Outcomes and risk factors for cancer patients undergoing endoscopic intervention of malignant biliary obstruction

Georg-Martin Haag¹, Thomas Herrmann¹,²,³, Dirk Jaeger¹,⁵, Wolfgang Stremmel²,⁵, Peter Schemmer⁴,⁵, Peter Sauer² and Daniel Nils Gotthardt²,⁵*

Abstract

Background: Malignant bile duct obstruction is a common problem among cancer patients with hepatic or lymphatic metastases. Endoscopic retrograde cholangiography (ERC) with the placement of a stent is the method of choice to improve biliary flow. Only little data exist concerning the outcome of patients with malignant biliary obstruction in relationship to microbial isolates from bile.

Methods: Bile samples were taken during the ERC procedure in tumor patients with biliary obstruction. Clinical data including laboratory values, tumor-specific treatment and outcome data were prospectively collected.

Results: 206 ERC interventions in 163 patients were recorded. In 43% of the patients, systemic treatment was (re-)initiated after successful biliary drainage. A variety of bacteria and fungi was detected in the bile samples. One-year survival was significantly worse in patients from whom multiresistant pathogens were isolated than in patients, in whom other species were detected. Increased levels of inflammatory markers were associated with a poor one-year survival. The negative impact of these two factors was confirmed in multivariate analysis. In patients with pancreatic cancer, univariate analysis showed a negative impact on one-year survival in case of detection of Candida species in the bile. Multivariate analysis confirmed the negative prognostic impact of Candida in the bile in pancreatic cancer patients.

Conclusion: Outcome in tumor patients with malignant bile obstruction is associated with the type of microbial biliary colonization. The proof of multiresistant pathogens or Candida, as well as the level of inflammation markers, have an impact on the prognosis of the underlying tumor disease.

Keywords: Cancer, Pancreatic cancer, Biliary obstruction, Cholangitis, Chemotherapy, Systemic therapy

Background

Malignant biliary obstruction is a frequent complication in patients with advanced tumor diseases. Both central hepatic metastases and hilar lymph node metastases of gastrointestinal and non-gastrointestinal cancers, but also tumors of the pancreatic head often result in a biliary compression.

Obstructive jaundice is associated with increased morbidity and mortality. Furthermore, intact bilirubin excretion is mandatory for the administration of many chemotherapeutical and targeted agents.

Only limited data exist concerning the role of jaundice in patients with metastatic disease. In a retrospective study published in 1994, median survival in patients with jaundice due to metastatic colorectal cancer was approximately 3–5 months [1]. However, taking into consideration the increasing number of therapeutic agents available for the treatment of metastatic colorectal cancer, more therapeutic options are available after improvement of biliary drainage,

* Correspondence: Daniel.Gotthardt@med.uni-heidelberg.de

¹Department of Gastroenterology, Toxicology and Infectious Diseases, University Hospital Heidelberg, Im Neuenheimer Feld 410, Heidelberg 69120, Germany

²Liver Cancer Center Heidelberg (LCCH), University Hospital Heidelberg, Im Neuenheimer Feld 460, Heidelberg 69120, Germany

Full list of author information is available at the end of the article
resulting in prolonged survival in patients. Furthermore, in
tumors being considered as chemorefractory such as hepa-
tocellular carcinoma (HCC), normalization of cholestasis
parameters is mandatory to initiate systemic targeted treat-
ment, such as sorafenib [2].

In patients with pancreatic carcinoma, biliary obstruction
occurs in approximately 70–90 % of all cases, possibly lead-
ing to a deterioration of the patients’ general condition due
to cholangitis, malabsorption or liver failure [3]. Although
surgical bypass has demonstrated a low rate of recurrent
jaundice, the surgical procedure itself carries a significant
risk of perioperative morbidity and mortality [4].

Endoscopic retrograde cholangiopancreatography (ERCP)
has been the preferred method for patients with malignant
biliary obstruction since the late 1980s. Studies showed an
equivalent success rate and decreased morbidity and mort-
tality for this method in comparison with percutaneous or
surgical approaches [5–7]. Yet, in patients with resectable
pancreatic cancer, immediate resection of the tumor with-
out a previous ERC is the preferred option [8].

Placement of a plastic or metal stent has been shown to be
an effective method in improving biliary flow. Common complica-
tions include cholangitis and stent occlusion, whereas pancreatitis is only rarely observed
post-ERCP [3]. The optimal type of stent (plastic or
metal) is still a matter of debate. Plastic stents have been
used as a standard method for biliary drainage; however,
regular stent exchange is necessary every 3–4 months in
order to prevent stent obstruction due to biliary sludge. Thus,
metal stents are preferred in patients with an ex-
pected survival of more than 3 to 4 months [9].

Development of a biofilm is a critical event in the
pathogenesis of cholangitis and the blockade of stents. Effectiveness of antibiotic treatment is limited against
bacterial colonization of the biofilm [10].

The impact on biliary bacterial or mycotic infection in
tumor patients with malignant biliary obstruction on
survival is poorly studied. Data from patients undergoing
liver transplantation show a negative prognostic impact
on the proof of enteric bacteria or Candida species re-
garding time till organ failure [11–13].

In this prospective, observational study we aimed to
identify the spectrum of bactobilia and fungobilia in pa-
tients with malignant obstruction, and to explore the as-
soilation of this spectrum with clinical outcome.

Patients and methods
The prospective, observational study was conducted at
the Center for Endoscopy of the University Hospital
Heidelberg in collaboration with the Department of
Gastroenterology and the Department of Medical Oncology
at the National Center for Tumor Diseases, Heidelberg.
Patients were recruited consecutively. Data of patients
undergoing ERC for malignant biliary obstruction were
recorded in a prospective database. Biliary drainage was
performed whenever technically possible.

Bile samples were obtained after selective intubation
before any therapeutic procedure was performed. When bile
could not be aspirated directly after cannulation, a
small amount of sterile saline (2–4 ml) was applied and
aspiration was reattempted. Aliquots of all biliary sam-
ple were placed in a sterile glass tube containing
medium for anaerobic and aerobic bacterial cultures.
The material was delivered to the microbiology labora-
tory within 2 h of collection and cultured aerobically and
anaerobically according to standard laboratory protocols.

The underlying tumor disease including the stage of
the disease, the proof of bacteria or fungi, as well as la-
boratory values including bilirubin and C-reactive pro-
tein (CRP) at the time of intervention were recorded.
The previous or subsequent application of systemic ther-
apy (e.g. chemotherapy) was documented.

Assuming that the biliary infection would rather influ-
ence the short-term outcome whereas the long-term out-
come is determined by the underlying tumor disease,
patients’ outcome was followed for a maximum of one
year, patients lost to follow-up were censored at the time of
the last documented contact. All patients provided in-
formed consent, the study was performed in accordance
with the Declaration of Helsinki. The study was approved
by the ethical committee of the University of Heidelberg.

Table 1 Patient characteristics
Patient characteristics:
Number of patients:
Number of interventions:
Median age (range):
Tumor diagnosis
Pancreatic carcinoma
Cholangiocellular carcinoma
Colorectal carcinoma
Hepatocellular carcinoma
Gastric cancer
Breast cancer
Neuroendocrine tumor of the digestive tract
Tumor of unknown origin
Ovarian carcinoma
Intraductal papillary mucinous neoplasm (IPMN)
Lymphoma
Other tumors
Laboratory parameters before ERC
Bilirubin (mg/dl)
CRP (mg/l)
ERCP was performed in an inpatient setting. Concurrent antibiotic treatment or peri-interventional prophylaxis were performed at the discretion of the responsible physician.

Statistical analysis
Continuous data were compared using the nonparametric Mann–Whitney U test. Frequency differences were compared using the chi-squared test or Fisher’s exact test where appropriate. The actuarial survival rate was estimated using the Kaplan-Meier product limit estimator. Differences between the actuarial estimates were tested using the log rank test. Cox regression analysis was performed for multivariate analysis. Differences were considered significant if p was <0.05. All analyses were performed using PASW Statistics 21.0 (SPSS Inc., Chicago, IL).

Results

Patient characteristics
Between October 2006 and December 2008, a total of 163 patients with advanced cancer diseases undergoing ERC were recorded.

The most frequent tumors were advanced pancreatic carcinoma (37 %), followed by cholangiocarcinoma (21 %) and metastatic colorectal carcinoma (12 %). The median age was 66 years (range 36–96 years). Patient characteristics are shown in Table 1.

Among patients with pancreatic cancer, locally advanced disease was documented in 58 % of the cases, metastatic disease in 42 %.

A total of 206 ERCP interventions were performed due to suspected biliary obstruction. Biliary drainage with a stent was performed in 143 interventions (69.4 %).

Microbiological results
Bacterial colonization of the bile was common; overall, bacteria were detected in 128 samples (62 %). The most commonly isolated species were *Streptococcus* species (36 samples, 18 %), followed by *Enterococcus* species (35 samples, 17 %).

Table 2 Microbial isolation

Organism	Number of patients (%)
Bacteria	
Streptococci, alpha- and beta-hemolytic	36 (18)
Enterococcus spp.	35 (17)
Escherichia coli	27 (13)
Coagulase-negative *Staphylococcus*	27 (13)
Klebsiella spp.	14 (7)
Clostridium	1 (1)
Other bacteria	45 (22)
Sterile bile	50 (24)
Missing data	28 (14)
Multiresistant bacteria	
Vancomycin-resistant *Enterococcus faecium*	4 (2)
E. coli with extended spectrum beta-lactamase	4 (2)
Any multiresistant pathogen	14 (7)
Fungi	
Candida albicans	32 (16)
Candida glabrata	11 (5)
Missing data	76 (37)

Multiresistant bacteria: Vancomycin-resistant *Enterococcus faecium* 4 (2)

Fig. 1 One-year survival in tumor patients according to the microbial isolation of multiresistant (mr) pathogens

One year survival rate: 55.8 % vs. 16.7 %
(35 samples, 17%) and *Escherichia coli* and coagulase-negative *Staphylococcus* species (27 samples, 13% respectively) (Table 2).

Multiresistant gram-negative or gram-positive microorganisms, such as methicillin-resistant *Staphylococcus aureus* or vancomycin-resistant *Enterococcus*, were only rarely observed; these were detected in 14 samples (7%).

Mycologic results were available for 130 interventions. *Candida albicans* was detected in 32 samples (16%) and *Candida glabrata* was detected in 11 samples (5%). Among patients with previous ERC, a significantly increased risk of a fungal biliary colonization was observed (10 of 73 patients without previous ERC vs. 33 of 62 patients with previous ERC, *p* < 0.001).

Patients with proven fungobilia had a significantly longer period of antibiotic therapy before ERC intervention (median 6 days vs. 3 days; *p* = 0.020).

Clinical outcome

In our series, patient outcome was associated with the microbial pathogens involved and the inflammatory state prior to ERC intervention.

Patients with a multiresistant pathogen isolated in bile during the first ERC intervention had a significantly worse one-year survival than patients without finding of a multiresistant species (One year survival rate 55.8% vs. 16.7%, *p* = 0.001) (Fig. 1).

Malignant obstruction, the resulting increased risk of cholangitis, and the advanced tumor diseases themselves can all contribute to a permanent state of inflammation. Distinguishing patients with a tumor-related inflammatory state from those with bacterial infection can be a clinical challenge. In our series, tumor patients presenting with increased levels of inflammatory markers at the first ERC intervention, defined by a C-reactive protein level higher than 25 mg/l (normal range, 0.5–5 mg/l), had a significantly worse one-year survival than patients without increased inflammation markers (One year survival rate 64.8% vs. 46.0%, *p* = 0.002) (Fig. 2).

Multivariate analysis including age (less or more than 65 years), the proof of any multiresistant pathogen, the proof of *Candida* species, placement of a stent, the primary tumor (pancreatic vs. non-pancreatic), a high bilirubin level (higher than 7 mg/dl) and a high CRP level (higher than 25 mg/l) confirmed the negative impact of a multiresistant pathogen (Hazard Ratio 8.77, *p* = 0.009) or a high CRP level (Hazard Ratio 2.98, *p* = 0.041) (Table 3).

Among patients with pancreatic cancer, those in whom *Candida* species was found at the first ERC intervention

Table 3 Multivariate analysis of all tumor patients

	p-value	Hazard Ratio	95% Confidence Interval
Placement of Stent (yes vs. no)	0.245	2.12	[0.60;7.55]
Pancreatic primary tumor (yes vs. no)	0.714	1.22	[0.43;3.50]
Bilirubin (≥7 mg/dl vs. <7 mg/dl)	0.321	0.58	[0.20;1.69]
Age (≥65 years vs. <65 years)	0.245	0.56	[0.21;1.49]
Proof of candida (yes vs. no)	0.709	1.19	[0.47;3.04]
Proof of multiresistant pathogen (yes vs. no)	0.009	8.77	[1.70;45.17]
CRP (≥25 mg/l vs. <25 mg/l)	0.041	2.98	[1.05;8.50]

Reference
had a significantly lower one-year survival than patients without findings of *Candida* in bile (One year survival rate 80.8 % vs. 35.4 %, \(p = 0.044\)) in univariate analysis (Fig. 3). Additionally, the pre-interventional bilirubin and C-reactive protein level at the first intervention did not differ significantly between these 2 groups.

Multivariate analysis including the proof of *Candida* species, placement of a stent, tumor stage (locally advanced vs. metastatic disease), a high bilirubin level (higher than 7 mg/dl) and a high CRP level (higher than 25 mg/l) confirmed the negative prognostic impact of the proof of *Candida* in the bile. (Hazard Ratio 23.07, \(p = 0.049\)) (Table 4).

Previous and further tumor-specific treatment

59 patients (36 %) presenting with advanced disease had received previous systemic therapy for their tumor disease, which had to be discontinued because of progressive jaundice. After the intervention, tumor-specific systemic treatment was (re)-initiated in 70 patients (43 %), after the malignant obstruction was alleviated due to successful drainage (Table 5).

The prevalence of candida did not differ between pancreatic cancer patients with or without previous systemic chemotherapy (\(p = 0.661\); in addition there was no statistical difference with regard to fungobilia in the rate of patients undergoing systemic treatment after successful ERC intervention (\(p = 0.631\)) or in the time till (re-)initiation of systemic chemotherapy (\(p = 0.161\)).

Discussion

Data concerning the optimal management and outcome of patients with malignant bile duct obstruction are limited. For more than 20 years, ERC has been the method of choice to improve biliary drainage. Early intervention is desirable to prevent secondary complications such as liver failure or cholangitis. Additionally, an increase in the performance score can often be observed after relief of jaundice.

In our series, the detected bacterial species were common pathogens, which could be controlled with standard antibiotic treatment. In contrast to other cohorts (e.g. patients who underwent liver transplantation [11–13]), multiresistant bacteria were only rarely observed, but these patients had a significantly worse outcome.

Among all cancer patients, those with increased C-reactive protein levels had a significantly worse outcome than those with low levels of inflammatory markers. In concordance to our data Iwasaki et al. showed that an inflammation-based prognostic score (mGPS, modified Glasgow Prognostic Score) including C-reactive protein and hypalbuminemia is a significant predictor of postoperative survival in patients undergoing palliative surgery for malignant biliary obstruction [14]. It is unknown

| Table 4 Multivariate analysis of pancreatic tumor patients |
|---------------------------------|------------|-----------------|-----------------|
| Placement of Stent (yes vs. no) | 0.830 | 0.80 | [0.11;5.90] |
| Bilirubin (≥7 mg/dl vs. <7 mg/dl) | 0.982 | 0.98 | [0.14;6.78] |
| Proof of candida (yes vs. no) | 0.049 | 23.07 | [1.01;526.64] |
| CRP (≥25 mg/l vs. <25 mg/l) | 0.293 | 0.25 | [0.02;3.31] |
| metastatic vs. locally adv. disease | 0.108 | 8.92 | [0.62;128.38] |

\(^a\)reference
our data showed a negative impact of Candida on one-year survival in patients with pancreatic cancer. Whether an antifungal treatment could overcome this negative outcome is unknown. Thus, the role of Candida in the bile should be explored in a randomized trial.

Abbreviations
CRP: C-reactive protein; ERC(P): Endoscopic retrograde cholangio(pancreato)graphy; HCC: Hepatocellular carcinoma; mGPS: modified Glasgow Prognostic Score.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
GMH, TH, DJ, WS, PSch, PS and DNG were involved in the study concept. GMH, TH, TS and DNG performed the data collection. GMH, PS and DNG performed the data analysis. The manuscript was edited by GMH, TH, PS and DNG. All authors read and approved the final manuscript.

Author details
1Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Im Neuenheimer Feld 460, Heidelberg 69120, Germany. 2Department of Gastroenterology, Toxicology and Infectious Diseases, University Hospital Heidelberg, Im Neuenheimer Feld 410, Heidelberg 69120, Germany. 3Department of Internal Medicine I, Gastroenterology, Hematology and Medical Oncology, Hospital Heide, Heide 25746, Germany. 4Department of Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 110, Heidelberg 69120, Germany. 5Liver Cancer Center Heidelberg (LCCH), University Hospital Heidelberg, Im Neuenheimer Feld 460, Heidelberg 69120, Germany.

Received: 13 August 2015 Accepted: 25 November 2015
Published online: 04 December 2015

References
1. Lo CY, Lai EC. Palliation for extrahepatic biliary obstruction by metastatic colorectal carcinoma. Am J Gastroenterol. 1994;89:1852–5.
2. Lin S, Hoffmann K, Schreiber R. Treatment of hepatocellular carcinoma: a systematic review. Liver Cancer. 2012;1:144–58.
3. Das A, Sikov Jr MV. Endoscopic palliation for inoperable pancreatic cancer. Cancer Control. 2000;7:452–7.
4. Van den Bosch RP, van der Schelling GP, Klinkenbijl JH, Mulder PG, van Blankenstein M, Jeele J. Guidelines for the application of surgery and endoprostheses in the palliation of obstructive jaundice in advanced cancer of the pancreas. Ann Surg. 1994;219:18–24.
5. Smith AC, Dowsett JF, Russell RC, Hatfield AR, Cotton PB. Randomised trial of endoscopic stenting versus surgical bypass in malignant low bled duct obstruction. Lancet. 1994;344:1663–60.
6. Speer AC, Cotton PB, Russell RC, Mason RR, Hatfield AR, Leung JW, et al. Randomised trial of endoscopic versus percutaneous stent insertion in malignant obstructive jaundice. Lancet. 1987;257:57–62.
7. Shepherd HA, Royle G, Ross AP, Diba A, Arthur M, Colins-Jones D. Endoscopic biliary endoprosthesis in the palliation of malignant obstruction of the distal common bile duct: a randomized trial. Br J Surg. 1988;75:1166–8.
8. Van der Gaag NA, Rauws EA, van Eijk CH, Bruno MU, van der Hart E, Kukben FJ, et al. Preoperative biliary drainage for cancer of the head of the pancreas. N Engl J Med. 2010;362:129–37.
9. Moss AC, Morris E, Mac MP. Palliative biliary stents for obstructing pancreatic carcinoma. Cochrane Database Syst Rev. 2006;2:CD004200.
10. Sung JY, Leung JW, Shaffer EA, Lam K, Costerton JW. Bacterial biofilm, brown pigment stone and blockage of biliary stents. J Gastroenterol Hepatol. 1993;8:28–34.
11. Gotthardt DN, Weiss KH, Rupp C, Bode K, Eckerle I, Rudolph G, et al. Bacteriobilia and fungibilia are associated with outcome in patients with endoscopic treatment of biliary complications after liver transplantation. Endoscopy. 2013;45:890–6.

12. Kawecki D, Chmura A, Pachołczyk M, Lagiewska B, Adadynski L, Wasiak D, et al. Bacteria isolated from bile samples of liver recipients in the early period after transplantation: epidemiology and susceptibility of the bacterial strains. Transplant Proc. 2007;39:2807–11.

13. Bert F, Larroque B, Paugam-Burtz C, Janny S, Durand F, Dondero F, et al. Microbial epidemiology and outcome of bloodstream infections in liver transplant recipients: an analysis of 259 episodes. Liver Transpl. 2010;16:393–401.

14. Iwasaki Y, Ishizuka M, Kato M, Kita J, Shimoda M, Kubota K. Usefulness of an inflammation-based prognostic score (mGPS) for predicting survival in patients with unresectable malignant biliary obstruction. World J Surg. 2013;37:2222–8.

15. Schuttumpf S, Binder L, Hagemann T, Berkovic D, Trumper L, Binder C. Utility of procalcitonin concentration in the evaluation of patients with malignant diseases and elevated C-reactive protein plasma concentrations. Clin Infect Dis. 2006;43:468–73.

Submit your next manuscript to BioMed Central and we will help you at every step:

- We accept pre-submission inquiries
- Our selector tool helps you to find the most relevant journal
- We provide round the clock customer support
- Convenient online submission
- Thorough peer review
- Inclusion in PubMed and all major indexing services
- Maximum visibility for your research

Submit your manuscript at www.biomedcentral.com/submit