Myrmecodia pendens Bulb Extract in the Lele Dumbo (*Clarias gariepinus*) Feed: Effects on the Growth Performance, Survival, and Blood Indices

Rudy Agung Nugroho¹,²*, Retno Aryani¹, Hetty Manurung³, Yanti Puspita Sari³ and Rudianto¹

¹Animal Physiology, Development and Molecular Laboratory, Department of Biology, Faculty of Mathematics and Natural Sciences, Mulawarman University, 75123, Indonesia
²Research Center of Medicine and Cosmetic from Tropical Rainforest Resources, PUI PT OKTAL, Mulawarman University
³Department of Biology of Faculty of Mathematics and Natural Sciences, Mulawarman University, 75123, Indonesia

*Correspondence: rudyagung.nugroho@fmipa.unmul.ac.id

Received: 2020-01-08
Accepted: 2021-10-04

Keywords: Blood profiles, *Clarias gariepinus*, Growth, *Myrmecodia pendens*, Survival

Abstract

This feeding experiment was performed to determine the effects of *Myrmecodia pendens* bulb extract (MBE) supplementation in fish feed on the growth, survival, and hemato-biochemical profile of *Clarias gariepinus*. A group of fish was fed with 0.25; 0.50; 1.0; 2.0% MBE and compared to the control group (without MBE) for 75 days of observation. At the end of the feeding trial, growth parameters, hematological profile such as red blood cells (RBC), white blood cells (WBC), Hemoglobin (Hb), Hematocrit (Htc), differential leukocyte, blood plasma biochemistry (glucose, total albumin, cholesterol, and triglyceride), the hepatosomatic (HSI) and intestinal somatic index (ISI) were measured. Survival of all fish was also counted every two weeks. Supplementation MBE above 0.25% resulted in significantly higher final biomass weight (FBW), body weight gain (BWG), and average weekly gain (AWG). Meanwhile, the fish group fed dietary MBE above 1.0% had a significantly higher specific growth rate (SGR) (3.32±0.15) than other groups. Fish fed 1.0% of MBE also showed a better value of feed conversion ratio (FCR) (1.13±0.03), Hb, and HSI compared to other groups. Survival, neutrophil, monocyte, and ISI of all groups were not affected by any concentration of MBE supplementation. Dietary MBE above 0.5% enhanced RBC, WBC, Hematocrit, platelet (PLT), lymphocyte, blood plasma biochemistry such as glucose, total albumin, and triglyceride. The cholesterol of fish fed MBE in the diet showed incrementally enhanced. The present finding suggested that 1.0% MBE in the diet of *Clarias gariepinus* is recommended to enhance growth, survival, and blood profiles.

INTRODUCTION

Ant nest plant (*Myrmecodia pendens*) contains bioactive compounds such as glycoside, vitamin, mineral, flavonoid, tocopherol, polyphenol, and tannin (Engida *et al.*, 2013; Sanjaya *et al.*, 2014; Sudiono *et al.*, 2015) which are useful as...
antioxidant and anticancer. The ant-nest plant also has an abundance of high antioxidant properties and medical activities (Hanh et al., 2016; Hertiani et al., 2010; Soeksmanto et al., 2010). Generally, the ant nest plant which can be found in several regions in Indonesia such as, Kalimantan and Papua uses as a traditional biomedicine such as supplement to recover after child birth in women and breastfeeding period (Firdausy and Nurlaila, 2016). The previous report stated that the ant-nest plant enhanced growth and blood profiles of *Pangasianodon hypophthalmus* (Nugroho et al., 2019), boosted macrophage phagocytosis activity and lymphocytes proliferation (Sumardi et al., 2013). Thus, the extract of this ant-nest plant might be the potential to be applied as a growth enhancer and immunomodulatory in fish such as *Clarias gariepinus*.

The *Clarias gariepinus* or known as catfish increasingly become an important commercial species in Europe, Africa, and part of Asia, including Indonesia. It is also one of the pivotal fish species cultured either indoor or outdoor in both tropical and subtropical regions (Sousa et al., 2013; Yakubu et al., 2014). The *C. gariepinus* has a high fecundity, resistances to diseases, and is easy to the captive, making its commercial importance species (Haylor and Mollah, 1995; Ljubobratovic et al., 2015; Noor El-Deen et al., 2014).

The health of fish can be evaluated by determining the immune status of fish using a blood profile (Chandel et al., 2009). The blood profile such as red blood cells (RBC), white blood cells (WBC), hemoglobin level (Hb), and differential WBC (lymphocyte, monocyte, granular, and neutrophil) is a pivotal tool that can be performed to determine fish physiology (Inama et al., 1993; Nugroho et al., 2017; Nugroho et al., 2016). Moreover, white blood cells have been generally used as an indicator to monitor the health indices of fish because white blood cell is an important part of the innate immune system, regulating fish immune defense (Ekman et al., 2013; Zhou et al., 2010). Besides blood profile, the intestine and hepar which are important digestive organs in the digestion system of nutrients from the feed are also pivotal organs to be used as a health indicator. Therefore, evaluating these organs are considered necessary as the digestive system is a good indicator for the nutritional status of fish and may relate to growth indices on feeding nutrition (Chowdhary et al., 2013; Heikkinen et al., 2006; Krogdahl et al., 2003).

However, the information regarding the effects of *M. pendens* bulbs extract (MBE) on the growth and blood indices of *C. gariepinus* is limited. To evaluate the health and growth performance of fish, various physiological tools such as: the increase of either total leukocyte or differential leukocyte count (Adel et al., 2015), phagocytosis activity (Bennani et al., 1995; Chi et al., 2016; Haugland et al., 2012) and other blood parameters have been also successfully performed as indicators of the health and immune status of fish (Abidin et al., 2016; Coutu et al., 2016; Jiang et al., 2015). The survival rate has been also applied in a variety of fish as a pivotal physiological tool (Cai et al., 2015). Thus, this research purpose was to determine the effects of different concentrations of dietary MBE addition on the growth and hemato-biochemistry of the blood profile of MBE-fed *C. gariepinus*. The fish survival rate was also recorded to evaluate the success of MBE supplementation in the diet.

METHODOLOGY

Place and Time

The present study had been conducted for 5 months (January-May 2020), starting from the preparation and trial of the study. All preparation, including extraction of Ant nest plant bulb, fish acclimatization, and experimental study had been performed in the Animal physiology, development and molecular laboratory, Department of Biology,
Facility of Mathematics and Natural Sciences, Mulawarman University, Samarinda, East Kalimantan, Indonesia.

Research Materials
The Ant nest plant bulb was provided from the local traditional market, Indonesia. The Ant nest plant bulb was washed, cut, and ground, resulting in a powder of ant nest plant bulb. The bulb powder was then extracted by using ethanol 96% for 2 days, followed by filtration. The filtrate was evaporated (Rotary evaporator), resulting in a crude extract. The crude extract was stored at 4 °C until being used. Meanwhile, fish were obtained from Local fish farmer, Samarinda East Kalimantan and acclimated for one week at Laboratory of Animal Physiology, Department of Biology, Universitas Mulawarman, Kalimantan Timur.

Research Design
A completely randomized design (CRD) which is the simplest design has been used in this present study. The current study used independent variables in the form of ant nest plant bulb extract with 5 various concentrations, including control. All various concentration was in triplicates, containing 15 fish per replication.

Work Procedures
Basal and Test Diet Preparation
The basal diet was a commercial diet (Hi Pro Vite FF-888), containing 36-38% crude protein, 2% crude lipid, 10% ash, 12% moisture, and 2% crude fiber. Meanwhile, a test diet was obtained by adding basal diet at different concentrations of MBE (0.25; 0.50; 1.0; 2.0%) and repelletized (0.5 mm in diameter, 0.5 mm in length) using a mincer and then dried in the oven at 50 °C. The dried pellets were cooled, placed at room temperature, and packed with plastic bags. The pellet was stored in a dark room, until being used as a control-basal diet (Without MBE addition) and test diets.

Animals and Experimental Preparation
In total two hundred and twenty-five fish (27.48±0.16 g initial weight) and randomly grouped into five triplet groups of fifteen fish each group. Each group of fish was then placed in a plastic tank container (60 L sized, 40 L freshwater in each tank). For 75 days, fish in each group was fed with several concentrations of MBE. Temperature, pH, and Dissolve Oxygen (DO) were measured every two weeks using a routine thermometer, pH meter, and TOA-dkk pH HM-7, TOA instrument, Japan. The fish in each plastic container tank was fed with a basal or treatment diet (3% of the bodyweight of fish per day). The remaining uneaten feed and feces were taken out by siphoning before adding fresh water.

Growth and Survival
On the initial and final day of the feeding trial, the initial (IW), final weight (FW), initial (IBW) and final biomass weight (FBW), body weight gain (BWG), daily weight gain (DWG), average weekly gain (AWG), specific growth rate (SGR), feed conversion ratio (FCR), feed efficiency (FE), and survival rate (SR), were calculated to measure the growth indices and feed utilization of fish fed with different concentrations of MBE. All growth indices were measured following previous research (Abdel-Tawwab et al., 2015; Githukia et al., 2015; Havas et al., 2015; Omosowone et al., 2015). Meanwhile, the survival rate of fish in each tank was noted every 2 weeks and calculated following the formula previously used by Okomoda et al. (2017).

Blood Profile
At the end of day 75, blood samples (n=6 fish per tank) were taken from the tail. Total leukocyte (10³ per mm³), the percentage of neutrophil, lymphocyte, monocyte, and Red blood cell (RBC), and
Hemoglobin (Hb) were evaluated by using Hematology Analyzer Mindray (BC28000, Mindray® Shenzhen, China). Meanwhile, plasma biochemistry glucose, total cholesterol, triglyceride was measured following the protocol of the assay kits (Sigma Aldrich, USA). Albumin was determined by using bromocresol green reagent and detected with a microplate reader (HBS-1101 Microplate Reader, China) at 630 nm.

Viscera Index

Hepar and intestines of the fish (n=6 per tank) were collected and weighed to measure the hepatosomatic (HSI) and intestinal somatic index (ISI) at the end of day 75. Both HIS and ISI were calculated using the equation described by Zhao et al., (2015).

Data Analysis

All data obtained are shown as means ± standard error (SE) and data were analyzed using SPSS version 24 (SPSS, Inc., USA). The data of the percentage of leukocyte, neutrophil, lymphocyte, monocyte, and survival were transformed to arcsine and subjected to one-way ANOVA, followed by Duncan Multiple Range Test to evaluate significant differences among the group of treatments. All significant tests were at P<0.05 levels.

RESULTS AND DISCUSSION

The average temperature, pH, DO, nitrate, ammonia during project research was 26.13 ± 0.12 °C, pH 7.45 ± 0.21, DO 6.01 ± 0.21 ppm, nitrite 0.10 ± 0.02 ppm, ammonia 0.10±0.01 ppm that classified in the range for C. gariepinus culture. The present finding showed that fish fed MBE with 0.5-1% concentration had significantly higher (P<0.05) final weight, final biomass weight, BWG, DWG, AWG, and SGR. Fish fed 1% of MBE in the diet had significantly better FCR (1.13±0.03) than control and 0.25-0.5%. The highest FCR (2.04±0.04) was found in the fish supplemented with 2% MBE in the diet. Survival of all fish groups was not affected by any concentration of MBE supplementation in the diet of C. gariepinus (Table 1).

Parameter	Control	0.25%	0.5%	1%	2%
IW (g)	27.38±0.44^a	27.24±0.47^a	27.68±0.42^a	27.53±0.61^a	27.54±0.47^a
FW (g)	85.09±1.23^a	86.81±1.90^a	142.26±1.62^b	138.99±1.81^b	137.38±1.10^b
IBW (g)	412.46±0.27^a	411.40±0.24^a	394.10±1.67^a	413.42±1.71^a	413.16±1.14^a
FBW (g)	1242.38±33.14^a	1281.85±21.81^a	2021.35±91.71^b	2024.38±40.34^b	1987.48±26.05^b
BWG	57.59±1.23^a	59.39±1.90^a	114.75±1.53^b	111.42±3.92^b	109.84±1.11^b
DWG	0.76±0.01^a	0.79±0.02^a	1.53±0.02^b	1.48±0.05^b	1.46±0.17^b
AWG	5.75±0.12^a	5.93±0.19^a	11.47±0.15^b	11.14±0.39^b	10.98±1.31^b
SGR	1.5±0.01^a	1.53±0.02^a	2.19±0.01^b	2.15±0.04^b	2.13±0.12^b
FCR	1.68±0.01^a	1.62±0.007^a	1.51±0.07^a	1.13±0.03^b	2.04±0.04^c
Survival	91.11±8.89^a	100.00±0.00^a	100.00±0.00^a	100.00±0.00^a	100.00±0.00^a

Table 1. Mean ± SE of growth parameters and visceral somatic index of *Clarias gariepinus* fed *Myrmecodia pendens* bulb ethanolic extract in the diet for 75 days.

Further, supplementation MBE higher than 0.5% in the diet of fish affected on RBC, WBC, hematocrit, PLT, and lymphocyte. Meanwhile, fish fed 0.25-2% MBE in the diet resulted in significantly increased hemoglobin.

https://e-journal.unair.ac.id/JAFH 24

Nugroho et al. (2022)
However, neutrophils and monocytes of fish were not affected by any concentration of MBE supplementation in the diet (Table 2). Fish fed MBE in a diet higher than 0.5% resulted in significantly different glucose, total albumin, and triglyceride. The incremental addition of MBE in the diet showed significantly stepping up Cholesterol in the blood plasma of fish until 1% of MBE (Table 3).

Table 2. Mean ± SE of blood profiles of Clarias gariepinus fed Myrmecodia pendens bulb ethanolic extract in the diet for 75 days.

Parameters	Control	0.25%	0.5%	1%	2%
RBC (10⁶µL⁻¹)	0.98±0.09a	0.86±0.14a	1.16±0.13a	1.61±0.01b	1.60±0.04a
WBC (10⁹µL⁻¹)	13.34±1.78a	16.30±0.77b	18.79±2.66b	26.89±2.05c	20.94±2.12ab
Hemoglobin (g dL⁻¹)	5.71±0.12a	7.04±0.52b	7.41±0.41b	8.82±0.12c	8.84±0.13c
Hematocrit (%)	14.31±1.43a	15.98±1.15ab	15.37±0.86a	18.54±0.37b	16.54±0.63ab
PLT (10⁹µL⁻¹)	16.14±0.54a	15.85±0.20a	27.71±0.24a	38.42±0.63b	25.28±0.11ab
Neutrophil (10⁶µL⁻¹)	0.35±0.05ab	0.67±0.04a	0.65±0.03a	0.91±0.03c	1.38±0.04a
Lymphocyte (10⁶µL⁻¹)	12.83±1.77a	8.39±1.16b	16.57±1.02a	23.02±0.29b	19.37±1.89
Monocyte (10⁶µL⁻¹)	0.14±0.04a	0.17±0.07a	0.24±0.09a	0.30±0.01b	0.32±0.05a

Note: RBC = Red blood cell, WBC = White blood cell, PLT = Platelet. Different alphabets (a,b,c) indicate significantly different means for different group of diets at p<0.05. Control diet without MBE (Myrmecodia pendens bulbs ethanolic extract) supplementation.

Table 3. Mean±SE of blood plasma biochemistry of Clarias gariepinus fed Myrmecodia pendens bulb ethanolic extract in the diet for 75 days.

Parameters	(mg dL⁻¹)	Control	0.25%	0.5%	1%	2%
Glucose	14.30±0.06a	14.45±0.08a	14.50±0.08a	15.71±0.05b	16.24±0.03c	
Total albumin	4.35±0.07a	4.45±0.06a	4.46±0.04a	5.16±0.06b	5.13±0.07b	
Cholesterol	141.90±1.75a	113.28±0.76b	101.51±0.51c	93.78±0.52d	93.16±0.53d	
Triglyceride	78.78±0.63a	79.15±0.31a	78.46±0.69a	71.28±0.61b	64.30±1.55c	

Note: Different alphabets (a,b,c,d) indicate significantly different means for different group of diets at p<0.05. Control diet without MBE (Myrmecodia pendens bulbs ethanolic extract) supplementation.

Furthermore, in visceral value, the highest hepatosomatic index (HSI) was found on fish fed 1-2% MBE in the diet, while the intestinal somatic index (ISI) was not affected by the addition of any concentration of MBE in the diet of fish (Table 4).

Table 4. Hepatosomatic (HSI) and intestinal somatic index (ISI) of Clarias gariepinus fed dietary Myrmecodia pendens bulb extract (MBE) in the diet for 75 days.

Parameters	Control	0.25%	0.5%	1%	2%
HSI	1.11±0.41a	1.23±0.31a	1.54±0.25a	2.74±0.42b	2.94±0.32a
ISI	1.62±0.32a	3.33±0.66a	1.66±0.26a	1.80±0.20b	2.41±0.40a

Note: Different alphabets (a,b) superscripts on the same row indicate significantly different means for a different group of diets at p<0.05. Control diet without MBE (Myrmecodia pendens bulbs ethanolic extract) supplementation.

Recently, the use of the plant as a feed additive to replace antibiotics for enhancing the growth parameters, health indices and meat quality of fish due to the phytochemicals such as flavonoids, phenolics, and pigments is gaining in popularity. Dietary inclusion of some plant-derived substances has been also
considered and proved to have a great economic value in the aquaculture field. The application of plant extracts in aquaculture fields to boost growth factors and immunity has attracted researchers due to their active ingredient (Abdel-Tawwab et al., 2018a; Adeshina et al., 2018; Farsani et al., 2019; Rahman et al., 2018; Tan et al., 2018).

The active ingredient derived from ethanolic plant extracts has been confirmed, containing active compounds namely saponin, triterpenoid, flavonoid, alkaloid, phenolic, and tannin (Barrett et al., 2018; Ogunleye et al., 2019). Some important secondary metabolite phytochemical compounds which abundant with antioxidant properties has been also found in ant nest plant (Sari et al., 2017) that might be useful for the animal, such as fish. The present finding revealed that the MBE addition in the diet of C. gariepinus improved growth indices such as final weight, final biomass weight, BWG, DWG, AWG, and SGR. This improvement might be due to the occurrence of phytochemical compounds which can act as primary antioxidants that related to fish physiology (Rattanachaikunsopon and Phumkhachorn, 2007) and as a growth stimulant on juvenile Pargus major (Ji et al., 2007), Carassius auratus (Ahilan et al., 2010), Catla catla (Kaleeswaran et al., 2011).

This finding is similar to previous results performed by Izzreen and Fadzelly (2013) who used flavonoid-containing Green Tea, Camellia sinensis L that enhanced the growth of Nile Tilapia, Oreochromis niloticus (Abdel-Tawwab et al., 2010). Moreover, phytochemical compounds such as triterpenoid, flavonoid, alkaloid, quinone, and phenolic have also been confirmed to increase many physiological indicators such as appetite, tonic, and immunity (Awad et al., 2019; Chakraborty et al., 2012; Sinha and Jindal, 2019).

Phytochemical content may be beneficial to enhance the innate immune system of fish to support their survival (Chakraborty et al., 2012). The previous finding confirmed that phytochemical extract has successfully promoted the survival rate of Cyprinus carpio (Mohamad and Abasali, 2010); (Oreochromis niloticus) (Akinwande et al., 2011), and marine ornamental fish (Dhanalaxmi and Vastrad (2014)) also stated that active phytochemicals from Cinnamomum verum increased the survival rate of Oreochromis niloticus post-Aeromonas hydrophila challenge (Abdel-Tawwab et al., 2018b). The present study, however, revealed that C. gariepinus fed MBE any concentration did not affect the survival rate. In contrast, another study revealed that the presence of tannin in the plant might be harmful to fish at high doses and has negative effects on fish such as Cyprinus carpio and Channa striatus (Viswaranjan et al., 1988).

Blood indices are a pivotal tool to determine fish health (He et al., 2015; Mallik et al., 2019; Suely et al., 2016; Wang et al., 2014). Blood indices such as red blood cells, white blood cells, hemoglobin, hematocrit value, and platelet are pivotal parameters to determine the physiological status of fish. Current research revealed that groups of fish fed with diet mixed with MBE showed significantly higher RBC, WBC, and Hb than the control group, confirming that MBE had beneficial to improved blood function properties.

A previous study found that the ethanolic extract of M. tuberosa that also contains phytochemical active such as phenolic improves the blood profile and immune system (Firdausy et al., 2016). The immunity of fish correlates with blood profile which is a pivotal indicator in the monitoring of fish health (Moazenzadeh et al., 2017; Simide et al., 2016; Soberon et al., 2014). Blood indices such as RBC, WBC, Hb, Hct, and PLT can be used to evaluate fish physiological conditions (Bilen et al., 2019; Velichkova et al., 2019). The WBC is generally used to monitor fish’s health status because it is an important parameter to their innate immune defense and functioning (Franz et
The present research found that WBC, Hb, and PLT of fish fed MBE above 0.25% in the diet showed significantly higher improvement than a control group. This finding is in line with previous studies, stating that plant extracts which contain active phytochemicals may enhance the value of WBC, Hb, neutrophil, monocyte, and lymphocyte in fish (Gavriil et al., 2019; Babahydar et al., 2014; Yuniar et al., 2017).

The mechanism of MBE in increasing blood parameters in the fish is not clearly defined and needs further research. Nevertheless, Nair et al. (2002); Lyu and Park (2005) stated that flavonoids from plant extract may boost IL-2 (Interleukin 2) and INFγ (Interferon) as bio catalystor in WBC metabolism which is important in nonspecific cellular immunity. Further, this mechanism also helps in decreasing RBC hemolysis and protecting the bio membrane of RBC from oxidative damage that destructs by free radicals (Asgary et al., 2005; Kitagawa et al., 1992). Thus, the current finding is similar to past research, confirming that MBE is capable of an antioxidant that can be used to protect the heme iron of RBC and increase erythropoiesis (Hamed and El-Sayed, 2019; Shatoor, 2011; Uboh et al., 2010).

The blood biochemical properties are useful to reflect fish health conditions and nutritional metabolism that determine the health performance of the fish in response to dietary supplementation (Hassaan et al., 2019; Turan and Gezer, 2018). The levels of triglycerides and cholesterol as energy metabolites are pivotal parameters in fish health (Eckel et al., 2005). Either triglyceride or cholesterol has some important biological functions such as storing energy, signaling, and acting as pivotal structural components of cell membranes. The change value of both energy metabolites may lead to health disturbance in most vertebrate species. Moreover, triglycerides level is a general indicator of the health of liver function, while cholesterol level is a nutritional status (Brum et al., 2018).

The current study revealed that Fish fed MBE in the diet above 0.5% resulted in significantly decreased cholesterol and triglyceride, while glucose and total albumin of fish were significantly increased. This finding is similar to the previous study, performed by Brum et al. (2018) who stated that cholesterol and triglycerides of Nile tilapia fed 0.5-1.5% clove basil in their diet showed a significant reduction. Other reports revealed that the albumin, cholesterol, glucose, and triglyceride levels in the blood plasma of Oreochromis mossambicus fed dietary medicinal plant extracts groups showed significantly higher than fish in control groups (Immanuel et al., 2009).

In contrast, hybrid grouper (Epinephelus lanceolatus ♀ × Epinephelus fuscoguttatus ♂) fed dietary Panax notoginseng extract in the diet found significantly reduce glucose level in the plasma (Sun et al., 2018). According to Ribeiro et al. (2016) feeding a fish for example Tambaqui Colossoma macropomum with diets containing plant extract improved plasma glucose and showed no stress in fish treatment groups, similar to those of the control group. Moreover, the increase in total albumin may also relate to sufficient feed and supplementation intake.

The value of hepatosomatic (HSI) and intestinal somatic index (ISI) are parameters that can be used as a liver and intestinal health indicator for fish (Chakraborty et al., 2015; Elabbd et al., 2019). The present study found that supplementation of MBE between 1-2% resulted in significantly higher HSI than other groups, while dietary any concentration of MBE in the diet did not change ISI of C. gariepinus. This finding is supported by a past report that revealed that there were no significant differences in viscerosomatic index among all groups of hybrid grouper (Epinephelus lanceolatus ♀ × Epinephelus fuscoguttatus ♂) fed.
dietary ginkgo biloba leaf extract (Tan et al., 2018).

Another report also stated that Nile tilapia (GIFT strain) fed an Aloe vera addition in the diet resulted in a significant increase in HSI, but viscerosomatic indices shown not significantly different (Panase et al., 2018). The increasing HSI may be due to the phytochemicals in the MBE extract that can trigger a fish's hepatic cells to boost their ability to store biochemical nutrients in the body of fish such as glucose, amino acids, and lipid. Further, the biochemical nutrients can be released into the bloodstream, transferred to target cells, and converted into energy (Lucas and Watson, 2002). In addition, the high HSI also reflects the increment of liver cell size which can enhance growth, store more lipid in the fish body to maintain energy level, and combat some environmental stressors (Klaunig et al., 1979; Panase et al., 2018).

CONCLUSION

The supplementation of Myrmecodia pendens bulb extract (MBE) supports growth, increases blood indices, and plasma biochemistry of Clarias gariepinus. Dietary 1% MBE in the feed of C. gariepinus is beneficial and recommended to increase the growth and blood parameters function of the fish. Nevertheless, further research needs to be done to evaluate the phytochemical active ingredient of those plants on fish physiology (including antioxidant activity and responses molecular). In addition, a challenge test using fish pathogenic bacteria concerning the effects of MBE supplementation need to be done to evaluate the effects of MBE on the immune system and other physiology parameters.

ACKNOWLEDGMENT

The authors would like to thank Kemenristekdikti (Ministry of Research and Technology General Higher Education) for funding this project through Penelitian Dasar Unggulan Perguruan Tinggi (PDUPT) 2019, contract number 179/UN.17.41/KL/2019.

REFERENCES

Abdel-Tawwab, M., Adeshina, I., Jenyo-Oni, A., Ajani, E.K. and Emikpe, B.O., 2018a. Growth, physiological, antioxidants, and immune response of African catfish, Clarias gariepinus (B.), to dietary clove basil, Ocimum gratissimum, leaf extract and its susceptibility to Listeria monocytogenes infection. Fish Shellfish Immunology, 78, pp.346-354. http://doi.org/10.1016/j.fsi.2018.04.057

Abdel-Tawwab, M., Ahmad, M.H., Seden, M. E.A. and Sakr, S.F.M., 2010. Use of green tea, Camellia sinensis L., in practical diet for growth and protection of Nile Tilapia, Oreochromis niloticus (L.), against Aeromonas hydrophila infection. Journal of the World Aquaculture Society, 41(S2), pp.203-213. http://doi.org/10.1111/j.1749-7345.2010.00360.x

Abdel-Tawwab, M., Hagras, A.E., Elbaghdady, H.A.M. and Monier, M.N., 2015. Effects of dissolved oxygen and fish size on Nile tilapia, Oreochromis niloticus (L.): growth performance, whole-body composition, and innate immunity. Aquaculture International, 23, pp.1261-1274. http://doi.org/10.1007/s10499-015-9882-y

Abdel-Tawwab, M., Samir, F., Abd El-Naby, A.S. and Monier, M.N., 2018b. Antioxidative and immunostimulatory effect of dietary cinnamon nanoparticles on the performance of Nile tilapia, Oreochromis niloticus (L.) and its susceptibility to hypoxia stress and Aeromonas hydrophila infection. Fish & Shellfish Immunology, 74, pp.19-25. http://doi.org/10.1016/j.fsi.2017.12.033

Abidin, D.A.Z., Hashim, M., Das, S.K., Rahim, S.M. and Mazlan, A.G., 2016. Enzymatic digestion of
stomachless fish Zenarchopterus buffonis. AACL Bioflux, 9(3), pp.695-703. http://www.bioflux.com.ro/docs/2016.695-703.pdf

Adel, M., Amirii, A.A., Zorriezhahra, J., Nematolahi, A. and Esteban, M.A., 2015. Effects of dietary peppermint (Mentha piperita) on growth performance, chemical body composition and hematological and immune parameters of fry caspian white fish (Rutilus frisii kutum). Fish & Shellfish Immunology, 45(2), pp.841-847. http://dx.doi.org/10.1016/j.fsi.2015.06.010

Adeshina, I., Jenyo-Oni, A., Emikpe, B.O., Ajani, E.K. and Abel-Tawwab, M., 2018. Stimulatory effect of dietary clove, Eugenia caryophyllata, bud extract on growth performance, nutrient utilization, antioxidant capacity, and tolerance of African catfish, Clarias gariepinus (B.), to Aeromonas hydrophila infection. Journal of the World Aquaculture Society, 50, pp.390-405. http://doi.org/10.1111/jwasc.12565

Ahilan, B., Nithiyapriyatharshini, A. and Ravaneshwaran, K., 2010. Influence of certain herbal additives on the growth, survival and disease resistance of goldfish, Carassius auratus (Linnaeus). Tamilnadu Journal of Veterinary Animal Science, 6, pp.5-11.

Akinwande, A., Dada, A. and Moody, F., 2011. Effect of dietary administration of the phytochemical “genistein” (3, 5, 7, 3, 4 pentahydroxyflavone) on masculine tilapia, Oreochromis niloticus. Elixir aqua, 33, pp.2231-2233.

Asgary, S., Naderi, G.H. and Askari, N., 2005. Protective effect of flavonoids against red blood cell hemolysis by free radicals. Experimental and clinical cardiology, 10(2), pp.88-90. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2716227/

Awad, E., Austin, D., Lyndon, A. and Awaad, A., 2019. Possible effect of hala extract (Pandanus tectorius) on immune status, anti-tumour and resistance to Yersinia ruckeri infection in rainbow trout (Oncorhynchus mykiss). Fish & Shellfish Immunology, 87, pp.620-626. https://doi.org/10.1016/j.fsi.2019.02.012

Babahyrdari, S.B., Dorafshan, S., Heyrati, F.P., Soofiyan, N.M. and Vahabi, M.R., 2014. The physiological changes, growth performance and whole body composition of common carp, Cyprinus carpio fed on diet containing wood betony, Stachys lavandulifolia extract. Journal of Agricultural Science and Technology, 16, pp.1565-1574. http://hdl.handle.net/123456789/4029

Barrett, A.H., Farhadi, N.F. and Smith, T.J., 2018. Slowing starch digestion and inhibiting digestive enzyme activity using plant flavanols/tannins—A review of efficacy and mechanisms. LWT - Food Science and Technology, 87, pp.394-399. http://doi.org/10.1016/j.lwt.2017.09.002

Bennani, N., Schmid-Alliana, A. and Lafaurie, M., 1995. Evaluation of phagocytic activity in a teleost fish, Dicentrarchus labrax. Fish & Shellfish Immunology, 5(3), pp.237-246. http://doi.org/10.1016/S1050-4648(05)80017-8

Bilen, S., Kenanoglu, O.N., Terzi, E., Ozdemir, R.C. and Sonmez, A.Y., 2019. Effects of tetra (Cotinus coggyria) and common mallow (Malva sylvestris) plant extracts on growth performance and immune response in Gilthead Sea bream (Sparus aurata) and European Sea bass (Dicentrarchus labrax). Aquaculture, 512, 734251. http://doi.org/10.1016/J.Aquaculture.2019.734251

Brum, A., Pereira, S.A., Cardoso, L., Chagas, E.C., Chaves, F.C.M., Mourino, J.L.P. and Martins, M.L., 2018. Blood biochemical parameters and melanomacrophage centers in Nile tilapia fed essential oils of clove basil and ginger. Fish & Shellfish...
Cai, Z., Li, W., Mai, K., Xu, W., Zhang, Y. and Ai, Q., 2015. Effects of dietary size-fractionated fish hydrolysates on growth, activities of digestive enzymes and aminotransferases and expression of some protein metabolism related genes in large yellow croaker (Larimichthys crocea) larvae. Aquaculture, 440, pp.40-47. http://dx.doi.org/10.1016/j.aquaculture.2015.01.026

Chakraborty, S.B., Molnár, T., and Hancz, C., 2016. Carob seed germ meal in diets for meagre (Argyronomus regius) juveniles: Growth, digestive enzymes, intermediary metabolism, liver and gut histology. Aquaculture, 451, pp.396-404. http://dx.doi.org/10.1016/j.aquaculture.2015.10.007

Dhanalaxmi, R. and Vastrad, J., 2014. Phyto constituents: an analysis of cinnamon (Cinnamomum verum) leaf extracts. Asian Journal of Home Science, 9, pp.319-321. http://researchjournal.co.in/upload/assignment/9_319-321.pdf

Dhayanithi, B.N., Kumar, T.T.A., Balasubramanian, T. and Tissera, K., 2013. A study on the effect of using mangrove leaf extracts as a feed additive in the progress of bacterial infections in marine ornamental fish. Journal of Coastal Life Medicine, 1(3), pp.217-224. https://doi.org/10.12980/JCLM.1.20133D317

Eckel, R.H., Grundy, S.M. and Zimmet, P.Z., 2005. The metabolic syndrome. The Lancet, 365(9468), pp.1415-1428. http://doi.org/10.1016/S0140-6736(05)66378-7

Ekman, A., Wallberg, O., Joelsson, E. and Börjesson, P., 2013. Possibilities for sustainable biorefineries based on agricultural residues – A case study of potential straw-based ethanol production in Sweden. Applied Energy, 102, pp.299-308. http://dx.Emma Hallberg, Åsa Karlsson, Filip Rosén, Elin Enquist, Sanne Ekman, Sofia Hedström, and Malin Ekman, 2014. Can we reduce antibiotic use in fish farming? A systematic review of the effects on fish health and the environment. Aquaculture, 425-426, pp.26-32. http://doi.org/10.1016/j.aquaculture.2014.06.002

Chowdhary, S., Srivastava, P.P., Jena, J., Yadav, A.K., Dayal, R., Mishra, S. and Srivastava, S.M., 2013. Histological studies of the intestine in threatened Asian catfish (Clarias batrachus) fingerlings fed with animal or plant origin protein blended with glucosamine. International Journal of Fisheries and Aquatic Studies, 1(2), pp.50-55. http://krishi.icar.gov.in/jspui/handle/123456789/4674

Couto, A., Barroso, C., Guerreiro, I., Pousão-Ferreira, P., Matos, E., Peres, H., Oliva-Teles, A. and Enes, P., 2016. Carob seed germ meal in diets for meagre (Argyronomus regius) juveniles: Growth, digestive enzymes, intermediary metabolism, liver and gut histology. Aquaculture, 451, pp.396-404. http://dx.doi.org/10.1016/j.aquaculture.2015.10.007

Dhanalaxmi, R. and Vastrad, J., 2014. Phyto constituents: an analysis of cinnamon (Cinnamomum verum) leaf extracts. Asian Journal of Home Science, 9, pp.319-321. http://researchjournal.co.in/upload/assignment/9_319-321.pdf

Dhayanithi, B.N., Kumar, T.T.A., Balasubramanian, T. and Tissera, K., 2013. A study on the effect of using mangrove leaf extracts as a feed additive in the progress of bacterial infections in marine ornamental fish. Journal of Coastal Life Medicine, 1(3), pp.217-224. https://doi.org/10.12980/JCLM.1.20133D317

Eckel, R.H., Grundy, S.M. and Zimmet, P.Z., 2005. The metabolic syndrome. The Lancet, 365(9468), pp.1415-1428. http://doi.org/10.1016/S0140-6736(05)66378-7

Ekman, A., Wallberg, O., Joelsson, E. and Börjesson, P., 2013. Possibilities for sustainable biorefineries based on agricultural residues – A case study of potential straw-based ethanol production in Sweden. Applied Energy, 102, pp.299-308. http://dx.
doi.org/10.1016/j.apenergy.2012.07.016

Elabd, H., Soror, E., El-Asely, A., El-Gawad, E.A. and Abbass, A., 2019. Dietary supplementation of Moringa leaf meal for Nile tilapia Oreochromis niloticus: Effect on growth and stress indices. The Egyptian Journal of Aquatic Research, 45(3), pp.265-271. https://doi.org/10.1016/j.ejar.2019.05.009

Engida, A.M., Kasim, N.S., Tsigie, Y.A., Ismadji, S., Huynh, L. H. and Ju, Y.H., 2013. Extraction, identification and quantitative HPLC analysis of flavonoids from sarang semut (Myrmecodia pendan). Industrial Crops and Products, 41, pp.392-396. http://dx.doi.org/10.1016/j.indcrop.2012.04.043

Farsani, M.N., Hoseinifar, S.H., Rashidian, G., Farsani, H.G., Ashouri, G. and Van Doan, H., 2019. Dietary effects of Coriandrum sativum extract on growth performance, physiological and innate immune responses and resistance of rainbow trout (Oncorhynchus mykiss) against Yersinia ruckeri. Fish & Shellfish Immunology, 91, pp.233-240. https://doi.org/10.1016/j.fsi.2019.05.031

Firdausy, A.F., Nurilaia and Sasmito, E., 2016. Acute toxicity of non-hexane fraction of ethanolic extract of ant-plant (Myrmecodia tuberosa (Jack) Bl.) hypocotyls in rats. International Journal of Pharmaceutical and Clinical Research, 8(1), pp.6-9. https://doi.org/10.25258/ijpcr.v8i1.2

Franz, A.C., Faass, O., Köllner, B., Shved, N., Link, K., Casanova, A., Wenger, M., D’Cotta, H., Baroiller, J.F., Ullrich, O., Reinecke, M. and Eppler, E., 2016. Endocrine and local IGF-I in the bony fish immune system. Biology, 5(1), p.9. http://doi.org/10.3390/biology5010009

Gavriil, L., Detopoulou, M., Petsini, F., Antonopoulou, S. and Fragopoulou, E., 2019. Consumption of plant extract supplement reduces platelet activating factor-induced platelet aggregation and increases platelet activating factor catabolism: a randomised, double-blind and placebo-controlled trial. British Journal of Nutrition, 121(9), pp.982-991. http://doi.org/10.1017/S0007114519000308

Githuka, C.M., Ogello, E.O., Kembenny, E.M., Achieng, A.O., Obiero, K.O. and Munguti, J.M., 2015. Comparative growth performance of male monosex and mixed sex Nile tilapia (Oreochromis niloticus L.) reared in earthen ponds. Croatian Journal of Fisheries : Ribarstvo, 73(1), pp.20-25. https://doi.org/10.14798/73.1.788

Hamed, H.S. and El-Sayed, Y.S., 2019. Antioxidant activities of Moringa oleifera leaf extract against pendimethalin-induced oxidative stress and genotoxicity in Nile tilapia, Oreochromis niloticus (L.). Fish Physiology and Biochemistry, 45, pp.71-82. http://doi.org/10.1007/s10695-018-0535-8

Hanh, N.P., Phan, N.H.T., Thuan, N.T.D., Hanh, T.T.H., Vien, L.T., Thao, N.P., Thanh, N.V., Cuong, N.X., Binh, N.Q., Nam, N.H., Kiem, P.V., Kim, Y.H. and Minh, C.V., 2016. Two new simple iridoids from the ant-plant Myrmecodia tuberosa and their antimicrobial effects. Natural Product Research, 30, pp.2071-2076. http://doi.org/10.1080/14786419.2015.1113412

Hassaan, M.S., Mohammady, E.Y., Soaudy, M.R., El-Garhy, H.A.S., Moustafa, M.M.A., Mohamed, S.A. and El-Haroun, E.R., 2019. Effect of Silybum marianum seeds as a feed additive on growth performance, serum biochemical indices, antioxidant status, and gene expression of Nile tilapia, Oreochromis niloticus (L.) fingerlings. Aquaculture, 509, pp.178-187. https://doi.org/10.1016/j.aquaculture.2019.05.006
Haugland, G.T., Jakobsen, R.A., Vestvik, N., Ulven, K., Stokka, L. and Wergeland, H.I., 2012. Phagocytosis and respiratory burst activity in lump sucker (Cyclopterus lumpus L.) leukocytes analysed by flow cytometry. PLoS ONE, 7, e47909. http://doi.org/10.1371/journal.pone.0047909

Havas, M., Kumar, S., Nagy, Z., Beliczky, G., Nagy, S., Bercsény, M. and Gál, D., 2015. Effects of feeding regime on growth feed conversion and size variation of Silurus glanis. Croatian Journal of Fisheries : Ribarstvo, 73(4), pp.142-147. http://doi.org/1 0.14798/73.4.846

Haylor, G.S. and Mollah, M.F.A., 1995. Controlled hatchery production of african catfish, Clarias gariepinus: The influence of temperature on early development. Aquatic Living Resources, 8(4), pp.431-438. https://doi.org/10.1051/alr:1995051

He, J., Qiang, J., Gabriel, N.N., Xu, P. and Yang, R., 2015. Effect of feeding-intensity stress on biochemical and hematological indices of gift tilapia (Oreochromis niloticus). Turkish Journal of Fisheries and Aquatic Sciences, 15, pp.303-310. http://doi. org/10.4194/1303-2712-v15_2_12

Heikkinen, J., Vielma, J., Kemiläinen, O., Tiirola, M., Eskelinen, P., Kiuru, T., Navia-Paldanuis, D. and von Wright, A., 2006. Effects of soybean meal based diet on growth performance, gut histopathology and intestinal microbota of juvenile rainbow trout (Oncorhynchus mykiss). Aquaculture, 261(1), pp.259-268. https://doi.org /10.1016/j.aquaculture.2006.07.01 2

Hertiani, T., Sasmito, E., Sumardi and Ulfah, M. 2010. Preliminary study on immunomodulatory effect of sarang-semut tubers Myremedia tuberosa and Myrmecodia pendens. OnLine Journal of Biological Sciences, 10(3), pp.136-141. https://doi.org/10.3844/ojbsci.2010.136.141

Immanuel, G., Uma, R.P., Iyapparaj, P., Citarasu, T., Peter, S.M.P., Babu, M.M. and Palavesam, A., 2009. Dietary medicinal plant extracts improve growth, immune activity and survival of tilapia Oreochromis mossambicus. Journal of Fish Biology, 74(7), pp.1462-1475. http://doi.org/10.1111/j.1095-8649.2009.022 12.x

Inama, L., Diré, S., Carturan, G. and Cavazza, A., 1993. Entrapment of viable microorganisms by SiO2 sol-gel layers on glass surfaces: Trapping, catalytic performance and immobilization durability of Saccharomyces cerevisiae. Journal of Biotechnology, 30(2), pp.197-210. http://dx.doi.org/10.1016/0168-1656(93)90113-2

Izzreen, M.N.N.Q. and Fadzelly, M.A.B., 2013. Phytochemicals and antioxidant properties of different parts of Camellia sinensis leaves from Sabah Tea Plantation in Sabah, Malaysia. International Food Research Journal, 20(1), pp.307-312. http://www.ifrj.upm.edu.my/ volume-20-2013.html

Ji, S.C., Takaoka, O., Jeong, G.S., Lee, S.W., Ishimaru, K., Seoka, M. and Takii, K., 2007. Dietary medicinal herbs improve growth and some non-specific immunity of red sea bream Pagrus major. Fisheries Science, 73, pp.63-69. http://doi.org/10.1111/j.1444-2906.2007.013 02.x

Jiang, J., Feng, L., Tang, L., Liu, Y., Jiang, W. and Zhou, X., 2015. Growth rate, body composition, digestive enzymes and transaminase activities, and plasma ammonia concentration of different weight Jian carp (Cyprinus carpio var. Jian). Animal Nutrition, 1(4), pp.373-377. http://dx.doi.org/10.1016/j.aninu. 2015.12.006

Kaleeswaran, B., Ilavenil, S. and Ravikumar, S., 2011. Growth response, feed conversion ratio and antiprotease activity of Cynodon
dactylon (L.) mixed diet in Catla catla (Ham.). *Journal of Animal and Veterinary Advances*, 10(4), pp.511-517. http://doi.org/10.3923/javaa.2011.511.517

Kitagawa, S., Fujisawa, H. and Sakurai, H., 1992. Scavenging effects of dihydric and polyhydric phenols on superoxide anion radicals, studied by electron spin resonance spectrometry. *Chemical and Pharmaceutical Bulletin*, 40(2), pp.304-307. http://doi.org/10.1248/cpb.40.304

Klaunig, J.E., Lipsky, M.M., Trump, B.F. and Hinton, D.E., 1979. Biochemical and ultrastructural changes in teleost liver following subacute exposure to PCB. *Journal of Environmental Pathology and Toxicology*, 2(4), pp.953-963. https://europepmc.org/article/med/109562

Krogdahl, Å., Bakke-Mckellep, A.M. and Baeverfjord, G., 2003. Effects of graded levels of standard soybean meal on intestinal structure, mucosal enzyme activities, and pancreatic response in Atlantic salmon (*Salmo salar* L.). *Aquaculture Nutrition*, 9(6), pp. 361-371. http://doi.org/10.1046/j.1365-2095.2003.00264.x

Kumar, G.D., Karthik, M., Rajakumar, R. and Baskar, K., 2019. Effects of *Avicennia marina* extracts on *Labeo rohita* (Ham) challenged with *Pseudomonas fluorescens*. *Biotechnology Research and Innovation*, 3(1), pp.54-59. https://doi.org/10.1016/j.biori.2018.10.002

Ljubobratović, U., Kucsa, B., Feledi, T., Poleksić, V., Marković, Z., Lenhardt, M., Peteri, A., Kumar, S. and Rónyai, A., 2015. Effect of weaning strategies on growth and survival of pikeperch, *Sander lucioperca*, larvae. *Turkish Journal of Fisheries and Aquatic Sciences*, 15, pp.325-331. http://doi.org/10.4194/1303-2712-v15_2_15

Lucas, A. and Watson, J.J., 2002. *Bioenergetics of aquatic animals*. CRC Press. Florida.

Lyu, S.Y. and Park, W.B., 2005. Production of cytokine and NO by RAW 264.7 macrophages and PBMC in vitro incubation with flavonoids. *Archives of Pharmacal Research*, 28, p.573. http://doi.org/10.1007/BF02977761

Mallik, A.R., Shammi, Q.J. and Telang, S., 2019. Formulation of Fish Feed Using Medicinal Herb *Curcuma amada* and Its Biochemical and Haematological Changes in *Labeo rohita*. *Journal of Drug Delivery Therapeutics*, 9(3-S), pp.96-99. https://doi.org/10.22270/jddt.v9i3.s.2800

Moazenzadeh, K., Islami, H.R., Zamini, A. and Soltani, M., 2017. Dietary zinc requirement of Siberian sturgeon (*Acipenser baerii*, Brandt 1869) juveniles, based on the growth performance and blood parameters. *International Aquatic Research*, 9, pp.25-35. http://doi.org/10.1007/s40071-015-0153-6

Mohamad, S. and Abasali, H., 2010. Effect of plant extracts supplemented diets on immunity and resistance to *Aeromonas hydrophila* in common carp (*Cyprinus carpio*). *Agricultural Journal*, 5(2), pp.119-127. http://doi.org/10.3923/aj.2010.119.127

Nair, M.P.N., Kandaswami, C., Mahajan, S., Chadha, K.C., Chawda, R., Nair, H., Kumar, N., Nair, R.E. and Schwartz, S.A., 2002. The flavonoid, quercetin, differentially regulates Th-1 (IFNγ) and Th-2 (IL4) cytokine gene expression by normal peripheral blood mononuclear cells. *Biochimica et Biophysica Acta (BBA) - Molecular Cell Research*, 1593(1), pp.29-36. http://doi.org/10.1016/S0167-4889(02)00328-2

Noor El-Deen, A.I., Zaki, M.S. and Shalby, S.I., 2014. Increasing catfish production as a try to combat growth crayfish in the river nile and its branches. *Life Science*, 11(9),

https://e-journal.unair.ac.id/JAFH

Nugroho et al. (2022)
Nugroho, R.A., Rudi, E.H., Sari, Y.P., Aryani, R. and Rudianto, 2019. Growth performance and blood profiles of striped catfish (Pangasianodon hypophthalmus) fed leaves extract of Myrmecodia tuberosa. Nusantara Bioscience, 11(1), pp.89-96. https://doi.org/10.13057/nusbiosci/n110115

Nugroho, R.A., Manurung, H., Nur, F.M. and Prahestika, W., 2017. Terminalia catappa L. Extract Improves Survival, Hematological Profile and Resistance to Aeromonas hydrophila in Betta sp. Archives of Polish Fisheries, 25(2), pp.103-115. http://doi.org/10.1515/aopf-2017-0010

Nugroho, R.A., Manurung, H., Saraswati, D., Ladyescha, D. and Nur, F.M., 2016. The effects of Terminalia catappa L. leaves extract on the water quality properties, survival and blood profile of ornamental fish (Betta sp.) cultured. Biosaintifika: Journal of Biology & Biology Education, 8(2), pp.240-247. https://doi.org/10.15294/biosaintifika.v8i2.6519

Ogunleye, A., Darda, F.O. and Hassan, M., 2019. Phytochemical and antimicrobial activity evaluation of the ethanolic leaf extract of Mitracarpus scabrum. FUDMA Journal of Agricultural Technology, 3, pp.115-118.

Okomoda, V.T., Tiamiyu, L.O. and Wase, G., 2017. Effects of tank background colour on growth performance and feed utilization of African catfish Clarias gariepinus (Burchell, 1822) fingerling. Croatian Journal of Fisheries : Ribarstvo, 75(1), pp.5-11. http://doi.org/10.1515/cjf-2017-0002

Omosowone, O., Dada, A. and Adeparusi, E., 2015. Effects of dietary supplementation of fumaric acid on growth performance of african catfish Clarias gariepinus and Aeromonas sobria challenge. Croatian Journal of Fisheries : Ribarstvo, 73(1), pp.13-19. https://doi.org/10.14798/73.1.782

Panase, P., Kamee, B., Moungmor, S., Tipdacho, P., Matidtor, J. and Sutthi, N., 2018. Effects of Euphorbia hirta plant leaf extract on growth performance, hematological and organosomatic indices of hybrid catfish, Clarias macrocephalus × C. gariepinus. Fisheries Science, 84, pp.1025-1036. https://doi.org/10.1016/j.fsi.2018.08.024

Rattanachaikunsopon, P. and Phumkhachorn, P., 2007. Bacteriostatic effect of flavonoids isolated from leaves of Psidium guajava on fish pathogens. Fitoterapia, 78(6), pp.434-436. https://doi.org/10.1016/j.fitote.2007.03.015

Ribeiro, S.C., Castelo, A.S., da Silva, B.M.P., Cunha, A.D.S., Proietti Junior, A.A. and Oba-Yoshioka, E.T., 2016. Hematological responses of tambaqui Colossoma macropomum (Serrasalmidae) fed with diets supplemented with essential oil from Mentha piperita (Lamiaceae) and challenged with Aeromonas hydrophila. Acta Amazonica, 46(1), pp.99-106. https://doi.org/10.1590/1809-4392201501284

Sanjaya, R.E., Tedjo, Y.Y., Kurniawan, A., Ju, Y.H., Ayucitra, A. and Ismadji, S., 2014. Investigation on supercritical CO2 extraction of phenolic-phytocemicals from an epiphytic plant tuber (Myrmecodia pendans). Journal of CO2 Utilization, 6, pp.26-
33. http://dx.doi.org/10.1016/j.jco.u.2014.03.001
Sari, Y.P., Kustiawan, W., Sukartiningsih and Ruchaeini, A., 2017. The potential of secondary metabolites of Myrmecodia tuberosa from different host trees. Nusantara Bioscience, 9(2), pp.170-174. http://doi.org/10.13057/nusbiosci/n090211

Shatoor, A.S., 2011. Acute and sub-acute toxicity of Crataegus aronia Syn. Azarolus (L.) whole plant aqueous extract in wistar rats. American Journal of Pharmacology & Toxicology, 6(2), pp.37-45. http://doi.org/10.3844/ajptsp.2011.37.45

Simide, R., Richard, S., Prévoit-D’Alvise, N., Miard, T. and Gaillard, S., 2016. Assessment of the accuracy of physiological blood indicators for the evaluation of stress, health status and welfare in Siberian sturgeon (Acipenser baerii) subject to chronic heat stress and dietary supplementation. International Aquatic Research, 8, pp.121-135. http://doi.org/10.1007/s40071-016-0128-z

Sinha, R and Jindal, R., 2019. Augmenting fish health using Emblica officinalis against triarylmethane dye induced blood toxicity in Cyprinus carpio. Aquaculture Research, 50(6), pp.1644-1650. https://doi.org/10.1111/are.14044

Soberon, L., Mathews, P. and Malherios, A., 2014. Hematological parameters of Colossoma macropomum naturally parasitized by Anacanthorus spathulatus (Monogenea: Dactylogiridae) in fish farm in the Peruvian Amazon. International Aquatic Research, 6, pp.251-255. http://doi.org/10.1007/s40071-014-0087-1

Soeksmanto, A., Subroto, M.A., Wijaya, H. and Simanjuntak, P., 2010. Anticancer activity test for extracts of Sarang semut plant (Myrmecodya pendens) to HeLa and MCM-B2 cells.

Pakistan Journal of Biological Sciences, 13(3), pp.148-151. http://doi.org/10.3923/pjbs.2010.148.151

Sousa, S.M.N., Freccia, A., Santos, L.D., Meurer, F., Tessaro, L. and Bombardelli, R.A., 2013. Growth of Nile tilapia post-larvae from broodstock fed diet with different levels of digestible protein and digestible energy. Revista Brasileira de Zootecnia, 42(8), pp.535-540. http://dx.doi.org/10.1590/S1516-35982013000800001

Sudiono, J., Oka, C.T. and Trisfilha, P., 2015. The Scientific Base of Myrmecodia pendans as Herbal Remedies. British Journal of Medicine and Medical Research, 8(3), pp.230-237. http://doi.org/10.9734/BJMMR/2015/17465

Suely, A., Zaped, H., Ahmed, A.B.A., Mohamad, J., Nasiruddin, M., Sahu, J.N. and Ganesan, P., 2016. Toxicological and hematological effect of Terminalia arjuna bark extract on a freshwater catfish, Heteropneustes fossilis. Fish Physiology and Biochemistry, 42, pp.431-444. http://doi.org/10.1007/s10695-015-0149-3

Sumardi, Herti, T. and Sasmoto, E., 2013. Ant Plant (Myrmecodia tuberosa) Hypocotyl Extract Modules TCD4+ and TCD8+ Cell Profile of Doxorubicin-Induced Immune-Suppressed Sprague Dawley Rats In Vivo. Scientia Pharmaceutica, 81(4), pp.1057-1069. https://doi.org/10.3797/scip.harm.1302-03

Sun, Z., Tan, X., Ye, H., Zou, C., Ye, C. and Wang, A., 2018. Effects of dietary Panax notoginseng extract on growth performance, fish composition, immune responses, intestinal histology and immune related genes expression of hybrid grouper (Epinephelus lanceolatus♂ × Epinephelus fuscoguttatus♀) fed high lipid diets. Fish Shellfish Immunology, 73, pp.234-244.
Effects of dietary Ginkgo biloba leaf extract on growth performance, plasma biochemical parameters, fish composition, immune responses, liver histology, and immune and apoptosis-related genes expression of hybrid grouper (Epinephelus lanceolatus♀ × Epinephelus fuscoguttatus♂) fed high lipid diets. *Fish & Shellfish Immunology*, 72, pp.399-409. https://doi.org/10.1016/j.fsi.2017.10.022

Turan, F. and Gezer, A., 2018. Preliminary assessment of the effect of dietary *Pelargonium sidoides* extract on the haematological profile of common carp, *Cyprinus carpio* Linneaus, 1758. *Journal of the Black Sea/Mediterranean Environment*, 24(3), pp.246-254. https://blackmediterranenalo.org/wp-content/uploads/5-2018-2-243_246-254.pdf

Uboh, F.E., Okon, I.E. and Ekong, M.B., 2010. Effect of aqueous extract of *Psidium guajava* leaves on liver enzymes, histological integrity and hematological indices in rats. *Gastroenterology Research*, 3(1), pp.32-38. http://doi.org/10.4021/grr2010.02.174w

Velichkova, K., Sirakov, I., Stoyanova, S., Zhelyazkov, G., Staykov, Y. and Slavov, T., 2019. Effect of *Acorus calamus* L. extract on growth performance and blood parameters of common carp (*Cyprinus carpio* L.) cultivated in a recirculation system. *Journal of Central European Agriculture*, 20(2), pp.585-591. https://doi.org/10.5513/JCEA01/2019.2.2544

Viswaranjan, S., Beena, S. and Palavesam, A., 1988. Effect of tannic acid on the protein, carbohydrate and lipid levels in the tissues of the fish *Oreochromis mossambicus*. *Environment and Ecology*, 6, pp.289-292.

Wang, A., Han, G., Lv, F., Yang, W., Huang, J. and Yin, X., 2014. Effects of dietary lipid levels on growth performance, apparent digestibility coefficients of nutrients, and blood characteristics of juvenile crucian carp (*Carassius auratus* gibelio). *Turkish Journal of Fisheries and Aquatic Sciences*, 14(1), pp.1-10. http://doi.org/10.4194/1303-2712-v14_1_01

Yakubu, A.F., Nwogu, N.A., Olaji, E.D., Ajiboye, O.O., Apochi, J.O., Adams, T.E., Obule, E.E. and Eke, M., 2014. A comparative study on growth performance and survival rate of *Clarias gariepinus* Burchell, 1822 and *Heterobranchus longifilis* Valenciennes, 1840 under water recirculation system. *Agriculture, Forestry and Fisheries*, 3(1), pp.30-33. http://doi.org/10.11648/j.aff.20140301.16

Yuniar, I., Darmanto, W. and Soegianto, A., 2017. Effect of saponin-pods extract *Acacia (Acacia mangium)* to hematocrit, hemoglobin at Tilapia (*Oreochromis niloticus*). *UNEJ e-Proceeding*, pp.67-69. https://jurnal.une.ac.id/index.php/prosiding/article/view/4138

Zhao, Y., Hu, Y., Zhou, X.Q., Zeng, X.Y., Feng, L., Liu, Y., Jiang, W.D., Li, S.H., Li, D.B., Wu, X.Q., Wu, C.M. and Jiang, J., 2015. Effects of dietary glutamate supplementation on growth performance, digestive enzyme activities and antioxidant capacity in intestine of grass carp (*Ctenopharyngodon idella*). *Aquaculture Nutrition*, 21(6), pp.935-941. https://doi.org/10.1111/anu.12215

Zhou, Z.D., Li, G.Y. and Li, Y.J., 2010. Immobilization of *Saccharomyces cerevisiae* alcohol dehydrogenase on hybrid alginate–chitosan beads. *International Journal of Biological Macromolecules*, 47(1), pp.21-26. http://dx.doi.org/10.1016/j.ijbiomac.2010.04.001