Dwelling on de Sitter

Bruno Carneiro da Cunha

Enrico Fermi Institute and Department of Physics,
The University of Chicago, 5640 South Ellis Avenue, Chicago Illinois 60637

A careful reduction of the three-dimensional gravity to the Liouville description is performed, where all gauge fixing and on-shell conditions come from the definition of asymptotic de Sitter spaces. The roles of both past and future infinities are discussed and the conditions space-time evolution imposes on both Liouville fields are explicit. Space-times which correspond to non-equivalent profiles of the Liouville field at I^- and I^+ are shown to exist. The qualitative implications of this for any tentative dual theory are presented.

I. INTRODUCTION

The importance of understanding quantum gravity in de Sitter space can hardly be overstressed. Touching physical problems like the dynamics of inflation and the eventual fate of the universe, the question is in itself a necessary step towards a background-free formulation of the quantum theory of gravity and quantum cosmology.

Not having a precise string theory background in which to embed the space, our understanding relies on extrapolations of ideas gathered in the study of black holes and anti de Sitter (AdS) spaces. A particularly useful idea is holography [1], which found a realization for AdS backgrounds [2]. With it in mind, Strominger gave a prescription [3] to recover data pertaining to space-time based on a hypothetical dual (holographic) theory. The arguments in support of this prescription are numerous [4, 5], although few seem to tackle properties of dS which do not parallel those of AdS.

The properties of dS which make the formulation of holography particularly difficult are the existence of a horizon and the compactness of spatial slices. The former poses problems for unitary evolutions of Hilbert spaces assigned to Cauchy surfaces and the latter makes unclear the procedure to define conserved charges. Horizons are in fact already known to cause problems in AdS, where the formulation of (perturbative) string theory in, say, BTZ backgrounds is an open problem.

Also, if one chooses to think about holography in a covariant way [6], the boundary theory seems to live in both infinities, but some states (which we will call static) on it corresponding to singularity-free solutions can be “projected” to either infinity by a gauge choice. We will also consider instances where such projection fails.

The paper is organized as follows. In section II a reduction from the Chern-Simons formulation to Liouville theory is carried out. We choose a different “gauge fixing” from previous work [7] in order to keep the spacetime picture explicit. In section III we will be able to give a simple interpretation for the Liouville field, and then state the generic conditions under which an asymptotically de Sitter spacetime will be described by it. In section IV we discuss the Strominger mapping and problems arising from cosmological singularities. We then conclude with a prospectus of what else classical de Sitter gravity could say about holography.

II. CHERN-SIMONS AND WESS-ZUMINO FORMULATIONS REVISITED

Three-dimensional gravity has been the subject of extensive research over the past two decades [8]. The Chern-Simons formulation [9, 10] makes explicit the role of local isometry invariance and also the fact that the theory is locally trivial. Sticking to the positive cosmological constant case, we can write the action in terms of an $SL(2, C)$ connection, defined as $A^a_i = \omega^i_a + i\ell^{-1}e^i_a$, where e^i_a is the dreibein and ω^i_a is the Lorentz dual to the spin connection. Then the properties above are readily seen by direct inspection of the action,

$$S = \frac{\ell}{4\pi G} \int_M \text{Tr}(A \wedge dA + \frac{2}{3} A \wedge A \wedge A) + B(A, \bar{A})$$ \hspace{1cm} (1)

where $A = A^i \gamma_i$, \bar{A} is the complex conjugate to A and \bar{A} denotes the imaginary part. γ_i can be thought of as a representation of the $SL(2, C)$ algebra in three dimensions, satisfying $2\text{Tr}[\gamma_i \gamma_j] = \eta_{ij}$ and $2\text{Tr}[\gamma_i \gamma_j \gamma_k] = \epsilon_{ijk}$. $B(A, \bar{A})$ is a boundary term required to continue interior solutions to the causal boundary of spacetime. The properties of isometry invariance and local triviality translate to trivial facts about Chern-Simons forms, respectively: i) they are gauge invariant and ii) their variation with

*EFI-02-82, hep-th/0208018
†bcunha@theory.uchicago.edu
respect to \(A \) is a closed form. The dynamics is then determined by boundary data \(B(A, \bar{A}) \), namely, which particular space the dynamic spacetime approaches asymptotically. In the case at hand the sensible choice is to have the metric approach the de Sitter metric at past and future infinity.

In the spirit of classical general relativity, one should strive to give a coordinate independent formulation of an asymptotic de Sitter space. The main advantage of this approach is to make a clear distinction between what is considered “gauge choice” in the Chern-Simons language and what is considered “on-shell”. Following Shiromizu et al. [1] (after similar work done for AdS by Hawking and by Ashtekar and Magnon [2]), we will say that a \(n \)-dimensional spacetime with metric \(g_{ab} \) is asymptotically de Sitter when

1. The causal boundary of space-time is \(\mathcal{I}^+ \cup \mathcal{I}^- \) [3]. Specifically, there are two functions \(\Omega^- \) and \(\Omega^+ \) which vanish at past and future infinities respectively, but not their derivatives; also, the corresponding unphysical or fiducial metric \(\hat{g}_{ab}^\pm \equiv (\Omega^\pm)^2 g_{ab} \) is regular there.

2. The geometry is asymptotically trivial: the spacetime \((M, g)\) is a solution of the equations \(R_{ab} - \frac{1}{2} R g_{ab} + \Lambda g_{ab} = 8 \pi G T_{ab} \), where \((\Omega^\pm)^{n+1} T_{0}^0 \) has a smooth limit to the boundary.

The first item above tell us that \(\Omega \) is a non-singular coordinate near either \(\mathcal{I}^- \) or \(\mathcal{I}^+ \). Furthermore, its gradient is normal to the boundary and hence timelike. So one is naturally led to the gauge choice where the time function is given by \(t = \log \Omega \) near \(\mathcal{I}^- \). Whether or not one can stick to this choice up to \(\mathcal{I}^+ \) depends on the global issues like the causal structure of spacetime and whether the function \(t \) thus defined can be extended globally. We will address these points in section 3. Assuming that this is a good gauge choice throughout the evolution of spacetime amounts to assuming that the spatial slices will not undergo topology change. In fact, the assumption already furnishes us with a Morse function, if we see time-evolution as a cobordism. There is more to say about the instances when such gauge fixing breaks down, but we will postpone it for now.

The second item in the list relates to solving the equations of motion near past and future infinity. Here we will be mostly interested in the case of pure gravity, so \(T_{ab} = 0 \) and the metric is locally the de Sitter vacuum. It is interesting to note that if one takes holography as a property of quantum gravity, the latter will be represented in de Sitter backgrounds as a transfer matrix interpolating between asymptotic de Sitter spaces at past and future infinity. The requirement that these spaces satisfy item 2 above echoes the LSZ reduction between general Green functions of any quantum field theory and its \(S \) matrix elements. Since the latter are defined for on-shell elements, it is unclear at this point how the quantum fluctuations of the bulk fields would be encoded in the dual theory. As it stands, even in the AdS/CFT these are encoded in a complicated way in the boundary theory. Only gauge-invariant observables have a clear-cut correspondence in terms of bulk fields.

In the following we will apply the conditions above to the metric in \(\mathcal{I}^- \) (and as such we will drop the superscript.) In terms of the unphysical or fiducial variables, the Einstein equations in \(n \) dimensions read:

\[
\bar{R}_{ac} \equiv - 2 \frac{1}{\Omega^2} \hat{g}^{de} \hat{\nabla}_a \hat{\nabla}_c \hat{\Omega} - \frac{2 \Lambda}{n} \frac{1}{\Omega^2} g_{ac} \tag{2}
\]

Since the unphysical Ricci tensor is regular, the terms diverging with some power of \(\Omega \) must vanish at \(\partial M \). The term proportional to \(\Omega^{-2} \) yields

\[
g^{ab} \hat{\nabla}_a \hat{\nabla}_b \hat{\Omega} = - \frac{2}{(n-2)(n-1)} \Lambda \hat{\Omega} \tag{3}
\]

back to three dimensions, this means that one can define a time-like vector field, \(\xi^a \equiv \ell \hat{g}^{ab} \hat{\nabla}_b \log \hat{\Omega} \), with \(\Lambda = \ell^{-2} \), which becomes normalized in the physical space as one approaches \(\mathcal{I}^- \). The integral curves of this vector are parametrized by a time function, which we will call \(t \equiv \ell \log \Omega \). One can actually use part of the gauge symmetry of \(\Omega \) and eliminate the order \(\hat{\Omega} \) corrections to \(\xi^a \) [4].

With this provision, the subleading term implies:

\[
\hat{\nabla}_a \hat{\nabla}_b \Omega + \hat{g}_{ac} \bar{g}^{de} \hat{\nabla}_a \hat{\nabla}_b \hat{\Omega} = 0 \quad \text{at} \quad \mathcal{I}^- \tag{4}
\]

which in turn means that \(\hat{\nabla}_a \hat{\nabla}_b \Omega = 0 \). On top of those, there is a remnant gauge condition, which allows it to be multiplied by a generic non-vanishing function of the transverse coordinates. Since the spatial slices are topologically spheres, one can use up the reparametrization invariance and write the spatial metric as conformally flat. The conformal factor can then be absorbed by a redefinition of \(t \). The fiducial metric can then be considered flat.

It is a straightforward exercise to compute the physical dreibein and spin-connection given their fiducial counterparts and the function \(t \):

\[
e^a_i = e^{-\ell^{-1} t} e^a_i \tag{5}
\]

\[
\omega^a_i = \hat{\omega}^a_k - \frac{1}{\ell} \delta^a_j \hat{e}^j_i e^k_a \tag{6}
\]

where \(e^a_i = \xi^a e^i_a \). Using local Lorentz invariance, one can write \(e^a_i = \delta^a_i \) at \(\mathcal{I}^- \). Also, given that the fiducial metric is flat at \(\mathcal{I}^- \), \(\hat{\omega}^k_i = 0 \) there and then the following component of the gauge field satisfies

\[
\begin{align*}
A^+_{a} &= A^{+a} = 0, \\
A^0_{a} &= A^0_a = 0 \tag{7}
\end{align*}
\]

and that we can choose

\[
A^0_i = \frac{i}{\ell} \tag{8}
\]
as a gauge fixing for \([11]\). As said before, we will see \([11]\) as the on-shell condition, to be imposed at \(I^-\), and \([8]\) as a gauge choice.

The variation of the the action \([11]\) gives \([12], [13], [14]\):

\[
\delta S = \frac{k}{8\pi} 3 \left\{ \int_M \text{Tr}(\delta A \wedge A) + 2 \int_M \text{Tr}(\delta A \wedge F) \right\} + \delta B
\]

where \(F = dA + A \wedge A\) and the “level” of the model is \(k = \frac{\ell}{2\pi}\). One sees that the stationary points of the action correspond to flat connections. The allowed solutions are those which can be continued to the boundary, i.e., whose boundary variation vanishes. This of course depends on the exact form of \(B\). With our conditions \([11]\) and \([8]\) above, we can see that the boundary term in \([11]\)

\[
\text{Tr}(\delta A \wedge A) = -\frac{i}{2} \delta A^0 \wedge A^0 + \delta A^- \wedge A^+ + \delta A^+ \wedge A^-
\]

vanishes identically for connections giving rise to asymptotically de Sitter spaces. At \(I^-\) we can see it directly from the conditions \([11]\). At \(I^+\) one can parallel the argument given above to find that the conditions \([11]\) hold with \(A^-\) instead of \(A^+\). This comes about because we will need to define the time function as \(t = -\ell \log \Omega^2\) in order to have \(I^+\) at \(t = \infty\). Then, by setting \(B = 0\), we make sure that only connections which give rise to asymptotically de Sitter spaces are singled out.

Considering the on-shell and gauge fixing conditions, one may ask what is the resulting action after these are enforced in \([11]\). The discussion above implies that \(A^0\) is not a dynamical variable but rather is a Lagrange multiplier. In fact, decomposing \(d = dt \frac{\partial}{\partial t} + d\) and \(A = A_t + A\), we can write the action as

\[
S = \frac{k}{8\pi} 3 \left\{ \int_M \text{Tr}(A \wedge A \wedge dt) + 2 \int_M \text{Tr}[A_t \wedge \tilde{F}] \right\} - \int_M \text{Tr}[d(\tilde{A} \wedge A_t)] \right\};
\]

the last term vanishes due to the choice of coordinates. Now seeing \(A_t\) as a Lagrange multiplier, we can integrate over it and then enforce the constraint that \(\tilde{F} = dA + A \wedge A = 0\). 0. If the spatial slices have vanishes identically for connections giving rise to asymptotically de Sitter spaces. At \(I^-\) we can see it directly from the conditions \([11]\). At \(I^+\) one can parallel the argument given above to find that the conditions \([11]\) hold with \(A^-\) instead of \(A^+\). This comes about because we will need to define the time function as \(t = -\ell \log \Omega^2\) in order to have \(I^+\) at \(t = \infty\). Then, by setting \(B = 0\), we make sure that only connections which give rise to asymptotically de Sitter spaces are singled out.

Considering the on-shell and gauge fixing conditions, one may ask what is the resulting action after these are enforced in \([11]\). The discussion above implies that \(A^0\) is not a dynamical variable but rather is a Lagrange multiplier. In fact, decomposing \(d = dt \frac{\partial}{\partial t} + d\) and \(A = A_t + A\), we can write the action as

\[
S = \frac{k}{8\pi} 3 \left\{ \int_M \text{Tr}(A \wedge A \wedge dt) + 2 \int_M \text{Tr}[A_t \wedge \tilde{F}] \right\} - \int_M \text{Tr}[d(\tilde{A} \wedge A_t)] \right\};
\]

the last term vanishes due to the choice of coordinates. Now seeing \(A_t\) as a Lagrange multiplier, we can integrate over it and then enforce the constraint that \(\tilde{F} = dA + A \wedge A = 0\). If the spatial slices have punctures, we will have to deal with holonomies of \(\mathcal{G}\). We will postpone this discussion to the next section. The on-shell condition now translates into \(A_t = -G^{-1} = i\ell^{-1}g\), meaning that we can write \(\mathcal{G} = e^{-i\ell^{-1}g(z, \bar{z})}\), with \(g\) independent of \(t\).

Changing variables in \([11]\), and using the fact that the resulting action depends only on the boundary values of \(\mathcal{G}\), one arrives at:

\[
S[g] = -\frac{k}{4\pi} 3 \left\{ \int \text{Tr}(g^{-1}\partial g^{-1}\partial g) d^2x + \frac{i}{6} \int_M \text{Tr}[(g^{-1}dg)^{\wedge 3}] \right\}
\]

where we used \(d^2x = \frac{1}{2} dz \wedge d\bar{z}\) as the measure of the boundary. One notes that \(g\) actually gives information about the spatial slices of the metric, or the fiducial metric since with it one can recover the physical metric at \(I^-\) by the conditions \([11]\) and \([8]\). It is also clear by those conditions that not all \(g\) will give rise to an acceptable metric. First and foremost, the metric on the sphere has to be conformally flat, that is to say, we have already made a choice for the Kähler structure on the spatial slices. However, by inspecting the form of \(A\) near \(I^-\),

\[
A = \frac{i}{\ell} dt \gamma_0 - e^{-i\ell^{-1}v_0} g^{-1} + e^{i\ell^{-1}v_0}
\]

we see that \(A^+\) vanishes at \(t = -\infty\) independently of \(g\) and then it only makes sense to impose the flat condition through \(A^-\). By implementing the first-class constraint on \([12]\) via the usual Lagrange multiplier, one arrives at the improved action:

\[
S_I[g, \Theta] = S[g] + \frac{k}{2\pi} 3 \int d^2 x \text{Tr} \left[\Theta \left(\partial g g^{-1} - \frac{i}{\ell} \gamma_- \right) \right]
\]

where \(\Theta = \theta \gamma_-\) and \(\theta\) is a scalar function. It is well-known that the action above has a gauge symmetry

\[
g \to h(z, \bar{z}) g, \quad \Theta \to h \Theta h^{-1} - dh h^{-1}
\]

for \(h\) in the lower triangular subgroup of \(SL(2, \mathbb{C})\). The invariance when \(h\) is a function of \(\bar{z}\) stems from the usual left-right symmetry of \([14]\). Parametrizing \(g\) by the Gauss product:

\[
g = e^{\chi} e^{-2iv_0} e^{2\gamma_+}
\]

we can write \([14]\) as

\[
S_I[g, \theta] = -\frac{k}{2\pi} 3 \int d^2 x \left[\partial \rho \partial \phi + e^{2\rho} \partial \phi \partial \chi + \theta \left(e^{2\rho} \partial \phi - \frac{i}{\ell} \right) \right]
\]

The solution of the equation of motion for \(\theta\) is then:

\[
e^{2\rho} = \frac{i}{\ell} (\partial \phi)^{-1}
\]

and one can use the gauge freedom \([14]\) to set

\[
\chi = \frac{-i \ell}{2} \frac{\partial^2 \phi}{\partial \phi}
\]

We will see later why this is a natural choice. The resulting action is then:

\[
S_I = \frac{k}{8\pi} 3 \int d^2 x \left[\partial^2 \phi \partial \phi + \left(\partial \phi \right)^2 - 2 \partial \phi \partial \phi \partial \phi \partial \phi \right]
\]

which can be seen to be equivalent to the Liouville action if we write its stress tensor, using the Nöther procedure:

\[
T = \frac{k}{4\pi} \left[\frac{\partial^2 \phi}{\partial \phi} - \frac{3}{2} \left(\frac{\partial^2 \phi}{\partial \phi} \right)^2 \right] = \frac{k}{4\pi} \{ \phi; z \}
\]
a universal characteristic of the Liouville field. In the
equation above \(\{ \varphi; z \} \) denotes the Schwarzian derivative.
This hardly comes as a surprise since (17) is reminiscent of
the natural geometrical action for a particular coad-
joint orbit of the Virasoro group (when the symmetry
group is real and compact and \(b_0 = 0 \) in the notation of
[18].) The fact that the orbit in that case is equivalent
to a highest weight representation has led to many con-
flicting arguments about the entropy of de Sitter spaces.
We will have nothing further to say about this thorny
question here.

III. THE BROWN-HENNEAUX “SYMMETRY”
AND THE MAPPING

A useful way to think about the action (12) is to con-
sider two separate actions, depending on \(g \) and \(\tilde{g} \) and
to impose the reality condition at the equations of motion.
The solutions of (12) for \(g \) can be then seen as holomor-
phic currents. The action of \(SL(2, C) \) which brings one
solution of (17) into another is:

\[
g \to e^{i \log(\partial w) \gamma_0} e^{\frac{i}{2} \partial \log(\partial w)\gamma_1 - } \tilde{g} \]

\[
z \to w(z)
\]

(22)

One can see directly from (18) that this maintains the
Kähler structure of the spacial slices at \(I^- \). Since it
amounts to a would-be “pure gauge” transformation, it
can be realized by a coordinate transformation, which
involves redefining the time function \(t \) to arrive at another
metric which asymptotes to the de Sitter metric at \(I^- \).
The current coming from the gauge-fixed \(g \) is:

\[
J_L = -\partial g g^{-1} dz = \frac{i}{\ell} \gamma_+ dz + \frac{i}{2k} L(z) \gamma_- dz
\]

(23)

So the action (22) is to transform \(L(z) \) into

\[
\tilde{L}(w) = \left(\frac{\partial w}{\partial z} \right)^{-2} \left[L(z) - \frac{k}{4} \{ w; z \} \right]
\]

(24)

We recognize above the anomalous transformation law of
the stress tensor, with central charge \(3k = \frac{2\pi}{\ell} \). One then
sees the reason for picking (18): it cancels the factor of
the current proportional to \(\gamma_0 \) and then maintains the
former on-shell condition (7).

It is also transparent from the previous discussion that,
if one is able to stick to the gauge choice (3) throughout
time evolution, the single Liouville mode found above will
give rise to a globally defined metric. For \(L(z) \) defined
on a sphere with a two single poles, these solutions have
been discussed before (14, 25) and have been found to be
the Kerr-de Sitter class. The Brown-Henneaux trans-
formation discussed above generates all such solutions
for meromorphic coordinate transformations. Even more
generically, one can create higher genus space slices in
this manner.

However, the effect of the Liouville field in the metric
is not felt until one leaves \(I^- \), and in the bulk of space-
time any metric is locally gauge equivalent to the trivial
metric. Then, if one is to assign a gauge-invariant mean-
ing to the Liouville field, one is forced to see a profile of
it as just some parametrization of the conserved charges
of the reduced system, which includes the holonomies of
the gauge field as its simple poles. Echoing the study of
Riemann surfaces, it is the uniformizing coordinate which
encodes the properties of the spatial slices. Being a co-
ordinate choice, it only fails to be a well-defined gauge
transformation because it lives naturally at the bound-
dary.

If we consider as an example the Kerr-de Sitter class,
one could have performed the same reduction as in last
section for \(I^+ \). One would then find another Liouville
profile there, which would encode the same conserved
charges. In particular, the positions of the simple poles
for both Liouville modes would be related by a global
\(SL(2, C) \) transformation. As such the Liouville profiles
are essentially equivalent, amounting just to a global
frame in which the global quantities – like mass and an-
gular momentum – are measured. This is realized in the
discussion of last section by the fact that, if one is able
to fix the gauge (3) throughout the evolution of space-
time, the gauge connection, and consequently the met-
ric, would be globally written as \(A = -dGG^{-1} \), with
g \(G = e^{-i\ell^{-1} t} g(z, \tilde{z}) \), and then the reduced action (12)
would be the same for both pieces of the boundary.

For generic configurations, the requisite that the
gauge is fixed once and for all seems excessive. Stable
causality implies only that there is a globally well-defined
time function, in fact it is equivalent to it, but it does not
imply that this time function is such that its vector field
is geodesic and everywhere normalized, which are the
hidden assumptions behind (7) and (3). Topologically,
one can see time evolution as a cobordism, and this time
function as a Morse function. The mere existence of this
Morse function then implies that the degrees and num-
ber of poles in the Liouville field, as well as their residues,
have to be conserved during time evolution. When this
happens, we will say that the Liouville profiles at \(I^- \)
and \(I^+ \) are in the same homotopic class. This is how
the intuition of separated worldlines of point particles is
imprinted in the Liouville fields. Generically, lifting this
condition would give rise to time evolutions where the
particles could join or split as time progresses, although
one would like at least to enforce conservation of total
mass and angular momentum to talk about reasonable
spaces. In fact, in this case the condition to enforce on
the space-time seems to be strong causality, for splittings/joinings which involve small enough point masses
would still respect the condition that there are no closed
time-like curves. At any rate, the point here is that the
relationship between past and future Liouville profiles is tied
to the time evolution of the system. Solutions which have
been considered so far have the property that time evo-
lution is geodesic and normalized. They correspond to
equal profiles of the Liouville field at I^- and at I^+. One can get an insight on what are these solutions in which the Liouville profiles are not equivalent but are in the same homotopic class by considering boosted sources. “Static” solutions like the Kerr-de Sitter have the property that the matter current found via the equations of motion $F = *J$ is an $sl(2,C)$-valued one-form which is zero almost everywhere, but otherwise orthogonal to e_0^a. Since J is basically defined to be the Lorentz dual of the stress energy tensor, this latter fact confirms our intuition of non-interacting point particles, or, in other words, a configuration of dust. However, if one makes a $SL(2,C)$ transformation in the i-th of those particles, $J_i \to U J_i U^{-1}$, the current may no longer be orthogonal to e_0^a, or even its transformed counterpart. This comes about because the triad depends on A and it complex conjugate, so its transformation will depend on U and its complex conjugate, whereas the matter current transforms by U alone.

Now consider the quantity $e^0 \wedge d e^0$. By some manipulation one can relate it to $e^0 \wedge * J^0$:

\[
e^0 \wedge d e^0 = e^0 \wedge dA^0 = -e^0 \wedge (e^0 \wedge \ell \wedge J^0) \]

in which we used the definition of the connection in the first and third lines and the equations of motion in the second. The fourth line is the condition of zero torsion. So $e^0 \wedge d e^0 = \frac{1}{2} e^0 \wedge (e^0 \wedge * J^0)$ and then it is zero when the matter current corresponds to a distribution of dust. As we discussed above, generically this will not be the case and this quantity will be non-zero.

The quantity $e^0 \wedge d e^0$ measures the failure of the form e^0 to be hypersurface orthogonal. By Frobenius’ theorem, this means, among other things, that the space-time does not allow a foliation in which the vector field $(e^0)^a$ is everywhere orthogonal to the hypersurfaces. The latter fact forbids us to choose the gauge (5) globally. So boosted sources solutions will not be described by a single Liouville mode, but rather both field profiles, at I^- and I^+, will be needed to reconstruct the space-time. Because asymptotically all matter behaves as dust, the gauge choice is appropriate for generic matter configurations only at I^- and I^+. Asymptotically, the description in terms of the Liouville fields found in the preceding section will be valid.

One notes that, if the dS/CFT correspondence is implemented in the same manner as in AdS spaces, the space-time information is recovered from the holographic theory via the renormalization group flow. These are first order in the scale parameter and hence are determined by the initial (UV) value of the couplings. By the de Sitter version of the UV/IR correspondence, this initial value would be naively set at either I^+ or I^-. The question that poses itself now is: how exactly is one supposed to tell the static from the boosted solutions found in the above discussion if a single Liouville field is blind to them? The aforementioned argument points to the fact that there are two sectors in the holographic theory, which are independent in the UV limit, but whose RG flow induces correlations. One could think of the two Liouville fields found above as parametrizing the (space-time) Virasoro current sector of the full quantum theory, its UV fixed point corresponding to both I^+ and I^-. The solutions considered so far, in which the gauge fixing (5) is valid globally correspond to “diagonal” states which are the tensor product of equivalent states in each sector of the holographic theory. Although the particular field representation of the asymptotic symmetries will change with different dimensions, it seems plausible to expect that these generic considerations will still be valid.

IV. THE ROLE OF COSMOLOGICAL SINGULARITIES

In the last section we showed that there are space-time solutions corresponding to different states in the sectors I^- and I^+. However, this is not how the known example of holography is implemented. In fact, in AdS/CFT the UV fixed point is obtained by a limiting process where degrees of freedom in the interior of AdS are integrated out. The limiting process effectively gives the asymptotic value of the fields near, say, I^- and then there is enough information to reconstruct the whole of space-time. This, of course, assumes that time evolution can indeed provide the form of the field in the bulk of space.

This assumption was hidden in the preceding discussion in the gauge choice (5). As we saw in the preceding section, the assumption amounts to the constraints between the past and future profiles discussed in the last session, as dictated by stable causality. Extending on what has been discussed in last section, let us consider the cases the spatial slices can undergo topology changing. We can have disassociation of punctures, as in a single puncture dividing into two or more, or even the formation of handles (21) and generation of non-connected components (21). In the case of disassociation and joining of punctures, one is naturally led to associate them with Liouville profiles with different number of poles, but with the same total residue to preserve the conserved charges. As in flat space (22), there is a danger of clashing punctures creating closed time-like curves and thus violating strong causality. We will see that, also paralleling the flat space scenario (23), there is a mass bound for these types of processes over which a cosmological singularity will be generated. One can then obtain the “big bang” scenario by a time reversal.

We can see how the classical process of cosmological collapse evolves by considering the initial value problem. The matter considered will be an arbitrary distribution of stationary dust $\rho(z, \bar{z})$. This can be seen as a distribution of punctures, arranged so that the total mass is finite. The calculation is similar to the one done for AdS (24).
As we saw in the second section, the time evolution near I^- is given by a pure contraction:

$$\nabla_a \xi_b = -\frac{1}{\ell} (g_{ab} + \xi_a \xi_b) \text{ at } I^-.$$ \hspace{1cm} (25)

So the natural Ansatz for the solution is:

$$ds^2 = -dt^2 + [a(t)]^2 h_{ab} dx^a dx^b.$$ \hspace{1cm} (26)

Where h_{ab} is a Riemannian two dimensional metric. In the language of the second section, it is the induced unphysical spatial metric. In these variables the equations of motion read:

$$8\pi G a^2 \sqrt{\rho} - \frac{1}{2} \sqrt{h} (2^R) = -\left(\frac{4}{\ell} a^2 - \dot{a}^2\right) \sqrt{h} \hspace{1cm} (27)$$

The second equation means that the left hand side of the first equation is a constant of motion. Calling $\beta = \ell^{-2} a^2 - \dot{a}^2$ and integrating the first equation over the spatial coordinates, we find:

$$\beta = \frac{\pi}{\Sigma} (\chi - 8GM) \hspace{1cm} (28)$$

where Σ is the area of the spatial slice in the unphysical metric and M is the total mass of the dust configuration. χ is the Euler-Poincaré characteristic of the spatial slices, which is 2 for the sphere. One sees that, when $4GM > 1$, β is negative. When a is given by:

$$a(t) = \sinh \left(\frac{t - t_0}{\ell}\right) \hspace{1cm} (29)$$

with t_0 depending on M. Hence the “size of the universe” vanishes at some finite global time.

This shows that there are states in the boundary theory which correspond to space-times with cosmological singularities. It is interesting to note that this bound resembles the bound of masses which corresponds to operators in the CFT with real scaling weight [3]. For fields whose mass is greater than the de Sitter mass, the natural Compton wavelength is smaller than the de Sitter length, so the dust approximation is expected to hold well at large times then since then interactions and movements will be swamped by the cosmological constant. At small distances when the pressure begins to be non-negligible, one can resort to the study of the Raychaudhuri equation to predict the appearance of the singularity. In fact, a simple calculation shows that when the energy distribution of a perfect fluid whose equation of state is $P = w\rho$ satisfies:

$$8\pi G \rho > \frac{1}{(1 - w)\ell^2} \hspace{1cm} (30)$$

the expansion parameter will diverge to $-\infty$ at finite proper time for $w < 1$. With all this in mind, one is tempted to associate operators in the CFT with complex (space-time) scaling weights to space-times with cosmological singularities [29]. Having no further description of the full quantum theory, one can only hope that the singularity is resolved there [29].

At any rate, the same considerations of last section apply here: the past (and future) Liouville mode cannot see the difference between different space-time configurations, as, for instance, those of a gas of moving particles and the dust configuration above. As in the case with punctures, details like relative velocities and local interactions are overwhelmed by the fact that distances between distinct points are growing exponentially with proper-time. The question is then how this information is encoded in the boundary theory. As in the previous section, one is tempted to propose that the full Hilbert space of the theory is more than just the modes responsible for the Virasoro currents at I^-. If the singularity is resolved, there may be a way to understand the final state as some “bounced” configuration at I^+, if the space-time picture is recovered eventually.

V. WHETHER THE CORRESPONDENCE?

One of the big puzzles about holography is that it is deeply hidden in the classical theory, but it is manifest in the working quantum theories with gravitation we have at the moment. The little we can infer about its properties is construed from extrapolations of ideas coming from the study of black holes and (A)dS (semi)-classical dynamics, like in the preceding discussion. As limited as it is, general covariance allow us to make some statements about generalities of any prospective quantum theory.

In the present case, the most curious point is that the particular quantum theory which gives rise to a de Sitter background “lives” in disjoint regions of space-time. This fact comes about because the position of the punctures at I^- and I^+ are independent. In the CFT dual language, by the state-operator correspondence, this means that the state at the I^- may not be the same as that in I^+. In fact, as argued in the last section, one would generically like to specify those two independent states in the dual theory and then ask questions about space-time behavior. This also has some echoes of the study of quantum fields in an eternal black hole background [27] and more recently in global de Sitter spaces [4], where there is a distinction between the Schwarzschild Fock space and the Kruskal Fock space. Locality tells us that the former splits into two subsets, corresponding to the visible and not visible exterior regions of the extended space-time. The vacuum of the quantum field is a pure state in the Kruskal (or Hartle-Hawking) Fock space, but expectation values of local operators in either exterior can only see the projection of the state into the corresponding Schwarzschild Fock space. Some arguments have been put forward to extend this point of view to gravity itself [28, 29]. The results presented here point to the fact that this may be even more generic, in that regions separated by a horizon, be it of a black hole or of the observable universe, are described by a theory
whose Fock space naturally decomposes into an enumer-
able set of subspaces (assuming that such description is
indeed valid in the UV fixed point). In such theory the
existence of a horizon is encoded by correlations between
the distinct subspaces, e. g. the \mathcal{I}^\pm correlators found in
[1], and locality outside the horizon is translated to the
fact that observable quantities, the “true observables” of
[2], are obtained by projection onto one particular sub-
space of the theory. Quantities which are defined in the
whole of space-time are the meta-observables of [3].

In the AdS/CFT case these subtleties could be over-
looked in simple deformations of the background since its
holographic screen is connected, for in global AdS there
is no horizon. For dS/CFT, even in the simplest case,
global de Sitter, our naiveté is exposed. In the AdS case,
even in the presence of a horizon one could consistently
truncate the full spectrum of the theory into those states
seen by the visible spatial infinity. The horizon is then
seen as an impenetrable membrane [31]. For de Sitter,
this line of reasoning leads to a paradox [32]. The discus-
sion in this paper infers that the kernel of the problem is
in the truncation, which cannot be done consistently for
generic perturbations of the global de Sitter background.
Recently, this fact has been stressed by R. Bousso et al. [33]
which tried to carry out such truncation for theories
with interacting form fields. Although such fields are
non-local excitations in the boundary CFT, and in this
sense complementary to what has been done here, both
results agree in casting doubt on the program of setting
up a quantum theory of gravity in de Sitter backgrounds
with a finite number of degrees of freedom [3].

As it is customary, there are more questions raised
than answers. The particularly hard question is to un-
derstand those CFT states corresponding to $\beta < 0$ in
[28]. Or, in other words, how to make sense of operators
with complex scaling dimension in such CFT. In dS one

\begin{thebibliography}{99}

[1] G. ’t Hooft, Dimensional Reduction in Quantum Gravity,
\texttt{gr-qc/9310026}. L. Susskind, The World as a Hologram,
J. Math. Phys. 36, 6377 (1995). \texttt{hep-th/9409087}.

[2] L. Susskind and E. Witten, The Holographic Bound and
Anti-de Sitter Space, \texttt{hep-th/9805112}.

[3] A. Strominger, The dS/CFT correspondence, JHEP
0110, 034 (2001). \texttt{hep-th/0106113}.

[4] R. Bousso, A. Maloney and A. Strominger, Conformal
Vacua and Entropy in de Sitter Space, \texttt{hep-th/0112218}.

[5] R. Bousso, A. Maloney and A. Strominger, op. cit. and
references within; M. Spradlin and A. Volovich, Vacuum
states and the S-matrix in dS/CFT, \texttt{hep-th/0112223}.

A. J. Medved, A holographic interpretation of asymptot-
ically de Sitter spacetimes, \texttt{hep-th/0112226}.

A. M. Ghezelbash, D. Ida, R. B. Mann and T. Shi-
romizu, Slicing and brane dependence of the (A)dS/CFT
correspondence, \texttt{hep-th/0201004}.

E. Halyo, Strings and the holographic description of asymptotically
de Sitter spaces, \texttt{hep-th/0201174}.

Y. S. Myung, Absorption cross section in de Sitter space,
\texttt{hep-th/0201176}.

J. W. Ho, Rotational dragging effect on statistical thermody-
namics of (2+1)-dimensional rotating de Sitter space,
\texttt{gr-qc/0201084}.

S. Nojiri and S. D. Odintsov, Asymp-
tically de Sitter dilatonic space-time, holographic
RG flow and conformal anomaly from (dilatonic)
dS/CFT correspondence, Phys. Lett. B 531, 143 (2002).
\texttt{hep-th/0201210}.

A. J. Medved, AdS holography and strings on the horizon,
\texttt{hep-th/0201215}.

S. R. Das, Thermality in de Sitter and holography,
\texttt{hep-th/0202008}.

F. Leblond, D. Marolf and R. C. Myers, Tall tales from
de Sitter space. I: Renormalization group flows,
\texttt{hep-th/0202094}.

S. Ness and G. Siopsis, dS/CFT correspondence in two dimensions,
\texttt{hep-th/0202096}.

F. Larsen, J. P. van der Schara and R. G. Leigh, de Sitter
holography and the cosmic microwave background,
JHEP 0204, (2002) 047. \texttt{hep-th/0202127}.

L. Andersson and G. J. Galloway, dS/CFT and spacetime
topology, \texttt{hep-th/0202161}.

R. Argurio, Comments on cosmological RG flows, \texttt{hep-th/0202183}.

A. J. Medved, dS-holographic C-functions with a topological, dilatonic
twist, \texttt{hep-th/0202193}.

A. M. Ghezelbash and R. B. Mann, Vortices in de Sitter spacetimes,
\texttt{hep-th/0203003}.

A. J. Medved, How not to construct an asymptotically de Sitter universe,
\texttt{hep-th/0203191}.

G. Siopsis, An AdS/dS duality for a scalar particle,
\texttt{hep-th/0203208}.

T. R. Govindarajan, R. K. Kaul and

When this manuscript was in its final phase of revision,
the work of Balasubramanian et al. [37] appeared in
which there is some overlap with the points discussed
in section III and V.

Acknowledgments

I would like to thank specially Emil Martinec and
Gliceria Carneiro da Cunha for discussions, guidance and
support during this project. I would also like to acknowl-
dge Juan Maldacena, Li-Sheng Tseng, Will McElgin and
Andrei Parnachev, whose help was precious during the
time this work was maturing.
and CFT, Nucl. Phys. B358 (1991), 600.

[37] V. Balasubramanian, J. de Boer, D. Minić, Exploring de Sitter Space and Holography, hep-th/0207245.