Herpes simplex virus type 1 epidemiology in the Middle East and North Africa: systematic review, meta-analyses, and meta-regressions

Sonia Chaabane1, Manale Harfouche1, Hiam Chemaitelly1, Guido Schwarzer2 & Laith J. Abu-Raddad1,3,4

This study aimed at characterizing herpes simplex virus type 1 (HSV-1) epidemiology in the Middle East and North Africa (MENA). HSV-1 records were systematically reviewed. Findings were reported following the PRISMA guidelines. Random-effects meta-analyses were implemented to estimate pooled mean HSV-1 seroprevalence. Random-effects meta-regressions were conducted to identify predictors of higher seroprevalence. Thirty-nine overall seroprevalence measures yielding 85 stratified measures were identified and included in the analyses. Pooled mean seroprevalence was 65.2% (95% CI: 53.6–76.1%) in children, and 91.5% (95% CI: 89.4–93.5%) in adults. By age group, seroprevalence was lowest at 60.5% (95% CI: 48.1–72.3%) in <10 years old, followed by 85.6% (95% CI: 80.5–90.1%) in 10–19 years old, 90.7% (95% CI: 84.7–95.5%) in 20–29 years old, and 94.3% (95% CI: 89.5–97.9%) in ≥30 years old. Age was the strongest predictor of seroprevalence explaining 44.3% of the variation. Assay type, sex, population type, year of data collection, year of publication, sample size, and sampling method were not significantly associated with seroprevalence. The a priori considered factors explained 48.6% of the variation in seroprevalence. HSV-1 seroprevalence persists at high levels in MENA with most infections acquired in childhood. There is no evidence for declines in seroprevalence despite improving socio-economic conditions.

Herpes simplex virus type 1 (HSV-1) is a widespread and incurable infection1,2. Although this infection is usually asymptomatic3, the virus is shed frequently and subclinically4,5. Clinically-apparent HSV-1 infection most often manifests as orolabial herpes lesions6,7, but the virus causes a diverse spectrum of diseases including neonatal herpes, corneal blindness, herpetic whitlow, meningitis, encephalitis, and genital herpes7,8. The infection's clinical manifestations depend on the virus' initial acquisition portal6,7—oral-to-oral transmission leads to an oral infection6,7, and oral-to-genital transmission (through oral sex) leads to a genital infection6,9,10.

HSV-1 is endemic globally as indicated by the high HSV-1 antibody prevalence (seroprevalence) across regions2,11,12. Although HSV-1 is typically acquired in childhood4, changes in hygiene and socio-economic conditions appear to have reduced exposure during childhood in Western11–13 and Asian countries21. A large fraction of youth in these countries reach sexual debut with no protective antibodies against HSV-1 infection, and thus at risk of acquiring the infection genitally9,22. A growing evidence indicates that HSV-1 is overtaking HSV-2 as the leading cause of first episode genital herpes in Western9,23–26 and (apparently) Asian countries21. The extent to which such a transition in HSV-1 epidemiology is occurring in other global regions remains unknown.

1Infectious Disease Epidemiology Group, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation - Education City, Doha, Qatar. 2Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany. 3Department of Healthcare Policy & Research, Weill Cornell Medicine, Cornell University, New York, USA. 4College of Health and Life Sciences, Hamad bin Khalifa University, Doha, Qatar. Sonia Chaabane and Manale Harfouche contributed equally. Correspondence and requests for materials should be addressed to L.J.A.-R. (email: lj2002@qatar-med.cornell.edu)
In this context, we aspired to determine HSV-1 seroprevalence levels in the Middle East and North Africa (MENA), and to characterize the extent to which HSV-1 is the etiological cause of clinically-diagnosed genital ulcer disease (GUD) and clinically-diagnosed genital herpetic infections. These aims were addressed by: (1) systematically reviewing and synthesizing available data on HSV-1 seroprevalence and HSV-1 viral detection in GUD and genital herpetic infections, (2) estimating the pooled mean HSV-1 seroprevalence in different populations and across ages, and (3) assessing the associations and predictors of higher seroprevalence and sources of between-study heterogeneity.

This study is part of a series of ongoing investigations meant to inform efforts by the World Health Organization (WHO) and global partners to characterize the regional and global infection and disease burden of HSV infections, accelerate HSV vaccine development, and explore optimal strategies for HSV-1 control.

Methods

The methodology used in this study follows and adapts that used in a systematic review of HSV-1 seroprevalence and HSV-1 viral detection in GUD and genital herpes in Asia.

Data sources and search strategy. The present systematic review was informed by the Cochrane Collaboration handbook, and was reported following the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. The PRISMA checklist can be found in Supplementary Table S1.

A systematic literature search was conducted up to October 8, 2017, in PubMed and Embase. The search criteria included exploded MeSH/Emtree terms to cover all subheadings, with no language or time restrictions. Another search was conducted up to December 1, 2017, in national and regional databases including: Index Medicus for the Eastern Mediterranean Region, Iraqi Academic Scientific Journals Database, Scientific Information Database of Iran, and PakMediNet of Pakistan. Search strategies can be found in Supplementary Box S1.

The MENA region definition included 23 countries: Afghanistan, Algeria, Bahrain, Djibouti, Egypt, Iran, Iraq, Jordan, Kuwait, Lebanon, Libya, Morocco, Oman, Pakistan, Palestine, Qatar, Saudi Arabia, Somalia, Sudan, Syria, Tunisia, the United Arab Emirates (UAE), and Yemen.

Study selection and inclusion and exclusion criteria. Search results were imported into Endnote, where duplicate records were removed. Titles and abstracts of remaining records were screened independently by SC, MH, and HC, for relevance. Full texts of records deemed relevant or potentially relevant were retrieved for further screening. Bibliographies of relevant records and reviews were also screened for possible missing publications.

The inclusion criteria included any record reporting an HSV-1 seroprevalence measure, based on primary data and type-specific diagnostic assay such as glycoprotein-G-based enzyme-linked immunosorbent assays (ELISA).

The inclusion criteria also included any record reporting a proportion of HSV-1 viral detection in clinically-diagnosed GUD or in clinically-diagnosed genital herpetic infections. The minimum sample size of included studies was 10, regardless of the outcome measure.

The exclusion criteria included case reports, case series, reviews, editorials, letters to editors, commentaries, qualitative studies, and animal studies. HSV-1 seroprevalence measures reported in <3 months-old infants were excluded since they may reflect maternal antibodies.

In this work, a “record” refers to a document (a publication) reporting an outcome measure of interest, while a “study” refers to the details pertaining to a specific outcome measure. Accordingly, one record may contribute multiple studies, and multiple records of the same study are considered as duplicates and only included once.

Data extraction and data synthesis. The extracted information included: author(s), publication title, year(s) of data collection, publication year, country of origin, country of survey, city, study site, study design, study sampling procedure, study population and its characteristics (e.g., sex and age), sample size, HSV-1 outcome measures, and diagnostic assay. Data were double extracted from relevant records by SC, MH, and HC.

Extracted outcome measures were based on their stratification in the original record. Stratifications of seroprevalence measures were considered using a pre-defined sequential order that prioritizes first population type, followed by age bracket, and then age group. Age bracket included children (<15 years of age) and adults (≥15 years of age). Age groups included <10, 10–19, 20–29, and ≥30 years of age—a stratification informed by the actual available data of age-strata.

The extracted seroprevalence data were synthesized by population type according to the following definitions:

1. Healthy general populations encompassing groups of presumably healthy persons (for example, pregnant women or blood donors) and outpatients attending a healthcare facility for an inconsequential health condition.
2. Clinical populations encompassing any population with a serious clinical condition, or with a condition potentially related to a clinical manifestation of HSV-1 infection.
3. Other populations encompassing populations not fitting the above definitions, or populations with an unclear risk of having acquired HSV-1, such as sex workers and mixed health-status populations.

Meta-analyses. Random-effects meta-analyses were conducted to estimate the pooled mean HSV-1 seroprevalence in MENA by population type, age bracket, and age group. Pooled means were calculated using DerSimonian-Laird random-effects models whenever ≥3 measures were available. The variance of the seroprevalence measures was stabilized using the Freeman-Tukey type arcsine square-root transformation.
populations ranged between 60.8–100% with a median of 96.9%. The 9 seroprevalence measures in clinical adult populations ranged between 33.3–100% with a median of 90.7%. The 9 seroprevalence measures in healthy adult populations ranged between 23.5–86.4% with a median of 69.4%. The 49 seroprevalence measures in healthy adult populations were considered as statistically significant predictors.

The sensitivity analyses were conducted using generalized linear mixed models (GLMM). The results were used to confirm the pooled mean HSV-1 seroprevalence estimates generated based on the Freeman–Tukey type arcsine square-root transformation, given a recently-identified potential pathology in this transformation.

Meta-analyses were performed in R version 3.4.1 using the meta package.

Meta-regressions. Univariable and multivariable random-effects meta-regression analyses, using log-transformed proportions, were conducted to identify associations and predictors of higher HSV-1 seroprevalence and sources of between-study heterogeneity. Associations were described using relative risks (RRs), 95% confidence intervals (CIs), and p-values.

Potential predictors were specified a priori and included: age bracket, age group, assay type, country’s income, population type, sample size (≤100 versus ≥100), sampling method (probability-based sampling versus non-probability-based sampling), year of data collection, and year of publication. Factors with p-value < 0.1 in univariable analysis were eligible for inclusion in the multivariable model. Factors with p-value < 0.05 in the multivariable analysis were considered as statistically significant predictors.

Meta-regressions were conducted in Stata/SE version 13 using the package metareg.

Quality assessment. There are documented issues with the sensitivity and specificity of HSV-1 diagnostic methods. Therefore, an expert advisor, Professor Rhoda Ashley Morrow from the University of Washington, was consulted and assessed the quality of each diagnostic method in each identified relevant study. Only studies with sufficiently reliable and valid assays were included. Further quality assessment of included studies was conducted as informed by the Cochrane approach for risk of bias (ROB) and precision assessment.

Studies’ assessment into low versus high ROB was based on two quality domains: sampling methodology (probability-based versus non-probability-based sampling), and response rate (≥80% versus <80%). For instance, if probability-based sampling was used in a given study, the study was classified with a low ROB for that domain. Studies with missing information for any of the domains were classified as having unclear ROB for that specific domain.

Studies were considered as having high (versus low) precision if the number of HSV-1 tested individuals was at least 100 participants. For an HSV-1 seroprevalence of 80% and a sample size of 100, the 95% CI is 70.8–87.3%—a reasonable 95% CI estimate for an HSV-1 seroprevalence measure.

Results

Search results and scope of evidence. Figure 1 shows the process of study selection based on the PRISMA guidelines. A total of 1,552 citations were retrieved (269 through PubMed, 537 through Embase, and 746 through national and regional databases). After duplicates’ removal and titles’ and abstracts’ screening, 130 records were deemed relevant or potentially relevant. Three additional records were identified through screening the bibliography of a previously published review for Iran.

After full text screening, 15 records reporting an HSV-1 seroprevalence in 14 out of the 23 MENA countries were deemed relevant. Thirty-nine HSV-1 seroprevalence measures were extracted yielding 85 stratified measures. No HSV-1 seroprevalence measures (fulfilling the inclusion criteria) were identified among clinical children populations.

Although we searched for records that reported the proportion of GUD or genital herpes attributable to HSV-1, no such records were identified.

HSV-1 seroprevalence overview. Table 1 summarizes the included HSV-1 seroprevalence measures. Studies included were published starting the year 1986, with the majority being cross-sectional in design and based on convenience sampling methods.

Stratified HSV-1 seroprevalence measures (number of studies (n) = 85) varied across studies and ranged between 23.5–100% with a median of 90.3% (Table 2). The 11 seroprevalence measures in healthy children populations ranged between 23.5–86.4% with a median of 69.4%. The 49 seroprevalence measures in healthy adult populations ranged between 33.3–100% with a median of 90.7%. The 9 seroprevalence measures in clinical adult populations ranged between 60.8–100% with a median of 96.9%.

Pooled mean seroprevalence estimates. Table 2 summarizes the results of the meta-analyses. In healthy general populations, the pooled mean HSV-1 seroprevalence was 65.2% (95% CI: 53.6–76.1%) for children, and
89.4% (95% CI: 87.3–91.4%) for adults. In adult clinical populations, the pooled mean HSV-1 seroprevalence was 95.3% (95% CI: 83.9–100%). Among other populations, the pooled mean HSV-1 seroprevalence was 95.2% (95% CI: 75.4–100%) in female sex workers, and 97.5% (95% CI: 93.5–99.7%) in mixed health-status populations.

By age group, the pooled mean HSV-1 seroprevalence was lowest at 60.5% (95% CI: 48.1–72.3%) in those aged <10 years, followed by 85.6% (95% CI: 80.5–90.1%) in those aged 10–19 years, 90.7% (95% CI: 84.7–95.5%) in those aged 20–29 years, and 94.3% (95% CI: 89.5–97.9%) in those aged ≥30 years. The sensitivity analyses using GLMM methods produced similar results (Supplementary Table S2).

Evidence of heterogeneity in seroprevalence was present in nearly all meta-analyses (p < 0.0001; Table 2). The I² measure indicated that most variation was attributed to true variability in seroprevalence across studies. The prediction intervals confirmed the considerable variation in seroprevalence across studies.

Forest plots of meta-analyses can be found in Supplementary Fig. S1.

Predictors of seroprevalence and sources of between-study heterogeneity. Table 3 summarizes the results of the univariable and multivariable meta-regression models. In the univariable analyses, age bracket, age group, country's income, population type, and sampling method had a p-value < 0.1 and were included in the multivariable analyses. Age bracket alone explained 44.3% of the variation in seroprevalence, followed by age group at 28.7%. Each of assay type, sample size, sex, year of data collection, and year of publication was not significantly associated with HSV-1 seroprevalence.

To account for the fact that age bracket and age group both measure age, two final multivariable models were conducted. The first model included age bracket, country's income, population type, and sampling method. This model explained 48.6% of seroprevalence variation. HSV-1 seroprevalence in adults was 1.3-fold (95% CI: 1.2–1.5) higher than in children. Seroprevalence in upper-middle-income countries and high-income countries was, in both, 0.9-fold (95% CI: 0.8–1.0) lower than in lower-middle-income countries. No association with population type and sampling method was found.

The second model included age group, assay type, country's income, population type, and sampling method. The model explained 40.2% of seroprevalence variation, with similar results for country's income, population type, and sampling method.
Author, year	Year(s) of data collection	Country	Study site	Study design	Sampling method	Population	HSV-1 serological assay	Sample size	HSV-1 seroprevalence (%)
Healthy children populations (n = 21)									
Cowan, 2003**	1998–00	Morocco	Outpatient clinic	CS	Conv	1–4 years old children	ELISA	159b	55.2
Cowan, 2003**	1998–00	Morocco	Outpatient clinic	CS	Conv	5–9 years old children	ELISA	159b	80.5
Cowan, 2003**	1998–00	Morocco	Outpatient clinic	CS	Conv	10–14 years old children	ELISA	160b	86.4
Ibrahim, 2000**	1995–98	Syria	Outpatient clinic	CS	Conv	1–5 years old males	ELISA	55	60.0
Ibrahim, 2000**	1995–98	Syria	Outpatient clinic	CS	Conv	6–10 years old males	ELISA	59	74.5
Ibrahim, 2000**	1995–98	Syria	Outpatient clinic	CS	Conv	1–5 years old females	ELISA	46	30.0
Ibrahim, 2000**	1995–98	Syria	Outpatient clinic	CS	Conv	6–10 years old females	ELISA	58	81.1
Meguenni, 1989**	—	Algeria	Community	CS	Conv	6 months-2 years old infants	Nab	34	23.5
Meguenni, 1989**	—	Algeria	Community	CS	Conv	3–5 years old children	Nab	33	39.4
Meguenni, 1989**	—	Algeria	Community	CS	Conv	6–10 years old children	Nab	36	69.4
Meguenni, 1989**	—	Algeria	Community	CS	Conv	11–15 years old children	Nab	32	81.3
Healthy adult populations (n = 60)									
Ahmed, 1995**	—	Pakistan	Outpatient clinic	CS	Conv	Healthy controls	EIA	56	73.2
Hessain, 1986**	—	KSA	Outpatient clinic	CS	Conv	Pregnant women	IFA	1,186	92.0
Ibrahim, 2000**	1995–98	Syria	Outpatient clinic	CS	Conv	21–30 years old males	ELISA	48	85.4
Ibrahim, 2000**	1995–98	Syria	Outpatient clinic	CS	Conv	≥30 years old males	ELISA	86	94.1
Ibrahim, 2000**	1995–98	Syria	Outpatient clinic	CS	Conv	21–30 years old females	ELISA	68	88.2
Ibrahim, 2000**	1995–98	Syria	Outpatient clinic	CS	Conv	≥30 years old females	ELISA	43	95.3
Ibrahim, 2000**	1995–98	Syria	Outpatient clinic	CS	Conv	Pregnant women	ELISA	55	100
Jafarzadeh, 2011**	2007–08	Iran	Hospital	CS	Conv	≥40 years old blood donors	ELISA	60	33.3
Meguenni, 1989**	—	Algeria	Community	CS	Conv	16–20 years old adults	Nab	32	87.5
Meguenni, 1989**	—	Algeria	Community	CS	Conv	21–30 years old adults	Nab	32	96.9
Meguenni, 1989**	—	Algeria	Community	CS	Conv	31–40 years old adults	Nab	30	100
Meguenni, 1989**	—	Algeria	Community	CS	Conv	≥40 years old adults	Nab	35	100
Memish, 2015**	2012–13	KSA	Outpatient clinic	CS	RS	Healthy females	ELISA	2,157	90.9
Memish, 2015**	2012–13	KSA	Outpatient clinic	CS	RS	Healthy males	ELISA	2,828	87.1
Nabipour, 2006**	2004–04	Iran	Community	CS	Cluster RS	Healthy males	ELISA	881	83.8
Nabipour, 2006**	2003–04	Iran	Community	CS	Cluster RS	Healthy female	ELISA	910	88.6
Nasrallah, 2018**	2013–16	Mixed	Outpatient clinic	CS	Conv	Female blood donors	ELISA	88	84.1
Nasrallah, 2018**	2013–16	Pakistan	Outpatient clinic	CS	RS	Blood donor Pakistani males	ELISA	200	77.0
Nasrallah, 2018**	2013–16	Iran	Outpatient clinic	CS	Conv	Blood donor Iranian males	ELISA	113	81.4
Nasrallah, 2018**	2013–16	Sudan	Outpatient clinic	CS	Conv	Blood donor Sudanese males	ELISA	129	90.7
Nasrallah, 2018**	2013–16	Yemen	Outpatient clinic	CS	Conv	Blood donor Yemeni males	ELISA	148	92.6
Nasrallah, 2018**	2013–16	Egypt	Outpatient clinic	CS	Conv	≤24 years old blood donor Egyptians males	ELISA	50	92.0
Nasrallah, 2018**	2013–16	Egypt	Outpatient clinic	CS	Conv	25–29 years old blood donor Egyptians males	ELISA	50	100
Nasrallah, 2018**	2013–16	Egypt	Outpatient clinic	CS	Conv	30–34 years old blood donor Egyptians males	ELISA	50	98.0
Nasrallah, 2018**	2013–16	Egypt	Outpatient clinic	CS	Conv	35–39 years old blood donor Egyptians males	ELISA	50	98.0
Nasrallah, 2018**	2013–16	Egypt	Outpatient clinic	CS	Conv	40–44 years old blood donor Egyptians males	ELISA	50	98.0
Nasrallah, 2018**	2013–16	Egypt	Outpatient clinic	CS	Conv	45–49 years old blood donor Egyptians males	ELISA	50	100
Nasrallah, 2018**	2013–16	Egypt	Outpatient clinic	CS	Conv	50–54 years old blood donor Egyptians males	ELISA	39	94.9
Nasrallah, 2018**	2013–16	Egypt	Outpatient clinic	CS	Conv	≥55 years old blood donor Egyptians males	ELISA	19	100
Nasrallah, 2018**	2013–16	Qatar	Outpatient clinic	CS	Conv	≤24 years old blood donor Qatari males	ELISA	50	70.0
Nasrallah, 2018**	2013–16	Qatar	Outpatient clinic	CS	Conv	25–29 years old blood donor Qatari males	ELISA	50	62.0
Nasrallah, 2018**	2013–16	Qatar	Outpatient clinic	CS	Conv	30–34 years old blood donor Qatari males	ELISA	50	80.0
Nasrallah, 2018**	2013–16	Qatar	Outpatient clinic	CS	Conv	35–39 years old blood donor Qatari males	ELISA	50	82.0
Nasrallah, 2018**	2013–16	Qatar	Outpatient clinic	CS	Conv	40–44 years old blood donor Qatari males	ELISA	50	84.0
Nasrallah, 2018**	2013–16	Qatar	Outpatient clinic	CS	Conv	45–49 years old blood donor Qatari males	ELISA	50	96.0
Nasrallah, 2018**	2013–16	Qatar	Outpatient clinic	CS	Conv	50–54 years old blood donor Qatari males	ELISA	50	92.0
Nasrallah, 2018**	2013–16	Qatar	Outpatient clinic	CS	Conv	≥55 years old blood donor Qatari males	ELISA	50	92.0
Nasrallah, 2018**	2013–16	Jordan	Outpatient clinic	CS	Conv	Blood donor Jordanian males	ELISA	200	86.5
Nasrallah, 2018**	2013–16	Palestine	Outpatient clinic	CS	Conv	Blood donor Palestinians males	ELISA	200	80.5
Nasrallah, 2018**	2013–16	Syria	Outpatient clinic	CS	Conv	Blood donor Syrian males	ELISA	200	88.5
Nasrallah, 2018**	2013–16	Lebanon	Outpatient clinic	CS	Conv	Blood donor Lebanese males	ELISA	118	81.4
Obesd, 2007**	2004–04	KSA	Hospital	CS	Conv	Pregnant women	ELISA	459	84.1

Continued
Author, year	Year(s) of data collection	Country	Study site	Study design	Sampling method	Population	HSV-1 serological assay	Sample size	HSV-1 seroprevalence (%)
Patnaik, 2007	2007	Morocco	Hospital	CS	Conv	Pregnant women	WB	169	98.8
Pourmand, 2009	2009	Iran	Outpatient clinic	CS	Conv	Pregnant women	ELISA	65	55.4
Ziyaeyan, 2007	2007	Iran	Hospital	CS	Conv	16–20 years old pregnant women	Nab	104	83.6
Ziyaeyan, 2007	2007	Iran	Hospital	CS	Conv	21–25 years old pregnant women	Nab	125	94.4
Ziyaeyan, 2007	2007	Iran	Hospital	CS	Conv	26–30 years old pregnant women	Nab	113	90.3
Ziyaeyan, 2007	2007	Iran	Hospital	CS	Conv	31–35 years old pregnant women	Nab	44	95.4
Ziyaeyan, 2007	2007	Iran	Hospital	CS	Conv	36–40 years old pregnant women	Nab	14	100
Healthy age-mixed populations (n = 5)									
Ibrahim, 2000	1995–98	Syria	Outpatient clinic	CS	Conv	11–20 years old males	ELISA	57	77.1
Ibrahim, 2000	1995–98	Syria	Outpatient clinic	CS	Conv	11–20 years old females	ELISA	134	83.6
RezaeiC, 2012	2010–11	Iran	Outpatient clinic	CS Cluster RS	Healthy population	ELISA	800	58.4	
RezaeiC, 2012	2010–11	Iran	Outpatient clinic	CS Cluster RS	Healthy population	ELISA	200	65.5	
Clinical adult populations (n = 20)									
Ibrahim, 2000	1995–98	Syria	Outpatient clinic	CS	Conv	Patients with labials herpes	ELISA	36	100
Ibrahim, 2000	1995–98	Syria	Outpatient clinic	CS	Conv	Patients with atherosclerosis	ELISA	60	100
Ibrahim, 2000	1995–98	Syria	Outpatient clinic	CS	Conv	Kidney transplant patients	ELISA	32	96.9
Ibrahim, 2000	1995–98	Syria	Outpatient clinic	CS	Conv	Patients with herpetic keratitis	ELISA	14	85.7
Ibrahim, 2000	1995–98	Syria	Outpatient clinic	CS	Conv	Patients with STDS	ELISA	21	90.5
Ibrahim, 2000	1995–98	Syria	Outpatient clinic	CS	Conv	Patients with cervical cancer	ELISA	51	100
Ibrahim, 2000	1995–98	Syria	Outpatient clinic	CS	Conv	HIV positive patients	ELISA	25	96.0
Jafarzadeh, 2011	2007–08	Iran	Hospital	CS	Conv	Patients with myocardial infarction	ELISA	120	60.8
Janier, 1999	1994–94	Mixed	Outpatient clinic	CS	Conv	Patients with STDS	EIA	99	98.9
Clinical age-mixed population (n = 4)									
Ibrahim, 2000	1995–98	Syria	Outpatient clinic	CS	Conv	Patients with encephalitis	ELISA	51	58.8
Ibrahim, 2000	1995–98	Syria	Outpatient clinic	CS	Conv	Patients with meningitis	ELISA	21	85.7
Other populations (n = 10)									
Cowan, 2003	1998–00	Morocco	Outpatient clinic	CS	Conv	15–19 years old healthy and HIV infected adults	ELISA	494b	92.2
Cowan, 2003	1998–00	Morocco	Outpatient clinic	CS	Conv	20–29 years old healthy and HIV infected adults	ELISA	494b	92.1
Cowan, 2003	1998–00	Morocco	Outpatient clinic	CS	Conv	30–34 years old healthy and HIV infected adults	ELISA	494b	95.0
Cowan, 2003	1998–00	Morocco	Outpatient clinic	CS	Conv	35–39 years old healthy and HIV infected adults	ELISA	494b	98.8
Cowan, 2003	1998–00	Morocco	Outpatient clinic	CS	Conv	40–45 years old healthy and HIV infected adults	ELISA	494b	100
Cowan, 2003	1998–00	Morocco	Outpatient clinic	CS	Conv	>45 years old healthy and HIV infected adults	ELISA	493b	100
Ibrahim, 2000	1995–98	Syria	Community	CS	Conv	Female sex workers	ELISA	54	100
Ibrahim, 2000	1995–99	Syria	Community	CS	Conv	Female sex workers	ELISA	47	100
Ibrahim, 2000	1995–100	Syria	Community	CS	Conv	Arab bar-girls	ELISA	50	98.0
Ibrahim, 2000	1995–101	Syria	Community	CS	Conv	Foreign bar-girls	ELISA	75	92.0

Table 1. Studies reporting herpes simplex virus type 1 (HSV-1) seroprevalence in the Middle East and North Africa. *Actual study design was cohort but the extracted seroprevalence measure was for the baseline measurement. ^Study included overall sample size, but no individual strata sample sizes. Each stratum sample size was assumed equal to overall sample size divided by the number of strata in the study. Abbreviations: Conv = Convenience, CS = Cross-sectional, EIA = Enzyme immunoassay, ELISA = Enzyme-linked immunosorbent assay, HIV = Human immunodeficiency virus, HSV-1 = Herpes simplex virus type 1, IFA = Indirect fluorescent assay, KSA = Kingdom of Saudi Arabia, Nab = Neutralization test with neutralizing antibody, RS = Random sampling, STD = Sexually transmitted disease, TORCH = Toxoplasmosis, other (syphilis, varicella–zoster, parvovirus B19), rubella, cytomegalovirus, and herpes infections, WB = Western blot.

Type, and sampling method as in the first model. Compared to HSV-1 seroprevalence in those <10 years old, seroprevalence was 1.3-fold (95% CI: 1.1–1.6) higher in those 10–19 years old, 1.4-fold (95% CI: 1.2–1.7) higher in those 20–29 years old, and 1.5-fold (95% CI: 1.3–1.7) higher in those ≥30 years old.

Quality assessment. Out of 32 records that included seroprevalence measures, only 15 were included in the systematic review with the remaining 17 being excluded due to potential issues in the validity of the diagnostic method, such as potential cross-reactivity with HSV-2 antibodies (Fig. 1). Of the studies included, 64.1% had high precision, 7.7% had low ROB for the sampling methodology domain, and 48.7% had low ROB for the response rate domain. These results, in context of the meta-regression models results, with different factors including sample size, sampling method, and assay type not being predictors of HSV-1 seroprevalence, suggest that overall the studies had reasonable quality.
Table 2. Pooled mean estimates for herpes simplex virus type 1 (HSV-1) seroprevalence in different populations in the Middle East and North Africa. aQ: The Cochran’s Q statistic is a measure used here to assess the existence of heterogeneity in seroprevalence measures across studies. bI²: A measure used here to assess the magnitude of between-study variation that is due to actual differences in seroprevalence across studies rather than chance. cPrediction interval: A measure used here to estimate the distribution (the 95% interval) of true seroprevalence around the estimated pooled mean. Abbreviations: CI = Confidence interval, HSV-1 = Herpes simplex virus type 1.

The detailed quality assessment of included studies can be found in Supplementary Table S3.

Discussion

HSV-1 epidemiology in MENA was investigated through a comprehensive systematic review and meta-analytics of existing evidence. HSV-1 seroprevalence was found at high level, suggesting considerable HSV-1-related morbidity that is yet to be quantified and tackled. Sixty-five percent of children and 90% of adults were found seropositive—seroprevalence increased rapidly with age at younger ages, and was consistent with most infections being acquired in childhood.

Remarkably, about half of the observed variation in seroprevalence was explained by factors set a priori and examined in this study. Age alone explained 44.3% of the variation. Despite improvements in socio-economic conditions and earlier speculation that seroprevalence levels may have been declining in MENA⁴⁷, we did not find evidence for a declining trend over the last two decades. We also did not find evidence for variation in seroprevalence by sex, population type (healthy versus clinical), or study characteristics including assay type, sampling method, and sample size.

Though there was no evidence for recent declines in seroprevalence, youth had considerably lower HSV-1 seroprevalence than older subjects. As much as one-third of youth in MENA may be reaching sexual debut uninfected and thus potentially at risk of sexual acquisition, in context of recent evidence from Western countries and Asia reporting an increase in incidence of genital herpes attributed to HSV-1 rather than HSV-2.⁶⁻²⁰,²⁸ We did not, nonetheless, identify any evidence for a potential role for HSV-1 sexual transmission in MENA. Despite the extensive search in multiple international, regional, and national databases, we failed to identify a single study that assessed the etiological role of HSV-1 in GUD or genital herpes in this region.

A comparison of the findings of the present study with that of a recent systematic review of HSV-1 in Asia⁴⁴ demonstrates key insights about what may be general (or somewhat general) patterns in the global epidemiology of HSV-1 infection. Age in both systematic reviews was by far the strongest predictor of HSV-1 seroprevalence. Remarkably, in both MENA and Asia, seroprevalence in children was assessed at about 60%, and seroprevalence among adults was about 30% higher than that in children. Country’s income was also a predictor of HSV-1 seroprevalence. Specifically, the variation in seroprevalence among adults was about 30% higher than that in children. Country’s income was also a predictor of HSV-1 seroprevalence.
of seroprevalence with higher income associated with lower seroprevalence, attesting to an apparently global association between HSV-1 infection and socio-economic status.11,48 However, the association of HSV-1 and socio-economic status differed between the two regions. In MENA, lower-middle-income countries had the highest seroprevalence, whereas in Asia, upper-middle-income countries had the highest seroprevalence. Possibly, the rapid modernization of Asia compared to MENA may contribute to explaining this difference.

In both MENA and Asia, sex, population type, assay type, sample size, and sampling method were not associated with HSV-1 seroprevalence. This suggests that HSV-1 is a truly general population infection that permeates all strata of society—there is no difficulty in sampling a representative sample provided the age distribution is representative. In both regions also, no evidence for a temporal trend in seroprevalence was identified despite the evidence for temporal declines in seroprevalence in Western countries.11,13–20 Notably in MENA, half of the variation in seroprevalence (49%) was explained by the \textit{a priori} considered factors, but only 26% of the variation was explained in Asia by the same considered factors.21 The latter finding may relate to a higher population heterogeneity across countries in Asia than in MENA.

Our review and meta-analyses are limited by the quantity, quality, and representativeness of included studies. No data were identified for nine (mostly non-populous) of the 23 MENA countries, thereby potentially affecting the generalizability of the analyses to all of MENA. The number of seroprevalence measures varied from each study to another—only one (large) study, for example, contributed 29% of all stratified seroprevalence measures.47 The majority of studies used convenience sampling (as opposed to probability-based sampling) of opportunistic

Table 3. Univariable and multivariable meta-regression analyses for herpes simplex virus type 1 (HSV-1) seroprevalence in the Middle East and North Africa. aVariance explained by the final multivariable model 1 (adjusted R^2) = 48.6%. bVariance explained by the final multivariable model 2 (adjusted R^2) = 40.2%. cSample size denotes the sample size of the study population found in the original publication. Abbreviations: \textit{ARR} = Adjusted relative risk, \textit{CI} = Confidence interval, \textit{EIA} = Enzyme immunoassay, \textit{ELISA} = Enzyme-linked immunosorbent type-specific assay, \textit{HIC} = High-income country, \textit{IFA} = Immunofluorescence assay, \textit{LMIC} = Lower-middle-income country, \textit{Nab} = Neutralizing antibody assay, \textit{RR} = Relative risk, \textit{UMIC} = Upper-middle-income country.

Category	Studies	Samples	Univariable analysis	Multivariable analysis									
	Total N	Total n	RR (95% CI) p-value	Variance explained	Model 1a	Model 2b							
				adjusted R2 (%)	ARR (95% CI) p-value	ARR (95% CI) p-value							
Age bracket	Children	11	831	1.0	—	—	1.0	—	—	1.0	—	—	—
	Adults	68	15,401	1.3 (1.2–1.5) 0.000	1.1 (1.0–1.3)	0.000	—	—	—	—	—	—	
	Age-mixed	6	1,263	1.0 (0.9–1.2) 0.806	44.3	1.0 (0.9–1.2)	0.580	—	—	—	—	—	—
Age group	<10	9	639	1.0	—	—	—	1.0	—	—	—	—	—
	10–19	7	1,013	1.3 (1.1–1.6) 0.003	—	—	1.3 (1.1–1.6) 0.002	—	—	—	—	—	—
	20–29	8	980	1.4 (1.2–1.6) 0.000	—	—	1.4 (1.2–1.7) 0.000	—	—	—	—	—	—
	≥30	24	2,965	1.4 (1.2–1.6) 0.000	—	—	1.5 (1.3–1.7) 0.000	—	—	—	—	—	—
	Mixed	37	11,898	1.3 (1.2–1.5) 0.000	28.7	—	1.4 (1.2–1.6) 0.000	—	—	—	—	—	—
Assay type	ELISA	68	15,321	1.0	—	—	—	—	—	—	—	—	—
	EIA	2	155	1.0 (0.8–1.3) 0.915	—	—	—	—	—	—	—	—	
	Nab	13	664	1.0 (0.9–1.1) 0.826	—	—	—	—	—	—	—	—	
	IFA	1	1,186	1.1 (0.7–1.6) 0.687	—	—	—	—	—	—	—	—	
	Western blot	1	169	1.1 (0.8–1.7) 0.434	0.0	—	—	—	—	—	—	—	
Country's income	LMIC	49	6,347	1.0	—	—	1.0	—	—	—	—	—	—
	UMIC	22	3,931	0.9 (0.8–1.0) 0.016	0.9 (0.8–1.0) 0.044	0.8 (0.8–1.0) 0.044	—	—	—	—	—	—	
	HIC	12	7,030	0.9 (0.8–1.1) 0.440	0.9 (0.8–1.0) 0.076	0.9 (0.8–1.0) 0.101	—	—	—	—	—	—	
	Mixed	2	187	1.0 (0.8–1.3) 0.822	3.3	1.0 (0.8–1.2) 0.847	1.0 (0.8–1.2) 0.848	—	—	—	—	—	—
Population type	Healthy general populations	64	13,776	1.0	—	—	1.0	—	—	—	—	—	—
	Clinical populations	11	530	1.0 (0.9–1.2) 0.355	1.0 (0.9–1.1) 0.967	1.0 (0.9–1.1) 0.987	—	—	—	—	—	—	
	Other populations	10	3,189	1.1 (1.0–1.3) 0.064	4.6	1.0 (0.9–1.1) 0.839	1.0 (0.9–1.1) 0.706	—	—	—	—	—	—
Sample sizec	<100	14	679	1.0	—	—	—	—	—	—	—	—	—
	≥100	71	16,816	1.0 (0.9–1.1) 0.712	0.0	—	—	—	—	—	—	—	—
Sampling method	Non-probability-based	81	14,704	1.0	—	—	1.0	—	—	—	—	—	—
	Probability based	4	2,791	0.8 (0.7–1.0) 0.070	9.3	0.9 (0.8–1.1) 0.621	0.9 (0.7–1.1) 0.251	—	—	—	—	—	—
Sex	Female	23	6,115	1.0	—	—	—	—	—	—	—	—	—
	Male	31	6,080	1.0 (0.9–1.1) 0.713	—	—	—	—	—	—	—	—	
	Mixed	31	5,300	0.9 (0.8–1.0) 0.210	0.0	—	—	—	—	—	—	—	—
Year of data collection	85	17,495	1.0 (1.0–1.0) 0.993	0.0	—	—	—	—	—	—	—	—	
Year of publication	85	17,495	1.0 (1.0–1.0) 0.911	0.0	—	—	—	—	—	—	—	—	
populations such as blood donors or outpatients (Table 1). The latter, though, may not have been a limitation in context of the findings of the meta-regression analyses (Table 3).

Studies used different diagnostic methods, and such methods may differ in sensitivity and specificity44.45. Presence of HSV-2 antibodies may also affect diagnostic methods differentially, particularly the classic “relative-reactivity” methods such as IFA and Nah49–51. This limitation, however, may not have affected our results, as HSV-2 infection has a low seroprevalence in MENA52, and earlier work suggests minimal impact of this limitation on specifically HSV-1 seroprevalence (as opposed to HSV-2 seroprevalence)49–51. The meta-regression analyses found no variations in HSV-1 seroprevalence across assay types (Table 3).

There was extensive heterogeneity in HSV-1 seroprevalence measures, but half of this heterogeneity was subsequently explained by only two factors, age and country’s income (Table 3). Lastly, no study of HSV-1 viral detection in GUD or in genital herpes in MENA was identified, thus limiting our ability to assess the epidemiological role of HSV-1 sexual transmission. In spite of these limitations, our study is the first to draw a comprehensive synthesis and analytics of HSV-1 seroprevalence for the MENA region, and to highlight opportunities for related research and public health response.

Conclusions
HSV-1 seroprevalence in MENA indicated that 65% of children and 90% of adults had been exposed to this infection, by inference, most often during childhood. Age and country’s income were the strongest predictors of HSV-1 seroprevalence and explained half of seroprevalence variation. No evidence was found for a temporal trend in seroprevalence over the last two decades despite improvements in socio-economic conditions. With no identified study of HSV-1 viral detection in GUD or in genital herpes, the role of HSV-1 sexual transmission in MENA remains unknown. This lack of data calls for at least basic or opportunistic GUD/genital herpes etiological surveillance. The totality of the findings highlights the timeliness of accelerating HSV-1 vaccine development to control one of the most endemic infections worldwide.

References
1. World Health Organization. Herpes simplex virus (Available at, http://www.who.int/mediacentre/factsheets/fs400/en/#hsv1, accessed in August, 2017) (2017).
2. Looker, K. J. et al. Global and Regional Estimates of Prevalent and Incident Herpes Simplex Virus Type 1 Infections in 2012. PLoS One 10, e0140765, https://doi.org/10.1371/journal.pone.0140765 (2015).
3. Wald, A. & Corey, L. Persistence in the population: epidemiology, transmission (2007).
4. Ramchandani, M. et al. Herpes simplex virus type 1 shedding in tears and nasal and oral mucosa of healthy adults. Sexually transmitted diseases 43, 736–740 (2016).
5. Mark, E. K. et al. Rapidly cleared episodes of herpes simplex virus reactivation in immunocompetent adults. Journal of Infectious Diseases 198, 1141–1149 (2008).
6. Bernstein, D. I. et al. Epidemiology, clinical presentation, and antibody response to primary infection with herpes simplex virus type 1 and type 2 in young women. Clinical Infectious Diseases 56, 344–351 (2012).
7. Brady, R. C. & Bernstein, D. I. Treatment of herpes simplex virus infections. Antiviral Res 61, 73–81 (2004).
8. Fatahzadeh, M. & Schwartz, R. A. Human herpes simplex virus infections: epidemiology, pathogenesis, symptomatology, diagnosis, and management. J Am Acad Dermatol 57, 737–763, quiz 764–736, https://doi.org/10.1016/j.jaad.2007.06.027 (2007).
9. Gnann, J. W. Jr. & Whitley, R. J. Genital Herpes. New England Journal of Medicine 357, 666–674, https://doi.org/10.1056/NEJMc1603178 (2016).
10. Ryder, N., Jin, F., McNulty, A. M., Grulich, A. E. & Donovan, B. Increasing role of herpes simplex virus type 1 in first-episode anogenital herpes in heterosexual women and younger men who have sex with men, 1992–2006. Sex Transm Infect 85, 416–419, https://doi.org/10.1136/sti.2008.033902 (2009).
11. Smith, J. & Robinson, N. Age-Specific Prevalence of Infection with Herpes Simplex Virus Types 2 and 1: A Global Review. The Journal of Infectious Diseases 186, S3–S28 (2002).
12. Nahmias, A. J., Lee, F. K. & Beckman-Nahmias, S. Sero-epidemiological and -sociological patterns of herpes simplex virus infection in the world. Scand J Infect Dis Suppl 69, 19–36 (1990).
13. Xu, F. et al. Trends in herpes simplex virus type 1 and type 2 seroprevalence in the United States. JAMA 296, 964–973, https://doi.org/10.1001/jama.296.8.964 (2006).
14. Kramer, M. A. et al. Ethnic differences in HSV1 and HSV2 seroprevalence in Amsterdam, the Netherlands. Euro Surveill 13 (2008).
15. Xu, F. et al. Seroprevalence of herpes simplex virus type 1 in children in the United States. J Pediatr 151, 374–377, https://doi.org/10.1016/j.jpeds.2007.04.065 (2007).
16. Wutzler, P. et al. Seroprevalence of herpes simplex virus type 1 and type 2 in selected German populations-relevance for the incidence of genital herpes. J Med Virol 61, 201–207 (2000).
17. Sauerbrei, A. et al. Seroprevalence of herpes simplex virus type 1 and type 2 in Thuringia, Germany, 1999 to 2006. Euro Surveill 16 (2011).
18. Pehody, R. G. et al. The seroepidemiology of herpes simplex virus type 1 and 2 in Europe. Sex Transm Infect 80, 185–191 (2004).
19. Aarnisalo, J. et al. Development of antibodies against cytomegalovirus, varicella-zoster virus and herpes simplex virus in Finland during the first eight years of life: a prospective study. Scand J Infect Dis Suppl 69, 19–36 (1990).
20.Vyse, A. J. et al. The burden of infection with HSV-1 and HSV-2 in England and Wales: implications for the changing epidemiology of genital herpes. Sex Transm Infect 76, 183–187 (2000).
21. Khadr, L. et al. The epidemiology of herpes simplex virus type 1 in Asia: systematic review, meta-analyses, and meta-regressions. Clin Infect Dis. https://doi.org/10.1093/cid/ciy562 (2018).
22. Roberts, C. M., Pfister, J. R. & Spear, S. J. Increasing proportion of herpes simplex virus type 1 as a cause of genital herpes infection in college students. Sex Transm Dis 30, 797–800, https://doi.org/10.1097/OLQ.0000000000000237 (2003).
23. Lowhagen, G. B., Tunback, P., Andersson, K., Bergstrom, T. & Johansson, G. First episodes of genital herpes in a Swedish STD population: a study of epidemiology and transmission by the use of herpes simplex virus (HSV) typing and specific serology. Sex Transm Infect 76, 179–182 (2000).
24. Nilsen, A. & Myrem, H. Changing trends in genital herpes simplex virus infection in Bergen, Norway. Acta Obstet Gynecol Scand 79, 693–696 (2000).
25. Samra, Z., Scherf, E. & Dan, M. Herpes simplex virus type 1 is the prevailing cause of genital herpes in the Tel Aviv area, Israel. Sex Transm Dis 30, 794–796, https://doi.org/10.1097/01.OLQ.0000079517.04451.79 (2003).
26. Gilbert, M. et al. Using centralized laboratory data to monitor trends in herpes simplex virus type 1 and 2 infection in British Columbia and the changing etiology of genital herpes. Can J Public Health 102, 225–229 (2011).
27. Gottlieb, S. L. et al. Modelling efforts needed to advance herpes simplex virus (HSV) vaccine development: Key findings from the World Health Organization Consultation on HSV Vaccine Impact Modelling. Vaccine, https://doi.org/10.1016/j.vaccine.2017.03.074 (2017).
28. Gottlieb, S. L. et al. The global roadmap for advancing development of vaccines against sexually transmitted infections: Update and next steps. Vaccine 34, 2939–2947, https://doi.org/10.1016/j.vaccine.2016.03.111 (2016).
29. Higgins, J. & Green, S. Cochrane handbook for systematic reviews of interventions. Vol. 4 (John Wiley & Sons, 2011).
30. Mohler, D., Liberati, A., Tetzlaff, J., Altman, D. G. & Group, P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS med 6, e1000097 (2009).
31. Borenstein, M., Hedges, L. V., Higgins, J. P. T. & Rothstein, H. R. Front Matter, in Introduction to Meta-Analysis. (John Wiley & Sons, Ltd., 2009).
32. Freeman, M. F. & Tukey, J. W. Transformations Related to the Angular and the Square Root. Ann Math Statist 21, 607–611 (1950).
33. Borenstein, M. Introduction to meta-analysis. (John Wiley & Sons, 2009).
34. Higgins, J. P. T., Thompson, S. G., Deeks, J. J. & Altman, D. G. Measuring inconsistency in meta-analyses. BMJ 337, 557–560, https://doi.org/10.1136/bmj.337.7414.557 (2003).
35. Schwarzer, G., Abu-Raddad, L. J., Chenmaielti, H. & Rucker, G. Seriously misleading result using inverse of Freeman-Tukey double arcsine transformation in meta-analysis of single proportions (under review).
36. RStudio Team. RStudio: Integrated Development for R. RStudio, Inc., Boston, MA, http://www.rstudio.com/ (2015).
37. Schwarzer, G. Meta: An R package for meta-analysis. R News 7, 46–49 (2007).
38. Focus Diagnostics. HerpeSelect 1 ELISA IgG (English) (2011).
39. Aldisi, R. S. et al. Performance evaluation of four type-specific commercial assays for detection of herpes simplex virus type 1 antibodies in a Middle East and North Africa population. Journal of Clinical Virology 103, 1–7 (2018).
40. Euroimmun. Anti-HSV-1 (gC1) ELISA IgG (2016).
41. World Bank. World Bank Country and Lending Groups (Available at, https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups. Accessed in June 2017), 2017.
42. StataCorp. Stata Statistical Software: Release 14. College Station, TX: StataCorp LP (2015).
43. Harbord, R. M. & Higgins, J. P. T. Meta-regression in Stata. Stata Journal 8, 493–519 (2008).
44. Ashley-Morrow, R., Nollkamper, J., Robinson, N. J., Bishop, N. & Smith, J. Performance of focus ELISA tests for herpes simplex virus type 1 (HSV-1) and HSV-2 antibodies among women in ten diverse geographical locations. Clin Microbiol Infect 10, 530–536, https://doi.org/10.1111/j.1469-0691.2004.00836.x (2004).
45. Ashley, R. L. Performance and use of HSV type-specific serology test kits. Herpes 9, 38–45 (2002).
46. Malary, M., Abedi, G., Hamzehgardeshi, Z., Afshari, M. & Moosazadeh, M. The prevalence of herpes simplex virus type 1 and 2 infection in Iran: A meta-analysis. International Journal of Reproductive BioMedicine 14, 615–624 (2016).
47. Nasrallah, G. K., Dargham, S. R., Mohammed, L. I. & Abu-Raddad, L. J. Estimating seroprevalence of herpes simplex virus type 1 among different Middle East and North African male populations residing in Qatar. Journal of medical virology 90, 184–190 (2018).
48. Bradley, H., Markowitz, L. E., Gibson, T. & McQuillan, G. M. Seroprevalence of herpes simplex virus types 1 and 2–United States, 1999-2010. J Infect Dis 209, 325–333, https://doi.org/10.1093/infdis/jit458 (2014).
49. Ashley, R., Cent, A., Maggs, V., Nahmias, A. & Corey, I. Inability of enzyme immunoassays to discriminate between infections with herpes simplex virus types 1 and 2. Annals of internal medicine 115, 526–526 (1991).
50. Ashley, R. L. et al. Underestimation of HSV-2 seroprevalence in a high-risk population by microneutralization assay. Sexually transmitted diseases 20, 230–235 (1993).
51. Sherlock, C., Ashley, R., Shurtleff, M., Mack, K. & Corey, I. Type specificity of complement-fixing antibody against herpes simplex virus type 2 AG-4 early antigen in patients with asymptomatic infection. Journal of clinical microbiology 24, 1093–1097 (1986).
52. Abu-Raddad, L. J. et al. HSV-2 serology can be predictive of HIV epidemic potential and hidden sexual risk behavior in the Middle East and North Africa. Epidemics 2, 173–182, https://doi.org/10.1016/j.epidem.2010.08.003 (2010).
53. Cowan, F. M. et al. Seroepidemiological study of herpes simplex virus types 1 and 2 in 6 countries: the IARC multicentric study. International Journal of Reproductive BioMedicine 14, 230–235, https://doi.org/10.1097/OLQ.0b013e3180000036. (2015).
54. Ibrahim, A. I., Kouwalti, K. M. & Obeid, M. T. Frequency of herpes simplex virus in Syria based on type-specific serological assay. International Journal of Reproductive BioMedicine 13, 148–151 (2007).
55. Meguenni, S. et al. Herpes simplex virus infections in Algiers. Arch Inst Pasteur Alger 57, 61–72 (1989).
56. Ahmed, S. & Jafery, N. A. Association of herpes simplex virus type-1 and human papilloma virus with carcinoma of the oral cavity and oropharynx. Journal of environmental pathology, toxicology and oncology: official organ of the International Society for Environmental Toxicology and Cancer 14, 193–196 (1995).
57. Hossain, A., Bakir, T. M. & Ramia, S. Immune status to congenital infections by TORCH agents in pregnant Saudi women. J Trop Pediatr. 32, 83–86 (1986).
58. Jafarzadeh, A. et al. The association between infection burden in Iranian patients with acute myocardial infarction and unstable angina. Acta Med Indones. 43, 105–111 (2011).
59. Memish, Z. A. et al. Seroprevalence of Herpes Simplex Virus Type 1 and Type 2 and Coinfection With HIV and Syphilis: The First National Seroprevalence Survey in Saudi Arabia. Sex Transm Dis. 42, 526–532, https://doi.org/10.1097/OLQ.0000000000000336. (2015).
60. Nabipour, I., Vahdat, K., Jafari, S. M., Pakyaz, R. & Sandijideh, Z. The association of metabolic syndrome and Chlamydia pneumoniae, Helicobacter pylori, cytomegalovirus, and herpes simplex virus type 1: the Persian Gulf Healthy Heart Study. Cardiovasc Diabetol. 5, 25 (2006).
61. Obeid, O. E. Prevalence of herpes simplex virus types 1 and 2 and associated sociodemographic variables in pregnant women attending King Fahad Hospital of the University. J Family Community Med. 14, 37–40 (2007).
62. Patnaik, P. et al. Type-specific seroprevalence of herpes simplex virus type 2 and associated risk factors in middle-aged women from 6 countries: the IARC multicentric study. Sex Transm Dis. 34, 1019–1024 (2007).
63. Pourmand, D. & Janbakhsh, A. Seroepidemiology of herpes simplex virus type one in pregnant women referring to health care centers of Kermanshah (2004). Behbood 14, 96–100 (2009).
64. Ziyaeyan, M., Japoni, A., Roostaee, M. H., Salehi, S. & Soleimanjahi, H. A serological survey of Herpes Simplex Virus type 1 and 2 immunity in pregnant women at labor stage in Tehran, Iran. Pak J Biol Sci. 10, 148–151 (2007).
65. Rezaei-Chaparpordi, S. et al. Seroepidemiology of herpes simplex virus type 1 and 2 in northern iran. Iran J Public Health 41, 75–79, Epub 2012 Aug 2012 (2012).
66. Rezaei-Chaparpordi, S. et al. Seroepidemiology of Herpes Simplex Virus Type 1 and 2 in Amzali city 2010–2011. Zahedan Journal of Research in Medical Sciences 14, 67–69 (2012).
67. Janier, M. et al. Seroepidemiology of herpes simplex virus type 2 antibodies in an STD clinic in Paris. Int J STD AIDS. 10, 522–526 (1999).

Acknowledgements
The authors gratefully acknowledge Professor Emeritus Rhoda Ashley Morrow from the University of Washington, for her support in assessing the quality of study diagnostic methods and for critically reviewing the manuscript. The authors are also grateful for the administrative support of Ms. Adona Canlas. This publication was made possible by NPRP grant number 9-040-3-008 from the Qatar National Research Fund (a member of...
Qatar Foundation). The findings achieved herein are solely the responsibility of the authors. The authors are also grateful for pilot funding provided by the Biomedical Research Program and infrastructure support provided by the Biostatistics, Epidemiology, and Biomathematics Research Core, both at Weill Cornell Medicine in Qatar.

Author Contributions
S.C. and M.H. conducted the systematic search, screening, data extraction, and data analysis. H.C. provided support in study design and data extraction. G.S. provided methodological contributions in data analysis. L.J.A. conceived the study and supervised study conduct and analyses. S.C. and M.H. with L.J.A. wrote the first draft of the manuscript. All authors have read and approved the final manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-37833-8.

Competing Interests: The authors declare no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. © The Author(s) 2019