Additional file 1: R code and Supplementary Figures for

De novo transcriptomic subtyping of colorectal cancer liver metastases in the context of tumor heterogeneity

Seyed H. Moosavi, Peter W. Eide, Ina A. Eilertsen, Tuva H. Brunsell, Kaja C. G. Berg, Bård I. Røsok, Kristoffer W. Brudvik, Bjørn A. Bjønbeth, Marianne G. Guren, Arild Nesbakken, Ragnhild A. Lothe, Anita Sveen
R codes for the data analyses

```r
library(knitr)
library(readr)
library(affy)
library(org.Hs.eg.db)
library(matrixStats)
library(limma)
library(GSVA)
library(CMScaller)
library(scales)
library(factoextra)
library(NMF)
library(doMC)
library(dplyr)
library(caret)
library(randomForest)
load("./RData/knit_LMS_subtypes_v2.RData")
```

This is an R Markdown document (http://rmarkdown.rstudio.com).

#Title: de novo transcriptomic subtype discovery of colorectal cancer liver metastases (CRLMs)

#STEP1: Cancer-specific genes identified by differential gene expression analysis (LFC=0, P-val = 0.05) between CRLMs and adjacent normal liver samples

MatA = Gene Expression matrix of 169 unique CRLMs and 19 adjacent normal liver samples normalized together by #justRMA(filenames = "NameOfCEL", celfile.path = "pathToCELFiles", normalize = TRUE, cdfname = "hta20hsentrezgcdf")

gene.list = List of genes of interest from BioMart database (genes annotated as protein-coding, lincRNA, miRNA)

info = A data.frame with all samples in MatA in rows and "Status" column indicating whether the sample is "CRLM" or "Normal liver"

```r
head(gene.list)
## [1] "A1BG"    "A1CF"    "A2M"     "A2ML1"   "A3GALT2" "A4GALT"
length(gene.list)
## [1] 23464
table(info$Status)
##        CRLM NormalLiver
##         169          19
```

MetNor

ExpressionSet (storageMode: lockedEnvironment)

assayData: 32496 features, 188 samples

element names: exprs, se.exprs

```r
```
varLabels: ScanDate
varMetadata: labelDescription
phenoData
sampleNames: patient_CRLM1 patient_CRLM2 ... patient_CRLM188 (188 total)
varLabels: sample
varMetadata: labelDescription
featureData: none
experimentData: use 'experimentData(object)'
Annotation: hta20hsentrezgcf

MatA <- exprs(MetNor)
rownames(MatA) <- gsub("_at", ",", rownames(MatA)) # Remove control probes
rownames(MatA) <- unname(annotate::getSYMBOL(rownames(MatA), "org.Hs.eG.db")) # Convert row names from ENTREZ ID to GENE SYMBOL
MatA <- MatA[rownames(MatA) %in% gene.list,] # Select genes of interest

#RUN DIFFERENTIAL GENE EXPRESSION ANALYSIS
DEGs <- CMScaller::subDEG(MatA, factor(info$Status,c("CRLM","NormalLiver")), padj = 0.05, sortBy = "p", doPlot = TRUE)

contrast is CRLM vs NormalLiver
DEGs <- DEGs[DEGs$adj.P.Val < 0.05 & DEGs$logFC > 0,]
head(DEGs)

logFC AveExpr t P.Value adj.P.Val B
LGALS3 3.303604 10.003474 30.71956 1.747266e-75 1.465822e-72 161.7239
ARPC2 1.534109 9.939466 28.30421 5.992579e-70 2.055724e-67 149.0286
SEMA3C 3.763182 8.029953 28.12587 1.577725e-69 5.214142e-67 148.0639
SLC25A24 2.268942 7.694760 26.93761 1.05933e-66 2.593829e-64 141.5327
FAR1 2.750861 8.355547 26.50634 1.235867e-65 2.779045e-63 139.1263
SLC25A36 2.455936 7.522680 26.34749 3.029658e-65 6.542861e-63 138.2322

DEGs <- as.character(rownames(DEGs))
length(DEGs)

[1] 6247

head(DEGs)

[1] "LGALS3" "ARPC2" "SEMA3C" "SLC25A24" "FAR1" "SLC25A36"

#STEP2: Filtering of cancer-specific genes to include only genes with high sample-wise variation among CRLMs (SD > 0.8)
#MatB = Gene Expression matrix of 169 unique CRLMs normalized by
#justRMA(filenames = "NamedOfCEL", celfile.path = "pathToCELFiles", normalize = TRUE, cdfname = "hta20hsentrezgcf")

Metset

assayData: 32496 features, 169 samples
element names: exprs, se.exprs
protocolIData
sampleNames: patient_CRLM1 patient_CRLM2 ... patient_CRLM169 (169 total)
varLabels: ScanDate
varMetadata: labelDescription
phenoData
sampleNames: patient_CRLM1 patient_CRLM2 ... patient_CRLM169 (169 total)
varLabels: sample
varMetadata: labelDescription
featureData: none
experimentData: use 'experimentData(object)'

```r
MatB <- exprs(Meteset)
dim(MatB)
```

```r
rownames(MatB) <- gsub("_at","",rownames(MatB))
row.names(MatB) <- unname(annotate::getSYMBOL(row.names(MatB),"org.Hs.eg.db")) # Covert row names from ENTREZ ID to GENE SYMBOL
MatB <- MatB[row.names(MatB) %in% DEGs] # Select the cancer specific genes
MatB.genes <- rownames(MatB[which(rowSds(MatB) > 0.8),]) # Select genes with high SD
length(MatB.genes)
```

```r
MatB.NMF <- exp(MatB[row.names(MatB) %in% MatB.genes,]) # Select genes with SD > 0.8 as a matrix with exponential transformation
dim(MatB.NMF)
```

```r
#STEP3: Run NMF
#Perform NMF with factorization level 2 to 6
preNMF <- nmf(MatB.NMF,"brunet",seed="random", rank = 2:6, .options = "Vp3", nrun=100)
class(preNMF)
```

```r
plot(preNMF,main="NMF 2:6 statistics")
```
consensusmap(preNMF)
#NMF classification at k=2

usedrngk2 #Used seed for classification at k=2


```
## [1] 407 8200378 -1377755341 -888237352 -352809223 1464214118
## [7] -1790002769
```

```
NMF.2 <- nmf(MatB.NMF,"brunet",seed="random", rank = 2, .options = "vP3", nrun=100, rng=usedrng k2)
```

NMF algorithm: 'brunet'

Multiple runs: 100

Mode: parallel (3/4 core(s))

Runs: | Runs: |
| 0%Runs: | Runs: |======================================| 100%

System time:

user system elapsed
1.43 0.08 26.42

#NMF classification at k=5

usedrngk5 #Used seed for classification at k=5


```
## [1] 407 -1167312791 -382305174 1385648097 1560322171 1326776643
## [7] -1344225789
```
NMF_5 <- nmf(MatB.NMF,"brunet", seed="random", rank = 5 , .options = "vP3", nrun=100, rng=usedrng k5) # Perform NMF at k=5

NMF algorithm: 'brunet'
Multiple runs: 100
Mode: parallel (3/4 core(s))
Runs: | Runs: | 100% | 0% | Runs: | Runs: |

System time:
user system elapsed
1.32 0.16 126.97

Mycol3 <- c("firebrick3","deepskyblue1","lightcoral","forestgreen","darkorange2")

plot(silhouette(NMF_5),col=Mycol3, main="silhouette width")

#Result of the NMF classification
table(paste0("LMS",predict(NMF_5, "columns")))

LMS1 LMS2 LMS3 LMS4 LMS5
30 17 32 50 40
Comparison of the NMF results at K=2 and K=5

```
# NMF_K5=predict(NMF_5, "columns"), NMF_K2=predict(NMF_2, "columns")
```

NMF_K5	1	2
	1	30
	2	16
	3	31
	4	50
	5	39

STEP4: Perform Gene Set Enrichment Analysis (GSEA)

```
# Geneset = list of gene sets to be used for GSEA

MatB <- exprs(Meteset)
rownames(MatB) <- gsub("_at", ",", rownames(MatB))
row.names(MatB) <- unname(annotate::getSYMBOL(row.names(MatB), "org.Hs.eg.db"))

names(Genesets) <- tools::toTitleCase(names(Genesets))
heatcol <- rev(grDevices::colorRampPalette(RColorBrewer::brewer.pal(6, "RdBu"))(12))
col <- grDevices::colorRampPalette(RColorBrewer::brewer.pal(9, "RdYlGn"))(100)
colh <- grDevices::colorRampPalette(RColorBrewer::brewer.pal(6, "Spectral"))(100)
```

```
par(mar=c(5, 15, 4, 2), font=1, cex=0.7, font.sub=2)
GSEAres <- CMScaller::subCamera(MatB, paste0("LMS", predict(NMF_5, "columns")), geneList = Genesets, heatCol=heatcol, classCol = Mycol3, topN = 40, rowCluster = T, main="Top 30 gene sets")
```
Top 30 gene sets

- CTLA4
- NOTCH1 SIGNALING
- PD1
- CYTOTOXIC TCELL
- NRAS SIGNALING
- EMT SIGNALING
- COLLAGEN FORMATION
- MESENCHYMAL
- INFLAMMATORY RESPONSE
- HEPATOCYTE GROWTH FACTOR
- ALLOGRAFT REJECTION
- STROMAL
- DCLK1+ CELL
- MET SIGNALING
- GLYCOLYSIS
- KRAS ADDICTION
- MITOTIC SPINDLE
- GOBLET CELL
- CHOLANGIOCYTE
- MSI-LIKE
- MTORC1 SIGNALING
- 5fu RESISTANCE
- SERRATED-LIKE
- ERBB2 SIGNALING
- CELL MIGRATION SIGNALING
- WNT SIGNALING
- HALLMARK Peroxisome
- TP53 TRANSCRIPTIONAL REGULATION
- CELL CYCLE CHECKPOINTS
- DNA REPAIR MECHANISM
- HEPATOCYTE
- FATTY ACID METABOLISM
- HALLMARK ADIPOGENESIS
- VEGF SIGNALING
- LGR5+ STEM CELL
- BRAF-LIKE
- ENTEROCYTE
- MYC TARGETS
- MITOCHONDRIA SIGNALING
- TRANSIT AMPLIFYING
- EPITHELIAL
#Title: LMS random forest class prediction model

MatB <- exprs(Meteset)
dim(MatB)
[1] 32496 169

rownames(MatB) <- gsub("_at", ", rownames(MatB))
row.names(MatB) <- unname(annotate::getSYMBOL(row.names(MatB),"org.Hs.eg.db")) # Covert row names from ENTREZ ID to GENE SYMBOL
MatB <- MatB[rownames(MatB) %in% DEGs,] # Select the results of differential expression analysis
MatB.genes <- rownames(MatB[which(rowSds(MatB) > 0.8),]) # Select genes with SD > 0.8 as a list
length(MatB.genes)
[1] 514

nos <- unname(which(silhouette(NMF_5)[,3] < .0)) # samples with negative silhouette width for NMF K=5
MatB <- MatB[rownames(MatB) %in% MatB.genes,-nos] # Select genes with SD > 0.8 as a matrix

#Train Random forest model
library(caret)
set.seed(69)
trainctrl <- trainControl(method = "repeatedcv",number = 7, repeats = 1, returnResamp = "all", savePredictions = "all",
classProbs = TRUE,
summaryFunction = multiClassSummary,
returnData = TRUE, search = "random")
control <- rfeControl(functions=rffuns, method = "repeatedcv", number= 7,
repeats = 1 , verbose=F, allowParallel=TRUE, saveDetails=T, p = 1, rerank=TRUE)

rfe.feature <- rfe(t(MatB), y = factor(paste0("LMS",predict(NMF_5, "columns"))[-nos],
sizes=seq(100,700,10), method = "parRF",trControl = trainctrl ,
rfeControl=control, metric="Accuracy")

print(rfe.feature)

Recursive feature selection
Outer resampling method: Cross-Validated (7 fold, repeated 1 times)
Resampling performance over subset size:

Variables	Accuracy	Kappa	AccuracySD	KappaSD	Selected
100	0.7365	0.6514	0.12528	0.16656	
110	0.7668	0.6909	0.10603	0.14182	
120	0.7544	0.6739	0.09335	0.12590	
130	0.7425	0.6569	0.1022	0.13725	
140	0.7787	0.7071	0.10553	0.14087	
150	0.7790	0.7073	0.06883	0.09150	
160	0.7790	0.7073	0.09889	0.13307	
170	0.7544	0.6748	0.08634	0.11582	
180	0.7852	0.7153	0.07918	0.10525	
190	0.7666	0.6907	0.10370	0.13835	
200	0.7725	0.6973	0.08701	0.11692	
The top 5 variables (out of 180):
ANXA1, MYO5A, CLIP4, DOCK2, OL FM4

head(print(rfe.feature$optVariables), 20)

[1] "ANXA1" "MYO5A" "CLIP4" "DOCK2" "OLFM4" "SATB2" "GCNT3"
[8] "PIK3CG" "PLXNC1" "NCKAP1L" "KCDT12" "MS4A4A" "DOCK8" "CD84"
[15] "TM6SF1" "CCDC88A" "DOCK10" "GRM8" "IRAK3" "LY6G6D"

table(predict(rfe.feature, t(MatB))[,1], factor(paste0("LMS", predict(NMF_5, "columns")))[-nos])

	LMS1	LMS2	LMS3	LMS4	LMS5
NMF1	29	0	0	0	0
NMF2	0	17	0	0	0
NMF3	0	0	28	0	0
NMF4	0	0	0	49	0
NMF5	0	0	0	0	40

head(varImp(rfe.feature, value = "randomForest"), 20)

	Overall
ANXA1	4.028922
MYO5A	3.820845
CLIP4	3.531559
OLFM4	3.474523
DOCK2	3.377483
SATB2	3.111687
GCNT3	2.647251
PIK3CG	2.617658
#Title: Development of LMS1 “mini-classifier”

MatB <- exprs(Meteset)

dim(MatB)

[1] 32496 169

rownames(MatB) <- gsub("_at", ",", rownames(MatB))
rownames(MatB) <- unname(annotate::getSYMBOL(rownames(MatB), "org.Hs.eg.db")) # Convert row names from ENTREZ ID to GENE SYMBOL

MatB <- MatB[row.names(MatB) %in% gene.list,]

#Preparing a data frame with CRLMs classified as either LMS1 or LMS2-5

MatBcolnames <- as.character(sub("\(2\)_|_\$","",gsub("_Rep\.|\(14\)$|\(HTA\.*"","",colnames(MatB))))

info2 <- na.omit(info[match(MatBcolnames,info$sample),])

all.equal(info2$sample,MatBcolnames)

[1] TRUE

info2$class <- paste0("LMS",predict(NMF_5, "columns"))

info2$class <- ifelse(grepl("LMS1",info2$class),"Poor","Good") #changing labels to LMS1=poor and LMS2-5=Good based on the survival table

table(info2$class)

 Good Poor
 139 30

#DEG between LMS1 and LMS2-5

mini_design <- model.matrix(~0+factor(info2$class))

colnames(mini_design) <- c("Good","Poor")

row.names(mini_design) <- row.names(info2)

mini_fitMet <- lmFit(MatB, mini_design)

mini_cont <- makeContrasts(LMS1vsR = Poor-Good, levels=mini_design)

mini_cont

Contrasts
Levels LMS1vsR
 Good -1
 Poor 1

#perform DEG using Limma

mini_fitMet2 <- contrasts.fit(mini_fitMet, mini_cont)

mini_fitMet2 <- eBayes(mini_fitMet2, robust=TRUE)

mini_DEGs <- rownames(topTable(mini_fitMet2, coef = 1, number = nrow(mini_fitMet2), adjust.method="BH", p.value=0.05, sort.by="p", lfc=1.6, resort.by = "B"))

length(mini_DEGs)
#genes used for training of the mini-classifier

```
[1]  "GCNT3"  "CTSE"   "REG4"   "TCN1"   "LCN2"   "DSG3"   "UCA1"
[8]  "SERPINB5" "MUC17"
```

```r
LMS1exp <- MatB[rownames(MatB) %in% mini_DEGs,]  # A gene expression matrix with the 9 genes from DEG

```

```r
dim(LMS1exp)
```

```
[1] 9 169
```

```r
mini_trainctrl <- trainControl(method = "LOOCV",
                   number = 7, repeats = 1,
                   classProbs = TRUE,
                   summaryFunction = twoClassSummary,
                   savePredictions="final",
                   search = "random")
```

```r
# PARAMETER TUNING
set.seed(1111111)
mini_RF  <- train(x = t(LMS1exp), y = factor(info2$class),
                   method = "parRF",
                   trControl = mini_trainctrl,
                   metric = "ROC",
                   tuneLength = 10)
```

```r
#TUNED PARAMETERS
getModelInfo(model = "parRF", regex = FALSE)[[1]]$parameter  #Replace with the tuned parameters

```

```r
mini_tGrid <- expand.grid(mtry = mini_RF$bestTune[1,1])
set.seed(1111111)
mini_RF_mod <- train(t(LMS1exp), y = factor(info2$class),
                     trControl = mini_trainctrl,
                     tuneGrid = mini_tGrid,
                     method = "parRF",
                     metric = "ROC")
```

```r
mini_RF_mod$call
```

```r
train.default(x = t(LMS1exp), y = factor(info$survival), method = "parRF",
             metric = "ROC", trControl = mini_trainctrl, tuneGrid = mini_tGrid)
```

```r
print(mini_RF_mod)
```

Parallel Random Forest
169 samples
9 predictor
2 classes: 'Good', 'Poor'
No pre-processing
Resampling: Leave-One-Out Cross-Validation
Summary of sample sizes: 168, 168, 168, 168, 168, 168, ...
Resampling results:

```
   ROC  Sens  Spec
0.941 0.985 0.667
```

Tuning parameter 'mtry' was held constant at a value of 2

```r
table(predict(mini_RF_mod, t(LMS1exp)),info2$class)
```
Good Poor
Good 139 0
Poor 0 30

sessionInfo()

R version 3.5.1 (2018-07-02)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 7 x64 (build 7600)

Matrix products: default

locale:
[1] LC_COLLATE=English_United Kingdom.1252
[2] LC_CTYPE=English_United Kingdom.1252
[3] LC_MONETARY=English_United Kingdom.1252
[4] LC_NUMERIC=C
[5] LC_TIME=English_United Kingdom.1252

attached base packages:
[1] stats4 parallel stats graphics grDevices utils datasets
tools_3.5.1

other attached packages:
[1] doParallel_1.0.15 RColorBrewer_1.1-2 randomForest_4.6-14
dplyr_0.8.4
[7] doMC_1.3.5 iterators_1.0.12 foreach_1.4.8
[10] NMF_0.22.0 cluster_2.1.0

[13] pkgeMaker_0.31.1 registry_0.5-1 factoextra_1.0.6
ggplot2_3.3.0 scales_1.1.0 CMScaller_1.9.2
[19] GSVA_1.30.0 limma_3.38.3 matrixStats_0.55.0

[22] org.Hs.eg.db_3.7.0 AnnotationDbi_1.44.0 IRanges_2.16.0

[25] S4Vectors_0.20.1 affy_1.62.0 Biobase_2.42.0

BiocGenerics_0.28.0 readr_1.3.1 knitr_1.28

loaded via a namespace (and not attached):
[1] colorspace_1.4-1 class_7.3-15 farver_2.0.3
[4] affyio_1.52.0 ggrepel_0.8.1 bit64_0.9-7
[7] prolim_2019.11.13 lubridate_1.7.4 codetools_0.2-16
geneplotter_1.60.0 shinythemes_1.1.2
[10] pROC_1.16.1 gridBase_0.4-7 annotate_1.60.1

[13] graph_1.60.0 shiny_1.4.0 BiocManager_1.30.10
[19] compiler_3.5.1 assertthat_0.2.1 Matrix_1.2-18

[22] fastmap_1.0.1 later_1.0.0 htmltools_0.4.0
gtatable_0.3.0 glue_1.3.1

[28] reshape2_1.4.3 Rcpp_1.0.3 vctrs_0.2.3

[31] preprocessCore_1.44.0 nlme_3.1-137 timeZone_3043.102

[34] xfun_0.12 gower_0.2.1 stringr_1.4.0

[37] mime_0.9 lifecycle_0.1.0 statmod_1.4.34

[40] XML_3.99-0.3 zlibbioc_1.28.0 MASS_7.3-51.5

[43] ipred_0.9-9 hms_0.5.3 promises_1.1.0

[46] yaml_2.2.1 memoise_1.1.0 rpart_4.1-15

[49] stringi_1.4.6 RSQLite_2.2.0 e1071_1.7-3

[52] bit64_0.6.2 lava_1.6.6 rlang_0.4.5

[55] pkgconfig_2.0.3 bitops_1.0-6 evaluate_0.14

[58] purrr_0.3.3 recipes_0.1.9 labeling_0.3

[61] import_1.1.0 bit_1.1-15.2 tidyselect_1.0.0

[64] GSEABase_1.44.0 plyr_1.8.5 magrittr_1.5

[67] R6_2.4.1 generics_0.0.2 DBI_1.1.0

[70] pillar_1.4.3 withr_2.1.2 survival_3.1-8
	Package	Version	Description
73	RCurl_1.98-1.1		
76	crayon_1.3.4		
79	data.table_1.12.8		
82	digest_0.6.25		
85	munsell_0.5.0		
Supplementary Figures

Fig. S1. Overview of study material and analyses.

The diagram indicates sample inclusion in the main analyses presented in the study. The study workflow is presented from top to bottom.
The impact of batch correction on sample type comparisons.

In-house gene expression data were generated in two different batches (batch 1: primary CRCs and cell lines; batch 2: CRLMs, normal liver samples, and PDOs). The plots from PCA shown here are for batch corrected data, and correspond to the plots generated without batch correction in main Fig. 1a-b. PCA was performed on the 1000 genes with highest variation across the batch corrected dataset, and the liver score was calculated by GSVA of a set of genes highly expressed in the liver.

Batch correction	Marker	Group1	Group2	P-value	P-value adj (BH)	P-value signific
No	ALB	CRLM	Primary	7.91E-71	1.60E-69	****
Yes	ALB	CRLM	Primary	0.24	0.3	Insignificant

CRLM Spearman’s p = 0.76
p < 2x10^-16

Sample types:
- Normal liver (n=19)
- CRLM (n=283)
- PDO (n=15)
- Primary CRC (n=170)
- Cell line (n=34)
Fig. S3. Association between selected clinical parameters and gene expression profiles of CRLMs.

a Impact of systemic treatment prior to tumor sampling on the gene expression profiles, analyzed as PC1 values (from PCA of the 1000 genes with highest SD across patients) and the liver scores. Neoadjuvant chemotherapy was associated with lower PC1 values. b Primary tumor sidedness was not associated with any of the gene expression measures. Wilcoxon test p-values are denoted.
Fig. S4. CMS subtyping of CRLMs using the tailored CMS classifier.

CRLMs were classified according to CMS using our classifier adapted to the liver setting (CMScaller v2.0). Among single CRLMs (randomly selected) from each of the 169 patients, 129 were confidently classified. The pie chart shows the proportion of samples in each CMS group, and the bar plots indicate the proportion of each subtype according to exposure to neoadjuvant chemotherapy (treatment status yes versus no).
Fig. S5. GSEA of the epithelial versus mesenchymal subtype from K=2 factorization.

The plot shows the top 20 enriched pathways in the two subtypes as indicated by colors and ranked according to p-values from GSEA.
Fig. S6. PCA and liver score distribution among LMS groups.

a-b The same plots as Fig. 1a and 1b, respectively, with CRLM samples colored according to LMS. **c** Distribution of the “liver scores” among the LMS groups indicated no influence of the proportion of hepatocyte signals on de novo subtyping. Wilcoxon test p-values were calculated using LMS1 as reference group, analyzing single samples from each patient (n=169).
Fig. S7. Selected single-sample GSVA scores across the LMS groups.

a MSI-like signature score for each sample (one randomly selected per patient) across the LMS groups. Red asterisk denotes the single sample with confirmed MSI+ status. b Cytotoxic T cell and MSI-like scores plotted by MSI-status in primary CRCs illustrate the relationship between MSI and cytotoxic T cell infiltration in the primary setting. In contrast, the correlation between the MSI-like score and cytotoxic T cell score in CRLMs (mostly MSS) is weak. The linear smooth is represented by the red dashed line. The \(\rho \) value represents Spearman’s correlation. c KRAS-addiction signature scores in CRLMs with confirmed KRAS mutation plotted according to LMS. Wilcoxon test \(p \)-values were calculated with LMS1 as reference group.
Fig. S8. GSEA in CRLMs with RAS/TP53 co-mutations.

Oncogenic pathway enrichments were similar to results from GSEA of all samples. The color intensities represent p-values from comparison of one subtype against all others.
Fig. S9. Kaplan–Meier plots of 5-year CSS according to LMS and translated CMS subtypes.

Kaplan-Meier plots of 5-year CSS stratified by a individual LMS subtype, b LMS1 versus LMS2-5 grouped, and c according to both LMS1 and translated CMS subtypes. Patients with R2 resections in the liver were excluded. Log-rank test p-values are denoted (FDR corrected by the Benjamini-Hochberg in a).
Fig. S10. Kaplan–Meier plots of 5-year OS and CSS according to epithelial and mesenchymal subtypes.

No difference in patient survival was observed when tumors were classified as epithelial or mesenchymal (result from NMF classification at K=2). Long-rank test p-values are denoted. Numbers at risk in each class are shown in the plot with the corresponding color. Patients with R2 resections in the liver were excluded.
Fig. S11. Kaplan–Meier plots of 5-year OS and CSS according to LMS and TP53/RAS co-mutations.

a LMS1 was associated with a poor patient outcome compared to LMS2-5 when analyzing only patients with R0/R1 resections (excluding both patients with R2 resection in the liver, and patients with extra hepatic disease, totally 42 patients). Long-rank test p-values are denoted. b Patient stratification according to both LMS1 versus LMS2-5 and TP53/RAS co-mutation versus no co-mutation showed that there was no significant difference for LMS1 tumors with and without co-mutations. Furthermore, LMS1
tumors with co-mutations were associated with a significantly worse 5-year OS than LMS2-5, both with and without co-mutations. A significant difference in the 5-year CSS rate was only observed in the comparison of co-mutated LMS1 versus LMS2-5 without co-mutation. Numbers at risk in each class are shown in the plot, with corresponding colors. Pairwise FDR-adjusted P-values from log-rank tests are denoted.
Fig. S12. CRIS classification of the in-house CRLM samples.

CRIS confidently classified 139 of the samples (82%, default threshold of FDR <0.2, one randomly selected samples per patient, n=169). a Heatmap represents the zscore of gene expression for gene templates (in rows) in each sample (in columns), both grouped according to the five CRIS classes. Red and blue indicate high and low relative expression of the genes, respectively. The sample subtype distribution is shown in the pie chart. b GSEA results from comparisons of the CRIS groups using two sets of gene signatures; top: signatures provided in the original CRIS paper; and bottom: in-house compiled gene sets. The color intensities represent p-values from comparison of one subtype against all others. This confirmed enrichment with MSI-like features and an inflammatory phenotype in CRIS-A and CRIS-B, as well as strong TGFβ activity in CRIS-B. c TP53 and RAS mutation distribution in each subtype, confirming frequent TP53 wild-type status in CRIS-A and CRIS-D, as well as frequent RAS wild-type status in CRIS-C. d Kaplan–Meier plots of 5-year overall survival (OS) and cancer-specific survival (CSS) according to the CRIS groups. The poor-prognostic CRIS-B group had a significantly lower survival rate compared to CRIS-C and CRIS-D only, but a similar survival rate as CRIS-A and CRIS-E. Pairwise FDR-adjusted P-values from log-rank tests are denoted. e Combined survival analyses of LMS and CRIS were focused on the LMS1 and CRIS-B groups, and LMS1 and CRIS-B combined was associated with the worst outcome, followed by LMS1/non-CRIS-B, non-LMS1/CRIS-B, and non-LMS1/non-CRIS-B. Patients with R2 resections in the liver were excluded from d and e. Numbers at risk in each class are shown and are indicated with corresponding colors.
Fig. S13: GSEA of CRLMs in two external data sets according to LMS.

Enrichment patterns from GSEA were concordant between each of the two independent datasets and the in-house material (plot corresponding to Fig. 3a). The color intensities represent p-values from comparison of one subtype against all others.
Fig. S14. De novo transcriptomic subtyping by unsupervised NMF of the two external CRLM datasets.

a Subtype distributions from de novo subtyping of the in-house (corresponding to the pie chart shown in main Fig. 2d) and two external CRLM datasets. LMS groups of the two external datasets were assigned based on the NMF cluster with the largest number of sample overlaps with supervised LMS predictions.

b Comparisons of sample-wise posterior probabilities from the LMS random forest prediction model (vertical axes) and the de novo NMF subtypes (horizontal axes) in each external dataset. Samples with concordant classification between methods (consensus samples) are colored according to the LMS color scheme, or black, as indicated. Samples that are discordantly classified (subtype called by only one of the methods) are colored gray. Notably, each sample was assigned to the subtype with the maximum score for each of the supervised LMS and unsupervised classifications (no fixed threshold for classification).
Fig. S15. Kaplan–Meier curves of OS and CSS according to LMS1 and tumor heterogeneity.

Only patients with R0/R1 resections in the liver were included for analyses. There was no significant difference in the 5-year survival rates a between patients with homogenous versus heterogeneous LMS classifications in inter-metastatic comparisons; or b between patients homogenously classified with LMS1 in all samples versus patients with heterogeneous classifications including at least one LMS1 lesion/sample. LMS1 had poor prognostic associations independent of tumor heterogeneity, as shown by stratification of all patients according to c homogenous LMS1classification (LMS1 in all samples analyzed) versus LMS2-5 plus heterogeneous LMS1 classification; and d LMS1 in at least one lesion versus LMS2-5 in all lesions. Long-rank test p-values are shown. Numbers at risk in each class are shown in the plot, with the corresponding color.
Fig. S16. LMS1 mini-classifier is correlated with signatures of LMS1 characteristics.

Cross-sample comparisons (single samples from each of the 169 patients in the in-house series) of GSVA scores for the 9 genes in the LMS1 mini-classifier (horizontal axes) and several pathways enriched in LMS1 (vertical axes), as indicated. The rho value represents Spearman’s correlation.
Fig. S17. LMS1 mini-classifier captures the poor-prognostic value of LMS1.

Kaplan-Meier plots of 5-year OS and CSS for patient stratification based on the LMS1 mini-classifier. Patients with R2 resections in the liver are excluded. Numbers at risk in each class are shown in the plot, with corresponding colors.