Vertical Movements and Rotations of the Ectopic Mandibular Canine Registered in Cross-Sectional and Longitudinal Studies on Orthopantomograms from 54 Patients Diagnosed with Mandibular Canine Ectopia

Palle Svanholt¹, Michael Svanholt², Inger Kjær³

¹Guldborgsund Municipal Clinic of Orthodontics, Nykøbing Falster, Denmark, ²Gentofte Municipal Clinic of Orthodontics and Section of Orthodontics, Institute of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark, ³Institute of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark

Abstract

Introduction: The hypothesis behind this study is that the ectopic mandibular canines move vertically in the mandibular bone during childhood and puberty. The aim was to evaluate interosseous vertical movements of the ectopic mandibular canines for improvement of diagnostic treatment and planning. Material and Methods: The study had two parts: a cross-sectional study and a longitudinal study. The cross-sectional study included orthopantomograms from 54 patients (ages 9 years and 6 months to 16 years) with ectopic mandibular canines. The longitudinal study included series of orthopantomograms from 14 out of the 54 patients. Two methods were involved in both studies. 1) The canine angle expressing the vertical position (angle between canine axis and the vertical line perpendicular to the occlusal plane) was registered. 2) The crown morphology indicating rotation of the canine, as well as the maturity of the canine (Nolla Score System), were registered. Results: The cross-sectional study demonstrated that the largest canine angles were observed in the most mature canines, often with the canine crown appearing in the lateral view. The longitudinal study demonstrated in 4 out of the 14 cases that the canines moved in the vertical plane towards a more upright position, resulting in a smaller angle, while the other ten cases moved during the observation period to a lower and more horizontal position, creating a larger angle. The crown morphology was unchanged in the uprighting cases, while rotation occurred in the ten cases undergoing increasing inclination. Maturity increased during all observation periods. Conclusions: This study is the first study which demonstrates and accordingly proves the hypothesis that the vertical movements and rotation of mandibular canines can occur in children and young adults diagnosed with ectopic mandibular canine eruption. These spatio-temporal movements are believed to be of importance for diagnostics and treatment planning of ectopic mandibular canines.

Keywords: Canine, dentition, human, mandible, radiography

INTRODUCTION

Mandibular canine ectopia is rare and often considered a mysterious dental phenomenon. The ectopic canines can be positioned differently in the mandibular bone, from a nearly normal vertical position to a horizontal position in the bone. Mupparapu¹ has suggested a subdivision of cases after the inclination of the canines. When the ectopic mandibular canine crosses the midline of the mandible the diagnosis transmigrated mandibular canine is a term often used.²³

Due to the rare occurrence of this condition, exact information on the prevalence in different populations does

Address for correspondence: Inger Kjær, Faculty of Health and Medical Sciences, Institute of Odontology, University of Copenhagen, Nørre Allé 20, 2200 Copenhagen N, Denmark. E-mail: ik@sund.ku.dk

Received: 17 March 2020 Revised: 28 March 2020 Accepted: 28 March 2020 Published: 10 June 2020

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

How to cite this article: Svanholt P, Svanholt M, Kjær I. Vertical Movements and Rotations of the Ectopic Mandibular Canine Registered in Cross-Sectional and Longitudinal Studies on Orthopantomograms from 54 Patients Diagnosed with Mandibular Canine Ectopia. Dent Hypotheses 2020;11:52-61.
Svanholt, et al.: Movements of ectopic mandibular canine

not exist. In a Greek population the prevalence was estimated to be 0.17%[3] and in a Turkish population the prevalence was registered to be 0.34%[4] In a systematic review compiling results from 13 articles published from 2001 to 2015 the prevalence of transmigrated canines occurred in 0.1 to 031% of the published cases.[5-7]

Significant gender differences in the rare observation of ectopic mandibular canines was not reported[5] but it is generally believed that females are more affected than males.[8]

A few cases with bilateral ectopic mandibular canines have been described.[9,10] Also, the association between eruption time of mandibular canines is well known.[11] The interrelationship between ectopic mandibular canines and ectopic maxillary canines have been highlighted.[12]

The exact etiology behind ectopia of the mandibular canine is not known. Some suggestions have been forwarded. An early embryological error in the tooth bud has been suggested as a causative factor[13,14] and a genetic etiology behind the abnormal dental deviation has been suggested.[15,16] Associations with regional odontomes, cysts and lateral incisor anomalies have also been suggested as playing a role.[7,17] A scientific proof for these suggestions concerning etiology does not exist.

In the scientific literature on ectopic mandibular canines, several case reports exist with or without thorough literature review.[1,3,6,7,9,10,16,18-22]

Also few investigations performed on larger materials exist.[8,17,23-28]

In the existing literature focus has especially been on the location of the ectopic canines and on resorptions of the primary mandibular canine localized where the permanent canine should have erupted.[1,28] Other phenotypic characteristics described are the craniofacial profile and the occlusion and space in the dental arches.[1,6,25] Plakwicz et al.[25] described normal craniofacial relationships, while Holla et al.[6] described deep bite and deep curve of Spee and low anterior aspect as characteristic for the patients with ectopic mandibular canines.

In the existing literature, only sporadic descriptions occurred on deviation in the permanent dentition in ectopic mandibular canine cases. Thus Camilleri and Scerri[16] and Mazinis et al.,[3] and Plakwicz et al.[25] described agenesis and other eruption deviations in the dentition.

In the cases where specific focus is on the ectopic mandibular canines, the crown follicles of the ectopic canines have also been described.[16] It is also mentioned that the eruption direction of the mandibular canines could depend on the follicles. Sporadic mentioning of the maturity of the mandibular canine is also found in newer literature.[25]

In a recent pilot study, longitudinal orthopantomograms from 4 patients have been published by Svanholt et al.[26] In the early orthopantomograms of these 4 patients, bilateral ectopic mandibular canines were diagnosed. Each patient was followed several years with orthopantomograms. In each of these four patients, only one ectopic mandibular canine occurred at the time when the last orthopantomogram was taken. This canine was the one which inclined most in the vertical plane initially. The contralateral mandibular canine erupted to a normal position in the dental arch.[26]

This published longitudinal pilot study[26] gave inspiration to the hypothesis behind the present study which is that the ectopic mandibular canines move vertically within the mandibular bone during childhood and puberty. The present study represents a more comprehensive investigation not only on the canine inclination but also on the vertical intra-jaw movements of the mandibular ectopic canine, which seemingly has never been described.

Only very few studies exist focusing on the morphology of the ectopic mandibular canine.[1,6,16,20] In these studies, the ectopic mandibular canines are illustrated in the different inclined positions within the jaw as having the same standard morphology seen in the crown and demonstrated in the facial aspect.

Apparently no studies exist illustrating the vertical movements of the canine within the mandibular bone. Also the evaluation of the canine morphology from the facial and lateral aspects in relation to the canine’s inclination and dental maturity have seemingly never been reported.

The overall purpose in this study was to evaluate interosseous vertical movements of the ectopic mandibular canines for improvement of diagnostic treatment and planning.

The first aim was to categorize the material according to the canine inclination.

The second aim was to perform a cross-sectional study of the complete material according to the morphology and maturity of the canine in different inclined positions in the mandible.

The third aim was to perform a longitudinal study based on several orthopantomograms from the same patients diagnosed with an ectopic mandibular canine and describe the canine morphology and maturity in comparison to the canine inclination during the observation period. The morphology of the mandibular canine and the maturity of the canine should be compared to the inclination of the canine.

MATERIAL AND METHODS

Material

The material in this study is orthopantomograms collected since 2001 from 54 patients predominantly from the authors, PS and MS. In addition, a few orthopantomograms are included from other specialists in orthodontics working in the community dental clinics in Denmark. The orthopantomograms are all taken due to orthodontic
diagnostics and treatment planning. The radiograph materials were forwarded to author IK at the Dental School of Copenhagen for consultations.

In most cases, information on age and gender was given. The orthopantomograms not anonymized were from patients aged 9 years and 6 months to 16 years. Information on gender was available in 39 cases with male/female ratio = 20/19.

Regarding two of the patients who had their orthopantomograms taken, cone beam computed tomography (CBCT) scans were included in the provided material. Both CBCT scans had been taken for planning the surgical movement of the ectopic canine. The CBCT scans are demonstrated in this report but not specifically evaluated.

The orthopantomograms were analyzed in two types of investigations.

The cross-sectional study
Orthopantomograms from all 54 patients were analyzed. Among these, the last orthopantomogram from each patient in the different series belonging to the longitudinal study was included.

The longitudinal study
In the longitudinal study, several orthopantomograms from 14 patients taken during the individually different observation periods were analyzed from each patient.

Methods
The following methods were used in the cross-sectional as well as in the longitudinal study.

Inclination of the canine
The total material is subgrouped according to the inclination of the canines in three groups. The method used for measuring the inclination is demonstrated in Figure 1. The longitudinal axis of the canine is measured compared to the vertical line perpendicular to the occlusal plane formally observed on posterior/anterior cranial radiographs.[27]

The ectopic canine occurred in the left side in 19 cases and in 35 cases in the right side. For registration and illustration the left sided cases were converted to the right side.

Morphology of the canine
The morphology of the crown of the canine was evaluated from drawings[28] demonstrated in Figure 2. The crown observed in the facial view is designated FAC and in the lateral view, LAT [Figure 2].
In the two patients where orthopantomograms as well as CBCT exposures existed, the canine crown morphology FAC is illustrated in Figures 3A and the canine crown LAT is illustrated in Figure 3B.

There is no distinction observed between mediolateral and distolateral crown morphology. The FAC morphology is interrelated with a narrow root while the LAT morphology is interrelated with a broad root. Only the crown morphology received specific attention in the present study.

If the morphological contour of the crown is not a FAC contour or a LAT contour it is designated ROT as an abbreviation for rotation.

Maturity of the canine

The maturity according to age and gender of the ectopic canine was registered as demonstrated by Svanholt and Kjær.[29]

In the present report the canine maturity index is evaluated after the Nolla Score System[30] accordingly: index 7 = 1/3 root completed. Index 8 = 2/3 root completed. Index 9 = root almost completed with open apex. Index 10 = root apex completed.

RESULTS

Cross-sectional investigation

Material subgrouped

The material was divided in groups according to the inclination of the mandibular canines. Material with a canine inclination less than 25° was omitted from analysis.

Three different groups were defined.

Group 1: Orthopantomograms with an inclination of the ectopic canine between 25° and 50°, 13 cases.

Group 2: Orthopantomograms with an inclination of the ectopic canine between 50° and 75°, 25 cases.

Group 3: Orthopantomograms with an inclination higher than 75°, 16 cases.

The distribution of the orthopantomograms according to these groups and the ages at which the orthopantomograms were taken appear in Table 1.

Morphology of the canine crown

Group 1: In eight cases the ectopic mandibular canine had the morphology FAC.

Group 2: In five cases the ectopic mandibular canine had the morphology FAC. In 15 cases, the morphology ROT and in four cases, the morphology LAT.

Group 3: In 3 cases the ectopic mandibular canine had the morphology FAC. In one case, the morphology ROT and in 12 cases, the morphology LAT.

Maturity of the ectopic canine

Group 1: Maturity indexes 7 (3 cases), 8 (4 cases), 9 (1 case), 10 (5 cases).

Group 2: Maturity indexes 7 (6 case), 8 (8 cases), 9 (6 cases), 10 (5 cases).
Table 1: Orthopantomograms sorted after canine angulation

Case Id	Number	Gender	Age	Angulation	Morphology	Maturity
1		F	12.3	25.5	FAC	8
2		M	11.8	28.8	FAC	8
3		M	11.3	31.3	ROT	8
4		M		33.0	LAT	10
5		M	9.5	33.2	FAC	7
6		M	15.0	36.4	FAC	9
7		M	15.6	37.0	FAC	10
8				41.1	FAC	8
9				41.9	FAC	7
10		F	9.9	44.4	ROT	7
11		F		45.5	LAT	10
12		M	48.6	FAC	10	
13		M	49.3	LAT	10	
14	2	F	9-11.7	50.0	FAC	8
15		M	11.5	50.3	ROT	8
16		F	11.8	50.7	ROT	7
17		M	11.3	51.7	ROT	9
18		M	11.3	52.6	ROT	7
19				52.9	FAC	7
20		M	12.2	53.3	FAC	8
21	2		15-16	55.7	ROT	10
22		M	13.5	58.2	ROT	9
23		M	9.8	58.5	LAT	7
24		M	9.9	59.5	LAT	10
25		M		62.2	ROT	8
26			11.0	62.8	FAC	8
27	2		15-16	63.0	LAT	10
28	3		9-12	63.3	LAT	9
29		F	10.5	69.5	ROT	7
30		F	14.1	70.5	ROT	8
31		F	13.1	70.9	LAT	9
32		F	14.5	71.4	ROT	8
33	2	F	11.7-12.7	71.4	FAC	10
34	3	F	10-12	71.5	ROT	9
35		F	12.8	71.6	ROT	10
36	3		8.4-12.6	71.7	LAT	7
37		F	72.7	LAT	9	
38		M	73.1	ROT	8	
39		F	15.2	75.1	FAC	10
40		F		75.3	FAC	10
41	5		9.0-12.4	76.8	LAT	10
42	2		14-15	76.9	LAT	10
43		M	11.3	76.9	LAT	7
44	2		15-16	77.7	LAT	10
45		F	78.5	LAT	10	
46		M	80.1	ROT	10	
47	4		8-12	80.1	FAC	9
48	2		11-12	87.5	LAT	10
49			16.0	90.1	LAT	10
50		F	12.0	93.3	LAT	9
51	2		10-11	93.3	LAT	8
52	2		12-15	93.8	LAT	10

(Continued)
Conclusion

This cross-sectional study demonstrates that the ectopic canines with the smallest angle in the vertical plane (upright position) had a FAC crown morphology in 8 cases out of 13 cases and a LAT morphology in only 3 cases out of 13 cases. The canines more tilted in the vertical plane (Group 2 and 3) appeared more often with a ROT or a LAT crown morphology.

In group 3, 3 cases had a FAC morphology out of 16 cases while a LAT morphology was observed in 12 cases and a ROT morphology only in 1 case out of 16 cases. In group 2, 13 cases out of 25 cases demonstrated a ROT morphology [Table 2].

The study also demonstrated that the most mature ectopic canines appeared in group 3 with the largest angle in the vertical plane. As a conclusion of the cross-sectional evaluation, an association between the inclination of the mandibular ectopic canines and the canine morphology was noticed on orthopantomograms. It was also observed that the more mature canines predominantly were found in group 3 with a LAT crown morphology.

Table 2: Coss-sectional Study. Morphology, maturity and rotation in three groups of canine angulations

Angulation	25°–50° (n=13)	50°–75° (n=25)	75°–100° (n=16)
Morphology			
FAC	8	5	3
ROT	2	15	1
LAT	3	5	12
Maturity			
7: 1/3 root	4	8	2
8: 2/3root	2	8	1
9: apex open	3	4	2
10: apex closed	4	5	11

Canine angulation: Angle between canine axis and vertical line perpendicular to occlusal plane through mental spine. Canine morphology: FAC, facial crown morphology and narrow root; LAT, lateral crown morphology and broad root; ROT, rotated crown morphology and broad root. Canine maturity: 7: 1/3rd. root completed, 8: 2/3rd. root completed, 9: Root almost completed with open apex, 10: Root apex completed. n: Number of orthopantomograms.

LONGITUDINAL INVESTIGATIONS

Material categorized

From the total material it was possible to investigate 14 patient cases longitudinally. Each of the 14 patients was radiographed from 2-5 times with intervals of 2-3 years. An overview of the longitudinal material appears in Table 3. 10 persons had 2 orthopantomograms taken. 5 persons had 3 orthopantomograms taken, 1 person had 4 orthopantomograms taken, and 1 person had 5 orthopantomograms taken.

Inclination of the canine

Out of 14 patients observed longitudinally, 4 ectopic canines changed inclination to a more upright position (inclination angle diminished) while 10 ectopic canines changed position to a more horizontal position with an enlarged canine angle.

Morphology of the canine crown

In the cases where the inclination diminished, the crowns appeared with the same morphology during the observation period, either from FAC to FAC, from ROT to ROT or from LAT to LAT [Table 3].

In the cases where the inclination enlarged during the observation period, the crown appeared with the same morphology, FAC to FAC or LAT to LAT in 3 patients while the morphology changed in 7 patients from FAC to ROT or from FAC to LAT or from ROT to LAT [Table 3 and Figures 4].

Maturity of the ectopic canine

In all cases there was a change from less mature to more mature during the observation period. In the initial stages, the ectopic canine had not fully matured.

In the final stage of observation the ectopic canines were fully formed – Index 10, in 8 cases.
CONCLUSION

The results from the longitudinal study were that the mandibular ectopic canine changed to a more upright position in 4 cases without change in crown morphology while in 10 cases the canine changed to a more horizontal position often with a simultaneous change in crown morphology.

CONCLUSION AND EVALUATION OF THE HYPOTHESIS

The studies performed demonstrate that the ectopic mandibular canines to a great extent change position in the vertical plane during childhood and puberty development. Some of the mandibular canines change to a more upright position while others move vertically to a deeper horizontal position in the mandibular jaw bone.

In the cases where the canines change vertical position to a deeper horizontally oriented position, a rotation of the canine along the length axis also occurred.

The study also demonstrates that the most mature canines, presumably from older individuals, are the ones with the deep and horizontally orientated jaw position.

In summary, a spatio-temporal interaction occurs in the vertical plane of the ectopic mandibular canine within the mandibular bone in children and young adults.

DISCUSSION

This present study focuses on the change in localization of the ectopic mandibular canine studied in the vertical plane on orthopantomograms. In addition, rotation of the canine during development is highlighted. These two different types of movements have not previously been described longitudinally in ectopic mandibular canine cases.

Often described in the literature is the sagittal movement of the ectopic mandibular canine, including the transmigration movement crossing the mid-axis in the region of the symphysis.\(^\text{[2,3]}\) The transmigration of the canine has resulted in discussion of the eruption forces which cause this sagittal movement. This particular subject has not been discussed in this report.

Concerning eruption theory, it is well known that the tissue in the apical root membrane is richly innervated\(^\text{[31,32]}\) and that this specific tissue layer initiates the eruption movement. Meanwhile, the eruption process is also dependent on the crown follicle and of the adaptive processes in the periodontal membrane.\(^\text{[31,32]}\)

It could be very interesting to focus on the crown follicle in a malpositioned mandibular canine for a better understanding of the role of the follicle in path-finding and on the possible influence of the direction in which the canine moves.\(^\text{[16]}\)

Eruption is a three-dimensional process which makes it difficult to analyze on a two planes radiograph, like the orthopantomogram. It is believed that the actual eruption process of the ectopic canine could have been more precisely documented if viewed on CBCT. Meanwhile, in the cases studied where CBCT was available it was confirmed that orthopantomograms were useable as demonstrated in the present analysis. In the present study, orthopantomograms

Table 3: Longitudinal study. Age and Range of series, Canine angulation, morphology and maturation. Sorted after canine angulation in the first orthopantomogram

Case id	Number	Age (year: month)	Rangemonth	Canine angulation	Canine morphology	Canine maturation					
			OPG 1	OPG 2	OPG 1	OPG 2	OPG 2-1	OPG 1	OPG 2	OPG 1	OPG 2
41	5	9:0 12:2	38	43.9	76.8	32.9	FAC	LAT	7	9	
14	2	9:10 11:8	22	47.6	50.0	2.4	FAC	FAC	7	3	
34	3	10:0 12:0	24	51.7	71.5	19.8	FAC	ROT	7	9	
28	3	9:0 12:0	36	52.5	63.3	10.8	ROT	LAT	7	10	
47	4	8:0 12:0	48	54.5	80.1	25.6	FAC	ROT	7	9	
36	3	8:4 12:5	49	59.1	71.7	12.6	ROT	LAT	6	7	
21	2	12:11 13:8	9	63.0	55.7	-7.3	ROT	ROT	9	10	
27	2	13:7 14:3	8	66.5	63.3	-3.2	LAT	LAT	9	10	
44	2	12:3 13:6	15	67.8	78.6	10.8	ROT	LAT	8	10	
33	2	11:8 12:8	12	74.3	71.4	-2.9	FAC	FAC	9	10	
52	2	12:0 15:0	36	74.7	93.8	19.1	LAT	LAT	8	10	
48	2	11:10 13:4	18	81.1	87.5	6.4	LAT	LAT	9	10	
51	2	11:2 12:2	12	83.3	93.3	10.0	ROT	LAT	8	8	
42	2	11:10 13:4	18	85.0	76.9	-8.1	LAT	LAT	8	10	

Canine angulation: Angle between canine axis and vertical line perpendicular to occlusal plane through mental spine. Canine morphology: FAC, facial crown morphology and narrow root; LAT, lateral crown morphology and broad root; ROT, rotated crown morphology and broad root. Canine maturity: 6: Crown completed, 7: 1/3rd. root completed, 8: 2/3rd. root completed, 9: Root almost completed with open apex, 10: Root apex completed. OPG 1: First orthopantomogram. OPG 2: Last orthopantomogram. Number: Number of cephalograms in series.
have been collected from references received for consultations during 17 years. The ages where ectopic mandibular canines were first observed and noted in the orthopantomograms varied from 9 years and 6 months to 16 years, Table 1. Therefore the chronological age was replaced by the evaluation of canine maturity as a more correct parameter for development.

In the referred cases, longitudinal orthopantomograms were rarely included. The very low prevalence of these dental eruption deviations makes it difficult to study larger populations and longitudinal studies specifically are extremely difficult to obtain due to requirements and regulations for radiographic exposure.

Figure 4: Examples of the first (left) and last (right) radiographs in three series (upper, middle, lower) from the longitudinal study of ectopic mandibular canines. The upper row illustrates radiographs from a male, 9 years old (left) and 12 years old (right). Left: Both mandibular canines have a FAC morphology. Right: The same patient observed 3 years later. The right mandibular canine shifted upright and preserved the crown morphology while the left tilted down and rotated as observed in the lateral LAT crown morphology. The middle row illustrates radiographs from a female, 10 years old (left) and 12 years old (right). Left: the canine crown had the crown morphology FAC. Right: 2 years later the same patient is observed in the right figure. The original FAC morphology of the right canine crown has changed to a ROT morphology during development. This indicates that the canine has not only tilted downwards but also rotated. The lower row illustrates Radiographs from a female, 9 years old (left) and 12 years old (right). Left: the canine crown has a crown morphology named ROT (rotation). Right: 3 years later the radiographs to the right illustrates the situation where the mandibular canine has tilted and attained a lateral morphology LAT.
In future studies it could be recommended to include CBCT in the study of vertical and rotation movements of the ectopic canine. In this present study, the exact crown orientation of the canines was difficult to register. Specifically the rotation was difficult to graduate exactly. Therefore the evaluation of the rotation has only three stages, facial FAC, rotation ROT and lateral view LAT. The classification of rotation accordingly includes a minimal rotation or a more extended rotation close to the LAT stage. These uncertainties make statistical analysis worthless. How and why the mandibular canine is tilted during rotation and what initiates this process are conditions which ought to be studied if possible.

Also the histological explanation of the vertical movements during eruption described need a more profound analysis. This process could possibly be explained as a traditional tooth movement as observed during orthodontic treatment.

The fact that the primary dentition can undergo more or less resorption without pressure from the permanent dentition is well known but still not explained.[33]

In future studies on the intra-osseous movements of the ectopic mandibular canines, radiographs in three planes should be coordinated with tooth maturations and patient ages. In this spatio-temporal perspective, the cephalometric registered growth pattern of the jaws and the general body growth evaluated from hand x-rays should preferably be included. If this could be possible in an extended study with more material, then the pattern and intensity in the abnormal canine movement process could be a valuable contribution to elucidating the etiology behind this complicated dental deviation.

A study like this one is of importance for establishing preliminary guidelines for treatment of ectopic canines in the mandible. Guidelines have been severely needed but not yet established.[17,22]

One perspective is focused on possibilities for interceptive treatment and for planning orthodontic and surgery treatment.[22,24,34,35]

The present study is considered a new input in a complicated puzzle which needs more information. It is a difficult puzzle where diagnostics concerning an ectopic mandibular canine creates a clinical and treatment problem.

The ectopic mandibular canine is still a mystery, which first of all creates challenges because of the fundamental lack of understanding the etiology and the basal biological processes behind this severe dental deviation.

Acknowledgements
Sincere thanks to departmental secretary Linda Michelsen for valuable contribution with organizing the radiographic material and for preparing the figures and the manuscript.

Financial support and sponsorship
Nil

Conflict of Interest
None to declare. The corresponding author has editorial involvement with Dental Hypothesis.

References
1. Mupparapu M. Patterns of intra-osseous transmigration and ectopic eruption of mandibular canines: review of literature and report of nine additional cases. Dentomaxillofac Radiol 2002;31:355-60.
2. Shapira Y, Kufitinec MM. Early detection and prevention of mandibular tooth transposition. J Dent Child 2003;70:204-7.
3. Mazinis E, Zafeiriadis A, Karathanasis A, Lambrianidis T. Transmigration of impacted canines: prevalence, management and implications on tooth structure and pulp vitality of adjacent teeth. Clin Oral Invest 2012;16:625-32.
4. Aktan AM, Kara S, Akgülü F, Malkoc S. The incidence of canine transmigration and tooth impaction in a Turkish subpopulation. Eur J Orthodontics 2010;32:575-81.
5. Celikoglu M, Kamak H, Oktay H. Investigation of transmigrated and impacted maxillary and mandibular canine teeth in an orthodontic patient population. J Oral Maxillofac Surg 2010;60:1001-6.
6. Holla A, Safy M, Parashar S. Transmigration of impacted mandibular canines and its association with malocclusion and morphology: an analysis of seven cases. Quintessence Int 2012;13.
7. Dalessandri D, Parrini S, Rubiano R, Gaiolle D, Migliorati M. Impacted and transmigrant mandibular canines incidence, aetiology, and treatment: a systematic review. Eur J Orthod 2017;161:9.
8. Joshi MR. Transmigrant mandibular canines: a record of 28 cases and a retrospective review of the literature. Angle Orthod 2001; 71:12-22.
9. Mupparapu M, Suhas S, Pai K, Nagpal A. Patterns of intraosseous transmigration and ectopic eruption of bilaterally transmigrating mandibular canines: radiographic study and proposed classification. Quintessence Int 2007;38.
10. Mesquita P, Salgado H. Transmigrant mandibular canine – case report. Rev Port Estomatol Med Dent Cir Maxilofac 2015;56:63-67.
11. Parner ET, Heidmann JM, Kjer I, Veith M, Poulsen S. Biological interpretation of the correlation of emergence times of permanent teeth. J Dent Res 2002;81:451-4.
12. Batwa W, Alzain I. Association between ectopic mandibular and maxillary canines. J Contemp Dent Pract 2018;19:830-5.
13. Nodine AM. Aberrant teeth, their history, causes and treatment. Dent Items of Interest 1943;65:440-51.
14. Bruszt P. On the migration of lower canines to the opposite side of the mandible. Acta Morphol 1957;7:199-207.
15. Peck S. On the phenomenon of intraosseous migration of nonerupting teeth. Am J Orthod Dentofacial Orthop 1998;113:515-7.
16. Camilleri S, Scerri E. Transmigration of mandibular canines – a review of the literature and a report of five cases. Angle Orthod 2003;73:753-62.
17. González-Sánchez MA, Berini-Aytés L, Gay-Escoda C. Transmigrant impacted mandibular canines. A retrospective study of 15 cases. JADA 2007;138:1450-5.
18. Caldwell JB. Neurological anatomy associated with extreme malposition of the mandibular canine. Oral Surg Oral Med and Oral Path 1955;8:484-7.
19. A-Waheidi EMH. Transmigration of unerupted mandibular canines: a literature review and a report of five cases. Quintessence Int 1996;27.
20. Lagaes DT, Ruiz RF, Cossío PI, Calderón MG, Pérez JLG. Transmigration of impacted lower canine. Case report and review of literature. Med Oral Patol Oral Cir Bucal 2006;11:E71-4.
21. Kara M, Ay S, Aktan AM, Sener I, Bereket C, Ezirganli S, Demirkol M. Analysis of different type of Transmigrant mandibular teeth. Med Oral Patol Oral Cir Bucal 2011;16:335-40.
22. Umashree N, Kumar A, Nagaraj T. Transmigration of Mandibular Canines. Hindawi Publishing Corporation. Case Rep Dent 2013 1-7
23. Buyukkurt MC, Aras MH, Caglaroglu M, Gungormus M. Transmigrant mandibular canines. Am Assoc Oral Maxillofac Surg 2007;2025-9.

24. Hudson APG, Harris AMP, Mohamed N. Early identification and management of mandibular canine ectopia. SADJ 2011;66:462-7.

25. Plakwicz P, Abramczyk J, Wojtaszek-Lis J, Sajkowska J, Warych B, Gawron K, Burzykowski T, Zadurska M, Czochrowska EM, Wojtowicz A, Górka R, Kukula K. The retrospective study of 93 patients with transmigration of mandibular canine and a comparative analysis with a control group. Eur J of Orthod 2019;390-396.

26. Svanholt M, Svanholt P, Kjær I. Which one of two ectopic mandibular canines will erupt to a normal position in the dental arch? Dent Craniofac Res 2018;1:2.

27. Svanholt P, Solow B. Assessment of midline discrepancies on the postero-anterior cephalometric radiograph. Trans Eur Orthod Soc 1977;25:261-8.

28. Carlsen O. Tandmorfologisk Skitser & Billeder. Published with introduction by Bo Danielsen, School for dental assistants and dental hygienists, University of Copenhagen, 2006.

29. Svanholt M, Kjær I. Developmental stages of permanent canines, premolars, and 2nd molars in 244 Danish Children. Acta Odontologica Scandinavica 2008, 1-9, First article.

30. Nolla CM. The development of permanent teeth. J Dent Child 1960;27:254-66.

31. Kjær I. Mechanism of human tooth eruption: review article including a new theory for future studies on the eruption process. Scientifica, 2014. ID: 341905.

32. Kjær I. Etiology-based dental and craniofacial diagnostics. Wiley Blackwell, 2017.

33. Bille MLB, Nolting D, Kvetny MJ, Kjær I. Unexpected early apical resorption of primary molars and canines. Eur Arch Paediatr Dent 2007;144-9.

34. Cavuoti S, Matarese G, Isola G, Abdoireza J, Femiano F, Perillo L. Combined orthodontic-surgical management of a transmigrated mandibular canine. Angle Orthod 2016;86:681-91.

35. Wertz RA. Treatment of transmigrated mandibular canines. Am J Orthod Dentofac Orthop 1994;106:419-27.