Evaluation of Ground Bearing Capacity Estimation Methods Based On Plate Loading Tests

Yavuz Gül 1, Atilla Ceylanoğlu 1
Cumhuriyet University, Mining Engineering Department, 58140-Sivas, Turkey
E-mail: ygul@cumhuriyet.edu.tr

Abstract. Within the scope of this study, bearing capacities were calculated based on eleven different estimation methods in literature, using some mass and material properties for different rock units (magnetite, syenite, serpentinite, limestone, clayey limestone and gypsum) encountered in three different open-pit mines (Sivas-Ulaş Open-Pit Celestite Mine, Divriği Open-Pit Iron Mine and Kangal Open-Pit Coal Mine) around Sivas in Turkey. Through regression analyses between estimated bearing capacity values and those that had been determined as a result of plate loading tests, bearing capacity estimation methods specified in the literature were assessed. Moreover, four different equations to be used in bearing capacity estimation were proposed.

1. Introduction
Safe, economical, and efficient digging-loading and haulage operations in open-pits are only possible through selection of optimum equipment and design of convenient operation areas and roads. One of important parameters taken into account in design works of excavation areas and mine roads is the ground bearing capacity. Determination of bearing capacity sets forth whether existing or prospective digging-loading machines, which are excavators, draglines, loaders, etc., would have problems of settlement in the ground, and whether existing or prospective transportation vehicles would be able to operate on roads constructed and/or to be constructed. Ground bearing capacity is a determining factor in selecting or eliminating some excavators. After determining the bucket capacity, the excavator is examined for the pressure it applies to the ground. If the ground bearing capacity is higher than the pressure applied by an excavator but the floor condition is poor, then a smaller excavator should be selected. In this study, bearing capacity values defined in eight different units in three different open-pits (Sivas-Ulaş Open-Pit Celestite Mine, Divriği Open-Pit Iron Mine and Kangal Open-Pit Coal Mine) are used and estimation methods in literature are assessed.

2. Estimation methods of bearing capacity
When a load is applied on the surface of any substance, it initially leads to elastic, and then permanent deformations on such substance. Likewise, when a load is applied to grounds, they are somewhat compressed and become consolidated depending on their characteristics and the applied load. As such spaces do not fail unless shear stresses occur on soil grounds or rock units, they can act elastically. After a certain level of stress, however, irreversible deformations take place on soil grounds and rock units. Concept of bearing capacity, which refers to the fact that a ground is sufficiently safe against failure, is very important. Failure of foundations leads to collapse of superstructure as well. In order for a superstructure to fulfill required function, total and separate subsidence on the ground of foundations
must not exceed acceptable values. Bearing capacity (q_u), transferred stress of foundation structure without failure is expressed with maximum ground pressure (kg/cm² or t/m²). The load used in determination of bearing capacity is known as the maximum load the ground can bear right before failure thereof. Bearing capacity obtained upon determination of ground bearing capacity by any method is divided by safety factor (SF) (q_a = q_u / SF) so that allowable ground stress is obtained. Safety factor values used in geotechnical engineering typically ranges between 2.5 and 3.5. Mylivec (1978) indicates that this value rarely decreases to 2.0 and rises to 4.0 [1]. Upon obtaining allowable ground stress, it is ensured that ground stresses are not above this value when foundations are designed. In determining safety factor used in defining allowable ground stresses, the points such as; ground type, type of superstructure, superstructure load and life, instability of the ground, data obtained from field survey and laboratory tests are taken into consideration. A foundation under a sufficiently big amount of load may settle and slump in the ground with an increasing speed. Many surveys have been made to determine the size of load that leads to such a failure. In such surveys, both physical characteristics of the ground were analyzed and ground motion under load was considered. A number of theories and methods were developed related with this subject. However, only little number of them coincided with the results of tests conducted according to experiences and one-to-one scale. Bearing capacity is based on mechanical characteristics of the ground such as unit weight, shear strength and deformation characteristics; ground’s initial state of stress; discontinuity properties; geometric and physical conditions of the ground such as size, depth, shape, base roughness and load it bears; and method of construction. It is possible to review estimation methods of bearing capacity under two main topics as analytical, empirical and experimental methods. Numerous researchers have established many equations regarding determination of ground bearing capacity with analytical and empirical methods [2-16]. In analytical solutions, parameters of ground shear strength (cohesion “c” and angle of internal friction “ϕ”) are deemed to be known.

As known, structural elements found in rock mass but not found in rock sample affect results of load bearing capacity. Thus, bearing capacities of foundations are more properly determined through in situ tests. Through such in situ tests, disturbing in sampling is minimized, and the ground is subjected to tests under existing environmental conditions (stress distribution, pore pressure, degree of saturation). Although there are several field tests, only some of them are more frequently used than the rest [17]. Tests used for in situ determination of bearing capacity are standard penetration test, cone penetration test, vane shear test, pressure meter test, plate loading test.

Plate loading test is particularly able to determine bearing capacities of foundations or ground layers of transportation structures such as flat foundations of road and runway constructions. Figure 1 shows the modes of failure of a footing on rock. If foundation exhibits a heterogeneous structure, failure is accelerated and load distribution is affected, which leads load counters under the foundation to differentiate.

V-shape wedge that emerges under the foundation in soil grounds stiffens and leads side sections to be pushed. Thus, elevations on grounds on the side sections of plate are seen when pushing starts while ground platen was moving longitudinally during stiffening. Strength in rock units is more than that in soil; however, this material has a strength limit, too, and when such limit is reached, the rock is defeated and cracked. At this stage, load bearing capacity decreases rapidly but resistance against axial load does not fall immediately but is reduced gradually in time as is in triaxial compressive strength test because of horizontal stresses exerted by the side rocks. Rocks behave as soil grounds, after the rock underground platen is completely cracked (Fig. 1).
3. Evaluation of bearing capacity estimation methods

Rock units are generally assumed to be very good foundation units. However, overload leads to considerable subsidence or sudden failures in rock masses, too. Therefore, as in design of the foundation on the ground, much attention and care should be paid to the design of foundation to be constructed on rock masses. In calculations during foundation designs, rock masses are usually grouped under two main classes such as weathered and fresh, and some mechanical properties of the rock unit are taken into consideration.

This study aims at assessing rock units, bearing capacities of which were determined by plate loading test in the field, according to estimation methods of bearing capacity in the literature. Literature includes various empirical methods for estimation of bearing capacities of rock units. Among these methods, were those having field and laboratory surveys as their parameters assessed. Equations from which bearing capacities of the units worked on can be estimated are given in Table 1 in detail.

3.1. Bearing capacities and some important properties of studied units

In this study, bearing capacities of different rock units (magnetite, syenite, serpentinite, limestone, clayey limestone and gypsum) found in Sivas-Ulaş Open-Pit Celestite Mine, Divriği Open-Pit Iron Mine and Kangal Open-Pit Coal Mine around Sivas, and of operation areas (soil, dumping area) were calculated using empirical formulas of the literature (Table 1), and compared with bearing capacity values obtained as a result of in situ plate loading tests. Results of field observations and measurements conducted for determination of mass properties of the units in question and bearing capacity values of these units are shown in Table 2, and Table 3 presents the laboratory test results.

3.2. Evaluation of estimation methods

This section includes bearing capacity estimations done by using some empirical formulas in the literature with respect to different rock units (magnetite, syenite, serpentinite, limestone, clayey limestone and gypsum) found in three open-pit mines around Sivas (Tables 4 and 5).

With the purpose of comparing estimated and measured bearing capacity values, simple regression analyses (linear, exponential, and logarithmic function approaches) were made. As a result of such regression analyses, relations with acceptable correlation (r = 0.64 - 0.82) between measured and estimated bearing capacities were obtained (Table 6). As shown in Table 5, estimated bearing capacity values greatly differed from others with respect to in situ determined bearing capacity values in most of the equations. For example, bearing capacity value of magnetite, obtained as a result of plate loading test is 110.49 kg/cm² while the closest value to this during calculations was that of El-Naqa (Equation K) (91.08 kg/cm²). In syenite unit, the closest result to measured bearing capacity value was obtained from equation J. Similar situations apply for other units, too.
Equation Code	Equation	Proposed By
Equation A	$q_u = 1 + \frac{RQD/16}{(1 - \frac{RQD}{130})}$	Peck et al. [2]
Equation B	$q_u = 10.0V_p^3$	Imai and Yoshimura [3]
	$q_u = s^{0.5} * q_{un} * (1 + (mS - 0.5 + 1)^0.5)$	
Equation C	$s = \exp\left(\frac{RMR - 100}{9}\right)$	Wyllie [5]
	$m = m_i \exp\left(\frac{RMR - 100}{28}\right)$	
Equation D	$q_u = q_{un} * \left[s^{0.5} + (mS - 0.5 + s)^0.5\right]$	Bell [4]
Equation E	$q_u = 3 * (0.0364 * RMR^{1.6168})$	Mehrotra, 1992: from Singh and Goel [10]
	$q_u \approx Jq_{un}$	
Equation F	$E_m = \frac{E_i}{100} * [0.0028(RMR)^2 + 0.9e^{0.19716}]$	Mehrotra, 1992: from Singh and Rao [14]
	$q_u = 2c_{mass} * \tan(45 + \phi/2)$	
Equation G	$c_{mass} = \frac{q_{un} * s}{2 \tan(45 + \phi/2)}$	Anonymous [21]
	$s = \exp\left(\frac{RMR - 100}{9}\right)$	
Equation H	$q_u = \frac{dV_p^2}{100}$	Keçeli [6]
Equation I	$q_u = q_{un} (q_f / q_{un})$	Bowles [8]
Equation J	$q_u = K_vq_{un}$	Anonymous: from Şekercioğlu [11]
Equation K	$q_u = 0.0483e^{0.0725 GSI} * 10.19716$	El-Naqa [13]

* q_u - Ultimate bearing capacity, kg/cm²; RQD - Rock quality designation, %; V_p - Seismic velocity (P-Wave), km/s; q_{un} - Uniaxial compressive strength, kg/cm²; m - Rock mass Hoek–Brown’s constants; m_i - Intact rock Hoek–Brown’s constant; RMR - Rock mass rating; S - Discontinuity spacing, cm; J - Mass factor; E - Intact rock deformation modulus, GPa; E_m - Rock mass deformation modulus, [GPa]; c_{mass} - Rock mass cohesion, [kg/cm²]; ϕ - Internal friction angle [°]; d - Natural unit weight, gr/cm³; V_p - Seismic velocity (P-Wave), [m/s]; q_f / q_{un} - Correction factor; K_v - Empirical constant depends on discontinuity spacing; GSI - Geological strength index.
When relations obtained as a result of regression analyses between measured and estimated bearing capacities (Table 6) were examined (Equation A, $r = 0.81$; Equation B, $r = 0.82$; Equation H, $r = 0.75$; Equation I, $r = 0.64$), relations with acceptable correlation coefficients were obtained from approaches where RQD and seismic velocity are taken into account. Nevertheless, results obtained from equation A [2] and equation H [6] were seen to be less than measured bearing capacities. Those obtained from equation B [3] were much below measured values although a relation with a high correlation coefficient was established. Moreover, results received from Equation 1 [8] are much above the measured bearing capacity values. As expected, bearing capacity values estimated from equations reflecting rock mass properties best and containing particularly the effect of discontinuities in rocks are closer to measured values.

Table 2. Results of geotechnical observations and in situ tests [23]

Location	Studied Unit	Geotechnical Description	Bearing capacity (kg/cm²)	Seismic velocity P-wave (m/s)	RMR (description, class)	Ease of Digging/Ripping (weighted class, description)	RQD
Sivas - Divriği	Magnetite	Dark grey, slightly weathered. Joint set No: 3 Average joint spacing 3.0 m Stepped - smooth. Grey, fresh.	110.5	651	77 (Good Rock, II)	4 (Difficult)	93
Iron Mine	Syenite	Grey, fresh. Joint set No: 2 Average joint spacing 0.4 m Planar - smooth. Greenly grey, slightly weathered.	115.9	752	64 (Good Rock, II)	3 Moderately Difficult	78
Serpentine	Limestone	Joint set No: 2 Average joint spacing 2.0 m Stepped - smooth. Light grey-brownish, slightly weathered.	97.7	718	72 (Good Rock, II)	3 Moderately Difficult	92
Sivas - Kangal	Clayey limestone	Average joint spacing 1.5 m Undulating – rough. Cream to light brownish, moderately weathered.	148.5	1006	64 (Good Rock, II)	3 Moderately Difficult	92
Coal Mine		Average joint spacing: 0.8 m Undulating – rough.	119.5	814	49 (Fair III)	3 Moderately Difficult	84
Dumping area a		Light gray, slightly weathered. Joint set No: 2 Average joint spacing 4.4 m Undulating – smooth	-	130.7	-	-	-
Sivas - Gypsum	Soil	Brown, completely weathered	34.9	450	-	1 Easy	-
Ulaş Celestite							
Mine							

a Composed of limestone and clayey limestone spoil pile turned into road bed.
Table 3. Laboratory test results [23]

Property	Rock Unit					
	Magnetite	Syenite	Serpentinite	Limestone	Clayey limestone	Gypsum
Grain unit weight (gr/cm³)	4.77	2.70	2.92	2.67	2.63	2.96
Natural unit weight (gr/cm³)	4.67	2.67	2.87	2.42	2.38	2.30
(4.55-4.82)	(2.65-2.69)	(2.80-2.93)	(2.32-2.50)	(2.24-2.44)	(2.23-2.36)	
Dry unit Weight (gr/cm³)	4.66	2.65	2.86	2.35	2.29	2.00
Total porosity (%)	2.22	2.33	2.15	11.95	13.04	32.43
Moisture cont. (%)	0.14	0.17	0.22	1.22	3.78	14.26
Indirect tensile strength (MPa)	6.8	9.2	6.0	3.1	2.4	2.4
(4.8-9.5)	(6.3-13.0)	(5.2-8.2)	(2.9-3.3)	(1.6-3.2)	(1.3-3.0)	
Uniaxial compressive strength (MPa)	77.1	112.5	52.1	34.1	17.3	14.6
(68.2-87.0)	(91.1-147.6)	(39.8-65.9)	(16.8-58.0)	(9.0-28.5)	(9.0-22.5)	
Cohesion (MPa)	25.8	17.8	16.5	7.4	3.7	4.0
Internal friction angle (°)	22.4	54.8	25.2	43.2	44.0	32.8
Shore hardness	84.8	105.0	50.0	66.4	46.0	27.5
Elastic modulus (Et, GPa)	53.5	58.7	38.3	36.0	30.2	23.0
Poisson’s ratio (νs)	0.38	0.44	0.26	0.23	0.18	0.18

Table 4. Parameters used in the equations of literature

Parameters	Rock Unit					
	Magnetite	Syenite	Serpentinite	Limestone	Clayey limestone	Gypsum
RQD, Rock quality designation (%)	93	78	92	92	84	48
Vp, Seismic velocity (m/s)	651	751.5	718.5	1006.5	814.5	1826
q_un, Uniaxial compressive strength (kg/cm²)	786.19	1146.87	530.93	347.36	176.64	149.33
RMR, Rock Mass Rating	77	64	72	64	49	59
s, Rock mass constant (Equation C and D)	0.0776	0.0183	0.0446	0.0183	0.0035	0.0105
m, Intact rock constant	6.000	6.639	6.709	6.807	6.786	6.683
m, Rock mass constant (Equation C and D)	2.639	1.835	2.468	1.882	1.098	1.545
S, Discontinuity spacing (m)	0.6	0.2	0.5	0.5	0.3	4.4
E_t, Intact rock deformation modulus (GPa)	53.495	58.715	38.283	36.002	30.195	23.035
E_m, Rock mass deformation modulus (GPa) (Equation F)	22.940	15.464	13.639	9.482	4.356	4.996
J, Mass factor (Equation F)	0.429	0.263	0.356	0.263	0.144	0.217
φ_i, Internal friction angle (°)	22.4	54.8	25.2	43.2	44	32.8
Table 4. Parameters used in the equations of literature (Continue).

Parameter	Value
C_{mass}, Rock mass cohesion (kg/cm²)	20.431, 3.332, 7.504, 1.376, 0.130, 0.428
d, Natural unit weight (gr/cm³)	4.674, 2.671, 2.867, 2.421, 2.382, 2.3
q_{f}/q_{un}, Correction factor	0.79, 0.38, 0.76, 0.76, 0.54, 0.20
K_s, Empirical constant	0.1, 0.1, 0.1, 0.1, 0.1, 0.4
GSI, Geological strength index (Equation K)	72, 59, 67, 59, 44, 54

*Hoek et. al. [7], *b* Bowles [8], *c* Anonymous: From Şekercioğlu [11]

Table 5. Estimation of bearing capacity values of all units using empirical methods

Bearing Capacity, q_u (kg/cm²)	Studied Units	Measured	Equation A	Equation B	Equation C	Equation D	Equation E	Equation F	Equation G	Equation H	Equation I	Equation J	Equation K
Measured	Magnetite	110.49	115.92	97.71	148.46	119.48	63.01	34.89	130.71				
Equation A	Syenite	64.267	39.563	62.013	62.013	47.511	17.268	-	-				
Equation B	Serpentinite	2.759	4.244	3.709	10.196	5.403	60.884	0.911	6.098				
Equation C	Limestone	927.944	747.511	511.329	228.497	56.463	76.685	-	-				
Equation D	Clayey limestone	769.765	643.589	436.807	206.049	55.748	92.701	-	-				
Equation E	Gypsum	122.55	90.88	109.94	90.88	59.01	79.68	-	-				
Equation F	Soil	337.141	302.047	189.147	91.483	25.485	32.388	-	-				
Equation G	Dumping area	61.047	21.006	23.654	6.362	0.611	1.569	-	-				
Equation H		30.428	20.073	20.599	24.367	19.401	41.998	-	-				
Equation I		621.090	435.811	403.507	263.994	95.386	29.866	-	-				
Equation J		78.619	114.687	53.093	34.736	17.664	59.732	-	-				
Equation K		91.084	35.491	63.389	35.491	11.963	24.7	-	-				

Table 6. Relationships between measured bearing capacity and estimated bearing capacity using the equations of literature

Independent variable, X (Used equation)	Measured bearing capacity, Y (kg/cm²)	r
Equation A	$Y = 18.085X^{0.4646}$	0.81
Equation B	$Y = 123.02e^{0.0104X}$	0.82
Equation C	$Y = 202.17e^{0.0248X}$	0.75
Equation D	$Y = 45.154X^{0.1594}$	0.64

3.3. Proposed equations

Firstly, an evaluation based on parameters used on eleven of bearing capacity estimation methods in the literature was made. Frequency of using such parameters in these methods was determined and their average predominance was calculated considering estimation methods they were included with the purpose of defining effectiveness of such parameters in determination of bearing capacity (Table 7). As a result of this evaluation, uniaxial compressive strength came first as the most frequently used and most effective one with a preference frequency of 5, and a predominance of 18.94%; and was followed by seismic velocity with a frequency of 2 and a predominance of 18.18%, after which RMR came with a frequency of 1 and predominance of 9.09%.
Table 7. Frequencies of parameters used in the estimation methods

No	Parameters used in the equations	Frequencya	Weightedb (%)
1	\(q_{un} \), Uniaxial compressive strength (kg/cm²)	5	18.94
2	\(V_p \), Seismic velocity (m/s)	2	18.18
3	RMR, Rock Mass Rating	1	9.09
4	RQD, Rock quality designation (%)	1	9.09
5	\(m \), Rock mass constant	2	5.30
6	\(s \), Rock mass constant	2	5.30
7	\(\phi \), Internal friction angle (°)	1	4.55
8	\(K_s \), Empirical constant	1	4.55
9	\(J \), Mass factor	1	4.55
10	\(C_{max} \), Rock mass cohesion (kg/cm²)	1	4.55
11	\(q_f / q_{un} \), Correction factor	1	4.55
12	\(S \), Discontinuity spacing (m)	1	2.27

*a Made considering the 11 estimation methods of literature.

b \(a_i \) : # of parameters in the equation, \(a_i \geq 1 \)

e : # of equation

\[
\text{Weighted} = \frac{\sum_{i=1}^{n} 100 / a_i}{e*100} * 100
\]

In light of this information, simple and multiple regression analyses were conducted considering measured bearing capacity values and results of rock mechanics in situ and laboratory tests (Table 2 and 3), and parameters used in bearing capacity estimation methods for rock units in the literature (Table 4) in order to establish equations that could be used in bearing capacity estimation.

Firstly, one-to-one simple regression (linear, exponential, and logarithmic function approaches) analyses were made using Microsoft Excel. As a result of these regression analyses, meaningful relations with high correlation (\(r = 0.65 - 0.96 \)) were provided between measured bearing capacity and total porosity, Shore hardness, correction factor (\(q_f / q_{un} \)), moisture content, rock quality designation (RQD), and seismic velocity (Table 8). As expected, the most meaningful and highest correlation (\(r = 0.96 \)) relation resulting from these simple regression analyses were established between bearing capacity and seismic velocity (Fig. 2).

Table 8. Relationships between bearing capacity and some mass/material properties

Independent Variable, X	Bearing Capacity, \(Y \) (kg/cm²)	\(r \)
Total porosity (%)	\(Y = 125.28 e^{-0.0159B} \)	0.65
Shore hardness	\(Y = 18.906 (E)^{0.4243} \)	0.70
Correction factor (\(q_f / q_{un} \))	\(Y = 137.71(I)^{0.3983} \)	0.75
Moisture content (%)	\(Y = 121.56 e^{-0.0423A} \)	0.81
Rock quality designation (RQD) (%)	\(Y = 1.6124(J)^{0.9568} \)	0.85
Seismic velocity (m/sn)	\(Y = 137.52 * \ln(V_p) - 798.35 \)	0.96
As shown in Figure 2, gypsum rock unit found in Sivas-Ulaş Open-Pit Celestite Mine was excluded from the regression analysis because its seismic velocity was relatively quite high (Table 2) and this affected the relation negatively. Gypsum rock unit has a quite high seismic velocity while its bearing capacity is low. It can be claimed that this is the result of fine-grained and ductile composition of gypsum rock unit, and of the fact that its discontinuity spacing (4.4 m in average) is higher and more massive than the other units.

For enhancing and developing seismic velocity - bearing capacity relation provided as a result of simple regression analysis multiple regression analyses were performed. SPSS V13.0 (Statistical analysis) package program was used in regression analyses. In all of such analyses, seismic velocity was chosen as constant independent variable both because it is more commonly used in the literature (Table 7) and it was regarded to represent and characterize rock mass properties better. Then, results of rock mechanics in situ and laboratory tests and other parameters used in the literature for bearing capacity estimation were added to the analysis respectively as independent variables. By adding independent variables to the analysis respectively, which were contained in the relation in expected proportions (directly proportional (+) or indirectly proportional (-)) and increased correlation coefficient, meaningful relations, where bearing capacity could be estimated, with extremely high correlation (r = 0.95 - 0.97) and containing basic material properties were obtained (Table 9). It should be indicated that these equations include basic mass and material properties such as seismic velocity, natural unit weight, point load strength, elastic modulus, Shore hardness, internal friction, and rock mass cohesion.

With the purpose of determining consistency of such equations obtained with measured bearing capacity, bearing capacities of the units worked on were reassessed according to equations (Equation 1-4) (Table 10).

In order to compare estimated bearing capacity values according to Equations 1, 2, 3 and 4 with measured bearing capacity values, simple regression analyses were performed. As a result of these regression analyses, relations with extremely high correlation (r = 0.97 - 0.98) were established between measured and estimated bearing capacities (Figure 3 and Table 11). It is beneficial to enhance these proposed bearing capacity equations through measuring’s held in different rock units.
Table 9. Multiple regression analysis results

Independent Variablea	Bearing Capacity, Y (kg/cm²)	r	Equation No.
Seismic velocity (A)	Y = -54.959 + 0.175*A + 6.916*B + 0.338*C	0.95	Equation 1
Natural unit weight (B)	Y = -53.738 + 0.177*A + 9.073*B + 0.077*D	0.95	Equation 2
Elastic modulus (C)	Y = -44.715 + 0.166*A + 6.865*B + 0.166*E	0.96	Equation 3
Point load strength (D)	Y = -42.846 + 0.171*A + 18.666*F + 1.591*G	0.97	Equation 4

a Seismic velocity, m/sn; Natural unit weight, gr/cm³; Point load strength, kg/cm²; Elastic modulus, GPa; Internal friction, °; Rock mass cohesion, kg/cm²

Table 10. Estimation of bearing capacity values using multiple regression analyses results

Bearing Capacity, qυ (kg/cm²)	Studied Units	Measured	Equation 1	Equation 2	Equation 3	Equation 4
Magnetite		110.49	109.373	109.336	109.515	108.671
Syenite		115.92	114.872	114.950	115.800	117.412
Serpentinite		97.71	103.546	103.360	102.538	100.730
Limestone		148.46	150.091	149.975	150.007	148.983
Clayey limestone		119.48	114.258	114.178	114.480	114.653
Dumping area		130.71	93.441	96.358	96.053	102.162
Gypsum		63.01	23.791	-	-	-
Soil		34.89	23.791	25.912	29.985	34.104

Figure 3. Relationship between measured bearing capacity and estimated bearing capacity (Equation 4)

Table 11. Relationships between measured bearing capacity and estimated bearing capacity using multiple regression analyses results

Independent Variable, X	Measured Bearing Capacity, Y (kg/cm²)	r
Equation 1	y = 3.0687X^{0.7757}	0.97
Equation 2	y = 2.4754X^{0.8185}	0.97
Equation 3	y = 1.6859X^{0.8993}	0.97
Equation 4	y = 1.0591X^{0.9962}	0.98
4. Conclusions
Bearing capacities of different rock units found in Sivas-Ulaş Open-Pit Celestite Mine, Divriği Open-Pit Iron Mine and Kangal Open-Pit Coal Mine around Sivas were calculated using some empirical formulas in the literature. With the purpose of comparing estimated and measured bearing capacity values, simple regression analyses were made. As a result of such regression analyses, relations with acceptable correlations ($r = 0.65 - 0.82$) were provided between measured and estimated bearing capacities (Table 6). Moreover, four different equations, through which bearing capacity could be estimated, were proposed considering also the parameters used in equations in the literature. Relations with higher correlation ($r = 0.97 - 0.98$) were provided in consequence of regression analyses held between estimated bearing capacities and those measured from these equations containing basic mass and material properties. It is seen beneficial to develop further these bearing capacity equations through measurements made for different rock units.

Acknowledgment
Authors would like to thank the Cumhuriyet University Research Foundation for providing financial support.

References
[1] A. Myslivec, and Z. Kysela, “The bearing capacity of building foundations,” Developments in geotechnical engineering, Amsterdam: Elsevier Scientific Pub. Co., 236 p., 1978.
[2] R. B. Peck, W. E. Hansen, and T. H. Thornburn, “Foundation Engineering,” John Wiley & Sons Inc., New York, 514 p., 1974.
[3] T. Imai, and M. Yoshimura, “The relation of mechanical properties of soils to P and S wave velocities for soil ground in Japan,” Urana Research Institute, Oyo Corp., 1976.
[4] G. F. Bell, “Engineering in rock masses,” Heinemann, London, 359 p., 1992.
[5] D. C. Wyllie, “Foundations on rock,” First Edition, E&F Spon Publishers, Chapman and Hall, London, 333 p., 1992.
[6] A. Keçeli, “A Discussion on the engineering parameters derived from seismic methods,” The Journal of The Chamber of Geophysical Engineers of Turkey, 9,10:177-180, 1995.
[7] E. Hoek, P. K. Kaiser, and W. F. Bawden, “Support of underground excavation in hard rocks,” Balkema, Rotterdam, 215 p., 1995.
[8] J. Bowles, “Foundation analysis and design,” 5th Edition, McGraw Hill, New York, 1996.
[9] B. M. Das, “Shallow foundations: Bearing Capacity and Settlement,” CRC Pres LLC, Sacramento, California, 116 p., 1999.
[10] B. Singh, and R. K. Goel, “Rock mass classification - A practical approach in civil engineering,” Elsevier, 267 p., 1999.
[11] E. Şekercioğlu, “Engineering geology for structure projects,” Yapıların Projelendirilmesinde Mühendislik Jeolojisi (In Turkish), The Chamber of Geological Engineers of Turkey, 280 p., 2002.
[12] M. Aytekin, “Experimental soil mechanics,” Deneysel Zemin Mekanı (In Turkish), Teknik publishing, Ankara, Turkey, 483-559, 2004.
[13] A. El-Naqa, “A comparative review in regards to estimating bearing capacity in jointed rock masses in northeast Jordan,” Bulletin of Engineering Geology and the Environment, 63:233-245, 2004.
[14] M. Singh, and K. S. Rao, “Empirical methods to estimate the strength of jointed rock masses,” Engineering Geology, 77:127-137, 2005.
[15] D. Genç, “Soil mechanics and foundations,” Zemin Mekanı ve Temeller (In Turkish), The Chamber of Geological Engineers of Turkey, 848 p., 2008.
[16] S. Alemdağ, Z. Güroçak, P. Solanki, and M. Zaman, “Estimation of bearing capacity of basalts at the Atasu dam site, Turkey,” Bulletin of Engineering Geology and the Environment, 67:79-85, 2008.
[17] TS 5744, “In situ measurement methods of the properties of foundation soils in civil engineering.” Inşaat mühendisliğinde temel zemini özelliklerinin yerinde ölçümü (In Turkish), Turkish Standard, Ankara, Turkey, 5-8, 1988.

[18] R. E. Goodman, “Introduction to Rock Mechanics,” 2 th Edition, John Wiley & Sons Inc., Canada, 1989.

[19] E. Hoek, and E. T. Brown, “Empirical strength criterion for rock masses,” Journal of Geotechnical Engineering Division, American Society of Civil Engineers, 106:1013-1035, 1980.

[20] G. A. Nicholson, and Z. T. Bieniawski, “A nonlinear deformation modulus based on rock mass classification,” International Journal of Mining and Geological Engineering, 8(3):181-202, 1990.

[21] Anonymous, “Rock Foundations,” U.S. Army Corp. of Engineers, Washington, USA, 120 p., 1994.

[22] Z. T. Bieniawski, “Engineering rock mass classification,” John Wiley & Sons Inc., New York, 251 p., 1989.

[23] Y. Gül, and A. Ceylanoğlu, “Evaluation of plate loading tests on some rock formations for assessing the ground bearing capacity,” Bulletin of Engineering Geology and the Environment, 72:131-136, 2013.