Identifying and engineering Majorana bound states [1–4] for topological quantum computing [5–7] remains a challenge. Among various candidates, the semiconductor-superconductor nanowires [8, 9] have received considerable attention [10–25] due to their high tunability [26]. The Majorana bound states always come in a pair and are localized at the two ends of the wire. They are supposed to have zero energy, but in reality, they are partially successful, e.g., assumed temperatures have been experimentally observed to oscillate as a function of magnetic field, showing a signature of overlapped Majorana bound states. However, the oscillation amplitude either dies away after an overshoot or decays, sharply opposite to the theoretically predicted enhanced oscillations for Majorana bound states. We reveal that a steplike distribution of spin-orbit coupling in realistic devices can induce the decaying Majorana oscillations, resulting from the coupling-induced energy repulsion between the quasi-particle spectra on the two sides of the step. This steplike spin-orbit coupling can also lead to decaying oscillations in the spectrum of the Andreev bound states. For Coulomb-blockade peaks mediated by the Majorana bound states, the peak spacings have been predicted to correlate with peak heights by a $\pi/2$ phase shift, which was not experimentally observed and may be explained by the steplike spin-orbit coupling. Our work will inspire more works to re-examine effects of the non-uniform spin-orbit coupling, which is generally present in experimental devices.

In this Letter, we reveal that the oscillation patterns in the experiments [30–34], including both the decay in amplitude and increase in period, can be well captured [Figs. 1(b)-(d) experiment, (e)-(g) theory] by a simple, but realistic assumption: spin-orbit coupling strength along the nanowire has a steplike distribution [see the green curve in Fig. 1(a)]. The steplike spin-orbit coupling is reasonable because the gates apply a non-uniform electrostatic potential and spin-orbit coupling depends on the electrostatic fields perpendicular to the nanowire [40–47]. Moreover, the presence of the superconductor can greatly modify the electrostatic field in the nanowire due to screening effect and work-function mismatch between the superconductor and semiconductor [25]. Thus the spin-orbit coupling is well expected to be non-uniform from the nanowire covered with superconductor to the part (tunnel barrier region) without the superconductor. Additionally, we find that these decaying oscillations caused by the steplike spin-orbit coupling also exist in the energy spectrum of Andreev bound states [Figs. 3(d) and (e)]. To distinguish Majorana from Andreev bound states, a recent theory [48] predicted a $\pi/2$ phase shift between the spacings and heights of the Coulomb-blockade peaks mediated by the Majorana bound states in nanowire islands [Fig. 4(b)], but was not observed in experiments [34], which may be explained by considering the steplike spin-orbit coupling [Figs. 4(c) and (d)]. These results highlight the non-uniform spin-orbit coupling generally existing in experiments but ignored in most simulations.
FIG. 1. (a) Schematic of the semiconductor-superconductor nanowire island [30–34], its two ends may host a pair of Majorana bound states (MBSSs). [(b)–(d)] Adapted from Ref. [30]. The Majorana bound states can hybridize as a function of the magnetic field B. However, opposite to the experiments, Majorana theory predicts that E_0, the first zero-energy crossing at V_{Z}, develops after the first zero-energy crossing at V_{Z} [Fig. 2(b)]. Between V_{Z} and V_{Z}, the spectrum of the entire nanowire depends on the competition between $E_{\text{L/R}}$ and $V_{\text{ee/eh}}$. Figure 2(b) shows that E_{L} increases with increasing amplitude as a function of V_{Z}, consistent with the known result for uniform spin-orbit coupling [28]. Also, the Majorana wavefunctions are known to move towards the nanowire ends under [see top of (a)], so they suppress the enhanced oscillations in (b) into decaying oscillations with increasing periods [blue solid line] in Fig. 1(f). (e) $V_{\text{ee/eh}}$ increase with increasing V_{Z} since the wavefunctions move towards the nanowire ends [see top of (a)], so they suppress the enhanced oscillations in (b) into decaying oscillations with increasing periods [blue solid line] in (d). [(f) and (g)] Majorana wavefunctions $\psi_{A/B}$ at V_{Z} marked by the scatters in Fig. 1(f).

Why Majorana oscillations decay.—Before showing the numerical simulations of the decaying Majorana oscillations in Fig. 1, we first use Fig. 2 to give the mechanism underneath. Suppose that a wire of 2 µm is divided at 0.55 µm into two uncoupled parts, with smaller (L) and larger (R) spin-orbit coupling, respectively [Fig. 2(a)]. Their energy spectra are quite different due to different length and spin-orbit coupling strength [49, 50]: on the left [Fig. 2(b)], the enhanced oscillations emerge simultaneously after the first zero-energy crossing at V_{Z}^L; on the right [Fig. 2(c)], two near-zero-energy bound states develop after V_{Z}^R ($> V_{\text{Z}}^L$).

Turning on the coupling between the two parts, the lowest-energy spectrum can be modeled by

$$H_{\text{eff}} = \sum_{i=L,R} E_i c_i^\dagger c_i + (V_{\text{ee}} c_L^\dagger c_R + V_{\text{eh}} c_L^\dagger c_R + H.c.),$$

where $E_{\text{L/R}}$ stand for the lowest-energy spectra in Figs. 2 (b) and (c), and V_{ee} and V_{eh} are the particle-particle and particle-hole couplings (details in Sec. SI of [51]). between the lowest-energy states of the two parts [see top of Fig. 2(a)]. Between V_{Z}^L and V_{Z}^R, the spectrum of the entire nanowire depends on the competition between $E_{\text{L/R}}$ and $V_{\text{ee/eh}}$. Figure 2(b) shows that E_{L} oscillates with increasing amplitude as a function of V_{Z}, consistent with the known result for uniform spin-orbit coupling [28]. Also, the Majorana wavefunctions are known to move towards the nanowire ends under [see top of (a)], so they suppress the enhanced oscillations in (b) into decaying oscillations with increasing periods [blue solid line] in (d). [(f) and (g)] Majorana wavefunctions $\psi_{A/B}$ at V_{Z} marked by the scatters in Fig. 1(f).
nanowire will show the decaying oscillations [blue solid in Fig. 2(d)], consistent with the exact spectrum in Fig. 1(f).

In contrast, there will be enhanced oscillations if the repulsion by $V_{ee/eh}$ is not strong enough. Therefore, the competition between $E_{L/R}$ and $V_{ee/eh}$ can account for the decaying or enhanced oscillations (Sec. SII of [51]).

Model.— To verify our physical picture, we perform simulations by using the steplike spin-orbit coupling. We model the nanowire island by the Hamiltonian $H = \int_0^L dx \psi^\dagger(x) \mathcal{H} \psi(x)$, where

$$H = \frac{\mathbf{p}^2}{2m^*} - \mu(x) - \sigma_y \left(\alpha(x) p_x \right) / 2\hbar \tau_z + V_Z \sigma_x + \Delta \tau_z,$$

where L, m^*, $p_x = -i\hbar \partial_x$, Δ, and V_Z are the wire length, effective electron mass, momentum operator, effective pairing, and Zeeman energy induced by B, respectively. $\mu(x)$ and $\alpha(x)$ denote the position-dependent chemical potential and spin-orbit coupling, respectively.

Quite different from the previous theories which assume a constant spin-orbit coupling [35–37], we model that spin-orbit coupling has a profile [see also the green curve in Fig. 1(a)].

$$\alpha(x) = \frac{A}{2} \left[\tanh \left(\frac{\lambda_L}{\lambda_L} \right) + \tanh \left(\frac{\lambda_R}{\lambda_R} \right) \right] + \alpha_0,$$

where A, α_0, $x_{L/R}$, and $\lambda_{L/R}$ are the parameters that describe the profile. \mathcal{H} is written in terms of the Nambu spinor $\{u_i(x), v_i(x), \uparrow(x), \downarrow(x)\}$. The Pauli matrices σ and τ act on the spin and particle-hole spaces, respectively. The anticommutator in \mathcal{H} ensures the Hermiticity [41, 46, 47]. In realistic experiments, the parameters intertwine when changing the gate voltages [22, 24, 25, 53–56], and the superconductor can induce renormalization effects [57, 58]. Nevertheless, to focus on the effect of the steplike spin-orbit coupling, all the parameters in H are assumed to be independently adjustable. By diagonalizing H on a lattice, the energy spectrum and wavefunctions are obtained. The lowest energy is the bound state energy E_0, the hybridization energy mentioned above.

Decays of Majorana oscillations.— Figures 1(e)-(g) show our numerical results. We use the parameters $m^* = 0.026 m_e$, $\Delta = 0.25$ meV, $\alpha_0 = 0.04$ eVÅ, $A = 0.4$ eVÅ, and lattice constant $a = 10$ nm. To focus on the effect of the steplike spin-orbit coupling, first we consider only one step of spin-orbit coupling, so that $\alpha(x) = \alpha_0 + A \Theta(x - x_L)$ [Fig. 2(a)], i.e., let $x_R = L$ and $\lambda_L = \lambda_R = a$ in Eq. (2), and the chemical potential $\mu = 0$. Our simulations agree with the experiments, not only for the decaying amplitude, but also including the lowest-energy crossing [Figs. 1(b) and (c), (e) and (f)], anti-crossing [Figs. 1(d) and (g)], and increasing oscillation period at small Zeeman energies [Figs. 1(c) and (f)]. We note that our results are generic and do not depend on the detailed parameters, e.g., the step shape (smoothness), effective pairing Δ, chemical potential μ, and spin-orbit coupling strength (Sec. SIII of [51]). Further increasing the Zeeman energy, we find that the oscillations turn from decay to increase for those magnetic fields at which the the superconductivity is suppressed in the experiments, thus less likely to be observed.

Decays of Andreev oscillations.— Are these decaying oscillations unique for Majorana bound states? Our answer is no. It has been suggested that the same device can also host the Andreev bound states [59–63]. Whether the decaying oscillations are from Andreev or Majorana bound states can be checked from the spatial profiles of the lowest-energy Majorana wavefunctions at the Zeeman energies indicated in Fig. 1(f). The Majorana wavefunctions can be constructed by projecting the lowest-energy wavefunctions to the Majorana basis [62, 64], i.e., $\psi_A = (1/\sqrt{2})(\psi_{E_0} + \psi_{-E_0})$ and $\psi_B = (1/\sqrt{2})(\psi_{E_0} - \psi_{-E_0})$. ψ_A and ψ_B are localized at the opposite wire ends for the Majorana bound states, while they are strongly overlapping or separated by a distance comparable with the penetration length for the Andreev bound states [62]. For V_Z far smaller than V_Z^0 [Fig. 2(f)], the two wavefunctions are squeezed in the region with small spin-orbit coupling ($0 < x < x_L$), implying that they are two Andreev bound states. For V_Z larger than V_Z^0 [Fig. 2(g)], the two wavefunctions are well localized at the opposite ends, forming a pair of near-zero-energy Majorana bound states with a slight overlap.

We simulate the near-zero-energy Andreev bound states by employing a smoothly varying chemical potential $\mu(x)$ [59–63], as shown in Fig. 3(a). For uni-
form spin-orbit coupling (i.e., \(x_L = 0 \)), two near-zero-energy bound states persists for a wide range of Zeeman energy before the topological phase transition point \(V_Z^* = \sqrt{\max[\mu(x)]^2 + \Delta^2} \) [about 0.91 meV in Fig. 3(b)] at which the superconducting gap nearly closes and reopens. These bound states are partially separated Andreev bound states [62] since the constituent Majorana eigenstates are separated by a distance comparable with the penetration length [Fig. 3(c)]. After including a steplike distribution of spin-orbit coupling, Figs. 3(d) and (e) show that there are also decaying oscillations for the Andreev bound states at \(V_Z < V_Z^* \). The oscillations turn to increase at \(V_Z > V_Z^* \) for Majorana bound states. The Andreev or Majorana nature is determined by the spatial profiles of the projections of the lowest-energy wavefunctions onto the Majorana basis and these decaying oscillations are also due to the competition between \(E_{L/R} \) and \(\langle E_{ee} \rangle \), similar to Fig. 2(d) (Sec. SIV of [51]).

\[[51]. \]

Phase shift between peak spacing and height oscillations. In the floating nanowire island [Fig. 1(a)] [65–69], adding an electron costs a finite charging energy due to its small capacitance, leading to the Coulomb blockade peaks in the two-terminal conductance measurement [Fig. 4(a)]. Because of the hybridization energy \(E_0 \), charging a pair of unoccupied Majorana bound states to occupied \((e \rightarrow o)\) differs in energy from the process \(o \rightarrow e \) in the next charging event. In this way, \(E_0 \) can be extracted from the difference between two consecutive Coulomb blockade peak spacings in gate voltage (Sec. SV of [51]). The blue lines in Figs. 4(c) and (d) show the calculated Majorana oscillations of \(E_0 \). Different from those in Figs. 1(e)-(g), here we consider two steps of spin-orbit coupling and the steps are smoothed by using finite \(\lambda_{L/R} \), as depicted in Fig. 1(a). In addition, Figs. 4(b)-(d) also present the calculated Coulomb blockade peak height ratio \(\Lambda = G_{e \rightarrow o}/(G_{e \rightarrow o} + G_{o \rightarrow e}) \) as a function of the Zeeman energy \(V_Z \) (orange lines). The corresponding conductance peak heights \(G_{e \rightarrow o} \) and \(G_{o \rightarrow e} \) are shown in Sec. SV of [51]. The zero-temperature peak heights are assumed independent of \(V_Z \); and are formulated as \(G_{e \rightarrow o} = (e^2/h)(\Gamma_L\Gamma_R|u_L|^2|u_R|^2)/(|\Gamma_L|u_L|^2 + \Gamma_R|u_R|^2) \) [48], where \(\Gamma_{L/R} \) is the tunneling rate between the left (right) end of the nanowire and its nearest metallic lead, and \(|u_{L/R}(\sigma)|^2 = \sum_{\sigma = \uparrow, \downarrow} |u_{L/R}(\sigma)|^2 \) with \(u_{L/R}(\sigma) \) the lowest-energy wavefunction component at the leftmost (rightmost) lattice site of the wire. \(G_{o \rightarrow e} \) is obtained by replacing all \(u_{L/R}(\sigma) \) in \(G_{e \rightarrow o} \) with \(u_{L/R}(\sigma) \), which means that \(G_{e \rightarrow o} \) and \(G_{o \rightarrow e} \) are related to the electron-like and hole-like components of the lowest-energy state, respectively. It has been predicted [48] that the oscillations of \(\Lambda \) are correlated to those of \(E_0 \) by a \(\pi/2 \) phase shift for the Majorana bound states. Specifically, \(E_0 \) is zero at the extremals of \(\Lambda \), and \(\Lambda = 1/2 \) at the extremals of \(E_0 \) [Fig. 4(b)]. While for the Andreev bound states, there is no such correlated \(\pi/2 \) phase shift [48]. When considering the steplike spin-orbit coupling in our model, the correlations for our decaying Majorana oscillations show clear deviations from the exact \(\pi/2 \) phase shift [Figs. 4(c) and (d)]. This implies that the steplike spin-orbit coupling may be one of the reasons why the correlation between \(E_0 \) and \(\Lambda \) is ambiguous in a recent experiment [34], since not only the Andreev bound states, but also the Majorana states, can give uncorrelated oscillation patterns between \(E_0 \) and \(\Lambda \) when spin-orbit coupling is non-uniform.

We thank helpful discussions with Wen-Yu Shan. This work was supported by the Guangdong Innovative and Entrepreneurial Research Team Program (2016ZT06D348), the National Basic Research Program of China (2015CB921102), the National Key R & D Program (2016YFA0301700), the National Natural Science Foundation of China (11534001, 11574127, 61474018), and the Science, Technology and Innovation Commission of Guangdong Province (2017A050505005).
of Shenzhen Municipality (ZDSYS20170303165926217, JCYJ20170412152620376).

* Corresponding author: luhz@sustc.edu.cn

[1] J. Alicea, “New directions in the pursuit of Majorana fermions in solid state systems”, Rep. Prog. Phys. 75, 076501 (2012).

[2] M. Leijnse and K. Flensberg, “Introduction to topological superconductivity and Majorana fermions”, Semicond. Sci. Technol. 27, 124003 (2012).

[3] C. Beenakker, “Search for Majorana fermions in superconductors”, Annu. Rev. Condens. Matter Phys. 4, 113 (2013).

[4] T. D. Stanescu and S. Tewari, “Majorana fermions in semiconductor nanowires: fundamentals, modeling, and experiment”, J. Phys.: Condens. Matter 25, 233201 (2013).

[5] A. Y. Kitaev, “Fault-tolerant quantum computation by anyons”, Ann. Phys. (Amsterdam) 303, 2 (2003).

[6] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, “Non-Abelian anyons and topological quantum computation”, Rev. Mod. Phys. 80, 1083 (2008).

[7] S. Das Sarma, M. Freedman, and C. Nayak, “Majorana zero modes and topological quantum computation”, npj Quantum Inf. 1, 15001 (2015).

[8] R. M. Lutchyn, J. D. Sau, and S. Das Sarma, “Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures”, Phys. Rev. Lett. 105, 077001 (2010).

[9] Y. Oreg, G. Refael, and F. von Oppen, “Helical liquids and Majorana bound states in quantum wires”, Phys. Rev. Lett. 105, 177002 (2010).

[10] V. Mourik, K. Zuo, S. M. Frolov, S. Plissard, E. P. Bakkers, and L. P. Kouwenhoven, “Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices”, Science 336, 1003 (2012).

[11] M. Deng, C. Yu, G. Huang, M. Larsson, P. Caroff, and H. Xu, “Anomalous zero-bias conductance peak in a Nb–InSb nanowire–Nb hybrid device”, Nano Lett. 12, 6414 (2012).

[12] A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and H. Shtrikman, “Zero-bias peaks and splitting in an Al–InAs nanowire topological superconductor as a signature of Majorana fermions”, Nat. Phys. 8, 887 (2012).

[13] A. D. K. Finck, D. J. Van Harlingen, P. K. Mohseni, K. Jung, and X. Li, “Anomalous modulation of a zero-bias peak in a hybrid nanowire-superconductor device”, Phys. Rev. Lett. 110, 126406 (2013).

[14] H. O. H. Churchill, V. Fatemi, K. Grove-Rasmussen, M. T. Deng, P. Caroff, H. Q. Xu, and C. M. Marcus, “Superconductor-nanowire devices from tunneling to the multichannel regime: Zero-bias oscillations and magnetococonductance crossover”, Phys. Rev. B 87, 241401 (2013).

[15] M. Deng, S. Vaitiekėnas, E. B. Hansen, J. Danon, M. Leijnse, K. Flensberg, J. Nygård, P. Kroghstrup, and C. M. Marcus, “Majorana bound state in a coupled quantum-dot hybrid-nanowire system”, Science 354, 1557 (2016).

[16] J. Chen, P. Yu, J. Stenger, M. Hocevar, D. Car, S. R. Plissard, E. P. Bakkers, T. D. Stanescu, and S. M. Frolov, “Experimental phase diagram of zero-bias conductance peaks in superconductor/semiconductor nanowire devices”, Sci. Adv. 3, e1701476 (2017).

[17] H. J. Suominen, M. Kjaergaard, A. R. Hamilton, J. Shabani, C. J. Palmstrøm, C. M. Marcus, and F. Nichele, “Zero-energy modes from coalescing Andreev states in a two-dimensional semiconductor-superconductor hybrid platform”, Phys. Rev. Lett. 119, 176805 (2017).

[18] F. Nichele, et al., “Scaling of Majorana zero-bias conductance peaks”, Phys. Rev. Lett. 119, 136803 (2017).

[19] H. Zhang, et al., “Quantized Majorana conductance”, Nature (London) 556, 74 (2018).

[20] O. Gül, et al., “Ballistic Majorana nanowire devices”, Nat. Nanotechnol. 13, 192 (2018).

[21] J. E. Sestoš, et al., “Engineering hybrid epitaxial InAsSb/Al nanowires for stronger topological protection”, Phys. Rev. Mater. 2, 044202 (2018).

[22] S. Vaitiekėnas, M.-T. Deng, J. Nygård, P. Kroghstrup, and C. M. Marcus, “Effective g factor of subgap states in hybrid nanowires”, Phys. Rev. Lett. 121, 037703 (2018).

[23] M.-T. Deng, S. Vaitiekėnas, E. Prada, P. San-Jose, J. Nygård, P. Kroghstrup, R. Aguado, and C. M. Marcus, “Nonlocality of Majorana modes in hybrid nanowires”, Phys. Rev. B 98, 085125 (2018).

[24] M. W. de Moor, et al., “Electric field tunable superconductor-semiconductor coupling in Majorana nanowires”, New J. Phys. 20, 103049 (2018).

[25] J. D. Bonner, et al., “Spin-orbit protection of induced superconductivity in Majorana nanowires”, arXiv:1807.01940 (2018).

[26] R. Lutchyn, E. Bakkers, L. Kouwenhoven, P. Kroghstrup, C. Marcus, and Y. Oreg, “Majorana zero modes in superconductor-semiconductor heterostructures”, Nat. Rev. Mater. 3, 52 (2018).

[27] E. Prada, P. San-Jose, and R. Aguado, “Transport spectroscopy of NS nanowire junctions with Majorana fermions”, Phys. Rev. B 86, 180503 (2012).

[28] S. Das Sarma, J. D. Sau, and T. D. Stanescu, “Splitting of the zero-bias conductance peak as smoking gun evidence for the existence of the Majorana mode in a superconductor-semiconductor nanowire”, Phys. Rev. B 86, 220506 (2012).

[29] D. Rainis, L. Trifunovic, J. Klinovaja, and D. Loss, “Towards a realistic transport modeling in a superconducting nanowire with Majorana fermions”, Phys. Rev. B 87, 024515 (2013).

[30] S. M. Albrecht, A. Higginbotham, M. Madsen, F. Kuemmeth, T. S. Jespersen, J. Nygård, P. Kroghstrup, and C. Marcus, “Exponential protection of zero modes in Majorana islands”, Nature (London) 531, 206 (2016).

[31] D. Sherman, J. Yodh, S. Albrecht, J. Nygård, P. Kroghstrup, and C. Marcus, “Normal, superconducting and topological regimes of hybrid double quantum dots”, Nat. Nanotechnol. 12, 212 (2017).

[32] S. M. Albrecht, E. B. Hansen, A. P. Higginbotham, F. Kuemmeth, T. S. Jespersen, J. Nygård, P. Kroghstrup, J. Danon, K. Flensberg, and C. M. Marcus, “Transport signatures of quasiparticle poisoning in a Majorana island”, Phys. Rev. Lett. 118, 137701 (2017).

[33] E. O’Farrell, et al., “Hybridization of sub-gap states in one-dimensional superconductor/semiconductor Coulomb islands”, arXiv:1804.09676 (2018).

[34] J. Shen, et al., “Parity transitions in the superconduct-
“Fano-Rashba effect in a quantum wire with finite coherence length”, Phys. Rev. B 97, 155409 (2018).

C. Fleckenstein, F. Domínguez, N. Traverso Ziani, and O. Dmytruk and J. Klinovaja, “Suppression of the overlap between Majorana fermions by orbital magnetic effects in semiconducting-superconducting nanowires”, Phys. Rev. B 97, 155409 (2018).

T. Karzig, et al., “Scalable designs for quasiparticle-poisoning-protected topological quantum computation with Majorana zero modes”, Phys. Rev. B 95, 235305 (2017).

R. Winkler, Spin-orbit coupling effects in two-dimensional electron and hole systems, Vol. 191 (Springer Science & Business Media, 2003).

D. Sánchez and L. Serra, “Fano-Rashba effect in a quantum wire”, Phys. Rev. B 74, 153313 (2006).

D. Sánchez, L. Serra, and M.-S. Choi, “Strongly modulated transmission of a spin-split quantum wire with local Rashba interaction”, Phys. Rev. B 77, 035315 (2008).

M. M. Glazov and E. Y. Sherman, “Theory of spin noise in nanowires”, Phys. Rev. Lett. 107, 156602 (2011).

A. F. Sadreev and E. Y. Sherman, “Effect of gate-driven spin resonance on the conductance through a one-dimensional quantum wire”, Phys. Rev. B 88, 115302 (2013).

M. Modugno, E. Y. Sherman, and V. V. Konotop, “Macroscopic random Paschen-Back effect in ultracold atomic gases”, Phys. Rev. A 95, 063620 (2017).

J. Klinovaja and D. Loss, “Fermionic and Majorana bound states in hybrid nanowires with non-uniform spin-orbit interaction”, Eur. Phys. J. B 88, 62 (2015).

F. Dolcini and F. Rossi, “Magnetic field effects on a nanowire with inhomogeneous Rashba spin-orbit coupling: Spin properties at equilibrium”, Phys. Rev. B 98, 045436 (2018).

E. B. Hansen, J. Danon, and K. Flensberg, “Probing electron-hole components of subgap states in Coulomb blockaded Majorana islands”, Phys. Rev. B 97, 041411 (2018).

T. D. Stanescu, R. M. Lutchyn, and S. Das Sarma, “Dimensional crossover in spin-orbit-coupled semiconductor nanowires with induced superconducting pairing”, Phys. Rev. B 87, 094518 (2013).

R. V. Mishmash, D. Aasen, A. P. Higginbotham, and J. Alicea, “Approaching a topological phase transition in Majorana nanowires”, Phys. Rev. B 93, 245404 (2016).

Supplemental Material.

Y. Huang, H. Pan, C.-X. Liu, J. D. Sau, T. D. Stanescu, and S. Das Sarma, “Metamorphosis of Andreev bound states into Majorana bound states in pristine nanowires”, Phys. Rev. B 98, 144511 (2018).

A. Vuik, D. Eeltink, A. Akhmerov, and M. Wimmer, “Effects of the electrostatic environment on the Majorana nanowire devices”, New J. Phys. 18, 033013 (2016).

B. D. Woods, T. D. Stanescu, and S. Das Sarma, “Effective theory approach to the Schrödinger-Poisson problem in semiconductor Majorana devices”, Phys. Rev. B 98, 035428 (2018).

A. E. G. Mikkelsen, P. Kotetes, P. Krogrpstrup, and K. Flensberg, “Hybridization at superconductor-semiconductor interfaces”, Phys. Rev. X 8, 031040 (2018).

A. E. Antipov, A. Bargerbos, G. W. Winkler, B. Bauer, E. Rossi, and R. M. Lutchyn, “Effects of gate-induced electric fields on semiconductor Majorana nanowires”, Phys. Rev. X 8, 031041 (2018).

T. D. Stanescu, R. M. Lutchyn, and S. Das Sarma, “Majorana fermions in semiconductor nanowires”, Phys. Rev. B 84, 144522 (2011).

C. Reeg, D. Loss, and J. Klinovaja, “Metalization of a Rashba wire by a superconducting layer in the strong-proximity regime”, Phys. Rev. B 97, 165425 (2018).

G. Kells, D. Meidan, and P. W. Brouwer, “Near-zero-energy end states in topologically trivial spin-orbit coupled superconducting nanowires with a smooth confinement”, Phys. Rev. B 86, 100503 (2012).

T. D. Stanescu and S. Tewari, “Disentangling Majorana fermions from topologically trivial low-energy states in semiconductor Majorana wires”, Phys. Rev. B 87, 140504 (2013).

C.-X. Liu, J. D. Sau, T. D. Stanescu, and S. Das Sarma, “Andreev bound states versus Majorana bound states in quantum dot-nanowire-superconductor hybrid structures: Trivial versus topological zero-bias conductance peaks”, Phys. Rev. B 96, 075161 (2017).

C. Moore, T. D. Stanescu, and S. Tewari, “Two-terminal charge tunneling: Disentangling Majorana zero modes from partially separated Andreev bound states in semiconductor-superconductor heterostructures”, Phys. Rev. B 97, 165302 (2018).

A. Vuik, B. Nijholt, A. Akhmerov, and M. Wimmer, “Reproducing topological properties with quasi-Majorana states”, arXiv:1806.02801 (2018).

M. Kjaergaard, K. Wölms, and K. Flensberg, “Majorana fermions in superconducting nanowires without spin-orbit coupling”, Phys. Rev. B 85, 020503 (2012).

L. Fu, “Electron teleportation via Majorana bound states in a mesoscopic superconductor”, Phys. Rev. Lett. 104, 056402 (2010).

R. Hützen, A. Zazunov, B. Braunecker, A. L. Yeyati, and R. Egger, “Majorana single-channel transistor”, Phys. Rev. Lett. 109, 166403 (2012).

A. P. Higginbotham, S. M. Albrecht, G. Kiršanskas, W. Chang, F. Kuemmeth, P. Krogrpstrup, T. S. Jespersen, J. Nygård, K. Flensberg, and C. M. Marcus, “Parity lifetime of bound states in a proximitized semiconductor nanowire”, Nat. Phys. 11, 1017 (2015).

H.-F. Lü, H.-Z. Lu, and S.-Q. Shen, “Enhanced current noise correlations in a Coulomb-Majorana device”, Phys. Rev. B 93, 245418 (2016).

B. van Heck, R. M. Lutchyn, and L. I. Glazman, “Conductance of a proximitized nanowire in the Coulomb blockade regime”, Phys. Rev. B 93, 235431 (2016).