H_∞ control of combustion in diesel engines using a discrete dynamics model

Mitsuo Hirata, Sota Ishizuki, and Masayasu Suzuki
Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585, Japan
E-mail: hirata@cc.utsunomiya-u.ac.jp

Abstract. This paper proposes a control method for combustion in diesel engines using a discrete dynamics model. The proposed two-degree-of-freedom control scheme achieves not only good feedback properties such as disturbance suppression and robust stability but also a good transient response. The method includes a feedforward controller constructed from the inverse model of the plant, and a feedback controller designed by an H_∞ control method, which reduces the effect of the turbocharger lag. The effectiveness of the proposed method is evaluated via numerical simulations.

1. Introduction
In diesel engines, efforts to reduce both NOx and particulate matter (PM) emissions have increased in recent years due to the need to comply with increasingly stringent emission regulations. To meet these requirements, new technologies such as exhaust gas recirculation (EGR) circuits, variable-geometry turbochargers (VGTs), and exhaust gas aftertreatment systems have been introduced [1, 2, 3]. However, these technologies increase the complexity of the system architecture and the difficulty of the control system design.

Conventional controllers are based on lookup tables compiled from the results of many experiments [4]. The complexity of recent engines has greatly increased the effort of constructing these tables. Premixed charge compression ignition (PCCI) combustion is the inevitable next step, as it achieves high energy efficiency while reducing the engine-out emissions, but it is non-robust and difficult to control [5, 6, 7, 8]. Indeed, PCCI combustion cannot be adequately controlled by conventional control, in either steady-state or transient operation. Moreover, the control of PCCI combustion in transient operation is harder than that in the steady-state condition. Model-based controller design methods offer a promising alternative to traditional control of PCCI [9, 10].

This paper proposes a robust H_∞ combustion control method for diesel engines. The plant model is the discrete dynamics model developed by Yasuda et al., which is implementable on a real engine control unit [11, 12]. We introduce a two-degree-of-freedom control scheme with a feedback controller and a feedforward controller. This scheme achieves both good feedback properties, such as disturbance suppression and robust stability, and a good transient response. The feedforward controller is designed from the inverse model of the plant, and the feedback controller is designed by the H_∞ control method, which reduces the effect of the turbocharger lag. The effectiveness of the proposed method is evaluated by simulations using the discrete dynamics model.
2. Discrete dynamics model

A discrete dynamics model for diesel combustion control has been developed as a future implementable model on a real engine control unit. To reduce the computational cost, this nonlinear discrete-time system is evaluated only at representative points in the engine cycle; namely, the timings of the exhaust valve closing (EVC), the intake valve closing (IVC), the ignition (IGN), the peak pressure (PEAK), and the exhaust valve opening (EVO) (see Fig.1).

Initially, the discrete dynamics model comprised a single injection system; then, the model was extended to include multi-injection systems[11, 12]. In this initial examination, we apply the model only as a single-injection model. The state variable X_k, the input U_k, and the output Y_k of the single-injection model are presented in Table.1. In terms of these variables, the discrete dynamics model with single injection is expressed as:

$$X_{k+1} = f(X_k, U_k), \quad Y_k = g(X_k, U_k), \quad (1)$$

where

$$X_k = \begin{bmatrix} T_{RG,k} \\ n_{O_2, RG,k} \end{bmatrix}, \quad (2)$$

$$U_k = \begin{bmatrix} Q_{fuel,k} \\ \theta_{INJ,k} \\ P_{boost,k} \end{bmatrix}, \quad Y_k = \begin{bmatrix} W_k \\ P_{PEAK,k} \\ \theta_{PEAK,k} \end{bmatrix}. \quad (3)$$

In the controller design, Eq.(1) is linearized around the equilibrium points U_0, Y_0, and X_0 of the input, output, and state, respectively. The deviations from the equilibrium points are defined as follows:

$$x_k = X_k - X_0, \quad (4)$$

$$u_k = U_k - U_0, \quad (5)$$

$$y_k = Y_k - Y_0. \quad (6)$$

1 The EGR rate is also the input to the discrete dynamics model. However, in this study, we treat the EGR rate as a constant (30%) rather than as an input variable.
Table 1. Definitions of states, inputs, and outputs in the discrete dynamics model

State	Variable	Description
X_k	$T_{RG,k}$	Temperature of residual gas at EVC [K]
	$n_{O_2,RG,k}$	Oxygen mole of residual gas at EVC [mol]

Input	Variable	Description
U_k	$Q_{fuel,k}$	Fuel injection quantity [mm3]
	$\theta_{INJ,k}$	Fuel injection timing [degATDC]
	$P_{boost,k}$	Boost pressure [kPa]

Output	Variable	Description
Y_k	W_k	Indicated output [kW]
	$P_{PEAK,k}$	Peak pressure [MPa]
	$\theta_{PEAK,k}$	Peak pressure timing [degATDC]

In this article, the equilibrium point U_0 of the input is selected as

$$U_0 = \begin{bmatrix} 20 & -4 & 110 \end{bmatrix}^T.$$ \hfill (7)

Thus, Y_0 and X_0 are obtained as

$$Y_0 = \begin{bmatrix} 4.2582 & 6.5630 & 8.9219 \end{bmatrix}^T,$$ \hfill (8)
$$X_0 = \begin{bmatrix} 5.80 \times 10^2 & 1.49 \times 10^{-4} \end{bmatrix}^T.$$ \hfill (9)

Based on these equilibrium points, we obtained a linearized model with the following state-space representation:

$$x_{k+1} = A x_k + B u_k,$$ \hfill (10)
$$y_k = C x_k + D u_k.$$ \hfill (11)

We also define the transfer function P:

$$P[z] = C(zI - A)^{-1}B + D.$$ \hfill (12)

Note that in this case, the direct term D of Eq.(11) is square and nonsingular; therefore, D^{-1} exists.

3. Structure of Control system
In designing the $H\infty$ control system, we made the following assumptions:

(1) The indicated output W_k, peak pressure $P_{PEAK,k}$, and its timing $\theta_{PEAK,k}$ can be measured at time $k+1$ by sensors embedded in the cylinder.
(2) The actual boost pressure $P_{\text{boost},k}$ follows the reference $P_{\text{ref},\text{boost},k}$ with a first-order lag, i.e., the following equation holds.

$$P_{\text{boost}}[z] = F_b[z] P_{\text{ref},\text{boost}}[z],$$

where $P_{\text{boost}}[z]$ and $P_{\text{ref},\text{boost}}[z]$ are the z-transforms of $P_{\text{boost},k}$ and $P_{\text{ref},\text{boost},k}$, respectively, and $F_b[z]$ is a discrete-time first-order lag filter with a time constant of T_b. Here we assume $T_b = 2$.

(3) The boost pressure $P_{\text{boost},k}$ can be measured without a time delay.

By assumption (1), the measurement output as $y_{s,k}$ is given by

$$y_{s}[z] = z^{-1} y[z].$$

Further, by assumption (2), the input u of P is related to the controller output u_s as

$$u[z] = M[z] u_s[z],$$

where

$$M[z] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & F_b[z] \end{bmatrix}.$$ \hfill (15)

Under the above assumptions, a two-degree-of-freedom control system was proposed. In the block diagram of this control system (Fig.2), r is the reference input to y, i.e., the reference to the indicated output, the peak pressure, and the peak pressure timing. To satisfy $y = r$, the feedforward controller K_{FF} generates a feedforward control input u_{ff}.

The measurement output y_s is the indicated output, peak pressure and peak pressure timing, and is referenced to $r_s = z^{-1} r$. The delay of y_s relative to y (one sampling step) is corrected by z^{-1} in the reference. The deviation $e_r = r_s - y_s$ is the input to the feedback controller K_{FB}, which generates a feedback control input u_{fb}.

In general, the feedforward controller is defined by the inverse model of P. However, because the dynamics of P exert a small effect, the feedforward controller is defined as the inverse static characteristic of P:

$$K_{FF} = D^{-1}.$$ \hfill (16)

Note that the feedforward controller design Eq.(16) excludes the turbocharger lag F_b. This omission might degrade the system performance. Therefore, in the next section, we propose an H_∞ controller design method that reduces the effect of F_b.

Figure 2. Schematic of the proposed control system
4. Design of H_∞ control system

4.1. H_∞ Control Theory

Given a generalized closed-loop configuration shown in Fig.3, the H_∞ control is formulated as a problem that finds an internally stabilizing controller that minimizes the H_∞ norm from w to z [13]. The transfer matrix G in Fig.3 is referred to as a generalized plant. The H_∞ controller minimizes H_∞ norm, which corresponds to the maximum gain of the transfer function. Therefore, the H_∞ control is essentially a disturbance suppression. Multiple disturbances are imposed to the controlled object in actual systems, and the modeling error can also be regarded as an equivalent disturbance [14]. Therefore, the H_∞ control is a powerful approach because various control problems are reduce to disturbance attenuation problems.

4.2. Design

For disturbance suppression, we consider the generalized plant shown in Fig.4. In this figure, W_u, W_e, and W_n are weighting functions, and the input side disturbance w_d is suppressed by the controlled output z_e. The controlled output z_u evaluates the magnitude of the control input u. The signal w_n models the measurement noise, and is also required to satisfy the assumption of the standard H_∞ control problem [13]. Not that as plant P is a discrete-time model, the generalized plant must be express as a discrete-time transfer matrix.

The weighting functions W_u, W_e, and W_n were determined by trial and error as

\[
W_e = \text{diag} \begin{bmatrix} 20 & 5 & 12 \\ s + 0.5 & s + 0.5 & s + 0.5 \end{bmatrix} \]
(17)

\[
W_u = \text{diag} \begin{bmatrix} 0.005 & 0.005 & 0.005 \\ \end{bmatrix} . \]
(18)

\[
W_n = \text{diag} \begin{bmatrix} 0.0001 & 0.0001 & 0.0001 \\ \end{bmatrix} . \]
(19)

All of the weighting functions were discretized by a pole-zero matching equivalent method.
Next, referring to discrete-time H_∞ control theory, we constructed an H_∞ controller with these weighting functions using the MATLAB robust control toolbox R2012a. The achieved minimum H_∞ norm from w to z was 0.83. Finally, the obtained H_∞ controller was employed as the feedback controller of the two-degree-of-freedom control system in Fig.2, and evaluated in simulations. The simulated plant model was the nonlinear discrete-time model governed by Eq.(1). The reference inputs were increased by 1 unit from the equivalent points as step signals. The time steps of the indicated output, peak pressure, and peak pressure timing were $t = 1$ s, $t = 4$ s, and $t = 7$, respectively.

Fig.5 shows the simulation results. The tracking performance to the reference input in the peak pressure and peak pressure timing was poor, probably because the H_∞ controller design neglected the effect of F_b. To investigate this supposition, we redesigned and simulated an H_∞ controller with the same weighting functions and $F_b = 1$. As shown in Fig.6, the outputs of the new controller accurately followed the reference, confirming that the effect of F_b is non-negligible.
Figure 6. Simulation results of Design 1 with $F_b = 1$

4.3. Design 2 (accounting for F_b)

In this section, we account for F_b in the H_∞ controller design. Because the designed feedforward controller K_{FF} is the inverse of P, we add a feedforward input u_{ff} between M and P in the two-degree-of-freedom control system (Fig.2). However, the actual boost pressure cannot be directly manipulated, so u_{ff} is added to the input side of M, as shown in Fig.2. Thus, we estimate the error when u_{ff} is added to the input side of M rather than to the output side of M (as in the original design).

Fig.7(a) presents the extracted block diagram of the input and output portions. Fig.7(a) is transformed to Fig.7(b) by preserving the transfer function from u_{ff3} to u_3. From this diagram, we observe that adding u_{ff} to the input side of F_b is equivalent to adding

$$w_{d3} = (F_b - 1)u_{ff3}$$

(20)

to the output side of F_b.

Note that the disturbance w_{d3} is not unknown, but can be calculated from u_{ff}. Thus, we constructed the generalized plant shown in Fig.8. The main feature of this generalized plant is that the disturbance added to the input side of F_b is the input to the feedback controller as y_{d3}.
Figure 7. Equivalent transformation of u_{ff3}

Figure 8. Block diagram of Generalized Plant 2

In designing the H_∞ controller, the weighting function W_e was selected as

$$W_e = \text{diag} \left[\frac{20}{s + 0.5}, \frac{5}{s + 0.5}, \frac{12}{s + 0.5} \right], \quad (21)$$

and the same weighting functions W_u and W_n were those used in Design 1. For these weighting functions, the achieved minimum H_∞ norm was from w to z was 0.98. We then re-simulated the two-degree-of-freedom control system shown in Fig.2 with the feedback input modified to

$$u_{fb} = K_{FB} \begin{bmatrix} e_s \\ w_{d3} \end{bmatrix}$$

$$= K_{FB} \begin{bmatrix} I & 0 \\ 0 & (F_b - 1)R \end{bmatrix} \begin{bmatrix} e_s \\ u_{ff} \end{bmatrix}, \quad (23)$$
where \(R = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \).

The simulation results are plotted as solid lines in Fig.9. This figure confirms that the indicated output and peak pressure timing accurately follow the reference. On the other hand, the changes in these two outputs affect the peak pressure response.

To reduce the interference between the peak pressure and the other outputs, we reduced the gain of the (1,1) element of \(W_e \) and increased the gain of the (3,3) element of \(W_e \) as shown below:

\[
W_e = \text{diag} \left[\frac{12}{s + 0.5}, \frac{15}{s + 0.5}, \frac{12}{s + 0.5} \right]
\]

(24)

The new simulation results are plotted in Fig.10. Although the tracking performance of the peak pressure improves, the indicated output is disturbed by the step change of the peak pressure. By adjusting the weighing functions, we could not simultaneously minimize the tracking errors in the indicated output and peak pressure. However, these errors might be simultaneously reduced by changing the EGR ratio, which is fixed at 30.

Finally, we evaluated the effectiveness of the \(w_{d3} \) feedback by simulating the case of no \(w_{d3} \) feedback (i.e., by setting \(u_{ff} = 0 \) in the right-hand side of Eq.(23)). As the feedback controller,
Figure 10. Simulation results of Design 2 using the re-tuned weighting functions

we employed the H_∞ controller used in the simulation of Fig.10. The results are shown in Fig.11. The large error in the peak pressure timing confirms the effectiveness of Design 2.

5. Conclusions
In this study, we applied H_∞ control theory to a combustion control system for diesel engines. In the generalized plant, we accounted for the turbocharger lag, which degrades the system performance. The improved tracking performance was demonstrated in simulations. In future studies, we will vary the EGR rate in the H_∞ controller design.

Acknowledgments
This research is done as a part of "Innovative combustion technology" of a cross-ministerial strategic innovation promotion program (SIP) under Japan science and technology agency (JST).
Figure 11. Simulation results of Design 2 without w_{d3} feedback

References

[1] Hui Xie, Susu Li, Kang Song, Guanzhang He: “Model-based Decoupling Control of VGT and EGR with Active Disturbance Rejection in Diesel Engines”, 7th IFAC Symposium on Advances in Automotive Control The International Federation of Automatic Control September 4-7, Tokyo, Japan (2013)

[2] A.G. Stefanopoulou, I. Kolmanovsky and J.S. Freudenberg: “Control of Variable Geometry Turbocharged Diesel Engines for Reduced Emissions”, IEEE Trans. Control Systems Technology, Vol. 8, No. 4, pp. 733–745 (2000)

[3] G.H. Abd-Alla: “Using exhaust gas recirculation in internal combustion engines: a review”, Energy Conversion and Management, Vol. 43, pp. 1027–1042 (2002)

[4] D. Schiefer, D. Maennel and W. Nardoni: “Advantages of diesel engine control using in-cylinder pressure information for closed loop control”, SAE Technical Paper, 2003-01-0364 (2003)

[5] G.D. Neely, S. Sasaki, Y. Huang, J.A. Leet and D.W. Stewart: “New Diesel Emission Control Strategy to Meet US Tier 2 Emissions Regulations”, SAE Technical Paper, 2005-01-1091 (2005)

[6] A.M. Kulkarni, K.C. Stricker, A. Blum and G.M. Shaver: “PCCI Control Authority of a Modern Diesel Engine Outfitted With Flexible Intake Valve Actuation”, SAE Technical Paper, 2009-01-18882 (2009)

[7] A.E. Cistina, S.D. Ambrosio, R. Finesse and E. Spessa: “Combustion system optimization of a low compression-ratio PCCI diesel engine for light-duty application”, SAE Int. J Engines, Vol. 2, No. 1, pp. 1314-26 (2009)

[8] T. Ishikawa and N. Horibe: “Characteristics and Problems of Diesel-base PCCI Combustion”, Marine engineering, Vol. 47, pp. 859–864 (2012)(in Japanese)
[9] L. Guzzella and C.H. Onder: “Introduction to Modeling and Control of Internal Combustion Engine Systems”, Springer-Verlag Berlin Heidelberg (2010)
[10] M. Iwadare, M. Ueno, Y. Hiitiori and S. Adachi: “Modeling and Control Systems Design by Model Predictive Control for Air-path System of Diesel Engine”, Trans. of the Society of Instrument and Control Engineers, Vol. 46 No. 8, pp.456–462 (2010) (in Japanese).
[11] K. Yasuda, Y. Yamasaki, S. Kaneko, Y. Nakamura, N. Iida, R. Hasegawa: “Diesel Combustion Model for On-board Application”, International Journal of Engine Research, doi:10.1177/1468087415611331, (2015)
[12] H. Shimizu, K. Hoshida, Y. Nakamura, Y. Ymasaki, N. Knaneko, N. Iida and R. Hasegawa: “Discrete Dynamics Model for Diesel Combustion: 2nd report: Expansion of the Model to Multi-Injection (Two-Stage Injection)”, The 25th Internal Combustion Engine Symposium (2014) (in Japanese)
[13] K. Zhou and J.C. Doyle: “Essentials of Robust Control”, Prentice Hall (1998)
[14] T. Yamaguchi, M. Hirata, and C.K. Pang: “High-Speed Precision Motion Control”, CRC Press (2012)