Passive Intermodulation Interference Suppression through Sparse Discrete Fractional Fourier Transform

JING OU1, LU TIAN2, JIANCHUN LIU1 and CELUN LIU1

1Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian District, Beijing, China
2China Electronics Technology Group Corporation, Academy of Electronics and Information Technology, 11 Shuangyuan Road, Shijingshan District, Beijing, China

tianlu218@gmail.com

Abstract. With the wide application of duplex mode antenna, passive intermodulation (PIM) interference has become a severe problem. And the traditional methods have shortcomings that cannot be overcome. In order to solve this issue, this paper proposes an algorithm to suppress passive intermodulation (PIM) interference based on digital signal processing (DSP). We choose power series model to express PIM signal, which is also called PIM interference model. In the proposed scheme, satellite transmit pilot signal during the pilot period. With the transmitted pilot signal and the received signal, the real-time parameters of PIM interference model can be obtained. Then during the data transmission period, data is transmitted in uplink and downlink separately. The PIM interference can be rebuilt through the downlink transmitted data and the PIM interference model. In this way, the PIM interference is suppressed. We chose chirp signal to be pilot signal for its wide bandwidth, which can cover all frequency in modulated system. In order to obtain the PIM interference model parameters, we use Sparse Discrete Fractional Fourier Transform (SDFrFT) through Pei method due to its low computational complexity. The simulation results show that this algorithm can reconstruct the original signal with a relatively low complexity.

1. Introduction
Augment of satellite systems’ transmit power, number of carriers and bandwidth makes PIM become a severe problem. Once satellite system is affected by PIM, the current state-of-the-art in electronic circuits impels it to turn on spare antenna and disable duplex mode. The generally way to handle this problem is promoting hardware performance in order to reduce nonlinearity, whose cost is extremely expensive.

This motivates researches on PIM suppression based on DSP. [1] presents a general framework for the adaptive feedforward PIM cancellation, but it costs extra hardware, which is impossible due to limitation in satellites resource. Works in [2] propose a method to cancel PIM signal based on DSP. However, this method needs to interrupt communication to estimate the parameters. [3] provides a novel digital PIM suppression algorithm.

In order to reduce algorithm’s computational complexity, we turn to Discrete Fractional Fourier Transform (DFrFT) for it is an efficient way to solve many challenging engineering problems. Among all DFrFT algorithms, Pei’s algorithm has the lowest complexity [4] and its complexity can be further reduced through sparse Fourier transform [5-6]. [7] gives a modified Cauchy distribution model of
high-order PIM signal. However, there is no complete model expression of PIM interference [8], we select power series model to express PIM signal.

In this paper, we propose a digital way to estimate and cancel PIM interference through power series model. We chose chirp signal to be pilot signal for its wide bandwidth, which can cover all frequency in modulated system. Because of the sparse characteristic of chirp signal in fractional Fourier domain, SDFrFT is adopted to estimate parameters of PIM signal.

The rest of this paper is organized as follows. Section 2 details PIM signal reconstruct algorithm. Simulation results are presented in section 3. Finally, conclusions are drawn in Section 4.

2. PIM signal reconstruct algorithm
As shown in figure 1, pilot signal c_0 and data c are transmitted in t_1 and t_2 respectively. During t_1, received signal d_0 is used to estimate parameters of PIM signal and reconstruct PIM signal \hat{p}_0. During t_2, estimated signal \hat{c} can be obtained by $d - \hat{p}$. Figure 2 demonstrates this process in detail.

![Figure 1. Architecture of transmitted and received signal.](image1)

![Figure 2. Architecture of overall PIM suppression algorithm.](image2)
Flow chart of the overall algorithm is showed in figure 3, where L is the time of repetitions.

2.1. PIM parameters’ estimation
The PIM signal can be expressed in power series model [8]
\[y(t) = \sum_{i=1}^{N} a_i x(t)^i \]
where \(a_i \) represents the amplitudes of different order \(i \in \{1,2,\cdots,N\} \), N is the number of sampling points.

Chirp signal is given by
\[x(t) = \exp\left[j(2\pi f_0 t + \pi k t^2)\right] \]
where \(f_0 \) is start frequency of chirp signal and \(k \) represents frequency modulation rate.

Using equation (1) and (2), PIM signal becomes
\[y(t) = \sum_{i=1}^{N} a_i \exp\left[j(2\pi f_0 t + \pi k t^2)\right] = \sum_{i=1}^{N} y_i(t) \]
Using Pei sampling method, we obtain
\[y(n) = y(n\Delta t) \]
\[X_a(m) = F(m\Delta u) \]

where \(\Delta t \) is the reverse of sampling interval, \(\alpha \) is a real number that represents rotation angle of fractional Fourier transform (FrFT) and \(\Delta u = \frac{2\pi a}{\Delta t(2M+1)} \). Besides, \(M \geq N \) should be satisfied.

Taking linear superposition of FrFT into consideration, we process one argument of \(y_0(n) \) at a time. Assuming the sampling rate is \(f_s \), which means \(\Delta t = 1/f_s \), then \(X_{0a}(m) \) and \(x(n) \) become
\[x(n) = \exp[j(2\pi f_0/n + k\pi (n/f_s)^2)] \]
\[X_a(m) = \left(\frac{\sin\alpha - j \cos\alpha}{2M+1}\right)^{1/2} \exp\left(\frac{1}{2} \cot\alpha^2 \Delta u^2\right) \sum_{n=-N}^{N} \exp\left[\frac{1}{2} \cot\alpha^2 (n/f_s)^2 - j \frac{2\pi n \alpha}{2M+1}\right] y_i(n) \]
\[= a_i A_{\alpha} \exp\left(\frac{1}{2} \cot\alpha^2 \Delta u^2\right) \sum_{n=-N}^{N} \exp\left(\frac{1}{2} \cot\alpha^2 (n/f_s)^2 - j \frac{2\pi \alpha n \pi}{2M+1}\right) \exp[j(2\pi f_0/n + k\pi (n/f_s)^2)] \]
It is obvious that the maximum value of $|X_\alpha(m)|$ can be achieved when

$$\left(\frac{1}{2} \cot \alpha + \pi k \right) (n/f_s)^2 = 0$$

and

$$\max |X_\alpha(m)| = (2N + 1) |a_i A_\alpha|$$

Then i and a_i is

$$i = -\frac{\cot \alpha}{2\pi k}$$

and

$$a_i = \frac{\max |X_\alpha(m)|}{(2N+1) |A_\alpha|}$$

2.2. Normalization

Sampling time is $T = N/f_s$, and range of time and frequency domain is $[-T/2, T/2] \times [-f_s/2, f_s/2]$ [10]. Adopt time dimension factor $S = (T/f_s)^{1/2}$. New coordinates are defined as $t \rightarrow t/S$ and $f \rightarrow f \times S$, then range of time and frequency domain become $[-(Tf_s)^{1/2}/2, (Tf_s)^{1/2}/2] \times [-{(Tf_s)^{1/2}}/2, (Tf_s)^{1/2}/2]$. Let $\Delta x = (Tf_s)^{1/2}$, then time-frequency distribution of signal after normalization is a circle centered on origin with a radius of Δx. Therefore, the sampling interval becomes $1/\Delta x$, and we have $N = (\Delta x)^2$.

After normalization, sampling data changes from $x \left(\frac{n}{f_s} \right)$ into $x \left(\frac{n}{\Delta x} \right)$. The DFrFT of sampling data becomes

$$X_\alpha(m) = \left(\frac{\sin \alpha - \cos \alpha}{2M+1} \right)^{1/2} \exp \left(\frac{1}{2} \cot \alpha \Delta u^2 \right) \sum_{n=-N}^{N} \exp \left[\frac{\cot \alpha n^2}{2(\Delta x)^2} - \frac{2\pi m n}{2M+1} \right] y_i(n)$$

Equation (9) and (11) turn into

$$\cot \alpha + \pi k (n/f_s)^2 = 0$$

$$i = -\frac{\cot \alpha}{2\pi k (\Delta x/f_s)^2}$$

2.3. SDFrFT

Steps of SDFrFT with complexity $O((nklogn)^{1/2} log n)$ [5] detail in figure 4.

Figure 4. Flow chart of SDFrFT algorithm.

The first step, permutation, enables the algorithm to distinguish signals whose spectrums are close to each other. And window function reduces the spectrum leakage. After subsampling and fast Fourier transform (FFT), error estimation takes part through Hash function and penalty function. After L
repetitions, save locations of points that occur more than half of the internal circulation and estimate the median. Multiple the result by chirp signal to get its FrFT.

2.4. Multi-component signal process and PIM signal reconstruction
Setting chirp signal as pilot signal makes PIM signal feature several peaks in fractional domain. Set a threshold value $P_{\text{threshold}}$. In order to get all $|\tilde{F}_a(m)|$ and α, we first search the maximum magnitude value $\max|\tilde{F}_a(m)|$ in two-dimension fractional domain. Next, obtain i and α_i from (15) and (12) respectively if $\max|\tilde{F}_a(m)| > P_{\text{threshold}}$. Then, we apply a narrow band filter $G(m)$ to weaken the maximum peak, where $F^\prime_a(m) = \tilde{F}_a(m)G(m)$, and find the next maximum value by steps above until $\max|\tilde{F}_a(m)| < P_{\text{threshold}}$.

3. Simulation
Set f_e as 112MHz/s, N as 8192, f_0 as 0.5MHz and k as 17.2GHz. The order of FrFT ranges from 0 to 2 with step of 0.001. The number of sparse spectrum line is set to 1, and the number of loop is 9. The order of two components are 7.3 and 8.9 respectively.

Figure 5 shows the original signal, the signal with PIM interference and the signal after cancellation in time domain. As can be seen from figure 5, although the power of the PIM interference is larger than that of the signal, the signal after cancellation and the original signal are almost superposition.

Figure 6 shows the power spectral density (PSD) of original signal, PIM interference, signal with interference and signal after cancellation separately. Figure 6(c) shows that the original signal is submerged in PIM interference. However, as can be seen from figure 6(d), although there is several sub-peak in PSD of the signal after cancellation, the PSD of the original signal can be identified easily.

![Figure 5. Cancellation results in time domain.](image_url)
Figure 6. PSD of original signal, PIM interference, signal with interference and signal after cancellation.

4. Conclusion
In this paper, we propose a PIM suppression algorithm with low computational complexity. We use SDFrFT to reconstruct PIM signal in power series model. Simulation results show that this algorithm performs well in PIM cancellation.

Acknowledgments
This work was supported by the National Natural Science Foundation of China under Grants 61601027

References
[1] Keehr E. A. and Hajimiri A. 2011 Successive regeneration and adaptive cancellation of higher order intermodulation products in rf receivers J IEEE Transactions on Microwave Theory and Techniques. 59 pp 1379–96
[2] Wang M, Li S, Baldemair R, et al 2012 Dynamic cancellation of passive intermodulation interference P US, US 20120295558 A1
[3] Lu T., Han H. C., et al 2017 Adaptive suppression of passive intermodulation in digital satellite transceivers J Chinese Journal of Aeronautics 30 pp 1154-60
[4] Pei S. C., Ding J. J. 2000 Closed-form discrete fractional and affine Fourier transforms J Transactions on Signal Processing 48 pp 1338-53
[5] Hassanieh H., Indyk P., et al 2012 Simple and practical algorithm for sparse Fourier transform C Acm-Siam Symposium on Discrete Algorithms Society for Industrial and Applied Mathematics pp 1183-94
[6] Gilbert A. C., Indyk P., et al 2014 Recent developments in the sparse Fourier transform: A compressed Fourier transform for big data J IEEE Signal Process 31 pp 91–100
[7] Lu T., Yi W., et al 2016 Modified Cauchy distribution model of high-order passive intermodulation C Int. Symp. on Antennas and Propagation pp 586-7
[8] Al-Mudhafar A. and Hartnagel H. 2012 Bit Error Probability in the Presence of Passive Intermodulation J IEEE Communication Letters 16 pp 1145-48
[9] Bing D., Junbao L. and Shiqi C. 2014 Analysis of parameter estimation using the sampling-type algorithm of discrete fractional Fourier transform J Defense technology 10 pp 321-7
[10] Tanli C., Lianghao G. and Zaixiao G. 2017 The concise Fractional Fourier transform and its application in detection and parameter estimation of the linear frequency-modulated signal J Chinese Journal of Acustica 1 pp 70-86