Distributed Scheduling Problems in Intelligent Manufacturing Systems

Yaping Fu
College of Business, Qingdao University, Qingdao 266071, China

Yushuang Hou
College of Business, Qingdao University, Qingdao 266071, China

Zifan Wang
Institute of Systems Engineering, Macau University of Science and Technology, Macao 999078, China

Xinwei Wu
Institute of Systems Engineering, Macau University of Science and Technology, Macao 999078, China

Kaizhou Gao
Institute of Systems Engineering, Macau University of Science and Technology, Macao 999078, China

See next page for additional authors

Follow this and additional works at: https://dc.tsinghuajournals.com/tsinghua-science-and-technology

Part of the Computer Sciences Commons, and the Electrical and Computer Engineering Commons

Recommended Citation

Yaping Fu, Yushuang Hou, Zifan Wang, Xinwei Wu, Kaizhou Gao, Ling Wang. Distributed Scheduling Problems in Intelligent Manufacturing Systems. Tsinghua Science and Technology 2021, 26(05): 625-645.

This Research Article is brought to you for free and open access by Tsinghua University Press: Journals Publishing. It has been accepted for inclusion in Tsinghua Science and Technology by an authorized editor of Tsinghua University Press: Journals Publishing.
Distributed Scheduling Problems in Intelligent Manufacturing Systems

Authors
Yaping Fu, Yushuang Hou, Zifan Wang, Xinwei Wu, Kaizhou Gao, and Ling Wang
Distributed Scheduling Problems in Intelligent Manufacturing Systems

Yaping Fu, Yushuang Hou, Zifan Wang, Xinwei Wu, Kaizhou Gao*, and Ling Wang*

Abstract: Currently, manufacturing enterprises face increasingly fierce market competition due to the various demands of customers and the rapid development of economic globalization. Hence, they have to extend their production mode into distributed environments and establish multiple factories in various geographical locations. Nowadays, distributed manufacturing systems have been widely adopted in industrial production processes. In recent years, many studies have been done on the modeling and optimization of distributed scheduling problems. This work provides a literature review on distributed scheduling problems in intelligent manufacturing systems. By summarizing and evaluating existing studies on distributed scheduling problems, we analyze the achievements and current research status in this field and discuss ongoing studies. Insights regarding prior works are discussed to uncover future research directions, particularly swarm intelligence and evolutionary algorithms, which are used for managing distributed scheduling problems in manufacturing systems. This work focuses on journal papers discovered using Google Scholar. After reviewing the papers, in this work, we discuss the research trends of distributed scheduling problems and point out some directions for future studies.

Key words: distributed manufacturing systems; distributed scheduling problems; modeling and optimization; intelligent optimization methods

1 Introduction

With economic globalization and rising customer demands, market competition has become increasingly fierce. Manufacturing enterprises must extend their production mode into distributed environments and establish multiple factories in various remote geographical locations. Currently, distributed manufacturing systems are extensively applied in various types of manufacturing industries, such as automotive[1], steel-making[2], and food and chemical processing[3]. The modeling and scheduling of distributed manufacturing systems have attracted considerable attention because of their significant effects on improving operational efficiency[4–7].

In industrial systems, scheduling plays an essential role in decreasing production cost and improving customer satisfaction[8–12]. In the past decades, a large number of studies on scheduling problems in manufacturing and service systems have been conducted. These problems can be classified as single-machine scheduling[13, 14], parallel-machine scheduling[15, 16], flow-shop scheduling[17–19], job-shop scheduling[20, 21], and their variants[22, 23]. In recent years, researchers have proposed a new scheduling method, i.e., distributed scheduling, which aims at scheduling distributed manufacturing systems[24]. Distributed scheduling
methods have wide applications in different areas, such as operating room scheduling\cite{25–28}, distributed computing systems\cite{29}, and geographically distributed configuration systems\cite{30}. In the manufacturing domain, distributed scheduling focuses on simultaneously scheduling all factories in distributed manufacturing systems. Compared with the problems of scheduling a single factory, distributed scheduling problems have more highly complex characteristics, which are presented as follows:

1. In contrast to traditional scheduling problems, where we just consider job allocation among machines and job sequence on machines at a factory, in distributed production scheduling problems, we must additionally determine job allocation/assignment among various factories.

2. In practice, decision-makers usually consider time-related criteria, such as achieving maximum completion time (makespan), flow time, and tardiness minimization. However, we must also consider the workload balance among factories and total production cost in distributed manufacturing environments.

3. Generally, factories have geographically remote locations, and thus it is not feasible to accurately determine information regarding their production circumstances, such as order arrival, machine breakdown, and delivery time change. Therefore, there are many uncertainties in the distributed production process, which increases the difficulty of scheduling them.

In recent years, distributed scheduling problems have attracted significant research interest. Many scholars have devoted efforts and attention to study the modeling and optimization of scheduling various distributed manufacturing systems. Meanwhile, some researchers have contributed to summarizing existing studies on distributed scheduling problems\cite{31–34}. Toptal and Sabuncuoglu\cite{31} provided a literature survey on distributed scheduling algorithms in a distributed architecture. They made an analysis of the difference between decentralized and centralized scheduling systems and gave a detailed definition of distributed scheduling systems. Behnamian and Ghomi\cite{32} analyzed previous works on distributed scheduling on various models, such as distributed single machine, parallel machine, flow shop, and job shop. Chaouch et al.\cite{33} focused on distributed job shop scheduling problems and summarized optimization approaches for solving them.

Lohmer and Lasch\cite{34} analyzed planning and scheduling problems in distributed manufacturing systems and summarized the literature in accordance with shop types, objective functions, and solution methods.

The abovementioned reviews aim at introducing the applications and advantages of distributed scheduling problems in different areas and analyzing the optimization approaches in solving distributed planning and scheduling problems. In contrast to the above literature, this work focuses on distributed manufacturing systems and analyzes recent studies on various models. In addition, it mainly focuses on analyzing the optimization approaches for distributed scheduling problems. Owing to the complexity of distributed scheduling problems, conventional mathematical optimization approaches are unable to solve them within an acceptable amount of time. Thus, we focus on approximation algorithms, particularly Swarm Intelligence (SI) and Evolutionary Algorithms (EAs), for handling distributed production scheduling problems, although these algorithms do not guarantee optimal solutions.

The essential components of a literature review are the scope and purpose. This paper focuses on summarizing and synthesizing distributed scheduling problems in manufacturing systems and their optimization approaches. The main objectives of this paper are as follows: (1) classification of distributed manufacturing systems; (2) evaluation of the model of distributed scheduling problems; (3) classification of optimization objectives, such as makespan, tardiness, energy consumption, and machine workload; (4) classification of optimization methods, particularly SI and EAs; and (5) determination of the research directions of distributed scheduling problems in manufacturing systems. According to the purpose and review contents of this work, we define the words “distributed manufacturing”, “distributed production”, “multi-factory production”, “distributed/parallel scheduling”, “distributed parallel-machine scheduling”, “distributed flow-shop scheduling”, “distributed job-shop scheduling”, “distributed open-shop scheduling”, “swarm intelligence”, “evolutionary algorithms”, “meta-heuristics”, and their combinations as index keywords in Google Scholar. All the keywords are presented in Table 1. This work focuses on academic journals that publish high-quality papers. Accordingly, we collected the journal publications. By employing the keywords
in Table 1 to search the literature related to the topic “distributed scheduling problems in manufacturing systems”, we found 97 publications published from 2010 until January 2021, and the corresponding journals are listed in Table 2. 85% of the acquired papers were published in 16 journals, where at least two papers have been published. Seventeen papers were published in the journal *International Journal of Production Research*, which was ranked first among all the journals considering the number of papers published in the dataset. In addition, the journal *Swarm and Evolutionary Computation* was ranked second with ten papers.

2 Problem

Generally, distributed production scheduling problems are considered and modeled about classical shop scheduling problems. Table 3 reports the literature about distributed production scheduling and shows 97 publications that are recorded from 2010 to 2021. The types of production shops include (hybrid) flow shop, parallel-machine scheduling, (flexible) job shop, and generally distributed production environments. In some studies, the distributed scheduling problems are integrated with other problems, e.g., distribution problems\[^{35-37}\], planning problems\[^{38, 39}\], resource allocation problems\[^{39}\], and vehicle routing problems\[^{40}\]. Few publications focus on real-life areas, e.g., semiconductor wafer manufacturing\[^{41}\].

Real-life constraints or special phases in various shop types are considered in many problems on distributed production scheduling. Flow time-related constraints, including fuzzy processing time, stochastic processing time, setup time, and transportation time, are considered in Refs. \[^{42-52}\]. Production shop-related constraints, including no wait, no idle, blocking, limited buffer, and lot streaming, are addressed in Refs. \[^{40, 47, 52-63}\]. In distributed production scheduling, a one- or two-stage assembly line as a special phase in flow shops and job shops have been researched in many publications\[^{42, 45, 51, 64-72}\]. Some other constraints are also considered in distributed production scheduling, e.g., job re-entrant\[^{73}\], unrelated machines\[^{74}\], and heterogeneous production shops\[^{38, 75}\].

Modeling distributed production scheduling problems is a way of employing various methods to solve them. Modeling methods involve solution approaches

Problem-related keyword	Scheduling-related keyword	Optimization method-related keyword	Journal’s name	Number
Distributed manufacturing	Distributed/parallel scheduling	SI	*International Journal of Production Research*	17
Distributed factory	Multi-factory scheduling	EA	*Swarm and Evolutionary Computation*	10
Distributed production	Distributed factory scheduling	Meta-heuristics	*Computers & Industrial Engineering*	8
Multi-factory production	Distributed parallel machine/flow shop/job shop/open shop scheduling	Genetic algorithm, particle swarm optimization, etc.	*Expert Systems with Applications*	8
			Computers & Operations Research	6
			Applied Soft Computing	5
			IEEE Access	5
			Knowledge-Based Systems	4
			Engineering Optimization	3
			Journal of Intelligent Manufacturing	3
			Engineering Applications of Artificial Intelligence	2
			European Journal of Operational Research	2
			IEEE Transactions on Cybernetics	2
			*IEEE Transactions on Systems, Man, and Cybernetics: Systems	2
			International Journal of Production Economics	2
			Mathematical Problems in Engineering	2
			Applied Sciences	1
			Enterprise Information Systems	1
			IEEE Transactions on Electrical & Electronic Engineering	1
			IEEE Transactions on Automation Science and Engineering	1
			IEEE Transactions on Emerging Topics in Computational Intelligence	1
			IEEE Transactions on Industrial Informatics	1
			International Journal of Computational Intelligence Systems	1
			Journal of Cleaner Production	1
			Journal of the Operations Research Society of China	1
			Memetic Computing	1
			Omega	1
			Procedia Computer Science	1
			Procedia CIRP	1
			Production Engineering	1
			Simulation Modelling Practice and Theory	1
			The International Journal of Advanced Manufacturing Technology	1

Ref.	Author and year	Shop type	Constraint	Model type	Objective	Method
35	Chang et al., 2014	Integrated production and distribution		Mixed Integer Linear Programming (MILP)	Delivery time, distribution cost	SI/EA
36	Gharaei and Jolai, 2018	Integrated scheduling and distribution		Mixed Linear Programming (MIP)	Tardiness, distribution cost	SH/DR, SI/EA
37	Marandi an Fatemi, 2019	Production and distribution scheduling		MIP	Makespan	SI/EA
38	Mishra et al., 2012	Planning	Supply chain environment	General mathematical model	Cost, machining time	SI/EA
39	Zhang et al., 2017	Integration planning and scheduling		General mathematical model	Makespan	SI/EA
40	Ribas et al., 2017	Flowshop	Blocking	General mathematical model	Makespan	SI/EA
41	Dong and Ye, 2019	Semiconductor wafer manufacturing	Two-stage assembly line, setup time	MIP	Makespan, carbon emissions, tardiness	SH/DR, SI/EA
42	Xiong et al., 2014	Flowshop	Transportation time	General mathematical model	Total flow time	SI/EA
43	Behnamian, 2014	General manufacturing environment	Job shop	MILP	Cost and profit	CPLEX, SI/EA
44	Zhang et al., 2016	Flowshop	Fuzzy processing time	General mathematical model	Makespan	SI/EA
45	Neira et al., 2017	Flowshop	Assembly line, stochastic processing time	None	Makespan	Others
46	Fu et al., 2019	Distributed manufacturing system	Stochastic	MIP	Total tardiness, energy consumption	SI/EA
47	Shao et al., 2019	Flowshop	Blocking	General mathematical model	Makespan	SI/EA
48	Li et al., 2020	Hybrid flowshop	Heterogeneous, setup time	MILP	Makespan	SI/EA
49	Ying et al., 2020	Flowshop	Flexible assembly, sequence-independent setup time	MILP	Makespan	SI/EA
50	Zheng et al., 2020	Flowshop	Fuzzy processing time	General mathematical model	Fuzzy tardiness and robustness	SH/DR, SI/EA
51	Song and Lin, 2020	Flowshop	Assembly, setup time	MILP	Makespan	SI/EA
52	Li et al., 2021	Flowshop	No-wait	General mathematical model	Makespan	SI/EA
53	Komaki and Malakooti, 2017	Flowshop	No-wait	General mathematical model	Makespan	SI/EA
54	Ying et al., 2017	Flowshop	No-idle	MIP	Makespan	SI/EA
55	Ying and Lin, 2017	Flowshop	Blocking	MIP	Makespan	SI/EA
56	Shao et al., 2017	Flowshop	No-wait	General mathematical model	Makespan	SH/DR, SI/EA
57	Cheng et al., 2019	Flowshop	No-idle	MILP	Makespan	SI/EA
58	Zhang et al., 2018	Flowshop	Blocking	General mathematical model	Makespan	SH/DR, SI/EA
59	Ribas et al., 2019	Flowshop	Blocking	None	Total tardiness	SI/EA
60	Chen et al., 2019	Flowshop	No-idle	General mathematical model	Makespan, total energy consumption	SI/EA
61	Zhao et al., 2020	Flowshop	Blocking	General mathematical model	Makespan	SI/EA

(To be continued)
Table 3 Literature about distributed production scheduling.

Ref.	Author and year	Shop type	Constraint	Model type	Objective	Method
62	Zhao et al., 2020	Flowshop	No-idle	None	Assembly, completion time	SI/EA
63	Shao et al., 2020	Flowshop	Blocking	MILP	Makespan	SI/EA
64	Hatami et al., 2013	Flowshop	Assembly line	MILP	Makespan	SH/DR, SI/EA
65	S. Y. Wang and L. Wang, 2015	Flowshop	Assembly line	General mathematical model	Makespan	SI/EA
66	Deng et al., 2016	Flowshop	Two-stage assembly line	MILP	Makespan	SI/EA
67	Lin and Zhang, 2016	Flowshop	Assembly line	General mathematical model	Makespan	SI/EA
68	Lin et al., 2017	Flowshop	Assembly line	General mathematical model	Makespan	SH/DR, SI/EA
69	Zhang and Xing, 2018	Flowshop	Two-stage assembly line	General mathematical model	Total flow time	SI/EA
70	Wu et al., 2019	Flexible Job Shop Scheduling (FJSP)	Assembly line	General mathematical model	Earliness/tardiness, total cost	SI/EA
71	Zhang et al., 2020	Flowshop	Flexible assembly line	MILP	Makespan	SI/EA
72	Lei et al., 2020	Flowshop	Two-stage assembly flow shop Reentrant	General mathematical model	Makespan, cost, and tardiness	SI/EA
73	Rifai et al., 2016	Flowshop	Unrelated parallel machines	General mathematical model	Makespan	SI/EA
74	Lei et al., 2020	Parallel machine scheduling	Heterogeneous, lot-streaming, setup time	MILP	Makespan	SH/DR, SI/EA
75	Meng and Pan, 2020	Flowshop		MILP	Makespan	SH/DR
76	Naderi and Ruiz, 2010	Flowshop		MILP	Makespan	SH/DR
77	Azab and Naden, 2014	Job shop		MILP	Makespan	SH/DR, CPLEX
78	Naderi and Azab, 2015	Job shop		MILP	Makespan	SI/EA
79	Behnamian and Gholami, 2015	General manufacturing environment		MILP	Total completion time	SH/DR, CPLEX
80	Ying and Lin, 2018	Flowshop	Multiprocessor tasks	MILP	Makespan	SI/EA
81	Shao et al., 2019	Flowshop	No-wait, setup time	MILP	Makespan, total weight tardiness	SI/EA
82	Pan et al., 2019	Flowshop		MILP	Makespan	SI/EA
83	Huang et al., 2020	Flowshop	Sequence-dependent setup time	MILP	Makespan	SI/EA
84	Meng et al., 2020	FJSP		MILP, constraint programming	Makespan	CPLEX
85	Gong et al., 2020	General manufacturing environment		MILP	Makespan, total energy consumption	SH/DR, SI/EA
86	Lu et al., 2020	Flowshop		MILP	Makespan, total energy consumption	SI/EA
87	Wang et al., 2020	Flowshop		MILP	Makespan, energy consumption	SI/EA
88	Pan et al., 2020	Flowshop	Group scheduling	MILP	Makespan	SI/EA

(To be continued)
Table 3 Literature about distributed production scheduling. (Continued)

Ref.	Author and year	Shop type	Constraint	Model type	Objective	Method
89	Xiong et al., 2020	Flowshop	Concrete precast	MINLP, MILP	Total weighted earliness and tardiness	SI/EA
90	J. Wang and L. Wang, 2018	Flowshop	Total tardiness threshold	General mathematical model	Makespan, total energy consumption	SH/DR, SI/EA
91	Fu et al., 2019	Flowshop	Transfer	Chance-constrained programming	Makespan, energy consumption	SI/EA
92	Luo et al., 2020	FJSP	Concrete precast	General mathematical model	Makespan, workload, energy consumption	SI/EA
93	Jiang et al., 2020	FJSP	Concrete precast	General mathematical model	Makespan, energy consumption	SI/EA
94	Guo et al., 2015	General manufacturing environment	Production monitoring	Intelligent decision support system	Tracking and monitoring	Others
95	Zou et al., 2018	Integrated scheduling and vehicle routing	General mathematical model	Maximum route time	SH/DR, SI/EA	
96	Zhang and Gen, 2010	Distributed manufacturing system	General mathematical model	Total processing time, workload	SI/EA	
97	Giovanni and Pezzella, 2010	FJSP	General mathematical model	Makespan	SI/EA	
98	Gao and Chen, 2011	Flowshop	General mathematical model	Makespan	SH/DR, SI/EA	
99	Liu et al., 2014	FJSP	Fastener manufacturer	General mathematical model	Makespan	SI/EA
100	Chang and Liu, 2017	FJSP	General mathematical model	Makespan	SI/EA	
101	Wu et al., 2017	FJSP	General mathematical model	None	SI/EA	
102	Viagas et al., 2018	Flowshop	General mathematical model	Total flow time	SH/DR, SI/EA, lower bounds	
103	Lu et al., 2018	FJSP	General mathematical model	Makespan	SI/EA	
104	Cai et al., 2018	Flowshop	Transportation and eligibility	General mathematical model	Makespan, lateness, cost	SH/DR, SI/EA
105	Wang et al., 2013	Flowshop	General mathematical model	Makespan	SH/DR, SI/EA	
106	Xu et al., 2014	Flowshop	General mathematical model	Makespan	SI/EA	
107	Zhang et al., 2018	Flowshop	General mathematical model	Makespan	SI/EA	
108	Meng et al., 2019	Flowshop	General mathematical model	Makespan	SI/EA	
109	Yang and Xu, 2020	Flowshop	Flexible assembly and batch delivery	General mathematical model	Total cost, tardiness	SI/EA
110	Gao et al., 2013	Flowshop	General mathematical model	Makespan	SI/EA	
111	Li et al., 2018	FJSP	General mathematical model	Makespan, maximal workload, and earliness/tardiness	SH/DR, SI/EA	
112	Chaouch et al., 2017	Job shop	Disjunctive graph	Makespan	SI/EA	
113	Zhang and Xing, 2019	Flowshop	Limited-buffer	General mathematical model	Makespan	SH/DR, SI/EA

(To be continued)
Table 3 Literature about distributed production scheduling. (Continued)

Ref.	Author and year	Shop type	Constraint	Model type	Objective	Method	
114	Naderi and Ruiz, 2014	Flowshop	General mathematical model	Makespan	SH/DR, SI/EA		
115	Pan et al., 2019	Flowshop	General mathematical model	Total flow time	SH/DR, SI/EA		
116	Lin et al., 2013	Flowshop	General mathematical model	Makespan	SH/DR, SI/EA		
117	Viagas and Framinan, 2015	Flowshop	General mathematical model	Makespan	SH/DR, SI/EA		
118	Ruiz et al., 2019	Flowshop	General mathematical model	Makespan	SH/DR, SI/EA		
119	Shao et al., 2020	Hybrid flowshop	General mathematical model	Makespan	SH/DR, SI/EA		
120	Mao et al., 2020	Flowshop	Preventive maintenance	General mathematical model	Makespan	SI/EA	
121	Deng and Wang, 2017	Flowshop	General mathematical model	Makespan, total tardiness	SI/EA		
122	J. Wang and L. Wang, 2020	Flowshop	General mathematical model	Makespan	SI/EA		
123	Bargayou et al., 2017	Flowshop	None	General mathematical model	Makespan	SI/EA	
124	Zhang et al., 2017	Distributed manufacturing resource allocation	General mathematical model	Operating time, cost, risk, and quality	SI/EA		
125	Hao et al., 2019	Hybrid flowshop	General mathematical model	Makespan	SI/EA		
126	Li et al., 2019	Flowshop	Parallel batching, deteriorating jobs	General mathematical model	Makespan	SH/DR, SI/EA	
127	Li et al., 2019	Flowshop	Distance coefficient	General mathematical model	Makespan	SH/DR, SI/EA	
128	Huang et al., 2020	Flowshop	Sequence-dependent setup time	General mathematical model	Makespan	SI/EA	
129	Lei and Wang, 2019	Hybrid flowshop	Two-stage flow shop	General mathematical model	Makespan	SI/EA	
130	Cai et al., 2020	Hybrid flowshop	General mathematical model	Makespan, total tardiness	SI/EA		
131	Sang et al., 2019	Flowshop	General mathematical model	Total flow time	SI/EA		

and algorithms. Mathematical programming is usually used for modeling distributed production scheduling problems, especially for exact methods.[35–37, 41, 43, 46, 48, 49, 51, 54, 55, 57, 63, 64, 66, 71, 75–89] General mathematical models can be used for Simple Heuristics (SHs), Dispatch Rules (DRs), SI, and EAs to calculate objectives. For scheduling objectives, the completion time-related and machine workload-related ones are the most evaluated. Energy consumption and low-carbon-related objectives are attracting increasing attention; they can be considered as one of multiple objectives and simultaneously optimized with traditional objectives.[46, 60, 85–87, 90–93]

For distributed production scheduling problems, few researchers have used real-life cases.[38, 41, 94, 95] Most instances are extended from the benchmark of classical flow-shop and job-shop scheduling problems. The methods for solving distributed production scheduling problems include exact methods, SHs or DRs, SI, and EAs. For SI and EAs, various strategies are used to improve their local and global searching performance. The corresponding contents will be discussed and analyzed in the next section.

3 Method

Distributed scheduling problems in manufacturing
systems are more complicated than traditional scheduling problems because we must first decide job assignments among factories and then make decisions on their allocation and sequence on machines. Distributed scheduling problems have been proven to be NP-hard\(^6\)\(^6\). Hence, the existing studies devote much effort to solve them by employing heuristic methods, exact approaches, SI, and EAs. Table 4 presents the employed optimization approaches in the relevant literature. Figure 1 shows the percentage of optimization approaches used for solving distributed scheduling problems. The findings show that most of the prior studies have chosen SI and EAs for coping with distributed scheduling problems. A detailed analysis is given in the following subsection.

Table 4 Optimization approaches in the relevant literature.

Ref.	Author and year	Optimization approach	Heuristic	Exact	Swarm intelligence or evolutionary algorithm	Improving strategy		
35	Chang et al., 2014	Ant Colony Optimization (ACO)						
36	Gharaei and Jolai, 2018	Multi-agent approach, Bees algorithm based on decomposition						
37	Marandi and Fatemi, 2019	CPLEX	Imperialist Competitive Algorithm (ICA)					
38	Mishra et al., 2012	Genetic Algorithm (GA) and SA						
39	Zhang et al., 2017	ICA and GA						
40	Ribas et al., 2017	Iterative Local Search (ILS) and Variable Neighborhood Search (VNS)			Solution initialization with constructive heuristics			
41	Dong and Ye, 2019	Grey Wolf Optimization (GWO)			Population initialization with learning strategy			
42	Xiong et al., 2014	GA, Differential Evolution (DE), VNS						
43	Behnamian, 2014	CPLEX	Tabu Search algorithm (TS) and VNS		Local search	GA	Local enhancement strategy	
44	Zhang et al., 2016							
45	Neira et al., 2017	Randomized adaptive search procedure with simulation approach						
46	Fu et al., 2019	Brain Storm Optimization (BSO)			Clustering method			
47	Shao et al., 2019	Fruit Fly Optimization (FFO)			Population initialization with heuristic, local search			
48	Li et al., 2020	Artificial Bee Colony algorithm (ABC)						
49	Ying et al., 2020	Iterated Greedy Algorithm (IGA)			Local search			
50	Zheng et al., 2020	Estimation of Distribution Algorithm (EDA) and IGA			Local search			
51	Song and Lin, 2020	Genetic Programming (GP)+SA						
52	Li et al., 2020	Discrete ABC			Heuristics, VND			
53	Komaki and Malakooti, 2017	VNS			Local search			
54	Ying et al., 2017	Iterative reference greedy algorithm			Solution initialization with heuristics			
55	Ying and Lin, 2017	IGA and TS			Search with tabu list and cooling process			
56	Shao et al., 2017	IGA			Solution initialization with heuristics, speed-up strategy			
57	Cheng et al., 2019	Cloud theory-based IGA			Local search			
58	Zhang et al., 2018	SPT, LPT, large-small method, NEH			Discrete DE	Population initialization with heuristic method, local search		

(To be continued)
Table 4 Optimization approaches in the relevant literature. (Continued)

Ref.	Author and year	Optimization approach	Improving strategy	
59	Ribas et al., 2019	IGA		
60	Chen et al., 2019	Collaborative Optimization Algorithm (COA)	Population initialization with heuristic	
61	Zhao et al., 2020	Discrete DE (DDE)	Population initialization with heuristic methods	
62	Zhao et al., 2020	Water Wave Optimization (WWO)	Heuristics, local search, VNS	
63	Shao et al., 2020	Heuristics based on NEH	IGA	
64	Hatami et al., 2013	Constructive heuristics	Variable Neighborhood Decent (VND)	
65	S. Y. Wang and L. Wang, 2015	EDA and Memetic Algorithm (MA)	Local search	
66	Deng et al., 2016	Competitive MA (CMA)	Ring-based neighbor-structure, knowledge-based local search	
67	Lin and Zhang, 2016	Biogeography-Based Optimization (BBO)	Local search	
68	Lin et al., 2017	Low-level heuristics	Backtracking Search (BS)	Hyper-heuristic approach
69	Zhang and Xing, 2018	Social Spider Optimization (SSO)	Problem-specific local search, restart strategy	
70	Wu et al., 2019	DE and SA	Local search	
71	Zhang et al., 2020	SSO	Local search based on meta-Lamarckian learning	
72	Lei et al., 2020	Teaching-Learning-Based Optimization (TLBO)	Memory and neighborhood structures-based improving strategy	
73	Rifai et al., 2016	Adaptive Large Neighborhood Search (ALNS)	Collaboration mechanism, restart strategy	
74	Lei et al., 2020	ICA	SA	
75	Meng and Pan, 2020	Constructive heuristics	ABC	
76	Naderi and Ruiz, 2010	Heuristics based on dispatching rules	VND	
77	Azab and Naderi, 2014	Greedy heuristics	CPLEX	
78	Naderi and Azab, 2015		SA	
79	Behnamian and Ghomi, 2015	CPLEX	Monte Carlo algorithm	Solution initialization with heuristics, local search
80	Ying and Lin, 2018	Self-tuning IGA	Solution initialization with heuristics	
81	Shao et al., 2019	Pareto-based EDA	Population initialization with heuristic method, local search	
82	Pan et al., 2019	Constructive heuristics	VNS and IGA	
83	Huang et al., 2020		IGA	Restart scheme (IGR), control parameter, local search
Table 4 Optimization approaches in the relevant literature. (Continued)

Ref.	Author and year	Optimization approach	
84	Meng et al., 2020	CPLEX	
85	Gong et al., 2020	MA	
		Swarm intelligence or evolutionary algorithm	Improving strategy
86	Lu et al., 2020	Iterative Greedy (IG)	
87	Wang et al., 2020	Whale Swarm Algorithm (WSA)	
88	Pan et al., 2020	EA	
89	Xiong et al., 2020	NEH	
90	J. Wang and L. Wang, 2018	NEH	
		Knowledge-based Cooperative Algorithm (KCA)	
91	Fu et al., 2019	BSO	
92	Luo et al., 2020	MA	
93	Jiang et al., 2020	MOEA with decomposition	
94	Guo et al., 2015	Multi-objective EA	
95	Zou et al., 2018	Backward and forward batching method	
		GA and two-stage algorithm	
96	Zhang and Gen, 2010	GA	
97	Giovanni and Pezzella, 2010	GA	
98	Gao and Chen, 2011	NEH2	
		GA and VND	
99	Liu et al., 2014	GA	
		Probability-based encoding operator	
100	Chang and Liu, 2017	GA	
101	Wu et al., 2017	GA	
102	Viagas et al., 2018	Constructive heuristics	
		GA	
103	Lu et al., 2018	NEH adaptive (NEHA)	
104	Cai et al., 2018	Nondominated Sorting Genetic Algorithm II (NSGA-II)	
105	Wang et al., 2013	Heuristics with SPT, LPT, and NEH	
		EDA	
106	Xu et al., 2014	Immune Algorithm (IA)	
107	Zhang et al., 2018	VNS and Particle Swarm Optimization (PSO)	

(To be continued)
Table 4 Optimization approaches in the relevant literature.

Ref.	Author and year	Optimization approach	Heuristic	Exact	Swarm intelligence or evolutionary algorithm	Improving strategy
108	Meng et al., 2019	VND, ABC, and IGA				Solution initialization with heuristic rules
109	Yang and Xu, 2020	Batch allocation strategy	VND and IGA			
110	Gao et al., 2013	TS				Local search
111	Li et al., 2018	Pareto-based TS				Solution initialization with heuristic approaches
112	Chaouche et al., 2017	ACO				Neighborhood strategy
113	Zhang and Xing, 2019	DE				Population initialization with heuristic approach
114	Naderi and Ruiz, 2014	Scatter Search (SS)				Subset generation combination methods, local search
115	Pan et al., 2019	ABC, SS and IGA				Solution initialization with heuristics, reference local search
116	Lin et al., 2013	NEH2				
117	Viagas and Framinan, 2015	Bounded-search IGA				
118	Ruiz et al., 2019	NEH2_en based on NEH	IGA			Solution initialization based on a new NEH, local search
119	Shao et al., 2020	Distributed NEH (DNEH)	IGA			Multi-search construction with greedy insertion
120	Mao et al., 2020	INEH2_dp	Multi-start IGA			
121	Deng and Wang, 2017	NEH2				
122	J. Wang and L. Wang, 2020					
123	Bargaoui et al., 2017		Chemical Reaction Optimization (CRO)		NEH, One-Point crossover and greedy strategy	
124	Zhang et al., 2017		TLBO			
125	Hao et al., 2019		BSO			Improved NEH, improved crossover operator
126	Li et al., 2019	Batch assignment, right-shifting heuristics	ABC			Local search
127	Li et al., 2019		ABC			Distributed Iterated Greedy (DIG)
128	Huang et al., 2020		Discrete ABC			
129	Lei and Wang, 2019		Shuffled Frog-Leaping Algorithm (SFLA)		Population initialization with heuristic, memeplex grouping	
130	Cai et al., 2020		SFLA			
131	Sang et al., 2019					
3.1 SI and EAs

To address the highly complicated distributed scheduling problems, SI and EAs have been adopted, including GA\cite{38,39,44,51,88,93–104}, EDA\cite{50,81,105}, MA\cite{106}, VNS\cite{40,42,43,53,64,76,82,98,107–109}, TS\cite{43,55,89,110,111}, PSO\cite{107}, ACO\cite{35,112}, DE\cite{42,58,61,70,113}, SS\cite{114,115}, IGA\cite{49,50,55–57,59,63,80,82,83,86,89,108,109,115–120}, SA\cite{38,51,70,78}, MA\cite{65,66,85,92,121,122}, BBO\cite{67}, ICA\cite{37,39,74}, CRO\cite{123}, COA\cite{60}, FFO\cite{47}, TLBO\cite{124}, SSO\cite{69,71}, KCA\cite{90}, GWO\cite{41}, BSO\cite{46,91,125}, SFLA\cite{129,130}, ABC\cite{48,52,75,108,115,126–128}, IWO\cite{131}, WSA\cite{87}, WWO\cite{62}.

As shown in Fig. 1, SI and EAs account for 74% of all the employed methods. Thus, SI and EAs are the mainstream methods for addressing distributed scheduling problems. Generally, they do not depend on problem characteristics and have no requirements for mathematical models. The procedure of SI and EAs is given below:

1. Initialize the algorithm parameters and generate a set of solutions as a population.
2. Calculate the objective function values of solutions in the population.
3. Generate new solutions by adopting the solutions in the population.
4. Evaluate newly generated solutions and update the population.
5. If a given termination is reached, go to Step 6; otherwise, go to Step 3.
6. Output the best-acquired solution and the corresponding objective function value.

SI and EAs have strong stochasticity. To enhance their search performance, many studies have adopted improvement strategies. These studies account for 71% of all the articles, as shown in Fig. 2. SI and EAs attach importance to enhance the exploration ability for quickly finding promising regions in the solution space, while they are not good enough to perform the exploitation ability in the found promising regions. As shown in the above procedure, they usually start with a population. Normally, their search performance greatly benefits from a high-quality population. Hence, some studies generate a set of solutions with heuristics to construct a better initial population. In addition, most studies have used local search methods to enhance their exploitation ability. Accordingly, balancing the exploration and exploitation abilities has been regarded as a challenging work in designing SI and EAs.

3.2 Other approaches

As shown in Fig. 1, some studies have selected heuristics and exact approaches to solve distributed production scheduling problems. The studies employing heuristics account for 21% of the total, and those adopting exact methods account for 4% of the total. Heuristics can acquire feasible solutions for distributed scheduling problems with less computation resources by applying dominated properties. They have the clear characteristics of quickly finding solutions regardless of the quality of solutions. Conversely, exact methods aim at attaining optimal solutions without consideration of computation resources. Thus, most of the existing studies have used them to solve small-scale problems, considering that they have the capacity to reach globally optimal solutions within reasonable running time. To make a trade-off between the solution quality and computation resources, the previous works have widely employed SI and EAs, combining heuristics and exact methods, to solve distributed scheduling problems.

4 Research Status and Trend

Distributed scheduling problems in manufacturing systems have become an important research focus over...
the last few years. As shown in Fig. 3, the number of publications for solving distributed scheduling problems in manufacturing areas rapidly increased. Particularly, in the most recent three years, it has grown rapidly and has reached a maximum in 2019 with 21 articles. The results show that distributed production scheduling problems have recently attracted much attention, and studying their modeling and optimization are very important to effectively organize and manage distributed manufacturing systems.

4.1 Single objective vs. multiple objectives

Production scheduling problems involve many criteria, such as minimizing the makespan, flow time, tardiness, and energy consumption. As shown in Fig. 4, most of the previous studies considered optimizing only one objective function when solving distributed scheduling problems in manufacturing systems. Much attention has been given to multi-objective optimization in recent years, especially in 2019 and 2020, where nearly half of the publications focused on multi-objective distributed scheduling problems. Generally, decision-makers have to consider multiple criteria to determine a trade-off among them when making scheduling decisions. In such a situation, multi-objective optimization needs to be employed for handling distributed scheduling problems in manufacturing systems.

4.2 Objective functions

The publication count of various objective functions shown in Fig. 5 proves that most of the existing studies, accounting for 67% among all the publications, considered minimizing the makespan, which is a frequently used objective to maximize machine utilization in real-world manufacturing systems. In addition, minimizing tardiness, which accounts for 10%, has received much interest due to their great influence on customer satisfaction. The prior works also focused on decreasing the energy consumption in scheduling the distributed manufacturing systems because of the huge pressure from the government and public on environmental protection issues. Particularly, the workload balance among factories is an important criterion for distributed manufacturing systems, and 3% of the existing studies considered the workload-related objectives.

4.3 SI and EAs

To further analyze the applications of diverse SI and EAs, we classify the publications regarding them for handling distributed production scheduling problems. The number of articles that used the various methods is illustrated in Fig. 6. A total of 27 algorithms were adopted for solving distributed scheduling problems. The IGA, which addresses single- and multi-objective distributed scheduling problems, is the most popular among all the adopted methods, with a total of 20 publications. The second most popular method is GA, which has 17 publications. For “Others”, some search approaches...
Based on neighborhood structures\cite{73}, simulation\cite{45}, and multi-agent methods\cite{36} were employed. The above analysis clearly shows that SI and EAs have been employed to handle distributed scheduling problems, which further confirms their excellent performance in solving this kind of problem.

5 Conclusion and Further Direction

This work provides an overall picture of the advanced research on distributed scheduling problems in manufacturing systems. After starting with an introduction to distributed scheduling problems, we discussed their classification and analyzed them. Next, we analyzed the framework of optimization approaches on distributed scheduling problems, particularly SI and EAs. Finally, we identified the research trends according to the articles based on the publication count of the publication year, single- and multi-objective optimizations, objective functions, and various SI and EAs.

Analyzing the research achievements and the status of distributed scheduling problems in manufacturing systems, we explored future research directions:

1. Optimizing highly important objectives

 According to the above summary, the time-related and cost-effective criteria have been taken into account in solving distributed scheduling problems. With fierce market competition and economic globalization, the government and public have put forward new requirements for industrial development, such as energy reduction and quality improvement. Nowadays, decision-makers attach great importance to energy conservation operations in industrial systems\cite{132}. A significant topic is energy-efficient scheduling that aims at decreasing the total energy consumption of manufacturing systems. Therefore, highly important objectives, such as decreasing energy consumption\cite{133-135} and improving processing quality\cite{136}, need to be considered in solving distributed production scheduling problems.

2. Modeling with consideration of uncertainties

 Generally, there are many uncertainties in industrial systems, such as order arrival and machine breakdown, which results in the production process being performed differently from what is planned\cite{137-143}. According to the analysis, almost all of the existing studies focus on distributed scheduling problems in deterministic environments. Therefore, we should fully consider the uncertainties when making decisions for distributed scheduling problems. Generally, stochastic, fuzzy, and robust models can be formulated to mathematically describe distributed scheduling problems in uncertain environments. Furthermore, it is significant to explore the solution algorithms for these models by employing popular approaches and simulation optimization methods.

3. Scheduling distributed manufacturing systems with heterogeneous factories

 Nowadays, many scheduling systems, including distributed production scheduling, are heterogeneous because of the extensive applications of multi-purpose intelligent equipment in manufacturing systems\cite{144}. As a result, jobs have various production routes in different factories. Scheduling heterogeneous factories are more complicated than scheduling homogeneous factories in distributed environments because the manufacturing process of jobs among factories has diverse production cost, processing quality, and energy consumption. Considering the significant applications of manufacturing systems with heterogeneous factories, it is necessary to perform modeling and optimization to effectively schedule them.

4. Studying more distributed scheduling models and their applications

 By analyzing the existing studies, we found that distributed scheduling models with parallel machines, flow shop, and job shop have received much attention due to their important applications in manufacturing systems. However, only a few studies are concerned with distributed open-shop scheduling problems, although they have essential applications in different areas, such as healthcare and vehicle inspection systems\cite{145}. In addition, some distributed manufacturing systems with special circumstances, such as no wait, blocking, and lot streaming, should be fully taken into consideration because of their significance in the production environment where machines and jobs have specific requirements\cite{146}. Distributed scheduling models can also be used to solve networking scheduling and control...
problems\cite{147}.

(5) Designing SI and EAs

Over the past years, SI and EAs have been successfully used to handle various complex optimization problems\cite{148–152}. According to the analysis and discussion, they have excellent performance in addressing distributed scheduling problems in manufacturing systems, particularly those with complicated constraints and large solution spaces. Designing more highly efficient methods based on them, especially multiobjective optimization approaches for coping with multiobjective distributed scheduling problems, is an essential and promising direction. In addition, some local search methods based on dominated properties have shown better ability to enhance the performance of SI and EAs, and thus the design of problem-dependent local search strategies should be given enough consideration in future works.

Acknowledgment

This work was supported in part by the National Natural Science Foundation of China (Nos. 61603169, 61703220, and 61873328), China Postdoctoral Science Foundation Funded Project (No. 2019T120569), Shandong Province Outstanding Youth Innovation Team Project of Colleges and Universities of China (No. 2020RWG011), Shandong Province Colleges and Universities Youth Innovation Talent Introduction and Education Program, the Faculty Research Grants (FRG) from Macau University of Science and Technology, and Shandong Provincial Key Laboratory for Novel Distributed Computer Software Technology.

References

[1] M. G. Gronia, R. Iavagnilio, G. Mossaa, G. Mummoloa, and A. Di Leva, Production planning of a multi-site manufacturing system by hybrid modelling: A case study from the automotive industry, Int. J. Prod. Econ., vol. 85, no. 5, pp. 251–262, 2003.

[2] M. Sambasivan and S. Yahya, A lagrangian-based heuristic for multi-plant, multi-item, multi-period lot-sizing problems with inter-plant transfers, Comput. Oper. Res., vol. 32, no. 3, pp. 537–555, 2000.

[3] C. H. Timpe and J. Kallrath, Optimal planning in large multi-site production networks, Eur. J. Oper. Res., vol. 126, no. 20, pp. 422–435, 2000.

[4] M. Parente, G. Figueira, P. Amorim, and A. Marques, Production scheduling in the context of Industry 4.0: Review and trends, Int. J. Prod. Res., vol. 58, no. 17, pp. 5401–5431, 2020.

[5] M. Sambasivan and S. Yahya, A lagrangian-based heuristic for multi-plant, multi-item, multi-period lot-sizing problems with inter-plant transfers, IEEE Trans. Syst. Man Cyber. Part C, vol. 36, no. 4, pp. 563–577, 2006.

[6] Y. K. Liu, L. Wang, X. V. Wang, X. Xu, and L. Zhang, Scheduling in cloud manufacturing: State-of-the-art and research challenges, Int. J. Prod. Res., vol. 57, no. 15, pp. 4854–4879, 2019.

[7] B. Çalış and S. Bulkan, A research survey: Review of AI solution strategies of job shop scheduling problem, J. Intell. Manuf., vol. 26, no. 5, pp. 961–973, 2015.

[8] M. Akbar and T. Irohara, Scheduling for sustainable manufacturing: A review, J. Clean. Prod., vol. 205, no. 20, pp. 866–883, 2018.

[9] A. Whitbrook, Q. Meng, and P. W. H. Chung, Reliable, distributed scheduling and rescheduling for time-critical, multiagent systems, IEEE Trans. Autom. Sci. Eng., vol. 15, no. 2, pp. 732–747, 2017.

[10] K. Li, T. Zhou, B. H. Liu, and H. Li, A multi-agent system for sharing distributed manufacturing resources, Expert Syst. Appl., vol. 99, no. 3, pp. 32–43, 2018.

[11] Z. C. Cao, C. R. Lin, M. C. Zhou, and R. Huang, Scheduling semiconductor testing facility by using cuckoo search algorithm with reinforcement learning and surrogate modeling, IEEE Trans. Autom. Sci. Eng., vol. 16, no. 2, pp. 825–837, 2019.

[12] Y. P. Fu, M. C. Zhou, X. W. Guo, and L. Qi, Scheduling dual-objective stochastic hybrid flow shop with deteriorating jobs via bi-population evolutionary algorithm, IEEE Trans. Syst. Man Cyber. Syst., vol. 50, no. 12, pp. 5037–5048, 2020.

[13] Y. Wang, J. Q. Wang, and Y. Q. Yin, Due date assignment and multitasking scheduling with deterioration effect and efficiency promotion, Comput. Ind. Eng., doi:10.1016/j.cie.2020.106569.

[14] D. J. Wang, Y. G. Yu, H. X. Qiu, Y. Q. Yin, and T. C. E. Cheng, Two-agent scheduling with linear resource-dependent processing times, Nav. Res. Log., vol. 67, no. 7, pp. 573–591, 2020.

[15] Z. X. Pan, D. M. Lei, and L. Wang, A knowledge-based two-population optimization algorithm for distributed energy-efficient parallel machines scheduling, IEEE Trans. Cyber., doi:10.1109/TCYB.2020.3026571.

[16] X. Q. Wu and A. D. Che, A memetic differential evolution algorithm for energy-efficient parallel machine scheduling, Omega, vol. 82, no. 1, pp. 155–165, 2019.

[17] E. D. Jiang and L. Wang, An improved multi-objective evolutionary algorithm based on decomposition for energy-efficient permutation flow shop scheduling problem with sequence-dependent setup time, Int. J. Prod. Res., vol. 57, no. 6, pp. 1756–1771, 2019.

[18] E. D. Jiang and L. Wang, Multi-objective optimization based on decomposition for flexible job shop scheduling under time-of-use electricity prices, Know. Based Syst., doi:10.1016/j.knosys.2020.106177.

[19] Y. P. Fu, J. L. Ding, H. F. Wang, and J. W. Wang, Two-objective stochastic flow-shop scheduling with deteriorating and learning effect in Industry 4.0-based manufacturing system, Appl. Soft Comput., vol. 68,
A systematic literature review, *Int. J. Prod. Res.*, doi:10.1080/00207543.2020.1797207.

Y. C. Chang, V. C. Li, and C. J. Chiang, An ant colony optimization heuristic for an integrated production and distribution scheduling problem, *Eng. Optimiz.*, vol. 46, no. 4, pp. 503–520, 2014.

A. Gharraei and F. Jolai, A multi-agent approach to the integrated production scheduling and distribution problem in multi-factory supply chain, *Appl. Soft Comput.*, vol. 65, no. 2, pp. 577–589, 2018.

F. Marandi and G. S. M. T. Fatemi, Integrated multi-factory production and distribution scheduling applying vehicle routing approach, *Int. J. Prod. Res.*, vol. 57, no. 3, pp. 722–748, 2019.

N. Mishra, V. Kumar, F. T. S. Chan, and M. K. Tiwari, A CBFSA approach to resolve the distributed manufacturing process planning problem in a supply chain environment, *Int. J. Prod. Res.*, vol. 50, no. 2, pp. 535–550, 2012.

S. Zhang, Y. B. Xu, Z. N. Yu, W. Y. Zhang, and D. J. Yu, Combining extended imperialist competitive algorithm with a genetic algorithm to solve the distributed integration of process planning and scheduling problem, *Math. Probl. Eng.*, doi:10.1155/2017/9628935.

I. Ribas, R. Company, and X. Tort-Martorell, Efficient heuristics for the parallel blocking flow shop scheduling problem, *Expert Syst. Appl.*, vol. 74, no. 3, pp. 41–54, 2017.

J. Dong and C. M. Ye, Research on collaborative optimization of green manufacturing in semiconductor wafer distributed heterogeneous factory, *Appl. Sci.*, vol. 9, no. 14, pp. 28–79, 2019.

F. L. Xiong, K. Y. Xing, F. Wang, H. Lei, and L. B. Han, Minimizing the total completion time in a distributed two stage assembly system with setup times, *Comput. Oper. Res.*, vol. 47, no. 7, pp. 92–105, 2014.

J. Behnamian, Decomposition based hybrid VNS–TS algorithm for distributed parallel factories scheduling with virtual corporation, *Comput. Oper. Res.*, vol. 52, no. 12, pp. 181–191, 2014.

S. Zhang, Z. N. Yu, W. Y. Zhang, D. J. Yu, and Y. B. Xu, An extended genetic algorithm for distributed integration of fuzzy process planning and scheduling, *Math. Probl. Eng.*, doi:10.1155/2016/3763512.

E. M. G. Neira, D. Ferone, S. Hatami, and A. A. Juan, A biased-randomized simheuristic for the distributed assembly permutation flowshop problem with stochastic processing times, *Simul. Model. Pract. Th.*, vol. 79, no. 6, pp. 23–36, 2017.

Y. P. Fu, H. F. Wang, and M. Huang, Integrated scheduling for a distributed manufacturing system: A stochastic multi-objective model, *Enterp. Inf. Syst.*, vol. 13, no. 4, pp. 557–573, 2019.

Z. S. Shao, D. C. Pi, and W. S. Shao, Hybrid enhanced discrete fruit fly optimization algorithm for scheduling blocking flow-shop in distributed environment, *Expert Syst. Appl.*, vol. 145, no. 3, pp. 113–147, 2019.

Y. Li, X. Li, L. Gao, and L. L. Meng, An improved artificial bee colony algorithm for distributed...
heterogeneous hybrid flowshop scheduling problem with sequence-dependent setup times, *Comput. Ind. Eng.*, doi:10.1016/j.cie.2020.106638.

[49] K. C. Ying, P. Pourhejazy, C. Y. Cheng, and R. S. Syu, Supply chain-oriented permutation flowshop scheduling considering flexible assembly and setup times, *Int. J. Prod. Res.*, vol. 58, no. 20, pp. 1–24, 2020.

[50] J. Zheng, L. Wang, and J. J. Wang, A cooperative coevolution algorithm for multi-objective fuzzy distributed hybrid flow shop, *Know. Based Syst.*, doi:10.1016/j.knosys.2020.105536.

[51] H. B. Song and J. Lin, A genetic programming hyper-heuristic for the distributed assembly permutation flow-shop scheduling problem with sequence dependent setup times, *Swarm Evol. Comput.*, doi:10.1016/j.swevo.2020.100807.

[52] H. R. Li, X. Y. Li, and L. Gao, A discrete artificial bee colony algorithm for the distributed heterogeneous no-wait flowshop scheduling problem, *Appl. Soft Comput.*, doi:10.1016/j.asoc.2020.106946.

[53] M. Komaki and B. Malakooti, General variable neighborhood search algorithm to minimize makespan of the distributed no-wait flow shop scheduling problem, *Prod. Eng.*, vol. 11, no. 3, pp. 315–329, 2017.

[54] K. C. Ying, S. W. Lin, C. Y. Cheng, and C. D. He, Iterated reference greedy algorithm for solving distributed no-idle permutation flowshop scheduling problems, *Comput. Ind. Eng.*, vol. 110, no. 4, pp. 413–423, 2017.

[55] K. C. Ying and S. W. Lin, Minimizing makespan in distributed blocking flowshops using hybrid iterated greedy algorithms, *IEEE Access*, vol. 5, no. 99, pp. 15694–15705, 2017.

[56] W. Shao, D. Pi, and Z. Shao, Optimization of makespan for the distributed no-wait flow shop scheduling problem with iterated greedy algorithms, *Know. Based Syst.*, vol. 137, no. 6, pp. 163–181, 2017.

[57] C. Y. Cheng, K. C. Ying, H. H. Chen, and H. S. Lu, Minimising makespan in distributed mixed no-idle flowshops, *Int. J. Prod. Res.*, vol. 57, no. 7, pp. 48–60, 2019.

[58] G. Zhang, K. Xing, and F. Cao, Discrete differential evolution algorithm for distributed blocking flow shop scheduling with makespan criterion, *Eng. Appl. Artif. Intel.*, vol. 76, no. 5, pp. 96–107, 2018.

[59] I. Ribas, R. Companys, and X. Tort-Martorell, An iterated greedy algorithm for solving the total tardiness parallel blocking flow shop scheduling problem, *Expert Syst. Appl.*, vol. 121, no. 3, pp. 347–361, 2019.

[60] J. Chen, L. Wang, and Z. Peng, A collaborative optimization algorithm for energy-efficient multi-objective distributed no-idle flow-shop scheduling, *Swarm Evol. Comput.*, doi:10.1016/j.swevo.2019.100557.

[61] F. Q. Zhao, L. X. Zhao, L. Wang, and H. B. Song, An ensemble discrete differential evolution for the distributed blocking flowshop scheduling with minimizing makespan criterion, *Expert Syst. Appl.*, doi:10.1016/j.eswa.2020.113678.

[62] F. Q. Zhao, L. X. Zhang, J. Cao, and J. X. Tang, A cooperative water wave optimization algorithm with reinforcement learning for the distributed assembly no-idle flowshop scheduling problem, *Comput. Ind. Eng.*, doi:10.1016/j.cie.2020.107082.

[63] Z. S. Shao, W. S. Shao, and D. C. Pi, Effective heuristics and metaheuristics for the distributed fuzzy blocking flow-shop scheduling problem, *Swarm Evol. Comput.*, doi:10.1016/j.swevo.2020.100747.

[64] S. Hatami, R. Ruiz, and C. A. Romano, The distributed assembly permutation flowshop scheduling problem, *Int. J. Prod. Res.*, vol. 51, no. 17, pp. 5292–5308, 2013.

[65] S. Y. Wang and L. Wang, An estimation of distribution algorithm-based memetic algorithm for the distributed assembly permutation flow-shop scheduling problem, *IEEE Trans. Syst. Man. Cyber. Syst.*, vol. 46, no. 1, pp. 139–149, 2015.

[66] J. Deng, L. Wang, S. Y. Wang, and X. L. Zheng, A competitive memetic algorithm for the distributed two-stage assembly flow-shop scheduling problem, *Int. J. Prod. Res.*, vol. 54, no. 12, pp. 3561–3577, 2016.

[67] J. Lin and S. Zhang, An effective hybrid biogeography-based optimization algorithm for the distributed assembly permutation flow-shop scheduling problem, *Comput. Ind. Eng.*, vol. 97, no. 4, pp. 128–136, 2016.

[68] J. Lin, Z. J. Wang, and X. D. Li, A backtracking search hyper-heuristic for the distributed assembly flow-shop scheduling problem, *Swarm Evol. Comput.*, vol. 36, no. 5, pp. 124–135, 2017.

[69] G. Zhang and K. Xing, Memetic social spider optimization algorithm for scheduling two-stage assembly flowshop in a distributed environment, *Comput. Ind. Eng.*, vol. 125, no. 6, pp. 423–433, 2018.

[70] X. L. Wu, X. J. Liu, and N. Zhao, An improved differential evolution algorithm for solving a distributed assembly flexible job shop scheduling problem, *Memet. Comput.*, vol. 11, no. 4, pp. 335–355, 2019.

[71] G. Zhang, K. Xing, G. Zhang, and Z. He, Memetic algorithm with meta-lamarckian learning and simplex search for distributed flexible assembly permutation flowshop scheduling problem, *IEEE Access*, doi:10.1109/ACCESS.2020.2996305.

[72] D. M. Lei, B. Su, and M. Li, Cooperated teaching-learning-based optimisation for distributed two-stage assembly flow shop scheduling, *Int. J. Prod. Res.*, doi:10.1080/00207543.2020.1836422.

[73] A. P. Rifai, H. T. Nguyen, and S. Z. M. Dawal, Multi-objective adaptive large neighborhood search for distributed reentrant permutation flow shop scheduling, *Appl. Soft Comput.*, vol. 40, no. 1, pp. 42–57, 2016.

[74] D. M. Lei, Y. Yuan, J. C. Cai, and D. Y. Bai, An imperialist competitive algorithm with memory for distributed unrelated parallel machines scheduling, *Int. J. Prod. Res.*, vol. 58, no. 2, pp. 597–614, 2020.

[75] T. Meng and Q. K. Pan, A distributed heterogeneous permutation flowshop scheduling problem with lot-streaming and carryover sequence-dependent setup time, *Swarm Evol. Comput.*, doi:10.1016/j.swevo.2020.100804.

[76] B. Naderi and R. Ruiz, The distributed permutation...
flowshop scheduling problem, *Comput. Oper. Res.*, vol. 37, no. 4, pp. 754–768, 2010.

[77] A. Azab and B. Naderi, Greedy heuristics for distributed job shop problems, *Procedia CIRP*, doi:10.1016/j.procir.2014.05.025.

[78] B. Naderi and A. Azab, An improved model and novel simulated annealing for distributed job shop problems, *Int. J. Adv. Manuf. Tech.*, vol. 81, no. 5, pp. 693–703, 2015.

[79] J. Behnamian and S. M. T. F. Ghomi, Minimizing cost-related objective in synchronous scheduling of parallel factories in the virtual production network, *Appl. Soft Comput.*, vol. 29, no. 2, pp. 221–232, 2015.

[80] K. C. Ying and S. W. Lin, Minimizing makespan for the distributed hybrid flowshop scheduling problem with multiprocessor tasks, *Expert Syst. Appl.*, vol. 92, no. 1, pp. 132–141, 2018.

[81] W. S. Shao, D. C. Pi, and Z. S. Shao, A Pareto-based estimation of distribution algorithm for solving multiobjective distributed no-wait flow-shop scheduling problem with sequence-dependent setup time, *IEEE Trans. Autom. Sci. Eng.*, vol. 16, no. 3, pp. 1344–1360, 2019.

[82] Q. K. Pan, L. Gao, X. Y. Li, and F. M. Jose, Effective constructive heuristics and meta-heuristics for the distributed assembly permutation flowshop scheduling problem, *Appl. Soft Comput.*, doi: 10.1016/j.asoc.2019.105492.

[83] J. P. Huang, Q. K. Pan, and L. Gao, An effective iterated greedy method for the distributed permutation flowshop scheduling problem with sequence-dependent setup times, *Swarm Evol. Comput.*, doi:10.1016/j.swevo.2020.100742.

[84] L. L. Meng, C. Y. Zhang, Y. P. Ren, B. Zhang, and C. Lv, Mixed-integer linear programming and constraint programming formulations for solving distributed flexible job shop scheduling problem, *Comput. Ind. Eng.*, doi:10.1016/j.cie.2020.106347.

[85] G. Gong, R. Chiong, Q. Deng, and Q. Luo, A memetic algorithm for multi-objective distributed production scheduling: minimizing the makespan and total energy consumption, *J. Intel. Manuf.*, vol. 31, no. 1, pp. 1443–1466, 2020.

[86] C. Lu, L. Gao, J. Yi, and X. Li, Energy-efficient scheduling of distributed flow shop with heterogeneous factories: A real-world case from automobile industry in China, *IEEE Trans. Ind. Inform.*, doi:10.1109/TII.2020.3043734.

[87] G. C. Wang, L. Gao, X. Y. Li, P. G. Li, and M. F. Tagetiren, Energy-efficient distributed permutation flow shop scheduling problem using a multi-objective whale swarm algorithm, *Swarm Evol. Comput.*, doi:10.1016/j.swevo.2020.100716.

[88] Q. K. Pan, L. Gao, and L. Wang, An effective cooperative co-evolutionary algorithm for distributed flowshop group scheduling problems, *IEEE Trans. Cyber.*, doi:10.1109/TCYB.2020.3041494.

[89] F. L. Xiong, M. L. Chu, Z. Li, Y. Du, and L. Wang, Just-in-time scheduling for a distributed concrete precast flow shop system, *Comput. Oper. Res.*, doi: 10.1016/j.cor.2020.105204.

[90] J. Wang and L. Wang, A knowledge-based cooperative algorithm for energy-efficient scheduling of distributed flow-shop, *IEEE Trans. Syst. Man. Cyber. Syst.*, vol. 50, no. 1, pp. 1805–1819, 2018.

[91] Y. P. Fu, G. D. Tian, A. M. F. Fard, A. Ahmadi, and C. Y. Zhang, Stochastic multi-objective modelling and optimization of an energy-conscious distributed permutation flow shop scheduling problem with the total tardiness constraint, *J. Clean. Prod.*, vol. 226, no. 14, pp. 515–525, 2019.

[92] Q. Luo, Q. W. Deng, G. L. Gong, L. K. Zhang, and W. W. Han, An efficient memetic algorithm for distributed flexible job shop scheduling problem with transfers, *Expert Syst. Appl.*, doi:10.1016/j.eswa.2020.113721.

[93] E. N. Jiang, L. Wang, and Z. B. Peng, Solving energy-efficient distributed job shop scheduling via multi-objective evolutionary algorithm with decomposition, *Swarm Evol. Comput.*, doi:10.1016/j.swevo.2020.100745.

[94] Z. X. Guo, E. W. T. Ngai, C. Yang, and X. D. Liang, An RFID-based intelligent decision support system architecture for production monitoring and scheduling in a distributed manufacturing environment, *Int. J. Prod. Econ.*, vol. 159, no. 2, pp. 16–28, 2015.

[95] X. X. Zou, L. Liu, K. P. Li, and W. L. Li, A coordinated algorithm for integrated production scheduling and vehicle routing problem, *Int. J. Prod. Res.*, vol. 56, no. 15, pp. 5005–5024, 2018.

[96] W. Zhang and M. Gen, Process planning and scheduling in distributed manufacturing system using multiobjective genetic algorithm, *IEEE Trans. Electron. Eng.*, vol. 5, no. 1, pp. 62–72, 2010.

[97] L. D. Giovanni and F. Pezzella, An improved genetic algorithm for the distributed and flexible job-shop scheduling problem, *Eur. J. Oper. Res.*, vol. 200, no. 2, pp. 395–408, 2010.

[98] J. Gao and R. Chen, A hybrid genetic algorithm for the distributed permutation flowshop scheduling problem, *Int. J. Comput. Intel. Syst.*, vol. 4, no. 4, pp. 497–508, 2011.

[99] T. K. Liu, Y. P. Chen, and J. H. Chou, Solving distributed and flexible job-shop scheduling problems for a real-world fastener manufacturer, *IEEE Access*, doi: 10.1109/ACCESS.2014.2349000.

[100] H. C. Chang and T. K. Liu, Optimisation of distributed manufacturing flexible job shop scheduling by using hybrid genetic algorithms, *J. Intel. Manuf.*, vol. 28, no. 8, pp. 1973–1986, 2017.

[101] M. C. Wu, C. S. Lin, C. H. Lin, and C. F. Chen, Effects of different chromosome representations in developing genetic algorithms to solve DFJIS scheduling problems, *Comput. Oper. Res.*, vol. 80, no. 4, pp. 101–112, 2017.

[102] V. F. Viagas, P. P. Gonzalez, and J. M. Framinan, The distributed permutation flow shop to minimise the total workflow, *Comput. Ind. Eng.*, vol. 118, no. 2, pp. 464–477, 2018.

[103] P. H. Lu, M. C. Wu, H. Tan, Y. H. Peng, and C. F. Chen, A genetic algorithm embedded with a concise chromosome representation for distributed and flexible job-shop scheduling problems, *J. Intel. Manuf.*, vol. 29, no. 1, pp. 19–34, 2018.
S. Cai, K. Yang, and K. Liu, Multi-objective optimization of the distributed permutation flow shop scheduling problem with transportation and eligibility constraints, *J. Oper. Res. Soc.* China, vol. 6, no. 3, pp. 391–416, 2018.

S. Y. Wang, L. Wang, M. Liu, and Y. Xu, An effective estimation of distribution algorithm for solving the distributed permutation flow-shop scheduling problem, *Int. J. Prod. Econ.*, vol. 145, no. 1, pp. 387–396, 2013.

Y. Xu, L. Wang, S. Y. Wang, and M. Liu, An effective hybrid immune algorithm for solving the distributed permutation flow-shop scheduling problem, *Eng. Optimiz.*, vol. 46, no. 9, pp. 1269–1283, 2014.

T. Meng, Q. K. Pan, and L. Wang, A distributed permutation flowshop scheduling problem with the customer order constraint, *Know. Based Syst.*, doi: 10.1016/j.knosys.2019.104894.

S. Y. Wang and Z. Xu, The distributed assembly permutation flowshop scheduling problem with flexible assembly and batch delivery, *Int. J. Prod. Res.*, doi:10.1080/00207543.2020.1757174.

J. Gao, R. Chen, and W. Deng, An efficient tabu search algorithm for the distributed permutation flowshop scheduling problem, *Int. J. Prod. Res.*, vol. 51, no. 3, pp. 641–651, 2013.

J. Q. Li, P. Y. Duan, J. D. Cao, X. P. Lin, and Y. Y. Han, A hybrid Pareto-based tabu search for the distributed flexible job shop scheduling problem with E/T criteria, *IEEE Access*, doi:10.1109/ACCESS.2018.2873401.

I. Chauouch, O. B. Driss, and K. Ghédira, A modified ant colony optimization algorithm for the distributed job shop scheduling problem, *Proc. Comput. Sci.*, doi:10.1016/jprocs.2017.08.267.

G. H. Zhang and K. Y. Xu, Differential evolution metaheuristics for distributed limited-buffer flowshop scheduling with makespan criterion, *Comput. Oper. Res.*, no. 8, vol. 108, pp. 33–43, 2019.

B. Naderi and R. Ruiz, A scatter search algorithm for the distributed permutation flowshop scheduling problem, *Eur. J. Oper. Res.*, vol. 239, no. 2, pp. 323–334, 2014.

Q. K. Pan, L. Gao, L. Wang, J. Liang, and X. Y. Li, Effective heuristics and metaheuristics to minimize total flowtime for the distributed permutation flowshop problem, *Expert Syst. Appl.*, vol. 124, no. 3, pp. 309–324, 2019.

S. W. Lin, K. C. Ying, and C. Y. Huang, Minimising makespan in distributed permutation flowshops using a modified iterated greedy algorithm, *Int. J. Prod. Res.*, vol. 51, no. 15, pp. 5029–5038, 2013.

V. F. Viagas and J. M. Framinan, A bounded-search iterated greedy algorithm for the distributed permutation flowshop scheduling problem, *Int. J. Prod. Res.*, vol. 53, no. 4, pp. 1111–1123, 2015.

R. Ruiz, Q. K. Pan, and B. Naderi, Iterated greedy methods for the distributed permutation flowshop scheduling problem, *Omega*, vol. 83, no. 2, pp. 213–222, 2019.

W. S. Shao, Z. Shao, and D. Pi, Modeling and multi-neighborhood iterated greedy algorithm for distributed hybrid flow shop scheduling problem, *Know. Based Syst.*, doi:10.1016/j.knosys.2020.105527.

Y. Chen, Concurrent optimal allocation of distributed manufacturing resources using extended teaching-learning-based optimization, *Int. J. Prod. Res.*, vol. 55, no. 3, pp. 718–735, 2017.

J. Y. Mao, Q. K. Pan, Z. H. Miao, and L. Gao, An effective multi-start iterated greedy algorithm to minimize makespan for the distributed permutation flowshop scheduling problem with preventive maintenance, *Expert Syst. Appl.*, doi:10.1016/j.eswa.2020.114495.

J. Deng and L. Wang, A competitive memetic algorithm for multi-objective distributed permutation flow shop scheduling problem, *Swarm Evol. Comput.*, vol. 32, no. 1, pp. 121–131, 2017.

S. W. Shao, Z. Shao, S. S. Guo, Y. S. Yang, and Y. Chen, Effective heuristic and metaheuristics for distributed limited-buffer flowshop scheduling problem, *IEEE Access*, doi:10.1109/ACCESS.2019.2917273.

J. Q. Li, M. X. Song, L. Wang, P. Y. Duan, Y. Y. Han, H. Y. Sang, and K. K. Pan, Hybrid artificial bee colony algorithm for a parallel batching distributed flow-shop problem with deteriorating jobs, *IEEE Trans. Cyber.*, vol. 50, no. 6, pp. 2425–2439, 2019.

J. Q. Li, S. C. Bai, P. Y. Duan, H. Y. Sang, Y. Y. Han, and Z. X. Zheng, An improved artificial bee colony algorithm for addressing distributed flow shop with distance coefficient in a prefabricated system, *Int. J. Prod. Res.*, vol. 57, no. 22, pp. 6922–6942, 2019.

J. H. Hao, J. Q. Li, Y. Du, M. X. Song, and Y. Y. Zhang, Solving distributed hybrid flowshop scheduling problems by a hybrid brain storm optimization algorithm, *IEEE Access*, doi:10.1109/ACCESS.2019.2917273.

J. Q. Li, X. M. Song, L. Wang, P. Y. Duan, H. Y. Sang, and K. K. Pan, Hybrid artificial bee colony algorithm for a parallel batching distributed flow-shop problem with deteriorating jobs, *IEEE Trans. Cyber.*, vol. 50, no. 6, pp. 2425–2439, 2019.
Yushuang Hou received the BS degree in marketing from North University of China, Taiyuan, China in 2019. She is currently a master student at the School of Business, Qingdao University, Qingdao, China. Her research focuses on production planning and scheduling, and vehicle routing optimization and intelligent optimization.

Zifan Wang received the BS degree in software engineering from the Jinling Institute of Technology, Nanjing, China in 2020. He is currently a master student in intelligent technology at Macau University of Science and Technology. His research interests are intelligent production scheduling problems.
Yaping Fu received the BS degree in commodity science from Harbin University of Commerce, Harbin, China in 2008, the MS degree in economics and management from Northeast Electric Power University, Jilin, China in 2011, and the PhD degree in systems engineering from Northeastern University, Shenyang, China in 2015. He is currently a lecturer at the School of Business, Qingdao University, China. His research focuses on multiobjective production planning and scheduling, evolutionary multiobjective optimization, and simulation optimization. He has published over 30 journal and conference papers in the above research areas.

Xinwei Wu received the BS degree in computer science and technology from Xiamen University of Technology in 2020. She has participated in the innovative experimental project of obstacle detection for UAV and the design of a smart home control system. She is now a master student in intelligent technology at Macau University of Science and Technology. Her research interests include swarm intelligence and evolutionary algorithms, and production scheduling.

Kaizhou Gao received the PhD degree from Nanyang Technological University (NTU), Singapore in 2016. From 2012 to 2013, he was a research associate at the School of Electronic and Electrical Engineering, NTU, where he had been a research fellow from 2015 to 2018. He is currently an assistant professor at Macau Institute of Systems Engineering, Macau University of Science and Technology. His research interests include intelligent computation, optimization, scheduling, and intelligent transportation. He has published over 100 refereed papers. He is an associate editor of Swarm and Evolutionary Computation and IET Collaborative Intelligent Manufacturing.

Ling Wang received the BEng degree in automation and the PhD degree in control theory and control engineering from Tsinghua University, Beijing, China in 1995 and 1999, respectively. Since 1999, he has been working at the Department of Automation, Tsinghua University, where he became a full professor in 2008. His current research interests include intelligent optimization and production scheduling. He has authored five academic books and more than 300 refereed papers.

He is a recipient of the National Natural Science Fund for Distinguished Young Scholars of China, the National Natural Science Award (Second Place) in 2014, the Science and Technology Award of Beijing City in 2008, the Natural Science Award (First Place in 2003, and Second Place in 2007) nominated by the Ministry of Education of China. He is now the editor-in-chief of the International Journal of Automation and Control, and the associate editor of IEEE Transactions on Evolutionary Computation, Swarm and Evolutionary Computation, Expert Systems with Applications, etc.