Detection of *Brucella* Antibodies in Dogs From Rural Regions of Hamedan, Iran

Jamal Gharekhani¹,²*, Alireza Sazmand³

¹Department of Laboratory Sciences, Central Veterinary Laboratory, Iranian Veterinary Organization, Hamedan, Iran.
²Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
³Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran.

Abstract

Background: Dogs play a significant role in the maintenance and transmission of several zoonotic pathogens. In the case of *Brucella* spp., the close contact of dogs with humans and livestock might cause zoonotic diseases and economic losses due to abortions and stillbirths in animals (1, 2). Brucellosis is prevalent in some regions of Iran including Hamedan where recently the first human case of infection with *Brucella canis* in the country was reported (3,4).

Methods: Between June and November 2018, blood samples were obtained from cephalic or saphenous veins of 180 stray dogs from 6 rural regions of Hamedan during June and November 2018. The sera samples were evaluated for the presence of antibodies against *Brucella* spp. using Rose Bengal plate test (RBT) and Wright's serum agglutination test (Wright SAT).

Results: Seroprevalence rate of *Brucella* infection was 3.3% by RBT. (6/180; 95% CI: 0.7%–5.9%). All of the serum positive dogs had titers of 1:80 by Wright SAT. The seropositivity was 3.1% in males, 3.4% in females, 3.2% in <1-year-old, 1.8% in 1–2-year-old, and 4.9% in >2-year-old dogs. No statistically significant correlation was found between the infection rate and gender of dogs (P=0.907) or age groups (P=0.772).

Conclusions: The presence of infected dogs in rural regions is an important risk factor for the transmission of *Brucella* to humans and livestock. It is suggested that villagers, shepherds, and their families especially children should be provided with the information about risks of getting infection when handling an infected dog.

Keywords: Brucellosis, Serology, Dog, Zoonosis, Hamedan
part of Iran. Furthermore, a historical mini-review on the available literature on Brucella infection in dogs of Iran was presented in the discussion section.

Methods

Study Region, Animals, and Serum Collection

Between June and November 2018, blood samples were obtained from cephalic or saphenous veins of 180 stray dogs from six rural regions of Hamedan namely Qerkhlar, Largah, Ganj Tappeh, Simin, Cheshmeh Qassaban, and Sheverin during June and November 2018 (Figure 1). Blood samples from Ganj Tappeh and Cheshmeh Qassaban were collected for another study (15) and the rest were taken for routine surveillance program of Iranian Veterinary Organization. Sex and age of dogs were recorded in individual data forms. Dogs were categorized based on their age in three groups of less than 1-year-old, between 1 and 2 years old and more than 2 years old. The sera were separated by centrifuging the blood samples at 1000 rpm for 10 minutes and stored at −20°C until laboratory examination.

Rose Bengal Plate Test

Initially the sera were screened for the presence of anti-Brucella antibodies using Rose Bengal plate test (RBT), which is a routine qualitative test for brucellosis in both humans and animals. The antigens that were purchased from Razi Vaccine and Serum Research Institute, Iran, could detect *B. abortus*, *B. melitensis*, and *B. suis*.

For the test, 30 μL of RBT antigen (Razi Vaccine and Serum Research Institute, Iran) and 30 μL of serum sample were placed on a white ceramic tile, mixed using sterile applicator stick, rocked gently for 4 minutes, and monitored for agglutination. The formation of distinct pink granules (agglutination) was recorded as positive (6). The RBT positive samples were further evaluated using Wright serum agglutination test.

Wright serum agglutination test (Wright SAT)

For the first tube, 0.8 mL of physiological saline solution was dispensed while 0.5 mL of the solution was transferred to the second, third, fourth, and fifth tubes. Then, 0.2 mL of the test serum was added to the first tube and mixed properly. Serial dilution was then carried out by pipetting 0.5 mL of the mixture in the first tube to the second tube. This procedure continued until the fifth tube. The final 0.5 mL from the fifth tube was discarded. Finally, 0.5 mL of the antigens (Razi Vaccine and Serum Research Institute, Iran) was added to all the tubes. The tubes were covered, shaken, and incubated at 37°C for 20 hours. Agglutination titers were determined according to positive and negative controls (10,16).

Statistical Analysis

Statistical analysis was performed using Chi-square test (χ^2) with a confidence interval (CI) of 95% (SPSS 16.0, SPSS Inc., Chicago, IL, USA). P value less than 0.05 was considered significant.

Results

Based on the screening results by RBT, the rate of Brucella infection was found in 3.3% (6/180; 95% CI: 0.7%–5.9%) of animals. Six seropositive dogs were from Qerkhlar (n=1), Ganj Tappeh (n=2), Simin (n=3) regions (Figure 1). All of the positive dogs had a titer of 1:80 antibodies according to Wright SAT. No statistically significant difference was observed between infection rate and gender ($P=0.907$) or age groups, ($P=0.772$) (Table 1).

Discussion

In this study, sera of 180 dogs from Hamedan province were tested for brucellosis using RBT and Wright SAT assays. Six (3.3%) dogs reacted positive with titers of 1:80. Tadjebakhche and Gatel (17) were the first who tested canine blood sera for brucellosis in Iran in 1972. Since then, several serological studies were performed in various regions, employing different diagnostic techniques (Table 2) (17-29). Seroprevalence of brucellosis in the present study (3.3%) was in the range of that previously reported from Iran (Table 2). Differences in the incidence of canine brucellosis in Hamedan compared to other regions of Iran could be attributed to climatic differences. Furthermore, farmers’ knowledge about brucellosis has significantly increased in recent years; this has led to less exposure of stray dogs to livestock and their aborted foetuses. The role that dogs play in the incidence of human brucellosis...
is unclear in Iran due to lack of comprehensive reports in this field. However, seropositivity of dogs with zoonotic Brucella species indicate the possibility of transmission of these bacteria from dogs to humans, as well as from farm animals in the region.

In this study, specific B. canis antibodies could not be investigated; however, in Ahvaz city, 102 blood samples from companion dogs were examined using a commercial Rapid Canine Brucella Ab Test Kit® (Bionote, South Korea), from which 4.9% were found infected (25). In a study conducted in Fars province using the same kit, 10.6% of examined dogs reacted positive (30). Moreover, in Kerman province, seropositivity to B. canis was detected 15.8% using an immunofluorescence antibody (IFA) test kit (MegaFLUO® BRUCELLA canis, Megakor, Austria) (16). This rate was 20.9% in São Paulo, Brazil (using blood culture method), 4.9% in Mississippi, USA (using rapid serology method), and 4.4% in South Africa (using 2-mercaptoethanol-tube agglutination test) (5,6,31). Regarding the fact that rapid diagnostic kits and IFA slides for B. canis are not imported to Iran regularly, it is suggested that Iranian researchers focus on the domestic production of such diagnostic kits.

In the only PCR-based study in Iran, 14 out of 94 (14.9%) tested blood samples from companion dogs of Isfahan and Shahrekord cities were reported to be positive by conventional-PCR (32). As the PCR products in the latter study were not confirmed by nucleotide sequencing and the dogs did not show any sign of brucellosis, these results should be taken with caution. More recently, DNA of Brucella sp. was detected in vaginal swabs of 3 out of 70 (4.3%) dogs referred to a teaching hospital in Kerman (33).

In this study, no statistical correlation was found between the age of dogs and seropositivity. Conversely, in previous studies (25,30,31), higher seroprevalences were detected in older dogs which could be due to the fact that an increase in age of dogs has a direct relationship with the probability

Area	Year*	No. of Tested Dogs	Method(s): No. of Positive Cases (%)	Reference
Tehran	1972	41	Wright¹ + CFT: 2 (4.9%)	(17)
Tehran and Karaj	1975	225	Card test: 6 (2.7%)	(18)
			Wright: 6 (2.7%)	
			CFT: 5 (2.2%)	
Shiraz	1996	228	RBT² + Wright + 2-ME: 2 (0.88%)	(19)
			Brucella isolation: unsuccessful	
Tabriz	1996	112	RBT: 23 (20.5%)	(20)
			Wright: 19 (16.9%)	
			2-ME: 7 (6.2%)	
Mashhad	1997	100	RBT: 38 (38%)	(21)
			Wright: 21 (21%)	
			2-ME: 18 (28%)	
Mashhad	2003	280	RBT: 15 (5.35%)	(22)
			Wright: 13 (4.64%)	
			2-ME: 2 (0.71%)	
Neyshabur	2007	50	RBT: 9 (18%)	(23)
			Wright: 2 (4%)	
Ahvaz	2009	102	Rapid B. canis Ab test kit: 5 (4.9%)	(24)
Ahvaz	2010	116	Rapid B. canis Ab test kit: 12 (10.3%)	(25)
Markazi	2011	110	RBT: 6 (5.4%)	(26)
			Wright: 6 (5.4%)	
			2-ME: 4 (3.6%)	
Shiraz	2011	175	RBT: 51 (29.1%)	(27)
			Wright: 51 (29.1%)	
Urmia	2017	256	NS²: 28 (10.9%)	(28)
Mashhad	2019	173	ELISA IgG: 34 (19.6%)	(29)
Hamedan	2018	180	RBT: 6 (3.3%)	This study
			Wright: 6 (3.3%)	

*Year of publication; ¹Wright’s serum agglutination test; ²Complement fixation test; ³Rose Bengal test; ⁴2-mercaptoethanol Brucella agglutination test; ⁵Not stated.
of infection via mating and coming into contact with infectious materials (31).

Generally female dogs pose a greater risk to humans as *Brucella* organisms are shed in the birth fluids and vaginal discharges (31). However, similar to previous findings, no significant correlation was observed between the development of infection and gender of dogs (16,25,30), showing that both sexes appear to be equally susceptible (31,34).

Conclusions

Although the seroprevalence of *Brucella* sp. was not high in Hamedan, further screening programs on dog population and designing a plan for control of infection is highly recommended in different regions of Iran. The presence of infected dogs in rural regions is an important risk factor for the transmission of disease to livestock causing economic losses due to abortions and stillbirths. It is suggested that villagers, shepherds, and their families especially children should be provided with the information about risks of getting infection when handling an infected dog.

Ethical Approval

Blood samples were taken from dogs after getting official permission and under supervision of Institutional Animal Ethics and Research Committee of Iranian Veterinary Organization (IVO, Iran), Hamedan Office (Certificate No. 32/1397.4.1).

Conflict of Interest Disclosures

None.

Funding

This study was partially supported by Bu-Ali Sina University, Hamedan, Iran.

Acknowledgments

The authors appreciate Mr. Ehsan Abbasi-Doulatshahi and Dr. Ehsan Barati from Hamedan Veterinary Office, for their assistance in the laboratory works.

References

1. Wanke MM. Canine brucellosis. Anim Reprod Sci. 2004;82-83:195-207. doi: 10.1016/j.anireprosci.2004.05.005.
2. Hensel ME, Negron M, Arenas-Gamboa AM. Brucellosis in dogs and public health risk. Emerg Infect Dis. 2018;24(8):1401-6. doi: 10.3201/eid2408.171171.
3. Majzoobi MM, Ghasemi Basir HR, Arabestani MR, Akbari S, Nazeri H. Human brucellosis caused by *Brucella canis*: a rare case report. Arch Clin Infect Dis. 2018;13(5):e62776. doi: 10.5812/archcid.62776.
4. Eini P, Keramati F, Hasanazadehseinabadi M. Epidemiologic, clinical and laboratory findings of patients with brucellosis in Hamedan, west of Iran. J Res Health Sci. 2012;12(2):105-8.
5. Keid LB, Chibao DP, Baringa MCA, Faita T, Diniz JA, Oliveira T, et al. *Brucella canis* infection in dogs from commercial breeding kennels in Brazil. Transbound Emerg Dis. 2017;64(3):691-7. doi: 10.1111/tbed.12632.
6. Hubbard K, Wang M, Smith DR. Seroprevalence of brucellosis in Mississippi shelter dogs. Prev Vet Med. 2018;159:82-6. doi: 10.1016/j.prevetmed.2018.09.002.
7. Esmaili H. Brucellosis in Islamic republic of Iran. J Med Bacteriol. 2014;3(3-4):47-57.
8. Baek BK, Lim CW, Rahman MS, Kim CH, Oluoch A, Kakoma I. *Brucella abortus* infection in indigenous Korean dogs. Can J Vet Res. 2003;67(4):312-4.
9. Forbes LB. *Brucella abortus* infection in 14 farm dogs. J Am Vet Med Assoc. 1990;196(6):911-6.
10. Gharekhani J, Ranouli M, Abbasi-Doulatshahi E, Bahrami M, Hemati Z, Rezaei A, et al. Sero-epidemiological survey of brucellosis in small ruminants in Hamedan province, Iran. J Adv Vet Anim Res. 2016;3(4):399-405.
11. Mamani M, Majzoobi MM, Keramati F, Varmaghami N, Moghimbeigi A. Seroprevalence of brucellosis in butchers, veterinarians and slaughterhouse workers in Hamedan, western Iran. J Res Health Sci. 2018;18(1):e00406.
12. Golshani M, Buzari S. A review of brucellosis in Iran: epidemiology, risk factors, diagnosis, control, and prevention. Iran Biomed J. 2017;21(6):349-59. doi: 10.18869/acadpub.ib.21.6.349.
13. Nematiollahi S, Ayubi E, Karimi M, Khazaei S, Shojaee M, Zamani R, et al. Epidemiological characteristics of human brucellosis in Hamedan province during 2009-2015: results from the National Notifiable Diseases Surveillance System. Int J Infect Dis. 2017;61:56-61. doi: 10.1016/j.ijid.2017.06.002.
14. Keramat F, Karimi M, Alikhani MY, Bashirian S, Moghimbeigi A, Adabi M. Cohort profile: Famenin brucellosis cohort study. J Res Health Sci. 2019;19(3):e00453.
15. Grego G, Szamand A, Goudarzalejerd A, Zollahzavich SM, Decaro...
16. Akhrardaneh B, Ghanbarpour R, Babaei H, Nazeri M. Serological
evidences of canine brucellosis as a new emerging disease in Iran.
Asian Pac J Trop Dis. 2011;1(3):177-80. doi: 10.1016/S2222-
1808(11)60023-6.

17. Tadjebakhche H, Gatel A. Incidence sérologique des anticorps anti-
brucelliques chez les animaux domestiques de l'homme en Iran.
Rev Elev Med Vet Pays Trop. 1972;25(4):521-5. doi: 10.19182/
remvt.7773.

18. Montazerolghaem F. Serological study of brucellosis in dogs [dissertation]. Tehran: University of Tehran; 1975. [Persian].

19. Sadighi M. Serological survey of Brucella infection in dogs of Shiraz
and suburban areas. In: Proceedings of 3rd Congress of Zoonoses;
23–25 April 1996; Mashhad, Iran. p. 90. [Persian].

20. Rezaei-Sadaghiyani R, Zowghi E, Marhemati-Khamene B, Mahpeikar
H. Brucella melitensis infection in sheep-dogs in Iran. Arch Razi
Inst. 1996;46-47(1):1-7. doi: 10.22092/ari.1996.109149.

21. Talebkhan Garoussi M, Firoozi S, Nourouzian I. The serological
survey of Brucella abortus and melitensis in shepherd dogs around Mashhad
farms. J Fac Vet Med Univ Tehran. 1997;51(2):55-65. [Persian].

22. Sardari K, Kamrani AR, Kazemi KH. The serological survey of
Brucella abortus and melitensis in stray dogs in Mashhad, Iran. In:
Proceedings of 28th World Congress of the World Small Animal
Veterinary Association; 24–27 October 2003; Bangkok, Thailand.

23. Mashhadi-Rafiee S, Ale-Davood SJ, Najjar M. Seroepidemiological
study of brucellosis in sheepdogs in Neyshabur County. J Vet
Microbiol. 2007;3(1):1-6. [Persian].

24. Ghanbarpour R, Babaei H, Nazeri M. Serological study of canine
brucellosis in dogs from Hamedan, Iran. Am J T rop Med Hyg. 2019;101(4):749-52. doi:
10.4269/ajtmh.19-0345.