Abstract

Participating in physical activities is necessary for people of all ages. It positions individuals in a state of fitness, thereby enhancing the quality of life. Physical inactivity, which can result in obesity and overweight will not only affect the quality of life, but equally bring financial burden to the government and relevant individuals. The manufacturers of mobile devices such as smartphones recently incorporated some sensors such as accelerometer, step counter, step detector. Their high computational power, low cost, and small size make it possible for people to carry such accessories always. The embedded sensors can be used to track human steps in real time. In this work, we present a prototype mobile application using step counter sensor embedded in smartphones to track daily steps of users carrying mobile phones. The app serves as a motivating factor for engaging in physical activities such as taking stairs instead of taking the lift, walking instead of driving to work, and also running to increase the rate of heart beat. Experimental evaluation of the mobile application shows that the app could be used to track and record daily steps of people carrying mobile phones effectively.
References

1. Bielik, P., Tomlein, M., Krátky, P., Mitrík, Š., Barla, M., & Bieliková, M. (2012). Move2Play: an innovative approach to encouraging people to be more physically active. In Proceedings of the 2nd ACM SIGHIT international health informatics symposium (pp. 61-70). ACM.

2. Consolvo, S., Everitt, K., Smith, I., & Landay, J. A. (2006). Design requirements for technologies that encourage physical activity. In Proceedings of the SIGCHI conference on Human Factors in computing systems (pp. 457-466). ACM.

3. Gjoreski, M., Gjoreski, H., Luštrek, M., & Gams, M. (2016). How accurately can your wrist device recognize daily activities and detect falls?. Sensors, 16(6), 800.

4. Hendeby, G., Bleser, G., Lamprinos, I., & Stricker, D. (2010). Healthy aging using physical activity monitoring. German Research, 122, 67663.

5. Smallman G. (2012); The Benefit of apps in Healthcare, The Guardian

6. Hirzallah, N. (2013). A simple exercise-to-play proposal that would reduce games addiction and keep players healthy. International Journal of Advanced Computer Science and Applications (IJACSA), 4(2).

7. Kwapisz, J. R., Weiss, G. M., & Moore, S. A. (2010). Activity Recognition using Cell Phone Accelerometers.

8. Khalil, A., & Glal, S. (2009). StepUp: A step counter mobile application to promote healthy lifestyle. In Current Trends in Information Technology (CTIT), 2009 International Conference on the (pp. 1-5). IEEE.

9. Lin, Y., Jessurun, J., De Vries, B., & Timmermans, H. (2011). Motivate: Towards context-aware recommendation mobile system for healthy living. In Pervasive Computing Technologies for Healthcare (PervasiveHealth), 2011 5th International Conference on (pp. 250-253). IEEE.

10. Maitland, J., Sherwood, S., Barkhuus, L., Anderson, I., Hall, M., Brown, B., & Muller, H. (2006). Increasing the awareness of daily activity levels with pervasive computing. In Pervasive Health Conference and Workshops, 2006 (pp. 1-9). IEEE.

11. Pina, L. R., Ramirez, E., & Griswold, W. G. (2012). Fitbit+: A behavior-based intervention system to reduce sedentary behavior. In Pervasive Computing Technologies for Healthcare (PervasiveHealth), 2012 6th International Conference on (pp. 175-178). IEEE.

12. Rajanna, V., Lara-Garduño, R., Behera, D. J., Madanagopal, K., Goldberg, D., & Hammond, T. (2014). Step up life: a context aware health assistant. In Proceedings of the Third ACM SIGSPATIAL International Workshop on the Use of GIS in Public Health (pp. 21-30). ACM.

13. Sarwar, A., Mukhtar, H., Maqbool, M., & Belaid, D. SmartFit: A Step Count Based Mobile Application for Engagement in Physical Activities. International Journal of Advanced Computer Science & Applications, 1(6), 271-278.

14. Van Dantzig, S., Geleijnse, G., & van Halteren, A. T. (2013). Toward a persuasive mobile application to reduce sedentary behavior. Personal and ubiquitous computing, 17(6), 1237-1246.

Index Terms

Computer Science
Information Systems
Keywords

Smartphone, Healthcare, Mobile Application, Activity Monitoring