Improved WKB Approximation for Nuclear Fusion Reactions

Hayder J. Musa1,3, Fouad A. Majeed2 and Ali Taher Mohi1

1 Department of Physics, College of Education, Al- Mustansriyiah University, Baghdad, Iraq
2 Department of Physics, College of Education for Pure Sciences, University of Babylon, Babylon, Iraq
3 Department of Physics, College of Education for Pure Sciences, University of Kerbala, Karbala, Iraq

Abstract. In this study, we have developed a mathematical approach to enhance the calculation of the probability of the WKB approximation in the semiclassical approach. This enhanced method was applied to study the total cross section of fusion reaction σ_{fus}, the barrier distribution of fusion D_{fus} and the probability of fusion P_{fus} for the light systems $^6\text{Li}^+^{64}\text{Zn}$, $^{13}\text{C}^+^{48}\text{Ti}$ and $^{16}\text{O}^+^{46}\text{Ti}$. A quantum coupled-channel calculation is conducted using CC code with all order coupling to compare it with the calculations of the semiclassical method before and after improvement of the WKB probability. The improved approach used with WKB enhances the semiclassical calculations and more closer our theoretical results to the measured data to be in more agreement with the treatment of quantum mechanics which agrees with the measured data for the total reaction cross section σ_{fus}, the distribution of fusion barrier D_{fus} and the probability of fusion P_{fus}.

1. Introduction
Fusion is a reaction that combines two separate nuclei to form a compound nucleus. The relative movement of the colliding nuclei must overcome the obstacle created by the long-range repulsive Coulomb and the attractive, short-range nuclear force known as the Coulomb barrier [1]. At energies below this barrier, which is known as a classically forbidden region, fusion reaction can occur through the tunnelling phenomenon [1,2]. To evaluate the tunnelling probability, must approximate solution of the Schrodinger equation in this forbidden region, which is accomplished by WKB method [1,3]. In collisions of weakly bound nuclei, two types of fusion processes can distinguish between them, complete fusion (CF), where all projectile-target nucleons merge into the compound nucleus, and incomplete fusion (ICF), when some fragments of the projectile drifting away from interaction region. The total fusion cross section represents the sum of (CF) and (ICF) cross sections, which is measured in most experiments[4, 5-8]. The effect of the breakup channel on systems with weakly-bound projectiles was investigated by the coupling to the continuum [2]. The continuum according to the discretized continuum of the coupling channels (CDCC) is approximated by the finite set of states [9-11]. This procedure has been applied to fusion interactions [12-14]. The alternative method is the semiclassical treatment of Alder and Winther (AW) [10], where applied by [5,15]. Since this method is enhancements the theoretical calculations of fusion reactions [7, 16-20], therefore it is adopted in current work for testing the improved method in the semiclassical calculation with the code (Imp-SCF) to calculate the cross section of fusion σ_{fus}, the distribution barrier of the fusion D_{fus} and the probability of the fusion
P_{fus} by comparing the results of this code with traditional calculations of semiclassical method with (SCF) code, (CC) code for quantum mechanical calculations and the measured data for the systems $^6\text{Li}+^{64}\text{Zn}$, $^{13}\text{C}+^{48}\text{Ti}$ and $^{16}\text{O}+^{46}\text{Ti}$.

2. Theoretical framework

2.1. Fusion cross section

In the semiclassical approach, the σ_{fus} calculation is a very good fit with experimental data as we indicated above, by adopting the coupled channels model. In this model, the potential between the colliding nuclei is not dependent on the relative distance between them, but also on the internal degrees of freedom[21,22]. The system Hamiltonian is

$$H = h_0(\xi) + V(\vec{r}, \xi)$$

(1)

where $h_0(\xi)$ is the Hamiltonian intrinsic motion, and $V(\vec{r}, \xi)$ represent the interaction between the projectile and the target potential [23-25]. The eigenvectors of $h_0(\xi)$ is

$$H_0|\psi_\alpha\rangle = \epsilon_\alpha |\psi_\alpha\rangle$$

(2)

ϵ_α is internal motion energy. With CDCC method based on Alder and Winther (AW) [2,12,26,27]. The solution of Schrodinger equation with coupling interaction implemented as time dependent interaction, where $V(t, \xi) \equiv V(\vec{r}(t), \xi)$. According to the Schrodinger equation

$$H\Psi(\xi, t) = i\hbar \frac{\partial \Psi(\xi, t)}{\partial t}$$

Expanding $\Psi(\xi, t)$ in the basis of intrinsic eigenstates

$$\Psi(\xi, t) = \sum_{\alpha} a_\alpha(\ell, t) \psi_\alpha(\xi) e^{-i\epsilon_\alpha t/\hbar}$$

(4)

Substituting (4) in (3) we get a set of coupled channel equations

$$i\hbar \dot{a}_\alpha(\ell, t) = \sum_{\beta} \alpha_\beta(\ell, t) \langle \psi_\alpha | V(\xi, t) | \psi_\beta \rangle e^{i(\epsilon_\alpha - \epsilon_\beta)t/\hbar}$$

(5)

The initial conditions were used to solve the above equations, $\alpha(\ell, t \rightarrow -\infty) = \delta_{\beta_0}$. i.e., the projectile is found in the ground state at $(t \rightarrow -\infty)$ before the collision. The final population of channel β in reaction with angular momentum ℓ is $P_\ell^{(\alpha\beta)}$ = $|a_\beta(\ell, t \rightarrow +\infty)|^2$ and the σ_β is[24,26].

$$\sigma_\beta = \frac{\pi}{k^2} \sum_\ell (2\ell + 1) P_\ell^{(\beta)}$$

(6)

The fusion cross section is the sum of all channels, using partial wave expansions, we get

$$\sigma_F = \frac{\pi}{k^2} \sum_\ell (2\ell + 1) P_\ell^{(\beta)}$$

(7)

with the channels probability $P_\ell^{(\beta)}$

$$P_\ell^{(\beta)} = \frac{4k}{\pi} \int W_\ell^{(\beta)}(r) |u_\ell(k, r)|^2 dr$$

(8)

where $u_\ell(k, r)$ is wave equation of a radial part, for the ℓ th partial wave in channel β and $W_\ell^{(\beta)}$ is the imaginary part of the optical potential associated to fusion in this channel, by using the approximation [1,25].

$$P_\ell^{(\beta)} = |\tilde{T}_\ell^{(\beta)}(E_\beta)|^2$$

(9)

where $T_\ell^{(\beta)}$ is the tunneling probability. For particle with reduced mass $\mu_\beta = \frac{m_{A_\beta}A_T}{A_{p+}A_T}$ and energy $E_\beta = E - \epsilon_\beta$ and $P_\ell^{(\beta)}$ is the probability of the system in channel β when the classical trajectory is closest. The elastic channel is combined with the breakup-channel. This connection has an important impact on σ_F.

To evaluate the complete fusion cross section, we represent the breakup channel by a single channel using semiclassical theory [1,12,24].

$$P_\ell^{(\beta)} = |\alpha_\ell(\ell, t_{ca})|^2$$

(10)

$P_\ell^{(\beta)}$ is called survival probability. Therefore,

$$\sigma_{CF} = \frac{\pi}{k^2} \sum (2\ell + 1) P_\ell^{(\beta)} T_\ell^{(\beta)}$$

(11)

2.2. Fusion barrier distribution
The fusion barrier distribution $D_{\text{ fus}}$ is an important function to probe the reaction dynamics of the system around Coulomb barrier [27,28]. At low energies the breakup or breakup like processes, such as, transfer followed by breakup strongly vies with fusion reaction. The barrier distribution can be obtained by[28,29].

$$D_{\text{ fus}} = \frac{1}{\pi R_b^2} \frac{d^2 (\sigma)}{dE^2}$$

which was found theoretically from σ by three point difference method, and The second derivative statistical error is given as [28]

$$\delta_c \cong \frac{E}{\Delta E} \sqrt{\rho_1^2 + 4 \rho_2^2 + \rho_3^2}$$

where ρ is the absolute cross section uncertainties. While the experimental data of $D_{\text{ fus}}$ can be found by fitting data of σ using approximate Wong formula [29].

$$\sigma^{\text{Wong}} = R_b^2 \frac{h \omega}{2E} \ln[1 + \exp\left(\frac{2\pi(E-V)}{h \omega}\right)]$$

3. Results and discussion

The semiclassical approach with coupled channels results for the cross section of fusion reaction $\sigma_{\text{ fus}}$, the distribution of fusion barrier $D_{\text{ fus}}$ and the probability of fusion $P_{\text{ fus}}$ for the systems $^6\text{Li}+^{64}\text{Zn}$, $^{13}\text{C}+^{48}\text{Ti}$ and $^{16}\text{O}+^{46}\text{Ti}$, were conducted using (SCF) code and (Imp-SCF) codes, and the calculations of quantum mechanics were performed by using (CC) code. The Wood-Saxon potential parameters for above systems are fitted to the experimental barrier height and are listed in table 1.

System	V_c (MeV)	r_c (fm)	a_c (fm)	W_c (MeV)	r_l (fm)	a_l (fm)
$^{6}\text{Li}+^{64}\text{Zn}$	54.5	1.25	0.63	18.2	0.927	0.784
$^{13}\text{C}+^{48}\text{Ti}$	50.6	1.091	0.781	16.9	0.951	0.769
$^{1e}\text{O}+^{46}\text{Ti}$	39	1.102	0.895	13	0.959	0.764

3.1. $^{6}\text{Li} + ^{64}\text{Zn}$ system

The $\sigma_{\text{ fus}}$, $D_{\text{ fus}}$ and $P_{\text{ fus}}$ results are shown in figure 1, panels (a), (b) and (c), respectively. The measured data (green circles) is taken for this system are from [30]. Below the Coulomb barrier V_b, as indicated by the (magenta arrow on the E$_{c.m.}$ axis) the calculations of quantum mechanics (the red curve) for $\sigma_{\text{ fus}}$, performed by (CC) are in better agreement with measured data, as shown in figure 1, panel (a). The improved SCF calculations (blue curve) below V_b are lower than the calculations of the traditional SCF (dashed blue curve) and the quantum mechanical calculations. Above V_b, the improved semiclassical calculations of $\sigma_{\text{ fus}}$ coincide with calculations of quantum mechanics and the measured data are more consistent than traditional semiclassical calculations. In this range of energy, whenever closest to the energy limit, these three curves are matching the experimental data. This behavior is caused by the probability of fusion above the barrier approaches to unity, as shown in figure 1, panel (c), while the probability below the barrier is smaller than above the barrier, because at low energy region many processes different from CF such us ICF, direct cluster transfers and transfer of single nucleon can be take place [32].

The mechanical quantum estimates best match the measured data as shown in panel (c) under the barrier. The fusion barrier distribution figure 1, panel (b) shows that the quantum mechanical
calculations as close as to experimental data, while the traditional semiclassical calculations far from these points.

Figure 1. (a) The cross section of fusion, (b) the distribution of fusion barrier and (c) the probability of fusion for the system $^6\text{Li}+^{64}\text{Zn}$ (red curve represent the quantum mechanical calculations, dashed and solid blue curves represent the semiclassical and improved semiclassical calculations respectively, solid green circles are experimental data [32], the barrier position indicated by magenta arrow on the E$_{\text{c.m.}}$ axis).

3.2. $^{13}\text{C}+^{48}\text{Ti}$ system
The results of σ_{fus}, D_{fus} and P_{fus} for this system illustrated in figure 2, panels (a), (b) and (c) respectively. The experimental data obtained from [31]. The comparison between semiclassical (dashed blue curve), improved semiclassical (blue curve) and quantum mechanical (red curve) calculations for σ_{fus} with experimental data (green circles) below the V_b (magenta arrow on the E$_{\text{c.m.}}$ axis) as shown in figure 2, panel (a) which refers to the calculations of quantum mechanics with (CC) code in the best fit with data (although there is one data point in this energy region), while above the barrier the improved method is matching the experimental data.

Figure 2. (a) The cross section of fusion, (b) the distribution of fusion barrier and (c) the probability of fusion for the system $^{13}\text{C}+^{48}\text{Ti}$ (red curve represents the quantum mechanical calculations, dashed and solid blue curves represent the semiclassical and improved semiclassical calculations respectively, solid green circles are experimental data [33], the barrier position indicated by the magenta arrow on the E$_{\text{c.m.}}$ axis. The data point after 29 MeV are deleted in panel (b) because it is don’t effect on the behavior of D_{fus}).

In general, above the barrier at high energy region the σ_{fus} is increases due to increase the P_{fus} at this region as shown in panel (c) in figure 2 which represent the probability of fusion for this system.
The fusion barrier distribution with (Imp-SCF) code in best agreement with measured data near and below the height of the Coulomb barrier V_b.

3.3. $^{16}O+^{46}Ti$ system

Figure 3, panels (a), (b) and (c) represent the results of σ_{fus}, D_{fus} and P_{fus} calculations respectively, for this system. The measured data (green circles) are obtained from[32]. The semiclassical calculations with (SCF) code (dashed blue curve) under the barrier (magenta arrow on the E_{cm} axis) is a better result comparing with data as shown in figure 3, panel (a), whilst, the quantum mechanical calculations (red curve) with (CC) code underestimation the data. On the contrary, above the barrier, the (CC) calculations are in best match with the data, which corresponding the P_{fus} calculations in figure 3, panel (c).

The fusion barrier distributions figure 3, panel (b), quantum calculations below the barrier in better agreement with experimental data, while above V_b, the (Imp-SCF) code calculations closest to the experimental data.

![Figure 3](image-url)

Figure 3. (a) The cross section of fusion, (b) the distribution of fusion barrier and (c) the probability of fusion for the system $^{16}O+^{46}Ti$. (red curve represents the quantum mechanical calculations, dashed and solid blue curves represent the semiclassical and improved semiclassical calculations respectively, solid green circles are experimental data [34], the barrier position indicated by magenta arrow on the E_{cm} axis)

4. Conclusions

In the present study an improved WKB method was adopted to study the coupled channel calculations for the systems $^6Li+^{64}Zn$, $^{13}C+^{48}Ti$ and $^{16}O+^{46}Ti$. These calculations were compared with the semiclassical calculations using the standard WKB method before improvement and with the full quantum mechanical calculations. The improved WKB approach proved to be very successful in reproducing the data for the cross-section of fusion σ_{fus}, the distribution of fusion barrier D_{fus} and the probability of fusion P_{fus}. The choice of the Woods-Saxon parameters from fitting is very adequate to perform the conclusions. This work can be extended to study light-medium, medium-medium and medium-heavy systems to sustain its success or shortfall in describing the measured data.

References

[1] Hagino K and Takigawa N 2012 Subbarrier fusion reactions and many-particle quantum tunneling *Prog. Theor. Phys.* **128** 1061–106
[2] Dasgupta M, Hinde D J, Rowley N and Stefanini A M 1998 Measuring barriers to fusion *Annu. Rev. Nucl. Part. Sci* **48** 401–61
[3] Griffiths D J and Schroeter D F 2018 *Introduction to quantum mechanics* (Cambridge university press)
[4] Canto L F, Gomes P R S, Donangelo R and Hussein M S 2006 Fusion and breakup of weakly bound nuclei Phys. Rep. 424 1–111
[5] Diaz-Torres A and Boselli M 2016 Low-energy fusion dynamics of weakly bound nuclei: A time dependent perspective EPJ Web of Conferences vol 117 (EDP Sciences) p 8002
[6] Diaz-Torres A, Thompson I J and Beck C 2003 How does breakup influence the total fusion of 6Li 7Li at the Coulomb barrier? Phys. Rev. C 68 44607
[7] Gasques L R, Hinde D J, Dasgupta M, Mukherjee A and Thomas R G 2009 Suppression of complete fusion due to breakup in the reactions 10,11B+209Bi Phys. Rev. C 79 34605
[8] Wang B, Zhao W-J, Diaz-Torres A, Zhao E-G and Zhou S-G 2016 Systematic study of suppression of complete fusion in reactions involving weakly bound nuclei at energies above the Coulomb barrier Phys. Rev. C 93 14615
[9] Brande M-E and Satchler G R 1997 The interaction between light heavy-ions and what it tells us Phys. Rep. 285 143–243
[10] Gomes P R S, Rios J L, Borges J R and Otomar D R 2013 Fusion, breakup and scattering of weakly bound nuclei at near barrier energies Open Nucl. Part. Phys. J. 6 10–5
[11] Gomes P R S, Lubian J, Anjos R M, Otomar D R, Chamon L C and Crema E 2006 Fusion, break-up and scattering of weakly bound nuclei Rev. Mex. Fisica 52 23–9
[12] Hussein M S, Canto L F and Donangelo R 2004 A semiclassical approach to fusion reactions A New Era of Nuclear Structure Physics (World Scientific) pp 124–9
[13] Majeed F A 2017 The role of the breakup channel on the fusion reaction of light and weakly bound nuclei Int. J. Nucl. Energy Sci. Technol. 11 218–28
[14] Hussain F M, Majeed F A and Abdul-Hussien Y A 2019 Description of coupled-channel in Semiclassical treatment of heavy ion fusion reactions IOP Conference Series: Materials Science and Engineering vol 571 (IOP Publishing) p 12113
[15] Majeed F A, Hussain F M and Abdul-Hussien Y A 2019 Enhanced calculations of fusion barrier distribution for heavy-ion fusion reactions using Wong formula Int. J. Nucl. Energy Sci. Technol. 13 226–41
[16] Hussain F M, Majeed F A and Abdul-Hussien Y A 2019 Coupling channels mechanism of complete fusion reactions in some light stable nuclei AIP Conference Proceedings vol 2144 (AIP Publishing) p 30003
[17] Majeed F A and Abdul-Hussien Y A 2016 Semiclassical treatment of fusion and breakup processes of 6,8He halo nuclei J. Theor. Appl. Phys. 10 107–12
[18] Majeed F A and Abdul-Hussien Y A 2015 Fusion and Breakup Reactions of 17S+209Pb and 13C+232Th Halo Nuclei Systems J. J. Adv. Phys. 11
[19] Fröhlich P and Lipperheide R 1996 Theory of nuclear reactions (Clarendon Press)
[20] Canto L F, Gomes P R S, Donangelo R, Lubian J and Hussein M S 2015 Recent developments in fusion and direct reactions with weakly bound nuclei Phys. Rep. 596 1–86
[21] Nunes F M and Thompson I J 1998 Nuclear interference effects in 8B sub-Coulomb breakup Phys. Rev. C 57 R2818
[22] Padron I, Gomes P R S, Anjos R M, Lubian J, Muri C, Alves J J S, Martí G V, Ramirez M, Pacheco A J and Capurro O A 2002 Fusion of stable weakly bound nuclei with 27Al and 64Zn Phys. Rev. C 66 44608
[23] Pradhan M K 2011 Influence of projectile breakup on fusion with 159Tb target DAE Symp. Nucl. Phys. vol 56 pp 1172–3
[24] Shaikh M M, Roy S, Rajbanshi S, Pradhan M K, Mukherjee A, Basu P, Pal S, Nanal V, Pillay R G and Shrivastava A 2015 Barrier distribution functions for the system 3Li+60Ni and the effect of channel coupling Phys. Rev. C 91 34615
[25] Rangel J, Lubian J, Canto L F and Gomes P R S 2016 Effect of Coulomb breakup on the elastic cross section of the B 8 proton-halo projectile on a heavy, Pb 208 target Phys. Rev. C 93 54610
[26] Takigawa N, Masamoto T, Takehi T and Rumin T 2003 Heavy ion fusion reactions and tunneling nuclear microscope J. Korean Phys. Soc. 43 S91–9
[27] Majeed F A, Hamodi R S and Hussian F M 2017 Semiclassical coupled channels calculations in heavy-ion fusion reaction Adv. Stud. Theor. Phys. 11 415–27
[28] Najim A J, Majeed F A and Al-Attiyah K H 2019 Improved calculation of fusion barrier distribution IOP Conference Series: Materials Science and Engineering vol 571 (IOP Conference Series) p 012124
[29] Wong C 1973 Interaction barrier in charged-particle nuclear reactions Phys. Rev. Lett. 31 766
[30] Di Pietro A, Figuera P, Strano E, Fisichella M, Goryunov O, Lattuada M, Maiolino C, Marchetta C, Milin M and Musumarra A 2013 Heavy residue excitation functions for the collisions $^6,^7$Li$^{+}$Zn near the Coulomb barrier Phys. Rev. C 87 64614
[31] Dumont H, Delaunay B, Delaunay J, Rizzo D M D C, Brondi A, Cuzzocrea P, D’onofrio A, Moro R, Romano M and Terrasi F 1985 Limitation to complete fusion in the reactions 12,13C$^{+}$Ti and 30Si$^{+}$Si Nucl. Phys. A 435 301–16
[32] Neto R L, Acquadro J C, Gomes P R S, de Toledo A S, Tenreiro C F, Crema E, Carlin Filho N and Coimbra M M 1990 Fusion of 16O$^{+}$, 46,50Ti near and below the coulomb barrier Nucl. Phys. A 512 333–44