The genus *Campylobacter* consists of several species, including *Campylobacter jejuni*, *C. coli*, *C. fetus*, *C. lari* (previously *C. lari*dis), *C. upsaliensis*, and *C. hyointestinalis* (22). All of these species are food-borne pathogens and cause diarrheal diseases worldwide. They also cause extraintestinal infections and sequelae (2). Since *C. jejuni* is the predominant species, most studies have been directed at this pathogen. *C. jejuni* causes predominantly inflammatory diarrhea in individuals in developing countries and watery diarrhea in individuals in developed countries (2, 25). The putative virulence factors of *C. jejuni* include the ability to adhere to and invade epithelial cells, iron acquisition systems (13), cytotoxins, cytolethal distending toxin, and an enterotoxin that resembles cholera toxin (CT). There were additional reactive bands for *C. fetus*. As with *C. jejuni*, this finding may lead to the erroneous conclusion that these additional species produce a functional CTLT. However, this common cross-reactive OMP can be explored as a vaccine candidate to prevent campylobacteriosis.

The genus *Campylobacter* has been the subject of extensive research, and many species have been identified. *C. jejuni* is the predominant species, with *C. coli*, *C. fetus*, and *C. lari* also being important. Other species, such as *C. upsaliensis* and *C. hyointestinalis*, have also been identified. The production of enterotoxin-like toxins (CTLT) by these species has been confirmed, and the OMP of *C. jejuni* that cross-reacts with CT has been identified. This cross-reactivity has implications for the development of a universal vaccine for campylobacteriosis.

MATERIALS AND METHODS

Bacteria. Two strains each of the following species were provided by G. Hogg, Microbiological Diagnostic Unit, University of Melbourne, Parkville, Victoria, Australia: *C. jejuni*, *C. coli*, *C. fetus*, *C. lari*, *C. hyointestinalis*, *C. upsaliensis*, *C. fetus*, *C. lari*, and *C. hyointestinalis*. The other isolates were from our culture collection. The species of all isolates were confirmed by standard bacteriological tests and PCR assays (7, 10, 15, 22).

The *Campylobacter* organisms were grown in an atmosphere containing 15% glycerol at 37°C. For the study, the organisms were cultured on 7% sheep blood agar and incubated at 37°C for 48 h. An enterotoxigenic *Escherichia coli* strain, H10007, producing LT served as a positive control for enterotoxin production in a CHO cell assay (see below).

Production of CTLT. Isolates were tested for CTLT production in Casamino Acids-yeast broth supplemented with ferric chloride in a shaker incubator as described previously (1). Serial doubling dilutions of bacterium-free filtrate were tested for enterotoxin on CHO cell monolayers in a microtiter plate. The
elongation of ≥50% of cells at a dilution of ≥1:4 was considered to indicate positivity for CTLT (1).

Preparation of crude OMPs and purified major OMPs. The PorA major OMPs from different Campylobacter species were prepared by the Sarkosyl method of Blaser et al. (4). Briefly, for each preparation, bacterial cells were disrupted by sonication and the preparation was centrifuged at 5,000 × g to remove whole cells. The supernatant was centrifuged for 1 h at 100,000 × g at 4°C in an L8-70 ultracentrifuge (Beckman Instruments, Fullerton, CA), and the pellet was suspended in sterile distilled water and used as the crude membrane fraction. The crude membrane preparation was further treated with sodium lauryl sarcosinate. The Sarkosyl-insoluble portion was used as the purified outer membrane fraction.

SDS-PAGE and immunoblotting. Proteins were separated by discontinuous sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with a 5.0% stacking gel and a 12.0% separating gel by the method of Laemmli (18) and stained with Coomassie blue. For immunoblotting, the separated proteins were transferred electrophoretically onto nitrocellulose (Bio-Rad, Hercules, CA) and then blocked with 5% skim milk in phosphate-buffered saline (pH 7.2). The membrane was allowed to react with rabbit CT antibody (Sigma, St. Louis, MO) or normal rabbit serum, as appropriate, both diluted 1:1,000. The secondary antibody (peroxidase-conjugated, affinity-purified goat anti-rabbit immunoglobulin G [Fc fragment specific], at a 1:1,000 dilution [Jackson Immunoresearch Laboratories, West Grove, PA]) was added, after which the results were developed with enhanced chemiluminescence Western blotting detection reagents according to the instructions of the manufacturer (Amersham Pharmacia Biotech, Piscataway, NJ).

Amplification of porA genes. The porA genes from Campylobacter species strains were amplified using boiled cells as templates with primers and amplification parameters as described previously (14). The amplified products were separated by electrophoresis in 1.0% agarose gels in Tris-borate-EDTA buffer at 90 V for 90 min. The bands were visualized under UV light after staining with a 1-µg/ml ethidium bromide solution.

RESULTS AND DISCUSSION

All Campylobacter species strains were negative for CTLT production in the CHO cell assay, while the positive control enterotoxigenic E. coli strain was positive.

Crude OMPs from all Campylobacter species produced several bands that were seen on Coomassie blue-stained gels. However, 53-kDa bands from all species were prominent (Fig. 1A). From two bands for C. jejuni and C. coli up to seven bands for C. fetus reacted with CT antibody in Western blotting assays, with a common prominent band of approximately 53 kDa for all species (Fig. 1B).

To rule out nonspecific activity, the crude OMPs were subjected to immunoblotting with normal rabbit serum. The higher band corresponding to the approximate molecular mass of 79 kDa from all species reacted with normal rabbit serum, as observed in a previous study with C. jejuni strains (1). There was a reaction with two additional higher-molecular-mass bands from C. upsaliensis (Fig. 1C).

In the Sarkosyl-purified OMP preparations, Coomassie blue-stained bands were less numerous and less prominent than those in the crude OMP preparations (Fig. 2A). However,
when these Sarkosyl-purified OMPs were allowed to react with CT antibody in immunoblotting assays, all species except *C. fetus* produced the unique single band of 53 kDa. The purified OMP preparation from *C. fetus* produced several bands in a ladder-like pattern, as did the crude membrane preparation. However, the nonspecific band of 79 kDa that reacted with normal rabbit serum was absent (Fig. 2B).

When purified outer membranes were allowed to react with normal rabbit serum in immunoblotting assays, no band from normal rabbit serum was absent (Fig. 2B).

Both isolates of all the six species of *Campylobacter* produced identical banding patterns on Coomassie blue-stained SDS-PAGE gels as well as on immunoblots (data not shown).

Like the strains we described previously (14), all *Campylobacter* species strains in the present study generated an amplicon of 539 bp corresponding to the *porA* gene (data not shown). In a previous study (1) using protein sequencing and recombinant PorA protein, we identified the 53-kDa *C. jejuni* protein reacting with CT antibody as PorA. In the present study also, we demonstrated the presence of a 53-kDa protein reactive with CT antibody in the outer membrane preparations from both *C. jejuni* strains. Interestingly, purified OMPs from other species of *Campylobacter* exhibited reactive bands corresponding to similar molecular masses. Therefore, it is reasonable to assume that the PorA major OMPs from all the tested species of *Campylobacter* cross-react with CT. The only exception was *C. fetus*, which had several additional bands that reacted specifically with CT antibody and appeared as a ladder-like structure. *C. fetus* strains are reported to possess a unique S-layer OMP, which separates into a ladder-like pattern upon gel electrophoresis (5). This observation suggested that the ladder-like structure from *C. fetus* was the CT-cross-reactive major OMP PorA.

Previously, we failed to show functional CTLT production in a CHO cell assay using many well-characterized strains of *C. jejuni*. Instead, we concluded that the cross-reactivity of PorA of *C. jejuni* with CT would have misled investigators to the erroneous conclusion that *C. jejuni* strains produce CTLT (1). Similarly, there are some reports of CTLT production by other species of *Campylobacter* (11, 12). However, as with *C. jejuni*, we did not find evidence for functional CTLT production by these isolates in CHO cell assays. On the other hand, outer membranes from all these species of *Campylobacter*, like those from *C. jejuni*, reacted with CT antibody. Therefore, indications of CTLT production by non-*C. jejuni* species of *Campylobacter* should be interpreted with caution. It appears that the PorA major OMPs from all *Campylobacter* species share a common antigenic determinant(s) that cross-reacts with CT. This observation could be exploited for protection against disease caused by *Campylobacter* species strains. Patients as well as volunteers recovering from *C. jejuni* infection mount a strong antibody response to this major OMP (3, 21, 23).

ACKNOWLEDGMENTS

This study was supported by a Kuwait University research grant (number M102/01) and by Australian Research Council grant (CE)562063. We thank G. Hogg, Microbiological Diagnostic Unit, University of Melbourne, Parkville, Victoria, Australia, for the provision of some *Campylobacter* strains.

REFERENCES

1. Albert, M. J., S. Haridas, D. Steer, G. S. Dhaunsi, A. L. Smith, and B. Adler. 2007. Identification of a *Campylobacter jejuni* protein that cross-reacts with choler toxin. Infect. Immun. 75:3070–3073.

2. Allos, B. M., and M. J. Blaser. 1995. *Campylobacter jejuni* and expanding spectrum of related infections. Clin. Infect. Dis. 28:1092–1099.

3. Black, R. E., M. M. Levine, M. L. Clements, T. P. Hughes, and M. J. Blaser. 1988. Experimental *Campylobacter jejuni* infection in humans. J. Infect. Dis. 157:472–479.

4. Blaser, M. J., J. A. Hopkins, R. M. Berkia, M. L. Vasili, and W.-L. L. Wang. 1983. Identification and characterization of *Campylobacter jejuni* outer membrane proteins. Infect. Immun. 42:276–284.

5. Blaser, M. J., P. F. Smith, J. A. Hopkins, I. Heinzler, J. H. Bryner, and W. L. Wang. 1987. Pathogenesis of *Campylobacter fetus* infections: serum resistance associated with high-molecular-weight surface proteins. J. Infect. Dis. 155:696–706.

6. Bok, H. E., A. S. Greeff, and H. H. Crewe-Brown. 1991. Incidence of toxigenic *Campylobacter* strains in South Africa. J. Clin. Microbiol. 29:1262–1264.

7. Brown, P. E., O. F. Christensen, H. E. Clough, P. J. Diggle, C. A. Hart, S. Hazel, R. Kemp, A. J. Leatherbarrow, A. Moore, J. Sutherst, J. Turner, N. J. Williams, E. J. Wright, and N. P. French. 2004. Frequency and spatial distribution of environment *Campylobacter* spp. Appl. Environ. Microbiol. 70:6501–6511.

8. Everest, P. H., H. Goossens, J.-P. Butzler, D. Lloyd, S. Knuttom, J. M. Kettle, and P. H. Williams. 1992. Differentiated Caco-2 cells as a model for enteric invasion by *Campylobacter jejuni* and *C. coli*. J. Med. Microbiol. 37:319–335.

9. Goossens, H., J.-P. Butzler, and Y. Takeda. 1985. Demonstration of cholera-like enterotoxin production by *Campylobacter jejuni*. FEMS Microbiol. Lett. 29:73–76.

10. Hunter, K., S. Quinn, J. Brunner, and S. W. L. On. 1997. Evaluation of a PCR assay for identification and differentiation of *Campylobacter fetus* subspecies. Aust. Vet. J. 75:827–831.

11. Johnson, W. M., and H. Lior. 1986. Cytotoxic and cytolytic factors produced by *Campylobacter jejuni*, *Campylobacter coli*, and *Campylobacter lari*. J. Clin. Microbiol. 24:275–281.

12. Johnson, W. M., and H. Lior. 1988. A new heat-labile cytolethal distending toxin (CLDT) produced by *Campylobacter* spp. Microb. Pathog. 5:115–126.

13. Kettle, J. M. 1997. Pathogenesis of enteric infection by *Campylobacter jejuni*. Microbiology 143:S1–21.

14. Khan, I., B. Adler, S. Haridas, and M. J. Albert. 2005. PorA protein of *Campylobacter jejuni* is not a cytotoxin mediating inflammatory diarrhoea. Microb. Infect. 7:853–859.

15. Klena, J. D., C. T. Parker, K. Knibb, J. C. Ibbitt, P. M. L. Devane, S. T. Horn, W. G. Miller, and M. E. Konkel. 2004. Differentiation of *Campylobacter coli*, *Campylobacter jejuni*, *Campylobacter lari*, and *Campylobacter agilis* by a multiplex PCR developed from the nucleotide sequence of the lipid gene *flpC*. J. Clin. Microbiol. 42:5549–5557.

16. Klipstein, F. A., and R. F. Engert. 1985. Immunological relationship of the B subunits of *Campylobacter jejuni* and *Escherichia coli* heat-labile enterotoxins. Infect. Immun. 48:275–281.

17. Konkel, M. E., Y. Lobet, and W. Cieplak. 1992. Examination of multiple isolates of *Campylobacter jejuni* for evidence of cholera toxin-like activity, p. 193–198. In I. Nachamkin, M. J. Blaser, and L. S. Tomkins (ed.), *Campylobacter jejuni*: current status and future trends. American Society for Microbiology, Washington, DC.

18. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685.

19. Lindblom, G.-H., M. Johny, K. Khalil, K. Mazhar, G. M. Ruiz-Palacios, and B. Kaajer. 1993. Enterotoxigenicity and frequency of *Campylobacter jejuni*, *Campylobacter coli* and *Campylobacter lari* in human and animal stool isolates from different countries. FEMS Microbiol. Lett. 54:163–168.

20. McCardell, B. A., J. M. Madden, and J. T. Stanfield. 1986. Effect of iron concentration on toxin production in *Campylobacter jejuni* and *C. coli*. Can. J. Microbiol. 32:395–401.

21. Mills, S. D., and W. C. Bradbury. 1984. Human antibody response to outer membrane proteins of *Campylobacter jejuni* during infection. Infect. Immun. 43:739–743.

22. Nachamkin, I. 1999. *Campylobacter* and *Arcobacter*, p. 716–726. In P. R. Murray, E. J. Barron, M. A. Pfifer, F. C. Tenover, and R. H. Yolken (ed.), *Manual of clinical microbiology*, 7th ed. ASM Press, Washington, DC.

23. Nachamkin, I., and A. M. Hart. 1985. Western blot analysis of the human antibody response to *Campylobacter jejuni* cellular antigens during gastrointestinal infection. J. Clin. Microbiol. 21:33–38.

24. Olsvik, O., K. Wachsmuth, G. Morris, and J. C. Feeley. 1984. Genetic probing of *Campylobacter jejuni* for cholera toxin and *E. coli* heat-labile enterotoxin. Lancet i:449.

25. Perez-Perez, G. I., D. L. Cohn, R. L. Guercrant, C. M. Patton, L. B. Reiler, and M. J. Blaser. 1989. Clinical and immunological significance of cholera-
like toxin and cytotoxin production by *Campylobacter* species in patients with acute inflammatory diarrhea in the USA. J. Infect. Dis. 160:460–468.

26. Perez-Perez, G. I., D. N. Taylor, P. D. Echeverria, and M. J. Blaser. 1992. Lack of evidence of enterotoxin involvement in pathogenesis of *Campylobacter* diarrhea, p. 184–192. In I. Nachamkin, M. J. Blaser, and L. S. Tomkins (ed.), *Campylobacter jejuni*: current status and future trends. American Society for Microbiology, Washington, DC.

27. Ruiz-Palacios, G. M., N. I. Torres, B. R. Ruiz-Palacios, J. Torres, E. Escamilla, and J. Tamayo. 1983. Cholera-like enterotoxin produced by *Campylobacter jejuni*: characterisation and clinical significance. Lancet ii:250–253.

28. Wadstrom, T. S., S. B. Baloda, K. Krovacek, A. Faris, S. Bengtson, and M. Walder. 1983. Swedish isolates of *Campylobacter jejuni/coli* do not produce cytotoxic or cytotoxic enterotoxins. Lancet ii:911.

29. Wassenaar, T. M. 1997. Toxin production by *Campylobacter* spp. Clin. Microbiol. Rev. 10:466–476.