Causal Augmentation for Causal Sentence Classification

Anonymous ACL submission

Abstract

Scarcity of corpora with annotated causal texts can lead to poor robustness when training state-of-the-art language models for causal sentence classification. In particular, we find that these models misclassify on augmented sentences that have been negated or strengthened in terms of their causal meaning. This is worrying because minor linguistic changes in causal sentences can have disparate meanings. To resolve such issues, we propose to generate counterfactual causal sentences by creating contrast sets (Gardner et al., 2020). However, we notice an important finding that simply introducing edits is not sufficient to train models with counterfactuals. We thus introduce heuristics, like sentence shortening or multiplying key causal terms, to emphasize semantically important keywords to the model. We demonstrate these findings on different training setups and across two out-of-domain corpora. Our proposed mixture of augmented edits consistently achieves improved performance compared to baseline across two models and both within and out of corpus’ domain, suggesting our proposed augmentation also helps the model generalize.

1 Introduction

Causality is an important concept for knowledge discovery as it conveys the idea of cause and effect. In the simplest sense, a causal relation exists between entities A and B through the statement “A causes B” or “B is caused by A”. In recent years, causal relation extraction from text has garnered large interests in Natural Language Processing (NLP) (Asghar, 2016; Xu et al., 2020).

Causal sentence classification (CSC) is the task of identifying sentences that contain causality information. Figure 1 demonstrates examples where similar claims are categorized by their causal strengths. CSC is challenging because the syntax of causality varies in context. Thus, it is difficult to exhaustively capture causal expressions, especially for implicit occurrences (Asghar, 2016). Additionally, negations and the absence of causality complicate automatic causality identification tasks (Heindorf et al., 2020).

Furthermore, there is a lack of good quality CSC datasets (Asghar, 2016; Xu et al., 2020). Most NLP datasets typically treat causal relation extraction as a subtask of relation extraction, where “Cause-Effect” is one of the many relation labels. However, causality is a complex relation best learned using dedicated causal relation datasets. Dedicated causal relation corpora that exist are mostly small in size (<5000 sentences), except for AltLex (Hidey and McKeown, 2016) that has over 40000 sentences. Datasets also tend to label causal relations in an overly simplistic binary level (as ‘causal’ or ‘not causal’). Only some works classify text by causal strengths (Girju and Moldovan, 2002; Yu et al., 2019; Sumner et al., 2014).

Data augmentation is a natural avenue for handling small-sized datasets. Augments created must be meaningful to explain representation gaps in the current datasets. In causality, both the causal direction and strength matter. As such, models need
to be sensitive towards negations and semantics of words to avoid misclassification. For example, in Figure 1, two similar sentences “Tsunamis are caused by earthquakes.” and “Earthquakes may trigger ... a tsunami.” differ in causal strengths. Therefore, we propose artificially constructing meaningful counterfactuals that would reflect the model’s decision boundaries. We do so by applying rule-based schemes that negate causal relations or strengthen conditionally causal sentences. Additionally, we explore heuristical edits on CSC performance.

We find that state-of-the-art (SOTA) language models, such as BERT (Devlin et al., 2019) with MLP or SVM classifiers, achieve improvements in classification performance when trained with our created counterfactuals. In addition, our evaluation on cross-domain datasets shows that training on augmented datasets (original plus edits) improves model generalization to out-of-domain (OOD) contexts. This is consistent with findings from (Kaushik et al., 2020a,b) in sentiment analysis and natural language inference contexts. In summary, we make the following contributions:

1. We propose causal negation and strengthening schemes based on dependency and part-of-speech (POS) tags to augment causal sentences. To our knowledge, we are the first to study the effects of counterfactual augmentation in the context of causal claims.

2. We show that current SOTA models are not robust to minimally perturbed sentences that differ in causal direction and strength.

3. We observe that simple heuristical edits on these counterfactuals make models more effective for low resource CSC with limited number of causal and conditional causal sentences.

4. We show that a mixture of counterfactuals improves performance in the trained domain and also generalize better to OOD corpora such as SCITE (Li et al., 2021) and AltLex (Hidey and McKeown, 2016).

2 Related Works

2.1 Causal Sentence Classification

Although causality is an important concept for knowledge discovery, benchmarking datasets and standardization of labeling rules have been limited, prohibiting empirical comparisons across methodologies (Asghar, 2016; Xu et al., 2020). Most NLP benchmarking datasets define causal relations as just one out of many class labels (e.g. Part-Whole) (Jurgens et al., 2012; Gábor et al., 2018; Caselli and Vossen, 2017; Mirza et al., 2014; Mirza and Tonelli, 2016). Others, focused on causal relations, define such relations as a binary label (Li et al., 2021; Hidey and McKeown, 2016). However, causality may not always occur at extremes in real-life statements, and correlation can get confused for causation (Buhse et al., 2018). As such, instead of using a binary model of causality, a better way is to classify varying “strengths” of causal relations in sentences. In fact, a seven-point scheme was proposed by Sumner et al. (2014) to categorize causal statements from health-related news and academic press releases. Subsequently, Yu et al. (2019) adapted this for scientific texts into a four-level system. In this work, we adopt the four-level causality labeled corpus and classification model by Yu et al. (2019).^2

There is also an often observed issue that NLP systems that perform well on task datasets do not generalize to “real-life scenarios”, thereby misleading and overstating the accuracies and usefulness of their models. Ensuring model generalizability to other domains can be challenging. For example, Ramesh et al. (2012) showed discourse triggers are different between the biomedical and general domains. In recent years, more focus has been placed in the field to ensure sufficient data representativeness and transferability of results onto OOD settings. In this work, we will also evaluate the generalizability of our models to classify causal sentences from other domains.

2.2 Counterfactuals in NLP

Counterfactual generation is a popular strategy for NLP researchers to test and improve model robustness via adversarial learning and attacks (Morris et al., 2020; Mahler et al., 2017) or for mitigating bias (Kaushik et al., 2020a; Maudslay et al., 2019). Gardner et al. (2020) proposed using counterfactuals to fill local theoretical gaps in a model’s context of causal claims.

^1The seven levels of causal strengths are (1) no statement, (2) explicit statement of no relation, (3) correlational, (4) ambiguous (i.e. relationship is present but the direction and level is ambiguous), (5) conditional causal, (6) can cause, and (7) unconditionally causal.

^2We were unable to work on Sumner et al.’s dataset as it was not publicly available and had very limited samples per class label.
decision boundary. They relied on expert judgments to generate similar but meaningfully different sentences. They showed that across a variety of tasks (e.g., reading comprehension, sentiment analysis, visual reasoning) and input-output formats (e.g., classification, span extraction, structured prediction), SOTA models struggle on contrast sets compared to original test sets. In our work, we generate counterfactuals meaningful for CSC, such as moving sentences across labels when we perform Negation (causal \(\rightarrow\) no relationship) and Strengthening (conditional causal \(\rightarrow\) causal) strategies. While Gardner et al. (2020) have noted that it is challenging to come up with automated construction of contrast sets and proposed authors to manually perturb statements, we provide an automatic rule-based schema to negate and strengthen causal statements at scale.

Kaushik et al. (2020a) manually revised documents that would correspond to a counterfactual target label for sentiment analysis and natural language inference tasks. They showed that training with similar quantities of augmented data compared to the original improves generalization ability to OOD datasets. In this paper, we have also found that counterfactuals can help to improve model generalizability for CSC. Again, our linguistics-based augmentations do not rely on human intervention.

3 Methodology

3.1 Task Details

The CSC task involves classifying a span of text with a causal label based on its intended meaning. We use the PubMed-based corpus CSci\(^3\), provided by Yu et al. (2019) comprising of 3061 sentences annotated with 4 different levels of causal relation: no relationship \((c_0)\), causal \((c_1)\), conditional causal \((c_2)\), and correlational \((c_3)\).

3.2 Counterfactual Generation

In a low-resource setting, our proposal is that researchers should create counterfactuals that push causal sentences across labels so as to improve the robustness of their models. Figure 2 demonstrates the two main strategies to generate counterfactual examples for CSC, namely (1) Causal Negation and (2) Causal Strengthening. We discuss these strategies next\(^4\).

3.2.1 Causal Negation

In this strategy, we negate the direction of causal statements from causal \((c_1)\) to no relationship \((c_0)\).

After obtaining POS tags and root words based on dependency trees\(^5\), we performed negations around the root word. Our coding schema (Algorithm 1 in the Appendix) inserts negative words like ‘no’, ‘not’, ‘nor’ or ‘did not’ to flip the meaning of the sentence. 12 negation linguistic templates were used. Successfully negated sentences are termed as ‘Edit’ sentences. If no matching template was found, the sentence was skipped. Of the 493 original (causal) sentences from the CSci corpus, 384 sentences had available negations.

To improve text flow, we used antonyms to replace negated edits where applicable. We do so by searching for antonyms of the original root word based on WordNet (Miller, 1995) and termed successful antonym edits as ‘Edit-Alt’. To ensure similar tense was used, we detected the original word’s tense and applied the same tense onto the antonym word using the Pattern package (De Smedt and Daelemans, 2012). An example ‘Edit’ and ‘Edit-Alt’ sentence is shown in Table 1.

To select between ‘Edit’ and ‘Edit-Alt’ versions, we calculated the Levenshtein edit distance of the original word versus the antonym. We select ‘Edit-Alt’ only if the edit distance is less than or equal to 30% of the length of the longer word, rounded to the nearest integer. This allows us to keep conversions like ‘able \(\rightarrow\) unable’ for more natural word flow, but discard bolder and more drastic changes like ‘safe \(\rightarrow\) dangerous’ and ‘had \(\rightarrow\) refused’ that

\(^3\)https://github.com/junwang4/causal-language-use-in-science

\(^4\)Our edit schemes, model pipeline, datasets and supplementary materials can be found on Github at https://xxx.xxx.xxxx (Also uploaded under Software)

\(^5\)We used NLTK (Wagner, 2010) to obtain POS tags in PennTreeBank format and spaCy (Honnibal et al., 2020) for dependency tree extraction.
were either suggesting causality in the opposite direction (rather than no relationship) or outright wrong. Finally, after dropping duplicates, we obtained 381 sentences that represent non-causality.

We were able to apply 11 out of the 12 linguistic templates to generate causal negation for the sentences in CSci. Most edits fall into the category where we negate the root verb or adjective of the sentence. Appendix Table A1 shows one randomly sampled example per available negation method when applied onto the CSci corpus. With respect to this table, Appendix Section A.1 briefly discusses the grammatical sanity of these sentences. We inspected these randomly sampled counterfactuals to verify that sentence flows are natural and desirable.

3.2.2 Causal Strengthening

We also increased the strength of causal statements from conditional causal \((c_2)\) to causal \((c_1)\) by exploiting modal words. Similar to Negation, we first obtain the POS tags and dependency trees for each sentence.

Algorithm 2 in the Appendix outlines the rule-based pseudo-code. In general, the 5 linguistic templates created converts modals based on the dictionary: \{'could', 'should', 'would'\} → ‘would’ and \{'can', 'may', 'might', 'will'\} → ‘will’. When modals interact with verbs with lemma ‘be’, we replace ‘modal+be’ with ‘was’ instead to convey certainty in causal meaning. For special cases when modal terms interact with ‘have’ which forms conditional perfect tense, we convert them into simple past tense by replacing ‘modal+have’ with ‘had’. When a modal is followed by an adverb (E.g. “can possibly”), the adverb is removed to avoid any deviation of the causal meaning from certainty.

Table A2 shows a randomly sampled example per causal strengthening method when applied onto the CSci corpus. Of the 213 available sentences, we successfully augmented 174 of them.

3.3 Dataset Processing

Duplicates exists in the original CSci corpus and arise when we append the edits with the original sentences. De-duplication based on priority rules discussed in Appendix Section A.2 was applied.

Our augmentations would increase the sample size for particular class labels. To combat this, we randomly selected sentences such that the original class distribution is maintained. Our main analysis focuses on randomly sampled datasets to eliminate the concern that the improved performance might result from increased data size or advantageous train set distribution. However, note that the final dataset size is always slightly smaller than the original baseline due to the de-duplication step. After random sampling, the distribution thus slightly differs. The final sample counts across class labels per augmented dataset are summarized in Appendix Table A5.

3.4 Further Heuristics

Later in results Section 4.4.1, we observe that simple edits which highlight the main counterfactual phrase to the model helps improve performance. Although these heuristics result in non-grammatical sentences, we believe these edits explicitly emphasize augmented keywords for the model to learn the local syntactic changes better. Since we still train the model with the original sentences (in fact, the majority), the model will not memorise on only non-grammatical examples.

An example sentence is detailed in Table 1 with the two augmentation variations as follows:

Conversion	Edit Type	Sentence
Negation	Original	TyG is effective to identify individuals at risk for NAFLD.
	Regular (Edit)	TyG is not effective to identify individuals at risk for NAFLD.
	Regular (Edit-Alt)	TyG is ineffective to identify individuals at risk for NAFLD.
	Shorten	TyG is ineffective
	Multiples	is ineffective is ineffective is ineffective is ineffective is ineffective
Strengthen	Original	Moreover, TT genotype may reduce the risk of CAD in diabetic patients.
	Regular (Edit)	Moreover, TT genotype will reduce the risk of CAD in diabetic patients.

Table 1: Examples of counterfactual causal sentence augments. Notes. Interventions are highlighted in green. Causal Strengthening can also have Shorten and Multiples edits but is excluded due to space constrains.

6We want to show that any improvements in our scores are due to increased variations of examples per class label. These variations must be meaningful for any improvement in scores.
dency parser. The final sentence might not be a consecutive slice from the original.

- **Multiples**: We define a phrase as one word before and after the target/root word. That is, we define \(PhraseLength = 3 \). Phrases are then duplicated by a multiple of \(\text{OriginalSentenceLength}/\text{PhraseLength} \) rounded to the nearest integer. This ensures that the final sentence is up to as long as the original length. Note that in the ‘edit-alt’ example of Table 1, ‘is ineffective’ represents ‘is not effective’. Thus, although the actual phrase length is 2, the intended meaning is based off the latter phrase that had a length of 3. Hence, we maintained a fixed \(PhraseLength \) for all sentences.

3.5 Out-of-domain Testing

We train our models on the CSci corpus and conduct testing on SCITE (Li et al., 2021)\(^7\) and AltLex (Hidey and McKeown, 2016)\(^8\) corpora to show that inclusion of meaning counterfactuals during model training aids in OOD applications. While the CSci corpus is constructed from scientific-based PubMed sentences, the SCITE corpus contains general sentences extended from the SemEval 2010 task 8 dataset. AltLex consists of sentences from English Wikipedia. AltLex was built for causal relation identification, and therefore, has multiple entries per sentence based on different entities and relations. We revised the format of the corpus such that if a sentence has any one causal relation, the sentence is considered causal. Additionally, because SCITE and AltLex labels are binary, we created two measures of accuracy. The first, ‘Acc’, considers only exact class labels (\(\text{no relationship} (c_0) \) and causal \((c_1) \)) (i.e. predicting other labels are considered wrong). The second, ‘Acc\(_{\text{Group}}\)’, calculates accuracy after grouping [\(\text{no relationship, correlational} \) into \(\text{no relationship} (c_0) \) and [\(\text{causal, conditional causal} \) into causal \((c_1) \) to align with the binary labels. In total, we test on 4439 sentences from SCITE and 37677 sentences from AltLex.

3.6 Modeling

In each setting, we train and validate using K=5 folds, with 5 epochs per fold. For loss, we use the standard cross-entropy loss for multi-class classification. For OOD testing, we take the majority prediction from the five trained models of the five folds. We explore the results with the following two models:

3.6.1 BERT+MLP (MLP)

We replicate the best performing model on the CSci corpus (Yu et al., 2019) which is a BioBERT (Lee et al., 2020) plus multi-layer perceptron (MLP) pipeline. The default architecture was: BioBERT embeddings were fed into a single MLP layer that served as the classifier.

3.6.2 BERT+MLP+SVM (SVM)

Instead of applying LinearSVM based off unigrams and bigrams like the original authors (Yu et al., 2019), we believe a fairer comparison would be to use BERT embeddings as inputs into an SVM model. To allow for representation updates, for each sentence \((s) \), the BioBERT encoder is applied. The BERT output \((z) \) runs through two MLP layers \((MLP_1 \text{ and } MLP_2) \) to predict class labels. The second layer is ultimately is discarded, and we take the hidden representation \((r) \) as fixed inputs into the SVM classifier after all epochs. The equations below outlines our pipeline,

\[
\begin{align*}
 z &= BERT(s), & z &\in \mathbb{R}^{h_1} \quad (1) \\
 r &= MLP_1(z), & r &\in \mathbb{R}^{h_2} \quad (2) \\
 o &= MLP_2(r), & o &\in \mathbb{R}^{c} \quad (3) \\
 p &= SVM(r), & p &\in \mathbb{R}^{1} \quad (4)
\end{align*}
\]

where, \(p \) represents the final predicted label, and \(h_1 = 768, h_2 = 24, \text{and } c = 4 \).

4 Results & Discussion

4.1 Baseline

Table 2 reports our performance on the CSci corpus. With the MLP baseline model, we were unable to replicate the reported scores by Yu et al. (2019) of 90.1% accuracy and 88.1% macro F-score. We achieved slightly lower scores of 89.15% and 87.01% respectively. For SVM, our proposed implementation using updated BERT embeddings with a detached head is superior over Yu et al. (2019)’s unigram and bigrams method as we observe significant improvements of accuracy from 77.2% to 88.86% and macro F-score from 72.2% to 86.95%.

The inclusion of a mixture of edits (Negation*Shorten with Strengthen*Regular) returns the

\(^7\)https://github.com/Das-Boot/scite
\(^8\)https://github.com/chridey/AltLex
best performance across all metrics: Accuracy improves by 1.35% our MLP baseline, achieving Acc\textsubscript{Orig} of 90.60% \(^9\). Notice that we find improvements of accuracy and F-score beyond the original reported scores, even though our replicated scores were lower. The SVM model also demonstrates that the inclusion of edits improves performance.

Intuitively, we are exposing the model to more sentence types of the real world. We are also specifically choosing sentences near the boundaries of the labels (i.e. with minor edits, sentences’ labels can change). Therefore, the model is able to learn better in the CSC task. Interestingly, we noticed that shorten or multiples edits improved performance for negated edits, seemingly more than regular edits themselves. Section 4.4.1 expands on this finding.

Conversion	Edit Type	MLP	SVM						
		F1	Acc	F1\textsubscript{Orig}	Acc\textsubscript{Orig}	F1	Acc	F1\textsubscript{Orig}	Acc\textsubscript{Orig}
Yu et al. (2019)	Ours (Base)	88.10	90.10	87.01	89.15	86.95	88.86	86.95	88.86
Negation Regular		-1.55	-1.92	-0.19	-0.95	-0.95	-1.18	-1.28	-1.28
Negation Shorten		+1.06	+0.89	+0.57	-0.04	+0.95	+1.19	+0.38	+0.18
Negation Multiples		+1.46	+1.45	+0.93	+0.49	+1.14	+1.28	+0.60	+0.32
Strengthen Regular		+1.75	+1.14	+0.80	+0.84	+0.73	+0.49	-0.28	+0.20
Strengthen Shorten		+1.08	+0.91	+0.16	+0.62	+0.86	+1.08	-0.24	+0.71
Strengthen Multiples		+0.98	+0.98	-0.05	+0.57	+0.62	+0.82	-0.50	+0.38
Both Shorten, Regular		+2.80	+2.33	+1.73	+1.35	+1.45	+1.38	+0.14	+0.19

Table 2: Performance metrics on CSci corpus. Notes. BioBERT models trained on variations of CSci corpus (Original plus edits), with edits matching existing labels and randomly sampled to match base class distribution. Results are for test set when trained and predicted over 5-folds. Macro F-score (F1) and accuracy (Acc) are in percentages. Columns with lower script “Orig” are calculated for original sentences only (i.e. performance for edits is ignored). Rows below “Ours (Base)” report relative changes to it. The best performance per column is bolded. Precision and Recall scores are available in Appendix Tables A7 and A8.

\(^9\)The full original set achieved 90.33% accuracy if we were to include the subset that is dropped out due to random sampling. We predict the labels for this dropped-out subset like an OOD dataset, i.e. taken across 5-folds after training completes.

\(^{10}\)In experiments not shown, the models trained on the full original CSci corpus almost certainly wrongly predicts the 190 negated sentences as causal. To prove our point that models are memorizing causal terms, we removed the overlapping sentences to eliminate the possibility of the models memorizing similar sentences in train and test set instead.
show that when we apply the same model to the general-based SCITE and Wikipedia-based AltLex corpora, inclusion of edits improved classification performance. We were unable to find improvements in generalisation for MLP model on SCITE dataset, which could be due to our limited edit schemes. However, for AltLex, there are consistent improvements for almost all types of edits across both models. The mixture of edits (Negation*Shorten with Strengthen*Regular) again reports the best generalisation outcomes by showing improvements in accuracy (up to +0.94%) across all models and datasets, except a negligibly small reduction (-0.02%) for MLP model when tested on SCITE.

4.4 Ablations

4.4.1 Need for Heuristic Edits

Earlier in Table 2, we noted that models exposed to Negation*Regular edits are unable to learn the boundaries effectively: Acc$_{Orig}$ fell by 0.95% and 1.28% for the MLP and SVM models respectively from our baselines. However, when we perform simple heuristics like Shorten, accuracy could improve to -0.04% (negligible reduction) and +0.18% for MLP and SVM respectively.

We study the net change in classification counts per model per label in Table 5 to explore this phenomenon. Given class labels i and j predicted by a model and our baseline respectively, we report the model’s $Net\text{Change}_i = Right_i - Wrong_i = \sum_{j \neq i} n_{(i=true), (j=false)} - \sum_{i \neq j} n_{(i=true), (j=true)}$, where $i, j = c_0, c_1, c_2, c_3$ and n refers to the number of observations. $Right_i$ ($Wrong_i$) is the number of observations where a model predicts correctly (wrongly) for class label i but baseline predicts wrongly (correctly). When either MLP or SVM model is trained with the augmented Negation*Regular dataset, the model becomes confused and predicts poorly for causal (c_0) and no relationship (c_0) classes. Once the edits were presented in the shortened form, this situation improves. This short exploration points us to believe exposing sample-curated features is needed in our low-resource setting. Highlighting the model to the short spans of (non-)causality helps point out the exact borders we want the models to become sensitive to.

Interestingly, we observe improvements in classification for labels we did not edit (c_2) in the majority of settings. This highlights the possibility that exposing models to minimally perturbed sentences around label boundaries could improve comprehension beyond the introduced edits.

4.4.2 Capturing Causal Strengths

By capitalizing on CSci’s labels, our methodology allows us to expose causal strengths in SCITE and AltLex corpora beyond the original binary labels. For SCITE, the baseline MLP model originally labeled five sentences as conditional causal. Applying the model trained with Strengthen*Regular edits, we observed that four remained as conditional causal (c_2) while one of the sentence11 correctly switched label to causal (c_1). For the baseline SVM model, seven sentences were tagged as c_2, of which four remained, and the same one as MLP’s converted to c_1. One12 correctly switched to no relationship (c_0) as labeled, while the last sentence13 converted to correlational (c_3), which is surprising because we did not edit any sentences to or from class c_3. Unfortunately, the authors of SCITE tagged this sentence as causal, which means this is considered to be mislabeled. However, the sentence contains signals like ‘corresponds to’, which should be correlational, not causal.

We believe the model might be picking up on what makes something conditional causal versus all other labels (not just comparing to the one we edit to). Our short qualitative analysis again supports the earlier quantitative study that exposing models to meaningfully augmented sentences across labels could improve classification even for other uninvolved labels.

11 “In the present recession, which has been triggered by a collapse in land prices, land-value taxation would reverse the collapse - not by re-inflating a temporary speculative bubble, but by inducing investment in infrastructure that permanently enhances the utility of the land.”

12 “The glass tealight holder appears to float inside the metal spiral as it spins in the gentle breeze.”

13 “The increase of the signal might correspond to formation of the high-density excitons, while the reduction of the signal originates from the relaxation.”
We show that SOTA CSC models worryingly mis-
strate that inclusion of our edits during training can
help to improve classification performance both on
original and edit sentences, and within and outside
of the corpus’ domain. However, we find that simple
edit edits, such as negation, might be insufficient to
teach effective decision boundaries given limited
data size. We thus propose heuristic edit schemes
and find performance improvements across both
training and OOD contexts too.

Moving forward, we plan to replicate our find-
ings on more datasets to further demonstrate our
augmentation scheme’s widespread applicability.

4.4.3 Other Experiments
We also explored other popular methodologies that
did not produce consistent and significant improve-
ments from baseline. These include, i) creating
more edit types (using masking, synonyms and
paraphrasers), ii) extending to a five-way classi-
fication problem (by labelling negated edits as a
new class label, different from no relationship (c0)),
and iii) experimenting on contrastive learning loss
functions. Appendix Section A.3 details these ex-
periments further for interested readers.

5 Conclusion and Future Work
We explored the task of CSC in a low-resource
setting. Following recent literature, we generated
counterfactual sentences via rule-based edits that
change sentences’ causal direction and strength.
We show that SOTA CSC models worryingly mis-
classifies on such augmented sentences. We dem-
strate that inclusion of our edits during training can
help to improve classification performance both on
original and edit sentences, and within and outside
of the corpus’ domain. However, we find that simple
edit edits, such as negation, might be insufficient to
teach effective decision boundaries given limited
data size. We thus propose heuristic edit schemes
and find performance improvements across both
training and OOD contexts too.

Moving forward, we plan to replicate our find-
ings on more datasets to further demonstrate our
augmentation scheme’s widespread applicability.

Yu et al. (2020)’s recent corpus based on scientific
press statements annotated with the four class la-
bels of causality as per our set up is a promising
option. Additionally, causality is hard as one has to
distinguish between causal effects as factual events
of real-world or at the level of “meta-causality”
(Andersson et al., 2020). In our work, we did not
go beyond the “correctness” of the claims. Ground-
ing the claims to world knowledge is an important
future work. Lastly, we wish to find alternative
models which can learn directly from original plus
regular edits without the need for heuristics.

Table 4: Performance metrics of on OOD datasets. Notes. BioBERT models trained on variations of CSci corpus
(Original plus edits), with edits matching existing labels and randomly sampled to match base class distribution.
Results are for out-of-domain SCITE and AltLex corpus taking mode class predicted over 5-folds. Accuracies are
reported in percentages. Columns ‘Acc’ considers only exact class labels, while ‘AccGroup’ calculates accuracy
after converting the four labels to form the binary labels. Rows below “Ours (Base)” report relative changes to it.
The best performance per column is bolded.

Table 5: Net change in correct classification counts on CSci corpus compared to “Ours (Base)” for original. Notes.
Recall that Negation is the conversion of c1 → c0; Strengthen is the conversion of c2 → c1;

Conversion	Edit Type	SCITE	AltLex													
		MLP	SVM	MLP	SVM											
Ours (Base)																
Negation	Regular	-1.46	-0.27	+0.02	+0.02	+1.01	+1.10									
Negation	Shorten	-0.20	-0.33	-0.33	+0.02	+0.02	+1.01									
Negation	Multiples	-0.18	-0.16	-0.38	-0.38	+0.89	+0.95									
Strengthen	Regular	-0.27	-0.14	+1.01	+1.10	+0.91	+0.94									
Strengthen	Shorten	-3.40	-3.36	-0.11	-0.05	+0.99	+1.01									
Strengthen	Multiples	-1.31	-1.28	-0.90	-0.90	+0.88	+0.99									
Both	Shorten, Regular	-0.02	-0.05	+0.79	+0.63	+0.94	+0.84									
		86.28	**85.83**	**85.04**	**84.50**	**84.57**	**84.64**	**85.91**	**84.68**	**+1.19**	**+1.58**	**+0.88**	**+0.07**	**+0.29**	**+0.31**	**+0.41**

Table 5: Net change in correct classification counts on CSci corpus compared to “Ours (Base)” for original. Notes.
Recall that Negation is the conversion of c1 → c0; Strengthen is the conversion of c2 → c1;
References

Marta Andersson, Murathan Kurfalı, and Robert Östling. 2020. A sentiment-annotated dataset of English causal connectives. In Proceedings of the 14th Linguistic Annotation Workshop, pages 24–33, Barcelona, Spain. Association for Computational Linguistics.

Nabiha Asghar. 2016. Automatic extraction of causal relations from natural language texts: A comprehensive survey. CoRR, abs/1605.07895.

Susanne Buhs, Anne Christin Rahn, Merle Bock, and Ingrid Mühlhauser. 2018. Causal interpretation of correlational studies—analysis of medical news on the website of the official journal for german physicians. PLoS One, 13(5):e0196833.

Tommaso Caselli and Piek Vossen. 2017. The event storyline corpus: A new benchmark for causal and temporal relation extraction. In Proceedings of the Events and Stories in the News Workshop@ACL 2017, Vancouver, Canada, August 4, 2017, pages 77–86. Association for Computational Linguistics.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. 2020. A simple framework for contrastive learning of visual representations. In Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research, pages 1597–1607. PMLR.

Tom De Smedt and Walter Daelemans. 2012. Pattern for python. J. Mach. Learn. Res., 13(1):2063–2067.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pages 4171–4186. Association for Computational Linguistics.

Kata Gábor, Davide Buscaldi, Anne-Kathrin Schumann, Behrang QasemiZadeh, Haifa Zargayouna, and Thierry Charnois. 2018. Semeval-2018 task 7: Semantic relation extraction and classification in scientific papers. In Proceedings of The 12th International Workshop on Semantic Evaluation, SemEval@NAACL-HLT 2018, New Orleans, Louisiana, USA, June 5-6, 2018, pages 679–688. Association for Computational Linguistics.

Matt Gardner, Yoav Artzi, Victoria Basmova, Jonathan Berant, Ben Bogin, Silhao Chen, Pradeep Dasigi, Dheeru Dua, Yanai Elazar, Ananth Gottumukkala, Nithish Gupta, Hannaneh Hajishirzi, Gabriel Ilharco, Daniel Khashabi, Kevin Lin, Jiannming Liu, Nelson F. Liu, Phoebe Mulcaire, Qiang Ning, Sameer Singh, Noah A. Smith, Sanjay Subramanian, Reut Tsarfaty, Eric Wallace, Ally Zhang, and Ben Zhou. 2020. Evaluating models’ local decision boundaries via contrast sets. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings, EMNLP 2020, Online Event, 16-20 November 2020, pages 1307–1323. Association for Computational Linguistics.

Roxana Girju and Dan I. Moldovan. 2002. Text mining for causal relations. In Proceedings of the Fifteenth International Florida Artificial Intelligence Research Society Conference, May 14-16, 2002, Pensacola Beach, Florida, USA, pages 360–364. AAAI Press.

Stefan Heindorf, Yan Scholten, Henning Wachsmuth, Axel-Cyrille Ngonga Ngomo, and Martin Potthast. 2020. Causenet: Towards a causality graph extracted from the web. In CIKM ’20: The 29th ACM International Conference on Information and Knowledge Management, Virtual Event, Ireland, October 19-23, 2020, pages 3023–3030. ACM.

Christopher Hidey and Kathy McKeown. 2016. Identifying causal relations using parallel wikipedia articles. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers. The Association for Computer Linguistics.

Matthew Honnibal, Ines Montani, Sofie Van Lante, and Adrian Boyd. 2020. spaCy: Industrial-strength Natural Language Processing in Python.

David Jurgens, Saif Mohammad, Peter D. Turney, and Keith J. Holyoak. 2012. Semeval-2012 task 2: Measuring degrees of relational similarity. In Proceedings of the 6th International Workshop on Semantic Evaluation, SemEval@NAACL-HLT 2012, Montréal, Canada, June 7-8, 2012, pages 356–364. The Association for Computer Linguistics.

Divyansh Kaushik, Eduard H. Hovy, and Zachary Chase Lipton. 2020a. Learning the difference that makes A difference with counterfactually-augmented data. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net.

Divyansh Kaushik, Amrith Setlur, Eduard H. Hovy, and Zachary C. Lipton. 2020b. Explaining the efficacy of counterfactually-augmented data. CoRR, abs/2010.02114.

Pramay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron Maschinot, Ce Liu, and Dilip Krishnan. 2020. Supervised contrastive learning. arXiv preprint arXiv:2004.11362.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang. 2020. Biobert: a pre-trained biomedical language representation model for...
biomedical text mining. *Bioinform.*, 36(4):1234–1240.

Zhaoning Li, Qi Li, Xiaotian Zou, and Jianguo Ren. 2021. Causality extraction based on self-attentive bilstm-crf with transferred embeddings. *Neurocomputing*, 423:207–219.

Taylor Mahler, Willy Cheung, Michal Elsner, David King, Marie-Catherine de Marneffe, Cory Shan, Symon Stevens-Guille, and Michael White. 2017. Breaking NLP: Using morphosyntax, semantics, pragmatics and world knowledge to fool sentiment analysis systems. In *Proceedings of the First Workshop on Building Linguistically Generalizable NLP Systems*, pages 33–39, Copenhagen, Denmark. Association for Computational Linguistics.

Rowan Hall Maudslay, Hila Gonen, Ryan Cotterell, and Simone Teufel. 2019. It’s all in the name: Mitigating gender bias with name-based counterfactual data substitution. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing*, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pages 5266–5274. Association for Computational Linguistics.

George A. Miller. 1995. Wordnet: A lexical database for english. *Commun. ACM*, 38(11):39–41.

Paramita Mirza, Rachele Sprugnoli, Sara Tonelli, and Manuela Speranza. 2014. Annotating causality in the TempEval-3 corpus. In *Proceedings of the EACL 2014 Workshop on Computational Approaches to Causality in Language (CAtoCL)*, pages 10–19, Gothenburg, Sweden. Association for Computational Linguistics.

Paramita Mirza and Sara Tonelli. 2016. CATENA: causal and temporal relation extraction from natural language texts. In *COLING 2016, 26th International Conference on Computational Linguistics, Proceedings of the Conference: Technical Papers, December 11-16, 2016, Osaka, Japan*, pages 64–75. ACL.

John X. Morris, Eli Litland, Jin Yong Yoo, Jake Grigsby, Di Jin, and Yanjun Qi. 2020. Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in NLP. In *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, EMNLP 2020 - Demos, Online, November 16-20, 2020*, pages 119–126. Association for Computational Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. Pytorch: An imperative style, high-performance deep learning library. In *Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada*, pages 8024–8035.

Balaji Polepalli Ramesh, Rashmi Prasad, Tim Miller, Brian Harrington, and Hong Yu. 2012. Automatic discourse connective detection in biomedical text. *J. Am. Medical Informatics Assoc.*, 19(5):800–808.

Petroc Sumner, Solveiga Vivian-Griffiths, Jacky Boivin, Andy Williams, Christos A Venetis, Aimée Davies, Jack Ogden, Leanne Whelan, Bethan Hughes, Bethan Dalton, Fried Boy, and Christopher D Chambers. 2014. The association between exaggeration in health related science news and academic press releases: retrospective observational study. *BMJ*, 349.

Wiebke Wagner. 2010. Steven bird, ewan klein and edward loper: Natural language processing with python, analyzing text with the natural language toolkit - o’reilly media, beijing, 2009, ISBN 978-0-596-51649-9. *Lang. Resour. Evaluation*, 44(4):421–424.

Jinghong Xu, Wanli Zuo, Shining Liang, and Xianglin Zuo. 2020. A review of dataset and labeling methods for causality extraction. In *Proceedings of the 28th International Conference on Computational Linguistics, COLING 2020, Barcelona, Spain (Online), December 8-13, 2020*, pages 1519–1531. International Committee on Computational Linguistics.

Bei Yu, Yingya Li, and Jun Wang. 2019. Detecting causal language use in science findings. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019*, pages 4663–4673. Association for Computational Linguistics.

Bei Yu, Jun Wang, Lu Guo, and Yingya Li. 2020. Measuring correlation-to-causation exaggeration in press releases. In *Proceedings of the 28th International Conference on Computational Linguistics, COLING 2020, Barcelona, Spain (Online), December 8-13, 2020*, pages 4860–4872. International Committee on Computational Linguistics.
A Appendix

A.1 Negation Examples

Appendix Table A1 shows one randomly sampled example per available negation method when applied onto the CSci corpus. As shown, most examples fall into ‘VB_3.1’, ‘VB_5.1’, ‘JJ_1.3’ and ‘VB_1.2’ types, for which the templates in Algorithm 1 work well for. For rarer method types, like ‘VB_2.1’, the templates seem to work poorly.

Further investigation shows that the error arose from the POS tagging step: “Both” was tagged as a VB but should have been a DT or CC, for which, we have no template for at the moment, so the example would have been correctly skipped. As for ‘VB_4.1’, the negated example is unnatural but not grammatically wrong.

A.2 De-duplication

After appending original sentences with edits, we conduct de-duplication. Appendix Table A3 shows problematic duplicates that had differing labels. The original CSci corpus contained 7 duplicate sentences instances which were removed. 6 of them were exact duplicates (same label, same sentence), while the last 1 (sentence S/N 1) was duplicated with different labels (c0 and c2). We manually changed this to keep only the c0 label. The total data size thus reduces from n=3061 to n=3054. We also take this chance to highlight concerns that some sentences in CSci were labelled contrary to how we understood them. Subsequent duplicates were handled via rule-based removal. The motivation was to ensure identical sentences do not have different labels which adds noise to our training. Our assumption is that if an edit was performed but remained identical to the original, the original must have been mislabelled sentence. We note that our rule-based de-duplication cannot accommodate multi-label cases, as there was one sentence (S/N 4) that correctly reflected both c0 and c1 labels in different parts of the sentence, but due to de-duplication, we only kept the c0 label.

A.3 Other Experiments

Other experiments conducted but did not produce significant improvements are mentioned here.

Other Edit Types Three were explored:

- **Mask**: Based on POS, all nouns are replaced by the token “[MASK]”.
- **Synonyms**: Using WordNet synonyms, we skip common words and randomly replace up to 5 words. Synonyms match tense and plurality of original words using Pattern package, which is imperfect.
- **T5Para**: We run the sentence through a pre-trained T5-paraphraser model.

Appendix Table A4 shows an example sentence with the above edits for the same causal sentence of Table 1. With the SVM model, only Strengthen*Synonyms appended with original increased accuracy on CSci by 1.01% while Strengthen*T5Para increased accuracy by 0.39%. However, these findings could not be replicated across to the MLP model nor for Negation.

Extending to a Five-way Classification In our main set up, we focused on edits that matched the original labels and are randomly sampled such that the unified train set matches base class distribution for fairer comparison to baseline. Current negations are labelled no relationship (c0). However, to the extent that we believe negated causal statements deserve a class of their own, we also explore the event when negations are labelled with a new level not causal (c4) instead. Based on the set up for Table 3, we obtained even higher improvements in accuracy of +70.53% and +74.74% for the MLP and SVM model respectively. This could be due to the clearer distinction of a not causal sentence structure compared to if we were to combine them with other no relationship statements. When we extended the MLP and SVM model to work with such a five-way classification set up, we did observe improvements in AccOrth for shorten, multiples and synonyms versions of edits. However, because we cannot truly balance the dataset (random sampling does not apply here because we have a whole new class), we cannot be certain if the improvements were due to the larger dataset or the model picking up on the boundaries. Furthermore, the improvements did not generalize on our OOD set ups.

14We highlight the main POS tags used and mentioned: VB (verbs, e.g. “eating”), JJ (adjective, e.g. “big”), IN (preposition or subordinating conjunction, e.g. “by”), DT (determiner, e.g. “he”), CC (coordinating conjunction, e.g. “and”), MD (modal, “should”).

15We do not try to find synonyms for common words with these POS types: ‘DT’, ‘IN’, ‘EX’, ‘CC’, ‘MD’, ‘WP’, ‘WD’, ‘WR’, ‘UH’, ‘RP’, ‘SY’, ‘PO’.

16https://huggingface.co/ramsrigouthamg/t5_paraphraser
Other Training Setups In addition to standard cross-entropy based supervised learning, we also explored contrastive learning schemes. In particular, we trained with Supervised Contrastive Loss (SupCon) (Khosla et al., 2020; Chen et al., 2020) and Triplet Margin Loss (Paszke et al., 2019). In the contrastive setup, we introduced counterfactuals as the negative examples for each anchor sentence. For positive samples, we used shorten, synonyms, and T5Para augmentation strategies on the original anchor sentence. However, the results did not provide performance improvements in either CSci or OOD datasets, which highlights the challenge of building a generalized scheme of counterfactual generations. Exploring avenues in contrastive-learning remains a critical future work.

A.4 Reproducibility Checklist

We include additional details about our main experiment not highlighted in other parts of the paper.

- **Computing Infrastructure:** Tesla V100 SXM2 32 GB

- **MLP Hyperparameters:** “attention_probs_dropout_prob”: 0.1, “hidden_act”: “gelu”, “hidden_dropout_prob”: 0.1, “hidden_size”: 768, “initializer_range”: 0.02, “intermediate_size”: 3072, “layer_norm_eps”: 1e-12, “max_position_embeddings”: 512, “num_attention_heads”: 12, “num_hidden_layers”: 12, “type_vocab_size”: 2, “vocab_size”: 28996

- **SVM Hyperparameters:** kernel: “linear”, “C”: 1e-2

- **Average Runtime:** For 5 epochs and 5 folds, our baseline MLP model takes approximately 22 minutes 51 seconds to train and validate.

A.5 Additional figures and tables
Algorithm 1: NegationRules – Causal negation scheme

Input: edit_id, text_ids, text, pos, sentid2tid, max_try=2, curr_try=0

Output: text, method, edit_id

1. curr_try ← curr_try + 1
2. curr_pos, curr_word ← pos[edit_id], text[edit_id]
3. prev_pos, prev_word ← pos[edit_id - 1], text[edit_id - 1] if valid else None
4. next_pos, next_word ← pos[edit_id + 1], text[edit_id + 1] if valid else None
5. while curr_try <= max_try do
6. if curr_pos = VB then
7. if curr_word = AuxilliaryType then
8. if edit_id = max(text_ids) then
9. Insert "not" in front of curr_word // Method "VB_1.1"
10. else if next_word = DeterminerType then
11. Replace next_word with "no" while curr_try < max_try = 2, curr_try=0
12. edit_id ← edit_id + 1
13. else if next_word = NounType then
14. Insert "not" behind of curr_word // Method "VB_1.3"
15. else if next_word = VB then
16. Insert "not" behind of curr_word // Method "VB_1.4"
17. else if edit_id = min(text_ids) then
18. Replace curr_word with "Not" + lowercased curr_word // Method "VB_2.1"
19. else if prev_word = NounType then
20. Replace curr_word with "did not" + lemma(curr_word) // Method "VB_3.1"
21. else if edit_id = max(text_ids) then
22. Insert "not" in front of curr_word // Method "VB_4.1"
23. else if prev_word = AuxilliaryType next_pos = IN|TO then
24. Insert "not" in front of curr_word // Method "VB_5.1"
25. else if curr_pos = NN then
26. Get head_id of head word of curr_word based on dependency tree
27. text, method, edit_id ← NegationRules(head_id, text_ids, text, pos, sentid2tid, curr_try)
28. else if curr_pos = JJ then
29. if edit_id = max(text_ids) then
30. Insert "not" in front of curr_word // Method "JJ_1.1"
31. else if next_word = PositiveConjunctionType then
32. Insert "not" in front of curr_word // Method "JJ_1.2"
33. Replace next_word with "nor" else
34. Insert "not" in front of curr_word // Method "JJ_1.3"
35. else if curr_pos = IN then
36. Insert "not" in front of curr_word // Method "IN_1.1"
37. Define method as method name if applicable edit occurs
38. return text, method, edit_id
| Method | Regular (Edit) | Regular (Edit-Alt) | n |
|--------|--|--|-----|
| VB_1.2 | Eyes with better vision at baseline had no more favorable prognosis, whereas eyes with initial macular detachment, intraoperative iatrogenic break, or heavy SO showed more unfavorable outcomes. | Eyes with better vision at baseline abstained a more favorable prognosis, whereas eyes with initial macular detachment, intraoperative iatrogenic break, or heavy SO showed more unfavorable outcomes. | 35 |
| VB_1.3 | Age, female sex, BMI, non-HDL cholesterol, and polyps are no independent determinants for gallstone formation. | Age, female sex, BMI, non-HDL cholesterol, and polyps differ independent determinants for gallstone formation. | 12 |
| VB_1.4 | Both general and central adiposity have no causal effects on CHD and type 2 diabetes mellitus. | Both general and central adiposity refuse causal effects on CHD and type 2 diabetes mellitus. | 2 |
| VB_2.1 | Not "both a low-fat vegan diet and a diet based on ADA guidelines improved glycemic and lipid control in type 2 diabetic patients." | Collectively, these findings contraindicate that energy-matched high intensity and moderate intensity exercise are effective at decreasing IHL and NAFLD risk that is not contingent upon reductions in abdominal adiposity or body mass. | 174 |
| VB_3.1 | Collectively, these findings did not indicate that energy-matched high intensity and moderate intensity exercise are effective at decreasing IHL and NAFLD risk that is not contingent upon reductions in abdominal adiposity or body mass. | Collectively, these findings contraindicate that energy-matched high intensity and moderate intensity exercise are effective at decreasing IHL and NAFLD risk that is not contingent upon reductions in abdominal adiposity or body mass. | - |
| VB_4.1 | The benefits of exercise for reducing risk of chronic disease, including CVD, are well not known. | A higher BMI and a greater prevalence of comorbidities had attract patients to seek a more radical solution for their obesity, i.e., surgery. | 81 |
| VB_5.1 | A higher BMI and a greater prevalence of comorbidities had not driven patients to seek a more radical solution for their obesity, i.e., surgery. | A higher BMI and a greater prevalence of comorbidities had attract patients to seek a more radical solution for their obesity, i.e., surgery. | - |
| JJ_1.1 | The effects of TRT on cardiovascular risk markers were not ambiguous. | Results are discouraging and disprove that exercise was popular and conveyed benefit to participants. | 6 |
| JJ_1.2 | Results are not encouraging nor demonstrate that exercise was popular and conveyed benefit to participants. | Results are discouraging and disprove that exercise was popular and conveyed benefit to participants. | 15 |
| JJ_1.3 | While LSG weakens the LES immediately, it does not predictably not affect postoperative GERD symptoms; therefore, distensibility is not the only factor affecting development of postoperative GERD, confirming the multifactorial nature of post-LSG GERD. | While LSG weakens the LES immediately, it does not predictably impede postoperative GERD symptoms; therefore, distensibility is not the only factor affecting development of postoperative GERD, confirming the multifactorial nature of post-LSG GERD. | 53 |
| IN_1.1 | Although further investigation of long-term and prospective studies is not needed, we identified four variables as predisposing factors for higher major amputation in diabetic patients through meta-analysis. | - | 1 |

Table A1: Example negated causal sentences per method Notes. “Method” refers to negation method label as per Algorithm 1. “Regular (Edit)” refers to direct negation from this Algorithm. “Regular (Edit-Alt)” refers to alternate intervention using same negation location, but based off antonyms from WordNet, if available. Interventions, excluding lemmatisation or case-changes, are highlighted in green. “n” is the number of successful conversions applicable in CSci corpus.
Algorithm 2: StrengthenRules – Causal strengthening scheme

Input: edit_id, text_ids, text, pos, sentid2tid, curr_try=0
Output: text, method, edit_id

1. Initialise ModalDict
2. curr_try ← curr_try + 1
3. curr_pos, curr_word ← pos[edit_id], text[edit_id]
4. next_pos, next_word ← pos[edit_id + 1], text[edit_id + 1] if valid else None
5. nnext_pos, nnext_word ← pos[edit_id + 2], text[edit_id + 2] if valid else None
6. while curr_try <= max_try do
 7. if lemma(next_word) = ‘be’ then
 8. Replace curr_word with *was* // Method ‘MOD_1.2’
 9. Replace next_word with empty string
 else if lemma(next_word) = ‘have’ then
 10. if lemma(nnext_word) = ‘be’ then
 11. Replace curr_word with *was* // Method ‘MOD_3.2’
 12. Replace next_word and nnext_word with empty string
 else
 13. Replace curr_word with *had* // Method ‘MOD_3.1’
 14. Replace next_word with empty string
 else if curr_pos = MD & next_pos = RB then
 15. Replace curr_word with ModalDict[curr_word] // Method ‘MOD_4.1’
 16. Replace next_word with empty string
 else
 17. Replace curr_word with ModalDict[curr_word] // Method ‘MOD_1.1’
 22. Define method as method name if applicable edit occurs
 23. return text, method, edit_id

Method	Regular (Edit)	n
MOD_1.1	Physical therapy in conjunction with nutritional therapy [may] will help prevent weakness in HSCT recipients.	98
MOD_2.1	The rs7044343 polymorphism [could be] was involved in regulating the production of IL-33.	42
MOD_3.1	Increased titers of cows milk antibody before anti-TG2A and celiac disease indicates that subjects with celiac disease [might have] had increased intestinal permeability in early life.	21
MOD_4.1	Physical rehabilitation aimed at improving exercise tolerance [can possibly] will improve the long-term prognosis after operations for lung cancer.	13

Table A2: Example strengthened conditional causal sentences per method. Notes. “Method” refers to strengthening method label as per Algorithm 2, resulting in augments as per “Regular (Edit)”. Interventions, excluding lemmatisation or case-changes, are highlighted in green. Words removed from original version are striked out and highlighted in red. “n” is the number of successful conversions applicable in CSci corpus.
None the less, both artificially sweetened beverages and fruit juice were unlikely to be healthy alternatives to sugar sweetened beverages for the prevention of type 2 diabetes.

There was no effect on lumen volume, fibro-fatty and necrotic tissue volumes.

There are no indications that endogenous and exogenous gonadal hormones affect the radiation dose-response relationship.

In two randomized trials comparing the PCSK9 inhibitor bococizumab with placebo, bococizumab had no benefit with respect to major adverse cardiovascular events in the trial involving lower-risk patients but did have a significant benefit in the trial involving higher-risk patients.

Altering margin policies to follow either SSO-ASTRO or ABS guidelines would result in a modest reduction in the national re-excision rate.

Adding an allowance for accumulation of thyroidal iodine stores would produce an EAR of 72 Â·Å/g and a recommended dietary allowance of 80 Â·Å/g.

" In a randomized controlled trial of 230 infants with genetic risk factors for celiac disease, we did not find evidence that weaning to a diet of extensively hydrolyzed formula compared with cows milk-based formula would decrease the risk for celiac disease later in life.

Table A3: Sentences that had duplicates with differing labels. Notes. Rule-based de-duplication was performed, with the final label kept highlighted in green. “Conversion” refers to the augmented edit dataset that when we merge with the original, the duplicate appears. Do note that Sentence S/N 7, to us, should be labelled as no relationship (c0), but was labelled as conditional causal (c2) by original authors.

Table A4: Extended examples of counterfactual causal sentence augments Notes. Interventions are highlighted in green.

Table A5: Number of sentences per class label after appending edits with base corpus, de-duplication and random sampling.
Conversion	True Label	c₀	c₁	c₂	c₃	Total
Negation	c₀	24	157	5	4	190
Strengthen	c₁	3	67	16	1	87

Table A6: Number of sentences predicted per class label for augmented dataset when trained on only original CSci corpus. *Notes.* Counts correspond to accuracy scores reported in Rows 1 and 3 of Table 3.

Conversion	Edit Type	P	R	F1	Acc	P_{Orig}	R_{Orig}	F1_{Orig}	Acc_{Orig}
						Yu et al. (2019)			
						87.80	88.60	88.10	90.10
						73.90	71.10	72.20	77.20
	Orig					86.02	88.13	87.01	89.15
						86.28	87.70	86.95	88.86
						86.28	87.70	86.95	88.86
						86.28	87.70	86.95	88.86
Negation	Regular					-1.81	-1.20	-1.55	-1.92
	Shorten					+0.76	+1.45	+1.06	+0.89
	Multiples					+1.47	+1.44	+1.46	+1.45
Strengthen	Regular					+1.96	+1.51	+1.75	+1.14
	Shorten					+1.54	+0.54	+1.08	+0.91
	Multiples					+1.51	+0.38	+0.98	+0.98
Both	Shorten, Regular	+2.98	+2.57	+2.80	+2.33	+1.90	+1.54	+1.73	+1.35

Table A7: Performance metrics of BERT+MLP on CSci corpus. *Notes.* BioBERT models trained on variations of CSci corpus (Original plus edits), with edits matching existing labels and randomly sampled to match base class distribution. Results are for test set when trained and predicted over 5-folds. Precision (P), Recall (R), macro F-score (F1) and accuracy (Acc) are reported in percentages. Columns with lowerscript “Orig” are calculated for base items only (i.e. performance for edits is ignored). Rows below “Ours (Base)” report relative changes to it. The best performance per column is *bolded.*

Conversion	Edit Type	P	R	F1	Acc	P_{Orig}	R_{Orig}	F1_{Orig}	Acc_{Orig}
						Yu et al. (2019)			
						73.90	71.10	72.20	77.20
						73.90	71.10	72.20	77.20
	Orig					86.28	87.70	86.95	88.86
						86.28	87.70	86.95	88.86
						86.28	87.70	86.95	88.86
Negation	Regular					-2.72	-1.85	-2.33	-1.99
	Shorten					+0.60	+1.36	+0.95	+1.19
	Multiples					+1.18	+1.12	+1.14	+1.28
Strengthen	Regular					+0.97	+0.44	+0.73	+0.49
	Shorten					+1.19	+0.54	+0.86	+1.08
	Multiples					+0.92	+0.26	+0.62	+0.82
Both	Shorten, Regular	+1.25	+1.69	+1.45	+1.38	+0.00	+0.32	+0.14	+0.19

Table A8: Performance metrics of BERT+MLP+SVM on CSci corpus. *Notes.* Yu et al.’s SVM method does not use BERT inputs. Our BioBERT models are trained on variations of CSci corpus (Original plus edits), with edits matching existing labels and randomly sampled to match base class distribution. Results are for test set when trained and predicted over 5-folds. Precision (P), Recall (R), macro F-score (F1) and accuracy (Acc) are reported in percentages. Columns with lowerscript “Orig” are calculated for base items only (i.e. performance for edits is ignored). Rows below “Ours (Base)” report relative changes to it. The best performance per column is *bolded.*