In neutral dense electron–hole systems at low temperatures, theory predicted Cooper-pair-like excitons exist at the Fermi energy and form a Bardeen–Cooper–Schrieffer-like condensate. Optical excitations create electron–hole systems with the density controlled via the excitation power. However, the intense optical excitations required to achieve high densities cause substantial heating that prevents the realization of simultaneously dense and cold electron–hole systems in conventional semiconductors. Here we show that the separation of electron and hole layers enables the realization of a simultaneously dense and cold electron–hole system. We find a strong enhancement of photoluminescence intensity at the Fermi energy of the neutral dense ultracold electron–hole system that demonstrates the emergence of an excitonic Fermi edge singularity due to the formation of Cooper-pair-like excitons at the Fermi energy. Our measurements also show a crossover from the hydrogen-like excitons to the Cooper-pair-like excitons with increasing density, consistent with the theoretical prediction of a smooth transition.
The BCs-like exciton condensate in a neutral dense e–h system is formed by the Cooper-pair-like excitons1.

The realization of Cooper-pair-like excitons and BCs-like exciton condensation requires matching of the electron and hole Fermi surfaces1. For equal electron and hole densities, the Fermi momenta of electrons and holes are equal (Fig. 1a), which is required for matching the Fermi surfaces. In comparison, the realization of the Mahan exciton for a hole in a Fermi sea of electrons requires the suppression of the hole kinetic energy, in particular a flat hole band or hole localization15–17.

In contrast to the generation of a 'single hole' in a dense electron gas18–20, the realization of a neutral dense e–h system by optical excitation requires the generation of a large number of electrons and holes, which causes the problem of heating. Due to e–h recombination, the temperature of an optically created e–h system (T_en) exceeds the semiconductor lattice temperature, and lowering T_en below the condensation temperature, in particular at high e–h densities, is challenging. For instance, for neutral dense plasmas generated in single InGaAs/InP19 or InGaAs/GaAs20–22 quantum wells in experiments at T = 2 K, the effective e–h temperature reached and exceeded 100 K, well above both the lattice temperature and the temperature needed for the realization of the Cooper-pair-like excitons and BCs-like exciton condensation15.

To create cold e–h systems, we work with heterostructures with separated electron and hole layers (Fig. 1b). In these heterostructures, spatially indirect excitons (IXs), also known as interlayer excitons, are formed by electrons and holes confined in separated layers15–17. The layer separation increases the e–h recombination time, which allows cooling of the optically generated e–h system to low temperatures9,10. The other advantage of the separated electron and hole layers is the overall enhancement of the energy per e–h pair with density that is outlined below. This enhancement stabilizes the exciton state against the formation of e–h droplets27–29, which may otherwise form the ground state1. Earlier studies of cold IX systems concerned the regime of hydrogen-like IXs30,31, while the regime of Cooper-pair-like IXs in a dense e–h system with high Fermi energy was not explored.

In this work, we study an ultracold neutral spatially indirect e–h plasma (I-EHP) in separated electron and hole layers in a GaAs/AlGaAs coupled quantum well (CQW) heterostructure. The electrons and holes are confined in 15 nm GaAs quantum wells (QWs) separated by a 4 nm AlGaAs barrier (Supplementary Note 1). The long e–h recombination lifetimes (τ on the order of a microsecond; Supplementary Fig. 1a) owing to the separation between the electron and hole layers allow for cooling of the plasma to low temperatures. The creation of a cold I-EHP is facilitated by separating the e–h plasma from the laser excitation in space and time, and using the laser excitation resonant to the direct exciton energy as described in Supplementary Note 2. The estimated temperature of the dense optically created e–h system reduces to the bath temperature in the experiments T_en = 2 K (Supplementary Fig. 5).

In the experiments, the densities of the photoexcited e–h system are controlled through P_en from the low-density IX regime to the high density I-EHP regime. In the high-density regime, we observed a broad I-EHP line with a linewidth exceeding the IX binding energy9,30,32 and increasing with density (Figs. 1 and 2a). The simulations of the I-EHP PL line without taking into account the Fermi edge singularity due to the Cooper-pair-like excitons at the Fermi energy are presented in Supplementary Fig. 4. These simulations show step-like spectra with a linewidth of Δ = E_Fe + E_Fh, similar to the spectra of spatially direct EHP in single QWs in earlier studies4.

At high temperatures, the I-EHP PL line (Fig. 1c, bottom) is typical for plasmas above the condensation temperature, and the lineshape is consistent with the simulations with no Fermi edge singularity (Supplementary Fig. 4). At low temperatures, we observed a strong enhancement of the PL intensity at the Fermi energy of cold plasma (Fig. 1c, top) that evidences the emergence of an excitonic Fermi edge singularity. The temperature and density dependence of the spectra are consistent with the many-body origin of this enhancement.

At the lowest densities, the IX linewidth is approximately 0.6 meV (Fig. 2a). The small value of the IX linewidth indicates a low disorder in the heterostructure. With increasing e–h density, we observe a transition from the ultracold gas of hydrogen-like IXs with the narrow PL line at low e–h densities to the ultracold I-EHP with the Fermi edge singularity. The temperature and density dependence of the spectra are consistent with the many-body origin of this enhancement.
singularity due to the Cooper-pair-like excitons at the Fermi energy at high e–h densities (Fig. 2a)). The transition is smooth, consistent with the theory predicting a crossover from hydrogen-like excitons to Cooper-pair-like excitons with increasing density.

The overall shift of the PL energy (Fig. 2a) is caused by the separation between the electron and hole layers and can be approximated by the ‘capacitor’ formula $\delta E = 4\pi e^2 d/e$, where e is the electron charge, d is the separation between the layers and e is the dielectric constant. This approximation becomes increasingly more accurate with increasing density. The e–h density n estimated from the energy shift δE is close to the value of n estimated from the plasma PL linewidth $\Delta = E_{\text{pl}} + E_{\text{as}} = n^2 \hbar^2 (1/m_e + 1/m_h)$, where m_e and m_h are the electron and hole effective mass, respectively (Supplementary Fig. 3).

The Fermi edge singularity vanishes with increasing temperature (Fig. 2b). This is quantified in Fig. 3 by the spectrum skewness M_3, which characterizes the high positive M_3 observed in the dense 1-EHP at low temperatures. In superconductors, pairs can appear above critical temperature T_c, and this gives an estimated condensation temperature of the hydrogen-like excitons in the low-density regime. The maximum ξ for excitons is the length over which excitons separated in the CQW plane are coherent. In a classical gas, ξ vanishes with increasing temperature (Fig. 4). The coherence vanishes with increasing temperature (Fig. 4). The coherence length (Fig. 4) reaches substantially higher values than in a classical gas ($\xi_{\text{classical}} = \lambda_{\text{BM}} = 0.1 \mu$m at $T = 2$ K). In comparison with earlier measurements of the spontaneous coherence of hydrogen-like IXs in the low-density regime, the maximum ξ is 1.5μm (Fig. 4) is comparable to the values of $\xi = 1.5 \mu$m in ref. 27 and $\xi = 0.5 \mu$m in ref. 32 but somewhat smaller than the finding in ref. 26, where ξ reaches several microns. A higher ξ in that work may be related, in particular, to a weaker dipolar interaction due to a smaller d, a lower bath temperature (~100 mK) and a specific electro-optical IX generation with holes optically generated and electrons electronically injected in localized areas.

In superconductors, pairs can appear above critical temperature due to fluctuations. Cooper-pair-like excitons and the enhancement of the PL intensity at the Fermi energy owing to fluctuations have been considered theoretically. The measurements of spontaneous coherence with $\xi \approx \xi_{\text{classical}}$ suggest that the Cooper-pair-like excitons form in the condensate.

A relation of the studied system to other systems is outlined below. The Fermi edge singularity in a neutral e–h system due to Cooper-pair-like excitons at the Fermi energy and BCS-like exciton condensation are related to excitonic insulators. In contrast to optically created e–h systems in semiconductors, such as the system considered in this work, the excitonic insulators generally form in semimetals or in narrow-gap semiconductors with no optical generation. The nature of BCS-like exciton condensates in optically created e–h systems and excitonic insulators in semimetals is similar. Excitonic insulators are actively studied. The other system that allows studying the B–C crossover is a system of ultracold atoms with controlled interactions.

Fig. 3 The spectrum skewness M_3. a. M_3 versus the laser excitation power P_{ex} and temperature between the electron and hole layers and can be approximated by the ‘capacitor’ formula $\delta E = 4\pi e^2 d/e$, where e is the electron charge, d is the separation between the layers and e is the dielectric constant. This approximation becomes increasingly more accurate with increasing density. The e–h density n estimated from the energy shift δE is close to the value of n estimated from the plasma PL linewidth $\Delta = E_{\text{pl}} + E_{\text{as}} = n^2 \hbar^2 (1/m_e + 1/m_h)$, where m_e and m_h are the electron and hole effective mass, respectively (Supplementary Fig. 3).

The Fermi edge singularity vanishes with increasing temperature (Fig. 2b). This is quantified in Fig. 3 by the spectrum skewness M_3, which characterizes the high positive M_3 observed in the dense 1-EHP at low temperatures. In superconductors, pairs can appear above critical temperature T_c, and this gives an estimated condensation temperature of the hydrogen-like excitons in the low-density regime. The maximum ξ for excitons is the length over which excitons separated in the CQW plane are coherent. In a classical gas, ξ vanishes with increasing temperature (Fig. 4). The coherence vanishes with increasing temperature (Fig. 4). The coherence length (Fig. 4) reaches substantially higher values than in a classical gas ($\xi_{\text{classical}} = \lambda_{\text{BM}} = 0.1 \mu$m at $T = 2$ K). In comparison with earlier measurements of the spontaneous coherence of hydrogen-like IXs in the low-density regime, the maximum ξ is 1.5μm (Fig. 4) is comparable to the values of $\xi = 1.5 \mu$m in ref. 27 and $\xi = 0.5 \mu$m in ref. 32 but somewhat smaller than the finding in ref. 26, where ξ reaches several microns. A higher ξ in that work may be related, in particular, to a weaker dipolar interaction due to a smaller d, a lower bath temperature (~100 mK) and a specific electro-optical IX generation with holes optically generated and electrons electronically injected in localized areas.

In superconductors, pairs can appear above critical temperature due to fluctuations. Cooper-pair-like excitons and the enhancement of the PL intensity at the Fermi energy owing to fluctuations have been considered theoretically. The measurements of spontaneous coherence with $\xi \approx \xi_{\text{classical}}$ suggest that the Cooper-pair-like excitons form in the condensate.

A relation of the studied system to other systems is outlined below. The Fermi edge singularity in a neutral e–h system due to Cooper-pair-like excitons at the Fermi energy and BCS-like exciton condensation are related to excitonic insulators. In contrast to optically created e–h systems in semiconductors, such as the system considered in this work, the excitonic insulators generally form in semimetals or in narrow-gap semiconductors with no optical generation. The nature of BCS-like exciton condensates in optically created e–h systems and excitonic insulators in semimetals is similar. Excitonic insulators are actively studied. The other system that allows studying the B–C crossover is a system of ultracold atoms with controlled interactions.
In comparison, in the ultracold e–h system studied here, the density and, in turn, the parameter \(n a^2_0 \) are controlled. The density increase allows one to go from the low-density regime of hydrogen-like excitons to the high-density regime of Cooper-pair-like excitons, and the regimes are revealed by the distinct PL lineshapes, with the high-density regime characterized by the Fermi edge singularity.

In summary, we found a strong enhancement of the PL intensity at the Fermi energy of the neutral dense ultracold e–h system that evidences the emergence of an excitonic Fermi edge singularity due to the Cooper-pair-like excitons at the Fermi energy.

Online content

Any methods, additional references, Nature Portfolio reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41567-023-02096-2.

References

1. Keldysh, L. V. & Kozlov, A. N. Collective properties of excitons in semiconductors. *Sov. Phys. JETP* **27**, 521–528 (1968).

2. Keldysh, L. V. & Kopaev, Y. V. Possible instability of the semimetallic state toward Coulomb interaction. *Sov. Phys. Solid State* **6**, 2219–2224 (1965).

3. Butov, L. V., Kulakovskii, V. D., Lach, E., Forchel, A. & Grützmacher, D. Magnetoluminescence study of many-body effects in homogeneous quasi-two-dimensional electron-hole plasma in undoped InGaAs/InP single quantum wells. *Phys. Rev. B* **44**, 10680–10688 (1991).

4. High, A. A. et al. Indirect excitons in elevated traps. *Nano Lett.* **9**, 2094–2098 (2009).

5. Mahan, G. D. Excitons in degenerate semiconductors. *Phys. Rev.* **153**, 882–889 (1967).

6. Combescot, M. & Nozières, P. Infrared catastrophe and excitons in the X-ray spectra of metals. *J. de Phys.* **32**, 913–929 (1971).

7. Skolnick, M. S. et al. Observation of a many-body edge singularity in quantum-well luminescence spectra. *Phys. Rev. Lett.* **58**, 2130–2133 (1987).

8. Lee, J. S., Iwasa, Y. & Miura, N. Observation of the Fermi edge anomaly in the absorption and luminescence spectra of n-type modulation-doped GaAs–AlGaAs quantum wells. *Semicond. Sci. Technol.* **2**, 675–678 (1987).

9. Livescu, A. et al. Free carrier and many-body effects in absorption spectra of modulation-doped quantum wells. *IEEE J. Quantum Electron.* **24**, 1677–1689 (1988).

10. Ohtaka, K. & Tanabe, Y. Golden-rule approach to the soft-x-ray-absorption problem. V. Thermal broadening and comparison with experiments in quantum wells. *Phys. Rev. B* **39**, 3054–3064 (1989).

11. Uenoyama, T. & Sham, L. J. Effect of finite hole mass on edge singularities in optical spectra. *Phys. Rev. Lett.* **65**, 1048–1051 (1990).

12. Hawrylak, P. Optical properties of a two-dimensional electron gas: evolution of spectra from excitons to Fermi-edge singularities. *Phys. Rev. B* **44**, 3821–3828 (1991).

13. Butov, L. V., Egorov, V. D., Kulakovskii, V. D. & Anderson, T. G. Magnetoluminescence study of many-body effects in a dense electron-hole plasma of strained InGaAs/GaAs quantum wells. *Phys. Rev. B* **46**, 15156–15162 (1992).

14. Kappei, L., Szczytko, J., Moriér-Genoud, F. & Deveaud, B. Direct observation of the Mott transition in an optically excited semiconductor quantum well. *Phys. Rev. Lett.* **94**, 147403 (2005).

15. Lozovik, Y. E. & Yudson, V. I. A new mechanism for superconductivity: pairing between spatially separated electrons and holes. *Sov. Phys. JETP* **44**, 389–397 (1976).

16. Butov, L. V. et al. Stimulated scattering of indirect excitons in coupled quantum wells: signature of a degenerate Bose-gas of excitons. *Phys. Rev. Lett.* **86**, 5608–5611 (2001).

17. Yoshioika, D. & MacDonald, A. H. Double quantum well electron-hole systems in strong magnetic fields. *J. Phys. Soc. Jpn* **59**, 4211–4214 (1990).

18. Zhu, X., Littlewood, P. B., Hybertsen, M. & Rice, T. Exciton condensate in semiconductor quantum well structures. *Phys. Rev. Lett.* **74**, 1633–1636 (1995).

19. Lozovik, Y. E. & Berman, O. L. Phase transitions in a system of spatially separated electrons and holes. *JETP Lett.* **84**, 1027–1035 (1981).

20. Ben-Tabou de-Leon, S. & Laikhtman, B. Exciton-exciton interactions in quantum wells: optical properties and energy and spin relaxation. *Phys. Rev. B* **63**, 125306 (2001).

21. Keldysh, L. V. The electron–hole liquid in semiconductors. *Contemp. Phys.* **27**, 395–428 (1986).

22. Zrenner, A. et al. Indirect excitons in coupled quantum well structures. *Surf. Sci.* **263**, 496–501 (1992).

23. Vörös, Z., Balili, R., Snoke, D. W., Pfeiffer, L. & West, K. Long-distance diffusion of excitons in double quantum well structures. *Phys. Rev. Lett.* **94**, 226401 (2005).

24. Gärtner, A., Holleitner, A. W., Kotthaus, J. P. & Schuh, D. Drift mobility of long-living excitons in coupled GaAs quantum wells. *Appl. Phys. Lett.* **89**, 052108 (2006).

25. Fogler, M. M., Yang, S., Hammerschmidt, A. T., Butov, L. V. & Gossard, A. C. Effect of spatial resolution on the estimates of the coherence length of excitons in quantum wells. *Phys. Rev. B* **78**, 035411 (2008).

26. High, A. A. et al. Spontaneous coherence in a cold exciton gas. *Nature* **483**, 584–588 (2012).

27. Alloing, M. et al. Evidence for a Bose–Einstein condensate of excitons. *Europhys. Lett.* **107**, 10012 (2014).

28. Stern, M., Umansky, V. & Bar-Joseph, I. Exciton liquid in coupled quantum wells. *Science* **343**, 55–57 (2014).

29. Lazić, S. et al. Scalable interconnections for remote indirect exciton systems based on acoustic transport. *Phys. Rev. B* **89**, 085313 (2014).

30. Fedichkin, F. et al. Transport of dipolar excitons in (Al,Ga)N/GaN quantum wells. *Phys. Rev. B* **91**, 205424 (2015).

31. Cohen, K. et al. Dipolar liquid of excitons. *Nano Lett.* **16**, 3726–3731 (2016).
32. Gorbunov, A. V. & Timofeev, V. B. Coherence of Bose–Einstein condensates of dipolar excitons in GaAs/AlGaAs heterostructures. Low. Temp. Phys. 42, 340–346 (2016).
33. Leonard, J. R. et al. Moiré pattern of interference dislocations in condensate of indirect excitons. Nat. Commun. 12, 1175 (2021).
34. Sivalertporn, K., Mouchliadis, L., Ivanov, A. L., Philp, R. & Muljarov, E. A. Direct and indirect excitons in semiconductor coupled quantum wells in an applied electric field. Phys. Rev. B 85, 045207 (2012).
35. Comte, C. & Noziéres, P. Exciton Bose condensation: the ground state of an electron–hole gas – I. Mean field description of a simplified model. J. de Phys. 43, 1069–1081 (1982).
36. Choksy, D. J. et al. Attractive and repulsive dipolar interaction in bilayers of indirect excitons. Phys. Rev. B 103, 045126 (2021).
37. De Palo, S., Rapisarda, F. & Senatore, G. Excitonic condensation in a symmetric electron–hole bilayer. Phys. Rev. Lett. 88, 206401 (2002).
38. Schleede, J., Filinov, A., Bonitz, M. & Fehske, H. Phase diagram of bilayer electron–hole plasmas. Contrib. Plasma Phys. 52, 819–826 (2012).
39. Maezono, R., Ríos, P. L., Ogawa, T. & Needs, R. J. Excitons and biexcitons in symmetric electron–hole bilayers. Phys. Rev. Lett. 110, 216407 (2013).
40. Fogler, M. M., Butov, L. V. & Novoselov, K. S. High-temperature superfluidity with indirect excitons in van der Waals heterostructures. Nat. Commun. 5, 4555 (2014).
41. Dignam, M. M. & Sipe, J. E. Exciton states in coupled double quantum wells in a static electric field. Phys. Rev. B 43, 4084–4096 (1991).
42. Skocpol, W. J. & Tinkham, M. Fluctuations near superconducting phase transitions. Rep. Prog. Phys. 38, 1049–1097 (1975).
43. Aslamazov, L. G. & Larkin, A. I. Effect of fluctuations on properties of a superconductor above critical temperature. Sov. Phys. Solid State 10, 875–880 (1968).
44. Schmitt-Rink, S., Ell, C. & Haug, H. Many-body effects in the absorption, gain, and luminescence spectra of semiconductor quantum-well structures. Phys. Rev. B 33, 1183–1189 (1986).
45. Des Cloizeaux, J. Exciton instability and crystallographic anomalies in semiconductors. J. Phys. Chem. Solids 26, 259–266 (1965).
46. Kozlov, A. N. & Maksimov, L. A. The metal–dielectric divalent crystal phase transition. Sov. Phys. JETP 21, 790–795 (1965).
47. Jerome, D., Rice, T. M. & Kohn, W. Excitonic insulator. Phys. Rev. 158, 462–475 (1967).
48. Halperin, B. I. & Rice, T. M. The excitonic state at the semiconductor–semimetal transition. Solid State Phys. 21, 115–192 (1968).
49. Eisenstein, J. P. & MacDonald, A. H. Bose–Einstein condensation of excitons in bilayer electron systems. Nature 432, 691–694 (2004).
50. Rontani, M. & Sham, L. J. Coherent transport in a homojunction between an excitonic insulator and semimetal. Phys. Rev. Lett. 94, 186404 (2005).
51. Du, L. et al. Evidence for a topological excitonic insulator in InAs/GaSb bilayers. Nat. Commun. 8, 1971 (2017).
52. Kogar, A. et al. Signatures of exciton condensation in a transition metal dichalcogenide. Science 358, 1314–1317 (2017).
53. Liu, X., Watanabe, K., Taniguchi, T., Halperin, B. I. & Kim, P. Quantum Hall drag of exciton condensate in graphene. Nat. Phys. 13, 746–750 (2017).
54. Li, J. I. A., Taniguchi, T., Watanabe, K., Hone, J. & Dean, C. R. Excitonic superfluid phase in double bilayer graphene. Nat. Phys. 13, 751–755 (2017).
55. Burg, G. W. et al. Strongly enhanced tunneling at total charge neutrality in double-bilayer graphene–WSe2 heterostructures. Phys. Rev. Lett. 120, 177702 (2018).
56. Sun, Z., Kaneko, T., Golež, D. & Millis, A. J. Second-order Josephson effect in excitonic insulators. Phys. Rev. Lett. 127, 127702 (2021).
57. Ataei, S. S., Varosano, D., Molinari, E. & Rontani, M. Evidence of ideal excitonic insulator in bulk MoS2 under pressure. Proc. Natl Acad. Sci. USA 118, e2010110118 (2021).
58. Kim, K. et al. Direct observation of excitonic instability in Ta2NiSe5. Nat. Commun. 12, 1969 (2021).
59. Liu, X. et al. Crossover between strongly coupled and weakly coupled exciton superfluids. Science 375, 205–209 (2022).
60. Jia, Y. et al. Evidence for a monolayer excitonic insulator. Nat. Phys. 18, 87–93 (2022).
61. Sun, B. et al. Evidence for equilibrium exciton condensation in monolayer WTe2. Nat. Phys. 18, 94–99 (2022).
62. Gu, J. et al. Dipolar excitonic insulator in a moiré lattice. Nat. Phys. 18, 395–400 (2022).
63. Zhang, Z. et al. Correlated interlayer exciton insulator in heterostructures of monolayer WSe2 and moiré WS2/WSe2. Nat. Phys. https://doi.org/10.1038/s41567-022-01702-z (2022).
64. Chen, D. et al. Excitonic insulator in a heterojunction moiré superlattice. Nat. Phys. https://doi.org/10.1038/s41567-022-01703-y (2022).
65. Zwierlein, M. W., Abo-Shaeer, J. R., Schirozet, A., Schunck, C. H. & Ketterle, W. Vortices and superfluidity in a strongly interacting Fermi gas. Nature 435, 1047–1051 (2005).
66. Choksy, D. J., Szwed, E. A., Butov, L. V., Baldwin, K. W. & Pfeiffer, L. N. Data for Fermi edge singularity in neutral electron–hole system paper. Figshare https://figshare.com/s/513ebed7af101900af912 (2023).
Data availability
Source data files are available via Figshare66. All relevant data are available from the authors upon reasonable request.

Acknowledgements
We thank M. Fogler, L. Fowler-Gerace, J. Leonard, L. Sham and B. Vermilyea for discussions. The spectroscopy studies were supported by NSF grant no. 1905478 (L.V.B.). The coherence studies were supported by DOE Office of Basic Energy Sciences under award no. DE-FG02-07ER46449 (L.V.B.). The heterostructure growth was funded by the Gordon and Betty Moore Foundation's EPiQS Initiative, grant GBMF9615 to L.N.P., and by National Science Foundation MRSEC grant DMR 2011750 to Princeton University.

Author contributions
L.V.B. designed the project. K.W.B. and L.N.P. grew the GaAs heterostructures. D.J.C. and E.A.S. performed the measurements. D.J.C., E.A.S. and L.V.B. analysed the data. L.V.B. wrote the manuscript with inputs from all the authors.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41567-023-02096-2.

Correspondence and requests for materials should be addressed to L. V. Butov.

Peer review information Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.