Dual Gate Graphene FETs with f_T of 50 GHz

Yu-Ming Lin, Member, IEEE, Hsin-Ying Chiu, Keith A. Jenkins, Senior Member, IEEE,
Damon B. Farmer, Phaedon Avouris, Member, IEEE, Alberto Valdes-Garcia, Member, IEEE

Abstract

A dual-gate graphene field-effect transistors is presented, which shows improved RF performance by reducing the access resistance using electrostatic doping. With a carrier mobility of 2700 cm²/Vs, a cutoff frequency of 50 GHz is demonstrated in a 350-nm gate length device. This f_T value is the highest frequency reported to date for any graphene transistor, and it also exceeds that of Si MOSFETs at the same gate length, illustrating the potential of graphene for RF applications.

Index Terms—Graphene, dual gate, field-effect transistor (FET), radio frequency (RF), access resistance
I. INTRODUCTION

Graphene is a monolayer of carbon atoms in a honeycomb lattice, which has attracted considerable attention over the last few years due to its unique electronic properties [1]. With a high saturation velocity (5.5×10^7 cm/s) [2], graphene is considered a very promising candidate for mmWave (millimeter wave) applications. In addition, the ultra-thin body thickness of graphene offers ideal two-dimensional electrostatics for the ultimately scaled-down device. Recently, cutoff frequencies in the GHz regime have been demonstrated in top-gated graphene transistors built on exfoliated single-layer graphene sheets [3,4] and few-layer graphene grown on SiC substrates [5]. It was found that, in top-gated graphene FETs, the RF performance was primarily limited by the mobility degradation of graphene after oxide deposition [3,6]. Recently, Kim et al. have reported progress in enhancing the carrier mobility in top-gated graphene FETs by using a thin layer of naturally oxidized Al$_2$O$_3$ as the nucleation layer for the deposition of high-k gate dielectrics [7]. Another important factor that strongly affects the overall RF performance of graphene transistors is the access resistance between the source/drain contacts and the gated graphene channel. The access regions are required to minimize the capacitance between the gate and source/drain electrodes in a top-gated FET structure. However, since this access region consists of only a monolayer of un-gated graphene, the sheet resistance is much higher than that of heavily doped Si used in conventional MOSFETs, and is comparable to the resistance of the gated graphene channel. Access resistance becomes particularly important when the gate length shrinks, and may hinder further improvement of RF performance with the down-scaling of gate length in graphene transistors.

This letter describes the use of a dual-gate graphene field-effect transistor to investigate the impact of the access resistance on the RF performance. In this structure, the access resistance of the graphene transistor is modulated by the back gate through electrostatic doping. By varying the back gate voltage, the access resistance is reduced by more than half, leading to a four-fold increase of transconductance in a 350-nm-gate graphene FET. Combined with a carrier mobility of 2700 cm2/Vs enabled by an
improved oxide deposition process, a cutoff frequency of 50 GHz in the dual-gate graphene FET is achieved.

II. DEVICE FABRICATION

The device structure of the dual-gate graphene FET (GFET) is shown in Fig 1(a). Single-layer graphene was deposited by mechanical exfoliation on high-resistivity Si substrates (>10 kΩ·cm) covered with 300-nm-thick thermal oxide. The source and drain electrodes made of Pd/Au metals (20nm/40nm thick) were fabricated by e-beam lithography and lift-off. The oxide deposition process described in Ref. [7] was adopted here to form a layer of 12-nm-thick Al₂O₃ by ALD (atomic layer deposition) as the top-gate dielectric. Fig. 1(c) shows that the device transfer characteristics were not appreciably degraded after this dielectric process. Finally, the Pd/Au (20 nm/40 nm) metal stack was deposited as the top-gate electrode. Fig. 1(b) shows the SEM image of the double-channel graphene transistor with a gate length of \(L_g = 350 \text{ nm} \). The width of each channel is 27 \(\mu \text{m} \) and the spacing between the top-gate electrode and the source/drain contacts is 300 nm.

III. RESULTS AND DISCUSSION

The Si substrate is used as the global back gate while the top gate serves as the main gate terminal for regular FET operations. Fig. 2(a) shows the transfer characteristics of the graphene FET at different back-gate voltages \(V_{BG} \). At \(V_{BG} = 0 \text{ V} \), the graphene FET exhibits ambipolar transfer characteristics with a current minimum at \(V_{TG} = 0.7 \text{V} \). This ambipolar transport reflects the gapless nature of graphene band structure. The current minimum corresponds to the Dirac point, where the total carrier density of electrons and holes in the graphene channel becomes minimal. The Dirac voltage \(V_{DRC} \), defined as the top-gate voltage at the Dirac point, is linearly dependent on \(V_{BG} \), as shown in Fig. 2(b), and the slope \((\Delta V_{BG}/\Delta V_{DRC} \cong 35)\) can be used to determine the capacitance \(C_{TG} \) of the top-gate dielectrics. Using the back-gate capacitance value of \(C_{BG} = 11.6 \text{nF/cm}^2 \), \(C_{TG} \) is estimated to be 0.40 \(\mu \text{F/cm}^2 \).
In Fig. 2(a), the current at the Dirac point decreases with increasing V_{BG}, indicating an increasing series resistance with V_{BG}. This is because the back-gate not only shifts the threshold voltage of the graphene transistor, it also modulates the graphene not covered by the top gate. This additional resistance is analogous to the access resistance in conventional Si MOSFETs. The total resistance of the graphene device R_T is modeled as the sum of an ideal graphene channel modulated by the top gate and a series resistance R_S [2,7], and R_T is given by

$$R_T = R_S + \left[e \mu \frac{W}{L_G} \sqrt{n_0^2 + \left(\frac{C_{tot}}{e} \cdot (V_{TG} - V_{DRC}) \right)^2} \right]^{-1}, \quad (1)$$

where μ is the field-effect mobility and n_0 is the minimum sheet carrier density determined by disorder and thermal excitation. C_{tot} is the total top-gate capacitance given by $C_{tot}^{-1} = C_{TG}^{-1} + C_Q^{-1}$, where C_Q is the quantum capacitance of graphene. For a relevant carrier density of $\sim 5 \times 10^{12} \text{ cm}^{-2}$, $C_Q \approx 3 \mu\text{F/cm}^2$. Based on Eq. (1), a minimum carrier density $n_0 \approx 5 \times 10^{11} \text{ cm}^{-2}$ and a field-effect mobility $\mu \sim 2700 \text{ cm}^2/\text{Vs}$, both independent of V_{BG}, was obtained for the graphene channel using the extraction method described in Ref. [2,7]. In the following, we show that while the mobility remains constant as V_{BG} varies, the device performance can be improved by optimizing other device parameters. Fig. 2(b) shows the extracted series resistance R_S of the graphene device as a function of V_{BG}, where R_S rises with increasing V_{BG} up to 40 V. This V_{BG} gate dependence of R_S due to un-gated graphene is consistent with the trend shown in Fig. 1(c). It is noted that that R_S also includes the contact resistance between graphene and metal electrodes. To achieve the optimal RF performance in dual-gate graphene transistors, it is necessary to bias the V_{BG} properly so that R_S is at its minimum.

Fig. 2(c) shows the transconductance g_m of the graphene device at different back-gate voltages. The impact of the series resistance on the device performance is evident, as can be seen in the increasing peak values of the p-branch g_m when V_{BG} decreases from 40 V to -40V. At $V_{BG} = -40\text{V}$ and $V_{TG} = 1.5$, the graphene FET reaches a peak g_m of $-0.22 \text{ mS/}\mu\text{m}$. It is noted that while the series resistance is
reduced by roughly half from $V_{BG}= 40$ V to -40 V, the peak p-type g_m is enhanced by four times, changing from -0.05 to -0.22 mS/µm. The output characteristics at $V_{BG} = -40$V are shown in Fig. 2(d).

To assess the RF characteristics of the graphene FET, on-chip microwave measurements were carried out up to 30 GHz. The measured S-parameters were de-embedded using specific “short” and “open” structures with identical layouts, excluding the graphene channel, to remove the effects of the parasitic capacitance and the resistance associated with the pads and connections. The use of high-resistivity Si substrates allows for a dc back-gate bias, while at the same time enabling RF operation without significant signal loss. Based on the results in Fig. 2(c), V_{BG} was kept at -40V in order to achieve the highest RF performance in the dual-gate graphene FET. Fig. 3(a) shows the current gain $|h_{21}|$ from the measured S-parameters at $V_{TG} = 1.6$ V and a drain bias $V_{DS} = 0.8$ V, yielding a cut-off frequency f_T of 50 GHz. The de-embedded current gain $|h_{21}|$ exhibits the -20dB/dec frequency dependence as expected for a well-behaved FET. This f_T value is the highest frequency reported to date for any graphene transistor, and it also exceeds that of Si MOSFETs (~25 GHz) at the same gate length of 350 nm [8]. Fig. 3(b) shows the peak g_m of p-type graphene FETs as a function of the series resistance modulated by V_{BG}. The well-known relation $f_T = g_m/(2\pi C)$ established for conventional FETs has recently been demonstrated to be also valid for graphene devices [3]. Based on the measured f_T of 50 GHz for $g_m=0.22$ mS, the right axis of Fig. 3(b) shows the projected f_T as a function of R_S, illustrating a four-fold improvement in f_T as R_S decreases from 110Ω to 50Ω.

IV. CONCLUSION

A dual-gate graphene transistor is fabricated, showing improved RF performance by optimizing the series resistance. A cutoff frequency of 50 GHz is demonstrated for a gate length of 350 nm. This value exceeds that of Si MOSFETs at the same gate length, illustrating the potential of graphene for RF applications. In addition, while a global back gate is used here to optimize the access resistance in a dual-get graphene FET, the results can be generalized to other graphene FET structures. It is expected
that similar performance enhancement can be achieved through other techniques such as local bottom gates or selective doping [9] to modulate the resistance in the access regions.

ACKNOWLEDGMENT

The authors would like to thank C. Y. Sung and F. Xia for insightful discussions, and B. Ek and J. Bucchignano for technical assistance. They also thank E. Tutuc and S. Kim for the discussions on oxide deposition.
REFERENCES

[1] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, “The electronic properties of graphene,” *Phys. Mod. Phys.*, vol. 81, pp. 109–163, 2009

[2] I. Meric, M. Han, A. F. Young, B. Ozyilmaz, P. Kim, K. L. Shepard, “Current saturation in zero-bandgap, top-gated graphene field-effect transistors,” *Nature Nanotechnology* vol. 3, pp. 654–659, 2008.

[3] Y.-M. Lin, K. A. Jenkins, A. Valdes-Garcia, J. P. Small, D. B. Farmer and Ph. Avouris, “Operation of Graphene Transistors at Gigahertz Frequencies,” *Nano Lett.*, vol. 9, pp. 422–426, 2009.

[4] I. Meric, N. Baklitskaya, P. Kim, K. L. Shepard, “RF performance of top-gated,zero-bandgap graphene field-effect transistors,” *IEDM Digest* 4796738, 2008.

[5] J. S. Moon, D. Curtis, M. Hu, D. Wong, C. McGuire, P. M. Campbell, G. Jernigan, J. L. Tedesco, B. VanMil, R. Myers-Ward, C. Eddy, Jr., D. K. Gaskill, “Epitaxial-graphene RF field-effect transistors on Si-face 6H-SiC substrates,” *IEEE Electron Device Lett.*, vol.30, no. 6, pp. 650-652, 2008.

[6] M. C. Lemme, T. J. Echtermeyer, M. Baus, H. Kurz, “A Graphene Field-Effect Device,” *IEEE Electron Device Lett.*, vol. 28, no. 4, pp. 282–284, 2007.

[7] S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, S. K. Banerjee, “Realization of a high mobility dual-gated graphene field-effect transistor with Al2O3 dielectric,” *Appl. Phys. Lett.*, vol. 94, p. 062107, 2009.

[8] http://www.itrs.net/Links/2008ITRS/Home2008.htm

[9] D. B. Farmer, R. Golizadeh-Mojarrad, V. Perebeinos, Y.-M. Lin, G. S. Tulevski, J. C. Tsang, and Ph. Avouris, “Chemical Doping and Electron-Hole Conduction Asymmetry in Graphene Devices,” *Nano Letters* vol. 9, pp. 388–392, 2009.
Figures

Fig. 1 (a) Device schematic of the dual-gate graphene transistor. (b) SEM image of a dual-channel graphene transistor. The channel width is 27 µm and the gate length is 350 nm for each channel. (c) Measured channel conductance as function of back-gate voltage of a graphene device before and after the deposition of 12-nm-thick ALD Al₂O₃. Prior to the ALD process, a layer of 2-nm Al is deposited and oxidized as the nucleation layer.

Fig. 2 (a) Transfer characteristics of the GFET at various back-gate voltages and $V_D = 0.8$ V. (b) Series resistance of the GFET and the Dirac voltage V_{DRC} as a function of back-gate voltage. (c) Transconductance of the GFET at various back-gate voltages. The drain bias is 0.8V. (d) Output characteristics at $V_{BG} = -40$V.

Fig. 3 (a) RF performance of a 350-nm-gate GFET, showing a current gain at -20dB/dec and a cut-off frequency f_T of 50GHz. (b) Peak transconductance as a function of series resistance R_S derived from Figs. 2(b) and (c). The projected cut-off frequency $f_T = g_{m}/2\pi C$ is shown on the right axis.
Fig. 1
Fig. 2
(a) |$|h_{21}|$| vs. Frequency [GHz]

-20 dB/dec

$V_{DS} = 0.8 \text{ V}$

$V_{TG} = 1.6 \text{ V}$

$V_{BG} = -40 \text{ V}$

50 GHz

(b) g_m [mS] vs. R_S [ohm]

$g_m = 0.2 \text{ mS}$

$g_m = 0.1 \text{ mS}$

$g_m = 0.0 \text{ mS}$

$R_S = 60 \text{ ohm}$

$R_S = 80 \text{ ohm}$

$R_S = 100 \text{ ohm}$

$g_m = 45 \text{ GHz}$

$g_m = 40 \text{ GHz}$

$g_m = 30 \text{ GHz}$

$g_m = 15 \text{ GHz}$

Fig. 3