Green Synthesis of a CuO–ZnO Nanocomposite for Efficient Photodegradation of Methylene Blue and Reduction of 4-Nitrophenol

Aklilu Guale Bekru, Lemma Teshome Tufa, Osman Ahmed Zelekew,* Mahendra Goddati, Jaebeom Lee, and Fedlu Kedir Sabir*

1. INTRODUCTION

Freshwater is one of the most vital resources needed for the well-being of mankind. Nowadays, water pollution has become one of the challenges our world faces, particularly due to toxic and carcinogenic contaminants from wastewater. Therefore, developing eco-friendly, efficient, and low-cost materials and fabrication techniques are necessary. Currently, researchers are exploring the use of nanostructured material-based photocatalysts as alternatives to conventional techniques. The unique characteristics of nanoscale materials have led to their use as catalysts for the degradation of pollutants into benign compounds. Recently, nanostructured material-based photocatalysis has shown remarkable development in the applications of water splitting, dye degradation, and drug degradation. Specifically, metal oxide-based nanostructure photocatalysis is a promising approach for efficiently removing organic contaminants from wastewater.

As a result of their unique properties and versatility, metal oxides (ZnO, TiO₂, WO₃, CuO, Cu₂O, Fe₂O₃, etc.) play a key role in catalysis. ZnO is among the metal oxides that have been explored most for wastewater treatment for its low cost, abundant availability, nontoxicity, and favorable exciton binding energy. However, wide bandgap for visible light activation, fast e⁻/h⁺ recombination, and photocorrosion in aqueous media are drawbacks limiting the practical application of pristine ZnO as photocatalyst. Several properties have been demonstrated by coupling of ZnO with low-bandgap p-type CuO semiconductors: (i) a p–n heterojunction is formed, which reduces the e⁻/h⁺ recombination rate; (ii) narrow bandgaps are created, which improve visible light harvesting and (iii) improved reusability without significant performance loss. Therefore, developing CuO–ZnO nanostructured material is necessary to achieve this goal.

CuO–ZnO NCs can be fabricated by various methods including precipitation, sol–gel, solvothermal, electrospinning, photodeposition, microwave-assisted, electro-

ABSTRACT: CuO–ZnO nanocomposites (NCs) were synthesized using an aqueous extract of Verbascum sinaiticum Benth. (GH) plant. X-ray diffraction (XRD), spectroscopic, and microscopic methods were used to explore the crystallinity, optical properties, morphology, and other features of the CuO–ZnO samples. Furthermore, catalytic performances were investigated for methylene blue (MB) degradation and 4-nitrophenol (4-NP) reduction. According to the results, CuO–ZnO NCs with 20 wt % CuO showed enhanced photocatalytic activity against MB dye with a 0.017 min⁻¹ rate constant compared to 0.0027 min⁻¹ for ZnO nanoparticles (NPs). Similarly, a rate constant of 5.925 min⁻¹ g⁻¹ 4-NP reductions was achieved with CuO–ZnO NCs. The results signified enhanced performance of CuO–ZnO NCs relative to ZnO NPs. The enhancement could be due to the synergy between ZnO and CuO, resulting in improved absorption of visible light and reduced electron-hole (e⁻/h⁺) recombination rate. In addition, variations in the CuO content affected the performance of the CuO–ZnO NCs. Thus, the CuO–ZnO NCs prepared using V. sinaiticum Benth. extract could make the material a desirable catalyst for the elimination of organic pollutants.

#metrics & more

© 2022 The Authors. Published by American Chemical Society
Among these methods, a microwave-assisted method has several benefits in comparison to conventional heating methods, such as fast reactions, uniform particle size distribution, high yield, and highly pure nanomaterials. For CuO–ZnO NC synthesis, the majority of the methods utilize a variety of precursors as well as other reagents. A green chemistry approach, however, encourages the use of cheap, environmentally benign chemical substances and waste-free methods that eliminate chemical waste. Plant extracts provide biomolecules that are safe, green, cheap, and naturally available. Thus, biomolecules are the potential alternative to harsh chemicals. The nature of the biomolecules greatly affects their interaction with the metal ions. According to the previous reports, biomolecule-based metal-oxide NP synthesis involves formation of a biomolecule–metal ion complex, then a metal hydroxide complex, and eventually metal-oxide nanoparticles.

CuO–ZnO NCs synthesis was reported using extracts of plants like Clerodendrum infortunatum, Melissa officinalis L., Vaccinium arctostaphylos L., and Ginkgo biloba. This study involves preparing CuO–ZnO NCs using GH extract. To our knowledge, there has not yet been a publication on CuO–ZnO NC catalyst synthesized using GH. GH is a medicinal plant and is abundantly available for use in nanoparticle synthesis. As reported, aqueous extracts of GH leaves contain phytochemicals that have significant reducing properties, such as polyphenols and saponins, making GH a promising candidate for nanoparticle synthesis. Besides, the polyphenols and saponins with other biomolecules present in the extract can stabilize the nanoparticle formation and control the morphology of the resulting nanostructure. Thus, the use of GH extracts for CuO–ZnO NCs synthesis has valuable importance.

The current work describes a green approach for CuO–ZnO NC synthesis utilizing an aqueous extract of GH with an efficient, low-cost, simple, and rapid MW-assisted method. Microscopy, spectroscopy, and other methods were used to study the resulting samples. The catalytic activity of CuO–ZnO NCs was also evaluated against MB degradation and 4-NP reduction. For comparison purposes, the degradation performance of ZnO was also evaluated. CuO–ZnO NCs prepared with the aid of GH extract are anticipated to have enhanced catalytic reactions due to improved response to visible light and reduced e−/h+ recombination rates.

2. EXPERIMENTAL SECTION

2.1. Chemicals and Reagents. Analytic-grade reagents of copper acetate (Cu(CH$_3$COO)$_2$.H$_2$O) (99%, UNI-CHEM), zinc acetate (Zn(CH$_3$COO)$_2$.2H$_2$O) (99%, UNI-CHEM), sodium borohydride (NaBH$_4$) (95%, SRL), sodium hydroxide (NaOH) (98%, Loba), and methylene blue (C$_{16}$H$_{18}$ClN$_3$S.3H$_2$O) (PJ) were used. Leaves of Verbascum sinaiticum Benth. were obtained from the Adama Science and Technology University campus, Ethiopia. For the preparation of solution and washing activities, deionized water (DW) was utilized throughout the experiment.

2.2. Extract Preparation. The leaves of the V. sinaiticum Benth. plant (Figure S1) were collected, washed in distilled water, air-dried, and then ground to powder using a grinder. Then, 10 g of GH powder and 100 mL of DW were mixed in a 1 L beaker and then left to boil under magnetic stirring for 10 min. After cooling, filtration was used to separate the extract, which was then stored at 4 °C for use in the subsequent experiments.

2.3. Synthesis of the CuO–ZnO NCs. CuO–ZnO NCs were synthesized by the MW-assisted method using Zn- (CH$_3$COO)$_2$.2H$_2$O, Cu(CH$_3$COO)$_2$.H$_2$O, and GH leaf
Typically, 5.0 g of Zn(CH$_3$COO)$_2$·2H$_2$O and 1.25 g of Cu(CH$_3$COO)$_2$.H$_2$O were dissolved in DW and heated at 75 °C under stirring. While it is being stirred, 50 mL of extract was slowly added to the solution. NaOH (20 wt %) was used for adjusting the pH and then stirred for 20 min. Subsequently, the mixture was MW-irradiated using a household oven (1000 W, Comet) for 10 min at 50% power output. After purification with ample DW and ethanol, the brown precipitate obtained was dried at 80 °C for 12 h. A pestle was used to hand-crush the resultant solid. Eventually, calcination of the powder was conducted at 500 °C for 3 h using a muffle furnace. The resulting product was a 20 wt % CuO content sample.

Similarly, other samples with CuO contents of 0% (ZnO), 10% (CuO–ZnO), 30% (CuO–ZnO), 50% (CuO–ZnO), and 100% (CuO) by wt % were prepared using zinc acetate (6.25, 5.65, 4.25, 3.05, and 0 g) and copper acetate (0, 0.65, 1.9, 3, and 5.75 g), respectively. To each of these mixtures, 50 mL of extract was added. The concentration of [Cu$^{2+}$ + Zn$^{2+}$] and the total volume of the final solution were kept constant. The remaining procedures were similar to that of the 20 wt % CuO. Scheme 1 provides the schematic summary of the CuO–ZnO NC synthesis.

2.4. Characterizations. The crystallinity and crystal phase of the obtained powder was probed by an X-ray diffraction (XRD) instrument (XRD-7000S Shimadzu) with Cu Kα radiation. The elemental composition on the surface was collected using an X-ray photoelectron spectroscope (XPS, Thermo Scientific, Al Kα ($h\nu = 1350$ eV)). The surface morphology and elemental mapping were measured by a field emission scanning electron microscope (FESEM; HITACHI, S-4800) and a transmission electron microscope (TEM; FEI Tecnai G2 F30). UV–visible spectral characterization of the nanomaterials was performed using a UV–vis spectrophotometer (JASCO V-670). The emission spectra were measured using a fluorescence spectrophotometer (Agilent Cary Eclipse Fluorescence Spectrophotometer). The surface area analysis was conducted using a Micromeritics ASAP 2420 (V2.09 J)

![Figure 1](http://pubs.acs.org/journal/acsodf)
instrument by N$_2$ adsorption at 77 K. The progress of degradation and reduction reactions was observed by a UV–vis spectrophotometer (Azzota: SM-1600).

2.5. Photocatalytic Performance Test. The photocatalytic efficiency of the CuO–ZnO NC sample was evaluated against the MB degradation (with a 150 W halogen lamp). The reaction suspension was prepared by mixing 120 mL of MB (10 ppm) and 20 mg of catalyst. To assure homogeneous dispersion of the catalyst and dye molecules, a 30-min sonication was used. Then, it was irradiated by visible light while being magnetically stirred continuously. Every 15 min, a 4 mL of sample was taken and centrifuged to separate the catalysts from the liquid before the absorbance measurement. After photocatalytic degradation of MB, the absorbance of each sample was measured. The percentage of photocatalytic degradation (D%) and rate of reaction were evaluated using eqs 1 and 2, respectively.

$$D(\%) = \frac{C_0 - C_t}{C_0} \times 100$$

$$\ln \left(\frac{C_t}{C_0} \right) = -kt$$

where k represents rate constant, and C_0 and C_t are the dye (pollutant) concentrations before (or at time = 0 min) and after illumination (or at time = t min), respectively.

2.6. Catalytic Reduction Test. To assess the catalytic capability of CuO–ZnO, 4-NP was used as a test nitroaromatic compound in the presence of NaBH$_4$ as a reductant. Typically, 40 mg of NaBH$_4$ and 40 mg of catalyst were dispersed in a 250 mL beaker containing 100 mL of 20 ppm 4-NP. The reduction progress was tracked by a UV–vis spectrophotometer.

3. RESULTS AND DISCUSSION

The crystallinity and crystal phase of the calcined samples were investigated using the data from XRD measurements. XRD patterns of CuO, ZnO, and CuO–ZnO samples are shown in Figure 1A. As displayed in the figure, the XRD patterns of the ZnO sample at the 2θ values of 31.79, 34.45, 36.26, 47.58, 56.6, 62.88, 66.4, 67.98, and 69.11 were indexed as (100), (002), (110), (101), (102), (110), (103), (200), (112), and (201), respectively, corresponding to the hexagonal ZnO phase (card no. 00-036-1451). The diffraction peaks of CuO sample obtained at the 2θ values of 32.48, 35.62, 37.88, 48.94, 53.5, 58.29, 61.7, 65.9, 66.4, 68.08, and 72.46 indexed as (110), (11−1), (111), (20−2), (020), (202), (11−3), (022), (31−1), (220), and (311) planes, respectively, were assigned to the monoclinic CuO phase (card no. 00-043-1451). Moreover, the diffraction peaks of CuO–ZnO NCs observed at the 2θ values of 31.76, 34.4, 36.28, 47.58, 56.62, 62.84, 66.36, 67.98, and 69.14 matched with the ZnO phase and those at the 2θ values of 35.54, 38.72, 48.74, 53.42, 58.33, 61.6 matched with the CuO phase, confirming the formation of CuO–ZnO. The diffraction patterns of the composite do not contain peaks other than CuO and ZnO, indicating that the prepared sample is free of impurities. Following examination by high-resolution TEM, the lattice fringes for ZnO–CuO were observed. Figure 1C,D displays the line intensity profile for the selected lines in the inverse fast Fourier transform (IFFT) image of the CuO–ZnO NC sample corresponding to the d-spacing average of 0.26 nm (Figure 1C) and 0.27 nm (Figure 1D). According to the results, 0.26 nm is the interplanar spacing between the (002) plane of hexagonal ZnO (card no. 000-036-1451), while 0.27 nm is the spacing between the (110) plane of monoclinic CuO (card no. 00-043-1451) (Figure 1 B–D). This result is very consistent with the literature reports and XRD analysis.

The average crystallite size was determined using Scherrer’s formula (eq 3) for the first three intense peaks: (100), (002), and (101) for ZnO; (11−1), (111), and (20−2) for CuO; and (100), (002), and (101) for the CuO–ZnO NCs. The calculated average crystallite sizes were 22, 14, and 18 nm for ZnO, CuO, and CuO–ZnO samples, respectively. The values obtained indicated that the synthesized samples have crystallites in the nanosize range. In view of the possibility that photocatalysts could be improved by reducing the crystallites size, the nanosize range crystallites of the synthesized CuO–ZnO samples make the materials an attractive photocatalyst candidate.

$$D = \frac{0.9\lambda}{\beta \cos(\theta)}$$
Figure 2A–C illustrates SEM images of the synthesized catalysts using GH extract. The micrograms indicated that ZnO and CuO were found in a cluster of spherical-like NPs, while CuO–ZnO NCs were found in a plate-like morphology. The morphology and crystal structure of the CuO–ZnO sample was further evaluated by TEM analysis, as displayed in Figures 2D and S3. The results illustrated that the prepared CuO–ZnO NCs possess plate-like nanostructures, supporting the SEM analysis. Furthermore, the distribution of CuO and ZnO in CuO–ZnO NCs was evaluated from EDS mapping images. The typical high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) image and corresponding EDS mapping of CuO–ZnO NCs (Figure 2E,F) and Figure S4 demonstrated the even distribution of O, Cu, and Zn elements throughout the CuO–ZnO sample.

XPS study was utilized for the survey of oxidation states and compositions of the CuO–ZnO sample surface. The resulting XPS spectrum of the CuO–ZnO sample is presented in Figure 3. The peaks observed in the full survey spectrum displayed in Figure 3A indicate the presence of O, Cu, and Zn species. As shown in Figure 3B, XPS peaks at 1021.68 and 1044.77 eV were assigned to the Zn energy levels designated as 2p$_{3/2}$ and 2p$_{1/2}$ respectively. Similarly, the peaks centered at 933.1 and 953.01 eV were related to the 2p$_{3/2}$ and 2p$_{1/2}$ levels of Cu, respectively (Figure 3C). Satellite peaks appeared at the upper energy sides, 942.96 and 940.68 eV for Cu 2p$_{3/2}$ and 961.56 eV for Cu 2p$_{1/2}$ (Figure 3C), confirming the existence of Cu in Cu$^{2+}$ state, i.e., CuO. Furthermore, the peak located at 530.18 eV is attributed to the O 1s from the lattice oxygen (O$^{2-}$) bound to metals, and the shoulder peak at 531.67 eV corresponds to the oxygen (O$^{2-}$) in the oxygen-deficient region indicating the presence of oxygen vacancy (O$_{V}$). Hence, the XPS study revealed the presence of CuO and ZnO in the CuO–ZnO sample, which is consistent with the results from XRD, HRTEM, and EDS elemental mapping studies.

The adsorption–desorption isotherm of N$_2$ for the CuO–ZnO NC sample exhibited type IV isotherm having narrow adsorption–desorption of H3-type hysteresis loops (Figure S6), indicating the presence of a mesoporous structure. The BET analysis indicated an approximate specific surface area of 18.49 m2 g$^{-1}$ in the P/P$_0$ range of 0.05–0.3. Similarly, a 23.78 nm adsorption average pore size was obtained from the BET method. The corresponding distribution of the pore sizes from the Barrett–Joyner–Halenda (BJH) method (inset of Figure 2)}
Figure S6) indicated that the textural porosity of CuO−ZnO NCs falls under the mesoporous materials.

The photocatalytic activities of CuO−ZnO NCs were tested against MB degradation using visible light, and the corresponding results are given in Figure 4. The UV−vis absorbance of MB showed a strong peak at 664 nm. In the presence of catalysts, irradiating MB aqueous solution with visible light resulted in decreasing absorbance with time, indicating photodegradation of the MB. More specifically, the CuO−ZnO NCs showed improved photocatalytic performance compared to the pristine ZnO NPs with an efficiency of 24% for ZnO and 82% for CuO−ZnO NCs, as shown in Figure 4A−D. The rate constant (k) calculated from the linear fitted plots of ln(Ct/C0) vs time (Figure 4D) was found to be 0.0027 and 0.017 min−1 for ZnO and CuO−ZnO NCs, respectively. The enhanced performance could be the result of coupling a p-type CuO with an n-type ZnO. Specifically, the improved visible light absorption capacity of CuO−ZnO (from UV−vis analysis), and the minimized rate of e−/h+ recombination (from PL analysis) are responsible for the enhancement.

A study on how the CuO contents affect the activity of the prepared catalyst against MB was also conducted by varying CuO contents. The results depicted in Figure 5A−C show the performance of 24, 65, 82, 75, and 76% MB degradation for CuO wt % of 0, 10, 20, 30, and 50% samples of CuO−ZnO NCs, respectively. The calculated rate constants were 0.0027, 0.0112, 0.0170, 0.0139, and 0.0144 min−1 for ZnO (0%), CuO−ZnO (10%), CuO−ZnO (20%), CuO−ZnO (30%), and CuO−ZnO (50%) contents of CuO, respectively (Figure 5D). While all CuO−ZnO samples showed higher performance than the ZnO NPs alone, CuO−ZnO NCs with 20 wt % CuO displayed the highest performance. This implies that there exists an optimum amount of CuO component in CuO−ZnO beyond which photocatalytic activity diminishes. As reported in previous studies, the decreased performance of CuO−ZnO with increased CuO content beyond the optimum value could be explained by the increased agglomeration of CuO that masks surface photoactive sites or enhances the rate of e−/h+ recombination.

In general, the processes involved in photocatalysis include absorption of light, e−/h+ pairs generation and separation, transfer of e−/h+ to the active sites for a redox reaction, recombination of e−/h+, and adsorption/desorption of reactants/products. Depending on the redox reaction between the charge carriers and the adsorbed species or surrounding species, reactive oxygen species (ROS) like hydroxyl radicals (•OH), superoxide anion radicals (O2• −), singlet oxygen species (1O2), and peroxide molecules (H2O2) may form. These species have a high tendency of oxidizing organic pollutants into less-toxic substances or mineralize them into CO2, H2O, and others.

In the case of CuO−ZnO NCs, light of appropriate energy illumination generates exciton, where e− accumulate in the conduction band (CB) and h+ in the valance band (VB). Coupling CuO with ZnO semiconductor provides the band alignment in which the e− in the CB of CuO are pushed to the relatively less negative CB of ZnO. Thus, the h+ in the VB oxidizes H2O2/HO• (or organic pollutant RH) resulting in HO• (or R•) depending on the potential of the hole in the VB.
Figure 4. (A, B) Photocatalytic removal of MB using ZnO (A) and CuO–ZnO (B), (C) plots of C_t/C_0 vs reaction time (min), and (D) plots of $\ln(C_t/C_0)$ vs reaction time (min) for MB degradation using ZnO and CuO–ZnO.

Figure 5. Photocatalytic degradation of MB using CuO–ZnO with different CuO wt % (A) 10%, (B) 30%, (C) 50%, and (D) the effect of CuO wt % content on the apparent rate constant CuO–ZnO for MB degradation.
Similarly, the e\(^{-}\) in the CB will be trapped by the dissolved oxygen and produce ROS that finally degrades the pollutant (eq 4). Hence, the complete degradation of MB ends up producing H\(_2\)O, CO\(_2\), and other inorganic ions like NO\(_3\)^-, SO\(_4\)^2-, and Cl\(^-\), as shown in eq 5.

\[
\text{CuC} - \text{ZnO} + h\nu \rightarrow h^+/e^- \rightarrow \text{H}_2\text{O/}OH^-/\text{O}_2 \rightarrow \text{ROS} \tag{4}
\]

\[
\text{H}_2\text{C}_6\text{N}_4\text{H}_2\text{NCH}_2\text{CH}_3 \rightarrow \text{ROS} \rightarrow \text{H}_2\text{O} + \text{CO}_2 + \text{SO}_4^{2-} + \text{NO}_3^- + \text{Cl}^- \tag{5}
\]

Table 1 compares the activities of this work to the earlier reports using ZnO-based NCs against MB degradation under different experimental conditions. Despite the different experimental conditions, the CuO–ZnO NCs obtained using GH exhibited superior photocatalytic performance compared to the previously reported literature values based on their ratio constants (Table 1). It degraded 82% of the initial MB amount within 105 min with a rate constant of 0.017 min\(^{-1}\) or ratio constant of 0.85 min\(^{-1}\) g\(^{-1}\) (ratio of \(k\) to the mass of catalyst).

Furthermore, the catalytic reduction activity of the nanostructured catalysts was also tested for 4-NP along with the strong reducing agent NaBH\(_4\). Figure 6 shows the progress of reduction and corresponding kinetics in the presence of ZnO and CuO–ZnO catalysts. The aqueous solution of 4-NP displayed an absorbance peak at 320 nm (Figure 6A). Upon NaBH\(_4\) addition, the peak at 320 nm (from light yellow solution) disappeared, while a strong peak around 405 nm (intense yellowish-orange solution) was observed, indicating the formation of 4-nitrophenolate ion in alkaline media (Figure 6A). The peak at 405 nm showed no change in intensity over an hour. However, when ZnO and CuO–ZnO were added, the peak intensity at 405 nm drops, while a new peak at 300 nm emerges, confirming the 4-AP formation. CuO–ZnO NCs showed strong catalytic efficiency with reaction completion in less than 12 min (Figure 6B,C). On the other hand, ZnO showed insignificant change in the 4-nitrophenolate ion (in 12 min), suggesting the lower catalytic performance of ZnO than CuO–ZnO NCs against the reduction of 4-NP.

The reduction kinetics of 4-NP with NaBH\(_4\) and catalysts is shown in Figure 6D. The rate constants of the reduction reaction were obtained from the linear fitted plot of \(\ln(C_t/C_0)\) vs time of reaction, as depicted in Figure 6D (inset) applying eq 2. In this regard, the ratio constants (\(K\)) of 0.125 and 5.925
min$^{-1}$ g$^{-1}$ were obtained for ZnO and CuO–ZnO nanocatalysts, respectively. The reduction of 4-NP into 4-AP by NaBH$_4$ is a thermodynamically feasible reaction. However, the rate of reduction reaction is slow due to the kinetic barrier in the reaction steps. Catalysts allow the reaction to take routes with relatively lower energy barriers leading to a faster rate of reaction. Nanostructured catalysts were often used to accelerate the reduction of 4-NP into 4-AP by NaBH$_4$. The proposed reaction mechanism for the conversion of 4-NP into 4-AP by CuO–ZnO NCs catalysts is given in Scheme 2. Generally, the mechanisms involve processes such as adsorption/desorption and transfer of electrons and protons. From the aqueous solution, BH$_4^-$ and 4-NP adsorb on the surface of the catalyst, where electron and proton transfers take place. Electrons transfer from BH$_4^-$ to the adsorbed 4-NP through the CuO–ZnO catalyst leading to reduction. Similarly, the protons transfer from the BH$_4^-$ and aqueous solution to the 4-NP, completing the reduction reaction. The adsorption process and transfer of charged species are facilitated by the built-in electric field of the p–n heterojunction of CuO–ZnO. After completion of the redox reaction, the desorption step takes place, as shown in Scheme 2. The prepared CuO–ZnO NCs have shown good recyclability up to four cycles against the MB using visible light and 4-NP reduction using NaBH$_4$ (Figure S5).

4. CONCLUSIONS

CuO–ZnO NCs have been prepared successfully using the MW-assisted method with GH extract. The synthesized sample was characterized using various techniques. The analysis indicated that crystalline CuO–ZnO NCs with plate-like morphology were obtained. Similarly, the XRD patterns, EDS elemental mappings, and XPS spectra confirmed that the composite was composed of CuO and ZnO with uniform distribution. And also, the UV–vis absorbance and PL analysis of the CuO–ZnO NCs showed enhanced absorption in the visible range with a suppressed recombination rate of e$^-$/h$^+$ compared to the ZnO NPs. Furthermore, the prepared sample showed improved photocatalytic degradation of MB and catalytic reduction of 4-NP with rate constants of 0.017 and 0.237 min$^{-1}$, respectively. Therefore, CuO–ZnO NCs obtained using abundantly available GH extract could be used for the remediation of water polluted by organic dyes.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsomega.2c02687.

Photographic image of Verbascum sinaiticum Benth. plant; Tauc’s plot of ZnO and CuO–ZnO; TEM, HRTEM, and fast Fourier transform (FFT) of CuO–ZnO NCs; EDS spectrum of CuO–ZnO; recyclability; and N$_2$ adsorption–desorption isotherms; and BJH pore size distributions of CuO–ZnO NC samples (PDF)

AUTHOR INFORMATION

Corresponding Authors
Osman Ahmed Zelekew – Department of Materials Science and Engineering, Adama Science and Technology University, Adama 1888, Ethiopia; orcid.org/0000-0003-2633-5426; Email: osman.ahmed@astu.edu.et, osmax2007@gmail.com
Fedlu Kedir Sabir – Department of Applied Chemistry, Adama Science and Technology University, Adama 1888, Ethiopia; Email: fedluked130@gmail.com

Authors
Aklilu Guale Bekru – Department of Applied Chemistry, Adama Science and Technology University, Adama 1888, Ethiopia
Lemma Teshome Tufa – Department of Applied Chemistry, Adama Science and Technology University, Adama 1888, Ethiopia; Research Institute of Materials Chemistry, Changnam National University, Daejeon 34134, Republic of Korea; orcid.org/0000-0001-6929-8464
Mahendra Goddati – Department of Chemistry, Chemistry Engineering and Applied Chemistry, Changnam National University, Daejeon 34134, Republic of Korea
Jaebeom Lee – Department of Chemistry, Chemistry Engineering and Applied Chemistry, Changnam National University, Daejeon 34134, Republic of Korea; orcid.org/0000-0002-4563-2883
Complete contact information is available at:
https://pubs.acs.org/10.1021/acsomega.2c02687

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
The authors would like to thank the Postgraduate Program of Adama Science and Technology University, Research and Technology Transfer Office, Adama Science and Technology University (No. ASTU/AS-R/013/2021), and Wachemo University for financially supporting this research. They also acknowledge the National Research Foundation of Korea (NRF-2021H1D3A2A01099457).

REFERENCES
(1) Mandeep; Gupta, G. K.; Liu, H.; Shukla, P. Pulp and Paper Industry—Based Pollutants, Their Health Hazards and Environmental Risks. Curr. Opin. Environ. Sci. Heal. 2019, 12, 48–56.
(2) Sivaram, N. M.; Gopal, P. M.; Barik, D. Toxic Waste from Textile Industries. In In Energy from Toxic Organic Waste for Heat and Power Generation; Elsevier, 2018; pp 43–54.
(3) Carmen, Z.; Daniel, S. Textile Organic Dyes — Characteristics, Polluting Effects and Separation/Elimination Procedures from Industrial Effluents — A Critical Overview. In Organic Pollutants Ten Years After the Stockholm Convention - Environmental and Analytical Update; InTech, 2012; pp 55–86, DOI: 10.5772/32373.
(4) Ilías, M.; Ahmad, W.; Khan, H.; Yousaf, S.; Yasin, M.; Khan, A. Environmental and Health Impacts of Industrial Wastewater Effluents in Pakistan: A Review. Rev. Environ. Health 2019, 34, 171–186.
(5) Kanu, I.; Achi, O.K. Industrial Effluents and Their Impact on Water Quality Of Receiving Rivers In Nigeria. J. Appl. Technol. Environ. Sanit. 2011, 1, 75–86.
(6) Ibrahim, R. K.; Hayyan, M.; Alsadi, M. A.; Hayyan, A.; Ibrahim, S. Environmental Application of Nanotechnology: Air, Soil, and Water. Environ. Sci. Pollut. Res. 2016, 23, 13754–13788.
(7) Ong, C. B.; Ng, L. Y.; Mohammad, A. W. A Review of ZnO Nanoparticles as Solar Photocatalysts: Synthesis, Mechanisms and Applications. Renewable Sustainable Energy Rev. 2018, 81, 536–551.
(8) Nosaka, Y.; Nosaka, A. Y. Generation and Detection of Reactive Oxygen Species in Photooxidation. Chem. Rev. 2017, 117, 11302–11335.
(9) Shi, W.; Li, M.; Huang, X.; Ren, H.; Yan, C.; Guo, F. Facile Synthesis of 2D/2D CO3PO32−/g-C3N4 Heterojunction for Highly Photocatalytic Overall Water Splitting under Visible Light. Chem. Eng. J. 2020, 382, No. 122960.
(10) Momeni, M. M.; Ghayeb, Y. Visible Light-Driven Photoelectrochemical Water Splitting on ZnO–TiO2 Heterogeneous Nanotube Photoanodes. J. Appl. Electrochem. 2015, 45, 557–566.
(11) Momeni, M. M.; Ghayeb, Y.; Menati, M. Facile and Green Synthesis of CuO Nanoneedles with High Photo Catalytic Activity. J. Mater. Sci. Mater. Electron. 2016, 27, 9454–9460.
(12) Momeni, M. M. Fabrication of Copper Decorated Tungsten Oxide-Titanium Oxide Nanotubes by Photochemical Deposition Technique and Their Photocatalytic Application under Visible Light. Appl. Surf. Sci. 2016, 357, 160–166.
(13) Guo, F.; Huang, X.; Chen, Z.; Cao, L.; Cheng, X.; Chen, L.; Shi, W. Construction of Cu2PZnSnO6-g-C3N4 p-n-n Heterojunction with Multiple Built-in Electric Fields for Effectively Boosting Visible-Light Photocatalytic Degradation of Broad-Spectrum Antibiotics. Sep. Purif. Technol. 2021, 265, No. 118477.
(14) Shi, W.; Shu, K.; Sun, H.; Ren, H.; Li, M.; Chen, F.; Guo, F. Dual Enhancement of Capturing Photogenerated Electrons by Loading CeO2 Nanoparticles on N-Deficient Graphitic Carbon Nitride for Efficient Photocatalytic Degradation of Tetracycline under Visible Light. Sep. Purif. Technol. 2020, 246, No. 116930.
Photodegradation of Organic Dyes and Antibacterial Activity. J. Mater. Sci. Mater. Electron. 2021, 32, 17154–17169.
(48) Geyid, A.; Abebe, D.; Debella, A.; Makonnen, Z.; Aberra, F.; Teka, F.; Kebede, T.; Urga, K.; Yersaw, K.; Biza, T.; Mariam, B. H.; Guta, M. Screening of Some Medicinal Plants of Ethiopia for Their Anti-Microbial Properties and Chemical Profiles. J. Ethnopharmacol. 2005, 97, 421–427.
(49) Mergia, E.; Shibeshi, W.; Terefe, G.; Teklehaymanot, T. Antitrypanosomal Activity of Verbasum sinaiticum Benth. (Scrophulariaceae) against Trypanosoma congolense Isolates. BMC Complementary Altern. Med. 2016, 16, No. 362.
(50) Liu, F.; Che, Y.; Chai, Q.; Zhao, M.; Lv, Y.; Sun, H.; Wang, Y.; Sun, J.; Zhao, C. Construction of RGO Wrapping CuO/ZnO Heterostructure Photocatalyst for PNP and PAM Degradation. Environ. Sci. Pollut. Res. 2019, 26, 25286–25300.
(51) Zelekew, O. A.; Kuo, D. H. Facile Synthesis of SiO2@CuO@TiO2 Heterostructures for Catalytic Reductions of 4-Nitrophenol and 2-Nitroaniline Organic Pollutants. Appl. Surf. Sci. 2017, 393, 110–118.
(52) Taufique, M. F. N.; Haque, A.; Karnati, P.; Ghosh, K. CuO Nanocomposites with Improved Photocatalytic Activity for Environmental and Energy Applications. J. Electron. Mater. 2018, 47, 6731–6745.
(53) Li, J.; Zhang, Y.; Li, L.; Wang, Y.; Zhang, L.; Zhang, B.; Wang, F. Formation of Dumbbell and Sphere-like CuO as High-Performance Anode Materials for Lithium Ion Batteries. Mater. Lett. 2020, 261, No. 127058.
(54) Witoon, T.; Permsirivanich, T.; Chareonpanich, M. Chitosan-Assisted Combustion Synthesis of CuO-ZnO Nanocomposites: Effect of PH and Chitosan Concentration. Ceram. Int. 2013, 39, 3371–3375.
(55) Kirankumarma, V. S.; Sumathia, S. A Review on Photodegradation of Organic Pollutants Using Spinel Oxide. Mater. Today Chem. 2020, 18, No. 100355.
(56) Islam, M. T.; Domínguez, A.; Alvarado-Tenorio, B.; Bernal, R. A.; Montes, M. O.; Noveron, J. C. Sucrose-Mediated Fast Synthesis of Zinc Oxide Nanoparticles for the Photocatalytic Degradation of Organic Pollutants in Water. ACS Omega 2019, 4, 6560–6572.
(57) Zhu, L.; Li, H.; Liu, Z.; Xia, P.; Xie, Y.; Xiong, D. Synthesis of the 0D/3D CuO/ZnO Heterojunction with Enhanced Photocatalytic Activity. J. Phys. Chem. C 2018, 122, 9531–9539.
(58) Sathishkumar, P.; Sreena, R.; Wu, J. J.; Anandan, S. Synthesis of CuO-ZnO Nanophotocatalyst for Visible Light Assisted Degradation of a Textile Dye in Aqueous Solution. Chem. Eng. J. 2011, 171, 136–140.
(59) Yu, J.; Zhang, S.; Xu, X.; Zhu, W.; Feng, B.; Hu, J. Photogenerated Electron Reservoir in Hetero-p-n CuO-ZnO Nanocomposite Device for Visible-Light-Driven Photocatalytic Reduction of Aqueous Cr(VI). J. Mater. Chem. A 2015, 3, 1199–1207.
(60) Xu, L.; Zhou, Y.; Wu, Z.; Zheng, G.; He, J.; Zhou, Y. Improved Photocatalytic Activity of Nanocrystalline ZnO by Coupling with CuO. J. Phys. Chem. Solids 2017, 106, 29–36.
(61) Lavín, A.; Sivasamy, R.; Mosquera, E.; Morel, M. J. High Proportion ZnO/CuO Nanocomposites: Synthesis, Structural and Optical Properties, and Their Photocatalytic Behavior. Surf. Interfaces 2019, 17, No. 100367.
(62) Chen, C.; Liu, X.; Fang, Q.; Chen, X.; Liu, T.; Zhang, M. Self-Assembly Synthesis of CuO/ZnO Hollow Microspheres and Their Photocatalytic Performance under Natural Sunlight. Vacuum 2020, 174, No. 109198.
(63) Lei, X.; Cao, Y.; Chen, Q.; Ao, X.; Fang, Y.; Liu, B. ZIF-8 Derived Hollow CuO/ZnO Material for Study of Enhanced Photocatalytic Performance. Colloids Surf., A 2019, 586, 1–10.
(64) Zhang, X.; He, X.; Kang, Z.; Cui, M.; Yang, D. P.; Luque, R. Waste Eggshell-Derived Dual-Functional CuO/ZnO/Eggshell Nano-composites: (Photo)Catalytic Reduction and Bacterial Inactivation. ACS Sustainable Chem. Eng. 2019, 7, 15762–15771.
(65) Zhang, Z.; Wang, P. Highly Stable Copper Oxide Composite as an Effective Photocathode for Water Splitting via a Facile Electrochemical Synthesis Strategy. J. Mater. Chem. 2012, 22, 2456–2464.
(66) Zhang, Z.; Sun, L.; Wu, Z.; Liu, Y.; Li, S. Facile Hydrothermal Synthesis of CuO-Cu₂O/GO Nanocomposites for the Photocatalytic Degradation of Organic Dye and Tetracycline Pollutants. *New J. Chem.* 2020, 44, 6420–6427.

(67) Taufik, A.; Saleh, R. Synthesis of Iron(II,III) Oxide/Zinc Oxide/Copper(II) Oxide (Fe₃O₄/ZnO/CuO) Nanocomposites and Their Photosonocatalytic Property for Organic Dye Removal. *J. Colloid Interface Sci.* 2017, 491, 27–36.

(68) Huang, J.; Yu, K.; Gu, C.; Zhai, M.; Wu, Y.; Yang, M.; Liu, J. Preparation of Porous Flower-Shaped SnO₂ Nanostructures and Their Gas-Sensing Property. *Sens. Actuators, B* 2010, 147, 467–474.

(69) Bharathi, P.; Harish, S.; Archan, J.; Navaneethan, M.; Ponnusamy, S.; Muthamizhchelvan, C.; Shimomura, M.; Hayakawa, Y. Enhanced Charge Transfer and Separation of Hierarchical CuO/ZnO Composites: The Synergistic Effect of Photocatalysis for the Mineralization of Organic Pollutant in Water. *Appl. Surf. Sci.* 2019, 484, 884–891.

(70) Babu, S. G.; Karthik, P.; John, M. C.; Lakhera, S. K.; Ashokkumar, M.; Khim, J.; Neppolian, B. Synergistic Effect of Sono-Photocatalytic Process for the Degradation of Organic Pollutants Using CuO-TiO₂/RGO. *Ultrason. Sonochem.* 2019, 50, 218–223.

(71) Huang, F.; Chen, L.; Wang, H.; Yan, Z. Analysis of the Degradation Mechanism of Methylene Blue by Atmospheric Pressure Dielectric Barrier Discharge Plasma. *Chem. Eng. J.* 2010, 162, 250–256.

(72) Zelekew, O. A.; Fufa, P. A.; Sabir, F. K.; Duma, A. D. Water Hyacinth Plant Extract Mediated Green Synthesis of Cu₂O/ZnO Composite Photocatalyst for the Degradation of Organic Dye. *Heliyon* 2021, 7, No. e07652.

(73) Renuka, L.; Anantharaju, K. S.; Vidy, Y. S.; Nagaswarupa, H. P.; Prashantha, S. C.; Nagabhushana, H. Synthesis of Sunlight Driven ZnO/CuO Nanocomposite: Characterization, Optical, Electrochemical and Photocatalytic Studies. *Mater. Today Proc.* 2017, 4, 11782–11790.

(74) Mageshwari, K.; Nataraj, D.; Pal, T.; Sathyamoorthy, R.; Park, J. Improved Photocatalytic Activity of ZnO Coupled CuO Nano-composites Synthesized by Reflux Condensation Method. *J. Alloys Compd.* 2015, 625, 362–370.

(75) Kandula, S.; Jeevanandam, P. Synthesis of Cu₂O@Ag Polyhedral Core-Shell Nanoparticles by a Thermal Decomposition Approach for Catalytic Applications. *Eur. J. Inorg. Chem.* 2016, 2016, 1548–1557.

(76) Zhao, Y.; Li, R.; Jiang, P.; Zhang, K.; Dong, Y.; Xie, W. Mechanistic Study of Catalytic Hydride Reduction of NO₂ to NH₃ Using Isotopic Solvent and Reducer: The Real Hydrogen Source. *J. Phys. Chem. C* 2019, 123, 15582–15588.