Anisotropic magnetic responses of topological crystalline superconductors

Yuansen Xiong,1 Ai Yamakage,1,2 Shingo Kobayashi,1,2 Masatoshi Sato,3 and Yukio Tanaka1

1Department of Applied Physics, Nagoya University, Nagoya 464-8603, Japan
2Institute for Advanced Research, Nagoya University, Nagoya 464-8601, Japan
3Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa Oiwake-Cho, Kyoto 606-8502, Japan

(Dated: February 21, 2017)

Abstract

Majorana Kramers pairs emerged on surfaces of time-reversal-invariant topological crystalline superconductors. The gapless surface states behave as Majorana fermions, which are self-conjugate particles and protected by the topological invariant associated to (broken) symmetries. Due to the stability and the so-called non-Abelian statistics derived from the self-conjugate property, one would expect that topological superconductors can be a platform of the fault-tolerant topological quantum computation.

I. INTRODUCTION

Topological superconductors are gapped systems hosting gapless states on their surfaces as Andreev bound states. The gapless surface states behave as Majorana fermions, which are self-conjugate particles and protected by the topological invariant associated to (broken) symmetries. Due to the stability and the so-called non-Abelian statistics derived from the self-conjugate property, one would expect that topological superconductors can be a platform of the fault-tolerant topological quantum computation.

II. PRELIMINARY

Before going into the main discussion, we first review zero-energy states and the associated topological invariants in superconductors. A BdG Hamiltonian $H(k)$ has the form

$$H(k) = \begin{pmatrix} h(k) - \mu & \Delta(k) \\ \Delta(k) & -h(k) + \mu \end{pmatrix} = [h(k) - \mu] \tau_z + \Delta(k) \tau_x,$$

in the basis of $(c_\uparrow(k), c_\downarrow(k), c_\uparrow(-k), -c_\downarrow(-k))$, where \uparrow and \downarrow denote the spin up and down, respectively, and the spin indices in $h(k)$ and $\Delta(k)$ are implicit. Note that one can choose $\Delta(k) = \Delta(k) \uparrow$ for time-reversal-invariant superconductors. The Hamiltonian preserves time-reversal T symmetry

$$h(k) = T^{-1}h(-k)T, \ \Delta(k) = T^{-1}\Delta(-k)T, \ H(k) = T^{-1}H(-k)T, \ T = \tau_0 T,$$

and particle-hole C symmetry

$$H(k) = -C^{-1}H(-k)C, \ C = \tau_y T.$$

An example of the application of our general theory is shown in Sec. V. We finally summarize the paper in Sec. VI.
Combining these symmetries, chiral symmetry holds:

$$\{\Gamma, H(k)\} = 0, \quad \Gamma = CT = \tau_y.$$ \hspace{1cm} (4)

Next, we introduce the topological invariant corresponding to the number of zero-energy states on the surface, which are located on $x_\perp = 0$ [Fig. 1(a)]. The time-reversal-invariant momentum at which the zero-energy states appear is set to $k_\parallel = \Gamma$ [Fig. 1(b)]. The one-dimensional topological invariant W is given by

$$W = \frac{i}{4\pi} \int_{-\pi/a_\perp}^{\pi/a_\perp} dk_\perp \text{tr} \left[\Gamma H(k_\perp) \frac{\partial H(k_\perp)}{\partial k_\perp} \right] \left| k_\parallel = \Gamma \right., \quad W \in \mathbb{Z}, \quad H(k_\perp) = H(k)|_{k_\parallel = \Gamma},$$

where $H(k_\perp) = H(k_\parallel + 2\pi/a_\perp)$. This invariant is equal to the number of the zero-energy surface states (see Appendix A). In time-reversal-invariant spinful systems, however, the above topological invariant always vanishes owing to time-reversal symmetry, which involves order-2 symmetry operations stemming from crystalline point/space-group symmetries such as two-fold rotations and reflections with respect to the x_\parallel axis. This means that systems with $W \neq 0$ are interpreted as a one-dimensional topological crystalline superconductor.

In the last part of this section, we review that $W[U]$ naturally explains the Ising-anisotropic response to a magnetic field. The symmetry operation U is taken to be a two-fold rotation or a reflection. The symmetry operation U flips or keeps the direction of applied magnetic field, i.e., $\{U, H_{\text{mag}}\} = 0$ or $|U, H_{\text{mag}}| = 0$, respectively. Here H_{mag} denotes the Hamiltonian of magnetic field including the Zeeman and vector potential terms. These operations are summarized in Table I. In the former case ($\{U, H_{\text{mag}}\} = 0$), since the modified chiral symmetry still remains ($\Gamma_U, H_0 + H_{\text{mag}} = 0$), the modified topological invariant $W[U]$ is well-defined and shares the same number as that in
TABLE I. Symmetry of magnetic field B applied along the x_\perp, $x_{||1}$, and $x_{||2}$ directions, which are depicted in Fig. 1. $C_2(x_\perp)$ is the two-fold rotation along the x_\perp axis. $\sigma(x,x_j)$ is the mirror reflection with respect to the x_1x_j plane. These are symmetry operations of the semi-infinite system with the surface of $x_\perp = 0$. $- (+)$ indicates that the magnetic field is (not) flipped by the symmetry operation. S denotes the direction of Majorana Ising spin protected by the topological invariant $W[U]$ for $U = C_2(x_\perp)$, $\sigma(x_\perp x_{||1})$, and $\sigma(x_\perp x_{||2})$.

| U | $B \parallel x_\perp$ | $B \parallel x_{||1}$ | $B \parallel x_{||2}$ | S |
|-----|------------------------|------------------------|------------------------|-----|
| $C_2(x_\perp)$ | + | - | - | x_\perp |
| $\sigma(x_\perp x_{||1})$ | - | + | + | $x_{||2}$ |
| $\sigma(x_\perp x_{||2})$ | - | + | - | $x_{||1}$ |

(a) Type I: U

(b) Type II: P

![FIG. 2. Point-group symmetry operations which preserve (a) and invert (b) the surface of $x_\perp = 0$.](image)

the absence of magnetic field as long as H_{mag} is small enough, while not in the latter case ($[U,H_{\text{mag}}] = 0$). From Table I, the latter case is realized only in the case that magnetic field is applied for a specific direction in each symmetry operation. Therefore, the zero-energy surface states protected by $W[U]$ are annihilated only by the magnetic field along the specific direction. Namely, Majorana fermions on the surface acts as an Ising spin under a magnetic field.

In the following sections, developing the theory, we show only one winding number among $W[C_2(x_\perp)]$, $W[\sigma(x_\perp x_{||1})]$, and $W[\sigma(x_\perp x_{||2})]$ is possible to take a finite value for a given surface and an irreducible representation of pair potential, i.e., the anisotropy of magnetic response is uniquely determined, irrespective of the details of the system.

III. TOPOLOGICAL INVARIANTS FOR IRREDUCIBLE REPRESENTATIONS

We show that only one among three possible topological invariants $W[C_2(x_\perp)]$, $W[\sigma(x_\perp x_{||1})]$, and $W[\sigma(x_\perp x_{||2})]$ can become finite in a given superconducting pair potential. This is the decisive evidence of Majorana Ising spin.

A. Symmetry of crystalline systems including a surface

In crystalline systems, all the symmetry operations other than time reversal and particle-hole transformation are elements of a space group. Here we focus on the momentum line including the time-reversal-invariant momentum $k = \Gamma$ along which the one-dimensional topological invariant is defined. Symmetry operations respecting the $k = \Gamma$ point are (screw) rotation and (glide) reflection, which are classified into those preserving (type-I) and inverting (type-II) the surface of $x_\perp = 0$. The type-I symmetry operations are two-fold (screw) rotation $C_2(x_\perp)$ along the x_\perp axis and mirror (glide) reflections $\sigma(x_\perp x_{||1})$ with respect to $x_1x_{||1}$ plane and $\sigma(x_\perp x_{||2})$ with respect to $x_1x_{||2}$ plane (Fig. 2(a)). The type-II symmetry operations, on the other hand, are two (screw) rotations $[C_2(x_{||1})$ and $C_2(x_{||2})]$ and one mirror (glide) reflection $[\sigma(x_{||1}x_{||2})]$, as shown in Fig. 2(b). Afterwards, we denote a type-I operation by U_i then we have

$$[U_i, h(k_{\perp})] = 0.$$ \hspace{1cm} (10)

The spatial inversion I is represented in terms of U_i as

$$I = U_iP_i,$$ \hspace{1cm} (11)
for $i = 1, 2, 3$, where P_i is a type-II symmetry operation, i.e.,
\[h(k_\perp) = P_i h(-k_\perp) P_i. \] (12)

B. Symmetry operations in superconducting states

Now define symmetry operations in a superconductor. A superconductor keeps a crystal symmetry S (U_i or P_i) where the pair potential $\Delta(k)$ is a one-dimensional representation of S;
\[\Delta(k) = \chi(S) S^1 \Delta(k') S, \] (13)
where $\chi(S)$ is the character of the one-dimensional representation and k' is the momentum transformed by S. Then, the symmetry operation \tilde{S} in the superconducting state is defined as
\[\tilde{S} = \begin{pmatrix} S & 0 \\ 0 & \chi(S) S \end{pmatrix}, \] (14)
which satisfies $\tilde{S}^\dagger H(k) \tilde{S} = H(k')$. If S obeys $S^2 \propto 1$, $\chi(S)$ of the one-dimensional representation is either $\chi(S) = 1$ or $\chi(S) = -1$, and
\[\tilde{S} = \begin{cases} S \tau_0, & \text{for } \chi(S) = +1, \\ S \tau_2, & \text{for } \chi(S) = -1. \end{cases} \] (15)
In these cases, one obtains the following relation
\[\tilde{S}^\dagger \Gamma \tilde{S} = \chi(S) \Gamma, \] (16)
for $\Gamma = \tau_y$ [see Eq. (3)].

C. Topological invariant

In the following, we derive necessary conditions for finite-valued topological invariants, which is defined by
\[W[\hat{U}_i, x_\perp] = \frac{i}{4\pi} \int_{k_i|x_\perp} d\mathbf{k} \cdot \text{tr} \left[\Gamma_{\hat{U}_i} H(k)^{-1} \frac{\partial H(k)}{\partial \mathbf{k}} \right]_{k_i = \Gamma}. \] (17)
x_\perp indicates the direction normal to the surface, i.e., $W[\hat{U}_i, x_\perp]$ is the number of the Majorana zero modes on the surface perpendicular to x_\perp. Note that the type-II symmetries P_i may define an topological invariant but it does not correspond to the zero-energy surface states since the surface is not invariant against P_i. This is why only the type-I symmetries U_i are considered here. Glide reflection along the direction parallel to the surface, e.g., a-glide with respect to the ab plane for the ab surface, is one of the possible type-I U_i symmetries for the winding number. Screw rotation, however, is not used for the winding number because the surface is not invariant by the operation. Glide reflection that translates a system along the direction normal to the surface and screw rotation may define a bulk invariant although the bulk-edge correspondence does not hold, as type-II P_i symmetry. Henceforth, for the rotational symmetries, we suppress the suffix x_\perp as $W[\hat{C}_2(x_\perp), x_\perp] = W[\hat{C}_2(x_\perp)]$, due to the uniqueness of the directions of the integrals, i.e., x_\perp must be along the rotational axis.

Now we derive the constraint to $W[\hat{U}_i, x_\perp]$ by the symmetries. One gets
\[W[\hat{U}_i, x_\perp] = +p(\hat{U}_i, \hat{U}_i) \chi(U_i) W[\hat{U}_i, x_\perp], \quad W[\hat{U}_i, x_\perp] = -p(\hat{U}_i, \hat{P}_i) \chi(P_i) W[\hat{U}_i, x_\perp]. \] (18)
These equations are derived by applying unitary transformations by \hat{U}_i and by \hat{P}_i. Here we introduce $p(A, B)$ as
\[B^{-1} AB = p(A, B) A. \] (19)
Note that \hat{U}_i includes the n-fold rotation (if exist) in addition to the two-fold rotations. In consequence, the conditions of
\[p(\hat{U}_i, \hat{U}_i) \chi(U_i) = -p(\hat{U}_i, \hat{P}_i) \chi(P_i) = 1, \] (20)
and of $[\mathcal{T}, \Gamma_{\nu}] = 0$ [Eq. (9)] are necessary for $W[\tilde{U}_i, \mathbf{x}_\perp] \neq 0$. From the above condition, $\chi(U_i) = 1$ is derived because of $p(U_i, U_i) = 1$.

Next, we prove that the two-fold symmetric symmetry operations, rotations and reflections, satisfy the condition of Eq. (9) while the nonsymmetric ones, glide reflections, do not on the Brillouin zone boundary. Symmetry operations are represented by the direct product of real-space part O of Eq. (9) while the nonsymmorphic ones, glide reflections, do not on the Brillouin zone boundary. Symmetry

p and of $\left[\text{Brillouin zone boundary is purely-imaginary matrix hence the condition Eq. (9) is not satisfied, i.e.,} \right.$

$W[\tilde{U}_i, \mathbf{x}_\perp] = 0$, for $k_\parallel \cdot \mathbf{\tau} = \pm \pi/2$, (21)

with \tilde{U}_i being a glide reflection, where $\mathbf{\tau}$ is the translation vector of the glide reflection (for details, see Appendix B).

For symmorphic space groups, the necessary condition for $W[\tilde{U}_i, \mathbf{x}_\perp] \neq 0$ is easily obtained as follows. The commutation relations of the representations for symmetry operations in a point group are uniquely determined to be

$\{U_i, U_j\} = \{P_i, P_j\} = \{U_i, P_i\} = \{U_i, P_j\} = 0, \ i \neq j,$ (22)

in spinful systems. With the help of the above relation, the condition Eq. (20) reduces to

$\chi(U_i) = -\chi(U_j) = -\chi(P_i) = \chi(P_j) = 1.$ (23)

Here, $\chi(O)$ is the character of O hence the possible topological invariant is determined only from the representation theory of point group, irrespective of details of the system, as summarized in the tables in Appendix C. An example for a nonsymmmorphic space group is also shown in Appendix C. The condition of $\chi(U_i)\chi(P_j) = \chi(U_iP_j) = -1$ is extracted from the above equations. This means that the character of the spatial inversion $I = U_iP_i$ must be -1 for the existence of topological superconductivity. That is consistent with the absence of time-reversal-invariant Majorana fermion in even-parity superconductors.

Finally, we show that two of $W[C_2(x_{\perp})], W[\sigma(x_{\perp}x_{\parallel})], \text{and } W[\sigma(x_{\perp}x_{\parallel}^2)]$ always vanish. Here $C_2(x_{\perp})$ is the two-fold (not screw) rotation, $\sigma(x_{\perp}x_{\parallel})$ is the mirror or glide reflection with respect to the $x_{\perp}x_{\parallel}$ plane. The statement is immediately seen from Eq. (23) for symmorphic space groups: $\chi(U_i) = 1$ and $\chi(U_j) = 1$ are not simultaneously satisfied. This is also true at $k_\parallel = 0$ for nonsymmmorphic space groups since the commutation relations of symmetry operations are the same as those for the symmorphic space group. When $\sigma(x_{\perp}x_{\parallel})$ is the x_{\perp}-glide reflection, the commutation relation changes from the symmorphic one at the boundary $k_\parallel = \pi/a_{\parallel}$. $W[\sigma(x_{\perp}x_{\parallel})], \text{however, vanishes from Eq. (21)}$. In consequence, it is impossible that two of $W[C_2(x_{\perp})], W[\sigma(x_{\perp}x_{\parallel})], \text{and } W[\sigma(x_{\perp}x_{\parallel}^2)]$ simultaneously take nontrivial values.

IV. WINNING NUMBER PROTECTED BY n-FOLD ROTATIONAL SYMMETRY

Besides order-2 symmetries, we clarify the winding number protected by the n-fold ($n \geq 3$) rotational C_n symmetry, $[C_n, H(k)] = 0$. We derive the necessary condition for nonzero topological invariant associated with C_n for spinful systems. The spinless case was discussed in Ref. 321

A. Definition

C_n is represented by $C_n = e^{-ij_{\parallel} \pi/n}$, where j_{\parallel} denotes the total angular momentum along the rotational axis. For spinful systems, $C_n = -1$ and the eigenvalue of C_n is obtained to be $e^{-ij_{\parallel} \pi/n}$ for $\mu = 0, \cdots, n - 1$. A Hamiltonian of C_n-symmetric system is block diagonalized to be

$H(k) \rightarrow \text{diag}(H_0(k), \cdots, H_{n-1}(k))$, (24)

where $H_\mu(k) = V_\mu^\dagger H(k)V_\mu$, $V_\mu = (v_1, \cdots, v_{g_\mu})$, $C_n v_j = e^{-ij_{\parallel} \pi/n} v_j$, $C_n V_\mu = V_\mu e^{-ij_{\parallel} \pi/n}$, is Hamiltonian in the $C_n = e^{-ij_{\parallel} \pi/n}$ eigenspace. g_μ is the degeneracy of the eigenvalue of $e^{-ij_{\parallel} \pi/n}$ then $\sum_{\mu=0}^{n-1} g_\mu = \dim H(k)$.

In a superconductor with the n-fold rotational symmetry, $[\tilde{C}_n, H(k)] = 0$, chiral symmetry in the eigenspaces is found when $[\Gamma, \tilde{C}_n] = 0$ holds:

$\{ \Gamma_\mu, H_\mu(k) \} = 0, \Gamma_\mu = V_\mu^\dagger \Gamma V_\mu$, $\Gamma^2 = 1$. (25)
Hereafter we assume that the pair potential is the A representation of C_n, i.e., \(\Delta(k) = C_n^+ \Delta(k') C_n \), because \([\Gamma, \hat{C}_n] = 0\) holds only in this case. The winding number in each eigenspace is

\[
W_\mu = \frac{i}{4\pi} \int_{-\pi/a_\perp}^{\pi/a_\perp} dk \text{tr} \left[\Gamma_\mu H_\mu(k)^{-1} \frac{\partial H_\mu(k)}{\partial k} \right],
\]

(26)

which corresponds to the number of zero-energy end states of H_μ.

B. Time-reversal symmetry

Since the angular momentum is time-reversal odd, one finds

\[
T^{-1} \hat{C}_n T = \hat{C}_n,
\]

(27)

and

\[
TV_\mu = V_{-\mu} T_{-\mu}, \quad T_\mu = V_\mu^* TV_{-\mu}.
\]

(28)

These lead to

\[
T_\mu^1 H_\mu(-k) T_\mu = +H_{-\mu}(k)^*, \quad T_\mu^1 \Gamma_\mu T_\mu = -\Gamma_{-\mu}(k)^*.
\]

(29)

As a result, one finds

\[
W_\mu = -\frac{i}{4\pi} \int_{-\pi}^{\pi} dk \text{tr} \left[\Gamma_{-\mu}^* H_{-\mu}(-k)^{-1} \frac{\partial H_{-\mu}(-k)}{\partial k} \right] = -W_{-\mu} = -W_\mu.
\]

(30)

The above relation is a natural extension from Eq. (6).

C. Spatial symmetry

The commutation relation of C_n and spatial symmetries, U_l and P_l, is given by \([U_l, C_n] = 0\) for \([j_z, U_l] = 0\) and \(U_l^1 C_n U_l = C_n^1\) for \(\{j_z, U_l\} = 0\). The same equations hold for P_l. This gives the transformation of Hamiltonian:

\[
H_\mu(k) = U_{l,p(j_z,U_l)}^1 H_{p(j_z,U_l)}(k) U_{l,p(j_z,U_l)} \mu, \quad H_\mu(k) = P_{l,p(j_z,U_l)}^1 H_{p(j_z,U_l)}(-k) P_{l,p(j_z,U_l)} \mu,
\]

(31)

where $U_{l,\mu} = V_{l,\mu}^1 U_l V_\mu$ and $P_{l,\mu} = V_{l,\mu}^1 P_l V_\mu$. The chiral operator is transformed by $U_{l,\mu}$ as

\[
\Gamma_\mu = \chi(U_l) U_{l,p(j_z,U_l)}^1 \Gamma_{p(j_z,U_l)} U_{l,p(j_z,U_l)}.
\]

(32)

This is the same for $P_{l,\mu}$. The winding numbers satisfy the following relations,

\[
W_\mu = \chi(U_l) W_{p(j_z,U_l)} = -\chi(P_l) W_{p(j_z,P_l)}.
\]

(33)

Combining these and Eq. (30), one finds a necessary condition

\[
\chi(U_l)p(j_z,U_l) = -\chi(P_l)p(j_z,P_l) = 1,
\]

(34)

for $W_\mu \neq 0$.

In symmorphic space groups, from the above conditions, W_μ takes a finite value only for the A_{1u} (or its compatible) representation. The (anti)commutation relations of j_z and the symmetry operations, $U_1 = C_n$, $U_2 = \sigma(x_\perp x_{\|2})$, $U_3 = \sigma(x_\perp x_{\|1})$, $P_1 = \sigma(x_{\|1}x_{\|2})$, $P_2 = C_2(x_{\|1})$, and $P_3 = C_2(x_{\|2})$, are given by

\[
[j_z, C_n] = \{j_z, \sigma(x_\perp x_{\|1})\} = \{j_z, \sigma(x_\perp x_{\|2})\} = \{j_z, C_2(x_{\|1})\} = \{j_z, C_2(x_{\|2})\} = 0.
\]

(35)

From this and Eq. (34), the necessary condition is given by

\[
\chi(C_n x_\perp) = -\chi(\sigma(x_{\|1}x_{\|2})) = -\chi(\sigma(x_\perp x_{\|2})) = -\chi(\sigma(x_\perp x_{\|1})) = \chi(C_2(x_{\|1})) = \chi(C_2(x_{\|2})) = 1.
\]

(36)

This holds for the A_{1u} representation of the pair potential.
FIG. 3. Schematic view of the Rashba bilayer between LaAlO$_3$ and SrTiO$_3$. (a) Two-dimensional electron gases are formed in the interfaces. The energy dispersions of the finite system with the edge normal to the x axis are shown in Fig. 4 for possible pair potentials. (b) The energy dispersion of the Hamiltonian Eq. (37) in the normal state. The Fermi energy is located at $E = 0$. The parameters are taken as $m = 0.5$, $\varepsilon = 0.5$, $\alpha = 2$.

TABLE II. Irreducible representations Γ of odd-parity pair potentials Δ in the bilayer Rashba superconductor under the D_{4h} symmetry. The Majorana Ising spin S on the (100) edge is taken from Table III. 0 denotes the absence of Majorana fermion.

Γ	Δ	S
A_{1u}	$\sigma_y s_x$	x
A_{2u}	$\sigma_z s_0$	y
B_{1u}	$\sin k_x \sin k_y \sigma_z s_0$	x
B_{2u}	$(\cos k_x - \cos k_y)\sigma_z s_0$	y
$E_u(x)$	$\sigma_y s_y$	0
$E_u(y)$	$\sigma_y s_x$	z

V. EXAMPLE: BILAYER RASHBA SYSTEM

As an example, we show the magnetic response of Majorana Ising spin in the bilayer Rashba superconductor, which are depicted in Fig. 3. The Hamiltonian in the normal state reads

$$H_0 = \frac{k^2}{2m}\sigma_0 s_0 - \varepsilon\sigma_x s_0 + \alpha(k_x s_y - k_y s_x)\sigma_z, \quad k = \sqrt{k_x^2 + k_y^2},$$

where s and σ denote the Pauli matrices representing the spin and layer degrees of freedom, respectively. Time-reversal-invariant Bogoliubov-de Gennes (BdG) Hamiltonian has the form

$$H_{\text{BdG}} = \begin{pmatrix} H_0 - \mu & \Delta \\ \Delta & -(H_0 - \mu) \end{pmatrix},$$

in the basis of $(c_{k\uparrow}, c_{k\downarrow}, c_{-k\downarrow}^\dagger, c_{-k\uparrow}^\dagger)$, where the arrows \uparrow and \downarrow denote the up and down spins, respectively. When the Fermi level μ is located within the hybridization gap, as shown in Fig. 3(b), the \mathbb{Z}_2 topological invariant takes the nontrivial value. The above Hamiltonian is regularized on the square lattice as

$$H_0 \to \frac{2 - \cos k_x - \cos k_y}{m} \sigma_0 s_0 - \varepsilon\sigma_x s_0 + \alpha(s_y \sin k_x - s_x \sin k_y)\sigma_z.$$

We consider the six types of odd-parity pair potentials, which are summarized in Table II. The corresponding finite-sized Hamiltonian defined in $(1 \leq x \leq N_x)$ along the x direction is given by

$$H(k_y) = H_0(k_y) + \tilde{\Delta}(k_y),$$

with
superconducting gap closes at k_y pairing because the bulk superconducting gap closes at $k_y = 0$ for the cases of $B \parallel y$ and of $B \parallel z$, while they vanish and a gap is generated for the case of $B \parallel x$. For the A_{2u} pairing, Majorana zero modes vanish only for the case of $B \parallel y$. Note that the A_{2u}-pairing state under a magnetic field along the z direction is the same as the pair-density-wave (PDW) state studied in Refs.\[14,15\]. There is no Majorana zero mode for the B_{1u} pairing because the bulk superconducting gap closes at $k_y = 0$. For the B_{2u} pairing, on the other hand, the bulk superconducting gap closes at $k_y \neq 0$ and remains finite at $k_y = 0$. Hence Majorana zero modes are emerged at $k_y = 0$ and killed by a magnetic filed along the y direction. The E_u pairings are similar to the B_{1u} and B_{2u} pairings. The bulk gap vanishes at $k_y = 0$ for the $E_u(x)$ pairing but survives for the $E_u(y)$ paring. The emerged Majorana zero modes are gapped only when a magnetic field is applied along the z direction. Namely, A_{1u}, A_{2u}, B_{2u}, and $E_u(y)$ pair potentials, Majorana zero modes vanish for a specific direction of magnetic field, i.e., the Majorana zero modes respond to the field as a Ising spin. This results on the Majorana Ising spins totally coincide with those in Table II.

VI. CONCLUSION

We have derived possible nonzero topological invariants and the direction of Majorana Ising spin for each irreducible representation of pair potential for time-reversal-invariant superconductors. The obtained result is the detailed classification in the class-DIII superconductors in one spatial dimension. Another point of view is a topological extension to the classification of superconducting pair potential. Our result is general and does not depend on the detail of systems therefore it is useful for all researchers on superconducting materials. The anisotropy can be detected by the tunneling spectroscopy under a magnetic field or with a ferromagnetic junction because a zero-bias peak appears in the presence of the Majorana zero modes.\[16,17\]
FIG. 4. Energy spectra for odd parity pair potentials for $\Delta = 0.1$ and $\hbar = 0.03$. The parameters are the same as in Fig. 3(b).
Several examples have been shown for the bilayer Rashba superconductor, D_{4h}, C_{4v}, C_{2v} point groups, and the $Pmma$ space group. In the other point groups, D_{6h}, D_{3d}, and D_{3h}, another type of anisotropic response can arise. This will be demonstrated in a separate paper. As for the topological invariants, we focused only on the Z topological invariant in the paper. To complete the classification, we also need to clarify the Z_2 topological invariant and the related Majorana Ising spins. This issue will be also addressed in a future paper.

ACKNOWLEDGMENTS

This work was supported by Grants-in-Aid for Young Scientists (B, Grant No. 16K17725), for Research Activity Start-up (Grand No. JP16H06861), and for Scientific Research on Innovative Areas Topological Material Science JSPS KAKENHI (Grants No. JP15H05851, and No. JP15H05853). S.K. was supported by Building of Consortia for the Development of Human Resources in Science and Technology.

Appendix A: Bulk-edge correspondence in a lattice model

In this Appendix, we derive the bulk-edge correspondence, i.e., the number of zero-energy end states equals to the one-dimensional winding number W, in lattice models.

1. Number of edge states

Firstly, we derive the number of zero-energy edge states in the corresponding lattice model with the r-th neighbor hoppings, generalizing the discussion by W. Izumida et al.\cite{izumi96} The Hamiltonian is expressed in a semi-infinite lattice defined in $n \leq 0$ as

$$H = \sum_{n \leq 0} c_n^{\dagger} c_n + \sum_{q=1}^r \sum_{n \leq -q} \left(c_n^{\dagger} t_q c_{n+q} + c_{n+q}^{\dagger} t_q^{\dagger} c_n \right), \quad \epsilon = \epsilon_1 \tau_1 + \epsilon_3 \tau_3, \quad t_q = t_{q1} \tau_1 + t_{q3} \tau_3. \quad (A1)$$

The Schrödinger equation is given by

$$E \psi_n = \epsilon \psi_n + \sum_{q=1}^r \left(t_q \psi_{n+1} + t_q^{\dagger} \psi_{n-1} \right), \quad (A2)$$

where ψ_n is the wavefunction at the n-th site. Now we derive zero-energy ($E = 0$) end states, whose fundamental solution of wavefunction has the form

$$\psi_n = \lambda^{-n} \phi,$$

for $|\lambda| < 1$ in the left-half space $n \leq 0$. Substituting the above form into the Schrödinger equation, one obtains

$$\left[\epsilon + \sum_{q=1}^r \left(t_q \lambda^{-q} + t_q^{\dagger} \lambda^q \right) \right] \phi = 0. \quad (A4)$$

Multiplying τ_3 to the above equation, one finds that the zero-energy states are chirality eigenstates, i.e., ϕ is given by $\phi = \phi_{r} \chi_{r}$ for $\tau_2 \chi_{r} = \tau \chi_{r}$ with $\tau = \pm 1$ chirality. ϕ_{r} is obtain by solving $q_{r}(\lambda) \phi_{r} = 0$ with

$$q_{r}(\lambda) = \epsilon_1 i \tau + \epsilon_3 + \sum_{q=1}^r \left\{ \left[t_{q1} i \tau + t_{q3} \right] \lambda^{-q} + \left[t_{q1}^{\dagger} i \tau + t_{q3}^{\dagger} \right] \lambda^q \right\}, \quad (A5)$$

For a nontrivial solution of ϕ_{r}, the secular equation $\det q_{r}(\lambda) = 0$ holds and has $[r \dim H(k)]$ solutions. As a result, the fundamental solutions for the zero-energy end states are obtained to be

$$\psi_{r,n} = \lambda_j^{-n} \phi_{r}(\lambda_j) \chi_{r}, \quad \lambda_j \in Q_{r} = \{ \lambda | \det q_{r}(\lambda) = 0, |\lambda| < 1 \}, \quad q_{r}(\lambda_j) \phi_{r}(\lambda_j) = 0. \quad (A6)$$

The number of the independent solutions for the definite chirality τ is $|Q_{\tau}|$.
So as to obtain the physical solutions with a definite chirality \(\tau \), a boundary condition is imposed on the system end \(n = 0 \), e.g., the fixed boundary condition \(\psi_{r,q} = 0 \) for \(q \geq -r+1 \). The boundary condition gives \(|r \dim H(k)/2| \) conditions. Consequently, one obtains the number of the zero-energy end states with the chirality of \(\tau \) to be

\[
N_\tau = \left| Q_\tau \right| - \frac{r \dim H(k)}{2} \theta \left(\left| Q_\tau \right| - \frac{r \dim H(k)}{2} \right).
\]

(A7)

One obtains only the trivial solution, \(\psi_{r,n} = 0 \), for \(|Q_\tau| = r \dim H(k)/2 \).

\[
\det q_r(\lambda) = 0 \text{ is equivalent to } \det q_\tau(\lambda) = 0, \quad \text{which is explicitly shown as}
\]

\[
\det\left\{ \epsilon_1(-i\tau) + \epsilon_3 + \sum_{q=1}^{r} t_{q1}(-i\tau) + t_{q3} \lambda q^* + \sum_{q=1}^{r} [t_{q1}(-i\tau) + t_{q3}^\dagger] \lambda^{-q^*} \right\} = 0.
\]

(A8)

This means that if solution is given by \(\lambda = 1 \) then the solution for \(\lambda = -1 \) is given by \(\lambda^{-1} \). Namely, one finds

\[
|Q_+| + |Q_-| = r \dim H(k).
\]

(A9)

From the above condition, the possible \((N_+, N_-) \) are classified into three cases:

\[
(N_+, N_-) = \begin{cases}
(N, 0), & |Q_+| > \frac{r \dim H(k)}{2}, \\
(0, 0), & |Q_+| = \frac{r \dim H(k)}{2}, \\
(0, N), & |Q_+| < \frac{r \dim H(k)}{2}.
\end{cases}
\]

(A10)

2. Bulk-edge correspondence

Next, we calculate the winding number of the translational-invariant system, which is described by

\[
H(k) = \epsilon + \sum_{q=1}^{r} (t_q e^{i k q} + t_q^\dagger e^{-i k q}).
\]

(A11)

The winding number is given by

\[
W = \frac{i}{4\pi} \int_{-\pi}^{\pi} dk \mathrm{tr} \left[\Gamma H(k)^{-1} \frac{\partial H(k)}{\partial k} \right]
= \frac{i}{4\pi} \int_{-\pi}^{\pi} dk \mathrm{tr} \left[\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & q^{-1}(k) \\ q^1(k) & 0 \end{pmatrix} \right] \left(\begin{pmatrix} 0 & \partial q(k)^\dagger/\partial k \\ \partial q(k)/\partial k & 0 \end{pmatrix} \right)
= \mathrm{Im} \int_{-\pi}^{\pi} \frac{dk}{2\pi} \frac{\partial}{\partial k} \ln \det q(k).
\]

(A12)

In this way, the basis in which the chiral operator is diagonalized makes it easy to calculate the winding number. Then we first off-diagonalize the Hamiltonian as

\[
\tilde{H}(k) = \Lambda_3(k) \tau_1 + \Lambda_1(k) \tau_2, \quad \Lambda_j(k) = \epsilon_j + \sum_{q=1}^{r} \left(t_{qj} e^{i k q} + t_{qj}^\dagger e^{-i k q} \right).
\]

(A13)

This reduces the winding number to be

\[
W = \mathrm{Im} \int_{-\pi}^{\pi} \frac{dk}{2\pi} \frac{\partial}{\partial k} \ln \det \left[\Lambda_3(k) - i \Lambda_1(k) \right] = \mathrm{Im} \int_{-\pi}^{\pi} \frac{dk}{2\pi} \frac{\partial}{\partial k} \ln \det q_-(e^{-i k})
= -\mathrm{Im} \int_{|\lambda|=1} \frac{d\lambda}{2\pi} \frac{\partial}{\partial \lambda} \ln \det q_-(\lambda) = -|Q_-| + \frac{r}{2} \dim H(k),
\]

(A14)
where the integral runs over the unit circle in the complex λ plane along the counter-clockwise direction. The last line of the above equation is derived with the use of the argument principle because $\det q_r(\lambda)$ has $|Q_\tau|$ zeros within the unit circle and is asymptotically given by

$$\det q_r(\lambda) \sim \frac{1}{\lambda^{|r\dim H(k)|/2}} \det(t_r i \tau + t_r 3),$$

which has the order-$|r\dim H(k)|/2$ pole. Thus $W = -N_-$ for $|Q_-| > |r\dim H(k)|/2$. Because W is an integer, the above relation is rewritten as

$$W = W^* = -\text{Im} \int_{-\pi}^{\pi} \frac{dk}{2\pi} \partial_k \ln \det [A_3(k) + iA_1(k)] = |Q_+| - \frac{r}{2} \dim H(k).$$

The winding number equals $W = N_+$ for $|Q_+| > |r\dim H(k)|/2$. We finally arrive at the bulk-edge correspondence:

$$W = N_+ - N_-.$$

(A17)

Appendix B: Representation of symmetry operation

Order-2 symmetry operations of space groups are decomposed into the real-space part $O(\tau)$ and spin part Σ:

$$\{U|\tau\} = O(\tau)\Sigma,$$

where τ is half a primitive translation vector. The spin part is independent of the translation. For (screw) rotations, Σ is taken to be along the (screw) rotational axis. For (glide) reflections, on the other hand, Σ is perpendicular to the (glide) reflection plane, $\Sigma = s \cdot n$, where s_x, s_y, s_z are the Pauli matrices and n is the unit vector normal to the plane. Note that $\Sigma^2 = 1$ and Σ anticommutes with time reversal, $\{\Sigma, T\} = 0$. The real-space part $O(\tau)$ commutes with time reversal $[O(\tau), T] = 0$ and satisfies the following relation

$$O(\tau)^2 = \{1|2\tau\} = e^{2k\tau},$$

(B2)

in the momentum space. Therefore, the chiral operator is given by

$$\Gamma\{U|\tau\} = e^{-ik\tau}\{U|\tau\} \tau_y, \quad \Gamma^2\{U|\tau\} = 1.$$

(B3)

In this choice, we obtain the commutation relation of $\Gamma(U|\tau)$ and time reversal T:

$$[\tau, \Gamma\{U|0\}] = 0,$$

(B4)

$$[\tau, \Gamma\{U|\tau\}] = 0, \quad \text{for } e^{ik\tau} = 1,$$

(B5)

$$[\tau, \Gamma\{U|\tau\}] = 0, \quad \text{for } e^{ik\tau} = \pm i.$$

(B6)

For nonsymmorphic symmetry operations, $\tau \neq 0$, representations at the zone center are different from those at the zone boundary.

Appendix C: Tables for irreducible representations and Majorana Ising spins

We show several examples of topological invariants $W[U_i, x_\perp]$ under the D_{4h}, C_4v, and C_2v point-group symmetries in Table II. The nonzero topological invariants, $W[U_i, x_\perp]$, are derived by applying Eq. (23) to each representation. We also show the case for the space group $Pnma$ that is

$$\{\{C_2(z)|a/2\}, \{C_2(x)|a/2\}, \{C_2(y)|0\}, \{\sigma(xy)|a/2\}, \{\sigma(yz)|a/2\}, \{\sigma(xz)|0\}\},$$

(C1)

in Table IV by solving Eq. (20) and the commutators, $p(U_j, U_l)$, which are defined by $U_jU_l = p(U_j, U_l)U_jU_l$, for the symmetry operations U_j in the $Pnma$ group (Table V). $p(U_j, U_l)$ is calculated in the same manner as in Ref. 32. Note that the topological invariants for glide reflections vanish, $W[U|a/2, x_\perp] = 0$, for $k_xa_x = \pi$, as discussed in Sec. 11C. And also, Majorana fermions do not appear on the (yz) plane even for $W[U|a/2, x] \neq 0$ since the nonsymmorphic symmetry involving the half translation of $a/2$ is broken on the (yz) surface. Finally, the Majorana
 TABLE III. Possible topological invariants $W[\hat{U}_i, x_\perp]$ and the direction of the Majorana Ising spin on the given surfaces for each irreducible representation of $D_{4h}, C_4v,$ and C_2v. The surface is denoted by the mirror index (hkl) or the Cartesian coordinate (x,y,z). x_σ of $W[\sigma, x_\sigma]$ is the direction normal to the surface and is on the σ mirror plane. The C'_2 axis is set to the x axis. The representations $E_u(x)$ and $E_u(y)$ are defined in the bottom table.

D_{4h}	$W[U, x_\perp]$	(001)	(100)	(110)
A_{1u}	$W[C_{n}], \ W[C'_2], \ W[C''_2]$	$[001]$	$[100]$	$[110]$
A_{2u}	$W[\sigma_v, x_{\sigma_v} \neq [011]], \ W[\sigma_d, x_{\sigma_d} \neq [001]]$	0	$[010]$	$[110]$
B_{1u}	$W[C_{2}], \ W[\sigma_d, x_{\sigma_d} \neq [001]]$	0	$[100]$	$[110]$
B_{2u}	$W[C''_2], \ W[\sigma_v, x_{\sigma_v} \neq [001]]$	0	$[010]$	$[110]$

C_{4v}	$W[U, x_\perp]$	(011)	(101)	(110)
A_1	$W[\sigma_v, x_{\sigma_v} \neq [011]], \ W[\sigma_d, x_{\sigma_d} \neq [001]]$	0	$[010]$	$[110]$
A_2	$W[C_{2}]$	$[001]$	0	0
B_1	$W[\sigma_v, x_{\sigma_v} \neq [011]]$	0	$[010]$	0
B_2	$W[\sigma_d, x_{\sigma_d} \neq [001]]$	0	$[010]$	$[110]$
$E(x)$	$W[\sigma_v(x), x_{\sigma_v}(xz) \neq [010]]$	0	0	0
$E(y)$	$W[\sigma_v(y), x_{\sigma_v}(yz) \neq [010]]$	$[100]$	0	0

C_{2v}	$W[U, x_\perp]$	(xy)	(yz)	(zx)
A_1	$W[\sigma_v(xz), x_{\sigma_v}(xz) \neq [010]], \ W[\sigma_v(yz), x_{\sigma_v}(yz) \neq [010]]$	0	y	x
A_2	$W[C_{2}]$	z	0	0
B_1	$W[\sigma_v(x), x_{\sigma_v}(x) \neq [010]]$	y	0	0
B_2	$W[\sigma_v(y), x_{\sigma_v}(y) \neq [010]]$	x	0	0

D_{4h}	C_{2}	$C'_2(x)$	$C''_2(y)$	σ_h	$\sigma_v(yz)$	$\sigma_v(xz)$
$E_u(x)$	$-$	$+$	$-$	$+$	$-$	$+$
$E_u(y)$	$-$	$+$	$+$	$+$	$+$	

Ising spin protected by $W[\hat{U}_i, x_\perp]$ is obtained to be parallel to the rotational axis for $\hat{U}_i = \hat{C}_2$ or normal to the mirror plane for $\hat{U}_i = \sigma$, respectively, as explained in Sec. II.

1. Z. Hasan and C. L. Kane, Rev. Mod. Phys. **82**, 3045 (2010).
2. X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. **83**, 1057 (2011).
3. Y. Tanaka, M. Sato, and N. Nagaosa, J. Phys. Soc. Jpn. **81**, 011013 (2012).
4. Y. Ando, J. Phys. Soc. Jpn. **82**, 102001 (2013).
5. J. Hara and K. Nagai, Prog. Theor. Phys. **76**, 1237 (1986).
6. C.-R. Hu, Phys. Rev. Lett. **72**, 1526 (1994).
7. J. Hara and K. Nagai, Prog. Theor. Phys. **76**, 1237 (1986).
8. C.-R. Hu, Phys. Rev. Lett. **78**, 1315 (1995).
9. Y. Tanaka and S. Kashiwaya, Phys. Rev. Lett. **80**, 1083 (2008).
10. A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, Phys. Rev. **B 78**, 195125 (2008).
11. A. Kitaev, AIP Conf. Proc. **134**, 22 (2009).
12. S. Ryu, A. P. Schnyder, A. Furusaki, and A. W. W. Ludwig, Phys. Rev. **B 79**, 045101 (2009).
13. Y. Nagato, S. Higashitani, and K. Nagai, J. Phys. Soc. Jpn. **78**, 123603 (2009).
TABLE IV. Possible topological invariants $W[U, \mathbf{x}_\perp]$ in the $Pmm\alpha$ space group for $k_\perp a_\perp = 0$ (upper) and $k_\perp a_\perp = \pi$ (lower).

| Pmm\alpha | $W[U, \mathbf{x}_\perp]|(k_\perp = 0)$ | (xy) (yz) (xz) |
|------------|-------------------------------------|----------------|
| A_g | 0 | 0 0 x |
| B_{1g} | $W[\{C_2(z)\alpha/2\}, x_\perp(x,y) \neq x,y]$ | z 0 x |
| B_{2g} | $W[\{\sigma(x)\alpha/2, x_\perp(x,y) \neq x,y\}]$ | y 0 z |
| B_{3g} | $W[\{\sigma(y)\alpha/2, x_\perp(x,y) \neq x,y\}]$ | z 0 x |
| A_u | $W[\{\sigma(z)\alpha/2\}, x_\perp(x,y) \neq x,y]$ | y 0 z |
| B_{1u} | $W[\{\sigma(x)\alpha/2, x_\perp(x,y) \neq x,y\}]$ | y 0 z |
| B_{2u} | $W[\{\sigma(y)\alpha/2, x_\perp(x,y) \neq x,y\}]$ | x 0 y |
| B_{3u} | $W[\{\sigma(z)\alpha/2, x_\perp(x,y) \neq x,y\}]$ | x 0 y |

| Pmm\alpha | $W[U, \mathbf{x}_\perp]|(k_\perp a_\perp = \pi)$ | (xy) (yz) (xz) |
|------------|-------------------------------------|----------------|
| A_g | $W[\{\sigma(y)\alpha/2\}, x_\perp(x,y) \neq x,y]$ | 0 0 x |
| B_{1g} | $W[\{C_2(z)\alpha/2\}]$ | z 0 x |
| B_{2g} | $W[\{\sigma(z)\alpha/2, x_\perp(x,y) \neq x,y\}]$ | y 0 z |
| B_{3g} | $W[\{\sigma(x)\alpha/2, x_\perp(x,y) \neq x,y\}]$ | x 0 y |
| A_u | $W[\{\sigma(x)\alpha/2\}, x_\perp(x,y) \neq x,y]$ | x 0 y |
| B_{1u} | $W[\{\sigma(z)\alpha/2\}, x_\perp(x,y) \neq x,y]$ | y 0 z |
| B_{2u} | $W[\{\sigma(y)\alpha/2\}, x_\perp(x,y) \neq x,y]$ | y 0 y |
| B_{3u} | $W[\{\sigma(z)\alpha/2\}, x_\perp(x,y) \neq x,y]$ | x 0 x |
TABLE V. Commutator $p(U_j, U_l) = U_j^{-1}U_l^{-1}U_jU_l$ for the $Pmma$ group. A row and column correspond to U_j and U_l, respectively.

| | $\{C_2(z)|a/2\}$ | $\{C_2(x)|a/2\}$ | $\{C_2(y)|0\}$ | $\{\sigma(xy)|a/2\}$ | $\{\sigma(yz)|a/2\}$ | $\{\sigma(xz)|0\}$ |
|-------|-------------------|-------------------|-----------------|-------------------|-------------------|-----------------|
| $\{C_2(z)|a/2\}$ | 1 | $-e^{ik_x a_x}$ | $e^{ik_x a_x}$ | -1 | -1 |
| $\{C_2(x)|a/2\}$ | $-e^{-ik_x a_x}$ | 1 | $-e^{-ik_x a_x}$| $e^{ik_x a_x}$ | -1 |
| $\{C_2(y)|0\}$ | $-e^{-ik_x a_x}$ | $-e^{ik_x a_x}$ | 1 | $-e^{ik_x a_x}$ | $-e^{ik_x a_x}$ |
| $\{\sigma(xy)|a/2\}$ | $e^{-ik_x a_x}$ | -1 | $-e^{-ik_x a_x}$| 1 | $-e^{-ik_x a_x}$ |
| $\{\sigma(yz)|a/2\}$ | -1 | $e^{-ik_x a_x}$ | $-e^{-ik_x a_x}$| $-e^{ik_x a_x}$ | 1 |
| $\{\sigma(xz)|0\}$ | -1 | -1 | 1 | -1 | -1 |

35 T. Yoshida, M. Sigrist, and Y. Yanase, Phys. Rev. Lett. 115, 027001 (2015).
36 S. Kashiwaya and Y. Tanaka, Reports on Progress in Physics 63, 1641 (2000).
37 S. Kobayashi, Y. Yanase, and M. Sato, Phys. Rev. B 94, 134512 (2016).