Independence and Concurrent Separation Logic

Jonathan Hayman
joint work with Glynn Winskel

Computer Laboratory
University of Cambridge

13th August 2006
This talk:

- Give a net semantics to a programming language
- Apply it to study the semantics of a program logic: Concurrent separation logic
Independence models help alleviate problems with giving a standard, ‘interleaved’ semantics to parallel processes:

- Atomicity: $\alpha \parallel \beta$ or $(\alpha_1; \alpha_2) \parallel \beta$
- Genuine concurrent execution
- Unnecessary interleavings

Concurrent separation logic:

- How is spatial separation related to independence?
- The logic discriminates between parallel composition and interleaved expansion:

\[
\not\vdash \{ \ell \mapsto 0 \} \quad \ell := 1 \parallel \ell := 2 \quad \{ \ell \mapsto 1 \lor \ell \mapsto 2 \}
\]
\[
\vdash \{ \ell \mapsto 0 \} \quad (\ell := 1; \ell := 2) + (\ell := 2; \ell := 1) \quad \{ \ell \mapsto 1 \lor \ell \mapsto 2 \}
\]
A Petri net consists of:
- **Conditions** (places / circles)
- **Events** (transitions / rectangles)
- An initial **marking** (subset of conditions)

Events have **preconditions** and **postconditions**, determining whether they are able to fire in a marking.

Two events are said to be **independent** if they operate on disjoint sets of conditions.
A Petri net consists of:

- Conditions (places / circles)
- Events (transitions / rectangles)
- An initial marking (subset of conditions)

Events have preconditions and postconditions, determining whether they are able to fire in a marking.

Two events are said to be independent if they operate on disjoint sets of conditions.
A Petri net consists of:

- **Conditions** (places / circles)
- **Events** (transitions / rectangles)
- An initial *marking* (subset of conditions)

Events have *preconditions* and *postconditions*, determining whether they are able to fire in a marking.

Two events are said to be *independent* if they operate on disjoint sets of conditions.
A Petri net consists of:
- *Conditions* (places / circles)
- *Events* (transitions / rectangles)
- An initial *marking* (subset of conditions)

Events have *preconditions* and *postconditions*, determining whether they are able to fire in a marking.

Two events are said to be *independent* if they operate on disjoint sets of conditions.
Concurrent separation logic uses separating conjunction to develop Owicki-Gries proof rules to deal with pointer-manipulating programs.

Want a net semantics for terms of the following programming language:

\[
\begin{align*}
t & ::= \alpha | t; t | t \parallel t | \text{while } b \text{ do } t \text{ od} \\
 & \quad | \text{alloc}(\ell) | \text{dealloc}(\ell) | \text{with } r \text{ do } t \text{ od} \\
 & \quad | \ldots
\end{align*}
\]

\(\alpha\) ranges over commands that affect the memory in which the programs execute (e.g. assignments).
Within nets formed, shall distinguish two forms of condition: control conditions and state conditions.

The semantics $\mathcal{N}[t]$ of a process consists of:

- Events
- Initial marking of control conditions
- Terminal marking of control conditions

State conditions are:

- (ℓ, v) for each $\ell \in \text{Loc}$ and $v \in \text{Val}$. Marking H
- $\text{curr}(\ell)$ for each $\ell \in \text{Loc}$. Marking L
- r for each $r \in \text{Res}$. Marking R

The marking of state conditions must be consistent:

H is a partial function defined at the locations current in L
Action

\(\text{Ic}(\alpha) \) \(\text{Tc}(\alpha) \)

\((\ell, 1)\) \((\ell, 2)\) \((\ell, 3)\) \((\ell, 4)\)

State conditions

Control conditions
Action

State conditions

Control conditions

Action

State conditions

Control conditions

Ic(α) Tc(α)
Action

\((\ell, 1) \quad (\ell, 2) \quad (\ell, 3) \quad (\ell, 4) \)

State conditions

Control conditions

Ic(\(\alpha\))

Tc(\(\alpha\))
alloc(\ell):

- Make an arbitrary non-current location current, assign an (arbitrary) initial value to it, and make \ell point to the new location.
- If \ell initially holds \(v \) and run alloc(\ell):

\[
\begin{array}{|c|c|}
\hline
\ell & v \\
\hline
\end{array}
\]
alloc(ℓ):

- Make an arbitrary non-current location current, assign an (arbitrary) initial value to it, and make ℓ point to the new location.
- If ℓ initially holds v and run alloc(ℓ):

```
\[ \ell \quad \rightarrow \quad k \quad v' \]
```
Allocation

\[
\text{Ic}(\text{alloc}(\ell)) \quad \text{Tc}(\text{alloc}(\ell))
\]
Allocation

\[\text{Ic}(\text{alloc}(\ell)) \quad \text{Tc}(\text{alloc}(\ell)) \]

\[\text{curr}(k) \quad \text{curr}(m) \]

\[(\ell, 0) \quad (\ell, 1) \quad (\ell, k) \quad (\ell, m) \quad (k, 1) \quad (m, 2) \]
Allocation
Allocation

\[
T_c(\text{alloc}(\ell))
\]

\[
I_c(\text{alloc}(\ell))
\]

\[
(\ell, 0) \quad (\ell, 1) \quad (\ell, k) \quad (\ell, m) \quad (k, 1) \quad (m, 2)
\]

\[
\text{curr}(k) \quad \text{curr}(m)
\]
Operations on control part of net allow us to form the usual operations such as:

- Parallel composition:

```
Ic(t_1)  Tc(t_1)  Ic(t_2)  Tc(t_2)
```
Operations on control part of net allow us to form the usual operations such as:
- Sequential composition
Operational semantics

Theorem

The net semantics corresponds to the operational semantics.
Key judgement $\Gamma \vdash \{ \varphi \} t \{ \psi \}$

φ is an assertion about the heap (assignment of values to locations):

- $H \models \ell \mapsto v$ iff $H = \{(\ell, v)\}$
- $H \models \text{emp}$ iff $H = \emptyset$
- $H \models \varphi_1 \ast \varphi_2$ iff there exist H_1, H_2 s.t. H_1 disjoint H_2
 and $H = H_1 \cup H_2$ and $H_1 \models \varphi_1$ and $H_2 \models \varphi_2$

with usual \neg, \land, \lor, etc.

Meaning (approximate):

Whenever t runs in a heap that has a part satisfying φ, the resulting heap has a part satisfying ψ. Moreover, t never accesses locations outside the identified part of the heap.

Example:

$\Gamma \vdash \{ \ell \mapsto 0 \} \ell := 1 \{ \ell \mapsto 1 \}$

Non-example:

$\Gamma \not\vdash \{ k \mapsto 0 \} \ell := 1 \{ k \mapsto 1 \}$
Permits a simple rule for parallel composition:

\[
\Gamma \vdash \{\varphi_1\} \ t_1 \ \{\psi_1\} \quad \Gamma \vdash \{\varphi_2\} \ t_2 \ \{\psi_2\}
\]

\[
\Gamma \vdash \{\varphi_1 \ast \varphi_2\} \ t_1 \parallel t_2 \ \{\psi_1 \ast \psi_2\}
\]

Example: \(\Gamma \vdash \{\ell \mapsto 0 \ast k \mapsto 0\} \ \ell := 1 \parallel k := 2 \ \{\ell \mapsto 1 \ast k \mapsto 2\}\)

Non-example: \(\Gamma \nvdash \{\ell \mapsto 0 \ast k \mapsto 0\} \ \ell := 1 \parallel \ell := 2 \ \{\top\}\)

Critical regions: \((\chi \text{ precise})\)

\[
\Gamma \vdash \{\varphi \ast \chi\} \ t \ \{\psi \ast \chi\}
\]

\[
\Gamma, r:\chi \vdash \{\varphi\} \ \text{with} \ r \ \text{do} \ t \ \text{od} \ \{\psi\}
\]

Allows “transfer” of heap:
Let the invariant \(\chi \equiv k \mapsto 0 \lor k \mapsto 1 \ast \ell \mapsto 0\).

\[
r:\chi \vdash \{\text{emp}\} \ \text{with} \ r \ \text{do} \ \text{if} \ k = 1 \ \text{then} \ k := 0 \ \text{od} \ \{\ell \mapsto 0\}
\]

Initially proved sound by Brookes (with ‘local’ semantics)
Want a definition of validity $\Gamma \models \{\varphi\} \ t \ \{\psi\}$ that allows us to prove rule for parallel composition sound

Whenever t runs to completion in an environment where other well-behaved processes act from a heap where it owns locations satisfying φ, the resulting heap that the process owns satisfies ψ. Moreover, t is well-behaved.

Place in parallel with an interference net containing events to simulate the permitted forms of interference.

Intuition presented by O’Hearn is ownership, which constrains interference.
Interference and synchronization

- Add events to the net to represent the execution of other processes.
- Possible behaviour of other processes depends on ‘ownership’ of the process, so add conditions $\omega_{\text{proc}}(l)$, $\omega_{\text{oth}}(l)$ and $\omega_{\text{inv}}(l)$ to the net.
Interference and synchronization

Ownership conditions

$\omega_{\text{oth}}(\ell)$

$\omega_{\text{inv}}(\ell)$

$\omega_{\text{proc}}(\ell)$

$Ic(\text{with } r \text{ do } t \text{ od})$
Interference and synchronization

Ownership conditions

\[
\begin{align*}
\omega_{\text{oth}}(\ell) & \\
\omega_{\text{inv}}(\ell) & \\
\omega_{\text{proc}}(\ell) &
\end{align*}
\]

Ic(with r do t od)
Interference and synchronization

Ownership conditions

\[\omega_{\text{oth}}(\ell) \]
\[\omega_{\text{inv}}(\ell) \]
\[\omega_{\text{proc}}(\ell) \]

\[\text{Ic(with } r \text{ do } t \text{ od)} \]
Interference and synchronization

Ownership conditions

\(\omega_{\text{oth}}(\ell) \)
\(\omega_{\text{inv}}(\ell) \)
\(\omega_{\text{proc}}(\ell) \)

\((\ell, 0) \)
\((\ell, 1) \)
\(r \)

\[\text{Ic(with } r \text{ do } t \text{ od)} \]
Interference and synchronization

Ownership conditions

\[\omega_{\text{oth}}(\ell) \]
\[\omega_{\text{inv}}(\ell) \]
\[\omega_{\text{proc}}(\ell) \]

\[(\ell, 0) \quad (\ell, 1) \quad r \]

\[\text{Ic(with } r \text{ do } t \text{ od)} \]
Interference and synchronization

Ownership conditions

\[\omega_{\text{oth}}(\ell) \]

\[\omega_{\text{inv}}(\ell) \]

\[\omega_{\text{proc}}(\ell) \]

\[(\ell, 0) \]

\[(\ell, 1) \]

\[r \]

\[\text{Ic(with } r \text{ do } t \text{ od)} \]
Interference and synchronization

Ownership conditions

\[\omega_{\text{oth}}(\ell) \]

\[\omega_{\text{inv}}(\ell) \]

\[\omega_{\text{proc}}(\ell) \]

\[(\ell, 0) \]

\[(\ell, 1) \]

\[r \]

\[\text{Ic(with } r \text{ do } t \text{ od)} \]
Interference and synchronization

- Add events to the net to represent the execution of other processes.
- Possible behaviour of other processes depends on ‘ownership’ of the process, so add conditions $\omega_{\text{proc}}(l)$, $\omega_{\text{oth}}(l)$ and $\omega_{\text{inv}}(l)$ to the net.
- Forms of interference:
 - Action on ‘other’ owned locations.
 - Enter and leave critical regions.
 - Allocation and deallocation.
- ‘Synchronize’ the original events of the process so that they correspond to interference.
- ‘Violation’ if there is no synchronized event with concession but the un-synchronized event could occur.
- Interference net with synchronized events simulates the original net.
Validity and soundness

A marking satisfies φ in Γ if the owned locations satisfy φ and the invariants for available resources are met.

Definition (Validity)

$\Gamma \models \{\varphi\} t \{\psi\}$ if for any initial marking that satisfies φ in Γ, in the net with interference events and synchronized events of t, no violating marking is reachable and any reachable terminal marking satisfies ψ in Γ.

Theorem (Soundness)

$\Gamma \vdash \{\varphi\} t \{\psi\}$ implies $\Gamma \models \{\varphi\} t \{\psi\}$.
Enabled, control independent events arise only from parallel composition

Theorem (Separation)

Suppose that $\emptyset \vdash \{ \varphi \} t \{ \psi \}$ and that σ is a state in which the heap satisfies φ. If M is a marking reachable from $(Ic(t), \sigma)$ in $N[t]$ and e_1 and e_2 are control independent events then:

- If $M \xrightarrow{e_1} M_1$ and $M \xrightarrow{e_2} M_2$ then either e_1 and e_2 are independent or e_1 and e_2 compete to take a resource or to allocate the same location.
- If $M \xrightarrow{e_1} M_1 \xrightarrow{e_2} M'$ then either e_1 and e_2 are independent or e_1 releases a resource that e_2 takes or deallocates a location that e_2 allocates.
Independence

- Permits refinement of heap operations
- ℓ_0 points to ℓ_1, which is initially current

\[
\begin{align*}
 t_1; & \quad \text{alloc}(k); \\
 \text{dealloc}(\ell_0) & \quad \text{while} \ ([k] \neq \ell_1) \ \text{do} \\
 & \quad \text{dealloc}(k); \text{alloc}(k) \\
 & \quad \text{od}; \\
 & \quad t_2
\end{align*}
\]

- The loop exit event causally depends on a prior alloc(k) event that allocates the location that was initially stored in ℓ
- These events causally depend on the event dealloc(ℓ) in the other process, so t_2 can only run after t_1
- \implies interaction through allocation seen in separation theorem
Conclusions

Independence is a useful tool in describing features of programming languages and their logics.

Future work:

- Extended models to deal with e.g. name binding
- Liveness properties and refinement
- Modal logic using *