The importance of inter-individual variation in predicting species' responses to global change drivers

Ella Guscelli1,2 | John I. Spicer2 | Piero Calosi1,2

1 Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Québec, Canada
2 Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK

Correspondence
Ella Guscelli, Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, QC, Canada.
Email: ella.guscelli@uqar.ca

Funding information
This work was funded by a UKOA NERC-DEC-DEFRA Research Grant (NE/H017127/1) and local funding to PC and JIS. PC is supported by a NSERC Discovery Grant and a FRQ-NT New University Researchers Start Up Program.

Abstract
Inter-individual variation in phenotypic traits has long been considered as "noise" rather than meaningful phenotypic variation, with biological studies almost exclusively generating and reporting average responses for populations and species' average responses. Here, we compare the use of an individual approach in the investigation of extracellular acid-base regulation by the purple sea urchin Paracentrotus lividus challenged with elevated $p\text{CO}_2$ and temperature conditions, with a more traditional approach which generates and formally compares mean values. We detected a high level of inter-individual variation in acid-base regulation parameters both within and between treatments. Comparing individual and mean values for the first (apparent) dissociation constant of the coelomic fluid for individual sea urchins resulted in substantially different (calculated) acid-base parameters, and models with stronger statistical support. While the approach using means showed that coelomic $p\text{CO}_2$ was influenced by seawater $p\text{CO}_2$ and temperature combined, the individual approach indicated that it was in fact seawater temperature in isolation that had a significant effect on coelomic $p\text{CO}_2$. On the other hand, coelomic $[\text{HCO}_3^-]$ appeared to be primarily affected by seawater $p\text{CO}_2$, and less by seawater temperature, irrespective of the approach adopted. As a consequence, we suggest that individual variation in physiological traits needs to be considered, and where appropriate taken into account, in global change biology studies. It could be argued that an approach reliant on mean values is a "procedural error." It produces an artefact, that is, a population's mean phenotype. While this may allow us to conduct relatively simple statistical analyses, it will not in all cases reflect, or take into account, the degree of (physiological) diversity present in natural populations.

Keywords
acid-base regulation, acid-base status, individual variation, ocean acidification, ocean warming, phenotypic variation
INTRODUCTION

Real individuals are unique combination of traits, some above and some below average. It is time to recognize the uniqueness of the individual and to turn it to our advantage as biologists. (Bennett, 1987)

Darwin (1859) introduced the notion that variation is a prerequisite for natural selection to operate. More than a century later, Bennett (1987) suggested that the variability in organismal responses, due to the inter-individual variation in natural populations or species, should not be written off as "noise," but instead could provide new powerful insights into how organisms function and have evolved. And yet historically, and even currently, biological studies have largely focused on mean organismal responses, a method that can significantly underestimate the importance of the individual and its genetic and phenotypic characteristics (Aldrich, 1975; Bennett, 1987; Spicer & Gaston, 1999).

The relative paucity of studies that take an inter-individual approach most likely biases our perception and understanding of organisms' physiological processes. The mean values we commonly generate and use in our analyses can be considered useful abstractions or even artefacts constructed to aid analysis or interpret (i.e., simplifying) our perception of nature. While convenient and powerful, a mean does not capture the level of phenotypic variation that exists in natural populations. This emphasis on mean values has been termed "the tyranny of the Golden Mean" (Bennett, 1987). In turns, the broad acceptance of the utilization of this approach has led us to consider values of central tendency being more important and meaningful than the data used to generate it (Spicer & Gaston, 1999).

Inter-individual variation plays a critical role in determining activity patterns (Dias, Granadeiro, & Catry, 2013; Vardanis, Klæssen, Strandberg, & Alerstam, 2011), food preferences, foraging activity (Arnold, 1981; Newsome et al., 2009), and metabolic responses (Aldrich, 1975; Hayes, Garland, & Dohm, 1992; Spicer & Baden, 2001; Vézina, Speakman, & Williams, 2006), all of which can scale up to community responses (Bolnick et al., 2011; Hanski & Singer, 2001; Spicer & Gaston, 1999) and ecosystem functions (Cianciaruso, Batalha, Gaston, & Petchey, 2009). Studying inter-individual variation has also been insightful in investigating potential impacts of climate change (e.g., Schlegel, Havenhand, Gillings, & Williamson, 2012; Ellis et al., 2017). However, little is known about the implications of individual variation within physiological systems in defining species responses within the context of global change, (Small, Calosi, Boothroyd, Widdicombe, & Spicer, 2015; Walther, Anger, & Pörtner, 2010) and shift in species biogeography (Deutsch, Ferrel, Seibel, Pörtner, & Huey, 2015; Parmesan & Yohe, 2003; Pörtner & Knust, 2007).

It is common practice to use constants derived from one species or population, and expressed as a mean value, in the calculation of physicochemical characteristics of an organism. This could be because it has not been possible to derive that constant for the individual or species of interest, there was a desire to minimize "nuisance" inter-individual variation, or because the statistical analysis is more straightforward if mean data were used. However, it is possible that an individual approach could produce different, and potentially more accurate, outcomes of environmental challenge, compared with more traditional mean-based approaches.

On a different but related note, it is often assumed that constants derived from one system or species are equally applicable to another. For example, the mean dissociation constant (pK_{1/2}) for hemolymph from the shore crab Carcinus maenas has often been used to calculate acid–base parameters (e.g., pCO₂ and [HCO₃]) for other species when empirical values are not available (e.g., Calosi, Rastrick, et al., 2013; Miles, Widdicombe, Spicer, & Hall-Spencer, 2007; Spicer, Raffo, & Widdicombe, 2007). However, the efficacy of doing so has never been formally assessed.

The ongoing increase in human activities since the industrial revolution has resulted in an accumulation of greenhouse gases in the atmosphere (IPCC, 2013), leading to a net increase in subsurface ocean temperature, a phenomenon termed ocean warming (OW). Changes in temperature have significant physiological implications for biological life, particularly ectothermic organisms (Pörtner & Knust, 2007), ultimately leading to changes in their geographical distribution and shifts in food webs (e.g., Stachowicz, Terwin, Whittatch, & Osman, 2002; Perry, Low, Ellis, & Reynolds, 2005). In parallel, the increase in atmospheric CO₂ is in part, buffered, as approx. 30% of emitted CO₂ is stored in the world's oceans (Sabine & Feely, 2007; Sabine et al., 2004). This has resulted in an increase in bicarbonate ion ([HCO₃]) and a decrease in seawater carbonate concentration ([CO₃]) and pH (Caldeira & Wickett, 2003; Cao and Caldeira, 2008). This phenomenon, termed ocean acidification (OA), poses a challenge to many marine organisms with a calcareous skeleton, such as corals, mollusks, echinoderms, and crustaceans (Binyon, 1972; Fabry, Seibel, Feely, & Orr, 2008; Vinogradov, 1953). In particular, OA has been shown to have potential negative impacts on marine organisms by altering functions such as acid–base balance and mineralization (Findlay et al., 2011; Melzner et al., 2009; Orr et al., 2005; Pörtner, 2008; Widdicombe & Spicer, 2008). Perhaps the greatest challenge faced by marine organisms is the interaction between OW and OA, which may produce additive, synergistic, or negative effects on the development (e.g., Arnegg et al., 2013; Gianguzza et al., 2013; Padilla-Gamino, Kelly, Evans, & Hofmann, 2013; Wangensteen, Dupont, Casties, Turon, & Palacin, 2013), physiology (Byrne, 2012; Melatunana, Calosi, Rundle, Moody, & Widdicombe, 2011; Small et al., 2015; Todgham & Stillman, 2013), and life history (e.g., Byrne, 2011; Kroeker et al., 2013; Pistevos, Calosi, Widdicombe, & Bishop, 2011; Melatunana, Calosi, Rundle, Widdicombe, & Moody, 2013; Small et al., 2015) of marine ectotherms.

The importance of maintaining a healthy acid-base status is critical as it ensures successful intracellular enzymatic processes, such as protein synthesis and ATP production (Grainger, Winkler, Shen, & Steinhardt, 1979; Walsh & Milligan, 1989). This results in positive growth and reproductive investment, ultimately determining the fitness of an individual. This said, the significance of inter-individual variation on acid-base responses to perturbation has rarely been considered
while investigating the impact of OW and OA on marine ectotherms (although cf. Pistevos et al., 2011; Schlegel et al., 2012; Calosi, Turner, et al., 2013). Furthermore, to our knowledge, there is no published work where individual-level variation in the acid–base balance of ectotherms has been investigated within the context of the ongoing global change.

Consequently, the aims of this study are threefold. First, to characterize the level of inter-individuals variation in acid–base parameters of an ectotherm exposed to OW and OA conditions. Secondly, to assess the difference and the implications of using an individual-based approach, compared with an approach using mean values for pK\textsubscript{1} from the same species, when investigating the acid–base responses of a species exposed to global change challenges. And finally to assess the difference, and the implications, of using an individual-based approach or an approach using mean values for pK\textsubscript{1} from the same species, compared with an approach using mean values for pK\textsubscript{1} from a different species. The second and third aims will provide insight into understanding the significance of inter-individual variation in physiological responses and processes, ultimately used to predict species responses to global change drivers.

Sea urchins (Echinoidae) are considered to be among some of the most vulnerable groups to OA as they show limited capacity to buffer changes in pH (Miles et al., 2007; Spicer & Widdicombe, 2012; Spicer, Widdicombe, Needham, & Berge, 2011; Stumpf et al., 2013; Stumpf, Hu, et al., 2012; Stumpf, Trübenbach, Brennecke, Hu, & Melzner, 2012). Urchins’ relatively poor regulatory ability emerges when they are exposed to fluctuation in seawater temperature and chemistry parameters that affect their ability to maintain their acid–base status (Farmanfarmaian, 1966). Nevertheless, there is growing evidence that they are able to compensate respiratory acidosis via buffering with bicarbonate ions ([HCO\textsubscript{3}]) internal acidosis (Stumpf, Trübenbach, et al., 2012; Walsh & Milligan, 1989) and possess some ability for ionic regulation when exposed to seawater fluctuations (Calosi, Rastrick, et al., 2013; Freire, Santos, & Vidolin, 2011; Vidolin, Santos-Gouveia, & Freire, 2007). Consequently, the purple sea urchin Paracentrotus lividus (Binyon, 1972) was chosen as an ideal model for our study.

To achieve our aims, we exposed adult individuals of P. lividus to combinations of three seawater temperatures and two seawater pCO\textsubscript{2} in an orthogonal experimental design. First, we measured the pH and total carbon dioxide content (TCO\textsubscript{2}) of coelomic fluid from each individual tested. We then calculated the first apparent dissociation constant (pK\textsubscript{1}) for coelomic fluid from that individual. We then calculated the first apparent dissociation constant (pK\textsubscript{1}) (a) for coelomic fluid for each individual urchin, (b) as a mean value derived from values for a number of urchins. These pK\textsubscript{1} values were then used to generate individual and mean acid–base parameters of the coelomic fluid. These same parameters were also calculated for urchin coelomic fluid using pK\textsubscript{1} values derived from crab hemolymph. We then qualitatively compared the outputs of the three approaches, in order to test whether mean approaches are representative of the outcome of the analyses considering inter-individual variation in acid–base ability shown by individuals of P. lividus.

2 | MATERIALS AND METHODS

2.1 | Urchin collection, transport, and maintenance

Adult individuals of the purple sea urchin P. lividus were collected from the Dunmanus Bay aquaculture facility (Country Cork, Ireland—51°33’7.2”N, 9°43’12”W) on 20/01/2014. Urchins were packed in plastic bags (approx. 40 individ. per bag, vol. = 15 L) each filled with oxygen saturated seawater (S = 33). Bags were placed in a polystyrene box with ice, and shipped overnight to Bristol (UK) and then transported within 3 hr by car to the Marine Biology and Ecology Research Centre (MBERC) Laboratory, University of Plymouth (UK). Immediately upon arrival, sea urchins were transferred to aquaria (vol. = 300 L, approx. 40 individ. per aquarium), supplied with water (S = 33, T = 15°C) from a recirculating seawater system connected to a filter (2213 External Filter, Eheim GmbH & Co., Deizisau, Germany) all of which was housed within a controlled-light and room temperature at L:D 12 hr:12 hr. Here, urchins were maintained for 3 days before use in any experiment, in order to recover and fed seaweed Laminaria digitata (Huds.) Lamouroux, 1813) ad libitum.

2.2 | Experimental design, procedure, and preparation

To determine the combined effect of elevated seawater temperature and partial pressure of CO\textsubscript{2} (pCO\textsubscript{2}) on coelomic fluid parameters of urchins, we employed a quadratic experimental design with two levels of seawater pCO\textsubscript{2} and three levels of seawater temperature. Individual urchins were therefore exposed to one of six possible combinations of present-day seawater pCO\textsubscript{2} (~390 μatm) and predicted seawater pCO\textsubscript{2} value for the year 2100 (~1,000 μatm—IPCC, 2013), and one of three temperatures (10, 15, 20°C) selected to mimic a range of temperature representative of the thermal range this species currently experiences in the Atlantic and in future due to the ongoing warming (IPCC, 2013). Consequently, experimental conditions were as follows: “control” (10°C + pCO\textsubscript{2} 380 μatm), “elevated pCO\textsubscript{2}” (10°C + pCO\textsubscript{2} 1,000 μatm), “elevated temperature” (15°C + pCO\textsubscript{2} 380 μatm), “elevated temperature and pCO\textsubscript{2}” (15°C + pCO\textsubscript{2} 1,000 μatm), “extreme temperature” (20°C + pCO\textsubscript{2} 380 μatm), and “extreme temperature and elevated pCO\textsubscript{2}” (20°C + pCO\textsubscript{2} 1,000 μatm).

Approx. 23 individuals were individually placed in labeled mesh hand-made cages (mesh size 1 x 1 cm, Cage vol. = 0.5 L) and each cage assigned haphazardly to each of the six treatments. Urchins were fed ad libitum during the exposure period but were starved 24 hr prior to coelomic fluid sampling to avoid postprandial increases in metabolic activity.

Finally, urchins were observed every day before and after a water change, as well as following sampling, to visually determine their health conditions and survival.

2.3 | Experimental setup, environmental monitoring, and carbonate system characterization

Urchins were held in large trays (vol. = 300 L) filled with seawater aspirated with either untreated air (pCO\textsubscript{2} = 380 μatm) or CO\textsubscript{2}-enriched...
air (pCO₂ = 1,000 µatm). Inside the trays, the desired seawater temperature was maintained using chillers (L-350, Guangdong Boyu Group & CO., Guangdong, China) and aquarium stick heaters (3614, Eheim, Deizisau, Germany) in combination. To aid water mixing, each tray was fitted with a submersible pump (Koralia Nano Evolution 900, HYDOR USA Inc., Sacramento, CA USA). Water changes were performed daily to maintain good water quality. For details on the environmental monitoring and carbonate system characterization, see the dedicated section and the Figure S1 in the Appendix S1.

2.4 | Perivisceral coelomic fluid sampling and analyses

To avoid the negative effects of multiple intrusive (i.e., with a needle) sampling, a single coelomic fluid was taken at the end of the exposure period (7 days). While obtaining multiple samples from the same individual is good practice to avoid bias from intra-individual variation on the characterization of inter-individual variation (Bennett, 1987), intrusive sampling of the coelom activates an immune response (Smith et al., 2010) by introducing bacteria and other pathogens: Changes in cellular immune condition co-occurred with changes in extracellular acid–base balance of the green sea urchin Strongylocentrotus droebachiensis were reported by Dupont and Thorndyke (2012). Therefore, we had to assume that such acid–base responses were repeatable and did so on the basis of the acid–base individual-level responses of S. droebachiensis exposed to stable seawater conditions in a previous study (see Appendix S1: Figure S4). Here, sea urchins displayed relatively stable and "consistent" coelomic fluid pH and bicarbonate concentrations when these parameters were measured repeatedly over time (see Appendix S1: Figure S4).

Perivisceral coelomic fluid (vol. = 500 µl) was extracted anaerobically at day 7 from each individual using a gas-tight syringe (500 µl, 1750 RN, Hamilton Bonaduz, Switzerland) while positioning the urchin ventral side uppermost, submersed just below to the water surface. The needle of the syringe was carefully inserted at an angle of approx. 45° and to a depth of 10 mm through the soft membrane surrounding the Aristotle’s lantern directly into the urchins’ perivisceral coelom. A second sample was obtained from the main coelomic cavity by positioning the needle at about 90° relative to the oral surface and deeply inserting it into the individual’s main extracellular space (as described in Calosi, Rastrick, et al., 2013). Great care was taken to avoid damaging the gut and gonads, and thereby contaminating coelomic fluid.

Measuring coelomic fluid carbon dioxide and pH was carried out using well-established methods (Donohue et al., 2012; Marchant, Calosi, & Spicer, 2010; Miles et al., 2007; Rastrick et al., 2014; Small, Calosi, White, Spicer, & Widdicombe, 2010; Spicer et al., 2007). To determine coelomic fluid TCO₂, 50 µl of fluid was introduced anaerobically into a previously calibrated CO₂ analyzer (965D, Ciba Corning Diagnostic Cor., Cambridge, MA, USA) less than 30 s after sampling. The pH of the coelomic fluid (pHcf) was measured, within 60 s of extraction. The sample was placed in a microcentrifuge tube (1.5 ml, Fisherbrand, Thermo Fisher Scientific Inc.) and a micro-pH electrode (MI-413, Microelectrodes, Bedford, MA, USA) immersed in the fluid. The electrode was coupled to a calibrated pH meter (Five Easy, Mettler Toledo). TCO₂ and pHcf measures were performed at the respective temperature of incubation according to the treatment at which the urchin was exposed in order to maintain constant environmental conditions and avoid animals stress.

Unused samples of coelomic fluid were frozen at T = −20°C in a microcentrifuge tube (1.5 ml) and subsequently used to determine individuals’ non-bicarbonate buffer (NBB) line (see below).

2.5 | Determination of individuals’ pK₁cf values, pCO₂cf and [HCO₃⁻]cf

The first (apparent) dissociation constants for the coelomic fluid (pK₁cf) from P. lividus were determined for individual urchins and used to calculate coelomic fluid pCO₂(pCO₂cf) and coelomic fluid [HCO₃⁻]cf ([HCO₃⁻]cf). pK₁cf were estimated for each coelomic fluid sample tonometered (400 µl in gassing chamber, Sci-Glass Consultancy, Devon, UK) against a range of CO₂ tensions (0.04 to 1.01 kPa roughly equivalent to 0.3 to 7.6 mmHg) supplied by precision gas mixing pumps (Wösthoff, Bochum, FRG). Using tonometers coelomic fluid samples were maintained at the environmental temperature the urchin was exposed to (T = 10, 15 and 20°C). Both TCO₂cf and pHcf were measured, as described above, at each CO₂ tension.

The functional pK₁ value for the coelomic fluid from each individual urchin was then calculated over the pH range obtained, using the Henderson–Hasselbalch equation in the form:

\[\text{pK}^{'}_{1\text{cf}} = \text{pH} - \log \left(\frac{\text{TCO}_2 - \text{pCO}_2}{\text{pCO}_2} \right) \]

where α is the solubility coefficient of CO₂ in Carcinus maenas hemolymph (0.058 mmol L⁻¹ mm Hg⁻¹, 0.050 mmol L⁻¹ mm Hg⁻¹, and 0.043 mmol L⁻¹ mm Hg⁻¹, at 10, 15, and 20°C, respectively: Truchot, 1976). The equation for the in vitro NBB line was calculated by plotting pHcf against corresponding [HCO₃⁻]cf, the latter value calculated using the equation:

\[[\text{HCO}_3^-]_{\text{cf}} = \text{TCO}_2 - \text{pCO}_2 \]

Values for in vivo pCO₂ were calculated from direct measurements of TCO₂cf and pHcf from the same individual using the Henderson–Hasselbalch equation in the form:

\[\text{pCO}_2_{\text{cf}} = \text{TCO}_2 / (10^{\text{pH}_{\text{cf}} - \text{pK}^{'}_{1\text{cf}}} + 1) \]

The in vivo [HCO₃⁻]cf was then calculated using the Henderson–Hasselbalch equation in the form:

\[[\text{HCO}_3^-]_{\text{cf}} = \text{TCO}_2_{\text{cf}} - (\text{pCO}_2_{\text{cf}}) \]

At high pH and low pCO₂, carbamate concentration cannot be ignored (Truchot, 1976). Acidifying the environment resulted in an
acidification of extracellular body fluids. Consequently, we estimated that any carbamate present would be in negligible quantities and so has not been calculated. Also, our calculated values for $[\text{HCO}_3^-]$ may also include very small amounts of CO_2 in other chemical forms.

2.6 | Determination of mean $p\text{CO}_2$ and $[\text{HCO}_3^-]$ cf

To investigate the effect of adopting a "mean approach," and to compare its outcome to the that for an individual approach, $p\text{CO}_2$ and $[\text{HCO}_3^-]$ cf were calculated using the average value of individual sea urchins’ $pK'_{1\text{cf}}$ as well as calculated using mean $pK'_{1\text{cf}}$ values for *C. maenas*: 6.057, 6.029, and 6.000 at 10, 15, and 20°C (Truchot, 1976) as it is sometime customary, determined per each treatment condition in this study: see paragraph "Determination of individuals’ $pK'_{1\text{cf}}$ values, $p\text{CO}_2$ and $[\text{HCO}_3^-]$ cf,” and “Coelomic fluid $p\text{CO}_2$ and $[\text{HCO}_3^-]$ cf determined using mean individual pK'_{1} for *Paracentrotus lividus.*”

2.7 | Determination of key morphometric parameters

After the coelomic fluid was sampled, the height and diameter of the tests for each sea urchin were measured using a calliper (PD-151, Pro’s kit Industries Co., Ltd., Taiwan) and used to calculate the spheroidal volume (as in Calosi, Rastrick, et al., 2013). Finally, sea urchins were weighed with a digital high-precision scale (PS-200, Fisher Scientific Ltd., Corby, UK—0.1 mg accuracy).

2.8 | Survival

No mortality was recorded in either the "elevated temperature" or the "extreme temperature" treatments, while among the other treatments between one and three urchins died during the experiment. No significant relationships between mortalities and seawater $p\text{CO}_2$, temperature or their combination were detected ($\chi^2 = 2.25$, $df = 3$, $p = 0.522$). In addition, survivors appeared in excellent health conditions, that is, none showed any noticeable loss in spines, and all responding actively by moving their spines and extruding their tube feet when coelomic fluid was sampled.

2.9 | Statistical analysis

To investigate the effect of elevated $p\text{CO}_2$, temperature and their interaction on urchins mortality and mean pH_{cf}, TCO_2 cf, $p\text{CO}_2$ cf, and $[\text{HCO}_3^-]$ cf determined in the three different ways (a) individual $pK'_{1\text{cf}}$ for *P. lividus* (from this study), (b) mean $pK'_{1\text{cf}}$ for *P. lividus* (from this study), and (c) using mean $pK'_{1\text{cf}}$ for *C. maenas* (Truchot, 1976). We then used a two-way analysis of covariance (ANCOVA) with individuals’ body volume (cm^3), wet mass (g) as covariates. Finally, we compared the patterns of significance obtained from the three approached employed to explore whether substantial differences exist between these different approaches. The same analysis was conducted on the individual $pK'_{1\text{cf}}$ to assess OW and OA combined effect on it. As preliminary analyses showed that covariates never exerted a significant effect on any of the traits investigated (maximum $F_{1,129} = 1.021$, $p > 0.05$), they were removed from further analyses and so we were able to use an ANOVA test. All data met the
assumption for normality of distribution and homogeneity of the variance as untreated or \log_{10} transformed data, with the exception of $p_{\text{H}_{2}O}$. However, as \log_{10} transformation was not beneficial for $p_{\text{H}_{2}O}$, and considering that our experimental design included six treatments with a minimum of 19 replicates per treatment per measurement, we assumed that the experimental design employed should be tolerant to deviation from the assumptions of normality and heteroscedasticity (Sokal & Rohlf, 1995; Underwood, 1997). In addition, for no variable investigated, a significant relationship between its unstandardized residuals and the factors investigated was found, indicating that as our experimental design was solid we could use raw data for $p_{\text{H}_{2}O}$. Finally, pairwise comparisons were conducted using the estimated marginal means test with Fisher least significant difference (LSD) correction. All analyses were conducted using IBM SPSS Statistic 21.

3 | RESULTS

3.1 | Coelomic fluid $p_{\text{H}_{2}O}$, TCO$_{2}\text{cf}$ and $pK'_{1\text{cf}}$

Individual $p_{\text{H}_{2}O}$ values ranged between 6.05 and 8.07 (see Appendix S1: Figure S1a), and individual TCO$_{2\text{cf}}$ values ranged between 1.4 and 8.8 mmol/L (see Appendix S1: Figure S1b).

The effects of exposure to seawater pCO_{2}, temperature, and their combination on $p_{\text{H}_{2}O}$ and TCO$_{2\text{cf}}$ are presented in Figure 1a,b, respectively.

Mean $p_{\text{H}_{2}O}$ was positively affected by elevated seawater pCO_{2} at 15°C, while there was no significant effect of this factor on mean $p_{\text{H}_{2}O}$ at 10 and 20°C, as indicated by a significant interaction between seawater pCO_{2} and temperature (see Table 1). In addition, seawater temperature in isolation had a significant effect on mean $p_{\text{H}_{2}O}$; mean $p_{\text{H}_{2}O}$ was greater in urchins kept at 20°C than those kept at 10°C. However, mean $p_{\text{H}_{2}O}$ for urchins kept at 15°C was comparable to that of the other two temperatures tested (see Figure 1a).

Mean TCO$_{2\text{cf}}$ was significant greater at the higher seawater pCO_{2} conditions for all temperatures tested (see Table 1), while it was greater at 15°C and lower at 20°C, with seawater pCO_{2} and temperature having a significant positive and negative effect on mean TCO$_{2\text{cf}}$, respectively (see Figure 1b and Table 1). Nonetheless, seawater pCO_{2} and temperature together had no significant effect on mean TCO$_{2\text{cf}}$ (see Table 1).

Results for the analysis of individual $pK'_{1\text{cf}}$ for $P.\text{lividus}$ are presented in Figure 2a. Individual $pK'_{1\text{cf}}$ values ranged between 5.50 and 7.51 (see Figure 2b).

Individual $pK'_{1\text{cf}}$ values decreased significantly with increasing seawater temperatures (see Figure 2a and Table 1). There were no significant effects of seawater pCO_{2} on its own, or in combination with temperature (see Table 1).

3.2 | Calculation of coelomic fluid $pCO_{2\text{cf}}$ and [HCO$_{3}^{-}$]$_{\text{cf}}$ determined using individual data for $P.\text{lividus}$

Results for the analysis of $pCO_{2\text{cf}}$ and [HCO$_{3}^{-}$]$_{\text{cf}}$ determined using individual data for $P.\text{lividus}$ are presented in Figures 3a and 4a, respectively.

Individual $pCO_{2\text{cf}}$ values ranged between 0.02 and 7.84 kPa (see Appendix S1: Figure S2a), and individual [HCO$_{3}^{-}$]$_{\text{cf}}$ values ranged between 1.39 and 8.71 mmol/L (see Appendix S1: Figure S3a).

Seawater temperature had a negative effect on mean $pCO_{2\text{cf}}$ for urchins kept at the highest temperature tested compared to those that experienced 10 and 15°C, and mean $pCO_{2\text{cf}}$ values were significantly lower at 20°C (see Figure 3a and Table 1). Furthermore, neither seawater pCO_{2} on its own nor in combination with temperature had any significant effect on mean $pCO_{2\text{cf}}$ (see Table 1).

There was a positive effect of seawater pCO_{2} on mean [HCO$_{3}^{-}$]$_{\text{cf}}$ at all temperatures tested (see Table 1). Conversely, seawater temperature had a negative effect on mean [HCO$_{3}^{-}$]$_{\text{cf}}$ between 15 and 20°C (see Figure 4a and Table 1), lower values being characteristic of the highest temperature tested (see Figure 4a). Additionally, seawater pCO_{2} effect was stronger than seawater temperature effect (see F in Table 1), while no effect of seawater pCO_{2} and temperature together was recorded (see Table 1).

3.3 | Calculation of coelomic fluid $pCO_{2\text{cf}}$ and [HCO$_{3}^{-}$]$_{\text{cf}}$ using mean individual pK'_{1} for $P.\text{lividus}$

Mean individual pK'_{1} for $P.\text{lividus}$ used to calculate coelomic fluid $pCO_{2\text{cf}}$ and [HCO$_{3}^{-}$]$_{\text{cf}}$ were 6.445, 6.256, and 6.158 for the present-day seawater pCO_{2} treatment at 10, 15, and 20°C, respectively, and 6.466, 6.281, and 6.069 for the elevated seawater pCO_{2} treatment at 10, 15, and 20°C, respectively.

Results for the analysis of $pCO_{2\text{cf}}$ and [HCO$_{3}^{-}$]$_{\text{cf}}$ determined using the mean individual pK'_{1} for $P.\text{lividus}$ are presented in Figures 3b and 4b, respectively.

Individual $pCO_{2\text{cf}}$ values ranged between 0.08 and 4.99 kPa (see Appendix S1: Figure S2b), and individual [HCO$_{3}^{-}$]$_{\text{cf}}$ values ranged between 1.03 and 8.23 mmol/L (see Appendix S1: Figure S3b).

Mean $pCO_{2\text{cf}}$ was negatively affected at the highest seawater temperature, for the low seawater pCO_{2} treatment, compared with the other two seawater temperature tested (see Figure 3b), while there was a progressive negative effect on mean $pCO_{2\text{cf}}$ from 10 to 20°C for the high seawater pCO_{2} treatment, as indicated by the presence of a significant interaction between seawater pCO_{2} and temperature (see Figure 3b and Table 1). Temperature in isolation had a negative stronger effect on mean $pCO_{2\text{cf}}$ as there was a significant difference in mean $pCO_{2\text{cf}}$ within all seawater temperature treatments (see Table 1), and mean values decreased with increasing seawater temperature (see Figure 3b).

There was a significant positive effect of seawater pCO_{2} on mean individual [HCO$_{3}^{-}$]$_{\text{cf}}$ at all temperature tested (see Table 1). On the contrary, seawater temperature in isolation had a negative effect on mean individual [HCO$_{3}^{-}$]$_{\text{cf}}$ between 15 and 20°C (see Table 1), lower mean values being found at the highest seawater temperature tested (see Figure 4b). However, seawater temperature effect in isolation was weaker than the effect of seawater pCO_{2} on its own (compare F in Table 1). Additionally, no interaction between seawater pCO_{2} and temperature interaction was detected (see Table 1).
Trait	Source	Sum of squares (type III)	df	MS	F	p
pH_{cf}	pCO_{2}	1	0.599	4.196	0.043	
	Temperature	2	1.561	10.929	<0.0001	
	Interaction	2	0.701	4.91	0.009	
	Error	124	0.143			
Total	7,334.798	130				
Total correct	22.898	129				

Log_{10} TCO_{2cf}	pCO_{2}	1	1.666	91.851	<0.0001
	Temperature	2	0.174	9.618	<0.0001
	Interaction	2	0.01	0.548	0.58
	Error	124	0.018		
Total	57.317	130			
Total correct	4.268	129			

pK\text{'}_{1cf} (individual for P. lividus)	pCO_{2}	1	0.011	0.164	0.686
	Temperature	2	1.291	19.934	<0.0001
	Interaction	2	0.043	0.66	0.519
	Error	124	0.065		
Total	5,130.511	130			
Total correct	10.738	129			

Log_{10} pCO_{2cf} (individual pK\text{'}_{1cf} for P. lividus)	pCO_{2}	1	0.255	1.554	0.215
	Temperature	2	4.165	25.337	<0.0001
	Interaction	2	0.389	0.389	0.098
	Error	124	0.164		
Total	35.487	130			
Total correct	29.908	129			

Log_{10} [HCO_{3}^-]_{cf} (individual pK\text{'}_{1cf} for P. lividus)	pCO_{2}	1	1.693	91.736	<0.0001
	Temperature	2	0.167	9.042	<0.0001
	Interaction	2	0.011	0.572	0.566
	Error	124	0.018		
Total	56.401	130			
Total correct	4.317	129			

Log_{10} pCO_{2cf} (mean pK\text{'}_{1cf} for P. lividus)	pCO_{2}	1	0.28	2.466	0.119
	Temperature	2	4.099	36.078	<0.0001
	Interaction	2	0.389	3.424	0.036
	Error	124	0.114		
Total	28.942	130			
Total correct	23.520	129			

Log_{10} [HCO_{3}^-]_{cf} (mean pK\text{'}_{1cf} for P. lividus)	pCO_{2}	1	1.918	78.675	<0.0001
	Temperature	2	0.12	4.925	0.009
	Interaction	2	0.021	0.861	0.425
	Error	124	0.024		
Total	51.024	130			
Total correct	5.196	129			
Calculation of coelomic fluid pC_{O_2} and $[HCO_3^-]_{cf}$ using mean pK'_1 for *C. maenas*

Results for the analysis of pC_{O_2} and $[HCO_3^-]_{cf}$ determined using *C. maenas*’ pK'_1 are presented in Figures 3c and 4c, respectively.

Individual pC_{O_2} values ranged between 0.05 and 3.51 kPa (see Appendix S1: Figure S2c), with the lowest mean values recorded at the highest seawater temperature (see Appendix S1: Figure S2c). Individual $[HCO_3^-]_{cf}$ values ranged between 1.30 and 8.44 mmol/L (see Appendix S1: Figure S3c).

Mean pC_{O_2} was reduced by increasing in temperature alone from 15 to 20°C, and only for the low seawater pC_{O_2} treatments. In contrast, there was no significant effect of temperature while no effect of temperature on urchins exposed to high seawater pC_{O_2} conditions, as shown by the significant interaction between seawater pC_{O_2} and temperature (see Figure 3c and Table 1). Seawater...
temperature had a negative effect on mean \(pCO_{2cf} \) values between 15 and 20°C, being significantly lower at 20°C when compared to 10 and 15°C (see Figure 3c and Table 1).

No significant effect of the combination of altering seawater \(pCO_2 \) and temperature on \([HCO_3^-]_{cf} \) was detected (see Table 1), although seawater \(pCO_2 \) on its own had a positive effect on mean \([HCO_3^-]_{cf} \) at all seawater temperatures tested (see Table 1). That said, seawater temperature had a negative effect on mean \([HCO_3^-]_{cf} \) between 15 and 20°C, being significantly lower at 20°C (see Figure 4c and Table 1). Additionally, seawater \(pCO_2 \) appeared to have a stronger effect on mean \([HCO_3^-]_{cf} \) than seawater temperature (see Fs in Table 1).

4 | DISCUSSION

The analyses and interpretation of average responses in populations and species have proved a powerful and useful tool in advancing our understanding of biological systems and their responses to environmental changes. However, the success of this approach has in some ways eclipsed the ecological and evolutionary significance of individual responses and individual variation (Darwin, 1859). Here, we show that integrating information on inter-individual variation in the first (apparent) dissociation constant for sea urchin coelomic fluid is key to understanding the nature of and pronounced variability in the acid–base responses of sea urchins \(P. lividus \) to changes in seawater temperature and \(pCO_2 \). Furthermore, we demonstrate that using inter-individual values for the first (apparent) dissociation constant of the coelomic fluid paint, a significantly different picture in predicting how the acid–base status of urchins will be impacted by future ocean warming (OW) and acidification (OA), compared with the common practice of using mean values for the first (apparent) dissociation constant. Below we discuss these findings are greater detail and discuss the importance of using an individual-based approach in conferencing...
interpreting species’ acid–base responses to the future environmental challenges of the global change.

Here, we detected a high level of phenotypic variation in the pK’$_{\text{pCO}_2}$ values of individual sea urchins. Values ranged between 5.50 at 15°C and 7.51 at 10°C, varying by 36.55% overall, and by 23.32%, 23.10%, and 32.55% at 10, 15, and 20°C, respectively. Not taking such variation into account alters the values of acid–base variables calculated using this “constant” and so changes the outcome of any study of the effects of altered environmental factors on extracellular acid–base balance. Using a mean value for the first (apparent) dissociation constant to calculate coelomic fluid pCO$_2$ in individuals exposed to combined seawater pCO$_2$ and temperature leads to an underestimate of the values. When individual variation in the first (apparent) dissociation constant is taken into account when calculating coelomic fluid pCO$_2$, the outcome of the experiment was different. No significant interaction between seawater pCO$_2$ and temperature was detected, and seawater temperature had a strong negative effect on urchins’ coelomic fluid pCO$_2$, especially for the urchins kept at 20°C.

The integration of inter-individual information also improves the overall predictability of statistical models: for example, $R^2_{\text{cor}} = 0.449$ when using individual pK’$_{\text{pCO}_2}$ for *P. lividus* for the effect of elevated seawater temperature and pCO$_2$ on coelomic fluid [HCO$_3^-$], while $R^2_{\text{cor}} = 0.395$ when using mean pK’$_{\text{pCO}_2}$ for *P. lividus* to determine the same parameter. The mean pK’$_{\text{pCO}_2}$ for extracellular fluids in the crab *Carcinus maenas* and the urchin *P. lividus* are very similar: for *C. maenas*: 6.057, 6.029, and 6.000 at 10, 15, and 20°C, respectively (Truchot, 1976) and *P. lividus*: 6.455, 6.256, and 6.158 at 10, 15, and 20°C, respectively. The result of this similarity is that using mean pK’$_{\text{pCO}_2}$ for the decapod crab *Carcinus maenas* to calculate acid–base parameters for urchins was not considerably different from using the mean pK’$_{\text{pCO}_2}$ for the sea urchin *P. lividus*.

As hypometabolic and osmoconformers echinoids are considered to be particularly vulnerable to climate and global change drivers (see Dupont & Thorndyke, 2013), as also evidenced by a growing number of studies investigating the effects of OW and OA on urchin’s acid–base status (e.g., Miles et al., 2007, Spicer et al., 2011; Spicer & Widdicombe, 2012), calcification (e.g., Stump, Trübenbach, et al., 2012), growth (e.g., Albright et al., 2012), fecundity and development (e.g., Dupont, Ortega-Martinez, & Thorndyke, 2010; Byrne, 2011; Byrne et al., 2011), energy budget (e.g. Stump, Trübenbach, et al., 2012) and distribution (e.g., Calosi, Rastrick, et al., 2013). Despite this growing attention, still little is known about combined effects of OA and OW on their physiology. Catarino, Bauwens, and Dubois (2012) suggested that seawater pCO$_2$ had a greater effect than seawater temperature, on *P. lividus* coelomic acid–base status showing that this species is eurythermal. Consequently, this species inhabits the thermally labile intertidal (Ulbricht and Pritchard, 1972; Lawrence, 1990) as it is able to cope with a broad range of temperature conditions before its acid–base status is significantly disrupted. As shown, *P. lividus*, in common with other echinoids (e.g., Spicer et al., 2011; Spicer & Widdicombe, 2012; Stump, Trübenbach, et al., 2012; Catarino et al., 2012), develop an extracellular acidosis when seawater pCO$_2$ increases. This results to some extent in the increase of bicarbonate ions concentration ([HCO$_3^-$]) (see Farmanfarmaian, 1966; Miles et al., 2007; Stump, Trübenbach, et al., 2012; Collard et al., 2013; Collard, Ridder, David, Dehairs, & Dubois, 2015). However, the inter-individuals approach we adopted revealed a pronounced effect of temperature on the acid–base status of *P. lividus* as individuals’ physiological parameters were all positively affected in urchins exposed at 20°C. Coelomic fluid pH was greater in urchins exposed to elevated seawater pCO$_2$ and temperatures, suggesting that urchins exposed to future OW and OA may be able to trigger buffering mechanisms to compensate for body fluid acidosis caused by an increase in seawater pCO$_2$, future studies which investigate longer term exposure and further improving our experimental design will help to further validate our findings, hopefully overcoming current limitations. In our study, increasing the temperature led to an overcompensation of the acidosis incurred. This may be in part explained by the fact that equilibrium constants (pK) of chemical reactions are generally temperature-dependent, including those for the protonation of imidazole groups (pKIm), imidazole being largely responsible for intracellular and extracellular non-bicarbonate buffering in ectotherms (Burton, 2002). However, it is important to note that the “imidazole alphastat hypothesis” assumes a single temperature-dependent pK value for all non-bicarbonate buffers (Burton, 2002), while we clearly show here that pK values vary considerably among individuals of the same species maintained at the same environmental temperature.

Although the importance of using an individual approach in a global change context has been recently recognized (e.g., Pistevo et al., 2011; Schlegel et al., 2012), studies explicitly addressing this issue at the physiological level are scarce (e.g., Calosi, Turner, et al., 2013; Melatunan et al., 2013). Nonetheless, our study shows that using an individual-based approach results in a reduced variation in the calculation of sea urchins’ coelomic fluid pCO$_2$ and [HCO$_3^-$] exposed at 10°C at both ambient and elevated pCO$_2$ seawater conditions, but a greater variation in urchins’ coelomic fluid pCO$_2$ for urchins that experienced ambient seawater pCO$_2$ at 20°C. This finding supports the idea that our understanding of sea urchins’ acid–base regulation, both in general and specifically in responses under global change challenges, is shaped and dependent on the experimental approach used. As a consequence, considering individuals’ variation is fundamental. This is particularly true, as up to now physiological ecologists have largely ignored physiological inter-individual variation, as they did not perceive it as biologically significant (Bennett, 1987). Trying to raise awareness on the importance of inter-individual variation, Forsman and Wennersen (2016) produced a detailed review on the experimental and comparative studies which showed how higher levels of inter-individual variability relate to a reduction in the risk of extinction of species and populations. In light of their study, it will be interesting to investigate the relevance of physiological inter-individual variation (including acid–base responses as investigated here), and its genetic basis, as a way of elucidating its ecological and evolutionary implications within the context of the global change.
This study is the first, to our knowledge, that uses an individual-based approach to determine the acid–base responses of an echinoid species facing a multiple factorial global change challenge. As previous studies have taken a mean approach to investigate the same or similar questions, it is difficult to assess whether the interpretation of organisms’ acid–base responses in a changing environment to date is fully accurate. It is possible that previous work determining echinoids sensitivity to the global change depicts at worst an erroneous at best incomplete, picture, particularly if we consider the high complexity of physiological responses. This means that currently, without considering individual responses, it may be very difficult to predict how populations, species, communities, and ecosystems will actually respond to a changing ocean.

ACKNOWLEDGMENTS
We thank M. Hawkins for valuable help with the transport and culturing of sea urchins, and for her help with the experimental system.

CONFLICT OF INTERESTS
The authors declare no competing or financial interests.

AUTHOR CONTRIBUTIONS
EG and PC conceived the study, EG conducted the experiment, carried out the biological measurements, calculations, and statistical analyses, with training from PC and JIS. EG wrote the first draft of the manuscript with input from PC. All authors contributed to the final version of the manuscript.

DATA ACCESSIBILITY
The full dataset is available on the open access data repository PANGEA. https://doi.pangaea.de/10.1594/PANGAEA.898654

ORCID
Ella Guscetti https://orcid.org/0000-0002-2151-0902
Piero Calosi https://orcid.org/0000-0003-3378-2603

REFERENCES
Albright, R., Bland, C., Gilette, P., Serafy, J. E., Langd, C., & Capo, T. R. (2012). Juvenile growth of the tropical sea urchin Lytechinus variegatus exposed to near-future ocean acidification scenarios. *Journal of Experimental Marine Biology and Ecology*, 426–427, 12–17. https://doi.org/10.1016/j.jembe.2012.05.017
Aldrich, J. C. (1975). Individual variability in oxygen consumption rates of fed and starved Cancer pagurus and Maja squinado. *Comparative Biochemistry and Physiology*, 51A, 175–183.
Arnberg, M., Calosi, P., Spicer, J. I., Tandberg, A. H. S., Nilsen, M., Westerlund, S., & Bechmann, R. K. (2013). Elevated temperature elicits greater effects than decreased pH on the development, feeding and metabolism of northern shrimp (Pandalus borealis) larvae. *Marine Biology*, 160, 2037–2048. https://doi.org/10.1007/s00227-012-2072-9
Arnold, S. J. (1981). Behavioural variation in natural populations. II. The inheritance of a feeding response in crosses between geographic races of the garter snake, Thamnophis elegans. *Evolution*, 35, 510–515.
Bennett, A. F. (1987). Interindividual variability: An underutilized resource. In M. E. Feder, A. F. Bennett, W. W. Burggren, & R. B. Huey (Eds.), *New directions in ecological physiology* (pp. 147–169). New York, NY: Cambridge University Press.
Binyon, J. (1972). *Physiology of echinoderms*. Oxford, UK: Pergamon Press.
Bolnick, D. I., Amarasekare, P., Araújo, M. S., Bürger, R., Levine, J. M., Novak, M., … Vasseur, D. A. (2011). Why intraspecific trait variation matters in community ecology. *Trends in Ecology & Evolution*, 26, 183–192.
Burton, R. F. (2002). Temperature and acid-base balance in ectothermic vertebrates: The imidazole hypothesis and beyond. *Journal of Experimental Biology*, 205, 3876–3860.
Byrne, M. (2011). Impact of ocean warming and ocean acidification on marine invertebrate life history stages: Vulnerabilities and potential for persistence in a changing ocean. *Oceanography and Marine Biology: an Annual Review*, 49, 1–42.
Byrne, M. (2012). Global change ecotoxicology: Identification of early life history bottlenecks in marine invertebrates, variable species responses and variable experimental approaches. *Marine Environment Research*, 76, 3–15. https://doi.org/10.1016/j.marenvres.2011.10.004
Byrne, M., Ho, M. A., Wong, E., Soars, N., Selvakumaraswamy, P., Sheppard, B. H., … Davis, A. R. (2011). Unshelled abalone and corrupted urchins, development of marine calcifiers in a changing ocean. *Proceedings of the Royal Society of London B: Biological Sciences*, 278, 2376–2383.
Caldeira, K., & Wickett, M. (2003). Anthropogenic carbon and ocean pH: The coming centuries may see more ocean acidification than the past 300 million years. *Nature*, 425, 365. https://doi.org/10.1038/425365a
Calosi, P., Turner, L. M., Hawkins, M., Bertolini, C., Nightingale, G., Truebano, M., & Spicer, J. I. (2013). Multiple physiological responses to multiple environmental challenges: An individual approach. *Integrative and Comparative Biology*, 53, 660–670.
Calosi, P., Rastrick, S. P. S., Graziano, M., Thomas, S. C., Baggini, C., Carter, H. A., … Spicer, J. I. (2013). Distribution of sea urchins living near shallow water CO₂ vents is dependent upon species acid–base and ion-regulatory abilities. *Marine Pollution Bulletin*, 73, 470–484.
Cao, L., & Caldeira, K. (2008). Atmospheric CO₂, stabilization and ocean acidification. *Geophysical Research Letters*, 35, L19609.
Catarino, A., Bauwens, M., & Dubois, P. (2012). Acid–base balance and metabolic response of the sea urchin Paracentrotus lividus to different seawater pH and temperatures. *Environemntal Science and Pollution Research*, 196, 2344–2353.
Cianciaruso, M. V., Batalha, M. A., Gaston, K. J., & Petchey, O. L. (2009). Including intraspecific variability in functional diversity. *Ecology*, 90, 81–89. https://doi.org/10.1890/07-1864.1
Collard, M., De Ridder, C., David, B., Dehairs, F., & Dubois, P. (2015). Could the acid–base status of Antarctic sea urchins indicate a better-than-expected resilience to near-future ocean acidification? *Global Change Biology*, 21, 605–617. https://doi.org/10.1111/gcb.12735
Collard, M., Laitat, K., Moulin, L., Catarino, A. I., Grosjean, P., & Dubois, P. H. (2013). Buffer capacity of the coelomic fluid in echinoderms. *Comparative Biochemistry and Physiology Part A Molecular Integrative Physiology*, 166, 199–206.
Darwin, C. (1859). On the origin of species by means of natural selection. London, UK: John Murray.
Deutsch, C., Ferel, A., Seibel, B., Pörtner, H. O., & Huey, R. B. (2015). Climate change tightens a metabolic constraint on marine habitats. *Science*, 348, 1132–1135. https://doi.org/10.1126/science.aaa1605
Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J. L., ... Rios, A. F. (2004). The oceanic sink for anthropogenic CO₂. Science, 305, 367–371. https://doi.org/10.1126/science.1097403

Schlegel, P., Havenhand, J. N., Gillings, M. R., & Williamson, J. E. (2012). Individual variability in reproductive success determines winners and losers under ocean acidification: A case study with sea urchins. PLoS ONE, 7, e53118. https://doi.org/10.1371/journal.pone.0053118

Small, D., Calosi, P., Boothroyd, D., Widdicombe, S., & Spicer, J. I. (2015). Stage-specific changes in physiological and life-history responses to elevated temperature and pCO₂ during the larval development of the European lobster Homarus gammarus (L.). Physiological and Biochemical Zoology, 88, 494–507.

Small, D., Calosi, P., White, D., Spicer, J. I., & Widdicombe, S. (2010). Impact of medium-term exposure to CO₂ enriched seawater on the physiological function of the velvet swimming crab Necora puber. Aquatic Biology, 10, 11–21.

Smith, L. C., Ghosh, J., Buckley, K. M., Clow, L. A., Dheilly, N. M., Haug, T., ... Stensvag, K. (2010). Echinoderm immunity. Advances in Experimental Medicine and Biology, 708, 260–301.

Sokal, R., & Rohlf, F. J. (1995). Biometry: The principles and practice of statistics in biological research, 3rd ed. New York, NY: W.H. Freeman and Company.

Spicer, J. I., & Baden, S. P. (2001). Environmental hypoxia and haemocyanin between-individual variability in Norwegian lobsters Nephrops norvegicus (L.). Marine Biology, 139, 727–734.

Spicer, J. I., & Gaston, K. J. (1999). Physiological diversity and its ecological implications, Oxford, UK: Blackwell Science.

Spicer, J. I., Raffo, A., & Widdicombe, S. (2007). Influence of CO₂-related seawater acidification on extracellular acid–base balance in the velvet swimming crab Necora puber. Marine Biology, 151, 1117–1125.

Spicer, J. I., & Widdicombe, S. (2012). Acute extracellular acid–base disturbance in the burrowing sea urchin Brissopsis lyrifera during exposure to a simulated CO₂ release. Science of the Total Environment, 427–428, 203–207.

Spicer, J. I., Widdicombe, S., Needham, H. R., & Berge, J. A. (2011). Impact of CO₂-acidified seawater on the extracellular acid–base balance of the northern sea urchin Strongylocentrotus dröebachiensis. Journal of Experimental Marine Biology and Ecology, 407, 19–25.

Stachowicz, J. J., Terwin, J. R., Whitlatch, R. B., & Osman, R. W. (2002). Linking climate change and biological invasions: Ocean warming facilitates nonindigenous species invasions. Proceedings of the National Academy of Sciences of the United States of America, 99, 15497–15500.

Stumpf, M., Hu, M., Casties, I., Saborowski, R., Bleich, M., Melzner, F., & Dupont, S. (2013). Digestion in sea urchin larvae impaired under ocean acidification. Nature Climate Change, 3, 1044–1049. https://doi.org/10.1038/nclimate2028

Stumpf, M., Trübenbach, K., Brennecke, D., Hu, M. Y., & Melzner, F. (2012). Resource allocation and extracellular acid–base status in the sea urchin Strongylocentrotus draebehainsis in response to CO₂ induced seawater acidification. Aquatic Toxicology, 110–111, 194–207.

Stumpf, M., Hu, M. Y., Melzner, F., Gutowska, M. A., Dorey, N., Himmerkus, N., ... Bleich, M. (2012). Acidified seawater impacts sea urchin larvae pH regulatory systems relevant for calcification. Proceedings of the National Academy of Sciences of the United States of America, 109, 18192–18197.

Todgham, A. E., & Stillman, J. H. (2013). Physiological responses to shifts in multiple environmental stressors: Relevance in a changing world. Integrative and Comparative Biology, 53, 539–544.

Truchot, J. P. (1976). Carbon dioxide combining properties of the blood of the shore crab Carcinus maenas (L.). Carbon dioxide solubility coefficient and carbonic acid dissociation constants. Journal of Experimental Biology, 64, 45–57.

Ulbricht, R. J., & Pritchard, A. W. (1972). Effect of temperature on the metabolic rate of sea urchins. Biol. Bull. Mar. Biol. Lab. Woods Hole, 142, 178–185.

Underwood, A. J. (1997). Experiments in ecology: Their logical design and interpretation using analysis of variance. Cambridge, UK: Cambridge University Press.

Vardanis, Y., Klaassen, R. H. G., Strandberg, R., & Alerstam, T. (2011). Individuality in bird migration: Routes and timing. Biology Letters, 7, 502–505. https://doi.org/10.1098/rsbl.2010.1180

Vězina, F., Speakman, J. R., & Williams, T. D. (2006). Individually variable energy management strategies in relation to energetic costs of egg production. Ecology, 87, 2447–2458. https://doi.org/10.1890/0012-9658(2006)87[2447:IVEMSI][2.0.CO;2

Vidolin, D., Santos-Gouveia, I. A., & Freire, C. A. (2007). Differences in ion regulation in the sea urchins Lytechinus variegatus and Arbacia lixula (Echinodermata: Echinoidea). Journal of the Marine Biological Association of the United Kingdom, 87, 769–775.

Vinogradov, A. P. (1953). Elementary chemical composition of marine organisms. Memoir: Sears Foundation for Marine Research, 2, 647.

Walsh, P. J., & Milligan, C. L. (1989). Coordination of metabolism and intracellular acid-base status: Ionic regulation and metabolic consequences. Canadian Journal of Zoology, 67, 2994–3004.

Walther, K., Anger, K., & Pörtner, H. O. (2010). Effects of ocean acidification and warming on the larval development of the spider crab Hyas araneus from different latitudes (54° vs. 79°N). Marine Ecology Progress Series, 417, 159–170. https://doi.org/10.3354/meps08807

Wangensteen, O. S., Dupont, S., Casties, I., Turon, X., & Palacin, C. (2013). Some like it hot: Temperature and pH modulate larval development and settlement of the sea urchin Arbacia lixula. Journal of Experimental Marine Biology and Ecology, 449, 304–311. https://doi.org/10.1016/j.jembe.2013.10.007

Widdicombe, S., & Spicer, J. I. (2008). Predicting the impact of ocean acidification on benthic biodiversity: What can animal physiology tell us? Journal of Experimental Marine Biology and Ecology, 366, 187–197.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Guscelli E, Spicer JI, Calosi P. The importance of inter-individual variation in predicting species’ responses to global change drivers. Ecol Evol. 2019;9:4327–4339. https://doi.org/10.1002/ece3.4810