Review Article

Grapevine rootstock and soil microbiome interactions: Keys for a resilient viticulture

Romain Darriaut1, Vincent Lailheugue1, Isabelle Masneuf-Pomarède2,3, Elisa Marguerit1, Guilherme Martins2,3, Stéphane Compant4, Patricia Ballestra2, Steven Upton3, Nathalie Ollat1 and Virginie Lauvergeat1,*

1EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d’Ornon, France
2Université de Bordeaux, UMR Oenologie 1366, INRAE, Bordeaux INP, Bordeaux Sciences Agro, ISVV, Villenave d’Ornon, France
3Bordeaux Sciences Agro, 33170 Gradignan, France
4AIT Austrian Institute of Technology, Center for Health and Bioresources, Bioresources Unit, Konrad Lorenz Straße 24, Tulln, A-3430, Austria
*Corresponding author. E-mail: virginie.lauvergeat@inrae.fr

Abstract

Soil microbiota has increasingly been shown to play an integral role in viticulture resilience. The emergence of new metagenomic and culturomic technologies has led to significant advances in the study of microbial biodiversity. In the agricultural sector, soil and plant microbiomes have been found to significantly improve resistance to environmental stressors and diseases, as well as influencing crop yields and fruit quality thus improving sustainability under shifting environments. Grapevines are usually cultivated as a scion grafted on rootstocks, which are selected according to pedoclimatic conditions and cultural practices, known as terroir. The rootstock connects the surrounding soil to the vine’s aerial part and impacts scion growth and berry quality. Understanding rootstock and soil microbiome dynamics is a relevant and important field of study, which may be critical to improve viticulture sustainability and resilience. This review aims to highlight the relationship between grapevine roots and telluric microbiota diversity and activity. In addition, this review explores the concept of core microbiome regarding potential applications of soil microbiome engineering with the goal of enhancing grapevine adaptation to biotic and abiotic stress.

Introduction

Oomics technologies have deepened our knowledge and understanding of telluric and ecosystemic processes; these developments underscore the importance of soil microbiome to plant health. The microbiome has recently been redefined as the microbiota and its theater of activity which combine microbial structural elements such as proteins, peptides, lipids, nucleic acids, polysaccharides, and microbial metabolites as signaling molecules, toxins, (in)organic molecules, and the environmental conditions [1]. Currently, the primary methods used to explore the taxonomic and functional soil microbiome diversity utilize plating methods and computed metagenomics which respectively rely on media composition and high-throughput sequencing [2]. Through the use of these techniques, it has been suggested that plant-associated microorganisms are recruited from the soil microbiota, thus serving as the microorganisms’ reservoir of rich microbial diversity [3].

In viticulture, the soil microbiome is now considered as a terroir component that could influence grape berry composition [4]. Studying the microbiome in vineyards, especially fungi and bacteria, is an emerging field of science as it holds the potential to improve grapevine adaptation to climate change and prevention of pathogenic infection. Thus, the study of vineyard microorganisms holds tremendous potential for improving vine resilience and helping vineyards better face increasing environmental stress.

The composition of the soil microbiota, and therefore its related biological activity, is dependent on many factors (e.g. physicochemical characteristics of the soil, plant species and cultivars, climatic conditions, cultural practices . . .) [5, 6]. Regardless of the microbiota already present in the soil, the main drivers of the composition of the microbial community associated with the root system (epiphytic and endophytic) are the primary and secondary metabolites exudated by the roots [7]. The composition of the exudates vary depending on environmental factors, as well as plant species and cultivars [8, 9], which collectively shape the root microbiome.

Cultivated grapevines are typically grafted plants composed of a scion (Vitis vinifera L.), which produces grape berries, and a rootstock (Vitis spp., tolerant to phylloxera aphids), which is selected considering pedoclimatic conditions. Grafting is a practice widely used to improve resistance to environmental stresses, yield and quality of the harvested product [10]. The rootstock works as an
interface between the soil and the grapevine-associated microbiota, hence modulating the plant holobiont. The scion cultivar is another factor in this complex rootstock × scion × soil interaction, which may influence the root-associated microbiome. The rootstock’s capacity to interact with soil microorganisms differs between genotypes due to their intense breeding and genetic background histories [11]. Rootstocks display contrasting root system in terms of root architecture, as well as synthesis and exudation of metabolites. Some of these compounds are signaling molecules, which shape and attract soil microorganisms. It is therefore essential to understand the role of the rootstock in these interactions that could be further utilized to isolate and promote biofertilizers and bioprotectors. Moreover, the use of rootstocks appears to be an appropriate strategy to conserve wine growers and bioprotectors. Moreover, the use of rootstocks to act with soil microorganisms differs between genotypes associated microbiome. The rootstock’s capacity to interact with the plant. This soil compartment supports a complex microbiome and is considered as one of the most dynamic ecosystems on Earth. Part of the rhizosphere microbiome, also known as rhizosphere microbiome, has been shown to provide the host plant with better capacities to adapt to environmental stresses, potentially playing an integral role in plant health [14]. Soil microflora is mainly composed of bacteria, archaea, fungi, protists, and viruses, which have either beneficial, neutral, or pathogenic relationships with the plant (Fig 1). Pathogenic microorganisms participate in the root infection processes whereas beneficial microbiota promote the plant’s growth and defense mechanisms [5].

The relative abundance of bacterial and fungal rhizomicrobiome varies with scion/rootstock combination features, soil type, climatic conditions, soil depth, and cultural practices [15–19]. Among fungi, the most encountered taxa in the vineyard soil are principally from the Ascomycota and Basidiomycota phyla (Table 1). With regard to bacteria, the most abundant genera found in the grapevine rhizosphere belong to Proteobacteria, Actinobacteria, Firmicutes, Bacteroidetes, and Acidobacteria phyla.

These phyla are keystone taxa that perform a broad range of functions in the soil ecosystem [27]. Zarraindia et al. (2015) [18] and Marasco et al. (2018) [15] showed an enrichment of the rhizosphere compared to bulk soil for main phyla such as Gammaproteobacteria, Betaproteobacteria, and Actinobacteria. This increase in bacterial richness might be promoted, through the use of flagella, by chemoattractants (e.g. sugars, amino acids, organic acids, vitamins, phytohormones, flavonoids, terpenes) [28]. Indeed, genes involved in bacterial chemotaxis and motility as well as flagella association, are more present in microbial communities found in root-associated environments, in comparison to bulk soil [29]. Root microbial communities in grapevines were also investigated using 16S/ITS rRNA amplicon sequencing, shotgun metagenomics, and cultivable approaches [30]. It appears that bacterial diversity is lower in the root compartment than in the rhizosphere, and the majority of root-associated bacterial taxa matched the bacteria found in the soil [15, 18], which also occurs with fungal diversity [25, 31], highlighting soil microbial reservoir capacity.

Soil and rhizosphere: A microbial source of inoculum of grape berry microbiota

Must and wine microorganisms belong mainly to the microbial consortia of grape berries [32]. Many studies support that the main source of these microorganisms is the vineyard soil [18, 33], even though the atmospheric microbiome also influences the composition of fungal and bacteria communities associated with leaves, flowers, and fruits [34]. The root endophytes can shape the microbial community of aboveground organs by changing endophytic microbial loads in grapes [18]. A significant input of soil microorganisms to grapes through epiphytic migration during harvest was also suggested [35]. Contrary to the bacterial component, studies on vineyard soil contribution to the yeast community of grapes are scarce. A hypothetical endophytic way of colonization was proposed for the fermentative yeast Saccharomyces cerevisiae to be transported from the soil via roots and stems to the surface of the grape berry [36] as shown for bacteria [37]. As for bacteria, vineyard soil appears to be a permanent natural reservoir of non-Saccharomyces yeasts via possible contamination of grapes with edaphic microorganisms due to deposit of dust from vineyard.
Figure 1. Schematic representation of the vine-soil interactions. Environmental stresses affect both below and above ground compartments of vine. Scion and rootstock communicate through long distance signaling compounds. These signaling pathways modulate the root exudates composition (e.g. VOCs, Volatile Organic Compounds) into the soil microbial reservoir. Microorganisms are therefore chemoattracted and present pathogenic, neutral or beneficial functions towards the vine. They can be either epiphytic and/or endophytic (box on the left), such as mycorrhizal fungi (box on the right).

soil [32]. Microbial communities on grapes could have the potential to influence grape composition and thus the organoleptic properties of the wine, contributing to a regional terroir. Zarraonaindia et al. (2015) [18] showed that the aboveground bacterial community was significantly influenced by soil edaphic factors such as total carbon, moisture, and soil temperature, which would ultimately impact the quality of grapes due to changes in nutrient availability for the plant. Weather and soil properties influence soil and must microbial diversity that will indirectly impact wine aroma profiles [38]. The contribution of the soil microbial component on the berry and the final wine composition should be evaluated in light of other factors including pedoclimatic, human parameters, rootstock and scion genotypes that define the concept of terroir.

The impact of telluric microbiota on grape berry composition

In agriculture, plant probiotic bacteria significantly impact crop quality and fruit composition by increasing vitamins, flavonoids, and antioxidants content, among other benefits [39]. For example, the addition of a Plant-Growth Promoting Bacterium (PGPB) K. radicincitans modifies amino acid, sugar, and volatile composition of ripened tomato fruits, thus contributing to a more pleasant-tasting fruit [40]. Aoki et al. (2017) [41] investigated the activation in grape berries of the gene expression of stilbene synthase, a key enzyme in resveratrol synthesis, by a Bacillus cereus strain. Native microorganisms can exert an accumulation of volatile compounds in grape berries that could be activated by phytopathogens in the case of volatile precursors of volatile thiols (3MH) responsible for grapefruit aroma in white wines [42]. The production of aroma by grape-associated microorganisms could also directly impact grape berry composition [43].

Grape berry endophytic and epiphytic microorganisms are known to activate metabolic pathways leading to an increase in phenolic compounds or other aroma compounds biosynthesis, as reviewed in Otoguro and Suzuki (2018) [42]. Even if the endophytic berry microbial community is largely derived from the soil, very few studies evaluate the impact of telluric microbiota on berry composition and are mainly focused on arbuscular mycorrhizal fungi (AMF).

By using Biolog™ EcoPlates technology, Ji et al. (2019) [44] showed a correlation between metabolic activities and functional diversity of rhizosphere microbial communities and physicochemical indices of grape berry quality. Association of grapevine with AMF facilitates the synthesis of plant secondary metabolites such as resveratrol, flavonol or anthocyanin, which improve berry quality and plant tolerance to environmental stresses [45]. Wine produced from a vineyard with cv. Sangiovese had better oxidative stability and a significantly higher level of bioactive compounds such as gallic acid, resveratrol, caffeic acid and, quercetin, when treated with a consortium of Glomus species plus soil bacteria, fungi and, yeast to a lesser extent, compared to the wine produced by control vines [46]. The protective role of AMF against warming effects on berries on three clones of Tempranillo was shown to improve their antioxidant properties and anthocyanin content.
The inoculation of eight ancient grapevine varieties with a mixture of five AMF species reduced the berry mass and increased the soluble sugars and anthocyanin contents for most of the cultivars [48]. The intensity of these variations on berries was different among the cultivars, suggesting a genotype dependent effect. These studies do not take into account the effect of the rootstock genotype as almost all were performed with ungrafted cultivars. Therefore, the functional potential of the rootstocks to impact the soil microbiota effect on fruit physiology, susceptibility to pathogen and grape berry quality remains to be explored.

Root-associated and rhizosphere microbiomes are regulated by grapevine genotype and possess useful plant growth-promoting features

Plant species and genotypes play determinant roles in selecting the telluric microorganisms that will surround the host. As most cultivated grapevines are chimeric plants composed by V. vinifera cultivars grafted on American Vitis species and hybrids, it is essential to consider the effect of the scion/rootstock combination. To date, only one study analyzed the bacterial community structure in the rhizosphere of 4 cultivars × 4 rootstocks combinations [49]. Authors showed that the diversity of
rhizosphere bacteria is impacted first by the cultivar followed by rootstock genotypes, but the effect was dependent on the diversity index used. The distinct genetic component and capacity to produce photosynthate components of the cultivars might alter the exudate composition and could explain this difference in bacterial diversity. Bacterial microbiomes in the rhizosphere of five different rootstocks grafted with the same Barbera cv. were significantly different in terms of richness, diversity, and community networking, within the same vineyard [15]. Biget et al. (2021) [50] demonstrated through their multi-site analysis within a vineyard that vine age was one of the main drivers of bacterial and fungal root endophytes, even though the genetic background of rootstock was not investigated. Considering this, Berlanas et al. (2019) [24] highlighted that rootstock genotype had a greater impact than millesimal or sampling date on bacterial and fungal microbiome structure in the rhizosphere exclusively in mature vineyards. Predominant amounts of Proteobacteria and Actinobacteria were found in all samples of rhizosphere, but bacterial genera varied depending on the rootstocks. With regard to fungi, the Ascomycota and Basidiomycota phyla varied greatly among rootstocks. Specific genera were affiliated to distinct rootstock genotypes, such as Geopexis for the 110R rootstock, or Clonostachys for 1103P and 140 Ru rootstocks.

Regarding functional screening of indigenous isolates, Samad et al. (2017) [17] and Marasco et al. (2018) [15] confirmed the significant enrichment of Proteobacteria in grapevine root tissues (Kober 5BB rootstock, and ungrafted/grafted Barbera cv. on 402A, 157-11C, SO4, 161-49C, respectively), while Actinobacteria and Bacteroidetes remained at relatively constant levels in both rhizosphere and root compartments. Conversely, Gemmatimonadetes and Firmicutes were less abundant in roots than the surrounding soils. In both studies, Plant-Growth Promoting (PGP) activities of strains belonging to the Enterobacteriaceae and Pseudomonadaceae families were tested for production of hydrogen cyanide, ACC deaminase (ACCD), siderophores, indole acetic acid (IAA), and for phosphate solubilization. It has been shown by Marasco et al. (2018) [15] that PGP functional genes were conserved in both the rhizosphere and root endosphere despite selecting different bacterial communities, and therefore that the frequencies of these PGP traits were not dependent on the rootstock genotype. For Syrah cv. grafted on 1103P rootstock, Deyett and Rolshausen (2020) [23] observed a different enrichment composed mainly of Rhizobium, Devosia, Streptomyces, and Pseudomonas genera in the rhizosphere. This study also revealed that fungal and bacterial richness in roots accounted for 64% of the amplicon sequence variants (ASVs) found in the rhizosphere and soil compartments. Streptomyces and Pseudomonas genera are often associated with PGP activities but also inhibit the colonization of pathogens in grapevine woods [51]. Using a disruptive approach based on metaproteomic, Bona et al. (2019) [52] confirmed that the high biochemical activity (i.e. phosphorus metabolic processes and regulation of nitrogen compounds) in the rhizosphere of ungrafted V. vinifera cv. Pinot noir was largely attributed to bacteria belonging to the Proteobacteria phylum. To another extent, D’Amico et al., (2018) [53], observed a depletion and sometimes a total absence of potassium (K) solubilizing bacterial members from the Micrococccaeae, Comamonadaceae, Cytophagacea, Sphingomonadaceae, Rhizobiaceae, Xanthomonadaceae, and Microbacteriaceae in the rhizosphere and roots of 1103P rootstock, whereas they were detected in 5BB rootstock with the same Lambrusco cultivar. This dysregulation of the functional microbiome was linked to the problem of K

Table 2. Non-exhaustive list of common biological control products used in the wine-growing industry to apply on the grapevine’s foliar part

Microorganism as active ingredient	Target pathogen	Tradename (manufacturer)	Mode of action	Reference
Bacillus subtilis	Botrytis cinerea	Rhapsody® Serenade Max® (Bayer)	Antimicrobial, eliciting plant defense	(Thomidis et al., 2016) [89]
Bacillus pumilus	Uncinia necator	Sonata® (Bayer)	Antimicrobial, antibiosis	(Serrano et al., 2013) [90]
Streptomyces griseoviridis	Botrytis cinerea, Fusarium, Alternaria	Mycocostop® (Verdera)	Competition	(Labdenpera et al., 1991) [91]
Ampelomyces quisqualis	Uncinia necator	AQ10® (Ecogen)	Competition, antibiosis	(Hofstein et al., 1996) [92]
Trichoderma harzianum	Botrytis cinerea	Trichodex® (Makhteshim-Agan)	Competition	(O’Neill et al., 1996) [93]
T. atroviride	Phaeoacremonium minimum, Phaeomoniella chlamydospora, Botrytis cinerea	Vintec® (Belchim Crop Protection)	Antibiosis	(Pertot et al., 2017) [100], (Pertot et al., 2016) [111]
Saccharomyces cerevisiae	Botrytis cinerea	Julietta® (Agrauxine)	Antisbesis	(São-José et al., 2017) [94]
Metschnikowia fructicola	Botrytis cinerea	Noli® (Koppert Biological Systems)	Antimicrobial, eliciting plant defense	(Spiczki et al., 2006) [95]
Aureobasidium pullulans	Botrytis cinerea	Botector® (Nufam)	Competition	(Calvo-Garrido et al., 2019) [96]
absorption observed in the studied *Vitis berlandieri* × *Vitis rupestris* rootstocks. Except for AMF, more studies have been focused on the bacterial communities of grapevine roots and rhizosphere compared to studies of fungal communities. Given the importance of rhizosphere functions, it is relevant and crucial to examine the link between rootstock agronomic features and rhizosphere microbiome traits.

Case of the famous symbiont, the arbuscular mycorrhizal fungi

AMF symbioses are endomycorrhizal associations with obligate biotrophic fungi belonging to the Glomeromycota division. This is the most frequently encountered mycorrhizal form encompassing grapevines as approximately 80% of terrestrial plants are able to associate with AMF [37, 38, 39]. AMF symbioses are mainly induced in soil where P availability is low, and play a key role in providing P and N to plant root cells, which can be attributed to increased soil exploration surface due to extra-radicular hyphae proliferation [55]. In return, fungi receive photosynthetically fixed carbon assimilated from plant cells. AMF do not only affect plant growth traits, water and nutrient uptake, but also protect their host from pathogens. Since the first description of two AMF species by Tulasne et Tulasne in 1845, more than 260 Glomeromycota species have been discovered [56]. The most common species identified using culture-dependent approaches are included in the Glomerales order such as *G. intraradices* or *G. mosseae*. New technologies based on molecular approaches provided deeper insights about AMF diversity in vineyards by sequencing ribosomal Internal Transcribed Spacers (ITS) or their small subunit (SSU) rRNA fragments [57, 58]. Drain et al. (2019) [59] proposed a standardized protocol to study AMF communities from root samples of vines. The authors amplified the D2 domain from the Large Subunit Region (LSU) and revealed the predominance of the *Rhizophagus* and *Glomus* genera coupled to eight other genera from the Glomeromycota division. However, a clear picture of how AMF diversity colonizes grapevine roots in different parts of the world is incomplete, especially since the classification of AMFs remains controversial and molecular techniques for their identification have not been standardized [60].

Although it is assumed that sustainable practices enhance the spore abundance and diversity of AMF [61], they are influenced by several factors including edaphic parameters and grapevine genotype. Moukarzel et al. (2021) [62] demonstrated a significant difference in the AMF community associated with nine rootstocks grafted or not with Pinot noir cv. using denaturing gradient gel electrophoresis (DGGE) and trap cultures. Nerva et al. (2021) identified the influence of the rootstock genotype in activating distinct defense pathways by young cuttings, grafted on either 1103P or SO4 rootstock, when treated with *Rhizophagus irregularis* and *F. mosseae* [63]. While studies of citrus have shown scions to be more influential to the AMF community structure than on rootstock [64], the role that scion genotype could play in AMF diversity in grapevines has yet to be explored. The selection of rootstock and scion genotype are important in determining grapevine capacity to form mycorrhizal associations that could enhance host mineral uptake and increase grapevine sustainability.

Microbiome engineering, a tool to promote plant health

The concept of compositional and functional core microbiome

The concept of core microbiome relies on operational taxonomic units (OTUs), and to some extent on ASVs, shared between different individuals of the same species, as was first proposed in humans [65]. Despite its complexity, the concept of core microbiome is gaining support and several definitions have been made with regard to either microbiome’s functionality, temporal stability, taxonomy, plant-adapted, or ecology [66]. Most of the time, core microbiome is referred to as the compositional core based on taxonomy or functional core. Indeed, this core concept is not only considered as the microorganism’s diversity, but also as the core interactions that are used to maintain an individuals’ health, and on a larger scale the ecosystem. Crops and plants in general, are associated with distinct soil microbiomes which are influenced, independent of temporal factors, by biotic and abiotic components [67].

Swift et al. (2021) [68] suggested, subsequently to a multi-compartment analysis submitted to irrigation stress, that the core microbiome is quite conserved in the different analyzed rootstocks (cv. Chambourcin grafted on 1103P, 3309C, and SO4). The different irrigations lead to microbial changes in aerial compartments such as different amounts of *Acetobacterales* and *Saccharomycetes* in berries which could affect wine quality. Carbene et al. (2021) [69] recently pointed out this shift in fungal communities under three distinct irrigation regimes (25%, 50%, or 100% of field capacity) with 22.3% of fungal OTUs shared in roots among those conditions, while 66.8% and 55.6% OTUs were found to be common in rhizosphere, and bulk soil compartments, respectively. Despite neglecting the role of rootstock, Liu & Howell (2021) [20] unveiled the fungal core microbiome in Merlot cv. which displays 32.75% of shared OTUs between roots and soil, fluctuating in abundance across the season. This supports the idea that the grapevine core microbiome relies on the composition of microbial soil reservoir, which is recruited differently according to the rootstock.

Core functions such as biogeochemical processes in the soil appear to be related to taxonomically distinct patterns but with similar metabolic functions, hence confirming that the theater of microbiota activity can be distinguished into taxonomy and functioning that interact with the terroir [38]. Terroir is a broad concept that can be described as the components driving the
Figure 2. Schematic representation of grapevine health affected by soil microbiome services, pathogen control (yellow box) and nutrient uptake (purple box), which are enhanced by microbiome engineering (blue box). Unbalanced microbiome comes along with a low microbial diversity with predisposition to pathogen predominance, while high microbial diversity is found in balanced microbiome and inhibits the pathogen capacity to afflict grapevine.

aromas and wine typicity within a defined geographical region with specific soil topology, and viticultural practices including cultivar variety [70]. As discussed previously, different rootstocks are able to be associated with different microbial communities sharing similar functional traits [15, 53]. Functional redundancy is indeed the idea that more than one taxon can exert the same function within a microbial community [71]. Unravelling the core species recruited through rootstocks could be a powerful tool in determining microbiome responses to environmental constraints. Therefore, microbiome functioning must be understood in order to predict plant health in response to various stresses, even though microbiome-plant partnerships are complex belowground-based interactions linked with the soil.

Microbial diversity as a biological marker for grapevine fitness

Many biotic and abiotic stresses occur in vineyards and can lead to plant decline or dieback if not managed properly. Grapevine dieback afflict viticulture worldwide and can be defined as a pluriannual decrease in vine productivity linked to its sudden premature or gradual death due to environmental causes and/or agronomic practices [72]. Despite evidence of negative impact on microbial communities in young replanted vines due to long-term monoculture and intense replanting management, replacing the dead vines with young vines remains sometimes the only solution to palliate this problematic dieback [73, 74]. Grapevines are a perennial plant which require significant time-consuming cultivation; at least three years are needed for the new plant to harbor productive grapes [75]. To this end, accelerating the growth of young cuttings with plant growth-promoting rhizobacteria (PGPR) or AMF may be an interesting approach to compensate for the lack of productivity during the beginning of replantation, however this approach has not been widely studied in vineyards [76]. However, this strategy may increase the incidence and severity of grapevine trunk diseases (GTDs) symptoms due to the predisposition of GTD to affect such vineyards managed using training and pruning techniques which promote vine growth [77]. On that account, microbiome engineering which is an actual trend which encompasses crops and numerous cultivars [78], appears to be a promising strategy against environmental stressors. Microbiome engineering often refers to a set of tools which strengthen the soil microbiome and hence the plant-associated microbiome through nutrient uptake and pathogen control (Fig 2). Among these tools, agricultural practices (e.g. cover crop, irrigation, tillage), soil amendment, and plant material choice (i.e. grafted rootstock or not) can interfere with microbial diversity which is considered as a key biomarker in plant protection and growth strategies [79]. The greatest microbial diversity was found in organic vineyards compared to conventional ones [80] but with a lower soil microbial biomass [81]. This difference in diversity may be related to the abundance of organic matter which are a rich source of exogenous microbial inoculants which can colonize the vines. A meta-analysis made by Karimi et al. (2020) [82] highlighted the effect of viticultural practices on soil microbiological diversity and showed that tillage, absence of cover crop, and mineral fertilization all contributed significantly to reductions in soil biodiversity. Microbiome inoculation is another interesting tool that
Table 3. List of inocula used for their biological control properties on grapevine and applied on the soil or root system

Target pathogen (Disease)	Inoculum identification (Origin)	Observations	Plant material (Type of application)	Reference
Botrytis cinerea (Gray mold)	Bacillus subtilis PTA-271, (Grapevine rhizosphere)	Systemic resistance. Accumulation of stilbenic phytoalexins, trans-versevatrol and ε-viniferin in leaves and berries.	Field, 15 years-old cv. Chardonnay-41B (Soil drenching)	[Aziz et al., 2016] [107]
	Pseudomonas fluorescens PTA-CT2, and (Grapevine stem)	Local and systemic resistance. Early oxidative burst and stilbenic phytoalexins (trans-versevatrol and trans-ε-viniferin) accumulation in leaves.	In vitro, 4 weeks-old cv. Chardonnay (Root dipping)	[Verhagen et al., 2011] [104]
	P. agglomerans Pa-AF2, (Grapevine leaf)	Systemic resistance. Accumulation of chitinase and β-1,3-glucanase in leaves and berries.	Field, 10 years-old cv. Chardonnay-41B (Soil drenching)	[Magnin-Robert et al., 2007] [105]
	Acinetobacter lwoffii AI-113, (Grapevine roots)	Systemic resistance. H_2O_2 accumulation and upregulations of PR and $PR10$ in leaves.	In vitro, 4 weeks-old cv. Chardonnay (Root dipping)	[Esmaeel et al., 2020] [106]
	Bacillus subtilis Bs271, and (Grapevine rhizosphere)	Systemic resistance. H_2O_2 accumulation and upregulations of $PR1$, $PR2$, $PR5$, WRKY, and JAZ in leaves.	In vitro, 4 weeks-old cv. Chardonnay (Root dipping)	[Miotto-Vilanova et al., 2016] [107]
	P. fluorescens PFC2 (Grapevine stem)	Systemic resistance. Increase in total phenol contents, chitinase, and β-1,3-glucanase in leaves.	Greenhouse, 2 years-old cv. Pinot noir-SBB and Solaris30-SBB (Soil drenching)	[Lakkis et al., 2019] [108]
	B. subtilis PTA-271, A. lwoffii PTA-113, P. agglomerans PTA-AF1 and PTA-AF2, and P. fluorescens PTA-268 and PTA-CT2 (All isolated from grapevine rhizosphere)	Systemic resistance. H_2O_2 accumulation and upregulations of $PR1$, $PR2$, $PR5$, WRKY, and JAZ in leaves.	Greenhouse, 4 months-old cv. Cabernet Sauvignon (Collar inoculation)	[Sawant et al., 2020] [109]
	Burkholderia sp. BE17 and BE24	Systemic resistance. Increase in total phenol contents, chitinase, and β-1,3-glucanase in leaves.	Greenhouse, 4 months-old cv. Cabernet Sauvignon (Collar inoculation)	[Yacoub et al., 2016] [110]
	Paraburkholderia phytofirmans PsJN	Systemic resistance. Increase in total phenol contents, chitinase, and β-1,3-glucanase in leaves.	Greenhouse, 4 months-old cv. Cabernet Sauvignon (Collar inoculation)	[Leal et al., 2021] [111]
	Pseudomonas fluorescens PTA-CT2 (Grapevine rhizosphere)	Systemic resistance. Increase in total phenol contents, chitinase, and β-1,3-glucanase in leaves.	Greenhouse, 4 months-old cv. Cabernet Sauvignon (Collar inoculation)	[Yacoub et al., 2016] [110]
	P. agglomerans SC1 (Hazelnut wood)	Systemic resistance. Increase in total phenol contents, chitinase, and β-1,3-glucanase in leaves.	Greenhouse, 4 months-old cv. Cabernet Sauvignon (Collar inoculation)	[Yacoub et al., 2016] [110]
	Trichoderma atroviride SC1	Systemic resistance. Increase in total phenol contents, chitinase, and β-1,3-glucanase in leaves.	Greenhouse, 4 months-old cv. Cabernet Sauvignon (Collar inoculation)	[Yacoub et al., 2016] [110]
	Pseudomonas kilonensis Sn48, (Grapevine roots)	Systemic resistance. Increase in total phenol contents, chitinase, and β-1,3-glucanase in leaves.	Greenhouse, 4 months-old cv. Cabernet Sauvignon (Collar inoculation)	[Yacoub et al., 2016] [110]
Table 4. List of inocula used for their beneficial effect on grapevine submitted to abiotic stress and applied on the soil or root system

Abiotic stress (Factor to counter)	Inoculum identification (Origin)	Observations	Plant material (Type of application)	Reference
Arsenic	Bacillus licheniformis Rt4M10, Micrococcus luteus Rz2M10 and P. fluorescens Rt6M10 (Grapevine root endosphere and rhizosphere)	Reduction of arsenic toxicity indicators with enhanced ascorbate peroxidase activity (B. licheniformis) and increased peroxidase activity (Micrococcus luteus and P. fluorescens)	Greenhouse, 2 years-old cv. Malbec (Leaf sprayed and stem-based inoculation)	(Funes Pinter et al., 2018) [117]
Drought	Acinetobacter and 2 Pseudomonas spp. (Grapevine root endosphere)	Higher tolerance to water deficit by maintaining photosynthetic activity and growth which was rootstock dependent. Positive effect on evapotranspiration and stomatal conductance.	Greenhouse, 1 year-old cv. SO4, 420A, 5BB (Roots dipping)	(Rolli et al., 2015) [118]
Drought	Glomus mosseae (not specified)	Higher tolerance to water deficit by maintaining photosynthetic activity and growth which was rootstock dependent. Positive effect on evapotranspiration and stomatal conductance. Increase of phosphorus content in leaves.	Greenhouse, 1 year-old cv. Cabernet-Sauvignon grafted on 110R, 41B, 1103P, 5BB, 44-53 Malègue, 140R and 101-14MGt (Soil inoculation)	(Nikolaou et al., 2003) [119]

Biological control agents (BCAs) as limited but efficient disease management strategies

Nurseries have proposed to winegrowers the possibility of inoculating rootstocks with specific microorganisms such as AMF prior to planting, in an effort to improve grapevine resilience to abiotic and biotic stresses. Biological control provides tools for disease management which are partly based on soil microbial properties that promote plant health and fruit quality. This strategy called biocontrol, has been exploited recently as an alternative to synthetic or chemical pesticides [83]. The most common BCAs in viticulture are used in spray application and are partly efficient, compared to the synthetic solutions, against powdery, downy mildew or gray mold, caused by Erysiphe necator, Plasmopara viticola, and Botrytis cinerea respectively [84]. Currently, commercial microbial fungiicides sprayed on the grapevine aerial part can be derived from bacteria, yeast, and multicellular fungi (Table 2). Those listed microorganisms are present in a variety of habitats worldwide, and can naturally be found in vineyard soils [85–88], hence comforting the vineyard soil studies for BCA screening.

Usually, spray applications are applied on the aerial part of the vine, targeting the leaves and berries where the first symptoms of the disease occur. However, the vine architecture and dense foliage may reduce the efficiency of the product, allowing the pathogen to sporulate on the untreated part of the crop. One solution to counteract the pathogen growth in viticulture is to leverage the microbe-associated molecular patterns (MAMPs) from beneficial microbes through belowground host-specific receptors, which prime grapevine immune response [97]. This strategy is referred to as induced systemic resistance (ISR) and can benefit both the aboveground parts of the plant and the roots via BCAs when applied to the soil or grapevine root system (Table 3). ISR leads to the production of phytoalexins and/or pathogenesis-related (PR) proteins in the distancial parts. Phytoalexins are low weight metabolites synthesized after microbial recognition and signaling in plant cells acting as defense compounds. In grapevines, these molecules (Table 3) are mainly stilbenes and encompass trans-resveratrol, trans-ε-viniferin, and its derivative trans-piceid [98]. Moreover, it has been shown that the BCA oomycete Pythium oligandrum inoculated at the root level can modulate the transcriptome of the grapevine but also of the Phaeomoniella chlamydospora virulence factors, a GTD ascomycota fungus, even when the two microorganisms are not in direct contact [99]. Among the GTDs, black-foot and Petri diseases are the most common and are present in nurseries and young vineyards. Their symptoms in fields include overall reduced growth, dysregulation in the budbreak and sprouting, with chlorotic leaves and necrosis on the rootstock [100]. Trichoderma spp., Bacillus, and Pseudomonas-based commercialized products as well as two potential BCAs (i.e. P. oligandrum Po 37, Streptomyces sp. E1 and R4) reduced the Black-foot and Petri diseases by dipping the roots before planting under field conditions [101]. Stempien et al. (2020) unveiled the grapevine defense activation triggered by Trichoderma atroviride (T-77 and USPPT1) drenching and its colonization on rootstock cultivars 110R, US 8–7, 1103P. It appeared that the level of expression of genes such as VvSTS and VvChit4c encoding
proteins involved in stilbene synthesis and chitinase, respectively, was dependent on the rootstock genotype and Trichoderma strain used. Recently Jaarsveld et al. (2021) [102] showed the higher colonization capacity by six Trichoderma products on graftlings (Sauvignon blanc cv. Grafted onto Ramsey) basal ends compared to middle or root tip part, even though Trichoderma spp. treatments were not sufficient to prevent fungal infections. Clear evidence of the biocontrol effects was observed in vitro, in greenhouse and in field (Table 3). These findings suggest that preventive application by soil drenching or root inoculation could be a promising strategy for disease management since the molecular mechanisms underlying the biocontrol effects of the inoculum are deciphered.

Microbiome can enhance abiotic stress tolerance

By mitigating abiotic stresses, microbiome × rootstock interactions could be a relevant way to contribute to adaptation in the global climate change context. Up to now, the mechanisms developed by the plants to recruit their microbiomes in response to specific abiotic stresses remain poorly understood.

The root microbiome can enhance water deficit tolerance by acting in hormone regulation or by increasing plant antioxidant activity [113]. To this end, trends in microorganisms’ biomass, diversity, and activity under water deficit conditions have been explored [113, 114]. Exopolysaccharides (EPS) allow beneficial microbes to efficiently colonize the rhizosphere by increasing the percentage of stable soil aggregates and thus by increasing water and nutrient uptake [114]. It was also demonstrated that microorganisms from more fluctuating environments have a higher functional acclimatization [115]. In addition, plants benefit from their associated microbiome to tolerate water deficit, especially when the microbiome has been previously exposed to water deficit with the host plant in years before [116]. In grapevines, few studies have been made on the microbiome impact on abiotic stress [30]. However all the microorganisms tested originated from root endosphere compartment and some of them vary in their effect depending on the rootstock genotype (Table 4). This comforts the hypothesis that microbiota from resistant rootstock in stressed environment might be an interesting strategy to investigate.

In addition, several microorganisms isolated from grapevine roots were studied for their capacity to synthesize protective molecules that might alleviate abiotic stresses. Carotenoids, known for their antioxidant activities and as precursors of abscisic acid (ABA), were produced by Microbacterium imperial Rz19M10, Kocuria erythromyxa Rt5M10, and Terrabacillus saccharophilus Rt17M10 [120] but also by Bacillus licheniformis Rt4M10 [121]. The metabolism of ABA could be modulated in the advantage of inoculated grapevines with arbuscular mycorrhizal symbiosis [45]. Among the protective molecules, the melanotin allows to counteract the negative effects of abiotic stresses and it has been shown that inoculated grapevines with Bacillus amyloliquefaciens SB-9 [122] or with Pseudomonas fluorescens RG11 [123] accumulate more melanotin. Additionally to bacterial endophytes, water deficit stress can be alleviated by the presence of AMF thanks to their external mycelium that increase water use efficiency even though there is no current evidence of direct water transfer to the plant [54].

Besides the issues surrounding water deficit, the problem of soil salinization impacts a large percentage of irrigated vineyards worldwide [124]. AMF are known to improve growth related traits in saline conditions. Khalil (2013) [125] demonstrated on three rootstocks genotypes (1103P, Harmony, and Dogridge) that AMF addition contributes to increase plant height, stem diameter, leaf area, total leaf number, and total dry weight even if the effects were not significant. The total carbohydrates, leaf free proline content, and total leaf chlorophyll content were higher in inoculated seedlings than in uninoculated ones, suggesting a higher osmoprotection coupled to a photosynthesis maintenance. Moreover, mycorrhizal inoculation tends to decrease the Na and Cl concentrations while increasing P and K leaves content. A relevant choice of rootstock with mycorrhizal inoculation could be one way to avoid salinity problems in a vineyard.

The complexity of the interactions between the plant, the microbiome, and the surrounding environment is an issue that must be overcome to understand the beneficial associations between plants and microbes. It appears more relevant to isolate plant growth-promoting microbe (PGPM) that can promote tolerance to a specific abiotic stress from environments in which this stress occurs [126]. It could be outstanding to study the plasticity of the PGPM to rootstock × scion × interactions at the field level, hence the importance of including the microbiome in grapevine breeding programs [127]. As suggested for the tree species, association of rootstocks with different beneficial microbiota could be a relevant way to share the benefits of the microbiota from one individual to another to get a “microbial complementarity” [128].

Are soil microbial inoculum a safe and relevant process to increase grapevine resilience?

The establishment and persistence of the BCAs in the soil and root compartments remain one of the most important concerns in microbial inoculant preparation [129]. Although the transfer of inoculation to different climatic regions can be a success, the effect may not be the same depending on pedoclimatic features [130]. Aside from these technical aspects, the BCAs legislation among EU, USA, and worldwide markets are quite different but remain important for their biosafety which are based on molecular identification coupled to pathogenicity, toxicological, and 37°C-growth tests [131]. While the biosafety issue has always been evaluated for human healthcare and plant health, the mass application of PGPM in the environment is never considered during the BCAs
development. What if the PGPM application provokes soil or plant microbiome dysbiosis and lately its degradation [132]? What if a BCA turns out to become pathogenic, due to horizontal gene transfer from other surrounding microbes or because of the evolution or speciation?

In grapevine wood tissues, Haidar et al. (2021) [132] unveiled the synergistic effect of some bacterial strains with the basidiomycete *Fomitiporia mediterranea* involved in esca complex, to degrade wood components. The interesting part is the capacity of some of these bacterial strains to inhibit the pathogen growth in vitro, while having cellulose and xylan degradation properties. In grapevines, colonization process by inoculating beneficial endophytes such as *Paraburkholderia phytofirmans* strain PsJN or strains of *Enterobacter ludwigii* and *Pantoea vagans* have been studied in young plants [134, 135], and among the PGPR inoculated on grapevine roots, they are mainly composed from *Pseudomonas*, *Bacillus*, *Pantoea*, and *Burkholderia* genera (Table 3). However, depicting the PGPR inoculation impact on the soil microbiome remains a challenge and should combine both culture-dependent and independent approaches. Indeed, exogenous microorganisms might affect soil quality negatively by modifying soil capacity to process bio-geochemical cycles and hence, its potential to promote vine growth.

Soil exhibits the natural ability to suppress disease through its microbiome composition which is enhanced by agricultural processes that positively influence microbial diversity [136, 137]. For instance, Nerva et al. (2019) [138] investigated the microbial profile of both Esca-symptomatic and asymptomatic soils which suggested that higher proportions of *Curvularia*, *Coproinopsis*, *Bacillus*, and *Streptomyces* genera could suppress disease symptoms. These studies further support the idea that bulk soils are a major source of inoculum for pathogens. Microbial transplant is now assumed in medical research as a solution to modulate the human microbiota coupled to therapeutic effects [139]. While not conducted in a vineyard, Siegel-Hertz et al. (2018) [140] used soil transplants from suppressive soil to show inhibiting effects on Fusarium wilt conductive soils. Exclusive bacterial and fungal genera were found in Fusarium wilt-suppressive soils compared to conducive soils which suggest that microbiome transplant could be an efficient and promising way to promote microbiome diversity. This strategy within a vineyard could counteract the microbiome dysbiosis and the problematic effect of the inoculum survival since the soils possess quite similar abiotic features.

Biocontrol is assumed to be less efficient in disease management compared to chemical and synthetic products. One biotechnology-based tool that must be mentioned for increasing the microorganisms’ efficiency in pathogen control is the protoplast fusion technique, which is mainly studied for genetic transformation and somatic hybridization. This approach is quite difficult in grapevines and has recently been used for whole grapevine generation from protoplasts [141]. Protoplast fusion technique is also used in PGP and biocontrol bacteria to merge distinct traits. For instance, Gaziea et al. (2020) [142] attempted to merge, the biocontrol ability of *Bacillus thuringiensis* 1977 against *Meloidogyne* spp. and the PGP capacity of *Pseudomonas aeruginosa* in grapevine seedlings and successfully controlled the root-knot nematode while successfully controlling the root-knot nematode while promoting the plant growth. While this approach has not been tested on the field, it has already been considered against root-knot nematodes [143] and remains an interesting solution for BCA or biofertilizer products. *Trichoderma* spp., which are one of the most famous BCAs worldwide, have also been subjected to capacity enhancement for soil-borne disease suppressiveness [144]. Strains engineered via protoplast fusion are not affiliated to genetically modified organisms’ regulations since this technique is a form of natural homologous recombination [145], hence giving the possibility for BCAs to have more positive impacts on grapevine health.

Conclusions and future prospects

Altogether, these findings demonstrate that the grapevine is able, via rootstock and scion genotypes, to select distinct but potentially beneficial microorganisms close to the roots. Although there is no consensus regarding the choice of hypervariable regions to amplify and sequence (Table 1), it is still possible to make comparable taxonomic descriptions between studies at the phyla level. However, it may be quite difficult to compare at the genera or species level since bias, in addition to “universal primers” choice, can occur until data processing [146]. The rhizosphere and root-associated microbiome, which are a balance between stress and fitness, would be relevant biological indicators of plant health status. The rhizosphere could be considered as an extended root phenotype, presented by Dawkins (1982) [147], which is a trait that may also reflect the agronomic properties of the rootstock as well as its health status. To this end, soil microbial diversity could explain many dysbiosis and symbiosis observed in the grapevine organs since most of them are recruited from the surrounding soil. Until now, no research of soil virome in vineyards has been done even though it is known that the viruses are playing important roles in ecological processes and microorganism evolution [148], whereas the grapevine associated virome has been well investigated in leaf and trunk tissues [149].

Given increasing environmental constraints, improving viticulture sustainability is currently a major challenge. One important area of study to improve sustainability includes better understanding soil microbiome functionalities and its effects on the grapevine metabolism and agronomic responses. Based on the current literature, the soil microbiome could offer new engineering solutions to palliate intensive phytosanitary use and climate change issues. To this end, molecular and microbial dialogues between the scion and the soil through the rootstock must be considered. The
core microbiome of the grape should be preserved as it represents a sensitive balance for the plant protection, growth, nutrition, and health.

Acknowledgements
This work received support from the FranceAgrimer/CNIV and was funded as part of the program “Plan National Dépérissement du Vignoble” within the project Vitirhizobiome.

Conflict of interests statement
The authors declare no competing interests.

Supplementary data
Supplementary data is available at Horticulture Research Journal online.

References
1. Berg G, Rybakova D, Fischer D et al. Microbiome definition revisited: old concepts and new challenges. Microbiome. 2020;8:103.
2. Sarhan MS, Hamza MA, Youssef HH, Patz S. Cytomicrobes of the plant prokaryotic microbiome and the dawn of plant-based culture media — a review. J Adv Res. 2019;19:15–27.
3. Haroim FR, van Overbeek LS, Berg G et al. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev. 2015;79:293–320.
4. White RE. The value of soil knowledge in understanding wine terroir. Front Environ Sci. 2020;8:1–6.
5. Companet S, Samad A, Faist H, Sessitsch A. A review on the plant microbiome: ecology, functions, and emerging trends in microbial application. J Adv Res. 2019;19:29–37.
6. Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol. 2017;15:579–90.
7. Pascale A, Proietti S, Pantelesides IS, Stringlis IA. Modulation of the root microbiome by plant molecules: the basis for targeted disease suppression and plant growth promotion. Front Plant Sci. 2020;10:1–23.
8. Ghatak A, Schindler F, Bachmann G et al. Root exudation of contrasting drought-stressed pearl millet genotypes conveys varying biological nitrification inhibition (BNI) activity. Biol Fertil Soils. 2021. https://doi.org/10.1007/s00374-021-01578-w.
9. Herz K, Dietz S, Gorzolka K et al. Linking root exudates to functional plant traits. PloS One. 2018;13:e0204128.
10. Williams B, Ahsan MU, Frank MH. Getting to the root of grafting-induced traits. Curr Opin Plant Biol. 2021;59:101988.
11. Marín D, Armengol J, Carbonell-Benito J et al. Challenges of viticulture adaptation to global change: tackling the issue from the roots. Aust J Grape Wine Res. 2021;27:8–25.
12. Ollat N, Bordenave L, Tandonnet JP et al. Grapevine rootstocks: origins and perspectives. Acta Hortic. 2016;1136:11–22.
13. Wei Y, Wu Y, Yan Y-Z et al. High-throughput sequencing of microbial community diversity in soil, grapes, leaves, grape juice and wine of grapevine from China. PloS One. 2018;13:e0193097.
14. Qu Q, Zhang Z, Peijnenburg WJGM et al. Rhizosphere microbiome assembly and its impact on plant growth. J Agric Food Chem. 2020;68:5024–38.
15. Marasco R, Rolli E, Fusi M et al. Grapevine rootstocks shape underground bacterial microbiome and networking but not potential functionality. Microbiome. 2018;6:3.
16. Mezzasalma V, Sandionigi A, Guzzetti L et al. Geographical and cultivar features differentiate grape microbiota in northern Italy and Spain vineyards. Front Microbiol. 2018;9:1–13.
17. Samad A, Trognitz F, Companet S et al. Shared and host-specific microbiome diversity and functioning of grapevine and accompanying weed plants. Environ Microbiol. 2017;19:1407–24.
18. Zarronaintia I, Owens SM, Weisenhorn P et al. The soil microbiome influences grapevine-associated microbiota. MBio. 2015;6:1–10.
19. Nerva L, Moffa L, Giudice G et al. Microscale analysis of soil characteristics and microbiomes reveals potential impacts on plants and fruit: vineyard as a model case study. Plant Soil. 2021;462:525–41.
20. Liu D, Howell K. Community succession of the grapevine fungal microbiome in the annual growth cycle. Environ Microbiol. 2021;23:1842–57.
21. Dries L, Bussotti S, Pozzi C et al. Rootstocks shape their microbiome—bacterial communities in the rhizosphere of different grapevine rootstocks. Microorganisms. 2021;9:822.
22. Aguilar MO, Gobbi A, Browne PD et al. Influence of vintage, geographic location and cultivar on the structure of microbial communities associated with the grapevine rhizosphere in vineyards of San Juan Province, Argentina. PloS One. 2020;15:e0243848.
23. Deyett E, Rolshausen PE. Endophytic microbial assemblage in grapevine. FEMS Microbiol Ecol. 2020;96:fiaa053.
24. Berlanas C, Berbegal M, Elena G et al. The fungal and bacterial rhizosphere microbiome associated with grapevine rootstock genotypes in mature and young vineyards. Front Microbiol. 2019;10:1142.
25. Martínez-Diz M d P, Andrés-Sodupe M, Bujanda R et al. Soil-plant compartments affect fungal microbiome diversity and composition in grapevine. Fungal Ecol. 2019;41:234–44.
26. Novello G, Gamalero E, Bona E et al. The rhizosphere bacterial microbiota of Vitis vinifera cv. Pinot noir in an integrated pest management vineyard. Front Microbiol. 2017;8.
27. Banerjee S, Schlaeppe K, van der Heijden MGA. Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol. 2018;16:567–76.
28. Musilova L, Ridl J, Polívková M et al. Effects of secondary plant metabolites on microbial populations: changes in community structure and metabolic activity in contaminated environments. Int J Mol Sci. 2016;17:1205.
29. Trivedi P, Leach JE, Tringe SG et al. Plant-microbiome interactions: from community assembly to plant health. Nat Rev Microbiol. 2020;18:607–21.
30. Pacífico D, Squartini A, Crucitti D et al. The role of the endophytic microbiome in the grapevine response to environmental triggers. Front Plant Sci. 2019;10:1256.
31. Zahid MS, Li D, Javed HU et al. Comparative fungal diversity and dynamics in plant compartments at different developmental stages under root-zone restricted grapevines. BMC Microbiol. 2021;21:317.
32. Ramírez M, López-Piñeiro A, Velázquez R et al. Analysing the vineyard soil as a natural reservoir for wine yeasts. Food Res Int. 2020;129:108845.
33. Belda I, Ruiz J, Esteban-Fernández A et al. Microbial contribution to wine aroma and its intended use for wine quality improvement. *Molecules*. 2017;22:189.

34. Abdelatifah A, Sanzani SM, Wisniewski M et al. Revealing cues for fungal interplay in the plant-air interface in vineyards. *Front Plant Sci*. 2019;10:1–10.

35. Martins G, Lauga B, Miot-Sertier C et al. Characterization of epiphytic bacterial communities from grapes, leaves, bark and soil of grapevines grown plants, and their relations. *PLoS One*. 2013;8:e73013.

36. Mandl K, Schieck J, Silhavy-Richter K et al. Through the vine to the stem and skins of grapes. *Izhaka*. 2015;349:55–55.

37. Compant S, Mitter B, Colli-Mull JG et al. *et al.* Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. *Microb Ecol*. 2013;62:188–97.

38. Griggs RG, Steenwerth KL, Mills DA et al. Sources and assembly of microbial communities in vineyards as a functional component of wine growing. *Front Microbiol*. 2021;12:673810.

39. Jiménez-Gómez A, Celador-Lera L, Fradejas-Bayón M, Rivas R. Plant probiotic bacteria enhance the quality of fruit and horticultural crops. *AIDS Microbiol*. 2017;3:483–501.

40. Berger B, Baldermann S, Ruppel S. The plant growth-promoting bacterium *Kosakonia radicicinans* improves fruit yield and quality of *Solanum lycopersicum*. *J Sci Food Agric*. 2017;97:4865–71.

41. Aoki T, Aoki Y, Ishiai S et al. Impact of Bacillus cereus NRKT on grape ripe rot disease through resveratrol synthesis in berry skin. *Pest Manag Sci*. 2017;73:174–80.

42. Otaguro M, Suzuki S. Status and future of disease protection and grape berry quality alteration by micro-organisms in viticulture. *Lett Appl Microbiol*. 2018;67:106–12.

43. Verginer M, Leitner E, Berg G. Production of volatile metabolites by grape-associated microorganisms. *J Agric Food Chem*. 2010;58:8344–50.

44. Ji W, Han K, Cai Y et al. Characterization of rhizosphere bacterial community and berry quality of *Hutaik* no. 8 (*Vitis vinifera L.*) with different ages, and their relations. *J Sci Food Agric*. 2019;99:4532–9.

45. Torres N, Goicoechea N, Zamarreño AM, Carmen Antolín M. Mycorrhizal symbiosis affects ABA metabolism during berry ripening in *Vitis vinifera* cv. Tempranillo grown under climate change scenarios. *Plant Sci*. 2018;274:383–92.

46. Gabriele M, Gerardi C, Longo V, Lucejko JJ. The impact of mycorrhizal fungi on Sangiovese red wine production: phenolic compounds and antioxidant properties. *IWT - Food Sci Technol*. 2016;72:310–6.

47. Torres N, Goicoechea N, Morales F, Antolín MC. Berry quality and antioxidant properties in *Vitis vinifera* cv. Tempranillo as affected by clonal variability, mycorrhizal inoculation and temperature. *Crop Pasture Sci*. 2016;67:961.

48. Antolín MC, Izuriaga D, Urmeneta L et al. Dissimilar responses of ancient grapevines recovered in Navarra (Spain) to arbuscular mycorrhizal symbiosis in terms of berry quality. *Agronomy*. 2020;10:473.

49. Vink SN, Dini-Andreote F, Höflé R et al. Interactive effects of scion and rootstock genotypes on the root microbiome of grapevines (*Vitis* spp. L.). *Appl Sci*. 2021;11:1615.

50. Biget M, Mony C, Aubry M et al. The drivers of vine-plant root microbiota endosphere composition include both abiotic and plant-specific factors. *OENO One*. 2021;55:299–315.

51. Niem JM, Billones-Baa jens R, Stodart B, Savocchia S. Diversity profiling of grapevine microbial endosphere and antagonistic potential of endophytic pseudomonas against grapevine trunk diseases. *Front Microbiol*. 2020;11:1–19.

52. Bona E, Massa N, Novello G et al. Metaproteomic characterization of *Vitis vinifera* rhizosphere. *FEMS Microbiol Ecol*. 2018;95:1–16.

53. D’Amico F, Candela M, Turroni S et al. The rootstock regulates microbiome diversity in root and rhizosphere compartments of *Vitis vinifera* cultivar Lambrusco. *Front Microbiol*. 2018;9:1–11.

54. Trouvelot S, Bonneau L, Redecker D, van Tuinen D. Arbuscular mycorrhiza symbiosis in viticulture: a review. *Agron Sustain Dev*. 2015;35:1449–67.

55. Popescu GC. Arbuscular mycorrhizal fungi—an essential tool to sustainable vineyard development: a review. *Curr Trends Nat Sci*. 2016;5:107–16.

56. Likar M, Regvar M. Arbuscular mycorrhizal fungi and dark septate endophytes in grapevines: the potential for sustainable viticulture? In: *Mycorrhiza - Function, Diversity, State of the Art*. Springer International Publishing, 2017;275–89.

57. Lanfranco L, Fiorilli V, Gutjahr C. Partner communication and role of nutrients in the arbuscular mycorrhizal symbiosis. *New Phytol*. 2018;220:1031–46.

58. Opik M, Davison J. Uniting species- and community-oriented approaches to understand arbuscular mycorrhizal fungal diversity. *Fungal Ecol*. 2016;24:106–13.

59. Van Geel M, Erikk Verbruggen MDB, Rennes G, BartLievens OH. High soil phosphorus levels overrule the potential benefits of organic farming on arbuscular mycorrhizal diversity in northern vineyards. *Agric Ecosyst Environ*. 2017;248:144–52.

60. Schreiner RP. Depth structures the community of arbuscular mycorrhizal fungi amplified from grapevine (*Vitis vinifera* L.) roots. *Mycorrhiza*. 2020;30:149–60.

61. Drain A, Bonneau L, Recorbet G, van Tuinen D. Characterization of arbuscular mycorrhizal communities in roots of vineyard plants. In: Reinhardt D, Sharma A, eds. Methods in Rhizosphere Biology Research. Springer: Singapore, 2019;27–34.

62. Kryukov AA, Gorbunova AO, Mach’s EM et al. Perspectives of using Illumina MiSeq for identification of arbuscular mycorrhizal fungi. *Vavilov J Genet Breed*. 2020;24:158–67.

63. Radič T, Likar M, Hančević K et al. Occurrence of root endophytic fungi in organic versus conventional vineyards on the Croatian coast. *Agric Ecosyst Environ*. 2014;192:115–21.

64. Moukarzel R, Ridgway HJ, Guerin-Lag tette A, Jones EE. Grapevine rootstocks drive the community structure of arbuscular mycorrhizal fungi in New Zealand vineyards. *J Appl Microbiol*. 2021;131:2941–56.

65. Nerva L, Giudice G, Quiroga G et al. Mycorrhizal symbiosis balances rootstock-mediated growth-defence tradeoffs. *Biol Fertil Soils*. 2022;58:17–34.

66. Song F, Pan Z, Bai F et al. The scion/rootstock genotypes and habitats affect arbuscular mycorrhizal fungal community in citrus. *Front Microbiol*. 2015;6:1–11.

67. Turnbaugh PJ, Ley RE, Hamady M et al. The human microbiome project. *Nature*. 2007;449:804–10.

68. Risely A. Applying the core microbiome to understand host-microbe systems. *J Anim Ecol*. 2020;89:1549–58.

69. Thakur MP, Geisen S. Trophic regulations of the soil microbiome. *Trends Microbiol*. 2019;27:771–80.

70. Swift JF, Hall ME, Harris ZN et al. Grapevine microbiota reflect diversity among compartments and complex interactions within and among root and shoot systems. *Microorganisms*. 2021;9:92.
Verhagen B, Trotel-Aziz P, Jeandet P et al. Improved resistance against Botrytis cinerea by grapevine-associated bacteria that induce a prime oxidative burst and phytoalexin production. Phytopathology. 2011;101:768–77.

Magnin-Robert M, Trotel-Aziz P, Quantinet D et al. Biological control of Botrytis cinerea by selected grapevine-associated bacteria and stimulation of chitinase and β-1,3 glucanase activities under field conditions. Eur J Plant Pathol. 2007;118:43–57.

Esmaeel Q, Jacquard C, Sanchez L et al. Role of the plant root microbiome in abiotic stress tolerance. In: Rosado-Augelo M, Kloepper JW, editors. The Plant Root Microbiome. Springer International Publishing, 2019, 273–311.

Balogh C, Verheyen K, Huyghe G et al. The use of antagonistic rhizobacteria in the management of grapevine root diseases in a biodynamic vineyard. Soil Ecol. 2013;32:612–25.

Baliarsingh S, Choudhury P, Barman PS et al. Influence of Bacillus licheniformis Burkholderia sp. strain PsJN on the growth, yield and quality of grapevine cv. Malbec that protect cells against reactive oxygen species. Plant Physiol Biochem. 2016;106:295–304.

Cohen AC, Dichiera E, Jofré V et al. Carotenoid profile produced by bacillus licheniformis Rt4M10 isolated from grapevines grown in high altitude and their antioxidant activity. Int J Food Sci Technol. 2018;53:2697–705.

Diao J, Ma Y, Chen S et al. Melatonin-producing endophytic bacteria from grapevine roots promote the abiotic stress-induced production of endogenous melatonin in their hosts. Front Plant Sci. 2016;7:1–13.

Ma Y, Jiao J, Fan X et al. Endophytic bacterium Pseudomonas fluorescens RG11 may transform tryptophan to melatonin and promote endogenous melatonin levels in the roots of four grape cultivars. Front Plant Sci. 2017;07:1–15.

Aragués R, Medina ET, Zribi W et al. Soil salinization as a threat to the sustainability of deficit irrigation under present and expected climate change scenarios. Irrig Sci. 2015;33:67–79.

Khalil HA. Influence of vesicular-arbuscular mycorrhizal fungi (glomus spp.) on the response of grapevines rootstocks to salt stress. Asian J Crop Sci. 2013;5:393–404.

Rodriguez RJ, Henson J, Van Volkenburgh E et al. Stress tolerance in plants via habitat-adapted symbiosis. ISME J. 2008;2:404–16.

Bettenfeld P, Fontaine F, Trouvelot S et al. Woody plant declines. What’s wrong with the microbiome? Trends Plant Sci. 2020;25:381–94.

Verbruggen E, Heijden MGA, Rillig MC, Kiers ET. Mycorrhizal fungal establishment in agricultural soils: factors determining inoculation success. Neut PhytoL. 2013;10:110–4.

Chibeba AM, Kyei-Boahen S, Guimarães MF et al. Feasibility of transference of inoculation-related technologies: a case study of evaluation of soybean rhizobial strains under the agro-climatic conditions of Brazil and Mozambique. Agric Ecosyst Environ. 2018;261:230–40.

Velivelli SLS, De Vos P, Kromann P et al. Biological control agents: from field to market, problems, and challenges. Trends Biotechnol. 2014;32:493–6.

Keswani C, Prakash O, Bharti N et al. Re-addressing the biosafety issues of plant growth promoting rhizobacteria. Sci Total Environ. 2019;690:841–52.

Haidar R, Yacoub A, Vallance J et al. Bacteria associated with wood tissues of esca-diseased grapevines: functional diversity and expected climate change scenarios. Trends Plant Sci. 2020;25:1685–93.

López-Fernández S, Compan S, Vrhovsek U et al. Grapevine colonization by endophytic bacteria shifts secondary metabolism and suggests activation of defense pathways. Plant Soil. 2016;405:155–75.

Cook RJ. Plant health management: pathogen suppressive soils. In: Encyclopedia of Agriculture and Food Systems. Vol. 4. 2014, 441–55.

Richards A, Estaki M, Urbez-Torres JR et al. Cover crop diversity as a tool to mitigate vine decline and reduce pathogens in vineyard soils. Diversity. 2020;12:128.
