary methods in the theory of L-functions, IV. The Heilbronn phenomenon*. Acta Arith., 31, pp. 419-429 (1976).

[23] Pintz, J., *Elementary methods in the theory of L-functions, III. The Deuring-phenomenon*. Acta Arith., 34, 295-306 (1976).

[24] Puglisi, G., *Sul teorema di Deuring-Mordell*. Bollettino U.M.I. (6) 3-A, 431-440 (1984).

[25] Siegel, C. L., *Über die Classenzahl quadratischer Zahlkörper*. Aehata Arithmetica 1, pp. 83-86 (1935).

[26] Stark, H. M., *A complete determination of the complex quadratic fields of class number one*. Michigan Math. J. 14, pp. 1-27 (1967).

[27] Tatuzawa, T., *On a theorem of Siegel*. Japan J. Math. 21, pp. 163-178 (1951).