Human papillomavirus (HPV) is closely associated with cervical cancer that the incidence of this tumor is regarded as a surrogate marker for HPV infection in countries lacking epidemiological studies. HPV is also implicated in subsets of anogenital and oropharyngeal cancers. Although cervical cancer is the third most common cancer in women worldwide, its reported incidence is low in Saudi Arabia, ranking number 12 between all cancers in females and accounts only for 2.4% of all new cases, despite the lack of national screening programs. However, the limited available studies from Saudi Arabia indicate that HPV prevalence and genotypes’ distribution in invasive cervical cancer show similar pattern as in the world. Cytology screening (Pap smear) and HPV vaccinations are the two preventive measures against cervical cancer. The two available vaccines are effective against the two most common HPV genotypes (HPV-16 and -18). Since 92% of cervical tumors in the Kingdom are infected with HPV of which 78% are HPV-16 and -18 genotypes, vaccination is expected to protect against more than two-third of cervical cancers in Saudi Arabia. Nevertheless, due to its low incidence (2.1/100,000 women), a proper cost-effectiveness analysis is required to justify the implementation of a costly vaccine bearing in mind that HPV could potentially be associated with about 3% of all cancers. However, further studies are needed to ascertain the real prevalence of HPV at the population level at large, its association with various types of cancers, and also the impact of local tradition and emerging behavioral trends that could affect HPV transmission and consequently the effectiveness of applying national vaccination program.

Keywords: human papillomavirus, HPV genotype, HPV-16, cervical cancer, Saudi Arabia
Data concerning the prevalence of HPV infection, HPV genotypes, and its relationship with cervical cancer are globally scarce in Saudi Arabia. Studies profiling Pap smears examined at University Hospitals have revealed precursor lesions of cervical cancer (14, 16–20). A study combining HPV detection with Pap test in 100 women undergoing voluntarily cervical cytological screening have found 6% HPV-positive cases that consisted of 5% high-risk and 1% low risk HPV (21). This percentage has further been confirmed in a larger, more recent study including 485 women seeking general gynecologic care at King Abdulaziz University Hospital in western region of Saudi Arabia (22). In contrast to these low risk settings, a study performed on 120 women attending routine gynecological examination in a hospital-based community, with dominant human components that has international acquaintances, has reported a prevalence of 31.6% infection with HPV-16/18 (23). In this study, none of the seven subjects with abnormal cytology had progressed to cervical intraepithelial neoplasia (CIN3) after 4 years of follow-up; suggesting non-persisting infection (24, 25). However, these studies were all confined to communities revolving around major hospitals and had included limited number of subjects. In addition, as local tradition limits sexual activities to marriage with no studies of the impact of travel on infection transmission considering the large portion of Saudi young generation traveling abroad for studies, business, and leisure, the real epidemiological prevalence of HPV infection in native Saudi population is still unknown.

The magnitude of the association between HPV infections and genotypes as causative agent of cervical cancer has been recently evaluated in limited number of patients in two independent studies from the same institute (26, 27). The first study had included 100 paraffin-embedded cervical biopsies with histopathologically proven cervical cancer. By histology, 82% were squamous cell carcinoma and 18% were adenocarcinoma of the cervix. Eleven patients had reported other unidentified past cervical infections and only six had prior screening. HPV detection and genotyping was carried out using the Linear Array kit (Roche Diagnostic) that enables the concomitant detection of 37 mucosal HPVs including 13 most common high-risk viruses. Results showed that 89% were positive for HPV infection. By histopathology, 93% of squamous cell carcinomas and 72% of adenocarcinomas are HPV positive. In total, 11 different HPV genotypes were detected, 8 of which (16, 18, 31, 39, 45, 51, 59, 73) are commonly classified as high-risk (87%) and 3 (6, 64, and 70) are classified as low risk (2%) HPVs. Thus, the prevalence of high-risk genotypes was 97.8% of HPV-positive tumors, which is comparable to the results obtained by Darnel et al. involving 44 Syrian women with invasive cervical cancers (28). The frequencies of the different HPV genotypes detected are summarized in (Table 1).

In agreement with other studies, the most common HPV genotype was HPV-16 (29) with a prevalence of 65.2% compared to 54.4% in the world (30). The following most common genotypes by decreasing prevalence were: HPV-31 (7.9%), HPV-45 (6.7%), HPV-18 (3.4%), and HPV-73 (2.3%). The HPV genotypes (6, 39, 51, 59, 64, and 70) had an estimated prevalence of 1.1% each. Co-infections implicated HPV-16 with HPV-18 (6.7%), HPV-39, HPV-51, and HPV-70 (1.1% each), and HPV-45/59 (1.1%). With double infections, the two most common HPV genotypes were 16 and 18 with an estimated overall prevalence of 70% of all patients and 78.7% of HPV-positive tumors. This is comparable to the prevalence observed in Europe (74.5%), North America (76.5%), and in the whole-world (70.9%). However, these results seem to be different from those obtained in another Middle Eastern country where the most common HPV genotype was 33, which was detected at low prevalence in one of the two referenced study in Table 1, followed by 16 and 18 (28). Interestingly, as it had been described in the literature (25, 31), the two most common HPV genotypes (16 and 18) were more frequent in younger age group, and caused cervical cancer to occur 5 years earlier than other HPV infected patients. Furthermore, age-specific HPV distribution in Saudi cervical cancer patients showed a bimodal curve with a first peak at younger ages (41–45 years) and a relative rebound at older ages (56–60 years) as it has been described in other population (32).

The second study included 90 patients with cervical cancer and had essentially reached similar results using polymerase chain reaction amplification methods with two common primers, MY09, MY11 and GP5+, GP6+ that amplify a wide range of HPVs of which isolates were genotyped using DNA sequencing and reverse line blot hybridization assay to identify the high-risk HPV genotypes (27). Results showed that 95.5% were HPV positive. The most common HPV genotype detected was HPV-16 (63.4%), HPV-18 (11.1%), HPV-45 (4.5%), HPV-33 (3.3%), and

HPV genotypes	Classification	Prevalence (%)
HPV-16	HR	65.2
HPV-18	HR	11.1
HPV-31	HR	7.9
HPV-33	HR	3.4
HPV-45	HR	6.7
HPV-51	HR	2.2
HPV-59	HR	1.1
HPV-62	LR	1.1

SINGLE INFECTION

HPV genotypes	Classification	Prevalence (%)
HPV-16	HR/LR	6.7
HPV-18	HR/LR	1.1
HPV-51	HR/LR	1.1
HPV-45/59	HR/LR	1.1

CO-INFECTIONS

Table 1 | Prevalence of different HPV genotypes in two studies including 190 (92% HPV positive) cervical cancer patients in Saudi Arabia.

HPV genotypes	Classification	Prevalence (%)
HPV-16/18	HR/HR	6.7
HPV-16/39	HR/HR	1.1
HPV-16/51	HR/HR	1.1
HPV-16/70	HR/HR	1.1
HPV-45/59	HR/HR	1.1

LR, low risk; HR, high-risk.
HPV-31, HPV-52, HPV-53, HPV-58, HPV-59, and HPV-66 with 2.2% prevalence rate each (Table 1). Both studies concluded that the results obtained in Saudi cervical cancer patients are comparable to international rates, namely: (1) the prevalence of HPV infection (89–96%) is in range of the published worldwide estimates of 85–99% (1, 2); and (2) the most common genotypes are the high-risk HPV-16 and -18 that affect together 74.5–78.7% of all HPV-positive patients (Figure 1).

In North America, it was noted that, although there has been significant reduction of the incidence of head and neck cancers as a result of the anti-smoking campaigns since the late 80s, there was a significant increase in the incidence of oropharyngeal squamous cell carcinomas in young (40–55 years) specifically in the tonsils and the base of the tongue where most of these patients are not alcohol or tobacco consumers (33). About 60% of these tumors were found positive for HPV-16, the same type that leads to HPV-associated anogenital cancers. Interestingly, the prevalence of HPV infections in the oral cavity is significantly higher among men than women. In a systematic meta-analysis, Kreimer et al. have reviewed 60 eligible studies that included 5,046 cases of squamous cell carcinomas of the head and neck (34). HPV was prevalent in 35.6% of oropharyngeal, in 23.5% of oral, and in 24% of laryngeal cancers. HPV-16 was by far the commonest subtype in all HPV-positive cancers (87% of oropharyngeal, 68% of oral, and 69% of laryngeal cancers). HPV-18 was the next most common subtype.

So far, the prevalence of HPV infection in anal, penile, vaginal, vulvar, and oropharyngeal cancers has not yet been explored in Saudi Arabia. Nevertheless, it is important to include these forecasted potential when discussing the eventual impact of HPV vaccines in a society. In fact, the extrapolation of these rough estimated percentages of HPV-positive anogenital (96%) and head and neck (30%) cancers in Saudi Arabia is given in Figure 2. In total, potential HPV-related cancers would represent about 3% of all cancers in both genders. In addition, HPV has more recently been suspected to be implicated in subgroups of colorectal and breast malignancies, however; these studies remain inconclusive, particularly that some experts in the field still do not support such a role in view of the inadequate evidence.

Acknowledging that detection of HPV infection in head and neck cancers remains lacking with no published report to date from Saudi Arabia, few studies had looked at this potential in some other types of tumors such as ocular and prostatic cancers. Karcigolu and Issa had examined the presence of HPV-16/18 in 96 paraffin-embedded external ocular tissues with neoplastic and non-neoplastic lesions and 19 conjunctiva samples free from overt disease (35). They reported HPV positivity in 57% of in situ squamous cell carcinoma, in 55% of invasive squamous cell carcinoma, in 20% of climatic droplet keratopathy, in 35% of scarred corneas, and in 32% of normal conjunctival tissue obtained during routine cataract extractions. They concluded that HPV is detectable not only in epithelial neoplasms of the ocular mucous membrane but also in non-neoplastic lesions as well as in apparently healthy conjunctiva. Gazzaz and Mosli had explored the possibility of finding HPV infection in prostatic tissues of 56 patients presenting with benign prostatic hyperplasia (BPH) or prostate cancer (36). The results showed that all the prostatic biopsies were negative for HPV DNA as assessed by the hybrid capture 2 technology that can detect 13 carcinogenic types of HPV infection, and differentiate between the 2 HPV groups, the low and the high/intermediate risk types. The authors concluded that it is unlikely that HPV enhance the risk of prostate cancer.

PREVENTION AND HPV VACCINES

Prevention of cervical cancer is provided by HPV screening and vaccination, which is an effective measure in many infectious diseases (24, 25). Vaccines were developed against HPV infection to prevent cervical cancer and probably other HPV-related diseases (37). Two types, a bivalent (Cervarix) vaccine that protect against HPV-16 and -18 and a quadrivalent (Gardasil) that is effective against HPV-6, -11, -16, and -18 are being widely introduced in western countries (38, 39), and promising new broad-spectrum HPV vaccines are in development (40). The short term results
HPV infection or women well-informed about the risk and voluntarily wish to be vaccinated. However, taking into consideration the projection of all potentially HPV-associated tumors outlined in Figure 2, in theory, the vaccination is expected to protect about 3% of cancer patients in Saudi Arabia, which would be, from an expenditure standpoint, still require proper cost-effectiveness evaluation in view of the incidence of head and neck [excluding nasopharyngeal carcinoma that would rather be associated with Epstein–Barr virus (EBV) infection] and anogenital cancers in the country. In addition, many DNA vaccines are being developed for the treatment of HPV-16 induced malignancies (42). Most of these vaccines consist of a fusion of E6 or E7 with a "carrier-protein" to generate highly immunogenic E6- or E7-directed DNA vaccines. These vaccines can be used to treat HPV-positive cancers to improve outcome.

Currently, the vaccines are available in major hospitals in Saudi Arabia and are offered with or without fee to requesting girls upon physician’s prescription. Family physicians should also be provided with objective information regarding the HPV vaccine so they would recommend the vaccine to their patients (43). Parents’ involvement is a significant factor in decision making since current practice recommends vaccination to be carried out on minors and young age (9–26 years old) for best efficacy. Hence, educating families and medical staff on the vaccines is important to reconcile with religious values and beliefs bearing in mind that vaccines at large have saved more lives than any medical treatment ever developed.

CONCLUSION

Beside the salient difference of having very low incidence of cervical cancer in Saudi Arabia, the involvement of HPV infection in this malignancy is comparable to the rest of the world with HPV-16 and -18 being the two most common genotypes and account together for three-quarters of HPV infection. Although vaccination against HPV would protect three-quarters of cervical cancer patients, the currently reported low incidence and the high cost of the vaccine would make it not-cost-effective in the Kingdom of Saudi Arabia. However, to ascertain or refute these conclusions, further studies are needed to find out the real prevalence of HPV at the population level at large, its association with various types of cancers, and also the impact of local tradition and emerging behavioral trends that could affect HPV transmission.

ACKNOWLEDGMENTS

I would like to thank: Drs Medhat El-Sebaie, Nasser Alrajhi, Asma Tulbah, Hadeel Almamea, Anas Dababo, Nabil Alzaher, Hatim Khoja for their collaboration, Najla Al-Harbi, Khaled Al-Hadyan, Sarah Al-Qabtani, Nikki Venturina for assistance. This work is supported by the National Science, Technology and Innovation Plan (NSTIP), King Abdulaziz University and Science and Technology (KACST), grant # 12-MED2945-20 (KFSHRC, RAC# 2130 025).

REFERENCES

1. Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol (1999) 189(1):12–9. doi:10.1002/(SICI)1096-9896(199909)189:1<12::AID-PATH431>3.0.CO;2-F
Alsbeih HPV and related cancers in KSA

2. de Sanjose S, Quint WG, Alemany L, Geraets DT, Klausner J, Lloveras B, et al. Human papillomavirus genotype attribution in invasive cervical cancer: a retrospective cross-sectional worldwide study. Lancet Oncol (2010) 11(11):1048–56. doi:10.1016/S1470-2045(10)70200-8

3. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 10 [Internet]. Lyon: International Agency for Research on Cancer (2010). [cited 2012 Apr 29]. Available from: http://globocan.iarc.fr

4. Kitchener HC, Symonds P. Detection of cervical intraepithelial neoplasia in developing countries. Lancet (1999) 353(9156):856–7.

5. Kurman RJ, Henson DE, Herbst AL, Noller KL, Schiffman MH. Interim guidelines for management of abnormal cervical cytology. The 1992 National Cancer Institute Workshop. JAMA (1994) 271(23):1866–9. doi:10.1001/jama.1994.271.23.1866

6. Baseman JG, Koutsou LA. The epidemiology of human papillomavirus infections. J Clin Virol (2005) 32(Suppl 1):S16–24. doi:10.1016/j.jcv.2004.12.008

7. Cogliano V, Baan R, Straif K, Grosse Y, Secretan B, Ghissassi FE. Carcinogenicity of human papillomaviruses. Lancet Oncol (2005) 6(4):204. doi:10.1016/S1470-2045(05)70086-3

8. Castellsague X, Htun T, Roura E, Vidart JA, Kjaer SK, Bosch FX, et al. Prevalence and genotype distribution of human papillomavirus infection of the cervix in Spain: the CLEOPATRE study. J Med Virol (2012) 84(6):947–56. doi:10.1002/jmv.22382

9. Howell-Jones R, de Silva N, Akpan M, Oakeshott P, Carder C, Coupland L, et al. Human papilloma virus-16/18 cervical infection among women attending a family medicine clinic in Riyadh. Ann Med Surg (2014) 3(Suppl 1):S12–21. doi:10.1016/j.amsu.2014.02.006

10. Tota JE, Chevarie-Davis M, Richardson LA, Devries M, Franco EL. Detection of cervical intraepithelial neoplasia in developing countries. Lancet (1999) 353(9156):856–7.

11. SCR Report 2007. Special edition. In: Bazarbashi S, Al-Zahrani A, editors. Riyadh: Ministry of Health (2011). p. 1–119.

12. Bhurgri Y, Bhurgri A, Rahim A, Bhutto K, Pinjani PK, Usman A, et al. The pattern of cervical smear cytology in western region of Saudi Arabia. Ann Saudi Med (2009) 29(4):1663–79. doi:10.1016/j.vaccine.2008.09.036

13. Altaf FJ. Cervical cancer screening with pattern of Pap smear. Review of multicenter studies. Saudi Med J (2006) 27(10):1498–502.

14. Al-Badawi IA, Al-Suwaine A, Al-Aker M, Asaad L, Alaidan A, Tulbah A, et al. Detection and genotyping of human papilloma virus in cervical cancer specimens from Saudi patients. Int J Cancer (2011) 21(5):967–10. doi:10.1002/ijc.218121419F

15. Darnel AD, Wang D, Ghalebue L, Yasmeen A, Sami S, Alk A, et al. Correlation between the presence of high-risk human papillomaviruses and Id gene expression in Syrian women with cervical cancer. Clin Microbiol Infect (2010) 16(3):262–6. doi:10.1111/j.1469-0691.2009.02774.x

16. Boesborg KD, Trope A, Lie AK, Jonassen CM, Steinbak M, Hansen M, et al. HPV genotype distribution according to severity of cervical neoplasia. Gynecol Oncol (2010) 118(1):29–34. doi:10.1016/j.ygyno.2010.03.007

17. Manji M. Cervical cancer screening program in Saudi Arabia: action is overdue. Ann Saudi Med (2010) 30(1):9–11. doi:10.4103/0256-4947.51540

18. Mansoor I. Experience with cervical Pap smears at the University Hospital in Karachi, Pakistan. Br J Cancer (2010) 102(11):1657–60. doi:10.1038/bjc.2010.65

19. Altaf F. Pattern of cervical smear cytology in western region of Saudi Arabia. Ann Saudi Med (2001) 21:94–6.

20. 118. Schiffman M, Rodriguez AG. Heterogeneity in CIN3 diagnosis. Lancet Oncol (2008) 9(5):404–6. doi:10.1016/S1470-2045(08)70110-4

21. Schiffman M, Ahmed R, Al-Harbi N, Venturina LA, Tulbah A, Balagari K. Prevalence and genotypes’ distribution of human papillomavirus in invasive cervical cancer in Saudi Arabia. Gynecol Oncol (2011) 121(3):522–6. doi:10.1016/j.ygyno.2011.01.033

22. Al-Badawi IA, Al-Suwaime A, Al-Aker M, Asaad L, Alaidan A, Tulbah A, et al. Detection and genotyping of human papilloma virus in cervical cancer specimens from Saudi patients. Int J Cancer (2011) 21(5):967–10. doi:10.1002/ijc.218121419F

Conflict of Interest Statement: The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 28 November 2013; accepted: 17 March 2014; published online: 31 March 2014.

Citation: Alsbeih G (2014) HPV infection in cervical and other cancers in Saudi Arabia: implication for prevention and vaccination. Front. Oncol. 4:65. doi: 10.3389/fonc.2014.00065

www.frontiersin.org
