Cardiomyocyte Maturation
New Phase in Development

Yuxuan Guo, William T. Pu

ABSTRACT: Maturation is the last phase of heart development that prepares the organ for strong, efficient, and persistent pumping throughout the mammal’s lifespan. This process is characterized by structural, gene expression, metabolic, and functional specializations in cardiomyocytes as the heart transits from fetal to adult states. Cardiomyocyte maturation gained increased attention recently due to the maturation defects in pluripotent stem cell–derived cardiomyocyte, its antagonistic effect on myocardial regeneration, and its potential contribution to cardiac disease. Here, we review the major hallmarks of ventricular cardiomyocyte maturation and summarize key regulatory mechanisms that promote and coordinate these cellular events. With advances in the technical platforms used for cardiomyocyte maturation research, we expect significant progress in the future that will deepen our understanding of this process and lead to better maturation of pluripotent stem cell–derived cardiomyocyte and novel therapeutic strategies for heart disease.

Key Words: development ■ heart disease ■ mammals ■ pluripotent stem cell ■ regeneration ■ stem cell

Mammalian heart development is a highly dynamic process that can be conceptually divided into specification, morphogenesis, and maturation (Figure 1A). Specification refers to the differentiation of the major cardiac lineages from uncommitted mesodermal progenitors. Morphogenesis includes the events that spatially organize cardiac cells, create the structural components of the heart, and properly connect them together. Maturation encompasses the cell- and tissue-level changes that optimize the heart for strong and efficient pumping throughout the animal’s lifespan. Although the first 2 phases have been focal points for developmental cardiology, heart maturation has been less studied until recently.

Cardiomyocytes drive heart contraction. In maturation, cardiomyocytes undergo changes that permit the cells to sustain billions of cycles of forceful contraction and relaxation. The term “cardiomyocyte maturation” refers to the constellation of changes to cell structure, metabolism, function, and gene expression that convert fetal cardiomyocytes to adult cardiomyocytes. This term also refers to the overarching developmental program that drives and coordinates the wide spectrum of phenotypic changes.

The recent attention to cardiomyocyte maturation has been driven by surging interest in cardiac regenerative medicine (Figure 1B). Although current technology allows for efficient differentiation of human pluripotent stem cells (PSCs) into cardiomyocytes, these PSC-cardiomyocytes exhibit immature phenotypes that resemble fetal cardiomyocytes. Despite tremendous progress in promoting PSC-derived cardiomyocyte (PSC-CM) maturation by tissue engineering-based methods recently reviewed in Karbassi et al and Scuderi et al, complete maturation of PSC-CMs has yet to be achieved. This maturation bottleneck severely impairs the use of PSC-CMs in in vitro modeling for pathological, pharmacological, or therapeutic purposes. Electrophysiological maturation defects of PSC-CMs also result in arrhythmogenic risk from cell replacement therapy. New knowledge in the developmental biology of maturation is essential for tissue engineers to rationally design better approaches to promote the maturation of PSC-CMs.

Cardiomyocyte maturation research is also significant due to its connection to cardiomyocyte regeneration. Natural cardiomyocyte regeneration occurs through proliferation of existing cardiomyocytes. Although cardiomyocytes exhibit proliferative capacity in the...
fetus, they quickly lose this potential after birth,\(^1\) concurring with changes characteristic of cardiomyocyte maturation. Factors that promote cardiomyocyte maturation, such as thyroid hormone\(^12,13\) and oxygen,\(^14\) are antagonistic to cardiomyocyte proliferation. However, proliferative cardiomyocytes undergo dedifferentiation that includes sarcomere disassembly and upregulation of genes characteristic of fetal cardiomyocytes.\(^15-17\) Forced proliferation of adult cardiomyocytes by overexpression of activated Yap (Yes-associated protein)\(^18\) or miR199a (microRNA-199a)\(^19\) adversely impacts heart function and causes lethality. Therefore, understanding the Yin and Yang between maturation and proliferation is essential to design strategies to stimulate cardiomyocyte regeneration while minimizing its side effects. Defective cardiomyocyte maturation could also contribute to heart diseases. For example, sarcomere gene mutations that cause cardiomyopathy have largely been studied for their impact on sarcomere function and Ca\(^{2+}\) sensitivity.\(^20\) However, sarcomere assembly is a key driver of cardiomyocyte maturation that not only organizes intracellular structures,\(^21\) but also modulates signal transduction.\(^22\) Thus, sarcomere mutations could cause cardiomyopathy by impairing the programs that coordinate cardiomyocyte maturation. As another example, a subset of congenital heart disease patients develops late heart failure. Although this has been attributed to complications of cardiac surgery or the longstanding impact of aberrant hemodynamic loads, some congenital heart disease mutations could affect genes that regulate cardiomyocyte maturation\(^22-26\) and thereby predispose to late myocardial dysfunction.

In this review, we first describe the phenotypic hallmarks of cardiomyocyte maturation and next summarize regulatory mechanisms that trigger and coordinate cardiomyocyte maturation. Ventricular, atrial, and nodal cardiomyocytes undergo distinct changes during maturation. Most research to date has focused on ventricular cardiomyocytes, and accordingly, we restrict the scope of this review to ventricular cardiomyocytes.

Major Hallmarks of Cardiomyocyte Maturation

Major biological processes in cardiomyocyte maturation are described below. Experientially measurable parameters are summarized in Table 1. Selected recent efforts to mature PSC-derived cardiomyocytes using a combination of 3-dimensional culture and physical and biological stimuli are summarized in Table 2.

Myofibril Maturation

Myofibrils are specialized cytoskeletal structures that serve as the contractile apparatuses of cardiomyocytes.\(^25,26\) Sarcomeres are longitudinally repeated subunits of myofibrils. A mature sarcomere comprises thin filaments (sarcomeric actin, troponins, tropomyosin), thick filaments (myosin heavy and light chains and their associated proteins, such as myosin binding protein C), TTN (titin) filaments, Z-lines (actinin and its interacting proteins), and M-lines (myomesin, and its interacting proteins; Figure 2A). In a process powered by ATP hydrolysis, myosin complexes exert power strokes on thin filaments that slide thick filaments toward the barbed end of sarcomeric actin filaments, which are anchored at Z-lines. This action shortens the distance between Z-lines and results in muscle contraction. Z-lines and M-lines cross-link thin and thick filaments respectively and ensure their alignment. TTN is a gigantic protein with N- and C-termini anchored to Z- and M-lines, respectively. Z-lines are also attached with other cytoskeletal components, such as desmin (a type of intermediate filament), microtubules, and the nonsarcomeric actomyosin system, which mechanically integrates these cytoskeletal structures.

Sarcomere assembly initiates at cardiac specification and continuously occurs in both immature and mature cardiomyocytes. Thus, the emergence of sarcomeres should be treated as a marker of cardiomyocyte identity but not maturation. However, cardiomyocyte maturation is characterized by massive expansion of myofibrils (Figure 2B), as new sarcomeres are continuously added in alignment with preexisting myofibrils both longitudinally and laterally. Very little is known about the molecular mechanisms that drive sarcomere expansion.

Sarcomere maturation also features changes in ultrastructural organization. When observed by transmission electron microscopy, mature sarcomeres exhibit more clear banding as compared to immature sarcomeres, suggesting improved alignment of sarcomere filaments.
Z-lines increase in width and alignment, and the distance between Z-lines (often called sarcomere length) also increases to \(\approx 2.2 \) µm in diastole in mature, loaded cardiomyocytes. Although the M-line protein myomesin is present in fetal sarcomeres, the M-line is difficult to visualize by transmission electron microscopy in fetal heart. With maturation, the M-line becomes distinct, likely due to increased thick filament alignment.\(^37\)

An integral element of myofibril maturation is sarcomeric isoform switching, in which several sarcomere components switch from a fetal to an adult isoform due to transcriptional changes or alternative splicing. In rodents, among the most well-known is the myosin heavy chain (Myh) switch from fetal Myh7 to adult Myh6. By contrast, \(MYH7 \) is the predominant isoform in adult heart of humans, and this isoform preference is already established by 5 weeks of gestation.\(^38,39\) Whether an \(MYH6 \) to \(MYH7 \) switch occurs at an earlier stage of human cardiogenesis remains undetermined, but this event is suggested by predominant expression of \(MYH6 \) in newly differentiated human-induced PSC-cardiomyocytes.\(^40\)

Isoform switching also affects other sarcomere components. For example, the regulatory light chain of myosin was predominantly expressed by the gene \(MYL7 \) (often known as \(MLC2a \)) in all early fetal cardiomyocytes. However, this isoform switches to \(MYL2 \) (also known as \(MLC2v \))

Figure 1. Heart maturation and its implication in translational medicine.
A, Conceptual scheme of the maturation phase of heart development. Mouse stages are labeled at bottom. B, Major applications of cardiomyocyte (CM) maturation studies. Left, To promote the maturation of pluripotent stem cell–derived CM (PSC-CMs). Mid, To optimize CM regeneration conditions. Right, To better understand cardiac pathogenesis. E indicates embryonic day.
as ventricular cardiomyocytes mature, and MYL7 expression becomes restricted to atrial cardiomyocytes.41,42 Fetal cardiomyocytes primarily express slow skeletal troponin I (TNNI1), and this is replaced by cardiac troponin I (TNNI3) in mature cardiomyocytes.43 The more compliant splicing isoform of TTN (N2BA isoform, which includes both N2B and N2A elements of titin) is preferentially expressed in fetal cardiomyocytes, and this transits to myomesin isoforms lacking the EH domain in mature cardiomyocytes. This isoform transition has been associated with the appearance of the M-line.41 Cardiac troponin T and tropomyosin also undergo maturationally regulated alternative splicing.45

Maturation of Electrophysiology and Ca2+ Handling

The strength, speed, and rhythm of cardiomyocyte contraction and relaxation are tightly controlled by electrical impulses and oscillations of cytoplasmic Ca2+ concentration. The electrical signals take the form of the action potential, which is determined by cardiac ion channels. In mature cardiomyocytes, the resting membrane potential is maintained at \(\approx -85 \text{ mV} \) by the inward rectifying current \(I_{K_{1}} \).46 Inwardly rectifying potassium channels (Kir) Kir2.1 and Kir2.2, encoded by genes KCNJ2 and KCNJ12, respectively, are the major channels that establish and maintain the resting membrane potential. The action potential is initiated by rapid opening of voltage-gated sodium channels (mainly Nav1.5; encoded by SCN5A), which permits Na+ influx (\(I_{N}\text{a} \)) and membrane depolarization. Depolarization is followed by the activity of transient outward potassium current (\(I_{o} \)) that results in a unique notch shape in the action potential of maturation cardiomyocytes. Membrane depolarization opens the L-type Ca2+ channels (Cav1.2), which generate the Ca2+ current (\(I_{\text{cal}} \)) responsible for the plateau phase of the action potential in human cardiomyocytes. Action potential of murine cardiomyocytes does not exhibit a clear plateau phase. The depolarizing effect of \(I_{\text{cal}} \) is counteracted by an array of temporally controlled repolarizing potassium currents, including \(I_{K_{1}}, I_{K_{2}} \), and \(I_{K_{3}} \). Upon Cav1.2 inactivation, the repolarizing potassium currents reestablish the resting membrane potential.

| Table 1. Major Parameters of CM maturation |
|----------------------|---------------------|----------------------|----------------------|
| **Myofibril** | **Gene Expression** | **Morphology** | **Functional Readouts** |
| Overall increase of mature sarcomere components | Sarcomere assembly and expansion |
| Isoform switching: MYH6 to MYH7 (hs) | Improved sarcomere alignment |
| MYH7 to MYH6 (mm) TNNI1 to TNNI3 TTN-N2BA to TTN-N2B MYL7 to MYL2 | Increased sarcomere length (\(\approx 2.2 \mu m \)) |
| | M-line formation |
| **Electrophysiology and Ca2+ Handling** | **Gene Expression** | **Morphology** | **Functional Readouts** |
| Increase of ventricular ion channels, for example, KCNJ2 | T-tubule formation and organization |
| Decrease of automatic ion channels, for example, HCN4 | SR expansion and organization |
| Increase of Ca2+ handling molecules, such as Cav1.2, RYR2, and SERCA2 | Dyad formation and distribution |
| **Metabolism** | **Gene Expression** | **Morphology** | **Functional Readouts** |
| Glycolysis decrease, eg, HK1, PKM | Mitochondria number and size incr. (up to 40% cell volume) |
| Activation of mitochondrial biogenesis, fatty acid oxidation, and oxidative phosphorylation, eg, PPARGC1A, PPARA, ESRRB | Cristae formation and organization |
| | Internomyofibrillar localization |
| **Other** | **Gene Expression** | **Morphology** | **Functional Readouts** |
| Cell cycle gene silencing, eg, CDK1, CCNB1, AURKB | Polyploidization |
| Changes of cell adhesion genes, such as ICD and costamere components, eg, GJA1 | Binucleation in >80% rodent CMs but only \(\approx 25\% \) human CMs |
| | Maturational hypertrophy (\(\approx 30\text{-fold} \)) |
| | ICD formation |
| CM indicates cardiomyocyte; FAO, fatty acid oxidation; HCN4, hyperpolarization-activated cyclic nucleotide-gated potassium channel 4; hs, Homo sapiens; ICD, intercalated disk; IMM, inner mitochondrial membrane; incr., increase; KCNJ2, potassium inwardly rectifying channel subfamily J member 2; L TCC, L-type calcium channel; mm, Mus musculus; Myh, myosin heavy chain; N2B, contains only the N2B element; N2BA, contains both N2B and N2A elements; RYR2, ryanodine receptor 2; SERCA, sarco/endoplasmic reticulum Ca2+-ATPase; SR, sarcoplasmic reticulum; TNN, troponin; T-tubules, transverse tubules; TTN, titin; and Vm, membrane potential.
Table 2. Efforts to Promote hiPSC-CM Maturation by 3D Tissue Engineering

Reference	Huang et al²⁴	Ronaldson-Bouchard et al²⁵	Shadrin et al²⁶	Mills et al²⁷	Ruan et al²⁸	Hirt et al, Mannhardt et al, Lemoine et al^{29–33}	Nunes et al³⁴
Engineered tissue size and treatments	0.5 mm² × 0.2 mm²	6 mm² × 2 mm, early rared field st in -6 Hz	7 mm² × 7 mm, RPM+ B274 insulin for 1 wk, 5% FBS for 2 wk	1 mm² × 0.5 mm, low glucose, high palmitate, no insulin	20 mm² × 0.3 mm, static stress for 2 wk + electrical stimuli for 1 wk	8 mm² × 0.2–1.3 mm, ± pacing	=600 µm wide gel on inelastic silk core, rared field st in -6 Hz
Myofibril assembly	isoform switching	MYH6, MLC2v, MYH7, MLC2a, TNNI3	MYH7, TNNI3	MLC2v, TNNI3, MLC2a, MYH7, TNNI3, MLC2a	TNNI3/1	not described	MYH6
Sarcromere organization	Orderly register of A-bands, I-bands, Z-lines, no M-lines.	Orderly register of A-bands, I-bands, Z-lines, and M-lines.	Orderly register of A-bands, I-bands, Z-lines, and M-lines.	Clear Z-lines, I-bands, and A-bands; no M-line.	Improved; lack detailed analysis of TEM	Regular Z-lines; inconsistent I- and A-bands; no M-line	Regular Z-lines; I-band and H-zone detectable; no M-line
Sarcromere length	2 µm	2.2 µm	2.1 µm	2.3 µm	Not described	1.6 µm	Not described
Electrophysiology and Ca²⁺ handling	Expression of channels & regulators	KCNJ2, RYR2, SERCA, INO1	RYR2, SERCA, INO1	CASQ2, S100A1	Not described	SERCA, RYR2	KCNJ2
T-tubule	Adjacent to sarcomeres; unclear alignment	Well developed and aligned	Not detectable	Adjacent to sarcomeres; unclear alignment	Not detectable	Not detectable	Not detectable
Resting Vm	Not quantified	−70 mV	−71 mV	−60 mV	−73.5 mV	−80 mV	µV
Max dV/dt	Not quantified	23 V/s	38 V/s	148 V/s	219 V/s	125 V/s	µV/s
APD	APD80 1000 ms at 0.5 Hz pacing	APD90 500 ms	APD80 450 ms	APD90 110 ms, APD90 60 ms	nd	APD90 120 ms	µV
AP notch	Not detectable	Yes	Not described	Yes	nd	nd	µV
Ca²⁺ transient	Enhanced	Enhanced	Visible	Enhanced	nd	nd	nd
Metabolism	Metabolic gene expr.	PPARA, PGC1a	TFAM, PGC1a	COX6A2, CKMT2, CKM	Redox and FAO genes	nd	nd
Mitochondria amount	Increase by TEM	Increase by TEM	Increase by TEM	mtDNA increase	nd	nd	nd
Mitochondria alignment	Close to sarcomeres	Close to sarcomeres	Close to sarcomeres	Close to sarcomeres	nd	Close to sarcomeres	nd
Mitochondria cristae	nd	Well developed	nd	Immature	nd	nd	nd
Mitochondria functions	nd	OCR and ECAR increased	nd	Incr. maximal OCR and OCR reserve	nd	nd	nd
Proliferation and hypertrophy	nd	nd	nd	nd	nd	nd	nd
Proliferation rate	nd	nd	Decrease	Decrease	nd	Decrease	nd
CM size	Incr. to 735 µm²	Incr. to 1500 µm²	nd	nd	Incr. to 795 µm²	nd	Incr. to 917 µm²
ICD	ICD on TEM, Cx43 at cell poles	ICD on TEM, Cx43 at cell poles	NCad at cell poles; Cx43 mislocalized	ICD on TEM; Cx43 and NCad mislocalized	Primitive ICD on TEM	Cx43 Misoalocated, Nascent ICD	Cx43 Mislocalized
Contrastility	2.1–4.4 mN/mm²	3 mN/mm²	23 mN/mm²	0.3 mN	1.3 mN/mm²	up to 0.15 mN	µN
Frank-Starling relationship	nd	Detectable	nd	Detectable	Detectable	Detectable	nd
Force-freq. relationship	Flat	Positive	Flat or slightly negative	nd	Positive	Flat	nd
Response to β-agonists	Incr. contraction rate & amplitude	Incr. contraction rate & amplitude	nd	Incr. contraction rate & amplitude	Incr. contraction rate but not force amplitude	Incr. force amplitude; rate not described	Incr. rate, force not described

(Continued)
Table 2. Continued

Reference	Huang et al26	Ronaldson-Bouchard et al47	Shadrin et al48	Mills et al49	Ruan et al50	Hirt et al, Mannhardt et al, Lemoine et al51–53	Nunes et al54
Postpause potentiation	nd	Present	nd	nd	Present	Present	nd
Conduction vel. (cm/s)	up to 40	25	25.1	nd	2.76	nd	15
Inotropic response to extracellular Ca2+ (EC50)	nd	≈0.4 mmol/L	1 mmol/L	nd	0.6 mmol/L	nd	

3D, 3-dimensional; AP, action potential; APD, action potential duration; CASQ2, calsequestrin 2; CKMT, creatine kinase S-type, mitochondrial; CM, cardiomyocyte; COX6, cytochrome c oxidase subunit 6, mitochondrial; Cx43, connexin 43; Dex, dexamethasone; ECAR, extracellular acidification rate; expr., expression; HCN4, hyperpolarization-activated cyclic nucleotide-gated potassium channel 4; hiPSC-CM, human induced PSC-derived cardiomyocyte; ICD, intercalated disc; IGf1, insulin-like growth factor 1; incr., increase; MLC, myosin light chain; mIDNA, mitochondrial DNA; Myh, myosin heavy chain; Ncad, N-cadherin; Ncx, Na+-Ca2+ exchanger; nd, not described; Ocr, oxygen consumption rate; PGC1, peroxisome proliferator-activated receptor gamma coactivator 1; PPAR, peroxisome proliferator-activated receptor a; RYR2, ryanodine receptor 2; SERCA, sarco/endoplasmic reticulum Ca2+-ATPase; SR, saroplasmic reticulum; stim, stimulation; T3, triiodothyronine; TEM, transmission electron microscopy; TFAM, transcription factor A, mitochondrial; TNN, troponin; TTN, titin; T-tubules, transverse tubules; vel., velocity; and Vm, membrane voltage.

Immature cardiomyocytes differ in important ways from mature cardiomyocytes in electrophysiology. First, the resting membrane potential of immature cardiomyocytes is less negative (≈−50 to −60 mV) as a result of insufficient expression of Kir2.1 and Kir2.2.47 Second, the upstroke velocity of immature cardiomyocytes (≈15–30 V/s) is slower due to lower activity and expression of SCN5A and other sodium channels.48,49 Third, the plateau phase of the action potential is longer in mature cardiomyocytes, partly due to higher expression of Cav1.2 core auxiliary subunit Bin1.50 and alternative splicing of its auxiliary subunit CACNB251.

Membrane depolarization is coupled to sarcomere contraction through Ca2+-induced Ca2+ release. In systole, Cav1.2 activation allows a small amount of extracellular Ca2+ to enter cells, where it activates the RYR2 (ryanodine receptor 2) to release Ca2+ from the sarcoplasmic reticulum (SR, specialized endoplasmic reticulum in cardiomyocytes). In diastole, Ca2+ is cleared from the cytosol to the SR via the SERCA2 (sarco/endoplasmic reticulum Ca2+-ATPase) and to the extracellular space via the NCX (Na+-Ca2+ exchanger).

Ca2+-induced Ca2+ release occurs in proximity to plasma membrane. In small, immature cardiomyocytes where sarcomeres are relatively proximal to the cell surface, Ca2+ that is released at the cell periphery is sufficient to trigger sarcomere contraction. However, as cardiomyocytes enlarge and sarcomeres expand toward the cell interior, Ca2+ that is released at the cell periphery cannot rapidly activate interior sarcomeres. To solve this problem, cardiomyocytes evolved transverse-tubules (T-tubules; Figure 2), which are invaginations of plasma membrane that penetrate transversely into the center of mature cardiomyocytes. This structural specialization juxtaposes the plasma membrane with subdomains of SR to form dyads, where Cav1.2 and RYR2 cluster in proximity to form Ca2+ release units. These structural specializations allow the action potential to travel rapidly along T-tubules to the interior of cells, where they trigger dyads to release Ca2+ in close proximity to sarcomeres.

The structural basis of T-tubule maturation is poorly understood. CAV3 (caveolin-3) is thought to regulate plasma membrane invagination,52 but T-tubules still form in Cav3 knockout mice.53 BIN1 (bridging integrator 1) increases membrane curvature of T-tubules in mice,54 and BIN1 overexpression induces T-tubule-like structures in PSC-CMs.55 However, the transverse alignment of T-tubules is preserved in Bin1 knockout cardiomyocytes in mice.54 JPH2 (Junctophilin 2) is required to juxtapose T-tubule and SR membranes,56 but JPH2 disruption only results in mild cell-autonomous loss of T-tubule organization in murine cardiomyocytes.57 Although ACTN2 (α-actinin-2) is essential for T-tubule organization,52 how T-tubules are anchored to Z-lines remains unclear. A recent study identified a Z-line component NEXN (nexilin) as a new regulator of T-tubules.58 Whether NEXN mediates Z-line-T-tubule association remains to be determined.

Whereas mature ventricular cardiomyocytes exhibit low automaticity, immature cardiomyocytes, and PSC-CMs spontaneously beat, a phenotype that likely contributes to arrhythmia when PSC-CMs are transplanted in myocardial infarction models.7 Multiple factors contribute to the automaticity of PSC-CMs, including the expression of pacemaker channels such as HCN4 (hyperpolarization-activated cyclic nucleotide-gated potassium channel 4), the resting membrane potential that is closer to the action potential activation threshold, and spontaneous Ca2+ release, which drives membrane depolarization through the Ca2+-Na+ exchanger.59

Metabolic Maturation

An adult human heart is estimated to use ≈6 kg ATP per day,60 with the primary consumers being myosin ATPases, which are needed for sarcomere...
Figure 2. Structural maturation of cardiomyocytes (CMs).
A, A schematic view of sarcomere components in mature CMs (top) and spatial relationship between sarcomeres and transverse-tubule (T-tubule; T), sarcoplasmic reticulum (S) and mitochondria in mature CMs (bottom). Bottom left, A view across the middle of a myofibril. Bottom right, A view on the cytoplasmic surface of a myofibril. B, In situ confocal images of murine myocardium at postnatal day 6 (P6) and P20. Sarcomere Z-lines were labeled by adeno-associated virus-Actn2-GFP (green fluorescent protein) infection. Mitochondria, T-tubules, and nuclei were stained by TMRM (polarized mitochondria), FM 4-64 (plasma membrane), and Hoechst (DNA), respectively, through Langendoff perfusion. Merged images highlight T-tubule-sarcomere and mitochondria-sarcomere associations that are established during postnatal maturation. Actn2 indicates α-actinin-2; FM 4-64, N-(3-triethylammoniumpropyl)-4-(6-(4-(diethylamino) phenyl) hexatrienyl) pyridinium dibromide; TMRM, tetramethylrhodamine, methyl ester; and TPM, tropomyosin.
contraction, and SERCA, which drives Ca$^{2+}$ clearance and sarcomere relaxation. This ATP is primarily produced through oxidative phosphorylation using lipid substrates.

In maturation, cardiomyocytes undergo multiple adaptations to enable a high and sustained rate of ATP production. Chief among them is increased number and size of mitochondria, which occupy up to 40% of cell volume. The morphology and size of mitochondria are controlled by their fusion and fission. Perturbation of fusion proteins such as MFN1/2 (mitofusin 1/2) or overexpression of profission proteins, such as DRP1 (dynamin-related protein 1), resulted in decreased mitochondrial size in maturing cardiomyocytes. Mitochondria also become associated with sarcomeres during maturation (Figure 2). Sarcomere disassembly caused decreased mitochondrial size, suggesting a functional link between sarcomeres and mitochondrial morphology. Mitochondria are also attached to SR, potentially through ER-mitochondria contact sites. This close organization leads to efficient ATP transport from mitochondria to ATPases in sarcomeres and SR.

Mature mitochondria contain densely organized cristae, the foldings of the inner mitochondrial membranes that house the electron transport chain, and ATP synthase. By contrast, in immature cardiomyocytes, which primarily produce ATP through glycolysis, mitochondria exhibit few and poorly aligned cristae. Cristae maturation requires an array of molecules such as OPA1 (optic atrophy 1), the MICOS (mitochondrial contact site and cristae organizing system) complex, and cardio-lipin-based lipid-protein microdomains. ATP synthase may also drive cristae curvature formation.

The metabolic transition from immature cardiomyocytes to mature cardiomyocytes is driven by activation of metabolic transcriptional regulators including Ppargc1a/b, Ppara, Nrf1/2, and Esra/b/g, upregulation of genes involved in fatty acid metabolism, oxidative phosphorylation, and mitochondrial biogenesis, and downregulation of glycolytic genes. Isomeric switching also contributes to metabolic maturation. Hexokinase, which executes the first committed step of glycolysis, is predominantly HK1 (hexokinase 1) in fetal and neonatal cardiomyocytes. In adult cardiomyocytes, the predominant isomerase is HK2 (hexokinase 2), which exhibits less glycolytic activity. COX (cytochrome c oxidase) subunit 8, a component of complex IV of the electron transport chain, also switches between COX8A and COX8B isoforms in cardiomyocyte maturation, although the contribution of this switch to cardiomyocyte maturation remains to be determined.

Less is known about anabolic metabolism changes in cardiomyocyte maturation. Immature, proliferative cardiomyocytes create a high demand for nucleotide biosynthesis, which is suppressed after cardiomyocytes mature. Conversely, high-glucose promotes nucleotide biosynthesis through the pentose phosphate pathway and inhibits cardiomyocyte maturation. Because cardiomyocyte maturation involves a remarkable increase of protein-built components, such as myofibrils, and extensive expansion of lipid bilayers in T-tubules, SR and mitochondria, protein and lipid biosynthesis are also expected to be highly active. However, little work has been done to characterize these two anabolic processes during cardiomyocyte maturation.

Proliferation-to-Hypertrophy Transition

In mice, cardiomyocyte cell cycle exit occurs within the first postnatal week. In humans, cardiomyocyte proliferation rate declines rapidly postnatally but does not reach the steady-state rate of < 1% per year until the second decade of life. Central cell cycle regulators, such as the CDK (cyclin-dependent kinase) complexes, are tightly repressed during cardiomyocyte maturation. Recently, it was reported that cooverexpression of CDK1:CCNB1 (cyclin B1) and CDK4:CCND complexes, which activate M phase and G1 to S phase respectively, was sufficient to reactivate cardiomyocyte proliferation. This exciting finding awaits confirmation by independent groups. The mechanisms that enforce cardiomyocyte cell cycle exit include the downregulation of mitogenic signals, such as the neuregulin-ErbB (Erb-B2 receptor tyrosine kinase) axis, and the inhibition of YAP, a potent activator of cardiomyocyte proliferation. During postnatal cardiomyocyte maturation, YAP activity is restrained by Hippo kinases, interactions with cell adhesion complexes, and nuclear antagonists.

Despite cell cycle withdrawal, the postnatal heart increases in size by 30-fold through proportional increase of cardiomyocyte volume, a process called maturational hypertrophy. The liquid-phase cytoplasm is unlikely the major contributor to increased cell volume, as mature cardiomyocytes are tightly packed, and myofibrils and mitochondria occupy most intracellular space. Myofibril expansion is critical for maturational hypertrophy, as the ablation of sarcomeres by Myh6 depletion or Achn2 mutation dramatically decreased cardiomyocyte size during murine cardiomyocyte maturation. However, whether mitochondria biogenesis and enlargement cell-autonomously contributes to maturational hypertrophy is unclear.

Another hallmark of cardiomyocyte maturation during the proliferation-to-hypertrophy transition is polyploidization. In murine cardiomyocytes, the final round of the cell cycle involves karyokinesis without cytokinesis, leading most mature cardiomyocytes (>90%) to contain 2 diploid nuclei (binucleation; Figure 2). By contrast, in adult humans, ≈75% of cardiomyocytes are mononuclear, but the majority of these nuclei are polyploid due to DNA endoreplication without karyokinesis. This polyploidization largely develops in the second decade of life.
Cardiomyocyte polyploidization negatively correlates with cell cycle withdrawal. Residual cardiomyocyte cell cycle activity in adult hearts resides in the mononuclear diploid subset of cardiomyocytes. The introduction of a genetic modifier associated with higher mononuclear diploid fraction increased cardiomyocyte cell cycle activity after adult heart injury. Forced cardiomyocyte polyploidization by ECT2 (epithelial cell transforming 2) inhibition, which blocks cytokinesis, is sufficient to suppress the proliferative capacity of cardiomyocytes in regeneration. For many cell types, the ploidy of a cell is positively correlated with cell size; thus, cardiomyocyte polyploidization likely promotes maturational hypertrophy. Consistent with this hypothesis, the induction of cardiomyocyte polyploidization was sufficient to increase cardiomyocyte size. Together, cardiomyocyte polyploidization is partially causative for both cardiomyocyte cell cycle withdrawal and maturational hypertrophy in cardiomyocyte maturation.

Cardiomyocyte Integration into a Mature Tissue

Maturational integration of cardiomyocytes into cardiac tissues require the formation of specialized cardiomyocyte-cardiomyocyte junctions called intercalated discs (ICDs), which occurs 2 to 3 weeks after birth in mice. ICDs are hybrid junctions comprising 3 major types of cell adhesions: fascia adherens, desmosomes, and gap junctions. Fascia adherens comprise N-cadherin and its associated proteins. Desmosomes comprise desmoglein-2, desmocollin-2, and their ancillary proteins, such as plakoglobin, plakophilin-2, and desmoplakin. Gap junctions are composed of connexin 43. Although fascia adherens and desmosomes mechanically couple the actin cytoskeleton and intermediate filaments of neighboring cardiomyocytes, gap junctions mediate propagation of electrical and small molecule signals between cardiomyocytes.

Immature cardiomyocytes lack ICDs, and ICD components are either not expressed, localized to the interior of cells, or throughout the cell surface. During cardiomyocyte maturation, these molecules redistribute to cell termini to form ICDs. The mechanisms that regulate the targeted localization of ICD components to cardiomyocyte termini are incompletely elucidated but likely involve protein trafficking along microtubule highways extending from the trans-Golgi network to cell termini.

Cardiomyocyte integration into tissues also requires attachment to the ECM (extracellular matrix) through specialized focal adhesion-like structures called costameres. The transmembrane adaptors of costameres include both the integrin complexes and the dystrophin-associated glycoprotein complexes, which anchor to sarcomere Z-lines and nonsarcomere cytoskeleton at the lateral cardiomyocyte membrane.

Beyond tissue integration, ICDs and costameres are likely to play additional roles in cardiomyocyte maturation. For example, both ICDs and costameres harbor vinculin-based actomyosin organizers that are essential for sarcomere assembly, and potentially mediate longitudinal and lateral sarcomere expansion, respectively. ICDs and costameres are also critical sensors of biophysical signals. Thus, further investigation of ICD and costameres is essential to understand how biophysical signals promote cardiomyocyte maturation (see next section).

REGULATION OF CARDIOMYOCYTE MATURATION

Cardiomyocyte maturation involves a spectrum of diverse cellular events that occur concurrently. The mechanisms that activate these events and integrate them into a coordinated program is an overarching question for cardiomyocyte maturation research.

Microenvironmental Instruction

The microenvironment of the maturing myocardium provides necessary and sufficient information to instruct cardiomyocyte maturation. This notion is supported by 2 lines of evidence. First, in vitro culture of primary mature cardiomyocytes leads to loss of hallmarks of maturity. Second, immature cardiomyocytes developed toward an adult-like state after being transplanted into maturing myocardium. These studies provide the logical basis to search for cardiomyocyte maturation cues by dissecting the physicochemical properties of maturing myocardium.

Biophysical Cues

Adult cardiomyocytes exhibit a rod shape with an average length-to-width ratio of 7:1. This unique shape cannot be solely explained by the cell-autonomous effect of sarcomere elongation, as cardiomyocytes with sarcomere ablation due to Myh6 knockout retained an elongated morphology in a genetic mosaic model in mice, although the cell width was drastically decreased. Both neonatal and adult cardiomyocytes are elongated in vivo but cannot maintain this shape after cell culture. PSC-CMs on regular cell culture dishes are round- or triangular-shaped and require physical cues to adopt a rod shape. Therefore, the microenvironment of myocardium establishes geometric cues that induce uniaxial cardiomyocyte elongation (Figure 3A).

Patterning cardiomyocytes to adopt a rod-shaped morphology promotes cardiomyocyte maturation. For example, PSC-CM growth on rectangular micropatterns or uniaxially aligned ridges and grooves were sufficient to improve sarcomere organization and contractile and electrophysiological function of cardiomyocytes in a 2-dimensional system. Cardiomyocyte maturation was further improved by assembling cardiomyocytes...
into 3-dimensional tissue with anisotropically directed strain, such as engineered heart tissue108,109 or cardiac microtissue.108,109

The viscoelastic properties of ECM also modulate cardiomyocyte maturation (Figure 3A). The elastic modulus of ECM progressively increases from neonatal (<10 kPa) to adult (≈25 kPa) heart.110 Culturing cardiomyocytes on matrix with tunable elastic moduli showed that physiological matrix stiffness is optimal for cardiomyocyte maturation parameters such as sarcomere organization, Ca2+ handling, and contractility.111–113

Maturing cardiomyocytes experience escalating mechanical force during development.114 Cyclic mechanical stress during systole and passive stretch during diastole both induced cardiomyocyte maturation in cell culture115–117 (Figure 3A). Mechanical force not only improved structural maturation but also induced gene expression changes.115–117 A recent study showed that cardiac contractile force regulated the distribution of vinculin and activated slingshot protein phosphatase 1, and the actin-depolymerizing factor cofilin to promote myofilament maturation.118 How mechanotransduction pathways convert mechanical force into transcriptional changes remains to be clarified.

Electrical pacing also enhances the ultrastructure and gene expression of cultured cardiomyocytes (Figure 3A), as well as their contractile, electrophysiological, and metabolic activity.119–121 A recent study reported the production of adult-like cardiomyocytes after 3-dimensional engineered heart tissue was paced at supraphysiological rates from an early point in their differentiation.4,27 The striking degree of maturation achieved in this
study requires further validation and replication by other groups. The mechanisms by which electrical stimulation enhances cardiomyocyte maturation remain poorly explored. A key unanswered question is whether electrical pacing directly impacts cardiomyocyte maturation or acts indirectly through induction of mechanical stress.

Biochemical Cues

Among the best characterized biochemical cues that promote cardiomyocyte maturation is the thyroid hormone T3 (triiodothyronine). The serum level of T3 rises dramatically in the perinatal period. T3 exerted a broad impact on cardiomyocyte maturation, including isoform switching of myosin heavy chain and TTN, induction of SERCA expression, hypertrophy, and cell polyplodyzation. T3 treatment was sufficient to enhance cardiomyocyte contractility, Ca\(^{2+}\) handling, and mitochondrial respiration in vitro. One study linked a proliferative burst of mouse cardiomyocyte proliferation on postnatal day 15 to a transient surge of thyroid hormone, however, other groups have not replicated the proposed surge of proliferating cardiomyocytes. The major thyroid hormone receptors in the heart are NRs (nuclear receptors) that are encoded by Thra and Thrb (Figure 3B). Inactivation of Thra cell-autonomously suppressed cardiomyocyte maturation.

Similar to T3, glucocorticoids also modulate cardiomyocyte maturation. Glucocorticoids are ligands for the glucocorticoid receptor, another NR encoded by Nr3c1. Mutation of Nr3c1 impaired myocyte alignment, disruption of sarcomere organization, and the expression of genes regulating sarcomere assembly and Ca\(^{2+}\) handling.

IGFs (insulin-like growth factors) regulate cardiomyocyte maturation through the IGF1R (insulin-like growth factor 1 receptor) and the INSR (insulin receptor), which are receptor tyrosine kinases that signal through the PI3K-AKT and RAF-MEK-ERK pathways. IGF1 is predominantly produced in the liver, and also locally produced in the heart. Circulating IGF1 quickly increases after birth in response to growth hormone, changes to local production of cardiac IGF1 were not well described. Overexpression of IGF1R in cardiomyocytes caused physiological hypertrophy. Double knockout of INSR and IGF1R in murine cardiomyocytes resulted in early-onset dilated cardiomyopathy within a month after birth, with disrupted sarcomere and mitochondrial morphology and reduced heart function. However, deletion of either INSR or IGF1R alone did not cause phenotypic abnormalities, consistent with functional redundancy.

Circulating fatty acids also increase at birth, and this could serve as a biochemical signal for cardiomyocyte maturation. Culture of engineered cardiac tissues with palmitate, the most abundant long-chain free fatty acid in the neonatal circulation, matured multiple parameters, including gene expression, contractile force, action potential, Ca\(^{2+}\) transient, and oxidative respiration. In another study, treatment of PSC-CMs with palmitate-albumin complexes along with carnitine, which facilitates mitochondrial fatty acid transport, promoted structural and functional maturation, suggesting that in vitro promotion of oxidative phosphorylation stimulates overall cardiomyocyte maturation. However, perturbation of metabolic maturation did not impair structural maturation in a cell-autonomous manner in vivo, since neonatal, mosaic ablation of genes essential for mitochondrial function (Tfam), or dynamics (Mfn1/2) did not impair structural maturation of the mutant cardiomyocytes.

Oxygen tension is another environmental cue that modulates CM maturation. Increased oxygen tension inhibits HIF1α (hypoxia-inducible factor 1α) activity and promotes the metabolic switch to oxidative phosphorylation during murine heart development, whereas hypoxia impaired PSC-CMs differentiation and maturation in vitro. Inhibition of HIF1α and its downstream target lactate dehydrogenase A promoted human-induced PSC-cardiomyocyte maturation, enhancing not only metabolism but also gene expression, sarcomere organization, and contractility.

Biochemical signals function synergistically to promote cardiomyocyte maturation. For example, T3 and dexamethasone, a synthetic glucocorticoid, in combination with culture on matrigel mattresses cooperatively triggered cardiomyocyte maturation by inducing T-tubule formation. A cocktail of T3, dexamethasone, and IGF1 induced several adult features in induced PSC-cardiomyocytes. Cross-talk between T3 and AKT-PI3K, a downstream branch of IGF1 signaling, stimulated TTn isoform switching in cultured, late gestation rat cardiomyocytes. Thus, a sophisticated signaling network is present that integrates diverse extracellular signals into a robust and coordinated program of cardiomyocyte maturation.

Noncardiomyocytes

Although cardiomyocytes occupy ≈70% to 85% of myocardial volume, they constitute only ≈20-30% of the total cell number. Numerically, noncardiomyocytes, including endothelial cells (64%), cardiac fibroblasts (27%), and leukocytes (9%), are the major cell types in the heart. In the fetal heart, cardiomyocytes constitute a higher fraction of cells, with the proportion declining during maturation due to the greater proliferation of noncardiomyocytes.

Noncardiomyocytes regulate cardiomyocyte maturation, as coculture of cardiomyocytes with noncardiomyocytes promotes cardiomyocyte maturation in vitro. The impact of noncardiomyocytes on cardiomyocyte maturation could occur through direct physical adhesion and through paracrine molecules that are secreted from noncardiomyocytes and act on cardiomyocytes. In addition, noncardiomyocytes build the
microenvironment that delivers biophysical and biochemical cues to cardiomyocytes. For example, cardiac fibroblasts create the appropriate ECM to support cardiomyocyte maturation, and endothelial cells construct coronary vasculature that transport circulating signals to instruct cardiomyocyte maturation.

Intracellular Regulation

Transcriptional Regulation of Gene Expression

The coordination of diverse phenotypic changes during cardiomyocyte maturation and the association of those changes with altered gene expression suggest an overarching transcriptional program that orchestrates cardiomyocyte maturation.

Several transcriptional regulators of cardiomyocyte maturation have been identified. One of these is SRF (serum response factor). In murine cardiomyocytes undergoing maturation, SRF depletion resulted in a wide spectrum of transcriptional dysregulation, including defective sarcomere isoform switching, global downregulation of the transcriptional programs of lipid metabolism, mitochondria biogenesis and oxidative respiration, and the reversal of maturational changes of key electrophysiological and Ca2+ handling genes, such as upregulation of *Hcn4* and downregulation of *Kcnj2*, *Serca2a*, and *Ry2*.

Structurally, SRF depletion impaired sarcomere expansion, T-tubule formation, and mitochondrial organization.

The broad impact of SRF on nearly every aspect of cardiomyocyte maturation is partly due to its key role in regulating sarcomere genes. Sarcomere disassembly by mosaic inactivation of the major Z-line protein ACTN2 not only recapitulated structural cardiomyocyte maturation defects but also the transcriptomic signature of mosaic SRF depletion. This relationship demonstrates that sarcomere-based signaling impacts gene transcription and highlights a hierarchical organization of the subprograms of cardiomyocyte maturation: sarcomere maturation is upstream of most other aspects of cardiomyocyte maturation; whereas metabolic maturation was dispensable for structural maturation in vivo.

Three myocardin-family transcriptional regulators, MYOCD (myocardin), MRTFA (myocardin-related transcription factor A), and MRTFB, are major coactivators of SRF in cardiomyocytes. MRTFA and MRTFB are functionally redundant. *Mrtfa/b*; *Myh6Cre* mice caused lethality of most mutants within a month after birth. MYOCD; *Myh6Cre* mice developed later onset, lethal cardiomyopathy, with a median survival of about 10 months. Although *Mrtfa/b* double knockout mice exhibit a more severe cardiac phenotype than *Myocd* mutant mice, both mice exhibit cardiac phenotypes that are less severe than *Srf* knockout mice, suggesting a synergistic role of all 3 factors in SRF activation and cardiomyocyte maturation. The MRTF (myocardin-related transcription factor)-SRF axis could convert mechanical stress into transcriptional changes; thus, MRTF-SRF signaling potentially mediates regulation of cardiomyocyte maturation in response to biomechanical cues, including mechanical stretch and ECM matrix stiffness.

A recent transcriptomic analysis revealed another SRF-binding transcription cofactor, HOPX (homeodomain-only protein), as a novel activator of cardiomyocyte maturation, especially in the process of myofibrillar isoform switching and cardiomyocyte hypertrophy. In vivo, overexpression of HOPX in cardiomyocytes resulted in progressive concentric cardiac hypertrophy with preserved systolic function, whereas *Hopx* knockout caused partial embryonic lethality, with postnatal survivors exhibiting normal cardiac contractility and cardiomyocyte hyperplasia due to delayed cell cycle exit. Paradoxically, HOPX was classically thought to be a transcriptional corepressor that reduces SRF-DNA binding. Further studies are necessary to determine how SRF-HOPX interaction impacts cardiomyocyte maturation.

SRF functions in synergy with other transcription factors. For instance, SRF ChIP-Seq (chromatin immunoprecipitation followed by sequencing) in maturing hearts revealed coenrichment of GATA and MEF2 motifs. Four MEF2 (myocyte enhancer factor 2) family transcription factors, MEF2A-D, are expressed in hearts, and their functions can be factor-specific, overlapping, or, in some cases, antagonistic. A systematic comparison has yet to be performed to determine the overlapping and unique roles of MEF2 factors in cardiomyocyte maturation.

In addition to SRF-related factors, NRs are another major group of transcription regulators that control cardiomyocyte maturation. Among these factors, thyroid hormone receptors and glucocorticoid receptors mediate the role of T3 and glucocorticoids in cardiomyocyte maturation, as described in the previous section. Additional NRs play key roles in metabolic maturation. One family of such factors is PPARs (peroxisome proliferator-activated receptors), which form heterodimers with retinoid X NRs to activate and balance the transcription of genes involved in fatty acid and carbohydrate metabolism. The ligands of PPARs are fatty acid metabolites; thus, PPARs probably mediate the impact of circulating fatty acids on cardiomyocyte maturation. The ERRs (estrogen-related receptors \(\alpha, \beta, \text{ and } \gamma\) are another group of NRs essential for the maturational switch to oxidative respiration, by activating genes involved in fatty acid oxidation, citric acid cycle, electron transport chain, ATP synthase,
and mitochondrial dynamics. These factors belong to the orphan NR family and do not bind to estrogen. Interestingly, myofibril and Ca2+ handling genes are also direct downstream targets of ERRs. Both PPARs and ERRs directly interact with PGC1α/β (PPARγ coactivator α/β), encoded by Ppargc1a and Ppargc1b, which are master regulators of both oxidative respiration and its associated mitochondrial biogenesis. Interestingly, a recent study showed additional functions of PGC1/PPARs (peroxisome proliferator-activated receptor α) in the maturation of calcium handling and hypertrophy, implicating broader roles of these factors beyond metabolism.

Epigenetic mechanisms, such as DNA methylation and covalent histone modifications, exert a profound impact on transcriptional regulation. DNA hypermethylation is associated with gene silencing in cardiomyocyte maturation, whereas DNA demethylation results in gene activation. Activating histone modifications H3K27ac, H3K4me1, H3K4me3, and H3K9ac are associated with actively expressed genes in maturation, whereas repressive histone marks H3K27me3 and H3K9me2 are maintained or acquired by inactivated genes. Treatment of cultured human cardiac progenitor cells with polyinosinic-polycytidylic acid yielded PSC-CMs with enhanced maturity, which was attributed to epigenetic priming that enhanced Notch signaling and expression of cardiac myofilament genes. Recently, a clustered regularly interspaced, short palindromic repeats (CRISPR)/Cas9-based forward genetic screen in vivo identified RNF20/40 (ring finger protein 20/40) as a novel epigenetic regulator of cardiomyocyte maturation. This enzyme deposits histone H2B lysine 120 monoubiquitination marks at genes that are active in cardiomyocyte maturation. Mutations that disrupt this pathway cause congenital heart disease, suggesting that the same mutations that cause congenital heart disease could also impact cardiomyocyte maturation and late cardiac outcomes.

Chromatin organization changes are also correlated with transcriptional changes in cardiomyocyte maturation. ATAC-Seq (assay for transposase-accessible chromatin using sequencing) revealed decreased chromatin accessibility of silenced genes such as cell cycle genes between neonatal and adult hearts, whereas metabolic and muscle contraction genes acquired a more open chromatin state in mature hearts. Histone remodeling factor BRG1 (BRM/SWI2-related gene 1) modulates myosin heavy chain isoform switching. Mutation of CTCF (CCCTC-binding factor), a crucial regulator of chromatin-architecture, was recently reported to cause premature activation of the cardiomyocyte maturation program in embryonic cardiomyocytes.

Posttranscriptional Regulation of Gene Expression

RNA processing is a critical regulatory component of cardiomyocyte maturation, as isoform switching often occurs through alternative splicing. One representative splicing regulator is RBM20 (RNA-binding motif protein 20), mutation of which causes dilated cardiomyopathy. RBM20 is essential for proper splicing of Ttn transcripts and other maturationally regulated genes.

Additional splicing regulators could potentially impact cardiomyocyte maturation: CELF (CUGBP Elav-like family member) proteins are downregulated in heart development, whereas MBNL (muscleblind-like splicing regulator) proteins are upregulated. The antagonistic regulation of these 2 splicing regulators has been proposed to trigger a large fraction of developmental splicing changes and to be essential for T-tubule organization and Ca2+ handling. Serine/arginine-rich family of splicing factors, including SRSF1, SRSF2, and SRSF10 were each shown to regulate postnatal heart development by modulating Ca2+ handling genes. Cardiomyocyte-specific Hnmpu knockout resulted in splicing defects in Ttn and Ca2+ handling genes and triggered perinatal dilated cardiomyopathy. The RNA splicing regulator RBFOX1 (RNA-binding Fox-1 homolog 1) markedly increases in expression during cardiomyocyte maturation and is another potential activator of cardiomyocyte maturation.

MicroRNA (miRNA)-based mRNA silencing is another mechanism that modulates gene expression in cardiomyocyte maturation. For example, miR-1, a miRNA enriched in mature cardiomyocytes, facilitated electrophysiological maturation in stem cell–derived cardiomyocytes in vitro. Let-7 (Lethal-7) family miRNAs were highly enriched in cardiomyocytes matured for 1 year in vitro, and they were necessary and sufficient to promote hypertrophy, sarcomere organization, contractile force, and respiratory capacity of cultured PSC-CMs. Coculture of cardiomyocytes with endothelial cells promoted cardiomyocyte maturation in association with upregulation of multiple miRNAs. Overexpression of 4 such miRNAs (miR-125b-5p, miR-199a-5p, miR-221, and miR-222) in PSC-CMs resulted in improvement of several maturation hallmarks, such as Myh6/7 switching, sarcomere alignment, mitochondrial cristae formation, and improved Ca2+ handling. Recently, a new miRNA maturation cocktail that overexpressed Let-7i and miR-452 and repressed miR-122 and miR-200a was shown to promote transcriptomic maturation, as well as contractility, cell size, and fatty acid oxidation, without sharing predicted target genes with previous microRNA cocktails.

Cardiac protein synthesis is very active at fetal and neonatal stages, but regulation of protein translation, modification, and stability in cardiomyocyte maturation have been poorly studied. Recent advances in proteomics have started to characterize protein changes
in cardiomyocyte maturation.191–193 Integration of these data with RNA-Seq (RNA sequencing) and Ribo-Seq (ribosome profiling) analyses will provide an improved understanding of regulation at the protein level.

Ultrastructural Regulation

Major ultrastructural maturation hallmarks—myofibrils, mitochondria, and T-tubules—are not independent of each other. As the major cytoskeletal structures of cardiomyocytes, myofibrils are essential for the organization of other intracellular structures. Mutagenesis of key myofibril genes, such as \textit{Myh6} and \textit{Actn2}, impaired mitochondrial enlargement, as well as the organization of T-tubules.21,22 By contrast, perturbation of T-tubule (by \textit{Actn2} impaired myofibril organization. Thus, proper sarcomere organization and expansion is central to overall structural maturation.

MODEL SYSTEMS TO STUDY CARDIOMYOCYTE MATURATION

Innovations in the model systems and techniques used to study cardiomyocyte maturation will fuel future discoveries. Here we review some of the recent advances in model systems used to study cardiomyocyte maturation.

Mouse Genetic Mosaic and Cas9-Mediated Somatic Knockout Models

Genetically modified mice have been gold standards to understand mammalian heart development. This approach is particularly important in cardiomyocyte maturation research because, to date, no in vitro system can induce, or even maintain, full maturity of cardiomyocytes. However, traditional genetic manipulation of the murine heart has several caveats. First, it is slow and expensive to generate or obtain alleles to knockout each gene of interest. Achieving spatiotemporal control of the knockout in perinatal cardiomyocytes requires further complexity. Second, organ-wide mutagenesis of a gene essential for cardiomyocyte maturation often triggers lethality or secondary effects that can confound identification of the direct functions of the gene. This is particularly problematic in cardiomyocyte maturation research as the secondary effects of heart dysfunction, such as fetal gene reactivation and mitochondria/T-tubule remodeling, are similar to cardiomyocyte maturation defects.57,194

These problems can be circumvented using adeno-associated virus (AAV), which efficiently and stably manipulates genes in cardiomyocytes following subcutaneous or intraperitoneal injection to newborn mice. Gain-of-function via AAV-directed overexpression is straightforward. Loss-of-function can be achieved by using AAV to deliver CRISPR/Cas9 components (CRISPR/Cas9 and AAV-mediated somatic mutagenesis, CASAAV, Figure 4A).57,195 The CRISPR/Cas9 system further reduces the need to obtain conditional alleles. This technology allows mutagenesis of many genes at once21,57 and even high-throughput genetic screening in vivo.26

To pinpoint the direct, cell-autonomous effects of gene manipulation, the dose of AAV is titrated so that a minority (eg, <15%) of cardiomyocytes are transduced, leaving most cardiomyocytes, and the overall cardiac function, unaffected. Single-cell readouts on the transduced cells are used to deduce cell-autonomous gene function.21,22,25,57,89 In genetic mosaics, mutant and control cardiomyocytes are mixed in the same heart; thus, analysis is limited to single-cell readouts or readouts compatible with a cell purification method, such as flow cytometry. These analyses rely heavily on the ability to distinguish individual mutant and control cells, usually through immunostaining of the targeted proteins or introduction of fluorescent proteins as surrogate markers. Genetic mosaic approaches are most well suited to cell-autonomous phenotypes and would difficult to apply to genes that produce secreted products.

Engineered Tissue Model

Cardiomyocyte maturation demonstrates substantial interspecies differences. For instance, adult zebrafish cardiomyocytes lack T-tubules196 and exhibit much lower mitochondrial content than mammalian cardiomyocytes. Mouse and human cardiomyocytes also exhibit several distinct maturation features, such as \textit{Myh6/7} isofrom switching, contraction rates, and action potential profiles. Therefore, a human model is necessary to validate knowledge that was learned in other model organisms.

In addition, a major practical goal of studying cardiomyocyte maturation is to improve the maturation of hPSC-CMs in vitro for translational medicine. The current consensus is that 3-dimensional engineered cardiac tissues that are assembled by hPSC-CMs, nonmyocytes, and ECMs provide the necessary platforms to best mature cardiomyocytes in vitro. Additional biochemical (T3, dexamethasone, IGF1, palmitate) and biophysical treatments (electrical pacing; mechanical stress) on these engineered tissues are essential to produce adult-like cardiomyocytes (Figure 4B, Table 2).3,4 These technologies are useful to validate knowledge that is generated in animal models and to allow de novo discovery of cardiomyocyte maturation regulators. In vivo validation is still necessary to determine the physiological relevance of novel cardiomyocyte maturation factors that are identified in these tissue models. Importantly, factors that drive cardiomyocyte maturation in vitro may...
incompletely overlap with those that promote maturation in vivo during normal heart development.

Disease modeling is another application of these hPSC-CMs and engineered tissues. The immaturity of these cells is an important hurdle to disease modeling. Nevertheless, these model systems have yielded important insights into disease mechanisms and led to new potential therapeutic strategies.197 The properties of the model system, such as its electrical or metabolic maturity, should be considered with respect to the disease being studied. Key findings may require validation in alternative model systems that exhibit greater physiological maturity.

Neonatal Xenotransplantation Model

Human PSC-CMs could be matured toward a near-adult state by transplantation into rat myocardium (Figure 4C),103,198 which is a promising solution to the partial maturation defects observed in in vitro engineered tissue models. However, human PSC-CMs matured by this
method exhibit more binucleation than normal human adult cardiomyocytes, raising the question of whether the transplanted human PSC-CMs become rat-like cardiomyocytes or remain human-like. Although some comparisons between donor and host cardiomyocytes were documented, a more comprehensive analysis is necessary to determine if xenotransplants are viable models to study human-specific features of cardiomyocyte maturation.

CONCLUDING REMARKS

Here, we reviewed major hallmarks of cardiomyocyte maturation and known regulators of this process. Although differences between immature and mature cardiomyocytes have been well documented, the molecular mechanisms that mediate the change from immature to mature states remain incompletely understood. Accumulated evidence demonstrates interdependence between individual maturation events. Thus, research in this area should not only study individual hallmarks but also how the maturation events are coordinated. With technical advances in model systems and increased collaboration between basic scientists with tissue engineers, a more comprehensive picture of cardiomyocyte maturation is warranted in the near future. This effort is critical to design better strategies to mature PSC-CM, stimulate cardiomyocyte regeneration, and treat diseases that involve cardiomyocyte maturation defects.

ARTICLE INFORMATION

Affiliations
From the Department of Cardiology, Boston Children’s Hospital, MA (Y.G., W.T.P.); and Harvard Stem Cell Institute, Cambridge, MA (W.T.P.).

Acknowledgments
We thank Blake Jardin for assistance in figure preparation. We thank Nathan VanDusen, Maksymilian Prondzynski, and Justin King for constructive comments on the article.

Sources of Funding
This work was supported by National Institutes of Health (R01HL146634 to W.T. Pu) and the American Heart Association (postdoctoral fellowship to W.T. Pu) and the American Heart Association (postdoctoral fellowship R01HL146634 to W.T. Pu), and charitable donations to the Boston Children’s Hospital Department of Cardiology.

Disclosures
None.

REFERENCES

1. Tu C, Chao BS, Wu JC. Strategies for improving the maturity of human induced pluripotent stem cell-derived cardiomyocytes. Circ Res. 2018;123:512–514. doi: 10.1161/CIRCRESAHA.118.313472
2. Kannan S, Kwon C. Regulation of cardiomyocyte maturation during critical perinatal window [published online December 20, 2018]. J Physiol doi: 10.1113/JP276754
3. Huang CY, Maia-Joca RPM, Org CS, Wilson I, DiSilvestre D, Tomasselli GF, Reich DH. Enhancement of human iPSC-derived cardiomyocyte maturation by chemical conditioning in a 3D environment. J Mol Cell Cardiol. 2020;138:1–11. doi: 10.1016/j.yjmcc.2019.10001
4. Ronaldson-Bouchard K, Ma SP, Yeager K, Chen T, Song L, Srabell D, Morikawa K, Teles D, Yazawa M, Vunjak-Novakovic G. Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature. 2018;556:239–243. doi: 10.1038/s41586-018-01613-6
5. Karbassi E, Fenix A, Marchiano S, Muraoka N, Nakamura K, Yang X, Murr CE. Cardiomyocyte maturation: advances in knowledge and implications for regenerative medicine [published online February 3, 2020]. Nat Rev Cardiol. doi: 10.1038/s41569-019-0393-x
6. Scuderi GJ, Butcher J. Naturally engineered maturation of cardiomyocytes. Front Cell Dev Biol. 2017;5:60. doi: 10.3389/fcel.2017.00050
7. Chong JJ, Yang X, Don CW, Minami E, Liu MY, Weyers JJ, Mahoney WM, Van Biber B, Cook SM, Palpant NJ, et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature. 2014;510:272–277. doi: 10.1038/nature13233
8. Jojola C, Sleep E, Raya M, Martí M, Raya A, Izquierdo Belmonte JC. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature. 2010;464:606–609. doi: 10.1038/nature08899
9. Ikuchik Y, Holdway JE, Wierich AA, Anderson RM, Fang Y, Egnacyz GC, Evans T, Macrae C, Stainier DY, Poss KD. Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature. 2010;464:601–605. doi: 10.1038/nature08804
10. Sculici SE, Steinhauser MA, Pozzobon CL, Yang VK, Cai L, Wang M, Wu TD, Guerquin-Kern JL, Lechene CP, Lee RT. Mammalian heart regeneration by pre-existing cardiomyocytes. Nature. 2013;493:433–436. doi: 10.1038/nature11682
11. Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, Sadek HA. Transient regenerative potential of the neonatal mouse heart. Science. 2011;331:1078–1080. doi: 10.1126/science.1200708
12. Chattergion NN, Giraud GD, Louey S, Stork P, Fowden AL, Thornburg KL. Thyroid hormone drives fetal cardiomyocyte maturation. PASEB J. 2012;26:397–408. doi: 10.1109/j.t-197985
13. Hirose K, Payumo AT, Cutie S, Hoang A, Guyot R, Lunn B, Bigley RB, Yu H, Wang J, et al. Evidence for hormonal control of heart regenerative capacity during endothelial acquisition. Science. 2018;364:184–188. doi: 10.1126/science.aar2038
14. Fuente BN, Kimura W, Mandal SR, Moon J, Amatudra JF, Phelps KL, Grinsfelder D, Rothermel BA, Chen R, Garcia JA, et al. The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response. Cell. 2014;157:556–579. doi: 10.1016/j.cell.2014.03.032
15. D’Uva G, Aharonov A, Lauriola M, Kain D, Ya’alonomon R, Carvalho S, Raya M, Izpisúa Belmonte JC, Platts KL, Grinsfelder D, Rothermel BA, Chen R, Garcia JA, et al. The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response. Cell. 2014;157:556–579. doi: 10.1016/j.cell.2014.03.032
16. Ahuja P, Perriard E, Perriard JC, Ehler E. Sequential myofibrillar breakdown accompanies mitotic division of mammalian cardiomyocytes. J Cell Sci. 2004;117:3295–3306. doi: 10.1242/jcs.01159
17. O’Meara CC, Wamstad JA, Gladstone RA, Fornovsky GM, Buty VL, Shrikumar A, Gannon JB, Boyer LA, Lee RT. Transcriptional reversion of cardiac myocyte fate during mammalian cardiac regeneration. Circ. Res. 2013;112:804–815. doi: 10.1161/CIRCRESAHA.116.204269
18. Monroe TO, Hill MC, Morikawa Y, Leallan T, Heallen L, Richardson JA, Olson EN, Porrello ER, Mahmoud AI, Small EM, Yuan G-C, Beggs AH, et al. Sarcomeres regulate cardiomyocyte maturation through MRTF-SRF signaling. Cell. 2019;180:765–779.e7. doi: 10.1016/j.devcel.2019.01.017
19. Gabisonia K, Prosdocimo G, Aquaro GD, Cirulici L, Zenitelli L, Secco I, Ali H, Braga L, Gorgodze N, Bernini F, et al. MicroRNA therapy stimulates uncontrolled cardiac repair after myocardial infarction in pigs. Nature. 2019;569:418–422. doi: 10.1038/s41586-019-1191-6
20. Yotti R, Seidman CE, Seidman JG. Advances in the genetic basis and pathogenesis of sarcomere cardiomyopathies. Annu Rev Genomics Hum Genet. 2019;20:129–153. doi: 10.1146/annurev-genom-081118-015306
21. Guo Y, Jardin BD, Zhou P, Sethi I, Akerberg BN, Toepfer CN, Ai Y, Li Y, Li M, Q, Guatimosim S, et al. Hierarchical and stage-specific regulation of murine cardiac myocyte maturation by serum response factor. Nat Commun. 2018;9:3837. doi: 10.1038/s41467-018-06347-2
22. Guo Y, Jardin BD, Sethi I, A, M, Q, Moghadamzadeh B, Troiano EC, Tmemble MA, Small EM, Guan G, C, Beggs AH, et al. Cardiomyocytes regulate cardiomyocyte maturation through MRTF-SRF signaling. bioRxiv. 2019;824185. doi: https://doi.org/10.1101/824185
23. Gifted CA, Ranade SS, Samarakoon R, Salunga HT, de Soysa TY, Huang Y, Zhou P, Effenbein A, W. SK, Bui YK, et al. Oligogene inheritance of a human heart disease involving a genetic modifier. Science. 2019;364:860–870. doi: 10.1126/science.aat5056

Circulation Research. 2020;126:1086–1106. DOI: 10.1161/CIRCRESAHA.119.315862

April 10, 2020

1101

Cardiomyocyte Maturation in Development
24. Robson A, Makova SZ, Barish S, Zadik S, Mehta S, Dzodzoe D, Seidman CE, Chung WK, et al. Histone H2B mono-ubiquitination regulates heart development via epigenetic control of cilia motility. Proc Natl Acad Sci U S A 2019;116:4049–14054. doi: 10.1073/pnas.1808341116

25. VanDusen NJ, Lee JY, Gu W, Sethi L, Zheng Y, King JZ, Zhou FZ, Suo S, Guo Y, Ma Q, et al. In vivo CRISPR screening identifies RNPF20/AD as epigenetic regulators of cardiomyocyte maturation. bioRxiv 2019;806402. doi: https://doi.org/10.1101/806402

26. Huang CY, Peres Moreno Maia-Joca R, Ong CS, Wilson I, Dilsaver D, Tomasiello G, Reich DH. Enhancement of human iPSC-derived cardiomyocyte maturation by chemical conditioning in a 3D environment. J Mol Cell Cardiol 2020;138:1–11. doi: 10.1016/j.yjmcc.2019.10.001

27. Ronaldson-Bouchard K, Mia SP, Yeager K, Chen T, Song L, Sibarilla D, Morikawa K, Teles D, Yazawa M, Vujankovic-Kos G. Author Correction: advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature 2019;579:126–131. doi: 10.1038/s41586-019-1415-9

28. Shadrin IY, Allen BW, Qian Y, Jackman CP, Carlson AL, Juhas ME, Bursac N. Cardiopath platform enables maturation and scale-up of human pluripotent stem cell-derived engineered heart tissues. Nat Commun 2017;8:1825. doi: 10.1038/s41467-017-01946-x

29. Mills RJ, Titimash DM, Koenig X, Parker BL, Ryall JG, Jin SC, Gelb BD, Guo and Pu. Cardiomyocyte Maturation in Development

30. Ruan JL, Tulloch NL, Razumova MV, Saiget M, Muskheli V, Pabon L, Reinecke H, Regnier M, Munz CE. Mechanical stress conditioning and electrical stimulation promote maturation, contractility and force generation of induced pluripotent stem cell-derived human cardiac tissue. Circulation 2016;134:1567–1567. doi: 10.1161/CIRCULATIONAHA.114.014998

31. Hirt MN, Boedighaus J, Mitchell A, Schaaft S, Bornchen C, Moller C, Schulz H, Hubner N, Stenzig J, Stoehr A, et al. Functional improvement and maturation of rat and human engineered heart tissue by chronic electrical stimulation. J Mol Cell Cardiol 2017;144:151–161. doi: 10.1016/j.yjmcc.2017.05.001

32. Mannhardt I, Breckwoldt I, Letufee-Brenere D, Schaaft S, Schulz H, Neuber C, Benzin A, Werner T, Eder A, Schulze T, et al. Human engineered heart tissue: analysis of contractile force. Stem Cell Reports 2016;7:49–22. doi: 10.1016/j.stemcr.2016.04.011

33. Lemoine MD, Mannhardt I, Breckwoldt K, Prondzynski M, Flenner F, Umler B, Hirt MN, Neuber C, Vorhult A, Kloth B, et al. Human iPSC-derived cardiomyocytes cultured in 3D engineered heart tissue show physiological upstroke velocity and sodium current density. Sci Rep 2017;7:5464. doi: 10.1038/s41598-017-05600-w

34. Nunes SS, Miklas JW, Liu J, Aschar-Sobbi R, Xiao Y, Zhang B, Jiang J, Ruan JL, Tulloch NL, Razumova MV, Saiget M, Muskheli V, Pabon L, Reinecke H, Regnier M, Munz CE. Advanced maturation of human cardiac tissue grown from pluripotent stem cells. J Mol Cell Cardiol 2019;136:137–154. doi: 10.1016/j.yjmcc.2019.10.001

35. Gautel M, Djonov-Curago K. The sarcomeric cytoskeleton: from molecules to motion. J Exp Biol 2016;219:135–145. doi: 10.1242/jeb.124941

36. Henderson CA, Gomez CG, Novak SM, Mi-Mi L, Gregorio CC. Overview of the human heart. J Biol Chem 2004;279:683–696. doi: 10.1011/physiol.2004.090681

37. Agarkova I, Perriard JC. The M-band: an elastic web that crosslinks thick filaments and sarcomeres. Curr Opin Cell Biol 2002;14:490–496. doi: 10.1016/S0955-0674(02)000011-52.52554.86

38. Hong T, Yang H, Zhang SS, Cho HC, Kalashnikova M, Sun B, Zhang H, Bhargava A, Grabe M, Olgin J, et al. Cardiac BIN1 folds T-Tubule membrane, controlling ion flux and limiting arrhythmia. Nat Med 2014;20:632–632. doi: 10.1038/nm.3543

39. Guo Y, VanDusen NJ, Zhang L, Gu W, Sethi L, Guatimosim S, Ma Q, Jardin T, Kyba M, Metzger JM. Acquisition of a quantitative, stoichiometrically conserved ratiometric marker of maturation status in stem cell-derived cardiac myocytes. Stem Cells 2014;32:594–605. doi: 10.1002/stem.14070.012

40. Ahmed S, Wu Y, Call DR, Labelt S, Granzer H. Developmental control of titin isoform expression and passive stiffness in fetal and neonatal myocardium. Circ Res 2004;94:505–513. doi: 10.1161/01.RES.0000115522.50554.86

41. Weiland CJ, van den Hoogenhof MM, Beqalli A, Creemers EE. Insights into alternative splicing of sarcomeric genes in the heart. J Mol Cell Cardiol 2015;81:107–113. doi: 10.1016/j.yjmcc.2015.02.008

42. Liu A, Tang M, Xi J, Gao L, Zheng Y, Luo H, Hu X, Zhao F, Reppel M, Heszcher J, et al. Functional characterization of inward rectifier potassium ion channel minC in murine fetal ventricular cardiomyocytes. Cell Physiol Biochem 2010;26:413–420. doi: 10.1159/000302055

43. Bedada FB, Chan SS, Metzger SK, Zhang L, Zhang J, Gany DJ, Kemp TJ, Kyba M, Metzger JM. Acquisition of a quantitative, stoichiometrically conserved ratiometric marker of maturation status in stem cell-derived cardiac myocytes. Stem Cells 2014;32:594–605. doi: 10.1002/stem.14070.012
63. Chen Y, Liu Y, Dorn GW 2nd. Mitochondrial fusion is essential for organelle function and cardiac homeostasis. Circ Res. 2011;109:1327–1331. doi: 10.1161/CIRCRESAHA.111.258723

64. Papanicolau KN, Kikuchi R, Noghi GA, Coughlan KA, Dominguez I, Stanley WC, Walsh K. Mitofusins 1 and 2 are essential for postnatal metabolic remodel ing in heart. Circ Res. 2012;111:1012–1026. doi: 10.1161/CIRCRESAHA.111.258742

65. Song M, Franco A, Fleischer JA, Zhang L, Dorn GW 2nd. Abrogating mitochondrial dynamics in mouse hearts accelerates mitochondrial senescence. Cell Metab. 2017;26:892–893.e5. doi: 10.1016/j.cmet.2017.09.023

66. Seppet EK, Kaambe T, Sikk P, Tivel T, Vija H, Tonkonogi M, Sahlin K, Kay L, Appax F, Braun U, et al. Functional complexes of mitochondria with CaMgATPases of myofibrils and sarcoplasmic reticulum in muscle cells. Biochin Biophys Acta. 2001;1504:379–395. doi: 10.1016/S0006-2720(00)00295-9

67. Dai DF, Danovitz ME, Wiczer B, Laffamme MA, Tian R. Mitochondrial maturation in human pluripotent stem cell derived cardiomyocytes. Stem Cells Int. 2017;2017:5153625. doi: 10.1155/2017/5153625

68. Frezza C, Cipolat S, Martins de Brito O, Micaroni M, Beznoussenko GV, Rudka T, Bartoli D, Polishuck RS, Danani NH, De Strooper B, et al. OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell. 2006;126:177–189. doi: 10.1016/j.cell.2006.06.025

69. Cipolat S, Rudka T, Hartmann D, Costa V, Serneels L, Craessaerts K, Metzger K, Frezza C, Annaert W, D’adamio L, et al. Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling. Cell. 2006;126:163–175. doi: 10.1016/j.cell.2006.06.021

70. Jans DC, Wurm CA, Riedel D, Wenzel D, Stagge F, Deckers M, Reiling P, Jakobs S. STED super-resolution microscopy reveals an array of MINOS clusters along human mitochondria. Proc Natl Acad Sci U S A. 2013;10:8936–8941. doi: 10.1073/pnas.1301820110

71. Ikon N, Ryan RO. Cardioliopon and mitochondrial cristae organization. Biochim Biophys Acta. 2017;1869:1151–1163. doi: 10.1016/j.bbamem.2017.03.013

72. Jikou C, Davies KM, Shinzawa-Itoh K, Tari K, Maeda S, Mills DJ, Tsukihara T, Fujiyoshi Y, Kibarid K, Gerbe C, Bovine F1Fo ATP synthase monomers bend the lipid bilayer in 3D membrane crystals. Elife. 2015;4:e06119. doi: 10.7554/eLife.06119

73. Dorn GW 2nd, Vega RB, Kelly DP. Mitochondrial biogenesis and dynamics in the developing and diseased heart. Circ Res. 2015;29:1981–1991. doi: 10.1161/CIRCRESAHA.115.311349

74. Soonpaa MH, Kim KK, Pakaj L, Franklin M, Field LJ. Cardiomyocyte DNA synthesis and binucleation during murine development. Am J Physiol. 1996;271:H2183–H2198. doi: 10.1152/ajpheart.1996.271.5.H2183

75. Li F, Wang X, Capasso JM, Gerdes AM. Rapid transition of cardiac myocyte hypertrophy from hyperplasia to hypertrophy during postnatal development. J Mol Cell Cardiol. 1996;28:1737–1746. doi: 10.1006/jmcc.1996.0103

76. Brodsky VY, Arefevova AM, Gvasava IG, Sarkisov DS, Panova NW. Polyploidy in cardiac myocytes of normal and hypertrophic human hearts; range of values. Virchows Arch. 1994;424:429–439. doi: 10.1007/ b1001956

77. Oliverti G, Cigola E, Maestri R, Corradi D, Lagrasta C, Gambert SR, Anversa P. Aging, cardiac hypertrophy and ischemic cardiomyopathy do not affect the proportion of mononucleated and multinucleated myocytes in the human J Mol Cell Cardiol. 1996;28:1463–1477. doi: 10.1006/jmcc.1996.0107

78. Patterson M, Barske L, Van Handel B, Rau CD, Gan P, Sharma A, Parikh S, Denholzt M, Huang Y, Yamaguchi Y, et al. Frequency of mononucleated diploid cardiomyocytes underlines natural variation in heart regeneration. Nat Genet. 2017;49:1346–1353. doi: 10.1038/ng.3929

79. Liu H, Zhang Y, Ammann P, Suresh S, Lewarchik C, Rao K, Uys GM, Han L, Abrial M, Yilmamli D, et al. Control of cytokinesis by β-adrenergic receptors indicates an approach for regulating cardiomcyocyte endowment. Sci Transl Med. 2019;11:eaaw6419. doi: 10.1126/scitrans lmed.aaw6419

80. Gonzalez-Rosa JM, Sharpe M, Field D, Soonpaa MH, Field LJ, Burns CE, Burns CG. Myocardial polyploidization creates a barrier to heart regeneration in zebrafish. Dev Cell. 2018;44:443–446.e7. doi: 10.1016/j.devcel.2018.01.021

81. Frawley LE, Orr-Weaver TL. Polyploidy. Curr Biol. 2017;25:R335–R338. doi: 10.1016/j.cub.2015.03.037

82. Vermi SH, Abriel H, van Vein TA. Refining the molecular organization of the cardiac intercalated disc. Cardiovasc Res. 2017;113:259–275. doi: 10.1093/cvr/cvw259

83. Epifantseva I, Shaw RJ. Intracellular trafficking pathways of Cx43 gap junction channels. Biochim Biophys Acta Membr. 2018;1869:40–47. doi: 10.1016/j.bbamem.2017.06.018

84. Peter AK, Cheng H, Ross RS, Knoufton K, Chen J. The costamere bridging sarcomeres to the sarcolemma in striated muscle. Prog Pediat Cardiol. 2011;31:83–88. doi: 10.1016/j.ppccardiol.2011.02.003

85. Chopra A, Kutys ML, Zhang K, Polacheck WJ, Sheng CC, Luu RJ, Eyckmans J, Hinson JT, Seidman JG, Seidman CE, et al. Force generation via β-adrenergic receptors indicates an approach for regulating cardiomyocyte endowment. Dev Cell. 2017;44:87–96.e5. doi: 10.1016/j.devcel.2017.12.012

86. Ellingsen O, Davidoff AJ, Prasad SK, Berger HJ, Springer JP, Marsh JD, Kelly RA, Smith TW. Adult rat ventricular myocytes cultured in defined medium: phenotype and electromechanical function. Am J Physiol. 1993;265:H747–H754. doi: 10.1152/ajpheart.1993.265.2.H747

Circulation Research. 2020;126:1086–1106. DOI: 10.1161/CIRCRESAHA.119.315862 April 10, 2020 1103

Cardiomyocyte Maturation in Development

63. Guo and Pu
Cardiomyocyte Maturation in Development

103. Chao GS, Lee DL, Tampakakis E, Murphy S, Andersen P, Uosaki H, Chekko S, Chakki K, Hong L, Sec K, et al. Neonatal transplantation confers maturation of PSC-derived cardiomyocytes conducive to modeling cardiomyopathy. Cell Rep. 2017;18:587–592. doi: 10.1016/j.celrep.2016.12.040

104. Gerdes AM, Kellerman SE, Moore JA, Muffy KE, Clark LC, Reaves PY, Malek KB, McKeown PP, Schucken DD. Structural remodeling of cardiomyocytes in patients with ischemic cardiomyopathy. Circulation 1992;86:428–430. doi: 10.1161/01.cir.86.2.428.276.

105. Hedi Au HT, Cui B, Chu ZE, Veres T, Radiadic M. Cell culture chips for simultaneous application of topographical and electrical cues enhance phenotype of cardiomyocytes. Lab Chip 2009;9:564–575. doi: 10.1039/b810034a.

106. Kim DH, Lipke EA, Kim P, Cheong R, Thompson S, Delannoy M, Suh KY, Tung L, Leshchenko A. Nanoscale cues regulate the structure and function of macroscopic cardiac tissue constructs. Proc Natl Acad Sci U S A 2010;107:565–570. doi: 10.1073/pnas.0906504107.

107. Wang PY, Ju L, Jin JH, Tsai WB. Modulation of alignment, elongation and contraction of cardiomyocytes through a combination of nanotopography and rigidity of substrates. Acta Biomater. 2011;7:3265–3293. doi: 10.1016/j.actbio.2011.05.021.

108. Zimmermann WH, Schneiderbanger K, Schubert P, Didid M, Münnel F, Heubach JF, Kostin S, Neuhuber WL, Eschenhagen T. Tissue engineering of a differentiated cardiac muscle construct. Circ Res. 2002;90:223–230. doi: 10.1161/01.hir.02002.103644.

109. Boudou T, Legant WR, Mu A, Borochin MA, Thavandiran N, Radisic M, Jacot JG, McCulloch AD, Omens JH. Substrate stiffness affects the contraction of cardiomyocytes through a combination of nanotopography and electrical cues. J Mol Cell Cardiol 2011;50:296–304. doi: 10.1016/j.yjmcc.2011.04.005.

110. Naqvi N, Li M, Calvert JW, Tejada T, Lambert JP, Wu J, Kesteven SH, Holman SR, Matsuda T, Lovebeck JD, et al. A proliferative burst during preadolescence establishes the final cardiomyocyte number. Cell. 2014;157:795–807. doi: 10.1016/j.cell.2014.03.025.

111. Alkass K, Panula J, Westman A, Wu TD, Guerguin-Kern JL, Bergmann O. No evidence for cardiomyocyte number expansion in preadolescent mice. Cell. 2015;163:1026–1036. doi: 10.1016/j.cell.2015.10.035.

112. Haddad F, Jiang W, Bodell PW, Qin AX, Baldwin KM. Cardiac myosin heavy chain gene regulation by thyroid hormone involves altered histone modifications. Am J Physiol Heart Circ Physiol. 2010;299:H1968–1978. doi: 10.1152/ajpheart.00644.2010.

113. Lee YK, Ng KM, Chan YC, Lai WH, Au KW, Ho CY, Wong LY, Lau CP, Tse HF, Su CW. Triiodothyronine promotes cardiac differentiation and maturation of embryonic stem cells via the classical genomic pathway. Mol Endocrinol. 2010;24:1728–1736. doi: 10.1210/me.2010-0032.

114. Yang X, Rodriguez M, Pabon L, Fischer KA, Reinecke H, Regnier M, Sniadecki NJ, Ruohola-Baker H, Munu CE. Tri-iodo-l-thyronine promotes the maturation of human cardiomyocytes-derived from induced pluripotent stem cells. J Mol Cell Cardiol. 2014;72:296–304. doi: 10.1016/j.yjmcc.2014.04.005.

115. Papp LA, Teixeira E, Richardton RF, Derwin MA, Chapman KE, Glucocorticoids and foetal heart maturation; implications for prematurity and foetal programming. J Mol Endocrinol. 2014;52:R125–R135. doi: 10.1530/JME-13-0204.

116. Rog-Zielinska EA, Thomson A, Kenyon CJ, Brownstein DG, Moran CM, Szumska D, Michalidou Z, Richardson J, Owen E, Watt A, et al. Glucocorticoid receptor is required for foetal heart maturation. Hum Mol Genet. 2013;22:2969–2982. doi: 10.1093/hmg/ddt182.

117. Hirai M, Cattaneo P, Chen J, Evans SM. Revisiting preadolescent cardiomyocyte proliferation in mice. Circ Res. 2016;118:916–919. doi: 10.1161/ CIRCRESAHA.115.308181.

118. Papp LA, Teixeira E, Richardton RF, Derwin MA, Chapman KE, Glucocorticoids and foetal heart maturation; implications for prematurity and foetal programming. J Mol Endocrinol. 2014;52:R125–R135. doi: 10.1530/JME-13-0204.

119. Staal D, van der Spek AE, George K, van der Meulen A, Koga K, Tsuchiya F, de Jonge D, et al. Fatty acids enhance the maturation of human induced pluripotent stem cells. Stem Cell Reports. 2015;4:510–524. doi: 10.1016/j.stemcr.2019.08.013.

120. Fuentes JM, Amo M, Kong S, Sherwood MC, Brown J, et al. The insulin-like growth factor (IGF-I) receptor regulates cellular senescence in human pluripotent stem cells. J Cell Biol. 2012;205:289–294. doi: 10.1083/jcb.201109122.

121. Van der Spek AE, George K, van der Meulen A, Koga K, Tsuchiya F, de Jonge D, et al. Fatty acids enhance the maturation of human induced pluripotent stem cells. Stem Cell Reports. 2015;4:510–524. doi: 10.1016/j.stemcr.2019.08.013.

122. Krüger M, Sachse C, Zimmermann WH, Eschenhagen T, Klee S, Linke WA. Thyroid hormone regulates developmental titin isoform transitions via the phosphatidylinositol-3-kinase/ AKT pathway. Circ Res. 2008;102:439–447. doi: 10.1161/CIRCRESAHA.107.162719.

123. Medley TL, Furman A, Lange M, De Souza JP, Costa M, Yoo J, et al. Role of thyroid hormone in cardiac development and function. Dev Cell. 2016;39:724–739. doi: 10.1016/j.devcel.2016.11.012.

124. Lou D, Linders A, Amagawa R, Correa C, Klijsta JD, Garakani A, Xiao L, Dian J, van der Meer P, Serra M, et al. Metabolic maturation of human pluripotent stem cells.
stem cell-derived cardiomyocytes by inhibition of HIFα1 and LDHA. Circ Res. 2018;123:1066–1079. doi: 10.1161/CIRCRESAHA.118.312949

141. Pariikh SS, Blackwell DJ, Gomez-Hurtado N, Frisk M, Wang L, Kim K, Dahl CP, Fiane A, Tanneness T, Krystal DH, et al. Thyroid and glucocorticoid hormones promote functional T-Tube development in human-induced pluripotent stem cell-derived cardiomyocytes. Circ Res. 2017;121:1323–1330. doi: 10.1161/CIRCRESAHA.117.319220

142. Zhou P, Pu WT. Recounting cardiomyocyte composition. Circ Res. 2016;118:368–370. doi: 10.1161/CIRCRESAHA.116.308139

143. Pinto AR, Ilinyi A, Ivey MJ, Kuwabara JT, D’Antoni ML, Debuque R, Chandran A, Wang L, Arora K, Rosenthal NA, et al. Revisiting cardiac cellular composition. Circ Res. 2016;118:400–409. doi: 10.1161/CIRCRESAHA.115.307778

144. Kim C, Majid M, Xia P, Wei KA, Wei KA, Talantova M, Spiering S, Nelson B, Mercola M, Chen F, Kook H, Milewski R, Gitler AD, Lu MM, Li J, Nazarian R, Schneck RM, Prendiville TW, Guo H, Lin Z, Zhou P, Stevens SM, He A, VanDusen N, Desjardins CA, Naya FJ. The function of the MEF2 family of transcription factors in mouse and human embryonic stem cell-derived cardiomyocytes during differentiation. Stem Cells Dev. 2010;19:783–795. doi: 10.1089/ scd.2009.0349

145. Lee DS, Chen JH, Lund CJ, Liu CH, Hwang SM, Pabon L, Sheth RC, Chen CC, Wu SN, Yang YT, et al. Defined microRNAs induce aspects of maturation in mouse and human embryonic stem-cell-derived cardiomyocytes. Cell Rep. 2015;11:1960–1967. doi: 10.1016/j.celrep.2015.08.042

146. Yoshida S, Miyagawa S, Fukushima S, Kawamura T, Kashyama N, Ohashi F, Toyofuku T, Toda K, Sawa Y. Maturation of human induced pluripotent stem cell-derived cardiomyocytes by soluble factors from human mesenchymal stem cells. Mol Ther. 2018;26:2681–2695. doi: 10.1016/j.ymthe.2018.08.012

147. Pusen G, Traisman J. Actin’ together: serum response factor, its cofactors and the link to signal transduction. Trends Cell Biol. 2006;16:588–596. doi: 10.1016/j.tcb.2006.09.008

148. Mokalled MH, Carroll KJ, Cenik BK, Chen B, Liu N, Olson EN, Bassel-Duby R. Myocardin-related transcription factors are required for cardiac development and function. Dev Biol. 2015;406:109–116. doi: 10.1016/j.ydbio.2015.05.008

149. Huang J, Lin L, Chen L, Cheng L, Yuan JL, Zhu X, Stout AL, Chen M, Li J, Parmacek MS. Myocardin is required for cardiomyocyte survival and maintenance of heart function. Proc Natl Acad Sci U S A. 2009;106:18734–18739. doi: 10.1073/pnas.0910749106

150. Mendez MG, Jamney PA. Transcription factor regulation by mechanical stress. Int J Biochem Cell Biol. 2012;44:728–732. doi: 10.1016/j.ydbio.2012.03.003

151. Friedman CE, Nguyen Q, Lukowski SW, Helfer A, Chiu HS, Miklas J, Levy S, Suo S, Han JJ, Ostie P, et al. Single-cell transcriptomic analysis of cardiac differentiation from human PSCs reveals HOPX-dependent cardiomyocyte maturation. Cell Stem Cell. 2018;23:585–598.e8. doi: 10.1016/j.stem.2018.06.009

152. Kook H, Lepore JJ, Gitler AD, Lu MM, Wing-Man Yung W, Mackay J, Zhou M, Parmacek MS. Myocardin is required for cardiomyocyte survival and maintenance of heart function. Proc Natl Acad Sci U S A. 2009;106:18734–18739. doi: 10.1073/pnas.0910749106

153. Lee WS, Kim J. Peroxisome proliferator-activated receptors and the heart: lessons from the past and future directions. PPAR Res. 2015;2015:271983. doi: 10.1155/2015/271983

154. Finck BN. The PPAR regulatory system in cardiac physiology and disease. Cardiovasc Res. 2007;73:269–277. doi: 10.1016/j.cardiores.2006.08.023

155. Harmon GS, Lam MT, Glass CK. PPARs and lipid ligands in inflammation and metabolism. Chem Rev. 2011;111:6321–6340. doi: 10.1021/cr100002v

156. Dufour CR, Wilson BJ, Huss JM, Kelly DP, Alaynick WA, Downes M, Evans RM, Blanchette M, Giguere V. Genome-wide orchestration of cardiac function by the orphan nuclear receptors ERRalpha and gamma. Cell Metab. 2007;5:345–356. doi: 10.1016/j.cmet.2007.03.007

157. Wang T, McDonald C, Petrenko NB, Leblanc M, Wang T, Giguere V, Evans RM, Patel VV, Pei L. Estrogen-related receptor α (ERRα) and ERRγ are essential coordinators of cardiac metabolism and function. Metabol Cell Biol. 2015;15:1281–1298. doi: 10.1080/00928674.2016.1112520

158. Prendergast TW, Arosen JM, Robinson EL, Okkenhaug K, Loche E, Ferrini A, Brien P, Alkass K, Tomasso A, et al. The H3K32 dimethyllysine trans- fersase EHTM1/2 protect against pathological cardiac hypertrophy. J Clin Invest. 2017;127:335–348. doi: 10.1172/JCI88553

159. Delgado-Olguin P, Huang Y, Li X, Christodoulou D, Seidman CE, Seidman JG, Tarakovsky A, Bruneau BGE. Epigenetic repression of cardiac progenitor gene expression by ErzR is required for postnatal cardiac homeostasis. Cell Metab. 2012;14:343–347. doi: 10.1016/j.cmet.2012.09.008

160. He A, Ma Q, Cao J, von Gise A, Zhou P, Xie H, Zhang B, Hsing M, Christodoulou DC, Cahan P, et al. Polyploidal repression complex 2 regulates normal development of the mouse heart. Circ Res. 2012;10:406–415. doi: 10.1161/CIRCRESAHA.111.292205

161. Biemann M, Cai W, Lang D, Hermesen J, Pffolio L, Zhou Y, Cziko A, Isai DG, Napwvcki BN, Rodriguez AM, et al. Epigenetic priming of human pluripotency stem cell-derived progenitor cells accelerates cardiomyocyte maturation. Stem Cells. 2019;37:910–923. doi: 10.1002/stem.3021

162. Queije-Ryan GA, Sim CB, Ziemann M, Kaspi A, Rafiei H, Ramilsson M, El-Osta A, Hudson JE, Porrello ER. Multicellular transcriptional analysis of mammalian heart regeneration. Circulation. 2017;136:1123–1139. doi: 10.1161/CIRCULATIONAHA.117.028262

163. Hang CT, Yang J, Han P, Cheng HL, Shang C, Ashley E, Zhou B, Chang CP. Chromatin regulation by Brd1 underlies heart muscle development and disease. Nature. 2010;466:66–67. doi: 10.1038/nature09130

164. Gomez-Velazquez M, Badia-Carea CG, Lechuga-Vieco AV, Nieto-Arellano TM, Nelson TJ. Rbm20-deficient cardiogenesis reveals early disruption of RNA processing and sarcomere remodeling establishing a developmental etiology for dilated cardiomyopathy. Hum Mol Genet. 2014;23:3779–3791. doi: 10.1093/hmg/ddu091

165. Lee WS, Kim J. Peroxisome proliferator-activated receptors and the heart: lessons from the past and future directions. PPAR Res. 2015;2015:271983. doi: 10.1155/2015/271983

166. Kim C, Majid M, Xia P, Wei KA, Talantova M, Spiering S, Nelson B, Mercola M, Chen F, Kook H, Milewski R, Gitler AD, Lu MM, Li J, Nazarian R, Schneck RM, Prendiville TW, Guo H, Lin Z, Zhou P, Stevens SM, He A, VanDusen N, Desjardins CA, Naya FJ. The function of the MEF2 family of transcription factors in cardiac development, cardiogenomics, and direct reprogramming. J Cardiovasc Dev Dis. 2016;3:62. doi: 10.3390/jcdd0300026

167. Desjardins CA, Naya FJ. Antagonistic regulation of cell-cycle and differentiation gene programs in neonatal cardiomyocytes by homologous MEF2C transcription factors. J Biol Chem. 2017;292:10613–10629. doi: 10.1074/jbc.M117.777615
178. Bertero A, Fields PA, Ramani V, Bonora G, Yardiemi GG, Reinecke H, Pabon L, Noble WS, Shendure J, Murry CE. Dynamics of genome reorganization during human cardiogenesis reveal an RBM20-dependent splicing factory. *Nat Commun*. 2019;10:1538. doi: 10.1038/s41467-019-09483-5

179. Wang ET, Ward AJ, Cherone JM, Giudice J, Wang TT, Treacy DJ, Lambert NJ, Freese P, Saxena T, Cooper TA, et al. Antagonistic regulation of miRNA expression and splicing by CELF and MBNL proteins. *Genome Res*. 2015;25:858–871. doi: 10.1101/gr.194390.114

180. Kalsotra A, Xiao X, Ward AJ, Castle JC, Johnson JM, Burge CB, Cooper TA. A postnatal switch of CELF and MBNL proteins reprograms alternative splicing in the developing heart. *Proc Natl Acad Sci U S A*. 2008;105:20333–20338. doi: 10.1073/pnas.0809045105

181. Giudice J, Xia Z, Wang ET, Scavuzzo MA, Ward AJ, Kalsotra A, Wang W, Wehrens XH, Burge CB, Li W, et al. Alternative splicing regulates vesicular trafficking genes in cardiomyocytes during postnatal heart development. *Nat Commun*. 2014;5:3603. doi: 10.1038/ncomms4603

182. Xu X, Yang D, Ding JH, Wang W, Chu PH, Dalton ND, Wang HY, Bermingham JR Jr, Ye Z, Liu F, et al. ASF/SF2-regulated CaMKII delta alternative splicing temporally reprograms excitation-contraction coupling in cardiac muscle. *Cell*. 2005;120:59–72. doi: 10.1016/j.cell.2004.11.036

183. Ding JH, Xu X, Yang D, Chu PH, Dalton ND, Ye Z, Yeakley JM, Cheng H, Xiao RP, Ross J, et al. Dilated cardiomyopathy caused by tissue-specific ablation of SC35 in the heart. *EMBO J*. 2004;23:885–896. doi: 10.1038/sj.emboj.7600054

184. Feng Y, Valley MT, Lazar J, Yang AL, Bronson RT, Firestein S, Tucholski T, Lin Z, Biermann M, et al. Unbiased proteomics method to assess the maturation of human pluripotent stem cell-derived cardiomyocytes. *Circ Res*. 2015;112:E2785–E2794. doi: 10.1161/CIRCRESAHA.119.315305

185. Poon E, Keung W, Liang Y, Ramalingam R, Yang X, Zhang S, Chopra A, Moore J, Herren A, Lieu DK, et al. Proteomic analysis of human stem cell-derived, fetal, and adult ventricular cardiomyocytes reveals pathways crucial for cardiac metabolism and maturation. *Circ Cardiovasc Genet*. 2015;8:427–436. doi: 10.1161/CIRCGENETICS.114.000918

186. Ulmer BM, Stoehr A, Schulze ML, Patel S, Gucke M, Mannhardt I, Funcke S, Murphy E, Eschenhagen T, Hansen A. Contractile work contributes to maturation of energy metabolism in hiPSC-derived cardiomyocytes. *Stem Cell Reports*. 2018;10:834–847. doi: 10.1016/j.stemcr.2018.01.039

187. Guo Y, Pu WT. Genetic mosaics for greater precision in cardiovascular research. *Circ Res*. 2018;123:27–29. doi: 10.1161/CIRCRESAHA.118.313386

188. VanDusen NJ, Guo Y, Gu W, Pu WT, CASAAV: a CRISPR-based platform for rapid dissemination of gene function in vivo. *Curr Protoc Mol Biol*. 2017;120:31.11.1–31.11.14. doi: 10.1002/cpmb.46

189. Brette F, Luxan G, Cross D, Dixey H, Wilson C, Shields HA. Characterization of isolated ventricular myocytes from adult zebrafish (Danio rerio). *Biochem Biophys Res Commun*. 2008;374:143–146. doi: 10.1016/j.bbrc.2008.06.109

190. van den Brink L, Grandela C, Mummery CL, Davis RP. Inherited cardiac diseases, pluripotent stem cells, and genome editing combined—the past, present, and future. *Stem Cells*. 2020;38:174–186. doi: 10.1002/stem.3110

191. Kadota S, Pabon L, Reinecke H, Murry CE. In vivo maturation of human induced pluripotent stem cell-derived cardiomyocytes in neonatal and adult rat hearts. *Stem Cells Reports*. 2017;8:278–289. doi: 10.1016/j.stemcr.2018.10.009

192. Guo Y, Pu WT. Dynamic reprogramming of cardiac cell identity in embryonic stem cell-derived cardiomyocytes. *PLoS One*. 2011;6:e27417. doi: 10.1371/journal.pone.0027417

193. Kuppusamy KT, Jones DC, Sperber H, Madan A, Fischer KA, Rodriguez ML, Pabon L, Zhu WZ, Tulloch NL, Yang X, et al. Let-7 family of microRNA is required for maturation and adult-like metabolism in stem cell-derived cardiomyocytes. *Proc Natl Acad Sci U S A*. 2015;112:E2785–E2794. doi: 10.1073/pnas.1424042112

194. Miklas JW, Clark E, Levy S, Detraux D, Leonard A, Beussman K, Showalter MR, Smith AT, Hofsteen F, Yang X, et al. TFPa/HADHA is required for fatty acid beta-oxidation and cardiacin re-modeling in human cardiomyocytes. *Nat Commun*. 2019;10:4671. doi: 10.1038/s41467-019-12480-1