Cooperative Planning Grant for Cancer Disparities Research Partnership Program

The National Cancer Institute (NCI) invites cooperative planning grant applications to develop models to reduce and eliminate the negative consequences of cancer disparities seen in certain U.S. populations. This grant will support the planning, development, and conduct of radiation oncology clinical research trials in institutions that care for a disproportionate number of medically underserved, low-income, ethnic, and minority populations but have not traditionally been involved in NCI-sponsored cancer research. The grant will also support the planning, development, and implementation of nurturing partnerships between applicant institutions and committed, experienced institutions actively involved in NCI-sponsored cancer research.

The NCI is strongly committed to reducing cancer-related health disparities across the cancer control continuum from prevention to end of life. The NCI supports research to understand the complex causes of disparities in cancer risk, incidence, and mortality, including socioeconomic, cultural, environmental, institutional, behavioral, biological, and other contributing factors seen in the health care delivery system. The overall goal is to understand the causes of health disparities and to develop effective interventions to eliminate these disparities that result in significant negative outcomes.

The populations targeted by this cooperative planning grant tend to access the health care system in the advanced stages of their disease. Because of this, radiation oncology usually represents a major treatment alternative. Therefore, the field of radiation oncology offers a unique opportunity to explore ways to reduce the significant negative consequences of cancer-related health disparities.

Institutions, with the necessary resources, mentoring, and supportive partnership with an experienced and committed research institution, represent an opportunity for conducting and expanding participation in clinical trials developed for radiation oncology and combined modality therapy as well as culturally and societally related research important to the understanding of cancer-related health disparities. However, health care institutions providing cancer services to a disproportionate number of medically underserved, low-income, and/or minority populations, whether urban or rural, often are not linked to the national cancer research enterprise as effectively as the others and often remain out of the reach of the cancer care. Radiation oncologists in these institutions have difficulty starting, developing, and sustaining research programs either independently or collaboratively. Thus, the populations primarily served by these institutions do not readily benefit from the rapid progress being made in cancer research in radiation oncology, and may bear an unequal burden of disease as a result.

It is necessary to address the low involvement in cancer research of health care institutions predominantly serving populations who experience the worst consequences of cancer-related health disparities. The increased involvement of these institutions is needed to develop a stronger national cancer research effort aimed at understanding the disparities of cancer incidence and mortality in those populations. This cooperative planning effort is dedicated to developing stable, long-term radiation oncology clinical research trials, programs, and partnerships to increase the participation of applicant institutions in the nation’s cancer research enterprise.

The four overall objectives and scope of this RFA are to solicit cooperative planning grants that 1) build and stabilize independent and collaborative clinical research capabilities of institutions providing radiation oncology care to populations experiencing the negative consequences of cancer-related health disparities; 2) increase the number of clinical scientists engaged in radiation oncology research by providing access to and participation in clinical trials and the target populations; 3) improve the effectiveness of the applicant institution and its partner institution in developing and sustaining activities focused on radiation oncology clinical research trials and mortality and morbidity in cancer among the target populations, continuing past the award date is 20 September 2003. Applications will only be accepted from health care institutions accredited by the Joint Commission on Accreditation of Health Organizations or free-standing cancer centers accredited by a nationally recognized accrediting body such as the American College of Radiology (either in the United States or in territories under U.S. jurisdiction) that have letters of commitment from potential partners that are NCI-designated cancer centers, RTOG-participating institutions, or other NCI-sponsored cooperative group participating institutions wishing to develop comprehensive partnerships with the applicant institution.

The NCI plans to commit approximately $2.8 million in direct costs in fiscal year 2003 to fund up to four new grants in response to this RFA. Applicants may request a project period of up to five years and an annual budget for direct costs of up to $400,000 per year over five years, excluding one-time capital costs expended in the first year. Awards pursuant to this RFA are contingent upon the availability of funds and the receipt of a sufficient number of meritorious applications. The total project period for applications submitted may not exceed five years. The anticipated award date is 20 September 2003.

Applications must be prepared using the PHS 398 grant application instructions and forms (rev. 5/2001). The PHS 398 is available at http://grants.nih.gov/grants/funding/phs398/phs398.html in an interactive format. The deadline for letters of intent is 20 February 2003, with final applications due 20 March 2003. More information on this RFA is available online at http://grants1.nih.gov/grants/guide/rfa-files/RFA-CA-03-018.html.

Contact: Frank Govern, Radiation Oncology Sciences Program, NCI, Executive Plaza North, 6015A, 6130 Executive Boulevard, MSC 7440, Bethesda, MD 20892-7440 USA, 301-496-6111, fax: 301-480-5785, e-mail: governfr@mail.nih.gov; Norma Coleman, Radiation Oncology Sciences Program, NCI, DCTD, RR, Executive Plaza North, 6015A, 6130 Executive Boulevard, MSC 7440, Bethesda, MD 20892-7440 USA, 301-496-6111, fax: 301-480-5785, e-mail: ccoleman@mail.nih.gov. Reference: RFA No. RFA-CA-03-018

Continued Development and Maintenance of Bioinformatics/Computational Biology Software

Biomedical research laboratories occasionally create software to solve a problem the laboratory faces. These software packages sometimes evolve into a well-designed system that can be easily extended and that is useful to a much broader community beyond the members of the originating laboratory. The goal of this PA is to support the continued development, maintenance, testing, and evaluation of existing software. The proposed work should apply best practices and proven methods for software design, construction, and implementation to extend the applicability of existing bioinformatics/computational biology software to a broader biomedical research community.

This initiative pertains to bioinformatics/computational biology software that is recognized to perform an important function in furthering biomedical research. The software should perform reliably and precisely according to the computing demands of end users. The algorithms that are employed by the software should be well documented. The software should support the continued development, maintenance, testing, and evaluation of this software. The software should be made available to the community of biomedical researchers and the software developers. The software should be made available to the community of biomedical researchers and the software developers. The software should be made available to the community of biomedical researchers and the software developers.
Genetic Architecture, Biological Variation, and Complex Phenotypes

This PA updates PA-98-078, “Genetic Architecture of Complex Phenotypes.” The purpose of this PA is to solicit applications for new studies on genetic variation and the architecture of complex phenotypes. It restates the interest of several components of the NIH in studies of the underlying causes and architecture of complex phenotypes, including human diseases. It is motivated by the amount and complexity of biological data that are being generated and by the understanding that complex phenotypes involve many genetic components that evolve in a variety of environments.

Complex phenotypes are those that exhibit familial clustering, which may mean that there is some genetic component, but that do not occur in Mendelian proportions in pedigrees. Complex phenotypes may be continuous in distribution (e.g., height or blood pressure), or they may be dichotomous (e.g., affected and not affected). The complexity of the factors that cannot accurately predict the expression of the phenotype from knowledge of the individual effects of individual factors considered alone, no matter how well understood each separate component may be.

The past few decades of biological research using largely a reductionist approach have yielded vast amounts of data. In addition, genome sequencing projects, as well as structural and functional genomics initiatives, are producing data far more rapidly than scientists can analyze them and understand their implications to biology and to health. As overwhelming as the current data are, they are just the beginning. Protein structures, DNA sequences, and gene expression patterns vary among individuals, among species, among populations within a species, and across environments. It will soon be possible to utilize information on thousands of variable genetic sites to investigate the relationships among genotypes, phenotypes, and environments.

The term genetic architecture refers to the full range of genetic effects on a trait; however, when studying variation on such a large scale, it is especially important to consider the context or environments in which genetic variation arises, is selected, and is maintained. Genetic architecture is less a fixed property of the phenotype than a characteristic of a phenotype in a particular population. Genetic architecture is a moving target that changes according to genetic and environmental frequencies, distributions, and environmental factors, and such biological properties as age and sex.

Studies of variation or genetic architecture may employ a variety of conceptual approaches. A researcher may consider the combinatorial effects of many variable sites, whether the scale is within a gene, between genes, between alleles or between DNA markers and a disease). However, an organism is a unique consequence of both genes and environment and is created by complex interactions of multiple events and forces. How genes are expressed depends on their cellular, developmental, physiological, and environmental context. This initiative encourages research on biological variation and interactions such as 1) variation in basic biological systems, including sequences, structures, and pathways that direct metabolism and development; 2) variation in these systems within individuals, among individuals, among populations, and among species with the goal of learning how these complex systems interact and evolve; 3) determination of the extent to which genetic architecture is shared across populations and among species; 4) effects of admixture, population history, recombination, mutation, population structure, selection, and drift on the organization of variation; 5) collection and analysis of both new and existing data; 6) tools and models for identifying and measuring important contextual features; and 7) measuring the impact of context on biological data.

Evolution of genome properties: An emerging area of research is the extent to which properties of genomes arise in evolutionary history. Such research has important consequences for understanding genome organization and for interpreting data on genetic and phenotypic variation. Such research could include the evolution of haplotypes, selection for genome structure, and the evolution of recombination and methylation patterns.

Extensions to other organisms: Many organisms have been studied for their value in agriculture or ecology. Thus, there is considerable information about the population structure, natural history, and genetics of these systems. It will be valuable to take advantage of this wealth of information to study variation in the natural settings in which it evolved.

Bioinformatics: The study of biological variation depends heavily on rich data sets; researchers need the ability to access many kinds of information, which includes such biological realities as epistasis, recombination, mutation, protein structure, cell biology, metabolic pathways, development, population history, and evolution.

Applications submitted in response to this PA will be accepted at the standard application deadlines, available at http://grants.nih.gov/grants/dates.htm. Complete information on this PA is available at http://grants1.nih.gov/grants/guide/pa-files/PA-02-110.html. Applications must be prepared using the PHS 398 research grant application instructions and forms (rev. 5/2001), available at http://grants.nih.gov/grants/funding/phs398/phs398.html in an interactive format.

Contact: Irene Anne Eckstrand, Division of Genetics and Developmental Biology, NIGMS, 45 Center Drive, MSC 6200, Bethesda, MD 20892-6200 USA, 301-594-0943, fax: 301-480-2228, e-mail: Irene_Eckstrand@nih.gov; Lisa Brooks, NHGRI, 31 Center Drive, 31/B2B07, Bethesda, MD 20892-2033 USA, 301-435-5544, fax: 301-480-2770, e-mail: lisa_brooks@nih.gov; Winifred Rossi, Genetic Epidemiology and Translational Research, NIA, 7201 Wisconsin Avenue, Suite 3E327, Bethesda, MD 20892-9205 USA, 301-496-3836, fax: 301-402-1784, e-mail: wr33a@nih.gov; Lisa Neuhold, Division of Basic Research, NIAAA, 6000 Executive Boulevard, Suite 402, Bethesda, MD 20892-7003 USA, 301-594-0975, fax: 301-594-6655, e-mail: neuhold@ nih.gov; Steven Moldin, Genetics Research Branch, Division of Neuroscience & Basic Behavioral Science, NIMH, 6001 Executive Boulevard, Room 7189, MSC 9643, Bethesda, MD 20892-9643 USA, 301-443-2037, fax: 301-443-9890, e-mail: smoldin@mail.nih.gov; Robert Karp, Division of Digestive Diseases and Nutrition, NIDDK, 6707 Democracy Boulevard, Room 671, MSC 5450, Bethesda, MD 20892-5450 USA, 301-451-8875, fax: 301-480-8300, e-mail: karp@extra.niddk.nih.gov; Jonathan Pollock, Genetics and Molecular Neurobiology Research Branch, NINDS, 6101 Executive Boulevard, Room 4274, Bethesda, MD 20892 USA, 301-435-1309, fax: 301-594-6043, e-mail: jp183r@nih.gov; Jose Velazquez, Division of Extramural Research and Training, NIEHS, 111 Alexander Drive, Research Triangle Park, NC 27709 USA, 919-541-4606, e-mail: velazqui1@niehs.nih.gov; or Katrina Gwinn-Hardy, NINDS, 6100 Executive Boulevard, Room 2142, MSC 9525, Bethesda, MD 20892 USA, 301-496-5745, fax: 301-402-1501, e-mail: gwinnk@ninds.nih.gov. Reference: PA No. PA-02-110