Modulation of probe signal in coherent phonon detection revisited: Analytical and first-principles computational analyses

Atsushi Yamada and Kazuhiro Yabana

Center for Computational Sciences, University of Tsukuba,
1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan

(Dated: April 21, 2020)

Modulation of probe signal in pump-probe measurements of coherent phonons in dielectrics, with and without spectral resolution, are investigated theoretically taking diamond as an example. Analytical investigation as well as first-principles calculations based on time-dependent density functional theory is utilized to clarify the mechanism of the modulation of the probe signals. Boundary and bulk effects are investigated systematically, putting emphasis on the phase relation between the modulation and the atomic motion of the coherent phonon. They are summarized as follows: Modulation by the boundary effect is in phase with the coherent phonon amplitude, while that by the bulk effect shows \(\pi/2 \) phase difference. Strong frequency dependence appears in the modulation by the bulk effect, while no frequency dependence by the boundary effect. First-principles calculations support the reliability of the analytical result.

PACS numbers: xxxxxxx

I. INTRODUCTION

Coherent phonon generation is commonly observed when an intense and ultrashort light pulse irradiates on a surface of a bulk material. It is usually measured using a pump-probe method in the following way. A strong pump pulse generates the vibrational motion of atoms in the medium that has a coherence in space and time. A weak probe pulse is then used to detect the coherent phonon through a measurement of the modulation of the optical response induced by the atomic displacements. Mechanisms for the generation of coherent phonons in simple crystalline solids have been extensively discussed since the middle of ‘80 in both theoretical and experimental perspectives.

Recent researches have been extending to further manipulations by, for example, using multi-pump pulses to control the phonon amplitude, using stronger pulses to give rise a large amplitude oscillation that may possibly realize a photoinduced phase transition. Investigations have also been extended to systems other than bulk materials such as graphene and two-dimensional materials, and solids composed of biological molecules.

In this paper, we devote ourselves to theoretical investigations of the probe stage of pump-probe measurements of coherent phonons in transparent materials. For the generation of coherent phonons in transparent materials, an impulsive stimulated Raman scattering (ISRS) mechanism has been widely accepted. In this mechanism, the pump pulse brings virtual electronic excitations in the medium during the irradiation that causes the impulsive force acting on atoms. In the probe stage, modulations of the reflectivity or the transmittivity are usually measured and analyzed using a simple and intuitive formula,

\[
\frac{\Delta R}{R} \propto \frac{\partial R}{\partial n} \frac{\partial n}{\partial Q} Q(t),
\]

(1)

where \(n \) is the index of refraction and \(Q \) is the phonon amplitude. It can be derived assuming that the modulation takes place at the surface of the medium. Using this formula, the modulation is proportional to the phonon amplitude. We call this mechanism of the modulation the boundary effect below. In the probe state, the significance of the bulk effect has also been discussed immediately after the observation of the coherent phonon generation by the ISRS mechanism. It has been pointed out that it shows a phase shift of \(\pi/2 \) with respect to the phonon oscillation, that is, the modulation is maximum when the phonon amplitude is zero. However, the bulk effect has not been observed much since the effect is suppressed by phase mismatch in practical systems.

In measurements of modulations of the probe signal, spectrally resolved signals have also been reported. In these measurements, it has been reported that the measured spectra show a phase difference of \(\pi \) between Stokes and anti-Stokes frequency components that correspond to above and below the central frequency of the probe pulse, respectively. In Ref. [3], it was clearly discussed that the phase difference can be explained as the bulk effect mentioned above. In the works afterwards, however, the bulk effect was not discussed. In Ref. [10], instead, it has been argued that the quadratic dispersion of the Raman tensor is responsible for the modulation. At present, we consider that it is important to organize the effects that appear in the probe stage of coherent phonon measurements, the boundary and the bulk effects and signals with and without spectral resolution.

In this paper, we will investigate the modulation of the probe signal employing two approaches. We first discuss an analytic treatment that has been developed previously. Starting with a propagation equation that describes the probe process of the coherent phonon, an approximate analytic solution is constructed. Using the solution, analytic formula for the modulation of the reflection and transmission rates are constructed, separating the boundary and the bulk effects, with and without
II. ANALYTICAL CONSIDERATION

A. Setup of the system

We consider a pump-probe measurement of coherent phonon generation in diamond and focus on the probe stage. We set the coordinate system such that [100] direction of the cubic diamond crystal structure coincides with the z-axis. The surface of the diamond locates at the x = 0 plane, a medium in x > 0 and a vacuum in x < 0 regions. We set [010] direction parallel to y-axis, and [001] to z-axis.

The coherent phonon is assumed to be generated by a pump pulse in the ISRS mechanism as described below. The pump pulse is linearly polarized in [011] direction, and propagates along the [100] direction. The duration of the pulse is much shorter than the period of the phonon. We express the atomic displacement at the position x as

$$\Delta R^\pm \propto \pm (Q(x, t), 0, 0),$$

where the sign ± indicates that there are two possible directions of the atomic displacements in the optical phonon. The phonon displacement Q(x, t) is given by

$$Q(x, t) = \theta(x) q \left(t - \frac{n}{c} x \right),$$

where the step function \(\theta(x) \) is introduced to indicate the spatial region of the medium. The function q(t) describes the phonon amplitude at the surface x = 0. We assume a sinusoidal form,

$$q(t) = q_0 \sin(\Omega t),$$

with the phonon amplitude \(q_0 \) and the frequency of the optical phonon \(\Omega \). We ignore the damping of the coherent phonon for simplicity.

The coherent phonon induces anisotropy in the refractive index of the diamond in which the optical axes are given by [011] and [011] directions. The anisotropy is measured in time domain using the probe pulse whose duration is much shorter than the period of the phonon. As the probe process, we consider the electro-optic(eo) sampling method that has often been used to detect the signal of the coherent phonons. In the method, the probe pulse is linearly polarized along the [010] direction that is 45° to the polarization direction of the pump pulse ([011] direction). The Raman scattering wave polarized in [001] direction is then induced by the interaction between the incident probe pulse and the coherent phonon. The probe signal is then decomposed into the parallel ([011]) and the perpendicular ([011]) components with respect to the direction of the pump polarization. The difference in the modulations that are recorded in the two components provides the information on the coherent phonon.

We investigate the modulation of the probe signal classifying into four cases: for reflection and transmission signals with and without spectral resolution. For the reflected and the transmitted probe pulses, we introduce the frequency-resolved fluences, \(F^{(r)}_{|| \perp}(\omega; \delta) \), and \(F^{(t)}_{|| \perp}(\omega; \delta) \), respectively, where \(||, \perp \) indicate parallel and perpendicular components, \(\omega \) is the frequency of the probe pulse and \(\delta \) specifies the delay time between the pump and the probe pulses. The reflected and transmitted intensities in the absence of the coherent phonon are denoted as \(F^{(r)}_0(\omega) \) and \(F^{(t)}_0(\omega) \), respectively. The subscript 0 is used also for other quantities to denote the absence of the coherent phonon.

The spectrally-resolved modulation of the reflectance is defined by

$$\frac{\Delta R^{|| \perp}(\omega; \delta)}{R_0(\omega)} = \frac{\Delta F^{(r)}_{|| \perp}(\omega; \delta)}{F^{(r)}_0(\omega)}$$

(5)
where $\Delta R_{||\perp}$ and $\Delta F_{||\perp}$ indicate the difference from those without the coherent phonon, that is, $\Delta R_{||\perp} = R_{||\perp} - R_0$ and $\Delta F_{||\perp} = F_{||\perp} - F_0$. We also introduce a modulation without spectral resolution,

$$\frac{\Delta R_{||\perp}(\delta)}{R_0} = \int d\omega F_{||\perp}^{(r)}(\omega; \delta) / \int d\omega F_{0}^{(r)}(\omega).$$

The signal of the co-sampling is then given by

$$\Delta R_{co}(\delta) / R_0 = (\Delta R_{\perp}(\delta) - \Delta R_{||}(\delta)) / R_0.$$ (7)

We introduce similar quantities for the transmission.

B. Propagation equation

In order to describe the modulation of the probe pulse, we start from the one-dimensional equation for light propagation,

$$\left(\frac{\partial^2}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \right) E(x, t) = \theta(x) \frac{4\pi}{c^2} P(x, t)$$

where $E(x, t)$ and $P(x, t)$ are the electric field of the probe pulse and the induced polarization at position x and at time t. The step function $\theta(x)$ indicates that the medium is in $x > 0$ region. For the polarization, we assume a linear and instantaneous relation to the electric field as follows,

$$\left(\begin{array}{c} P_x \\ P_y \\ P_z \end{array} \right) = \chi \left(\begin{array}{c} E_x \\ E_y \\ E_z \end{array} \right) + \frac{\partial \chi_{yz}}{\partial Q} \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right) \left(\begin{array}{c} E_x \\ E_y \\ E_z \end{array} \right),$$

where χ is the linear isotropic susceptibility at the equilibrium atomic configuration, and $\partial \chi_{yz} / \partial Q$ is the coefficient of the Raman tensor. We denote $\partial \chi_{yz} / \partial Q$ below to simplify the formula. We ignore any retardation effects in the analyses in the following development. It is equivalent to ignoring the frequency-dependence of χ and χ_R in the frequency representation.

Equation (8) can be decoupled by introducing parallel and perpendicular components of the electric field,

$$E_{||\perp} = \frac{1}{\sqrt{2}} (E_y \pm E_z),$$

The propagation equations for the $E_{||}$ and E_{\perp} are given by,

$$\frac{\partial^2}{\partial x^2} E_{||\perp} - \frac{n(x)}{c^2} \frac{\partial^2}{\partial t^2} E_{||\perp} = \pm \frac{4\pi \chi_R}{c^2} \frac{\partial^2}{\partial t^2} [QE_{||\perp}],$$

where the positive sign (+) for $E_{||}$ and the negative sign (−) for E_{\perp} in the right hand side. The index of refraction $n(x)$ is given by

$$n(x) = \left\{ \begin{array}{ll} 1 & (x < 0) \\ n & (x > 0) \end{array} \right.$$ (12)

where n is given by $n = \sqrt{1 + 4\pi \chi}$. In the following, we treat the modulation of the susceptibility caused by the coherent phonon, the right hand side of Eq. (11), as a perturbation. First we construct the unperturbed solution ignoring the right hand side of Eq. (11). We express the time profile of the incident electric field as $e^{(i)}(t)$ which is a pulsed field centered at $t = 0$. The unperturbed solution which we denote as $E_0(x, t)$ is given as follows,

$$E_0(x, t) = \left\{ \begin{array}{ll} e^{(i)}((t-\delta - \frac{x}{v}) - \frac{n-1}{n+1} e^{(i)}((t-\delta + \frac{x}{v})) & (x < 0) \\ \frac{2}{n-1} e^{(i)}((t-\delta - \frac{x}{v} c)) & (x > 0) \end{array} \right.$$ (13)

where the center of the incident pulse, $e^{(i)}((t-\delta - x/c)$, is set to arrive at the surface $x = 0$ at time $t = \delta$.

We denote the electric field including the perturbed field generated by the coherent phonon as

$$E_{||\perp}(x, t) = E_0(x, t) + \delta E_{||\perp}(x, t).$$

The perturbed fields, $\delta E_{||\perp}(x, t)$, satisfy

$$\frac{\partial^2}{\partial x^2} \delta E_{||\perp} - \frac{n(x)}{c^2} \frac{\partial^2}{\partial t^2} \delta E_{||\perp} = \pm \frac{4\pi \chi_R}{c^2} \frac{\partial^2}{\partial t^2} [QE_0].$$

As is easily verified, the solution of this equation is given by

$$\delta E_{||\perp}(x, t) = \left\{ \begin{array}{ll} + \frac{4\pi \chi_R}{n(n+1)} q(t + \frac{x}{v}) e^{(i)}((t + \frac{x}{v} - \delta) & (x < 0) \\ + \frac{4\pi \chi_R}{n(n+1)} \left[1 + \frac{(n+1)x}{c^2 v} \right] q(t - \frac{x}{v}) e^{(i)}((t - \frac{x}{v} - \delta)) & (x > 0) \end{array} \right.$$ (16)

We note that the transmitted wave includes the stimulated Raman wave whose amplitude increases linearly with the propagation distance x.

C. Modulation effects

We evaluate the modulation of the reflectivity in the vacuum region, $x < 0$, and the modulation of the transmittivity in the medium region, $x > 0$. To evaluate the fluence of the pulse, we utilize the Poynting vector $S(x, t)$ that is given in terms of the electric and the magnetic fields by

$$S(x, t) = \frac{c}{4\pi} E(x, t) H(x, t).$$

The fluence of the pulsed light is given as the time integral of the Poynting vector,

$$F(x) = \int dt S(x, t).$$

To analyze the frequency component of the fluence, we introduce the spectral decomposition of the fluence as

$$F(x) = \int_0^\infty d\omega F(x, \omega).$$
\[F(x, \omega) = \frac{c}{4\pi^2} \text{Re} [E(x, \omega) H^*(x, \omega)], \tag{20} \]

where \(E(x, \omega) \) and \(H(x, \omega) \) are the Fourier transforms of \(E(x, t) \) and \(H(x, t) \), respectively.

We first consider the reflectivity and transmittivity in the absence of the coherent phonon and confirm that we obtain well-known results. The fluences for the incident, reflected, and transmitted waves that are resolved in frequency, \(F_0^{(i)}(\omega) \), \(F_0^{(r)}(\omega) \), \(F_0^{(t)}(\omega) \), respectively, are given by

\[F_0^{(i)}(\omega) = \frac{c}{4\pi^2} |e^{(i)}(\omega)|^2, \tag{21} \]
\[F_0^{(r)}(\omega) = \frac{c}{4\pi^2} \left(\frac{n-1}{n+1} \right)^2 |e^{(i)}(\omega)|^2, \tag{22} \]
\[F_0^{(t)}(\omega) = \frac{c}{4\pi^2} \frac{4n}{(n+1)^2} |e^{(i)}(\omega)|^2, \tag{23} \]

where \(e^{(i)}(\omega) \) is the Fourier transformation of the incident pulse \(e^{(i)}(t) \). The sign of \(F_0^{(r)}(\omega) \) is defined as positive for the backward direction from the material region. The frequency-resolved reflectivity and transmittivity are obtained as

\[R_0(\omega) = \frac{F_0^{(r)}(\omega)}{F_0^{(i)}(\omega)} = \left(\frac{n-1}{n+1} \right)^2, \tag{24} \]
\[T_0(\omega) = \frac{F_0^{(t)}(\omega)}{F_0^{(i)}(\omega)} = \frac{4n}{(n+1)^2}. \tag{25} \]

We note that the reflectivity and transmittivity show no frequency dependence if we ignore the frequency dependence in the index of refraction.

We next move to the perturbative contributions generated by the coherent phonon. We calculate them by Eq. (20) using the electric field of Eq. (16) and corresponding magnetic field. The modulation in the fluence of reflected wave is calculated as

\[\delta F^{(r)}_{0,\perp}(\omega) = \pm \frac{c \chi_R}{\pi n(n+1)^3} q_0 \text{Im} W(\omega, \delta), \tag{26} \]

where \(W(\omega, \delta) \) is introduced by

\[W(\omega, \delta) = e^{(i)\ast}(\omega) \left\{ e^{i\Omega t} e^{(i)}(\omega + \Omega) - e^{-i\Omega t} e^{(i)}(\omega - \Omega) \right\}. \tag{27} \]

From this result, the modulation of the frequency-resolved reflectivity is calculated as

\[\Delta R_{0,\perp}(\omega, \delta) \approx \pm \frac{4\pi \chi_R q_0}{n(n^2 - 1)} |e^{(i)}(\omega)|^2 \left[\frac{\text{Im} W(\omega, \delta)}{n^2(n+1)} \right]. \tag{28} \]

The modulation of the reflectivity without the frequency resolution is given by

\[\frac{\Delta R_{0}(\delta)}{R_0} = \pm \frac{4\pi \chi_R (n-1)}{n(n^2 - 1)} \frac{\text{Im} W(\omega, \delta)}{n(n+1)} \right] |e^{(i)}(\omega)|^2 \left[\frac{\text{Im} W(\omega, \delta)}{n^2(n+1)} \right]. \tag{29} \]

Assuming that the probe pulse is much shorter than the period of the coherent phonon, \(2\pi/\Omega \), the equation is approximated to simpler form,

\[\frac{\Delta R_{0}(\delta)}{R_0} \approx \pm \frac{8\pi \chi_R q_0}{n(n^2 - 1)} \sin(\Omega \delta). \tag{30} \]

We note that the modulation is in phase with the phonon amplitude and that this expression coincides with an intuitive expression of Eq. (1) assuming the instantaneous modulation of the susceptibility given by \(\chi(t) = \chi + \chi_R q(t) \) at the surface,

\[\frac{\Delta R_{0}(\delta)}{R_0} = \pm \frac{1}{R_0} \frac{\partial R}{\partial \delta} q_0 \sin(\Omega \delta). \tag{31} \]

The signals of the eo-sampling defined by Eq. (7) are then written by

\[\frac{\Delta R_{0}(\delta)}{R_0} = \frac{8\pi \chi_R q_0}{n(n^2 - 1)} |e^{(i)}(\omega)|^2 \left(2\pi R_0 \right) \frac{\text{Im} W(\omega, \delta)}{n(n+1)^3} q_0 \text{Im} W(\omega, \delta), \tag{32} \]
\[\frac{\Delta R_{0}(\delta)}{R_0} = -\frac{16\pi \chi_R}{n(n^2 - 1)} \frac{\text{Im} W(\omega, \delta)}{n(n+1)^3} q_0 \text{Im} W(\omega, \delta) \right] \frac{\partial R}{\partial \delta} q_0 \sin(\Omega \delta). \tag{33} \]

For the transmittivity, there appear two terms in the modulation of the fluence,

\[\delta T^{(t)}_{0,\perp}(\omega) = \pm \frac{c \chi_R}{\pi n(n+1)^3} q_0 \text{Im} W(\omega, \delta) \left[\frac{nW(\omega, \delta) + W^*(\omega, \delta)}{cn} \right]. \tag{34} \]

The first term is generated at the surface \(x = 0 \) and the second term originates from the stimulated Raman wave which is proportional to the propagation length \(x \). We call the former the boundary contribution and the latter the bulk contribution. The modulation with the frequency resolution is given by

\[\Delta T^{(t)}_{0,\perp}(\omega, \delta) = \pm \frac{8\pi \chi_R q_0}{n^2(n+1)^3} \left[\frac{\text{Im} W(\omega, \delta) + W^*(\omega, \delta)}{\text{Im} |e^{(i)}(\omega)|^2} \right] \frac{\partial R}{\partial \delta} q_0 \sin(\Omega \delta). \tag{35} \]

Using Eq. (19), the modulation without the frequency resolution is given by

\[\Delta T^{(t)}_{0,\perp}(\omega) = \pm \frac{2\pi \chi_R (n-1)}{n(n^2 - 1)} \int q(t + \delta)(e^{(i)}(t))^2 dt \frac{\partial R}{\partial \delta} q_0 \sin(\Omega \delta) \right] \frac{\partial R}{\partial \delta} q_0 \sin(\Omega \delta). \tag{36} \]

and a simpler expression is obtained by using the short pulse limit approximation as

\[\Delta T^{(t)}_{0,\perp}(\omega) \approx \pm \frac{2\pi \chi_R (n-1)}{n(n^2 + 1)} \frac{\partial R}{\partial \delta} q_0 \sin(\Omega \delta) \right] \frac{2\pi \chi_R x q_0}{cn} \cos(\Omega \delta). \tag{37} \]
From Eqs. (37) and (38), the first sine function terms that originate from the surface come from the phonon amplitude \(q(t + \delta) \). It causes in-phase modulation on the time delay as that in the reflection. The second cosine function terms that originate from the stimulated Raman effects are due to the phonon velocity \(\frac{\partial q}{\partial t} (t + \delta) \) which induces the \(\pi/2 \) phase shifted modulation. This expression of the first term again coincides with an intuitive expression of Eq. (14) assuming the instantaneous modulation of the susceptibility \(\chi(t) = \chi_R g(t) \) at the surface,

\[
\frac{\Delta T_{eo}^B(\omega, \delta)}{T_0(\omega)} \simeq \frac{1}{T_0} \frac{\partial T}{\partial n_{\parallel, \perp}} \frac{\partial n_{\parallel, \perp}}{\partial Q} q_0 \sin(\Omega \delta), \tag{39}
\]

where the superscript \(B \) indicates that this originates from the boundary effect.

From Eqs. (39), (37) and (38), the transmission change in the co-sampling are written by

\[
\frac{\Delta T_{eo}(\omega, \delta)}{T_0(\omega)} = -4\pi \chi_R \omega \Omega q_0 \Re \{W(\omega, \delta)\} \frac{\cos(\Omega \delta)}{cn} \\
+ \frac{2\pi \chi_R q_0}{n^2(n + 1)} \frac{\Im [nW(\omega, \delta) + W^*(\omega, \delta)]}{|\{e^{i(\omega)}\}|^2} \tag{40}
\]

\[
\frac{\Delta T_{eo}(\delta)}{T_0} = \frac{4\pi \chi_R(n - 1)}{n^2(n + 1)} \int dt q(t + \delta) \left(e^{i(\omega)(t)} \right)^2 dt \\
+ \frac{4\pi \chi_R \Omega}{cn} \int dt \frac{\partial}{\partial \Omega} \left(e^{i(\omega)(t)} \right)^2 dt \tag{41}
\]

\[
\simeq 4\pi \chi_R(n - 1) q_0 \sin(\Omega \delta) \\
+ \frac{4\pi \chi_R \Omega q_0}{cn} \cos(\Omega \delta). \tag{42}
\]

To simplify the result for the frequency-resolved modulation, we introduce an assumption that \(e^{i(\omega)} \) is a real-valued function except for a multiplicative complex number. For example, for a symmetric function, \(e^{i(\omega)} = e^{i(\omega)(-t)} \), we have real-valued \(e^{i(\omega)} \). For an anti-symmetric function, \(e^{i(\omega)} = -e^{i(\omega)(-t)} \), \(e^{i(\omega)} \) is a pure imaginary function. Under the assumption and expressing \(e^{i(\omega)} \) removing the complex phase, we have

\[
W(\omega, \delta) = \cos(\Omega \delta) e^{i(\omega)} \left\{ e^{i(\omega + \Omega)} - e^{i(\omega - \Omega)} \right\} \\
+ i \sin(\Omega \delta) e^{i(\omega)} \left\{ e^{i(\omega + \Omega)} + e^{i(\omega - \Omega)} \right\}. \tag{43}
\]

We may further introduce an expansion with respect to \(\Omega \) that is justified when the probe pulse is much shorter than the period of the coherent phonon. Then \(W(\omega, \delta) \) is approximated as

\[
W(\omega, \delta) \simeq \cos(\Omega \delta) \Omega \frac{d}{d\omega} \left(e^{i(\omega)} \right)^2 + i \sin(\Omega \delta) \left(e^{i(\omega)} \right)^2. \tag{44}
\]

Using this approximation, we get the following simplified expressions for the spectrally-resolved modulations,

\[
\frac{\Delta R_{eo}(\omega, \delta)}{R_0(\omega)} \simeq -\frac{8\pi \chi_R q_0}{n(n^2 - 1)} \sin(\Omega \delta), \tag{45}
\]

We note that the terms originated from the boundary, the modulation of the reflection and the second term of the modulation of the transmission, are independent of the frequency in the first order approximation, while the term originated from the stimulated Raman wave causes the frequency-dependent modulation.

We here mention relation of our results with previous works. The bulk effect as well as the boundary effect was discussed by Merlin and collaborators. Corresponding expressions to Eqs. (38) and (39) were presented there. In particular, the appearance of the frequency dependence as well as the phase change between the bulk and the boundary effects have been stressed. In the present derivation, we provide a unified and detailed explanation of the formula with a precise expression for the amplitude of the modulation, which was not presented in Ref. [10]. In Ref. [10], it was argued that the frequency-dependent modulation cannot be described without introducing a frequency-dependence in the Raman tensor. This conclusion contradicts with the present result: the frequency-dependent modulation can be explained if we include the bulk effect.

III. FIRST-PRINCIPLES SIMULATION BASED ON TIME-DEPENDENT DENSITY FUNCTIONAL THEORY

In the previous section, we used several assumptions and approximations to derive the analytical formula. For example, we ignored the frequency dependence of the Raman tensor as well as the dielectric function. We also took a lowest order perturbation theory. Harmonic motion is assumed for the phonon motion. In this section, we present a complimentary computational approach based on first-principles time-dependent density functional theory. We develop a multiscale formalism that allows...
description of the pump-probe measurement of coherent phonons without any empirical parameters related to materials. A formalism and numerical method are written in this section and calculated results will be presented and compared with analytical results in the next section.

A. Multiscale Simulation method

Here we briefly explain our multiscale simulation method. A full explanation has been given in our previous publication. Calculations have been carried out using SALMON, an open-source software developed in our group.

Our simulation describes the pump-probe measurement of the coherent phonon generation faithfully mimicking the setup of the problem. We show the scheme of our simulation in Fig. 1. For an incident pulse propagating along the x axis, we utilize two coordinate systems: The light propagation is described using a one-dimensional coordinate X, which we call the macroscopic coordinate. Microscopic three-dimensional coordinates r is used to describe the dynamics of electrons and ions.

The light electromagnetic field is expressed by using a vector potential $\mathbf{A}(t)$. It satisfies the Maxwell equation in the macroscopic scale,

$$\left[\frac{1}{c^2} \frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial X^2}\right] \mathbf{A}(t) = \frac{4\pi}{c} \mathbf{J}_X(t), \quad (47)$$

where $\mathbf{J}_X(t)$ is the electric current density at the point X.

In solving Eq. (47), we discretize the coordinate X using a uniform grid. At each macroscopic grid point X, we consider a microscopic dynamics of electrons and ions. In our multiscale description, each microscopic dynamics is assumed to be regarded as infinitely periodic. Since the wavelength of the pulsed light is much longer than the typical spatial scale of the microscopic dynamics, we assume a dipole approximation where electrons and ions move under a spatially-uniform electric field,

$$E_X(t) = -(1/c) \frac{\partial \mathbf{A}_X(t)}{\partial t}.$$ \hspace{1cm} (48)

Then we may apply the Bloch theorem in the microscopic dynamics: The electron motion at macroscopic position X is described using Bloch orbitals $u_{\alpha,n,k}(r,t)$ specified by the macroscopic position X, band index n, and the crystalline momentum k. Ionic motion is described by the coordinates of ions in the unit cell, $\mathbf{R}_{\alpha,X}(t)$, where the index α distinguishes different ions in the unit cell.

The Bloch orbitals satisfy the TDKS equation,

$$i \hbar \frac{\partial}{\partial t} u_{\alpha,n,k}(r,t) = \left\{ \frac{1}{2m} \left(-i\hbar \nabla_r + \hbar k + \frac{e}{c} \mathbf{A}_X(t) \right)^2 - e\phi_X(r,t) + \frac{\delta E_{XC}[n_{e,X}]}{\delta n_{e,X}} + \hat{v}_{\text{ionic},X}(r,t) \right\} u_{\alpha,n,k}(r,t) \quad (49)$$

where $n_{e,X}$ is the electron density given by $n_{e,X}(r,t) = \sum_{n,k} |u_{n,k,X}(r,t)|^2$. $\phi_X(r,t)$ and $E_{XC}[n_{e,X}]$ are the Hartree potential and the exchange-correlation energy, respectively. $\hat{v}_{\text{ionic},X}(r,t)$ is the electron-ion potential for which we use norm-conserving pseudopotential. The ionic potential $\hat{v}_{\text{ionic},X}$ depends on the ionic coordinates $\{ \mathbf{R}_{\alpha,X}(t) \}$ as parameters.

To describe the dynamics of ions, we use a so-called Ehrenfest method, where the ionic motion is described by the Newtonian equation,

$$M_{\alpha} \frac{d^2 \mathbf{R}_{\alpha,X}}{dt^2} = -e Z_{\alpha} \frac{d \mathbf{A}_X}{dt} - \frac{\partial}{\partial \mathbf{R}_{\alpha,X}} \int dr |\nabla_{\text{ionic},X} \phi(\mathbf{r})| \quad (50)$$

where M_{α} is the mass of the α-th ion, $n_{\text{ionic},X}$ is the charge density of ions given by $n_{\text{ionic},X}(r,t) = \sum_{\alpha} Z_{\alpha} \delta (r - \mathbf{R}_{\alpha,X}(t))$, with Z_{α} the charge number of the α-th ion.

The electronic current density at point X, $\mathbf{J}_X(t)$, consists of electronic and ionic contributions,

$$\mathbf{J}_X(t) = \mathbf{J}_{e,X}(t) + \mathbf{J}_{\text{ionic},X}(t). \quad (50)$$

The electronic component $\mathbf{J}_{e,X}(t)$ is expressed in terms of the Bloch orbitals $u_{n,k,X}(r,t)$, and the ionic component $\mathbf{J}_{\text{ionic},X}(t)$ is given by the velocity of the ion, $(d/dr) \mathbf{R}_{\alpha,X}(t)$.

We solve Eqs. (47) - (50) simultaneously to obtain the whole dynamics at once. The initial condition is so prepared that the electronic state at each macroscopic point X is set to the ground state solution of the static density functional theory, the ionic positions are set to their equilibrium positions in the electronic ground state, and the vector potential of the incident pump- and probe-pulsed light is prepared in the vacuum region in front of the film.

We note that the light propagation equation Eq. (8) can be identified with Eq. (47) if we make several assumptions and approximations. If we make several assumptions and approximations. They includes: We need to assume that the amplitude of the ionic motion is sufficiently small. The amplitude of the incident pulsed light needs to be sufficiently small so that any nonlinear optical effects other than the Raman process can be ignorable. We also need to assume that there is no retardation effects in the electronic response that are equivalent to ignoring the frequency dependence of the susceptibilities. We will compare the first-principles calculations and the analytic formula to assess the validity of the approximations that are required to derive the analytic formula in the previous section.

B. Computational Details

We carry out the simulation in the setting of the e-sampling. As the time profiles of the incident pump and probe pulses, we choose cosine-squared shaped envelope
given as

$$A_{\text{pump}}(t) = A_{\text{pump}} \cos^2 \left(\frac{\pi t}{T} \right) \cos(\omega_0 t) e_{011}$$ (51)$$

$$A_{\text{probe}}(t) = A_{\text{probe}} \cos^2 \left(\frac{\pi t}{T} \right) \cos(\omega_0 t) e_{010}$$ (52)

\((-T/2 < t < T/2)\)

where \(e_{011} = e_{yz} = (e_y + e_z) / \sqrt{2}\) and \(e_{010} = e_y\) are the spatial unit vectors of the polarization direction of the pump and probe pulses, respectively. The incident probe pulse is given as \(A_{\text{probe}}(t - \delta)\) with the pump-probe delay time \(\delta\). The delay time is chosen to be 83.0, 89.5 and 96.0 fs. The average frequency \(\omega_0\) of the pump and the probe pulses are chosen to be a common value, \(\hbar\omega_0 = 1.55\text{eV}\). The pulse duration of \(T = 18\text{fs}\) is used for all pulses. This amounts to the pulse duration of 7 fs in FWHM. It is much shorter than the period of the optical pump. This amounts to the pulse duration of 7 fs in FWHM. It is much shorter than the period of the optical pulse in the medium of thickness 10 \(\mu\text{m}\). The average frequency \(\omega_0\) and the probe pulses are chosen to be a common value, \(\hbar\omega_0 = 1.55\text{eV}\). The pulse duration of \(T = 18\text{fs}\) is used for all pulses. This amounts to the pulse duration of 7 fs in FWHM. It is much shorter than the period of the optical pulse in the medium of thickness 10 \(\mu\text{m}\). The average frequency \(\omega_0\) and the pulse durations are set to \(2 \times 10^{12} \text{W/cm}^2\) and \(1 \times 10^{10} \text{W/cm}^2\), respectively. At these intensities, nonlinear electronic excitations across the bandgap is not significant.

In practical calculations, we carry out calculations of the pump and the probe processes separately. In the pump stage, we calculate the propagation of the pump pulse in the spatial region of 0 \(\times 10\text{μm}\) and the duration of 80 fs. At the final time, the pump pulse stays in the spatial region of 6 \(\mu\text{m} < X < 10 \mu\text{m}\). In the probe stage, we prepare a diamond medium in the spatial region of 0 \(\mu\text{m} < X < 6 \mu\text{m}\). In this spatial region, the initial ionic motions are prepared from the coherent phonon obtained in the pump stage calculation.

The calculation system and parameters are the same as those of Ref 52. The macroscopic coordinate \(X\) is discretized using the spacing of 15 nm. In the microscopic calculation, adiabatic local density approximation is used for the exchange-correlation potential. The unit cell consisting of eight carbon atoms in the cubic cell with the side length of 3.567 \(\text{Å}\) is used. The Bloch orbitals are expressed using \(16^3\) uniform spatial grids in the unit cell and \(12^3\) of \(k\)-points in the Brillouin zone. All of the equations of motion are integrated with a common time step of 0.02 fs.

IV. Calculated Results

The purpose of this section is to compare the results between the analytical description developed in Sec. 3 and the first-principles simulation described in Sec. 3. Although analytical treatments provide formula that are useful to understand mechanisms of probe process, several assumptions and approximations are used in the derivation including the perturbative expansion and the ignorance of the frequency-dependence of the response. Contrarily, the first-principles calculation does not require these assumption and approximation. Therefore, the comparison between two approaches will be useful to assess the validity of the analytical approach, and to clarify the significance of the effects that are not included in the analytical approach.

When we make numerical evaluation of Eqs. 28, 30, and 38, we use the following values for the parameters that are chosen to fit the first-principles TDDFT calculation: \(n = 2.25, \Omega = 2\pi / (25.47\text{[fs]}), q_0 = 0.95 \times 10^{-4}\text{[Å]}, \) and \(\chi_R = 11.6 \text{[Å}^{-1}\text{]}\). The values of \(q_0\) and \(\chi_R\) are so determined that the generation of the coherent phonon is described consistently by solving Eq. \(\Box\) numerically in the presence of the pump pulse.

A. Generation of coherent phonon by pump pulse

In the analytical approach, we simply assumed a sinusoidal time profile of the coherent phonon that propagates with the group velocity of the pump pulse in the medium. We first compare the time profile of the coherent phonon calculated by our multiscale simulation with the assumed one. Figure 2 shows a comparison. In panel (a), the electric field and the atomic displacement are shown at two times, \(t = 10\text{fs}\) when the pulse just arrived the surface and \(t = 50\text{fs}\) when the pulse propagates at about \(X = 5 \mu\text{m}\). In panel (b), the atomic displacement at \(X = 2 \mu\text{m}\) is shown as a function of time. The calculated displacement shown by solid curve is well fitted by a sinusoidal function that is shown by dashed curve. To compare the phonon period and the pulse duration, the time profile of the incident pulse is shown by red solid curve. The first-principles calculation includes various nonlinear, non-perturbative, and frequency-dependent effects. For example, the pump pulse may excite electrons by multiphoton excitation pro-
cesses that may cause decrease of the coherent phonon amplitude as the pump pulse propagates. Anharmonicity in the atomic motion may also affect the time-dependence of the phonon amplitude. However, the comparison indicates that the simple ISRS mechanism describes accurately the production stage of the coherent phonon in the present setting of the multiscale calculation.

B. Modulation in transmission

We move to the probe process. We first consider the modulation on the transmission. In the first-principles calculation, we analyze the transmitted wave that appears in the vacuum region right to the back surface. There may appear delayed transmitted waves that experience internal reflections inside the medium. Since we stop our calculation when the end of the first transmitted wave passes through the back surface, however, we do not take into account these waves of multiple reflections at the surfaces.

We first show shapes of the transmitted waves. Fig. 3(a) and (b) show the transmitted electric field for two different pump-probe time delay, \(\delta = 83.0 \) fs and 89.5 fs, respectively. In the former case of \(\delta = 83.0 \) fs, the probe pulse arrives at the surface of the diamond when the phonon amplitude is the maximum. In the latter case of \(\delta = 89.5 \) fs, the probe pulse arrives at the surface when the phonon amplitude shows the node.

In our first principles calculation, we employ the probe pulse with the polarization in \(y \)-direction. During the propagation, the stimulated Raman wave grows linearly with the propagation length and appears as the \(z \)-component of the field. In the notation of Sec. II, the \(z \)-component of the electric field \(E_z(x,t) \) is equal to \(\sqrt{2} \delta E_0(x,t) \). As is shown in Eq. (16), the transmitted wave is composed of two terms, the boundary term that is created at the surface of the medium and the bulk term that is linearly proportional to the propagation distance. The relative significance of the two terms depends on the duration of the probe pulse, phonon frequency, and propagation distance. In the present setting with the propagation distance of 6 \(\mu \)m, the bulk contribution is much more dominant than the boundary contribution. Therefore, we expect the form,

\[
E_z(x,t) \propto x \frac{d}{dt} \left[q \left(t - \frac{nx}{c} \right) e^{i\omega t} \left(t - \frac{nx}{c} - \delta \right) \right].
\]

The pulse shapes in Fig. 3(a) and (b) indeed show the expected behavior. In the case of \(\delta = 83.0 \) fs, the envelope shape of the stimulated Raman wave is similar to that of the transmitted probe pulse. There is a phase shift of \(\pi/2 \) between the incident \(E_y(t) \) and the stimulated Raman \(E_z(t) \) waves. This is understood as follows: Since the duration of the probe pulse is shorter than the period of the phonon, the product \(q(t)e^{i\omega t} \) is mostly proportional to \(e^{i\omega t} \). The time derivative causes the phase shift of \(\pi/2 \). In the case of \(\delta = 89.5 \) fs the shape of the stimulated Raman wave is very different from the probe pulse. This is because the probe pulse propagates with the nodal point of the phonon so that the product \(q(t)e^{i\omega t} \) behaves approximately as \(q(t)e^{i\omega t} \propto t e^{i\omega t} \). This explains the nodal behavior in the Raman wave at \(\delta = 89.5 \) fs.

In panels (c) and (d) of Fig. 3, frequency-resolved intensities are shown for \(E_y(t) \) and \(E_z(t) \). At \(\delta = 83.0 \) fs, the spectrum of the Raman waves shows somewhat a wider distribution and is slightly shifted to the higher frequency. At \(\delta = 89.5 \) fs, the spectrum of the Raman wave shows a double-peak structure. This originates from the extra node in the time domain.

In Fig. 3(a), transmission changes without frequency resolution in the first-principles calculation are shown by dots for three different pump-probe delay time, \(\delta = 83.0, 89.5, \) and 96.0 fs. The delay time \(\delta = 96.0 \) fs corresponds to the arrival of the probe pulse at the maximum of the phonon amplitude, as in \(\delta = 83.0 \) fs. The modulation is large at \(\delta = 89.5 \) fs and very small at \(\delta = 83.0 \) fs and 96.0 fs. This is reasonable according to Eq. (37) since the phonon velocity is maximum at \(\delta = 89.5 \) fs at the nodal point. The modulation of the transmission signal calculated by the first-principles calculation coincides accurately with the analytic formula of Eq. (35) that shows a cosine-like dependence. For the plots of the analytical calculations, since we consider the transmitted wave that appears in the right vacuum region, we multiply a factor of 2 for the term of the boundary effect to take into account the transmission through two boundaries.

We thus find a satisfactory coincidence between results of the analytic theory and those by the first-principles calculation. This fact indicates that the analysis based on the model presented in Sec. III is sufficient to describe the modulation of the transmission signal. Namely, the modulation in the present case that is dominated by the
stimulated Raman wave can be accurately described using the classical model of the light propagation with harmonic oscillator approximation for the phonon motion, first-order expansion in the light intensity, and ignorance of dispersion effects in both the diagonal dielectric function and the off-diagonal Raman tensor. The modulation is caused mainly by the stimulated Raman wave in the present case.

In panels (b) and (c) of Fig. 4, modulations at the anti-Stokes and Stokes frequencies, $\omega_0 \pm \Omega$ are shown as a function of the pump-probe delay time, δ. The first-principles and the analytical calculations show again excellent agreement. It is noted that the signal shows a striking phase difference between two components at anti-Stokes and Stokes frequencies.

To investigate the frequency-dependent modulation in detail, frequency-resolved modulation of the transmission is shown in Fig. 4(d) and (e) for three cases of delayed time, $\delta = 83.0$, 89.5, and 96.0 fs at which the signals are plotted in (a) - (c). As seen in panel (d), the modulation is maximum at $\delta = 89.5$ fs when the probe pulse moves with the nodal point of the coherent phonon. It also shows a phase change across approximately the central frequency of the probe pulse, 1.55 eV. The modulation is rather small at the delay times of $\delta = 83.0$ and 96.0 fs. These findings are consistent with the first term of Eq. (46) that shows the differential of the spectrum of the incident pulse.

In panel (e), the modulation divided by the frequency-resolved transmission is shown. This is the quantity often analyzed in experimental analyses. Here three lines are shown for each pump-probe delay time. Solid thick lines show the first-principles calculation, solid thin lines show analytical results using Eq. (36), and thin dashed lines show approximate analytical results using Eq. (46). The signal is again strong at $\delta = 89.5$ fs, The modulation shows a nodal structure around the average frequency of the pulse and becomes larger as the frequency apart from the average frequency. The first-principles calculation coincides accurately with the analytic formula of Eq. (36). The simplified analytic formula of Eq. (46) somewhat deviates from others. The difference is not very significant. At $\delta = 83.0$ and 96.0 fs, the signal is small for all frequencies. As the frequency comes apart from the central frequency of the probe pulse, the signal becomes larger. However, the signal showing divergent behavior at frequencies around 1.1 eV and 2.0 eV will not be physically significant since the component of the probe pulse in those frequency region is extremely small.

Looking at the panel (e) in detail, the signal at $\delta = 96.0$ fs shows a negative (positive) modulation at low (high) frequency region in both first-principles and analytic results. However, at $\delta = 83.0$ fs, though the analytic formula suggests opposite behavior while the first-principles calculation shows positive modulation in both side. We do not have an explanation for this observation.

C. Modulation in reflection

We next consider the modulation in the reflectivity. In the first-principles calculation, the reflected wave in the vacuum region left to the surface is composed of that by the direct reflection at the front surface ($X = 0 \mu m$) and that by the reflection at the back surface ($X = 6 \mu m$)}
FIG. 5. (1) Reflection change $(\Delta R_{eo}(\delta)/R_0)$ and the frequency components at (b) anti-Stokes and (c) Stokes positions $(\Delta R_{eo}(\omega_0 \pm \Omega, \delta)/R_0,$ respectively) as a function of delay time δ obtained by the simulation (the filled blue circles) and the analytical calculations of Eqs. (32) and (33) (but R_0 is used instead of $R_0(\omega))$ (the red lines). The insets in (a) show the probe pulses (the red lines) and atomic displacement (the green lines) as a function of t at $X=0 \, \mu$m in the simulation for each δ. Spectrally resolved reflection change as a function of ω: (d) $\Delta R_{eo}(\omega, \delta)/R_0$ obtained by the simulation and (e) $\Delta R_{eo}(\omega, \delta)/R_0(\omega)$ by simulations and analytical calculations (Eqs. (32) and (33)).

μm) after the propagation inside the medium. The latter component includes stimulated Raman wave while the former does not. In the first-principles calculation, the former reflected wave contains extremely weak \hat{z}-component, while the latter reflected wave accompanying substantial \hat{z}-component that comes from the stimulated Raman wave. We first discuss the contribution of the former process without the propagation inside the medium.

The reflection change is shown in Fig. 5(a) by dots for three different pump-probe delay time of $\delta = 83.0$, 89.5, and 96.0 fs. The modulation in the reflection calculated by the first-principles calculation coincides accurately with the analytics formula of Eq. (30) that shows a sine-like dependence. In panels (b) and (c), the frequency-dependent modulation at $\omega_0 \pm \Omega$ is shown. They shows a similar sine-like behavior and are again well reproduced by the analytic formula. Therefore, the validity of the analytic formula is confirmed with high accuracy for the reflected wave.

In panels (d) and (e), we show modulation of the reflectivity in frequency domain. The frequency-resolved modulation divided by the reflectivity with/without frequency resolution is shown in the panel (e)/(d), respectively. As seen in (d), the modulation has a similar frequency dependence with the frequency-resolved flux of the incident wave. The frequency-resolved reflectivity shown in (e) indicates that the frequency-dependence of the modulation is rather weak. In the frequency region far apart from the central frequency, the modulation becomes larger. However, the incident flux does not have much component in such frequency region. We find a good agreement among three curves, the first-principles calculation, the analytic formula of Eq. (32), and the simplified analytic formula of Eq. (33). The agreement indicates that the analytic formula are sufficiently accurate to describe the modulation in the reflectivity.

D. Reflection at the back surface

We next examine the modulation in the reflection including the reflected wave caused by the back-surface. In Fig. 6(a), we show a time profile of the reflection waves reflected from the front surface and from the back surface of the medium in the first-principles calculation. The \hat{z}-component of the field is very small in the first wave from the front surface, while that of the second wave from the back side is much larger because of the amplification of the Raman wave during the propagation. The reflection change $\Delta R_{eo}(\delta)/R_0$ is shown in Fig. 6(b) for three pump-probe delay times, $\delta=83.0$, 89.5, and 96.0 fs. It can be well fit by a cosine-like function. This can be understood as follows: In the case of the transmission, the bulk effect caused by the stimulated Raman wave is dominated as seen in Fig. 4(a). In the present case, the second reflected wave includes the similar Raman wave component as seen in the panel (a). The modulation in the reflection is dominated by the bulk effect, if we include the second reflected wave at the back surface.

Fig. 6(c) shows the spectrally resolved signals calculated by using the first and second reflection waves. A strong oscillation structure is observed in the frequency domain for three cases of the time delay. The oscillation structure is due to the interference between the first and the second waves: The Fourier transformed
electric field of the reflection wave can be given as
\[\tilde{E}_1(\omega) + \tilde{E}_2(\omega)e^{i\omega(t_2-t_1)}, \]
where \(\tilde{E}_1 \) and \(\tilde{E}_2 \) are of the first and the second reflection waves, respectively, and \(t_1 \) and \(t_2 \) is the arrival time of the first and second waves, respectively. The power spectrum is written as
\[I(\omega) = |\tilde{E}_1(\omega)|^2 + |\tilde{E}_2(\omega)|^2 + 2Re\left[\tilde{E}_1^*(\omega)\tilde{E}_2(\omega)e^{i\omega(t_2-t_1)}\right]. \]
It indicates that the oscillation frequency is inversely proportional to the difference of the two reflected waves, \(t_2 - t_1 \), which is proportional to the thickness of the sample. The present calculation assumes a sample of 6 \(\mu \)m thickness. The oscillation will not be observed if a much thicker sample is utilized.

If we average the signals of Fig. 6(c) over rapidly oscillating structure, we obtain a very small signal for \(\delta=83.0 \) and 96.0 fs, and a strong signal remains for \(\delta=89.5 \) fs. The averaged feature is very close to the transmission shown in Fig. 6(d). Namely, the signal is caused mainly by the Raman wave that is included in the second wave of Fig. 6(a) and that is quite similar to that in the transmitted wave.

V. SUMMARY

We have presented a comprehensive theoretical analysis on the probe stage of pump-probe measurements of coherent phonon generation in dielectrics. We take a diamond as a typical case and assume the impulsive stimulated Raman scattering mechanism for the generation process.

We have developed analytical and computational approaches. In analytical description, we revisited the work developed in Ref. [5] by Merlin and developed comprehensive formula. We start with a standard description of light propagation coupled with a phonon motion through the Raman tensor. We summarize formula for the modulation on the reflection and transmission of the probe pulse using a perturbative solution for the probe pulse. The modulation in the transmission is caused by two distinct mechanisms: the boundary and the bulk effects. The bulk effect is caused by the stimulated Raman wave that is amplified as the probe pulse propagates in the medium. The modulation in the reflection is caused by the boundary effect. However, if we consider the reflection at the back surface, the bulk effect also contribute in the reflection.

The modulation is investigated for frequency-resolved and -integrated signals. The boundary and the bulk effects contribute to the modulation in qualitatively different way. The bulk effect produces strong frequency dependence in the modulation, whereas the boundary effect produces very weak frequency dependence. The bulk effect causes strong modulation in the probe signal when the probe pulse moves with the nodal point of the phonon. It causes a phase shift of \(\pi/2 \) between the phonon amplitude and the probe signal. Contrarily, the boundary effect causes a modulation that is proportional to the amplitude of the phonon. The modulation of the probe pulse is in phase with the coherent phonon.

The derivation of the analytic formula is based on several assumptions and approximations. To confirm the validity of the analytic formula, we performed first-principles calculations based on time-dependent density functional theory. In our multiscale formalism, coupled dynamics of mesoscopic light propagation and microscopic electronic and ionic motions are described simultaneously without any empirical parameters.

By comparing results between the analytical theory and the first-principles calculation, we confirmed the validity and the reliability of the analytical formula. We thus consider that our analytic formula provides a reliable basis for the experimental analysis of frequency-resolved modulation in the pump-probe measurement of coherent phonon in transparent dielectrics.
VI. ACKNOWLEDGEMENT

We thank Professor K. G. Nakamura for useful discussion. We acknowledge the supports by JST-CREST under grant number JP-MJCR16N5, and by MEXT as a priority issue theme 7 to be tackled by using Post-K Computer, and by JSPS KAKENHI Grant Number 15H03674. Calculations are carried out at Oakforest-PACS at JCAHPC through the Multidisciplinary Cooperative Research Program in CCS, University of Tsukuba, and through the HPCI System Research Project (Project ID: hp180088).

1. C. Thomsen, J. Straßl, Z. Vardeny, H. J. Maris, J. Tauc, and J. J. Hauser. Coherent phonon generation and detection by picosecond light pulses. Phys. Rev. Lett., 53:989, 1984.
2. Yong Xin Yan, Edward B. Gamble Jr., and Keith A. Nelson. Impulsive stimulated scattering: General importance in femtosecond laser pulse interactions with matter, and spectroscopic applications. J. Chem. Phys., 83:5391–5399, 1985.
3. Yong Xin Yan and Keith A. Nelson. Impulsive stimulated light scattering. I. General theory. J. Chem. Phys., 87:6240–6256, 1987.
4. G. C. Cho, W. Kütt, and H. Kurz. Subpicosecond time-resolved coherent-phonon oscillations in gaas. Phys. Rev. Lett., 65:764, 1990.
5. R. Merlin. Generating coherent thz phonons with light pulses. Solid State Communications, 102(2):207 – 220, 1997. Highlights in Condensed Matter Physics and Materials Science.
6. T. E. Stevens, J. Kuhl, and R. Merlin. Coherent phonon generation and the two stimulated raman tensors. Phys. Rev. B, 65:144304, 2002.
7. Muneaki Hase, Masahiro Kitajima, Anca Monia Constantinescu, and Hrvoje Petek. The birth of a quasiparticle in silicon observed in time-frequency space. Nature, 426:51–54, 2003.
8. Kunie Ishioka, Muneaki Hase, Masahiro Kitajima, and Hrvoje Petek. Coherent optical phonons in diamond. App. Phys. Lett., 89:231916, 2006.
9. K. Mizoguchi, R. Morishita, and G. Oohata. Generation of coherent phonons in a cdte single crystal using an ultrafast two-phonon laser excitation process. Phys. Rev. Lett., 110:077402, Feb 2013.
10. Kazutaka G. Nakamura, Kazuma Ohya, Hiroshi Taka-hashi, Tetsuya Tsuruta, Hiroya Sasaki, Shin-ichi Uozumi, Katsura Norimatsu, Masahiro Kitajima, Yutaka Shikano, and Yosuke Kayanuma. Spectrally resolved detection in transient-reflective measurements of coherent optical phonons in diamond. Phys. Rev. B, 94:024303, Jul 2016.
11. Hiroya Sasaki, Riho Tanaka, Yasuaki Okano, Fuijio Mimami, Yosuke Kayanuma, Yutaka Shikano, and Kazutaka G. Nakamura. Coherent control theory and experiment of optical phonons in diamond. Scientific Reports, 8:9609, 2018.
12. S. De Silvestri, J. G. Fujimoto, E. P. Ippen, Edward B. Gamble Jr, Leah Ruby Williams, and Keith A. Nelson. Femtosecond time-resolved measurements of optical phonon dephasing by impulsive stimulated raman scattering in α-perylene crystal from 20 to 300 k. Chem. Phys. Lett., 116:146–152, 1985.
13. Lisa Dhar, John A. Rogers, and Keith A. Nelson. Time-resolved vibrational spectroscopy in the impulsive limit. Chem. Rev., 94:157–193, 1994.
14. T. K. Cheng, J. Vidal, H. J. Zeiger, G. Dresselhaus, M. S. Dresselhaus, and E. P. Ippen. Mechanism for displacive excitation of coherent phonons in sb, bi, te, and t2o3. Appl. Phys. Lett., 59:1923–1925, 1991.
15. Keiko Kato, Atsushi Iishiawa, Katsuya Oguri, Kouta Tateno, Takehiko Tawara, Hideki Gotoh, Masahiro Kitajima, and Hidetoshi Nakano. Anisotropy in ultrafast carrier and phonon dynamics in p-type heavily doped si. Jpn. J. Appl. Phys., 48:100205, 2009.
16. O. V. Misochko, Muneaki Hase, and M. Kitajima. Spectrally filtered time domain study of coherent phonons in semimetals. J. Phys. Condens. Matter, 16:1879–1886, 2004.
17. Muneaki Hase and Masahiro Kitajima. Interaction of coherent phonons with defects and elementary excitations. J. Phys. Condens. Matter, 22:073201, 2010.
18. G. D. Sanders, A. R. T. Nugraha, K. Sato, J.-H. Kim, J. Kono, R. Saito, and C. J. Stanton. Theory of coherent phonons in carbon nanotubes and graphene nanoribbons. J. Phys. Condens. Matter, 25:144201, 2013.
19. T. Pfeifer, W. Kütt, H. Kurz, and R. Scholz. Generation and detection of coherent optical phonons in germanium. Phys. Rev. Lett., 69:3248–3251, 1992.
20. R. Scholz, T. Pfeifer, and H. Kurz. Density-matrix theory of coherent phonon oscillations in germanium. Phys. Rev. B, 47:16229–16236, 1993.
21. A. V. Kuznetsov and C. J. Stanton. Theory of coherent phonon oscillations in semiconductors. Phys. Rev. Lett., 73:3243–3246, 1994.
22. D. M. Riffe and A. J. Sabbah. Coherent excitation of the optic phonon in si: Transiently stimulated raman scattering with a finite-lifetime electronic excitation. Phys. Rev. B, 76:085207, 2007.
23. Filippo Glerean, Stefano Marcantoni, Giorgia Sparapassi, Andrea Blason, Martina Esposito, Fabio Benatti, and Daniele Fausti. Quantum model for impulsive stimulated raman scattering. J. Phys. B: At. Mol. Opt. Phys., 52:145502, 2019.
24. Yohei Watanabe, Ken ichi Hino, Nobuya Maeshima, Hrvoje Petek, and Muneaki Hase. Ultrafast asymmetric rosen-zener-like coherent phonon responses observed in silicon. Phys. Rev. B, 99:174304, 2019.
25. Yu-Hsiang Cheng, Frank Y. Gao, Samuel W. Teitelbaum, and J. J. Hauser. Coherent phonon generation and detection post-k computer. Scientific Reports, 26:9956, 2017.
enhancement of first- and second-order coherent phonons in metallic single-walled carbon nanotubes. Phys. Rev. B, 90:235435, 2014.

Tomohiko Nakayama, Shunsuke Yoshizawa, Atsushi Hirano, Takeshi Tanaka, Kentaro Shiraki, and Muneki Hase. Vibrational energy transfer from photoexcited carbon nanotubes to proteins observed by coherent phonon spectroscopy. App. Phys. Exp., 10:125101, 2017.

Liu Y, Frenkel A, Garrett GA, Whitaker JF, Fahy S, Uher C, and Merlin R. Impulsive light scattering by coherent phonons in laalo; Disorder and boundary effects. Phys. Rev. Lett., 75(2):334–337, 1995.

Erich Runge and Eberhard Ku Gross. Density-functional theory for time-dependent systems. Physical Review Letters, 52(12):997, 1984.

Carsten A. Ulrich. Time-Dependent Density-Functional Theory: Concepts and Applications (Oxford Graduate Texts). Oxford Univ Pr (Txt), 2 2012.

K. Yabana and G. F. Bertsch. Time-dependent local-density approximation in real time. Phys. Rev. B, 54:4484–4487, Aug 1996.

George F Bertsch, J-I Iwata, Angel Rubio, and Kazuhiro Yabana. Real-space, real-time method for the dielectric function. Physical Review B, 62(12):7998, 2000.

Yasushi Shinohara, Kazuhiro Yabana, Yosuke Kawashita, J-I Iwata, Tomohito Otobe, and George F Bertsch. Coherent phonon generation in time-dependent density functional theory. Physical Review B, 82(15):155110, 2010.

Y. Shinohara, S. A. Sato, K. Yabana, J-I. Iwata, T. Otobe, and G. F. Bertsch. Nonadiabatic generation of coherent phonons. J. Chem. Phys., 137:22A527, 2012.

Atsushi Yamada and Kazuhiro Yabana. Multiscale time-dependent density functional theory for a unified description of ultrafast dynamics: Pulsed light, electron, and lattice motions in crystalline solids. Phys. Rev. B, 90:245103, 2019.

Atsushi Yamada. Multiscale coupled maxwell’s equations and polarizable molecular dynamics simulation based on charge response kernel model. J. Chem. Phys., 152:094110, 2020.

Kazuhiro Yabana, T Sugiyma, Y Shinohara, T Otobe, and GF Bertsch. Time-dependent density functional theory for strong electromagnetic fields in crystalline solids. Physical Review B, 85(4):045134, 2012.

M. Noda, S. A. Sato, Y. Hirokawa, M. Uemoto, T. Takeuchi, S. Yamada, A. Yamada, Y. Shinohara, M. Yamaguchi, K. Iida, I. Floss, T. Otobe, K-M. Lee, K. Ishinura, T. Boku, G. F. Bertsch, K. Nobusada, and K. Yabanad. Salmon: Scalable ab-initio light-matter simulator for optics and nanoscience. Comp. Phys. Comm., 235:356, 2019.

Web site of SALMON. http://salmon-tddft.jp/.

Norman Troullier and Josè Luis Martins. Efficient pseudopotentials for plane-wave calculations. Physical review B, 43(3):1993, 1991.

J. P. Perdew and Alex Zunger. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B, 23:5048–5079, May 1981.