An experimental investigation of the interactions among the massive fermions of the third generation - the top (t) and bottom (b) quarks, the tau (τ) lepton and tau neutrino (ντ) - has the potential to yield powerful insights into the puzzles of flavor and fermion mass. There is no adequate explanation for the comparatively large masses of the third generation particles, and we do not understand why there appear to be three and only three generations. A significant deviation in the number of observed t → τνq candidates from the rate predicted by the standard model could indicate an anomalous coupling among the third generation particles. Extensions of the standard model could lead to alternative modes of top quark decay that enhance the top branching fraction to this final state. One example is the minimal supersymmetric standard model, where the top quark could decay into a b-quark and a charged Higgs boson with subsequent decay into a tau lepton and tau neutrino. Other possibilities include R-parity violating SUSY decays of top and new Z′ bosons with non-universal couplings.

In this letter, we search for t → τνq decays in 194 ± 11 pb−1 of pp collisions collected by the CDF II detector from p¯p collisions at a center of mass energy of 1.96 TeV. We observe two events with an expected signal of 1.0 ± 0.2 events and a background of 1.3 ± 0.3 events. We determine a 95% confidence level upper limit on σt → τνq to the expectation, of 0.27%.

We present a search for t¯t events with a tau lepton in the final state. The data sample corresponds to an integrated luminosity of 194 pb−1 collected with the CDF II detector from pp collisions at a center of mass energy of 1.96 TeV. We observe two events with an expected signal of 1.0 ± 0.2 events and a background of 1.3 ± 0.3 events. We determine a 95% confidence level upper limit on rτ, the ratio of the measured rate of t → τνq to the expectation, of 5.2.

PACS numbers: 14.65.Ha, 14.60.Fg
to $\tau\nu b$, and identify the tau lepton by its semi-hadronic decay, which accounts for approximately 65% of tau decays [1]. We do not search for tau lepton decays to electrons and muons, as these are difficult to distinguish from electrons and muons directly from W boson decay. We require the other top to decay to either $e\nu b$ or to $\mu\nu b$ in order to utilize the efficient high p_T electron/muon triggers and to reduce the background from multi-jet production. We require significant missing transverse energy from the neutrinos, and at least two jets with high E_T [12], though we make no requirement on the heavy flavor content of the jets. Finally, we apply several novel kinematic and topological requirements designed to reject specific backgrounds.

The CDF II detector [13] is an azimuthally and forward-backward symmetric apparatus built to study the physics of $p\bar{p}$ collisions at \sqrt{s} of 1.96 TeV. The detector contains a charged-particle tracking system inside a 1.4 T field generated by a solenoid coaxial with the p and \bar{p} beams. A silicon microstrip detector provides track measurements between 1.5 and 28 cm in radius from the beam axis for charged particles with pseudorapidity, $|\eta| < 2$ [12]. A 3.1 m long open cell drift chamber measures track position at 96 points at radii between 40 and 137 cm for particles with $|\eta| < 1$.

Segmented electromagnetic and hadronic sampling calorimeters surround the tracking volume and cover the range $|\eta| < 3.6$. The central ($|\eta| \lesssim 1$) calorimeters, in which τ decays are identified in this analysis, are divided into towers with segmentation in azimuthal angle of 15 degrees and in pseudorapidity of about 0.1. The central electron shower detector (CES) consists of proportional chambers with wires and cathode strips arranged orthogonally with pitch varying from 1.4 to 2.0 cm located at a depth of 6 radiation lengths within the electromagnetic calorimeter, at the position where the lateral profile of the shower is maximum. This fine segmentation of the CES measures electromagnetic shower position with ≈ 3 mm resolution and allows reconstruction of the boosted $\pi^0 \rightarrow \gamma \gamma$ produced in tau decays. A set of drift chambers located outside the hadron calorimeters and a second set outside a 60 cm iron shield detect muon candidates with $|\eta| < 0.6$. Additional chambers and scintillator counters extend this muon coverage in $0.6 < |\eta| < 1.0$ for most azimuthal angles. The luminosity is determined to an accuracy of 6% using gas Cherenkov counters covering $3.7 < |\eta| < 4.7$ which measure the average number of inelastic $p\bar{p}$ collisions per bunch crossing.

The online triggers used in this analysis select samples with at least one high p_T central electron or muon candidate. The electron trigger requires candidates to have E_T greater than 18 GeV, and the muon trigger requires a candidate with $p_T > 18$ GeV/c [14]. Further identification requirements are placed to select a pure sample of electrons and muons and are described in detail elsewhere [15,16]. Neutrinos escape the calorimeter undetected and result in missing transverse energy (E_T) which is measured by balancing the calorimeter energy in the transverse plane. We require $E_T > 20$ GeV after corrections for identified muons.

Semi-hadronic decays of taus produced in W decay have a distinctive signature of narrow, isolated jets with low charged track multiplicity. The calorimeter measures the visible energy of the tau jet, while the central tracker and CES determine the narrowness and multiplicity. A tau candidate requires a tau calorimeter cluster and a central track with a minimum p_T of 4.5 GeV/c pointing to the cluster. A tau calorimeter cluster requires a tower with $E_T \geq 6$ GeV and no more than five adjacent towers with $E_T > 1$ GeV.

After lepton candidate selection, we impose additional requirements on the isolation of the tau lepton to reduce backgrounds from jets. A cone is formed around the seed track with a variable angular radius, $\theta_{cone} = \min\{0.17, (5 \text{ GeV})/E_{\text{tau cluster}}\}$ rad. The tau candidate is required to have one or three tracks in the signal cone to be consistent with the dominant decay modes of the tau. If there are three tracks the sum of the electric charges must be equal to ± 1. Candidate π^0s are identified in the calorimeter from clusters of energy observed in the CES. The tau p_T is estimated to be the sum of the seed track p_T plus the sum of the $\pi^0 E_T/c$. The tau p_T is required to be greater than 15 GeV/c, and the invariant mass of the π^0s and the tracks is required to be less than 1.8 GeV to be consistent with the mass of the tau. An isolation annulus is defined around the tau cone extending from the cone edge, θ_{cone}, to 0.52 radians in which no tracks or π^0 candidates may be present. Calorimeter towers within the isolation annulus are required to have E_T less than 6% of the tau E_T. Additional requirements are imposed to reject tau candidates that resemble electrons or muons based on track and calorimeter characteristics. To remove electrons, the energy in the hadronic calorimeter divided by the track momentum sum of the tau candidate, $E_{\text{had}}/\sum p$, is required to be greater than 0.15. To remove muons, the E_T of the calorimeter cluster energy associated with the tau candidate divided by the p_T of the seed track, E_T/p_T, is required to be greater than 0.5. The combined tau identification and isolation efficiency is 35%.

We also require at least two jets with $|\eta| < 2$ and that the first and second highest E_T jets have E_T greater than 25 GeV and 15 GeV, respectively. The event H_T, defined as the scalar sum of the electron E_T or muon p_T, the tau p_T, the E_T and the E_T of the jets, must exceed 205 GeV. The H_T and lead jet E_T requirements were chosen by a two-dimensional optimization that maximized the likelihood ratio of signal plus background to background-only. These requirements reduce the backgrounds from W bosons produced in association with jets by $\approx 85\%$, while removing only $\approx 5\%$ of the $t\bar{t}$ signal.

We determine the efficiency of the selection cuts by simulating standard model $t\bar{t}$ detection with the PYTHIA [17] event generator, the TAUOLA [18] tau decay simulation and a GEANT-based model [19] of the CDF detector. We independently determine the electron, muon and tau identification and trigger efficiencies from the data. Electron and muon efficiencies are determined using $Z \rightarrow e^+e^-$ and $Z \rightarrow \mu^+\mu^-$ events respectively with one of the electrons (muons) required to pass tight identification cuts and the other electron (muon) used to
determine the efficiency. The tau identification efficiency is determined by comparing numbers of observed $W \to \tau\nu$ to the prediction of the simulation. Correction factors, defined as the ratio of the data and MC efficiencies, are applied to the simulation results. In most cases correction factors are within 5% of 1. In the case of tau identification, we find that the ratio of the efficiency in data to that in simulation is 0.90 ± 0.06. Table I summarizes the systematic uncertainties in the efficiency for detecting the signal process.

Our dominant background is W bosons produced in association with jets, where the W decays to $e\nu$ or $\mu\nu$ and one of the jets is misidentified as a tau. We determine the number of such events we expect from the data. We first find a sample of relaxed tau candidates passing all tau identification requirements except the isolation, mass and track quality requirements. This sample is dominated by jets rather than tau leptons. To that sample, we apply a fake rate, which is the probability that those relaxed tau candidates will pass all identification requirements. The fake rate of jets to identified tau candidates is measured in four independent jet data samples; three of the samples were selected with different jet E_T threshold requirements and the fourth sample was selected using a requirement on the sum of the E_T of all calorimeter towers in the event. The fake rate is parameterized as a function of jet E_T and isolation of the jet in the calorimeter. The full spread in the measured fake rates of the four different samples is 26% of the fake rate, which we take as our estimate of the systematic uncertainty in this procedure.

Events with electrons or muons that fake tau candidates are another significant background source. These events originate primarily from the production of Z bosons, decaying to e^+e^- or $\mu^+\mu^-$, in association with extra jets. In the case of electrons, the event can be a background when the electron energy is poorly reconstructed; in the case of muons, a muon can fake a tau if the muon suffers a catastrophic energy loss in the calorimeter. To estimate the electron background, we first measure an electron to tau fake rate from the data using $Z \to e^+e^-$ events. We then scale the number of events with tau candidates that fail the electron rejection requirement but pass all other analysis requirements by the electron to tau fake rate. An ALPGEN [20] interfaced with HERWIG [21] simulation of $Z \to \mu^+\mu^-$ events with extra jets is used to predict the muon background, and we confirm the modeling of the muon energy response in the calorimeter using $Z \to \mu^+\mu^-$ events in the data.

Figure 1 shows evidence of fake tau background from jets and electrons in the electron + tau candidate data with relaxed tau identification requirements. The tau contribution to the region shown outside of the signal requirements is expected to be a small fraction of that inside.

Another class of background events results from processes other than $t\bar{t}$ production that create tau leptons in association with electrons or muons. The largest of these backgrounds is from Z boson production in association with jets where $Z \to \tau^+\tau^-$ with one fully leptonic and one semi-hadronic tau decay. In this process, the energy spectra of the leptons, jets and the E_T are softer than the predictions from $t\bar{t}$ production. As a result, our H_T requirement reduces this background by about 40%. However, even with such a requirement the previous search for this decay chain at CDF [11] predicted a higher number of $Z \to \tau^+\tau^-$ background events than $t\bar{t}$ signal events. Therefore, we developed a selection that targets this background exclusively. $Z \to \tau^+\tau^-$ decays that pass the H_T and E_T requirements have a Z boson with significant p_T. In these events, one can reconstruct the Z mass from the observed tau decay products by assuming that the E_T in the events results entirely from neutrinos produced in τ decays and that those neutrinos are collinear with the other τ decay products. In this case, there is a unique assignment

Source	signal prediction uncertainty
Jet Energy Scale	$\pm 6\%$
Electron and Muon Identification	$\pm 5\%$
Tau Identification	$\pm 6\%$
Top Production Model	$\pm 7\%$
Parton Distribution Functions	$\pm 1\%$
Quark and Gluon Radiation Model	$\pm 10\%$
Total	$\pm 16\%$

TABLE I: Summary of systematic uncertainties in the identification of $t\bar{t}$ (signal) events
of the energy of unobserved neutrinos from each tau candidate based on the direction of the E_T. For $t\bar{t}$ events, this is most often not the case, and the assignment of E_T to a neutrino would result in the neutrino carrying negative momentum from the tau decay. For events where this reconstruction is sensible, we remove events in a window 25 GeV above and below the Z mass. This results in an additional 88% reduction of $Z \rightarrow \tau^+\tau^-$ events while removing only 4% of $t\bar{t}$ signal. We summarize all backgrounds in Table III.

We use an independent control sample to test our calculation of backgrounds. The selection of the electrons, muons, taus and E_T is identical to our signal selection, but the number of jets in the sample is restricted to be less than two. Also, in order to increase the statistics for this comparison we do not impose the H_T requirement or the Z mass removal on these events. Table III shows the comparisons of predicted and observed events. We categorize the results based on jet multiplicity, electron or muon final state, and the cases of the same or opposite charge in the two leptons.

The data in Table III can be used as a control experiment to check the accuracy of our background predictions. A priori, we chose as the statistic of the control experiment the joint probability of the observed number of events given the prediction for the eight samples in this table. The expected distribution of these joint probabilities is measured via simulated pseudo-experiments which account for the uncertainties in the predictions and the Poisson fluctuations from the limited statistics in the data. We find the data in Table III have a joint probability which is higher than 41% of our pseudo-experiments and conclude that these control data are consistent with our expected background predictions.

The signal acceptance, including all branching fractions in the decay channel, is $0.076 \pm 0.005\text{(stat.)} \pm 0.013\text{(syst.)} \%$. For a $t\bar{t}$ cross-section of 6.7 pb we therefore expect 1.00 ± 0.17 signal events in 194 pb$^{-1}$, in addition to the background expectation of 1.29 ± 0.25 events. We observe 2 events. Both events are in the electron + tau channel, and properties of these two events are listed in Table IV.

We define the ratio of partial widths (Γ)

$$r_\tau \equiv \frac{\Gamma(t \rightarrow \tau q)}{\Gamma_{SM}(t \rightarrow \tau q)}$$

as a measure of a possible anomalous enhancement in the rate. Using the method of Rolke et al. [22], we set an upper limit on r_τ of 5.2 at the 95% confidence level. The previous result from CDF Run I [11] would yield a limit of $r_\tau < 18$ at the 95% confidence level using the same statistical methods.

In summary, we have searched for top decay into τq by identifying semi-hadronic decays of tau leptons in $t\bar{t}$ events. We observe two candidate events, consistent with the standard model, and set an upper limit on the ratio of observed production of $t \rightarrow \tau q$ to the standard model expectation.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Research Corporation; the Bundesministerium für Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Particle Physics and Astronomy Research Council and the Royal Society, UK; the Russian Foundation for Basic Research; the Comisión Interministerial de Ciencia y Tecnología, Spain; in part by the European Community’s Human Potential Programme under contract HPRN-CT-2002-00292; and the Academy of Finland.

Process	Number of expected events
$\gamma^*/Z \rightarrow \tau^+\tau^-$	0.25 \pm 0.06 \pm 0.05
W/Z + jets with jet \rightarrow τ fake	0.75 \pm 0.12 \pm 0.20
$\gamma^*/Z \rightarrow e^-e^+$ with $e^- \rightarrow \tau$ fake	0.08 \pm 0.03 \pm 0.02
$\gamma^*/Z \rightarrow \mu^-\mu^+$ with $\mu^- \rightarrow \tau$ fake	0.05 \pm 0.03 \pm 0.01
W/W	0.14 \pm 0.02 \pm 0.03
W Z	0.02 \pm 0.02 \pm 0.01
Single top, $t \rightarrow \tau \nuq$	< 0.01
Total expected background events	1.29 \pm 0.14 \pm 0.21
Expected signal	1.00 \pm 0.06 \pm 0.16

TABLE III: Comparison between the predicted and measured number of events for low jet multiplicities

Process	e events predicted	e events measured		
channel	0 jets	1 jet	0 jets	1 jet
$e + \tau$ opp sign	23.7 \pm 3.6	4.6 \pm 0.9	17	5
$e + \tau$ same sign	7.3 \pm 1.8	1.9 \pm 0.6	8	3
$\tau^{-} + \tau$ opp sign	21.3 \pm 3.3	2.7 \pm 0.6	11	4
$\tau^{-} + \tau$ same sign	5.6 \pm 1.5	0.8 \pm 0.3	3	0

TABLE II: Summary of background and signal predictions. The first error is from simulation and data statistics, and the second is from systematic uncertainties. Diboson backgrounds are predicted in a simulation based on the HERWIG generator [21]. The expected signal assumes a $t\bar{t}$ cross-section of 6.7 pb.
[1] Particle Data Group, Phys. Lett. B592, 1 (2004).
[2] V. Barger and R.J.N. Phillips, Phys. Rev. D41, 884 (1990).
[3] J. Guasch and J. Sola, Phys. Lett. B416, 353 (1998).
[4] T. Affolder et al. [CDF collaboration], Phys. Rev. D62, 012004 (2000).
[5] T. Han and M.B. Magro, Phys. Lett. B476, 79 (2000).
[6] C. Yue, H. Zong and L. Liu, Mod. Phys. Lett. A18, 2187 (2003).
[7] F. Abe et al. [CDF collaboration], Phys. Rev. Lett. 74, 2626 (1995).
[8] S. Abachi et al. [DØ collaboration], Phys. Rev. Lett. 74, 2632 (1995).
[9] M. Cacciari, S. Frixione, M. L. Mangano, P. Nason and G. Ridolfi, JHEP 0404, 068 (2004).
[10] N. Kidonakis and R. Vogt, Phys. Rev. D68, 114014 (2003).
[11] F. Abe et al. [CDF collaboration], Phys. Rev. Lett. 79, 3585 (1997).
[12] CDF uses a cylindrical coordinate system in which ϕ is the azimuthal angle, r is the radius from the nominal beamline, and $+z$ points in the direction of the proton beam and is zero at the center of the detector. The pseudorapidity $\eta = -\ln[\tan(\theta/2)]$,

where θ is the polar angle with respect to the z axis. Calorimeter energy (track momentum) measured transverse to the beam is denoted as $E_T (p_T)$.

[13] D. Acosta, et al. [CDF collaboration], Phys. Rev. D71, 032001 (2005).
[14] D. Acosta et al. [CDF collaboration], Phys. Rev. D71, 072005 (2005).
[15] D. Acosta et al. [CDF collaboration], Phys. Rev. Lett. 94, 091803 (2005).
[16] D. Acosta et al. [CDF collaboration], Phys. Rev. Lett. 93, 142001 (2004).
[17] T. Sjostrand, Comput. Phys. Commun. 82, 74 (1994).
[18] S. Jadach et al., CERN-TH-6793 (1992).
[19] S. Agostinelli et al. [GEANT4 collaboration], Nucl. Inst. Meth. A506, 250 (2003).
[20] M. Mangano, et al., JHEP 07, 001 (2003).
[21] G. Corcella, et al., JHEP 0101, 010 (2001).
[22] D. Acosta et al. [CDF collaboration], Phys. Rev. D71, 052003 (2005).
[23] W. A. Rolke, A. M. Lopez, and J. Conrad, Nucl. Inst. Meth. A539, 407 (2005).