CENTERS OF CUNTZ-KRIEGER C^*-ALGEBRAS

ADEL ALAHMADI AND HAMED ALSULAMI

Abstract. For a finite directed graph Γ we determine the center of the Cuntz-Krieger C^*-algebra $CK(\Gamma)$.

1. Definitions and Main Results

Let $\Gamma = (V, E, s, r)$ be a directed graph that consists of a set V of vertices and a set E of edges, and two maps $r : E \to V$ and $s : E \to V$ identifying the range and the source of each edge. A graph is finite if both sets V and E are finite. A graph is row-finite if $|s^{-1}(v)|<\infty$ for an arbitrary vertex $v \in V$.

Definition 1. If Γ is a row-finite graph, the Cuntz-Krieger C^*-algebra $CK(\Gamma)$ is the universal C^*-algebra generated (as a C^*-algebra) by $V \cup E$ and satisfying the relations (1) $s(e)e = er(e) = e$ for all $e \in E$, (2) $e^*f = \delta_{e,f}r(f)$ for all $e, f \in E$, (3) $v = \sum_{e \in s^{-1}(v)} ee^*$ whenever $s^{-1}(v) \neq \emptyset$.

The discrete C-subalgebra of $CK(\Gamma)$ generated by V, E, E^* is isomorphic to the Leavitt path algebra $L(\Gamma)$ of the graph Γ (see [T2]). We will identify $L(\Gamma)$ with its image in $CK(\Gamma)$. Clearly $L(\Gamma)$ is dense in $CK(\Gamma)$ in the C^*-topology.

A path is a finite sequence $p = e_1 \cdots e_n$ of edges with $r(e_i) = s(e_{i+1})$ for $1 \leq i \leq n - 1$. We consider the vertices to be paths of length zero. We let $\text{Path}(\Gamma)$ denote the set of all paths in the graph Γ and extend the maps r, s to $\text{Path}(\Gamma)$ as follows: for $p = e_1 \cdots e_n$ we set $s(p) = s(e_1), r(p) = r(e_n)$. For $v \in V$ viewed as a path we set $s(v) = r(v) = v$. A vertex w is a descendant of a vertex v if there exists a path $p \in \text{Path}(\Gamma)$ such that $s(p) = v, r(p) = w$.

A cycle is a path $C = e_1 \cdots e_n, n \geq 1$ such that $s(e_1) = r(e_n)$ and all vertices $s(e_1), \ldots, s(e_n)$ are distinct. An edge $e \in E$ is called an exit from the cycle C if $s(e) \in \{s(e_1), \ldots, s(e_n)\}$, but $e \notin \{e_1, \ldots, e_n\}$. A cycle without an exit is called a

Key words and phrases. Cuntz-Krieger algebra, Leavitt path algebra.
A subset $W \subset V$ is hereditary if all descendants of an arbitrary vertex $w \in W$ also lie in W. For two nonempty subsets $W_1, W_2 \subset V$ let $E(W_1, W_2)$ denote the set of edges $\{e \in E \mid s(e) \in W_1, r(e) \in W_2\}$.

For a hereditary subset $W \subset V$ the C^*-subalgebra of $CK(\Gamma)$ generated by $W, E(W, W)$ is isomorphic to the Cuntz-Krieger algebra of the graph $(W, E(W, W), s|_{E(W, W)}, r|_{E(W, W)})$, (see [BPRS], [BHRS]). We will denote it as $CK(W)$.

Example 1. Let the graph Γ be a cycle, $V = \{v_1, \ldots, v_n\}$, $E = \{e_1, \ldots, e_n\}$, $s(e_i) = v_i, 1 \leq i \leq n; r(e_i) = v_{i+1}$ for $1 \leq i \leq n-1$, $r(e_n) = v_1$. The algebra $CK(\Gamma)$ in this case is isomorphic to the matrix algebra $M_n(T)$, where T is the C^*-algebra of continuous functions on the unit circle. The center of $CK(\Gamma)$ is generated by the element $e_1 \cdots e_n + e_2e_3 \cdots e_1 + \cdots + e_ne_1 \cdots e_1$ and is isomorphic T.

For an arbitrary row-finite graph Γ if a path $C = e_1 \cdots e_n$ is a NE-cycle with the hereditary set of vertices $V(C) = \{s(e_1), \ldots, s(e_n)\}$ then we denote $CK(C) = CK(V(C)) \cong M_n(T)$. The center $Z(C)$ of the subalgebra $CK(C)$ of $CK(\Gamma)$ is generated by the element $z(C) = e_1 \cdots e_n + e_2e_3 \cdots e_ne_1 + \cdots + e_ne_1 \cdots e_{n-1}$.

We will need some definitions and some results from [AA1], [AA2].

Definition 2. Let $W \subset V$ be a nonempty subset. We say that a path $p = e_1 \cdots e_n$, $e_i \in E$, is an **arrival path** in W if $r(p) \in W$, and $\{s(e_1), \ldots, s(e_n)\} \not\subseteq W$. In other words, $r(p)$ is the first vertex on p that lies in W. In particular, every vertex $w \in W$, viewed as a path of zero length, is an arrival path in W. Let $Arr(W)$ be the set of all arrival paths in W.

Definition 3. A hereditary set $W \subseteq V$ is called finitary if $|Arr(W)| < \infty$.

If W is a hereditary finitary subset of V then $e(W) = \sum_{p \in Arr(W)} pp^*$ is a central idempotent in $L(\Gamma)$ and, hence in $CK(\Gamma)$, see [AA1],[AA2]. If C is a NE-cycle in Γ with the hereditary set of vertices $V(C)$ then we will denote $Arr(C) = Arr(V(C))$. If the set $V(C)$ is finitary then we will say that the cycle is finitary. In this case for an arbitrary element $z \in Z(C)$ the sum $\sum_{p \in Arr(C)} pzp^*$ lies in the center of $L(\Gamma)$ and $CK(\Gamma)$, see [AA2].
Theorem 1. Let Γ be a finite graph. The center $Z(CK(\Gamma))$ is spanned by:

(i) central idempotents $e(W)$, where W runs over all nonempty hereditary finitary subsets of V;

(ii) subspaces $\{ \sum_{p \in \text{Arr}(C)} pzp^* \mid z \in Z(C) \}$, where C runs over all finitary NE-cycles of Γ.

Corollary 1. $Z(CK(\Gamma))$ is the closure of $Z(L(\Gamma))$.

Corollary 2. The center $Z(CK(\Gamma))$ is isomorphic to a finite direct sum $\mathbb{C} \oplus \cdots \oplus \mathbb{C} \oplus T \oplus \cdots \oplus T$.

In [CGBMGSMSH] it was shown that the center of a prime Cuntz-Krieger C^*-algebra is equal to $\mathbb{C} \cdot 1$ (for a finite graph) or to $\langle 0 \rangle$ (for infinite graph).

We remark that for two distinct hereditary subsets $W_1 \subseteq W_2 \subseteq V$ the central idempotents $e(W_1), e(W_2)$ may be equal.

To make the statement of the Theorem more precise we will consider annihilator hereditary subsets.

Let W be a nonempty subset of V. Consider the subset $W^\perp = \{ v \in V \mid$ the vertex v does not have descendants in $W \}$.

For empty set we let $\emptyset^\perp = V$. It is easy to see that W^\perp is always a hereditary subset of V. If $W_1 \subseteq W_2 \subseteq V$ then $W_1^\perp \supseteq W_2^\perp$, $(W^\perp)^\perp \supseteq W$, $((W^\perp)^\perp)^\perp = W^\perp$.

Definition 4. We will refer to W^\perp, $W \subseteq V$ as annihilator hereditary subsets.

In [AA1] it was proved that $(W^\perp)^\perp$ is the largest hereditary subset of V such that every vertex in it has a descendant in W and that $e(W) = e((W^\perp)^\perp)$.

Hence in the part (i) of the Theorem we can let W run over nonempty finitary hereditary annihilator subsets of V.

In fact there is a 1-1 correspondence (and a Boolean algebra isomorphism) between finitary hereditary annihilator subsets of V and central idempotents of $L(\Gamma)$ and $CK(\Gamma)$.

Example 2. Let $\Gamma = \begin{array}{c} v_1 \\ \overline{v_2} \end{array}$. The set $\{v_2\}$ is hereditary, but not finitary. Thus there are no proper finitary hereditary subsets and $Z(L(\Gamma)) = \mathbb{C} \cdot 1$.
Example 3. Let $\Gamma = v_1 \xrightarrow{v_4} v_2 \xrightarrow{v_3}$. The set $\{v_2, v_3, v_4\}$ is hereditary and finitary, but $(\{v_2, v_3, v_4\})^\perp = V$. Thus there are no proper finitary hereditary annihilator subsets and again $Z(L(\Gamma)) = \mathbb{C} \cdot 1$.

Example 4. Let $\Gamma = v_1 \xrightarrow{v_5} v_2 \xrightarrow{v_3} v_4 \xrightarrow{v_4}$. The only finitary hereditary annihilator subsets are $\{v_5\}$ and $\{v_2, v_3, v_4\}$. Hence $Z(L(\Gamma)) = T \oplus \mathbb{C}$.

2. Closed Ideals

Let W be a hereditary subset of V. The ideal $I(W)$ of the Leavitt path algebra generated by the set W is the \mathbb{C}-span of the set $\{pq^* \mid p, q \in \text{Path}(\Gamma), r(p) = r(q) \in W\}$. The closure $\overline{I(W)}$ of the ideal W is the closed ideal of the C^*-algebra $CK(\Gamma)$ generated by the set W.

In this section we will use induction on $|V|$ to prove that for a proper hereditary subset $W \subset V$ central elements from $Z(CK(\Gamma)) \cap \overline{I(W)}$ are of the form predicted by the Theorem.

Given paths $p, q \in \text{Path}(\Gamma)$ we say q is a continuation of the path p if there exists a path $p' \in \text{Path}(\Gamma)$ such that $q = pp'$. In this case the path p is called a beginning of the path q. We will often use the following well known fact: if $p, q \in \text{Path}(\Gamma)$, $p^* q \neq 0$, then one of the paths p, q is a continuation of the other one.

Remark that if W is a hereditary subset of V and $p, q \in \text{Arr}(W), p \neq q$, then none of the paths p, q is a continuation of the other one.

For a path $p \in \text{Path}(\Gamma)$ we consider the idempotent $e_p = pp^*$.

Lemma 1. Let W be a nonempty hereditary subset of V let $a \in \overline{I(W)}$, let $\epsilon > 0$. Then the set $\{p \in \text{Arr}(W) \mid \|e_p a\| \geq \epsilon\}$ is finite.
Proof. The ideal \(I(W) \) generated by the set \(W \) in the Leavitt path algebra \(L(\Gamma) \) is dense in \(\overline{7}(W) \). Choose an element \(b \in I(W) \), \(b = \sum_{p,q \in \text{Arr}(W)} p b_{p,q} q^* \), \(b_{p,q} \in L(W) \), such that \(\|a - b\| < \epsilon \). If \(p' \in \text{Arr}(W) \) is an arrival path in \(W \) that is different from all the paths involved in the decomposition of the element \(b \) then \(p'^* b = 0 \) and \(e_{p'} b = 0 \).

Now
\[
\|e_{p'} a\| = \|e_{p'}(a - b)\| \leq \|e_{p'}\| \|a - b\| < \epsilon,
\]
which proves the Lemma. \(\square \)

Lemma 2. Let \(a \in CK(\Gamma), v \in V, a \in vCK(\Gamma)v; p \in \text{Path}(\Gamma), r(p) = v \). Then \(\|pap^*\| = \|a\| \).

Proof. We have
\[
\|pap^*\| \leq \|p\| \cdot \|a\| \cdot \|p^*\| = \|a\|.
\]
On the other hand, \(a = p'^*(pap^*)p \),
\[
\|a\| \leq \|p'^*\| \cdot \|pap^*\| \cdot \|p\| = \|pap^*\|,
\]
which proves the Lemma. \(\square \)

Lemma 3. Let \(W \) be a nonempty hereditary subset of \(V \) let \(z \in Z(CK(\Gamma) \cap \overline{7}(W)) \). For an arbitrary vertex \(w \in W \) if \(wz \neq 0 \) then the set \(\{p \in \text{Arr}(W) \mid r(p) = w\} \) is finite.

Proof. Let \(p \in \text{Arr}(W), r(p) = w, zw \neq 0 \). We have \(e_{p} z = pp^* z = pz p^* = p(wzw)p^* \). By Lemma 2 \(\|e_{p} z\| = \|wz\| > 0 \). Now it remains to refer to Lemma 1. \(\square \)

Let \(\tilde{Z} \) denote the sum of all subspaces \(Ce(W) \), where \(W \) runs over nonempty finitary hereditary subsets of \(V \), and all subspaces \(\{ \sum_{p \in \text{Arr}(C)} p z p^* \mid z \in Z(C)\} \), where \(C \) runs over finitary \(NE \)-cycles of \(\Gamma \).

Our aim is to show that \(Z(CK(\Gamma)) = \tilde{Z} \).

Let’s use induction on the number of vertices. In other words, let’s assume that for a graph with \(< |V| \) vertices the assertion of the Theorem is true.

Lemma 4. Let \(W \) be a proper hereditary subset of \(V \). Then \(Z(CK(\Gamma) \cap \overline{7}(W)) \subseteq \tilde{Z} \).
Proof. Let \(0 \neq z \in Z(CK(\Gamma) \cap \overline{T}(W)) \). Consider the element \(z_0 = z(\sum_{w \in W} w) \in Z(CK(W)) \). If \(z_0 = 0 \) then \(zW = (0), z\overline{T}(W) = (0), z^2 = 0 \), which contradicts semiprimeness of \(CK(\Gamma) \) (see [BPRS], [BHRS]).

By the induction assumption there exist disjoint hereditary finitary (in \(W \)) cycles \(C_1, \ldots, C_r \) and hereditary finitary (again in \(W \)) subsets \(W_1, \ldots, W_k \subset W \) such that

\[
z_0 = \sum_{i=1}^{r} \alpha_i \left(\sum_{p \in Arr_W(C_i)} pa_i p^* \right) + \sum_{j=1}^{k} \beta_j \left(\sum_{q \in Arr_W(W_j)} qq^* \right) ; \alpha_i, \beta_j \in \mathbb{C}, \alpha_i \in Z(C_i).
\]

The notations \(Arr_W(C_i), Arr_W(W_j) \) are used to stress that arrival paths are considered in the graph \((W, E(W, W))\).

The fact that the hereditary finitary subsets \(V(C_i), W_j \) can be assumed disjoint follows from the description of the Boolean algebra of finitary hereditary subsets in [AA2].

If \(\alpha_i \neq 0 \) then for arbitrary vertex \(w \in V(C_i) \) we have \(z_0 w = zw \neq 0 \). Hence by Lemma 3 there are only finitely many paths \(p \in Arr(W) \) such that \(r(p) = w \). Hence \(V(C_i) \) is a finitary subset of \(V \). Similarly, if \(\beta_j \neq 0 \) then \(W_j \) is a finitary subset in \(V \).

Consider the central element

\[
z' = \sum_{i=1}^{r} \alpha_i \left(\sum_{p \in Arr_W(C_i)} pa_i p^* \right) + \sum_{j=1}^{k} \beta_j e(W_j) \in Z(CK(\Gamma)).
\]

We have \(z'(\sum_{w \in W} w) = z_0 = z(\sum_{w \in W} w) \). Hence, \((z - z')(\sum_{w \in W} w) = (0), (z - z')\overline{T}(W) = (0), (z - z')^2 = 0 \). Again by semiprimeness of \(CK(\Gamma) \) we conclude that \(z = z' \), which proves the Lemma.

\[\square\]

3. Proof of the Theorem

Definition 5. A vertex \(v \in V \) is called a sink if \(s^{-1}(v) = \emptyset \).

Definition 6. A hereditary subset \(W \subset V \) is called saturated if for an arbitrary non-sink vertex \(v \in V \) the inclusion \(r(s^{-1}(v)) \subseteq W \) implies \(v \in W \).

Definition 7. If \(W \) is hereditary subset then we define the saturation of \(W \) to be the smallest saturated hereditary subset \(\hat{W} \) that contains \(W \). In this case \(I(W) = I(\hat{W}) \).
Definition 8. If \(W \) is a hereditary saturated subset of \(V \) then the graph \(\Gamma/W = (V \setminus W, E(V, V \setminus W)) \) is called the factor graph of \(\Gamma \) modulo \(W \).

We have \(CK(\Gamma)/I(W) \cong CK(\Gamma/W) \) (see [T1]). In [AAP], [T2] it was proved that the following 3 statements are equivalent:

1) the Cuntz-Krieger \(C^* \)-algebra \(CK(\Gamma) \) is simple,
2) the Leavitt path algebra \(L(\Gamma) \) is simple,
3) (i) \(V \) does not have proper hereditary saturated subsets, (ii) every cycle has an exit.

We call a graph satisfying the condition 3) simple.

The following lemma is well known. Still we prove it for the sake of completeness.

Lemma 5. Let \(\Gamma \) be a graph such that \(V \) does not have proper hereditary subsets. Then \(\Gamma \) is either simple or a cycle.

Proof. If \(\Gamma \) is not simple then \(\Gamma \) contains a \(NE \)-cycle \(C \). The set of vertices \(V(C) \) is hereditary subset of \(V \). In view of our assumption \(V(C) = V \), which proves the Lemma.

\[\Box \]

Let \(U = \{ \alpha \in \mathbb{C} \mid |\alpha| = 1 \} \) be the unit circle in \(\mathbb{C} \). Let \(E' \) be a subset of the set \(E \) of edges. For an arbitrary \(\alpha \in U \) the mapping \(g_{E'}(\alpha) \) such that \(g_{E'}(\alpha) : v \mapsto v, v \in V; g_{E'}(\alpha) : e \mapsto \alpha e, e^* \mapsto \overline{\alpha} e, e \in E'; g_{E'}(\alpha) : e \mapsto e, e^* \mapsto e^*, e \in E \setminus E', \) extends to an automorphism \(g_{E'}(\alpha) \) of the \(C^* \)-algebra \(CK(\Gamma) \). Denote \(G_E = \{ g_{E'}(\alpha), \alpha \in U \} \leq Aut(CK(\Gamma)) \). The group \(G_E \) is called the gauge group of the \(C^* \)-algebra \(CK(\Gamma) \). An ideal of \(CK(\Gamma) \) is called gauge invariant if it is invariant with respect to the group \(G_E \).

In [BPRS], [BHRS] it is proved that a nonzero closed gauge invariant ideal of \(CK(\Gamma) \) has a nonempty intersection with \(V \).

Lemma 6. Let the graph \(\Gamma \) be a cycle, \(\Gamma = (V, E), V = \{ v_1, \ldots, v_d \}, E = \{ e_1, \ldots, e_d \}, s(e_i) = v_i \) for \(1 \leq i \leq d \); \(r(e_i) = v_{i+1} \) for \(1 \leq i \leq d-1 \), \(r(e_d) = v_1 \). Then the central elements from \(Z(CK(\Gamma)) \) that are fixed by all \(g_{E'}(\alpha), \alpha \in U \), are scalars.

Proof. The center of \(CK(\Gamma) \) is isomorphic to the algebra of continuous function \(T = \{ f : U \to \mathbb{C} \} \), the corresponding action of \(G_E \) on \(T \) is \((g_{E'}(\alpha) f)(u) = f(\alpha^d u) \). Now, if \(f(u) = f(\alpha^d u) \) for all \(\alpha, u \in U \) then \(f \) is a constant function, which proves the Lemma.

\[\Box \]
Lemma 7. Let \(W \) be a hereditary saturated subset of \(V \) such that \(\Gamma/W \) is a cycle, \(E(V \setminus W, W) \neq \emptyset \), \(\Gamma/W = \{v_1, \cdots, v_d\} \). Then \(\left(\sum_{i=1}^{d} v_i CK(\Gamma)v_i \right) \cap Z(CK(\Gamma)) = (0) \).

Proof. Consider the set
\[
W' = \{ w \in W \mid E(V \setminus W, W)CK(\Gamma)w = (0) \}.
\]
The set \(W' \) is hereditary and saturated. Moreover, \(\left(\sum_{i=1}^{d} v_i CK(\Gamma)v_i \right) \cap \mathcal{T}(W') = (0) \).
Indeed, we only need to notice that if \(p \in \text{Path}(\Gamma) \), \(s(p) = v_i \) and \(r(p) \in W' \) then \(p = 0 \). Let \(p = e_1 \cdots e_n, e_i \in E \). At least one edge \(e_j, 1 \leq j \leq n \), lies in \(E(V \setminus W, W) \).
This implies the claim. Factoring out \(\mathcal{T}(W') \) we can assume that \(W' = \emptyset \).

Let \(0 \neq z \in \left(\sum_{i=1}^{d} v_i CK(\Gamma)v_i \right) \cap Z(CK(\Gamma)) \). For an arbitrary edge \(e \in E(V \setminus W, W) \) we have \(ze = ez \). Hence \(ze = zer(e) = ezr(e) = 0 \). Consider the ideal
\[
J = \{ a \in CK(\Gamma) \mid E(V \setminus W, W)CK(\Gamma)a = aCK(\Gamma)E(V \setminus W, W) = (0) \}
\]
of the algebra \(CK(\Gamma) \). The element \(z \) lies in \(J \). The ideal \(J \) is gauge invariant. Hence by [BPRS], [BHRS] \(J \cap V \neq \emptyset \). A vertex \(v_i, 1 \leq i \leq d \), can not lie in \(J \) because \(v_iCK(\Gamma)E(V \setminus W, W) \neq (0) \). On the other hand \(J \cap W \subseteq W' \neq \emptyset \), a contradiction, which proves the Lemma.

\[
\square
\]

Lemma 8. Let \(W \) be a hereditary saturated subset of \(V \) such that \(\Gamma/W \) is a cycle and \(E(V \setminus W, W) \neq \emptyset \). Then \(Z(CK(\Gamma)) \subseteq C \cdot 1_{CK(\Gamma)} + \mathcal{T}(W) \).

Proof. As in the Lemma 7 we assume that \(V \setminus W = \{v_1, \cdots, v_d\} \), \(E' = E \setminus E(V, W) = \{e_1, \cdots, e_d\} \); \(s(e_i) = v_i, 1 \leq i \leq d, r(e_i) = v_{i+1} \) for \(1 \leq i \leq d-1 \), \(r(e_d) = v_1 \). Consider the action of the group \(G_{E'} \) on \(CK(\Gamma) \). Let \(z \in Z(CK(\Gamma)) \), \(z = a + b, a = \sum_{i=1}^{d} v_i z v_i, b = \sum_{w \in W} w z w \). Since every element from \(G_{E'} \) fixes \(CK(\Gamma) \) it follows that \(g(b) = b \) for all \(g \in G_{E'} \). Now \(g(z) = g(a) + b, g(z) - z = g(a) - a \in \left(\sum_{i=1}^{d} v_i CK(\Gamma)v_i \right) \cap Z(CK(\Gamma)) = (0) \) by Lemma 7. we proved that an arbitrary element of \(Z(CK(\Gamma)) \) is fixed by \(G_{E'} \). The ideal \(\mathcal{T}(W) \) is invariant with respect to \(G_{E'} \). Hence the group \(G_{E'} \) acts on \(CK(\Gamma)/\mathcal{T}(W) \cong CK(\Gamma/W) \) as the full gauge group of automorphisms. The image of the central element \(z \) in \(Z(CK(\Gamma/W)) \) is fixed by \(G_{\Gamma/W} \). Hence by Lemma 6 it is scalar. This finishes the proof of the Lemma.

\[
\square
\]
Proof of Theorem 1. If V does not contain proper hereditary subsets then by Lemma 5 Γ is either simple or a cycle. If the C^*-algebra $CK(\Gamma)$ is simple then $Z(CK(\Gamma)) = \mathbb{C} \cdot 1$ (see [D]) and the assertion of the Theorem is clearly true.

If C is a cycle then $Z(CK(\Gamma)) \cong T$ and the assertion of the Theorem is again true.

Let now W be a maximal proper hereditary subset of V. The saturation \hat{W} is equal to V or the set W is saturated. In the first case $CK(\Gamma) = I(W)$ and it suffices to refer to Lemma 4. Suppose now that the set W is saturated. The graph Γ/W does not have proper hereditary subsets. Again by Lemma 5 the graph Γ/W is either simple or a cycle. If Γ/W is simple then $Z(CK(\Gamma/W)) = \mathbb{C} \cdot 1$, which implies $Z(CK(\Gamma) \subseteq \mathbb{C} \cdot 1 + I(W))$, which together with Lemma 4 implies the Theorem. If Γ/W is a cycle then by Lemma 8 we again have $Z(CK(\Gamma) \subseteq \mathbb{C} \cdot 1 + I(W))$ and the Theorem follows.

\[\square \]

Acknowledgement

This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, under Grant No. (27-130-36-HiCi). The authors, therefore, acknowledge technical and financial support of KAU.

References

[A] G. Abrams, Leavitt path algebras: the first decade, Bull. Math. Sci. (2015) 5:59–120.

[AAP] G. Abrams, G. Aranda Pino, The Leavitt path algebra of a graph, J. Algebra 293 (2005), 319–334.

[AMP] P. Ara, M.A. Moreno, E. Pardo, Nonstable k-theory for graph algebras, Algebra Represent. Theory 10 (2007), 157-178.

[AA1] A. Alahmadi, H. Alsulami, Completions of Leavitt path algebras, to appear in the Bull. Math. Sciences.

[AA2] A. Alahmadi, H. Alsulami, Centers of Leavitt path algebras and their completions, \texttt{arXiv:1507.07439} [math.RA].

[BPRS] T. Bates, D. Pask, I. Raeburn, W. Szymanski, C^*-algebras of row-finite graphs, New York J. Math. 6 (2000), 307-324.

[BHRS] T. Bates, J.H. Hong, I. Raeburn, W. Szymanski, The ideal structure of C^*-algebras of infinite graphs, Illinois J. Math. 46 (2002), 1159-1176.

[C] J. Cuntz, Simple C^*-algebras generated by isometries, Comm. Math. Phys. 57 (1977), 173-185.

[CGBMGSMSH] M.G. Corrales Garcia, D.M. Barquero, C. Martin Gonzalez, M. Siles Molina, J.F. Solanilla Hernandez, Centers of path algebras, Cohn and Leavitt path algebras, Bull. Malay. Math. Sci. So. DOI 10.1007/s4084001502141

[D] J. Dixmier, C^*-algebras, North-Holland, 1977.
[T1] M. Tomforde, Structure of graph C^*-algebras and generalizations, Chapter in the book “Graph Algebras: Bridging the Gap between Algebra and Analysis”, Servicio de Publications de la Universidades de Malaga, Malaga, Spain, 2006

[T2] M. Tomforde, Uniqueness theorems and ideal structure for Leavitt path algebras, J. Algebra 318 (2007), 270-299.

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, KING ABDULAZIZ UNIVERSITY, P.O. BOX 80203, JEDDAH, 21589, SAUDI ARABIA

E-mail address: analahmadi@kau.edu.sa

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, KING ABDULAZIZ UNIVERSITY, P.O. BOX 80203, JEDDAH, 21589, SAUDI ARABIA

E-mail address: hhaalsalmi@kau.edu.sa