Extremal fullerene graphs with the maximum Clar number *

Dong Ye and Heping Zhang
School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
E-mails: dye@lzu.edu.cn, zhanghp@lzu.edu.cn

Abstract

A fullerene graph is a cubic 3-connected plane graph with (exactly 12) pentagonal faces and hexagonal faces. Let F_n be a fullerene graph with n vertices. A set \mathcal{H} of mutually disjoint hexagons of F_n is a sextet pattern if F_n has a perfect matching which alternates on and off each hexagon in \mathcal{H}. The maximum cardinality of sextet patterns of F_n is the Clar number of F_n. It was shown that the Clar number is no more than $\lfloor \frac{n-12}{6} \rfloor$. Many fullerenes with experimental evidence attain the upper bound, for instance, C_{60} and C_{70}. In this paper, we characterize extremal fullerene graphs whose Clar numbers equal $\frac{n-12}{6}$. By the characterization, we show that there are precisely 18 fullerene graphs with 60 vertices, including C_{60}, achieving the maximum Clar number 8 and we construct all these extremal fullerene graphs.

Keywords: Fullerene graph; Clar number; Perfect matching; Sextet pattern; C_{60}

AMS 2000 subject classification: 05C70, 05C90

1 Introduction

A fullerene graph is a cubic 3-connected plane graph which has exactly 12 pentagonal faces and other hexagonal faces. Fullerenes correspond to the fullerene molecule frames in chemistry. Let F_n be a fullerene graph with n vertices. It is well known that F_n exists for any even $n \geq 20$ except $n = 22$ [2, 6]. For small n, a constructive enumeration of fullerene isomers with n vertices was given [2]. For example, there are 1812 distinct fullerene graphs with 60 vertices including the famous C_{60} synthesized in 1985 by Kroto et al. [14].

Let F be a fullerene graph. A perfect matching (Kekulé structure in chemistry) of F is a set M of independent edges such that every vertex of F is incident with an edge in M.

*This paper is supported by NSFC grant 10831001.
A cycle of F is M-alternating (or conjugated) if its edges appear alternately in and off M. A set \mathcal{H} of mutually disjoint hexagons is called a sextet pattern if F has a perfect matching M such that every hexagon in \mathcal{H} is M-alternating. So if \mathcal{H} is a sextet pattern of F, then $F - \mathcal{H}$ has a perfect matching where $F - \mathcal{H}$ is the subgraph arising from F by deleting all vertices and edges incident with hexagons in \mathcal{H}. A maximum sextet pattern is also called a Clar formula. The cardinality of a Clar formula is the Clar number of F, denoted by $c(F)$. In Clar’s model [4], a Clar formula is designated by depicting circles within their hexagons (see Figure 1).

![A Clar formula of C$_{60}$](image)

The Clar number is originally defined for benzenoid systems based on the Clar sextet theory [4] and related to Randić conjugated circuit model [17]. It is effective to measure the molecule stability of benzenoid hydrocarbons. For two isomeric benzenoid hydrocarbons, the one with larger Clar number is more stable. Clar numbers of benzenoid hydrocarbons have been investigated and computed in many papers [10][11][13][19][20][21][22]. Hansen and Zheng [11] introduced an integer linear program to compute the Clar number of benzenoid hydrocarbons. Abeledo and Atkinson [1] showed that relaxing the integer-restrictions in such a program always yields an integral solution.

Up to now there has been no an effective method to compute Clar numbers of fullerene graphs. The Clar polynomial and sextet polynomial of C$_{60}$ for counting Clar structures and sextet patterns respectively were computed in [18]. This implies that C$_{60}$ has 5 Clar formulas and Clar number 8 [3]. In addition, C$_{60}$ has a Fries structure [8], i.e. a Kekulé structure of C$_{60}$ which avoids double bonds in pentagons and has the possibly maximal number of conjugated hexagons ($n/3$). Fullerene graphs with a Fries structure are equivalent to leapfrog fullerenes or Clar type fullerenes [7][15]. The latter means that they have a set of disjoint faces including all vertices, an extension of a fully-Clar structure. Some relationships among the Clar number, the maximum face independent number and Fries number are presented by Graver [9]. A lower bound for the Clar numbers of leapfrog fullerenes with icosahedral symmetry was also given in [9]. The same authors of this paper [23] showed that the Clar number of a fullerene graph with n vertices is no more than $\lfloor \frac{n-12}{6} \rfloor$, for which equality holds for infinitely many fullerene graphs, including C$_{60}$ and C$_{70}$. We would like to mention here that a recent paper of Kardoš et al. [12] obtained a exponentially bound of perfect matching
numbers of fullerene graphs. In fact, they applied Four-Color Theorem to show that a fullerene graph with \(n \geq 380 \) vertices has a sextet pattern with at least \(\frac{n-380}{61} \) hexagons.

A fullerene graph \(F_n \) is extremal if its Clar number \(c(F_n) = \frac{n-12}{6} \). In this paper, we characterize the extremal fullerene graphs with at least 60 vertices (Section 3). According to the characterization, we construct all 18 extremal fullerene graphs with 60 vertices, including \(C_{60} \) (Section 4). Our result can show that a combination of Clar number and Kekulé count works well in predicting the stability of \(C_{60} \).

2 Definitions and Terminologies

Let \(G \) be a plane graph with vertex-set \(V(G) \) and edge-set \(E(G) \). Let \(|G| = |V(G)| \). For a 2-connected plane graph, every face is bounded by a cycle. For convenience, a face is represented by its boundary if unconfused. The boundary of the infinite face of \(G \) is also called the boundary of \(G \), denoted by \(\partial G \). A graph \(G \) is cyclically \(k \)-edge-connected if deleting less than \(k \) edges from \(G \) cannot separate it into two components such that each of them contains at least one cycle. The cyclic edge-connectivity of graph \(G \), denoted by \(c\lambda(G) \), is the maximum integer \(k \) such that \(G \) is cyclically \(k \)-edge-connected.

Lemma 2.1. ([5 16]) Let \(F \) be a fullerene graph. Then \(c\lambda(F) = 5 \).

From now on, let \(F \) be a fullerene graph. Let \(C \) be a cycle of \(F \). Lemma 2.1 implies that the size of \(C \) is larger than 4. The subgraph consisting of \(C \) together with its interior is called a fragment. A pentagonal fragment is a fragment with only pentagonal inner face. For a fragment \(B \), all 2-degree vertices of \(B \) lie on its boundary.

![Figure 2: Trees: \(K_2 \), \(K_{1,3} \) and \(T_0 \).](image)

Lemma 2.2. Let \(B \) be a fragment of a fullerene graph \(F \) and let \(W \) be the set of all 2-degree vertices of \(B \). If \(0 < |W| \leq 4 \), then \(T := F - (V(B) \setminus W) \) is a forest and,

1. \(T \) is \(K_2 \) if \(|W| = 2 \);
2. \(T \) is \(K_{1,3} \) if \(|W| = 3 \);
3. \(T \) is the union of two \(K_2 \)'s, or a 3-length path, or \(T_0 \) as shown in Figure 2 if \(|W| = 4 \).

Proof. Since \(B \) is a fragment, \(\partial B \) is a cycle. For every vertex \(w \in W \), let \(ww_1, ww_2 \in E(\partial B) \). The neighbors of \(w \) distinct from \(w_1 \) and \(w_2 \) belongs to either \(W \) or \(V(F - B) \).

If \(V(F) = V(B) \), then every vertex in \(W \) is adjacent to exactly one 2-degree vertices in \(W \). Therefore \(|W| = 2 \) or \(|W| = 4 \). If \(|W| = 2 \), then the two vertices in \(W \) are adjacent.
Further T is a K_2. If $|W| = 4$, then F has two more edges than B. If the no vertices in W are adjacent in B, then the two edges are disjoint and hence T is a union of two K_2. If there are vertices are adjacent, then there are exactly one pair of 2-degree vertices from W adjacent since F contains no 4-length cycle. It follows that T must be a 3-length path consisting of two edges in $E(F) - E(B)$ and one edge in $E(B)$.

So suppose $V(F) \setminus V(B) \neq \emptyset$. Let S be a set of the edges joining the vertices in W and their neighbors in $F - B$. Since every vertex in W has at most one neighbor in $F - B$, we have $|S| \leq |W|$. So S separates B from $F - B$. By Lemma 2.1, $F - B$ has no cycles since $|W| \leq 4$.

Suppose to the contrary that T has at least one cycle C. Then $C \cap \partial B \neq \emptyset$ since $F - B$ is a forest. We draw F on the plane such that B lies outside of C. Then C together with its interior is a subgraph of T. We may thus assume that C bounds a face of F within T. Since F is cubic, every component of $C \cap \partial B$ is an edge joining two vertices in W. By $0 < |W| \leq 4$, $C \cap \partial B$ has at most two components.

If $C \cap \partial B$ has two components, then $|W| = 4$ and C contains all vertices in W. Let w_1, w_2, w_3, w_4 be the four vertices in W and let w_1w_2 and w_3w_4 be the two components of $C \cap B$. Let w'_i be another neighbor of w_i on ∂B. Then $\{w_iw'_i | i = 1, 2, 3, 4\}$ separates C from $F - C$, contradicting Lemma 2.1.

So suppose $C \cap \partial B$ has only one component w_1w_2. Then $C - \{w_1, w_2\}$ is a path in a component T_1 of $F - B$. Further T_1 has at least $|C| - 2$ vertices. If T_1 has a 3-degree vertex, then it has at least three leaves. Since every leaf of T_1 is adjacent to two vertices in W, we have $|W| \geq 6$ which contradicts that $|W| \leq 4$. So T_1 is a path. Then T_1 has at least $|C| - 4$ 2-degree vertices. Hence vertices in $V(T_1)$ have at least $4 + |C| - 4$ neighbors in W. So $|W| \geq 4 + |C| - 4 \geq 5$ which also contradicts that $|W| \leq 4$. So T is a forest.

Let l and x be the number of leaves and the number of components of T, respectively. Then $l = |W| \leq 4$. Since F is cubic, $2(|T| - x) = 3(|T| - l) + l$. Then $l - 2x = |T| - l > 0$ since $F - B \neq \emptyset$ and $W \neq \emptyset$. Hence $4 \geq l > 2x \geq 2$. So we have $x = 1$. Hence T is a tree. So if $l = 3$, then T is $K_{1,3}$. If $l = 4$, then $|T| - l = 2$. Hence T is isomorphic to T_0. □

For a face f of a connected plane graph, its boundary is a closed walk. For convenience, a face f is often represented by its boundary if unconfused. Note that a pentagon or a hexagon of a fullerene graph F must bound a face since F is cyclic 5-edge-connected [5, 23]. Let G be a subgraph of a fullerene graph F. A face f of F adjoins G if f is not a face of G and f has at least one edge in common with G. Now suppose G has no 1-degree vertices. Let f' be a face of G with 2-degree vertices on its boundary. Since F is cubic and 3-connected, f' has at least two 2-degree vertices. A path P on the boundary of f' connecting two 2-degree vertices is degree-saturated if P contains no 2-degree vertices of G as intermediate vertices. Since every face of F has a size of at most six, the length of P is no more than five.
Proposition 2.3. Let \(G \) be a subgraph of a fullerene graph \(F \). Let \(f \) be a face of \(G \) with 2-degree vertices and \(P \) be a degree-saturated path of \(G \) on the boundary of \(f \). Then the length of \(P \) is no more than 5.

Let \(f_1, f_2, \ldots, f_k \) be the faces of \(F \) adjoining \(G \). The subgraph \(T[G] := G \cup (\cup_{i=1}^k f_i) \) is called the territory of \(G \) in \(F \). If for every \(i \in \{1, 2, \ldots, k\} \), the face \(f_i \) \((i = 1, \ldots, k)\) is a hexagon, the territory is also called a hexagon extension of \(G \) and is denoted by \(H[G] \) (see Figure 3). A subgraph \(G \) is maximal in \(F \) if \(H[G] \subset F \). We are particularly interested in the maximal pentagonal fragments. Denote the number of 2-degree vertices of \(G \) by \(w(G) \). Let \(B \) and \(B' \) be two fragments such that \(w(B) \geq w(B') \). Let \(P \) and \(P' \) be two degree-saturated paths of \(\partial B \) and \(\partial B' \), respectively. Suppose \(|P| \leq |P'| \). Let \(f \) and \(f' \) be two faces adjoining \(B \) and \(B' \) along \(P \) and \(P' \), respectively. It is readily seen that \(w(B \cup f) \geq w(B' \cup f') \) if \(|f| \geq |f'| \). Applying this argument for the territory \(T[B] \) and the hexagon extension \(H[B] \) of \(B \), we immediately have the following proposition.

Proposition 2.4. Let \(B \) be a fragment of a fullerene graph \(F \) and let \(T[B] \) and \(H[B] \) be the territory and the hexagon extension of \(B \), respectively. Then \(w(T[B]) \leq w(H[B]) \).

![Figure 3](image)

The hexagon extensions and Clar extensions of \(P \) and \(B_1 \).

A subgraph (or a set of vertices) \(S \) of \(F \) meets a subgraph \(G \) of \(F \) if \(S \cap G \neq \emptyset \). Let \(G - S \) be the subgraph obtained from \(G \) by deleting all vertices in \(S \) together with all edges incident with them. Let \(H[G] \) be the hexagon extension of \(G \) and \(\mathcal{H} \) be a set of mutually disjoint hexagons of \(H[G] \). Let

\[
\mathcal{S}(G) := \{ \mathcal{H} | \ G - \mathcal{H} \text{ has a matching which covers all remaining 3-degree vertices of } G \}.
\]

For any \(\mathcal{H} \in \mathcal{S}(G) \), let \(U_{\mathcal{H}}(G) := V(G) \setminus V(\mathcal{H}) \). An \(\mathcal{H} \in \mathcal{S}(G) \) is called a Clar set of \(H[G] \) if \(|U_{\mathcal{H}}(G)| \leq |U_{\mathcal{H'}}(G)| \) for all \(\mathcal{H'} \in \mathcal{S}(G) \). A Clar set \(\mathcal{H} \) of \(H[G] \) is normal if \(G - \mathcal{H} \) has a perfect matching. For a fullerene graph \(F \), its hexagon extension is itself and a Clar formula of \(F \) is a normal Clar set. (See Figure 3: the hexagons in Clar sets of the hexagon extensions of a pentagon \(P \) and \(B_1 \) are depicted by circles; the Clar set of \(H[B_1] \) is normal.)
Definition 2.5. Let $G \subseteq F$ and H be a Clar set of $H[G]$. A Clar extension $C[G]$ of G is the subgraph induced by $V(H) \cup V(G)$. A Clar extension $C[G]$ is normal if H is normal.

The Clar extensions of P and B_1 are illustrated in Figure 3. The Clar extension of a fullerene graph F is itself. Let H be a Clar formula of F and $U_H := V(F) \setminus V(H)$. The following result is from [23].

Lemma 2.6. ([23], Lemma 2) If a subgraph G of a fullerene graph F has at least k pentagons, then $|V(G) \cap U_H| \geq k$.

Lemma 2.6 can be generalized as the following result.

Lemma 2.7. Let G be a subgraph of a fullerene graph F with k pentagons and H be a Clar set of $H[G]$. Then $|U_H(G)| \geq k$.

Proof. Let G be a subgraph of F with k pentagons and H be a Clar set of $H[G]$. We proceed by induction on k. If $k = 1$, $|U_H(G)| \geq 1$ since every pentagon has at least one vertex not in H. So suppose the conclusion holds for smaller k.

If G has a 2-degree vertex v in $U_H(G)$, then $G - v$ has at least $k - 1$ pentagons. By inductive hypothesis, $|U_H(G - v)| \geq k - 1$. So $|U_H(G)| = |U_H(G - v)| + 1 \geq k$ and the lemma holds.

So suppose all vertices in $U_H(G)$ are 3-degree vertices of G; that is, $G - V(H)$ has a perfect matching. The proof of this case follows directly from the proof of Lemma 2.6 (Lemma 2 in [23]).

A subgraph G with k pentagons is extremal if $|U_H(G)| = k$ where H is a Clar set of $H[G]$. Both P and B_1 are extremal (see Figure 3). Note that the every subgraph induced by pentagons of an extremal fullerene graph must be extremal. Hence extremal subgraphs play a key role in characterizing extremal fullerene graphs.

3 Extremal fullerene graphs

In this section, we are going to characterize extremal subgraphs induced by pentagons of fullerene graphs and finally establish a characterization of the extremal fullerene graphs with at least 60 vertices.

From now on, let F_n be a fullerene graph with n vertices. A pentagonal ring R_k is a subgraph of F_n consisting of k pentagons $P_0, P_1, ..., P_{k-1}$ such that $P_i \cap P_j \neq \emptyset$ if and only if $|i - j| = 1$ where $i, j \in \mathbb{Z}_k$ (see Figure 4). Since F_n has exactly 12 pentagons and $c\lambda(F_n) = 5$, we deduce that $5 \leq k \leq 12$.

Lemma 3.1. If F_n contains a pentagonal ring R_k with $7 \leq k \leq 12$, then $n \leq 52$.

6
Figure 4: Pentagonal rings: R_8 and R_9.

Proof. Let $R_k \subset F_n$ be a pentagonal ring. Let $f_1, f_2 \notin \{P_0, ..., P_{k-1}\}$ be two faces of R_k. We may assume that f_1 is the infinite face. For $i \in \{1, 2\}$, let x_i be the numbers of 2-degree vertices on the boundary of f_i.

Let B be the fragment consisting of f_1 together with its interior. Let m_5 and m_6 be the number of pentagons and hexagons of B, respectively. By Euler’s formula,

$$\nu - e + m_5 + m_6 = 1$$

where ν, e are the vertex number and the edge number of B, respectively. On the other hand,

$$2x_1 + 3(\nu - x_1) = 2e = 5m_5 + 6m_6 + 2x_1 + x_2.$$

Hence, $m_5 = 6 + x_2$. Since $m_5 \geq k = x_1 + x_2$, it follows that $x_1 \leq 6$. Since $7 \leq k \leq 12$ and F is 3-connected, $x_2 \geq 2$. It can be verified that $H[B]$ has at most four 2-degree vertices on its boundary. Let B' be the fragment consisting of f_2 together with its interior. By Lemma 2.2 and Proposition 2.4,

$$|V(F - B')| \leq 6 \times 6 - 2 \times 6 + 2 = 26$$

since there are at most six faces adjoining B and any two adjacent faces share at least one edge. A similar discussion results in $|V(B')| \leq 26$ since F can be drawn on the plane such that f_2 is the infinite face of R_k. So $\nu \leq |V(F - B')| + |V(B')| \leq 52$. \square

The following observations show that a subgraph G of F_n (except F_{24}) is not extremal if it contains R_5 and R_6 as subgraphs. Recall that the territory and the hexagon extension of G is denoted by $T[G]$ and $H[G]$, respectively. For a Clar set \mathcal{H} of $H[G]$, define $U_{\mathcal{H}}(G) := V(G) \setminus V(\mathcal{H})$. Let R_5 and R_6 be the pentagonal rings depicted in Figure 5.

Figure 5: Pentagonal rings R_5, R_6 and a matching M of R_6.

7
Observation 1. Let \mathcal{H} be a Clar set of $H[R_5]$. Then $|U_{\mathcal{H}}(R_5)| \geq 12$.

The proof of Observation 1 is omitted here since it is similar to the proof of Lemma 1 of [24].

Observation 2. Let G be a subgraph of a fullerene graph. If $R_5 \subseteq G$, then G is not extremal.

Proof. Suppose to the contrary that G is extremal. Since $R_5 \subseteq G$, we have that $|U_{\mathcal{H}}(G)| \geq |U_{\mathcal{H}}(R_5)| \geq 12$ by Observation 1. Hence G has 12 pentagons since G is extremal. Clearly, every pentagon contains at least one vertex in $U_{\mathcal{H}}(G)$ and at least one pentagon does not adjoin R_5. So $|U_{\mathcal{H}}(G)| \geq |U_{\mathcal{H}}(R_5)| + 1 = 13$ which contradicts that G is extremal.

Observation 3. Let G be a subgraph of a fullerene graph F_n with $n \neq 24$. If $R_6 \subseteq G$, then G is not extremal.

Proof. Let \mathcal{H} be a Clar set of the hexagon extension $H[G]$ of G. Enumerate clockwise the six faces of F_n adjoining R_6 as f_1, \ldots, f_6 (see Figure 4). Since $G \subseteq F_n$ ($n \neq 24$), not all f_i ($1 \leq i \leq 6$) are pentagons. Let $r := |\mathcal{H} \cap \{f_1, \ldots, f_6\}|$ and h be the central hexagon of R_6.

If $h \notin \mathcal{H}$, then $|U_{\mathcal{H}}(G)| \geq |U_{\mathcal{H}}(R_6)| = 18 - 3r$ since every f_i contains three vertices in $V(R_6)$. If $r \leq 1$, then G is not extremal since $|U_{\mathcal{H}}(G)| \geq 15$ and G has at most 12 pentagons. So $2 \leq r \leq 3$. If $r = 3$, say $f_1, f_3, f_5 \in \mathcal{H}$, then $R_6 - \mathcal{H}$ has no matchings which cover all remaining 3-degree vertices of R_6, contradicting that \mathcal{H} is a Clar set. So suppose $r = 2$. Then G has exactly 12 pentagons. Over these 12 pentagons, at least two pentagons do not adjoin R_6. Since every pentagon contains at least one vertex in $U_{\mathcal{H}}(G)$, it holds that $|U_{\mathcal{H}}(G)| \geq 12 + 1 = 13$. Hence G is not extremal.

So suppose $h \in \mathcal{H}$. Then all 3-degree vertices on ∂R_6 of R_6 have to match all 2-degree vertices on ∂R_6 in $G - \mathcal{H}$ (see Figure 5, R_6 with a matching M). So $|U_{\mathcal{H}}(G)| \geq |V(\partial R_6)| = 12$. So suppose G has 12 pentagons. Since $G \subseteq F_n \neq F_{24}$, at least one pentagon in G does not adjoin R_6 and has at least one vertex in $U_{\mathcal{H}}(G)$. Immediately, $|U_{\mathcal{H}}(G)| \geq 12 + 1 = 13$. So G is not extremal.

By the above observations and Lemma 3.1, an extremal fullerene graph with at least 60 vertices does not contain a pentagonal ring as a subgraph. If a connected component of the subgraph induced by pentagons of F_n with $n \geq 60$ is extremal, then it must be a pentagonal fragment.

Let R_5^- be the pentagonal fragment arising from R_5 by deleting one 2-degree vertex together with two edges incident with it (see Figure 6).

Lemma 3.2. Let G be a subgraph of F_n with $n \geq 40$. If $R_5^- \subseteq G$, then G is not extremal.

Proof. Let $G \subseteq F_n$ with k pentagons and \mathcal{H} be a Clar set of $H[G]$. Suppose to the contrary that G is extremal. By Lemma 2 and 3, $R_5^- \not\subseteq G$ and $R_6 \not\subseteq G$. Let $P := v_1v_2\ldots v_5v_1$ be
the pentagon of R_5^- meeting all other pentagons of R_5^- as shown in Figure 5. Let h be the hexagon of F_n adjoining R_5^- along v_1v_2 since $R_5^+ \not\subseteq G$. Let $f_1, f_2, ..., f_6$ be the faces of F_n adjoining $R_5^- \cup h$ as shown in Figure 6 (a).

Let r be the number of pentagons in $\{f_1, ..., f_6\}$ and $H[R_5^- \cup h]$ be the hexagon extension of $R_5^- \cup h$. Clearly, $H[R_5^- \cup h]$ has seven 2-degree vertices. If $r \geq 3$, then the territory $T[R_5^- \cup h]$ of $R_5^- \cup h$ has at most four 2-degree vertices on its boundary. By Lemma 2.2

$$n \leq |V(T[R_5^- \cup h])| + 2 \leq 26 + 2 = 28,$$

contradicting that $n \geq 40$. So suppose $r \leq 2$.

If $r = 2$, then the boundary of $T[R_5^- \cup h]$ has five 2-degree vertices which separate $\partial(T[R_5^- \cup h])$ into five degree-saturated paths. If f_2 is a pentagon, $\partial(T[R_5^- \cup h])$ has four 2-length degree-saturated paths and one 3-length degree-saturated path (see Figure 6 (b)). Then the hexagon extension $H[T[R_5^- \cup h]]$ has only four 2-degree vertices on its boundary. By Lemma 2.2 and Proposition 2.4

$$n \leq |V(H[T[R_5^- \cup h]])| + 2 = |V(T[R_5^- \cup h])| + 9 + 2 = 38,$$

contradicting $n \geq 40$. So suppose $r = 1$. Then f_2 is a hexagon. If the two pentagons in $\{f_1, f_3, f_4, f_5, f_6\}$ are adjacent, $\partial(T[R_5^- \cup h])$ has one 1-length degree-saturated path and three 2-length degree-saturated paths and one 4-length degree-saturated path (see Figure 6 (c)). Then $H[T[R_5^- \cup h]]$ has 35 vertices and three 2-degree vertices. By Lemma 2.2 and Proposition 2.4

$$n \leq |V(H[T[R_5^- \cup h]])| + 1 = 36,$$

contradicting that $n \geq 40$. So we suppose the two pentagons in $\{f_1, f_3, f_4, f_5, f_6\}$ are not adjacent. Then $\partial(T[R_5^- \cup h])$ has one 1-length degree-saturated path and two 2-length degree-saturated paths and two 3-length degree-saturated paths (see Figure 6 (d)). Further, $H[T[R_5^- \cup h]]$ has 36 vertices and four 2-degree vertices. By Lemma 2.2 and Proposition 2.4

$$n \leq |V(H[T[R_5^- \cup h]])| + 2 = 38,$$

also contradicting that $n \geq 40$.

So $r = 1$. Suppose $h \in \mathcal{H}$. Then $f_1, f_2, f_3 \not\in \mathcal{H}$. If $f_4, f_5 \in \mathcal{H}$, then $R_5^- \cup h - \mathcal{H}$ has no matchings which cover all remaining 3-degree vertices of $R_5^- \cup h$, a contradiction. So at most one of $\{f_4, f_5, f_6\}$ belongs to \mathcal{H}. Hence, $|U_{\mathcal{H}}(R_5^-)| = |V(R_5^- \cup h)| - |V(\mathcal{H})| \geq 16 - 9 = 7$. Since G has k pentagons and $r = 1$, it holds that $G - R_5^-$ has at least $k - 6$ pentagons. By Lemma 2.7

$$|U_{\mathcal{H}}(G - R_5^-)| \geq k - 6.$$

Hence $|U_{\mathcal{H}}(G)| = |U_{\mathcal{H}}(R_5^-)| + |U_{\mathcal{H}}(G - R_5^-)| \geq 7 + k - 6 = k + 1$. Hence G is not extremal.

Now suppose that $h \not\in \mathcal{H}$. Since both $(R_5^- \cup h) - (\cup_{i=1,3,5} f_i)$ and $(R_5^- \cup h) - (\cup_{i=2,4,6} f_i)$ have no perfect matchings, at most two faces of $f_1, ..., f_6$ belong to \mathcal{H}. So $|U_{\mathcal{H}}(R_5^-)| \geq 14 - 6 = 8$. On the other hand, $G - R_5^-$ has $k - 6$ pentagons since $r = 1$. Hence, by Lemma 2.7
Lemma 3.3. Let B be a pentagonal fragment of a fullerene graph F. Then:

1. $R_5 \subseteq B$ if $\gamma(B) \geq 3$;
2. B has a pentagon adjoining exactly two adjacent pentagons of B if $\gamma(B) = 2$.

Proof. Let B^* be the inner dual of B. Then B^* is a simple connected graph and every inner face of B^* is a triangle. Let $\delta(B^*)$ be the minimum degree of B^*. Then $\delta(B^*) = \gamma(B)$.

Suppose to the contrary that $R_5 \not\subseteq F$; that is, B^* is an outer plane graph. It suffices to prove that $\delta(B^*) \leq 2$ and B^* has a 2-degree vertex on a triangle of B^* if $\delta(B^*) = 2$. If $\delta(B^*) = 1$, the assertion already holds. So suppose $\delta(B^*) = 2$. Let G be a maximal 2-connected subgraph of B^* such that G is connected to $F - G$ by an edge e. If B^* is 2-connected, let $G = B^*$. Then every inner face of G is a triangle. So it suffices to prove that G has two 2-degree vertices.

Let C be the boundary of G. Let $v_0, v_1, v_2, ..., v_{n-1}$ be all vertices of G appearing clockwise on C. If $n = 3$, then G is a triangle and the assertion is true. So suppose $n > 3$. Since every inner face of G is a triangle, then G has 3-degree vertices. Without loss of generality, let v_0 be a 3-degree vertex such that v_0v_k is a chordal of C where $k \neq 1, n - 1$. Let $v_jv_{j'}$ be a chordal of C such that $k \leq j < j + 1 < j' \leq n \equiv 0 \pmod n$ and $|j' - j|$ is minimal. Then the cycle $v_jv_{j-1} \cdot \cdot \cdot v'_{j'-1}v'_{j}v_j$ bounds an inner face. So it is a triangle and v_{j+1} is a 2-degree vertex on the triangle $v_jv_{j+1}v_{j'}v_j$. On the other hand, let $v_iv_{i'}$ be a chordal of C such that $0 \leq i < i + 1 < i' \leq k$ and $i' - i$ is minimal. A similar analysis implies that v_{i+1} is a 2-degree vertex on the triangle $v_iv_{i+1}v_{i'}v_i$. At most one of v_{j+1} and v_{i+1} is an end of the edge e joining G to $F - G$. So B has a 2-degree vertex on a triangle of B. This completes the proof of the lemma.

Lemma 3.4. Let B be a pentagonal fragment with $\gamma(B) \geq 2$. Then B is not extremal.

Proof. Let k be the number of pentagons of B and \mathcal{H} be a Clar set of $H[G]$. Use induction on k to prove it. The minimum pentagonal fragment B_0 with $\gamma(B_0) \geq 2$ consists of three pentagons such that they adjoin each other. It is easy to verify that B_0 is not extremal. So we may suppose $k \geq 4$ and the lemma holds for smaller k. If $R_5 \subseteq B$, then B is not extremal according to Lemma 2. By Lemma 3.3, we may assume $\gamma(B) = 2$ and let $p := v_1v_2v_3v_4v_5v_1$ be a pentagon of B adjoining two pentagons p_1 and p_2 such that $p_1 \cap p = v_3v_4$ and $p_2 \cap p = v_4v_5$.

Let h_1, h_2, h_3 be the three hexagons of F_n adjoining p as illustrated in Figure 7 (a). If one of v_1 and v_2 belongs to $U_\mathcal{H}(B)$, then $B' := B - \{v_1, v_2\}$ has at least $k - 1$ pentagons
and $\gamma(B') \geq 2$. So $B' \notin \mathcal{B}_{\geq 60}$. By inductive hypothesis, B' is not extremal and hence $|U_\mathcal{H}(B')| \geq k$. Hence $|U_\mathcal{H}(B)| \geq |V(B') \cap U_B| + 1 \geq k + 1$. That means B is also not extremal. So suppose $v_1, v_2 \in V(H)$. Then either $h_2 \in \mathcal{H}$ or $h_1, h_3 \in \mathcal{H}$.

![Figure 7: Illustration for the proof of Lemma 3.4.](image)

Case 1: $h_2 \in \mathcal{H}$. Then $v_3, v_4, v_5 \in U_\mathcal{H}(B)$ and all of them are covered by M_B. Let f_1, f_2 be the other two faces adjoining p_1 as shown in Figure 7(a). Let $w_1v_4 = p_1 \cap p_2$. If $f_2 \notin \mathcal{H}$, then $S = \{w_1, v_3, v_4, v_5\} \subseteq U_\mathcal{H}(B)$, a contradiction. So suppose $f_2 \in \mathcal{H}$. So either $v_3v_4 \in M_B$ or $v_4v_5 \in M_B$. By symmetry, we may assume $v_4v_5 \in M_B$. Let $v_3 = p_1 \cap h_3$. Then $v_3 \in M_B$.

Let g_1, g_2, g_3 be the faces adjoining h_1 as illustrated in Figure 7(a), and let $u_1u_2 = g_1 \cap h_1$ and $u_2u_3 = g_1 \cap g_2$. Since $g_1 \notin \mathcal{H}$, we have $u_1 \in U_\mathcal{H}(B)$. Since $\{v_3, v_4, v_5, u_1\} \subseteq U_\mathcal{H}(B)$ meets at least four pentagons, g_1 is a pentagon. Hence $u_1u_2 \in M_B$. So $\{v_3, v_4, v_5, u_1, u_2\} \subseteq U_\mathcal{H}(B)$. Further g_2 is also a pentagon. Let f_3 be the face adjoining g_1, g_2 and f_2. Then $f_3 \notin \mathcal{H}$ since it is adjacent with f_2. Further f_3 is a pentagon since $\{v_3, v_4, v_5, u_1, u_2, u_3\} \subseteq U_\mathcal{H}(B)$ meets at least six pentagons.

Let $B' := B - (V(P) \cup \{v_1\})$. If B' is connected, then the pentagons in B' connecting f_1 and g_1 together with p_1, p_2 form a pentagonal ring in B, contradicting that B is a pentagonal fragment. Let B_1, \ldots, B_r be all components of B' such that $g_1 \subseteq B_1$. Use k_i to denote the number of pentagons in B_i, then $k = \sum_{i=1}^r k_i + 3$. For B_1, we have $\gamma(B_1) \geq 2$ and hence $B_1 \notin \mathcal{B}_{\geq 60}$. By inductive hypothesis, B_1 is not extremal. So $|U_\mathcal{H}(B_1)| \geq k_1 + 1$. By Lemma 2.7 $|U_\mathcal{H}(B)| = \sum_{i=1}^r |U_\mathcal{H}(B_i)| + 3 \geq (k_1 + 1) + \sum_{i=2}^r k_i + 3 = k + 1$. So B is not extremal.

Case 2: $h_1, h_3 \in \mathcal{H}$. Let $w_1v_3 = p_1 \cap p_2$. Then $w_1v_3 \in M_B$. Let f_1, f_2, g_1 be the other three faces adjoining p_1 or p_2 (see Figure 7(b)). If f_2 is a pentagon, then $V(f_2) \subseteq U_\mathcal{H}(B)$ since $f_1, g_1 \notin \mathcal{H}$. Hence $V(f_2)$ meets at least five pentagons. That means f_2 is adjacent with at least four pentagons in B, forming a R_5^- in B. So B is not extremal by Lemma 3.2. So suppose f_2 is a hexagon. Clearly, $f_2 \notin \mathcal{H}$ since $w_1 \in U_\mathcal{H}(B)$.

Since $\gamma(B) = 2$, both g_1 and f_1 are pentagons. Let $f_2 := w_1w_2w_3w_4w_5w_6w_1$ and let f_3, f_4 be the other two faces adjoining f_2 (see Figure 7(c)). Since B is a pentagonal fragment, at most one of f_3 and f_4 is a pentagon. If exactly one of them is a pentagon, then $V(f_2) \subseteq U_\mathcal{H}(B)$
meets only five pentagons, a contradiction. So suppose both of them are hexagons. Then \{w_1, w_2, w_3, w_5, w_6\} \subseteq U_{\mathcal{H}}(B) meets only four pentagons, also a contradiction. So B is not extremal.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig8.png}
\caption{Extremal pentagonal fragments B_2, B_3 and their Clar extensions $C[B_2], C[B_3]$.}
\end{figure}

Now, we are going to characterize extremal pentagonal fragments. Let B_2, B_3 be the two pentagonal fragments illustrated in Figure 8. Clearly, the Clar extensions of B_2 and B_3 are normal. It is easy to see that P, B_2 and B_3 are extremal. Up to isomorphism, $C[P], C[B_2]$ and $C[B_3]$ are unique.

Let G_1, G_2, G_3 and G_4 be graphs. We say that G_1 arises from pasting G_2 and G_3 along G_4 if $G_1 = G_2 \cup G_3$ and $G_4 = G_2 \cap G_3$. Let B be a fragment isomorphic to one of P, B_2 and B_3 and let $C[B]$ be a Clar extension of B. An edge of B is called pasting edge if it lies on the boundary of $C[B]$ and two end-vertices belong to $V(H)$ where H is the Clar set of $C[B]$. The thick edges of P, B_2 and B_3 illustrated in Figure 8 and Figure 9 are pasting edges. We can paste P, B_2, B_3 with each other or itself along the pasting edges to form a new pentagonal fragment. Use “*” to denote the pasting operation. Up to isomorphism, $P \ast P$ and $P \ast B_2$ are illustrated in Figure 9. Simply, use X^k to denote the graph obtained pasting k graphs isomorphic to X along the pasting edges together, where $X \in \{P, B_2, B_3\}$. Note that the pasting operation does not always yield a subgraph of a fullerene graph. Let \mathcal{B} be the set of all maximal pentagonal fragments, which are subgraphs of some fullerene graph, generated from the pasting operation. Let $\mathcal{B}_{\geq 60} \subset \mathcal{B}$ such that $B \subset F_n$ ($n \geq 60$) for any $B \in \mathcal{B}_{\geq 60}$.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig9.png}
\caption{The pasting operation: $P^2, P \ast B_2$ and their Clar extensions.}
\end{figure}

Lemma 3.5. $B_2 \ast B_3, B_3^2 \notin \mathcal{B}$.

12
Proof. Up to isomorphism, all cases of $B_2 \ast B_3$ and B_3^2 are illustrated as the graphs in grey color in Figure 10. Suppose to the contrary that $B_2 \ast B_3, B_3^2 \in \mathcal{B}$. Then the hexagon extension of $B_2 \ast B_3, B_3^2$ are subgraphs of fullerene graphs. So all graphs illustrated in Figure 10 are fragments of fullerene graphs, contradicting either Proposition 2.3 or Lemma 2.2. So $B_2 \ast B_3, B_3^2 \notin \mathcal{B}$.

![Graphs](image)

Figure 10. $B_2 \ast B_3$ (grey graphs in (a) and (b)) and B_3^2 (grey graphs in (c) and (d)).

We are particularly interested in the graphs in \mathcal{B}_{60}. From the extremal fullerene graphs shown in Figure 11, we can easily see that $\{P, B_2, B_3, P^2, P \ast B_2, P \ast B_2 \ast P\} \subseteq \mathcal{B}_{60}$. In fact, these two sets are equal.

![Graphs](image)

Figure 11. Extremal fullerene graphs with 60 vertices.

Lemma 3.6. $\mathcal{B}_{60} = \{P, B_2, B_3, P^2, P \ast B_2, P \ast B_2 \ast P\}$.

Proof. It is clear that $\{P, B_2, B_3, P^2, P \ast B_2, P \ast B_2 \ast P\} \subseteq \mathcal{B}_{60}$. In the following, we will prove another direction that $\mathcal{B}_{60} \subseteq \{P, B_2, B_3, P^2, P \ast B_2, P \ast B_2 \ast P\}$. By Lemma 3.5, it suffices to prove $B_3^2 \notin \mathcal{B}$ and $B_3 \ast P \notin \mathcal{B}$ for any $B \in \mathcal{B}_{60}$.

Suppose $B_3^2 \subseteq B \in \mathcal{B}_{60}$. Clearly, B_3^2 has two cases as shown in Figure 12 (the grey subgraphs in (a) and (c)). Their Clar extensions $C[B_3^2] \subseteq H[B] \subseteq F_n$ are graphs (a) and (c) in Figure 12. The corresponding hexagon extensions $H[C[B_3^2]]$ are graphs (b) and (d) in Figure 12. Since $H[C[B_3^2]]$ has four 2-degree vertices, $n \leq V(T[C[B_3^2]]) + 2 \leq V(H[C[B_3^2]]) + 2 \leq 56$ by Lemma 2.2 and Proposition 2.4, contradicting that $n \geq 60$. Hence, $B \notin \mathcal{B}_{60}$.

Now suppose $B_3 \ast P \subseteq B \in \mathcal{B}_{60}$. Its Clar extension $C[B_3 \ast P] \subset H[B] \subseteq F_n$ and $H[C[B_3 \ast P]]$ are illustrated in Figure 13. Let f be the face adjoining $H[C[B_3 \ast P]]$ as shown.
in Figure 13. Let $G := H[C[B_3 * P]] \cup f$. Then G has at most four 2-degree vertices. So $n \leq |V(G)| + 2 \leq V(H[C[B_3 * P]]) + 3 = 44$ by Lemma 2.2 and Proposition 2.4, contradicting that $n \geq 60$. So $B \notin \mathcal{B}_{\geq 60}$.

Figure 13 Graphs $C[B_3 * P]$ (left) and $H[C[B_3 * P]]$ (right).

Theorem 3.7. Let B be a maximal pentagonal fragment of fullerene graph F_n ($n \geq 60$). Then B is extremal if and only if $B \in \mathcal{B}_{\geq 60}$.

Proof. By Lemma 3.6 and the extremal fullerene graphs in Figure 11, the sufficiency is obvious. So it suffices to prove the necessity. Let B be a maximal extremal pentagonal fragment with k pentagons in F_n ($n \geq 60$). We use induction on k to prove $B \in \mathcal{B}_{\geq 60}$. Let H be a Clar set of $H[B]$ and M_B be the matching of $B - H$ which covers all remaining 3-degree vertices of B. Let S be a subset of $V(B)$ meeting at most $|S| - 1$ pentagons in B. If $S \subseteq U_H(B)$, then $B - S$ has $k + 1 - |S|$ pentagons and then has at least $k + 1 - |S|$ vertices in $U_H(B)$ by Lemma 2.7. Hence $|U_H(B)| \geq k + 1$, contradicting that B is extremal. So, in the following, we may assume that $U_H(B)$ contains no such S.

For $k = 1$ or 2, then $B = P$ or P^2. The necessity holds since $P, P^2 \in \mathcal{B}_{\geq 60}$. Now suppose that $k \geq 3$ and the necessity holds for smaller k. Let p, p_1, p_2 be the three pentagons of B. By Lemma 3.4, $\gamma(B) = 1$. Let p be the pentagon adjoining only one pentagon, say p_1, along an edge e and $V(p) - V(e) = \{v_1, v_2, v_3\}$. Enumerate clockwise the hexagons in F_n adjoining p as h_1, h_2, h_3 and h_4 (see Figure 14). Since any two vertices in $\{v_1, v_2, v_3\}$ form a vertex set S, it follows that $U_H(B)$ contains at most one of v_1, v_2 and v_3.

Figure 12 Clar extensions $C[B_2^2]$ ((a) and (c)) and their hexagon extensions ((b) and (d)).
If one of v_1 and v_3 belongs to $U_H(B)$, say v_1, then $h_3 \in H$ since $v_2, v_3 \in V(H)$. So $h_1, h_4 \notin H$. Let $S := \{v_1\} \cup V(p \cap p_1)$. Then $S \subset U_H(B)$, contradicting the assumption. If $v_2 \in U_B$, then $h_1, h_2 \in H$. Let $B' := B - \{v_1, v_2, v_3\}$. Then B' has $k - 1$ pentagons and $|U_H(B')| = k - 1$. By the inductive hypothesis, $B' \in \mathcal{B}_{\geq 60}$. So B arises from pasting B' and p along $p \cap p_1$ and hence $B \in \mathcal{B}_{\geq 60}$ by Lemma 3.6. From now on, suppose $v_1, v_2, v_3 \in V(H)$.

First suppose $h_1, h_3 \in H$. Let $u_1u_2 = p_1 \cap h_4$. Then $u_1u_2 \in M_B$. If f is a pentagon, by the symmetry and a similar discussion as that of Subcase 1.1, we have $B = B_3 \in \mathcal{B}_{\geq 60}$. So suppose f is a hexagon. Then $f \notin H$ since $u_2 \in V(f) \cap V(H)$. Let $u_3u_4 = p_2 \cap f$. Then $u_3u_4 \in M_B$. Let f_1, f_2 be other two faces adjoining p_2 as illustrated in Figure 14. Since $\{u_1, ..., u_4\} \subset U_H(B)$ meets at least four pentagons, f_2 is a pentagon. Let $u_5u_6 = f_1 \cap f_2$. Then $u_5u_6 \in M_B$ since $f_1 \notin H$. Let f_3, f_4, f_5 be the other three faces adjoining f_1 or f_2. Since $\{u_1, ..., u_6\} \subset U_H(B)$ should meet at least six pentagons, both f_1 and f_4 are pentagons. Let $u_6u_7 = f_1 \cap f_4$. Then $u_7 \in U_H(B)$ because $f_3 \notin H$. Since $\{u_1, ..., u_7\} \subset U_H(B)$ meets at least seven pentagons, f_3 is also a pentagon. So $R_5 = f_1 \cup f_2 \cup f_3 \cup f_4 \cup p_2 \subset B$. By Lemma 3.2 B is not extremal.

So, in the following, suppose $h_2, h_4 \in H$. Let f be the face adjoining p_1, p_2 and h_4, and let $u_1u_2 = h_1 \cap p_1$ and $u_3u_4 = f \cap p_2$ (see Figure 15(a)). Then $u_1u_2, u_3u_4 \in M_B$.

![Figure 14](image1.png) Pentagonal fragment B with $h_1, h_3 \in H$.

![Figure 15](image2.png) Illustration for the proof of Theorem 3.7.
First suppose f is a hexagon. Let f_1 and f_2 be the other two faces adjoining p_2, distinct from h_1, p_1 and f (see Figure 15 (a)). Since $\{u_1, u_2, u_3, u_4\}$ meets at least 4 pentagons, f_2 is a pentagon. If $f_1 \notin \mathcal{H}$, then $S = V(p_2) \subseteq U_\mathcal{H}(B)$, contradicting the assumption. So $f_1 \in \mathcal{H}$. Let $u_4u_5 = f_2 \cap f$ and let $f_3, f_4 \neq p_2$ be the other two faces adjoining both f_2 as shown in Figure 15 (a). If $f_3 \notin \mathcal{H}$, then f_3 is a pentagon since $\{u_1, ..., u_5\} \subseteq U_\mathcal{H}(B)$ meets at least five pentagons. Let $u_5u_6 = f \cap f_3$ and $u_7u_8 = f_3 \cap f_4$. Clearly, $u_6, u_7 \in U_\mathcal{H}(B)$. Let f_5, f_6 be two faces adjoining f_3 as shown in Figure 15 (a). Since both $\{u_1, u_2, ..., u_5, u_6\}$ and $\{u_1, u_2, ..., u_5, u_7\}$ meet at least six pentagons, both f_5 and f_4 are pentagonal. If f_6 is a pentagon, then f_2, f_3, f_4, f_5 and f_6 form a $R^- \subseteq B$, contradicting Lemma 3.2. So f_6 is a hexagon. Clearly, $f_6 \notin \mathcal{H}$ because $\{u_5u_6, u_7u_8\} \subseteq M_B$ or $\{u_5u_7, f_3 \cap f_5\} \subseteq M_B$. So $S := V(f_3) \subseteq U_\mathcal{H}(B)$, a contradiction. The contradiction implies that $f_3 \in \mathcal{H}$. Hence $p \cup p_1 \cup p_2 \cup f_2 = B_2$ and $f_2 \cap f_4$ is a pasting edge (see Figure 15 (b)). If f_4 is a hexagon, then $B = B_2 \in \mathcal{R}_{\geq 60}$. If f_4 is a pentagon, let $B' := B - (p_1 \cup p_2 \cup p \cup \{u_5\})$. Then B' has $k - 4$ pentagons and $|U_\mathcal{H}(B')| = k - 4$. By inductive hypothesis, $B' \in \mathcal{R}_{\geq 60}$. Hence, B arises from pasting B' and B_2 along $f_2 \cap f_4$. Therefore, $B \in \mathcal{R}_{\geq 60}$ by Lemma 3.6.

![Figure 16: Illustration for the proof of Theorem 3.7.](image)

Now suppose that f is a pentagon (see Figure 16). Let $u_5u_6 = f_2 \cap f_3$. Then f_1 (or f_3) and f_2 cannot be pentagonal simultaneously by Lemma 3.5. Since $u_3u_4 \in M_B$, we have $f_2 \notin \mathcal{H}$. Clearly $f_3 \notin \mathcal{H}$. So $\{u_1, ..., u_5\} \subseteq U_\mathcal{H}(B)$. Hence $\{u_1, ..., u_5\}$ meets at least five pentagons. So at least one of f_2 and f_3 is pentagonal.

If f_3 is a pentagon, then f_2 is a hexagon and $u_5u_6 \in M_B$ by Lemma 3.2. Let f_4, f_5 and f_6 be the other three faces adjoining f_2 or f_3 as illustrated in Figure 16 (a). Let $u_6u_7 = f_2 \cap f_5$ and $u_6u_8 = f_3 \cap f_5$. Since both $\{u_1, ..., u_6, u_7\} \subseteq U_\mathcal{H}(B)$ and $\{u_1, ..., u_6, u_8\} \subseteq U_\mathcal{H}(B)$ meet at least seven pentagons, all f_4, f_5, f_6 are pentagonal. Hence $f_4 \cap f_5 \in M_B$ and $f_5 \cap f_6 \in M_B$. So $S := V(f_5) \subseteq U_\mathcal{H}(B)$ meets only four pentagons in B, a contradiction.

So suppose that f_2 is a pentagon and both f_1 and f_3 are hexagons (see Figure 16 (b)). Clearly, $f_3 \notin \mathcal{H}$ and $u_5u_6 \in M_B$ since $h_4 \in \mathcal{H}$. Since $V(f_2)$ meets four pentagons, $V(f_2) \notin \mathcal{H}$.
Let $60 \in Extremal \ Fullerene \ graphs \ with \ 60 \ vertices$. Let f_4 be the face adjoining f_1, f_2 and f_3. Then f_4 is a pentagon since $\{u_1, ..., u_6\}$ meets at least six pentagons. Let f_5 and f_6 be the faces adjoining f_4 as illustrated in Figure 16 (b). Clearly, $f_5 \notin \mathcal{H}$ since it is adjacent with $f_1 \in \mathcal{H}$.

If $f_6 \notin \mathcal{H}$, then $V(f_1 \cap f_6) \subset U_{\mathcal{H}}(B)$. Both f_5 and f_6 are pentagons since $\{u_1, ..., u_6\} \cup V(f_4 \cap f_6) \subset U_{\mathcal{H}}(B)$ meets at least 8 pentagons. Let f_7, f_8 and f_9 be faces adjoining f_5 or f_6 as illustrated in Figure 16 (b). Since $\{u_1, ..., u_6\} \cup V(f_3 \cap f_6) \subset U_{\mathcal{H}}(B)$, we have f_9 is a pentagon of B. Since $\{f_3 \cap f_6, f_5 \cap f_6\} \subset M_B$ or $\{f_4 \cap f_6, f_6 \cap f_3\} \subset M_B$, we have $f_8 \notin \mathcal{H}$. Further, f_8 is a hexagon because $R_5 \notin B$. Hence $S := V(f_6) \subset U_{\mathcal{H}}(B)$ meets only four pentagons in B, a contradiction.

So suppose that $f_6 \in \mathcal{H}$. Then $p \cup p_1 \cup p_2 \cup f \cup f_2 \cup f_4 = B_3$ (see Figure 16 (c)). By the proof of Lemma 3.5, we have $B = B_3 \in \mathcal{B}_{\geq 60}$. This completes the proof of the theorem.

Let $F_n \ (n \geq 60)$ be an extremal fullerene graph. That means $c(F_n) = \frac{n-12}{6}$. By Lemma 3.1 and Theorem 3.7, every pentagon of F_n lies in a pentagonal fragment $B \in \mathcal{B}_{\geq 60}$. For a Clar formula \mathcal{H} of F_n and a maximal pentagonal fragment B of F_n, we have that $\mathcal{H} \cap H[B]$ is a Clar set of $H[B]$ where $H[B]$ is the hexagon extension of B.

Theorem 3.8. Let $F_n \ (n \geq 60)$ be a fullerene graph and $B_1, B_2, ..., B_k$ be all maximal pentagonal fragments of F_n. Then F_n is extremal if and only if
1. $B_i \in \mathcal{B}_{\geq 60}$ for all $1 \leq i \leq k$; and
2. $\bigcup_{i=1}^{k} B_i$ has a normal Clar set $\bigcup_{i=1}^{k} \mathcal{H}_i$ where \mathcal{H}_i is the Clar set of $H[B_i]$; and
3. $F_n - C[\bigcup_{i=1}^{k} B_i]$ has a sextet pattern covering all vertices in $V(F_n - C[\bigcup_{i=1}^{k} B_i])$.

Theorem 3.8 gives a characterization of extremal fullerene graphs. This characterization provides an approach to construct all extremal fullerene graphs with 60 vertices.

4 Extremal Fullerene graphs with 60 vertices

Let F_n be an extremal fullerene graph and \mathcal{H} be a Clar formula of F_n. Then $|\mathcal{H}| = \frac{n-12}{6}$ and $M := F_n - \mathcal{H}$ is a matching with six edges. By Theorem 3.8, every pentagon lies in a maximal extremal pentagonal fragment $B \in \mathcal{B}_{\geq 60}$ and $\mathcal{H} \cap H[B]$ is a Clar set of $H[B]$ where $H[B]$ is the hexagon extension of B. Then $M_B = E(B) \cap \mathcal{H}$ is the matching of B covering all 3-degree vertices of B in $V(B - \mathcal{H})$. For $B = P^2$, or $B_2 * P$ or $P * B_2 * P$, every P has a vertex v uncovered by M_B. Obviously, v is covered by M and let $uv \in M$. Then u belongs to another P. The edge uv connects two Ps to form a graph B_1 as illustrated in Figure 3.

Proposition 4.1. Let \mathcal{H} be a Clar formula of an extremal fullerene graph $F_n \ (n \geq 60)$ and $M := F_n - \mathcal{H}$. Then a face f of F_n is a pentagon if and only if there exists an edge $e \in M$ such that $e \cap f \neq \emptyset$ and $e \notin E(f)$.

Let G be a 2-connected subgraph of F_n. Then every face of G is bounded by a cycle. Let f be a face of G with k 2-degree vertices of G. Then k 2-degree vertices separate f into k degree-saturated paths. Use a k-length sequence to label f such that every numbers in the sequence correspond clockwise the lengths of all degree-saturated paths. The maximum one in the lexicographic order over all such k-length sequences is called the \textit{boundary labeling} of f (see Figure 17).

![Figure 17](image_url)

\textbf{Figure 17} The boundary labelings: 3333 (right) and 331331 (left).

Proposition 4.2. Let B be a fragment of an extremal fullerene graph F_n and \mathcal{H} be a Clar formula of F_n. Let W be the set of all 2-degree vertices on ∂B. Then:

1. $|W| \neq 1$;
2. the boundary labeling of ∂B is ij with $5 \geq i \geq j \geq 4$ for $|W| = 2$;
3. $|W| \neq 3$ for $W \subseteq V(\mathcal{H})$;
4. the boundary labeling of ∂B is 3333 or $i3j1$ with $5 \geq i \geq j \geq 4$ for $|W| = 4$ and $W \subseteq V(\mathcal{H})$.

\textit{Proof.} Since B is a fragment, ∂B is a cycle. Let $C := \partial B$. For convenience, we may draw B on the plane such that C bounds an inner face. All 2-degree vertices in W separate C into $|W|$ degree-saturated paths. Let $v \in W$ and $vv_1, vv_2 \in E(C)$. Let v_3 be the third neighbor of v in F_n. Then v_3 lies in $F_n - B$ or W. Since F_n is 3-connected, $|W| > 1$.

If $|W| = 2$, then the two 2-degree vertices are adjacent by Lemma 2.2. Since every face of F_n is either a hexagon or a pentagon, the length of any degree-saturated path connecting the two 2-degree vertices is either 4 or 5. It follows that the boundary labeling of ∂B is ij with $5 \geq i \geq j \geq 4$.

If $|W| = 3$, then the 3-degree vertices have a common neighbor u by Lemma 2.2. Since $W \subseteq V(\mathcal{H})$, it follows that u is an isolate vertex of $F_n - \mathcal{H}$, contradicting that \mathcal{H} is a Clar formula of F_n. So $|W| \neq 3$ if $W \subseteq V(\mathcal{H})$.

Now suppose $|W| = 4$. Let u_0, u_1, u_2, u_3 be the four vertices clockwise on C (see Figure 18). Let $P_{u_i, u_{i+1}} (i, i+1 \in \mathbb{Z}_4)$ be the degree-saturated path of C connecting u_i and u_{i+1}. Let $T := F_n - (V(B) \setminus W)$, the subgraph induced by the vertices within C and the vertices in W. By Lemma 2.2, T is T_0 or the union of two K_2 or a 3-length path. If T is T_0, then the two vertices in the interior of C are adjacent and hence induce an edge e. Then $e \in M := F_n - \mathcal{H}$.

Let f_1, f_2, f_3, f_4 be the four faces meeting the edge e (see Figure 18 (left)). By Proposition 4.1, both f_1 and f_3 are pentagonal. So $|P_{u_5u_0}| = 4$ and $|P_{u_1u_2}| = 4$. Since $5 \leq |f_3| \leq 6$ and $5 \leq |f_4| \leq 6$, we have that $u_0u_1 \notin E(F_n)$ and $u_2u_3 \notin E(F_n)$. Then u_0 and u_1 cannot be in the common hexagon in \mathcal{H}. Similarly, u_2 and u_3 cannot be in the common hexagon in \mathcal{H}. So $|P_{u_0u_1}| = 4$ and $|P_{u_2u_3}| = 4$. Hence all $P_{u_iu_{i+1}}$ for $i, i+1 \in \mathbb{Z}_4$ are 3-length path. Further, the boundary labeling of ∂B is 3333.

If G is the union of two K_2 or a 3-length path, then $u_0u_3, u_1u_2 \in E(F_n)$. Let f_1, f_2, f_3 be the three faces of F_n within C (see Figure 18 (right)). Hence $5 \leq |P_{u_0u_1}| \leq 6$ and $5 \leq |P_{u_2u_3}| \leq 6$ since $5 \leq |f_1| \leq 6$ and $5 \leq |f_3| \leq 6$. Since $5 \leq |f_2| \leq 6$ and $\{u_0, u_1, u_2, u_3\} \subseteq V(\mathcal{H})$, then one of $|P_{u_0u_1}|$ and $|P_{u_2u_3}|$ equals 2 and the other equals 4. It follows that the boundary labeling of ∂B is $i3j1$ with $5 \geq i \geq j \geq 4$.

In the following, F_{60} always means an extremal fullerene graph with 60 vertices. Using B_1 instead of P in the pasting operation, let \mathcal{G}_{60} denote the set of all maximal subgraphs of F_{60} arising from the pasting operation on B_1, B_2 and B_3. Up to isomorphism, the Clar extension of $G \in \mathcal{G}_{60}$ is unique since the Clar extension of any element in $\mathcal{B}_{\geq 60}$ is unique. Note that B_1^k is the graph obtained by pasting k graphs isomorphic to B_1 along the pasting edge of each P in B_1.

Lemma 4.3. $\mathcal{G}_{60} \subseteq \{B_1, B_2, B_3, B_1^2, B_1^3, B_1^4, B_1^{5}, B_1*B_2, B_1*B_2*B_1, B_1*B_2*B_1, B_2*B_1*B_2, B_2*B_1*B_2\}$

Proof. Since $c(F_{60}) = 8$, we have that B_1^k and $(B_1*B_2)^r$ satisfy $k \leq 4$ and $r \leq 2$ if they belong to \mathcal{G}_{60}.

By Lemma 3.6, it suffices to prove $B_1^2*B_2 \notin G$ for any $G \in \mathcal{G}_{60}$. Suppose to the contrary that $B_1^2*B_2 \subseteq G \in \mathcal{G}_{60}$. Then either $G = B_1^2*B_2$ or $G = B_1^2*B_2$ by $c(F_{60}) = 8$.

If $G = B_1^2*B_2$, then $B_1^2*B_2$ has to be the grey subgraph of the graph (a) in Figure 19 since $c(F_{60}) = 8$. The subgraph induced by $C[G]$ in F_{60} is the graph (a) in Figure 19. Proposition 4.2 implies that the graph (a) is not a subgraph of F_{60}. Hence $B_1^2*B_2 \not\in \mathcal{G}_{60}$, a contradiction.

If $G = B_1^2*B_2$, then there are two cases for G as the grey subgraphs illustrated in graphs (b) and (c) in Figure 19, respectively. The graphs (b) and (c) are the subgraphs induced by $C[G]$. Clearly, the graph (b) could not be a subgraph of F_n in that it has a 4-length cycle. For the graph (c), let f be the hexagon adjoining G along an edge of B_1.
and \(u, v, u', v', w_1, w_2, w_3 \) be some 2-degree vertices on the boundary of \(G \cup f \) (see Figure 19 (d)). If \(uv \in E(H) \), then \(u = u' \) and \(v = v' \) since \(F_{60} \) is a cubic plane graph. Then \(w_1 \) is adjacent to \(w_2 \) by Lemma 2.2 which forms a 4-length cycle in \(F_{60} \), a contradiction. So suppose \(uv \in M \). Let \(f_1 \) and \(f_2 \) be the pentagons met by \(uv \) but not containing it by Proposition 4.1. Whether \(uv \in M_{B_1} \) or \(uv \in M_{B_2} \), one of \(f_1 \) and \(f_2 \) adjoins two hexagons in \(H \). So either \(u'v' \in E(f_1) \) or \(u'v' \in E(f_2) \). If \(u'v' \in E(f_1) \), then \(w_2 \) is adjacent to \(u' \) and hence \(w_1 \) would be a unique 2-degree on a face of a subgraph of \(F_{60} \), contradicting Proposition 4.2. So suppose \(u'v' \in E(f_2) \). Then \(w_3 \) is adjacent to \(v' \), which forms a face with three 2-degree vertices which belong to \(V(H \cap C[G]) \), also contradicting Proposition 4.2. So \(B_1^2 * B_2 \notin \mathcal{G}_{60} \). This completes the proof.

\[\text{Figure 20: Clar extensions of } B_1 \text{ and } B_2.\]

\textbf{Lemma 4.4.} Let \(G \subset F_{60} \) such that \(G \) has two components, one of which is \(B_1 \) and another is \(B_2 \). If the Clar extension \(C[G] \) of \(G \) is a fragment, then \(|C[G] \cap H| \geq 6 \).

\textbf{Proof.} Let \(B_1 \) and \(B \) be two components of \(G \), where \(B \) is isomorphic to \(B_1 \) or \(B_2 \). By Theorem 3.3 the Clar set of \(C[G] \) is a subset of a Clar formula \(H \) of \(F_{60} \). Clearly, \(|C[B_1] \cap H| = 4 \) and \(|C[B] \cap H| = 4 \). Then \(|C[G] \cap H| = |(C[B_1] \cap H) \cup (C[B] \cap H)| - |C[B_1] \cap C[B] \cap H| \).

If \(|C[B_1] \cap C[B] \cap H| \leq 2 \), then \(|C[G] \cap H| \geq 6 \) and the lemma is true.

So suppose \(|C[B_1] \cap C[B] \cap H| \geq 3 \) and let \(h_1, h_2, h_3 \in C[B_1] \cap C[B] \cap H \) (see Figure 20). Let \(B' \subset C[B] \) be a fragment such that \(B' \) contains \(h_1, h_2, h_3 \) and has minimal number of
inner faces. Then B' has at most 6 inner faces including h_1, h_2 and h_3 (see Figure 20) the faces f_1, f_2, f_3 in $C[B_2]$ and $B' \cap C[B_1] = h_1 \cup h_2 \cup h_3$. Since $C[G]$ is a fragment, the faces of B' different from h_1, h_2, h_3 adjoins $C[B_1]$. It needs at least 4 faces adjoining $C[B_1]$ to join h_1, h_2 and h_3 to form a fragment (the faces g_1, \ldots, g_4 in $C[B_1]$, see Figure 20). So B' has at least 7 inner faces, contradicting that B' has at most 6 faces. The contradiction implies that $|C[B_1] \cap C[B] \cap \mathcal{H}| \leq 2$. So the lemma is true.

Lemma 4.5. If $B_3 \subset F_{60}$, then F_{60} contains no other elements in \mathcal{G}_{60} as subgraphs.

Proof. Let $H[B_3]$ be the hexagon extension of B_3. Then $H[B_3] \subset F_{60}$. Let f_1 and f_2 be the two hexagons adjoining B_3 and let f_3, f_4 be two faces adjoining $C[B_3]$ as shown in Figure 21 (a).

![Figure 21](image)

Figure 21: Illustration for the proof of Lemma 4.5

Let $G_1 := H[B_3] \cup f_3 \cup f_4$. If at least one of f_3 and f_4, say f_3, is a pentagon. Then the hexagon extension $H[G_1]$ of G_1 contains at most four 2-degree vertices on its boundary (see Figure 21 (b)). By Lemma 2.2 and Proposition 2.4, it holds that $n \leq |V(G_1)| + 9 + 2 \leq 46$ if $G_1 \subset F_{60}$. So suppose both f_3 and f_4 are hexagons since $G_1 \subset F_{60}$.

Let $h_1, h_2 \in \mathcal{H} \cap H[B_3]$ and $u_i \in V(h_i)$ ($i = 1, 2$) as illustrated in Figure 21 (a). Let $G_2 := G_1 - \{u_1, u_3\}$ (see Figure 21 (c)). By Proposition 4.1, we have $V(\partial G_2) \subset V(\mathcal{H})$. Let $G_3 := F_{60} - (G_2 \setminus \partial G_2)$. Then G_3 has six pentagons and $|G_3 \cap \mathcal{H}| = 6$. Let f be the unique face of G_3 which is not a face of F_{60}. Then $G_3 \cup G_2 = F_{60}$ and $G_3 \cap G_2 = f = \partial G_2$. So a 2-degree vertex (resp. 3-degree vertex) of G on f is identified to a 3-degree vertex (resp. 2-degree vertex) on ∂G_2 in F_{60}.

If $B_3 \not\subset G_3$, then every hexagon in $G_3 \cap \mathcal{H}$ belongs to either $C[B_1]$ or $C[B_2]$. For $h_i \in G_3 \cap \mathcal{H}$ ($i = 1, 2$), let $P_i = \partial C[B] \cap \partial G_2$ where $B = B_1$ or B_2. Since F_{60} is cubic, $|P_i| \geq 11$ for $i = 1, 2$ (the thick paths on $\partial C[B_1]$ or $\partial C[B_2]$ connecting vertices u and v in Figure 20). Therefore, $|V(f)| \geq 11 + 11 - 2 = 20$ which contradicts $|V(f)| = |V(\partial G_2)| = 16$. So $B_3 \subset G_3$.

Lemma 4.6. There are two distinct extremal fullerene graphs which have 60 vertices and contain B_3 as subgraphs.
Proof. If $B_3 \subset F_{60}$, then F_{60} contains two subgraphs isomorphic to B_3 by Lemma 4.5. Let $C[B_3]$ be the Clar extension of B_3 (see Figure 22(a)). If two subgraphs isomorphic to $C[B_3]$ have common hexagons in \mathcal{H}, according to the proof of Lemma 4.5, the common hexagons belong to $\{h_1, h_2\}$ (see Figure 22(a)). By the symmetry, let h_2 be a common hexagon. Let f_1, f_2 be two faces adjoining the $C[B_3]$ as shown in Figure 22(b). Then one of f_1 and f_2 is a pentagon of the second B_3 since h_2 belongs to the Clar set of the second $C[B_3]$. If f_1 is a pentagon, then a fullerene graph F_{48} is formed as illustrated in Figure 22(b). If f_2 is a pentagon, then another fullerene graph F_{48} is formed as illustrated in Figure 22(c).

Figure 22: Illustration for the proof of Lemma 4.6.

So suppose the two subgraphs isomorphic to $C[B_3]$ have no common hexagon in \mathcal{H}. Further, the two subgraphs isomorphic to $C[B_3]$ have no common vertex. Since $|V(C[B_3])| = 30$, hence F_{60} is formed by using edges to connect the 2-degree vertices on the boundaries of the two subgraphs isomorphic to $C[B_3]$. On the other hand, the faces of F_{60} do not belong to two $C[B_3]$s are hexagons. The boundary labeling of $C[B_3]$ is 33113311. Hence the 3-length degree-saturated path of one $C[B_3]$ together with the 1-length degree-saturated path of another $C[B_3]$ form a hexagon. Since the paths with same length have two distinct positions on the $\partial C[B_3]$, use the labeling 33’11’33’11’ (see Figure 22(a)) to distinguish the same length degree-saturated paths with different positions. If the new hexagons consist of either the paths with label 3 and the paths with label 1 or the paths with label 3’ and the paths with label 1’, then a F_{60} is formed as illustrated in Figure 23(left). If the new hexagons consists of either the paths with label 3’ and the paths with label 1 or the paths with label 3 and the paths with label 1’, then another F_{60} is formed as illustrated in Figure 23(right). So there are exactly two extremal fullerene graphs F_{60}^1 and F_{60}^2 with B_3 as subgraphs.

Lemma 4.7. There are six distinct extremal fullerene graphs which have 60 vertices and contain B_1^k ($2 \leq k \leq 4$) as subgraphs.

Proof. Case 1: $B_1^4 \subset F_{60}$ is maximal. Since $c(F_{60}) = 8$, we have that B_1^4 is unique and its Clar extension $C[B_1^4]$ is the graph illustrated in Figure 24(a). By Lemma 2.2, we have two different external fullerene graphs F_{60}^3 and F_{60}^4 as shown in Figure 24(b) and (c).
Case 2: $B_1^3 \subset F_{60}$ is maximal. There are two cases for B_1^3 whose Clar extensions are illustrated in Figure 25 (a) and (b). By Proposition 4.2, the graph (a) is not a subgraph of F_{60}. So $B_1^3 \subset F_{60}$ is unique and its Clar extension $C[B_1^3]$ is the graph (b). Let h_1, h_2, \ldots, h_8 be the all eight hexagons in $C[B_1^3] \cap H$ and let $v, v_1, v_2, \ldots, v_7, u, u_1, u_2, \ldots, u_7$ be all 2-degree vertices on the boundary of $C[B_1^3]$ as shown in Figure 25 (b). Let f_1 be the face adjoining $C[B_1^3]$ (see Figure 25 (b)).

If f_1 adjoins three hexagons in H, then either $v_5v_6 \in E(f_1)$ or $v_6v_7 \in E(f_1)$ by symmetry. If $v_5v_6 \in E(f_1)$, then v, v_1 are adjacent to v_5, v_4, respectively. Then, by Lemma 2.2, v_2 is adjacent to v_3. Then the edge v_2v_3 together with the 3-length degree-saturated path connecting v_2 and v_3 form a 4-length cycle in F_{60}, a contradiction. So suppose $v_6v_7 \in E(f_1)$. Then u_1 is adjacent to u_7 (see Figure 25 (c)). Let f_2 and f_3 be the two faces adjoining the graph (c). Each of f_2 and f_3 has five 2-degree vertices. Let $I[f_i] \ (i = 2, 3)$ be the subgraph consisting of f_i together with its interior. Then $I[f_2]$ and $I[f_3]$ together contain three edges
in M. One of them, say $I[f_2]$, satisfies that $I[f_2] - f_2$ is an edge in M. However, the two ends of one edge are adjacent to at most four 2-degree vertices on f_2 since F_{60} is cubic, contradicting that f_2 has five 2-degree vertices.

So suppose that f_1 contains an edge $e = w_1w_2 \in M$. By proposition 4.1, let f_2 and f_3 be two pentagons such that $f_2 \cap f_1 = w_1u$ and $f_3 \cap f_1 = w_2v$ (see Figure 26 (left)). According to Lemma 4.5, either $e \in E(B_2) \cap M$ or $e \in E(B_1) \cap M$. First suppose $e \in E(B_2)$. Let f_4 be the pentagon containing e (see Figure 26 (left)). Then one of f_2 and f_3, say f_3, is adjacent to two hexagons in H. Then f_3 adjoins either h_8 or h_7 since $c(F_{60}) = 8$. Note that $v_6v_7 \notin E(f_2)$ and $u_6u_7 \notin E(f_3)$ since f_4 is a pentagon. So suppose either $v_5v_6 \in E(f_2)$ or $u_6u_7 \in E(f_2)$. If $v_5v_6 \in E(f_3)$, then v_1 is adjacent to v_5 and hence $v_2, v_3, v_4 \in V(H)$ are the all 2-degree vertices on a face boundary, contradicting Proposition 4.2. If $u_6u_7 \in E(f_3)$, then v_1 is adjacent to u_7 and hence v_2, v_3 are adjacent to v_7, v_6, respectively. Furthermore, v_4 is adjacent to v_5 by Lemma 2.2. Hence a subgraph of F_{60} with a 4-length cycle is formed, a contradiction.

So suppose $e \in E(B_1)$. Then both f_2 and f_3 adjoin two hexagons in H. Hence, f_2 and f_3 adjoin h_7 and h_8, respectively. Obviously, $v_6v_7 \in E(f_2)$ and $u_6u_7 \in E(f_3)$ (see Figure 26 (right)). By Lemma 2.2 there are three distinct extremal fullerene graphs F_{60}^5, and F_{60}^6 and F_{60}^7 with the graph as shown in Figure 26 (right) as a subgraph (see Figure 27).

![Figure 26](image)

Figure 26: Illustration for the proof of Case 2.

![Figure 27](image)

Figure 27: Extremal fullerene graphs F_{60}^5, F_{60}^6 and F_{60}^7.

Case 3: $B_1^2 \subset F_{60}$ is maximal and $B_1^3 \notin F_{60}$. Then $|C[B_1] \cap H| \geq 6$. Let $h_1, ..., h_6$ be the six hexagons in $C[B_1] \cap H$ as illustrated in Figure 28 (a). Let $v_1, ..., v_7$ and $u_1, ..., u_7$ be the all 2-degree vertices on the $\partial C[B_1^2]$ and let f_1, f_2 be two hexagons adjoining $C[B_1^2]$ such that
$u_1, v_1 \in V(f_1)$ and $u_7, v_7 \in V(f_2)$ (see Figure 28 (a)). Obviously, $f_1 \neq f_2$. Let $uv \in E(f_1)$, then either $uv \in M$ or $uv \in E(H)$.

\begin{figure}
\centering
\begin{subfigure}{0.2\textwidth}
\centering
\includegraphics[width=\textwidth]{figure_a}
\caption{(a)}
\end{subfigure}
\begin{subfigure}{0.2\textwidth}
\centering
\includegraphics[width=\textwidth]{figure_b}
\caption{(b)}
\end{subfigure}
\begin{subfigure}{0.2\textwidth}
\centering
\includegraphics[width=\textwidth]{figure_c}
\caption{(c)}
\end{subfigure}
\begin{subfigure}{0.2\textwidth}
\centering
\includegraphics[width=\textwidth]{figure_d}
\caption{(d)}
\end{subfigure}
\caption{Illustration for the proof of Case 3 and the extremal fullerene graph F_{60}^8.}
\end{figure}

If $uv \in M$, then either $uv \in E(B_1)$ or $uv \in E(B_2)$. By Proposition 4.1 let f_3 and f_4 be the pentagons met by uv but not containing it (see Figure 28 (b)). If $uv \in E(B_1)$, by Proposition 4.2, f_3 does not adjoin h_5. If f_3 adjoins h_6, then either $v_5v_6 \in E(f_3)$ or $v_6v_7 \in E(f_3)$. If $v_5v_6 \in E(f_3)$, then v is adjacent to v_5 and hence v is adjacent to v_4 to bound a hexagon. Then a subgraph of F_{60} is formed, which has a face with only v_2, v_3 connected by a 1-length degree-saturated path on its boundary, contradicting Proposition 4.2. So suppose $v_6v_7 \in E(f_3)$. Then u_2 is adjacent to v_7 and hence u_3 is adjacent to u_7. A subgraph of F_{60} is formed, which has a face with only three 2-degree vertices $u_4, u_5, u_6 \in V(H)$, also contradicting Proposition 4.2. By symmetry, f_4 does not adjoin h_5 and h_6. So f_3 and f_4 adjoin the two hexagons in $H \setminus \{h_1, ..., h_6\}$ (see Figure 28 (c)).

\begin{figure}
\centering
\includegraphics[width=0.2\textwidth]{figure_29}
\caption{Illustration for the proof of Case 3.}
\end{figure}

Let f_5 and f_6 be the faces adjoining the B_1 with $uv \in E(B_1)$ along its pasting edges (see Figure 28). Since $B_1^3 \not\subseteq F_{60}$, at least one of f_5 and f_6 is a hexagon. If both f_5 and f_6 are pentagonal, then F_{60} still contains a B_1^3 which contains three edges in M as $M \cap E(f_5), M \cap E(f_6)$ and $M \cap E(f_2)$ since f_2 is a hexagon. By symmetry, we may assume f_5 is a pentagon and f_6 is a hexagon. Then we have a graph as illustrated in Figure 28 (c) which has four 2-degree vertices on its boundary. By Lemma 2.2 there is a unique extremal fullerene graph F_{60}^8 which contains three subgraphs isomorphic to B_1^3 as maximal subgraphs (see Figure 28 (d)) since f_2 is hexagon. Now suppose $uv \in E(B_2)$. Let f_5 and f_6 be the faces adjoining f_3
and f_4, respectively. By symmetry, say $f_5 \subset B_2$ (see Figure 29). By Proposition 4.2, the Clar extension of the B_2 containing f_5 has two hexagons in $\mathcal{H} \setminus \{h_1, \ldots, h_6\}$. Whether f_6 is a hexagon or a pentagon, the vertex x is adjacent to y in F_{60}. Hence a subgraph of F_{60} is formed as the graph in Figure 29, contradicting Proposition 4.2.

![Figure 30](image)

Figure 30 Illustration for the proof of Case 3.

So, in the following, suppose that $uv \in E(\mathcal{H})$. By Proposition 4.2, $uv \notin E(h_5)$ and $uv \notin E(h_6)$. Let $h_7 \in \mathcal{H}$ and $uv \in E(h_7)$ and let the vertices of $h_7 - uv$ be w_1, w_2, w_3, and w_4 (see Figure 30 (a)). By the symmetry of f_1 and f_2, assume f_2 also adjoins three hexagons in \mathcal{H}. Then f_2 adjoins only hexagons $\mathcal{H} \setminus \{h_1, h_2, \ldots, h_6\}$. If f_2 adjoins h_7, then either $w_1w_2 \in E(f_2)$ or $w_2w_3 \in E(f_2)$ by symmetry of w_1w_2 and w_3w_4. If $w_1w_2 \in E(f_2)$, then w_1 and u_2 are adjacent to u_7 and u_6, respectively. Therefore, a subgraph of F_{60} with a face f with three 2-degree vertices $u_3, u_4, u_5 \in V(\mathcal{H})$ is formed (see Figure 30 (a)), contradicting Proposition 4.2. So suppose $w_2w_3 \in E(f_2)$, then w_2 and w_3 are adjacent to u_7 and v_7, respectively. Let f' and f'' be two faces as illustrated in the graph (b) in Figure 30. By symmetry of f' and f'', we may assume that the unique hexagon $\mathcal{H} \setminus \{h_1, h_2, \ldots, h_7\}$ lies in the f'. Let $I[f']$ and $O[f']$ be the subgraphs of F_{60} consisting of f' together with its interior and f' together with its exterior, respectively. Let f^1, f^2, f^3, f^4 be the four faces of F_{60} adjoining $O[f']$ along the four 3-length degree-saturated paths. If one of them is a pentagon, say f^1, then f^1 contains a vertex covered by one edge $e \in M$. Let $e \in E(f_2)$ (see Figure 30 (c)). Then $O[f'] \cup f^1 \cup f^2$ has a face with only four 2-degree vertices on its boundary. Note that the hexagon in $\mathcal{H} \cap I[f']$ has to lie within this face, contradicting that $c\lambda(F_{60}) = 5$. So all face of $f^i (i = 1, 2, 3, 4)$ are hexagons. Let $G \in \mathcal{G}_{60}$ lie within $I[f']$. Then G contains or adjoins at most three hexagons in $\mathcal{H} \setminus \{h_2, h_4, h_6, h_3, h_7\}$, which contradicts that a Clar set of $H[G']$ has at least four hexagons for any $G' \in \mathcal{G}_{60}$.

So suppose f_2 adjoins the hexagon $h_8 \in \mathcal{H} \setminus \{h_1, h_2, \ldots, h_7\}$ (see Figure 30 (d)). Let G'' be the graph (d) in Figure 30. Then G'' contains all hexagons in \mathcal{H}. So all eight vertices of $F_{60} - V(G'')$ are covered by four edges in M which belong to $E(B_1)$ or $E(B_2)$. That means joining some 2-degree vertices on $\partial G''$ will forming some faces with boundary labeling 3333 (corresponding to the inner face of $C[B_1] - M$ with 2-degree vertices) or 331331 (corresponding to the inner face of $C[B_2] - M$ with 2-degree vertices) (see Figure 17). Hence
the boundary labeling of $\partial G''$ should contain 13331 or 1313311 as subsequences, which contradicts the boundary labeling of $\partial G''$ is 33131131331131. So $G'' \not\subseteq F_{60}$.

Combining Cases 1, 2 and 3, we have exact six fullerene graphs F_{60} which contain B_i^k $(2 \leq k \leq 4)$ as subgraphs.

Lemma 4.8. There are four distinct extremal fullerene graphs F_{60} such that $B_2 \ast B_1 \subseteq F_{60}$ and $B_i^k \not\subseteq F_{60}$ $(2 \leq k \leq 4)$.

Proof. Case 1: $B_2 \ast B_1 \ast B_2 \ast B_1 \subseteq F_{60}$ is maximal. Then $B_2 \ast B_1 \ast B_2 \ast B_1$ has two different cases as illustrated in Figure 31 (a) and (c) since $c(F_{60}) = 8$. The Clar extension of the graph (a) induces an extremal fullerene graph F_{60}^9 as shown in Figure 31 (b). By Proposition 2.3 the graph (c) is not a subgraph of F_{60}. So there exists a unique F_{60} containing $B_2 \ast B_1 \ast B_2 \ast B_1$ as a subgraph.

![Figure 31](image1)

Figure 31: Illustration for the proof of Case 1 and the extremal fullerene graph F_{60}^9.

Case 2: $B_2 \ast B_1 \ast B_2 \subseteq F_{60}$ is maximal. By Lemma 4.3 $B_2^2 \not\subseteq F_{60}$. So $B_2 \ast B_1 \ast B_2$ has two different cases as illustrated in Figure 32 (a) and (c). Their Clar extension induces the graphs (b) and (d). Both the graphs (b) and (d) have a face f with four 2-degree vertices on its boundary. By Lemma 2.2 an extremal fullerene graph containing the graph (b) has Clar number seven. So the graph (b) is not a subgraph of F_{60}. From the graph (d), only one fullerene graph F_{60}^{10} contains $B_2 \ast B_1 \ast B_2$ as a maximal subgraph (see Figure 32 (e)).

![Figure 32](image2)

Figure 32: Illustration for the proof of Case 2 and the extremal fullerene graph F_{60}^{10}.

Case 3: $B_1 \ast B_2 \ast B_1 \subseteq F_{60}$ is maximal. By the proof of Lemma 4.3 $B_1 \ast B_2 \ast B_1$ is unique as shown in Figure 33 (a). Its Clar extension induces the graph (b), which has a face f with
six 2-degree vertices on its boundary. So the remaining four pentagons adjoin at most four hexagons in \mathcal{H} which are adjacent with f in the graph (b). Hence the four pentagons belong to a B_2 by Lemma 4.4. So there is a unique fullerene graph F_{11}^{11} contains $B_1 \ast B_2 \ast B_1$ as a maximal subgraph (see Figure 33 (c)).

Case 4: $B_1 \ast B_2 \subset F_{60}$ is maximal. Then it is unique as shown in Figure 34 (a). Let f_1, f_2 be two faces adjoining the Clar extension $C[B_1 \ast B_2]$ as shown in Figure 34 (a). Since $B_1 \ast B_2$ is maximal, f_1 and f_2 are two pentagons. By Proposition 4.2, f_1 contains an edge e such that $e \notin E(C[B_1 \ast B_2])$ and $e \notin E(f_2)$. Clearly, $e \in M$ or $e \in E(\mathcal{H})$.

Subcase 4.1: $e \in M$. By Lemma 4.5, either $e \in E(B_2)$ or $e \in E(B_1)$.

If $e \in E(B_1)$, then the B_1 adjoins two new hexagons in \mathcal{H} by Proposition 4.2. Let $x, y \in V(\mathcal{H})$ as shown in Figure 34 (b). Then the $C[B_1] \cup C[B_1 \ast B_2]$ is the graph (e) without the edge xy in Figure 34. Whether f_4 is a pentagon or a hexagon, x is always adjacent to y. Hence, a subgraph of F_{60} is formed, which has a face f with four 2-degree vertices in $V(\mathcal{H})$ and with boundary labeling 5313, contradicting Proposition 4.2.

So suppose $e \in E(B_2)$. All faces meeting e except f_1 are pentagonal. Let f_3 and f_4 be the faces adjoining $C[B_1 \ast B_2]$ as shown in Figure 34 (c) and (d). Then either f_3 is a pentagon of B_2 or f_4 is a pentagon of B_2. If f_3 is a pentagon, then the $C[B_2] \cup C[B_1 \ast B_2]$ is the graph (c) in Figure 34. Since the $C[B_2] \cup C[B_1 \ast B_2]$ has four 2-degree vertices on its boundary and has only seven hexagons in \mathcal{H}, it is not a subgraph F_{60} by Lemma 2.2. So suppose f_4 is a pentagon of the B_2. Then the $C[B_2] \cup C[B_1 \ast B_2]$ is the graph (d) in Figure 34. By Lemma
and that $B_1 \ast B_2$ is maximal in F_{60}, there is a unique fullerene graph F_{60}^{12} containing the graph (d) (see figure 34 (e)).

Subcase 4.2: $e \in E(H)$. Let $h \in H$ be the hexagon such that $e \in E(h)$. By Proposition 4.2, f_2 contains an edge e' such that $e' \notin E(C[B_1 \ast B_2] \cup h)$ (see Figure 35 (a)). Then either $e' \in M$ or $e' \in E(H)$.

![Figure 35](https://via.placeholder.com/150)

Figure 35: Illustration for the proof of Subcase 4.2.

If $e' \in M$, then either $e' \in E(B_1)$ or $e' \in E(B_2)$ by Lemma 4.5. If $e' \in E(B_1)$, by Proposition 4.2, then the Clar extension $C[B_1]$ contains two hexagons in H which are different from the seven hexagons in $H \cap (C[B_1 \ast B_2] \cup h)$. Further, $|H| \geq 9$ contradicts $c(F_{60}) = 8$. So suppose $e' \in E(B_2)$. Let f_3, f_4 be the two pentagons meeting e' but $e' \notin E(f_3 \cup f_4)$. Let f_5 and f_6 be two faces adjoining f_3 and f_4, respectively (see Figure 35 (b) and (c)). Whether $f_5 \subset B_2$ or $f_6 \subset B_2$, we always have a fragment with a 6-length degree-saturated path on its boundary (see Figure 35 (b) and (c), the thick paths), contradicting Proposition 2.3.

So suppose $e' \in E(H)$. Let $h' \in H$ be the hexagon containing e' and different from the seven hexagons in $C[B_1 \ast B_2] \cup h$. Let G be the graph induced by $C[B_1 \ast B_2] \cup h \cup h'$ (the graph (d) in Figure 35, without broken lines). Its boundary labeling is 3331311333111 and all 2-degree vertices on it belong to $V(H)$. If $G \subset F_{60}$, then the six vertices in $V(F_{60}) \setminus V(G)$ are covered by three edges in $M \setminus (M \cap E(G))$ and belong to a B_1 or a B_2 by Lemma 4.5. So joining some 2-degree vertices on the boundary of the graph (d) will from some faces with boundary labeling 3333 (corresponding to $C[B_1] - M$) or 331331 (corresponding to $C[B_2]$). That means that the boundary labeling of ∂G should contain 13331 (corresponding to $C[B_1] - M$) or 1313311 (corresponding to $C[B_2] - M$) as subsequences. Clearly, 3331311333111 contains two subsequences 13331. So joining four 2-degree vertices on ∂G by two edges will form two faces with boundary labeling 3333 (see Figure 35 (d), the dash edges). Hence, we have a subgraph of F_{60} with a face (containing the two dash edges) which has a 7-length degree-saturated path, contradicting Proposition 2.3. So there is no F_{60} containing G.

Combing Cases 1, 2, 3 and 4, there are four extremal fullerene graphs F_{60} which contain $B_2 \ast B_1$ as a maximal subgraph and do not contain B^k_1 for $2 \leq k \leq 4$. □
Lemma 4.9. There are six distinct fullerene graphs F_{60} such that any $B_1 \subset F_{60}$ and any $B_2 \subset F_{60}$ are maximal.

Proof. It is well known that C_{60} is the unique fullerene graph with 60 vertices and without adjoining pentagons. So C_{60} is the unique F_{60} with six subgraphs isomorphic to B_1 as maximal subgraphs (see Figure 1). So if $F_{60} \neq C_{60}$, then $B_2 \subset F_{60}$. Let f_1 and f_2 be the two hexagons in the hexagon extension $H[B_2]$ and let $e_i \in E(f_i)$ $(i = 1, 2)$ (see Figure 36 (a)). It is easy to see $f_1 \cap f_2 = \emptyset$ and hence $e_1 \neq e_2$. Then either $e_i \in M$ or $e_i \in E(H)$.

Figure 36: Illustration for the proof of Case 1.

Case 1: $e_1, e_2 \in M$. Let f_3, f_4, f_5, f_6 and f_7 be the faces adjoining $H[B_2]$ as shown in Figure 36 (b) and (c). If e_1 belongs to a subgraph isomorphic to B_2, denote it by B'_2 to distinguish it from the B_2 in Figure 36 (a). Then either $B'_2 = \cup_{i=3}^{6} f_i$ or $B'_2 = \cup_{i=4}^{7} f_i$. If the former holds, then the $C[B_2] \cup C[B'_2]$ induces the graph (b) in Figure 36. Let g_1, g_2, g_3, g_4 be the faces adjoining $C[B_2] \cup C[B'_2]$ as illustrated in Figure 36. Note that $C[B_2] \cup C[B'_2] \cup g_1 \cup g_3 \cup g_4$ has at most four 2-degree vertices on its boundary. By Lemma 2.2, if $C[B_2] \cup C[B'_2] \subset F_n$, then $n \leq 52$. So suppose $B'_2 = \cup_{i=4}^{7} f_i$. Then f_3 is hexagon since B'_2 is maximal. The $C[B_2] \cup C[B'_2]$ induces the graph (c) in Figure 36. Let g_1, g_2 adjoin $C[B_2] \cup C[B'_2]$ as shown in Figure 36 (c). Then $C[B_2] \cup C[B'_2] \cup g_1 \cup g_2$ has at most four 2-degree vertices on its boundary. By Lemma 2.2 we have $n \leq 46$ if $C[B_2] \cup C[B'_2] \subset F_n$.

Figure 37: Illustration for the proof of Case 1 and extremal fullerene graphs F_{60}^{13} and F_{60}^{14}.

So suppose $e_1, e_2 \in E(B_1)$ by the symmetry of e_1 and e_2. Let B'_1 and B''_1 be two different subgraphs isomorphic to B_1 such that $e_1 \in E(B'_1)$ and $e_2 \in E(B''_1)$. By Proposition 4.2...
$C[B'_1] \cap C[B''_1] = \emptyset$. Hence $C[B'_1] \cup C[B''_1] \cup C[B_2]$ induces the graph (a) in Figure 37. So the remaining four pentagons not in $C[B'_1] \cup C[B''_1] \cup C[B_2]$ adjoin at most four hexagons in \mathcal{H}. By Lemma 4.4, these four pentagons belong to a B_2. So we have two extremal fullerene graphs F_{60}^{13} and F_{60}^{14} (see Figure 37 (b) and (c)).

Case 2: $e_1 \in M$ and $e_2 \in E(H)$ by symmetry of e_1 and e_2. By the discussion of Case 1, we may assume $e_1 \in E(B_1) \cap M$.

Since every $B_1 \subset F_{60}$ is maximal, we have the subgraph of F_{60} as illustrated in Figure 38 (a). Let e be an edge on the boundary of the subgraph (a) as shown in Figure 38 (a). Then either $e \in E(H)$ or $e \in M$. Let g_1, g_2, g_3 be the faces adjoining the subgraph (a) and meeting e. If $e \in E(H)$, then $g_2 \in H$. Hence we have the graph (b) in Figure 38. If the graph (b) is a subgraph of F_{60}, then the remaining six pentagons not in the graph (b) adjoin at most 5 hexagons in \mathcal{H}, contradicting Lemma 4.4. So suppose $e \in M$. Then g_1, g_3 are pentagons. Then g_2 has to be a hexagon. Hence $e \in E(B_1) \cap M$. So we have the graph (c) in Figure 38.

Let g_4, g_5, g_6 and g_7 be the faces adjoining the subgraph (c) along 3-length degree-saturated paths. Note that the graph consisting of the graph (c) together with $g_4, ..., g_7$ has at most four 2-degree vertices on its boundary. Hence a fullerene graph F_n containing it satisfies $n \leq 58$. So $e_1 \in M$ and $e_2 \in E(H)$ cannot hold simultaneously.

Case 3: $e_1, e_2 \in E(H)$. By Proposition 4.2, then e_1 and e_2 belong to two hexagons in \mathcal{H} different from the hexagons in the $C[B_2]$. Let f_3, f_4 be two faces meeting e_1 and e_2, respectively (see Figure 39 (a)).
Subcase 3.1: Both of f_3 and f_4 are hexagons. Let $e_3 \in E(f_3)$ and $e_4 \in E(f_4)$. By Proposition 4.2, $e_3 \neq e_4$ and they are not edges of the graph (a) (see Figure 39 (b)).

If $e_3, e_4 \in E(H)$, then e_3, e_4 belong to two distinct hexagons in H and different from the hexagons in the graph (b). Hence we have the graph (c) in Figure 39. The boundary labeling of the boundary of the graph (c) is 33113113311311 which cannot be separated into the subsequences 13331 (corresponding to $C_{B_1} - M$) and 1313311 (corresponding to $C_{B_2} - M$). So the graph (c) is not a subgraph of F_{60}.

So at least one of e_3 and e_4 belongs to M, say e_3. If $e_3 \in E(B_2)$, then we have the graph (a) in Figure 40. Let g_1, g_2 and g_3 be the faces adjoining it as shown in Figure 40 (a). Then the graph consisting of the graph (a) together with g_1, g_2, g_3 and f_4 has at most four 2-degree vertices on its boundary. So a fullerene graph F_n containing it satisfies that $n \leq 52$ by Lemma 2.2. So suppose $e_3 \in E(B_1)$. If $e_4 \in E(H)$, then we have the graph (b) in Figure 40. If the graph (b) is a subgraph of F_{60}, then the remaining six pentagons not in the graph (b) adjoin at most 5 hexagons in H, contradicting Lemma 4.4. Therefore, by the symmetry of e_3 and e_4, we may assume that $e_4 \in E(B_1) \cap M$. So we have a graph (c) in Figure 40. Since every subgraph of isomorphic to B_1 or B_2 in F_{60} are maximal, by Lemma 4.4, there is a unique extremal fullerene graph F_{15}^{15} as shown in Figure 40 (d).

Subcase 3.2: One of f_3 and f_4 is a pentagon, say f_3. Let $e_4 \in E(f_4)$ as that in Subcase 3.1. If f_3 is a pentagon of a B_2, then we have the graph (a) in Figure 41. A fullerene graph containing the graph (a) has at most 52 vertices. So suppose f_3 is a pentagon of a B_1. If $e_4 \in E(H)$, then we have a graph (b) in Figure 41 as that F_{60} does not contain
the graph (b) in Figure 40, the graph (b) in Figure 41 is also not a subgraph of F_{60}. Hence $e_4 \in M \cap E(B_1)$. Therefore we have the graph (c) in Figure 41. So there is a unique extremal fullerene graph F_{60}^{16} containing the graph (c) since every $B_1 \subset F_{60}$ is maximal (see Figure 41 (d)).

Figure 42: Illustration for the proof of Subcase 3.3 and the extremal fullerene graph F_{60}^{17}.

Subcase 3.3: Both f_3 and f_4 are pentagonal. According to Subcase 3.2, f_3 and f_4 belong to subgraphs isomorphic to B_1. Hence, we have a graph as shown in Figure 12 (left). Clearly, there are two distinct extremal fullerene graphs F_{60} containing it: F_{60}^{13} (the graph (b) in Figure 37) and F_{60}^{17} (the right graph in Figure 42).

Combining Cases 1, 2 and 3, there are exact six extremal fullerene graphs F_{60} such that any $B_1 \subset F_{60}$ and any $B_2 \subset F_{60}$ are maximal.

Figure 43: All extremal fullerene graphs with 60 vertices.

Summarizing Lemmas 4.6, 4.7, 4.8 and 4.9, we have the following theorem:

Theorem 4.10. There are exactly 18 distinct extremal fullerene graphs with 60 vertices: C_{60} and F_i^{60} for $i = 1, 2, ..., 17$ as shown in Figure 43.
Acknowledgements

The authors are grateful to the referees for their careful reading and many valuable suggestions.

References

[1] H. Abeledo and G. Atkinson, The Clar and Fries problems for benzenoid hydrocarbons are linear programs, In: P. Hansen, P. Fowler and M. Zheng (eds.), Discrete Mathematical Chemistry, DIMACS Ser., Vol. 51 (Amer. Math. Soc., Providence, RI, 2000) pp. 1-8.

[2] G. Brinkmann and A. Dress, A constructive enumeration of fullerenes, J. Algorithms 23 (1997) 345-358.

[3] S. El-Basil, Clar sextet theory of buckminsterfullerene (C_{60}), J. Mol. Struct. (Theochem) 531 (2000) 9-21.

[4] E. Clar, The Aromatic Sextet, Wiley, New York, 1972.

[5] T. Došlić, Cyclical edge-connectivity of fullerene graphs and (k,6)-cages, J. Math. Chem. 33 (2003) 103-112.

[6] P.W. Fowler and D.E. Manolopoulos, An Atlas of Fullerenes, Clarenden Press, Oxford, 1995.

[7] P.W. Fowler and T. Pisanski, Leapfrog fullerenes and Clar polyhedra, J. Chem. Soc. Faraday 90 (1994) 2865-2897.

[8] K. Fries, Bicyclic compounds and their comparison with naphthalene III, Justus Liebig's Ann. Chem. 454 (1972) 121-324.

[9] J.E. Graver, Kekulé structures and the face independence number of a fullerene, Europ. J. Combin. 28 (2007) 1115-1130.

[10] P. Hansen and M. Zheng, Upper bounds for the Clar number of benzenoid hydrocarbons, J. Chem. Soc. Faraday Trans. 88 (1992) 1621-1625.

[11] P. Hansen and M. Zheng, The Clar number of a benzenoid hydrocarbon and linear programming, J. Math. Chem. 15 (1994) 93-107.

[12] F. Kardoš, D. Král, J. Miškuf and J. Sereni, Fullerene graphs have exponentially many perfect matchings, J. Math. Chem. 46 (2009) 443-447.

[13] S. Klavžar, P. Žigert and I. Gutman, Clar number of catacondensed benzenoid hydrocarbons, J. Mol. Struct. (Theochem) 586 (2002) 235-240.

[14] H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, C_{60}: Buckminsterfullerene, Nature 318 (1985) 162-163.

[15] X. Liu and D. Klein, Preferable fullerenes and Clar-sextet cages, Full. Sci. Tech. 2 (4) (1994) 405-422.
[16] Z. Qi and H. Zhang, A note on the cyclical edge-connectivity of fullerene graphs, J. Math. Chem. 43 (2008) 134-140.

[17] M. Randić, Aromaticity of polycyclic conjugated hydrocarbons, Chem. Reviews 103 (9) (2003) 3449-3605.

[18] W.C. Shiu, P.C.B. Lam and H. Zhang, Clar and sextet polynomials of buckminster-fullerene, J. Mol. Struct. (Theochem) 662 (2003) 239-248.

[19] F. Zhang and X. Li, The Clar formulas of a class of hexagonal systems, MATCH Commun. Math. Comput. Chem. 24 (1989) 333-347.

[20] H. Zhang, The Clar formula of a type of benzenoid systems, J. Xinjiang Univ. (natural science ed. In Chinese) 10 (1993) 1-7.

[21] H. Zhang, The Clar formula of hexagonal polyhexes, J. Xinjiang Univ. (natural science) 12 (1995) 1-9.

[22] H. Zhang, The Clar formula of regular T-tier strip benzenoid systems, System Sci. Math. Sci. 8(4) (1995) 327-337.

[23] H. Zhang and D. Ye, An upper bound for the Clar number of fullerene graphs, J. Math. Chem. 41 (2007) 123-133.