The automorphism group and the non-self-duality of p-cones

Masaru Ito* Bruno F. Lourenço†

August 7, 2018

Abstract
In this paper, we determine the automorphism group of the p-cones ($p \neq 2$) in dimension greater than two. In particular, we show that the automorphism group of those p-cones are the positive scalar multiples of the generalized permutation matrices that fix the main axis of the cone. Next, we take a look at a problem related to the duality theory of the p-cones. Under the Euclidean inner product it is well-known that a p-cone is self-dual only when $p = 2$. However, it was not known whether it is possible to construct an inner product depending on p which makes the p-cone self-dual. Our results shows that no matter which inner product is considered, a p-cone will never become self-dual unless $p = 2$ or the dimension is less than three.

1 Introduction
In this work, we prove two results on the structure of the p-cones $L_{n+1}^p = \{(t,x) \in \mathbb{R} \times \mathbb{R}^n \mid t \geq \|x\|_p\}$.

First, we describe the automorphism group of the p-cones L_{n+1}^p for $n \geq 2$ and $p \neq 2, 1 < p < \infty$. We show that every automorphism of L_{n+1}^p must have the format

$$\alpha \begin{pmatrix} 1 & 0 \\ 0 & P \end{pmatrix},$$

where $\alpha > 0$ and P is an $n \times n$ generalized permutation matrix. The second result is that, for $n \geq 2$ and $p \neq 2$, it is not possible to construct an inner product on \mathbb{R}^{n+1} for which L_{n+1}^p becomes self-dual. In fact, the second result is derived as a corollary of a stronger result that L_{n+1}^p and L_{n+1}^q cannot be linearly isomorphic if $p < q$ and $n \geq 2$, except when $(p, q, n) = (1, \infty, 2)$.

The motivation for this research is partly due to the work by Gowda and Trott [5], where they determined the automorphism group of L_{1+1}^1 and $L_{\infty+1}^\infty$. However, they left open the problem of determining the automorphisms of the other p-cones, for $p \neq 2$. Here, we recall that the case $p = 2$ correspond to the second order cones and they are symmetric, i.e., self-dual and homogeneous. The structure of second-order cones and their automorphisms follow from the more general theory of Jordan Algebras [4], see also [8].

In [5], Gowda and Trott also proved that L_{1+1}^1 and $L_{\infty+1}^\infty$ are not homogenous cones and they posed the problem of proving/disproving that L_{p+1}^p is not homogenous for $p \neq 2, n \geq 2$. Recall that a cone is said to be homogeneous if its group of automorphisms acts transitively on the interior of the cone. In [6], using the theory of T-algebras [11], we gave a proof that L_{p+1}^p is not homogenous for $p \neq 2, n \geq 2$. However, there are two unsatisfactory aspects of our previous result. The first is that we were

*Department of Mathematics, College of Science and Technology, Nihon University, 1-8-14 Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308, Japan (ito.m@math.cst.nihon-u.ac.jp).

†Department of Mathematical Informatics, Graduate School of Information Science & Technology, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan. (lourenc@mist.i.u-tokyo.ac.jp)
not able to compute the automorphism group of L_p^{n+1}. The second is that although we showed that L_p^{n+1} is not homogeneous, we were unable to obtain two elements x, y in interior of L_p^{n+1} such that no automorphism of L_p^{n+1} maps x to y. That is, we were unable to show concretely how homogeneity breaks down on L_p^{n+1}. The results discussed here remedy those flaws and provide an alternative proof that L_p^{n+1} is not homogeneous.

Another motivation for this work is the general problem of determining when a closed convex cone $K \subseteq \mathbb{R}^n$ is self-dual. If \mathbb{R}^n is equipped with some inner product $\langle \cdot, \cdot \rangle$, the dual cone of K is defined as

$$K^* = \{ y \in \mathbb{R}^n | \langle x, y \rangle \geq 0, \forall x \in K \}. $$

As discussed in Section 1 of [6], an often overlooked point is that K^* depends on $\langle \cdot, \cdot \rangle$. Accordingly, it is entirely plausible that a cone that is not self-dual under the Euclidean inner product might become self-dual if the inner product is chosen appropriately.

This detail is quite important because sometimes we see articles claiming that a certain cone is not a symmetric cone because it is not self-dual under the Euclidean inner product. This is, of course, not enough. As long as a cone is homogeneous and there exists some inner product that makes it self-dual, the cone can be investigated under the theory of Jordan algebras.

This state of affairs brings us to the case of the p-cones. Up until the recent articles [5, 6], there was no rigorous proof that the p-cones L_p^{n+1} were not symmetric when $p \neq 2$ and $n \geq 2$. Now, although we know that L_p^{n+1} is not homogeneous for $p \neq 2$ and $n \geq 2$, it still remains to investigate whether L_p^{n+1} could become self-dual under an appropriate inner product. This question was partly discussed by Miao, Lin and Chen in [9], where they showed that a p-cone (again, $p \neq 2$, $n \geq 2$) is not self-dual under an inner product induced by a diagonal matrix. The results described here show, in particular, that no inner product can make L_p^{n+1} self-dual, for $p \neq 2$, $n \geq 2$.

We now explain some of the intuition behind our proof techniques. Let $n \geq 2$ and let $f_p : \mathbb{R}^n \setminus \{0\} \to \mathbb{R}$ be the function that maps x to $\|x\|_p$. When $p \in (1, 2)$, we have that f_p is twice differentiable only at points x for which $x_i \neq 0$, for all i. In contrast, if $p \in (2, \infty)$, f_p is twice differentiable throughout $\mathbb{R}^n \setminus \{0\}$. Now, we let M_p be the boundary without the zero of the cone L_p^{n+1}. With that, M_p is exactly the graph of the function f_p. Furthermore, M_p is a C^1-embedded smooth manifold if $p \in (1, 2)$. If $p \in (2, \infty)$, M_p is a C^2-embedded smooth manifold.

Now any linear bijection between L_p^{n+1} and L_q^{n+1} must map the boundary of L_p^{n+1} to the boundary of L_q^{n+1}, thus producing a map between M_p and M_q. Then, if $p \in (1, 2)$ and $q \in (2, \infty)$, there can be no linear bijection between L_p^{n+1} and L_q^{n+1} because this would establish a diffeomorphism between submanifolds that are embedded with different levels of smoothness.

Now suppose that p, q are both in $(1, 2)$ and that there exists some linear bijection A between L_p^{n+1} and L_q^{n+1} if $(f_p(x), x) \in M_p$ is such that f_p is not twice differentiable at x, then A must map $(f_p(x), x)$ to a point $(f_q(y), y)$ for which f_q is not twice differentiable at y. This idea is made precise in Proposition 4. In particular, this fact imposes severe restrictions on how Aut(L_p^{n+1}) acts on L_p^{n+1} and this is the key observation necessary for showing that the matrices in Aut(L_p^{n+1}) can be written as in (1).

This work is divided as follows. In Section 2 we present the notation used in this paper and review some facts about cones, self-duality and p-cones. In Section 3, we discuss the tools from manifold theory necessary for our discussion. Finally, in Section 4 we prove our main results.

2 Preliminaries

A convex cone is a subset K of some real vector space \mathbb{R}^n such that $\alpha x + \beta y \in K$ holds whenever $x, y \in K$ and $\alpha, \beta \geq 0$. A cone K is said to be pointed if $K \cap -K = \{0\}$. For a subset S of \mathbb{R}^n, the (closed) conical hull of S, denoted by cone(S), is the smallest closed convex cone in \mathbb{R}^n containing S.

2
If \(v \in \mathbb{R}^n \), we write \(\mathbb{R}_+(v) \) for the half-line generated by \(v \) and \(\mathbb{R}^+ \) for \(\mathbb{R}_+(v) \setminus \{0\} \), i.e.,

\[
\mathbb{R}_+(v) = \{ \alpha v \mid \alpha \geq 0\}, \\
\mathbb{R}^+ = \{ \alpha v \mid \alpha > 0\}.
\]

A convex subset \(\mathcal{F} \) of \(\mathcal{K} \) is said to be a face of \(\mathcal{K} \) if the following condition hold: If \(x, y \in \mathcal{K} \) satisfies \(\alpha x + (1 - \alpha)y \in \mathcal{F} \) for some \(\alpha \in (0, 1) \) then \(x, y \in \mathcal{F} \). A one dimensional face is called an extreme ray. A polyhedral convex cone is a convex cone that can be expressed as the solution set of finitely many linear inequalities.

If \(\langle \cdot, \cdot \rangle \) is an inner product on \(\mathbb{R}^n \), we can define the dual cone of \(\mathcal{K} \) with respect to the inner product \(\langle \cdot, \cdot \rangle \) by

\[
\mathcal{K}^* = \{ x \in \mathbb{R}^n \mid \langle x, y \rangle \geq 0, \forall y \in \mathcal{K} \}.
\]

A convex cone \(\mathcal{K} \) is self-dual if there exists an inner product on \(\mathbb{R}^n \) for which the dual cone coincides with \(\mathcal{K} \) itself.

Two convex cones \(\mathcal{K}_1 \) and \(\mathcal{K}_2 \) in \(\mathbb{R}^n \) are said to be isomorphic if there exists a linear bijection \(A \in GL_n(\mathbb{R}) \), called an isomorphism, such that \(\mathcal{K}_1 = A \mathcal{K}_2 \). An automorphism of a convex cone \(\mathcal{K} \) in \(\mathbb{R}^n \) is a map \(A \in GL_n(\mathbb{R}) \) such that \(A \mathcal{K} = \mathcal{K} \). The group of all automorphisms of \(\mathcal{K} \) is written by \(\text{Aut}(\mathcal{K}) \) and called the automorphism group of \(\mathcal{K} \).

A convex cone \(\mathcal{K} \) is said to be homogeneous if \(\text{Aut}(\mathcal{K}) \) acts transitively on the interior of \(\mathcal{K} \), that is, for every elements \(x \) and \(y \) of the interior of \(\mathcal{K} \), there exists \(A \in \text{Aut}(\mathcal{K}) \) such that \(y = Ax \).

2.1 On self-duality

Let \(\mathcal{K} \subseteq \mathbb{R}^n \) be a closed convex cone. As we emphasized in Section 1, self-duality is a relative concept and depends on what inner product we are considering. Let \(\langle \cdot, \cdot \rangle_E \) denote the Euclidean inner product and consider the dual of \(\mathcal{K} \) with respect \(\langle \cdot, \cdot \rangle_E \).

\[
\mathcal{K}^* = \{ y \in \mathbb{R}^n \mid \langle x, y \rangle_E \geq 0, \forall x \in \mathcal{K} \}.
\]

We have the following proposition.

Proposition 1. Let \(\mathcal{K} \subseteq \mathbb{R}^n \) be a closed convex cone and let \(\mathcal{K}^* \) be the dual of \(\mathcal{K} \) with respect to the Euclidean inner product \(\langle \cdot, \cdot \rangle_E \). Then, there exists an inner product on \(\mathbb{R}^n \) that turns \(\mathcal{K} \) into a self-dual cone if and only if there exists a symmetric positive definite matrix \(A \) such that \(A \mathcal{K} = \mathcal{K}^* \).

Proof. First, suppose that there exist some inner product \(\langle \cdot, \cdot \rangle_K \) for which \(\mathcal{K} \) becomes self-dual. Then, there is a symmetric positive definite matrix \(A \) such that

\[
\langle x, y \rangle_K = \langle x, Ay \rangle_E,
\]

for all \(x, y \in \mathbb{R}^n \). In fact, \(A_{ij} = \langle e_i, e_j \rangle_K \), where \(e_i \) is the \(i \)-th standard unit vector in \(\mathbb{R}^n \). By assumption, we have

\[
\mathcal{K} = \{ x \in \mathbb{R}^n \mid \langle x, Ay \rangle_E \geq 0, \forall y \in \mathcal{K} \} \\
\quad= \{ x \in \mathbb{R}^n \mid \langle Ax, y \rangle_E \geq 0, \forall y \in \mathcal{K} \} \\
\quad= A^{-1} \{ z \in \mathbb{R}^n \mid \langle z, y \rangle_E \geq 0, \forall y \in \mathcal{K} \} \\
\quad= A^{-1} \mathcal{K}^*.
\]

This shows that \(A \mathcal{K} = \mathcal{K}^* \).

Reciprocally, if \(A \mathcal{K} = \mathcal{K}^* \), we define the inner product \(\langle \cdot, \cdot \rangle_K \) such that

\[
\langle x, y \rangle_K := \langle x, Ay \rangle_E,
\]

for all \(x, y \in \mathbb{R}^n \). Then, a straightforward calculation shows that the dual of \(\mathcal{K} \) with respect \(\langle \cdot, \cdot \rangle_K \) is indeed \(\mathcal{K} \). \(\square \)
Therefore, determining whether \mathcal{K} is self-dual for some inner product boils down to determining the existence of a positive definite linear isomorphism between cones, which is a difficult problem in general.

2.2 p-cones

Here we present some basic facts on p-cones. The p-cone is the closed convex cone in \mathbb{R}^{n+1} defined by

$$L_p^{n+1} = \{(t, x) \in \mathbb{R} \times \mathbb{R}^n \mid t \geq \|x\|_p\}$$

where $\|x\|_p$ is the p-norm on \mathbb{R}^n:

$$\|x\|_p = (|x_1|^p + \cdots + |x_n|^p)^{1/p} \text{ for } p \in [1, \infty) \text{ and } \|x\|_\infty = \max(|x_1|, \ldots, |x_n|).$$

The dual cone of the p-cone with respect to the Euclidean inner product is given by $(L_p^{n+1})^* = L_q^{n+1}$ where q is the conjugate of p, that is, $\frac{1}{p} + \frac{1}{q} = 1$. The cones L_1^{n+1} and L_∞^{n+1} are polyhedral. In fact, L_1^{n+1} has $2n$ extreme rays

$$\mathbb{R}_+(1, \sigma e_i^n), \quad i = 1, \ldots, n, \quad \sigma \in \{-1, 1\},$$

where e_i^n denotes the i-th standard unit vector in \mathbb{R}^n. Moreover, L_∞^{n+1} has 2^n extreme rays

$$\mathbb{R}_+(1, \sigma_1, \ldots, \sigma_n), \quad \sigma_1, \ldots, \sigma_n \in \{-1, 1\}.$$

The difference in the number of extreme rays shows that L_1^{n+1} and L_∞^{n+1} are not isomorphic if $n \geq 3$. However, for $n = 2$, they are indeed isomorphic as

$$AL_1^3 = L_\infty^3, \quad A = \begin{pmatrix}
1 & 0 \\
0 & \sqrt{2} \cos(\pi/4) & 0 \\
0 & \sqrt{2} \sin(\pi/4) \\
0 & \sqrt{2} \cos(\pi/4)
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & -1 \\
0 & 1 & 1
\end{pmatrix}. \quad (2)$$

The second order cone L_2^{n+1} is known to be a symmetric cone, that is, it is both self-dual and homogeneous, admitting a Jordan algebraic structure [4]. The automorphism group of the second order cone can be identified by the result of Loewy and Schneider [8]: $AL_2^{n+1} = L_2^{n+1}$ or $AL_2^{n+1} = -L_2^{n+1}$ holds if and only if $A^T J_{n+1} A = \mu J_{n+1}$ for some $\mu > 0$ where $J_{n+1} = \text{diag}(1, -1, \ldots, -1)$.

Gowda and Trott determined the structure of the automorphism group of the p-cones in the case $p = 1, \infty$:

Proposition 2 (Gowda and Trott, Theorem 7 in [5]). For $n \geq 2$, A belongs to $\text{Aut}(L_1^{n+1})$ if and only if A has the form

$$A = \alpha \begin{pmatrix}
1 & 0 \\
0 & P
\end{pmatrix},$$

where $\alpha > 0$ and P is an $n \times n$ generalized permutation matrix, that is, a permutation matrix multiplied by a diagonal matrix whose diagonal elements are ± 1. Moreover, $\text{Aut}(L_\infty^{n+1}) = \text{Aut}(L_1^{n+1})$ holds.

In particular, Proposition 2 yields the following consequences.

- L_1^{n+1} and L_∞^{n+1} are not homogeneous for $n \geq 2$ because any $A \in \text{Aut}(L_1^{n+1}) = \text{Aut}(L_\infty^{n+1})$ fixes the “main axis” $\mathbb{R}_+(1, 0, \ldots, 0)$ of these cones.

- L_1^{n+1} and L_∞^{n+1} are never self-dual for $n \geq 2$. This is a known fact, but we will also obtain this result as a consequence of Corollary 14 where Proposition 2 will be helpful to prove the case $n = 2$. At this point, we should remark that Barker and Foran proved in Theorem 3 of [1] that a self-dual polyhedral cone in \mathbb{R}^3 must have an odd number of extreme rays. Since L_1^3 and L_∞^3 have four extreme rays, Barker and Foran’s result implies that they are never self-dual.
3 Manifolds, tangent spaces and the Gauss map

In this subsection, we will provide a brief overview of the tools we will use from manifold theory, more details can be seen in Lee’s book [7] or the initial chapters of do Carmo’s book [3]. First, we recall that a \(n \)-dimensional smooth manifold \(M \) is a second countable Hausdorff topological space equipped with a collection \(\mathcal{A} \) of maps \(\varphi : U \rightarrow \mathbb{R}^n \) with the following properties.

(i) each map \(\varphi \in \mathcal{A} \) is such that \(\varphi(U) \) is an open set of \(\mathbb{R}^n \). Furthermore, \(\varphi \) is an homeomorphism between \(U \) and \(\varphi(U) \), i.e., \(\varphi \) is a continuous bijection with continuous inverse.

(ii) if \(\varphi : U \rightarrow \mathbb{R}^n, \psi : V \rightarrow \mathbb{R}^n \) both belong to \(\mathcal{A} \) and \(U \cap V \neq \emptyset \), then \(\psi \circ \varphi^{-1} : \varphi^{-1}(U \cap V) \rightarrow \psi(U \cap V) \) is a \(C^\infty \) diffeomorphism, i.e., \(\psi \circ \varphi^{-1} \) is a bijective function such that \(\psi \circ \varphi^{-1} \) and \(\varphi \circ \psi^{-1} \) have continuous derivatives of all orders.

(iii) for every \(x \in M \), we can find a map \(\varphi \in \mathcal{A} \) for which \(x \) belongs to the domain of \(\varphi \).

(iv) if \(\psi \) is another map defined on a subset of \(M \) satisfying (i) and (ii), then \(\psi \in \mathcal{A} \). That is, \(\mathcal{A} \) is maximal.

The set \(\mathcal{A} \) is called a maximal smooth atlas and the maps in \(\mathcal{A} \) are called charts. If \(\varphi : U \rightarrow \mathbb{R}^n \) is a chart and \(x \in U \), we say that \(\varphi \) is a chart around \(x \).

Let \(M_1, M_2 \) be smooth manifolds and \(f : M_1 \rightarrow M_2 \) be a function. The function \(f \) is said to be differentiable at \(x \in M_1 \) if there is a chart \(\varphi \) of \(M_1 \) around \(x \) and a chart \(\psi \) of \(M_2 \) around \(f(x) \) such that

\[
\psi \circ f \circ \varphi^{-1}
\]

is differentiable at \(\varphi(x) \). Then, \(f \) is said to be differentiable, if it is differentiable throughout \(M_1 \). Similarly, we say that \(f \) is differentiable of class \(C^k \) if \(\psi \circ f \circ \varphi^{-1} \) is of class \(C^k \), for every pair of charts of \(M_1 \) and \(M_2 \) such that the image of \(\varphi^{-1} \) and the domain of \(\psi \) intersect. Whether a function is differentiable at some point or is of class \(C^k \) does not depend on the particular choice of charts. The function \(\psi \circ f \circ \varphi^{-1} \) is also said to be a local representation of \(f \). If \(f \) is a bijection such that it is \(C^k \) everywhere and whose inverse \(f^{-1} \) is also \(C^k \) everywhere, then \(f \) is said to be a \(C^k \) diffeomorphism.

Let \(M \) be a \(n \)-dimensional smooth manifold. Let \(C^\infty(M) \) denote the ring of \(C^\infty \) real functions \(g : M \rightarrow \mathbb{R} \). A derivation of \(M \) at \(x \) is a function \(v : C^\infty(M) \rightarrow \mathbb{R} \) such that for every \(g, h \in C^\infty(M) \), we have

\[
v(gh) = (v(g))h(x) + g(x)v(h).
\]

Given a \(n \)-dimensional smooth manifold \(M \) and \(x \in M \), we write \(T_x M \) for the tangent space of \(M \) at \(x \), which is the subspace of derivations of \(M \) at \(x \). It is a basic fact that the dimension of \(T_x M \) as a vector space coincides with the dimension of \(M \) as a smooth manifold.

Let \(f : M_1 \rightarrow M_2 \) be a \(C^1 \) map between smooth manifolds. Then, at each \(x \in M_1 \), \(f \) induces a linear map between \(df_x : T_x M_1 \rightarrow T_{f(x)} M_2 \) such that given \(v \in T_x M_1, df_x(v) \) is the derivation of \(M_2 \) at \(f(x) \) satisfying

\[
(df_x(v))(g) = v(g \circ f),
\]

for every \(g \in C^\infty(N) \). The map \(df_x \) is the differential map of \(f \) at \(x \). If the linear map \(df_x \) is injective everywhere, then \(f \) is said to be an immersion. Furthermore, if \(f \) is a \(C^k \) diffeomorphism with \(k \geq 1 \), then \(df_x \) is a linear bijection for every \(x \). Recall that in order to check whether \(f \) is immersion, it is enough to check that the local representations of \(f \) are immersions.

Now, suppose that \(\alpha : (-\epsilon, \epsilon) \rightarrow M \) is a \(C^\infty \) curve with \(\alpha(0) = x \). Then \(d\alpha_0(0) \in T_x M \). Furthermore, \(T_x M \) coincides with the set of velocity vectors of smooth curves passing through \(x \). With a slight abuse of notation, let us write \(\alpha'(t) = d\alpha_0(t) \). With that, we have

\[
T_x M = \{ \alpha'(0) \mid \alpha : (-\epsilon, \epsilon) \rightarrow M, \alpha(0) = x, \alpha \text{ is } C^1 \}, \tag{3}
\]
see more details in Proposition 3.23 and pages 68-71 in [7]. With this, we can compute a differential $df_x(v)$ by first selecting a C^1 curve α contained in M with $\alpha(0) = x$, $\alpha'(0) = v$. Then, we have $df_x(v) = (f \circ \alpha)'(0)$, see Proposition 3.24 in [7].

A map $\iota : M_1 \to M_2$ is said to be a C^k-embedding if it is a C^k immersion and a homeomorphism on its image (here, $\iota(M_1)$ has the subspace topology induced from M_2). Now, suppose that, in fact, $M_1 \subseteq M_2$ and let $\iota : M_1 \to M_2$ denote the inclusion map, i.e., $\iota(x) = x$, for all $x \in M_1$. If ι is a C^k embedding, we say that M_1 is a C^k-embedded submanifold of N.

We remark that when M is a m-dimensional C^k-embedded submanifold of \mathbb{R}^n, the requirement that ι be an C^k embedding has the following consequences. First, the topology of M has to be the subspace topology of \mathbb{R}^n, i.e., the open sets of M are open sets of \mathbb{R}^n intersected with M. Now, let $\varphi : U \to \mathbb{R}^m$ be a chart of M. Then, $\iota \circ \varphi^{-1} : \varphi(U) \to U$ is a C^k diffeomorphism. That is, although φ^{-1} is C^∞ when saw as a map between $\varphi(U)$ and M, its class of differentiability might decrease\(^1\) when seen as a map between U and \mathbb{R}^m. For embedded manifolds of \mathbb{R}^n, as a matter of convention, we will always see the inverse of a chart φ as a function whose codomain is \mathbb{R}^n and we will omit the embedding ι.

Furthermore, whenever M is a C^k-embedded submanifold of \mathbb{R}^n, we will define tangent spaces in a more geometric way. Given $x \in M$, we will define $T_x M$ as the space of tangent vectors of C^1 curves that pass through x:

$$T_x M = \{ \alpha'(0) \mid \alpha : (-\epsilon, \epsilon) \to \mathbb{R}^n, \alpha(0) = x, \alpha \subseteq M, \alpha \text{ is } C^1 \},$$

(4)

where $\alpha \subseteq M$ means that $\alpha(t) \in M$, for every $t \in (-\epsilon, \epsilon)$. Here, since we have an ambient space, $\alpha'(0)$ is the derivative of α at 0 in the usual sense.

Both definitions of tangent spaces presented so far are equivalent in the following sense. Let $\tilde{T}_x M$ denote the space of derivations of M at x and let $\iota : M \to \mathbb{R}^n$ denote the inclusion map. Then, $d\iota_x$ is a map between $\tilde{T}_x M$ and $T_x \mathbb{R}^n$. Then, identifying $T_x \mathbb{R}^n$ with \mathbb{R}^n, it holds that $d\iota_x(\tilde{T}_x M) = T_x M$. In particular, $\tilde{T}_x M$ and $T_x M$ have the same dimension.

Finally, we recall that for smooth manifolds, the topological notion of connectedness is equivalent to the notion of path-connectedness, see Proposition 1.11 in [7]. Therefore, a manifold M is connected if and only if for every $x, y \in M$ there is a continuous curve $\alpha : [0, 1] \to M$ such that $\alpha(0) = x$ and $\alpha(1) = y$.

3.1 Graphs of differentiable maps

For a real valued function $f : U \to \mathbb{R}$ defined on $U \subseteq \mathbb{R}^n$, the graph of f is defined by

$$\text{graph } f := \{ (y, x) \in \mathbb{R} \times U \mid y = f(x) \} \subseteq \mathbb{R}^{n+1}.$$

In item (i) of the next proposition, for the sake of completeness, we give a proof of the well-known fact that if f is a C^k function, then $\text{graph } f$ must be a C^k-embedded manifold. In item (ii) we observe the fact, also known but perhaps less well-known, that the converse also holds. This is important for us because if we know that f is C^1 but not C^2, then this creates an obstruction to the existence of certain maps between graph f and C^2 manifolds.

Proposition 3. For $k \geq 1$, let $f : U \to \mathbb{R}$ be a C^1 function defined on an open subset U of \mathbb{R}^n.

(i) If f is C^k on an open subset V of U, then $\text{graph } f|_V$ is an n-dimensional C^k-embedded submanifold of \mathbb{R}^{n+1}.

\(^1\)Here is an example of what can happen. Let M be graph of the function $f(x) = |x|$. M is a differentiable manifold and to create a maximal smooth atlas for M we first start with a set A containing only the map $\varphi : M \to \mathbb{R}$ that takes $((|x|, x)$ to x. At this point, conditions (i), (ii), (iii) of the definition of atlas are satisfied. Then, we add to A every map ψ such that $A \cup \{ \psi \}$ still satisfies (i), (ii), (iii). The resulting set must be a maximal atlas. Following the definition of differentiability between manifolds, the map φ^{-1} is C^∞ if we see it as a map between $\mathbb{R} \to M$, since $\varphi \circ \varphi^{-1}(x) = x$. However, $\varphi \circ \varphi^{-1}$ is not even a C^1 map, because $|x|$ is not differentiable at 0.
(ii) Suppose that a subset M of graph f is an n-dimensional C^k-embedded submanifold of \mathbb{R}^{n+1}, with $k \geq 1$. Then f is C^k on the open set $\pi_U(M)$, where $\pi_U : \mathbb{R} \times U \to U$ is the projection onto U.

Proof. (i) The proof here is essentially the one contained Example 1.30 and Proposition 5.4 of [7], except that here we take into account the level of smoothness of the embedding.

First, let $M = \text{graph}(f_V)$ and consider the subspace topology inherited from \mathbb{R}^{n+1} (again, see Examples 1.3 and 1.30 in [7] for more details). With the subspace topology, the map $\varphi : V \to M$, given by

$$\varphi(x) = (f(x), x)$$

is a homeomorphism between V and M, whose inverse is the projection restricted to M, that is $\varphi^{-1}(f(x), x) = x$. Furthermore, φ^{-1} induces a maximal smooth atlas of M making $\varphi^{-1} : M \to V$ a chart. We now check that the inclusion $\iota : M \to \mathbb{R}^{n+1}$ is a C^k embedding. A local representation for ι is obtained by considering $\iota \circ \varphi : V \to \mathbb{R}^{n+1}$, which shows that ι is a C^k differentiable map. The inverse $\iota^{-1} : \iota(M) \to M$ is given by restricting the identity map in \mathbb{R}^{n+1} to M. Since the topology on M is the subspace topology, this establishes that ι is an homeomorphism.

Furthermore, since the $(n + 1) \times n$ Jacobian matrix $J_{\iota\varphi}$ of the representation of ι has rank n, we see that ι is an immersion. Hence, M is a C^k-embedded submanifold of \mathbb{R}^{n+1}.

(ii) Take $x_0 \in \pi_U(M)$. Let $\Phi : V \to \mathbb{R}^n$ be a chart of M around $(f(x_0), x_0)$. We can write the map Φ^{-1} as

$$\Phi^{-1}(z) = (\psi(z), \varphi(z)) \in \mathbb{R} \times U \text{ for } z \in \Phi(V),$$

for functions $\psi : \Phi(V) \to \mathbb{R}$, $\varphi : \Phi(V) \to U$. Since $\text{Im} \Phi^{-1} \subseteq M \subseteq \text{graph } f$, we have $\psi(z) = f(\varphi(z))$ for all $z \in \Phi(V)$. Then we obtain a local representation $\iota : \Phi(V) \subseteq \mathbb{R}^n \to \mathbb{R}^{n+1}$ of the inclusion map $\iota : M \to \mathbb{R}^{n+1}$ as follows:

$$\iota(z) := \iota \circ \Phi^{-1} = (\psi(z), \varphi(z)) = (f \circ \varphi(z), \varphi(z)).$$

Since M is C^k-embedded, φ and ψ are C^k when seen as maps $\Phi(V) \to \mathbb{R}$ and $\Phi(V) \to \mathbb{R}^n$, respectively. Let $z_0 = \Phi((f(x_0), x_0))$. Then $\varphi(z_0) = x_0$ since

$$(f(x_0), x_0) = \Phi^{-1}(z_0) = (\psi(z_0), \varphi(z_0)).$$

Note that $\text{rank}(J_{\iota}(z_0)) = n$ holds because ι is an immersion. On the other hand, since f is C^1 by the assumption, it follows by the chain rule for the function $\psi = f \circ \varphi$ that

$$J_{\psi}(z_0) = J_f(\varphi(z_0))J_{\varphi}(z_0) = J_f(x_0)J_{\varphi}(z_0).$$

This means that each row of $J_{\varphi}(z_0)$ is a linear combination of rows of $J_{\varphi}(z_0)$. Therefore, we conclude that

$$n = \text{rank } J_{\iota}(z_0) = \text{rank } (J_{\psi}(z_0)^T, J_{\varphi}(z_0)^T)^T = \text{rank } J_{\varphi}(z_0).$$

Namely, the $n \times n$ matrix $J_{\varphi}(z_0)$ is nonsingular. Since φ is C^k, the inverse function theorem states that there exists a C^k inverse $\varphi^{-1} : W \to \mathbb{R}^n$ defined on a neighborhood W of $\varphi(z_0) = x_0$. Then, we conclude that the function

$$\psi \circ \varphi^{-1} = f \circ \varphi \circ \varphi^{-1} = f$$

is C^k on W.

To conclude, we will show that $\pi_U(M)$ is open. Since $\varphi^{-1}(W)$ is contained in the domain $\Phi(V)$ of the map φ, it follows that $W = \varphi \circ \varphi^{-1}(W) \subseteq \varphi(\Phi(V))$. Now, let $z \in \Phi(V)$. By definition, we have

$$(\psi(z), \varphi(z)) = \Phi^{-1}(z) \in V,$$

which shows that $\varphi(z) \in \pi_U(V)$. Therefore, $\varphi(\Phi(V)) \subseteq \pi_U(V) \subseteq \pi_U(M)$. Hence, we have $W \subseteq \pi_U(M)$ and so $\pi_U(M)$ is open in \mathbb{R}^n, since x_0 was arbitrary.

\footnote{The idea is the same as in Footnote 1, we start with $A = \{\varphi^{-1}\}$ and add every map ψ for which $A \cup \{\psi\}$ still satisfies properties (i), (ii), (iii) of the definition of atlas.}
Given a diffeomorphism A between two graphs of C^1 maps $f,g : U \to \mathbb{R}$, the next proposition shows a relation of the categories of differentiability of f and g through the diffeomorphism $B : U \to U$ defined by

$$B(x) = \pi_U(A(f(x),x))$$

where $\pi_U : \mathbb{R} \times U \to U$ is the projection onto U. The map B will play a key role in the proof of our main result applied with $U = \mathbb{R}^n \setminus \{0\}$, $f(x) = \|x\|_p$ and $g(x) = \|x\|_q$. We give an illustration of the map B in Figure 1.

Proposition 4. Let $f,g : U \to \mathbb{R}$ be C^1 maps defined on an open subset U of \mathbb{R}^n. Suppose that $A : \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$ is a C^∞ diffeomorphism such that $A(\text{graph } f) = \text{graph } g$.

(i) The map $B : U \to U$, $B(x) := \pi_U(A(f(x),x))$ is a C^1 diffeomorphism, where $\pi_U : \mathbb{R} \times U \to U$ satisfies $\pi_U(y,x) = x$.

(ii) For $k \geq 1$, f is C^k on a neighborhood of x if and only if g is C^k on a neighborhood of $B(x)$.

Proof. (i) Since f is C^1 while π_U and A are C^∞ maps, it is must be the case that $B(x) = \pi_U(A(f(x),x))$ is C^1.

Let us check that the inverse of B is the map $B^{-1}(y) = \pi_U(A^{-1}(g(y),y))$. Denote

$$B'(y) = \pi_U(A^{-1}(g(y),y)).$$

For any $x \in U$, the relation $A(\text{graph } f) = \text{graph } g$ implies the existence of $y \in U$ such that $A(f(x),x) = (g(y),y)$. Then we have

$$B(x) = \pi_U(A(f(x),x)) = \pi_U(g(y),y) = y.$$

and, therefore,

$$B'(B(x)) = B'(y) = \pi_U(A^{-1}(g(y),y)) = \pi_U(f(x),x) = x.$$

Similarly, we obtain $B(B'(y)) = y$. Hence, $B^{-1}(y) = B'(y)$ holds.

Since $B^{-1}(y) = \pi_U(A^{-1}(g(y),y))$ is also C^1, we conclude that B is a C^1 diffeomorphism.

(ii) If f is C^k on a neighborhood V of x, then $\text{graph}(f|_V)$ is an n-dimensional C^k-embedded submanifold of \mathbb{R}^{n+1} by Proposition 3 (i). Then, by the assumption on A, the set $M := A(\text{graph } f|_V)$ is also an n-dimensional C^k-embedded submanifold of \mathbb{R}^{n+1} which satisfies $M \subseteq \text{graph } g$. Therefore Proposition 3 (ii) implies that g is C^k on the open set $\pi_U(M) = \pi_U(A(\text{graph } f|_V))$ which contains the point $\pi_U(A(f(x),x))$.

The converse of the assertion follows by applying the same argument to the diffeomorphism A^{-1} because $A^{-1}(\text{graph } g) = \text{graph } f$ and $\pi_U(A^{-1}(g(y),y)) = x$ holds for $y = B(x) = \pi_U(A(f(x),x)).$
3.2 The Gauss map

In this subsection, let M be a C^k-embedded submanifold of \mathbb{R}^n with dimension $n - 1$ and $k \geq 1$. In this case, M is sometimes called a hypersurface and when $n = 3$, M is called a surface. The differential geometry of surfaces is, of course, a classical subject discussed in many books, e.g., [2].

In the theory of surfaces, a Gauss map is a continuous function that associates to $x \in M$ a unit vector which is orthogonal to $T_x M$. Unless M is an orientable surface, it is not possible to construct a Gauss map that is defined globally over M. However, given any $x \in M$, it is always possible to construct a Gauss map in a neighborhood of x. For the sake of self-containment, we will give a brief account of the construction of the Gauss map for hypersurfaces.

For what follows, we suppose that \mathbb{R}^n is equipped with some inner product $\langle \cdot, \cdot \rangle$ and the norm is given by $\|x\| = \sqrt{\langle x, x \rangle}$, for all $x \in \mathbb{R}^n$. Recalling (4), $T_x M$ is seen as a subspace of \mathbb{R}^n and we will equip $T_x M$ with the same inner product $\langle \cdot, \cdot \rangle$.

Definition 5. Let M be a C^k-embedded submanifold of \mathbb{R}^n and let $x \in M$. A C^r Gauss map around x is a C^r function $N : U \to \mathbb{R}^n$ such that $U \subseteq M$ is a neighborhood of x in M and

$$N(x) \in (T_x M)^\perp \quad \text{and} \quad \|N(x)\| = 1,$$

for all $x \in U$, where $(T_x M)^\perp$ is the orthogonal complement to $T_x M$.

For what follows, let $x^1, \ldots, x^n \in \mathbb{R}^n$ and let $\det(x^1, \ldots, x^n)$ denote the determinant of the matrix such that its i-th column is given by x^i. Since the determinant is a multilinear function, if we fix the first $n - 1$ elements, we obtain a linear functional f such that

$$f(x) = \det(x^1, \ldots, x^{n-1}, x).$$

Since f is a linear functional, there is a unique vector $\Lambda(x^1, \ldots, x^{n-1}) \in \mathbb{R}^n$ satisfying

$$\langle \Lambda(x^1, \ldots, x^{n-1}), x \rangle = f(x),$$

for all $x \in \mathbb{R}^n$. Furthermore, $\Lambda(x^1, \ldots, x^{n-1}) = 0$ is zero if and only if the x^i are linearly dependent.

Proposition 6. Let $M \subseteq \mathbb{R}^n$ be an $(n - 1)$-dimensional C^k-embedded manifold, with $k \geq 1$. Then, for every chart $\varphi : U \to \mathbb{R}^{n-1}$, there exists a C^{k-1} local Gauss map of M defined over U.

Proof. Let $\varphi : U \to \mathbb{R}^{n-1}$ be a chart of M. Then, φ^{-1} is a function with domain $\varphi(U)$ (which is an open set of \mathbb{R}^{n-1}) and codomain \mathbb{R}^n. Let $u \in U$. It is well-known that the partial derivatives of φ^{-1} at $\varphi(u)$ are a basis for $T_u M$, e.g., page 60 and Proposition 3.15 in [7]. Let $v^i(u)$ be the partial derivative of φ^{-1} at $\varphi(u)$ with respect the i-th variable. We define a Gauss map N over U by letting

$$N(x) = \frac{\Lambda(v^1(u), \ldots, v^{n-1}(u))}{\|\Lambda(v^1(u), \ldots, v^{n-1}(u))\|}.$$

Since the $v^i(u)$ are a basis for $T_u M$, $\Lambda(v^1(u), \ldots, v^{n-1}(u))$ is never zero. In addition, because φ^{-1} is of class C^k, N must be of class C^{k-1}.

\[
\]

3.3 A lemma on hyperplanes and embedded submanifolds

Let M be a connected C^1-embedded $n - 1$ dimensional submanifold of \mathbb{R}^n (i.e., a hypersurface) that is contained in a finite union of distinct hyperplanes H_1, \ldots, H_r. The goal of this section is to prove that M must be entirely contained in one of the hyperplanes. The intuition comes from the case $n = 3$: a surface in \mathbb{R}^3 cannot, say, be contained in $H_1 \cup H_2$ and also intersect both H_1 and H_2 because it would generate a “corner” at the intersection $M \cap H_1 \cap H_2$, thus destroying smoothness. This is illustrated in Figure 2.
Figure 2: A surface M cannot be smooth if it is connected, contained in $H_1 \cup H_2$, but not entirely contained in neither H_1 nor H_2.

This is probably a well-known differential geometric fact but we could not find a precise reference, so we give a proof here. Nevertheless, our discussion is related to the following classical fact: a point in a surface for which the derivative of the Gauss map vanishes is called a planar point and a connected surface in \mathbb{R}^3 such that all its points are planar must be a piece of a plane, see Definitions 7, 8 and the proof of Proposition 4 of Chapter 3 of [2].

In our case, the fact that M is contained in a finite number of hyperplanes hints that the image of any Gauss map of M should be confined to the directions that are orthogonal to those hyperplanes. This, by its turn, suggests that the derivative of N should vanish everywhere, i.e., all points must be planar. In fact, our proof is inspired by the proof of Proposition 4 of Chapter 3 of [2] and we will use the same compactness argument at the end.

To start, we observe that the tangent of a curve contained in H_1, \ldots, H_r must also be contained in those hyperplanes.

Proposition 7. Let $H_i = \{a_i\}^\perp$ be hyperplanes in \mathbb{R}^n for $i = 1, \ldots, r$. Suppose that a C^1 curve $\alpha: (-\epsilon, \epsilon) \to \mathbb{R}^n$ is contained in $X = \bigcup_{i=1}^r H_i$. Then, $\alpha'(0) \in X$.

Proof. Changing the order of the hyperplanes if necessary, we may assume that

\[
\alpha(0) \in H_1 \cap \cdots \cap H_s \\
\alpha(0) \notin H_{s+1}, \ldots, H_r.
\]

Since α is contained in X, we have $s \geq 1$. Furthermore, because α is continuous, there is $\hat{\epsilon} > 0$ such that

\[
\alpha(\epsilon) \notin H_{s+1}, \ldots, H_r, \tag{5}
\]

for $-\hat{\epsilon} < \epsilon < \hat{\epsilon}$.

Now, suppose for the sake of obtaining a contradiction that $\alpha'(0)$ does not belong to any of these hyperplanes H_1, \ldots, H_s. Therefore, for all $i \in \{1, \ldots, s\}$, we have

\[
\langle \alpha(0), a_i \rangle = 0, \quad \langle \alpha'(0), a_i \rangle \neq 0.
\]

Since $\alpha'(\cdot)$ is continuous, we can select $0 < \check{\epsilon} < \hat{\epsilon}$ such that for all $i \in \{1, \ldots, s\}$ and $\epsilon \in (-\check{\epsilon}, \check{\epsilon})$, we have

\[
\langle \alpha'(\epsilon), a_i \rangle \neq 0.
\]

By the mean value theorem applied to $\langle \alpha(\cdot), a_i \rangle$ on the interval $[0, \check{\epsilon}/2]$, we obtain that $\langle \alpha(\check{\epsilon}/2), a_i \rangle \neq 0$, for all $i \in 1, \ldots, s$. Since $\check{\epsilon}/2 \in (-\check{\epsilon}, \check{\epsilon})$, (5) implies that

\[
\langle \alpha(\check{\epsilon}/2), a_i \rangle \neq 0,
\]

for $i \in \{s+1, \ldots, r\}$ too. This shows that $\alpha(\check{\epsilon}/2) \notin X$, which is a contradiction. \qed
Before we prove the main lemma of this subsection, we need the following observation on finite dimensional vector spaces.

Proposition 8. A finite dimensional real vector space V is not a countable union of subspaces of dimension strictly smaller than $\dim V$.

Proof. Suppose that V is a countable union $\bigcup W_i$ of subspaces of dimension smaller than $\dim V$. Take the unit ball $B \subseteq V$. Then, $B = \bigcup W_i \cap B$. However, this is not possible since each $W_i \cap B$ has measure zero, while B has nonzero measure.

We now have all the necessary pieces to prove the main lemma.

Lemma 9. Let $X \subseteq \mathbb{R}^n$ be a union of finitely many hyperplanes $H_i = \{a_i\}^\perp$, $a_i \neq 0$, $i = 1, \ldots, r$. Let M be an $(n - 1)$ dimensional differentiable manifold that is connected, C^1-embedded in \mathbb{R}^n and contained in X. Then, M must be entirely contained in one of the H_i.

Proof. We proceed by induction in r. The case $r = 1$ is clear, so suppose that $r > 1$.

Consider a chart $\phi : U \rightarrow \mathbb{R}^{n-1}$ such that $U \subseteq M$ is connected and construct a C^0 (i.e., continuous) Gauss map N in U, as in Proposition 6. Let $u \in U$ and let us examine the tangent space $T_u M$. We have

$$T_u M = \{ \alpha'(0) \mid \alpha : (-\epsilon, \epsilon) \rightarrow M, \alpha(0) = u, \alpha \text{ is } C^1 \}.$$

By Proposition 7,

$$T_u M \subseteq X.$$

Therefore,

$$T_u M = \bigcup_{i=1}^r H_i \cap T_u M.$$

Each $H_i \cap T_u M$ is a subspace of $T_u M$ (an intersection of subspaces is also a subspace!). By Proposition 8, $T_u M$ cannot be a union of subspaces of dimension less than $\dim T_u M = n - 1$. Therefore, there exists some index j such that $H_j \cap T_u M = T_u M$. Since both $T_u M$ and H_j have dimension $n - 1$, we conclude that $H_j = T_u M$.

In particular, the Gauss map N satisfies $N(u) = a_j/\|a_j\|$ or $N(u) = -a_j/\|a_j\|$. Therefore, for all $u \in U$, we have

$$N(u) \in \left\{ \pm \frac{a_i}{\|a_i\|} \mid i = 1, \ldots, r \right\}.$$

Since U is connected and N is continuous, we conclude that the Gauss map N is constant. Denote this constant vector by v.

Let $\psi = \langle \varphi^{-1}(\cdot), v \rangle$. Since φ is a chart, given any $w \in \varphi(U)$, the differential

$$d\varphi^{-1}_w : \mathbb{R}^{n-1} \rightarrow T_{\varphi^{-1}(w)} M$$

is a linear bijection. Since $T_{\varphi^{-1}(w)} M$ is orthogonal to v, we conclude that $\psi' = 0$. Therefore ψ must be constant and there is κ_0 such that $\langle \varphi^{-1}(w), v \rangle = \kappa_0$, for all $w \in \varphi(U)$. That is, $\langle u, v \rangle = \kappa_0$, for all $u \in U$.

Recall that, given $x \in M$, we can always obtain a chart $\varphi : U \rightarrow M$ around x such that U is connected. Therefore, the discussion so far shows that every $x \in M$ has a neighborhood U such that U is entirely contained in a hyperplane

$$\{ z \mid \langle z, v_x \rangle = \kappa_x \},$$

where v_x has the same direction as one of the a_1, \ldots, a_r. Now, fix some $x \in M$ and let $y \in M$, $y \neq x$. Since M is connected, there is a continuous path $\alpha : [0,1] \rightarrow M$ such that $\alpha(0) = x$ and $\alpha(1) = y$.

11
Similarly, for every \(t \in [0, 1] \), we can find a neighborhood \(U_t \subseteq M \) of \(\alpha(t) \) such that \(U_t \) is contained in a hyperplane \(\{ z \mid \langle z, v_t \rangle = \kappa_t \} \) where \(v_t \) is parallel to one of \(a_1, \ldots, a_r \). In particular

\[
[0, 1] \subseteq \bigcup_{t \in [0, 1]} \alpha^{-1}(U_t).
\]

Since the \(U_t \) are open in \(M \) and \(\alpha \) is continuous, the \(\alpha^{-1}(U_t) \) form an open cover for the compact set \([0, 1] \). Therefore, the Heine-Borel theorem implies that a finite number of the \(\alpha^{-1}(U_t) \) are enough to cover \([0, 1] \). As a consequence, \(\alpha \) itself is contained in finitely many neighborhoods \(U_{t_1}, \ldots, U_{t_\ell} \). Now, we note the following:

- If \(U_{t_i} \cap U_{t_j} \neq \emptyset \) then \(U_{t_i} \cap U_{t_j} \) is a nonempty open set in \(M \) and therefore, an embedded submanifold of dimension \(n - 1 \), see Proposition 5.1 in [7]. Furthermore \(U_{t_i} \cap U_{t_j} \) is contained in the set

\[
H = \{ z \in \mathbb{R}^n \mid \langle z, v_{t_i} \rangle = \kappa_{t_i}, \langle z, v_{t_j} \rangle = \kappa_{t_j} \}.
\]

Therefore, the smooth manifold \(H \) must have at least dimension \(n - 1 \). We conclude that “\(\langle z, v_{t_i} \rangle = \kappa_{t_i} \)” and “\(\langle z, v_{t_j} \rangle = \kappa_{t_j} \)” define the same hyperplane. So, \(U_{t_i} \) and \(U_{t_j} \) are in fact, contained in the same hyperplane.

- \(U_{t_i} \) must intersect some of the \(U_{t_2}, \ldots, U_{t_\ell} \) because if it does not, then \(\alpha^{-1}(U_{t_i}) \) and \(\alpha^{-1}(\bigcup_{i=2}^{\ell} U_{t_i}) \) disconnect the connected set \([0, 1] \). Changing the order of the sets if necessary, we may therefore assume that \(U_{t_1} \) and \(U_{t_2} \) intersect and, therefore, lie in the same hyperplane. Similarly, the union \(U_{t_1} \cup U_{t_2} \) must intersect one of the remaining neighborhoods \(U_{t_3}, \ldots, U_{t_\ell} \), lest we disconnect the interval \([0, 1] \). By induction, we conclude that all neighborhoods lie in the same hyperplane.

In particular, \(x \) and \(y \) lie in the same hyperplane and, therefore, \(M \) is entirely contained in some hyperplane whose normal direction has the same direction as one of the \(a_1, \ldots, a_r \).

So far, we have shown that \(M \) is entirely contained in a hyperplane of the form

\[
\{ z \in \mathbb{R}^n \mid \langle z, v \rangle = \kappa_0 \}.
\]

Without loss of generality, we may assume that \(v \) has the same direction as \(a_1 \). If \(\kappa_0 = 0 \), we are done. Otherwise, since \(v \) has the same direction as \(a_1 \), it follows that \(M \) does not intersect \(H_1 \) and

\[
M \subseteq \bigcup_{i=2}^{r} H_i.
\]

By the induction hypothesis, \(M \) must be contained in one of the \(H_2, \ldots, H_r \). \(\square \)

4 Main results

In this section, we show the main results on \(p \)-cones. We begin by observing a basic fact on the differentiability of \(p \)-norms.

Lemma 10. Let \(n \geq 2 \) and \(p \in (1, \infty) \).

(i) \(|.|_p \) is \(C^1 \) on \(\mathbb{R}^n \setminus \{0\} \).

(ii) If \(p \in (1, 2) \) then \(|.|_p \) is \(C^2 \) on a neighborhood of \(x \) if and only if \(x_i \neq 0 \) for all \(i \).

(iii) If \(p \in [2, \infty) \) then \(|.|_p \) is \(C^2 \) on \(\mathbb{R}^n \setminus \{0\} \).
Proof. (i) $\|\cdot\|_p$ is C^1 on $\mathbb{R}^n \setminus \{0\}$ because

$$\frac{\partial \|\cdot\|_p}{\partial x_i}(x) = \frac{\partial \|\|_p^1-p\|x_i\|^{p-1}}{\partial x_i} \text{sign}(x_i).$$

(ii) If $x_i \neq 0$ for all i, it is easy to see that $\|\cdot\|_p$ is C^2 on a neighborhood of x. For the converse, consider a point $x \neq 0$ with $x_i = 0$ for some i. Then, $\frac{\partial \|\cdot\|_p}{\partial x_i}(x) = 0$ holds and so

$$\lim_{h \to 0} \frac{1}{h} \left(\frac{\partial \|\cdot\|_p}{\partial x_i}(x + h e_j) - \frac{\partial \|\cdot\|_p}{\partial x_i}(x) \right) = \lim_{h \to 0} h^{-1} \frac{\partial \|\cdot\|_p}{\partial x_i}(x + he_j)$$

$$= \lim_{h \to 0} h^{-1} \|x + he_i\|_p^{1-p} ||h|^{p-2}h$$

$$= \lim_{h \to 0} \|x + he_j\|_p^{1-p} ||h|^{p-2}$$

$$= \begin{cases} +\infty & (p < 2) \\ 0 & (p > 2). \end{cases}$$

Hence, when $p \in (1,2)$, the derivative $\frac{\partial \|\cdot\|_p}{\partial x_i}(x)$ exists if and only if $x_i \neq 0$.

(iii) For $p > 2$ (the assertion in the case $p = 2$ is clear),

$$\frac{\partial \|\cdot\|_p}{\partial x_i}(x) = (1 - p) \|x\|_p^{1-2p} ||x_i x_j\|^{p-1} \text{sign}(x_i) \text{sign}(x_j)$$

holds if $i \neq j$, otherwise we have

$$\frac{\partial \|\cdot\|_p}{\partial x_i}(x) = (1 - p) \|x\|_p^{1-2p} x_i^{2(p-1)} + (p - 1) \|x\|_p^{1-p} x_i^{p-2}.$$

We now move on to the main result of this paper.

Theorem 11. Let $p,q \in [1,\infty], p \leq q$, $n \geq 2$ and $(p,q,n) \neq (1,\infty,2)$. Suppose that \mathcal{L}^n_{p+1} and \mathcal{L}^n_{q+1} are isomorphic, that is,

$$ A \mathcal{L}^n_{p+1} = \mathcal{L}^n_{q+1} $$

holds for some $A \in GL_{n+1}(\mathbb{R})$. Then $p = q$ must hold. Moreover, if $p \neq 2$, then we have $A \in Aut(\mathcal{L}^n_1)$.

Proof. The proof consists of three parts I, II, and III.

I First we consider the case $p \in \{1,\infty\}$ corresponding to the case when \mathcal{L}^n_{p+1} is polyhedral. Since A preserves polyhedrality, q must be 1 or ∞ too. Note that \mathcal{L}^n_1 and \mathcal{L}^n_{q+1} cannot be isomorphic if $n \geq 3$ because they have different numbers of extreme rays, see Section 2.2. Therefore, $p = q = 1$ or $p = q = \infty$ must hold. Since $Aut(\mathcal{L}^n_{\infty}) = Aut(\mathcal{L}^n_{1+1})$ holds (Proposition 2), the assertion is verified in the case $p \in \{1,\infty\}$.

II Now let $p,q \in (1,\infty)$. Then the set

$$ M_p := \{(t,x) \in \mathbb{R} \times \mathbb{R}^n \setminus \{0\} \mid t = \|x\|_p\} $$

becomes a C^1-embedded submanifold of \mathbb{R}^{n+1} by Lemma 10 (i) and Proposition 3 (i). Note that $A M_{p+1} = M_{q+1}$ implies $AM_q = M_q$ since A maps the boundary of \mathcal{L}^n_{p+1} onto the boundary of \mathcal{L}^n_{q+1}.

It suffices to consider the case $p,q \in (1,2)$ by the following observation.

(a) The case $1 < p < 2 \leq q < \infty$ does not happen in view of Proposition 4 and Lemma 10. In fact, since $\|\cdot\|_q$ is C^2 on $\mathbb{R}^n \setminus \{0\}$ and $A^{-1} M_q = M_p$ holds, Proposition 4 implies that $\|\cdot\|_p$ is C^2 on $\mathbb{R}^n \setminus \{0\}$ but this is a contradiction.
(b) If \(2 \leq p \leq q < \infty\) holds, then taking the dual of the relation \(A L_p^{n+1} = L_q^{n+1}\) with respect to the Euclidean inner product, it follows that
\[
A^{-T} L_p^{n+1} = L_q^{n+1}
\]
where \(p^*\) and \(q^*\) in \((1, 2]\) are the conjugates of \(p\) and \(q\), respectively. Either \(p^* = q^* = 2\) or \(p^*, q^* \in (1, 2)\) must hold by (a). If \(p^* = q^* = 2\), then we are done since this implies that \(p = q = 2\). Now, suppose that \(p^*, q^* \in (1, 2)\). If we prove that \(p^* = q^*\) and \(A^{-T} \in \text{Aut}(L_1^{n+1})\), then we conclude that \(p = q\) and \(A \in \text{Aut}(L_1^{n+1})\). However, by Proposition 2, \(\text{Aut}(L_1^{n+1})^{-T} = \text{Aut}(L_1^{n+1})\) (Note that, if \(P\) is a generalized permutation matrix, then so is \(P^{-T}\)).

From cases (a), (b) we conclude that it is enough to consider the case \(p, q \in (1, 2)\), which we will do next.

III. Let \(p, q \in (1, 2)\). We show by induction on \(n\) that every \(A \in GL_{n+1}(\mathbb{R})\) with \(A L_p^{n+1} = L_q^{n+1}\) is a bijection on the set
\[
E = \bigcup_{i=1}^{n} \bigcup_{\sigma \in \{-1, 1\}} \mathbb{R}^{+}(1, \sigma e_i^n),
\]
where \(e_i^n\) is the \(i\)-th standard unit vector in \(\mathbb{R}^n\). First, let us check that this claim implies \(A \in \text{Aut}(L_1^{n+1})\) and \(p = q\). Taking the conical hull of the relation \(AE = E\), we conclude that
\[
A L_1^{n+1} = A(\text{cone}(E)) = \text{cone}(AE) = \text{cone}(E) = L_q^{n+1},
\]
where the relation \(\text{cone}(E) = L_q^{n+1}\) holds because a pointed closed convex cone is the conical hull of its extreme rays (see Theorem 18.5 in [10]) and \(E\) is precisely the union of all the extreme rays of \(L_1^{n+1}\) with the origin removed, see Section 2.2. Therefore, we have
\[
A \in \text{Aut}(L_1^{n+1}) \subseteq \text{Aut}(L_p^{n+1}),
\]
where the last inclusion follows by Proposition 2 because \(\|P x\|_p = \|x\|_p\) for any generalized permutation matrix \(P\). Then \(L_p^{n+1} = A L_q^{n+1} = L_q^{n+1}\) and so \(p = q\) must hold.

Now, let us show the claim that \(A\) is a bijection on \(E\). Consider the map \(\xi_p : \mathbb{R}^n \setminus \{0\} \to M_p\) defined by \(\xi_p(x) = (\|x\|_p, x)\) whose inverse \(\xi_p^{-1} : M_p \to \mathbb{R}^n \setminus \{0\}\) is the projection \(\xi_p^{-1}(t, x) = x\). By Proposition 4, the map \(B : \mathbb{R}^n \setminus \{0\} \to \mathbb{R}^n \setminus \{0\}\) defined by
\[
B(x) = \xi_p^{-1} \circ A|_{M_p} \circ \xi_p(x)
\]
is a \(C^1\) diffeomorphism. Moreover, \(\|\cdot\|_p\) is \(C^2\) on a neighborhood of \(x\) if and only if \(\|\cdot\|_q\) is \(C^2\) on a neighborhood of \(B(x)\). Since \(p, q \in (1, 2)\), each of the functions \(\|\cdot\|_p\) and \(\|\cdot\|_q\) is \(C^2\) on a neighborhood of \(x\) if and only if \(x_i \neq 0\) for all \(i\) (Lemma 10). This implies that the set
\[
X = \{x \in \mathbb{R}^n \setminus \{0\} \mid x_i = 0 \text{ for some } i\}
\]
satisfies
\[
B(X) = X
\]
because \(x\) belongs to \(X\) if and only if \(\|\cdot\|_p\) and \(\|\cdot\|_q\) are never \(C^2\) on any neighborhood of \(x\).

III.a. Consider the case \(n = 2\). Then the set \(X\) can be written as
\[
X = \{x \in \mathbb{R}^2 \setminus \{0\} \mid x_1 = 0 \text{ or } x_2 = 0\}
\]
\[
= \mathbb{R}^{++}(0, 1) \cup \mathbb{R}^{++}(0, -1) \cup \mathbb{R}^{++}(1, 0) \cup \mathbb{R}^{++}(-1, 0)
\]
\[
= \bigcup_{i=1}^{2} \bigcup_{\sigma \in \{-1, 1\}} \mathbb{R}^{++}(\sigma e_i^2).
\]
Then \(\xi_p(X) \) and \(\xi_q(X) \) coincide with \(E \):

\[
\xi_p(X) = \xi_q(X) = \bigcup_{i=1}^{2} \bigcup_{\sigma \in \{-1,1\}} \mathbb{R}_+ \{(1, \sigma e_i^3) \} = E.
\]

Moreover, \(A \) is bijective on \(E \) because

\[
A(\xi_q(X)) = \xi_q \circ \xi_q^{-1} \circ A|_{M_p} \circ \xi_p(X) = \xi_q \circ B(X) = \xi_q(X).
\]

Thus, the claim \(AE = E \) holds in the case \(n = 2 \).

Now let \(n \geq 3 \) and suppose that the claim is valid for \(n - 1 \). Denote

\[
X_i := \{ x \in \mathbb{R}^n \setminus \{0\} \mid x_i = 0 \}, \quad M_p^i := \xi_p(X_i) = \{ (t, x) \in \mathbb{R} \times \mathbb{R}^n \setminus \{0\} : t = \|x\|_p, \ x_i = 0 \}.
\]

With that, we have

\[
X = \bigcup_{i=1}^{n} X_i.
\]

We show that for any \(i \in \{1, \ldots, n\} \) there exists \(j \in \{1, \ldots, n\} \) such that

\[
B(X_i) = X_j.
\]

For any \(i \), the set \(X_i \) is a connected \((n - 1) \) dimensional \(C^1 \)-embedded submanifold of \(\mathbb{R}^n \) contained in \(X \). Since \(B : \mathbb{R}^n \setminus \{0\} \to \mathbb{R}^n \setminus \{0\} \) is a \(C^1 \) diffeomorphism satisfying \(B(X) = X \), the set \(B(X_i) \) is also a connected \((n - 1) \) dimensional \(C^1 \)-embedded submanifold of \(\mathbb{R}^n \) contained in \(X \). Then, since \(X \cup \{0\} \) is the union of the hyperplanes \(X_i \cup \{0\}, \ i = 1, \ldots, n \), it follows from Proposition 9 that \(B(X_i) \) is entirely contained in some hyperplane \(X_j \cup \{0\} \). Then we have

\[
B(X_i) \subseteq X_j.
\]

By the same argument, the set \(B^{-1}(X_i) \) is contained in some hyperplane \(X_k \cup \{0\} \), that is, \(B^{-1}(X_i) \subseteq X_k \) holds. This shows that

\[
X_i = B^{-1}(B(X_i)) \subseteq B^{-1}(X_j) \subseteq X_k.
\]

Since \(X_i \) cannot be a subset of \(X_k \) if \(i \neq k \), it follows that \(i = k \). Then, we obtain \(X_i = B^{-1}(X_j) \), i.e., \(B(X_i) = X_j \).

Since \(B \) is a bijection, the above argument shows that there exists a permutation \(\tau \) on \(\{1, \ldots, n\} \) such that

\[
B(X_i) = X_{\tau(i)}.
\]

Then we have

\[
A(M_p^i) = \xi_q \circ \xi_q^{-1} \circ A|_{M_p} \circ \xi_p(X_i) = \xi_q \circ B(X_i) = \xi_q(X_{\tau(i)}) = M_q^{\tau(i)}.
\]

Taking the linear span both sides, we also have

\[
A(V_i) = V_{\tau(i)} \quad \text{where} \quad V_i := \{ (t, x) \in \mathbb{R} \times \mathbb{R}^n \mid x_i = 0 \}.
\]

Now we apply the induction hypothesis to the isomorphism \(A|_{V_i} \) as follows. Define the isomorphism \(\varphi_i : V_i \to \mathbb{R}^n \) by

\[
\varphi_i(t, x_1, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_n) = (t, x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n)
\]

and consider the isomorphism \(A_i := \varphi_{\tau(i)} \circ A|_{V_i} \circ \varphi_i^{-1} : \mathbb{R}^n \to \mathbb{R}^n \). By the above argument, we see that \(A_i(\mathcal{L}_p^m) = \mathcal{L}_q^n \):

\[
A_i(\mathcal{L}_p^m) = \varphi_{\tau(i)} \circ A|_{V_i} \circ \varphi_i^{-1}(\mathcal{L}_p^m) = \varphi_{\tau(i)} \circ A(\text{cone } M_p^i) = \varphi_{\tau(i)}(\text{cone } M_q^{\tau(i)}) = \mathcal{L}_q^n.
\]
So the induction hypothesis implies that \(A_i \) is bijective on
\[
\bigcup_{j=1}^{n-1} \bigcup_{\sigma \in \{-1,1\}} \mathbb{R}_{++}(1, \sigma e_j^{n-1}).
\]

Therefore, \(A|_{V_i} = \varphi_{\tau(i)}^{-1} \circ A_i^{-1} \circ \varphi_i \) is a bijection from
\[
\bigcup_{j \in \{1, \ldots, n\} \setminus \{i\}} \bigcup_{\sigma \in \{-1,1\}} \mathbb{R}_{++}(1, \sigma e_j^n)
\]
on to
\[
\bigcup_{j \in \{1, \ldots, n\} \setminus \{\tau(i)\}} \bigcup_{\sigma \in \{-1,1\}} \mathbb{R}_{++}(1, \sigma e_j^n).
\]
Combining this result for each \(i = 1, \ldots, n \), it turns out that \(A \) is bijective on
\[
E = \bigcup_{i=1}^{n} \bigcup_{\sigma \in \{-1,1\}} \mathbb{R}_{++}(1, \sigma e_i^n).
\]

Combining the latter assertion of Theorem 11 and Proposition 2, we obtain the description of the automorphism group of the \(p \)-cones.

Corollary 12. For \(p \in [1, \infty] \), \(p \neq 2 \) and \(n \geq 2 \), we have \(\text{Aut}(L_p^{n+1}) = \text{Aut}(L_1^{n+1}) \). In particular, any \(A \in \text{Aut}(L_p^{n+1}) \) can be written as
\[
A = \alpha \begin{pmatrix} 1 & 0 \\ 0 & P \end{pmatrix},
\]
where \(\alpha > 0 \) and \(P \) is an \(n \times n \) generalized permutation matrix.

We can also recover our previous result on the non-homogeneity of \(p \)-cones with \(p \neq 2 \). In contrast to [6], here we do not require the theory of \(T \)-algebras.

Corollary 13. For \(p \in [1, \infty] \), \(p \neq 2 \) and \(n \geq 2 \), the \(p \)-cone \(L_p^{n+1} \) is not homogeneous.

Proof. By Corollary 12, for any \(A \in \text{Aut}(L_p^{n+1}) = \text{Aut}(L_1^{n+1}) \), we have that the vector \((1, 0, \ldots, 0)\) is an eigenvector of \(A \). So, there is no automorphism of \(L_p^{n+1} \) that maps \((1, 0, \ldots, 0)\) to an interior point of \(L_p^{n+1} \) that does not belong to
\[
\{(\beta, 0, \ldots, 0) \mid \beta > 0\}.
\]
Hence, \(L_p^{n+1} \) cannot be homogeneous.

Now the non-self-duality of \(p \)-cones \(L_p^{n+1} \) for \(p \neq 2 \) and \(n \geq 2 \) is an immediate consequence of Theorem 11 in view of Proposition 1, while we need an extra argument for the case \((p, q, n) = (1, \infty, 2)\).

Corollary 14. For \(p \in [1, \infty] \), \(p \neq 2 \) and \(n \geq 2 \), the \(p \)-cone \(L_p^{n+1} \) is not self-dual under any inner product.

Proof. Suppose that \(L_p^{n+1} \) is self-dual under some inner product. Then, by Proposition 1, there exists a symmetric positive definite matrix \(A \) such that
\[
AL_p^{n+1} = L_q^{n+1} \quad \text{where} \quad \frac{1}{p} + \frac{1}{q} = 1.
\]
If \((p,q,n) \neq (1,\infty,2), (\infty,1,2)\), then \(p = q = 2\) must hold by Theorem 11. Now let us consider the case \((p,q,n) = (1,\infty,2)\), i.e., \(A L^3_1 = L^3_\infty\). Recalling (2), we have \(B L^3_1 = L^3_\infty\) with
\[
B = \begin{pmatrix}
1 & 0 & 0 \\
0 & \sqrt{2} \cos(\pi/4) & -\sqrt{2} \sin(\pi/4) \\
0 & \sqrt{2} \sin(\pi/4) & \sqrt{2} \cos(\pi/4)
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & -1 \\
0 & 1 & 1
\end{pmatrix}.
\]
Therefore, \(B^{-1} A \in \text{Aut}(L^3_1)\) holds. Then, by Proposition 2, the matrix \(A\) can be written as \(A = BC\) where \(C\) is of the form
\[
C = \alpha \begin{pmatrix}
1 & 0 & 0 \\
0 & \pm 1 & 0 \\
0 & 0 & \pm 1
\end{pmatrix} \quad \text{or} \quad \alpha \begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & \pm 1 \\
0 & \pm 1 & 0
\end{pmatrix}, \quad \alpha > 0.
\]
Since \(A\) is symmetric, it has one of the following forms:
\[
\alpha \begin{pmatrix}
1 & 0 & 0 \\
0 & -1 & -1 \\
0 & -1 & 1
\end{pmatrix}, \quad \alpha \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{pmatrix}, \quad \alpha \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & -1
\end{pmatrix}, \quad \alpha \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{pmatrix}.
\]
None of them is positive definite. Therefore, we obtain a contradiction. \(\square\)

Acknowledgements

This work was partially supported by the Grant-in-Aid for Scientific Research (B) (18H03206) and the Grant-in-Aid for Young Scientists (B) (17K12645) from Japan Society for the Promotion of Science.

References

[1] G. P. Barker and J. Foran. Self-dual cones in euclidean spaces. Linear Algebra and its Applications, 13(1):147–155, 1976.
[2] M. P. do Carmo. Differential Geometry of Curves and Surfaces. Prentice-Hall, 1976.
[3] M. P. do Carmo. Riemannian Geometry. Mathematics (Boston, Mass.). Birkhäuser, 1992.
[4] J. Faraut and A. Korányi. Analysis on symmetric cones. Oxford mathematical monographs. Clarendon Press, Oxford, 1994.
[5] M. S. Gowda and D. Trott. On the irreducibility, Lyapunov rank, and automorphisms of special Bishop–Phelps cones. J. Math. Anal. Appl., 419(1):172–184, 2014.
[6] M. Ito and B. F. Lourenço. The \(p\)-cones in dimension \(n \geq 3\) are not homogeneous when \(p \neq 2\). Linear Algebra and its Applications, 533:326–335, 2017.
[7] J. Lee. Introduction to Smooth Manifolds. Graduate Texts in Mathematics. Springer New York, 2012.
[8] R. Loewy and H. Schneider. Positive operators on the \(n\)-dimensional ice cream cone. Journal of Mathematical Analysis and Applications, 49(2):375–392, 1975.
[9] X.-H. Miao, Y.-c. R. Lin, and J.-S. Chen. A note on the paper “The algebraic structure of the arbitrary-order cone”. J. Optim. Theory Appl., 173(3):1066–1070, 2017.
[10] R. T. Rockafellar. Convex Analysis . Princeton University Press, 1997.
[11] E. B. Vinberg. The theory of homogeneous convex cones. Trans. Moscow Math. Soc., 12:340–403, 1963. (English Translation).