Torus mapper: a code for dynamical models of galaxies

James Binney1 and Paul J. McMillan1,2

1 Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford, OX1 3NP, UK
2 Lund Observatory, Lund University, Department of Astronomy and Theoretical Physics, Box 43, SE-22100, Lund, Sweden

25 November 2015

ABSTRACT
We present a freely downloadable software package for modelling the dynamics of galaxies, which we call the Torus Mapper (TM). The package is based around ‘torus mapping’, which is a non-perturbative technique for creating orbital tori for specified values of the action integrals. Given an orbital torus and a star’s position at a reference time, one can compute its position at any other time, no matter how remote. One can also compute the velocities with which the star will pass through any given point and the contribution it will make to the time-averaged density there. A system of angle-action coordinates for the given potential can be created by foliating phase space with orbital tori. Such a foliation is facilitated by the ability of TM to create tori by interpolating on a grid of tori.

We summarise the advantages of using TM rather than a standard time-stepper to create orbits, and give segments of code that illustrate applications of TM in several contexts, including setting up initial conditions for an N-body simulation. We examine the precision of the orbital tori created by TM and the behaviour of the code when orbits become trapped by a resonance.

Key words: Galaxy: kinematics and dynamics – galaxies: kinematics and dynamics – methods: numerical

1 INTRODUCTION
Dynamical models are playing an increasingly important role in the interpretation of observations. Moreover, the volume and quality of available observational data for both external galaxies and our own Galaxy are growing explosively through the increase in the scale and sensitivity of large-format CCD detectors and integral field spectrographs, and, in the case of our own Galaxy, the taking of astrometric data by the Gaia satellite.

N-body models have played a large role in the development of our understanding of galaxy formation and dynamics, but they have important limitations. 1) They are significantly degraded by discreteness noise, which is particularly acute in the case of our Galaxy because the data are strongly focused on the immediate vicinity of one star, the Sun. 2) Tailoring an N-body model to a specific body of observations is difficult given the complex and ill-understood nature of the connection between the initial conditions that define an N-body simulation and the equilibrium model that emerges. It is true that the made-to-measure technique (Syer & Tremaine 1996; Dehnen 2009; Morganti & Gerhard 2012) can be used to refine the fit between a model’s predictions and data, but making such adjustments increases the level of discreteness noise in the model, so the starting point for adjustments should be reasonably close to the truth. 3) There is no compact and transparent representation of an N-body model: the model is specified by $6N$ phase-space coordinates, but if the equations of motion are integrated for a fraction of a dynamical time, all these numbers change while the model remains the same. This degeneracy of representation makes comparison of models hard. It also obscures the physical significance of a given model and therefore restricts the harvest of scientific understanding that can be drawn from a given set of observations. 4) N-body models with acceptable levels of discreteness noise are computationally costly, so it is unlikely to be feasible to find an N-body model that provides an excellent fit to a sophisticated set of observational data.

N-body models do have one important advantage, namely, that they can be end-points of simulations of cosmological clustering. This advantage is, however, strongly tempered by the fact that it is currently not feasible to follow the dynamics of baryons in such simulations using only basic physics. Consequently, resort is made to “subgrid recipes” that should reproduce, in a statistical sense, the impact on simulated scales of physical processes that take place on smaller scales. It is not even known whether the
neglected physics can be reproduced by such recipes, still less is it clear if any of the recipes currently used is reasonably accurate. Consequently, cosmological simulations of galaxy formation lack rigour and should be considered instructive ways of producing N-body galaxy models, rather than definitive exercises.

Decades ago, when the data for galaxies were orders-of-magnitude more sparse than they now are, data were widely modelled with the Jeans equations (e.g. Bacon et al. 1983; Binney et al. 1990; van der Marel et al. 1990). Some studies still rely on the Jeans equations, but the technique has strong limitations. 1) It recovers only the low-order velocity moments, which do not specify the actual (non-Gaussian) velocity distributions. 2) In practice Jeans modelling is restricted to systems with distribution functions (DFs) that depend on only energy E and angular momentum L, whereas we know that real DFs typically depend on three isolating integrals.

As data for external galaxies grew richer, the dominant technique for modelling galaxies became that introduced by Schwarzschild (1979) and extended by van der Marel et al. (1998), Gebhardt et al. (2003) and others, in which orbits in a given gravitational potential are assigned weights in such a way that the fit of a model to observational data is optimised. This technique is flexible but suffers from many of the shortcomings of N-body models, in particular a high degree of discreteness noise and the lack of compact and transparent model specification. The keys to obtaining such a specification are (a) to assign physically meaningful labels to orbits, and (b) to establish the density with which phase-space coordinates are capable of being complemented by canonically conjugate coordinates θ.

However, if one requires that the adopted parameters are (a) to assign physically meaningful labels to orbits, and (b) to establish the density with which phase-space coordinates are capable of being complemented by canonically conjugate coordinates θ, the choice of constants of motion disappears. If one further specifies that J_i quantities the amplitude of a star’s oscillations in radius and J_3 quantifies the amplitude of a star’s oscillations in the latitudinal direction (along ϑ in conventional spherical polar coordinates), then the last vestiges of freedom disappear and one has a uniquely defined set of canonical coordinates, with the momenta labelling orbits and the conjugate variables specifying position within the orbit.

It follows trivially from Hamilton’s equations of motion, that angle coordinates increase linearly in time: $\theta_i(t) = \theta_i(0) + \Omega_i t$. Hence stellar dynamics becomes trivial once the mapping $(\theta, J) \rightarrow (x, v)$ has been constructed.

The prerequisite of angle-action coordinates (θ, J) playing a useful role in astronomy is algorithms that allow one to compute $x(\theta, J)$ and $v(\theta, J)$, and the inverse functions, $J(x, v)$ etc. A fully analytic algorithm of this type is known only for the multi-dimensional harmonic oscillator and the isochrone potential Φ_1 (Henon 1959; Binney & Tremaine 2008) (which includes the Kepler potential as a limiting case). McGill & Binney (1990) showed how these fully analytic algorithms can be leveraged into an effective numerical scheme for a general axisymmetric potential by *torus mapping*. The idea is that the analytic formulae provide an explicit representation of a phase-space surface $J =$ constant. This three-dimensional surface in six-dimensional phase space is topologically a 3-torus (Arnold 1989), and this 3-torus is special in the sense that any two-surface within it has vanishing Poincaré invariant $\sum_i dq_i dp_i$. Consequently, the orbital surface $J =$ constant is called a *null torus*. If such a null torus can be mapped into the target phase space such that on it the target Hamiltonian

$$H(x, v) = \frac{1}{2} v^2 + \Phi(x)$$

is constant, then the image torus becomes an orbital torus of the target potential $\Phi(x)$. McGill & Binney (1990) mapped toy tori labelled by J^T and furnished with angle coordinates θ^T, into tori of a target potential labelled by J with canonical transformations that have generating functions of the form

$$S(J, \theta^T) = J \cdot \theta^T + \sum_n S_n(J)e^{in\theta^T}.$$

They showed that the image tori became excellent approximations to orbital tori once the parameters S_n had been adjusted to yield a small RMS variation δH in the Hamiltonian over the image torus. Kaasalainen (1994) showed that certain target tori cannot be reached using generating functions of this form, and for these tori it is necessary to compound such a transformation with a point transformation. The primary purpose of this paper is to introduce a freely downloadable code, TM, that computes these canonical transformations for an arbitrary axisymmetric potential, and provides a wide range of routines for exploiting the resulting tori.

1. J_i is sometimes denoted J_{r_i} or J_{z_i}. Similarly, J_3 is identical to what in Binney & Tremaine (2008) is denoted J_0. These alternative notations arise through solving the Hamilton-Jacobi equation in different coordinate systems: unique underlying actions J_{r_1}, J_2 are being approached through differing limiting forms.
1.2 Torus-mapping code TM

Users of TM do not need to engage with the process of computing canonical transformations. The only code they need to write is that which computes the potential and its first derivatives in R and z — thus precisely the code required to compute an orbit by numerical integration of the equations of motion. Given this code and values for the three actions J_1, J_2, and J_3, TM provides functions that return (i) (x,v) for specified (θ,J), (ii) the Jacobian $\partial(x)/\partial(\theta)$, and (iii) (θ,J) given (x,v). In Section 2.3 we will see that the last two functions allow TM to perform the role in Schwarzschild modelling that has previously been played by an integrator of the Runge-Kutta, Bulirsch-Stoer, or leap-frog type. Displacing an integrator with TM brings substantial advantages.

1 A torus is specified by ~ 100 numbers, namely the S_n, their derivatives $\partial S_n/\partial J$, and a handful of other parameters, rather than by some thousands of phase-space coordinates along a time sequence, so using TM dramatically shrinks the size of an orbit library at a given resolution.

2 It is far easier to construct an orbit library that provides appropriate phase-space coverage by systematically marching through action space than by designing a grid of initial conditions (x,v) for orbit integrations. In particular, two very different initial conditions will specify the same orbit if an orbit passes through both phase-space points. Consequently, when a grid of initial conditions is used to generate an orbit library, it is not straightforward to ensure that essentially identical orbits are not obtained at different points of the grid. When the actions are specified, there is no danger of such double-computation.

3 When TM is used, every orbit has a unique label that allows it to be compared with orbits computed by other investigators, possibly in a slightly different potential.

4 On account of this last point, it is trivial to establish, indeed predetermined, the density with which the orbit library samples phase space. This knowledge makes it possible to infer the value taken by the DF on an orbit from the orbit’s weight in the Schwarzschild model.

5 When TM is used, it is trivial to find with what velocities an orbit will pass through a given point, whereas when an integrator is used, the whole time sequence must be searched for points at which the orbit comes near to the specified point, for in finite time it is unlikely to reach that point exactly. This capability makes it much easier to compute velocity distributions when TM is used in place of an integrator.

The only disadvantage of using TM rather than an orbit integrator is that TM cannot accurately represent resonantly trapped or chaotic orbits. We briefly address this issue in Section 5 but a full discussion of the response of TM to resonant trapping lies beyond the scope of this paper and will be the topic of a forthcoming paper. Fortunately, in typical axisymmetric potentials, resonant trapping is of limited significance.

1.3 Extensions of torus mapping

In its simplest form torus mapping returns (x,v) given (θ,J) or (v,θ) given (x,J), but it is not well suited to computing (θ,J) given (x,v). Consequently, much recent work has used radically different approaches to the computation of (θ,J) from (x,v) (Binney 1991; Binney & McMillan 2011; Binney 2012a; Binney & McMillan 2012; Bovy & Rix 2013; McMillan & Binney 2013; Bovy 2014; Sanders & Binney 2013; Piffl et al. 2014; Binney & Piff 2015). The methods used in these studies are inferior to torus mapping as regards precision in the sense that they cannot be systematically refined, while by increasing the number of coefficients S_n used in the specification of the generating function, torus mapping can be systematically refined. Approximate actions often suffice for the computation of the observables of a model that is specified by a DF that is an analytic function of the actions (e.g. Binney 2012a; Sanders & Binney 2013), but lack of precision is a serious issue when the value of the DF varies significantly with changes in action comparable to the error in $(J(x,v))$. The classic example of this phenomenon is the DF of a stellar stream (Bovy 2014; Sanders & Binney 2013; Piffl et al. 2014, 2015; Binney 2013).

Recently Sanders & Binney (2013) gave an algorithm that allows one to compute (θ,J) from (x,v) to high precision: the Stäckel Fudge is first used to estimate $J(x,v)$. Then the torus is constructed for J and the point (x_1,v_1) on the torus that is nearest to (x,v) is located. Then the Stäckel Fudge is used to estimate $J_1(x_1,v_1)$. Under the assumption that the error $\Delta_1 = J_1 - J$ in the actions returned by the Stäckel Fudge is a smooth function on phase space, an improved estimate of the actions of (x,v) is $J = \Delta_1 + J_1$. This improved estimate can be refined by constructing the torus $J = \Delta_1$ and finding the point (x_2,v_2) on it that is closest to (x,v). Then the refined estimate of the actions of (x,v) is $J = \Delta_2 = J_1(J_2 - J_1)$, where J_2 are the Stäckel-Fudge actions of (x_2,v_2) and $\Delta_2 = J_2 - J_1$. Sanders & Binney (2013) showed that in practice $J = \Delta_1$ is already an excellent estimate of the actions, but that the algorithm can be iterated to convergence in the sense that (x,v) lies on one of the constructed tori.

In this paper we address an important topic that has been rather neglected in recent papers on torus mapping, namely resonances. The importance of resonances for Hamiltonian mechanics is well known (Chirikov 1979; Lichtenberg & Lieberman 1983). In a generic potential the fundamental frequencies Ω are functions of the actions, and since rational numbers are densely distributed on the real line, it often happens that the frequencies are commensurable: that is, a vector N with integer components exists such that $N \cdot \Omega = 0$. If the potential has a separable Hamilton-Jacobi equation (as Stäckel potentials do, e.g. Binney & Tremaine 2008), these resonances are accidental in the sense that they leave no mark on the dynamics. But in general resonant orbits for which N has components of modest size trap neighbouring orbits, so the latter librate around the resonant orbit, rather than circulating past it (for an account of resonant trapping, see e.g. Bini 2013). Torus mapping can be used to construct an integrable Hamiltonian that is close to the real Hamiltonian (Kaasalainen & Binney 1994b), so trapping can be studied with high-precision perturbation theory (Kaasalainen 1995). In Section 6 we show how resonant trapping manifests itself with torus mapping, and explain two different approaches to resonant trapping: the approach that is appropriate depends on the astronomical context. In Section 6.1 we speculate that on account of resonant trapping there may be points in the disc at which
there are more stars moving up through the plane at a given speed v_z than there are moving down at the same speed.

1.4 Layout of the paper

Section 2 is the core of the paper. It aims to demonstrate how easily properties of individual orbits in any axisymmetric potential can be computed with TM, and to explain how distribution functions are used in conjunction with tori, for example to obtain an N-body realisation of a model galaxy. We have kept this section brief by moving as many technical details as possible to appendices that normal users do not need to study. Section 3 clarifies the meaning of angle variables and presents some tests of the precision achievable with TM. Section 4 shows how to create tori by interpolating on a grid of previously created tori. Section 5 presents a test of an N-body realisation created with the tools included in TM. Section 6 discusses the implications of resonant trapping for torus mapping. Section 7 sums up and looks to the future.

2 CLASSES AND NAMESPACES

2.1 Units

Internally TM takes as units M_\odot, kpc and Myr. In this system Newton’s constant is $G = 4.99 \times 10^{-12}$ so for our Galaxy $GM \sim 1$. The unit of velocity, kpc Myr$^{-1}$ is 978 km s$^{-1}$, so the local circular speed is ~ 0.25 in code units. To specify a speed of 220 km s$^{-1}$ one writes

$$v = 220 \times \text{Units}::\text{kms}$$

TM works with angles in radians, so to input 10 degrees one writes

$$\text{theta} = 10 \times \text{Units}::\text{degree}$$

The namespace Units (defined in the file Units.h) contains a large range of conversion factors between commonly used units and code units.

2.2 Coordinate systems

A remarkably large number of coordinate systems are useful in Galaxy modelling, because we can consider motion to occur in the meridional (R, z) plane, or in full 3d space, and for the latter we might prefer coordinates centred on Sgr A* or on the Sun, and we might prefer to use Cartesian, cylindrical or spherical coordinates. If we are using heliocentric polar coordinates, we can cover the sky with either right-ascension and declination, or Galactic longitude and latitude. Sometimes we require only spatial coordinates, sometimes velocities, and at other times we require phase-space coordinates. Table 1 lists the coordinate systems available in TM. By defining distinct data types for each of these numerous options, the code limits the scope for error by calling a function with inappropriate data. Table 2 lists the available data types.

A class OmniCoords is defined to facilitate transformations between coordinate systems. For example

OmniCoords OC; LSR w1;
w1[0]=1;w1[1]=2;w1[2]=3;
w1[3]=.01;w1[4]=.004;w1[5]=.005;
GCA w2=OC.GCAfromLSR(w1);

will take the phase-space point with heliocentric location $(x, y, z) = (1, 2, 3)$ kpc and LSR velocity $(U, V, W) \approx (10, 4, 5)$ km s$^{-1}$ and return its galactocentric position and velocity in Cartesian coordinates. The class has methods for changing the solar motion, radius, etc., that are used in the transformations. For example

OC.change_sol_pos(8.3, 0.014);
OC.change_vc(220*Units::kms);

The default epoch is J2000, but the method change_epoch will change this: for example

OC.change_epoch(1950)

2.3 Class Potential

TM needs to be able to evaluate a model potential and its derivatives with respect to R and z – the code is currently restricted to axisymmetric potentials. Hence $\Phi(R, z)$ must return the potential value, and $\Phi(R, z, dPR, dPZ)$ must additionally leave in dPR and dPZ the potential’s radial and vertical derivatives. Using these derivatives, the base class
Table 3. Pre-defined potentials. The middle column gives the quantities fixed by the arguments of the creator. For example, to create a log potential, write Potential *Phi = new LogPotential(.2,.8,.5); provides a method $R_c(L_z)$ that returns the radius of the circular orbit with given angular momentum. Since many distribution functions involve epicycle frequencies, the class Potential has a method KapNuOm that computes for a circular orbit of given radius the radial and vertical epicycle frequencies and the azimuthal frequency. However, tori can be constructed and manipulated without defining this function, which requires second derivatives of the potential.

The TM package includes code for the three potentials listed in Table 3 and for the FALPot package. The latter computes potentials that are generated by one or more double-exponential discs, usually representing the thin and thick stellar discs and the gas disc, and one or more spheroidal, double-power-law components, to represent the bulge and dark halo. The algorithm encoded in FALPot is described by Dehnen & Binney (1998) and the code was extracted from Walter Dehnen’s FALCON package. The lines

```
#include ifile; ifile.open("pot/PJM11_best.Tpot");
Potential *Phi = new GalaxyPotential(ifile); initialise a potential of this class. The file opened in this call was entirely successful, with values $\pm$ 1 to $\pm$ 4 signalling various kinds of failure. Invoked thus, AutoFit uses default values of several arguments that could be explicitly set.

By far the most important of these optional parameters is $T_0$, which sets the precision of the constructed torus as follows. TM seeks to diminish the RMS fluctuation $\delta H$ in $H(x, v)$ over the torus until $\delta H < T_0 L J$, where

$$\tilde{\Omega} \equiv \sqrt{\Omega^2 + \Omega_c^2},$$

$$\tilde{J} \equiv \begin{cases} \sqrt{J, J_z} & \text{if } J, J_z \neq 0 \\ J_z + J_z & \text{otherwise.} \end{cases}$$

One may show that when $\delta H < T_0 L J$, the fluctuations in $J, J_z$ over the constructed torus are $\lesssim T_0 L J$. The choice of expression [4] for the scale action $\tilde{J}$ is a compromise between expressions that take the scale to be of order the larger or smaller of the two actions. This is necessary because if, say, we have $J > J_z$ then taking $\tilde{J} = J_z$ would imply the constraint was very weak compared to the energy that could plausibly be associated with motion in the $z$-direction, whereas taking $\tilde{J} = J_z$ would provide an excessively stringent constraint on the accuracy required in describing the radial motion.

Once T has been created, it can be written to a file by

```
T.write_ebf(outname, "T1", "w");
```

and read back with

```
T.read_ebf(outname, "T1");
```

Files are written in Sanjib Sharma’s Efficient Binary Format so TM requires the EBF package for C++ to be installed. It can be found at sourceforge.net/projects/ebfformat/files/libebf/c-cpp/.

The energy of the created torus is

```
double E=T.energy();
```

The statements

```
Angles thetas;

thetas[0]=1; thetas[1]=2; thetas[2]=3;

GCY = T.FullMap(thetas);
```

will put into the instance $w$ of the class GCY of phase-space points (Table 2) the coordinates $(R, z, \phi, v_R, v_z, v_\phi)$ of the phase space point with the specified angle coordinates. The lines

```
Frequencies Om; Om=T.omega();
```

for(int i=0; i<2048; i++){

```
thetas[0]=i; thetas[1]=2; thetas[2]=3;

GCY = T.FullMap(thetas);
```

cout << w[0] << " " << w[1] << " " << w[2] << " n"; 
```
}
```

will print 2048 points $(R, z)$ along the orbit covering the ellipse of 4094 Myr (Top panel of Fig. 11).

The lines

```
Position Rzphi;
Rzphi[0]=3; Rzphi[1]=.4; Rzphi[2]=1;
```

double s = T.DistanceToPoint(Rzphi);
```
```
will put $s$ equal to the minimum distance between the point

2.4 Class Torus

All the needs of a typical end user of TM should be covered by the methods of the class Torus. A torus T with actions $(J_z, J_\phi, J_\theta) = (0.1, 0.2, 1) kpc^2 Myr^{-1}$ is created by the lines

```
Actions J; J[0]=.1; J[1]=.2; J[2]=1;
Torus T;
```

```
int flag = T.AutoFit(J, Phi);
```

where Phi is a pointer to a previously initialised model potential. The integer flag returned by AutoFit is zero if the call was entirely successful, with values $-1$ to $-4$ signalling various kinds of failure. Invoked thus, AutoFit uses default values of several arguments that could be explicitly set.

By far the most important of these optional parameters is $T_0$, which sets the precision of the constructed torus as follows. TM seeks to diminish the RMS fluctuation $\delta H$ in $H(x, v)$ over the torus until $\delta H < T_0 L J$, where

$$\tilde{\Omega} \equiv \sqrt{\Omega^2 + \Omega_c^2},$$

$$\tilde{J} \equiv \begin{cases} \sqrt{J, J_z} & \text{if } J, J_z \neq 0 \\ J_z + J_z & \text{otherwise.} \end{cases}$$

One may show that when $\delta H < T_0 L J$, the fluctuations in $J, J_z$ over the constructed torus are $\lesssim T_0 L J$. The choice of expression [4] for the scale action $\tilde{J}$ is a compromise between expressions that take the scale to be of order the larger or smaller of the two actions. This is necessary because if, say, we have $J > J_z$ then taking $\tilde{J} = J_z$ would imply the constraint was very weak compared to the energy that could plausibly be associated with motion in the $z$-direction, whereas taking $\tilde{J} = J_z$ would provide an excessively stringent constraint on the accuracy required in describing the radial motion.

Once T has been created, it can be written to a file by

```
T.write_ebf(outname, "T1", "w");
```

and read back with

```
T.read_ebf(outname, "T1");
```

Files are written in Sanjib Sharma’s Efficient Binary Format so TM requires the EBF package for C++ to be installed. It can be found at sourceforge.net/projects/ebfformat/files/libebf/c-cpp/.

The energy of the created torus is

```
double E=T.energy();
```

The statements

```
Angles thetas;

thetas[0]=1; thetas[1]=2; thetas[2]=3;

GCY = T.FullMap(thetas);
```

will put into the instance $w$ of the class GCY of phase-space points (Table 2) the coordinates $(R, z, \phi, v_R, v_z, v_\phi)$ of the phase space point with the specified angle coordinates. The lines

```
Frequencies Om; Om=T.omega();
```

for(int i=0; i<2048; i++){

```
thetas[0]=i; thetas[1]=2; thetas[2]=3;

GCY = T.FullMap(thetas);
```

cout << w[0] << " " << w[1] << " " << w[2] << " n"; 
```
}
```

will print 2048 points $(R, z)$ along the orbit covering the ellipse of 4094 Myr (Top panel of Fig. 11).

The lines

```
Position Rzphi;
Rzphi[0]=3; Rzphi[1]=.4; Rzphi[2]=1;
```

double s = T.DistanceToPoint(Rzphi);
```
```
will put $s$ equal to the minimum distance between the point

© 0000 RAS, MNRAS 000, 000–000

Torus mapping code

| Class                  | arguments | formula |
|------------------------|-----------|---------|
| IsochronePotential     | (M,b)     | $-GM$   |
|                        |           | $b + \sqrt{r^2 + z^2}$ |
| MiyamotoNagaiPotential | (M,a,b)   | $V_0^2$   |
|                        |           | $\log \left( R^2 + \frac{z^2}{a^2} + R_c^2 \right)$ |
| LogPotential           | (V0,q,Rc)|         |
|                        |           |         |
\[(R, z, \phi) = (3, 0.4, 1)\] and a point on the orbit. If the given point lies within the three-dimensional region visited by the orbit, the returned value of \(s\) is naturally zero. Variants of `DistancetoPoint` exist that return information about the nearest point on the torus.

An analogous function `DistancetoPSP` returns the distances in \(x\) and \(v\) to the point on a torus that is closest to a given phase-space point when the velocity separation is scaled to a distance using a user-specified time-span.

```cpp
double w4[0]=8.5; w4[1]=0.014; w4[2]=0; w4[3]=0;
double t=4;
Vector<double,2> out=T.DistancetoPSP(w4,t,thetas);
```

will return in `out[0]` and `out[1]`, respectively, the real-space and velocity-space distances of \(w4\) from the nearest point on the orbit, when velocities are converted to distances by multiplication by 4 Myr (specified above by the value of \(t\)).

A method `containsPoint_Vel` is provided to discover if a given location lies on an orbit (when 1 is returned): and, if so, find the velocities \((v_R, v_z)\) that the star will have at that location – two velocities \((v_R, v_z)\) are returned, from which the four possible velocities can be recovered by multiplying by \(\pm 1:\)

```cpp
Velocity v1,v2;
if(T.containsPoint_Vel(Rzphi,v1,v2)==1)
 printf("\%(\%f,\%f)%(\%f,\%f)\",v1[0],v1[1],v2[0],v2[1]);
```

An analogous method `containsPoint_Ang(Rzphi,theta1,theta2)` returns the angles \((\theta_r, \theta_z)\) at which two visits occur – the angles of the remaining visits are \((-\theta_r, \pi - \theta_z)\).

### 2.5 Class DF

An abstract base class `DF` provides basic distribution functions \(f(J)\). A derived class `multidisk_DF` provides DFS that are the sum of any number of the "quasi-isothermal" DFS. The latter are defined by equation (5) below (Binney 2010; Binney & McMillan 2011; McMillan & Binney 2013). The values taken by these DFS depend explicitly on the actions, and implicitly on the potential through the epicycle frequencies. Instances of derived classes store the parameters of a
DF, and code that will provide the value of the DF given a value of J and a potential.

One often needs to evaluate a DF at a fixed value of J, in a fixed potential, for many different values of the DF’s parameters. This is required, for example, when seeking the parameter values that provide the best fits to observational data (e.g. McMillan & Binney 2012, 2013). Significant computing time is saved by saving values, such as the epicycle frequencies, that will be needed by all DFs. The abstract base class quickDF makes it possible to store the parameters of the DF and any values associated with J and the potential that are required to re-evaluate the DF. Instances of the derived class multidisk_quickDF provide this functionality for DFs of the type implemented by multidisk_DF.

As defined by Binney & McMillan (2011), a quasi-isothermal DF is

\[ f(J) = \frac{\Omega \nu \Sigma}{2\pi^2 M \sigma^2 \Omega} \left| \frac{\partial}{\partial \kappa} \right| \frac{\partial}{\partial \kappa} e^{-\kappa J_0 / \sigma^2 \kappa}, \]

where \( R_c \) is the radius of a circular orbit with angular momentum \( J_0 \), and the epicycle frequencies \( \kappa, \nu \) and the circular frequency \( \Omega \) are evaluated at \( R_c \). The choice

\[ \Sigma(J_0) = \Sigma_0 e^{-R_c / R_0} \]

(6)

ensures that disc’s surface-density is an approximately exponential function of radius with scale-length \( R_0 \).

\[ M = 2\pi \Sigma_0 R_0^2 \]

is a normalisation chosen to ensure that \( \int d^2r \) of the actions \( \sum(J_0) = 1 \). The factor \( \frac{\partial}{\partial \kappa} \) ensures we have different numbers of stars rotating in each direction. We use the form

\[ \text{cut}(J_0) = \frac{1}{2} \left[ 1 - \text{tan}h(J_0 / L_0) \right], \]

(7)

where the value of \( L_0 \) is small compared to the angular momentum of the Sun.

The functions \( \sigma_v(J_0) \) and \( \sigma_z(J_0) \) control the vertical and radial velocity dispersions,

\[ \sigma_v(J_0) = \sigma_{v0} e^{(R_0 - R_c) / R_v}, \]

\[ \sigma_z(J_0) = \sigma_{z0} e^{(R_0 - R_c) / R_z}, \]

(8)

where \( R_v \) is the scalelength on which the velocity dispersions decline.

We provide a function set_DF that reads the parameters of a DF from a file and returns a pointer to a DF. Several example input files are included with \textsc{df}. For example

\texttt{ifstream ifile; ifile.open("df/TwoDisk\_NW\_df.f")};

\texttt{DF \*distfunc = set\_DF(ifile);}

initialises a DF with the parameters given in the file \texttt{TwoDisk\_NW\_df.f}. This file reads

\begin{verbatim}
#2 8.5
27 20 3.0 6.67 10 1
48 44 3.5 7.78 10 0.3
\end{verbatim}

where \# indicates that this is a \texttt{multidisk\_DF}, 2 8.5 indicates that it is the sum of two quasi-isothermal DFs with \( R_0 = 8.5 \text{kpc} \). The final two lines of the file give the parameters of the two quasi-isothermal DFs \((\sigma_v, \sigma_z, R_v, R_z, L_0, \text{weight})\), where the weights of the two DFs need not sum to unity, and for convenience \( \sigma_{v0} \) and \( \sigma_{z0} \) are given in \( \text{km s}^{-1} \), and \( L_0 \) in \( \text{kpc km s}^{-1} \).

To code the value taken by the DF at a given J in a given potential reads

\texttt{double f = distfunc->df(Phi,J);}
Code that does a similar job, although omitting output at intermediate steps and sampling the tori in a random order, is as follows

```cpp
int nt = time(NULL);
Random3 R3(7*int(cpu)), R3b(123*int(cpu));
Gaussian Gau(&R3,&R3b);
J[0] = J[1] = 0.001; J[2] = -1.8;
tunableMCMC tMC(distfunc, Phi, J, &Gau, &R3);
int nTor=3000, nEach=10;
tMC.burn_in(nTor/10);
tMC.find_sigs(nTor/10);
tMC.tune(nTor/10,2);
vector<Actions> Jtab; vector<int> wtab;
for(int i=0;i<nTor;i++)
 T.AutoFit(Jtab[i], Phi);
for(int j=0;j<nEach*wtab[i];j++)
 for(int k=0;k<3;k++)
 thetas[k] = 2*Pi*R3.RandomDouble();
cout << T.FullMap(thetas) << 'n';
}
```

3 ANGLE COORDINATES

In principle any point on the torus may be assigned \( \theta = 0 \), but there are natural choices for the zero point. \( \text{T} \) takes the zero point to be where the star is at pericentre with \( z = 0 \) and at azimuth \( \phi = 0 \). Given this zero point, there are some useful rules of thumb for interpreting angle coordinates.

- The value \( \theta_0 \) is the \( \phi \) coordinate of the guiding centre of the star’s epicycles.
- \( \theta_r \sim 0 \) corresponds to pericentre, and \( \theta_z \sim \pi \) to apocentre. We therefore typically have \( v_R > 0 \) for \( 0 \lesssim \theta_r \lesssim \pi \), and \( v_R < 0 \) for \( \pi \lesssim \theta_r \lesssim 2\pi \).
- The orbit passes upwards through \( z = 0 \) at \( \theta_z \sim 0 \), reaches maximum distance above the plane (\( z > 0 \)) at \( \theta_z \sim \pi/2 \), passes through the plane again (now with \( v_z < 0 \)) at \( \theta_z \sim \pi \), then reaches maximum distance below the plane at \( \theta_z \sim 3\pi/2 \).

These relations would be exact if the motion were separable in \( R \) and \( z \). Fig. 3 shows a typical case.

The requirement that \( \theta \) increase linearly in time along an orbit computed using a Runge-Kutta or similar integrator provides a rigorous test of the accuracy of fitted tori. Fig. 4 shows this test for four tori. At top left we have a nearly circular orbit, at top right an orbit that is quite eccentric but lies nearly in the equatorial plane, at bottom left a less eccentric orbit that moves far from the plane, and at bottom right an eccentric and highly inclined orbit such as might be occupied by a halo globular cluster. Paths computed using the tori are shown by solid black lines and those computed by Runge-Kutta are shown with dashed red lines. The near coincidence of these lines demonstrates the precision that \( \text{T} \) achieves.

All four tori were fitted with tolerance threshold \( \text{TOL}_J = 0.0003 \), which is significantly smaller than we typically use, in order to demonstrate the accuracy with which torus mapping can reproduce orbits that are far from resonance. As we explain below, the phenomenon of resonant trapping makes it expedient to employ the larger value \( \text{TOL}_J = 0.003 \) in general.

4 INTERPOLATING BETWEEN TORI

In some applications one needs to sample densely a small region of action space – a prime example is when modelling stellar streams \( \text{Sanders} \ 2014, \ Bovy \ 2014 \). Dense sampling of action space is also required when implementing Hamiltonian perturbation theory using an integrable Hamiltonian defined by tori \( \text{Kaasalainen} \ 1995 \). When dense sampling is required, tori are best obtained by interpolation on a grid of fitted tori rather than by fitting all tori directly to the Hamiltonian. Moreover, we will see in Section 6 that when resonant trapping is important, it is absolutely essential to obtain tori for certain “missing actions” by interpolating between tori obtained for actions that are not subject to trapping.

Interpolation between tori was introduced by \( \text{Kaasalainen \ & Binney} \ 1994 \) to implement Hamiltonian perturbation theory. They interpolated the Fourier coefficients \( S_n \) of the generating function (eqn. 5) and the derivatives with respect to \( J \), and the parameters of the toy potential \( \Phi \). \( \text{T} \) implements this scheme by making it possible to multiply tori by any real number and add them: these operations are interpreted as the corresponding operations on each \( S_n \) and each parameter of \( \Phi \). \( \text{Kaasalainen \ & Binney} \ 1994 \) showed that linear
interpolation in $J$ provides an acceptable approximation, and we employ this method here, although in principle a higher-order interpolation scheme could be developed that takes advantage of the values of the derivatives $\partial S_n/\partial J$ for each fitted torus.

Code to enable the construction of tori near the torus $T$ reads

```cpp
Actions Jbar=T.actions(),dJ;
for(int j=0;j<3;j++) dJ[j]=.03;
Torus Tg; Actions Jg;
Torus ***Tgrid = PJM::matrixTorus>(2,2,2);
for(int i=0;i<2;i++)
 Jg[0]=Jbar[0]+(i-.5)*dJ[0];
for(int j=0;j<2;j++)
 Jg[1]=Jbar[1]+(j-.5)*dJ[1];
for(int k=0;k<2;k++)
 Jg[2]=Jbar[2]+(k-.5)*dJ[2];
Tg.SetToyPot(Phi,Jg);
Tgrid[i][j][k].FitWithFixToyPot(Jg,Tg.TP(),Phi,.001);

Torus T2=InterpTorus(Tgrid,Jbar,dJ,Jbar);
```

Here we first declare an array of eight tori arranged at the corners of a cube in action space surrounding $T$ and $0.1 \, \text{kpc}^2 \, \text{Myr}^{-1}$ on a side. Then we create a torus at each grid point by a two-step process: SetToyPot finds the parameters of a suitable toy potential, and then FitWithFixToyPot optimises the $S_n$ for this $\Phi^T$. Finally by interpolation on the corners of the cube we create a torus $T_2$ that should be very close to the original torus $T$. Analogously to Fig. 4, Fig. 6 shows comparisons of integrated orbits and time sequences over tori constructed by this interpolation procedure. The grid was formed by the corners of a cuboid in action space centred on $\mathbf{J} = (0.5, 0.5, 3.55) \, \text{kpc}^2 \, \text{Myr}^{-1}$. The grid's diagonal is $\Delta J = (0.2, 0.2, 0.7) \, \text{kpc}^2 \, \text{Myr}^{-1}$. The actions at which two tori were obtained were randomly chosen from within the cuboid and are given below each right-hand panel of Fig. 6. The dashed red lines show the result of Runge-Kutta.

Torus $T_2=\text{InterpTorus}(Tgrid,Jbar,dJ,Jbar)$;

2 Normally tori are fitted by AutoFit, which adjusts the toy potential in parallel with the $S_n$. Here we use FitWithFixToyPot, which fits only the $S_n$, because when $\Phi^T$ is fitted simultaneously with the $S_n$, trade-offs between them tend to impair smooth variation of the parameters with $J$.

---

**Figure 4.** Orbits found by tracing the path associated with the expected linear increase in $\theta$ using the torus machinery (solid black lines) or by Runge-Kutta integration in the gravitational potential (red dashed lines). The two agree to high precision.
integration, while the black lines show time sequences along two tori obtained by interpolation. The curves overlie each other to a satisfactory extent.

An independent check on the accuracy of an interpolated torus is provided by the RMS variation $\delta H$ of the Hamiltonian (1) over the torus. The grid tori were fitted with tolerance parameter $\text{tol}_J = 0.001$, which gives us an average $\delta H = 2 \times 10^{-3}$ kpc$^2$ Myr$^{-2}$ for these tori. The average interpolated torus has $\delta H = 4 \times 10^{-3}$ kpc$^2$ Myr$^{-2}$, which indicates perfectly acceptable accuracy.

In a future paper we will use torus interpolation to model stellar streams.

5 N-BODY MODELS

As described in Section 2.6, TM provides a means of choosing initial conditions for N-body simulations of realistic disc galaxies that start in perfect equilibrium. Here we illustrate this technique in the case of a tracer population that moves in a fixed potential. However, now that Binney & Piffl (2013) have shown how to determine the potential that is jointly created by populations of stars and dark-matter particles that each have prescribed DFs $f(J)$, one could in principle use tori to set up the initial conditions of a self-consistent galaxy by first relaxing the joint potential as Binney & Piffl (2013) describe and then using a pointer $\Phi$ to that potential. Here $\Phi$ points to the PM11 potential.

Fig. 5 shows plots for a population sampled from a DF of the form (3). The parameters of the DF are $R_d = 3$ kpc, $R_o = 6.67$ kpc, $\sigma_{v,0} = 20$ km s$^{-1}$ and $L_o = 10$ kpc km s$^{-1}$. 50 000 values of $\boldsymbol{J}$ were sampled from this DF using an instance of tunableMCMC. We find the corresponding tori, and from each torus sample 20 values of $\theta$, so we have $10^6$ particles in all. On a single core of a typical laptop it takes 90 minutes to fit the 50 000 tori (a rate of $\sim 10$ s$^{-1}$) and 2 minutes to sample the $10^6$ particles (a rate of $\sim 10 000$ s$^{-1}$). Both tasks are trivially parallelisable.

The full black lines in Fig. 5 show the surface density, radial and vertical velocity dispersions, disk thickness and vertical profile in the range $7 \text{kpc} < R < 9 \text{kpc}$ that result from the sampling. The dashed red lines show the same profiles after the orbit of every particle has been evolved with a Runge-Kutta integrator for 5 Gyr. The differences between the initial and evolved distributions are tiny and consistent with Poisson noise. This demonstrates that the DF is has been properly sampled, so the initial distribution is consistent with the Jeans theorem.

6 RESONANCES

Real galaxy potentials are almost certainly not integrable. That is, these potentials manifest the phenomenon of resonant trapping, in which orbits librate around an orbit with commensurable fundamental frequencies, so $\boldsymbol{N} \cdot \Omega = 0$ for a vector $\boldsymbol{N}$ with integer components. The extent of this phenomenon varies widely from potential to potential, for reasons that are not fully understood (see Binney & Tremaine 2008, §3.7.3 for an interesting example).

When orbits are effectively two-dimensional (as in an axisymmetric potential), the extent of resonant trapping can be determined from surfaces of section. Resonant trapping of fully three-dimensional orbits is best probed with a frequency map (Laskar 1993; Binney & Tremaine 2008, §3.7.3(b)). In general the fraction of phase space occupied by trapped orbits is small in typical axisymmetric potentials, and moderate in triaxial potentials that have large core radii and low pattern speeds. Shrinking the core radius of a triaxial potential increases the fraction of trapped orbits (Merritt & Valluri 1999), and even with a large core radius, orbits comparable in size to the potential's corotation radius have a significant probability of being resonantly trapped.

Resonantly trapped orbits are quasiperiodic like their untrapped cousins. But when the regions of influence of individual resonances overlap, orbits cease to be quasiperiodic (Chirikov 1979) and one says that they are chaotic. Numerical experiments suggest that many chaotic orbits are successively trapped by different resonances, with the consequence that their frequencies are stable for only brief periods of time.

When we use a torus-mapping code, we pre-determine the gross structure of the image torus by specifying the toy potential and any point transformation, and the code merely

---

3 As explained in Section 2.6, some values of $\boldsymbol{J}$ occur $w > 1$ times in the MC chain, and in this case $\boldsymbol{J}$ is specified only once but given weight $w > 1$. We sample 50 000 distinct tori, some with weights $w_i > 1$. Then the probability that the $r$th torus will be drawn from this library is $w_r / \sum_j w_j$, and on the selected torus 20 points are chosen.
achieve a small specified value of \( \text{tol} \). When such a non-resonant orbit has the actions these orbits would have if they were not resonant. In reality no orbit has these values of \( J_r \) and \( J_z \), for many values of \( J_z \) and at top and bottom when \( J_0 \) is larger. Orbits with \( J_0 = 1.15 \text{kpc}^2 \text{Myr}^{-1} \) are not trapped by the 1:1 resonance.

In the PM11 potential, trapping such that the relative phases of the \( R \) and \( z \) oscillations librates around 0 or \( \pi \) occurs at \( J_0 \lesssim 1.15 \text{kpc}^2 \text{Myr}^{-1} \) (upper panels of Fig. 7). While at larger values of \( J_0 \) the relative phase of the \( R \) and \( z \) librates around \( \pm \pi/2 \). Thus a surface of section that showed both orbits such as those plotted in Fig. 7 and their mirrors would show a pair of islands that touched at two points on the \( R \) axis when \( J_0 < 1.15 \text{kpc}^2 \text{Myr}^{-1} \) and at top and bottom when \( J_0 \) is larger. Orbits with \( J_0 = 1.15 \text{kpc}^2 \text{Myr}^{-1} \) are not trapped by the 1:1 resonance.

The black curves in the surfaces of section would run through these islands. They show the cross section of the torus that has the actions these orbits would have if they were not resonant. In reality no orbit has these values of \( J_r \) and \( J_z \). Binney & Spergel (1984) called these “missing actions”. Since these resonant orbits are quasiperiodic, they do have actions, but one of these actions measures the extents of their libration around the trapping resonant orbit and not the extent of their radial and vertical excursions.

In summary, with \( \text{Tm} \) we can generate tori for any values of the actions. Even though the frequencies of some tori will be commensurable, all tori represent non-resonant orbits in the sense that the tori impose no phase relationship between the \( R \) and \( z \) oscillations. For many values of \( J_z \) non-resonant orbits exist with these actions, and \( \text{Tm} \) should be able to generate these orbits to arbitrary precision, with the consequence that on the computed torus the \( \text{rms} \) fluctuation in \( H \) can be made arbitrarily small. In some ranges of \( J_z \) it is impossible to fit tori of the specified form into surfaces of constant \( H \). Consequently, on any tori with these values of \( J_z \) that \( \text{Tm} \) constructs, \( H \) will fluctuate by a non-negligible amount.

In phase in the sense that smallest \( z \) occurs at smallest \( R \). But with \( \text{Tm} \)'s zero-points for \( \theta \) this implies \( \theta_s - \theta_z \simeq \pi/2 \).

Figure 6. Orbits found by tracing the path associated with the expected linear increase in \( \theta \) using interpolated tori (solid black lines) or by Runge-Kutta integration in the gravitational potential (red dashed lines).
If we use $T_{\text{m}}$ to foliate phase space with tori, and assign to the torus $J$ the average value, $\bar{H}(J)$ that $H$ takes on that torus, then $\bar{H}$ is an integrable Hamiltonian for which we have angle-action coordinates. The difference
\[
\Delta(\theta, J) = H(\theta, J) - \bar{H}(J)
\]
is a small perturbation. The existence of this perturbation to an integrable Hamiltonian explains why real orbits are trapped by the resonance, and the trapping process can be studied with first-order Hamiltonian perturbation theory (Kaasalainen & Binney 1994a, Kaasalainen 1992). In the example just discussed, $\Delta(\theta, J)$ at a given value of $\theta$ evidently changes sign as $J_0$ varies across the value $J_0 = 1.15 \, \text{kpc}^2 \text{Myr}^{-1}$, and vanishes at this particular value of $J_0$.

Crucial for the construction of $\bar{H}$ is that $T_{\text{m}}$ creates tori for adjacent values of the actions which touch but do not cross: if we are to have a global system of angle-action coordinates, each point in phase space must be on precisely one torus. This requirement that tori constructed for neighbouring values of $J$ do not cross is non-trivial.

The existence of resonant trapping has implications for the choice of the tolerance parameter $\text{tol}_{\bar{H}}$. First, given the logical impossibility of driving $\delta H$ to zero when trapping occurs, very small values of $\text{tol}_{\bar{H}}$ are inappropriate: the specified value of $\text{tol}_{\bar{H}}$ should be large enough for the task $T_{\text{m}}$ is set to be feasible. Moreover, in parts of action space that correspond to orbits that are strongly influenced by a resonance that nevertheless does not trap them, it may be expedient to avoid small values of $\text{tol}_{\bar{H}}$ and closely fitting tori in order to prevent adjacent tori crossing. That is, if you want a clean foliation of phase space with tori, you should limit the extent to which resonances distort tori by using a moderate value of $\text{tol}_{\bar{H}}$. We plan to examine more carefully the many issues raised by orbital trapping in a forthcoming paper.

6.1 Star-streaming in the $R_z$ plane?

Given that there are orbits with a well defined sense of circulation in the $R_z$ plane, one could construct an equilibrium Galaxy model in which $\langle v_z \rangle \neq 0$ in the Galactic plane. This is a remarkable possibility. Naively one would interpret a non-vanishing value of $\langle v_z \rangle$ in the Galactic plane as evidence for a non-equilibrium process, such as flapping or warping. Careful examination of the range of values of $\langle v_z \rangle$ in which there were more stars moving up/down than down/up could distinguish between the equilibrium and non-equilibrium possibilities: in the former case the up/down asymmetry would be confined to velocities characteristic of the 1:1 resonance. Moreover, a net upward flow of stars at one radius would be balanced by a net downward flow at a small/larger radius in a velocity range that could be accurately predicted given knowledge of the potential. The Sun’s motion perpendicular to the plane is measured relative to stars that are too tightly confined to the plane to be affected by the resonance, so the conventional value, $v_z = 7.25 \, \text{km s}^{-1}$, is secure.

As a massive star cluster is tidally disrupted and donates its stars to the thick disc, it will be moving either down or up through the disc at a particular radius. If this radius is one associated with orbits appropriately trapped by the 1:1 resonance, its stars will subsequently have a net sense of circulation in the $R_z$ plane. A burst of star formation induced by a massive, dense cloud hitting the disc at an appropriate radius could likewise induce a net circula-
motion in part of the thick disc. Consequently, hunting for this phenomenon is star catalogues seems a worthwhile activity.

7 CONCLUSION

We have presented a package of C++ code, ℳℳ, that allows the user to find the orbital torus associated with given values of the actions J in any axisymmetric potential Φ. Once a torus has been fitted, it is trivial to determine the star’s position, velocity and contribution to the local density for any value θ of the star’s angle variables. Alternatively, one can choose a location x and determine whether the star will ever visit that location, and if so with which velocities and how much it will contribute to the density there. Since the orbital frequencies are available, the star’s trajectory from any location on the orbit can be readily recovered without integrating the equations of motion. Equally, one can recover the curve on which its consequents will lie in a surface of section.

On a typical single processor ∼ 10 tori can be fitted per second. Evaluating quantities for a given torus takes just a few ms. Although a torus completely describes a star’s motion for all times, it can be stored in ∼ 100 numbers. ℳℳ provides for the construction of new tori by interpolation on fitted tori, which is an exceedingly fast operation.

Initial conditions that are in statistical equilibrium in a given potential are readily chosen with tools provided in ℳℳ: in addition to torus-finding and manipulating routines, the package includes distribution functions for realistic discs and a MCMC sampler.

Our discussion of the connection between resonant trapping and torus mapping has been rather superficial because this topic merits a paper on its own. The key points are (i) that torus mapping provides accurate representation of all orbits that are not resonantly trapped, and (ii) that it provides the means to construct an integrable Hamiltonian that can be used to compute resonant trapping precisely, and to gain a deeper understanding of this phenomenon and its implications for galactic dynamics. Examination of trapping by the 1:1 resonance is a realistic Galactic potential indicates that at some radii and amplitudes of vertical excursions, stars may have a well defined sense of circulation in the Rz plane.

The ℳℳ package can be downloaded from github.com/PaulMcMillan-Astro/Torus. It contains a number of example programmes, including ones that produce the data plotted here. Development of ℳℳ continues, and improvements and additions will be made from time to time. Relevant software can be downloaded from github.com/GalacticDynamics-Oxford/ABGal, that includes provision for linking ℳℳ to code implementing the Stäckel fudge, so that approaches combining the techniques (see e.g. Sanders & Binney[2013]) are easy to use.

ACKNOWLEDGEMENTS

Several colleagues have made major contributions to this project. In the early 1990s Colin McGill and Mikko Kaasalainen contributed to most of the key ideas and wrote early FORTRAN codes. In 1995–6 Walter Dehnen rewrote Kaasalainen’s code in C++ and most of the class structure of ℳℳ derives from this rewrite. The project has been generously supported by successive UK research councils: SERC prior to 1994, PPARC from 1994–2007, and latterly by STFC under grants ST/G002479/1, ST/J00149X/1, and ST/K00106X/1.

The research leading to these results has also received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 321067.

PJM gratefully acknowledges financial support from the Swedish National Space Board and the Royal Physiographic Society in Lund.

We thank Payel Das and Eugene Vasiliev for useful comments on a draft.

REFERENCES

Arnold V., 1989, Mathematical methods of classical mechanics. Vol. 60, Springer
Bacon R., Simien F., Monnet G., 1983, A&A, 128, 405
Binney J., 2010, MNRAS, 401, 2318
Binney J., 2012a, MNRAS, 426, 1324
Binney J., 2012b, MNRAS, 426, 1328
Binney J., 2013, Dynamics of secular evolution. Cambridge University Press, p. 259
Binney J., Kumar S., 1993, MNRAS, 261, 584
Binney J., McMillan P., 2011, MNRAS, 413, 1889
Binney J., Piufil T., 2015, MNRAS, p. xx
Binney J., Spergel D., 1984, MNRAS, 206, 159
Binney J., Tremaine S., 2008, Galactic Dynamics: Second Edition. Princeton University Press
Binney J. J., Davies R. L., Illingworth G. D., 1990, ApJ, 361, 78
Bovy J., 2014, ApJ, 795, 95
Bovy J., Rix H.-W., 2013, ApJ, 779, 115
Chirikov B. V., 1979, Phys. Rep., 52, 263
Dehnen W., 2009, MNRAS, 395, 1079
Dehnen W., Binney J., 1998, MNRAS, 294, 429
Gebhardt K., Richstone D., Tremaine S., Lauer T. R., Bender R., Bower G., Dressler A., Faber S. M., Filippenko A. V., Green R., Grillmair C., Ho L. C., Kormendy J., Magorrian J., Pinkney J., 2003, ApJ, 583, 92
Häfner R., Evans N. W., Dehnen W., Binney J., 2000, MNRAS, 314, 433
Henon M., 1959, Annales d’Astrophysique, 22, 126
Jeans J. H., 1915, MNRAS, 76, 70
Kaasalainen M., 1994, MNRAS, 268, 1041
Kaasalainen M., 1995, MNRAS, 275, 162
Kaasalainen M., Binney J., 1994a, Physical Review Letters, 73, 2377
Kaasalainen M., Binney J., 1994b, MNRAS, 268, 1033
Laakso T., Kaasalainen M., 2013, Physica D Nonlinear Phenomena, 243, 14
Laskar J., 1993, Celestial Mechanics and Dynamical Astronomy, 56, 191
Lichtenberg A. J., Lieberman M. A., 1983, Regular and stochastic motion. Springer
McGillic. & Binney J., 1990, MNRAS, 244, 634
McMillan P. J., 2011, MNRAS, 414, 2446
McMillan P. J., Binney J. J., 2012, MNRAS, 419, 2251
APPENDIX A: WHAT TM ACTUALLY DOES

Classically, angle-action coordinates \((\theta, J)\) are obtained by solving the Hamilton-Jacobi equation for the generating function \(S(x, J)\) of the canonical transformation \((x, v) \leftrightarrow (\theta, J)\). Since analytic solutions of the Hamilton-Jacobi equation are not available for generic potentials, TM obtains the required transformation by compounding up to three canonical transformations:

\[
(\theta, J) \xrightarrow{S_n} (\theta^T, J^T) \xrightarrow{\text{HJ eqn}} (x^T, v^T) \xrightarrow{\text{Point transf}} (x, v).
\]  

(A1)

The point transformation \(x^T(x)\) is employed only if \(J_x/J_r > 0.05\) and an attempt to fit a torus without a point transformation has failed. If it is required, TM finds a point transformation that maps the relevant circular orbit \(J_r^T = 0\) in the toy potential \(\Phi^T\) into the shell orbit \(J_s = 0\) in the Galactic potential. Otherwise it just uses the identity transformation. Next it solves for the coefficients \(S_n\) of the generating function \(2\) and the optimum parameters of \(\Phi^T\). Finally it determines the derivatives \(\partial S_n/\partial J\), which are required to map between toy and true angle variables,

\[
\theta = \theta^T + 2 \sum_{n > 0} \frac{\partial S_n}{\partial J} \sin(n \cdot \theta^T).
\]  

(A2)

Fig. A1 illustrates the central idea of torus mapping with a simple one-dimensional example that does not require a point transformation. In each panel the full black curve shows the phase space trajectory of the orbit we seek to model. The angle-action coordinates of a default toy potential \(\Phi^T\) constitute a system of polar coordinates \((\theta^T, J^T)\) for phase space. In the leftmost panel this system is symbolised by a series of circles of constant \(J^T\). The dashed red curve shows the coordinate curve that encloses the same area as the orbit’s curve, and therefore has \(J^T = J\), the orbit’s action.

In the next panel the parameters of \(\Phi^T\) have been adjusted to bring the dashed red curve \(J^T = J\) into closer alignment with the orbit. In the next panel a generating function with single coefficient \(S_n\) has been used to deform the red curve whilst leaving the area it encloses constant. In the final panel a generating function with several \(S_n\) has been used to bring the red curve into alignment with the black curve to the precision required by the user.

A1. The generating function

Given that \(\Phi\) is mirror symmetric in the Galactic plane, the general form \(2\) of the generating function can be specialised to \(\text{(McGill & Binney 1990)}\)

\[
S(\theta^T, J) = \theta^T \cdot J + 2 \sum_{n} S_n(J) \sin(n \cdot \theta^T).
\]  

(A3)

where the \(S_n\) are real, \(n_r > 0\) for \(n_v \geq 0\), and only even values of \(n_o\) occur – the allowed values of \(n\) are illustrated in Figure A2. At any point \(\theta^T\) on the torus with actions \(J\), the toy actions are then given by

\[
J^T = J + 2 \sum_{n > 0} n S_n(J) \cos(n \cdot \theta^T).
\]  

(A4)

For given \(J\) and a regularly-spaced grid of values \(\theta^T\), TM evaluates \(J^T\) and uses the analytic relation between \((\theta^T, J^T)\) and \((x^T, v^T)\) and then the point transformation \(x(x^T)\) to evaluate \(H(x, v)\), and thus determines the variance \((\delta H)^2\) of \(H\) around the torus. The Levenberg-Marquardt algorithm \(\text{(Press et al. 1986)}\) is then used to adjust the \(S_n\) and possibly the parameters of \(\Phi^T\) to minimise \((\delta H)^2\). The Levenberg-Marquardt algorithm requires the derivatives of \(H\) with respect to the \(S_n\) and the parameters of \(\Phi^T\), and these are all analytically computed using the chain rule. On account of the symmetries of the potential, the grid in \(\theta^T\) can be restricted to \(0 \leq \theta^T_s < \pi\) and \(0 \leq \theta^T_r < \pi\).
The number of available equations increases much faster than the squares sense. We refer to this process as an “angle fit”. Angle fitting will shortly be changed (Vasiliev et al., in preparation) to the algorithm introduced by Binney & Kumar (1991).

Illustration of the torus method in the 1D case. Angle-action coordinates in the toy potential provide a polar coordinate system (dotted lines) in the q-p plane with the actions giving a radius and the angle as a polar angle (left). To fit the true orbit with actions J′ (solid line) we start with the line J′(0) = J′ in a toy potential (red dashed - first panel), then adjust a parameter of the toy potential such that this provides a better fit to the orbit (second panel). We then add terms periodic in θ to conserve the total area within the red dashed curve (i.e. conserve the action, which allow us to describe the true orbit with greater and greater accuracy as we add more terms (third and fourth panels). Modify (i) to use (x, vx) instead of (q,p); (ii) delete coord curves from 3rd & 4th panels.

TM starts with a small number of coefficients Sn, by default those with n = (1, 0), (2, 0) (3, 0), (0, −2), (0, −4), (1, 2), (1, −2), (1, 4). After an optimisation of these coefficients it adds coefficients at values of n that are adjacent to points at which |Sn| has been found to be above a threshold value that is a fixed fraction of the largest |Sn|. Each Sn is set to zero on its introduction. When additional Sn are introduced, it may be necessary to make the grid in θ denser to ensure that the sampling density around the torus comfortably exceeds the Nyquist frequency associated with the largest value of |n|. Consequently, the computational cost of each optimisation step increases quite rapidly as the number of Sn increases. The number of optimisation steps is limited, by default to 10. After 10 steps there are typically ~ 700 non-zero Sn.

Once a satisfactory variance in H has been achieved, TM solves for the derivatives of the Sn, which appear in the relation (A.2) between the toy and true angles. The derivatives are obtained analytically rather than by finite differences. Currently TM does this using the algorithm introduced by Kaasalainen & Binney (1994). From several initial conditions drawn from the torus, TM integrates the equations of motion for M time-steps and computes the toy angles along each time-step. These must satisfy

\[ \theta_i(0) + \Omega_i t = \theta_i^T(t_i) + 2 \sum_{n>0} \frac{\partial S_n(J)}{\partial J} \sin[n \cdot \theta_i^T(t_i)] \]

for i = 1, . . . , M. Hence each integration yields 3M equations in which θ(0), Ω, and ∂Sn(J)/∂J appear as unknowns. The equations are linear in the unknowns and for M ≫ 1 the number of available equations increases much faster than the number of unknowns. We solve these equations in a least-squares sense. We refer to this process as an “angle fit”.

The various steps just described are each implemented by an instance of a distinct class:

- The n and corresponding Sn, are stored and manipulated by an instance Sn of the class GenPar.

- The n and the corresponding values ∂Sn/∂J are stored and manipulated by an instance A of the class AngPar.

- An instance GF of the class GenFnc handles the mapping from (J, θ) to (J′, θ′T) for a fixed value of J. It also finds the derivatives (∂J′/∂θ)T. Sn is a member of GF.

- An instance GFF of the class GenFncFit performs the same tasks as GF but focuses on the transformations required when performing an action fit, where we have a known, regular grid of points in θ at which the transformation has to be calculated many times. GFF also provides the derivatives ∂J′/∂Sn.

- An instance AM of the class AngMap handles the mapping between (J, θ) and (J, θ′) (eq (A.2)). This mapping works in either direction, and the values θ′/∂θ can also be found. A is a member of AM.

- An instance T of the class Torus has GF and AM as members.

A2 The Toy Potential

The job of the toy potential is to provide analytic angle-action coordinates (θT, JT). Candidates include the harmonic oscillator potential, Hénon’s isochrone potential (McGill & Binney 1990), and a Stäckel potential (Laakso & Kaasalainen 2013). TM uses the generalised effective isochrone potential

\[ \Phi_{\text{eff}}^T(r, \theta) = \frac{-GM}{b + \sqrt{b^2 + (r - r_0)^2}} + \frac{L_2^2}{2 [(r - r_0) \sin \theta]^2}, \]

where \( \theta \) is the usual spherical polar coordinate (not to be confused with a dynamical angle coordinates), and \( M, b, L_2, r_0 \) are the potential’s parameters. Since we are modelling the motion in the (R, z) plane, we can treat \( L_z \) as a parameter of the toy effective potential that is distinct from the actual z-component of angular momentum \( J_z \). Appendix A2 of McGill & Binney (1990) gives the formulae needed to compute \((R, z, v_R, v_z)\) from \((\theta, \theta_z, J_r, J_z)\) with the provisos: (i) for \( \cos \theta \) in McGill & Binney read \( \sin \theta \), (ii) for \( J_0 \) read \( J_z \), and (iii) for \( r \) read \( r - r_0 \). Expressions for \( \theta_z^T \) are given below. If \( \theta_z^T \) is to increase in the same sense as \( \theta_0 \), \( L_z \) and \( J_0 \) must have the same sign.

© 0000 RAS, MNRAS 000, 000–000
The parameters of $\Phi^T$ actually used by $\text{TM}$ are $L_z, r_0$, $\gamma \equiv \sqrt{GM}$ and $\beta \equiv \sqrt{\kappa}$.

This parametrisation ensures that unphysical negative values of $M$ and $b$ cannot be inadvertently chosen during torus fitting.

The class $\text{ToyMap}$ is a base class for any mapping between $(\Theta^T, J^T)$ and $(x^T, v^T)$. Having this base class facilitates future use of the tori of a three-dimensional harmonic oscillator, but currently the only class of this kind that is implemented is $\text{ToyIsochrone}$, which specifies the mapping in case of the generalised effective isochrone potential. It also specifies the calculation of the partial derivatives of $(x^T, v^T)$ with respect to $J^T, \Theta^T$ and the parameters of the toy potential.

### A3 Point transformation

Unless $J_r/J_z$ is small, a torus of $\Phi^T$ can be mapped onto a torus of the Galactic potential using only the generating function $\text{(A3)}$. Unfortunately for small values of $J_r/J_z$ a more sophisticated treatment is necessary.

As $J_r \to 0$ eq. $\text{(A3)}$ implies negative values of $J^T_r$ unless all the $S_n \to 0$, so the transformation generated by $S(\Theta^T, J)$ tends to the identity. However, while the shell orbits $J^T_r = 0$ of the isochrone potential lie on spheres, the shell orbits $J_r = 0$ of a flattened Galactic potential do not (Figure $\text{A3}$). Consequently, along a shell orbit in a Galactic potential $r$ oscillates, so $p_r \neq 0$. But if $p_r \neq 0$, then $J^T_r \neq 0$ also, because $p_r$ is non-zero only on eccentric orbits. It follows that the generating function $\text{(A3)}$ is insufficiently general to yield image tori that have small radial actions.

Kaasalainen & Binney (1994b) solved this problem by combining the canonical transformation generated by eqn. $\text{(A3)}$ with a point transformation $x \to x^T(x)$ of the form

$$r, \vartheta \to (r^T, \vartheta^T) = (\xi(\vartheta)r, \eta(r)\vartheta^T).$$

(A8)

Here $\xi$, $\eta$ and $\zeta$ are functions to be determined such that the shell orbit of $\Phi^T$ with the given $(J_r, J_z)$ is mapped into the corresponding shell orbit of the Galactic potential. Qualitatively, we want $\eta \sim 1$ and $\zeta \sim \vartheta^T$; $\xi$ is chosen such that the shell orbit of the target potential is $r^T = a$, where $a$ is the radius of the toy shell orbit. Since the radius and angular extent of the shell orbit in $\Phi^T$ depends on the parameters of $\Phi^T$, the latter must be fixed before the point transformation is determined, and if it changed by the Levenberg-Marquardt routine as it minimises $\delta H$, the shell orbits will no longer be mapped into each other and tori $J_r = 0$ will cease to be accessible. We set $r_0 = 0$, $L_z = J_\vartheta$, and (rather arbitrarily) $\beta = \sqrt{3}$. $\gamma$ is chosen such that in $\Phi^T$ the orbit has $r = 1$ and in the formulae below $a$ can be set to unity.

Numerical integration of the Galactic shell orbit yields the radius of this orbit, $r_\vartheta(\vartheta)$ and we immediately have

$$\xi(\vartheta) \equiv \frac{a}{r_\vartheta(\vartheta)}$$

(A9)

because then on the orbit $r^T = \xi r_\vartheta = a$ as required. The upper curve in the right-hand panel of Fig. $\text{A3}$ shows $\xi(\vartheta)$ for the shell orbit plotted in Figure $\text{A3}$.

The generating function of our point transformation is

$$S(r, \vartheta, p_r, p_\vartheta) = \xi r_\vartheta + \eta \vartheta^T p_\vartheta,$$  

(A10)

so

$$p_r = \xi r_\vartheta + \frac{d\eta}{d\vartheta} \vartheta^T p_\vartheta; \quad p_\vartheta = \frac{d\xi}{d\vartheta} r_\vartheta + \eta \frac{d\zeta}{d\vartheta} p_\vartheta.$$  

(A11)

From our integration of the target shell orbit we know $p_r(\vartheta)$ and $p_\vartheta(\vartheta)$ along this orbit. On the toy potential’s shell orbit $p_r^T = 0$ and

$$p_\vartheta^T(\vartheta^T) = \sqrt{L^2 - \frac{L_z^2}{\sin^2 \vartheta^T}}.$$  

(A12)

Finally we use the known relation $r_\vartheta(\vartheta)$ on the target shell orbit to treat $\eta$ as a function of $\vartheta$. Then eqns. $\text{(A11)}$ yield coupled o.d.e.s for $\eta$ and $\zeta$

$$\frac{d\eta}{d\vartheta} = \frac{p_r}{\zeta p_\vartheta}; \quad \frac{d\zeta}{d\vartheta} = \frac{p_\vartheta}{\eta p_\vartheta}.$$  

(A13)

Figure $\text{A4}$ shows the new coordinates, while Figure $\text{A6}$ shows the functions $\xi, \eta$ and $\zeta$ that are obtained by integrating these equations.  

So far we have obtained the functions $\xi$, $\eta$ and $\zeta$ only in the ranges of $r$ and $\vartheta$ covered by the closed orbit. The functions are extended beyond this range by adding single points at the ends of the required ranges, and then fitting a sum of Chebychev polynomials to both these points and the points returned by the numerical integrations. The fitting algorithm does not require the polynomial to pass through the given points. Rather a function is constructed from the points by fitting a quadratic to each set of three points. Then the Chebychev series is fitted in a least squares sense to this function – the coefficients of the Chebychev polynomials are found from integrals of the products of the relevant Chebychev polynomial and the quadratics and the weight function. These integrals are done analytically. By relieving the polynomial of the obligation to pass through the data points, this techniques avoids the danger that the polynomial makes wild excursions between data points.

Figure $\text{A5}$ shows the new coordinates, while Figure $\text{A6}$ shows the functions $\xi, \eta$ and $\zeta$ that are obtained by integrating these equations.  

6 In practice $\text{TM}$ changes these o.d.e.s to ones with a new independent variable $\psi$ before integrating the equations, where $\vartheta = \vartheta_{\text{max}} \sin \psi$, with $\vartheta_{\text{max}}$ the largest value of $\vartheta$ attained on the closed orbit.
torus mapping code

APPENDIX B: EVALUATING $\theta_\phi^T$ IN THE ISOCRONE POTENTIAL

Evaluating $\theta_\phi^T$ in the generalised effective isochrone potential (eq. [A6]) is not, perhaps, as straightforward as might appear from the standard texts. We therefore give the details here.

B1 Non-planar orbits

First let us consider the usual case where $J_\theta \neq 0$ (with $\vartheta$ the usual polar angle). We have found the values of $\theta_\phi^T, \theta_\theta^T$ and $J$ (or equivalently $r, \vartheta, p_r, p_\vartheta$) in the generalised effective isochrone potential (eq. [A8]). For the standard isochrone potential ($r_0 = 0$, no term in $L_z$), we have from equations (3.229) and (3.232) of Binney & Tremaine (2008) that

$$\theta_\phi = \phi - u + \text{sgn}(L_z)\theta_\theta \tag{B1}$$

with $\phi$ the usual azimuthal angle and $\theta_\theta$ determined by $u$.

Care needs to be taken when finding $u$. $u$ is found in the toy Hamiltonian, so $L_z$ is the value used as a parameter in eqn. [A9], and $L = J_\theta^2 + |L_z|$.

Equation (B1) only provides the value of $\sin u$, while $u$ takes values throughout the range $(0, 2\pi)$, so this is insufficient information. We need to take note of the fact that $u = \phi - \Omega$, where in this case $\Omega$ is the longitude of the ascending node, i.e., the line on which an orbit crosses the $(x, y)$ plane with $\vartheta < 0$ (again, in the spherical toy potential, in which the orbital plane does not precess). Assume that $L_z > 0$ and follow the star up from the ascending node (where $u = 0$) until $\vartheta$ stops decreasing. Then it is geometrically clear that $\vartheta = \pi/2 - i$, so $\sin u = 1$ and $u = \pi/2$. Now $\vartheta$ starts to increase and in order to ensure that $u$ continues to increase we need to shift to the other solution of eqn. (B1):

$$u = \pi - \arcsin(\cot i \cot \vartheta). \tag{B2}$$

In summary for $L_z > 0$ we take

$$u = \begin{cases} 
\arcsin(\cot i \cot \vartheta) & \text{for } \vartheta < 0, \\
\pi - \arcsin(\cot i \cot \vartheta) & \text{otherwise}.
\end{cases} \tag{B3}
$$

With this definition, $-\pi/2 < u < 3\pi/2$.

When $L_z < 0$, $i > \pi/2$ and $u$ decreases from zero as the star rises through the ascending node, just as $\phi$ decreases, and eq (B2) still applies.

B2 Planar orbits

When $J_\theta = 0$, the value of $\theta_\theta$ is undefined, so eq. [B3] is essentially meaningless. We have to return to the full expression for the generating function, eqn. (3.231) of Binney & Tremaine (2008), fixing $J_2 = |J_1| \equiv |L_z|$, and $\vartheta = \pi/2$:

$$S = \phi L_z + \int_{r_{\text{min}}}^r dr \epsilon_r \sqrt{2H(L_z, J_r) - 2\Phi(r) - \frac{L_z^2}{r^2}}, \tag{B4}$$

and find $\theta_\phi = \partial S/\partial L_z$. Happily, this is very similar to the equations that have already been solved to find $\theta_\phi$ in the
usual case, so we know that we can solve for $\theta_\phi$: 

\[
\theta_\phi = \phi + \Omega \phi + \Omega r \theta r - \text{sgn}(L) \left[ \tan^{-1} \left( \frac{1 + e}{1 - e} \tan \left( \frac{1}{2} \eta \right) \right) \right],
\]

where $e$, $\eta$ and $c$ are as defined in eqn. (3.240) of Binney & Tremaine (2008) and 

\[
\zeta = \frac{1}{\sqrt{1 + 4 GM \beta / L^2}}.
\]

APPENDIX C: GRAVITATIONAL POTENTIALS

C1 Multi and predefined potentials

The class MultiPotential allows one to build a new potential by adding several previously defined potentials. For example, one can construct the potential of a disc galaxy by adding the potentials of a bulge, a disc and a dark halo.

To create a potential that is the sum of a MiyamotoNagaiPotential and a LogPotential, one writes

```cpp
Potential **PotList = new Potential*[2];
PotList[0] = new MiyamotoNagaiPotential(M,a,b);
PotList[1] = new LogPotential(V0,q,Rc);
Potential *Phi = new MultiPotential(PotList,2);
```

C2 User defined potentials

To create a new potential class, one has to write two new files (the header file and the main code). As an example, we give below the header and code files for the Kepler potential (which is identical to IsochronePotential with $b=0$).

```cpp
// file KeplerPotential.h
#include <cmath>
#include "Potential.h"

class KeplerPotential : public Potential {
 double GM;
public:
 KeplerPotential (const double);
 ~KeplerPotential () {};
 double operator() (const double, const double) const;
 double operator() (const double, double&, double&) const;
 Frequencies KapNuOm (const double) const;
};

APPENDIX D: USER DEFINED DISTRIBUTION FUNCTIONS

To create a new class of df one adds code to the file DF.h. The following example defines a df that is constant for $J_r < 1$, $J_z < 1$ and $0 < J_\phi < J_{\phi\text{max}}$, and zero elsewhere.

class Simple_DF : public DF{
public:
 double JpMax;
 int setup(istream&);
 int setup_full(istream&);
 int NumberOfParameters(){return 1;}
 void Parameters(double*);
 double df(Potential*,Actions);
};

inline int Simple_DF::setup(istream &ifile){
 char type1; ifile >> type1;
 if(type1!='S') {
 cerr << "improper input file\n"
 return 0;
 }
 ifile >> JpMax;
 return 1;
}

inline void Simple_DF::Parameters(double* output){
 output[0] = JpMax;
}

inline double Simple_DF::df (Potential* Phi, Actions J){
 if(J[0]>1 || J[1]>1) return 0;
 if(J[2]<0 || J[2]>JpMax) return 0;
 return 1/JpMax;
}
```

The line

```cpp
DF *sdf=set_DF(ifile);
```

will initialise an instance sdf of Simple_DF with Jpmax = 2 provided (i) the contents of ifile are

* S
  2
and (ii) the following code has been added to the list of possibilities in the definition of DF::set_DF (which is given at the end of the file DF.h):

```c
if(type1=='S'){
 tmpdf = new Simple_DF;
 tmpdf->setup(ifile);
 return tmpdf;
}
```