Improving the performance of crushed limestone concrete utilizing supplementary cementitious materials: A case study in Iraq

Adnan A. Muhsin1,*, Nabeel Hameed Al-Saati1, Suad Mohammed Heil1, Khalid Hashim2,3, Ahmed H. AlKhayyat4

1 Al-Furat Al-Awsat Technical University, Al-Mussaib Technical Institute, Babylon, Iraq.
2 Faculty of Engineering, University of Babylon, Babylon, Iraq.
3 Civil Engineering Department, Liverpool John Moores University, UK.
4 Department of Building and Construction Technical Engineering, College of Technical Engineering, the Islamic University, 54001 Najaf, Iraq

Email: inm.adn@atu.edu.iq

Abstract. This paper presents an experimental work conducted to study the properties of concrete incorporating (0-100) % of local (in Iraq) crushed limestone (CLS) as a partial replacement of coarse aggregate. Supplementary Cementitious Materials (SCM) such as High Reactivity Metacaoline (HRM) and Rice Husk Ash (RHA) were added to the mixtures to improve the properties of fresh and hardened concrete. The selective mixtures in this study were arranged into three groups, the first without (SCM), the second with (RHA), and the third with (HRM). Each of them (being with different ratios of (CLS) as a coarse aggregate) was tested for comparison with the reference mixtures. The slump and air contents were evaluated for the fresh concrete. The absorption as well as compressive strength (CS) and flexural strength (FS) were evaluated for the hardened specimens after 7 and 28 days. According to the results, the concrete with CLS as a coarse aggregate gained less performance than the ordinary concrete but the (SCM) improved the properties of the concrete mixtures. The results show that the HRM was more effective than the RHA with respect to the mechanical properties.

1. Introduction

Concrete is one of the important constructional materials as far as strength and durability characteristics are concerned [1]. It can be considered an attractive material for a wide range of structural applications. The aggregate is an important constituent in concrete and its role is more important. It occupies most of the volume of concrete and has a significant impact on concrete performance [2, 3]. However, the concrete industry is problematic one due to many and environmental concerns, for example, it has been proved that the cement industry is a major source of harmful gases that could cause global warming [4-6], the latter is responsible for water shortage [7-11], and water pollution [12-14]. Besides, the produced water from concrete plants is heavily polluted with a wide range of pollutants [15-17], such as organic matter and suspended solids [18-21]. Therefore such wastewaters require efficient treatment technologies, such as coagulation [22-
25], filtration [26-31], electrochemical [32-38], or even hybrid methods [39-44]. Furthermore, the extensive use of natural aggregates results in depletion of natural resources. Therefore, serious search has been initiated to find eco-friendly alternatives for both cement and aggregates. Limestone is the most widely available rock in Iraq and particularly in the Governorate of Mosul, where it can be extensively used in construction activities. It consists essentially of calcium carbonate, with which there is generally some magnesium carbonate and siliceous matter such as quartz grains [45, 46]. Introducing limestone aggregates in concrete mixtures can reduce environmental pollution. The production of limestone fillers requires much less energy than producing cement which also means that carbon dioxide is much lower in limestone production than cement production. Limestone fillers result in more stable concrete quality thus reducing the amount of waste and improving durability which leads to a longer life for concrete [47-50].

The ratio of limestone as aggregate in concrete was only 1.3% (in 1974). Since then, the shipments and the usage of limestone have increased every year with the demand for concrete and the shortage of other natural aggregates [51]. The coarse aggregate can significantly affect the concrete due to its gradation and the bond with the surrounding mortar. The impact of the transition zone depends on its microstructural itself [52]. The coarse aggregate parameters such as the size distribution and content of aggregate play a significant effect on the compressive strength of concrete. The engineering properties and suitability of the crushed stone aggregate for use in bituminous mixes were studied using two resources of crushed limestone in Iraq. It was observed that the limestone itself meets the Marshall test requirements of a bituminous mix and can be used to produce these mixes. It is well known that the engineering materials (sand, gravel) are limited. They must be replaced by another available alternative. The crushed limestone as a coarse aggregate and its dust which is resulting in the crushing process can somehow fulfill the demand for aggregate in construction. Kürklü, Görhan and Materials [53] investigated the impact of limestone dust in terms of compressive strength, flexural strength, impact resistance, absorption, water permeability, and other properties. They concluded that the fine aggregate could be replaced by the dust of the crushed limestone without affecting the properties of concrete. The stone dust is a suitable choice as fine aggregate in concrete construction.

The use of supplementary cementing materials such as ground blast furnace slag, silica fume, metakaolin, coal fly ash, and natural pozzolan can produce a very significant effect on the pore solution chemistry of concrete, depending on the dosage and composition of these supplementary cementing materials. The influence of mineral and chemical admixtures on the strength development and chloride ion permeability of high-performance concrete (HPC) was studied in the literature. The results indicate that unique combinations of micro silica and superplasticizer exist for HPC mixes with negligible to very low chloride ion permeability [54]. On the other hand, concrete with the addition of SCM has been reported with good properties, emphasizing the favorable impact of the SCM in the performance of its resistance and durability, as well as in the environmental benefit involved.

Crushed limestone was investigated in this research study as a substitute to gravel for many reasons including (local availability, low price, and its ability to reduce environmental pollution). To the best of the authors’ knowledge, this is the first time (in Iraq) to study crushed limestone as a substitute to coarse aggregate in concrete mixes. The objectives of this research are:

1. To study the effects of locally (in Iraq) crushed limestone as a coarse aggregate on some properties of concrete.
2. To investigate the improvement which can be achieved on the properties of limestone concrete by introducing two types of supplementary cementitious materials (SCM), specifically High Reactivity Metacaoline (HRM) and Rice Husk Ash (RHA).
2. Materials and Methods

Materials used in this research include the ordinary Portland cement which conforms to the Iraq specification No.5:1984 (Iraqi Organization of Standards, IOS5:1993, for Portland Cement). The cement has a specific gravity of 3.14; the initial and final setting times are 120 min and 255 min respectively. The sand has a specific gravity of 2.62 with particle size ranging from 200μm - 4.75mm. The natural aggregates proceed from crushed rock (coarse), the natural gravel, and the natural sand, with an adequate particle size gradation according to the limits established by ASTM C 33 / C33M-18. The RHA and HRM used in this work conform to the chemical and physical requirements of ASTM C618-15. The Specific gravities of RHA and HRM were 2.14 and 2.63 respectively. Tables (1) and (2) describe the chemical and physical properties of each of RHA and HRM. Limestone was supplied from Dukan, situated in the Northeast of Sulaymaniah Governorate in Iraq. Alumina ratio (AR) and silica ratio were 1.291 and 2.868 respectively. The maximum size for each crushed limestone and gravel is (19 mm) and the bulk density test for each crushed limestone and gravel were done according to ASTM C127-12. Tables (3) and (4) describe the properties of crushed limestone and gravel. The chemical and physical tests of the RHA, HRM, and CLS were made by the National Center for Construction Laboratories and Research in Baghdad.

Table 1. Chemical analysis of HRM and RHA.

Oxide composition	Oxide content %	
	HRM	RHA
SiO₂	53.66	86.53
Al₂O₃	35.56	0.12
Fe₂O₃	1.52	0.30
SO₃	-	0.10
Na₂O	0.03	1.45

Table 2. Physical Properties of HRM and RHA.

Physical Properties	HRM	RHA
Strength activity Index	149	138
Flow table test	93	110
Specific gravity	2.61	2.12

Table 3. Chemical components of crushed limestone (CLS) and gravel.

The aggregate	The component (%)				
	SiO₂HP	Al₂O₃	Fe₂O₃	CaO	MgO
Crushed limestone	0.814	0.168	0.126	53.728	1.018
Gravel	84.81	6.16	1.66	1.72	0.06

Table 4. Physical properties of crushed limestone (CLS) and gravel.

Aggregate type	Bulk Density (g/cm³)	Specific Gravity	Porosity (%)	Moisture Content (%)	Crushing strength (Kg/cm²)
Crushed limestone	1.27	2.59	4.6	0.23	971.2
Gravel	1.61	2.68	1.42	0.03	1855
2.1 Test Methods
Tests were conducted according to the following specifications for fresh and hardened concrete:
- Slump: ASTM C143.
- Air content: ASTM C173/C173M.
- Compressive strength (CS): ASTM C39/C39M.
- Flexural strength (FS): (Three-point load test), ASTM C 78 –02.
- Absorption: BS 1881:122-1983

Tests of the mixtures for each of the CS and FS were done by using three specimens, then the mean value was dependent.

2.2 Mix proportioning
The mixtures were designed and prepared to study the properties of concrete with different increments of limestone in the mixtures. The (CLS) was added to the mixtures as a percentage varying from 25% to 100% by weight of coarse aggregate, while 0% replacement served as the control.

For the purpose of comparison, the reference mixtures were produced without crushed limestone but with natural locally available gravel. The reference mixtures (without SCM or CLS) were designed in the laboratory according to the guidelines of ACI-211.1-91 to comply with the requirements of workability and CS. These mixtures are composed of ordinary cement, natural sand, and gravel. RHA was added as 20% by weight of cement, as recommended by ASTM C311-02. The most suitable percentage of HRM as a partial replacement of cement was (8%) in view of strength as concluded by Alhadithy [55]. These ratios of RHA and HRM were suggested to serve the required properties. Here, we define:
- RF = reference mixture without CLS and SCM.
- RF-20RHA = reference mixture with 20% RHA but without CLS.
- RF-8HRM = reference mixture with 8% HRM but without CLS.

It was referred to the mixtures containing 25%, 50%, 75%, and 100% of coarse CLS as CLS25, CLS50, CLS75, and CLS100 respectively. The symbol 20RHA refers to the mixtures incorporating 20% of rice husk ash, and 8HRM referred to the mixtures incorporating 8% of high reactivity Metacoline. Generally, the mixtures in this study can be classified into three groups:
- The first group: mixtures with different ratios of CLS but without SCM
- The second group: mixtures with different ratios of CLS and 20% RHA
- The third group: mixtures with different ratios of CLS and 8% HRM.

The mix proportion of the three groups of mixtures is listed in tables 5, 6, and 7.

Table 5. The mix proportion without SCM (kg/m³).

The mixtures	Cement	Sand	Gravel	Crushed limestone	Water	Water-cement ratio (W/CM)
RF	450	675	1025	--	216	0.48
CLS25	450	675	769	256	225	0.50
CLS50	450	675	513	512	235	0.52
CLS75	450	675	257	768	245	0.54
CLS100	450	675	-	1025	250	0.55
Table 6. The mix proportion with 20% RHA (kg/m³).

The mixtures	Cement	RHA%	Sand	Gravel	Crushed limestone	Water	W/CM
RF-20RHA	360	90	675	1025	--	207	0.46
CLS25-20RHA	360	90	675	769	256	216	0.48
CLS50-20RHA	360	90	675	513	512	221	0.49
CLS75-20RHA	360	90	675	257	768	234	0.52
CLS100-20RHA	360	90	675	-	1025	243	0.54

Table 7. The mix proportion with 8% HRM (kg/m³).

The mixtures	Cement	HRM	Sand	Gravel	Crushed limestone	Water	W/CM
RF-8HRM	414	36	675	1025	--	207	0.46
CLS25-8HRM	414	36	675	769	256	212	0.47
CLS50-8HRM	414	36	675	513	512	212	0.47
CLS75-8HRM	414	36	675	257	768	225	0.50
CLS100-8HRM	414	36	675	-	1025	234	0.52

3. Results and Discussion

Tables 8, 9, and 10 describe the slump, air content, CS, FS, and absorption of the hardened concrete for the different mixtures as described in section 2. The mean value of the properties for each of the three groups of the specified mixtures is listed in table 11.

Table 8. Properties of mixtures without SCM.

Mixtures	Slump (mm)	Air content (%)	CS (MPa)	FS (MPa)	Absorption (%)			
			7 days	28 days	7 days	28 days		
RF1	103	2.5	23.93	33.51	4.56	6.38	6.12	4.5
CLS25	91	4.3	18.11	27.31	3.67	5.83	8.31	6.13
CLS50	85	5.6	14.88	23.98	3.82	5.33	9.62	7.69
CLS75	87	6.8	15.12	21.55	3.55	4.98	9.40	8.91
CLS100	74	7.1	13.98	19.62	3.13	4.11	10.13	9.32

Table 9. Properties of the mixtures with 20% RHA.

Mixtures	Slump (mm)	Air content (%)	CS (MPa)	FS (MPa)	Absorption (%)			
			7 days	28 days	7 days	28 days		
RF2-20RHA	93	2.41	23.85	35.61	5.10	7.14	5.72	4.08
CLS25-20RHA	89	3.57	19.81	29.71	4.66	6.52	7.88	5.62
CLS50-20RHA	81	4.54	16.22	24.33	4.01	5.61	8.53	6.19
CLS75-20RHA	76	6.13	16.83	23.74	3.89	5.44	9.11	6.82
CLS100-20RHA	77	6.92	14.95	21.16	4.06	5.49	9.50	6.88
Table 10. Properties of the mixtures with 8% HRM.

Mixtures	Slump (mm)	Air content (%)	CS (MPa) 7 days 28 days	FS (MPa) 7 days 28 days	Absorption % 7 days 28 days
RF2-8HRM	97	1.56	24.12 36.12	5.37 7.48	5.18 3.70
CLS25-8HRM	87	3.80	21.10 31.66	5.10 6.81	7.43 5.39
CLS50-8HRM	87	3.91	18.71 28.10	4.61 6.25	8.61 5.74
CLS75-8HRM	84	4.45	16.13 24.11	4.41 5.73	9.02 5.62
CLS100-8HRM	80	4.31	15.51 28.44	4.01 5.80	9.11 6.44

The mean value of slump for the three groups of mixtures was 84.25mm, 80.75mm, and 84.50mm, respectively as shown in table 11. It was found that using CLS caused a reduction in a slump. The reduction was up to 19% when CLS increased from 25% to 100% for the first group of mixtures. The author's explanation for this reduction is the existence of high porosity in the CLS compared to the natural gravel which caused absorbing more water. On the other hand, the reductions in slump were 13% and 8% for mixtures with 20% RHA, and 8% HRM respectively. The air content increased whenever CLS content increased, the mean value of air content in the mixtures incorporating 8% HRM was less than the other mixtures as shown in table 11. Also, it can be deduced that the air contents decreased by 11% and 30% for the mixtures with 20% RHA, and with 8% HRM respectively compared to the mixtures without SCM. These results showed that the mixtures with 8% HRM were more effective in decreasing the porosity as well as improving the mechanical properties of the hardened concrete.

Table 11. Mean values of properties for each group of mixtures.

Mixtures	Slump (mm)	Air content (%)	CS (MPa) 7 days 28 days	FS (MPa) 7 days 28 days	Absorption % 7 days 28 days
CLS	84.25	5.95	15.52 23.11	3.54 5.06	9.36 8.01
CLS+20RHA	80.75	5.29	16.74 24.73	4.15 5.81	8.75 6.37
CLS+8HRM	84.50	4.11	17.86 28.07	4.53 6.14	8.54 5.74

Figures 1 and 2 show that the compressive strength is decreasing when CLS content is increased, and in relation to the results described in table 11, it is obvious that the mean compressive strength for each of the three groups of mixtures at the age 7 days decreased by 22% up to 26%. On the other hand, at the age of 28 days, it decreased by 10% up to 29%. It was observed that in each one of the three groups of mixtures, the compressive strength at 28 days decreased by 28% for the mixtures without CLS, 29% for the mixtures with 20% RHA, and 10% for the mixtures with 8% HRM when CLS content increased from 25% to 100%. The reduction in the compressive strength for the mixtures with 8% HRM was less distinguished than the other mixtures. The author's explanation for this reduction is the existence of the pozzolanic activity of HRM compared to RHA.
As shown in figures 3 and 4, the FS of mixtures with 8%HRM had relatively better values compared to the others. The addition of 20% RHA and 8%HRM increased the FS by 17% and 27% respectively at the age of 7 days.

Figure 1. 7 days CS.

Figure 2. 28 days CS.

As shown in figures 3 and 4, the FS of mixtures with 8%HRM had relatively better values compared to the others. The addition of 20% RHA and 8%HRM increased the FS by 17% and 27% respectively at the age of 7 days.

Figure 3. 7 days FS.
The FS at 28 days decreased by 29% for the mixtures without CLS, 16% for the mixtures with 20% RHA, and 14% for the mixtures with 8% RHA when CLS content increased from 25% to 100%.

The reduction in each of CS and FS for the mixtures using crushed limestone aggregate compared to the ordinary concrete may be attributed to the fact that the crushed limestone aggregate has low crushing strength compared to gravel as indicated in table 4.

The water absorption at ages 7 days and 28 days is shown in figures 5 and 6 for all mixtures. It is evident that the mixtures with 8%HRM have the lowest water absorption compared to other mixtures. Water absorption decreased by 6% and 8% for the mixtures with 20% RHA and 8%HRM respectively at the age of 7 days. In this study, the progress of the compressive strength was monitored using traditional methods (compression machine), however, recent studies used embedded sensors to have real-time measurements for the properties of concrete [56]. Therefore, the authors recommend the application of the EM sensors (electromagnetic sensors) for monitoring the mechanical properties of the limestone-contain concrete samples because the EM sensors showed high efficiencies in many fields [57-59].
4. Conclusions
According to the results of this study, it can be concluded that the coarse crushed limestone caused to reduce each of the compressive strength and flexural strength in concrete. That reduction in compressive strength and flexural strength was up to 30%. That crushed limestone concrete can be used for concrete structures for which the compressive strength is < 25 MPa and the flexural strength is <5 MPa. That the addition of supplementary cementitious materials SCM improved the performance of mixtures incorporating crushed limestone, it also caused to improve each of compressive strength and flexural strength up to 21%. That HRM showed high activity compared to RHA. That the water absorption increased due to the addition of crushed limestone but it decreased by about 20% and 28% in the mixtures containing rice husk ash and high reactivity metakaolin respectively at age of 28 days. That the water demand increased when CLS increased due to the porosity of CLS compared to gravel resulting in less workable mixtures. Finally, the addition of SCM improved the performance of the fresh mixtures with respect to the slump.

Acknowledgment
The authors wish to express their sincere appreciation and deepest gratitude to all technicians who work in the laboratories of the Water Resources Techniques Department and the Civil Engineering Techniques Department in the Technical Institute of Al-Mussaib for their generous help.

References
[1] Shubbar A A, Al-Shaer A, AlKizwini R S, Hawesah H A and Sadique M 2019 Investigating the influence of cement replacement by high volume of GGBS and PFA on the mechanical performance of cement mortar First International Conference on Civil and Environmental Engineering Technologies (ICCEET) 584.
[2] Kadhim A, Sadique M and Al-Mufti R 2020 Long-term performance of novel high-calcium one-part alkali-activated cement developed from thermally activated lime kiln dust Journal of Building Engineering 32 1-17.
[3] Kadhim A, Sadique M, Al-Mufti R and Hashim K 2020 Developing One-Part Alkali-Activated metakaolin/natural pozzolan Binders using Lime Waste as activation Agent Advances in Cement Research 32 1-38.
[4] Ali A A, Jafer H, Dulaimi A, Atherton W and Sadique M 2018 The development of a low carbon binder produced from the ternary blending of cement, ground granulated blast furnace slag and high calcium fly ash: An experimental and statistical approach Construction and Building Materials 187 1051-60.
[5] Hashim K S, Shaw A, Ortoneda Pedrola M and Phipps D 2017 Defluoridation of drinking water using a new flow column-electrocoagulation reactor (FCER) - Experimental, statistical, and economic approach Journal of Environmental Management 197 80-8.

[6] Khalid K S, Idowu I A, Jasim N, Shaw A, Phipps D, Kot P, Pedrola M O, Alattabi A W and Abdulreeda M 2018 Removal of phosphate from River water using a new baffle plates electrochemical reactor MethodsX 5 1413-8.

[7] Zubaidi S, Al-Bugharbee H, Ortega Martorell S, Gharghan S, Olier I, Hashim K, Al-Bdairi N and Kot P 2020 A Novel Methodology for Prediction Urban Water Demand by Wavelet Denoising and Adaptive Neuro-Fuzzy Inference System Approach Water 12 1-17.

[8] Salah S L, Abdulkareem I H, Al-Bugharbee H, Ridha H M, Gharghan S K, Al-Qaim F F, Muradov M, Kot P and Alkhaddar R 2020 Hybridised Artificial Neural Network model with Slime Mould Algorithm: A novel methodology for prediction urban stochastic water demand Water 12 1-18.

[9] Salah S L, Al-Bugharbee H and Muhsin Y R 2020 Forecasting of monthly stochastic signal of urban water demand: Baghdad as a case study IOP Conference Series: Materials Science and Engineering 888.

[10] Lafta Z L, Al-Bugharbee H, Muhsen Y R, Al-Jumeily D and Aljaaf A J 2019 The Prediction of Municipal Water Demand in Iraq: A Case Study of Baghdad Governorate 12th International Conference on Developments in eSystems Engineering (DeSE).

[11] Lafta Z L, Kot P, Abdellatif M and Muhsin Y R 2019 Using LARS–WG model for prediction of temperature in Columbia City, USA IOP Conference Series: Materials Science and Engineering 584.

[12] Zubaidi S L, Ethaib S, Al-Bdairi N S S, Al-Bugharbee H and Gharghan S K 2020 A novel methodology to predict monthly municipal water demand based on weather variables scenario Journal of King Saud University-Engineering Sciences 32 1-18.

[13] Ortega-Martorell S, Al-Bugharbee H, Olier I, Gharghan S K, Kot P and Al-Khaddar R 2020 Urban Water Demand Prediction for a City that Suffers from Climate Change and Population Growth: Gauteng Province case study Water 12 1-18.

[14] Ortega-Martorell S, Kot P, Abdellatif M, Gharghan S K and Ahmed M S 2020 A Method for Predicting Long-Term Municipal Water Demands Under Climate Change Water Resources Management 34 1265-79.

[15] Alyafei A, AlKizwini R S, Yeboah D, Gkantou M, and Al-Faluji D 2020 Treatment of effluents of construction industry using a combined filtration-electrocoagulation method IOP Conference Series: Materials Science and Engineering 888.

[16] Alattabi A W, Harris C and Alzyadi A 2017 Treatment of Residential Complexes’ Wastewater using Environmentally Friendly Technology Procedia Engineering 196 792-9.

[17] Alattabi A W, Harris C B, Ortoneda-Pedrola M and Phipps D 2017 Improving sludge settleability by introducing an innovative, two-stage settling sequencing batch reactor Journal of Water Process Engineering 20 207-16.

[18] Alenezi A K, Hasan H A, Asamoako-Attah J, Gkantou M, Muradov M, Kot P and Abdulhadi B 2020 Zeolite-assisted electrocoagulation for remediation of phosphate from calcium-phosphate solution IOP Conference Series: Materials Science and Engineering 888.

[19] Alhendal M, Nasir M J, Asamoako-Attah J, Al-Faluji D, Muradov M, Kot P and Abdulhadi B 2020 Cost-effective hybrid filter for remediation of water from fluoride IOP Conference Series: Materials Science and Engineering 888.

[20] Al-Marri S, AlQuzweeni S S, Kot P, AlKizwini R S, Zubaidi S L and Al-Khafaji Z S 2020 Ultrasonic-Electrocoagulation method for nitrate removal from water IOP Conference Series: Materials Science and Engineering 888.

[21] Grmasha R A, Al-sareji O J, Salman J M and Jasim I A 2020 Polycyclic Aromatic Hydrocarbons (PAHs) in Urban Street Dust Within Three Land-Uses of Babylon Governorate,
Iraq: Distribution, Sources, and Health Risk Assessment *Journal of King Saud University - Engineering Sciences* **33**, 1-15

[22] Abdulraheem F S, Al-Khafaji Z S, Muradov M, Kot P and Shubbar A A 2020 Natural filtration unit for removal of heavy metals from water *IOP Conference Series: Materials Science and Engineering* **888**.

[23] Alenazi M, Hassan A A, Muradov M, Kot P and Abdulhadi B 2020 Turbidity removal using natural coagulants derived from the seeds of strychnos potatorum: statistical and experimental approach *IOP Conference Series: Materials Science and Engineering* **888**.

[24] Al-Saati N H, Hussein T K, Abbas M H, Al-Saati Z N, Kot P, Sadique M, Aljefery M H and Carnacina I 2019 Statistical modelling of turbidity removal applied to non-toxic natural coagulants in water treatment: a case study *Desalination and Water Treatment* **150** 406-12.

[25] Omran I I, Al-Saati N H, Al-Saati Z N, Patryk K, Al-Jumeily D, Shaw A, Ruddock F and Aljefery M 2019 Assessment of heavy metal pollution in the Great Al-Mussaib irrigation channel *Desalination and Water Treatment* **168** 165-74.

[26] Hashim K S, Al-Saati N H, Hussein A H and Al-Saati Z N 2018 An investigation into the level of heavy metals leaching from canal-dredged sediment: a case study metals leaching from dredged sediment *First International Conference on Materials Engineering & Science*.

[27] Abdulla G, Kareem M M, Muradov M, Kot P, Mubarak H A, Abdellatif M and Abdulhadi B 2020 Removal of iron from wastewater using a hybrid filter *IOP Conference Series: Materials Science and Engineering* **888**.

[28] Khaddar R A, Jasim N, Shaw A, Phipps D, Kota P, Pedrola M O, Alattabi A W, Abdulredha M and Alawsh R 2019 Electrocoagulation as a green technology for phosphate removal from River water *Separation and Purification Technology* **210** 135-44.

[29] Shaw A, Kot P, Al-Jumeily D, Alwash R and Aljefery M H 2020 Electrocoagulation as an eco-friendly River water treatment method. In *Advances in Water Resources Engineering and Management* (Berlin: Springer).

[30] Al-Jumeily D, Al-Tufaily M and Lunn J 2019 Sustainable and Environmental Friendly Ancient Reed Houses (Inspired by the Past to Motivate the Future) *11th International Conference on Developments in eSystems Engineering* (DeSE).

[31] Khalid K S, Ewadh H M, Muhsin A A, Zubaidi S L, Kot P, Muradov M and Aljefery M 2020 Phosphate removal from water using bottom ash: Adsorption performance, coexisting anions and modelling studies *Water Science and Technology* **83** 1-17.

[32] Aqel K, Mubarak H A, Amoako-Atta J, Abdul-Rahaim L A, Abdellatif M and Al-Janabi A S 2020 Electrocoagulation of brilliant green dye from wastewater *IOP Conference Series: Materials Science and Engineering* **888**.

[33] Emamjomeh M M, Mousazadeh M, Mokhtari N, Jamali H A, Makkiahi M, Naghdali Z and Ghanbari R 2020 Simultaneous removal of phenol and linear alkylbenzene sulfonate from automotive service station wastewater: Optimization of coupled electrochemical and physical processes *Separation Science and Technology* **55** 3184-94.

[34] Patryk Kot, Zubaid S, Alwash R, Al-Jumeily D and Aljefery M 2020 Energy efficient electrocoagulation using baffle-plates electrodes for efficient Escherichia Coli removal from Wastewater *Journal of Water Process Engineering* **33** 101079-86.

[35] Mohammed A-H, Hussein A H, Yeboah D, Abdulhadi B and Shubbar A A S 2020 Electrochemical removal of nitrate from wastewater *IOP Conference Series: Materials Science and Engineering* **888**.

[36] Abdulhadi B A, Kot P, Safaa K H, Andy S and Rafid A 2019 Influence of current density and electrodes spacing on reactive red 120 dye removal from dyed water using electrocoagulation/electroflotation (EC/EF) process *First International Conference on Civil and Environmental Engineering Technologies* (ICCEET) **584**.

[37] Al-Saati N H, Alquwzweeni S S, Kraidy L, Hussein A H and Alwash R 2019 Decolourization of dye solutions by electrocoagulation: an investigation of the effect of operational parameters
First International Conference on Civil and Environmental Engineering Technologies (ICCEET) 584.

[38] Safa K H, Hussein A H, Kot P, Kraidi L and Alwash R 2019 Effect of initial pH value on the removal of reactive black dye from water by electrocoagulation (EC) method 2nd International Scientific Conference

[39] Ali S M, AlRifaie J K, Idowu I and Gkantou M 2020 Escherichia coli inactivation using a hybrid ultrasonic–electrocoagulation reactor Chemosphere 247 125868-75.

[40] Hassan Alnaimi I J I, Abuduljaleel Al-Janabi, Michaela Gkantou and Magomed Muradov 2020 Ultrasonic-electrochemical treatment for effluents of concrete plants Ultrasonic-electrochemical treatment for effluents of concrete plants IOP Conference Series Materials Science and Engineering 888.

[41] Zanki A K, Mohammad F H, Muradov M, Kareem M M and Abdulhadi B 2020 Removal of organic matter from water using ultrasonic-assisted electrocoagulation method IOP Conference Series: Materials Science and Engineering 888.

[42] Abdulhadi B, Khalid H and Muradov M 2021 Continuous-flow electrocoagulation (EC) process for iron removal from water: Experimental, statistical and economic study Science of The Total Environment 756 1-16.

[43] Safaa H K, Andy A, Rafid R, Patryk K and Al-Shamma’a A 2021 Water purification from metal ions in the presence of organic matter using electromagnetic radiation-assisted treatment Journal of Cleaner Production 280

[44] Idowu I A, Atherton W, Hashim K, Kot P, Alkhaddar R, Alo B I and Shaw A 2019 An analyses of the status of landfill classification systems in developing countries: Sub Saharan Africa landfill experiences Waste Management 87 761-71.

[45] O Amin M, AM Khidir M and M Taher A 2014 Manufacturing of Bricks from Soil and Crushed Limestone by Compression-EJ AL-Rafdain Engineering Journal 22 24-32.

[46] Majdi H S, Shubbar A, Nasr M S, Al-Khafaji Z S, Jafer H, Abdulredha M, Masoodi Z A and Sadique M 2020 Experimental data on compressive strength and ultrasonic pulse velocity properties of sustainable mortar made with high content of GGBFS and CKD combinations Data in Brief 31 105961-72.

[47] Shubbar A A, Sadique M, Nasr M S and Al-Khafaji Z S 2020 The impact of grinding time on properties of cement mortar incorporated high volume waste paper sludge ash Karbala International Journal of Modern Science 6 1-23.

[48] Ali S A, Sadique M and Shanbara H K 2020 The Development of a New Low Carbon Binder for Construction as an Alternative to Cement. In Advances in Sustainable Construction Materials and Geotechnical Engineering (Berlin: Springer).

[49] Abdulredha M, Rafid A and Jordan D 2017 The development of a waste management system in Kerbala during major pilgrimage events: determination of solid waste composition Procedia Engineering 196 779-84.

[50] Abdulredha M, Jordan D and Abdulridha A 2018 Estimating solid waste generation by hospitality industry during major festivals: A quantification model based on multiple regression Waste Management 77 388-400.

[51] Aquino C, Inoue M, Miura H, Mizuta M and Okamoto T 2010 The effects of limestone aggregate on concrete properties J Construction Building Materials 24 2363-8.

[52] Kamali-Bernard S, Keinde D and Bernard F 2014 Effect of aggregate type on the concrete matrix/aggregates interface and its influence on the overall mechanical behavior. A numerical study Key engineering materials 617.

[53] Kürklü G, Görhan G J C and Materials B 2019 Investigation of usability of quarry dust waste in fly ash-based geopolymer adhesive mortar production J Construction Building Materials 217 498-506.
[54] Wang D, Ju Y, Shen H and Xu L 2019 Mechanical properties of high performance concrete reinforced with basalt fiber and polypropylene fiber J Construction Building Materials 197 464-73.

[55] Alhadithy R 2003 Durability of high performance concrete incorporating high reactivity metakaolin and rice husk ash. In: Civil Engineering Dept.: University of Technology/Iraq) pp 33-7.

[56] Gkantou M, Muradov M, Kamaris G, Atherton W and Patryk K 2019 Novel Electromagnetic Sensors Embedded in Reinforced Concrete Beams for Crack Detection Sensors 19 5175-89.

[57] Ryecroft S, Shaw A, Fergus P, Moody A and Conway L 2019 A First Implementation of Underwater Communications in Raw Water Using the 433 MHz Frequency Combined with a Bowtie Antenna Sensors 19 1813-23.

[58] Ryecroft S P, Fergus P, and Conway L 2019 A Novel Gesomin Detection Method Based on Microwave Spectroscopy 12th International Conference on Developments in eSystems Engineering (DeSE)

[59] Teng K H, Kot P, Muradov M, Gkantou M and Al-Shamma‘a A 2019 Embedded Smart Antenna for Non-Destructive Testing and Evaluation (NDT&E) of Moisture Content and Deterioration in Concrete Sensors 19 547-59.