Effect of Extracts of Cloves (Syzygium Aromaticum) on Hepatic Cell Damage and Oxidative Stress Caused by Diabetes in Adult Rats

Tala Pourlak1, Monireh Halimi1, Tannaz Pourlak2, Parham Maroufi3*, Saber Ghaderpour4, Arefeh Shokoohi5

1. Department of Pathology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
2. Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
3. Department of Orthopedics, Shohada Medical Research, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
4. Department of Physiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
5. Student Research Committee, North Khorasan University of Medical Sciences, Bojnord, Iran.

1. Introduction

Diabetes Mellitus (DM) is a chronic metabolic disease characterized by high blood sugar, vascular problems, neurological problems [1], and high blood glucose levels due to decreased insulin excretion or insulin resistance or both [2, 3]. There are two types of diabetes: type 1 and type 2. In type 1 diabetes or insulin-dependent diabetes, pancreatic beta cells are destroyed and insulin secretion from these cells is impaired [4]. Typically, less than 10% of diabetic patients have type 1 diabetes [5]. The number of diabetics in 2003 reached 194 million between the ages of 20 and 79 years. An increase of up to 50% is expected in 2010, most of which are new patients found in Africa and Asia [6]. The prevalence of type 2 diabetes is also a public health concern and accounts for about 10 million chronic diseases and a significant percentage of deaths worldwide each year. It is estimated that about 5% to 8% of adults in the world have diabetes. The International Diabetes Association reported 285 million people with type 2 diabetes worldwide in 2010 and predicts that it will...
reach 438 million by 2030 [7]. People with diabetes are at risk for advanced cardiovascular diseases because of high blood glucose levels [4]. Evidence suggests that oxidative stress plays a major role in the pathogenesis of both types of diabetes. An unusual increase of free radicals and a simultaneous decrease of antioxidant defense mechanisms can damage cellular organelles, increase lipid peroxidation, and develop insulin resistance [8, 9]. Chronic hyperglycemia can cause extensive and irreversible damage to the eyes, nerves, kidneys, heart, and blood vessels, and other parts of the body. Liver is one of the organs that is damaged in diabetes [10]. It is an effective organ in maintaining normal blood glucose levels, and hyperglycemia leads to an imbalance in oxidation-reduction (redox) reactions within hepatocytes. Thus, hyperglycemia causes the production of free radicals by increasing the production of advanced glycation end products by disrupting the production of superoxide scavengers such as reactive oxygen species (ROS), endogenous Superoxide Dismutase (SOD), and Catalase (CAT). Thus, it is clear that diabetic liver damage is caused by several factors and cannot be controlled only by inhibiting hyperglycemia [11].

In diabetic animals, the activities of SOD, CAT, and glutathione are reduced [9]. CAT and SOD are the most important known oxidative enzymes. SOD, which is present in most aerobic organisms and converts superoxide to hydrogen peroxide and oxygen in the cytoplasmic space, may protect DNA and intracellular organelles from damages caused by ROS [12]. Recent evidence suggests using traditional herbal remedies for diabetes. Herbs often contain significant amounts of antioxidants, including tocopherols (vitamin E), carotenoids, ascorbic acid (vitamin C), flavonoids, and tannins. It has been suggested that the antioxidant action of these plants may be an essential and important property of herbal medicines used to treat diabetes [4].

Cloves (Syzygium aromaticum) is a fragrant sprout plant commonly used in Africa, Asia, and other parts of the world. Syzygium aromaticum (DSA) has several therapeutic effects, including antibacterial, antifungal, and kidney strengthening effects, and has traditionally been used as a preservative and antimicrobial in food [8, 13]. In a study, the effect of DSA on lowering glucose levels and increasing serum insulin, the levels of SOD and CAT enzymes were investigated [8]. Also, the antioxidant effects of DSA and its ability to reduce malondialdehyde (MDA) have been studied [14]. This study aimed to evaluate the effect of DSA on liver cell damage and oxidative stress caused by diabetes in adult rats.

2. Materials and Methods

For this study, 28 female mice weighing an average of 200-250 g were used. The animals were purchased from the Razi Institute of Mashhad, Mashhad city, Iran, and kept in standard conditions (temperature 25°C, and 12:12 hours of light:dark cycle). During the experiment, rats had free access to water and food. All research stages of this study were performed following the instructions related to the care and use of laboratory animals of Gonabad University of Medical Sciences.

Rats were randomly divided into one healthy control group (n = 7) and three experimental groups (n = 21). To induce diabetes in the experimental groups, a single intraperitoneal injection of 50 mg/kg streptozotocin (STZ) (Sigma) dissolved in 5 mm of 0.1 M citrate buffer (pH = 4.5) was performed [6]. In the control group (normal), the same amount of citrate buffer was injected as a single dose instead of STZ. About 72 hours after the injection, rat blood glucose was measured to confirm diabetes (blood glucose > 250 mg/dL was considered diabetic).

Diabetic rats were divided as follows: a) the healthy control group, b) the diabetic control group (DC) that received normal saline as a solvent, c) diabetic rats treated with 50 mg/kg of hydroalcoholic extract of DSA, d) diabetic rats (DG) treated with 5 mg/kg glibenclamide (GBC) as a standard drug. Treatment was performed once a day for 21 days for all groups by intraperitoneal injection. After a treatment period of 21 days, the rats were anesthetized and their blood samples were taken and their kidneys, pancreas, and liver were frozen at -70°C. Blood samples were used to test for glucose, insulin, lipid profiles, some oxidative stress markers, and antioxidant enzymes. Their serum samples were stored at -70°C.

To extract the hydroalcoholic extract of DSA, we first pulverized the dried clove buds that were prepared and mixed in absolute alcohol and distilled water at a rate of 50% and shaken by a shaker for 48 hours. It was then filtered and centrifuged at 1000 rpm. After evaporating water and alcohol, we dissolved the powder obtained as an extract in normal saline and used it at a dose of 4 mg/kg.

SOD activity was measured using the RANSOD (UK) kit method. MDA was measured by placing plasma in a test tube containing glacial acetic acid, to which 1% thiobarbituric acid in 2% NaOH was added. An equal volume (600 μL/L) of glacial acetic acid and thiobarbituric acid solutions was added to 40 μL of plasma. The test tube containing the mixture was then placed in boiling water for 15 minutes. After cooling, the adsorption was read at 532 nm. MDA
level was calculated using the MDA-TBA absorption coefficient ($\epsilon=1.56 \times 10^5 \text{ cm}^{-1} \text{ M}^{-1}$) [13, 15].

Serum glutathione peroxidase (GPx) level was measured using the Pars Test Kit (Iran) method. Finally, the data obtained from this experiment were analyzed by 1-way analysis of variance, and Tukey's post hoc test was used to determine the groups with significant differences (P<0.05). In this study, the data were presented as Mean±SEM form.

3. Results

Fasting Blood Sugar (FBS)

Fasting Blood Sugar (FBS) level in the DC group increased significantly compared to the healthy control group (P<0.05). Also, FBS levels in DG and DSA groups showed a significant decrease compared to the DC group (P<0.05) (Figure 1).

Serum insulin levels

In the DC, DG, and DSA groups, serum insulin levels significantly decreased compared to the healthy control group (P<0.05). Also, in the DG and DSA groups, insulin levels increased compared to the DC group. This increase was significant in the DSA group (P<0.05) (Figure 2).

Serum levels of fat profile

Serum cholesterol level

The serum cholesterol level in the DC group was significantly higher than that in the healthy control group (P<0.05).

Table 1. Results of serum lipid profile presented as Mean±SEM

Group	Mean±SEM	Low-density Lipoprotein	High-density Lipoprotein	Cholesterol	Triglyceride
Healthy control	19.4807±0.726*	34.8412±0.57*	64.0150±2.23*	38.5965±1.58*	
Diabetic control	25.2614±1.26	27.8700±1.13	8.1617±2.13	62.3748±3.58	
Diabetic+DSA extract	13.8968±2.09*	43.6900±1.62*	59.0191±3.97*	44.6541±5.14*	
Diabetic+GBC	8.6100±2.57*	30.9222±0.67*	72.9426±3.65*	40.6709±0.835*	

Healthy control group: The healthy group treated with normal saline (for 20 days), diabetic control group: diabetic rats treated with normal saline (for 20 days), diabetic+DSA extract: diabetic group treatment with DSA extract at 4 mg/kg (for 20 days) Diabetic+GBC: Diabetic group treated with glibenclamide extract at 5 mg/kg (for 20 days). * Significantly different from the diabetic control group.

Table 2. Results of serum oxidative stress markers presented as Mean±SEM

Group	Mean±SEM	Superoxide dismutase	Glutathione peroxidase	Malondialdehyde
Healthy control	2.407±0.11	321.35±1.57*	0.11±1.478	
Diabetic control	1.029±0.22	1.13±95.80	0.29±2.272	
Diabetic+DSA extract	2.351±0.17*	2.56±226.10*	0.11±1.643*	
Diabetic+GBC	2.179±0.21*	1.48±180.22*	0.20±1.859*	

Healthy control group: The healthy group treated with normal saline (for 20 days), diabetic control group: the diabetic group treated with normal saline (for 20 days), diabetic+DSA extract: the diabetic group treated with 4mg/kg DSA extract (for 20 days) Diabetic+GBC: Diabetic group treated with GBC extract 5 mg/kg (for 20 days). * Significantly different from the diabetic control group.
Figure 1. Chart of fasting serum glucose levels in study groups

Healthy control group: healthy group treated with normal saline (for 20 days), diabetic control group: diabetic group treated with normal saline (for 20 days), diabetic+DSA extract: diabetic group treated with 4mg/kg DSA extract (for 20 days) Diabetic+GBC: Diabetic group treated with GBC extract 5 mg/kg (for 20 days). * Significantly different from the diabetic control group.

Figure 2. Graph of serum insulin levels in study groups

Healthy control group: healthy group treated with normal saline (for 20 days), diabetic control group: diabetic group treated with normal saline (for 20 days), diabetic+DSA extract: diabetic group treated with 4mg/kg DSA extract (for 20 days) Diabetic+GBC: Diabetic group treated with GBC extract 5 mg/kg (for 20 days). * Significantly different from the diabetic control group.

Figure 3. Examination of liver histological results (magnification, ×100)

1: Tissue section image related to the healthy control group; 2: Tissue section image related to the diabetic control group; 3: Tissue section image related to the diabetic group treated with DSA extract; 4: Tissue section image related to the diabetic group receiving GBC. The black arrow indicates the areas of tissue bleeding. The red arrow indicates the dilated sinusoid. The orange arrow indicates the central vein.
Also, cholesterol levels in DG and DSA groups decreased significantly compared to the DC group (P<0.05) (Table 1).

Levels of low-density lipoprotein (LDL)

The serum level of Low-Density Lipoprotein (LDL) increased slightly in the DC group compared to the healthy control group (P<0.05). Also, the LDL level in the DG and DSA groups decreased significantly compared to those in the DC group (P<0.05).

Serum levels of high-density lipoprotein (HDL)

The serum level of High-Density Lipoprotein (HDL) in the DC group significantly decreased compared to the healthy control group (P<0.05). Also, HDL significantly increased in DG and DSA groups compared to the DC group (P<0.05). On the other hand, HDL levels in the DSA group were significantly higher than the healthy control group (P<0.05) (Table 1).

Serum triglyceride (TG) levels

The serum triglyceride (TG) level in the DC group significantly decreased compared to that in the healthy control group (P<0.05). Besides, TG mean level in the DSA group significantly decreased compared to that in the DC group (P<0.05) (Table 1).

Oxidative stress markers

Table 2 presents serum levels of glutathione peroxidase (GPx), superoxide dismutase (SOD), and malondialdehyde (MDA). The activity of GPx and SOD enzymes in the diabetic control group was significantly lower than those in the healthy group (P<0.05); however, treatment with clove extract increased the serum activity of GPx and SOD in comparison with the control diabetic group (P<0.05). In the diabetic control group, serum MDA level increased significantly compared to that in the healthy group (P<0.05). On the other hand, in the groups treated with clove extract, MDA significantly reduced compared to that in the control diabetes group (P<0.05) (Table 2).

Histopathology of the Liver

The liver tissue obtained from the healthy group was histologically normal. Histological studies have shown that diabetes leads to degenerative changes such as edema, rupture, bleeding in the central arteries, dilation of the sinusoids, and pyknotic nuclei. However, the degenerative changes mentioned in the treatment groups decreased (Figure 3).

4. Discussion

Streptozotocin (STZ) is a compound commonly used to induce type 1 diabetes in rats [16]. STZ causes diabetes by rapidly decreasing pancreatic beta cells, which ultimately leads to decreased insulin secretion. Glibenclamide (GBC) has been shown to cause hypoglycemia by increasing insulin secretion from beta cells in the pancreas. The compound is active in moderate STZ-induced diabetes (some beta cells are still healthy), while in severe diabetes it inactivates STZ (which is lost in almost all beta cells) [17]. Our results showed that GBC reduced FBS levels in hyperglycemic animals, so the diabetic status of the animals was moderate. The hypoglycemic effects of plant extracts depend on the extent to which pancreatic beta cells are destroyed. Treatment of moderate diabetic rats with medicinal plant extract resulted in the activation of beta cells and increased insulin production [18]. The antihyperglycemic activity of DSA was associated with an increase in plasma insulin, indicating that the antihyperglycemic activity of DSA may be due to the insulin-producing activity of this extract. The increase in insulin levels observed in the present study showed that the extract of DSA can lead to insulin secretion from the remnants of beta cells or regenerated beta cells. Also, the results of this study showed that the extract of DSA significantly reduced FBS due to increased insulin secretion [19].

Diabetes affects several metabolic pathways, including lipid metabolism. Insulin deficiency (type 1 diabetes) or low insulin function (type 2 diabetes) leads to decreased glucose uptake by tissues that need insulin (such as the liver) as well as increased glucose production by increasing gluconeogenesis, which ultimately leads to a decrease in blood sugar level. Because of the increase in glucose and a decrease in insulin levels in the blood plasma, the hepatic regulation of lipid metabolism is greatly altered. Insulin is an important regulator of many enzymes involved in lipolysis and lipogenesis, so its deficiency causes major changes in the activity of these enzymes and thus affects the overall metabolism of fats and fat profiles in various tissues [20].

In STZ-induced diabetes, elevated blood sugar levels are usually associated with elevated plasma cholesterol, triglycerides, and LDL but decreased HDL [21]. The activation of hormone-sensitive lipase during insulin deficiency is associated with the release of free fatty acids (FFAs) from adipose tissue [22]. Thus, excess fatty acids produced by STZ-induced diabetes in plasma enhance the conversion of excess fatty acids to phospholipids and cholesterol in the liver. These two substances along with excess triglycerides formed in the liver may be excreted into the blood as lipoproteins [16].
Our observations showed that DSA extract alone and in combination with GBC significantly reduced plasma cholesterol, triglycerides, and LDL compared to the diabetic control group. Also, DSA extract increased HDL compared to the diabetic control group (Table 1). DSA extract may restore plasma lipid status to normal by controlling lipid metabolism. These results were in agreement with the results of previous studies [23, 24].

Our observations showed that carnation caused a significant increase in GPx and SOD compared to the healthy control group (Table 2). Glutathione (GSH) is one of the cytoplasmic scavengers of radicals that can reduce free radicals [25]. It is generally believed that the protective effect of GSH against the oxidative degradation of lipids is achieved through GPx by reducing the endogenously formed hydroperoxides of polyunsaturated fatty acids (PUFA) and converting them to hydroxyl derivatives [26]. GSH can inhibit the production of free radicals by temporarily forming metal catalysts, breaking chain reactions, reducing the concentration of Reactive Oxygen Species (ROS), and increasing the levels of enzymes involved in the antioxidant system (SOD, CAT, GPx, and GST) [27, 28].

Selenium is an important cofactor for the SOD enzyme [29] and the use of DSA extract in rats increases selenium, reduces oxidative stress, and liver damage. Similar results were observed in the study of Adefegha et al. [8], which showed that the Fenton reaction is a combination of H2O2 and Fe2+, which is frequently used to induce lipoxygenase (LPO) reactions [30]. LPO releases hydrogen, the most powerful oxidant in the biological system, from PUFA and hydroxyl radicals, and it can use hydrogen released from PUFA to increase oxidative stress [29].

The antioxidant activity of DSA may be due to phenolic compounds such as eugenol, eugenol acetate, and thymol [31]. DSA can prevent cell damage by scavenging free radicals, chelating temporary metal ions, inhibiting oxidant enzymes, or by repairing α-tocopherol from the α-tocopheryl radical [32]. Also, flavonoids can scavenge O₂•, OH, and peroxyl radicals and inhibit LPO activity [33]. DSA can increase SOD, GPx, and GSH and decrease MDA [34].

Hyperglycemia and hyperlipidemia in diabetic patients are associated with increased oxidative stress [35] and increased MDA levels in type 2 diabetic rats. This indicates that increased lipid peroxidation leads to tissue damage and the inability of antioxidant defense mechanisms to prevent the free radical attack, which may lead to leakage of enzymes and metabolites into the bloodstream [36]. Elevated levels of enzymes such as alanine transaminase (ALT), Aspartate Transaminase (AST), markers of liver damage, and evaluation of AST and ALT indicate liver status and necrotic cells, respectively [37]. Abnormal levels of alkaline phosphatase (ALP) in the blood can also indicate liver or bone problems [38]. In the present study, AST, ALT, and ALP levels were significantly higher in the diabetic group compared to the healthy control group. Also, in the group treated with DSA, a significant decrease in AST and ALT levels was observed compared to the diabetic group. In previous studies, an increase in ALT and AST enzymes was observed in diabetic patients [39, 40]. Nyblom et al. reported that in patients with progressive alcoholic liver disease, liver enzymes such as AST and ALT would increase [41]. DSA can reduce liver damage by increasing enzymes in the antioxidant system (SOD, CAT, and GPx) and reducing oxidative stress [42, 43]. Also, the results of liver histology in this study showed that DSA extract reduces liver tissue damage caused by diabetes.

5. Conclusion

The results of this study showed that DSA extract has beneficial effects in lowering blood sugar, oxidative stress, plasma cholesterol, triglycerides, and LDL level. DSA also increases blood insulin levels and improves liver tissue damage and has beneficial effects in reducing tissue damage caused by diabetes. Therefore, because of these beneficial effects of clove plant, it can be used as an effective herbal medicine in reducing and treating the complications of diabetes on liver tissue.

Ethical Considerations

Compliance with ethical guidelines

The ethical code of this research (IR.TBZMED.VCR.REC.2018.167) has been obtained from the Ethics Committee of Research Projects of Tabriz University of Medical Sciences.

Funding

This article is the result of a research project on diabetic rats approved by the Student Research Committee of Tabriz University of Medical Sciences. The project did not receive financial support.

Authors’ contributions

Study concept: Tala Pourlak and Monireh Halimi; Writing and final approval of the article: Tala Pourlak, Monireh Halimi, Parham Maroufi, Saber Ghaderpour, Arefeh Shokouhi; Data collection and interpretation: Tala Pourlak, Saber Ghaderpour, and Arefeh Shokouhi.
Conflicts of interest

The authors declared no conflict of interest.

Acknowledgements

We would like to thank the Vice-Chancellor for Research and Technology of Tabriz University of Medical Sciences and the Student Research Committee of Tabriz University of Medical Sciences and all those who helped in this research.
اثر عصاره میخک بر اسپیس سلول‌های کبدی و استرس اکسیداتیو ناشی از دیابت در موش‌های صحرایی

به‌عنوان نویسنده مسئول: دکتر پرهام معروفی

نشانی: تبریز، دانشگاه علوم پزشکی تبریز، دانشکده پزشکی، گروه ارتوپدی.

کلمات کلیدی: میخک، استرس اکسیداتیو، دیابت، انسولین، کبد، موش صحرایی

1399 اردیبهشت 28
تاریخ دریافت
1399 مرداد 27
تاریخ پذیرش
1399 مهر 10
تاریخ انتشار

مقدمه

یک بیماری متابولیک مزمن است که با افزایش قند خون، مشکلات عروقی، مشکلات عصبی و غلظت بالای گلوکز خون به دلیل کاهش دفع انسولین یا مقاومت در برابر انسولین یا هر دو مشخص می‌شود که دیابت. در دیابت نوع ۱ و گروه دیابتیک دریافت کننده گلیبنکلامید.

1. گروه دیابتیک دریافت کننده گلیبنکلامید
2. گروه بازیلیرز
3. گروه کنترل
4. گروه کنترل دیابتی
5. گروه کنترل دیابتی دریافت کننده گلیبنکلامید

میکروپاتچ: میخک

مقدمة

1. گروه دیابتیک
2. گروه بازیلیرز
3. گروه کنترل
4. گروه کنترل دیابتی
5. گروه کنترل دیابتی دریافت کننده گلیبنکلامید

میکروپاتچ: میخک

مقدمة

1. گروه دیابتیک
2. گروه بازیلیرز
3. گروه کنترل
4. گروه کنترل دیابتی
5. گروه کنترل دیابتی دریافت کننده گلیبنکلامید
برای تهیه مولکول‌های ۵۰ مولول مولار استرس گلوتاتیون، در حیوانات آزمایشگاهی دیابتی می‌گذاریم و سپس یک میلی‌گرم بر کیلوگرم سالین به عنوان حلال دریافت می‌کنند.

کبد یکی از اندام‌هایی است که در بیماری دیابت هیپرگلیسمی مزمن می‌تواند ضایعات و جبران ناپذیری خلق کند.

میخک صدپر یک گیاه یا پیشگاه ی محرک است که به طور کلی در افراها آتا و بدن‌های موارد چنین استفاده می‌شود.

میخک گلی‌بنا به دو پاره استفاده می‌کند: به عنوان یک ماده ضد باکتری و با گلی‌بنا سالم؛ ب) گروه کنترل

ب) گروه کنترل به ترتیب زیر تقسیم شدند: الف) موش‌های صحرایی دیابتی که نرمال

3. Superoxide dismutase
4. Advanced Glycation End Products
5. CAT
6. SOD
7. Syzygium aromaticum
8. Streptozotocin
9. Diabetic control
10. گروه دیابتی دریافت کننده‌گل برگ‌گلی‌بنا

9 و 10 مولول مولار استرس گلوتاتیون، در حیوانات آزمایشگاهی دیابتی می‌گذاریم و سپس یک میلی‌گرم بر کیلوگرم سالین به عنوان حلال دریافت می‌کنند.
درصد سطح سرمی لیپوپروتئین با چگالی زیاد DSA در مقایسه با گروه کنترل بود (P<0/05). میزان LDLC در گروه DSA و DG نسبت به گروه DC کاهش یافته است (P<0/05).

سطح سری لپوپروتئین با چگالی بالا (HDL)

سطح سری لپوپروتئین با چگالی بالا (HDL) در گروه DC نسبت به گروه کنترل کاهش یافته است (P<0/05). میزان LDLC در گروه DSA و DG نسبت به گروه DC کاهش یافته است (P<0/05).

12. Low-density lipoprotein
13. High-density lipoprotein

جدول 3 نتایج پروپانول لیپیدهای سرم خون

میانگین-انحراف میانگین	گروه	تری-گلیسرید	کلسسترول	پیوتوپروتئین‌های با چگالی زیاد	پیوتوپروتئین‌های با چگالی کم
گروه کنترل DSA		278/385/716/838	321/341/427/648	1978/158/273/276	847/141/232/334
گروه کنترل DG		326/378/635/823	367/388/521/73	1762/214/331/36	679/102/239/34
گروه DSA		778/908/756/896	1236/146/257/261	3369/340/257/261	3439/340/257/261
گروه DG		853/868/853/868	1912/134/257/261	3369/340/257/261	3439/340/257/261

آنتی‌فسفیت
گروه کنترل سالم دارای سطح سرمی C-fos افزایش یافته بود (P<0/05). میزان نسبت LDLC در گروه DSA و DG مشابه با گروه کنترل بود (P>0/05). در این مطالعه مقطع خونی و تیمار شیمی‌افزایشی هنگام DSA و DG در مقایسه با گروه کنترل افزایش یافت (P<0/05). این افزایش در گروه DG بخصوص در هنگام تهیه نهادی (میزان LDLC بین 25/2614 تا 25/2614) با گروه کنترل تفاوت معنی‌داری داشت (P<0/05).
جوهر کنترل سالم: گروه سالم که تحت درمان با نرمال سالین قرار گرفته‌اند (۲۰ روز)، گروه کنترل میخک: گروه سالم که تحت درمان با نرمال سالین قرار گرفته‌اند (۲۰ روز)، گروه دیابت: گروه دیابتی که تحت درمان با نرمال سالین قرار گرفته‌اند (۲۰ روز) گروه دیابتی + گلیبنکلامید: گروه دیابتی درمانشده با میزان به میزان۳ میلی‌گرم بر کیلوگرم (۲۰ روز) گروه دیابتی + میخک: گروه دیابتی دارای عصاره میخک به میزان ۳ میلی‌گرم بر کیلوگرم (۲۰ روز)

بخش	MDA	GPX	SOD
کنترل سالم	۰/۲۷۲±۰/۲۹	۹۵/۸۰±۱/۱۳	۱/۲۹۱±۰/۲۲
دیابت	۰/۶۴۳±۰/۱۱	۲۲۶/۱۰±۲/۵۶	۲/۱۷۹±۰/۲۱
دیابتی+عصاره میخک	۰/۸۵۹±۰/۲۰	۱۸۰/۲۲±۱/۴۸	۲/۲۵۰±۰/۲۱
دیابتی+گلیبنکلامید	۰/۲۷۲±۰/۲۹	۹۵/۸۰±۱/۱۳	۱/۲۹۱±۰/۲۲

انگلیسی بافتی یافت شده در گروه سالم، از نظر هیستولوژیک طبیعی بود. مطالعات بافت شناسی نشان داد که دیابت منجر به تغییرات دژنراتیو مانند ادم، پارگی، خون ریزی در رگ‌های مختلف می‌گردد. نتایج مارکر های استرس اکسیداتیو در سرم خون نشان دهنده معناداری با گروه کنترل، علامت+ نشان دهنده معناداری با گروه کنترل دیابتی می‌باشد

14. Triglycerides

![نمودار سطح سرمی قند ناشتا در گروه های مطالعه](نمودار.png)

![نمودار سطح انسولین سرمی در گروه های مطالعه](نمودار.png)

سطح سرمی در گروه کنترل

سطح دیابتی در گروه کنترل: گروه دیابتی که تحت درمان با نرمال سالین قرار گرفته‌اند (۵ روز)، دیابتی+عصاره میخک: گروه دیابتی درمان شده با عصاره میخک به میزان ۳ میلی‌گرم بر کیلوگرم (۵ روز) دیابتی+گلیبنکلامید: گروه دیابتی درمانشده با عصاره گلیبنکلامید به میزان ۳ میلی‌گرم بر کیلوگرم (۵ روز)
شماره 26 دوره 1399 پاییز

مرکزی که فند هدن در سیتوپلاسم و همچنین پکتوپلاسم مرغورد از تکرره دیابت به فند در گروه‌های دیابتی کاملاً فعال است (تصویر شماره ۲).

بحث

استرپتوزوتوسین ترکیبی است که معمولاً برای القای دیابت نوع ۱ در موش‌ها یا مصرف نهایی استفاده می‌شود. استرپتوزوتوسین با کاهش سطح سولولاهای مصرفی به دلیل القای انسولین‌زایی این سطح بهبود می‌بخشد. استرپتوزوتوسین با افزایش سطح سولولاهای مصرفی بهبود می‌بخشد. این تکثیر مرغورد از پایلوپلاسم و پایلوپوئید قند خون را کاهش می‌دهد. فن‌های کاهش می‌بخشد.

کمبود انسولین (دیابت نوع ۲) یا کاهش عملکرد انسولین (دیابت نوع ۱) به موجب سطح قند خون (FBS) و عواملی مانند فشار خون کاهش می‌دهد. در فشار خون کاهش می‌دهد، برای القای دیابت نوع ۱ در موش‌ها مصرف نهایی استفاده می‌شود. بیماری استرپتوزوتوسین با کاهش سطح سولولاهای مصرفی به دلیل القای انسولین‌زایی این سطح بهبود می‌بخشد.

کمبود انسولین (دیابت نوع ۱) یا کاهش عملکرد انسولین (دیابت نوع ۲) به موجب سطح قند خون (FBS) و عواملی مانند فشار خون کاهش می‌دهد. یا در مطالعات آنتی‌هیپرگلیسمیک کاملاً فعال است (تصویر شماره ۲).
در دیابت ناشی از از آسیب دیدن سلول ها جلوگیری کننده به بیماری کبدی پیشرونده، آنزیم های کبدی مانند کبدی و سلول های نکروتیک را نشان می دهد و همکاران مشاهده کردند که نسبت به کنترل های شاخصی از وضعیت بیولوژیکی است از سایر اسکلرولوژیک های دیابت. گلوکونوژنیک شده که در جریان تئودیل STZ، افزایش سطح گلوکز خون عموماً با افزایش سطح گلوکز و کاهش سطح انسولین در پلاسما خون، تعقیب کننده متابولیسم بیمار به تغییراتی می کند. از آنجا که آسیب این نوع ذراتی می‌تواند در سپرای از انرژی به دست آورن از لیپولیز و لیپوژنز است که درجه جدید از این کالری تغییرات مناسبی در سایر گروه های دیابتی می‌تواند در جریان تئودیل STZ، افزایش سطح گلوکز خون به دلیل افزایش این آسیب‌ها می‌باشد. به طور کلی اعتقاد بر این است که اثر محافظتی آنها در دیابتی می‌باشد. یکی از روبنده سیتوپلاسمی رادیکال ها است که توسط عملیات متابولیسم لیپید و تغییراتی در این اثر به دلیل آن‌ها نیوتوپوپتیک‌ها و لیپید و سلول‌های نیکروتیک در بیماران دیابت مربوط به این کالری می‌باشد. در مطالعات گذشته، افزایش میزان تولید می‌باشد که در جریان تئودیل STZ، افزایش سطح گلوکز خون به دلیل افزایش این آسیب‌ها می‌باشد. به طور کلی اعتقاد بر این است که اثر محافظتی آنها در دیابتی می‌باشد. یکی از روبنده سیتوپلاسمی رادیکال ها است که توسط عملیات متابولیسم لیپید و تغییراتی در این اثر به دلیل آن‌ها نیوتوپوپتیک‌ها و لیپید و سلول‌های نیکروتیک در بیماران دیابت مربوط به این کالری می‌باشد. در مطالعات گذشته، افزایش میزان تولید می‌باشد که در جریان تئودیل STZ، افزایش سطح گلوکز خون به دلیل افزایش این آسیب‌ها می‌باشد. به طور کلی اعتقاد بر این است که اثر محافظتی آنها در دیابتی می‌باشد. یکی از روبنده سیتوپلاسمی رادیکال ها است که توسط عملیات متابولیسم لیپید و تغییراتی در این اثر به دلیل آن‌ها نیوتوپوپتیک‌ها و لیپید و سلول‌های نیکروتیک در بیماران دیابت مربوط به این کالری می‌باشد. در مطالعات گذشته، افزایش میزان تولید می‌باشد که در جریان تئودیل STZ، افزایش سطح گلوکز خون به دلیل افزایش این آسیب‌ها می‌باشد. به طور کلی اعتقاد بر این است که اثر محافظتی آنها در دیابتی می‌باشد. یکی از روبنده سیتوپلاسمی رادیکال ها است که توسط عملیات متابولیسم لیپید و تغییراتی در این اثر به دلیل آن‌ها نیوتوپوپتیک‌ها و لیپید و سلول‌های نیکروتیک در بیماران دیابت مربوط به این کالری می‌باشد. در مطالعات گذشته، افزایش میزان تولید می‌باشد که در جریان تئودیل STZ، افزایش سطح گلوکز خون به دلیل افزایش این آسیب‌ها می‌باشد. به طور کلی اعتقاد بر این است که اثر محافظتی آنها در دیابتی می‌باشد. یکی از روبنده سیتوپلاسمی رادیکال ها است که توسط عملیات متابولیسم لیپید و تغییراتی در این اثر به دلیل آن‌ها نیوتوپوپتیک‌ها و لیپید و سلول‌های نیکروتیک در بیماران دیابت مربوط به این کالری می‌باشد. در مطالعات گذشته، افزایش میزان تولید می‌باشد که در جریان تئودیل STZ، افزایش سطح گلوکز خون به دلیل افزایش این آسیب‌ها می‌باشد. به طور کلی اعتقاد بر این است که اثر محافظتی آنها در دیابتی می‌باشد. یکی از روبنده سیتوپلاسمی رادیکال ها است که TOLIB6719.jpg
نتایج حاصل از این مطالعه نشان داد که عصاره میخک صدپر دارای اثرات مثبت در کاهش قند خون، تری گلیسیرید و لیپوپروتئین با چگالی کم است. همچنین میخک صدپر به بهبود آسیب‌های بافتی کبدی در حیوانات دیابتی می‌پردازد. بنابراین این مطالعه نشان می‌دهد که میخک صدپر می‌تواند به بهبود خاصیت‌های داخلی و خارجی مصرفی مصرف شود و بهبود درمان عمومی یکی از دیابت‌های منجر به درمان عمومی می‌شود. به طور کلی، این مطالعه نشان می‌دهد که میخک صدپر می‌تواند به بهبود بافت کبدی در حیوانات دیابتی می‌پردازد.
References

[1] Inzucchi SE, Sherwin RS. Goldman’s cecil medicine. Philadelphia: Saunders Elsevier; 2011. [DOI:10.1016/B978-1-4377-1604-7.00237-2]

[2] American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2014; 37 Suppl 1:S81-90. [DOI:10.2337/dc14-S081] [PMID]

[3] Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation. Diabetic Medicine. 1998; 15(7):539-53. [DOI:10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA146>3.0.CO;2-5] [PMID]

[4] Rajasekaran S, Sivagnanam K, Subramanian S. Antioxidant effect of Aloe vera gel extract in streptozotocin-induced diabetes in rats. Pharmacological Reports. 2005; 57(1):90-6. [DOI:10.1385/BTER:108:1-3:185]

[5] Lars CA. Ethnomedicines used in Trinidad and Tobago for urinary problems and diabetes mellitus. Journal of Ethnobiology and Ethnomedicine. 2006; 2:45. [DOI:10.1186/1746-4269-2-45] [PMID] [PMCID]

[6] Abtahi-Evari SH, Shokouhi M, Abbasii A, Rajabzade A, Shoorei H, Kalarestghi H. Protective effect of Galega officinalis extract on streptozotocin-induced kidney damage and biochemical factor in diabetic rats. Croissant Journal of Medical and Biological Sciences. 2017; 4(3):108-14. https://www.researchgate.net/publication/318773339

[7] Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nature Reviews Immunology. 2011; 11(2):98-107. [DOI:10.1038/nri2925]

[8] Adefegha SA, Oboh G, Adefegha OM, Bolong AA, Athayde ML. Antihyperglycemic, hypolipidemic, hepatoprotective and antioxidative effects of dietary clove (Syzygium aromaticum) bud powder in a high-fat diet/streptozotocin-induced diabetes rat model. Journal of the Science of Food and Agriculture. 2014; 94(13):2726-37. [DOI:10.1002/jsfa.6617] [PMID]

[9] Maritim AC, Sanders RA, Watkins JB. Diabetes, oxidative stress, and antioxidants: A review. Journal of Biochemical and Molecular Toxicology. 2006; 20(2):e132-41. [DOI:10.1002/jbt.10058] [PMID]

[10] Mohamed J, Nazratun Nafizah AH, Zariyantey AH, Budin SB. Mechanisms of diabetes-induced liver damage: The role of oxidative stress and inflammation. Sultan Qaboos University Medical Journal. 2016; 16(4):323-8. https://inis.iaea.org/searchingsinglerecord.aspx?recordId=SingleRecord&RN=45041146

[11] Donadon V, Balbi M, Mas MD, Casarín P, Janette G. Metformin and reduced risk of hepatocellular carcinoma in diabetic patients with chronic liver disease. Liver International. 2010; 30(5):750-8. [DOI:10.1111/j.1478-3231.2010.02223.x] [PMID]

[12] Ukkola O, Erkkilä PH, Savolainen MJ, Kesäniemi YA. Lack of association between polymorphisms of catalase, copper-zinc Superoxide Dismutase (SOD), extracellular SOD and endothelial nitric oxide synthase genes and macroangiopathy in patients with type 2 diabetes mellitus. Journal of Internal Medicine. 2000; 197(5):515-22. [DOI:10.1080/14772579909166045] [PMID]

[13] Moghimian M, Abtahi-Evari SH, Shokouhi M, Amiri M, Soltani M. Effect of Syzygium aromaticum (clove) extract on seminiferous tubules and oxidative stress after testicular torsion in adult rats. Physiology and Pharmacology. 2017; 21(4):343-50. http://ppj.phyphajr.com/article-1-1257-en.html

[14] Lee KG, Shimamoto T. Inhibition of malonaldehyde formation from blood plasma oxidation by aroma extracts and aroma components isolated from clove and eucalyptus. Food and Chemical Toxicology. 2001; 39(12):1199-204. [DOI:10.1016/S0278-6915(01)00078-3]

[15] Moghimian M, Abtahi-Evari SH, Jajarmy N, Karimi Shahri M, Adabi J, Shokouhi M. Comparing the effect of flaxseed and fish oils on acute ischemia-reperfusion injury in the rat kidney. Crescent Journal of Medical and Biological Sciences. 2019; 6(1):16-12. http://www.cjmb.org/uploads/pdf_pdf_CJMB_143.pdf

[16] Rajasekaran S, Ravi K, Sivagnanam K, Subramanian S. Beneficial effects of Aloe vera leaf gel extract on lipid profile status in rats with streptozotocin diabetes. Clinical and Experimental Pharmacology and Physiology. 2006; 33(3):232-7. [DOI:10.1111/j.1440-1681.2006.04351.x] [PMID]

[17] Proks P, Reimann F, Green N, Gribble F, Ashcroft F. Sulfonflyurea stimulation of insulin secretion. Diabetes. 2002; 51 Suppl 3:5368-76. [DOI:10.2337/diabetes.51.2007.5368] [PMID]

[18] Kedar P, Chakrabarti CH. Effects of bittersquord (Momordica charantia) seed & glibenclamide in streptozotocin induced diabetes mellitus. Indian Journal of Experimental Biology. 1982; 20(3):232-5. [PMID]

[19] Chaudhry ZR, Chaudhry SR, Naseer A, Chaudhry FR. Effect of Syzygium aromaticum (clove) extract on blood glucose level in streptozotocin-induced diabetic rats. Pakistan Armed Forces Medical Journal. 2013; 63(3):323-8. https://inis.iaea.org/searchingsinglerecord.aspx?recordId=SingleRecord&RN=45041146

[20] Yadav UCS, Moorthy K, Baquer NZ. Effects of sodium-orthovanaadate and Trigonella foenum-graecum seeds on hepatic and renal lipogenic enzymes and lipid profile during alloxan diabetes. Journal of Biosciences. 2004; 29(1):81-91. [DOI:10.1007/BF02702565] [PMID]

[21] Mitra SK, Gopumadhavan S, Muruldhar KS, Anturikar SD, Sujatha MB. Effect of D-400, a herbomineral preparation on lipid profile, glycated haemoglobin and glucose tolerance in streptozotocin induced diabetes in rats. Indian Journal of Experimental Biology. 1995; 33(10):798-800. [PMID]

[22] al-Shamaony L, al-Khazraji SM, Twaij HA. Hypoglycemic effect of Artemisia herba alba. II. Effect of a valuable extract on some blood parameters in diabetic animals. Journal of Ethnopharmacology. 1994; 43(3):167-71. [DOI:10.1016/0378-8741(94)90038-8] [PMID]

[23] Jung CH, Ahn J, Jeon TI, Kim TW, Ha TY. Syzygium aromaticum ethanol extract reduces highfat diet-induced obesity in mice through downregulation of adipogenic and lipogenic gene expression. Experimental and Therapeutic Medicine. 2012; 4(3):409-14. [DOI:10.3892/etm.2012.609] [PMID] [PMCID]

[24] Shyamala MP, Venukumar MR, Latha MS. Antioxidant potential of the Syzygium aromaticum (Gaertn.) Unn.(cloves) in rats fed with high fat diet. Indian Journal of Pharmacology. 2003; 35(2):99-103. https://www.researchgate.net/publication/266091697

[25] Alessio HM, Goldfarb AH. Lipid peroxidation and scavenger enzymes during exercise: Adaptive response to training. Journal of Applied Physiology. 1988; 64(4):1333-6. [DOI:1152/jappl1988.64.4.1333] [PMID]

[26] Fujisawa Y, Kondo T, Murakami K, Kawakami Y. Decrease of the inhibition of lipid peroxidation by glutathione-dependent system in erythrocytes of non-insulin dependent diabetics. Klinische Wochenschrift. 1989; 67(6):336-41. [DOI:10.1007/BF01741388] [PMID]

[27] Blokhina O, Virolainen E, Fagerstedt KV. Antioxidants, oxidative damage and oxygen deprivation stress: A review. Annals of Botany. 2003; 91 Spec No(2):179-94. [DOI:10.1093/aob/mcf118] [PMID] [PMCID]

[28] Massella R, Di Benedetto R, Vari R, Fibusi C, Giovanni C. Novel mechanisms of natural antioxidant compounds in biological systems: Involvement of glutathione and glutathione-related enzymes. The Journal of Nutritional Biochemistry. 2005; 16(10):576-86. [DOI:10.1016/j.jnutbio.2005.05.013] [PMID]
[29] Yadav AS, Bhatnagar D. Modulatory effect of spice extracts on iron-induced lipid peroxidation in rat liver. Biofactors. 2007; 29(2-3):147-57. [DOI:10.1002/bof.552029205] [PMID]

[30] Halliwell B. Superoxide-dependent formation of hydroxyl radicals in the presence of iron chelates: Is it a mechanism for hydroxyl radical production in biochemical systems? FEBS Letters. 1978; 92(2):321-6. [DOI:10.1016/0014-5793(78)80779-0] [PMID]

[31] Nassar MI, Gaara AH, El-Ghorab AH, Farrag ARH. Chemical constituents of clove (Syzygium aromaticum, Fam. Myrtaceae) and their antioxidant activity. Revista Latinoamericana de Quimica. 2007; 35(3):47-57. https://www.researchgate.net/publication/228357516

[32] Pulikottil SJ, Nath S. Potential of clove of Syzygium aromaticum in development of a therapeutic agent for periodontal disease: A review. South African Dental Journal. 2015; 70(3):108-15. http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S0011-85162015000300010

[33] Van Acker ASBE, Van Den Berg DJ, Tromp MNUL, Griffioen DH, Van Bennenkorn WP, Van Der Vijgh WIF, et al. Structural aspects of antioxidant activity of flavonoids. Free Radical Biology and Medicine. 1996; 20(3):331-42. [DOI:10.1016/0891-5849(95)02047-0]

[34] Shukri R, Mohamed S, Mustapha NM. Cloves protect the heart, liver and lens of diabetic rats. Food Chemistry. 2010; 122(4):1116-21. [DOI:10.1016/j.foodchem.2010.03.094]

[35] Esposito K, Nappo F, Marfella R, Giugliano G, Giugliano F, Ciotola M, et al. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: Role of oxidative stress. Circulation. 2002; 106(16):2067-72. [DOI:10.1161/01.CIR.0000034509.14906.AE] [PMID]

[36] Ozdemir G, Ozden M, Maral H, Kuskay S, Cetinalp P, Tarkan I. Malondialdehyde, glutathione, glutathione peroxidase and homocysteine levels in type 2 diabetic patients with and without microalbuminuria. Annals of Clinical Biochemistry. 2005; 42(Pt 2):99-104. [DOI:10.1258/0004563053492838] [PMID]

[37] Navarro VI, Senior JR. Drug-related hepatotoxicity. New England Journal of Medicine. 2006; 354(7):731-9. [DOI:10.1056/NEJMra052270] [PMID]

[38] Golub EE, Bozes-Battaglia K. The role of alkaline phosphatase in mineralization. Current Opinion in Orthopaedics. 2007; 18(5):444-8. [DOI:10.1097/BCO.0b013e3282630851]

[39] Vozarova B, Stefan N, Lindsay RS, Saremi A, Pratley RE, Bogardus C, et al. High alanine aminotransferase is associated with decreased hepatic insulin sensitivity and predicts the development of type 2 diabetes. Diabetes. 2002; 51(6):1889-95. [DOI:10.2337/diabetes.51.6.1889] [PMID]

[40] Hanley AJ, Williams K, Festa A, Wagenknecht LE, D'Agostino RB Jr, Kempf j, et al. Elevations in markers of liver injury and risk of type 2 diabetes: The insulin resistance atherosclerosis study. Diabetes. 2004; 53(10):2623-32. [DOI:10.2337/diabetes.53.10.2623] [PMID]

[41] Nyblom H, Berggren U, Balldin J, Olsson R. High AST/ALT ratio may indicate advanced alcoholic liver disease rather than heavy drinking. Alcohol and Alcoholism. 2004; 39(4):336-9. [DOI:10.1093/alcalc/agh074] [PMID]

[42] Gülçin I, Elmastaş M, Aboul-Enein HY. Antioxidant activity of clove oil-A powerful antioxidant source. Arabian Journal of Chemistry. 2012; 5(4):489-99. [DOI:10.1016/j.arabjc.2010.09.016]

[43] Sadeek EA, El-Razek FHA. The chemo-protective effect of turmeric, chili, cloves and cardamom on correcting iron overload-induced liver injury, oxidative stress and serum lipid profile in rats models. Journal of American Science. 2010; 6(10):702-12. http://www.jofamericanscience.org/journals/am-sci/am0610/82_3676am0610_702_712.pdf