Learning by Fixing: Solving Math Word Problems with Weak Supervision

Yining Hong1
Qing Li2
Daniel Ciao1
Siyuan Huang2
Song-Chun Zhu1,2

1 Department of Computer Science, UCLA
2 Department of Statistics, UCLA
Problem: A truck travels 100 kilometers in 2 hours. At this speed, if it travels for another 3.5 hours, how many kilometers will it complete for the entire journey?
Problem: A truck travels 100 kilometers in 2 hours. At this speed, if it travels for another 3.5 hours, how many kilometers will it complete for the entire journey?

Answer: 275
Problem: A truck travels 100 kilometers in 2 hours. At this speed, if it travels for another 3.5 hours, how many kilometers will it complete for the entire journey?

Expression Tree (Annotated):

Train: only go through the neural module, optimize expression accuracy
Problem: A truck travels 100 kilometers in 2 hours. At this speed, if it travels for another 3.5 hours, how many kilometers will it complete for the entire journey?

Answer: 275

Test: go through the neural module and symbolic module, evaluate the answer accuracy
Problem: A truck travels 100 kilometers in 2 hours. At this speed, if it travels for another 3.5 hours, how many kilometers will it complete for the entire journey?

Expression Tree:

```
+  
/   100
/    /
*   / 3.5
/    /
/   100
/    /
/   2
```

Answer:

275

Train: only go through the neural module, optimize expression accuracy

Test: go through the neural module and symbolic module, evaluate the answer accuracy
Multiple Solutions for a given math word problem

Problem: A truck travels 100 kilometers in 2 hours. At this speed, if it travels for another 3.5 hours, how many kilometers will it complete for the entire journey? **Answer:** 275

Solution1: \((100/2) \times (2 + 3.5)\)

- Velocity
 - Distance 1: 100
 - Time 1: 2
- Total Distance
 - \(\times\)
 - Time 1: 2
 - Time 2: 3.5

Solution2: \(100 + 100/2 \times 3.5\)

- Total Distance
 - Distance 1: 100
- Velocity
 - Distance 1: 100
 - Time 1: 2
- Time 2: 3.5

Fully-Supervised methods: fit the given solution and cannot generate diverse solutions.
Fully-supervised methods: Need time-consuming annotations

Annotating the expressions for MWPs is time-consuming. However, a large amount of MWPs with their final answers can be mined effortlessly from the internet (e.g., online forums). How to efficiently utilize these partially-labeled data without the supervision of expressions remains an open problem.
Problem: A truck travels 100 kilometers in 2 hours. At this speed, if it travels for another 3.5 hours, how many kilometers will it complete for the entire journey?

Expression Tree

(Unannotated)

Answer (Annotated): 275
Problem: A truck travels 100 kilometers in 2 hours. At this speed, if it travels for another 3.5 hours, how many kilometers will it complete for the entire journey?

Expression Tree

(Unannotated):

Answer (Annotated): 275
Problem: A truck travels 100 kilometers in 2 hours. At this speed, if it travels for another 3.5 hours, how many kilometers will it complete for the entire journey?

Expression Tree (Unannotated):

```
+                +
100              100
    *              / 2
   50          100
```

Neural Model:

```
50 * 2 = 100
```

Inference:

```
200 + 200 = 400
```

Symbolic Execution:

```
200 ≠ 275
```

Answer (Annotated):

```
200 ≠ 275
```
Problem: A truck travels 100 kilometers in 2 hours. At this speed, if it travels for another 3.5 hours, how many kilometers will it complete for the entire journey?

Expression Tree (Unannotated):

Answer:

200 ≠ 275
Problem: A truck travels 100 kilometers in 2 hours. At this speed, if it travels for another 3.5 hours, how many kilometers will it complete for the entire journey?

Expression Tree (Unannotated):

Answer: 200 ≠ 275

Inference

Neural Model

157.1 ≠ 275

Fixing

Symbolic Execution
Solving Math Word Problems with Weakly Supervision

Problem: A truck travels 100 kilometers in 2 hours. At this speed, if it travels for another 3.5 hours, how many kilometers will it complete for the entire journey?

Expression Tree (Unannotated):

- $100 + (200 \times \frac{100}{2})$ for the first part of the journey.
- $3.5 \times \frac{100}{2}$ for the additional 3.5 hours.

Answer:

- The expression tree evaluates to $200 \neq 275$.
- Neural Model predicts $157.1 \neq 275$.
- Neural Model is trained.
- Symbolic Execution provides 50 and 175.
- Fixing is used to correct the model output to 175.

14
Framework

Goal-Driven Tree Model

Fixing

Memory Buffer

G: Goal
C: Context
Exploring
Learning
Bottom-up reasoning
Top-down fixing
Goal-Driven Tree Structured Model[1]

[1] A Goal-Driven Tree-Structured Neural Model for Math Word Problems. Zhipeng Xie and Shichao Sun.
Goal-Driven Tree Structured Model

- Word embedding + bi-directional GRU

Problem: A truck travels 100 kilometers in 2 hours. At this speed, if it travels for another 3.5 hours, how many kilometers will it complete for the entire journey?

\[q_0 = h_n^x + h_0^x \]
Goal-Driven Tree Structured Model

P: A truck travels 100 kilometers in 2 hours. At this speed, if it travels for another 3.5 hours, **how many kilometers will it complete for the entire journey?**

\[W \in \mathbb{R}^{n \times d} \]

\[q_0 = \frac{\hbar}{n} + \frac{\hbar}{0} \]

Attention
P: A truck travels 100 kilometers in 2 hours. At this speed, if it travels for another 3.5 hours, how many kilometers will it complete for the entire journey?
P: A truck travels 100 kilometers in 2 hours. At this speed, if it travels for another 3.5 hours, how many kilometers will it complete for the entire journey?
P: A truck travels 100 kilometers in 2 hours. At this speed, if it travels for another 3.5 hours, how many kilometers will it complete for the entire journey?
Goal-Driven Tree Structured Model

P: A truck travels 100 kilometers in 2 hours. At this speed, if it travels for another 3.5 hours, how many kilometers will it complete for the entire journey?
P: A truck travels 100 kilometers in 2 hours. At this speed, if it travels for another 3.5 hours, how many kilometers will it complete for the entire journey?
P: A truck travels 100 kilometers in 2 hours. At this speed, if it travels for another 3.5 hours, how many kilometers will it complete for the entire journey?
Learning by Fixing

[2] Closed Loop Neural-Symbolic Learning via Integrating Neural Perception, Grammar Parsing, and Symbolic Reasoning. Qing Li, Siyuan Huang, Yining Hong, Yixin Chen, Ying Nian Wu, and Song-Chun Zhu.
Learning by Fixing

Algorithm 1 Fixing Mechanism

1: Input: reasoning tree \hat{T}, ground-truth answer y
2: $T^{(0)} = \hat{T}$
3: for $i \leftarrow 0$ to m do
4: $T^* = 1$-Fix($T^{(i)}$, y)
5: if $T^* \neq \emptyset$ then
6: return T^*
7: else
8: $T^{(i+1)} = \text{RANDOMWALK}(T^{(i)})$
9: return \emptyset
10:
11: function 1-Fix(T, y)
12: $q = \text{PriorityQueue}()$, S = the root node of T
13: $q.push(S, y, 1)$
14: while $(A, \alpha_A, p) = q.pop()$ do
15: if $A \in \Sigma$ then
16: $T^* = T(A \rightarrow \alpha_A)$
17: return T^*
18: for $B \in \text{child}(A)$ do
19: $\alpha_B = \text{solve}(B, A, \alpha_A)$
20: if not $(B \in \Sigma$ and $\alpha_B \notin \Sigma)$ then
21: $q.push(B, \alpha_B, p(B \rightarrow \alpha_B))$
22: return \emptyset

The school purchased 85 sets of tables and chairs for 67 dollars per table and 23 dollars per chair. How much did the school spend buying these tables and chairs?

Priority Queue	Priority Queue	Priority Queue
$(1, A_1 \rightarrow 7650)$	$(\frac{1 - p_3 p_4 p_5}{p_3 p_4 p_5}, A_2 \rightarrow 90)$	$(\frac{p_5'}{p_5}, 67 \rightarrow 23)$
$\frac{p_3'}{p_3}$	67	67
$(p_1 p_2 p_3 p_4 p_5', 85 \times (67 + 23)$		
Tree Regularization

Size(T) ∈ [minSize(T), maxSize(T)]
minSize(T) = a_{min} \text{len}(V^{num}) + b_{min}
maxSize(T) = a_{max} \text{len}(V^{num}) + b_{max}

1. The number of operators cannot be greater than \([\text{Size}(T)/2]\).
2. Except the last position, the number of numeric values (quantities and constants) cannot be greater than the number of operators.

\[V^{num} = \{100, 2, 3.5\} \]
\[V^{op} = \{+,-,\times,\div,\wedge\} \]
\[V^{con} = \{1, 2, \pi\} \]

Target size \(l = 5\)

Prefix	\(\times\)	\(\div\)	\(100\)	\(2\)	\(3.5\)
\(\times\)	2	\(V^{op}\)	\(\times\)	100	\(V^{num} \cup V^{con}\)
\(\div\)	N/A	\(V^{op} \cup V^{num} \cup V^{con}\)	\(\div\)	2	\(V^{num} \cup V^{con}\)
\(100\)	\(\times\)	\(\times\)	\(\times\)	\(\times\)	\(\times\)
\(2\)	\(\div\)	\(\div\)	\(\div\)	\(\div\)	\(\div\)
\(3.5\)	\(\div\)	\(\div\)	\(\div\)	\(\div\)	\(\div\)

Prefix: \(\times \div 100 2 3.5\)

Target size \(l = 7\)

Prefix	\(\times\)	\(\div\)	\(100\)	\(2\)	\(3.5\)
\(\times\)	2	\(V^{op}\)	\(\times\)	100	\(V^{op} \cup V^{num} \cup V^{con}\)
\(\div\)	N/A	\(V^{op} \cup V^{num} \cup V^{con}\)	\(\div\)	2	\(V^{op} \cup V^{num} \cup V^{con}\)
\(100\)	\(\times\)	\(\times\)	\(\times\)	\(\times\)	\(\times\)
\(2\)	\(\div\)	\(\div\)	\(\div\)	\(\div\)	\(\div\)
\(3.5\)	\(\div\)	\(\div\)	\(\div\)	\(\div\)	\(\div\)

Prefix: \(\times \div 100 2 + 2 3.5\)
Memory Buffer

\[J(P, \beta) = - \sum_{T^* \in \beta} \log p(T^* | P) \]

Algorithm 2 Learning-by-Fixing

1: **Input**: training set \(\mathcal{D} = \{(P_i, y_i)\}_{i=1}^N \)
2: memory buffer \(\mathcal{B} = \{\beta_i\}_{i=1}^N \), the GTS model \(\theta \)
3: for \(P_i, y_i, \beta_i \in (\mathcal{D}, \mathcal{B}) \) do
4: ▶ Exploring
5: \(\hat{T}_i = \text{GTS} (P; \theta) \)
6: \(T_i^* = m-\text{FIX}(\hat{T}_i, y_i) \)
7: if \(T_i^* \neq \emptyset \) and \(T_i^* \notin \beta_i \) then
8: \(\beta_i \leftarrow \beta_i \cup \{T_i^*\} \)
9: ▶ Learning
10: \(\theta = \theta - \nabla_\theta J(P_i, \beta_i) \)
Experiment

- **Dataset:**

 Math23K, 23161 math word problems

- **Evaluation Metric:**

 Answer accuracies of all the top-1/3/5 predictions using beam search

- **Inference Models:**

 Seq2Seq, Goal-Driven Tree-Structured Model (GTS)

- **Learning Strategies:**

 REINFORCE, MAPO[3], LBF (Learning by Fixing), LBF-w/o-M (Fixing without Memory)

[3] Memory Augmented Policy Optimization for Program Synthesis and Semantic Parsing. Chen Liang, Mohammad Norouzi, Jonathan Berant, Quoc Le and Ni Lao.
Top-1 Answer Accuracy

Model	Accuracy(%)
Fully-Supervised	
Retrieval (Robaidek, Koncel-Kedziorski, and Hajishirzi 2018)	47.2
Classification (Robaidek, Koncel-Kedziorski, and Hajishirzi 2018)	57.9
LSTM (Robaidek, Koncel-Kedziorski, and Hajishirzi 2018)	51.9
CNN (Robaidek, Koncel-Kedziorski, and Hajishirzi 2018)	42.3
DNS (Wang, Liu, and Shi 2017)	58.1
Seq2seqET (Wang et al. 2018)	66.7
Stack-Decoder (Chiang and Chen 2019)	65.8
T-RNN (Wang et al. 2019)	66.9
GTS (Xie and Sun 2019)	74.3
Graph2Tree (Zhang et al. 2020a)	**74.8**
GTS-LBF-fully	74.1
Weakly-Supervised	
Seq2seq	
REINFORCE	1.2
MAPO	10.7
LBF-w/o-M	44.7
LBF	43.6
GTS	
REINFORCE	15.8
MAPO	20.8
LBF-w/o-M	58.3
LBF	**59.4**
Diverse Solutions with Memory Buffer, Ablative Studies

Model	Tree Size	Acc@1	Acc@3	Acc@5
Fully Supervised				
GTS	74.3	42.2	30.0	
GTS-LBF-fully	74.1	**63.4**	**56.3**	
Weakly Supervised				
GTS-LBF-w/o-M	[1, +∞)	55.3	26.2	19.3
	[2n-1, 2n+1]			
	[2n-1, 2n+3]			
	[2n-3, 2n+5]			
	~0	~0	~0	
GTS-LBF	[1, +∞)	56.7	45.3	39.1
	[2n-1, 2n+1]			
	[2n-1, 2n+3]	**59.4**	**49.6**	**45.2**
	[2n-3, 2n+5]			
	~0	~0	~0	

Models	Steps	1	10	50 (default)	100
Seq2seq-LBF-w/o-M	41.9	43.4	44.7	47.8	
Seq2seq-LBF	43.9	**45.7**	43.6	44.6	
GTS-LBF-w/o-M	51.2	54.6	**58.3**	57.8	
GTS-LBF	52.5	55.8	59.4	**59.6**	
Qualitative Study

Problem	Ground-Truth	Top-5 Solutions
The school purchased 85 sets of tables and chairs for 67 dollars per table and 23 dollars per chair. How much did the school spend buying these tables and chairs?	![Expression](image1)	![Expression](image2)
There are 1200 students in a school, and 65% are girls. How many boys are there?	![Expression](image3)	![Expression](image4)
The fruit store shipped 240 kilograms of raw pears. The apples shipped were 60 kilograms less than twice the weight of raw pears. How many kilograms of apples are shipped?	![Expression](image5)	![Expression](image6)
The cafeteria has 260kg of flour and 6 bags of rice, 25kg per bag. How many more kilograms of flour are there than rice?	![Expression](image7)	![Expression](image8)

- **Expression Right, Answer Right**
- **Expression Wrong, Answer Wrong**
- **Expression Wrong, Answer Right (Spurious)**

32
Conclusions & Future Works

- We propose a weakly-supervised paradigm for learning MWPs and a novel learning-by-fixing framework to boost the learning.
- For future work, we will prevent generating equivalent or spurious solutions during training, possibly by making the generated solution trees more interpretable with semantic constraints. (See also our newest work[4]!)
- A weakly-supervised large-scale dataset on math word problems would be beneficial for this line of research.

[4] "SMART: A Situation Model for Algebra Story Problems via Attributed Grammar". Yining Hong, Qing Li, Ran Gong, Daniel Ciao, Siyuan Huang, Song-Chun Zhu.
You are welcomed to visit our project pages!

The project page of this paper: https://evelinehong.github.io/lbf-site/

For more details about the fixing mechanism: https://liqing-ustc.github.io/NGS/

For interpretable math word problems solving: https://evelinehong.github.io/smart-site/