HERMITE-HADAMARD AND SIMPSON-LIKE TYPE INEQUALITIES FOR DIFFERENTIABLE HARMONICALLY
CONVEX FUNCTIONS

İMDAT İŞCAN

Abstract. In this paper, a new identity for differentiable functions is derived. A consequence of
the identity is that the author establishes some new general inequalities containing all of the
Hermite-Hadamard and Simpson-like type for functions whose derivatives in absolute value at
certain power are harmonically convex. Some applications to special means of real numbers are also
given.

1. Introduction

Let \(f : I \subset \mathbb{R} \to \mathbb{R} \) be a convex function defined on the interval \(I \) of real numbers
and \(a, b \in I \) with \(a < b \). The following inequality

\[f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x)\,dx \leq \frac{f(a) + f(b)}{2} \tag{1.1} \]

holds. This double inequality is known in the literature as Hermite-Hadamard integral inequality
for convex functions. Note that some of the classical inequalities for means can be derived from
(1.1) for appropriate particular selections of the mapping \(f \). Both inequalities hold in the reversed
direction if \(f \) is concave.

Following inequality is well known in the literature as Simpson inequality:

Theorem 1. Let \(f : [a, b] \to \mathbb{R} \) be a four times continuously differentiable mapping
on \((a, b)\) and \(\|f^{(4)}\|_{\infty} = \sup_{x \in (a, b)} |f^{(4)}(x)| < \infty \). Then the following inequality holds:

\[
\left| \frac{1}{3} \left[f(a) + f(b) \right] + \frac{2}{b-a} \int_{a}^{b} f(x)\,dx \right| \leq \frac{1}{2880} \|f^{(4)}\|_{\infty} (b-a)^{4}.
\]

For some results which generalize, improve and extend the Hermite-Hadamard
and Simpson inequalities, we refer the reader to the recent papers (see [1, 2, 3, 4, 5, 6, 8]).

In [5], the author introduced the concept of harmonically convex functions and
established some results connected with the right-hand side of new inequalities
similar to the inequality (1.1) for these classes of functions. Some applications to
special means of positive real numbers are also given.

2000 Mathematics Subject Classification. Primary 26A51; Secondary 26D15.
Key words and phrases. Harmonically convex function, Hermite-Hadamard type inequality.
Definition 1. Let \(I \subset \mathbb{R} \setminus \{0\} \) be a real interval. A function \(f : I \to \mathbb{R} \) is said to be harmonically convex, if
\[
(1.2) \quad f \left(\frac{xy}{tx + (1-t)y} \right) \leq tf(y) + (1-t)f(x)
\]
for all \(x, y \in I \) and \(t \in [0, 1] \). If the inequality in (1.2) is reversed, then \(f \) is said to be harmonically concave.

The following result of the Hermite-Hadamard type holds.

Theorem 2. Let \(f : I \subset \mathbb{R} \setminus \{0\} \to \mathbb{R} \) be a harmonically convex function and \(a, b \in I \) with \(a < b \). If \(f \in L[a, b] \) then the following inequalities hold
\[
(1.3) \quad f \left(\frac{2ab}{a + b} \right) \leq \frac{ab}{b-a} \int_a^b \frac{f(x)}{x^2} dx \leq \frac{f(a) + f(b)}{2}.
\]

The above inequalities are sharp.

Some results connected with the right part of (1.3) was given in [5] as follows:

Theorem 3. Let \(f : I \subset (0, \infty) \to \mathbb{R} \) be a differentiable function on \(I \), \(a, b \in I \) with \(a < b \), and \(f' \in L[a, b] \). If \(|f'|^q \) is harmonically convex on \([a, b] \) for \(q \geq 1 \), then
\[
(1.4) \quad \left| \frac{f(a) + f(b)}{2} - \frac{ab}{b-a} \int_a^b \frac{f(x)}{x^2} dx \right| \leq \frac{ab(b-a)}{2} \lambda_1^{-\frac{q}{p}} \left[\lambda_2 |f'(a)| + \lambda_3 |f'(b)| \right]^{\frac{q}{p}},
\]
where
\[
\begin{align*}
\lambda_1 &= \frac{1}{ab} - \frac{2}{(b-a)^2} \ln \left(\frac{(a+b)^2}{4ab} \right), \\
\lambda_2 &= -\frac{1}{b(b-a)} + \frac{3a+b}{(b-a)^2} \ln \left(\frac{(a+b)^2}{4ab} \right), \\
\lambda_3 &= \frac{1}{a(b-a)} - \frac{3b+a}{(b-a)^3} \ln \left(\frac{(a+b)^2}{4ab} \right) \\
&= \lambda_1 - \lambda_2.
\end{align*}
\]

Theorem 4. Let \(f : I \subset (0, \infty) \to \mathbb{R} \) be a differentiable function on \(I \), \(a, b \in I \) with \(a < b \), and \(f' \in L[a, b] \). If \(|f'|^q \) is harmonically convex on \([a, b] \) for \(q > 1 \), \(\frac{1}{p} + \frac{1}{q} = 1 \), then
\[
(1.5) \quad \left| \frac{f(a) + f(b)}{2} - \frac{ab}{b-a} \int_a^b \frac{f(x)}{x^2} dx \right| \leq \frac{ab(b-a)}{2x} \left(\frac{1}{p+1} \right)^{\frac{q}{p}} (\mu_1 |f'(a)|^q + \mu_2 |f'(b)|^q)^{\frac{1}{q}},
\]
where
\[
\mu_1 = \frac{1}{b-a}, \quad \mu_2 = \frac{1}{a-b}.
\]
where

\[\mu_1 = \frac{a^{2-2q} + b^{1-2q} [(b - a) (1 - 2q) - a]}{2 (b - a)^2 (1 - q) (1 - 2q)}, \]

\[\mu_2 = \frac{b^{2-2q} - a^{1-2q} [(b - a) (1 - 2q) + b]}{2 (b - a)^2 (1 - q) (1 - 2q)}. \]

In this paper, we shall give some general integral inequalities connected with the left and right parts of (1.3), as a result of this, we shall obtained some new midpoint, trapezoid and Simpson like-type inequalities for differentiable harmonically convex functions.

2. Main results

In order to prove our main results we need the following lemma:

Lemma 1. Let \(f : I \subset \mathbb{R} \setminus \{0\} \to \mathbb{R} \) be a differentiable function on \(I^o \) and \(a, b \in I \) with \(a < b \). If \(f' \in L[a,b] \) then for \(\lambda \in [0,1] \) we have the equality

\[
(1 - \lambda) f\left(\frac{2ab}{a+b}\right) + \lambda \left(\frac{f(a) + f(b)}{2}\right) - \frac{ab}{b-a} \int_a^b \frac{f(x)}{x^2} dx
= \frac{ab(b-a)}{2} \left[\int_0^{1/2} \frac{\lambda - 2t}{A_t^2} f'(\frac{ab}{A_t}) dt + \int_{1/2}^1 \frac{2 - \lambda - 2t}{A_t^2} f'(\frac{ab}{A_t}) dt \right],
\]

where \(A_t = tb + (1-t)a \).

Proof. It suffices to note that

\[
I_1 = \frac{ab(b-a)}{2} \int_0^{1/2} \frac{\lambda - 2t}{A_t^2} f'(\frac{ab}{A_t}) dt
= (2t - \lambda) f\left(\frac{ab}{A_t}\right)|_{0}^{1/2} - 2 \int_0^{1/2} f\left(\frac{ab}{A_t}\right) dt
= (1 - \lambda) f\left(\frac{2ab}{a+b}\right) + \lambda f(b) - 2 \int_0^{1/2} f\left(\frac{ab}{A_t}\right) dt.
\]

Setting \(x = \frac{ab}{A_t} \) and \(dx = -\frac{ab(b-a)}{A_t^2} dt \), which gives

\[
I_1 = (1 - \lambda) f\left(\frac{2ab}{a+b}\right) + \lambda f(b) - \frac{2ab}{b-a} \int_{2ab/(a+b)}^b \frac{f(x)}{x^2} dx.
\]
Similarly, we can show that

\[I_2 = ab(b-a) \int_{1/2}^{1} \frac{2 - \lambda - 2t}{A_t^2} f'' \left(\frac{ab}{A_t} \right) dt \]

\[= \lambda f(a) + (1 - \lambda) f \left(\frac{2ab}{a+b} \right) - \frac{2ab}{b-a} \int_a^b \frac{f(x)}{x^2} dx. \]

Thus,

\[\frac{I_1 + I_2}{2} = (1 - \lambda) f \left(\frac{2ab}{a+b} \right) + \lambda \left(\frac{f(a) + f(b)}{2} \right) - \frac{ab}{b-a} \int_a^b \frac{f(x)}{x^2} dx \]

which is required. \(\square \)

Theorem 5. Let \(f : I \subset (0, \infty) \rightarrow \mathbb{R} \) be a differentiable function on \(I \), \(a, b \in I \) with \(a < b \), and \(f' \in L[a, b] \). If \(|f'|^q \) is harmonically convex on \([a, b]\) for \(q \geq 1 \) and then we have the following inequality for \(\lambda \in [0, 1] \)

\[
(1-\lambda) f \left(\frac{2ab}{a+b} \right) + \lambda \left(\frac{f(a) + f(b)}{2} \right) - \frac{ab}{b-a} \int_a^b \frac{f(x)}{x^2} dx \leq \frac{ab(b-a)}{2} \left\{ C_1^{1-\frac{1}{q}} (\lambda; a, b) \left[C_2 (\lambda; a, b) |f'(a)|^q + C_3 (\lambda; a, b) |f'(b)|^q \right]^{\frac{1}{q}}
+ C_1^{1-\frac{1}{q}} (\lambda; b, a) \left[C_3 (\lambda; b, a) |f'(a)|^q + C_2 (\lambda; b, a) |f'(b)|^q \right]^{\frac{1}{q}} \right\},
\]

where

\[
C_1(\lambda; u, \vartheta) = \frac{1}{(\vartheta - u)^2}
\times \left[-4 + \frac{\left[\lambda (\vartheta - u) + 2u \right][3u + \vartheta]}{u(u + \vartheta)} + 2 \ln \left(\frac{2u(u + \vartheta)}{(2 + \lambda (\vartheta - u))^2} \right) \right],
\]

\[
C_2(\lambda; u, \vartheta) = \frac{1}{(\vartheta - u)^2}
\times \left\{ \left[\lambda (\vartheta - u) + 4u \right] \ln \left(\frac{[\lambda (\vartheta - u) + 2u]^2}{2u(u + \vartheta)} \right)
- \frac{[\lambda (\vartheta - u) + 2u][5u + 3\vartheta]}{u(3\vartheta + u)} + 7u + \vartheta \right\},
\]

and

\[
C_3(\lambda; u, \vartheta) = C_1(\lambda; u, \vartheta) - C_2(\lambda; u, \vartheta), \ u, \vartheta > 0.
\]
Proof. Let \(A_t = tb + (1-t)a \). From Lemma 1 and using the power mean inequality, we have

\[
\left| (1 - \lambda) f\left(\frac{2ab}{a+b} \right) + \lambda \left(\frac{f(a) + f(b)}{2} \right) - \frac{ab}{b-a} \int_a^b \frac{f(x)}{x^2} \, dx \right| \leq \frac{ab(b-a)}{2} \left[\left(\frac{1}{0} \right) \left(\frac{1}{\lambda - 2t} \right) \right]^{1 - \frac{1}{q}} \left(\int_0^1 \left| \frac{f'(ab)}{A_t} \right|^q \, dt \right)^{\frac{1}{q}}
\]

\[
+ \left(\int_{1/2}^1 \left| \frac{2 - \lambda - 2t}{A_t^2} \right| \, dt \right)^{1 - \frac{1}{q}} \left(\int_{1/2}^1 \left| \frac{f'(ab)}{A_t} \right|^q \, dt \right)^{\frac{1}{q}}.
\]

Hence, by harmonically convexity of \(|f'|^q| on [a, b] , we have

\[
\left| (1 - \lambda) f\left(\frac{2ab}{a+b} \right) + \lambda \left(\frac{f(a) + f(b)}{2} \right) - \frac{ab}{b-a} \int_a^b \frac{f(x)}{x^2} \, dx \right| \leq \frac{ab(b-a)}{2}
\]

\[
\times \left\{ \left(\int_0^{1/2} \left| \frac{\lambda - 2t}{A_t^2} \right| \, dt \right)^{1 - \frac{1}{q}} \left(\int_0^{1/2} \left| \frac{\lambda - 2t}{A_t^2} \right| \, dt \right)^{\frac{1}{q}} \left(\int_0^{1/2} \left| \frac{f'(ab)}{A_t} \right|^q \, dt \right)^{\frac{1}{q}} \right\}
\]

\[
\leq \frac{ab(b-a)}{2} C_1^{1 - \frac{1}{q}} (\lambda; a, b) \left[C_2(\lambda; a, b) |f'(a)|^q + C_3(\lambda; a, b) |f'(b)|^q \right]^{\frac{1}{q}}
\]

\[
\leq \frac{ab(b-a)}{2} C_1^{1 - \frac{1}{q}} (\lambda; a, b) \left[C_2(\lambda; a, b) |f'(a)|^q + C_3(\lambda; a, b) |f'(b)|^q \right]^{\frac{1}{q}}.
\]

It is easily check that

\[
\int_0^{1/2} \frac{\lambda - 2t}{A_t^2} \, dt = C_1(\lambda; a, b) = \frac{1}{(b-a)^2}
\]

\[
\times \left[-4 + \frac{\lambda (b-a) + 2a}{(a+b)} - 2a + 2 \ln \left(\frac{2a (a+b)}{(2a + \lambda (b-a))^2} \right) \right],
\]

HARMONICALLY CONVEX FUNCTIONS 5
\[
\int_0^{1/2} \frac{1}{\lambda - 2t} t dt = C_2(\lambda; a, b) = \frac{1}{(b - a)^3}
\]
\[
\times \left\{ [\lambda (b - a) + 4a] \ln \left(\frac{\lambda (b - a) + 2a}{2a (a + b)} \right) - \frac{\lambda (b - a) + 2a (5a + 3b)}{a + b} + 7a + b \right\},
\]
\[
\int_0^{1/2} \frac{1}{\lambda - 2t} (1 - t) dt = C_3(\lambda; a, b) = C_1(\lambda; a, b) - C_2(\lambda; a, b),
\]
\[
\int_{1/2}^1 \frac{1}{\lambda - 2t} dt = C_1(\lambda; b, a), \quad \int_{1/2}^1 \frac{1}{\lambda - 2t} (1 - t) dt = C_2(\lambda; b, a),
\]
and
\[
\int_{1/2}^1 \frac{2 - \lambda - 2t}{A_t^2} dt = C_3(\lambda; b, a) = C_1(\lambda; b, a) - C_2(\lambda; b, a).
\]
This concludes the proof. \(\square\)

Corollary 1. Under the assumptions Theorem 1 with \(\lambda = 0\), we have
\[
\left| f \left(\frac{2ab}{a + b} \right) - \frac{ab}{b - a} \int_a^b f(x) dx \right| \leq \frac{ab (b - a)}{2}
\]
\[
\times \left\{ C_1^{1/3} (0; a, b) \left[C_2(0; a, b) |f'(a)|^q + C_3(0; a, b) |f'(b)|^q \right]^{1/2} - C_1^{1/3} (0; b, a) \left[C_3(0; b, a) |f'(a)|^q + C_2(0; b, a) |f'(b)|^q \right]^{1/2} \right\},
\]
where
\[
C_1(0; u, \vartheta) = \frac{2}{(\vartheta - u)^3} \left\{ \ln \left(\frac{u + \vartheta}{2u} \right) - \frac{\vartheta - u}{u + \vartheta} \right\},
\]
\[
C_2(0; u, \vartheta) = \frac{1}{(\vartheta - u)^3} \left\{ (3u + \vartheta) (\vartheta - u) \frac{u + \vartheta}{u + \vartheta} + 4u \ln \left(\frac{2u}{u + \vartheta} \right) \right\},
\]
\[
C_3(0; u, \vartheta) = \frac{1}{(\vartheta - u)^3} \left\{ \frac{2 (u + \vartheta)}{\vartheta - u} \ln \left(\frac{u + \vartheta}{2u} \right) - \frac{u + 3\vartheta}{u + \vartheta} \right\}, \quad u, \vartheta > 0.
\]

Corollary 2. Under the assumptions Theorem 1 with \(\lambda = 1\), we have
\[
\left| f(a) + f(b) \right| - \frac{ab}{b - a} \int_a^b f(x) dx \leq \frac{ab (b - a)}{2}
\]
\[\times \left\{ C_1^{1 - \frac{q}{2}}(1; a, b) \left[C_2(1; a, b) |f'(a)|^q + C_3(1; a, b) |f'(b)|^q \right]^{\frac{1}{q}} \right\} \]

where

\[C_1(1; u, \vartheta) = \frac{1}{(\vartheta - u)^2} \left[\frac{\vartheta - u}{3u} + 2 \ln \left(\frac{2u}{u + \vartheta} \right) \right], \]

\[C_2(1; u, \vartheta) = \frac{1}{(\vartheta - u)^3} \left[(3u + \vartheta) \ln \left(\frac{u + \vartheta}{2u} \right) - 3(\vartheta - u) \right], \]

\[C_3(1; u, \vartheta) = \frac{1}{(\vartheta - u)^2} \left[\frac{u + \vartheta - u + 3\vartheta}{\vartheta - u} + 3(\vartheta - u) \ln \left(\frac{u + \vartheta}{2u} \right) \right], \]

Corollary 3. Under the assumptions Theorem 5 with \(\lambda = 1/3 \), we have

\[\left| \frac{1}{3} \left[\frac{f(a) + f(b)}{2} + 2f \left(\frac{2ab}{a + b} \right) \right] - \frac{ab}{b - a} \int_a^b \frac{f(x)}{x^2} dx \right| \leq \frac{ab(b - a)}{2} \]

\[\times \left\{ C_1^{1 - \frac{q}{2}}(1/3; a, b) \left[C_2(1/3; a, b) |f'(a)|^q + C_3(1/3; a, b) |f'(b)|^q \right]^{\frac{1}{q}} \right\} \]

where

\[C_1(1/3; u, \vartheta) = \frac{1}{(\vartheta - u)^2} \left[\frac{(\vartheta - u)(\vartheta - 3u)}{3u} + 2 \ln \left(\frac{18u(u + \vartheta)}{(5u + \vartheta)^2} \right) \right], \]

\[C_2(1/3; u, \vartheta) = \frac{1}{(\vartheta - u)^3} \left[\left(\frac{11u + \vartheta}{3} \right) \ln \left(\frac{18u + \vartheta}{(5u + \vartheta)^2} \right) + \frac{4u(\vartheta - u)}{3(u + \vartheta)} \right], \]

\[C_3(1/3; u, \vartheta) = \frac{1}{(\vartheta - u)^2} \left[\frac{\vartheta^2 - 4u\vartheta - u^2}{3u} + \frac{5u + 7\vartheta}{3(\vartheta - u)} \ln \left(\frac{18u + \vartheta}{(5u + \vartheta)^2} \right) \right], \]

Theorem 6. Let \(f : I \subset (0, \infty) \rightarrow \mathbb{R} \) be a differentiable function on \(f' \), \(a, b \in I \) with \(a < b \), and \(f' \in L[a, b] \). If \(|f'|^q \) is harmonically convex on \([a, b] \) for \(q > 1 \) and then we have the following inequality for \(\lambda \in [0, 1] \)

\[(1 - \lambda) f \left(\frac{2ab}{a + b} \right) + \lambda \left(\frac{f(a) + f(b)}{2} - \frac{ab}{b - a} \int_a^b \frac{f(x)}{x^2} dx \right) \leq \frac{ab(b - a)}{2} \]

\[\times \left\{ C_1^{1 - \frac{q}{2}}(\lambda; p; a, b) \left(\left| \frac{f'(2ab)}{a + b} \right|^q + |f'(b)|^q \right)^{\frac{1}{q}} \right\} + \left(\frac{f'(a)}{4} \right)^{\frac{1}{q}} \]

where

\[C_1(\lambda; p; u, \vartheta) = \frac{1}{\lambda^{1/2}} \int_0^{1/2} \frac{|\lambda - 2t|^p}{(tb + (1 - t)a)^p} dt, \quad u, \vartheta > 0. \]

and \(1/p + 1/q = 1 \).
Proof. Let $A_t = tb + (1 - t)a$. Using Lemma 1 and Hölder’s integral inequality, we deduce

$$
(1 - \lambda) f \left(\frac{2ab}{a + b} \right) + \lambda \left(\frac{f(a) + f(b)}{2} \right) - \frac{ab}{b - a} \int_a^b \frac{f(x)}{x^2} dx
$$

\[
\leq \frac{ab(b - a)}{2} \left[\int_0^{1/2} \frac{|\lambda - 2t|^{p'}}{A_t^{2p'}} \left(\int_0^{1/2} \left| f' \left(\frac{ab}{A_t} \right) \right|^q dt \right) \right]^{\frac{1}{p'}} + \left(\int_0^{1/2} \frac{|2 - \lambda - 2t|^{p'}}{A_t^{2p'}} \left(\int_0^{1/2} \left| f' \left(\frac{ab}{A_t} \right) \right|^q dt \right) \right)^{\frac{1}{p'}}.
\]

Using the harmonically convexity of $|f|^q$, we obtain the following inequalities from inequality (1.3):

$$
\frac{1}{2} \int_0^{1/2} \left| f' \left(\frac{ab}{A_t} \right) \right|^q dt \leq \frac{1}{2} \left(\frac{2ab}{b - a} \int_a^b \frac{|f'(x)|^q}{x^2} dx \right) \leq \frac{|f'(2ab/a + b)|^q + |f'(b)|^q}{4}
$$

(2.4)

and

$$
\frac{1}{1/2} \int_0^{1/2} \left| f' \left(\frac{ab}{A_t} \right) \right|^q dt \leq \frac{1}{2} \left(\frac{2ab}{b - a} \int_a^b \frac{|f'(x)|^q}{x^2} dx \right) \leq \frac{|f'(2ab/a + b)|^q + |f'(a)|^q}{4}.
$$

(2.5)

A combination of (2.3)- (2.5) gives the required inequality (2.2). \qed

Corollary 4. Under the assumptions Theorem 3 with $\lambda = 0$, we have

$$
\left| f \left(\frac{2ab}{a + b} \right) - \frac{ab}{b - a} \int_a^b \frac{f(x)}{x^2} dx \right| \leq \frac{ab(b - a)}{2}
$$

\[
\times \left\{ \int_0^{1/2} \left(\frac{f'(2ab/a + b)}{4} \right)^q \right\}^{\frac{1}{q}} + \left\{ C_{1/2} (0, p; a, b) \left(\frac{f'(2ab/a + b)}{4} + |f'(a)|^q \right)^{\frac{1}{q}} \right\}^{\frac{1}{q}}.
\]
Corollary 5. Under the assumptions Theorem 6 with $\lambda = 1$, we have

$$\left| \frac{f(a) + f(b)}{2} - \frac{ab}{b-a} \int_a^b \frac{f(x)}{x^2} \, dx \right| \leq \frac{ab(b-a)}{2}$$

$$\times \left\{ C^\frac{1}{q} \left[1, p; a, b\right] \left(\frac{|f'(\frac{2ab}{a+b})|^q + |f'(a)|^q}{4} \right)^\frac{1}{q} + C^\frac{1}{q} \left[1, p; b, a\right] \left(\frac{|f'(\frac{2ab}{a+b})|^q + |f'(a)|^q}{4} \right)^\frac{1}{q} \right\}.$$

Corollary 6. Under the assumptions Theorem 8 with $\lambda = 1/3$, we have

$$\left| \frac{1}{3} \left[\frac{f(a) + f(b)}{2} + 2f \left(\frac{2ab}{a+b} \right) \right] - \frac{ab}{b-a} \int_a^b \frac{f(x)}{x^2} \, dx \right| \leq \frac{ab(b-a)}{2}$$

$$\times \left\{ C^\frac{1}{q} \left[\frac{1}{3}, p; a, b\right] \left(\frac{|f'(\frac{2ab}{a+b})|^q + |f'(a)|^q}{4} \right)^\frac{1}{q} + C^\frac{1}{q} \left[\frac{1}{3}, p; b, a\right] \left(\frac{|f'(\frac{2ab}{a+b})|^q + |f'(a)|^q}{4} \right)^\frac{1}{q} \right\}.$$

Theorem 7. Let $f : I \subset (0, \infty) \to \mathbb{R}$ be a differentiable function on I°, $a, b \in I$ with $a < b$, and $f' \in L[a, b]$. If $|f'|^q$ is harmonically convex on $[a, b]$ for $q > 1$ and then we have the following inequality for $\lambda \in [0, 1]$

$$\left(1 - \lambda\right) f \left(\frac{2ab}{a+b} \right) + \lambda \left(\frac{f(a) + f(b)}{2} \right) - \frac{ab}{b-a} \int_a^b \frac{f(x)}{x^2} \, dx \leq \frac{ab(b-a)}{4}$$

$$\times \frac{C^\frac{1}{q} \left[\lambda, p \right](\lambda, p)}{(1 - q)(1 - 2q)(b-a)^2 \left(C_5(q; a, b) |f'(a)|^q + C_6(q; a, b) |f'(b)|^q \right)^\frac{1}{q}}$$

$$+ \left(C_5(q; a, b) |f'(a)|^q + C_6(q; b, a) |f'(b)|^q \right)^\frac{1}{q},$$

where

$$C_4(\lambda, p) = \frac{\lambda^{p+1} + (1 - \lambda)^{p+1}}{p+1},$$

$$C_5(q; u, \vartheta) = \left[\left(\frac{u + \vartheta}{2} \right)^{1-2q} \left[\frac{\vartheta - 3u}{2} - q(\vartheta - u) \right] + u^{2-2q} \right],$$

$$C_6(q; u, \vartheta) = \left[\left(\frac{u + \vartheta}{2} \right)^{1-2q} \left[\frac{3\vartheta - u}{2} - q(\vartheta - u) \right] + u^{1-2q} [u - 2\vartheta + 2q(\vartheta - u)] \right], \quad u, \vartheta > 0$$

and $1/p + 1/q = 1$.

HARMONICALLY CONVEX FUNCTIONS
Proof. Let $A_t = tb + (1 - t)a$. Using Lemma 1 and Hölder’s integral inequality, we deduce

$$
(1 - \lambda) f \left(\frac{2ab}{a+b} \right) + \lambda \left(\frac{f(a) + f(b)}{2} \right) - \frac{ab}{b-a} \int_0^b \frac{f(x)}{x^2} dx
$$

$$
\leq \frac{ab(b-a)}{2} \left[\int_0^{1/2} \left| \frac{\lambda - 2t}{A_t^2} \right| f' \left(\frac{ab}{A_t} \right) dt + \int_0^{1/2} \left| \frac{2 - \lambda - 2t}{A_t^2} \right| f' \left(\frac{ab}{A_t} \right) dt \right]
$$

(2.7)

$$
\leq \frac{ab(b-a)}{2} \left\{ \left(\int_0^{1/2} |\lambda - 2t|^p dt \right) \left(\int_0^{1/2} \frac{1}{A_t^{2q}} \left| f' \left(\frac{ab}{A_t} \right) \right|^q dt \right)^{\frac{1}{q}} + \left(\int_0^{1/2} |2 - \lambda - 2t|^p dt \right) \left(\int_0^{1/2} \frac{1}{A_t^{2q}} \left| f' \left(\frac{ab}{A_t} \right) \right|^q dt \right)^{\frac{1}{q}} \right\}
$$

Using the harmonically convexity of $|f'|^q$, we obtain

$$
\int_0^{1/2} \frac{1}{A_t^{2q}} \left| f' \left(\frac{ab}{A_t} \right) \right|^q dt \leq \frac{1}{2 (1 - q) (1 - 2q) (b-a)^2}
$$

(2.8) × \left\{ \left[\left(\frac{a+b}{2} \right)^{1-2q} \left(\frac{b-3a}{2} - q(b-a) \right) + a^{2-2q} \right] |f'(a)|^q

+ \left[\left(\frac{a+b}{2} \right)^{1-2q} \left(\frac{3b-a}{2} - q(b-a) \right) + a^{1-2q} [a - 2b + 2q(b-a)] \right] |f'(b)|^q \right\}

and

$$
\int_{1/2}^1 \frac{1}{A_t^{2q}} \left| f' \left(\frac{ab}{A_t} \right) \right|^q dt \leq \frac{1}{2 (1 - q) (1 - 2q) (b-a)^2}
$$

(2.9) × \left\{ \left[b^{1-2q} [b - 2a - 2q(b-a)] + \left(\frac{a+b}{2} \right)^{1-2q} \left[\frac{3a-b}{2} + q(b-a) \right] \right] |f'(a)|^q

+ \left[\left(\frac{a+b}{2} \right)^{1-2q} \left[\frac{a-3b}{2} + q(b-a) \right] + b^{2-2q} \right] |f'(b)|^q \right\}

Further, we have

$$
\int_0^{1/2} |\lambda - 2t|^p dt = \frac{1}{1/2} \int_0^{1/2} |2 - \lambda - 2t|^p dt = \frac{\lambda^{p+1} + (1 - \lambda)^{p+1}}{2 (p+1)}
$$

(2.10)

A combination of (2.7)–(2.10) gives the required inequality (2.6). \qed
Corollary 7. Under the assumptions Theorem 7 with $\lambda = 0$, we have
\[
\left| f \left(\frac{2ab}{a+b} \right) - \frac{ab}{b-a} \int_a^b \frac{f(x)}{x^2} \, dx \right| \leq \frac{ab(b-a)}{4(p+1)^{1/p}}
\]
\[
\times \frac{1}{\left[(1-q)(1-2q) (b-a)^2 \right]^{1/q}} \left\{ (C_5(q; a, b) |f'(a)|^q + C_6(q; a, b) |f'(b)|^q)^{\frac{1}{q}} \right\}
\]
\[+ (C_6(q; b, a) |f'(a)|^q + C_5(q; b, a) |f'(b)|^q)^{\frac{1}{q}} \right\}.
\]

Corollary 8. Under the assumptions Theorem 7 with $\lambda = 1$, we have
\[
\left| \frac{f(a) + f(b)}{2} - \frac{ab}{b-a} \int_a^b \frac{f(x)}{x^2} \, dx \right| \leq \frac{ab(b-a)}{4(p+1)^{1/p}}
\]
\[
\times \frac{1}{\left[(1-q)(1-2q) (b-a)^2 \right]^{1/q}} \left\{ (C_5(q; a, b) |f'(a)|^q + C_6(q; a, b) |f'(b)|^q)^{\frac{1}{q}} \right\}
\]
\[+ (C_6(q; b, a) |f'(a)|^q + C_5(q; b, a) |f'(b)|^q)^{\frac{1}{q}} \right\}.
\]

Corollary 9. Under the assumptions Theorem 7 with $\lambda = 1/3$, we have
\[
\left| \frac{1}{3} \left[\frac{f(a) + f(b)}{2} + 2f \left(\frac{2ab}{a+b} \right) \right] \right. \\
\left. - \frac{ab}{b-a} \int_a^b \frac{f(x)}{x^2} \, dx \right| \leq \frac{ab(b-a)}{4(3^{p+1}(p+1))^{1/p}}
\]
\[
\times \frac{1 + 2^{p+1}}{\left[(1-q)(1-2q)(b-a)^2 \right]^{1/q}} \left\{ (C_5(q; a, b) |f'(a)|^q + C_6(q; a, b) |f'(b)|^q)^{\frac{1}{q}} \right\}
\]
\[+ (C_6(q; b, a) |f'(a)|^q + C_5(q; b, a) |f'(b)|^q)^{\frac{1}{q}} \right\}.
\]

3. Some applications for special means

Let us recall the following special means of two nonnegative number a, b with $b > a$:

1. The arithmetic mean
\[A = A(a, b) := \frac{a+b}{2}. \]

2. The geometric mean
\[G = G(a, b) := \sqrt{ab}. \]

3. The harmonic mean
\[H = H(a, b) := \frac{2ab}{a+b}. \]

4. The Logarithmic mean
\[L = L(a, b) := \frac{b-a}{\ln b - \ln a}. \]
Proposition 2. Let
\[\text{Proposition 3.} \]
It is also known that \(L_p \) is monotonically increasing over \(p \in \mathbb{R} \), denoting \(L_0 = I \) and \(L_{-1} = L \).

Proposition 1. Let \(0 < a < b \) and \(\lambda \in [0, 1] \). Then we have the following inequality
\[
\left| (1 - \lambda)H + \lambda A - \frac{G^2}{L} \right| \leq \frac{ab(b-a)}{2 \lambda} \left\{ C_1(\lambda; a, b) + C_1(\lambda; b, a) \right\},
\]
where \(C_1 \) is defined as in Theorem 5.

Proof. The assertion follows from the inequality (2.1) in Theorem 5 for \(f : (0, \infty) \to \mathbb{R}, \ f(x) = x \).

Proposition 2. Let \(0 < a < b \) and \(\lambda \in [0, 1] \). Then we have the following inequality
\[
\left| (1 - \lambda)H + \lambda A - \frac{G^2}{L} \right| \leq \frac{ab(b-a)}{2^{1+1/q}} \left\{ C_1^p(\lambda; p; a, b) + C_1^p(\lambda; p; b, a) \right\},
\]
where \(q > 1, 1/p + 1/q = 1 \) and \(C_1 \) is defined as in Theorem 6.

Proof. The assertion follows from the inequality (2.2) in Theorem 6 for \(f : (0, \infty) \to \mathbb{R}, \ f(x) = x \).

Proposition 3. Let \(0 < a < b \) and \(\lambda \in [0, 1] \). Then we have the following inequality
\[
\left| (1 - \lambda)H + \lambda A - \frac{G^2}{L} \right| \leq \frac{ab(b-a)}{4^{1/q} \left(1 - q \right) \left(1 - 2q \right) \left(b-a\right)^2} \left\{ \frac{C_5}{2} (q; a, b) + C_6(q; a, b) \right\},
\]
where \(q > 1, 1/p + 1/q = 1 \) and \(C_4, C_5 \) and \(C_6 \) are defined as in Theorem 7.

Proof. The assertion follows from the inequality (2.3) in Theorem 7 for \(f : (0, \infty) \to \mathbb{R}, \ f(x) = x \).

Proposition 4. Let \(0 < a < b \), \(\lambda \in [0, 1] \) and \(q \geq 1 \). Then we have the following inequality
\[
\left| (1 - \lambda)H^2 + \lambda A(a^2, b^2) - G^2 \right| \leq \frac{ab(b-a)}{\left\{ C_1^1 \left(\frac{1}{2} \left(\lambda; a, b \right) \left[C_2(\lambda; a, b)a^q + C_3(\lambda; a, b)b^q \right] \right) + \left(C_1^1 \left(\frac{1}{2} \left(\lambda; b, a \right) \left[C_2(\lambda; b, a)a^q + C_3(\lambda; b, a)b^q \right] \right) \right\}},
\]
where C_1, C_2 and C_3 are defined as in Theorem 3.

Proof. The assertion follows from the inequality (2.1) in Theorem 5 for $f : (0, \infty) \to \mathbb{R}$, $f(x) = x^2$. □

Proposition 5. Let $0 < a < b$ and $\lambda \in [0, 1]$. Then we have the following inequality

$$\left| (1-\lambda) H^2 + \lambda A(a^2, b^2) - G^2 \right| \leq \frac{ab(b-a)C_4^{1/p}(\lambda, p)}{2^{1/q}} \times \left\{ C_5^\frac{1}{q}(\lambda, p; a, b) A^\frac{1}{q}(H^q, b^q) + C_6^\frac{1}{q}(\lambda, p; b, a) A^\frac{1}{q}(a^q, H^q) \right\},$$

where $q > 1$ and $1/p + 1/q = 1$.

Proof. The assertion follows from the inequality (2.2) in Theorem 6 for $f : (0, \infty) \to \mathbb{R}$, $f(x) = x^2$. □

Proposition 6. Let $0 < a < b$ and $\lambda \in [0, 1]$. Then we have the following inequality

$$\left| (1-\lambda) H^2 + \lambda A(a^2, b^2) - G^2 \right| \leq \frac{ab(b-a)C_4^{1/p}(\lambda, p)}{2^{1/q}} \times \left\{ (C_5(q; a, b)a^q + C_6(q; a, b)b^q) \frac{1}{q} + (C_5(q; b, a)a^q + C_6(q; b, a)b^q) \frac{1}{q} \right\},$$

where $q > 1$, $1/p + 1/q = 1$ and C_4, C_5 and C_6 are defined as in Theorem 4.

Proof. The assertion follows from the inequality (2.0) in Theorem 7 for $f : (0, \infty) \to \mathbb{R}$, $f(x) = x^2$. □

Proposition 7. Let $0 < a < b$, $n \in (-1, \infty) \setminus \{0\}$, $\lambda \in [0, 1]$ and $q \geq 1$. Then we have the following inequality

$$\left| (1-\lambda) H^{n+2} + \lambda A(a^{n+2}, b^{n+2}) - G^2 L_n^2 \right| \leq \frac{ab(b-a)(n+2)}{2} \times \left\{ C_1^\frac{1}{q}(\lambda; a, b) \left[C_2(\lambda; a, b) a^{(n+1)q} + C_3(\lambda; a, b) b^{(n+1)q} \right] \right\}^{-\frac{1}{q}} + C_1^\frac{1}{q}(\lambda; b, a) \left[C_3(\lambda; b, a) a^{(n+1)q} + C_2(\lambda; b, a) b^{(n+1)q} \right]^{-\frac{1}{q}},$$

where C_1, C_2 and C_3 are defined as in Theorem 3.

Proof. The assertion follows from the inequality (2.1) in Theorem 5 for $f : (0, \infty) \to \mathbb{R}$, $f(x) = x^{n+2}$, $n \in (-1, \infty) \setminus \{0\}$. □

Proposition 8. Let $0 < a < b$ and $n \in (-1, \infty) \setminus \{0\}$. Then we have the following inequality

$$\left| (1-\lambda) H^{n+2} + \lambda A(a^{n+2}, b^{n+2}) - G^2 L_n^2 \right| \leq \frac{ab(b-a)(n+2)}{2^{1+1/q}} \times \left\{ C_1^\frac{1}{q}(\lambda; a, b) A^{\frac{1}{q}}(H^{(n+1)q}, b^{(n+1)q}) + C_1^\frac{1}{q}(\lambda; b, a) A^{\frac{1}{q}}(a^{(n+1)q}, H^{(n+1)q}) \right\},$$

where $q > 1$, $1/p + 1/q = 1$ and C_1 is defined as in Theorem 7.

Proof. The assertion follows from the inequality (2.2) in Theorem 6 for $f : (0, \infty) \to \mathbb{R}$, $f(x) = x^{n+2}$, $n \in (-1, \infty) \setminus \{0\}$. □
Proposition 9. Let \(0 < a < b\), \(\lambda \in [0, 1]\), and \(n \in (-1, \infty) \setminus \{0\}\). Then we have the following inequality

\[
\left| (1 - \lambda) H^{n+2} + \lambda A(a^{n+2}, b^{n+2}) - G^2 L_n^a \right|
\leq \frac{ab(b - a)(n + 2)C_4^{1/p}(\lambda, p)}{4[(1 - q)(1 - 2q)(b - a)^2]^{1/q}} \left\{ \left(C_5(q; a, b)a^{(n+1)q} + C_6(q; a, b)b^{(n+1)q} \right)^{\frac{1}{q}} + \left(C_6(q; b, a)a^{(n+1)q} + C_5(q; b, a)b^{(n+1)q} \right)^{\frac{1}{q}} \right\},
\]

where \(q > 1\), \(1/p + 1/q = 1\) and \(C_5\) and \(C_6\) are defined as in Theorem 5.

Proof. The assertion follows from the inequality (2.6) in Theorem 7, for \(f : (0, \infty) \rightarrow \mathbb{R}, \ f(x) = x^{n+2}, \ n \in (-1, \infty) \cup \{0\}\).

Proposition 10. Let \(0 < a < b\), \(\lambda \in [0, 1]\) and \(q \geq 1\). Then we have the following inequality

\[
\left| (1 - \lambda) H^{2} \ln H + \lambda A(a^2 \ln a, b^2 \ln b) - G^2 \ln I \right| \leq ab(b - a)
\times \left\{ C_1^{\frac{1}{q-1}}(\lambda; a, b) \left[C_2(\lambda; a, b)G^{2q}(a, A(1, \ln a)) + C_3(\lambda; a, b)G^{2q}(b, A(1, \ln b)) \right] \right\}^{\frac{1}{q}}
+ C_1^{\frac{1}{q-1}}(\lambda; b, a) \left[C_3(\lambda; b, a)G^{2q}(a, A(1, \ln a)) + C_2(\lambda; b, a)G^{2q}(b, A(1, \ln b)) \right]^{\frac{1}{q}},
\]

where \(C_1, C_2\) and \(C_3\) are defined as in Theorem 5.

Proof. The assertion follows from the inequality (2.1) in Theorem 5, for \(f : (0, \infty) \rightarrow \mathbb{R}, \ f(x) = x^2 \ln x\).

Proposition 11. Let \(0 < a < b\), and \(\lambda \in [0, 1]\). Then we have the following inequality

\[
\left| (1 - \lambda) H^{2} \ln H + \lambda A(a^2 \ln a, b^2 \ln b) - G^2 \ln I \right| \leq \frac{ab(b - a)}{2^{1/q}}
\times \left\{ C_1^{\frac{1}{q-1}}(0, p; a, b)A \left(G^{2q}(H, A(1, \ln H)), G^{2q}(b, A(1, \ln b)) \right) \right\}^{\frac{1}{q}}
+ C_1^{\frac{1}{q-1}}(0, p; b, a)A \left(G^{2q}(H, A(1, \ln H)), G^{2q}(a, A(1, \ln a)) \right) \right\},
\]

where \(q > 1\), \(1/p + 1/q = 1\) and \(C_1\) is defined as in Theorem 6.

Proof. The assertion follows from the inequality (2.2) in Theorem 6, for \(f : (0, \infty) \rightarrow \mathbb{R}, \ f(x) = x^2 \ln x\).

Proposition 12. Let \(0 < a < b\), and \(\lambda \in [0, 1]\). Then we have the following inequality

\[
\left| (1 - \lambda) H^{2} \ln H + \lambda A(a^2 \ln a, b^2 \ln b) - G^2 \ln I \right| \leq \frac{ab(b - a)}{2}
\]
$$\frac{C_4^{1/p}(\lambda, p)}{\left(1 - q \right) \left(1 - 2q \right) (b - a)^{2}} \left\{ \left(C_5(q; a, b) G^{2q}(a, A(1, \ln a)) + C_6(q; a, b) G^{2q}(b, A(1, \ln b)) \right)^{\frac{1}{q}}
 + \left(C_6(q; b, a) G^{2q}(a, A(1, \ln a)) + C_5(q; b, a) G^{2q}(b, A(1, \ln b)) \right)^{\frac{1}{q}} \right\},$$

where $q > 1$, $1/p + 1/q = 1$ and C_5 and C_6 are defined as in Theorem 7.

Proof. The assertion follows from the inequality (2.6) in Theorem 7 for $f : (0, \infty) \rightarrow \mathbb{R}$, $f(x) = x^2 \ln x$. \hfill \square

References

[1] S.S. Dragomir and C.E.M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000.

[2] I. Iscan, New estimates on generalization of some integral inequalities for (α, m)-convex functions, Contemp. Anal. Appl. Math. 1(2) (2013) 253-264.

[3] I. Iscan, New estimates on generalization of some integral inequalities for s-convex functions and their applications, Int. J. Pure Appl. Math. 86(4) (2013) 727-746.

[4] I. Iscan, Generalization of different type integral inequalities via fractional integrals for functions whose second derivatives absolute values are quasi-convex, Konuralp J. Math. 1(2) (2013) 67–79.

[5] I. Iscan, Hermite-Hadamard type inequalities for harmonically convex functions, Hacettepe Journal of Mathematics and Statistics. Accepted for publication.

[6] U.S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comput. 147 (2004) 137–146

[7] B.-Y. Xi and F. Qi, Some Integral Inequalities of Hermite-Hadamard Type for Convex Functions with Applications to Means, J. Funct. Spaces Appl. 2012 (2012), 14 pages. Article ID 980438. doi:10.1155/2012/980438.

[8] G.-S. Yang, D.-Y. Hwang and K.-L. Tseng, Some Inequalities for Differentiable Convex and Concave Mappings, Comput. Math. Appl. 47 (2004) 207-216

Department of Mathematics, Faculty of Arts and Sciences, Giresun University, 28100, Giresun, Turkey.

E-mail address: imdat@yaho0.com, imdat.iscan@giresun.edu.tr