Estimation of land-surface evaporation at four forest sites across Japan with the new nonlinear complementary method

Zhipin Ai¹, Qinxue Wang¹, Yonghui Yang², Kiril Manevski²,³,⁴, Xin Zhao⁵ & Deni Eer¹

Evaporation from land surfaces is a critical component of the Earth water cycle and of water management strategies. The complementary method originally proposed by Bouchet, which describes a linear relation between actual evaporation (E), potential evaporation (Epo) and apparent potential evaporation (Epa) based on routinely measured weather data, is one of the various methods for evaporation calculation. This study evaluated the reformulated version of the original method, as proposed by Brutsaert, for forest land cover in Japan. The new complementary method is nonlinear and based on boundary conditions with strictly physical considerations. The only unknown parameter (αe) was for the first time determined for various forest covers located from north to south across Japan. The values of αe ranged from 0.94 to 1.10, with a mean value of 1.01. Furthermore, the calculated evaporation with the new method showed a good fit with the eddy-covariance measured values, with a determination coefficient of 0.78 and a mean bias of 4%. Evaluation results revealed that the new nonlinear complementary relation performs better than the original linear relation in describing the relationship between E/Epa and Epo/Epa, and also in depicting the asymmetry variation between Epo/Epa and E/Epo.

Evaporation, i.e., the transfer of moisture from the surface to the atmosphere, is a critical component of the land surface water and energy balances for many Earth systems. One of the various methods for estimation of land surface evaporation is the complementary method originally described by Bouchet¹. This method establishes a linear and complementary relationship between actual evaporation (E), potential evaporation (Epo), and apparent potential evaporation (Epa), where the latter two can be estimated from routinely measured weather data. Various studies have utilized the Bouchet's complementary method. Notably, Morton³ used the Priestley–Taylor equation⁴ to estimate Epo, and a modified Penman's equation⁵ to estimate Epa. Combined with these studies, Brutsaert and Stricker⁶ extended the formulations by the original Penman equation⁷ and the two different forms of wind function⁸ and proposed the famous advection-aridity model. Later on, Brutsaert and Parlange⁹ extended the Bouchet's complementary method by introducing two parameters in order to explain the "evaporation paradox", i.e. the decrease in evaporation measured in the past few decades over large areas with different climates. The above-mentioned investigations are based on linear complementary relationship. By introducing zero and first-order boundary conditions, Han¹⁰ put forward a nonlinear equation of the complementary relationship. Recently, Brutsaert¹¹ pointed on the limitations and errors in the equation developed by Han¹⁰, and proposed an improved new nonlinear equation and its application in combination with the advection-aridity method¹². Few recent studies have been conducted to assess the performance of this new nonlinear generalization for sites in Australia and China¹³,¹⁴. However, as indicated by Zhang¹³, the new method is yet to be widely applied and evaluated among different climate zones and land cover types.

¹Center for Regional Environmental Research, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan. ²Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China. ³Department of Agroecology, Aarhus University, Tjele, 8830, Denmark. ⁴Sino-Danish Center for Education and Research, Beijing, 100190, China. ⁵Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China. Correspondence and requests for materials should be addressed to Q.W. (email: wangqx@nies.go.jp) or Y.Y. (email: yonghui.yang@sjziam.ac.cn)
Forest area is reported to be 68.5% of total land area of Japan, according to the World Bank data for 2015. Forests are part of the natural and cultural fabric of Japan, one of the most densely populated countries in the world that is also heavily industrialized. Therefore, a better understanding of forest evaporation plays an important role in better understanding the water cycle and the corresponding water resources management for the forests in Japan. The objective of this study is to implement and evaluate the new nonlinear complementary relationship for estimation of land surface evaporation at four forest sites located from north to south across Japan. The parameter α_e, a critical unknown coefficient in the new nonlinear method, was determined for the first time for different types of forest in Japan. As emphasized by Brutsaert, this study demonstrates the performance and validity of the new nonlinear complementary method for the forest ecosystem among different climate zones, which facilitates its application in future hydrological studies.

Result

Determined α_e. The specific values of α_e and associated coefficient of determination (R^2) for each year and site are listed in Table 1. As seen from the table, all values of α_e were close to 1. Mean α_e value was 1.04 ($R^2 = 0.61$), 1.03 ($R^2 = 0.82$), and 0.95 ($R^2 = 0.87$) for Sapporo, Kawagoe, Fujiyoshida and Kahoku site, respectively, whereas its corresponding range was 1.03–1.05, 0.98–1.10, 0.99–1.05, and 0.94–0.95. Thus, the highest α_e value was found at Kawagoe site in 2000, whereas the lowest value was found at Kahoku site in 2008.

As an illustration of the values of α_e, Fig. 1 depicts the goodness-of-fit between the measured and calculated E, pooled for all years at each site. It can be seen that the scatter points were distributed well around the 1:1 line, suggesting that the calculated E was in good agreement with the measured E. The correlation coefficient (R) was 0.78, 0.92, 0.91 and 0.94, for Sapporo, Kawagoe, Fujiyoshida and Kahoku site, respectively, whereas its corresponding absolute bias was 4%, 10%, −0.05%, and 3%. In total, the mean bias was around 4%.

Evaluation of the new complementary relationship. Figure 2 shows the variation of E/E_{pa} as a function of E_{po}/E_{pa} calculated with the new complementary relationship (Equation 2) given by Brutsaert and with the original relationship (Equation 1) given by Bouchet. It can be seen from this figure that for all the sites, the moisture index E/E_{pa} increased with increasing scaled potential evaporation (E_{po}/E_{pa}), and the scatter points were distributed closer to the red than to the blue line, indicating a better performance of the new complementary relationship (red line) developed by Brutsaert compared to the original linear relationship (blue line) proposed by Bouchet. Furthermore, the discrepancy between the two methods, i.e. lines, increased as the ratio E_{po}/E_{pa} decreased. This further pointed on better performance of the new complementary relationship under dry condition (low E_{po}/E_{pa} values).

The variation of E_{po}/E_{pa} and E/E_{po} as a function of E/E_{pa} calculated with the new complementary relationship (Equation 2) given by Brutsaert and with the original relationship (Equation 1) given by Bouchet are plotted in

Site	Year	α_e	n	R^2
Sapporo	2001	1.05	48	0.60
	2002	1.03	46	0.68
	2003	1.05	51	0.55
	All years combined	1.04	145	0.61
Kawagoe	1997	1.02	35	0.72
	1998	1.03	25	0.75
	1999	1.04	41	0.90
	2000	1.10	19	0.98
	2001	0.98	35	0.72
	All years combined	1.03	155	0.81
	2000	0.99	29	0.81
	2001	1.00	39	0.70
	2002	1.00	37	0.79
	2003	1.04	22	0.89
	2004	1.05	25	0.65
	2005	1.04	29	0.87
	2006	1.03	14	0.85
	2007	1.02	39	0.90
	2008	1.05	25	0.91
	All years combined	1.02	259	0.82
Fujiyoshida	2000	0.95	62	0.89
	2008	0.94	54	0.85
	All years combined	0.95	116	0.87

Table 1. Determined values of α_e for each site in Japan, where n is the number of data points for the corresponding year, and R^2 is the determination coefficient.
Fig. 3. It can be seen that E_{pa}/E_{po} decreased with increasing E/E_{pa}, whereas E/E_{po} actually increased with increasing E/E_{pa}. This is because both E_{po} and E are increasing to values close to E_{pa} when the surface wetness condition varies from dry to wet. Further biophysical explanation can be obtained using the boundary limitations described by Brutsaert. It is also evident from the scatter plots on Fig. 3 that the relationship between E_{pa}/E_{po} and E/E_{po} is a markedly asymmetrical, and that the new complementary relationship (red line) developed by Brutsaert performs better than the original linear relationship (blue line) proposed by Bouchet in depicting the variations of E_{pa}/E_{po} and E/E_{po} with E/E_{pa}.

Discussion
The linear complementary relationship between E, E_{po}, and E_{pa} shown in Equation 1 is controversial among scientists due to the lack of sufficient evidence for the inherent assumptions of the Bouchet’s theory. The latest attempt for its improvement is the one proposed by Brutsaert in a nonlinear form, and estimates of evaporation using this relation have been very few but encouraging. Zhang used the new improved method to estimate evaporation from different vegetation and climatic conditions across Australia, achieving reasonable fit against measurements with R^2 ranging from 0.46 to 0.85. In the present study, the method yielded accurate daily evaporation estimates (Fig. 1), with R^2 ranging from 0.55 to 0.91 (Table 1) when the apparent potential evaporation was determined with the Penman equation. Moreover, the complementary relationship between E_{pa}/E_{po} and E/E_{po} was very similar and markedly asymmetrical across all four sites (Fig. 3), providing sound evidence to support the assumptions underlying Equation 2. The asymmetry itself appears to be a direct result of the boundary conditions used in its derivation.
The determined \(\alpha_e \) values were generally close for Sapporo, Kawagoe and Fujiyoshida sties, but lower at Kahoku site (Table 1). This difference can be explained by the combined effects of vegetation type and nature of surface such as slope and microclimate, as noted by Brutsaert. As for the Kahoku site, the forest type is mainly coniferous, which has relatively lower evapotranspiration. Former study had also reported the low value of \(\alpha_e \) (0.72) for the coniferous forest. In addition, the relative lower net radiation and wind speed could also reduce the \(\alpha_e \) value. For example, the mean net radiation and mean wind speed (2 m) at the site is 141 W m\(^{-2}\) and 0.4 m s\(^{-1}\), respectively. The determined \(\alpha_e \) values were overall consistent with those reported in the literatures. Most recently, Brutsaert used the new nonlinear complimentary method for trees, small crops and grassy vegetation in the Loess Plateau in China and obtained \(\alpha_e \) values of about 1.02. Zhang utilized different methods in estimating apparent evaporation for various vegetation covers in Australia and estimated \(\alpha_e \) values between 0.95 and 1.30 for various land covers across eastern China at regional scale. Based on the original linear complementary method of Bouchet, mean \(\alpha_e \) values for Sweden, eastern China, and Cyprus were reported as 1.18, 1.00, and 1.04, respectively. Weekly \(\alpha_{pe} \) values calculated with the original method and reported by Yang varied between 1.00 to 1.20 in summer monsoon season, and between 1.20 to 1.70 in winter monsoon season, for a hilly evergreen forest in northern Thailand. For the North China Plain, the \(\alpha_e \) values calculated with the original method ranged from 0.80 to 1.50 in summer monsoon season, and ranged from 1.20 to 2.20 in winter monsoon season. Apparently, \(\alpha_e \) in the new complimentary method is largely different from the original meaning under truly potential conditions. However, as described by Brutsaert and Zhang, \(\alpha_e \) values calculated by the new complimentary method were close to those determined by the original Priestley–Taylor equation. For example, mean \(\alpha_e \) value of 1.05 was reported for a Douglas fir forest and of 0.72 for different types of coniferous forest. This study further confirmed this tendency according to the results in Table 1.

Figure 2. Values of \(\frac{E}{E_{pa}} \) as a function of \(\frac{E_{po}}{E_{pa}} \) at (a) Sapporo, (b) Kawagoe, (c) Fujiyoshida and (d) Kahoku site in Japan. Data are pooled across years. Red curves represent the new nonlinear complimentary relationship by Brutsaert and blue curves represent the original complimentary relationship by Bouchet. \(E, E_{po} \) and \(E_{pa} \) are actual, potential and apparent potential evaporation, respectively.
Conclusion
This study evaluated the new nonlinear complementary relationship proposed by Brutsaert for estimation of forests evaporation in Japan. The only unknown parameter in the relationship, α_e, was determined for the first time for various forest vegetation of north to south Japan. The mean value of α_e was 1.01, ranging from 0.94 to 1.10. The calculated forests evaporation showed a good result with the measured values, with an R^2 of 0.78 and a bias of 4% on average. Moreover, the new nonlinear relationship performed better than the original linear relationship of Bouchet in describing the relation between E/E_{pa} and E_{po}/E_{pa}, and also in depicting the asymmetry variation between E_{pa}/E_{po} and E/E_{po}. Overall, the results of this study lend credibility to the evaporation prediction skill of the new nonlinear complementary relation for forest land cover in Japan, making it a reasonable forecasting tool for this region that can be also tested and verified for other land covers and regions.

Materials and Methods

The new nonlinear complementary model. Bouchet, based on the two boundary conditions, arrived at the following linear complementary relationship between actual evaporation (E), potential evaporation (E_{po}), and apparent potential evaporation (E_{pa}) in describing the relation between E/E_{pa} and E_{po}/E_{pa}, and also in depicting the asymmetry variation between E_{pa}/E_{po} and E/E_{po}. Overall, the results of this study lend credibility to the evaporation prediction skill of the new nonlinear complementary relation for forest land cover in Japan, making it a reasonable forecasting tool for this region that can be also tested and verified for other land covers and regions.
In this study, E_{po} is approximated by Priestley–Taylor equation:

$$E_{po} = \frac{\Delta}{\Delta + \gamma}(R_n - G)$$

and E_{pa} is estimated using Penman equation:

$$E_{pa} = \frac{\Delta}{\Delta + \gamma}(R_n - G) + \frac{\gamma}{\Delta + \gamma}f(u_i)(e_2^s - e_2)$$

where α_e is a parameter of the Priestley–Taylor equation, Δ is the slope of the saturation vapor pressure curve, γ is the psychrometric constant, R_n is net radiation, G is the surface ground heat flux, e_2^s and e_2 are saturation vapor pressure and actual vapor pressure at a height above the surface, respectively. $f(u_i)$ is the wind function. As noted by Zhang, the choice of wind function has low effect on the calculated E, thus, a simple wind function was adopted in the present study:

$$f(u_i) = 0.35(1 + 0.54u_i)$$

where u_i is wind speed at the height of 2 m that can be obtained by the wind speed (u_z) measured at a height (z) using the equation by Brutsaert:

$$u_z = u_i \left(\frac{2}{z} \right)^{\frac{1}{3}}$$

Study sites and data. This study was conducted on four forest sites located from north to south across Japan, namely, Sapporo, Kawagoe, Fujiyoshida, and Kahoku (Fig. 4). The dominant vegetation cover is deciduous broadleaf forest, deciduous broadleaf forest, secondary natural evergreen needleleaf forest and evergreen coniferous forest, for Sapporo, Kawagoe, Fujiyoshida, and Kahoku, respectively. The climate across Japan is temperate, but it varies with a north-south gradient, being cool at Sapporo and warm at Kahoku. All sites belong to the FluxNet network of the Forestry and Forest Products Research Institute of Japan (http://www2.ffpri.affrc.go.jp/labs/flux/). More detailed description of the sites including the location, elevation, and the data period used in the study is given in Table 2. At each site, half-hourly precipitation, air temperature, relatively humidity, wind speed, net radiation, sensible and latent heat, and soil heat flux were recorded (Table 3). More detailed information about the measurements at the sites can be found elsewhere.

For each site, E, E_{po} and E_{pa} were estimated according to Equations 2, 3 and 4, respectively, as presented above. The unknown coefficient α_e was determined by regression of Equation 2 using trial and error such that the slope of the regression through the origin equals unity. E was also estimated from the eddy covariance measurements of sensible and latent heat fluxes using the energy budget closure. This approach requires that the sum of...
the measured latent heat and sensible heat fluxes equals to all other energy sinks and sources (i.e., \(R_e - G \)). As summarized by Twine25, two methods can be used for energy budget closure, namely, the ‘residual closure’ and the ‘Bowen-ratio closure’. For Sapporo, Kawagoe and Fujiyoshida sites with available only sensible heat measurements, the ‘residual closure’ method was used. As it is known that eddy covariance measurements underestimate the sensible heat within around 30%26, an increase of 15% was added to the sensible heat measurements at these sites. For Kahoku site, both latent heat and sensible heat fluxes were measured and the ‘Bowen-ratio closure’ was used assuming it is preserved over the entire range of the turbulence spectrum13,25.

Considering the effect of atmospheric stability, the measured half-hourly data were averaged to daily values. Hence, there should be 48 records with the half-hourly measurement frequency every day for each site. However, the entire day was excluded from the analysis if two or more records were missing for a day. Further, data pre-processing ensures sound relationships between the variables in the analysis, and two data requirement steps were conducted12: 1) only data measured on days without rain were included, and 2) data were excluded if the wind speed was smaller than 0.2 m s−1, or the net radiation was less than 20 W m−2, or the calculated heat was less than 0 W m−2, or the sensible heat was less than 30 W m−2, or the air temperature was below freezing.

References

1. Wang, K. & Dickinson, R. E. A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. *Rev. Geophys.* 50, RG2005 (2012).
2. Bouchet, R. J. Evapotranspiration réelle, évapotranspiration potentielle, et production agricole. *Ann. Agron.* 14, 743–824 (1963).
3. Morton, F. I. Climatological estimates of evapotranspiration. *J. Hydraul. Div.* 102, 275–291 (1976).
4. Priestley, C. H. B. & Taylor, R. J. On the assessment of surface heat flux and evaporation using large-scale parameters. *Mon. Weather Rev.* 100, 81–92 (1972).
5. Kohler, M. A. & Parmele, L. H. Generalized estimates of free-water evaporation. *Water Resour. Res.* 3, 997–1005 (1967).
6. Brutsaert, W. & Stricker, H. An advection-aridity approach to estimate actual regional evapotranspiration. *Water Resour. Res.* 15, 443–450 (1979).
7. Penman, H. L. Natural evaporation from open water, bare soil, and grass. *Proc. R. Soc. Ser. A* 193, 120–146 (1948).
8. Penman, H. L. Evaporation: An introductory survey. *Neth. J. Agric. Sci.* 4, 9–29 (1956).
9. Brutsaert, W. & Parlange, M. B. Hydrologic cycle explains the evaporation paradox. *Nature* 396, 30 (1998).
10. Han, S., Hu, H. & Tian, F. A nonlinear function approach for the normalized complementary relationship evaporation model. *Hydrol. Processes* 26, 3973–3981 (2012).
11. Brutsaert, W. A generalized complementary principle with physical constraints for land-surface evaporation. *Water Resour. Res.* 51, 8087–8093 (2015).
12. Brutsaert, W. et al. Nonlinear advection-aridity method for landscape evapotranspiration and its application during the growing season in the southern Loess Plateau of the Yellow River basin. *Water Resour. Res.* 53, 270–282 (2017).
13. Zhang, L., Cheng, L. & Brutsaert, W. Estimation of land surface evaporation using a generalized nonlinear complementary relationship. *J. Geophys. Res. Atmos.* 122, 1475–1487 (2017).
14. Liu, X., Liu, C. & Brutsaert, W. Regional evaporation estimates in the eastern monsoon region of China: Assessment of a nonlinear formulation of the complementary principle. *Water Resour. Res.* 52, 9511–9521 (2016).
15. Shuttleworth, W. J. & Calder, I. R. Has the Priestley–Taylor equation any relevance to forest evaporation? *J. Appl. Meteorol.* 18, 639–646 (1979).
16. Xu, C. Y. & Singh, V. P. Evaluation of three complementary relationship evapotranspiration models by water balance approach to estimate actual regional evapotranspiration in different climatic regions. *J. Hydrol.* 308, 105–121 (2005).
17. Yang, H., Yang, D. & Lei, Z. Seasonal variability of the complementary relationship in the Asian monsoon region. *Hydrol. Processes* 27, 2736–2741 (2013).
18. McNaughton, K. G. & Black, T. A. A study of evapotranspiration from a Douglas fir forest using the energy balance approach. *Water Resour. Res.* 9, 1579–1590 (1973).
19. Ozdogan, M., Salvucci, G. D. & Anderson, B. T. Examination of the Bouchet–Morton complementary relationship using a mesoscale climate model and observations under a progressive irrigation scenario. *J. Hydrometeorol.* 7, 235–251 (2006).
20. Brutsaert, W. *Hydrology: An Introduction* (Cambridge University, 2005).

Table 2

Detailed information of the four flux sites used in this study.

Site	Location	Forest type	Elevation (m)	Air temperature (°C)	Precipitation (mm)	Period (years)
Sapporo	42.9686 N, 141.3853 E	deciduous broadleaf	182	7	980	2001–2003
Kawagoe	35.8725 N, 139.4696 E	deciduous broadleaf	26	15	1300	1997–2001
Fujiyoshida	35.4545 N, 138.7622 E	secondary natural evergreen needleleaf	1030	9.5	1955	2000–2008
Kahoku	33.137 N, 130.7095 E	evergreen coniferous	165	15.3	2138	2007–2008

Table 3

Measurement height or depth (m) for the variables at each study site in Japan.

Site	Precipitation (mm)	Air temperature (°C)	Relative humidity	Wind speed (m s−1)	Net radiation (W m−2)	Sensible heat (W m−2)	Latent heat (W m−2)	Soil heat flux (W m−2)
Sapporo	1.8	41	41	41	32.5	0.02		
Kawagoe	0.6	21	21	21	25	0.02		
Fujiyoshida	1.0	23	23	32	32	25	0.02	
Kahoku	1.5	42	42	51	47	51	51	0.05
21. Kitamura, K. et al. Interannual variability of net ecosystem production for a broadleaf deciduous forest in Sapporo, northern Japan. *J. For. Res.* **17**, 323–332 (2012).
22. Yasuda, Y. & Watanabe, T. Comparative measurements of CO₂ flux over a forest using closed-path and open-path CO₂ analyzers. *Boundary-Layer Meteorol.* **100**, 191–208 (2001).
23. Mizoguchi, Y. et al. Climatic characteristics of the Fujiyoshida forest meteorology research site. *Mount. Fuji. Res.* **5**, 1–6 (2011).
24. Shimizu, T. Practical applicability of high frequency correction theories to CO₂ flux measured by a closed-path system. *Boundary-Layer Meteorol.* **122**, 417–438 (2007).
25. Twine, T. E. et al. Correcting eddy-covariance flux underestimates over a grassland. *Agric. For. Meteorol.* **103**, 279–300 (2000).

Acknowledgements
The authors would like to thank Dr. Yoshikazu Ohtani for help in obtaining the data from FFPRI FluxNet (http://www2.ffpri.affrc.go.jp/labs/flux/). Authors also thank Dr. Wilfried Brutsaert for his helpful comments and support in the calculations. Acknowledgement goes to the overseas researcher program under the Postdoctoral Fellowship of Japan Society for the Promotion of Science. This study was funded by the Grants-in-Aid for Scientific Research of Japan Society for the Promotion of Science (16F16766), the project named Study on Multi-scale Evaluation System for GHG Variation and Mitigation (1620AA011), and the Key Project of Chinese Academy of Sciences (GJHZ1647).

Author Contributions
Z.A. designed the study, analyzed the data and wrote the manuscript. Q.W. and Y.Y. reviewed and improved the manuscript. K.M., X.Z. and D.E. improved the manuscript and revised the language.

Additional Information
Competing Interests: The authors declare that they have no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017