Impact of Hydrogen Sulfide on Mitochondrial and Bacterial Bioenergetics

Vitaliy B. Borisov 1,∗ and Elena Forte 2,∗

1 Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
2 Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; elena.forte@uniroma1.it
* Correspondence: vibborborbor@yahoo.com

Abstract: This review focuses on the effects of hydrogen sulfide (H2S) on the unique bioenergetic molecular machines in mitochondria and bacteria—the protein complexes of electron transport chains and associated enzymes. H2S, along with nitric oxide and carbon monoxide, belongs to the class of endogenous gaseous signaling molecules. This compound plays critical roles in physiology and pathophysiology. Enzymes implicated in H2S metabolism and physiological actions are promising targets for novel pharmaceutical agents. The biological effects of H2S are biphasic, changing from cytoprotection to cytotoxicity through increasing the compound concentration. In mammals, H2S enhances the activity of F o F 1 -ATP (adenosine triphosphate) synthase and lactate dehydrogenase via their S-sulfhydration, thereby stimulating mitochondrial electron transport. H2S serves as an electron donor for the mitochondrial respiratory chain via sulfide quinone oxidoreductase and cytochrome c oxidase at low H2S levels. The latter enzyme is inhibited by high H2S concentrations, resulting in the reversible inhibition of electron transport and ATP production in mitochondria. In the branched respiratory chain of Escherichia coli, H2S inhibits the b o 3 terminal oxidase but does not affect the alternative bd-type oxidases. Thus, in E. coli and presumably other bacteria, cytochrome bd permits respiration and cell growth in H2S-rich environments. A complete picture of the impact of H2S on bioenergetics is lacking, but this field is fast-moving, and active ongoing research on this topic will likely shed light on additional, yet unknown biological effects.

Keywords: hydrogen sulfide; donors; gasotransmitters; molecular bioenergetics; inhibition; electron transport chain

1. Introduction

For a long time, hydrogen sulfide (H2S) had been considered merely as a highly toxic and occasionally lethal gas. However, it was discovered that in mammals H2S has physiologic relevance and is endogenously generated [1,2]. Currently, H2S is considered to be a member of the class of gasotransmitters or, in other words, endogenous gaseous signaling molecules, along with nitric oxide and carbon monoxide [3–7]. Although still debated, cyanide has also recently been proposed to be part of this class [7,8]. H2S contributes to the regulation of important physiological processes in the cardiovascular, gastrointestinal, nervous, and respiratory systems. It shows various physiological effects in mammalian cells, but in a biphasic, concentration-dependent manner. At low, nanomolar concentrations, H2S exhibits cytoprotective effects. At higher levels the compound induces cytotoxicity. For instance, H2S exerts vasorelaxant effects through the opening of K ATP (adenosine triphosphate) channels in vascular smooth muscle cells [9]. It also functions as a neuromodulator in the brain [1] and serves as a stimulator of angiogenesis [10]. At concentrations of 200 µM and higher, H2S induces apoptosis of aorta smooth muscle cells through the activation of mitogen-activated protein kinases and caspase-3 [11]. In mammalian systems, H2S is

<https://www.mdpi.com/journal/ijms>
proposed to signal via four different mechanisms: (i) serving as an antioxidant that detoxifies reactive oxygen species (ROS) and/or reactive nitrogen species (RNS); (ii) blocking and/or reducing metal active sites in metalloproteins, e.g., heme Fe sites in heme proteins; (iii) performing protein S-persulfidation, also known as S-sulfhydration (post-translational modification of a cysteine residue by adding a thiol group); (iv) performing the chemical reduction of disulfide bonds in proteins (see [12,13] and references therein) (Figure 1).

![H2S signaling mechanisms diagram](image)

Figure 1. Proposed H$_2$S signaling mechanisms in mammalian systems.

The physiological roles of H$_2$S are not limited to mammals but appear to be inherent in all kingdoms of life. In higher plants, H$_2$S signaling functions seem to occur mainly through a persulfidation-based mechanism [14]. It regulates important physiological functions, including fruit ripening; stomatal movement; senescence in flowers, leaves, and fruits; photosynthesis via promotion of photosynthetic enzyme expression and chloroplast biogenesis; and the promotion of root organogenesis, seed germination, nodulation, and N_2 fixation. H$_2$S can also activate antioxidant systems in plant cells, thereby contributing to defense against adverse environment situations, such as drought-induced oxidative stress, salinity stress, temperature stress (high and low temperatures), toxic heavy metal stress, as well as different biotic stresses (see [14] and references therein).

Although most bacteria can generate and sense H$_2$S, the exact physiological roles of this compound in the prokaryotes are not yet wholly understood. In particular, whether endogenous H$_2$S is a true signaling effector molecule that induces a response in the same microbial cell, or whether the H$_2$S-mediated effect is more a response to environmental and/or host-derived H$_2$S, remains to be established [6]. Meanwhile, Shatalin et al. reported that inhibition of H$_2$S production through inactivation of H$_2$S-generating enzymes in *Bacillus anthracis* Sterne, *Pseudomonas aeruginosa* PA14, *Staphylococcus aureus* (MSSA RN4220 and MRSA MW2), and *Escherichia coli* MG1655 makes these pathogenic species very sensitive to different classes of antibiotics [15]. The addition of exogenous H$_2$S reverses this effect. The authors concluded that endogenously generated H$_2$S increases bacterial resistance to oxidative stress imposed by antibiotics. The antibiotic-induced ROS cause DNA damage via the Fenton reaction. It is suggested that H$_2$S prevents oxidative DNA damage in bacteria via the following cytoprotective mechanisms: (i) direct reduction of H$_2$O$_2$ into H$_2$O; (ii) depletion of Fe$^{2+}$, a catalyst of the Fenton reaction; (iii) transient depletion of free cysteine, a reducing agent that fuels the Fenton reaction; and (iv) stimulation of the activities of superoxide dismutase (SOD) and catalase [15]. The latter two enzymes are the well-known ROS scavenging systems [16]. It should be noted, however, that Shatalin et al. [15] did not suggest a mechanism for the depletion of Fe$^{2+}$ and free cysteine by H$_2$S.
H$_2$S is a colorless flammable gas, soluble in water (100 mM at 25 °C [17]), and with high cell membrane permeability [18]. It is a weak acid; therefore in aqueous solutions, it equilibrates with hydrosulfide (HS$^-$) and sulfide (S$^{2-}$) according to Equation (1):

$$
H_2S \xrightleftharpoons{pK_{a1}} HS^- + H^+ \xrightleftharpoons{pK_{a2}} S^{2-} + 2H^+ \tag{1}
$$

According to the reported p$_{K_{a1}}$ values that varied from 6.97 to 7.06 at 25 °C (see [19] and references therein), at physiological pH 7.4, 69–73% of the total hydrogen sulfide pool in the solution is in the form of HS$^-$, and 27–31% exists as H$_2$S. Taking into account the reported p$_{K_{a2}}$ values (from 12.2 to 19), the concentration of S$^{2-}$ in the solution at pH 7.4 is negligible. The mitochondrial matrix in eukaryotic cells is usually alkaline, with a pH value of about 8 [20,21]. Accordingly, in the matrix, the concentration of HS$^-$ is higher, 90–91%, and the remainder is in the form of H$_2$S. On the contrary, intralysosomal pH in living cells is highly acidic, 4.7–4.8 [22]. Therefore, inside lysosomes, the undissociated form of hydrogen sulfide, H$_2$S, dominates (>99%). H$_2$S acts as a reducing agent. Respectively, the standard redox potential (vs. the standard hydrogen electrode, pH 7) $E^0(S^0/H_2S)$ is -230 mV ($E^0(S^0/HS^-) = -270$ mV) [19]. Herein, unless otherwise stated, we use the term “H$_2$S” to designate the total hydrogen sulfide pool (H$_2$S + HS$^- + S^{2-}$).

This review focuses on the effects of H$_2$S on the respiratory chains of mammalian mitochondria and bacteria, mammalian FoF$_1$-ATP synthase, and mammalian lactate dehydrogenase (LDH) in light of recent findings.

2. Endogenous Production of H$_2$S

In mammalian tissues, H$_2$S can be endogenously produced via both non-enzymatic and enzymatic pathways.

2.1. Non-Enzymatic Production of H$_2$S

Non-enzymatic formation of H$_2$S usually takes place in the reactions of thiols or thiol derivatives with other molecules [12,13,23]. Inorganic polysulfides, persulfides, and thiosulfate can be reduced with reduced glutathione (GSH) to yield H$_2$S (Figure 2). This demands the presence of reducing equivalents, such as NADPH (reduced nicotinamide adenine dinucleotide phosphate), because glutathione disulfide (GSSG), also produced in the reaction, needs to be converted back to GSH by NADPH-dependent glutathione reductase. Inorganic sulfide salts, such as Na$_2$S or NaHS, can undergo hydrolysis. Yang et al. also reported that cysteine is the preferred substrate for the non-enzymatic pathway, and that the reaction required coordinated catalysis by Fe$^{3+}$ and pyridoxal phosphate (PLP) [24] (Figure 2).

![Figure 2. Non-enzymatic endogenous production of H$_2$S in mammalian tissues.](image-url)
2.2. Enzymatic Production of H$_2$S

Enzymatic production of H$_2$S in mammalian systems is carried out primarily by cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE), and 3-mercaptopyruvate-sulfurtransferase (3MST) [12,13,23,25,26]. The main enzymatic reactions resulting in the biosynthesis of H$_2$S are shown in Figure 3. CBS can catalyze the condensation of homocysteine and L-cysteine to produce L-cystathionine and H$_2$S (Figure 3, reaction 1). In the presence of L-cysteine, CBS can also produce H$_2$S, with the formation of L-serine as a byproduct (Figure 3, reaction 2). CSE can decompose homocysteine to yield H$_2$S, α-ketobutyrate, and ammonia (Figure 3, reaction 3). Furthermore, CSE can catalyze the conversion of L-cysteine into H$_2$S, pyruvate, and ammonia (Figure 3, reaction 4). Both CBS and CSE can generate H$_2$S through β-replacement of cysteine by a second cysteine, with the formation of lanthionine as a byproduct (Figure 3, reaction 5). Additionally, CSE can catalyze the γ-replacement reaction between two homocysteine molecules, with the production of H$_2$S and homolanthionine as a by-product (Figure 3, reaction 6). 3MST generates H$_2$S from 3-mercaptopyruvate coupled with either of the two enzymes, mitochondrial cysteine aminotransferase (CAT) or peroxisomal D-amino acid oxidase (DAO). 3MST transfers a sulfur atom from 3-mercaptopyruvate onto itself, resulting in the formation of the enzyme-bound persulfide (3MST-SS) and pyruvate (Figure 3, reaction 7). H$_2$S is then released from the persulfide in the presence of a reductant, e.g., thioredoxin (Trx). CAT and DAO in turn produce 3-mercaptopyruvate from L-cysteine and D-cysteine, respectively [13].

![Figure 3. Overview of main reactions for enzymatic production of H2S in mammalian tissues.](image-url)

The majority of bacterial species whose genomes were completely sequenced have the orthologs of mammalian genes encoding CBS, CSE, or 3MST [15]. Since H$_2$S provides defense against modern antibiotics in bacteria, suppression of H$_2$S-producing enzymes in pathogens by new drugs would be a promising antimicrobial treatment strategy [15,27]. The use of H$_2$S biogenesis as a target for versatile antibiotic potentiators may have therapeutic potential for the fight against difficult-to-treat infections based on bacterial antibiotic tolerance.
3. S-Sulfhydration of ATP Synthase

In eukaryotes, one of the main targets of H₂S signaling is the mitochondria. These cell organelles are known to be the power plants of the eukaryotic cell. Energy transduction events in mitochondria occur in the O₂-dependent respiratory electron transport chain. The mammalian respiratory chain is unbranched [28,29]. It consists of four membrane-bound multi-subunit complexes: I, (reduced nicotinamide adenine dinucleotide) NADH:ubiquinone reductase or type I NADH dehydrogenase; II, succinate dehydrogenase; III, ubiquinol: cytochrome c reductase or cytochrome bc₁ complex; and IV, cytochrome c oxidase or cytochrome a₃. The chain transfers electrons from NADH and succinate to O₂. The electron transfer reactions catalyzed by complexes I, III, and IV are coupled to the generation of the proton motive force. The latter is used by ATP synthase (FₒF₁-ATP synthase or complex V) to produce ATP.

Modis et al. observed S-sulfhydration of subunit α of the synthase (ATP5A1) in HepG2 and HEK293 cell lysates in response to exposure to H₂S, using a biotin switch assay [30]. Sulfhydration of subunit α of the synthase increases with increasing the H₂S concentration, 50–300 µM. H₂S at low concentrations (10–100 nM) stimulates the specific activity of ATP synthase, while at higher concentrations (1–10 µM) a tendency for inhibition of the activity is detected (Figure 4). Such a bell-shaped concentration–response curve is quite typical for the effects of H₂S. Sulfhydration occurs at two highly conserved cysteine residues in subunit α of the synthase, Cys244, or Cys294. Mutation of either of the two cysteines (C244S or C294S) leads to a slight reduction in the catalytic activity of ATP synthase. The double mutant (C244S/C294S) exhibits more than 50% inhibition of the enzyme activity. In vivo, subunit α of the synthase is basally sulfhydrated. The basal sulfhydration is mostly due to CSE-derived endogenous H₂S generation because it is suppressed in liver homogenates harvested from CSE⁻/⁻ mice. Burn injuries that upregulate CSE and increase H₂S generation result in an increase in S-sulfhydration of subunit α of the synthase. Thus, S-sulfhydration of subunit α of the synthase could be a physiological mechanism to maintain ATP synthase in a physiologically activated state, thereby supporting mitochondrial bioenergetics [30].
The mammalian respiratory chain includes four different membrane-bound complexes: I, II, III, and IV. H2S at low concentrations stimulates the activity of F0F1-ATP synthase (also known as complex V) via S-sulfhydration of Cys244 or Cys294 of its α subunit [30]. H2S increases the activity of lactate dehydrogenase (LDH) via S-sulfhydration of its Cys163 that, in turn, stimulates mitochondrial electron transport [31]. H2S can also donate electrons to the respiratory chain via sulfide quinone oxidoreductase (SQOR) by directly reducing ubiquinone (UQ) [32]. At high (toxic) concentrations H2S stimulates the activity of FOF1-ATP synthase or complex V) to produce ATP.

Untereiner et al. reported that in the colon cancer cell line HCT116, LDHA catalyzes the reversible conversion of lactate to pyruvate with the reduction of NAD+ to NADH, and vice versa. The enzyme is a tetramer that is usually composed of the two most common types of subunits, LDHA and LDHB [40]. LDHA and LDHB can assemble into five different isoenzymes: LDH1, LDH2, LDH3, LDH4, and LDH5. Isoenzymes that are rich in LDHA catabolize pyruvate to lactate with the concomitant production of NAD+ from NADH. Conversely, isoenzymes rich in LDHB facilitate lactate-to-pyruvate conversion with the concomitant formation of NADH from NAD+. Importantly, H2S stimulates oxidative phosphorylation in HCT116 cells in an LDHA-dependent manner. Thus, in colon cancer cells, H2S-induced stimulation of the catalytic activity of LDHA leads to the stimulation of mitochondrial electron transport.

Figure 4. Effects of H2S on mammalian mitochondrial electron transport chain, ATP synthase, and lactate dehydrogenase. The mammalian respiratory chain includes four different membrane-bound complexes: I, II, III, and IV. H2S at low concentrations stimulates the activity of F0F1-ATP synthase (also known as complex V) via S-sulfhydration of Cys244 or Cys294 of its α subunit [30]. H2S increases the activity of lactate dehydrogenase (LDH) via S-sulfhydration of its Cys163 that, in turn, stimulates mitochondrial electron transport [31]. H2S can also donate electrons to the respiratory chain via sulfide quinone oxidoreductase (SQOR) by directly reducing ubiquinone (UQ) [32]. At high (toxic) concentrations H2S inhibits complex IV (cytochrome c oxidase) and F0F1-ATP synthase that leads to reversible inhibition of mitochondrial electron transport and ATP production [30,33–35]. At low concentrations H2S serves as an electron donor for complex IV, either directly [36–38] or indirectly, via reduction of its native substrate cytochrome c [39]. The outer mitochondrial membrane is not shown for simplicity.
The authors hypothesize that the increase in the LDHA activity causes an increase in cytosolic lactate. This enhances the flux of lactate into the mitochondria through the intracellular lactate shuttle. Lactate enters the mitochondrial intermembrane space. Lactate and pyruvate also enter the mitochondrial matrix. Lactate is converted to pyruvate via the mitochondrial LDH that is primarily made up of LDHB and also activated by H$_2$S. Pyruvate in the matrix is oxidized via the Krebs cycle to generate NADH that stimulates the activity of the mitochondrial respiratory chain. Additionally, the oxidation of lactate to pyruvate by the mitochondrial LDH is coupled to the reduction of NAD$^+$ to NADH. This NADH, in turn, is utilized by the mitochondrial respiratory chain to further support electron transport.

5. **H$_2$S Donates Electrons to the Mitochondrial Respiratory Chain via Sulfide Quinone Oxidoreductase (SQOR)**

Powell and Somero first reported that the oxidation of H$_2$S can occur in mitochondria, and that the process is coupled to oxidative phosphorylation [41]. The mitochondrial oxidation of H$_2$S was observed in the gill and foot tissue of *Solemya reidi*, a gutless clam living in sulfide-rich habitats. Later, Goubaren et al., using permeabilized human colon adenocarcinoma HT29 cells, showed that H$_2$S at low micromolar concentrations can serve as an electron donor for the mammalian respiratory chain [32]. This is accompanied by mitochondrial energization. The latter is extremely sensitive to the amount of H$_2$S delivered instantaneously to mitochondria. H$_2$S donates electrons at the respiratory chain at the level of UQ.

The enzyme that catalyzes the electron transfer from H$_2$S to UQ is SQOR [42]. SQOR belongs to group four of the flavin disulfide reductase (FDR) superfamily. The enzyme contains a tightly bound FAD (flavin adenine dinucleotide) and two spatially proximal redox-active cysteines. A peculiar feature of human SQOR is the fact that the two cysteines are linked via a bridging sulfur atom which forms the redox-active cysteine trisulfide configuration. The trisulfide appears to be the active form of SQOR, being present at the start and end of the catalytic cycle [43].

When H$_2$S is oxidized in the mitochondrial matrix by the action of SQOR under physiological conditions, GSH serves as the primary sulfur acceptor (Figure 4). In the reaction that is coupled to the reduction of UQ to UQH$_2$, glutathione persulfide (GSSH) is produced. GSSH is then oxidized by persulfide dioxygenase (ETHE1) to yield sulfite (SO$_3^{2-}$) and regenerate GSH. GSSH can also be a substrate for rhodanese or thiosulfate sulfurtransferase (TST). TST catalyzes the reaction of GSSH with SO$_3^{2-}$ to generate GSH and thiosulfate (S$_2$O$_3^{2-}$). Alternatively, SO$_3^{2-}$ can be oxidized to sulfate (SO$_4^{2-}$) by sulfite oxidase (SUOX) located in the intermembrane space, with the concomitant reduction of cytochrome c. Thiosulfate and sulfate can be excreted with urine (see [42] and references therein). Thus, electrons from the sulfide oxidation pathway can enter the mitochondrial respiratory chain at the level of the cytochrome b_1c_1 complex (from SQOR) and cytochrome c oxidase (from SUOX).

6. **H$_2$S at Toxic Concentrations Inhibits Mitochondrial Cytochrome c Oxidase**

H$_2$S exposure, at high concentrations and high rates, is extremely toxic to mammals, including humans [35]. The acute toxicity of H$_2$S is generally attributed to the suppression of the mitochondrial cytochrome c oxidase (complex IV). Complex IV couples the transfer of electrons from cytochrome c to O$_2$ with the generation of the transmembrane proton gradient using the mechanism of proton pumping [16,44–65]. The enzyme carries four redox-active metal sites: Cu$_A$, heme a, heme a_3, and Cu$_B$. Electrons from cytochrome c primarily accepted by Cu$_A$ are transferred to heme a and then to the catalytic binuclear center composed of heme a_3 and Cu$_B$ in which the reduction of oxygen to water occurs [66–69]. There are two forms of cytochrome c oxidase: slow (resting oxidase as obtained from the preparation) and fast (the completely reduced enzyme exposed to a “pulse” of O$_2$) [70]. The fast form is also called pulsed or unrelaxed. The slow form differs from the fast form in lower reactivity for inhibitors [71] and slower intramolecular electron transfer [72].
H₂S at high concentrations was reported to inhibit the O₂ consumption by the beef heart cytochrome c oxidase in the isolated form and in submitochondrial particles (Figure 4) [33,34,73]. The inhibition by H₂S appears to be non-competitive with respect to both substrates, cytochrome c and O₂ [34]. The inhibition efficiency increases with decreasing pH: the Kᵢ values measured at pH 8.05, 7.48, and 6.28, are 2.6, 0.55, and 0.07 μM, respectively [37]. The initial rate of inactivation of the fast form of the isolated cytochrome c oxidase is proportional to total H₂S concentration, with an initial rate constant, kᵢₒᵣᵣ, of 2.2 × 10⁴ M⁻¹ s⁻¹ at pH 7.47 [38]. The inhibition of complex IV leads to blockage of the mitochondrial respiratory chain and, as a consequence, to the dissipation of the membrane potential, the cessation of oxidative phosphorylation, and enhanced ROS production [35]. Consistently, examination of the cytotoxic effects of inhalational H₂S exposure showed that sublethal (>50 ppm) concentrations of the inhaled gas caused inhibition of cytochrome c oxidase activity in the lung and heart, which can be observed ex vivo and is associated with pathological alterations [74–79]. That complex IV is suppressed by high (usually 10–100 μM) concentrations of H₂S in vitro in various cell lines is well documented [75,80–85]. The H₂S-induced inhibition is reversible, e.g., 10–30 min after the exposure of tissue homogenates to H₂S, the activity of complex IV gets back to its initial level, simultaneously with the decomposition of the inhibitor [86].

H₂S, presumably in the form of HS⁻, binds to the ferric heme α₃ and Cu₉ in either state (either cupric or cuprous) [38]. The final enzyme product of H₂S inhibition is a mixed-valence state of the oxidase in which Cu₉ and heme α are reduced and heme α₃ is in the ferric H₂S-bound form [33,87]. Cu₉ in the final inhibited enzyme remains reduced even after reoxidation of the H₂S-bound oxidase, as evidenced by an electron paramagnetic resonance spectroscopy study [88]. The fact that Cu₉ remains cuprous in the presence of ferricyanide suggests that H₂S binding to Cu₉³⁺ increases its redox potential and makes re-oxidation difficult. In other words, Cu₉³⁺ in this state may also be H₂S-bound [88]. Nicholls et al. [38] suggested a model for the H₂S-mediated inhibition of the mitochondrial cytochrome c oxidase (Figure 5). According to this model, during the steady-state turnover of complex IV, the first molecule of HS⁻ transiently binds to cupric or cuprous Cu₉. Then, it is transferred to the ferric heme α₃ that blocks the catalytic reaction of the heme with O₂. In the final protein-inhibitor adduct, Cu₉ is likely reduced and presumably bound to the second molecule of HS⁻. Heme α and Cu₉ are most likely reduced in the adduct.

Figure 5. Proposed mechanism of inhibition of mitochondrial cytochrome c oxidase and Escherichia coli cytochrome bo₃ by H₂S. Shown is the catalytic binuclear center in different redox and ligation states. The center consists of the copper ion Cu₉ and the high-spin heme (Fe₉₃). The latter is heme α₃ in cytochrome c oxidase and heme α₃ in cytochrome bo₃. The metal redox groups which are not part of the center are not shown.
7. H₂S at Low Concentrations Serves as Electron Donor for Mitochondrial Cytochrome c Oxidase

H₂S at low concentrations can act as a substrate for mitochondrial complex IV (Figure 4) [36,37]. The fast form of the oxidized cytochrome c oxidase reacts aerobically with low H₂S levels in the absence of reduced substrates. However, the initial product of this reaction is not the inhibited enzyme but a catalytic intermediate, compound ‘P’ (Figure 6) [38]. Compound ‘P’ then decays into another catalytic intermediate, compound ‘F’. It is proposed that in this reaction two H₂S molecules donate two electrons to the fully oxidized binuclear center, \(\text{a}_3^{3+}\text{CuB}^{2+} \), converting it to the fully reduced state, \(\text{a}_3^{2+}\text{CuB}^{2+} \). The concomitant H₂S oxidation product is possibly hydrogen persulfide (HSSH), although a form of free sulfur (\(S^0 \) or \(S_8 \)) cannot be excluded [38]. Then the fully reduced binuclear center reacts with \(O_2 \), producing compound ‘P’. It remains unclear whether cytochrome c oxidase contributes significantly to a dissimilatory mechanism for the endogenously generated H₂S, or if SQOR is the major contributor in vivo. Notably, H₂S can also reduce complex IV indirectly, via reduction of its native substrate cytochrome c (Figure 4). The reaction between H₂S and cytochrome c presumably leads to the initial formation of the \(\text{HS}^*/\text{S}^* \) radical. \(\text{HS}^*/\text{S}^* \) could then be trapped by proteins producing protein persulfides and superoxide, or be trapped by \(O_2 \) yielding HSO₂• [39].

![Figure 6. Proposed molecular mechanism of the reaction of the fast form of mitochondrial cytochrome c oxidase with low H₂S levels. O₁H, E₁H, A, P, and F are unrelaxed oxidized, unrelaxed one-electron-reduced, compound ‘A’, compound ‘P’, and compound ‘F’ catalytic intermediates, respectively. Chemical and pumped protons involved in the catalytic cycle are not shown for clarity.]

8. Effect of H₂S on the Operation of the Branched Respiratory Chain of E. coli and Bacterial Growth

Under steady-state conditions, the mammalian tissue concentration of H₂S is usually in the low nanomolar range, e.g., it is around 15 nM in mouse brain and liver tissues [89]. The mammalian gut, in this sense, is unique among other body compartments. Millimolar concentrations (1.0–2.4 mM) of H₂S are commonly present in the gut [90]. The reason is that in the gastrointestinal tract, unlike other compartments, H₂S is generated by both the mammalian CBS, CSE, and 3MST, and by the microbial communities inhabiting the gut, of which sulfate-reducing bacteria are the key H₂S-producing species [90,91]. At such extremely high H₂S levels, bacterial respiratory chains which terminate in cytochrome c oxidase or other heme-copper oxidases should be inhibited. The question then arises as to how under these conditions bacteria inhabiting the mammalian gut can maintain aerobic respiration. It turned out that E. coli, and possibly other bacteria inhabiting H₂S-rich
environments, has a unique bd-type terminal oxidase that is not inhibited by H$_2$S, even at toxic concentrations [92–95].

E. coli is an essential member of the intestinal microbiome of humans and warm-blooded animals. The large intestine of humans normally harbors several _E. coli_ strains at a given point in time [96]. In contrast to the electron transport chain of mammals that is unbranched, _E. coli_, like many other prokaryotes, possesses the branched aerobic respiratory chain (Figure 7) [45,97–102]. The _E. coli_ chain comprises of type I and type II NADH dehydrogenases which transfer electrons from NADH to ubiquinol-8 (UQ8) or menaquinol-8 (MQ8); succinate dehydrogenase transferring electrons from succinate to UQ8; and three terminal oxidases, cytochromes bo$_3$, bd-I, and bd-II which transfer electrons from UQ8 or MQ8 to O$_2$ producing H$_2$O [103–112]. The proton motive force generated by type I NADH dehydrogenase and the terminal oxidases is used by F$_0$F$_1$-ATP synthase to make ATP [113–115]. Being a true proton pump, cytochrome bo$_3$ produces the proton motive force with higher efficiency as compared to the evolutionarily unrelated bd-type oxidases [116–121]. The three-dimensional structures of cytochrome bo$_3$ and cytochrome bd-I were determined [122–125]. The bo$_3$ oxidase is a member of type A-1 heme-copper oxidase superfamily [46,48,49,51,54,56–59,61–63]. Cytochrome bo$_3$ contains the UQ8 binding site, heme b$_3$ and the catalytic binuclear center formed by heme d$_3$ and Cu$_9$ [101,126]. Cytochrome bd-I and cytochrome bd-II are members of the L subfamily of the cytochrome _bd_ oxygen reductase family [127,128]. According to recent work by Murali et al. [129], the latter family should be expanded into a huge superfamily. The _bd_ oxidase has the UQ8/MQ8 binding site, and three heme prosthetic groups, b$_{558}$, b$_{955}$, and _d_ but lacks any copper site [97,98,108,127,130–133]. Hemes b$_{955}$ and _d_ may form a di-heme active site for oxygen chemistry, as evidenced by a number of studies [134–147]. These hemes are in van der Waals contacts [124,125], enabling fast electron transfers between them [119,145,146]. Thus, the functional di-heme active site in the _bd_ oxidase implies that heme b$_{955}$ is able to rapidly donate an electron and a proton to heme _d_ to perform a concerted four-electron reduction of oxygen to water. This role of heme b$_{955}$ in cytochrome _bd_ is similar to that of Cu$_9$ in the catalytic binuclear center of cytochrome bo$_3$. Cytochromes bo$_3$ and _bd_ have low and high O$_2$ affinity, respectively [148–153]. As a consequence, the bo$_3$ enzyme dominates in _E. coli_ under conditions of high O$_2$ concentration, whereas the _bd_ oxidase is expressed at low aeration [154–158]. Cytochrome _bd_ performs vital physiological functions in _E. coli_ and other prokaryotes [16,131,159–163]. In particular, the enzyme endows the microbes with resistance to nitric oxide [164–173], peroxynitrite [160,174], hydrogen peroxide [16,175–180], cyanide [92,181,182], and ammonia [183]. The _bd_-type oxidases are present in the respiratory chains of bacteria and archaea but not in humans and animals. For this reason, they could serve as suitable protein targets for next-generation antibiotics [133,171,184–190].

Forte et al. studied the effect of H$_2$S on the oxygen consumption by the purified terminal oxidases bo$_3$, bd-I, and bd-II from _E. coli_ [92]. It turned out that the activity of cytochrome bo$_3$ is quickly inhibited with an apparent half-maximal inhibitory concentration IC_{50} of 1.1 μM H$_2$S (pH 7.4). This value is similar to the K_i of 0.55 μM H$_2$S obtained by Nicholls and Kim for the beef heart cytochrome _c_ oxidase at pH 7.48 [37]. The inhibition of the bo$_3$ oxidase appeared to be fully reversible. The rapid and total recovery of the enzymatic activity occurs following the removal of H$_2$S from the solution by the H$_2$S scavenger, the _Entamoeba histolytica_ O-acetylserylserine sulphhydrylase (EhOASS), in the presence of excess O-acetyl-L-serine (OAS). In contrast, neither the bd-I oxidase nor the bd-II oxidase is inhibited under identical conditions, even at a high concentration of H$_2$S (58 μM) [92].

Similar results were obtained when examining the effect of H$_2$S on the oxygen consumption by cell suspensions of the _E. coli_ mutant strains which possess bo$_3$, bd-I, and bd-II as the only terminal oxidase. The oxygen uptake by cells having bo$_3$ as the sole oxidase is rapidly inhibited by 50 μM H$_2$S. As in the case of the purified enzyme, the inhibition is promptly and completely restored after H$_2$S depletion by the EhOASS/OAS system. Conversely, H$_2$S at the same concentration does not affect the oxygen uptake by mutant cells having either...
bd-I or bd-II as the only oxidase [92]. Similar data on the E. coli membrane vesicles were reported by Korshunov et al. [93].

Figure 7. Effect of H$_2$S on the operation of the branched respiratory chain of E. coli. Shown is the schematic view of the branched aerobic respiratory chain of E. coli. H$_2$S inhibits cytochrome $b$$_3$ but does not affect cytochrome b-d-I and cytochrome b-d-II. Succinate dehydrogenase and other substrate dehydrogenases are not shown for clarity.

Forte et al. also tested if b-d-I and/or b-d-II oxidases, besides enabling aerobic respiration, promote the growth of E. coli cells in the presence of H$_2$S [92]. A quantity of 200 µM H$_2$S appeared to severely inhibit the growth of mutant cells with only cytochrome $b$$_3$. On the contrary, virtually no effect on cell growth was detected following the addition of H$_2$S at the same concentration to the strains which express either b-d-I or b-d-II as the sole oxidase. Thus, in contrast with cytochrome $b$$_3$, which is potently and reversibly inhibited by H$_2$S, both cytochrome b-d-I and cytochrome b-d-II are H$_2$S-insensitive, and therefore, able to sustain respiration and cell growth in the presence of high levels of H$_2$S. We assume that the mechanism of the inhibition of the E. coli cytochrome $b$$_3$ by H$_2$S is very similar to that suggested for the H$_2$S-mediated inhibition of another heme-copper terminal oxidase, mitochondrial complex IV (Figure 5).

The H$_2$S resistance of cytochrome b-d is probably a key trait not only found in E. coli. Saini et al. [191] reported that H$_2$S promotes the respiration and growth of Mycobacterium tuberculosis, Mycobacterium smegmatis, and Mycobacterium bovis BCG. The authors concluded that the suppression of the cytochrome $b$$c$$c$$aa_3$ supercomplex by H$_2$S leads to the switching of the electron flow from MQ to cytochrome $b$$d$. The latter, in turn, stimulates respiration and ATP production, leading to the increased growth of the mycobacteria [191]. Furthermore, Kunota et al. [192] showed that multidrug-resistant and drug-susceptible clinical M. tuberculosis strains (but not non-pathogenic M. smegmatis) generate H$_2$S endogenously, maintaining bioenergetic homeostasis by stimulating respiration primarily via the $b$$d$-type terminal oxidase. These findings are in agreement with the fact that the b-d oxidases of the E. coli respiratory chain are H$_2$S-insensitive [92,93].

9. Concluding Remarks

Accumulated evidence has shown that H$_2$S is an effector molecule that controls energy metabolism. Depending on the concentration, H$_2$S can either stimulate or inhibit the mammalian mitochondrial respiratory chain and F$_{0}$F$_{1}$-ATP synthase. An involvement of LDHA in the stimulatory effects of H$_2$S on mitochondrial respiration has also been suggested. High H$_2$S inhibits the bacterial respiratory chain terminating in cytochrome $b$$_3$.

Figure 7. Effect of H$_2$S on the operation of the branched respiratory chain of E. coli. Shown is the schematic view of the branched aerobic respiratory chain of E. coli. H$_2$S inhibits cytochrome $b$$_3$ but does not affect cytochrome b-d-I and cytochrome b-d-II. Succinate dehydrogenase and other substrate dehydrogenases are not shown for clarity.
but not cytochrome bd. The effects of H\textsubscript{2}S on a bacterial ATP synthase are still unknown. Although the role of H\textsubscript{2}S in microorganisms has been investigated less, there is currently an explosion of interest in the link between H\textsubscript{2}S and bacterial energy metabolism as a result of the recognition that this gaseous signaling molecule is critically important for the growth and colonization potential of pathogens, such as \textit{M. tuberculosis}. A clearer picture of the effects of H\textsubscript{2}S on energy metabolism would represent a significant advance for the development of novel therapeutics.

Author Contributions:
V.B.B. and E.F. performed the literature review and wrote the paper. All authors have read and agreed to the published version of the manuscript.

Funding:
This work was funded by the Russian Foundation for Basic Research (http://www.rfbr.ru/rffi/eng—research project № 19-04-00094) and Sapienza grants n. RP120172B836A98.

Institutional Review Board Statement:
Not applicable.

Informed Consent Statement:
Not applicable.

Conflicts of Interest:
The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References

1. Abe, K.; Kimura, H. The possible role of hydrogen sulfide as an endogenous neuromodulator. \textit{J. Neurosci.} \textbf{1996}, \textit{16}, 1066–1071. [CrossRef]

2. Yang, G.; Wu, L.; Jiang, B.; Yang, W.; Qi, J.; Cao, K.; Meng, Q.; Mustafa, A.K.; Mu, W.; Zhang, S.; et al. H\textsubscript{2}S as a physiologic vasorelaxant: Hyperension in mice with deletion of cystathionine gamma-lyase. \textit{Science} \textbf{2008}, \textit{322}, 587–590. [CrossRef] [PubMed]

3. Bakalarz, D.; Korbut, E.; Yuan, Z.; Yu, B.; Wojcik, D.; Danielak, A.; Magierowska, K.; Kwiecien, S.; Brzozowski, T.; Marcinkowska, M.; et al. Novel hydrogen sulfide (H\textsubscript{2}S)-releasing BW-HS-101 and its non-H\textsubscript{2}S releasing derivative in modulation of microscopic and molecular parameters of gastric mucosal barrier. \textit{Int. J. Mol. Sci.} \textbf{2021}, \textit{22}, 5211. [CrossRef] [PubMed]

4. Nowaczyk, A.; Kowalska, M.; Nowaczyk, J.; Grzesk, G. Carbon monoxide and nitric oxide as examples of the youngest class of transmitters. \textit{Int. J. Mol. Sci.} \textbf{2021}, \textit{22}, 6029. [CrossRef]

5. Kimura, H. Production and physiological effects of hydrogen sulfide. \textit{Antioxid. Redox Signal.} \textbf{2014}, \textit{20}, 783–793. [CrossRef]

6. Wareham, L.K.; Southam, H.M.; Poole, R.K. Do nitric oxide, carbon monoxide and hydrogen sulfide really qualify as ‘gasotransmitters’ in bacteria? \textit{Biochem. Soc. Trans.} \textbf{2018}, \textit{46}, 1107–1118. [CrossRef]

7. Randi, E.B.; Zuhra, K.; Pecze, L.; Panagaki, T.; Szabo, C. Physiological concentrations of cyanide stimulate mitochondrial Complex IV and enhance cellular bioenergetics. \textit{Proc. Natl. Acad. Sci. USA} \textbf{2021}, \textit{118}, e2026251118. [CrossRef]

8. Giamogante, F.; Cali, T.; Malatesta, F. Physiological cyanide concentrations do not stimulate mitochondrial cytochrome c oxidase activity. \textit{Proc. Natl. Acad. Sci. USA} \textbf{2021}, \textit{118}, e2112373118. [CrossRef]

9. Zhao, W.; Zhang, J.; Lu, Y.; Wang, R. The vasorelaxant effect of H\textsubscript{2}S as a novel endogenous gaseous K\textsubscript{ATP} channel opener. \textit{Embo J.} \textbf{2001}, \textit{20}, 6008–6016. [CrossRef]

10. Papapetropoulos, A.; Pyriochou, A.; Altaany, Z.; Yang, G.; Marazioti, A.; Zhou, Z.; Jeschke, M.G.; Branski, L.K.; Herndon, D.N.; Wang, R.; et al. Hydrogen sulfide is an endogenous stimulator of angiogenesis. \textit{Proc. Natl. Acad. Sci. USA} \textbf{2009}, \textit{106}, 21972–21977. [CrossRef]

11. Yang, G.; Sun, X.; Wang, R. Hydrogen sulfide-induced apoptosis of human aorta smooth muscle cells via the activation of mitogen-activated protein kinases and caspase-3. \textit{FASEB J.} \textbf{2004}, \textit{18}, 1782–1784. [CrossRef] [PubMed]

12. Murphy, B.; Bhattacharya, R.; Mukherjee, P. Hydrogen sulfide signaling in mitochondria and disease. \textit{FASEB J.} \textbf{2019}, \textit{33}, 13098–13125. [CrossRef] [PubMed]

13. Cao, X.; Ding, L.; Xie, Z.Z.; Yang, Y.; Whiteman, M.; Moore, P.K.; Bian, J.S. A review of hydrogen sulfide synthesis, metabolism, and measurement: Is modulation of hydrogen sulfide a novel therapeutic for cancer? \textit{Antioxid. Redox Signal.} \textbf{2019}, \textit{31}, 1–38. [CrossRef] [PubMed]

14. Corpas, F.J.; Palma, J.M. H\textsubscript{2}S signaling in plants and applications in agriculture. \textit{J. Adv. Res.} \textbf{2020}, \textit{24}, 131–137. [CrossRef]

15. Shatalin, K.; Shatalina, E.; Mironov, A.; Nudler, E. H\textsubscript{2}S: A universal defense against antibiotics in bacteria. \textit{Science} \textbf{2011}, \textit{334}, 986–990. [CrossRef]

16. Borisov, V.B.; Siletsky, S.A.; Nastasi, M.R.; Forte, E. ROS defense systems and terminal oxidases in bacteria. \textit{Antioxidants} \textbf{2021}, \textit{10}, 839. [CrossRef]
47. Pereira, M.M.; Sousa, F.L.; Verissimo, A.F.; Teixeira, M. Looking for the minimum common denominator in haem-copper oxygen reductases: Towards a unified catalytic mechanism. Biochim. Biophys. Acta 2008, 1777, 929–934. [CrossRef]

48. Pereira, M.M.; Santana, M.; Teixeira, M. A novel scenario for the evolution of haem-copper oxygen reductases. Biochim. Biophys. Acta 2001, 1505, 185–208. [CrossRef]

49. Pereira, M.M.; Gomes, C.M.; Teixeira, M. Plasticity of proton pathways in haem-copper oxygen reductases: A comparison between the three families. Biochim. Biophys. Acta 2004, 1655, 340–346. [CrossRef]

50. Papa, S.; Capitanio, N.; Capitanio, G.; Palese, L.L. Protonmotive cooperativity in cytochrome c oxidase. Biochim. Biophys. Acta 2004, 1658, 95–105. [CrossRef]

51. Moody, A.J.; Cooper, C.E. The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: Chemical mechanism and physiological significance. J. Bioenerg. Biomembr. 2008, 40, 533–539. [CrossRef] [PubMed]

52. Borisov, V.B. Defects in mitochondrial respiratory complexes III and IV, and human pathologies. Mol. Aspects Med. 2002, 23, 385–412. [CrossRef]

53. Borisov, V.B. Mutations in respiratory chain complexes and human diseases. Ital. J. Biochem. 2004, 53, 34–40.

54. Borisov, V.B.; Siletsky, S.A. Features of organization and mechanism of catalysis of two families of terminal oxidases: Heme-copper and bd-type. Biochemistry 2019, 64, 1390–1402. [CrossRef] [PubMed]

55. Hederstedt, L. Molecular biology of Bacillus subtilis cytochromes anno 2020. Biochemistry 2021, 86, 8–21. [CrossRef]

56. Capitanio, N.; Palese, L.L.; Richter, O.M.; Ludwig, B.; Papa, S. Allosteric interactions and proton conducting pathways in proton pumping aa3 oxidases: Heme a as a key coupling element. Biochim. Biophys. Acta 2012, 1817, 558–566. [CrossRef] [PubMed]

57. Wiktrom, M.; Krab, K.; Sharma, V. Oxygen activation and energy conservation by cytochrome c oxidase. Chem. Rev. 2018, 118, 2469–2490. [CrossRef] [PubMed]

58. Capitanio, N.; Palese, L.L.; Capitanio, G.; Martino, P.L.; Richter, O.M.; Ludwig, B.; Papa, S. Allosteric interactions and proton conducting pathways in proton pumping aa3 oxidases: Heme a as a key coupling element. Biochim. Biophys. Acta 2012, 1817, 558–566. [CrossRef] [PubMed]

59. Maneg, O.; Malatesta, F.; Ludwig, B.; Drosou, V. Interaction of cytochrome c with cytochrome oxidase: Two different docking scenarios. Biochim. Biophys. Acta 2004, 1655, 274–281. [CrossRef] [PubMed]

60. Gavrikova, E.V.; Grivennikova, V.G.; Borisov, V.B.; Cecchini, G.; Vinogradov, A.D. Assembly of a chimeric respiratory chain from bovine heart subunit mitochondrial particles and cytochrome bd terminal oxidase of Escherichia coli. FEBS Lett. 2009, 583, 1287–1291. [CrossRef]

61. von Ballmoos, C.; Adelroth, P.; Gennis, R.B.; Brzezinski, P. Proton transfer in ba3 cytochrome c oxidase from Thermus thermophilus. Biochim. Biophys. Acta 2012, 1817, 650–657. [CrossRef] [PubMed]

62. Rich, P.R. Mitochondrial cytochrome c oxidase: Catalysis, coupling and controversies. Biochem. Soc. Trans. 2017, 45, 813–829. [CrossRef]

63. Yoshikawa, S.; Shimada, A. Reaction mechanism of cytochrome c oxidase. Chem. Rev. 2015, 115, 1936–1989. [CrossRef]

64. Forte, E.; Giuffre, A.; Huang, L.S.; Berry, E.A.; Borisov, V.B. Nitric oxide does not inhibit but is metabolized by the cytochrome bcc-aa3 supercomplex. Int. J. Mol. Sci. 2020, 21, 8521. [CrossRef] [PubMed]

65. Siletsky, S.A.; Borisov, V.B. Proton pumping and non-pumping terminal respiratory oxidases: Active sites intermediates of these molecular machines and their derivatives. Int. J. Mol. Sci. 2021, 22, 10852. [CrossRef]

66. Tsukihara, T.; Aoyama, H.; Yamashita, E.; Tomizaki, T.; Yamaguchi, H.; Shinzawa-Itoh, K.; Nakashima, R.; Yaono, R.; Yoshikawa, S. The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 A. Science 1996, 272, 1136–1144. [CrossRef] [PubMed]

67. Yano, N.; Muramoto, K.; Shimada, A.; Yamashita, E.; Fujiwara, H.; Mochizuki, M.; Shinzawa-Itoh, K.; Yamashita, E.; Tsukihara, T.; et al. The Mg2+—containing water cluster of mammalian cytochrome c oxidase collects four pumping proton equivalents in each catalytic cycle. J. Biol. Chem. 2016, 291, 23882–23894. [CrossRef]

68. Shimada, A.; Etoh, Y.; Kitoh-Fujisawa, R.; Sasaki, A.; Shinzawa-Itoh, K.; Hiromoto, T.; Yamashita, E.; Muramoto, K.; Tsukihara, T.; Yoshikawa, S. X-ray structures of catalytic intermediates of cytochrome c oxidase provide insights into its O2 activation and unidirectional proton-pump mechanisms. J. Biol. Chem. 2020, 295, 5818–5833. [CrossRef]

69. Shimada, A.; Hara, F.; Shinzawa-Itoh, K.; Kamehisa, N.; Yamashita, E.; Muramoto, K.; Tsukihara, T.; Yoshikawa, S. Critical roles of the Cys8 site in efficient proton pumping as revealed by crystal structures of mammalian cytochrome c oxidase catalytic intermediates. J. Biol. Chem. 2021, 297, 100967. [CrossRef]

70. Antonini, E.; Brunori, M.; Colosimo, A.; Greenwood, C.; Wilson, M.T. Oxygen “pulsed” cytochrome c oxidase: Functional properties and catalytic relevance. Proc. Natl. Acad. Sci. USA 1977, 74, 3128–3132. [CrossRef]

71. Moody, A.J. “As prepared” forms of fully oxidised haem/Cu terminal oxidases. Biochim. Biophys. Acta 1996, 1276, 6–20. [CrossRef]

72. Moody, A.J.; Cooper, C.E.; Rich, P.R. Characterisation of ‘fast’ and ‘slow’ forms of bovine heart cytochrome-c oxidase. Biochim. Biophys. Acta 1991, 1059, 189–207. [CrossRef]

73. Cooper, C.E.; Brown, G.C. The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: Chemical mechanism and physiological significance. J. Bioenerg. Biomembr. 2008, 40, 533–539. [CrossRef] [PubMed]

74. Khan, A.A.; Schulier, M.M.; Prior, M.G.; Yong, S.; Coppel, R.W.; Florence, L.Z.; Lillie, E.E. Effects of hydrogen sulfide exposure on lung mitochondrial respiratory chain enzymes in rats. Toxicol. Appl. Pharmacol. 1990, 103, 482–490. [CrossRef]
103. Melin, F.; Sabuncu, S.; Choi, S.K.; Leprince, A.; Gennis, R.B.; Hellwig, P. Role of the tightly bound quinone for the oxygen reaction of cytochrome \(b_{0} \) oxidase from Escherichia coli. FEBS Lett. 2018, 592, 3380–3387. [CrossRef] [PubMed]

104. Szundi, I.; Kittredge, C.; Choi, S.K.; McDonald, W.; Ray, J.; Gennis, R.B.; Einarsdottir, O. Kinetics and intermediates of the reaction of fully reduced Escherichia coli \(b_{0} \) ubiquinol oxidase with \(O_{2} \). Biochemistry 2014, 53, 5393–5404. [CrossRef]

105. Mogi, T.; Tsubaki, M.; Hori, H.; Miyoshi, H.; Nakamura, H.; Anraku, Y. Two terminal quinol oxidase families in Escherichia coli: Variations on molecular machinery for dioxygen reduction. J. Biochem. Mol. Biol. Biophys. 1998, 2, 79–110.

106. Svensson Ek, M.; Brzezinski, P. Oxidation of ubiquinol by cytochrome \(b_{03} \) from Escherichia coli: Kinetics of electron and proton transfer. Biochemistry 1997, 36, 5425–5431.

107. Yang, K.; Borisov, V.B.; Konstantinov, A.A.; Gennis, R.B. The fully oxidized form of the cytochrome \(bd \) quinol oxidase from \(E. coli \) does not participate in the catalytic cycle: Direct evidence from rapid kinetics studies. FEBS Lett. 2008, 582, 3705–3709. [CrossRef]

108. Junemann, S. Cytochrome \(bd \) terminal oxidase. Biochim. Biophys. Acta 1997, 1321, 107–127. [CrossRef]

109. Borisov, V.B.; Belevich, I.; Bloch, D.A.; Mogi, T.; Verkhovsky, M.I. Glutamate 107 in subunit I of cytochrome \(bd \) terminal oxidase of \(E. coli \) does not participate in the catalytic cycle: Direct evidence from rapid kinetics studies. FEBS Lett. 2008, 582, 3705–3709. [CrossRef]

110. Belevich, I.; Borisov, V.B.; Zhang, J.; Yang, K.; Konstantinov, A.A.; Gennis, R.B.; Verkhovsky, M.I. Time-resolved electrometric and optical studies on cytochrome \(bd \) suggest a mechanism of electron-proton coupling in the di-heme active site. Proc. Natl. Acad. Sci. USA 2005, 102, 3657–3662. [CrossRef]

111. Asseri, A.H.; Godoy-Hernandez, A.; Goojani, H.G.; Lill, H.; Sakamoto, J.; McMillan, D.G.G.; Bald, D. Cardiolipin enhances the enzymatic activity of cytochrome \(bd \) and cytochrome \(b_{03} \) solubilized in dodecyl-maltoside. Sci. Rep. 2021, 11, 8006. [CrossRef] [PubMed]

112. Nikolaev, A.; Safarian, S.; Thesseling, A.; Wohlwend, D.; Friedrich, T.; Kusumoto, T.; Sakamoto, J.; Melin, F.; Hellwig, P. Electrocatalytic evidence of the diversity of the oxygen reaction in the bacterial \(bd \) oxidase from different organisms. Biochim. Biophys. Acta Bioenergetics 2021, 1862, 148436. [CrossRef] [PubMed]

113. Nakanishi-Matsui, M.; Sekiya, M.; Futai, M. ATP synthase from \(E. coli \). FEBS Lett. 2021, 582, 3705–3709. [CrossRef]

114. Deckers-Hebestreit, G.; Greie, J.; Stalz, W.; Altwendorf, K. The ATP synthase of \(E. coli \): Structure and function of \(F_{0} \) subunits. Biochim. Biophys. Acta 2000, 1458, 364–373. [CrossRef]

115. Sobti, M.; Walshe, J.L.; Wu, D.; Ishmukhametov, R.; Zeng, Y.C.; Robinson, C.V.; Berry, R.M.; Stewart, A.G. Cryo-EM structures of ATP synthase accommodates symmetry mismatch. Nat. Commun. 2020, 11, 2615. [CrossRef]

116. Puustinen, A.; Atkinson, A.; Halta, T.; Gennis, R.B.; Wikstrom, M. Properties of the two terminal oxidases of \(E. coli \). Biochemistry 1991, 30, 3936–3942. [CrossRef]

117. Jasaitis, A.; Borisov, V.B.; Belevich, N.P.; Konstantinov, A.A.; Verkhovsky, M.I. Electrogenic reactions of cytochrome \(bd \). Biochemistry 2000, 39, 13800–13809. [CrossRef]

118. Belevich, I.; Borisov, V.B.; Zhang, J.; Yang, K.; Konstantinov, A.A.; Gennis, R.B.; Verkhovsky, M.I. Time-resolved electrometric and optical studies on cytochrome \(bd \) suggest a mechanism of electron-proton coupling in the di-heme active site. Proc. Natl. Acad. Sci. USA 2005, 102, 3657–3662. [CrossRef]

119. Belevich, I.; Borisov, V.B.; Verkhovsky, M.I. Discovery of the true peroxide intermediate in the catalytic cycle of terminal oxidases by real-time measurement. J. Biol. Chem. 2007, 282, 28514–28519. [CrossRef]

120. Borisov, V.B.; Belevich, I.; Bloch, D.A.; Mogi, T.; Verkhovsky, M.I. Glutamate 107 in subunit I of cytochrome \(bd \) from \(E. coli \) is part of a transmembrane intraprotein pathway conducting protons from the cytoplasm to the heme \(b_{959} \)/heme \(d \) active site. Biochemistry 2008, 47, 7907–7914. [CrossRef]

121. Borisov, V.B.; Murali, R.; Verkhovsky, M.I.; Bloch, D.A.; Han, H.; Gennis, R.B.; Verkhovsky, M.I. Aerobic respiratory chain of \(E. coli \) is not allowed to work in fully uncoupled mode. Proc. Natl. Acad. Sci. USA 2011, 108, 17320–17324. [CrossRef]

122. Abramson, J.; Riistama, S.; Jasaitis, A.; Svensson-Ek, M.; Laakkonen, L.; Puustinen, A.; Iwata, S.; Wikstrom, M. The structure of the ubiquinol oxidase from \(E. coli \) and its ubiquinone binding site. Nat. Struct. Biol. 2000, 7, 910–917. [CrossRef] [PubMed]

123. Li, J.; Han, L.; Vallee, F.; Ding, Z.; Choi, S.K.; Hong, S.; Luo, Y.; Liu, B.; Chan, C.K.; Tajkhorshid, E.; et al.CRYO-EM structures of Escherichia coli cytochrome \(bd \) reveal bound phosphoryl and ubiquinone-8 in a dynamic substrate binding site. Proc. Natl. Acad. Sci. USA 2021, 118, e2100750118. [CrossRef] [PubMed]

124. Safarian, S.; Hahn, A.; Mills, D.J.; Radloff, M.; Eisinger, M.L.; Nikolaev, A.; Meier-Credo, J.; Melin, F.; Miyoshi, H.; Gennis, R.B.; et al. Active site rearrangement and structural divergence in prokaryotic respiratory oxidases. Science 2019, 366, 100–104. [CrossRef]

125. Thesseling, A.; Rasmussen, T.; Burschel, S.; Wohlwend, D.; Kagi, J.; Muller, R.; Bottcher, B.; Friedrich, T. Homologous \(bd \) oxidases share the same architecture but differ in mechanism. Nat. Commun. 2019, 10, 5138. [CrossRef]

126. Choi, S.K.; Schurig-Briccio, L.; Ding, Z.; Hong, S.; Sun, C.; Gennis, R.B. Location of the substrate binding site of the cytochrome \(bo \) ubiquinol oxidase from \(E. coli \). J. Am. Chem. Soc. 2017, 139, 8346–8354. [CrossRef] [PubMed]

127. Borisov, V.B.; Gennis, R.B.; Hemp, J.; Verkhovsky, M.I. The cytochrome \(bd \) respiratory oxygen reductases. Biochim. Biophys. Acta 2011, 1807, 1398–1413. [CrossRef]

128. Arutyunyan, A.M.; Sakamoto, J.; Inadome, M.; Kabashima, Y.; Borisov, V.B. Optical and magneto-optical activity of cytochrome \(bd \) from \(B. thermorhodochrous \). Biochim. Biophys. Acta 2012, 1817, 2087–2094. [CrossRef] [PubMed]
129. Murali, R.; Gennis, R.B.; Hemp, J. Evolution of the cytochrome bd oxygen reductase superfamily and the function of CydAA' in Archaea. ISME J. 2021. [CrossRef]

130. Borisov, V.B. Cytochrome bd: Structure and properties. Biochemistry 1996, 61, 565–574.

131. Forte, E.; Borisov, V.B.; Vicente, J.B.; Giuffre, A. Cytochrome bd and gaseous ligands in bacterial physiology. Adv. Microb. Physiol. 2017, 71, 171–234. [CrossRef] [PubMed]

132. Borisov, V.B. Effect of membrane environment on ligand-binding properties of the terminal oxidase cytochrome bd-I from Escherichia coli. Biochemistry 2020, 85, 1603–1612. [CrossRef] [PubMed]

133. Borisov, V.B.; Siletsky, S.A.; Paiardini, A.; Hoogewijs, D.; Forte, E.; Giuffre, A.; Poole, R.K. Bacterial oxidases of the cytochrome bd family: Redox enzymes of unique structure, function and utility as drug targets. Antioxid. Redox Signal. 2021, 34, 1280–1318. [CrossRef] [PubMed]

134. Hill, J.J.; Alben, J.O.; Gennis, R.B. Spectroscopic evidence for a heme-heme binuclear center in the cytochrome bd ubiquinol oxidase from Escherichia coli. Proc. Natl. Acad. Sci. USA 1993, 90, 5863–5867. [CrossRef] [PubMed]

135. Tsubaki, M.; Hori, H.; Mogi, T.; Anraku, Y. Cyanide-binding site of Siletsky, S.A.; Zaspa, A.A.; Poole, R.K.; Borisov, V.B. Microsecond time-resolved absorption spectroscopy used to study CO. Biochemistry 1996, 38, 740–750. [CrossRef]

136. Cotter, P.A.; Chepuri, V.; Gennis, R.B.; Gunsalus, R.P. Cytochrome oxidase: A di-heme active site? Proc. Natl. Acad. Sci. USA 2000, 97, 1554–1559. [CrossRef]

137. Belevich, I.; Borisov, V.B.; Bloch, D.A.; Konstantinov, A.A.; Verkhovsky, M.I. Accommodation of CO in the di-heme active site of cytochrome bd oxidase from Escherichia coli. J. Biol. Chem. 2007, 282, 1603–1612. [CrossRef] [PubMed]

138. Svensson, M.; Nilsson, T. Flow-flash study of the reaction between cytochrome bd oxidase from Escherichia coli and carbon monoxide at low and room temperatures: Evidence that only a small fraction of heme b955 reacts with CO. J. Biol. Chem. 2001, 276, 22095–22099. [CrossRef] [PubMed]

139. Borisov, V.B.; Liebl, U.; Rappaport, F.; Martin, J.L.; Zhang, J.; Gennis, R.B.; Konstantinov, A.A. Strong excitonic interactions in the oxygen-reducing site of bd-type oxidase: The Fe-to-Fe distance between hemes d and b955 is 10 Å. Biochemistry 2008, 47, 1752–1759. [CrossRef] [PubMed]

140. Borisov, V.B.; Rappaport, F.; Martin, J.L.; Zhang, J.; Gennis, R.B.; Konstantinov, A.A. Interactions between heme d and heme b955 in quinol oxidase bd from Escherichia coli. A photoselection study using femtosecond spectroscopy. Biochemistry 2002, 41, 1654–1662. [CrossRef] [PubMed]

141. Borisov, V.B.; Rappaport, F.; Martin, J.L.; Zhang, J.; Gennis, R.B.; Konstantinov, A.A. Magnetic circular dichroism used to examine the interaction of Escherichia coli cytochrome bd with ligands. Biochemistry 1999, 38, 740–750. [CrossRef]

142. Borisov, V.B.; Liebl, U.; Martin, J.L.; Konstantinov, A.A. Femtosecond resolution of ligand-heme interactions in the high-affinity quinol oxidase bd: A di-heme active site? Proc. Natl. Acad. Sci. USA 2000, 97, 1554–1559. [CrossRef]

143. Arutyunyan, A.M.; Borisov, V.B.; Novoderezhkin, V.I.; Ghaim, J.; Zhang, J.; Gennis, R.B.; Konstantinov, A.A. Interaction of cytochrome bd with carbon monoxide at low and room temperatures: Evidence that only a small fraction of heme b955 reacts with CO. J. Biol. Chem. 2001, 276, 22095–22099. [CrossRef] [PubMed]

144. Bloch, D.A.; Borisov, V.B.; Mogi, T.; Verkhovsky, M.I. Heme/heme redox interaction and resolution of individual optical absorption spectra of the hemes in cytochrome bd from Escherichia coli. Biochem. Biophys. Acta 2007, 1741, 364–378. [CrossRef] [PubMed]

145. Siletsky, S.A.; Zaspa, A.A.; Poole, R.K.; Borisov, V.B. Evidence for fast electron transfer between the high-spin haems in cytochrome bd oxidase from Escherichia coli. PLoS ONE 2014, 9, e95617. [CrossRef] [PubMed]

146. Siletsky, S.A.; Rappaport, F.; Poole, R.K.; Borisov, V.B. Microsecond time-resolved absorption spectroscopy used to study CO compounds of cytochrome bd from Escherichia coli. PLoS ONE 2016, 11, e0155186. [CrossRef] [PubMed]

147. Siletsky, S.A.; Dyuba, A.V.; Elkind, D.A.; Monakhova, M.V.; Borisov, V.B. Spectral-kinetic analysis of recombination reaction of heme centers of bd-type quinol oxidase from Escherichia coli with carbon monoxide. Biochemistry 2017, 56, 2005–2012. [CrossRef] [PubMed]

148. Svensson, M.; Nilsson, T. Flow-flash study of the reaction between cytochrome bo and oxygen. Biochemistry 1993, 32, 5454–5457. [CrossRef] [PubMed]

149. Borisov, V.B.; Smirnova, I.A.; Krasnosel’skaya, I.A.; Konstantinov, A.A. Oxygenated cytochrome bd from Escherichia coli can be converted into the oxidized form by lipophilic electron acceptors. Biochemistry 1994, 33, 437–443. [CrossRef] [PubMed]

150. D’Mello, R.; Hill, S.; Poole, R.K. The oxygen affinity of cytochrome bo from Escherichia coli determined by the deoxygenation of oxyleghemoglobin and oxymyoglobin: K_m values for oxygen are in the submicromolar range. J. Bacteriol. 1995, 177, 867–870. [CrossRef] [PubMed]

151. D’Mello, R.; Hill, S.; Poole, R.K. The cytochrome bd quinol oxidase in Escherichia coli has an extremely high oxygen affinity and two-oxygen-binding haems: Implications for regulation of activity in vivo by oxygen inhibition. Microbiology 1996, 142, 755–763. [CrossRef] [PubMed]

152. Belevich, I.; Borisov, V.B.; Konstantinov, A.A.; Verkhovsky, M.I. Oxygenated complex of cytochrome bd from Escherichia coli: Stability and photostability. FEBS Lett. 2005, 579, 4567–4570. [CrossRef] [PubMed]

153. Belevich, I.; Borisov, V.B.; Bloch, D.A.; Konstantinov, A.A.; Verkhovsky, M.I. Cytochrome bd from Azotobacter vinelandii: Evidence for high-affinity oxygen binding. Biochemistry 2007, 46, 11177–11184. [CrossRef] [PubMed]

154. Cotter, P.A.; Chepuri, V.; Gennis, R.B.; Gunsalus, R.P. Cytochrome o (cyoABCDE) and d (cydAB) oxidase gene expression in Escherichia coli is regulated by oxygen, pH, and the fnr gene product. J. Bacteriol. 1990, 172, 6333–6338. [CrossRef] [PubMed]
Alexeeva, S.; Hellwingwerf, K.; Teixeira de Mattos, M.J. Quantitative assessment of oxygen availability: Perceived aerobiosis and its effect on flux distribution in the respiratory chain of *Escherichia coli*. *J. Bacteriol.* 2002, 184, 1402–1406. [CrossRef]

Rolfe, M.D.; Ter Beek, A.; Graham, A.I.; Trotter, E.W.; Asif, H.M.; Sanguinetti, G.; de Mattos, J.T.; Poole, R.K.; Green, J. Transcript profiling and inference of *Escherichia coli* K-12 ArcA activity across the range of physiologically relevant oxygen concentrations. *J. Biol. Chem.* 2011, 286, 10147–10154. [CrossRef]

Ederer, M.; Steinsiek, S.; Stagge, S.; Rolfe, M.D.; Ter Beek, A.; Knies, D.; Teixeira de Mattos, M.J.; Sauter, T.; Green, J.; Poole, R.K.; et al. A mathematical model of metabolism and regulation provides a systems-level view of how *Escherichia coli* responds to oxygen. *Front. Microbiol.* 2014, 5. [CrossRef] [PubMed]

Bettenbrock, K.; Bai, H.; Ederer, M.; Green, J.; Hellwingwerf, K.J.; Holcombe, M.; Kunz, S.; Rolfe, M.D.; Sanguinetti, G.; Sawodny, O.; et al. Towards a systems level understanding of the oxygen response of *Escherichia coli*. *Adv. Microb. Physiol.* 2014, 64, 65–114. [CrossRef] [PubMed]

Forte, E.; Borisov, V.B.; Konstantinov, A.A.; Brunori, M.; Giuffre, A.; Sarti, P. Cytochrome *bd*, a key oxidase in bacterial survival and tolerance to nitrosative stress. *Ital. J. Biochem.* 2007, 56, 265–269.

Borisov, V.B.; Forte, E.; Siletsky, S.A.; Arese, M.; Davletshin, A.I.; Sarti, P.; Giuffre, A. Cytochrome *bd* protects bacteria against oxidative and nitrosative stress: A potential target for next-generation antimicrobial agents. *Biochemistry* 2015, 80, 565–575. [CrossRef]

Giuffre, A.; Borisov, V.B.; Mastronicola, D.; Sarti, P.; Forte, E. Cytochrome *bd* oxidase and nitric oxide: From reaction mechanisms to bacterial physiology. *FEBS Lett.* 2012, 586, 622–629. [CrossRef] [PubMed]

Giuffre, A.; Borisov, V.B.; Arese, M.; Sarti, P.; Forte, E. Cytochrome *bd* oxidase and bacterial tolerance to oxidative and nitrosative stress. *Biochim. Biophys. Acta* 2014, 1837, 1178–1187. [CrossRef] [PubMed]

Forte, E.; Borisov, V.B.; Siletsky, S.A.; Petrosino, M.; Giuffre, A. In the respiratory chain of *Escherichia coli* cytochromes *bd*-I and *bd*-II are more sensitive to carbon monoxide inhibition than cytochrome *bo*. *Biochim. Biophys. Acta Bioenerg.* 2019, 1860, 14088. [CrossRef]

Borisov, V.B.; Forte, E.; Konstantinov, A.A.; Poole, R.K.; Sarti, P.; Giuffre, A. Interaction of the bacterial terminal oxidase cytochrome *bd* with nitric oxide. *FEBS Lett.* 2004, 576, 201–204. [CrossRef] [PubMed]

Borisov, V.B.; Forte, E.; Sarti, P.; Bronrou, M.; Konstantinov, A.A.; Giuffre, A. Nitric oxide reacts with the ferryl-oxo catalytic intermediate of the Cuo-lacking cytochrome *bd* terminal oxidase. *FEBS Lett.* 2006, 580, 4823–4826. [CrossRef] [PubMed]

Borisov, V.B.; Forte, E.; Sarti, P.; Bronrou, M.; Konstantinov, A.A.; Giuffre, A. Redox control of fast ligand dissociation from *Escherichia coli* cytochrome *bd*. *Biochem. Biophys. Res. Commun.* 2007, 355, 97–102. [CrossRef]

Mason, M.G.; Shepherd, M.; Nicholls, P.; Dobbin, P.S.; Dodsworth, K.S.; Poole, R.K.; Cooper, C.E. Cytochrome *bd* confers nitric oxide resistance to *Escherichia coli*. *Nat. Chem. Biol.* 2009, 5, 94–96. [CrossRef] [PubMed]

Borisov, V.B.; Forte, E.; Giuffre, A.; Konstantinov, A.; Sarti, P. Reaction of nitric oxide with the oxidized di-heme and heme-copper oxygen-reducing centers of terminal oxidases: Different reaction pathways and end-products. *J. Inorg. Biochem.* 2009, 103, 1185–1187. [CrossRef]

Shepherd, M.; Achard, M.E.; Idris, A.; Totsika, M.; Phan, M.D.; Peters, K.M.; Sarkar, S.; Ribeiro, C.A.; Holyoake, L.V.; Ladakis, D.; et al. The cytochrome *bd*-I respiratory oxidase augments survival of multidrug-resistant *Escherichia coli* during infection. *Sci. Rep.* 2016, 6, 35285. [CrossRef]

Holyoake, L.V.; Hunt, S.; Sanguinetti, G.; Cook, G.M.; Howard, M.J.; Rowe, M.L.; Poole, R.K.; Shepherd, M. CydDC-mediated reductant export in *Escherichia coli* controls the transcriptional wiring of energy metabolism and combats nitrosative stress. *Biochem. J.* 2016, 467, 693–701. [CrossRef]

Jones-Carson, J.; Husain, M.; Liu, L.; Orlicky, D.J.; Vazquez-Torres, A. Cytochrome *bd*-dependent bioenergetics and antinitrosative defenses in *Salmonella* pathogenesis. *mBio* 2016, 7, e02052-16. [CrossRef] [PubMed]

Meng, Q.; Yin, J.; Jin, M.; Gao, H. Distinct nitrite and nitric oxide physiologies in *Escherichia coli* and *Shewanella oneidensis*. *Appl. Environ. Microbiol.* 2018, 84, e00559-18. [CrossRef] [PubMed]

Beebout, C.J.; Eberly, A.R.; Werby, S.H.; Reasoner, S.A.; Brannon, J.R.; De, S.; Fitzgerald, M.J.; Huggins, M.M.; Clayton, D.B.; Cegelski, L.; et al. Respiratory heterogeneity shapes biofilm formation and host colonization in uropathogenic *Escherichia coli*. *mBio* 2019, 10, e02400-18. [CrossRef] [PubMed]

Borisov, V.B.; Forte, E.; Siletsky, S.A.; Sarti, P.; Giuffre, A. Cytochrome *bd* from *Escherichia coli* catalyzes peroxynitrite decomposition. *Biochim. Biophys. Acta* 2015, 1847, 182–188. [CrossRef] [PubMed]

Borisov, V.; Gennis, R.; Konstantinov, A.A. Peroxide complex of cytochrome *bd*: Kinetics of generation and stability. *Biochem. Mol. Biol. Int.* 1995, 37, 975–982. [CrossRef]

Borisov, V.B.; Gennis, R.B.; Konstantinov, A.A. Interaction of cytochrome *bd* from *Escherichia coli* with hydrogen peroxide. *Biochemistry* 1995, 60, 231–239.

Borisov, V.B.; Davletshin, A.I.; Konstantinov, A.A. Peroxidase activity of cytochrome *bd* from *Escherichia coli*. *Biochemistry* 2010, 75, 428–436. [CrossRef]

Borisov, V.B.; Forte, E.; Davletshin, A.; Mastronicola, D.; Sarti, P.; Giuffre, A. Cytochrome *bd* oxidase from *Escherichia coli* displays high catalase activity: An additional defense against oxidative stress. *FEBS Lett.* 2013, 587, 2214–2218. [CrossRef]

Forte, E.; Borisov, V.B.; Davletshin, A.; Sarti, P.; Giuffre, A. Cytochrome *bd* oxidase and hydrogen peroxide resistance in *Mycobacterium tuberculosis*. *mBio* 2013, 4, e01006-13. [CrossRef]
180. Al-Attar, S.; Yu, Y.; Pinkse, M.; Hoeser, J.; Friedrich, T.; Bald, D.; de Vries, S. Cytochrome bd displays significant quinol peroxidase activity. Sci. Rep. 2016, 6, 27631. [CrossRef]

181. Kita, K.; Konishi, K.; Anraku, Y. Terminal oxidases of Escherichia coli aerobic respiratory chain. II. Purification and properties of cytochrome b55-d complex from cells grown with limited oxygen and evidence of branched electron-carrying systems. J. Biol. Chem. 1984, 259, 3375–3381. [CrossRef]

182. Sakamoto, J.; Koga, E.; Mizuta, T.; Sato, C.; Noguchi, S.; Sone, N. Gene structure and quinol oxidase activity of a cytochrome bd-type oxidase from Bacillus stearothermophilus. Biochim. Biophys. Acta 1999, 1411, 147–158. [CrossRef]

183. Forte, E.; Siletsky, S.A.; Borisov, V.B. In Escherichia coli ammonia inhibits cytochrome bo3 but activates cytochrome bd-I. Antioxidants 2021, 10, 13. [CrossRef] [PubMed]

184. Mascolo, L.; Bald, D. Cytochrome bd in Mycobacterium tuberculosis: A respiratory chain protein involved in the defense against antibacterials. Prog. Biophys. Mol. Biol. 2020, 152, 55–63. [CrossRef] [PubMed]

185. Lee, B.S.; Sviriaeva, E.; Pethe, K. Targeting the cytochrome oxidases for drug development in mycobacteria. Prog. Biophys. Mol. Biol. 2020, 152, 45–54. [CrossRef]

186. Cook, G.M.; Hards, K.; Dunn, E.; Heikal, A.; Nakatani, Y.; Greening, C.; Crick, D.C.; Fontes, E.L.; Pethe, K.; Hasenoehrl, E.; et al. Oxidative phosphorylation as a target space for tuberculosis: Success, caution, and future directions. Microbiol. Spectr. 2017, 5. [CrossRef]

187. Bald, D.; Villellas, C.; Lu, P.; Koul, A. Targeting energy metabolism in Mycobacterium tuberculosis, a new paradigm in antimycobacterial drug discovery. mBio 2017, 8, e00272-17. [CrossRef]

188. Hards, K.; Cook, G.M. Targeting bacterial energetics to produce new antimicrobials. Drug Resist. Updat. 2018, 36, 1–12. [CrossRef]

189. Winstedt, L.; Frankenberg, L.; Hederstedt, L.; von Wachenfeldt, C. Enterococcus faecalis V583 contains a cytochrome bd-type respiratory oxidase. J. Bacteriol. 2000, 182, 3863–3866. [CrossRef]

190. Lee, B.S.; Hards, K.; Engelhart, C.A.; Hasenoehrl, E.J.; Kalia, N.P.; Mackenzie, J.S.; Sviriaeva, E.; Chong, S.M.S.; Manimekalai, M.S.S.; Koh, V.H.; et al. Dual inhibition of the terminal oxidases eradicates antibiotic-tolerant Mycobacterium tuberculosis. EMBO Mol. Med. 2021, 13, e13207. [CrossRef]

191. Saini, V.; Chinta, K.C.; Reddy, V.P.; Glasgow, J.N.; Stein, A.; Lamprecht, D.A.; Rahman, M.A.; Mackenzie, J.S.; Truebody, B.E.; Adamson, J.H.; et al. Hydrogen sulfide stimulates Mycobacterium tuberculosis respiration, growth and pathogenesis. Nat. Commun. 2020, 11, 557. [CrossRef] [PubMed]

192. Kunota, T.T.R.; Rahman, M.A.; Truebody, B.E.; Mackenzie, J.S.; Saini, V.; Lamprecht, D.A.; Adamson, J.H.; Sevalkar, R.R.; Lancaster, J.R., Jr.; Berney, M.; et al. Mycobacterium tuberculosis H₂S functions as a sink to modulate central metabolism, bioenergetics, and drug susceptibility. Antioxidants 2021, 10, 1285. [CrossRef] [PubMed]