A systematic analysis of evidence for surgically accelerated orthodontics

Alejandra-Nathaly Mota-Rodríguez 1, Oralia Olmedo-Hernández 1, Liliana Argueta-Figueroa 2

1 Maestría en Ortodoncia, División de Posgrado, Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez, Oaxaca, 65120, México
2 Cátedras Conacyt - Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca. Av. Universidad S/N, Col. Cinco señores, Oaxaca de Juárez, Oaxaca, 65120, México

Correspondence:
Cátedras Conacyt – Facultad de Odontología
Universidad Autónoma Benito Juárez de Oaxaca
Av. Universidad s/n, Ex hacienda of Cinco Señores
Oaxaca de Juárez, Oaxaca. 68120, México
1_argueta_figueroa@hotmail.com

Abstract
Background: Corticotomy is a technique presumed as useful to decrease the time for orthodontic treatment, however, it is necessary to do a systematic review in order to determine if there is enough scientific evidence to back up the use of Corticotomy to accelerate the treatment.

Material and Methods: Data was stockpiled from the electronic database such as PubMed, Cochrane, Scopus and Science Direct, according to the PRISMA linings for systematic reviews, using the following keywords: accelerated movement of the teeth AND osteotomy AND piezocision AND corticotomy AND orthodontics. Only English, Spanish and French language articles that met the criteria needed were included.

Results: In the different accelerated orthodontics techniques, a significant reduction in the total time of orthodontic treatment was obtained. There were no major complications reported in any study. The less invasive procedures had better acceptance.

Discussion: The surgical approaches are not only limited to usual orthodontic treatments, but they have also been used as an alternative for the approach of a palatal fistula in a patient with bilateral cleft lip and palate orofaciodigital syndrome Type I.

Conclusions: There has been a growing interest in the use of alveolar corticotomies as an adjunct to orthodontic treatment, due to a deeper understanding of its effects and a more robust investigation based on the evidence. All published results indicate a decrease in the total treatment time.

Key words: Accelerated movement of the teeth, piezocision, corticotomy AND orthodontics.
Introduction

Orthodontics is one of the most demanded and prolonged dental treatments. Nowadays there are several techniques to reduce the time of treatment, need for extractions, root resorption and other damage caused to the tissues involved. Therefore, the duration is one of the main reasons why patients leave the treatment before concluding it (1).

Surgery has been intimately involved to include accelerated orthodontics, as a faster means compared to conventional treatment, through the performance of corticотomies, which is defined as a surgical procedure, where the cortical bone adjacent to the alveolar processes is cut, pierce or alter mechanically, this procedure induces a decrease in bone mineral density which is known as osteopenia. In 1959, Kole introduced this technique as a way for rapid movement of the teeth, however, due to how traumatic was this method, Duker (1975) used Kole’s basic technique in beagle dog making some modifications; subsequently, Suya (1991) reported on the orthodontic treatment assisted by corticotomy performed in 395 Japanese adult patients. Suya’s technique differed from Kole’s by the substitution of horizontal cuts corticotomy (2).

Since the introduction of the piezoelectric, that technique has been modified making it less traumatic during the intervention, having the regeneration of hard and soft tissues as an option because it is performed by microincisions and small corticotomies, avoiding full thickness flaps. The technique allows to preserve the soft tissues, thus greatly reducing the possibility of suffering from osteonecrosis, decreasing the healing time, reducing the need for extractions and reducing the treatment time. Therefore, the purpose of this systematic review is to know the advantages and compare the time between conventional orthodontic treatment and accelerated orthodontics by corticotomy.

Material and Methods

In the present systematic review, the available data on accelerated orthodontics were compiled from the electronic database PubMed, Cochrane, Scopus, Science Direct, according to PRISMA statement for systematic reviews (Fig. 1), the search for accelerated orthodontics.
by corticotomy was performed during the first months of 2019. Two reviewers searched and extracted the data independently, previously standardized according to PRISMA and checklist was drawn up to evaluate the studies, which was compared to the end of the search. The electronic search was performed with the following keywords: accelerated movement of the teeth AND piezocision AND corticotomy AND orthodontics. The eligibility of the studies that could be included in the review was determined by reading the title and the summary of each article identified in the search, and then the complete text of the selected articles was retrieved. To limit the articles susceptible of being revised in depth, the following inclusion criteria were taken: Full-text articles in English, French, and Spanish focused on the objective of this review, articles published in indexed journals, articles without restriction on the age of publication, original articles with design of randomized controlled trials, controlled clinical trials and case series on orthodontics facilitated by corticotomy in healthy patients. The evaluation of the quality of the articles was determined considering the design of the original and methodologically coherent research and published in journals indexed in Journal Citation Reports (JCR). The bibliographic references of the articles consulted were also considered as manual search, as relevant articles not included in the electronic search if they had the inclusion criteria of the search. The extraction, collection, management, and analysis of data consisted in the description of the relevant evidence which is presented in the flow chart according to PRISMA. In addition, a critical evaluation of the results is presented in an orderly manner under appropriate headings for each one of them.

Results

Taking into account the 49 selected articles, 100% are in journals indexed in JCR, 82% are classified in quartiles 1 and 2, so it is assumed that the quality of the articles reviewed is at least acceptable.

After making the selection criteria, a total of articles n=31 (100%) with a total of 618 participants was obtained, with an age ranging from 11 to 46 years, with an average of 24 years. Of these studies, 14 (45.1%) reported the technique of accelerated orthodontics with piezoelectric, 8 (25.8%) were performed with conventional corticotomy, 2 (6.4%) with orthognathic surgery, 2 (6.4%) micro perforations, 2 (6.4%) osteotomy, 1 (3.2%) alveolar distraction, 1 (3.2%) interseptal reduction and 1 (3.2%) accelerated osteogenic orthodontics.

In the group of conventional corticotomies, in 90% of the cases, a full-thickness flap was used, this technique was used to treat mainly class II and III malocclusions; and in a lesser proportion, retained canines and maxillary protrusion, only one case presented loss of anchorage and the other studies did not present major complications. The treatment reduction time was significant as shown in Table 1, 1 continue, 1 continue-1. The second group evaluated were the procedures that were performed with piezoelectric, in which the approach of the flap decreased, the treated conditions share a degree of importance between class II and III and cases treated with moderate to severe crowding, the degree of acceptance was satisfactory and the degree of discomfort decreased because it is a less invasive procedure, as in the conventional corticotomy group the treatment reduction time is satisfactory and significant compared to the conventional orthodontic technique as is shown in Figure 2.

The corticotomies that took place at the same time as the orthognathic surgeries aimed to treat patients with skeletal class III, using highly invasive flap procedures, since this is required by the procedure, resulting in a significant reduction in treatment time compared to patients of the control groups.

The review of original research about corticotomies through microperforations was also included in this study, these treated groups were those that received less trauma at the time of performing the procedure, since the technique has been modified until it becomes part of minimally invasive dentistry and not compromising the oral tissues in a relevant way.

Discussion

Due to the diversity of the variables and the disparities in the procedures of the articles selected for the present review, it was not possible to perform a meta-analysis of the data.

Currently, it is very important for both patients and clinicians, to reduce the time that an orthodontic treatment is performed, and in many cases, patients are not willing to undergo orthognathic surgeries because of the risks and costs involved, so they look for other options to avoid them as much as possible. Several procedures have been developed and used, the techniques most employed are those that decrease bone density, because orthodontic appliances allow the teeth to move more, when the bone’s resistance to the dental roots is lower.

In the orthodontic area, there are many obstacles to reach the desired results such as retained canines, dental ankylosis, dental discrepancies, maxillary bi-protrusions, extreme skeletal classes, just to mention a few, however, at the same time, there are an increment on research to resolve this type of problems, diverse protocols have been developed from these points and there are many studies that focus on the orthodontic movements facilitated surgically: corticotomy, osteotomy and micro-perforations (Table 2).

The corticotomy has also evolved and some studies have shown the results of this approach using various techniques, most of them need full mucoperiosteal flaps, giving excellent results. Wu J, et al. (5) reported that, in

Table 1

Study	Procedure	Results
Study 1	Conventional	Significant reduction
Study 2	Piezoelectric	Lower trauma

Table 2

Study	Technique	Conclusion
Study 3	Corticotomy	Significant
Study 4	Osteotomy	Moderate
Study 5	Microperforation	Minimal trauma

Figure 2

Comparison between conventional and piezoelectric corticotomies.
Table 1: Results of studies performed with corticotomies.

REFERENCE	SURGICAL INTERVENTION TYPE	AGE RANGE	SKELETAL CLASS	COMPLICATIONS	GRAFT TYPE	AVERAGE TREATMENT DURATION	SATISFACTION	TOTAL TIME REDUCED FROM TREATMENT
3	Corticotomy	19 years	Class II division	None	Full thickness mucoperiosteal flap	8 months	S	2:3:1
4	Corticotomy	18-25 years	Maxillary protrusion	Molar anchorage loss	Full thickness flap	4 months	S	2:1
5	Piezoelectric corticotomy	18-30 years	Class III	None	Full thickness mucoperiosteal flap	N/M	S	.5 years
6	Piezo-surgery osteotomy	Elderly	Ankylosis Maxillary Hypoplasia	None	N/M	5 months	S	70 and 65% lesser time
7	Alveolar and CP distraction	17-22 years	Class I with crowding	Radicular reabsorption	Not performed	1 year	Alveolar distraction S	N/M
8	Corticotomy	15-25 years	Class II Open Bite	None	Vertical flap on palatal and buccal zones	12 to 15 weeks	S avoided surgery	N/M
9	Corticotomy Osteotomy	19-35 years	Class I and II	Gingival recession	Mucoperiosteal flap	12 months	S	N/M
10	Corticotomy	11.1 a 12.9 years	Impacted Canines	None	Conventional surgical uncover	N/M	S	28 a 33%
11	Piezoelectric Corticotomy	Adults and Elderly	III,III with slight crowding	Scar Tissue	Vertical interproximal Micro-incisions	N/M	S	20%
12	Corticotomy Piezocision	15-25 years	Class II division	Longer trans operative time	Sub-Gingival Flap	N/M	S	1.5 a 2 times 1.5 times
13	Piezocision and corticotomy	15-27 years	Class II division	None	10mm flapless incision	14 months	S	1.5 times
14	Micro-osseoperforation	19.5 a 33.1 years	Class II division	None	Micro-osseoperforations	N/M	S	2-3 times
15	Corticotomy Osteotomy	Adults	Maxillary Protrusion	None	N/M	N/M	S	Treatment was faster
Table 1 continue: Results of studies performed with corticotomies.

Study	Procedure and Methods	Age	Diagnosis	Incisions	Treatment Time	Incision Type	Incision Location	Result	
16	Corticotomy with piezo-electric	14	Adults	Posterior cross bite	None	Vertical interproximal incisions	3 months	S	Accelerated the treatment
17	Vertical corticotomy with piezo surgery	32	17-24 years	Class II division I	None	Mucoperiosteal Incisions		S	
18	1°: Accelerated osteogenic orthodontics and conventional decompen-sation. El 2°: accelerated osteogenic orthodontics and guided tissue regeneration	2	25 years	Class III	Dehiscence (repaired with bone graft)	Vestibular flap of the anterior teeth	2 years	S	Accelerated the treatment
			26 years	Class III	None	Vestibular flap from premolar to premolar	23 months		Class I Achieved
19	Interseptal reduction	18	18-25 years	Patients that require premolar extraction	None	No flap was performed, intervened through the alveolus	3 months	S	1.8mm/month conventional 1.1 mm/month interseptal reduction
20	Cortical incision performed with piezo tome, extraction of upper first premolars	10	16.3 ± 2.4 years	Class II, I	N/M	N/M	3.54 ± 0.81 vs. 5.59 ± 0.94 months	N/M	1.58 average
21	Corticotomy and micro-osseoperforation	10	18-25 years	Class I and II	None	Corticotomy: Full thickness flap	Corticotomy: 5.75 ± 1.75 months Micro-osseoperforation	S	N/M
22	Corticotomy	11	Middle age range, 21,4 years	Class II Class III	Swelling, temporary paresthesia	Full thickness flap	N/M	N/M	N/M
23	Piezotome-corticision	29	>18	N/M	None	Vertical interproximal incisions	N/M	S	N/M
Table 1 continue-1: Results of studies performed with corticotomies.

	Corticotomy	20	Age> 15 years	N/M	N/M	Full thickness flap retraction	N/M	N/M	N/S	4.3 months (3.5 months less than control group)
24	Corticotomy	20	N/M	N/M	Full thickness flap retraction	N/M	N/M	N/S	14.8 (13.5 months less than group control)	
25	Corticotomy	30	Middle age ranges from 20.04 ± 3.63 years (range 15 to 24)	Class II division 1 and 2	Moderate to severe Pain and swelling	Full thickness flap	N/M	Patient: S	4 months	
26	Orthognathic Surgery	14	26.14 years	Class III	N/M	Full thickness flap	N/M	Medic: S	8-2 months	
27	Orthognathic Surgery	56	24.5 years	Class II	N/M	Full thickness flap	N/M	N/M	7.8 months (5.5 months less than group control)	
28	Corticotomy	20	22 years	N/M	N/M	Full thickness flap	N/M	N/S	14.8 (13.5 months less than group control)	
29	Corticotomy	20	N/M	Crowding of the lower anterior teeth, ranging from 3-5 mm (skeletal class I)	N/M	Lingual flap	14-20 weeks	N/M	N/M	
patients with class III, orthodontic time can be reduced up to six months. Sakthi, et al. (40) evidence that, when performing premolar extractions and immediately corticotomies in the alveolus, the orthodontic treatment time can be reduced by up to 50%.

Undoubtedly one of the reasons why an orthodontic treatment is delayed, is the presence of dental ankylosis. For a long time, this was a limitation, however, Bertossi (6) reports the realization of osteotomic lines laterally and apically to the root dental in the bone of ankylosed dental organs, and their results indicate reduction of the treatment time having very low incidence of side effects.

On the other hand Abbas (12) and Alfawal (13), carried out studies on class II malocclusions division I. Abbas, indicates that corticotomies in treatments whose biomechanics includes extraction of the maxillary first premolar and subsequent rapid canine retraction, are auxiliary to effective treatments that reduce the time required for canine retraction and decrease the resorption of roots in adults. The orthodontics facilitated by the corticotomy is 1.5 to 2 times faster than conventional orthodontics, while with piezocision it was 1.5 times faster than conventional orthodontics. Alfawal, (13) reported the treatment in 36 patients who required extraction of the first upper premolars, followed by canine retraction with piezocision and corticotomy without laser-assisted flap, the results showed that the treatment method is effective to accelerate canine retraction without significant unfavorable effect on anchoring or canine rotation during rapid retraction.

The intrusion of molars can become very difficult in certain cases, so it is necessary to use other resources for acceleration, since movements with orthodontic appliances are not enough. Moon (34), made a clinical case of a patient with extruded molars, intruded 3.0 mm the first molar and the second molar 3.5 mm in only 2 months of treatment, keeping them for 11 months under observation without suffering recurrence.

Surgical approaches are not only limited to usual orthodontic treatments, Yen S (39), gives us a very peculiar case, it addressed a palatal fistula in a patient with bilateral cleft lip and palate oral-facial-digital syndrome type I, after bone transport and a series of corticotomy lines, it was achieved, that the sites of the cleft were grafted, the palatal fistula was faced, the lateral segments were expanded and the alignment of the teeth was improved.

There is certainly much to investigate about the use of surgical approaches in this type of unconventional cases. It is recommended the use of corticotomies in patients with orthodontic appliances with short roots, to avoid reabsorption caused by bone resistance during dental movements, patients with loss of bone tissue or hypoplasia of the jaws that require bone remodeling, patients with dental ankylosis for decrease the alignment time, patients with teeth retained to accelerate their anatomical positioning within the arches, patients with extreme skeletal classes to avoid orthognathic surgery and patients with severe crowding.

All the published results seem to go in the direction of the possibility of diminishing the total time of treatment. In the context of adequate patient selection, corticotomies can be a powerful and safe tool to improve the quality and duration of orthodontic treatments.

Conclusions

There has been a growing interest in the use of alveolar corticotomies as an adjunct to orthodontic treatment, due to a deeper understanding of its effects and a more robust investigation based on the evidence. The biological stimulus produced by corticotomies is reflected in the
Table 2: Infrequent applications of corticotomy

ARTICLE	TYPE OF SURGICAL INTERVENTION	NUMBER OF PARTICIPANTS	AGE RANGE	SKELETAL CLASS	COMPLICATIONS	GRAF TYPE	AVERAGE TREATMENT DURATION	SATISFACTION	TOTAL TREATMENT TIME REDUCTION
30	Corticotomy and placement of titanium minimplates	1	24 years	Class I with bimaxillary protrusion	None	Gingival mucoperiosteal flap	1 year	S	Treatment time was shortened
31	Corticotomy	1	28 years	Class I and severe anterior open bite previously treated with orthognathic surgery 8 years before study	None	Muco-periosteal flap	14 months	S	Open bite was corrected in 6 months of orthodontics
32	Corticotomy	1	26 years	Super-eruption of molars	None	Mucogingival flaps	2 months	S	Time was shortened
33	Cortico-incision with piezotome, upper premolars extractions	1	19 years, female	Class II, 2 Molar	N/M	N/M	Undefinable because there was no control reported	N/M	5 months
34	Cortico-incision with piezotome	1	21 years, female	Anterior Overcrowding	N/M	N/M	6 months	N/M	18 weeks
35	Cortico-incision and decortication with piezotome	1	21 years, female	Anterior Maxillary crowding	N/M	N/M	30 days	N/M	N/M
36	Alveolar decortication with piezotome	1	25 years, female	Class III malocclusion, cross bite	N/M	N/M	N/M	N/M	8 months
37	Corticotomy performed with piezo-electric scalpel	1	41 years, female	Class II, outgoing dental spacing, incisive pro inclination	N/M	N/M	41 months	N/M	N/M
38	Corticotomy	1	42	Class III	N/M	Flap with papilla preservation	N/M	N/M	7 months
39	Corticotomy	1	9 years	Bilateral harelip and palatal and oral-facial-digital type I syndrome	N/M	Full thickness flap	2 years	S	Tooth alignment was achieved with two corticotomies

N/M = Not Mentioned. S = Satisfactory
trabecular bone and therefore provides an opportunity to accelerate certain orthodontic movements. The different techniques of accelerated orthodontics reduce the phase of hyalinization that delays dental movement, which has led to a better acceptance of the patient and the clinician.

References

1. Gil APS, Haas OL, Méndez-Manjón I, Masía-Gridilla J, Valls-On-tañoñ A, Hernández-Alfaro F, et al. Alveolar corticotomy for accele-rated orthodontics: A systematic review. J Cranio-Maxillofacial Surg. 2018;46:438-45.
2. AlGhamdi AST. Corticotomy facilitated orthodontics: Review of a technique. Saudi Dent J. 2010;22:1-5.
3. Aboul SMBE-D, El-Bealy AR, El-Sayed KMF, Selim EMN, El-Mangoury NH, Mostafa YA. Miniscrew implant-supported maxillary canine retraction with and without corticotomized-facilitated orthodontics. Am J Orthod Dentofac Orthop. 2011;139:252-9.
4. Krishnaswamy N, Sakthi SV, Vikraman B, Shobana V, Iyer SK. Corticotomy-assisted retraction: An outcome assessment. Indian J Dent Res. 2014;25:748.
5. Wu J, Jiang J-H, Xu L, Liang C, Bai Y, Zou W. A pilot clinical study of Class III surgical patients facilitated by improved accelerated osteogenic orthodontic treatments. Angle Orthod. 2015;85:616-24.
6. Bertossi D, Vercelloti T, Vallesi A, Cocopa P. Orthodontic Micro-surgery for Rapid Dental Repositioning in Dental Malpositions. J Oral Maxillofac Surg. 2011;69:747-53.
7. Kharkar VR, Kotrashetti SM, Kulkarni P. Comparative evaluation of dento-alveolar distraction and periodontal distraction assisted rapid retraction of the maxillary canines: a pilot study. Int J Oral Maxillofac Surg. 2010;39:1074-9.
8. Ayak MC, Aras A, Günbay T, Akyalçın S, Koyuncue BÖ. Enhanced Effect of Combined Treatment With Corticotomy and Skeletal Anchorage in Open Bite Correction. J Oral Maxillofac Surg. 2009;67:563-9.
9. Wu J, Xu L, Liang C, Zou W, Bai Y, Jiang J. [Class III surgical patients facilitated by accelerated osteogenic orthodontic treatment]. Zhonghua Kou Qian Yi Xue Za Zhi. 2013;48:596-9.
10. Fischer TJ. Orthodontic treatment acceleration with cortico-tomy-assisted exposure of palataly impacted canines. Angle Orthod. 2007;77:417-20.
11. Charavet C, Lecloux G, Brouwier A, Rompen E, Maes N, Limme M, et al. Localized Piezoelectric Alveolar Deconnection for Orthodontic Treatment in Adults: A Randomized Controlled Trial. J Dent Res. 2016;95:1003-9.
12. Abbas NH, Sabet NE, Hassan IT. Evaluation of corticotomy-facilitated orthodontics and piezioexcision in rapid canine retraction. Am J Orthod Dentofacial Orthop. 2016;149:473-80.
13. Alfawal AMH, Hajeez MY, Araj MA, Hamadah O, Brad B. Evaluation of piezocision and laser-assisted flapless corticotomy in the acceleration of canine retraction: a randomized controlled trial. Head Face Med. 2018;14:4.
14. Alikhani M, Raptis M, Zoldan B, Sangsawon C, Lee YB, Alyami B, et al. Effect of micro-osteoperforations on the rate of tooth movemen. Am J Orthod Dentofacial Orthop. 2013;143:639-49.
15. Lee JK, Chung KR, Baek SH. Treatment Outcomes of Orthodontic Treatment, Corticotomy-Assisted Orthodontic Treatment, and Ante- rior Segmental Osteotomy for Bimaxillary Dentoalveolar Protrusion. Plast Reconstr Surg. 2007;120:1027-36.
16. Abdulk-Aziz AF, Rafei WM. Three-Dimensional Prospective Evalu-ation of Piezocision-Assisted and Conventional Rapid Maxillary Expansion: A Controlled Clinical Trial. Open Access Maced J Med Sci. 2019;7:127-33.
17. Ghibral O, Hajeez MY, Brad B. Evaluation of the levels of pain and discomfort of piezocision-assisted flapless corticotomy when treating severely crowded lower anterior teeth: a single-center, randomized controlled clinical trial. BMC Oral Health. 2019;19:57.
18. Kim S-H, Kim I, Jeong D-M, Chung K-R, Zadeh H. Cortico-tomy-assisted decompensation for augmentation of the mandibular anterior ridge. Am J Orthod Dentofac Orthop. 2011;140:720-31.
19. Leethanakul C, Kanokkulchai S, Pongpanich S, Leepong N, Cha-roenratrote C. Interseptal bone reduction on the rate of maxillary can- ine retraction. Angle Orthod. 2014;84:839-45.
20. Aksakalli S, Calik B, Kara B, Ezigilan S. Accelerated tooth mo-vement with piezocision and its periodontal-transversal effects in patients with Class II malocclusion. Angle Orthod. 2015;86:59-65.
21. Agrawal AA, Kolte AP, Kolte RA, Vaswani V, Shenoy U, Rath Pr. Comparative CBCT analysis of the changes in buccal bone morpho-logy after corticotomy and micro-ostopereforations assisted orthodontic treatment - Case series with a split mouth design. Saudi Dent J. 2019;31:58-65.
22. Jofe J, Montenegro J, Arroyo R, Montenegro J, Arroyo J. Rapid orthodontics with flapless piezoelectric corticotomies: First clinical experiences. Vol. 7, Int. J. Odontostomat. 2013 [cited 2019 Jun 16].
23. Uribe F, Davodyo L, Mehr R, Jaryate YSN, Almas K, Sobue T, et al. Efficiency of piezocrome-corticision assisted orthodontics in alleviating mandibular anterior crowding-a randomized clinical trial. Eur J Orthod. 2017;39:595-600.
24. Bhattacharya P, Bhattacharya H, Anjum A, Bhandari R, Agrawal DK, Gupta A, et al. Assessment of Corticotomy Focused Tooth Mo-vement and Changes in Alveolar Bone Thickness - A C T Scan Study. J Clin DIGNOSTIC Res. 2014;8:22C2-30.
25. Al-Naoum F, Hajeez MY, Al-Jundi A. Does Alveolar Corticotomy Accelerate Orthodontic Tooth Movement When Retracting Upper Canines? A Split-Mouth Design Randomized Controlled Trial. J Oral Maxillofac Sas. 2014;72:1880-9.
26. Coscia G, Coscia V, Pulso V, Addabbo F. Augmented Cortico-tomy Combined With Accelerated Orthodontic Forces in Class III Orthognathic Patients: Morphologic Aspects of the Mandibular Anterior Ridge With Cone-Beam Computed Tomography. J Oral Maxillofac Sas. 2013;71:1760.e1-1760.e9.
27. Wang B, Shen G, Fang B, Yu H, Wu Y. Augmented Cortico-tomy-Assisted Presurgical Orthodontics of Class III Malocclusions. J Craniofac Sas. 2013;24:1886-90.
28. Hernández-Alfaro F, Guijjar-Martínez R. Endoscopically Assissted Tunnel Approach for Minimally Invasive Corticotomies: A Prelimi-nary Report. J Periodontol. 2012;83:574-80.
29. Shoreibah EA, Ibrahim SA, Attia MS, Diab MMI. Clinical and radiographic evaluation of bone grafting in corticotomy-facilitated orthodontics in adults. J Int Acad Periodontol. 2012;14:105-13.
30. Iino S, Sakoda S, Miyawaki S. An Adult Bimaxillary Protrusion Treated with Corticotomy-Facilitated Orthodontics and Titanium Mi-niplates. Angle Orthod. 2006;76:1074-82.
31. Kanno T, Mitsugi M, Futuki Y, Kozato S, Ayasaka N, Mori H. Cortico-tomy and compression osteogenesis in the posterior maxilla for treating severe anterior open bite. Int J Oral Maxillofac Sas. 2007;36:354-7.
32. Moon CH, Wei JU, Lee HS. Intrusion of Overerupted Molars by Corticotomy and Orthodontic Skeletal Anchorage. Angle Orthod. 2007;77:1119-25.
33. Sakin C, Aylike O. Piezocision-assisted canine distalization. J Ortho-r Res. 2013;1:1-70.
34. Brugnami F, Caiazzo A, Dibart S. Lingual orthodontics: accellerated realignment of the "social six" with piezocision. Compend Contin Educ Dent. 2013;34:608-10.
35. Keser EI, Dibart S. Piezocision-assisted Invisalign treatment. Compend Contin Educ Dent. 2011;32:46-8, 50-1.
36. Keser EI, Dibart S. Sequential piezocision: A novel approach to accelerated orthodontic treatment. Am J Orthod Dentofac Orthop. 2013;144:879-89.
37. Rivas PS, Fernández ST. Accelerated orthodontic treatment in a patient with reduced periodontal tissue. Case report. Rev Mex Ortod. 2015;3:3-120-7.
38. Obeso AR, Enríquez Habib F, González MGM. Corticotomia: microcirugía ortodóntica en paciente con periodonto reducido: caso clinico. Rev odontológica Mex. 2012;16:272-8.
39. Yen SLK, Yamashita DD, Kim TH, Baek HS, Gross J. Closure of an unusually large palatal fistula in a cleft patient by bony trans-port and corticotomy-assisted expansion. J Oral Maxillofac Sas. 2003;61:1346-50.
40. Sakthi SV, Vikraman B, Shobana VR, Iyer SK, Krishnaswamy NR. Corticotomy-assisted retraction: an outcome assessment. Indian J Dent Res. 2014;25:748-54.

Acknowledgments
LAF thanks the Cátedras-CONACyT program and Posgrado de la Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca for their support.

Funding
None.

Conflict of interests
None.