Production of exopolysaccharide by strains of *Lactobacillus plantarum* YO175 and OF101 isolated from traditional fermented cereal beverage

Adekemi Titilayo Adesulu-Dahunsi Correspond., 1, Kumaraswamy Jeyaram 2, Abiodun Isiaka Sanni 1, Kolawole Banwo 1

1 Department of Microbiology, University of Ibadan, Ibadan, Oyo, Nigeria
2 Microbial Resource Division, Institute of Bioresources and Sustainable Development, Imphal, Manipur, India

Corresponding Author: Adekemi Titilayo Adesulu-Dahunsi
Email address: adesuluchemmy@yahoo.com

Lactobacillus plantarum YO175 and OF101 isolates from Nigerian traditional fermented cereal gruel ‘*ogi*’, were investigated on the basis of their capability to produce exopolysaccharide (EPS) on sucrose modified deMan Rogosa Sharpe medium (mMRS). Functional groups analysis of the EPSs produced (EPS-YO175 and EPS-OF101) by Fourier-transform infrared (FT-IR) spectroscopy revealed the presence of –OH, C=O and C-H groups. The chemical composition of EPS-YO175 and EPS-OF101 showed the presence of 87.1% and 80.62% carbohydrates and 1.21% and 1.47% protein. For maximum EPS yield, three significant factors were optimized using central composite design and response surface methodology, the predicted maximum EPS produced was 1.38 g/L and 2.19 g/L, while the experimental values were 1.36g/L and 2.18g/L for EPS-YO175 and EPS-OF101. The EPS samples showed strong antioxidant activities *in-vitro*. The scale-up of the production process of the EPS will find its potential application in food industries.
Article Title
Production of exopolysaccharide by strains of *Lactobacillus plantarum* YO175 and OF101 isolated from traditional fermented cereal beverage

Authors
Adekemi Titilayo Adesulu-Dahunsi
Kumaraswamy Jeyaram
Abiodun Isiaka Sanni
Kolawole Banwo

Affiliations
Adekemi T. Adesulu-Dahunsi
1. Department of Microbiology, University of Ibadan, Ibadan, Oyo State, Nigeria.
2. Microbial Resources Division, Institute of Bioresources and Sustainable Development (IBSD), Imphal-795001, Manipur, India.

Kumaraswamy Jeyaram
1. Microbial Resources Division, Institute of Bioresources and Sustainable Development (IBSD), Imphal-795001, Manipur, India.

Abiodun I. Sanni
1. Department of Microbiology, University of Ibadan, Ibadan, Oyo State, Nigeria.

Kolawole Banwo
1. Department of Microbiology, University of Ibadan, Ibadan, Oyo State, Nigeria.

Corresponding Author
Adekemi T. Adesulu-Dahunsi
adesulchemmy@yahoo.com
Production of exopolysaccharide by strains of *Lactobacillus plantarum* YO175 and OF101 isolated from traditional fermented cereal beverage.

Abstract.

Lactobacillus plantarum YO175 and OF101 isolates from Nigerian traditional fermented cereal gruel ‘*ogi*’, were investigated on the basis of their capability to produce exopolysaccharide (EPS) on sucrose modified deMan Rogosa Sharpe medium (mMRS). Functional groups analysis of the EPSs produced (EPS-YO175 and EPS-OF101) by Fourier-transform infrared (FT-IR) spectroscopy revealed the presence of –OH, C=O and C-H groups. The chemical composition of EPS-YO175 and EPS-OF101 showed the presence of 87.1% and 80.62% carbohydrates and 1.21% and 1.47% protein. For maximum EPS yield, three significant factors were optimized using central composite design and response surface methodology, the predicted maximum EPS produced was 1.38 g/L and 2.19 g/L, while the experimental values were 1.36g/L and 2.18g/L for EPS-YO175 and EPS-OF101. The EPS samples showed strong antioxidant activities *in-vitro*. The scale-up of the production process of the EPS will find its potential application in food industries.

Introduction.

The ability of various lactic acid bacteria (LAB) to produce extracellular long-chain polysaccharides/exopolysaccharides which consists of branched and repeating units of sugars in varied ratios have been reported (Pan & Mei, 2010; Wang et al., 2010; Li et al., 2014; Imran et al., 2016). The EPS produced have immense commercial importance because of the industrially beneficial physico-chemical properties they exhibit and GRAS (generally recognized as safe) status of the LAB from which they are secreted (Surayot et al., 2014). Exopolysaccharide produced by LAB play essential roles in improving the mouth feel, texture, and rheology of fermented food preparations. They also serve as food additives, prebiotics and demonstrate useful physiological effects such as anticarcinogenecity, antitumor, immunomodulating activities and as blood cholesterol-lowering agent in humans (Kim et al., 2010).

Many indigenous foods produced in Nigeria are usually fermented before consumption (Adesulu & Awojobi, 2014). Lactic acid bacteria are commonly isolated from Nigerian indigenous fermented foods and beverages (Banwo, Sanni & Tan, 2013; Sanni & Adesulu, 2013; Adesulu-
Dahunsi, Sanni & Jeyaram, 2017a). Ogi is a popular non-alcoholic fermented cereal beverage that is processed by natural fermentation with the dominance of LAB. It forms staple food of the people in West Africa, especially among the south-western Nigerian where it serves as weaning food in infants and/or breakfast beverage among the adults. Exopolysaccharides produced by some of the LAB isolated from these fermented food products have been documented to improve the food texture and quality. Exopolysaccharides producing LAB such as *Streptococcus thermophilus*, *Lactobacillus delbrueckii subsp. bulgaricus*, *Lactococcus lactis subsp. cremoris* isolated from dairy products and fermented milk have been extensively studied (Patel & Prajapati, 2013).

Different species of LAB, especially *Lactobacillus plantarum* have been reported to produce EPS (Wang et al., 2010; Imran et al., 2016). *L. plantarum* perform important fermentative roles during Nigerian traditional food preparation and provides positive health impacts which are strain specific, they exhibit an outstanding effect on the flavour and texture of these foods, with specific metabolic and technological properties, such as production of EPS (Adesulu-Dahunsi et al., 2017b). Recently, researchers have reported that EPS produced from LAB species have antioxidant activities and are non-toxic; these characteristics are of great importance and may replace the synthetic antioxidants (Li et al., 2013; Zhang et al., 2013; Abdhul, et al., 2014).

Exopolysaccharides produced by *Lactobacillus* species improves sourdough properties by aiding water absorption, improving its structure, thereby prolonging shelf life of the fermented foods. Few works have been reported on EPS producing ability of LAB strains isolated from cereals-based fermented food (Torres-Rodríguez et al., 2014; Adesulu-Dahunsi et al., 2018a, 2018b).

Optimization of the growth factors and media composition are criteria to be considered for maximal EPSs production by LAB strains (Zajseket, Gorsek & Kolar, 2013, Adesulu-Dahunsi et
al., 2018c). The statistical designs used in this study to determine the optimal conditions for the EPS production are central composite design (CCD) and response surface methodology (RSM). The objective of this study was to improve the production of EPS from *L. plantarum* strains and to evaluate the antioxidant activities *in vitro*. The factors affecting the production of EPS from *L. plantarum* YO175 and OF101 were analyzed, and three significant variables (cultivation time, pH and sucrose concentration) were chosen to optimize the production conditions using CCD and RSM. In addition, the *in vitro* antioxidant assays of the EPS were also evaluated.

Materials and methods

Microorganisms and chemicals

Two EPS-producing LAB strains isolated from *ogi* (Nigerian indigenous fermented cereal gruel from yellow and white maize varieties) were identified according to their biochemical characteristics and 16S rRNA gene sequencing as *L. plantarum* YO175 and *L. plantarum* OF101 (GenBank Accession numbers KU892395 and KU892393). DPPH, trichloroacetic acid (TCA), trifluoroacetic acid (TFA), Folin-Ciocalteu reagent, bovine serum albumin (BSA), phenol, concentrated sulfuric acid, methanol, ferric chloride, potassium ferric cyanide, pyrogallol, ascorbic acid, glucose, galactose, rhamnose, xylose, fructose and ribose (Sigma chemical ltd., St. Louis, USA).

Extraction and purification of EPS

The isolation and partial purification of the EPS samples were performed as previously described by Savadogo et al. (2004), and modified by Adesulu-Dahunsi et al. (2018a) with mMRS broth as the cultivation medium as it support the growth of *L. plantarum* species and MRS as growth medium for all LAB species. Briefly, *L. plantarum* YO175 and *L. plantarum* OF101 were propagated in 1000 mL MRS modified sucrose broth (glucose was replaced with sucrose) and
incubated for 24 h in an incubator shaker, the *L. plantarum* cultures were heated at 100°C for 10 min, then centrifuged at 12,000 xg for 15 min to remove the cells, the supernatants was precipitated with double volume ice-cold ethanol, shaken vigorously and centrifuged at 5,000 xg for 30 min at 4°C. The pellets obtained were dried to a constant weight in an oven at 50°C. The resulting pellets were mixed with ultrapure water, the EPS slurry was precipitated with double volume of cold ethanol, this step was repeated three times in order to eliminate any cells debris that may be present. The EPS was mixed with minimal water and dialyzed against distilled water using 10 kDa membranes for 48 h at 4°C with the changing of the water twice daily. The partially purified EPS obtained from dialysis was frozen at -20°C in deep freezer. The frozen EPS was covered with parafilm and were lyophilized for 2 days and the resulting EPS samples were preserved for further characterization.

Molecular mass determination

The molecular mass of the EPS-YO175 and EPS-OF101 were determined on an Agilent 1100HPLC system equipped with a TSK-GEL G3000SWxl column (7.5 x 300 mm, Tosoh Corp., Tokyo, Japan) and a refractive index detector (RID). The column was eluted with 0.1 M Na₂SO₄ solution at a flow rate of 0.8 mL min⁻¹. Molecular mass was estimated from the standard graph which was plotted using standard dextrans (Sigma–Aldrich, USA) (Pan & Mei, 2010).

Chemical composition analysis

Total carbohydrate, total soluble protein content of the EPS samples, and lactic acid (LA) produced by the *L. plantarum* strains were determined.

The EPS samples were estimated using phenol-sulphuric acid method (Dubois et al., 1956). To 1 ml of 5% cold phenol and 5mL concentrated sulphuric acid placed in an ice bath, 1mL of the
EPS sample were added, then incubated at room temperature for 20 min and the absorbance of the samples at 490 nm was taken using spectrophotometer.

Estimation of the protein content was performed according to Lowry, Rosebrough & Randall, (1951). To 1 mL EPS sample (s), 5 mL (2% Na$_2$CO$_3$ in 0.1 N NaOH and 0.5% CuSO$_4$ in 1% potassium sodium tartrate in 50:1) was added and vortexed. The mixture was incubated at ambient temperature for 10 min, 0.5 mL 1N Folin-Ciocalteau reagent was added and mixed and was kept in dark for 20 min after which the colour was measured at 660 nm.

The production of LA in MRS broth by the L. plantarum strains was estimated. To 1 mL of the culture supernatants, 0.05 mL of 4% CuSO$_4$ and 6 mL of concentrated sulphuric acid was added and mixed well. The mixture was then incubated in boiling water bath for 10 min, 100 μL of p-hydroxydiphenyl was added and kept in room temperature for 30 min. The absorbance was measured at 560nm (Salvucci, LeBlanc & Perez, 2016).

Analysis of monosaccharide composition

The monosaccharide composition of the purified EPS samples was determined by thin layer chromatography (TLC) via aluminum plates coated with silica gel and high-performance liquid chromatography (HPLC) after hydrolysis of the EPS. Five milligram (5mg) of the purified EPS sample (s) was dissolved in 0.5 mL MilliQ water and hydrolyzed in 0.5 mL of 6 N trifluoroacetic acid (TFA) at 100°C for 3 h. The hydrolysate was evaporated to dryness at 50°C. Five microlitres (5μL) of the EPS samples were spotted onto a silica gel coated aluminum TLC plates. The mixed solvent (n- butanol, ethanol, and water (50:30:20 v/v/v) were used for separation of carbohydrates and standards, the fractions were visualized on the TLC plates, after dipping it in anisaldehyde-sulphuric acid reagent and heating the plates at 110°C for 30 min. The EPS was also analyzed with HPLC system (Agilent 1100) equipped with Aqueous GPC start up Kit.
column and eluted with distilled water at a flow rate of 1.0 mL/min at 20°C. The separated components were monitored by a refractive index detector.

Analysis of functional groups

The infrared analysis of purified EPS from the two *L. plantarum* strains was carried out using an FT-IR spectrophotometer (Thermo Nicolet, USA) in the spectrum ranges of 400-4000 cm\(^{-1}\) for the detection of functional groups present in the samples.

Preliminary screening of cultivation condition and media composition for EPS production

The optimal media composition and cultivation condition for EPS production in MRS broth were screened. The media components, carbon source (20g/L), organic nitrogen sources (25g/L), inorganic nitrogen sources (2 g/L), were substituted independently into the media and by keeping other component constant at different cultivation time (12, 24, 36, 48, 60, 72, 84 and 96 hr), initial pH of the media (6, 6.5, 7, 8) and different temperatures (20, 25, 30, 37 and 45°C).

In vitro determination of antioxidant properties

The *in-vitro* antioxidant properties of the purified EPS samples (at 0.5-4 mg/mL concentration levels) were performed using standard methods. The DPPH (1,1-diphenyl-2-picryl-hydrazyl) radical scavenging was measured according to the method of Rai et al. (2011). To 1.0 mL EPS samples, 2.0 mL deionized water and 2.0 mL DPPH solution (0.16 mM) were added, the mixture were incubated at 37 °C in a dark room for 30 min. Absorbance (at 517 nm) was measured against the blank. For the positive control, methanol was replaced with DPPH.

The DPPH radical (%) scavenging activity = \(1 - (As - Ab) / Ac \times 100\)

- **As** = Absorbance of the EPS sample (s)
- **Ab** = Absorbance of blank
- **Ac** = Absorbance of control
Superoxide scavenging activity of the EPS samples was performed according to Balakrishnan et al. (2011) published protocol. The mixture contained 0.3 mL of the EPS samples, 2.6 mL (50 mM) phosphate buffer at pH 8.2 and 90 µL of 3 mM pyrogallol (dissolved in 10 mM HCl). Then the absorbance (at 325 nm) was taken at 0 min and 10 min.

\[
\text{Superoxide scavenging activity (\%) = 1 - \frac{(A_{10} - A_0)}{(C_{10} - C_0)} \times 100}
\]

- \(A_0 \): absorbance of EPS sample (s) at 0 min
- \(A_{10} \): absorbance of EPS sample (s) at 10 min
- \(C_0 \): absorbance of control at 0 min
- \(C_{10} \): absorbance of control at 10 min

To measure the reducing power potential of the EPS samples, the following mixture; 100 µL of the EPS sample, 900 µL of phosphate buffer (0.2 M, pH 6.6) and 900 µL of 1% potassium ferricyanide were incubated at 50 °C for 20 min. Nine hundred microliter of TCA (10%) was mixed with the solution and centrifuged at 5000 x g for 15 min, then 900 µL each of the supernatant solution, distilled water and 0.1% ferric chloride were mixed together. The solution mixed together and the absorbance (700 nm) was taken (Balakrishnan et al., 2011).

The hydroxyl radical scavenging activity of the EPS samples was measured with the Fenton reaction. One milliliter (1 mL) of the EPS samples was added to the reaction mixture containing 1.0 mL of brilliant green (0.435 mM), 2.0 mL of FeSO\(_4\) (0.5 mM) and 1.5 mL of H\(_2\)O\(_2\) (3.0%, w/v) and was incubated at 37 °C for 20 min, and the absorbance (at 624 nm) was then measured (Balakrishnan et al., 2011).

The hydroxyl radical scavenging activity (\%) = \(\frac{(A_S - A_0)}{(A - A_0)} \times 100 \)

- \(A_S \): Absorbance of the sample
- \(A_0 \): Absorbance of the control
- \(A \): Absorbance of deionized water without the sample and Fenton reaction
Statistical analysis

All experiments were performed in triplicates and the results represented by their mean ± SD. Tests of significant differences were determined by Duncan’s Multiple Range Test at (P < 0.05). For maximum EPS production, Design-Expert software version 8.0.7.1 (Stat-Ease Inc., Minneapolis, USA) used for the experimental designs and regression analysis of the experimental data. Statistical analysis of the model was performed to evaluate the analysis of variance (ANOVA) and and its statistical significance was determined by F-test.

Results

Molecular mass of the EPS

Based on the calibration curve of the elution retention time of various dextran standards used, the molecular mass of EPS-YO175 and EPS-OF101 was estimated to be 1.2 x10^6 Da and 4.4 x10^5 Da.

Chemical composition analysis of the EPS

Total carbohydrate content in EPS-YO175 was 87.1% and 80.62% for EPS-OF101. The total soluble protein showed low protein content of approximately 1.21% and 1.47% for EPS-YO175 and EPS-OF101. The lactic acid produced by *L. plantarum* YO175 and OF101 was 13.6 ± 0.1 mg/mL and 11.4 ± 0.15 mg/mL, respectively.

Analysis of monosaccharide composition

The TLC analysis of the EPS samples was compared with the sugar standards, and their retention time values revealed that EPS-YO175 composed of glucose and galactose and EPS-OF101 showed only glucose (Figure S1 of Supplementary material).
The retention time of the EPS samples was compared with the reference standards in the HPLC analysis; this also confirmed that the EPS samples contained glucose and galactose (Figure 1).

Analysis of functional groups of the EPS

The FTIR spectrum of the EPS samples revealed that the polysaccharides contained significant number of O-H group representing vibration of the hydroxyl groups of carbohydrate showed by broad stretching in the region 3288 cm\(^{-1}\) and 3276 cm\(^{-1}\). The stretching bands around the 2924 cm\(^{-1}\) and 2898 cm\(^{-1}\) region were due to C–H stretching vibration. The absorptions around 1655 cm\(^{-1}\) and 1649 cm\(^{-1}\) were due to stretching vibration of carbonyl group (C=O). The bands observed around 1159 cm\(^{-1}\) in EPS-YO175 and 1150 cm\(^{-1}\) in EPS-OF101 were attributed to the vibration of C-O-C bond (Figure 2).

Preliminary screening of cultivation condition and media composition

Among the different carbon sources, the highest EPS yield was obtained for the sucrose supplemented MRS broth in *L. plantarum* YO175 (1.59 ± 0.06 g/L) and OF101 (1.07 ± 0.01 g/L). Also at 20 g/L sucrose concentration, the EPS yield obtained for both *L. plantarum* strains were; 1.64 ± 0.11 and 1.05 ± 0.02 g/L respectively. Yeast extract was the most effective among the nitrogen sources screened, as the optimal EPS yield obtained were 1.63 ± 0.05 g/L and 1.01 ± 0.02 g/L in *L. plantarum* YO175 and OF101. Ammonium sulphate showed optimal EPS yield in both strain; *L. plantarum* YO175 (1.56 ± 0.02 g/L) and OF101 (1.00 ± 0.02 g/L). The optimal temperature and pH for the EPS production was 30°C and pH 7.0 respectively with the corresponding EPS (g/L) yield (1.56, 1.03; and 1.72; 1.10) (Table 1). The dry EPS samples are shown in Figure S2 of Supplementary material.
Response surface optimization for enhanced EPS production

A design model with 20 runs in 1 block was performed and the variables were tested at four levels (Tables 2A & 2B). The statistical significance of the experimental data was checked using Fischer's statistical test for ANOVA, the 3D graphs were also designed. Table 3A & 3B showed that the model p-values of 0.0053 and 0.0010 for EPS-YO175 and EPS-OF101 were significant. Also, the Model F-values of 5.88 and 8.88 for EPS-YO175 and EPS-OF101 imply that the models were significant. In EPS-YO15 and EPS-OF101, the lack-of-fit term was greater than 0.05 which is non-significant relative to the pure error.

The developed regression model equations describing the relationship between the EPS yield (Y) and the coded values of independent factors; cultivation time (hr) (A), sucrose concentration (g) (B), pH (C) and their corresponding interactions is described below:

\[
Y_{\text{EPS-YO175}} = 2.15 + 5.891 \times 10^{-3}A + 0.011B - 7.356 \times 10^{-3}C - 3.750 \times 10^{-3}AB + 0.011AC + 6.250 \times 10^{-3}BC - 0.013A^2 - 0.011B^2 - 0.013C^2 \quad \text{Eq. A.1}
\]

\[
Y_{\text{EPS-OF101}} = 1.35 - 0.018A + 0.027B + 0.019C + 0.019AB + 6.250 \times 10^{-3}AC - 0.011B - 0.017A^2 - 0.074B^2 - 4.874 \times 10^{-3}C^2 \quad \text{Eq. A.2}
\]

where Y implies EPS yield (g/L).

Three-dimensional response surface plots and contour of EPS yield from L. plantarum YO175 (Figure 3A-C) and OF101 (Figure 4A-C) illustrate the interactions between the three variables. The curvatures’ nature of 3D surfaces gave good interaction between sucrose concentration and cultivation time, pH and cultivation time, pH and sucrose concentration.

The optimal values of the independent factors selected for the production of EPS were obtained by solving the regression equation (Eq.A1-A2) using the Expert Design 8.0.7.1 software package. The optimal values of the tested variables of L. plantarum YO175 were; cultivation time, 48.50 hr; sucrose concentration, 23.00 g/L, and pH, 7.40. Under these conditions, the
maximum predicted yield of EPS was 1.38 g/L and its experimental yield was 1.36 g/L. For *L. plantarum* OF101, the optimal values of the test variables were; cultivation time, 48.00 hr; sucrose concentration, 23.50 g/L and pH, 7.50 and the maximum predicted yield was 2.19 g/L and its actual experimental value was 2.18 g/L.

In vitro determination of antioxidant properties

DPPH free radical scavenging activity

The DPPH scavenging activity observed in the EPS samples and ascorbic acid at concentration of 0.5 mg/mL was lower than the ones at 4 mg/mL. At 4 mg/mL, the scavenging activity for the ascorbic acid was significantly higher than those found in *L. plantarum* YO175 (56.9%) and OF101 (51.2%) respectively (Table 4).

Superoxide scavenging activity

The superoxide scavenging activity of purified EPS samples and ascorbic acid are shown in Table 4. As the concentration increases from 0.5 mg/mL to 4 mg/mL the scavenging effects also increases; from 23% - 45.3% in EPS-OF101, 37.9%-83.1% in ascorbic acid and 43.2% - 89.4% in EPS-YO175.

Reducing power activity of EPS

The reducing power of the EPS sample(s) and ascorbic acid increased with the increase in the concentration levels from 0.5 mg/mL to 4 mg/mL. The reducing power of the ascorbic acid, EPS-YO175 and EPS-OF101 at 4 mg/mL concentration are; (0.91 > 0.41 > 0.34), no significant differences was observed between the EPS samples, but the result obtained for the ascorbic acid showed that there was significance different from the EPS-YO175 and OF101 (Table 4).
Hydroxyl radical scavenging activity

The hydroxyl radical generated by the Fenton reaction in the system, was scavenged by the EPS-YO175, EPS-OF101 and ascorbic acid. Their scavenging effects are shown in Table 4. The two EPS samples exhibited moderate scavenging effect against hydroxyl radical, and EPS-YO175 showing stronger scavenging effect than EPS-OF101. However, ascorbic acid showed higher hydroxyl radical scavenging activity and was significantly different from the EPS samples. At a concentration of 4 mg/mL, the scavenging activity for EPS-YO175, EPS-101, and ascorbic acid was 66.0%, 52.3% and 83.1% respectively.

Discussion

Exopolysaccharides produced by strains of *Lactobacillus plantarum* YO175 and OF101 isolated from traditional fermented cereal beverage on MRS sucrose modified media were investigated. The chemical composition analysis showed that EPS samples contained significant amount of carbohydrate content and relatively low protein. High carbohydrate content from LAB-EPS has been documented by several researchers (Li et al 2014; Wang et al., 2015; Imran et al., 2016). Liu et al. (2002) also reported protein content as low as 2.3% from EPS obtained from the fermentation of kefir grains. Lactic acid is the major metabolic end product of carbohydrate fermentation in LAB. These LAB strains were found to produce LA, and therefore they possess the ability to lower pH in food which may results in the development of desirable organoleptic properties and inhibition of the pathogenic microorganisms in food, thereby ensuring safety and stability of the final product.

The analysis of the EPS monosaccharide composition revealed glucose and galactose monomers, which indicates that EPS-YO175 is an heteropolysaccharide and EPS-OF101 is an homopolysaccharide. Our result is in agreement with Imran et al. (2016) who reported that the
monomer composition in EPS samples can vary among different strains of the same species. Tallon, Bressollier & Urdaci (2003) reported that L. plantarum EP56 is composed of glucose and galactose. Other researchers have also reported that EPS from L. plantarum are composed of different sugar moieties (Ismail & Nampoothiri, 2010; Imran et al., 2016).

FT-IR is a useful tool for determining the functional groups in EPS (Wang et al., 2008). The functional groups present in the two EPS samples as determined by FT-IR spectral analysis showed absorption bands of polymeric structure(s). The functional groups with the vibration frequencies when compared with the FT-IR spectra analysis of the other polysaccharides reported in the literature confirmed that the two EPS samples are carbohydrates (Wang et al., 2010). Similar FTIR peak range was observed for L. plantarum YW11 isolated from Tibet kefir and L. helveticus MB2-1 isolated from say ram ropy fermented milk (Li et al., 2014; Wang et al., 2015).

The amounts of EPS produced by microorganisms depend solely on the cultivation conditions and media composition (Wang et al., 2010). Carbon and nitrogen sources, cultivation time, temperature and pH have been reported to influence growth and production of EPS by LAB (Gandhi, Rayand & Patel, 1997). Ismail & Nampoothri, (2010) and Kanmani et al. (2011) reported that at 35°C and pH ranging between 6.5 and 7.0, maximum EPS production was obtained for the EPS producing Lactobacillus and Streptococcus species. The optimum range of cultivation conditions obtained during the production of EPS was similar to those reported by other researchers (Hallemeersch, De Baet & Vandamme, 2002; Sarwat, Aman & Ahmed, 2008; Wang et al., 2015; Adesulu-Dahunsi, Sanni & Jeyaram, 2018b). The presence of growth factors such as large quantities of amino acids and short peptides in the yeast extract resulted to enhance EPS production. Liu et al. (2009) also observed that in the presence of yeast extract, high EPS
was produced by *Paenibacillus polymyca* EJS-3. The response surface optimization for enhanced EPS production using RSM and CCD gave good agreement between the experimental and predicted values. This implied that the mathematical models were suitable for the simulation of EPS production in the present study. Many researchers have reported varied amount of EPS produced by *Lactobacillus plantarum* species (Zhang et al., 2013; Li et al., 2014).

The *in vitro* determination of the antioxidant activities increased with increase in their concentrations, no significant difference was observed between the EPS samples. Also, the activities increased in dose dependent manner as the EPS concentrations, ascorbic acid was found to have higher antioxidant activities when compared with the two EPS samples. The antioxidant potentials displayed by the EPS samples in this study was similar to those reported by other researchers (Sun et al., 2012; Ye et al., 2012; Zhang et al., 2013).

Conclusion

In the present work, the optimization of growth parameters using statistical methodology both CCD and RSM for enhanced EPS production by *L. plantarum* strains (YO175 and OF101) isolated from *ogi*, Nigerian indigenous fermented food was studied. The *in vitro* antioxidant assays showed that the EPS produced by the two *L. plantarum* strains have strong antioxidant potentials. These characteristics of the EPS produced would make it a promising candidate for its exploitation in food industry.

References

Abdhul K, Ganesha M, Shanmughapriya S, Kanagavel M, Anbarasu K, Natarajaseenivasana K. 2014. Antioxidant activity of exopolysaccharide from probiotic strain *Enterococcus faecium* (BDU7) from Ngari. *International Journal of Biological Macromolecules* 70: 450–454.
Adesulu AT, Awojobi KO. 2014. Enhancing sustainable development through indigenous fermented food products in Nigeria. *African Journal of Microbiology Research* 8: 1338-1343.

Adesulu-Dahunsi AT, Sanni AI, Jeyaram K. 2017a. Rapid differentiation among *Lactobacillus*, *Pediococcus* and *Weissella* species from some Nigerian indigenous fermented foods, *LWT-Food Science and Technology* 77: 39-44.

Adesulu-Dahunsi AT, Sanni AI, Jeyaram K, Banwo K. 2017b. Genetic diversity of *Lactobacillus plantarum* strains from some indigenous fermented foods in Nigeria. *LWT-Food Science and Technology* 82:199-206.

Adesulu-Dahunsi AT, Sanni AI, Jeyaram, K, Ojediran JO, Ogunsakin AO,Banwo K. 2018a. Extracellular polysaccharide from *Weissella confusa* OF126: Production, optimization, and characterization. *International Journal of Biological Macromolecules* 111: 514-525.

Adesulu-Dahunsi AT, Jeyaram K and Sanni AI. 2018b. Probiotic and technological properties of exopolysaccharide producing Lactic acid bacteria isolated from some cereal-based Nigerian indigenous fermented food products. *Journal of Food Control* 92:225-231.

Adesulu-Dahunsi AT, Sanni AI, Jeyaram K.2018c. Production, characterization and *In vitro* antioxidant activities of exopolysaccharide from *Weissella cibaria* GA44. *LWT-Food Science and Technology* 87: 432-442.

Balakrishnan B, Prasad B, Rai AK, Velappan SP, Subbanna MN, Narayan B. 2011. *In-vitro* antioxidant and antibacterial properties of hydrolyzed proteins of delimed tannery fleshings: Comparison of acid hydrolysis and fermentation methods. *Biodegradation* 22:287-295.
Banwo K, Sanni A, Tan H. 2013. Technological properties and probiotic potential of *Enterococcus faecium* strains isolated from cow milk. *Journal of Applied Microbiology* 114:229-241.

Dubois M, Gilles K, Hamilton J, Rebers P. Smith F. 1956. Colorimetric methods for determination of sugars and related substances. *Annals of Chemistry* 28: 350-356.

Gandhi HP, Rayand RM, Patel RM. 1997. Exopolymer production by *Bacillus* species. *Carbohydrate Polymers* 34: 323-327.

Hallemeersch I, De Baet S, Vandamme EJ. 2002. Exopolysaccharides of lactic acid bacteria. *Biopolymer, Wiley VCH: Weinheim*. pp. 407–29.

Imran MYM, Reehana N, Jayaraj KA, Ahamed AZP, Dhanasekarana D, Thajuddina N, Alharbic NS, Muralitharana G. 2016. Statistical optimization of exopolysaccharide production by *Lactobacillus plantarum* NTMI05 and NTMI20. *International Journal of Biological Macromolecules* 93:731-745.

Ismail B, Nampoothiri KM. 2010. Production, purification and structural characterization of an exopolysaccharide produced by a probiotic *Lactobacillus plantarum* MTCC 9510. *Archive of Microbiology* 192:1049-1057.

Kim Y, Oh S, Yun HS, Kim SH. 2010. Cell-bound exopolysaccharide from probiotic bacteria induces autophagic cell death of tumour cells. *Letters in Applied Microbiology* 51: 123-130.
Li W, Ji J, Rui X, Yu J, Tang W, Chen X, Jiang M, Dong M. 2014. Production of exopolysaccharides by *Lactobacillus helveticus* MB2-1 and its functional characteristics *in vitro*. *LWT - Food Science and Technology* 59:732-739.

Li Z, Jiang A, Yue T, Wang J, Wang Y, Su J. 2013. Purification and identification of five novel antioxidant peptides from goat milk casein hydrolysates. *Journal of Dairy Science* 96: 4242–4251.

Liu JR, Wang SY, Lin YY, Lin CW. 2002. Antitumor activity of milk, kefir and soya milk kefir in tumor bearing mice. *Nutrition and Cancer* 44: 183-187.

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with the Folin phenol reagent. *Journal of Biological Chemistry* 193: 265-275.

Pan D, Mei X. 2010. Antioxidant activity of an exopolysaccharide purified from *Lactococcus lactis* subsp. *lactis* 12. *Carbohydrate Polymers* 80: 908-914.

Patel A, Prajapati JB. 2013. Food and Health Applications of Exopolysaccharides produced by Lactic acid Bacteria. *LWT - Food Science and Technology* 59:732-739.

Rai AK, Jini R, Swapna HC, Baskaran V, Sachindra N.M, Bhaskar N. 2011. Application of native lactic acid bacteria for fermentative recovery of lipids and proteins from fish processing waste: Bioactivities of fermentation products. *Journal of Aquatic Food Products Technology* 20: 32-44.
Sanni AI, Adesulu AT. 2013. Microbiological and physico-chemical changes during fermentation of maize for masa production. *African Journal of Microbiology Research* 7: 4355-4362.

Sarwat FQ, Aman SA, Ahmed N. 2008. Production and characterization of a unique dextran from an Indigenous *Leuconostoc mesenteroides* CMG713. *International Journal of Biological Science* 4:379-386.

Salvucci E, LeBlanc JG, Perez G. 2016. Technological properties of Lactic acid bacteria isolated from raw cereal material. *LWT - Food Science and Technology* 70: 185-191.

Savadogo AC, Ouattara AT, Savadogo PW, Barro N, Ouattara AS, Traore AS. 2004. Identification of exopolysaccharides-producing lactic acid bacteria from Burkina Faso fermented milk samples. *African Journal of Biotechnology* 3:189-194.

Sun Z, Tian Y, Jia M, Pang L, Deng P, Fan K, Liu X, Jia S, Jia L. 2012. Extraction and *in vitro* antioxidant activity of exopolysaccharide by *Pholiota adiposa* SX-01. *African Journal of Microbiology Research* 6:1869-1876.

Surayot U, Wang J, Seesuriyachan P, Kuntiya A, Tabarsa M. 2014. Exopolysaccharides from lactic acid bacteria: structural analysis, molecular weight effect on immunomodulation. *International Journal of Biological Macromolecules* 68:233-240.

Tallon R, Bressollier O, Urdaci CM. 2003. Isolation and characterization of two exopolysaccharides produced by *Lactobacillus plantarum* EP56. *Research in Microbiology* 154:705-712.
Torres-Rodríguez I, Rodríguez-Alegría ME, Miranda-Molina A, Giles-Gómez M, Morales RC, López-Munguía A, Bolívar F, Escalante A. 2014. Screening and characterization of extracellular polysaccharides produced by *Leuconostoc kimchii* isolated from traditional fermented pulque beverage. *SpringerPlus* 3:583.

Wang J, Zhang Q, Zhang Z, Li Z. 2008. Antioxidant activity of sulfated polysaccharide fractions extracted from *Laminaria japonica*. *International Journal of Biological Macromolecules* 42:127-132.

Wang J, Zhao X, Tian Z, Yang Y, Yang Z. 2015. Characterization of an exopolysaccharide produced by *Lactobacillus plantarum* YW11 isolated from Tibet Kefir. *Carbohydrate Polymers* 125: 16-25.

Wang Y, Li C, Liu P, Ahmed Z, Xiao P, Bai X. 2010. Physical characterization of exopolysaccharide produced by *Lactobacillus plantarum* KF5 isolated from Tibet Kefir. *Carbohydrate Polymers* 82: 895-903.

Ye S, Liu, F, Wang J, Wang H, Zhang M. 2012. Antioxidant activities of an exopolysaccharide isolated and purified from marine *Pseudomonas* PF-6. *Carbohydrate Polymers* 87:764–770.

Zajsek K, Gorsek A, Kolar M. 2013. Cultivating conditions effects on kefiran production by the mixed culture of lactic acid bacteria imbedded within kefir grains. *Food Chemistry* 139: 970-977.

Zhang L, Liu C, Li D, Zhao Y, Zhang X, Zeng X, Yang Z, Li S. 2013. Antioxidant activity of an exopolysaccharide isolated from *Lactobacillus plantarum* C88. *International Journal of Biological Macromolecules* 54: 270-275.
Figure 1

HPLC chromatograms of the EPS samples and standards

(A), EPS-YO175 (B), EPS-OF101 (C). The peaks correspond to glucose (peak 1), xylose (peak 2), galactose (peak 3), fructose (peak 4), rhamnose (peak 5).
Figure 2

FTIR spectrum of EPS produced

(A) *Lactobacillus plantarum* YO175 (B) *Lactobacillus plantarum* OF101
Figure 3

Response surface three-dimensional plots and corresponding contour plots of the three significant variables on EPS yield for *Lactobacillus plantarum* YO175.

(A) Sucrose concentration and cultivation time (B) pH and cultivation time (C) pH and sucrose concentration.
Figure 4

Response surface three-dimensional plots and corresponding contour plots of the three significant variables on EPS yield for *Lactobacillus plantarum* OF101

(A) Sucrose concentration and cultivation time (B) pH and cultivation time (C) pH and sucrose concentration.
Table 1 (on next page)

Effect of carbon sources, nitrogen sources, and cultivation conditions on exopolysaccharide production

The different carbon sources, organic and inorganic nitrogen and media composition, cultivation conditions were investigated.
Table 1: Effect of carbon sources, nitrogen sources, and cultivation conditions on exopolysaccharide production

Medium sources	EPS yield (g/L)		
Carbon sources (20 g/L)			
Glucose	0.94 ± 0.10	0.62 ± 0.44	
Sucrose	1.59 ± 0.10	1.07 ± 0.26	
Lactose	1.48 ± 0.14	1.03 ± 0.17	
Galactose	0.87 ± 0.26	0.41 ± 0.26	
Sucrose concentrations (g/L)			
10	1.13 ± 0.20	0.90 ± 0.62	
20	1.64 ± 0.44	1.05 ± 0.44	
30	1.52 ± 0.26	0.71 ± 0.56	
40	1.45 ± 0.75	0.62 ± 0.17	
50	1.10 ± 0.00	0.36 ± 0.10	
Organic nitrogen (25g/L)			
Yeast extract	1.63 ± 0.07	1.01 ± 0.11	
Beef extract	1.15 ± 0.22	0.82 ± 0.10	
Tryptone	1.48 ± 0.31	0.83 ± 0.24	
Peptone	1.61 ± 0.01	0.77 ± 0.20	
Inorganic nitrogen (2 g/L)			
Ammonium sulphate	1.56 ± 0.10	1.00 ± 0.00	
Ammonium nitrate	1.51 ± 0.00	0.80 ± 0.00	
Ammonium chloride	1.48 ± 0.21	0.71 ± 0.10	
Tri-ammonium citrate	1.37 ± 0.32	0.75 ± 0.12	
Sodium nitrite	1.30 ± 0.10	0.68 ± 0.26	
Potassium nitrate	1.15 ± 0.24	0.72 ± 0.18	
Temperature (°C)			
20	0.53 ± 0.20	0.20 ± 0.01	
25	0.77 ± 0.01	0.31 ± 0.08	
30	1.56 ± 0.10	1.03 ± 0.11	
37	1.50 ± 0.18	0.80 ± 0.00	
45	0.46 ± 0.24	0.10 ± 0.10	
Cultivation time (hr)			
12	0.30 ± 0.06	0.10 ± 0.04	
24	1.70 ± 0.08	0.76 ± 0.10	
36	1.66 ± 0.24	1.00 ± 0.12	
48	1.68 ± 0.20	1.08 ± 0.22	
60	1.50 ± 0.10	1.02 ± 0.24	
72	1.38 ± 0.07	0.72 ± 0.11	
84	1.17 ± 0.04	0.66 ± 0.22	
96	1.00 ± 0.30	0.60 ± 0.32	
pH			
6.0	1.51 ± 0.11	0.65 ± 0.01	
6.5	1.60 ± 0.00	1.01 ± 0.01	
7.0	1.72 ± 0.24	1.10 ± 0.02	
8.0	1.50 ± 0.33	0.82 ± 0.07	

Values are means of three independent experiments (mean ± SD).
Table 2 (on next page)

The central composite experimental design matrix showing the predicted and experimental values of exopolysaccharides from *Lactobacillus plantarum* YO175 and OF101

The CCD of the EPS samples
Table 2A: The central composite experimental design matrix showing the predicted and experimental values of exopolysaccharide from *Lactobacillus plantarum* YO175

Run	A	B	C	EPS Yield (g/L)	
	Cultivation time (hr)	Sucrose concentration (g)	pH	Experimental (E1)	Predicted
1	45.48	24.00	6.99	1.28	1.22
2	46.80	23.09	6.87	1.29	1.25
3	47.95	21.09	6.51	1.30	1.31
4	46.18	20.34	7.50	1.34	1.32
5	45.74	20.00	6.42	1.35	1.33
6	45.96	19.92	7.44	1.32	1.34
7	45.93	20.34	8.00	1.31	1.30
8	46.65	20.64	7.71	1.33	1.31
9	46.05	19.62	6.94	1.34	1.28
10	48.50	23.00	7.40	1.36	1.38
11	45.89	19.88	6.74	1.32	1.31
12	45.86	16.50	7.97	1.28	1.28
13	45.67	20.11	7.80	1.26	1.31
14	46.18	20.13	7.88	1.30	1.32
15	46.82	20.29	8.01	1.33	1.34
16	46.44	20.85	7.73	1.35	1.33
17	45.94	20.04	7.00	1.30	1.27
18	46.03	19.87	7.98	1.29	1.30
19	45.81	19.71	7.90	1.27	1.31
20	49.14	20.26	6.86	1.31	1.32
Table 2B: The central composite experimental design matrix showing the predicted and actual values of exopolysaccharide from *Lactobacillus plantarum* OF101

Run	Cultivation time (hr)	Sucrose concentration (g)	pH	EPS Yield (g/L) Experimental (E1)	Predicted
1	47.00	20.00	7.00	2.17	2.16
2	49.00	16.00	8.00	2.12	2.10
3	49.00	24.00	8.00	2.09	2.10
4	49.00	24.00	6.00	2.06	2.10
5	45.00	24.00	6.00	2.04	2.05
6	49.00	16.00	8.00	2.10	2.12
7	45.00	16.00	7.76	2.08	2.14
8	45.00	16.00	6.70	2.06	2.10
9	45.29	24.00	7.47	2.13	2.14
10	45.84	18.92	6.98	2.14	2.15
11	47.64	23.76	7.72	2.14	2.10
12	45.78	21.28	6.60	2.15	2.06
13	48.16	18.03	7.24	2.11	2.10
14	47.70	23.50	7.80	2.18	2.19
15	47.65	17.10	7.81	2.13	2.15
16	47.10	23.34	7.40	2.12	2.10
17	47.16	22.89	7.95	2.15	2.15
18	47.67	19.24	7.94	2.12	2.10
19	45.11	17.10	6.70	2.09	2.08
20	47.88	23.34	6.42	2.04	2.00
Table 3 (on next page)

Analysis of Variance (ANOVA) of quadratic model for production of exopolysaccharide in *Lactobacillus plantarum* YO175 and OF101

The ANOVA table generated from the RSM analysis
Table 3A: Analysis of Variance (ANOVA) of quadratic model for production of exopolysaccharide in *Lactobacillus plantarum* YO175

Source	Sum of Squares	df	Mean Square	F Value	p-value	Prob > F
Model	9.905	9	7.21	5.88	0.0053	Significant
A-Cultivation	4.740	1	4.740	2.53	0.1425	
B-Sucrose conc.	1.511	1	1.511	8.08	0.0175	
C-pH	7.389	1	7.389	3.95	0.0749	
AB	1.125	1	1.125	0.60	0.4559	
AC	1.013	1	1.013	5.41	0.0423	
BC	3.125	1	3.125	1.67	0.2252	
A²	2.500	1	2.500	13.37	0.0044	
B²	1.870	1	1.870	10.02	0.0101	
C²	3.369	1	3.369	13.37	0.0044	
Residual	1.870	10	1.870			
Lack of Fit	3.369	5	3.369	0.22	0.9391	not significant
Pure Error	1.533	5	1.04			
Cor Total	0.012	19				

R-Squared = 0.8412; Adequate Precision = 8.558.
Table 3B: Analysis of Variance (ANOVA) of quadratic model for production of exopolysaccharide in *Lactobacillus plantarum* OF101

Source	Sum of Squares	Df	Mean Square	F Value	p-value	Prob > F
Model	0.10	9	0.04	8.88	0.0010	Significant
A- Cultivation time	4.663	1	4.663	3.65	0.0852	
B-Sucrose conc.	0.010	1	0.010	7.88	0.0186	
C-pH	4.967	1	4.967	3.89	0.0770	
AB	2.813	1	2.813	2.20	0.1688	
AC	3.125	1	3.125	0.24	0.6317	
BC	1.012	1	1.012	0.79	0.3944	
A^2	3.982	1	3.982	3.12	0.1080	
B^2	0.078	1	0.078	61.20	< 0.0001	
C^2	0.13	1	0.13	0.27	0.6167	
Residual	0.013	10	0.013			
Lack of Fit	0.013	6	0.013	70.35	0.6252	Not-significant
Pure Error	1.200	4	0.80			
Cor Total	0.11	19				

R-Squared = 0.8888; Adequate Precision = 10.789
Table 4 (on next page)

In vitro antioxidant activities of the exopolysaccharides from *L. plantarum* YO175 and OF101

The antioxidant activities of the EPS samples
Table 4: *In vitro* antioxidant activities of the exopolysaccharides from *L. plantarum* YO175 and OF101

Concentrations (mg/mL)	Ascorbic acid	EPS-YO175	EPS-OF101
	DPPH scavenging activity (%)		
0.5	38.7 ± 0.21^c	22.3 ± 0.79^b	18.9 ± 0.66^a
1.0	47.0 ± 0.20^c	28.3 ± 0.82^b	21.3 ± 0.76^a
1.5	56.1 ± 0.00^c	35.3 ± 0.30^b	27.4 ± 1.83^a
2.0	60.9 ± 0.40^c	39.1 ± 0.23^b	32.8 ± 0.17^a
2.5	64.7 ± 1.47^c	46.5 ± 0.95^b	40.8 ± 1.56^a
3.0	72.1 ± 0.90^c	50.7 ± 0.44^b	47.6 ± 0.56^a
3.5	78.3 ± 1.74^c	54.0 ± 0.00^b	49.8 ± 0.20^a
4.0	82.1 ± 1.23^c	56.9 ± 1.77^b	51.3 ± 0.35^a
	Superoxide scavenging activity (%)		
0.5	37.9 ± 0.36^b	43.2 ± 0.53^c	23.0 ± 0.00^a
1.0	51.3 ± 0.70^b	55.7 ± 0.36^c	27.8 ± 0.35^a
1.5	57.4 ± 0.80^b	62.1 ± 0.56^c	31.4 ± 0.35^a
2.0	64.3 ± 0.53^b	69.8 ± 0.79^c	35.7 ± 0.70^a
2.5	69.1 ± 1.05^b	77.6 ± 0.70^c	38.9 ± 1.08^a
3.0	74.2 ± 0.35^b	82.6 ± 0.56^c	41.8 ± 0.20^a
3.5	80.4 ± 0.53^b	86.3 ± 0.70^c	42.7 ± 0.45^a
4.0	83.1 ± 0.17^b	89.4 ± 0.35^c	45.2 ± 0.20^a
	Reducing power activity (Abs 700nm)		
0.5	0.33 ± 0.62^b	0.17 ± 0.02^a	0.11 ± 0.00^a
1.0	0.55 ± 0.00^b	0.21 ± 0.02^a	0.19 ± 0.01^a
1.5	0.67 ± 0.04^b	0.25 ± 0.03^a	0.23 ± 0.01^a
2.0	0.71 ± 0.04^b	0.28 ± 0.03^a	0.24 ± 0.03^a
2.5	0.75 ± 0.02^b	0.31 ± 0.02^a	0.26 ± 0.04^a
3.0	0.82 ± 0.03^c	0.37 ± 0.01^b	0.28 ± 0.02^a
3.5	0.87 ± 0.11^b	0.39 ± 0.04^a	0.31 ± 0.02^a
4.0	0.91 ± 0.03^c	0.41 ± 0.03^b	0.34 ± 0.01^a
	Hydroxyl radical scavenging activity (%)		
0.5	38.7 ± 0.69^c	26.8 ± 0.70^b	22.0 ± 0.00^a
1.0	49.7 ± 0.61^c	37.6 ± 0.36^b	27.0 ± 0.35^a
1.5	57.4 ± 0.87^c	41.3 ± 0.61^b	31.2 ± 1.27^a
2.0	64.3 ± 0.61^c	45.8 ± 0.53^b	37.9 ± 1.00^a
2.5	69.1 ± 0.27^c	53.2 ± 1.59^b	44.7 ± 0.62^a
3.0	74.2 ± 0.82^c	57.1 ± 0.17^b	49.2 ± 0.82^a
3.5	80.4 ± 0.60^c	62.3 ± 0.70^b	50.1 ± 0.17^a
4.0	83.1 ± 1.39^c	66.0 ± 0.00^b	52.3 ± 0.30^a

Values are means of three independent experiments (mean ± SD). ^{a,b,c}Means in the same column with different superscript letters represent significant difference (P < 0.05) by Duncan’s post hoc comparisons.