Moving Singing for Lung Health online: experience from a randomised controlled trial

Authors: Keir EJ Philip¹*, Adam Lewis², Edmund Jeffery³, Sara Buttery¹, Phoeve Cave¹, Daniele Cristiano¹, Adam Lound⁴, Karen Taylor⁴, William D-C Man¹,³, Daisy Fancourt⁵, Michael I Polkey¹,³, Nicholas S Hopkinson¹,³

Affiliations:

1) National Heart and Lung Institute, Imperial College London, London, United Kingdom
2) Department of Health Sciences, Brunel University, London, United Kingdom
3) Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom
4) Imperial College Healthcare NHS Foundation Trust, London, United Kingdom
5) Department of Behavioural Science and Health, University College London, London, United Kingdom

Word Count: 3461

*Corresponding author

Dr Keir Philip
NHLI Respiratory Muscle Laboratory, Imperial College London,
Royal Brompton Campus, Fulham Rd, London SW3 6NP, UK

Email: k.philip@imperial.ac.uk
Tel +44 (0) 20 7351 8029

ORCID iD: https://orcid.org/0000-0001-9614-3580

Competing interests: The authors have no conflicts of interest relevant to the content of this article.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

Key words: COPD, singing, arts in health
Abstract (300)

Introduction

Singing for Lung Health (SLH) is a popular arts-in-health activity for people with long-term respiratory conditions, which participants report provides biopsychosocial benefits, however research on impact is limited. The ‘SHIELD trial’, a randomised controlled, single (assessor) blind, trial of 12 weeks SLH vs usual care for people with Chronic Obstructive Pulmonary Disease (COPD) (n=120) was set-up to help to address this. The first group started face-to-face (5 sessions) before changing to online delivery (7 sessions) due to COVID-19 related physical distancing measures. As such, the experience of this group is here reported as a pilot study to inform further research in this area.

Methods

We conducted semi-structured interviews and thematic analysis regarding barriers, facilitators and key considerations regarding transitioning from face-to-face to online delivery. Pilot quantitative outcomes include attendance, pre and post measures of quality of life and disease impact (SF-36, CAT score), breathlessness (MRC breathlessness scale, Dyspnoea-12), depression (PHQ9), anxiety (GAD-7), balance confidence (ABC scale) and physical activity (clinical visit PROactive physical activity in COPD tool, combining subjective rating and actigraphy).

Results

Attendance was 69% overall, (90% of the face-to-face sessions, 53% online sessions). Analysis of semi-structured interviews identified three themes regarding participation in SLH delivered face-to-face and online, these where 1) perceived benefits; 2) digital barriers (online); 3) digital facilitators (online). Findings were summarised into key considerations for optimising transitioning singing groups from face-to-face to online delivery. Pilot quantitative data suggested possible improvements in depression (treatment effect -4.78, p= 0.0487, MCID 5) balance confidence (treatment effect +17.21, p=0.0383, MCID 14.2), and anxiety (treatment effect -2.22, p=0.0659, MCID 2).

Discussion
This study identifies key considerations regarding the adaptation of SLH from face-to-face to online delivery. Pilot data suggest online group singing for people with COPD may deliver benefits related to reducing depression and anxiety, and improved balance confidence.
KEY MESSAGES

What is the key question?

Can Singing for Lung Health (SLH) be delivered online for people with COPD? And if so, what are the practical issues and how does the experience compare with face-to-face participation?

What is the bottom line?

SLH appears safe and enjoyable both face-to-face and online. Access barriers for online sessions included digital access and literacy. However increasing access to those previous unable to physically access sessions is also important. In this pilot, depression, anxiety and balance confidence appear to show improvements related to participation in a SLH group that transitioned from face-to-face to online delivery.

Why read on?

To our knowledge this is the first study to assess health impacts of online group singing sessions. Given the physical distancing measures required by the response to COVID-19, there is a need for singing groups and other similar interventions to be delivered online such as pulmonary rehabilitation. This study helps to inform this and future research in the area.
Introduction

Many people with Chronic Respiratory Disease (CRD) remain highly symptomatic despite optimal pharmacological treatment. Symptoms including exercise limitation, shortness of breath, and depression are common\(^1\)\(^-\)\(^3\). These can be compounded by social isolation and loneliness, which have been shown to be important to respiratory health outcomes\(^4\). Group singing is a common practice in most societies globally and has been shown to have health and wellbeing benefits for people with living with long-term health conditions and the wider general public\(^5\)\(^-\)\(^7\). There is increasing interest in arts-in-health interventions for people with chronic health conditions from patients through to government level\(^8\). Singing for Lung Health (SLH) is a popular group singing programme specifically developed for people with CRD. Small scale trials and qualitative studies suggest SLH has a range of biopsychosocial benefits for participants\(^9\)\(^-\)\(^10\), however there is a lack of larger, longer term, randomised control trials (RCT) regarding the impacts of this intervention\(^11\). The ‘Singing for Lung Health: Improving Experiences of Lung Disease (SHIELD) trial’ was set up to help to address this gap, planning to randomise 120 individuals with COPD to participation in 12 weeks of group singing or usual care.

During the current COVID-19 pandemic, physical distancing measures aimed at reducing SARS-CoV-2 transmission have led to profound social adaptations and disruption. Group activities, particularly involving people with long term health problems who are especially vulnerable to COVID-19, have in most cases been suspended including pulmonary rehabilitation programmes – one of the highest value interventions for people with respiratory disease\(^12\)\(^-\)\(^13\). Similarly, there are particular concerns that group singing could be a high risk activity regarding viral transmission, however research is currently limited\(^14\).

This context has driven interest in the implementation, and ongoing development, of online approaches that attempt to reproduce the social, psychological and physical effects of singing, dance and more established interventions such as pulmonary rehabilitation\(^15\)\(^-\)\(^16\). Such approaches are especially important for people with lung conditions as even prior to the COVID-19 pandemic access
to these interventions was inadequate17,18. Furthermore, measures to reduce risk of COVID-19 in this group appear to be causing substantial disruption to care and access to health-services, with high levels of anxiety and loneliness being reported19,20.

The first group of participants in the SHIELD trial, which began in February 2020, initially met face-to-face but the delivery of the intervention changed to an online format which is likely to remain necessary for the foreseeable future. We decided that this transitional group should be reported as a pilot study. This was firstly because research on the health and wellbeing impacts of online singing groups is lacking so the results could guide both the further delivery of the SHIELD trial and the design of other studies. Secondly, this would provide useful information from individuals who had experience of both face-to-face and online activities and could therefore enable a comparison of the two types of intervention experience.

Methods

Trial design and oversight

The SHIELD Trial was prospectively registered at clinicaltrial.gov (NCT04034212). The current analysis was defined as an amendment to the initial trial registration when the delivery of singing moved from face-to-face to online. Ethical approval for the SHIELD trial was granted by the National Health Service Health Research Authority, Stanmore REC (19/LO/0418).

Participants

The first group of 18 participants in the SHIELD trial were recruited from a specialist COPD clinic at the Royal Brompton Hospital London and lists of previous research participants who had given consent to be contacted regarding research (Figure 1). Chronic Obstructive Pulmonary Disease (COPD) diagnosis was confirmed by spirometry. Exclusion Criteria included pulmonary rehabilitation less than 4 months ago (potential to impact outcome measures due to potential overlap of certain impacts), inability to take part in singing sessions due to comorbidity (e.g. life limiting illness, cognitive impairment), and previous participation in SLH classes. Given the requirement for the
original protocol of weekly in-person attendance, from the list of potential participants, people living within a 1-hour journey of the hospital (estimated using google maps) were contacted first. All participants provided written informed consent after reading the Participant Information Sheet (PIS) and being given the opportunity to ask questions. Transport costs related to the assessment visit were reimbursed, but no payments were made for participation.

Patient and Public Involvement

The Royal Brompton Clinical Research Facilities patient expert and lay person research panel, and the Royal Brompton ‘Breathe Easy’ Group, reviewed the study proposal, provided thoughts and suggested improvements which improved the study design and materials prior to Research Ethics Committee review. In particular, the choice of a quality of life primary outcome measure was well received. The PIS was clarified including reducing use of specialist terms and specifying which study related costs would be reimbursed. Overall, the study was very well received by these patient and public representatives who saw clear value in the patient centred focus of the study.

Interventions

The intervention arm (SLH) received 12, once weekly, hour long, SLH sessions. The study control arm received usual care (UC) (no specific additional intervention above those which the person usually engages with). The specific content and structure of the singing sessions has been described elsewhere10, but briefly, each session consisted of a physical warm up, breathing exercises, vocal warms ups, songs, and a cool down. The sessions were led by Edmund Jeffery, a professional singing teacher with four years’ experience leading SLH groups. The SLH participants also received a CD of singing exercises and were encouraged to practice between sessions.

The first five, weekly sessions were delivered face-to-face as originally planned at the Royal Brompton Hospital, London, UK. And started on the 10/02/2020. These were halted due to the developing COVID-19 situation in the UK for 2 weeks to develop the online delivery of sessions. This process included discussion within the SLH provider network regarding suitable content, potential barriers and facilitators, and trial sessions with experienced leaders to help address unidentified
challenges. The online SLH format which was developed was then used to deliver the final 7 sessions via a video conferencing application (Zoom Video Communications Inc. “Zoom”).

Baseline assessment, randomisation and blinding

Assessments took place at the Royal Brompton Hospital (London, UK). Following a screening visit, written informed consent was taken, followed by a structured clinical history, and confirmation of COPD diagnosis by spirometry, and baseline assessment of outcome measures. Participants were randomised (1:1) using computer-generated block randomisation lists (Sealed Envelope™) block size 4, stratified by Medical Research Council (MRC) breathlessness grade and previous participation in pulmonary rehabilitation. The outcome assessors were blind to intervention allocation. Blinding of participants was not possible, and they were informed of their allocation by the unblinded researcher responsible for randomisation (SB). Unblinding of assessors took place only after all outcome measure data had been recorded.

Outcome measures and assessment

Primary outcome measures were change in the Short Form 36 Physical and Mental Component Scores (MCS and PCS respectively) using the oblique scoring method[21], with sub-scales provided to aid interpretation. Secondary outcomes included change in SF-36 subscales, balance confidence (ABC scale), anxiety (GAD-7), depression (PHQ-9), COPD assessment test (CAT) score, breathlessness (MRC dyspnoea score and Dyspnoea-12). Patient experience of physical activity was assessed using the clinical visit PROactive physical activity in COPD tool (cPPAC). The cPPAC combines questionnaire and seven days of actigraphy measures to produce two domains, amount and difficulty[22 23].

The original SHIELD protocol included physical capacity and performance testing using the six-minute walk test (6MWT) and the short physical performance battery (SPPB). However, these were only conducted at baseline as repeating these measures was not possible due to COVID-19 related physical distancing measures.

Outcomes measures were repeated after 14 weeks (12 weeks intervention plus 2-week pause for adaptation of delivery after week 5 of intervention). Baseline assessments were completed within 4
weeks prior to the intervention arms first singing session. Follow-up assessments were completed within 4 weeks of study completion by participants at home, with activity monitors and questionnaires returned by post. Any missing data (unanswered questions) were addressed by telephoning the participant.

Semi-structured qualitative feedback interviews were conducted on the phone (by KP who has training and experience in qualitative research techniques) with the SLH participants following unblinding of researchers, focusing on overall experience of intervention, positives, negatives, and barriers and facilitators to participation (as covered with an approved amendment to the Research Ethics Committee application). Notes were made during the call and a template response form was completed immediately after each call to record participant responses and interviewer reflections. Deductive thematic analysis was used. Comparison of experiences of face-to-face and online groups was also sought.

Statistical analysis

The power calculation for the SHIELD trial required 120 participants to show a clinically important difference in the primary outcome (SF-36). For this revised pilot study we present p values for independent sample t-tests between intervention and control groups. Analyses were carried out using Stata 14 (StataCorp, TX) on an intention to treat basis.
Table 1: Baseline characteristics:

	Singing for Lung Health (SLH) (n=9)	Usual Care (UC) (n=9)	p-value
Age	71 (69,78)	70 (69,72)	0.6
Female	3 (33%)	6 (66%)	0.2
BMI	19 (19.6, 23.4)	25 (23.3, 30)	0.5
FEV1, % predicted	40 (37, 77)	33 (30, 48)	0.1
Oxygen therapy	1 (11%)	2 (22%)	0.6
Pack years smoked	38 (23, 55)	40 (15, 53)	0.7
Falls in last year	1 (11%)	1 (11%)	1.0
Baseline 6MWD	405 (340, 537)	395 (309, 419)	0.3
SPPB total	10 (8, 11)	10 (8, 10)	0.7
Pre-study expectation of SLH health impact	4 (3, 4)	2 (2,5)	1.0
SF-16 Physical Component Score	40.0 (32.7, 47.0)	34.5 (33.3, 36.9)	0.3
SF-16 Mental Component Score	44.6 (41.8, 49.2)	44.0 (34.3, 46.9)	0.2
SF-16 Physical function	40 (25, 65)	35 (20, 50)	0.6
SF-16 Role limitation, physical	25 (0, 50)	0 (0, 50)	0.2
SF-16 Role limitation, emotional	66.7 (33.3, 66.7)	33.3 (66.7)	0.1
SF-16 energy	50 (25, 55)	50 (40, 50)	0.8
SF-16 eating well being	80 (68, 80)	64 (60, 68)	0.2
SF-16 social functioning	87.5 (62.5, 100)	62.5 (50, 100)	0.2
SF-16 pain	67.5 (45, 87.5)	77.7 (42.5, 77.5)	0.7
SF-16 general health	30 (5, 30)	20 (10, 30)	0.9
SF-16 health change	25 (25, 50)	50 (25, 50)	0.6
Depression (PHQ-9)	5 (3, 8)	6 (5,14)	0.2
Anxiety (GAD-7)	2 (1, 2)	5 (0, 11)	0.1
ABC scale score	78.8 (50.6, 90.6)	76.3 (64.4, 91.3)	0.7
Dyspnoea 12	11 (3, 15)	13 (8, 20)	0.3
MRC dyspnoea score	3 (2, 4)	3 (2, 4)	0.9
CAT score	17 (13, 22)	21 (17, 27)	0.5
PROactive difficulty*	72 (60, 75)	68 (56, 75)	0.6
PROactive amount**	57 (44, 65)	48 (44, 52)	0.3
PROactive total***	61 (59, 72)	58 (53, 60)	0.2
Daily step count	2717 (1870, 4871)	2566 (1213, 3119)	0.4

* Scale of 0 (high level difficulty) to 100 (low level of difficulty); ** Scale of 0 (low amount) to 100 high amount; *** Total score calculated as mean of PROactive difficulty and PROactive amount (0-100)

Data shown are median (IQR) or number (%). P values are for t tests test between groups. BMI, body mass index; 6MWD, six minute walk test distance; SPPB, short physical performance battery; Pre-study perception of SLH impact, participants asked to rate on scale of 0 to 10 expected impact of singing on improving health with 0 is no impact, and 10 very large improvement in health; SF-16,
Short Form 36 Health Survey; PHQ-9, Patient Health Questionnaire-9; GAD-7, Generalised Anxiety Disorder-7 questionnaire; ABC score, Activity specific Balance Confidence scale; MRC, Medical Research Council; CAT, COPD Assessment Test; PROactive, Patient Reported Outcome measure for physical activity in COPD.

Results

The intervention and control groups were well-matched at baseline (Table 1). Only GAD-7 anxiety score was of borderline statistical significance for between group difference at baseline (p = 0.057), mean values of 6.33 (UC), 1.88 (SLH). No serious adverse events were reported. No participants withdrew from the study. However, difficulties with attendance of the online sessions is described below.

Attendance

For the SLH arm, mean number of sessions attended was 8.4 (69%) of the 12 total sessions. This included a mean of 4.5 (90%) of the 5 face-to-face sessions, and 3.7 (53%) of 7 online sessions. Three of the participants did not attend the online sessions at all, three attended all seven sessions, with the remaining three participants attending three, four and six sessions.

Effect on intervention

Change from baseline was compared between the control and SLH groups in Table 2. These are presented for information, but cannot, of course, be used to make any confident inference about the effectiveness or otherwise of the intervention given the limited sample size compared to that for which the study was powered. Comparing singers with non-singers there were statistically significant improvements in the PHQ-9 depression score (treatment effect -4.78, p= 0.049, MCID 5) and ABC scale for balance confidence (treatment effect +17.21, p=0.038, MCID 14.2). There was also a suggestion of benefit regarding anxiety levels (GAD-7) in the singers of borderline statistical significance (treatment effect 2.22, p=0.066, MCID 2).
Physical activity

The PROactive total score suggested that the SLH group did worse than the control group regarding change in the composite measure of amount and difficulty of physical activity. This was primarily driven by the larger subjective reductions in the amount of physical activity in the SLH group during the post-intervention follow-up assessment. However, this was discordant with objective assessment, the mean change in step count was +1537 higher in the SLH group, compared with the control group. The small sample, and “lock-down” related to COVID-19 physical distancing, limits confidence interpreting the significance of these findings.

Table 2: Comparison of change in outcome measures between study arms

	Singing for Lung Health (SLH) (n=9)	Usual Care (UC) (n=9)	Treatment effect	p-value
SF-36 Physical Component Score (PCS) (Oblique calc)	-1.66	-0.389	-1.27	0.67
SF-36 Mental Component Score (MCS)	-0.367	-4.30	+3.93	0.15
SF-36 Physical function	-1.11	2.77	-3.89	0.79
SF-36 Role limitation, physical	-16.67	-2.78	-13.89	0.84
SF-36 Role limitation, emotional	-7.41	-33.33	+25.92	0.10
SF-36 energy	6.11	-1.11	+7.22	0.19
SF-36 emotional wellbeing	2.22	-6.22	+8.44	0.14
SF-36 social functioning	-6.95	-15.28	+8.33	0.26
SF-36 pain	0.28	5.78	-5.50	0.68
SF-36 general health	0	1.67	-1.67	0.62
SF-36 health change over last year	5.56	-13.89	+19.44	0.026
Depression (PHQ-9) (MCID 523)	-1.44	+3.33	-4.78	0.049
Anxiety (GAD-7) (MCID 226)	0.111	2.33	-2.22	0.066
ABC scale score (MCID 14.227)	6.03	-11.18	+17.21	0.038
Dyspnoea 12	-0.445	0.445	-0.889	0.39
MRC dyspnoea score	0.222	0.111	+0.111	0.63
CAT score	-1.44	2.22	-3.67	0.098
PROactive Difficulty*	0.889	-1.12	+2.00	0.362
PROactive amount**	-20.22	-6.89	-13.33	0.95
PROactive total***	-9.67	-4.00	-5.67	0.92
Daily step count	+129	-1408	+1537	0.13

*P values are independent sample t-tests. *change in the scale of 0 (high level difficulty) to 100 (low level of difficulty); **change in the scale of 0 (low amount) to 100 high amount; ***change in the scale of the total score calculated as mean of PROactive difficulty and PROactive amount (0-100).

Participant experience:
Deductive analysis identified three key themes regarding the SLH participants’ experience 1) perceived benefits; 2) digital barriers; and 3) digital facilitators.

Perceived benefits
All SLH participants reported greatly enjoying participation while session delivery was face-to-face.

The online sessions were enjoyed by the majority of participants, though all stated an overall preference for face-to-face sessions. Participants reported it ‘helps your breathing’ and ‘Certainly my breathing is better now than good than before’ especially in relation to the breath control exercises and breathing techniques. Improvements to mood and enjoyment of the social aspects were frequently reported. There was also a perception that the singing had contributed to other types of physical activity ‘the singing has contributed to my exercise levels’.

Digital barriers
Barriers relating to online delivery mostly related to technical difficulties. The majority experienced some form of technical difficulties; only those who regularly used online conferencing tools had no issues. Of those that did not attend at all online, one did not have a computer and one did not have a functioning internet connection. The third participant who did not participate online chose not to as they felt making noise would not be considerate of their neighbours, given the limited sound insulation, and ongoing ‘lockdown’ measures for all the residents of his building. Some participants were able to ask friends or family members to help with overcoming technological challenges, which worked well. However due to the “lock-down” and social shielding, this was not possible for all the participants.

Online delivery was also felt to be less personal, as interaction between participants was more challenging ‘meeting at the Brompton was much more engaging. It’s so nice to sing together as a
One participant stated that ‘Physically demanding things are better done in a group’, with group motivation more palpable in person than online. Even though face-to-face was preferred, online deliver was still seen as being extremely valuable ‘Even on online, it’s an up-lifting thing to do for mental health. We spent quite a lot time laughing. Singing as a group is special.’ Other aspects of the sessions were also noted to be lost when adapting the sessions to online. For example ‘singing in canon (a compositional technique in music)’, which was thoroughly enjoyed in person, were not technically possible during sessions delivered online.

It was felt that by having started the sessions face-to-face a degree of rapport had been built between participants, and with the singing leader, that helped with the transition online. It was suggested that it might be more difficult establishing relationships between group members if the groups commenced online with no prior meeting in person.

Digital facilitators

On certain points, online delivery was perceived as having benefits over in person sessions. One participant highlighted that ease of attendance enabled her to attend when she was not feeling 100% well and would not have attended in person had she needed to physically transport herself to the singing session. Another participant felt that by being online he was less self-conscious singing with the other participants as they would not be able to hear his voice. Multiple participants highlighted that online delivery overcame many of the barriers related to physically accessing face-to-face participation including geographical location of sessions, using transport with high symptoms burden, and currently infection risks.
Table 3: Considerations for online vs face-to-face delivery of Singing for Lung Health

	Face-to-face	Online
Access: Physical	More challenging Geographically local SLH sessions	Private physical space still required for participant
	Transport requirement	
	Financial and time costs	
	Availability and accessibility in context of lung condition and symptoms	
Access: Online	Limited or no requirement	Computer/device and internet access required.
	Can be used for session organisation	Overcomes multiple face-to-face physical barriers
Digital Literacy	Not required	Required
		With support can be minimal
		Could help build skills/confidence facilitating access to other online services
Infection/health risks	No risk of cross infection from participants or infection during transport to/from session	Not supervised in person
		Contact details of next of kin advisable for potential issues
Social experience	Very effective and important to participants	Good (perhaps less than face-to-face)
		Building rapport more challenging, especially if have never met in person (new groups/individuals)
		Specific content to address advised
Personal experience	Presence of peers can be both supportive and slightly intimidating depending on individual and group dynamic	The required technological skills can induce mild anxiety if participant not confident/experienced.
Physical engagement	Important aspect of session Journey to/from session also valuable physical activity for some	More challenging than face-to-face
		Requires specific consideration and promotion
Facilitator experience	Easier to gage participant emotions and group dynamic	More challenging to assess if appropriate techniques are being used by participants

Table 4: Practical issues transferring face-to-face to online

Informing participants	People are generally understanding of current requirement for physically distanced sessions.
Joining online	Participants may need support with digital access. Friends and family a good source of support. Dedicated ‘set up sessions’ could help in which session leader talks the participant through setting up, 1 to 1, separately and in advance of the SLH session.
Physical space	Clean, tidy and free from trip hazards
---------------------	--
Sound	Speakers advisable for better volume and sound quality
Feedback	Integration of formal feedback vital to facilitate responsive and participant appropriate sessions. More immediate feedback required from session leader as participants are not able to hear each other sing.
Maintaining/building relationships	Introductions. General catch up/social. Rapport building activities.
Session content	Cannon and multi-harmonies (live) – difficult. Pre-recorded content to facilitate multipart songs possible, but complicated. Focusing on what works best in each method of delivery more important than trying to exactly emulate face-to-face sessions online. Discussion between singing leaders using similar participant groups and swapping ‘best practice’ from experience works well.
Keep up to date	The evidence base is in this area is evolving, so ongoing review of relevant research and guidelines is important, including related activities such as pulmonary rehabilitation^{28}

Discussion

To our knowledge, this is the first study to assess the practical delivery of an online group singing intervention for people with respiratory disease intended to improve health and wellbeing. This transition from face-to-face to online delivery was forced on us by the COVID-19 pandemic, but provides useful information about how this can be done and allowed us to gain insights from people who had experienced both formats of delivery.

Key findings include that SLH delivered online was viewed as enjoyable and holistically beneficial to health, though face-to-face was generally preferred. Technological difficulties prevented some people from participation in online sessions, which were also felt to be less personal as social interaction was more challenging. The pilot data suggest that group singing for people with COPD, adapted to online delivery, may still deliver benefits related to reducing depression and anxiety, and improved balance confidence.

These findings are broadly supportive of other related studies. However, these findings should be interpreted within the context of COVID-19 related physical distancing and ‘shielding’ measures. In a small (n=28) RCT of a six week course of twice weekly face-to-face SLH, Lord et al (2010)^{29} also found
improvements related to anxiety, and qualitative research is has reported similar findings to the current study in relation to perceived impact on health and wellbeing. Previous studies on SLH for people with COPD have suggested improvements in quality of life, which was not seen here, though it is not clear if this related to the small sample size. Furthermore, our findings echo those of a study comparing the experiences of participants in a virtual choir, with those in a live choir, found the two types of experience provide very similar emotional benefits, though differences in how ‘present’ participants felt.

The qualitative data identified specific barriers and facilitators related to the different formats of delivery, which helps to explain the attendance data. The consort diagram highlights that many (n=23) potential participants declined due to issues with physically accessing the face-to-face sessions, mainly related to viewing public transport as too challenging given their health condition. However, online delivery demonstrated good potential to overcome physical distance as a barrier to access. As highlighted in the interview feedback, during the online section of the study, there were days when individuals participated but felt they would not have felt well enough to come in person if the sessions were still being held at the hospital. Regarding the online sessions, difficulties with digital literacy and digital access presented barriers, in some cases preventing ongoing participation in those who stated they deeply enjoyed the face-to-face sessions.

The consort diagram may have been different if the methods of delivery had been known from the start. Some people who declined participation due to difficulties physically accessing the hospital may have participated. However, those for whom digital delivery poses barriers may have declined. Clearly digital access is a vital consideration to address to overcome this potential barrier to participation. Additionally, participant rapport building appears to be an area requiring particular consideration.

Some limitations to this study are important to discuss. Firstly, adaptation of the methods during the study was not ideal. That said, it has provided a unique opportunity to gain insights into the transition of singing groups to online delivery which have, by necessity, become widespread. Secondly, given
the novelty of the online delivery, the session content and technical considerations are likely to develop overtime with experience, which could alter the relevance of the current findings to future sessions. However, this is not necessarily a weakness, as the current findings provide useful results on which to base these developments. Thirdly, the sample size was small due to the circumstances in which it was decided to evaluate this group and because the mode of delivery changed part-way through. This limits the confidence in quantitative impacts, and means it is unclear whether singers experienced benefits during the face-to-face or online part of the programme, or a combination of the two. Nevertheless, as a convenience pilot study, it provides useful indications of impacts, as well as informing future research. Similarly, the sub-optimal attendance during online sessions limits the extent to which impact can be assessed, although when combined with the interview feedback this provides useful information regarding barriers and facilitators to participation that can be addressed in both practice and future research. Finally, it is important to consider the context in which this trial took place. The developing COVID-19 pandemic was a considerable source of concern for many people with COPD, who were identified as being at an increased risk of severe COVID-19 or death. Though all the participants lived in London, the situation and their response to it, is likely to have differed between individuals, which intern, may have shaped their experience of the intervention.

Despite the necessary, yet unusual, adaptations to the methods, this study has provided interesting and potentially useful results to inform the development of further research regarding online singing group delivery and research. These findings are useful for existing SLH groups who are moving to online delivery of previously in-person sessions. They also provide the some of the first research findings to support the delivery of participatory online arts-in-health interventions in the context of COVID-19 related physical distancing.

The findings may also provide relevant insight for other related activities making an online transition such as pulmonary rehabilitation and Tai-Chi34, and dance for people with long-term medical conditions. Many of these activities had begun to develop and test online delivery approaches prior to the COVID-19 pandemic35,36, though the importance and potential utility of online delivery has now clearly increased16.

Further research should include larger studies assessing the health and wellbeing impact of online group singing in patient groups and for the wider population. Larger studies of SLH specifically, both online, and face-to-face (when appropriate to do so) remain a priority. Even after the acute phase of the COVID-19 pandemic online delivery of singing groups present an opportunity to widen access to certain groups of people. In-depth qualitative research exploring participant experience would also be valuable.

Conclusions

In conclusion, this study suggests that group singing sessions that have had to change delivery from face-to-face to online may produce clinically significant impacts on depression scores, anxiety, and improve balance confidence in people with COPD. The findings also identify important differences between online and face-to-face delivery including technological barriers for online, and overcoming physical access barriers of face-to-face. Despite a general preference for face-to-face sessions, online delivery was still felt to provide substantial health and wellbeing benefits. Future research on digitally delivered singing groups is required.

Acknowledgements

We would like to thank the Royal Brompton and Harefield Hospital Arts Team (RB&H Arts), and the study participants.

Author Contributions

The authors meet criteria for authorship as recommended by the International Committee of Medical Journal Editors. All the authors played a role in the content and writing of the manuscript. In addition, KP performed the analysis of the data, NSH and KP prepared the first draft.
Funding and Support

KP was supported by National Institute for Health Research Academic Clinical Fellowship award and the Imperial College Clinician Investigator Scholarship. The funders had no say in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication. This publication presents independent research. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health and Social Care.

Licence for Publication

The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, an exclusive licence (or non exclusive for government employees) on a worldwide basis to the BMJ Publishing Group Ltd to permit this article (if accepted) to be published in BMJ Open Respiratory Research and any other BMJPGL products and sublicences such use and exploit all subsidiary rights, as set out in our licence (http://group.bmj.com/products/journals/instructions-for-authors/licence-forms).

Data Availability Statement

Data are available upon reasonable request.

Competing Interest

None declared.

1. Kelly JL, Bamsey O, Smith C, et al. Health status assessment in routine clinical practice: the chronic obstructive pulmonary disease assessment test score in outpatients. Respiration 2012;84(3):193-9. doi: 10.1159/000336549 [published Online First: 2012/03/24]
2. Yohannes AM, Alexopoulos GS. Depression and anxiety in patients with COPD. *Eur Respir Rev* 2014;23(133):345-9. doi: 10.1183/09059180.0007813 [published Online First: 2014/09/02]

3. Elbehairy AF, Quint JK, Rogers J, et al. Patterns of breathlessness and associated consulting behaviour: results of an online survey. *Thorax* 2019;74(8):814-17. doi: 10.1136/thoraxjnl-2018-212950

4. Bu F, Philip K, Fancourt D. Social isolation and loneliness as risk factors for hospital admissions for respiratory disease among older adults. *Thorax* 2020 doi: 10.1136/thoraxjnl-2019-214445 [published Online First: 2020/04/23]

5. Fancourt DaF, S., What is the evidence on the role of the arts in improving health and well-being? A scoping review (2019): World Health Organisation, 2019.

6. Williams E, Dingle GA, Clift S. A systematic review of mental health and wellbeing outcomes of group singing for adults with a mental health condition. *Eur J Public Health* 2018;28(6):1035-42. doi: 10.1093/europub/cky115 [published Online First: 2018/07/10]

7. Clift S. Singing, wellbeing, and health. In: MacDonald R, Kreutz, G., Mitchell, L., ed. Music, Health, and Wellbeing: Oxford University Press 2013:113-24.

8. Philip K, Lewis A, Hopkinson NS. Music and dance in chronic lung disease. *Breathe* 2019;15(2):116-20. doi: 10.1183/20734735.0007-2019

9. Lewis A, Cave P, Hopkinson NS. Singing for Lung Health: a qualitative assessment of a British Lung Foundation programme for group leaders. *BMJ open respiratory research* 2017;4(1):e000216. doi: 10.1136/bmjresp-2017-000216

10. Lewis A, Cave P, Stern M, et al. Singing for Lung Health-a systematic review of the literature and consensus statement. *NPJ primary care respiratory medicine* 2016;26:16080. doi: 10.1038/njpccrm.2016.80

11. McNamara RJ, Epsley C, Coren E, et al. Singing for adults with chronic obstructive pulmonary disease (COPD). *The Cochrane database of systematic reviews* 2017;12:CD012296. doi: 10.1002/14651858.CD012296.pub2 [published Online First: 2017/12/19]

12. Zoumot Z, Jordan S, Hopkinson NS. Emphysema: time to say farewell to therapeutic nihilism. *Thorax* 2014;69(11):973-5. doi: 10.1136/thoraxjnl-2014-205667 [published Online First: 2014/07/06]

13. Hopkinson NS, Molyneux A, Pink J, et al. Chronic obstructive pulmonary disease: diagnosis and management: summary of updated NICE guidance. *BMJ* 2019;366:l4486. doi: 10.1136/bmj.l4486

14. Naunheim MR, Bock, J., Doucette, P.A., Hoch, M., Howell, I., Johns, M.M., Johnson, A.M., Krishna, P., Meyer, D., Milstein, C.F., Nix, J., Pitman, M.J., Robinson-Martin, T., Rubin, A.D., Sataloff, R.T. Sims, H.S., Titze, I.R., Carroll, T.C., Safer Singing During the SARS-CoV-2 Pandemic: What We Know and What We Don’t. *Journal of Voice* 2020 doi: https://doi.org/10.1016/j.jvoice.2020.06.028 [published Online First: 01/07/2020]

15. Philip K, Lewis, A., Harrison, S., Singing and Dance for People with Chronic Breathlessness during the COVID-19 pandemic: American Thoracic Society 2020 [Available from: https://www.thoracic.org/members/assemblies/assemblies/pr/quarterly-bite/singing-and-dance-for-people-with-chronic-breathlessness-during-the-covid-19-pandemic.php accessed 29/07/2020 2020.

16. Houchen-Wolloff L, Steiner MC. Pulmonary rehabilitation at a time of social distancing: prime time for tele-rehabilitation? *Thorax* 2020;75(6):446-47. doi: 10.1136/thoraxjnl-2020-214788 [published Online First: 2020/05/14]

17. Philip K, Gaduzo S, Rogers J, et al. Patient experience of COPD care: outcomes from the British Lung Foundation Patient Passport. *BMJ open respiratory research* 2019;6(1):e000478. doi: 10.1136/bmjresp-2019-000478 [published Online First: 2019/11/02]

18. Royal College of Physicians. National COPD primary care audit 2014–15 national report (Wales). 2017: https://www.rcplondon.ac.uk/projects/outputs/primary-care-time-take-breath (accessed 24-03-17).

19. Philip K, Lonergan, B., Cumella, A., Farrington-Douglas, J., Laffan, M., Hopkinson, NS., COVID-19 related concerns of people with long-term respiratory conditions: A qualitative study. medRxiv, 2020.
20. Iob E, Steptoe A, Fancourt D. Abuse, self-harm and suicidal ideation in the UK during the COVID-19 pandemic. The British journal of psychiatry : the journal of mental science 2020;1-4. doi: 10.1192/bjp.2020.07/14

21. Lauis NC, Hays RD, Bhattacharyya T. Scoring the SF-36 in Orthopaedics: A Brief Guide. J Bone Joint Surg Am 2015;97(19):1628-34. doi: 10.2106/JBJS.O.00030 [published Online First: 2015/10/09]

22. Boutou AK, Raste Y, Demeyer H, et al. Progression of physical inactivity in COPD patients: the effect of time and climate conditions - a multicenter prospective cohort study. International journal of chronic obstructive pulmonary disease 2019;14:1979-92. doi: 10.2147/COPD.S208826

23. Gimeno-Santos E, Raste Y, Demeyer H, et al. The PROactive instruments to measure physical activity in patients with chronic obstructive pulmonary disease. The European respiratory journal 2015;46(4):988-1000. doi: 10.1183/09031936.00183014

24. Terry G, Hayfield, N., Clarke, V., Braun, V,. Thematic Analysis in: The SAGE Handbook of Qualitative Research in Psychology. London: SAGE Publications Ltd 2017:17-36.

25. Lowe B, Unutzer J, Callahan CM, et al. Monitoring depression treatment outcomes with the patient health questionnaire-9. Med Care 2004;42(12):1194-201. doi: 10.1097/00005650-200412000-00006 [published Online First: 2004/11/20]

26. Baker AM, Holbrook JT, Yohannes AM, et al. Test Performance Characteristics of the AIR, GAD-7, and HADS-Anxiety Screening Questionnaires for Anxiety in Chronic Obstructive Pulmonary Disease. Annals of the American Thoracic Society 2018;15(8):926-34. doi: 10.1513/AnnalsATS.201708-6310C [published Online First: 2018/07/10]

27. Beauchamp MK, Harrison SL, Goldstein RS, et al. Interpretability of Change Scores in Measures of Balance in People With COPD. Chest 2016;149(3):696-703. doi: 10.1378/chest.15-0717 [published Online First: 2015/07/24]

28. British Thoracic Society. Guidance for the resumption and continuation of urgent and elective outpatient respiratory services 2020 [cited 2020 06/08/2020]. Available from: https://www.brit-thoracic.org.uk/about-us/covid-19-resumption-and-continuation-of-respiratory-services/

29. Lord VM, Cave P, Hume VJ, et al. Singing teaching as a therapy for chronic respiratory disease--a randomised controlled trial and qualitative evaluation. BMC pulmonary medicine 2010;10:41. doi: 10.1186/1471-2466-10-41

30. Lewis A, Cave P, Hopkinson NS. Singing for Lung Health: service evaluation of the British Lung Foundation programme. Perspect Public Health 2018;138(4):215-22. doi: 10.1177/175791391874079 [published Online First: 2018/05/15]

31. Lord VM, Hume VJ, Kelly JL, et al. Singing classes for chronic obstructive pulmonary disease: a randomized controlled trial. BMC pulmonary medicine 2012;12:69. doi: 10.1186/1471-2466-12-69

32. Bonilha AG, Onofre F, Vieira ML, et al. Effects of singing classes on pulmonary function and quality of life of COPD patients. Int J Chron Obstruct Pulmon Dis 2009;4:1-8. [published Online First: 2009/05/14]

33. Fancourt D, Steptoe A. Present in Body or Just in Mind: Differences in Social Presence and Emotion Regulation in Live vs. Virtual Singing Experiences. Front Psychol 2019;10:778. doi: 10.3389/fpsyg.2019.00778 [published Online First: 2019/04/27]

34. Lewis A, Hopkinson NS. Tai Chi Movements for Wellbeing - evaluation of a British Lung Foundation pilot. Perspect Public Health 2020;140(3):172-80. doi: 10.1177/175791391872515 [published Online First: 2020/05/18]

35. Hansen H, Beyer N, et al. Supervised pulmonary tele-rehabilitation versus pulmonary rehabilitation in severe COPD: a randomised multicentre trial. Thorax 2020;75(5):413-21. doi: 10.1136/thoraxjnl-2019-214246 [published Online First: 2020/04/02]

36. Bourne S, DeVos R, North M, et al. Online versus face-to-face pulmonary rehabilitation for patients with chronic obstructive pulmonary disease: randomised controlled trial. BMJ open 2017;7(7):e014580. doi: 10.1136/bmjopen-2016-014580 [published Online First: 2017/07/19]
Assessed for eligibility (n=62)

Excluded (n=44)
- Not meeting inclusion criteria (n=11)
- Declined to participate (n=10)
- Logistical reasons incl. transport, timing of session, etc. (n=23)

Enrolment

Randomised n=18

Allocated to singing (n=9)

Allocated to usual care (control group) (n=9)

No withdrawals, mean sessions attended 8.4 (69%), including
- 4.5/5 (90%) of face-to-face sessions
- 3.7/7 (53%) online sessions.
 - 3 participants attend no online sessions
 - 1 attended 3 sessions
 - 1 attended 4 sessions
 - 1 attended six sessions
 - 3 attended all seven sessions

Follow up

No withdrawals