Bio-preservation of ground beef meat by *Enterococcus faecalis* CECT7121

M.D. Sparo\(^1,2\), A. Confalonieri\(^1,2,3\), L. Urbizu\(^1,2,3\), M. Ceci\(^1\), S.F. Sánchez Bruni\(^1,2,3\)

\(^1\)Laboratory of Pharmacology, Faculty of Veterinary Medicine, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina.
\(^2\)Centro de Investigaciones Veterinarias Tandil, Consejo Nacional de Investigaciones Científicas y Técnicas, Tandil, Argentina.
\(^3\)Consejo Nacional de Investigaciones Científicas y Tecnológicas, Tandil, Argentina.

Submitted: December 27, 2010; Approved: July 02, 2012.

Abstract

Meat and particularly ground beef is frequently associated with Food Poisoning episodes and breeches in Food Safety. The main goal of this research was to evaluate the bactericide effect of the probiotic *Enterococcus faecalis* CECT7121, against different pathogens as: *Escherichia coli* O157:H7, *Staphylococcus aureus*, *Clostridium perfringens* and *Listeria monocytogenes*, inoculated in ground beef meat. Three studies were performed to evaluate the inhibition of *E. faecalis* CECT7121 on ground beef meat samples inoculated with pathogens: Study I: Samples (100 g meat) were inoculated with pathogens (10\(^3\) CFU/g) and *E. faecalis* CECT7121 (10\(^4\) CFU/g) simultaneously. Study II: Samples were inoculated with *E. faecalis* CECT7121 24 h before the pathogens. Study III: *E. faecalis* CECT7121 were inoculated 24 h after pathogens. The viable counts were performed at 0, 24, 48 and 72 h post-inoculation. The simultaneous inoculation of *E. faecalis* CECT7121 with *E. coli* O157:H7 strains resulted in the absence of viable counts of bacteria at 72 h post-treatment. However, when the probiotic was added 24 h before and 24 h after the pathogen *E. coli* O157:H7, viable cells were not detected at 24 h and 48 h post-treatment, respectively. Consistently, neither *S. aureus* nor *Cl. perfringens* viable bacteria were detected at 48 h in whole assays when inoculated with *E. faecalis* CECT7121. The same trend than described before was obtained after applying the 3 models assayed for *L. monocytogenes*. The current assays demonstrated the bactericide activity of *E. faecalis* CECT7121 strain on bacterial pathogens in ground beef meat.

Key words: bio-preservation, probiotic, ground beef meat, *Enterococcus faecalis* CECT7121.

Introduction

Meat and particularly ground beef is frequently associated with Food Poisoning episodes and breeches in Food Safety. A recent Food Safety review by Newell et al. (2010) indicates that the microbiological safety of food remains a dynamic situation heavily influenced by multiple factors along the food chain from farm to fork. In addition, the pathogen populations relevant to food safety are not static, and meat is an excellent vehicle by which many pathogens (bacteria, viruses/prions and parasites) can reach an appropriate colonization site in a new host.

Among the emerging foodborne pathogens of the last 20 years, Shiga toxin-producing *Escherichia coli* (STEC) has found in Argentina a favourable and permissive ecosystem to express it virulence. Although *E. coli* is considered a food transmitted pathogen of the industrialized nations, this STEC O157:H7 serotype is the main responsible to cause the Haemolytic Uremic Syndrome (HUS) in young children and also responsible for the majority of HUS caused by STEC in Argentina (Rivas et al., 2006).

The clinical syndrome caused by STEC can go from hemorrhagic colitis, to Thrombotic Thrombocytopenic Purpura (TTP) and Haemolytic Uremic Syndrome (HUS). The HUS is an endemic disease in Argentina with an increased number of reported cases during the spring and summer months (Mercado, 2007). Argentina reports 300
HUS cases per year with an incidence of 12.5 positive cases per 100,000 children under the age of five years (Gianantonio et al., 1973; López et al., 1997; Rivai et al., 1996). The virulence profile of STEC isolated from burgers and ground beef coincides with it prevalence in cattle (Parma et al., 2000).

Other pathogenic bacteria such as Staphylococcus aureus, Listeria monocytogenes and Clostridium perfringens are recognised as the main responsible agents for severe infections and toxicity to humans.

S. aureus is a leading cause of gastroenteritis resulting from the consumption of contaminated food. *S. aureus* is indeed found in the nostrils, and on the skin and hair of warm-blooded animals (von Eiff, 2001). *S. aureus* is able to grow in a wide range of temperatures, pH and sodium chloride concentrations. These characteristics enable *S. aureus* to grow in a wide variety of foods (Bergdoll, 1989; Schmitt et al., 1990, Le Loir et al., 2003).

Cl. perfringens is the second most common causal agent of foodborne diseases in the US, after Salmonella spp. The ingestion of large numbers of vegetative cells can lead to concomitant sporulation, enterotoxin release in the gastrointestinal tract, and diarrhoea-like illness (Brynestad and Granum, 2002; Le Loir et al., 2003).

L. monocytogenes is a ubiquitous, intracellular pathogen which has been implicated as the causative organism in several outbreaks of foodborne disease. The genus Listeria has been described as an important contaminant in raw ground meat and the pathogenic specie *L. monocytogenes* is capable of surviving for long periods at 4 °C (Farber and Daley, 1994; Yücel et al., 2005).

Among some of the specific interventions applied to ground meat, artificial chemical preservatives have been traditionally used to inhibit those microorganisms capable of growing within foods. The increasing consumer concerns of potential health risks associated with some of these substances has led researchers to examine the opportunity of using natural bacteriocin producer Lactic Acid Bacteria (LAB) as bio-preservatives (Amezquita and Brashears, 2002; Lui et al., 2010).

Recently, Sparo et al. (2008) documented, in craft dry-fermented sausages, the inhibitory activity of the environmental strain *Enterococcus faecalis* CECT7121 against *S. aureus* and gram negative bacilli included in the *Enterobacteriaceae* family. Molecular evaluations of *E. faecalis* CECT7121 have proven it is safety, absence of virulence genes, antibiotic multiresistance, gut translocation and compatibility with food quality (Castro et al., 2007; Sparo et al., 2008). *E. faecalis* CECT7121 strain produces a new bacteriocin (enterocin), the peptide AP-CECT7121, with proven inhibitory activity *in vitro* on Gram positive multiresistant and Gram negative bacteria (Sparo et al., 2008, 2009a, 2009b).

The main goal of the current study was to evaluate the inhibitory effect of *E. faecalis* CECT7121, on ground beef samples inoculated with pathogenic wild and collection strains across different experimental laboratory models.

Materials and Methods

Experimental strains

The Collection strains used in this work were: Escherichia coli O157 ATCC 700728, Staphylococcus aureus ATCC 25923, Clostridium perfringens ATCC 13124, Listeria monocytogenes ATCC 19115, Enterococcus faecalis ATCC 29212 and *E. faecalis* CECT7121 (biological preserver, BP).

The Wild strains isolated at our laboratory were: *E. coli* CEB1146, *E. coli* CEB1320, *E. coli* CEB1192, *E. coli* CEB1123, *S. aureus* CEB1412, *S. aureus* CEB153, *S. aureus* CEB1308, *Cl. perfringens* CEB1041, *Cl. perfringens* CEB1012, *Cl. perfringens* CEB1074, *L. monocytogenes* CEB123, *L. monocytogenes* CEB218 and *L. monocytogenes* CEB247; from ground beef meat acquired from different butchers. However, *E. faecalis* MR99 and *E. faecalis* MR1024, were isolated from corn silage.

Selection criteria of bovine meat cuts

Meat samples were obtained from the meat cut known as Round roll / Eye of round and from a meat shop of known high hygiene standards. In order to minimize any potential external contamination of the samples, a superficial two centimetres deep layer of tissue was cut and removed under sterile laboratory conditions. The remaining central part of each sample was cut in cubes of 0.5 cm per side. The indigenous total viable cells count value for each sample was determined by the Most Probable Number (MPN) method. Ten grams of ground meat samples were placed in sterile plastic bags, and a solution of peptone in water was added until reaching a final 1/10 dilution. The sample was then homogenized in a Stomacher 400 (Seward Laboratory Systems Inc., US) by 3 min at 230 g. Sub-samples obtained from the meat homogenate were further diluted by triplicate and inoculated into test tubes containing a 2% of green lactose bile bright broth. These samples were incubated at 37 °C by 48 h. Those samples that showed gas formation where confirmed as coliforms following further culturing in violet red bile agar (Allaert and Escola, 2002).

E. faecalis CECT7121 culture preparation and strain identification

An 18 h culture of brain heart infusion broth (BHI, Lab. Britannia, Argentina) was centrifuged at 3.000 g for 20 min; the bottom pellet was washed twice with phosphate buffer 74 mM at pH 7 and resuspended in 10 mL of the same buffer.

This 10 mL aliquot was kept for inoculation of meat samples. Each experimental sample was inoculated with a final concentration of 10^8 CFU/g of meat.
The BP strain count was performed using a bile esculin azide agar (Lab. Britania, Argentina) incubated at 35 °C for 48 h.

The specie phenotypic characterization was determined by sampling 10 colonies at random according Sparo and Mallo (2001) and Sparo et al. (2008). The BP identity was performed by RAPD-PCR (polymerase chain reaction using random amplified polymorphic DNA) analysing the differences between genomes of E. faecalis strains, following the protocols described by Suzzi et al. (2000) and Sparo et al. (2008). The control strains used in this assay were the E. faecalis CECT7121 used for ground beef meat samples inoculation (original strain deposited at the Colección Española de Cultivos Tipo (CECT), Universidad de Valencia, Spain), as well as the other strains mentioned above. Total DNA was extracted according to Persing et al. (1993). The primer used was D8635 (5’ GAG CGG CCA AAG GGA GCA GAC 3’). The clonal relationship was assessed using the software RAPDistance 1.04 software package (Australian National University) and Mega 2.0 (Winer et al., 1991; Zar, 1999).

Pathogenic bacteria culture preparation and phenotypic identification

Each strain of E. coli O157, S. aureus and Listeria monocytogenes was cultured for 18 h at 35 °C in BHI broth and Cl. perfringens was cultured in anaerobic conditions (Gas Pack System, Oxoid, UK) by 24 h at 35 °C in fluid thioglycolate medium with beef extract (Difco, US). Cultures were centrifuged for 20 min at 3.000 g. The sediments were washed twice with phosphate buffer 75 mM at pH 7 and resuspended. The assays were performed inoculating 100 g of ground beef meat with 105 CFU/mL of each pathogen strain.

The viable E. coli and L. monocytogenes, counts were assessed using the CHROMagar™ O157 (BBL, US) and CHROMagar™ Listeria (BBL, US) respectively. For assessment of S. aureus viable counts the Agar Baird-Parker (Lab. Britania, Argentina) was used. Whole pathogens strains were incubated by 48 h, at 35 °C (E. coli and S. aureus) and at 30 °C (L. monocytogenes)

For determining Cl. perfringens, the meat samples were inoculated in test tubes adding Agar Sulphite Polymyxin Sulfadiazine (SPS) sealed with VAS-PAR and incubated at 35 °C for 48 h.

The phenotypic characterization of each strain was carried out by sampling 10 colonies randomly collected from the viability agar cultures following the conventional biochemist tests described by Winn et al. (2008).

Evaluation of E. faecalis CECT7121 pathogen inhibitory efficacy

Each strain of E. coli O157, S. aureus and L. monocytogenes was cultured for 18 h at 35 °C in BHI broth. However, Cl. perfringens was cultured in anaerobic conditions (Gas Pack System, Oxoid, UK) by 24 h at 35 °C in fluid thioglycolate medium with beef extract (Difco, US). Cultures were centrifuged for 20 min at 3.000 g. The sediments were washed twice with phosphate buffer 75 mM at pH 7 and resuspended. The assays were performed inoculating 100 g of ground beef meat with 10% v/p of the inoculums of each bacterium at a final concentration of 10⁴ CFU.g⁻¹, allowing the spread and absorption of bacteria to the meat. Upon the excess of liquid was removed. The BP was added in the same way, at a concentration of 10⁴ CFU.g⁻¹, following the three different experimental assays.

Study I: Samples were inoculated with pathogens and the BP simultaneously.

Study II: Samples were inoculated with the BP 24 h before the pathogenic bacteria addition.

Study III: Each pathogenic strain was inoculated 24 h before the BP addition.

Each and every group had a non inoculated sample as control. The bacterial counts were performed at 24, 48 and 72 h. Each study was performed twice by triplicate.

Results

The simultaneous inoculation of BP with E. coli O157 strains showed not detection of viable cells upon 72 h post-treatment. However, viable bacteria were not detected at 24 and 48 h when the BP, was added 24 h before and 24 h after E. coli strains, respectively (Figure 1).

The inoculation of BP simultaneously with S. aureus strains, 24 h before or 24 h after the incorporation of the strains resulted in the not detection of viable cells at 48 h in whole applied models (Table 1).

The same trend than described above was obtained for Cl. perfringens (see Table 2).

L. monocytogenes has shown to be the more sensitive to the inhibitory activity of the BP. Viable Listeria cells were not detected before 24 h after incubation on the three experimental models assayed. (Table 3).

Also it was observed a decrease at time zero on the implantation of the pathogen bacteria in ground beef meat (circa 1 Log) when the BP were inoculated 24 h before, compared with those sample where the BP was not used (Figure 1, Table 1, Table 2, Table 3). For example, in E. coli O157 at time zero the viable count without BP was 3.2 x 10⁵ CFU/g and with BP previously inoculated was 2.4 x 10⁵ CFU/g. The same trend occurred to other pathogens.

Detection of E. faecalis CECT7121

The incubation of E. faecalis CECT7121 in ground meat samples at 5 °C, have shown consistent and stable viable cell counts levels of 4 log up to 72 h after initial inoculation.

The identification and monitoring studies utilising the RAPD-PCR confirmed the presence of E. faecalis at each of the sampling times at 0, 24, 48 and 72 h from inoculation, while no BP was detected in the control samples.
The results obtained on the experiment when the ground beef meat was simultaneously inoculated with *E. coli* ATCC 700728 and the BP, illustrated Figure 2, shows the RAPD-PCR profiles of *E. faecalis* CECT7121 (BP) inoculated (Lane 3) compared with other *E. faecalis* strains isolated in the samples at different times. Lanes 3, 4 and 5 shows a group of profiles sharing a 90% similarity considered as identical profiles. Other non-*E. faecalis* related isolates, used as controls, such as *E. faecalis* ATCC 29212, *E. faecalis* MR99 and *E. faecalis* MR1024 showed different RAPD-PCR profiles.

Discussion

It is widely accepted that *E. coli* 0157:H7 and non-O157 STEC represent the most serious foodborne Public Health risk and all possible pre and postharvest interventions must include these group of STEC pathogens. The utilization of different LAB probiotic strains on specific meat products is an interesting alternative in the prevention of ground meat contamination and pathogens development.

A number of successful experiences indicate the LAB inhibitory activity against *E. coli* 0157:H7 when incorporated directly to ground beef and various food products (Brashears *et al.*, 1996, 1997, 1998, 1999, 2003; Harris *et al.*, 2002). More recently, Smith *et al.* (2005) have reported the success of combining four LAB strains in the inhibition and postharvest control of *E. coli* 0157:H7 and *Salmonella* in ground beef kept at 5 °C for five days. This type of approach should allow the industry and health authorities to concentrate intervention efforts on specific high risk meat products under controlled conditions.

The current study has demonstrated that the presence of the probiotic strain *E. faecalis* CECT7121 in meat is able to inhibit substantially *E. coli* 0157:H7 to undetectable levels within 24 h of incubation (Figure 1). Similar inhibition results were obtained when *E. faecalis* CECT7121 was incorporated either simultaneously or 24 h after *E. coli* 0157:H7 inoculation, reaching non detectable values of viable counts at 72 and 48 h post inoculation respectively (Figure 1). However, when applied the same experimental models for *L. monocytogenes*, not viable cell counts were observed at 24h post-treatment, resulting in the total inhibition of the pathogens by *E. faecalis* CECT7121 (Table 3). The latter is considering pivotal in terms of foodborne disease prevention since *L. monocytogenes* is an emergent pathogen.

Interestingly, when the *E. faecalis* CECT7121 was inoculated 24 h before the implantation of *E. coli*, *Cl. perfringens* and *S. aureus*, the concentration of these bacteria was substantially lower in terms of implantation in ground beef meat samples at Time 0 (1 log). The later, would be relevant from the technological view, since the adherence or implantation of those pathogens may decrease when this probiotic strain is previously inoculated.

The current results from different model combinations show a broad spectrum inhibitory action over the pathogens assayed. Food poisoning from multiple origins is
The Pediococcus strains were inoculated at 104 CFU/g, simultaneously with the pathogen, 24 h before the pathogen and 24 h after the pathogen. The viable cells count for each strain is the average count of 3 experiments with 2 repetitions. ND = Not detected.

S. aureus	Simultaneous	24 h before	24 h after			
Time	Control + BP	Control + BP	Control + BP			
0	2.37 ± 0.50	2.48 ± 0.40	3.31 ± 0.50	2.70 ± 0.50	4.17 ± 0.60	4.39 ± 0.70
24	3.12 ± 0.61	1.71 ± 0.40	3.42 ± 0.51	1.87 ± 0.40	4.64 ± 0.61	2.28 ± 0.50
48	3.73 ± 0.61	ND	3.67 ± 0.61	ND	5.19 ± 0.710	ND
72	4.15 ± 0.71	ND	3.98 ± 0.51	ND	5.63 ± 0.610	ND

Cl. perfringens	Simultaneous	24 h before	24 h after			
Time	Control + BP	Control + BP	Control + BP			
0	3.51 ± 0.50	3.42 ± 0.60	3.69 ± 0.60	2.49 ± 0.40	4.16 ± 0.50	4.28 ± 0.60
24	4.39 ± 0.61	2.17 ± 0.400	4.32 ± 0.51	1.78 ± 0.40	4.59 ± 0.61	2.35 ± 0.40
48	4.87 ± 0.71	ND	4.86 ± 0.51	ND	5.07 ± 0.51	ND
72	5.14 ± 0.51	ND	5.31 ± 0.51	ND	5.49 ± 0.610	ND

L. monocytogenes	Simultaneous	24 h before	24 h after			
Time	Control + BP	Control + BP	Control + BP			
0	3.74 ± 0.22	3.44 ± 0.22	3.64 ± 0.03	2.71 ± 0.10	3.64 ± 0.31	3.51 ± 0.10
24	4.35 ± 0.52	ND	4.05 ± 0.10	ND	4.05 ± 0.20	ND
48	4.64 ± 0.23	ND	4.51 ± 0.25	ND	4.51 ± 0.10	ND
72	4.73 ± 0.19	ND	4.86 ± 0.32	ND	4.86 ± 0.30	ND

A serious Public Health problem often underestimated due to lack of reporting.

The *E. faecalis* CECT7121 strain has shown to be capable of inhibiting the growth of *Cl. perfringens* and *S. aureus* in ground meat to undetectable levels at 24 h in all models assayed (Tables 1 and 2). This aspect of the study suggests the ability of *E. faecalis* CECT7121 to prevent secondary contaminations often associated to *Cl. perfringens* and *S. aureus* as described by Taormina and Dorsa (2004).

Among LAB experiences inhibiting *L. monocytogenes*, Skytta *et al.* (1991) have reported the results of three *Pediococcus* strains producing bacteriocin-like inhibitors in ground meat. The pathogens studied were *L. monocytogenes*, *Yersinia enterocolitica* and *Pseudomonas* spp. The inoculation levels of pediococci varied within a range of 10³-10⁶ CFU·g⁻¹, whereas the number of test organisms inoculated was approximately constant at 10⁶ CFU/g. Aymerich *et al.* (2003) has also reported the use of enterococci as bio protective against *L. monocytogenes* in slightly fermented sausages, at concentrations of 10⁴-10⁵ CFU/g. Both above reports seem to have applied higher concentrations of LAB than the one used for *E. faecalis* CECT7121 at 10⁴ CFU/g which resulted in the bactericidal effect of *L. monocytogenes* at 10⁵ CFU CFU/g concentration (Table 3).

These current *E. faecalis* CECT7121 results are promising and may have a potential relevant impact in the safety and hygiene control of ground beef meat. These results correlate with previous studies reporting the ability of
E. faecalis CECT7121 to inhibit gram positive and gram negative strains in craft dry-fermented sausages; in vitro and in vivo mice Salmonella challenge studies (Castro et al., 2007; Sparo et al., 2008, 2009a, 2009b).

In conclusion, the current study has conclusively demonstrated the efficacy of the E. faecalis CECT7121 strain to inhibit the growth of pathogens in ground beef meat to undetectable levels achieving a significant bactericidal effect against E. coli O157:H7, S. aureus, L. monocytogenes and Cl. perfringens in ground meat samples.

The current biological model is capable to obtain the inhibition of the growth of pathogenic bacteria during incubation at 5 °C while maintaining E. faecalis CECT7121 at a consistent stable population. It must be noted that concentrations of bio-preserve strains in food over 10^4 CFU/g would not be allowed under existing food ingredients regulations.

Furthermore, the residual viability of E. faecalis CECT7121 in ground beef meat, allows the continuous protection of beef during storage preventing secondary contamination due to lack of hygiene or breakdown of the refrigeration chain. These results demonstrate that the E. faecalis CECT7121 strain is a viable and feasible post-harvest intervention for preserving the bio-security of ground beef meat.

Acknowledgments

The authors fully appreciate the financial support of this work by the Argentine Institute of Beef Promotion (IPCVA ®).

References

Allaert C, Escola M (2002) Métodos de Análisis Microbiológicos de Alimentos. Ed. Diaz de Santos S.A., Madrid, 272 pp.

Amezquita A, Brashears MM (2002) Competitive inhibition of Listeria monocytogenes in ready-to-eat meat products by lactic acid bacteria. J Food Prot 65:316-325.

Aymerich MT, Martin B, Garriga M, Hugas M (2003) Microbial quality and direct PCR identification of lactic acid bacteria and non-pathogenic staphylococci from artisanal low-acid sausages. Appl Environ Microbiol 69:4583-4594.

Bergdoll MS (1989) Staphylococcus aureus. In: Doyle, MP (ed) Foodborne Bacterial Pathogens. Ed. Marcel Dekker Inc., New York, pp 463-523.

Brashears MM, Reilly SS, Gilliland SE (1996) Inhibitory action of Lactobacillus lactis on Escherichia coli 0157:H7 during storage at 7 °C in broth and on raw chicken meat. Oklahoma State University Animal Science Research Report, pp 51-55.

Brashears MM, Gilliland SE (1997) Antagonistic action of cells of Lactobacillus lactis towards Escherichia coli 0157:H7 on refrigerated raw chicken meat. Presented at the Meeting of the Southern Association of Agriculture Scientist, Food Science and Human Nutrition Division Birmingham, Ala., 2 to 4 February 1997.

Brashears MM, Reilly SS, Gilliland SE (1998) Antagonic action of cells of Lactobacillus lactis toward Escherichia coli 0157:H7 on refrigerated raw chicken meat. J Food Prot 61:166-170.

Brashears MM, Durre WA (1999) Antagonistic action of Lactobacillus lactis toward Salmonella spp. and E. coli 0157:H7 during growth and refrigerated storage. J Food Prot 62:1336-1340.

Brashears MM, Galyean ML, Mann JE, Killinger-Mann K, Loneran G (2003) Prevalence of Escherichia coli 0157:H7 during growth and refrigerated storage. J Food Prot 66:748-754.

Brynestad S, Granum PE (2002) Clostridium perfringens and foodborne infections. Int J Food Microbiol 74:195-202.

Castro M, Sparo M, Molina M, Andino J, Manghi M (2007) Enterococcus faecalis CECT7121 induces systemic immunomodulatory effects and protects from Salmonella infection. Int J Probiotics Prebiotics 2:215-224.

Farber JM, Daley E (1994) Presence and growth of Listeria monocytogenes in naturally-contaminated meats. Int J Food Microbiol 22:33-42.
Gianantonio CA, Vitacco M, Mendilaharzu F, Gallo GE, Sojo ET (1973) The hemolytic uremic syndrome. Nephron 11:174-192.

Harris M, Brashears M, Smith D (2002) Evaluation of the use of lactic acid bacteria to control pathogens on alfalfa sprouts. Presented at the Annual Meeting of the International Association for Food Protection, San Diego, California.

Le Loir Y, Baron F, Gautier M (2003) *Staphylococcus aureus* and food poisoning. Genet Mol Res 2:63-76.

Liu G, Griffiths MW, Shang N, Chen S, Li P (2010) Applicability of bacteriocinogenic *Lactobacillus pentosus* 31-1 as a novel functional starter culture or coculture for fermented sausage manufacture. J Food Prot 73:292-298.

López EL, Contrini MM, Sanz ME, Viñas MR, Parma AR, De Rosa MF, Cleary TG (1997) Perspectives on Shiga-like toxin infections in Argentina. J Food Protect 60:1458-1462.

Mercado E (2007) Síndrome Urémico Hemolítico: ¿Por Qué Argentina? Rev Arg Microbiol 39:191-192.

Newell DG, Koopmans M, Verhoef L, Duizer E, Aidara-Kane A, Sprong H, Opsteegh M, Langelaar M, Threfall J, Scheutz F, der Giessen JV, Kruse H (2010) Food-borne diseases - The challenges of 20 years ago still persist while new ones continue to emerge. Int J Food Microbiol 139 Suppl 1:S3-S15.

Parma AE, Sanz ME, Blanco JE, Blanco J, Viñas MR, Blanco M, Padola NL, Etcheverría AI (2000) Virulence genotypes and serotypes of verotoxigenic *Escherichia coli* isolated from cattle and foods in Argentina. Importance in public health. Eur J Epidemiol 16:757-762.

Persing DH, Smith TF, Tanover FC, White TJ (1993) Diagnostic Molecular Biology, Principles and Application. ASM Press, Washington, DC.

Rivas M, Voyer LE, Tous M, de Mena MF, Leardini N, Wainsztein R, Callejo R, Quadri B, Corti S, Prado V (1996) Verocytotoxin-producing *Escherichia coli* infection in family members of children with hemolytic uremic syndrome. Medicina (B Aires) 56:119-125.

Rivas M, Miliewsky E, Chinen I, Deza N, Leotta GA (2006) Epidemiología del sindrome urémico hemolítico en Argentina. Diagnóstico del agente etiológico, reservorios y vías de transmisión. Medicina (B Aires) 66:27-32.

Schmitt M, Schuler-Schmid U, Semidt-Lorenz W (1990) Temperature limits of growth, TNase, and enterotoxin production of *Staphylococcus aureus* strains isolated from foods. Int. J. Food Microbiol 11:1-19.

Skytta E, Hereijgers W, Mattila-Sandholm T (1991) Broad spectrum antibacterial activity of *Pediococcus damnosus* and *Pediococcus pentosaceus* in ground meat. Food Microbiol 8:231-237.

Smith L, Mann JE, Harris K, Miller MF, Brashears MM (2005) Reduction of *Escherichia coli* O157:H7 and *Salmonella* in ground beef using lactic acid bacteria and the impact on sensory properties. J Food Prot 68:1587-1592.

Sparo M, Mallo R (2001) Evaluation of the bacterial flora in natural corn silage. Rev Argent Microbiol 33:75-80.

Sparo M, Nuñez GG, Castro M, Calcagno ML, García-Allende MA, Ceci M, Najle R, Manghi M (2008) Characteristics of an environmental strain, *Enterococcus faecalis* CECT7121 and its effects as additive on craft dry-fermented sausages. Food Microbiol 25:607-615.

Sparo MD, Jones DG, Sánchez-Bruni SF (2009a) In vitro efficacy of the novel peptide CECT7121 against bacteria isolated from mastitic dairy cattle. Lett Appl Microbiol 48:187-192.

Sparo MD, Jones DG, Sánchez-Bruni SF (2009b) Assessment of the in vitro efficacy of the novel antimicrobial peptide CECT7121 against human Gram-positive bacteria from serious infections refractory to treatment. Chemotherapy 55:270-277.

Suzzi G, Caruso M, Gardini F, Lombardi A, Vannini L, Guerzoni ME, Andrighetto C, Lanorte MT (2000) A survey of the enterococci isolated from an artisanal Italian goat’s cheese (semicotto caprino). J Appl Microbiol 89:267-274.

Taormina PJ, Dorsa WJ (2004) Growth potential of *Clostridium perfringens* during cooling of cooked meats. J Food Prot 67:1537-1547.

Winer BJ, Brown DR, Michels KM (1991) Statistical Principles in Experimental Design. 3rd edition. McGraw-Hill, Inc., NewYork, 928 pp.

Yücel N, Cytak S, Önder M (2005) Prevalence and antibiotic resistance of *Listeria* species in meat products in Ankara, Turkey. J Food Microbiol 22:241-245.

Zar JH (1999) Biostatistical Analysis, 4th edition. Prentice Hall, Inc. Upper Saddle River, 662 pp.

All the content of the journal, except where otherwise noted, is licensed under a Creative Commons License CC BY-NC.