Optimizing the Sustainability of Renewable Energy: A Review on the Impart of Internet of Things

C. Mazi Chukwuemeka¹, M. Ihedioha Uchechi²*, C. Onyedeke Obinna³, Ezema Modesta², Uzo Blessing Chimezie² and A. Idoko Nnamdi⁴

¹Department of Computer Science, Federal University of Agriculture, Umudike, Nigeria.
²Department of Computer Science, University of Nigeria, Nsukka, Nigeria
³Department of Computer Science, University of Kairouan, Tunisia
⁴Department of Computer Science, Renaissance University, Nigeria.

Authors’ contributions

This work was carried out in collaboration among all authors. Author CMC designed the study and wrote the first draft of the manuscript. Authors MIU and COO managed the analyses of the study and improved on the work. Authors EM, UBC and AIN managed the literature searches and source contribution as per case maybe. All authors approved the final manuscript for publication.

ABSTRACT

The problems of energy usage wastage, conservation and optimization has always been there. Most significantly in third world countries with a high level of improper energy resource management. The world has become a global village and tending toward the transformational use of technology assets and materials to optimize the usage of renewable energy; in this case the Internet of things. Renewable Energy are actually energy source that are continually replenished naturally by nature. The internet of things are interconnected system through which hardware system device are given instruction for instance to reduce energy wastage; the potential for further reduction of fossil fuel usage and wasted energy is become cosmic. Optimization here is the appropriate management of the energy generated by energy sources through use of internet of things. The modern technology such as the internet of things is to help harness and improve in management by switching between renewable energy sources alongside the enhancement in making effective energy source at given time and energy consuming device.

*Corresponding author: E-mail: uchechi.ihedioha@unn.edu.ng;
1. INTRODUCTION

Recycling wastage in the planet earth has become an improvement concern. This is so because of industrialization, mechanization, present day life of the individuals and significantly more advances in technology. Utilization of non-sustainable power sources is especially dependable on it. This has offered increase to a worldwide temperature alteration because of consumption of ozone layer and emanation carbon gas yet additionally high caliber and stable vitality creation. Comparability with sustainable power sources, is particularly confided in strategy to limit the measure of vitality wastage. For instance, the utilization of sustainable power sources like sunlight-based vitality is particularly appropriate to the computerized frameworks. Sustainable power source and Internet of things (IoT) mechanization incorporates every single electronic segment, subsystems of the house and friends, for example, warming, carport entryway, entrance door, shades, electronic outlets and so on, to meet the solace required by condition, to such an extent that vitality the executives and streamlining of lighting and warming, ecological robotizations has been created to give specialized arrangements through the best possible usage of internet of things (IoT). Subsequently, it is improved through a utilization of correspondence organize that incorporates a couple of bent lines, fiber optics in a transport-based system or a web convention as guidelines.

The apparatus innovation and correspondence has been quickly evolving and it offers to improvement of the electronic frameworks [1]. In the enormous territory of utilization for example checking and control sustainable power sources in the business, family hardware for example home and modern computerization, water observing, wellbeing checking and so on information procurement assumes significant job. Ongoing years there is prerequisite to do the long-separation observing. Moreover, remote observing dependent on online application is known as Internet of Things (IoT) structure. In which work has been planned, executed to control and observing the family unit gear for sustainable power source lattice exchange. Where the information observing is conceivable by web browser and can be gotten through internet, browses and gadgets, for example personal (PC) or little cell phone [1]. The sustainable power source could be controlled and checked using Internet of things, gadget, condition and family unit gear, for example, warming, water tank level motioning, cooling, gas detection and so on.

Sustainable power source, this vitality sources are especially replenishable in nature and are acquired from inexhaustible sources particularly not quite the same as regular petroleum product vitality age. Instances of those sources are sun, wind, and downpour, wave and so on. The arrangement of age centers on for potential territories; power age, air and water warming/cooling, transportation, rule-off framework vitality administrations.

Internet of Things (IoT) alludes to the utilization of appropriately associated gadgets and frameworks to use information assembled by installed sensors and actuators in machines and other physical items. The objective is to construct a brilliant city where sustainable power source is appropriately advanced in a positive way. IoT is relied upon to spread quickly over the coming years and this union will release another element of administrations that improve the personal satisfaction of customers and efficiency of ventures, opening an open door that the GSMA alludes to as the 'Associated Life'. For shoppers, the IoT can possibly convey arrangements that drastically improve vitality effectiveness, security, wellbeing, instruction and numerous different parts of day by day life. For endeavors, IoT can support arrangements that improve dynamic and profitability in assembling, retail, horticulture and different divisions. Machine to Machine (M2M) arrangements - a subset of the IoT as of now utilize remote systems to associate gadgets to one another and the Internet, with negligible direct human intercession, to convey administrations that address the issues of a wide scope of enterprises. In 2013, M2M associations represented 2.8% of worldwide portable associations (195 million), demonstrating that the part is still at a moderately beginning time in its improvement. A development of M2M, the IoT speaks to the coordination of various merchants' machines, gadgets and apparatuses associated with the Internet through numerous systems. While the potential effect of the IoT is significant, a deliberate exertion is required to move past this beginning time. So as to advance the improvement of the market, a typical comprehension of the unmistakable idea of the

Keywords: Renewable energy; internet of things; optimization; conventional energy source.
open door is required. It huge to realize that portable administrator has distinguish particular element of Internet of Things; The Internet of Things can empower the following rush of life-upgrading administrations over a few basic segments of the economy, addressing the necessities of clients may require worldwide appropriation models and steady worldwide administrations, the Internet of Things presents an open door for new plug models to help mass worldwide organizations, most of income will emerge from the arrangement of significant worth included administrations.

Furthermore, flexible directors are constructing new capacities to empower these new assistance regions and Device and application conduct will put new and fluctuating requests on portable systems.

Advancement, the objective of the paper, is to have positive optimality of sustainable power source through the compelling and productive utilization of the Internet of things associated brilliant gadgets. Improvement is the demonstration of accomplishing the most ideal outcome under given conditions. Activities explore is coarsely made out of the accompanying regions; Mathematical programming strategies. These are helpful in finding the expansion of capacity of a few factors under a recommended set of requirements, stochastic procedure methods. These are utilized to examine issues which are de-scribed by a lot of irregular factors of known conveyance, Statistical techniques. These are utilized in the examination of exploratory information and in the development of experimental models.

Issues of the regular vitality sources, the use of vitality is especially unsuitable, the ordinary vitality source are comparative with the conventional framework. This technique for vitality age are probably going to course atmosphere danger in future to each living association on the natural planet. Extricating oil based goods is perilous and can be course contamination. Model, Niger Delta region in Nigeria, oil spillage, in light of this no cultivating exercises, nothing worth mentioning characteristic water and waterway are secured with oil spillage. These non-renewable energy sources are non-inexhaustible. Effectively open to fast to wrap up, the vitality source turns out to be extremely hard and progressively costly and hazardous. Consuming petroleum products (both for warming and as fuel for vehicles) is the principle wellspring of ozone depleting substances, carbon dioxide and others which influence the environment and are sheets are liquefying far quick than the UN's Intergovernmental Panel on environmental Change anticipated just earlier year (2008). The outline of the social affair nation is that the world needs to decrease ozone harming substance emanations by 80 percent by 2050. Atomic force is amazingly costly to deliver, requires incredible thoughtfulness regarding security in light of the dangers from radioactivity, has the potential for cataclysmic mishaps, (for example, the one at Chernobyl in 1986), and produces squander items which require taking care of for a large number of years. However, can possibly produce a ton of power, in the interim the hazard is especially high.

Destinations, the exploration work is center around the successful and proficient use of sustainable power sources by the usage of web of things on shrewd gadget associated with control sustainable power source quick and exchanging. The advancement, as a procedure is centered on the most ideal out, in the framework the executive’s procedure.

2. LITERATURE REVIEW

2.1 Introduction

Renewable energy resources and significant opportunities for energy efficiency exist over wide geographical areas, in contrast to other energy sources, which are concentrated in a limited number of countries. Rapid deployment of renewable energy and energy efficiency, and technological diversification of energy sources, would result in significant energy security and economic benefits, International Energy Agency, (2012). It would also reduce environmental pollution such as air pollution caused by burning of fossil fuels and improve public health, reduce premature mortalities due to pollution and save associated health costs that amount to several hundred billion dollars annually only in the United States [2]. Renewable energy sources, that derive their energy from the sun, either directly or indirectly, such as hydro and wind, are expected to be capable of supplying humanity energy for almost another 1 billion years, at which point the predicted increase in heat from the Sun is expected to make the surface of the earth too hot for liquid water to exist [3].

Climate change and global warming concerns, coupled with the continuing fall in the costs of
some renewable energy equipment, such as wind turbines and solar panels, are driving increased use of renewables. New government spending, regulation and policies helped the industry weather the global financial crisis better than many other sectors. As of 2019, however, according to the International Renewable Energy Agency, renewables overall share in the energy mix (including power, heat and transport) needs to grow six times faster, in order to keep the rise in average global temperatures “well below” 2.0°C (3.6°F) during the present century, compared to pre-industrial levels [4]. The table show the difference between conventional energy sources and renewable energy sources.

2.2 Development of Technology in Architecture in the Transition to Sustainability

Local renewable energy sources as the dominant production technology of natural capital with simultaneous renewal of ecosystems become the conditioning factor in changes to the principal concept of energy quantification of buildings. A part of the transformation, as has been shown, must not only be a new arrangement of relationships in society, including the arrangement of human settlements, but also the whole range of parameters especially in the technology of architecture expressed by the technological transformation of the building itself. This becomes a place for the collection of renewable sources and conversion of energy in situ as a part of the transformation of the organization of the energy market. Buildings cease to be only consumers of energy, and are technologically transformed to become part of the complex system of conversion and distribution of energy [5]. They become a part of energy distribution networks. And just in the interaction with these distribution networks, a new quantification of the physical energy demand of buildings is outlined, expressed by the term zero-energy building in relation to the distribution networks (Net-Zero-Energy Building), nearly-zero-energy building in relation to the distribution networks (nearly-Net-Zero-Energy Building) or plus energy building, supplying energy to the distribution networks (Net-Plus-Energy Building) [6,7].

Abdelkareem et al. [8] The work focuses on desalination processes powered by solar, geothermal, wind, and ocean energy. Towards the end, the work also outlines existing challenges and makes recommendations about future directions. The paper recommended future works to be based on a review of the use of renewable energy sources used to power desalination processes based on the operating conditions and parameters that affect water production levels.

Hrvoje et al. [9] This paper presents a novel approach for defining energy system of a carbon neutral island which utilizes only intermittent renewable energy sources in combination with vehicle-to-grid concept as a demand response technology, where marine transportation has also been taken into account. It also selected Power supply capacities have been selected not by using scenario analysis but by implementing an optimization procedure based on series of simulations in Energy PLAN tool. It defined two boundaries in order to select most suitable power supply system configuration, one the use of only solar and wind capacities utilization and secondly, total electricity import and export balance calculation.

Simon et al. [10] This paper focuses on factors of decarbonization in renewables energy generation such as solar photovoltaic and wind power. The paper also focuses on the challenges in renewable power systems generations without extant literature, however, lacks clarity on the scope of the challenges and the solution technologies to address them. This study

Conventional energy sources	Renewable energy sources
This energy sources have been in use e.g. coal, petroleum, and natural gas and water power.	The energy sources are still in process of development e.g. solar, wind, tidal, biogas and biomass, geothermal
Naturally, exhaust able except water	Inexhaustible
High level of pollution that destroy ozone layers	Generally, pollution free
Very expensive to maintain, store and transmitted, because of long distance carried transmission grid and lines.	Less expensive due to local use and easy tp maintain.
provides solution technologies which vary significantly in their potential to solve certain challenges which focuses on cost-effective options and also ability to identify groups of solution technologies that can help mitigate certain challenge groups. With this development it specifies the need for specific solution technologies.

2.3 Knowledge Gap

Renewable energy is derived from natural processes that are replenished instantly on a serial and gradual process. In its various forms. It derives directly from the sun or from heat generated deep within the earth. The energy sources are solar, wind, ocean, hydropower etc derived from renewable resources. The research work looks forward to optimization of renewable energy through the use of technology, the Internet of Things. The optimization, is the most effective, efficient management and usage of different energy sources. The following are the expository knowledge of the research work;

1. Renewable energy proper management.
2. Effective and efficient usage of the renewable energy sources.
3. Optimization of different energy source through the use of internet of things
4. Replacement of the existing conventional energy source i.e. fossil fuel energy source/non-renewable energy source causes environment pollution and emit hazardous gases.

3. RENEWABLE ENERGY SOURCES AND POWER CAPACITY GENERATION

Vitality wastage are to be placed into thought to decrease/destroy it damaging consequences for future savvy city. A shrewd city, is a situation where vitality source is appropriate administration comparative with the limit of the gadget in current use. Sustainable power source are quicker expending yet renews with a given thing. The limit of vitality age likewise should put to thought, the explanation is that the distinctive source has ideal vitality ability to be produce per given time. This area will introduce a table to look at changed sustainable power source and limit of vitality created every second. The most manageable vitality sources are inexhaustible bioenergy (wood, biomass, vitality crops), geothermal (profound or shallow), sun-oriented vitality (photovoltaic, sun powered warm), hydro and wind vitality. Since significantly more, requests of sizes progressively, sun powered vitality hits the earth than is required for human needs, the all-out capability of sustainable power sources is by all accounts practically vast. The expressions “sustainable power source” and “vitality sources” don’t bode well genuinely, since in material science the vitality protection law restricts a source or reestablishment of vitality; just changes are permitted. From a physical perspective, it is smarter to define this as “accessibility of economical energies” rather than “capability of sustainable power sources”.

![Fig. 1. Energy consumption [11]](image-url)
Fig. 2. Renewable energy consumption

3.1 Demographic Representation of Global Energy Consumption

All information preceding the year 1965 is sourced from [12]. All information from 1965 onwards, except for conventional biomass is sourced from BP Statistical Review. Smil’s evaluations of conventional biomass have been utilized for the full arrangement, with insertion of yearly changes by Our World in Data between announced 5-year augments by Smil. Customary biomass for the years 2016 and 2017 have been assessed dependent on the estimated pace of progress in the past 5 years from Smil information. Our World in Data has standardized all BP information to terawatt-hours (TWh) utilizing a transformation factor of 11.63 to change over petroleum derivative vitality sources from million tons of oil comparable (Mtoe) to TWh. Information speaks to essential vitality (as opposed to definite vitality) utilization. ‘Other renewables’ speaks to every sustainable source less sunlight based, wind, and hydropower (for example geothermal, wave and tidal, and present day biofuels).

3.2 Modern Renewable Energy Consumption

Sustainable advances with special case to conventional biomass are regularly named ‘current renewables’. These incorporate hydropower, sun based, wind, geothermal and present day biofuel creation (counting current types of waste-to-biomass change). The change and blend of current sustainable utilization throughout the most recent 50 years is appeared in the outline underneath. This is estimated in terawatt-hours out of each year and can be seen over a scope of nations and areas. All inclusive, the world created roughly 5.9 TWh of current sustainable power source in 2016. This speaks to a 5 to 6-overlap increment since the 1960s. Here we see that hydropower remains the predominant type of present day renewables utilization, representing right around 70 percent. Regardless of outright development underway, hydropower’s offer is, be that as it may, declining another sustainable innovations develop.

3.3 Optimization Based on Predicting Maintenance Period

Support issues have been concentrated widely. Lyonnet [13] Summarized upkeep approaches, support arranging, and science for support enhancement. Dekker [14] Checked on the support improvement models and talked about potential research openings. Ben-Daya et al. [15] Gave the most recent improvement in the zone of upkeep arranging and planning for one volume of writing. Streamlining models expect to help in deciding successful and productive calendars and plans, considering a wide range of imperatives. A fresher upkeep strategy, condition-based support (CBM), which is directed in a circumstance where the exhibition records are intermittently or persistently observed [16] is
required. CBM is intended to adjust the upkeep cost during remedial support (CM) and preventive upkeep (PM), and it has pulled in a ton of consideration from the two specialists and industry.

Advances in detecting and data assortment empower and upkeep organizers to gather and break down the continuous status of target frameworks. The present conditions, yet in addition the future disappointment forecast dependent on prognostics can be applied in support advancement. Prognostics give data to support organizers and administrators to settle on proactive upkeep choices. Prognostic strategies additionally have been concentrated widely [17]. Analysts began to contemplate support planning dependent on unwavering quality and prognostics. Grall et al. [18] proposed a choice model to improve upkeep making arrangements for frameworks with a Gamma breaking down procedure. Yang et al. [19] proposed a technique for planning of upkeep tasks in an assembling framework utilizing the constant appraisal and expectation of the degree of execution corruption of assembling gear, just as the unpredictable association between the creation procedure and support activities. Broadened the possibility of Yang et al. [20] into non-creation framework by thinking about the framework tasks and support limitations.

4. CONCLUSION

Producing power from sustainable power sources can give immediate and backhanded monetary values and advantages in abundance and also leads to a natural way through which we decrease of CO₂ outflow and harmful gas. This avoids the defensive stratum in the climate, and the layers fills in as defensive shield from sun heat emanation. This examination work prescribes the reconciliation of approaches that advance inexhaustible/common vitality sources (sun powered, wind, biomass, hydropower, and geothermal) for supportable and sans carbon vitality. It is anticipated that about 57% of all out vitality request could be created from sustainable sources by 2050. The sustainable power source power age incorporated into the shrewd matrix framework can be probably the best choice for future vitality optimality and legitimate administration of the vitality. The savvy network framework tends to the debasement of vitality source and present day data innovation for correspondence and improves the proficiency of intensity appropriation. A brilliant lattice can change the twentieth century power framework as a progressively savvy, adaptable, solid, self-adjusting, and intuitive system that empowers monetary development, natural oversight, operational effectiveness, vitality security, and expanded purchaser control. Additionally, the shrewd matrix would make new markets as private businesses create vitality productive and keen apparatuses, new correspondence abilities, and brilliant meters. Brilliant framework can supplant customary types of vitality with inexhaustible wellsprings of age. Sustainable power source is constantly required by earthy people with expectations of building up a cleaner and progressively productive force age. A shrewd network is ecologically gainful in light of the fact that it uses the dissemination of inexhaustible sources. Brilliant framework offers an authentic way toward noteworthy natural improvement.

In ending, we are taking a gander at vitality utilization rate and waste advancement. The exploration here, major sustainable power source exchanging relying upon the gadget being referred to the gadget expending the vitality. We also taking a gander at the optimality impacts and effectiveness and legitimate administration by coordinating web of things to deal with the sustainable power source recycle of procedure engaged with the framework. The sustainable power source are interconnected to one another by means of web convention. Interests in shifting renewable energy to mainstream sustainable development are recently growing, due in part to the expanding commercial markets for renewable energy that are shifting investment patterns away from traditional government and international donor sources toward a greater reliance on private firms and banks [21].

We can see that Switching to renewable energy resources in Nigeria has led to positive contributions to rural development, lower health costs (linked to reduced-air pollution), energy independence, and climate change mitigation. Akuru and Okoro [21] While renewable energy still cannot compete with fossil fuels on price, the margins are narrowing: major improvements in energy efficiency and renewable-energy production costs have decreased the amount of capital needed for key applications.

There is still a need for capital investment, but costs have often fallen by more than 75% in the last five years [22]. Because Nigeria's fossil fuel-based economy will undoubtedly come to an end, searching for alternatives early is of utmost importance. With an abundance of renewable resources and growing government support, the
ability for Nigeria to incorporate renewable energy into its power grid is ever increasing.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Mukesh Kumar, Sanjeev Sharma, Mansav Joshi. Design of real time data acquisition with multi node embedded systems. IJCA. 2012;42(11):6–12.

2. Jacobson, Mark Z, et al. 100% clean and renewable wind, water, and sunlight (WWS) all-sector energy roadmaps for the 50 United States*. Energy and Environmental Science. 2015;8(7):2093–2117. DOI:10.1039/C5EE01283J

3. Schröder KP, Smith RC. Distant future of the Sun and Earth revisited. Monthly Notices of the Royal Astronomical Society. 2008;386(1):155–163. arXiv:0801.4031. Bibcode:2008MNRAS.386..155S. DOI:10.1111/j.1365-2966.2008.13022.x.

4. Palmer J. Hope dims that Earth will survive Sun's death. New Scientist; 2008. Retrieved 24 March 2008.

5. Shruti G. Suryawanshi, Suresh A. Annadate, Raspberry Pi based Interactive Smart Home Automation System through E-mail using Sensors. International Journal of Advanced Research in Computer and Communication Engineering. 2016;5(2).

6. Marszal A, et al. Zero energy building – A review of definitions and calculation Methodologies, Energy and Buildings, Elsevier; 2011.

7. Sartori I, Napolitano A, Was K. Net zero energy buildings: A consistent definition framework, Energy and Buildings, Elsevier; 2012.

8. Abdelkareem MA, El Haj Assad M, Sayed ET, Soudan B. Recent progress in the use of renewable energy sources to power water desalination plants. Desalination. 2018;435:97–113.

9. Hrvoje Dorotić, Borna Doračić, Viktorija Do bravec, Tomislav Pukšec, Goran Krajačić, Neven Duic, Integration of transport and energy sectors in island communities with 100% intermittent renewable energy sources Elsevier, Renewable and Sustainable Energy Reviews. 2018;99: 109-124.

10. Simon R, Sinsel Rhea L, Riemke C Volker, Hoffmann H. Challenges and solution technologies for the integration of variable renewable energy sources—A review Elsevier, Renewable Energy. 2019;145:2271-2285 Available:https://doi.org/10.1016/j.renene.2019.06.147

Available online 4 July 2019.

11. Vaclav Smil. Energy Transitions: Global and National Perspectives. & BP Statistical Review of World Energy; 2017.

12. Roberto Cantoni. Energy and civilization. A history (Vaclav Smil, 2017). Journal of Energy History/Revue d'Histoire de l'Energie [Online], n°1, published 04 December 2018, consulted 23 April 2020. Available:energyhistory.eu/en/node/90.

13. Lyonnet P. Maintenance planning: Methods and mathematics, Champman & Hall; 1991.

14. Dekker R. Application of maintenance optimization models: a review and analysis, Reliability Engineering and System Safety. 1996;51:229-240.

15. Ben-Daya M, Duffuaa S, Raouf A. Maintenance, modeling and optimization, Kluwer Academic Publisher; 2000.

16. Barbara F, Schneider H, Kelle P. A condition based maintenance model with exponential failures and fixed inspection interval, The Journal of the Operational Research Society. 1996;47:1037-1045.

17. Christr A, Wang W, Sharp J. A model of condition mentoring of production plant, International Journal of Production Research. 1992;30(9):2199-2211.

18. Grall A, Dieulle L, Berenguer C, Roussignol M. Continuous-time predictive maintenance scheduling for a deteriorating system, IEEE Transactions on Reliability. 2002;51:141-150.

19. Yang V, Brill T, Ren WZ. (Eds). Solid-propellant chemistry, combustion, and motor interior ballistics, progress astronautics and aeronautics. 2000;185:990.

20. Yang W, Guo X, Yao T, Yang K, Zhao L, Li S, Zhu M. Summertime surface energy budget and ablation modeling in the
ablation zone of a maritime Tibetan glacier, J. Geophys. Res. 2011;116: D14116. Available:https://doi.org/10.1029/2010JD015183

21. Akuru UB, Okoro OI. Renewable energy investment in Nigeria: A review of the renewable energy master plan. J. Energy South. Afr. 2014;25(3).

22. Newsom C. Renewable energy potential in Nigeria: Low-carbon approaches to tackling Nigeria’s energy poverty. International Institute for Environmental Development; 2012.