Level Crossing Analysis of Burgers Equation in 1 + 1 Dimensions

M. Sadegh Movahed \textsuperscript{a,b}, A. Bahraminasab,\textsuperscript{a,c}, H. Rezazadeh \textsuperscript{d}, A. A. Masoudi \textsuperscript{d,e}

\textsuperscript{a} Dept. of Physics, Sharif University of Technology, P.O.Box 11365-9161, Tehran, Iran.
\textsuperscript{b} Institute for Studies in Theoretical Physics and Mathematics, P.O.Box 19395-5531, Tehran, Iran
\textsuperscript{c} International Center for Theoretical Physics, Strada Costiera 11, I-34100 Trieste, Italy
\textsuperscript{d} Dep. of Physics, Islamic Azad university, Branch of North Tehran, P.O.Box 19585-936, Tehran, Iran
\textsuperscript{e} Department of Physics, Alzahra University,P.O.Box 19834, Tehran, Iran

We investigate the average frequency of positive slope $\nu_+^\alpha$, crossing the velocity field $u(x) - \bar{u} = \alpha$ in the Burgers equation. The level crossing analysis in the inviscid limit and total number of positive crossing of velocity field before creation of singularities are given. The main goal of this paper is to show that this quantity, $\nu_+^\alpha$, is a good measure for the fluctuations of velocity fields in the Burgers turbulence.

PACS: 52.75.Rx, 68.35.Ct.

I. INTRODUCTION

The Burgers equation is the simplest nonlinear generalization of the diffusion equation. The N-dimensional forced Burgers equation

$$\partial_t \bar{u} + (\bar{u}, \bar{\nabla}) \bar{u} = \nu \nabla^2 \bar{u} + \bar{f}(\bar{x}, t)$$

(1)

which describes the dynamics of a stirred, pressure less and vorticity-free fluid, has found interesting applications in a wide range of non-equilibrium statistical physics problems. It arises, for instance, in cosmology where it is known as the adhesion model [1], in vehicular traffic [2] or in the study of directed polymers in random media [3]. In the Burgers equation if the velocity field is a gradient field $\bar{u}(\bar{x}, t) = -\nabla \psi(\bar{x}, t)$ and the random force is a gradient random force $\bar{f}(\bar{x}, t) = -\nabla F(\bar{x}, t)$, then associated Hamilton Jacobi equation, satisfies in the following equation as:

$$\partial_t \psi = \nu \nabla^2 \psi + \frac{1}{2} (\nabla \psi)^2 + F(\bar{x}, t)$$

(2)

where $\nu$ is the viscosity, recently it has been frequently studied as a nonlinear model for the motion of an interface under deposition [4]. The case with large-scale forcing was considered in Refs. [5,6] as a natural way to pump energy in order to maintain a statistical steady state. Burgers equation is then a simple model for studying the influence of well-understood structures (shocks, preshocks, etc) on the statistical properties of the flow. As it is well known, eq.(1) in the limit of vanishing viscosity ($\nu \rightarrow 0$) displays after a finite time dissipative singularities, namely shocks, corresponding to discontinuities in the velocity field. In the presence of large-scale forcing, it was recently stressed for the one-dimensional case [7,8] and also for higher dimensions [9–11], that the global topological structure of such singularities is strongly related to the boundary conditions associated to the equation. More precisely, when, for instance, space periodicity is assumed, a generic topological shock structure can be outlined. It plays an essential role in understanding the qualitative features of the statistically stationary regime. So far, the singular structure of the forced Burgers equation was mostly investigated in the case of finite-size systems with periodic boundary conditions. It is however frequently of physical interest to investigate instances where the size of the domain is much larger than the scale, so as to examine, for example, the role of Galilean invariance [12].

Here we describe the level crossing analysis in the context of vorticity - free fluid. In the level crossing analysis we are interested in determining the average frequency (in spatial dimension) of observing of the definite value for velocity function $u(x) - \bar{u} = \alpha$ in fluid, $\nu_+^\alpha$, from which one can find the averaged number of crossing the given velocity in sample with size $L$. The average number of visiting the velocity $u(x) - \bar{u} = \alpha$ with positive slope will be $N_+^\alpha = \nu_+^\alpha L$. It can be shown that the $\nu_+^\alpha$ can be written in terms of joint probability distribution function (PDF) of $u(x) - \bar{u}$ and its gradient. Therefore the quantity $\nu_+^\alpha$ carry the whole information of fluid which lies in joint PDF of velocity and its gradient fluctuations. This work aims to study the frequency of positive slope crossing (i.e. $\nu_+^\alpha$) in time $t$ on the vorticity - free fluid in a sample with size $L$. We describe a quantity $N_{tot}^\alpha$ which is defined as $N_{tot}^\alpha = \int_{-\infty}^{+\infty} \nu_+^\alpha da$ to measure the total number of crossing the velocity of fluid with positive slope. The $N_{tot}^\alpha$ and the path which is constructed velocity of fluid are in the same order. It is expected that in the stationary state the $N_{tot}^\alpha$ to become size dependent. Although we exactly determine the velocity dependence of $\nu_+^\alpha$ for Burgers equation in the inviscid limit and before creation of singularities, we compute the time dependence of $N_{tot}^\alpha (\nu_+^\alpha)$ numerically.

This paper is organized as follows: In section II we discuss the connection between $\nu_+^\alpha$ and underlying probability distribution functions (PDF) of a fluid [13]. In section III we derive the integral representation of $\nu_+^\alpha$ for the Burgers equation in 1+1 dimensions and in the inviscid limit before the creation of singularities. Section IV...
closes with a discussion of the present results.

II. THE LEVEL CROSSING ANALYSIS OF STOCHASTIC PROCESSES

Consider a sample function of an ensemble of functions which make up the homogeneous random process \( u(x,t) \). Let \( n_\alpha^+ \) denote the number of positive slope crossing of \( u(x) - \bar{u} = \alpha \) in time \( t \) for a typical sample size \( L \) (see fig.(1)) and let the mean value for all the samples be \( N_\alpha^+(L) \) where:

\[
N_\alpha^+(L) = E[n_\alpha^+(L)].
\]  

Since the process is homogeneous, if we take a second interval of \( L \) immediately following the first we shall obtain the same result, and for the two intervals together we shall therefore obtain:

\[
N_\alpha^+(2L) = 2N_\alpha^+(L),
\]

from which it follows that, for a homogeneous process, the average number of crossing is proportional to the space interval \( L \). Hence:

\[
N_\alpha^+(L) \propto L,
\]

or:

\[
N_\alpha^+(L) = \nu_\alpha^+ L.
\]

which \( \nu_\alpha^+ \) is the average frequency of positive slope crossing of the level \( u(x) - \bar{u} = \alpha \). We now consider how the frequency parameter \( \nu_\alpha^+ \) can be deduced from the underlying probability distributions for \( u(x) - \bar{u} \). Consider a small length \( dl \) of a typical sample function. Since we are assuming that the process \( u(x) - \bar{u} \) is a smooth function of \( x \), with no sudden ups and downs, if \( dl \) is small enough, the sample can only cross \( u(x) - \bar{u} = \alpha \) with positive slope if \( u(x) - \bar{u} < \alpha \) at the beginning of the interval location \( x \). Furthermore there is a minimum slope at position \( x \) if the level \( u(x) - \bar{u} = \alpha \) is to be crossed in interval \( dl \) depending on the value of \( u(x) - \bar{u} \) at location \( x \). So there will be a positive crossing of \( u(x) - \bar{u} = \alpha \) in the next space interval \( dl \) if, at position \( x \),

\[
u_\alpha^+ = \frac{d(u(x) - \bar{u})}{dl} \geq \frac{\alpha - (u(x) - \bar{u})}{dl}.
\]

Actually what we really mean is that there will be high probability of a crossing in interval \( dl \) if these conditions are satisfied [14,15].

In order to determine whether the above conditions are satisfied at any arbitrary location \( x \), we must find how the values of \( y = u(x) - \bar{u} \) and \( y' = \frac{dy}{dt} \) are distributed by considering their joint probability density \( p(y,y') \). Suppose that the level \( y = \alpha \) and interval \( dl \) are specified. Then we are only interested in values of \( y < \alpha \) and values of \( y' = \frac{dy}{dt} > \alpha - \frac{y}{dl} \), which means that the region between the lines \( y = \alpha \) and \( y' = \frac{\alpha - y}{dl} \) in the plane \((y,y')\). Hence the probability of positive slope crossing of \( y = \alpha \) in \( dl \) is:

\[
\int_0^\infty dy' \int_{\alpha - y' dl}^{\alpha} dy p(y,y').
\]

When \( dl \to 0 \), it is legitimate to put:

\[
p(y,y') = p(y = \alpha, y').
\]

Since at large values of \( y \) and \( y' \) the probability density function approaches zero fast enough, therefore eq.(8) may be written as:

\[
\int_0^\infty dy' \int_{\alpha - y' dl}^{\alpha} dy p(y = \alpha, y'),
\]

in which the integrand is no longer a function of \( y \) so that the first integral is just:

\[
\int_{\alpha - y' dl}^{\alpha} dy p(y = \alpha, y') = p(y = \alpha, y')y' dl,
\]

so that the probability of slope crossing of \( y = \alpha \) in \( dl \) is equal to:

\[
dl \int_0^\infty p(\alpha,y')y' dy',
\]

in which the term \( p(\alpha,y') \) is the joint probability density \( p(y,y') \) evaluated at \( y = \alpha \).

We have said that the average number of positive slope crossing in scale \( L \) is \( \nu_\alpha^+ L \), according to eq.(6). The average number of crossing in interval \( dl \) if therefore \( \nu_\alpha^+ dl \). So average number of positive crossing of \( y = \alpha \) in interval \( dl \) is equal to the probability of positive crossing of \( y = \alpha \) in \( dl \), which is only true because \( dl \) is small and the process \( y(x) \) is smooth so that there cannot be more than one crossing of \( y = \alpha \) in space interval \( dl \). Therefore we have \( \nu_\alpha^+ dl = dl \int_0^\infty p(\alpha,y')y' dy' \), from which we get the following result for the frequency parameter \( \nu_\alpha^+ \) in terms of the joint probability density function \( p(y,y') \) as follows:

\[
\nu_\alpha^+ dl = \frac{\int_0^\infty (y' - \alpha)^2 p(y,y') dy'}{\int_0^\infty y' p(y,y') dy'}.
\]
\[ \nu_\alpha^+ = \int_0^\infty p(\alpha, y')y'dy'. \] (12)

In the following section we are going to derive the \( \nu_\alpha^+ \) via the joint PDF of \( u(x) - \bar{u} \) and velocity gradient. To derive the joint PDF we use the master equation method [16]. This method enables us to find the \( \nu_\alpha^+ \) in terms of generating function.

### III. FREQUENCY OF A DEFINITE VELOCITY WITH POSITIVE SLOPE FOR BURGERS EQUATION BEFORE THE SINGULARITY FORMATION

As mentioned in section I, in the presence of a random force \( f(x, t) \), the velocity field of burgers equation in 1+1 dimensions evolves as:

\[ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2} + f(x, t). \] (13)

Differentiating the Burgers equation (eq.13) respect to \( x \), we have:

\[ \frac{\partial \omega}{\partial t} + u \frac{\partial \omega}{\partial x} + \omega^2 = \nu \frac{\partial^2 \omega}{\partial x^2} + f_x(x, t), \] (14)

where \( \nu \geq 0, \omega = \frac{\partial u}{\partial x} \) and \( f(x, t) \) is a random force, with a Gaussian distribution of mean zero and second moment given by:

\[ (f(x, t)f(x', t')) = 2D_0D(x - x')\delta(t - t') \] (15)

where \( D(x) \) is space correlation function and is an even function of its argument. It has the following form:

\[ D(x - x') = \frac{1}{\sqrt{4\pi\sigma}}e^{-\frac{(x-x')^2}{4\sigma}} \] (16)

Burgers equation will develop shock singularity after time scale \( t^* \), where \( t^* \) depends on the forcing properties as \( t^* \approx D_0^{-1/3} \sigma \) [11,16,17]. This means that for time scales before \( t^* \) the relaxation contribution tends to zero when \( \nu \to 0 \). In this regime one can observe that the generating function equation is closed [11,17–19]. Let us define the generating function \( Z(\lambda, \mu, x, t) \) as:

\[ Z(\lambda, \mu, x, t) = \langle e^{-i\lambda(u(x,t) - \bar{u}) - i\mu\omega(x,t)} \rangle = \langle \Theta \rangle. \] (17)

Assuming statistical homogeneity i.e. \( Z_x = 0 \) it follows from equations (13) and (14) that \( Z \) satisfies in the following equation:

\[ \frac{\partial Z}{\partial t} = -i\lambda \frac{\partial u}{\partial t} \Theta - i\mu \frac{\partial^2 u}{\partial t^2} \Theta \] (18)

Using the Novikov theorem [11] gives:

\[ \frac{\partial Z}{\partial t} = iZ_{\mu} - i\mu Z_{\mu\mu} - \lambda^2 k(0)Z + \mu^2 k_{xx}(0)Z \] (19)

where \( k(x - x') = 2D_0D(x - x') \), \( k(0) = \frac{2D_0}{\sqrt{\pi\sigma}} \) and \( k_{xx}(0) = -\frac{4D_0^2}{\sqrt{\pi\sigma}} \). The solution of eq.(19) by using the separation of variables is as follows:

\[ Z(t, \mu, \lambda) = \sqrt{\frac{k(0)}{\pi}} e^{-\lambda^2 k(0)t} \times Z_1(\mu, t) \] (20)

where \( Z_1(\mu, t) \) satisfies in the following equation:

\[ \frac{\partial Z_1}{\partial t} = iZ_{1\mu} - i\mu Z_{1\mu\mu} - \lambda^2 k(0)Z_1 \]

\[ + |\mu|^2 k_{xx}(0) + C(t)]Z_1 \] (21)

\( C(t) \) is an arbitrary function which should be determined by initial conditions.

The joint probability density function of \( u \) and \( \omega \) can be obtain by Fourier transform of the generating function:

\[ P(u, \omega, t) = \frac{1}{2\pi} \int d\lambda d\mu e^{i\lambda(u - \bar{u}) + i\mu\omega} Z(\lambda, \mu, t), \] (22)

so by Fourier transforming of the eq.(19) we get the Fokker-Planck equation as:

\[ \frac{\partial}{\partial t}P = 3\omega P + \omega^2 \frac{\partial P}{\partial \omega} + k(0) \frac{\partial^2 P}{\partial \omega^2} - k_{xx}(0) \frac{\partial^2 P}{\partial \omega^2}. \] (23)

The solution of the above equation can be separated as \( P(u,\omega,t) = p_1(u,t)p_2(\omega,t) \) (for motivation see [20]). Using the initial conditions \( P_1(u,0) = \delta(u) \) and \( P_2(\omega,0) = \delta(\omega) \) it can be shown that:

\[ P(u, \omega, t) = \frac{1}{4\pi k(0)t} e^{-\frac{u^2}{4k(0)t}} \times p_2(\omega, t) \] (24)

where \( p_2(\omega, t) \) is a solution of the following equation:
FIG. 2. plot of $\nu^+_\alpha$ vs $\alpha$ for the Burgers equation in the strong coupling and before the creation of singularity for time scale $t/t^* = 0.02, 0.03$ and $0.04$.

\[ \frac{\partial}{\partial t} p_2 = +\omega^2 \frac{\partial p_2}{\partial \omega} - k_{xx}(0) \frac{\partial^2 p_2}{\partial \omega^2} + [3\omega + G(t)] p_2(\omega, t) \]

(25)

$G(t)$ is an arbitrary function which should be determined by initial conditions. Up to now we obtained that, for every time scale, the level cross $\nu^+_\alpha$ has a Gaussian behavior in terms of $\alpha$, now for determination of time dependence of $\nu^+_\alpha$ we have to determine $p_2(\omega, t)$. Since the eq.(25) is so complex, we solve it using the numerical methods [21]. The frequency of repeating a definite velocity field $(u(x) - \bar{u} = \alpha)$ with positive slope can be calculated as $\nu^+_\alpha = \int_{-\infty}^{\infty} \omega P(\alpha, \omega, t) d\omega$. Fig.2 shows $\nu^+_\alpha$ for various time scales before creation of singularity. To derive the $N^+_\text{tot}$ let us express $N^+_\text{tot}$ as:

\[ N^+_\text{tot} = \int_{-\infty}^{+\infty} d\alpha \int_{0}^{\infty} \omega P(\alpha, \omega, t) d\omega \]

(26)

Using the numerical integration of eq.(26) one finds $N^+_\text{tot} \sim t^3$ where $\beta = 0.50 \pm 0.01$. In fig.3 we plot the $N^+_\text{tot}$ as a function of $t$.

IV. CONCLUSION

We obtained some results in the problems of Burgers equation in 1+1 dimensions with a Gaussian forcing which is white in time and Gaussian correlated in space, typically in the physical case. We determined the average frequency of crossing i.e. $\nu^+_\alpha$ of observing of the definite value for velocity field $u - \bar{u} = \alpha$, from which one can find the averaged number of crossing the given velocity field in a sample with size $L$. The integral representation of $\nu^+_\alpha$ was given for the Burgers equation in the inviscid limit before the creation of singularity and it was shown that the velocity dependence of the $\nu^+_\alpha$ is Gaussian. We apply the quantity $N^+_\text{tot} = \int_{-\infty}^{+\infty} \nu^+_\alpha d\alpha$, which measures the total number of positive crossing of velocity and show that for the Burgers equation in the inviscid limit and before the creation of singularities $N^+_\text{tot}$ scales as $t^{1/2}$.

Acknowledgment We would like to thank M R Rahimi Tabar and M Fazeli for useful comments. My special thanks to H Abdollahi for discussions about numerical calculations. This paper is dedicated to Dr Somaieh Abdolahi.

[1] S.N. Gurbatov, A.I. Saichev and S.F. Shandarin, The large-scale structure of the Universe in the frame of the model equation of non-linear diffusion, Monthly Notices of the Royal Astronomical Society 236:385402 (1989).
[2] D. Chowdhury, L. Santen and A. Schadschneider, Statistical physics of vehicular traffic, Phys. Rep. 329:199329 (2000).
[3] J.-P. Bouchaud, M. Mezard and G. Parisi, Scaling and intermittency in Burgers turbulence, Phys. Rev. E 52:36563674 (2000).
[4] M. Kardar, G. Parisi and Y.-C. Zhang, Dynamic scaling
of growing interfaces, Phys. Rev. Lett. 56:889892 (1986).

[5] Ya.G. Sinai, Two results concerning asymptotic behavior of the solutions of the Burgers equation with force, J. Stat. Phys. 64:112 (1991).

[6] A. Chekhlov and V. Yakhot, Kolomogorov turbulence in a random-force-driven Burgers equation, Phys. Rev. E 51:R2739R2742 (1995).

[7] W. E, K. Khanin, A. Mazel and Ya.G. Sinai, Probability distribution functions for the random forced Burgers equation, Phys. Rev. Lett. 78:19041907 (1997).

[8] W. E, K. Khanin, A. Mazel and Ya.G. Sinai, Invariant measures for Burgers equation with stochastic forcing, Ann. Math. 151:877960 (2000).

[9] R. Iturriaga and K. Khanin, Burgers turbulence and random lagrangian systems. commun. math. phys. 232, 3, 377 (2003).

[10] J. Bec, R. Iturriaga and K. Khanin, Topological shocks in Burgers turbulence, Phys. Rev. Lett. 89:024501 (2002).

[11] A. Bahraminasab, M. Sadegh Movahed, S. D. Nassiri and A. A. Masoudi, Journal of Statistical Physics, Vol. 124, No. 6, September 2006.

[12] A.-L. Barabasi and H. E. Stanley, "Fractal Concepts in Surface Growth" (Cambridge University Press, New York, 1995).

[13] H. Risken, The Fokker-Planck Equation, (Springer, Berlin), 1984.

[14] S.O. Rice " Mathematical Analysis of Random Noise" Bell System Tech. J. Vol. 23, (1944), 282; Vol. 24 (1945), 46

[15] D.E. Newland " An Introduction to Random Vibration, Spectral and Wavelet Analysis" ( Longman, Harlow and Wiley, New York, 1993 )

[16] A. A. Masoudi, F. Shahbazi, J. Davoudi and M. Reza Rahimi Tabar, Phys. Rev. E 65, 026132(2002).

[17] F. Shahbazi, S. Sobhanian, M.R. Rahimi Tabar, S. Khorram, G.R. Frootan, and H. Zahed, J. phys. A, 36, 2517 (2003)

[18] A. Bahraminasab, S. M. A. Tabei, A.A. Masoudi, F. Shahbazi and M. Reza Rahimi Tabar Journal of Statistical Physics 116, 1521 (2004).

[19] S. M. A. Tabei, A. Bahraminasab, A.A. Masoudi, S. S. Mousavi and M. Reza Rahimi Tabar Phys. Rev. E 70, 031101 (2004).

[20] Sreenivasan K R, Prabhu A and Narasimha R, J. Fluid Mech. 137 251 (1983).

[21] J. H. Mathews, Numerical methods for mathematics and science and engineering, Prentice Hall College Div; 2 edition (1992).