Uniform structures on differential spaces

Diana Dziewa-Dawidczyk Zbigniew Pasternak-Winiarski*

January 14, 2013

Abstract

The uniform structure on a differential space defined by a family of generators is considered.

Key words and phrases: differential space, uniform structure.

2000 AMS Subject Classification Code 58A40.

1 Introduction

This paper is the second of the series of publications concerning integration of differential forms and densities on differential spaces (the first one is [6]). It has the preliminary character. We recall basic facts from the theory of differential spaces and the theory of uniform structures. After that we describe uniform structures defined on a differential space by families of generators of its differential structure.

Section 2 of the paper contains basic definitions and the description of preliminary facts concerning theory of differential spaces. Foundations of theory of differential spaces can be find in [5]. In Section 3 we give basic definitions and describe the standard facts concerning theory of uniform spaces. We define (in a standard manner) the uniform structure given on a differential space by a family of generators of its differential structure. Section 4 contains basic facts concerning uniform (uniformly continuous) maps. In Section 5 we recall the definition of a complete uniform space and the standard construction of completion of a given uniform space. Here we introduce and investigate the notion of the extension of a differential structure.

Without any other explanation we use the following symbols: \(\mathbb{N} \)-the set of natural numbers; \(\mathbb{R} \)-the set of reals.

*Faculty of Mathematics and Information Science, Warsaw University of Technology, Pl. Politechniki 1, 00-661 Warsaw, POLAND
2 Differential spaces

Let \(M \) be a nonempty set and let \(\mathcal{C} \) be a family of real valued functions on \(M \). Denote by \(\tau_\mathcal{C} \) the weakest topology on \(M \) with respect to which all functions of \(\mathcal{C} \) are continuous.

A base of the topology \(\tau_\mathcal{C} \) consists of sets:

\[
(\alpha_1, \ldots, \alpha_n)^{-1}(P) = \bigcap_{i=1}^{n} \{ p : a_i < \alpha_i(p) < b_i \},
\]

where \(n \in \mathbb{N}, a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{R}, a_i < b_i, \alpha_1, \ldots, \alpha_n \in \mathcal{C}, P = \{ (x_1, \ldots, x_n) \in \mathbb{R}^n; a_i < x_i < b_i, i = 1, \ldots, n \} \).

Definition 2.1 A function \(f : M \to \mathbb{R} \) is called a local \(\mathcal{C} \)-function on \(M \) if for every \(p \in M \) there is a neighbourhood \(V \) of \(p \) and \(\alpha \in \mathcal{C} \) such that \(f|_V = \alpha|_V \). The set of all local \(\mathcal{C} \)-functions on \(M \) is denoted by \(\mathcal{C}_M \).

Note that any function \(f \in \mathcal{C}_M \) is continuous with respect to the topology \(\tau_\mathcal{C} \). In fact, if \(\{ V_i \}_{i \in I} \) is such an open (with respect to \(\tau_\mathcal{C} \)) covering of \(M \) that for any \(i \in I \) there exists \(\alpha_i \in \mathcal{C} \) satisfying \(f|_{V_i} = \alpha_i|_{V_i} \) and \(U \) is an open subset of \(\mathbb{R} \) then

\[
f^{-1}(U) = \bigcup_{i \in I} (\alpha_i|_{V_i})^{-1}(U).
\]

Since \((\alpha_i|_{V_i})^{-1}(U) \) is open in \(V_i \) and \(V_i \in \tau_\mathcal{C} \) we obtain \((\alpha_i|_{V_i})^{-1}(U) \in \tau_\mathcal{C} \) for any \(i \in I \). Hence \(f^{-1}(U) \in \tau_\mathcal{C} \). Bearing in mind that \(U \) is an arbitrary open set in \(\mathbb{R} \) we obtain that \(f \) is continuous with respect to \(\tau_\mathcal{C} \).

We have \(\mathcal{C} \subset \mathcal{C}_M \) which implies \(\tau_\mathcal{C} \subset \tau_{\mathcal{C}_M} \). On the other hand any element of \(\mathcal{C}_M \) is a function continuous with respect to \(\tau_\mathcal{C} \). Then \(\tau_{\mathcal{C}_M} \subset \tau_\mathcal{C} \) and consequently \(\tau_{\mathcal{C}_M} = \tau_\mathcal{C} \).

Definition 2.2 A function \(f : M \to \mathbb{R} \) is called \(\mathcal{C} \)-smooth function on \(M \) if there exist \(n \in \mathbb{N}, \omega \in C^\infty(\mathbb{R}^n) \) and \(\alpha_1, \ldots, \alpha_n \in \mathcal{C} \) such that

\[
f = \omega \circ (\alpha_1, \ldots, \alpha_n).
\]

The set of all \(\mathcal{C} \)-smooth functions on \(M \) is denoted by \(\mathcal{C}_{sc} \).

We have \(\mathcal{C} \subset \mathcal{C}_{sc} \) which implies \(\tau_\mathcal{C} \subset \tau_{\mathcal{C}_{sc}} \). On the other hand any superposition \(\omega \circ (\alpha_1, \ldots, \alpha_n) \) is continuous with respect to \(\tau_\mathcal{C} \) which gives \(\tau_{\mathcal{C}_{sc}} \subset \tau_\mathcal{C} \). Consequently \(\tau_{\mathcal{C}_{sc}} = \tau_\mathcal{C} \).

Definition 2.3 A set \(\mathcal{C} \) of real functions on \(M \) is said to be a (Sikorski’s) differential structure if: (i) \(\mathcal{C} \) is closed with respect to localization i.e. \(\mathcal{C} = \mathcal{C}_M \); (ii) \(\mathcal{C} \) is closed with respect to superposition with smooth functions i.e. \(\mathcal{C} = \mathcal{C}_{sc} \).

In this case a pair \((M, \mathcal{C})\) is said to be a (Sikorski’s) differential space.
Proposition 2.1. The intersection of any family of differential structures defined on a set \(M \neq \emptyset \) is a differential structure on \(M \).

Proof. Let \(\{ C_i \}_{i \in I} \) be a family of differential structures defined on a set \(M \) and let \(C := \bigcap_{i \in I} C_i \). Then \(C \) is nonempty family of real-valued functions on \(M \) (it contains all constant functions). If \(n \in \mathbb{N}, \omega \in C^{\infty}(\mathbb{R}^n) \) and \(\alpha_1, \ldots, \alpha_n \in C \) then for any \(i \in I \) \(\alpha_1, \ldots, \alpha_n \in C_i \) and consequently \(\omega \circ (\alpha_1, \ldots, \alpha_n) \in C_i \). Hence \(\omega \circ (\alpha_1, \ldots, \alpha_n) \in C \) which means that \(scC = C \).

Since \(C \subset C_i \) for any \(i \in I \) we have \(\tau_C \subset \tau_{C_i} \). It means that any subset of \(M \) open with respect to \(\tau_C \) is open with respect to \(\tau_{C_i} \), for \(i \in I \).

Let \(\beta \in C_M \). Choose for any \(p \in M \) a set \(U_p \in \tau_C \) and a function \(\alpha_p \in C \) such that \(p \in U_p \) and \(\beta |_{U_p} = \alpha_p |_{U_p} \). Since \(\alpha_p \in C_i \) and \(U_p \in \tau_{C_i} \), we obtain \(\beta \in (C_i)_M = C_i \) for any \(i \in I \). Then \(\beta \in C \) and consequently \(C_M = C \).

Equalities \(C_M = C = scC \) means that \(C \) is a differential structure on \(M \). \(\square \)

Let \(\mathcal{F} \) be a set of real functions on \(M \). Then, by Proposition 2.1, the intersection \(\mathcal{C} \) of all differential structures on \(M \) containing \(\mathcal{F} \) is a differential structure on \(M \). It is the smallest differential structure on \(M \) containing \(\mathcal{F} \). One can easy prove that \(\mathcal{C} = (sc\mathcal{F})_M \) (see \([4]\)). This structure is called the differential structure generated by \(\mathcal{F} \). Functions of \(\mathcal{F} \) are called generators of the differential structure \(\mathcal{C} \). We have also \(\tau_{(sc\mathcal{F})_M} = \tau_{sc\mathcal{F}} = \tau_\mathcal{F} \) (see remarks after Definitions 2.1 and 2.2).

Let \((M, \mathcal{C})\) and \((N, \mathcal{D})\) be differential spaces. A map \(F : M \to N \) is said to be smooth if for any \(\beta \in \mathcal{D} \) the superposition \(\beta \circ F \in \mathcal{C} \). We will denote the fact that \(f \) is smooth writing

\[
F : (M, \mathcal{C}) \to (N, \mathcal{D}).
\]

If \(F : (M, \mathcal{C}) \to (N, \mathcal{D}) \) is a bijection and \(F^{-1} : (N, \mathcal{D}) \to (M, \mathcal{C}) \) then \(F \) is called a diffeomorphism.

It is easy to show that if \(\mathcal{F} \) is a family of generators of the structure \(\mathcal{D} \) on the set \(N \) then \(F : (M, \mathcal{C}) \to (N, \mathcal{D}) \) iff for any \(f \in \mathcal{F} \) the superposition \(f \circ F \in \mathcal{C} \).

If \(A \) is a nonempty subset of \(M \) and \(\mathcal{C} \) is a differential structure on \(M \) then \(\mathcal{C}_A \) denotes the differential structure on \(A \) generated by the family of restrictions \(\{ \alpha |_A : \alpha \in \mathcal{C} \} \). The differential space \((A, \mathcal{C}_A)\) is called a differential subspace of \((M, \mathcal{C})\). One can easy prove the following

Proposition 2.2. Let \((M, \mathcal{C})\) and \((N, \mathcal{D})\) be differential spaces and let \(F : M \to N \). Then \(F : (M, \mathcal{C}) \to (N, \mathcal{D}) \) iff \(F : (M, \mathcal{C}) \to (F(M), F(M)_D) \).

If the map \(F : (M, \mathcal{C}) \to (F(M), F(M)_D) \) is a diffeomorphism then we say that \(F : M \to N \) is a diffeomorphism onto its range (in \((N, \mathcal{D})\)). In particular the natural embedding \(A \ni x \mapsto i(x) := x \in M \) is a diffeomorphism of \((A, \mathcal{C}_A)\) onto its range in \((M, \mathcal{C})\).

If \(\{ (M_i, \mathcal{C}_i) \}_{i \in I} \) is an arbitrary family of differential spaces then we consider the Cartesian product \(\prod_{i \in I} M_i \) as a differential space with the differential structure
\(\bigotimes_{i \in I} C_i \) generated by the family of functions \(F := \{ \alpha_i \circ pr_i : i \in I, \alpha_i \in C_i \} \), where \(\prod_{i \in I} M_i \ni (x_i) \mapsto pr_j((x_i)) =: x_j \in M_j \) for any \(j \in I \). The topology \(\tau_{\bigotimes_{i \in I} C_i} \) coincides with the standard product topology on \(\prod_{i \in I} M_i \).

A generator embedding of the differential space \((M, C)\) into the Cartesian space is a mapping \(\phi_F : (M, C) \rightarrow (R^F, C^\infty(R^F)) \) given by the formula

\[
\phi_F(p) = (\alpha(p))_{\alpha \in F}
\]

(for example if \(F = \{ \alpha_1, \alpha_2, \alpha_3 \} \) then \(\phi_F(p) = (\alpha_1(p), \alpha_2(p), \alpha_3(p)) \in R^3 \cong R^F \).

Proposition 2.3. Let \(F \) be a family of generators of the differential structure \(C \) on the set \(M \). If \(F \) separates points of \(M \) then the generator embedding defined by \(F \) is a diffeomorphism onto its image. On that image we consider a differential structure of a subspace of \((R^F, C^\infty(R^F))\).

Proof. Since \(F \) separates points of \(M \) it follows from the definition of differential embedding \(\phi_F \) that it is an one-to-one mapping onto its image in \(R^F \). Moreover for any \(f \in F \) we have \(pr_f \circ \phi_F = f \in C \). Since the differential structure \(C^\infty(R^F) \) is generated by the family \(\{ pr_g \}_{g \in C} \) we obtain that the map \(\phi_F \) is smooth with respect to \(C^\infty(R^F) \). It remains to show that the map \(\phi_F^{-1} \) is smooth.

For any \(f \in F \) we have

\[
f \circ \phi_F^{-1} = pr_f|_{F(M)}.
\]

It means that \(f \circ \phi_F^{-1} \in C^\infty(R^F)_{F(M)} \). Since the differential structure \(C \) is generated by \(F \) we obtain \(\phi_F^{-1} \) is smooth. \(\square \)

3 Uniform structures

Let \(X \) be a nonempty set.

Definition 3.1. A set \(\Delta = \{(x, x) : x \in X \} \) is said to be the diagonal of the product \(X \times X \). A set \(V \subset X \times X \) is called a neighbourhood of the diagonal if \(\Delta \subset V \) and \(V = -V \), where \(-V = \{(x, y) : (y, x) \in V \} \).

A family of all neighborhoods of the diagonal is denoted by \(D_X \).

Definition 3.2 If for \(x, y \in X \) and \(V \in D_X \) we have \((x, y) \in V \), then we say that \(x \) and \(y \) are distant less then \(V (|x - y| < V) \). We say that the diameter of a set \(A \subset X \) is less then \(V (\delta(A) < V) \) if for all \(x, y \in A \) we have \(|x - y| < V \). A ball with the center at \(x_0 \in X \) and the radius \(V \) is a set \(K(x_0, V) = \{ x \in X : |x_0 - x| < V \} \). The set

\[
2V := \{(x, y) \in X \times X : \exists z \in X [(x, z) \in V \land (x, z) \in V]\}.
\]
Definition 3.3 A uniform structure U on X is a subfamily of D_X satisfying the following conditions:

1) $(V \in U \land V \subset W \in D_X \Rightarrow (W \in U))$;

2) $(V_1, V_2 \in U) \Rightarrow (V_1 \cap V_2 \in U)$;

3) $\forall V \in U \exists W \in U [2W \subset V]$;

4) $\bigcap U = \Delta$.

If U is a uniform structure on X then the pair (X, U) is called a uniform space.

Definition 3.4 A base of a uniform structure U in X is a family $B \subset U$ such that for all $V \in U$ there exists $W \in B$ satisfying $W \subset V$.

Each base B has following properties:

B1) $(V_1, V_2 \in B) \Rightarrow (\exists V \in B [V \subset V_1 \cap V_2])$;

B2) $\forall V \in B \exists W \in B [2W \subset V]$;

B3) $\bigcap B = \Delta$.

On the other hand it can be easy proved that if a family B of neighbourhoods of the diagonal of a set X fulfills conditions (B1)-(B3) then there exists exactly one uniform structure U on X such that B is a base of U.

Every neighbourhood $V \in D_X$ of the diagonal defines the covering $P(V) = \{K(x, V)\}_{x \in X}$ of the set X. If U is a uniform structure in X then every covering O of X for which there exists $V \in U$ such that $P(V)$ is a refinement of O is said to be a uniform covering (with respect to U).

Each uniform structure on X defines a topology on X. In other words each uniform space (X, U) defines a topological space (X, Θ).

Theorem 3.1 If U is a uniform structure on X, then a family $\Theta = \{G \subset X : \forall x \in G \exists V \in U \cdot [K(x, V) \subset G]\}$ is a topology in X and (X, Θ) is T_1-space. A topology Θ is said to be a topology given in X by uniform structure U and is denoted by τ_U.

For the proof see [1] or [2].

It can be proved that a topology τ on a topological space X is given by some uniform structure on X if and only if X is a Tichonov space (see [2]).
Let \(\varrho \) be a pseudometric on a uniform space \((X, \mathcal{U})\). If for every \(\varepsilon > 0 \) there is \(V \in \mathcal{U} \) such that if \(|x - y| < V\) then \(\varrho(x, y) < \varepsilon \), then \(\varrho \) is called a uniform pseudometric (with respect to \(\mathcal{U} \)).

We can defined a uniform structure on three different ways: (i) if we give a base; (ii) if we give a family of uniform coverings or (iii) if we give a family of pseudometrics (see [2]).

Let \((M, \mathcal{C})\) be a differential space such that \(\mathcal{C} = \text{scF}_M \) and \((M, \tau_c)\) is a Hausdorff space (the last is true iff the family \(\mathcal{C} \) separates points in \(X \) iff the family \(\mathcal{F} \) separates points in \(X \)). On the set \(M \) the family \(\mathcal{F} \) defines the uniform structure \(\mathcal{U}_F \) such that the base \(\mathcal{B} \) of \(\mathcal{U}_F \) is given as follows:

\[
\mathcal{B} = \{ V(f_1, \ldots, f_k, \varepsilon) \subset M \times M; k \in \mathbb{N}; f_1, \ldots, f_k \in \mathcal{F}, \varepsilon > 0 \},
\]

where

\[
V(f_1, \ldots, f_k, \varepsilon) = \{ (x, y) \in M \times M : \forall 1 \leq i \leq k \quad |f_i(x) - f_i(y)| < \varepsilon \}.
\]

Proposition 3.1 The family \(\mathcal{B} \) satisfies on \(M \) conditions B1 - B3.

Proof. (B1) Let: \(V_1 = V(f_1, \ldots, f_k, \varepsilon_1) \in \mathcal{B}, V_2 = V(g_1, \ldots, g_m, \varepsilon_2) \in \mathcal{B} \) and \(\varepsilon = \min(\varepsilon_1, \varepsilon_2) \). Then

\[
V := V(f_1, \ldots, f_k, g_1, \ldots, g_n, \varepsilon) =
\]

\[
\{ (x, y) \in M \times M : \forall 1 \leq i \leq k \quad |f_i(x) - f_i(y)| < \varepsilon \} \land \forall 1 \leq j \leq n \quad |g_j(x) - g_j(y)| < \varepsilon \} \in \mathcal{B}
\]

and \(V \subset V_1 \cap V_2 \).

(B2) Let \(V = V(f_1, \ldots, f_k, \varepsilon) \in \mathcal{B} \). Then \(W := V(f_1, \ldots, f_k, \frac{\varepsilon}{2}) \in \mathcal{B} \) and

\[
2W =
\]

\[
\{ (x, y) \in M \times M : \exists z \in M \quad \forall 1 \leq i \leq k \quad |f_i(x) - f_i(z)| < \frac{\varepsilon}{2} \land |f_i(z) - f_i(y)| < \frac{\varepsilon}{2} \}
\]

\[
\subset \{ (x, y) \in M \times M : \forall 1 \leq i \leq k \quad |f_i(x) - f_i(y)| < \varepsilon \} = V.
\]

(B3) Since for any \(V \in \mathcal{B} \) there is \(\Delta \subset V \) we have

\[
\Delta \subset \bigcap \mathcal{B}.
\]

On the other hand

\[
\bigcap \mathcal{B} \subset \bigcap_{f \in \mathcal{F}, \varepsilon > 0} V(f, \varepsilon) =
\]

\[
\{ (x, y) \in M \times M : \forall f \in \mathcal{F} \quad \forall \varepsilon > 0 \quad |f(x) - f(y)| < \varepsilon \} =
\]

\[
\{ (x, y) \in M \times M : \forall f \in \mathcal{F} \quad |f(x) = f(y)| \} =
\]

\[
\{ (x, x) \in M \times M \} = \Delta. \quad \square
\]
The uniform space \((M, \mathcal{U}_F)\) is said to be the uniform space given by the family of function \(F\).

If we have two different families \(F_1\) and \(F_2\) of generators of differential space \((M, C)\) then the uniform structures \(\mathcal{U}_{F_1}\) and \(\mathcal{U}_{F_2}\) can be different too.

Example 3.1 Let \(M = \mathbb{R}, C = \mathcal{C}^\infty(\mathbb{R}), F_1 = \{\text{id}_\mathbb{R}\}\) and \(F_2 = \{\text{id}_\mathbb{R}, f\}\), where
\[
\text{id}_\mathbb{R}(x) = x, \quad \text{and} \quad f(x) = x^2, \quad x \in \mathbb{R}.
\]
Then does not exists \(\varepsilon > 0\) such that \(V(\text{id}_\mathbb{R}, \varepsilon) \subset V(f, 1)\). Hence \(V(f, 1) \notin \mathcal{U}_{F_1}\) and \(\mathcal{U}_{F_1} \neq \mathcal{U}_{F_2}\). □

4 Uniform continuous mapping

Let \((X, \mathcal{U}), (Y, \mathcal{V}), (X, \mathcal{U}), (Y, \mathcal{V})\) be uniform spaces.

Definition 4.1 A mapping \(f : X \rightarrow Y\) is said to be uniform with respect to uniform structures \(\mathcal{U}\) and \(\mathcal{V}\) if
\[
\forall V \in \mathcal{V} \exists U \in \mathcal{U} \forall x, x' \in X \ |x - x'| < U \Rightarrow |f(x) - f(x')| < V.
\]
In other words for every \(V \in \mathcal{V}\) there is \(U \in \mathcal{U}\) such that \(U \subset (f \times f)^{-1}(V)\).

We denote it by \(f : (X, \mathcal{U}) \rightarrow (Y, \mathcal{V})\).

It is easy to prove that:
(i) any uniform mapping \(f : (X, \mathcal{U}) \rightarrow (Y, \mathcal{V})\) is continuous with respect to topologies \(\tau_{\mathcal{U}}\) and \(\tau_{\mathcal{V}}\);
(ii) a superposition of uniform mappings is a uniform mapping.

We can give criteria of the uniformity:

Theorem 4.1 Let \(f : X \rightarrow Y\) and let \(\mathcal{U}\) and \(\mathcal{V}\) be uniform structures on \(X\) and \(Y\) respectively. Then the following conditions are equivalent:

(a) \(f : (X, \mathcal{U}) \rightarrow (Y, \mathcal{V})\).

(b) If \(\mathcal{B}\) and \(\mathcal{D}\) are bases of \(\mathcal{U}\) and \(\mathcal{V}\) respectively then for each \(V \in \mathcal{D}\) there exists \(U \in \mathcal{B}\) such that \(U \subset (f \times f)^{-1}(V)\).

(c) For every covering \(\mathcal{A}\) of \(Y\) uniform with respect to \(\mathcal{V}\), a covering \(\{f^{-1}(A)\}_{A \in \mathcal{A}}\) of \(X\) is uniform with respect to \(\mathcal{U}\).
(d) For every pseudometric \(\rho \) on \(Y \) uniform with respect to \(V \), a pseudometric \(\sigma \) on \(X \) given by the formula

\[
\sigma(x, y) = \rho(f(x), f(y)) \quad x, y \in X
\]

is uniform with respect to the uniform structure \(U \).

For the proof see [2].

A mapping \(f \), that is a uniform with respect to uniform structures \(U \) and \(V \) could be not uniform with respect to uniform structures \(\overline{U} \) and \(\overline{V} \).

Example 4.1. Let \(M = \mathbb{R}, C = C^\infty(\mathbb{R}), F_1 = \{id_\mathbb{R}\}, F_2 = \{id_\mathbb{R}, f\} \), where \(f(x) = x^2, x \in \mathbb{R} \).

Here \(f \) is the uniform mapping with respect to \(F_2 \), but it is not uniform with respect to \(F_1 \). In fact, the set \(V = \{(x, y): |f(x) - f(y)| = x^2 - y^2 < \varepsilon\} \) is an element of \(D \) and does not exists \(U \in B \) such that \(U \subset (f \times f)^{-1}(V) \) (see Example 3.1).

Definition 4.2 A bijective mapping \(f : (X, U) \to (Y, V) \) is a uniform homeomorphism if \(f^{-1} \) is a uniform mapping. Then we say that \((X, U) \) and \((Y, V) \) are uniformly homeomorphic.

By (i) it is obvious that if \(f : (X, U) \to (Y, V) \) is a uniform homeomorphism then \(f \) is a homeomorphism of the topological spaces \((X, \tau_U) \) and \((Y, \tau_V) \).

5 Complete uniform spaces and extensions of differential structure

Definition 5.1 Let \(X \) be a nonempty set, \(x \in X \) and \(V \in \mathcal{D}_X \) (see Definition 3.1). A set \(U \subset X \) is said to be small of rank \(V \) if \(\exists x \in V \ [U \subset K(x, V)] \) (see Definition 3.2).

Definition 5.2 A nonempty family \(F \) of subsets of a set \(X \) is said to be a filter on \(X \) if:

(F1) \((F \in \mathcal{F} \land F \subset U \subset X) \Rightarrow (U \in \mathcal{F}); \)

(F2) \((F_1, F_2 \in \mathcal{F}) \Rightarrow (F_1 \cap F_2 \in \mathcal{F}); \)

(F3) \(\emptyset \notin \mathcal{F}. \)

Definition 5.3 A filtering base on \(X \) is a nonempty family \(\mathcal{B} \) of subsets of \(X \) such that
(FB1) \(\forall A_1, A_2 \in \mathcal{B} \ \exists A_3 \in \mathcal{B} \ [A_3 \subset A_1 \cap A_2] \);

(FB2) \(\emptyset \notin \mathcal{B} \).

If \(\mathcal{B} \) is a filtering base on \(X \) then

\[\mathcal{F} = \{ F \subset X : \exists A \in \mathcal{B} \ [A \subset F] \} \]

is a filter on \(X \). It is called the filter defined by \(\mathcal{B} \).

Definition 5.4 Let \(X \) be a topological space. We say that a filter \(\mathcal{F} \) on \(X \) is convergent to \(x \in X \) (\(\mathcal{F} \rightarrow x \)) if for any neighbourhood \(U \) of \(x \) there exists \(F \in \mathcal{F} \) such that \(F \subset U \).

Definition 5.5 Let \((X, \mathcal{U}) \) be a uniform space. A filter \(\mathcal{F} \) on \(X \) is a Cauchy filter if

\[\forall V \in \mathcal{U} \ \exists F \in \mathcal{F} \ [F \times F \subset V] \]

Definition 5.6 A uniform space \((X, \mathcal{U}) \) is said to be complete if each Cauchy filter on \(X \) is convergent in \(\tau_{\mathcal{U}} \).

Let \((X, \mathcal{U}) \) be a uniform space, \(M \subset X \) and \(M \neq \emptyset \). Denote

\[\mathcal{U}_M := \{ V \cap M : V \in \mathcal{U} \} \]

Then it is easy to show that \(\mathcal{U}_M \) is a uniform structure on \(M \). We call \((M, \mathcal{U}_M) \) a uniform subspace of the uniform space \((X, \mathcal{U}) \).

Theorem 5.1 If \((X, \mathcal{U}) \) is a complete uniform space and \(M \) is a closed subset of the topological space \((X, \tau_{\mathcal{U}}) \) then a uniform space \((M, \mathcal{U}_M) \) is complete. Conversely, If \((M, \mathcal{U}_M) \) is a complete uniform subspace of some (not necessarily complete) uniform space \((X, \mathcal{U}) \) then \(M \) is closed in \(X \) with respect to \(\tau_{\mathcal{U}} \).

For the proof see \[1\], \[2\] or \[3\].

Any uniform space can be treated as a uniform subspace of some complete uniform space. We have the following

Theorem 5.2 For each uniform space \((X, \mathcal{U}) \):

(i) there exists a complete uniform space \((\bar{X}, \bar{\mathcal{U}})\) and a set \(A \subset \bar{X} \) dense in \(\bar{X} \) (with respect to the topology \(\tau_{\bar{\mathcal{U}}} \)) such that \((X, \mathcal{U}) \) is uniformly homeomorphic to \((A, \mathcal{U}_A) \);

(ii) if the complete uniform spaces \((\bar{X}_1, \bar{\mathcal{U}}_1)\) and \((\bar{X}_2, \bar{\mathcal{U}}_2)\) satisfies condition of the point (i) then they are uniformly homeomorphic.

For the details of the proof see \[1\] or \[4\]. Here we only want to describe the construction of \((\bar{X}, \bar{\mathcal{U}})\).
Let \(\tilde{X} \) be the set of all minimal (with respect to the order defined by inclusion) Cauchy filters in \(X \). For every symmetric set \(V \in \mathcal{U} \) we denote by \(\tilde{V} \) the set of all pairs \((\mathcal{F}_1, \mathcal{F}_2) \) of minimal Cauchy’s filters, which have a common element being a small set in rank \(V \). We define a family \(\mathcal{U} \) of subsets of set \(\tilde{X} \times \tilde{X} \) as the smallest uniform structure on \(X \) containing all sets from the family \(\{ \tilde{V} : V \in \mathcal{U} \} \).

Let us consider two different uniform structures at the same differential space \((\mathbb{R}, C^\infty)\): \(\mathcal{U}_\mathcal{F} \) and \(\mathcal{U}_\mathcal{G} \), where \(\mathcal{F} = \{ id_{\mathbb{R}} \} \) and \(\mathcal{G} = \{ \arctgx \} \). Then \((\mathbb{R}, \mathcal{U}_\mathcal{F})\) is the complete space \((\mathbb{R} = \mathbb{R})\) whereas \((\mathbb{R}, \mathcal{U}_\mathcal{G})\). In this case we can identify \(\mathbb{R} \) with the interval \([-\frac{\pi}{2}; \frac{\pi}{2}]\).

Let \(N \) be a set, \(M \subseteq N \), \(M \neq \emptyset \), \(\mathcal{C} \) be a differential structure on \(M \).

Definition 5.7. The differential structure \(\mathcal{D} \) on \(N \) is an extension of the differential structure \(\mathcal{C} \) from the set \(M \) to the set \(N \) if \(\mathcal{C} = \mathcal{D}_M \) (if we get the structure \(\mathcal{C} \) by localization of the structure \(\mathcal{D} \) to \(M \)).

For the sets \(N, M \) and the differential structure \(\mathcal{C} \) on \(M \) we can construct many different extensions of the structure \(M \) to \(N \).

Example 5.1. If for each function \(f \in \mathcal{C} \) we assign the function \(f_0 \in \mathbb{R}^N \) such that \(f_0|_{M} = f \) and \(f_0|_{N \setminus M} = 0 \). Then the differential structure generated on \(N \) by the family of functions \(\{ f_0 \}_{f \in \mathcal{C}} \) is the extension of \(\mathcal{C} \) from \(M \) to \(N \). Similarly, if for each function \(f \in \mathcal{C} \) we assign the family of the functions \(\mathcal{F}_f := \{ g \in \mathbb{R}^N : g|_{M} = f \} \), then the differential structure on \(N \) generated the family of the functions \(\mathcal{F} := \bigcup_{f \in \mathcal{C}} \mathcal{F}_f \) is the extension of \(\mathcal{C} \) from \(M \) to \(N \). If the set \(N \setminus M \) contains at least two elements, then the differential structures generated by the families \(\{ f_0 \}_{f \in \mathcal{C}} \) and \(\mathcal{F} \) are different.

Definition 5.8. If \(\tau \) is a topology on the set \(N \), then the extension \(\mathcal{D} \) of the differential structure \(\mathcal{C} \) from \(M \) to \(N \) is continuous with respect to \(\tau \) if each function \(f \in \mathcal{D} \) is continuous in the topology \(\tau \) (\(\tau_D \subseteq \tau \)).

If on the set \(N \) there exists continuous (with respect to \(\tau \)) extension of the differential structure \(\mathcal{C} \) from the set \(M \subseteq N \), then the structure \(\mathcal{C} \) is said to be extendable from the set \(M \) to the topological space \((N, \tau)\).

Example 5.2. The differential structure \(C^\infty(\mathbb{R})_Q \) is extendable from the set of rationales to the set of reals. The continuous extensions are e.g. \(C^\infty(\mathbb{R}) \) and the structure \(\mathcal{D} \) generated on \(\mathbb{R} \) by the family of functions \(C^\infty(\mathbb{R}) \cup \{ f \} \), where \(f : \mathbb{R} \to \mathbb{R}, f(x) := |x - \sqrt{2}|, x \in \mathbb{R} \).

It is not difficult to show that if \(\mathcal{F} \) is a family of generators of a differential structure \(\mathcal{C} \) on a set \(M \) then the completion \(\bar{M} \) of \(M \) with respect to the uniform structure \(\mathcal{U}_\mathcal{F} \) can be identify with the closure of the range \(\phi_\mathcal{F}(M) \) of the generator embedding \(\phi_\mathcal{F} \) in the Cartesian product \(\mathbb{R}^\mathcal{F} \). In this case the differential structure \(C^\infty(\mathbb{R}^\mathcal{F})_{\phi_\mathcal{F}(M)} \) is a natural continuous extension of \(\mathcal{C} \) from \(M \) to \(\bar{M} \).

10
References

[1] N. Bourbaki, General Topology, Springer-Verlag, Berlin Heidelberg New York London Paris Tokyo 1989.

[2] R. Engelking, Topologia ogólna II, PWN, Warsaw 1989

[3] Z. Pasternak-Winiarski, Grupowe struktury różniczkowe i ich podstawowe własności (doctor thesis), Warsaw University of Technology, Warsaw 1981

[4] W. Waliszewski, Regular and coregular mappings of differential space, Annales Polonici Mathematici XXX, 1975

[5] R. Sikorski, Wstęp do geometrii różniczkowej, PWN, Warsaw 1972

[6] D. Dziewa-Dawidczyk, Z. Pasternak-Winiarski, Differential structures on natural bundles connected with a differential space, "Singularities and Symplectic Geometry VII" Singularity Theory Seminar (2009), S. Janeczko (ed), Faculty of Mathematics and Information Science, Warsaw University of Technology.