lionessR: single sample network inference in R
Marieke L Kuijjer1* Ping-Han Hsieh1, John Quackenbush2,3,4 and Kimberly Glass3,4

Abstract
Background: In biomedical research, network inference algorithms are typically used to infer complex association patterns between biological entities, such as between genes or proteins, using data from a population. This resulting aggregate network, in essence, averages over the networks of those individuals in the population. LIONESS (Linear Interpolation to Obtain Network Estimates for Single Samples) is a method that can be used together with a network inference algorithm to extract networks for individual samples in a population. The method’s key characteristic is that, by modeling networks for individual samples in a data set, it can capture network heterogeneity in a population. LIONESS was originally made available as a function within the PANDA (Passing Attributes between Networks for Data Assimilation) regulatory network reconstruction framework. However, the LIONESS algorithm is generalizable and can be used to model single sample networks based on a wide range of network inference algorithms.

Results: In this software article, we describe lionessR, an R implementation of LIONESS that can be applied to any network inference method in R that outputs a complete, weighted adjacency matrix. As an example, we provide a vignette of an application of lionessR to model single sample networks based on correlated gene expression in a bone cancer dataset. We show how the tool can be used to identify differential patterns of correlation between two groups of patients.

Conclusions: We developed lionessR, an open source R package to model single sample networks. We show how lionessR can be used to inform us on potential precision medicine applications in cancer. The lionessR package is a user-friendly tool to perform such analyses. The package, which includes a vignette describing the application, is freely available at: https://github.com/kuijjerlab/lionessR and at: http://bioconductor.org/packages/lionessR.

Keywords: Algorithms, Software tools, Computational biology, Biological networks, Network analysis, Co-expression, Gene regulation, Precision medicine, Osteosarcoma

Background
Modeling and analyzing biological networks has become an invaluable tool in the analysis of genomic data. While gene expression profiles give us a snapshot of the state of a cell or tissue, network inference algorithms give an estimate of the extent to which genes or gene products interact [1]. Many network inference methods exist [2], most of which require multiple samples and population-level data to infer an “aggregate” condition-specific network [3–8]. These methods first construct a supervised model which then can be applied to single sample data [9–11]; however, they do not directly model networks for individual samples in a population.

We recently developed LIONESS, or Linear Interpolation to Obtain Network Estimates for Single Samples [12], as a way of using population-level networks to estimate the corresponding network in each individual sample. LIONESS is based on the idea that each sample has its own network and that each edge in an aggregate network is the “average” (a linear combination) of that edge’s weight across these individual sample networks. LIONESS starts by modeling an aggregate network on an entire population and then removes one sample and rebuilds the network. This is similar to leave-one-out cross-validation approaches [13]. However, LIONESS then compares the network with and without an individual sample, and uses a linear equation to estimate the network for the withheld sample.
sample. Thus, by sequentially leaving out each sample in a population, one can use LIONESS to estimate a network specific to each sample.

The LIONESS equation can be written as:

\[
e^{(q)}_{ij} = N \left(e^{(\alpha)}_{ij} - e^{(\alpha-q)}_{ij} \right) + e^{(\alpha-q)}_{ij}
\]

where \(e^{(\alpha)}_{ij} \) is the weight of an edge between nodes \(i \) and \(j \) in a network modeled on all \(N \) samples and \(e^{(\alpha-q)}_{ij} \) is the weight of that edge in a network modeled on all samples except the sample of interest \(q \).

Specifically, LIONESS subtracts edge weights, \(e^{(\alpha-q)}_{ij} \), which are derived from a network modeled on all samples except the sample of interest \(q \), from edge weights, \(e^{(\alpha)}_{ij} \), obtained from the network modeled on all samples; these differences represent the contribution of sample \(q \) to the aggregate network. With increasing numbers of samples in the aggregate network model, these contributions become smaller. LIONESS therefore scales these edge weight differences by multiplying them by \(N \), the number of samples that were used to model the aggregate network. Finally, to estimate the single sample edge weights, \(e^{(q)}_{ij} \), LIONESS adds the scaled edge weight differences, \(N \left(e^{(\alpha)}_{ij} - e^{(\alpha-q)}_{ij} \right) \), to the edge weights obtained from the network modeled without the sample of interest, \(e^{(\alpha-q)}_{ij} \). For more details on how we derived the LIONESS equation, please see the Supplemental Information section published in Kuijjer et al. [12].

LIONESS network estimation is included as an option to use with the PANDA network inference algorithm [7] in our Python tool PyPanda [14]. However, the LIONESS approach is not limited to modeling single sample PANDA networks—it can be used to model single sample networks based on a wide range of network inference algorithms. We developed lionessR, a user-friendly R implementation of LIONESS. The lionessR package can be used to estimate single sample networks for general network methods used in network and cancer biology, including Pearson correlation.

Implementation
We developed the lionessR package in R using CRAN packages devtools and roxygen2. The package depends on R version \(\geq 3.0.2 \) and imports the CRAN library stats. The package is available as open-source code at https://github.com/kuijjerlab/lionessR and can be installed with devtools. Instructions for installation are given on the package’s GitHub site. In addition, an R package is available on Bioconductor at http://bioconductor.org/packages/lionessR.

Within the lionessR package, the lioness() function applies LIONESS (Eq. 1) to the output of a network inference algorithm, as defined by the function netFun().

The default network inference algorithm in netFun() is Pearson correlation, which builds correlation networks by returning an adjacency matrix of Pearson correlation coefficients. We included Pearson correlation as the default function, as correlation has been and continues to be widely used in many network applications [1, 2, 6, 7] and because correlation networks can be modeled on a wide variety of data types. However, netFun() can be substituted with any other uni- or bipartite network inference algorithm that returns a complete, weighted adjacency matrix. The lioness() function returns an R data frame that includes weights for all edges in each of the sample-specific networks.

The computation time of lionessR depends on the network reconstruction algorithm used in netFun(). lionessR calculates one aggregate network model based on all \(N \) samples, as well as \(N \) aggregate network models based on all samples except the sample of interest; therefore its computation time is \(O(N) \) times the computation time of modeling a “standard” aggregate network modeled with netFun(). For example, when using the default function netFun() (Pearson correlation) in lionessR on expression data of \(M \) genes, it takes \(O(N \cdot M^2) \) to compute all sample specific networks (if we assume arithmetic operations run in constant time).

The package comes with a vignette that shows how to model networks with lionessR and gives an example of how to analyze single sample lionessR networks. The vignette depends on the CRAN packages igraph and reshape2 and the Bioconductor package limma. The package also includes an example dataset in the object OScdata, which includes expression data for pre-operative osteosarcoma biopsies from 53 high-grade osteosarcoma patients, as well as information on whether patients developed metastases within five years since diagnosis of the primary tumor. These data were obtained from the Gene Expression Omnibus (GEO, accession GSE42352), and included samples with at least 70% tumor content and viability, for which RNA was profiled on Illumina human-6 v2.0 microarray beadchips and pre-processed using Bioconductor package lumi [15], as previously described [16]. The example data are used in the vignette to model single sample networks for the 53 patients based on correlation networks. The workflow of modeling these individual patient networks and of analyzing them in the context of metastasis-free survival is given in the Results section below.

Results
Application of lionessR to a bone cancer dataset
As an example, we performed an analysis applying lioness() to a gene expression dataset from 53 high-grade osteosarcoma biopsies [16] (Gene Expression Omnibus accession number GSE42352), which is
HLA-DQB1

FDR

p

significantly perturbed edges (all nominal

sion levels between groups. We visualized the 50 most

LIMMA to test for significant differences in gene expres-
sion [19] to identify those edges whose weights differed

these two networks. We then performed a LIMMA anal-

that had an edge weight difference of at least 0.5 between

two condition-specific networks and selected those edges

As the aggregate network model in this demonstration is

five years (n = 19) and those who did not (n = 34).

These were the same groups analyzed by Buddingh et al.

[18] to compare gene expression levels between short-

and long-term MFS. To decrease the runtime of our tutor-

ial application, we limited our analysis to the 500 most

variable genes based on the standard deviation. We used

lioness() to model 53 single sample networks based

on Pearson correlation, one for each individual in the

population, using the entire population to estimate the

background network, with the code:

cormat <- lioness(dat, netFun),

where dat is the input expression data and cormat the

lioness output.

Comparative analysis of single sample bone cancer

networks modeled with lionessR

We asked whether there were differences in network edge

weights between the short- and long-term MFS groups.

As the aggregate network model in this demonstration is

Pearson correlation, a large edge weight in a single sample

network indicates that adding that sample increases the

Pearson correlation of the aggregate network, while a low

edge weight means that addition of the sample decreases

the aggregate network’s correlation coefficient for that

dge. To reduce the number of statistical tests on these

networks (\binom{500}{2} = 124750 potential edges), we modeled

two condition-specific networks and selected those edges

that had an edge weight difference of at least 0.5 between

these two networks. We then performed a LIMMA anal-

ysis [19] to identify those edges whose weights differed

significantly between the groups. In parallel, we also used

LIMMA to test for significant differences in gene expres-
sion levels between groups. We visualized the 50 most

significantly perturbed edges (all nominal p < 0.001,

FDR < 0.15) in a network diagram (Fig. 1).

We identified multiple significant differential connec-
tions to genes encoding for extracellular matrix proteins,

including BGLAP. BGLAP encodes for osteocalcin, a pro-
	ein secreted by osteoblasts to regulate bone remodeling.

BGLAP was connected to both a matrix metalloproteinase

(MMP11), involved in breakdown of extracellular matrix,

and to genes involved in the immune system—GZMA and

HLA-DQBI. GZMA encodes for Granzyme A, a T-cell

and natural killer cell-specific protease, while HLA-DQBI

is a Matrix Histocompatibility Complex (MHC) Class II
gene involved in antigen presentation. All of the edges

connected to BGLAP had a moderate to strong nega-
tive correlation (range R = [−0.75, −0.61]) in the samples

with better MFS, whereas these edges had a weak posi-
tive correlation (range R = [0.22, 0.26]) in the poor MFS

group.

Interestingly, BGLAP was not differentially expressed

between these groups (log fold change (logFC)= 0.23,

p = 0.68). This indicates that these processes are tightly

regulated in tumors of patients with long-term survival

and that loss of this regulation is associated with worse

outcome. It also suggests a link between matrix remodel-

ing and recruitment of immune cells, which could indi-
cate that bone remodeling in osteosarcoma may result

in the recruitment of immune cells to clear up the can-
cer, confirming previous findings of osteoclast [20] and

macrophage [18] association with MFS in osteosarcoma.

In addition, we identified a highly connected gene, or

network “hub,” among the nodes connected to the top 50

ges—STAT1, or Signal Transducer And Activator Of

Transcription 1. STAT1 is a transcription factor and thus

potentially differentially regulates the target genes with

which it is correlated. In fact, all of the edges connected
to STAT1 had a moderate to strong negative correlation

(range R = [−0.84, −0.42], median R = −0.67) in the samples

with better MFS, whereas these edges had a weak
to moderate positive correlation (range R = [0.14, 0.42],

median R = 0.30) in the poor MFS group. This sug-
gests that STAT1 may repress expression of these genes

in patients with long-term MFS. However, this repression

is lost in patients with short-term MFS. It has been pre-

viously shown that in tumors with good prognosis, high

STAT1 expression inhibits bone formation [21]. The
target genes we identified that connect to STAT1 (Figure 1)
were enriched for being annotated to the Gene Ontology

term “ossification,” (Fisher’s exact test odds ratio=5.76, p-

value=0.0056), which is consistent with this result. These
genes included SOST, SP7, IBSP, IFITM5, and TEMEM119.

More importantly, STAT1 is a transcription factor in the interferon signaling pathway—a pathway known
to be involved in osteosarcoma, and for which tar-
geted treatment options are available [22]. This indi-
cates that individual patient correlation network analysis
with lionessR can pinpoint potential candidates for

personalized medicine. Importantly, STAT1 is not dif-

erentially expressed itself (logFC= 0.44, p = 0.19)

and neither are many of its target genes. Thus, we

would not have been able to obtain this result by

analyzing differential expression alone, without placing

these genes into a framework of a network. In fact, we

previously identified differential gene regulation in the

absence of differential expression by analyzing LIONESS
networks modeled based on the PANDA [7] network reconstruction framework, which suggested a potential mechanism for sexual dimorphism in colorectal patients [23]. The current example in osteosarcoma highlights the potential of lionessR in modeling networks for individual cancer patients based on other network inference approaches.

Conclusions
Precision medicine uses data about the state of individual genes to match each patient to the therapies that are most likely to be efficacious for them. However, even when therapies target a specific gene mutation, we know that many patients who carry a particular mutation, or whose gene expression signatures correspond to known response
biomarkers, do not always respond to targeted treatment. Clearly, to improve precision medicine, we need to better understand the complex relationships that exist between different genes and gene products in individual samples. Networks are a natural way to represent these complex interactions, but methods to infer networks generally “average” over the members of a population. Using networks in precision medicine requires methods that allow inference of network models specific to each individual, reflecting the heterogeneity in the population.

LIONESS represents a method that can fill the gap between methods that infer networks using population data and the need for methods that can model networks specific to each individual. LIONESS estimates individual sample networks by using linear interpolation iteratively, extracting a network for each member of a population [12]. LIONESS essentially measures how removing a single individual from a population changes the aggregate network, and uses those changes to identify the most likely network for that individual. The lionsR package allows users to apply this method in combination with different network inference algorithms, including Pearson correlation.

As an example, we modeled single sample networks based on the 500 genes with the highest variability in expression in an osteosarcoma dataset. We divided this dataset into two groups—patients with either short-term or long-term MFS. Comparing these two collections of networks using a LIMMA analysis, we identified $STAT1$ to be significantly co-expressed with a set of “target” genes in biopsies of patients with poor survival. This set of genes was highly associated with biological processes important in osteosarcoma. In addition, $STAT1$ is part of a biological pathway for which targeted treatment is available. This example highlights how single sample correlation network analysis can be used to inform us on potential precision medicine applications. The lionsR package is a user-friendly tool to perform such analyses.

Availability and requirements

Project name: lionsR
Project home page: https://github.com/kuijjerlab/lionessR
Operating system(s): Platform independent
Programming language: R
Other requirements: The vignette walkthrough requires the following R packages: devtools, igraph, reshape2, limma
License: CC-BY-4.0
Any restrictions to use by non-academics: None

Abbreviations
LIONESS: Linear Interpolation to Obtain Network Estimates for Single Samples; MFS: Metastasis-free survival; PANDA: Passing Attributes between Networks for Data Assimilation

Acknowledgements

The authors would like to thank John Platig for helpful discussions.

Authors’ contributions

Conceptualization, Formal Analysis, Visualization, Writing—Original Draft: MLK; Data Curation, Software: MLK, PHH; Methodology, Investigation: MLK, KG; Supervision: MLK, IQ, KG; Resources, Writing—Review & Editing: all authors; Funding Acquisition: MLK, IQ, KG. All authors read and approved the final manuscript.

Funding

This work was supported by grants from the Norwegian Research Council, Helse Sør-Øst, and University of Oslo through the Centre for Molecular Medicine Norway (NCMM) and from the US National Heart, Lung, and Blood Institute of the National Institutes of Health (R01HL111759, P01HL105339, K25HL133599, 1R35CA220523). No specific funding was received for this specific study. The funding bodies had no impact on planning, collection, analysis or interpretation of the data, nor on writing of the manuscript.

Availability of data and materials

All data analyzed in this study are available in the lionessR package on GitHub: https://github.com/kuijjerlab/lionessR

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

1. Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, Gaustadalléen 21, 0318 Oslo, Norway. 2. Department of Bioinformatics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, 02215 Boston, USA. 3. Channing Division of Network Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, 02215 Boston, USA. 4. Department of Medicine, Harvard Medical School, 25 Shattuck Street, 02215 Boston, USA.

Received: 23 April 2019 **Accepted:** 1 October 2019
Published online: 25 October 2019

References

1. Sonawane AR, Platig J, Fagny M, Chen C-Y, Paulson JN, Lopes-Ramos CM, DeMeo DL, Quackenbush J, Glass K, Kuijjer ML. Understanding tissue-specific gene regulation. Cell Rep. 2017;21(4):1077–88.
2. Marbach D, Costello JC, Küffner R, Vega NM, Prill RJ, Camacho DM, Allison KR, Aderhold A, Bonneau R, Chen Y, et al. Wisdom of crowds for robust gene network inference. Nature Methods. 2012;9(8):796.
3. Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Dalla Favera R, Califano A. ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics. 2006. Mar 20;7(Article number S7).
4. Faith JJ, Hayete B, Thaden JT, Moqo I, Wierzbowski J, Cottarel G, Kasif S, Collins JJ, Gardner TS. Large-scale mapping and validation of Escherichia coli transcriptional regulation from a comprehensio of expression flows. PLoS Biol. 2007;5(1):8.
5. Chiquet J, Smith A, Grasseau G, Matias C, Ambroise C, Simone: Statistical inference for modular networks. Bioinformatics. 2008;25(3):417–8.
6. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC bioinformatics. 2008;9(1):559.
7. Glass K, Huttenhower C, Quackenbush J, Yuan G-C. Passing messages between biological networks to refine predicted interactions. PLoS one. 2013;8(5):64832.
8. villa-Vialaneix N, Vignes M, Viguier N, Cristobal MS. Inferring networks from multiple samples with consensus lasso. Quality Tecnol Quanti Manag. 2014;11(1):39–60.
9. Huynh-Thu VA, Irihara A, Wehenkel L, Geurts P. Inferring regulatory networks from expression data using tree-based methods. PLoS one. 2010;5(9):12776.
10. Haury A-C, Mordelet F, Vera-Licona P, Vert J-P. TIGRESS: trustful inference of gene regulation using stability selection. BMC Syst Biol. 2012;6(1):145.
11. Nicolle R, Radvanyi F, Elati M. CoRegNet: reconstruction and integrated analysis of co-regulatory networks. Bioinformatics. 2015;31(18):3066–8.
12. Kuijjer ML, Tung M, Yuan G, Quackenbush J, Glass K. Estimating sample-specific regulatory networks. Science. 2019;364(6435):226–40.
13. Allouche D, Cierco-Ayrolles C, De Greve S, Guillermin G, Mangin B, Schiev T, Vandel J, Vignes M. A panel of learning methods for the reconstruction of gene regulatory networks in a systems genetics context. In: Gene Network Inference. SpringerLink Editors: Alberto de la Fuente; 2013. p. 9–31.
14. van Uzendenoom DG, Glass K, Quackenbush J, Kuijjer ML. PyPanda: a Python package for gene regulatory network reconstruction. Bioinformatics. 2016;32(21):3363–5.
15. Du P, Kibble WA, Lin SM. Iumi: a pipeline for processing Illumina microarray. Bioinformatics. 2008;24(13):1547–8.
16. Kuijjer ML, Peterse EF, van den Akker BE, Biafra-de Bruijn IH, Serra M, Meza-Zepeda LA, Myklebost O, Hassani AB, Hogendoorn PC, Cloten-Jansen A-M. IR/IGF1R signaling as potential target for treatment of high-grade osteosarcoma. BMC Cancer. 2013;13(1):245.
17. Buddingh EP, Anninga JK, Versteegh ML, Taminiau AH, Egeler RM, van Rijswijck CS, Hogendoorn PC, Lankester AC, Gelderblom H. Prognostic factors in pulmonary metastasized high-grade osteosarcoma. Pediatr Blood Cancer. 2010;54(2):216–21.
18. Buddingh EP, Kuijjer ML, Diam RA, Burger H, Agelopoulos K, Myklebost O, Serra M, Mertens F, Hogendoorn PC, Lankester AC, et al. Tumor-infiltrating macrophages are associated with metastasis suppression in high-grade osteosarcoma: a rationale for treatment with macrophage activating agents. Clin Cancer Res. 2011;17(8):2110–9.
19. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):47.
20. Endo-Muñoz L, Cummings A, Rickwood D, Wilson D, Cueva C, Ng C, Strutton G, Cassidy AL, Evdokiou A, Sommerville S, et al. Loss of osteoclasts contributes to development of osteosarcoma pulmonary metastases. Cancer Res. 2010;70(18):7063–72.
21. Tajima K, Takaishi H, Takito J, Tohminda T, Yoda M, Ota N, Kosaki N, Matsumoto M, Ikekami H, Nakamura T, et al. Inhibition of STAT1 accelerates bone fracture healing. J Ortho Res. 2010;28(7):937–41.
22. Buddingh EP, Ruslan SEN, Berghuis D, Gelderblom H, Anninga JK, Hogendoorn PC, Egeler RM, Schilham MW, Lankester AC. Intact interferon signaling in peripheral blood leukocytes of high-grade osteosarcoma patients. Cancer Immun, Immunother. 2012;61(9):941–7.
23. Lopes-Ramos CM, Kuijjer ML, Ogino S, Fuchs CS, DeMeo DL, Glass K, Quackenbush J. Gene regulatory network analysis identifies sex-linked differences in colon cancer drug metabolism. Cancer Res. 2018;78(19):5538–47.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.