Editorial: Nanocellulose: A Multipurpose Advanced Functional Material, Volume II

Muhammad Wajid Ullah¹, Mazhar Ul-Islam², Fazli Wahid³ and Guang Yang⁴*

¹School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, China, ²Department of Chemical Engineering, Dhofar University, Salalah, Oman, ³Department of Biomedical Sciences, Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology, Haripur, Pakistan, ⁴Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China

Keywords: nanocellulose, yield, modification, composites, hydrogels, environment, textile, tissue engineering

Editorial on the Research Topic

Nanocellulose: A Multipurpose Advanced Functional Material, Volume II

According to the morphology and source, there are three classes of nano-scale cellulose (i.e., nanocellulose), including cellulose nanocrystals (CNCs), cellulose nanofibers (CNFs), and bacterial nanocellulose (BNC), where the first two types are obtained from plants (Yadav et al., 2021) while the last one is obtained from the microbial origin (Ullah et al., 2017). Besides, nanocellulose is obtained from algae (Ruan et al., 2018) and animals (Bacakova et al., 2019) as well as synthesized by the cell-free enzyme systems (Kim et al., 2019).

Presently, nanocellulose research is conducted from three main aspects: production, quality enhancement, and functionalization for various biotechnological applications. For instance, plant-derived cellulose contains lignin, hemicellulose, and minerals, which should be removed to obtain nanocellulose of high purity and quality (Ul-Islam et al., 2019a). To this end, efforts have been carried out to develop green approaches to minimize or bypass the use of toxic chemicals required for the hydrolysis of lignocellulosic materials. On the other hand, BNC production by bacteria suffers from low yield and productivity and a high production cost. Therefore, several strategies such as strain improvement, co-culturing, and development of engineered strains and advanced reactors have been adopted to enhance the yield and productivity of BNC (Islam et al., 2017; Sajadi et al., 2019; Moradi et al., 2021). At the same time, different agro-industrial wastes have been utilized as the carbon sources for BNC production by bacteria (Velásquez-Riaño and Bojacá, 2017; Ul-Islam et al., 2020; Zhou et al., 2021).

Similarly, although different types of nanocellulose possess impressive morphological and physico-chemical properties and are non-toxic, these do not possess some desired properties of materials like adhesive sites, antimicrobial and antioxidant activities, electromagnetic properties, and catalytic activity, and thus require further modification (Picheth et al., 2017; Vilela et al., 2019). Due to similar surface chemistry, all types of nanocellulose are modified by somehow same chemical strategies like esterification (Spinella et al., 2016), etherification (De La Motte et al., 2011), amidation (Kim et al., 2015), and oxidation (Khattak et al., 2021) as well as modified physically through hydrogen bonding, electrostatic interaction, hydrophilic/hydrophobic interaction, and π–π stacking, where the free OH groups of cellulose directly interact with an electron-rich amine group, oxygen atom, and carboxyl group and form hydrogen bond (Ullah et al., 2019). Due to the unique surface chemistry, diversity, and impressive features of different types of nanocellulose, these find applications in areas like biomedical (Wang et al., 2021), environment (Shoukat et al., 2019), textile (Felgueiras et al., 2021), pharmaceutics (Raghav et al., 2021), energy (Zhang et al., 2020), additive manufacturing (Fourmann et al., 2021), cosmetics (Bianchet et al.,...
review, contributed by the experts in the four original research articles, one review, and one systematic.

This Research Topic contains a total of six articles, including structure-function relationships, research trend, and production, modified.

Advanced Functional Materials, Volume II date, various acetic-acid bacteria have been evaluated for BNC productivity of BNC by utilizing active bacterial strains. To TEMPO-oxidation of BNC and comparatively analyzed the crystallinity of cellulose

Suárez-Avendaño et al. carried out the treating it with 2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO), nanocellulose is carried out through different chemical modifications, not only enhance its innate features but also polymers, nanomaterials, clays, and micro- and macro-

molecules, not only enhance its innate features but also imparts additional functionalities. In contrast to the physical modification involving the blending of nanocellulose with a reinforcing material, the chemical modification of nanocellulose is carried out through different chemical reactions. For instance, oxidation of cellulose is carried out by treating it with 2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO), NaBR, NaClO, etc. Suárez-Avendaño et al. carried out the TEMPO-oxidation of BNC and comparatively analyzed the mercury removal efficiency of unmodified and TEMPO-oxidized BNC from wastewater. TEMPO-oxidation altered the nanoribbon network of BNC, which in turn decreased the crystallinity of cellulose fibers. Compared to the unmodified BNC (31.6%), the TEMPO-oxidized BNC removed as high as 93% mercury from wastewater. Despite the availability of a variety of physico-chemical modification methods, nanocellulose cannot be modified with hydrophobic materials due to its hydrophilic nature. In a study, Ali et al. modified cotton-derived CNCs with 2-carboxyethyl acrylate, which improved its hydrophobic behavior as indicated by the increased contact angle measurement. The modified CNCs showed improved mechanical, thermal, and adhesive properties. The modified 2-carboxyethyl acrylate-modified CNCs were then modified with a hydrophobic E-51 epoxy resin system, which showed high shear stress, toughness, degradation, thermal stability, and recyclability. In another study, Zeng et al. carried out plasticization of microcrystalline cellulose (MCC) films by using the Chinese leak (CL, Allium tuberosum) extract. Physical mixing of MCC with CL at a 7:3 ratio showed a successful integration of lignin, polysaccharides, pectin, and waxes from CL into the MCC matrix, which acted as plasticizers to improve the mechanical strength, hydrophilicity, and UV shielding performance of the MCC/CL composite film.

According to the targeted applications, the different forms of nanocellulose are used in the form of hydrogels, aerogels, membranes, sheets, thin/thick films, fibers, emulsions, coatings, and tubes, etc. The biomedical applications of nanocellulose utilize hydrogels (Shi et al., 2016) due to their hydrophilic character, porous and fibrous structure, and maintaining a three-dimensional structure with good mechanical strength. The review of Wang et al. summarized the tissue engineering and regenerative medicine applications of CNC, CNF, and BNC-based hydrogels. The unique features of different nanocellulose-based hydrogels make them suitable biomaterials for developing tissue scaffolds (Khan et al., 2022), drug carriers (Raghav et al., 2021), 3D printed structures (McCarthy et al., 2019), wound dressing materials (Mao et al., 2021), synthetic organs (Klemm et al., 2018; Khan et al., 2021), and platforms for developing sensing (Farooq et al., 2020) and diagnostic materials (Ul-Islam et al., 2019b).

BC research has been expanding rapidly and vastly over the last couple of decades. Ho et al. carried out a bibliometric analysis to describe the trend of BNC research in the last 15 years. They selected parameters like annual outputs, citation count, key journals, countries, key academic and research institutions, research directions, and categories of the Web of Science by using keywords extracted from words in the publication title, keywords, and KeyWords Plus. The results showed that the number of scholarly articles on BNC increased from 2005 to 2009, with a rapid increase occurring in the last 5 years (2015–2020). The data showed that the BNC research is expanded worldwide, including in Asia, and to areas like polymer science, materials science and engineering, biomaterials science, applied chemistry, etc., and it is predominantly used in biomedical, food, environment, energy, and textile sectors. While most of the research is focused on quality enhancement (predominantly the mechanical strength) and exploring new applications, a considerable amount of effort has been devoted to decreasing its production costs, such as by utilizing low-cost substrates and different agro-industrial wastes as the carbon sources, which additionally address some of the environmental concerns of safe disposal of such wastes.

In summary, this Research Topic on nanocellulose highlights the importance of this valuable biopolymer by

2020), bioelectronics (Khan et al., 2015), food (Atta et al., 2021; Haghghi et al., 2021), and others. Herein, the plant-derived cellulose is preferably used in the development of low-cost materials for environmental, packaging, and other applications, while BNC is mostly utilized in the production of high-value-added products for biomedical applications. However, there is no clear distinction of using any kind of cellulose for biomedical and other applications, and the debate of cost-analysis, pilot-scale production, and commercialization of nanocellulose-based products is still going on.

Considering the abundance, renewability, and interesting morphological, physiological, chemical, and biological features, this Research Topic in Frontiers in Bioengineering and Biotechnology, Sections “Biomaterials” and “Nanobiotechnology” entitled “Nanocellulose: A Multipurpose Advanced Functional Material, Volume II” is aimed to discuss the production, modification, quality enhancement, cause-effect and structure-function relationships, research trend, and multipurpose applications of different types of nanocellulose. This Research Topic contains a total of six articles, including four original research articles, one review, and one systematic review, contributed by the experts in the field.

Efforts have been devoted to enhancing the yield and productivity of BNC by utilizing active bacterial strains. To date, various acetic-acid bacteria have been evaluated for BNC production, among which Komagataeibacter xylinus is the most commonly used strain due to its high BNC production ability. K. xylinus exists in a microbial consortium called Kombucha. Wood et al. investigated the effect of repeated sub-culturing on the microbial communities and their subsequent impact on the BNC production ability of K. xylinus in isolated form and in Kombucha. After three cycles of sub-culturing, Kombucha produced thicker BC pellicles compared to the isolated K. xylinus; nevertheless, of similar nanofibrillar structures. Importantly, the highest BNC yield was obtained after the third cycle of sub-culturing. These results indicate that using Kombucha as inoculum represents a reproducible and sustainable model for high yield BNC production.

The physico-chemical modification and the development of nanocellulose-based composites with other materials, like polymers, nanomaterials, clays, and micro- and macro-molecules, not only enhance its innate features but also imparts additional functionalities. In contrast to the physical modification involving the blending of nanocellulose with a reinforcing material, the chemical modification of nanocellulose is carried out through different chemical reactions. For instance, oxidation of cellulose is carried out by treating it with 2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO), NaBR, NaClO, etc. Suárez-Avendaño et al. carried out the TEMPO-oxidation of BNC and comparatively analyzed the mercury removal efficiency of unmodified and TEMPO-oxidized BNC from wastewater. TEMPO-oxidation altered the nanoribbon network of BNC, which in turn decreased the crystallinity of cellulose fibers. Compared to the unmodified BNC (31.6%), the TEMPO-oxidized BNC removed as high as 93% mercury from wastewater. Despite the availability of a variety of physico-chemical modification methods, nanocellulose cannot be modified with hydrophobic materials due to its hydrophilic nature. In a study, Ali et al. modified cotton-derived CNCs with 2-carboxyethyl acrylate, which improved its hydrophobic behavior as indicated by the increased contact angle measurement. The modified CNCs showed improved mechanical, thermal, and adhesive properties. The modified 2-carboxyethyl acrylate-modified CNCs were then modified with a hydrophobic E-51 epoxy resin system, which showed high shear stress, toughness, degradation, thermal stability, and recyclability. In another study, Zeng et al. carried out plasticization of microcrystalline cellulose (MCC) films by using the Chinese leak (CL, Allium tuberosum) extract. Physical mixing of MCC with CL at a 7:3 ratio showed a successful integration of lignin, polysaccharides, pectin, and waxes from CL into the MCC matrix, which acted as plasticizers to improve the mechanical strength, hydrophilicity, and UV shielding performance of the MCC/CL composite film.

According to the targeted applications, the different forms of nanocellulose are used in the form of hydrogels, aerogels, membranes, sheets, thin/thick films, fibers, emulsions, coatings, and tubes, etc. The biomedical applications of nanocellulose utilize hydrogels (Shi et al., 2016) due to their hydrophilic character, porous and fibrous structure, and maintaining a three-dimensional structure with good mechanical strength. The review of Wang et al. summarized the tissue engineering and regenerative medicine applications of CNC, CNF, and BNC-based hydrogels. The unique features of different nanocellulose-based hydrogels make them suitable biomaterials for developing tissue scaffolds (Khan et al., 2022), drug carriers (Raghav et al., 2021), 3D printed structures (McCarthy et al., 2019), wound dressing materials (Mao et al., 2021), synthetic organs (Klemm et al., 2018; Khan et al., 2021), and platforms for developing sensing (Farooq et al., 2020) and diagnostic materials (Ul-Islam et al., 2019b).

BC research has been expanding rapidly and vastly over the last couple of decades. Ho et al. carried out a bibliometric analysis to describe the trend of BNC research in the last 15 years. They selected parameters like annual outputs, citation count, key journals, countries, key academic and research institutions, research directions, and categories of the Web of Science by using keywords extracted from words in the publication title, keywords, and KeyWords Plus. The results showed that the number of scholarly articles on BNC increased from 2005 to 2009, with a rapid increase occurring in the last 5 years (2015–2020). The data showed that the BNC research is expanded worldwide, including in Asia, and to areas like polymer science, materials science and engineering, biomaterials science, applied chemistry, etc., and it is predominantly used in biomedical, food, environment, energy, and textile sectors. While most of the research is focused on quality enhancement (predominantly the mechanical strength) and exploring new applications, a considerable amount of effort has been devoted to decreasing its production costs, such as by utilizing low-cost substrates and different agro-industrial wastes as the carbon sources, which additionally address some of the environmental concerns of safe disposal of such wastes.

In summary, this Research Topic on nanocellulose highlights the importance of this valuable biopolymer by
covering the research about its production, modification, quality enhancement, and diverse application in areas like biomedicine, environment, textile, and packaging, etc.

REFERENCES

Atta, O. M., Manan, S., Shahzad, A., Ul-Islam, M., Ullah, M. W., and Yang, G. (2022). Biobased Materials for Active Food Packaging: A Review. Food Hydrocoll. 125, 107419. doi:10.1016/j.foodhyd.2021.107419

Bacakova, L., Pajorova, J., Bacakova, M., Skogberg, A., Källö, P., Kolarova, K., et al. (2019). Versatile Application of Nanocellulose: From Industry to Skin Tissue Engineering and Wound Healing. Nanomaterials 9, 164. doi:10.3390/nano9020164

Bianchet, R. T., Vieira Cubas, A. L., Machado, M. M., and Siegel Moecke, E. H. (2020). Applicability of Bacterial Cellulose in Cosmetics - Bibliometric Review. Biotechnol. Rep. 27, e00502. doi:10.1016/j.btre.2020.e00502

De La Motte, H., Hasani, M., Brelid, H., and Westman, G. (2011). Molecular Synthesis of Selenium Nanoparticles-Decorated Bacterial Cellulose/Gelatin Hydrogel with Enhanced Antibacterial, Antioxidant, and Anti-Inflammatory Capabilities for Facilitating Skin Wound Healing. Adv. Healthc. Mater. 10, 2100402. doi:10.1002/adhm.202100402

McCarthy, R. R., Ullah, M. W., Booth, P., Pei, E., and Yang, G. (2019). The Use of Bacterial Polysaccharides in Bioprinting. Biotechnol. Adv. 37, 107448. doi:10.1016/j.biotechad.2019.107448

Moradi, J., Jacek, P., Farhangfar, A., Guimaraes, T. J., and Forough, M. (2021). The Role of Genetic Manipulation and In Situ Modifications on Production of Bacterial Nanocellulose: A Review. Int. J. Biol. Macromol. 183, 635–650. doi:10.1016/j.ijbiomac.2021.04.173

Picheth, G. F., Pirich, C. L., Sierackiewicz, M. R., Woehl, M. A., Sakakibara, C. N., de Souza, C. F., et al. (2017). Bacterial Cellulose in Biomedical Applications: A Review. Int. J. Biol. Macromol. 104, 97–106. doi:10.1016/j.ijbiomac.2017.05.171

Raghav, N., Sharma, M. R., and Kennedy, J. F. (2021). Nanocellulose: A Mini-Review on Types and Use in Drug Delivery Systems. Carbohydr. Polym. Technol. Appl. 2, 100031. doi:10.1016/j.scarpta.2020.100031

Ruan, C.-Q., Stroemme, M., and Lindh, J. (2018). Preparation of Porous 2,3-dialdehyde Cellulose Beads Crosslinked with Chitosan and Their Application in Adsorption of Congo Red Dye. Carbohydr. Polym. 181, 200–207. doi:10.1016/j.carbpol.2017.10.072

Shadaj, E., Fatemi, S. S.-A., Babaeipour, V., Deldar, A. A., Yahkchali, B., and Anvar, M. S. (2019). Increased Cellulose Production by Heterologous Expression of bcsA and B Genes from Gluconacetobacter xylinus in E Coli Nissle 1917. Bioprocess Biosyst. Eng. 42, 2023–2034. doi:10.1007/s00449-019-02197-4

Shi, Z., Gao, X., Ullah, M. W., Li, S., Wang, Q., and Yang, G. (2016). Electroconductive Natural Polymer-Based Hydrogels. Biomaterials 111, 40–54. doi:10.1016/j.biomaterials.2016.09.020

Shoukat, A., Wahid, F., Khan, T., Siddique, M., Nisreen, S., Yang, G., et al. (2019). Titanium Oxide-Bacterial Cellulose Board sorbent for the Removal of Lead Ions from Aqueous Solution. Int. J. Biol. Macromol. 129, 965–971. doi:10.1016/j.ijbiomac.2019.02.032

Spinella, S., Miorana, A., Qian, Q., Dawson, N. J., Hepworth, V., McCullam, S. A., et al. (2016). Concurrent Cellulose Hydrolysis and Esterification to Prepare a Surface-Modified Cellulose Nanocrystal Decorated with Carboxylic Acid Moieties. ACS Sustain. Chem. Eng. 4, 1538–1550. doi:10.1021/acs.suschemeng.5b01489

Ullah, M., Khan, S., Ullah, M. W., and Park, J. K. (2019a). Comparative Study of Plant and Bacterial Cellulose Pellets Regenerated from Dissolved States. Int. J. Biol. Macromol. 137, 247–252. doi:10.1016/j.ijbiomac.2019.06.232

Ullah, M., Subhan, F., Islam, S. U., Khan, S., Shah, N., Manan, S., et al. (2019b). Development of Three-Dimensional Bacterial Cellulose/chitosan Scaffolds: Analysis of Cell Scaffold Interaction for Potential Application in the Diagnosis of Ovarian Cancer. Int. J. Biol. Macromol. 137, 1050–1059. doi:10.1016/j.ijbiomac.2019.07.050

Ullah, M., Ullah, M. W., Khan, S., and Park, J. K. (2020). Production of Bacterial Cellulose from Alternative Cheap and Waste Resources: A Step for Cost Reduction with Positive Environmental Aspects. Korean J. Chem. Eng. 37, 925–937. doi:10.1007/s11814-020-0524-3

Ullah, M. W., Siprkon, S. J., Ul-Islam, M., and Yang, G. (2019). Synthesis, Structure, and Properties of Bacterial Cellulose. Nanocellulose. 81–113. doi:10.1002/9783527807437.ch4

Ullah, M. W., Ul Islam, M., Khan, S., Shah, N., and Park, J. K. (2017). Recent Advancements in Bioreactions of Cellular and Cell-Free Systems: A Study of Bacterial Cellulose as a Model. Korean J. Chem. Eng. 34, 1591–1599. doi:10.1007/s11814-017-0121-2

Velásquez-Riaño, M., and Bojac, V. (2017). Production of Bacterial Cellulose from Alternative Low-Cost Substrates. Cellulose 24, 2677–2698. doi:10.1007/s10570-017-1309-7

AUTHOR CONTRIBUTIONS

MWU drafted the manuscript. MWU, FW, and GY edited and proofread the manuscript.
Vilela, C., Oliveira, H., Almeida, A., Silvestre, A. J. D., and Freire, C. S. R. (2019). Nanocellulose-based Antifungal Nanocomposites against the Polymorphic Fungus Candida Albicans. *Carbohydr. Polym.* 217, 207–216. doi:10.1016/j.carbpol.2019.04.046

Wang, L., Mao, L., Qi, F., Li, X., Wajid Ullah, M., Zhao, M., et al. (2021). Synergistic Effect of Highly Aligned Bacterial Cellulose/gelatin Membranes and Electrical Stimulation on Directional Cell Migration for Accelerated Wound Healing. *Chem. Eng. J.* 424, 130563. doi:10.1016/j.cej.2021.130563

Yadav, C., Saini, A., Zhang, W., You, X., Chauhan, I., Mohanty, P., et al. (2021). Plant-based Nanocellulose: A Review of Routine and Recent Preparation Methods with Current Progress in its Applications as Rheology Modifier and 3D Bioprinting. *Int. J. Biol. Macromol.* 166, 1586–1616. doi:10.1016/j.ijbiomac.2020.11.038

Zhang, F., Li, Y., Cai, H., Liu, Q., and Tong, G. (2020). Processing Nanocellulose Foam into High-Performance Membranes for Harvesting Energy from Nature. *Carbohydr. Polym.* 241, 116253. doi:10.1016/j.carbpol.2020.116253

Zhou, J., Chen, Y., Zhang, Y., Sun, S., Ullah, M. W., and Xu, W. (2021). Biotransformation of Nylon-6,6 Hydrolysate to Bacterial Cellulose. *Green Chem.* 23, 7805–7815. doi:10.1039/D1GC02129J

Conflict of Interest: MWU and GY hold patents related to cellulose material. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Ullah, Ul-Islam, Wahid and Yang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.