CHARACTERIZING JORDAN DERIVATIONS OF MATRIX RINGS THROUGH ZERO PRODUCTS

HOGER GHAHRAMANI

Abstract. Let $M_n(R)$ be the ring of all $n \times n$ matrices over a unital ring R, let M be a 2-torsion free unital $M_n(R)$-bimodule and let $D : M_n(R) \to M$ be an additive map. We prove that if $D(ab) + D(ba) + bD(a) = 0$ whenever $a, b \in M_n(R)$ are such that $ab = ba = 0$, then $D(a) = \delta(a) + aD(1)$, where $\delta : M_n(R) \to M$ is a derivation and $D(1)$ lies in the centre of M. It is also shown that D is a generalized derivation if and only if $D(ab) + D(ba) + bD(a) - aD(1)b - bD(1)a = 0$ whenever $ab = ba = 0$. We apply this results to provide that any (generalized) Jordan derivation from $M_n(R)$ into a 2-torsion free $M_n(R)$-bimodule (not necessarily unital) is a (generalized) derivation. Also, we show that if $\varphi : M_n(R) \to M_n(R)$ is an additive map satisfying $\varphi(ab + ba) = a\varphi(b) + \varphi(b)a$ (a, b $\in M_n(R)$), then $\varphi(a) = a\varphi(1)$ for all $a \in M_n(R)$, where $\varphi(1)$ lies in the centre of $M_n(R)$. By applying this result we obtain that every Jordan derivation of the trivial extension of $M_n(R)$ by $M_n(R)$ is a derivation.

1. Introduction

Throughout this paper all rings are associative. Let A be a unital ring and M be an A-bimodule. Recall that an additive map $D : A \to M$ is said to be a Jordan derivation (or generalized Jordan derivation) if $D(ab + ba) = D(a)b + aD(b) + D(b)a + bD(a)$ (or $D(ab + ba) = D(a)b + aD(b) + D(b)a + bD(a) - aD(1)b - bD(1)a$) for all $a, b \in A$. It is called a derivation (or generalized derivation) if $D(ab) = D(a)b + aD(b)$ (or $D(ab) = D(a)b + aD(b) - aD(1)b$) for all $a, b \in A$. Each map $I_m : A \to M$ given by $I_m(a) = am - ma$ ($m \in M$) is a derivation which will be called an inner derivation. Clearly, each (generalized) derivation is a (generalized) Jordan derivation. The converse is, in general, not true.

Remark 1. Let A be a unital ring, M be an A-bimodule and $D : A \to M$ be an additive mapping. Then the following are equivalent:

(i) D is a generalized derivation,
(ii) there is a derivation \(\delta : \mathcal{A} \rightarrow \mathcal{M} \) such that \(D(a) = \delta(a) + aD(1) \) for \(a \in \mathcal{A} \).

If (i) holds, define \(\delta : \mathcal{A} \rightarrow \mathcal{M} \) by \(\delta(a) = D(a) - aD(1) \). It is easily seen that \(\delta \) is a derivation, so (ii) obtain. Conversely, if (ii) holds we have

\[
D(ab) = \delta(ab) + abD(1) = \delta(a)b + a\delta(b) + abD(1)
\]
\[
= (D(a) - aD(1))b + a(D(b) - bD(1)) + abD(1)
\]
\[
= D(a)b + aD(b) - aD(1)b.
\]

Thus \(D \) is a generalized derivation.

The question under what conditions a map becomes a (generalized or Jordan) derivation attracted much attention of mathematicians. Herstein [11] proved that every Jordan derivation from a 2-torsion free prime ring into itself is a derivation. Brešar [6] showed that every Jordan derivation from a 2-torsion free semiprime ring into itself is a derivation. By a classical result of Jacobson and Rickart [6] every Jordan derivation on a full matrix ring over a 2-torsion free unital ring is a derivation and Alizadeh in [4] generalized this result. For more studies concerning Jordan derivations we refer the reader to [5, 10, 12, 16, 17, 18, 19] and the references therein. Also, there have been a number of papers concerning the study of conditions under which (generalized or Jordan) derivations of rings can be completely determined by the action on some sets of points [1, 2, 3, 7, 9, 13, 14, 15, 21, 22].

In this paper, following [3], we consider the subsequent condition on an additive map \(D \) from a ring \(\mathcal{A} \) into an \(\mathcal{A} \)-bimodule \(\mathcal{M} \):

\[
a, b \in \mathcal{A}, \quad ab = ba = 0 \Rightarrow D(a)b + aD(b) + D(b)a + bD(a) = 0. \quad (\ast)
\]

Our purpose is to investigate whether the condition (\ast) characterizes Jordan derivations. A similar question is concerned with generalized Jordan derivations. So we consider the following condition on an additive map \(D : \mathcal{A} \rightarrow \mathcal{M} \) to the context of generalized Jordan derivations, where \(\mathcal{A} \) is unital and \(\mathcal{M} \) is unital \(\mathcal{A} \)-bimodule:

\[
ab = ba = 0 \Rightarrow D(a)b + aD(b) + D(b)a + bD(a) - aD(1)b - bD(1)a = 0. \quad (\ast\ast)
\]

In Section 2 we prove that, in the case when \(\mathcal{A} \) is a full matrix ring \(M_n(\mathcal{R}) \) over a unital ring \(\mathcal{R} \) and \(\mathcal{M} \) is a 2-torsion free unital \(M_n(\mathcal{R}) \)-bimodule, conditions (\ast) and (\ast\ast) imply that \(D \) is of the form \(D(a) = \delta(a) + aD(1) \) for each \(a \in M_n(\mathcal{R}) \), where \(\delta : M_n(\mathcal{R}) \rightarrow \mathcal{M} \) is a derivation and \(1 \) is the identity matrix. In the case (\ast) we have \(D(1) \in Z(\mathcal{M}) \), where \(Z(\mathcal{M}) \) is the centre of \(\mathcal{M} \). In section 3 our previous results are applied to characterize (generalized) Jordan derivations from \(M_n(\mathcal{R}) \) into a 2-torsion free \(M_n(\mathcal{R}) \)-bimodule \(\mathcal{M} \) which is not necessarily a unital \(M_n(\mathcal{R}) \)-bimodule. Indeed, we show that each (generalized) Jordan derivation from \(M_n(\mathcal{R}) \) into \(\mathcal{M} \) is a (generalized) derivation. This generalizes the main
result of [4]. In section 4 we get some related results. In particular, by applying results from section 2 we obtain that if \(\varphi : M_n(\mathbb{R}) \rightarrow M_n(\mathbb{R}) \) is an additive map satisfying \(\varphi(ab + ba) = a\varphi(b) + \varphi(b)a \) for all \(a, b \in M_n(\mathbb{R}) \), then \(\varphi(a) = a\varphi(1) \) for all \(a \in M_n(\mathbb{R}) \), where \(\varphi(1) \in Z(M_n(\mathbb{R})) \). As applications of the above results, we show that every Jordan derivation of the trivial extension of \(M_n(\mathbb{R}) \) by \(M_n(\mathbb{R}) \) is a derivation.

Remark 2. Each of the following conditions on an additive map \(D : A \rightarrow M \) implies \((*)\), which have been considered by a number of authors (see, for instance, [13, 20]):

\[
\begin{align*}
& a, b \in A, \quad ab + ba = 0 \Rightarrow D(ab) + D(b)a + bD(a) = 0. \\
& a, b \in A, \quad ab = 0 \Rightarrow D(ab) + D(b)a + bD(a) = D(ab + ba).
\end{align*}
\]

Therefore, Theorem [2.1] still holds with each of the above conditions replaced by \((*)\).

The following notations will be used in this paper.

We shall denote the elements of \(M_n(\mathbb{R}) \) by bold letters and the identity matrix by \(\mathbf{1} \). Also, \(e_{ij} \) for \(1 \leq i, j \leq n \) is the matrix unit, \(a\mathbf{e}_{ij} \) is the matrix whose \((ij)\)th entry is \(a \) and zero elsewhere, where \(a \in \mathbb{R} \) and \(1 \leq i, j \leq n \), and \(a_{ij} \) is the \((ij)\)th entry of \(a \in M_n(\mathbb{R}) \).

2. **Characterizing Jordan derivations through zero products**

From this point up to the last section \(M_n(\mathbb{R}) \), for \(n \geq 2 \), is the ring of all \(n \times n \) matrices over a unital ring \(\mathbb{R} \) and \(M \) is a 2-torsion free unital \(M_n(\mathbb{R}) \)-bimodule. In this section, we discuss the additive maps from \(M_n(\mathbb{R}) \) into \(M \) satisfying \((*)\).

Theorem 2.1. Let \(D : M_n(\mathbb{R}) \rightarrow M \) be an additive map satisfying

\[
\text{ab} \in M_n(\mathbb{R}, \quad ab = ba = 0 \Rightarrow D(ab) + aD(b) + D(b)a + bD(a) = 0.}
\]

Then there exist a derivation \(\delta : M_n(\mathbb{R}) \rightarrow M \) such that \(D(a) = \delta(a) + aD(1) \) for each \(a \in M_n(\mathbb{R}) \) and \(D(1) \in Z(M) \).

Proof. Set \(e = e_11 \) and \(f = 1 - e_{11} = \sum_{j=2}^{n} e_{jj} \). Then \(e \) and \(f \) are nontrivial idempotents such that \(e + f = 1 \) and \(ef = fe = 0 \). Let \(m = eD(e)f - fD(e)e \).

Define \(\Delta : M_n(\mathbb{R}) \rightarrow M \) by \(\Delta(a) = D(a) - I_m(a) \). Then \(\Delta \) is an additive mapping which satisfies \((*)\). Moreover \(e\Delta(e)f = f\Delta(e)e = 0 \).

We complete the proof by checking some steps.

Step 1. \(\Delta(\text{eae}) = \text{e}\Delta(\text{eae})e \) and \(\Delta(\text{faf}) = \text{f}\Delta(\text{faf})f \) for all \(a \in M_n(\mathbb{R}) \).

Let \(a \in M_n(\mathbb{R}) \). Since \(e(\text{faf}) = (\text{faf})e = 0 \), we have

\[
\Delta(\text{e})\text{faf} + e\Delta(\text{faf}) + \Delta(\text{faf})e + \text{faf}\Delta(\text{e}) = 0.
\]

(2.1)
Multiplying this identity by e both on the left and on the right we see that $2e\Delta(faf)e = 0$ so $e\Delta(faf)e = 0$. Now, multiplying the Equation (2.1) from the left by e, from the right by f and by the fact that $e\Delta(e)f = 0$, we get $e\Delta(faf)f = 0$. Similarly, from Equation (2.1) and the fact that $f\Delta(e)e = 0$, we see that $f\Delta(faf)e = 0$. Therefore, from above equations we arrive at

$$\Delta(faf) = f\Delta(faf)f$$

We have $(eae)f = f(eae) = 0$. Thus

$$\Delta(eae)f + e\Delta(f) + \Delta(f)(eae) + f\Delta(eae) = 0. \quad (2.2)$$

By $\Delta(faf) = f\Delta(faf)f$, Equation (2.2) and using similar methods as above we obtain

$$\Delta(eae) = e\Delta(eae)e.$$

Step 2. $\Delta(efaf) = e\Delta(efaf)f$ for all $a \in M_n(\mathbb{R})$.

Let $a, b \in M_n(\mathbb{R})$. Since $(eaf)(ebf) = (ebf)(eaf) = 0$ we have

$$\Delta(efaf)ebf + eaf\Delta(ebf) + \Delta(ebf)efaf + ebf\Delta(efaf) = 0. \quad (2.3)$$

Multiplying Equation (2.3) by e both on the left and on the right, we get

$$e\Delta(efaf)ebf + ebf\Delta(efaf)e = 0. \quad (2.4)$$

Similarly, multiplying Equation (2.3) by f both on the left and on the right, we find

$$f\Delta(efaf)ebf + f\Delta(ebf)efaf = 0. \quad (2.5)$$

We have $(eae + eaebf)(f - ebf) = (f - ebf)(eae + eaebf) = 0$ and so

$$\Delta(eae + eaebf)(f - ebf) + (eae + eaebf)\Delta(f - ebf) + \Delta(f - ebf)(eae + eaebf) + (f - ebf)\Delta(eae + eaebf) = 0. \quad (2.6)$$

Multiplying Equation (2.6) by e both on the left and on the right and replacing a by e, from Step 1 and Equation (2.4), we get $e\Delta(ebf)e = 0$. Now multiplying Equation (2.6) by f both on the left and on the right, by Equation (2.5) and a similar arguments as above we find $f\Delta(ebf)f = 0$.

Multiplying Equation (2.6) by f on the left and by e on the right. By Step 1, we arrive at

$$f\Delta(eaebf)e = f\Delta(ebf)eae. \quad (2.7)$$

For any $a \in M_n(\mathbb{R})$ and $2 \leq j \leq n$, let $e_{1j}ae_{jj} = ae_{1j}$. By Equation (2.3) we have

$$f\Delta(ae_{1j})e_{1j} = f\Delta(e(ae_{1j})f)f = -f\Delta(ee_{1j}f)e(ae_{1j})f$$

$$= -f\Delta(ee_{1j}f)e(e_{11})e_{1j}.$$

Also from Equation (2.7) we see that

$$f\Delta(ee_{1j}f)e(ae_{11})e_{1j} = f\Delta(eae_{11}ee_{1j}f)e_{1j} = f\Delta(ae_{1j}e_{1j}).$$
So $f \Delta (ae_{1j})e_{1j} = -f \Delta (ae_{1j})e_{1j}$ and hence $f \Delta (ae_{1j})e_{1j} = 0$. Multiplying this identity on the right by e_{j1}, we get $f \Delta (ae_{1j})e = 0$. Therefore $f \Delta (ae_{11}ae_{jj})e = f \Delta (ae_{1j})e = 0$. So

$$f \Delta (eaf)e = f \Delta \left(\sum_{j=2}^{n} e_{1j}ae_{j} \right)e = \sum_{j=2}^{n} f \Delta (e_{1j}ae_{j})e = 0.$$

Now from previous equations it follows that

$$\Delta (eaf) = e \Delta (eaf)f.$$

Step 3. $\Delta (fae) = f \Delta (fae)e$ for all $a \in M_n(\mathbb{R})$.

Let $a, b \in M_n(\mathbb{R})$. Applying Δ to $(fae)(fbe) = (fbe)(fae) = 0$, we get

$$\Delta (fae)fbe + fae \Delta (fbe) + \Delta (fbe)fae + fbe \Delta (fae) = 0.
(2.8)$$

Multiplying Equation (2.8) by e both on the left and on the right, we get

$$e \Delta (fae)fbe + e \Delta (fbe)fae = 0.
(2.9)$$

Similarly, multiplying Equation (2.8) by f both on the left and on the right, we have

$$fae \Delta (fbe)f + fbe \Delta (fae)f = 0.
(2.10)$$

We have $(f + fae)(faebe - ebe) = (faebe - ebe)(f + fae) = 0$ and so

$$\Delta (f + fae)(faebe - ebe) + (f + fae)\Delta (faebe - ebe) + \Delta (faebe - ebe)(f + fae) + (faebe - ebe)\Delta (f + fae) = 0.
(2.11)$$

Multiplying Equation (2.11) by e both on the left and on the right and replacing b by e, from Step 1 and Equation (2.9), we get $e \Delta (fae)e = 0$. Now multiplying Equation (2.11) by f both on the left and on the right, by Equation (2.10) and a similar arguments as above we find $f \Delta (fae)f = 0$.

Multiplying Equation (2.11) by e on the left and by f on the right. By Step 1, we arrive at

$$e \Delta (faebe)f = ebe \Delta (fae)f.
(2.12)$$

For any $a \in M_n(\mathbb{R})$ and $2 \leq j \leq n$, let $e_{jj}ae_{11} = ae_{j1}$. By Equation (2.11), we have

$$e_{j1} \Delta (ae_{j1})f = fe_{j1}e \Delta (f(ae_{j1})e)f = -f(ae_{j1})e \Delta (fe_{j1}e)f = -e_{j1}e(ae_{11})e \Delta (fe_{j1}e)f.$$

Also from Equation (2.12) we see that

$$e_{j1}e(ae_{11})e \Delta (fe_{j1}e)f = e_{j1}e \Delta (fe_{j1}e(ae_{11})e)f = e_{j1} \Delta (ae_{j1})f.$$

So $e_{j1} \Delta (ae_{j1})f = -e_{j1} \Delta (ae_{j1})f$ and hence $e_{j1} \Delta (ae_{j1})f = 0$. Therefore

$$e \Delta (e_{jj}ae_{11})f = e \Delta (ae_{j1})f = 0.$$
So
\[e\Delta(fae)f = e\Delta(\sum_{j=2}^{n} e_{jj}ae_{11})f = \sum_{j=2}^{n} e\Delta(e_{jj}ae_{11})f = 0. \]

Now from previous equations it follows that
\[\Delta(fae) = f\Delta(fae)e. \]

Step 4.
\[e\Delta(eaebf)f = eae\Delta(ebf)f + e\Delta(eae)ebf - eaebf\Delta(f)f \]
and
\[e\Delta(eabf)f = e\Delta(eaf)fbf + eaf\Delta(fbf)f - eaf\Delta(f)fbf \]
for all \(a, b \in M_n(\mathbb{R}).\)

Let \(a, b \in M_n(\mathbb{R}).\) Multiplying Equation\(2.6\) by \(e\) on the left and by \(f\) on the right, from Step 1 and 2 we obtain
\[e\Delta(eaebf)f = eae\Delta(ebf)f + e\Delta(eae)ebf - eaebf\Delta(f)f. \]

Replacing \(a\) by \(e\) in above equation, we get
\[e\Delta(e)ebe = ebf\Delta(f)f \quad (2.13) \]

Since \((e + eaf)(fbf - eabf) = (fbf - eabf)(e + eaf) = 0, we have\n\[\Delta(e + eaf)(fbf - eabf) + (e + eaf)\Delta(fbf - eabf) \]
\[+ \Delta(fbf - eabf)(e + eaf) + (fbf - eabf)\Delta(e + eaf) = 0 \]

Multiplying this identity by \(e\) on the left and by \(f\) on the right, from Equation\(2.13\) and Step 1 and 2 we arrive at
\[e\Delta(eabf)f = e\Delta(eaf)fbf + eaf\Delta(fbf)f - eaf\Delta(f)fbf. \]

Step 5.
\[f\Delta(faebe)e = f\Delta(fae)ebe + fae\Delta(ebe)e - f\Delta(f)faebe \]
and
\[f\Delta(fafbe)e = faf\Delta(fbe)e + f\Delta(faf)fbe - faf\Delta(f)fbe \]
for all \(a, b \in M_n(\mathbb{R}).\)

Let \(a, b \in M_n(\mathbb{R}).\) Multiplying Equation\(2.11\) by \(f\) on the left and by \(e\) on the right, from Step 1 and 3 we obtain
\[f\Delta(faebe)e = f\Delta(fae)ebe + fae\Delta(ebe)e - f\Delta(f)faebe \]

Replacing \(b\) by \(e\) in above equation, we get
\[fae\Delta(e)e = f\Delta(f)fae \quad (2.14) \]
Since \((e - fbe)(fafbe + faf) = (fafbe + faf)(e - fbe) = 0\), we have
\[
\Delta(e - fbe)(fafbe + faf) + (e - fbe)\Delta(fafbe + faf) + \Delta(fafbe + faf)(e - fbe) + (fafbe + faf)\Delta(e - fbe) = 0
\]
Multiplying this identity by \(f\) on the left and by \(e\) on the right, from Equation (2.14) and Step 1 and 3 we arrive at
\[
f\Delta(fafbe)e = faf\Delta(fbe)e + f\Delta(faf)fbe - faf\Delta(f)fbe.
\]
Step 6.
\[
e\Delta(eaebe)e = eae\Delta(ebe)e + e\Delta(eae)ebe - eae\Delta(e)ebe
\]
and
\[
f\Delta(fafbf)f = f\Delta(faf)fbf + faf\Delta(fbf)f - faf\Delta(f)fbf
\]
for all \(a, b \in M_n(R)\).

Let \(a, b \in M_n(R)\). For \(2 \leq j \leq n\), we have \(e_{1j} = ee_{1j}f\), so from Step 4 we see that
\[
e\Delta(eaebe_{1j})f = eaebe\Delta(e_{1j})f + e\Delta(eaebe)e_{1j} - eaebe_{1j}\Delta(f)f.
\]
On the other hand,
\[
e\Delta(eaebe_{1j})f = eae\Delta(ebe_{1j})f + e\Delta(eae)ebe_{1j} - eaebe_{1j}\Delta(f)f
\]
\[
= eaebe\Delta(e_{1j})f + eae\Delta(ebe)e_{1j} - eaebe_{1j}\Delta(f)f
\]
\[
+ e\Delta(eae)ebe_{1j} - eaebe_{1j}\Delta(f)f.
\]
By comparing the two expressions for \(e\Delta(eaebe_{1j})f\), Equation (2.13) and multiplying the resulting equation by \(e_{j1}\) on the right, yields
\[
e\Delta(eaebe)e = eae\Delta(ebe)e + e\Delta(eae)ebe - eae\Delta(e)ebe.
\]
We have \(e_{1j} = ee_{1j}f\) for \(2 \leq j \leq n\), so from Step 5 and a proof similar to above, we find
\[
e_{1j}\Delta(fafbf)f = e_{1j}\Delta(faf)fbf + e_{1j}af\Delta(fbf)f - e_{1j}af\Delta(f)fbf.
\]
Multiplying this identity from left by \(e_{j1}\) we get
\[
e_{j1}\Delta(fafbf)f = e_{j1}\Delta(faf)fbf + e_{j1}af\Delta(fbf)f - e_{j1}af\Delta(f)fbf.
\]
So
\[
f\Delta(fafbf)f = \sum_{j=2}^{n} e_{jj}\Delta(fafbf)f
\]
\[
= \sum_{j=2}^{n} (e_{jj}\Delta(faf)fbf + e_{jj}af\Delta(fbf)f - e_{jj}af\Delta(f)fbf
\]
\[
= f\Delta(faf)fbf + faf\Delta(fbf)f - faf\Delta(f)fbf.
\]
Step 7. \(a\Delta(1) = \Delta(1)a \) for all \(a \in M_n(\mathbb{R}) \).

Let \(a \in M_n(\mathbb{R}) \). By Equation (2.13) we have

\[
\begin{align*}
eae\Delta(e)e_{1j} &= eae_{1j}\Delta(f) = e\Delta(e)ea_{1j} \\
e_{1j}\Delta(f)f &= e\Delta(e)e_{1j}af = e_{1j}af\Delta(f)f
\end{align*}
\]

for \(2 \leq j \leq n \). So

\[
\begin{align*}
eae\Delta(e)e &= e\Delta(e)eae, & e_{jj}\Delta(f)f &= e_{jj}af\Delta(f)f
\end{align*}
\]

and

\[
f\Delta(f)f = \sum_{j=2}^{n} e_{jj}\Delta(f)f = \sum_{j=2}^{n} e_{jj}af\Delta(f)f = f\Delta(f)f. \quad (2.15)
\]

By Step 1 we have \(\Delta(1) = e\Delta(e)e + f\Delta(f)f \). From this identity and Equations (2.13), (2.14), (2.15) we arrive at

\[
\begin{align*}
a\Delta(1) &= eae\Delta(1) + eaf\Delta(1) + fae\Delta(1) + f\Delta(1) \\
&= eae\Delta(1) + eaf\Delta(1) + fae\Delta(1) + f\Delta(1)f \\
&= eae\Delta(1) + eaf\Delta(1) + fae\Delta(1) + f\Delta(1)f \\
&= \Delta(1)eae + \Delta(1)eaf + \Delta(1)fae + \Delta(1)faf \\
&= \Delta(1)a.
\end{align*}
\]

Step 8.

\[
e\Delta(eafbe)e = e\Delta(eaf)fbe + eaf\Delta(fbe)e - eafbe\Delta(e)e
\]

and

\[
f\Delta(fbeaf)f = f\Delta(fbe)f \quad (2.16)
\]

for all \(a, b \in M_n(\mathbb{R}) \).

Let \(a, b \in M_n(\mathbb{R}) \). By applying \(\Delta \) to

\[
(eafbe + eaf - fbe - f)(-e - eaf + fbe + fbeaf) = (-e - eaf + fbe + fbeaf)(eafbe + eaf - fbe - f) = 0
\]

and multiplying the resulting equation by \(e \) both on the left and on the right, from Steps 1–3 and Equations (2.15) we deduce that

\[
e\Delta(eafbe)e = e\Delta(eaf)fbe + eaf\Delta(fbe)e - eafbe\Delta(e)e.
\]

Also by applying \(\Delta \) to (2.16) and multiplying the resulting equation by \(f \) both on the left and on the right, from Steps 1–3 and Equations (2.15) we get

\[
f\Delta(fbeaf)f = f\Delta(fbe)f \quad (2.16)
\]

for all \(a, b \in M_n(\mathbb{R}) \).
We have $D(1) = \Delta(1)$ and hence from Step 7 we find that $D(1) \in Z(M)$. Since $ab = eab + eaf + eaf + ef + af + fa + ba + ab = 0$ for any $a, b \in M_n(R)$, by Steps 1–8, it follows that the mapping $d: M_n(R) \to M$ given by $d(a) = \Delta(a) - a\Delta(1)$ is a derivation. So the mapping $\delta: M_n(R) \to M$ given by $\delta(a) = d(a) + I_n(a)$ is a derivation and we have $D(a) = \delta(a) + aD(1)$ for all $a \in M_n(R)$. The proof is thus completed.

The following theorem is a consequence of Theorem 2.1.

Theorem 2.2. Let $D: M_n(R) \to M$ be an additive map satisfying

\[ab = ba = 0 \Rightarrow D(a)b + aD(b) + (b)a + bD(a) - aD(1)b - bD(1)a = 0.\]

Then there exist a derivation $\delta: M_n(R) \to M$ such that $D(a) = \delta(a) + aD(1)$ for each $a \in M_n(R)$.

Proof. Define $\delta: M_n(R) \to M$ by $\delta(a) = D(a) - aD(1)$. It is easy too see that δ is an additive map satisfying (*) and $\delta(1) = 0$. By Theorem 2.1 δ is a derivation. Thus $D(a) = \delta(a) + aD(1)$ for all $a \in M_n(R)$ and proof is completed.

Let R be a unital ring and N be a unital R-bimodule. Let $M_n(N)$ be the set of all $n \times n$ matrices over N, then $M_n(N)$ has a natural structure as unital $M_n(R)$-bimodule. Any derivation $d: R \to N$, induces a derivation $d: M_n(R) \to M_n(N)$ given by $d(a) = h$, where $a_{i,j} = d(a_{i,j})$. By similar method as in proof of [1] Theorem 3.1, we can show that if $\delta: M_n(R) \to M_n(N)$ is a derivation, then there is an inner derivation $I_g : M_n(R) \to M_n(N)$ and a derivation $d: R \to N$ such that $\delta = d + I_g$. So by Theorem 2.1 we have the following corollary.

Corollary 2.3. Let R be a unital ring and N be a 2-torsion free unital R-bimodule. Let $D: M_n(R) \to M_n(N)$ be an additive mapping.

(i) If D satisfies (*), then there is an inner derivation $I_g : M_n(R) \to M_n(N)$ and a derivation $d: R \to N$ such that $D(a) = d(a) + I_g(a) + aD(1)$ for all $a \in M_n(R)$, where $D(1) \in Z(M_n(N))$.

(ii) If D satisfies (**), then there is an inner derivation $I_g : M_n(R) \to M_n(N)$ and a derivation $d: R \to N$ such that $D(a) = d(a) + I_g(a) + aD(1)$ for all $a \in M_n(R)$.

3. **Jordan derivations of matrix rings**

In this section we characterize Jordan derivations of matrix rings into bimodules which are not necessarily unital bimodule. To prove the main result, we need the following lemma.

Lemma 3.1. Let A be a unital ring. Then the following are equivalent:

(i) for every 2-torsion free unital A-bimodule M, each Jordan derivation $D : A \to M$ is a derivation.
(ii) for every 2-torsion free \(A\)-bimodule \(M\), each Jordan derivation \(D : A \to M\) is a derivation.

(iii) for every 2-torsion free \(A\)-bimodule \(M\), each generalized Jordan derivation \(D : A \to M\) is a generalized derivation.

Proof. (i) \(\Rightarrow\) (ii) Let \(M\) be a 2-torsion free \(A\)-bimodule and 1 be the unity of \(A\). Define the following sets:
\[
M_1 = \{1m1 \mid m \in M\}, \quad M_2 = \{m - 1m1 \mid m \in M\}, \quad M_3 = \{m1 - 1m1 \mid m \in M\}, \quad M_4 = \{m - 1m - m1 + 1m1 \mid m \in M\}.
\]

Every \(M_j\) for \(1 \leq j \leq 4\) is an \(A\)-subbimodule of \(M\) such that \(M_1\) is unital and
\[M_2A = A M_3 = M_4 A = A M_4 = \{0\}.
\]

Also \(1m_2 = m_2\) for all \(m_2 \in M_2\), \(m_3 1 = m_3\) for all \(m_3 \in M_3\) and \(M = M_1 + M_2 + M_3 + M_4\) as sum of \(A\)-bimodules. Let \(D : A \to M\) be a Jordan derivation. So \(D = D_1 + D_2 + D_3 + D_4\), where each \(D_j\) is an additive map from \(A\) to \(M_j\). Since \(D(ab + ba) = D(a)b + aD(b) + D(b)a + bD(a)\) for all \(a, b \in A\), from the above results we get
\[
D_1(ab + ba) + D_2(ab + ba) + D_3(ab + ba) + D_4(ab + ba)
\]
\[= D_1(a)b + D_3(a)b + aD_1(b) + aD_2(b) + D_1(b)a + D_3(b)a + bD_1(a) + bD_2(a).
\]

Therefore
\[
D_1(ab + ba) = D_1(a)b + aD_1(b) + D_1(b)a + bD_1(a),
D_2(ab + ba) = aD_2(b) + bD_2(a),
D_3(ab + ba) = D_3(a)b + D_3(b)a \quad \text{and} \quad (3.1)
D_4(ab + ba) = 0
\]

So \(D_1\) is a Jordan derivation and by hypothesis it is a derivation since \(M_1\) is a 2-torsion free unital \(A\)-bimodule. Now taking \(b = 1\) in Equations (3.1), we arrive at \(D_2(a) = aD_2(1), D_3(a) = D_3(1)a\) and \(2D_4(a) = 0\). Hence \(D_4(a) = 0\) since \(M\) is 2-torsion free. By previous results it is obvious that \(D\) is a derivation.

(ii) \(\Rightarrow\) (iii) Let \(M\) be a 2-torsion free \(A\)-bimodule and \(D : A \to M\) be a generalized Jordan derivation. The mapping \(\delta : A \to M\) defined by \(\delta(a) = D(a) - aD(1)\) is a Jordan derivation and hence it is a derivation. So from Remark \(\Box\) \(D\) is a generalized derivation.

(iii) \(\Rightarrow\) (i) Let \(M\) be a 2-torsion free unital \(A\)-bimodule and \(D : A \to M\) be a Jordan derivation. So \(D(1) = 0\) since \(M\) is a unital \(A\)-bimodule. Hence from hypothesis it is clear that \(D\) is a derivation. \(\Box\)
If M is a 2-torsion free unital $M_n(R)$-bimodule and $D : M_n(R) \to M$ is a Jordan derivation, then D satisfies (*) and $D(1) = 0$, and hence D is a derivation by Theorem 2.1. So from Lemma 3.1 we have the following theorem which is a generalization of [4, Theorem 3.1].

Theorem 3.2. Let M be a 2-torsion free $M_n(R)$-bimodule and $D : M_n(R) \to M$ be an additive mapping.

(i) If D is a Jordan derivation, then D is a derivation.

(ii) If D is a generalized Jordan derivation, then D is a generalized derivation.

By Corollary 2.3, the following corollary is obvious.

Corollary 3.3. Let R be a unital ring and let N be a 2-torsion free unital R-bimodule. Let $D : M_n(R) \to M_n(N)$ be an additive mapping.

(i) If D is a Jordan derivation, then there is an inner derivation $I_g : M_n(R) \to M_n(N)$ and a derivation $d : R \to N$ such that $D(a) = d(a) + I_g(a)$ for all $a \in M_n(R)$.

(ii) If D is a generalized Jordan derivation, then there is an inner derivation $I_g : M_n(R) \to M_n(N)$ and a derivation $d : R \to N$ such that $D(a) = d(a) + I_g(a) + aD(1)$ for all $a \in M_n(R)$.

4. Some related results

In this section, by applying results in section 2, we obtain some results about matrix ring $M_n(R)$.

Lemma 4.1. Let A be a 2-torsion free unital ring. Suppose that each additive mapping $D : A \to A$ satisfying (*) is a generalized derivation with $D(1) \in Z(A)$. Let $\varphi : A \to A$ be an additive map satisfying

$$\varphi(ab + ba) = a\varphi(b) + \varphi(b)a \quad (a, b \in A).$$

Then $\varphi(a) = a\varphi(1)$ for all $a \in A$, where $\varphi(1) \in Z(A)$.

Proof. Let $a, b \in A$ with $ab = ba = 0$. So $ab + ba = 0$ and hence

$$\varphi(ab + ba) = a\varphi(b) + \varphi(b)a = 0,$$

$$\varphi(ba + ab) = b\varphi(a) + \varphi(a)b = 0.$$

Therefore, $a\varphi(b) + \varphi(b)a + b\varphi(a) + \varphi(a)b = 0$ and φ satisfies (*). Thus by hypothesis φ is a generalized derivation with $\varphi(1) \in Z(A)$. So we have

$$\varphi(ab) = a\varphi(b) + \varphi(a)b - a\varphi(1)b$$

and

$$\varphi(ba) = b\varphi(a) + \varphi(b)a - b\varphi(1)a.$$
Let \(\phi : \mathcal{R} \to M_n(\mathcal{R})\) be an additive map satisfying
\[
\phi(ab + ba) = a\phi(b) + \phi(b)a \quad (a, b \in M_n(\mathcal{R})).
\]
Then \(\phi(a) = a\phi(1)\) for all \(a \in M_n(\mathcal{R})\), where \(\phi(1) \in Z(M_n(\mathcal{R}))\).

Given a ring \(\mathcal{A}\) and an \(\mathcal{A}\)-bimodule \(\mathcal{M}\), the **trivial extension** of \(\mathcal{A}\) by \(\mathcal{M}\) is the ring \(\mathcal{T}(\mathcal{A}, \mathcal{M}) = \mathcal{A} \oplus \mathcal{M}\) with the usual addition and the following multiplication:
\[
(a_1, m_1)(a_2, m_2) = (a_1a_2, a_1m_2 + m_1a_2).
\]

Lemma 4.3. Let \(\mathcal{A}\) be a 2-torsion free unital ring. Suppose that each additive mapping \(D : \mathcal{A} \to \mathcal{A}\) satisfying \((*)\) is a generalized derivation with \(D(1) \in Z(\mathcal{A})\). Let \(\mathcal{T}(\mathcal{A}, \mathcal{A})\) be the trivial extension of \(\mathcal{A}\) by \(\mathcal{A}\). Then every Jordan derivation from \(\mathcal{T}(\mathcal{A}, \mathcal{A})\) into itself is a derivation.

Proof. Let \(\mathcal{T} = \mathcal{T}(\mathcal{A}, \mathcal{A})\) and \(\Delta : \mathcal{T} \to \mathcal{T}\) be a Jordan derivation. We have \(\Delta((a, b)) = (\delta_1(a) + \delta_2(b), \delta_3(a) + \delta_4(b))\) for each \(a, b \in \mathcal{A}\), where \(\delta_k : \mathcal{A} \to \mathcal{A}\) \((k = 1, 2)\) are additive maps. Applying \(\Delta\) to the equation \((ab + ba, 0) = (a, 0)(b, 0) + (b, 0)(a, 0)\) \((a, b \in \mathcal{A})\), we deduce that \(\delta_1, \delta_3\) are Jordan derivations. Hence \(\delta_1\) and \(\delta_3\) satisfy \((*)\) with \(\delta_1(1) = \delta_3(1) = 0\). So by hypothesis \(\delta_1\) and \(\delta_3\) are derivations.

Now by applying \(\Delta\) to
\[
(0, a)(0, b) + (0, b)(0, a) = (0, 0) \quad \text{and} \quad (a, 0)(0, b) + (0, b)(a, 0) = (0, ab + ba)
\]
for each \(a, b \in \mathcal{A}\), we get
\[
\delta_2(a)b + a\delta_2(b) + \delta_2(b)a + b\delta_2(a) = 0,
\]
and
\[
\delta_3(ab + ba) = a\delta_3(b) + \delta_3(b)a,
\]
\[
\delta_4(ab + ba) = \delta_1(a)b + a\delta_4(b) + b\delta_1(a) + \delta_4(b)a
\]
for all \(a, b \in \mathcal{A}\). By Equation\(4.2\), hypothesis and Lemma\(4.1\), we get \(\delta_2(a) = a\delta_2(1)\), for all \(a \in \mathcal{A}\), where \(\delta_2(1) \in Z(\mathcal{A})\). Now taking \(b = 1\) in Equation\(4.1\), it follows that \(\delta_2(a) = -a\delta_2(1)\), for each \(a \in \mathcal{A}\). So \(\delta_2(a) = 0\) for all \(a \in \mathcal{A}\). Define \(\phi : \mathcal{A} \to \mathcal{A}\) by \(\phi = \delta_1 - \delta_1\). Then by Equation\(4.2\), we get \(\phi(ab + ba) = a\phi(b) + \phi(b)a\) for all \(a, b \in \mathcal{A}\). Hence by Lemma\(4.1\) it follows that \(\phi(a) = a\phi(1)\) for all \(a \in \mathcal{A}\), where \(\phi(1) = \delta_1(1) \in Z(\mathcal{A})\) (since \(\delta_1\) is a derivation, \(\delta_1(1) = 0\)).
Thus $\delta_4(a) = \delta_1(a) + a\delta_4(1)$ for all $a \in \mathcal{A}$, where $\delta_4(1) \in Z(\mathcal{A})$. By this results it is obvious that Δ is a derivation. □

From Theorem 2.1 and Lemma 1.2 we get the following result.

Theorem 4.4. Let R be a 2-torsion free unital ring. Then every Jordan derivation from $T(M_n(R), M_n(R))$ into itself is a derivation.

Acknowledgment. The author like to express his sincere thanks to the referees for this paper.

References

[1] Alamino, J.—Brešar, M.—Extremera, J.—Villena, A. R.: Characterizing homomorphisms and derivations on C^*-algebras, Proc. R. Soc. Edinb. A. 137 (2007), 1–7.

[2] Alamino, J.—Brešar, M.—Extremera, J.—Villena, A. R.: Maps preserving zero products, Studia Math. 193 (2009), 131–159.

[3] Alamino, J.—Brešar, M.—Extremera, J.—Villena, A. R.: Characterizing Jordan maps on C^*-algebras through zero products, Proceedings of the Edinburgh Mathematical Society, 53 (2010), 543–555.

[4] Alizadeh, R.: Jordan derivations of full matrix algebras, Linear Algebra Appl. 430 (2009), 574–578.

[5] Benkovič, D.: Jordan derivations and antiderivations on triangular matrices, Linear Algebra Appl. 397 (2005), 235–244.

[6] Brešar, M.: Jordan derivation on semiprime rings, Proc. Amer. Math. Soc. 104 (1988), 1003–1006.

[7] Chebotar, M. A.—Wen-Fong Ke.—Pjek-Hwee Lee: Maps characterized by action on zero products, Pacific J. Math. 216 (2004), 217–228.

[8] Ma, F.—Ji, G.: Generalized Jordan derivations of triangular matrix algebras, Linear and Multilinear Algebra, 55 (2007), 355–363.

[9] Gharhamani, H.: Additive mappings derivable at nontrivial idempotents on Banach algebras, Linear and Multilinear Algebra, 60 (2012), 725–742.

[10] Gharhamani, H.: Jordan derivations on trivial extensions, Bull. Iranian Math. Soc. in press.

[11] Herstein, I. N.: Jordan derivations on prime rings, Proc. Amer. Math. Soc. 8 (1957), 1104–1110.

[12] Jacobson, N.—C.E. Rickart, C. E.: Jordan homomorphisms of rings, Trans. Amer. Math. Soc. 69 (1950), 479–502.

[13] Jiao, M.—Hou, J.: Additive maps derivable or Jordan derivable at zero point on nest algebras, Linear Algebra Appl. 432 (2010), 2984–2994.

[14] Jing, W.—Lu, S. J.—Li, P. T.: Characterisations of derivations on some operator algebras, Bull. Austral. Math. Soc. 66 (2002), 227–232.

[15] Jing, W.: On Jordan all-derivable points of $B(H)$, Linear Algebra Appl. 430 (2009), 941–946.

[16] Li, J.—Lu, F. Y.: Additive Jordan derivations of reflexive algebras, J. Math. Anal. Appl. 329 (2007), 102–111.

[17] Sinclair, A. M.: Jordan homomorphisms and derivations on semisimple Banach algebras, Proc. Amer. Math. Soc. 24 (1970), 209–214.
[18] ZHANG, J. H.: *Jordan derivations on nest algebras*, Acta Math. Sinica, 41 (1998), 205–212.

[19] ZHANG, J. H.—YU, W. Y.: *Jordan derivations of triangular algebras*, Linear Algebra Appl. 419 (2006), 251–255.

[20] ZHAO, S.—ZHU, J.: *Jordan all-derivable points in the algebra of all upper triangular matrices*, Linear Algebra Appl. 433 (2010), 1922–1938.

[21] ZHU, J.—XIONG, C. P.: *Generalized derivable mappings at zero point on nest algebras*, Acta Math. Sinica 45 (2002), 783–788.

[22] ZHU, J.—XIONG, C. P.: *Generalized derivable mappings at zero point on some reflexive operator algebras*, Linear Algebra Appl. 397 (2005), 367–379.

Department of Mathematics
University of Kurdistan
P. O. Box 416
Sanandaj
Iran

E-mail address: h.ghahramani@uok.ac.ir; hoger.ghahramani@yahoo.com