The *Sulfolobus solfataricus* protein acetyltransferase (PAT) acetylates ALBA, an abundant nonspecific DNA-binding protein, on Lys16 to reduce its DNA affinity, and the Sir2 deacetylase reverses the modification to cause transcriptional repression. This represents a “primitive” model for chromatin regulation analogous to histone modification in eukaryotes. We report the 1.84-Å crystal structure of PAT in complex with coenzyme A. The structure reveals homology to both prokaryotic GNAT acetyltransferases and eukaryotic histone acetyltransferases (HATs), with an additional “bent helix” proximal to the substrate binding site that might play an autoregulatory function. Investigation of active site mutants suggests that PAT does not use a single general base or acid residue for substrate deprotonation and product reprotonation, respectively, and that a diffusional step, such as substrate binding, may be rate-limiting. The catalytic efficiency of PAT toward ALBA is low relative to other acetyltransferases, suggesting that there may be better, unidentified substrates for PAT. The structural similarity of PAT to eukaryotic HATs combined with its conserved role in chromatin regulation suggests that PAT is evolutionarily related to the eukaryotic HATs.

Sulfolobus solfataricus, a thermoacidophile, is a member of the archaean domain of life, and is likely to have diverged from bacteria and eukaryotes early during evolution. Despite its lack of a nucleus or other organelles, archaean DNA replication and chromatin regulation seem to more closely resemble eukaryotes than bacteria (1, 2). *Sulfolobus* belongs to the phylum *Crenarchaeota*, which lacks histones, and instead uses two analogous chromatin proteins: Sul7d and ALBA3 (acetylation lowers binding affinity). Both proteins have been shown to undergo post-translational modification in *Sulfolobus*. Sul7d is monomethylated (3) and ALBA is acetylated (4, 5). The acetylation of ALBA by protein acetyltransferase (PAT) on Lys16 has been shown to reduce DNA-binding affinity, and deacetylation of ALBA by archaeal Sir2 deacetylase has been shown to repress transcription in what appears to be a primitive form of chromatin regulation by reversible post-translational modification (4, 5). PAT is also likely to regulate other proteins in *Sulfolobus*. Based on its homology to PAT from *Salmonella enterica*, PAT from *Sulfolobus* may also play a role in metabolism by regulating the activity of acetyl-coenzyme A synthetase (6).

There are at least four families of histone acetyltransferases (HATs) in eukaryotes: the Gcn5/PCAF family that also shows sequence and structural homology to the GNAT (Gcn5-related acetyltransferase) superfamily, which includes many small molecule acetyltransferases such as antibiotic acetyltransferases (aminoglycoside-N-acetyltransferases) and serotonin N-acetyltransferase; the MYST family, named from the founding members of MOZ, Ybf2/Sas3, Sas2, and Tip60; the metazoan-specific transcriptional coactivators p300 and CREB-binding protein; and the recently characterized fungal-specific Rtt109 (regulator of Ty1 transposion gene product 109). Recent structures of p300 and Rtt109 reveal that these seemingly unrelated HAT families share considerable structural homology throughout the HAT domain, even in the absence of sequence homology (7, 8). Strikingly, each of the HAT families contains a homologous acetyl-CoA binding core segment. This raises the possibility that the eukaryotic acetyltransferase families may have evolved from a common ancestral or “primordial” scaffold.

Efforts to characterize the diversity in structure, mechanism, and substrate selectivity derived from a conserved acetyl-CoA binding scaffold by the different families of HATs are ongoing and the topic is covered in depth in recent reviews (9–11). Kinetic analysis combined with structural information has revealed significant diversity in the mechanism and catalytic residues employed in the reaction. For some HATs the rate-determining step is the deprotonation of the incoming substrate lysine to activate it for direct nucleophilic attack on the acetyl-CoA in an Ordered Bi Bi ternary complex mechanism. It has been demonstrated for Gcn5 that a mutation of the conserved general base glutamate residue (173 in *Saccharomyces cerevisiae*) to glutamine leads to a 320-fold reduction in activity (12). Other acetyltransferases do not appear to depend on a single general base residue. An investigation of the catalytic residues in serotonin acetyltransferase found that His120 and His122 had redundant roles as the general base (13). Some ambiguity remains about whether all acetyltransferases use a ternary complex mechanism. A ping-pong mechanism, in which the
acetyl group is temporarily transferred to a nucleophilic side chain in the active site to form an acetyl-enzyme intermediate has been proposed for yeast Esa1 (14); however, a more recent investigation of Esa1 activity in complex with other subunits reports data that supports a ternary complex mechanism (15), suggesting that other associated protein factors might influence HAT activity. Structural and enzymatic studies on the p300/CBP HAT reveals that it employs a conserved tryptophan and tyrosine for catalysis with the tyrosine likely functioning as a general acid with no key general base residue and a Theorell-Chance Bi Bi ternary complex mechanism (7). Finally, recent enzymatic studies on the Rtt109 histone acetyltransferase reveals a more complex reaction mechanism that does not follow Michaelis-Menten kinetics and key general acid and base residues have not yet been identified (8). Together, the picture that emerges is that the four histone acetyltransferase families have evolved to use a conserved templating structural scaffold to mediate acetyl transfer, albeit through different chemical strategies.

The regulation of chromatin through acetylation and deacetylation of ALBA in Sulfolobus is a valuable paradigm for understanding the origins of the genes regulation by HATs in eukaryotes. The structure of ALBA from Sulfolobus has been reported (16). Structures and biochemical characterization of the archaeal Sir2 deacetylase have also been carried out (17, 18).

Here we report the structure of PAT from S. solfataricus to complete the structural basis for this model system. We then report the results of mutational analysis to probe the mechanism and substrate selectivity of PAT, and we discuss the similarities and differences between PAT and the more complex eukaryotic HATs.

EXPERIMENTAL PROCEDURES

PAT Cloning, Expression, and Purification—The gene encoding PAT from S. solfataricus, amino acids 1–160, was cloned into a pET-28a vector using NdeI and XhoI restriction sites. Overnight expression at 18 °C in BL21(DE3) (Novagen) yields PAT with a thrombin cleavable His6 tag. Following lysis and nickel-nitritotriacetic acid purification, the histidine tag was removed by incubation with thrombin protease at 4 °C overnight. The cleavage product was then further purified by Superdex-200 size exclusion chromatography in 25 mM Tris-HCl, pH 8.0. The cleavage product was then further purified by Superdex-200 size exclusion chromatography in 25 mM Tris-HCl, pH 8.0, 50 mM NaCl, and 0.01% bovine serum albumin buffer. For comparison of wild type and mutant PAT activities, concentrations of 833 μM acetyl-CoA and 3 mM ALBA 11-mer peptide, with the sequence VLIGKKPPVMNY, were added. Radiolabeled \[^{14}\text{C}]\text{acetyl-enzyme A (4 mCi/mmol)} from PerkinElmer Life Sciences was used to measure the formation of acetylated product. Following 75 °C incubation, 30–μl reaction mixtures were cooled to 4 °C to quench the reaction, 4 μl of 1 M HEPES pH 7.5 was added to adjust the pH, and 20 μl of the reaction mixture was bound to P81 paper (Whatman). The paper disks were washed three times for 5 min for each wash, with 10 mM HEPES pH 7.5 to remove unreacted acetyl-CoA, and then dried with acetone. Scintillation fluid was added and signal was measured using a Packard Tri-Carb 1500 liquid scintillation analyzer. The values derived from a reaction lacking PAT and from a reaction lacking substrate were subtracted from the counts to account for both background acetyl transfer in the absence of enzyme and possible autoacetylation of PAT. Substrate K_m values were determined by titrating substrate with acetyl-CoA concentration fixed at a saturating concentration of 500 μM. Counts were converted to rate using a standard curve, and data were fit to a one-site binding equation in Graph Pad Prism software. Acetyl-CoA K_m values were determined by titrating acetyl-CoA with peptide substrate fixed at a saturating concentration of 3000 μM. All experiments were done at least in duplicate. The pH rate profile was determined using a three-component buffer as described previously (12). The pH values were corrected to account for the change in pH at 75 °C. The peptides used in this study were C-terminal amidated and were greater than 95% pure. Peptides were obtained from GenScript (Piscataway, NJ), except for the histone H4 peptide (sequence: GKGGAKRHRK), which was provided by Santosh Hodawadekar.
RESULTS

Overall Structure—Full-length PAT from *S. solfataricus*, amino acids 1–160, was initially crystallized following 3 weeks of incubation by hanging drop vapor diffusion. Initial attempts to reproduce the crystals failed and it was eventually found that the crystallized form of PAT had degraded into two chains with sizes of ~5 and 11 kDa, as confirmed by SDS-PAGE (supplementary Fig. S1). It is unclear whether the degradation resulted from contamination or occurred spontaneously; however, we found that limited proteolysis with V8 protease from *Staphylococcus aureus* accelerated formation of the identical crystal form to 3 days. The structure of PAT was determined by MAD methods from crystals of selenomethionine-derivatized protein, and with a structurally conserved acetyl-CoA binding core region made up of three β-strands (β2–4) and one α-helix (α4) that is characteristic of GNATs and other HATs. The panethene group of the CoA makes β-strand mimicking hydrogen bonds with β4, and the N terminus of helix α4 is capped by a P-loop motif found in many nucleotide-binding proteins, which binds the pyrophosphate moiety of the CoA using backbone hydrogen bonds from Thr87, Leu88, Gly89, Gly91, and Thr92 (Fig. 1B). In addition to interactions with the conserved acetyl-CoA binding core region, the side chain of Asn118 makes a hydrogen bond to O5 of the pantetheine group, Lys127 forms a salt bridge with the 3’ phosphate of CoA, and Lys128 hydrogen bonds to N3 of the adenine moiety of CoA (Fig. 1B). This last interaction combined with hydrophobic stacking against Pro120 likely accounts for the observation that the adenine moiety is well ordered in the crystal structure. Many previously reported acetyltransferase structures, including the Gcn5/PCAF and Esa1 HATs, show poor density for the adenine due to its conformational flexibility.

An unusual feature of the PAT structure is the presence of a “bent helix,” from residues 32–41 (α2), which sits in a position that is proximal to where protein substrate is likely to bind (Fig. 1C). The α2 helix is held in place by a series of salt bridges between Asp29 and Arg33/Arg86, Arg33 and Glu68, and His36 and Glu109, and van der Waals interactions between Leu32 and His36, and Glu16, and Lys117; however, the physiological significance of this structural feature is uncertain. The α2 helix is also important for enzyme regulation, as it forms a 25.0° bend, which obstructs access to the active site when the helix is in its observed conformation and prevents catalysis. The presence of an α2 helix may account for the lower flexibility seen in the PAT structure compared to other HATs.

Structural Relationship to Other Acetyltransferases—We found that roughly 100 residues of PAT aligned well with both aminoglycoside 6′-acyltransferases (AAC(6′)-Iy) and Gcn5/PCAF (Fig. 2B and Table 2) HAT structures, in addition to showing significant but lower structural similarity to the larger eukaryotic Esa1, p300, and Rtt109 acetyltransferases (Table 2). Specifically, the root mean square deviation of Cα atoms ranged from 2 to 3 Å for each of these enzymes. Interestingly, the sequence identity of more than 20% is greatest for the AAC(6′)-Iy and Gcn5 acetyltransferases, whereas sequence identity with the other acetyltransferases ranges from 9 to 18%. This structural similarity in the face of limited sequence identity highlights the evolutionary conservation of the acetyltransferase enzyme fold that mediates gene regulation and small molecule metabolism. This observation also raises the possibility that PAT serves as both a small molecule and protein acetyltransferase for *Sulfolobus*.

Active Site Mutants and Insights into Catalysis—To investigate the catalytic properties of PAT, a total of 19 mutants were made and their steady-state activity at 75 °C was measured using a 14C-based assay (Fig. 3A). The mutants fall into five categories. The D29A, R33A, and H36A mutants were made to disrupt salt bridges that hold the putative α2 autoregulatory helix within the substrate binding site. The Y31S, Y38S, E42Q, D53N, and H72A mutants were made to disrupt salt bridges that hold the putative α2 autoregulatory helix within the substrate binding site. The Y31S, Y38S, E42Q, D53N, and H72A mutants were made to disrupt salt bridges that hold the putative α2 autoregulatory helix within the substrate binding site.
H72A/E76A mutants were made to try to identify one or more general base residues required for deprotonation of the incoming substrate lysine. The S78A and S78C mutants were made to explore what role the hydroxyl of Ser78 might play in substrate binding or if it could form an acetylserine/acetylcysteine intermediate indicative of a ping-pong mechanism. The M121H and M121Y mutants were made to investigate the effect of having a non-polar versus polar side chain in the active site. Last, the E76A mutant was made to compare with E76Q and investigate the role of Glu76 in hydrogen bonding with incoming substrate rather than acting as a general base.

A more detailed kinetic analysis of the R33A mutant reveals that the K_m for Ac-CoA is similar to wild type and elevated by about 2-fold for protein substrate, whereas the overall k_{cat} is reduced about 5-fold relative to the wild type protein (Table 3). Taken together, this data are consistent with a role of the $\alpha2$ helix in facilitating protein substrate acetylation, and inconsistent with a role in autoinhibition, as might be predicted from its position in the structure, although it is possible that the $\alpha2$ helix might have an autoinhibitory role for non-cognate substrates. The $\alpha2$ helix therefore likely plays a dynamic role in facilitating PAT activity on cognate substrates.

If PAT relies on a single general base residue for catalysis, we would expect that mutation of that residue to have a significant effect on PAT activity, as seen with mutation of the glutamate general base residue in Gcn5 (12) and Esa1 (14). As seen in Fig. 3A, mutation of Glu76 to Gln, corresponding in three-dimensional space to the general base Glu173 residue of yeast Gcn5 (Fig. 3B), had no effect on activity. We also carried out LC-MS/MS of tryptic-digested PAT to confirm the identity and stability of the E76Q mutant to heating during enzymatic analysis. Also, mutation of His72 to Ala, corresponding in three-dimensional space to one of two histidine residues in AANAT that function as a general base (Fig. 3B), had about a 2-fold effect on PAT activity suggesting that it is not a required catalytic residue. Mutants of other polar residues near the active site that could play a catalytic role (His36, Tyr48, Glu42, Glu43, Asp53, Glu68, Ser78, and Tyr113) still exhibited significant acetyltransferase activity on ALBA peptide substrate. Together, these mutational studies suggest that PAT does not use a single general base side chain for substrate deprotonation. To investigate if His72 and Glu76 have a redundant role in substrate deprotonation, similar to two histidines in AANAT (Fig. 3B), the H72A/E76Q mutant was tested and still found to have significant activity. These findings suggest that PAT either relies on another strategy for deprotonating the substrate lysine, or substrate deprotonation may not be the rate-determining step. The modest reduction in activity for the Y38S, E42Q, E43Q, D53N, and H72A mutants suggests that they may be acting as a proton wire to shuttle protons out of the active site.

FIGURE 1. Structure of the PAT-CoA complex. A, overall structure of the PAT-CoA complex. The conserved acetyl-CoA binding core region is in yellow, less conserved segments are colored in cyan, and CoA is colored by element. B, PAT-CoA interactions. The electron density is from a simulated annealing omit map contoured at 1.0 σ around the CoA. C, representation of the bent helix ($\alpha2$) in cyan and the interactions that anchor it proximal to the active site of PAT. CoA is colored by element.
Ser78 is the nearest polar residue to the sulfhydryl of CoA in the structure and is the only candidate nucleophile to form an acetyl-enzyme intermediate if PAT utilizes a ping-pong mechanism for catalysis. To investigate if Ser78 is important for catalysis, S78A and S78C mutants were made. The activity for both mutants was close to wild type PAT (Fig. 3A) suggesting that Ser78 is not important for catalysis and ruling out the possibility that PAT might use a ping-pong mechanism for catalysis.

A pH/rate profile was carried out to identify the optimal pH for catalysis and perhaps identify a titratable residue that is utilized in the mechanism. An inflection was observed at pH 6.5 in the profile with the rate reaching a plateau at pH 7.5 (Fig. 3C). Because none of the general base candidate residues were found to be essential for activity, this pH inflection could represent the sum of contributions from several residues. Alternatively, the inflection could represent the pK\textsubscript{a} of the incoming substrate lysine, which has been significantly reduced from its typical pK\textsubscript{a} of 10.5 due to the significant hydrophobicity of the active site (Fig. 3D). The pocket surrounding the sulfur atom of acetyl-CoA is comprised of the hydrophobic side chains of Leu79, Phe112, and Met121. It has been demonstrated that the energetic cost of removing these residues can significantly alter the pK\textsubscript{a} of the residue (28, 29). As an interesting alternative to using a general base for catalysis, this hydrophobic pocket of PAT may lower the pK\textsubscript{a} of the incoming substrate lysine or select for deprotonated substrate that is capable of nucleophilic attack on the acetyl-CoA. Consistent with this hypothesis, mutation of Met121 to His or Tyr has the most significant effect on catalysis by PAT (Fig. 3A) resulting in about a 2-fold increase in protein substrate K\textsubscript{m} and about a 5-fold decrease in overall k\textsubscript{cat} despite little change in the K\textsubscript{m} for acetyl-CoA (Table 3).

Protein Substrate Binding and Selectivity by PAT—An analysis of the electrostatic surface of PAT around the active site reveals what appears to be a substrate binding surface with a small tunnel leading to the CoA (Fig. 4). This suggested that the lowered activity for the H72A and R33A mutants may be due to steric changes to the substrate binding surface or elimination of substrate orienting hydrogen bonds rather than removal of a catalytic residue. To further investigate this putative substrate-binding surface, E76A and H72A/E76A mutants were made and activity was found to be reduced to near background levels (Fig. 3A and Table 3). The observation that E76Q had wild type activity suggests that Glu76 may have an important role in substrate binding rather than performing a chemical step in catalysis. Moreover, the correlation between lowered k\textsubscript{cat} and increased substrate K\textsubscript{m} observed for the debilitating PAT mutants (Table 3) suggests that a diffusional step such as substrate binding or CoA product dissociation, not substrate deprotonation, may be the rate-determining step under these conditions.

To investigate whether PAT shows a preference for ALBA substrate, and if specific residues adjacent to Lys16 of ALBA form a substrate recognition sequence, kinetic analysis was done to compare ALBA peptide substrate with full-length ALBA protein. PAT showed an ~5-fold lower K\textsubscript{m} for full-length substrate versus ALBA 11-mer peptide (Table 4). This suggests that

TABLE 2
Structure and sequence alignment for the acetyl-CoA binding core region and the full-length acetyltransferase domain of PAT with other acetyltransferases

Comparison	Acetyl-CoA binding core	Full acetyltransferase domain					
	Residues aligned	C\textsubscript{α} root mean square deviation	Sequence identity	Residues aligned	C\textsubscript{α} root mean square deviation	Sequence identity	
PAT versus AAC(6’)-ly	52/56	1.0	19.2		101/153	1.9	20.8
PAT versus AAC(2’)-lyc	52/65	1.1	13.5		112/181	1.9	10.7
PAT versus AANAT	51/53	1.3	21.6		112/166	2.1	17.9
PAT versus Gcn5	51/58	1.4	23.5		110/162	2.4	21.8
PAT versus Esa1	50/61	1.7	22.0		92/273	2.5	15.2
PAT versus p300	50/77	2.2	10.0		103/317	2.6	12.6
PAT versus Rtt109	37/70	2.5	8.1		108/355	3.0	9.3

Aminoglycoside 6’-N-acetyltransferase from S. enterica (AAC(6’)-ly, PDB code 1S5K), aminoglycoside 2’-N-acetyltransferase from Mycobacterium tuberculosis (AAC(2’)-lyc, PDB code 1M4I), serotonin N-acetyltransferase from Ovis aries (sheep) (AANAT, PDB code 1CJW), Gcn5 from Tetrahymena (PDB code 1PUA), Esa1 from S. cerevisiae (PDB code 1FY7), human p300 (PDB code 3BIY), and Rtt109 from S. cerevisiae (PDB code 3D35).
surfaces or specific side chains distal to Lys\(^{16}\) of ALBA may be recognized by PAT. It has been proposed that P(X)\(_4\)–GK may be a substrate recognition sequence for PAT (5). To test this hypothesis we prepared P6A, P8A, and G15A mutants of ALBA for comparison with wild type ALBA protein (Table 4). These ALBA mutants were found to have \(K_m\) values similar to wild type ALBA (Table 4), thus revealing that these residues do not play a significant role of PAT acetylation of ALBA. Taken together, these findings suggest a modest selectivity for full-length ALBA, possibly due to a preference for the conformation of Lys\(^{16}\) in the folded substrate. A substrate \(K_m\) of 107 \(\mu\)M suggests weak binding compared with the Gcn5 \(K_m\) of 28 \(\mu\)M for histones, or the p300 \(K_m\) of 12.5 \(\mu\)M for histone H4 peptide (7, 12).

The observation that PAT achieves a very modest \(k_{cat}/K_m\) of just 2.1 \(\times\) 10\(^3\) \(\min^{-1}\) toward full-length ALBA substrate at 75 \(^\circ\)C also suggests that it is a relatively inefficient enzyme, consistent with the absence of key catalytic residues that mediate catalysis. It may also be possible that better PAT substrates may exist that have not yet been identified, or that PAT may associate with activating subunits to achieve increased turnover or greater substrate selectivity similar to recent reports that yeast Rtt109 requires a histone chaperone protein, Vps75 or Asf1, for activity (30–33).

DISCUSSION

The finding that post-translational histone modifications effect chromatin structure and gene expression has lead to remarkable advances in our understanding of eukaryotic gene expression and how misregulation of gene expression can cause disease. Less is understood about the analogous mechanisms used by lower organisms to regulate chromatin structure and there seems to be an evolutionary gap in our understanding of the origins of chromatin regulation. PAT from *S. solfataricus* is a GNAT acetyltransferase from a lower organism that is reported to regulate chromatin-like structures through reversible acetylation of Lys\(^{16}\) of ALBA, and a better understanding of the structure and activity of PAT provides new insights into protein acetylation as a mechanism for regulation of gene expression.

A comparison of PAT with eukaryotic histone acetyltransferases suggests that these proteins have in common a structurally conserved core region that provides functional conservation for acetyl-CoA binding and a structural framework for catalysis (Fig. 5). Based on
Table 4

Kinetic analysis of PAT substrates

Values represent the mean of two measurements. \(K_{\text{m}} \) values are rounded to 2 significant figures. The values for each of the two measurements are shown in parentheses.

Substrate	\(k_{\text{cat}} \) \(\mu \text{m}^{-1} \)	\(K_{\text{m}} \) \(\mu \text{m}^{-1} \)	\(k_{\text{cat}}/K_{\text{m}} \)
Full-length Alba SSO	2.31 (2.36, 2.25)	110 (116, 99)	2.1 \(\times 10^4 \)
Full-length P6A ALBA SSO	2.41 (2.37, 2.45)	160 (161, 155)	1.5 \(\times 10^4 \)
Full-length P8A ALBA SSO	2.81 (2.84, 2.78)	100 (96, 104)	2.8 \(\times 10^4 \)
Full-length G15A ALBA SSO	2.63 (2.44, 2.42)	86 (87, 85)	2.8 \(\times 10^4 \)
ALBA SSO 11-mer	2.31 (2.26, 2.25)	580 (592, 565)	4.0 \(\times 10^3 \)
ALBA SSO K16R 11-mer	0.78 (0.77, 0.78)	1300 (1243, 1412)	6.0 \(\times 10^2 \)
ALBA SSO 21-mer	ND*	>1500	ND
Histone H4 peptide	4.31 (4.30, 4.32)	220 (213, 218)	2.0 \(\times 10^4 \)

* ND, not determined.

Despite the structural conservation between histone acetyltransferases, these enzymes have evolved different chemical strategies for mediating acetylation. This is likely facilitated by the relative simplicity of carrying out an acetyltransferase reaction thus leading to several different chemical strategies, probably tailored to the different substrate and biological requirements of the particular enzyme. PAT appears to be the least efficient acetyltransferase, catalyzing only about 5-fold faster acetyl transfer compared with the uncatalyzed reaction at 75 °C and PAT is nearly completely inactive at room temperature (data not shown). PAT is likely to achieve a higher turnover at even higher temperatures consistent with the environment of *Sulfolobus*. It is also possible that better, yet unidentified PAT substrates exist. It could also suggest that PAT represents a primitive acetyltransferase scaffold upon which additional chemical groups evolved to stimulate the reaction rate. The poor turnover is consistent with the finding that PAT does not appear to use essential catalytic residues for acetylation. The putative role of the \(\alpha_2 \) helix of PAT in autoregulating PAT activity might also represent an evolutionary connection to the autoregulation of the fungal Rtt109 and metazoan p300/CBP proteins by acetylation. Another interesting connection between PAT and p300 is that the PAT Lys\(^{127} \) salt bridge with the 3'-phosphate of CoA that orders the adenine base of the cofactor is analogous to a similar CoA contact mediated by Arg\(^{1410} \) of p300. Taken together, the PAT-CoA structure reported here reveals a small and inefficient protein acetyltransferase scaffold with distinct similarities and differences to the larger and more selective eukaryotic acetyltransferases.

Acknowledgments

We thank Xin Liu, Yong Tang, Dario Segura, Santosh Hodawadekar, Chris Lanci, Mary Fitzgerald, Jasna Maksimosa, Brandi Sanders, and Cheng Luo for advice on the structure solution, development of the acetyltransfer assay, and help with making figures. We thank Kaye Speicher, Tom Beer, and David Speicher of the Wistar Institute Proteomics Core Facility for in-gel digestion, LC-MS/MS, data base searching, and analysis of the unheated and heat-treated wild type and E76Q PAT mutant. We also thank the staff of the GM/CA-CAT beamline 23ID-D of the Advanced Photon Source for beam time and assistance with data collection.

References

1. Barry, E. R., and Bell, S. D. (2006) *Microbiol. Mol. Biol. Rev.* 70, 876–887
2. Sandman, K., and Reeve, J. N. (2005) *Curr. Opin. Microbiol.* 8, 656–661
3. Edmondson, S. P., and Shriver, J. W. (2001) *Methods Enzymol.* 334, 129–145
4. Bell, S. D., Botting, C. H., Wardleworth, B. N., Jackson, S. P., and White, M. F. (2002) *Science* 296, 148–151
5. Marsh, V. L., Peak-Chew, S. Y., and Bell, S. D. (2005) *J. Biol. Chem.* 280, 21122–21128
6. Starai, V. J., and Escalante-Semerena, J. C. (2004) *J. Mol. Biol.* 340, 1005–1012
7. Liu, X., Wang, L., Zhao, K., Thompson, P. R., Hwang, Y., Marmorstein, R., and Cole, P. A. (2008) *Nature* 451, 846–850
8. Tang, Y., Holbert, M. A., Wurtele, H., Meeth, K., Rocha, W., Gharib, M., Jiang, E., Thibault, P., Verreault, A., Verrault, A., Cole, P. A., and Marmorstein, R. (2008) *Nat. Struct. Mol. Biol.* 15, 738–745
9. Hodawadekar, S. C., and Marmorstein, R. (2007) *Oncogene* 26, 5528–5540
10. Vetting, M. W. S., de Carvalho, L. P., Yu, M., Hegele, S. S., Magnet, S., Rödicker, S. L., and Blanchard, J. S. (2005) *Arch. Biochem. Biophys.* 433,
11. Wang, L., Tang, Y., Cole, P. A., and Marmorstein, R. (2008) *Curr. Opin. Struct. Biol.* **18**, 741–747
12. Tanner, K. G., Trievel, R. C., Kuo, M. H., Howard, R. M., Berger, S. L., Allis, C. D., Marmorstein, R., and Denu, J. M. (1999) *J. Biol. Chem.* **274**, 18157–18160
13. Scheibner, K. A., De Angelis, J., Burley, S. K., and Cole, P. A. (2002) *J. Biol. Chem.* **277**, 18118–18126
14. Yan, Y., Harper, S., Speicher, D. W., and Marmorstein, R. (2002) *J. Biol. Chem.* **277**, 18118–18126
15. Berndsen, C. E., Albaugh, B. N., Tan, S., and Denu, J. M. (2007) *Biochemistry* **46**, 623–629
16. Wardleworth, B. N., Russell, R. J., Bell, S. D., Taylor, G. L., and White, M. F. (2002) *EMBO J.* **21**, 4654–4662
17. Min, J., Landry, J., Sternglanz, R., and Xu, R. M. (2001) *Cell* **105**, 269–279
18. Avalos, J. L., Celic, I., Muhammad, S., Cosgrove, M. S., Boeke, J. D., and Wolberger, C. (2002) *Mol. Cell* **10**, 523–535
19. Wardleworth, B. N., Russell, R. J., White, M. F., and Taylor, G. L. (2001) *Acta Crystallogr. D Biol. Crystallogr.* **57**, 1893–1894
20. Braman, J., Papworth, C., and Greener, A. (1996) *Methods Mol. Biol.* **57**, 31–44
21. Otwinowski, Z., and Minor, W. (1997) *Methods Enzymol.* **276**, 307–326
22. Terwilliger, T. C. (2000) *Acta Crystallogr. D Biol. Crystallogr.* **56**, 965–972
23. Terwilliger, T. C., and Berendzen, J. (1999) *Acta Crystallogr. D Biol. Crystallogr.* **55**, 849–861
24. Emsley, P., and Cowtan, K. (2004) *Acta Crystallogr. D Biol. Crystallogr.* **60**, 2126–2132
25. Brünger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J. S., Kuszewski, J., Nilges, M., Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T., and Warren, G. L. (1998) *Acta Crystallogr. D Biol. Crystallogr.* **54**, 905–921
26. Potterton, L., McNicholas, S., Krissinel, E., Gruber, J., Cowtan, K., Emsley, P., Murshudov, G. N., Cohen, S., Perrakis, A., and Noble, M. (2004) *Acta Crystallogr. D Biol. Crystallogr.* **60**, 2288–2294
27. Vetting, M. W., Magni, S., Nieves, E., Roderick, S. L., and Blanchard, J. S. (2004) *Chem. Biol.* **11**, 565–573
28. Mehler, E. L., Fuxreiter, M., Simon, I., and Garcia-Moreno, E. B. (2002) *Proteins* **48**, 283–292
29. Harris, T. K., and Turner, G. J. (2002) *IUBMB Life* **53**, 85–98
30. Driscoll, R., Hudson, A., and Jackson, S. P. (2007) *Science* **315**, 649–652
31. Fillingham, J., Recht, J., Silva, A. C., Suter, B., Emili, A., Stagljar, I., Krogan, N. J., Allis, C. D., Keogh, M. C., and Greenblatt, J. F. (2008) *Mol. Cell. Biol.* **28**, 4342–4353
32. Han, J., Zhou, H., Li, Z., Xu, R. M., and Zhang, Z. (2007) *J. Biol. Chem.* **282**, 14158–14164
33. Tsubota, T., Berndsen, C. E., Erkmann, J. A., Smith, C. L., Yang, L., Freitas, M. A., Denu, J. M., and Kaufman, P. D. (2007) *Mol. Cell* **25**, 703–712