Perspective

Discovered by genomics: putative reductive dehalogenases with N-terminus transmembrane helixes

Siavash Atashgahi¹,²,³,*,†

¹Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands, ²Department of Microbiology, IWWR, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands and ³Soehngen Institute of Anaerobic Microbiology, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands

*Corresponding author: Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands. Tel: +31243652564; E-mail: siavash.atashgahi@wur.nl

One sentence summary: Recent genomic analysis revealed putative reductive dehalogenase genes from extreme subsurface environments that unlike known reductive dehalogenases have membrane integral domains.

Editor: Marcus Horn

†Siavash Atashgahi, http://orcid.org/0000-0002-2793-2321

ABSTRACT

Attempts for bioremediation of toxic organohalogens resulted in the identification of organohalide-respiring bacteria harbouring reductive dehalogenases (RDases) enzymes. RDases consist of the catalytic subunit (RdhA, encoded by rdhA) that does not have membrane-integral domains, and a small putative membrane anchor (RdhB, encoded by rdhB) that (presumably) locates the A subunit to the outside of the cytoplasmic membrane. Recent genomic studies identified a putative rdh gene in an uncultured deltaproteobacterial genome that was not accompanied by an rdhB gene, but contained transmembrane helixes in N-terminus. Therefore, rather than having a separate membrane anchor protein, this putative RDase is likely a hybrid of RdhA and RdhB, and directly connected to the membrane with transmembrane helixes. However, functionality of the hybrid putative RDase remains unknown. Further analysis showed that the hybrid putative rdh genes are present in the genomes of pure cultures and uncultured members of Bacteriodetes and Deltaproteobacteria, but also in the genomes of the candidate divisions. The encoded hybrid putative RDases have cytoplasmic or exoplasmic C-terminus localization, and cluster phylogenetically separately from the existing RDase groups. With increasing availability of (meta)genomes, more diverse and likely novel rdh genes are expected, but questions regarding their functionality and ecological roles remain open.

Keywords: reductive dehalogenase; organohalide respiration; transmembrane helix

INTRODUCTION

With the advent of the Industrial Revolution, human impacts on the environment increased dramatically. Hazardous halogenated organic compounds, organohalogens, were widely distributed in the natural environment through careless use and indiscriminate disposal, and caused major public
concerns due to possible effects on human and environmental health (Häggblom 1992). In attempts for organohalogen bioremediation, a hallmark discovery was the identification of microbes that could use organohalogenes as electron acceptors and reductively dehalogenate them (Sufita et al. 1982). This new metabolism, later termed organohalide respiration (OHR), has found great practical application in bioremediation. Accordingly, bioaugmentation with microbial consortia containing organohalide-respiring bacteria (OHRB) has become a showcase of successful engineered remediation of contaminated environments (Ellis et al. 2000; Stroo, Leeson and Ward 2012).

Over the past three decades, a wealth of knowledge has been obtained about the ecophysiology, biochemistry and environmental distribution of OHRB (Häggblom and Bossert 2003; Adrian and Löffler 2016). Using biochemical, PCR-based and (meta)genomic analysis, reductive dehalogenases (RDases) have been identified as the key enzymes of OHR (Lu et al. 2015; Hug 2016). The RDase-encoding genes (rh) have a conserved operon structure that consists of rhA, coding for the catalytic subunit (RdhA); rhB, coding for a small putative membrane anchor (RdhB) that (presumably) locates the A subunit to the outside of the cytoplasmic membrane; and a variable set of accessory genes (e.g. rhC/TK2ZED) (Kruse, Smidt and Lechner 2016). The catalytic subunits (RdhAa) are characterized by two iron-sulfur clusters (FeS1: CXXCXXCXXCF; FeS2: CXXCXXXCF) and an N-terminal twin-arginine translocation motif (TAT: RRXFXK) (Hollier, Wohlfarth and Diekert 1998). This signal peptide is necessary for secretion of the mature RdhA protein through the cell membrane to the outer side of the cytoplasmic membrane (Smidt and de Vos 2004).

A second type of rhA genes were discovered that lacked TAT motif, were located in the cytoplasm, and lacked respiratory function. This group was termed as ‘catabolic’ reductive dehalogenase that are used to convert organohalogenes to non-halogenated compounds to be used as carbon sources (Chen et al. 2013; Payne et al. 2015). These types of rhA genes were mostly found in marine than terrestrial environments (Reviewed in Atashgahi, Häggblom and Smidt 2018a).

Putative rh genes with N-terminus transmembrane helixes

A recent single-cell genomic study from marine sediments in the Aarhus Bay discovered a third type of potential RDases in uncultured Desulfatiglans-related deltaproteobacterium (Jochum et al. 2018). A single-cell genome (SAG2) contained a putative rh gene that is not accompanied by an rhB, does not encode a TAT signal peptide, and as a unique feature, encodes three transmembrane helices (TMHs) in the N-terminus. Whereas the known respiratory RDases do not have membrane-integral domains, most RhBs have three TMHs (Fig. 1). For instance, similar to the RhdB of Desulfotobacterium hafniense Y51 (Fig. 1A), the putative RDase from the uncultured Desulfatiglans-related deltaproteobacterium (Fig. 1B) has an exoplasmic N-terminus, followed by three TMHs. The remaining C-terminus contains the two binding motifs for FeS clusters, features of the known RDases. However, as the possible catalytic site, the C-terminus is facing the inner side of the cytoplasmic membrane (Fig. 1B) which is a likely localization in absence of the TAT signal peptide. The short cytoplasmic loop between helix 1 and 2 contains the two conserved glutamic acid residues (EXE motif) (Fig. 1B), proposed to play a role in the RdhA–RdhB interaction (Schubert et al. 2018).

Similar cytoplasmic localization of the C-terminus of the putative RDase may enable such an interaction with this loop. Therefore, rather than having a separate membrane anchor protein, this putative RDase is predicted to act like a hybrid of RhdB and RhdA, and likely directly connected to the membrane with the TMHs.

The study of Jochum et al. further revealed that the hybrid putative rh is similar to the putative rh of two deltaproteobacterial pure cultures, i.e. deltaproteobacterium strain NaphS2 and Desulfosulfatatarculus sandiegensis (jochum et al. 2018). Indeed the putative rh genes of these bacteria are not accompanied by an rhB gene, lack TAT motif and contain three N-terminus TMHs. Similar to the putative RDase of the uncultured Desulfatiglans-related proteobacterium obtained from the Aarhus Bay (Fig. 1B), the putative RDase of the strain NaphS2 (Fig. 1C) has cytoplasmic C-terminus. In contrast, the putative RDase of D. sandiegensis has exoplasmic C-terminus (Fig. 1D), similar to the known RDases. The EXE motif in the loop between helix 1 and 2 is facing exoplasm, enabling potential interactions with the exoplasmic C-terminus (Fig. 1D). The three putative RDase share 46%–58% amino acid identity to each other, but share lower identity to the known RDases, e.g. 26%–29% identity to the TceA of Dehalococcoides mccartyi strain195 (DE700279).

The hybrid putative rh genes are widespread

The sequence of the putative RDase of the uncultured proteobacterium obtained from the Aarhus Bay (Jochum et al. 2018) was used as a query in blastp searches against the NCBI non-redundant protein database in December 2018. The results showed that beyond the three identified proteobacterial hybrid putative rh (Jochum et al. 2018), many other similar genes exist in the genomes of pure cultures as well as metagenome-assembled genomes (MAGs) that have gone unrecognized so far (Table 1). The majority of the sequences have three TMHs (detected using TMHMM Server v. 2.0 (Sonnhammer, Von Heijne and Krogh 1998)), the EXE motifs in their N-terminus, and either cytoplasmic or exoplasmic C-terminus containing the two FeS motifs (Table 1, Fig. 2). The C1–C5 regions from known the RDases are also conserved among the hybrid putative RDases (Fig. S1, Supporting Information), however, they are clustered phylogenetically separately from the existing RDase groups (Hug et al. 2013; Hug 2016). The C1–C5 regions from known the RDases are also conserved among the hybrid putative RDases (Fig. S1, Supporting Information). Notably, the majority of the putative RDases are annotated as hypothetical proteins during automated annotation of the genomes.

Of the 11 pure cultures containing hybrid putative rh in their genomes, eight belong to the Marinilabiliales order within Bacteroidetes, that have been isolated from water or sediment samples in marine environment (Table 1). Among these, three strains belong to the genus Mariniflum, Gram-negative facultative anaerobes that can tolerate moderate salt concentrations (Na et al. 2009; Ruvira et al. 2013; Fu et al. 2018). Interestingly, hybrid putative rh genes were also found in the MAGs of uncultured Marinilabiliales obtained from perchlorate-reducing...
Table 1. List of the hybrid putative RDases with TMHs in their N-terminus. Sequence information and the predicted functions by the automated annotation for each sequence are included in Supporting Information.

Organism	Length (aa)	TMH	C-terminus orientation	GenBank accession number	Sample source used for (meta)genome sequencing	Reference
Deltaproteobacteria bacterium	482	3	Cytoplasmic	- a	Marine sediment from Aarhus Bay (Jochum et al. 2018)	(Jochum et al. 2018)
Dethiosulfatarculus sandiegensis	487	3	Exoplasmic WP	246 4279	Pure deltaproteobacterial culture isolated from a methanogenic long-chain paraffins degrading consortium obtained from marine sediments (Davidova et al. 2016)	(Davidova et al. 2016)
Deltaproteobacterium NaphS2	478	3	Cytoplasmic IFK11122	Pure deltaproteobacterial culture isolated from naphthalene-degrading enrichment obtained from marine sediments (Galushko et al. 1999; Didonato Jr et al. 2010)	(Galushko et al. 1999; Didonato Jr et al. 2010)	
Marinilabiliales bacterium strain SPP2	459	3	Exoplasmic WP	09 642 9615	Pure Marinilabiliales culture isolated from the Antarctic marine sediment (Watanabe, Kojima and Fukui 2018)	(Watanabe, Kojima and Fukui 2018)
Marinilabiliales bacterium	456	3	Exoplasmic WP	05 471 5848	Pure Marinilabiliales culture isolated from tidal flat sediment in Korea (Na et al. 2009)	(Na et al. 2009)
Marinilabiliales bacterium breve	457	3	Cytoplasmic WP	110 360 576	Pure Marinilabiliales culture isolated from the Yongle Blue Hole in the South China Sea (Fu et al. 2018)	(Fu et al. 2018)
Marinilabiliales bacterium flexuosum	454	3	Cytoplasmic WP	120 240 634	Pure Marinilabiliales culture isolated from coastal Mediterranean Sea water (Ruvira et al. 2013)	(Ruvira et al. 2013)
Ancylomarina sp. M1P	450	3	Exoplasmic WP	125 029 802	Pure Marinilabiliales culture isolated from Black Sea water Unpublished	Unpublished
Labilibaculum filiforme	454	3	Exoplasmic WP	101 260 201	Pure Marinilabiliales culture isolated from the subsurface sediments of the Baltic Sea (Vandieken et al. 2018)	(Vandieken et al. 2018)
Labilibacter marinus	444	3	Cytoplasmic WP	06 663 2432	Pure Marinilabiliales culture isolated from marine sediment at Weihai in China (Li et al. 2015; Lu et al. 2017)	(Li et al. 2015; Lu et al. 2017)
Salinivirga cyanobacteriivorans	453	3	Cytoplasmic WP	05 795 4221	Pure Marinilabiliales culture isolated from the suboxic zone of a hypersaline cyanobacterial mat (Ben Hania et al. 2017)	(Ben Hania et al. 2017)
Caldithrix abyssi	444	3	Cytoplasmic WP	069 30498	Pure Caldithrixial culture isolated from Mid-Atlantic Ridge hydrothermal vent	(Mironshichenko et al. 2003; Kudinov et al. 2017)
Deltaproteobacteria bacterium	491	3	Exoplasmic	RLB29679	Hydrothermal sediments (Dombrowski, Teske and Baker 2018)	(Dombrowski, Teske and Baker 2018)
Deltaproteobacteria bacterium	451	3	Exoplasmic	RLB34449	Hydrothermal sediments (Dombrowski, Teske and Baker 2018)	(Dombrowski, Teske and Baker 2018)
Deltaproteobacteria bacterium	455	3	Exoplasmic	RCO6278	Hydrothermal sediments (Dombrowski, Teske and Baker 2018)	(Dombrowski, Teske and Baker 2018)
Deltaproteobacteria bacterium	456	3	Exoplasmic	RLB0792	Hydrothermal sediments (Dombrowski, Teske and Baker 2018)	(Dombrowski, Teske and Baker 2018)
Deltaproteobacteria bacterium	455	3	Exoplasmic	RLC22838	Hydrothermal sediments (Dombrowski, Teske and Baker 2018)	(Dombrowski, Teske and Baker 2018)
Deltaproteobacteria bacterium	414	3	Exoplasmic	RLC21098	Hydrothermal sediments (Dombrowski, Teske and Baker 2018)	(Dombrowski, Teske and Baker 2018)
Deltaproteobacteria bacterium	497	3	Exoplasmic	RLB22016	Hydrothermal sediments (Dombrowski, Teske and Baker 2018)	(Dombrowski, Teske and Baker 2018)
Organism	Length (aa)	TMH	C-terminus orientation	GenBank accession number	Sample source used for (meta)genome sequencing	Reference
----------	-------------	-----	------------------------	--------------------------	---	-----------
Delta-proteobacteria bacterium	359	3	Cytoplasmic	JQZ502398	Hydrothermal sediments	(Dombrowski, Teske and Baker 2018)
Desulfobacteraceae bacterium	4572	187	Exoplasmic	OQY12990	Hydrothermal sediment	(Dombrowski et al. 2017)
Desulfobacteraceae bacterium	4572	89	Exoplasmic	OQY53460	Hydrothermal sediments	(Dombrowski et al. 2017)
Bacteroidetes bacterium	457	3	Exoplasmic	RLD45891	Hydrothermal sediments	(Dombrowski, Teske and Baker 2018)
Bacteroidetes bacterium	447	3	Exoplasmic	RLD65038	Hydrothermal sediments	(Dombrowski, Teske and Baker 2018)
Bacteroidetes bacterium	457	3	Exoplasmic	RLD32997	Hydrothermal sediments	(Dombrowski, Teske and Baker 2018)
Bacteroidetes bacterium	402	1	Exoplasmic	RLD55593	Hydrothermal sediments	(Dombrowski, Teske and Baker 2018)
Bacteroidetes bacterium	469	3	Cytoplasmic	RLD42118	Hydrothermal sediments	(Dombrowski, Teske and Baker 2018)
Bacteroidetes bacterium	448	249	Cytoplasmic	OQX80664	Hydrothermal sediment	(Dombrowski et al. 2017)
Bacteroidetes bacterium	476	4	Cytoplasmic	RLD38167	Hydrothermal sediments	(Dombrowski, Teske and Baker 2018)
Bacteroidetes bacterium	454	3	Cytoplasmic	RLD75418	Hydrothermal sediments	(Dombrowski, Teske and Baker 2018)
Acidobacteria bacterium	450	3	Cytoplasmic	RLE20106	Hydrothermal sediments	(Dombrowski, Teske and Baker 2018)
Chloroflexi bacterium	453	3	Exoplasmic	RLD03862	Hydrothermal sediments	(Dombrowski, Teske and Baker 2018)
Chloroflexi bacterium	457	3	Exoplasmic	RLD00869	Hydrothermal sediments	(Dombrowski, Teske and Baker 2018)
Chloroflexi bacterium	453	3	Cytoplasmic	RLD11393	Hydrothermal sediments	(Dombrowski, Teske and Baker 2018)
Bacterium	457	3	Cytoplasmic	RKZ14043	Hydrothermal sediments	(Dombrowski, Teske and Baker 2018)
Bacterium	448	3	Cytoplasmic	RKZ19839	Hydrothermal sediments	(Dombrowski, Teske and Baker 2018)
Candidate division KSB1 bacterium	457	3	Exoplasmic	RKY76399	Hydrothermal sediments	(Dombrowski, Teske and Baker 2018)
Candidate division KSB1 bacterium	448	87	Exoplasmic	OQX85480	Hydrothermal sediments	(Dombrowski et al. 2017)
Candidate division Zixibacteria bacterium	501	3	Exoplasmic	RKX26209	Hydrothermal sediments	(Dombrowski, Teske and Baker 2018)
Candidate division Zixibacteria bacterium	461	3	Cytoplasmic	RKX27199	Hydrothermal sediments	(Dombrowski, Teske and Baker 2018)
Candidatus Aminicenantes bacterium	448	214	Cytoplasmic	OQX52307	Hydrothermal sediments	(Dombrowski, Teske and Baker 2018)
Candidatus Omnitrophica bacterium	469	3	Exoplasmic	RKY41132	Hydrothermal sediments	(Dombrowski, Teske and Baker 2018)
Deltaproteobacteria bacterium	463	3	Exoplasmic	PLX41189	Perchlorate-reducing communities	(Barnum et al. 2018)
Salinivirgaceae bacterium	497	4	Exoplasmic	PLX17815	Perchlorate-reducing communities	(Barnum et al. 2018)
Marinilabiliales bacterium	456	3	Exoplasmic	PLW95329	Perchlorate-reducing communities	(Barnum et al. 2018)
Marinilabiliales bacterium	446	3	Exoplasmic	PLW99613	Perchlorate-reducing communities	(Barnum et al. 2018)
Marinilabiliales bacterium	455	3	Cytoplasmic	PLW92978	Perchlorate-reducing communities	(Barnum et al. 2018)
Marinilabiliales bacterium	458	3	Cytoplasmic	PLX09622	Perchlorate-reducing communities	(Barnum et al. 2018)
Marinilabiliales bacterium	452	3	Cytoplasmic	PLX02242	Perchlorate-reducing communities	(Barnum et al. 2018)
Organism	Length (aa)	TMH	C-terminus orientation	GenBank accession number	Sample source used for (meta)genome sequencing	Reference
--	-------------	-----	------------------------	--------------------------	--	--
Bacteroidetes bacterium GWE2, 32, 14	432	2	Exoplasmic	OFX85901	Aquifers	(Anantharaman et al. 2016)
Bacteroidetes bacterium GWE2, 40, 15	462	3	Exoplasmic	OFX81662	Aquifers	(Anantharaman et al. 2016)
Candidatus Fischerbacteria bacterium RBG, 13, 37, 8	447	3	Cytoplasmic	OFG65237	Aquifers	(Anantharaman et al. 2016)
Desulfobacterales bacterium	456	3	Cytoplasmic	OGR28476	Aquifers	(Anantharaman et al. 2016)
Desulfo bacteriaceae bacterium	476	3	Exoplasmic	RPI80002	Wetlands	(Martins et al. 2018)
Delta proteobacteria bacterium	468	3	Exoplasmic	RJ96807	Wetlands	(Martins et al. 2018)
Bacteroidales bacterium	454	3	Exoplasmic	RPH31952	Wetlands	(Martins et al. 2018)
Bacterium SM23, 31	446	3	Cytoplasmic	KF88368	Estuary sediments	(Baker et al. 2015)
Candidate division Zixibacteria bacterium SM23, 7, 12	441	3	Cytoplasmic	KU04245	Estuary sediments	(Baker et al. 2015)
Latescibacteria bacterium DG, 63	453	3	Cytoplasmic	KFY61247	Estuary sediments	(Baker et al. 2015)
Delta proteobacteria bacterium	542	3	Exoplasmic	PKN64391	Deep terrestrial subsurface sediments	(Hernsdorf et al. 2017)
HGW-Delta proteobacteria-15	459	3	Exoplasmic	PKX82132	Deep terrestrial subsurface sediments	(Hernsdorf et al. 2017)
Candidate division Zixibacteria bacterium HGW-Zixibacteria-1	489	3	Cytoplasmic	RJK39500	Deep terrestrial subsurface fluids	(Momper et al. 2017)
Marinimicrobia bacterium 46, 43	453	3	Exoplasmic	KUK91590	Oil Reservoirs	(Hu et al. 2016)
Candidatus Korarchaeota archaeon	452	3	Exoplasmic	PMB78244	Hot springs	(Wilkins et al. 2018)
Desulfobacterales bacterium SS, 13, 16 MH16	488	3	Exoplasmic	OEU64881	Marine sediments	Unpublished
Candidate division KS, 81 bacterium	432	3	Cytoplasmic	RQW00415		Unpublished

*Not available; sequence information provided in Supporting Information

b Not available
enrichment cultures originating from marine sediments (Barnum et al. 2018). These genomes mostly lacked respiratory perchlorate, chlorate, oxygen and sulfur reductases and were proposed to be specialized for the fermentation of dead cells (Barnum et al. 2018). These finding indicate an important role of the hybrid putative \(rdh \) genes in Marinilabiliales members. Another pure culture harbouring the hybrid putative \(rdh \) in its genome is Calditrichia abyssi, a thermophilic anaerobic bacterium isolated from a Mid-Atlantic Ridge hydrothermal vent (Miroshnichenko et al. 2003). Calditrichaeota are abundant seabed microbes with genomic potential to degrade detrital proteins through the use of extracellular peptidases (Marshall et al. 2017).

Except the MAGs obtained from the marine perchlorate-reducing enrichment cultures (Barnum et al. 2018), all other MAGs-containing hybrid putative \(rdh \) were obtained from harsh environments such as hydrothermal vents.

Figure 1. Predicted topology of the PceB protein of *D. hafniense* Y51 (A), and N-terminus TMHs of the hybrid putative RDases from uncultured deltaproteobacterium (SAG2) obtained from the Aarhus Bay (B), deltaproteobacterium strain NaphS2 (C), and *D. sandiegensis* (D). The position of the EXE motif is indicated by a star. Note that in panel B, C and D, only partial sequences of the hybrid putative RDases containing N-terminus TMHs were shown. TMHs were detected using TMHMM Server v. 2.0 (Sonnhammer, Von Heijne and Krogh 1998). Permission to reprint panel A was obtained from (Schubert et al. 2018).
Figure 2. Sequence alignment of the hybrid putative RDases. Only conserved sequence motifs among experimentally characterized RDases (TAT, FeS1, FeS2), and the conserved glutamic acid residues (EXE) are included. The accession numbers are ordered according to Table 1, except the first accession number that belongs to TceA of Dehalococcoides mccartyi strain 195. ClustalW (Thompson, Higgins and Gibson 1994) multiple sequence alignment was conducted using BioEdit version 7.2.5 (http://bioedit.software.informer.com/).
Outstanding questions

Genomics and allied technologies have greatly increased the diversity of putative rdh genes in recent years, and extended their distribution from contaminated environments to deep subsurface (Table 1), Antarctic soils (Zlamal et al. 2017), and even human and animal intestinal tract (Atashgahi et al. 2018b). With the expanding availability of the bacterial genomes and increasing application of deep sequencing in diverse environments, much more diverse and likely novel rdh genes are expected in future. This brings forward major open questions:

- Do the newly discovered genes encode RDases? If they indeed encode RDases, what are their functions? Three roles have been shown for the known RDases: energy conservation by OHR, and facilitated fermentation of organic substrates (e.g. pyruvate, lactate or yeast extract) by reoxidation of respiratory cofactors for membrane-bound RDases, and catabolic reductive dehalogenation for cytoplasmic RDases (Fincker and Spormann 2017). Can the hybrid putative RDases with cytoplasmic C-terminus be involved in catabolic reductive dehalogenation, facilitated fermentation or both? In turn, how are the hybrid putative RDases with exoplasmic C-terminus secreted through the cell membrane in absence of TAT signal peptide?
- If indeed involved in reductive dehalogenation, what are the physiological organohalogen substrates of the hybrid putative RDases? The lack of correlation between the rdh sequences and their organohalogen substrates has precluded the ability to predict substrates for novel genes, and to test their functionality using the predicted organohalogen.
- Why the majority of the environmental hybrid putative rdh sequences and rdh-containing pure cultures have been obtained from harsh environments? Can it be that their physiological organohalogen substrates are found in these environments?
- What are the ecological functions of the microbes containing (the hybrid putative) RDases? Detoxification of organohalogs and thereby securing a hospitable environments for themselves and the nearby organisms? Providing carbon sources for themselves (catabolic RDase) or others (respiratory RDase)?

- Can (the hybrid putative) RDases be involved in the production of halogenated bioactive compounds as was shown for biosynthesis of marine bacterial pyrroles mediated by a reductive debranomerase that utilizes a reduct thiol mechanism (El Gamal et al. 2016)? Likewise, can the RDases participate in the production of halogenated bioactive compounds in Eukaryotes such as sponges that are known to harbour Deltaproteobacteria with rdh genes (Wilson et al. 2014; Liu et al. 2017)?

ACKNOWLEDGEMENTS

I thank Kasper U. Kjeldsen for providing sequence information, Torsten Schubert and Peng Peng for assistance in creating figures, and two anonymous reviewers for their constructive comments.

FUNDING

This work was supported by the SIAM Gravitation grant ‘Microbes for Health and the Environment’ (Project 024.002.002) of the Netherlands Ministry of Education, Culture and Science, and the Netherlands Science Foundation (NWO).

Conflict of interest. None declared.

REFERENCES

Adrian L, Löffler FE. Organohalide-Respiring Bacteria. Springer-Verlag, Berlin, Germany. 2016.
Anantharaman K, Brown CT, Hug LA et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat Com 2016;7:13219.
Atashgahi S, Hägglom MM, Smidt H. Organohalide respiration in pristine environments: implications for the natural halogen cycle. Environ Microbiol 2018a;20:934–48.
Atashgahi S, Shetty SA, Smidt H et al. Flux, impact and fate of halogenated xenobiotic compounds in the gut. Front Physiol 2018b;9:888.
Baker BJ, Lazar CS, Teske AP et al. Genomic resolution of linkages in carbon, nitrogen, and sulfur cycling among widespread estuary sediment bacteria. Microbiome 2015;3:14.
Barnum TP, Figueroa IA, Carlström CI et al. Genome-resolved metagenomics identifies genetic mobility, metabolic interactions, and unexpected diversity in perchlorate-reducing communities. ISME J 2018;12:1568–81.
Ben Hania W, Joseph M, Bunk B et al. Characterization of the first cultured representative of a Bacteroidetes clade specialized on the scavenging of cyanobacteria. Environ Microbiol 2017;19:1134–48.
Chen K, Huang L, Xu C et al. Molecular characterization of the enzymes involved in the degradation of a brominated aromatic herbicide. Mol Microbiol 2013;89:1121–39.
Davidova IA, Wawrik B, Callaghan AV et al. Dethiosulfatococcus sandiegensis gen. nov., sp. nov., isolated from a methanogenic paraffin-degrading enrichment culture and emended description of the family Desulfarculaceae. Int J Syst Evol Microbiol 2016;66:1242–8.
Didonato Jr RJ, Young ND, Butler JE et al. Genome sequence of the deltaproteobacterial strain NaphS2 and analysis of differential gene expression during anaerobic growth on naphthalene. PLoS One 2010;5:e14072.
Dombrowski N, Seitz KW, Teske AP et al. Genomic insights into potential interdependencies in microbial hydrocarbon
and nutrient cycling in hydrothermal sediments. Microbiome 2017;5:106.

Dombrowski N, Teske AP, Baker BJ. Expansive microbial metabolic versatility and biodiversity in dynamic Guaymas Basin hydrothermal sediments. Nat Com 2018;9:4999.

El Gamal A, Agarwal V, Rahman I et al. Enzymatic reductive dehalogenation controls the biosynthesis of marine bacterial pyrroles. J Am Chem Soc 2016;138:13167–70.

Ellis DE, Lutz EJ, Odom JM et al. Bioaugmentation for accelerated in situ anaerobic bioremediation. Environ Sci Technol 2000;34:2254–60.

Fincker M, Spormann AM. Biochemistry of catabolic reductive dehalogenation. Annu Rev Biochem 2017;86:357–86.

Fu T, Jia C, Fu L et al. Marinifilum breve sp. nov., a marine bacterium isolated from the Yongle Blue Hole in the South China Sea and emended description of the genus Marinifilum. Int J Syst Evol Microbiol 2018;68:3540–5.

Galushko A, Minz D, Schink B et al. Anaerobic degradation of napthalene by a pure culture of a novel type of marine sulphate-reducing bacterium. Environ Microbiol 1999;1:415–20.

Hernsdorf AW, Amano Y, Miyakawa K et al. Potential for microbial H₂ and metal transformations associated with novel bacteria and archaea in deep terrestrial subsurface sediments. ISME J 2017;11:1915–29.

Holliger C, Wohlfarth G, Diekert G. Reductive dechlorination in the energy metabolism of anaerobic bacteria. FEMS Microbiol Rev 1998;22:383–98.

Hug LA, Maphosa F, Leys D et al. Overview of organohalide-respiring bacteria and a proposal for a classification system for reductive dehalogenases. Philos Trans R Soc B Biol Sci 2013;368:20120322.

Hug LA. Diversity, evolution, and environmental distribution of reductive dehalogenase genes. In: Adrian Land Löfler F (eds). Organohalide-Respiring Bacteria. Springer-Verlag, Berlin, Germany, 2016, 377–93.

Hu P, Tom L, Singh A et al. Genome-resolved metagenomic analysis reveals roles for candidate phyla and other microbial community members in biogeochemical transformations in oil reservoirs. MBio 2016;7:e01669–01615.

Häggblom MM, Bossert ID. Dehalogenation: Microbial Processes and Environmental Applications. Kluwer Academic Publisher Group, Boston, USA, 2003.

Häggblom MM. Microbial breakdown of halogenated aromatic pesticides and related compounds. FEMS Microbiol Rev 1992;103:29–71.

Jochum LM, Schreiber L, Marshall IP et al. Single-cell genomics reveals a diverse metabolic potential of uncultivated Desulfatiglans-related Deltaproteobacteria widely distributed in marine sediment. Front Microbiol 2018;9:2038.

Kruse T, Smidt H, Lechner U. Comparative genomics and transcriptomics of organohalide-respiring bacteria and regulation of rdh gene transcription. In: Adrian Land Löfler F (eds). Organohalide-Respiring Bacteria. Springer-Verlag, Berlin, Germany, 2016, 345–76.

Kublanov IV, Sigalova OM, Gavrilov SN et al. Genomic analysis of Caldithrix abyssi, the thermophilic anaerobic bacterium of the novel bacterial phylum Caldithricaeota. Front Microbiol 2017;8:195.

Liu J, Häggblom MM. Genome-guided identification of organohalide-respiring Deltaproteobacteria from the marine environment. mBio 2018;9:e02471–02418.

Liu J, Lopez N, Ahn YB et al. Novel reductive dehalogenases from the marine sponge associated bacterium Desulfoluna spongiphila. Envi Microbiol Rep 2017;9:537–49.

Liu Q-L, Li J, Xiao D et al. Saccharicrinis marinus sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2015;65:3427–32.

Lu D-C, Zhao J-X, Wang F-Q et al. Labilibacter auranticius gen. nov., sp. nov., isolated from sea squirt (Styela clava) and reclassification of Saccharicrinis marinus as Labilibacter marinus comb. nov. Int J Syst Evol Microbiol 2017;67:441–6.

Lu Y, Atashgahi S, Hug LA et al. Primers that target functional genes of organohalide-respiring bacteria. In: McGinity TJ and Timmis KN B N (eds). Hydrocarbon and Lipid Microbiology Protocols, Springer Protocols Handbooks. Springer, Berlin, Germany, 2015, 177–205.

Marshall IP, Starnawski P, Cupit C et al. The novel bacterial phylum Calditrichaeota is diverse, widespread and abundant in marine sediments and has the capacity to degrade detrital proteins. Envi Microbiol Rep 2017;9:397–403.

Martins PD, Danczak RE, Roux S et al. Viral and metabolic controls on high rates of microbial sulfur and carbon cycling in wetland ecosystems. Microbiome 2018;6:138.

Miroshnichenko ML, Kostrikina NA, Chernykh NA et al. Caldithrix abyssi gen. nov., sp. nov., a nitrate-reducing, thermophilic, anaerobic bacterium isolated from a Mid-Atlantic Ridge hydrothermal vent, represents a novel bacterial lineage. Int J Syst Evol Microbiol 2003;53:323–9.

Momper L, Jungbluth SP, Lee MD et al. Energy and carbon metabolisms in a deep terrestrial subsurface fluid microbial community. ISME J 2017;11:2319–33.

Na H, Kim S, Moon EY et al. Marinifilum fragile gen. nov., sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 2009;59:2241–6.

Payne KA, Quezada CP, Fisher K et al. Reductive dehalogenase structure suggests a mechanism for B12-dependent dehalogenation. Nature 2015;517:513–6.

Ruvira MA, Lucena T, Pujalte MJ et al. Marinifilum flexuosum sp. nov., a new Bacteroidetes isolated from coastal Mediterranean Sea water and emended description of the genus Marinifilum Na et al., 2009. Syst Appl Microbiol 2013;36:155–9.

Sanford RA, Chowdhary J, Löfler FE. Organohalide-respiring deltaproteobacteria. In: Adrian Land Löfler FE (eds). Organohalide-Respiring Bacteria. Springer-Verlag, Berlin, Germany, 2016, 235–258.

Schubert T, Adrian L, Sawers RG et al. Organohalide respiratory chains: composition, topology and key enzymes. FEMS Microbiol Ecol 2018;94:fvy035.

Smidt H, de Vos WM. Anaerobic microbial dehalogenation. Annu Rev Microbiol 2004;58:43–73.

Sonntammer EL, Von Hejne G, Krogh A. A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol 1998;6:175–82.

Stroo HF, Leeson A, Ward CH. Bioaugmentation for Groundwater Remediation. Springer, New York, USA. 2012.

Sufita JM, Horowitz A, Shelton DR et al. Dehalogenation: a novel pathway for the anaerobic degradation of haloaromatic compounds. Science 1982;218:1115–7.

Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994;22:4673–80.
Vandieken V, Marshall IP, Niemann H et al. Labilibaculum man-
ganireducens gen. nov., sp. nov. and Labilibaculum filiforme sp.
nov., novel Bacteroidetes isolated from subsurface sediments
of the Baltic Sea. Front Microbiol 2018;8:2614.
Watanabe M, Kojima H, Fukui M. Complete genome sequence
of Marinifilaceae bacterium strain SPP2, isolated from
the Antarctic marine sediment. Mar Genom 2018;39:
1–2.
Wilkins L, Ettinger C, Jospin G et al. There and back again:
metagenome-assembled genomes provide new insights
into two thermal pools in Kamchatka, Russia. bioRxiv
2018:392308.
Wilson MC, Mori T, Rückert C et al. An environmental bacterial
taxon with a large and distinct metabolic repertoire. Nature
2014;506:58–62.
Zlamal JE, Raab TK, Little M et al. Biological chlorine cycling
in the Arctic Coastal Plain. Biogeochemistry 2017;134:
243–60.