Wan, Chen
On a multiplicity formula for spherical varieties. (English) Zbl 1508.22012
J. Eur. Math. Soc. (JEMS) 24, No. 10, 3629-3678 (2022).

Summary: In this paper, we propose a conjectural multiplicity formula for general spherical varieties. For all the cases where a multiplicity formula has been proved, including Whittaker models, Gan-Gross-Prasad models, Ginzburg-Rallis models, Galois models and Shalika models, we show that the multiplicity formulas in our conjecture are the same as the multiplicity formulas that have been proved. We also prove the conjectural multiplicity formula in two new cases.

MSC:
22E50 Representations of Lie and linear algebraic groups over local fields
14M27 Compactifications; symmetric and spherical varieties

Keywords:
multiplicity of spherical varieties; representation of reductive group over local field

Full Text: DOI

References:
[1] Aizenbud, A., Sayag, E.: Homological multiplicities in representation theory of p-adic groups. Math. Z. 294, 451-469 (2020) Zbl 1432.22017 MR 4054816 · Zbl 1432.22017
[2] Beuzart-Plessis, R.: La conjecture locale de Gross-Prasad pour les représentations tempérées des groupes unitaires. Mém. Soc. Math. France (N.S.) vii+191 (2016) Zbl 1357.22008 MR 3676153 · Zbl 1357.22008
[3] Beuzart-Plessis, R.: On distinguished square-integrable representations for Galois pairs and a conjecture of Prasad. Invent. Math. 214, 437-521 (2018) Zbl 1409.22011 MR 3858402 · Zbl 1409.22011
[4] Beuzart-Plessis, R.: A local trace formula for the Gan-Gross-Prasad conjecture for unitary groups: the archimedean case. Astérisque 418 (2020) Zbl 1475.22024
[5] Beuzart-Plessis, R., Wan, C.: A local trace formula for the generalized Shalika model. Duke Math. J. 168, 1303-1385 (2019) Zbl 1426.22011 MR 3953435 · Zbl 1426.22011
[6] Clozel, L.: Invariant harmonic analysis on the Schwartz space of a reductive p-adic group. In: Harmonic Analysis on Reductive Groups (Brunswick, ME, 1989), Progr. Math. 101, Birkhäuser Boston, Boston, MA, 101-121 (1991) Zbl 0760.22023 MR 1168480 · Zbl 0760.22023
[7] DeBacker, S., Reeder, M.: On some generic very cuspidal representations. Compos. Math. 146, 1029-1055 (2010) Zbl 1195.22011 MR 2660683 · Zbl 1195.22011
[8] Ginzburg, D., Rallis, S.: The exterior cube L-function for GL.6/. Compos. Math. 123, 243-272 (2000) Zbl 0989.11024 MR 1795291 · Zbl 0989.11024
[9] Gross, B. H., Prasad, D.: On irreducible representations of SO 2nC1 SO 2m . Canad. J. Math. 46, 930-950 (1994) Zbl 0829.22031 MR 1295124 · Zbl 0829.22031
[10] Harish-Chandra: Admissible Invariant Distributions on Reductive p-adic Groups. Univ. Lectute Ser. 16, Amer. Math. Soc., Providence, RI (1999) Zbl 0928.22017 MR 1702257 · Zbl 0928.22017
[11] Knop, F.: Weylgruppe und Momentabbildung. Invent. Math. 99, 1-23 (1990) Zbl 0726.20031 MR 1029388 · Zbl 0726.20031
[12] Knop, F., Schalke, B.: The dual group of a spherical variety. Trans. Moscow Math. Soc. 78, 187-216 (2017) Zbl 1433.14046 MR 3738985 · Zbl 1433.14046
[13] Kostant, B.: Lie group representations on polynomial rings. Amer. J. Math. 85, 327-404 (1963) Zbl 0124.26802 MR 0124.26802 · Zbl 0124.26802
[14] Kostant, B., Rallis, S.: Orbits and representations associated with symmetric spaces. Amer. J. Math. 93, 753-809 (1971) Zbl 0224.22013 MR 311837 · Zbl 0224.22013
[15] Kottwitz, R. E.: Transfer factors for Lie algebras. Represent. Theory 3, 127-138 (1999) Zbl 1044.22011 MR 1703328 · Zbl 1044.22011
[16] Moeglin, C., Waldspurger, J.-L.: Modèles de Whittaker dégénérés pour des groupes p-adiques. Math. Z. 196, 427-452 (1987) Zbl 0612.22008 MR 913667 · Zbl 0612.22008
[17] Prasad, D.: Ext-analogues of branching laws. In: Proc. Int. Congress of Mathematicians (Rio de Janeiro, 2018), Vol. II. Invited lectures, World Sci., Hackensack, NJ, 1367-1392 (2019) Zbl 1443.11086 MR 3966813 · Zbl 1443.11086
[18] Rodier, F.: Modèle de Whittaker et caractères de représentations. In: Non-commutative harmonic analysis (Actes Colloq., Marseille-Luminy, 1974), 151-171. Lecture Notes in Math., Vol. 466 (1975) Zbl 0339.22014 MR 0393355 · Zbl 0339.22014

[19] Sakellaridis, Y., Venkatesh, A.: Periods and harmonic analysis on spherical varieties. Astérisque viii+360 (2017) Zbl 06847674 MR 3764130 · Zbl 1479.22016

[20] Shelstad, D.: A formula for regular unipotent germs. Astérisque 171-172, 275-277 (1989) Zbl 0715.22012 MR 1021506 · Zbl 0715.22012

[21] Waldspurger, J.-L.: Une formule intégrale reliée à la conjecture locale de Gross-Prasad. Com-pos. Math. 146, 1180-1290 (2010) Zbl 1200.22007 MR 2684300 · Zbl 1200.22007

[22] Waldspurger, J.-L.: Une formule intégrale reliée à la conjecture locale de Gross-Prasad, 2e partie: extension aux représentations tempérées. Astérisque 346, 171-312 (2012) Zbl 1290.22012 MR 3202558 · Zbl 1290.22012

[23] Wan, C.: A local relative trace formula for the Ginzburg-Rallis model: the geometric side. Mem. Amer. Math. Soc. 261, v+90 pp. (2019) Zbl 1460.22007 MR 4028458 · Zbl 1460.22007

[24] Wan, C.: Multiplicity one theorem for the Ginzburg-Rallis model: the tempered case. Trans. Amer. Math. Soc. 371, 7949-7994 (2019) Zbl 1415.22009 MR 3955540 · Zbl 1415.22009

[25] Wan, C., Zhang, L.: The multiplicity problems for the unitary Ginzburg-Rallis models. Israel J. Math., to appear; arXiv:1808.02203 (2018)

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.