A characterization of tightly triangulated 3-manifolds

Bhaskar Bagchi 1, Basudeb Datta 2, Jonathan Spreer 3

1 Theoretical Statistics and Mathematics Unit, Indian Statistical Institute, Bangalore 560 059, India. bbagchi@isibang.ac.in
2 Department of Mathematics, Indian Institute of Science, Bangalore 560 012, India. dattab@math.iisc.ernet.in.
3 School of Mathematics and Physics, The University of Queensland, Brisbane QLD 4072, Australia. j.spreer@uq.edu.au.

January 08, 2016

Abstract

For a field \(F \), the notion of \(F \)-tightness of simplicial complexes was introduced by Kühnel. Kühnel and Lutz conjectured that any \(F \)-tight triangulation of a closed manifold is the most economic of all possible triangulations of the manifold. The boundary of a triangle is the only \(F \)-tight triangulation of a closed 1-manifold. A triangulation of a closed 2-manifold is \(F \)-tight if and only if it is \(F \)-orientable and neighbourly. In this paper we prove that a triangulation of a closed 3-manifold is \(F \)-tight if and only if it is \(F \)-orientable, neighbourly and stacked. In consequence, the Kühnel-Lutz conjecture is valid in dimension \(\leq 3 \).

MSC 2010: 57Q15, 57R05.

Keywords: Stacked spheres; Stacked manifolds; Triangulations of 3-manifolds; Tight triangulations.

1 Introduction

All simplicial complexes considered in this paper are finite and abstract. The vertex set of a simplicial complex \(X \) will be denoted by \(V(X) \). For \(A \subseteq V(X) \), the induced subcomplex \(X[A] \) of \(X \) on the vertex set \(A \) is defined by \(X[A] := \{ \alpha \in X : \alpha \subseteq A \} \). For \(x \in V(X) \), the subcomplexes \(\{ \alpha \in X : x \notin \alpha \} = X[V(X) \setminus \{ x \}] \) and \(\{ \alpha \in X : x \notin \alpha, \alpha \cup \{ x \} \in X \} \) are called the antistar and the link of \(x \) in \(X \), respectively. A simplicial complex \(X \) is said to be a triangulated (closed) manifold if it triangulates a (closed) topological manifold, i.e., if the geometric carrier \(|X| \) of \(X \) is a (closed) topological manifold. A triangulated closed \(d \)-manifold \(X \) is said to be \(F \)-orientable if \(H_d(X; F) \neq 0 \). If two triangulated \(d \)-manifolds \(X \) and \(Y \) intersect precisely in a common \(d \)-face \(\alpha \) then \(X \# Y := (X \cup Y) \setminus \{ \alpha \} \) triangulates the connected sum \(|X| \# |Y| \) and is called the connected sum of \(X \) and \(Y \) along \(\alpha \).

For our purpose, a graph may be defined as a simplicial complex of dimension \(\leq 1 \). For \(n \geq 3 \), the \(n \)-cycle \(C_n \) is the unique \(n \)-vertex connected graph in which each vertex lies on exactly two edges. For \(n \geq 1 \), the complete graph \(K_n \) is the \(n \)-vertex graph in which any two vertices form an edge. For \(m, n \geq 1 \), the complete bipartite graph \(K_{m,n} \) is the graph with \(m+n \) vertices and \(mn \) edges in which each of the first \(m \) vertices forms an edge with each of the last \(n \) vertices. Two graphs are said to be homeomorphic if their geometric carriers are homeomorphic. A graph is said to be planar if it is a subcomplex of a triangulation of the 2-sphere \(S^2 \). In this paper, we shall have an occasion to use the easy half of Kuratowski’s
famous characterization of planar graphs [5]: A graph is planar if and only if it has no homeomorph of K_5 or $K_{3,3}$ as a subgraph.

If \mathbb{F} is a field and X is a simplicial complex then, following Kühnel [9], we say that X is \mathbb{F}-tight if (a) X is connected, and (b) the \mathbb{F}-linear map $H_*(Y; \mathbb{F}) \to H_*(X; \mathbb{F})$, induced by the inclusion map $Y \hookrightarrow X$, is injective for every induced subcomplex Y of X.

If X is a simplicial complex of dimension d, then its face vector (f_0, \ldots, f_d) is defined by $f_i = f_i(X) := \# \{ \alpha \in X : \dim(\alpha) = i \}$, $0 \leq i \leq d$. A simplicial complex X is said to be neighbourly if any two of its vertices form an edge, i.e., if $f_1(X) = \binom{f_0(X)}{2}$.

A simplicial complex X is said to be strongly minimal if, for every triangulation Y of the geometric carrier $|X|$ of X, we have $f_i(X) \leq f_i(Y)$ for all i, $0 \leq i \leq \dim(X)$. Our interest in the notion of \mathbb{F}-tightness mainly stems from the following famous conjecture [10].

Conjecture 1.1 (Kühnel-Lutz). For any field \mathbb{F}, every \mathbb{F}-tight triangulated closed manifold is strongly minimal.

Following Walkup [16] and McMullen-Walkup [12], a triangulated ball B is said to be stacked if all the faces of B of codimension 2 are contained in the boundary ∂B of B. A triangulated sphere S is said to be stacked if there is a stacked ball B such that $S = \partial B$. This notion was extended to triangulated manifolds by Murai and Nevo [14]. Thus, a triangulated manifold Δ with boundary is said to be stacked if there is a stacked ball B in Δ such that $S = \partial B$. A triangulated closed manifold M is said to be locally stacked if all its vertex links are stacked spheres or stacked balls. The main result of this paper is the following characterization of \mathbb{F}-tight triangulated closed 3-manifolds, for all fields \mathbb{F}.

Theorem 1.2. A triangulated closed 3-manifold M is \mathbb{F}-tight if and only if M is \mathbb{F}-orientable, neighbourly and stacked.

The special case of Theorem 1.2, where $\text{char}(\mathbb{F}) \neq 2$, was proved in our previous paper [4]. In this paper we conjectured [4, Conjecture 1.12] the validity of Theorem 1.2 in general.

As a consequence of Theorem 1.2 we show that the Kühnel-Lutz conjecture (Conjecture 1.1) is valid up to dimension 3. Thus,

Corollary 1.3. If M is an \mathbb{F}-tight triangulated closed manifold of dimension ≤ 3, then M is strongly minimal.

As a second consequence of Theorem 1.2 we show:

Corollary 1.4. The only closed topological 3-manifolds which may possibly have \mathbb{F}-tight triangulations are S^3, $(S^2 \times S^1)^k$ and $(S^2 \times S^1)^{\#k}$, where k is a positive integer such that $80k + 1$ is a perfect square.

Kühnel conjectured that any triangulated closed 3-manifold M satisfies $(f_0(M) - 4) \times (f_0(M) - 5) \geq 20\beta_1(M; \mathbb{F})$. (This is a part of his Pascal-like triangle of conjectures reported in [11].) This bound was proved by Novic and Swartz in [15]. Burton et al proved in [6] that if the equality holds in this inequality then M is neighbourly and locally stacked. (Actually, these authors stated this result for $\mathbb{F} = \mathbb{Z}_2$, but their argument goes through for all fields \mathbb{F}.) In [11], the first author proved that the equality holds in this inequality if and only if M is neighbourly and stacked. In [13], Murai generalized this to all dimensions ≥ 3. Another consequence of Theorem 1.2 is:
Corollary 1.5. A triangulated closed 3-manifold M is \mathbb{F}-tight if and only if M is \mathbb{F}-orientable and $(f_0(M) - 4)(f_0(M) - 5) = 20\beta_1(M; \mathbb{F})$.

In [7], \mathbb{Z}_2-tight triangulations of $(S^2 \times S^1)^\#k$ were constructed for $k = 1, 30, 99, 208, 357$ and 546. However, we do not know any \mathbb{F}-tight triangulations of $(S^2 \times S^1)^\#k$.

Question 1.6. Is there any positive integer k for which $(S^2 \times S^1)^\#k$ has an \mathbb{F}-tight triangulation?

2 Proofs

The following result is Theorem 3.5 of [4].

Theorem 2.1. Let C be an induced cycle in the link S of a vertex x in an \mathbb{F}-tight simplicial complex X. Then the induced subcomplex of X on the vertex set of the cone $x \ast C$ is a neighbourly triangulated closed 2-manifold.

If, in Theorem 2.1, C is an n-cycle then the triangulated 2-manifold guaranteed by this theorem has n vertices, $n(n + 1)/2$ edges and hence $n(n + 1)/3$ triangles. Thus 3 divides $n(n + 1)$, i.e., $n \equiv 1 \pmod{3}$. Therefore, Theorem 2.1 has the following immediate consequence.

Corollary 2.2. Let X be an \mathbb{F}-tight simplicial complex. Let S be the link of a vertex in X. Then S has no induced n-cycle for $n \equiv 1 \pmod{3}$.

We recall that the Möbius band has a unique 5-vertex triangulation \mathcal{M}. The boundary of \mathcal{M} is a 5-cycle C_5. The simplicial complex \mathcal{M} may be uniquely recovered from C_5 as follows. The triangles of \mathcal{M} are $\{x\} \cup e_x$, where, for each vertex x of C_5, e_x is the edge of C_5 opposite to x. We also note the following consequence of Theorem 2.1.

Corollary 2.3. Let S be the link of a vertex x in an \mathbb{F}-tight simplicial complex X. Let C be an induced cycle in S.

(a) If C is a 3-cycle, then it bounds a triangle of X.

(b) If C is a 5-cycle then it bounds an induced subcomplex of X isomorphic to the 5-vertex Möbius band.

Proof. If C is a 3-cycle, then the induced subcomplex of X on the vertex set of $x \ast C$ is a neighbourly, 4-vertex, triangulated closed 2-manifold, which must be the boundary complex \mathcal{T} of the tetrahedron. But all four possible triangles occur in \mathcal{T}, and C bounds one of them. If C is a 5-cycle then the induced subcomplex $X[V(x \ast C)]$ of X is a neighbourly, 6-vertex, triangulated closed 2-manifold, which must be the unique 6-vertex triangulation \mathbb{RP}^2_6 of the real projective plane. Therefore, the induced subcomplex $X[V(C)]$ of X is the antistar of the vertex x in \mathbb{RP}^2_6, which is the 5-vertex Möbius band. \square

Let \mathcal{T} and \mathcal{I} denote the boundary complexes of the tetrahedron and the icosahedron, respectively. Thus the faces of \mathcal{T} are all the proper subsets of a set of four vertices. Up to isomorphism, the 20 triangles of \mathcal{I} are as follows:

$$
012, 015, 023, 034, 045, 124', 153', 13'4', 235', 24'5', 341', \\
31'5', 452', 41'2', 52'3', 0'1'2', 0'1'5', 0'2'3', 0'3'4', 0'4'5'.
$$

(1)

The following is Corollary 5.5 of [4].
Theorem 2.4. Let S be a triangulated 2-sphere which has no induced n-cycle for any $n \equiv 1 \pmod{3}$. Then S is a connected sum of finitely many copies of T and I (in some order).

As an immediate consequence of Corollary 2.2 and Theorem 2.4 we have:

Corollary 2.5. Let S be the link of a vertex in an F-tight triangulated closed 3-manifold M. Then S is a connected sum of finitely many copies of T and I (in some order).

Proof of Theorem 1.2. Let M be an F-orientable, neighbourly, stacked, triangulated closed 3-manifold. Then M is F-tight by the case $k = 1$ of Theorem 2.24 in [2]. This proves the “if part”. Conversely, let M be F-tight. Since any F-tight triangulated closed manifold is neighbourly and F-orientable (Lemmas 2.2 and 2.5 in [4]), it follows that M is F-orientable and neighbourly. To complete the proof of the “only if” part, it suffices to show that any connected sum of copies of T is stacked (as may be seen by an easy induction on the number of summands). Hence Corollary 2.3(b) gives us eight more triangles of M through the vertex 0, namely, $023'$, $034'$, $015'$, $034'$, $045'$, $032'$, $012'$, $023'$. Thus, if S' is the link of the vertex 0 in M, then we have the graph of Fig. 2 as a subcomplex of S'.

Figure 2: A homeomorph of $K_{3,3}$

So we have a homeomorph of $K_{3,3}$ as a subcomplex of the triangulated 2-sphere S'. This is a contradiction since $K_{3,3}$ is not a planar graph.

Proof of Corollary 1.3. Let M be an F-tight triangulated closed d-manifold, $d \leq 3$. By Lemma 2.2 in [4], M is neighbourly. But the boundary complex of the triangle is the only
neighbourly triangulated closed 1-manifold. This is trivially the strongly minimal triangulation of S^1. So, we have the result for $d = 1$. Next let $d = 2$. Let N be another triangulation of $|M|$. Let (f_0, f_1, f_2) be the face vector of N. Let χ be the Euler characteristic of M (hence also of N). Then $f_0 - f_1 + f_2 = \chi$ and $2f_1 = 3f_2$. Therefore we get $f_1 = 3(f_0 - \chi)$ and $f_2 = 2(f_0 - \chi)$. Thus, f_1 and f_2 are strictly increasing functions of f_0. So, it is sufficient to show that $f_0 \geq f_0(M)$. Now, trivially, $f_1 \leq f_0^2$, with equality if and only if N is neighbourly. Substituting $f_1 = 3(f_0 - \chi)$ in this inequality, we get that $f_0(f_0 - 7) \geq -6\chi = f_0(M)(f_0(M) - 7)$. This implies that $f_0 \geq f_0(M)$. Thus, M is strongly minimal. So we have the result for $d = 2$. If $d = 3$ then, by Theorem 2.24 of [2], M is stacked and hence is locally stacked. But any locally stacked, \mathbb{F}-tight triangulated closed manifold is strongly minimal by Corollary 3.13 in [3]. So, we are done when $d = 3$.

Proof of Corollary 1.4 Let M be a closed 3-manifold which has an \mathbb{F}-tight triangulation X. By Theorem 2.24 X is stacked. But, by Corollary 3.13 (case $d = 3$) of [8], any stacked triangulation of a closed 3-manifold can be obtained from a stacked 3-sphere by a finite sequence of elementary handle additions. It is easy to see by an induction on the number k of handles added that X triangulates either S^3 ($k = 0$) or $(S^2 \times S^1)^#k$ or $(S^2 \times S^1)^#k$ ($k \geq 1$). Let X be obtained from the stacked 3-sphere S by k elementary handle additions. It follows by induction on k that $f_0(S) = f_0(X) + 4k$ and $f_1(S) = f_1(X) + 6k = (f_0(X))^2 + 6k$. Since S is a stacked 3-sphere, $f_1(S) = 4f_0(S) - 10$. Thus, $(f_0(X))^2 + 6k = 4f_0(X) + 4k - 10$. This implies $(f_0(X) - 4)(f_0(X) - 5) = 20k$ and hence $f_0(X) = 5\left(9 + \sqrt{80k + 1}\right)$. So, $80k + 1$ must be a perfect square.

Proof of Corollary 1.5 If $(f_0(M) - 4)(f_0(M) - 5) = 20\beta_1(M; \mathbb{F})$ then Theorem 1.3 of [6] says that M must be neighbourly and locally stacked. Therefore, the ‘if part’ follows from Theorem 2.24 of [2]. The ‘if part’ also follows from Theorem 1.12 of [1] and Theorem 2.24 of [2]. The ‘only if’ part follows from the proof of Corollary 1.4 above.

Acknowledgements: The second and third authors are supported by DIICCSRTE, Australia (project AISRF06660) and DST, India (DST/INT/AUS/P-56/2013(G)) under the Australia-India Strategic Research Fund. The second author is also supported by the UGC Centre for Advanced Studies (F.510/6/CAS/2011 (SAP-I)). The authors thank Wolfgang Kühnel for some useful comments on the earlier version of this paper.

References

[1] B. Bagchi, *The mu vector, Morse inequalities and a generalized lower bound theorem for locally tame combinatorial manifolds*, European J. Combin. **51** (2016) 69–83.

[2] B. Bagchi, B. Datta, *On k-stellated and k-stacked spheres*, Discrete Math. **313** (2013) 2318–2329.

[3] B. Bagchi, B. Datta, *On stellated spheres and a tightness criterion for combinatorial manifolds*, European J. Combin. **36** (2014) 294–313.

[4] B. Bagchi, B. Datta, J. Spreer, *Tight triangulations of closed 3-manifolds*, European J. Combin. **54** (2016) 103–120.

[5] J. A. Bondy, U. S. R. Murty, *Graph Theory*, Graduate Texts in Mathematics **244**, Springer, New York, 2008.

[6] B. A. Burton, B. Datta, N. Singh, J. Spreer, *Separation index of graphs and stacked 2-spheres*, J. Combin. Theory Ser. A **136** (2015) 184–197.
[7] B. A. Burton, B. Datta, N. Singh, J. Spreer, *A construction principle for tight and minimal triangulations of manifolds*, arXiv:1511.04500, 2015.

[8] B. Datta, S. Murai, *On stacked triangulated manifolds*, arXiv:1407.6767, 2014.

[9] W. Kühnel, *Tight Polyhedral Submanifolds and Tight Triangulations*, Lecture Notes in Mathematics **1612**, Springer-Verlag, Berlin, 1995.

[10] W. Kühnel, F. Lutz, *A census of tight triangulations*, Period. Math. Hungar. **39** (1999) 161–183.

[11] F. H. Lutz, *Triangulated manifolds with few vertices: Combinatorial manifolds*, arXiv:math/0506372, 2005.

[12] P. McMullen, D. W. Walkup, *A generalized lower bound conjecture for simplicial polytopes*, Mathematika **18** (1971) 264–273.

[13] S. Murai, *Tight combinatorial manifolds and graded Betti numbers*, Collect. Math. **66** (2015) 367–386.

[14] S. Murai, E. Nevo, *On r-stacked triangulated manifolds*, J. Algebraic Combin. **39** (2014) 373–388.

[15] I. Novik, E. Swartz, *Socles of Buchsbaum modules, complexes and posets*, Advances in Math. **222** (2009) 2059–2084.

[16] D. W. Walkup, *The lower bound conjecture for 3- and 4-manifolds*, Acta Math. **125** (1970) 75–107.