Nutritional deficiencies in the pediatric age group in a multicultural developed country, Israel

Motti Haimi, Aaron Lerner

Motti Haimi, Children’s Health Center, Clalit Health Services, Bruce and Ruth Rappaport School of Medicine, Technion-Israel Institute of Technology, 34369 Haifa, Israel
Aaron Lerner, Pediatric Gastroenterology and Nutrition Unit, Carmel Medical Center, Bruce and Ruth Rappaport School of Medicine, Technion- Israel Institute of Technology, 34369 Haifa, Israel

Author contributions: Lerner A designed the research; Haimi M performed the computer search; Haimi M and Lerner A wrote the paper; both authors contributed equally to the work.

Correspondence to: Dr. Motti Haimi, MD, Senior Pediatrician, Children’s Health Center, Clalit Health Services, Bruce and Ruth Rappaport School of Medicine, Technion-Israel Institute of Technology, Armon Tower, Neveim 18, 34369 Haifa, Israel. mottiha@clalit.org.il
Telephone: +972-4-8351644 Fax: +972-4-8351650
Received: November 12, 2013 Revised: January 15, 2014
Accepted: March 17, 2014
Published online: May 16, 2014

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Nutrient deficiencies; Type 2 diabetes; Obesity; Israel

Core tip: In view of the wide nutritional deficiencies in Israel, we encourage local health, education and industrial ministries to expand efforts to study and document those deficiencies with the vision of fortifying basic commonly used foods in order to fight the deficiencies and prevent their occurrence in the future.

Haimi M, Lerner A. Nutritional deficiencies in the pediatric age group in a multicultural developed country, Israel. World J Clin Cases 2014; 2(5): 120-125 Available from: URL: http://www.wjgnet.com/2307-8960/full/v2/i5/120.htm DOI: http://dx.doi.org/10.12998/wjcc.v2.i5.120

INTRODUCTION

Despite some reductions in world income-related poverty in recent years, malnutrition remains widespread. Nutrient deficiencies of iron, vitamin A, folic acid and zinc are prevalent worldwide, especially in children from low income areas.

The lack of sufficient amounts of micronutrients affects health, function, and physical and cognitive development throughout the life cycle. Many diseases and morbid conditions have been described to result from nutritional deficiencies. These include developmental defects, such as birth defects, physical and cognitive development delays, increased risk of infectious diseases, as well as increased risk of poor health in adulthood. Almost two-thirds of deaths of young children around the world are related to nutritional deficiencies.

The discovery of essential nutrients and their roles in disease prevention has been instrumental in reducing...
nutritional deficiency diseases such as goiter, rickets, pellagra and others in many places such as the United States, Canada, European countries and third world regions. In Israel, a state of massive immigration, where a substantial part of the population lives below the poverty line, there is a relatively high percentage of unemployment, and also aging of the population. These aspects contribute to the relatively high prevalence of essential nutrient deficiencies in various parts of the Israeli population, including iron-deficiency anemia, goiter and vitamin D deficiency[16,17]. Low vitamin B12 levels, low folic acid levels and consequently high homocysteine levels, and increased risk of coronary heart disease have also been observed in the Israeli population[11,12]. The regulatory authorities in Israel have been planning to implement food fortification for many years. Few of the nutrients are mandatorily implemented, and many are implemented voluntarily by local industries.

The goal of the present review was to survey the severity of nutritional deficiencies in Israel, and to suggest ways to prevent and treat this problem. Our hypothesis is that, in view of the special characteristics of Israel, despite being a developed country, with massive immigration, poverty and low social conditions, a high rate of nutritional deficiencies exist.

The present review is also aimed to summarize the subject, as a step to promote food fortification in Israel.

RESEARCH
The extent and severity of nutritional deficiencies in Israel were reviewed through a selective and targeted Medline survey of previous reports and studies performed during the last 40 years.

The key words for the Medline search were combinations of the words: children, pediatrics, Israel, nutrients, nutrition, deficiency, fortification, as well as of specific nutrients such as iron, vitamins A, B, C, D, E, B12, Folic acid, calcium, phosphorus, magnesium, zinc and iodine.

NUTRITIONAL DEFICIENCIES IN THE MODERN WORLD: CAUSES AND OUTCOME
The food consumption habits of the children changed during the last few decades, and they now consume too much fat, especially saturated fats, and sweetened beverages. They do not eat enough fruits or vegetables and consequently do not consume enough fiber. Most schoolchildren of low socioeconomic families consume less milk, cheese, meet, vegetables and fruits. Only a fifth of children consume the recommended daily amount of fruits and vegetables[16,17]. The calcium and iron intake among children is also low. One of the main reasons for the pediatric pandemia of obesity is the consumption of large amounts of soft drinks rich in sugar, accompanied by a lack of physical activity. It is essential to address nutrient and activity deficiencies as these may lead to chron-ic long-term health problems, such as obesity, coronary heart disease, type 2 diabetes, stroke, cancer, and osteoporosis. It is well documented that overweight children are more likely to become obese adults[1,3,5]. The most common nutrient deficiencies seen in generally healthy children are: calcium, fiber, folate, iron, magnesium, potassium and vitamin E. It has been reported that the 2 most common deficiencies seen in children are iron and vitamin D deficiencies[8]. Classical nutrient deficiencies lead to stunting (energy, protein and zinc), rickets (vitamin D) and other bone abnormalities (copper, zinc, vitamin C)[39]. Iron deficiency anemia, as a public health problem, has been well recognized in recent years in developing countries and even in developed ones, and has received considerable attention by the World Health Organization (WHO)[28]. Vitamin D deficiency and osteoporosis are common in northern climates, but even in sunny countries such as Israel, Australia and southern Europe. It is especially common among the elderly, veiled, dark skinned, and other at-risk population groups, who are also regularly warned to avoid sunlight to prevent skin cancers[7,8,9,11].

The prevalence of endemic goiter and other iodine deficiencies has been reduced since the use of iodination of salt[8]. MacDonald[14] has reported that zinc deficiency in animals is characterized by growth inhibition and decreased food intake. Liu et al[15] indicated that malnutrition predisposes to neurocognitive deficits, which in turn predispose to persistent externalizing behavior problems throughout childhood and adolescence. Their findings suggest that reducing early malnutrition may help reduce later antisocial and aggressive behavior.

NUTRITIONAL DEFICIENCIES IN ISRAEL
In Israel, nutritional deficiencies have been documented throughout the last years in many reports.

Deficiencies in special ethnic minorities
In the Bedouin population[16,19], short stature, iron deficiency, vitamin A deficiency (15%-26% of infants), B12 deficiency, and vitamin E deficiency have been reported. In Ethiopians living in Israel, there are several reports of vitamin D deficiency and rickets[30,31].

Regional deficiencies
There were several reports on nutritional deficiencies in specific regions in Israel, including iron deficiency in children from central regions such as Hadera[32]; iron deficiency in Jewish children from a new immigrant town[33]; anemia in Jewish and Arab children from Akko[34]; iron deficiency anemia in infants from southern Israel[35]; and iron and folate deficiencies in children from a city in the North of Israel (Kyriat-Shmona)[36].

Special populations have demonstrated specific nutritional deficiencies
In adolescents, several deficiencies were reported, includ-
Iron, vitamin B12, folic acid, zinc

May 16, 2014

Table 1 Summary of the main nutritional deficiencies in the Israeli population

Israeli sub-population	Nutritional deficiency	Ref.
Bedouins	Iron, vitamin A, vitamin B12, vitamin E	[16-29]
Ethiopians	Vitamin D	[30,31]
Specific regions	Iron, folic acid, vitamin B12	[32,36,69]
Adolescents	Iron, vitamin D, calcium, phosphor, magnesium, zinc	[9,38-40]
Toddlers	Vitamin D, Iron, Calcium	[41,42]
Overweight children	Iron, vitamin B12, folic acid, phosphor, calcium, vitamin D	[43-45]
Military recruits	Iron, magnesium	[46-48]
Infants	Iron	[32,49-53]
Vegetarians	Vitamin D, vitamin B12, vitamin B1, iron, zinc	[54-57]
Pregnant women	Iron	[58,59]
Helicobacter pylori gastritis	Iron	[60]
Celiac disease patients	Vitamin D	[10,61]
Gaucher patients	Vitamin B12	[68]
Anorexia nervosa patients	Zinc	[70,71]

deficiency is also associated with autoimmune diseases.[69] Orthodox mothers after delivery had low levels of vitamin D.[64]

In Beer Sheva, a city in the south of Israel, 37% of the population had B12 deficiency.[67] Recent reports by Kark et al[12] have shown high homocysteine levels among Israelis, and despite vast reductions in mortality rates, the rates of coronary heart disease are still very high. Folic acid, as an antagonist to homocysteine, is increasingly accepted as a major preventive factor in coronary heart disease.[11]

Zinc deficiency was noted, among other nutrient deficiencies, in anorexia nervosa patients in Israel[63]. Zinc deficiency was also reported in children[73], and in attention deficit hyperactivity disorder patients[74]. Table 1 summarizes the nutritional deficiencies in Israel described in our study.

In summary, Israeli populations have multiple nutritional deficiencies including iron, calcium, zinc, folic acid, and vitamins B12, C, D and E, spanning all age groups, several minorities, and specific regions. The most common nutritional deficiencies in the pediatic age group in Israel are iron and vitamin D. These deficiencies are mostly common in special populations, such as Bedouins, vegetarians, Ethiopians, obese children, pregnant women and their babies, gluten-sensitive populations, children with H. pylori, children with behavioral problems and anorexia, diabetics, but deficiencies span the whole Israeli population.

FOOD FORTIFICATION

Fortification of commonly eaten foods with micronutrients offers a cost-effective solution that can reach large populations.[74]

It is the responsibility of public health authorities to ensure that the general population, and especially those under in poverty are assured of an adequate basic daily intake of minerals and vitamins. This can only be achieved through appropriate vitamin and mineral enrichment of basic foods. Food fortification can reach many people who either do not or cannot comply with the individual approach of health education and healthy diet, due to its higher cost, or due to a lack of knowledge or access.[75,76]. The addition of micronutrients to food for health reasons has been known for many years.[77,78]

Food fortification was adopted in the United States during the 1920s and the 1930s, by enriching flour in order to eliminate pellagra in the southern states. In 1942, a program to enrich flour with vitamins and iron was adopted by the United States government[79]. In the beginning it included enriching flour with vitamin B1 (thiamin) to prevent beriberi, niacin to prevent pellagra, riboflavin for efficient use of vitamin B6, and iron to prevent anemia. Later, it was decided to also add vitamin...
D and calcium, and it was expanded to enrich corn flour in 1943, pasta in 1946, and rice in 1958. The success of this program led to additional fortification of breakfast cereals with B-vitamins and iron in 1969[79].

In Canada, food fortification has been mandatory since 1979, including iodine in salt, iron and vitamin B complex in flour, and vitamin A and D in milk products. In 1998, folic acid was additionally added to flour, with positive effects in reduction of neural tube defects within 2 years[80]. Fortification of flour and grains with folic acid was adopted also in the United States in 1998, and was followed by a decline in the total prevalence of neural tube defects[81].

In Europe, food fortification has encountered considerable opposition over the past 2 decades (especially in Scandinavian countries). Nevertheless, it has recently been put into practice, with most countries fortifying salt with iodine to prevent iodine deficiency[82]. In 1996, the WHO has renewed its call for the universal iodization of salt, since iodine deficiency was considered the greatest cause of preventable brain damage and mental retardation worldwide[83]. In addition, the WHO also promotes fortification and supplementation for reduction of iron deficiency anemia, vitamin A deficiency and others, although referring usually to developing countries.

Regarding vitamin D deficiency, it has been widely recognized, not only with reference to infants and children, but also for other age groups, including adolescents and older age groups. In 2003, the American Academy of Pediatrics emphasized the importance of milk fortification with vitamin D supplementation throughout childhood and adolescence, with consideration of subclinical vitamin D deficiency in many population groups[84].

Israel is working towards food fortification, but it is on a voluntary basis for some vitamins and minerals, while mandatory for others, such as fortification of salt, milk products and flour. Nevertheless, most salt sold to the Israeli population is still un-iodized[79]. As previously mentioned, although Israel is a sunny country, vitamin D deficiency is well recognized among the elderly[85,86,87], partly related to the advice to avoid sunlight exposure for fear of skin cancer. This fact makes vitamin D fortification of milk products a necessity.

The successful experience of food fortification in many countries emphasizes the safety and efficacy of this approach. Food fortification is vital in prevention of chronic diseases, and its implementation will bring long-term economic savings in health costs and will contribute to the health and nutritional habits of the population. In addition to fortification of breakfast cereals and some milk products, the recommendations of health ministries should include fortification of basic foods with iodine, iron, folic acid, vitamin A, vitamin B complexes (including B12), and vitamin D, in order to prevent birth defects as well as chronic diseases. National school feeding programs can be one of the means for nutritional education and food fortification as well as a means of alleviating food insecurity among children.

The limitations of our study are embedded in the methodology of the literature search, since some publications could have been missed or were unavailable in Medline. There is also a possibility of publication bias since negative or non-significant studies tend not to be published.

In summary, in view of the wide nutritional deficiencies in Israel, we encourage local health, education and industrial ministries to expand efforts to study and document these deficiencies with a view to fortifying basic commonly used foods in order to combat the deficiencies and prevent their occurrence in the future.

REFERENCES

1 Lutter CK. Iron deficiency in young children in low-income countries and new approaches for its prevention. J Nutr 2008; 138: 2525-2528 [PMID: 19022985 DOI: 10.3945/jn.108.095406]
2 ACC/SCN. Fourth report on the world nutrition situation. Switzerland: United Nations ACC/SCN in collaboration with IFPRI, 2000
3 Suskind DL. Nutritional deficiencies during normal growth. Pediatr Clin North Am 2009; 56: 1035-1053 [PMID: 19930162 DOI: 10.1016/j.pcl.2009.07.004]
4 Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. MRC Vitamin Study Research Group. Lancet 1991; 338: 131-137 [PMID: 1670782 DOI: 10.1016/S0140-6736(90)90133-A]
5 Caballero B. Global patterns of child health: the role of nutrition. Ann Nutr Metab 2002; 46 Suppl 1: 3-7 [PMID: 12428075]
6 Bhaskaram P. Micronutrient malnutrition, infection, and immunity: an overview. Nutr Rev 2002; 60: 540-545 [PMID: 12035857 DOI: 10.1031/0029-6646(2002)060[0540:BMIITR]2.0.CO;2]
7 Cat-Yablonski G, Yakobovitch-Gavan M, Phillip M. Nutrition and bone growth in pediatrics. Endocrinol Metab Clin North Am 2009; 38: 565-586 [PMID: 19717005 DOI: 10.1016/j. cecrn.2009.07.001]
8 Tulchinsky TH. Vitamin enrichment of basic foods: the case-for-action in Israel. Isr J Med Sci 1993; 29: 58-61 [PMID: 8454455]
9 Ish Shalom S, Rozen GS, Lerner A. In: “Pediatric Nutrition”, Eds. Reifen RM, Lerner A, Branski D, Heymans AS. Osteoporosis: An Emerging Problem in Pediatrics. Karger: Basel, 1998: 110-121
10 Lerner A, Shapira Y, Agmon-Levin N, Pacht A, Ben-Ami Shor D, López HM, Sanchez-Castanon M, Shoenefeld Y. The clinical significance of 25OH-Vitamin D status in celiac disease. Clin Rev Allergy Immunol 2012; 42: 322-330 [PMID: 21202520 DOI: 10.1007/s12016-010-8237-8]
11 Oren Y, Shapira Y, Agmon-Levin N, Kivity S, Zafir Y, Altman A, Lerner A, Shoenefeld Y. Vitamin D insufficiency in a sunny environment: a demographic and seasonal analysis. Isr Med Assoc J 2010; 12: 751-756 [PMID: 21348404]
12 Kark JD, Sinnreich R, Rosenberg IH, Jacques PF, Selhub J. Plasma homocysteine and parental myocardial infarction in young adults in Jerusalem. Circulation 2002; 105: 2725-2729 [PMID: 12057985 DOI: 10.1161/01.CIR.0000017360.99531.26]
13 Anderson JL, Jensen KR, Carlquist JF, Bair TL, Horne BD, Muhlestein JB. Effect of folic acid fortification of food on homocysteine-related mortality. Am J Med 2004; 116: 158-164 [PMID: 14749139 DOI: 10.1016/j.amjmed.2003.10.024]
14 MacDonald RS. The role of zinc in growth and cell proliferation. J Nutr 2000; 130: 15005-15085 [PMID: 10801966]
15 Liu J, Raine A, Venables PH, Mednick SA. Malnutrition at age 3 years and externalizing behavior problems at ages 8, 11, and 17 years. Am J Psychiatry 2004; 161: 2005-2013 [PMID: 15514400 DOI: 10.1176/appi.ajp.161.11.2005]
Haimi M et al. Nutritional deficiencies in children

Forman MR, Gupitt KS, Chang DN, Sarov B, Berendes HW, Naggan L, Hundl GL. Undernutrition among Bedouin Arab infants: the Bedouin Infant Feeding Study. Am J Clin Nutr 1990; 51: 339-49 [PMID: 229641]

Costeff H, Bredow Z. Rickets in southern Israel. Some epidemiological observations. J Pediatr 1962; 61: 919-924 [PMID: 14023307 DOI: 10.1016/S0022-3476(62)80206-6]

Harlap S, Pryves R, Grover NB, Davies AM. Maternal, perinatal and infant health in Bedouin and Jews in southern Israel. Isr J Med Sci 1977; 13: 514-528 [PMID: 873768]

Green JH, Eshchar J, Ben-ishay D, Alkan WJ, Benassa BI. Vitamin D deficiency among Ethiopian women immigrants in Israel. J Bone Miner Metab 2005; 23: 10-70 [PMID: 15937676 DOI: 10.1007/s00774-004-6515-6]

Levy A, Fraser D, Rosen SD, Dagan R, Deckelbaum RJ, Coles C, Naggan L. Anemia as a risk factor for infectious diseases in infants and toddlers: results from a prospective study. Eur J Epidemiol 2005; 20: 277-284 [PMID: 15920146 DOI: 10.1007/s10654-004-6515-6]

Weisman Y. Vitamin D deficiency rickets and osteomalacia in Israel. Isr Med Assoc J 2003; 5: 269-290 [PMID: 14509137]

Berylny GM, Ben-Ari J, Nord E, Shainkin R. Bedouin osteomalacia due to calcium deprivation caused by high phytic acid content of unleavened bread. Am J Clin Nutr 1973; 26: 910-911 [PMID: 4727748]

Sasson A, Etzion Z, Shany S, Berlyne GM, Yagil R. Growth and bone mineralisation as affected by dietary calcium, phytic acid and vitamin D. Comp Biochem Physiol A Comp Physiol 1982; 72: 43-48 [PMID: 6124364]

Shany S, Hirsch J, Berlyne GM. 25-Hydroxycholecalciferol levels in bedouins in the Negev. Am J Clin Nutr 1976; 26: 1104-1107 [PMID: 975599]

Shany S, Biale Y, Zuzli I, Yankowitz N, Berry JL, Mawer E. Feto-maternal relationships between vitamin D metabolites in Israeli Bedouins and Jews. Am J Clin Nutr 1984; 40: 1290-1294 [PMID: 633437]

Biale Y, Shany S, Levi M, Shainkin-Kestenbaum R, Berlyne GM. 25 Hydroxycholecalciferol levels in Bedouin women in labor and in cord blood of their infants. Am J Clin Nutr 1979; 32: 2380-2382 [PMID: 506960]

Coles CL, Levy A, Gorodischer R, Dagan R, Deckelbaum RJ, Blaner WS, Fraser D. Subclinical vitamin D deficiency in Israeli-Bedouin toddlers. Eur J Nutr 2004; 43: 796-802 [PMID: 1511608 DOI: 10.1007/s00394-004-0816-0]

Gorodischer R, Sarov B, Gazala E, Hershkovitz E, Edwardson S, Sklan D, Katz M. Differences in cord serum retinol concentrations by ethnic origin in the Negev (southern Israel). Early Hum Dev 1995; 42: 123-130 [PMID: 7588157 DOI: 10.1016/0378-3782(95)01644-I]

Masalha R, Rudoy I, Volkov I, Yusuf N, Wriguin I, Herishanu YO. Symptomatic dietary vitamin B(12) deficiency in a nonvegetarian population. Am J Med 2002; 112: 413-416 [PMID: 11904118 DOI: 10.1016/s0002-9343(02)01031-8]

Gitai-Israeli T, Dranitzki Z, Strauss U. Nutritional rickets in infants immigrating to Israel from Ethiopia. Isr Med Assoc J 2003; 5: 291-292 [PMID: 14509138]

Fogelman Y, Rakover Y, Luboshitzky R. High prevalence of vitamin D deficiency among Ethiopian women immigrants to Israel: exacerbation during pregnancy and lactation. Isr J Med Sci 1995; 31: 221-224 [PMID: 7721559]

Lavon B, Dworkin TH, Pereg M, Said R, Kaufman S. Iron deficiency anemia among Jewish and Arab infants at 6 and 12 months of age in Hadera, Israel. Isr J Med Sci 1985; 21: 107-112 [PMID: 3980188]

Yodfat Y. Iron deficiency anemia in children in a new-immigrant town in Israel. Isr J Med Sci 1967; 3: 890-893 [PMID: 5887880]

Shehab S, Nutenko K, Koren A, Ron M, Salahov E, Tulchinsky T. Hemoglobin level among infants in Akko sub-dist-
Prevention of micronutrient deficiency conditions: the Israeli approach. Public Health Rev 2000; 28: 13-21 [PMID: 11411266]

52 Lev B. Prevention of micronutrient deficiency conditions: the Israeli approach. Public Health Rev 2000; 28: 13-21 [PMID: 11411266]

53 Patil H, Meijer A, Adler B. Learning achievement and behavior at school of anemic and non-anemic infants. Early Hum Dev 1985; 10: 217-223 [PMID: 3987574 DOI: 10.1016/0378-8782(85)90020-0]

54 Zmora E, Gorodischer R, Bar-Ziv J. Multiple nutritional deficiencies in infants from a strict vegetarian community. Am J Dis Child 1979; 133: 141-144 [PMID: 105630]

55 Abu-Kishk I, Rachmial M, Hoffmann C, Lahat E, Eshel G. Infantile encephalopathy due to vitamin deficiency in industrial countries. Childs Nerv Syst 2009; 25: 1477-1480 [PMID: 19585126 DOI: 10.1007/s00381-009-0942-3]

56 Ashkenazi S, Weitz R, Varsano I, Mmouni M. Vitamin B12 deficiency due to a strictly vegetarian diet in adolescence. Clin Pediatr (Philad) 1987; 26: 662-663 [PMID: 3677536 DOI: 10.1177/000992287087260121]

57 Shinwell ED, Gorodischer R. Totally vegetarian diets and infant nutrition. Pediatrics 1982; 70: 582-586 [PMID: 6812012]

58 Palgi A. Ethnic differences in hemoglobin distribution of Asian and European Jewish women in Israel, both pregnant and nonpregnant. Am J Public Health 1981; 71: 847-851 [PMID: 7258448 DOI: 10.2105/AJPH.71.8.847]

59 Edet EE. Prevalence of anemia among pregnant women in a Jewish community in Jerusalem according to selected socioeconomic characteristics. Public Health 1990; 104: 457-463 [PMID: 2274649 DOI: 10.1016/0033-3506(90)90088-5]

60 Hershko C, Hoffbrand AV, Keret D, Souroujon M, Mascher I, Monselise Y, Lahat E. Role of autoimmune gastritis, Helicobacter pylori and celiac disease in refractory or unexplained iron deficiency anemia. Haematologica 2005; 90: 585-595 [PMID: 15921373]

61 Hartman C, Hino B, Lerner A, Eshach-Adiv O, Berkowitz D, Shaoul R, Pacht A, Rozenthal E, Tamir A, Shamaly H, Shamiy R. Bone quantitative ultrasound and bone mineral density in children with celiac disease. J Pediatr Gastroenterol Nutr 2004; 39: 504-510 [PMID: 15572890 DOI: 10.1097/0005176041100001]

62 Nehama H, Wientroub S, Eisenberg Z, Birger A, Milbauer B, Weizman A, Reus A, Weizman R, Laor N. Zinc deficiency in attention-deficit hyperactivity disorder. Biol Psychiatry 1996; 40: 1308-1310 [PMID: 8959299 DOI: 10.1016/S0006-3223(96)00310-1]

63 Tulchinsky TH, Kaluski DN, Berry EM. Food fortification and risk group supplementation are vital parts of a comprehensive nutrition policy for prevention of chronic diseases. Eur J Public Health 2004; 14: 226-228 [PMID: 15369025 DOI: 10.1093/eurpub/14.3.226]

64 Centers for Disease Control and Prevention (CDC). Safer and healthier foods. MMWR Morb Mortal Wkly Rep 1999; 48: 905-913 [PMID: 12432905]

65 Park YK, Semos CT, Barton CN, Vanderveen JE, Yetley EA. Effectiveness of food fortification in the United States: the case of pellagra. Am J Public Health 2000; 90: 727-738 [PMID: 10800421]

66 Kaluski DN, Tulchinsky TH, Haviv A, Averbuch Y, Rachmial S, Berry EM, Leventhal A. Addition of essential micro-nutrients to foods—implication for public health policy in Israel. Isr Med Assoc J 2003; 5: 277-280 [PMID: 14509134]

67 Israeli A, Shenmer J. It is time to fortify basic foods in Israel according to the Canadian model. Isr Med Assoc J 2004; 6: 525-528 [PMID: 15244459]

68 Ray JG, Meier C, Vermeulen MJ, Boss S, Wyatt PR, Cole DE. Association of neural tube defects and folic acid food fortification in Canada. Lancet 2002; 360: 2047-2048 [PMID: 12504403 DOI: 10.1016/S0140-6736(02)11994-5]

69 Honein MA, Paulozzi LJ, Mathews TJ, Erickson JD, Wong LY. Impact of folic acid fortification of the US food supply on the occurrence of neural tube defects. JAMA 2001; 285: 2981-2986 [PMID: 11400906 DOI: 10.1001/jama.285.23.2981]

70 Vitti P, Delange F, Zimmermann M, Dunn JT. Europe is iodine deficient. Lancet 2003; 361: 1226 [PMID: 12686067]

71 World Health Organization. Iodine Deficiency disorders. Fact Sheet No. 121. Geneva: WHO, 1990

72 Gartner LM, Greer FR. Prevention of rickets and vitamin D deficiency: new guidelines for vitamin D intake. Pediatrics 2003; 111: 908-910 [PMID: 12671133 DOI: 10.1542/peds.111.4.908]

P-Reviewers: Koch TR, Ramos S S-Editor: Kou SX L-Editor: Cant MR E-Editor: Liu SQ

Haimi M et al. Nutritional deficiencies in children
