Exposing the Dressed Quark’s mass

Dressed–quark Mass Function

Craig D. Roberts
cdroberts@anl.gov
Physics Division & School of Physics
Argonne National Laboratory & Peking University
http://www.phy.anl.gov/theory/staff/cdr.html

DCSB & Confinement

\[M(p) \]

\[0.5 \]

\[0.4 \]

\[0.3 \]

\[0.2 \]

\[0.1 \]

\[p \]

\[0.5 \]

\[1.0 \]

\[1.5 \]

\[2.0 \]
Universal Truths
Universal Truths

- Spectrum of excited states, and elastic and transition form factors provide unique information about long-range interaction between light-quarks and distribution of hadron’s characterising properties amongst its QCD constituents.
Universal Truths

- Spectrum of excited states, and elastic and transition form factors provide unique information about long-range interaction between light-quarks and distribution of hadron’s characterising properties amongst its QCD constituents.

- Dynamical Chiral Symmetry Breaking (DCSB) is most important mass generating mechanism for visible matter in the Universe.
Universal Truths

- Spectrum of excited states, and elastic and transition form factors provide unique information about long-range interaction between light-quarks and distribution of hadron’s characterising properties amongst its QCD constituents.

- Dynamical Chiral Symmetry Breaking (DCSB) is most important mass generating mechanism for visible matter in the Universe. Higgs mechanism is irrelevant to light-quarks.
Universal Truths

- Spectrum of excited states, and elastic and transition form factors provide unique information about long-range interaction between light-quarks and distribution of hadron’s characterising properties amongst its QCD constituents.

- Dynamical Chiral Symmetry Breaking (DCSB) is most important mass generating mechanism for visible matter in the Universe. Higgs mechanism is irrelevant to light-quarks.

- Running of quark mass entails that calculations at even modest Q^2 require a Poincaré-covariant approach.
Universal Truths

- Spectrum of excited states, and elastic and transition form factors provide unique information about long-range interaction between light-quarks and distribution of hadron’s characterising properties amongst its QCD constituents.

- Dynamical Chiral Symmetry Breaking (DCSB) is most important mass generating mechanism for visible matter in the Universe. Higgs mechanism is irrelevant to light-quarks.

- Running of quark mass entails that calculations at even modest Q^2 require a Poincaré-covariant approach. Covariance requires existence of quark orbital angular momentum in hadron’s rest-frame wave function.
Universal Truths

- Spectrum of excited states, and elastic and transition form factors provide unique information about long-range interaction between light-quarks and distribution of hadron’s characterising properties amongst its QCD constituents.

- Dynamical Chiral Symmetry Breaking (DCSB) is most important mass generating mechanism for visible matter in the Universe. Higgs mechanism is irrelevant to light-quarks.

Challenge: understand relationship between parton properties on the light-front and rest frame structure of hadrons.
Universal Truths

- Spectrum of excited states, and elastic and transition form factors provide unique information about long-range interaction between light-quarks and distribution of hadron’s characterising properties amongst its QCD constituents.

- Dynamical Chiral Symmetry Breaking (DCSB) is most important mass generating mechanism for visible matter in the Universe. Higgs mechanism is irrelevant to light-quarks.

Challenge: understand relationship between parton properties on the light-front and rest frame structure of hadrons. Problem, e.g., DCSB - an established keystone of low-energy QCD and the origin of constituent-quark masses - has not yet been realised in the light-front formulation.
Universal Truths

- Spectrum of excited states, and elastic and transition form factors provide unique information about long-range interaction between light-quarks and distribution of hadron’s characterising properties amongst its QCD constituents.

- Dynamical Chiral Symmetry Breaking (DCSB) is most important mass generating mechanism for visible matter in the Universe. Higgs mechanism is irrelevant to light-quarks.

Challenge: understand relationship between parton properties on the light-front and rest frame structure of hadrons. Problem, e.g., DCSB - an established keystone of low-energy QCD and the origin of constituent-quark masses - has not yet been realised in the light-front formulation. Resolution – coherent contribution from countable infinity of higher Fock-state components. (Brodsky, Roberts, Shrock, Tandy – in progress.)
QCD’s Challenges

Craig Roberts – *Exposing the Dressed Quark’s mass*

4th Workshop on Exclusive Reactions at High Momentum Transfer, 18-21 May 2010
Quark and Gluon Confinement

No matter how hard one strikes the proton, one cannot liberate an individual quark or gluon
QCD’s Challenges

- Quark and Gluon Confinement
 - No matter how hard one strikes the proton, one cannot liberate an individual quark or gluon

- Dynamical Chiral Symmetry Breaking
 - Very unnatural pattern of bound state masses
 - e.g., Lagrangian (pQCD) quark mass is small but ... no degeneracy between \(J^P=+ \) and \(J^P=- \)
QCD’s Challenges

- Quark and Gluon Confinement
 - No matter how hard one strikes the proton, one cannot liberate an individual quark or gluon

- Dynamical Chiral Symmetry Breaking
 - Very unnatural pattern of bound state masses
 - e.g., Lagrangian (pQCD) quark mass is small but . . .
 - no degeneracy between \(J^P=+ \) and \(J^P=- \)

- Neither of these phenomena is apparent in QCD’s Lagrangian yet they are the dominant determining characteristics of real-world QCD.
QCD’s Challenges

Understand Emergent Phenomena

- Quark and Gluon Confinement
 - No matter how hard one strikes the proton, one cannot liberate an individual quark or gluon

- Dynamical Chiral Symmetry Breaking
 - Very unnatural pattern of bound state masses
 - e.g., Lagrangian (pQCD) quark mass is small but ... no degeneracy between $J^P=+$ and $J^P=$

- Neither of these phenomena is apparent in QCD’s Lagrangian yet they are the dominant determining characteristics of real-world QCD.

- QCD – Complex behaviour arises from apparently simple rules
Charting the Interaction between light-quarks
Confinement can be related to the analytic properties of QCD’s Schwinger functions.
Confinement can be related to the analytic properties of QCD’s Schwinger functions.

Question of light-quark confinement can be translated into the challenge of charting the infrared behavior of QCD’s universal β-function.
Charting the Interaction between light-quarks

- Confinement can be related to the analytic properties of QCD’s Schwinger functions
- Question of light-quark confinement can be translated into the challenge of charting the infrared behavior of QCD’s \textit{universal} β-function
- This function may depend on the scheme chosen to renormalise the quantum field theory but it is unique within a given scheme.
Charting the Interaction between light-quarks

- Confinement can be related to the analytic properties of QCD’s Schwinger functions.

- Question of light-quark confinement can be translated into the challenge of charting the infrared behavior of QCD’s universal β-function.

- This function may depend on the scheme chosen to renormalise the quantum field theory but it is unique within a given scheme.

Of course, the behaviour of the β-function on the perturbative domain is well known.
Charting the Interaction between light-quarks

- Confinement can be related to the analytic properties of QCD’s Schwinger functions.
- Question of light-quark confinement can be translated into the challenge of charting the infrared behavior of QCD’s universal β-function.
- This function may depend on the scheme chosen to renormalise the quantum field theory but it is unique within a given scheme.

Of course, the behaviour of the β-function on the perturbative domain is well known.

- This is a well-posed problem whose solution is an elemental goal of modern hadron physics.
What is the light-quark Long-Range Potential?
Potential between static (infinitely heavy) quarks measured in simulations of lattice-QCD is not related in any known way to the light-quark interaction.
Charting the Interaction between light-quarks

Through QCD’s Dyson-Schwinger equations (DSEs) the pointwise behaviour of the β-function determines pattern of chiral symmetry breaking.
Through QCD’s Dyson-Schwinger equations (DSEs) the pointwise behaviour of the β-function determines pattern of chiral symmetry breaking.

DSEs connect β-function to experimental observables. Hence, comparison between computations and observations of, e.g.,

- hadron mass spectrum;
- elastic and transition form factors

can be used to chart β-function’s long-range behaviour.
Through QCD’s Dyson-Schwinger equations (DSEs) the pointwise behaviour of the β-function determines pattern of chiral symmetry breaking.

DSEs connect β-function to experimental observables. Hence, comparison between computations and observations of, e.g.,

- hadron mass spectrum;
- elastic and transition form factors

can be used to chart β-function’s long-range behaviour.

E.g.: Extant studies of mesons show that the properties of hadron excited states are a great deal more sensitive to the long-range behaviour of β-function than those of the ground state.
Through DSEs the pointwise behaviour of the β-function determines pattern of chiral symmetry breaking.

DSEs connect β-function to experimental observables. Hence, comparison between computations and observations can be used to chart β-function’s long-range behaviour.
Charting the Interaction between light-quarks

Through DSEs the pointwise behaviour of the β-function determines pattern of chiral symmetry breaking.

DSEs connect β-function to experimental observables. Hence, comparison between computations and observations can be used to chart β-function’s long-range behaviour.

To realise this goal, a nonperturbative symmetry-preserving DSE truncation is necessary.
Charting the Interaction between light-quarks

Through DSEs the pointwise behaviour of the β-function determines pattern of chiral symmetry breaking.

DSEs connect β-function to experimental observables. Hence, comparison between computations and observations can be used to chart β-function’s long-range behaviour.

To realise this goal, a nonperturbative symmetry-preserving DSE truncation is necessary.

Steady quantitative progress is being made with a scheme that is systematically improvable. (See nucl-th/9602012 and references thereto.)
Charting the Interaction between light-quarks

- Through DSEs the pointwise behaviour of the β-function determines pattern of chiral symmetry breaking.

- DSEs connect β-function to experimental observables. Hence, comparison between computations and observations can be used to chart β-function’s long-range behaviour.

- To realise this goal, a nonperturbative symmetry-preserving DSE truncation is necessary.

- On other hand, at present significant qualitative advances possible with symmetry-preserving kernel Ansätze that express important additional nonperturbative effects $- M(p^2)$ – difficult/impossible to capture in any finite sum of contributions.
\[S_f(p)^{-1} = Z_2 \left(i\gamma \cdot p + m_f^{\text{bm}} \right) + \Sigma_f(p), \]

\[\Sigma_f(p) = Z_1 \int_q^\Lambda g^2 D_{\mu\nu}(p - q) \frac{\lambda^a}{2} \gamma_\mu S_f(q) \frac{\lambda^a}{2} \Gamma^f_\nu(q, p), \]
\[S_f(p)^{-1} = Z_2 \left(i\gamma \cdot p + m_{f}^{bm} \right) + \Sigma_f(p), \]

\[\Sigma_f(p) = Z_1 \int_q^\Lambda g^2 D_{\mu\nu}(p - q) \frac{\lambda^a}{2} \gamma_\mu S_f(q) \frac{\lambda^a}{2} \Gamma_{\nu}^f(q, p), \]

- \(Z_{1,2}(\zeta^2, \Lambda^2) \) are respectively the vertex and quark wave function renormalisation constants, with \(\zeta \) the renormalisation point.

- \(m_{f}^{bm}(\Lambda) \) is the Lagrangian current-quark bare mass.

- \(D_{\mu\nu}(k) \) is the dressed-gluon propagator.

- \(\Gamma_{\nu}^f(q, p) \) is the dressed-quark-gluon vertex.
\[S_f(p)^{-1} = Z_2 (i \gamma \cdot p + m_{f}^{bm}) + \Sigma_f(p), \]
\[\Sigma_f(p) = Z_1 \int_{q}^{\Lambda} g^2 D_{\mu \nu}(p - q) \frac{\lambda^a}{2} \gamma_\mu S_f(q) \frac{\lambda^a}{2} \Gamma_{\nu}^f(q, p), \]

- \(Z_{1,2}(\zeta^2, \Lambda^2) \) are respectively the vertex and quark wave function renormalisation constants, with \(\zeta \) the renormalisation point.

- \(m_{f}^{bm}(\Lambda) \) is the Lagrangian current-quark bare mass.

- \(D_{\mu \nu}(k) \) is the dressed-gluon propagator.

- \(\Gamma_{\nu}^f(q, p) \) is the dressed-quark-gluon vertex.

Suppose one has in-hand the exact form of \(\Gamma_{\nu}^f(q, p) \). What is the associated Symmetry-preserving Bethe-Salpeter Kernel?
Standard form, familiar from textbooks

\[
\left[\Gamma_j^\pi (k; P) \right]_{tu} = \int_q^{\Lambda} \left[S(q + P/2) \Gamma_j^\pi (q; P) S(q - P/2) \right]_{sr} K_{rs}^{rs} (q, k; P)
\]

\[
K(q, k; P): \text{Fully-amputated, 2-particle-irreducible, quark-antiquark scattering kernel}
\]
Bound-state DSE

Bethe-Salpeter Equation

- Standard form, familiar from textbooks

\[
\left[\Gamma^j_\pi(k; P) \right]_{tu} = \int_q^\Lambda \left[S(q + P/2) \Gamma^j_\pi(q; P) S(q - P/2) \right]_{sr} K_{tu}^{rs}(q, k; P)
\]

\(K(q, k; P) \): Fully-amputated, 2-particle-irreducible, quark-antiquark scattering kernel

- Compact. Visually appealing. Correct.
Standard form, familiar from textbooks

\[
\left[\Gamma_j^\pi(k; P) \right]_{tu} = \int_q^\Lambda \left[S(q + P/2) \Gamma_j^\pi(q; P) S(q - P/2) \right]_{sr} K_{tu}^{rs}(q, k; P)
\]

\[K(q, k; P)\]: Fully-amputated, 2-particle-irreducible, quark-antiquark scattering kernel

- **Compact. Visually appealing. Correct.**
- **Blocked progress for more than 60 years.**
L. Chang and C. D. Roberts
0903.5461 [nucl-th], Phys. Rev. Lett. 103 (2009) 081601

Craig Roberts – *Exposing the Dressed Quark’s mass*
4th Workshop on Exclusive Reactions at High Momentum Transfer, 18-21 May 2010
Bethe-Salpeter Equation
General Form

Equivalent exact form:

\[\Gamma_{5\mu}^{fg}(k; P) = Z_2 \gamma_5 \gamma_{1\mu} \]

\[- \int_q g^2 D_{\alpha\beta}(k - q) \frac{\lambda^a}{2} \gamma_\alpha S_f(q+) \Gamma_{5\mu}^{fg}(q; P) S_g(q-) \frac{\lambda^a}{2} \Gamma_{\beta}^{g}(q-, k-) \]

\[+ \int_q g^2 D_{\alpha\beta}(k - q) \frac{\lambda^a}{2} \gamma_\alpha S_f(q+) \frac{\lambda^a}{2} \Lambda_{5\mu\beta}^{fg}(k, q; P), \]

(Poincaré covariance, hence \(q_\pm = q \pm P/2 \), etc., without loss of generality.)
Equivalent exact form:

\[
\begin{align*}
\Gamma_{5\mu}^{fg}(k; P) &= Z_2 \gamma_5 \gamma_\mu \\
&- \int_q g^2 D_{\alpha\beta}(k - q) \frac{\lambda_\alpha}{2} \gamma_\alpha \Sigma_f(q^+) \Gamma_{5\mu}^{fg}(q; P) \Sigma_g(q^-) \frac{\lambda_\alpha}{2} \Gamma_{5\beta}^g(q^-, k^-) \\
&+ \int_q g^2 D_{\alpha\beta}(k - q) \frac{\lambda_\alpha}{2} \gamma_\alpha \Sigma_f(q^+) \frac{\lambda_\alpha}{2} \Lambda_{5\mu\beta}^{fg}(k, q; P),
\end{align*}
\]

(Poincaré covariance, hence \(q_\pm = q \pm P/2\), etc., without loss of generality.)

In this form . . . \(\Lambda_{5\mu\beta}^{fg}\)

is completely defined via the dressed-quark self-energy
Bethe-Salpeter equation introduced in 1951
Bethe-Salpeter equation introduced in 1951

Newly-derived Ward-Takahashi identity

\[P_\mu \Lambda_{fg^5}^{\mu \beta}(k, q; P) = \Gamma_f^{\mu}(q_+, k_+) i\gamma_5 + i\gamma_5 \Gamma_g^{\mu}(q_-, k_-) + i [m_f(\zeta) + m_g(\zeta)] \Lambda_{f^5g^{\mu \beta}}(k, q; P), \]
Bethe-Salpeter equation introduced in 1951

Newly-derived Ward-Takahashi identity

\[P_{\mu} \Lambda_{5\mu\beta}^{fg}(k, q; P) = \Gamma_{\beta}^{f}(q_{+}, k_{+}) i\gamma_{5} + i\gamma_{5} \Gamma_{\beta}^{g}(q_{-}, k_{-}) \]
\[- i[m_{f}(\zeta) + m_{g}(\zeta)] \Lambda_{5\beta}^{fg}(k, q; P), \]

For first time: can construct \textit{Ansatz} for Bethe-Salpeter kernel consistent with any reasonable quark-gluon vertex

Consistent means - all symmetries preserved!
Bethe-Salpeter equation introduced in 1951

Newly-derived Ward-Takahashi identity

\[
P_\mu \Lambda_{5\mu\beta}^{fg}(k, q; P) = \Gamma_{\beta}^{f}(q_+, k_+) i\gamma_5 + i\gamma_5 \Gamma_{\beta}^{g}(q_-, k_-) - i[m_f(\zeta) + m_g(\zeta)]\Lambda_{5\mu\beta}^{fg}(k, q; P),\]

For first time: can construct \textit{Ansatz} for Bethe-Salpeter kernel consistent with any reasonable quark-gluon vertex

Procedure & results to expect . . .

see arXiv:1003.5006 [nucl-th]
	exp.		
mass α_1	1230		
mass ρ	775		
mass-splitting	455		

- Splitting known experimentally for more than 35 years.
- Hitherto, no explanation.
Mass Splitting

\[\alpha_1 - \rho \]

	exp.	rainbow-ladder	one-loop
mass \(\alpha_1\)	1230	759	885
mass \(\rho\)	775	644	764
mass-splitting	455	115	121

- Systematic, symmetry-preserving, Poincaré-covariant DSE truncation scheme of nucl-th/9602012.
- Never better than \(\sim \frac{1}{4}\) of splitting.
- Constructing kernel skeleton-diagram-by-diagram, DCSB cannot be faithfully expressed: \(M(p^2)\) is absent!
Mass Splitting

\[\alpha_1 - \rho \]

| \begin{array}{|c|c|c|c|}
|---|---|---|---|
| \text{mass} \ \alpha_1 & \text{exp.} & 1230 & \text{rainbow-ladder} |
| \text{mass} \ \rho & 775 & 644 & \text{one-loop} |
| \text{mass-splitting} & 455 & 115 & \text{Ball-Chiu consistent} |
| \text{mass-splitting} & 759 & 885 & 1066 |
| \text{mass-splitting} & 644 & 764 & 924 |
| \text{mass-splitting} & 115 & 121 & 142 |
\end{array} |

New nonperturbative, symmetry-preserving Poincaré-covariant Bethe-Salpeter equation formulation of arXiv:0903.5461 [nucl-th]

Ball-Chiu Ansatz for quark-gluon vertex

\[
\Gamma^{BC}_\mu(k, p) = \ldots + (k + p)_\mu \frac{B(k) - B(p)}{k^2 - p^2}
\]

Some effects of DCSB built into vertex

Explains \(\pi - \sigma \) splitting but not this problem

Craig Roberts – Exposing the Dressed Quark’s mass
4th Workshop on Exclusive Reactions at High Momentum Transfer, 18-21 May 2010
Mass Splitting

Chang & Roberts arXiv:1003.5006 [nucl-th]

	exp.	rainbow-ladder	one-loop	Ball-Chiu consistent	Ball-Chiu plus anom. cm mom.
mass a_1	1230	759	885	1066	1230
mass ρ	775	644	764	924	745
mass-splitting	455	115	121	142	485

New nonperturbative, symmetry-preserving Poincaré-covariant Bethe-Salpeter equation formulation of arXiv:0903.5461 [nucl-th]

Ball-Chiu augmented by quark anomalous chromomagnetic moment term:

$$\Gamma_{\mu}(k, p) = \Gamma_{\mu}^{BC} + \sigma_{\mu\nu}(k - p)\nu \frac{B(k) - B(p)}{k^2 - p^2}$$
New nonperturbative, symmetry-preserving Poincaré-covariant Bethe-Salpeter equation formulation of arXiv:0903.5461 [nucl-th]

DCSB is the answer. Subtle interplay between competing effects, which can only now be explicated

Promise of first reliable prediction of light-quark meson spectrum, including the so-called hybrid and exotic states.
Frontiers of Nuclear Science: Theoretical Advances

\[\Sigma = \Gamma \]

Gap Equation

Craig Roberts – *Exposing the Dressed Quark’s mass*

4th Workshop on Exclusive Reactions at High Momentum Transfer, 18-21 May 2010
Theoretical Advances

\[S(p) = \frac{Z(p^2)}{i\gamma \cdot p + M(p^2)} \]

Gap Equation

- Rapid acquisition of mass is
- effect of gluon cloud

\begin{figure}
\centering
\includegraphics[width=\textwidth]{graph.png}
\caption{Rapid acquisition of mass is effect of gluon cloud}
\end{figure}
Mass from nothing.

In QCD a quark’s effective mass depends on its momentum. The function describing this can be calculated and is depicted here. Numerical simulations of lattice QCD (data, at two different bare masses) have confirmed model predictions (solid curves) that the vast bulk of the constituent mass of a light quark comes from a cloud of gluons that are dragged along by the quark as it propagates. In this way, a quark that appears to be absolutely massless at high energies ($m = 0$, red curve) acquires a large constituent mass at low energies.

$$S(p) = \frac{Z(p^2)}{i \gamma \cdot p + M(p^2)}$$
Mass from nothing.

In QCD a quark’s effective mass depends on its momentum. The function describing this can be calculated and is depicted here. Numerical simulations of lattice QCD (data, at two different bare masses) have confirmed model predictions (solid curves) that the vast bulk of the constituent mass of a light quark comes from a cloud of gluons that are dragged along by the quark as it propagates. In this way, a quark that appears to be absolutely massless at high energies ($m = 0$, red curve) acquires a large constituent mass at low energies.

$$S(p) = \frac{Z(p^2)}{i\gamma \cdot p + M(p^2)}$$
Mass from nothing.

In QCD a quark’s effective mass depends on its momentum. The function describing this can be calculated and is depicted here. Numerical simulations of lattice QCD (data, at two different bare masses) have confirmed model predictions (solid curves) that the vast bulk of the constituent mass of a light quark comes from a cloud of gluons that are dragged along by the quark as it propagates. In this way, a quark that appears to be absolutely massless at high energies \((m = 0\), red curve) acquires a large constituent mass at low energies.

\[
S(p) = \frac{Z(p^2)}{i\gamma \cdot p + M(p^2)}
\]
Maris, Roberts, Tandy
nucl-th/9707003

Goldberger-Treiman for pion
Goldberger-Treiman for pion

- Pseudoscalar Bethe-Salpeter amplitude

\[\Gamma_{\pi j}(k; P) = \tau_{\pi j} \gamma_5 \left[iE_{\pi}(k; P) + \gamma \cdot PF_{\pi}(k; P) \right. \]
\[\left. + \gamma \cdot k \cdot P G_{\pi}(k; P) + \sigma_{\mu\nu} k_\mu P_\nu H_{\pi}(k; P) \right] \]
Goldberger-Treiman for pion

- Pseudoscalar Bethe-Salpeter amplitude

\[
\Gamma_{\pi j}(k; P) = \tau_{\pi j} \gamma_5 \left[i E_{\pi}(k; P) + \gamma \cdot P F_{\pi}(k; P) \\
+ \gamma \cdot k \cdot P G_{\pi}(k; P) + \sigma_{\mu\nu} k_\mu P_\nu H_{\pi}(k; P) \right]
\]

- Dressed-quark Propagator: \[S(p) = \frac{1}{i\gamma \cdot p A(p^2) + B(p^2)} \]
Goldberger-Treiman for pion

- Pseudoscalar Bethe-Salpeter amplitude

\[\Gamma_{\pi j}(k; P) = \tau^{\pi j} \gamma_5 \left[iE_{\pi}(k; P) + \gamma \cdot P F_{\pi}(k; P) + \gamma \cdot k \cdot P G_{\pi}(k; P) + \sigma_{\mu\nu} k_\mu P_\nu H_{\pi}(k; P) \right] \]

- Dressed-quark Propagator: \(S(p) = \frac{1}{i\gamma \cdot p A(p^2) + B(p^2)} \)

- Axial-vector Ward-Takahashi identity

\[f_\pi E_{\pi}(k; P = 0) = B(p^2) \]
Pseudoscalar Bethe-Salpeter amplitude

\[\Gamma_{\pi j}(k; P) = \tau^{\pi j} \gamma_5 \left[i E_{\pi}(k; P) + \gamma \cdot PF_{\pi}(k; P) + \gamma \cdot k \cdot P G_{\pi}(k; P) + \sigma_{\mu\nu} k_\mu P_\nu H_{\pi}(k; P) \right] \]

Dressed-quark Propagator:

\[S(p) = \frac{1}{i\gamma \cdot p A(p^2) + B(p^2)} \]

Axial-vector Ward-Takahashi identity

\[f_{\pi} E_{\pi}(k; P = 0) = B(p^2) \]
\[F_R(k; 0) + 2 f_{\pi} F_{\pi}(k; 0) = A(k^2) \]
\[G_R(k; 0) + 2 f_{\pi} G_{\pi}(k; 0) = 2A'(k^2) \]
\[H_R(k; 0) + 2 f_{\pi} H_{\pi}(k; 0) = 0 \]
Goldberger-Treiman for pion

- Pseudoscalar Bethe-Salpeter amplitude

\[\Gamma_{\pi j}(k; P) = \tau^\pi j \gamma_5 \left[i E_{\pi}(k; P) + \gamma \cdot PF_{\pi}(k; P) \right. \\
+ \left. \gamma \cdot k \, k \cdot P \, G_{\pi}(k; P) + \sigma_{\mu\nu} k_{\mu} P_{\nu} \, H_{\pi}(k; P) \right] \]

- Dressed-quark Propagator:

\[S(p) = \frac{1}{i \gamma \cdot p A(p^2) + B(p^2)} \]

- Axial-vector Ward-Takahashi identity

\[f_{\pi} E_{\pi}(k; P = 0) = B(p^2) \]
\[F_R(k; 0) + 2 f_{\pi} F_{\pi}(k; 0) = A(k^2) \]
\[G_R(k; 0) + 2 f_{\pi} G_{\pi}(k; 0) = 2 A'(k^2) \]
\[H_R(k; 0) + 2 f_{\pi} H_{\pi}(k; 0) = 0 \]

Exact in Chiral QCD
What does this mean for observables?
What does this mean for observables?

![Graph showing the dependence of \(q^2 F_\pi(q^2) \) on \(q^2 \)]

- Only \(E_\pi \to 1/Q^4 \)
- Including \(F_\pi \to 1/Q^2 \)
What does this mean for observables?

\[\left(\frac{Q}{2} \right)^2 = 2 \text{ GeV}^2 \]

\[\Rightarrow Q^2 = 8 \text{ GeV}^2 \]

Pseudovector components dominate ultraviolet behaviour of electromagnetic form factor.
GT for pion
– Contact Interaction

Guttierez, Bashir, Cloët, Roberts:
arXiv:1002.1968 [nucl-th]

Craig Roberts – Exposing the Dressed Quark’s mass
4th Workshop on Exclusive Reactions at High Momentum Transfer, 18-21 May 2010
Bethe-Salpeter amplitude can’t depend on relative momentum

⇒ General Form

$$\Gamma_\pi(P) = i\gamma_5 E_\pi(P) + \frac{1}{M_Q} \gamma \cdot PF_\pi(P)$$
Bethe-Salpeter amplitude can’t depend on relative momentum

⇒ General Form

\[\Gamma_\pi(P) = i\gamma_5 E_\pi(P) + \frac{1}{M_Q} \gamma \cdot PF_\pi(P) \]

Solve chiral-limit gap and Bethe-Salpeter equations

\[P^2 = 0 : M_Q = 0.40, \quad E_\pi = 0.98, \quad \frac{F_\pi}{M_Q} = 0.50 \]
Bethe-Salpeter amplitude can’t depend on relative momentum

⇒ General Form

\[\Gamma_\pi(P) = i\gamma_5 E_\pi(P) + \frac{1}{M_Q} \gamma \cdot P F_\pi(P) \]

Solve chiral-limit gap and Bethe-Salpeter equations

\[P^2 = 0 : \quad M_Q = 0.40 , \quad E_\pi = 0.98 , \quad \frac{F_\pi}{M_Q} = 0.50 \]

Origin of pseudovector component: \(E_\pi \) drives \(F_\pi \)

RHS Bethe-Salpeter equation:

\[\gamma_\mu S(k + P/2) i\gamma_5 E_\pi S(k - P/2) \gamma_\mu \]
GT for pion
– Contact Interaction

- Bethe-Salpeter amplitude can’t depend on relative momentum
 ⇒ General Form
 \[\Gamma_\pi(P) = i\gamma_5 E_\pi(P) + \frac{1}{M_Q} \gamma \cdot P F_\pi(P) \]

- Solve chiral-limit gap and Bethe-Salpeter equations
 \[P^2 = 0 : M_Q = 0.40, \quad E_\pi = 0.98, \quad \frac{F_\pi}{M_Q} = 0.50 \]

- Origin of pseudovector component: \(E_\pi \) drives \(F_\pi \)
 - RHS Bethe-Salpeter equation:
 \[\gamma_\mu S(k + P/2)i\gamma_5 E_\pi S(k - P/2)\gamma_\mu \]
 - Has pseudovector component
 \[\sim E_\pi[\sigma S(k_+)\sigma V(k_-) + \sigma S(k_-)\sigma V(k_+)] \]
Bethe-Salpeter amplitude can’t depend on relative momentum

⇒ General Form

\[\Gamma_\pi(P) = i\gamma_5 E_\pi(P) + \frac{1}{M_Q} \gamma \cdot PF_\pi(P) \]

Solve chiral-limit gap and Bethe-Salpeter equations

\[P^2 = 0 : M_Q = 0.40, \ E_\pi = 0.98, \ \frac{F_\pi}{M_Q} = 0.50 \]

Origin of pseudovector component: \(E_\pi \) drives \(F_\pi \)

RHS Bethe-Salpeter equation:

\[\gamma_\mu S(k + P/2)i\gamma_5 E_\pi S(k - P/2)\gamma_\mu \]

Hence \(F_\pi \) on LHS is forced to be nonzero because \(E_\pi \) on RHS is nonzero owing to DCSB
Bethe-Salpeter amplitude: General Form

\[\Gamma_\pi(P) = i\gamma_5 E_\pi(P) + \frac{1}{M_Q} \gamma \cdot PF_\pi(P) \]
Bethe-Salpeter amplitude: General Form

\[\Gamma_\pi(P) = i\gamma_5 E_\pi(P) + \frac{1}{M_Q} \gamma \cdot PF_\pi(P) \]

Asymptotic form of electromagnetic pion form factor
Bethe-Salpeter amplitude: General Form

\[\Gamma_\pi(P) = i\gamma_5 E_\pi(P) + \frac{1}{M_Q} \gamma \cdot P F_\pi(P) \]

Asymptotic form of electromagnetic pion form factor

\[E^2_\pi\text{-term} \Rightarrow F^{em}_{\pi E}(Q^2) \sim \frac{M^2}{Q^2}, \text{photon}(Q) \]
Bethe-Salpeter amplitude: General Form

\[\Gamma_\pi(P) = i\gamma_5 E_\pi(P) + \frac{1}{M_Q} \gamma \cdot P F_\pi(P) \]

Asymptotic form of electromagnetic pion form factor

- \(E_\pi^2 \)-term \(\Rightarrow F_{\pi E}^{em}(Q^2) \sim \frac{M^2}{Q^2}, \text{photon}(Q) \)
- \(E_\pi F_\pi \)-term.
Bethe-Salpeter amplitude: General Form

\[\Gamma_\pi(P) = i\gamma_5 E_\pi(P) + \frac{1}{M_Q} \gamma \cdot PF_\pi(P) \]

Asymptotic form of electromagnetic pion form factor

- \(E_\pi^2 \)-term \(\Rightarrow F_{\pi E}^{em}(Q^2) \sim \frac{M^2}{Q^2}, \text{photon}(Q) \)
- \(E_\pi F_\pi \)-term. Breit Frame:
 \(\text{pion}(P = (0, 0, -Q/2, iQ/2)) \)
Bethe-Salpeter amplitude: General Form

\[\Gamma_\pi(P) = i\gamma_5 E_\pi(P) + \frac{1}{M_Q} \gamma \cdot P F_\pi(P) \]

Asymptotic form of electromagnetic pion form factor

- \(E^2_\pi \)-term \(\Rightarrow F^{em}_E(Q^2) \sim \frac{M^2}{Q^2} \), photon\((Q)\)
- \(E_\pi F_\pi \)-term. Breit Frame:
 - pion\((P = (0, 0, -Q/2, iQ/2))\)
 - \(F^{em}_{EF}(Q^2) \sim 2 S \gamma \cdot (P + Q) F_\pi S \gamma_4 S E_\pi \)
Bethe-Salpeter amplitude: General Form

\[\Gamma_\pi(P) = i\gamma_5 E_\pi(P) + \frac{1}{M_Q} \gamma \cdot P F_\pi(P) \]

Asymptotic form of electromagnetic pion form factor

- \(E_\pi^2 \)-term \(\Rightarrow F_{E\pi}^{em}(Q^2) \sim \frac{M^2}{Q^2}, \text{photon}(Q) \)

- \(E_\pi F_\pi \)-term. Breit Frame:

 pion\((P = (0, 0, -Q/2, iQ/2))\)

 \[F_{E\pi}^{em}(Q^2) \sim 2 S \gamma \cdot (P + Q) E_\pi F_\pi S \gamma_4 S E_\pi \]

 \[\Rightarrow F_{E\pi}^{em}(Q^2) \propto \frac{Q^2}{M_Q^2} \frac{F_\pi}{E_\pi} \times E_\pi^2 \text{--term} = \text{constant!} \]
Bethe-Salpeter amplitude: General Form

\[\Gamma_\pi(P) = i\gamma_5 E_\pi(P) + \frac{1}{M_Q} \gamma \cdot P F_\pi(P) \]

Asymptotic form of electromagnetic pion form factor

\[E_\pi^2 \text{-term } \Rightarrow F_{\pi\text{E}}^\text{em}(Q^2) \sim \frac{M^2}{Q^2}, \text{ photon}(Q) \]

\[E_\pi F_\pi \text{-term. Breit Frame:} \]

\[\text{pion}(P = (0, 0, -Q/2, iQ/2)) \]

\[F_{\pi\text{E}}^\text{em}(Q^2) \sim 2 S \gamma \cdot (P + Q) F_\pi S \gamma_4 S E_\pi \]

\[\Rightarrow F_{\pi\text{E}}^\text{em}(Q^2) \propto \frac{Q^2}{M_Q^2} \frac{F_\pi}{E_\pi} \times E_\pi^2 - \text{term} = \text{constant!} \]

This behaviour dominates for \[Q^2 \gtrsim M_Q^2 \frac{E_\pi}{F_\pi} > 0.8 \text{ GeV}^2 \]
Computation: Elastic Pion Form Factor

- DSE prediction: $M(p^2)$; i.e., interaction $\frac{1}{|x - y|^2}$
- cf. $M(p^2) = \text{Constant}$; i.e., interaction $\delta^4(x - y)$
Computation: Elastic Pion Form Factor

- DSE prediction: $M(p^2)$; i.e., interaction $\frac{1}{|x - y|^2}$
- cf. $M(p^2) = \text{Constant}$; i.e., interaction $\delta^4(x - y)$

Single mass-scale parameter in both studies
DSE prediction: $M(p^2)$; i.e., interaction $\frac{1}{|x - y|^2}$

cf. $M(p^2) = \text{Constant}$; i.e., interaction $\delta^4(x - y)$

Single mass-scale parameter in both studies

Same predictions for $Q^2 = 0$ properties
Computation: Elastic Pion Form Factor

DSE prediction: $M(p^2)$; i.e., interaction $\frac{1}{|x - y|^2}$

cf. $M(p^2) = \text{Constant}$; i.e., interaction $\delta^4(x - y)$

Single mass-scale parameter in both studies

Same predictions for $Q^2 = 0$ properties

Disagreement $> 20\%$ for $Q^2 > M^2$
Trang: PhD Thesis (Kent State U.)
Trang, Tandy, Bashir, Roberts, in progress
Holt & Roberts: arXiv:1002.4666 [nucl-th]

Ratio – Kaon/Pion

u-valence distribution

data: Badier, *et al.*, Phys. Lett. **B 93** (1980) 354

Evolved u_k, u_π Pade fits at $q_0 = 0.57$ GeV to $q = 5$ GeV data: Badier, *et al.*, Phys. Lett. **B 93** (1980) 354
Ratio – Kaon/Pion

u-valence distribution

- **DSE–result obtained using interaction that predicted $F_\pi(Q^2)$**

![Graph showing u/K vs. x]

- Data: Badier, *et al.*, Phys. Lett. **B 93** (1980) 354

Craig Roberts – *Exposing the Dressed Quark’s mass*

4th Workshop on Exclusive Reactions at High Momentum Transfer, 18-21 May 2010... 27 – p. 19/28
DSE–result obtained using interaction that predicted $F_{\pi}(Q^2)$

Influence of $M(p^2)$ felt strongly for $x > 0.5$

QCD- $M(p^2) \Rightarrow$ prediction:

$u_{\pi,K}(x) \propto (1 - x)^2$

at resolving-scale

$Q_0 = 0.6 \text{ GeV}$
DSE–result obtained using interaction that predicted $F_\pi(Q^2)$

Influence of $M(p^2)$ felt strongly for $x > 0.5$

QCD-$M(p^2)$ ⇒ prediction:

$$u_{\pi,K}(x) \propto (1 - x)^2$$

at resolving-scale $Q_0 = 0.6$ GeV

$u_{\pi,K}(x = 1)$ invariant under DGLAP-evolution
DSE–result obtained using interaction that predicted $F_\pi(Q^2)$

Influence of $M(p^2)$ felt strongly for $x > 0.5$

QCD-$M(p^2) \Rightarrow$ prediction:

$u_{\pi,K}(x) \propto (1 - x)^2$

at resolving-scale

$Q_0 = 0.6 \text{ GeV}$

$u_{\pi,K}(x = 1)$ invariant under DGLAP-evolution

Accessible at Upgraded JLab & Electron-Ion Collider
How does one incorporate dressed-quark mass function, $M(p^2)$, in study of baryons? Behaviour of $M(p^2)$ is essentially a quantum field theoretical effect.
How does one incorporate dressed-quark mass function, $M(p^2)$, in study of baryons? Behaviour of $M(p^2)$ is essentially a quantum field theoretical effect.

In quantum field theory a nucleon appears as a pole in a six-point quark Green function.

- Residue is proportional to nucleon’s Faddeev amplitude
- Poincaré covariant Faddeev equation sums all possible exchanges and interactions that can take place between three dressed-quarks
How does one incorporate dressed-quark mass function, $M(p^2)$, in study of baryons? Behaviour of $M(p^2)$ is essentially a quantum field theoretical effect.

In quantum field theory a nucleon appears as a pole in a six-point quark Green function.

Residue is proportional to nucleon’s Faddeev amplitude

Poincaré covariant Faddeev equation sums all possible exchanges and interactions that can take place between three dressed-quarks

Tractable equation is founded on observation that an interaction which describes colour-singlet mesons also generates quark-quark (diquark) correlations in the colour-$\bar{3}$ (antitriplet) channel.
R. T. Cahill et al. Austral. J. Phys. 42 (1989) 129

Faddeev equation
Faddeev equation

\[p_q \Psi^a \rightarrow p_{dq} \Psi^b \rightarrow p_q \Psi^a \rightarrow p_{dq} \Psi^b \]
Faddeev equation

\[p_q \Psi^a \quad P \quad \Psi^b = p_d \Psi^a \quad P \quad \Psi^b \]

- Linear, Homogeneous Matrix equation
- Yields wave function (Poincaré Covariant Faddeev Amplitude) that describes quark-diquark relative motion within the nucleon
- Scalar and Axial-Vector Diquarks . . . In Nucleon’s Rest Frame Amplitude has . . . \(s- \), \(p- \) & \(d- \)–wave correlations
Nucleon-Photon Vertex

Craig Roberts – Exposing the Dressed Quark’s mass
4th Workshop on Exclusive Reactions at High Momentum Transfer, 18-21 May 2010
M. Oettel, M. Pichowsky and L. von Smekal, nu-th/9909082

Nucleon-Photon Vertex

6 terms . . . constructed systematically . . . current conserved automatically for on-shell nucleons described by Faddeev Amplitude
M. Oettel, M. Pichowsky and L. von Smekal, nu-th/9909082

Nucleon-Photon Vertex

6 terms ... constructed systematically ... current conserved automatically for on-shell nucleons described by Faddeev Amplitude

\[\Psi_f \rightarrow \Psi_i \]

\[P_f \rightarrow P_i \]

\[Q \]

\[\Gamma \]

\[\mu \]

axial vector scalar

Craig Roberts – Exposing the Dressed Quark’s mass
4th Workshop on Exclusive Reactions at High Momentum Transfer, 18-21 May 2010
Cloët, Roberts \textit{et al.}
- arXiv:0710.2059 [nucl-th]
- arXiv:0710.5746 [nucl-th]
- arXiv:0804.3118 [nucl-th]
- arXiv:0812.0416 [nucl-th] – \textit{Survey of nucleon EM form factors}

\[
\frac{\mu_n G_E(Q^2)}{G_M(Q^2)}
\]
Cloët, Roberts et al.
- arXiv:0710.2059 [nucl-th]
- arXiv:0710.5746 [nucl-th]
- arXiv:0804.3118 [nucl-th]
- arXiv:0812.0416 [nucl-th] – Survey of nucleon EM form factors

DSE-Faddeev Equation prediction

\[
\frac{\mu_n G_E(Q^2)}{G_M(Q^2)}
\]

- RCQM - Miller
- GPD - Diehl
- Kelly fit
- Galster fit/Kelly \(G_M^n\)
- q(qq) Faddeev&DSE

B. Wojtsekhowski, Jefferson Lab E02-013 Collaboration, in preparation.

Figure courtesy S. Riordan
Cloët, Roberts et al.
– arXiv:0710.2059 [nucl-th]
– arXiv:0710.5746 [nucl-th]
– arXiv:0804.3118 [nucl-th]
– arXiv:0812.0416 [nucl-th] – Survey of nucleon EM form factors

\[\mu_n G_E(Q^2) \]
\[G_M(Q^2) \]

DSE-Faddeev Equation prediction

Red solid curve

B. Wojtsekhowski, Jefferson Lab E02-013 Collaboration, in preparation.

Figure courtesy S. Riordan
Cloët, Roberts et al.
– arXiv:0710.2059 [nucl-th]
– arXiv:0710.5746 [nucl-th]
– arXiv:0804.3118 [nucl-th]
– arXiv:0812.0416 [nucl-th] – Survey of nucleon EM form factors

DSE-Faddeev Equation prediction

Red solid curve

This evolution very sensitive to momentum-dependence dressed-quark propagator

B. Wojtsekhowski, Jefferson Lab E02-013 Collaboration, in preparation.

Figure courtesy S. Riordan
Cloët, Roberts et al.
– arXiv:0710.2059 [nucl-th]
– arXiv:0710.5746 [nucl-th]
– arXiv:0804.3118 [nucl-th]
– arXiv:0812.0416 [nucl-th] – Survey of nucleon EM form factors

\[\frac{G^n_M(Q^2)}{\mu_n G_D(Q^2)} \]
DSE-Faddeev Equation prediction

\[\frac{G^n_M(Q^2)}{\mu_n G_D(Q^2)} \]

Cloët, Roberts \textit{et al.}
- arXiv:0710.2059 [nucl-th]
- arXiv:0710.5746 [nucl-th]
- arXiv:0804.3118 [nucl-th]
- arXiv:0812.0416 [nucl-th] – Survey of nucleon EM form factors

Jefferson Lab E12-07-104, 12GeV Proposal.
Gilfoyle, Brooks, Hafidi for CLAS Collaboration

Anticipated error bars show systematic uncertainty.

Solid - Kelly
Dotted - Alberico \textit{et al.}
Squares - CLAS12 anticipated
Green - Previous world data.
Red - J.Lachniet \textit{et al.}
Blue, dashed - Cloet \textit{et al.}
Cloët, Roberts et al.
– arXiv:0710.2059 [nucl-th]
– arXiv:0710.5746 [nucl-th]
– arXiv:0804.3118 [nucl-th]
– arXiv:0812.0416 [nucl-th] – Survey of nucleon EM form factors

\[\frac{G_M^n(Q^2)}{\mu_n G_D(Q^2)} \]

DSE-Faddeev Equation prediction

Blue long-dashed curve

Anticipated error bars show systematic uncertainty.

Solid - Kelly
Dotted - Alberico et al.
Squares - CLAS12 anticipated
Green - Previous world data.
Red - J.Lachniet et al.
Blue, dashed - Cloet et al.

Jefferson Lab E12-07-104, 12GeV Proposal.
Gilfoyle, Brooks, Hafidi for CLAS Collaboration
\[\frac{G_M^n(Q^2)}{\mu_n G_D(Q^2)} \]

Cloët, Roberts et al.
– arXiv:0710.2059 [nucl-th]
– arXiv:0710.5746 [nucl-th]
– arXiv:0804.3118 [nucl-th]
– arXiv:0812.0416 [nucl-th] – Survey of nucleon EM form factors

DSE-Faddeev Equation prediction

Blue long-dashed curve

Sensitivity to \(M(p^2) \) means experiments probe IR behaviour of strong running coupling

Jefferson Lab E12-07-104, 12GeV Proposal.

Gilfoyle, Brooks, Hafidi for CLAS Collaboration

Craig Roberts – *Exposing the Dressed Quark’s mass*

4th Workshop on Exclusive Reactions at High Momentum Transfer, 18-21 May 2010 . . . 27 – p. 24/28
Some current
12 GeV-related projects

Elucidate signals of $M(p^2)$ in Q^2-evolution of nucleon elastic and transition form factors; viz.,

- $N \rightarrow \Delta$
- $N \rightarrow P_{11}(1440)$

(M. Bhagwat, I. Cloët, H. Roberts)
Some current 12 GeV-related projects

- Elucidate signals of $M(p^2)$ in Q^2-evolution of nucleon elastic and transition form factors; viz.,
 - $N \rightarrow \Delta$
 - $N \rightarrow \text{P11}(1440)$
 (M. Bhagwat, I. Cloët, H. Roberts)

- Elucidate effects of DCSB in
 - light-quark meson spectrum, including so-called hybrids and exotics, using Poincaré-covariant symmetry-preserving Bethe-Salpeter equation (L. Chang, arXiv:0903.5461 [nucl-th])
 - hadron valence-quark distribution functions (A. Bashir, P.C. Tandy)
Some current 12 GeV-related projects

- Elucidate signals of \(M(p^2) \) in \(Q^2 \)-evolution of nucleon elastic and transition form factors; viz.,
 - \(N \rightarrow \Delta \)
 - \(N \rightarrow P_{11}(1440) \)

 (M. Bhagwat, I. Cloët, H. Roberts)

- Elucidate effects of DCSB in
 - light-quark meson spectrum, including so-called hybrids and exotics, using Poincaré-covariant symmetry-preserving Bethe-Salpeter equation (L. Chang, arXiv:0903.5461 [nucl-th])
 - hadron valence-quark distribution functions (A. Bashir, P.C. Tandy)

- Incorporate “resonant contributions” (pion cloud) in kernels of bound-state equations (e.g., arXiv:0802.1948 [nucl-th] & arXiv:0811.2018 [nucl-th]; and C.S. Fischer et al.)
Epilogue
DCSB exists in QCD.
DCSB exists in QCD.

- It is manifest in dressed propagators and vertices
DCSB exists in QCD.

- It is manifest in dressed propagators and vertices
- It predicts, amongst other things, that light current-quarks become heavy constituent-quarks: $4 \rightarrow 400$ MeV
- Pseudoscalar mesons are unnaturally light: $m_\rho = 770$ cf. $m_\pi = 140$ MeV
- Pseudoscalar mesons couple unnaturally strongly to light-quarks: $g_{\pi q\bar{q}} \approx 4.3$
- Pseudoscalar mesons couple unnaturally strongly to the lightest baryons $g_{\pi N\bar{N}} \approx 12.8 \approx 3g_{\pi q\bar{q}}$
DCSB impacts dramatically upon observables
DCSB impacts dramatically upon observables
- Spectrum; e.g., splittings: $\sigma - \pi$ & $a_1 - \rho$
- Elastic and Transition Form Factors
Epilogue

DCSB impacts dramatically upon observables

- Spectrum; e.g., splittings: $\sigma - \pi$ & $a_1 - \rho$
- Elastic and Transition Form Factors

But $M(p^2)$ is an *essentially* quantum field theoretical effect

- Exposing & elucidating its effect in hadron physics requires nonperturbative, symmetry preserving framework; i.e., Poincaré covariance, chiral and e.m. current conservation, etc.
DCSB impacts dramatically upon observables
- Spectrum; e.g., splittings: $\sigma - \pi$ & $a_1 - \rho$
- Elastic and Transition Form Factors
- But $M(p^2)$ is an essentially quantum field theoretical effect
- Exposing & elucidating its effect in hadron physics requires nonperturbative, symmetry preserving framework; i.e., Poincaré covariance, chiral and e.m. current conservation, etc.
- DSEs provide such a framework.
- Studies underway will identify observable signals of $M(p^2)$, the most important mass-generating mechanism for visible matter in the Universe
Epilogue

- DCSB impacts dramatically upon observables
 - Spectrum; e.g., splittings: $\sigma - \pi$ & $a_1 - \rho$
 - Elastic and Transition Form Factors
- But $M(p^2)$ is an essentially quantum field theoretical effect
 - Exposing & elucidating its effect in hadron physics requires nonperturbative, symmetry preserving framework; i.e., Poincaré covariance, chiral and e.m. current conservation, etc.
- DSEs provide such a framework.
 - Studies underway will identify observable signals of $M(p^2)$, the most important mass-generating mechanism for visible matter in the Universe
 - DSEs: Tool enabling insight to be drawn from experiment into long-range piece of interaction between light-quarks
Now is an exciting time . . .
Positioned to unify phenomena as apparently disparate as

- Hadron spectrum
- Elastic and transition form factors, from small- to large-Q^2
- Parton distribution functions
Now is an exciting time . . .

Positioned to unify phenomena as apparently disparate as

- Hadron spectrum
- Elastic and transition form factors, from small- to large-Q^2
- Parton distribution functions

Key: an understanding of both the fundamental origin of nuclear mass and the far-reaching consequences of the mechanism responsible; namely, *Dynamical Chiral Symmetry Breaking*
Section	Equation/Expression
1. Universal Truths	
2. QCD's Challenges	
3. Charting the Interaction	
4. Bound-state DSE	
5. BSE – General Form	
6. $\alpha_1 - \rho$	
7. Frontiers of Nuclear Science	
8. Goldberger-Treiman for pion	
9. GT – Contact Interaction	
10. Computation: $F_\pi(Q^2)$	
11. Kaon/Pion u-valence distribution	
12. Unifying Meson & Nucleon	
13. Faddeev equation	
14. Nucleon-Photon Vertex	
15. $\frac{\mu_n G_E(Q^2)}{G_M(Q^2)}$	
16. $\frac{G^n_M(Q^2)}{\mu_n G_D(Q^2)}$	
17. Current Projects	