Supplementary Material

Metabolomic of Halotolerant Endophytic Bacterium *Salinivibrio costicola* Isolated from *Suaeda maritima* (L.) Dumort.

Jaeyoun Lee†, Soohyun Um†, Seung Hyun Kim†,*

† College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, South Korea

Corresponding authors:
(S.H.K.) Tel: +82-32-749-4514. E-mail: kimsh11@yonsei.ac.kr
Table of Contents

S3 : Supplementary Figure 1. *Salinivibrio costicola* YSL5 cultured on modified K solid medium.

Supplementary Figure 2. A comparison of five different culture media.

S4 : Supplementary Figure 3. Total ion current (TIC) chromatogram and Extracted-ion chromatogram (EIC) of the metabolites detected from the liquid broth of *S. costicola* YSL5.

S5 : Supplementary Figure 4. 1H NMR spectrum (600 MHz) of 2-hydroxy-3,7,11,15-tetramethyl-5,9,13,17-tetraoxo-4,8,12,16-tetraoxaicosan-19-yl 3-hydroxybutanoate in DMSO-$_d$6.

S6 : Supplementary Figure 5. COSY NMR spectrum (600 MHz) of 2-hydroxy-3,7,11,15-tetramethyl-5,9,13,17-tetraoxo-4,8,12,16-tetraoxaicosan-19-yl 3-hydroxybutanoate in DMSO-$_d$6.

Supplementary Figure 6. HMBC NMR spectrum (600 MHz) of 2-hydroxy-3,7,11,15-tetramethyl-5,9,13,17-tetraoxo-4,8,12,16-tetraoxaicosan-19-yl 3-hydroxybutanoate in DMSO-$_d$6.

S7 : Supplementary Figure 7. HSQC NMR spectrum (600 MHz) of 2-hydroxy-3,7,11,15-tetramethyl-5,9,13,17-tetraoxo-4,8,12,16-tetraoxaicosan-19-yl 3-hydroxybutanoate in DMSO-$_d$6.

Supplementary Figure 8. ROESY NMR spectrum (600 MHz) 2-hydroxy-3,7,11,15-tetramethyl-5,9,13,17-tetraoxo-4,8,12,16-tetraoxaicosan-19-yl 3-hydroxybutanoate in DMSO-$_d$6.

S8 : Supplementary Figure 9. 1H NMR spectrum (600 MHz) of polyhydroxybutyric acid derivatives in DMSO-$_d$6.

S9 : Supplementary Figure 10. COSY NMR spectrum (600 MHz) of polyhydroxybutyric acid derivatives in DMSO-$_d$6.

Supplementary Figure 11. HMBC NMR spectrum (600 MHz) of polyhydroxybutyric acid derivatives in DMSO-$_d$6.

S10 : Supplementary Table 1. Taxon Composition List of *S. maritima* - Phylum

Supplementary Table 2. Taxon Composition List of *S. maritima* - Class

S11 : Supplementary Table 3. Taxon Composition List of *S. maritima* - Order

S12-13 : Supplementary Table 4. Taxon Composition List of *S. maritima* - Family
1.1 Supplementary Figures

Supplementary Figure 1. *Salinivibrio costicola* YSL5 cultured on modified K solid medium with sea salt for 4 days.

Supplementary Figure 2. A comparison of five different culture media. (A) A culture in K broth with sea salt of *S. costicola* YSL5 for 3 days. (B) A culture in PDB broth with sea salt for 3 days. (C) A culture in PDY broth with sea salt for 3 days (D) A culture in YEME broth with sea salt for 3 days. (E) A culture in YPM broth with sea salt for 3 days.
Supplementary Figure 3. (A) Total ion current (TIC) chromatogram of liquid culture broth of \textit{S. costicola} YSL5. (B) Extracted-ion chromatogram (EIC) of \textit{m/z} 543.2 [M+Na]^+, (C) EIC of \textit{m/z} 629.3 [M+Na]^+, (D) EIC of \textit{m/z} 715.4 [M+Na]^+, (E) EIC of \textit{m/z} 801.4 [M+Na]^+, (F) EIC of \textit{m/z} 887.4 [M+Na]^+, (G) EIC of \textit{m/z} 973.5 [M+Na]^+, (H) EIC of \textit{m/z} 1059.5 [M+Na]^+, (I) EIC of \textit{m/z} 1145.5 [M+Na]^+, (J) EIC of \textit{m/z} 1231.5 [M+Na]^+.
Supplementary Figure 4. 1H NMR spectrum (600 MHz) of 2-hydroxy-3,7,11,15-tetramethyl-5,9,13,17-tetraoxo-4,8,12,16-tetraoxaicosan-19-yl 3-hydroxybutanoate in DMSO-d_6.
Supplementary Figure 5. COSY NMR spectrum (600 MHz) of 2-hydroxy-3,7,11,15-tetramethyl-5,9,13,17-tetraoxo-4,8,12,16-tetraoxaicosan-19-yl 3-hydroxybutanoate in DMSO-\textit{d}_6.

Supplementary Figure 6. HSQC NMR spectrum (600 MHz) of 2-hydroxy-3,7,11,15-tetramethyl-5,9,13,17-tetraoxo-4,8,12,16-tetraoxaicosan-19-yl 3-hydroxybutanoate in DMSO-\textit{d}_6.
Supplementary Figure 7. HMBC NMR spectrum (600 MHz) of 2-hydroxy-3,7,11,15-tetramethyl-5,9,13,17-tetraoxo-4,8,12,16-tetraaicosan-19-yl 3-hydroxybutanoate in in DMSO-d_6.

Supplementary Figure 8. ROESY NMR spectrum (600 MHz) of 2-hydroxy-3,7,11,15-tetramethyl-5,9,13,17-tetraoxo-4,8,12,16-tetraaicosan-19-yl 3-hydroxybutanoate in in DMSO-d_6.

S7
Supplementary Figure 9. 1H NMR spectrum (600 MHz) of polyhydroxybutyric acid derivatives in DMSO-d_6.
Supplementary Figure 11. COSY NMR spectrum (600 MHz) of polyhydroxybutyric acid derivatives in DMSO-d_6.

Supplementary Figure 11. HSQC NMR spectrum (600 MHz) of polyhydroxybutyric acid derivatives in DMSO-d_6.
Supplementary Table 1. Taxon Composition List of *S. maritima* - Phylum

Taxon name	Count	Proportion (%)	
1	Proteobacteria	19,052	79.3701
2	Actinobacteria	3,749	15.6182
3	Bacteroidetes	484	2.0163
4	Firmicutes	404	1.6831
5	Cyanobacteria	221	0.9207
6	Rhodothermaeta	28	0.1166
7	Deinococcus-Thermus	17	0.0708
8	Verrucomicrobia	13	0.0542
9	Chloroflexi	11	0.0458
10	Acidobacteria	8	0.0333
11	Saccharibacteria_TM7	6	0.025
12	Planctomycetes	5	0.0208
13	Bacteria_uc	3	0.0125
14	Gemmatimonadetes	2	0.0083
15	Fibrobacteres	1	0.0042

Supplementary Table 2. Taxon Composition List of *S. maritima* - Class

Taxon name	Count	Proportion (%)	
1	Gammaproteobacteria	16380	68.2386
2	Actinobacteria_c	3714	15.4724
3	Alphaproteobacteria	1529	6.3698
4	Betaproteobacteria	1112	4.6326
5	Bacilli	370	1.5414
6	Cytophagia	257	1.0707
7	Flavobacteria	184	0.7665
8	Chroobacteria	174	0.7249
9	Hormogoneae	45	0.1875
10	Clostridia	26	0.1083
11	Rhodothermia	24	0.1
12	Sphingobacteria	24	0.1
13	Deltaproteobacteria	22	0.0917
14	Bacteroidia	19	0.0792
15	Acidimicrobia	17	0.0708
16	Deinococci	17	0.0708
17	Nitriliruptoria	14	0.0583
18	Oligoflexia	9	0.0375
19	Negativicutes	5	0.0208
20	Opitutae	5	0.0208
Supplementary Table 3. Taxon Composition List of *S. maritima* - Class

Taxon name	Count	Proportion (%)	Taxon name	Count	Proportion (%)
Oceanospirillales	12260	51.0748	Methylococcales	5	0.0208
Pseudomonadales	3626	15.1058	Planctomycetcales	5	0.0208
Kineosporiales	2023	8.4278	Puniceicoccales	5	0.0208
Micrococcales	1396	5.8157	Veillonellales	5	0.0208
Burkholderiales	1112	4.6326	Actinomarinales	4	0.0167
Sphingomonadales	1075	4.4784	Bacteriovoracales	4	0.0167
Bacillales	355	1.4789	Balneolales	4	0.0167
Cytophagales	257	1.0707	PAC000395_o	4	0.0167
Rhodobacterales	217	0.904	PAC002280_o	4	0.0167
Alteromonadales	202	0.8415	PAC002431_o	4	0.0167
Flavobacteriales	184	0.7665	Bacteria_uc	3	0.0125
Oscillatoriales	164	0.6832	Caldilineales	3	0.0125
Vibionionales	159	0.6624	Cellvibionales	3	0.0125
Frankiales	148	0.6166	Chthoniobacterales	3	0.0125
Enterobacteriales	111	0.4624	Erysipelotrichales	3	0.0125
Corynecibacterales	95	0.3958	Halanaerobiales	3	0.0125
Nostocales	45	0.1875	Oligoflexales	3	0.0125
Propionibacteriales	37	0.1541	Trueperales	3	0.0125
Rhodospirillales	29	0.1208	Verrucomicrobiales	3	0.0125
Rhodothermales	24	0.1	Arenicellales	2	0.0083
Clostridiales	23	0.0958	Bdellovibionales	2	0.0083
Saprosirpilales	23	0.0958	Chromatiales	2	0.0083
Myxococcales	20	0.0833	Kallotenuales	2	0.0083
Bacteroidales	19	0.0792	Kiritimatiellales	2	0.0083
Acidimicrobiales	17	0.0708	Rickettsiales	2	0.0083
Lactobacillales	15	0.0625	DQ129389_o	2	0.0083
Deinococcales	14	0.0583	Desulfobulbacaeae_o	2	0.0083
Pleurocapsules	10	0.0417	GU568020_o	2	0.0083
Xanthomonadales	10	0.0417	PAC000393_o	2	0.0083
Micromonosporales	9	0.0375	Saccharimonas_o	2	0.0083
Egibacteriales	7	0.0292	Chitinispirillales	1	0.0042
Nitriliruptorales	7	0.0292	Sphingobacteriales	1	0.0042
Bifidobacteriales	5	0.0208	EF016806_o	1	0.0042
Supplementary Table 4. Taxon Composition List of *S. maritima* - Family

Taxon name	Count	Proportion (%)	Taxon name	Count	Proportion (%)	
Halomonadaceae	11945	49.7625	Phyllobacteriaceae	11	0.0458	
Pseudomonadaceae	3620	15.0808	Enterobacteriaceae	10	0.0417	
Kineosporiaceae	2023	8.4278	Micrococaceae	10	0.0417	
Microbacteriaceae	1357	5.6532	Xanthomonadaceae	10	0.0417	
Oxaibacteraceae	1104	4.5992	Chroococcidiopsis_f	10	0.0417	
Sphingomonadaceae	904	3.766	Lactobacillaceae	9	0.0375	
Oceanospirillaceae	302	1.2581	Micromonosporaceae	9	0.0375	
Pseudomonadaceae	3620	15.0808	Reichenbachiella_f	8	0.0333	
Microbacteriaceae	1357	5.6532	Brevibacteriaceae	8	0.0333	
Kineosporiaceae	2023	8.4278	Saccharospirillaceae	8	0.0333	
Microbacteriaceae	1357	5.6532	Xanthomonadaceae	8	0.0333	
Oxalobacteraceae	1104	4.5992	Acetobacteraceae	7	0.0292	
Flavobacteriaceae	177	0.7374	Egibacteriaceae	7	0.0292	
Rhodobacteraceae	177	0.7374	Marinobacter_f	7	0.0292	
Rhodobacteraceae	177	0.7374	Idiomarinaceae	7	0.0292	
Rhodobacteraceae	177	0.7374	Marinobacter_f	7	0.0292	
Rhodobacteraceae	177	0.7374	Nitriliruptoraceae	7	0.0292	
Erythrobacteraceae	165	0.6874	Planctomycetaceae	6	0.025	
Vibrionaceae	159	0.6624	Carnobacteriaceae	6	0.025	
Pseudoalteromonadaceae	151	0.6291	Cytophagaceae	6	0.025	
Geodermatophilaceae	144	0.5999	Planctomycetaceae	5	0.0208	
Symploca_f	98	0.4083	Planctomycetaceae	5	0.0208	
Nocardiaceae	95	0.3958	Planctomycetaceae	5	0.0208	
Planococcaceae	83	0.3458	Planctomycetaceae	5	0.0208	
Methylobacteriaceae	81	0.3374	Planctomycetaceae	5	0.0208	
Erwiniaceae	66	0.275	Planctomycetaceae	5	0.0208	
Devisia_f	49	0.2041	Planctomycetaceae	5	0.0208	
Rivulariaceae	43	0.1791	Planctomycetaceae	5	0.0208	
Alteromonadaceae	37	0.1541	Planctomycetaceae	5	0.0208	
Nocardia_f	37	0.1541	Planctomycetaceae	5	0.0208	
Planococcaceae	3620	15.0808	Planctomycetaceae	5	0.0208	
Planococcaceae	3620	15.0808	Planctomycetaceae	5	0.0208	
Prochlorotrichaceae	32	0.1333	Planctomycetaceae	5	0.0208	
Catalimonadaceae	31	0.1291	Planctomycetaceae	5	0.0208	
CP003591_f	25	0.1041	Planctomycetaceae	5	0.0208	
Rhizobiales	49	0.2041	Planctomycetaceae	5	0.0208	
Bacillaceae	23	0.0958	Planctomycetaceae	5	0.0208	
Rhodospirillaceae	22	0.0917	Planctomycetaceae	5	0.0208	
Rubricoccaceae	22	0.0917	Planctomycetaceae	5	0.0208	
Lewinellaceae	21	0.0875	Planctomycetaceae	5	0.0208	
Lachnospiraceae	17	0.0708	Planctomycetaceae	5	0.0208	
Bacteroidaceae	16	0.0667	Planctomycetaceae	5	0.0208	
Acidimicrobiaceae	14	0.0583	Planctomycetaceae	5	0.0208	
Deinococcaceae	14	0.0583	Planctomycetaceae	5	0.0208	
Promicromonosporaceae	14	0.0583	Planctomycetaceae	5	0.0208	
PAC000695_f	12	0.05	Planctomycetaceae	5	0.0208	
	Family	Read Count	Average Depth	Genus	Read Count	Average Depth
---	-----------------------	------------	---------------	---------------	------------	---------------
81	Thermoanaerobaculum	4	0.0167	Nostocaceae	2	0.0083
82	Bacteria_uc	3	0.0125	Sandaracinaceae	2	0.0083
83	Caldilineaceae	3	0.0125	Saprospiraceae	2	0.0083
84	Chthoniobacteraceae	3	0.0125	CU925466_f	2	0.0083
85	Clostridiaceae	3	0.0125	DQ129389_f	2	0.0083
86	Cryomorphaceae	3	0.0125	GU568020_f	2	0.0083
87	Erysipelotrichaceae	3	0.0125	LRDG_f	2	0.0083
88	Halanaerobiaceae	3	0.0125	PAC000016_f	2	0.0083
89	Hyphomicrobiaceae	3	0.0125	PAC0000616_f	2	0.0083
90	Oligoflexaceae	3	0.0125	Bradyrhizobiaceae	1	0.0042
91	Polyaangiaceae	3	0.0125	Chitinispillaceae	1	0.0042
92	Porphyromonadaceae	3	0.0125	Chitinophagaceae	1	0.0042
93	Pseudanaebenaceae	3	0.0125	Ectothiorhodospiraceae	1	0.0042
94	Trueperaceae	3	0.0125	Exiguobacteriaceae	1	0.0042
95	Ilumatobacter_f	3	0.0125	Kangiellaceae	1	0.0042
96	Luteolibacter_f	3	0.0125	Nannocystaceae	1	0.0042
97	Anaplasmataceae	2	0.0083	Peptostreptococcaceae	1	0.0042
98	Archangiacae	2	0.0083	Ruminococcaceae	1	0.0042
99	Arenicellaceae	2	0.0083	Woeseiaceae	1	0.0042
100	Cellvibrionaceae	2	0.0083	AY913398_f	1	0.0042
101	Chelatococcaceae	2	0.0083	EF016806_f	1	0.0042
102	Desulfobulbaceae	2	0.0083	Mogibacterium_f	1	0.0042
103	Kallotenuaceae	2	0.0083	Pseudohongiella_f	1	0.0042
104	Kirimatietiellaceae	2	0.0083	Saprospiraceae	2	0.0083
105	Mooreiaceae	2	0.0083			