Effects of different irrigation-fertilization combinations on rice yield, water use and Non-point pollution discharge in typical hilly land of Southern China

Cheng Lu¹, Menghua Xiao and Xinkai Qiu
Zhejiang Institute of Hydraulics and Estuary, Hangzhou 310020, China.

¹ Email: lc1001cn@163.com

Abstract. The effects of different irrigation-fertilization combinations on single cropping rice yield, water use and non-point pollution discharge were investigated in field experiment. The result demonstrated that, the average water demand, leakage, irrigation quota and water productivity of intermittent irrigation (II) and rainfall-collect intermittent irrigation (RCII) were 10.9%, 45.2%, 49.0% and 97.7% lower than those of basin irrigation (BI) (\(P < 0.01\)), while II and RCII did not show a significant difference on those parameters (\(P > 0.05\)). The yield and water productivity of three-time fertilization (3TF) were 4.1% and 4.8% higher than two-time fertilization (2TF) (\(P < 0.05\)). The interaction of water and fertilizer on yield achieved 40%, which showed positive influence. The average NO\(_3\)-N and NH\(_4\)+-N discharges of II and RCII were reduced 1.0% and 55.7% respectively compared with BI, while the NO\(_3\)-N and NH\(_4\)+-N discharges of RCII were reduced 1.0% and 67.6% than II; the NO\(_3\)-N and NH\(_4\)+-N discharges of 3TF were reduced 1.0% and 10.2% than 2TF. The optimal method of irrigation-fertilization combination was revealed by using the multi-objective decision model of entropy TOPSIS, the results indicated that, RCII combined with 3TF could optimize the effects of yield-increasing, water-saving, pollution-decreasing and fertilizer-conservation.

1. Introduction
Rice is the basic food to support the needs for above half population of the world. According to the statistics of FAO, in 2014, there were about 163,250,000 ha of paddy field with a production of 740,960,000 t. Paddy field is an important carrier of ecological environment, which is related to regional economic development, social harmony and eco-environment improvement [1, 2]. However, the sustainable development of paddy field is still restricted by the inefficient usage of water and fertilizer, the waste of water, and the discharge of non-point pollution. Therefore, the study of water-saving and pollution-decreasing on paddy field has practical meanings [3, 4, 5].

High water demand for rice restricts the planting area of rice in China. Different irrigation methods have been studied to ease the contradiction between water supply and water demand, and the methods were transit from basin irrigation to thin-water-layer irrigation to no-water-layer irrigation [6, 7, 8]. Rice belongs to swamp crops, its tolerance to flood makes it possible to store certain amount of water in paddy field after rain, meanwhile, the utilization of rain-fall is increased, the irrigation water is saved, and the regional drainage pressure is reduced. Paddy field is one kind of artificial wetland, which can purify the water after fertilization and insecticide, if it is stored in the field for several days [9, 10]. Some research proved that, by controlling the water conditions of paddy field, irrigation methods could ensure the yield, reduce the discharge of CH\(_4\), N\(_2\)O and NH\(_4\)+-N[11, 12]; By controlling
the amount of irrigation water, it could also increase the water use efficiency[13, 14], reduce the total nitrogen discharged with surface runoff[15, 16]. XU (2012) proved the discharge of NH₄⁺-N was reduced 23.2% when the paddy field is alternated between dry and wet, compared with flooding irrigation [17]. XIAO (2015) proved the concentration of NH₄⁺-N and NO₃⁻-N in the paddy field were decreased 55.56% and 42.81% respectively, when the water was stored in the paddy field for 5 days [18]. XU (2007) observed the concentration of total nitrogen and total phosphorus in field drainage were decreased significantly through the drainage ditch [19].

The water-saving irrigation methods combined with rational fertilization techniques could reduce the irrigation water amount, drainage water amount and non-point pollution discharge, and increase the nitrogen use efficiency. However, current researches focus more on the adjustment of top and bottom limitations of irrigation water level; on the opposite, the research on controlling the water depth of paddy field after rain to optimize the effects of rainfall-storage, water-saving, pollution-decreasing is needed. Meanwhile, the interaction of irrigation and fertilization, and their effect on non-point pollution discharge are also the focus of recent research [20, 21, 22].

In this research, field experiments were conducted to reveal the effects of different irrigation-fertilization combinations on single cropping rice yield, water demand and non-point pollution discharge. Three irrigation methods (BI, II and RCII) and two fertilization techniques (2TF and 3TF) were tested, among them, the rainfall-collect intermittent irrigation method (RCII) was proposed based on years of field experiments in irrigation experiment station of Zhejiang province, China. It concerned more on the controlling of paddy field water depth after rain, and the top and bottom limitations of irrigation have been adjusted accordingly to enhance the effects of rainfall utilization, water saving, pollution decreasing. Quantitative research on water-fertilizer interaction of rice yields has also been done, multi-objective decision model of entropy TOPSIS was used to reveal the optimal method of irrigation-fertilization combination.

2. Methodology

2.1. Experimental site and the soil properties

The experiment was conducted in Yongkang irrigation experiment station (120°12′ E, 28°24′ N, 85.4m ASL) of Zhejiang province, China from June 30th to October 18th, 2015. The station area belongs to subtropical monsoon climate, the rainfall in rice growing season was 493 mm, and it was high flow year relatively in 2015. The experiment was carried out in 24 standard experiment districts (6 × 22-m), each district was brick settled and covered by two layers of fabric and one layer of membrane to prevent lateral leakage. The soil texture was clay loam, the soil bulk density was 1.45 gꞏcm⁻³, the soil porosity was 0.43, the pH value was 5.41, the soil organic matter content was 27.17 gꞏkg⁻¹, and the groundwater level was 0.8 m.

2.2. Treatments and design

Three irrigation methods were tested: W₀ Basin irrigation (BI), W₁ intermittent irrigation (II) and W₂ rainfall-collect intermittent irrigation (RCII). RCII utilized the flood-enduring capacity of paddy rice, and was adapted to the traits of rainfall in south china. It could save the irrigation water supplied by reservoirs, cut the frequency of irrigation and improve the utilization rate of rainfall in hilly regions by increasing the amount of water stored in rice field after rain. The field water level control index of all the irrigation methods is showed in Table 1.

Two fertilization techniques were tested: F₁ two-time fertilization (2TF) (50% basic fertilizer and 50% in tiller stage), F₂ three-time fertilization (3TF) (50% basic fertilizer, 30% in tiller stage and 20% in jointing stage). The quantity of fertilizer was based on the recommended indexes from soil testing (N--225 kgꞏhm⁻², P₂O₅--100 kgꞏhm⁻², K₂O--120 kgꞏhm⁻²).

The design of treatment was a completely random design. Treatment combinations (showed in Table 2) had three replications. The crop was transplanted at 20 × 20-cm spacing with 3-5 seedling per hill. Seeding age was 30days. The variety used was Zhongzheyou1.
Table 1. The control indexes of field water level

Growth stage	Basin Irrigation (BI)	Intermittent irrigation (II)	Rainfall-collect intermittent irrigation (RCII)
Greenup	20 mm--30 mm--50 mm	10 mm--30 mm--40 mm	10 mm--30 mm--50 mm
Early tillering	20 mm--50 mm--70 mm	*1~2 d--30 mm--50 mm	*1~2 d--30 mm--70 mm
Late tillering	30 mm--60 mm--90 mm	*7~12 d--0 mm--0 mm	*7~12 d--0 mm--90 mm
Jointing-booting	30 mm--60 mm--100 mm	*2~4 d--30 mm--60 mm	*2~4 d--30 mm--120 mm
Head-flowering	10 mm--50 mm--100 mm	*2~4 d--30 mm--60 mm	*2~4 d--30 mm--100 mm
Milk-ripe	10 mm--50 mm--60 mm	*2~4 d--30 mm--50 mm	*2~4 d--30 mm--60 mm
Yellow maturity	0 mm--0 mm--20 mm	Set drying	Set drying

* Take early tillering stage as example. 20mm--30mm--50 mm means min irrigation level--max irrigation level--max of rainfall storage level, 1~2 d--30 mm--50 mm means revealing the field surface for 1-2 days--refill water to 30mm--max rainfall storage to 40mm.

b The indexes with mark “*” means letting the field surface reveal.

Table 2. Experiment settings.

Combination	Irrigation methods	Fertilization Methods
W0 F1	W0	F1
W0 F2	W0	F2
W1 F1	W1	F1
W1 F2	W1	F2
W2 F1	W2	F1
W2 F2	W2	F2

2.3. Parameter measurements and analytical method

The irrigation quota was determined by reading flow meters installed in the irrigation pipes of the districts. The water consumption was determined by reading the point paddy field water level gauge. The leakage was determined by reading the lysimeter. The water demand was calculated by subtracting the leakage from water consumption. The yield was measured from the each district. The water productivity was calculated by dividing yield by corresponding irrigation quota. The water discharge was determined by reading the point gauge to obtain the difference of water level before and after the drainage. The discharged water samples were collected to analysis the concentration of NO3--N, NH4+-N. Multiplies the concentration and discharge quantity could engender the nitrogen containing pollution discharge amount.

Statistical analyses consisted of analysis of variance. When irrigation or fertilization effects were significant, Duncan’s test was performed to analyze the effects of irrigation or fertilization on water demand, yield and water productivity. The multi-objective decision model of entropy TOPSIS was used to evaluate the six combinations of treatments. The ideal solution and negative ideal solution were calculated by weighting decision matrix of the parameters. The combinations were ranked by their distance to the real outputs and ideal result, which had the closest Euclidean distance to the ideal solution meant to be the optimal choice.

3. Results and analysis

3.1. Effects of irrigation-fertilization combinations on water use

The effects of different irrigation-fertilization combinations on water demand (Table 3 and Table 4), leakage (Table 3 and Table 5) and irrigation quota (Table 3 and Table 6) were large. The result
indicates that differences between irrigation treatments in water demand \((P<0.01)\), leakage \((P<0.05)\) and irrigation quota \((P<0.01)\) of single cropping rice were significant; while differences between fertilization treatments in water demand, leakage and irrigation quota were not significant \((P>0.05)\).

Table 3. Effects of irrigation-fertilization combinations on water demand and irrigation quota

Combinations	Water demand/(mm)	Leakage/(mm)	Irrigation quota/(m³·hm⁻²)
W₀ F₁	480.8 a A	23.0 a A	3412 a A
W₀ F₂	467.8 a AB	24.3 a A	3329 a A
W₁ F₁	416.5 b B	13.3 b B	1718 b B
W₁ F₂	429.4 b AB	13.3 b B	1710 b B
W₂ F₁	422.5 b B	12.2 b B	1718 b B
W₂ F₂	422.9 b B	13.1 b B	1736 b B

Table 4. ANOVA of irrigation-fertilization combinations affecting water demand

Variation sources	SS	df	MS	F	P-value	F crit
Irrigation	10596.09	2	5298.045	13.03827	0.00098	3.8852938
Fertilization	0.027222	1	0.027222	6.7E-05	0.993604	4.7472253
Interaction	505.9344	2	252.9672	0.622542	0.553043	3.8852938
Internal	4876.148	12	406.3457			
Total	15978.2	17				

Table 5. ANOVA of irrigation-fertilization combinations affecting leakage

Variation sources	SS	df	MS	F	P-value	F crit
Irrigation	457.09	2	228.545	305.793546	5.07814E-11	3.885293835
Fertilization	2.42	1	2.42	3.237963562	0.097126219	4.476225347
Interaction	1.33	2	0.665	0.889770979	0.436193096	3.885293835
Internal	8.9686	12	0.747383333			
Total	469.8086	17				

Table 6. ANOVA of irrigation-fertilization combinations affecting irrigation quota

Variation sources	SS	df	MS	F	P-value	F crit
Irrigation	10896726	2	5448363	540.4725	1.75E-12	3.8852938
Fertilization	2679.852	1	2679.852	0.265839	0.615503	4.7472253
Interaction	8214.11	2	4107.055	0.407416	0.674233	3.8852938
Internal	120968.9	12	10080.74			
Total	11028589	17				

Duncan’s test showed that the water demand, leakage and irrigation quota of were 10.8%, 43.8% and 49.1% higher in BI than in II \((P<0.01)\), respectively, and were 10.9%, 46.5% and 48.8% higher in BI than in RCII \((P<0.01)\), respectively. RCII had 0.05% lower water demand, 4.9% lower leakage and 0.8% higher irrigation quota than II, but all the comparison did not result in significant differences \((P>0.05)\).

3.2. Effects of irrigation-fertilization combinations on yield and water productivity

The effects of different irrigation-fertilization combinations on yield and water productivity were shown in Figure 1.
Figure 1. Effects of irrigation-fertilization combinations on yield and water productivity.

Figure 2. The discharging amount of non-point pollution (with nitrogen) under different irrigation-fertilization combinations.

The result indicates that difference between fertilization treatments in yield (Table 7) of single cropping rice was significant ($P<0.05$), but differences between irrigation treatments in yield was not ($P>0.05$). Duncan’s test showed that, the yield was 4.1% higher in 3TF than in 2TF, while the increasing of yield achieved 7.7% under RCII ($P<0.05$).

Table 7. ANOVA of irrigation-fertilization combinations affecting yield

Variation sources	SS	df	MS	F	P-value	F crit
Irrigation	33381	2	16690.5	0.346317	0.714129	3.885294
Fertilization	617716.1	1	617716.1	12.81722	0.003781	4.747225
Interaction	230931	2	115465.5	2.395836	0.133206	3.885294
Internal	578331	12	48194.25			
Total	1460359	17				

Quantitative calculation was done to determine the water-fertilizer interaction, take RCII as example, the effect of interaction was calculated by subtract irrigation effect (yield of treatment W2F1 minus treatment W0F1) and fertilization effect (yield of treatment W0F2 minus treatment W0F1) from total yield increasing (yield of treatment W2F2 minus treatment W0F1). The result indicated (Table 8) that water-fertilizer positive interaction was existed in paddy field in this research, and it had a contribution rate of 40% on yield increasing.

Table 8. Contribution of irrigation and fertilization to yield increasing

Irrigation Methods	Water-fertilizer Combination	Irrigation Method	Fertilization Method	Interaction				
	Yield increasing/ (kg·hm$^{-2}$)	Contribution rate/%	Yield increasing/ (kg·hm$^{-2}$)	Contribution rate/%	Yield increasing/ (kg·hm$^{-2}$)	Contribution rate/%		
RCII	315	100	37.5	11.9	151.5	48.1	126	40.0

Difference between irrigation treatments in water productivity (Table 9) was significant ($P<0.01$), difference between fertilization treatments in water productivity was also significant ($P<0.05$). Duncan’s test showed that, the water productivities of II and RCII were 98.2% and 97.1% higher than that of BI, respectively, but it did not result in significant difference between II and RCII ($P<0.05$); the water productivity was 4.8% higher in 3TF than in 2TF ($P<0.05$).
Table 9. ANOVA of irrigation-fertilization combinations affecting water productivity

Variation sources	SS	df	MS	F	P-value	F crit
Irrigation	28.0787	2	14.03935	3.44E-14	3.885294	
Fertilization	0.204963	1	0.204963	0.002079	4.747225	
Interaction	0.099019	2	0.04951	0.056384	3.885294	
Internal	0.161038	12	0.01342			
Total	28.54372	17				

3.3. Effects of irrigation-fertilization combinations on the discharge of non-point pollution
The effects of different irrigation-fertilization combinations on nitrogen containing pollution discharge were shown in Figure 2.

The NH$_4^+$-N discharge amounts of II and RCII were 33.0% and 78.3% lower than that of BI, respectively, while the difference between irrigation treatments in NO$_3^-$-N discharge amount was not significant ($P>0.05$). The discharge amounts of NO$_3^-$-N and NH$_4^+$-N were 1.0% and 67.5% lower in RCII than in II, respectively.

Five times of drainages were recorded through the whole growth stage, displacements of BI, II and RCII were 207 mm, 199mm and 191 mm, respectively, and it was 3.9% and 7.7% lower in II and RCII than in BI. The reduction ratios of pollution discharge amount and displacement were compared accordingly, the result indicates that the reduction of the concentration played a major role in non-point pollution discharge reduction in this research.

The discharge amounts of NO$_3^-$-N and NH$_4^+$-N were 1.0% and 10.2% lower in 3TF that in 2TF, fertilize separately could help reducing the non-point pollution discharge.

3.4. Evaluation models for the effects of water-saving and pollutant-reducing
In order to evaluate and rank these 6 kinds of irrigation-fertilization combinations, the data of yield, water productivity and pollutant discharge amount (NO$_3^-$-N and NH$_4^+$-N) were collected to build the matrix (as Y). It was anticipated that higher grain yield and water productivity resulted in a better combination of grain granules, while lower nitrogen pollutants discharge amount led to more environmental profits. With this principle, the standard decision matrix was made (as R). The entropy was defined as: E= (e1, e2, e3, e4) = (0.6027, 0.6028, 0.4472, 0.2069), and entropy objective was defined as: W= (w1, w2, w3, w4, w5, w6) = (0.1856, 0.1856, 0.2583, 0.3705), to measure the weight of all the parameters. The standard decision matrix was $Z = (z_{ij})_{6 \times m}$, which could engender the ideal solution $x^+ = (0.1856, 0.1856, 0.0000, 0.0000)$, and the negative ideal solution $x^- = (0.0000, 0.0000, 0.2583, 0.3705)$. The matrixes was calculated by entropy TOPSIS model, and showed in Figure 3.

Figure 3. The calculation of original matrix and decision matrix by TOPSIS model.
The Euclidean distance between the six combinations and the ideal solution, the Euclidean distance between the six combinations and negative ideal solution, and their proximity (S_i) to ideal solution were shown in Table 10. By ranking the proximity from large to small, the “RCII and 3TF” method was chosen to be the best combination (Table 11), which could optimize the effects of yield-increasing, water-saving, pollution-decreasing and fertilizer-conservation.

Table 10. The Euclidean distance of six combinations to ideal solutions and negative ideal solutions and their proximity

Combination	d_i^+	d_i^-	S_i
W₀ F₁	0.35608	0.59672	0.6263
W₀ F₂	0.33663	0.58020	0.6328
W₁ F₁	0.40111	0.63333	0.6122
W₁ F₂	0.20564	0.45348	0.6880
W₂ F₁	0.37481	0.61222	0.6203
W₂ F₂	0.13997	0.37413	0.7277

Table 11. Ranking of six combinations by proximity to ideal solution

Ranking number (S_i from large to small)	Combinations	S_i
1	W₂ F₂	0.7277
2	W₁ F₂	0.6880
3	W₀ F₂	0.6328
4	W₀ F₁	0.6263
5	W₂ F₁	0.6203
6	W₁ F₁	0.6122

4. Discussion

The water-fertilizer controlling method with effects of water-saving, emission-reduction, yield-increasing and fertilizer-conservation is an important way to ease the regional water shortage, decrease the non-point pollution discharge and achieve the sustainable agricultural development. It could ensure the food security, water security and ecological security. This research explored the effects of pollution decreasing under different irrigation methods (BI, II, and RCII), fertilization methods (2TF and 3TF) by field experiments, theoretical analysis and numerical calculation. The result showed the combination of RCII and 3TF could reduce 10% of water demand, increase 3.35% of productivity and reduce 55.7% of NH₄⁺-N discharge compared with traditional way. The water demand was affected by irrigation, and it was due to the decreasing of irrigation frequency. For instance, water-saving irrigation needs to irrigate twice while BI needs 6 to 7 times. The NH₄⁺-N discharge was affected by irrigation, water-saving irrigation reduced the pollutant concentration of paddy field drainage. The NH₄⁺-N discharge was also affected by fertilization method, the discharge reduced with more frequencies of fertilizer application. Earlier study on water discharging control method in Yinnan irrigation area in Ningxia province showed that NO₃⁻-N discharging was reduced by 13.88 kg, and its concentration was hold below 10 mg/L in gutter waters [23]. The research of irrigation-discharging-wetland management system showed that by increasing the gutter water retention time, the concentration of TN, NH₄⁺-N, NO₃⁻-N in discharging water could decrease 12.08%, 20.33% and 13.5% compared with traditional methods [24]. Besides, the leaching-pit experiments were also done by Menghua XIAO to explore the concentration variations under the control of discharging water, the result revealed that the NO₃⁻-N concentration was reduced by 32.6%-83.7%, and NH₄⁺-N
concentration was reduced by 56.6%-77.5%, whose result was more significant since the leaching-pit experiment had more side-effects than the field experiment in this study [25]. XIAO also found that water-saving irrigation with controlled drainage could help to increase the rainfall utilization efficiency and reduce the drain of Nitrogen, but it will reduce the productivity slightly [26]. In the meanwhile, the RCII with 3TF in this study showed positive effect on paddy rice yield, and showed optimizes effects on water-saving, pollution-decreasing and fertilizer-conservation.

5. Conclusions
In this research, water use of single cropping rice was affected by irrigation, the average amounts of water demand, leakage and irrigation quota of II and RCII were 10.9%, 45.2% and 49.0% lower than that of BI, respectively. But it did not show significant difference on these parameters between II and RCII (P>0.05). Yield was affected by fertilization, the yield of 3TF was 4.1% higher than that of 2TF. The water-fertilizer interactions also had positive effects on yield, which had 40% contribution rate. The NH$_4^+$-N discharge was affected by irrigation and fertilization, the average NH$_4^+$-N discharge of water-saving methods was 55.7% lower than BI, and that of 3TF was 10.2% lower than 2TF. Furthermore, the NH$_4^+$-N discharge of RCII was 67.5% lower than II, it drew the conclusion that RCII was better than II in reducing non-point pollution discharge. The six water-fertilizer combinations were ranked by TOPSIS model, the “RCII and 3TF” showed the optimize effects on water-saving, pollution-decreasing and fertilizer-conservation. Based on this research, this optimized combination was generalized more than 300 hectares in Zhejiang province in 2016 and 2017, it could gain the multipurpose of water-saving, pollution-decreasing and fertilizer-conservation, and it was suitable for rainy rice-growing areas in southern China.

References
[1] Belder P, Bouman B A M, Cabangon R, Guoan L, Quilang E J P, Li Y H, Spiertz J H J, Tuong T P 2004 Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia Agricultural Water Management 65 193–210
[2] Li H, Liang X Q, Chen Y X, Tian G M, Zhang Z J 2008 Ammonia volatilization from urea in rice fields with zero-drainage water management Agricultural Water Management 95 887–894
[3] Chirinda N, Cater M S, Albertb K R, Ambus P, Olesen J E, Porter J R, Petersen S O 2010 Emissions of nitrous oxide from arable organic and conventional cropping systems on two soil types Agriculture Ecosystems & Environment 136 199–208
[4] Valdemarsen T, Quintana C O, Flindt M R, KristensenE 2015 Organic n and p in eutrophic fjord sediments-rates of mineralization and consequences for internal nutrient loading Biogeosciences 12 1765–1779
[5] Janmohammadi M, Amanzadeh T, Sabaghnia N, Ion V 2016 Effect of nano-silicon foliar application on safflower growth under organic and inorganic fertilizer regimes BotanicaLithuanica 22 53–64
[6] Yin G X, Zhang Z Y, Guo X P, Shao G C 2007 Experimental study on effect of controlled drainage from ground surface on concentration and discharge of nitrogen Journal of Hohai University (Natural Sciences) 34 21-24
[7] Yoshinaga L, Miuraa A, Hitomia T, Hamada K, Shiratani E 2009 Runoff nitrogen from alargesized paddy field during a crop period Agric Water Manage 87 217–222
[8] Peng S Z, Yang S H, Xu J Z, Luo Y F, HouH J 2011 Nitrogen and phosphorus leaching loss from paddy field with different water and nitrogen management Paddy and water environment 9 333–342
[9] Guo L, Ning T, Nie L, Li Z, LalR 2016 Interaction of deep placed controlled-release urea and water retention agent on nitrogen and water use and maize yield European Journal of Agronomy 75 118–129
[10] Leo J M, BoumansD F, Gerard V D 2005 Nitrate leaching in agriculture to upper groundwater
in the sandy regions of the Netherlands during the 1992–1995 period. Environmental Monitoring and Assessment 102, 225–241.

[11] Ng H Y, Tan C S 2002 Controlled drainage and sub-irrigation influences tile nitrate loss and corn yields in a sandy loam soil in Southwestern Ontario. Agriculture, Ecosystems and Environment 90, 81–88.

[12] Chenoweth M S 2014 Extracting usable lineation orientations from digital elevation data through normalized discretized slope diagrams. Agriculture Ecosystems & Environment 186, 33–43.

[13] Shao G, Cui J, Yu S, Lu B, Brian B J, Ding, J, She D 2015 Impacts of controlled irrigation and drainage on the yield and physiological attributes of rice. Agricultural Water Management 149, 156–165.

[14] Gao S, Yu S, Mei W, Cao R, Rong, G 2017 Effect of controlled irrigation and drainage on saving water and reducing nitrogen and phosphorus loss in paddy field under alternate drought and flooding condition. Transactions of the Chinese Society of Agricultural Engineering 33, 122–128.

[15] Tuong P, Bouman B A M, Mortimer, M 2005 More rice, less water—integrated approaches for increasing water productivity in irrigated rice-based systems in asia. Plant Production Science 8, 231–241.

[16] Zhang Z, Zhang S, Yang J, Zhang J 2008 Yield, grain quality and water use efficiency of rice under non-flooded mulching cultivation. Field Crops Research 108, 71–81.

[17] Xu J, Wei Q, Yu Y, Peng S 2013 Influence of water management on the mobility and fate of copper in rice field soil. Journal of Soils & Sediments 13, 1180–1188.

[18] Xiao M H, Yu S E, Zhang Y L 2011 Changes of nitrogen concentration for surface and groundwater in flooding paddy field under controlled drainage. Transactions of the Chinese Society of Agricultural Engineering 27, 180–186.

[19] Xu H, Xi B, Wang J, Zhai L, Wei Z 2007 Study on transfer and transformation of nitrogen and phosphorus in agriculture ditch under rainfall runoff. Environmental Pollution & Control 29, 18–21.

[20] Sun A H, Zhu S J, Guo Y F, Zhang Z X 2012 Jensen model and modified morgan model for rice water-fertilizer production function. Procedia Engineering 28, 264–269.

[21] Yang S, Peng S, Xu J, He Y, Wang Y 2015 Effects of water saving irrigation and controlled release nitrogen fertilizer managements on nitrogen losses from paddy fields. Paddy & Water Environment 13, 71–80.

[22] He Y, Zhang Z, Xu J, Yang S, Hong D 2014 Reducing nitrogen leaching losses from paddy field under water-saving irrigation by water table control. Transactions of the Chinese Society of Agricultural Engineering 30, 121–127.

[23] Liu J G, Luo W, Jia Z H 2009 Implementation effect analysis of controlled drainage in yinnan irrigation district. Advances in Science & Technology of Water Resources 10, 915–970.

[24] Peng S, Hou H, Xu J, Mao Z, Abudu S, Luo Y 2011 Nitrous oxide emissions from paddy fields under different water managements in southeast china. Paddy & Water Environment 9, 403–411.

[25] Xiao M H, Yu S E, She D L 2012 Technical standards of irrigation and drainage management in paddy field of water-saving and pollution-reduction with high yield. Journal of Food, Agriculture Environment 10, 1005–1011.

[26] Xiao M H, Yu S E, Wang Y Y, Huang R 2013 Nitrogen and phosphorus change and optimal drainage time of flooded paddy field based on environmental factors. Water science and engineering 6, 164–177.