Supporting Information: Heavy Atom Tunneling in Organic Reactions at Coupled Cluster Potential Accuracy with a Parallel Implementation of Anharmonic Constant Calculations and Semiclassical Transition State Theory

Giacomo Mandelli,†,‡ Chiara Aieta,†,‡ and Michele Ceotto*,†

†Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy
‡These authors contributed equally

E-mail: michele.ceotto@unimi.it
1 Electronic Structure Calculations and Optimized Geometries

In our paper, we performed Single Point electronic structure Energy (SPE) calculations and geometry optimizations using the Gaussian16 software.1 The geometry optimizations are carried out requiring the lowest possible residual gradient in the optimization process. The following input keywords are set as default in our program for the geometry optimization step:

- SCF=(XQC,Tight) and Int=UltraFine (for DFT calculations)
- Opt=(VeryTight,CalcAll,MaxCycles=200) (add TS option for the transition state opt)

For the CCSD(T) optimization we started from the CCSD optimized geometry, for which we have analytic gradients available. Then we switched to numerical gradients for CCSD(T) calculations with the eigenvalue-following algorithm for the optimization process. A first
calculation is done using the standard setup, with a maximum step size of 0.1 Bohr. Once the Tight convergence is reached, new optimization parameters have been used for the VeryTight convergence criteria. The following overlay 1 options have been used for the R1 reactant molecule:

- IOp(1/8=4), maximum step size of 0.04 Bohr for the optimization
- IOp(1/19=8) Newton-Raphson and linear search
- IOp(1/13=9) BFGS Hessian update

and the same options with a 0.03 Bohr step size for the R1 TS molecule.

The optimized geometries are listed below in Cartesian coordinates for the MP2, DFT and CCSD calculations as well as the Z-matrix for the CCSD(T). All the coordinates are given in Ångström. The R1, R2, R3 notation refers to the one defined in the article in figure 4.

Table 1: R1 optimized geometries at B3LYP/6-31G* and MP2/aug-cc-pVDZ level of theory

	R, MP2		R, DFT/B3LYP		TS, DFT/B3LYP
	(a)	(b)	(c)	(d)	
H	0.000000	H	0.000000	H	1.087931
C	-0.000000	C	1.063482	C	-1.878131
C	-0.000000	C	-1.064062	C	1.330943
C	-0.000000	C	0.690129	C	0.844037
H	0.898056	H	-1.878131	H	-0.835014
H	0.898056	H	1.330943	H	1.352296
H	0.898056	H	1.330943	H	1.352296
H	0.898056	H	1.330943	H	1.352296
H	0.898056	H	1.330943	H	1.352296
C	-0.000000			C	
C	-0.000000			C	
C	-0.000000			C	
C	-0.000000			C	
H	0.898056			H	
H	0.898056			H	
H	0.898056			H	
H	0.898056			H	
H	0.898056			H	

Table 1: R1 optimized geometries at B3LYP/6-31G* and MP2/aug-cc-pVDZ level of theory
Table 2: R1 optimized geometries at CCSD(T)/aug-cc-pVDZ level of theory

(a) R, CCSD(T)

H	C	B1	B2	A2	C	B3	A3	D3	0	C	B4	A4	D4	0	C	B5	A5	D5	0				
H	1	B1			C	2	B2	1	A2		C	2	B3	1	A3	3	D3	0					
H	2	B3	1	A3	3	D3	0	C	2	B4	2	A4	1	D4	0	C	2	B5	2	A5	1	D5	0
H	5	B6	3	A6	1	D6	0	H	5	B7	1	A7	3	D7	0	H	2	B8	2	A8	1	D8	0
H	4	B9	2	A9	1	D9	0	H	4	B9	2	A9	1	D9	0								

Variables:

B1	2.2636	B2	1.097	A2	25.9704	B3	1.5359	A3	114.7223	D3	-0.0092	B4	1.5359	A4	132.4663	D4	80.0901	B5	1.1053	A5	115.5891	D5	295.3521	B6	1.1053	A6	115.589
D6	64.6487	B7	1.097	A7	112.8104	D7	180.0904	B8	1.1053	A8	115.5891	D8	115.3521	B9	1.1053	A9	115.589										
D9	244.6487																										

(b) TS, CCSD(T)

H	C	B1	B2	A2	C	B3	A3	D3	0	C	B4	A4	D4	0	C	B5	A5	D5	0				
H	1	B1			C	2	B2	1	A2		C	2	B3	1	A3	3	D3	0					
H	2	B3	1	A3	3	D3	0	C	2	B4	2	A4	1	D4	0	C	2	B5	2	A5	1	D5	0
H	5	B6	3	A6	1	D6	0	H	5	B7	1	A7	3	D7	0	H	2	B8	2	A8	1	D8	0
H	4	B9	2	A9	1	D9	0	H	4	B9	2	A9	1	D9	0								

Variables:

B1	2.163	B2	1.104	A2	132.4179	B3	1.4050	A3	122.7685	D3	-97.9636	B4	1.3928	A4	104.1597	D4	144.3749	B5	1.104	A5	132.4154	D5	106.7401	B6	1.098	A6	129.5336
D6	154.4381	B7	1.0944	A7	114.6331	D7	106.9788	B8	1.0944	A8	85.1134	D8	-3.5028	B9	1.098	A9	126.1322										
D9	179.9994																										

(c) P, CCSD(T)

H	C	B1	B2	A2	C	B3	A3	D3	0	C	B4	A4	D4	0	C	B5	A5	D5	0
H	1	B1			C	2	B2	1	A2		C	2	B3	1	A3	3	D3	0	
H	3	B4	2	A4	1	D4	0	C	3	B5	2	A5	1	D5	0				
H	6	B6	3	A6	2	D6	0	H	1	B7	2	A7	3	D7	0				
H	1	B8	2	A8	3	D8	0	H	6	B9	3	A9	2	D9	0				

Variables:

B1	1.3609	B2	1.4734	A2	123.5227	B3	1.1001	A3	119.6435	D3	180.0507	B4	1.1001	A4	116.8342	D4	0.0002	B5	1.3609	A5	123.5222	D5	180.0030	B6	1.0977	A6	121.0953
D6	-0.0003	B7	1.0957	A7	121.4771	D7	179.9994	B8	1.0977	A8	121.0954	D8	359.9993	B9	1.0957	A9	121.4771	D9	-31.1543								
Table 3: (Part 1) R2 optimized geometries at B3LYP/6-31G*, MP2/aug-cc-pVDZ and CCSD/jun-cc-pVDZ level of theory

(a) R, MP2

C	-1.144539	1.580279	0.599986
C	-0.014074	1.580910	0.202089
C	1.132553	1.669393	0.590952
C	1.105216	-0.678990	0.256434
C	-0.065110	-1.581610	0.200895
H	0.104563	2.347844	-0.921662
H	2.121210	1.146338	0.062437
H	2.066366	-1.163418	0.471945
H	-0.127343	-2.348760	0.983367
H	-1.825039	-2.291984	0.267400
H	-0.958198	-0.846767	1.135930
H	-1.288151	1.134839	1.404652

(b) R, DFT/B3LYP

C	1.65971	-1.09333	-0.41294
C	1.62945	0.05969	0.267400
C	0.66188	1.15916	0.13335
C	-0.66188	1.15916	-0.13335
C	-1.62945	0.05969	-0.26740
C	-1.65971	-1.09333	0.41294
H	2.45336	0.27023	0.95152
H	1.11156	2.14467	0.26383
H	-1.11156	2.14467	-0.26383
H	-2.45336	0.27023	-0.95152
H	-2.46114	-1.81113	0.26383
H	-0.8939	-1.3569	1.13593
H	0.8939	-1.3569	-1.13593
H	2.46114	-1.81113	-0.26383
H	0.8939	-1.3569	-1.13593

(c) R, CCSD/jun-cc-pVDZ

C	-1.138302	1.627065	0.628833
C	-0.023081	1.592411	-0.132320
C	1.126319	0.668228	0.071648
C	-0.101938	-0.677789	0.242771
C	-0.071052	-1.593053	0.186014
H	0.095883	2.336243	-0.934377
H	2.114224	1.152275	0.085986
H	2.064731	-1.169327	0.447428
H	-0.138537	-2.337083	0.993850
H	-0.138537	-2.337083	-0.790324
H	-0.094623	-0.918581	-1.645326
H	-1.931411	2.358577	0.434331
H	-1.287684	0.926156	1.458790

(d) TS, MP2

C	-1.212831	1.136147	-0.110743
C	-0.116110	1.481498	0.203290
C	1.251613	0.708474	-0.125272
C	1.251613	-0.708474	-0.125272
C	-0.116110	-1.481498	0.203290
H	0.287860	2.316791	0.896076
H	2.235936	1.184919	-0.044816
H	2.235936	-1.184919	-0.044816
H	-2.020621	-1.628122	0.446537
H	-1.450297	-0.920735	-1.147908
H	-2.020621	1.628122	0.446537
H	-1.450297	0.920735	-1.147908

(e) TS, DFT/B3LYP

C	-1.203685	1.140779	-0.106145
C	0.119802	1.482612	0.188744
C	1.242310	0.702978	-0.101682
C	1.242310	-0.702978	-0.101682
C	0.119802	-1.482612	0.188744
C	-1.203685	1.140779	-0.106145
H	0.296293	2.340220	0.841809
H	2.220032	1.175092	-0.016766
H	2.220032	-1.175092	-0.016766
H	0.296293	-2.340220	0.841809
H	-1.999232	-1.641166	0.447018
H	-1.467751	-0.936630	-1.131315
H	-1.999232	1.641166	0.447018

(f) TS, CCSD/jun-cc-pVDZ

C	-1.211632	1.124331	-0.107417
C	0.118882	1.484638	0.197519
C	1.252491	0.708684	-0.116752
C	1.252491	-0.708684	-0.116752
C	0.118882	-1.484638	0.197519
C	-1.211632	-1.124331	-0.107417
H	0.291166	2.342573	0.865193
H	2.237920	1.185894	-0.028450
H	2.237920	-1.185894	-0.028450
H	0.291166	-2.342573	0.865193
H	-2.019247	-1.618255	0.454315
H	-1.461810	-0.925646	-1.147245
H	-2.019247	1.618255	0.454315
H	-1.461810	0.925646	-1.147245
Table 4: (Part2) R2 optimized geometries at B3LYP/6-31G*, MP2/aug-cc-pVDZ and CCSD/jun-cc-pVDZ level of theory

	(a) P, MP2	(b) P, DFT/B3LYP	(c) P, CCSD/jun-cc-pVDZ
C	1.426702 0.088132 -0.093129	C 1.425046 0.064445 -0.113679	C 1.430623 0.078158 -0.103671
H	2.510264 0.246382 -0.093261	H 2.506220 0.185099 -0.115735	H 2.518668 0.220737 -0.103296
C	0.722838 0.134715 -1.258504	C 0.726173 0.104203 -1.260201	C 0.731163 0.119921 -1.264847
H	1.228474 0.351742 -2.204801	H 1.227139 0.272675 -2.210923	H 1.236753 0.318142 -2.217625
C	-0.722831 -0.134716 -1.258508	C -0.726166 -0.104204 -1.260205	C -0.731156 -0.119922 -1.264851
H	-1.228461 -0.351744 -2.204808	H -1.227126 -0.272676 -2.210931	H -1.236740 -0.318143 -2.217632
C	-1.426702 -0.088133 -0.093137	C -1.425046 -0.064446 -0.113687	C -1.430623 -0.078158 -0.103680
H	-2.510263 -0.246383 -0.093275	H -2.506220 -0.185100 -0.115750	H -2.518667 -0.220738 -0.103311
C	-0.716645 0.275583 1.193979	C -0.731549 0.239765 1.195321	C -0.724201 0.260273 1.198691
H	-0.685023 1.381124 1.281898	H -0.762431 1.330411 1.361316	H -0.721606 1.365381 1.321730
H	-1.271664 -0.103120 2.066951	H -1.272151 -0.208877 2.037036	H -1.276600 -0.152333 2.062151
C	0.716637 -0.275583 1.193983	C 0.731541 -0.239765 1.195325	C 0.724193 -0.260273 1.198696
H	0.685015 -1.381124 1.281902	H 0.762423 -1.330411 1.361321	H 0.721598 -1.365381 1.321735
H	1.271651 0.103121 2.066959	H 1.272139 0.208877 2.037043	H 1.276587 0.152333 2.062158
Table 5: R3 optimized geometries at B3LYP/6-31G* and MP2/aug-cc-pVDZ level of theory

(a) R and P, MP2

Atom	X	Y	Z
C	-0.25452	1.50213	-0.08789
C	0.25452	-1.50213	-0.08789
C	0.25452	0.7308	1.10044
C	-0.53006	-2.06965	-1.02957
C	0.53006	2.06965	-1.02957
C	-0.25452	-0.7308	1.10044
H	-0.07904	1.21977	2.03351
H	-0.10155	-2.6105	-1.87694
H	1.359	0.73899	1.10346
H	-1.62099	-2.00237	-0.97052
H	1.62099	2.00237	-0.97052
H	-1.359	-0.73899	1.10346
H	0.10155	2.6105	-1.87694
H	-0.07904	-1.21977	2.03351
H	-1.34542	1.58492	-0.18742
H	1.34542	-1.58492	-0.18742

(b) R and P, DFT/B3LYP

Atom	X	Y	Z
C	-0.25184	1.54322	-0.10493
C	0.25184	-1.54322	-0.10493
C	0.25184	0.73198	1.05765
C	-0.513	-2.20013	-0.97705
C	0.513	2.20013	-0.97705
C	-0.25184	-0.73198	1.05765
H	-0.07625	1.2006	1.99765
H	-0.0865	-2.77542	-1.79452
H	1.34985	0.74498	1.0695
H	-1.59913	-2.18861	-0.90696
H	1.59913	2.18861	-0.90696
H	-1.34985	-0.74498	1.0695
H	0.0865	2.77542	-1.79452
H	0.07625	-1.2006	1.99765
H	-1.33705	1.58054	-0.21967
H	1.33705	-1.58054	-0.21967

(c) R and P, CCSD/jun-cc-pVDZ

Atom	X	Y	Z
C	-0.239559	1.532230	-0.104424
C	0.239559	-1.532230	-0.104424
C	0.260201	0.728091	1.074583
C	-0.549475	-2.159706	-1.000217
C	0.549475	2.159706	-1.000217
C	-0.260201	-0.728091	1.074583
H	-0.067580	1.216240	2.014202
H	-0.125671	-2.730822	-1.834575
H	1.367817	0.729851	1.082336
H	-1.644122	-2.118272	-0.924977
H	1.644122	2.118272	-0.924977
H	-1.367817	-0.729851	1.082336
H	0.067580	-1.216240	2.014202
H	-1.332957	1.593605	-0.221844
H	1.332957	-1.593605	-0.221844

(d) TS, MP2

Atom	X	Y	Z
C	1.412634	0.000454	-0.270789
C	-1.412634	-0.000454	0.270789
C	0.876961	-1.223498	0.249260
C	-0.876961	1.223498	-0.249260
C	0.876177	1.224058	0.249269
C	-0.876177	-1.224058	-0.249269

(e) TS, DFT/B3LYP

Atom	X	Y	Z
C	1.419737	0.000460	-0.260245
C	-1.419737	-0.000460	0.260245
C	0.913744	-1.224745	0.254008
C	-0.913744	1.224745	-0.254008
C	0.912959	1.225328	0.254018
C	-0.912959	-1.225328	-0.254018

(f) TS, CCSD/jun-cc-pVDZ

Atom	X	Y	Z
C	1.419737	0.000460	-0.260245
C	-1.419737	-0.000460	0.260245
C	0.913744	-1.224745	0.254008
C	-0.913744	1.224745	-0.254008
C	0.912959	1.225328	0.254018
C	-0.912959	-1.225328	-0.254018

7
2 Scalability Tests

The here reported tests with the Gaussian16 software have been run using the following machines:

CINECA GALILEO NeXtScale cluster CentOS 7.4: 1022 compute nodes with 2×18 core Intel Xeon E5-2697 v4 (Broadwell) at 2.30 GHz 128 GB RAM.2

Figure 1: Speedup and Efficiency plots for the anharmonic constants calculation using Gaussian16. Calculations are done on the 10 atoms \textbf{cyclobutene} molecule using the MP2 post-HF method with the jun-cc-pVDZ and the DFT/B3LYP with the 6-31G* Basis Set (BS).
Figure 2: Speedup and Efficiency plots for the anharmonic constants calculation using Gaussian16. Calculations are done on the 14 atoms cis-1,3,5-hexatriene molecule using the MP2 post-HF method with the jun-cc-pVDZ and the DFT/B3LYP with the 6-31G\(^*\) Basis Set (BS).

3 Accuracy Tests

We report here the results from the direct comparison of our anharmonic constants with the ones obtained using Gaussian16. The definitions of the difference \(\Delta \chi\) and the percentage difference \(\%_{\text{diff}}\) are given in the article in eq. 30.
Figure 3: Comparison between anharmonic constants calculated with Gaussian16 and our program for the cyclobutene molecule. The horizontal and vertical axes indicate the normal mode indexes for the $\chi_{k,k'}$ and the colour gradient indicates the magnitude of the difference between the results. Anharmonic constants are calculated using the DFT/B3LYP functional with the 6-31G* Basis Set (BS) and the MP2 post-HF method with the aug-cc-pVDZ BS.
Figure 4: Comparison between anharmonic constants calculated with Gaussian16 and our program for the cyclobutene opening reaction transition state. The horizontal and vertical axes indicate the normal mode indexes for the $\chi_{k,k'}$ and the colour gradient indicates the magnitude of the difference between the results. Anharmonic constants are calculated using the DFT/B3LYP functional with the 6-31G* Basis Set (BS) and the MP2 post-HF method with the aug-cc-pVDZ BS.
Figure 5: Comparison between anharmonic constants calculated with the Gaussian16 software and our program for the TS molecule of the hexatriene ring closing electrocyclic reaction. The horizontal and vertical axes indicate the normal mode indexes for the $\chi_{k,k'}$ and the colour gradient indicates the magnitude of the difference between the results. Anharmonic constants are calculated using the DFT/B3LYP functional with the 6-31G* Basis Set (BS) and the MP2 post-HF method with the aug-cc-pVDZ BS.
Figure 6: Comparison between anharmonic constants calculated with Gaussian and our program for the C_2 hexatriene molecule. The horizontal and vertical axes indicate the normal mode indexes for the $\chi_{k,k'}$ and the colour gradient indicates the magnitude of the difference between the results. Anharmonic constants are calculated using the DFT/B3LYP functional with the 6-31G* Basis Set (BS) and the MP2 post-HF method with the aug-cc-pVDZ BS.
Figure 7: Comparison between anharmonic constants calculated with Gaussian16 and our program for the 1,5-hexadiene molecule. The horizontal and vertical axes indicate the normal mode indexes for the $\chi_{k,k'}$ and the colour gradient indicates the magnitude of the difference between the results. Anharmonic constants are calculated using the DFT/B3LYP functional with the 6-31G* Basis Set (BS) and the MP2 post-HF method with the aug-cc-pVDZ BS.
Figure 8: Comparison between anharmonic constants calculated with Gaussian16 and our program for the TS molecule of the 1,5-hexadiene Cope rearrangement. The horizontal and vertical axes indicate the normal mode indexes for the $\chi_{k,k'}$ and the colour gradient indicates the magnitude of the difference between the results. Anharmonic constants are calculated using the DFT/B3LYP functional with the 6-31G* Basis Set (BS) and the MP2 post-HF method with the aug-cc-pVDZ BS.
The impact on the SCTST reaction rate constants of small variations between the anharmonic constants calculated with our program and the Gaussian software is shown in the following results for the three reactions studied in our paper.

Figure 9: SCTST Reaction Rate Constants at different temperatures for the R1 reaction. The anharmonic constants matrix was calculated using our program and the Gaussian16 software starting from the same geometry and ab initio calculation options. DFT calculations have been carried out using the B3LYP functional with the 6-31G* basis set while in the MP2 calculations we used the aug-cc-pVDZ one.
Figure 10: SCTST Reaction Rate Constants at different temperatures for the R2 reaction. The anharmonic constants matrix was calculated using our program and the Gaussian16 software starting from the same geometry and ab initio calculation options. DFT calculations have been carried out using the B3LYP functional with the 6-31G* basis set, while in the MP2 calculations we used the aug-cc-pVDZ one.
Figure 11: SCTST Reaction Rate Constants at different temperatures for the R3 reaction. The anharmonic constants matrix was calculated using our program and the Gaussian16 software starting from the same geometry and ab initio calculation options. DFT calculations have been carried out using the B3LYP functional with the 6-31G* basis set, while in the MP2 calculations we used the aug-cc-pVDZ basis set.
4 Energetic of the Reactions

The barriers here reported are the classical barriers corrected for the harmonic Zero Point Energy (ZPE):

\[E_{\text{harm}ZPE}^R = \frac{1}{2} \sum_{k=1}^{N} \omega_k, \quad E_{\text{harm}ZPE}^T = \frac{1}{2} \sum_{k=1}^{N-1} \omega_k \]

and corrected for the anharmonic ZPE:

\[E_{\text{anharm}ZPE}^R = \frac{1}{2} \sum_{k=1}^{N} \omega_k + \frac{1}{4} \sum_{k,k'=1}^{N} \chi_{k,k'} + G_0^R \]

\[E_{\text{anharm}ZPE}^T = \frac{1}{2} \sum_{k=1}^{N-1} \omega_k + \frac{1}{4} \sum_{k,k'=1}^{N-1} \chi_{k,k'} + G_0^{TS} \]

where \(N \) is the number of vibrational degrees of freedom, \(\omega_k \) are the harmonic vibrational frequencies, \(G_0^R \) and \(G_0^{TS} \) are the constant terms coming from the VPT2 perturbation expansion and \(R \) and \(TS \) refer to the formula for the reactant and the transition state.

Table 6: Harmonic and anharmonic ZPE corrected forward (\(E_f \)) and backward (\(E_b \)) reaction barriers and TS reactive mode harmonic frequencies (\(\tilde{\omega} \)) for the R1 reaction.

Method/BS	\(E_f(\text{ZPE}_{\text{harm}}; \text{ZPE}_{\text{anh}}) \) /[kJmol\(^{-1}\)]	\(E_b \) /[kJmol\(^{-1}\)]	\(\tilde{\omega} \) /[cm\(^{-1}\)]
B3LYP/6-31G*	141.769; 141.592	195.143	742.429
MP2/aug-cc-pVDZ	130.561; 130.248	175.961	713.852
CCSD(T)/aug-cc-pVDZ	132.407; 131.551	185.975	730.328

Table 7: Harmonic and anharmonic ZPE corrected forward (\(E_f \)) and backward (\(E_b \)) reaction barriers and TS reactive mode harmonic frequencies (\(\tilde{\omega} \)) for the R2 reaction.

Method/BS	\(E_f(\text{ZPE}_{\text{harm}}; \text{ZPE}_{\text{anh}}) \) /[kJmol\(^{-1}\)]	\(E_b \) /[kJmol\(^{-1}\)]	\(\tilde{\omega} \) /[cm\(^{-1}\)]
B3LYP/6-31G*	86.692; 86.585	179.028	571.875
MP2/aug-cc-pVDZ	67.549; 68.182	170.841	443.303
CCSD/jun-cc-pVDZ	116.063; 116.087	208.533	746.523
CCSD/aug-cc-pVDZ	110.570		737.491

Table 8: Harmonic and anharmonic ZPE corrected forward (\(E_f \)) and backward (\(E_b \)) reaction barriers and TS reactive mode harmonic frequencies (\(\tilde{\omega} \)) for the R3 reaction.

Method/BS	\(E_f(\text{ZPE}_{\text{harm}}; \text{ZPE}_{\text{anh}}) \) /[kJmol\(^{-1}\)]	\(E_b \) /[kJmol\(^{-1}\)]	\(\tilde{\omega} \) /[cm\(^{-1}\)]
B3LYP/6-31G*	141.682; 141.451	140.031	569.246
MP2/aug-cc-pVDZ	102.317; 109.111	100.840	110.546
CCSD/jun-cc-pVDZ	174.181; 173.940	172.511	696.535
5 Hindered Rotations Treatment

For the hindered rotational modes (HRM) treatment, involved in the low frequency modes of the R2 and R3 reactants, we used the Pitzer and Gewin (PG) coefficients for the correction of the harmonic oscillator partition function.

The overall correction values for the total harmonic partition functions associated with the HRM are listed in Tables (9) and (10).
Table 9: Overall PG correction coefficients for the HRM in the R2 reaction at the MP2/aug-cc-pVDZ, B3LYP/6-31G* and CCSD/jun-cc-pVDZ level of theory.

(a) MP2 PG coefficients.

ω_1/[cm$^{-1}$]	100.213
ω_2/[cm$^{-1}$]	103.936
Multiplicity	1.000

T/[K]	Overall PG coefficient
100	1.018
120	1.022
130	1.024
150	1.028
200	1.039
250	1.052
300	1.065
350	1.080
400	1.095
450	1.110
500	1.125

(b) DFT PG coefficients.

ω_1/[cm$^{-1}$]	55.059
ω_2/[cm$^{-1}$]	93.797
Multiplicity	1.000

T/[K]	Overall PG coefficient
100	1.024
120	1.029
130	1.032
150	1.038
200	1.054
250	1.071
300	1.090
350	1.110
400	1.130
450	1.148
500	1.165

(c) CCSD PG coefficients.

ω_1/[cm$^{-1}$]	93.754
ω_2/[cm$^{-1}$]	97.654
Multiplicity	1.000

T/[K]	Overall PG coefficient
100	1.022
120	1.027
130	1.029
150	1.034
200	1.048
250	1.064
300	1.081
350	1.098
400	1.116
450	1.134
500	1.151
Table 10: Overall PG correction coefficients for the HRM in the R3 reaction at the MP2/aug-cc-pVDZ, B3LYP/6-31G* and CCSD/jun-cc-pVDZ level of theory.

(a) MP2 PG coefficients.

ω_1/[cm$^{-1}$]	51.106	ω_1/[cm$^{-1}$]	65.675
ω_2/[cm$^{-1}$]	90.513	ω_2/[cm$^{-1}$]	101.710
ω_3/[cm$^{-1}$]	105.307	ω_3/[cm$^{-1}$]	108.148
Multiplicity	2.000	Multiplicity	2.000

T/[K]	Overall PG coefficient	T/[K]	Overall PG coefficient
100 | 2.211 | 100.000 | 2.150 |
120 | 2.268 | 120.000 | 2.188 |
130 | 2.298 | 130.000 | 2.208 |
150 | 2.359 | 150.000 | 2.251 |
200 | 2.511 | 200.000 | 2.372 |
250 | 2.647 | 250.000 | 2.501 |
300 | 2.758 | 300.000 | 2.629 |
350 | 2.845 | 350.000 | 2.748 |
400 | 2.908 | 400.000 | 2.851 |
450 | 2.952 | 450.000 | 2.939 |
500 | 2.977 | 500.000 | 3.009 |

(b) DFT PG coefficients.

ω_1/[cm$^{-1}$]	65.675
ω_2/[cm$^{-1}$]	101.710
ω_3/[cm$^{-1}$]	108.148
Multiplicity	2.000

T/[K]	Overall PG coefficient
100 | 2.211 |
120 | 2.268 |
130 | 2.298 |
150 | 2.359 |
200 | 2.511 |
250 | 2.647 |
300 | 2.758 |
350 | 2.845 |
400 | 2.908 |
450 | 2.952 |
500 | 2.977 |

(c) CCSD PG coefficients.

ω_1/[cm$^{-1}$]	65.916
ω_2/[cm$^{-1}$]	99.219
ω_3/[cm$^{-1}$]	114.051
Multiplicity	2.000

T/[K]	Overall PG coefficient
100.000 | 2.144 |
120.000 | 2.179 |
130.000 | 2.199 |
150.000 | 2.239 |
200.000 | 2.354 |
250.000 | 2.478 |
300.000 | 2.601 |
350.000 | 2.715 |
400.000 | 2.816 |
450.000 | 2.901 |
500.000 | 2.971 |
6 Kinetic Rate Constants

For the computation of the reactants and the TS Density of State (DOS) with the Paraden-sum and Parsctst program\(^3\)\(^-\)\(^5\) we used the following parameters:

- Number of Walkers: 1
- Window Overlap: 70 %
- Flatness: 95 %
- Windows Balance: constant
- Energy Grain / [cm\(^{-1}\)]: 5
- Upper Energy Limit: 30000
- Number of Elements in the Double Array: 2500

The absolute values of the rate constants for the three reactions at different temperatures and ab initio levels of theory are here shown in the reported tables\(^1\).

Table 11: TST and SCTST reaction rate constants at the MP2/aug-cc-pVDZ, CCSD(T)/aug-cc-pVDZ and B3LYP/6-31G* level of theory for the R1 reaction.

T/[K]	\(k_{\text{TST}}^{\text{DFT}}(T)/[\text{s}^{-1}]\)	\(k_{\text{SCTST}}^{\text{DFT}}(T)/[\text{s}^{-1}]\)	\(k_{\text{TST}}^{\text{MP2}}(T)/[\text{s}^{-1}]\)	\(k_{\text{SCTST}}^{\text{MP2}}(T)/[\text{s}^{-1}]\)
100	2.11675E-062	2.13928E-044	1.49633E-056	6.29877E-042
120	5.53349E-050	1.45661E-041	4.11002E-045	1.524785E-038
130	3.32983E-045	1.19574E-039	1.03871E-040	1.94188E-036
150	1.49548E-037	3.65046E-035	1.16246E-033	9.65712E-032
200	4.26616E-025	2.28611E-024	3.44999E-022	1.71203E-021
250	1.32929E-017	3.43512E-017	2.75416E-015	7.23676E-015
300	1.36253E-012	2.57491E-012	1.13615E-010	2.24878E-010
350	5.30245E-009	8.48404E-009	2.30435E-007	3.91287E-007
400	2.66162E-006	3.81852E-006	7.08679E-005	1.09741E-004
450	3.40065E-004	4.55119E-004	6.17995E-003	9.02378E-003
500	1.66349E-002	2.12066E-002	0.22255	0.31260

T/[K]	\(k_{\text{TST}}^{\text{CCSD(T)}}(T)/[\text{s}^{-1}]\)	\(k_{\text{SCTST}}^{\text{CCSD(T)}}(T)/[\text{s}^{-1}]\)
100	2.11675E-062	1.49633E-056
120	5.53349E-050	4.11002E-045
130	3.32983E-045	1.03871E-040
150	1.49548E-037	1.16246E-033
200	4.26616E-025	3.44999E-022
250	1.32929E-017	2.75416E-015
300	1.36253E-012	1.13615E-010
350	5.30245E-009	2.30435E-007
400	2.66162E-006	7.08679E-005
450	3.40065E-004	6.17995E-003
500	1.66349E-002	0.22255

\(^{1}\)Values here reported refer to kinetic rate constants calculated using the anharmonic couplings obtained with our program.
Table 12: TST and SCTST reaction rate constants at the MP2/aug-cc-pVDZ, B3LYP/6-31G* and CCSD/jun-cc-pVDZ level of theory for the R2 reaction.

T/K	$k_{DFT}^{TST}(T)$/s^{-1}	$k_{DFT}^{SCTST}(T)$/s^{-1}	$k_{MP2}^{TST}(T)$/s^{-1}	$k_{MP2}^{SCTST}(T)$/s^{-1}
100	4.03881E-034	1.13132E-029	9.48905E-024	5.13281E-018
120	1.40522E-026	8.74949E-025	7.74599E-018	4.17104E-017
130	1.10653E-023	2.06538E-022	1.44387E-015	2.33636E-015
150	4.68877E-019	2.78935E-018	6.11954E-012	5.42185E-012
200	1.45733E-011	3.29232E-011	4.55622E-006	3.86076E-006
250	3.99407E-007	6.85389E-007	1.49388E-002	6.09145E-003
300	5.14018E-002	6.09214E-002	136.78973	45.89433
350	1.93873	2.13278	2345.40624	739.52197
400	32.41599	33.78148	21240.54872	6212.91933
450	307.11192	307.00269	123225.99859	34104.14281
500	3.23214E-049	1.33064E-040		

T/K	$k_{CCSD}^{TST}(T)$/s^{-1}	$k_{CCSD}^{SCTST}(T)$/s^{-1}
100	3.23214E-049	1.33064E-040
120	4.29893E-039	9.79458E-035
130	3.33972E-035	3.96741E-032
150	5.51741E-029	2.15141E-027
200	6.62577E-019	1.98934E-018
250	7.01376E-013	1.02646E-012
300	7.05351E-009	7.32893E-009
350	4.99767E-006	4.23927E-006
400	6.77155E-004	5.00719E-004
450	3.05601E-002	2.04616E-002
500	0.64053	0.39729
Table 13: TST and SCTST reaction rate constants at the MP2/aug-cc-pVDZ, B3LYP/6-31G* and CCSD/jun-cc-pVDZ level of theory for the R3 reaction.

T/K	$k_{\text{DFT}}^\text{TST}(T)$/[s$^{-1}$]	$k_{\text{DFT}}^\text{SCTST}(T)$/[s$^{-1}$]	$k_{\text{MP2}}^\text{TST}(T)$/[s$^{-1}$]	$k_{\text{MP2}}^\text{SCTST}(T)$/[s$^{-1}$]
100	5.14108E-063	4.40637E-058	1.38839E-042	3.61820E-046
120	1.02706E-050	7.23459E-049	9.4086E-034	1.00828E-036
130	5.46408E-046	1.09358E-044	2.49353E-030	4.25883E-033
150	1.95583E-038	1.26557E-037	6.71034E-025	2.63201E-027
200	3.46576E-026	8.9942E-026	4.1694E-016	6.2555E-018
250	7.38090E-019	1.37385E-018	7.48352E-011	2.48835E-012
300	5.53659E-014	8.84309E-014	2.33016E-007	1.30769E-008
350	1.66324E-010	2.44717E-010	7.22687E-005	5.86116E-006
400	6.73489E-008	9.46018E-008	5.33657E-003	5.86098E-004
450	7.18979E-006	9.83407E-006	0.15179	1.98863E-002
500	3.02751E-004	4.07996E-004	2.21997	0.34226

T/K	$k_{\text{CCSD}}^\text{TST}(T)$/[s$^{-1}$]	$k_{\text{CCSD}}^\text{SCTST}(T)$/[s$^{-1}$]
100	5.38555E-080	1.49492E-045
120	7.28489E-065	2.14694E-045
130	4.75194E-059	2.80869E-045
150	9.39617E-050	8.32189E-045
200	1.12907E-034	5.72588E-034
250	1.20154E-025	3.20860E-025
300	1.22244E-019	2.50631E-019
350	2.36388E-015	4.23288E-015
400	3.86298E-012	6.41795E-012
450	1.22057E-009	1.94476E-009
500	1.22293E-007	1.90647E-007
The values of the % difference between the SCTST and the TST rate constants are reported in the following tables.

The definition of the % difference can be found in the article in eq. 33.

Table 14: % difference at the MP2/aug-cc-pVDZ, CCSD(T)/aug-cc-pVDZ, B3LYP/6-31G* and CCSD/jun-cc-pVDZ level of theory for the R1, R2 and R3 reactions.

(a) R1 % difference.

T/[K]	% Diff DFT	% Diff MP2	% Diff CCSD(T)
100	100.000	100.000	100.000
120	99.999	99.999	99.999
130	99.999	99.999	99.999
150	99.590	98.796	97.728
200	81.339	79.848	77.397
250	61.303	61.889	72.601
300	47.084	49.477	61.267
350	37.237	41.108	53.076
400	30.297	35.422	47.217
450	25.279	31.515	43.028
500	21.558	28.807	40.037

(b) R2 % difference.

T/[K]	% Diff DFT	% Diff MP2	% Diff CCSD
100	99.996	99.999	99.999
120	98.393	99.999	99.999
130	94.642	98.200	99.916
150	83.190	99.916	97.435
200	55.735	99.998	66.694
250	37.012	97.435	31.670
300	24.453	97.351	-137.357
350	15.626	97.973	-198.054
400	9.098	92.215	-221.059
450	4.042	94.935	-241.877
500	0.036	96.122	-261.323

(c) R3 % difference.

T/[K]	% Diff DFT	% Diff MP2	% Diff CCSD
100	99.998	-3836.2300	100.000
120	98.580	-9849.313	100.000
130	95.003	-5849.588	99.999
150	84.546	-2539.567	99.998
200	61.056	-6564.150	80.281
250	46.276	-2907.423	62.552
300	37.391	-1681.889	51.225
350	32.034	-1132.799	44.155
400	28.808	-839.375	39.809
450	26.889	-663.272	37.238
500	25.796	-548.612	35.854

References

(1) Frisch, M. J. et al. Gaussian16 Revision C.01. 2016, Gaussian Inc. Wallingford CT.

(2) GALILEO IBM NeXtScale cluster. https://www.hpc.cineca.it/hardware/galileo.

(3) Aieta, C.; Gabas, F.; Ceotto, M. An efficient computational approach for the calculation of the vibrational density of states. The Journal of Physical Chemistry A 2016, 120, 4853–4862.

(4) Aieta, C.; Gabas, F.; Ceotto, M. Parallel Implementation of Semiclassical Transition State Theory. Journal of chemical theory and computation 2019, 15, 2142–2153.
(5) Barker, J.; Nguyen, T.; Stanton, J.; Aieta, C.; Ceotto, M.; F. Gabas, T. K.; Li, C.;
Lohr, L.; Maranzana, A.; Ortiz, N.; Preses, J.; Simmie, J.; Sonk, J.; Stimac, P.
MultiWell-2020 Software Suite; J. R. Barker, University of Michigan, Ann Arbor, Michi-
gan, USA, 2020. http://clasp-research.engin.umich.edu/multiwell/.