Clinical depression among patients with post-acute coronary syndrome: a prospective single-tertiary centre analysis

Lai Kuan Leong, MBBS, Ahmad Syadi Mahmood Zuhdi, MBBCh, MMed, Muhammad Imran Abdul Hafidz, MBChB, MRCP

1Department of Cardiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia

Correspondence: Dr Leong Lai Kuan, Registrar, Department of Cardiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia. leonglk@ummc.edu.my

Singapore Med J 2020, 1–17
https://doi.org/10.11622/smedj.2020079
Published ahead of print: 27 May 2020

Online version can be found at http://www.smj.org.sg/online-first
ABSTRACT

Introduction: Clinical depression is a known consequence of acute coronary syndrome (ACS), and carries an adverse outcome among these patients, although this is often under-recognised. We investigated the incidence of depression in post-ACS patients and its associated factors.

Methods: We conducted a prospective cohort study in 95 ACS patients admitted to University Malaya Medical Centre. Clinical depression was assessed during the index admission and at 30 days post discharge using the Patient Health Questionnaire-9 (PHQ-9). Data was analysed using IBM SPSS Statistics, and binary logistic regression was used to determine the independent factors associated with depression, after adjusting for significant demographic variables and clinical characteristics. The strength of this association was presented in odds ratio and 95% confidence interval, and the significance level was set at 0.05.

Results: Mean age of the study population was 60 years, and 72.6% were male. Symptoms of depression were present in 88.4% of patients at baseline. Depression at 30 days was more likely in women, diabetics and patients on dialysis (p = 0.024, p < 0.001, p = 0.008, respectively). Patients with baseline moderate to severe depression were more likely to have moderate to severe depression at 30 days (p < 0.001). Baseline depression was the strongest predictor of depression at 30 days. An increment of one unit of PHQ-9 baseline score increases the risk of developing severe depression at 30 days by 31%.

Conclusion: Depression was prevalent in our post-ACS patients. The associated factors were female gender, diabetes mellitus and dialysis treatment.

Keywords: ACS, depression, NSTEMI, screening outcome, STEMI
INTRODUCTION

The leading cause of death worldwide is cardiovascular disease. Out of 31% of all global deaths, it is estimated that 17.9 million people died from cardiovascular disease in 2016.\(^{(1)}\) Patients with coronary artery disease (CAD) may present with acute coronary syndrome (ACS) or stable angina. ACS include conditions such as ST-elevation myocardial infarction, non-ST-elevation myocardial infarction and unstable angina. Cardiomyocyte necrosis is seen in non-ST-elevation myocardial infarction, while myocardial ischaemia without cell loss is seen in unstable angina.\(^{(2)}\)

Depression among patients with cardiovascular disease is prevalent. It affects about 20% of patients with CAD,\(^{(3)}\) and has a significant negative impact on various outcomes in patients with cardiovascular disease. The association between ACS and depression has been extensively reported and studied. This relationship is bidirectional – cardiovascular disease has been shown to increase the risk of depression, while depression is found to be associated with higher rates of cardiovascular mortality and morbidity.\(^{(4)}\) The presence of depression in patients with coronary disease has been linked to lower rates of compliance with treatment and lifestyle modification; it is thus important to detect depression among patients in this group.\(^{(5)}\) However, recent data from the American College of Cardiology suggests that this is no benefit in detecting depression in these patients.\(^{(6)}\)

Following an ACS event, patients often experience psychological stress. This may account for the prevalence of depression in this patient group.\(^{(7)}\) However, depression is frequently under-recognised in patients with cardiac disease. Untreated depression can have a significant impact on patient’s quality of life and increases the burden on family members.\(^{(8)}\) In CAD patients who experience depression, the levels of cytokines and interleukin are found to be increased. Inflammatory cytokines cause atherosclerotic plaques to become unstable and subsequently rupture, resulting in thrombosis.\(^{(9)}\)
Due to the negative impact of depression on patient outcomes, professional societies have recommended screening of depression in patients with coronary heart disease and appropriate referral to specialty care.\(^{(10)}\) Early treatment and intervention in cardiac disease patient is crucial to prevent untoward cardiovascular outcomes. The current study investigated the incidence and effect of depression among patients admitted with ACS, with the aim of exploring whether the effects seen in other studies are demonstrated in our patient population.

METHODS

A prospective study was conducted on all patients with a diagnosis of ACS who were admitted to the cardiology ward of University Malaya Medical Centre, Malaysia from July 2017 to February 2019. We included both male and female patients aged > 18 years who presented with a diagnosis of ST-elevation myocardial infarction, non-ST-elevation myocardial infarction or unstable angina, and who were able to complete the validated English or Bahasa Melayu Patient Health Questionnaire-9 (PHQ-9). Exclusion criteria were patients who presented with type 2 myocardial infarction or heart failure, and those who had underlying depression or had previously been admitted for psychiatric illness. ACS patients who met the inclusion criteria were selected using the consecutive sampling technique.

The statistical power of the study was determined using the OpenEpi software (www.openepi.com). Based on our calculation, a sample size of 68 was required to provide 80% power to estimate an odds ratio of 10 for having depression at 30 days post discharge with 95% confidence.\(^{(11)}\) Taking a potential loss to follow-up of 20%, we would require at least 82 participants at the baseline of the study.

Data was collected using the PHQ-9, a diagnostic tool for assessing depression that is easy to administer and has good sensitivity and specificity. There were two sets of questionnaires – an English version and a validated Bahasa Melayu version. The questionnaire
was answered by participants in a face-to-face interview during the index admission and via telephone call at 30 days post discharge.\(^{(12)}\) To avoid bias, only one interviewer administered the questionnaire. Data was collected by a designated medical officer, and a pilot study was performed in five patients. The dependent variable was depression at baseline and at 30 days post discharge.

The PHQ assesses eight diagnoses, divided into threshold disorders and subthreshold disorders. Threshold disorders are those that correspond to specific diagnoses in the Diagnostic and Statistical Manual of Mental Disorders fourth edition (DSM-IV): major depressive disorder, panic disorder, other anxiety disorder and bulimia nervosa. The PHQ-9 is the 9-item depression module from the full PHQ\(^{(13)}\) and the questions are based on the diagnostic criteria for depression from the DSM-IV.

For the current study, the PHQ-9 asked about the patient’s experience in the past two weeks. Major depression was defined as the presence of five or more of the nine depressive symptom criteria at least ‘more than half the days’ in the past two weeks, with one of the symptoms being depressed mood or anhedonia. The nine questions from the PHQ-9 were scored using a scale of 0 to 3: not at all (score: 0); several days (score: 1); more than half the days (score: 2); and nearly every day (score: 3). The total PHQ-9 score ranged from 0 to 27, and depression was classified as: none to minimal (score: 0–4); mild (score: 5–9); moderate (score: 10–14); moderately severe (score: 15–19); and severe (score: 20–27).\(^{(13)}\) Depression scores were dichotomised into two groups: none to mild depression (PHQ-9 < 10); and moderate to severe depression (PHQ-9 ≥ 10). For regression analysis, patients who scored < 10 were coded as ‘1’ and those who scored ≥ 10 were coded as ‘2’. In this study, we used a cut-off score of ≥ 10. This cut-off score was found to be optimal for maximising sensitivity without the loss of specificity.\(^{(13)}\)
The independent variables were sociodemographic characteristics (age, gender, ethnicity) and clinical characteristics (cardiovascular risks, smoking history, premorbid condition and diagnosis of ACS). Data was cleaned, coded and analysed using the IBM SPSS Statistics version 24 (IBM Corp, Armonk, NY, USA). Crude odds ratios with 95% confidence interval were estimated in the binary logistic regression analysis to assess the association between each independent variable and the outcome variable. Variables with a value < 0.25 in the bivariable logistic regression analysis were considered in the multivariable logistic regression analysis.(14) Adjusted odds ratios with 95% confidence interval were estimated to assess the strength of the association, and variables with a value < 0.05 were considered significant factors.

RESULTS

Of the 139 recruited patients, 95 met the inclusion criteria. Seven patients were lost to follow-up and seven patients died in the course of the study, leaving 81 patients for the PHQ-9 reassessment at 30 days post discharge. The mean age of the patients was 59.97 ± 11.28 (range 25–80) years. Patients were predominantly male (72.6%) and Malay (55.8%). The majority had hypertension and were non-smokers. Their cardiovascular risks were similar to those listed in the National Cardiovascular Disease Database Malaysia. The participants were distributed equally among three subgroups of ACS (Table I). Following an ACS event, at least 88.4% of patients reported depression, with 46.3% of patients having moderate to severe depression. (Table II).

Table I. Sociodemographic and clinical characteristics of recruited patients (n = 95).

Variable	No. (%)
Mean age ± SD (yr)	59.97 ± 11.28
Age (yr)	
< 60	42 (44.2)
≥ 60	53 (55.8)
Ethnicity	
Ethnicity	No. (%)
--------------	----------
Malay	53 (55.8)
Chinese	14 (14.7)
Indian	28 (29.5)

Gender	No. (%)
Male	69 (72.6)
Female	26 (27.4)

Cardiovascular risk	No. (%)
Diabetes mellitus	52 (54.7)
Hypertension	66 (69.5)
Dyslipidaemia	38 (40.0)

Smoking	No. (%)
Non-smoker	42 (44.2)
Ex-smoker	26 (27.4)
Active smoker	27 (28.4)

Premorbid condition	No. (%)
Chronic kidney disease	24 (25.3)
Stroke	5 (5.3)
Pre-existing CAD	45 (47.4)
Dialysis	10 (10.5)

Diagnosis of ACS	No. (%)
STEMI	26 (27.4)
NSTEMI	34 (35.8)
Unstable angina	35 (36.8)

ACS: acute coronary syndrome; **CAD:** coronary artery disease; **NSTEMI:** non-ST-elevation myocardial infarction; **PHQ-9:** Patient Health Questionnaire-9; **SD:** standard deviation; **STEMI:** ST-elevation myocardial infarction

Table II. Prevalence of depression in post-acute coronary syndrome patients on admission (n = 95).

Severity of depression	PHQ-9 score	No. (%)
None	0	11 (11.6)
Minimal depression	1–4	17 (17.9)
Mild depression	5–9	23 (24.2)
Moderate depression	10–14	13 (13.7)
Moderately severe	15–19	12 (12.6)
Severe depression	20–27	19 (20.0)

PHQ-9: Patient Health Questionnaire-9

Univariate analysis showed differences in characteristics between patients with and without depression. Using male gender as the reference group, female patients had a four-time increased risk of having depression. In terms of ethnicity, Malays had a higher rate of depression, although this was not statistically significant. Patients with diabetes mellitus had a five-time increased risk of developing depression. There was also an association between smoking status and the odds of depression; at baseline, active smokers were 82% less likely to
develop depression compared to non-smokers. In addition, dialysis patients were found to have significant depression. There was, however, no significant relationship between chronic kidney disease/stroke/dyslipidaemia and depression at baseline. There was also no significant association between the subgroups of ACS and depression at baseline (Table III).

Table III. Univariate analysis of depression with sociodemographic and clinical characteristics (n = 95) on admission.

Variable	PHQ-9 total score*	Χ²	p-value	OR	95% CI
Gender					
Male	44 (63.8)	25 (36.2)	1.00	1.77–12.93	
Female	7 (26.9)	19 (73.1)	4.78		
Age (yr)					
< 60	20 (39.2)	22 (50.0)	1.00	0.29–1.46	
≥ 60	31 (60.8)	22 (50.0)	0.65		
Race					
Malay	23 (43.4)	30 (56.6)	1.00		
Chinese	10 (71.4)	4 (28.6)	0.31	0.09–1.10	
Indian	18 (64.3)	10 (35.7)	0.43	0.17–1.10	
Cardiovascular risk					
Diabetes mellitus	19 (37.3)	33 (75.0)	13.58	< 0.001	2.08–12.27
Hypertension	32 (62.7)	34 (77.3)	2.35	0.125	2.02–4.99
Dyslipidaemia	20 (39.2)	18 (40.9)	0.03	0.867	1.07–4.72
Smoking					
Active smoker	21 (41.2)	6 (13.6)	0.18	0.06–0.53	
Ex-smoker	14 (27.5)	12 (27.3)	0.53	0.20–1.42	
Non-smoker	16 (31.4)	26 (59.1)	1.00		
Premorbid condition					
Chronic kidney disease	11 (21.6)	13 (29.5)	0.80	0.372	1.53–3.86
Stroke	2 (40.0)	3 (60.0)	0.40	0.528	1.79–11.25
Pre-existing CAD	21 (41.2)	24 (54.5)	1.69	0.193	1.71–3.87
Dialysis	1 (2.0)	9 (20.5)	8.58	0.003	12.86–106.12
Type of ACS on admission					
Unstable angina	15 (29.4)	20 (45.5)	1.00		
Myocardial infarction†	36 (70.6)	24 (54.5)	0.50	0.22–1.17	

*Data presented as no. (%) †Includes both ST- and non-ST-elevation myocardial infarction. ACS: acute coronary syndrome; CAD: coronary artery disease; CI: confidence interval; OR: odds ratio; PHQ-9: Patient Health Questionnaire-9

At 30 days post discharge, female patients had a three-time increased risk of developing depression. Diabetics and patients undergoing dialysis also had increased odds of having depression. Patients who had moderate to severe depression (PHQ-9 score ≥ 10) at 30 days
post discharge had a significantly higher baseline PHQ-9 score compared to those with none to mild depression at 30 days post discharge. In the moderate to severe depression group, an additional increase in one unit of PHQ-9 score from the baseline would lead to a 34% increased odds of developing worsening depression at 30 days post discharge (Table IV).

Table IV. Univariate analysis of depression at 30 days post discharge with sociodemographic/clinical characteristics and baseline PHQ-9 scores (n = 95).

Variable	PHQ-9 total score*	χ²	p-value	OR	95% CI	
	< 10	≥ 10				
Gender						
Male	36 (85.7)	25 (64.1)	5.08	0.024	1.00	
Female	6 (14.3)	14 (35.9)	3.36	1.14–9.93		
Age (yr)						
< 60	17 (40.5)	20 (51.3)	0.95	0.329	1.00	
≥ 60	25 (59.5)	19 (48.7)			0.65	0.27–1.56
Race						
Malay	20 (47.6)	25 (64.1)			1.00	
Chinese	9 (21.4)	3 (7.7)	0.27	0.06–1.12		
Indian	13 (31.0)	11 (28.2)			0.68	0.25–1.83
Cardiovascular risk						
Diabetes mellitus	15 (35.7)	29 (74.4)	12.17	< 0.001	5.22	2.01–13.59
Hypertension	27 (64.3)	30 (76.9)	1.55	0.213	1.85	0.70–4.92
Dyslipidaemia	15 (35.7)	17 (43.6)	0.53	0.469	1.39	0.57–3.40
Smoking						
Active smoker	16 (38.1)	8 (20.5)	3.27	0.195	0.38	0.13–1.11
Ex-smoker	11 (26.2)	11 (28.2)			0.75	0.26–2.19
Non-smoker	15 (35.7)	20 (51.3)			1.00	
Pre-morbid condition						
Chronic kidney disease	9 (21.4)	10 (25.6)	0.20	0.655	1.26	0.45–3.54
Stroke	3 (7.1)	2 (5.1)	0.14	0.707	0.70	0.11–4.45
Pre-existing CAD	18 (42.9)	22 (56.4)	1.49	0.223	1.725	0.72–4.16
Dialysis	0 (0)	6 (15.4)	6.98	0.008	UTC	UTC
Invasive PCI	8 (19.0)	11 (28.2)	0.95	0.331	1.67	0.59–4.72
Type of ACS on admission						
Unstable angina	15 (35.7)	15 (38.5)			1.00	
Myocardial infarction	27 (64.3)	24 (61.5)			0.89	0.36–2.19
Total PHQ-9 score at baseline	5.10±5.44	15.95±6.22	< 0.001	1.34	1.19–1.52	

*Data presented as no. (%) or mean ± standard deviation. †Includes both ST and non-ST elevation myocardial infarction. ACS: acute coronary syndrome; CAD: coronary artery disease; CI: confidence interval; OR: odds ratio; PCI: percutaneous coronary intervention; PHQ-9: Patient Health Questionnaire-9; UTC: unable to compute

There was no significant difference in mortality outcome between the group with none to mild depression (PHQ-9 < 10) and the group with moderate to severe depression (PHQ-9 ≥ 10). Severity of depression did not alter both the in-hospital and 30-day mortality outcomes of
patients, and it had no influence on readmission rates (Table V). After controlling for all covariates, baseline depression remained the strongest predictor of depression at 30-day follow-up, with the increase in PHQ-9 score of one unit raising the odds of depression by 31% (Table VI).

Table V. Univariate analysis of depression with clinical characteristics and mortality outcome (in-hospital and 30-day all-cause mortality rates).

Variable	PHQ-9 total score*	χ²	p-value	HR	95% CI	
	< 10	≥ 10				
Mortality						
30-day	3 (5.9)	4 (9.1)	0.36	0.553	1.60	0.34–7.57
In-hospital	1 (33.3)	1 (25)	0.06	0.810	0.67	0.03–18.06
Readmission	3 (5.9)	2 (4.5)	0.09	0.772	0.76	0.12–4.78

*Data is presented as no. (%). CI: confidence interval; HR: hazard ratio; PHQ-9: Patient Health Questionnaire-9

Table VI. Multivariate logistic regression of clinical predictors of depression 30 days post discharge.

Characteristic	β	p-value	OR	95% CI
Gender	0.126	0.904	1.13	0.15–8.70
Race				
Malay		0.521	1.00	
Chinese	−1.171	0.323	0.31	0.03–3.16
Indian	0.354	0.664	1.43	0.29–7.03
Diabetes mellitus	0.583	0.456	1.79	0.39–8.31
Hypertension	0.047	0.957	1.05	0.19–5.73
Smoker				
Non-smoker		0.900	1.00	
Ex-smoker	0.387	0.687	1.47	0.22–9.67
Active smoker	0.020	0.985	1.02	0.13–7.79
Pre-existing CAD	0.345	0.681	1.41	0.27–7.32
Dialysis	19.719	0.999	-	
Baseline PHQ-9 score	0.269	< 0.001	1.31	1.15–1.49

CAD: coronary artery disease; CI: confidence interval; OR: odds ratio; PHQ-9: Patient Health Questionnaire-9

DISCUSSION

The association between depression and cardiovascular morbidity and mortality has been explored for many years. Several meta-analyses have usefully summarised the findings as a bidirectional association, whereby the presence of depression is an independent risk factor for
CAD and vice versa.(15) The presence of depression was shown to confer a negative prognosis in patients with CAD.(16) The mechanism of how depression affects outcome has been described on many levels, and these include the behavioural, hormonal and endothelial aspects.(17-19) Depression is more likely to be associated with poor lifestyle modifications and lower compliance with therapies. On a more cellular level, various theories such as endothelial stress and platelet activation have been explored.(20)

The current study found that female cardiac patients were four times more likely to have at least moderate depression during the index admission compared to males. This female preponderance is also seen in other studies.(21) A meta-analysis has shown that the prevalence of major depression in female patients with CAD is higher than in males.(22) It has also been reported that the incidence of depression is two times greater in women compared to men.(23) Postulated explanations for gender differences include psychosocial factors (e.g. role overload) and biological factors (e.g. hormones).(22) One study found that women more often present with internalising symptoms, whereas men present with externalising symptoms.(24) Females who are depressed have also been found to have poorer outcomes than depressed males.(25) Less social support compared to males and an older average age of event in females have been put forward as the causes.

The association between diabetes mellitus and depression is bidirectional.(26) Studies have also shown that overweight and obesity are associated with depression. These patients have an approximately 40\% higher risk of developing type 2 diabetes mellitus.(27) Diabetes mellitus has a considerable impact on patients’ quality of life, with possible limitations in physical activities, family relations, social life and leisure activities. Thus, diabetics have an increased risk of developing depression.(28) A meta-analysis reported an 11\% prevalence of major depression among patients with diabetes mellitus.(29)
Depression is also common in patients with end-stage renal failure. Patients undergoing dialysis experience a wide range of somatic symptoms and have significantly less involvement in occupational, social and recreational activities. The combination of psychological distress and disturbing physical symptoms results in significantly reduced quality of life, contributing to the development of depression.\(^{(30)}\)

In our study, patients who were active smokers at baseline had an 82% lower odds of developing significant depression. This might be due to smoking being a coping mechanism. Following a cigarette puff, nicotine enters the cerebral circulation and binds to the neuronal nicotinic acetylcholine receptors.\(^{(31)}\) Hence, nicotine stimulates dopamine receptors in the brain, causing patients to feel less depressed. However, at 30 days post discharge, smoking was no longer associated with less depression. It is possible that active smokers might have quit smoking after they were discharged from the hospital.

Patients who had significant baseline depression were found to have an increased risk of developing significant depression at 30 days post discharge. However, depression in our ACS patients was not significantly associated with an increase in in-hospital or out-of-hospital mortality and morbidity. We also did not see an increase in readmission rates. Our findings contrasted with those of other studies,\(^{(32\text{-}34)}\) which have shown positive associations for all. Our follow-up period was only 30 days compared to most studies, which showed a mortality difference at six months.\(^{(35,36)}\) Despite these differences, we feel that this study should be treated as a pilot to a larger study with a longer follow-up duration. This will allow us to ascertain whether depression is a negative prognostic factor in our population. Larger or definitive studies will also enable us to determine whether screening of depression will help our population like it has in Western practice.

There were some limitations to our study. An important confounding factor that may limit the generalisability of our study findings was the exclusion of patients with language
barriers, i.e. patients who were unable to read or write English and Malay. Communication problems faced by patients have been found to be a barrier to seeking and accessing mental health services, which could subsequently impact the outcomes that are measured.\(^{(37,38)}\)

Additionally, the mean age of our patients was lower (60 years) compared to those in developed countries (63.4–68.0 years). However, as the mean age of our cohort was comparable to that of ACS patients (55.9–59.1 years) in Malaysia (based on the Malaysian National Cardiovascular Disease Database), we opine that this would have little impact on generalisability.\(^{(39)}\) Another limitation of the study was its small sample size, resulting in possible selection bias. Also, we recognise that factors such as socioeconomic status, social support, alcohol intake and substance abuse are important confounders that may have an impact on depression;\(^{(34)}\) unfortunately, these factors were not explored in our study.

In conclusion, depression was prevalent in our cohort of post-ACS patients. Factors associated with the presence of depression were female gender, diabetes mellitus and dialysis treatment. In addition, we found that severity of depression had no impact on in-hospital and 30-day outcomes in our cohort. Most of our results did not reach statistical significance, possibly due to the short duration of follow-up. Hence, our findings should be replicated in a larger study with a longer follow-up period, to guide future screening for depression in ACS patients.

REFERENCES

1. World Health Organization. Cardiovascular diseases (CVDs). Available at: www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds). Accessed April 22, 2019.

2. Roffi M, Patrono C, Collet JP, et al; ESC Scientific Document Group. 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting
without persistent ST-segment elevation: Task Force for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J 2016; 37:267-315.

3. Whooley MA. Depression and cardiovascular disease: healing the broken-hearted. JAMA 2006; 295:2874-81.

4. Vaccarino V, Badimon L, Bremner JD, et al; ESC Scientific Document Group Reviewers. Depression and coronary heart disease: 2018 ESC position paper of the working group of coronary pathophysiology and microcirculation developed under the auspices of the ESC Committee for Practice Guidelines. Eur Heart J 2019 Jan 28. doi: 10.1093/eurheartj/ehy913. [Epub ahead of print]

5. Gehi A, Haas D, Pipkin S, Whooley MA. Depression and medication adherence in outpatients with coronary heart disease: findings from the Heart and Soul Study. Arch Intern Med 2005; 165:2508-13.

6. American College of Cardiology. CODIACS-QoL: depression screening does not improve quality of life after ACS. Available at: www.acc.org/latest-in-cardiology/articles/2019/03/08/15/32/sat-1215pm-codiacs-qol-depression-screening-acsc-acc-2019. Accessed April 20, 2019.

7. Carney RM, Freedland KE. Depression in patients with coronary heart disease. Am J Med 2008; 121(11 Suppl 2):S20-7.

8. Huffman JC, Celano CM, Beach SR, Motiwala SR, Januzzi JL. Depression and cardiac disease: epidemiology, mechanisms, and diagnosis. Cardiovasc Psychiatry Neurol 2013; 2013:695925.

9. Howren MB, Lamkin DM, Suls J. Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis. Psychosom Med 2009; 71:171-86.
10. Lichtman JH, Bigger JT Jr, Blumenthal JA, et al. Depression and coronary heart disease: recommendations for screening, referral, and treatment: a science advisory from the American Heart Association Prevention Committee of the Council on Cardiovascular Nursing, Council on Clinical Cardiology, Council on Epidemiology and Prevention, and Interdisciplinary Council on Quality of Care and Outcomes Research: endorsed by the American Psychiatric Association. Circulation 2008; 118:1768-75.

11. Michael AJ, Krishnaswamy S, Muthusamy TS, Yusuf K, Mohamed J. Anxiety, depression and psychosocial stress in patients with cardiac events. Malays J Med Sci 2005; 12:57-63.

12. Pinto-Meza A, Serrano-Blanco A, Peñaarrubia MT, Blanco E, Haro JM. Assessing depression in primary care with the PHQ-9: Can it be carried out over the telephone? J Gen Intern Med 2005; 20:738-42.

13. Kroenke K, Spitzer RL, Williams JB. The PHQ-9: validity of a brief depression severity measure. J Gen Intern Med 2001; 16:606-13.

14. Mickey RM, Greenland S. The impact of confounder selection criteria on effect estimation. Am J Epidemiol 1989; 129:125-37.

15. Nicholson A, Kuper H, Hemingway H. Depression as an aetiologic and prognostic factor in coronary heart disease: a meta-analysis of 6362 events among 146,538 participants in 54 observational studies. Eur Heart J 2006; 27:2763-74.

16. de Jonge P, van den Brink RH, Spijkerman TA, Ormel J. Only incident depressive episodes after myocardial infarction are associated with new cardiovascular events. J Am Coll Cardiol 2006; 48:2204-8.

17. Weber B, Lewicka S, Deuschle M, et al. Increased diurnal plasma concentrations of cortisone in depressed patients. J Clin Endocrinol Metab 2000; 85:1133-6.
18. Froger N, Palazzo E, Boni C, et al. Neurochemical and behavioral alterations in glucocorticoid receptor-impaired transgenic mice after chronic mild stress. J Neurosci 2004; 24:2787-96.

19. Sherwood A, Hinderliter AL, Watkins LL, Waugh RA, Blumenthal JA. Impaired endothelial function in coronary heart disease patients with depressive symptomatology. J Am Coll Cardiol 2005; 46:656-9.

20. Laghrissi-Thode F, Wagner WR, Pollock BG, Johnson PC, Finkel MS. Elevated platelet factor 4 and beta-thromboglobulin plasma levels in depressed patients with ischemic heart disease. Biol Psychiatry 1997; 42:290-5.

21. Mallik S, Spertus JA, Reid KJ, et al; PREMIER Registry Investigators. Depressive symptoms after acute myocardial infarction: evidence for highest rates in younger women. Arch Intern Med 2006; 166:876-83.

22. Shanmugasegaram S, Russell KL, Kovacs AH, Stewart DE, Grace SL. Gender and sex differences in prevalence of major depression in coronary artery disease patients: a meta-analysis. Maturitas 2012; 73:305-11.

23. Nolen-Hoeksema S, Larson J, Grayson C. Explaining the gender difference in depressive symptoms. J Pers Soc Psychol 1999; 77:1061-72.

24. Albert PR. Why is depression more prevalent in women? J Psychiatry Neurosci 2015; 40:219-21.

25. Shah AJ, Ghasemzadeh N, Zaragoza-Macias E, et al. Sex and age differences in the association of depression with obstructive coronary artery disease and adverse cardiovascular events. J Am Heart Assoc 2014; 3:e000741.

26. Pan A, Lucas M, Sun Q, et al. Bidirectional association between depression and type 2 diabetes mellitus in women. Arch Intern Med 2010; 170:1884-91.
27. Arroyo C, Hu FB, Ryan LM, et al. Depressive symptoms and risk of type 2 diabetes in women. Diabetes Care 2004; 27:129-33.

28. Eren I, Erdi O, Sahin M. The effect of depression on quality of life of patients with type II diabetes mellitus. Depress Anxiety 2008; 25:98-106.

29. Anderson RJ, Freedland KE, Clouse RE, Lustman PJ. The prevalence of comorbid depression in adults with diabetes: a meta-analysis. Diabetes Care 2001; 24:1069-78.

30. King-Wing Ma T, Kam-Tao Li P. Depression in dialysis patients. Nephrology (Carlton) 2016; 21:639-46.

31. Herman AI, DeVito EE, Jensen KP, Sofuoglu M. Pharmacogenetics of nicotine addiction: role of dopamine. Pharmacogenomics 2014; 15:221-34.

32. Lichtman JH, Froelicher ES, Blumenthal JA, et al. Depression as a risk factor for poor prognosis among patients with acute coronary syndrome: systematic review and recommendations: a scientific statement from the American Heart Association. Circulation 2014; 129:1350-69.

33. Barth J, Schumacher M, Herrmann-Lingen C. Depression as a risk factor for mortality in patients with coronary heart disease: a meta-analysis. Psychosom Med 2004; 66:802-13.

34. Figueiredo JHC, Silva N, Pereira BB, Oliveira GMM. Major depression and acute coronary syndrome-related factors. Arq Bras Cardiol 2017; 108:217-27.

35. Eagle KA, Lim MJ, Dabbous OH, et al. A validated prediction model for all forms of acute coronary syndrome: estimating the risk of 6-month postdischarge death in an international registry. JAMA 2004; 291:2727-33.

36. Fox KA, Dabbous OH, Goldberg RJ, et al. Prediction of risk of death and myocardial infarction in the six months after presentation with acute coronary syndrome: prospective multinational observational study (GRACE). BMJ 2006; 333:1091.
37. Havranek EP, Mujahid MS, Barr DA, et al. Social determinants of risk and outcomes for cardiovascular disease: a scientific statement from the American Heart Association. Circulation 2015; 132:873-98.

38. Sambrook Smith M, Lawrence V, Sadler E, Easter A. Barriers to accessing mental health services for women with perinatal mental illness: systematic review and meta-synthesis of qualitative studies in the UK. BMJ Open 2019; 9:e024803.

39. Lu HT, Nordin RB. Ethnic differences in the occurrence of acute coronary syndrome: results of the Malaysian National Cardiovascular Disease (NCVD) Database Registry (March 2006 - February 2010). BMC Cardiovasc Disord 2013; 13:97.