Ancient neuromodulation by vasopressin/oxytocin-related peptides

Isabel Beets, Liesbet Temmerman, Tom Janssen and Liliane Schoofs*

Department of Biology; Functional Genomics and Proteomics Group; KU Leuven; Leuven, Belgium

Keywords: vasopressin, oxytocin, neuropeptide, nematocin, C. elegans, neuromodulation, learning, reproductive behavior

Abbreviations: TRPV, transient receptor potential vanilloid; GPCR, G protein-coupled receptor

Neuropeptidergic signaling is widely adopted by animals for the regulation of physiology and behavior in a rapidly changing environment. The vasopressin/oxytocin neuropeptide family originates from an ancestral peptide precursor in the antecedent of protostomian and deuterostomian animals. In vertebrates, vasopressin and oxytocin have both hormonal effects on peripheral target tissues, such as in the regulation of reproduction and water balance, and neuromodulatory actions in the central nervous system controlling social behavior and cognition. The recent identification of vasopressin/oxytocin-related signaling in C. elegans reveals that this peptidergic system is widespread among nematodes. Genetic analysis of the C. elegans nematocin system denotes vasopressin/oxytocin-like peptides as ancient neuromodulators of neuronal circuits involved in reproductive behavior and associative learning, whereas former invertebrate studies focused on conserved peripheral actions of this peptide family. Nematocin provides neuromodulatory input into the gustatory plasticity circuit as well as into distinct male mating circuits to generate a coherent mating behavior. Molecular interactions are comparable to those underlining vasopressin- and oxytocin-mediated effects in the mammalian brain. Understanding how the vasopressin/oxytocin family fine-tunes neuronal circuits for social behavior, learning and memory poses a major challenge. Functional conservation of these effects in nematodes and most likely in other invertebrates enables the development of future models to help answering this question.

Introduction

The neuropeptide hormones vasopressin and oxytocin are important regulators of animal physiology and behavior. Originally extracted from the mammalian pituitary, they were the first neuropeptides to be purified and sequenced in the 1950s.1-4 Since their discovery in mammals, vasopressin- and oxytocin-like peptides have been identified in most vertebrates and several invertebrate species,5,6 dating back their origin more than 700 million years. Vasopressin, or antidiuretic hormone, is mainly known for its actions in fluid homeostasis and the regulation of blood pressure,6,7 while oxytocin stimulates uterine contractions during birth and induces milk ejection from mammary glands.8 Besides peripheral hormonal effects, both peptides act as neuromodulators in the brain influencing social behavior, memory and learning.9,10 Vasopressin- and oxytocin-mediated effects in the central nervous system are consistent with the long-range diffusion of peptides from hypothalamic centers in addition to local peptidergic release from neuronal fibers projecting to specific brain areas.11 Nevertheless, the precise neural mechanisms by which these neuropeptides affect our behavior remain unclear. Here we review the evolution of vasopressin and oxytocin peptides and their functions and integrate new insights from the recent genetic analysis of a related signaling system in the nematode Caenorhabditis elegans.12,13

Phylogeny of the Vasopressin/Oxytocin Signaling System

Vasopressin- and oxytocin-related peptides are present in representatives of the protostomian (most invertebrates) and deuterostomian (some invertebrates and all vertebrates) lineages,3-5 indicating that this hormonal system originated early in evolution. Invertebrates, with a few exceptions, have only one peptide homolog, whereas most vertebrates have two: a vasopressin- and oxytocin-like peptide (Table 1). Based on structural and positional similarities of the vasopressin and oxytocin genes, it is thought they originate from duplication of a common ancestral gene, which likely occurred after the radiation of the jawless fish about 500 million years ago.3,14 Rapid evolution following gene amplification continued the diversification of the vertebrate vasopressin/oxytocin family (Table 1).3,14 The amino acid at position eight in the nonapeptide sequence represents a distinguishing feature for the biological activity of these peptides: oxytocin-like sequences generally carry a neutral residue, whereas the same position is occupied by a basic residue in vasopressin-like peptides.14 The discovery of related invertebrate hormones in annelids, insects and mollusks among others reveals a more diverse sequence repertoire, for which classification according to the eighth amino acid no longer holds (Table 1).5,15,16 Despite the variety of peptide sequences identified in vertebrate and invertebrate species, all members of the vasopressin/oxytocin family share a similar, cyclized architecture at both the peptide and precursor level. The precursor protein typically contains a signal peptide, immediately followed by the mature peptide, a basic
Table 1. Vertebrate and invertebrate members of the vasopressin/oxytocin peptide family

Peptide name	Sequence	Source
Vertebrate vasopressin-related peptides		
arg-vasopressin	C\textit{YFQNCPRG-NH}_2	mammals
lys-vasopressin	C\textit{YFQNCPKG-NH}_2	pig, some marsupials
phenypressin	C\textit{EFQNCPRG-NH}_2	some marsupials
vasotocin	C\textit{YQNCPRG-NH}_2	non-mammalian vertebrates
Vertebrate oxytocin-related peptides		
oxytocin	C\textit{YQNCPLG-NH}_2	mammals
P8-oxytocin	C\textit{YQNCPPG-NH}_2	New World monkeys
mesotocin	C\textit{YQNCPIG-NH}_2	non-mammalian vertebrates
isotocin	C\textit{YINCPG-NH}_2	bony fishes
glumitocin	C\textit{YINCPQG-NH}_2	cartilaginous fishes (rays)
valitocin	C\textit{YQNCPG-NH}_2	cartilaginous fishes (sharks)
aspartocin	C\textit{YINCPG-NH}_2	cartilaginous fishes (sharks)
asvatocin	C\textit{YINCPG-NH}_2	cartilaginous fishes (sharks)
phasvatocin	C\textit{YINCPG-NH}_2	cartilaginous fishes (sharks)
Invertebrate vasopressin/oxytocin-related peptides		
A. Urochordates		
Styela OT-like peptide	C\textit{YISDCPNSRFWST-NH}_2	Styela plicata
Ciona VP/OT-like peptide	C\textit{FFRDCSNDWYR}	Ciona intestinalis
B. Echinoderms		
echinotocin	C\textit{EFINCPK-G-NH}_2	Strongylocentrotus purpuratus
C. Mollusks		
lys-conopressin	C\textit{EFIRNCPG-NH}_2	various mollusks
arg-conopressin	C\textit{EIRNCPG-NH}_2	Conus striatus
cephalotocin	C\textit{YFRNCPIG-NH}_2	Octopus vulgaris
octopressin	C\textit{EWTSCPPIG-NH}_2	Octopus vulgaris
D. Arthropods		
crustacean VP/OT-like peptide	C\textit{EITNCPRG-NH}_2	Daphnia pulex
inotocin	C\textit{ELTNCPRG-NH}_2	various insects
E. Annelids		
annetocin	C\textit{EFVRNCPTG-NH}_2	Eisenia fetida
lys-conopressin	C\textit{EIRNCPG-NH}_2	Erpobdella octoculata
hirudotocin	C\textit{EIRNCPG-NH}_2	Hirudo medicinalis
F. Nematodes		
nematocin	C\textit{ELNSCPYRRY-NH}_2	Caenorhabditis elegans
Identical and similar amino acids in 70% of all sequences are indicated in bold or underlined, respectively; aFor references see 3–5, 11, 13, 15, 29, 36 lungfishes, amphibians, reptiles, birds and some marsupials; bRaia clavata; cSqualus acanthias; dScyliorhinus caniculus; VP, vasopressin; OT, oxytocin.		
except for minor changes in the human parasite Strongyloides stercoralis and the pine wood nematode Bursaphelenchus xylophilus (Table 1F). Most published genomes of nematodes belonging to the Rhabditina (clade V) and Tylenchina (clade IV) groups, with few exceptions, contain the nematocin gene. Remarkably, nematocin is probably absent in the sequenced genomes of Brugia malayi and Ascaris suum, both members of the Spirurina group (clade III) and in Trichinella spiralis, classified in the Dorylaimia (clade I). In this context, it is interesting to note that the life cycle of these parasites is not characterized by an active, free-living larval stage outside the vector or host, unlike most free-living and parasitic species in which nematocin is present (Table 1F). A possible explanation for the absence of the nematocin system in some nematode species thus might be that it was lost during adaptation to different lifestyles.

Recently, a novel vasopressin/oxytocin family member has been identified in the nematode C. elegans. The structure of the nematocin precursor is reminiscent of the vasopressin and oxytocin precursors (Fig. 1), but the mature peptide has two additional residues at its C-terminus compared with related invertebrate nonapeptides (Table 1). Supported by similar findings in urochordates (Table IA), a sister group to vertebrates, this denotes high pressure on conserving the cyclic structure of vasopressin/oxytocin-like peptides rather than the peptide length. Nematocin contains a putative internal dibasic cleavage site; nevertheless, the full-length neuropeptide is present in vivo and the C-terminal Arg and Tyr residues are crucial for activation of its receptor. The signaling system is widespread among free-living and parasitic nematodes and peptide sequences are invariant, except for minor changes in the human parasite Strongyloides stercoralis and the pine wood nematode Bursaphelenchus xylophilus (Table 1F). Most published genomes of nematodes belonging to the Rhabditina (clade V) and Tylenchina (clade IV) groups, with few exceptions, contain the nematocin gene. Remarkably, nematocin is probably absent in the sequenced genomes of Brugia malayi and Ascaris suum, both members of the Spirurina group (clade III) and in Trichinella spiralis, classified in the Dorylaimia (clade I). In this context, it is interesting to note that the life cycle of these parasites is not characterized by an active, free-living larval stage outside the vector or host, unlike most free-living and parasitic species in which nematocin is present (Table 1F). A possible explanation for the absence of the nematocin system in some nematode species thus might be that it was lost during adaptation to different lifestyles. The discontinuous conservation of vasopressin/oxytocin-related peptides has been reported previously in arthropods as well. In contrast to crustaceans and basal insects, related sequences are missing from the genomes of the fruit fly, the silkworm, the honey bee and others. In these species, it is hypothesized that competing hormonal systems have taken over the function of vasopressin/oxytocin signaling. The sequencing
and completion of additional nematode genomes together with refined insights in nematode phylogeny will allow better understanding of the early evolution of vasopressin/oxytocin-related signaling.

In vertebrates, four types of vasopressin/oxytocin receptors are classified with distinct expression patterns and biological effects: the oxytocin receptor and the vasopressin receptors V₁₅, V₁b and V₂. A fifth receptor type (V₄) is thought to be present in fish and some tetrapods. The number of invertebrate receptor homologs varies from one up to three in a given species, but the evolutionary history of receptor subtypes remains unclear. The vasopressin/oxytocin receptor family is most closely related to the superfamily of gonadotropin-releasing hormone receptors, which have also been found in a wide variety of deuterostomian and protostomian lineages including *C. elegans*. Phylogenetic analysis suggests a shared ancestry with deep roots between these two G protein-coupled receptor (GPCR) families. Besides these, many neuropeptidergic systems are suggested to have an ancient origin. Well studied examples are the tachykinin, neuropeptide Y, somatostatin and galanin systems. *C. elegans* also contains a number of evolutionary conserved neuropeptide GPCRs including cholecystokinin, vasoactive intestinal peptide and neuromedin U-related receptors. Most likely, many other conserved neuropeptide-GPCR systems will be discovered in the near future.

Evidence for the Conservation of Vasopressin- and Oxytocinergic Brain Centers

In the vertebrate brain, vasopressin- and oxytocin-like peptides are mainly synthesized by distinct neuronal populations in the hypothalamic paraventricular, supraoptic and accessory nuclei. Axonal projections from magnocellular neurons in these brain regions shuttle nonapeptides to the posterior lobe of the pituitary, where they are stored and released into the peripheral circulation. Alternatively, release from neuronal sites in- and outside the hypothalamic results in the local delivery and subsequent diffusion of nonapeptides in the brain. In invertebrates, vasopressin- and oxytocin-related peptides are similarly produced by neurons with cell bodies located in cerebral ganglia or occasionally in peripheral ganglia. These neurons are often characterized by projections to the brain as well as long projecting axons that reach distant parts of the body and in some cases couple directly to the circulatory system. Evolutionary conservation extends further with the hypothesis that the cells responsible for producing vasopressin- and oxytocin-related peptides are located in similar neurosecretory brain centers, which are characterized by a typical “molecular fingerprint.” Tessmar-Raible et al. show that neurons producing the vasopressin homolog in annelids and fishes express common tissue-restricted microRNAs and a cell-type-specific expression pattern of transcription factors orthologous to the vertebrate *orthopedia, retina homeobox* and *nk2.1* genes. These gene regulatory features specify the identity of an ancient vasopressin/oxytocinergic neuronal cell type that most likely possesses dual sensory-neurosecretory properties. Co-expression of vasopressin-like peptides and opsins in the zebrafish and annelid nervous system suggests the direct coupling of peptide secretion to light cycles. In *C. elegans*, although not exclusively, nematocin is strongly expressed in neurons that are able to sense thermal or mechanical cues. Sensory-neurosecretory cells may thus represent an ancient neuronal architecture for the vasopressin/oxytocin-related signaling system, which can directly convey sensory input to changes in physiology or behavior through peptidergic secretion.

Vasopressin and Oxytocin Functions Throughout Evolution: Peripheral and Central Actions

Pleiotropic effects of the vasopressin/oxytocin family in homeostatic regulation include the control of stress responses, metabolism and circadian rhythms among others; here, we focus on those functions most studied in invertebrates as well. Vasopressin and oxytocin are myoactive peptides that stimulate contractions in a variety of tissues. In mammals, vasopressin causes vasoconstriction through V₁a receptors on vascular smooth muscle, and oxytocin elicits contractions during parturition and lactation through oxytocin receptors on myometrial cells of the uterus and myoepithelial cells of mammary glands. Myoactivity is one of the best conserved functions of vasopressin- and oxytocin-related peptides; for example, the octopus homolog elicits contractions in reproductive and cardiovascular tissues, expressing the octopressin receptor.

In vertebrates, vasopressin is also dedicated to fluid homeostasis. Activation of V₂-type receptors in the mammalian kidney causes antidiuresis by stimulating water reabsorption from the renal collecting ducts and in non-mammalian tetrapods, vasotocin reduces glomerular filtration rates. Despite several indications for putative anti- or diuretic effects of vasopressin/oxytocin-related peptides in invertebrates, their role in osmoregulation remains uncertain. Diuretic activity of netocin, the insect homolog, is questioned by contradictory reports in locusts and only minor inotocin receptor expression was found in excretory tissues of the red flour beetle, suggesting indirect effects on water balance. Annetocin reduces body-weight of leeches and evokes contractions of the earthworm's excretory nephridia, but these effects are more likely to be interpreted as reproduction-related actions. A role in primitive osmoregulation is found in the sea squirt, where a vasopressin/oxytocin-related peptide induces siphon closure to prevent the influx of dilute seawater. Similar to the effects of oxytocin on mammalian reproduction, members of the vasopressin/oxytocin family influence egg-laying in invertebrates. Besides classical effects in reproduction, vasopressin- and oxytocin-like peptides have been found to regulate reproductive behaviors such as mating in vertebrates and invertebrates. In medicinal leeches, conopressin induces a stereotypical twisting of the body that resembles spontaneous mate exploration by acting on a central pattern generator of oscillating neurons in reproductive midbody ganglia. In *Lymnaea stagnalis*, the same peptide is expressed in male neurons that innervate the penis complex and vas deferens. Here, peptidergic release results in muscular contractions of the vas deferens.
present in the central nervous system of several invertebrates, 29,38 in hermaphrodite reproduction but is important for expanding this observation, nematocin signaling has no apparent function like signaling in these species. Recent genetic studies on vasopressin/oxytocin-related peptides and their receptors from invertebrates, evidence the evolutionary origin of central vasopressin and oxytocin receptors are also found in the vertebrate brain and are directly targeted by peptidergic release within the central nervous system. The central vasopressin/oxytocinergic system is indicative of the neuromodulatory functions of these neuropeptides, which have been extensively reviewed elsewhere. 9-11,40 Oxytocin and also vasopressin, are particularly important for the expression of affiliative behaviors such as parental care, pair bonding and partner preference, which rely on the formation of a social memory from visual, auditory or olfactory cues. 28 Both neuropeptides also moderate physiological stress responses and anxious behavior, often with opposing effects. Vasopressin/oxytocin signaling in the mammalian hippocampus and lateral septum is important for learning and memory. 11,40 In a social context, central administration of vasopressin increases social memory in rats. The modulatory effects on non-social learning and memory were established by the pioneering work of de Wied and colleagues. Vasopressin- and oxytocin-related receptors are present in the central nervous system of several invertebrates, 29,38 but little or no information is available on their actions, keeping the evolutionary origin of central vasopressin and oxytocin effects in the dark.

Vasopressin/Oxytocin-related Signaling in C. elegans: A Conserved Regulator of Reproductive Behavior

Despite the characterization of many vasopressin/oxytocin-related peptides and their receptors from invertebrates, evidence on their biological function is limited, partly because of the lack of established genetic tools for studying gene function in these species. Recent genetic studies on vasopressin/oxytocin-like signaling in C. elegans provide evidence for the presumed neuromodulatory function of this peptide family in the nervous system of invertebrates. A limited number of neurons with predominantly sensory-neurosecretory properties express C. elegans nematocin. 12,13 Among these, the NSM neurosecretory motor neurons have sensory endings and processes from which secretion to the pseudocoelomic fluid might occur. 41 Two vasopressin/oxytocin-related receptors (NTR-1 and NTR-2) are present in neuronal, but also in peripheral muscle tissues. 12,13

Sexual dimorphism represents an important feature of C. elegans nematocin signaling, complementing observations in many vertebrates. 6,10 Garrison et al. report expression of the nematocin peptide and receptors in a shared set of hermaphrodite and male neurons, but with additional male-specific expression at sites implicated in reproductive behavior (Table 2). 12 In line with this observation, nematocin signaling has no apparent function in hermaphrodite reproduction but is important for expanding the full mating potential of males. 12 C. elegans males display a pattern of stereotyped mating behaviors, controlled by distinct cellular and molecular sub-circuits. 42-45 Males deficient in nematocin signaling perform poorly at multiple mating stages including mate search, mate recognition and mating itself. 12 Garrison et al. show that the motor patterns underlying successive steps of the reproductive behavior are inefficient and fragmented in nematocin mutant males, reducing their mating success. 12 Upon hermaphrodite encounter, these worms often don’t initiate mating and if so, have difficulties to localize and maintain contact with the vulva, execute turns and complete mating in a reasonable amount of time. Based on these findings, vasopressin/oxytocin-related signaling is suggested to prime various neuronal circuits to stimulate an overall coordinated mating drive. 12

The influence of nematocin on male reproductive behavior is most likely a combination of both central and peripheral actions. Nematocin receptors are expressed in male-specific muscles of the copulatory organ and some of the observed effects can be rescued by reintroducing the receptor in male-specific sensory neurons. 12 Nematocin secretion from the DVA tail neuron is important for the response on initial contact with the hermaphrodite and localization of the vulva, though not for increasing the efficiency of other mating steps. 12 This indicates that different sub-sets of mating behavior are governed by vasopressin/oxytocin-like signaling between different sets of cells including non-sexual dimorphic neurons.

Sexual behavior of animals is often composed of patterned behavioral motifs—of which some are known to be regulated by vasopressin/oxytocin-like peptides. 36,37 These motifs, however, require refined coordination to ensure successful reproduction. Particularly under natural conditions where the timeframe for mating with a free-moving partner is mostly limited, an efficient and coherent mating behavior determines reproductive success. The overall picture that emerges from findings in C. elegans, points out vasopressin/oxytocin-related signaling as a neuromodulatory input for orchestrating the coherence of diverse sub-sets of reproductive behavior. 12 In correspondence to this, nematocin receptors are expressed in male-specific neurons and muscles implicated in successive mating steps (Table 2). In addition, the context-dependent regulation of mating motifs requires the integration of nematocin with other neuropeptidergic signals. 46,47 In combination with studies in vertebrates and lophotrochozoans, C. elegans findings indicate that—despite the phenotypic diversity of species- and sex-specific sexual behaviors—the vasopressin/oxytocin family has an ancient role in the regulation of animal reproductive behavior through both central and peripheral effects.

Ancient Roots for the Neuromodulation of Associative Learning

Besides male mating, nematocin is involved in C. elegans’ ability to modify its behavior in light of recent experience. 13 Worms are normally attracted to low salt concentrations but show gustatory plasticity when shortly pre-exposed to it in the absence of food, resulting in salt avoidance. 48 This behavioral change represents a
Table 2. Expression of the nematocin precursor (italic) and receptors at sites involved in different sub-steps of C. elegans male mating behavior.12-45

Mating step	Involved site(s) expressing nematocin precursor/receptors*
Response to hermaphrodite contact	ray sensory neurons, DVA sensory neuron
Turning	ray sensory neurons
Vulva location	HOB sensory neuron, DVA sensory neuron
Spicule prodding/insertion	spicule protractor muscles, oblique muscles, SPC
Spicule protraction	spicule protractor muscles, SPC sensory-motor neurons

*Nematocin precursor expression was also found in male-specific neurons which based on connectivity are probably involved in mating modules regulating male posture (CP, PDC) and insemination (CP) during mating.12-45

A type of associative learning using taste as the conditioned stimulus.49 Animals lacking nematocin or the NTR-1 receptor are inefficient in gustatory plasticity, matching the expression of NTR-1 in several chemosensory neurons involved in this type of learning (Fig. 2). The release of nematocin from AVK interneurons regulates gustatory plasticity, although other neurons might also be implicated.13 Though AVK cells do not match the proposed ancient sensory-neurosecretory cell type of vasopressin-/oxytocinergic cells, they receive input from various sensory neurons and interneurons, likely influencing nematocin release. Potential candidates to mediate nematocin secretion could be the AVK-expressed neuronal calcium sensor NCS-1 and the calcineurin homolog TAX-6,50,51 which are both also implicated in gustatory plasticity (Fig. 2).12

Gustatory responses and plasticity in C. elegans are governed by neuronal activities balancing attraction and avoidance behaviors (Fig. 2). The gustatory ASE neurons are the main sensory neurons that promote chemotaxis toward low amounts of salt.53 Attraction is antagonized by avoidance, mediated by the ASH neurons that become activated only at high salt concentrations.53,54 Following the model proposed by Hukema et al.,52 gustatory plasticity probably results from the sensitization of avoidance-promoting neurons, including ASH but also ADL, ADL and ASI cells, whether or not combined with the desensitization of attraction-promoting neurons. This is supported by the observed change in neuronal activity of ASE neurons following the short pre-exposure of worms to salt in the absence of food.55 For now, it remains unclear where the salt and no-food signals are integrated during gustatory plasticity. As the ASE neurons become activated at low salt concentrations, it is hypothesized that these cells produce a signal for sensitizing avoidance-promoting neurons (Fig. 2).52 NTR-1 signaling in the left ASE neuron restores gustatory plasticity in receptor mutants; therefore, nematocin might modulate the production of this sensitizing signal or function in the potential desensitization of ASEL.13 In addition, the NTR-1 receptor is expressed in several neurons that are thought to stimulate avoidance in the gustatory plasticity paradigm (Fig. 2).12,13,52 Here, nematocin may be important for priming the neuronal circuit to generate avoidance, in a similar manner to the way in which it increases the efficiency of male mating circuits.12

The vasopressin/oxytocin family is a known regulator of vertebrate learning and memory processes in both a social and non-social context10,14,60 that often translate to the experience-reflected association of different stimuli or behaviors. The role of nematocin in C. elegans’ gustatory plasticity highlights ancient roots for the effects of this peptide family on experience-based learning. At the molecular level, nematocin signaling acts in a genetic pathway for gustatory plasticity including the transient receptor potential vanilloid (TRPV) protein OSM-9 (Fig. 2).13,56 Based on the function of vertebrate counterparts in the sensory-dependent regulation of vasopressin and oxytocin secretion,57 sensory transduction through OSM-9 may be used in C. elegans to relay this information to nematocin-producing neurons. In addition, nematocin signaling interacts with serotonergic and dopaminergic neurotransmission in gustatory plasticity,13 both known to modulate C. elegans’ behavior in response to food.59 Dopamine and serotonin signaling are important for learning and memory across metazoans and vertebrate studies show that neuromodulation by vasopressin and oxytocin relies on interactions with these signaling systems in the brain.9,10 Partner-bond formation for example is hypothesized to reflect the association of sexual reward with partner-specific sensory cues through converging dopaminergic and vasopressin/oxytocinergic pathways within the brain’s reward circuit.60 Besides vasopressin/oxytocin-related actions in learning circuits, the molecular mechanisms underlying these effects may thus be well conserved.

Conclusions

Neuropeptidergic signaling through vasopressin- and oxytocin-related peptides is widely adopted by bilaterian animals for the regulation of physiology and behavior, reflecting the ancient origin of this peptide family. Nevertheless, some invertebrate species also seem to have lost this signaling system, potentially as a consequence of lifestyle adaptation or competition with other hormonal systems. The ancestral vasopressin/oxytocin system might already have been involved in a number of functions. Invertebrate studies underscore the conservation of hormonal effects on peripheral target tissues including the control of myoactivity and reproduction.5,15,16 In addition, genetic analysis of the C. elegans nematocin system provides evidence for neuromodulatory actions on invertebrate neuronal circuits.12,13 Neuromodulation by nematocin occurs in at least two functional systems: in reconfiguring the neuronal circuit for salt chemotaxis in light of previous experience; and in functionally coordinating local sensory-motor circuits for male mating into a coherent reproductive behavior. Nematocin signaling increases the efficiency by which these systems generate behavioral output, which may be achieved by priming or stabilizing the involved neuronal circuits. As vasopressin/oxytocin-related receptors are expressed in the nervous system of many invertebrates,4,29,38 neuromodulation by the vasopressin/oxytocin family most likely occurs in
Like the peripheral hormonal effects, neuromodulation of neuronal circuits that generate social behavior and cognition represents an important, ancient function of the vasopressin/oxytocin family. In addition, molecular mechanisms by which vasopressin and oxytocin modulate central circuits are likely well-conserved in *C. elegans*. In vertebrates, the study of these mechanisms is blurred by the diversity of effects in different brain regions. Functional conservation enables future exploitations of invertebrate models for extensive characterization of the basic mechanisms of central vasopressin/oxytocin signaling.

Disclosure of Potential Conflicts of Interest

No potential conflict of interest was disclosed.

Acknowledgments

We thank Gert Jansen for his advice and support throughout our work on the nematocin system. I.B., L.T. and T.J. benefit from financial support of the Fund for Scientific Research-Flanders (FWO).

References

1. Du Vigneaud V, Ressler C, Trippett S. The sequence of amino acids in oxytocin, with a proposal for the structure of oxytocin. J Biol Chem 1953; 205:949-57; PMID:13129273.
2. Acher R, Chauvet J. La structure de la vasopresine de boeuf. Biochim Biophys Acta 1953; 12:487-8; PMID:13115463; http://dx.doi.org/10.1016/0006-8993(53)90173-5.
3. Hoyle CH. Neuropeptide families and their receptors: evolutionary perspectives. Brain Res 1999; 848:1-25; PMID:10612694; http://dx.doi.org/10.1016/S0006-8993(99)01975-7.
4. Staffinger E, Hanson KK, Hauser F, Schneider M, Cazzamali G, Williamson M, et al. Cloning and identification of an oxytocin/vasopressin-like receptor and its ligand from insects. Proc Natl Acad Sci U S A 2008; 105:3262-7; PMID:18316733; http://dx.doi.org/10.1073/pnas.0710897105.
5. Elphick MR, Rowe ML. NGFFFamide and echinocin: structurally unrelated myoactive neuropeptides derived from neurophysin-containing precursors in sea urchins. J Exp Biol 2009; 212:1067-77; PMID:19329739; http://dx.doi.org/10.1242/jeb.027599.
10. Yamaguchi Y, Nagahama T, Oumi T, Ukena K, Morishita F, Furukawa Y, et al. Possible functions of oxytocin in mammalian superfamily peptides in anulids with special reference to reproduction and osmoregulation. J Exp Zool 1999; 284:401-6; PMID:10451417; http://dx.doi.org/10.1002/(SICI)1097-0109(199909)284:4<401::AID-JEXZ5-3.0.CO;2-U.

11. Kawada T, Kanda A, Minakata H, Matsuhashi O, Sakata H. Identification of a novel receptor for an invertebrate oxytocin/oxytocin superfamily peptide: molecular and functional evolution of the oxytocin/oxytocin superfamily. Biochem J 2004; 382:231-7; PMID:15175002; http://dx.doi.org/10.1042/ BJ20040555.

12. Wagenaar DA, Hamilton MS, Huang T, Kristen WB, French KA. A hormone-activated central pattern generator for courtship. Curr Biol 2010; 20:487-95; PMID:20226670; http://dx.doi.org/10.1016/j.cub.2010.02.027.

13. Borrow AP, Cameron NM. The role of oxytocin in mating and pregnancy. Horm Behav 2012; 61:266-76; PMID:22107910; http://dx.doi.org/10.1016/j.yhbeh.2011.11.001.

14. van Kesteren RE, Tensen CP, Smit AB, de Vos BM, van Steen P, Kats K, et al. A novel G protein-coupled receptor mediating both vasopressin- and oxytocin-like functions of Leu-conopressin in Lymnaea stagnalis. Neuron 1995; 15:897-908; PMID:7756688; http://dx.doi.org/10.1016/0896-6273(95)90180-9.

15. Gupta J, Russell W, Wayman C, Hurley D, Jackson V. Oxytocin-induced contractions within rat and rabbit jejunoileal tissue are mediated by vasopressin V1A receptors and not oxytocin receptors. Br J Pharmacol 2008; 155:118-26; PMID:18552879; http://dx.doi.org/10.1038/bjp.2008.226.

16. de Wied D, Diamanti F, Fodor M. Central nervous system effects of the neurohypophysial hormones and related peptides. Front Neuroendocrinol 1993; 14:301-302; PMID:8258377; http://dx.doi.org/10.1016/0167-0060(93)90004-C.

17. Jarrell TA, Wang Y, Bloniarek A, Brittin GA, Xu M, Thomson JN, et al. The connectome of a decision-making neural network. Science 2012; 337:437-44; PMID:22837521; http://dx.doi.org/10.1126/science.1212762.

18. Liu KS, Sternberg PW. Sensory regulation of male behavior in Caenorhabditis elegans. Neuron 1995; 14:79-89; PMID:7826683; http://dx.doi.org/10.1016/0896-6273(95)90242-2.

19. Garcia LR, Mehta P, Sternberg PW. Regulation of distinct muscle behaviors controls the C. elegans male copulatory spicules during mating. Cell 2001; 107:777-88; PMID:11747813; http://dx.doi.org/10.1016/S0092-8674(01)00600-6.

20. Liu Y, LeBoul B, Guo X, Correa PA, Giulberto DG, Lints R, et al. A cholineric-regulated circuit coordinates the maintenance and bi-stable states of a sensory-motor behavior during Caenorhabditis elegans male copulation. PLoS Genet 2011; 7:e1001326; PMID:21843722; http://dx.doi.org/10.1371/journal.pgen.1001326.

21. Barrios A, Ghosh R, Fang C, Emmmons SW, Barr MM. PDF-1 neuropeptide signaling modulates a neural circuit for mate-seeking behavior in C. elegans. Nat Neurosci 2012; 15:675-82; PMID:23143519; http://dx.doi.org/10.1038/nn.3151.

22. Liu T, Kim K, Li C, Barr MM. FMRFamide-like neuropeptides and mecamenoxene touch receptor neuropeptides regulate male sexual turning behavior in Caenorhabditis elegans. J Neurosci 2007; 27:7714-82; PMID:17611271; http://dx.doi.org/10.1523/JNEUROSCI.1405-07.2007.
53. Bargmann CI, Horvitz HR. Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans. Neuron 1991; 7:729-42; PMID:1660283; http://dx.doi.org/10.1016/0896-6273(91)90276-6.

54. Hilliard MA, Apicella AJ, Kerr R, Suzuki H, Bazzicalupo P, Schafer WR. In vivo imaging of C. elegans ASH neurons: cellular response and adaptation to chemical repellents. EMBO J 2005; 24:63-72; PMID:15577941; http://dx.doi.org/10.1038/sj.emboj.7600493.

55. Oda S, Tomioka M, Iino Y. Neuronal plasticity regulated by the insulin-like signaling pathway underlies salt chemotaxis learning in Caenorhabditis elegans. J Neurophysiol 2011; 106:301-8; PMID:21525368; http://dx.doi.org/10.1152/jn.01029.2010.

56. Colbert HA, Smith TL, Bargmann CI. OSM-9, a novel protein with structural similarity to channels, is required for olfaction, mechanosensation, and olfactory adaptation in Caenorhabditis elegans. J Neurosci 1997; 17:8259-69; PMID:9334401.

57. Sudbury JR, Giura S, Sharif-Naeini R, Bourque CW. Osmotic and thermal control of magnocellular neurosecretory neurons--role of an N-terminal variant of trpv1. Eur J Neurosci 2010; 32:2022-30; PMID:21143657; http://dx.doi.org/10.1111/j.1460-9568.2010.07512.x.

58. Tobin D, Madsen D, Kahn-Kirby A, Peckol E, Moulder G, Barstead R, et al. Combinatorial expression of TRPV channel proteins defines their sensory functions and subcellular localization in C. elegans neurons. Neuron 2002; 35:307-18; PMID:12160748; http://dx.doi.org/10.1016/S0896-6273(02)00757-2.

59. Chase DL, Koelle MR. Biogenic amine neurotransmitters in C. elegans. In: Wormbook, ed. The C. elegans research community. Wormbook, 2007:1-15.

60. Young LJ, Wang Z. The neurobiology of pair bonding. Nat Neurosci 2004; 7:1048-54; PMID:15452576; http://dx.doi.org/10.1038/nn1327.