Prioritizing Medication Management Criteria of National Hospital Accreditation Standards Using FDANP Model

Fatemeh Izadpanah¹, Maryam Shiehmorteza², Amirissa Rahimpour³ and Mandana Moradi⁴*

¹Laboratory Research Center of Food and Drug Control, IRFDA, MOHME, Tehran, Iran.
²Department of Clinical Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
³Azad University, Sciences and Researches Branch, Tehran, Iran.
⁴Department of Clinical Pharmacy, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JPRI2020/v32i30415
Editor(s):
(1) Rafik Karaman, Al-Quds University, Palestine.
Reviewers:
(1) Neven Saleh Khalil Saeh, Higher Institute of Engineering in El-Shorouk, Egypt.
(2) Shigeki Matsubara, Jichi Medical University, Japan.
(3) Ranakishor Pelluri M. Pharm, Vignan Pharmacy College, India.
Complete Peer review History: http://www.sdiarticle4.com/review-history/55780

Received 21 January 2020
Accepted 28 March 2020
Published 01 April 2020

ABSTRACT

Introduction: Accreditation is an evaluating tool of health care systems especially in hospitals: Iran’s Ministry of Health emphasizes its importance. We attempted this descriptive study to classify medication management criteria of hospital accreditation standards using a hybrid approach of fuzzy DEMATEL based on ANP (FDANP).

Methods: This study included all Iran’s hospitals. Nine medication management criteria and their sub-criteria were evaluated. AHP questionnaire was used for data collection.

Results: The following were demonstrated to be effective: The standards of safe storage of drugs and medical equipment, and providing practical procedure for reporting and controlling medication

*Corresponding author: E-mail: mmandana310@gmail.com;
Keywords: Accreditation standards; medication management; hospitals.

1. INTRODUCTION

All organizations need efficient performance-evaluation systems like accreditation standards to provide productive feedbacks [1]. Accreditation standards are important tools of improving clinical practice and organizational performance [2]. These standards are defined as "desired and achievable level of performance against which actual performance is measured" [3]. These standards enable "health service organizations, large and small, to embed practical and effective quality improvement and patient safety initiatives into their daily operations [3]. In fact, without an efficient accreditation, an organization won't be able to promote its services or products to safe, reliable and cost-effective ones [4]. Concerns about accreditation of health care services has significantly increased over the past few decades and nowadays it becomes a prerequisite of all health organizations including hospitals [5]. In short, the goal of national and international accreditation agencies, like International Society for quality in Health Care, are seeking standards for continuous quality improvement of health industry [6].

Hospital Pharmacy Services are designed to meet medical needs of all hospitalized patients [1,7]. These services include supplying required drugs considering national regulations, providing drug monitoring, drug information and educational services is necessary [8]. Considering the crucial role of hospital pharmacies in patient care cycle, it is necessary for hospitals to use proper accreditation standards to optimize their pharmaceutical care services [9]. These standards are one of the most important strategic tools to detect both defects and strong points as well as opportunities of improvement in all levels of pharmaceutical cares [10]. Pharmacy accreditation standards should cover different aspects of pharmaceutical care, from staff training to pharmacy missions [11]. Put all these together, accreditation standards will improve the efficiency and productivity of all systems, help to achieve their goals, decrease costs and significantly improve human resources [12]. This model combines fuzzy decision making trial and evaluation laboratory (DEMATEL) with fuzzy analytical network process (ANP) to determine the global weighs of each standard and their impact relation map as well as their classification and priorities [13]. The aim of our study was to classifying medication management standards of national hospital accreditation using a fuzzy hybrid quantitative approach consisting of fuzzy decision making trial and laboratory (FDEMATEL) and fuzzy analytic network process (FANP) techniques known as FDANP.

2. MATERIALS AND METHODS

This is a descriptive study on all hospitals all around Iran in 2018. We used judgmental sampling method to prioritize 9 medication management criteria and their sub-criteria using 10 accreditation experts view. These experts had Ph.D or master degree and more than 10 years related work experience. We used hybrid approach of fuzzy DEMATEL based on ANP (FDANP) method for statistical analysis of data. We used Analytic Hierarchy Process (AHP) technique to organize data collection questionnaire. Here the step by step stages of our study procedure are presented achieve aim.

1. Identification of Lean, Agile, Resilient and Green Paradigms Practices Initially, according to literature review of the research a set of practices
2. Generating the Fuzzy Direct Relation Matrix
3. Normalizing the Fuzzy Direct-Relation Matrix
4. Attaining the Fuzzy Total-Relation Matrix of Practices and Paradigms
5. Drawing the Cause-Effect Diagram of Paradigms and Practices
6. Forming the Initial Super Matrix
7. Obtaining the Weighted Super Matrix
8. Limiting the Weighted Super Matrix
9. Calculating Paradigm's Weight
10. Determining the Priority of criteria
Table 1. Accreditation standards and their measures

Standards	Measures	Cod
24 hour access to drugs and medical equipment (C1)	Developing and maintaining drug formulary by hospital Drug and therapeutic Committee Availability of all drugs covered by hospital formulary in all hospital wards.	C11
Safe storage of drugs and medical equipment based on national quality standards (C2)	Developing and practicing safe drug and medical equipment storage requirements Store refrigerated medications correctly Storage, distribution and administration of opioids considering national regulations	C21
Safe distribution of drugs and single use medical equipment (C3)	Monitoring prescribing errors in patients files Monitoring medication errors through process of transferring drug orders from patient files to hospital information system. Safe preparation of high-risk and cytotoxic drugs by pharmacist	C31
Safe procedure of providing drugs and medical equipment(C4)	Providing detailed procedure of getting drugs and medical equipment Monitoring amount and storage conditions of drugs and medical equipment Safe restoration of un-used drugs and medical equipment to pharmacy	C41
Safe drug and medical equipment administration (C5)	Safe administering of single used medical equipment Safe administering of multiple used medical equipment Safe storage of high risk and cytotoxic drugs with alarm signs	C51
Continuous monitoring of drugs and medical equipment utilization (C6)	Drug use evaluation especially for antibiotics Managing ordering procedure of drugs that are not covered by hospital formulary	C61
Providing practical procedure for expired and recalled drugs disposal (C7)	Safe disposal of expired drugs and medical equipment considering national regulations Safe removing of recalled drugs	C71
Patient medication review by pharmacist on doctor request (C8)	Access to patient information as name, sex, weight, age, any allergies, diagnosis and… Medication therapy review by Clinical Pharmacists at least in ICUs and CCUs	C81
Providing practical procedure for reporting and controlling medication errors (C9)	Monitoring drug errors Providing information about look alike and sound alike drugs Providing preventive procedures for medication errors and adverse drug reactions in drug and therapeutic committee.	C91
Table 2. The values of \(R \), \(D \), \((D + R)^{def} \), \((D - R)^{def} \)

Effect status	\((D - R)^{def} \)	\((D + R)^{def} \)	\(R \)	\(D \)	Standards and measures
Effective	0.0409	1.6185	(0.1974, 0.4862, 1.9854)	(0.2103, 0.5208, 2.0668)	C1
Effective	0.0078	0.3647	(0.0432, 0.1069, 0.4568)	(0.0501, 0.1153, 0.4642)	C11
Affected	-0.0078	0.376	(0.0.517, 0.1192, 0.4775)	(0.0448, 0.1108, 0.4701)	C12
Affected	-0.0178	1.5675	(0.2048, 0.4874, 1.9909)	(0.1928, 0.474, 1.9587)	C2
Effective	0.0003	0.5975	(0.0.859, 0.1908, 0.727)	(0.0966, 0.1974, 0.7041)	C21
Affected	-0.005	0.5171	(0.0688, 0.1608, 0.6538)	(0.0635, 0.154, 0.6528)	C22
Effective	0.0047	0.519	(0.0671, 0.1561, 0.6493)	(0.0617, 0.1563, 0.6732)	C23
Effective	-0.0148	1.4207	(0.1729, 0.4266, 1.8448)	(0.1735, 0.4137, 1.8108)	C3
Effective	0.0217	0.4488	(0.0503, 0.1201, 0.5638)	(0.0654, 0.1391, 0.5973)	C31
Effective	-0.0189	0.3892	(0.0406, 0.1069, 0.5618)	(0.0242, 0.0876, 0.5413)	C32
Effective	-0.0465	1.5184	(0.1981, 0.4779, 1.976)	(0.1723, 0.4396, 1.8923)	C4
Effective	0.0111	0.4679	(0.0474, 0.1266, 0.6131)	(0.0545, 0.1377, 0.628)	C41
Effective	0.0258	0.5412	(0.059, 0.1512, 0.6694)	(0.0684, 0.1712, 0.7231)	C42
Affected	-0.0368	0.4507	(0.0599, 0.1432, 0.6288)	(0.0434, 0.1121, 0.5602)	C43
Affected	-0.0503	1.3766	(0.1704, 0.4221, 1.8392)	(0.1514, 0.3801, 1.7411)	C5
Affected	-0.0053	0.3097	(0.0235, 0.0704, 0.4658)	(0.025, 0.0684, 0.447)	C51
Effective	0.0034	0.4133	(0.0391, 0.1073, 0.566)	(0.0391, 0.1101, 0.574)	C52
Effective	0.0019	0.4286	(0.0.401, 0.1144, 0.5844)	(0.0386, 0.1136, 0.5952)	C53
Effective	0.0835	1.4906	(0.1668, 0.4161, 1.8151)	(0.2095, 0.4844, 1.9698)	C6
Effective	-0.0068	0.3022	(0.0362, 0.0883, 0.4051)	(0.0305, 0.0802, 0.4)	C61
Effective	0.0068	0.3042	(0.0313, 0.081, 0.4016)	(0.037, 0.0891, 0.4067)	C62
Affected	-0.0424	1.3601	(0.1722, 0.4113, 1.8102)	(0.1514, 0.3771, 1.7299)	C7
Effective	0.0044	0.2578	(0.0249, 0.0647, 0.3526)	(0.0281, 0.0688, 0.3587)	C71
Affected	-0.0044	0.2547	(0.0.277, 0.0672, 0.3561)	(0.0245, 0.0631, 0.35)	C72
Effective	-0.0185	1.5186	(0.1944, 0.4657, 1.9484)	(0.1895, 0.4531, 1.9044)	C8
Effective	0.0032	0.2897	(0.032, 0.0792, 0.3826)	(0.0374, 0.0833, 0.3817)	C81
Effective	-0.0032	0.3552	(0.0444, 0.1065, 0.4593)	(0.039, 0.1024, 0.4602)	C82
Effective	0.0659	1.6689	(0.2015, 0.4959, 2.0127)	(0.2278, 0.5464, 2.1489)	C9
Effective	0.0053	0.6531	(0.0951, 0.2117, 0.7771)	(0.0965, 0.2141, 0.7921)	C91
Affected	-0.026	0.5556	(0.0797, 0.183, 0.7175)	(0.0704, 0.1634, 0.6619)	C92
Effective	0.0207	0.6374	(0.0864, 0.1976, 0.7517)	(0.0943, 0.2148, 0.7923)	C93
Table 3. The final weight of medication management standards

Final weight and prioritization of standards	Cod	Final weight of measures and prioritization	Relative weight of measures and prioritization
24 hour access to drugs and medical equipment (C1)	0.1177	0.0569 2	0.4834 C11
Safe storage of drugs and medical equipment based on national quality standards (C2)	0.1202	0.0443 1	0.3686 C21
Safe distribution of drugs and single use medical equipment(C3)	0.104	0.0356 1	0.3423 C31
Safe procedure of providing drugs and medical equipment (C4)	0.1172	0.0366 3	0.3123 C41
Safe drug and medical equipment administration (C5)	0.1037	0.0272 3	0.2623 C51
Continuous monitoring of drugs and medical equipment utilization (C6)	0.1019	0.0502 2	0.4926 C61
Providing practical procedure for expired and recalled drugs disposal (C7)	0.1026	0.0509 2	0.4961 C71
Patient medication review by pharmacist on doctor request (C8)	0.1137	0.067 1	0.5893 C81
Providing practical procedure for reporting and controlling medication errors (C9)	0.1197	0.0429 1	0.3584 C91
The medication management criteria and their sub-criteria are described in Tables 1, 2, 3.

Fuzzy Direct Relation Matrix described in Table 2.

The final weight of each criteria and related sub-criteria are shown in Table 3.

3. RESULTS

As shown in Table 4, safe storage of drugs and medical equipment, (weighting 0.1202) and Continuous monitoring of drugs and medical equipment utilization (weighing 0.1019) has the highest and lowest priorities respectively.

4. DISCUSSION

In his regard, nine criteria and 23 related sub-criteria were evaluated. The impact of accreditation programs on different aspects of health care systems as patient safety, cost, quality managements have been investigated in several studies [14-18]. Their results proved accreditation as an important tool for improving standards of patient care. So focus on implementation accreditation standards in different health care settings as well as optimizing its measures is one of the most serious concerns of all health regulatory systems[19, 20]. In this study we initially identified, influencing and effectiveness of criteria and sub - criteria on each other using fuzzy dematel method [21]. The results of this study showed that paradigms of safe storage of drugs and medical equipment’s and providing practical procedure for reporting and controlling medication errors are effective and the other paradigms are affected. On the other hand paradigm of continuous monitoring of drugs and medical equipment utilization is the most affected one that is affected by all other paradigms [22].

According to the results, safe storage of drugs and medical equipment’s is the most important paradigms among medication management criteria of hospital accreditation standards, on one hand, and has the most interaction with other paradigms, on the other hand [22, 23]. Since it is believed that safe storage of drugs and medical equipment’s is pre-requisite for other pharmacy related services, therefore hospitals should be more focused on implementing and employing practical procedures of its principles, to provide appropriate infrastructures [24-26]. It is also recommended to concentrate and invest more on affective paradigms and review their measures more often to improve pharmaceutical care and also hospitals final ranking level evaluated by national accreditation standards.

University Type	Level 1	Level 2
Legal Private	C9 (88.1%)	C9 (88.1%)
Real Private	C8 (100%)	C8 (100%)
Charity	C7 (72.2%)	C7 (72.2%)
Public	C6 (69.72%)	C6 (69.72%)
Private	C5 (88.88%)	C5 (88.88%)
	C4 (88.88%)	C4 (88.88%)
	C3 (100%)	C3 (100%)
	C2 (90.49%)	C2 (90.49%)
	C1 (86.1%)	C1 (86.1%)
	Z (90.49%)	Z (90.49%)

Table 4. Hospitals calculated points and final level
5. CONCLUSION

The results of the study showed that some standards ranked first with highest score and other standard had lowest score in different hospitals all over Iran. We also observed public hospitals affiliated to Ministry of Health and Medical Education had highest points in each scored level.

CONSENT

It is not applicable.

ETHICAL APPROVAL

It is not applicable.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Hamzah NM, See KF. Technical efficiency and its influencing factors in Malaysian hospital pharmacy services. Health Care Management Science. 2019;22(3):462-74.

2. Abdelrahman Z, Zhang QY, Yang CQ. Comparative study between China 2018 national accreditation standard for teaching quality of clinical pharmacy and ACPE 2015 Accreditation standards and guidelines. Indian Journal of Pharmaceutical Education and Research. 2019;53(4):629-37.

3. Evans D. Review of training and education standards applied to pharmacy based travel medicine services in the UK. Primary Health Care: Open Access. 2019;9(2):1-6.

4. Harnett JE, UNG COL, Hu H, Sultani M, Desselle SP. Advancing the pharmacist’s role in promoting the appropriate and safe use of dietary supplements. Complementary therapies in medicine. 2019;44:174-81.

5. Gibson C, White A. Patients as teachers of cultural sensitivity in pharmacy education. Innovations in Pharmacy. 2019;10(4):7.

6. Frey M, Trapskin K, Margolis A, Sutter S, Cory P, Decker C. Pharmacist-reported
practice change as a result of a statewide community pharmacy accreditation program. Journal of the American Pharmacists Association. 2019;59(3):403-9.

7. Alhusein N, Watson MC. Quality indicators and community pharmacy services: A scoping review. International Journal of Pharmacy Practice. 2019;27(6):490-500.

8. Kruger J, Vaidya R, Sokn E. Pharmacy management. Clinical Pharmacy Education, Practice and Research: Elsevier. 2019;41-58.

9. Alston GL, Marsh W, Castleberry AN, Kelley KA, Boyle EG. Pharmacists opinions of the value of specific applicant attributes in hiring decisions for entry-level pharmacists. Research in Social and Administrative Pharmacy. 2019;15(5):536-45.

10. Seybert AL, Smithburger PL, Benedict NJ, Kobulinsky LR, Kane-Gill SL, Coons JC. Evidence for simulation in pharmacy education. Journal of the American College of Clinical Pharmacy. 2019;2(6):686-92.

11. Moon JY, Lounsbery JL, Schweiss SK, Pittenger AL. Mapping the postgraduate year one pharmacy accreditation standards to the core entrustable professional activities. Journal of the American College of Clinical Pharmacy. 2020;3(1):81-6.

12. Baker DM, Colaizzi JL, Leite K, Buerki RA, Higby GJ, McCarthy RL, et al. Teaching history of pharmacy in US pharmacy schools. American Journal of Pharmaceutical Education. 2019;83(1).

13. Manivel P, Ranganathan R. An efficient supplier selection model for hospital pharmacy through fuzzy AHP and fuzzy TOPSIS. International Journal of Services and Operations Management. 2019;33(4):468-93.

14. Chung KP, Yu TH. Are quality improvement methods a fashion for hospitals in Taiwan? International Journal for Quality in Health Care. 2012;24(4):371-9.

15. Abdallah A, Haddadin BM, Al-Ateyfat HM, Haddad LJ, Al-Sharif SL. Investigating the Applicability of EFQM and KAI/IT in Jordanian healthcare organizations: A case study. Jordan Journal of Mechanical & Industrial Engineering. 2013;7(1).

16. Song P, Li W, Zhou Q. An outpatient antibacterial stewardship intervention during the journey to JCI accreditation. BMC Pharmacology and Toxicology. 2014;15(1):8.

17. Merkow RP, Chung JW, Paruch JL, Bentrem DJ, Bilimoria KY. Relationship between cancer center accreditation and performance on publicly reported quality measures. Annals of Surgery. 2014;259(6):1091-7.

18. Saleh SS, Bou Sleiman J, Dagher D, Sbeit H, Natfegi N. Accreditation of hospitals in Lebanon: is it a worthy investment? International Journal for Quality in Health Care. 2013;25(3):284-90.

19. Laroche M, Roussel P, Mascret N, Cury F. Health regulatory focus, selection optimization and compensation strategy and sports practice: A mediational analysis. The Spanish Journal of Psychology. 2019;22.

20. Götz K, Courtier A, Stein M, Strelau L, Sunderer G, Vidaurre R, et al. Risk perception of pharmaceutical residues in the aquatic environment and precautionary measures. Management of Emerging Public Health Issues and Risks: Elsevier. 2019;189-224.

21. Shahin A, Masoomi B, Shafiei MA. Ranking the obstacles of green supply chain management using fuzzy approaches of TOPSIS and DEMATEL with a case study in a pharmaceutical industry. International Journal of Logistics Systems and Management. 2019;33(3):404-19.

22. Alkhateeb FM, Arkle S, McDonough SL, Latif DA. Review of national and international accreditation of pharmacy programs in the gulf cooperation council countries. American Journal of Pharmaceutical Education. 2018;82(10).

23. Bansal A, Shukla VK, Chauhan S, SP YK, Kumar S. Drug regulatory paradigm and challenges for Medical devices in India. International Journal of Drug Regulatory Affairs (IJDRA). 2019;7(1):25-33.

24. Sadkowska J, Caban M, Chmielewski M, Stepnowski P, Kumirska J. The use of gas chromatography for determining pharmaceutical residues in clinical, cosmetic, food and environmental samples.
in the light of the requirements of sustainable development. Archives of Environmental Protection. 2019;45.

25. Fauziah F, Surachman E, Muhtadi A. Integration of service quality and quality function deployment as an effort of pharmaceutical service improvement on outpatient in a referral Hospital Karawang, Indonesia. Journal of Advanced Pharmacy Education & Research. 2019;9(2).

26. Bazzell B, Kelling S, Diez H, Klein K. Identifying opportunities for improvement in safety and efficacy of community pharmacy immunization programs. Journal of Pharmacy Practice. 2019;32(4):428-33.

© 2020 Izadpanah et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle4.com/review-history/55780