Hilfer-Hadamard fractional differential equations; Existence and Attractivity

Fatima Si Bachira, Saïd Abbasb, Maamar Benbachirc, Mouffak Benchohrad

aLaboratory of Mathematics and Applied Sciences, University of Ghardaia, 47000, Algeria.
bDepartment of Mathematics, University of Saida–Dr. Moulay Tahar, P.O. Box 138, EN-Nasr, 20000 Saida, Algeria.
cDepartment of Mathematics, Saad Dahlab Blida1, University of Blida, Algeria.
dLaboratory of Mathematics, Djillali Liabes University of Sidi Bel-Abbê, P.O. Box 89, Sidi Bel-Abbê 22000, Algeria.

Abstract

This work deals with a class of Hilfer-Hadamard differential equations. Existence and stability of solutions are presented. We use an appropriate fixed point theorem.

Keywords: Hilfer-Hadamard fractional derivative, Schauder fixed-point Theorem, uniformly locally attracting.

2010 MSC: 26A33, 34A08.

1. Introduction

The beginning of the fractional calculus in 1695, the fractional differential equation has been used in fields like mathematics, engineering, bioengineering, physics, etc.[16, 30], to see interesting results in the theory of fractional calculus and fractional differential equations, the reader may consult the monographs by; Abbas \textit{et al.} \cite{8, 9}, Kilbas \textit{et al.} \cite{22}, Oldham \textit{et al.} \cite{26}, Podlubny \cite{27}, Samko \textit{et al.} \cite{28}, Zhou \textit{et al.} \cite{33}, and the papers by Abbas \textit{et al.} \cite{3, 5}, Benchohra \textit{et al.} \cite{12}, Lakshmikantham \textit{et al.} \cite{23, 24, 25}. Other recent results are provided in \cite{11, 13, 17, 18, 19, 20, 21, 29, 31, 32}. Attractivity results for various classes of fractional differential equations are considered in \cite{1, 2, 4, 6, 10}.

\textit{Received November 19, 2020 ; Accepted: December 29, 2020; Online: December 31, 2020.}
In [7], Abbas et al. studied some existence and Ulam stability results of the following problem

\[
\begin{align*}
(H D_{1+}^{\tau,\theta} i)(t) &= \chi(t, i(t)); \quad t \in [1, T], \\
(H I_{1+}^{1-\theta} i)(1) &= d, \quad \varrho = \tau + \theta(1 - \tau).
\end{align*}
\]

This work is devoted to the existence and attractivity of solutions of the following problem

\[
\begin{align*}
(H D_{1+}^{\tau,\theta} i)(t) &= \chi(t, i(t)); \quad t \in [c, +\infty), \quad c > 0, \\
(H I_{c+}^{1-\theta} i)(c) &= d, \quad \varrho = \tau + \theta(1 - \tau),
\end{align*}
\]

where \(d \in \mathbb{R}, \chi : [c, +\infty) \times \mathbb{R} \to \mathbb{R}, H I_{c+}^{1-\theta}\) is the left-sided Hadamard fractional of order \(\tau > 0\) and \(H D_{c+}^{\tau,\theta}\) is the Hilfer-Hadamard derivative operator of order \(\tau (0 < \tau < 1)\) and type \(\theta (0 \leq \theta \leq 1)\).

\section{Preliminaries}

We will introduce some spaces. We denote by \(C_{\varrho,\log}[c, e], (0 < c < e < \infty)\), the space \(C_{\varrho,\log}[c, e] = \{\nu : (c, e) \to \mathbb{R} : (\log \frac{1}{c})^{1-\varrho} \nu(t) \in C[c, e]\}\), with the norm

\[
\|\nu\|_{C_{\varrho,\log}} = \sup_{t \in [c, e]} \left| \left(\log \frac{1}{c} \right)^{1-\varrho} \nu(t) \right|.
\]

\(BC^*: = BC([c, +\infty))\) denotes the space continuous and bounded functions \(\nu : [c, +\infty) \to \mathbb{R}\).

\(BC_\varrho = \{\nu : (c, +\infty) \to \mathbb{R} : (\log \frac{1}{c})^{1-\varrho} \nu(t) \in BC^*\}\), with the norm

\[
\|\nu\|_{BC_\varrho} := \sup_{t \in [c, +\infty]} \left| \left(\log \frac{1}{c} \right)^{1-\varrho} \nu(t) \right|.
\]

Denote \(\|\nu\|_{BC_\varrho}\) by \(\|\nu\|_{BC^*}\).

\begin{definition} \cite{22} \end{definition}
Let \((c, e) (0 \leq c < e \leq \infty)\) and \(\tau > 0\). The Hadamard left-sided fractional integral \(H I_{c+}^{\tau} j\) of order \(\tau > 0\) is defined by

\[
(H I_{c+}^{\tau} j)(x) := \frac{1}{\Gamma(\tau)} \int_{c}^{x} \left(\log \frac{x}{t} \right)^{\tau-1} j(t) dt, \quad c < x < e.
\]

When \(\tau = 0\), we set

\[
H I_{c+}^{0} j = j.
\]

\begin{definition} \cite{22} \end{definition}
Let \((c, e)(0 \leq c < e \leq \infty)\) be a finite or infinite interval of the half-axis \(\mathbb{R}_+\) and let \(\tau > 0\). The Hadamard right-sided fractional integral \(H I_{e-}^{\tau} j\) of order \(\tau > 0\) is defined by

\[
(H I_{e-}^{\tau} j)(x) := \frac{1}{\Gamma(\tau)} \int_{x}^{e} \left(\log \frac{t}{x} \right)^{\tau-1} j(t) dt, \quad c < x < e.
\]

When \(\tau = 0\), we set

\[
H I_{e-}^{0} j = j.
\]

\begin{example} \end{example}
For each \(\tau > 0\) and \(\lambda \in \mathbb{R}\), we have

\[
H I_{1}^{\lambda}(\log x)^{\lambda-1} := \frac{\Gamma(\lambda)}{\Gamma(\tau + \lambda)} (\log x)^{\tau+\lambda-1}, \quad x \geq 1.
\]
Definition 2.4. \cite{22} The left-sided Hadamard fractional derivative of order \(\tau(0 \leq \tau < 1)\) on \((c, e)\) is defined by
\[
(\mathcal{H}D^{\tau}_{c^+} j)(x) = \frac{1}{\Gamma(1-\tau)} \left(x \frac{d}{dx} \right) \int_{c}^{x} \left(\log \frac{x}{t} \right)^{-\tau} j(t) \frac{dt}{t}, \quad c < x < e.
\]
In particular, when \(\tau = 0\) we have
\[
\mathcal{H}D^{0}_{c^+} j = j.
\]

Definition 2.5. \cite{22} The right-sided Hadamard fractional derivative of order \(\tau(0 \leq \tau < 1)\) on \((c, e)\) is defined by
\[
(\mathcal{H}D^{\tau}_{e^-} j)(x) = -\left(x \frac{d}{dx} \right) \frac{1}{\Gamma(1-\tau)} \int_{x}^{e} \left(\log \frac{t}{x} \right)^{-\tau} j(t) \frac{dt}{t}.
\]
In particular, when \(\tau = 0\) we have
\[
\mathcal{H}D^{0}_{e^-} j = j.
\]

Definition 2.6. Let \((c, e)\) be a finite interval of the half-axis \(\mathbb{R}_+\). The fractional derivative \(\mathcal{H}cD^{\tau}_{c^+} j\) of order \(\tau(0 < \tau < 1)\) on \((c, e)\) defined by:
\[
\mathcal{H}cD^{\tau}_{c^+} j = \mathcal{H}I^{1-\tau}_{c^+} \delta j,
\]
where \(\delta = x(d/dx)\), is called the Hadamard-Caputo fractional derivative of order \(\tau\).

Lemma 2.7. \cite{22} Let \(\tau > 0, \theta > 0\) and \(0 \leq \mu < 1\). If \(0 < c < e < \infty\), then for \(j \in C_{\mu,\log}[c, e]\) the equality
\[
\mathcal{H}I^{\tau}_{c^+} \mathcal{H}I^{\theta}_{c^+} j = \mathcal{H}I^{\tau+\theta}_{c^+} j
\]
does not hold.

Theorem 2.8. \cite{22} Let \(0 < \tau < 1\) and \(0 < c < e < \infty\). If \(j \in C_{\mu,\log}[c, e](0 \leq \mu < 1)\) and \(\mathcal{H}I^{1-\tau}_{c^+} j \in C^{1}_{\delta,\mu}[c, e]\) then
\[
(\mathcal{H}I^{\tau}_{c^+} \mathcal{H}D^{\tau}_{c^+} j)(x) = j(x) - \frac{\mathcal{H}I^{1-\tau}_{c^+} j(c)}{\Gamma(\tau)} \left(\log \frac{x}{c} \right)^{1-\tau},
\]
holds at any point \(x \in (c, e)\). If \(j \in C[c, e]\) and \(\mathcal{H}I^{1-\tau}_{c^+} j \in \mathcal{C}^{1}_{\delta,\mu}[c, e]\), then the relation holds at any point \(x \in [c, e]\).

Definition 2.9. (Hilfer-Hadamard fractional derivative). The left sided fractional derivative of order \(\tau(0 < \tau < 1)\) and type \(0 \leq \theta \leq 1\) with respect to \(x\) is defined by
\[
(\mathcal{H}D^{\tau,\theta}_{c^+} j)(x) = (\mathcal{H}I^{\theta(1-\tau)}_{c^+} \mathcal{H}D^{\tau-\theta\tau}_{c^+} j)(x).
\]

Corollary 2.10. \cite{21} Let \(\sigma \in C_{\theta,\log}(I)\). Then the problem
\[
\begin{align*}
(\mathcal{H}D^{\tau,\theta}_{c^+} i)(t) &= \sigma(t), \quad t \in I := [c, e] \\
(\mathcal{H}I^{\tau-\theta\tau}_{c^+} i)(c) &= d,
\end{align*}
\]
admits the following unique solution
\[
i(t) = \frac{d}{\Gamma(\theta)} \left(\log \frac{t}{c} \right)^{\theta-1} + (\mathcal{H}I^{\tau}_{c^+} \sigma)(t).
\] \quad (2)

Lemma 2.11. Let \(\chi : (c, e) \times \mathbb{R} \to \mathbb{R}\) be a function such that \(\chi(\cdot, i(\cdot)) \in BC_{\theta}\) for any \(i \in BC_{\theta}\). Then the problem (1) is equivalent to the integral equation
\[
i(t) = \frac{d}{\Gamma(\theta)} \left(\log \frac{t}{c} \right)^{\theta-1} + (\mathcal{H}I^{\tau}_{c^+} \chi(\cdot, i(\cdot)))(t).
\] \quad (3)

Let \(\emptyset \neq H \subset BC^*\) and let \(T : H \to H\). Let the equation
\[
(Ti)(t) = i(t).
\] \quad (4)
Definition 2.12. Solutions of equation (4) are locally attractive if there exists a ball $B(i_0, \delta)$ in the space BC^* such that, for any solutions $w = w(t)$ and $\Theta = \Theta(t)$ of equations (4) that belong to $B(i_0, \delta) \cap H$, we can write
\[
\lim_{t \to \infty} (w(t) - \Theta(t)) = 0.
\] (5)

If limit (5) is uniform with respect to $B(i_0, \delta) \cap H$, then (4) is uniformly locally attractive.

Lemma 2.13. [14] Let $P \subset BC^*$. Then P is relatively compact in BC^* if the following conditions are satisfied:

(a) P is uniformly bounded in BC^*;

(b) the functions belonging to P are almost equicontinuous in \mathbb{R}_+, i.e., equicontinuous on every compact set in \mathbb{R}_+

(c) the functions from P are equiconvergent, i.e., given $\varepsilon > 0$, there exists $M(\varepsilon) > 0$ such that
\[
\left| i(t) - \lim_{t \to \infty} i(t) \right| < \varepsilon,
\]
for any $t \geq M(\varepsilon)$ and $i \in P$.

Theorem 2.14. (Schauder Fixed-Point Theorem [15]). Let X be a Banach space, let D be a nonempty bounded convex and closed subset of X, and let $L : D \to D$ be a compact and continuous map. Then L has at least one fixed point in D.

3. Existence and Attractivity Results

Definition 3.1. A measurable function $i \in BC_\rho$ is a solution of (1) if it verifies $(H I^c i)(c) = d$, and the equation $(H D^c i)(t) = \chi(t, i(t))$ on $[c, +\infty)$.

We will give the following hypotheses:

(H_1) The function $t \mapsto \chi(t, i)$ is measurable on $[c, +\infty)$ for each $i \in BC_\rho$, and $i \mapsto \chi(t, i)$ is continuous.

(H_2) There exists a continuous function $l : [c, +\infty) \to [0, +\infty)$ such that
\[
|\chi(t, i)| \leq \frac{l(t)}{1 + |i|} \text{ for a.e. } t \in [c, +\infty) \text{ and each } i \in \mathbb{R},
\]

and
\[
\lim_{t \to \infty} \left(\log \frac{t}{c} \right)^{1-\varepsilon} (H I^c t)(t) = 0.
\]

Set
\[
l^* = \sup_{t \in [c, +\infty)} \left(\log \frac{t}{c} \right)^{1-\varepsilon} (H I^c t)(t).
\]

Theorem 3.2. If (H_1) and (H_2) hold, then (1) has at least one solution which is uniformly locally attractive.

Proof. Define the operator L by
\[
(Li)(t) = \frac{d}{\Gamma(\delta)} \left(\log \frac{t}{c} \right)^{\delta-1} + \frac{1}{\Gamma(\tau)} \int_c^t \left(\log \frac{s}{t} \right)^{\tau-1} \chi(s, i(s)) \frac{ds}{s}.
\]
We can prove that the operator L maps BC_ϱ into BC_ϱ. Indeed; the map $L(i)$ is continuous on $[c, +\infty)$, and for any $i \in BC_\varrho$ and, for each $t \in [c, +\infty)$, we have

$$\left| \left(\log \frac{t}{c} \right)^{1-\varrho} (Li)(t) \right| \leq \frac{|d|}{\Gamma(\varrho)} + \frac{(\log \frac{t}{c})^{1-\varrho}}{\Gamma(\tau)} \int_c^t \left(\log \frac{t}{s} \right)^{\tau-1} \left| \chi(s, i(s)) \right| \frac{ds}{s}$$

$$\leq \frac{|d|}{\Gamma(\varrho)} + \frac{(\log \frac{t}{c})^{1-\varrho}}{\Gamma(\tau)} \int_c^t \left(\log \frac{t}{s} \right)^{\tau-1} l(s) \frac{ds}{s}$$

$$\leq \frac{|d|}{\Gamma(\varrho)} + t^* := R^*,$$

so

$$\|L(i)\|_{BC_\varrho} \leq R^*. \quad (6)$$

Therefore, $L(i) \in BC_\varrho$, which proves that the operator $L(BC_\varrho) \subset BC_\varrho$. Equation (6) implies that L maps $B_{R^*} := B(0, R^*) = \{ v \in BC_\varrho : \|v\|_{BC_\varrho} \leq R^* \}$ into itself.

Step 1. L is continuous.

Let $\{i_n\}_{n \in \mathbb{N}}$ be a sequence converging to i in B_{R^*}. Then,

$$\left| \left(\log \frac{t}{c} \right)^{1-\varrho} (Li_n) (t) - \left(\log \frac{t}{c} \right)^{1-\varrho} (Li) (t) \right|$$

$$\leq \frac{1}{\Gamma(\tau)} \int_c^t \left(\log \frac{t}{s} \right)^{\tau-1} \left| \left(\log \frac{t}{c} \right)^{1-\varrho} \chi(s, i_n(s)) - \left(\log \frac{t}{c} \right)^{1-\varrho} \chi(s, i(s)) \right| \frac{ds}{s}. \quad (7)$$

Case 1. If $t \in [c, T], T > 0$, then, since $i_n \to i$ as $n \to \infty$ and from the continuity of χ, we get

$$\|L(i_n) - L(i)\|_{BC_\varrho} \to 0 \quad \text{as} \quad n \to \infty.$$

Case 2. If $t \in (T, \infty), T > 0$, then (7) implies that

$$\left| \left(\log \frac{t}{c} \right)^{1-\varrho} (Li_n) (t) - \left(\log \frac{t}{c} \right)^{1-\varrho} (Li) (t) \right| \leq \frac{2(\log \frac{t}{c})^{1-\varrho}}{\Gamma(\tau)}$$

$$\times \int_c^t \left(\log \frac{t}{s} \right)^{\tau-1} l(s) \frac{ds}{s}, \quad (8)$$

since $i_n \to i$ as $n \to \infty$ and $(\log \frac{t}{c})^{1-\varrho} (H_{c+1}^* x) (t) \to 0$ as $t \to \infty$, it follows from (8) that

$$\|L(i_n) - L(i)\|_{BC_\varrho} \to 0 \quad \text{as} \quad n \to \infty.$$

Step 2. $L(B_{R^*})$ is uniformly bounded and equicontinuous.
Since \(L(B_{R^+}) \subset B_{R^+} \) and \(B_{R^+} \) is bounded, then \(L(B_{R^+}) \) is uniformly bounded.

Next let \(t_1, t_2 \in [c, T], \ t_1 < t_2 \), and let \(i \in B_{R^+} \). This yields

\[
\begin{align*}
&\left| \left(\log \frac{t_2}{c} \right)^{1-\gamma} (Li)(t_2) - \left(\log \frac{t_1}{c} \right)^{1-\gamma} (Li)(t_1) \right| \\
\leq & \left(\log \frac{t_2}{c} \right)^{1-\gamma} \left[\frac{d}{\Gamma(\theta)} \left(\log \frac{t_2}{c} \right)^{\theta-1} + \frac{1}{\Gamma(\tau)} \int_{c}^{t_2} \left(\log \frac{t_2}{s} \right)^{\tau-1} \chi(s, i(s)) \frac{ds}{s} \right] \\
& - \left(\log \frac{t_1}{c} \right)^{1-\gamma} \left[\frac{d}{\Gamma(\theta)} \left(\log \frac{t_1}{c} \right)^{\theta-1} + \frac{1}{\Gamma(\tau)} \int_{c}^{t_1} \left(\log \frac{t_1}{s} \right)^{\tau-1} \chi(s, i(s)) \frac{ds}{s} \right]
\end{align*}
\]

Then, we get

\[
\begin{align*}
&\left| \left(\log \frac{t_2}{c} \right)^{1-\gamma} (Li)(t_2) - \left(\log \frac{t_1}{c} \right)^{1-\gamma} (Li)(t_1) \right| \\
\leq & \frac{\left(\log \frac{t_2}{c} \right)^{1-\gamma}}{\Gamma(\tau)} \int_{c}^{t_1} \left(\log \frac{t_2}{s} \right)^{\tau-1} |\chi(s, i(s))| \frac{ds}{s} \\
& + \frac{1}{\Gamma(\tau)} \int_{c}^{t_1} \left(\log \frac{t_2}{c} \right)^{\tau-1} \left(\log \frac{t_1}{s} \right)^{\tau-1} \frac{l(s) ds}{s}
\end{align*}
\]

Thus, we obtain

\[
\begin{align*}
&\left| \left(\log \frac{t_2}{c} \right)^{1-\gamma} (Li)(t_2) - \left(\log \frac{t_1}{c} \right)^{1-\gamma} (Li)(t_1) \right| \\
\leq & \frac{l_s \left(\log \frac{t_2}{c} \right)^{1-\gamma}}{\Gamma(\tau)} \int_{c}^{t_1} \left(\log \frac{t_2}{s} \right)^{\tau-1} ds \\
& + \frac{l_s}{\Gamma(\tau)} \int_{c}^{t_1} \left(\log \frac{t_2}{c} \right)^{\tau-1} \left(\log \frac{t_1}{s} \right)^{\tau-1} \frac{l(s) ds}{s}
\end{align*}
\]

As \(t_1 \to t_2 \), the right-hand side of the inequality tends to zero.

Step 3. \(L(B_{R^+}) \) is equiconvergent.
Let $t \in [c, +\infty)$ and let $i \in B_{R^*}$. We have

$$\left| \left(\log \frac{t}{c} \right)^{1-\theta} (L_i)(t) \right| \leq \frac{|d|}{\Gamma(\theta)} + \frac{\left(\log \frac{t}{c} \right)^{1-\theta}}{\Gamma(\tau)} \int_c^t \left(\log \frac{s}{c} \right)^{\tau-1} |\chi(s, i(s))| \frac{ds}{s}$$

$$\leq \frac{|d|}{\Gamma(\theta)} + \frac{\left(\log \frac{t}{c} \right)^{1-\theta}}{\Gamma(\tau)} \int_c^t \left(\log \frac{s}{c} \right)^{\tau-1} l(s) \frac{ds}{s}$$

$$\leq \frac{|d|}{\Gamma(\theta)} + \frac{\left(\log \frac{t}{c} \right)^{1-\theta}}{\Gamma(\tau)} (Hf^+(t)).$$

Since

$$\left(\log \frac{t}{c} \right)^{1-\theta} (Hf^+(t)) \rightarrow 0 \text{ as } t \rightarrow +\infty,$$

we find

$$|(L_i)(t)| \leq \frac{|d|}{\left(\log \frac{t}{c} \right)^{1-\theta} \Gamma(\theta)} + \frac{\left(\log \frac{t}{c} \right)^{1-\theta}}{\left(\log \frac{t}{c} \right)^{1-\theta}} (Hf^+(t)) \rightarrow 0 \text{ as } t \rightarrow +\infty.$$ Hence

$$|(L_i(t)) - (L_i(+\infty))| \rightarrow 0 \text{ as } t \rightarrow +\infty.$$ As a consequence of Steps 1 - 3, we conclude that $L : B_{R^*} \rightarrow B_{R^*}$ is compact and continuous. Applying Schauder’s fixed point theorem, we get that L has a fixed point i, which is a solution of problem (1) on $[c, +\infty)$.

Step 4. Assume that i_0 is solution of (1). Set $i \in B(i_0, 2l^*)$, we have

$$\left| \left(\log \frac{t}{c} \right)^{1-\theta} (L_i)(t) - \left(\log \frac{t}{c} \right)^{1-\theta} i_0(t) \right|$$

$$= \left| \left(\log \frac{t}{c} \right)^{1-\theta} (L_i)(t) - \left(\log \frac{t}{c} \right)^{1-\theta} (L_{i_0})(t) \right|$$

$$\leq \frac{\left(\log \frac{t}{c} \right)^{1-\theta}}{\Gamma(\tau)} \int_c^t \left(\log \frac{s}{c} \right)^{\tau-1} \left| \chi(s, i(s)) - \chi(s, i_0(s)) \right| \frac{ds}{s}$$

$$\leq 2 \frac{\left(\log \frac{t}{c} \right)^{1-\theta}}{\Gamma(\tau)} \int_c^t \left(\log \frac{s}{c} \right)^{\tau-1} l(s) \frac{ds}{s}$$

$$\leq 2l^*.$$ We get

$$\|L(i) - i_0\|_{BC^*_c} \leq 2l^*.$$ So, we conclude that L is a continuous function such that

$$L(B(i_0, 2l^*)) \subset B(i_0, 2l^*).$$ Moreover, if i is a solution of problem (1), then

$$|i(t) - i_0(t)| = |(L_i)(t) - (L_{i_0})(t)|$$

$$\leq \frac{1}{\Gamma(\tau)} \int_c^t \left(\log \frac{s}{c} \right)^{\tau-1} \left| \chi(s, i(s)) - \chi(s, i_0(s)) \right| \frac{ds}{s}$$

$$\leq 2 \left(Hf^+ \right)(t).$$
Therefore,
\[|i(t) - i_0(t)| \leq \frac{2 (\log \frac{t}{c})^{1-\theta} (H I^\gamma_{c+} t) (t)}{(\log \frac{t}{c})^{1-\theta}}. \tag{9} \]
By (9) and
\[\lim_{t \to \infty} \left(\log \frac{t}{c} \right)^{1-\theta} (H I^\gamma_{c+} t) (t) = 0, \]
we get
\[\lim_{t \to \infty} |i(t) - i_0(t)| = 0. \]
Hence, solutions of (1) are uniformly locally attractive.

4. An Example

Consider the problem
\[
\begin{cases}
(H D^{\frac{1}{2} \frac{1}{2}}_{1+}) i)(t) = \chi(t, i(t)); & t \in [1, +\infty), \\
(H I^{\gamma}_{1+} i)(1) = 1,
\end{cases}
\tag{10}
\]
where
\[
\begin{cases}
\chi(t, i) = \frac{(t-1)^2 (\log t)^{-1} \cos t}{64 (t^2+1)(1+i(t))}, & t \in (1, \infty), \ i \in \mathbb{R}, \\
\chi(1, i) = 0, & i \in \mathbb{R}.
\end{cases}
\tag{11}
\]
Clearly, the function \(\chi \) is continuous, and \((H_2)\) is satisfied with
\[
\begin{cases}
l(t) = \frac{(t-1)^2 (\log t)^{-1} \cos t}{64 (t^2+1)}; & t \in (1, \infty), \\
l(1) = 0,
\end{cases}
\tag{12}
\]
and
\[
(\log t)^{\frac{1}{2}} H I^\gamma_{1-} l(t) = \frac{(\log t)^{1/4}}{\Gamma \left(\frac{1}{2} \right)} \int_1^t \left(\log \frac{t}{s} \right)^{-1/2} l(s) \frac{ds}{s},
\]
\[
\leq \frac{(\log t)^{1/4}}{\Gamma \left(\frac{1}{2} \right)} \int_1^t \left(\log \frac{t}{s} \right)^{-1/2} (\log s)^{-1} \frac{ds}{s},
\]
\[
\leq \frac{1}{\sqrt{\pi}} (\log t)^{-1/4} \to 0 \quad \text{as} \quad t \to \infty.
\]
Hence, problem (10) has at least one solution which is uniformly locally attractive.

References

[1] S. Abbas, W. Albarakati and M. Benchohra, Existence and attractivity results for Volterra type nonlinear multi-delay Hadamard-Stieltjes fractional integral equations, PanAmer. Math. J. 26 (2016), 1-17.
[2] S. Abbas and M. Benchohra, Existence and attractivity for fractional order integral equations in Fréchet spaces, Discuss. Math. Differ. Incl. Control Optim. 33 (2013), 1-17.
[3] S. Abbas and M. Benchohra, Existence and stability of nonlinear fractional order Riemann-Liouville, Volterra-Stieltjes multi-delay integral equations, J. Integral Equations Appl. 25 (2013), 143-158.
[4] S. Abbas, M. Benchohra, and T. Diagana, Existence and attractivity results for some fractional order partial integrodifferential equations with delay, Afr. Diaspora J. Math. 15 (2013), 87-100.
[5] S. Abbas, M. Benchohra and J. Henderson, Asymptotic attractive nonlinear fractional order Riemann-Liouville integral equations in Banach algebras, Nonlin. Stud. 20 (2013), 1-10.
[6] S. Abbas, M. Benchohra and J. Henderson, Existence and attractivity results for Hilfer fractional differential equations, J. Math. Sci. 243 (2019), 347-357.
[7] S. Abbas, M. Benchohra, J.-E. Lagreg, A. Alsaeedi, Y. Zhou, Existence and Ulam stability for fractional differential equations of Hilfer-Hadamard type, *Adv. Difference Equ.* **180** (2017), 1-14.

[8] S. Abbas, M. Benchohra and G. M. N’Guérékata, *Advanced Fractional Differential and Integral Equations*, Nova Sci. Publ., New York, 2014.

[9] S. Abbas, M. Benchohra, and G. M. N’Guérékata, *Topics in Fractional Differential Equations*, Dev. Math., 27, Springer, New York, 2015.

[10] S. Abbas, M. Benchohra, and J. J. Nieto, Global attractivity of solutions for nonlinear fractional order Riemann-Liouville Volterra-Stieltjes partial integral equations, *Electron. J. Qual. Theory Differ. Equat.* **81** (2012), 1-15.

[11] H. Afshari, E. Karapinar, A discussion on the existence of positive solutions of the boundary value problems via ψ-Hilfer fractional derivative on b-metric spaces. *Adv. Difference Equ.* **2020**, 616.

[12] M. Benchohra, J. Henderson, S. K. Ntouyas and A. Ouahab, Existence results for functional differential equations of fractional order, *J. Math. Anal. Appl.* **338** (2008), 1340-1350.

[13] N. Bouteraa, S. Benaicha, The uniqueness of positive solution for higher-order nonlinear fractional differential equation with fractional multi-point boundary conditions, *Adv. Theory Nonl. Anal. Appl.* **2** (2) (2018), 74-84.

[14] C. Corduneanu, *Integral Equations and Stability of Feedback Systems*, Acad. Press, New York, 1973.

[15] A. Granas, J. Dugundji, *Fixed Point Theory*, Springer-Verlag, New York, 2003.

[16] R. Hilfer, *Applications of Fractional Calculus in Physics*, World Scientific, Singapore, 2000.

[17] R. Hilfer, Threefold introduction to fractional derivatives, *R. Klages* et al. (editors), Anomalous Transp.: Found. Appl., WileyVCH, Weinheim , pp. (2008), 17-73.

[18] R. Kamocki and C. Obcz?nski, On fractional Cauchy-type problems containing Hilfer’s derivative, *Electron. J. Qual. Theory Differ. Equ.* (2016), No. 50, 1-12.

[19] E. Karapinar, T. Abdeljawad, F. Jarad, Applying new fixed point theorems on fractional and ordinary differential equations. *Adv. Difference Equ.* **2019**, Paper No. 421, 25 pp.

[20] M.D. Kassim, K.M. Furati, N.-E. Tatar, On a differential equation involving Hilfer-Hadamard fractional derivative, *Abstr. Appl. Anal.* (2012), Article ID 391062.

[21] M.D. Kassim, N.E. Tatar, Well-posedness and stability for a differential problem with Hilfer–Hadamard fractional derivative, *Abstr. Appl. Anal.* **1** (2013), 1-12.

[22] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, *Theory and Applications of Fractional Differential Equations*, Elsevier, Amsterdam, 2006.

[23] V. Lakshmikantham and J. Vasundhara Devi, Theory of fractional differential equations in a Banach space, *Eur. J. Pure Appl. Math.* **1** (2008), 38-45.

[24] V. Lakshmikantham and A.S. Vatsala, Basic theory of fractional differential equations, *Nonlin. Anal.* **69** (2008), 2677-2682.

[25] V. Lakshmikantham and A. S. Vatsala, General uniqueness and monotone iterative technique for fractional differential equations, *Appl. Math. Lett.* **21** (2008), 828-834.

[26] K. Oldham, J. Spanier, *The Fractional Calculus*, Acad. Press, New York, 1974.

[27] Podlubny, *Fractional Differential Equations, in: Mathematics in Science and Engineering*, **198**, Acad. Press, New York, 1999.

[28] S. G. Samko, A. A. Kilbas, and O. I. Marichev, *Fractional Integrals and Derivatives: Theory and Applications*, Gordon and Breach, Tokyo-Paris-Berlin, 1993.

[29] S. Muthaiah, M. Murugesan, N. G. Thangaraj, Existence of solutions for nonlocal boundary value problem of Hadamard fractional differential equations, *Adv. Theory Nonl. Anal. Appl.* **3** (3) (2019), 162-173.

[30] V. E. Tarasov, *Fractional Dynamics: Application of Fractional Calculus to the Dynamics of Particles, Fields and Media*, Springer, Beijing-Heidelberg, 2010.

[31] Z. Tomovski, R. Hilfer and H. M. Srivastava, Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler-type functions, *Integral Transforms Spec. Funct.* **21** (2010), No. 11, 797-814.

[32] J.-R. Wang and Y. Zhang, Nonlocal initial value problems for differential equations with Hilfer fractional derivative, *Appl. Math. Comput.* **266** (2015), 850-859.

[33] Y. Zhou, J.-R. Wang, L. Zhang, *Basic Theory of Fractional Differential Equations*, Second edition. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017.