Congruences of a square matrix and its transpose

Roger A. Horn a,∗, Vladimir V. Sergeichuk b

Department of Mathematics, University of Utah, 155 South 1400 East, Room 233, Salt Lake City, UT 84112, USA
Institute of Mathematics, Tereshchenkivska 3, Kiev, Ukraine

Received 12 January 2004; accepted 24 March 2004

Submitted by R.A. Brualdi

Abstract

It is known that any square matrix A over any field is congruent to its transpose: \(A^T = S^T A S \) for some nonsingular S; moreover, S can be chosen such that \(S^2 = I \), that is, S can be chosen to be involutory. We show that \(A \) and \(A^T \) are ∗congruent over any field \(\mathbb{F} \) of characteristic not two with involution \(a \mapsto \bar{a} \) (the involution can be the identity): \(A^T = \bar{S}^T A S \) for some nonsingular \(\bar{S} \); moreover, \(S \) can be chosen such that \(\bar{S}S = I \), that is, \(S \) can be chosen to be coninvolutory. The short and simple proof is based on Sergeichuk’s canonical form for ∗congruence [Math. USSR, Izvestiya 31 (3) (1988) 481]. It follows that any matrix \(A \) over \(\mathbb{F} \) can be represented as \(A = E B \), in which \(E \) is coninvolutory and \(B \) is symmetric.

© 2004 Elsevier Inc. All rights reserved.

AMS classification: 15A21

Keywords: Congruence; Sesquilinear forms; Canonical forms

1. Introduction

We work over a field \(\mathbb{F} \) of characteristic not two with involution \(a \mapsto \bar{a} \), that is, a bijection (perhaps the identity) on \(\mathbb{F} \) such that

\[
\bar{a} + \bar{b} = \bar{\bar{a} + b}, \quad \bar{a}b = \bar{\bar{a}b}, \quad \bar{a} = a.
\]
For each matrix $A = [a_{ij}]$ over F, we define $A^* = A^T = [\bar{a}_{ji}]$. If $S^*AS = B$ for some nonsingular matrix S, then A and B are said to be $*$congruent (or congruent if the involution $a \mapsto \bar{a}$ is the identity). Except for (8), all our matrices are over F.

In 1980, Gow used Riehm’s classification of bilinear forms [4] to show that any nonsingular square matrix A over any field is congruent to its transpose: $A^T = S^TAS$ for some nonsingular S; moreover, Gow showed that S can be chosen such that $S^2 = I$, that is, S can be chosen to be involutory [3]. Independently at about the same time, Yip and Ballantine obtained the same theorem without the hypothesis of nonsingularity [8]. Apparently unaware of [3,8], Đoković and Ikramov (using Riehm’s classification again [4,5]) showed in 2002 that A and A^T are congruent [1].

We are interested in a broader result: Over F, any square matrix A is $*$congruent to A^T; moreover, a matrix S that gives the $*$congruence can be chosen such that $SS = I$, that is, S can be chosen to be coninvolutory. Since the involution on F can be the identity, our result includes that of [8] except for the case of a field of characteristic two.

2. A canonical form for $*$congruence

Our proof that A and A^T are $*$congruent over F is based on the classification of matrices for $*$congruence (up to classification of Hermitian matrices) that was obtained in [6, Theorem 3].

A matrix M is a $*$cosquare if $M = A^{*-1}A$ for some nonsingular A; A^{*-1} denotes $(A^*)^{-1}$. If M is a $*$cosquare, every matrix C such that $C^*C = M$ is called a $*$cosquare root of M; we choose any $*$cosquare root and denote it by $\sqrt[\ast]{M}$.

For a polynomial $f(x) = a_0x^n + a_1x^{n-1} + \cdots + a_n \in \bar{F}[x]$ we define
\[f(x) = \bar{a}_0x^n + \bar{a}_1x^{n-1} + \cdots + \bar{a}_n, \quad \text{and} \quad f'(x) = \bar{a}_n^{-1}(1 + \bar{a}_1x + \cdots + \bar{a}_nx^n) \quad \text{if} \quad a_0 = 1 \quad \text{and} \quad a_n \neq 0. \]

Every square matrix is similar to a direct sum of Frobenius blocks
\[
F_{p^n} = \begin{bmatrix}
0 & 0 & \cdots & 0 & -c_n \\
1 & \ddots & \ddots & \ddots & \ddots \\
& \ddots & \ddots & 0 & \cdots \\
& & 0 & 1 & -c_1
\end{bmatrix},
\]
where $p(x) = x^n + c_1x^{n-1} + \cdots + c_n$ is an integer power of a polynomial $p(x)$ that is irreducible over \bar{F}.

If $A = [a_{i,j}]$ is any $n \times n$ matrix over \bar{F}, a calculation using the special form of the Frobenius block F_{p^n} reveals that the upper left $(n-1) \times (n-1)$ principal submatrix of $F_{p^n}^*AF_{p^n}$ is $[a_{i+1,j+1}]_{i,j=1}^{n-1}$. Combining this observation with the results in [6, Lemma 9 and Theorem 7] gives the following basic lemma.
Lemma 1. Let $p(x)$ be irreducible over F and let F_{pt}^n be the $n \times n$ Frobenius block (1).

(a) If \mathcal{A} is an $n \times n$ matrix over F and $\mathcal{A} = F_{pt}^n \mathcal{A} F_{pt}^n$, then \mathcal{A} is a Toeplitz matrix, that is, $\mathcal{A} = [\alpha_{i-j}]_{i,j=1}^n$ for some scalars $\alpha_{1-n}, \ldots, \alpha_{n-1}, \alpha_0, \alpha_1, \ldots, \alpha_{n-1}$ in F.

(b) If \mathcal{A} is a cosquare root of F_{pt}^n, then $\mathcal{A} = \mathcal{A}^* F_{pt}^n = F_{pt}^n \mathcal{A} F_{pt}^n$, and so it is a Toeplitz matrix. Moreover, it has the special form

$$\mathcal{A} = \begin{bmatrix} a_0 & a_1 & a_2 & \cdots & a_{n-1} \\ \tilde{a}_0 & a_0 & a_1 & \cdots & a_{n-2} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \tilde{a}_{n-2} & \tilde{a}_{n-3} & \cdots & \tilde{a}_0 & a_0 \end{bmatrix}.$$

(2)

(c) F_{pt}^n is a cosquare if and only if $p(x) \neq x$, $p(x) = p^\vee(x)$, and if the involution on F is the identity then also $p(x) \neq x + (-1)^{n+1}$.

(3)

(d) Suppose $p(x)$ satisfies the conditions (3) and let m denote the integer part of $(n - 1)/2$. Then one may take $\sqrt{F_{pt}^n}$ to have the form (2), in which $a_0 = \cdots = a_{m-1} = 0,$

$$a_m = \begin{cases} 1 & \text{if } n \text{ is even and } p(x) \neq x - n^{-1} \\ p(-1)^t & \text{if } n \text{ is odd and } p(x) \neq x + 1, \\ b - \bar{b} & \text{for any } b \in F \text{ such that } b \neq \bar{b}, \text{ otherwise}, \end{cases}$$

and a_{m+1}, \ldots, a_{n-1} are determined by the identity $\sqrt{F_{pt}^n} = (\sqrt{F_{pt}^n})^* F_{pt}^n$, i.e.,

$$\begin{bmatrix} \tilde{a}_0 & a_0 & \cdots & a_{n-2} \\ \tilde{a}_1 & \tilde{a}_0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots \\ \tilde{a}_{n-1} & \cdots & \tilde{a}_1 & \tilde{a}_0 \end{bmatrix} \cdot F_{pt}^n = \begin{bmatrix} a_0 & a_1 & \cdots & a_{n-1} \\ \tilde{a}_0 & a_0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots \\ \tilde{a}_{n-2} & \cdots & \tilde{a}_0 & a_0 \end{bmatrix}.$$

(4)

Suppose $F_{p(x)}^n$ is a cosquare. Since $p(x) = p^\vee(x)$, the field

$$F[\kappa] = F[x]/p(x)F[x], \quad \kappa := x + p(x)F[x],$$

possesses the involution

$$f(\kappa) \mapsto f(\kappa)^\circ := f(\kappa^{-1}).$$

(5)
It was proved in [6, Lemma 7] that if \(f(\kappa) \in \mathbb{F}[\kappa] \) and \(f(\kappa) = f(\kappa)^* \), then \(f(\kappa) \) is uniquely representable as \(f(\kappa) = \varphi(\kappa) \), in which
\[
\varphi(x) = b_r x^{-r} + \bar{b}_{r-1} x^{-r+1} + \ldots + b_0 + \ldots + \bar{b}_{r-1} x^{-1} + \bar{b}_r x^r,
\]
(7)
\(r \) is the integer part of \((\deg p(x))/2 \), \(b_0, b_1, \ldots, b_r \in \mathbb{F} \), \(b_0 = \bar{b}_0 \), and if \(\deg p(x) \) is even then
\[
b_r = \begin{cases} 0 & \text{if the involution } b \mapsto \bar{b} \text{ is the identity,} \\ b_r & \text{if } b \mapsto \bar{b} \text{ is not the identity and } p(0) \neq 1, \\ -\bar{b}_r & \text{if } b \mapsto \bar{b} \text{ is not the identity and } p(0) = 1. \end{cases}
\]

Theorem 2 [6, Theorem 3]. Let \(\mathbb{F} \) be a field of characteristic not two with involution (the involution can be the identity). Every square matrix \(A \) over \(\mathbb{F} \) is *congruent to a direct sum of matrices of the three types:

(i) a singular Jordan block \(J_n(0) \);
(ii) \(\sqrt{F(p)} \psi(F(p)) \), in which \(F(p) \) is the \(n \)-by-\(n \) Frobenius block (1), \(p(x) \) satisfies (3), and \(\psi(x) \) is a nonzero function of the form (7);
(iii) \[
\begin{bmatrix}
0 & I_n \\
F(p) & 0
\end{bmatrix},
\]
in which \(p(x) \neq x \) and \(p(x) \) does not satisfy (3).

Any matrix of type (ii) is a *cosquare root of \(F(p) \) and hence is a Toeplitz matrix. The summands are determined by \(A \) to the following extent:

Type (i) uniquely.
Type (ii) up to replacement of the whole group of summands
\[
\sqrt{F(p)} \psi_1(F(p)) \oplus \cdots \oplus \sqrt{F(p)} \psi_s(F(p))
\]
with the same \(p(x) \) by
\[
\sqrt{F(p)} \psi_1(F(p)) \oplus \cdots \oplus \sqrt{F(p)} \psi_s(F(p))
\]
in which each \(\psi_i(x) \) is a nonzero function of the form (7) and the Hermitian matrices
\[
\text{diag}(\psi_1(\kappa), \ldots, \psi_s(\kappa)) \text{ and } \text{diag}(\psi_1(\kappa), \ldots, \psi_s(\kappa)) \quad (8)
\]
over the field \(\mathbb{F}[\kappa] \) defined in (5) with the involution (6) are *congruent.
Type (iii) up to replacement of \(F(p) \) by \(F(\rho p) \).

In a canonical form for similarity, one may choose as the direct summands (canonical blocks) any matrices that are similar to the Frobenius blocks (1). Over some fields, this freedom of choice can make it possible to achieve a pleasantly simple and
convenient canonical form for *congruence. For example, if \(\mathbb{F} = \mathbb{C} \) is the field of complex numbers, then the irreducible polynomials are all of the form \(p(x) = x - \lambda \), and \(F_{(x-\lambda)^n} \) is similar to the \(n \)-by-\(n \) Jordan block \(J_n(\lambda) \) with eigenvalue \(\lambda \). The conditions (3) tell us that when the involution on \(\mathbb{C} \) is complex conjugation, then \(F_{(x-\lambda)^n} \) is a *cosquare if and only if \(|\lambda| = 1 \); for the identity involution on \(\mathbb{C} \), \(F_{(x-\lambda)^n} \) is a cosquare if and only if \(\lambda = (-1)^{n+1} \).

Define the \(n \)-by-\(n \) matrices

\[
\Gamma_n = \begin{bmatrix} 0 & 1 & & & \\ -1 & 1 & -1 & & \\ & -1 & 1 & -1 & \\ & & -1 & 1 & \end{bmatrix}, \quad \Delta_n = \begin{bmatrix} 0 & & & 1 \\ & 1 & \cdots \\ & & 1 & \cdots \\ & & & 1 \\ 1 & \cdots & & \end{bmatrix}.
\]

Then \(\Gamma_n^{-*} \Gamma_n \) is similar to \(J_n((-1)^{n+1}) \) and \(\Delta_n^{-*} \Delta_n \) is similar to \(J_n(1) \). Thus, for complex matrices we have the following canonical forms for congruence and for *congruence with respect to complex conjugation:

(i) Every square complex matrix is congruent to a direct sum, determined uniquely up to permutation of summands, of matrices of the form

\[
J_n(0), \quad \Gamma_n, \quad \begin{bmatrix} 0 & I_n \\ J_n(\lambda) & 0 \end{bmatrix},
\]

in which \(\lambda \neq 0, \lambda \neq (-1)^{n+1} \), and \(\lambda \) is determined up to replacement by \(\lambda^{-1} \).

(ii) Every square complex matrix is *congruent to a direct sum, determined uniquely up to permutation of summands, of matrices of the form

\[
J_n(0), \quad \lambda \Gamma_n, \quad \begin{bmatrix} 0 & I_n \\ J_n(\mu) & 0 \end{bmatrix},
\]

in which \(|\lambda| = 1 \) and \(|\mu| > 1 \). Alternatively, one may use the symmetric matrix \(\Delta_n \) instead of \(\Gamma_n \).

3. *Congruence of \(A \) and \(A^T \)

The problem of showing that \(A \) and \(A^T \) are congruent has been said to be difficult. In [1], the authors write, “In spite of its elementary character, the proof of this result is quite involved.” In [2] we read that “The proofs... are rather complicated.” However, the difficulty has been in the methods, not in the results. The canonical forms in Theorem 2 permit us to give a short and simple proof of a broader result.
Theorem 3. Over any field \mathbb{F} of characteristic not two with involution $a \mapsto \bar{a}$ (the involution can be the identity), every square matrix A is $^*\text{congruent}$ to its transpose. Moreover, there is a coninvolutory matrix S over \mathbb{F} such that $A^T = S^*AS$.

Proof. Let $A_{\text{can}} = S^*AS$ be a canonical form of A for $^*\text{congruence}$, that is, a direct sum of matrices of the three types described in Theorem 2. If A_{can} is $^*\text{congruent}$ to A_{can}^T, then A is $^*\text{congruent}$ to A^T since $R^*A_{\text{can}}R = A_{\text{can}}^T$ implies

$$(SRS^{-1})^*A(SRS^{-1}) = A^T.$$

Hence it suffices to prove that all matrices of the three types described in Theorem 2 are $^*\text{congruent}$ to their transposes, and that R can be chosen to be coninvolutory.

Matrices of types (i) and (ii) are always $^*\text{congruent}$ to their transposes since they are Toeplitz matrices, and for any Toeplitz matrix B we have

$$
\begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix} B \begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix} = B^T.
$$

Notice that the congruence is achieved via an involutory matrix.

For each matrix of type (iii) we have

$$
\begin{bmatrix}
0 & S^{-1} \\
S^* & 0
\end{bmatrix} \begin{bmatrix}
0 & I \\
F & 0
\end{bmatrix} \begin{bmatrix}
0 & S \\
S^{-*} & 0
\end{bmatrix} = \begin{bmatrix}
0 & F^T \\
I & 0
\end{bmatrix} = \begin{bmatrix}
0 & I^T \\
F & 0
\end{bmatrix},
$$

in which S is any nonsingular matrix such that $S^{-1}FS = F^T$. However, S always can be chosen to be symmetric [7], and if we do so then

$$
\mathcal{S} = \begin{bmatrix}
0 & S \\
S^{-*} & 0
\end{bmatrix} = \begin{bmatrix}
0 & S \\
S^{-1} & 0
\end{bmatrix}
$$

and $\mathcal{S}\mathcal{S} = I$. □

It was proved in [3, p. 329] that any nonsingular matrix over a field can be represented as $A = EB$, in which E is involutory and B is symmetric. As an immediate consequence of Theorem 3, we have the following factorization theorem.

Corollary 4. Over any field \mathbb{F} of characteristic not two with involution $a \mapsto \bar{a}$ (the involution can be the identity), any square matrix A can be represented as $A = EB$, in which E is coninvolutory and B is symmetric.

Proof. Theorem 3 ensures that $A = EAT^*E^*$ for some coninvolutory matrix E. Therefore, $\overline{E}A = \overline{E}EAT^*E^* = A^T\overline{E}^T = (\overline{E}A)^T \equiv B$ is symmetric and $A = EB$. □
References

[1] D.Ž. Đoković, K.D. Ikramov, A square matrix is congruent to its transpose, J. Algebra 257 (2002) 97–105.
[2] D.Ž. Đoković, F. Szechtman, K. Zhao, An algorithm that carries a square matrix into its transpose by an involutory congruence transformation, Electron. J. Linear Algebra 10 (2003) 320–340.
[3] R. Gow, The equivalence of an invertible matrix to its transpose, Linear Multilinear Algebra 8 (1980) 329–336.
[4] C. Riehm, The equivalence of bilinear forms, J. Algebra 31 (1974) 45–66.
[5] C. Riehm, M. Shrader-Frechette, The equivalence of sesquilinear forms, J. Algebra 42 (1976) 495–530.
[6] V.V. Sergeichuk, Classification problems for system of forms and linear mappings, Math. USSR Izvestiya 31 (3) (1988) 481–501.
[7] O. Taussky, H. Zassenhaus, On the similarity transformation between a matrix and its transpose, Pacific J. Math. 9 (1959) 893–896.
[8] E.L. Yip, C.S. Ballantine, Congruence and conjunctivity of matrices to their adjoints, Linear Algebra Appl. 41 (1981) 33–72.