Modular Organization of the PDZ Domains in the Human Discs-Large Protein Suggests a Mechanism for Coupling PDZ Domain-binding Proteins to ATP and the Membrane Cytoskeleton

Shirin M. Marfatia,* Joao H. Morais Cabral,* Lunhui Lin,* Colleen Hough,§ Peter J. Bryant,§ Lesley Stolz,¶ and Athar H. Chishti*

*Laboratory of Tumor Cell Biology, Department of Biomedical Research, St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, Massachusetts 02135; ‡Laboratory of X-Ray Crystallography, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115; §Developmental Biology Center, University of California, Irvine, California 92717; and ¶Pharmacia Biosensor, Cambridge, Massachusetts 02139

Abstract. The human homologue (hDlg) of the Drosophila discs-large tumor suppressor (Dlg) is a multidomain protein consisting of a carboxyl-terminal guanylate kinase-like domain, an SH3 domain, and three slightly divergent copies of the PDZ (DHR/GLGF) domain. Here we have examined the structural organization of the three PDZ domains of hDlg using a combination of protease digestion and in vitro binding measurements. Our results show that the PDZ domains are organized into two conformationally stable modules, one (PDZ1+2) consisting of PDZ domains 1 and 2, and the other (PDZ3) corresponding to the third PDZ domain. Using amino acid sequencing and mass spectrometry, we determined the boundaries of the PDZ domains after digestion with endoproteinase Asp-N, trypsin, and α-chymotrypsin. The purified PDZ1+2, but not the PDZ3, domain contains a high affinity binding site for the cytoplasmic domain of Shaker-type K+ channels. Similarly, we demonstrate that the PDZ1+2 domain can also specifically bind to ATP. Furthermore, we provide evidence for an in vivo interaction between hDlg and protein 4.1 and show that the hDlg protein contains a single high affinity protein 4.1-binding site that is not located within the PDZ domains. The results suggest a mechanism by which PDZ domain-binding proteins may be coupled to ATP and the membrane cytoskeleton via hDlg.

The complex of proteins underlying the plasma membrane is maintained, in large part, by high affinity interactions between specific protein domains. Variations in amino acid sequence between these domains can confer a high degree of specificity in these interactions, whereas the collection of a variety of such domains into multidomain polypeptides generates great complexity of the resulting assembly, known as the membrane cytoskeleton. This structure regulates cell shape, adhesion, and motility, and allows the organization of signal transduction pathways. The protein domain known as PDZ was initially identified as a 90-amino acid repeated motif in the synaptic junction protein, postsynaptic density protein (PSD)-95/synapse-associated protein (SAP) 90 (Cho et al., 1992; Kistner et al., 1993). Three copies of the PDZ domain were identified in PSD-95 by virtue of a repeating GLGF signature sequence, and hence, this domain was originally named the GLGF repeat (Cho et al., 1992). However, since many similar domains in other proteins do not contain the GLGF signature sequence (Ponting and Phillips, 1995), they were renamed DHRs (discs-large-homology region) to reflect their occurrence in the Drosophila discs-large tumor suppressor protein (Dlg) (Woods and Bryant, 1993). Dlg and rat PSD-95 are members of a recently discovered family of putative signaling proteins termed membrane-associated guanylate kinase homologues (MAGUKs), all of which contain DHRs. The family also includes human erythroid p55 (Ruff et al., 1991), the tight junction proteins Z0-1 and Z0-2 (Willot et al., 1993; Itoh et al., 1993; Jesaitis and Goodenough, 1994), a human homologue of Dlg (hDlg) (Lue et al., 1994), the product of the dgl2 gene (Mazoyer et al., 1995), the prod-
The binding of PSD-95/hDlg with the N-methyl-D-aspartate receptor, FAP-1, mediates its binding to the cytoplasmic domain of a single protein. The three PDZ domains within a single protein are designated PDZ1, PDZ2, and PDZ3, respectively, starting from the amino-terminal end (Woods and Bryant, 1993). Other examples of proteins containing the PDZ domain include the Drosophila dishevelled protein (Klingensmith et al., 1993), the C. elegans signaling protein, LIN-7 (Simske et al., 1996), a subclass of protein tyrosine phosphatases, a protein with the leucine-zipper sequence, a chemoattractant factor, an LIM-kinase, and the rosl gene product from a glioblastoma cell line (Ponting and Phillips, 1995).

Recent findings indicate that the PDZ domains function as specific protein-recognition motifs. For example, one of the six PDZ domains present in the protein tyrosine phosphatase, FAP-1, mediates its binding to the cytoplasmic domain of the Fas cell surface receptor (Sato et al., 1995), and this binding is critical for Fas-induced apoptosis in T lymphocytes (Sato et al., 1995). Similarly, the PDZ domain of PSD-95 binds to the cytoplasmic tail of the N-methyl-D-aspartate receptor (Kornau et al., 1995), and the PDZ1+2 domains of both PSD-95 and hDlg bind to the cytoplasmic domain of Shaker-type K⁺ channels (Kim et al., 1995). The binding of PSD-95/hDlg with the N-methyl-D-aspartate receptors and K⁺ channels may be involved in synaptic plasticity, and it appears to be necessary for the clustering of potassium channels expressed in heterologous COS cells (Kornau et al., 1995; Kim et al., 1995). Evidence for PDZ–PDZ domain associations was recently obtained by the demonstration that a single copy of the PDZ domain of neuronal nitric oxide synthase interacts with the PDZ domain of α-1-syntrophin (Brenman et al., 1996). Similarly, the PDZ domain of neuronal nitric oxide synthase interacts with the PDZ domain of PSD-95 (Brenman et al., 1996). These results suggest that the PDZ domain plays a role in the subcellular localization of neuronal nitric oxide synthase. The functional significance of the PDZ domain was also demonstrated by the observation that a small deletion in the centrally located PDZ domain of Drosophila dishevelled protein results in a phosphorylation-resistant protein that is inactive in the “Arm” assay (Yanagawa et al., 1995). More recently, Matsumine et al. (1996) have shown that the PDZ2 domain of hDlg interacts with the carboxyl-terminal segment of adenomatous polyposis coli (APC) gene product. These findings indicate that the PDZ domains are novel protein modules that target cytoplasmic proteins to multiprotein complexes at the inner surface of the plasma membrane.

The characterization of hDlg protein began when our laboratory identified a high molecular weight band during immunoprecipitation of p55 protein from lysates of human B lymphocytes. The corresponding cDNA was subsequently cloned from a human B lymphocyte cDNA preparation using degenerate nucleotide primers based on the sequences of the cDNAs of PSD-95 and Dlg (Cho et al., 1992; Kistner et al., 1993; Woods and Bryant, 1991). The predicted primary structure of hDlg is similar to those of PSD-95 and Dlg except that the hDlg protein contains a novel amino-terminal segment that is not found in other MAGUKs (Lue et al., 1994). We have previously demonstrated that the hDlg protein binds to protein 4.1 in vitro (Lue et al., 1994). In this manuscript we show that the three PDZ domains of hDlg are organized into two protease-resistant modules. One module consists of PDZ domains 1 and 2, whereas the other contains PDZ domain 3. The PDZ1+2 module binds to ATP as well as to the cytoplasmic domain of Shaker-type K⁺ channels. We also present evidence for the interaction of hDlg protein with protein 4.1 in vivo and show that protein 4.1 binds to hDlg at a single site outside of the PDZ domains.

Materials and Methods

hDlg Constructs

The cDNA constructs of full-length hDlg and the three PDZ domains (amino acids 201–584; PDZ1+2+3) of hDlg, which were subcloned into pGEX-2T, have been described previously (Lue et al., 1994). The BamHI/EcoRI fragment released from the PDZ1+2+3 cDNA construct in pGEX-2T was subcloned into the vector pRSETA. The cDNA construct expressing the PDZ1+2+3 protein was purified by nickel nitric acid (Tashiro and Nishida, 1987) and a chymotrypsin (Sigma Chemical Co., St. Louis, MO). The enzyme/protein ratio for Asp-N was 1:2,000 (wt/wt), for a-chymotrypsin 1:83 (wt/wt). The His-tag was confirmed using diaminobenzidine (DAB) staining. The PDZ1+2+3 protein was purified as described (Invitrogen, San Diego, CA). cDNA fragments containing the PDZ1+2 domain (amino acids 201–464) and the PDZ2 domain (amino acids 457–572) of hDlg were amplified using the primers containing the BamHI or EcoRI adaptors as follows: D1f (sense, BamHI) 5'-CGGCGATCCCTCCGTTGCAACACAGATA; D1r (antisense, EcoRI) 5'-CCGAGATTCCAGTTCCCTTGAATT; D2f (sense, BamHI) 5'-CCCAGTGATCGATGAAATTACA; D2r (antisense, EcoRI) 5'-CGCAGAATTCGTCAGATGATGAAATTACA; D3f (sense, BamHI) 5'-CCGCGATCCCTCCGTTGCAACACAGATA; D3r (antisense, EcoRI) 5'-CCGGAATTCGTCAGATGATGAAATTACA. The PCR products were ligated into pGEX-2T vector and shown to express the expected size of glutathione-S-transferase (GST) fusion proteins in E. coli DH5α cells. All the cDNA constructs were verified by DNA sequence analysis.

Drosophila Dlg Constructs

The cDNA fragments containing the three PDZ domains (amino acids 37–572) and PDZ2 domain (amino acids 462–572) were amplified using the primer pairs: DHR1f (sense) 5'-TTATACAGGGACATCAGCTGAG; DHR1r (antisense) 5'-AAGCGATTTCAATCTTCTCCGG; DHR2f (sense) 5'-ATTGCTCGAGGCGCGCTTCC; DHR2r (antisense), respectively. The PCR products were then cloned into the TA cloning vector pCR3MHI (Invitrogen), and then transferred into pGEX-4T-2 vector. The cDNA constructs expressed the expected size of GST fusion proteins in E. coli DH5α cells.

Protease Digestion of the Fusion Proteins

To investigate the modular organization of the PDZ domains of hDlg, purified His-PDZ1+2+3 fusion protein was digested with endoprotease Asp-N (Boehringer Mannheim Biochemicals, Indianapolis, IN), N1-tosylamide-2-phenylethylchloromethyl ketone (TPCK)-trypsin (Pierce Chemical Co., Rockford, IL) and α-chymotrypsin (Sigma Chemical Co., St. Louis, MO). The enzyme/protein ratio for Asp-N was 1:2,000 (wt/wt), for TPCK-trypsin 1:30 (wt/wt), and for α-chymotrypsin 1:83 (wt/wt). The His-PDZ1+2+3 protein was incubated with Asp-N for 2 h at room temperature in a buffer containing 50 mM Tris-HCl, pH 8.0, and 50 mM NaCl. Digestion with trypsin and α-chymotrypsin was carried out in the same buffer at

The Journal of Cell Biology, Volume 135, 1996 754
4°C, for overnight and 2 h, respectively. The protease-resistant PDZ1+2 and PDZ2 domains thus produced were purified by gel filtration on a Superdex 75 column (Pharmacia Biotech, Piscataway, NJ) followed by chromatography on a Mono-Q anion exchange column (Pharmacia Biotech).

For all subsequent biochemical studies, the PDZ1+2 domain was obtained from the GST-PDZ1+2 fusion protein by digestion with trypsin and α-chymotrypsin. The immobilized GST-PDZ1+2 fusion protein was first cleaved with thrombin (Smith and Johnson, 1988). The released PDZ1+2 fragment was then digested with either TPCK-trypsin or α-chymotrypsin to produce either PDZ1+2 (T) or PDZ1+2 (C), respectively. Amino-terminal sequencing and mass spectrometric analysis of PDZ1+2 and PDZ2 domains were carried out according to standard procedures. For low angle rotary-shading EM, the His-PDZ1+2+3 and PDZ1+2 (T) proteins were sprayed onto freshly cleaned mica in the buffer containing 70% glycerol. Rotary shadowing was performed with platinum-carbon and carbon anodes, and floated replicas were mounted on 400-mesh copper grids (Tyler et al., 1980).

Preparation of 125I-labeled 30-kD Domain of Protein 4.1

Native protein 4.1 was isolated from human RBCs using the procedure of Ohanian and Grater (1984). The 30-kD amino-terminal domain of protein 4.1 (4.1NT) was obtained by limited digestion of pure protein 4.1 with α-chymotrypsin at an enzyme/substrate ratio of 1:25. The protease digestion was carried out on ice in a buffer containing 10 mM Tris-HCl, pH 8.0. After incubation for 90 min, the enzyme activity was quenched with 4.0 mM disopropyl fluorophosphate. The digested material was fractionated on a Mono-Q column using a linear gradient of 20-500 mM sodium chloride.

Synthetic Peptides

The positively charged cluster of amino acids located between the PDZ domains was imaged into solution by gel filtration (69 kD) with the calculated value of 45.2 kD (Table I) suggested some asymmetry in the shape of the purified PDZ1+2+3 fusion protein. To test whether this asymmetry may be a consequence of conformational distinction organized within the three PDZ domains, the GST-PDZ1+2+3 fusion protein was immobilized on a surface coated with 6,000 RU of GST or BSA were included to measure nonspecific binding. A Millipore-1225 sampling manifold apparatus was used to process protein samples either in duplicate or triplicate. The Scatchard plot was generated by incubating 2.0 µg of the GST-PDZ1+2+3 protein with increasing concentrations of ATP. A parallel GST control was included for each ATP concentration. Each presented result is an average of duplicate determinations.

Results

The PDZ Domains of hDlg Are Organized into Two Protease-resistant Modules

A histidine-tag fusion protein (PDZ1+2+3) was produced that contained all three PDZ domains along with flanking sequences (residues Leu 201 to Leu 584; Figs. 1 and 2). A comparison of the molecular mass of PDZ1+2+3 fusion protein by gel filtration (69 kD) with the calculated value of 45.2 kD (Table I) suggested some asymmetry in the shape of the purified PDZ1+2+3 fusion protein. To test whether this asymmetry may be a consequence of conformationally distinct organization within the three PDZ domains, the purified PDZ1+2+3 protein was incubated with low concentrations of endoproteinase Asp-N (1:2,000 wt/wt). Limited proteolysis cleaved the three PDZ domains of hDlg into two Coomassie-stainable bands of 28 and 10 kD, which migrated as 33- and 12-kD polypeptides, respectively, on a gel filtration column (Table I; Fig. 1 B). The boundaries of the two polypeptides were determined by amino-terminal sequencing and matrix-assisted laser desorption mass spectrometry. The amino terminus of the 33-kD polypeptide obtained by Asp-N cleavage starts at aspartic acid-205, whereas the carboxyl terminus was calculated to be asparagine-411 from the molecular mass determined by mass spectrometry. The 33-kD polypeptide therefore includes PDZ domains 1 and 2 as well as 20 amino acids of flanking sequence located at the amino terminus of PDZ domain 1. It is relevant to mention here that when PDZ1+2 domain is obtained by digestion of corresponding GST fusion protein with trypsin and chymotrypsin, two amino acids from

Marfatia et al. Modular Organization of the PDZ Domain
Figure 1. Characterization of the PDZ domains of hDlg. (A) Schematic representation of hDlg protein showing various protein domains. The proline-rich region and the protein 4.1-binding domain (4.1B) are encoded by alternatively spliced exons that were originally designated as insertions 1 and 1', respectively (Lue et al., 1994). (B) The His–PDZ₁²+³ fusion protein of hDlg was digested with either endoproteinase Asp-N (A), TPCK-trypsin (T), or α-chymotrypsin (C). The approximate location of protease-resistant domains, PDZ₁²+² module and PDZ³, is shown in the left panel. The right panel shows the elution profile and SDS-PAGE analysis of the three proteins. The sizes of the His–PDZ₁²+³ fusion protein (69 kD), the PDZ₁²+² (A) module (33 kD), and the PDZ³ (A) domain (12 kD) were determined by gel filtration on a Superose 12 column. The following protein markers were used: cytochrome C (12,000), carbonic anhydrase (29,000), BSA (66,000), β-amylase (200,000), and thyroglobulin (669,000). See Table I for complete listing of the molecular mass of various protein domains. (C) Electron micrographs of low angle rotary-shadowed replicas of His–PDZ₁²+³ fusion protein and PDZ₁²+² (T) module. (Arrowheads) Elongated morphology of His–PDZ₁²+³ molecules as compared with the globular shape of PDZ₁²+² (T). Bar, 0.1 μm.
the carboxyl end of GST are added to the amino terminus of PDZ1+2 domain (Table I). Similarly, the amino and carboxyl termini of the 12-kD polypeptide were determined to be aspartic acid-457 and histidine-558, respectively (Table I). The boundaries of the 12-kD polypeptide correspond to those of PDZ domain 3, without any flanking sequence (Fig. 1 B). It is noteworthy here that the PDZ2 domain in solution migrates as a dimer (18 kD) at high protein concentrations (>1.5 mg/ml). Both trypsin and chymotrypsin cleaved the PDZ1+2+3 protein into two modules that are similar but not identical to those produced by Asp-N. The amino acids corresponding to the boundaries of PDZ1+2 domain released by trypsin and chymotrypsin are shown in Table I.

In summary, the three PDZ domains of hDlg are organized into two protease-resistant modules. The PDZ1+2 module includes PDZ domains 1 and 2 and 20-23 amino acids upstream of PDZ domain 1 (Table I). In contrast, the PDZ3 domain is released as an independent module without a significant contribution from the flanking sequences. Low angle rotary shadow images indicate a relatively globular shape of the PDZ1+2 module as compared with the PDZ1+2+3 protein (Fig. 1 C).

A Subset of PDZ Domains Are ATP-binding Protein Modules

While studying the guanylate kinase activity of hDlg, we observed that GST fusion protein containing either full-length hDlg or PDZ1+2+3 domains bound ATP. The binding of radiolabeled ATP to the fusion protein in solution was quantified using a filter binding assay similar to one previously used to measure ATP binding to dematin and protein 4.2 (Azim et al., 1996). As shown in Fig. 3 A, ATP bound to purified GST-hDlg protein (26 mmol/mol) and GST-PDZ1+2+3 protein (22 mmol/mol). We then examined binding specificity within the three PDZ domains of hDlg. The PDZ1+2 domains, which were prepared by cleavage of the GST fusion protein using thrombin/chymotrypsin/trypsin, showed a comparable level of binding activity (1.3 mmol/mol), whereas the PDZ3 domain of hDlg was inactive for ATP binding (Fig. 3 B). The relatively lower binding capacity of PDZ1+2 as compared with GST-PDZ1+2+3 might be due to a partial inactivation of PDZ1+2 during enzymatic cleavage and subsequent purification, or to having a more stable conformation as a fusion protein. The in vitro binding of ATP also occurred with a
Table 1. Characterization of Recombinant hDlg Proteins

hDlg constructs	Amino acid boundaries*	Molecular mass (kD)		
	Calculated†	SDS-PAGE	Gel filtration	
His-PDZ1+2+3	LVN-RSL (201-584)	45.2‡	44	69
PDZ1+2(A)	DSL-YMN (205-411)	22.3	28	33
PDZ2(A)	DDE-KIH (457-558)	10.9	10	12**
PDZ1+2 (thrombin cleaved)	LVN-REP (201-464)	29.1†	36	ND
PDZ1+2 (T)§	LVN-PAR (201-446)	26.5§	33	ND
PDZ1+2 (T)¶	LVN-VAK (201-404)	22.1¶	28	ND
PDZ1+2(C)	LVN-SMY (201-409)	22.6¶	28	ND

*The carboxyl terminus was determined by mass spectrometry measurements.
†The calculated values were obtained using MacVector computer program.
‡Molecular mass includes 4,147 daltons, contribution from the 36 amino acids of His-tag.
§Molecular mass includes 180 daltons, contribution of glycine and serine residues from the carboxyl terminus of GST.
¶Molecular mass also includes five amino acids (G, I, H, R, D: 668 daltons) from the pGEX-2T before the stop codon.
**PDZ2(A) domain migrates as dimer at high protein concentrations.
††TPCK-trypsin to protein ratio of 1:30 (wt/wt) at 4°C.
§§TPCK-trypsin to protein ratio of 1:20 (wt/wt) at room temperature.
A, T, and C, Asp-N, TPCK-trypsin, and α-chymotrypsin, respectively.

Drosophila Dlg GST–PDZ1+2+3 fusion protein (Fig. 3 C). It should be noted that the Dlg GST–PDZ1+2+3 fusion protein is highly unstable despite necessary precautions, and therefore complicates the measurement of protein concentration required for precise calculation of specific activity. Nevertheless, the nucleotide-binding activity of the PDZ domains was specific for ATP since no binding was detected with the radiolabeled GTP (data not shown). In addition, the binding of labeled ATP to fusion proteins failed in competition with a large excess of cold, nonlabeled ATP, but it succeeded when competing with an excess of cold, nonlabeled GTP. The binding of ATP to the GST–PDZ1+2+3 fusion protein of Dlg is saturable and of high affinity with a \(K_d \) value of 6.5 ± 1.3 nM (Fig. 4).

High Affinity Binding of PDZ1+2 Module to Shaker-type \(K^+ \) Channels

Using a yeast two-hybrid screen, Kim et al. (1995) have recently shown that the distal end of the cytoplasmic domain of Shaker-type \(K^+ \) channels interacts with the PDZ domains 1 and 2 of Dlg and PSD-95. Here we have used surface plasmon resonance technology to quantify the interaction of \(K^+ \) channels with the PDZ domains of Dlg. A synthetic peptide, DKNCCNAAKAVETDV, modeled after the carboxyl-terminal 15 amino acids of voltage-gated Shaker-type \(K^+ \) channel Kv1.4 was coupled to biotin at the amino terminus. A spacer arm of SGSG was introduced between biotin and the peptide to provide adequate flexibility of the immobilized peptide. The biotinylated peptide of \(K^+ \) channel Kv1.4 was immobilized on a streptavidin platform and used to quantify the binding of purified PDZ domains.

We first measured the binding of \(K^+ \) channel peptide to a GST fusion protein containing the three PDZ domains of Dlg. The immobilized Kv1.4 peptide was exposed to increasing concentrations of GST–PDZ1+2+3 fusion protein (25 nM to 400 nM), yielding an overall \(K_d \) of 11 nM (\(k_a = 1.8 \times 10^5 \) M⁻¹s⁻¹ and \(k_d = 2.0 \times 10^{-3} \)s⁻¹) (BIACore 1000; Pharmacia Biosensor) (Fig. 5 A). It is clear from both the dissociation phase of the lower concentration curves and the association phase of the higher concentration curves (Fig. 5 A) that the GST portion of the fusion protein is causing some avidity effects that may influence the affinity measurements under these conditions. To correct this error, we reversed the orientation of the binding experiment by immobilizing the GST–PDZ1+2+3 fusion protein of Dlg. Note that the rapid degradation of Dlg fusion protein prevented accurate determination of protein concentration. Error bars represent SEM (n = 3/4). The details of the proteins used for ATP binding are described in Materials and Methods.
were within 10% of experimental variation. It should be noted that bodies against GST (BIAcore 2000; Pharmacia Biosensor) high affinity binding of ATP to PDZ domains of hDlg reflects a presence of a single class of binding sites with a K_a value of 6.5 -
right 1987) program. The Scatchard analysis were calculated using ENZFITTER (Elsevier-BIOSOFT, copy-
described in Materials and Methods. The binding parameters
Figure 4. Quantification of ATP binding to the GST–PDZ$^{1+2+3}$ fusion protein of hDlg. The details of the ATP-binding assay are described in Materials and Methods. The binding parameters were calculated using ENZFITTER (Elsevier-BIOSOFT, copyright 1987) program. The Scatchard analysis (inset) indicated the presence of a single class of binding sites with a K_a value of 6.5 ± 1.3 nM. Each value is an average of duplicate determinations that were within 10% of experimental variation. It should be noted that Kistner et al. (1995) have recently shown that the GST–SAP90 fusion protein (full-length) binds ATP in the millimolar range. They have used a solid phase ATP-binding assay by immobilizing the GST fusion protein to agarose beads. Whether the high affinity binding of ATP to PDZ domains of hDlg reflects a consequence of in-solution binding or a sequence-specific difference remains to be determined.

protein on the biosensor chip coated with polyclonal antibodies against GST (BIAcore 2000; Pharmacia Biosensor) (Fig. 5 B). The Kv1.4 peptide was injected at concentrations ranging from 0.31–5.0 μM. The kinetic constants that were obtained from this experiment were: $k_a = 1.5 \times 10^5 \ M^{-1} s^{-1}$ and $k_d = 2.4 \times 10^{-7} s^{-1}$, giving an overall $K_d = 160 \ nM$. A distinctive feature of the results is a significant change in the dissociation rate when the orientation of the experiment is reversed (Fig. 5 B). The on-rate is virtually identical to that shown in Fig. 5 A; however, the off-rate is 10-fold faster, illustrating the potential contribution of GST dimerization to the off-rate (Fig. 5 B). No binding of Kv1.4 peptide was detected with the GST alone. We also measured the binding of immobilized Kv1.4 peptide to PDZ domains 1 and 2 without the GST fusion protein. The PDZ$^{1+2}$ module and the PDZ3 domain of hDlg were produced by Asp-N digestion. As shown in Fig. 6 A, the Kv1.4 peptide binds to PDZ$^{1+2}$ module with high affinity. A K_a value of 33 ± 5 nM was calculated from the association ($k_a = 4.13 \times 10^5 \ M^{-1} s^{-1}$) and dissociation ($k_d = 0.0135 s^{-1}$) rate constants (Fig. 6 B and C; Fisons IAsys instrument). The PDZ3 domain of hDlg did not bind to the immobilized Kv1.4 peptide (Fig. 6 A). Finally, we examined whether the binding of ATP to GST–PDZ$^{1+2+3}$ fusion protein can modulate its interaction with the Kv1.4 peptide. No effect on the binding affinity was observed in the presence of either 0.5 or 2.0 mM ATP–Mg$^{2+}$ complex (data not shown).

The Protein 4.1-binding Site Is Not Located within the PDZ Domains of hDlg
We have previously shown that the 4.1N30 domain binds to p55 and hDlg within a positively charged domain located between the SH3 and guanylate kinase-like domains (Marfatia et al., 1995). The protein 4.1-binding site in hDlg is encoded by an alternatively spliced insertion termed β or 4.1B (Lue et al., 1994; Marfatia et al., 1995). In addition, we have previously shown that protein 4.1 can also bind to a fusion protein containing the three PDZ domains of hDlg (Lue et al., 1994). However, the binding measurements indicated that protein 4.1 binds to the three PDZ domains of hDlg with significantly lower affinity as compared with its binding within the 4.1B (β) domain (Lue et al., 1994). To resolve the issue of the number of protein 4.1–binding sites within hDlg, we searched for 4.1– binding insert (β)–like sequences within the primary structure of hDlg. The sequence alignment revealed a positively charged cluster of amino acids at the interface of PDZ domains 1 and 2 (see peptide C). We used several experimental approaches to test whether the observed interaction between protein 4.1 and the PDZ domains of hDlg may be an artificial consequence of these positively charged amino acids. First, the binding measurements were conducted using native protein 4.1, which was purified from human RBC membranes. The 4.1N30 domain was obtained by proteolytic digestion of purified protein 4.1, thus eliminating factors that may influence the activity of protein 4.1 produced by in vitro translation systems (Lue et al., 1994; Pelham and Jackson, 1976). As shown in Fig. 7 A, the GST–PDZ$^{1+2+3}$ fusion protein of hDlg sedimented 38% of protein 4.1 as compared with the binding of protein 4.1 to full-length GST–hDlg fusion protein. To further investigate the protein 4.1–binding site within the three PDZ domains of hDlg, a 19- amino acid peptide (peptide C) was synthesized that included the positively charged amino acid cluster located between the PDZ domains 1 and 2. The peptide C did not affect the binding of protein 4.1 to the GST-hDlg and GST–PDZ$^{1+2+3}$ fusion proteins even at molar concentrations vastly in excess of the respective fusion proteins (Fig. 7 A). Next, we examined whether the PDZ$^{1+2}$ module, which contains PDZ domains 1 and 2 including the positively charged cluster of amino acids, can inhibit the binding of protein 4.1 to GST–hDlg fusion protein. Again, no effect on binding was observed irrespective of whether the PDZ$^{1+2}$ module was produced by chymotrypsin or trypsin (Fig. 7 B). Consistent with these findings, no binding between protein 4.1 and the PDZ$^{1+2}$ module was detected by a blot overlay assay (data not shown).

We also examined whether the presence of Kv1.4 peptide can modulate the binding of protein 4.1 to hDlg. The PDZ$^{1+2}$ module released by trypsin cleavage was incubated with the biotinylated Kv1.4 peptide that was coupled to the streptavidin beads. The unbound PDZ$^{1+2}$ module was removed by repeated washings of the beads. The presence of PDZ$^{1+2}$ module bound to streptavidin beads is shown in the inset of Fig. 7 C. The PDZ$^{1+2}$ module bound...
to Kv1.4 peptide was then tested for binding to the 4.1N30, but no binding was detected (Fig. 7 C). Similarly, molar excess of Kv1.4 peptide had no effect on the binding of protein 4.1 to GST–hDlg fusion protein (Fig. 7 D). Finally, to further support our contention that there is only one binding site for protein 4.1 in hDlg, we analyzed the binding of protein 4.1 to GST–hDlg fusion protein by Scatchard analysis. As shown in Fig. 8, protein 4.1 binds to hDlg at a single class of high affinity binding sites characterized with a K_d of 5.3 ± 0.4 nM. Based on these data, we conclude that the binding of protein 4.1 to hDlg is mediated by an alternatively spliced exon (4.1 binding insert) that is located between the exons of SH3 and guanylate kinase (GUK) domains.

Evidence for Interaction between hDlg and Protein 4.1 In Vivo

The hDlg transcript and hDlg immunoreactive polypeptides are found in many cells and tissues (Lue et al., 1994; our unpublished data). Using an affinity-purified antibody against human lymphocyte hDlg, the hDlg protein was detected in human RBC membranes (Fig. 9, lane 2). Western blotting revealed a major immunoreactive polypeptide of 80 kD and a minor immunoreactive band of ~125 kD (Fig. 9, lane 2, *arrowhead* and *asterisk*). The presence of two immunoreactive forms of hDlg in the red cell membrane is consistent with our previous findings documenting the presence of multiple transcripts of hDlg in human B lymphocytes (Lue et al., 1994). The two polypeptides of hDlg protein in the red cell membrane may be encoded by the alternatively spliced transcripts derived from a single copy of the hDlg gene on chromosome 3 (Azim et al., 1995). To test whether the presence of protein 4.1 is required to retain all forms of hDlg on the membrane, we examined the presence of hDlg protein in the membranes of RBCs from a patient with protein 4.1 (-) hereditary elliptocytosis (HE). The primary genetic defect in 4.1(−) HE involves...
Figure 6. Interaction of PDZ\(^{1+2}\) (A) module of hDlg with the K\(^+\) channel (Kv1.4) peptide. The binding was quantified using Fisons IA-sys Biosensor machine. Biotinylated Kv1.4 peptide was immobilized onto a streptavidin platform, and increasing concentrations of PDZ\(^{1+2}\) (A) protein were passed over the immobilized peptide. (A) The overlay plot showing specific association and dissociation phases generated at increasing concentrations of PDZ\(^{1+2}\) (A). Nonspecific binding contribution was determined by passing PDZ\(^{1+2}\) (A) protein over a nonspecific protein immobilized onto the streptavidin platform. (B) Plot of observed on-rate vs protein concentration in nM. The slope of the plot gives the association rate constant (\(k_a = 4.13 \times 10^5 \text{ M}^{-1}\text{s}^{-1}\)), and the intercept on the y-axis gives the dissociation rate constant (\(k_d = 0.0135 \text{ s}^{-1}\)). (C) Plot of fitted dissociation rate vs protein concentration in nM. The intercept on the y-axis gives the dissociation rate constant (\(k_d = 0.0149 \text{ s}^{-1}\)). The dissociation constant (\(K_d\)) was calculated to be 33 ± 5 nM, indicating a high affinity interaction between Kv1.4 channel peptide and PDZ\(^{1+2}\) (A) protein. As expected, the observed on-rate increases linearly with an increase in the PDZ\(^{1+2}\) protein concentration (B), whereas the dissociation rate remains constant (C).

protein 4.1 and results in elliptocytosis of RBCs and hemolytic anemia (Feo et al., 1980). The membranes of protein 4.1 (−) HE RBCs completely lack all forms of protein 4.1 and show a secondary loss of p55 and glycophorin C (Alloisio et al., 1993; Chishti et al., 1996). The hDlg protein was also completely missing from the membranes of protein 4.1 (−) HE RBCs (Fig. 9, lane 3). The concomitant loss of protein 4.1 and hDlg from the membranes of 4.1 (−) HE RBCs provides the first evidence for the in vivo association between hDlg and protein 4.1 in a mammalian cell.

Previously, we have proposed that the hDlg protein may interact with members of the protein 4.1 superfamily like ezrin and PTP-H1 whose amino termini are very similar to the 30-kD domain of protein 4.1 (Lue et al., 1994). First, we tested the binding of hDlg with native ezrin that was purified from human placenta. The immobilized GST–hDlg fusion protein failed to bind to purified ezrin as well as ezrin in lysates of HeLa cells (data not shown). Furthermore, we detected normal amounts of ezrin in the RBC membranes of a patient with protein 4.1 (−) HE (Fig. 9, lane 4). Since the protein 4.1 (−) HE RBCs do not contain either hDlg or p55, we conclude that the hDlg protein does not directly bind to ezrin in vivo. Similarly, no interaction of GST–hDlg protein was detected with the tyrosine phosphatase, PTP-H1, which was expressed in the baculovirus expression system (data not shown). In summary, our results indicate that protein 4.1 specifically binds to the hDlg protein both in vitro and in vivo.

Discussion

This investigation was undertaken to elucidate the structural and functional role of PDZ domains in hDlg, the human homologue of the Drosophila discs-large tumor suppressor protein. Our results show that the three PDZ domains of hDlg are organized into two protease-resistant conformationally stable modules. The PDZ domains 1 and 2 are contained within a single protease-resistant module, which also includes 20 amino acids located at the amino terminus of PDZ domain 1 (Fig. 1). In contrast, the protease treatment released the PDZ\(^{3}\) domain as an independent module without the flanking sequences. The presence of a protease-resistant PDZ\(^{1+2}\) module is consistent with the closely apposed location of the PDZ domains 1 and 2 in the hDlg sequence (Fig. 1). Indeed, a 53% sequence identity between PDZ domains 1 and 2 of hDlg suggests that the two domains may belong to a subclass that is distinct from the PDZ\(^{3}\) domain; both PDZ domains 1 and 2 are only 44% identical to PDZ\(^{3}\) domain (Fig. 2 d). Further evidence for the existence of a modular organization within PDZ domains of hDlg is provided by the fact that the proteolysis by three distinct proteolytic enzymes produced a remarkably similar pattern of protease-resistant PDZ domains. The compactness of the folded conformation of PDZ\(^{1+2}\) module is also indicated by the fact that the module resists further proteolysis despite the presence of 21 predicted cleavage sites of Asp-N, 26 cleavage sites of trypsin, and 14 cleavage sites of chymotrypsin within the module. Indeed, a high sequence identity and striking similarity in the proximal location of three PDZ domains found in hDlg, Drosophila Dlg, and PSD-95/SAP90 suggests that a similar modular organization of PDZ domains may also exist in other MAGUKs.

The use of proteases as a tool to delineate conformationally stable organization of protein domains has been successfully demonstrated in many cytoskeletal proteins. For example, the expression and crystallization of a 106–
amino acid repeat unit of the Drosophila spectrin became feasible from studies of the boundaries of repeat units determined by protease digestion studies (Yan et al., 1993). A similar strategy has been used to show that the 24 ankyrin repeats are organized into four conformationally stable units in ankyrin (Michaely and Bennett, 1993). The organization of PDZ 1 and 2 domains into a distinct module readily explains the presence of either one or three PDZ domains in different MAGUKs. The PDZ 1+2 module appears to mediate attachment to transmembrane proteins, explaining the submembrane localization of the large MAGUKs. The function of PDZ 3 domain, or single PDZ domain of the smaller MAGUKs, remains to be elucidated.

The results shown in Figs. 3 and 4 establish that a subset of PDZ domains are ATP-binding protein modules. Our data on ATP–PDZ binding for hDlg and Dlg appear to be consistent with the recent demonstration of ATP binding to full-length PSD-95/SAP90 (Kistner et al., 1995). Although the actual binding site on PSD-95 has yet to be mapped, it is unlikely to be the guanylate kinase domain because of a three–amino acid deletion in the putative ATP-binding motif (Woods and Bryant, 1993). In searching for a consensus nucleotide-binding sequence in the PDZ domains, we found that each of the three PDZ domains of hDlg as well as Dig and PSD-95, contain a common “reverse” nucleotide-binding motif (K/RGXXGXG) at their amino termini (Figs. 2 and 10) (Saraste et al., 1990). Within the PDZ 1+2 module of hDlg, the PDZ 3 domain contains an RGXXGXG signature, whereas the PDZ 2 domain carries a K/GXXGXG. Likewise, PDZ domains 1 and 2 of Dlg and PSD-95 express the identical distribution of arginine and lysine. The PDZ 3 domain, however, varies slightly among the proteins; in hDlg and PSD-95, it contains RGXXGXG, while in Dlg, it has KGXXGXG (Figs. 2 and 10). Minor discrepancy notwithstanding, we
feel this motif may play a role in mediating ATP binding to PDZ domains. Although this consensus sequence is lacking in human erythroid p55's single PDZ domain and tight junction proteins ZO-1 and ZO-2's multiple PDZ domains, it must be acknowledged that no firm P-loop consensus sequence exists that can identify all ATP- or GTP-binding proteins. For example, phosphoglycerate kinases, which are known to bind ATP, exhibit a significantly divergent variation of the P-loop primary structure (Saraste et al., 1990). Thus, the absence of a classical P-loop consensus in some PDZ domains does not necessarily imply a lack of nucleotide binding.

The crystal structure of the PDZ3 domain of PSD-95 complexed with peptide was recently solved by Doyle et al. (1996). They identified the peptide-binding interface as consisting of a Gly-Leu-Gly-Phe loop and an arginine-318. This model is similar to hDlg's PDZ3 structure, in which a groove ending in a hydrophobic pocket and a buried arginine is also present and considered to be the binding site of peptide's COOH termini (Cabral et al., 1996). In light of the fact that hDlg and PSD-95 also share identical reverse nucleotide-binding motifs, it therefore appears unlikely that both ATP and peptide can bind to the same site on the PDZ3 domain of hDlg and PSD-95. This prediction is in fact consistent with the lack of ATP binding to the PDZ3 domain of hDlg (Fig. 3 B). The PDZ3 domain of Dlg, in contrast, substitutes Lys-Gly-Pro for Arg-Gly-Ser in the reverse motif and may provide an additional site for nucleotide binding. Indeed, a GST–PDZ3 fusion protein of Dlg binds ATP in vitro (data not shown), and the presence of a lysine residue in the P-loop has been previously proven critical in forming the dinucleotide fold necessary for nucleotide binding (Saraste et al., 1990). This Lys-Gly-Pro signature in Dlg's PDZ3 domain is also present in the PDZ2 domains of hDlg and PSD-95, which in conjunction with their corresponding PDZ1 domains bind ATP. Whether this precise signature plays the key role in binding ATP to PDZ1+2 remains to be seen. Alternatively, there are several positively charged residues that could also serve as potential sites for ATP binding within the PDZ domains. Experiments are currently underway to solve the crystal structure of PDZ1+2 domain of hDlg in the presence of bound peptide and ATP.

Although the molecular mechanism by which MAGUKs function in vivo is not known, it is believed that they modulate signaling pathways at the membrane cytoskeleton (Woods and Bryant, 1993; Marfatia et al., 1995). The binding of ATP to the PDZ domains may have several important functional implications. First, in a subset of MAGUKs, the guanylate kinase domain shows a defective ATP-binding site (Woods and Bryant, 1993). The binding of ATP to PDZ domains may bring an ATP molecule in proximity to the guanylate kinase domain, thus making catalysis possible. Second, the hydrolysis of bound ATP may also induce conformational changes in MAGUKs, such as those seen in the nucleotide-bound forms of the ras oncoprotein (Al-
berts and Miake-Lye, 1992). Third, binding of ATP by the PDZ domains may indirectly affect the functions of other proteins with which MAGUKs interact.

Using a yeast two-hybrid screen, Kim et al. (1995) have recently shown an interaction between the carboxyl terminus of the Kv1.4 channel and PDZ domains 1 and 2 of the PSD-95 protein. They have also shown an interaction between the cytoplasmic domain of Kv1.4 channel and a construct of the hDlg protein that contains three PDZ domains and an SH3 motif (Kim et al., 1995). In this paper, we have shown that the PDZ domains 1 and 2 of hDlg contain the binding site for the cytoplasmic domain of Shaker-type K⁺ channels (Figs. 5 and 6). The cytoplasmic domain of Shaker-type K⁺ channels does not contain a consensus nucleotide-binding sequence (Chandy and Gutman, 1995). Therefore, the binding of the PDZ +2 module of hDlg to ATP provides a molecular framework by which K⁺ channels could be coupled to ATP via the PDZ +2 module of hDlg. The coupling of K⁺ channels to metabolic energy may have profound consequences for the functioning of these channels in the cell. The carboxyl terminus plays a critical role in determining the inactivation gating of K⁺ channels (Isacoff et al., 1990), and such inactivation events may be coupled to the hydrolysis of ATP bound to the PDZ +2 module of hDlg.

The results shown in Fig. 9 provide the first evidence for analysis of ATP bound to the PDZ +2 module of hDlg. Many precedents exist in which protein-bound nucleotides play a critical role in regulating the functions of proteins such as in myosin, kinesin, dyneins, ras, heat shock protein 70, and CFTR (Alberts and Miake-Lye, 1992; Gilbert et al., 1995). Cytosolic ATP has been shown to inhibit the function of at least one kind of K⁺ channel, K ATP (Philipson, 1995). The hDlg protein could also play a role in the activation of T lymphocytes via K⁺ channels. The mitogenic activation of murine T lymphocytes results in a 20-fold increase in the Kv1.3 current density (Cahalan et al., 1987; Deutsch, 1990). Whether the hDlg and its bound ATP participate in such mitogenesis-induced K⁺ current fluctuations in lymphocytes remains to be determined.

Our results show that protein 4.1 binds to hDlg at a single site encoded by an alternatively spliced exon located between the SH3 and guanylate kinase homologous domains. Although the data in Fig. 7 A showing a weak interaction between the GST–PDZ +2 +3 fusion protein and protein 4.1 are consistent with our previous findings (Lue et al., 1994), it appears that the protein 4.1 binding to the PDZ domains is an artifactual consequence of a cluster of positively charged residues present at the interface of PDZ domains 1 and 2. We have used several complementary approaches to demonstrate that this is indeed the case. (a) The PDZ +2 module of hDlg does not bind to protein 4.1 (Fig. 8 A) and does not compete with the binding of full-length hDlg to protein 4.1 (Fig. 7 B). (b) A synthetic peptide (peptide C), which includes the positively charged amino acids located between the PDZ domains 1 and 2, fails to inhibit the binding of protein 4.1 to hDlg and PDZ +2 +3 in vitro (Fig. 8 A). (c) The binding of Kv1.4 peptide to the PDZ +2 module does not modulate its binding to protein 4.1 (Fig. 7 C). (d) Finally, Scatchard analysis of the binding data clearly shows that protein 4.1 binds to hDlg at a single high affinity site (Fig. 8).

Figure 11. A model showing the coupling of K⁺ channel (Kv1.4) to ATP and cytoskeleton via the PDZ domains of hDlg. Note that the 30-kD domain of protein 4.1 (4.1 30kDa) also binds to effector molecules such as calmodulin and phospholipids.
In vivo interaction between protein 4.1 and hDlg, by demonstrating the absence of hDlg protein from the RBC membranes of a patient with homozygous protein 4.1 (−) hereditary ellipocytoses. The secondary loss of both hDlg and p55 in the membranes of these naturally mutant RBCs underscores the importance of protein 4.1 as an attachment molecule for hDlg and p55 at the plasma membrane. The data in this paper also indicate that the hDlg protein does not bind to at least some members of the protein 4.1 superfamily such as ezrin and PTP-H1 tyrosine phosphatase. The presence of ezrin in the membranes of protein 4.1 (−) HE RBCs confirms that hDlg and p55 do not directly interact with ezrin in the red cell membrane (Fig. 9).

A recent study has shown that the three PDZ domains of hDlg are organized into two protease-resistant domains (Lue, R.A., E. Brandin, E.P. Chan, and D. Brandon. 1995. Mol. Biol. Cell. (Suppl.) Vol. 6. Abstract #1557). Although the precise boundaries of the domains were not determined, the results are in agreement with our studies of organization of PDZ domains (Fig. 1). In the same study, it was shown that protein 4.1 binds to a protease-resistant module of hDlg containing PDZ domains 1 and 2 (Lue et al., 1995 [Abstract #1557], as cited above). In contrast, our results show that protein 4.1 does not bind to the PDZ1†2 module that contains PDZ domains 1 and 2 of hDlg (Fig. 7). At this stage, we do not know the reason for this discrepancy. In any case, the data in this paper clearly show that the protein 4.1–binding site is located between the SH3 and guanylate kinase domains of hDlg. It is noteworthy that a remarkably conserved protein 4.1–binding site exists between the SH3 and guanylate kinase domains of other MAGUKs including Dlg and PDS-95/SAP90. Whether protein 4.1 or members of the protein 4.1 superfamily bind to Dlg and PDS-95 remains to be determined.

The functional significance of the binding of protein 4.1 to MAGUKs is unclear at present. It is clear from recent studies that the cytoplasmic domain of transmembrane channels mediates their clustering at the interface of membrane–cytoskeleton (Kim et al., 1995). However, the mechanism of such clustering remains unknown. Our results raise the possibility that the clustering of transmembrane channels may be mediated via their interactions with protein 4.1. Another possibility is that the K⁺ and other PDZ domain–binding proteins may be coupled to effector molecules such as calmodulin and phosphoinositides via the 30-kD domain (4.1N3°) of protein 4.1 (Fig. 11). Whether the binding of ATP to the PDZ1†2 module of hDlg can functionally modulate properties of the K⁺ channels such as their membrane clustering and interactions with the cytoskeleton remains to be determined. If true, a similar molecular mechanism may also be invoked for the interactions of transmembrane N-methyl-D-aspartate receptors, K⁺ channels, and adenomatous polyposis coli gene product that bind to the PDZ2 domain of PSD-95/ SAP90 and hDlg, respectively (Kornau et al., 1995; Kim et al., 1995; Matsumine et al., 1996). Such queries are now amenable to experimental testing by using mutant forms of hDlg and PSD-95/SAP-90 proteins, and by assessing their effects on the properties of PDZ domain–binding proteins in heterologous expression systems.

We thank Dr. Jim LaDine of the FISONS IAsys (New Jersey) for measuring the interaction of potassium channel peptide with the PDZ2†3 module of hDlg. Dr. Anthony Bretscher (Cornell University) for providing purified ezrin protein and antibodies; and Ms. Laura Derick for help with EM of PDZ domains. We also thank Ms. Donna-Marie Mironchuk and Mr. Andrew Geffen for help with the preparation of this manuscript.

This work was supported by the National Institutes of Health grants CA66263 and HL 51445. S.M. Marfatia is supported by the Young Investigator award from the National Neurofibromatosis Foundation. A.H. Chishti is an established investigator of the American Heart Association.

Received for publication 2 May 1996 and in revised form 16 August 1996.

References

Alberts, B., and R. Miake-Lye. 1992. Unscrambling the puzzle of biological machines: the importance of the details. Cell. 68:415–420.

Alazzawi, N., N.D. Venezia, A. Rana, K. Andrabj, P.特斯, F. Gilianz, J.P. Carton, J. Deolany, and A.H. Chishti. 1993. Evidence that red blood cell protein p55 may participate in the skeleton-membrane linkage that involves protein 4.1 and glycoprin C. Blood. 82:1323–1327.

Azin, A.C., J.H.M. Knoll, S.M. Marfatia, D.J. Pecl, P.J. Bryant, and A.H. Chishti. 1995. DGLG1: chromosome location of the closest human homologue of the Drosophila disc large tumor suppressor gene. Genomics. 30:613–616.

Azim, A.C., S.M. Marfatia, C. Korsgren, E. Dotinas, C.M. Cohen, and A.H. Chishti. 1996. Human erythrocyte dematin and protein 4.2 (Pallidin) are ATP binding proteins. Biochemistry. 35:3001–3006.

Brennan, J.E., D.S. Chao, S.H. Gee, A.W. McGe, S.E. Craven, D.R. Santilano, Z. Wu, F. Huang, H. Xia, M.F. Peters et al. 1996. Interaction of nitric oxide synthase with the postnecrotic density protein PSD-95 and eNOS/monotrophin mediated by PDZ domains. Cell. 84:757–767.

Cabral, J.H.M., C. Petosa, M.J. Sutcliffe, S. Raza, O. Byron, F. Sym. Marfatia, A.H. Chishti, and R.C. Liddington. 1996. Crystal structure of a PDZ domain from the human homologue of discs-large protein. Nature (Lond.). 382:649–652.

Cahalan, M.D., K.G. Chandy, T.E. DeCoursey, S. Gupta, R.S. Lewis, and J.B. Sutro. 1987. In Mechanisms of Lymphocyte Activation and Immunoregulation. S. Gupta, W.E. Paul, and A.S. Fauti, editors. Plenum, New York. 85–101.

Chandy, K.G., and G. A. Gutman. 1995. Voltage-gated K⁺ channel genes. In Handbook of Receptors and Channels: Ligands and Voltage-gated Ion Channels. A. North, editor. CRC Press, Boca Raton, FL. 1–71.

Chishti, A.H., J. Palek, D. Fisher, G.J. Maalouf, and S.-H. Liu. 1996. Reduced invasion and growth of Plasmodium falciparum into elliptocytic red blood cells with a combined deficiency of protein 4.1, glycoprin C, and p55. Blood. 87:3462–3469.

Cho, K., C.A. Hunt, and M.B. Kennedy. 1992. The rat brain postsynaptic density fraction contains a homolog of the Drosophila discs-large tumor suppressor protein. Neuron. 9:295–942.

Deursch, C. 1990. Potassium Channels: Basic Function and Therapeutic Aspects. T.J. Colatky, editor. Wiley-Liss, New York. 251–271.

Doyle, D.A., A. Lee, J. Lewis, E. Kim, M. Sheng, and R. MacKinnon. 1996. Crystal structures of a complexed and peptide-free membrane protein–binding domain: molecular basis of peptide recognition by PDZ. Cell. 85:1067–1076.

Fos, C.J., S. Fisher, J.P. Piau, M.J. Grange, and G. Tchernia. 1980. Premier observation de l’absence d’une proteine de la membrane erythrocytaire familiale de l’hémolyse en Nouv. Rev. Fr. Hematol. 22:315–325.

Gilbert, S.P., M.R. Webb, M. Brune, and K.A. Johnson. 1995. Pathway of processive ATP hydrolysis by kinesin. Nature (Lond.). 373:671–676.

Hata, Y., S. Butz, and T.C. Sudhof. 1996. CASK: a novel dsg/PSD95 homolog with an N-terminal calmodulin-dependent protein kinase domain identified by interaction with neurexins. J. Neurosci. 16:2488–2494.

Hoskins, R., A.F. Hjau, S.A. Harp, and S.K. Kim. 1996. The C elegans vulval induction gene lin-2 encodes a member of the MAGUK family of cell junction proteins. Development (Camb.). 122:97–111.

Isacoff, E., D. Papazian, L. Timpe, Y.-N. Jan, and L.-Y. Jan. 1990. Molecular studies of voltage-gated potassium channels. Cold Spring Harbor Symp. Quant. Biol. 55:9–17.

Itoh, M., A. Nagashita, S. Yoneemura, T. Kitani- Yasada, S. Tsukita, and S. Tsukita. 1993. The 220-kD protein colocalizing with cadherins in non-epithelial cells is identical to ZO-1, a tight junction–associated protein in epithelial cells: cDNA cloning and immuneelectron microscopy. J. Cell Biol. 121:491–502.

Jesaitis, L.A., and D.A. Goodenough. 1994. Molecular characterization and tissue distribution of ZO-2, a tight junction protein homologous to ZO-1 and ZO-3. J. Cell Biol. 122:97–111.

Kornau, H.C., J. Raggl, G. Schmid, J.R. Arbeit, M. Untergasser, B. Voss, E.D. Gundelfinger, and C.C. Garner. 1993. SAP90, a rat homolog of the Drosophila discs-large tumor suppressor protein. J. Cell Biol. 122:97–111.

Kistner, U., B.M. Wenzel, R.W. Veh, C. Cases-Langhoff, A.M. Garner, U. Appeltauer, B. Voss, E.D. Gundelfinger, and C.C. Garner. 1993. SAP90, a rat presynaptic protein related to the product of the Drosophila tumor suppres-
Lue, R.A., S.M. Marfatia, D. Branton, and A.H. Chishti. 1994. Cloning and Pelham, H.R.B., and R.J. Jackson. 1976. An efficient mRNA-dependent trans-
Ohanian, V., and W. Gratzer. 1984. Preparation of red-cell-membrane cytoskel-
Miiller, B.M., U. Kistner, R.W. Veh, C. Cases-Langhoff, B. Becker, E.D. Gun-
Michaely, P., and V. Bennett. 1993. The membrane-binding domain of ankyrin
Mazoyer, S., S.A. Gayther, M.A. Nagai, S.A. Smith, A. Dunning, E.J. van
Matsumine, A., A. Ogai, T. Senda, T. Okumure, T. Kobayashi, M. Okada, K.
Ling, E., Y.N. Danilov, and C.M. Cohen. 1988. Modulation of red cell band 4.1
Kornau, H.-C., L.T. Schenker, M.B. Kennedy, and P.H. Seeburg. 1995. Domain
Klingensmith, J., R. Nusse, and N. Perrimon. 1993. The interaction between NMDA receptor subunits and the postsynaptic density.
Kistner, U., C.C. Garner, and M. Linial. 1995. Nucleotide binding by the syn-
375-379.
324:2354-2358.
269:8631-8634.
1996. Identification of the protein 4.1 binding interface on glycophorin C and p55, a homologue of the Drosophila discs-large tumor suppressor protein.
Science (Wash. DC). 270:715-719.
268:22703-22709.
15:2354-2366.
267:247-256.
144:375-379.
270:1159.
766