FGF1\(^{\Delta HB5}\) prevents diabetic cardiomyopathy by maintaining mitochondrial homeostasis and reducing oxidative stress via AMPK/Nur77 suppression

Dezhong Wang1,2, Yuan Yin3, Shuyi Wang4, Tianyang Zhao5, Fanghua Gong2, Yushuo Zhao2, Beibei Wang2, Yuli Huang2, Zizhao Cheng2, Guanghui Zhu3, Zengshou Wang3, Yang Wang2, Jun Ren4, Guang Liang6, Xiaokun Li2 and Zhifeng Huang2

As a classically known mitogen, fibroblast growth factor 1 (FGF1) has been found to exert other pleiotropic functions such as metabolic regulation and myocardial protection. Here, we show that serum levels of FGF1 were decreased and positively correlated with fraction shortening in diabetic cardiomyopathy (DCM) patients, indicating that FGF1 is a potential therapeutic target for DCM. We found that treatment with a FGF1 variant (FGF1\(^{\Delta HB5}\)) with reduced proliferative potency prevented diabetes-induced cardiac injury and remodeling and restored cardiac function. RNA-Seq results obtained from the cardiac tissues of db/db mice showed significant increase in the expression levels of anti-oxidative genes and decrease of Nur77 by FGF1\(^{\Delta HB5}\). treatment. Both in vivo and in vitro studies indicate that FGF1\(^{\Delta HB5}\) exerted these beneficial effects by markedly reducing mitochondrial fragmentation, reactive oxygen species (ROS) generation and cytochrome c leakage and enhancing mitochondrial respiration rate and \(\beta\)-oxidation in a 5′ AMP-activated protein kinase and Nur77-dependent manner, respectively. These effects cause cardiomyocyte death, cardiac hypertrophy, inflammation and fibrotic remodeling. Therefore, maintaining cardiac metabolic homeostasis is a promising therapeutic strategy for DCM.

INTRODUCTION

Diabetic cardiomyopathy (DCM) is a series of changes in the myocardial structure and function caused by diabetes mellitus (DM) that are not related to coronary atherosclerosis, hypertension, and valvular heart disease. Currently, DCM is the main cause of heart failure and death in DM patients due to no effective therapy. In the setting of diabetes, a metabolic shift in cardiomyocytes occurred due to insulin resistance or lack of insulin, whereby fatty acid uptake and \(\beta\)-oxidation are increased to maintain ATP production. However, with disease progressing, the incoming fatty acids cannot be adequately metabolized through \(\beta\)-oxidation, resulting in intracellular lipid accumulation and lipotoxicity, which induces mitochondrial dysfunction and over-production of reactive oxygen species (ROS) in cardiomyocytes.

Finally, these effects cause cardiomyocyte death, cardiac hypertrophy, inflammation and fibrotic remodeling. Therefore, maintaining cardiac metabolic homeostasis is a promising therapeutic strategy for DCM.

Fibroblast growth factor 1 (FGF1), the founding member of the FGF family, is well known for its mitogenic activity on cells from a variety of tissue origins, including liver, vasculature, and skin. Recently, FGF1 was identified as an unexpected metabolic hormone playing a pivotal role in the regulation of cardiac metabolic homeostasis. Interestingly, it also displayed therapeutic effects on diabetic nephropathy and favorable effects on maintaining myocardial integrity and preventing cardiac dysfunction in the setting of diabetes or post-myocardial infarction (MI).

Therefore, FGF1 has great potency in the prevention and treatment of DCM. However, long-term use of wild-type FGF1 (FGF1WT) may increase tumorigenic risks because of its strong mitogenic activity, which limits the applications of FGF1WT in vivo, especially in cancer-prone diseases including diabetes. It has been reported that FGF1 is involved in maintaining the metabolic homeostasis of adipose tissue under variations of nutrient availability. However, the roles of FGF1 or FGF1 variants in cardiac metabolic homeostasis have not been studied.

To address these issues, we have recently generated a novel FGF1 variant that diminished its ability to induce heparan sulfate (HS)-assisted FGF receptor (FGFR) dimerization and activation by replacing three key residues from the HS-binding site of FGF1 with residues that are less optimal for HS-binding (i.e., Lys127Asp, Lys128Gln and Lys133Val; termed FGF1\(^{\Delta HB5}\)), which exhibits full metabolic capacity but much lower proliferative potency compared to FGF1WT. To test the protective role and underlying mechanism of FGF1\(^{\Delta HB5}\) against DCM, murine models of type 2 diabetes were employed and we found that FGF1\(^{\Delta HB5}\) treatment prevented DCM with inhibition of cardiac hypertrophy, fibrosis, dysfunction, and preserved metabolic homeostasis. The underlying mechanisms involved cardiac 5′ AMP-activated protein kinase (AMPK) and Nur77-dependent signaling.

ARTICLE

OPEN
kinase (AMPK)-mediated inhibition of Nur77 expression and mitochondrial translocation that prevented diabetes-induced cardiomyocyte mitochondrial fragmentation and oxidative stress.

RESULTS

Diminished FGF1 expression in DCM patients and db/db mice

Compared to healthy controls, serum FGF1 levels were decreased in T2D and DCM patients. There was a ~40% reduction in serum FGF1 levels in the patients with DCM compared to the patients without DCM (Fig. 1a), and serum FGF1 levels were positively correlated with the fractional shortening (FS) (Fig. 1b) and negatively correlated with the serum brain natriuretic peptide (BNP) (Fig. 1c). Consistent with patient data, serum and cardiac tissue levels of FGF1 in T2D mice (db/db) were decreased by ~20% (Fig. 1d) and ~60% (Fig. 1e, f) relative to the control group (db/m), respectively.

Non-mitogenic FGF1ΔHBS preserved the protective effect on cardiomyocytes of FGF1WT.

The protective effects of the FGF1ΔHBS and FGF1WT were compared in high glucose (HG) challenged primary adult mouse cardiomyocytes. HG reduced resting cell length, peak shortening (PS) and maximal velocity of shortening and re-lengthening (∆dL/dt) accompanied with prolonged time-to-PS (TPS) and time-to-90% re-lengthening (TR90) (Fig. 1g–l). FGF1WT and FGF1ΔHBS comparably protected the cardiomyocytes against HG-induced mechanical dysfunction (Fig. 1g–l). Furthermore, HG-induced cardiomyocyte hypertrophy and apoptosis were comparably prevented by FGF1WT and FGF1ΔHBS treatment (Supplemental Fig. S1). These data suggest comparably beneficial roles of FGF1ΔHBS and FGF1WT in HG-treated cardiomyocytes.

Long-term treatment of FGF1ΔHBS prevented DCM in db/db mice

We then explored the protective effect of FGF1ΔHBS in db/db mice by intraperitoneal injection of recombinant human FGF1ΔHBS (0.5 mg/kg body weight) on alternate days over 16 weeks. Cardiac systolic and diastolic dysfunctions were observed in the db/db mice evidenced by reduced EF%, FS%, and E Wave, as well as increased LVIDd, IVSd and PWd, and these unfavorable changes of the heart were mitigated with FGF1ΔHBS treatment (Fig. 2a and Supplemental Table S1). The impaired IRT and Tei index of the db/db mice were improved with FGF1ΔHBS treatment as well (Supplemental Table S1). Meanwhile, FGF1ΔHBS treatment also decreased the levels of serum CK-MB, blood glucose and insulin of the db/db mice (Supplemental Table S1 and Supplemental Fig. S1).

![Fig. 1 Decreased endogenous FGF1 levels in diabetic individuals and comparably protective function of FGF1WT and FGF1ΔHBS in high-glucose-treated cardiomyocytes.](image-url)
Furthermore, the blood glucose levels of
db/db mice treated with FGF1ΔHBS remained lower throughout the glucose tolerance test (GTT) (Supplemental Fig. S2b).

DCM is characterized by structural and functional derangement of cardiac muscles, including myocardial fibrosis, hypertrophy and contractile dysfunction. Therefore, H&E and wheat germ agglutinin (WGA) staining showed myofiber disarray and cardiomyocyte hypertrophy in db/db mice, which were improved with FGF1ΔHBS treatment (Fig. 2b, c). Further Masson trichrome and Sirius red staining showed significant cardiac fibrosis in the db/db mice that
was prevented with FGF1ΔHBS treatment (Fig. 2b, c and Supplemental Fig. S2c). Western blot analysis showed 2- to 4-fold increases in collagen I (COL 1), collagen III (COL 3) and myosin heavy chain (MyHC) proteins in db/db mice, and these were completely reversed with FGF1ΔHBS treatment (Fig. 2d, e). Similarly, FGF1ΔHBS treatment significantly ameliorated the increased transforming growth factor β1 (TGFB1) and cleaved caspase 3 (c-caspase 3) levels in the db/db mice (Fig. 2d, e). These data suggest that FGF1ΔHBS mitigates myocardial remodeling, systolic and diastolic dysfunction in diabetic mice.

FGF1ΔHBS reduced oxidative stress in the cardiac tissues of db/db mice
To explore the underlying mechanism of FGF1ΔHBS in preventing DCM, RNA sequencing (RNA-Seq) analysis was conducted. Compared to the vehicle treatment group, multiple genes associated with anti-oxidative signaling (i.e., glutathione S-transferase α3 (Gsta3), superoxide dismutase-2 (Sod2) and heme oxygenase 1 (Ho-1)) were significantly upregulated by FGF1ΔHBS treatment (Fig. 3a). The differential induction of gene expression observed via RNA-Seq was verified by real-time PCR analyses (Fig. 3b). Further western blot showed that protein levels of nuclear factor erythroid-2-related factor 2 (Nrf2), SOD2 and HO-1 were significantly restored with FGF1ΔHBS treatment (Fig. 3c). ROS level was examined using DHE and DCFH-DA probes in cardiac tissues. The results showed higher fluorescence intensities of DHE and DCFH-DA in the cardiac tissues of db/db mice compared to db/m mice, which were reduced by FGF1ΔHBS treatment (Fig. 3d, e). Similarly, increased NADPH content in the cardiac tissues of db/db mice was ameliorated with FGF1ΔHBS treatment (Fig. 3f). These data suggest that FGF1ΔHBS treatment prevents cardiac cells from oxidative stress in db/db mice.

FGF1ΔHBS prevented mitochondrial fission and dysfunction in db/db mouse heart
Mitochondria-derived anions are the major intracellular source of ROS in diabetes.16 Our data showed increased mitochondrial ROS (mROS) in the cardiac tissues from db/db mice, which was reduced by FGF1ΔHBS treatment as manifested by fewer MitoSox-positive cells (Fig. 4a). Several lines of evidence noted accumulation of fragmented mitochondria in hyperglycemic patients and animals, indicating a role for abnormal fission in mitochondrial dysfunction and ROS production.17,18 Ultrastructural examination in cardiac tissues revealed massive and irregular accumulation of mitochondria with irregular myofilament array in the hearts of db/db mice, and FGF1ΔHBS-treated db/db mice displayed fewer number and enlarged size of mitochondria with a restored aspect ratio to the level of the control mice (Fig. 4b–d). Remarkably, cardiomyocytes from db/db mice contain ~13,000 copies of mtDNA per nuclear genome, whereas there were 7800 copies of mtDNA per nuclear genome in the cardiomyocytes from FGF1ΔHBS-treated mice (Fig. 4e). As shown in Fig. 4f, cardiac tissues from FGF1ΔHBS-treated db/db mice had higher ATP content compared to those of the vehicle-treated mice. In consistent, proteins of respiratory complexes, including complex I, II, and IV were upregulated with FGF1ΔHBS treatment (Fig. 4g).

The results from RNA-Seq and real-time PCR also confirmed that FGF1ΔHBS treatment ameliorated mitochondrial dysfunction in db/db mice (Supplemental Fig. S3). First, genes involved in electron transport chain and mitochondria biogenesis were analyzed based on RNA-Seq results (Supplemental Fig. S3a, b). FGF1ΔHBS treatment significantly increased the levels of Uqcrcl1, Cox4i1, Nrf1 and Pgc1a (Supplemental Fig. S3b). In consistence with increased ATP production and gene expression of OXPHOS (oxidative phosphorylation) units, the mRNA levels of electron transfer units and mediators of uncoupling such as Etfa, Etb, Etfα, Ucp2, Ucp3 and Slc25a4 were upregulated by FGF1ΔHBS (Supplemental Fig. S3c, d). Taken together, ultrastructural, immunofluorescent and functional data supported a beneficial role of FGF1ΔHBS in suppressing mitochondrial fission and dysfunction in diabetic hearts.

AMPK-mediated Nur77 suppression contributed to the protective role of FGF1ΔHBS against DCM
The RNA-Seq results showed that mRNA levels of Nur77 was downregulated by ~20-fold (Fig. 5a), which plays a critical role in

Fig. 3 FGF1ΔHBS preserves anti-oxidant capacity in the hearts of db/db mice. a Hierarchical clustering of FGF1ΔHBS-upregulated genes related to anti-oxidative stress based on the RNA sequencing analysis in the hearts from db/db and db/db + FGF1ΔHBS mice. n = 3. b The mRNA levels of Nr2f2 and its target genes Gsta3, Sod2 and Ho-1 in the cardiac tissues. n = 6. c Western blot analysis (left panel) and densitometric quantification (right panel) of Nr2f2, Sod2 and Ho-1 in the cardiac tissues. GAPDH was a loading control. n = 6. d Representative images of DHE and DCFH-DA staining in the cardiac tissues. e Quantification of the corresponding fluorescence intensity in d. n = 6. f Relative concentration of NADPH normalized to the db/m group. n = 6. Data were mean ± SEM; **P < 0.01 ***P < 0.001 in (b, e, f); ***P < 0.001 vs. db/m, ****P < 0.001 vs db/db in c.
Fig. 4 FGF1ΔHBS prevents mitochondrial ROS production and dysfunction in the hearts of db/db mice. a Representative images (upper panel) and quantification (lower panel) of fluorescence intensity of MitoSox in cardiac tissues from db/m and db/db + FGF1ΔHBS mice. n = 6. b Representative transmission electron micrographs of cardiac tissues in each group. c Mitochondrial area in cardiac tissues of each group. n = 6. d Mitochondrial aspect ratio (long/short axis) in the cardiac tissues. n = 30–31. e mtDNA copy number per nuclear genome in the cardiac tissues. n = 6. f ATP content in the cardiac tissues. n = 6. g Western blot analysis (left panel) and densitometric quantification (right panel) of mitochondrial respiratory complex in the cardiac tissues. HSP60 was a loading control. n = 6. Data were mean ± SEM; **p < 0.01, ***p < 0.001.
AMPK mediated the protective effect of FGF1^{ΔHBS} against DCM in vivo

To further confirm whether AMPK activation mediated the protective effects of FGF1^{ΔHBS} against DCM, wild type (WT) and AMPK^{α2} knockout mice were subjected to the DCM model established by HFD feeding plus STZ injection. The random blood glucose level of FGF1^{ΔHBS} treated group was ~30% lower than the vehicle-treated group, and lower blood glucose levels were observed in FGF1^{ΔHBS} treated group throughout the GTT test. However, the glucose-lowering and insulin-sensitizing effects of FGF1^{ΔHBS} were absent in AMPK^{α2}−/− mice (Supplemental Fig. S6b, c). As expected, systolic and diastolic dysfunctions, myofilament disarray, and collagen deposition were comparably observed in WT- and AMPK^{α2}−/− T2D mice (Fig. 7a–c, Supplemental Fig. S6d, and Supplemental Table S2). FGF1^{ΔHBS} treatment improved these cardiac structural alterations, fibrosis and cardiac dysfunction in the WT-T2D mice but not in the AMPK^{α2}−/− T2D mice (Fig. 7a–c).

Similarly, FGF1^{ΔHBS} treatment decreased cardiac ROS level in the WT-T2D mice but not in the AMPK^{α2}−/− T2D mice (Fig. 7d).

Fig. 5 FGF1^{ΔHBS} suppresses Nur77 expression and activates AMPK in the hearts of db/db mice. a FPKM values of Nur77 gene in the RNA-Seq analysis, n = 3. b Nur77 mRNA levels confirmed by qPCR, n = 6. c Western blot analysis (left panel) and densitometric quantification (right panel) of Nur77 in the cardiac tissues. GAPDH was a loading control. n = 6. d Western blot analysis (left panel) and densitometric quantification (right panel) of Drp1, Nur77 and Cyt C in cardiac tissues of each group. HSP60 and GAPDH were loading controls. n = 6. e Western blot analysis (left panel) and densitometric quantification (right panel) of p-ACC, ACC, p-AMPK, AMPKα2 and SIRT1 in the cardiac tissues. GAPDH was a loading control. n = 6. Data were mean ± SEM; **P < 0.01, ***P < 0.001.
Further ultrastructural analysis showed that mitochondrial dynamics and morphology in cardiac tissues were improved with FGF1\(ΔHBS\) treatment in WT-T2D mice but not in the AMPKα2\(^{-/-}\)−T2D mice (Fig. 7e–g). Finally, decreased SIRT1 and Nrf2 and increased Nur77 levels were observed in the heart of T2D mice, which were normalized with FGF1\(ΔHBS\) treatment in the WT-T2D mice, while these effects of FGF1\(ΔHBS\) were abrogated in the AMPKα2\(^{-/-}\)−T2D mice (Fig. 7h). Taken together, the data indicate that AMPK mediated the protective effects of FGF1\(ΔHBS\) on diabetes-induced cardiac dysfunction and mitochondrial injury.

DISCUSSION

Ample evidence has demonstrated a beneficial role of FGF1 in metabolic diseases, including obesity, type 2 DM, and associated complications.\(^8,9,29,30\) In this study, we revealed that serum FGF1 was decreased in both T2D patients and mouse models, and FGF1 levels were positively correlated with FSH and negatively correlated with serum BNP in DCM patients. These findings suggested the potential positive correlation between FGF1 levels and cardiac function. However, the potential mitogenic activity of native FGF1 limits in vivo application.\(^7\) Thus, we engineered an FGF1 variant that lacked the mitogenic property and retained the metabolic effects. The results showed that FGF1\(ΔHBS\) treatment significantly prevented cardiac remodeling and restored systolic and diastolic functions in T2D mice (Fig. 2). Our in vitro data revealed that FGF1\(ΔHBS\) rescued HG or HG + PA-induced morphological and functional abnormalities in cardiomyocytes (Figs. 1 and 6; and Supplementary Fig. S5), indicating FGF1\(ΔHBS\) directly imposes favorable effects on myocardium independent of its glucose-lowering or insulin-sensitizing effects. Further mechanism studies revealed that AMPK-mediated Nur77 suppression and subsequent mitochondrial function improvement played a key role in the therapeutic effects of FGF1\(ΔHBS\) on DCM (Figs. 6 and 7).

Mitochondrial dysfunction, oxidative stress and abnormal mitochondrial ultrastructure have been observed in the hearts of both diabetic patients and diabetic animal models, and cause disease progress.\(^34,35\) Physiologically mitochondrial fragmentation will increase ATP generation to meet the energetic demand of the heart.\(^3,5\) However, excessive mitochondrial fission accentuates ΔΨm decline, leading to cytochrome c leakage and mitochondrial dysfunction,\(^3\) which is believed to be the primary source of ROS production and the culprit of DCM.\(^34,35\) Our data confirmed the abnormally mitochondrial morphology changes with excessive fragmentation, increased ROS generation, suppressed ATP generation and respiratory rates in the in vivo and in vitro models. Importantly, FGF1\(ΔHBS\) treatment greatly diminished these abnormalities, which may leverage the rescued expression of Nrf2 and its downstream targets in the hearts since Nrf2 is an important transcription factor in detoxification signaling of oxidative stress in DCM.\(^36\)

Further RNA-Seq revealed that FGF1\(ΔHBS\) treatment significantly decreased Nur77 mRNA (Fig. 5a). Although the endogenous ligand for Nur77 receptor has not been identified, studies have revealed Nur77 as a malefactor aggravating cardiac damage by promoting mitochondrial fragmentation, altering mitochondrial membrane potential and inducing apoptosis through cytochrome c release.\(^21,27,38\) In the current study, increased Nur77 expression along with impaired mitochondrial oxidative respiration were observed in the cardiac tissues of diabetic mice. Interestingly, FGF1\(ΔHBS\) treatment significantly reduced Nur77 and Drp1 expression in vivo and in vitro, which were blunted with AMPK inhibition, indicating an AMPK-mediated Nur77 suppression after FGF1\(ΔHBS\) treatment. Furthermore, Nur77 agonist and AMPK siRNA or knockout abolished the beneficial effects of FGF1\(ΔHBS\) on HG with/without PA-induced cardiomyocyte dysfunction (Fig. 6) or DCM in vivo (Fig. 7), which indicates an AMPK activation/FGF1\(ΔHBS\) prevents diabetic...

Nur77 suppression/mitochondrial homeostasis pathway under FGF1\(ΔHBS\) treatment.

However, it has been reported that direct pharmacological activation of AMPK in neoplastic cells promotes mitochondrial fission via increasing phosphorylation of MFF, a membrane receptor for Drp1.\(^39\) This discrepancy may be because of the diverse of metabolic reprogramming between cancer and diabetes and distinct mechanisms for AMPK activation by FGF1\(ΔHBS\) and chemicals. Studies by Hall and colleagues have suggested that the AMPK agonist AICAR suppresses IFNα/IFNγ-induced muscle wasting, an effect absent for metformin.\(^40\) In addition, metformin activates AMPK through inhibition of complex I of the electron transport chain.\(^41\) the expression of complex I, however, was increased with FGF1\(ΔHBS\) treatment. Of note, more studies are necessary to explore the underlying mechanisms of AMPK activation by FGF1\(ΔHBS\).

Although hyperglycemia and insulin resistance exacerbate DCM progress, the relevance between blood glucose control and the alleviation of cardiovascular disease is limited.\(^42\) Previous studies have concluded that hypoglycemic effect alone is not able to retard the onset and progress of diabetic cardiac complications.\(^43\) The association between insulin-treated DM and worse outcomes of heart failure has been observed.\(^44\) In addition, anti-glycemic agents such as GLP-1 agonist and DPP-4 inhibitors did not show beneficial effect on reducing the risk of heart failure in clinical trials.\(^45\) In addition to the anti-hyperglycemia effects, our in vitro data demonstrated directly protective effects of FGF1\(ΔHBS\) on cardiomyocyte hypertrophy, apoptosis, mitochondrial homeostasis and oxidative stress. The preservation of mitochondrial dynamics and function could directly improve cardiac function in vivo.\(^34,46,47\) Therefore, the protective effects of FGF1\(ΔHBS\) on DCM are likely mediated by its direct action on mitochondrial homeostasis.

In summary, cardiac injury in diabetic individuals was associated with mitochondrial dysfunction and ROS accumulation caused by upregulated Nur77 and mitochondrial translocation of Drp1 and subsequently excessively mitochondrial fragmentation. Activation of AMPK by the non-mitogenic FGF1\(ΔHBS\) greatly reduced Nur77 level, restored mitochondrial function, which protect against myocardial remodeling and dysfunction in diabetes. Given the favorable metabolic activity and reduced proliferative potential, our data offer promise that FGF1\(ΔHBS\) may yield a clinically useful agent for the treatment of DCM.

MATERIALS AND METHODS

Protein expression and purification

Expression and purification of FGF1\(ΔHBS\) were performed as previously described.\(^15\) Briefly, three amino acids of heparin binding sites of FGF1 were mutated as Lys127Asp, Lys128Gln and Lys129Asp. Human subjects were screened with electrocardiogram and cardiac enzymes analysis. T2D and DCM patients were excluded if they had coronary artery disease, hypertrophic cardiomyopathy, restrictive cardiomyopathy, dilated cardiomyopathy, arrhythmogenic right ventricular dysplasia and other micro- or macrovascular complications of diabetes. In addition, subjects had other comorbidities such as renal failure, severe psychiatric disorders and malignancy were excluded as well. Finally, 17 healthy subjects, 12 T2D patients and 10 T2D patients with DCM were enrolled in the study. Blood samples were obtained from each...
Primary cardiomyocytes were transfected with control or AMPK siRNA and starved for 12 h, and then cardiomyocytes were treated with palmitate (500 μM) and high glucose (35 mM) with or without CsnB (10 μg/mL) in FBS free medium for 1 h, followed by incubation with FGF1ΔHBS (500 ng/mL) for additional 48 h. Mannitol + control siRNA group was an osmotic control. a–k Representative images of MitoTracker staining (left panel) and mitochondrial length (right panel) of primary cardiomyocytes. b–d Representative images of MitoSox (b), DHE (c), and 10-N-nonyl acridine orange (NAO) (d) staining and corresponding quantitative analysis of fluorescence intensity. e Representative images of TMRE staining (left panel) and quantitative analysis (right panel) of fluorescence intensity. f Mitochondrial membrane potential was evaluated by the ratio of JC-10 fluorescence intensities at 529 nm (green) and 590 nm (red). g–j Mitochondrial respiratory function was assessed by OCR assay. k Western blot analysis (left panel) and densitometric quantification (right panel) of AMPKα2, SIRT1, Nur77, Drp1, Nrf2 and SOD2 in the cardiomyocytes. n = 3 independent experiments for each group. Data were mean ± SEM; *P < 0.05, **P < 0.01, ***P < 0.001.
subject and prepared for FGF1 concentration measurement. The study was conducted in accordance with the principles of the Declaration of Helsinki and approved by the Research Ethics Committee of Wenzhou Medical University. Informed consents were obtained from all recruited subjects. The clinical information was provided in Supplemental Table S3.

Animals
Eight-week-old male db/db (C57BLKS/J-lepr^{ob}/lepr^{ob}) mice, the non-diabetic db/m littermates, and male C57BL/6J mice were purchased from the Model Animal Research Center of Nanjing University (Nanjing, China). Animals were acclimatized for 2 weeks prior to experimentation. The db/db mice were employed as a T2D

Fig. 7 AMPK mediates the protective effect of FGF1^{ΔHBS} against DCM in vivo. **a–h** At the age of 8 weeks, male wild type (WT) or AMPKα2 knockout mice were fed with a high-fat diet for 8 weeks and intraperitoneal injected with STZ and then treated with FGF1^{ΔHBS} (0.5 mg/kg body weight) or saline every other day for 8 weeks. **a** Echocardiographic assessment for each group. n = 5–6. **b** H&E staining of the cardiac tissues. **c** Masson's trichrome staining (left panel) and quantitative analysis (right panel) of cardiac fibrosis area. n = 4. **d** Representative images (left panel) and quantification (right panel) of fluorescence intensity of DHE in cardiac tissues. n = 4. **e** H&E staining of the cardiac tissues. **f** Mitochondrial area of the cardiac tissues. n = 5. **g** Mitochondrial aspect ratio (long/short axis) of the cardiac tissues. n = 21–37. **h** Western blot analysis (left panel) and densitometric quantification (right panel) of Nur77, SIRT1 and Nrf2 in the cardiac tissues. n = 5–6. Data were mean ± SEM; *P < 0.05, **P < 0.01, ***P < 0.001; ns, not significant.
model and were intraperitoneally (IP) injected with FGF1ΔHBS (0.5 mg/kg body weight) every other day for 16 weeks from 10 weeks of age. The db/m and db/db control groups received 0.9% saline accordingly.

AMPKa2 knockout mice were obtained from Dr. Louise D. McCullough at University of Texas Health Science Center at Houston (UTHealth) (Houston, TX) that were originally generated and characterized by Dr. Benoit Viollet at Université Paris Descartes, CNRS (UMR 8104), Paris, France.29 C57BL/6J mice and AMPKa2 knockout mice at 8-week-old were fed a high-fat diet (60 % fat; Research Diets, Inc, New Brunswick, NJ) for 8 weeks followed with intraperitoneal injection of streptozotocin (STZ, 35 mg/kg body weight) for 3 consecutive days. And then mice were treated with FGF1ΔHBS (IP, 0.5 mg/kg/every other day) or saline for another 8 weeks.

Blood glucose levels were measured using the Precision G Blood Glucose Testing System (Abbott Laboratories, Abbott Park, IL). Plasma insulin levels were determined using a commercial kit (cat #EZRMI-13K, Millipore) according to the manufacturer’s instruction. Following the final dose, IPGTT were conducted after fasting overnight (12 h), mice were challenged with a glucose solution (2 g/kg body weight, IP), and their blood were collected at 0, 15, 30, 60, and 120 min post-injection, and the blood glucose levels were determined as above. Area under the curve (AUC) for IPGTT was calculated by applying the trapezoidal rule for the glucose tolerance curve using GraphPad Prism.

At the end of the treatment period, mice were evaluated for cardiac function. Mice were then sacrificed, and heart tissues were harvested for further study. All experiments were approved by Wenzhou Medical University Institutional Animal Care and Use Committee.

Mitochondria isolation

The mitochondrial fraction was prepared using a commercial kit (cat# SM0020, Solarbio, China) in accordance with the manufacturer’s protocol.

Endogenous FGF1 assay

Human sera. Blood samples were left at room temperature for 30 min for clotting prior to centrifugation at 1000 × g for 20 min, and serum samples were collected. A human FGF1 ELISA kit (cat# E0032h, ElAab, China) was used to determine the serum FGF1 content in accordance with the manufacturer’s protocol.

Mouse sera. Blood samples were left at room temperature for 30 min for clotting prior to centrifugation at 3000 × g for 10 min, and serum samples were collected. A mouse FGF1 ELISA kit (cat# P0032Rb-m, ElAab, China) was used to determine the serum FGF1 content in accordance with the manufacturer’s protocol.

Echocardiography

Systolic and diastolic function were determined using non-invasive transthoracic echocardiography in anesthetized mice one day prior to sacrifice (VEVO3100, Fujifilm Visualsonics).30 Left ventricular (LV) dimensions, end-diastolic LV posterior wall thickness (LVPWd), LV fractional shortening (FS), E waves and LV ejection fraction (EF) were measured. Tei index was calculated based on Doppler recordings of isovolumetric relaxation time (IRT), isovolumetric contraction time (ICT) and ejection time (ET) as follows: Tei = (IRT + ICT)/ET.

Gene expression analysis

Differential gene expression was evaluated by RNA sequencing (transcriptome sequencing; RNA-Seq). Heart tissues from db/db and db/db + FGF1ΔHBS groups (3 mice per condition) were snap frozen in liquid nitrogen for further analyses. The mRNA was isolated and enriched by magnetic beads with oligo (dT). Sequencing libraries were constructed and sequenced on an Illumina HiSeq 2000 (50 nt single end). Insert sizes in complementary DNA (cDNA) libraries were analyzed using an Agilent 2100 Bioanalyzer. Trimmomatic was chosen to further analyze the raw RNA-Seq. Raw sequencing data were submitted to GEO (GSE153444).

For real-time PCR analysis, total RNA was extracted using an EasyPure RNA kit (cat# ER101-01, Transgen, Beijing, China) and was reverse transcribed with a HScript II 1st Strand cDNA Synthesis kit (cat# R212-01, Vazyme, Nanjing, China). Real-time PCR was performed using a QuantStudio3 system with AceQ Universal SYBR qPCR Master Mix (cat# Q511-02, Vazyme, Nanjing, China). Primer sequences were listed in Supplemental Table S4.

Measurement of ROS, NADP⁺, CK-MB

Frozen tissue sections (5 µm in thickness) or cells were incubated with fresh PBS containing dihydroethidium (DHE) or 2′,7′-Dichlorofluorescin diacetate (DCFH-DA) (Beyotime, Nanjing, China) for detection of ROS. A cohort of cells was directly viewed under a fluorescence microscope (Leica, Germany). Levels of NADP⁺, an index of free radical production, were determined using a commercial kit (cat #g9081, Promega, USA) according to the manufacturer’s instruction. CK isoenzyme-MB (CK-MB) in mouse serum was determined using an automatic biochemical analyzer.

Cell shortening and re-lengthening

Cell shortening and re-lengthening were assessed using a SoftEdge MyoCam® system (IonOptix Corporation, Milton, MA, USA). Briefly, hearts from adult C57BL/6J mice were removed and perfused after ketamine/xylazine (ketamine 80 mg/kg and xylazine 12 mg/kg, i.p.) sedation. After digestion with Liberase Blendzyme 4 (Hoffmann-La Roche Inc., Indianapolis, IN), left ventricles were removed, minced and filtered. And then cardiomyocytes were placed in a chamber mounted on the stage of an inverted microscope (IX-70, Olympus). The following indices were analyzed to assess cell mechanics: peak shortening (PS), maximal velocities of cell shortening and re-lengthening (Vmax, Jungmann, Germany) and counter stained with DAPI. Images were acquired using a confocal microscope (Leica, D.E.).

Neonatal cardiomyocytes culture and treatment

Primary cardiomyocytes were prepared from neonatal Sprague Dawley rat hearts and were cultured as previously described.51 Briefly, rats (0.5–2 days) were sacrificed by anesthesia (isoflurane). The hearts were harvested and treated with 0.08% trypsin for dissociation of heart tissue. The cells were plated for 1 h into 100-mm culture dishes in DMEM containing 1 g/L of D-glucose supplemented with 10% FBS, 100 U/mL penicillin and 100 mg/mL streptomycin. Suspended cells were then collected as cardiomyocytes, plated in six-well plates or 35-mm culture dishes, and maintained at 37 °C in a humidified 5% CO₂ incubator for subsequent studies. Cells were starved for 12 h and randomized into different experimental groups: 35 mM α-glucose (Sigma, St. Louis, MO, USA) with or without 500 µM palmitate (Sigma, St. Louis, MO, USA) as PA + HG or HG group, identical concentrations of mannitol as an osmotic control group containing 5.5 mM o-glucose plus 29.5 mM mannitol in the presence or absence of FGF1ΔHBS treatment at 10 µM. To activate Nur77, cyclosporine B (CsNB, cat# S6674, Selleck Chemicals) was added 1 h prior to FGF1ΔHBS treatment at 10 µg/mL.
Small-interfering RNA (siRNA) transfection
AMPKa2 siRNA (cat# sc-155985) and negative control siRNA (cat# 129935300, Thermo Fisher) were transfected into primary cardiomyocytes with TransMessenger® transfection reagent (cat# 301525, QIAGEN).

Western blot analysis
Tissues (30–50 mg) or cells were lysed with a RIPA buffer containing protease and phosphatase inhibitors (Thermo Fisher Scientific, MA). Total protein concentrations were determined with the Bradford protein assay kit (Bio-Rad, Hercules, CA). Protein sample aliquots (70 μg) were subjected to electrophoresis, transferred to nitrocellulose membranes, and blocked in Tris-buffered saline containing 0.05% Tween 20 and 5% non-fat dry milk. Primary antibodies used included: FGFl (1:600, cat# 109180, Abcam), COL 1 (1:1000, cat# ab64883, Abcam), COL 3 (1:1000, cat# ab7778, Abcam), TGF-β1 (1:1000, cat# ab92486, Abcam), cleaved caspase 3 (1:1000, cat# ab2302, Abcam), MyHC (1:1000, cat# ab11083, Abcam), Nrf2 (1:1000, cat# ab62352, Abcam), SOD2 (1:1000, cat# 24127-1-AP, Proteintech), HO-1 (1:1000, cat# 10701-1-AP, Proteintech), Nrf2 (1:1000, cat# 15184-1-AP, Proteintech), PPARα (1:1000, cat# 15540-1-AP, Proteintech), phospho-ACC (1:1000, cat# ab45174, Abcam), phospho-AMPK (1:1000, cat# 50081, Cell Signaling Technology), AMPK (1:1000, cat# ab3760, Abcam) and SIRT1 (1:1000, cat# ab110304, Abcam). The immunoreactive bands were detected with secondary antibodies (Santa Cruz Biotechnology, Dallas, TX), and bands visualized using the ECL detection kit (Bio-Rad, Hercules, CA). Densitometric analysis was performed using Image J software version 1.38e (NIH, Bethesda, MD).

Histology and immunofluorescence analysis
Mouse hearts were fixed in 4% paraformaldehyde solution, embedded in paraffin, and sectioned at 5 μm thickness. After dehydration, sections were stained with hematoxylin and eosin (H&E), Masson trichrome staining (Beyotime Biotech, Nantong, China) and Sirius red staining kits (Beyotime Biotech, Nantong, China) per manufacturer’s instruction. Stained sections were evaluated for histopathological damage under light microscopy (×400 magnification; Nikon, Japan). Percentage of fibrosis was analyzed using an Image J software.

For immunofluorescence staining, heart frozen sections (10 μm) or cell samples were fixed with 4% paraformaldehyde for 15 min. Specimens were subsequently incubated with fluorescent probes, including wheat germ agglutinin (WGA, cat# W6748, Thermo Fisher) to indicate cardiomyocyte membrane, TRITC Phalloidin (cat# 40734ES75, Yeasen, Shanghai, China) to visualize F-actin, MitoTracker (cat# M7512, Thermo Fisher) to visualize mitochondria, and 10-N-nonyl acridine orange (cat# A1372, Thermo Fisher) to visualize cardiolipin at room temperature. After washing, samples were observed under a confocal microscope (Leica, Mannheim, Germany or A1R-SIM-STORM, Nikon, Japan).

For electron microscopy analysis, heart samples were fixed using a triple aldehyde fixative for 1 h after harvested from mice, and post-fixed in 1% osmium tetroxide for 2 h. After rinsing with distilled water, specimens were incubated with 0.25% uranyl acetate overnight, dehydrated and embedded in epoxy resin (Epok). Ultrathin sections (~70 nm) were cut, stained with 2% uranyl acetate and Reynolds lead citrate, and examined under an electron microscope (JEOL, JEM-12300, Japan).

Fgf10 ΔHBS prevents diabetic…
Wang et al.

ATP measurement, mitochondrial membrane potential (ΔΨm), and mROS analyses
A commercial assay kit (cat# ab83355, Abcam) was used to determine ATP content per the manufacturer instruction. Mitochondrial membrane potential was determined with a JC-10 kit (cat# J8050, Solarbio, China) and TMRE (cat# T669, Invitrogen). Mitochondrial ROS were evaluated with MitoSox indicator (cat# 9082, Cell Signaling Technology).

DATA AVAILABILITY

ACKNOWLEDGEMENTS

AUTHOR CONTRIBUTIONS

REFERENCES

1. Tan, Y. et al. Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: preclinical and clinical evidence. Nat. Rev. Cardiol. 17, 585–607 (2020).
2. Jia, G., Hill, M. A. & Sowers, J. R. Diabetic cardiomyopathy: an update of mechanisms contributing to this clinical entity. Circ. Res. 122, 624–638 (2018).
3. Kenny, H. C. & Abel, E. D. Heart failure in type 2 diabetes mellitus. *Circ. Res.* **124**, 121–141 (2019).

4. Kan, M. et al. Heparin-binding growth factor type 1 (acidic fibroblast growth factor): a potential biphasic autocrine and paracrine regulator of hepatocyte regeneration. *Proc. Natl Acad. Sci. USA* **86**, 7432–7436 (1989).

5. Nabel, E. G. et al. Recombinant fibroblast growth factor-1 promotes intimal hyperplasia and angiogenesis in arteries in vivo. *Nature* **362**, 844–846 (1993).

6. Wiedlocha, A. et al. Stimulation of proliferation of a human osteosarcoma cell line by exogenous acidic fibroblast growth factor requires both activation of receptor tyrosine kinase and growth factor internalization. *Mol. Cell Biol.* **16**, 270–280 (1996).

7. Gasser, E., Moutos, C. P., Downes, M. & Evans, R. M. FGFR - a new weapon to control type 2 diabetes mellitus. *Nat. Rev. Endocrinol.* **13**, 599–609 (2017).

8. Suh, J. M. et al. Endocrinization of FGF1 produces a neomorphic and potent insulin sensitizer. *Nature* **513**, 436–439 (2014).

9. Scarlett, J. M. et al. Central injection of fibroblast growth factor 1 induces sustained remission of diabetic hyperglycemia in rodents. *Nat. Med.* **22**, 800–806 (2016).

10. Liang, G. et al. Fibroblast growth factor 1 ameliorates diabetic nephropathy by an anti-inflammatory mechanism. *Kidney Int.** 93**, 95–109 (2018).

11. Formiga, F. R. et al. Controlled delivery of fibroblast growth factor-1 and neuregulin-1 from biodegradable microparticles promotes cardiac repair in a rat myocardial infarction model through activation of endogenous regeneration. *J. Control Release** **173**, 132–139 (2014).

12. Zhou, H. et al. NR4A1 aggravates the cardiac microvascular ischemia reperfusion injury in the presence of hepatic co-administration. *Cardiovasc. Res.* **113**, 1585–1602 (2017).

13. Jonker, J. W. et al. A PPARgamma-FGF1 axis is required for adaptive adipose remodeling and metabolic homeostasis. *Nature** **485**, 391–394 (2012).

14. Huang, Z. et al. Uncoupling the mitogenic and metabolic functions of FGF1 by tuning FGF1-FGF receptor dimer stability. *Cell Rep.* **20**, 1717–1727 (2017).

15. Wang, Q. et al. Metformin suppresses diabetes-accelerated atherosclerosis via the inhibition of Drp1-mediated mitochondrial fission. *Diabetes** **66**, 193–205 (2017).

16. Lowell, B. B. & Shulman, G. I. Mitochondrial dysfunction and type 2 diabetes. *Science** **307**, 384–387 (2005).

17. Yu, T., Robotham, J. L. & Yoon, Y. Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. *Proc. Natl Acad. Sci. USA** **103**, 2653–2658 (2006).

18. Chao, L. C. et al. Insulin resistance and altered systemic glucose metabolism in mice lacking Nur77. *Diabetes** **58**, 2788–2796 (2009).

19. Zhou, H. et al. Effects of melatonin on fatty liver disease: The role of NROAα-DNA-PKcs/p53 pathway, mitochondrial fission, and mitophagy. *J. Pineal. Res.* **64**, e12450 (2018).

20. Zhou, H. et al. NROAα aggravates the cardiac microvascular ischaemia reperfusion injury through suppressing FUNDC1-mediated mitochondrial fission and promoting Mff-required mitochondrial fission by Ctx2. *Basic Res. Cardiol.* **113**, 23 (2018).

21. Canto, C. & Auwerx, J. PGC-1α, SIRT1 and AMPK: an energy sensing network that controls energy expenditure. *Curr. Opin. Lipidol.* **20**, 98–105 (2009).

22. Fulco, M. et al. Glucose restriction inhibits skeletal myoblast differentiation by inhibiting SIRT1 through AMPK-mediated regulation of Nampt. *Dev. Cell** **14**, 661–673 (2008).

23. Qiang, L. et al. Proatherogenic abnormalities of lipid metabolism in Sirt1 transgenic mice are mediated through Creb deacetylation. *Cell Metab.* **14**, 758–767 (2011).

24. Paradies, G., Paradies, V., Ruggiero, F. M. & Petrosillo, G. Mitochondrial bioenergetics decay in aging: beneficial effect of melatonin. *Cell Mol. Life Sci.* **74**, 3897–3911 (2017).

25. Li, J. et al. Cardiolipin remodeling by ALCAT1 links oxidative stress and mitochondrial dysfunction to obesity. *Cell Metab.* **12**, 154–165 (2010).

26. Attea, Y. et al. AMP-activated protein kinase a2 deficiency affects cardiac diolipin homeostasis and mitochondrial function. *Diabetes** **56**, 786–794 (2007).

27. Wang, B. et al. AMPKa2 protects against the development of heart failure by enhancing mitophagy via PINK1 phosphorylation. *Circ. Res.* **122**, 712–729 (2018).

28. Kingwell, K. Obesity and diabetes: FGF1 goes long to tackle diabetes. *Nat. Rev. Drug Discov.* **13**, 652–653 (2014).

29. Liu, S. et al. Effects of treatment of steatosis and steatohepatitis by fibroblast growth factor 1 in mouse models of nonalcoholic fatty liver disease. *Proc. Natl Acad. Sci. USA** **113**, 2288–2293 (2016).