The extremal pentagon-chain polymers with respect to permanental sum

Tingzeng Wu1,2*, Hongge Wang1, Shanjun Zhang2 & Kai Deng3

The permanental sum of a graph G can be defined as the sum of absolute value of coefficients of permanental polynomial of G. It is closely related to stability of structure of a graph, and its computing complexity is #P-complete. Pentagon-chain polymers is an important type of organic polymers. In this paper, we determine the upper and lower bounds of permanental sum of pentagon-chain polymers, and the corresponding pentagon-chain polymers are also determined.

The permanent of an $n \times n$ real matrix $M = (m_{ij})$, with $i, j \in \{1, 2, \ldots, n\}$, is defined as

$$\text{per}(M) = \sum_{\sigma} \prod_{i=1}^{n} m_{\sigma(i)}$$

where the sum is taken over all permutations σ of $\{1, 2, \ldots, n\}$.

Let $A(G)$ be an adjacency matrix of a graph G of order n with a given vertex labeling. The permanental polynomial of G is defined as

$$\pi(G, x) = \text{per}(xI - A(G)) = \sum_{k=0}^{n} b_k(G)x^{n-k}$$

with $b_0(G) = 1$.

Earlier, Kasum et al.1 and Merris et al.2 give a graphical interpretation of the coefficients of the permanental polynomial of G using linear subgraphs: for $1 \leq k \leq n$, $b_k(G) = (-1)^k \sum_{H \in S_k(G)} 2^{c(H)}$, where $S_k(G)$ is the collection of all linear subgraphs H of order k in G, and $c(H)$ is the number of cycles in H. Recall that a linear subgraph of a graph G is termed as a subgraph whose components are cycles or single edges.

The permanental sum of G, denoted by $PS(G)$, is the sum of the absolute values of all coefficients of $\pi(G, x)$, i.e.,

$$PS(G) = \sum_{k=0}^{n} |b_k(G)| = 1 + \sum_{k=1}^{n} \sum_{H \in S_k(G)} 2^{c(H)}.$$

Background. The study of permanental polynomial of a graph in chemical literature were started by Kasum et al.1. They computed respectively permanental polynomials of paths and cycles, and zeroes of these polynomials. Cash3 investigated permanental polynomials of some chemical graphs(including benzene, o-biphenylene, coronene, C20 fullerene). And he pointed out that studying the absolute values of coefficients of permanental polynomials is of interest. However, it is difficult to compute the coefficients of permanental polynomial of a graph. Up to now, only a few about the coefficients of permanental polynomials of chemical graphs and its potential applications seems to have been published4-14. A natural problem is researching the sum of coefficients of permanental polynomials of a chemical graph, i.e., how characterize the permanental sum of a chemical graph. There exists a peculiar chemical phenomenon which closely relate to the permanental sum. For the theo-

1School of Mathematics and Statistics, Qinghai Nationalities University, Xining 810007, People’s Republic of China. 2The Department of Information Science, Kanagawa University, Hiratsuka city 2591293, Japan. 3School of Mathematics of Information Science, North Minzu University, Yinchuan 750021, People’s Republic of China. *email: mathtzwu@163.com
An edge-pentagon-chain EPC_n and a vertex-pentagon-chain VPC_n.

Figure 2. An edge-ortho-pentagon-chain EPC_n^o and an edge-meta-pentagon-chain EPC_n^m.

The resulting graphs see Fig. 2. Contracting every cut edge in VPC_n, the resulting graphs VPC_{n-1}, respectively. See Fig. 3.

Let P_n be a path with n vertices. Then

Lemma 1.1

1. Let P_n be a path with n vertices.
where
\[F(0) = 0, \quad F(1) = 1 \quad \text{and} \quad F(n) = F(n-1) + F(n-2) \]
for \(n \geq 2 \) denotes the sequence of Fibonacci numbers.

Lemma 1.2

The permanental sum of a graph satisfies the following identities:

(i) Let \(G \) and \(H \) be two connected graphs. Then

\[
PS(G \cup H) = PS(G) \cdot PS(H).
\]

(ii) Let \(e = uv \) be an edge of a graph \(G \) and \(C(e) \) the set of cycles containing \(e \). Then

\[
PS(G) = PS(G - e) + PS(G - v - u) + 2 \sum_{C_k \in C(e)} PS(G - V(C_k)).
\]

(iii) Let \(v \) be a vertex of a graph \(G \) and \(C(v) \) the set of cycles containing \(v \). Then

\[
PS(G) = PS(G - v) + \sum_{u \in N_G(v)} PS(G - v - u) + 2 \sum_{C_k \in C(v)} PS(G - V(C_k)).
\]

By Lemma 1.2, we obtain the following corollary.

Corollary 1.1

Let \(G \) be a graph and \(v \) a vertex of \(G \). Then \(PS(G - v) < PS(G) \).

Results

The bound of permanental sum of edge-pentagon-chains.

In order to prove the lemma 2.1, we give two auxiliary graphs. One is denoted by \(EPC_n^o \) obtained from \(EPC_n^m \) deleting a ortho-vertex in \(S_n \). The other is denoted by \(EPC_m^m \) obtained from \(EPC_m^m \) deleting meta-vertex in \(S_n \). The resulting graphs see Fig. 4.

Lemma 2.1

Let \(EPC_n^o \) and \(EPC_m^m \) be an edge-ortho-pentagon-chain and an edge-meta-pentagon-chain, respectively. Then

\[
PS(EPC_n^o) = \frac{194 + 137\sqrt{2}}{2} \left(8 + 5\sqrt{2} \right)^{n-2} + \frac{194 - 137\sqrt{2}}{2} \left(8 - 5\sqrt{2} \right)^{n-2},
\]

\[
PS(EPC_m^m) = \frac{640237 + 43067\sqrt{221}}{442} \left(15 + \sqrt{221} \over 2 \right)^{n-3} + \frac{640237 - 43067\sqrt{221}}{442} \left(15 - \sqrt{221} \over 2 \right)^{n-3}.
\]

Proof

By Lemma 1.2, we have

\[
PS(EPC_n^o) = 13PS(EPC_{n-1}^o) + 5PS(EPC_{n-1}^d),
\]

\[
PS(EPC_n^m) = 5PS(EPC_{n-1}^o) + 3PS(EPC_{n-1}^d).
\]

Thus,
\[
\begin{pmatrix}
PS(\text{EPC}_n^o) \\
PS(\text{EPC}_n^2)
\end{pmatrix} = \begin{pmatrix} 13 & 5 \\ 5 & 3 \end{pmatrix} \begin{pmatrix} PS(\text{EPC}_{n-1}^o) \\
PS(\text{EPC}_{n-1}^2) \end{pmatrix}.
\]

Direct computation yields \(PS(\text{EPC}_2^2) = 194\) and \(PS(\text{EPC}_3^2) = 80\). Now,
\[
PS(\text{EPC}_n^o) = 13PS(\text{EPC}_{n-1}^o) + 5PS(\text{EPC}_{n-1}^2),
\]
\[
= (13 \ 5) \begin{pmatrix} PS(\text{EPC}_{n-2}^o) \\
PS(\text{EPC}_{n-2}^2) \end{pmatrix}
\]
\[
= \ldots
\]
\[
= (13 \ 5) \begin{pmatrix} 13 & 5 \\ 5 & 3 \end{pmatrix}^{n-3} \begin{pmatrix} 194 \\
80 \end{pmatrix}.
\]

Set matrix \(M = \begin{pmatrix} 13 & 5 \\ 5 & 3 \end{pmatrix}\). Then the characteristic polynomial of \(M\) equals to \(x^2 - 16x + 14\). Solving \(x^2 - 16x + 14 = 0\), we obtain that the eigenvalues of \(M\) are \(8 + 5\sqrt{2}\) and \(8 - 5\sqrt{2}\), respectively. And the corresponding eigenvectors of these eigenvalues are \(T_1 = \begin{pmatrix} 1 \\
\sqrt{2} - 1 \end{pmatrix}\) and \(T_2 = \begin{pmatrix} -1 \\
\sqrt{2} + 1 \end{pmatrix}\).

Let \(T = \begin{pmatrix} 1 \\
\sqrt{2} - 1 \ 1 \end{pmatrix}\). Then the inverse matrix of \(T\) is \(T^{-1} = \begin{pmatrix} \sqrt{2} + 2 \\
2 - \sqrt{2} \end{pmatrix}\). According to the property of a similarity matrix, we have
\[
T^{-1}MT = \begin{pmatrix} 8 + 5\sqrt{2} & 0 \\
0 & 8 - 5\sqrt{2} \end{pmatrix}.
\]

Therefore,
\[
M = T \begin{pmatrix} 8 + 5\sqrt{2} & 0 \\
0 & 8 - 5\sqrt{2} \end{pmatrix} T^{-1}.
\]

By (1) and (2), we have
\[
PS(\text{EPC}_n^o) = (13 \ 5) \begin{pmatrix} 1 \\ \sqrt{2} - 1 \ 1 \end{pmatrix} \begin{pmatrix} 8 + 5\sqrt{2} & 0 \\
0 & 8 - 5\sqrt{2} \end{pmatrix} \begin{pmatrix} \sqrt{2} + 2 \\
2 - \sqrt{2} \end{pmatrix} \begin{pmatrix} 194 \\
80 \end{pmatrix}
\]
\[
= \begin{pmatrix} 194 + 137\sqrt{2} \\
2 \end{pmatrix} (8 + 5\sqrt{2})^{n-2} + \begin{pmatrix} 194 - 137\sqrt{2} \\
2 \end{pmatrix} (8 - 5\sqrt{2})^{n-2}.
\]

Similarly, by Lemma 1.2, we obtain
\[
PS(\text{EPC}_n^m) = 13PS(\text{EPC}_{n-1}^m) + 5PS(\text{EPC}_{n-1}^m),
\]
\[
PS(\text{EPC}_n^m) = 5PS(\text{EPC}_{n-1}^m) + 2PS(\text{EPC}_{n-1}^m).
\]

So,
\[
\begin{pmatrix} PS(\text{EPC}_n^m) \\
PS(\text{EPC}_n^m) \end{pmatrix} = \begin{pmatrix} 13 & 5 \\ 5 & 2 \end{pmatrix} \begin{pmatrix} PS(\text{EPC}_{n-1}^m) \\
PS(\text{EPC}_{n-1}^m) \end{pmatrix}.
\]

Direct computation yields \(PS(\text{EPC}_2^m) = 194\) and \(PS(\text{EPC}_3^m) = 75\). Then,
\[
PS(\text{EPC}_n^m) = 13PS(\text{EPC}_{n-1}^m) + 5PS(\text{EPC}_{n-1}^m),
\]
\[
= (13 \ 5) \begin{pmatrix} PS(\text{EPC}_{n-2}^m) \\
PS(\text{EPC}_{n-2}^m) \end{pmatrix}
\]
\[
= \ldots
\]
\[
= (13 \ 5) \begin{pmatrix} 13 & 5 \\ 5 & 2 \end{pmatrix}^{n-3} \begin{pmatrix} 194 \\
75 \end{pmatrix}.
\]

Let \(M = \begin{pmatrix} 13 & 5 \\ 5 & 2 \end{pmatrix}\) be a matrix. Then the eigenvalues of \(M\) are \(15 + \sqrt{221}\) and \(15 - \sqrt{221}\), respectively. And the corresponding eigenvectors of these eigenvalues are \(T_1 = \begin{pmatrix} 11 + \sqrt{221} \\
10 \end{pmatrix}\) and \(T_2 = \begin{pmatrix} 11 - \sqrt{221} \\
10 \end{pmatrix}\).

Let \(T = \begin{pmatrix} 11 + \sqrt{221} \\
10 \end{pmatrix} \begin{pmatrix} 11 - \sqrt{221} \\
10 \end{pmatrix}\). Then the inverse matrix of \(T\) is \(T^{-1} = \begin{pmatrix} \frac{221 + 11\sqrt{221}}{440} \\
\frac{221 - 11\sqrt{221}}{440} \end{pmatrix}\). By the property of a similarity matrix, we have
Theorem 2.2 obtained by attaching vertex u

Let \mathbf{S} be a collection of all edge-pentagon-chains EPC_{σ} and EPC_{τ}.

Figure 5. Two edge-pentagon-chains $EPC_{\sigma} \circ EPC_{\tau}$ and $EPC_{\tau} \circ EPC_{\sigma}$.

$$T^{-1}MT = \begin{pmatrix} \frac{15+\sqrt{221}}{2} & 0 \\ 0 & \frac{15-\sqrt{221}}{2} \end{pmatrix}. $$

So,

$$M = T \begin{pmatrix} \frac{15+\sqrt{221}}{2} & 0 \\ 0 & \frac{15-\sqrt{221}}{2} \end{pmatrix} T^{-1}. $$

By (3) and (4), we have

$$PS(EPC_{\tau}) = \frac{640237 + 43067\sqrt{221}}{442} \left(\frac{15 + \sqrt{221}}{2} \right)^{n-3} + \frac{640237 - 43067\sqrt{221}}{442} \left(\frac{15 - \sqrt{221}}{2} \right)^{n-3}. $$

\[\square\]

Definition 2.1 Let $EPC_{\sigma} = S_1S_2 \ldots S_s$ ($s > 1$) and $EPC_{\tau} = S'_1S'_2 \ldots S'_r$ be two edge-pentagon-chains. Suppose that $S_i = v_1v_2v_3v_4v_5$ in EPC_{σ} and u is a vertex of S'_1 in EPC_{τ}. $EPC_{\sigma} \circ EPC_{\tau}$ is an edge-pentagon-chain obtained by attaching vertex u of S'_1 in EPC_{τ} to a ortho-vertex of S_i in EPC_{σ}. $EPC_{\tau} \circ EPC_{\sigma}$ is also an edge-pentagon-chain obtained by attaching vertex u of S'_1 in EPC_{τ} to a meta-vertex of S_i in EPC_{σ}. The resulting graphs see Fig. 5. We designate the transformation from $EPC_{\sigma} \circ EPC_{\tau}$ to $EPC_{\tau} \circ EPC_{\sigma}$ as type I.

Theorem 2.1 Let $EPC_{\sigma} \circ EPC_{\tau}$ and $EPC_{\tau} \circ EPC_{\sigma}$ be two edge-pentagon-chains defined in Definition 2.1. Then

$$PS(EPC_{\tau} \circ EPC_{\sigma}) > PS(EPC_{\sigma} \circ EPC_{\tau}).$$

Proof Let $w \in V(EPC_{\sigma-1})$ be the neighbor of v_1 in EPC_{σ}. By Lemma 1.2, we obtain that

$$PS(EPC_{\tau} \circ EPC_{\sigma})$$

$$= PS(EPC_{\sigma-1})[PS(C_0)PS(EPC_{\tau}) + PS(P_1)PS(EPC_{\tau} - u)]$$

$$+ PS(EPC_{\sigma-1} - w) [PS(P_1)PS(EPC_{\tau}) + PS(P_2)PS(EPC_{\tau} - u)]$$

$$= 13PS(EPC_{\sigma-1})PS(EPC_{\tau}) + 5PS(EPC_{\sigma-1})PS(EPC_{\tau} - u)$$

$$+ 5PS(EPC_{\sigma-1} - w)PS(EPC_{\tau}) + 3PS(EPC_{\sigma-1} - w)PS(EPC_{\tau} - u)$$

and

$$PS(EPC_{\sigma} \circ EPC_{\tau})$$

$$= PS(EPC_{\sigma-1})[PS(C_0)PS(EPC_{\tau}) + PS(P_1)PS(EPC_{\tau} - u)]$$

$$+ PS(EPC_{\sigma-1} - w) [PS(P_1)PS(EPC_{\tau}) + PS(P_2)PS(EPC_{\tau} - u)]$$

$$= 13PS(EPC_{\sigma-1})PS(EPC_{\tau}) + 5PS(EPC_{\sigma-1})PS(EPC_{\tau} - u)$$

$$+ 5PS(EPC_{\sigma-1} - w)PS(EPC_{\tau}) + 2PS(EPC_{\sigma-1} - w)PS(EPC_{\tau} - u).$$

Thus $PS(EPC_{\tau} \circ EPC_{\sigma}) - PS(EPC_{\sigma} \circ EPC_{\tau}) = PS(EPC_{\sigma-1} - w)PS(EPC_{\tau} - u) > 0.$

\[\square\]

Let G_n be a collection of all edge-pentagon-chains EPC_n with n pentagons.

Theorem 2.2 Let $G \in G_n$ be an edge-pentagon-chain with $n \geq 3$ pentagons. Then
640237 + 43067\sqrt{221} \quad \frac{15 + \sqrt{221}}{2}^{n-3} + \frac{640237 - 43067\sqrt{221}}{2}^{n-3} \quad \leq PS(G)
\leq \frac{194 + 137\sqrt{2}}{2} \quad (8 + 5\sqrt{2})^{n-2} + \frac{194 - 137\sqrt{2}}{2} \quad (8 - 5\sqrt{2})^{n-2},
where the first equality holds if and only if G \equiv EPC^m_n, and the second equality holds if and only if G \equiv EPC^o_n.

Proof Let G = S_1S_2...S_n \in \mathscr{G}_n be the edge-pentagon-chain with the smallest permanental sum. We show that G = EPC^m_n. Suppose to the contrary that G \neq EPC^m_n. Then there must exist i \in (1, 2, ..., n) such that G = EPC^m_i \otimes EPC_n\setminus_i. By Theorem 2.1, there exists G' = EPC^m_i \otimes EPC_n\setminus_{i+1} such that PS(G') < PS(G), which contradicts the hypothesis G attains the minimum permanental sum. Thus, G = EPC^m_n.

Similarly, let G = S_1S_2...S_n \in \mathscr{G}_n be the edge-pentagon-chain with the largest permanental sum. The following we prove that G = EPC^o_n. Suppose to the contrary that G \neq EPC^o_n. Then there must exist i \in (1, 2, ..., n) such that G = EPC^o_i \otimes EPC_n\setminus_i. By Theorem 2.1, there exists G' = EPC^o_i \otimes EPC_n\setminus_{i+1} such that PS(G') > PS(G), which contradicts the hypothesis G attains the maximum permanental sum. Thus, G = EPC^o_n.

By Lemma 2.1 and argument as above, direct yields Theorem 2.2.

The bound of permanental sum of vertex-pentagon-chains. We first present two auxiliary graphs. One is denoted by VPC^o_n obtained from VPC^m_n deleting a ortho-vertex in S_n. The other is denoted by VPC^m_n obtained from VPC^m_n deleting meta-vertex in S_n. The resulting graphs see Fig. 6.

Lemma 2.2 Let VPC^o_n and VPC^m_n be a vertex-meta-pentagon-chain and a vertex-orth-pentagon-chain, respectively. Then
\[
PS(VPC^o_n) = \frac{1575 + 157\sqrt{105}}{30} \quad \left(7 + \sqrt{105}\right)\quad n-2 + \frac{1575 - 157\sqrt{105}}{30} \quad \left(7 - \sqrt{105}\right)\quad n-2,
PS(VPC^m_n) = \frac{14501 + 3517\sqrt{17}}{34} \quad \left(4 + \sqrt{17}\right)\quad n-3 + \frac{14501 - 3517\sqrt{17}}{34} \quad \left(4 - \sqrt{17}\right)\quad n-3.
\]

Proof By Lemma 1.2, we have
\[
PS(VPC^o_n) = 5PS(VPC^o_{n-1}) + 8PS(VPC^o_{n-1}),
PS(VPC^o_n) = 3PS(VPC^o_{n-1}) + 2PS(VPC^o_{n-1}).
\]

Thus,
\[
\left(\frac{PS(VPC^o_n)}{PS(VPC^o_n)}\right) = \begin{pmatrix} 5 & 8 \\ 3 & 2 \end{pmatrix} \quad \left(\frac{PS(VPC^o_{n-1})}{PS(VPC^o_{n-2})}\right).
\]

Direct computation yields PS(VPC^o_2) = 105 and PS(VPC^o_3) = 49. Now,
\[
PS(VPC^o_n) = 5PS(VPC^o_{n-1}) + 8PS(VPC^o_{n-2}),
= 5 \cdot 8 \quad \begin{pmatrix} 5 & 8 \\ 3 & 2 \end{pmatrix} \quad \left(\frac{PS(VPC^o_{n-2})}{PS(VPC^o_{n-3})}\right)
= \cdots
= 5 \cdot 8 \quad \begin{pmatrix} 5 & 8 \\ 3 & 2 \end{pmatrix} \quad n-3 \quad \begin{pmatrix} 105 \\ 49 \end{pmatrix}.
\]

Set matrix \(M = \begin{pmatrix} 5 & 8 \\ 3 & 2 \end{pmatrix} \). Then the eigenvalues of M are \(\frac{7+\sqrt{105}}{2} \) and \(\frac{7-\sqrt{105}}{2} \), respectively. And the corresponding eigenvectors of these eigenvalues are \(T_1 = \left(\frac{16}{\sqrt{105} - 3} \right) \) and \(T_2 = \left(\frac{-16}{\sqrt{105} + 3} \right) \).
Let $T = \left(\begin{array}{cc} 16 & -16 \\ \sqrt{105} - 3 & \sqrt{105} + 3 \end{array}\right)$. Then the inverse matrix of T is $T^{-1} = \left(\begin{array}{cc} \sqrt{105} + 36 & -\sqrt{105} \\ 1120 & \sqrt{105} + 32 \end{array}\right)$. According to the property of a similarity matrix, we have

$$T^{-1}MT = \left(\begin{array}{cc} \frac{7 + \sqrt{105}}{2} & 0 \\ 0 & \frac{7 - \sqrt{105}}{2} \end{array}\right).$$

So,

$$M = T \left(\begin{array}{cc} \frac{7 + \sqrt{105}}{2} & 0 \\ 0 & \frac{7 - \sqrt{105}}{2} \end{array}\right) T^{-1}.$$

By (5) and (6), we have

$$PS(VPC_s^m) = 1575 + 157 \sqrt{105} \left(\frac{7 + \sqrt{105}}{2}\right)^{n-2} + 1575 - 157 \sqrt{105} \left(\frac{7 - \sqrt{105}}{2}\right)^{n-2}.$$

Similarly, by Lemma 1.2, we obtain

$$PS(VPC_s^m) = 5PS(VPC_{s-1}^m) + 8PS(VPC_{s-2}^m),$$

$$PS(VPC_{s-1}^m) = 2PS(VPC_{s-1}^m) + 3PS(VPC_{s-1}^m).$$

Direct computation yields $PS(VPC_2^m) = 105$ and $PS(VPC_3^m) = 41$. Then

$$PS(VPC_n^m) = 5PS(VPC_{n-1}^m) + 8PS(VPC_{n-2}^m),$$

$$= (5, 8) \left(\begin{array}{cc} 5 & 8 \\ 2 & 3 \end{array}\right) \left(\begin{array}{cc} PS(VPC_{n-2}^m) \\ PS(VPC_{n-3}^m) \end{array}\right),$$

$$= \ldots$$

$$= (5, 8) \left(\begin{array}{cc} 5 & 8 \\ 2 & 3 \end{array}\right)^{n-3} \left(\begin{array}{c} 105 \\ 41 \end{array}\right).$$

Let $M = \left(\begin{array}{cc} 5 & 8 \\ 2 & 3 \end{array}\right)$ be a matrix. Then the eigenvalues of M are $4 + \sqrt{17}$ and $4 - \sqrt{17}$, respectively. And the corresponding eigenvectors of these eigenvalues are $T_1 = \left(\begin{array}{c} 1 + \sqrt{17} \\ 2 \end{array}\right)$ and $T_2 = \left(\begin{array}{c} 1 - \sqrt{17} \\ 2 \end{array}\right)$.

Let $T = \left(\begin{array}{cc} 1 + \sqrt{17} & 1 - \sqrt{17} \\ 2 & 2 \end{array}\right)$. Then the inverse matrix of T is $T^{-1} = \left(\begin{array}{cc} \frac{\sqrt{17}}{34} & \frac{17 - \sqrt{17}}{34} \\ \frac{-\sqrt{17}}{34} & \frac{17 + \sqrt{17}}{34} \end{array}\right)$. By the property of a similarity matrix, we have

$$T^{-1}MT = \left(\begin{array}{cc} 4 + \sqrt{17} & 0 \\ 0 & 4 - \sqrt{17} \end{array}\right).$$

Therefore,

$$M = T \left(\begin{array}{cc} 4 + \sqrt{17} & 0 \\ 0 & 4 - \sqrt{17} \end{array}\right) T^{-1}.$$
Theorem 2.3 Let $VPC_t \otimes VPC_t$ and $VPC_t \otimes VPC_t$ be two vertex-pentagon-chains defined in Definition 2.2. Then

$$\text{PS}(VPC_t \otimes VPC_t) > \text{PS}(VPC_t \otimes VPC_t).$$

Proof Let $w_1, w_2 \in V(S_i)$ be two neighbors of u in VPC_t. By Lemma 1.2, we obtain that

$$\text{PS}(VPC_t \otimes VPC_t) = \text{PS}(VPC_t - v_1)\text{PS}(VPC_t - u) + \text{PS}(VPC_t - v_2)\text{PS}(VPC_t - u - v_1)$$

and

$$\text{PS}(VPC_t \otimes VPC_t) = \text{PS}(VPC_t - v_1)\text{PS}(VPC_t - u) + \text{PS}(VPC_t - v_2)\text{PS}(VPC_t - v_1 + \text{PS}(VPC_t - v_3)\text{PS}(VPC_t - u)$$

By Corollary 1.1 and argument as above, we have

$$\text{PS}(VPC_t \otimes VPC_t) - \text{PS}(VPC_t \otimes VPC_t)$$

Let G_n be a set of consisting all VPC_n with n pentagons.

Theorem 2.4 Let $G \in G_n$ be a vertex-pentagon-chain with n pentagons. Then

$$\frac{14501 + 35\sqrt{17}}{34} \left(4 + \sqrt{17}\right)^{n-3} + \frac{14501 - 35\sqrt{17}}{34} \left(4 - \sqrt{17}\right)^{n-3} \leq \text{PS}(G)$$

$$\leq \frac{1575 + 15\sqrt{105}}{2} \left(\frac{105 + 7}{2}\right)^{n-2} + \frac{1575 - 15\sqrt{105}}{2} \left(\frac{105 - 7}{2}\right)^{n-2},$$

where the left equality holds if and only if $G \cong VPC_n^o$, and the right equality holds if and only if $G \cong VPC_n^e$

Proof Let $G = S_1S_2 \ldots S_n \in G_n$ be the vertex-pentagon-chain with the smallest permanental sum. We show that $G = VPC_n^o$. Suppose to the contrary that $G \neq VPC_n^o$. Then there must exist $i \in (1, 2, \ldots, n)$ such that
G = VPC_i (VPC_i o VPC_{m-i}). By Theorem 2.3, there exists G' = VPC_i (VPC_i o VPC_{m-i}) such that PS(G') < PS(G), which contradicts the hypothesis G attains the minimum permanent sum. Thus, G = VPC_m.

Similarly, let G = S_i S_2 ... S_n ∈ ℓ G be the vertex-pentagon-chain with the largest permanent sum. The following we prove that G = VPC_n. Suppose to the contrary that G ≠ VPC_n. Then there must exist i ∈ (1, 2, ..., n) such that G = VPC_i (VPC_i o VPC_{m-i}). By Theorem 2.1, there exists G' = VPC_i (VPC_i o VPC_{m-i}) such that PS(G') > PS(G), which contradicts the hypothesis G attains the maximum permanent sum. Thus, G = VPC_m.

By Lemma 2.2 and argument as above, it is straightforward to obtain Theorem 2.4.

Discussions

Determining extremal value is an important problem in scientific research. In this paper, we characterize the tight bound of permanent sums of all edge-pentagon-chains and vertex-pentagon-chains, respectively. And the corresponding graphs are also determined. For an edge-pentagon-chain(resp. vertex-pentagon-chain), using the computing method in Lemma 2.1 (resp. Lemma 2.2) can compute the permanent sum of any edge-pentagon-chain(resp. vertex-pentagon-chain). For every organic polymers, we always find a graph model corresponding it. Thus, the permanent sum of an organic polymers can be computed by the formulas in Lemma 1.2. C01(D_{56}) is captured and its permanent sum achieves the minimum among all C_{56}. Is the phenomenon a coincidence? Does the phenomenon exist for other chemical molecular? These are very interesting problems. However, we cannot answer them. Our motivation is to determine the extremal graphs with respect to permanent sum for some type chemical graphs in this paper. In the future, we will find the answers of the problem as above.

Received: 14 June 2020; Accepted: 30 September 2020
Published online: 15 October 2020

References

1. Kasum, D., Trinajstić, N. & Gutman, I. Chemical graph theory. III. On permanent polynomial. Croat. Chem. Acta. 54, 321–328 (1981).
2. Merris, R., Rebman, K. R. & Watkins, W. Permanent polynomials of graphs. Linear Algebra Appl. 38, 273–288 (1981).
3. Cash, G. G. The permanental polynomial. J. Chem. Inf. Comput. Sci. 40, 1203–1206 (2000).
4. Cash, G. G. Permanental polynomials of smaller fullerenes. J. Chem. Inf. Comput. Sci. 40, 1207–1209 (2000).
5. Chen, R. A note on the relations between the permanent and characteristic polynomials of coronoid hydrocarbons. MATCH Commun. Math. Comput. Chem. 51, 137–148 (2004).
6. Chou, Q., Liang, H. & Bai, F. Remarks on the relations between the permanent and characteristic polynomials of fullerenes. MATCH Commun. Math. Comput. Chem. 66, 743–750 (2011).
7. Dehmer, M. et al. Highly unique network descriptors based on the roots of the permanent polynomial. Inf. Sci. 408, 176–181 (2017).
8. Gutman, I. & Cash, G. G. Relations between the permanent and characteristic polynomials of fullerene and benzenoid hydrocarbons. MATCH Commun. Math. Comput. Chem. 45, 55–70 (2002).
9. Liang, H., Tong, H. & Bai, F. Computing the permanent polynomial of C_{60} in parallel. MATCH Commun. Math. Comput. Chem. 60, 349–358 (2008).
10. Shi, Y., Dehmer, M., Li, X. & Gutman, I. Graph Polynomials (CRC Press, Boca Raton, 2016).
11. Wu, T. & Lai, H. On the permanent nullity and matching number of graphs. Linear Multilinear Algebra 66, 516–524 (2018).
12. Yan, W. & Zhang, F. On the permanent polynomial of some graphs. J. Math. Chem. 35, 175–188 (2004).
13. Xu, G. & Qu, H. The coefficients of the innamnal polynomial. Appl. Math. Comput. 339, 38–44 (2018).
14. Zhang, H. & Li, W. Computing the permanent polynomials of bipartite graphs by Pfaffian orientation. Discrete Appl. Math. 160, 2069–2074 (2012).
15. Xie, S. et al. Capturing the labile Fullerene[50] as C_{50}C_{10}. Science 304, 699 (2004).
16. Tong, H., Liang, H. & Bai, F. Permanent Polynomials of the Larger Fullerenes. MATCH Commun. Math. Comput. Chem. 56, 141–152 (2006).
17. Wu, T. & So, W. Unicyclic graphs with second largest and second smallest permanent sums. Appl. Math. Comput. 351, 168–175 (2019).
18. Chou, Q., Liang, H. & Bai, F. Computing the Permanental Polynomial of the High Level Fullerene C_{70} with High Precision. MATCH Commun. Math. Comput. Chem. 73, 327–336 (2015).
19. Li, W., Qin, Z. & Zhang, H. Extremal hexagonal chains with respect to the coefficients sum of the permanental polynomial. Appl. Math. Comput. 291, 30–38 (2016).
20. Li, S. & Wei, X. Extremal octagonal chains with respect to the coefficients sum of the permanental polynomial. Appl. Math. Comput. 328, 45–57 (2018).
21. Wu, T. & Lai, H. On the permanent sum of graphs. Appl. Math. Comput. 331, 334–340 (2018).
22. Li, W., Qin, Z. & Wang, Y. Enumeration of permanent sums of lattice. Appl. Math. Comput. 370, 124914 (2020).
23. Wu, T. & Li, H. The extremal permanent sum for a quasi-tree graph. Complexity 2019, 4387650 (2019).
24. Wu, T., Ren, S. & Das, K. Some extremal graphs with respect to permanent sum. Bull. Malays. Math. Sci. Soc. 42, 2947–2961 (2019).
25. Wu, T. & Das, K. On the permanent sum of bicyclic graphs. Comput. Appl. Math. 39, 72 (2020).
26. Hosoya, H. Topological index, a newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons. Bull. Chem. Soc. Jpn. 44, 2332–2339 (1971).
27. Dhoot, A. S., Wang, G. M., Moses, D. & Heeger, A. J. Voltage-induced metal-insulator transition in polythiophene field-effect transistors. Phys. Rev. Lett. 86, 246403 (2001).
28. Grayson, A. C. R. et al. Multi-pulse drug delivery from a resorbable polymeric microchip device. Nat. Mater. 2, 767–772 (2003).
29. Gulacst, Z. Exact ground states of correlated on pentagon chains. Int. J. Mod. Phys. B 27, 1330009 (2013).
30. van der Hoest, J. W., Bobbert, P. A. & Michels, M. A. J. A initio calculation of the electronic and optical excitations in polythiophene: effects of intra- and interchain screening. Phys. Rev. Lett. 83, 4413 (1999).
31. Tanase, C., Meijer, E. J., Blom, P. W. M. & de Leeuw, D. M. Unification of the hole transport in polymeric field-effect transistors and light-emitting diodes. Phys. Rev. Lett. 91, 216601 (2003).
32. Nascimento, O. R. et al. Magnetic behavior of poly(3-methylthiophene): Metamagnetism and room-temperature weak ferromagnetism. Phys. Rev. B 67, 144422 (2003).
33. Gulácsi, Z., Kampf, A. & Vollhardt, D. Route to ferromagnetism in organic polymers. Phys. Rev. Lett. 105, 266403 (2010).
34. Carrasco, J. et al. A one-dimensional ice structure built from pentagons. Nat. Mater. 8, 427–431 (2009).
35. Gulácsi, M., Kovács, G. & Gulácsi, Z. Exact ferromagnetic ground state of pentagon chains. Philos. Mag. Lett. 94, 269–277 (2014).

Acknowledgements
This research is supported by the National Natural Science Foundation of China (No. 11761056), the Natural Science Foundation of Qinghai Province (No. 2020-ZJ-920), the Ministry of Education Chunhui Project (No. Z2017047), and the Scientific Research Innovation Team in Qinghai Nationalities University.

Author contributions
Wrote the paper: T.W., S.Z. Did the analysis: T.W., H.W., S.Z., and K.D. All authors have read and approved the final manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to T.W.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020