Stabilization of Leachate Affected Laterite Soil using Bio-Enzyme (Terrazyme)

S. Sameer, T. Sai Krishna, K. Sai Abhinav, K. Narasimhulu

Abstract: The present study provides an effective technique of improving properties of leachate affected soil using bio-enzyme named TERRAZYME. Soil pollution is an outcome especially in a country like INDIA, unscientific disposal and dumping of solid waste leads to generation of leachate. High concentration of leachate has less pH value (i.e., acidic in nature) which reduces the particle size. Due to reduction in particle size the properties of soil are also affected. A laboratory testing program was carried out on soil to determine the behavior of leachate affected soil and terrazyme. For that we performed particle size analysis, compaction and California bearing ratio tests on 5% 10% and 15% leachate affected soil to vary the degree of contamination. Terrazyme is a natural non-toxic, non-flammable, non-corrosive liquid enzyme formulated fermented from vegetables that improves the engineering qualities of soil, facilitates higher soil compaction densities and increases stability. It can be used as soil stabilizer and also improve CBR value, durability and decreases the ome, plasticity index of soil. Terrazyme on soil is permanent and soil becomes biodegradable in nature. So we used terrazyme as a stabilizing agent to improve the properties of leachate affected soil. By using this enzyme we can improve the strength effectively, mainly California bearing ratio.

Key Words: Laterite soil, Leachate, Terrazyme, CBR

I. INTRODUCTION

Unscientific disposal of waste creates a very important supply of soil pollution. Soil pollution leads to modification of the physical, chemical and biological properties of soil. Leachate is generated in landfill sites by chemical reaction processes (products of organic chemistry changes in organic substances) or is that results of water penetration. Its composed of enormous amounts of each organic and inorganic compounds, associated their concentration depends to the age of a landfill site. Leachate from an improperly created landfill results an intensive contamination of soil to a lower place and adjacent to the dumping space. In reference to any potential application, information of the geotechnical characteristics of leachate contaminated soil is needed. Although this current landfill engineering stress on pollution reducing technology (by victimization appropriate liner material to avoid the migration of leachate/hazardous waste chemicals generated during landfill), open dumping is extensively practiced in republic of India. The leachate generated from such landfill sites cause serious environmental risks to the surroundings by causing contamination of soil. Leachate from a lowland varies wide in composition depending on the age of the landfill and also the kind of waste that it contains.

II. LITERATURE REVIEW

Manoj Shukla et al. (2003) dispensed take a look at on 5 totally different form of soil. The clay content in soil varies from low to high. Tests were conducted on soil samples with and without Bio Enzymes to determine different engineering properties, Atterberg’s limit, CBR and UCS at different curing period in laboratory.
Little to high improvement is seen in the physical properties of soil with Bio Enzyme. The reason behind this little improvement is the chemical composition of soil which is less reactive with the Bio Enzyme. Sandy to silty type soil showed improvement in the CBR and UCS. It was observed that pavement thickness is reduced by 24 to 48 %. In places where the availability of granular material is less, Bio Enzyme treated soil with thin bituminous coating can satisfactorily fulfill the pavement requirement[6]

Lacuoture and Gonzalez (1995) conducted study on the results of TerraZyme on sub- base and sub- grade. The reaction of the soil treated with Bio catalyst was observed and compared with soil while not Bio catalyst. It had been complete that soil showed improvement in brief period of your time however the cohesive soils showed improvement successively. Bergmann (2000) complete from his study on bio catalyst for transmission strength to the soil, bio enzyme needs some clay content. He declared that for successful stabilization of soil minimum 2% clay content is required and 10 to 15 % after clay content provides sensible results. Compared to 28 % of untreated soil CBR after 1, 2, 3, 14 week was found as 37, 62, 66 and 100 severally.[1]

III. MATERIALS AND METHODOLOGY

The various materials employed in our project are :

- Laterite soil
- Leachate
- Terrazyme

Laterite is a soil and rock sort wealthy in iron and aluminium and is often thought about to possess formed in hot and wet tropical areas. These soils have a high clay content, that mean they need higher ion exchange capability and water holding capability than sandy soils. The lateritic soils behave a lot of like fine particles sands, gravels and soft rocks.

Table 3.1 Chemical properties of leachate

Property	Recent Waste	Aged Waste
pH value	6.2	7.5
COD	23800	1160
BOD₅	11900	260
Sodium	960	1300

Table 3.2 Properties of terrazyme

Property	Value
Boiling point	212 F
Specific gravity	1.000 to 1.090
Melting point	Liquid
Vapour density	1
pH value	4.30 to 4.60
Appearance	Brown clear liquid
Total dissolved solids	19.7ppm
Cation exchange capacity	3.87%
Evaporation rate	Same as water

IV. METHODOLOGY

The scientific approach towards the research is a combination of various methods collectively to attain necessary data through the experimental approach. We have obtained the results from the experiments mentioned below.

- Particle size analysis
- Compaction test
- California bearing test

Leachate Preparation

There is no active source of leachate effected soil near by locality and also it is difficult to obtain leachate from that soil. The leachate used in the present study was prepared in the laboratory with different composition. The proportions of the properties of the synthetic leachate are similar to natural leachate.

- 0.15M Sodium Acetate
- 0.15M Acetic Acid
- 0.05M Glysine
- 0.008M Pyragallol
- 0.024M Ferrous Sulphate

Fig 3.1 Collection of laterate soil

Fig 3.2 Land fill area

Table 3.3

Property	Recent Waste	Aged Waste
pH value	6.2	7.5
COD	23800	1160
BOD₅	11900	260
Sodium	960	1300

NOTE : All values in mg/litre except pH
Terrazyme Dosage Preparation

The dosage of terrazyme is based on the plasticity index and percentage of fines in the soil. For effective results proper dosage have to be selected. The dosage is based on the dilution ratio which we employed. So we used the corresponding dilution ratios 1:50, 1:100 and 1:150 respectively[4]

Terrazyme Applied Leachate Effected Soil

In this project, the main focus is to improve the CBR value of the leachate effected soil using terrazyme. So we performed California bearing ratio test on different percentages of leachate effected soil by applying terrazyme dosage.

Curing period

An appropriate curing period is required for stabilization benefits to develop after terrazyme treatment. Standard practice must be altered to allow curing under appropriate conditions. Compacted samples should be placed within a plastic bag that remains sealed during at least the first two weeks of the 30-day curing period. A 2-3 cm slit can be made in the bag after the first two weeks of curing to allow gradual moisture loss during the final days of the curing period. Samples should retain moisture during the curing period. Rapid drying of the compacted samples does not mimic actual road conditions and will eliminating the moisture needed for enzyme action to continue. For unsoaked CBR, the compacted samples may be allowed to rest uncovered after the 30-day curing period, until sample moisture levels approach the prevailing humidity conditions. For soaked CBR, compacted and 30-day cured samples may be immersed in the water bath after the curing.

V. EXPERIMENTAL INVESTIGATION

4.1 CALIFORNIA BEARING RATIO

Generally, the CBR value at 2.50mm penetration will be greater than that at 5.00mm penetration and in such case take the value at 2.50mm as the CBR value. If the CBR value corresponding to a penetration of 5.00mm exceeds that of 2.50mm, repeat the test. If the identical results follow, take the value corresponding to 5.00mm as the CBR value.[10]

4.2 COMPACTION TEST

To determine the maximum dry density and the optimum moisture content of soil using heavy compaction.

V. RESULTS

Effect of leachate with 5%, 10% and 15% on laterate soil properties

5.1. 5% LEACHATE EFFECTED SOIL

5.1.1. Particle size analysis

Table 5.1: Particle Size Analysis of 5% Leachate effected soil

s.no	IS sieve no.	% Fines passing of Natural soil	% fines passing	
			20 days	40 days
1	4.75 mm	100	100	100
2	2.00 mm	73	75.8	77.2
3	1.00 mm	41.09	44.2	45.3
4	600 microns	28.79	31.4	31.8
5	425 microns	19.39	17	12.8
6	300 microns	13.38	6.2	5.9
7	150 microns	4.18	3.1	1.2
8	75 microns	0.18	0.2	0.4

Graph: 5.1 Particle Size Analysis Soil

From graph, It is shown that with increase in duration the percentage of fines increases i.e., the particle size curve of leachate effected soil moves leftwards with respect to particle size curve of natural soil.
5.1.2. Compaction test

Table: 5.2 compaction observations of 5% Leachate effected soil

Natural Soil	5% Leachate Effected Soil 20 Days	5% Leachate Effected Soil 40 Days			
Water Content In %	Dry Density In g/cm³	Water Content In %	Dry Density In g/cm³	Water Content In %	Dry Density In g/cm³
8.2	1.9001	8.4	1.89	10.2	1.84
10.5	1.979	10.5	1.94	12.4	1.92
11.8	2.03	12	1.98	14.1	1.83
14.1	1.985	14.2	1.95	16.3	1.75
16.5	1.88	16.9	1.88	10.2	1.84

Graph: 5.2 OMC of 5% leachate effected soil

From graph,
For 20 days, Maximum dry density = 1.98 g/cm³
Optimum moisture content = 12.0%
For 20 days, Maximum dry density = 1.92 g/cm³
Optimum moisture content = 12.4%

5.1.3. California bearing ratio

Table: 5.3 CBR observations 5% Leachate effected soil

Penetration In mm	Load In Kg	Natural Soil	20 Days	40 Days
0	0	0	0	0
1.25	252	157.5	119.7	
2.5	327.6	239.4	207.9	
3.75	403.2	264.6	233.1	
5	453.6	277.5	270.9	

Graph: 5.3 CBR of 5% leachate effected Soil

From graph,
For 20 days, CBR value at 2.5 mm penetration = 17.47%
CBR value at 5.0 mm penetration = 13.48%
For 40 days, CBR value at 2.5 mm penetration = 15.17%
CBR value at 5.0 mm penetration = 13.18%

5.2. 10% LEACHATE EFFECTED SOIL

5.2.1. Particle Size Analysis

Table: 5.4 Particle size analysis of 10% Leachate effected soil

s.no	Is sieve no.	% fine passing of natural soil	% fines passing 20 days	% fines passing 40 days
1	4.75 mm	100	100	100
2	2.00 mm	73	76.1	78.1
3	1.00 mm	41.09	45.6	46.1
4	600 microns	28.79	32.3	32.9
5	425 microns	19.39	16	12.4
6	300 microns	13.38	7.6	5
7	150 microns	4.18	2.2	1.4
8	75 microns	0.18	0.6	0.2

Graph: 5.4 Particle Size Analysis Soil

From graph,
It is shown that with increase in duration the percentage of fines increases i.e., the particle size curve of leachate effected soil moves leftwards with respect to particle size curve of natural soil.
5.2.2. Compaction test

Table 5.5: Compaction observations of 10% Leachate effected soil

	5% Leachate Effected Soil 20 Days	5% Leachate Effected Soil 40 Days	
Water Content In %	Dry Density In g/cm³	Water Content In %	Dry Density In g/cm³
8.2	1.9001	8.8	1.87
10.5	1.979	10.9	1.932
11.8	2.03	12.5	1.96
14.1	1.985	14.6	1.95
16.5	1.88	17.4	1.88

Graph 5.5: OMC of 10% leachate effected soil

From graph,
For 20 days, Maximum dry density = 1.96 g/cm³
Optimum moisture content = 12.5%
For 20 days, Maximum dry density = 1.83 g/cm³
Optimum moisture content = 12.7%

5.2.3. California bearing ratio

Table 5.6: CBR observations 5% Leachate effected soil

Penetration In mm	Natural Soil 20 Days	Natural Soil 40 Days
0	0	0
11.25	252	138.6
22.5	327.6	176.4
33.75	403.2	189
5	453.6	195.3

Graph 5.6: CBR of 10% leachate effected Soil

From graph,
For 20 days, CBR value at 2.5 mm penetration is = 12.87%
CBR value at 5.0 mm penetration is = 9.5%
For 40 days, CBR value at 2.5 mm penetration is = 11.03%
CBR value at 5.0 mm penetration is = 8.9%

5.3.1. Particle size analysis

Table 5.7: Particle size analysis of 10% Leachate effected soil

s.no	Is sieve no.	% fine passing of natural soil	% fines passing
1	4.75 mm	100	100 100
2	2.00 mm	73	76.9 78.4
3	1.00 mm	41.09	47.1 48.9
4	600 microns	28.79	32.5 33.4
5	425 microns	19.39	12.1 12.9
6	300 microns	13.38	7.2 4.1
7	150 microns	4.18	2.1 1.1
8	75 microns	0.18	0.2 0.1

Graph 5.7: Particle Size Analysis soil
Stabilization of Leachate Effected Laterite Soil using Bio-Enzyme (Terrazyme)

From graph, It is shown that with increase in duration the percentage of fines increases i.e., the particle size curve of leachate effected soil moves leftwards with respect to particle size curve of natural soil.

5.3.2. Compaction test

Natural Soil	15% Leachate Effected Soil 20 Days	15% Leachate Effected Soil 40 Days	
Water Content In %	Water Content In %	Dry Density In g/cm³	Dry Density In g/cm³
8.2	1.9001	9	1.85
10.5	1.979	10.8	1.9
11.8	2.03	12.7	1.94
14.1	1.985	14.8	1.88
16.5	1.88	17.9	1.81

From graph,
For 20 days, CBR value at 2.5 mm penetration is = 9.19%
CBR value at 5.0 mm penetration is = 6.75%
For 40 days, CBR value at 2.5 mm penetration is = 5.51%
CBR value at 5.0 mm penetration is = 4.90%

5.4. TERRAZYME APPLIED TO NATURAL SOIL

5.4.1 California bearing ratio

Penetration In mm	Load In Kg							
Natural Soil	0	0	0	0	0	0	0	0
1.25	252	554.4	501.2	453.6				
2.5	327.6	806.4	732.3	642.6				
3.75	403.2	995.4	865.6	793.8				
5	453.6	1222.2	1047.8	957.6				

From graph,
For 1 : 50, CBR value at 2.5 mm penetration is = 59.47%
CBR value at 5.0 mm penetration is = 58.0%
For 1 : 100, CBR value at 2.5 mm penetration is = 51.62%
CBR value at 5.0 mm penetration is = 50.48%
For 1 : 150, CBR value at 2.5 mm penetration = 46.90%
CBR value at 5.0 mm penetration = 45.60%
The effective dilution ratio is 1:50 at which the CBR value
is appreciable. So we adopt 1: 50 dosage for leachate effected
soil.

5.5. TERRAZYME APPLIED TO LEACHATE EFFECTED SOIL (5% 10% & 15%) FOR CURING PERIOD OF 20 DAYS & 40DAYS

5.5.1 Terrazyme Applied to 5% Leachate Effected soil

Table: 5.11 CBR observations of terrazyme applied to 5% leachate effected

Penetration In mm	Natural Soil	Leachate Effected soil	Terrazyme Applied to Leachate Effected Soil	
	20 Days	40 Days	20 Days	40 Days
0	0	0	0	0
1.25	252	157.5	119.7	151.2
2.5	327.6	239.4	207.9	258.3
3.75	403.2	264.6	233.1	315
5	453.6	277.5	270.9	365.4

Graph: 5.11 variation of CBR values on application of terrazyme to 5% leachae effected soil

From graph,
For 5% Leachate Effected Soil
@ 20 days, CBR at 2.5mm = 17.47%, CBR at 5.0mm = 13.48%
@ 40 days, CBR at 2.5mm = 15.16%, CBR at 5.0mm = 13.18%

For Terrazyme Applied to 5% Leachate Effected Soil
@ 20 days, CBR at 2.5mm = 20.23%, CBR at 5.0mm = 17.16%
@ 40 days, CBR at 2.5mm = 18.85%, CBR at 5.0mm = 17.78%

5.5.2 Terrazyme Applied to 10% Leachate Effected soil

Table: 5.12 CBR observations of terrazyme applied to 10% leachate effected soil

Penetration In mm	Load In Kg			
	Natural Soil	Leachate Effected	Terrazyme Applied to Leachate Effected	
	20 Days	40 Days	20 Days	40 Days
0	0	0	0	0
1.25	252	56.7	51.2	75.6
2.5	327.6	126	75.6	132.3
3.75	403.2	132.3	88.2	157.5
5	453.6	138.6	100.8	195.3

Graph: 5.12 variation of CBR values on application of terrazyme to 10% leachae effected soil

From graph,
For 10% Leachate Effected Soil
@ 20 days, CBR at 2.5mm = 12.87%, CBR at 5.0mm = 9.50%
@ 40 days, CBR at 2.5mm = 11.03%, CBR at 5.0mm = 8.90%
For Terrazyme Applied to 10% Leachate Effected Soil
@ 20 days, CBR at 2.5mm = 16.55%, CBR at 5.0mm = 13.48%
@ 40 days, CBR at 2.5mm = 12.41%, CBR at 5.0mm = 10.42%

5.5.3 Terrazyme Applied to 15% Leachate Effected soil

Table: 5.13 CBR observations of terrazyme applied to 10% leachate effected soil

Penetration In mm	Load In Kg			
	Natural Soil	Leachate Effected	Terrazyme Applied to Leachate Effected	
	20 Days	40 Days	20 Days	40 Days
0	0	0	0	0
1.25	252	56.7	51.2	75.6
2.5	327.6	126	75.6	132.3
3.75	403.2	132.3	88.2	157.5
5	453.6	138.6	100.8	195.3

Graph: 5.13 variation of CBR values on application of terrazyme to 10% leachae effected soil

From graph,
For 15% Leachate Effected Soil
@ 20 days, CBR at 2.5mm = 12.41%, CBR at 5.0mm = 9.50%
@ 40 days, CBR at 2.5mm = 11.03%, CBR at 5.0mm = 8.90%
For Terrazyme Applied to 15% Leachate Effected Soil
@ 20 days, CBR at 2.5mm = 16.55%, CBR at 5.0mm = 13.48%
@ 40 days, CBR at 2.5mm = 12.41%, CBR at 5.0mm = 10.42%

5.5.4 Terrazyme Applied to 20% Leachate Effected soil
Stabilization of Leachate Effected Laterite Soil using Bio-Enzyme (Terrazyme)

Graph: 5.13 variation of CBR values on application of terrazyme to 15% leachae effected soil

From graph,
For 15% Leachate Effected Soil
@ 20 days, CBR at 2.5mm = 9.19%. CBR at 5.0mm = 6.75%
@ 40 days, CBR at 2.5mm = 5.51%, CBR at 5.0mm = 4.90%
For Terrazyme Applied to 15% Leachate Effected Soil
@ 20 days, CBR at 2.5mm = 10.57%, CBR at 5.0mm = 9.65%
@ 40 days, CBR at 2.5mm = 9.65%, CBR at 5.0mm = 9.2%

VII. DISCUSSIONS

6.1. Particle size Analysis
From the particle size analysis of leachate effected soil, it is shown that with increase in percentage of leachate and duration, the soil becomes finer due to chemical reaction between the soil and leachate. It means that with the effect of the leachate the soil properties gets modified

6.2 Compaction

Table: 6.1 OMC & MDD observations of leachate effected soil

% Of Leachate By Weight	Optimum Moisture Content In %	Maximum Density In g/cm³		
	20 Days	40 Days		
5%	12	12.4	1.98	1.92
10%	12.5	12.7	1.96	1.83
15%	12.7	13.1	1.94	1.82
Natural soil	11.8%		2.03	

The results obtained from the compaction test are tabulated in the above table. The results shows that for increase in degree of contamination and duration, the particle size becomes finer. The nature of soil, with percentage of increase in fines the soil absorbs more water. So the optimum moisture content value increases. It results in decrease in maximum dry density. The results we evaluated shows that with increase in degree of contamination optimum moisture content increases and corresponding dry densities decreases.

6.3. California Bearing Ratio

6.3.1. CBR values of terrazyme applied to natural soil

Table: 6.2 CBR observations terrazyme applied to natural soil

Dosage	California bearing ratio value in %
Natural soil	24.07
0:1:50	59.47
1:1:100	51.62
1:1:150	46.9

For the original soil on application of terrazyme dosage, the results obtained are mentioned in the above table. The effective dilution ratio is 1:50 at which the CBR value is appreciable. So we adopted the dilution ratio as 1:50[2]

6.3.2. CBR values of leachate effected soil and terrazyme applied to leachate effected soil

Table: 6.3 CBR values of leachate effected & terrazyme applied to leachate effected soil

% Of Leachate By Weight	Leachate Effected Soil	Terrazyme Applied to Leachate Effected Soil
	20 Days	40 Days
5%	17.47	15.17
10%	12.87	9.5
15%	9.19	6.75
Natural soil	20 Days	40 Days
	10.57	9.65

The results obtained from the California bearing ratio test are tabulated in the above table. For leachate effected soil, it is observed that for increase in degree of contamination and duration, the CBR value decreases. On application of dosage of terrazyme to the leachate effected soil, it is observed that for 20 days curing period the CBR value is increased favorably. For natural soil with application of terrazyme the CBR values increased more than twice of that natural soil. But for leachate effected soil, the CBR values increases just favorably.[2]

VIII. CONCLUSION

An extensive laboratory testing program was carried out to study the effect of leachate contamination and terrazyme application on compaction characteristics and CBR values of lateritic soil.

The following conclusions are made based on the experimental results:

1) The soil properties varies with the age of leachate. As the age progresses the soil particle size becomes more finer.
2) As the degree of contamination increases, the water content increases which leads to reduction in strength of soil i.e., MDD decreases.
3) The results of the study indicates that the CBR value decreases with increase in degree of contamination and age of leachate.
4) On application of terrazyme, OMC decreases and MDD increases. Because the terrazyme removes the water and air present in the soil and forms a cementing bond between soil particles.
5) With increase in dosage of terrazyme the soil attains more strength with minimum compaction effort. So that CBR value increases.
Terrazyme is ideal in nature because it is ecofriendly, economical and effective. For chemically effected soil terrazyme showed favourable results. If the curing period increases the results may be more favourable. Hence further investigation is required.

FUTURE SCOPE

Effect of leachate on different types of soils with varying percentage of leachate contamination. Terrazyme effect on the soil with varying dosage and in varying stabilizing duration. Other bio enzymes and their effect on chemical effected soil can be studied. Further tests can be performed for permeability, direct shear test and dynamic behavior of soil can be observed on application of terrazyme.

REFERENCE

1. Lacuoture, A.and Gonzalez, H.(1995), “Usage of Organic Enzymes for the stabilization of Natural base soils and sub bases in Bagota”, Pontificia Universidad Javariana, Faculty of Engineering,..
2. “Effect of Terrazyme usage on increase of CBR” Technical report by Soil Mechanics Laboratory, National Road Department, Thailand, 1996.
3. Manoj Shukla, Sunil Bose and Sidkar, P.K.(2003), “Bio-Enzyme for stabilization of soil in Road construction a cost effective approach”, Presented at the IRC Seminar: Integrated Development of Rural and Arterial Road Networks for Socio-Economic development, New Delhi.
4. A.U.RaviShankar, arsharai&RameshaMithanthayal.,(2009), “Bio enzymatic stabilized lateritic soil as a highway material” Journal of the Indian Roads Congress.
5. Venkatatubaramanian,C. &Dhinakaran, G,(2011,1), “Effect of bio-enzymatic soil stabilization on unconfined compressive strength and California bearing ratio”. Journal of Engineering and Applied Sciences: 6(5):295-298[9].
6. GreeshmaNizyEujine, Lamato T. Somervel, DrS.Chandrakaran Dr. N.Sankar , (2014)"Enzyme Stabilization of High Liquid Limit Clay” Vol.19 6995, Electronic Journal of Geotechnical Engineering.
7. Vijay Rajoria, Suneet Kaur, (2014) “A Review on Stabilization of Soil Using Bio – Enzyme”, Vol. 03, 2321-7308, International Journal of Research in Engineering and Technology.
8. IS 2720 (Part IV) (1975) “Determination of Particle Size” Bureau of Indian Standards, ManakBhavan, New Delhi.
9. IS 2720 (Part V) (1985) “Determination of Liquid and Plastic limit” Bureau of Indian Standards, ManakBhavan, New Delhi.
10. IS 2720 (Part VII) (1980) “Determination of Moisture content and Dry density” Bureau of Indian Standards, ManakBhavan, New Delhi.
11. IS 2720 (Part XVI) (1979) “Determination of California Bearing Ratio” Bureau of Indian Standards, ManakBhavan, New Delhi.

AUTHORS PROFILE

Mr.S.Sameer, has been working as Assistant Professor in the Dept. of Civil Engineering at AITS, Tirupati. He has been conducting research in the areas of Transportation engineering and Geo-technical engineering

Mr. T. Sai Krishna has been working as Assistant Professor in the Dept. of Civil Engineering at AITS, Tirupati. He has been conducting research in the areas of Soil Mechanics

Mr. K. Sai abhinav, has been working as Assistant Professor in the Dept. of Civil Engineering at AITS, Tirupati. He has been conducting research in the areas of Special concrete ,Reinforced concrete structures and Soil Mechanics