CONTINUITY PROPERTIES OF MULTILINEAR LOCALIZATION OPERATORS ON MODULATION SPACES

NENAD TEOFANOV

ABSTRACT. We introduce multilinear localization operators in terms of the short-time Fourier transform, and multilinear Weyl pseudodifferential operators. We prove that such localization operators are in fact Weyl pseudodifferential operators whose symbols are given by the convolution between the symbol of the localization operator and the multilinear Wigner transform. For such interpretation we use the kernel theorem for the Gelfand-Shilov space. Furthermore, we study the continuity properties of the multilinear localization operators on modulation spaces. Our results extend some known results when restricted to the linear case.

1. INTRODUCTION

Multilinear localization operators were first introduced in [8] and their continuity properties are formulated in terms of modulation spaces. The key point is the interpretation of these operators as multilinear Kohn-Nirenberg pseudodifferential operators. The multilinear pseudodifferential operators were already studied in the context of modulation spaces in [1], see also a more recent contribution [24] where such approach is strengthened and applied to the bilinear and trilinear Hilbert transform.

Our approach is related to Weyl pseudodifferential operators instead, with another (Weyl) correspondence between the operator and its symbol. Both correspondences are particular cases of the so-called τ–pseudodifferential operators, $\tau \in [0, 1]$. For $\tau = 1/2$ we obtain Weyl operators, while for $\tau = 0$ we recapture Kohn-Nirenberg operators. We refer to [7,10] for the recent contribution in that context (see also the references given there).

The Weyl correspondence provides an elegant interpretation of localization operators as Weyl pseudodifferential operators. This is given by the formula that contains the Wigner transform which is, together with the short-time Fourier transform, the main tool in our investigations. We refer to [17,41] for more details on the Wigner transform.

In signal analysis, different localization techniques are used to describe signals which are as concentrated as possible in general regions of the phase.
space. This motivated I. Daubechies to address these questions by introducing certain localization operators in the pioneering contribution \[14\]. Afterwards, Cordero and Grochenig made an essential contribution in the context of time-frequency analysis, \[6\]. Among other things, their results emphasized the role played by modulation spaces in the study of localization operators.

In this paper we first recall the basic facts on modulation spaces in Section \[2\]. Then, in Section \[3\] following the definition of bilinear localization operators given in \[33\], we introduce multilinear localization operators, Definition \[3.1\]. Then we define the multilinear Weyl pseudodifferential operators and give their weak formulation in terms of the multilinear Wigner transform (Lemma \[5.3\]). By using the kernel theorem for Gelfand-Shilov operators and give their weak formulation in terms of the multilinear Wigner transform (Lemma \[3.3\]). By using the kernel theorem for Gelfand-Shilov operators and give their weak formulation in terms of the multilinear Wigner transform, Theorem \[4.1\], and Theorem \[3.4\].

In Section \[4\] we first recall two results from \[9\]: the (multilinear version of) sharp integral bounds for the Wigner transform, Theorem \[4.1\], and convolution estimates for continuity properties of pseudodifferential operators on modulation spaces, Theorem \[2.5\]. These results, combined with the convolution estimates for modulation spaces from \[38\], Theorem \[2.5\], are then used to prove the main result of the continuity properties of multilinear localization operators on modulation spaces, Theorem \[4.5\].

Notation. The Schwartz space of rapidly decreasing smooth functions is denoted by \(\mathcal{S}(\mathbb{R}^d)\), and its dual space of tempered distributions is denoted by \(\mathcal{S}'(\mathbb{R}^d)\). We use the brackets \(\langle f, g \rangle\) to denote the extension of the inner product \(\langle f, g \rangle = \int f(t)g(t)dt\) on \(L^2(\mathbb{R}^d)\) to any pair of dual spaces. The Fourier transform is normalized to be \(\hat{f}(\omega) = \mathcal{F}f(\omega) = \int f(t)e^{-2\pi i\omega t}dt\).

The involution \(f^* = f^\gamma(\cdot)\) and the convolution of \(f\) and \(g\) is given by \(f \ast g(x) = \int f(x-y)g(y)dy\), when the integral exists.

We denote by \(\langle \cdot \rangle^s\) the polynomial weights

\[
\langle (x, \omega) \rangle^s = (1 + |x|^2 + |\omega|^2)^{s/2}, \quad (x, \omega) \in \mathbb{R}^{2d}, \quad s \in \mathbb{R},
\]

and \(\langle x \rangle = (1 + |x|^2)^{1/2}\), when \(x \in \mathbb{R}^d\).

We use the notation \(A \lesssim B\) to indicate that \(A \leq cB\) for a suitable constant \(c > 0\), whereas \(A \asymp B\) means that \(c^{-1}A \leq B \leq cA\) for some \(c \geq 1\).

The Gelfand-Shilov space and Weyl pseudodifferential operators. The Gelfand-Shilov type space of analytic functions \(\mathcal{S}^{(1)}(\mathbb{R}^d)\) is given by

\[
f \in \mathcal{S}^{(1)}(\mathbb{R}^d) \iff \|f(x)e^{h|x|}\|_{L^\infty} < \infty \text{ and } \|\hat{f}(\omega)e^{h|\omega|}\|_{L^\infty} < \infty, \quad \forall h > 0.
\]

Any \(f \in \mathcal{S}^{(1)}(\mathbb{R}^d)\) can be extended to a holomorphic function \(f(x + iy)\) in the strip \(\{x + iy \in \mathbb{C}^d : |y| < T\}\) some \(T > 0\). \[18\], \[25\]. The dual space of \(\mathcal{S}^{(1)}(\mathbb{R}^d)\) will be denoted by \(\mathcal{S}^{(1)\prime}(\mathbb{R}^d)\).

The space \(\mathcal{S}^{(1)}(\mathbb{R}^d)\) is nuclear, and we will use the following kernel theorem in the context of \(\mathcal{S}^{(1)}(\mathbb{R}^d)\).
Theorem 1.1. Let $\mathcal{L}_b(\mathcal{A}, \mathcal{B})$ denote the continuous linear mapping between the spaces \mathcal{A} and \mathcal{B}. Then the following isomorphisms hold:

1) $\mathcal{S}^{(1)}(\mathbb{R}^{d_1}) \hat{\otimes} \mathcal{S}^{(1)}(\mathbb{R}^{d_2}) \cong \mathcal{S}^{(1)}(\mathbb{R}^{d_1+d_2}) \cong \mathcal{L}_b(\mathcal{S}^{(1)\prime}(\mathbb{R}^{d_1}), \mathcal{S}^{(1)}(\mathbb{R}^{d_2}))$,

2) $\mathcal{S}^{(1)\prime}(\mathbb{R}^{d_1}) \hat{\otimes} \mathcal{S}^{(1)\prime}(\mathbb{R}^{d_2}) \cong \mathcal{S}^{(1)\prime}(\mathbb{R}^{d_1+d_2}) \cong \mathcal{L}_b(\mathcal{S}^{(1)}(\mathbb{R}^{d_1}), \mathcal{S}^{(1)}(\mathbb{R}^{d_2}))$.

Theorem 1.1 is a special case of [31, Theorem 2.5], see also [27], so we omit the proof. We refer to the classical reference [40] for kernel theorems and nuclear spaces, and in particular to Theorem 51.6 and its Corollary related to $\mathcal{S}(\mathbb{R}^d)$ and $\mathcal{S}^\prime(\mathbb{R}^d)$, which will be used later on.

The isomorphisms in Theorem 1.1 (2) imply that for a given kernel-distribution $k(x, y)$ on $\mathbb{R}^{d_1+d_2}$ we may associate a continuous linear mapping k of $\mathcal{S}^{(1)}(\mathbb{R}^{d_2})$ into $\mathcal{S}^{(1)\prime}(\mathbb{R}^{d_1})$ as follows:

$$\langle k\varphi, \phi \rangle = \langle k(x, y), \phi(x)\varphi(y) \rangle, \quad \phi \in \mathcal{S}^{(1)}(\mathbb{R}^{d_1}),$$

which is commonly written as $k\varphi(\cdot) = \int k(\cdot, y)\varphi(y)dy$. The correspondence between $k(x, y)$ and k is an isomorphism and this fact will be used in the proof of Theorem 3.4.

Let $\sigma \in \mathcal{S}^{(1)}(\mathbb{R}^{2d})$. Then the Weyl pseudodifferential operator L_σ with the Weyl symbol σ can be defined as the oscillatory integral:

$$L_\sigma f(x) = \int \int \sigma\left(\frac{x+y}{2}, \omega\right)f(y)e^{2\pi i(x-y)\cdot\omega}dyd\omega, \quad f \in \mathcal{S}^{(1)}(\mathbb{R}^d).$$

This definition extends to each $\sigma \in \mathcal{S}^{(1)\prime}(\mathbb{R}^{2d})$, so that L_σ is a continuous mapping from $\mathcal{S}^{(1)}(\mathbb{R}^{2d})$ to $\mathcal{S}^{(1)\prime}(\mathbb{R}^{2d})$. If

$$W(f, g)(x, \omega) = \int f(x + \frac{t}{2})g(x - \frac{t}{2})e^{2\pi i\omega t}dt, \quad f, g \in \mathcal{S}^{(1)}(\mathbb{R}^d),$$

(1.1)

denotes the Wigner transform, also known as the cross-Wigner distribution, then the following formula holds:

$$\langle L_\sigma f, g \rangle = \langle \sigma, W(g, f) \rangle, \quad f, g \in \mathcal{S}^{(1)}(\mathbb{R}^d),$$

for each $\sigma \in \mathcal{S}^{(1)\prime}(\mathbb{R}^{2d})$, see e.g. [16, 19, 41].

2. Modulation Spaces

In this section we collect some facts on modulation spaces which will be used in Section 4. First we introduce the short-time Fourier transform in the context of duality between the Gelfand–Shilov space $\mathcal{S}^{(1)}(\mathbb{R}^d)$ and its dual space of tempered ultra-distributions $\mathcal{S}^{(1)\prime}(\mathbb{R}^{2d})$ as follows.

The short-time Fourier transform (STFT in the sequel) of $f \in \mathcal{S}^{(1)}(\mathbb{R}^d)$ with respect to the window $g \in \mathcal{S}^{(1)}(\mathbb{R}^d) \setminus 0$ is defined by

$$V_gf(x, \omega) = \langle f, M_\omega T_x g \rangle = \int_{\mathbb{R}^d} f(t)g(t-x)e^{-2\pi i\omega t}dt, \quad (2.1)$$
where the translation operator T_x and the modulation operator M_ω are given by

$$T_xf(\cdot) = f(\cdot - x) \quad \text{and} \quad M_\omega f(\cdot) = e^{2\pi i \omega \cdot f(\cdot)} \quad x, \omega \in \mathbb{R}^d. \quad (2.2)$$

The map $(f, g) \mapsto V_g f$ from $S^{(1)}(\mathbb{R}^d) \otimes S^{(1)}(\mathbb{R}^d)$ to $S^{(1)}(\mathbb{R}^{2d})$ extends uniquely to a continuous operator from $S^{(1)'}(\mathbb{R}^d) \otimes S^{(1)'}(\mathbb{R}^d)$ to $S^{(1)'}(\mathbb{R}^{2d})$ by duality.

Moreover, for a fixed $g \in S^{(1)}(\mathbb{R}^d) \setminus \{0\}$ the following characterization holds:

$$f \in S^{(1)}(\mathbb{R}^d) \iff V_g f \in S^{(1)}(\mathbb{R}^{2d}).$$

We recall the notation from [33] related to the bilinear case. For given $\varphi_1, \varphi_2, f_1, f_2 \in S^{(1)}(\mathbb{R}^d)$ we put

$$V_{\varphi_1 \otimes \varphi_2} (f_1 \otimes f_2)(x, \omega) = \int_{\mathbb{R}^{2d}} f_1(t_1) f_2(t_2) M_{\omega_1} T_{x_1} \varphi_1(t_1) M_{\omega_2} T_{x_2} \varphi_2(t_2) dt_1 dt_2$$

$$= \int_{\mathbb{R}^{2d}} (f_1 \otimes f_2)(t) (M_{\omega_1} T_{x_1} \varphi_1 \otimes M_{\omega_2} T_{x_2} \varphi_2)(t) dt, \quad (2.3)$$

where $x = (x_1, x_2)$, $\omega = (\omega_1, \omega_2)$, $t = (t_1, t_2)$, $x_1, x_2, \omega_1, \omega_2, t_1, t_2 \in \mathbb{R}^d$.

To give an interpretation of multilinear operators in the weak sense we note that, when $\tilde{f} = (f_1, f_2, \ldots, f_n)$ and $\tilde{\varphi} = (\varphi_1, \varphi_2, \ldots, \varphi_n)$, $f_j, \varphi_j \in S^{(1)}(\mathbb{R}^d)$, $j = 1, 2, \ldots, n$, the equation (2.3) becomes

$$V_{\tilde{\varphi}} \tilde{f}(x, \omega) = \int_{\mathbb{R}^{nd}} \tilde{f}(t) \prod_{j=1}^n M_{\omega_j} T_{x_j} \varphi_j(t_j) dt, \quad (2.4)$$

see also (3.1) for the notation.

We refer to [23,30,32,37] for more details on STFT in other spaces of Gelfand-Shilov type. Since we restrict ourselves to weighted modulation spaces with polynomial weights in this paper, we proceed by using the duality between S and S' instead of the more general duality between $S^{(1)}$ and $S^{(1)'}$. Related results in the framework of subexponential and superexponential weights can be found in e.g. [11,12,31,37], and leave the study of multilinear localization operators in that case for a separate contribution.

Modulation spaces [15,19] are defined through decay and integrability conditions on STFT, which makes them suitable for time-frequency analysis, and for the study of localization operators in particular. They are defined in terms of weighted mixed-norm Lebesgue spaces.

In general, a weight $w(\cdot)$ on \mathbb{R}^d is a non-negative and continuous function. The weighted Lebesgue space $L^p_w(\mathbb{R}^d)$, $p \in [1, \infty]$, is the Banach space with the norm

$$\|f\|_{L^p_w} = \|fw\|_{L^p} = \left(\int |f(x)|^p w(x)^p dx\right)^{1/p},$$

and with the usual modification when $p = \infty$. When $w(x) = \langle x \rangle^t$, $t \in \mathbb{R}$, we use the notation $L^p_{t}(\mathbb{R}^d)$ instead.
Similarly, the weighted mixed-norm space $L^{p,q}_w(\mathbb{R}^d)$, $p, q \in [1, \infty]$, consists of (Lebesgue) measurable functions on \mathbb{R}^d such that

$$
\|F\|_{L^{p,q}_w} = \left(\int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} |F(x, \omega)|^p w(x, \omega)^p \, dx \right)^{q/p} \, d\omega \right)^{1/q} < \infty.
$$

where $w(x, \omega)$ is a weight on \mathbb{R}^d.

In particular, when $w(x, \omega) = \langle x \rangle^s \langle \omega \rangle^t$, $s, t \in \mathbb{R}$, we use the notation $L^{p,q}_w(\mathbb{R}^2d) = L^{p,q}_{s,t}(\mathbb{R}^d)$.

Now, modulation space $M^{p,q}_{s,t}(\mathbb{R}^d)$ consists of distributions whose STFT is an isomorphism between $M^{p,q}_{s,t}(\mathbb{R}^d)$ and $M^{p,q}_{s,t}(\mathbb{R}^d)$.

Definition 2.1. Let $\phi \in \mathcal{S}(\mathbb{R}^d) \setminus 0$, $s, t \in \mathbb{R}$, and $p, q \in [1, \infty]$. The modulation space $M^{p,q}_{s,t}(\mathbb{R}^d)$ consists of all $f \in \mathcal{S}'(\mathbb{R}^d)$ such that

$$
\|f\|_{M^{p,q}_{s,t}} \equiv \left(\int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} |V_\phi f(x, \omega)\langle x \rangle^s \langle \omega \rangle^t|^p \, dx \right)^{q/p} \, d\omega \right)^{1/q} < \infty,
$$

(with obvious interpretation of the integrals when $p = \infty$ or $q = \infty$).

In special cases we use the usual abbreviations: $M^{p,p}_{0,0} = M^p$, $M^{p,p}_{t,t} = M^p_t$, etc.

For the consistency, and according to (2.2), we denote by $M^{p,q}_{s,t}(\mathbb{R}^{nd})$ the set of $\tilde{f} = (f_1, f_2, \ldots, f_n)$, $f_j \in \mathcal{S}'(\mathbb{R}^d)$, $j = 1, 2, \ldots, n$, such that

$$
\|\tilde{f}\|_{M^{p,q}_{s,t}} \equiv \left(\int_{\mathbb{R}^{2d}} \left(\int_{\mathbb{R}^{2d}} |V_{\varphi} \tilde{f}(x, \omega)\langle x \rangle^s \langle \omega \rangle^t|^p \, dx \right)^{q/p} \, d\omega \right)^{1/q} < \infty,
$$

where $\varphi = (\varphi_1, \varphi_2, \ldots, \varphi_n)$, $\varphi_j \in \mathcal{S}(\mathbb{R}^d) \setminus 0$, $j = 1, 2, \ldots, n$, is a given window function.

The kernel theorem for $\mathcal{S}(\mathbb{R}^d)$ and $\mathcal{S}'(\mathbb{R}^d)$ (see [40]) implies that there is an isomorphism between $M^{p,q}_{s,t}(\mathbb{R}^{nd})$ and $M^{p,q}_{s,t}(\mathbb{R}^{nd})$ (which commutes with the operators from (2.2)). This allows us to identify $\tilde{f} \in M^{p,q}_{s,t}(\mathbb{R}^{nd})$ with (its isomorphic image) $F \in M^{p,q}_{s,t}(\mathbb{R}^{nd})$ (and vice versa). We will use this identification whenever convenient and without further mentioning.

Remark 2.2. The original definition of modulation spaces given in [15] deals with more general submultiplicative weights. We restrict ourselves to the weights of the form $w(x, \omega) = \langle x \rangle^s \langle \omega \rangle^t$, $s, t \in \mathbb{R}$, since the convolution and multiplication estimates which will be used later on are formulated in terms of weighted spaces with such polynomial weights. As already mentioned, weights of exponential type growth are used in the study of Gelfand-Shilov spaces and their duals in cf. [11, 23, 30, 37]. We refer to [20] for a survey on the most important types of weights commonly used in time-frequency analysis.

The following theorem lists some basic properties of modulation spaces. We refer to [15, 19] for the proof.
Theorem 2.3. Let $p, q, p_j, q_j \in [1, \infty]$ and $s, t, s_j, t_j \in \mathbb{R}, j = 1, 2$. Then:

1) $M_{s,t}^{p,q}(\mathbb{R}^d)$ are Banach spaces, independent of the choice of $\phi \in S(\mathbb{R}^d) \setminus \{0\}$;

2) if $p_1 \leq p_2$, $q_1 \leq q_2$, $s_2 \leq s_1$ and $t_2 \leq t_1$, then

$$S(\mathbb{R}^d) \subseteq M_{s_1,t_1}^{p_1,q_1}(\mathbb{R}^d) \subseteq M_{s_2,t_2}^{p_2,q_2}(\mathbb{R}^d) \subseteq S'(\mathbb{R}^d);$$

3) $\cap_{s,t} M_{s,t}^{p,q}(\mathbb{R}^d) = S(\mathbb{R}^d), \cup_{s,t} M_{s,t}^{p,q}(\mathbb{R}^d) = S'(\mathbb{R}^d)$;

4) For $p, q \in [1, \infty)$, the dual of $M_{s,t}^{p,q}(\mathbb{R}^d)$ is $M_{s_t^{-1}}^{p',q'}(\mathbb{R}^d)$, where $\frac{1}{p} + \frac{1}{p'} = \frac{1}{q} + \frac{1}{q'} = 1$.

Modulation spaces include the following well-known function spaces:

a) $M^2(\mathbb{R}^d) = L^2(\mathbb{R}^d)$, and $M^2_0(\mathbb{R}^d) = L^2_0(\mathbb{R}^d)$;

b) The Feichtinger algebra: $M^1(\mathbb{R}^d) = S_0(\mathbb{R}^d)$;

c) Sobolev spaces: $M^0_{0,s}(\mathbb{R}^d) = H^s_0(\mathbb{R}^d) = \{ f \mid \hat{f}(\omega) \langle \omega \rangle^s \in L^2(\mathbb{R}^d) \}$;

d) Shubin spaces: $M^2(\mathbb{R}^d) = L^2(\mathbb{R}^d) \cap H^2_0(\mathbb{R}^d) = Q_2(\mathbb{R}^d)$, cf. [28].

To deal with duality when $pq = \infty$ we observe that, by a slight modification of [11 Lemma 2.2] the following is true.

Lemma 2.4. Let $L^0(\mathbb{R}^{2nd})$ denote the space of bounded, measurable functions on \mathbb{R}^{2nd} which vanish at infinity and put

$$M^{0,q}(\mathbb{R}^{nd}) = \{ \tilde{f} \in M^{\infty,q}(\mathbb{R}^{nd}) \mid V_{\tilde{f}} \tilde{f} \in L^0(\mathbb{R}^{2nd}) \}, \quad 1 \leq q < \infty,$$

$$M^{p,0}(\mathbb{R}^{nd}) = \{ \tilde{f} \in M^{p,\infty}(\mathbb{R}^{nd}) \mid V_{\tilde{f}} \tilde{f} \in L^0(\mathbb{R}^{2nd}) \}, \quad 1 \leq p < \infty,$$

$$M^{0,0}(\mathbb{R}^{nd}) = \{ \tilde{f} \in M^{\infty,\infty}(\mathbb{R}^{nd}) \mid V_{\tilde{f}} \tilde{f} \in L^0(\mathbb{R}^{2nd}) \},$$

equipped with the norms of $M^{\infty,q}, M^{p,\infty}$ and $M^{\infty,\infty}$ respectively. Then,

a) $M^{0,q}$ is $M^{\infty,q}$—closure of S in $M^{\infty,q}$, hence is a closed subspace of $M^{\infty,q}$. Likewise for $M^{p,0}$ and $M^{0,0}$.

b) The following duality results hold for $1 \leq p, q < \infty$: $(M^{0,q})' = M^{1,q'}, (M^{p,0})' = M^{p,1}$, and $(M^{0,0})' = M^{1,1}$.

From now on we will use these duality relations in the cases $p = \infty$ and/or $q = \infty$ without further explanations.

For the results on multiplication and convolution in modulation spaces and in weighted Lebesgue spaces we first introduce the Young functional:

$$R(p) = R(p_0, p_1, p_2) = 2 - \frac{1}{p_0} - \frac{1}{p_1} - \frac{1}{p_2}, \quad p = (p_0, p_1, p_2) \in [1, \infty]^3.$$
(2.6)

When $R(p) = 0$, the Young inequality for convolution reads as

$$\|f_1 \ast f_2\|_{L^p_0} \leq \|f_1\|_{L^{p_1}} \|f_2\|_{L^{p_2}}, \quad f_j \in L^{p_j}(\mathbb{R}^d), \quad j = 1, 2.$$

The following theorem is an extension of the Young inequality to the case of weighted Lebesgue spaces and modulation spaces when $0 \leq R(p) \leq 1/2$.

6
Theorem 2.5. Let \(s_j, t_j \in \mathbb{R}, p_j, q_j \in [1, \infty], j = 0, 1, 2 \). Assume that
\[0 \leq R(p) \leq 1/2, R(q) \leq 1, \]
with strict inequality in (2.8) when \(R(p) > 0 \) and \(t_j = d \cdot R(p) \) for some
\(j = 0, 1, 2 \).

Then \((f_1, f_2) \mapsto f_1 * f_2 \) on \(C_c^\infty(\mathbb{R}^d) \) extends uniquely to a continuous
map from

1) \(L^{p_1}_{t_1}(\mathbb{R}^d) \times L^{p_2}_{t_2}(\mathbb{R}^d) \) to \(L^{p_0}_{-t_0}(\mathbb{R}^d) \);
2) \(M^{p_1,q_1}_{s_1,t_1}(\mathbb{R}^d) \times M^{p_2,q_2}_{s_2,t_2}(\mathbb{R}^d) \) to \(M^{p_0,q_0}_{-s_0,-t_0}(\mathbb{R}^d) \).

For the proof we refer to [38]. It is based on the detailed study of an
auxiliary three-linear map over carefully chosen regions in \(\mathbb{R}^d \) (see Subsections 3.1 and 3.2 in [38]). This result extends multiplication and convolu-
tion properties obtained in [26]. Moreover, the sufficient conditions from
Theorem 2.5 are also necessary in the following sense.

Theorem 2.6. Let \(p_j, q_j \in [1, \infty] \) and \(s_j, t_j \in \mathbb{R}, j = 0, 1, 2 \). Assume that
at least one of the following statements hold true:

1) the map \((f_1, f_2) \mapsto f_1 * f_2 \) on \(C_c^\infty(\mathbb{R}^d) \) is continuously extendable
to a map from \(L^{p_1}_{t_1}(\mathbb{R}^d) \times L^{p_2}_{t_2}(\mathbb{R}^d) \) to \(L^{p_0}_{-t_0}(\mathbb{R}^d) \);
2) the map \((f_1, f_2) \mapsto f_1 * f_2 \) on \(C_c^\infty(\mathbb{R}^d) \) is continuously extendable
to a map from \(M^{p_1,q_1}_{s_1,t_1}(\mathbb{R}^d) \times M^{p_2,q_2}_{s_2,t_2}(\mathbb{R}^d) \) to \(M^{p_0,q_0}_{-s_0,-t_0}(\mathbb{R}^d) \);

Then (2.7) and (2.8) hold true.

3. MULTILINEAR LOCALIZATION OPERATORS

In this section we introduce multilinear localization operators in
Definition 3.1 and show that they can be interpreted as particular Weyl pseu-
dodifferential operators, Theorem 3.4. We also introduce multilinear Weyl
pseudodifferential operators and prove their connection to the multilinear
Wigner transform in Lemma 3.3. This is done in the context of the duality
between \(S^{(1)}(\mathbb{R}^d) \) and \(S^{(1)}(\mathbb{R}^d) \), and carried out verbatim to the duality
between \(S(\mathbb{R}^d) \) and \(S(\mathbb{R}^d) \) in the next Section.

The localization operator \(A_a^{\varphi_1,\varphi_2} \) with the symbol \(a \in L^2(\mathbb{R}^{2d}) \) and with
windows \(\varphi_1, \varphi_2 \in L^2(\mathbb{R}^d) \) can be defined in terms of the short-time Fourier
transform (2.1) as follows:

\[A_a^{\varphi_1,\varphi_2} f(t) = \int_{\mathbb{R}^{2d}} a(x, \omega) \hat{V}_{\varphi_1}(x, \omega) M_a T_\varphi f(t) \ dx d\omega, \quad f \in L^2(\mathbb{R}^d). \]

To define multilinear localization operators we slightly abuse the nota-
tion (as it is done in e.g. [24]) so that \(\tilde{f} \) will denote both the vector
\[\vec{f} = (f_1, f_2, \ldots, f_n) \]
and the tensor product \(\vec{f} = f_1 \otimes f_2 \otimes \cdots \otimes f_n \). This will not cause confusion, since the meaning of \(\vec{f} \) will be clear from the context.

For example, if \(t = (t_1, t_2, \ldots, t_n) \), and \(F_j = F_j(t_j) \), \(t_j \in \mathbb{R}^d \), \(j = 1, 2, \ldots, n \), then

\[\prod_{j=1}^n F_j(t_j) = F_1(t_1) \cdot F_2(t_2) \cdots \cdot F_n(t_n) = F_1(t_1) \otimes F_2(t_2) \otimes \cdots \otimes F_n(t_n) = \vec{F}(t). \]
(3.1)

Definition 3.1. Let \(f_j \in S^{(1)}(\mathbb{R}^d), j = 1, 2, \ldots, n \), and \(\vec{f} = (f_1, f_2, \ldots, f_n) \).

The **multilinear localization operator** \(A^a_\vec{f} \) with symbol \(a \in S^{(1)}(\mathbb{R}^{2nd}) \) and window

\[\varphi = (\vec{\varphi}, \vec{\phi}) = (\varphi_1, \varphi_2, \ldots, \varphi_n, \phi_1, \phi_2, \ldots, \phi_n), \quad \varphi_j, \phi_j \in S^{(1)}(\mathbb{R}^d), \quad j = 1, 2, \ldots, n, \]
is given by

\[A^a_\vec{f} f(t) = \int_{\mathbb{R}^{2nd}} a(x, \omega) \prod_{j=1}^n M_{\omega_j} T_{x_j} \varphi_j(\omega_j) \, dx d\omega, \]
(3.2)

where \(x_j, \omega_j, t_j \in \mathbb{R}^d, j = 1, 2, \ldots, n \), and \(x = (x_1, x_2, \ldots, x_n), \omega = (\omega_1, \omega_2, \ldots, \omega_n), t = (t_1, t_2, \ldots, t_n) \).

Remark 3.2. When \(n = 2 \) in Definition 3.1 we obtain the bilinear localization operators studied in [33]. (There is a typo in [33, Definition 1]; the integration in (9) should be taken over \(\mathbb{R}^{4d} \).)

Let \(\mathcal{R} \) denote the trace mapping that assigns to each function \(F \) defined on \(\mathbb{R}^{nd} \) a function defined on \(\mathbb{R}^d \) by the formula

\[\mathcal{R} : F \mapsto F|_{t_1 = t_2 = \cdots = t_n}, \quad t_j \in \mathbb{R}^d, \quad j = 1, 2, \ldots, n. \]

Then \(\mathcal{R} A^a_\vec{f} \) is the multilinear operator given in [8, Definition 2.2].

By (2.4) it follows that the weak definition of (3.2) is given by

\[\langle A^a_\vec{f} \vec{f}, \vec{g} \rangle = \langle a \vec{\varphi} \vec{f}, \vec{V}_\varphi \vec{g} \rangle = \langle a, \vec{\varphi} \vec{f} \vec{V}_\varphi \vec{g} \rangle, \]
(3.3)

and \(f_j, g_j \in S^{(1)}(\mathbb{R}^d), j = 1, 2, \ldots, n \). The brackets can be interpreted as duality between a suitable pair of dual spaces. Thus \(A^a_\vec{f} \) is well-defined continuous operator from \(S^{(1)}(\mathbb{R}^{nd}) \) to \((S^{(1)})'(\mathbb{R}^{2nd}) \).

Next we introduce a class of multilinear Weyl pseudodifferential operators (ΨDO for short) and use the Wigner transform to prove appropriate interpretation of multilinear localization operators as multilinear Weyl pseudodifferential operators, Theorem 3.4.

Recall that in [8] multilinear localization operators are introduced in connection to Kohn-Nirenberg ΨDOs instead.

By analogy with the bilinear Weyl pseudodifferential operators given in [33] we define the multilinear Weyl pseudodifferential operator as follows:

\[L_{\sigma}(\vec{f})(x) = \int_{\mathbb{R}^{2nd}} \sigma\left(\frac{x+y}{2}, \omega\right) \vec{f}(y) e^{2\pi i \xi(x-y) \cdot \omega} \, dy d\omega, \quad x \in \mathbb{R}^{nd}, \]
(3.4)
where $\sigma \in S^{(1)'}(\mathbb{R}^{2nd})$, $f(y) = \prod_{j=1}^{n} f_j(y_j)$, $f_j \in S^{(1)}(\mathbb{R}^d)$, $j = 1, 2, \ldots, n$.

Here I denotes the identity matrix in nd, that is $I(x - y) = \sum_{j=1}^{n} (x_j - y_j)\omega_j$.

Similarly, the bilinear Wigner transform from $[33]$ extends to

$$W(f, g)(x, \omega) = \int_{\mathbb{R}^{nd}} \prod_{j=1}^{n} \left(f_j(x_j + \frac{t_j}{2}) g_j(x_j - \frac{t_j}{2}) \right) e^{-2\pi i \omega t} dt, \quad (3.5)$$

where $f_j, g_j \in S^{(1)}(\mathbb{R}^d)$, $x, \omega, t_j \in \mathbb{R}^d$, $j = 1, 2, \ldots, n$, and $x = (x_1, x_2, \ldots, x_n)$, $\omega = (\omega_1, \omega_2, \ldots, \omega_n)$, $t = (t_1, t_2, \ldots, t_n)$.

It is easy to see that $W(f, g) \in S^{(1)}(\mathbb{R}^{2nd})$, when $f, g \in S^{(1)}(\mathbb{R}^d)$.

Lemma 3.3. Let $\sigma \in S^{(1)}(\mathbb{R}^{2nd})$ and $f_j, g_j \in S^{(1)}(\mathbb{R}^d)$, $j = 1, 2, \ldots, n$. Then $\sigma \in S^{(1)}(\mathbb{R}^{2nd})$ to $S^{(1)}(\mathbb{R}^{2nd})$ and the following formula holds:

$$\langle L_{\sigma} f, g \rangle = \langle \sigma, W(f, g) \rangle.$$

Proof. The proof follows by the straightforward calculation:

$$\langle \sigma, W(f, g) \rangle = \int_{\mathbb{R}^{2nd}} \sigma(x, \omega) W(f, g)(x, \omega) dx d\omega$$

$$= \int_{\mathbb{R}^{3nd}} \sigma(x, \omega) \prod_{j=1}^{n} \left(f_j(x_j + \frac{t_j}{2}) g_j(x_j - \frac{t_j}{2}) \right) e^{-2\pi i \omega t} dt dx d\omega$$

$$= \int_{\mathbb{R}^{6d}} \sigma(\frac{u + v}{2}, \omega) \prod_{j=1}^{n} \left(f_j(v_j) g_j(u_j) \right) e^{-2\pi i \omega (u - v)} du dv d\omega$$

$$= \langle \sigma(\frac{u + v}{2}, \omega), \frac{2}{\pi} e^{2\pi i \omega (u - v)}, g(u) \rangle = \langle L_{\sigma} f, g \rangle,$$

where we used $W(f, g) = W(f, g)$ and the change of variables $u = x + \frac{t}{2}$, $v = x - \frac{t}{2}$. This extends to each $\sigma \in S^{(1)'}(\mathbb{R}^{2nd})$, since $W(f, g) \in S^{(1)}(\mathbb{R}^{2nd})$ when $f_j, g_j \in S^{(1)}(\mathbb{R}^d)$, $j = 1, 2, \ldots, n$.

□

The so called Weyl connection between the set of linear localization operators and Weyl ΨDOs is well known, we refer to e.g. $[3, 14, 32]$. The corresponding Weyl connection in bilinear case is established in $[33]$ Theorem 4. The proof is quite technical and based on the kernel theorem for Gelfand-Shilov spaces (see e.g. $[27, 31, 39]$) and direct calculations. Since the proof of the following Theorem 3.4 is its straightforward extension, here we only sketch the main ideas. The conclusion of Theorem 3.4 is that any multilinear localization operator can be viewed as a particular multilinear Weyl ΨDOs, as expected.
Theorem 3.4. Let there be given \(a \in S^{(1)\prime}(\mathbb{R}^d) \) and let \(\varphi = (\vec{\varphi}, \tilde{\varphi}), \vec{\varphi} = (\varphi_1, \varphi_2, \ldots, \varphi_n), \tilde{\varphi} = (\phi_1, \phi_2, \ldots, \phi_n), \varphi_j, \phi_j \in S^{(1)}(\mathbb{R}^d), j = 1, 2, \ldots, n. \) Then the localization operator \(A_a^\varphi \) is the Weyl pseudodifferential operator with the Weyl symbol

\[
\sigma = a \ast W(\vec{\varphi}, \tilde{\varphi}) = a \ast (\prod_{j=1}^n W(\phi_j, \varphi_j)).
\]

Therefore, if \(\vec{f} = (f_1, f_2, \ldots, f_n), \vec{g} = (g_1, g_2, \ldots, g_n), f_j, g_j \in S^{(1)\prime}(\mathbb{R}^d), j = 1, 2, \ldots, n, \) then

\[
\langle A_a^\varphi \vec{f}, \vec{g} \rangle = \langle L_{a \ast W(\vec{\varphi}, \tilde{\varphi})} \vec{f}, \vec{g} \rangle.
\]

Proof. The formal expressions given below are justified due to the absolute convergence of the involved integrals and the standard interpretation of oscillatory integrals in distributional setting. We refer to [33, Section 5] for this and for a detailed calculations.

The calculations from the proof of [33, Theorem 4] yield the following kernel representation of (3.3):

\[
\langle A_a^\varphi \vec{f}, \vec{g} \rangle = \langle k, \prod_{j=1}^n f_j \otimes \prod_{j=1}^n g_j \rangle,
\]

where the kernel \(k = k(t, s) \), is given by

\[
k(t, s) = \int_{\mathbb{R}^{2nd}} a(x, \omega) \prod_{j=1}^n M_{\omega_j} T_{x_j} \varphi_j(t) \cdot \prod_{j=1}^n M_{\omega_j} T_{x_j} \phi_j(s) dx d\omega,
\]

(3.6)

\(t = (t_1, t_2, \ldots, t_n), s = (s_1, s_2, \ldots, s_n), t_j, s_j \in \mathbb{R}^d, j = 1, 2, \ldots, n. \)

To calculate the convolution \(a \ast (\prod_{j=1}^n W(\phi_j, \varphi_j)) = a \ast W(\vec{\varphi}, \tilde{\varphi}) \) we use \(W(g, f) = W(f, g) \), the commutation relation \(T_x M_\omega = e^{i2\pi x \cdot \omega} M_\omega T_x \), and the covariance property of the Wigner transform:

\[
W(T_{x_j} M_{\omega_j} \phi_j, T_{x_j} M_{\omega_j} \varphi_j)(p_j, q_j) = W(\phi_j, \varphi_j)(p_j - x_j, q_j - \omega_j), \quad j = 1, 2, \ldots, n.
\]

Let \(p = (p_1, p_2, \ldots, p_n), q = (q_1, q_2, \ldots, q_n), p_j, q_j \in \mathbb{R}^d, j = 1, 2, \ldots, n. \) Then,

\[
a \ast W(\vec{\varphi}, \tilde{\varphi})(p, q) = \int_{\mathbb{R}^{2nd}} a(x, \omega) \times
\]

\[
\left(\int_{\mathbb{R}^d} \prod_{j=1}^n M_{\omega_j} T_{x_j} \phi_j(p_j + \frac{t_j}{2}) \cdot \prod_{j=1}^n M_{\omega_j} T_{x_j} \varphi_j(p_j - \frac{t_j}{2}) e^{-2\pi i q \cdot t_j} dt \right) dx d\omega,
\]

(3.7)

where \(q \cdot t \) is the scalar product of \(q, t \in \mathbb{R}^d \), cf. [33, Section 5].
Therefore,
\[
\langle L_{a*W(\tilde{\varphi}, \tilde{\phi})} \vec{f}, \vec{g} \rangle = \langle a * \prod_{j=1}^{n} W(\phi_j, \varphi_j), W(\vec{g}, \vec{f}) \rangle = \int_{\mathbb{R}^{2nd}} a(x, \omega) \times
\int_{\mathbb{R}^{nd}} \left(\int_{\mathbb{R}^{nd}} \prod_{j=1}^{n} M_{\omega_j} T_{x_j} \phi_j(p_j + \frac{t_j}{2}) \cdot \prod_{j=1}^{n} M_{\omega_j} T_{x_j} \varphi_j(p_j - \frac{t_j}{2}) \times \prod_{j=1}^{n} f_j(p_j - \frac{t_j}{2}) \cdot \prod_{j=1}^{n} g_j(p_j + \frac{t_j}{2}) dt \right) d\rho dx d\omega,
\]
Finally, after performing the change of variables we obtain
\[
\langle L_{a*W(\tilde{\varphi}, \tilde{\phi})} \vec{f}, \vec{g} \rangle = \langle k, \prod_{j=1}^{n} f_j \otimes \prod_{j=1}^{n} g_j \rangle,
\]
where the kernel \(k \) is given by (3.6). The theorem now follows from the uniqueness of the kernel representation, Theorem 1.1. \(\square \)

4. CONTINUITY PROPERTIES OF LOCALIZATION OPERATORS

We first recall the sharp estimates of the modulation space norm for the cross-Wigner distribution given in [9]. There it is shown that the sufficient conditions for the continuity of the cross-Wigner distribution on modulation spaces are also necessary (in the un-weighted case). Related results can be found elsewhere, e.g. in [32, 34, 35]. In many situations such results overlap. For example, Proposition 10 in [33] coincides with certain sufficient conditions from [9, Theorem 1.1] when restricted to \(R(p) = 0, t_0 = -t_1 \), and \(t_2 = |t_0| \).

Theorem 4.1. Let there be given \(s \in \mathbb{R} \) and \(p_i, q_i, p, q \in [1, \infty] \), such that
\[
p \leq p_i, q_i \leq q, \quad i = 1, 2
\]
and
\[
\min \left\{ \frac{1}{p_i}, \frac{1}{q_i}, \frac{1}{p_i}, \frac{1}{q_i} \right\} \geq \frac{1}{p} + \frac{1}{q}.
\]
If \(f, g \in S(\mathbb{R}^d) \), then the map \((f, g) \mapsto W(f, g) \) where \(W \) is the cross-Wigner distribution given by (1.1) extends to sesquilinear continuous map from \(M_{p_1,q_1}^{p,q}(\mathbb{R}^d) \times M_{p_2,q_2}^{p,q}(\mathbb{R}^d) \) to \(M_{p,q}^{p_1,q_1}(\mathbb{R}^{2d}) \) and
\[
\|W(f, g)\|_{M_{p,q}^{p_1,q_1}} \lesssim \|f\|_{M_{p_1,q_1}^{p,q}} \|g\|_{M_{p_2,q_2}^{p,q}}.
\]
Viceversa, if there exists a constant \(C > 0 \) such that
\[
\|W(f, g)\|_{M_{p,q}^{p_1,q_1}} \lesssim \|f\|_{M_{p,q}^{p_1,q_1}} \|g\|_{M_{p,q}^{p_1,q_1}}.
\]
then (4.1) and (4.2) must hold.
Proof. We omit the proof which is given in [9, Section 3], and recall here only the main formulas which highlight its most important parts.

The first formula is the well-known relation between the Wigner transform and the STFT (see [19, Lemma 4.3.1]):

$$W(f, g)(x, \omega) = 2^d e^{4\pi i x \cdot \omega} \mathcal{V} f(2x, 2\omega), \quad f, g \in \mathcal{S}(\mathbb{R}^d).$$

To estimate the modulation space norm of $W(f, g)(x, \omega)$ we fix $\psi_1, \psi_2 \in \mathcal{S}(\mathbb{R}^d) \setminus \{0\}$ and use the fact that modulation spaces are independent on the choice of the window function from $\mathcal{S}(\mathbb{R}^{2d}) \setminus \{0\}$, Theorem 2.3). By choosing the window to be $W(\psi_1, \psi_2)$, after some calculations we obtain:

$$(V W(\psi_1, \psi_2) W(g, f))(z, \zeta)$$

$$= e^{-2\pi i z \cdot \zeta} V \psi_1 f(z_1 + \frac{\zeta_2}{2}, z_2 - \frac{\zeta_1}{2}) V \psi_2 g(z_1 - \frac{\zeta_2}{2}, z_2 + \frac{\zeta_1}{2}),$$

cf. the proof of [19, Lemma 14.5.1 (b)]. Consequently (cf. [9, Section 3]),

$$\|W(g, f)\|_{\mathcal{M}^{p, q}_{\psi, 0}} \leq \left(\int_{\mathbb{R}^{2d}} (|V \psi_1 f|^p * |V \psi_2 g|^p)^{q/p} (\zeta_2, -\zeta_1)(\zeta_2, -\zeta_1)\langle \zeta_2, -\zeta_1\rangle^{s} d\zeta \right)^{1/q}.$$

Then one proceeds with a careful case study to obtain (4.3). We refer to [9] for details.

From the inspection of the proof of Theorem 4.1 given in [9, Section 3], the definition of $W(\tilde{f}, \tilde{g})$ given by (3.5) and the use of the kernel theorem we conclude the following.

Corollary 4.2. Let the assumptions of Theorem 4.1 hold. If $\tilde{f} = (f_1, f_2, \ldots, f_n)$, $\tilde{g} = (g_1, g_2, \ldots, g_n)$ and $f_j, g_j \in \mathcal{S}(\mathbb{R}^d)$, $j = 1, 2, \ldots, n$, then the map $(\tilde{f}, \tilde{g}) \mapsto W(\tilde{f}, \tilde{g})$, where W is the cross-Wigner distribution given by (3.5), extends to a continuous map from $\mathcal{M}^{p_1, q_1}([0, 2\pi]^d) \times \mathcal{M}^{p_2, q_2}([0, 2\pi]^d)$ to $\mathcal{M}^{p, q}_{\psi, 0}(\mathbb{R}^{2d})$, where the modulation spaces are given by (2.5).

Next we give an extension of [19, Theorem 14.5.2] and [33, Theorem 14] to the multilinear Weyl ΨDOs. Recall, if $\sigma \in M^{\infty, 1}(\mathbb{R}^{2d})$ is the Weyl symbol of L_σ, then [19, Theorem 14.5.2] says that L_σ is bounded on $M^{p, q}(\mathbb{R}^d)$, $1 \leq p, q \leq \infty$. This result has a long history starting from the Calderon-Vaillancourt theorem on boundedness of the pseudodifferential operators with smooth and bounded symbols on $L^2(\mathbb{R}^d)$, [5]. It is generalized by Sjöstrand in [29] where $M^{\infty, 1}$ is used as appropriate symbol class. Sjöstrand’s results were thereafter extended in [19, 21, 22, 34–36]. Moreover, we refer to [1–3] for the multilinear Kohn-Nirenberg ΨDOs, and the recent contributions [10] related to $\tau - \Psi$DOs (these include both Kohn-Nirenberg (when $\tau = 0$) and Weyl operators (when $\tau = 1/2$).

The following fact related to symbols $\sigma \in M^{\infty, 1}(\mathbb{R}^{2nd})$ is a straightforward extension of [33, Theorem 14].
Theorem 4.3. Let $\sigma \in M^{\infty,1}(\mathbb{R}^{2nd})$ and let L_σ be given by (3.4). The operator L_σ is bounded from $M^{p,q}(\mathbb{R}^{nd})$ to $M^{p,q}(\mathbb{R}^{nd})$, $1 \leq p, q \leq \infty$, with a uniform estimate $\|L_\sigma\|_{op} \leq \|\sigma\|_{M^{\infty,1}}$ for the operator norm.

On the other hand, Theorem 4.3 is a special case of [9, Theorem 5.1.] if L_σ is a linear operator. Here below we give the multilinear version of [9, Theorem 5.1.].

Theorem 4.4. Let there be given $s \geq 0$ and $p_i, q_i, r_i, p, q \in [1, \infty]$, such that
\[q \leq \min\{p'_1, q'_1, p_2, q_2\} \] (4.4)
\[\min\left\{\frac{1}{p_1} + \frac{1}{q_1}, \frac{1}{p_2} + \frac{1}{q_2}\right\} \geq \frac{1}{p'} + \frac{1}{q'}. \] (4.5)
Then the operator L_σ given by (3.4) with symbol $\sigma \in M^{p,q}_s(\mathbb{R}^{2nd})$, from $S(\mathbb{R}^{nd})$ to $S'(\mathbb{R}^{nd})$, extends uniquely to a bounded operator from $M^{p_1, q_1}_s(\mathbb{R}^{2nd})$ to $M^{p_2, q_2}_s(\mathbb{R}^{2nd})$, with the estimate
\[\|L_\sigma \vec{f}\|_{M^{p_2, q_2}_s} \lesssim \|\sigma\|_{M^{p, q}_s} \|\vec{f}\|_{M^{p_1, q_1}_s}. \] (4.6)

In particular, when $\sigma \in M^{\infty,1}(\mathbb{R}^{2nd})$ we have $\|L_\sigma\|_{op} \leq \|\sigma\|_{M^{\infty,1}}$ for the operator norm.

Vice versa, if (4.6) holds for $s = 0$, and for every $\vec{f} \in S(\mathbb{R}^{nd})$, $\sigma \in S'(\mathbb{R}^{2nd})$, then (4.1) and (4.2) must be satisfied.

Proof. The proof is a straightforward extension of the proof of [9, Theorem 5.1.], and we give it here for the sake of completeness.

When $\vec{f} \in M^{p_1, q_1}_s(\mathbb{R}^{nd})$ and $\vec{g} \in M^{p_2, q_2}_s(\mathbb{R}^{nd})$, their Wigner transform $W(\vec{f}, \vec{g}) = W(\vec{g}, \vec{f})$ belongs to $M^{p', q'}_{s,0}$ since the conditions (4.1) and (4.2) of Theorem 4.1 are transferred to (4.4) and (4.5), respectively.

Now, Lemma 3.3 and the duality of modulation spaces give
\[|\langle L_\sigma \vec{f}, \vec{g} \rangle| = |\langle \sigma, W(\vec{g}, \vec{f}) \rangle| \leq \|\sigma\|_{M^{p, q}_s} \|W(\vec{f}, \vec{g})\|_{M^{p', q'}_{s,0}} \]
\[\leq C \|\vec{f}\|_{M^{p_1, q_1}_s} \|\vec{g}\|_{M^{p_2, q_2}_s}, \]
for some constant $C > 0$ (and we used the fact that modulation spaces are closed under the complex conjugation).

We refer to [13, Theorem 1.1.] for the necessity of conditions (4.4) and (4.5) (in linear case).

Next, we combine different results established so far to obtain an extension of [33, Theorem 15]. More precisely, we use the relation between the Weyl pseudodifferential operators and the localization operators (Lemma 3.4), the convolution estimates for modulation spaces (Theorem 2.5), and boundedness of pseudodifferential operators (Theorem 4.4) to obtain continuity results for A^ϕ_s for different choices of windows and symbols.
Theorem 4.5. Let there be given $s \geq 0$ and $p_1, q_i, p, q \in [1, \infty]$, $i = 0, 1, 2$ such that (4.4) and (4.5) hold. Moreover, let $q_0 \leq q$, and

$$p_0 \geq p \quad \text{if} \quad p \geq 2, \quad \text{and} \quad \frac{2p}{2-p} \geq p_0 \geq p \quad \text{if} \quad 2 > p \geq 1. \quad (4.7)$$

If $\varphi \in \mathcal{M}_{2s,0}(\mathbb{R}^{nd})$, $\phi \in \mathcal{M}_{2s,0}^2(\mathbb{R}^{nd})$, where $\frac{1}{r_1} + \frac{1}{r_2} \geq 1$, and $a \in \mathcal{M}_{s_0,q_0}^{p_0,q_0}(\mathbb{R}^{2nd})$ with $s_0 \geq -s$, and $t_0 \geq d \left(\frac{1}{p} - \frac{1}{p_0} \right)$ with the strict inequality when $p_0 = p$, then A_a^r is continuous from $\mathcal{M}_{s_0,0}^{p_0,0}(\mathbb{R}^{nd})$ to $\mathcal{M}_{s_0,0}^{p_0,0}(\mathbb{R}^{nd})$ with

$$\|A_a^r\|_{op} \lesssim \|a\|_{\mathcal{M}_{s_0,0}^{p_0,0}} \|\varphi\|_{\mathcal{M}_{2s,0}^1} \|\phi\|_{\mathcal{M}_{2s,0}^2}.$$

Proof. We first estimate $W(\phi, \varphi)$. If $\varphi \in \mathcal{M}_{2s,0}^1(\mathbb{R}^{nd})$, $\phi \in \mathcal{M}_{2s,0}^2(\mathbb{R}^{nd})$, with $\frac{1}{r_1} + \frac{1}{r_2} \geq 1$, then Corollary 4.2 implies that

$$W(\phi, \varphi) \in \mathcal{M}_{2s,0}^{1,\infty}(\mathbb{R}^{2nd}).$$

Now, we use the calculation of $a \ast W(\phi, \varphi)$ from the proof of Theorem 3.4 (see (3.7)) and Theorem 2.5. The Young functional (2.6) becomes $R(p) = R(p', p_0, 1)$, and the condition $R(p') \in [0, 1/2]$ is equivalent to (4.7), while $R(q) = R(q', q_0, \infty) \leq 1$ is equivalent to $q_0 \leq q$. Furthermore, (2.9) transfers to $s_0 \geq -s$, while (2.7) and (2.8) are equivalent to $t_0 \geq d \left(\frac{1}{p} - \frac{1}{p_0} \right)$ with the strict inequality when $p_0 = p$. Therefore, by Theorem 2.5.2) we obtain

$$a \ast W(\phi, \varphi) \in \mathcal{M}_{s_0,t_0}^{p_0,q_0}(\mathbb{R}^{2nd}) \ast \mathcal{M}_{2s,0}^{1,\infty}(\mathbb{R}^{2nd}) \subset \mathcal{M}_{s_0,0}^{p_0,q_0}(\mathbb{R}^{2nd}).$$

Finally, by Theorem 4.3 with $\sigma = a \ast W(\phi, \varphi)$, it follows that

$$\|A_a^r\|_{op} = \|L_{\sigma}\|_{op} \leq \|\sigma\|_{\mathcal{M}_{r_0,0}^{p_0,q_0}} \leq \|a\|_{\mathcal{M}_{s_0,0}^{p_0,0}} \|\varphi\|_{\mathcal{M}_{2s,0}^1} \|\phi\|_{\mathcal{M}_{2s,0}^2},$$

and the Theorem is proved. \qed

In particular, we recover (the linear case treated in) [9, Theorem 5.2] when $r_1 = r_2 = r, t_0 = 0, s_0 = -s, p_0 = p$ (that is $R(p', p_0, 1) = 0$), and $q_0 = q$ (that is $R(q', q_0, \infty) = 1$). Therefore, by [9, Remark 5.3], we obtain an extension of [6, Theorem 3.2] and [35, Theorem 4.11] for this particular choice of weights.

Note that conditions $R(p', p_0, 1) \in (0, 1/2]$ which extends the possible choices of the Lebesgue parameters beyond the usual Young condition $R(p', p_0, 1) = 0$ must be compensated by an additional condition to the weights, expressed by $t_0 \geq d \left(\frac{1}{p} - \frac{1}{p_0} \right)$. Another result concerning the boundedness of (bilinear) localization operators on un-weighted modulation spaces is given by [33, Theorem 15].
There we used different type of estimates, leading to the result which partially overlap with Theorem 4.5. For example, both results give the same continuity property when the symbol a belongs to $a \in M^{\infty,1}(\mathbb{R}^{2nd})$.

REFERENCES

[1] Á. Bényi, K. H. Gröchenig, C. Heil, K. A. Okoudjou, Modulation spaces and a class of bounded multilinear pseudodifferential operators. *J. Operator Theory* 54 (2), 387-399, 2005.

[2] Á. Bényi, K. A. Okoudjou, Bilinear pseudodifferential operators on modulation spaces. *J. Fourier Anal. Appl.* 10 (3), 301-313, 2004.

[3] Á. Bényi, K. A. Okoudjou, Modulation space estimates for multilinear pseudodifferential operators. *Studia Math.*, 172 (2), 169-180, 2006.

[4] P. Boggiatto, E. Cordero, K. Gröchenig, Generalized Anti-Wick operators with symbols in distributional Sobolev spaces. *Integral Equations Operator Theory*, 48, 427–442, 2004.

[5] A.-P. Calderón, R. Vaillancourt, On the boundedness of pseudo-differential operators, *J. Math. Soc. Japan* 23, 374-378, 1971.

[6] E. Cordero, K. Gröchenig, Time-frequency analysis of localization operators, *J. Funct. Anal.* 205 (1), 107-131, 2003.

[7] E. Cordero, L. D’Elia and S. I. Trapasso, Norm Estimates for τ-pseudodifferential operators in Wiener amalgam and modulation spaces, arXiv:1803.07865.

[8] E. Cordero, K. A. Okoudjou, Multilinear localization operators, *J. Math. Anal. Appl.* 325 (2), 1103-1116, 2007.

[9] E. Cordero and F. Nicola, Sharp Integral Bounds for Wigner Distributions, *International Mathematics Research Notices*, 2016 (00), 1-29, 2016.

[10] E. Cordero, F. Nicola and S. I. Trapasso, Almost diagonalization of τ-pseudodifferential operators with symbols in Wiener amalgam and modulation spaces, arXiv:1802.10314.

[11] E. Cordero, S. Pilipović, L. Rodino and N. Teofanov, Localization operators and exponential weights for modulation spaces, *Meditraz. Math.* 2 (4), 381–394, 2005.

[12] E. Cordero, S. Pilipović, L. Rodino and N. Teofanov, Quasianalytic Gelfand-Shilov spaces with application to localization operators, *Rocky Mountain J. Math.*, 40 (4), 1123-1147, 2010.

[13] E. Cordero, A. Tabacco and P. Wahlberg, Schrödinger-type propagators, pseudodifferential operators and modulation spaces, Journal of the London Mathematical Society, 88 (2), 375–395, 2013.

[14] I. Daubechies. Time-frequency localization operators: a geometric phase space approach. *IEEE Trans. Inform. Theory*, 34(4):605–612, 1988.

[15] H. G. Feichtinger, Modulation spaces on locally compact abelian groups, *Technical Report, University Vienna, 1983*, and also in *Wavelets and Their Applications*, M. Krishna, R. Radha, S. Thangavelu, editors, Allied Publishers, 99–140, 2003.

[16] G. B. Folland. *Harmonic Analysis in Phase Space*. Princeton Univ. Press, Princeton, NJ, 1989.

[17] M. de Gosson, *The Wigner Transform* World Scientific, London, 2017.

[18] I. M. Gelfand, G. E. Shilov, *Generalized Functions II* Academic Press, New York, 1968.

[19] K. Gröchenig, *Foundations of Time-Frequency Analysis*. Birkhäuser, Boston, 2001.

[20] K. H. Gröchenig, Weight functions in time-frequency analysis in: L. Rodino, M. W. Wong (Eds) *Pseudodifferential Operators: Partial Differential Equations and Time-Frequency Analysis*, Fields Institute Comm., 52 2007, pp. 343–366.
[21] K. H. Gröchenig, C. Heil, Modulation spaces and pseudo-differential operators, *Integr. Equat. Oper. Th.*, 34, 439–457, 1999.

[22] K. H. Gröchenig, C. Heil, Modulation spaces as symbol classes for pseudodifferential operators, in: M. Krishna, R. Radha, S. Thangavelu (Eds) *Wavelets and their applications*, Allied Publishers Private Limited, New Delhi, 2003, 151–170.

[23] K. Gröchenig and G. Zimmermann, Hardy’s theorem and the short-time Fourier transform of Schwartz functions. *J. London Math. Soc.*, 63:205–214, 2001.

[24] S. Molahajloo, K. A. Okoudjou and G. E. Pfander, Boundedness of Multilinear Pseudodifferential Operators on Modulation Spaces, *J. Fourier Anal. Appl.*, 22 (6) (2016), 1381-1415.

[25] F. Nicola, L. Rodino, Global Pseudo-differential calculus on Euclidean spaces, *Pseudo-Differential Operators. Theory and Applications* 4, Birkhäuser Verlag, Basel, 2010.

[26] S. Pilipović, N. Teofanov, J. Toft, Micro-local analysis in Fourier Lebesgue and modulation spaces, II, *J. Pseudo-Differ. Oper. Appl.*, 1 (2010), 341–376.

[27] B. Prangoski, Pseudodifferential operators of infinite order in spaces of tempered ultradistributions, *Journal of Pseudo-Differential Operators and Applications*, 4 (4) (2013), 495-549.

[28] M. A. Shubin, *Pseudodifferential Operators and Spectral Theory*. Springer-Verlag, Berlin, second edition, 2001.

[29] J. Sjöstrand An algebra of pseudodifferential operators, *Math. Res. Lett.*, 1, 185–192, 1994.

[30] N. Teofanov, Ultradistributions and time-frequency analysis, in *Oper. Theory Adv. Appl.*, 164, 173–191, Birkhäuser, 2006.

[31] N. Teofanov, Gelfand-Shilov spaces and localization operators, *Funct. Anal. Approx. Comput.*, 7 (2) (2015), 135–158.

[32] N. Teofanov, Continuity and Schatten-von Neumann properties for localization operators on modulation spaces, *Mediterranean Journal of Mathematics*, 13 (2) (2016), 745–758.

[33] N. Teofanov, Bilinear Localization Operators on Modulation Spaces *Journal of Function Spaces*, 2018 (2018), 10 pages, https://doi.org/10.1155/2018/7560870

[34] J. Toft, Continuity properties for modulation spaces with applications to pseudodifferential calculus, I, *J. Funct. Anal.*, 207, 399–429, 2004.

[35] J. Toft, Continuity properties for modulation spaces with applications to pseudodifferential calculus, II, *Ann. Global Anal. Geom.*, 26, 73–106, 2004.

[36] J. Toft, Continuity and Schatten properties for pseudo-differential operators on modulation spaces, in *Oper. Theory Adv. Appl.*, 172, 173-206, Birkhäuser, 2007.

[37] J. Toft, The Bargmann transform on modulation and Gelfand-Shilov spaces, with applications to Toeplitz and pseudo-differential operators, *J. Pseudo-Differ. Oper. Appl.*, 3 (2), 145-227, 2012.

[38] J. Toft, K. Johansson, S. Pilipović, N. Teofanov, Sharp convolution and multiplication estimates in weighted spaces, *Analysis and Applications*, 13 (5), 457-480, 2015.

[39] J. Toft, A. Khrennikov, B. Nilsson, S. Nordebo, Decompositions of Gelfand-Shilov kernels into kernels of similar class, *J. Math. Anal. Appl.* 396 (1), 315-322, 2012.

[40] F. Trèves, *Topological Vector Spaces, Distributions and Kernels*, Academic Press, NY (1967)

[41] M. W. Wong, *Weyl Transforms*, Springer-Verlag, 1998.

DEPARTMENT OF MATHEMATICS AND INFORMATICS, UNIVERSITY OF NOVI SAD, NOVI SAD, SERBIA

E-mail address: nenad.teofanov@dmi.uns.ac.rs