کارگاه‌های آموزشی مرکز اطلاعات علمی

مقاله نویسی علوم انسانی

اصول تنظیم قراردادها

آموزش مهارت های کاربردی در تدوین و چاپ مقاله
Comparative Proteomics Analysis of Two Strains of *Neisseria meningitidis* Serogroup B and *Neisseria lactamica*

Raheleh Sheikh1, Mansour Amin2,3, Maryam Hamidinia4, Mohammad Ali Assarehzadegan5, Soodabeh Rostami6, and Zahra Mojtahedi4,7

1Department of Microbiology, Guilan University of Medical Sciences, Rasht, IR Iran
2Health Research Institute, Infectious and Tropical Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
3Department of Microbiology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
4Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, IR Iran
5Department of Immunology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
6Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, IR Iran
*Corresponding author: Zahra Mojtahedi, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, P. O. Box: 713445394, Shiraz, IR Iran. Tel/Fax: +98-712303687, E-mail: mojtahedizahra@hotmail.com

Received 2014 November 9; Revised 2015 March 6; Accepted 2015 March 30.

Abstract

Background: Antigenic similarities between *Neisseria lactamica* as a commensal species and *N. meningitidis* serogroup B (NmB) as an important cause of meningitis infection have been considered for the development of an effective vaccine based on their common proteins to prevent life-threatening bacterial meningitis.

Objectives: The main aims of this study were to determine whole proteome profiles of *N. lactamica* strains and to compare them with whole proteome profile of a reference strain of NmB for identification of some of common proteins between the two species.

Materials and Methods: We compared the whole proteomic profiles of *N. lactamica* strains and a reference strain of NmB. Lysates from bacterial strains were resolved by two-dimensional gel electrophoresis (2-DE), followed by Coomassie Brilliant blue staining. Some of the protein spots were excised from the gel and subjected to matrix-assisted laser desorption/ionization-tandem time-of-flight mass spectrometry (MALDI-TOF/TOF MS) analysis.

Results: The analysis of Coomassie-stained gels using ImageMaster 2D Platinum software identified approximately 800 reproducible protein spots in the range of pI 4.5 - 9.5 and M_r of 8 - 100 kDa for each 2-DE gel of the studied bacterial strains. By comparing proteome maps of 2-DE gels, more than 200 common protein spots were recognized between the two species. Forty-eight common protein spots between the studied bacterial strains were identified by MALDI-TOF/TOF-MS. The results indicated that among the protein spots identified by MALDI-TOF/TOF mass spectrometry, the groups of proteins included cell surface, energy metabolism, amino acid transport and metabolism, coenzyme metabolism, defense, multifunctional cellular processes, DNA, RNA and protein synthesis, ribosomal structure, regulatory functions, replication, transcription, translation, unknown and hypothetical proteins with unknown function. We found that *N. lactamica* strains have a proteome profile somewhat similar to each other and slightly different with NmB.

Conclusions: These results show the usefulness of proteome analysis in successful identification of the common proteins between *N. lactamica* strains and NmB. This proteomics analysis is the starting point in the path of knowledge development about whole proteome profiles of *N. lactamica* strains.

Keywords: Proteomics, Mass Spectrometry, Two-Dimensional Gel Electrophoresis, *Neisseria meningitidis* Serogroup B, *Neisseria lactamica*

1. Background

Neisseria meningitidis serogroup B (NmB) is an encapsulated Gram-negative organism and the cause of life-threatening bacterial meningitis worldwide, especially among infants and young adults (1-3). Unlike the other serogroups of *N. meningitidis* (A, C, Y and W135), the B capsular polysaccharide serogroup is similar to sialic acid of the foetal neural cell adhesion molecule (NCAM) and is poorly immunogenic; thus, there is no effective vaccine based on capsular polysaccharides against NmB (4-6). Therefore, to advance effective vaccines against NmB, outer membrane vesicle (OMV) proteins have been considered. Outer membrane vesicle-based vaccines have been used locally based on strain-specific OMV of NmB but the usage of these vaccines has been decreased by a variety of NmB strains, short period of immunogenicity, and lack of immune responses in young children (2, 5, 6).
Among nonpathogenic *Neisseria* species, *N. lactamica* shows close antigenic similarities with *N. meningitidis*. *N. lactamica* is a harmless commensal species and is more frequently colonized in the upper respiratory tract of infants and young children when compared to adults; its colonization rates decrease with increasing age (7-9). Previous studies have shown that development of cross-protective immunity against *N. meningitidis* will be seen in people who are carriers of *N. lactamica*. Therefore, it has been proposed that colonization with *N. lactamica* during early childhood will protect the host against colonization with *N. meningitidis* by natural immunity, which is thought to be due to shared common antigens (5, 7, 8, 10-12). Proteomics, as a key technology, is being widely used in the study of proteins using two-dimensional gel electrophoresis (2-DE), followed by mass spectrometric (MS) protein identification (13). With an aim to carry out *N. meningitidis* proteomics, Mignogna et al. published the proteome map of the NmB serogroup B strain MC58 (14).

Investigation of the proteomic profiles of the *N. lactamica* strains is rarely performed. Some proteomic investigations have been devoted to analyzing and comparing common outer-membrane vesicle (OMVs) proteins (12, 15) and OMVs vaccine antigens (16) between NmB and *N. lactamica*. Previous studies have reported that cytoplasmic proteins, in addition to outer membrane proteins, may be involved in immune responses, (17, 18). However, the whole proteome profiles of *N. lactamica* isolates are not well understood. Also, no comparison has been done on the cytoplasmatic and periplasmic proteome of *N. lactamica* and NmB, so far. Therefore, this proteomic approach is the first whole proteome analysis of *N. lactamica* strains. This study is also the first comparative whole proteome analysis of the *N. lactamica* and NmB strains for the comparison of their common cytoplasmic and membrane proteins using proteomics approaches.

2. Objectives

The main aims of this study were to determine whole proteome profiles of *N. lactamica* strains and to compare them with whole proteome profile of a reference strain of NmB, for identification of common cytoplasmic and membranous proteins between the proteins of the two species by two-dimensional electrophoresis (isoelectric focusing (IEF)/SDS-PAGE) (2DE) and subsequent matrix-assisted laser desorption/ionization-tandem time-of-flight mass spectrometry (MALDI-TOF/TOF-MS).

3. Materials and Methods

3.1. Bacterial Strains and Growth Conditions

Four *N. lactamica* strains were used in this study. Three *N. lactamica*, NL1, NL2 and NL3 were isolated from the oropharynx of healthy young children in Ahvaz, southwest of Iran (ethics number: ETH609). In our study, *N. lactamica* isolates, as gram-negative and oxidase-positive diplococci, were identified by growth on modified thayer-martin (MTM) agar medium (Oxoid, Basingstoke, UK) (19), O-Nitrophenyl-B-D-Galactopyranoside disc (ONPG) test and polymerase chain reaction (PCR) for the presence of the pdhC gene (9). Identification of *N. lactamica* strains may be confirmed by detecting beta-galactosidase in an enzyme substrate test (16). Therefore, B-galactosidase activity was tested with ONPG (Rosco Diagnostica, Denmark), as the substrate. O-Nitrophenyl-B-D-Galactopyranoside disc test was performed according to the instructions of the manufacturer. The ONPG-positive isolates were yellow after incubation at 37°C for up to one hour (20). *Neisseria lactamica* ATCC 23970 and NmB ATCC 13090 were used as reference strains and obtained from the American type culture center, London, United Kingdom. All the bacteria were grown to confluence on Gonococcal (GC) agar (Oxoid, Basingstoke, UK) plus supplements at 37°C in a humidified atmosphere containing 5% CO₂ (14, 21).

3.2. Whole-Cell Extract Preparation

Whole-cell protein extraction method was performed according to Bernardini (21). Briefly, the bacteria were harvested from three plates, resuspended in 2 ml of PBS plus an EDTA-free protease inhibitor cocktail (Roche, Mannheim, Germany), centrifuged at 8,000 × g (Eppendorf, Germany), for ten minutes at 4°C, and washed twice with the same buffer. The cell pellets were resuspended in 1.0 ml of reswelling lysis buffer: 7 M urea, 2 M thiourea, 2% (w/v) 3-(3-Cholamidopropyl)-dimethylammonio)-1-propane sulphonate CHAPS, 2% (w/v) amidosulfo betaine-14 (ASB-14) (Sigma-Aldrich, USA), 2% (v/v) 3 - 10 Non-Linear (NL) Immobilized pH Gradient (IPG) buffer, 2 mM Tributylphosphine solution (TBP) (Sigma-Aldrich, USA) and 65 mM Dithiothreitol (DTT). Lysates were added with 1000 U of benzonase solution (Sigma-Aldrich, USA) and 2 mM MgSO₄ (Merck, Germany) and incubated at room temperature for 30 minutes while shaking. The cell extracts were then centrifuged at 12,000 × g (Eppendorf, Germany) for two hours at 15°C and the supernatant was collected. The soluble protein extracts were stored at -80°C in single use aliquots. The total protein concentration was determined by the Bradford assay (22). Urea, thiourea, CHAPS, Immobilised pH Gradient (IPG) buffer pH 3 - 10 non-linear (NL), and dithiothreitol (DTT) were obtained from GE Healthcare BioSciences, USA.

3.3. Two-Dimensional Gel Electrophoresis (2-DE)

First dimension Isoelectric Focusing (IEF) was performed using the PROTEAN IEF Cell (Bio-Rad, USA). Approximately, 500 μg of protein extracts from each
sample was brought to a final volume of 440 µl with reswelling buffer and a small amount of bromophenol blue (Merck, Germany) (21, 23). Next, proteins were adsorbed by active rehydration onto an Immobiline DryStrip (18 cm, pH 3 - 10 NL gradient; GE Healthcare, USA) by applying 50 V at 20°C for 16 - 18 hours. All IEFs were carried out at 20°C and focused at 10,000 V for 20 hours. Linear voltage was increased from 250 V to 5000 V during the first two hours, from 5000 V to 10,000 V for 4.5 hours until 70,000 V/hour was obtained at a maximum of 10,000 V. Before the second dimension, strips were equilibrated for 15 minutes in equilibration buffer (6 M urea, 30% v/v glycerol) (Merck, Germany), 2% w/v Sodium Dodecyl Sulfate (SDS) (GE Healthcare, USA), 0.05 M Tris-HCl (GE Healthcare, USA) pH 6.8) containing 65 mM DTT. This step was followed by a 15-minute incubation in equilibration buffer plus 2.5% (w/v) iodoacetamide (GE Healthcare, USA). The second dimension was run on a 12% acrylamide gradient gel (18 x 20 cm x 1.5 mm) with a constant current of 20 mA, using a Mini-PROTEAN 3 Cell (Bio-Rad, USA), until the dye reached the bottom of the gel. The gels were stained with colloidal Coomassie brilliant blue G-250 (Bio-Rad, USA), as previously described (24). The 2-DE was carried out in triplicates for each bacterial strain.

3.4. Image Analysis

The gels were scanned using a computing densitometer (GS-800 Imaging Densitometer, Bio-Rad, USA) at 400 dpi resolution and analyzed using the ImageMaster 2D Platinum software, version 7 (Melanie 7) (Swiss Institute of Bioinformatics, Switzerland). Spot quantification was determined according to the percentage volume (relative volume). Approximately, 800 reproducible protein spots were detected by comparing three replicas of the gels for each Neisserial strain. The reference image was set as a gel with the highest number of detected spots. Using match analysis, we matched the common spots automatically. The detected spots and matches were edited manually if necessary.

3.5. Matrix-Assisted Laser Desorption/Ionization-Tandem Time-of-Flight Mass Spectrometry Analysis

Protein spots, stained with colloidal Coomassie brilliant blue G-250, were cut from the gel using a pipette tip in a free keratin environment. The punched spots were transferred to microcentrifuge tubes (Greiner, Germany). Then, the spots were sent to the bioscience technology facility, department of biology, University of York, Wentworth Way, York, YO10 5DD, UK, for trypsin in-gel digestion and MALDI-TOF/TOF-MS analysis. Furthermore, MALDI-TOF/TOF-MS was performed using a Bruker ultraflex III MALDI-TOF/TOF (Bruker Daltonics, Bremen, Germany).

3.6. Database Search

The monoisotopic peptide masses created by MALDI-TOF/TOF MS were searched against the NCBInr protein database in the matrix science data base (MSDB) 20131226 and 20140122 using the MASCOT program (www.matrixscience.com) in the taxonomy group of Bacteria. A maximum of one trypsin missed cleavage per peptide, a peptide mass tolerance of ± 100 ppm and mass tolerance of ± 0.5 Da were allowed on the fragment. Other search parameters were carbamidomethylation of cysteine residues and oxidation of methionine residues, which were set as fixed and variable modifications, respectively. Peak intensity for each spot showed more than 60 peaks for peptide mass fingerprinting data. The matched peptides mainly demonstrated the strongest peaks. A maximum of 15 precursors were selected for fragmentation from each MS spectrum. In this study, MASCOT scores greater than 55 for all identified protein were indicated to be significant (P < 0.05). The theoretical M(\(\text{r}\)) (molecular mass) and pI (pI isoelectric) for each identified protein were calculated individually to ensure the quality of data, using the ExPASY-Compute pI-M(\(\text{r}\)) tool (http://web.expasy.org/compute_pi/).

4. Results

4.1. Two-Dimensional Gel Electrophoresis Analysis

Bacterial strains were extracted in reswelling lysis buffer. Five hundred micrograms of any bacterial whole-cell lysates was separated by the use of 2-DE with Immobilized pH Gradient (IPG) strips (nonlinear pH 3 - 10) in the first dimension (isoelectric focusing). Using the ImageMaster 2D Platinum software, version 7 (Melanie 7), approximately 800 reproducible distinct protein spots stained with colloidal Coomassie brilliant blue G-250 from the two dimensional gels were visualized for each bacterial strain. Reproducibility was evaluated by comparing three replicas of the gels for each bacterial strain. For each gel, approximately 75% of the gel spots were matched according to the reference gel. Two-dimensional gel electrophoresis map of the most representative gel of the whole-cell extract of NmB and N. lactamica strains is shown in Figure 1. As shown in this Figure, by comparing 2-DE gels between NmB and N. lactamica strains, we found some of the variations in the proteome profile of the studied bacterial strains. The difference of the proteome profile between the studied N. lactamica strains was lower than NmB and N. lactamica strains. Therefore, after image analysis, we selected some of the common protein spots between the studied Neisseria strains from the 2-DE gel related to the reference strain of N. lactamica and some of the protein spots from the 2-DE gel related to the NmB for MOLDI-TOF/TOF mass spectrometry analysis.
4.2. Identification of proteins by Matrix-Assisted Laser Desorption/Ionization-Tandem Time-of-Flight Mass Spectrometry

After image analysis, some of the protein spots were excised from the two 2-DE gels related to NmB and reference strain of *N. lactamica* and identified using MOLDI-TOF/TOF mass spectrometry. As shown in Figure 2, a total of 48 common protein spots were identified between NmB and *N. lactamica* strains, corresponding to 37 identified spot proteins in the *N. lactamica* strains and 11 identified spot proteins in NmB. Two of the protein spots (No. 7 and 38) did not significantly match using MALDI-TOF/TOF MS analysis. A list of MALDI-TOF/TOF MS-identified common protein spots between NmB and *N. lactamica* strains using the MASCOT program and the ImageMaster 2D Platinum software is reported in Table 1. As mentioned in Table 1, identified proteins ranged from theoretical pI 4.84 (spot 41) to 9.2 (spot 26) and from theoretical *M*ₜ 55 kDa (spot 23) to 15 kDa (spot 2). Other unidentified proteins were located between experimental pI 4.5-9.5 and experimental *M*ₜ of 9 - 100 kDa based on 2-DE gel image analysis. As shown in Table 1, in most identified proteins, a good agreement between theoretical and experimental pI and *M*ₜ was observed. The result of the peptide mass fingerprinting for spot number 15 is shown in Figure 3. As shown in Figure 3, the database search result using MASCOT and also protein sequence indicate the identity of the protein spot as phosphoglyceromutase. The standard used to accept protein spots identifications included the expanse of sequence coverage, the number of peptides matched, and the protein score. For most of the identified proteins, scores greater than 55 were considered significant (P < 0.05).
Figure 2. Numbered Protein Spots Indicate Proteins Identified By Matrix-Assisted Laser Desorption/Ionization-Tandem Time-of-Flight Mass Spectrometry Analysis

Table 1. Matrix-Assisted Laser Desorption/Ionization-Tandem Time-of-Flight Mass Spectrometry Identification of Common Protein Spots Between Neisseria meningitidis serogroup B and Neisseria lactamica Strains

Spot	Protein Name	Cell	Mr (kDa)	pH	Score	Matched peptides	Accession No.	Sequence coverage, %	Function
1	50S ribosomal protein L10	C	17/11	8.5/7.3	172	2	gi-489807274	27	Translation
2	50S ribosomal protein L9	C	15/10	8.6/7.7	184	3	gi-318688457	36	Translation
3	P23 assembly protein PilW	U	34/34	8.5/6.7	70	1	gi-318686747	4	Cell envelope (surface structures)
4	Single-stranded DNA-binding protein	C	19/17	5.7/5.3	400	5	gi-489806670	37	Synthesis and modification of DNA
5	Superoxide dismutase	PS	21/20	6.3/5.5	155	4	gi-489803560	12	Cell envelope (periplasmic proteins)
6	50S ribosomal protein L25	C	21/20	7.7/7.4	43	4	gi-489853556	31	Translation
7	Not identified								
8	50S ribosomal protein L35	C	21/20	7.7/7.4	187	2	gi-489853556	13	Translation
9	Acetyl-CoA carboxylase-carboxyl transferase subunit	C	33/21	6.4/7.2	575	6	gi-318682888	29	Fatty acid biosynthesis
10	3-ketoacyl-ACP reductase	U(ps)	25/21	6.6/7.1	591	6	gi-31869143	34	Fatty acid biosynthesis
11	Uridylate kinase	C	25/21	6.7/7.4	458	5	gi-48872473	30	Purines, pyrimidines, nucleosides and nucleotides biosynthesis
12	Ferredoxin-NADP reductase	C	29/21	5.7/5.4	239	3	gi-45769310		
13	Energy metabolism (respiration)								
14	Enoyl-ACP reductase	CM	27/21	5.6/5.7	312	3	gi-51801971	14	Fatty acid biosynthesis
15	CRISPR-associated protein Csh2	C	32/22	5.8/6.1	590	7	gi-489804777	32	Synthesis and modification of macromolecules (DNA and RNA)
16	Phosphoglyceromutase	C	25/21	6.4/6.5	680	7	gi-489805417	37	Energy metabolism (glycolysis)
17	Short-chain dehydrogenase	C	26/21	6.6/6.5	164	2	gi-489803582	31	Energy metabolism (respiration)
18	Thioredoxin reductase	U(ps)	33/22	5.3/5.7	412	4	gi-51801583	21	Purines, pyrimidines, nucleosides and nucleotides metabolism
19	Oxidoreductase	C	20/20	5.6/5.3	205	2	gi-489806338	15	Miscellaneous
Protein Name	Accession	Score	Subcellular Localization	Function					
--------------	-----------	-------	--------------------------	----------					
Hypothetical protein	gi-31668775	5.6	Unknown	Synthetic and modification of macromolecules (RNA and DNA)					
Methylene tetrahydrofolate dehydrogenase/cyclohydrolase	gi-489804966	5.0	Unknown	Biosynthesis of cofactor, prosthetic groups and carriers (folic acid)					
Nutilization substance protein A	gi-31667982	5.5	Unknown	Synthesis and modification of macromolecules (RNA and DNA)					
Opa protein	gi-8346997	5.0	Unknown	Cell envelope (surface structures)					
Competence lipoprotein	gi-31668877	5.0	Unknown	Transport/binding protein					
ABC transporter	gi-51802770	5.0	Unknown	Transport/binding proteins (cations)					
Inosine-5'-monophosphate dehydrogenase	gi-31668309	5.0	Unknown	Transport/binding proteins (cations)					
Peptidoglycan-binding protein LysM	gi-3421248	6.0	Unknown	Synthesis and modification of macromolecules (RNA and DNA)					
Glutamine ABC transporter ATP-binding protein	gi-489804998	4.0	Unknown	Transport/binding protein					
Polyphosphate kinase 2	gi-31666985	5.0	Unknown	Energy metabolism					
Imidazolylglycerol-phosphate dehydratase	gi-316668038	5.0	Unknown	Histidine metabolism					
Acetyl-CoA carboxylase carboxyl transferase subunit	gi-31668288	5.0	Unknown	Fatty acid biosynthesis					
Inorganic pyrophosphatase	gi-31668872	5.0	Unknown	Cell envelope (surface structures)					
Not identified	gi-15676500	5.0	Unknown	Synthesis and degradation, calcium absorption and bone formation, DNA synthesis, and other biochemical transformations					
DNA binding response regulator	gi-15676500	16.0	Unknown	Modification of macromolecules (DNA)					
Macrophage infectivity potentiator	gi-15677418	14.0	Unknown	Surface structures (virulence factor)					
Macrophage infectivity potentiator	gi-1567418	18.0	Unknown	Surface structures (virulence factor)					
Amino acid permease substrate-binding protein	gi-32634584	21.0	Unknown	Transport/binding protein (amino acids and amines)					
Putative disulfide oxidoreductase	gi-6900471	10.0	Unknown	Miscellaneous					
Amino acid ABC transporter substrate-binding protein	gi-31667462	37.0	Unknown	Transport/binding proteins (cations)					
Ketol-acid reductoisomerase	gi-5677424	26.0	Unknown	Amino acid biosynthesis					
D-lactate dehydrogenase	gi-5677533	14.0	Unknown	Energy metabolism (respiration)					
Outer membrane protein	gi-5678020	9.0	Unknown	Cell envelope (surface structures)					
Succinyl-CoA synthetase subunit alpha	gi-488342532	10.0	Unknown	Energy metabolism (tricarboxylic acid cycle)					

*Subcellular localization: C: cytoplasmic, OM: outer membrane, PS: periplasmic, CM: cytoplasmic membrane, U: unknown. The prediction of cellular localization was obtained using the PSORTb program (cut-off value 7.5). When all of the localization scores were equally presumable, the notation U (unknown) was selected. U (parenthesis, and small case) implicates a localization, which was more presumable than others.
The mass signals indicate the identity of the spot as phosphoglyceromutase with sequence coverage of 37%.

According to the mass spectrometry (MS) analysis, the identified proteins included the cytoplasmic, periplasmic, cytoplasmic, and outer membrane proteins (Table 1). The predicted cellular localization was obtained using the PSORTb program v.0.3 (25) with a cut-off value of 7.5. When all of the localization scores were equally probable, the notation U (for unknown) was selected; this indicates that the protein may have multiple localization sites.

5. Discussion

The identification of the *N. lactamica* whole proteome can be used for the determination of common proteins among *N. lactamica*, as a harmless commensal species, and NmB, as an obligate human pathogen, to develop an effective vaccine based on their common proteins, to prevent life-threatening bacterial meningitis. Investigation of the proteomic profiles of the *N. lactamica* strains and their comparison with proteome profiles of NmB strains should be considered, because there are only a few studies that have been conducted in this regard. There is no information about *N. lactamica* strains whole-cell proteome profile, already available for NmB strain MC58 (14). However, some studies have been performed, analyzing the outer membrane proteins (12, 15) and outer membrane vesicle vaccine antigens (16) in *N. lactamica* and NmB. For this reason, there is great interest in identification of *N. lactamica* proteome profile. In this study, the whole-cell extracts of NmB and *N. lactamica* strains were used for comparative proteomic analysis to identify common proteins between the two species by 2-DE and MOLDI-TOF/TOF-MS analysis.

We compared three replicas of the 2-DE gels for each of the studied bacterial strain. Most of the 800 protein spots yielded in any of the 2-DE gels were located in the range of pl 4.5 - 9.5 and Mr of 8 - 100 kDa. In our study, the proteins with Mr of more than 100 kDa were not separated in 2-DE gels because previous studies have shown that some of the proteins with high molecular masses, and highly hydrophobic proteins, particularly membrane proteins, may not be separated due to solubilization problems during the Isoelectric focusing (IEF) step and may not enter the gels (26-28). In contrast to the results of this study indicating Mr of 8 - 100 kDa, Abel et al. demonstrated Mr of 16 - 80 kDa in their study (12). These studies revealed that all membrane proteins still cannot be properly solubilized and separated using a unique method. In this
strains. Five of the identified protein spots, spot No. 47 (outer membrane protein P1) with theoretical Mr of 50 kDa was the largest membranous protein. In this study, the studied N. lactamica strains had approximately similar proteome to each other in the total number of spots and the general profile. The 2-DE gels showed that whole proteome maps of N. lactamica strains and NmB were slightly different. Consistent with this study, Abel et al. reported that different strains might show different proteome profiles despite having the same protein composition (12). In this study we did not aim to carry out identification of different protein spots between the studied bacterial strains.

In the current study, most of the protein identified spots were based on ≥ 2 matched peptides, although some of them were based on a single matched peptide (spots No. 3, 26, 29, 31, 32, 36 and 37). However, protein scores for all the identified protein spots were higher than the significance threshold (P < 0.05). According to the results obtained from peptide mass fingerprinting, among the identified protein spot sequences, 11 and 18 spots from the 2-DE gel, related to the reference strain of N. lactamica, matched with proteins belonging to N. lactamica ATCC 23970, and N. lactamica, respectively. Ten protein spot sequences from the 2-DE gel, related to the NmB, matched with proteins belonging to N. meningitidis MC58.

More than 200 common proteins were recognized between the two species in 2-DE gels. The analysis of 48 identified protein spots by using PSORTb program revealed that 19 protein spots were membrane proteins including periplasmic, cytoplasmic and outer membrane proteins. In contrast to our study, Abel et al. identified 17 common membrane protein spots in N. lactamica strains (12). Also, they detected a small number of common membrane proteins between NmB and N. lactamica strains. Among the identified outer membrane proteins, outer membrane protein P1, porin, Opa and competence lipoprotein were reported as common outer membrane proteins between the two species in previous studies, with the results being in agreement with the present study (15, 16). The PSORTb program showed that some proteins may have multiple localization sites in the cell, for example peptidoglycan-binding protein LysM (spot No. 30), as a membranous protein, may be present at any location within the cell membrane. Other identified protein spots were cytoplasmic proteins.

Eleven protein spots (No. 38 - 48) from the 2-DE gel of NmB were identified, as shown in Table 1. Comparison of the 2-DE gel of two NmB and the reference strain of N. lactamica revealed that these 11 identified proteins were common proteins between the two bacterial strains mentioned above. Similar to our results, amongst the above-mentioned 11 identified protein spots, four spots (No. 39, 45, 47, 48) were reported by Mignogna et al. (14).
tropical diseases research center, Jundishapur university of medical sciences, Ahvaz, Iran (No. 91124).

Funding/Support: Health research institute, infectious and tropical diseases research center, Jundishapur university of medical sciences, Ahvaz, Iran and the department of microbiology of Ahvaz Jundishapur university of medical sciences, Ahvaz, Iran.

References

1. Williams JN, Skipp PJ, O’Connor CD, Christodoulides M, Hecks JE. Immunoproteomic analysis of the development of natural immunity in subjects colonized by Neisseria meningitidis reveals potential vaccine candidates. *Infect Immun.* 2009;77(11):5080-9. doi: 10.1128/IAI.00270-09. [PubMed: 19778988]

2. Davenport V, Guthrie T, Findlow J, Borrow R, Williams NA, Heyderman RS. Evidence for naturally acquired T cell-mediated mucosal immunity to Neisseria meningitidis. *J Immunol.* 2003;170(8):4263-70. [PubMed: 14338550]

3. Hsu CA, Lin WR, Li JC, Liu YL, Tseng YT, Chang CM, et al. Immunoproteomic identification of the hypothetical protein NMB1468 as a novel lipoprotein ubiquitous in Neisseria meningitidis with vaccine potential. *Proteomics.* 2008;8(10):2115-25. doi: 10.1002/pmic.200700574. [PubMed: 18493222]

4. Bennett JS, Grifiths DT, McCarthy ND, Sleanman KL, Jolley KA, Crook DW, et al. Genetic diversity and carriage dynamics of Neisseria lactamica in infants. *Infect Immun.* 2005;73(4):2424-32. doi: 10.1128/IAI.73.4.2424-2432.2005. [PubMed: 15784588]

5. Finney M, Vaughan T, Taylor S, Hudson MJ, Pratt C, Williams JX, et al. Characterization of the key antigenic components and pre-clinical immune responses to a meningococcal disease vaccine based on Neisseria lactamica outer membrane vesicles. *Hum Vaccin.* 2008;4(1):23-30. [PubMed: 17927203]

6. Hill DJ, Griffiths NJ, Borodina E, Virji M. Cellular and molecular biology of Neisseria meningitidis colonization and invasive disease. *Clin Sci (Lond).* 2001;101(3):547-54. doi: 10.1042/CS20010511. [PubMed: 12102989]

7. Li Y, Zhang Q, Winterbotham M, Mowe E, Gorringe A, Jiang CM. Immunization with live Neisseria lactamica protects mice against meningococcal challenge and can elicit serum bactericidal antibodies. *Infect Immun.* 2006;74(1):64-8. doi: 10.1128/IAI.01062-06. [PubMed: 16966418]

8. Tunes CF, Ferraz AS, Scola MGC, De Gaspari EN. Intranasal Delivery of Whole Cells of Neisseria Species: Study of Cross - Reactive Antigens in Rabbits. *Open Vaccine J.* 2009;3(1):31-21. doi: 10.2174/1875035400801010013.

9. Evans CM, Pratt CB, Matheson M, Vaughan TE, Findlow J, Borrow R, et al. Nasopharyngeal colonization by Neisseria lactamica in infants. *Clin Infect Dis.* 2015;61(2):171-177. doi: 10.1093/cid/ciq065. [PubMed: 26145322]

10. Sánchez S, Troncoso G, Ferreiros CM, Criado MT. Evaluation of cross-reactive antigens as determinants of cross-bacterial activity in pathogenic and commensal Neisseria. *Vaccine.* 2001;19(25-26):3390-8. doi: 10.1016/S0264-410X(01)00779-9. [PubMed: 11548703]

11. Wong HE, Li MS, Kroll JS, Hibberd ML, Langford PR. Genome wide expression profiling reveals suppression of host defence responses during colonisation by Neisseria meningitidis but not N. lactamica. *PLoS One.* 2011;6(8):e26030. doi: 10.1371/journal.pone.0026030. [PubMed: 21980401]

12. Abel A, Sánchez S, Arenas J, Criado MT, Ferreiros CM. Bioinformatic analysis of outer membrane proteome of Neisseria meningitidis and Neisseria lactamica. *Int Microbiol.* 2007;10(5):5-11. [PubMed: 17407055]

13. Williams JN, Skipp PJ, Humphries HE, Christodoulides M, O’Connor CD, Hecks JE. Proteomic analysis of outer membrane vesicles from wild-type serogroup B Neisseria meningitidis and a lipopolysaccharide-deficient mutant. *Infect Immun.* 2017;85(3):3164-72. doi: 10.1128/IAI.00424-06. [PubMed: 17518897]

14. Mignogna G, Giorgi A, Stefanelli P, Neri A, Colotti G, Maras B, et al. Inventory of the proteins in Neisseria meningitidis serogroup B strain MC58. *J Proteome Res.* 2005;4(4):5361-70. doi: 10.1021/pr050051i. [PubMed: 16083288]

15. Sanchez S, Arenas J, Abel A, Criado MT, Ferreiros CM. Analysis of outer membrane protein complexes and heat-modifiable proteins in Neisseria strains using two-dimensional diagonal electrophoresis. *J Proteome Res.* 2005;4(1):91-5. doi: 10.1021/pr049846j. [PubMed: 15703762]

16. Vaughan TE, Skipp PJ, O’Connor CD, Hudson MJ, Vipond R, Elmmore MJ, et al. Proteomic Analysis of Neisseria lactamica and N. eiseria meningitidis outer membrane vesicle vaccine antigens. *Vaccine.* 2006;24(35):5277-93. doi: 10.1016/j.vaccine.2006.01.013. [PubMed: 16682101]

17. Mendum TA, Newcombe J, McNelly C, McFadden J. Towards the immunoproteome of Neisseria meningitidis. *PLoS One.* 2009;4(6):e25940. doi: 10.1371/journal.pone.0025979.

18. Bernardini G, Renzone G, Comanducci M, Mini R, Arena S, D’Ambrosio C, et al. Proteome analysis of Neisseria meningitidis serogroup A. *Proteomics.* 2004;4(10):2893-926. doi: 10.1002/pmic.200400946. [PubMed: 15778471]

19. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Anal Biochem.* 1976;72(1-2):248-54. doi: 10.1016/0003-2697(76)90527-3. [PubMed: 9420511]

20. Williams JN, Christodoulides M, Hecks JE. Analysis of the immune response to Neisseria meningitidis using a proteomics approach. *Methods Mol Biol.* 2012;799:343-60. doi: 10.1007/978-1-61779-346-2_20. [PubMed: 22991655]

21. Neuhofer A, Arolt N, Taube D, Ehrhardt W. Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels by an answer to the “ Bromophenol blue problem”. *Anal Biochem.* 2006;356(2):171-7. doi: 10.1016/j.ab.2006.02.014. [PubMed: 16456810]

22. Gardner J, Laird MR, Chen F, Roy S, Walsh CJ, Ester M, et al. PSORTb v2.0: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis. *Bioinformatics.* 2005;21(5):627-31. doi: 10.1093/bioinformatics/bti057. [PubMed: 15509144]

23. Gorg A, Weiss W, Dunn MJ. Current two-dimensional electrophoresis technology for proteomics. *Proteomics.* 2004;4(12):3665-85. doi: 10.1002/pmic.200401031. [PubMed: 15543535]

24. Bernardini G, Braconi D, Santucci A. The analysis of Neisseria meningitidis proteomes: Reference maps and their applications. *Proteomics.* 2007;7(16):2933-46. doi: 10.1002/pmic.200700949. [PubMed: 17628037]

25. Gorg A, Dresel O, Luck C, Weiland F, Weiss W. 2-DE with IPGs. *Electrophoresis.* 2009;30 Suppl 1:S122-S122. doi: 10.1002/elps.200900051. [PubMed: 19441019]

Jundishapur Microbiol. 2015;8(11):e25228
کارگاه‌های آموزشی مرکز اطلاعات علمی

مقاله نویسی علوم انسانی

اصول تنظیم قراردادها

آموزش مهارت های کاربردی در تدوین و جاب مقاله