COX-2-765G>C Polymorphism Increases the Risk of Cancer: A Meta-Analysis

Xiao-feng Wang1,*, Ming-zhu Huang1,*, Xiao-wei Zhang1, Rui-xi Hua2, Wei-jian Guo1*

1 Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China, 2Department of Medical Oncology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China

Abstract

Background: Chronic inflammation has been regarded as an important mechanism in carcinogenesis. Inflammation-associated genetic variants have been highly associated with cancer risk. Polymorphisms in the gene cyclooxygenase-2 (COX-2), a pro-inflammation factor, have been suggested to alter the risk of multiple tumors, but the findings of various studies are not consistent.

Methods: A literature search through February 2013 was performed using PubMed, EMBASE, and CNKI databases. We used odds ratios (ORs) with confidence intervals (CIs) of 95% to assess the strength of the association between the COX-2-765G>C polymorphism and cancer risk in a random-effect model. We also assessed heterogeneity and publication bias.

Results: In total, 65 articles with 29,487 cancer cases and 39,212 non-cancer controls were included in this meta-analysis. The pooled OR (95% CIs) in the co-dominant model (GC vs. GG) was 1.11 (1.02–1.22), and in the dominant model (CC vs. GG), the pooled OR was 1.12 (1.02–1.23). In the subgroup analysis, stratified by cancer type and race, significant associations were found between the 765C allele and higher risk for gastric cancer, leukemia, pancreatic cancer, and cancer in the Asian population.

Conclusion: In summary, the COX-2-765 C allele was related to increased cancer susceptibility, especially gastric cancer and cancer in the Asian population.

Citation: Wang X-f, Huang M-z, Zhang X-w, Hua R-x, Guo W-j (2013) COX-2-765G>C Polymorphism Increases the Risk of Cancer: A Meta-Analysis. PLoS ONE 8(9): e73213. doi:10.1371/journal.pone.0073213

Received June 5, 2013; Accepted July 18, 2013; Published September 4, 2013

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: guoweijian0001@163.com

These authors contributed equally to this work.

Introduction

Cancer is a complicated disease resulting from the combined effect of genetic susceptibility and external elements such as lifestyle and inflammation [1,2]. The role of inflammation in carcinogenesis is a pivotal issue. Studies have demonstrated that inflammation-associated molecules are associated with a majority of cancer types, and these molecules are activated by various elements related to environment and lifestyle [3]. Signs of inflammation, including cytokines, chemokines, and immune cells, have been identified in many precancerous and cancerous tissues [4]. Several models have typically demonstrated that inflammation induces certain cancers: chronic intestinal inflammation has been associated with colon cancer; Helicobacter pylori (HP) with gastric cancer; human papilloma virus (HPV) infection with cervical carcinoma; and hepatitis B virus (HBV) infection with hepatocellular carcinoma [5-8]. Chronic inflammation of the colon (e.g., ulcerative colitis) markedly increases the risk of developing colon cancer [9]. The persistent presence of pathogenic microorganisms causes chronic inflammation that raises the likelihood of some cancers [10].

Cyclooxygenase-2 (COX-2), known as prostaglandin-endoperoxide synthase 2 (PTGS2), is a rate-limiting enzyme produced during the production of prostaglandins, and prostaglandins play an important role in inflammation, tumor progression, and metastasis [11]. COX-2 is often undetectable in normal tissue, whereas in tumor tissue specimens its expression is observably higher [12]. It has been reported that COX-2 overexpression contributes to carcinogenesis by increasing cell proliferation, suppressing apoptosis, enhancing invasiveness, and inducing chronic activation of immune responses [13,14].

Genetic variants may affect the expression of COX-2, and the underlying mechanism is considered to occur through self-regulated transcriptional activity resulting from variations in the capability of its promoter region to bind with certain nuclear proteins [15]. The single-nucleotide polymorphism (SNP) COX-2-765G>C (rs20417) is a functional, extensively studied polymorphism that features guanine (G) converting to cytosine (C) at position-765 bp of the promoter region, altering the transcription activity of the COX-2 gene. Several studies have demonstrated the COX-2-765 G>C polymorphism to be associated with increased risk of human cancers such as gastric cancer, colorectal cancer,
prostate cancer, breast cancer, and others [16–18]. However, in other studies, the COX-2-765 C allele was not observed to be associated with cancer risk [19]. To further ascertain the relationship between COX-2-765 G>C and cancer risk, several further meta-analyses were performed, but regrettably, the results among studies have varied for different cancer types [20–22]. Recently, additional studies of the COX-2-765 G>C polymorphism in several cancer types have been reported; therefore, we conducted this meta-analysis to synthesize the results of these studies and to establish a more durable conclusion.

Methods

Publication Search

A systematic literature search through February 12, 2013, was performed using the databases of PubMed and EMBASE and searching for the following terms: (cyclooxygenase-2 or COX-2 or PTGS2) and (polymorphism or polymorphisms or variant or variants or genotype) and (cancer or carcinoma or neoplasm). To expand our investigation, we also searched China National Knowledge Infrastructure (CNKI) database using the following terms in Chinese: COX-2, cancer risk, and polymorphism. References for these articles and eligible literature from review articles were also collected.

Inclusion and Exclusion Criteria and Data Extraction

Article selection for the meta-analysis used the following inclusion criteria: 1) information on the evaluation of COX-2-765G>C (rs20417) polymorphism and cancer risk; 2) case-controlled study; 3) human subjects; and 4) sufficient genotype data to calculate the odds ratios (ORs) with 95% confidence intervals (CIs). When the same or overlapping populations were included in several publications, the studies with larger sample size were selected. When pertinent data were not included or data presented were unclear, we contacted the authors to collect more data or to clarify the study results. Exclusion criteria were the following: 1) no controls; 2) overlapping study populations; 3) not enough pertinent data; and 4) departure from the Hardy-Weinberg equilibrium (HWE) method in control subjects.

The following data were extracted from all eligible publications: the first author, publication year, cancer type, country and race of the study population, control source (population-based (PB), hospital-based (HB) and family-based (FB)), total number of cases and controls studied, number of cases and controls with the wild-type, heterozygous, and homozygous genotypes, and with the minor allele frequency (MAF). Ethnic subgroups were categorized as Caucasian, Asian, American, and African. For case-control studies with subjects of different races, data were extracted separately for each ethnic group whenever possible. When a study did not include detailed genotypes of each ethnic group, or if it was difficult to discriminate the ethnicity of participants according to the data presented, the study was termed “mixed”. If the study was performed in different counties or regions and the subgroups were indistinguishable in the report, the study was termed “ multicenter”. All data were independently extracted by two investigators according to these selection criteria. Disagreement was resolved by discussion.

Statistical Methods

We utilized odds ratios (ORs) with 95% (confidence intervals) CIs to assess the strength of association between the COX-2-765G>C polymorphism and cancer risk. The pooled ORs with 95% CIs were calculated in a co-dominant model (variant homozygote vs. heterozygote) and a dominant model (variant homozygote + heterozygote vs. wild-type homozygote). Subgroup analyses were stratified by ethnicity and cancer type.

We used the goodness-of-fit χ^2 test to evaluate HWE for control subjects in each study, and we considered $P<0.05$ to representative.
Table 1. Main characteristics of studies involved in this meta-analysis for an association between COX-2-765 G>C polymorphism and cancer risk.

First author	Year	Cancer type	Country	Race	Study design	Genotype method	Case	Control	MAF of controls	HWE(P)
Gao	2007	Breast	China	Asian	PB	PCR-RFLP	601	643	0.05	0.70
Cox	2007	Breast	America	mixed	PB	PCR-RFLP	1243	1715	0.17	0.58
Piranda	2010	Breast	Brazilian	American	HB	PCR-RFLP	308	264	0.29	0.21
Dossus	2010	Breast	Multicenter	mixed	PB	PCR-RFLP	6254	8092	0.84	0.13
Tan	2007	Colorectal carcinoma	China	Asian	PB	PCR-RFLP	1000	1300	0.02	0.37
Hamajima	2001	Colorectal carcinoma	Japan	Asian	HB	PCR-CTPP	148	241	0.02	0.70
Xing	2008	Colorectal carcinoma	China	Asian	HB	PCR-RFLP	137	199	0.08	0.84
Koh	2004	Colorectal carcinoma	Singapore	Asian	PB	PCR-RFLP	310	1177	0.05	0.43
Iglesias	2009	Colorectal carcinoma	Spain	Caucasian	HB	PCR-RFLP	284	123	0.21	0.48
Gong	2009	Colorectal carcinoma	America	American	PB	PCR-RFLP	162	211	0.23	0.67
Wang	2012	Colorectal carcinoma	Multicenter	mixed	FB	PCR-RFLP	305	359	0.18	0.49
Daraei	2012	Colorectal carcinoma	Iran	Caucasian	PB	PCR-RFLP	110	120	0.32	0.20
Cox	2004	Colorectal carcinoma	Spain	Caucasian	HB	PCR-RFLP	220	257	0.19	0.73
Hoff	2009	Colorectal carcinoma	Netherlands	Caucasian	HB	PCR-RFLP	326	369	0.17	0.26
Andersen	2009	Colorectal carcinoma	Denmark	Caucasian	PB	QPCR²	359	765	0.14	0.61
Pereira	2010	Colorectal carcinoma	Portugal	Caucasian	HB	PCR-RFLP	117	256	0.19	0.37
Thompson	2009	Colorectal carcinoma	America	American	PB	PCR-RFLP	421	479	0.16	0.29
Ulrich	2005	Colorectal adenoma	America	American	PB	PCR-RFLP	494	584	0.17	0.37
Ueda	2008	Colorectal adenoma	Japan	Asian	PB	PCR-RFLP	455	1051	0.03	0.32
Gunter	2006	Colorectal adenoma	America	American	HB	PCR-RFLP	210	196	0.15	0.46
Kristinsson	2009	Esophageal adenoma	Netherlands	Caucasian	PB	PCR-RFLP	222	236	0.18	0.47
Upadhyay	2009	Esophageal adenoma	India	Asian	HB	PCR-RFLP	174	216	0.18	0.09
Zhang	2005	Esophageal adenoma	China	Asian	HB	PCR-RFLP	1026	1270	0.02	0.43
Moons	2007	Esophageal adenoma	Netherlands	Caucasian	PB	PCR-RFLP	140	495	0.12	0.24
Bye	2011	Esophageal adenoma	South Africa	African	PB	Taqman	347	462	0.51	0.94
Bye	2011	Esophageal adenoma	South Africa	mixed	PB	Taqman	190	422	0.32	0.91
Shin	2012	Gastric	Korea	Asian	HB	PCR-RFLP	100	100	0.05	0.60
Li	2012	Gastric	China	Asian	PB	PCR-RFLP	296	319	0.07	0.62
Hou	2007	Gastric	Poland	Caucasian	PB	PCR-RFLP	290	409	0.16	0.90
Liu	2006	Gastric	China	Asian	PB	PCR-DHPLC	247	427	0.05	0.27
Tang	2009	Gastric	China	Asian	PB	PCR-RFLP	100	105	0.16	0.11
Zhang	2011	Gastric	China	Asian	PB	PCR-RFLP	357	985	0.02	0.46
Sitarz	2008	Gastric	Netherlands	Caucasian	PB	PCR-sequence	241	100	0.25	0.14
Pereira	2006	Gastric	Portugal	Caucasian	HB	PCR-RFLP	73	210	0.22	0.28
Saxena	2008	Gastric	India	Asian	HB	PCR-RFLP	62	241	0.16	0.42
Chang	2012	HCC¹	China	Asian	HB	PCR-RFLP	298	298	0.08	0.13
He	2012	HCC	China	Asian	HB	PCR-RFLP	300	300	0.07	0.59
significant departure from HWE [23]. The heterogeneity assumption was verified using the χ²-based Q-test. Q-test results of P ≥ 0.05 suggested a lack of heterogeneity among studies, so the pooled OR of all studies was calculated using the fixed-effect model based on the Mantel–Haenszel method. Otherwise, we used the random-effect model, based on the DerSimonian–Laird method, which provides a larger pool of 95% CIs from studies differing among themselves [24,25].

We also conducted a sensitivity analysis by excluding each study, one at a time, and recalculating the ORs and 95% CIs to assess the effects of each study on the pooled risk of cancer [26].

Then we performed an estimate of potential publication bias using the funnel plot, in which the standard error of log (OR) of every study was plotted against its log (OR) [27], and an asymmetric plot indicated a potential publication bias. We assessed funnel-plot asymmetry using Egger’s linear regression test, a linear regression method of evaluating funnel plot asymmetry on the natural logarithm scale of the OR [28]. The significance of the intercept was determined using the t-test suggested by Egger, and p ≥ 0.05 was considered representative of statistically significant publication bias [29,30]. In cases of publication bias, the Duval and Tweedie nonparametric “trim and fill.” method was performed to adjust for it [31]. All of the statistical tests were performed using STATA version 10.0 (Stata Corporation, College Station, TX).

Results

Eligible Studies Characteristics

A total of 579 publications from the MEDLINE, EMBASE, and CNKI databases were reviewed using the specified key words.

Table 1. Cont.

First author	Year	Cancer type	Country	Race	Study design	Genotype method	Case	Control	MAF² of controls	HWE¹(P)
Peters	2009	HNC	Netherlands	Caucasian	HB	PCR-RFLP	428	433	0.14	0.12
Ben	2009	HNC¹²	Tunisia	Caucasian	HB	PCR-RFLP	180	169	0.13	0.93
Mittal	2010	HNC	India	Asian	HB	PCR-RFLP	176	96	0.32	0.08
Chiang	2008	HNC	China	Asian	HB	PCR-RFLP	178	205	0.10	0.13
Wang	2010	Leukemia	China	Asian	HB	PCR-RFLP	266	266	0.06	0.30
Zheng	2011	Leukemia	China	Asian	PB	PCR-RFLP	446	725	0.02	0.56
Coskunpinar	2011	lung	Turkey	Caucasian	HB	PCR-RFLP	231	118	0.50	0.20
Liu	2010	lung	China	Asian	HB	QPCR	358	716	0.07	0.06
Campa	2004	lung	Norway	Caucasian	PB	PCR-RFLP	250	214	0.10	0.19
Monroy	2011	Lymphoma	America	American	HB	PCR-RFLP	100	100	0.87	0.48
Hoefl	2008	Lymphoma	Germany	Caucasian	PB	PCR-RFLP	668	661	0.15	0.18
Chang	2009	Lymphoma	America	American	PB	PCR-RFLP	454	354	0.19	0.39
Agachan	2010	Ovarian	Turkey	Caucasian	HB	PCR-RFLP	57	111	0.32	0.38
Pinheiro	2010	Ovarian	Multicenter	mixed	PB	PCR-RFLP	1264	1756	0.17	0.26
Zhao	2009	Pancreatic	China	Asian	PB	PCR-RFLP	393	786	0.02	0.59
Xu	2008	Pancreatic	China	Asian	HB	PCR-RFLP	283	566	0.02	0.61
Cheng	2007	Prostate	America	African	HB	PCR-RFLP	89	88	0.35	0.61
Cheng	2007	Prostate	America	Caucasian	HB	PCR-RFLP	416	417	0.16	0.98
Murad	2009	Prostate	UK	Caucasian	PB	PCR-RFLP	1592	3028	0.16	0.06
Catsburg	2012	Prostate	America	American	PB	PCR-RFLP	1431	756	0.21	0.21
Wu	2011	Prostate	China	Asian	HB	PCR-RFLP	218	436	0.08	0.06
Joshi	2012	Prostate	America	American	PB	PCR-RFLP	935	756	0.21	0.21
Panguluri	2004	Prostate	Nigeria	African	PB	Pyrosequencing	146	108	0.14	0.12
BalsiFeresi	2010	Prostate	Italy	Caucasian	HB	PCR-RFLP	50	125	0.30	0.19
Vogel	2007	Skin	Denmark	Caucasian	PB	QPCR	304	315	0.12	0.93
Lira	2007	Skin	Italy	Caucasian	PB	PCR-RFLP	105	129	0.18	0.59
Cocos	2012	Skin	Romania	Caucasian	HB	PCR-RFLP	174	80	0.22	0.44
Pandey	2010	Cervical	India	Asian	HB	PCR-RFLP	200	200	0.10	0.09
Schwartzbaum	2005	Glioblastoma	Sweden	Caucasian	PB	PCR-DASH	108	399	0.15	0.65
Biramijamal	2011	Colorectal&	Iran	Caucasian	PB	PCR-RFLP	60	103	0.18	0.26

¹HCC: hepatocellular carcinoma; ²HNC: head and neck cancer. ³MAF: minor allele frequency; ⁴HWE: Hardy-Weinberg equilibrium. ⁵QPCR: quantitative PCR.
doi:10.1371/journal.pone.0073213.t001

1HCC: hepatocellular carcinoma; 2HNC: head and neck cancer. 3MAF: minor allele frequency; 4HWE: Hardy-Weinberg equilibrium.
After a review of titles and abstracts, 494 publications were excluded according to our criteria. From the remaining 85 studies on COX-2-765G>C polymorphism and susceptibility to cancer that met our inclusion criteria, we eliminated 5 publications due to insufficient genotype data, 11 due to deviation from Hardy-Weinberg equilibrium in controls, and 4 due to overlap with other studies. Finally, 65 articles, including with 29,487 cancer cases and 39,212 non-cancer controls, were included in this meta-analysis. A flow chart of the study selection procedure is shown in Fig. 1.

The main characteristics of the studies are listed in Table 1. The respective studies focused on the following cancer types: 13 studies investigated colorectal carcinoma [17,32–43], 9 gastric cancer [16,44–51], 8 prostate cancer [18,52–57], 6 esophageal cancer [58–62], 3 colorectal adenoma [63–65], 4 breast cancer [19,70–72], 3 skin cancer [79–81], 2 pancreatic cancer [84,85], and 2 ovarian cancer [86,87].

The main results of the meta-analysis are listed in Table 2. The association between COX-2-765 G>C polymorphism and cancer risk was estimated in two comparison models: a co-dominant model (GC vs. GG) and a dominant model ((CC+GC) vs. GG). The analysis used a random pooling model because the heterogeneity among studies was significant in the co-dominant model and in the dominant model (p<0.001). In the co-dominant model, the overall pooled effect indicated that the-765 G allele was associated with a significantly increased overall cancer susceptibility (OR = 1.12, 95% CI = 1.02–1.23, P = 0.01). In stratification analyses by cancer type and ethnicity, the association was maintained in gastric cancer (OR = 1.53, 95% CI = 1.04–2.24, p = 0.03), leukemia (OR = 1.86, 95% CI = 1.32–2.62, P<0.01), and cancer in the Asian population (OR = 1.42, 95% CI = 1.15–1.76, p<0.01) (Fig. 2A and B). Notably, the association between the COX-2-765 C allele and decreased cancer risk was found in the Caucasian population (OR = 0.91, 95% CI = 0.83–1.00, P = 0.04). However, this difference may have been the result of different ethnic subjects and bias from different genotyping methods. In the dominant model, we found significant associations of this SNP with cancer risk in overall cancer susceptibility (OR = 1.12, 95% CI = 1.02–1.23, P = 0.01), gastric cancer (OR = 1.60, 95% CI = 1.02–2.50, P = 0.04), leukemia (OR = 0.91, 95% CI = 1.36–2.69, P<0.01), and pancreatic cancer (OR = 2.51, 95% CI = 1.73–3.66, P<0.01), and

Table 2. Quantitative synthesis of the associations between COX-2-765 G>C polymorphism and cancer risk in two models.

Ethnicity	No of studies	Cancer type	No of studies	Cancer type	No of studies	Cancer type
Asian	25	Gastric	9	Leukemia	2	Prostate
						Esophageal
						HNC
						Breast
						Colorectal adenoma
						Skin
						Lung
						Lymphoma
						HCC
						Ovarian
						Other*
Caucasian	25	Gastric	9	Leukemia	2	Prostate
						Esophageal
						HNC
						Breast
						Colorectal adenoma
						Skin
						Lung
						Lymphoma
						HCC
						Ovarian
						Other*
African	3	Gastric	9	Leukemia	2	Prostate
						Esophageal
						HNC
						Breast
						Colorectal adenoma
						Skin
						Lung
						Lymphoma
						HCC
						Ovarian
						Other*
American	9	Gastric	9	Leukemia	2	Prostate
						Esophageal
						HNC
						Breast
						Colorectal adenoma
						Skin
						Lung
						Lymphoma
						HCC
						Ovarian
						Other*
Mixed	5	Gastric	9	Leukemia	2	Prostate
						Esophageal
						HNC
						Breast
						Colorectal adenoma
						Skin
						Lung
						Lymphoma
						HCC
						Ovarian
						Other*

*Cancers studied in only one article were combined and termed “other.”

doi:10.1371/journal.pone.0073213.t002
cancer in the Asian population (OR = 1.42, 95% CI = 1.15–1.76, P<0.01) (Fig. 2C and D).

Heterogeneity, Sensitivity Analysis, and Publication Bias

Heterogeneity was determined using the χ²-based Q-test, and heterogeneity was found in two pooling models (P<0.01 in both models), so the random model was utilized to generate a larger pool of studies with 95% CIs. We performed the sensitivity analysis by assessing the influence of an individual study on the overall OR. No individual study affected the pooled OR markedly, since omission of any single study made no substantial difference. Also, we conducted Begger’s funnel plot and Egger’s test to assess the publication bias of all eligible literature. The shapes of the funnel plot seemed symmetrical in two comparison models, and statistical results from Egger’s test still did not show publication bias (p = 0.36 in co-dominant model and p = 0.34 in dominant model). These findings demonstrated that publication bias, if any, did not significantly affect the results of our meta-analysis for the association between COX-2-765G>C and cancer risk.

Discussion

COX-2-765G>C is a functional polymorphism, located at 765 bp upstream (-765 bp) from the transcription start site. It changes a putative stimulatory protein (Sp1) binding site in the promoter of COX-2 between -766 and -761 bp [93], but it creates an E2 promoter factor (E2F) binding site, leading to high transcription activity, which may be the mechanism of COX-2-765G>C polymorphism increasing cancer risk [15].

The current meta-analysis explored the role of COX-2-765G>C polymorphism in the susceptibility of cancer among 65 articles with 29487 cancer cases and 39212 non-cancer controls. We found that C-allele carriers had an increased risk of cancer, especially gastric cancer, leukemia, and pancreatic cancer in the Asian population (OR = 1.42, 95% CI = 1.15–1.76, P<0.01) (Fig. 2C and D).
carriers. Our results show that COX-2-765 C carriers are at significantly increased risk for gastric cancer, leukemia, and pancreatic cancer but not other cancer types. One possible explanation is that different types of cancer have various mechanisms of carcinogenesis. Additionally, it is possible that the significant difference effects are casual, because studies with small sample sizes have deficient statistical power to disclose a slight effect. Interestingly, our meta-analysis revealed an association between the COX-2-765 C allele and decreased cancer risk in Caucasian population. In this Caucasian subgroup, a large study sample with 6254 cases and 8092 controls (two thirds of all subjects between the COX-2-765 C allele and decreased cancer risk in effect. Interestingly, our meta-analysis revealed an association sample sizes have deficient statistical power to disclose a slight. Additionally, this extremely high MAF value may have resulted from bias induced by experimental procedure and methods. Our study differed from previous meta-analyses in the subgroup analysis of gastric and colorectal cancer. Zhu reported a significant association between-765GC polymorphisms and colorectal carcinoma, but not in gastric cancer, contrary to the results of our present study [94]. In other studies, researchers analyzed the role of COX-2-765GC polymorphism in diverse cancer types. No convincing association between the C allele and risk of prostate cancer [22,93], breast cancer [21], and colorectal cancer [96] respectively, were revealed, but a significant association was reported between C allele and risks for gastric cancer [97] and esophageal cancer [98]. However, the number of subjects included in previous studies was not as large, and our meta-analysis includes the latest studies. Furthermore, we analyzed at least twice as many studies as meta-analyses published previously [94]. In summary, our findings provide the most current and powerful conclusion among analyses of this type.

Limitations encountered in this analysis should be considered as these results are interpreted. First, the CC genotype frequency in many studies was zero, so we assumed a co-dominant model and a dominant model. For some polymorphisms, this model might not be the most suitable for a clear assessment of the gene-disease interaction. Secondly, the results of the subgroup stratification analysis must be interpreted with caution because of the limited number of published studies. For example, only two reports for leukemia and pancreatic cancer were included. Thirdly, there is marked heterogeneity among studies in overall and some subgroup analyses, which may derive from ethnic groups and types of cancer, may have skewed our results. Finally, this systematic review was based on unadjusted data, as the genotype information stratified for the main confounding variables was not available in the original papers and the confounding factors addressed across the different studies varied. Adjusted estimates might provide more precise and stronger associations, as they reduced the impact of possible confounding factors. To determine a precise association between the COX-2-765GC and cancer genetic susceptibility, it is essential to design and perform scientific and rigorous studies with large sample sizes in the future.

Although further research is needed, this present meta-analysis validates a significant association between COX-2-765GC polymorphism and genetic cancer susceptibility, especially in gastric cancer, leukemia, pancreatic cancer, and cancer in the Asian population. If confirmed in future studies, this genotype may be used by clinicians to select individuals for early diagnosis and treatments.

Author Contributions
Conceived and designed the experiments: WG. Wrote the paper: XW MH. Extracted and analyzed the data: XW MH. Polished the English writing: NZ RH.

References
1. Yaghhoobi M, Rakhshani N, Sadr F, Bjarichi R, Joshaghani Y, et al. (2004) Hereditary risk factors for the development of gastric cancer in younger patients. BMC Gastroenterol 4: 28.
2. Berisha J, Gler M, Pool-Zobel BL. (2004) Colon cancer risk factors from nutrition. Anal Bioanal Chem 378: 737–743.
3. Sethi G, Shamgunam MK, Ramachandran L, Kumar AP, Tergaonkar V (2012) Multifaceted link between cancer and inflammation. Biosci Rep 32: 1–15.
4. Mantovani A (2005) Inflammation by remote control. Nature 435: 752–756.
5. Robin DC, Shaker A, Levin MS (2012) Chronic intestinal inflammation: inflammatory bowel disease and colitis-associated colon cancer. Front Immunol 3: 107.
6. Araujo A, Reis HM, Feitelson MA (2013) Pathogenic mechanisms in HBV- and HCV-associated hepatocellular carcinoma. Nat Rev Cancer 13: 123–135.
7. Haghshenas M, Golini-Moghaddam T, Rafiri A, Emadriani O, Shykhpour A, et al. (2013) Prevalence and type distribution of high-risk human papillomavirus in patients with cervical cancer: a population-based study. Infect Agent Cancer 9: 20.
8. Hardbower DM, de Sahler T, Chaturvedi R, Wilson KT (2013) Chronic inflammation and oxidative stress: The smoking gun for Helicobacter pylori-induced gastric cancer? Gut Microbes 4: 573–593.
9. Elkon B, Helmock C, Zack M, Adami HO (1990) Ulcerative colitis and colorectal cancer. A population-based study. N Engl J Med 323: 1228–1233.
10. Mason DY, Henn KV, Nie D (2007) Cylooxygenases, prostanoids, and tumor progression. Cancer Metastasis Rev 26: 525–534.
11. Cao Y, Prescott SM (2002) Many actions of cyclooxygenase-2 in cellular dynamics and in cancer. J Cell Physiol 190: 279–296.
12. O’Byrne KJ, Dalglish AG (2001) Chronic immune activation and inflammation as the cause of malignancy. Br J Cancer 85: 473–483.
13. Tsuj i M, Kavano s A, Tsuii S, Sawaoka H, Hori M, et al. (1998) Cylooxygenase regulates angiogenesis induced by colon cancer cells. Cell 93: 703–716.
14. Szczeklik W, Sanak M, Szczeklik A (2004) Functional effects and gender association of COX-2 gene polymorphism G-765C in bronchial asthma. J Allergy Clin Immunol 114: 248–253.
15. Szczeklik W, Sanak M, Szczeklik A (2004) Functional effects and gender association of COX-2 gene polymorphism G-765C in bronchial asthma. J Allergy Clin Immunol 114: 248–253.
16. Zhang XM, Zhong R, Liu L, Wang Y, Yuan JX, et al. (2011) Smoking and COX-2 functional polymorphisms interact to increase the risk of gastric adenocarcinoma in Chinese population. PLoS One 6: e21894.
17. Andersen V, Ostergaard M, Christensen J, Overvad K, Tjønneland A, et al. (2009) Polymorphisms in the xenobiotic transporter Multidrug Resistance 1 (MDR1) and interaction with meat intake in relation to risk of colorectal cancer in a Danish prospective case-control study. BMC Cancer 9: 407.
18. Balistreri CR, Caruso C, Carruba G, Miceli V, Campisi I, et al. (2010) A pilot study on prostate cancer risk and pro-inflammatory genotypes: pathophysiology and therapeutic implications. Curr Pharm Des 16: 718–724.
19. Cox DG, Buring J, Hankinson SE, Hunter DJ (2007) A polymorphism in the 3' untranslated region of the gene encoding prostaglandin endoperoxide synthase 2 is not associated with an increase in breast cancer risk: a nested case-control study. Breast Cancer Res 9: R3.
20. Liu JL, Liang Y, Wang ZN, Zhou X, Xing LL (2010) Cyclooxygenase-2 polymorphisms and susceptibility to gastric carcinoma: a meta-analysis. World J Gastroenterol 16: 5510–5517.
21. Yu KD, Chen AX, Yang C, Quo LX, Fan L, et al. (2010) Current evidence on the relationship between polymorphisms in the COX-2 gene and breast cancer risk: a meta-analysis. Breast Cancer Res Treat 122: 251–257.
22. Dong J, Dai J, Zhang M, Hu Z, Shen H (2010) Potentially functional COX-2-1190G>A polymorphism increases the risk of digestive system cancers: a meta-analysis. J Gastroenterol Hepatol 25: 1042–1050.
23. Song Q, Zhu B, Hui W, Cheng L, Gong H, et al. (2012) A common SMAD7 variant is associated with risk of colorectal cancer: evidence from a case-control study and a meta-analysis. PLoS One 7: e33318.
24. Ma Y, Xu YC, Tang L, Zhang Z, Wang J, et al. (2012) Cytokine-induced killer (CIK) cell therapy for patients with hematopoietic carcinoma: efficacy and safety. Exp Hematol Oncol 1: 11.
25. Chen W, Zhong R, Ming J, Zou L, Zhu B, et al. (2012) The SLCA47 variant is associated with breast cancer risk: evidence from a case-control study and a meta-analysis. Breast Cancer Res Treat 136: 847–857.
26. Ke J, Zhong R, Zhang T, Liu L, Rui R, et al. (2013) Replication study in Chinese population and meta-analysis supports association of the 3p15.33 locus with lung cancer. PLoS One 8: e62485.
27. Wei G, Ni W, Chiao JW, Cai Z, Huang H, et al. (2011) A meta-analysis of CAG (cytarabine, aclacinomycin A, G-CSF) regimen for the treatment of 1029 patients with acute myeloid leukemia and myelodysplastic syndrome. J Hematol Oncol 4: 46.

28. Liu L, Yuan P, Liu L, Wu C, Zhang X, et al. (2011) A functional-777>C polymorphism in neprilysin (NRPX1) is associated with risk of breast cancer. Breast Cancer Res Treat 125: 479–487.

29. Egger M,Davey SG, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315: 629–634.

30. Duan J, Wu J, Cao Y, Wang Y, Zhong R, et al. (2011) A functional polymorphism (-1607 1G→2G) in the matrix metalloproteinase-1 promoter is associated with development and progression of lung cancer. Cancer 117: 5172–5181.

31. Duval S, Tweedie R (2000) Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biotometrics 36: 455–463.

32. Tan W, Wu J, Zhang X, Guo Y, Liu J, et al. (2007) Associations of functional polymorphisms in cyclooxygenase-2 and platelet 12-lipoxygenase with risk of occurrence and advanced disease status of colorectal cancer. Carcinogenesis 28: 2427–2433.

33. Xing LL, Wang ZN, Jiang L, Zhang Y, Xu YY, et al. (2008) Cyclooxygenase 2 polymorphism and colorectal cancer-765G>C variant modifies risk associated with smoking and body mass index. World J Gastroenterol 14: 1763–1789.

34. Koh WP, Yuan JM, van den Berg D, Lee HP, Yu MC (2004) Interaction between cyclooxygenase-2 gene polymorphism and dietary n-6 polyunsaturated fatty acids on colon cancer risk: The Singapore Chinese Health Study. Br J Cancer 90: 1760–1764.

35. Ignatius D, Neo N, Azocita MM, Schwartz SJ, Gonzalez-Aguillera JJ, et al. (2009) Effect of COX2-765G>C and c.3616A>G polymorphisms on the risk and survival of sporadic colorectal cancer. Cancer Causes Control 20: 1421–1429.

36. Gong Z, Bostick RM, Xie D, Hurley TG, Deng Z, et al. (2009) Genetic polymorphisms in the cyclooxygenase-1 and cyclooxygenase-2 genes and risk of colorectal adenoma. Int J Cancer 124: 647–654.

37. Wang J, Joshi AD, Corral R, Siegmund KD, Marchand LL, et al. (2012) Cyclooxygenase 2 polymorphisms, red meat and poultry intake, and colorectal cancer risk. Int J Cancer 130: 1898–1907.

38. Cheng I, Liu X, Plummer SJ, Krumroy LM, Casey G, et al. (2007) COX2 polymorphisms and colorectal cancer risk: a strategy for chemoprevention. Eur J Gastroenterol Hepatol 22: 607–613.

39. Daraei A, Salehi R, Mohamadhashem F (2012) PTGS2 (COX2)-765G allele frequency in healthy individuals, patients with colorectal cancer and adenoma. Gut Liver 6: 321–327.

40. Cox DG, Pontes C, Guino E, Navarro M, Osorio A, et al. (2004) Polymorphisms of cyclooxygenase-2 (COX2) and risk of colorectal cancer. Br J Cancer 91: 339–343.

41. Pereira C, Pimentel-Nunes P, Brandao C, Moreira-Dias L, Medeiros R, et al. (2012) Association of functional gene variants in the regulatory regions of COX-2 gene with risk of colorectal cancer. World J Gastroenterol 18: 4353–4361.

42. Hamajima N, Takezaki T, Matsuo K, Saito T, Inoue M, et al. (2001) Genotype frequencies of Cyclooxygenase 2 (COX2)-765G allele and colorectal cancer risk. Carcinogenesis 22: 1195AA–1195AA.

43. Hou L, Grillo P, Zhu ZZ, Lissowska J, Yeager M, et al. (2007) COX1 and COX2 polymorphisms-765G allele in patients with colorectal cancer. Eur J Cancer 43: 1423–1428.

44. Upadhyay R, Jain M, Kumar S, Ghoshal UC, Mittal B (2009) Functional polymorphisms of cyclooxygenase-2 (COX-2) gene and risk for esophageal squamous cell carcinoma. Mutat Res 663: 52–90.

45. Hou L, Wu J, Zhang X, Guo Y, Liu J, et al. (2007) Association of functional genetic variants in cyclooxygenase-2 and their association with risk of esophageal cancer. Gastroenterology 132: 1252–1256.

46. Mohammadshen F, Daraei A, Salehi R, Mohamadhashem F (2012) PTGS2 (COX2)-765G allele promoter variant reduces risk of colorectal adenoma among nonsmokers of nonsteroidal anti-inflammatory drugs. Cancer Epidemiol Biomarkers Prev 21: 1830–1836.

47. Ulrich CM, Whitton J, Yu JH, Sibert J, Sparks R, et al. (2005) PTGS2 (COX-2)-765G allele promoter variant reduces risk of colorectal adenoma among nonsmokers of nonsteroidal anti-inflammatory drugs. Cancer Epidemiol Biomarkers Prev 14: 646–649.

48. Urdan N, Marshar Y, Tajima O, Tabata S, Wakabayashi K, et al. (2008) Genetic polymorphisms of cyclooxygenase-2 and colorectal adenoma risk: the Self Defense Forces Health Study. Cancer Sci 99: 576–581.

49. Gunter MJ, Cazanii F, Landis S, Chansuk S, Sinha R, et al. (2006) Inflammation-related gene polymorphisms and colorectal adenoma. Cancer Epidemiol Biomarkers Prev 15: 1126–1131.

50. Peters WH, Lacko M, Te MR, Voogt AG, Oude OM, et al. (2009) COX-2 polymorphisms and the risk for head and neck cancer in white patients. Head Neck 31: 930–943.

51. Ben NH, Chahed K, Bouaouina O, Chouchane A, LPS (2009) PTGS2 (COX-2)-765G allele promoter polymorphism and risk with risk and lymph node metastases in patients with nasopharyngeal carcinoma. Mol Biol Rep 36: 193–200.

52. Mittal M, Kapov V, Tianhui NN, Dm DS (2010) Functional variants of COX-2 and risk of tobacco-related oral squamous cell carcinoma in high-risk Asian Indians. Oral Oncol 46: 622–626.

53. Murad A, Lewis SJ, Smith GD, Collin SM, Chen L, et al. (2009) PTGS2–899G>C and prostate cancer risk: a population-based nested case-control study (ProtecT) and a systematic review with meta-analysis. Prostate Cancer Prostatic Dia 12: 296–300.

54. Catasoc G, Joshi AD, Corral R, Lesinger JP, Koo J, et al. (2012) Polymorphisms in carciogin metabolism enzymes, fish intake, and risk of prostate cancer. Cancer Genetics 23: 1532–1539.

55. Wu HC, Chang CH, Ke HL, Chang WS, Cheng HN, et al. (2011) Association of COX-2 genotypes–765G allele polymorphisms with prostate cancer in taiwan. Anticancer Res 31: 225–229.

56. Joshi AD, Corral R, Catsoc G, Lesinger JP, Koo J, et al. (2012) Red meat and poultry, cooking practices, genetic susceptibility and risk of prostate cancer: results from a multiethnic case-control study. Cancer Genetics 33: 2108–2118.

57. Pangubhari RC, Long LO, Chen W, Wang S, Coulthab A, et al. (2004) COX-2 gene promoter haplotypes and prostate cancer risk. Carcinogenesis 25: 961–966.

58. Kristinsson JO, van Westerveld P, Te MR, Roelofs HM, Wobbes T, et al. (2009) Cyclooxygenase-2 polymorphisms and the risk of esophageal adenocarcinoma. World J Gastroenterol 15: 3493–3497.

59. Xing LL, Wang ZN, Jiang L, Zhang Y, Xu YY, et al. (2008) Cyclooxygenase 2 polymorphism and colorectal cancer-765G>C variant modifies risk associated with smoking and body mass index. World J Gastroenterol 14: 1763–1789.

60. Mohamadshen F, Daraei A, Salehi R, (2012) PTGS2 (COX2)-765G allele promoter variant reduces risk of colorectal adenoma among nonsmokers of nonsteroidal anti-inflammatory drugs. Cancer Epidemiol Biomarkers Prev 21: 1830–1836.
80. Cocos R, Schipor S, Nicolae I, Thomescu C, Raicu F (2012) Role of COX-2 activity and CRP levels in patients with non-melanoma skin cancer.-765G>C PTGS2 polymorphism and NMSC risk. Arch Dermatol Res 304: 335–342.
81. Vogel U, Christensen J, Wallin H, Friis S, Nexø BA, et al. (2007) Polymorphisms in COX-2, NSAID use and risk of basal cell carcinoma in a prospective study of Danes. Mutat Res 617: 138–146.
82. Wang CH, Wu KH, Peng CT, Wang RF, et al. (2010) Association study of cyclooxygenase 2 single nucleotide polymorphisms and childhood acute lymphoblastic leukemia in Taiwan. Anticancer Res 30: 3649–3653.
83. Zheng J, Chen S, Jiang L, You Y, Wu D, et al. (2011) Functional genetic variations of cyclooxygenase-2 and susceptibility to acute myeloid leukemia in a Chinese population. Eur J Haematol 87: 486–493.
84. Zhao D, Xu D, Zhang X, Wang L, Tan W, et al. (2009) Interaction of cyclooxygenase-2 variants and smoking in pancreatic cancer: a possible role of nucleophosmin. Gastroenterology 136: 1659–1668.
85. Xu DK, Zhang XM, Zhao P, Cai JC, Zhao D, et al. (2008) Association between single nucleotide polymorphisms in the promoter of cyclooxygenase COX-2 gene and hereditary susceptibility to pancreatic cancer. Zhonghua Yi Xue Za Zhi 88: 1961–1965.
86. Agachan CB, Attar R, Kahraman OT, Dalan AB, Iyibozkurt AC, et al. (2011) Cyclooxygenase-2 gene polymorphisms and epithelial ovarian carcinoma risk. Mol Biol Rep 38: 3481–3486.
87. Pinheiro SP, Gates MA, DeVivo I, Rosner BA, Tworoger SS, et al. (2010) Interaction between use of non-steroidal anti-inflammatory drugs and selected genetic polymorphisms in ovarian cancer risk. Int J Mol Epidemiol Genet 1: 320–331.
88. Chang WS, Yang MD, Tsai CW, Cheng LH, Jeng LB, et al. (2012) Association of cyclooxygenase 2 single-nucleotide polymorphisms and hepatocellular carcinoma in Taiwan. Chin J Physiol 55: 1–7.
89. He J, Zhang Q, Ren Z, Li Y, Li X, et al. (2012) Cyclooxygenase-2-765 G/C polymorphisms and susceptibility to hepatocellular liver cancer in Han Chinese population. Mol Biol Rep 39: 4163–4168.
90. Pandey S, Mittal RD, Srivastava M, Srivastava K, Mittal B (2010) Cyclooxygenase-2 gene polymorphisms and risk of cervical cancer in a North Indian population. Int J Gynecol Cancer 20: 625–630.
91. Schwartzbaum J, Ahlborn A, Loomis B, Brooks AJ, et al. (2005) Polymorphisms associated with asthma are inversely related to glioblastoma multiforme. Cancer Res 65: 6459–6465.
92. Biramjimal F, Basatvat S, Hossein-Nezhad A, Soltani MS, Akbari NK, et al. (2010) Association of COX-2 promoter polymorphism with gastrointestinal tract cancer in Iran. Biochem Genet 48: 915–923.
93. Papafili A, Hill MR, Brull DJ, McAnulty RJ, Marshall RP, et al. (2002) Common promoter variant in cyclooxygenase-2 represses gene expression: evidence of role in acute-phase inflammatory response. Arterioscler Thromb Vasc Biol 22: 1631–1636.
94. Zhu W, Wei BB, Shan X, Liu P, 2010-765G>C and 8473T>C polymorphisms of COX-2 and cancer risk: a meta-analysis based on 33 case-control studies. Mol Biol Rep 37: 277–288.
95. Zhang HT, Xu Y, Zhang ZH, Li L (2012) Meta-analysis of epidemiological studies demonstrates significant association of PTGS2 polymorphism rs689470 and no significant association of rs20417 with prostate cancer. Genet Mol Res 11: 1642–1650.
96. Cao H, Xu Z, Long H, Li QX, Li SL (2010) The-765C allele of the cyclooxygenase-2 gene as a potential risk factor of colorectal cancer: a meta-analysis. Tohoku J Exp Med 222: 13–21.
97. Pereira C, Medeiros RM, Dinis-Ribeiro MJ (2009) Cyclooxygenase polymorphisms in gastric and colorectal carcinogenesis: are conclusive results available? Eur J Gastroenterol Hepatol 21: 76–91.
98. Liang Y, Liu JL, Wu Y, Zhang ZY, Wu R (2011) Cyclooxygenase-2 polymorphisms and susceptibility to esophageal cancer: a meta-analysis. Tohoku J Exp Med 223: 137–144.