The properties of wastepaper sludge ash and its generic applications

M F Azrizal1*, M N Noorsuhada1, M F P M Latif1, M F Arshad2 and H Sulaiman2

1Faculty of Civil Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang, Malaysia
2Faculty of Civil Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

*azrizal@uitm.edu.my

Abstract. Wastepaper sludge ash (WSA) is generated during the recycling of paper, which is an industrial by-product can induce pollution to the environment. Due to its effect related to pollution, a generic review on its application is required. Despite many researchers conducted in the world to resolve the application of WSA as a sustainable material, the effects of WSA as a cementitious material in its application is still limited assess. Hence, this paper presents a generic review on the effect of WSA as a cementitious material. The generic review on WSA in term of its physical properties, chemical properties, reactive properties and application of WSA in the industry was carried out. From the review on WSA properties, it is found that the WSA has good potential as one of the important materials in the construction industry especially in the production of concrete, brick, mortar, soil stabilizing additive, rigid pavement and controlled low-strength materials (CLSM).

1. Introduction

Nowadays, there are many experiments conducted in order to replace the use of cement clinker with other materials such as waste ashes and industrial by-products. The waste ashes and industrial by-products are found contain pozzolanic properties and hydraulic activities similar to the properties of cement clinker which can be used as cementitious material (CM). Recently, several types of CM can be obtained in the industry such as fly ash, wastepaper sludge ash (WSA), ground granulated blast furnace slag and silica fume. Those materials are now widely used among CM. The materials have been tested and used for various applications. Advantageous of the use of these materials are beneficial for saving of natural resource, energy and reduction of CO2 emissions in the air which causes pollution to the environment.

Since there are many wastes have been produced and can be used as CM, in this paper, only WSA would be touch in-depth. WSA is one of the industrial by-products obtain from the paper mill and paper recycling industry. Normally, in the industry of papermaking, the waste paper has been burned and the CO2 has been emitted to the air. However, more than 70 % of WSA has been used in low-value application such as land dispersion. While the remaining 30 % of WSA has been thrown into dumpsites in the United Kingdom and annually produce approximately 125,000 tons of WSA [1]. The composition and properties of WSA vary according to the type of raw material whether it is WSA that is sprayed into the bed combustion unit or the combustion state. However, the WSA contains very high
alkaline with pH 12-13. It comprises primarily of calcium, silicon and aluminum oxide. Due to its compositions and properties, generic research on the use of WSA should be driven since it beneficial to be used as construction materials.

Numerous investigations on WSA have focused on hydraulic properties, pozzolanic reactivity and potential use as a cementitious material. It has been investigated by many researchers worldwide [2 – 18]. For instance, Chiang et al. [4], Weng et al. [10] and Liew et al. [11] have investigated the use of WSA as a lightweight building brick. The potential of reuse the wastewater sludge for innovative applications in construction aggregates has been investigated by Tay et al. [5] and Yagüe et al. [8]. Since the WSA can be used for various applications, its physical properties should be taken into account which it is able to give an input on the understanding on its generic applications.

2. Physical properties

As stated earlier, the WSA is produced by burning residual paper sludge from the papermaking process consisting of mineral fillers, small cellulose fibers, water, inorganic salts and organic compounds. Due to high air content of 40 % to 70 % in WSA, it would generate problems in term of handling, combustion and transmission. The residues must be firstly dried before being processed. Hence the physical properties of the WSA should be looked in depth. As stated by Trejo et al. [19], the amount and composition of the WSA vary depending on the resulting grade, the raw materials to be used, the processing techniques and the percentage of the WSA for its application. They add that it also depends on the characteristics of paper sludge. However, Mochizuki and Yoshino Etsuro Saito [20] added that the application of WSA on soil improvement is closely related to its composition and density of the particle. Where they found that the pH range of WSA extends from almost neutral to about 12, composition and density of the particles are about 2.2 – 2.9 g/cm³ and the maximum dry density is 0.65 – 0.95 g/cm³. According to Corinaldesi et al. [21], results from the experiment found that the water absorption capacity of about 25 % and specific gravity weight in the dry saturated state (SSD) was 1720 kg/m³. They also found that from 80 μm of paper sewage, the ash was 75 μm. From investigation performed by Monosi et al. [22] on the reuse of paper mill ash in plaster blends, found that the density of WSA is equal to 1200 kg/m³; lighter than ordinary sand, which has predicted density range from 2500 kg/m³ to 2600 kg/m³. They also found that the density of the binder is in the range of 2100 kg/m³ to 3100 kg/m³, which it is commonly used in mortar production. However, other researchers found that the average specific gravity of sludge ash was 2.81 [23] and 2.60 [24].

Investigation on sludge ash as fine aggregate in the concrete mix which conducted by Khanbilvardi et al. [25] found that the sludge ash is organic content which comprises of the water content of 28 % and a specific gravity of 1.83. Ishimoto et al. [26] noted that the paper sludge contains 60 % water and 40 % solids. And the solid contains 30 % ash, the other is losing during the flaming process. Liaw et al. [3] found that the average moisture content in the paper sludge was 75.40 % and ignition loss was 70.11 %. However, after the formation of the joint ash, the flame loss was found to be 19.63 %.

Mozaffari et al. [27] found that from the SEM spectrum, the WSA particles are porous and heterogeneous as shown in Figure 1. Due to its porosity, the particle of WSA seems to be agglomerated. It is due to the presence of irregular pores and fibrous nature in the WSA. The paper pulp holds the moisture in these pores and the fibrous envelopes providing an obstacle for moisture to move towards the surface. Balwaik and Raut [28] stated that the fibrous nature gives very high energy absorbing ability and hence produce high compressive strength. Segui et al. [29] added that due to the porosity of the WSA, it can create a problem in term of its workability. It is because the ash is a similar function like cement-based materials which is open porosity; hence it absorbs more water and leads to deteriorating its workability characteristics. Even though the physical properties of the WSA give information on its suitable application, the chemical properties of the WSA should also be touched in depth.
3. Chemical properties
The main components of WSA are calcium, alumina, silica, iron oxide, with varying carbon amounts, as measured by the loss in ignition (LOI). Summary of the chemical compositions of the WSA is presented in Table 1. Major constituents of the WSA are calcium (CaO), silica (SiO$_2$) and alumina (Al$_2$O$_3$). It also has a low percentage of magnesium oxide (MgO) and iron oxide (Fe$_2$O$_3$), which is higher than the minimum requirement set in OPC and ASTM C 618 (Class N). Sulphur trioxide, alkalis and LOI of WSA are lower than that of the upper limit set by ASTM. Therefore, the WSA is potentially used as an additive like Portland cement and also can be mixed with cement. Yan et al. [30] stated that sum of the oxides of Australian de-inking sludge from recycled waste paper is over 43% where it contains 23% of titanium oxide as the main component in the waste paper sludge. The waste paper sludge is also contained chloride ions of 600 ppm to 650 ppm [31 - 32]. It also contains metals such as copper, zinc, barium, lead and chromium (30 ppm to 300 ppm) [32 - 33]. Frias et al. [31 & 34] reclaimed that the chemical composition of the WSA from any given plant is highly consistent over time.

![Figure 1. SEM spectrum of WSA][28].

Table 1. Comparing the WSA’s with ASTM C618 [46] Class-N requirements and OPC.

Chemical contain	OPC [35]	[36]	[37]	[38]	[39] [27, 40]	[41]	[42]	[43]	[34]	[44]	[30]	[45]	ASTM C618 [46]
SiO$_2$	18.7	44	32.6	32.55	25.7	25.7	28	21.9	18.05	10.79	10.69	6.97	6.42
Al$_2$O$_3$	2.2-6.3	29.2	27.3	14.13	18.9	18.9	13.2	11.2	10.14	6.82	6.74	6.9	4.14
Fe$_2$O$_3$	0.2-6.1	5.9	0.7	1.76	0.9	0.9	1.3	0.8	0.55	0.46	0.41	0.38	0.28
4SAF	79.1	60.6	48.44	45.5	45.5	45.5	35.9	28.74	18.07	17.84	14.25	10.8	4
SAF + Al$_2$O$_3$+Fe$_2$O$_3$	SAFa	N=70	min										32
CaO	60.2-68.7	4.2	27.1	37.85	43.5	43.5	45.5	14.3	19.82	25.43	24.15	9.37	-
MgO	0.3-4.8	7.8	7.1	5.47	5.2	5.2	4	4.1	2.58	0.86	0.26	0.11	1.54
SO$_3$	1.7-4.6	-	-	1.1	1.3	1.3	-	-	0.33	0.33	0.3	-	10 max
LOI	-0.3	4.6	1.8	-	1.2	0.5	5.7	46	47.62	54.34	55.71	58.8	53.8

Moreover, the WSA also contains a small number of minerals such as kaolinite and calcium carbonate, which normally used as coating agents to ensure smooth paper surfaces. Typically, the coating agent of 5 g/m2 to 20 g/m2 is depending on its quantity and paper type. The minerals that generally in the WSA are gehlenite (Ca$_2$Al$_2$SiO$_7$), lime (CaO), calcite (CaCO$_3$), quartz (SiO$_2$), merwinite (Ca$_3$Mg(SiO$_4$)$_2$) and α'-Ca$_2$SiO$_4$. Bai et al. [39] found that Gehlenite is a major mineral and gives a strong fission pattern when combined with lime. An assumption has been made that the presence of bredigit (Ca$_{14}$Mg$_{6}$(-SiO$_{38}$)) is indistinguishable from the presence of α'-Ca$_2$SiO$_4$ due to both minerals have parallel XRD patterns. Studies carried out by Villa et al. [47], Frías et al. [48] and...
Garcia et al. [49] found that the XRD analysis results are very important for WSA generators as a hydraulic binder since the lime (CaO), mayenite (Ca\textsubscript{12}Al\textsubscript{14}O\textsubscript{33}) and \(\alpha'\)-Ca\textsubscript{2}SiO\textsubscript{4} are reactive minerals in the WSA.

The metal aluminum (Al) element is also found in the WSA. It is normally contained in about 0.2 % to 0.3 % as it is often detected in waste from municipal solid waste combustion. The metallic aluminum causes swelling if the WSA is introduced into cement-based material. This is due to the reaction between Al and water with the presence of alkali in cement. The reaction releases hydrogen, which causes expansion through the determination of cement-based material containing WSA, is indicated in Equation 1 [41].

\[
2\text{Al} + 2\text{OH}^- + 2\text{H}_2\text{O} \rightarrow 2\text{AlO}_2^- + 3\text{H}_2
\] (1)

From the review on chemical properties found that the WSA is containing a lot of compositions which affect to its application. Other important properties that play important roles on the determination of its application are reactive properties.

4. Reactive properties

The WSA is also contained the reactive properties and many investigations have been performed by many researchers [42, 47, 50 - 51]. The temperature effect is also been investigated. Many researchers [42, 47, 50 - 51] found that 700 °C to 750 °C induces the formation of reactive pozzolanic material in WSA. The presence of CaO in the WSA as a hydraulic binder has negative and positive concerns for its extensive use [39]. This is because, enlargement of CaO hydration to Ca(OH)\textsubscript{2}, which results in uncertainty after setting. Boni et al. [52] found that WSA does not symbolize the major hazards of the environment in terms of the release of heavy metals.

The similarity between properties of WSA and cement can be achieved if the WSA reacts with water, sets and hardens. However, the WSA is very high-water demand due to its high porosity. At the same time, the existence of Al in the WSA is also reported to cause swelling and expansion under alkali conditions. Cracking caused by shrinkage is also another potential problem. Nonetheless, the stirring of WSA with broken sand degradable clay increases the development of strength and reduces some of the adverse effects [27 & 39]. However, it is found that small surges in compressive strength can be achieved in mortar specimen when 5 % of cement weight is replaced with WSA [53]. Hence, the reactive properties in WSA are found useful information in order to identify its suitable application. The WSA can be used as a promising material to be used in civil engineering construction applications since some investigation found that the compressive strength of the specimen can be achieved with a certain level of WSA.

5. WSA in civil engineering construction applications

There are many benefits can be obtained by utilizing the WSA in civil engineering construction application. The advantageous are can reduce the cost of disposal and less reserved area for disposal (thereby enabling other land uses and release emissions that permit requirements). Moreover, from the sale of by-product or at least offset processing and disposal costs, it is considering as cost-effective. Summary of its application based on the percentage of replacement, adopted material application and outcome is presented in Table 2. From Table 2 found that the WSA can be mixed in the application of concrete, mortar, brick, soil stabilizing additive, rigid pavement and controlled low-strength materials (CLSM). Those applications are several parts of material production that generally used in civil engineering construction.

6. Conclusion

The physical properties, chemical properties and reactive properties of the WSA have been reported. In sum, it is found that the WSA has good potential as one of the important materials in the civil engineering construction industry especially in the production of concrete, brick, mortar, soil stabilizing additive, rigid pavement and CLSM.
Table 2. Key applications identified to sustain existing growth in the utilization.

Author(s)	% of replacement	Adopted application	Outcomes
[54–64]	0–40%	Concrete & Foamed Concrete	• The replacement of WSA shows a positive effect with 5–10% ↑ the mechanical performance (compressive strength and splitting tensile strength and flexural tensile strength) by weight and with 30% ↑ its start ↓ in strength.
• ↑ fineness and consequently ↑ water absorption, it required a ↑ amount of water.			
• The use of WSA should not be ↑ than 10% by weight of the cement replaced unless mortar mixtures are judiciously proportioned.			
• The replacement does not exceed 10% WSA yield ↓ values of mechanical strength resistance, incompatible with market requirements for brick production at a firing temperature of 900 °C.			
• The ↓ heat of hydration of the waste material which generates ↓ reactions.			
• The optimum firing temperature was 950 °C. The thermal conductivity ↓ with ↑ in percentage of deinking paper mill sludge.			
• 15% deinking paper mill sludge gives the optimum strength at a firing temperature of 950°C.			
[65–67]	0–30%	Mortars Brick	• The optimum concentration of WSA to stabilize the peat soil is about 7–20% of the maximum compressive strength from 0 days to 28 days of curing periods.
• The use of WSA demonstrates the advantages of technology, economics and environmental advantages in the stabilization of sulphate soils and other clay, as an alternative to the traditional stabilizers of chalk and or Portland Cement.			
• With the addition of 10% WSA, the California Bearing Ratio (CBR) values have been fixed for stable soil for soaked and non-invasive conditions compared to control (unstable clay).			
• ↓ reactions.			
• The optimum firing temperature was 950 °C. The thermal conductivity ↓ with ↑ in percentage of deinking paper mill sludge.			
• 15% deinking paper mill sludge gives the optimum strength at a firing temperature of 950°C.			
[68–72]	2–30%	Soil stabilizing additive	• The optimum concentration of WSA to stabilize the peat soil is about 7–20% of the maximum compressive strength from 0 days to 28 days of curing periods.
• The use of WSA demonstrates the advantages of technology, economics and environmental advantages in the stabilization of sulphate soils and other clay, as an alternative to the traditional stabilizers of chalk and or Portland Cement.			
• With the addition of 10% WSA, the California Bearing Ratio (CBR) values have been fixed for stable soil for soaked and non-invasive conditions compared to control (unstable clay).			
• ↓ reactions.			
• The optimum firing temperature was 950 °C. The thermal conductivity ↓ with ↑ in percentage of deinking paper mill sludge.			
• 15% deinking paper mill sludge gives the optimum strength at a firing temperature of 950°C.			
[73–74]	0–40%	Rigid Pavement	• 2% CBR value and wheel load (P) of 30kN; Rigid pavement costs ↓ by 73.83% (relative cost).
• 30% of WSA content expressed as a large percentage of recycled concrete aggregate (RCA) is to produce a uniform mix with continuous ↑ strength.			
[75–76]	5–30%	CLSM	• 2% CBR value and wheel load (P) of 30kN; Rigid pavement costs ↓ by 73.83% (relative cost).
 • 30% of WSA content expressed as a large percentage of recycled concrete aggregate (RCA) is to produce a uniform mix with continuous ↑ strength.

↑ (Increased/High); ↓ (Decreased/Low)

Acknowledgement

The authors thank the Faculty of Civil Engineering, Universiti Teknologi MARA (UiTM) for providing the financial support for this research. The authors would like to also thank the top management of Universiti Teknologi MARA Permatang Pauh for the fee payment of this paper.

References

[1] Dunster A M 2007 Case study: Paper sludge and paper sludge ash in Portland cement manufacture Current p. 1–8.
[2] Alleman J E and Berman N A 1984 Constructive sludge management: Biobrick J. Environ. Eng. 110, 2 p. 301–311.
[3] Liaw C T Chang H L Hsu W C and Huang C R 1998 A novel method to reuse paper sludge and co-generation ashes from paper mill 58, 1–3 p. 93–102.
[4] Chiang K Y Chou P H Chien K L Chen J L and Wu C C 2009 Novel lightweight building bricks manufactured from water treatment plant sludge and agricultural waste J. Residuals Sci. Technol. 6, 4 p. 185–191.
[5] Tay J H Show K Y Hong S Y Chien C Y and Lee D J 2002 Potential reuse of wastewater sludge for innovative applications in construction aggregates Water Sci. Technol. 50, 9 p.189-196.
[6] Singh M 2002 Value added products from industrial waste Civ. Eng. Constr. Rev. 15, 36.
[7] Show K Y Tay J H Wang J Y and Hong S Y 1992 Constructive approach for sludge management–new resource from sludge Resour. Conserv. Recycl. 6, p. 191–204.
[8] Yagüe A Valls S Vázquez E Kuchinow V and Kuchinow V 2002 Use of dry sludge from waste water treatment plants as an additive in prefabricated concrete brick Mater. Construcción 52,
267 p. 31–41.

[9] Cusido J A C, Cremades L V and González M 2003 Gaseous emissions from ceramics manufactured with urban sewage sludge during firing processes Waste Manag. 23, p. 273–280.

[10] Weng C H, Lin D F and Chiang P C 2003 Utilization of sludge as brick materials Adv. Environment Res. 7, p. 679–685.

[11] Liew A G, Idris A, Samad A A, Wong C H K, Jaafar M S and Baki A M 2004 Reusability of sewage sludge in clay bricks J. Mater. Cycles Waste Manag. 6, p. 41–47.

[12] Shih P H, Wu Z Z and Chiang H L 2004 Characteristics of bricks made from waste steel slag Waste Manag. 24, p. 1043–1047.

[13] Vieira C M F, Andrade P M, Maciel G S, Vernilli F and Monteiro S N 2006 Incorporation of fine steel sludge waste into red ceramic Mater. Sci. Eng. A 427, p. 142–147.

[14] Erol M, Küç S, Küçükbayrak K and Ersoy-Mericioyhu A 2008 Comparison of the properties of glass, glass-ceramic and ceramic materials produced from coal fly ash J. Hazard. Mater. 153, p. 418–425.

[15] Alyamaç K E and Ince R 2009 A preliminary concrete mix design for SCC with marble powders Constr. Build. Mater. 23, p. 1201–1210.

[16] Cultrone G and Sebastían E 2008 Fly ash addition in clayey materials to improve the quality of solid bricks Constr. Build. Mater. 23, p. 1178–1184.

[17] Chiang K Y, Chou P H, Hua C R, Chien K L and Cheeseman C 2009 Lightweight bricks manufactured from water treatment sludge and rice husks J. Hazard. Mater. 171, p. 76–82.

[18] Montero M, Jordán M, Hernández-Crespo M and Sanfeliu T 2009 The use of sewage sludge and marble residues in the manufacture of ceramic tile bodies Appl. Clay Sci. 46, p. 404–408.

[19] Trejo D, Halmen C, Folliard K J and Du L 2005 Corrosion of metallic pipe in controlled low-strength materials-parts 1 and 2 ACI Mater. J. 102, p. 192.

[20] Mochizuki Y, Yoshino H, Saito E and Ogata T 2008 Effects of soil improvement due to mixing with paper sludge ash Fujita Tech. Res. Report 39, p. 99–109.

[21] Corinaldesi V, Moriconi G and Naik T R 2010 Characterization of marble powder for its use in mortar and concrete Constr. Build. Mater. 24, p. 113–117.

[22] Monosi S 2012 Reuse of paper mill ash in plaster blends Open Waste Manag. J. 5, p. 5–18.

[23] Tay J H 2008 Bricks manufactured from sludge J. Environ. Eng. 113, p. 278–284.

[24] Ahmad N, Ahmad Z, Rahman A A, Hamid H A and Fauzi M A A 2013 Increasing the capacity of concrete column with integrated permanent formwork using wood-wool cement board Appl. Mech. and Mater. 327, p. 1305–1309.

[25] Khanbilvardi R and Afshari S 2002 Sludge ash as fine aggregate for concrete mix J. Environ. Eng. 121, p. 633–638.

[26] Ishimoto H, Origuchi T and Yasuda M 2000 Use of papermaking sludge as new material J. Civ. Eng. 12, p. 310–313.

[27] Mozaffari E, Kinuthia J M, Bai J and Wild S 2009 An investigation into the strength development of wastepaper sludge ash blended with ground granulated blastfurnace slag Cem. Concr. Res. 39, p. 942–949.

[28] Balwaik S A and Raut S P 2011 Utilization of waste paper pulp by partial replacement of cement in concrete Int. J. Eng. Res. Appl. 1, p. 300–309.

[29] Segui P, Aubert J E, Husson B and Measson M 2012 Characterization of wastepaper sludge ash for its valorization as a component of hydraulic binders Appl. Clay Sci. 57, p. 79–85.

[30] Yan S, Sagoe-Crentsil K and Shapiro G 2012 Properties of cement mortar incorporating deinking waste-water from waste paper recycling Constr. Build. Mater. 29, p. 51–55.

[31] Frías M, Rojas M, I S, Rodríguez O, Jiménez R G and Villa R V 2008 Characterisation of calcined paper sludge as an environmentally friendly source of metakaolin for manufacture of cementitious materials Adv. Cem. Res. 20, p. 23–30.

[32] Pera J, Ambroise J and Chabanne M 2001 Transformation of wastes into complementary
cementing materials Spec. Publ. 199, p. 459–476.

[33] Monte M C, Fuente E, Blanco A and Negro C 2009 Waste management from pulp and paper production in the European Union Waste Manag. 29, 1 p. 293–308.

[34] Frias M, Rodriguez O, Nebreda B, García R and Villar-Cocíña E 2010 Influence of activation temperature of kaolinite-based clay wastes on pozzolanic activity and kinetic parameters Adv. Cem. Res. 22, p. 135–142.

[35] Kosmatka S, H Kerkhoff B and Panarese W C 2002 Design and Control of Concrete Mixtures 14th ed. United States of America: Portland Cement Association.

[36] Mun S P and Ahn B J 2001 Chemical conversion of paper sludge incineration ash into synthetic zeolite J. Ind. Eng. Chem. 7, 5 p. 292–298.

[37] Toya T, Kameshima Y, Nakajima A and Okada K 2006 Preparation and properties of glass-ceramics from kaolin clay refining waste (Kira) and paper sludge ash Ceram. Int. 32, 7 p. 789–796.

[38] Bujulu P M S, Sorta A R, Priol G and Emdal A J 2007 Potential of wastepaper sludge ash to replace cement in deep Annu. Conf. Transp. Assoc. Canada p. 1–17.

[39] Bai J, Chaipanich A, Kinuthia J M, O’Farrela M, Sabir B, W, Wild S, Lewis M H 2003 Compressive strength and hydration of wastepaper sludge ash-ground granulated blast furnace slag blended pastes Cem. Concr. Res. 33, 8 p. 1189–1202.

[40] Mozaffari E, O’Farrell M, Kinuthia J M and Wild S 2006 Improving strength development of wastepaper sludge ash by wet-milling Cem. Concr. Compos. 28, 2 p. 144–152.

[41] Segui P, Aubert J E, Husson B and Measson M 2011 Characterization of wastepaper sludge ash for its use as component for hydraulic binders Appl. Clay Sci. 57, p. 79–85.

[42] Pera J and Amrouz A A 1998 Development of highly reactive metakaolin from paper sludge Adv. Cem. Based Mater. 7, 2 p. 49–56.

[43] Banfill P and Frias M 2007 Rheology and conduction calorimetry of cement modified with calcined paper sludge Cem. Concr. Res. 37, 2 p. 184-190.

[44] Frias M, García R, Vigil R and Ferreiro S 2008 Calcination of art paper sludge waste for the use as a supplementary cementing material Appl. Clay Sci. 42, 1–2, p. 189–193.

[45] Sutcu M and Akkurt S 2009 The use of recycled paper processing residues in making porous brick with reduced thermal conductivity Ceram. Int. 35, 7 p. 2625–2631.

[46] ASTM C618-19 2012 Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete West Conshohocken, PA: American Society for Testing and Materials (ASTM) International.

[47] Villa R V, Frias M, Rojas M I S, Vegas I and García R 2007 Mineralogical and morphological changes of calcined paper sludge at different temperatures and retention in furnace Appl. Clay Sci. 36, 4 p. 279–286.

[48] Frias M, Rodríguez O, Vegas I and Vigil R 2008 Properties of calcined clay waste and its influence on blended cement behavior J. Am. Ceram. Soc. 91, 4 p. 1226–1230.

[49] Kontrec J, Ukrainczyk M, Babić-Ivančić V and Kralj D 2011 Synthesis of calcium carbonate by semicontinuous carbonation method in the presence of dextran Croat. Chem. Acta 84, p. 25–32.

[50] García R, Villa R V, Rodríguez O and Frias M 2009 Mineral phases formation on the pozzolan/lime/water system Appl. Clay Sci. 43, 3–4 p. 331–335.

[51] Frias M, Sabador E, Ferreiro S, Rojas M I S, García R and Vigil R 2008 Influencia de la activación de un residuo arcilloso de la industria papelera en el comportamiento de matrices de cemento Mater. Construcción 58, 292 p. 67-69.

[52] Bai M, D, Cheng S S and Chao Y C 2004 Effects of substrate components on hydrogen fermentation of multiple substrates Water Sci. Technol. 50, 8 p. 209–216.

[53] Fava G, Ruello M L and Corinaldesi V 2011 Paper mill sludge ash as supplementary cementitious material J. Mater. Civ. Eng. 23, p. 772–776.

[54] Zubaidi A, B A, Ali N M and Nasser A K 2018 Study of the effect of recycled ash wastepaper on
the mechanical properties of green concrete [IOP Conf. Ser. Mater. Sci. Eng. 454, 1.
[55] Abishek G L 2017 Experimental study on behaviour of paper sludge concrete Inst. Integr. Omi. Appl. Biotechnol. 8, 3 p. 73–78.
[56] Pandya A and Joshi T 2017 Gainful utilization of hypo sludge in concrete Int. J. Civ. Eng. Technol. 8, 2 p. 128–134.
[57] Teja K S Kumar K U and Sarath P V 2017 Hypo sludge as a partial replacement of cement in concrete Int. J. Civ. Eng. Technol. 8, 4 p. 1645–1651.
[58] Gayatri A and Lavanya P 2017 Effect of low temperatures on strength of concrete by partial replacement of cement with waste paper sludge Int. J. Innov. Res. Sci. Technol. 4, 1 p. 141–146.
[59] Fauzi M A Sulaiman H Ridzuan A R M and Azmi A N 2017 The effect of recycled aggregate concrete incorporating waste paper sludge ash as partial replacement of cement AIP Conf. Proc. 1774, 030007, p. 1-9.
[60] Varkey C John J P Neema V N and Joshy N 2016 Study on utilization of waste paper sludge by partial replacement of cement in concrete Int. Res. J. Eng. Technol. 3, 5 p. 589-592.
[61] Pitroda P J Zala L B and Umrigar F S 2013 Innovative use of paper industry waste (hypo sludge) in design mix concrete Int. J. Adv. Eng. Technol. 4, 1 p. 31–35.
[62] Sajad A Iqbal M M Bashir W M and Rafiq A 2013 Study of concrete involving use of waste paper sludge ash as partial replacement of cement IOSR J. Eng. 3, 11 p. 06–15.
[63] Pitroda J 2015 Gainful utilization of fly ash and hypo sludge in concrete Int. J. Constr. Res. Civ. Eng. 1, 1 p. 1–7.
[64] Sharipudin S S Ridzuan R M and Saman H M 2012 Performance of foamed concrete with waste paper sludge ash (WPSA) and fine recycled concrete Int. Sustain. Civ. Eng. J. 1, 2 p. 19–27.
[65] Azevedo A R G Alexandre J Xavier G C and Pedroti L G 2018 Recycling paper industry effluent sludge for use in mortars: A sustainability perspective J. Clean. Prod. 192, p. 335–346.
[66] Singh S K Kulkarni S Kumar V and Vashistha P 2018 Sustainable utilization of deinking paper mill sludge for the manufacture of building bricks J. Clean. Prod. 204, p. 321–333.
[67] Goel G and Kalamdhad A S 2017 An investigation on use of paper mill sludge in brick manufacturing Constr. Build. Mater. 148, p. 334–343.
[68] Ingunza M P D Pereira K L A and Junior O F S 2014 Use of sludge ash as a stabilizing additive in soil-cement mixtures for use in road pavements J. Mater. Civ. Eng. 27, 7 p. 06014027.
[69] Khalid N Mukri M and Kamarudin F 2013 Experimental studies on fibrous peat stabilized using waste paper sludge ash (WPSA) Electron. J. Geotech. Eng. 13, B p. 1613–1621.
[70] Segui P Aubert J E Husson B and Measson M 2013 Valorization of wastepaper sludge ash as main component of hydraulic road binder Waste and Biomass Valorization 4, 2 p. 297–307.
[71] Lisbona A Vegas I Ainchil J and Rios C 2011 Soil stabilization with calcined paper sludge: laboratory and field tests J. Mater. Civ. Eng. 24, 6 p. 666–673.
[72] Rahmat M N and Kinuthia J M 2011 Effects of mellowing sulfate-bearing clay soil stabilized with wastepaper sludge ash for road construction Eng. Geol. 117, 3–4 p. 170–179.
[73] Pitroda J Zala L B and Umrigar F S 2013 Durability of concrete with partial replacement of cement by paper industry waste (Hypo Sludge) Int. J. Innov. Technol. Explore. Eng. 2, 3 p. 101–104.
[74] Pitroda J Zala L B and Umrigar F S 2013 Utilization of hypo sludge by eco-efficient development of rigid pavement in rural roads Int. J. Eng. Trends Technol. 4, 9 p. 3994–4000.
[75] Ridzuan A R M Fauzi M A Ghazali E Arshad M F and Fauzi M A M 2011 Strength assessment of controlled low strength materials (CLSM) utilizing recycled concrete aggregate and waste paper sludge ash IEEE Coll. Humanities, Sci. Eng. CHUSER 2011, p. 208–211.
[76] Azmi A N Fauzi M A Nor M D Ridzuan A R M and Arshad M F 2016 Production of controlled low strength material utilizing waste paper sludge ash and recycled aggregate concrete MATEC Web Conf. 47, p. 1-8.