The relationship between tourism and equality in income distribution in developed and developing countries: An application of Panel VAR model

Ali Rahnama¹, Hamideh Khaksar Astaneh²* and Mohammadhadi Hajian³

Received: 03/01/2018 Accepted: 05/09/2018

Abstract

The purpose of this study was to examine the relationship between the tourism and equitable distribution of income for the developed and developing countries using Panel VAR. The results indicate that economic growth and the first lag (one-year lag) of international tourism income negatively affect the poverty index in developed and developing countries. Impulses due to economic growth and poverty index have the greatest effect on international tourism income so that its effect remains after 10 periods permanently.

Keywords: Equality in income distribution, Tourism, Panel VAR method, Developed and developing countries.

Citation: Rahnama, A., H. Astaneh and M. Hajian (2019) The relationship between tourism and equality in income distribution in developed and developing countries: An application of Panel VAR model. European Journal of Tourism Research 21, pp. 124-131

Introduction

Poverty is a multidimensional phenomenon that influences the quality of life in several ways rather than other phenomena. It damages the human growth, limits the human development, and ultimately affects the well-being of families (Hooshmand et al, 2015). One of the appropriate strategies for reducing poverty and unemployment is to develop tourism. Sharpley and Naidoo (2010), Jiang, DeLacy, Mkiramweni, and Harrison (2011), Croes (2014), Li, Chen, Li, and Goh (2016), showed that tourism has a significant positive impact on poverty reduction and income equality. On the
other hand, Seckelmann (2002), Tosun, Timothy and Ozturk (2003), Marcouiller, Kim, and Deller (2004), Lee and O’Leary (2008), Lee (2009), Alam and Reddy Paramati (2016) found negative impact of tourism development on income equality. Manyara and Jones (2007), Scheyvens and Momsen (2008) showed no significant relationship between tourism and the fair distribution of incomes. Considering the variety of the results, this research seeks to assess tourism’s impact on the fair distribution of incomes in the two groups of developed and developing countries.

The main objective of the paper is to examine the impact of international tourism revenues on the poverty indicators in developing and developed countries by Panel VAR methods. Guris, Akay, Zeytinoglu, Sacilidi and Sadic (2016), Góes (2016), Lin and Zhu (2017), Attinasi and Metelli (2017), Ouyang and Li (2018) and Jouida (2018), used the Panel VAR model in various research. The paper also evaluates the impact of trade, inflation, economic growth, and unemployment on poverty in these two groups.

Methodology
Panel VAR is used as a multivariate model to estimate the relationship between tourism and the equitable distribution of income in developing (Brazil, Algeria, Egypt, Indonesia, India, Iran), and developed countries (Austria, Canada, Germany, Spanish, France, U.K. and United States) in 1999-2015. The selection criteria for countries were based on the data access in both groups.

\[HPI = F(INF, GDP, UN, TR, TOUR) \]

HPI represents the poverty index, which is a function of INF, GDP, UN, TR, and TOUR. INF, GDP, UN, TR, and TOUR are inflation, economic growth, unemployment, trade index, and international tourism revenue to GDP ratio, respectively.

The Panel VAR was used to estimate coefficients and extract Impulse Response Functions. Panel VAR model is as follows:

\[X_{it} = \Gamma L X_{it} + U_i + \epsilon_{it} \quad (1) \]

Where, \(X_{it} \) is the dependent variable vector. \(\Gamma L \) is a polynomial matrix with lag as a dependent variable defined as \(\Gamma L = \Gamma_1 L^1 + \Gamma_2 L^2 + \ldots + \Gamma_p L^p \). The optimum lag is a one-year lag. \(U_i \) and \(\epsilon_{it} \) are fixed effects and error vectors, respectively.

Results and Discussion
Panel VAR method includes 5 stages. First, panel unit root testing was used. Im, Pesaran and Shin (IPS) Test was applied to examine the stationary of variables (Table 1). Second, data were evaluated by panel cointegration. Pedroni panel cointegration test was used to examine the long-term cointegration of variables (Table 2). Regarding the results of Pedroni panel cointegration, the variables were significant at 1% for the groups.

Variables	Intercept	Trend and Intercept	Intercept	Trend and Intercept
INF	-4.14***	-	-	-
GDP	-1.52	-1.71**	-	-
UN	0.2147	0.4477	-2.73***	-
HPI	0.77	-0.75	-4.185***	-
TOUR	1.77	0.095	-2.861***	-
INF	-4.698***	-	-	-
GDP	-4.229***	-	-	-
UN	-4.970***	-	-	-
HPI	1.130	-0.18307	-2.942***	-
TOUR	-2.407***	-	-	-

** And *** are the significance level at p<0.05 and p<0.01 respectively
Significance in parentheses
The dash implies that the IPS test is not required, because the variable is significant at the previous levels.
The relationship between tourism and equality in income distribution in developed and developing countries: An application of Panel VAR model.

Third, the optimal lag was selected to explain the model. Table 3 illustrates the duration of optimal lag for the groups. According to Table 3, Schwartz statistic was used to protect the degree of freedom and data. The number of optimal lags equals 1 for the groups.

Fourth, the relationship between variables was considered. Finally, the long-term relationship for convergent panels was extracted through vector autoregression (VAR). Table 4 shows the results of the developed countries estimation using the Panel Var model.

The economic growth with one lag, the poverty index with one lag and international tourism revenue to GDP with one lag affect the poverty index and the coefficients of these variables are −0.274, 0.977, −0.4 respectively. The unemployment rate is the last variable that affects the poverty index as much as 0.105. Table 5 shows the estimation results of the developing countries using the Panel VAR model.

The economic growth with one lag and the international tourism revenue to GDP with one lag decrease poverty index as much as 0.48, 0.03 respectively. The poverty index with one lag and the unemployment rate had a significant and positive effect on the poverty index as much as 0.904, 0.309 respectively in developing countries.

The dynamic interactions among variables and Variance analysis were conducted. Impulse Response functions show the response of endogenous variable to the effects of another variable (Figures 1, 2).

Table 2. The result for panel cointegration using Pedroni test

Statistics	Developing countries	Developed countries
Panel v-Statistic	-1.824	-2.1711
Panel rho-Statistic	1.403	2.968
Panel PP-Statistic	-12.051***	-5.532***
Panel ADF-Statistic	-3.425***	-1.021
Group rho-Statistic	2.661	4.850
Group PP-Statistic	-16.019***	-6.023***
Group ADF-Statistic	-4.005***	-0.409

*** is the significance level at p<0.01

Table 3: The results for testing VAR lag

Lag	Log L	LR	FPE	AIC	SC	HQ
Developing countries						
0	-476.460	NA	21267615	31.061	31.293	31.137
1	-303.910	278.603	1600.304	21.542	22.930*	21.994
2	-271.135	42.28*	1110.909*	21.041	23.585	21.870
3	-250.388	20.078	2154.184	21.315	25.015	22.521
4	-202.061	31.178	1200.093	19.810*	24.667	21.393*
Developed countries						
0	-1187.736	NA	44764232	31.8063	31.960	31.867
1	-699.5785	898.2102	193.9797	19.455	20.382	19.825
2	-673.5369	44.444	190.3605	19.427	21.127	20.106
3	-652.7951	32.633	218.1309	19.541	22.013	20.528
4	-626.4859	37.885	220.0215	19.506	22.750	20.801

* shows the optimal lag
LR, FPE, AIC, SC, HQ are Likelihood Ratio, Phillips-Perron, Akaike Information Criterion, Schwarz Criterion, Hannan-Quinn Criterion Respectively.
Table 4. Results of Model Estimation by Panel VAR for Developed Countries

Variables	GDP	HPI	INFG	TOUR	UN										
	Coefficient	SD	t												
GDP(-1)	0.417	0.079	5.263**	-0.274	0.115	-2.371**	0.319	0.117	2.715***	1.820	-0.224	0.401	-5.407***		
HPI(-1)	-0.024	0.027	-0.892	0.977	0.040	24.05***	0.0060	0.041	0.145	-0.253	0.380	-0.665	-0.253		
INFG(-1)	-0.0081	0.049	-0.164	0.071	0.072	0.988	0.529	0.073	7.184***	-0.229	0.680	-0.337	-0.0035		
TOUR(-1)	2.99E-05	0.0004	0.071	-0.4	0.061	-6.55***	0.0003-	0.0006	-0.506	1.029	0.005	180.743***	0.0002	1.108	
UN(-1)	0.091	0.043	2.085**	0.105	0.064	1.641*	0.0082-	0.064	-0.127	0.350	0.599	0.584	0.901	0.022	39.39***
C	1.114	0.454	0.452	0.085	0.663	0.128	0.394	0.673	0.585	-6.678	6.216	-1.074	1.232	0.237	5.193

** And *** are significance at p<0.05 and p<0.01 respectively

Table 5. Results of Model Estimation by Panel VAR for Developing Countries

Variables	GDP	HPI	INFG	TOUR	UN										
	Coefficient	SD	t												
GDP(-1)	0.180	0.105	1.714**	-0.48	0.131	-3.66***	0.173	0.351	0.492	-0.056	0.367	-0.152	-0.156	0.099	-1.57
HPI(-1)	-0.074	0.057	-1.279	0.904	0.052	17.2***	0.048	0.139	0.348	-0.032	0.146	-0.233	0.047	0.039	1.199
INFG(-1)	-0.016	0.053	-0.303	-0.056	0.047	-1.181	0.335	0.128	2.61***	-0.0026	0.133	-0.0200	0.0026	0.036	0.073
TOUR(-1)	0.012	0.006	1.982**	-0.03	0.005	-6.00***	-0.006	0.015	-0.407	1.014	0.016	62.922***	-9.18E-05	0.004	0.021
UN(-1)	0.027	0.049	0.556	0.39	0.044	8.86***	-0.015	0.119	-0.129	-0.048	0.124	-0.389	0.899	0.033	26.660***
C	5.551	1.679	3.305	1.105	1.515	0.729	4.897	40.05	1.208	2.674	4.230	1.208	0.621	1.144	0.054

** And *** are the significance level at p<0.05 and p<0.01 respectively
The relationship between tourism and equality in income distribution in developed and developing countries: An application of Panel VAR model.

Figure 1. Tourism income response to explanatory variables for developed countries

The result showed that the response of tourism income to economic growth, poverty index, and inflation are incremental, and the effect is stable after 10 periods in developed countries. Considering the Variance analysis for two groups of countries, Impulse Response functions show the response of endogenous variable to the effects of another variable while variance analysis measures each effect on endogenous variable variance.

In Table 6, 88.371% of tourism incomes are explained by the same variable and 10.789% by economic growth in period 1. 83.80% of
Figure 2. *Tourism income response to the explanatory variable for developing countries*

Error variance for tourism incomes is explained by the same variable, 15.006% by economic growth and 1% by other variables in period 2. According to Table 7, 95.734% of tourism incomes are explained by the same variable, followed by economic growth with 3.724%.

Conclusion, limits and perspectives

This paper examined the relationship between tourism and equality in income distribution in developed and developing countries using PanelVar. The estimation results showed that the economic growth rate and international income of tourism had a significant and positive
The relationship between tourism and equality in income distribution in developed and developing countries: An application of Panel VAR model.

Table 6. Variance analysis for tourism income in developed countries

period	S.E.	Tourism	GDP	HPI	INF	UN
1	15.698	88.371	10.789	0.244	0.594	0.000
2	23.121	83.801	15.006	0.413	0.770	0.0072
3	29.211	81.002	17.382	0.662	0.923	0.029
4	34.602	79.184	18.701	0.989	1.055	0.064
5	44.287	75.931	20.109	1.389	1.171	0.108
6	9.211	81.002	17.382	0.662	0.923	0.029
7	34.602	79.184	18.701	0.989	1.055	0.064
8	39.574	77.889	19.440	1.389	1.171	0.108
9	44.287	75.931	20.109	1.389	1.171	0.108
10	62.197	73.344	20.465	4.269	1.601	0.327

Table 7. Variance analysis for tourism income in developing countries

period	S.E.	Tourism	GDP	HPI	INF	UN
1	4.847	95.734	3.724	0.512	0.027	0.000
2	6.928	95.282	4.092	0.597	0.019	0.0074
3	8.565	94.057	4.197	0.683	0.016	0.023
4	9.980	94.964	4.201	0.772	0.014	0.047
5	11.239	94.882	4.161	0.865	0.012	0.076
6	12.445	94.809	4.104	0.963	0.011	0.110
7	13.563	94.736	4.038	1.064	0.011	0.148
8	14.631	94.660	3.970	1.170	0.010	0.188
9	15.659	94.579	3.901	1.278	0.0099	0.230
10	16.658	94.452	3.834	1.389	0.0095	0.274

effect and unemployment had a significant and negative effect on the poverty index in both groups. These results are consistent with previous studies (Luvinga and Shitundo (2003), Gartner (2008), Zandi et al (2014) and Hooshmand et al (2015)).

Further studies could be focused on collected data of poverty index and other indicators that effect on tourism. Given the tourism policy implications, we suggest to adopt appropriate policies to improve the business environment, the income distribution system to support the poor, the general livelihoods, and reduce income inequality in both groups. It is also proposed to expand and strengthen tourism infrastructure to increase the number of tourists. Therefore, making benefit for indigenous people is required to deal with expanding poverty, given the undeniable role of tourism in poverty alleviation.

References
Alam, S.Md., & Reddy, Paramati. S. (2016). The impact of tourism on income inequality in developing economies: Does Kuznets curve hypothesis exist? Annals of Tourism Research, 61, 111-126.
Attinasi, M.G., & Metelli, L. (2017). Is fiscal consolidation self-defeating? A panel-VAR analysis for the Euro area countries. Journal of International Money and Finance, 74, 147-164.
Croes, R. (2014). The role of tourism in poverty reduction: An empirical assessment. Tourism Economics, 20(2), 207–226.
Gartner, C.M. (2008). Tourism, Development, and Poverty Reduction: A Case Study from Nkhata Bay, Malawi. A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Environmental Studies in Geography - Tourism Policy and Planning.
Góes, C. (2016). Institutions and growth: A GMM/IV Panel VAR approach. Economics Letters, 138, 85-91.
Guris, A., Akay, E.C., Zeytinoglu, F.C., Sacilidi, I.S., & Sadic, C. (2016). The Effect of Tourism Investments on Tourism Income in Turkey: Panel VAR Approach. European Scientific Journal, 12(35), 59-72.
Hooshmand, M., Mostafavi, M., Ahmadi, M., & Mohaghegh, A. (2015). The effect of tourism on reducing poverty in developing countries. *Tourism development and planning publication*, 2(4), 11-28. (In Persian).

Jiang, M., DeLacy, T., Mkiramweni, N. P., & Harrison, D. (2011). Some evidence for tourism alleviating poverty. *Annals of Tourism Research*, 38(3), 1181–1184.

Jouida, S. (2018). Diversification, capital structure and profitability: A panel VAR approaches. *Research in International Business and Finance*, 45, 243-256.

Lee, S. (2009). Income inequality in tourism services-dependent counties. *Current Issues in Tourism*, 12(1), 33–45.

Lee, S., & O’Leary, J. T. (2008). Determinants of income inequality in us nonmetropolitan tourism- and recreation-dependent communities. *Journal of Travel Research*, 46(4), 456–468.

Li, H., Chen, J. L., Li, G., & Goh, C. (2016). Tourism and regional income inequality: Evidence from China. *Annals of Tourism Research*, 58, 81–99.

Lin, B., & Zhu, J. (2017). Energy and carbon intensity in China during the urbanization and industrialization process: A panel VAR approaches. *Journal of Cleaner Production*, 168, 780-790.

Luvanga, N., & Shitundu, J. (2003). *The Role of tourism in poverty alleviation in Tanzania*. Research Report No. 03.4, Research on Poverty Alleviation, Tanzania.

Manyara, G., & Jones, E. (2007). Community-based tourism enterprises development in Kenya: An exploration of their potential as avenues of poverty reduction. *Journal of Sustainable Tourism*, 15(6), 628–644.

Marcouiller, D. W., Kim, K.K., & Deller, S. C. (2004). Natural amenities, tourism and income distribution. *Annals of Tourism Research*, 31(4), 1031–1050.

Ouyang, Y., & Li, P. (2018). On the nexus of financial development, economic growth, and energy consumption in China: New perspective from a GMM panel VAR approach. *Energy Economics*, 71, 238-252.

Scheyvens, R., & Momsen, J. H. (2008). Tourism and poverty reduction: Issues for small island states. *Tourism Geographies*, 10(1), 22–41.

Seckelmann, A. (2002). Domestic tourism—A chance for regional development in Turkey? *Tourism Management*, 23(1), 85–92.

Sharpley, R., & Naidoo, P. (2010). Tourism and poverty reduction: The case of Mauritius. *Tourism and Hospitality Planning & Development*, 7(2), 145–162.

Tosun, C., Timothy, D. J., & Öztürk, Y. (2003). Tourism growth, national development and regional inequality in turkey. *Journal of Sustainable Tourism*, 11(2–3), 133–161.

Zandi, A., Abdi, M., & Abaspour, N. (2014). The role of tourism development in Iran on reducing poverty. *Online international conference of green economy, Research institution of Troud, Babolsar, Iran*.