Vitamin D is a strong risk marker for cardiovascular (CV) risk factors and diseases (1) and may be negatively associated with CV diseases (2, 3). An elevated low-density lipoprotein level is associated with an increased risk of coronary artery disease (4, 5) and stroke (5) in Japanese patients. Furthermore, low high-density lipoprotein cholesterol (HDL-C) is associated with the risk of developing CAD and stroke, while a high HDL-C decreases this risk, in Japanese men and women (6, 7).

The risk of CAD can be reliably predicted using serum non-high-density lipoprotein cholesterol (non-HDL-C) (8, 9). High serum non-HDL-C levels are associated with a greater risk of CAD (10). Non-fasting and fasting triglycerides (TGs) are predictive of the risk of ischemic CV disease in Japanese men and women (11). Non-fasting serum TG levels predict the incidence of CAD in Japanese men and women (12).

In a cohort study in Japan, the metabolic syndrome was found to be predictive of CAD and ischemic stroke (13) and in a prospective population survey in Japan, casual blood glucose levels predicted CAD and CV disease mortality in a Japanese population (14). Furthermore, type 2 diabetes mellitus was found to be a significant risk factor for both cerebral infarction and CAD (15) and a Japanese cohort study also found that type 2 diabetes mellitus was a significant risk factor for non-embolic ischemic stroke (16).

A modest inverse association between serum 25-hydroxyvitamin D (25(OH)D) levels and the risk of all-cause death among diabetic participants has been shown; indicating a good predictive factor in the community (17).

An inverse and significant association between circulating 25(OH)D levels and the risk of type 2 diabetes mellitus was also found across a broad range of blood 25(OH)D levels in diverse populations (18). Higher serum 25(OH)D levels are thus associated with reduced odds of type 2 diabetes mellitus (19). Type 2 diabetic patients with poor glycemic control have been shown to have lower concentrations of serum 25(OH)D with glycated hemoglobin A1c (HbA1c) being an independent risk factor for low 25(OH)D (20).

Vitamin D deficiency has been associated with higher TC, LDL-C, and TG levels in middle-aged and elderly Chinese individuals (21) with low vitamin D levels being a risk factor for the metabolic syndrome in northern Finland (22). Furthermore, in a previous study, 25(OH)D level was inversely correlated with the LDL/HDL and TG values in Japanese men (23). However, the association between 25(OH)D levels and lipid profiles in Japanese patients with type 2 diabetes mellitus has not been reported. Therefore, the purpose of this study was to evaluate the association between serum 25(OH)D concentrations and lipid profiles in Japanese subjects with type 2 diabetes mellitus.

MATERIALS AND METHODS

Patients. In this case control study, type 2 diabetic patients attending the Manda Memorial Hospital from March to October 2017 were selected. The exclusion criteria were: having an estimated glomerular flow rate (eGFR) < 30 mL/min, type 1 diabetes mellitus, being
The data were represented as mean±SD (for data with normality) or median (range) (for data with non-normality).

SD: standardized deviation, BMI: body mass index, PG: plasma glucose, Cr: creatinine, eGFR: estimated glomerular filtration rate, uAlb/Cr: urine albumin/creatinine ratio, ALT: alanine aminotransferase, AST: aspartate aminotransferase, γ-GTP: γ-glutamyl transpeptidase, TC: total cholesterol, TG: triglyceride, LDL-C: low-density lipoprotein cholesterol, HDL-C: high-density lipoprotein cholesterol, non-HDL-C: non-high-density lipoprotein cholesterol, L/H: LDL-C/HDL-C, 25(OH)D: 25-hydroxyvitamin D.

Table 1. Patient’s characters (continuous variables).

Continuous variable	Mean±SD or median (range)
Age (y)	61.4±12.1
BMI (kg/m²)	26.4±16.2
Duration of DM (y)	9 (0.17–41)
HbA1c (%)	7.2 (5.5–11.5)
PG (mg/dL)	150 (77–416)
Cr (mg/dL)	0.83 (0.48–1.74)
eGFR (mL/min)	67.2±15.5
uAlb/Cr (mg/gCr)	8.1 (0.6–1,409.8)
ALT (U/L)	62 (21–93)
AST (U/L)	22 (13–80)
γ-GTP (U/L)	29 (10–285)
TC (mg/dL)	187.6±30.3
TG (mg/dL)	134 (44–1,680)
LDL-C (mg/dL)	102.1±26.0
HDL-C (mg/dL)	56.5±13.7
Non-HDL-C (mg/dL)	131.2±31.1
L/H	1.8 (0.6–3.9)
25(OH)D (ng/mL)	17.0±6.2

The background variables included age, sex, alcohol consumption, current smoking, timing of blood sampling, BMI, duration of diabetes mellitus (DM), estimated glomerular filtration rate (eGFR), urine albumin/creatinine ratio (uAlb/Cr), HbA1c, plasma glucose (PG), serum creatinine (Cr), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and γ-glutamyl transpeptidase (γ-GTP) levels, the presence of CAD, history of stroke, and use of insulin, anti-hypertensive agents (AHT agents), statins, fibrates, cholesterol absorption inhibitors (CAI), and eicosapentaenoic acid/docosahexaenoic acid.

25(OH)D levels were measured using a chemiluminescent immunoassay (CLI).

Statistical analysis. All the statistical analyses were performed using EZR, version 1.53 (24). A Kolmogorov-Smirnov test was performed to assess the normality of the data distribution. The data were represented as mean±standard deviations (SDs) (for normally distributed data) or medians (ranges) (for non-normally distributed data). Non-normally distributed continuous variables were log-transformed using 10 as the base.

For the continuous variables, comparisons of 25(OH)D values between the groups were performed using the Student’s t-test (when both groups were more than 30) or the Mann-Whitney U test (when one group was less than 30).

For the continuous variables, the Pearson’s product-moment correlation was used to examine the correlation with 25(OH)D. The duration of DM, and the HbA1c, PG, uAlb/Cr, ALT, AST, γ-GTP, TG, and L/H

Table 2. Patient’s characters (nominal variables).

Nominal variable	No (n)	Yes (n)	Yes (%)
Sex (female)	178	107	37.5
Alcohol consumption	225	57	20
Current smoking	186	99	34.7
Sampling timing			
(Fast/Postprandial)	42	243	85.3
CAD	264	21	7.4
Stroke	260	25	8.8
Insulin use	206	79	27.7
AHT agent	176	109	38.2
Statin	136	149	52.3
Fibrate	266	19	6.7
CAI	259	26	9.1
EPA/DHA	280	5	1.8

Sex was defined as male=No/female=Yes.
Sampling was defined as Fast=No/Postprandial=Yes.
Sampling: the timing of blood sampling.
CAD: coronary artery disease, AHT: anti-hypertensive, CAI: cholesterol absorption inhibitor, EPA/DHA: eicosapentaenoic acid/docosahexaenoic acid.

25 Hydroxyvitamin D and Lipid Profiles In Type 2 Diabetes Mellitus
parameters were log-transformed for the analysis.

Multiple linear regression analyses were performed to assess the associations between the serum 25(OH)D concentration (the independent variable) and the lipid profiles (the dependent variables), adjusted for age, sex, BMI, eGFR, insulin use, duration of DM, HbA1c, alcohol consumption, current smoking, and sampling time. The level of statistical significance was set at $p < 0.05$. In addition, correlations were analyzed for 25(OH)D and lipid profiles (TC, TG, LDL-C, HDL-C, non-HDL-C and L/H), and multiple regression analysis was conducted as above (adjust without sex) by gender.

RESULTS

This study enrolled 285 patients with type 2 diabetes mellitus. Patient characteristics and the blood parameters (continuous variables) are presented in Table 1. The mean 25(OH)D concentration was 17.0 ± 6.2. The mean age was 61.4 ± 12.1. The median duration of DM was 9 y (0.17–41 y). The median HbA1c was 7.2 (5.5–11.5). Patient characteristics (nominal variables) are presented in Table 2. Females accounted for 37.5% of
The relationship between the serum 25(OH)D levels and patient characteristics (nominal variables) is shown in Table 3. Significant differences in 25(OH)D values between the groups were observed for sex (p<0.001***). The 25(OH)D levels were significantly lower in women, but the differences were not significant for insulin use, alcohol consumption, current smoking, the timing of sampling, presence of CAD, history of stroke, and use of AHT agent, statin, fibrate, CAI, and EPA/DHA.

The relationships between serum 25(OH)D levels and patient characteristics (continuous variables) are shown in Table 4. The data are presented as Pearson product-moment correlations. The correlation with the 25(OH)D value was significant for the background variables of age (r=0.016*), BMI (r<0.001***), and the duration of DM (r=0.019*). The correlation with the 25(OH)D value was also significant for TG (r<0.001***), and non-HDL-C (r=0.015*).

To investigate whether the serum 25(OH)D concentration was independently related to the blood lipid profiles, multivariate linear regression analyses using blood lipids as the dependent variable were performed and the results are shown in Table 5. Model 1 showed that the
25(OH)D concentration was negatively correlated with the TG level \((p<0.001^{***})\) after adjusting for age, sex, BMI, eGFR, insulin use, and duration of DM. The significance of the correlation between the 25(OH)D concentration and non-HDL-C disappeared in Model 1. In Model 2 (adjusted for the Model 1 characters plus HbA1c), Model 3 (adjusted for the Model 2 characters plus alcohol consumption and current smoking), Model 4 (adjusted for the Model 3 characters plus sampling timing), the associations between 25(OH)D concentrations and TG level were statistically significant \((p<0.01^{**})\).

The association between 25(OH)D concentration and non-HDL-C level was not significant after the adjustments, and although statistically significant before adjustments, the associations between 25(OH)D concentrations and the other lipid profiles (TC, HDL-C, LDL-C, and L/H) were no longer significant after the adjustments.

In statistical analysis by sex, the relationships between serum 25(OH)D levels and lipid profiles are shown in Table 6. The data are presented as Pearson product-moment correlations. The correlation with the 25(OH)D value was significant for TG both in male \((p=0.0018^{**})\) and female \((p<0.001^{***})\) and for HDL-C in male \((p=0.048^*)\).

DISCUSSION

This case-control study was conducted to examine whether serum 25(OH)D concentrations were associated with circulating lipid profiles in Japanese patients with type 2 diabetes mellitus. Our results showed that the serum 25(OH)D concentrations were inversely correlated with the TG levels, even after controlling for potential confounding factors, such as age, sex, BMI, eGFR, insulin use, and duration of DM, HbA1c, alcohol consumption, current smoking, and sampling timing. By sex, similar results were shown.

Wang et al. showed that the lipid profile (particularly TC and TG) mediated the relationship between 25(OH)D or total 25(OH)D and IFG or type 2 diabetes mellitus in Chinese rural adults \((25)\) and Yu et al. reported that TG and LDL-C were inversely correlated with 25(OH)D concentration in Korean patients with type 2 diabetes mellitus \((26)\). As mentioned above, lipid profiles and 25(OH)D concentrations have been shown to be related in Asian patients with type 2 diabetes mellitus; however, the variables were different.

Table 7. Multiple regression analysis of the associations between serum 25(OH)D concentrations and lipid parameters.

Variable	Model 1’ (Male)	Model 2’ (Male)	Adjusted R²	Model 1’ (Female)	Model 2’ (Female)	Adjusted R²		
	B	β	p	Adjusted R²	B	β	p	Adjusted R²
TC	-0.363	-0.075	0.336	0.016	-0.294	-0.061	0.432	0.035
TG	-0.0076	-0.187	0.014*	0.096	-0.0069	-0.169	0.023*	0.128
LDL-C	-0.0062	-0.0015	0.984	0.012	0.046	0.011	0.885	0.026
HDL-C	0.206	0.100	0.182	0.098	0.190	0.092	0.221	0.100
Non-HDL-C	-0.57	-0.114	0.140	0.051	-0.484	-0.097	0.204	0.081
L/H	-0.0016	-0.068	0.377	0.071	-0.0013	-0.053	0.481	0.088

B: unstandardized estimated regression coefficients; β: standardized estimated regression coefficients.
Model 1’: adjusted for age, BMI, eGFR, insulin use, duration of DM.
Model 2’: as in Model 1’ plus HbA1c.
Statistical significance *\(p<0.05\), **\(p<0.01\).
In Japanese subjects, TG, L/H, ApoB, and ApoB/ApoA-1 levels were shown to be inversely associated with 25(OH)D concentrations, but only in men (23) and serum 25(OH)D was found to be inversely correlated with higher TC, LDL-C, and TG levels in middle-aged and elderly Chinese individuals (21). Moreover, a cross-sectional study (the VLDL-3 study) showed that a deficiency in serum 25(OH)D was associated with significantly lower HDL-C and higher directly measured LDL-C, intermediate-density lipoprotein cholesterol, very low-density lipoprotein cholesterol, remnant lipoprotein cholesterol, and TG (27).

The metabolic syndrome is a cluster of the most dangerous heart attack risk factors: diabetes, increased fasting plasma glucose, abdominal obesity, high cholesterol, and high blood pressure; insulin resistance and central obesity are potential risk factors for the metabolic syndrome (28). (International Diabetes Federation. 2006. The IDF consensus worldwide definition of the metabolic syndrome. Available at: http://www.idf.org/webdata/docs/IDF_Metadef_final.pdf). The metabolic syndrome was fund to be inversely associated with the 25(OH)D concentration (29), suggesting that vitamin D status was inversely correlated with the homeostasis model assessment as an index of insulin resistance (HOMA-IR) (30). TG levels have also been correlated with insulin resistance (31).

The relationship between TG and 25(OH)D can be explained by insulin resistance, which is an essential factor in type 2 diabetes mellitus. Thus, it can be suggested that the relationship between TG and 25(OH)D is stronger in patients with type 2 diabetes mellitus and dyslipidemia.

This study had several strengths. First, this study was single-centered and with a focus on a fixed condition. Second, the study was conducted in the same year (2017), and the blood samples were measured using the same method. The 25(OH)D samples were all measured using the CLIA method. Third, this study was conducted under real clinical conditions, and all the patients were included regardless of sampling timing (fasting/postprandial), and both males and females were included. In addition, the association between lipid profile and 25(OH)D in type 2 diabetes was shown by sex.

This study also had several limitations. First, the target population was limited to patients with type 2 diabetes mellitus. Decreased insulin secretion and increased insulin resistance were expected compared to non-diabetic patients. Second, the food intake was not consistent. Fasting and postprandial patients were mixed and inconsistent. Third, this study was case-controlled and retrospective. Fourth, subjects who were taking active vitamin D medication were excluded but vitamin D intake (i.e., food supplements) was not considered in this study because of the lack of data.

Despite these limitations, this study was the first to identify the associations between 25(OH)D and lipid profiles and found that 25(OH)D was inversely associated with TG in Japanese subjects with type 2 diabetes mellitus.

In conclusion, this study revealed that serum 25(OH)D levels are inversely associated with TG levels after adjustment for patient characteristics in Japanese patients with type 2 diabetes mellitus.

Authorship

BH designed the research; BH, TS, and MN performed the research and interpretation of data; BH, TS, and MN were involved in obtaining ethical approval; BH and TS wrote the first draft of the manuscript; and all authors reviewed and edited the manuscript and approved the final version of the manuscript.

Disclosure of state of COI

The authors have no conflicts of interest, financial or otherwise, to disclose.

Acknowledgments

We would like to thank Editage (www.editage.com) for English language editing.

REFERENCES

1) Gründler MR, Mähr W, Pilz S, Grummer TB, Trummer C, Müllner C, Schweitz V, Pandis M, Verheyen N, Tomaszczitz A, Fiordelisi A, Laudisio D, Cipolletta E, Iaccarino G. 2017. Vitamin-D concentrations, cardiovascular risk and events—a review of epidemiological evidence. Rev Endocr Metab Disord 18: 259–272.
2) Norman PE, Powell JT. 2014. Vitamin D and cardiovascular disease. Circ Res 114: 379–393.
3) Wang TJ, Pencina MJ, Booth SL, Jacques PF, Ingelsson E, Lanier K, Benjamin EJ, D’Agostino RB, Wolf M, Vasan RS. 2008. Vitamin D deficiency and risk of cardiovascular disease. Circulation 117: 503–511.
4) Imano H, Noda H, Kitamura A, Sato S, Kiyama M, Sankai T, Ohira T, Nakamura M, Yamagishi K, Ikeda A, Shimamoto T, Iso H. 2011. Low-density lipoprotein cholesterol and risk of coronary heart disease among Japanese men and women: the Circulatory Risk in Communities Study (CIRCS). Prev Med 52: 381–386.
5) Imamura T, Doi Y, Arima H, Yonemoto K, Hata J, Kubo M, Tanizaki Y, Ibayashi S, Iida M, Kiyohara Y. 2009. LDL cholesterol and the development of stroke subtypes and coronary heart disease in a general Japanese population: the Hisayama study. Stroke 40: 382–388.
6) Kitamura A, Ido H, Naito Y, Iida M, Konishi M, Folsom AR, Sato S, Kiyama M, Nakamura M, Sankai T. 1994. High-density lipoprotein cholesterol and premature coronary heart disease in urban Japanese men. Circulation 89: 2533–2539.
7) Iso H, Sato S, Kitamura A, Imano H, Kiyama M, Yamagishi K, Cui R, Tanigawa T, Shimamoto T. 2007. Metabolic syndrome and the risk of ischemic heart disease and stroke among Japanese men and women. Stroke 38: 1744–1751.
8) Tanabe N, Ido H, Okada K, Nakamura Y, Harada A, Ohashi Y, Ando T, Ueshima H: Japan Arteriosclerosis Longitudinal Study Group. 2010. Serum total and non-high-density lipoprotein cholesterol and the risk prediction of cardiovascular events—the JALS-ECC—. Circ J 74(7): 1346–1356.
272

Bando H et al.

T. Imano H, Ohira T, Sato S, Yamagishi K, Iso H. 2011. Association between non-high-density lipoprotein cholesterol levels and the incidence of coronary heart disease among Japanese: the Circulatory Risk in Communities Study (CIRCS). J Atheroscler Thromb 18: 454–463.

Usui T, Nagata M, Hata J, Mukai N, Hirakawa Y, Yoshida D, Kishimoto H, Kitazono T, Kiyohara Y, Ninomiya T. 2017. Serum non-high-density lipoprotein cholesterol and risk of cardiovascular disease in community dwellers with chronic kidney disease: the Hisayama study. J Atheroscler Thromb 24: 706–715.

Iso H, Imano H, Yamagishi K, Ohira T, Cui R, Noda H, Sato S, Kiyama M, Okada T, Hisatsuno S, Tanigawa T, Kitamura A. CIRCS Investigators. 2014. Fastiging and non-fasting triglycerides and risk of ischemic cardiovascular disease in Japanese men and women: the Circulatory Risk in Communities Study (CIRCS). Atherosclerosis 237: 361–368.

Kadowaki S, Okamura T, Hozawa A, Kadowaki T, Kadota A, Murakami Y, Nakamura K, Saitoh S, Nakamura Y, Hayakawa T, Kita Y, Okayama A, Ueshima H; NIPPON DATA Research Group. 2008. Relationship of elevated casual blood glucose level with coronary heart disease, cardiovascular disease and all-cause mortality in a representative sample of the Japanese population. NIPPON DATA80. Diabetologia 51: 575–582.

Fujishima M, Kiyohara Y, Kato I, Ohmura T, Iwamoto H, Nakayama K, Ohmori S, Yoshitake T. 1996. Diabetes and cardiovascular disease in a prospective population survey in Japan: The Hisayama study. Diabetes 45 (Suppl 3): S14–S16.

Iso H, Imano H, Kitamura A, Sato S, Naito Y, Tanigawa T, Ohira T, Yamagishi K, Iida M, Shimamoto T. 2004. Type 2 diabetes and risk of non-embolic ischaemic stroke in Japanese men and women. Diabetologia 47: 2137–2144.

Chien KL, Hsu HC, Chen PC, Lin SJ, Su TC, Chen ME, Lee YT. 2015. Total 25-hydroxyvitamin D concentration as a predictor for all-cause death and cardiovascular event risk among ethnic Chinese adults: a cohort study in a Taiwan community. PLoS One 10: e0123097.

Song Y, Wang L, Pittas AG, Del Gobbo LC, Zhang C, Manson JE, Hu FB. 2013. Blood 25-hydroxyvitamin D levels and incident type 2 diabetes: a meta-analysis of prospective studies. Diabetes Care 36: 1422–1428.

Yuan S, Jiang X, Michaelsson K, Larsson SC. 2019. Genetic prediction of serum 25-hydroxyvitamin D, calcium, and parathyroid hormone levels in relation to development of type 2 diabetes: a Mendelian randomization study. Diabetes Care 42: 2197–2203.

Zhao H, Qi C, Zheng C, Gan K, Ren L, Song G. 2020. Effects of glycated hemoglobin level on bone metabolism biomarkers in patients with type 2 diabetes mellitus. Diabetes Metab Syndr Obes 13: 1785–1791.

Guan C, Fu S, Zhen D, Li X, Niu J, Cheng J, Zhao N, Liu J, Yin H, Tang X. 2020. Correlation of serum vitamin D with lipid profiles in middle-aged and elderly Chinese individuals. Asia Pac J Clin Nutr 29: 839–845.

Matt SJ, Jokelainen J, Sebert S, Auvinen J, Järvelin MR, Keinänen-Kiukaanniemi S, Herzig KH. 2019. Vitamin D status and components of metabolic syndrome in older subjects from northern Finland (latitude 65 north). Nutrients 11: 1229.

Sun X, Cao ZB, Tanisawa K, Ito T, Oshima S, Ishimi Y, Tabata I, Higuchi M. 2015. Associations between the serum 25(OH)D concentration and lipid profiles in Japanese men. J Atheroscler Thromb 22: 355–362.

Kanda Y. 2013. Investigation of the freely available easy-to-use software ‘EZIR’ for medical statistics. Bone Marrow Transplantation 48: 452–458.

Wang L, Xi Y, Hou J, Wei D, Liu P, Fan K, Zhang L, Nie L, Li X, Hsiao W, Jing T, Li W, Wang C, Mao Z. 2020. Serum vitamin D affected type 2 diabetes though altering lipid profile and modified the effects of testosterone on diabetes status. Nutrients 13: 90.

Yu JR, Lee SA, Lee JG, Seong GM, Ko SJ, Koh G, Kong MH, Park KY, Kim BJ, Lim DM, Lee DH. 2012. Serum vitamin D status and its relationship to metabolic parameters in patients with type 2 diabetes mellitus. Chonnam Med J 48: 108–115.

Lapton JR, Faridi KF, Martin SS, Sharma S, Kulkarni K, Jones SR, Michos ED. 2016. Deficient serum 25-hydroxyvitamin D is associated with an atherogenic lipid profile: The Very Large Database of Lipids (VLDL-3) study. J Clin Lipidol 10: 72–81.e1.

Grundy SM, Brewer HB Jr, Cleeman JI, Smith SC Jr, Lantzer C, American Heart Association: National Heart, Lung, and Blood Institute. 2004. Definition of metabolic syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation 109: 433–438.

Kayaniyil S, Harris SB, Retnakaran R, Vieth R, Knight JA, Gerstein HC, Perkins BA, Zinnman B, Hanley AJ. 2014. Prospective association of 25(OH)D with metabolic syndrome. Clin Endocrinol (Oxf) 80: 502–507.

Kayaniyil S, Vieth R, Retnakaran R, Knight JA, Qi Y, Gerstein HC, Perkins BA, Harris SB, Zinnman B, Hanley AJ. 2010. Association of vitamin D with insulin resistance and beta-cell dysfunction in subjects at risk for type 2 diabetes. Diabetes Care 33: 1379–1381.

Liu J, Lu R, Wang Y, Hu Y, Jia Y, Yang N, Fu J, Wang G. 2016. PPARα agonist fenofibrate reduced the secreting load of β-cells in hypertriglyceridemia patients with normal glucose tolerance. PPAR Res 2016: 6232036.