OBSERVING H$_2$ EMISSION IN FORMING GALAXIES

KAZUYUKI OMUKAI1,2 AND TETSU KITAYAMA3

Received 2003 June 24; accepted 2003 August 15

ABSTRACT

We study the H$_2$ cooling emission of forming galaxies and discuss their observability using the future infrared facility Single Aperture Far-Infrared Observatory (SAFIR). Forming galaxies with mass $\lesssim 10^{11} M_\odot$ emit most of their gravitational energy liberated by contraction in molecular hydrogen line radiation, although a large part of thermal energy at virialization is radiated away by the hydrogen Lyα emission. For more massive objects, the degree of heating due to dissipation of kinetic energy is so great that the temperature does not drop below 10^4 K, and the gravitational energy is emitted mainly by the Lyα emission. Therefore, the total H$_2$ luminosity attains the peak value of $L_{H_2} \approx 10^{42}$ erg s$^{-1}$ for forming galaxies whose total mass $M_{\text{tot}} \approx 10^{11} M_\odot$. If these sources are situated at redshift $z \sim 8$, they can be detected by rotational lines of 0–0 $S(3)$ at 9.7 μm and 0–0 $S(1)$ at 17 μm by SAFIR. An efficient way to find such H$_2$ emitters is to look at the Lyα emitters, since the brightest H$_2$ emitters are also luminous in Lyα emission.

Subject headings: cosmology: theory — galaxies: formation — infrared: galaxies

1. INTRODUCTION

In the last decade, observational studies of primeval galaxies has made great progress. For example, deep surveys in the optical (Williams et al. 1996), near-infrared (Maihara et al. 2001), and mid-infrared (Taniguchi et al. 1997) wavelengths have revealed the early evolution of galaxies.

Since galaxies in the earliest phase consist mostly of gas, knowledge of the interstellar medium in forming galaxies is valuable for understanding the galaxy formation process. Molecular line observation has been a powerful tool in diagnosing the physical conditions in local star-forming regions (e.g., Dyson & Williams 1997). Recently, molecular line emission has also been found to emanate from high-redshift galaxies, and the number of detected sources has been increasing rapidly (e.g., Ohta et al. 1996; Omont et al. 1996; Combes 1999). Among theoretical studies, Spaans & Silk (1997) investigated CO line emission from protogalaxies. However, the detection of metal lines depends on the degree of metal enrichment, and thus preceding star formation is required.

Can we detect molecular lines in primordial pristine gas clouds? The possibility of detecting H$_2$ line emission from forming galaxies was discussed as early as the firm establishment of the big bang cosmology (Saslaw & Zipoy 1967). Other pioneering work includes that by Izotov & Kolesnik (1984) and Shchekinov & Entel (1985), which treats the H$_2$ emission from protoclusters of galaxies, i.e., the so-called Zel’dovich pancakes. More recently, Ciardi & Ferrara (2001) investigated the H$_2$ emission from the supershells created in the intergalactic medium as a result of multiple supernova explosions in Population III objects. They concluded that about 10% of the supernova mechanical energy is carried away by the H$_2$ 0–0 $S(1)$ rovibrational line. Stimulated by these findings, some authors have investigated the Lyα cooling radiation from protogalaxies by semianalytical modeling (Haiman, Spaans, & Quataert 2000) or by numerical simulations (Fardal et al. 2001). They concluded that the greater part of the gravitational energy is indeed emitted by the Lyα line. In their model, however, H$_2$ line cooling is not included, and the temperature in protogalaxies thus remains above 10^4 K, below which atomic cooling is strongly suppressed. Although this is a fair assumption for the massive objects that they considered (see § 3 below), for smaller objects with total mass less than $10^{11} M_\odot$, sufficient H$_2$ can be formed as a result of enhanced ionization degree by virialization shock and its delayed nonequilibrium recombination (Shapiro & Kang 1987; Susa et al. 1998; Oh & Haiman 2002). By this mechanism, the temperature drops further below 10^4 K because of H$_2$ line cooling. Therefore, the greater part of gravitational energy liberated by contraction will be available for the H$_2$ cooling radiation. In this paper, we study the H$_2$ cooling radiation from those forming galaxies and discuss the prospect for observing such sources. Our result is quite encouraging, suggesting that H$_2$ emission will indeed be observable by the future infrared satellite mission Single Aperture Far-Infrared Observatory (SAFIR) from sources as high as $z = 8$.

1 Department of Physics, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK; omukai@astro.ox.ac.uk.

2 Division of Theoretical Astrophysics, National Astronomical Observatory, Mitaka, Tokyo 181-8588, Japan; kitayama@ph.sci.toho-u.ac.jp.

3 Department of Physics, Toho University, Funabashi, Chiba 274-8510, Japan.
The organization of the rest of this paper is as follows. In §2, the method of calculation is described. In §3, the prediction for the \(\text{H}_2 \) emission from forming galaxies and its observability is discussed. Finally in §4, a brief summary and discussions are presented. Throughout the paper, we adopt a \(\Lambda \text{CDM} \) cosmology in accordance with the Wilkinson Microwave Anisotropy Probe (WMAP) data (Spergel et al. 2003):

\[
(\Omega_M, \Omega_\Lambda, \Omega_B, h, \sigma_8) = (0.3, 0.7, 0.05, 0.7, 0.9) .
\]

2. MODEL

2.1. \(\text{H}_2 \) Emission from Forming Galaxies

In this section, we describe our model for evaluating \(\text{H}_2 \) line emission. We use a simplified evolution model where a forming protogalaxy is treated as a uniform cloud. As the initial state, we take an instance of virialization. We use the analytic formula for the density at virialization

\[
\rho_{\text{vir}} = \rho_{\text{crit}} \Delta_c ,
\]

where

\[
\Delta_c = 18\pi^2 + 82x - 39x^2, \quad x = -\frac{\Omega_\Lambda}{\Omega_0(1 + z_{\text{vir}})^3 + \Omega_\Lambda},
\]

which has been found to provide a good description of the numerical results (Bryan & Norman 1998).

The critical density at \(z = z_{\text{vir}} \) can be written as

\[
\rho_{\text{crit}} = \rho_{\text{crit},0} \left[\Omega_0(1 + z_{\text{vir}})^3 + \Omega_\Lambda \right],
\]

where \(\rho_{\text{crit},0} \) is the present-day critical density.

The radius and temperature of objects of total mass \(M_{\text{tot}} \) in this instance are

\[
R_{\text{vir}} = \left[\frac{M_{\text{tot}}}{(4/3)\pi \rho_{\text{vir}}} \right]^{1/3} ,
\]

and

\[
T_{\text{vir}} = \frac{G\mu m\text{H}_1}{5k_B R_{\text{vir}}} M_{\text{tot}} ,
\]

respectively.

We first describe the dissipationless case and later describe the prescription for the dissipation of kinetic energy. For the sake of simplicity, the dark matter density is assumed to be constant after the virialization. The evolution of gas density is computed by solving the virial equation for a spherical object

\[
\frac{d^2 R}{dt^2} = -\frac{GM}{R^2} \left[1 - \frac{T}{T_{\text{vir}}(R)} \right] ,
\]

where

\[
T_{\text{vir}}(R) = \frac{G\mu m\text{H}_1}{5k_B R} M(R) ,
\]

and \(M(R) \) is the mass enclosed within a spherical shell of radius \(R \).

The thermal evolution is computed by solving the energy equation

\[
\frac{de}{dt} = -\rho \frac{d}{dt} \left(\frac{1}{\rho} \right) - \Lambda_{\text{rad}} - \Lambda_{\text{chem}} ,
\]

where \(e \) is the specific thermal energy

\[
e = \frac{1}{\gamma_{\text{rad}}} - \frac{k_B T}{\mu m\text{H}} ,
\]

and \(\Lambda_{\text{rad}} \) and \(\Lambda_{\text{chem}} \) are the radiative and chemical cooling rates per unit mass, respectively.

The radiative cooling rate includes \(\text{H}_2 \) line emission, HD line emission, atomic emission by \(\text{H} \) and \(\text{He} \), and Compton cooling. The \(\text{H}_2 \) line cooling is treated as in Omukai (2001), where the effect of the cosmic microwave background (CMB) is taken into account and the ortho-para ratio of 3:1 is assumed. For the HD cooling, the cooling function by Galli & Palla (1998) is used. The effect of CMB for HD cooling is treated approximately by replacing the cooling rate by HD line \(\Lambda_{\text{HD}}(T) \) by \(\Lambda_{\text{HD}}(T) - \Lambda_{\text{HD}}(T_{\text{rad}}) \). The atomic emission includes collisional excitation cooling, recombination cooling, and bremsstrahlung of \(\text{H} \) and \(\text{He} \). The coefficients given by Anninos et al. (1997) are used.

The above formulation neglects dissipation of kinetic energy of contracting gas; after the initial thermal energy is carried away by radiation, essentially all the gravitational energy liberated by contraction contributes to accelerating the gas infall. If the gas, however, settles into a Kepler rotation disk, the kinetic energy is reduced by a factor of 2 compared to the free-falling sphere with the same radius: i.e., half of the kinetic energy must be dissipated away. Such dissipation may proceed through the thermalization of kinetic energy by turbulent motion induced by the nonspherical nature of the collapse. To mimic this effect, we add a dissipation term in equations of motion and of energy,

\[
\frac{d^2 R}{dt^2} = -\frac{GM}{R^2} \left[1 - \frac{T}{T_{\text{vir}}(R)} \right] + D_{\text{trb}}
\]

and

\[
\frac{de}{dt} = -\rho \frac{d}{dt} \left(\frac{1}{\rho} \right) - \Lambda_{\text{rad}} - \Lambda_{\text{chem}} + \Gamma_{\text{trb}} ,
\]

where \(D_{\text{trb}} \) and \(\Gamma_{\text{trb}} \) are the drag and heating terms due to dissipation of kinetic energy. To compute these quantities, we assume that a fraction \(f_{\text{trb}} \) of kinetic energy is thermalized during the collapse. Specifically, we first evaluate at each time step the increment of kinetic energy in the dissipationless case \(\Delta K_0 \) using equations (6) and (8). We then solve equations (10) and (11) assuming that \(f_{\text{trb}} \Delta K_0 = \Gamma_{\text{trb}} \Delta t \) is injected as heat and the actual increment of kinetic energy is \(\Delta K = (1 - f_{\text{trb}}) \Delta K_0 \). In reality, the value of \(f_{\text{trb}} \) is likely to lie between 0.5 (for the Kepler rotating disk) and 0 (for the spherical collapse). We adopt \(f_{\text{trb}} = 0.25 \) as our fiducial value, while we also study the dissipationless case \((f_{\text{trb}} = 0) \) for comparison.

The freezeout values of chemical abundances are used for the initial abundances for the computation \(\gamma_{\text{e}} = 3 \times 10^{-4}, \gamma_{\text{H}_1} = 1 \times 10^{-6}, \) and \(\gamma_{\text{H}_2} = 1 \times 10^{-9} \) (Galli & Palla 1998). The chemical reactions between \(\text{H} \) and \(\text{He} \) compounds are solved following Omukai (2000; reactions 1–22), with HD-bearing reactions of D3, D4, D8, and D10 in Galli & Palla (1998) added. We find, however, that HD cooling is not important in all cases we studied.
The cloud collapse is followed from the virialization until either the local Hubble time

\[t_H(z) = \frac{2}{3H_0} (1 - \Omega_0)^{-1/2} \sinh^{-1} \left[\frac{(1 - \Omega_0)^{1/2}}{\Omega_0^{1/2} (1 + z)^{3/2}} \right] \]

elapses or the radius reaches the rotation barrier

\[R_{\text{rot}} = 0.06 \left(\frac{f_{\text{gas}}}{0.17} \right)^{-1} \left(\frac{\Lambda_{\text{turn}}}{0.05} \right)^2 R_{\text{vir}}, \]

where \(f_{\text{gas}} \) is the mass fraction of gas. We adopt a median value 0.05 for the dimensionless spin parameter at turnaround \(\Lambda_{\text{turn}} \) (Barns & Efstathiou 1987), and the gas density enhances by a factor of 5000 between \(R_{\text{vir}} \) and \(R_{\text{rot}} \). The duration of emission is therefore

\[t_{\text{em}}(M, z) = \min \left[t_H(z), t_{\text{rot}}(M, z) \right], \]

where \(t_{\text{rot}}(M, z) \) is the time taken to reach \(R_{\text{rot}} \) from \(R_{\text{vir}} \).

2.2. Merger Probability of Protogalaxies

In predicting the luminosity and the abundance of protogalaxies, we also take into account explicitly hierarchical clustering and mergers of these objects. This is of particular importance at high redshift, say \(z \gtrsim 8 \), where a significant fraction of galaxy scale halos merges into larger halos before the free-fall time is reached. For such halos, the duration of emission will be shorter than that estimated in § 2.1.

We incorporate the variations in the emission times by defining the “merger probability weighted average luminosity” of a protogalaxy with total mass \(M \) at redshift \(z \) as

\[L_{\text{line}}(M, z) = \left(\int_{t(z)}^{t(15)} \left[\int_{t(z)-t_{\text{em}}(M,z)}^{t(z)} \frac{dp(M, z, z_f)}{dz_f} \frac{dz_f}{dt_f} \right] \right)^{-1} \]

where \(L_{\text{line}}(M, z, z_f) \) is the intrinsic line luminosity at \(z \) of the galaxy virialized at \(z_f \), corresponding to the cosmic time \(t_f \equiv t(z_f) \), and \(dp(M, z, z_f)/dz_f \) is the probability distribution of formation epochs of virialized halos. The former quantity is computed using the model described in § 2.1.

Since \(t_{\text{em}}(M, z) \) is typically an order of magnitude smaller than \(t(z) \), we neglect the changes in \(\rho_{\text{vir}} \) and \(R_{\text{vir}} \) between \(z \) and \(z_f \). For the latter we adopt the prescription of Lacey & Cole (1993) as described in Kitayama & Suto (1996); the formation epoch \(z_f \) is defined as the time at which a halo assembles at least half of its final mass. In the rest of this paper, unless otherwise stated, we simply refer to that given in equation (15) as “luminosity.”

The number density of protogalaxies in accord with the above definition of average luminosity is

\[\frac{dn(M, z; L_{\text{line}})}{dM} = \frac{dn_{\text{PS}}(M, z)}{dM} \int_{t(z)-t_{\text{em}}(M,z)}^{t(z)} \frac{dp(M, z, z_f)}{dz_f} \frac{dz_f}{dt_f} dt_f, \]

where \(dn_{\text{PS}}(M, z)/dM \) is the Press-Schechter (1974) mass function.

If strong bias is present in such high redshift we consider here, namely, \(z \sim 10–20 \), the number of observable objects increases remarkably. In this sense, our result, which corresponds to the no-bias case, can be regarded as the lower bound on the number of objects.

3. RESULTS

3.1. \(\text{H}_2 \) Emission from Individual Objects

In the following, we consider two epochs in the early universe, \(z = 20 \) and 8. The former corresponds to the typical epoch for the first star formation (e.g., Abel et al. 2002). The latter is believed to be shortly before the completion of the cosmic reionization from the observation of high-redshift quasars (e.g., Becker et al. 2001). Direct observation of objects forming in this epoch is therefore interesting for understanding the reionization process.

The total luminosity in \(\text{H}_2 \) lines is shown in Figure 1 as a function of the total mass of the objects, along with the \(\text{Ly}\alpha \) luminosity for the virial redshift on the redshift axis \(z_{\text{vir}} = 20 \) and \(z_{\text{vir}} = 8 \). The corresponding virial temperature and the observed flux are indicated in the top and right axes. The observed flux in a line is calculated using the usual relation

\[S_{\text{line}} = L_{\text{line}}/4\pi d_L(z)^2, \]

where \(d_L(z) \) is the luminosity distance to the source at redshift \(z \). The contribution to the total \(\text{H}_2 \) luminosity from each line is shown in Figure 2 for the fiducial case \(f_{\text{th}} = 0.25 \) and in Figure 3 for the dissipationless case \(f_{\text{th}} = 0 \). Important lines are listed in Table 1 (for \(z = 20 \)) and Table 2 (for \(z = 8 \)) for the fiducial case.

We first focus on the fiducial case \(f_{\text{th}} = 0.25 \). From the \(\text{H}_2 \) emission property, the protogalactic clouds can be categorized into the following four mass ranges. The temperature evolution for typical cases in these regimes is shown in Figure 4 for \(z = 20 \).

Population III objects (\(M_{\text{tot}} \leq 10^8 \; M_\odot \)).—Small objects whose virial temperature \(T_{\text{vir}} \leq 10^4 \) K cannot excite atomic hydrogen and that cool only by \(\text{H}_2 \) lines. Thus, both the thermal energy at virialization and the gravitational energy liberated by the collapse are converted to \(\text{H}_2 \) emission. The dominant lines are the lowest excitation ones, e.g., \(0 \rightarrow 0(0) \) at 28 \(\mu \)m and \(0 \rightarrow 0(1) \) at \(17 \mu \)m (see Fig. 2).

Dwarf galaxies (\(10^8 \; M_\odot \leq M_{\text{tot}} \leq 10^{11} \; M_\odot \)).—Clouds with a virial temperature exceeding \(10^4 \) K can cool by \(\text{Ly}\alpha \) radiation. As we can see in Figure 4, the temperature first drops rapidly from the virial temperature to that appropriate for \(\text{H}_2 \) cooling (\(\sim 10^3 \) K). The initial thermal energy is radiated away by the atomic radiation processes including the \(\text{Ly}\alpha \) emission (\(T \geq 10^4 \) K) and by the \(\text{H}_2 \) line emission (\(T \lesssim 10^4 \) K). The collapse proceeds quasi-isothermally thereafter because of the \(\text{H}_2 \) line emission. This can be observed in Figure 1 as the emergence of \(\text{Ly}\alpha \) luminosity. At the same time, the slope of the increase of the \(\text{H}_2 \) line luminosity toward higher mass flattens slightly around \(T_{\text{vir}} \approx 10^4 \) K. The low-excitation lines, e.g., \(0 \rightarrow 0(0) S(1) \) at 17 \(\mu \)m and \(0 \rightarrow 0(0) S(3) \) at 9.7 \(\mu \)m, are still dominant (Fig. 2).

Giant galaxies (\(10^{11} \; M_\odot \leq M_{\text{tot}} \leq 10^{12} \; M_\odot \)).—Since the available gravitational energy increases toward massive objects, the heating rate by the dissipation of kinetic energy also increases. For objects greater than \(10^{11} \; M_\odot \), the heating becomes so great that the temperature does not fall below
10^4 K. These objects collapse isothermally at 10^4 K, after initial rapid cooling (see Fig. 4a). During this isothermal collapse, a large fraction of energy is emitted in the Lyα radiation. Then, the Lyα luminosity exceeds the H$_2$ luminosity (Fig. 1) for those objects. Despite the high temperature, a small amount of H$_2$ is present. Only a small fraction of gravitational energy is emitted in the H$_2$ lines. This can be observed as a plateau in the H$_2$ luminosity in Figure 1, as the larger mass compensates for the lower H$_2$ emissivity.

Corresponding to the abrupt change in thermal property, the dominant lines are altered (see Fig. 2). Because the collapse proceeds with high temperature (see Fig. 4), high-excitation lines become more important. The strongest line is 0–0 $S(3)$ at $9.7 \mu m$. Although 0–0 $S(1)$ is still in second place, the vibrational line 1–0 $S(3)$ at $2.0 \mu m$ also becomes important. These objects are the brightest ones in H$_2$ emission, and the H$_2$ luminosity reaches about 3×10^{41} ergs s$^{-1}$. Note that these are also most luminous in Lyα emission.
No-cooling objects ($M_{\text{tot}} \gtrsim 10^{12} M_\odot$).—For these massive objects, both Lyα and H$_2$ luminosities decline rapidly toward higher masses, because in the redshift range we are considering, such massive objects cannot cool within the merging timescale and then remain in the virialization state (Silk 1977; Rees & Ostriker 1977).

We stress the importance of the dissipation of kinetic energy. Early studies by Saslow & Zipoy (1967) and by Izotov & Kolesnik (1984) did not take the dissipation into account. As we can see in Figure 1, the maximum H$_2$ luminosity would be smaller by an order of magnitude without the dissipation of kinetic energy. In this case, only the portion of the initial thermal energy below 104 K would be available for H$_2$ emission, with most gravitational energy being converted into kinetic energy. The discrepancy in emitted energy increases toward higher mass because of the larger gravitational energy to be released during the collapse; in the dissipationless case, the H$_2$ luminosity increases only linearly in mass, while in the dissipational case it increases approximately as $\propto M_{\text{tot}}^{5/3}$.

3.2. Number Counts of H$_2$ Emitters and Their Contribution to the Far-IR Background Light

H$_2$ line photons emitted at $z \simeq 10$ have been redshifted to the far-infrared (FIR) wavelength today. The future space telescope SAFIR4 is planned to have unprecedented

TABLE 1
The H$_2$ Luminosity and Observed Flux from Forming Galaxies at $z = 20$
LINE
0–0 S(0)
0–0 S(1)
0–0 S(2)
0–0 S(3)
0–0 S(4)
1–0 O(3)
2–1 O(1)
1–0 O(1)
1–0 S(0)
1–0 S(1)
1–0 S(3)
Total H$_2$
H Lyα

Note.—The H$_2$ luminosity and observed flux from forming galaxies of total mass 10^7, 10^9, and $10^{11} M_\odot$ at $z = 20$. The quantities of H Lyα are also presented.

4 Additional information on the Single Aperture Far-Infrared Observatory is available at http://safir.jpl.nasa.gov/index.asp.
sensitivity at the FIR and submillimeter wavelengths, with the limiting flux of $\sim 10^{-19}$ ergs s$^{-1}$ cm$^{-2}$ in the FIR. With this limiting flux, the brightest sources at $z = 8$ can be observed by the 0–0 $S(3)$ 9.7 μm line (Fig. 2b), while at redshift $z = 20$, even the brightest H_2 emitters are below this threshold (Fig. 2a).

Figure 5 shows the number of sources per unit solid angle above the limiting flux of 10^{-19} ergs s$^{-1}$ cm$^{-2}$ (Fig. 5a) and 10^{-20} ergs s$^{-1}$ cm$^{-2}$ (Fig. 5b) whose emission redshift is larger than z. For the limiting flux 10^{-19} ergs s$^{-1}$ cm$^{-2}$, which is the planned limit for SAFIR, although the number of sources with their H_2 total flux exceeding this limit is about 10^6 sr$^{-1}$ as early as $z = 10$, the strongest line 0–0 $S(3)$ 9.7 μm cannot be observed until $z = 8$ (see Fig. 5a). We can understand this from Figure 2b: at $z = 8$, although the maximum total H_2 flux exceeds 10^{-19} ergs s$^{-1}$ cm$^{-2}$ by some factor, even the most dominant line 0–0 $S(3)$ 9.7 μm barely reaches this limiting flux because it shares the luminosity with other lines.

For the limiting flux 10^{-20} ergs s$^{-1}$ cm$^{-2}$, the brightest objects at $z = 20$ could be visible by the 0–0 $S(3)$ 9.7 μm line and the 0–0 $S(1)$ 17 μm line (Fig. 2a), although such massive objects are still very rare at $z = 20$ (Fig. 5b). For this limiting flux, the number of sources observable by these lines exceeds ~ 100 sr$^{-1}$ at $z \leq 15$.

Figure 6 further illustrates the number of H_2 emitters for each line above the limiting flux per unit redshift range at $z = 8$. At the limiting flux of SAFIR, 10^{-19} ergs s$^{-1}$ cm$^{-2}$, observable lines are 0–0 $S(3)$ 9.7 μm, and possibly 0–0 $S(1)$ 17 μm, although the latter falls slightly short of 10^{-19} ergs s$^{-1}$ cm$^{-2}$. If the limiting flux were an order of magnitude deeper, some vibrational lines, including 1–0 $Q(1)$ 2.4 and 1–0 $S(1)$ 2.1 μm, could also be detected.

Finally, Figure 7 displays the contribution of these H_2 emitters to the extragalactic FIR background radiation. Also plotted for reference is the FIR background spectrum detected by the COBE Far Infrared Absolute Spectrophotometer (FIRAS) (Fixsen et al. 1998). The H_2 line emission from forming galaxies makes only a negligible contribution to the background light, being smaller than the COBE FIRAS result by several orders of magnitude.

![Fig. 4a](image1.png)
![Fig. 4b](image2.png)

FIG. 4.—Temperature evolution of protogalaxies virializing at $z = 20$ as a function of the H number density n for (a) the fiducial case ($f_{\text{trb}} = 0.25$) and (b) the dissipationless case ($f_{\text{trb}} = 0$). Illustrated are the protogalaxies of $M_{\text{vir}} = 10^9$ (solid lines), 10^9 (dotted lines), and $10^11 M_\odot$ (dashed lines).
4. SUMMARY AND DISCUSSION

We have evaluated the amount of H$_2$ line radiation from forming galaxies. The H$_2$ line luminosity reaches the maximum value of about 3×10^{41} ergs s$^{-1}$ for protogalaxies of total mass $M_{\text{tot}} \sim 10^{11} M_\odot$. Below this mass scale, all the gravitational energy is emitted by H$_2$ line radiation, while above this scale, a large part of the energy is emitted by Lyα radiation. Such brightest objects at $z \sim 8$ are detectable by the next-generation telescope SAFIR via the 0–0 $S(3)$ 9.7 μm line emission and marginally detectable also via the 0–0 $S(1)17 \mu$m line. The cosmic FIR background radiation by the H$_2$ emission is several orders of magnitude below the detected value of COBE FIRAS and can safely be neglected.

The H$_2$ luminosity from a protogalactic cloud has also been studied by Shchekinov (1991). Assuming that a protogalactic cloud consists of subclumps and that the luminosity is given by the sum of luminosity from each subclumps, he evaluated $L_{H_2} \gtrsim 10^{42}$ ergs s$^{-1}$ from a protogalactic cloud with gas mass $10^{11} M_\odot$ corresponding to total mass $M_{\text{tot}} \simeq 10^{12} M_\odot$. On the other hand, in our model the large
protoplanets of $M_{\text{tot}} \gtrsim 10^{12} M_\odot$ have no time to cool and then emit only weak H$_2$ radiation (total H$_2$ luminosity $L_{\text{H}_2} \sim 10^{46}$ ergs s$^{-1}$). This is because such inhomogeneous clouds are regarded as a cluster of protogalactic clouds rather than a single cloud in our scheme. In fact, the sum of luminosity from a cluster with total mass of $M_{\text{tot}} \gtrsim 10^{12} M_\odot$ gives a value similar to that of Shchekinov (1991). For example, the luminosity of a protogalactic cloud of $M_{\text{tot}} = 10^9 M_\odot$ collapsing at $z = 20$ is $L_{\text{H}_2} \sim 10^8$ ergs s$^{-1}$ (Fig. 2a). Then, the H$_2$ luminosity of a cluster consisting of 10^9 such clouds is $\sim 10^{12}$ ergs s$^{-1}$. Note that in order for this value to be the actual luminosity from the cluster, the collapse of the subclumps must be simultaneous. Since this is probably a rare occurrence, this possibility is not considered in this paper.

As we mentioned in § 3, the brightest H$_2$ sources, “giant galaxies,” are even more luminous in the Lyα emission. This has also been pointed out by Shchekinov (1991), who investigated the pancaking shock of primordial clouds. Consequently, the most efficient way of finding H$_2$ emitters is to look at the already detected Lyα emitters, rather than looking for them in a blank field. Although being strongly suppressed by the intervening intergalactic medium (IGM), the Lyα emission from galaxies that form prior to the completion of reionization of the universe can remain observable because of the H ii regions created in the ambient IGM (Haiman 2002). The origin of Lyα emitters found at high redshift is still in dispute. If Lyα emitters are originating in the cooling radiation, they might be bright in the H$_2$ emission as well. On the other hand, the Lyα emission might be originating in the recombination radiation due to stellar ionization (Partridge & Peebles 1967). In this case, there is no reason to expect bright H$_2$ emission from those sources. Nonetheless, since H$_2$ is vulnerable to photodissociation by stars as well as we will discuss below, even if the H$_2$ emission will not be detected, this will not demonstrate the recombination origin for the Lyα radiation.

Here, we discuss some effects that can alter the amount of the H$_2$ luminosity from forming galaxies. The density contrast inside the clouds, in particular, higher than average density in the inner region, results in luminosity higher by some factor, reducing the collapse timescale compared to the merging timescale. On the other hand, the following effects reduce the H$_2$ luminosity. First, molecular hydrogen is vulnerable to photodissociation by stars. According to the recent WMAP results, the reionization epoch of the universe could be as early as $z \simeq 17 \pm 5$ (Spergel et al. 2003). At least below this redshift, protogalaxies are irradiated by the UV background radiation. According to our study, objects most luminous in H$_2$ emission are massive ones whose mass is about 10% of L_\odot galaxies today. Such massive objects are not vulnerable to photodissociation by UV background radiation. Therefore, our results remain unchanged except for Population III objects, for which the feedback effect is significant (Haiman, Rees, & Loeb 1997; Omukai & Nishi 1999; Ciardi et al. 2000; Kitayama et al. 2001; Ricotti, Gnedin, & Shull 2002). Although giant galaxies are not affected by the UV background radiation, an internal UV field created by local star formation might photodissociate molecular hydrogen and then reduce the amount of the H$_2$ emission. Another possibility for reducing the H$_2$ emissivity is by metal enrichment; with metals, the energy budget for H$_2$ emission is reduced by the cooling via metal fine-structure and metastable lines (e.g., Dalgarno & McCray 1972). For the metallicity $Z > 10^{-2}$ Z_\odot, the metal line cooling dominates over the H$_2$ line cooling (e.g., Fall & Rees 1985). Below this metallicity, the H$_2$ cooling dominates, and thus the effect of metal lines in reducing the H$_2$ luminosity can be neglected. Further study of the influence of stellar feedback and metal enrichment on the H$_2$ emission will be interesting.

We are grateful for helpful discussions with H. Matsuo, H. Susa, and M. Umemura. This work is supported in part by the Research Fellowship of the Japan Society for the Promotion of Science for Young Scientists (6819 to K. O.) and the Grants-in-Aid by the Ministry of Education, Science, and Culture of Japan (14740133 to T. K.).

REFERENCES

Abel, T., Bryan, G. L., & Norman, M. L. 2002, Science, 295, 93
Anninos, P., Zhang, Y., Abel, T., & Norman, M. L. 1997, NewA, 2, 209
Barnes, J., & Efstathiou, G. 1987, ApJ, 319, 575
Becker, R. H., et al. 2001, AJ, 122, 2850
Bromm, V., Coppi, P. S., & Larson, R. B. 2002, ApJ, 564, 23
Bryan, G. L., & Norman, M. L. 1998, ApJ, 495, 80
Ciardi, B., & Ferrara, A. 2001, MNRAS, 324, 648
Ciardi, B., Ferrara, A., Governato, F., & Jenkins, A. 2000, MNRAS, 314, 611
Cox, M. 1999, in Proc. ESO Workshop, Chemical Evolution from Zero to High Redshift, ed. J. Walsh & M. R. Rosa (Berlin: Springer), 213
Dalgarano, A., & McCray, R. A. 1972, ARA&A, 10, 375
Dyson, J. E., & Williams, D. A. 1997, The Physics of the Interstellar Medium (2nd ed.; Bristol, PA: IOP Publishing)
Fall, S. M., & Rees, M. J. 1985, ApJ, 298, 18
Fardal, M. A., et al. 2001, ApJ, 562, 605
Fixsen, D. J., Dwek, E., Mather, J. C., Bennett, C. L., & Shafer, R. A. 1998, ApJ, 508, 123
Flower, D. R., & Pineau des Forêts, G. 2001, MNRAS, 323, 672
Gallagher, J. S., & Heckman, T. M. 1989, ApJ, 345, 103
Galli, D., & Palla, F. 1998, A&A, 335, 403
Haiman, Z. 2002, ApJ, 576, L1
Haiman, Z., & Loeb, A. 1997, ApJ, 476, 458
Haiman, Z., & Pasquini, L. 2000, ApJ, 537, L5
Hu, E. M., Cowie, L. L., & McMahon, R. G. 1998, ApJ, 502, L99
Izotov, Y. I., & Kolemov, I. G. 1984, Soviet Astron., 28, 15
Kitayama, T., & Suto, Y. 1996, ApJ, 469, 480
Kodaira, K., et al. 2003, PASJ, 55, L17
Lacey, C. G., & Cole, S. 1993, MNRAS, 262, 627
Mahto, T., et al. 2001, PASJ, 53, 25
Oh, S. P., & Haiman, Z. 2002, ApJ, 569, 558
Ohta, K., et al. 2000, Nature, 402, 406
Omukai, K., & Nishi, R. 1998, ApJ, 508, 141
Omont, A., et al. 1996, Nature, 382, 428
Omukai, K. 2000, ApJ, 534, 809
Oh, S. P., & Haiman, Z. 2002, ApJ, 569, 558
Partridge, R. B., & Peebles, P. J. E. 1967, ApJ, 147, 868
Press, W. H., & Schechter, P. 1974, ApJ, 187, 425
Rees, M. J., & Ostriker, J. 1977, MNRAS, 179, 541
Ricotti, M., Gnedin, N. Y., & Shull, J. M. 2002, ApJ, 575, 49
Ripamonti, E., Haardt, F., Ferrara, A., & Colpi, M. 2002, MNRAS, 334, 401
Saslaw, W. C., & Zepf, D. 1967, Nature, 216, 976
Shapiro, P. R., & Kang, H. 1987, ApJ, 318, 32
Shchekinov, Yu. 1991, ApSS, 175, 57
Shchekinov, Yu. A., & Entel, M. B. 1985, Soviet Astron., 29, 491
Shibai, H., Takeuchi, T. T., Rengarajan, T. N., & Hirashita, H., 2001, PASJ, 53, 889
Silk, J. 1977, ApJ, 211, 638
Spanu, M., & Silk, J. 1997, ApJ, 488, L79
Spiering, D., et al. 2003, ApJS, 148, 175
Steidel, C. C., et al. 2000, ApJ, 532, 170
Susa, H., Uchida, H., Nishi, R., & Yamada, M. 1998, Prog. Theor. Phys., 100, 63
Tanigushi, Y., et al. 1997, A&A, 328, L9
Williams, R. E., et al. 1996, AJ, 112, 1335
