Concepts and design of the CMS High Granularity Calorimeter Level-1 Trigger

Jean-Baptiste Sauvan
On behalf of the CMS Collaboration

CERN

CALOR 2016 – Daegu – 18/05/2016

See C. Ochando's talk for an overview of the HGCAL
HL-LHC: challenges for the L1 trigger

- We will want to continue exploring the electroweak scale at the HL-LHC

- Trigger thresholds should remain comparable to what they are now
 - With an instantaneous luminosity 3-4 times larger than Phase-1
 - With many more interactions ("pile-up") per bunch crossing (up to 200)

- This is a challenge for the L1 trigger
 - Higher rates in general
 - In particular, hadronic trigger rates blow up with the increasing pile-up

- For the desired thresholds, the current trigger system would give a L1 rate much higher than the available bandwidth
 - At least 1500 kHz, with 100 kHz available
Overview of the CMS trigger system

- CMS trigger organized in two stages
 - Level 1 trigger
 - Coarse data from sub-detectors
 - Custom made hardware
 - High-level trigger
 - Partial reconstruction of the event with full readout
 - Farm of computers

- The Phase-2 upgrade will increase the data rate of the system
 - By a factor 5-10 at each of the two trigger levels

Current	Upgrade	
LHC clock	40 MHz	40 MHz
L1 trigger	100 kHz	750 kHz
High-level trigger	1 kHz	7.5 kHz
L1 trigger upgrade

- **Track trigger**
- **Calo trigger**
- **Muon trigger**

ECAL EB
- **HCAL HB**
- **HGCAL**
- **HCAL HF**

- Crystal granularity in the ECAL barrel
- New HGCAL calorimeter in the endcaps
- Incorporation of new forward muon detectors

- Tracks available at L1
- New correlation stage before the global trigger
- Possible intermediate layer

- L1 accept
- Latency = 12.5 μs

- Increased latency (4 μs before)
The HGCAL trigger

- The HGCAL trigger processing will be done both on-detector and off-detector.
- The HGCAL data need to be reduced in order to be sent off-detector at 40 MHz:
 - First step of processing inside the ASICs of the front-end.
 - Need to be as simple as possible to minimize power consumption.
- The remaining processing will be done off-detector in FPGAs:
 - Clustering, pile-up estimation, etc.
 - Possibility to have one or several processing stages there.

Factor \(~20\) data reduction compared to the full data readout.

Calorimeter trigger or global correlator.
Data reduction in the front-end

The data reduction in the front-end can be done in several ways

- The dynamic range and resolution of the measured energy are reduced
- Timing information is discarded
- Cells are grouped into (larger) trigger cells
- Only the most energetic trigger cells are selected and sent off-detector

This reduced information is sent via a mixture of optical and electrical links

- Optical links @10Gbps in the low pseudo-rapidity region
- Electrical links @5Gbps in the high pseudo-rapidity region, with electrical to optical conversion possibly behind the calorimeter
The most important challenge is to reduce the sensitivity of the trigger to pile-up.

We need an estimate of the level of pile-up, event-by-event:

- The simplest way is to count the number of cells above a given threshold.
- This can be done regionally (to reduce FPGA resources and latency).
- The longitudinal segmentation allows for an efficient estimate using only the first layers, dominated by pile-up energy.

Timing information, if propagated, could eventually provide an additional handle to mitigate pile-up.
Back-end processing: Clustering

- The energy clustering can first be done in 2D
 1) Formation of 2D clusters in each layer
 2) Linking of these 2D clusters to form 3D clusters

- It can also be done directly in 3D
 1) Seeding and direction finding
 2) Clustering around this direction

- The architecture of the system is highly dependent on the algorithm
 - Number of consecutive processing layers
 - Detector coverage of each processing board in the system

- Only the performance of an algorithm based on the 2nd option has been studied so far
Electrons and photons

- 3D clusters will be sent to the global correlator (or to an intermediate calorimeter trigger)
 - Energy and position
 - Information on the shape and quality of the cluster
 - The longitudinal shape helps discriminating between electromagnetic and hadronic showers

- Electrons and photons can then be built from close-by clusters compatible with electromagnetic showers
 - Recovers energy from bremsstrahlung and conversions

- The clusters can finally be matched to tracks in the global correlator
 - Separation electrons / photons

\[\Delta \varphi \approx 0.3 \]
\[\Delta \eta \approx 0.1 \]
Jets

- Projective trigger towers with a coarse granularity will also be sent to the calorimeter trigger
 - They provide a full coverage of the detector, useful for global quantities and jets

- Given their large size, jets are highly sensitive to pile-up energy

- Jets can be seeded by high-density clusters
 - In order to limit the number of reconstructed pile-up jets
 - And built from projective trigger towers around these seeds

- Keeping the jet cone as small as possible (typically $\Delta R = 0.2$) helps mitigating the effects of pile-up
 - Such that the sum of pile-up and non-containment fluctuations are minimized
 - Missing out-of-cone energy can then be corrected
Trigger performance (Standalone HGCAL)

- The longitudinal information allows for efficient pile-up mitigation techniques and cluster identification.
- The background rate is increased by less than a factor 2.5 – 3
 - For an increase of the luminosity by a factor 3.5
- With similar signal efficiencies (close to 100%)

(CMS Phase-2 Technical Proposal: CERN-LHCC-2015-10)
18/05/16
J.-B. Sauvan - CALOR 2016
Conclusion

- Preliminary concepts and design of the HGCAL L1 trigger have been developed and evaluated

- Challenges in terms of data handling and processing
 - Both in the front-end ASICs and in the back-end electronics

- Simple techniques can provide an effective data reduction in the front-end ASICs

- Efficient pile-up mitigation and rate reduction can be obtained using the 3-dimensional information of the energy deposits in the back-end electronics

- The fine granularity will also be of great help for correlations with the other sub-detectors
 - In particular with the tracks from the track trigger