Optimal Test Sets for Context-Free Languages

Mikaël Mayer
EPFL
mikael.mayer@epfl.ch

Jad Hamza
EPFL/INRIA
jad.hamza@epfl.ch

Abstract
A test set for a formal language (set of strings) L is a subset T of L such that for any two string homomorphisms f and g defined on L, if the restrictions of f and g on T are identical functions, then f and g are identical on the entire L. Previously, it was shown that there are context-free grammars for which smallest test sets are cubic in the size of the grammar, which gives a lower bound on tests set size. Existing upper bounds were higher degree polynomials; we here give the first algorithm to compute test sets of cubic size for all context-free grammars, settling the gap between the upper and lower bound.

Keywords test sets, context-free languages, context-free grammars

1 Introduction
It is known that given a context-free language L (given by a context-free grammar G of size n), one can construct a test set T for L whose size is $O(n^5)$ $[1][2][3].$

Moreover, it was shown $[1][2][3]$ that $O(n^3)$ is a lower bound, in the sense that there exists an infinite family of context-free grammars G_1, G_2, \ldots, such that the size of G_n is $O(n)$ and the number of words contained in G_n is $O(n^3)$ but G_n does not contain a test set T as a strict subset. The only test set for G_n is G_n.

Our contribution is to prove that the $O(n^3)$ bound is in fact tight. More specifically, we give an algorithm that given a context-free grammar G of size n, produces a test set T whose size is $O(n^3)$. We thus greatly improve the original $O(n^5)$ upper bound $[1][2][3].$

2 Notations and Definitions
2.1 Grammars
A context-free grammar G is a tuple (N, Σ, R, S) where:
- N is a set of non-terminals,
- Σ is a set of terminals,
- $R \subseteq N \times (N \cup \Sigma)^*$ is a set of production rules,
- $S \in N$ is the starting non-terminal symbol.

A production $(A, \text{rhs}) \in R$ is denoted $A \rightarrow \text{rhs}$. The size of G, denoted $|G|$, is the sum of sizes of each production in R: $\sum_{A \rightarrow \text{rhs} \in R} (|\text{rhs}| + 1)$.

By an abuse of notation, we denote by G the set of words produced by G.

A grammar is linear if for every for every production $A \rightarrow \text{rhs} \in R$, the rhs string contains at most one occurrence from N.

2.2 Morphisms and Test Sets
Given a (partial) function from $f : A \rightarrow B$, and a set C, $f|_C$ denotes the (partial) function $g : A \cap C \rightarrow B$ such that $g(a) = f(a)$ for all $a \in A \cap C$.

A morphism $f : \Sigma^* \rightarrow \Gamma^*$ is a function such that $f(\epsilon) = \epsilon$ and for every $u, v \in \Sigma^*$, $f(u \cdot v) = f(u) \cdot f(v)$, where the symbol `$\cdot$' denotes the concatenation of words.

A subset $T \subseteq L$ of a language L is a test set if for any two morphisms $f, g : \Sigma^* \rightarrow \Gamma^*$, $f|_T = g|_T$ implies $f|_L = g|_L$.

3 Test Sets for Context-Free Languages
3.1 Plandowski’s Test Set
The following lemma was originally used $[1][2]$ to show that, for any linear context-free grammar, there exists a test set containing at most $O(|R|^6)$ elements. We show in Section 3.2 how this lemma can be used to show a $2|R|^3$ bound.

Let $\Sigma_4 = \{a_i, \overline{a}_i, b_i, \overline{b}_i | i \in \{1, 2, 3, 4\}\}$ be an alphabet. We define:

$$L_4 = \{x_1 x_3 x_2 x_1 : x_1 x_2 x_3 x_4 \}$$

$$\forall i \in \{1, 2, 3, 4\}, (x_i, \overline{x}_i) = (a_i, \overline{a}_i) \lor (x_i, \overline{x}_i) = (b_i, \overline{b}_i)$$

and $T_3 = L_4 \setminus \{b_4 b_3 b_2 b_1 \overline{b}_1 \overline{b}_2 \overline{b}_3 \overline{b}_4\}$.

The sets $L_4, T_3 \subseteq \Sigma_4$ have 16 and 15 elements respectively.

Lemma 1 $[1][2]$. T_3 is a test set for L_4.

3.2 Linear Context-Free Grammars
We now prove that for any context-free grammar G, there exists a test set whose size is $2|R|^3$. Like the original proof of $[1][2]$ that gave a $O(|R|^6)$ upper bound, our proof relies on Lemma 1. However, our proof uses a different construction to obtain the new, tight, bound.

Theorem 1. Let $G = (N, \Sigma, R, S)$ be a linear context-free grammar. There exists a test set $T \subseteq G$ for G containing at most $2|R|^3$ elements.

Proof. Before building the test set, we introduce some notation.

Graph of G. Define the labeled graph $\text{graph}(G) = (V, E)$ where $V = N \cup \{\bot\}$, $E \subseteq V \times V$ such that:
- for non-terminals $A, B \in N$ and a rule $r \in R$, let $(A, r, B) \in E$ iff r is of the form $A \rightarrow u B v$ where $u, v \in \Sigma^*$ (i.e., B is the only non-terminal occurring in rhs).
- for a non-terminal $A \in N$ and $r \in R$, $(A, r, \bot) \in E$ if and only if $r = A \rightarrow \text{rhs}$ for some $\text{rhs} \in \Sigma^*$.

A path of $\text{graph}(G)$ is a (possibly cyclic) sequence of edges of E, of the form: $(A_1, r_1, A_2) \cdot (A_2, r_2, A_3) \cdots (A_n, r_n, A_{n+1})$. A path is accepting if $A_1 = S$ and $A_{n+1} = \bot$.
Figure 1: The four optimal subpaths Q_1, Q_2, Q_3, and Q_4 define 15 alternative paths from S to \perp which are all strictly smaller (with respect to order $<$) than $P_{e_1}P_{e_2}P_{e_3}P_{e_4}W_5$.

Link between $\text{graph}(G)$ and G. Given a rule $A \rightarrow uBv \in R$, where $A, B \in N$ and $u, v \in \Sigma^*$, we denote $\pi(r) = u$ and $\overline{\pi}(r) = v$. For a rule of the form $A \rightarrow u$ where $u \in \Sigma^*$ we denote $\pi(r) = u$ and $\overline{\pi}(r) = \epsilon$. For a path $P = (A_1, r_1, A_2) \cdot (A_2, r_2, A_3) \cdot \cdots (A_n, r_n, A_{n+1})$ we define $\pi(P) = \pi(r_1) \cdots \pi(r_n)$, and $\overline{\pi}(P) = \overline{\pi}(r_n) \cdots \overline{\pi}(r_1)$.

Each accepting path P in $\text{graph}(G)$ corresponds to a word $\pi(P)$, and $\overline{\pi}(P)$ in G, and conversely, for any word $w \in G$, there exists an accepting path (not necessarily unique) in $\text{graph}(G)$ corresponding to w.

Total order on paths. We fix an arbitrary total order $< \in R$, and extend it to sequence of edges in R^\ast as follows. Given paths $P_1, P_2 \in R^\ast$, we have $P_1 < P_2$ iff

- $|P_1| < |P_2|$ (length of P_1 is smaller than length of P_2), or
- $|P_1| = |P_2|$ and P_1 is smaller lexicographically than P_2.

A path P is called **optimal** if it is the minimal path from the first vertex of P to the last vertex of P.

Test set for G. Let $\Phi_b(G)$ be the set of words of G corresponding to accepting paths of the form $P_{e_1}P_{e_2} \cdots P_{e_n}P_{e_{n+1}}$ where $P_i \in R^\ast$, $e_i \in E$, and for $i \in \{1, \ldots, n+1\}$, P_i is optimal, and for $i \in \{1, \ldots, n\}$, P_i is not optimal. By construction, a path in $\Phi_b(G)$ is uniquely determined (when it exists) by the choice of edges e_1, \ldots, e_n, as optimal paths between two vertices are unique. Therefore, $\Phi_b(G)$ contains at most $\sum_{k=0}^n |R|^k \leq 2|R|^n$ words.

We now show that $\Phi_b(G)$ is a test set for G (which gives us the desired bound of the theorem: $2|R|^n$). Assume there exist two morphisms $f, g : \Sigma^* \rightarrow \Gamma^*$ such that $f|_{\Phi_b(G)} = g|_{\Phi_b(G)}$ and there exists $w \in G$ such that $f(w) \neq g(w)$.

By assumption, w does not belong to $\Phi_b(G)$, and must correspond to a path $P = P_{e_1}P_{e_2} \cdots P_{e_n}P_{e_{n+1}}$ for $n \geq 4$, such that for $i \in \{1, \ldots, n+1\}$, P_i is optimal, and P_{e_i} is not optimal. We pick w having the property $f(w) \neq g(w)$ such that the path P is the smallest possible (according to the order $<$ defined above).

The path P can be written $P_{e_1}P_{e_2}P_{e_3}P_{e_4}W_5$, where for $i \in \{1, 2, 3, 4\}$, P_i is optimal, and P_{e_i} is not optimal (W_5 is not necessarily optimal). For $i \in \{1, 2, 3\}$, we define Q_i to be the optimal path from the source of P_{e_i} to its target; hence, $Q_i < P_{e_i}$. Moreover, Q_4 is defined to be the optimal path from the source of $P_{e_4}W_5$ to its target, with $Q_4 < P_{e_4}W_5$. Effectively, as shown in Figure 1 this defines 15 paths that can be derived from P by replacing subpaths by their corresponding optimal path (Q_1, Q_2, Q_3, Q_4).

Let P' be one of those 15 paths (where at least one subpath has been replaced by its optimal counterpart Q_1, Q_2, Q_3, or Q_4), and let $w' \in G$ be the word corresponding to P'. By construction of P', and by definition of the order $<$, we have $P' < P$. Since we have chosen P to be the optimal path such that f and g are not equal on the corresponding word, we deduce that $f(w') = g(w')$.

To conclude, we show that we obtain a contradiction, thanks to Lemma 1. For this, we construct two morphisms $f', g' : \Sigma_4 \rightarrow \Gamma$ as follows (i ranges over $\{1, 2, 3, 4\}$ and j over $\{1, 2, 3\}$):

- $f'(a_i) = f(\pi(Q_i))$,
- $f'(b_i) = f(\pi(P_{e_i}))$,
- $f'(b_j) = f(\pi(P_{e_j}))$,
- $f'(b_4) = f(\pi(P_{e_4}W_5))$,
- $f'(b_4) = f(\overline{\pi}(P_{e_4}W_5))$.

The morphism g' is defined similarly, using g instead of f. We can then verify that f' and g' coincide on T_4, but are not equal on the word $b_4b_3b_2b_1b_2b_3b_4 \in L_4$, thus contradicting Lemma 1. \square

3.3 Context-Free Grammars

To obtain a test set for a context-free grammar G which is not necessarily linear, Π constructs from G a linear context-free grammar $\text{Lin}(G)$ which produces a subset of G which is a test set for G.

Formally, $\text{Lin}(G)$ is derived from G as follows:

- For every productive non-terminal symbol A in G, we choose a word w_A that is produced by A.
- Every rule $r : A \rightarrow x_0 \cdots x_n$ in G, where for every i, $x_i \in \Sigma$ and A_i in N is productive, is replaced by n different rules, each one obtained from r by replacing all A_i with w_{A_i} except one.

Note that the definition of $\text{Lin}(G)$ is not unique, and depends on the choice of the words w_A. The following result holds for any choice of the words w_A.

Lemma 2 (1.2). $\text{Lin}(G)$ is a test set for G.

Using Theorem 1 we improve the $O(|G|^6)$ bound of Lemma 2 for the test set of G to $2|G|^5$.

Theorem 2. Let $G = (N, \Sigma, R, S)$ be a context-free grammar. There exists a test set $T \subseteq G$ for G containing at most $2|G|^3$ elements.

Proof. Follows from Theorem 1 and from the fact that $\text{Lin}(G)$ has at most $|G| = \sum_{A \rightarrow \text{rhs} \in R} |\text{rhs}| + 1$ rules, when constructing $\text{Lin}(G)$, each rule $A \rightarrow \text{rhs}$ of G is duplicated at most $|\text{rhs}|$ times.) \square

3.4 Construction of $\Phi_3(G)$

To construct $\Phi_3(G)$ for a linear context-free grammar $G = (N, \Sigma, R, S)$, we precompute in time $O(|N|^2|R|$), for each pair of vertices (A, B), the optimal path from A to B in $\text{graph}(G)$. Then for each possible choice of at most 3 edges $e_1 \leftarrow A_1 \rightarrow \cdots \rightarrow A_{n+1}$, with $0 \leq n \leq 3$, we construct the path $P = P_{e_1} \cdots P_{e_{n+1}}$ where each P_i is the optimal path from A_{i-1} to B_i (if it exists) with $A_0 = S$ and $B_{n+1} = \perp$ by construction. We then add the word corresponding to P to our result.

To conclude, since the length of each optimal path is bounded by $|N|$, we can construct $\Phi_3(G)$ in time $O(|N| \cdot |R|^3)$.

4 Acknowledgements

Thanks to Viktor Kuncak, Mukund Raghothaman, and Ravichandran Madhavan for the helpful talks.

References

[1] W. Plandowski. Testing equivalence of morphisms on context-free languages. In *European Symposium on Algorithms*, pages 460–470. Springer, 1994.

[2] W. Plandowski. The complexity of the morphism equivalence problem for context-free languages. 1995.

[3] W. Plandowski. Test sets for large families of languages. In *International Conference on Developments in Language Theory*, pages 75–94. Springer, 2003.