SOME PROPERTIES OF MINIMAL $S(\alpha)$ AND $S(\alpha)FC$ SPACES

ALEXANDER V. OSIPOV

Abstract. A $S(n)$-space is $S(n)$-functionally compact ($S(n)FC$) if every continuous function onto a $S(n)$-space is closed. $S(n)$-closed, $S(n)$-θ-closed, minimal $S(n)$ and $S(n)FC$ spaces are characterized in terms of $\theta(n)$-complete accumulation points. In paper we also give new characteristics of R-closed and regular functionally compact spaces. Results obtained to answer some questions raised by D.Dikranjan, E.Giuli, L.Friedler, M.Girou, D.Pettey and J.Porter.

1. Introduction

Dikranjan and Giuli [3] introduced a notion of the θ^n-closure operator and developed a theory of $S(n)$-closed and $S(n)$-θ-closed spaces. Jiang, Reilly, and Wang [7] used the θ^n-closure in studying properties of minimal $S(n)$-spaces.

In work [10] continues the study of properties inherent in $S(n)$-closed and $S(n)$-θ-closed spaces, using the θ^n-closure operator; in addition, wider classes of spaces (weakly $S(n)$-closed and weakly $S(n)$-θ-closed spaces) are introduced.

In this paper we continue the investigation of $S(n)$-closed, $S(n)$-θ-closed, minimal $S(n)$ spaces with the use of $\theta(n)$-complete accumulation points. As we introduce new classes of $S(n)$-spaces — $S(n)$-functionally compact spaces and to answer some questions raised in [3, 7].

Section 2 acquaints the reader with main definitions and known properties in the theory of $S(n)$-spaces. Section 3 is completely devoted to the study of weakly $S(n)$-closed and weakly $S(n)$-θ-closed
spaces. It is proved that any \(S(n) \)-closed (\(S(n) \)-\(\theta \)-closed) space is weakly \(S(n) \)-closed (weakly \(S(n) \)-\(\theta \)-closed). In the remaining sections, we characterize \(S(n) \)-closed, \(S(n) \)-\(\theta \)-closed, minimal \(S(n) \) spaces, \(S(n) \)-functionally compact, \(R \)-closed, minimal regular and regular functionally compact spaces with the use of \(\theta(n) \)-complete accumulation and \(\theta(\omega) \)-complete accumulation points.

2. Main definitions and notation

Let \(X \) be a topological space, \(M \subseteq X \), and \(x \in X \). For any \(n \in \mathbb{N} \), we consider the \(\theta(n) \)-closure operator: \(x \notin \overline{\text{cl}}_{\theta(n)}M \) if there exists a set of open neighborhoods \(U_1, U_2, ..., U_n \) of the point \(x \) such that \(\overline{\text{cl}} U_i \subseteq U_{i+1} \) for \(i = 1, 2, ..., n-1 \) and \(\overline{\text{cl}} U_n \cap M = \emptyset \) if \(n > 1 \); \(\overline{\text{cl}}_{\theta(0)}M = \overline{\text{cl}}M \) if \(n = 0 \); and, for \(n = 1 \), we get the \(\theta \)-closure operator, i.e., \(\overline{\text{cl}}_{\theta(1)}M = \overline{\text{cl}}_\theta M \). A set \(M \) is \(\theta(n) \)-closed if \(M = \overline{\text{cl}}_{\theta(n)}M \). Denote by \(\text{Int}_{\theta(n)}M = X \setminus \overline{\text{cl}}_{\theta(n)}(X \setminus M) \) the \(\theta(n) \)-interior of the set \(M \). Evidently, \(\overline{\text{cl}}_{\theta(n)}(\overline{\text{cl}}_{\theta(s)}M) = \overline{\text{cl}}_{\theta(n+s)}M \) for \(M \subseteq X \) and \(n, s \in \mathbb{N} \). For \(n \in \mathbb{N} \) and a filter \(\mathcal{F} \) on \(X \), denote by \(\overline{\text{ad}}_{\theta(n)}\mathcal{F} \) the set of \(\theta(n) \)-adherent points, i.e., \(\overline{\text{ad}}_{\theta(n)}\mathcal{F} = \bigcap \{ \overline{\text{cl}}_{\theta(n)}\mathcal{F}_\alpha : F_\alpha \in \mathcal{F} \} \). In particular, \(\overline{\text{ad}}_{\theta(0)}\mathcal{F} = \overline{\text{ad}}\mathcal{F} \) is the set of adherent points of the filter \(\mathcal{F} \). For any \(n \in \mathbb{N} \), a point \(x \in X \) is \(S(n) \)-separated from a subset \(M \) if \(x \notin \overline{\text{cl}}_{\theta(n)}M \). For example, \(x \) is \(S(0) \)-separated from \(M \) if \(x \notin \overline{\text{cl}}M \). For \(n > 0 \), the relation of \(S(n) \)-separability of points is symmetric. On the other hand, \(S(0) \)-separability may be not symmetric in some not \(T_1 \)-spaces. Therefore, we say that points \(x \) and \(y \) are \(S(0) \)-separated if \(x \notin \overline{\{ y \}} \) and \(y \notin \overline{\{ x \}} \).

Let \(n \in \mathbb{N} \) and \(X \) be a topological space.

1. \(X \) is called an \(S(n) \)-space if any two distinct points of \(X \) are \(S(n) \)-separated.

2. A filter \(\mathcal{F} \) on \(X \) is called an \(S(n) \)-filter if every point, not being an adherent point of the filter \(\mathcal{F} \), is \(S(n) \)-separated from some element of the filter \(\mathcal{F} \).

3. An open cover \(\{ U_\alpha \} \) of the space \(X \) is called an \(S(n) \)-cover if every point of \(X \) lies in the \(\theta(n) \)-interior of some \(U_\alpha \).

It is obvious that \(S(0) \)-spaces are \(T_0 \)-spaces, \(S(1) \)-spaces are Hausdorff spaces, and \(S(2) \)-spaces are Urysohn spaces. It is clear that every filter is an \(S(0) \)-filter, every open cover is an \(S(0) \)-cover, and every open filter is an \(S(1) \)-filter. Open \(S(2) \)-filters are called Urysohn filters. For \(n > 1 \), open \(S(n) \)-filters were defined in [12].
SOME PROPERTIES OF MINIMAL S(α) AND S(α)FC SPACES

S(1)-covers are called Urysohn covers. In a regular space, every filter (every cover) is an S(n)-filter (S(n)-cover) for any \(n \in \mathbb{N} \).

S(n)-closed and S(n)-θ-closed spaces are S(n)-spaces, closed and, respectively, θ-closed in any S(n)-space containing them.

Porter and Votaw [12] characterized S(n)-closed spaces by means of open S(n)-filters and S(n−1)-covers.

Let \(n \in \mathbb{N}^+ \) and \(X \) be an S(n)-space. Then the following conditions are equivalent:

1. \(ad_{S(n)} F \neq \emptyset \) for any open filter \(F \) on \(X \);
2. \(ad F \neq \emptyset \) for any open S(n)-filter \(F \) on \(X \);
3. for any S(n−1)-cover \(\{U_{\alpha}\} \) of the space \(X \) there exist \(\alpha_1, \alpha_2, ..., \alpha_k \) such that \(X = \bigcup_{i=1}^{k} U_{\alpha_i} \);
4. \(X \) is an S(n)-closed space.

Dikranjan and Giuli [3] characterized S(n)-θ-closed spaces in terms of S(n−1)-filters and S(n−1)-covers.

Let \(n \in \mathbb{N}^+ \) and \(X \) be an S(n)-space. Then the following conditions are equivalent:

1. \(ad F \neq \emptyset \) for any closed S(n−1)-filter \(F \) on \(X \);
2. any S(n−1)-cover of \(X \) has a finite subcover;
3. \(ad_{g(n−1)} F \neq \emptyset \) for any closed filter \(F \) on \(X \);
4. \(X \) is an S(n)-θ-closed space.

Note that, for \(n = 1 \), S(1)-closedness and S(1)-θ-closedness are H-closedness and compactness, respectively. For \(n = 2 \), S(2)-closedness and S(2)-θ-closedness are U-closedness and U-θ-closedness, respectively. From characteristics themselves, it follows that any S(n)-θ-closed subspace of an S(n)-space is an S(n)-closed space.

Recall that a open cover \(\mathcal{V} \) is a shrinkable refinement of open cover \(\mathcal{U} \) if and only if for each \(V \in \mathcal{V} \), there is a \(U \in \mathcal{U} \) such that \(V \subseteq U \). A open cover \(\mathcal{V} \) is a regular refinement of \(\mathcal{U} \) if and only if \(\mathcal{V} \) refines \(\mathcal{U} \) is a shrinkable refinement of itself. An open cover is regular if and only if it has an open refinement.

An open filter base \(\mathcal{F} \) in \(X \) is a regular filter base if and only if for each \(U \in \mathcal{F} \), there exists \(V \in \mathcal{F} \) such that \(V \subseteq U \).

A R-closed space is a regular space closed in any regular space containing them.

Berri, Sorgenfrey [2] characterized R-closed spaces by means of regular filters and regular covers.

Let \(X \) be a regular space. The following are equivalent:

1. \(X \) is R-closed.
(2) Every regular filter base in X is fixed.
(3) Every regular cover has a finite subcover.
For undefined notions and related theorems, we refer readers to [3].

3. Weakly $S(n)$-closed and weakly $S(n)$-θ-closed spaces

In the Aleksandrov and Urysohn memoir on compact spaces [1],
the notion of a θ-complete accumulation point was introduced. A
point x is called a θ-complete accumulation point of a set F if
$|F \cap U| = |F|$ for any neighborhood U of the point x. It was noted
that any H-closed space has the following property:
(*) any infinite set of regular power has a θ-complete accumula-
tion point. However, the converse is not true. The first example of
a space possessing property (*) and not being H-closed was con-
structed by Kirtadze [8]. Simple examples in [10, 11] also sh ows
the converse is not true.

Example 1. (Example 1 in [10].) Let T_1 and T_2 be two copies
of the Tychonoff plane $T = (\omega_1 + 1) \times (\omega_0 + 1) \setminus \{\omega_1, \omega_0\}$, whose
elements will be denoted by $(\alpha, n, 1)$ and $(\alpha, n, 2)$, respectively.
On the topological sum $T_1 \oplus T_2$, we consider the identifications
$(\omega_1, k, 1) \sim (\omega_1, 2k, 2)$ for every $k \in \mathbb{N}$; and we identify all points
$(\omega_1, 2k - 1, 2)$ for any $k \in \mathbb{N}$ with the same point b. Adding,
to the obtained space, a point a with the base of neighborhoods
$U_{\beta,k}(a) = \{a\} \cup \{(\alpha, n, 1) : \beta < \alpha < \omega_1, k < n \leq \omega_0\}$ for arbitrary
$\beta < \omega_1$ and $k < \omega_0$, we get a Urysohn space X.

Note that space X is an example of a non-H-closed, Urysohn
space with the property that for every chain of non-empty sets, the
intersection of the θ-closures of the sets is nonempty, every infinite
set has a θ-complete accumulation point. J.Porter investigated the
space with the same properties in [11].
Definition 3.1. A neighborhood U of a set A is called an n-hull of the set A if there exists a set of neighborhoods $U_1, U_2, ..., U_n = U$ of the set A such that $clU_i \subseteq U_{i+1}$ for $i = 1, ..., n - 1$.

Definition 3.2. A point x from X is called a $\theta^0(n)$-complete accumulation ($\theta(n)$-complete accumulation) point of an infinite set F if $|F \cap U| = |F|$ ($|F \cap U| = |F|$) for any U, where U is an n-hull of the point x.

Note that, for $n = 1$, a $\theta^0(1)$-complete accumulation point is a point of complete accumulation, and a $\theta(1)$-complete accumulation point is a θ-complete accumulation point.

Definition 3.3. A topological space X is called weakly $S(n)$-θ-closed (weakly $S(n)$-closed) if any infinite set of regular power of the space X has a $\theta^0(n)$-complete accumulation ($\theta(n)$-complete accumulation) point.

Note that any $\theta^0(n)$-complete accumulation point is a $\theta(n)$-complete accumulation point; hence, any weakly $S(n)$-θ-closed space is weakly $S(n)$-closed. Moreover, since a $\theta(n)$-complete accumulation point is a $\theta^0(n+1)$-complete accumulation point, it follows that a weakly $S(n)$-closed space will be weakly $S(n+1)$-θ-closed. For $n = 1$, weakly $S(1)$-θ-closed and weakly $S(1)$-closed spaces are compact Hausdorff spaces and spaces with property (*), respectively.

Theorem 3.4. Let X be an $S(n)$-closed $S(n)$-space. Then X is weakly $S(n)$-closed.
Proof. Suppose the contrary. Let X be $S(n)$-closed but not weakly $S(n)$-closed. Then in the spaces X there exists an infinite set F of regular power that has no $\theta(n)$-complete accumulation point. For any point $x \in X$, there exists an n-hull U of the point x with the property $|F \cap U| < |F|$. If we take such n-hull for every point $x \in X$, we derive an $S(n-1)$-cover of the space X. By $S(n)$-closedness, there exists a finite family U of n-hulls such that $|F \cap U| < |F|$ for every $U \in U$ and $\bigcup U = X$. This contradicts the fact that F is infinite set of regular power.

\[\square \]

Theorem 3.5. Let X be an $S(n)$-θ-closed $S(n)$-space. Then X is weakly $S(n)$-θ-closed space.

A proof of Theorem 3.5 is analogous to that of Theorem 3.4.

It was proved in [3] that $S(n)$-closedness implies $S(n+1)$-θ-closedness. Thus, for $S(n)$-spaces, classes of the considered spaces are presented in the following diagram:

- compact Hausdorff space \iff weakly $S(1)$-θ-closed $\downarrow \downarrow$
- H-closed \implies weakly H-closed \downarrow
- U-θ-closed \implies weakly U-θ-closed \downarrow
- U-closed \implies weakly U-closed \downarrow
- \ldots \ldots \ldots \downarrow
- $S(n-1)$-θ-closed \implies weakly $S(n-1)$-θ-closed \downarrow
- $S(n-1)$-closed \implies weakly $S(n-1)$-closed \downarrow
- $S(n)$-θ-closed \implies weakly $S(n)$-θ-closed \downarrow
- $S(n)$-closed \implies weakly $S(n)$-closed \downarrow

Note that all implications in the diagram are irreversible. Examples of $S(n)$-closed but not $S(n)$-θ-closed spaces and $S(n)$-θ-closed but not $S(n-1)$-closed spaces are considered in [3]. Examples
are considered in [10], showing that the remaining implications are irreversible.

Theorem 3.6. Let X be a Lindelöf (finally compact) weakly $S(n)$-closed $S(n)$-space. Then X is $S(n)$-closed space.

Proof. Suppose the contrary. Let X be a Lindelöf weakly $S(n)$-closed but not $S(n)$-closed. Then in the spaces X there exists open filter \mathcal{F} such that $ad_{\mathcal{F}} \mathcal{F} = \emptyset$. For each point $x \in X$ there are $F_x \in \mathcal{F}$ and an n-hull U_x of F_x such that $x \notin U_x$. Note that $\bigcap_{x \in X} U_x = \emptyset$. Since X is a Lindelöf, there exists a countable family $\{U_x\}$ such that $\bigcap_{i=1} U_{x_i} = \emptyset$. Consider a sequence $\{y_j\}$ such that $y_j \in \bigcap_{i=1} F_{x_i}$. Clearly, the infinite set $\{y_j\}$ has not a $\theta(n)$-complete accumulation point. This contradicts the fact that X is a weakly $S(n)$-closed space. \qed

Corollary 3.7. Let X be a countable weakly $S(n)$-θ-closed $S(n)$-space. Then X is $S(n)$-closed.

Corollary 3.8. Let X be second-countable weakly $S(n)$-θ-closed $S(n)$-space. Then X is $S(n)$-closed.

Recall, that a space is linearly Lindelöf (finally compact in the sense of accumulation points) if every increasing open cover $\{U_\alpha : \alpha \in \kappa\}$ has a countable subcover (by increasing, we mean that $\alpha < \beta < \kappa$ implies $U_\alpha \subseteq U_\beta$).

Theorem 3.9. Let $n > 1$ and X be a linearly Lindelöf weakly $S(n)$-θ-closed $S(n)$-space. Then X is weakly $S(n-1)$-closed.

Proof. Suppose the contrary. Then there is a countable set S such that the set S has not a $\theta(n-1)$-complete accumulation point. Let $x \in X$ and U be a $(n-1)$-hull of x such that $\overline{U} \cap S = \emptyset$. For every $y \in \overline{U}$ there exists a neighborhood W_y of y such that $W_y \cap S = \emptyset$. Consider a open set $W = \bigcup_{y \in \overline{U}} W_y$. Then $\overline{W} \subseteq W$ and W is an n-hull of the point x. Note that $W \cap S = \emptyset$. It is follows that x is not an $\theta^0(n)$-complete accumulation point of S. This contradicts fact that X is a weakly $S(n)$-θ-closed. \qed

Corollary 3.10. Let $n > 1$ and X be a Lindelöf weakly $S(n)$-θ-closed $S(n)$-space. Then X is $S(n-1)$-closed.
In [3] raised the question (Problem 5) about the product of U-θ-closed spaces. Namely, it is required to prove or to disprove that the product of U-θ-closed spaces is feebly compact. In particular, it was not known if every Lindelöf U-θ-closed space is H-closed.

In [9], two Urysohn U-θ-closed spaces whose product is not feebly compact are constructed. Thus, the question is negatively solved.

Corollary 3.11. Let X be a Lindelöf U-θ-closed Urysohn space. Then X is H-closed.

Remark 3.12. Observe that every H-closed space is feebly compact. By corollary 3.11, product of Lindelöf U-θ-closed spaces is feebly compact.

Corollary 3.13. Let $n > 1$ and X be a Lindelöf weakly $S(n)$-θ-closed $S(n)$-space. Then X is $S(n)$-θ-closed.

Thus, for Lindelöf $S(n)$-spaces, classes of the considered spaces are presented in the following diagram:

```
compact Hausdorff space ⇐⇒ weakly $S(1)$-$\theta$-closed
\downarrow
H-closed ⇐⇒ weakly $H$-closed
\downarrow
U-$\theta$-closed ⇐⇒ weakly U-$\theta$-closed
\downarrow
U-closed ⇐⇒ weakly U-closed
\downarrow
\ldots
\downarrow
\ldots
\downarrow
S(n-1)$-$\theta$-closed ⇐⇒ weakly $S(n-1)$-$\theta$-closed
\downarrow
S(n-1)-closed ⇐⇒ weakly $S(n-1)$-closed
\downarrow
S(n)$-$\theta$-closed ⇐⇒ weakly S(n)$-$\theta$-closed
\downarrow
S(n)-closed ⇐⇒ weakly S(n)-closed
```

Question 1. Does there exists a non $S(n)$-θ-closed Lindelöf S(n)-closed space ($n > 1$)?
4. Characterizations $S(n)$-closed and $S(n)$-θ-closed spaces

Now for every $n \in \mathbb{N}$ we introduce an operator of θ^n_0-closure; for $M \subseteq X$ and $x \in X$ $x \notin cl_{\theta^n_0} M$ if there is a n-hull U of x such that $U \cap M = \emptyset$. A set $M \subseteq X$ is θ^n_0-closed if $M = cl_{\theta^n_0} M$.

Definition 4.1. A subset M of a topological space X is an $S(n)$-θ^n_0-set if every $S(n)$-cover γ with respect to $M \{ M \subseteq \bigcup \{ Int_{\theta^n} U_\alpha : U_\alpha \in \gamma \} \}$ by open sets of X has a finite subfamily which covers M with the θ^n_0-closures of its members.

Definition 4.2. The set A is weakly $\theta(n)$-converge to the set B if for any $S(n-1)$-cover $\gamma = \{ U_\alpha \}$ of B there exists a finite family $\{ U_{\alpha i} \}_{i=1}^k \subseteq \gamma$ such that $|A \setminus \bigcup_{i=1}^k \bigcap_{j=1}^k U_{\alpha i} | < |A|$.

Theorem 4.3. For $n \in \mathbb{N}$, a $S(n)$-space X is $S(n)$-closed if and only if any infinity set $A \subseteq X$ weakly $\theta(n)$-converge to the set B of its $\theta(n)$-complete accumulation points.

Proof. Necessary. Let X be $S(n)$-closed space and $A \subseteq X$. Take any $S(n-1)$-cover γ of B where B is the set of $\theta(n)$-complete accumulation points of A. For each point $x \notin B$ we take an n-hull $O(x)$ such that $|O(x) \cap A| < |A|$. Then we have an $S(n-1)$-cover $\gamma' = \gamma \cup \{ O(x) : x \notin B \}$ of X. As the space X is $S(n)$-closed there are finite families $\{ U_i \}_{i=1}^k \subseteq \gamma$ and $\{ O(x_j) \}_{j=1}^k$ such that $\bigcup_{i=1}^k U_i \cup \bigcup_{j=1}^k O(x_j) = X$. Note that $A \setminus \bigcup_{i=1}^k \overline{O(x_i)} \subseteq \bigcup_{j=1}^k O(x_j)$. As $|A \setminus \bigcup_{j=1}^k O(x_j) | < |A|$ we have $|A \setminus \bigcup_{i=1}^k \overline{O(x_i)} | < |A|$. Thus A weakly $\theta(n)$-converge to the set B.

Note that B is an $S(n)$-θ^n_0-set. Really, $(A \cap \bigcup_{i=1}^k \overline{U_i}) \cap \overline{S(x)} \neq \emptyset$ for every $x \in B$ and for any n-hull $S(x)$ of the point x. It is follows that $S(x) \cap (\bigcup_{i=1}^k U_i) \neq \emptyset$ and x is contained in θ^n_0-closure of $\bigcup_{i=1}^k U_i$. Thus $B \subseteq cl_{\theta^n_0} \bigcup_{i=1}^k U_i$.

Sufficiency. Let $\varphi = \{ V_\alpha \}$ be open $S(n)$-filter on X. Assume that $ad \varphi = \emptyset$. Choose $V_0 \in \varphi$ such that $|V_0| = inf \{ |V_\alpha| : V_\alpha \in \varphi \}$. Since $\bigcap_{\alpha} \overline{V_\alpha} = \emptyset$ we have $\xi = \{ U_\alpha : U_\alpha = X \setminus \overline{V_\alpha} \}$ is an $S(n-1)$-cover of B where B is the set of $\theta(n)$-complete accumulation points of V_0. By condition, there exists a finite family $\{ U_\alpha \}_{i=1}^k \subseteq \xi$ such that $|V_0 \setminus \bigcup_{i=1}^k \overline{U_\alpha} | < |V_0|$. Consider $V_\alpha_i \in \varphi$ such that $U_\alpha_i = X \setminus V_\alpha_i$. Let $V = \bigcap_{i=1}^k V_\alpha_i$ then $V \cap V_0 \subseteq V_0 \setminus \bigcup_{i=1}^k \overline{U_\alpha_i}$ and

\[|V \cap V_0| < |V_0| \]
$|V \cap V_0| < |V_0|$. This contradicts our choice of V_0. Thus X is
$S(n)$-closed space.

\[\square\]

Corollary 4.4. Let X be a $S(n)$-closed space and A be an infinity
set of X. Then a set B of $\theta(n)$-complete accumulation points of A
is an $S(n)$-θ^0_n-set.

Definition 4.5. The set A is $\theta^0(n)$-converge to the set B if for
any $S(n - 1)$-cover $\gamma = \{U_\alpha\}$ of B there exists a finite family
$\{U_{\alpha_i}\}_{i=1}^k \subseteq \gamma$ such that $|A \setminus \bigcup_{i=1}^k U_{\alpha_i}| < |A|$.

Theorem 4.6. For $n \in \mathbb{N}$, a $S(n)$-space X is $S(n)$-θ-closed if and
only if any infinity set $A \subseteq X$ $\theta^0(n)$-converge to the set B of its
$\theta^0(n)$-complete accumulation points.

5. **Characterization minimal $S(n)$-spaces**

A \mathcal{P} space is minimal \mathcal{P} if it has no strictly coarser \mathcal{P} topology.
The terms minimal Urysohn and minimal regular are abbreviated as MU and MR, respectively.

Definition 5.1. The set A is $\theta(n)$-converge to the set B if for
any $S(n - 1)$-cover $\gamma = \{U_\alpha\}$ of B there exists a finite family
$\{U_{\alpha_i}\}_{i=1}^k \subseteq \gamma$ such that $|A \setminus \bigcup_{i=1}^k U_{\alpha_i}| < |A|$.

Theorem 5.2. For $n \in \mathbb{N}$, a $S(n)$-space X is minimal $S(n)$-space
if and only if any infinity set $A \subseteq X$ $\theta(n)$-converge to the set B of its
$\theta(n)$-complete accumulation points, and if there exists a point x
such that A does not $\theta(n)$-converge to $X \setminus \{x\}$, then x is a complete
accumulation point of A.

Proof. Necessary. Let X be minimal $S(n)$-space and $A \subseteq X$. Then
X is an $S(n)$-closed space (Corollary 2.3. in [7]) and A (weakly)
$\theta(n)$-converge to the set B of its $\theta(n)$-complete accumulation points.
Let $x \in X$ such that A does not $\theta(n)$-converge to $X \setminus \{x\}$. Consider
$S(n - 1)$-cover $\gamma = \{U_\alpha\}$ of $X \setminus \{x\}$ such that $|A \setminus \bigcup_{i=1}^k U_{\alpha_i}| = |A|$
holds for any $\gamma' = \{U_{\alpha_i}\}_{i=1}^k \subseteq \gamma$.

Let ω open $S(n)$-filter generated by $\{X \setminus \overline{U_\alpha} : U_\alpha \in \gamma\}$. Then ω
has unique adherent point x. Since X is minimal $S(n)$-space, we have
that open $S(n)$-filter ω converge to x. Thus for every open
neighborhood $O(x)$ of x there is $V \in \omega$ such that $V \subseteq O(x)$. So
$|V \cap A| = |A|$ we have x is a complete accumulation point of A.

Sufficiency. We only need show that any open \(S(n)\)-filter \(\varphi\) with unique adherent point \(x\) is convergent.

Suppose that \(ad \varphi = \{x\}\), but \(\varphi\) does not converge. Then there is an open neighborhood \(O(x)\) of \(x\) such that \(W_\alpha = V_\alpha \setminus O(x) \neq \emptyset\), for any \(V_\alpha \in \varphi\). Choose \(W_{\alpha_0}\) such that \(|W_{\alpha_0}| = \inf\{|W_\alpha| : V_\alpha \in \varphi\}\). Let \(B\) be the set of \(\theta(n)\)-complete accumulation points of \(W_{\alpha_0}\). Note that \(x \in B\). On a contrary, assume that \(x \notin B\) then for every \(y \in B\) there are \(n\)-hull neighborhood \(O(y)\) of \(y\) and \(W_\alpha\) such that \(O(y) \cap W_\alpha = \emptyset\). Consider \(S(n-1)\)-cover \(\gamma = \{O(y) : y \in B\}\) of \(B\). For every finite family \(\{O(y_i)\}_{i=1}^k \subseteq \gamma\) there is \(W_\alpha\) such that \((U_{i=1}^k \overline{O(y_i)}) \cap (W_\alpha \cap W_{\alpha_0}) = \emptyset\). By the choice of \(W_{\alpha_0}\), we have \(|W_\alpha \cap W_{\alpha_0}| = |W_{\alpha_0}|\). Thus \(W_{\alpha_0}\) does not \(\theta(n)\)-converge to \(B\). It follows that \(x \in B\) and \(W_{\alpha_0}\) does not \(\theta(n)\)-converge to \(B \setminus \{x\}\). For each point \(y \in X \setminus B\) we take an \(n\)-hull \(O_1(y)\) such that \(|O_1(y) \cap A| < |A|\). Consider \(S(n-1)\)-cover \(\gamma_1 = \gamma \cup \{O_1(y) : y \in X \setminus B\}\) of \(X \setminus \{x\}\). For every finite family \(\{V_i\}_{i=1}^k \subseteq \gamma_1\) there is \(W_\alpha\) such that \((U_{i=1}^k \overline{V_i}) \cap (W_\alpha \cap W_{\alpha_0}) = \emptyset\). Thus \(W_{\alpha_0}\) does not \(\theta(n)\)-converge to \(X \setminus \{x\}\). By the condition, \(x\) is a complete accumulation point of \(W_{\alpha_0}\). This contradicts the fact that \(W_{\alpha_0} = V_{\alpha_0} \setminus O(x)\).

Clearly, that the weakly \(\theta(n)\)-converge implies \(\theta(n)\)-converge. By Theorems 4.3 and 5.2, we have

Theorem 5.3. For \(n \in \mathbb{N}\), a \(S(n)\)-space \(X\) is minimal \(S(n)\)-space if and only if \(X\) is a \(S(n)\)-closed, and if there exists a point \(x\) such that infinity set \(A\) does not \(\theta(n)\)-converge to \(X \setminus \{x\}\), then \(x\) is a complete accumulation point of \(A\).

In [5] raised the question (Q40) about the characterization of \(MU\) spaces. Namely, find a property \(Q\) which does not imply \(U\)-closed for which a space is \(U\)-closed and has property \(Q\) if and only if it is \(MU\). The following theorem answers this question.

Theorem 5.4. An Urysohn space \(X\) is \(MU\) if and only if \(X\) is a \(U\)-closed, and if there exists a point \(x\) such that infinity \(A\) does not \(\theta(2)\)-converge to \(X \setminus \{x\}\), then \(x\) is a complete accumulation point of \(A\).

In [5] raised the question (Q35): Does every \(MU\) space have a base of open sets with \(U\)-closed complements?
Note, that the negative answer to this question is the following example [6]. This is an example of a MU space that has no open base with U-closed complements.

Example 2. (Herrlich) For any ordinal number α, let $W(\alpha)$ be the set of all ordinals strictly less than α. Let ω_0 be the first infinite ordinal and ω_1 the first uncountable ordinal. Let $R = (W(\omega_1 + 1) \times W(\omega_0 + 1)) \setminus \{(\omega_1, \omega_0)\}$ and $R_n = R \times \{n\}$ where $n = 0, \pm 1, \pm 2, \ldots$. Denote the elements of R_n by (x, y, n). Identify $(\omega_1, y, n + 1)$ if n is odd and (x, ω_0, n) with $(x, \omega_0, n + 1)$ if n is even. Call the resulting space T. To the subspace $E = R_1 \cup R_2 \cup R_3$ of T add two points a and b, and let $X = E \cup \{a, b\}$. A set $V \subset X$ is open if and only if

1. $V \cap E$ is open in E,
2. $a \in V$ implies there exist $\alpha_0 < \omega_0$ such that $\{(\alpha, \beta, 1) : \beta_0 < \beta \leq \omega_0, \alpha_0 < \alpha < \omega_1\} \subset V$, and
3. $b \in V$ implies there exist $\alpha_0 < \omega_1$ and $\beta_0 < \omega_0$ such that $\{(\alpha, \beta, 3) : \beta_0 < \beta < \omega_0, \alpha_0 < \alpha \leq \omega_1\} \subset V$.

Really, for any open $V \ni a$, if $a \in O(a) = \{(\alpha, \beta, 1) : \beta_0 < \beta \leq \omega_0, \alpha_0 < \alpha < \omega_1\} \subset V$ then $X \setminus O(a)$ is not a U-closed. Infinity set $\{(\alpha, \omega_0, 2) : \alpha_0 < \alpha < \omega_1\}$ do not weakly $\theta(2)$-converge to the set of its $\theta(2)$-complete accumulation points.

6. Characterization $S(n)FC$ spaces

Definition 6.1. A $S(n)$-space is $S(n)$-functionally compact ($S(n)FC$) if every continuous function onto a $S(n)$-space is closed.

A set C will be called complete accumulation set of a set A if $|U \cap A| = |A|$ for any open set $U \supseteq C$.

Theorem 6.2. For $n \in \mathbb{N}$, a $S(n)$-space X is $S(n)FC$ if and only if any infinity set $A \subseteq X$ $\theta(n)$-converge to the set B of its $\theta(n)$-complete accumulation points, and if there exists a θ^n-closed set C such that A does not $\theta(n)$-converge to $X \setminus C$, then C is a complete accumulation set of A.

Proof. Necessary. Let X be $S(n)FC$ and $A \subseteq X$. Then X is an $S(n)$-closed space and A (weakly) $\theta(n)$-converge to the set B of its $\theta(n)$-complete accumulation points. Let θ^n-closed set C such that A does not $\theta(n)$-converge to $X \setminus C$.

Consider $S(n-1)$-cover $\gamma = \{U_\alpha\}$ of $X \setminus C$ such that $|A \setminus \bigcup_{i=1}^k \overline{U_{\alpha_i}}| = |A|$ holds for any $\gamma' = \{U_{\alpha_i}\}_{i=1}^k \subseteq \gamma$.

Let ω open $S(n)$-filter generated by $\{X \setminus U_\alpha : U_\alpha \in \gamma\}$.

Suppose that there exists an open set $W \supseteq C$ such that $|A \cap W| < |A|$. Consider the quotient space $(X/C, \tau)$ of X with C identified to a point e. Now $\tau_1 = \{V \in \tau : c \in V \implies V \in \omega\}$ is a topology on X/C. In $(X/C, \tau_1)$ we have $ad_\theta^c N_x$ for any x where N_x is the neighbourhood filter at the point x, and thus $(X/C, \tau_1)$ is an $S(n)$-space. It is clear that τ_1 is strictly coarser than τ. The quotient function from X to X/C is denoted as p_C, and q_C denotes $s \circ p_C$ where $s : (X/C, \tau) \to (X/C, \tau_1)$ is the identity function. Note that $q_C(X \setminus W)$ is not closed in $(X/C, \tau_1)$. Thus, q_C is continuous but is not closed. This is a contradiction that X is a $S(n)FC$ space.

Sufficiency. Suppose that X is not $S(n)FC$ space. Then there is a continuous function f from X onto an $S(n)$-space Y such that f is not closed. Consider the closed set $A \subseteq X$ such that $f(A)$ is not closed. Let $y \in \overline{f(A)} \setminus f(A)$ and $N_y = \{V_\alpha\}$ is the neighbourhood $S(n)$-filter at the point y. Then $B = f^{-1}(y) = \bigcap \{f^{-1}(V_\alpha)\}$ and B is a θ^n-closed subset of X. Note that $X \setminus A$ is an open set containing B such that $W_\alpha = U_\alpha \setminus (X \setminus A) \neq \emptyset$ for any $U_\alpha \in \{f^{-1}(V_\alpha)\}$.

Choose W_{α_0} such that $|W_{\alpha_0}| = \inf\{|| W_\alpha ||\}$.

Let D be the set of $\theta(n)$-complete accumulation points of W_{α_0}. By the condition, set W_{α_0} $\theta(n)$-converge to the set D. We claim that θ^n-closed set B such that W_{α_0} does not $\theta(n)$-converge to $X \setminus B$. Indeed, for any $x \in X \setminus B$ there is U_{α_x} such that x is $S(n)$-separated from U_{α_x}. Let $O(x)$ be a n-hull neighbourhood of x such that $\overline{O(x)} \setminus U_{\alpha_x} = \emptyset$. Consider a $S(n-1)$-cover $\gamma = \{O(x) : x \in X \setminus B\}$ of $X \setminus B$. For any finite family $\{O(x_i)\}_{i=1}^k \subseteq \gamma$ there is $U = \bigcup_{i=1}^k U_{\alpha_{x_i}}$ such that $\bigcup_{i=1}^k \overline{O(x_i)} \setminus (U \cap W_{\alpha_0}) = \emptyset$. By the choice of W_{α_0}, we have $|U \cap W_{\alpha_0}| = |W_{\alpha_0}|$. It follows that W_{α_0} does not $\theta(n)$-converge to $X \setminus B$. By the condition, B is a complete accumulation set of W_{α_0}. This contradicts the fact that $X \setminus A$ is an open set containing B.

\textit{Corollary 6.3.} An Urysohn space X is UFC if and only if X is an U-closed, and if there exists a θ^2-closed set C such that infinity set A
does not \(\theta(2) \)-converge to \(X \setminus C \), then \(C \) is a complete accumulation set of \(A \).

Definition 6.4. A \(S(n) \)-space \(X \) is \(S(n)FFC \) (\(S(n)CFC \)) if every continuous function \(f \) onto a \(S(n) \)-space \(Y \) with \(f^{-1}(y) \) finite (compact) is a closed function.

Theorem 6.5. For \(n \in \mathbb{N} \), a \(S(n) \)-space \(X \) is \(S(n)FFC \) (\(S(n)CFC \)) if and only if \(X \) is a \(S(n) \)-closed, and if there exists a finite (compact) set \(C \) such that infinity set \(A \) does not \(\theta(n) \)-converge to \(B \setminus C \), then \(C \) is a complete accumulation set of \(A \).

Proof. A proof of Theorem 6.5 is analogous to that of Theorem 6.2. □

Question 2. Is every \(S(n)FC \) (\(S(n)FFC \), \(S(n)CFC \)) space necessarily compact \((n > 1) \)?

7. \(S(\omega) \)-CLOSED AND MINIMAL \(S(\omega) \) SPACES

Two filters \(F \) and \(Q \) on a space \(X \) are \(S(\omega) \)-separated if there are open families \(\{ U_\beta : \beta < \omega \} \subseteq F \) and \(\{ V_\beta : \beta < \omega \} \subseteq Q \) such that \(U_0 \cap V_0 = \emptyset \) and for \(\gamma + 1 < \omega \), \(cU_{\gamma+1} \subseteq U_{\gamma} \) and \(cV_{\gamma+1} \subseteq V_{\gamma} \).

A space \(X \) is \(S(\omega) \) if for distinct points \(x, y \in X \), the neighborhood filters \(N_x \) and \(N_y \) are \(S(\omega) \)-separated.

A \(S(\omega) \)-closed space is a \(S(\omega) \) space closed in any \(S(\omega) \) space containing them.

In 1973, Porter and Votaw \[12\] established next results.

1. A minimal \(S(\omega) \) space is \(S(\omega) \)-closed and semiregular.
2. A minimal \(S(\omega) \) space is regular.
3. A space is \(R \)-closed if and only if it is \(S(\omega) \)-closed and regular.
4. A space is \(MR \) if and only if it is minimal \(S(\omega) \).

Definition 7.1. A neighborhood \(U \) of a point \(x \) is called an \(\omega \)-hull of the point \(x \) if there exists a set of neighborhoods \(\{ U_i \}_{i=1}^\infty \) of the point \(x \) such that \(cU_i \subseteq U_{i+1} \) and \(U_i \subseteq U \) for every \(i \in \mathbb{N} \).

Definition 7.2. A point \(x \) from \(X \) is called a \(\theta(\omega) \)-accumulation point of an infinite set \(F \) if \(|F \cap U| = |F| \) for any \(U \), where \(U \) is an \(\omega \)-hull of the point \(x \).

Definition 7.3. The set \(A \) is \(\theta(\omega) \)-converge to the set \(B \) if for any regular cover \(\gamma = \{ U_\alpha \} \) of \(B \) there exists a finite family \(\{ U_\alpha \}_{i=1}^s \subseteq \gamma \) such that \(|A \setminus \bigcup_{i=1}^s U_\alpha| < |A| \).
Theorem 7.4. A regular space X is R-closed if and only if any infinity set $A \subseteq X$ $\theta(\omega)$-converge to the set B of its $\theta(\omega)$-accumulation points.

Proof. A proof of Theorem 7.4 is analogous to that of Theorem 4.3. □

In [5] raised the question (Q39) about the characterization of MR spaces. Namely, find a property P which does not imply R-closed for which a space is R-closed and has property P if and only if it is MR. The following theorem answers this question.

Theorem 7.5. A regular space X is MR space if and only if X is a R-closed, and if there exists a point $x \in B$ such that infinite set A does not $\theta(\omega)$-converge to $X \setminus \{x\}$, then x is a complete accumulation point of A.

Proof. A proof of Theorem 7.5 is analogous to that of Theorem 5.2. □

We introduce an operator of θ_ω-closure; for $M \subseteq X$ and $x \in X$ $x \notin cl_{\theta_\omega} M$ if there is a ω-hull U of x such that $U \cap M = \emptyset$. A set $M \subseteq X$ is θ_ω-closed if $M = cl_{\theta_\omega} M$.

Definition 7.6. A regular space is regular functionally compact (RFC) if every continuous function onto a regular space is closed.

Theorem 7.7. A regular space X is RFC if and only if X is R-closed, and if there exists a θ_ω-closed set C such that infinite set A does not $\theta(\omega)$-converge to $X \setminus C$, then C is a complete accumulation set of A.

Proof. A proof of Theorem 7.7 is analogous to that of Theorem 6.2. □

Question 3. Is every RFC space necessarily compact?

Remark 7.8. Note that a negative answer to the question (Q27 in [5]) of compactness of U-closed space in which the closure of any open set is U-closed be any non-compact H-closed Urysohn space.

Question 4. (Q26 in [5]) Is an R-closed space in which the closure of every open set is R-closed necessarily compact?
This work was supported by the Russian Foundation for Basic Research (project no. 09-01-00139-a) and by the Division of Mathematical Sciences of the Russian Academy of Sciences (project no. 09-T-1-1004).

References

[1] P.S. Aleksandrov and P.S. Urysohn, Memuar o kompaktnykh topologicheskikh prostranstvakh (Memoir on Compact Topological Spaces), Moscow: Nauka, (1971).
[2] M.P. Berri and R.H. Sorgenfrey, Minimal regular spaces, Proc. Amer. Math. Soc. 14, (1963), 454–458.
[3] D. Dikranjan and E. Giuli, S(n)-θ-closed spaces, Topology and its applications, 28,(1988), 59–74.
[4] L. M. Friedler and J. R. Porter, Compactly functionally compact spaces, Houston Journal of mathematics, Vol 22, 4 (1996), 775–785.
[5] L. M. Friedler, M. Girou, D. H. Pettey and J. R. Porter, A survey of R-, U-, and CH-closed spaces, Topology proceedings, (1992). Vol. 17, 71–96.
[6] H. Herrlich, Tθ-Abgeschlossenheit und Tθ-Minimalität, Math.Z.,88, (1965), 285–294.
[7] S. Jiang, I. Reilly and S. Wang, Some properties of S(n)−θ-closed spaces, Topology and its applications 96, (1999), 23–29.
[8] G. Kirtadze, On Different Kinds of Completeness of Topological Spaces, Mat. Sb., (1960), vol. 50, 67–90.
[9] A.V. Osipov, An example of the nonfeebly compact product of U-θ-closed spaces Proc. Steklov Inst. Math. (2001), suppl.2, 186–188.
[10] A.V. Osipov, Different kinds of closedness in S(n)-spaces , Proc. Steklov Inst. Math. (2003), suppl.1, 155–160.
[11] J.R. Porter, Almost H-closed, Topology Proceedings, (2011), Vol 38, 301–308.
[12] J.R. Porter and C. Votaw, S(α)-Spaces and Regular Hausdorff Extensions, Pacific J. Math., (1973), Vol. 45, 327–345.

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ural Federal University, Ekaterinburg, Russia

E-mail address: OAB@list.ru