Scheduling and Pre-Conditioning in Multi-User MIMO TDD Systems

Presented by
Jubin Jose
The University of Texas at Austin

Joint work with
Alexei Ashikhmin, Phil Whiting (Bell Labs, Murray Hill, NJ)
Sriram Vishwanath (The University of Texas at Austin)
Outline

- Introduction
- Prior Work
- System Model
- Pre-Conditioning Method
- Scheduling Strategy
- Numerical Results
- Conclusion
Introduction

- Multiple antennas provide throughput improvement
- Multi-user setting
 - Studied as Gaussian MIMO broadcast channel
 - Sum capacity achieved by Dirty Paper Coding
 [Caire-Shamai 2003, Viswanath-Tse 2003, Vishwanath-Jindal-Goldsmith 2003]
 - DPC characterizes capacity region
 [Weingarten-Steinberg-Shamai 2006]
- Possible issues: CSI assumption, complexity
- Are there more practical methods with no channel assumptions?
Prior Work

- Reduced complexity
 - Precoding techniques [Hochwald et al. 2005, Airy et al. 2006]
 - Opportunistic scheduling schemes [Jagannathan et al. 2006, Shen et al. 2006]
- Limited feedback from users [Yoo et al. 2007, Huang et al. 2007]
- Less training overhead if channel is slowly varying
- Estimation error is not significant if SINRs are high
Training in Multi-User MIMO

- Interested regime
 - Low SINRs – interference from neighboring cells
 - High mobility – aim of future wireless
- It is beneficial to increase the number of antennas at base station [Marzetta 2006]
- Key idea: Time Division Duplex (TDD)
 - Training on reverse link
 - Linear pseudo-inverse based pre-conditioning
- Assumption: Statistically identical users
Main Contributions

- Consider general setting
 - Heterogeneous users
 - Arbitrary weights assigned to users
- Account for training overhead and estimation error in net throughput given by
 \[\frac{T - \tau - 1}{T} \sum_{i=1}^{K} w_i R_i \]
- Modified pre-conditioning technique
- Computationally efficient scheduling strategy
- Obtain lower bound on weighted-sum capacity using proposed schemes
Average power constraints at base station and users
- Channel entries are i.i.d. CN(0,1)
- Block fading over T symbols
- Reciprocal channel
- Frequency selectivity incorporated by OFDM
- Noise and interference are assumed to be Gaussian
Training and Channel Estimation

- Orthogonal training sequences
- Number of users K must be less than τ
- Base station obtains LMMSE estimate of channel
- Estimate is independent of the error
Scheduling and Pre-Conditioning

- Base station selects subset S with N users based on channel estimate
- Pre-condition the signals for these users
- Users do not have channel estimate
- How to design scheduler and precoder?
Modified Pre-Conditioning

- Assign positive values p_1, p_2, \ldots, p_K to the users
- Pre-conditioning matrix is

$$A = \frac{\hat{H}_D^* \left(\hat{H}_D \hat{H}_D^* \right)^{\dagger}}{\sqrt{Tr \left[\left(\hat{H}_D \hat{H}_D^* \right)^{\dagger} \right]}}$$

$$\hat{H}_D = diag[p_{S(1)}^{-0.5} \ldots p_{S(N)}^{-0.5}] \hat{H}_S$$
Lower Bound on Weighted-Sum Capacity

- Scheduling strategy: Any strategy which selects subset S consisting of N (fixed) users
- Theorem: A lower bound on downlink weighted-sum capacity is

$$C_{net} = \max_{\tau,N} \frac{T - \tau - 1}{T} \sum_{k=1}^{K} w_k \gamma_k (N, \tau) \log_2 \left(1 + \frac{\rho_j^k p_k E^2[\chi]}{1 + \rho_j^k \left(\frac{1}{1 + \rho_j^k \tau} + p_k \text{var}[\chi] \right)} \right)$$

- Proof Idea
 - Convert to additive noise channel where the noise is uncorrelated with the signal
 - Lower bound by worst-case Gaussian noise
Optimization of Pre-Conditioning Matrix

- Assumptions: No scheduling, M large
- If Z is $K \times M$ matrix with i.i.d. $\text{CN}(0,1)$ entries, then
 \[
 \lim_{M/K \rightarrow \infty} ZZ^* = MI_k
 \]
- Objective function
 \[
 J(p) = \sum_{i=1}^{K} w_i \log \left(1 + \frac{b_i p_i}{\sum_{j=1}^{K} a_j p_j} \right)
 \]
- Theorem: A solution that maximize $J(p)$ is
 \[
 p_i^* = \left(\frac{w_i}{v^* a_i} - \frac{1}{b_i} \right)^+, \quad \sum_{i=1}^{K} a_i p_i^* = 1
 \]
Scheduling Strategy

- Variance of channel estimate depends on reverse SINR seen by that user and training length
- Normalize the rows of the channel estimate to obtain Z with i.i.d entries
- Select N users with largest $p_i^* |z_i|^2$
- Special Case: Homogeneous users with unit weights
 - Select N users with largest estimated channel gains
Numerical Results: Homogeneous Users

- Forward SINR = 0dB
- Reverse SINR = -10dB
- Optimal training length
- Optimal number of users
Numerical Results:
Heterogeneous Users

- 8 users with forward SINRs of -4, -3, …, 3 dB
- Reverse SINR = Forward SINR - 10 dB
- T = 20 symbols
- Weight = 2 for first 4 users
- Unit weight for remaining 4 users
Conclusion

• Even with high interference and high mobility, effective utilization of multiple antennas can improve net throughput
• Importance of time division duplex
• Need to consider coherence interval while designing wireless systems
• Low complexity scheduling and precoding based schemes can give significant throughput gains