A review of plant-based coagulants for turbidity and cyanobacteria blooms removal

Widad El Bouaidi1 · Giovanni Libralato2 · Mountasser Douma3 · Abdelaziz Ounas4 · Abdelrani Yaacoubi4 · Giusy Lofrano5 · Luisa Albarano2 · Marco Guida2 · Mohammed Loudiki1

Received: 15 July 2021 / Accepted: 29 March 2022 / Published online: 6 April 2022
© The Author(s) 2022

Abstract
In recent years, the proliferation of Harmful Cyanobacterial Blooms (CyanoHABs) has increased with water eutrophication and climate change, impairing human health and the environment in relation to water supply. In drinking water treatment plants (DWTPs), the bio-coagulation based on natural coagulants has been studied as an eco-friendly alternative technology to conventional coagulants for both turbidity and CyanoHABs removal. Plant-based coagulants have demonstrated their coagulation efficiency in turbidity removal, as reported in several papers but its ability in cyanobacterial removal is still limited. This paper mainly reviewed the application of plant-based coagulants in DWTPs, with focus on turbidity removal, including cyanobacterial cells. The future potential uses of these green coagulants to reduce noxious effects of cyanobacterial proliferation are presented. Green coagulants advantages and limitations in DWTPs are reviewed and discussed summarizing more than 10 years of knowledge.

Keywords Drinking water treatment · CyanoHABs · Turbidity · Coagulation/flocculation · Natural coagulants · Chemical coagulants

Introduction
Harmful Cyanobacterial Blooms (CyanoHABs) in water supply systems become a worrying problem for water utilities worldwide (Anderson et al. 2002; Lopez et al., 2008). The frequency of occurrence of cyanobacteria blooms is
mainly related to the increase in nutrient inputs produced by the anthropogenic activities and global warming (Chapra et al., 2017; Heisler et al., 2008; O’Neil et al., 2012; Paerl et al., 2011; Paerl and Huisman, 2009; Rigosi et al., 2015). Moreover, the combination of several environmental factors such as water temperature, thermic stratification, salinity, light intensity, stagnation and residence time, and nutrients concentration increase can promote cyanobacteria proliferation (Merel et al., 2013).

Various studies reported the presence of toxic cyanobacterial blooms in surface waters and at the intakes of drinking water treatment plants (DWTPs) (Carmichael et al., 2001; Lahti et al., 2001; McQuaid et al., 2011; Merel et al., 2010; Svrcak and Smith, 2004). They can cause several problems in DWTPs like increasing turbidity of water (Scheffer et al., 1993) and plugging of filters, reducing filter run-times and consequently increasing the backwash frequencies (Ho et al., 2012). In addition, cyanobacteria can produce toxic secondary metabolites called cyanotoxins including neurotoxins (homoanatoxin-a, anatoxin-a, anatoxin-a (S), homoanatoxin-a and saxitoxins), hepatotoxins (cylindrospermopsin, microcystins and nodularin), cytotoxins (debronomayslia toxin, lipopolysaccharide endotoxin, aplysiatoxin and lyngbyatoxin) and other compounds with adverse effects on skin, carcinogenic potentiality and ability to irritate the gastrointestinal tract (Briand et al., 2004; Brooks et al., 2016; Falconer and Humpage, 2005; Graham et al., 2010; Hitzfeld et al., 2000; Ho et al., 2012; Kaebernick and Neilan, 2001; Rastogi et al., 2015; Tokodi et al., 2018). Therefore, Cyanob-HABs constitute a a one-health treat (Christoffersen, 1996; De Figueiredo et al., 2004; Douma et al., 2017; Ghadouani and Coggins, 2011) potentially affecting all water sources (Carmichael et al., 2001; Codd et al., 2005; Smith and Schindler, 2009) with a relevant economic damage (Dodd et al., 2009; Steffensen, 2008). For this reason, the protection of water supplies from CyanobHABs becomes one of the major challenging priorities of the near future.

Several treatment methods including conventional processes (Zamyadi et al., 2013) and more recently, the utilization of ultrasonic irradiation, ultra-violet (UV) irradiation, hydrodynamic cavitation, electrocoagulation–flocculation processes and chemical oxidants such as chlorine, potassium permanganate and ozone (Qi et al., 2021) are used in DWTPs to sanitize water from cyanobacteria and their deleterious effects (Meglič et al., 2017). However, cyanobacteria cells and cyanotoxins, which can cause cyanobacteria cells to grow in sand filters and enter the successive treatment systems or even the distribution network (Joh et al., 2011; Shekhar et al., 2017), are not easily removed by all water treatment technologies (Tang et al., 2017). Moreover, the application of these strategies can be constrained by the high investments required.

Coagulation/flocculation (C/F) based on the addition of chemical coagulants and flocculants, such as aluminium salts and ferric chloride (Betatache et al., 2014; Chen et al., 2013), which promotes the agglomeration of particles, known as flocs (Ghosh et al., 1994; Shin et al., 2008). It is considered the most important process for the removal of cyanobacterial cells in conventional DWTPs. It has been reported up to 90% of intracellular cyanotoxins removal (Ma et al., 2016; Sillanpää et al., 2018; Xagoraraki, 2007). Despite their efficiency in reducing turbidity and cyanobacterial cells, chemical coagulants and flocculants are still presenting detrimental effects, such as environmental pollution due to improper disposal of sludge, human health effects linked with the presence of residual alum in treated waters (Saleem and Bachmann, 2019; Simate et al., 2012), costly practices of sludge disposal and impacts on health and environment (Abdullah et al., 2016).

These drawbacks have motivated the search for natural coagulants and flocculants which are generally claimed to be more environmentally friendly in terms of production and usage to clean water from turbidity in water treatment plants. Natural coagulants can be ranked considering their origin and divided into three categories: i) plant-based coagulants; ii) animal-based coagulants; and iii) microorganism-based coagulants (Verma et al., 2012a). Among them, plant-based coagulants seem quite promising due to their available sources and relatively high performances gaining importance over the years (Choy et al., 2015). The main compounds responsible for green coagulation are polysaccharides (Kebaili et al., 2018; Kurane and Nohata, 1991; Miller et al., 2008; Prasertsan et al., 2006; Shamsnejati et al., 2015; Suh et al., 1997; Toeda and Kurane, 1991), poly-phenolic substances (Graham et al., 2010; M. Özacar, 2002; Sánchez-Martín et al., 20–10), functional proteins (Gassenschmidt et al., 1995; Ghebremichael et al., 2006; Ndagibengesere, KS. Narasiah, 1995), glycoproteins (Ferreira et al., 2011; Santos et al., 2009) and/or proteolytic enzymes (Horne et al., 2004). Natural coagulants and flocculants are advantageous thanks to their biodegradability, cost-effectiveness, safety and low amount of produced sludge than conventional ones (Asrafuzzaman et al., 2011; Bratby, 2006; Kumar and Quaff, 2018; Ndagibengesere, KS. Narasiah, 1995; Saleem and Bachmann, 2019; Swati and Govindan, 2005). Most studies focused on the effectiveness in turbidity removal, while only few ones considered the elimination of CyanobHABs.

The aim of this review paper is to summarize and discuss: i) plant-based coagulants and their use in water supplies turbidity treatment, evidencing ii) the missing information to research on to harness their potential to address the problem of CyanobHABs as an alternative to conventional coagulants and flocculants, as well as iii) the applicability and future challenges in DWTPs.
Plant-based coagulants highlights

Recently, plant-based coagulants processes have become a major challenge for several scientists because of their efficiency, environmentally friendly behaviour compared to conventional coagulants, potential abundance and low cost (Antov et al., 2012; Betatache et al., 2014; Choy et al., 2016; Gautam et al., 2014; Šćiban et al., 2009).

Plant-based coagulants are made of polysaccharides or natural polymers, which are biodegradable, safe, easily available and easily accessible from reproducible agricultural resources (Asrafuzzaman et al., 2011; Bolto and Gregory, 2007; Bratby, 2006; Swati and Govindan, 2005). For instance, crude plant extracts are often available locally and can therefore be an inexpensive alternative to conventional coagulants. Moringa oleifera seeds is among the typical natural plant-based coagulants that is widely studied due to its efficiency performance to treat turbid water (Vunain et al., 2019). The plants such as rice starch and M. oleifera can be grown locally (Rasool et al., 2016; Ribau Teixeira et al., 2017). These reflections of producing coagulants could also strengthen societal aspect local populations depending on agricultural economics (Mahiya et al., 2016; Pondja Jr et al., 2017; Yin, 2010), guaranteeing the continuous supply of raw materials in the development of green coagulants (Mohd-Salleh et al., 2019).

Plant-based coagulants could also be obtained from agricultural wastes that are generally considered as not economically valuable having marketing constraints (Bories et al., 2009). Sutherland et al. (1994) stated that Moringa seeds are not only an oil source (40% wet weight of oil content), but after oil extraction, they can be reused as coagulants. Similarly, the derivatives from cassava (Manihot spp.) processing contain active coagulant agents (Heuzé et al., 2016; Howeler, 2001), based on natural polymers composed of proteins and polysaccharides (Mohd-Asharuddin et al., 2017; Zayadi et al., 2016). Several species from the Fabaceae family showed to contain chemicals that can be economically harvested to produce coagulants (Doyle 1994).

Plant-based coagulants are non-corrosive (Swati and Govindan, 2005) eliminating the risk of pipe erosions, and potentially carbon–neutral during their production process (Choy et al., 2014; Saleem and Bachmann, 2019). Moreover, they do not consume alkalinity, unlike chemical coagulants, and pH adjustments can be omitted (Choy et al., 2014). Operating costs in the water treatment sector are a great concern and plant-based coagulants seem an promising option (Kurita, 2006). Currently, Moringa cultivation costs approximately 2 USD /1 kg (i.e., ~3400 seeds), while 1 USD/1 kg is the alum salts quotation. Several efforts are necessary to really understand the life cycle impact analysis of these products and the role of the relative potential economy of scale, with particular reference to the social implications in local rural communities (Çoruh, 2005). Few data are available about the cost of raw coagulants as summarized in Table 1 where traditional and natural coagulants are compared (Çoruh, 2005). Bixler and Porse (2011) reported the unit price of some natural raw materials that reached the commercialization stage compared to chemical coagulants (Table 1), suggesting that chemical materials can be more expensive than some natural raw materials. Even if some chemical coagulants can be less expensive, several factors can contribute to increase the management cost like the necessity to adjust the water pH. For example, alginate is more expensive than alum salts, but it is used in smaller amounts making it cheaper than alum salts (Bixler and Porse, 2011; Çoruh, 2005). Çoruh (2005) evidenced that cost values are calculated considering only the chemical costs and not the operational costs associated with further treatment of sludge from the coagulation/flocculation process, that could further increase the whole cost associated to the use of traditional coagulants. For example, it has been reported that alum sludge disposal requires ~130 USD/ton (Maidon et al., 2015). (Ndabigengesere and Subba Narasiah, 1998) showed that under the same dosing conditions (1 mL/L) M. oleifera seeds generated a sludge volume

| Table 1 | Unit cost of natural raw materials and chemical substances and some raw materials in the commercialization phase; USD = US dollar; NTU = Nephelometric Turbidity Unit |

Chemical substances	Natural raw materials				
Alum sulphate	Polyelectrolyte	Calcium chloride	Alginate	Chitosan	
Unit price (USD/kg)	0.042	0.23	0.081	0.29	-
Amount required (g/m³)	0.03	10⁻⁴	0.12	4 10⁻⁴	-
Total Price (USD/m³)	1.2 10⁻⁶	0.02 10⁻⁶	1 10⁻⁴	1 × 10⁻⁷	-
Initial turbidity in water (NTU)	5–100	80	-		
Raw material used as coagulant on the commercialization scale					
Unit price (USD/kg)	0.3–0.5*	-	1	12	19
Amount used (mg/L)	3	-	80	0.2	-
*Prices obtained from the bulk suppliers in Turkey (Bixler and Porse, 2011)
of 1.5 mL/L compared to the 7.5 mL/L produced by alum salts. Plant-based coagulants can generate an amount of sludge that is approximately five times lower than chemical coagulants (Ndabigengesere et al., 1995) presenting suitable characteristics for agriculture reuse (Choy et al., 2014), with any further secondary pollution (Asrafuzzaman et al., 2011; Bolto and Gregory, 2007; Bratby, 2006; Swati and Govindan, 2005). The produced sludge is biodegradable and can be effectively degraded via biological methods (Renault et al., 2009). They can be disposed safely as soil fertilizer being not toxic (Gutierrez et al., 1998; Kagwaa et al., 2001; Mortula et al., 2009; Muisa et al., 2011; Verma et al., 2012b) thus reducing the cost of sludge management (Choy et al., 2014).

Potentialities of plant-based coagulants to remove turbidity from water

The effectiveness of plant-based coagulants was investigated by several authors to treat water contaminated by toxic cyanobacteria, excess of turbidity, heavy metals (Mahiya et al., 2016), including wastewater as well (Yin, 2010; Choy et al., 2015; Oladoja and Pan, 2015; Villaeñor-Basulto et al., 2018; Mohd-Salleh et al., 2019; Saleem and Bachmann, 2019). The application of plant-based coagulants for turbidity removal is summarized in Table 2 considering water test sample of water, type of extraction, contact time, initial turbidity and removal efficiency, temperature (°C), optimum coagulant dose (g/L) and pH. The average turbidity removal rates were approximately of 86% with abatement rates up to 95% like for *Trigonella foenumgraecum* and *Abelmoschus esculentus* at pH 3.17–3.20 (Khoo et al., 2021; Mohammad Lanan et al., 2020), and up to 77% for *Tacca leontopetaloides* at pH 3 (Makhtar et al., 2021), even though the considered pH values made water not immediately suitable for human consumption (WHO, 2007). Conversely, *M. oleifera* removed turbidity up to 97% at pH 6.8 (15 g/L) and up to 86–94% at pH 6.2 (0.15 mg/L) (Nhu et al., 2020; Vunain et al., 2019). Seeds of *M. oleifera* have been used as efficient natural coagulants in certain developing countries unaffordable for conventional chemicals (Bhatia et al., 2007). Its seeds can contain up to 34%, 15% and 16% of proteins, carbohydrates and lipids, in that order. (Othmani et al., 2020) suggested that the high amount of protein can be responsible of its great activity as coagulant. Cactus evidenced the ability to reduce turbidity up to 92% and 98% with 0.5 g/L at pH = 8.89 and pH = 6, respectively (Wan et al., 2019; Choudhary et al., 2019b). The reduction of pH between 7.00 and 8.00 showed a turbidity removal efficiency up to 98% with 1.5 g/L of cactus-based coagulant. Cactus mainly contains water (80–95%), fibre (1–2%), proteins (0.5–1%) and carbohydrates (3–7%) (Ginestra et al., 2009), and are recognized for the presence of mucilage, that is assumed to be responsible for the coagulation/flocculation activity.

Potentiality of plant-based coagulants to remove cyanobacteria

Currently, few studies have been reported to mitigate Cyanobacteria removal was ≥70% for all the plant-based coagulants. According to El Bouaidi et al. (2020), Vicia faba seeds and Opuntia ficus indica cladodes removed up to 85% of *M. aeruginosa* from treated water using 0.5 and 1 g/L (pH 5) of the relative coagulants, respectively. Teixeira et al. (2017) evaluated the potential of *M. oleifera* to remove *M. aeruginosa* from water using a process including coagulation, flocculation and dissolved air flotation (DAF). Results demonstrated that this plant-based coagulant can remove ~80% of *M. aeruginosa* cells. Camacho et al. (2015) explored the potential effect of *M. oleifera* at low turbidity level to sanitize water contaminated by cyanobacteria evidencing its ability to reduce chlorophyll-a and turbidity up to 60%, as well as suspended organic matter (40–50%).

Thus, the removal of cyanobacteria and cyanotoxins in DWTPs can be carried out through two groups of methods: i) effective in removing intracellular cyanotoxin with intact cyanobacterial cells, and ii) eliminating extracellular cyanotoxin removing organic matter (Xagoraraki, 2007). To increase the whole performance of water treatment, reactions can occur sequentially in two separated reactors (Gitis and Hankins, 2018). Several treatment techniques are used in order to increase the performance of water treatment methods, e.g. photolysis with UV radiation at 254 and 185 nm (Chintalapati and Mohseni, 2020), adsorption process with activated carbons (Pendleton et al., 2001; Zhang et al., 2011) and hydrophyte filter bed (Song et al., 2009). Coagulation/flocculation has been widely applied in combination with ultrafiltration, as an effective pre-treatment, to improve the removal of natural organic matter and to reduce membrane fouling (Liu et al., 2017). There is a great need to further research on the coagulation/flocculation process to identify the best practice to reduce effects of Cyanobacteria considering also low tech-content methods.

A critical view on the applicability and future challenges of plant-based coagulants

(Sillanpää et al., 2018) evidenced that the use of plant-based coagulants for the removal of suspended particles and natural organic matter in WWTPs is still underexplored. Currently, most results are laboratory based focusing on
Natural coagulant	Test sample of water	Type of extraction	Contact time	Initial turbidity	Temperature (°C)	Optimum coagulant dose (g/L)	Optimum pH	Turbidity removal efficiency (%)	References
Abelmoschus esculentus	Palm oil mill effluent	Fresh Okra	Fast stirring for 2 min Slow stirring of 60 rpm for 30 min	7700—13,600 n.a	116	3.2	94.97	(Khoo et al., 2021)	
Trigonella foenum-graecum	Palm oil mill effluent	Fenugreek seeds	Fast stirring for 2 min Slow stirring of 60 rpm for 30 min	7700—22,200 n.a	0.409	3.17	94.97	(Mohammad Lanan et al., 2020)	
Abelmoschus esculentus	Fresh Okra	Peel extract	Fast stirring of 120 rpm for 3 min Slow stirring of 50 rpm for 20 min	115.83 n.a	0.05	6.5	77.60	(Dollah et al., 2020)	
Tacca leontopetaloides	Raw leachate	T. leontopetaloides tuber	Fast stirring of 200 rpm for 4 min Slow stirring of 40 rpm for 30 min	218 RT	0.24	3	76.99	(Makhtar et al., 2021)	
M. oleifera	Wastewater treatment plant M. oleifera seeds	-	Fast stirring of 120 rpm for 2 min Slow stirring of 50 rpm for 30 min	287 ± 3 22.4	15	6.8	97.30	(Vunain et al., 2019)	
M. oleifera	Surface water M. oleifera seeds	Fast stirring of 120 rpm for 2 min Slow stirring of 50 rpm for 30 min	n.a	27 ± 0.5	0.15	6.2		(Nhut et al., 2020)	
M. oleifera	Raw water M. oleifera seeds	Initial stirring of 50 rpm for 15 min Fast stirring of 150 rpm for 10 min Slow stirring of 50 rpm for 15 min	15.6 ± 0.64 RT 1.64 n.a			82.04	(Pandey et al., 2020)		
M. oleifera	River water M. oleifera seeds	n.a	Stream: 20.5 Pond: 125 Well: 10.7		4.5 6 2.6	6.8 5.3 7	95.56 66.96 90.37	(Egbuiwem and Sangodoyin, 2013)	
M. oleifera	Pond water M. oleifera pods	Fast stirring of 200 rpm for 2 min Slow stirring of 40 rpm for 5 min	632 ± 3.20 n.a		12	7.45	99.20	(Jodi et al., 2012)	
Natural coagulant	Test sample of water	Type of extraction	Contact time	Initial turbidity	Temperature (°C)	Optimum coagulant dose (g/L)	Optimum pH	Turbidity removal efficiency (%)	References
------------------	----------------------	-------------------	--------------	------------------	-----------------	---------------------------	-----------	---------------------------------	------------
M. oleifera	Ground water	*M. oleifera* seeds	Stirring for 45 min at 110–120 rpm	12.4 ± 0.02	n.a	15	8	75	(Mangale Sapanan et al., 2012)
M. oleifera	River water	*M. oleifera* seeds	Between 5 and 60 min	123.3	n.a	1.6	7.5	> 85	(Sánchez-Martín et al., 2012)
M. oleifera	Pond water	*M. oleifera* seeds	n.a	130.1	27	n.a	7.6	76.36	(Yongabi et al., 2011)
M. oleifera	River water	*M. oleifera* seeds	n.a	130.1	27	n.a	7.6	71.02	(Beltrán-Heredia and Sánchez-Martín, 2009)
M. oleifera	Tap water (kaolin)	*M. oleifera* seeds	n.a	105	20 ± 1	1	7.6	93.33	(Ndabigengesere and Subba Narasiah, 1998)
Cassava peels	Wastewater treatment plant	Cassava peels starch	n.a	194 ± 14.43	n.a	44.8	6	60.19	(Kumar et al., 2020)
Quercus branti	Synthetic turbid water using kaolin suspension	Oak fruit	Fast stirring of 200 rpm for 1 min Slow stirring of 70 rpm for 30 min	20 to 250	RT	6.22	n.a	63.5	(Jamshidi et al., 2020)
Pistachio green	Synthetic turbid water using kaolin suspension	Pistachio green hull	n.a	300	n.a	5	5	88	(Nasrabadi et al., 2020)
Guazuma ulmifoliya	Synthetic dairy wastewater	*G. ulmifolia* stem barks	Fast stirring of 200 rpm for 1 min Slow stirring of 30 rpm for 15 min	698 ± 9.4	n.a	77.58	5	95.8	(Muniz et al., 2020)
Cactus	Wastewater treatment plant	Cactus pads	Fast stirring of 160 rpm for 5 min Slow stirring of 40 rpm for 25 min	50	17 ± 1	2.8	12	98.33	(Ayat et al., 2021)
Cactus opuntia (ficus-indica)	Tailings pond water	Cactus mucilage	n.a	80 ± 2	23 ± 1	0.5	6	98	(Wan et al., 2019)
Cactus opuntia (ficus-indica)	Stimulated industrial water-based paint wastewater	Eluted on 3 N NaCl	n.a	n.a	n.a	n.a	n.a	78.43	(Vishali and Karthikeyan, 2015b)
Opuntia ficus-indica	Oil sands process-affected water	Cladodes of *Opuntia ficus indica*	n.a	n.a	n.a	1.5	7–8	98	(Choudhary et al., 2019b)
Natural coagulant	Test sample of water	Type of extraction	Contact time						
------------------	---	--	---						
Pine cone	Synthetic turbid water	Pine cones	n.a						
			67, 69, 71 and 75 n.a	0.5	2	77	(Hussain et al., 2019)		
Cicer arietinum	Palm oil mill effluent	Chickpea seeds	n.a	17,600	n.a	2.6	6.69	86	(Choong Lek et al., 2018)
Flower of Musa sp.	Effluents from the processing of iron ore	Extraction of tannins	Fast stirring for 2 min	86,500	n.a	8.5	6.25	97.58	(Vaz et al., 2018)
Maerua decumbent	Paint industry wastewater	M. decumbent roots	Fast stirring of 180 rpm for 3 min	2575	20 ± 2	1	5.56	99.24	(Kakoi et al., 2017)
Corn and potato	Synthetic turbid water using kaolin suspension	Conventional starches	Fast stirring of 100 rpm for 2 min	165 ±5	25 ± 1	0.12	4	50	Choy et al. (2016)
Plantago ovata	Raw surface water	Plantago seeds extracted by using FeCl3-induced extract	Fast stirring of 120 rpm for 1 min	76	24	0.025	< 8	95.6	Ramavandi (2014)
Table 3: List of plant materials used as natural coagulant to mitigate cyanobacteria. RT = room temperature, n.a. = not available, n.e. = not effect

Plant-based coagulants	Extract type	Test sample of water	Target cyanobacteria	Contact time	Initial turbidity	Temperature (°C)	Optimum coagulant dose (g/L)	pH	removal efficiency (%)	Reference	
Vicia faba and *Opuntia ficus indica*	Faba been seeds and cactus cladodes	Synthetic water prepared from cyanobacterial cells density of 10^6 cells/mL	*Microcystis aeruginosa*	Fast stirring of 200 rpm for 2 min, slow stirring of 40 rpm for 30 min	200	RT	0.5 and 0.1	5	Cyanobacteria cells: > 85	(El Bouaidi et al., 2020)	
Opuntia strica Haw	Cactus cladodes	Surface water from Bodocongó reservoir	Cyanobacterial bloom containing: *Microcystis aeruginosa*, *Sphaerococum Brasiliense*, *Cylindrospermopsis raciborskii* (Woloszynska) and *Plankthotrix isothrix* (Skuja)	5, 15, 30, 60 and 120 min	58.1 ± 1.5	25	10	n.e	Turbidity: 52	Cyanobacteria cells: 70	(Nery et al., 2019)
Moringa oliefera	MO seeds proteins (albumin and globulin)	Distilled water contaminated with cyanobacterial cell of density of 10^6 cells/mL	*Microcystis aeruginosa*	Coagulation at a velocity gradient of 315 s^{-1} for 20 s, flocculation at a velocity gradient of 15 s^{-1} for 10 min	34.7 ± 0.61	n.a	10	7.77	Cyanobacteria cells: 83.87	(de Oliveira Ruiz Moreti et al., 2019)	
Pomegranate peel	Pomegranate peel tannins	Synthetic water prepared from cyanobacterial cells density of 10^6 cells/mL	*Microcystis aeruginosa*	n.a	n.a	n.a	0.2	7.4	Cyanobacteria cells: 94.22	(Wang et al., 2018)	
Moringa oleifera	MO seeds	Synthetic surface water using cyanobacterial cells	*Microcystis aeruginosa*	Coagulation for 2 min with a velocity gradient of 380 s^{-1} (200 rpm), flocculation for 8 min at 70 s^{-1} (20 rpm)	n.a	21.0 ± 1.0	5	7.4	80	(Teixeira et al., 2017)	
Plant-based coagulants	Extract type	Test sample of water	Target cyanobacteria	Contact time	Initial turbidity	Temperature (°C)	Optimum coagulant dose (g/L)	pH removal efficiency (%)	Reference		
------------------------	--------------	----------------------	----------------------	--------------	------------------	------------------	-----------------------------	-------------------------	-----------		
Moringa oleifera	MO seeds	Synthetic water spiked with humic acid and cyanobacteria cells	*Microcystis aeruginosa*	Coagulation at a velocity gradient of 1000 s⁻¹ for 10 s⁻¹, flocculation at a velocity gradient of 15 s⁻¹ for 15 min	25.3 ± 0.3	25 ± 2	5	8.3	Cyanobacteria cells: 79.9	(Carvalho et al., 2016)	
Moringa oleifera	MO seeds	Artificially water contaminated with cyanobacteria (order of 10⁶ cells/mL)	*Anabaena flos-aquae*	Rapid mixing gradient of 315 and 850 s⁻¹ for 20 s Slow mixing gradient of 5, 10 and 15 s⁻¹ for 10, 15 and 20 min	30 ± 0.5	25 ± 2	10	7.0–7.7	Cyanobacteria cells: 96.4	(Moreti et al., 2016)	
Moringa oleifera	MO seeds	Deionized water with an inoculum of cyanobacteria cells Turbidity ranging from 50–450 NTU	*Microcystis protocystis*	8 min of retention time between 50 and 450	25 ± 2	5	7.32	Cyanobacteria cells: between 80 and 95	(Camacho et al., 2015)		
controlling water turbidity by studying the mechanism of these natural coagulants through charge interaction and bridging mechanism that is attributed to the pair nature of the treated water and plant-based coagulant tested. According to (Ang and Mohammad, 2020), natural coagulants can record poor removal performance when the treated water contains many constituents such as suspended solids, heavy metals and microalgae, thus requiring several combined processes in order to meet the expected goal.

Several studies (Choudhary et al., 2019a; Vunain et al., 2019; Wan et al., 2019) highlighted that plant-based coagulants have been used in various types of effluents saturated with different suspended solids ranging from wastewater, water from paint factories and artificially turbid water. The originality of the adoption of plant-based coagulants is related to the potential sources supplying the reagents like plant, including invasive species, or weeds (i.e., including seaweed), and plant waste. Some direct critical aspects in the use of plant-based coagulants are i) the lack of plants for mass processing; ii) the perception of a low-volume market; and iii) the lack of regulations stipulating the quality of processed coagulant extracts (Sutherland et al., 2002); iv) storage can be affected by microbial degradation causing undesired loss of reagents (Albalawi et al., 2003; SAMIA et al., 1979).

In term of commercialization, few natural coagulants have reached the market, although several various native plant extracts have been identified as suitable for coagulation activities in removing turbidity and cyanobacteria (Somwey et al., 2011). Currently, only M. oleifera seeds extracts are well documented with full-scale application in coagulation processes (Sutherland et al., 2002). Some critical points can affect the future employ of plant-based coagulants like the regular supply of raw materials mainly due to the relative economy of scale. For example, M. oleifera seeds can be harvested twice a year (Radovich, 2009) and there are still no clear estimate if the expected production will satisfy the possibility of a whole replacement of traditional chemical coagulants, or can represent just an integration and/or a partial substitution, greening just part of the process.

Another potential drawback identified from plant-based coagulants is the increase of organic load in the treated mass of water, as chemical oxygen demand (COD) and biological oxygen demand (BOD) (Sánchez-Martín et al., 2012), that can further promote microbial growth and potentially increase the frequency in clogging at the filtration stage of DWTPs. As a result, increased COD level can be a disadvantage if treated water is stored for a long period of time or requires chlorination (Sánchez-Martín et al., 2012). Distilled water extracts from M. oleifera (1%) can contain approximately 88.8 g/L of COD (Baptista et al., 2015), while the saline extraction up to 175 g/L.

Conclusions

Plant-based coagulants in DWTPs are an interesting and promising approach for the water sector that must be attentively evaluated, especially to integrate traditional chemical reagents. For sure, they cannot be considered as an overnight solution, but a medium-term potential option for greening the processes of coagulation/flocculation and cyanobacterial bloom removal. Several flaws are currently present and are mainly associated not only to the lack of data about full-scale applications, but also to the potential increase in treated water COD, the limited availability of adequate plant biomass and its potential biodegradability during storage conditions. The main advantages are related to the ability to support coagulation/flocculation treatments with efficiencies quite like to traditional reagents including costs, that with the relative economy of scale, could be potentially further reduced. Future focused research activities must elucidate: i) suitable species in an agricultural production perspective; ii) cost–benefit analysis; and iii) full-scale potential applicability.

Conflicts of interest

The authors declare no conflict of interest.

Acknowledgements This research was partially funded by MAECI (Ministry of Foreign Affairs and International Cooperation, Italy) supporting scientific collaboration between the University Cadi Ayyad (Faculty of Sciences Semlalia Marrakech, Morocco) and University of Naples Federico II (Naples, Italy).

The constructive comments from the anonymous reviewers are gratefully acknowledged.

Authors’ contributions WEB was involved in literature review, data analysis and paper drafting; GL helped in paper drafting and data analysis; MD and AO contributed to data analysis; AY helped in literature review; GL and GM were involved in paper drafting and conceptualization; LA contributed to literature and draft review; and ML helped in conceptualization. All authors read and approved the final manuscript.

Funding Open access funding provided by Università degli Studi di Napoli Federico II within the CRUI-CARE Agreement. The research activity received no specific funding.

Declarations

Ethics approval and consent to participate Not applicable.

Consent for publication Not applicable.

Availability of data and materials All data generated or analysed during this study are included in this published article.

Competing interests The authors declare that they have no competing interests.
Open Access This article is licensed under a Creative Commons Attribu-
tion 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you
will need to obtain permission directly from the copyright holder. To view
a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abdullah MMAB, Nordin N, Tahir MFM, Kadir AA, Sandu AV
(2016) Potential of sludge waste utilization as construction
materials via geopolymerization. Int J Conserv Sci 7:753–758
Anderson DM, Glibert PM, Burkholder JM (2002) Harmful algal
blooms and eutrophication: Nutrient sources, composition, and
consequences. Estuaries 25:704–726. https://doi.org/10.1007/
BF02804901
Ang WL, Mohammad AW (2020) State of the art and sustainabil-
ity of natural coagulants in water and wastewater treatment.
J Clean Prod 262:121267. https://doi.org/10.1016/j.jclepro.
2020.121267
Antov MG, Šćiban MB, Prodanović JM (2012) Evaluation of the
efficiency of natural coagulant obtained by ultrafiltration of
common bean seed extract in water turbidity removal. Ecol
Eng 49:48–52. https://doi.org/10.1016/j.ecoleng.2012.08.015
Asrauzzaman M, Fakhruddin ANM, Hossain MA (2011) Reduc-
tion of Turbidity of Water Using Locally Available Natural
Coagulants. ISRN Microbiol 2011:1–6. https://doi.org/10.
5402/2011/632189
Ayat A, Arris S, Abbaz A, Benchekh-Lehocine M, Meniai AH
(2021) Application of Response Surface Methodology For
Modeling and Optimization of A Bio Coagulation Process
(Sewage Wastewater Treatment Plant). Environ Manage.
https://doi.org/10.1007/s00267-020-01407-0
Backer LC, Manassaram-Baptiste D, LePrell R, Bolton B (2015)
Cyanobacteria and algae blooms: review of health and envi-
ronmental data from the harmful algal bloom-related illness
surveillance system (HABISS) 2007–2011. Toxins (basel)
7:1048–1064
Beltrán-Heredia J, Sánchez-Martin J (2009) Removal of sodium la-
uryl sulphate by coagulation/floculation with Moringa oleifera
seed extract. J Hazard Mater 164:713–719
Betatache H, Aouabde A, Drouiche N, Lounici H (2014) Condition-
ing of sewage sludge by prickly pear cactus (Opuntia ficus
Indica) juice. Ecol Eng 70:465–469. https://doi.org/10.1016/j.
ecoleng.2014.06.031
Bhatia S, Othman Z, Ahmad AL (2007) Pretreatment of palm oil
mill effluent (POME) using Moringa oleifera seeds as natural
coagulant. J Hazard Mater 145:120–126
Bixler HJ, Porse H (2011) A decade of change in the seaweed hydro-
colloids industry. J Appl Phycol 23:321–335
Bolto B, Gregory J (2007) Organic polyelectrolytes in water treat-
ment. Water Res 41:2301–2324. https://doi.org/10.1016/j.
watres.2007.03.012
Bories C, Borredon ME, Vedrenne E, Vilarem G, Agamuthu P (2009)
Challenges and opportunities in agrowaste management: An
Asian perspective what is agro waste. J Environ Manage
143:186–196
J Braty 2006 Coagulation and flocculation in water and wastewater
treatment Water 21. https://doi.org/10.2166/9781780407500
Briend J, Leboulanger C, Humbert J, Bernard C, Dufour P (2004)
CYLINDROSPERMOPIA RACIBORSKII (CYANOBACTE-
RIA) INVASION AT MID-LATITUDES: SELECTION, WIDE
PHYSIOLOGICAL TOLERANCE, ORGLOBALWARMING? 1.
J Physcol 40:231–238
Brooks BW, Lazorchak JM, Howard MDA, Johnson MMV, Morton
SL, Perkins DAK, Reavie ED, Scott GL, Smith SA, Steevens
JA (2016) Are harmful algal blooms becoming the greatest
inland water quality threat to public health and aquatic eco-
systems? Environ Toxicol Chem 35:6–13. https://doi.org/10.
1002/etc.3220
Camacho FP, Bongiovanni MC, Silva MO, Coldebella PF, Amorim
SP, M.T., Bergamasco, R., (2015) Coagulation/Flocculation/
Flotation/Nanofiltration Processes Using Moringa Oleifera
as Coagulant of Eutrophized River. Icheap12 12Th Int. Conf
Chem Process Eng 43:1123–1128. https://doi.org/10.3303/
CET1543188
Carmichael WW, Azvedo SMFO, An JS, Molica RJR, Jochimsen EM,
Lau S, Rinehart KL, Shaw GR, Eaglesham GK (2001) Human
fatalities form cyanobacteria: Chemical and biological evidence
for cyanotoxins. Environ Health Perspect 109:663–668. https://
doi.org/10.1289/ehp.01109663
Carvalho MS, Alves BRR, Silva MF, Bergamasco R, Coral RA, Bas-
setti FJ (2016) CaCl2 applied to the extraction of Moringa oleif-
era seeds and the use for Microcystis aeruginosa removal. Chem
Eng J 304:469–475. https://doi.org/10.1016/j.cej.2016.06.101
Chapra SC, Boehrbert B, Fanti C, Bierman VI, Henderson J, Mills D,
Mas DML, Rennels L, Jantarassami L, Martinich J, Srzetepke KM,
Pael HW (2017) Climate Change Impacts on Harmful Algal
Blooms in U.S. Freshwaters: A Screening-Level Assessment.
Environ Sci Technol 51:8933–8943. https://doi.org/10.1021/
acs.est.7b01498
Chen L, Wang C, Wang W, Wei J (2013) Optimal conditions of differ-
ent flocculation methods for harvesting Scenedesmus sp. Cul-
tivated in an open-pond system. Bioresour Technol 133:9–15.
https://doi.org/10.1016/j.biortech.2013.01.071
Choong Lek BL, Peter AP, Qi Chong KH, Ragu P, Sethu V, Selvarajoo
A, Arumugasamy SK (2018) Treatment of palm oil mill effluent
(POME) using chickpea (Cicer arietinum) as a natural coagulant
and flocculant: Evaluation, process optimization and characteri-
ization of chickpea powder. J Environ Chem Eng 6:6243–6255.
https://doi.org/10.1016/j.jece.2018.09.038
Choudhary M, Ray MB, Neogi S (2019) Evaluation of the potential
application of cactus (Opuntia ficus-indica) as a bio-coagulant
for pre-treatment of oil sands process-affected water. Sep Purif
Technol 209:714–724. https://doi.org/10.1016/j.seppur.2018.09.033
Choy SY, Prasad KMN, Wu TY, Raghunandan ME, Ramanan RN
(2014) Utilization of plant-based natural coagulants as future
alternatives towards sustainable water clarification. J Environ
Sci (china) 26:2178–2189. https://doi.org/10.1016/j.jes.2014.09.024
Choy SY, Prasad KMN, Wu TY, Ramanan RN (2015) A review on
common vegetables and legumes as promising plant-based natu-
ral coagulants in water clarification. Int J Environ Sci Technol
12:367–390. https://doi.org/10.1007/s13762-013-0446-2
Choy SY, Prasad KN, Wu TY, Raghunandan ME, Ramanan RN
(2016) Performance of conventional starches as natural coagulants
for turbidity removal. Ecol Eng 94:352–364. https://doi.org/10.
1016/j.ecoleng.2016.05.082
Christoffersen K (1996) Ecological implications of cyanobacterial tox-
ins in aquatic food webs. Physiologia 35:42–50
Codd, G.A., Lindsay, J., Young, F.M., Morrison, L.F., Metcalf, J.S.,
2005. HARMFUL CYANOBACTERIA. From mass mortalities
to management measures. Animals 1–23. https://doi.org/10.
1007/1-4020-3022-3_1

https://link.springer.com/article/10.1007%2Fs13762-013-0446-2
Mohamed ZA, Hashem M, Alamri SA (2014) Growth inhibition of the cyano bacterium Microcystis aeruginosa and degradation of its microcystin toxins by the fungus Trichoderma citrinoviride. Toxicon 86:51–58

FAB Mohammad Lanan A Selvarajo V Sethu SK Arumugasamy 2020 Utilisation of natural plant-based fenugreek (Trigonella foenum graecum) coagulant and okra (Abelmoschus esculentus) flocculant for palm oil mill effluent (POME) treatment J Environ Chem Eng 104667. https://doi.org/10.1016/j.jece.2020.104667

Mohd-Asharuddin, S., Othman, N., Zin, N.S.M., Tajarudin, H.A., 2017. A chemical and morphological study of cassava peel: A potential waste as coagulant aid, in: MATEC Web of Conferences. EDP Sciences, p. 6012.

Mohd-Salleh SNA, Mohd-Zin NS, Othman N (2019) A review of wastewater treatment using natural material and its potential as aid and composite coagulant. Sains Malaysia 48:155–164

Moreti LOR, Coldeberpa PF, Camacho FP, Carvalho Bongiovanni M, Pereira De Souza AH, Kirie Kohara A, Matsushita M, Fernandes Silva M, Nishi L, Bergamascoc R (2016) Removal of Anabaenaflos-aquae in water treatment process using Moringa oleifera and assessment of fatty acid profile of generated sludge. Environ Technol (united Kingdom) 37:1408–1417. https://doi.org/10.1080/09593330.2015.1117144

Mortula M, Bard SM, Walsh ME, Gagnon GA (2009) Aluminium toxicity and ecological risk assessment of dried alum residual into surface water disposal. Can J Civ Eng 36:127–136

Muisa N, Hoko Z, Chiamba P (2011) Impacts of alum residues from Morton Jaffray Water Works on water quality and fish, Harare, Zimbabwe. Phys. Chem Earth, Parts a/b/c 36:853–864

Muniz GL, da Silva TCF, Borges AC (2020) Assessment and optimization of the use of a novel natural coagulant (Guazuma ulmifolia) for dairy wastewater treatment. Sci Total Environ 744:140864. https://doi.org/10.1016/j.scitotenv.2020.140864

Nasrabad T, Asadpour G, Mohamadrezakhani R (2020) Evaluating the Efficiency of Pistachio Green Hull as a Plant Coagulant in Removing Water Turbidity. Environ Res 10:141–148

Ndabinjigese KSN, BNT. (1995) ACTIVE AGENTS AND MECHANISM OF COAGULATION OF TURBID WATERS USING MORGINGA OLEIFERA ANSELM. Water Res 29:703–710

Ndabinjigese A, Subba Narasiah K (1998) Quality of water treated by coagulation using Moringa oleifera seeds. Water Res 32:781–791. https://doi.org/10.1016/S0043-1354(97)00295-0

Ndabinjigese A, Narasiah KS, Talbot BG (1995) Active agents and mechanism of coagulation of turbid waters using Moringa oleifera. Water Res 29:703–710. https://doi.org/10.1016/0043-1354(94)00161-Y

Nery JF, Nery GKM, Magalhães AG, Medeiros SS (2019) Potential of O puntia stricta Haw (Mexican elephant ear) in removing cyanobacteria in surface water. African J Biotechnol 18:875–881. https://doi.org/10.5897/AJB2019.16899

HT Nhu TQT Hung BQ Lap LTN Han TQ Tri NHK Bang NT Hiep NM Ky 2020 Use of Moringa oleifera seeds powder as bio-coagulants for the surface water treatment Int J Environ Sci Technol https://doi.org/10.1007/s13762-020-02935-2

O’Neil JM, Davis TW, Burford MA, Gobler CJ (2012) The rise of cyanobacteria and climate change. Harmful Algae 14:313–334. https://doi.org/10.1016/j.hal.2011.10.027

Oladoja NA, Pan G (2015) Modification of local soil/sand with Mor inga oleifera extracts for effective removal of cyanobacterial blooms. Sustain Chem Pharm 2:37–43. https://doi.org/10.1016/j.scp.2015.08.003

Organization, W.H., 2007. Combating waterborne disease at the household level.

Othmani B, Rasteiro MG, Khadhraoui M (2020) Toward green technology: a review on some efficient model plant-based coagulants/
flocculants for freshwater and wastewater remediation. Clean Technol Environ Policy 22:1025–1040. https://doi.org/10.1007/s10098-020-01858-3

M. ÖZACAR I.A.S. 2002. Turkish journal of engineering & environmental sciences. TURKISH JOURNAL OF ENGINEERING AND ENVIRONMENTAL SCIENCES. Scientific and Technical Research Council of Turkey.

Paerl HW, Huisman J (2009) Climate change: A catalyst for global expansion of harmful cyanobacterial blooms. Environ Microbiol Rep 1:27–37. https://doi.org/10.1111/j.1758-2229.2008.00004.x

Paerl HW, Hall NS, Calandrino ES (2011) Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Sci Total Environ 409:1739–1745. https://doi.org/10.1016/j.scitotenv.2011.02.001

Pandey P, Khan F, Mishra R, Singh SK (2020) Elucidation of the potential of Moringa oleifera leaves extract as a novel alternate to the chemical coagulant in water treatment process. Water Environ Res 92:1051–1056. https://doi.org/10.1016/j.wer.1300

EA Pondja Jr KM Persson NP Matsinhe 2017 The potential use of cassava peel for treatment of mine water in Mozambique J Environ Prot Irvine Calif 8 277–289.

Prasertsan P, Dermilim W, Doelle H, Kennedy JF (2006) Screening, characterization and flocculating property of carbohydrate polymer from newly isolated Enterobacter cloacae WD7. Carbohydr Polym 66:289–297. https://doi.org/10.1016/j.carbpol.2006.03.011

J Qi. B Ma S Miao R Liu C Hu J Qu 2021. Pre-oxidation enhanced cyanobacteria removal in drinking water treatment: A review. J. Environ. Sci.

Radovich, T., 2009. Farm and Forestry Production and Marketing Technology/flocculation processes - An eco-friendly approach. Eur Polym J 45:1337–1348. https://doi.org/10.1016/j.eurpolymj.2008.12.027

Ramavandi B (2014) Treatment of water turbidity and bacteria by using a coagulant extracted from Plantago ovata. Water Resour Ind 6:36–50. https://doi.org/10.1016/j.wri.2014.07.001

Rasool MA, Tavakoli B, Chaibakhsh N, Pendashteh AR, Mirroshandel AS (2016) Use of a plant-based coagulant in coagulation–ozonation combined treatment of leachate from a waste dumping site. Ecol Eng 90:431–437

Rastogi RP, Madamwar D, Incharoensakdi A (2015) Bloom dynamics of cyanobacteria and their toxins: Environmental health impacts and mitigation strategies. Front Microbiol 6:1–22. https://doi.org/10.3389/fmicb.2015.01254

Renault F, Sancey B, Badot PM, Crini G (2009) Chitosan for coagulation–ozonation/flocculation processes - An eco-friendly approach. Eur Polym J 45:1337–1348. https://doi.org/10.1016/j.eurpolymj.2008.12.027

Ribu Teixeira M, Camacho FP, Sousa VS, Bergamasco R (2017) Green technologies for cyanobacteria and natural organic matter water treatment using natural based products. J Clean Prod 162:484–490. https://doi.org/10.1016/j.jclepro.2017.06.004

Rigosi A, Hanson P, Hamilton DP, Hipsky M, Rusak JA, Bois J, Sparber K, Chorus I, Watkinson AJ, Qin B (2015) Determining the probability of cyanobacterial blooms: the application of Bayesian networks in multiple lake systems. Ecol Appl 25:186–199

Saleem M, Bachmann RT (2019) A contemporary review on plant-based coagulants for applications in water treatment. J Ind Eng Chem 72:281–297. https://doi.org/10.1016/j.jiec.2018.12.029

Samia AL, Jahn SALA, Dirar H (1979) Studies on natural water coagulants in the Sudan, with special reference to Moringa oleifera seeds.

Sánchez-Martín J, Beltrán-Heredia J, Solera-Hernández C (2010) Surface water and wastewater treatment using a new tannin-based coagulant. Pilot Plant Trials J Environ Manage 91:2051–2058. https://doi.org/10.1016/j.jenvman.2010.05.013

Sánchez-Martín J, Beltrán-Heredia J, Peres JA (2012) Improvement of the flocculation process in water treatment by using Moringa oleifera seeds extract. Brazilian J Chem Eng 29:495–502

Santos AF S, Luz LA, Argolo ACC, Teixeira JA, Paiva PMG, Coelho LCBB (2009) Isolation of a seed coagulant Moringa oleifera lectin. Process Biochem 44:504–508. https://doi.org/10.1016/j.procbio.2009.01.002

Scheffer M, Hosper SH, Meijer ML, Moss B, Jeppesen E (1993) Alternative equilibria in shallow lakes. Trends Ecol Evol 8:275–279

Šćiban M, Klajnić M, Antov M, Skrbić B (2009) Removal of water turbidity by natural coagulants obtained from chestnut and acorn. Bioreosur Technol 100:6639–6643. https://doi.org/10.1016/j.biotech.2009.06.047

Shamsnejati S, Chaibakhsh N, Pendashteh AR, Hayeripour S (2015) Mucilaginous seed of Ocimum basilicum as a natural coagulant for textile wastewater treatment. Ind Crops Prod 69:40–47. https://doi.org/10.1016/j.indcrop.2015.01.045

Shekar M, Shiriwastav A, Bose P, Hameed S (2017) Micro fi ltration of algae : Impact of algal species, backwashing mode and duration of fi ltration cycle. Algal Res 23:104–112. https://doi.org/10.1016/j.algal.2017.01.013

JY Shin RF Spinette CR O’melia 2008 Stoichiometry of coagulation revisited Environ Sci Technol 42 2582 2589

Sillanpää M, Ncibi MC, Matilainen A, Vepsäläinen M (2018) Removal of natural organic matter in drinking water treatment by coagulation: A comprehensive review. Chemosphere 190:54–71. https://doi.org/10.1016/j.chemosphere.2017.09.113

Simate GS, Iyuke SE, Ndlovu S, Heydenrych M (2012) The heterogeneous coagulation and flocculation of brewery wastewater using carbon nanotubes. Water Res 46:1185–1197. https://doi.org/10.1016/j.watres.2011.12.023

Smith VH, Schindler DW (2009) Eutrophication science: where do we go from here? Trends Ecol Evol 24:201–207. https://doi.org/10.1016/j.tree.2008.11.009

Sowmyan R, Santhosh J, Latha R (2011) Effectiveness of herbs in community water treatment. Int Res J Biochem Bioinforma 1:297–303

Steffen D, a, (2008) Economic cost of cyanobacterial blooms Benefits of Bloom reduction. Adv Exp Med Biol 877:867–877. https://doi.org/10.1007/978-0-387-75865-7_7

Suh HJ, Kwon GS, Lee CH, Kim HS, Oh HM, Yoon BD (1997) Characterization of bioflocculant produced by Bacillus sp, DP-152. J Ferment Bioeng 84:108–112. https://doi.org/10.1016/S0922-338X(97)82537-8

Sun R, Sun P, Zhang J, Esquivel-Elizondo S, Wu Y (2018) Micro-organisms-based methods for harmful algal blooms control: A review. Bioresources Technol 248:12–20. https://doi.org/10.1016/j.biortech.2017.07.175

JP Sutherland GK Folkard MA Mtawali. WD Grant 1994. Moringa oleifera as a natural coagulant, in: Proceedings of the 20th WEDC Conference Affordable Water Supply and Sanitation. pp. 297–299.

Z Svirčev D Drobac x. N Tokodi. D Đenić. J Simeunović. A Hiskia. JP Sutherland GK Folkard YL Poirier . 2002. Moringa oleifera. The Constraints to commercialisation. CIRAD.
Svrcek C, Smith DW (2004) Cyanobacteria toxins and the current state of knowledge on water treatment options: A review. J Environ Eng Sci 3:155–185. https://doi.org/10.1139/S04-010
Swati M, Govindan VS (2005) Coagulation studies on natural seed extracts. J Indian Water Work Assoc 37:145–149
Tang X, Zhang N, Zhou J, Liu Q (2017) Neurocomputing Hidden-layer visible deep stacking network optimized by PSO for motor imagery EEG recognition. Neurocomputing 234:1–10. https://doi.org/10.1016/j.neucom.2016.12.039
Teixeira MR, Camacho FP, Sousa VS, Bergamasco R (2017) Green technologies for cyanobacteria and natural organic matter water treatment using natural based products. J Clean Prod 162:484–490
Toeda K, Kurane R (1991) Microbial Flocculant from Alcaligenes cupidus KT201. Agric Biol Chem 55:2793–2799. https://doi.org/10.1271/bbb1961.55.2793
Tokodi N, Drobac D, Lazić G, Petrović T, Marinović Z, Lujić J, Malešević TP, Meriluoto J, Svirčev Z (2018) Screening of cyanobacterial cultures originating from different environments for cyanotoxins and cyanotoxins. Toxicoin 154:1–6. https://doi.org/10.1016/j.toxicoin.2018.09.001
Vaz C, Almeida M, Gonçalves P, Roberto J, França AB, Lofrano RCZ, Fabiano D, Naves LLR, Milagres K, Naves FL (2018) Use of the extract of the flower of Musa sp., in the treatment from coagulation – Flocculation, of iron ore fines. J Environ Chem Eng 6:1155–1160. https://doi.org/10.1016/j.jece.2018.01.047
Verma AK, Dash RR, Bhunia P (2012) A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. J Environ Manage 93:154–168. https://doi.org/10.1016/j.jenvman.2011.09.012
AK Verma RR Dash P Bhunia 2012a A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters J Environ Manage https://doi.org/10.1016/j.jenvman.2011.09.012
Villaseñor-Basulto DL, Astudillo-Sánchez PD, del Real-Olvera J, Bandala ER (2018) Wastewater treatment using Moringa oleifera Lam seeds: A review. J Water Process Eng 23:151–164. https://doi.org/10.1016/j.jwpe.2018.03.017
Vishali S, Karthikeyan R (2015) Cactus opuntia (ficus-indica): an eco-friendly alternative coagulant in the treatment of paint effluent. Desalin Water Treat 56:1489–1497. https://doi.org/10.1080/19443994.2014.945487
E Vunain EF Masoamphambe PM Mpekula M Monjerezi A Etale 2019 Evaluation of coagulating efficiency and water borne pathogens reduction capacity of Moringa oleifera seed powder for treatment of domestic wastewater from Zomba Malawi J Environ Chem Eng 7. https://doi.org/10.1016/j.jece.2019.103118
Wan J, Chakraborty T, Xu C, Charles Ray MB. (2019) Treatment train for tailings pond water using Opuntia ficus-indica as coagulant. Sep Purif Technol 211:448–455. https://doi.org/10.1016/j.seppur.2018.09.083
Wang HQ, Zhang LY, Cui QF (2018) Extraction of pomegranate peel tannins and flocculant for Microcystis aeruginosa removal. Int J Environ Sci Technol 15:2713–2718. https://doi.org/10.1007/s13762-018-1771-2
Xagoraraki I. 2007. Fate of pharmaceuticals during water chlorination, in: Water Quality Technology Conference. AWWA, Charlotte, NC.
Yin CY (2010) Emerging usage of plant-based coagulants for water and wastewater treatment. Process Biochem 45:1437–1444. https://doi.org/10.1016/j.procbio.2010.05.030
Yongabi, K.A., Lewis, D.M., Harris, P.L., 2011. Integrated phytodisinfectant-sand filter drum for household water treatment in sub-saharan Africa. J Environ. Sci. Eng. 5.
Zamyadi A, Dorner S, Sauvé S, Ellis D, Bolduc A, Bastien C, Prévost M (2013) Species-dependence of cyanobacteria removal efficiency by different drinking water treatment processes. Water Res 47:2689–2700. https://doi.org/10.1016/j.watres.2013.02.040
Zayadi N. Othman N Hamdan R. 2016. A potential waste to be selected as media for metal and nutrient removal, in: IOP Conference Series: Materials Science and Engineering. IOP Publishing, p. 12051.
Zhang Q, Song Q, Wang C, Zhou C, Lu C, Zhao M (2017) Effects of glufosinate on the growth of and microcystin production by Microcystis aeruginosa at environmentally relevant concentrations. Sci Total Environ 575:513–518

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.