Profitability estimation of a Company in PT.ABCD using extended kalman filter

M Y Anshori¹, T Herlambang², D F Karya¹, A Muhith³, R A Rasyid¹
¹Management Department – University of NahdlatulUlama Surabaya (UNUSA)
²Information System Department – University of NahdlatulUlama Surabaya (UNUSA)
³Nursing Department, FKK – University of NahdlatulUlama Surabaya (UNUSA)

Email: teguh@unusa.ac.id

Abstract. Profitability ratios are the ability or results achieved by a company in its sales of goods or services it produces in a certain period. Profitability ratios are required to record financial transactions usually assessed by investors and creditors (banks) to assess the amount of investment profits to be obtained by investors and the amount of corporate profits to assess the company's ability to pay debts to creditors based on the use level of assets and other resources so that the company efficiency can be seen. Profitability is an important factor in the company, so in this study estimation of company profitability is made. Profitability estimation in this paper used the Extended Kalman Filter (EKF) and Kalman Filter (KF) methods to obtain the accuracy of the estimation. Based on the analysis of the simulation results, the EKF and KF methods can be effectively implemented to estimate the profitability of a company so as to make the right policy in determining the amount of investment and company profits. Based on the results of the analysis on the simulation with 300, 400 and 500 iterations, it has an error of less than 2%.

1. Introduction
Gross profit margin is the profitability ratio to assess the percentage of gross profit from the revenue generated from sales. Gross profit which is affected by the cash flow statement describes the amount of profit gained by the company by considering the production costs of products or services.

Profitability can be interpreted as the results obtained by management effort on the funds invested by the company's owner. The objectives of profitability estimation for the company or outside parties are 1) to calculate or measure profits the company makes for a certain period, 2) to assess the company's profit position of the previous year and that of the current year, 3) To assess the profit growth from time to time. Meanwhile, from the perspective of the benefits of probability, it has several benefit, that is, 1) knowing the company's profit position of the previous year compared to that of the current, 2) knowing profit growth from time to time, 3) informing the company's net profit after tax deduction.

Considering the importance of the objectives and benefits of the profitability of a company, then we required a software for estimating profits of the company [1]. Several studies regarding estimations have been conducted. Several researches on estimation were conducted in several scientific fields, including estimation of blood stock [2], estimation of stock prices and oilprice [3,4], estimation of steam drum temperature [5], estimation of AUV and ASV trajectory [6,7,8], and estimation of missile trajectories [8]. The contribution of this paper was to compare the result of the company's profitability estimation by the EKF method and that by KF method, to conclude which method was the best for estimating the company's profitability.
2. Methods

The algorithm of Kalman Filter (KF) can be seen [1]:

1. Model system and measurement model.

\[x_{k+1} = A_k x_k + B_k u_k + G_k w_k \]
\[z_k = H_k x_k + v_k \]
\[x_0 \sim N(\bar{x}_0, P_{x_0}); w_k \sim N(0, Q_k); v_k \sim N(0, R_k) \]

2. Initialization

\[\hat{x}_0 = \bar{x} \]
\[P_0 = P_{x_0} \]

3. Time Update

Estimation : \[\hat{x}_{k+1} = A_k \hat{x}_k + B_k u_k \]
Error covariance: \[P_{x_{k+1}} = A_k P_k A_k^T + G_k Q_k G_k^T \]

4. Measurement Update

Kalman gain : \[K_{k+1} = P_{x_{k+1}}^T H_{k+1} \left(H_{k+1} P_{x_{k+1}} H_{k+1}^T + R_{k+1} \right)^{-1} \]
Estimation : \[\hat{x}_{k+1} = \hat{x}_{k+1} + K_{k+1} (z_{k+1} - H_k \hat{x}_{k+1}) \]
Error covariance \[P_{x_{k+1}} = \left[I - K_{k+1} H_k \right] P_{x_{k+1}} \]

And the Extended Kalman Filter (EKF) algorithm can be seen [10]:

Model system and measurement model

\[x_k = f(x_{k-1}, u_{k-1}, w_{k-1}) \]
\[z_k = h(x_k, v_k) \]
\[x_0 \sim N(\bar{x}_0, P_{x_0}), w_k \sim N(0, Q_k), v_k \sim N(0, R_k) \]

1. Initialization

\[\hat{x}_0 = \bar{x}_0 \]
\[P_0 = P_{x_0} \]

2. Time Update

Estimation : \[\hat{x}_k = f(\hat{x}_{k-1}, u_{k-1}, 0) \]
Error covariance: \[P_k = A_k P_{x_{k-1}} A_k^T + W_k Q_k W_k^T \]

3. Measurement Update

Kalman Gain: \[K_k = P_k^{-1} H_k^T \left[H_k P_k^{-1} H_k^T + V_k R_k V_k^T \right]^{-1} \]

Estimation : \[\hat{x}_k = \hat{x}_k + K_k (z_k - h(\hat{x}_k, 0)) \]
Error covariance: \[P_k = (I - K_k H_k) P_k \]

3. Simulation Result

In this paper the probability estimation was made by applying the Extended Kalman Filter (EKF) and Kalman Filter (KF) method with 300, 400 and 500 iterations. The simulation used the initial value of the profitability. Profit data of PT. The ABCDs as shown in Table 1 are interpolated by Mathematica software resulting in a profit function in equation (15).
The estimation of profitability was made by applying the Extended Kalman Filter (EKF) and Kalman Filter (KF) method with 300, 400 and 500 iterations. This simulation used $\Delta t = 0.1$ and the initial value of the profit of company. The profit data at PT. The ABCDs in Table 1 are interpolated with Mathematica software so that it produces a profit function in equation (15).

Table 1. PT.ABCD’s (in million) Profit Data

Month	Company profit
Jan-2016	311
Feb-2016	275
Mar-2016	281
Apr-2016	286
May-2016	289
Jun-2016	264
Jul-2016	312
Aug-2016	293
Sep-2016	298
Oct-2016	279
Nov-2016	325
Dec-2016	297
Jan-2017	319
Feb-2017	304
Mar-2017	377
Apr-2017	285
May-2017	289
Jun-2017	286
Jul-2017	332
Aug-2017	288
Sep-2017	322
Oct-2017	331
Nov-2017	323
Dec-2017	329

Then, the data are interpolated using Mathematica software, so as to obtain the company's profit function as follows:

\[
f(x) = 124.6x^2 - 379.53x + 7235.33 \\
f'(x) = 249.2x - 379.53 \\
(15)
\]

Figures 1, 2 and 3 indicate that the estimation results have a fairly small error, by the application of either the KF method or the EKF method. The estimated profitability by EKF had an accuracy of around 97%, whereas that by KF had an accuracy of 93%. In term of iteration comparison, the estimation using 500 iterations had higher accuracy than those using 300 and 400 iterations as seen in table 2. But the weakness of the estimation with 500 iterations in term of the simulation time took longer longer time compared to those using 300 and 400 iterations. The error of EKF obtained is 0.1552 in the simulation with 500 iterations. Whereas with 400 iterations it produces an error of 0.1743, and the error obtained in the that with 300 iterations is 0.1987 as shown in Table 2. Further, the comparison of the estimation results with 300, 400 and 500 iterations, Table 2 shows that the simulation with 500 iterations has a
higher accuracy than those with 300 and 400 iterations. In general, conclusion can be drawn that the EKF and KF methods can be effectively implemented to estimate the company's profitability.

![Figure 1](image1.png)
Figure 1. Estimation of PT. ABCD Profit with 300 iterations

![Figure 2](image2.png)
Figure 2. Estimation of PT. ABCD Profit with 400 iterations
The comparison of the estimation results with 300, 400 and 500 iterations as follow in Table 2:

Company profit	EKF 300 it.	KF 300 it.	EKF 400 it.	KF 400 it.	EKF 500 it.	KF 500 it.
0.1987	0.28563	0.1743	0.2759	0.1552	0.2544	

Simulation time	EKF 300 it.	KF 300 it.	EKF 400 it.	KF 400 it.	EKF 500 it.	KF 500 it.
4.5312 s	6.2189 s	8.3557 s	10.347 s	11.721 s	13.5521 s	

Further, the comparison of the estimation results having 300, 400 and 500 iterations as seen in Table 2 shows that using 500 iterations had the highest accuracy to estimate the profit of a company. In terms of simulation time, by using 300 iterations it was faster time than it was by using 400 and 500 iterations because the number of iterations greatly affects computation time. From the results of the analysis, the simulations having 300, 400 and 500 iterations had an error of less than 3%, so the EKF and KF methods could be implemented as one method of estimating company profits.

4. Conclusion

Based on the results of the simulation analysis, in general the EKF and KF methods could be effectively applied as an estimation method of profitability with quite high accuracy. It suggested that the EKF had much higher accuracy than the KF either with 300, 400, or 500 iterations. It could be concluded that the EKF and KF methods could be used to estimate profit of company with high accuracy. The EKF method
had an error of less than 2%, and The KF had less than 7%. In general, conclusion can be drawn that the EKF and KF methods can be effectively implemented to estimate the company's profitability.

Open problem. How to implemented Particle Filter for estimation of profitability.

Acknowledgement
Deep gratitude to LPPM - NahdatulUlama Surabaya of University (UNUSA) for their valuable support for the completion of this work.

References
[1]. Anshori M Y and Herlambang T 2019 Estimation Of Profitability Of A Company In PT. ABC Using Kalman Filter The 1ST International Conference On Bussines, Law, And Pedagogy 13-14 February 2019
[2]. Shandy W, Firdaus, Herlambang T 2018 Prediction of Availability of Packed Red Cells (PRC) at PMI Surabaya City Using Ensemble Kalman Filter as Management of Blood Transfusion Management Journal of Physics: Conf. Series **1211** 012031
[3]. Karya D F, Katias P, Herlambang T and Rahmalia D 2018 Development of Unscented Kalman Filter Algorithm for stock price estimation Journal of Physics: Conf. Series **1211** 012031
[4]. Katias P, Fidita D F, Herlambang T and Khusniah H 2018 Ensemble Kalman Filter for Crude Oil Price Estimation Journal of Physics: Conf. Series **1008** 012026.
[5]. Herlambang T, Mufarrikkoh Z, Fidita D F, Rahmalia D 2017 Estimation Of Water Level And Steam Temperature In Steam Drum Boiler Using Ensemble Kalman Filter Square Root (EnKF-SR) Journal of Physics: Conf. Series **1211** 012031
[6]. Herlambang T, Djatmiko E B and Nurhadi H 2015 Ensemble Kalman Filter with a Square Root Scheme (EnKF-SR) for Trajectory Estimation of AUV SEGOROGENI ITS International Review of Mechanical Engineering IREMEL Journal **9**(6) Pp. 553-560.
[7]. Herlambang T, Djatmiko E B and Nurhadi H 2015 Navigation and Guidance Control System of AUV with Trajectory Estimation of Linear Modelling Proc. of International Conference on Advance Mechatronics, Intelligent Manufacture, and Industrial Automation, IEEE pp. 184-187.
[8]. Nurhadi H, Herlambang T and Adzkiya D 2019 Position Estimation of Touristant ASV Using Ensemble Kalman Filter International Conference on Mechanical Engineering, 28-29 August 2019
[9]. Herlambang T 2017 Design of a Navigation and Guidance System of Missile with Trajectory Estimation Using Ensemble Kalman Filter Square Root (EnKF-SR) International Conference on Computer Applications and Information Processing Technology (CAIPT)-IEEE.
[10]. Herlambang T, Subchan and Nurhadi H 2019 Estimation of UNUSAITS AUV Position of Motion Using Extended Kalman Filter (EKF) International Conference on Advance Mechatronics, Intelligent Manufacture, and Industrial Automation, IEEE.