THE TIME CONSTANT AND CRITICAL PROBABILITIES IN PERCOLATION MODELS

LEANDRO P. R. PIMENTEL

Institut de Mathématiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
email: leandro.pimentel@epfl.ch

Submitted 3 February 2005 , accepted in final form 19 July 2006

AMS 2000 Subject classification: 60K35, 82D30
Keywords: Percolation, time constant, critical probabilities, Delaunay triangulations

Abstract
We consider a first-passage percolation (FPP) model on a Delaunay triangulation D of the plane. In this model each edge e of D is independently equipped with a nonnegative random variable τ_e, with distribution function F, which is interpreted as the time it takes to traverse the edge. Vahidi-Asl and Wierman [9] have shown that, under a suitable moment condition on F, the minimum time taken to reach a point x from the origin 0 is asymptotically $\mu(F)|x|$, where $\mu(F)$ is a nonnegative finite constant. However the exact value of the time constant $\mu(F)$ still a fundamental problem in percolation theory. Here we prove that if $F(0) < 1 - p_c^*$ then $\mu(F) > 0$, where p_c^* is a critical probability for bond percolation on the dual graph D^*.

Introduction
First-passage percolation theory on periodic graphs was presented by Hammersley and Welsh [4] to model the spread of a fluid through a porous medium. In this paper we continue a study of planar first-passage percolation models on random graphs, initiated by Vahidi-Asl and Wierman [9], as follows. Let P denote the set of points realized in a two-dimensional homogeneous Poisson point process with intensity 1. To each $v \in P$ corresponds an open polygonal region $C_v = C_v(P)$, the Voronoi tile at v, consisting of the set of points of \mathbb{R}^2 which are closer to v than to any other $v' \in P$. Given $x \in \mathbb{R}^2$ we denote by v_x the almost surely unique point in P such that $x \in C_{v_x}$. The collection $\{C_v : v \in P\}$ is called the Voronoi Tiling of the plane based on P.

The Delaunay Triangulation D is the graph where the vertex set D_v equals P and the edge set D_e consists of non-oriented pairs (v, v') such that C_v and $C_{v'}$ share a one-dimensional edge (Figure 1). One can see that almost surely each Voronoi tile is a convex and bounded polygon, and the graph D is a triangulation of the plane [7]. The Voronoi Tessellation V is the graph where the vertex set V_v is the set of vertices of the Voronoi tiles and the edge set V_e is the set

1RESEARCH SUPPORTED BY SWISS NATIONAL SCIENCE FOUNDATION GRANT 510767
The time constant and critical probabilities

Figure 1: The Delaunay Triangulation and the Voronoi Tessellation.

of edges of the Voronoi tiles. The edges of V are segments of the perpendicular bisectors of the edges of D. This establishes duality of D and V as planar graphs: $V = D^\ast$.

To each edge $e \in D$ is independently assigned a nonnegative random variable τ_e from a common distribution F, which is also independent of the Poisson point process that generates P. From now on we denote $(\Omega, \mathcal{F}, \mathbb{P})$ the probability space induced by the Poisson point process P and the passage times $(\tau_e)_{e \in D}$. The passage time $t(\gamma)$ of a path γ in the Delaunay Triangulation is the sum of the passage times of the edges in γ. The first-passage time between two vertices v and v' is defined by

$$T(v, v') := \inf\{t(\gamma) ; \gamma \in C(v, v')\},$$

where $C(v, v')$ the set of all paths connecting v to v'. Given $x, y \in \mathbb{R}^2$ we define $T(x, y) := T(x_1, y_1)$. To state the main result of this work we require some definitions involving a bond percolation model on the Voronoi Tessellation V. Such a model is constructed by choosing each edge of V to be open independently with probability p. An open path is a path composed of open edges. We denote P^p the law induced by the Poisson point process and the random state (open or not) of an edge. Given a planar graph G and $A, B \subseteq \mathbb{R}^2$ we say that a self-avoiding path $\gamma = (v_1, ..., v_k)$ is a path connecting A to B if $[v_1, v_2] \cap A \neq \emptyset$ and $[v_{k-1}, v_k] \cap B \neq \emptyset$ ([x, y] denotes the line segment connecting x to y). For $L > 0$ let A_L be the event that there exists an open path $\gamma = (v_j)_{1 \leq j \leq h}$ in V, connecting $\{0\} \times [0, L]$ to $\{3L\} \times [0, L]$, and with $v_j \in [0, 3L] \times [0, L]$ for all $j = 2, \ldots, h - 1$. In this case we also say that γ crosses the rectangle $[0, 3L] \times [0, L]$. Define the function

$$\eta^p(p) := \liminf_{L \to \infty} \mathbb{P}_p(A_L),$$

and consider the percolation threshold,

$$p^*_c := \inf\{p > 0 : \eta^p(p) = 1\}. \tag{1}$$

We have that $p^*_c \in (0, 1)$, which follows by standard arguments in percolation theory. For more in percolation thresholds on Voronoi tilings we refer to [1, 2, 11].
Theorem 1 If $\mathbb{F}(0) < 1 - p_c^*$ then there exist constants $c_j > 0$ such that for all $n \geq 1$
\[\mathbb{F}(T(0,n) < c_1 n) \leq c_2 \exp(-c_3 n),\]
(2)
where $0 := (0,0)$ and $n := (n,0)$.

To show the importance of Theorem 1 we recall two fundamental results proved by Vahidi-Asl and Wierman [9, 10]. Consider the growth process
\[B_x(t) := \{y \in \mathbb{R}^2 : y \in c(C_\nu) \text{ with } \nu \in \mathcal{D}_c \text{ and } T(v_x, \nu) \leq t\}.
\]
where $c(C)$ denotes the closure of $C \in \mathbb{R}^2$. Set
\[\mu(\mathbb{F}) := \inf_{n>0} \frac{ET(0,n)}{n} \in [0,\infty].
\]
and let τ_1, τ_2, τ_3 be independent random variables with distribution \mathbb{F}. If
\[E\left(\min_{j=1,2,3} \{\tau_j\} \right) < \infty
\]
(3)
then $\mu(\mathbb{F}) < \infty$ and for all unit vectors $\vec{x} \in S^1$ ($|\vec{x}| = 1$) \mathbb{P}-a.s.
\[\lim_{n\to\infty} \frac{T(0,n\vec{x})}{n} = \lim_{n\to\infty} \frac{ET(0,n)}{n} = \mu(\mathbb{F}).
\]
(4)
Further, if
\[E\left(\min_{j=1,2,3} \{\tau_j\}^2 \right) < \infty
\]
(5)
and $\mu(\mathbb{F}) > 0$ then for all $\epsilon > 0$ \mathbb{P}-a.s. there exists $t_0 > 0$ such that for all $t > t_0$
\[(1 - \epsilon) t D(1/\mu) \subseteq B_0(t) \subseteq (1 + \epsilon) t D(1/\mu),
\]
(6)
where $D(r) := \{x \in \mathbb{R}^2 : |x| \leq r\}$.

We note here that the asymptotic shape is an Euclidean ball due to the statistical invariance of the Poisson point process. Unfortunately the exact value of the time constant $\mu(\mathbb{F})$, as a functional of \mathbb{F}, still a basic problem in first-passage percolation theory. Our result provides a sufficient condition on \mathbb{F} to ensure $\mu(\mathbb{F}) > 0$.

Corollary 1 Under assumption (3), if $\mathbb{F}(0) < 1 - p_c^*$ then $\mu(\mathbb{F}) \in (0,\infty)$.

Proof. Together with the Borel-Cantelli Lemma, Theorem 1 and (4) imply
\[0 < c_1 \leq \liminf_{n\to\infty} \frac{T(0,n)}{n} = \lim_{n\to\infty} \frac{T(0,n)}{n} = \mu(\mathbb{F}) < \infty,
\]
which is the desired result. \hfill \square

For FPP models on the \mathbb{Z}^2 lattice Kesten (1986) has shown that $\mathbb{F}(0) < 1/2 = p_c(\mathbb{Z}^2)$ (the critical probability for bond percolation on \mathbb{Z}^2) is a sufficient condition to get (2) by using a stronger version of the BK-inequality. Here we follow a different method and we apply a simple renormalization argument to obtain a similar result. We expect that our condition to get (2) is equivalent to
\[\mathbb{F}(0) < p_c := \inf\{p > 0 \ ; \ \theta(p) = 1\},
\]
where $\theta(p)$ is the probability that bond percolation on \mathcal{D} occurs with density p, since it is conjectured that $p_c + p_c^* = 1$ (duality) for many planar graphs. In fact, by combining Corollary 1 with (6) we have:
Corollary 2

\[1 \leq p_c + p_c^* . \]

Proof. To see this assume we have a first-passage percolation model on \(D \) with

\[P(\tau_e = 0) = 1 - P(\tau_e = 1) = F(0) = 1 - p > p_c^* . \]

(7)

Then \(\Pr \)-a.s. there exists an infinite cluster \(W \subseteq D \) composed by edges \(e \) with \(\tau_e = 0 \). Denote by \(T(0, W) \) the first-passage time from \(0 \) to \(W \). Then for all \(t > T(0, W) \) we have that \(B_0(t) \) is an unbounded set. By (6) (since such a distribution satisfies (3) and (5)), this implies that \(\mu(F) = \mu(p) = 0 \) if \(1 - p > p_c \). On the other hand, by Corollary 1, \(\mu(p) > 0 \) if \(1 - p < 1 - p_c^* \), and so (2) must hold. \(\Box \)

Other passage times have been considered in the literature such as \(T(0, H_n) \), where \(H_n \) is the hyperplane consisting of points \(x = (x_1, x_2) \) so that \(x_1 = n \), and \(T(0, \partial[-n, n]^2) \). The arguments in this article can be used to prove the analog of Theorem 1 when \(T(0, n) \) is replaced by \(T(0, H_n) \) or \(T(0, \partial[-n, n]^2) \). For site versions of FPP models the method works as well if we change the condition on \(F \) to \(F(0) < 1 - \bar{p}_c \), where now \(\bar{p}_c \) is the critical probability for site percolation. Similarly to Corollary 2, in this case one can also obtain the inequality \(1/2 \leq \bar{p}_c \). For more details we refer to [8].

1 Renormalization

For the moment we assume that \(F \) is Bernoulli with parameter \(p \). Let \(L \geq 1 \) be a parameter whose value will be specified later. Let \(z = (z^1, z^2) \in \mathbb{Z}^2 \) and

\[|z|_\infty := \max_{j=1,2} \{ |z^j| \} . \]

Denote \(C_z \) the circuit composed by sites \(z' \in \mathbb{Z}^2 \) with \(|z - z'|_\infty = 2 \). For each \(A \subseteq \mathbb{R}^2 \), we denote by \(\partial A \) its boundary. For each \(z \in \mathbb{Z}^2 \) and \(r \in \{ j/2 : j \in \mathbb{N} \} \) consider the box

\[B_r^L := Lz + [-rL, rL]^2 . \]

Divide \(B_r^L \) into thirty-six sub-boxes with the same size and declare that \(B_r^L \) is a full box if all these thirty-six sub-boxes contain at least one point of \(P \). Let

\[H_z^L := \left[B_r^L \text{ is a full box } \forall z' \in C_z \right] . \]

Let \(C_L \) be the set of all self-avoiding paths \(\gamma = (\nu_j)_{1 \leq j \leq h} \) in \(D \), connecting \(\partial B_z^{L/2} \) to \(\partial B_z^{3L/2} \) and with \(C_{\nu_j} \cap B_z^{L/2} \) for all \(j = 2, \ldots, h - 1 \). Let

\[G_z^L := \left[t(\gamma) \geq 1 \forall \gamma \in C_L \right] . \]

We say that \(B_z^{L/2} \) is a good box (or that \(z \) is a good point) if

\[Y_z^L := I(H_z^L \cap G_z^L) = 1 , \]

where \(I(E) \) denotes the indicator function of the event \(E \).
Lemma 1 If \(\mathbb{P}(\tau_e = 0) = 1 - p < 1 - p^*_c \) then
\[
\lim_{L \to \infty} \mathbb{P}(Y^L_0 = 1) = 1.
\]

Proof. First notice that
\[
\mathbb{P}(Y^L_0 = 0) \leq \mathbb{P}((H^L_0)^c) + \mathbb{P}((G^L_0)^c). \tag{8}
\]
By the definition of a two-dimensional homogeneous Poisson point process,
\[
\lim_{L \to \infty} \mathbb{P}((H^L_0)^c) = 0. \tag{9}
\]
Now, let \(X_{e^*} := \tau_e \), where \(e^* \) is the edge in \(V_e \) (the Voronoi tessellation) dual to \(e \). Then \(\{X_{e^*} : e^* \in V_e\} \) defines a bond percolation model on \(V \) with law \(P^*_p \). Consider the rectangles
\[
R^1_L := [L/2, 3L/2] \times [-3L/2, 3L/2], R^2_L := [-3L/2, 3L/2] \times [L/2, 3L/2].
\]
We denote by \(A^i_L \) the event \(A_L \) (recall the definition of \(p^*_c \)) but now translate to the rectangle \(R^i_L \), and by \(F_L \) the event that an open circuit \(\sigma^* \) in \(V \) which surrounds \(B^L_{0} \) and lies inside \(B^{3L/2}_{0} \) does not exist. Thus one can easily see that
\[
\bigcap_{i=1}^4 A^i_L \subseteq (F_L)^c.
\]
Notice that if there exists an open circuit \(\sigma^* \) in \(V \) which surrounds \(B^{L/2}_{0} \) and lies inside \(B^{3L/2}_{0} \), then every path \(\gamma \) in \(C_L \) has an edge crossing with \(\sigma^* \) and thus \(t(\gamma) \geq 1 \). Therefore,
\[
\mathbb{P}((G^L_0)^c) \leq \mathbb{P}_p^*(F_L) \leq 4(1 - \mathbb{P}_p^*(A_L)). \tag{10}
\]
Since \(p > p^*_c \), by using (8), (9), (10) and the definition of \(p^*_c \), we get Lemma 1. \(\square \)

To obtain some sort of independence between the random variables \(Y^L_0 \) we shall study some geometrical aspects of Voronoi tilings. Given \(A \subseteq \mathbb{R}^2 \), let \(\mathcal{I}_P(A) \) be the sub-graph of \(\mathcal{D} \) composed of vertices \(v_1 \) in \(\mathcal{D}_e \) and edges \((v_2, v_3)\) in \(\mathcal{D}_e \) so that \(C_{v_i} \cap A \neq \emptyset \) for all \(i = 1, 2, 3 \).
Lemma 2 Let $L > 0$ and $z \in \mathbb{Z}^2$. Assume that \mathcal{P} and \mathcal{P}' are two configurations of points so that $\mathcal{P} \cap B_z^{5L/2} = \mathcal{P}' \cap B_z^{5L/2}$ and that $B_z^{L/2}$ is a full box with respect to \mathcal{P}, for all $z' \in C_z$. Then $I_\mathcal{P}(B_z^{3L/2}) = I_\mathcal{P}'(B_z^{3L/2})$.

PROOF. By the definition of the Delaunay Triangulation, Lemma 2 holds if we prove that

$$C_\nu(\mathcal{P}) \cap B_z^{3L/2} \neq \emptyset \Rightarrow C_\nu(\mathcal{P}) = C_\nu(\mathcal{P}') .$$ \hspace{1cm} (11)

To prove this we claim that

$$C_\nu(\mathcal{P}) \cap B_z^{3L/2} \neq \emptyset \Rightarrow C_\nu(\mathcal{P}) \subseteq B_z^{2L} .$$ \hspace{1cm} (12)

If (12) does not hold then there exist $x_1 \in \partial B_z^{3L/2} \cap C_\nu(\mathcal{P})$ and $x_2 \in \partial B_z^{2L} \cap C_\nu(\mathcal{P})$ (by convexity of Voronoi tilings). Since every box $B_z^{L/2}$ with $|z - z'|_\infty = 2$ is a full box, there exist $v_1, v_2 \in \mathcal{P}$ so that

$$|v_1 - x_1| \leq \sqrt{2}L/6 \text{ and } |v_2 - x_2| \leq \sqrt{2}L/6 .$$

Although, x_1 and x_2 belong to $C_\nu(\mathcal{P})$ and so

$$|v - x_1| \leq |v_1 - x_1| \text{ and } |v - x_2| \leq |v_2 - x_2| .$$

Thus,

$$L/2 \leq |x_1 - x_2| \leq |x_1 - v| + |x_2 - v| \leq \sqrt{2}L/3 ,$$

which leads to a contradiction since $\sqrt{2}/3 < 1/2$. By an analogous argument, one can prove that

$$C_\nu'(\mathcal{P}') \cap (B_z^{5L/2})^c \neq \emptyset \Rightarrow C_\nu'(\mathcal{P}') \subseteq (B_z^{2L})^c .$$ \hspace{1cm} (13)

Now suppose (11) does not hold. Without loss of generality, we may assume that there exists $v \in \mathcal{P}$ with $C_\nu(\mathcal{P}) \cap B_z^{3L/2} \neq \emptyset$ and $x \in C_\nu(\mathcal{P})$ with $x \notin C_\nu(\mathcal{P}')$. So $x \in C_\nu(\mathcal{P}')$ for some $v' \in \mathcal{P}'$. Although, $\mathcal{P} \cap B_z^{5L/2} = \mathcal{P}' \cap B_z^{5L/2}$ and then $v' \in (B_z^{5L/2})^c$, which is a contradiction with (12) and (13). \qed

For each $l \geq 1$, we say that the collection of random variables $\{Y_z : z \in \mathbb{Z}^2\}$ is l-dependent if $\{Y_z : z \in \mathcal{A}\}$ and $\{Y_z : z \in \mathcal{B}\}$ are independent whenever

$$l < d_\infty(\mathcal{A}, \mathcal{B}) := \min\{|z - z'|_\infty : z \in \mathcal{A} \text{ and } z' \in \mathcal{B}\} .$$

Combining Lemma 2 with the translation invariance and the independence property of the Poisson point process we obtain:

Lemma 3 For all $L > 0$, $\{Y^L_z : z \in \mathbb{Z}^2\}$ is a 5-dependent collection of identically distributed Bernoulli random variables.

Denote $Y^L := \{Y^L_z : z \in \mathbb{Z}^2\}$ and let $M_m(Y^L)$ be the maximum number of pairwise disjoint good circuits in \mathbb{Z}^2, surrounding the origin and lying inside the box $[-m, m]^2$.

Lemma 4 If $\mathbb{P}(0 < 1 - p_c^*)$ then there exists $L_0 > 0$ and $c_1 = c_1(L_0) > 0$ such that

$$\mathbb{P}(M_m(Y^{L_0}) \leq c_1 m) \leq \exp(-c_2 m) .$$
The connection between the variable $M_m(Y^L)$ and the first-passage time $T(0, n)$ is summarize by the following:

Lemma 5

$$\frac{M_{nL-1}}{6} \leq T(0, n).$$

Proof. We say that $(B^{L/2}_{\bar{z}^i})_{1 \leq i \leq h}$ is a circuit of good boxes if $(z_j)_{1 \leq j \leq h}$ is a good circuit in \mathbb{Z}^2, and that $(B^{L/2}_{\bar{z}^i})_{1 \leq i \leq h}$ and $(B^{L/2}_{\bar{z}'^j})_{1 \leq j \leq h'}$ are l-distant if

$$d_\infty((z_j)_{1 \leq j \leq h}, (z'_j)_{1 \leq j \leq h'}) > l.$$

Denote $M_m := M_m(Y^L)$. Notice that there exist at least $(M_{nL-1}/6)$ pairwise 5-distant circuits of good boxes surrounding the origin and lying inside $[-n, n]^2 \subseteq \mathbb{R}^2$. Therefore, every path γ between the origin and any point outside $[-n, n]^2$ must cross at least $(M_{nL-1}/6)$ 5-distant circuits of good boxes. We claim this yields

$$\frac{M_{nL-1}}{6} \leq t(\gamma). \quad (14)$$

Indeed, assume we take two 5-distant good boxes, say $B^{L/2}_{\bar{z}^i}$ and $B^{L/2}_{\bar{z}'^j}$, connected by a path γ in D. Then γ must contain two sub-paths in D, say $\gamma_i = (v^i_j)_{1 \leq j \leq h_i}$ for $i = 1, 2$, connecting $\partial B^{3L/2}_{\bar{z}^i}$ to $\partial B^{5L/2}_{\bar{z}^i}$ and with $C_{v^i_j} \cap B^{3L/2}_{\bar{z}^i}$ for all $j = 2, ..., h_i - 1$. Since $B^{L/2}_{\bar{z}^i}$ and $B^{L/2}_{\bar{z}'^j}$ are 5-distant good boxes, by Lemma 2, these sub-paths must be edge disjoint. By the definition of a good box, $t(\gamma_1) \geq 1$ and $t(\gamma_2) \geq 1$, which yields

$$2 \leq t(\gamma_1) + t(\gamma_2) \leq t(\gamma).$$

By repeating this argument inductively (on the number of good boxes which are crossed by γ) one can get (14). Lemma 5 follows directly from (14).

Now we are ready to prove Theorem 1.

Proof. Together with Lemma 5, Lemma 4 implies Theorem 1 under (7). For the general case, assume $F(0) = F(\tau_\infty = 0) < 1 - p_1$. Fix $\epsilon > 0$ so that $F(\epsilon) < 1 - p_\epsilon^*$ (we can do so since F is right-continuous). Define the auxiliary process $\tau_\epsilon^* := I(\tau_\infty > \epsilon)$ and denote by T^ϵ the first-passage time associated to the collection $\{\tau_\epsilon^* : e \in D_\epsilon\}$. Thus $T^\epsilon(0, n) \leq \epsilon^{-1} T(0, n)$. Since τ_ϵ^* has a Bernoulli distribution with parameter $\mathbb{P}(\tau_\epsilon^* = 0) = F(\epsilon) < 1 - p_\epsilon^*$, together with the previous case this yields Theorem 1.

Acknowledgment

This work was develop during my doctoral studies at Impa and I would like to thank my adviser, Prof. Vladas Sidoravicius, for his dedication and encouragement during this period. I also thank the whole administrative staff of IMPA for their assistance and CNPQ for financing my doctoral studies, without which this work would have not been possible.
The time constant and critical probabilities

References

[1] B. Bollobas and O. Riordan. The critical probability for random Voronoi percolation in the plane is 1/2. Preprint available from arXiv.org:math/0410336.

[2] B. Bollobas and O. Riordan. Sharp thresholds and percolation in the plane. Preprint available from arXiv.org:math/0412510.

[3] G. Grimmett. Percolation (second edition). Springer (1999).

[4] J.M. Hammersley, D.J.A. Welsh. First-passage percolation, sub-additive process, stochastic network and generalized renewal theory. Springer-Verlag (1965), 61-110.

[5] H. Kesten. Aspects of first-passage percolation. Lectures Notes in Math. **1180**, Springer-Verlag (1986), 125-264.

[6] T.M. Ligget, R.H. Schonmann and A.M. Stacey. Domination by product measures. *Ann. Probab.* **25** (1997), 71-95.

[7] J. Moller. Lectures on random Voronoi tesselations. Lectures Notes in Stat. **87**, Springer-Verlag (1991).

[8] L.P.R. Pimentel. Competing growth, interfaces and geodesics in first-passage percolation on Voronoi tilings. Phd Thesis, IMPA, Rio de Janeiro (2004).

[9] M.Q. Vahidi-Asl and J.C. Wierman. First-passage percolation on the Voronoi tessellation and Delaunay triangulation. Random Graphs 87 (M. Karonske, J. Jaworski and A. Rucinski, eds.) Wiley (1990), 341-359.

[10] M.C. Vahidi-Asl and J.C. Wierman. A shape result for first-passage percolation on the Voronoi tessellation and Delaunay triangulation. Random Graphs 89 (A. Frieze and T. Luczak, eds.), Wiley (1992), 247-262.

[11] A. Zvavitch. The critical probability for Voronoi percolation. MSc. thesis, Weizmann Institute of Science (1996).