Two divergent *Symbiodinium* genomes reveal conservation of a gene cluster for sunscreen biosynthesis and recently lost genes

Eiichi Shoguchi1*, Girish Beedessee1, Ipputa Tada1,2, Kanako Hisata1, Takeshi Kawashima1,3, Takeshi Takeuchi1, Nana Arakaki4, Manabu Fujie4, Ryō Koyanagi5, Michael C. Roy5, Masanobu Kawachi6, Michio Hidaka7, Noriyuki Satoh1 and Chuya Shinzato1,8*

Abstract

Background: The marine dinoflagellate, *Symbiodinium*, is a well-known photosynthetic partner for coral and other diverse, non-photosynthetic hosts in subtropical and tropical shallows, where it comprises an essential component of marine ecosystems. Using molecular phylogenetics, the genus *Symbiodinium* has been classified into nine major clades, A-I, and one of the reported differences among phenotypes is their capacity to synthesize mycosporine-like amino acids (MAAs), which absorb UV radiation. However, the genetic basis for this difference in synthetic capacity is unknown. To understand genetics underlying *Symbiodinium* diversity, we report two draft genomes, one from clade A, presumed to have been the earliest branching clade, and the other from clade C, in the terminal branch.

Results: The nuclear genome of *Symbiodinium* clade A (SymA) has more gene families than that of clade C, with larger numbers of organelle-related genes, including mitochondrial transcription terminal factor (mTERF) and Rubisco. While clade C (SymC) has fewer gene families, it displays specific expansions of repeat domain-containing genes, such as leucine-rich repeats (LRRs) and retrovirus-related dUTPases. Interestingly, the SymA genome encodes a gene cluster for MAA biosynthesis, potentially transferred from an endosymbiotic red alga (probably of bacterial origin), while SymC has completely lost these genes.

Conclusions: Our analysis demonstrates that SymC appears to have evolved by losing gene families, such as the MAA biosynthesis gene cluster. In contrast to the conservation of genes related to photosynthetic ability, the terminal clade has suffered more gene family losses than other clades, suggesting a possible adaptation to symbiosis. Overall, this study implies that *Symbiodinium* ecology drives acquisition and loss of gene families.

Keywords: Dinoflagellates, Evolutionary genomics, *Symbiodinium*, Mycosporine-like amino acids, Symbiosis
The extensive diversification of *Symbiodinium* has been well described [11–16]. Molecular phylogenetics has classified these dinoflagellates into nine major groups, A to I [17]. *Symbiodinium* strains are hosted by ciliates, foraminiferans, sponges, cnidarians, molluscs, and acelomorphs [12, 18]. It is thought that clade A diverged first (the oldest) and that lineages C and H in the crown clade are the most recent (the youngest) (Fig. 1a). Clade A *Symbiodinium* may also form parasitic as well as mutualistic symbioses with other organisms [19–21]. The diversity and dominance of clade C in association with reef invertebrates has been reported in the Great Barrier Reef (GBR), Australia, and at Zamami Island, Okinawa, Japan [22].

Physiological work on *Symbiodinium* diversity has been reported using cultured *Symbiodinium* strains [23–25] and recent work clarifies differences in metabolite production among *Symbiodinium* clades [26]. One of the pioneering studies reported differences in mycosporine-like amino acid (MAA) production [23], but the genetic basis of this chemistry remains unknown in *Symbiodinium*. MAAs function as anti-oxidants and UV-absorbing molecules [27]. In a cultured dinoflagellate, *Gymnodinium sanguineum*, MAAs function as specific UV blockers to protect the dinoflagellate photosynthetic machinery [28]. Recently, four biosynthetic enzymes in a cyanobacterium were characterized using heterologous gene expression and an MAA biosynthetic gene cluster encoding those enzymes was characterized [29]. Further reports suggested that three enzymes involved in MAA biosynthesis, dimethyl 4-deoxygadusol (DDG), O-methyltransferase (O-MT), and ATP-grasp, are conserved in bacteria [30, 31] and the enzyme for the fourth biosynthetic step from the cluster is either a non-ribosomal peptide synthetase (NRPS) homolog or D-alanine (D-Ala) D-Ala ligase-like [30, 32]. Although these genes have also been found in eukaryotic genomes [33–37], the gene cluster has been identified only in bacterial [38] and red algal genomes [39]. One hypothesis is that the capacity for MAA production in *Symbiodinium* may be essential for symbioses involving hosts that cannot produce MAAs [27, 40].

Draft genomes have been published for three *Symbiodinium* taxa [4, 41, 42]. The most recent report [42] focused on diversification of transmembrane transporter genes. Comparative analysis also described the importance of duplicated genes as an evolutionary mechanism, underscoring the importance of lineage-specific expansions for symbiotic lifestyles, especially for genes encoding ion transporters. Comparative transcriptomic analyses have identified possible lineage- or clade-specific gene families [43]. While genome evolution of parasitic apicomplexans has been extensively studied, genomes of symbiotic dinoflagellates are still comparatively little known. Therefore, comparative genomic studies of diverse *Symbiodinium* species are essential to better understand *Symbiodinium* diversity. To clarify the genetic basis for different physiological phenotypes, we decoded the genomes of culturable clade A and clade C *Symbiodinium* and performed comparative analyses.

Results

Genome assembly and physiological characters in divergent *Symbiodinium* taxa

To obtain *Symbiodinium* genome sequences from early- and late-branching lineages, two strains (clade A, Y106 and clade C, Y103) were selected for genome sequencing (Fig. 1b and c). A molecular phylogenetic tree (Fig. 1a) from the recent analysis by Pochon et al. [12] and ITS sequences showed that Y106 belongs to clade A3 (SymA). In contrast, the subclade of Y103 was not clear from our phylogenetic analysis (SymC), although its ITS suggested that it is similar to clade C92 [44].

Physiological characterization by mass spectrometry confirmed that SymA3 produces an MAA, Porphyra-334 (Fig. 1d and e), which has an m/z of 347.1456 Da. On the other hand, MAAs were not detected in SymC (Fig. 1d) or in *S. minutum* (shown here as SymB) of clade B1 (data not shown). These results are comparable to previously reported differences at the clade level [23].

Using genomic DNA and mRNA from cloned cells, we obtained sequence data using Illumina GAIIx and Hiseq sequencers (Additional file 1: Tables S1 and S2). Approximately ~200 Gbp of genomic sequences were used for each assembly (Additional file 1: Table S1). In our previous sequencing of the *S. minutum* (SymB) genome, sequence data amounted to ~56 Gbp from Roche 454 and Illumina GAIIx platforms [4]. Thus, the amount of raw data in this study was much greater than that of the previous study. The assembly was performed as described previously, with several modifications [4]. We produced two assembled genomes suitable for gene analyses (Additional file 1: Table S3), as in our previous report [4]. Scaffolds totaled ~767 Mb and ~705 Mb for SymA and SymC, respectively (Additional file 1: Table S3). RNAseq data were derived from *Symbiodinium* cultured under standard conditions, as described previously [4], or under dark conditions (Additional file 1: Table S2). Data were assembled into 76,628 unique cDNAs in SymA and 68,876 in SymC (Additional file 1: Table S4). Gene predictions yielded 69,018 and 65,832 protein-coding models, respectively (Additional file 1: Table S3). The following genome browser provides access to the assembled data and predicted genes: http://marine genomics.oist.jp/gallery/. Using TopHat with default parameters [46], RNAseq reads were mapped by library (Additional file 1: Table S2) onto the draft genomes and information for read counts is available on the browser.
Fig. 1 (See legend on next page.)
mitochondrial factor family protein (mTERF) was found in SymC. A characteristic feature of gene structures in SymC was a higher frequency of genes lacking introns (19.7%) (Additional file 1: Table S3). The GC contents of the assembled SymA and SymC genomes were 50 and 43%, respectively (Additional file 1: Table S3). The largest difference between SymA and SymC is seen in peaks with a retention time of ~4.5 min (arrow). The large peak in SymA is not detected in SymC. High-resolution mass spectrum of isolated Porphyra-334 (MH+ 347.1456, C14H23N2O8, Δ 0.74 mmu), showing the production of mycosporine-like amino acid (MAAs) by SymA (arrow). Inset shows the chemical formula of Porphyra-334.

Gene content of each Symbiodinium genome

Both genomes were predicted to contain more than 65,000 genes (69,018 for SymA and 65,832 for SymC) (Additional file 1: Table S3). These numbers are larger than those of previously reported Symbiodinium genomes (41,925 for S. minutum, 36,850 for S. kawagutii, and 49,109 for S. microadriaticum) [4, 41, 42], although they fall within the estimated range of 38,000–87,000 [47]. To clarify which gene families are conserved or expanded in each lineage, we annotated predicted proteins using a Pfam domain search (http://marinegenomics.oist.jp/gallery/) and compared the proteins with genes of S. minutum. We found 4435 domain classes for 26,261 SymA genes, 4169 for 21,107 SymB genes, and 4122 for 23,808 from SymC (Fig. 2a).

Next, we compared gene numbers within gene families in each genome. Lineage-specific gene family expansions were defined as Pfam domain groups with multiple copies in Symbiodinium, in which gene numbers were significantly greater in one genome compared to the other two. The 30 most expanded gene families are summarized for SymA (Additional file 1: Table S5) and SymC (Additional file 1: Table S6), respectively. Our analyses indicate that the majority of the top 30 Pfam domains in SymA correspond to those reported previously [42]. These include reverse transcriptase (RVT), regulator of chromosome condensation (RCC1), and endonuclease (Additional file 1: Table S5). In the SymC genome, gene families for RVT, DNA methylase, integrase, and zf-CCHC are expanded. Thus, comparisons of gene numbers with Pfam domains showed many copies of reverse transcriptase in SymA and SymC. Special expansions in the genome of the late-branching group were predicted in gene families with DNA methylase or zf-CCHC domains. Similar observations have been reported in the Symbiodinium kawagutii genome [41]. It is possible that DNA methylation is related to endogenous retroviral expression [48]. zf-CCHC domains have been found in retrovirus GAG proteins [49]. These larger gene numbers in SymA and SymC (Additional file 1: Table S3) seem to be partly related to the richness of enzyme genes in many retroviruses.

To confirm the relationship between lineage-specific expansions and potential retrogenes, we constructed a molecular phylogenetic tree of UTPase proteins from Symbiodinium genomes (Fig. 2b). dUTPases prevent the misincorporation of uracil into DNA, and these enzymes have recently been suggested to regulate host interactions [50]. The two Symbiodinium genomes (SymA and SymB) encode one or two eukaryotic dUTPases per genome (Fig. 2b). On the other hand, the dUTPases in SymC are expanded and some of them had RVT domains. In addition, many of them are intronless, suggesting that gene expansion in SymC is due to integration of processed cDNAs [51].

Genes of endosymbiotic origin are conserved in the early-branching genome

When proteins containing transposable elements or retrovirus-related Pfam domains were removed from the calculation, it became apparent that organelle-related genes (mitochondrial or plastid proteins) have been expanded in SymA (Additional file 1: Table S5). In particular, the gene expansion for mitochondrial transcription termination factor family protein (mTERF) was found in the early-diverging genome (Fig. 2c). mTERF genes have been identified as putative organellar transcription factors [52, 53]. Land plants have the highest number of mTERF genes (~30 members), which are targeted to plastids and mitochondria [54]. The mammalian mTERF family (four genes) is important in mitochondrial gene expression. In addition, gene numbers for Peridinin-chlorophyll A binding protein (PCP), chlorophyll A-B binding proteins, and Rubiscos were more numerous
than those of other *Symbiodinium*. Expansion of chlorophyll a-binding proteins has also been reported in *Symbiodinium minutum* [55]. Several genes for Rubisco are tandemly aligned in the SymA genome, consistent with a previous report in the dinoflagellate, *Prorocentrum minimum* [56]. Differences in plastid physiological responses to heat stress were analyzed in SymA and SymB [57] and may be due to the expanded plastid-related proteins. In a future study, the relationship between stress and expansion of organelle-related genes will be determined, although gene functions in organelle genomes might also be important to understand differences in sensitivity to heat and light stress [58, 59].

Fig. 2 Comparisons and expansions of gene families in *Symbiodinium* lineages. a. Venn diagram comparing Pfam domains among three divergent *Symbiodinium* genomes. Total numbers of domain types found in each genome are shown outside the circle. Percentages indicate the ratio of the inside number to the total number. b-d. Molecular phylogenies of dUTPase (b), mitochondrial transcription termination (mTERF) proteins (c), and LRR domain-containing proteins (d), respectively. Scale bars show 0.5 changes per site. The arcs show possible lineage specific expansions in SymC (red) and SymA (green), respectively. A, SymA. B, symbB1. C, SymC. Adi, Acropora digitifera. Ath, Arabidopsis thaliana. Cci, Cephalus cirrhatus. Des, Desulfatibus sp. Epa, Exaiptasia pallida. Hhe, Human herpesvirus. Hsa, Homo sapiens. Lma, Leishmania major. Mhe, Maccaine herpesvirus. Nve, Nematostella vectensis. Pma, Perkinsus marinus. Rai, Rhizobium alamii. Tbr, Trypanosoma brucei. Vbr, Vitrella brassicaformis.

Expansions of repeat domain-containing genes in the late-branching genome

There were fewer gene families in the SymC genome than in SymA or SymB. On the other hand, genes for repeated domains are expanded, including leucine-rich repeats (LRR), FNIP (initial “FNIP” amino acids) repeats, and tetratrico peptide repeats (TPR) (Additional file 1: Table S6). Those domains are involved in protein-protein interactions [60, 61]. Therefore, these expansions may be similar to those of apicomplexans [62]. To characterize expanded LRR-containing proteins, we performed molecular phylogenetic analyses. Most of the expansion in SymC pertained to one subfamily similar to FNIP repeats, which has also been expanded in the *Dictyostelium*
incorporating the genes in this cluster (Fig. 3a, ment (Fig. 3). We constructed four phylogenetic trees differs from the bacterial arrange-
Figure S1). Unexpectedly, the gene cluster corresponds between light and dark conditions (Additional file 2: genome. In addition, preliminary RNAseq analysis indi-
cated that expression levels of those genes were similar to that of bacteria, although the gene arrangement of Symbiodinium kawagutii [41], but they have been identified in the host genomes of cnidarian anthozoans [35, 36]. We found genes for MAA biosynthesis [29, 30] in the SymA genome. In addition, preliminary RNAseq analysis indicated that expression levels of those genes were similar between light and dark conditions (Additional file 2: Figure S1). Unexpectedly, the gene cluster corresponds to that of bacteria, although the gene arrangement of D-Ala D-Ala ligase differs from the bacterial arrangement (Fig. 3). We constructed four phylogenetic trees incorporating the genes in this cluster (Fig. 3a, Additional file 2: Figures S2-S4). Dinoflagellate DDG synthases clustered with those of anthozoans (Fig. 3a), while O-methyltransferases and D-Ala D-Ala ligases are shared with those of bacteria (Additional file 2: Figures S2 and S4). The phylogenetic relationship of ATP-grasp is unclear (Additional file 2: Figures S3). This complicated result suggests that those genes have been lost in eukaryotes or have been transferred several times. It has been suggested that the fusion gene (3-dehydroquinate synthase+O-methyltransferase) came from cyanobacteria [33] or via secondary endosymbiosis [65]. Our analysis implies that these genes were likely acquired in gene transfers via secondary endosymbiosis (Fig. 3a).

Gene cluster for mycosporine-like amino acid (MAA) biosynthesis in Symbiodinium
To determine the genetic basis for the difference in MAA production (Fig. 1d and e), we surveyed the decoded Symbiodinium genomes. MAA biosynthetic genes have not been found in the genome of Symbodi-
We surveyed raw data from publicly available Symbodi-
Lesser, or that the early-branching lineages have losses of MAA biosynthetic genes. On the other hand, genes in this cluster were not found in the SymC genome. Although we surveyed raw data from publicly available Symbodi-
Globular C, which was originally isolated from Fragum [72], had no MAA biosynthetic gene cluster, so our analysis supports that suggestion [72].

Conclusions
Gene expansions in Symbiodinium have occurred both by tandem duplication and integration of processed cDNA, possibly transposon-mediated. Comparative analyses indicate that expanded genes in the early-branching
Fig. 3 The nuclear genome of the earliest-branching *Symbiodinium* (SymA) harbors a gene cluster to produce MAAs. **a.** Molecular phylogenetic analysis of dimethyl 4-deoxygadusol (DDG) synthase by maximum likelihood. Numbers denote bootstrap values (WAG+G model and RAxML) and posterior probabilities (MrBayes). nd: "not determined" by a different topology. DDG genes of *Symbiodinium* are clustered with other dinoflagellate proteins from *Karlodinium veneficum* and *Heterocapsa triquetra*. In addition, dinoflagellate proteins are phylogenetically close to those of anthozoans. **b.** Potential evolutionary relationships between MAA gene clusters in cyanobacteria and those of eukaryotes with DDG synthase are shown. Deep evolutionary conservation of the bacterial-like gene cluster is suggested in SymA. On the other hand, genes within the cluster have been lost in the crown lineage (red box). The topology of the tree is based on phylogenetic analysis of DDG synthase.
lineage include organelle-related genes. The crown lineage retains fewer gene families, but has acquired repeat-domain genes for protein-protein interactions, resembling massive gene losses and extracellular protein expansions in apicomplexans [62]. Finally, our decoded genomes show that the MAA gene cluster of secondary endosymbiotic origin, which is present in some dinoflagellate genomes, has been lost in the crown lineage of \textit{Symbiodinium}. Taken together, these studies suggest that gene losses and expansions of genes transferred via secondary endosymbiosis drive \textit{Symbiodinium} evolution.

\textbf{Methods}

\textbf{Biological materials}

Two dinoflagellates, \textit{Symbiodinium} spp. clade A (SymA) and clade C (SymC) were cultured to produce genomic DNA and mRNA for sequencing. SymA and SymC are harbored by the cardiid clams, \textit{Tridacna crocea} and \textit{Fragum} sp., respectively, obtained in Okinawa, Japan. In regard to host habitats, \textit{T. crocea} is epifaunal and \textit{Fragum} is infaunal [72]. In the 1980s, isolations of \textit{Symbiodinium} cells were performed by Prof. Terufumi Yamasu at the University of the Ryukyus using sterilized seawater and micropipettes [73]. The cultured \textit{Symbiodinium} have been maintained since then in the laboratory of Prof. Michio Hidaka, at the University of the Ryukyus. SymA and SymC were designated as strains “Y106” and “Y103,” respectively. By manually isolating single cells under a microscope using a glass micropipette, each isoclinal line was established at the Marine Genomics Unit of Okinawa Institute of Science and Technology Graduate University in 2009. Repetitive subculture in 250-mL flasks has continued for 8 years, as previously described [4]. Using an incubator (CLE-303, TOMY), all cultures were maintained at 25 °C on a 12 h-light/12-dark cycle at about 20 μmol.m\(^{-2}\).s\(^{-1}\) illumination with white fluorescent lamps. The culture solution was artificial seawater containing 1× Guillard’s (F/2) marine-water enrichment solution (Sigma-Aldrich), plus three antibiotics, ampicillin (100 μg/mL), kanamycin (50 μg/mL), and streptomycin (50 μg/mL). Although culturing difficulties for some clade C \textit{Symbiodinium} have been reported [74], the same culturing conditions have resulted in similar growth rates for SymA, SymC, and \textit{S. minutum} (SymB).

\textbf{Genome sequencing and assembly}

DNA obtained from clonal cultures (25 °C) of SymA and SymC was used for Illumina library construction (Additional file 1: Table S1), as described previously. Libraries were sequenced using the Illumina Genome Analyzer IIX (GAIIx) and Hiseq (Additional file 1: Table S1). Paired-end reads were assembled de novo with IDBA_UD (ver. 1.1.0) [75], and subsequent scaffolding was performed with SSPACE (ver. 3.0) [76] using Illumina mate-pair information. Gaps inside scaffolds were closed with Illumina paired-end data using Gapcloser [77]. As described previously [4], sequences that aligned to another sequence by more than 70% using BLASTN (1e\(^{-100}\)) were removed from the assembly. Scaffolds > 1 kb were added in version 1.0 of the genome assembly.

\textbf{Transcriptome sequencing and assembly}

Cells cultured at 25 °C were aliquoted and freshly cultured under three types of conditions, 25 °C on 12 h-light/12-dark (Control), 31 °C on 12-light/12-dark (heat-stressed), and 25 °C under 24-dark (dark condition) (Additional file 1: Table S2). After 48 h, cells were collected and frozen for RNA extraction, as done previously [4]. RNAseq library preparation followed manufacturer protocols. RNA sequencing was performed using the GAIIx platform. De novo transcriptome assembly was performed using Trinity software [78].

\textbf{Gene prediction and annotation}

A set of gene model predictions (Gene Model ver. 1) was generated mainly with AUGUSTUS [4], and a genome browser has been established using the Generic Genome Browser (JBrowser) [79]. Annotation and identification of \textit{Symbiodinium} genes were performed using three methods or combinations of methods: reciprocal BLAST analyses, screening of gene models against the Pfam database [80] at an E-value cutoff of 0.001, and phylogenetic analyses. Gene annotations are available at the genome browser site (http://marinegenomics.oist.jp/gallery/). Scaffold 1 of both SymA and SymC manifested similarities to a bacterial genome, which was identified by genome sequencing of \textit{Symbiodinium minutum} [4], but which was not included for gene annotation. Expansions of gene families were predicted by chi-square values from comparisons of gene numbers with Pfam domains.

\textbf{Molecular phylogenetic analysis}

Maximum likelihood (ML) phylogenetic trees were constructed using MEGA 5.2, as previously described [81]. ML phylogenetic analysis of the DDG synthase family was also carried out using RaxML with 1000 bootstraps and using the GAMMA and Le-Gasquel model of rate heterogeneity [82]. Bayesian inference was conducted with MrBayes v.3.2 [83] using the same replacement model and run for 4 million generations and four chains until the posterior probability approached 0.01. Statistics and trees were summarized using a burn-in of 25% of the data. Phylogenetic trees were visualized using Figtree (http://tree.bio.ed.ac.uk/software/figtree/) and edited with Treegraph 2 [84].

\textbf{MAA extraction from \textit{Symbiodinium}}

\textit{Symbiodinium} cells were cultured at 25 °C for 1 mo on a 12 h-light/12-dark cycle at about 20 μmol.m\(^{-2}\).s\(^{-1}\)
illuminations, as described in the section, Biological materials, and cells were not exposed to UV. Biomass was collected by centrifugation and extracted with methanol (10 mL × 2) at room temperature. Methanol (10 mL) was added to the biomass (0.4–0.6 g, wet weight) followed by vortexing (1 min), sonication (10 min), and centrifugation (7000 g, 10 min, 10 °C) to yield a methanol extract. The resulting clear solution was transferred to a new tube and stored at ~30 °C. Additional methanol was added to the residue, vortexed, and kept overnight at room temperature. After centrifugation, the second methanol extract was decanted, pooled with the first extract, and dried in a vacuum concentrator (40 °C), and the crude extract was stored at ~30 °C before HPLC analysis and purification. The dried methanol extract was suspended in TFA (0.2%, 1 mL) followed by vortexing (1 min), sonication (10 min), and centrifugation (7000 g, 10 min, 10 °C) to give a clear aqeous solution, which was collected and analyzed by HPLC and LC-MS.

MAA analysis by high performance liquid chromatography (HPLC)

HPLC was run on a Nexera (LC-10 AD, Shimadzu) equipped with an autosampler (SIL-30 AC), a column oven (CTO-20 AC), and diode-array detector (SPD-M20A). An ODS column (150 × 2.1 mm, 5 μm, Hypersil Gold, Thermo) was used for MAA analysis and an ODS column (250 × 4.6 mm, 5 μm, Cosmosil) was used for purification. A 16-min gradient was used (A/B 100/0 for 0.0–5.0 min, 100/0 to 85/15 for 5.0–10.0 min, followed by washing 5/95 for 10.0–13.0 min and equilibration 100/0 for 13.0–16.0 min. Solvents (A) Milli Q water and (B) acetonitrile, both containing 0.1% TFA) were used for separation of compounds. A 15 μL sample was injected into the column using the autosampler and MAAs were detected at λ330 nm. A constant flow rate 300 μL/min was used and the column was kept at 25 °C.

MAA crude extracts purification by HPLC

The aqueous MAA extract from *Symbiodinium* was dried and redissolved in 0.2% TFA (300 μL) and injected into the preparative ODS column (250 × 4.6 mm, 5 μm, Cosmosil) using the above HPLC and the target peak (retention time, 8.0 min) was collected. The purified component showed homogeneity in HPLC analysis and was identified as porphyrin-334 by high-resolution mass spectrometry.

Identification of MAAs from *Symbiodinium* by NanoLC-mass spectrometry (NanoLC-MS)

As described previously [8], a Thermo Scientific hybrid (LTQ Orbitrap) mass spectrometer was used for MS data collection. The mass spectrometer was equipped with an HPLC (Paradigm MS4, Michrom Bioresources Inc.), an auto-sampler (HTC PAL, CTC Analytics), and a nanoelectrospray ion source (NSI). The high-resolution MS spectrum was acquired at 60,000 resolution in FTMS mode (Orbitrap), full mass range m/z 150–500 Da, with capillary temperature (200 °C) and spray voltage (1.9 kV), in positive ion mode. Crude extracts and purified MAAs were separated on a capillary ODS column (50 × 0.15 mm, 3-μm, C18, VydaC). A 15-min gradient was employed (100% A for 0.0–10.0 min, 100 to 50% A from 10.1 to 12.0 min, hold at 50% A until 15.0 min, equilibration at 100% A for 15.0 to 18.0 min, where solvent A was water-acetonitrile 98:2 and solvent B was water-acetonitrile 2:98, both containing 0.1% formic acid. The flow rate was 2.0 μL/min and a 2.0 μL sample loop was used for MAA separation.

Additional files

Additional file 1: Table S1. Summary of illumina data used for assembling *Symbiodinium* genomes. Table S2. Summary of illumina data used for assembling *Symbiodinium* transcriptomes. Table S3. Genomic compositions of three genomes of the genus *Symbiodinium*. Table S4. Summary of assembled transcriptome contigs. Table S5. Expanded genes having Pfam domains in *SymA*. Table S6. Expanded genes having Pfam domains in *SymC*. (DOX 119 kb)

Additional file 2: Figure S1. A screen shot of scaffold 314 on the *SymA* genome browser, which is accessible via http://marinegenomics.oist.jp/gallery/, and RNAseq read counts showing the expressions of MAA biosynthetic genes. Figure S2. A molecular phylogenetic tree of O-methyltransferase. Figure S3. A molecular phylogenetic tree of ATP-grasp family proteins. Figure S4. A molecular phylogenetic tree of D-Ala D-Ala ligase family proteins. Figure S5. A molecular phylogenetic tree of cryptochromes/photolyases. (PDF 651 kb)

Acknowledgements

We thank the IT section of OIST for supercomputing support. We also thank Dr. Steven D. Aird for language editing and helpful comments on the manuscript. We acknowledge Ms. Mayuki Fujiwara for isolation of *Symbiodinium* specimens and members of the NIES collection staff for acceptance and maintenance of deposited *Symbiodinium* strains. We thank members of the Marine Genomics Unit for technical support, especially Dr. Makiko Tanaka and Ms. Maria Khalturina, for cell culturing and RNAseq library preparation.

Funding

This work was supported in part by Grants-in-Aid from MEXT (no. 25128712 to ES) and JSPS (no.16 K07454 to ES, no. 24241071 to NS.) of Japan, and by generous support from OIST Graduate University to the Marine Genomics Unit.

Availability of data and materials

All sequence data from cultured *Symbiodinium* are accessible in the DDBJ/EMBL/NCBI database at BioProject IDs, PRJDB3242 for the Y106 strain and PRJDB3243 for the Y103 strain. Accession numbers of raw sequence data are shown in Tables S1 and S2 (Additional file 1). Sequence datasets generated during the current study and raw data (m2XXML format) from the mass spectrometer are also available at the genome browser site (http://marinegenomics.oist.jp/gallery/). [45]. Both strains were deposited in the National Institute for Environmental Studies (NIES) collection, at Tsukuba, Japan, and are available as NIES-4076 (*Symbiodinium* sp. Y-106, clade A3) and NIES-4077 (*Symbiodinium* sp. Y103, clade C), respectively.

Authors’ contributions

ES, TK, MH, NS, and CS designed the project. NA and MF extracted DNA samples for genome sequencing and RK purified RNA samples. NA, MF, and RK prepared and sequenced the libraries. ES, GB, IT, HK, TK, TT, MK, and CS
analyzed sequence data. ES, GB, IT, KH, NS, and CS interpreted sequence data. IT, KH, and TT performed gene family analysis. ES and MR analyzed MAAs.

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan. 2Present address: Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Tsukuba 305-8506, Japan. 3Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Onna, Okinawa 904-0495, Japan. 4DNA Sequencing Section, Okinawa Graduate University, Onna, Okinawa 904-0495, Japan. 5Present address: Center for Information Biology, National Institute of Genetics, Mishima 411-8540, Japan. 6Department of Genetics, Mishima 411-8540, Japan. 7Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan. 8Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwano, Kashiwa 277-8546, Japan.

Received: 1 March 2018 Accepted: 6 June 2018 Published online: 14 June 2018

References
1. Horiguchi T. Diversity and phylogeny of marine parasitic dinoflagellates. In: Marine Protist. Tokyo: Springer; 2015. p. 397–419.
2. Wisercafer JH, Heidt JD. Dinoflagellate genome evolution. Annu Rev Microbiol. 2011;65:369–87.
3. Lin S. Genomic understanding of dinoflagellates. Res Microbiol. 2011;162:551–69.
4. Shoguchi E, Shinzato C, Kawashima T, Gyoja F, et al. Draft assembly of the Symbiodinium minutum nuclear genome reveals dinoflagellate gene structure. Curr Biol. 2013;23:1399–408.
5. Janouškové J, Gayevský GS, Burki F, Dinh D, Bacharoff TR, Gomlik SG, et al. Major transitions in dinoflagellate evolution unveiled by phylogenomics. Proc Natl Acad Sci U S A. 2017;114:E171–80.
6. Wham DC, Laleunesse TC. Symbiodinium population genetics: testing for species boundaries and analyzing samples with mixed genotypes. Mol Ecol. 2016;25:2699–712.
7. Wang D-Z. Neurotoxins from marine dinoflagellates: a brief review. Mar Drugs. 2008;6:349–71.
8. Brade L, Hisata K, Roy MC, Sato N, Shoguchi E. Multifunctional polyketide synthase genes identified by genomic survey of the symbiotic dinoflagellate, Symbiodinium minutum. BMC Genomics. 2015;16:941.
9. Meyer E, Weis VM. Study of cnidarian-algal Symbiosis in the “omics” age. Biol Bull. 2012;223:44–65.
10. Shinzato C, Mungpakdee S, Sato N, Shoguchi E. A genomic approach to coral-dinoflagellate symbiosis: studies of Acropora digitifera and Symbiodinium minutum. Front Microbiol. 2014;5:336.
11. Baker AC. Flexibility and specificity in coral-algal Symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annu Rev Ecol Evol Syst Annual Reviews. 2003;34:661–89.
12. Pochon X, Putnam HM, Gates RD. Multi-gene analysis of Symbiodinium dinoflagellates: a perspective on rarity, symbiosis, and evolution. PeerJ. 2014;2:e2404.
13. Yamashita H, Koike K. Biology of symbiotic dinoflagellates (Symbiodinium) in corals. In: Marine Protist. Tokyo: Springer; 2015. p. 421–39.
14. Carlos AA, Baillie BK, Kawachi M, Maruyama T. Phylogenetic position of Symbiodinium (Dinophyceae) isolated from tadacids (Bivalvia), cardids (Bivalvia), a sponge (Porifera), a soft coral (Anthozoa), and a free-living strain. J Phycol. Wiley Online Library. 1999;35:1054–62.
15. Coffroth MA, Santos SR. Genetic diversity of symbiotic dinoflagellates in the genus Symbiodinium. Protist. 2005;156:19–34.
16. Hirose M, Reimer JD, Hidaka M, Suda S. Phylogenetic analyses of potentially free-livingSymbiodinium spp. isolated from coral reef sand in Okinawa, Japan. Mar biol. Springer-Verlag. 2008;155:105–12.
17. Pochon X, Gates RD. A new Symbiodinium clade (Dinophyceae) from soritid foraminifera in Hawai‘i. Mol Phylogenet Evol. 2010;56:492–7.
18. Hikosaka-Katayama T, Koike K, Yamashita H, Hikosaka A, Koike K. Mechanisms of maternal inheritance of dinoflagellate symbionts in the acelomorph worm Warninna lutz. Zool Sci. 2012;29:559–67.
19. Stat M, Morris E, Gates RD. Functional diversity in coral-dinoflagellate symbiosis. Proc Natl Acad Sci U S A. 2008;105:9256–61.
20. Laleunesse TC, Lee SY, Gil-Agudelo DL, Knolton W, Jeong HJ. Symbiodinium necropropters sp. nov.(Dinophyceae): an opportunist “zoanxanthella” found in bleached and diseased tissues of Caribbean reef corals. Eur J Phyc. Taylor & Francis. 2015;50:223–38.
21. Lee SY, Jeong HJ, Kang NS, Jeong YJ, Lajeunesse TC. Symbiodinium tridacnidiun sp. nov., a dinoflagellate common to indo-Pacific giant clams, and a revised morphological description of Symbiodinium microadactylum Freudenthal, emended tennen &blank. Eur J Phyc. Taylor & Francis. 2015;50:155–72.
22. Laleunesse TC, Bhagooli R, Hidaka M, deVantier L, Done T, Schmidt GW, et al. Closely related Symbiodinium spp. differ in relative dominance in coral reef host communities across environmental, latitudinal and biogeographic gradients. Mar Ecol Prog Ser. Inter-Research Science Center. 2004;284:147–61.
23. Banaszak AT, Laleunesse TC, Trench RK. The synthesis of mycosporine-like amino acids (MAAs) by cultured, symbiotic dinoflagellates. J Exp Mar Bio Ecol. 2000;249:219–33.
24. Takahashi S, Whitney SM. Badger MR. Different thermal sensitivity of the repair of photodamaged photosynthetic machinery in cultured Symbiodinium species. Proc Natl Acad Sci U S A. 2009;106:3237–42.
25. Diaz-Almeyda EM, Prada C, Ohdera AH, Moran H, Civitello DJ, Iglesiasi-Prieto R, et al. Intraspecific and interspecific variation in thermotolerance and photoacclimation in Symbiodinium dinoflagellates. Proc Biol Sci. 2017;284:20171767. Available from: https://doi.org/10.1098/rspb.2017.1767
26. Klueter A, Crandall JB, Archer FJ, Teece MA, Coffroth MA. Taxonomic and environmental variation of metabolite profiles in marine dinoflagellates of the genus Symbiodinium. Meta. 2015;5:74–99.
27. Shick JM, Dunlap WC. Mycosporine-like amino acids and related Gudatosol biosynthesis, accumulation, and UV-protective functions in aquatic organisms. Annu Rev Physiol. Annual Reviews. 2002;64:223–62.
28. Neale PJ, Banaszak AT, Jarriel CR. Ultraviolet sunscreens in Gymnodinium sanguineum. Mar Ecol. 2000;21:403.
29. Balskus EP, Walsh CT. The genetic and molecular basis for sunscreen biosynthesis, accumulation, and UV-protective functions in aquatic organisms. Annu Rev Microbiol. Annual Reviews. 2014;68:528–38.
30. Shimura Y, Hirose Y, Misawa N, Osana Y, Katoh H, Yamanuchi H, et al. Comparison of the terrestrial cyanobacterium Leptolyngbya sanguineum with the freshwater Leptolyngbya boryana PCC 6306 genomes. DNA Res. 2015;22:403–12.
31. Gao Q, Garcia-Pichel F. Microbial ultraviolet sunscreens. Nat Rev Microbiol. 2011;9:791–802.
32. Waller RF, Simonsen CH, Keeling PJ. Lateral gene transfer of a multigene region from cyanobacteria to dinoflagellates resulting in a novel plastid-targeted fusion protein. Mol Biol Evol. 2006;23:1437–43.
33. Starcevic A, Akthar S, Dunlap WC, Shick JM, Hanueli D, Cullum J, Long PF. Enzymes of the shikimic acid pathway encoded in the genome of a basal dinoflagellate, Symbiodinium microadactylum, a sea anemone model for coral symbiosis. Protist. 2005;156:19–34.
34. Shimura Y, Hirose Y, Misawa N, Osana Y, Katoh H, Yamanuchi H, et al. Enzymes of the shikimic acid pathway encoded in the genome of a basal dinoflagellate, Symbiodinium microadactylum, a sea anemone model for coral symbiosis. Protist. 2004;156:19–34.
