HYPERCENTRAL UNIT GROUPS AND THE HYPERBOLICITY OF A MODULAR GROUP ALGEBRA

E. IWAKI AND S.O. JURIAANS

Abstract. We classify groups G such that the unit group $U_1(ZG)$ is hypercentral. In the second part, we classify groups G whose modular group algebra has hyperbolic unit groups $V(KG)$.

1. Introduction

We denote by $\Gamma = U_1(ZG)$ the group of units of augmentation one of the integral group ring ZG of G. $Z_n(\Gamma)$ will denote the n-th centre of Γ e we define $Z_{\infty}(\Gamma) = \bigcup_{n \in \mathbb{N}} Z_n(\Gamma)$. An element in $Z_{\infty}(\Gamma)$ is called an hypercentral unit.

In the finite group case, Arora, Hales and Passi in [1] showed that the central height of Γ is at most 2, that is, $Z_{\infty}(\Gamma) = Z_2(\Gamma)$. Arora and Passi in [2] then proved that $Z_{\infty}(\Gamma) = Z(\Gamma)T$, where T denotes the torsion subgroup of $Z_{\infty}(\Gamma)$. These results were extended to torsion groups by Li [10] and Li, Parmenter [11]. In [12], [13] they presented some contributions to the problem for non-periodic groups. In [6, Chapter VI] Hertweck extended these results to group rings RG of periodic groups G over G–adapted rings R. From its exposition is clear that the containment of $Z_{\infty}(\Gamma)$ in the normalizer $N_{\Gamma}(G)$ is an important property. We present our contribution to the study of the hypercentral units in [8]. Among many other results in [8] it is proved that the containment of $Z_{\infty}(\Gamma)$ in $N_{\Gamma}(G)$ holds for an arbitrary group G. The support of an hypercentral unit is investigated and it is proved that the normal closure of the group generated by an hypercentral unit is a polycyclic-by-finite group (in case, G is finitely generated).

In [14], Polcino Milies classified finite groups such that the unit group of an integral group ring is nilpotent. This result was extended to arbitrary groups by Sehgal-Zassenhaus in [17]. Since nilpotent groups are hypercentral it is natural to consider the question of classify groups G such that the group of units of an integral group ring $U_1(ZG)$ is hypercentral. This problem was posed by several leading experts in the field. In the second section we completely solve it as a natural consequence of our research about the hypercentral units of an integral group ring done in [8].

In sections 3, 4, 5 we deal with the topic of hyperbolic unit groups. In the context of hyperbolic unit groups, Juriaans, Passi, Prasad in [9] studied the groups G whose unit group $U(ZG)$ is hyperbolic, classified the torsion subgroups of $U(ZG)$ and the polycyclic-by-finite subgroups of G. We consider the natural question of classifying groups G for which the group of units with augmentation one of a modular group algebra, $V(KG)$, is hyperbolic.

Research partially supported by FAPESP-Brazil.

2000 Mathematics Subject Classification. Primary 16S34, 16U60, 20C07

Keywords and Phrases. group ring, unit, normalizer, hypercenter.
Notation is mostly standard and the reader is referred to [15, 16] for general results on group rings. For the theory of hyperbolic groups, we refer the reader to the reference [5].

2. Groups with Hypercentral Unit Group

Unless otherwise stated explicitly G will always denote an arbitrary group G.

Firstly we recall a result proved in [8] which we will need in our investigations. It will also appear in [7].

Lemma 2.1. Let $u \in Z_n(\Gamma)$ and v an element of finite order in Γ. If $c = [u, v] \neq 1$ then $u^{-1}vu = v^{-1}$, $v^2 \in G \cap Z_{n+1}(\Gamma) \subseteq Z_{n+1}(G)$, $o(v) = 2^m$, $m \leq n$, $v^{2^{n-1}}$ is central and if $n = 2$ then $m = 2$. In particular, elements of Γ that are of finite order and whose order is not a power of 2 commute with $Z_\infty(\Gamma)$, and $C^2_\infty(\Gamma) \subseteq C_1(T(G))$, where $C_1(T(G))$ denotes the centralizer of $T(G)$ in Γ and $T(G)$ denotes the set of torsion elements of G.

We need the following result proved in the context of nilpotent unit groups by Sehgal-Zassenhaus in [17].

Lemma 2.2. Suppose that Γ is hypercentral and let $t, t_1, t_2 \in T = T(G), g \in G$.

1. Every finite subgroup of G is normal in G.
2. If $g^{-1}tg \neq t$ then $g^{-1}tg = t^{-1}$.
3. If t has odd order then $gt = tg$.
4. If $1 \neq t_1$ has odd order, t_2 has even order then T is a central subgroup of G.

Proof.

Observe initially that since Γ is hypercentral, we have that G is hypercentral. Since $G \subseteq \Gamma = Z_\infty(\Gamma)$ it follows, by Lemma 2.1, that $g^{-1}tg \in \langle t \rangle$, for all $g \in G, t \in T$. Since every subgroup of T is normal, T is an abelian subgroup or an Hamiltonian subgroup.

2 and 3 follow immediately from Lemma 2.1.

4. Suppose $g \in G$ such that $g^{-1}t_1g = t_1$ and $g^{-1}t_2g = t_2^{-1}$. It follows that $g^{-1}t_1t_2g = t_1t_2^{-1}$ which should be equal to t_1t_2 or $(t_1t_2)^{-1}$. This implies that $t_1t_2^{-1} = t_1t_2$ and $t_2^2 = 1$. Hence $g^{-1}t_2g = t_2$. Finishing the proof.

We now state the main result of this section.

Theorem 2.3. $\Gamma = U_1(ZG)$ is hypercentral if and only if G is hypercentral and the torsion subgroup T of G satisfies one of the following conditions:

(a) T is central in G.
(b) T is an abelian 2-group and for $g \in G, t \in T$

$$g^{-1}tg = t^{\delta(g)}, \delta(g) = \pm 1.$$

(c) $T = K_8 \times E_2$, where K_8 denotes the quaternion group of order 8, E_2 is an elementary abelian 2-group. Moreover, E_2 is central and conjugation by $g \in G$ induces on K_8 one of the four inner automorphisms.

Proof.

\Rightarrow) Suppose that $\Gamma = Z_\infty(\Gamma)$. By Lemma 2.2 every subgroup of T is normal in G and T is an abelian subgroup or a Hamiltonian subgroup.
Suppose that Γ is hypercentral and T is not central. In any case T is abelian or a Hamiltonian group.

Suppose firstly that T is a non-central Hamiltonian group with an element x of odd order. Consider the subgroup $H = K \times \langle x \rangle$. In this case it follows by item (4) of Lemma 2.2 that H is a central subgroup of G. Contradiction.

Suppose that T is an abelian, non-central subgroup of G and that $g^{-1}t_1g = t_1$, $g^{-1}t_2g = t_2^{-1}$ for some $t_1, t_2 \in T$. Then $g^{-1}t_1t_2g = t_1t_2^{-1}$. But by Lemma 2.1, $g^{-1}t_1t_2g$ must be equal to either t_1t_2 or $t_1^{-1}t_2^{-1}$. Hence either $t_1^2 = 1$ and $g^{-1}t_1g = t_2^{-1}$, $i = 1, 2$ or $t_2^2 = 1$ and $g^{-1}t_1g = t_1$. In any case we obtain that $g^{-1}t_1g = t_1^{(g)}$ and $g^{-1}t_2g = t_2^{(g)}$, $\delta(g) = \pm 1$. Also $T(G)$ is an abelian 2–group by Lemma 2.2.

Denote by $K_8 = \langle i, j : i^2 = j^2 = u, u^2 = 1, ji = ij \rangle$. Every $g \in G$ maps every subgroup of K_8 onto itself and induces the identity in $K_8/(i^2)$. In fact only one of the four inner automorphisms

\begin{enumerate}
\item $i \rightarrow i, j \rightarrow j, ij \rightarrow ij$.
\item $i \rightarrow i, j \rightarrow ju, ij \rightarrow iju$.
\item $i \rightarrow iu, j \rightarrow ju, ij \rightarrow ij$.
\item $i \rightarrow iu, j \rightarrow j, ij \rightarrow iju$.
\end{enumerate}

arises.

$\quad (\Leftarrow)$ Under the hypothesis of the Theorem we must prove that Γ is hypercentral. Since G/T is an ordered group and Q/T have no nilpotent elements, it follows by Theorem 45.7 of [16] that $\Gamma = U_1(ZT)G$.

We must consider three cases separately.

(1) Suppose (a) holds. In this case, since $U_1(ZT)$ is central and G is hypercentral, the result follows.

(2) Suppose (b) holds. We claim that $U_1(ZT) \subseteq Z_\infty(\Gamma)$.

Let $u \in U_1(ZT), \; v = \tau x \in U, \; \tau \in U_1(ZT), \; x \in G$. Then

\[[u, v] = [u, \tau x] = [u, x] = u^{-1}u^x =: \gamma, \quad \text{where} \quad \gamma = 1 \quad \text{or} \quad u^{-1}u^* . \]

To see this let $u = \sum_{g \in G} \alpha_g g \in U_1(ZT), x \in G$. So $u^x = \sum_{g \in G} \alpha_g x^{-1}gx$. Since x centralizes the elements of T or x acts by inversion on the elements of T we obtain in the first case that $u^x = u, \gamma = 1$ and in the second case we obtain that $u^x = u^*, \gamma = u^{-1}u^*$. Since T is abelian, it follows that $\gamma^* = \gamma^{-1}$ and by Proposition 1.3 of [16] $\gamma = \pm t$, for some $t \in T$. Since γ has augmentation 1, $\gamma \in T$. We conclude that

\[[U_1(ZT), \Gamma] \subseteq T. \]

So

\[[U_1(ZT), \Gamma, \Gamma] \subseteq [T, \Gamma] = [T, G]. \]

and

\[[U_1(ZT), \Gamma, \Gamma] \subseteq [T, G, G]. \]

Continuing this process and using the fact that G is a hypercentral group, we conclude that $U_1(ZT) \subseteq Z_\infty(\Gamma)$ and Γ is hypercentral.
(3) Suppose \((c) \). In this case, since \(T \) is an Hamiltonian 2–group. It is well known that in this case \(\mathcal{U}_1(ZT) \) has only trivial units. It follows that \(\mathcal{U}_1(ZT) = T \). Consequently, \(\Gamma = G \) is hypercentral.

\[\square \]

3. Modular Group Algebras with Hyperbolic \(V(KG) \)

Let \(\mathbb{Z}^2 \) denote the free Abelian group of rank two, \(p \) be a rational prime, \(GF(p^n) \) will denote the Galois Field with \(p^n \) elements, \(tr.deg(K) \) denotes the transcendence degree of the field \(K \) over \(GF(p) \), \(\mathcal{U}(KG) \) denotes the group of units of \(KG \), \(V(KG) \) denotes the group of units of \(KG \) with augmentation one.

Lemma 3.1. Let \(G \) be an arbitrary group, \(K \) a field with \(char(K) = p > 0 \) and \(tr.deg(K) \geq 1 \). Suppose that \(g_0 \) is a torsion element of \(G \) and \(p \nmid o(g) \). Then \(\mathbb{Z}^2 \) embeds in \(V(KG) \) and consequently, \(V(KG) \) is not hyperbolic.

In what follow we investigate under which conditions the group of units of a modular group algebra of an arbitrary (non-trivial) group \(G \) is hyperbolic.

We denote by \(J(KG) \) the Jacobson Radical of \(KG \) and \(\omega(G) \) represents the augmentation ideal of \(KG \).

Lemma 3.2. Suppose that \(G \) is a finite (non-trivial) group and \(K \) is a field, \(char(K) = p > 0 \), \(tr.deg(K) \geq 1 \). Then \(V(KG) \) is not hyperbolic.

Theorem 3.3. Let \(G \) be a finite (non-trivial) group, \(K \) be a field, \(char(K) = p > 0 \). Under these conditions, \(V(KG) \) is hyperbolic if and only if \(K \) is a finite field.

Theorem 3.4. Let \(G \) be an arbitrary group with torsion, \(K \) be a field, \(char(K) = p > 0 \). If \(V(KG) \) is hyperbolic then \(K \) is algebraic over \(GF(p) \).

Our next Theorem considers the case in which \(G \) is an arbitrary (non-trivial) group, \(K \) a field of \(char(K) = p > 0 \) under the hypothesis that \(\mathcal{U}(KG) \) is hyperbolic.

Theorem 3.5. Let \(G \) be an arbitrary (non-trivial) group, \(K \) a field of \(char(K) = p > 0 \). If \(\mathcal{U}(KG) \) is hyperbolic then \(K \) is finite.

Acknowledgements: This work is part of the first authors Ph.D thesis. He would like to thank his thesis supervisor, Prof. Dr. Stanley Orlando Juriaans, for his guidance during this work.

References

[1] S. R. Arora, A. W. Hales, I. B. S. Passi, *Jordan decomposition and hypercentral units in integral group rings*, Comm. Algebra 21(1993), no.1,25-35.

[2] S. R. Arora, I. B. S. Passi, *Central height of the unit group of an integral group ring*, Comm. Algebra 21(1993), no.10, 3673-3683.

[3] A. A. Bovdi, *The periodic normal divisors of the multiplicative group of a group ring I*, Sibirsk Mat. Z. 9,(1968), no.3, 495-498.

[4] A. A. Bovdi, *The periodic normal divisors of the multiplicative group of a group ring II*, Sibirsk Mat. Z. 11,(1970), no.3, 492-511.

[5] Gromov, M.: *Hyperbolic groups*, In: Essays in group theory (S. M. Gersten, Ed.), Springer Verlag, MSRI Publ. 8, 1997, 75-263. MR 89e:20070.

[6] M. Hertweck, *Contributions to the integral representation theory of groups*, http://elib.uni-stuttgart.de/opus 2003, Habilitationsschrift (autographed copy donated by the author).

[7] Martin Hertweck, E. Iwaki, E. Jespers and S. O. Juriaans, *On hypercentral units of integral group rings*, 2006, submitted.
[8] E. Iwaki, *Unidades hipercentrais em anéis de grupo inteiro e a hiperbolicidade do grupo de unidades de uma álgebra de grupo modular*, Ph.D. Thesis, IME-USP, 2006.

[9] S. O. Juriaans, I. B. S. Passi, D. Prasad., *Hyperbolic unit groups*, Proc. A.M.S 133, no. 2, (2005), 415-423.

[10] Y. Li, *The hypercentre and the n-centre of the unit group of an integral group ring*, Canad. J. Math 50(1998), no. 2, 401-411.

[11] Y. Li, M. M. Parmenter, *Hypercentral units in integral group rings*, Proc. Amer. Math. Soc. 129(2001), no. 8, 2235-2238 (electronic).

[12] Y. Li, M. M. Parmenter, *Some results on hypercentral units in integral group rings*, Comm. Algebra, 31(2003), no. 7, 3207-3217.

[13] Y. Li, M. M. Parmenter, *The upper central series of the unit group of an integral group ring*, Comm. Algebra, 33(2005), 1409-1415.

[14] C. P. Milies, *Integral group rings with nilpotent unit groups*, Canad. J. Math., 28:954-960, 1976.

[15] D. S. Passman, *The algebraic structure of group rings*, Robert E. Krieger Publishing Company, Malabar, Florida. Orig. Ed 1977, Reprint Ed. 1985 with corrections and appendix.

[16] S. K. Sehgal, *Units in integral group rings*, Longman Scientific & Technial, Harlow, 1993, With an appendix by A. Weiss.

[17] S. K. Sehgal, H. Zassenhaus., *Integral group rings with nilpotent unit groups*, Comm. Alg. 5:101-111, 1977.

Instituto de Matemática e Estatística, Universidade de São Paulo, Caixa Postal 66281, São Paulo, CEP 05315-970 - Brazil

E-mail address: iwaki@ime.usp.br

Instituto de Matemática e Estatística, Universidade de São Paulo, Caixa Postal 66281, São Paulo, CEP 05315-970 - Brazil

E-mail address: ostanley@ime.usp.br