Review

Dual-Specificity, Tyrosine Phosphorylation-Regulated Kinases (DYRKs) and cdc2-Like Kinases (CLKs) in Human Disease, an Overview

Mattias F. Lindberg and Laurent Meijer *

Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France; lindberg@perha-pharma.com
* Correspondence: meijer@perha-pharma.com

Abstract: Dual-specificity tyrosine phosphorylation-regulated kinases (DYRK1A, 1B, 2-4) and cdc2-like kinases (CLK1-4) belong to the CMGC group of serine/threonine kinases. These protein kinases are involved in multiple cellular functions, including intracellular signaling, mRNA splicing, chromatin transcription, DNA damage repair, cell survival, cell cycle control, differentiation, homocysteine/methionine/folate regulation, body temperature regulation, endocytosis, neuronal development, synaptic plasticity, etc. Abnormal expression and/or activity of some of these kinases, DYRK1A in particular, is seen in many human nervous system diseases, such as cognitive deficits associated with Down syndrome, Alzheimer’s disease and related diseases, tauopathies, dementia, Pick’s disease, Parkinson’s disease and other neurodegenerative diseases, Phelan-McDermid syndrome, autism, and CDKL5 deficiency disorder. DYRKs and CLKs are also involved in diabetes, abnormal folate/methionine metabolism, osteoarthritis, several solid cancers (glioblastoma, breast, and pancreatic cancers) and leukemias (acute lymphoblastic leukemia, acute megakaryoblastic leukemia), viral infections (influenza, HIV-1, HCMV, HCV, CMV, HPV), as well as infections caused by unicellular parasites (Leishmania, Trypanosoma, Plasmodium). This variety of pathological implications calls for (1) a better understanding of the regulations and substrates of DYRKs and CLKs and (2) the development of potent and selective inhibitors of these kinases and their evaluation as therapeutic drugs. This article briefly reviews the current knowledge about DYRK/CLK kinases and their implications in human disease.

Keywords: DYRKs; CLKs; kinase; kinase inhibitor; Alzheimer’s disease; Down syndrome; type 1 diabetes; type 2 diabetes; acute lymphoblastic leukemia; viral infections

1. Introduction

1.1. Protein Phosphorylation, Protein Kinases, Kinase Inhibitors, and Human Disease

Protein phosphorylation is probably one of the most important and most studied mechanism used by cells to regulate their proteins in terms of enzymatic activity, functions, localization, half-life, interactions with other proteins or other ligands, etc. It is also a key mechanism for signal transduction between cells and within cells. Protein phosphorylation occupies a central place in the scientific literature with 337,916 references (as of 1 June 2021). Protein phosphorylation on serine, threonine, and tyrosine residues is carried out by protein kinases, a family of enzymes known as the human kinome, comprising at least 538 members [1,2] divided into tyrosine kinases and serine/threonine kinases (some of the latter are so-called dual specificity, as they also phosphorylate tyrosine residues), histidine kinases, and pseudo-kinases (protein kinases: 573,472 references (as of 1 June 2021), i.e., one article published every 7 min for the last five years). Quite uniquely, four different Nobel Prizes in medicine or physiology have been awarded to this field (1989, 1992, 2000, 2001) (Figure 1).
Figure 1. Four Nobel Prizes in Physiology or Medicine awarded in the field of protein phosphorylation and protein kinases. Protein kinases catalyze the transfer of the γ-phosphate of ATP to the hydroxyl substituents of serine, threonine, or tyrosine residues in proteins, thereby altering the physiological properties of their protein substrates. The human kinome comprises 538 protein kinases. Michael Bishop and Harold E. Varmus received the Nobel Prize 1989 “for their discovery of the cellular origin of retroviral oncogenes” (src, the first described oncogene, which encodes a tyrosine kinase). Edmond H. Fischer and Edwin G. Krebs received the Nobel Prize 1992 “for their discoveries concerning reversible protein phosphorylation as a biological regulatory mechanism” (they are the true discoverers of protein kinases). The Nobel Prize 2000 was awarded jointly to Arvid Carlsson, Paul Greengard, and Eric R. Kandel “for their discoveries concerning signal transduction in the nervous system” (Paul Greengard investigated the mechanism of signal transduction of neurotransmitters in the central nervous system and demonstrated the key importance of phosphorylation by kinases such as CDK5, PKA, CK1, and CK2 and Eric Kandel the importance of PKA in memory in Aplysia). The Nobel Prize 2001 was awarded jointly to Leland H. Hartwell, Tim Hunt, and Paul M. Nurse “for their discoveries concerning key regulators of the cell cycle” (using yeast or sea urchin embryos, they discovered how the cell division cycle is regulated by CDKs). For more information on each of these awardees, see: https://www.nobelprize.org/prizes/medicine/ (accessed on 1 June 2021).

Since protein phosphorylation is involved in essentially all physiological events, abnormal phosphorylation is implicated in many human diseases. Abnormally expressed or abnormally active kinases represent the most frequent situation. Consequently, inhibiting disease-relevant kinases or normalizing their activities constitutes a rational approach to tackle numerous diseases. This is why protein kinases have become, in a few decades after their initial discovery [3], the first therapeutic targets—before G-protein-coupled receptors—in the pharmaceutical industry’s search for novel drug candidates (reviews: [2,4–8]). As of early February 2021, 62 kinase inhibitors have reached the market, mostly for the treatment of various cancer indications [9–11].

1.2. Dyrks and Clks: Structure, Activation, Interactors, and Substrates

Among serine/threonine kinases, Dyrks and Clks (Figures 2–4) belong to a family of 62 kinases known as the CMGC group, which also includes mitogen-activated protein kinases (MAPks), cyclin-dependent kinases (CDks), and the glycogen synthase kinases 3 (GSK3) family. Dyrks and Clks are two highly related and conserved kinase families (Table 1), usually sensitive to the same pharmacological inhibitors. The Dyrk family comprises 5 members: Dyrk1A and Dyrk1B (class 1 Dyrks) and Dyrk2, 3, and 4 (class 2 Dyrks) (reviews: [12–14]). The CLK family comprises 4 members: Clk1, 2, 3, and 4 (review: [15]).
Table 1. Sequence comparison of human CLK and DYRK family members. Numbers indicate percentage sequence identity and similarity among the nine kinase domains. Sequences were obtained from UniProtKB, and % of similarity and identity were calculated using BlastP (https://blast.ncbi.nlm.nih.gov) (accessed on 1 June 2021).

	CLK				DYRK				
	%Identify	%Similarity	%Identify	%Similarity	%Identify	%Similarity	%Identify	%Similarity	
	1	100	67	62	87	30	33	36	33
	2	84	100	73	68	32	31	32	32
	3	77	87	100	64	31	31	33	33
	4	93	84	79	100	30	31	34	35

Figure 2. DYRKs and CLKs within the human kinome phylogenetic tree. DYRK and CLK family members are highlighted with pink and blue circles, respectively. Kinome tree: courtesy of Cell Signaling Technology, Inc. (Danvers, MA, USA, www.cellsignal.com, accessed on 1 June 2021). AGC, cAMP-dependent protein kinase (PKA), cGMP-dependent protein kinase (PKG), and protein kinase C (PKC) families; CAMK, Ca\(^{2+}\)/calmodulin-dependent kinases; CK1, casein kinases 1; CMGC, cyclin-dependent kinases (CDKs), mitogen-activated protein kinases (MAPKs), glycogen synthase kinases (GSK3), dual-specificity, tyrosine phosphorylation-regulated kinases (DYRKs) and Cdc2-like kinases (CLKs); STE, homologs of yeast STE20 (MAP4K), STE11 (MAP3K), and STE7 (MAP2K) kinases; TK, tyrosine kinases; TKL, tyrosine kinase-like kinases.

Table 1. Sequence comparison of human CLK and DYRK family members. Numbers indicate percentage sequence identity and similarity among the nine kinase domains. Sequences were obtained from UniProtKB, and % of similarity and identity were calculated using BlastP (https://blast.ncbi.nlm.nih.gov) (accessed on 1 June 2021).

Alignment of DYRKs and CLKs sequences shows the classical central kinase catalytic domain flanked by N-terminal and C-terminal extensions (Figures 3 and 4). The N-terminal domain of all DYRKs displays a conserved DYRK homology box (DH) [16] that contributes to autophosphorylation of a conserved tyrosine in the kinase domain (Tyr321 in DYRK1A) during maturation of the kinase [17,18]. Autophosphorylation on the tyrosine residue is preceded by hydroxylation of a proline residue by the PHD1 prolyl hydroxylase, an absolute requirement for catalytic activation of the kinase [19]. The N-terminal domain of all DYRKs except DYRK3 contains a nuclear localization signal domain.
(NLS) [20]. DYRK2, DYRK3, and DYRK4 contain a conserved N-terminal autophosphorylation accessory (NAPA) domain essential for autophosphorylation of the activation loop tyrosine [21]. The C-terminal domain of DYRK1A and DYRK1B displays a region enriched in proline, glutamic acid, serine, and threonine known as a PEST sequence, which favors rapid degradation [22]. A region containing 13 consecutive histidine residues is present in the C-terminal region of DYRK1A but not in other DYRKs or CLKs. A comprehensive analysis of the human proteome revealed that only 86 proteins display such a histidine repeat stretch (5 or more histidines) [23]. The presence of a homopolymeric histidine repeat in nuclear proteins appears to be involved in the targeting/localization of these proteins to the nuclear speckles compartment. Many of these polyhistidine sequence-bearing proteins are expressed in the nervous system [23]. The unique polyhistidine sequence provides a natural His-tag which allows the purification/enrichment of DYRK1A using immobilized metal-affinity chromatography (IMAC) (nickel, cobalt) [24,25] [Sévère et al., unpublished]. DYRKs and CLKs have been highly conserved throughout evolution, and orthologs are found in yeast [26,27], plants [28–32], unicellular algae [33,34], and unicellular parasites such as Trypanosoma [35–37], Leishmania [38–40], and Plasmodium [41–46].

Crystal structures of various DYRKs and CLKs, alone or in complex with inhibitors, have been solved (Table 2). These structures have allowed a detailed understanding of the mechanism of activation of DYRKs by autophosphorylation on the tyrosine residue as well as an understanding of the binding mode of numerous inhibitors, providing very useful information for the structure-guided synthesis of improved pharmacological inhibitors.

![Figure 3](image-url)
Figure 4. Sequence alignment of human DYRKs and CLKs. Multiple sequence alignment of the canonical sequences of DYRK and CLK members was performed using Clustal Omega [41] (https://www.ebi.ac.uk) (accessed on 12 April 2021) and edited using Jalview [42]. Each residue in the alignment is assigned a colour if the amino acid profile of the alignment at that position meets some minimum criteria specific for the residue type (Clustal X Colour Scheme, http://www.jalview.org/help/html/colourSchemes/clustal.html) (accessed on 12 April 2021). Distinct sequences are indicated: Activation loop and tyrosine residue that is autophosphorylated (Yn); DH, DYRK homology box; His domain, 13 consecutive histidine residues region; kinase domain; NAPA, N-terminal autophosphorylation accessory domain; NLS, nuclear localization signal domain (NB: a NLS sequence is only found in isoform 4 of DYRK4, not in the canonical sequence); PEST, proline (P), glutamic acid (E), serine (S), and threonine (T)-rich domain; S/T, serine, and threonine-enriched domain; WDR68 binding domain.
NAPA, N-terminal autophosphorylation accessory domain; NLS, nuclear localization signal domain (NB: a NLS sequence is only found in isoform 4 of DYRK4, not in the canonical sequence); PEST, proline (P), glutamic acid (E), serine (S), and threonine (T)-rich domain; S/T, serine, and threonine-enriched domain; WDR68 binding domain.

Table 2. Crystal structures of DYRKs and CLKs alone or in complex with inhibitors.

Kinase	Ligand	PDB Reference
DYRK1A	DJM2005	2VX3, 2WO6 [18]
	Leucettine L41	4AZE [43]
	Harmine	3ANR [44]
	INDY	3ANQ [44]
	Compounds 3 and 23	4MQ1, 4MQ2 [45]
	LDN-211898	5AIK Elkins, unpublished
	PKC412	4NCT [46]
	Inhibitor 5t, 5s	4YLL, 4YLK [47]
	Compound 32, 14	6A1G, 6A1F [48]
	XMD7-112, JWD-065	6EJ4, 6EIV [49]
	[b]-annulated chloro-substituted indole 13	4YLJ [50]
	KuFai319	6T6A [50]
	AnnH75	4YU2 [51]
	compound 2-2 (harmine derivative)	6UWY [52]
	GNF2133	6UIP [53]
	DJM2005 (DB07608)	2WO6 [18]
DYRK2	-	3K2L [18]
	Leucettine L41	4AZF [43]
	Indirubin 6i	3KVV [54]
	EHT 5372, EHT 1610	5LXC, 5LXD [55]
DYRK3	Harmine	5Y86 [56]
	compounds 8g, 16	6FT8, 6FT9 [58]
	debromohymenialdisine	1Z57 [59]
	KH-CB19	5J1V, 5J1W [60,61]
	Pyrido [3, 4-G] quinazolines 13, 14	6X8I [62]
	Compound 25	6KHD [63]
	CX-4945	6FYO [64]
	CX-4945	6Q8P, 6Q8K [66]
	Compounds 9m, 10i	6G33 [67]
	5-iodotubercidin	6I5K [68]
	furanopyrimidines VN412, VN316, VN345	6I5H, 6I5L, 6I5K [69]
	ETH1610 (Cpd 17)	6YT1 [69]
	KH-CARB13 (Cpd 3)	6YTG [69]
	Tg003 (Cpd 2)	6YTE [69]
	GW807982X (Cpd 8)	6ZLN [69]
	imidazopyridazine (Cpd 1)	6YTA [69]
	CAF052	7AK3 [70]
TbCLK1	AB1	6Q2A [40]
CLK2	1RO, NR9	3NR9 Knapp, unpublished
	CX-4945	6KHE [64]
	CX-4945	6FYL [65]
CLK3	-	2EU9, 2EXE [59]
	KH-CB19	2WU7 [60]
	K00546	2WU6 [60]
	Leucettine L41	3RAW [71]
Table 2. Cont.

Kinase	Ligand	PDB	Reference
CX-4945	6KHF	[64]	
CX-4945	6FYP	[65]	
KH-CARB13(Cpd 3)	6YU1	[69]	
Tg003	6YTW	[70]	
compound 8a	6FT7	[58]	
CLK4	CX-4945	6FYV	[65]

The nuclear interactome of DYRK1A is highly enriched in DNA damage repair factors (RNF169), transcriptional elongation factors, and E3 ubiquitin ligases [72–74]. The interactome of all CMGC kinases, including DYRKs and CLKs, has been extensively studied [75]. Other large-scale interactome studies provide information on proteins binding to DYRKs and CLKs [76,77]. A detailed description of the DYRKs and CLKs interactomes is beyond the scope of this review. However, we would like to mention WDR68, also known as DCAF7 (DDB1-associated and CUL4-associated factor 7) or HAN11 (Human homolog of the Petunia hybrida an11 gene), a scaffolding protein of the WD40-repeat protein family [78] that binds class 1 DYRKs and HIPK2 (Homeodomain-interacting protein kinase 2). The interaction between WDR68 and DYRK1A/DYRK1B has been extensively studied [79–81]: it involves a conserved 12 amino acid sequence located in the N-terminal domain of DYRK1A/1B. This interaction mediates binding to other proteins, such as the adenovirus E1A oncoprotein [81] and RNA polymerase II [82], thereby probably favoring substrate recruitment for DYRK1A/1B and HIPK2. WDR68 is essential for craniofacial development, a process involving DYRK1A [83,84]. DYRK1A regulates the interaction between WDR68 and Huntington-associated protein 1 (Hap1), which may contribute to postnatal growth retardation in Down syndrome (DS) [85]. Expression of WDR68 regulates the level of expression of DYRK1A and DYRK1B [86].

DYRK and CLK kinases phosphorylate many substrates involved in signaling pathways, mRNA splicing, chromatin transcription, DNA damage repair, cell survival, cell cycle control, differentiation, homocysteine/methionine/foate regulation, endocytosis, neuronal development and functions, synaptic plasticity, etc. Reviewing substrates and cellular functions of all DYRKs and CLKs is beyond the scope of this brief review, although phosphorylation of substrates and their cellular and physiological consequences underlie normal functioning and pathological conditions.

2. DYRKs and Human Disease

There is growing evidence for the involvement of various DYRKs in human disease. We will briefly review these accumulating data (Table 3 and Figure 5A).

2.1. DYRK1A and Down Syndrome (DS)

The gene encoding DYRK1A is located on chromosome 21, within the Down syndrome critical region (DSCR), the triploidy of which is responsible for most DS-associated deficiencies (reviews: [13,14]) (Table 3 for more details). There is considerable genetical and pharmacological evidence showing that the mere 1.5-fold overexpression of DYRK1A is responsible for most cognitive deficits observed in DS patients (reviews: [14,87–92]). Genetical normalization of DYRK1A levels or pharmacological inhibition of its catalytic activity restores cognitive functions (Table 3 for specific references). The development of pharmacological inhibitors of DYRK1A is a major avenue for the treatment of cognitive deficits associated with DS (and Alzheimer’s disease) (reviews: [88,89,93]).
DYRK1A and Alzheimer’s Disease (AD)

There is mounting evidence for a role of DYRK1A in the onset of AD (reviews: [14,88,94,95]) (Table 3 for more details). DYRK1A phosphorylates key substrates involved in AD and dementia: Tau, septin 4, amyloid precursor protein (APP), presenilin 1, neprilysin, Munc18-1, α-synuclein, RCAN1, and β-tubulin. By modulating alternative splicing of Tau exon 10, DYRK1A favors the production of the 3R-Tau splice isoform (characteristic for DS/AD/tauopathy) over the 4R-Tau isoform [96–98]. Inhibition of DYRK1A and possibly of other DYRKs and CLKs promotes autophagy, which could counterbalance the autophagy deficit seen in AD.

DYRK1A and Parkinson’s Disease (PD)

Genome-wide association studies (GWAS) have revealed that DYRK1A is a risk factor for PD [99]. DYRK1A phosphorylates key factors for PD such as parkin, septin 4, and α-synuclein. Upregulation of micro-RNAs specific for PD targets DYRK1A expression [100]. There is further evidence that DYRK1A expression is increased in PD and in Pick’s disease [101].

DYRK1A and Mental Retardation Disease 7 (MRD7)

Haploinsufficiency of the DYRK1A gene, due to various truncation mutations, microdeletions, or missense variants resulting in reduced DYRK1A, is responsible for MRD7,
an autism spectrum disorder displaying microcephaly, intellectual disability, speech impairment, and distinct facies (reviews: [91,102–104]).

2.5. **DYRK1A and Viral Infections**

DYRK1A and DYRK1B are utilized during human cytomegalovirus (HCMV) placental replication. Inhibition of DYRKs prevent replication of various viruses, including hepatitis C virus (HCV), human cytomegalovirus (HCMV), human immunodeficiency virus type 1 (HIV-1), and herpes simplex virus 1 (HSV-1) (Table 3 for more details).

2.6. **DYRK1A and Diabetes**

There is a growing body of evidence showing that DYRK1A/1B inhibitors induce the proliferation of insulin-producing pancreatic \(\beta\)-cells, making DYRK1A/1B kinases attractive therapeutic targets for \(\beta\) cell regeneration for both type 1 and type 2 diabetes [105,106] (Table 3 for more details).

2.7. **DYRK1A and Cancers and Leukemias**

There is abundant literature linking DYRK1A with solid cancers and leukemias (reviews: [107–109]). The most prominent examples are pancreatic cancer, brain tumor, acute megakaryoblastic leukemia (AMKL) [110], and acute lymphoblastic leukemia (ALL) [111] (Table 3 for more details). DYRK1A regulates DNA damage response [72,74]. In some situations, DYRK1A appears to function as a tumor-suppressor protein [112–114].

2.8. **Other DYRKs and Human Disease**

DYRK1B is involved in the replication of various viruses including HCV, Chikungunya virus, Dengue virus, SARS coronavirus, HCMV, and human papillomavirus (HPV). Like with DYRK1A, DYRK1B inhibition leads to the proliferation of pancreatic, insulin-producing \(\beta\)-cells. DYRK1B is involved in neuroinflammation [115]. Targeting DYRK1B provides a new rationale for treatment of various solid cancers such as liposarcoma or breast cancers (reviews: [116,117]) as well as in chronic myeloid leukemia (CML).

DYRK2, in association with GSK-3\(\beta\), regulates neuronal morphogenesis [118]. DYRK2 is involved in various ways in cancer development (reviews: [119,120]).

DYRK3 promotes hepatocellular carcinoma [121] and glioblastoma [122]. DYRK3 is required for influenza virus replication [123]. DYRK3 couples stress granule condensation/dissolution to mechanistic target of rapamycin complex 1 (mTORC1) signaling [124]. DYRK3 regulates phase transition of membraneless organelles in mitosis [125]. DYRK3 and DYRK4 are involved in the regulation of cytoskeletal organization and process outgrowth in neurons.

DYRK1A decreases axon growth, DYRK3 and DYRK4 increase dendritic branching, and DYRK2 decreases both axon and dendrite growth and branching [126].

Table 3. DYRKs and human disease. Evidence for causality and beneficial effects of pharmacological treatment by DYRKs inhibitors.

Kinase Target	Disease	References
DYRK1A	Down syndrome (DS)	[127–147]
DYRK1A	Alzheimer’s disease (AD) and other tauopathies	[96,98,128,129,131,148–163]
DYRK1A	Parkinson’s disease	[99–101,131,164–168]
DYRK1A	Pick’s disease	[101]
DYRK1A	CDKL5 Deficiency Disorder	[169]
DYRK1A	Diabetes	[52,53,105,106,170–179]
DYRK1A	Regulation of folate and methionine metabolism	[180]
DYRK1A	Cancers (review)	[109]
DYRK1A	Glioblastoma	[181]
DYRK1A	Head and neck squamous cell carcinoma	[182]
DYRK1A	Pancreatic ductal adenocarcinoma	[183–185]
DYRK1A	Hepatocellular carcinoma	[186]
Table 3. Cont.

Kinase Target	Disease	References
DYRK1A	Ovarian cancer	[187,188]
DYRK1A	Acute megakaryoblastic leukemia (AMKL)	[110,189]
DYRK1A	Acute lymphoblastic leukemia (ALL)	[111,190,191]
DYRK1A	Psoriasis	[192]
DYRK1A	Knee osteoarthritis	[193,194]
DYRK1A	Tendinopathy	[195]
DYRK1A	Human immunodeficiency virus type 1 (HIV-1)	[196–198]
DYRK1A	Human cytomegalovirus (HCMV)	[199]
DYRK1B	Hepatitis C virus (HCV), Chikungunya virus, Dengue virus, and severe acute respiratory syndrome (SARS) coronavirus Cytomegalovirus (CMV) Human papillomavirus (HPV)	[199–201]
DYRK1B	Diabetes	[105]
DYRK1B	Neuroinflammation	[115]
DYRK1B	Oral squamous cell carcinoma Liposarcoma Breast cancer Hedgehog/GLI-dependent cancer	[117,202–205]
DYRK2	Cancers (reviews)	[119,120,206,207]
DYRK2	Triple-negative breast cancer (TNBC) and multiple myeloma (MM)	[208,209]
DYRK2	Lung adenocarcinoma	[210]
DYRK2	Chronic myeloid leukemia (CML)	[211,212]
DYRK2	Glioblastoma	[213]
DYRK2	Colorectal cancer (tumor suppressor)	[214]
DYRK2	Liver cancer (predictive marker)	[215]
DYRK2	Trypanosoma cruzi	[216]
DYRK3	Hepatocellular carcinoma	[121]
DYRK3	Glioblastoma	[122]
DYRK3	Influenza virus replication	[123]
DYRK3	Anemia	[217]
DYRK3	Osteoarthritis	[218]
DYRK4	Breast cancer	[219]
DYRKs/CLKs	Glioblastoma	[220]
LmDYRK1	Leishmaniasis	[39]
TbDYRK	Trypanosoma brucei (sleeping sickness)	[35–37]
DYRKs/CLKs	Glioblastoma	[220]

3. CLKs and Human Disease

The data supporting the involvement of various CLKs in human disease is briefly described below and in Table 4 and Figure 5B.

CLKs play essential functions in alternative splicing. CLKs act as a body-temperature sensors, which globally control alternative splicing and gene expression. The activity of CLKs is indeed highly responsive to physiological temperature changes, which is conferred by structural rearrangements within the kinase activation segment [57].
CLK1 triggers periodic alternative splicing during the cell division cycle [222]. CLK1 regulates influenza A virus mRNA splicing, and its inhibition prevents viral replication. CLK1 and CLK2 also regulate HIV-1 gene expression. CLK1 is an autophagy inducer. CLK1 inhibition may prevent chemoresistance in glioma, and CLK1 inhibition by TG693 allows the skipping of mutated exon 31 of the dystrophin gene in Duchenne Muscular Dystrophy. CLK1 autoregulates itself through exon skipping and intron retention [223].

Inhibition of CLK2 has been proposed as a way to improve neuronal functions and combat intellectual disability and autism in Phelan–McDermid syndrome (PMDS) [65]. Alternative splicing of Tau exon 10 is regulated by CLK2 and other CLKs, leading to changes in the 3R/4R isoform ratio and neurodegeneration in sporadic AD [224,225]. Dual inhibitions of CLK2 and DYRK1A by Lorecivivint (SM04690) and by its analogue SM04755 are potential disease-modifying approaches for knee osteoarthritis [193,194] and for tendinopathy, respectively [195]. CLK2 inhibition compromises MYC-driven breast tumors, triple-negative breast cancer, and glioblastoma. Inhibition of CLK2, CLK3, and/or CLK4 blocks HIV-1 production.

CLK3 contributes to hepatocellular carcinoma [226], prostate cancer [227], and cholangiocarcinoma [228]. CLK3 is abundantly expressed in testis and in spermatozoa.

Table 4. CLKs and human disease. Evidence for causality and beneficial effects of pharmacological treatment by CLK inhibitors.

Kinase Target	Disease	References
CLK1	Glioblastoma	[229]
	Small-cell lung cancer	[230]
	Duchenne muscular dystrophy	[231]
	Influenza A virus	[232–236]
	West Nile and Chikungunya viruses	[61]
CLK1/CLK2	Triple-negative breast cancer	[237]
CLK2	HIV-1	[238]
	Autism	[239]
	Phelan-McDermid syndrome (PMDS)	[65]
CLK2	Knee osteoarthritis	[193,194]
	Tendinopathy	[195]
	Breast cancer	[240,241]
CLK2	Triple-negative breast cancer	[242,243]
	Glioblastoma	[244,245]
	Alzheimer’s disease	[224,225]
	(alternative splicing of Tau exon 10)	[224,225]
CLK3	Hepatocellular carcinoma	[226]
	Prostate cancer	[227]
	Cholangiocarcinoma	[228]
CLKs	Body temperature	[57]
	Prostate cancer	[227]
CLKs	Gastrointestinal cancer	[246]
	Colorectal, ovarian cancers	[247]
PfCLKs	*Plasmodium falciparum* (malaria)	[248–253]
Tb CLK1/2	*Trypanosoma brucei* (sleeping sickness)	[38,40]
4. Therapeutic Potential of DYRK and CLK Inhibitors

Abnormal activities in DYRKs and CLKs have motivated numerous groups to search for, optimize, and characterize pharmacological inhibitors of these kinases for their use in various indications (reviews: [88,89,93]) (Figure 5). There is particular interest in the development of DYRKs/CLKs inhibitors as potential drug candidates to address cognitive deficits in DS and AD as well as to increase the pancreatic β-cell mass in both type 1 and type 2 diabetes (review: [106]) or to inhibit several cancers and leukemias by inhibiting cell proliferation. A few representative inhibitors are shown in Figure 6. Most DYRK1A inhibitors also inhibit, to various extent, DYRK1B, 2, 3, and 4 as well as the closely related CLK1, 2, 3, and 4 [93]. Apart from FINDY, which inhibits DYRK1A by interfering with its folding process [254], all reported inhibitors appear to act by competing with ATP in its binding to the catalytic site of the kinases (as demonstrated by enzymological studies as well as by co-crystallization with their kinase targets (Table 2)). Several DYRK1A inhibitors have been reported in recent years (reviews: [88,93,95]) which, like Leucettines and Leucettine L41 in particular, correct cognition deficits in DS and AD animal models [127,128,148].

5. Conclusions

The limited studies that have been carried out so far with DYRKs and CLKs have opened up new avenues in our understanding of their regulation and functions. Yet, a great deal of work remains to be done to fully understand the cellular and physiological functions of each member of the DYRK and CLK families. Tissular and cellular distribution, polymorphism and mutations, regulation of expression levels, and post-translational modifications are just a few of the parameters that need to be investigated in detail. Conditional knock-out/knock-in and overexpression models will also contribute to the understanding of the unique roles of each of these kinases and their eventual redundancy. Very precious tools—antibodies, affinity reagents, pharmacological inhibitors, kinase inactive mutants, transgenic animals—have been developed, yet DYRK1A has been mostly studied, and other DYRKs and CLKs will require the development of specific tools.

The currently available data demonstrate major implications of several protein kinases of the DYRK and CLK families in several human diseases. The first inhibitors are reaching...
regulatory preclinical studies and early clinical studies. The next few years will certainly see the validation of specific DYRKs and CLKs inhibitors for specific clinical indications. It is still a bit early to speculate which one these will be. Clearly though, cognition in DS and AD, diabetes, cancers, and osteoarthritis are the most advanced examples of potential applications, but viral and unicellular parasite infections will certainly gain momentum as potential therapeutic indications for DYRKs/CLKs inhibitors. Higher potency and higher selectivity will also emerge in the near future. We can clearly anticipate that, as fundamental knowledge will accumulate on these protein kinases, more applied pharmaceutical work will result in well characterized, selective, and potent inhibitors leading to significant clinical improvements for patients.

Author Contributions: M.F.L. and L.M. wrote the article and composed the figures. Both authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by grants from the Foundation Jérôme Lejeune and the Agence Nationale pour la Recherche (ANR) (DYRK-DOWN). This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 848077. This reflects only the author’s view and the European Commission is not responsible for any use that may be made of the information it contains.

Conflicts of Interest: L. Meijer is a founder of Perha Pharmaceuticals and co-inventor in the Leucettine and Leucettinib patents.

Abbreviations

Abbreviation	Description
AD	Alzheimer’s disease
AGC	PKA, PKG, and PKC family
ALL	acute lymphoblastic leukemia
AMKL	acute megakaryoblastic leukemia
APP	amyloid precursor protein
CAMK	Ca^{2+}/calmodulin-dependent kinases
CDKs	cyclin-dependent kinases
CSNK1/CK1	casein kinases 1
CK2	casein kinase 2
CLKs	cdc2-like kinases
CML	chronic myeloid leukemia
DCAF7	DDB1-associated and CUL4-associated factor 7
DH	DYRK homology box
DS	Down syndrome
DYRKs	dual specificity, tyrosine phosphorylation regulated kinases
GSK3	glycogen synthase kinase 3
GWAS	genome-wide association studies
HAN11	human homolog of the Petunia hybrida an11 gene
Hap1	Huntington-associated protein 1
HCMV	human cytomegalovirus
HCV	hepatitis C virus
HIV-1	human immunodeficiency virus type 1
HIPK2	Homeodomain-interacting protein kinase 2
HPV	human papillomavirus
HSV-1	herpes simplex virus 1
IMAC	immobilized metal-affinity chromatography
MAPKs	mitogen-activated protein kinases
MRD7	mental retardation disease 7
NAPA	N-terminal autophosphorylation accessory domain
NLS	nuclear localization signals domain
PD	Parkinson’s disease
PEST	region enriched in proline (P), glutamic acid (E), serine (S), and threonine (T) residues
PKA	cAMP-dependent protein kinase
References

1. Zhang, H.; Cao, X.; Tang, M.; Zhong, G.; Si, Y.; Li, H.; Zhu, F.; Liao, Q.; Li, L.; Zhao, J.; et al. A Subcellular Map of the Human Kinome. *eLife* **2021**, *10*, e59509. [CrossRef] [PubMed]

2. Wilson, L.J.; Linley, A.; Hammond, D.E.; Hood, F.E.; Coulson, J.M.; MacEwan, D.J.; Ross, S.J.; Slupsky, J.R.; Smith, P.D.; Eyers, P.A.; et al. New Perspectives, Opportunities, and Challenges in Exploring the Human Protein Kinome. *Cancer Res.* **2018**, *78*, 15–29. [CrossRef] [PubMed]

3. Fischer, E.H.; Krebs, E.G. Conversion of Phosphorylase b to Phosphorylase a in Muscle Extracts. *J. Biol. Chem.* **1955**, *216*, 121–132. [CrossRef]

4. Roskoski, R. A Historical Overview of Protein Kinases and Their Targeted Small Molecule Inhibitors. *Pharmacol. Res.* **2015**, *100*, 1–23. [CrossRef] [PubMed]

5. Ferguson, F.M.; Gray, N.S. Kinase Inhibitors: The Road Ahead. *Nat. Rev. Drug Discov.* **2018**, *17*, 353–377. [CrossRef] [PubMed]

6. Wu, P.; Nielsen, T.E.; Clausen, M.H. Small-Molecule Kinase Inhibitors: An Analysis of FDA-Approved Drugs. *Drug Discov. Today* **2016**, *21*, 5–10. [CrossRef] [PubMed]

7. Klaeger, S.; Heinzelmeir, S.; Wilhelm, M.; Polzer, H.; Vick, B.; Koenig, P.-A.; Reinecke, M.; Ruprecht, B.; Petzdold, S.; Meng, C.; et al. The Target Landscape of Clinical Kinase Drugs. *Science* **2017**, *358*. [CrossRef] [PubMed]

8. Wu, P.; Nielsen, T.E.; Clausen, M.H. FDA-Approved Small-Molecule Kinase Inhibitors. *Trends Pharmacol. Sci.* **2015**, *36*, 422–439. [CrossRef] [PubMed]

9. Roskoski, R. Properties of FDA-Approved Small Molecule Protein Kinase Inhibitors. *Pharmacol. Res.* **2019**, *144*, 19–50. [CrossRef] [PubMed]

10. Roskoski, R. Properties of FDA-Approved Small Molecule Protein Kinase Inhibitors: A 2020 Update. *Pharmacol. Res.* **2020**, *152*, 104609. [CrossRef] [PubMed]

11. Roskoski, R. Properties of FDA-Approved Small Molecule Protein Kinase Inhibitors: A 2021 Update. *Pharmacol. Res.* **2021**, *165*, 105463. [CrossRef] [PubMed]

12. Aranda, S.; Laguna, A.; de la Luna, S. DYRK Family of Protein Kinases: Evolutionary Relationships, Biochemical Properties, and Functional Roles. *FASEB J.* **2011**, *25*, 449–462. [CrossRef] [PubMed]

13. Becker, W.; Sippl, W. Activation, Regulation, and Inhibition of DYRK1A. *FEBS J.* **2011**, *278*, 246–256. [CrossRef] [PubMed]

14. Arbones, M.L.; Thomazeau, A.; Nakano-Kobayashi, A.; Hagiwara, M.; Delabar, J.M. DYRK1A and Cognition: A Lifelong Relationship. *Pharmacol. Ther.* **2019**, *194*, 199–221. [CrossRef] [PubMed]

15. Martín Moyano, P.; Němec, V.; Paruch, V. Cdc-Like Kinases (CLKs): Biology, Chemical Probes, and Therapeutic Potential. *Int. J. Mol. Sci.* **2020**, *21*, 7549. [CrossRef] [PubMed]

16. Widowati, E.W.; Bamberg-Lemper, S.; Becker, W. Mutational Analysis of Two Residues in the DYRK Homology Box of the Protein Kinase DYRK1A. *BMC Res. Notes* **2018**, *11*, 297. [CrossRef] [PubMed]

17. Himpel, S.; Panzer, P.; Eirmbter, K.; Czajkowska, H.; Sayed, M.; Packman, L.C.; Blundell, T.; Kempter, H.; Grötzinger, J.; Joost, H.G.; et al. Identification of the Autophosphorylation Sites and Characterization of Their Effects in the Protein Kinase DYRK1A. *Biochem. J.* **2001**, *359*, 497–505. [CrossRef] [PubMed]

18. Soundararajan, M.; Roos, A.K.; Savitsky, P.; Filippakopoulos, P.; Kettenbach, A.N.; Olsen, J.V.; Gerber, S.A.; Eswaran, J.; Knapp, S.; Elkins, J.M. Structures of Down Syndrome Kinases, DYRKs, Reveal Mechanisms of Kinase Activation and Substrate Recognition. *Structure* **2013**, *21*, 986–996. [CrossRef] [PubMed]

19. Lee, S.B.; Ko, A.; Oh, Y.T.; Shi, P.; D’Angelo, F.; Frangaj, B.; Koller, A.; Chen, E.I.; Cardozo, T.; Iavarone, A.; et al. Proline Hydroxylation Primes Protein Kinases for Autophosphorylation and Activation. *Mol. Cell* **2020**, *79*, 376–389.e8. [CrossRef] [PubMed]

20. Chang, C.-C.; Hsia, K.-C. More than a Zip Code: Global Modulation of Cellular Function by Nuclear Localization Signals. *FEBS J.* **2020**, *287*, 67. [CrossRef] [PubMed]

21. Kinstrie, R.; Luebbering, N.; Miranda-Saavedra, D.; Sibbet, G.; Han, J.; Lochhead, P.A.; Cleghon, V. Characterization of a Domain That Transiently Converts Class 2 DYRKs into Intramolecular Tyrosine Kinases. *Sci. Signal* **2010**, *3*, ra16. [CrossRef] [PubMed]

22. Rechsteiner, M.; Rogers, S.W. PEST Sequences and Regulation by Proteolysis. *Trends Biochem. Sci.* **1996**, *21*, 267–271. [CrossRef] [PubMed]

23. Salichs, E.; Ledda, A.; Mularoni, L.; Alba, M.M.; de la Luna, S. Genome-Wide Analysis of Histidine Repeats Reveals Their Role in the Localization of Human Proteins to the Nuclear Speckles Compartment. *PLoS Genet.* **2009**, *5*, e1000397. [CrossRef] [PubMed]

24. Bornhorst, J.A.; Falke, J.J. Purification of Proteins Using Polyhistidine Affinity Tags. *Methods Enzymol.* **2000**, *326*, 245–254. [CrossRef] [PubMed]
25. Raducanu, V.-S.; Isaiglou, I.; Raducanu, D.-V.; Merzaban, J.S.; Hamdan, S.M. Simplified Detection of Polyhistidine-Tagged Proteins in Gels and Membranes Using a UV-Excitable Dye and a Multiple Chelator Head Pair. *J. Biol. Chem.* 2020, 295, 12214–12223. [CrossRef]

26. Kettenbach, A.N.; Deng, L.; Wu, Y.; Baldissard, S.; Adamo, M.E.; Gerber, S.A.; Moseley, J.B. Quantitative Phosphoproteomics Reveals Pathways for Coordination of Cell Growth and Division by the Conserved Fission Yeast Kinase Pom1. *Mol. Cell Proteom.* 2015, 14, 1275–1287. [CrossRef]

27. Bhattacharjee, R.; Mangione, M.C.; Hos, M.; Chen, J.-S.; Snider, C.E.; Roberts-Albraith, R.H.; McDonald, N.A.; Presti, L.L.; Martin, S.G.; Gould, K.L. DYRK Kinase Pom1 Drives F-BAR Protein Cdc15 from the Membrane to Promote Medial Division. *Mol. Biol. Cell* 2020, 31, 917–929. [CrossRef] [PubMed]

28. Kim, D.; Ntui, V.O.; Zhang, N.; Xiong, L. Arabidopsis Yak1 Protein (AtYak1) Is a Dual Specificity Protein Kinase. *FEBS Lett.* 2015, 589, 3321–3327. [CrossRef] [PubMed]

29. Huang, W.-Y.; Wu, Y.-C.; Pu, H.-Y.; Wang, Y.; Jang, G.-J.; Wu, S.-H. Plant Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase Optimizes Light-Regulated Growth and Development in Arabidopsis. *Plant Cell Environ.* 2017, 40, 1735–1747. [CrossRef]

30. Iwabuchi, K.; Ohnishi, H.; Tamura, K.; Fukao, Y.; Furuya, T.; Hattori, K.; Tsukaya, H.; Hara-Nishimura, I. ANGSTIFOLIA Regulates Actin Filament Alignment for Nuclear Positioning in Leaves. *Plant Physiol.* 2019, 179, 233–247. [CrossRef]

31. Barrada, A.; Djendli, M.; Desnos, T.; Mercier, R.; Robaglia, C.; Montané, M.-H.; Menand, B. A TOR-YAK1 Signaling Axis Controls Cell Cycle, Meristem Activity and Plant Growth in Arabidopsis. *Development* 2019, 146. [CrossRef]

32. Forzani, C.; Duarte, G.T.; Van Leene, J.; Clément, G.; Huguet, S.; Paysant-Le-Roux, C.; Mercier, R.; De Jaeger, G.; Leprince, A.-S.; Meyer, C. Mutations of the ATKAY1 Kinase Suppress TOR Deficiency in Arabidopsis. *Cell Rep.* 2019, 27, 3696–3708.e5. [CrossRef]

33. Colina, F.; Carbó, M.; Meijón, M.; Cañal, M.J.; Valedor, L. Low UV-C Stress Modulates Chlamydomonas Reinhardtii Biomass Composition and Oxidative Stress Response through Proteomic and Metabolomic Changes Involving Novel Signaling and Effectors. *Biotechnol. Biofuels* 2020, 13, 110. [CrossRef] [PubMed]

34. Schulz-Raffelt, M.; Chochois, V.; Auroy, P.; Cuiné, S.; Billon, D.; Dauvillée, D.; Li-Beisson, Y.; Peltier, G. Hyper-Accumulation of Starch and Oil in a Chlamydomonas Mutant Affecting a Plant-Specific DYRK Kinase. *Biotechnol. Biofuels* 2016, 9, 55. [CrossRef] [PubMed]

35. Han, J.; Miranda-Saavedra, D.; Luebbering, N.; Singh, A.; Sibbet, G.; Ferguson, M.A.J.; Cleghorn, V. Deep Evolutionary Conservation of an Intramolecular Protein Kinase Activation Mechanism. *PLoS ONE* 2012, 7, e29702. [CrossRef]

36. De Hiller, N.J.; Silva, N.A.A.E.; Faria, R.X.; Souza, A.L.A.; Resende, J.A.L.C.; Borges Farias, A.; Correia Romeiro, N.; de Luna Martins, D. Synthesis and Evaluation of the Anticancer and Trypanocidal Activities of Boronic Tyrophostins. *ChemMedChem* 2018, 13, 1395–1404. [CrossRef]

37. Cayla, M.; McDonald, L.; MacGregor, P.; Matthews, K. An Atypical DYRK Kinase Connects Quorum-Sensing with Posttranscriptional Gene Regulation in Trypanosoma Brucei. *eLife* 2020, 9. [CrossRef] [PubMed]

38. Ishii, M.; Akiyoshi, B. Characterization of Unconventional Kinetochore Kinases KKT10 and KKT19 in Trypanosoma Brucei. *J. Cell Sci.* 2020, 133. [CrossRef] [PubMed]

39. Rocha, V.P.C.; Dacher, M.; Young, S.A.; Kolokousi, F.; Efstathiou, A.; Späth, G.F.; Soares, M.B.P.; Smirlis, D. Leishmania Dual-Specificity Tyrosine-Regulated Kinase 1 (DYRK1) Is Required for Sustaining Leishmania Stationary Phase Phenotype. *Mol. Microbiol.* 2020, 113, 983–1002. [CrossRef]

40. Saldivia, M.; Fang, E.; Ma, X.; Myburgh, E.; Carnielli, J.B.T.; Bower-Lepts, C.; Brown, E.; Ritchie, R.; Lakshminarayana, S.B.; Chen, Y.-L.; et al. Targeting the Trypanosome Kinetochore with CLK1 Protein Kinase Inhibitors. *Biol. Cell* 2020, 112, 1207–1216. [CrossRef] [PubMed]

41. Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; et al. Fast, Scalable Generation of High-Quality Protein Multiple Sequence Alignments Using Clustal Omega. *Mol. Syst. Biol.* 2011, 7, 539. [CrossRef]

42. Waterhouse, A.M.; Procter, J.B.; Martin, D.M.A.; Clamp, M.; Barton, G.J. Jalview Version 2—A Multiple Sequence Alignment Editor and Analysis Workbench. *Bioinformatics* 2009, 25, 1189–1191. [CrossRef]

43. Tahhtouh, T.; Elkins, J.M.; Filippakopoulos, P.; Soundararajan, M.; Burgoyne, G.; Durieu, E.; Cochet, C.; Schmid, R.S.; Lo, D.C.; Delhomme, F.; et al. Selectivity, Cocrystal Structures, and Neuroprotective Properties of Leucettines, a Family of Protein Kinase Inhibitors Derived from the Marine Sponge Alkaloid Leucettamine B. *J. Med. Chem.* 2012, 55, 9312–9330. [CrossRef]

44. Ogawa, Y.; Nonaka, Y.; Goto, T.; Ohnishi, E.; Hiramatsu, T.; Kii, I.; Yoshida, M.; Ikura, T.; Onogi, H.; Shibuya, H.; et al. Development of a Novel Selective Inhibitor of the Downstream Kinase Inhibitor 1A. *Nat. Commun.* 2010, 1, 1–9. [CrossRef]

45. Anderson, K.; Chen, Y.; Chen, Z.; Dominique, R.; Glenn, K.; He, Y.; Janson, C.; Luk, K.-C.; Lukacs, C.; Polonskaia, A.; et al. Pyrido[2,3-d]Pyrimidines: Discovery and Preliminary SAR of a Novel Series of DYRK1B and DYRK1A Inhibitors. *Bioorg. Med. Chem. Lett.* 2013, 23, 6610–6615. [CrossRef] [PubMed]

46. Alexeeva, M.; Åberg, E.; Engh, R.A.; Rothweiler, U. The Structure of a Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase 1A–PKC412 Complex Reveals Disulphide-Bridge Formation with the Anomalous Catalytic Loop HRD(HCD) Cysteine. *Acta Crystallogr. D Biol. Crystallogr.* 2015, 71, 1207–1215. [CrossRef] [PubMed]
67. Herovuo, C.; Georgi, V.; Ganotra, G.K.; Brennan, P.; Wolfreys, F.; Wade, R.C.; Fernández-Montalván, A.E.; Chaiquaud, A.; Knapp, S. Halogen-Aromatic π Interactions Modulate Inhibitor Residence Times. Angew. Chem. Int. Ed. Engl. 2018, 57, 7220–7224. [CrossRef] [PubMed]

68. Némec, V.; Hylsvö, M.; Maier, L.; Flegel, J.; Sievers, S.; Ziegler, S.; Schröder, M.; Berger, B.-T.; Chaiquaud, A.; Valčíková, B.; et al. Furo[3,2-b]Pyridine: A Privileged Scaffold for Highly Selective Kinase Inhibitors and Effective Modulators of the Hedgehog Pathway. Angew. Chem. Int. Ed. Engl. 2019, 58, 1062–1066. [CrossRef]

69. Schröder, M.; Bullock, A.N.; Fedorov, O.; Bracher, F.; Chaiquaud, A.; Knapp, S. DFG-1 Residue Controls Inhibitor Binding Mode and Affinity, Providing a Basis for Rational Design of Kinase Inhibitor Selectivity. J. Med. Chem. 2020, 63, 10224–10234. [CrossRef] [PubMed]

70. Schröder, M.; Filippakopoulos, P.; Schwalm, M.P.; Ferrer, C.A.; Drewry, D.H.; Knapp, S.; Chaiquaud, A. Crystal Structure and Inhibitor Identifications Reveal Targeting Opportunity for the Atypical MAPK Kinase ERK3. Int. J. Mol. Sci. 2020, 21, 7953. [CrossRef]

71. Debdab, M.; Carreaux, F.; Renault, S.; Soundararajan, M.; Fedorov, O.; Filippakopoulos, P.; Lozach, O.; Bubault, L.; Tahtouh, T.; Baratte, B.; et al. Leucettines, a Class of Potent Inhibitors of Cdc2-Like Kinases and Dual Specificity, Tyrosine Phosphorylation Regulated Kinases Derived from the Marine Sponge Leucettamine B: Modulation of Alternative Pre-RNA Splicing. J. Med. Chem. 2011, 54, 4172–4186. [CrossRef]

72. Guard, S.E.; Poss, Z.C.; Ebmeier, C.C.; Pagratis, M.; Simpson, H.; Taatjes, D.J.; Old, W.M. The Nuclear Interactome of DYRK1A Reveals a Functional Role in DNA Repair Damage. Sci. Rep. 2019, 9, 6539. [CrossRef]

73. Guard, S.E.; Ebmeier, C.C.; Old, W.M. Label-Free Immunoprecipitation Mass Spectrometry Workflow for Large-Scale Nuclear Interactome Profiling. J. Vis. Exp. 2019. [CrossRef]

74. Roewenstrunk, J.; Di Vona, C.; Chen, J.; Borrás, E.; Dong, C.; Arat, T.; et al. The Protein Interaction Landscape of the Human CMGC Kinase Group. Cell Rep. 2013, 3, 1306–1320. [CrossRef]

75. Varjosalo, M.; Keskitalo, S.; Van Drogen, A.; Nurkkala, H.; Vichalkovski, A.; Aebersold, R.; Gstaiger, M. The Protein Interaction Landscape of the Human CMGC Kinase Group. Cell Rep. 2013, 3, 1306–1320. [CrossRef]

76. Huttlin, E.L.; Ting, L.; Bruckner, R.J.; Gebreab, F.; Gygi, M.P.; Szpyt, J.; Tam, S.; Zarraga, G.; Colby, G.; Baltier, K.; et al. The BioPlex Network: A Systematic Exploration of the Human Interactome. Cell 2015, 162, 425–440. [CrossRef] [PubMed]

77. Hein, M.Y.; Hubner, N.C.; Poser, I.; Cox, J.; Nagaraj, N.; Toyoda, Y.; Gak, I.A.; Weisswange, I.; Mansfeld, J.; Buchholz, F.; et al. A High-Throughput Functional Characterization Approach Reveals a Functional Role in DNA Damage Repair. Sci. Rep. 2015, 9, 6014. [CrossRef] [PubMed]

78. Song, R.; Wang, Z.-D.; Schapira, M. Disease Association and Druuggability of WD40 Repeat Proteins. J. Proteome Res. 2017, 16, 3766–3773. [CrossRef]

79. Miyata, Y.; Nishida, E. DYRK1A Binds to an Evolutionarily Conserved WD40-Repeat Protein WDR68 and Induces Its Nuclear Translocation. Biochim. Biophys. Acta BBA Mol. Cell Res. 2011, 1813, 1728–1739. [CrossRef] [PubMed]

80. Miyata, Y.; Shibata, T.; Aoshima, M.; Tsubata, T.; Nishida, E. The Molecular Chaperone TRiC/CCT Binds to the Trp-Asp 40 (WD40) Repeat Protein WDR68 and Promotes Its Folding, Protein Kinase DYRK1A Binding, and Nuclear Accumulation. Biochim. Biophys. Acta BBA Mol. Cell Res. 2011, 1813, 1728–1739. [CrossRef] [PubMed]

81. Glenewinkel, E.; Hubner, N.C.; Poser, I.; Cox, J.; Nagaraj, N.; Toyoda, Y.; Gak, I.A.; Weisswange, I.; Mansfeld, J.; Buchholz, F.; et al. A Comprehensive Proteomics-Based Interaction Screen That Links DYRK1A to RNF169 and to the DNA Damage Response. Sci. Rep. 2019, 9, 6014. [CrossRef] [PubMed]

82. Yu, D.; Cattoglio, C.; Xue, Y.; Zhou, Q. A Complex between DYRK1A and DCAF7 Phosphorylates the C-Terminal Domain of RNA Polymerase II to Promote Myogenesis. Nucleic Acids Res. 2019, 47, 4462–4475. [CrossRef] [PubMed]

83. Wang, B.; Doan, D.; Roman Petersen, Y.; Alvarado, E.; Alvarado, G.; Bhandari, A.; Mohanty, A.; Mohanty, S.; Nissen, R.M. Wdr68 Requires Nuclear Access for Craniofacial Development. PLoS ONE 2013, 8, e53463. [CrossRef] [PubMed]

84. Alvarado, E.; Yousefslahiyeh, M.; Alvarado, G.; Shang, R.; Whitman, T.; Martinez, A.; Yu, Y.; Pham, A.; Bhandari, A.; Wang, B.; et al. Wdr68 Mediates Dorsal and Ventral Patterning Events for Craniofacial Development. PLoS ONE 2016, 11, e0169984. [CrossRef] [PubMed]

85. Xiàng, J.; Yang, S.; Xin, N.; Gaertig, M.A.; Reeves, R.H.; Li, S.; Li, X.-J. DYRK1A Regulates Hap1–Dca7/WDR68 Binding with Implication for Delayed Growth in Down Syndrome. Proc. Natl. Acad. Sci. USA 2017, 114, E1224–E1233. [CrossRef] [PubMed]

86. Yousefslahiyeh, M.; Xu, J.; Alvarado, E.; Yu, Y.; Salven, D.; Nissen, R.M. DCAF7/WDR68 Is Required for Normal Levels of DYRK1A and DYRK1B. PLoS ONE 2018, 13, e0207779. [CrossRef] [PubMed]

87. Rueda, N.; Flórez, J.; Dierssen, M.; Martinez-Cué, C. Translational Validity and Implications of Pharmacotherapies in Preclinical Models of Down Syndrome. Prog. Brain Res. 2020, 251, 245–268. [CrossRef]

88. Jarhad, D.B.; Mashelkar, K.K.; Kim, H.-R.; Koh, M.; Jeong, J.S. Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase 1A (DYRK1A) Inhibitors as Potential Therapeutics. J. Med. Chem. 2018, 61, 9791–9810. [CrossRef]

89. Feki, A.; Hibaoui, Y. DYRK1A Protein, A Promising Therapeutic Target to Improve Cognitive Deficits in Down Syndrome. Brain Sci. 2018, 8, 187. [CrossRef] [PubMed]

90. Kay, L.J.; Smulders-Srinivasan, T.K.; Soundararajan, M. Understanding the Multifaceted Role of Human Down Syndrome Kinase DYRK1A. Adv. Protein Chem. Struct. Biol. 2016, 105, 127–171. [CrossRef] [PubMed]
91. Duchon, A.; Herault, Y. DYRK1A, a Dosage-Sensitive Gene Involved in Neurodevelopmental Disorders, Is a Target for Drug Development in Down Syndrome. Front. Behav. Neurosci. 2016, 10. [CrossRef]

92. Becker, W.; Soppa, U.; Tejedor, F.J. DYRK1A: A Potential Drug Target for Multiple Down Syndrome Neuropathologies. CNS Neurol. Disord. Drug Targets 2014, 13, 26-33. [CrossRef] [PubMed]

93. Nguyen, T.L.; Fruit, C.; Hérault, Y.; Meijer, L.; Besson, T. Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase 1A (DYRK1A) Inhibitors: A Survey of Recent Patent Literature. Expert Opin. Ther. Patents 2017, 27, 1183–1199. [CrossRef] [PubMed]

94. Stotani, S.; Giordanetto, F.; Medda, F. DYRK1A Inhibition as Potential Treatment for Alzheimer’s Disease. Future Med. Chem. 2016, 8, 681–696. [CrossRef]

95. Pathak, A.; Rohilla, A.; Gupta, T.; Akhtar, M.J.; Haider, M.R.; Sharma, K.; Haider, K.; Yar, M.S. DYRK1A Kinase Inhibition with Emphasis on Neurodegeneration: A Comprehensive Evolution Story-Cum-Perspective. Eur. J. Med. Chem. 2018, 158, 559–592. [CrossRef] [PubMed]

96. Jin, N.; Yin, X.; Gu, J.; Zhang, X.; Shi, J.; Qian, W.; Ji, Y.; Cao, M.; Gu, X.; Ding, F.; et al. Truncation and Activation of Dual Specificity Tyrosine Phosphorylation-Regulated Kinase 1A by Calpain I: A molecular mechanism linked to tau pathology in alzheimer disease. J. Biol. Chem. 2015, 290, 15219–15237. [CrossRef]

97. Yin, X.; Jin, N.; Gu, J.; Shi, J.; Zhou, J.; Gong, C.-X.; Iqbal, K.; Grundke-Iqbal, I.; Liu, F. Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase 1A (Dyrk1A) Modulates Serine/Arginine-Rich Protein 55 (Srp55)-Promoted Tau Exon 10 Inclusion. J. Biol. Chem. 2012, 287, 30497–30506. [CrossRef]

98. Yin, X.; Jin, N.; Shi, J.; Zhang, X.; Wu, Y.; Gong, C.-X.; Iqbal, K.; Liu, F. Dyrk1A Overexpression Leads to Increase of 3R-Tau Expression and Cognitive Deficits in Ts65Dn Down Syndrome Mice. Sci. Rep. 2017, 7, 619. [CrossRef]

99. Nalls, M.A.; Blauwendraat, C.; Vallerga, C.L.; Heilbron, K.; Bandres-Ciga, S.; Chang, D.; Tan, M.; Kia, D.A.; Noyce, A.J.; Xue, A.; et al. Identification of Novel Risk Loci, Causal Insights, and Heritable Risk for Parkinson’s Disease: A Meta-Analysis of Genome-Wide Association Studies. Lancet Neurol. 2019, 18, 1091–1102. [CrossRef]

100. Ji, J.; Lee, H.; Argiropoulos, B.; Dorrani, N.; Mann, J.; Martinez-Agosto, J.A.; Gomez-Ospina, N.; Gallant, N.; Bernstein, J.A.; et al. Upregulated Expression of MicroRNA-204-5p Leads to the Death of Dopaminergic Cells by Targeting DYRK1A-Mediated Apoptotic Signaling Cascade. Front. Cell. Neurosci. 2019, 13. [CrossRef]

101. Ferrer, I.; Barrachina, M.; Puig, B.; Martinez de Lagrán, M.; Marti, E.; Avila, J.; Dierssen, M. Constitutive Dyrk1A Is Abnormally Expressed in Alzheimer Disease, Down Syndrome, Pick Disease, and Related Transgenic Models. Neurobiol. Dis. 2005, 20, 392–400. [CrossRef] [PubMed]

102. Becker, W.; Soppa, U.; Tejedor, F.J.; Dyrk1A: A Potential Drug Target for Multiple Down Syndrome Neuropathologies. CNS Neurol. Disord. Drug Targets 2014, 13, 26-33. [CrossRef] [PubMed]

103. Evers, J.M.G.; Laskowski, R.A.; Bertolli, M.; Clayton-Smith, J.; Deshpande, C.; Eason, J.; Flinter, F.; Gardner, C.; Hurst, J.A.; et al. Structural Analysis of Pathogenic Mutations in the DYRK1A Gene in Patients with Developmental Disorders. Hum. Mol. Genet. 2017, 26, 519–526. [CrossRef]

104. Widowati, E.W.; Ernst, S.; Hausmann, R.; Müller-Newen, G.; Becker, W. Functional Characterization of DYRK1A Missense Variants Associated with a Syndromic Form of Intellectual Deficiency and Autism. Biol. Open 2018, 7. [CrossRef]

105. Evers, J.M.G.; Laskowski, R.A.; Bertolli, M.; Clayton-Smith, J.; Deshpande, C.; Eason, J.; Elmslie, F.; Flinter, F.; Gardner, C.; Hurst, J.A.; et al. Structural Analysis of Pathogenic Mutations in the DYRK1A Gene in Patients with Developmental Disorders. Hum. Mol. Genet. 2017, 26, 519–526. [CrossRef]

106. Ackeifi, C.; Swartz, E.; Kumar, K.; Liu, H.; Chalada, S.; Karakose, E.; Scott, D.K.; Garcia-Ocaña, A.; Sanchez, R.; DeVita, R.J.; et al. Pharmacologic and Genetic Approaches Define Human Pancreatic Cell Mitogenic Targets of DYRK1A Inhibitors. JCI Insight 2020, 5. [CrossRef] [PubMed]

107. Becker, W.; Soppa, U.; Tejedor, F.J.; Dyrk1A: A Potential Drug Target for Multiple Down Syndrome Neuropathologies. CNS Neurol. Disord. Drug Targets 2014, 13, 26-33. [CrossRef] [PubMed]

108. Kadari, Y.; Iyer, K.; Noguchi, T.; Pinto, M.; Kinnamon, S.C. Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase 1A By Calpain I: A molecular mechanism linked to tau pathology in alzheimer disease. J. Biol. Chem. 2015, 290, 15219–15237. [CrossRef]

109. Jin, N.; Yin, X.; Gu, J.; Zhang, X.; Shi, J.; Cao, M.; Gu, X.; Ding, F.; et al. Truncation and Activation of Dual Specificity Tyrosine Phosphorylation-Regulated Kinase 1A by Calpain I: A molecular mechanism linked to tau pathology in alzheimer disease. J. Biol. Chem. 2015, 290, 15219–15237. [CrossRef]

110. Malinge, S.; Bliss-Moreau, M.; Kirsammer, G.; Diebold, L.; Chlon, T.; Gurbuxani, S.; Crispino, J.D. Increased Dosage of the Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase 1A (Dyrk1A) Inhibits Expression of MicroRNA-204-5p Leads to the Death of Dopaminergic Cells by Targeting DYRK1A-Mediated Apoptotic Signaling Cascade. Front. Cell. Neurosci. 2019, 13. [CrossRef]

111. Bhansali, R.S.; Rammohan, M.; Lee, P.; Laurent, A.P.; Wen, Q.; Suraneni, P.; Yip, B.H.; Tsai, Y.-C.; Jenni, S.; Bornhauser, B.; et al. DYRK1A Regulates BCAM in the Murine Model of Down Syndrome: A New Role in Neurodevelopmental Disorders. J. Clin. Investig. 2012, 122, 948–962. [CrossRef]

112. Lee, S.B.; Frattini, V.; Bansal, M.; Castano, A.M.; Sherman, D.; Hutchinson, K.; Bruce, J.N.; Califano, A.; Liu, G.; Cardozo, T.; et al. An ID2-Dependent Mechanism for VHL Inactivation in Cancer. Nature 2016, 529, 172–177. [CrossRef] [PubMed]

113. Fernández-Martínez, P.; Zahnenero, C.; Sánchez-Gómez, P. DYRK1A: The Double-Edged Kinase as a Protagonist in Cell Growth and Tumorigenesis. Mol. Cell Oncol. 2015, 2. [CrossRef]

114. Birger, Y.; Izraeli, S. DYRK1A in Down Syndrome: An Oncogene or Tumor Suppressor? J. Clin. Investig. 2012, 122, 807–810. [CrossRef] [PubMed]
115. He, M.; Gu, J.; Zhu, J.; Wang, X.; Wang, C.; Duan, C.; Ni, Y.; Lu, X.; Li, J. Up-Regulation of Dyrk1b Promote Astrocyte Activity Following Lipopolysaccharide-Induced Neuroinflammation. *Neuropeptides* 2018, 69, 76–83. [CrossRef] [PubMed]

116. Becker, W. A Wake-up Call to Quiescent Cancer Cells—Potential Use of Dyrk1b Inhibitors in Cancer Therapy. *FEBS J.* 2018, 285, 1203–1211. [CrossRef] [PubMed]

117. Kokkorakis, N.; Gaitanou, M. Minibrain-Related Kinase/Dual-Specificity Tyrosine-Regulated Kinase 1B Implication in Stem/Cancer Stem Cells Biology. *World J. Stem Cells* 2020, 12, 1553–1575. [CrossRef]

118. Woo, Y.; Kim, S.J.; Suh, B.K.; Kwak, Y.; Jung, H.-J.; Nhung, T.T.M.; Mun, D.J.; Hong, J.-H.; Noh, S.-J.; Kim, S.; et al. Sequential Phosphorylation of NDEL1 by the Dyrk2-Gsk3β Complex Is Critical for Neuronal Morphogenesis. *eLife* 2019, 8. [CrossRef]

119. Yoshida, S.; Yoshida, K. Multiple Functions of Dyrk1a in Alzheimer and Tissue Development. *FEBS Lett.* 2019, 593, 2953–2965. [CrossRef]

120. Correa-Sáez, A.; Jiménez-Izquierdo, R.; Garrido-Rodríguez, M.; Morrugas, R.; Muñoz, E.; Calzado, M.A. Updating Dual-Specificity Tyrosine-Phosphorylation-Regulated Kinase 2 (DYRK2): Molecular Basis, Functions and Role in Diseases. *Cell. Mol. Life Sci.* 2020, 77, 4747–4763. [CrossRef]

121. Ma, F.; Zhu, Y.; Liu, X.; Zhou, Q.; Hong, X.; Qu, C.; Feng, X.; Zhang, Y.; Ding, Q.; Zhao, J.; et al. Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase 3 Loss Activates Purine Metabolism and Promotes Hepatocellular Carcinoma Progression. *Hepatology* 2019, 70, 1785–1803. [CrossRef] [PubMed]

122. Kim, K.; Lee, S.; Kang, H.; Shin, E.; Kim, H.Y.; Youn, H.; Youn, B. Dual Specificity Kinase DyRK3 Promotes Aggressiveness of Glioblastoma by Altering Mitochondrial Morphology and Function. *Int. J. Mol. Sci.* 2021, 22, 2982. [CrossRef] [PubMed]

123. Bakre, A.; Andersen, L.E.; Meliopoulos, V.; Coleman, K.; Yan, X.; Brooks, P.; Crabtree, J.; Tompkins, S.M.; Tripp, R.A. Identification of Host Kinase Genes Required for Influenza Virus Replication and the Regulatory Role of MicroRNAs. *PloS ONE* 2013, 8, e66796. [CrossRef]

124. Wippich, F.; Bodenmiller, B.; Trajkovska, M.G.; Wanka, S.; Aebersold, R.; Pelkmans, L. Dual Specificity Kinase Dyrk3 Couples Stress Granule Condensation/Dissolution to Mtorc1 Signaling. *Cell* 2013, 152, 791–805. [CrossRef]

125. Rai, A.K.; Chen, J.-X.; Selbach, M.; Pelkmans, L. Kinase-Controlled Phase Transition of Membraneless Organelles in Mitosis. *Nature* 2018, 559, 211–216. [CrossRef]

126. Slepak, T.I.; Salay, L.D.; Lemmon, V.P.; Bixby, J.L. Dyrk Kinases Regulate Phosphorylation of Doublecortin, Cytoskeletal Organization, and Neuronal Morphology. *Cytoskeleton* 2012, 69, 514–527. [CrossRef]

127. Nguyen, T.L.; Douchon, A.; Manousopoulou, A.; Loaëc, N.; Villiers, B.; Pani, G.; Karatas, M.; Mechling, A.E.; Harsan, L.-A.; Limanton, E.; et al. Correction of Cognitive Deficits in Mouse Models of Down Syndrome by a Pharmacological Inhibitor of Dyrk1a. *Dis. Models Mech.* 2018, 11. [CrossRef] [PubMed]

128. Souchet, B.; Audrain, M.; Billard, J.M.; Dairou, J.; Fol, R.; Orefice, N.S.; Tada, S.; Gu, Y.; Dufayet-Chaffaud, G.; Limanton, E.; et al. Inhibition of Dyrk1A Proteolysis Modifies Its Kinase Specificity and Rescues Alzheimer Phenotype in APP/PS1 Mice. *Acta Neuropathol. Commun.* 2019, 7. [CrossRef]

129. Sharma, A.; Chunduri, A.; Gopu, A.; Shatrowsky, C.; Crisio, W.E.; Delprato, A. Common Genetic Signatures of Alzheimer’s Disease in Down Syndrome. *F1000Research* 2020, 9, 1299. [CrossRef]

130. Douchon, A.; Del Mar Muñiz Moreno, M.; Lorenzo, S.M.; de Souza, M.P.S.; Chevalier, C.; Nalesso, V.; Meziane, H.; de Sousa, P.L.; Noblet, V.; Limanton, E.; et al. Multi-Influential Genetic Interactions Alter Behaviour and Cognition through Six Main Biological Cascades in Down Syndrome Mouse Models. *Hum. Mol. Genet.* 2020, 29, 69, 514–527. [CrossRef]

131. Kargbo, R.B. Selective DyRK1A Inhibitor for the Treatment of Neurodegenerative Diseases: Alzheimer, Parkinson, Huntington, and Down Syndrome. *ACS Med. Chem. Lett.* 2020, 11, 1795–1796. [CrossRef]

132. Goodlett, C.R.; Stringer, M.; LaCombe, J.; Patel, R.; Wallace, J.M.; Roper, R.J. Evaluation of the Therapeutic Potential of Epigallocatechin-3-Gallate (EGCG) via Oral Gavage in Young Adult Down Syndrome Mice. *Sci. Rep.* 2020, 10, 1–17. [CrossRef] [PubMed]

133. Gu, Y.; Moroy, G.; Paul, J.-L.; Rebillat, A.-S.; Dierssen, M.; de la Torre, R.; Cięuta-Walti, C.; Dairou, J.; Janel, N. Molecular Rescue of Dyrk1a Overexpression Alterations in Mice with Fontup® Dietary Supplementation: Role of Green Tea Catechins. *Int. J. Mol. Sci.* 2020, 21, 1404. [CrossRef] [PubMed]

134. Chang, P.; Bush, D.; Schorge, S.; Good, M.; Canonica, T.; Shing, N.; Noy, S.; Wiseman, F.K.; Burgess, N.; Tybulewicz, V.L.J.; et al. Altered Hippocampal-Prefrontal Neural Dynamics in Mouse Models of Down Syndrome. *Cell Rep.* 2020, 30, 1152–1163.e4. [CrossRef] [PubMed]

135. Sachse, S.M.; Lievens, S.; Ribeiro, L.F.; Masschaele, D.; Horré, K.; Misbaer, A.; Vanderroost, N.; De Smet, A.S.; Salta, E.; et al. Nuclear Import of the Dscam-Cytoplasmic Domain Drives Signaling Capable of Inhibiting Synapse Formation. *eLife* 2019, 38. [CrossRef] [PubMed]

136. Neumann, F.; Gourdain, S.; Albac, C.; Dekker, A.D.; Bui, L.C.; Dairou, J.; Schnitz-Afonso, I.; Hue, N.; Rodrigues-Lima, F.; Delabar, J.M.; et al. Dyrk1a Inhibition and Cognitive Rescue in a Down Syndrome Mouse Model Are Induced by New Fluoro-DANDY Derivatives. *Sci. Rep.* 2018, 8, 2859. [CrossRef] [PubMed]

137. García-Cerro, S.; Vidal, V.; Lantigua, S.; Berciano, M.T.; Lafarga, M.; Ramos-Cabrera, P.; Pedro, D.; Rueda, N.; Martínez-Cué, C. Cerebellar Alterations in a Model of Down Syndrome: The Role of the Dyrk1a Gene. *Neurobiol. Dis.* 2018, 110, 206–217. [CrossRef] [PubMed]
161. Ryoo, S.-R.; Cho, H.-J.; Lee, H.-W.; Jeong, H.K.; Radnaabazar, C.; Kim, Y.-S.; Kim, M.-J.; Son, M.-Y.; Seo, H.; Chung, S.-H.; et al. Dual-Specificity Tyrosine(Y)-Phosphorylation Regulated Kinase 1A-Mediated Phosphorylation of Amyloid Precursor Protein: Evidence for a Functional Link between Down Syndrome and Alzheimer’s Disease. *J. Neurochem.* 2008, 104, 1333–1344. [CrossRef] [PubMed]

162. Ryoo, S.-R.; Jeong, H.K.; Radnaabazar, C.; Yoo, J.-J.; Cho, H.-J.; Lee, H.-W.; Kim, I.-S.; Cheon, Y.-H.; Ahn, Y.S.; Chung, S.-H.; et al. DYRK1A-Mediated Hyperphosphorylation of Tau. A Functional Link between Down Syndrome and Alzheimer Disease. *J. Biol. Chem.* 2007, 282, 34850–34857. [CrossRef] [PubMed]

163. Kimura, R.; Kamino, K.; Yamamoto, M.; Nuripa, A.; Kida, T.; Kazui, H.; Hashimoto, R.; Tanaka, T.; Kudo, T.; Yamagata, H.; et al. The DYRK1A Gene, Encoded in Chromosome 21 Down Syndrome Critical Region, Bridges between β-Amyloid Production and Tau Phosphorylation in Alzheimer Disease. *Hum. Mol. Genet.* 2007, 16, 15–23. [CrossRef] [PubMed]

164. Sitz, J.H.; Baumgärtel, K.; Hämmerle, B.; Papadopoulos, C.; Hekerman, P.; Tejedor, F.J.; Becker, W.; Lutz, B. The Down Syndrome Natural Metabolite 4-Cresol Improves Glucose Homeostasis and Enhances Insulinoma Cells. *Cell Metab.* 2015, 20, 104791. [CrossRef]

165. Cen, L.; Xiao, Y.; Wei, L.; Mo, M.; Chen, X.; Li, S.; Yang, X.; Huang, Q.; Qu, S.; Pei, Z.; et al. Association of DYRK1A Polymorphisms with Sporadic Parkinson’s Disease in Chinese Han Population. *Neurosci. Lett.* 2016, 632, 39–43. [CrossRef]

166. Im, E.; Chung, K.C. Dyrk1A Phosphorylates Parkin at Ser-131 and Negatively Regulates Its Ubiquitin E3 Ligase Activity. *J. Neurochem.* 2015, 134, 756–768. [CrossRef]

167. Jones, E.L.; Aarsland, D.; Londos, E.; Ballard, C. A Pilot Study Exploring Associations between DYRK1A and α-Synuclein Dementias. *Neurodegener. Dis.* 2012, 10, 229–231. [CrossRef]

168. Sitz, J.H.; Baumgärtel, K.; Hämmerle, B.; Papadopoulos, C.; Hekerman, P.; Tejedor, F.J.; Becker, W.; Lutz, B. The Down Syndrome Candidate Dual-Specificity Tyrosine-Phosphorylated Kinase 1A Phosphorylates the Neurodegeneration-Related Septin 4. *Neuroscience* 2008, 157, 596–605. [CrossRef]

169. Trovò, L.; Fuchs, C.; De Rosa, R.; Barbiero, I.; Tramarin, M.; Ciani, E.; Rusconi, L.; Kilstrup-Nielsen, C. The Green Tea Polyphenol Epigallocatechin-3-Gallate (EGCG) Restores CDK5-Dependent Synaptic Defects in Vivo and in Vivo. *Neurobiol. Dis.* 2020, 104, 107911. [CrossRef]

170. Liu, Y.A.; Jin, Q.; Ding, Q.; Hao, X.; Mo, T.; Yan, S.; Zou, Y.; Huang, Z.; Zhang, X.; Gao, W.; et al. A Dual Inhibitor of DYRK1A and GSK3β for B-Cell Proliferation: Aminopyrazine Derivative GNF4877. *ChemMedChem* 2020, 15, 1562–1570. [CrossRef]

171. Kumar, K.; Wang, P.; Swartz, E.A.; Khamrui, S.; Secor, C.; Lazarus, M.B.; Sanchez, R.; Stewart, A.F.; DeVita, R.J. Structure-Activity Relationships and Biological Evaluation of 7-Substituted Harmine Analogs for Human β-Cell Proliferation. *Molecules* 2020, 25, 2019. [CrossRef]

172. Hohmeier, H.E.; Zhang, L.; Taylor, B.; Stephens, S.; Lu, D.; McNamara, P.; Laffitte, B.; Newgard, C.B. Identification of a Small Molecule That Stimulates Human β-Cell Proliferation and Insulin Secretion, and Protects against Cytotoxic Stress in Rat Insulinoma Cells. *PLoS ONE* 2020, 15, e0224344. [CrossRef] [PubMed]

173. Brial, F.; Alzaid, F.; Sonomura, K.; Kamatani, Y.; Meneyrol, K.; Le Lay, A.; Péan, N.; Hedjazi, L.; Sato, T.-A.; Venteclef, N.; et al. The Natural Metabolite 4-Cresol Improves Glucose Homeostasis and Enhances β-Cell Function. *Cell Rep.* 2020, 30, 2306–2320.e5. [CrossRef]

174. Scavuzzo, M.A.; Borowiak, M. Two Drugs Converged in a Pancreatic β Cell. *Sci. Transl. Med.* 2020, 12. [CrossRef] [PubMed]

175. Ackeifi, C.; Wang, P.; Karakose, E.; Manning Fox, J.E.; González, B.J.; Liu, H.; Wilson, J.; Swartz, E.; Berrouet, C.; Li, Y.; et al. GLP-1 Receptor Agonists Synergize with DYRK1A Inhibitors to Potentiate Functional Human β Cell Regeneration. *Sci. Transl. Med.* 2020, 12. [CrossRef]

176. Lu, M.; Ma, L.; Shan, P.; Liu, A.; Yu, X.; Jiang, W.; Wang, X.; Zhao, X.; Ye, X.; Wang, T. DYRK1A Aggravates β Cell Dysfunction and Apoptosis by Promoting the Phosphorylation and Degradation of IRS2. *Exp. Gerontol.* 2019, 125, 110659. [CrossRef] [PubMed]

177. Wang, P.; Karakose, E.; Liu, H.; Swartz, E.; Ackeifi, C.; Zlatanov, C.; Wilson, J.; González, B.; Rattner, A.; Taken, K.K.; et al. Combined Inhibition of DYRK1A, SMAD, and Trichorax Pathways Synergizes to Induce Robust Replication in Adult Human Beta Cells. *Cell Metab.* 2019, 29, 638–652.e5. [CrossRef]

178. Wang, P.; Alvarez-Perez, J.-C.; Felsenfeld, D.P.; Liu, H.; Svivendran, S.; Benda, A.; Kumar, A.; Sanchez, R.; Scott, D.K.; Garcia-Ocaña, A.; et al. A High-Throughput Chemical Screen Reveals That Harmine-Mediated Inhibition of DYRK1A Increases Human Pancreatic Beta Cell Replication. *Nat. Med.* 2020, 25, 383–388. [CrossRef] [PubMed]

179. Shen, W.; Taylor, B.; Jin, Q.; Nguyen-Tran, V.; Meeusen, S.; Zhang, Y.-Q.; Kamireddy, A.; Swafford, A.; Powers, A.F.; Walker, J.; et al. Inhibition of DYRK1A and GSK3β Induces Human β-Cell Proliferation. *Nat. Commun.* 2015, 6, 8372. [CrossRef]

180. Zheng, Y.; Ramsamoij, S.; Li, Q.; Johnson, J.L.; Yaron, T.M.; Sharra, K.; Cantley, L.C. Regulation of Folate and Methionine Metabolism by Multisite Phosphorylation of Human Methylenetetrahydrofolate Reductase. *Sci. Rep.* 2019, 6, 1490. [CrossRef] [PubMed]

181. Pozo, N.; Zahonero, C.; Fernández, P.; Linares, J.M.; Ayuso, A.; Hagiwara, M.; Pérez, A.; Rícoy, J.R.; Hernández-Lain, A.; Sepúlveda, J.M.; et al. Inhibition of DYRK1A Destabilizes EGFR and Reduces EGFR-Dependent Glioblastoma Growth. *J. Clin. Investig.* 2013, 123, 2475–2487. [CrossRef] [PubMed]

182. Radhakrishnan, A.; Nanjappa, V.; Raja, R.; Sathe, G.; Puttamalles, V.N.; Jain, A.P.; Pinto, S.M.; Balaji, S.A.; Chavan, S.; Sahasrabuddhe, N.A.; et al. A Dual Specificity Kinase, DYRK1A, as a Potential Therapeutic Target for Head and Neck Squamous Cell Carcinoma. *Sci. Rep.* 2016, 6, 36132. [CrossRef]
183. Bai, Z.; Du, Y.; Cong, L.; Cheng, Y. The USP22 Promotes the Growth of Cancer Cells through the DYRK1A in Pancreatic Ductal Adenocarcinoma. *Gene* 2020, 758, 144960. [CrossRef] [PubMed]

184. Zhao, C.; Wang, D.; Gao, Z.; Kan, H.; Qiu, F.; Chen, L.; Li, H. Licolouramone Induces BxPC-3 Pancreatic Adenocarcinoma Cell Death by Inhibiting DYRK1A. *Chem. Biol. Interact.* 2020, 316, 108913. [CrossRef]

185. Luna, J.; Boni, J.; Cuatrecasas, M.; Bofill-De Ros, X.; Núñez-Manchón, E.; Gironella, M.; Vaquero, E.C.; Arbones, M.L.; de la Luna, S.; Fillat, C. DYRK1A Modulates C-MET in Pancreatic Ductal Adenocarcinoma to Drive Tumour Growth. *Gut* 2019, 68, 1465–1476. [CrossRef]

186. Li, L.; Wei, J.-R.; Song, Y.; Fang, S.; Du, Y.; Li, Z.; Zeng, T.-T.; Zhu, Y.-H.; Li, Y.; Guan, X.-Y. TROAP Switches DYRK1 Activity to Drive Hepatocellular Carcinoma Progression. *Cell Death Dis.* 2021, 12, 125. [CrossRef]

187. Mauro, I.J.; Seibel, M.I.; Diep, C.H.; Spartz, A.; Perez Kerkvliet, C.; Ibanez, M.; Ghias, A.; Lai, C.; Do, L.; Cho, S.; et al. Progesterone Receptors Promote Quiescence & Ovarian Cancer Cell Phenotypes via DREAM in P53-Mutant Fallopian Tube Models. *J. Clin. Endocrinol. Metab.* 2021, 131, 637193. [CrossRef]

188. Iness, A.N.; Rubinsak, L.; Meas, S.J.; Chaoul, J.; Sayeed, S.; Pillappa, R.; Temkin, S.M.; Dozmorov, M.G.; Litovchick, L. Oncogenic B-Myb Is Associated with Deregelation of the DREAM-Mediated Cell Cycle Gene Expression Program in High Grade Serous Ovarian Carcinoma Clinical Tumor Samples. *Front. Oncol.* 2021, 11, 637193. [CrossRef]

189. Jiang, S.M.; Azebi, S.; Soubigou, G.; Muchardt, C. DYRK1A Phosphorylates Histone H3 to Differentially Regulate the Binding of HP1 Isoforms and Antagonize HP1-Mediated Transcriptional Repression. *EMBO Rep.* 2014, 15, 686–694. [CrossRef]

190. Kim, J.-H.; Li, L.; Resar, L.M. Doubling up on Function: Dual-Specificity Tyrosine-Regulated Kinase 1A (DYRK1A) in B Cell Acute Lymphoblastic Leukemia. *J. Clin. Invest.* 2021, 131, 1212. [CrossRef]

191. Lee, P.; Bhansali, R.; Izraeli, S.; Hijiya, N.; Crispino, J.D. The Biology, Pathogenesis and Clinical Aspects of Acute Lymphoblastic Leukemia in Children with Down Syndrome. *Leukemia 2016*, 30, 1816–1823. [CrossRef]

192. Liu, A.; Zhang, B.; Zhao, W.; Tu, Y.; Wang, Q.; Li, J. MicroRNA-215-5p Inhibits the Proliferation of Keratinocytes and Alleviates Psoriasis-like Inflammation by Negatively Regulating DYRK1A and Its Downstream Signaling Pathways. *Exp. Dermatol.* 2020. [CrossRef]

193. Deshmukh, V.; O’Green, A.L.; Bossard, C.; Seo, T.; Lamangan, L.; Ibanez, M.; Ghias, A.; Lai, C.; Do, L.; Cho, S.; et al. Modulation of the Wnt Pathway through Inhibition of CLK2 and DYRK1A by Lovirivivint as a Novel, Potentially Disease-Modifying Approach for Knee Osteoarthritis Treatment. *Osteoarthr. Cartil.* 2019, 27, 1347–1360. [CrossRef]

194. Yazici, Y.; McAlinden, T.E.; Gibofsky, A.; Lane, N.E.; Lattermann, C.; Skrepin, N.; Swearingen, C.J.; Simsek, I.; Ghandehari, H.; DiFrancesco, A.; et al. A Phase 2b Randomized Trial of Lovirivivint, a Novel Intra-Articular CLK2/DYRK1A Inhibitor and Wnt Pathway Modulator for Knee Osteoarthritis. *Osteoarthr. Cartil.* 2021. [CrossRef]

195. Deshmukh, V.; Seo, T.; Lauren O’Green, A.; Ibanean, M.; Hofilena, B.; Sunil, K.; Stewart, J.; Dellamy, L.; Chiu, K.; Ghias, A.; et al. SM04755, a Small-Molecule Inhibitor of the Wnt Pathway, as a Potential Topical Treatment for Tendinopathy. *J. Orthop. Res.* 2020. [CrossRef]

196. Kisaka, J.K.; Ratner, L.; Kyei, G.B. The Dual-Specificity Kinase DYRK1A Modulates the Levels of Cyclin L2 To Control HIV Replication in Macrophages. *J. Virol.* 2020, 94. [CrossRef] [PubMed]

197. Boonman, T.; Loukachov, V.V.; van dort, K.A.; van’t Wout, A.B.; Kootstra, N.A. DYRK1A Controls HIV-1 Replication at a Transcriptional Level in an NFAT Dependent Manner. *PloS ONE* 2015, 10, e0144229. [CrossRef] [PubMed]

198. Bol, S.M.; Moerland, P.D.; Limou, S.; van Remmerden, Y.; Coulonges, C.; van Manen, D.; Herbeck, J.; Siervier, M.; Sietzema, J.G.; et al. Genome-Wide Association Study Identifies Single Nucleotide Polymorphism in DYRK1A Associated with Replication of HIV-1 in Monocyte-Derived Macrophages. *PloS ONE* 2011, 6, e17190. [CrossRef] [PubMed]

199. Hamilton, S.T.; Hutterer, C.; Egilemezer, E.; Steingruber, M.; Milbradt, J.; Marschall, J.; Rawlinson, W.D. Human Cytomegalovirus Utilises Cellular Dual-Specificity Tyrosine Phosphorylation-Regulated Kinases during Placental Replication. *Placenta 2018*, 72, 10–19. [CrossRef]

200. Dirmeyer, S.; Dächert, C.; van Hemert, M.; Tas, A.; Ogando, N.S.; van Kuppeveld, F.; Bartenschlager, R.; Kaderali, L.; Binder, M.; Beeremwinkel, N. Host Factor Prioritization for Pan-Viral Perturbation Screens Using Random Intercept Models and Network Propagation. *PloS Comput. Biol.* 2020, 16, e1007587. [CrossRef]

201. Zhou, N.; Yuan, S.; Wang, R.; Zhang, W.; Chen, J.J. Role of Dual Specificity Tyrosine-Phosphorylation-Regulated Kinase 1B (Dyrk1B) in S-Phase Entry of HPV E7 Expressing Cells from Quiescence. *Oncotarget* 2015, 6, 30745–30761. [CrossRef] [PubMed]

202. Saluja, T.S.; Kumar, V.; Agrawal, M.; Tripathi, A.; Meher, R.K.; Srivastava, K.; Gupta, A.; Singh, A.; Chadurverdi, A.; Singh, S.K. Mitochondrial Stress-Mediated Targeting of Quiescent Cancer Stem Cells in Oral Squamous Cell Carcinoma. *Cancer Manag. Res.* 2020, 12, 4519–4530. [CrossRef]

203. Chen, H.; Shen, J.; Choy, E.; Hornicek, F.J.; Shan, A.; Duan, Z. Targeting DYRK1B Suppresses the Proliferation and Migration of Liposarcoma Cells. *Oncotarget* 2018, 9, 13154–13166. [CrossRef]

204. Chen, Y.; Wang, S.; He, Z.; Sun, F.; Huang, Y.; Ni, Q.; Wang, H.; Wang, Y.; Cheng, C. Dyrk1B Overexpression Is Associated with Breast Cancer Growth and a Poor Prognosis. *Hum. Pathol.* 2017, 66, 48–58. [CrossRef] [PubMed]

205. Gruber, W.; Hutzinger, M.; Elmer, D.P.; Parigger, T.; Sterneck, C.; Cegielkowski, L.; Zaja, M.; Leban, J.; Michel, S.; Hamm, S.; et al. DYRK1B as Therapeutic Target in Hedgehog/GLI-Dependent Cancer Cells with Smoothened Inhibitor Resistance. *Oncotarget* 2016, 7, 7134–7148. [CrossRef]

206. Tandon, V.; de la Vega, V.; Banerjee, S. Emerging Roles of DYRK2 in Cancer. *J. Biol. Chem.* 2020. [CrossRef]
252. Mahindra, A.; Janha, O.; Mapesa, K.; Sanchez-Azqueta, A.; Alam, M.M.; Amambua-Ngwa, A.; Nwakanma, D.C.; Tobin, A.B.; Jamieson, A.G. Development of Potent PfCLK3 Inhibitors Based on TCMDC-135051 as a New Class of Antimalarials. *J. Med. Chem.* 2020, 63, 9300–9315. [CrossRef] [PubMed]

253. Mahmud, F.; Lee, P.C.; Abdul Wahab, H.; Mustaffa, K.M.F.; Leow, C.H.; Azhar, R.; Lai, N.S. Plasmodium Falciparum Protein Kinase as a Potential Therapeutic Target for Antimalarial Drugs Development. *Trop. Biomed.* 2020, 37, 822–841. [CrossRef] [PubMed]

254. Kii, I.; Sumida, Y.; Goto, T.; Sonamoto, R.; Okuno, Y.; Yoshida, S.; Kato-Sumida, T.; Koike, Y.; Abe, M.; Nonaka, Y.; et al. Selective Inhibition of the Kinase DYRK1A by Targeting Its Folding Process. *Nat. Commun.* 2016, 7. [CrossRef] [PubMed]

255. Bain, J.; McLauchlan, H.; Elliott, M.; Cohen, P. The Specificities of Protein Kinase Inhibitors: An Update. *Biochem. J.* 2003, 371, 199–204. [CrossRef]

256. Grabher, P.; Durieu, E.; Kouloura, E.; Halabalaki, M.; Skaltsounis, L.A.; Meijer, L.; Hamburger, M.; Potterat, O. Library-Based Discovery of DYRK1A/CLK1 Inhibitors from Natural Product Extracts. *Planta Med.* 2012, 78, 951–956. [CrossRef]

257. Debdab, M.; Renault, S.; Lozach, O.; Meijer, L.; Paquin, L.; Carreaux, F.; Bazuereau, J.-P. Synthesis and Preliminary Biological Evaluation of New Derivatives of the Marine Alkaloid Leucettamine B as Kinase Inhibitors. *Eur. J. Med. Chem.* 2010, 45, 805–810. [CrossRef]

258. Deshmukh, V.; Hu, H.; Barroga, C.; Bossard, C.; Kc, S.; Dellamary, L.; Stewart, J.; Chiu, K.; Ibanez, M.; Pedraza, M.; et al. A Small-Molecule Inhibitor of the Wnt Pathway (SM04690) as a Potential Disease Modifying Agent for the Treatment of Osteoarthritis of the Knee. *Osteoarth. Cartil.* 2018, 26, 18–27. [CrossRef]

259. Yazici, Y.; McAlindon, T.E.; Gibošky, A.; Lane, N.E.; Clauw, D.; Jones, M.; Bergfeld, J.; Swearingen, C.J.; DiFrancesco, A.; Simsek, I.; et al. Lorecivivint, a Novel Intraarticular CDC-like Kinase 2 and Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase 1A Inhibitor and Wnt Pathway Modulator for the Treatment of Knee Osteoarthritis: A Phase II Randomized Trial. *Arthritis Rheumatol.* 2020, 72, 1694–1706. [CrossRef]