In vitro Susceptibility of Multidrug-Resistant Klebsiella pneumoniae Isolates from an Egyptian Tertiary Care Hospital to Tigecycline and Colistin

Rania Abd El-Hamid El-Kady* and Nawal Salama Gouda

Department of Medical Microbiology and Immunology, Faculty of Medicine, Mansoura University, Mansoura, Egypt

*Corresponding author

ABSTRACT

The evolution of multidrug-resistant (MDR) Klebsiella pneumoniae constitutes a foremost public health issue, owing to the relatively limited antibiotic arsenal. Thereby, this research was undertaken to explore the in vitro susceptibility of MDR K. pneumoniae isolates from Mansoura University Hospital (MUH), Egypt to tigecycline and colistin. Over a 12-month study period, a total of 120 K. pneumoniae isolates were recovered. The MDR K. pneumoniae isolates accounted for 49.2% (59 out of 120). Amongst these isolates, 91.5% (54/59) were susceptible to tigecycline by Etest (MICs range; 0.25-1 μg/ml, MIC50; 0.5 μg/ml, and MIC90; 1 μg/ml), whereas 89.8% (53/59) were colistin-susceptible (MICs range; 0.5-2 μg/ml, MIC50; 1 μg/ml, and MIC90; 2 μg/ml). Extended-spectrum β-lactamase (ESBL) production was verified in 71.2% of the MDR strains, of which 95.2% and 92.9% were susceptible to tigecycline and colistin, respectively. In addition, 87.5% and 81.25% of the carbapenemase-positive-MDR K. pneumoniae strains displayed sensitivity to tigecycline and colistin, respectively. In conclusion, tigecycline and colistin exhibited striking in vitro activity against MDR K. pneumoniae isolates, including ESBL- and carbapenemase-producers. However, judicious use of these antibiotics is mandatory to avert the forthcoming threat of resistance to promising antibiotic classes.

Keywords
Klebsiella pneumoniae, Multidrug-resistant (MDR), Tigecycline, colistin, Minimum inhibitory concentrations (MICs), Etest.

Accepted: 20 September 2017
Available Online: 10 November 2017

Introduction

Klebsiella pneumoniae is an opportunistic pathogen associated with both community-acquired and hospital-acquired infections (HAIs) worldwide (Lu et al., 2017). Although this organism can be carried asymptomatically in healthy individuals, it can also cause many kinds of infections in hospitalized patients, including pneumonia, wound, bloodstream, or urinary tract infections (Podschun and Ullmann, 1998).

Multidrug-resistant (MDR) K. pneumoniae was first described in the United States, then in Europe, South America, and Asia (Winokur et al., 2001). Established mechanisms of resistance include the production of extended-spectrum β-lactamases (ESBLs), cephalosporinases, and carbapenemases (Moradigaravand et al., 2017). The most commonly accepted definition of MDR isolates includes absence of susceptibility to one or more agents in three or more antimicrobial categories active against the isolated bacteria (Magiorakos et al., 2012). Developed in 1993, tigecycline is a broad-spectrum antibiotic representing the
first glycylcycline of the tetracycline class of antibiotics (Chopra, 2001). In vitro, this antibiotic displays good antibacterial activity against most of aerobic and anaerobic bacteria including MDR Gram-negative bacteria (Rose and Rybak, 2006). Tigecycline was approved in 2005 by the U.S. Food and Drug Administration (FDA) for the treatment of complicated skin and skin structure infections (cSSSIs), and complicated intra-abdominal infections (cIAIs) (Peterson, 2008).

Colistin, a polymyxin E antibiotic, was used in the late 1950s to manage infections caused by Gram-negative bacteria. However, incidence of nephrotoxicity and neurotoxicity discouraged clinicians from using this antibiotic. It acts by altering the integrity of the outer membrane of Gram-negative bacteria causing cell lysis (Lim et al., 2010). Currently, scarce data are available from Egypt concerning the susceptibility rates of MDR K. pneumoniae to tigecycline and colistin. Accordingly, this study was organized to determine the in vitro activity of tigecycline and colistin against MDR K. pneumoniae isolates retrieved from one Egyptian tertiary care hospital.

Materials and Methods

Study design

This prospective cohort study was performed over a period of 12 months (January to December 2016). Clinical samples were collected under strict aseptic precautions from patients admitted to Mansoura University Hospital (MUH), Mansoura, Egypt.

Isolation and identification of K. pneumoniae

Processing of different kinds of clinical samples was achieved in the microbiology laboratory at the Microbiology Diagnostics and Infection Control Unit (MDICU), Faculty of Medicine, Mansoura University, Egypt. K. pneumoniae isolates were identified based on their colony morphology, Gram staining characters, and results of the relevant biochemical reactions (Winn et al., 2006).

Antimicrobial susceptibility testing

Susceptibility of K. pneumoniae isolates to antibiotics was determined by the Kirby-Bauer’s disc diffusion method on Muller-Hinton agar (MHA) plates (Oxoid Ltd., Basingstoke, UK) in accord with the recommendations of the Clinical and Laboratory Standards Institute (CLSI, 2016).

Antibiotic discs (Oxoid Ltd., Basingstoke, UK) used included amoxicillin (AML; 25 μg), amoxicillin/clavulanic acid (AMC; 20/10 μg), piperacillin/tazobactam (TZP; 100/10 μg), cefuroxime (CXM; 30 μg), ceftazidime (CAZ; 30 μg), ceftriaxone (CRO; 30 μg), cefotaxime (CTX; 30 μg), cefepime (FEP; 30 μg), cefoperazone/sulbactam (SCF; 75/30 μg), aztreonam (ATM; 30 μg), chloramphenicol (C; 30 μg), tetracycline (TE; 30 μg), rifampicin (RD; 30 μg), imipenem (IPM; 10 μg), meropenem (MEM; 10 μg), amikacin (AK; 30 μg), gentamicin (CN; 10 μg), ciprofloxacin (CIP; 10 μg), levofloxacin (LEV; 5 μg), trimethoprim/sulfamethoxazole (SXT; 1.25/23.75 μg), and tigecycline (TGC; 15 μg). Tigecycline susceptibility results were interpreted on the basis of the European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints (EUCAST, 2016). Escherichia coli (E. coli) ATCC 25922 (American Type Culture Collection, Rockville, MD) was used for quality control.

Phenotypic detection of ESBL-producing strains

The screening test for detection of ESBL production was done as part of the routine
susceptibility testing according to the criteria set by the CLSI (CLSI, 2016). The confirmatory test for ESBL production was performed using the double-disc synergy test (DDST) with *E. coli* ATCC 25922 (ESBL-negative strain) and *K. pneumoniae* ATCC 700603 (ESBL-positive strain) were used for quality control purposes (CLSI, 2016).

Screening for carbapenemase production

The modified Hodge test (MHT) was used for screening for carbapenemase production according to the CLSI recommendations using *E. coli* ATCC 25922 (CLSI, 2016).

Determination of the minimum inhibitory concentrations (MICs) of tigecycline and colistin

The MICs of tigecycline (Oxoid Ltd., Basingstoke, UK) and colistin (AB Biodisk, Solna, Sweden) were assessed using the commercial MIC Etest strips as per the manufacturer’s instructions.

The concentrations of tigecycline used were 0.015 to 256 μg/ml, and the concentrations of colistin were 0.016 to 256 μg/ml.

The results were interpreted according to the EUCAST breakpoints for *Enterobacteriaceae* (EUCAST, 2016).

MIC values that inhibited 50% and 90% of the isolates were accepted as MIC$_{50}$ and MIC$_{90}$, respectively. *E. coli* ATCC 25922 was included concurrently as a quality control strain in each run of MIC measurements.

Statistical analyses

All statistical analyses were performed using IBM-SPSS version 22.0 for Windows (SPSS Inc., Chicago, IL, USA). A P-value < 0.05 was considered to be statistically-significant.

Ethical considerations

The design of this study was approved by the local institutional review board. Informed consent was obtained from all participants included in this study.

Results and Discussion

Bacterial isolates

During the study period, a total of 120 consecutive, non-duplicate (single isolate/patient) isolates of *K. pneumoniae* were identified. These isolates were most frequently recovered from blood (33.3%), followed by sputum (23.4%), urine (16.7%), wound swabs (10.8%), endotracheal aspirates (8.3%), and throat swabs (7.5%).

Antibiotic susceptibility testing patterns

By disc diffusion method, 91.7% of *K. pneumoniae* isolates demonstrated susceptibility to tigecycline, while 78.3% of the isolates were sensitive to piperacillin/tazobactam. On the other hand, 20.8% and 16.7% of the isolates were sensitive to cefotaxime and cefuroxime, respectively. None of the test isolates showed sensitivity to amoxicillin (Table 1). By DDST, 60 *K. pneumoniae* isolates (50%) were found to be ESBL-producers. The MHT results for meropenem and imipenem resistant strains revealed that 43.4% of these isolates (23/53) had the carbapenemase phenotype.

Results of the MICs of tigecycline and colistin by Etest

Among the 120 investigated *K. pneumoniae* isolates, 93.3% were tigecycline-susceptible (MICs range; 0.06-1 μg/ml, MIC$_{50}$; 0.12 μg/ml, and MIC$_{90}$; 1 μg/ml). The MICs of tigecycline-resistant isolates (n = 8) ranged between 4 to 128 μg/ml.
agreement between disc diffusion test and Etest was 98.3%, as 2 K. pneumoniae isolates had a false resistant phenotype by disc diffusion, but they were susceptible by Etest.

The MIC$_{50}$ and MIC$_{90}$ of colistin-susceptible strains (90%) were 0.25 and 1 µg/ml, respectively (MICs range; 0.125-1 µg/ml). Twelve isolates (10%) demonstrated resistance to colistin with MICs ranged between 8 to > 256 µg/ml.

Characteristics of the MDR K. pneumoniae isolates

Out of 120 K. pneumoniae, 59 isolates were MDR (49.2%). Sample-wise distribution of these isolates is shown in Table 2. Among the MDR K. pneumoniae isolates, 91.5% (54/59) were susceptible to tigecycline (MICs range: 0.25-1 µg/ml, MIC$_{50}$; 0.5 µg/ml, and MIC$_{90}$; 1 µg/ml), and 89.8% (53/59) were colistin-susceptible (MICs range; 0.5-2 µg/ml, MIC$_{50}$; 1 µg/ml, and MIC$_{90}$; 2 µg/ml). No statistically-significant difference was detected between MDR K. pneumoniae and non-MDR isolates in respect to their susceptibility to tigecycline or colistin ($P > 0.05$). The Etest MICs of tigecycline and colistin for some representative MDR K. pneumoniae isolates are shown in Figure 1.

About 71.2% (n = 42) of the MDR K. pneumoniae isolates were confirmed to be ESBL-producers, of which 95.2% (40/42) and 92.9% (39/42) revealed tigecycline and colistin sensitivity, respectively. On the other hand, the carbapenemase phenotype was observed in 34.8% of the carbapenem-resistant-MDR K. pneumoniae isolates (16/46), with 87.5% (14/16) and 81.25% (13/16) of the carbapenemase-positive strains were susceptible to tigecycline and colistin, respectively.

In the last decade, infections caused by MDR K. pneumoniae have increased intensely with corresponding increase in morbidity and mortality (Wu et al., 2012). In the contemporary study, MDR K. pneumoniae isolates encompassed 49.2% of the total K. pneumoniae isolates. This high rate of resistance could be traced to the misguided use of antimicrobials secondary to the absence of rigorous policies that dictate the prescription of antibiotics in Egypt.

Fig.1 (a): Etest showing the minimum inhibitory concentration (MIC) of tigecycline (TGC) against one representative MDR K. pneumoniae isolate (MIC = 4 µg/ml; resistant), **(b):** Etest showing the MIC of colistin (CO) against one representative MDR K. pneumoniae isolate (MIC = 16 µg/ml; resistant)
Table.1 Antibiotic susceptibility profiles of *K. pneumoniae* isolates by disc diffusion test

Antibiotic	Susceptible strains	
	Number (120)	Percent (100%)
Tigecycline (15 μg)	110	91.7
Piperacillin/tazobactam (100/10 μg)	94	78.3
Levofloxacin (5 μg)	83	69.2
Amikacin (30 μg)	80	66.7
Meropenem (10 μg)	67	55.8
Imipenem (10 μg)	67	55.8
Ciprofloxacin (10 μg)	60	50
Cefoperazone/sulbactam (75/30 μg)	60	50
Cefepime (30 μg)	51	42.5
Rifampicin (30 μg)	49	40.8
Tetracycline (30 μg)	49	40.8
Aztreonam (30 μg)	48	40
Gentamicin (10 μg)	48	40
Ceftriaxone (30 μg)	40	33.3
Trimethoprim/sulfamethoxazole (1.25/23.75 μg)	33	27.5
Chloramphenicol (30 μg)	32	26.7
Ceftazidime (30 μg)	31	25.8
Cefotaxime (30 μg)	25	20.8
Cefuroxime (30 μg)	20	16.7
Amoxicillin/clavulanic acid (20/10 μg)	11	9.2
Amoxicillin (25 μg)	0	0

Table.2 Sample-wise distribution of the recovered MDR *K. pneumoniae* isolates

Sample	Number	Percentage (%)
Blood	30	50.8
Urine	10	16.9
Sputum	9	15.3
ETA	7	11.9
Throat swabs	3	5.1
Total	59	100

Abbreviations: MDR *K. pneumoniae*; multidrug-resistant *K. pneumoniae*, ETA; Endotracheal aspirate.

Different prevalence rates of MDR *K. pneumoniae* have been declared from different parts of the globe. In support of our conclusion, 53% MDR *K. pneumoniae* isolates were retrieved from Malaysian hospitals (Lim *et al.*, 2009). In India and Bangladesh, 54% and 56% *K. pneumoniae* isolates were found to harbor MDR phenotype, respectively (Sikarwar and Batra, 2011, and Chakraborty *et al.*, 2016). Nevertheless, rates as high as 71.73% were detected in Pakistan (Ullah *et al.*, 2009). On the opposite side, another study conducted in Northeast Thailand illustrated that only 14% of *K. pneumoniae* isolates were MDR which is substantially lower than ours (Lim *et al.*, 2009).
Such discrepant results could be ascribed to the regional variances in antibiotic usage guidelines as well as infection control strategies.

Amongst our set of MDR *K. pneumoniae* isolates, 91.5% were tigecycline-sensitive. In accord with this outcome, Araj and Ibrahim (2008), Renteria *et al.*, (2014) and Rizek *et al.*, (2015) observed that 97%, 96.8%, and 96% of the encountered MDR *K. pneumoniae* isolates were tigecycline-sensitive, respectively. Inspite of these consoling results, clinical resistance to tigecycline has been increasingly reported worldwide (Sun *et al.*, 2013). This finding is upsetting, since tigecycline is one of the few clinically effective antibiotics against such MDR strains.

Etest sounds a reliable method to detect colistin MICs (Rojas *et al.*, 2017). In the current work, 89.8% of the MDR *K. pneumoniae* isolates exhibited sensitivity to colistin as determined by Etest. Concomitant with this finding, Shawky *et al.*, (2015) from a comparable study conducted in Egypt validated that 86% of their investigated isolates were colistin-sensitive. Outstandingly, Wasfi *et al.*, (2016) and Chiu *et al.*, (2017) disclosed that all of their MDR *K. pneumoniae* isolates were sensitive to colistin. Nonetheless, Tawfick *et al.*, (2016) mentioned that only 55.8 % of their MDR *K. pneumoniae* isolates collected from cancer patients at the Egyptian National Cancer Institute were colistin-sensitive. The frequent exposure of cancer patients to a multitude of antibiotics might be responsible for this high rate of colistin resistance in their study.

Extended-spectrum β-lactamase (ESBL)-producing *K. pneumoniae* represent authentic threat for clinicians which calls for new therapeutic agents every now and then. Noteworthy, 71.2% of the identified MDR *K. pneumoniae* isolates in this study were found to be ESBL-producers, which suggests a relevance between MDR and ESBL possession. Similar rates were published by other groups of researchers (Ibrahim *et al.*, 2017).

Tigecycline susceptibility was noticed amongst 95.2% (40/42) of the detected ESBL-producing *K. pneumoniae* isolates in this work. Concordant with this finding, 98.5% tigecycline susceptibility rate was recorded amongst ESBL-producing *K. pneumoniae* isolates from a University Hospital in South-Western Germany were tigecycline-sensitive (Wienke *et al.*, 2012). Such a substantial incongruity in results could be attributed to the difference in the genetic constitution of *K. pneumoniae* strains within different countries, as well as the extent of exposure of these strains to the β-lactam antibiotics.

In the present study, colistin susceptibility was delineated in 92.9% (37/42) of the ESBL-producing *K. pneumoniae* isolates which concurs with results of other co-workers (Walkty *et al.*, 2009). In contrast, Galani and his group demonstrated a poor activity of colistin against *K. pneumoniae* ESBL-positive isolates (Galani *et al.*, 2008).

Advent of carbapenemase-producing *K. pneumoniae* isolates has become a crucial issue worldwide (Tada *et al.*, 2017). In the extant study, the carbapenemase phenotype was identified in 34.8% of the carbapenem-resistant-MDR *K. pneumoniae* isolates. Fortunately, tigecycline and colistin displayed a considerable activity against such strains where 87.5% and 81.25% of the carbapenemase-positive strains were susceptible to tigecycline and colistin,
respectively. These findings are in a range similar to that reported by other investigators (He et al., 2015, and Zheng et al., 2017).

A limitation of this study is that it is an in vitro study, so patients from whom the isolates were recovered did not actually receive tigecycline and or colistin therapy, accordingly the in vivo clinical outcome of treatment could not be deduced. Moreover, the underlying mechanisms conferring resistance to tigecycline and colistin were not elucidated, so future researches need to be carried out to decipher the aforementioned matters.

Though both tigecycline and colistin unveiled favorable in vitro activity against MDR K. pneumoniae, including ESBL-producing, as well as carbapenemase-positive strains, their prescription should be stringently audited and reserved for life-threatening infections. It is important that antibiotic policies be tailored and implemented to avoid the dissemination of these catastrophic strains. Furthermore, expansion of the existent antibiotic armamentarium by newer agents should be considered to keep pace with the speedy development of antibiotic-resistant strains.

References

Araj, G.F., and Ibrahim, G.Y. Tigecycline in vitro activity against commonly encountered multidrug-resistant gram-negative pathogens in a Middle Eastern country. Diagn. Microbiol. Infect. Dis. 2008; 62(4):411-415.

Chakraborty, S., Mohsina, K., Sarker, P.K., Alam, M.Z., Abdul Karim M.I., and Abu Sayem, S.M. Prevalence, antibiotic susceptibility profiles and ESBL production in Klebsiella pneumoniae and Klebsiella oxytoca among hospitalized patients. Period. Biol. 2016; 118(1):53-58.

Chiu, S.K., Chan, M.C., Huang, L.Y., Lin, Y.T., Lin, J.C., Lu, P.L., and et al., Tigecycline resistance among carbapenem-resistant Klebsiella pneumonia: Clinical characteristics and expression levels of efflux pump genes. PLoS One. 2017; 12(4):e0175140.

Chopra, I. Glycylcyclines: third-generation tetracycline antibiotics. Curr. Opin. Pharmacol. 2001; 1(5):464-469.

Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing, M100–S26, 26th informational supplement, CLSI, Wayne, PA, USA. 2016.

European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. 2016; Version 6.0. http://www.eucast.org.

Galani, I., Kontopidou, F., Souli, M., Rekatsina, P.D., Koratzanis, E., Deliolanis, J., and et al., Colistin susceptibility testing by Etest and disk diffusion methods. Int. J. Antimicrob. Agents. 2008; 31(5):434-439.

He, F., Fu, Y., Chen, Q., Ruan, Z., Hua, X., Zhou, H., and et al., Tigecycline susceptibility and the role of efflux pumps in tigecycline resistance in KPC-producing Klebsiella pneumonia. PLoS One. 2015; 10(3):e0119064.

Ibrahim, Y., Sani, Y., Saleh, Q., Saleh, A., and Hakeem, G. Phenotypic Detection of Extended Spectrum Beta lactamase and Carbapenemase Co-producing Clinical Isolates from Two Tertiary Hospitals in Kano, North West Nigeria. Ethiop. J. Health. Sci. 2017; 27(1):3-10.

Lim, C., Takahashi, E., Hongsuwan, M., Wuthiekanun, V., Thamlikitkul, V., Hinjoy, S., and et al., Epidemiology and burden of multidrug-resistant bacterial infection in a developing country. eLife. 2016; 5:e18082.

Lim, K.T., Yeo, C.C., Yasin, R.M., Balan, G., and Thong, K.L. Characterization of multidrug-resistant and extended-spectrum β-lactamase-producing Klebsiella pneumoniae strains from Malaysian hospitals. J. Med. Microbiol.
Lim, L.M., Ly, N., Anderson, D., Yang, J.C., Macander, L., Jarkowski, A., and et al., Resurgence of colistin: a review of resistance, toxicity, pharmacodynamics, and dosing. Pharmacotherapy. 2010; 30(12):1279-1291.

Lu, B., Zhou, H., Zhang, X., Qu, M., Huang, Y., and Wang, Q. Molecular characterization of Klebsiella pneumoniae isolates from stool specimens of outpatients in sentinel hospitals Beijing, China, 2010-2015. Gut Pathogens. 2017; 9(39).

Lu, C. T., Chuang, Y. C., Sun, W., Liu, Y.C., Cheng, Y.J., Lu, P.L., and et al., Nationwide surveillance in Taiwan of the in-vitro activity of tigecycline against clinical isolates of extended-spectrum beta-lactamase-producing Enterobacteriaceae. Int. J. Antimicrob. Agents. 2008; 32(3):179-183.

Magiorakos, A.P., Srinivasan, A., Carey, R.B., Carmeli, Y., Falagas, M.E., Giske, C.G., and et al., Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012; 18(3):268-281.

Moradigaravand, D., Martin, V., Peacock, S. J., and Parkhill, J. Evolution and Epidemiology of Multidrug-Resistant Klebsiella pneumoniae in the United Kingdom and Ireland. MBio. 2017; 8(1):e01976-16.

Peterson, L.R. A review of tigecycline--the first glycylicycline. Int. J. Antimicrob. Agents. 2008; 32 Suppl 4:S215-222.

Podschun, R., and Ullmann, U. Klebsiella spp. as nosocomial pathogens: Epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin. Microbiol. Rev. 1998; 11(4):589-603.

Renteria, M.I., Biedenbach, D.J., Bouchillon, S.K., Hoban, D.J., Raghubir, N., and Sajben, P. In vitro activity of tigecycline and comparators against carbapenem-resistant Enterobacteriaceae in Africa-Middle East countries: TEST 2007-2012. J. Glob. Antimicrob. Resist. 2014; 2(3):179-182.

Rizek, C., Ferraz, J.R., van der Heijden, I.M., Giudice, M., Mostachio, A.K., Paez, J., and et al., In vitro activity of potential old and new drugs against multidrug-resistant gram-negatives. J. Infect. Chemother. 2015; 21(2):114-117.

Rojas, L.J., Salim, M., Cober, E., Richter, S.S., Perez, F., Salata, R.A., and et al., Antibacterial resistance leadership group: Colistin resistance in carbapenem-resistant Klebsiella pneumoniae: laboratory detection and impact on mortality. Clin. Infect. Dis. 2017; 64(6):711-718.

Rose, W.E., and Rybak, M.J. Tigecycline: first of a new class of antimicrobial agents. Pharmacotherapy. 2006; 26(8):1099-1110.

Shawky, S.M., Abdallah, A., and Khouly, M. Antimicrobial activity of Colistin and Tigecycline against carbapenem-resistant Klebsiella pneumoniae clinical isolates in Alexandria, Egypt. Int. J. Curr. Microbiol. App. Sci. 2015; 4(2):731-742.

Sikarwar, A.S., and Batra, H.V. Prevalence of antimicrobial drug resistance of Klebsiella pneumoniae in India. Int. J. Biosci. Biochem. Bioinform. 2011; 1(3):211-215.

Sun, Y., Cai, Y., Liu, X., Bai, N., Liang, B., and Wang, R. The emergence of clinical resistance to tigecycline. Int. J. Antimicrob. Agents. 2013; 41(2):110-116.

Tada, T., Tsuchiya, M., Shimada, K., Nga, T.T.T., Thu, L.T.A., Phu, T.T., and et al., Dissemination of Carbapenem-resistant Klebsiella pneumoniae clinical isolates with various combinations of Carbapenemases (KPC-2, NDM-1, NDM-4, and OXA-48) and 16S rRNA Methylases (RmtB and RmtC) in Vietnam. BMC. Infect. Dis. 2017; 17(1):467.

Tawfick, M.M., Hamed, S.M., Darwich, H.M., and El-Mahallawy, H.A. Phenotypic and Genotypic Diversity of Nosocomial Multi-Drug Resistant Klebsiella
pneumoniae Isolated from Cancer Patients in Cairo, Egypt. *Int. J. Curr. Microbiol. App. Sci.* 2016; 5(7):931-943.

Ullah, F., Malik, S.A., and Ahmed, J. Antimicrobial susceptibility pattern and ESBL prevalence in *Klebsiella pneumoniae* from urinary tract infections in the North-West of Pakistan. *Afr. J. Microbiol. Res.* 2009; 3(11):676-680.

Walkty, A., DeCorby, M., Nichol, K., Karlowsky, J.A., Hoban, D.J. and Zhanel, G.G. In vitro activity of colistin (polymyxin E) against 3,480 isolates of gram-negative bacilli obtained from patients in Canadian hospitals in the CANWARD study, 2007-2008. *Antimicrob. Agents. Chemother.* 2009; 53:4924-4926.

Wasfi, R., Elkhatib, W.F., and Ashour, H.M. Molecular typing and virulence analysis of multidrug resistant *Klebsiella pneumoniae* clinical isolates recovered from Egyptian hospitals. *Sci. Rep.* 2016; 6.

Wienke, M., Pfeifer, Y., Weissgerber, P., Marschal, M., Autenrieth, I. B., and Gröbner, S. In vitro activity of tigecycline and molecular characterization of extended-spectrum beta-lactamase-producing *Escherichia coli* and *Klebsiella pneumoniae* isolates from a university hospital in south-western Germany. *Chemotherapy.* 2012; 58(3):241-248.

Winn, W. C., Allen, S. D., Janda, W. M., Koneman, E. W., and Procop, G. W. Introduction to microbiology part II: Guidelines for the Collection, Transport, Processing, Analysis and Reporting of Cultures from Specific Specimen Sources. In: Winn, W. C., Allen, S. D., Janda, W. M., Koneman, E. W., and Procop, G. W., editors, *Koneman’s Color Atlas and Textbook of Diagnostic Microbiology*, 6th ed, Philadelphia, Lippincott Williams and Wilkins, pp. 67-105, 2006.

Winokur, P.L., Canton, R., Casellas, J.M., and Legakis, N. Variations in the prevalence of strains expressing an extended-spectrum beta-lactamase phenotype and characterization of isolates from Europe, the Americas, and the Western Pacific region. *Clin. Infect. Dis.* 2001; 32:S94-103.

Wu, K., Wang, F., Sun, J., Wang, Q., Chen, Q., Yu, S., and et al., Class 1 integron gene cassettes in multidrug-resistant Gram-negative bacteria in southern China. *Int. J. Antimicrob. Agents.* 2012; 40(3):264-267.

Zheng, B., Dai, Y., Liu, Y., Shi, W., Dai, E., Han, Y., and et al., Molecular Epidemiology and Risk Factors of Carbapenem-Resistant *Klebsiella pneumoniae* Infections in Eastern China. *Front. Microbiol.* 2017; 8:1061.

How to cite this article:

Rania Abd El-Hamid El-Kady and Nawal Salama Gouda. 2017. *In vitro* Susceptibility of Multidrug-Resistant *Klebsiella pneumoniae* Isolates from an Egyptian Tertiary Care Hospital to Tigecycline and Colistin. *Int.J.Curr.Microbiol.App.Sci.* 6(11): 2655-2663.

doi: https://doi.org/10.20546/ijcmas.2017.611.312