Integrated bioinformatics analysis of As, Au, Cd, Pb and Cu heavy metal responsive marker genes through Arabidopsis thaliana GEO datasets

Chao Niu 1,2,3, Min Jiang 2,3, Na Li 2,3,4, Jianguo Cao 4, Meifang Hou 1, Di-an Ni Corresp. 1, Zhaoqing Chu Corresp. 2,3

1 School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, Shanghai, China
2 Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, Shanghai, China
3 Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, Shanghai, China
4 College of Life Sciences, Shanghai Normal University, Shanghai, Shanghai, China

Corresponding Authors: Di-an Ni, Zhaoqing Chu
Email address: dani@sit.edu.cn, zqchu@sibs.ac.cn

Background: Current environmental pollution factors, particularly the distribution and diffusion of heavy metals in soil and water, are high risks to local environments and humans. Despite there being striking advances in methods to detect contaminants by a variety of chemical and physical solutions, these methods have inherent limitations such as small dimensions and very low coverage. Therefore, identifying novel contaminant biomarkers is urgently needed. Methods: To better track heavy metal contaminations in soil and water, integrated bioinformatics analysis to identify biomarkers of relevant heavy metal, such as As, Cd, Pb and Cu, is a suitable method for long-term and large-scale surveys of such heavy metal pollutants. Subsequently, the accuracy and stability of the results screened are experimental validated by quantitative PCR experiment. Results: We obtained 168 differentially expressed genes (DEGs) which contained 59 up-regulated genes and 109 down-regulated genes through comparative bioinformatics analyses. Subsequently, the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichments of these DEGs were performed, respectively. GO analyses found that these DEGs were mainly related to responses to chemicals, responses to stimulus, responses to stress, responses to abiotic stimulus, and so on. KEGG pathway analyses of DEGs were mainly involved in the protein degradation process and other biologic process, such as the phenylpropanoid biosynthesis pathways and nitrogen metabolism. Moreover, we also speculated that 9 candidate core biomarker genes (namely, NILR1, PGPS1, WRKY33, BCS1, AR781, CYP81D8, NR1, EAP1 and MYB15) might be tightly correlated with the response or transport of heavy metals. Finally, experimental results displayed that these genes had the same expression trend response to different stresses as mentioned above (Cd, Pb and Cu) and no mentioned above (Zn and Cr). Conclusion: In general, the identified biomarker genes could help us understand the
potential molecular mechanisms or signaling pathways responsive to heavy metal stress in plants, and could be applied as marker genes to track heavy metal pollution in soil and water through detecting their expression in plants growing in those environments.
Integrated bioinformatics analysis of As, Au, Cd, Pb and Cu heavy metal responsive marker genes through *Arabidopsis thaliana* GEO datasets

Chao Niu¹, ², ³, #, Min Jiang ², ³, #, Na Li², ³, ⁴, Jianguo Cao⁴, Meifang Hou¹, Di-an Ni¹* and Zhaoqing Chu², ³*

¹ School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, China
² Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
³ Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China
⁴ College of Life Sciences, Shanghai Normal University, Shanghai, China

These authors contributed equally to this work.

* Correspondence: Di-an Ni (dani@sit.edu.cn) and Zhaoqing Chu (zqchu@sibs.ac.cn)

Authors’ email addresses:

Chao Niu: 1983877922@qq.com
Min Jiang: yijinsha@126.com
Na Li: lina10562@foxmail.com
Jianguo Cao: cao101@shnu.edu.cn
Meifang Hou: mfhou@sit.edu.cn
Di-an Ni: dani@sit.edu.cn
Zhaoqing Chu: zqchu@sibs.ac.cn; FAX: 021-57799383

Abstract
Background: Current environmental pollution factors, particularly the distribution and diffusion of heavy metals in soil and water, are high risks to local environments and humans. Despite there being striking advances in methods to detect contaminants by a variety of chemical and physical solutions, these methods have inherent limitations such as small dimensions and very low coverage. Therefore, identifying novel contaminant biomarkers is urgently needed.

Methods: To better track heavy metal contaminations in soil and water, integrated bioinformatics analysis to identify biomarkers of relevant heavy metal, such as As, Cd, Pb and Cu, is a suitable method for long-term and large-scale surveys of such heavy metal pollutants. Subsequently, the accuracy and stability of the results screened are experimental validated by quantitative PCR experiment.

Results: We obtained 168 differentially expressed genes (DEGs) which contained 59 up-regulated genes and 109 down-regulated genes through comparative bioinformatics analyses. Subsequently, the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichments of these DEGs were performed, respectively. GO analyses found that these DEGs were mainly related to responses to chemicals, responses to stimulus, responses to stress, responses to abiotic stimulus, and so on. KEGG pathway analyses of DEGs were mainly involved in the protein degradation process and other biologic process, such as the phenylpropanoid biosynthesis pathways and nitrogen metabolism. Moreover, we also speculated that 9 candidate core biomarker genes (namely, NILR1, PGPS1, WRKY33, BCS1, AR781, CYP81D8, NR1, EAPI and MYB15) might be tightly correlated with the response or transport of heavy metals. Finally, experimental results displayed that these genes had the same expression trend response to different stresses as mentioned above (Cd, Pb and Cu) and no mentioned above (Zn and Cr).

Conclusion: In general, the identified biomarker genes could help us understand the potential molecular mechanisms or signaling pathways responsive to heavy metal stress in plants, and
could be applied as marker genes to track heavy metal pollution in soil and water through
detecting their expression in plants growing in those environments.

Introduction

There are naturally low concentrations of heavy metals in soil, but human activities such as
mining, agriculture, sewage treatment and the metal industry have caused a sharp growth in their
concentration in the environment, resulting in toxic effects on animals and plants (Socha et al.
2015). Therefore, heavy metal pollution is considered a source of significant environmental
damage and a cause of increasing concern by the public and researchers. Many heavy metals are
essential micronutrients for normal plant growth in trace amounts, such as iron (Fe), manganese
(Mn), molybdenum (Mo), copper (Cu), zinc (Zn) and so on. However, excessive amounts can be
toxic to plants, subsequently, the rest of the food chain. In addition, the accumulation of other
heavy metals, such as cadmium (Cd), chromium (Cr), mercury (Hg), plumbum (Pb), aluminium
(AI) etc, in plants can induce damage and toxicity (Peralta-Videa et al. 2009). The heavy metal is
absorbed by the plant from the soil solution and transported to above-ground edible parts. It
afterwards enters the animal or human body through the food chain, becoming a health threat
(Khan et al. 2013). The key to controlling and repairing heavy metal pollution is the rapid and
accurate detection of ones in order to determine the nature and extent of pollution. Many
physical and chemical methods have been applied to estimate the concentration of heavy metals.
For example, the prompt gamma ray neutron activation analysis (PGNAA) detection system has
a minimum detectable concentration widely used for the determination of heavy metals by using
a 241Am-Be neutron source and BGO detector (Hei et al. 2016). However, these solutions are not
convenient nor efficient (Bounakhla et al. 2012). In addition, although optical and
electrochemical detection are the two most widely used inspection methods in different fields,
the accuracy of the former is lower than that of the traditional laboratory method, and the
instrument is costly. The latter has more obvious inferiority on complicated sample pretreatment
which may cause secondary pollution, overlapping interference of various heavy metals
detection. Hence, our research’s intention is to improve the techniques using higher sensitivity, a
wider range of application and stronger specificity.

Indeed, many studies have reported that special genes can respond or transport to one or more
heavy metals. For instance, it has been reported that six genes from three gene clusters $czcB$, $cadA2R$ and $colRS$, were involved with cadmium resistance in $Pseudomonas putida$ CD2 (Hu
and Zhao 2007). While metal-responsive transcription factor 1 (MTF1) over-expression cells
showed significantly delayed apoptosis, MTF1 null cells were susceptible to apoptosis in the presence of Zn$^{2+}$ or Cd$^{2+}$, which was augmented after exposure to Cr$^{6+}$ (Majumder et al. 2003). OsNramp5 that belongs to natural resistance-associated macrophage protein (Nramp) families of metal transporters was a transporter for Mn acquisition and was the major pathway for Cd entry into rice roots (Sasaki et al. 2012). Another study for rice response to Cd stress using quantitative phosphoproteome yielded 2454 phosphosites, associated with 1244 proteins involved with signaling, stress tolerance, the neutralization of reactive oxygen species (ROS) and transcription factors (TFs) (Zhong et al. 2017). Over-expression of *ThWRKY7* can improve plant tolerance in *Tamarix hispida* (Yang et al. 2016) and ZmWRKY4 plays a vital role in regulating maize antioxidant defense under Cd stress (Hong et al. 2017). In addition, rice ASR1 and ASR5 act as transcription factors in concert and complementarily to regulate Al responsive genes (Arenhart et al. 2016). Moreover, co-application of 24-epibrassinolide (EBL) and salicylic acid (SA) resulted in the improvement of root and shoot lengths and chlorophyll content, which can regulate antioxidative defense responses and gene expression in *Brassica juncea* L. seedlings under Pb stress (Kohli et al. 2018). Metallothioneins (MTs) that are cysteine-rich, of low molecular weight, metal-binding proteins can enhance tolerance to heavy metals through differential responses in sweet potato (Kim et al. 2014), which may be strongly associated with Cd uptake, but not related to Cd transport from root to leaf, nor Cd enrichment in shoots (Li et al. 2018). Despite striking advances in gene function research involved with response or transport heavy metals, identifying novel accurate biomarkers to detect environmental pollutants is urgently needed.

The development of microarrays and high-throughput sequencing technologies has provided an integrated bioinformatics analysis method which could overcome the disadvantages of single traditional studies in deciphering critical genetic or physiological alternations and discovering promising biomarkers in screening for DEGs (Vogelstein et al. 2013). This approach would make it possible to analyze the associated pathways and interaction networks of the identified DEGs which have applied to predict the adverse drug reactions (ADRs) with the Library of Integrated Network-based Cellular Signatures (LINCS) L1000 data (Duan et al. 2014, Wang et
Therefore, this approach has been applied extensively to the diagnosis and treatment of human cancers. For example, researchers believed that GNAI1, NCAPH, MMP9, AURKA and EZH2I were identified as the key molecules in patients with serous ovarian cancer resistant to carboplatin using integrated bioinformatics analysis (Zhan et al. 2018). COL1A2 as a diagnostic biomarker was highly tissue specific and was expressed in human gastric cancer by integrating bioinformatics and meta-analysis (Rong et al. 2018). In addition, a recent study has reported that 20 candidates were identified from 658 potential dehalogenases for exploration of protein functional diversity by integrating bioinformatics with expression analysis and biochemical characterization (Vanacek et al. 2018).

The identification of novel biomarkers is currently an efficient approach for large-scale screening and diagnosis (Liu et al. 2018, Zhan et al. 2018). Therefore, we performed analysis of 11 original microarray data to identify DEG response to different heavy metals in the present study. Additionally, functional enrichment analysis was further proposed to analyze the main biological functions and protein–protein interaction (PPI) networks that were constructed to screen the crucial genes in response or transport heavy metals. At last, the expression trend between experimental validation and the microarray mentioned above was surveyed. Overall, these results suggested that highlighted key genes and pathways might be used as a biomarker to detect and further reduce heavy metal pollutants.

Materials and methods

Retrieval of gene expression profile data

Microarray data about heavy metal stresses on gene expression (GSE49037, GSE31977, GSE46958, GSE55436, GSE94314, GSE19245, GSE90701, GSE22114, GSE13114, GSE104916 and GSE65333) were downloaded from the Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/). It is reported that the size of the sample determines the reliability of the DEGs in microarray analysis and recent comprehensive bioinformatics research
(Moradifard et al. 2018). Therefore, in order to obtain more complete available data, we have only chosen 5 kinds of heavy metal experiments which contained at least six samples, including arsenic (As), aurum (Au), Cd, Cu and Pb. The specific information of these experiment methods was explained in table S1. For example, 8-days-old *A. thaliana* Col-0 plants were treated in 10 µM Cu and then harvested for further analyses after for treatment 24h (Table S1). There are a total of 139 samples in present study, including 65 control samples and 74 heavy metal treatment samples (Table S1). Platform and series matrix file(s) were downloaded as TXT files. The dataset detailed information is shown in Table S1. The R software package was used to process the downloaded files and to convert and reject the unqualified data. The data was calibrated, standardized, and log₂ transformed.

Identification of DEGs

The downloaded platform and series of matrix file(s) were converted using the R software package. The ID corresponding to the probe name was converted into the standard name as a gene symbol and saved in a TXT file. The limma package (Ritchie et al. 2015) in the bioconductor package (http://www.bioconductor.org/) was performed to screen DEGs. The related operating instruction codes were put into R, and the DEGs in heavy metal treatment and control samples of every GEO datasets were analyzed. Genes with a corrected P-value < 0.05 and |log₂ fold change (FC)|> 1 were considered DEGs. The results were preserved as TXT files for subsequent analysis.

Integration of data from different experiments

The list of DEGs from all series of heavy metal experiments was obtained by different expression gene analysis. Gene integration for the DEGs identified from the eleven datasets was executed using a robust rank aggregation (RRA) software package (Kolde et al. 2012). Based on the null hypothesis of irrelevant inputs, the RRA method filters out genes that are better aligned than expected. A list of genes obtained from the RRA approach that were up-or down-regulated
in 20 raw data which were downloaded from GEO datasets as unqualified data that was usually used as source for Quantile normalization in R for subsequent analysis. The RRA algorithm detects genes that are ranked consistently better than expected under null hypothesis of uncorrelated inputs and assigns a significance score for each gene. The RRA method is based on the hypothesis that each gene is randomly ordered in each experiment. If a gene ranked high in all experiments, then the smaller its P-value is, the greater the likelihood of differential gene expression. The RRA approach is openly available in the comprehensive R Network (http://cran.r-project.org/).

Functional enrichment analyses of DEGs

In order to expound the underlying biological processes, molecular functions and cellular components connected with the overlapping DEGs identified above, GO enrichment analysis was executed using the GOATOOLS database for annotation (https://github.com/tanghaibao/goatoools) (Klopfenstein et al. 2018). GOATOOLS was performed on the integrated DEGs using Fisher’s accurate test. To ensure the minimum false positive rate, multiplex test methods such as Holm, Sidak and false discovery rate were used to correct the P-value. Once the corrected P-value < 0.05, the GO function was considered to have significant enrichment. Moreover, the KEGG pathway enrichment analysis of the overlapping DEGs was performed using the KOBAS online analysis database (http://kobas.cbi.pku.edu.cn) (Xie et al. 2011). The KOBAS analysis was based on the hypergeometric test/Fisher’s exact test. Likewise, the corrected P-value < 0.05 was regarded as a statistically significant difference.

PPI network integration based on STRING database

In order to better explore the physical contacts among protein molecules, the potential interactions among the overlapping DEGs were performed to identify the PPI network using the STRING database (http://string.db.org/) (Szklarczyk et al. 2017). PPIs were further imported to Cytoscape software for constructing the PPI network of overlapping DEGs (Shannon et al. 2003). Each node is a gene, protein, or molecule, and the connections between nodes represent the
interaction of these biological molecules, which can be used for identifying interactions and pathway relationships between the DEGs about heavy metals. The corresponding proteins in the central node may be core proteins or key candidate genes which likely have vital physiological functions.

Experimental validation

To better assess the veracity for the results identified above, we performed quantitative expression analysis of 20 candidate genes under different heavy metal stresses mentioned above (Cd, Pb and Cu) and no mentioned above (Zn and Cr) which can better explain the results’ reliability. The real time quantitative PCR (RT-qPCR) experiments on RNA were collected from different time points (6h, 12h and 24h) of 2 week-old *A. thaliana* Col-0 plants under 100 μM ZnSO₄, 100 μM PbCl₂, 100 μM CrCl₃, 100 μM CuSO₄ and 100 μM CdCl₂ treatments, respectively. The primer-sets were listed in Table S2.

Results

GEO data information and identification of DEGs

The detailed information for the eleven GEO datasets contained in the current study is shown (Table 1, Table S1). In order to integrate different experiments and different sequencing platforms, the data need to be processed and standardized. Therefore, the eleven GEO datasets were standardized (Fig. 1, Fig. S1). Then, these datasets were screened by the limma package with the condition, including the corrected P-value < 0.05 and |log₂FC| > 1. The results showed that there are 1916, 2555 and 1147 DEGs identified from different As content treatments of GSE31977, respectively (Fig. 2a). While 2030 and 776 DEGs were obtained from GSE49037 which contains As treatment with different content as well, respectively (Fig. S2). In addition, we screened 3166 DEGs in GSE46958 with Au treatments (Fig. 2b), while 592 and 726 DEGs were obtained from different Au content treatments in GSE55436 (Fig. S2). As for the Cd treatments, we also obtained 1832 and 972 DEGs in GSE94314; 486, 176, 410 and 377 DEGs in GSE19245; 124 and 154 DEGs in GSE90701, and 158 DEGs in GSE22114, respectively (Fig. 2c,
For Cu treatments, there were 110 and 91 DEGs in GSE13114; and 691, 495 and 485
DEGs in GSE104916 were obtained, respectively (Fig. 2d, Fig. S2). We also acquired 3453 and
23 DEGs from GSE65333 with different Pb content treatments (Fig. 2e). Then, the cluster heat-
map figure of the top 200 DEGs identified from each experiment was displayed by Multi-
Experiment Viewer (MEV), respectively (Fig. 3, Fig. S3). Many gene expression levels showed
significant difference in each treatment verse control (Fig. 3, Fig. S3).

Identification of DEGs using integrated bioinformatics

The DEGs mentioned above have been screened by the limma package, and then were analyzed
and extracted by RRA method according to the standard with the corrected P-value < 0.05 and
$|\log_2 FC| > 1$. It is noteworthy that the RRA method is based on the hypothesis that each gene is
randomly ordered in each experiment. That is, if a gene ranked high in all experiments, then the
smaller its P-value was, and the greater the likelihood of differential gene expression. Our rank
analysis results showed that a total of 168 DEGs comprising 109 down-regulated and 59 up-
regulated genes were obtained (Table 2, Table S3 and S4). The top 20 most significantly up-
regulated genes were AT3G46270, ATCSLB05, AT3G19030, COL9, BCAT4, ELF4, CYP83A1,
AT1G76800, AT1G61740, CLE6, AT4G01440, AT1G72200, MOT1, AT5G52790, AT4G40070,
AT4G25250, EXGE-A1, NR1, AT5G19970 and CYP735A2 (Table 2). Additionally, the top 20
most significantly down-regulated genes were DIN2, WRKY75, AT4G15120, CYP81F2,
AT1G73480, AT1G72900, PGPS1, AT5G06730, AT1G35910, CYP81D8, AT3G12320, ATERF6,
AT1G12200, AT5G25450, AT4G28460, NILR1, HSP70, APRR9, Fes1A and AT3G02800 (Table
2). Moreover, the heatmap figure of the top 20 up- and down-regulated genes was performed
using R-heatmap software (Fig. 4). For instance, PGPS1 and WRKY75 were all down-regulated
in five treatments, while CYP83A1 and NR1 showed up expression trend in several conditions
(Fig. 4).

GO term enrichment analysis of DEGs

To illuminate the potential biological functions of DEGs, GO annotation of the integrated DEGs
mentioned above was executed by the GOATools and GO functional enrichments of up- and
down-regulated genes with the standard of corrected P-value < 0.05 (Table S5). These results
exhibited that they were significantly enriched in multiple biological processes: physiological
process (GO: 0008150), cellular physiological process (GO: 0009987), physiological response to
stimulus (GO: 0050896), response to biotic/abiotic stress (GO: 0006950) and so on (Fig. 5a).
Meanwhile, the cellular component exhibited a close correlation with the cellular (GO: 0005575)
and extracellular components (GO: 0005576) (Fig. 5a). As for the 59 up-regulated genes, they
showed a close correlation with membrane, such as the membrane part (GO: 0044425), intrinsic
component of membrane (GO: 0031224), membrane (GO: 0016020), integral component of
membrane (GO: 0016021) and so on (Table 3). In terms of the 109 down-regulated genes, they
were significantly enriched in multiple biological processes related to environment stress; for
example, in response to stimulus (GO: 0050896), in response to stress (GO: 0006950), in
response to chemicals (GO: 0042221) and so on (Table 3). Moreover, the GO term enrichments
of integrated DEGs were mainly enriched in response to chemicals, abiotic stimulus, oxygen-
containing compounds, organic substances, external stimulus and so on, all of which are
involved with plant functions in response to stress (Fig. 5b).

KEGG pathway analysis of DEGs

To better understand the function enrichment of the identified DEGs, the KOBAS online analysis
database was used. The results exhibited that the most significantly enriched pathways of the
DEGs are mainly involved with protein degradation, such as bisphenol degradation, polycyclic
aromatic hydrocarbon degradation, limonene and pinene degradation, aminobenzoate
degradation and so on (Table S6 and Fig. 6). Moreover, KEGG pathway analysis demonstrated
that the DEGs were significantly enriched in the estrogen signaling pathway, zeatin biosynthesis,
measles, antigen processing and presentation, MAPK signaling pathway and nitrogen
metabolism (Table S6 and Fig. 6).

PPI network and modules analysis
In order to further investigate the interactions and networks of these DEGs, the PPI network was identified using the STRING database and constructed using Cytoscape software, which consisted of 111 nodes and 402 interactions (Fig. 7, Table S7 and S8). Identification of candidate hub nodes generally are needed to calculate the topological features, including degree (Williams and Del Genio 2014) and betweenness (Agryzkov et al. 2014). The importance degree of a gene is proportional to the size of the two quantitative values in this network. Therefore, 9 candidate hub nodes were preliminary selected, namely nematode-induced LRR-RLK 1 (NILR1), 3-phosphatidyl-1'-glycerol-3'-phosphate synthase 1 (PGPS1), WRKY DNA-binding protein 33 (WRKY33), cytochrome bc1 synthase 1 (BCS1), pheromone receptor-like protein (AR781), “cytochrome P450, family 81, subfamily D, polypeptide 8” (CYP81D8), nitrate reductase 1 (NRI), eukaryotic aspartyl protease 1 (EAP1) and MYB domain protein 15 (MYB15) (Fig. 7 and Table S8).

Expression analysis of screened key genes under Cd, Pb, Cu, Zn and Cr heavy metal stresses

In order to better calculate the reliability of the preliminary selected results, the RT-qPCR analysis of 20 candidate genes under different heavy metal stresses contained mentioned above (Cd, Pb and Cu) and no mentioned above (Zn and Cr) was performed. As expected, these genes showed up- or down-regulated trends in one or several heavy metal treatments (Fig.8). Specially, most genes have obvious high expression levels under Cu condition, while moderate down-regulated under Pb and Cr treatments (Fig.8). Moreover, several genes exhibited distinct down-regulated under most situation, for example, HSP70, AT5G52750, BCS1 and MYB15 (Fig.8). Our results indicated that these genes selected above should respond to heavy metal stress in plants and it is possible to use them as biomarker.

Discussion

Uptake and analyses of DEGs from GEO datasets

Microarray analysis of gene expression profiles is widely used in distinguishing disease-related
genes and biological pathways. However, such studies on heavy metal stresses have been scarce to date. Thus, in the present study, we identified 168 overlapping DEGs, including 109 down-regulated and 59 up-regulated genes, in the eleven microarray datasets involving heavy metal stresses (Table 2). Moreover, the GO analysis results suggested that the overlapping genes were mostly involved in the physiological process, cellular physiological process, response to biotic/abiotic stress and physiological response to stimulus at the levels of biological processes (Fig. 5a). For the up-regulated genes, their functions are mainly associated with the membrane, including the membrane part, intrinsic component of membrane, membrane, integral component of membrane and so on (Table 3). In terms of the down-regulated genes, they mainly play important roles in various responses to environmental stresses, including response to stimulus, response to stress, and response to chemicals (Table 3). Furthermore, KEGG pathway enrichment analysis showed that the overlapping DEGs were enriched significantly within protein degradation, including bisphenol degradation, polycyclic aromatic hydrocarbon degradation, limonene and pinene degradation, and aminobenzoate degradation, which indicated these gene might be important in detoxication and transport of heavy metals (Table S6 and Fig. 6). Additionally, the estrogen signaling pathway, zeatin biosynthesis, MAPK signaling pathway, nitrogen metabolism, phenylpropanoid biosynthesis were analyzed as the major pathways of the important modules of overlapping DEGs. A recent study has shown that proteins associated with oxygen metabolism, phenylpropanoid biosynthesis, and redox reaction were resistant to stresses such as high temperature, chilling, light and wounding (Vogt 2010). Likewise, many plant M KK genes are induced by abiotic stresses, including wounding, drought, genotoxicity, cold, osmosis, high salinity, heat, and oxidative and UV-B treatment (Jiang and Chu 2018). Another study has shown that plants can respond to heavy metal stress by induction of several different MAPK pathways, and that excessive copper and cadmium ions lead to distinct cellular signaling mechanisms in roots (Jonak et al. 2004). These enriched pathways provide insights into the molecular mechanism of heavy metal uptake, transport and metabolism. Therefore, it can help in the development of new biological detection strategies.
Identification of candidate core genes under heavy metal stresses

We also identified nine major hub genes according to the PPI network and our experimental validation, namely NILR1, PGPS1, WRKY33, BCS1, AR781, CYP81D8, NRI, EAP1 and MYB15 (Fig.7 and Fig.8). As is all known, plant activators are chemicals that induce plant defense responses to a broad spectrum of pathogens. NILR1, a new potential plant activator (PPA) with high expression levels after PPA treatment, enhanced plant defense ability against pathogen invasion through the plant redox system (Matsushima and Miyashita 2012). Moreover, NILR1, a Leu-rich repeat transmembrane receptor protein kinase (LRR-RLK), was found recently in human mitochondria (Heazlewood et al. 2004). Furthermore, over-expression of PGPS1 can enhance tolerance to oxidative stress in transgenic Arabidopsis plants (Luhua et al. 2008) and plays a role in early transcriptional defense responses and reactive oxygen species (ROS) production in Arabidopsis cell suspension culture under high-light conditions (Gonzalez-Perez et al. 2011). While ROS function as signal transduction molecules in the acclimation process of plants when exposed to abiotic stress factors, such as drought, heat, salinity and high light (Choudhury et al. 2017). It is known to all that LRR-RLK genes are often the first to perceive external environmental changes through general ROS production, Ca$^{2+}$ signature, etc. while the toxic effects of heavy metals usually cause ROS production. Hence, it could be understood that NILR1 and PGPS1 responds to environmental stress, especially heavy metal stresses.

Over-expression of WRKY33 can increase tolerance to NaCl in Arabidopsis, while increasing sensitivity to ABA (Jiang and Deyholos 2009). In addition, WRKY33 negatively regulated ABA signaling in response to pathogenic bacteria (Liu et al. 2015). Furthermore, WRKY33 that is induced by pathogen infection, salicylate signaling or the paraquat herbicide that generates activated oxygen species in exposed cells, is an important transcription factor that plays a critical role in response to necrotrophic pathogens through interaction with ATG18a (Zheng et al. 2006, Lai et al. 2011). BCS1 is re-annotated as ATPase OM66 (Outer Mitochondrial membrane protein of 66 kDa) because it harbors the outer mitochondrial membrane and lacks the BCS1 domain.
AtOM66 over-expression in transgenic plants leads to more tolerance to drought stress, accelerated cell death rates, increased SA content and more susceptibility to the necrotrophic fungus (Zhang et al. 2014). It is interesting that AtOM66 and AtWRKY33 are involved with the transcriptional response to MV (methyl viologen) which is triggered by chloroplast-generated superoxide signaling (Van Aken et al. 2016), and had an interaction in the PPI network (Fig. 7). Moreover, they are also involved in the transcriptional innate immune response to flg22 (Navarro et al. 2004). AR781 is involved in the early elicitor signaling events which occur within minutes and include ion fluxes across the plasma membrane, activation of MPKs and the formation of ROS related to PGPS1 and WRKY33 mentioned above (Benschop et al. 2007). CYP81D8 is located in the ER (Dunkley et al. 2006), which is consistent with the results of KEGG enriched analysis (Table S6 and Fig. 6). Additionally, CYP81D8, which are KAR1 (Karrikins) up-regulated genes, are enriched for light-responsive transcripts during germination and seedling development in A. thaliana (Nelson et al. 2010).

NR1 (also called NIA1) that mediate NO synthesis in plants are critical to abscisic acid (ABA)-induced stomatal closure of guard cells (Desikan et al. 2002). Specifically, NR1 and NR2 control stomatal closure by altering genes of core ABA signaling components to regulate K+ in currents and ABA-enhanced slow anion currents in Arabidopsis (Zhao et al. 2016). Moreover, the activity of NR1 can be dramatically increased by being sumoylated by the E3 SUMO ligase AtSIZ1 (Park et al. 2011), while its nitrate-responsive expression was controlled by its regulatory region, including the 3'-untranslated region, and 5'-and 3'-flanking sequences (Konishi and Yanagisawa 2011). EAP1 that has aspartic-type endopeptidase activity evolved in response to their environments and ecosystems through an investigated proteome-wide binary protein-protein interaction network (Braun et al. 2011). MYB proteins are a superfamily of transcription factors that play important roles in many physiological processes and defense responses, such as salt stress, ethylene, auxin, jasmonic acid, chitin and so on (Chen et al. 2006). MYB15 is phosphorylated by MPK6, negatively regulating the expression of CBF (C-repeat-binding factor) genes which are required for freezing tolerance in Arabidopsis (Kim et al. 2017). MYB15, SIZ1,
HOS1 (a RING-type ubiquitin E3 ligase) and ICE1 (MYC-like basic helix-loop-helix transcription factor) form a dynamic regulation network in response to freezing stress in Arabidopsis (Miura et al. 2007). In addition, over-expression of MYB15 confers drought and salt tolerance in Arabidopsis, which is possibly performed by enhancing the expression levels of the ABA biosynthesis and signaling related genes and those stress-protective proteins (Ding et al. 2009). Furthermore, MYB15 also controls defense-induced basal immunity and lignifications that are used in the conserved basal defense mechanism in the plant innate immune response (Chezem et al. 2017) and regulates stilbene biosynthesis involvement with MYB14 in grapevines whose key enzymes responsible for resveratrol biosynthesis are stilbene synthases (STSs) (Holl et al. 2013).

Comparison with other existing related high-throughput methods

To date, a variety of high-throughput methods for identifying key signaling or pathways have been developed by investigators. They all can accurately detect only based on different models or systems. For example, drug-induced adverse events prediction combining chemical structure (CS) and gene expression (GE) features which is from the Library of Integrated Network-based Cellular Signatures (LINCS) L1000 dataset has been proposed and validated(Wang et al. 2016). Such as, WRKY, MYB, NR1 and NILR have been found in this database, which indicated that the results identified were reliable (Fig. 7). Quantitative structure activity relationship (QSAR) models together with the state-of-the-art machine learning techniques is faster and cheaper than large-scale virtual screening methods to identify the chemical compounds (Soufan et al. 2018). Another novel multi-label classification (MLC) technique using Bayesian active learning to mine large high-throughput screening assays has been proposed (Soufan et al. 2016). Moreover, a reduced transcriptome approach to monitor potential effects by environmental toxicants at genome-scale using zebrafish embryo test was also developed, whose reliability was assessed by RNA-ampliseq technology to identify DEGs(Wang et al. 2018). Furthermore, previous study have usually focused on the aspects of cancer diagnosis and treatment using integrated bioinformatics analyses, with few other related research (Cao et al. 2018, Zhan et al. 2018).
While we also propose a novel computational method to identify hub genes based on the same DEGs under different status at genome-scale. Subsequently, we verified the feasibility of our method through quantitative analysis of key gene expression (Fig. 8). As expected, almost all genes showed differently expression under one or several heavy metal stresses (Fig.8). The analysis results indicated that our method is feasible for screening hub genes, and can be used as an effective supplementary tool for future ecological restoration research using traditional methods.

Conclusion

A total of 168 overlapping DEGs were screened from 11 GEO datasets using integrated bioinformatics analysis approaches, including 59 up-regulated genes and 109 down-regulated genes. GO and KEGG pathway enrichment analysis revealed that DEGs were mainly enriched in nitrogen metabolism, polycyclic aromatic hydrocarbon degradation, antigen processing and presentation, MAPK signaling pathway and phenylpropanoid biosynthesis in plant responses to stress, which can provide a theoretical basis for studying the biological processes of heavy metals. Moreover, we successfully constructed a PPI network of DEGs underlying heavy metals and identified nine core genes (*NILR1, PGPS1, WRKY33, BCS1, AR781, CYP81D8, NR1, EAP1* and *MYB15*) which might be involved in the response to abiotic stress factors, particularly heavy metals and experimental validation were obtained the similar expression profiles under several heavy metal treatments, even no mentioned above (Cr and Zn). These findings would provide some clues for the future detection of heavy metal pollutants in water and soil. However, further molecular biological experimental studies are urgently required to validate the functions of candidate hub genes associated with heavy metals because our study was only performed based on data analysis.

Supplementary data

Fig.S1. Standardization for other samples included GEO data. (A) standardization of GSE49037 data of 198; (B)The standardization of GSE49037 data of GPL137; (C)The standardization of GSE55436 data of
The standardization of GSE55436 data of GPL174; (D) The standardization of GSE90701 data; (G) The standardization of GSE22114 data; (H) The standardization of 13114 data of GPL177; (I) The standardization of 13114 data of GPL178. The blue bar represents the data before normalization, and the red bar represents the normalized data.

Fig. S2. Differential expression of other data two sets of samples. (A) The volcano plot of GSE49037 data of 198; (B) The volcano plot of GSE49037 data of GPL137-1; (C) The volcano plot of GSE49037 data of GPL137-2; (D) The volcano plot of GSE55436 data of GPL174; (E) The volcano plot of GSE55436 data of GPL189; (F) The volcano plot of GSE94314 data of b; (G) The volcano plot of GSE94314 data of c; (H) The volcano plot of GSE90701 data of c; (I) The volcano plot of 90701 data of g; (J) The volcano plot of 22114 data; (K) The volcano plot of 13114 data of a; (L) The volcano plot of 13114 data of b. The red points represent up-regulated genes screened on the basis of |fold change|>2.0, P-value<0.05. The green points represent down-regulation of the expression of genes screened on the basis of |fold change|>2.0, P-value<0.05. The black points represent genes with no significant difference. FC is the fold change.

Fig. S3. Hierarchial clustering heatmap of DEGs screened on the basis of |fold change|>2.0, and P-value<0.05.

(A). The heatmap of GSE49037 data of GPL198 (As treatment); (B) The heatmap of GSE49037 data of GPL137 (As treatment); (C) The heatmap of GSE55436 data of GPL174 (Au treatment); (D) The heatmap of GSE55436 data of GPL189 (Au treatment); (E) The heatmap of GSE94314 data of b (Cd treatment); (F) The heatmap of GSE94314 data of c (Cd treatment); (G) The heatmap of GSE90701 data of c (Cd treatment); (H) The heatmap of GSE90701 data of g (Cd treatment); (I) The heatmap of 22114 data (Cd treatment); (J) The heatmap of 104916 data of c (Cu treatment); (K) The heatmap of 104916 data of s (Cu treatment); (L) The heatmap of 104916 data (Cu treatment).

Table S1. Information for all samples included in public GEO datasets downloaded from NCBI. The detailed information for 11 GEO datasets was shown, including Sample GEO accession, Sample platform id, Genotype, Tissue, Age, Treatment, Time, Ecotype, Extracted molecule and Data Processing.

Table S2. The list of RT-qPCR primers for candidate genes in *A. thaliana* was shown.

Table S3. Information for input -log₂FC of the 168 filtered DEGs by the RRA analysis (|log₂FC| ≥ 1, P value < 0.05).
Table S4. Information for P-value of the 168 filtered DEGs by the RRA analysis (|log2FC| ≥ 1, P value < 0.05).

Table S5. GO enrichment analysis of the overlapping DEGs.

Table S6. KEGG pathway enrichment analysis of the overlapping DEGs was performed.

Table S7. Information for PPI network from the 168 filtered DEGs by the STRING database analysis.

Table S8. Topological features of all nodes in the PPI network of DEGs.

Figure legends

Fig.1. Standardization for all samples included GEO datasets. (A-B) The standardization of GSE31977 data; (C-D) The standardization of GSE46958 data; (E-F) The standardization of GSE19245 data; (G-H) The standardization of GSE104916 data; (I-J) The standardization of GSE65333 data. The blue bar represents the data before normalization, and the red bar represents the normalized data.

Fig.2. Differential expression of data two sets of samples. (A) GSE31977 data; (B) GSE46958 data; (C) GSE19245 data; (D) GSE104916 data; (E) GSE65333 data. The red points represent up-regulated genes screened on the basis of |fold change|>2.0, P-value<0.05. The green points represent down-regulated genes screened on the basis of |fold change|>2.0, P-value<0.05. The black points represent genes with no significant difference. FC is the fold change.

Fig.3. Hierarchical clustering heatmap image of DEGs screened on the basis of |fold change|>2.0, and P-value<0.05. (A) GSE31977 data (As treatment); (B) GSE46958 data (Au treatment); (C) GSE19245 data (Cd treatment); (D) GSE13114 data (Cu treatment); (E) GSE65333 data (Pb treatment).

Fig.4. The LogFC heatmap image of each kind of treatment. The value in the box is the logFC value, and "NA" represent the P-value >=0.05. DEGs are from integration of different
experiments data by RRA method. Notes: The value in the box is the logFC value, and "NA" represent the P-value >=0.05. The column 1-3 are from GSE31977, the column 4-5 are from GSE49037, the column 6 is from GSE46958, the column 7-10 are from GSE19245, the column 11 is from GSE22114, the column 12-13 are from GSE94314, the column 14-15 are from GSE90701, the column 16-18 are from GSE104916.

Fig.5. GO enrichment analysis of the screened DEGs. (A) GO enrichment divided DEGs into three functional group: molecular function, biological processes, and cell composition. (B) GO enrichment significance items of DEGs in different functional groups.

Fig.6. KEGG enrichment analysis of the screened DEGs was performed. The abscissa is the Rich Factor, and the ordinate is the KEGG pathways ID. Circle size represents the number of genes, and circle color represents the P-value.

Fig.7. PPI network of identified DEGs was constructed by the STRING database. Circles represent genes, lines represent the interaction of proteins between genes, and the results within the circle represent the structure of proteins. Line thickness and circle color represents the degree of significance between the proteins.

Fig.8. Experimental validation of selected candidate key genes was proposed.

Table 1. Detailed information about GEO data were showed in this study.

Table 2. Screening DEGs in *A. thaliana* treated with heavy metal by integrated GEO data.

Table 3. GO analysis of DEGs associated with *A. thaliana* treated by heavy metal.

References

Agryzkov, T., J. L. Oliver, L. Tortosa, and J. Vicent. 2014. A new betweenness centrality measure based on an algorithm for ranking the nodes of a network. Applied Mathematics and Computation 244:467-478.

Arenhart, R. A., M. Schunemann, L. B. Neto, R. Margis, Z. Y. Wang, and M. Margis-Pinheiro. 2016. Rice ASR1 and ASR5 are complementary transcription factors regulating aluminium responsive genes. Plant Cell and Environment 39:645-651.
Benschop, J. J., S. Mohammed, M. O'Flaherty, A. J. R. Heck, M. Slijper, and F. L. H. Menke. 2007. Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis. Molecular & Cellular Proteomics 6:1198-1214.

Bounakhla, M., K. Embarch, M. Tahri, B. Baghdad, M. Naimi, A. Bouabdli, P. Sonnet, Z. Revay, and T. Belgya. 2012. PGAA metals analysis in tailings in Zaida abandoned mine, high Moulouya, Morocco. Journal of Radioanalytical and Nuclear Chemistry 291:129-135.

Braun, P., A. R. Carvunis, B. Charloteaux, M. Dreze, J. R. Ecker, D. E. Hill, F. P. Roth, M. Vidal, M. Galli, P. Balumuri, V. Bautista, J. D. Chesnut, R. C. Kim, C. de los Reyes, P. Gilles, C. J. Kim, U. Matrubutham, J. Mirchandani, E. Olivares, S. Patnaik, R. Quan, G. Ramaswamy, P. Shinn, G. M. Swamilingiah, S. Wu, J. R. Ecker, M. Dreze, D. Byrdsong, A. Dricot, M. Duarte, F. Gebreab, B. J. Gutierrez, A. MacWilliams, D. Monachello, M. S. Mukhtar, M. M. Poulin, P. Reichert, V. Romero, S. Tam, S. Waaijers, E. M. Weiner, M. Vidal, D. E. Hill, P. Braun, M. Galli, A. R. Carvunis, M. E. Cusick, M. Dreze, D. E. Hill, C. Lurin, T. Milenkovic, J. Moore, M. S. Mukhtar, S. J. Pevzner, N. Przulj, S. Rabello, E. A. Rietman, T. Rolland, F. P. Roth, B. Santhanam, R. J. Schmitz, W. Spooner, J. Stein, M. Tasan, J. Vandenhaute, D. Ware, P. Braun, M. Vidal, P. Braun, M. Carvunis, B. Charloteaux, M. Dreze, M. Galli, M. Vidal, and A. I. M. Co. 2011. Evidence for Network Evolution in an Arabidopsis Interactome Map. Science 333:601-607.

Cao, L., Y. Chen, M. Zhang, D. Q. Xu, Y. Liu, T. L. Liu, S. X. Liu, and P. Wang. 2018. Identification of hub genes and potential molecular mechanisms in gastric cancer by integrated bioinformatics analysis. PeerJ 6:e5180.

Chen, Y. H., X. Y. Yang, K. He, M. H. Liu, J. G. Li, Z. F. Gao, Z. Q. Lin, Y. F. Zhang, X. X. Wang, X. M. Qiu, Y. P. Shen, L. Zhang, X. H. Deng, J. C. Luo, X. W. Deng, Z. L. Chen, H. Y. Gu, and L. J. Qu. 2006. The MYB transcription factor superfamily of arabidopsis: Expression analysis and phylogenetic comparison with the rice MYB family. Plant Molecular Biology 60:107-124.

Chezem, W. R., A. Memon, F. S. Li, J. K. Weng, and N. K. Clay. 2017. SG2-Type R2R3-MYB Transcription Factor MYB15 Controls Defense-Induced Lignification and Basal Immunity in Arabidopsis. Plant Cell 29:1907-1926.
Choudhury, F. K., R. M. Rivero, E. Blumwald, and R. Mittler. 2017. Reactive oxygen species, abiotic stress and stress combination. Plant Journal 90:856-867.

Desikan, R., R. Griffiths, J. Hancock, and S. Neill. 2002. A new role for an old enzyme: Nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 99:16314-16318.

Ding, Z. H., S. M. Li, X. L. An, X. J. Liu, H. M. Qin, and D. Wang. 2009. Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in Arabidopsis thaliana. Journal of Genetics and Genomics 36:17-29.

Duan, Q. N., C. Flynn, M. Niepel, M. Hafner, J. L. Muhlich, N. F. Fernandez, A. D. Rouillard, C. M. Tan, E. Y. Chen, T. R. Golub, P. K. Sorger, A. Subramanian, and A. Ma'ayan. 2014. LINCS Canvas Browser: interactive web app to query, browse and interrogate LINCS L1000 gene expression signatures. Nucleic Acids Research 42:W449-W460.

Dunkley, T. P. J., S. Hester, I. P. Shadforth, J. Runions, T. Weimar, S. L. Hanton, J. L. Griffin, C. Bessant, F. Brandizzi, C. Hawes, R. B. Watson, P. Dupree, and K. S. Lilley. 2006. Mapping the Arabidopsis organelle proteome. Proceedings of the National Academy of Sciences of the United States of America 103:6518-6523.

Gonzalez-Perez, S., J. Gutierrez, F. Garcia-Garcia, D. Osuna, J. Dopazo, O. Lorenzo, J. L. Revuelta, and J. B. Arellano. 2011. Early transcriptional defense responses in Arabidopsis cell suspension culture under high-light conditions. Plant Physiology 156:1439-1456.

Heazlewood, J. L., J. S. Tonti-Filippini, A. M. Gout, D. A. Day, J. Whelan, and A. H. Millar. 2004. Experimental analysis of the Arabidopsis mitochondrial proteome highlights signaling and regulatory components, provides assessment of targeting prediction programs, and indicates plant-specific mitochondrial proteins. Plant Cell 16:241-256.

Hei, D. Q., W. B. Jia, Z. Jiang, C. Cheng, J. T. Li, and H. T. Wang. 2016. Heavy metals detection in sediments using PGNAA method. Applied Radiation and Isotopes 112:50-54.

Holl, J., A. Vannozzi, S. Czemmel, C. D'Onofrio, A. R. Walker, T. Rausch, M. Lucchin, P. K. Boss, I. B. Dry, and J. Bogs. 2013. The R2R3-MYB Transcription Factors MYB14 and MYB15 Regulate Stilbene Biosynthesis in Vitis vinifera. Plant Cell 25:4135-4149.

Hong, C. Y., D. Cheng, G. Q. Zhang, D. D. Zhu, Y. H. Chen, and M. P. Tan. 2017. The role of
ZmWRKY4 in regulating maize antioxidant defense under cadmium stress. Biochemical and Biophysical Research Communications 482:1504-1510.

Hu, N. and B. Zhao. 2007. Key genes involved in heavy-metal resistance in Pseudomonas putida CD2. Fems Microbiology Letters 267:17-22.

Jiang, M. and Z. Q. Chu. 2018. Comparative analysis of plant MKK gene family reveals novel expansion mechanism of the members and sheds new light on functional conservation. Bmc Genomics 19:407.

Jiang, Y. and M. K. Deyholos. 2009. Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Molecular Biology 69:91-105.

Jonak, C., H. Nakagami, and H. Hirt. 2004. Heavy metal stress. Activation of distinct mitogen-activated protein kinase pathways by copper and cadmium. Plant Physiology 136:3276-3283.

Khan, R., R. Srivastava, M. Z. Abdin, N. Manzoor, and Mahmooduzzafar. 2013. Effect of soil contamination with heavy metals on soybean seed oil quality. European Food Research and Technology 236:707-714.

Kim, S. H., J. C. Jeong, Y. O. Ahn, H. S. Lee, and S. S. Kwak. 2014. Differential responses of three sweetpotato metallothionein genes to abiotic stress and heavy metals. Molecular Biology Reports 41:6957-6966.

Kim, S. H., H. S. Kim, S. Bahk, J. An, Y. Yoo, J. Y. Kim, and W. S. Chung. 2017. Phosphorylation of the transcriptional repressor MYB15 by mitogen-activated protein kinase 6 is required for freezing tolerance in Arabidopsis. Nucleic Acids Research 45:6613-6627.

Klopfenstein, D. V., L. S. Zhang, B. S. Pedersen, F. Ramirez, A. W. Vesztrocy, A. Naldi, C. J. Mungall, J. M. Yunes, O. Botvinnik, M. Weigel, W. Dampier, C. Dessimoz, P. Flick, and H. B. Tang. 2018. GOATOOLS: A Python library for Gene Ontology analyses. Scientific Reports 8:10872.

Kohli, S. K., N. Handa, A. Sharma, V. Gautam, S. Arora, R. Bhardwaj, L. Wijaya, M. N. Alyemeni, and P. Ahmad. 2018. Interaction of 24-epibrassinolide and salicylic acid regulates pigment contents, antioxidative defense responses, and gene expression in Brassica juncea L. seedlings under Pb stress. Environmental Science and Pollution.
Kolde, R., S. Laur, P. Adler, and J. Vilo. 2012. Robust rank aggregation for gene list integration and meta-analysis. Bioinformatics 28:573-580.

Konishi, M. and S. Yanagisawa. 2011. The Regulatory Region Controlling the Nitrate-Responsive Expression of a Nitrate Reductase Gene, NIA1, in Arabidopsis. Plant and Cell Physiology 52:824-836.

Lai, Z. B., F. Wang, Z. Y. Zheng, B. F. Fan, and Z. X. Chen. 2011. A critical role of autophagy in plant resistance to necrotrophic fungal pathogens. Plant Journal 66:953-968.

Li, Y., Y. Qin, W. Xu, Y. Chai, T. Li, C. Zhang, M. Yang, Z. He, and D. Feng. 2018. Differences of Cd uptake and expression of MT family genes and NRAMP2 in two varieties of ryegrasses. Environ Sci Pollut Res Int 2:018-2649.

Liu, S., B. Kracher, J. Ziegler, R. P. Birkenbihl, and I. E. Somssich. 2015. Negative regulation of ABA signaling by WRKY33 is critical for Arabidopsis immunity towards Botrytis cinerea 2100. Elife 4:e07295.

Liu, X. K., J. R. Wu, D. Zhang, Z. T. Bing, J. H. Tian, M. W. Ni, X. M. Zhang, Z. Q. Meng, and S. Y. Liu. 2018. Identification of Potential Key Genes Associated With the Pathogenesis and Prognosis of Gastric Cancer Based on Integrated Bioinformatics Analysis. Frontiers in Genetics 9:265.

Luhua, S., S. Ciftci-Yilmaz, J. Harper, J. Cushman, and R. Mittler. 2008. Enhanced tolerance to oxidative stress in transgenic Arabidopsis plants expressing proteins of unknown function. Plant Physiology 148:280-292.

Majumder, S., K. Ghoshal, D. Summers, S. M. Bai, J. Datta, and S. T. Jacob. 2003. Chromium(VI) down-regulates heavy metal-induced metallothionein gene transcription by modifying transactivation potential of the key transcription factor, metal-responsive transcription factor I. Journal of Biological Chemistry 278:26216-26226.

Matsushima, N. and H. Miyashita. 2012. Leucine-Rich Repeat (LRR) Domains Containing Intervening Motifs in Plants. Biomolecules 2:288-311.

Miura, K., J. B. Jin, J. Lee, C. Y. Yoo, V. Stirm, T. Miura, E. N. Ashworth, R. A. Bressan, D. J. Yun, and P. M. Hasegawa. 2007. SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell 19:1403-
Moradifard, S., M. Hoseinbeyki, S. M. Ganji, and Z. Minuchehr. 2018. Analysis of microRNA and Gene Expression Profiles in Alzheimer's Disease: A Meta-Analysis Approach. Scientific Reports 8:4767.

Navarro, L., C. Zipfel, O. Rowland, I. Keller, S. Robatzek, T. Boller, and J. D. G. Jones. 2004. The transcriptional innate immune response to flg22. interplay and overlap with Avr gene-dependent defense responses and bacterial pathogenesis. Plant Physiology 135:1113-1128.

Nelson, D. C., G. R. Flematti, J. A. Riseborough, E. L. Ghisalberti, K. W. Dixon, and S. M. Smith. 2010. Karrikins enhance light responses during germination and seedling development in Arabidopsis thaliana. Proc Natl Acad Sci U S A 107:7095-7100.

Park, B. S., J. T. Song, and H. S. Seo. 2011. Arabidopsis nitrate reductase activity is stimulated by the E3 SUMO ligase AtSIZ1. Nature Communications 2:400.

Peralta-Videa, J. R., M. L. Lopez, M. Narayan, G. Sauge, and J. Gardea-Torresdey. 2009. The biochemistry of environmental heavy metal uptake by plants: Implications for the food chain. International Journal of Biochemistry & Cell Biology 41:1665-1677.

Ritchie, M. E., B. Phipson, D. Wu, Y. F. Hu, C. W. Law, W. Shi, and G. K. Smyth. 2015. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research 43:e47.

Rong, L., W. Huang, S. K. Tian, X. B. Chi, P. Zhao, and F. F. Liu. 2018. COL1A2 is a Novel Biomarker to Improve Clinical Prediction in Human Gastric Cancer: Integrating Bioinformatics and Meta-Analysis. Pathology & Oncology Research 24:129-134.

Sasaki, A., N. Yamaji, K. Yokoshio, and J. F. Ma. 2012. Nramp5 Is a Major Transporter Responsible for Manganese and Cadmium Uptake in Rice. Plant Cell 24:2155-2167.

Shannon, P., A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage, N. Amin, B. Schwikowski, and T. Ideker. 2003. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research 13:2498-2504.

Socha, P., N. Bernstein, L. Rybansky, P. Meszaros, T. Galusova, N. Spiess, J. Libantova, J. Moravcikova, and I. Matusikova. 2015. Cd accumulation potential as a marker for heavy metal tolerance in soybean. Israel Journal of Plant Sciences 62:160-166.
Soufan, O., W. Ba-Alawi, M. Afeef, M. Essack, P. Kalnis, and V. B. Bajic. 2016. DRABAL: novel method to mine large high-throughput screening assays using Bayesian active learning. Journal of Cheminformatics 8:64.

Soufan, O., W. Ba-alawi, A. Magana-Mora, M. Essack, and V. B. Bajic. 2018. DPubChem: a web tool for QSAR modeling and high-throughput virtual screening. Scientific Reports 8:9110.

Subramanian, A., R. Narayan, S. M. Corsello, D. D. Peck, T. E. Natoli, X. D. Lu, J. Gould, J. F. Davis, A. A. Tubelli, J. K. Asiedu, D. L. Lahr, J. E. Hirschman, Z. H. Liu, M. Donahue, B. Julian, M. Khan, D. Wadden, I. C. Smith, D. Lam, A. Liberzon, C. Toder, M. Bagul, M. Orzechowski, O. M. Enache, F. Piccioni, S. A. Johnson, N. J. Lyons, A. H. Berger, A. F. Shamji, A. N. Brooks, A. Vrcic, C. Flynn, J. Rosains, D. Y. Takeda, R. Hu, D. Davison, J. Lamb, K. Ardlie, L. Hogstrom, P. Greenside, N. S. Gray, P. A. Clemons, S. Silver, X. Y. Wu, W. N. Zhao, W. Read-Button, X. H. Wu, S. J. Haggarty, L. V. Ronco, J. S. Boehm, S. L. Schreiber, J. G. Doench, J. A. Bittker, D. E. Root, B. Wong, and T. R. Golub. 2017. A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles. Cell 171:1437-1452.

Szklarczyk, D., J. H. Morris, H. Cook, M. Kuhn, S. Wyder, M. Simonovic, A. Santos, N. T. Doncheva, A. Roth, P. Bork, L. J. Jensen, and C. von Mering. 2017. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Research 45:D362-D368.

Van Aken, O., I. De Clercq, A. Ivanova, S. R. Law, F. Van Breusegem, A. H. Millar, and J. Whelan. 2016. Mitochondrial and Chloroplast Stress Responses Are Modulated in Distinct Touch and Chemical Inhibition Phases. Plant Physiology 171:2150-2165.

Vanacek, P., E. Sebestova, P. Babkova, S. Bidmanova, L. Daniel, P. Dvorak, V. Stepankova, R. Chaloupkova, J. Brezovsky, Z. Prokop, and J. Damborsky. 2018. Exploration of Enzyme Diversity by Integrating Bioinformatics with Expression Analysis and Biochemical Characterization. Acs Catalysis 8:2402-2412.

Vogelstein, B., N. Papadopoulos, V. E. Velculescu, S. B. Zhou, L. A. Diaz, and K. W. Kinzler. 2013. Cancer Genome Landscapes. Science 339:1546-1558.

Vogt, T. 2010. Phenylpropanoid biosynthesis. Mol Plant 3:2-20.

Wang, P. P., P. Xia, J. H. Yang, Z. H. Wang, Y. Peng, W. Shi, D. L. Villeneuve, H. X. Yu, and...
X. W. Zhang. 2018. A Reduced Transcriptome Approach to Assess Environmental Toxicants Using Zebrafish Embryo Test. Environmental Science & Technology 52:821-830.

Wang, Z. C., N. R. Clark, and A. Ma'ayan. 2016. Drug-induced adverse events prediction with the LINCS L1000 data. Bioinformatics 32:2338-2345.

Williams, O. and C. I. Del Genio. 2014. Degree Correlations in Directed Scale-Free Networks. Plos One 9:e110121.

Xie, C., X. Z. Mao, J. J. Huang, Y. Ding, J. M. Wu, S. Dong, L. Kong, G. Gao, C. Y. Li, and L. P. Wei. 2011. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Research 39:W316-W322.

Yang, G. Y., C. Wang, Y. C. Guo, Y. L. Zhao, C. P. Yang, and C. Q. Gao. 2016. Overexpression of ThVHAc1 and its potential upstream regulator, ThWRKY7, improved plant tolerance of Cadmium stress. Scientific Reports 6:18752.

Zhan, S. J., B. Liu, and L. H. Hua. 2018. Identifying genes as potential prognostic indicators in patients with serous ovarian cancer resistant to carboplatin using integrated bioinformatics analysis. Oncology Reports 39:2653-2663.

Zhang, B. T., O. Van Aken, L. Thatcher, I. De Clercq, O. Duncan, S. R. Law, M. W. Murcha, M. van der Merwe, H. S. Seifi, C. Carrie, C. Cazzonelli, J. Radomiljac, M. Hoefte, K. B. Singh, F. Van Breusegem, and J. Whelan. 2014. The mitochondrial outer membrane AAA ATPase AtOM66 affects cell death and pathogen resistance in Arabidopsis thaliana. Plant Journal 80:709-727.

Zhao, C. C., S. G. Cai, Y. Z. Wang, and Z. H. Chen. 2016. Loss of nitrate reductases NIA1 and NIA2 impairs stomatal closure by altering genes of core ABA signaling components in Arabidopsis. Plant Signaling & Behavior 11:e1183088.

Zheng, Z., S. A. Qamar, Z. Chen, and T. Mengiste. 2006. Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant Journal 48:592-605.

Zhong, M., S. F. Li, F. L. Huang, J. H. Qiu, J. Zhang, Z. H. Sheng, S. Q. Tang, X. J. Wei, and P. S. Hu. 2017. The Phosphoproteomic Response of Rice Seedlings to Cadmium Stress. International Journal of Molecular Sciences 18:2055.
Table 1 (on next page)

Detailed information about GEO data were showed in this study.
Table 1. Detailed information about GEO data were showed in this study.

Dataset	Heavy metals	Platform	Number of samples (Treatment/Control)	Ecotype	Tissue
GSE49037	As	GPL198, GPL13970	15(9/6)	Col-0	Roots
GSE31977	As	GPL198	15(9/6)	Col-0, Ws-2	Roots
GSE46958	Au	GPL198	6(3/3)	Col-0	Roots
GSE55436	Au	GPL17416, GPL18349	12(6/6)	Col-0	Roots
GSE94314	Cd	GPL198	8(4/4)	Col-0, Bur-0	Roots
GSE19245	Cd	GPL198	24(12/12)	Col-0	Roots, Shoots
GSE90701	Cd	GPL14727	8(4/4)	Col-0	Seedings
GSE22114	Cd	GPL198	6(3/3)	Col-0	Roots
GSE13114	Cu	GPL1775	12(6/6)	Col-0	Seedings
GSE104916	Cu	GPL13222	21(12/9)	Col-0	Roots, Rosettes
GSE65333	Pb	GPL12621	12(6/6)	Col-0	Roots, Shoots

Table 2 (on next page)

Screening DEGs in *A. thaliana* treated with heavy metal by integrated GEO data.
Table 2. Screening DEGs in *A. thaliana* treated with heavy metal by integrated GEO data.

DEGs	Gene names
Up-regulated	AT3G46270, ATCSLB05, AT3G19030, COL9, BCAT4, ELF4, CYP83A1, AT1G76800, AT1G61740, CLE6, AT4G01440, AT1G72200, MOT1, AT5G52790, AT4G40070, AT4G25250, EXGT-A1, NR1, AT5G19970, CYP735A2, AT3G59370, AT3G25790, PIP2-4, AT4G16447, AT1G22500, NIR1, AT5G06610, CER4, AT1G12080, AT4G31910, LAX3, AT1G33340, LCR69, UCC1, ENODL8, GA3OX1, AT4G39070, CYP93D1, AT1G21440, AT4G01140, CKX4, AT3G12900, RVE2, AT3G20015, AT1G09750, AT2G40900, AT3G23880, PIP1-5, AGP4, AT3G32040, AT2G01900, AT1G51820, AIR1, AT5G04730, AT5G42860, BT2, CYP71B2, AT5G26280, AT1G24800, AT1G24881, AT1G25055, AT1G25150, AT1G25211
Down-regulated	DIN2, WRKY75, AT4G15120, CYP81F2, AT1G73480, AT1G72900, PGPS1, AT5G06730, AT1G35910, CYP81D8, AT3G12330, ATERF6, AT1G12200, AT5G25450, AT4G28460, NILR1, HSP70, APRR9, Fes1A, AT3G02800, AT2G23270, CRK11, AT3G07090, AT5G26220, AT5G05220, ATSD11, ATGSTU4, AT1G61340, ERF2, AT5G64510, ATHSP23.6-MITO, BCS1, MFB1C, ATGSTF6, AT3G62550, AT3G09440, ZIFL1, AT1G12030, AT5G05340, PXMT1, AT5G02230, AT5G02490, ACS6, GLIP1, AT4G16260, AT5G13200, AT2G18670, AT2G18680, AT5G39110, AT5G39120, AT5G39150, AT5G39180, AT5G20820, AT5G64170, AT4G28350, AT3G47540, AT2G19310, CSLE1, CYP710A1, WRKY45, AT3G59080, CYP706A2, AT4G19810, AT4G04330, AT2G21640, ATHSFA2, AT1G72940, AT2G35730, AT4G37290, MYB51, AT1G60750, AT5G20910, AT1G72060, AR781, ATBCB, ABA1, ORG1, YLS9, AT4G15420, AT3G09405, AT5G06760, AT5G3970, ICL, AT5G51440, BCA3, SBT3.5, AT4G39830, MYB15, AT5G52750, AAC3, AT3G48510, HSP17.4, AT5G42830, AT5G48000, AT1G71140, AtPP2-A11, WRKY33, SULTR1;1, AT3G50910, AT2G36460, AT2G48090, CEJ1, CHI, AT1G14550, PAP20, AT5G14730, NAPRT2, CRK10, GRX480, AT5G39580, DMP1, AT3G12510, AT3G48450
Table 3 (on next page)

GO analysis of DEGs associated with A. thaliana treated by heavy metal.
Table 3. GO analysis of DEGs associated with *A. thaliana* treated by heavy metal.

DEGs	Term	Description	Count	P-value
Up-regulated	GO:0044425	membrane part	23	1.58E-05
	GO:0031224	intrinsic component of membrane	22	9.67E-06
	GO:0050896	response to stimulus	22	0.00316
	GO:0016020	membrane	19	0.0367
	GO:0016021	integral component of membrane	17	0.00135
	GO:0046872	metal ion binding	17	0.00487
	GO:0043169	cation binding	17	0.00499
	GO:0042221	response to chemical	15	0.000519
	GO:0046914	transition metal ion binding	14	9.27E-05
	GO:0016491	oxidoreductase activity	12	0.000621
	GO:1901700	response to oxygen-containing compound	11	0.000636
	GO:0010033	response to organic substance	11	0.00147
	GO:0009628	response to abiotic stimulus	11	0.0153
	GO:0009725	response to hormone	10	0.000345
	GO:0009719	response to endogenous stimulus	10	0.000398
	GO:0065008	regulation of biological quality	10	0.000906
	GO:0009605	response to external stimulus	9	0.00866
Down-regulated	GO:0009687	cellular process	69	0.00696
	GO:0008152	metabolic process	68	0.00512
	GO:0050896	response to stimulus	67	1.03E-06
	GO:0044237	cellular metabolic process	55	0.024
	GO:0006950	response to stress	54	7.77E-07
	GO:0042221	response to chemical	48	6.03E-07
	GO:0043231	intracellular membrane-bounded organelle	45	0.0385
	GO:0065007	biological regulation	38	0.0279
	GO:1901363	heterocyclic compound binding	38	0.0493
	GO:0097159	organic cyclic compound binding	38	0.0495
	GO:0009628	response to abiotic stimulus	37	1.04E-06
	GO:0050789	regulation of biological process	35	0.0207
	GO:1901700	response to oxygen-containing compound	34	3.87E-07
	GO:0050794	regulation of cellular process	32	0.0234
	GO:0009058	biosynthetic process	32	0.0316
	GO:0010033	response to organic substance	31	5.54E-07
	GO:0009605	response to external stimulus	30	5.16E-07
	GO:1901576	organic substance biosynthetic process	30	0.0398
	GO:000607	response to biotic stimulus	24	3.55E-07
	GO:0043207	response to external biotic stimulus	24	9.29E-07
Figure 1

Standardization for all samples included GEO datasets.

(A-B) The standardization of GSE31977 data; (C-D) The standardization of GSE46958 data; (E-F) The standardization of GSE19245 data; (G-H) The standardization of GSE104916 data; (I-J) The standardization of GSE65333 data. The blue bar represents the data before normalization, and the red bar represents the normalized data.
Figure 2

Differential expression of data two sets of samples.

(A) GSE31977 data; (B) GSE46958 data; (C) GSE19245 data; (D) GSE104916 data; (E) GSE65333 data. The red points represent up-regulated genes screened on the basis of |fold change| > 2.0, P-value < 0.05. The green points represent down-regulated genes screened on the basis of |fold change| > 2.0, P-value < 0.05. The black points represent genes with no significant difference. FC is the fold change.
Figure 3

Hierarchial clustering heatmap image of DEGs screened on the basis of |fold change|>2.0, and P-value<0.05.

(A) GSE31977 data (As treatment), (B) GSE46958 data (Au treatment), (C) GSE19245 data (Cd treatment), (D) GSE13114 data (Cu treatment), (E) GSE65333 data (Pb treatment).
Figure 4

The LogFC heatmap image of each kind of treatment.

The abscissa is the GEO ID and Lowercase letters represent one kind of content heavy metal treatment included, and the ordinate is the gene name. The value in the box is the logFC value, and "NA" represent the P-value >=0.05.

As	Au	Cd	Cu	Pb	
ATG4A462790	ATCSL1B05	ATG1919030	ATG19190044	ATG1919012	ATG19190149
ATG19190149	ATG19190135	ATG19190149	ATG19190135	ATG1919012	
ATG19190044	ATG19190044	ATG19190044	ATG19190044	ATG19190044	
ATG19190149	ATG19190149	ATG19190149	ATG19190149	ATG19190149	
ATG19190135	ATG19190135	ATG19190135	ATG19190135	ATG19190135	
ATG1919012	ATG1919012	ATG1919012	ATG1919012	ATG1919012	
ATG19190044	ATG19190044	ATG19190044	ATG19190044	ATG19190044	
ATG19190044	ATG19190044	ATG19190044	ATG19190044	ATG19190044	
ATG19190044	ATG19190044	ATG19190044	ATG19190044	ATG19190044	
ATG19190044	ATG19190044	ATG19190044	ATG19190044	ATG19190044	
ATG19190044	ATG19190044	ATG19190044	ATG19190044	ATG19190044	
Figure 5

GO enrichment analysis of the screened DEGs.

(A) GO enrichment divided DEGs into three functional group: molecular function, biological processes, and cell composition. (B) GO enrichment significance items of DEGs in different functional groups.
Figure 6

KEGG enrichment analysis of the screened DEGs was performed.

The abscissa is the Rich Factor, and the ordinate is the KEGG pathways ID. Circle size represents the number of genes, and circle color represents the P-value.
Figure 7

PPI network of identified DEGs was constructed by the STRING database.

Circles represent genes, lines represent the interaction of proteins between genes, and the results within the circle represent the structure of proteins. Line thickness and circle color represents the degree of significance between the proteins.
Experimental validation of selected candidate key genes was proposed.