Immunological nomograms predicting prognosis and guiding adjuvant chemotherapy in stage II colorectal cancer

Yang Feng,1,* Yaqi Li,1,2,* Sanjun Cai,1,2 Junjie Peng1,2
1Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China; 2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
*These authors contributed equally to this work

Background: The type, abundance, and location of tumor-infiltrating lymphocytes (TILs) have been associated with prognosis in colorectal cancer (CRC). This study was conducted to assess the prognostic role of TILs and develop a nomogram for accurate prognostication of stage II CRC.

Methods: Immunohistochemistry was conducted to assess the densities of intraepithelial and stromal CD3+, CD8+, CD45RO+, and FOXP3+ TILs, and to estimate PD-L1 expression in tumor cells for 168 patients with stage II CRC. The prognostic roles of these features were evaluated using COX regression model, and nomograms were established to stratify patients into low- and high-risk groups and compare the benefit from adjuvant chemotherapy.

Results: In univariate analysis, patients with high intraepithelial or stromal CD3+, CD8+, CD45RO+ and FOXP3+ TILs were associated significantly with better relapse-free survival (RFS) and overall survival (OS), except for stromal CD45RO+ TILs. In multivariate analysis, patients with high intraepithelial CD3+ and stromal FOXP3+ TILs were associated with better RFS (p<0.001 and p=0.032, respectively), while only stromal FOXP3+ TILs was an independent prognostic factor for OS (p=0.031). The nomograms were well calibrated and showed a c-index of 0.751 and 0.757 for RFS and OS, respectively. After stratifying into low- and high-risk groups, the high-risk group exhibited a better OS from adjuvant chemotherapy (3-year OS of 81.9% vs 34.3%, p=0.006).

Conclusion: These results may help improve the prognostication of stage II CRC and identify a high-risk subset of patients who appeared to benefit from adjuvant chemotherapy.

Keywords: CD3, CD8, FOXP3, stage II, adjuvant chemotherapy

Introduction

5-fluorouracil-based adjuvant chemotherapy has been well established for patients with stage III colorectal cancer (CRC), but in stage II CRC, adjuvant chemotherapy is still hotly disputed considering the cost, toxicity, and limited survival benefit.1–4 A number of clinicopathological features (poor histological differentiation, T4 stage, <12 nodes harvested, high preoperative carcinoembryonic antigen (CEA) level, intestinal obstruction or perforation, and the presence of lymphovascular or perineural invasion) have been identified assisting the decision for adjuvant chemotherapy in stage II disease.1,5,6 However, only T4 stage has been proven to help identify a specific subset of stage II CRC patients who could achieve survival benefit from adjuvant chemotherapy.7 Besides, some polygene signatures have been widely explored,8,9 but there is still a long way to put these results into clinical
practice. Identifying novel biomarkers to filter out the high-risk group of stage II CRC which could benefit from adjuvant chemotherapy is badly needed.

Adaptive immune response has been proven to influence the biological behavior of tumor cells, and the immune microenvironment formed by the type, abundance, and location of immune cells within tumor tissues were found to be a better predictor of patient survival than traditional clinicopathological features. First demonstrated that the infiltration of tumor nests by CD8+ T-cells was a novel prognostic factor contributing to a better survival in CRC. Thereafter, CD3+ tumor-infiltrating lymphocytes (TILs) have been identified to be associated with favorable prognosis and a lower risk of metastatic metastasis in CRC. CD45RO+ TILs have also been reported to have prognostic significance. revealed that high levels of CD45RO+ TILs were correlated with the absence of signs of early metastatic invasion, a less advanced pathological stage, and increased survival. In early-stage CRC, patients with a strong infiltration of CD45RO+ T-cells exhibited an increased expression of T-helper 1 and cytotoxicity-related genes and helped predict tumor recurrence and survival. Nuclear transcription factor FOXP3, as a key regulatory gene for the development of regulatory T-cells, has been proven to be associated with immunological self-tolerance by actively suppressing self-reactive lymphocytes. Nuclear transcription factor FOXP3, as a key regulatory gene for the development of regulatory T-cells, has been proven to be associated with improved survival in CRC. Therapeutic antibodies targeting the programmed cell death 1 protein (PD-1) and the programmed death-ligand 1 protein (PD-L1) have been proven to be effective in a number of cancer types. Revealed higher expressions of PD-1 and PD-L1 correlated with better prognosis of CRC patients. The objective of the current study was to assess and compare the prognostic role of PD-L1 and different types of TILs in stage II CRC and construct a nomogram for better prognostication, and to identify the subgroup of stage II CRC patients who can actually benefit from chemotherapy.

Methods

Study group

We 1:1 matched 84 recurrent stage II CRC patients to patients without recurrence, rendering 168 patients for analysis in our study. CRC tissue blocks were sent for next-generation sequencing (NGS) at Burning Rock Dx Corporation, Shanghai. No patients received preoperative therapy before radical surgery. Patients did not tolerate adequate course of adjuvant chemotherapy was excluded. All patients were regularly followed-up with a median follow-up time at 54.4 months (range 11.3–95.8 months). Informed consent had been obtained and this study was approved by the institutional review board of the Fudan University Shanghai Cancer Center.

Immunohistochemistry (IHC)

Immunohistochemically staining was performed according to standard protocol. Briefly, paraffin-embedded samples were cut into 4 μm sections and placed on polylysine-coated slides. Paraffin sections were baked overnight at 58°C, dewaxed in xylene, rehydrated through a graded series of ethanol, quenched for endogenous peroxidase activity in 0.3% hydrogen peroxide for 15 mins. Antigen retrieval was performed by high-pressure cooking in citrate buffer (pH=6.0) for about 20 mins, then allowed to cool to room temperature, blocking the nonspecific antibody binding sites in 5% normal goat serum for 2 hrs. Sections were incubated at 37°C for 1.5 hrs with rabbit polyclonal antibody against CD3 (1:400, Abcam, ab16669, USA), CD8 (1:400, Cell Signaling Technology, 70306S, USA), CD45RO (1:400, Dako, DK-2600 Glostrup, Denmark), FOXP3 (1:400, Abcam, ab20034, USA), and PD-L1 (1:100, Abcam, ab205921), in a moist chamber. Biotinylated secondary antibody was performed using the EnVision+System-HRP (AEC) (K4005, Dako, Glostrup, Denmark). Subsequently, sections were counterstained with hematoxylin (Sigma-Aldrich, St Louis, MO, USA). TMA slides were scanned by an automated scanning microscope and counted by Image-Pro Plus software (IPP; produced by Media Cybernetics Corporation, USA). Epithelial and stromal areas were calculated separately. Five independent visual fields (at ×400 magnification), representing the most abundant lymphocytic infiltrates, were selected for each patient sample, and we used the mean density to stratify variables into dichotomous data for statistical analysis. PD-L1 expression score was the sum of the cytoplasmic and membrane scores. Cytoplasmic expression level was scored as 0 (negative), 1 (weak), 2 (moderate) or 3 (strong), and membrane expression level was scored as 0 (absent) or 1 (present). PD-L1 scores 2/3/4 were counted as high, scores 0/1 as low.

Statistical analysis

We used chi-square tests or Fisher’s exact test to compare immunological biomarkers expression levels. Univariate and
multivariate analyses were conducted using the Cox regression model. Nomograms were established by R software and the model performance for predicting outcome was evaluated by Harrell’s concordance index (c-index). X-tile 3.6.1 software23 (Yale University, New Haven, CT, USA) was used to determine the optimal cutoff values, stratifying the patients into low- and high-risk groups. Kaplan–Meier curves were drawn and log-rank tests were used to compare the survival data between different groups. p-values were accepted at <0.05 and all analyses were performed with the R 2.15.3 software.

Results

Immunohistochemical characteristics

Epithelial and in stromal TILs were evaluated separately. Utilizing tissue microarray (TMA), we quantified CD3+, CD8+, CD45RO+, and FOXP3+ cells by automatic imaging analysis on 168 stage II CRC samples. Representative immunohistochemical findings are demonstrated in Figure 1. Densities of each T-cell subset (cells/mm²) were distributed as follows: intraepithelial CD3+ (mean 84; range 0–352), stromal CD3+ (mean 376; range 0–1380), intraepithelial CD8+ (mean 60; range 0–344), stromal CD8+ (mean 220; range 0–1120), intraepithelial CD45RO+ (mean 76; range 0–384), stromal CD45RO+ (mean 344; range 0–1600), intraepithelial FOXP3+ (mean 16; range 0–132), and stromal FOXP3+ (mean 132; range 0–600). Seventy-two patients were identified as PD-L1 low, and 96 patients were identified as PD-L1 high.

Correlation of immune biomarkers with clinicopathological and molecular features

Molecular features were available in 129 patients who successfully underwent NGS. As shown in Table 1, patients with high intraepithelial CD3+, CD45RO+, and stromal FOXP3+ TILs had a significantly higher incidence of normal preoperative CEA (p=0.010, 0.013, and 0.017, respectively). Patients with high intraepithelial FOXP3+ TILs underwent less adjuvant chemotherapy (p=0.019). More colon disease was observed in patients with high intraepithelial CD8+ TILs. Patients with high intraepithelial CD45RO+ and stromal CD8+ TILs had a significantly lower incidence of neural invasion (p=0.043 and 0.046, respectively). More T4 tumors were found in patients with high intraepithelial CD8+ TILs (p=0.025). Patients with high intraepithelial CD45RO+ TILs had a significantly higher incidence of adequate lymph nodes harvested (p=0.005). Patients with high intraepithelial CD8+ and CD45RO+ TILs had a significantly higher incidence of MSI-high (p=0.017 and 0.002, respectively). More ERBB2 mutation were observed in patients with high intraepithelial CD45RO+, FOXP3+, and stromal CD45RO+ TILs (p=0.019, 0.020, and 0.012, respectively). More TP53 mutation were found in patients with high intraepithelial CD8+ and CD45RO+ TILs (p=0.034 and 0.025, respectively). No significant differences were observed for gender, age, histology type, grade, vascular invasion, APC mutation, BRAF mutation, KRAS mutation, NRAS mutation, POLE mutation, PIK3CA mutation, and PTEN mutation.

Prognostic factors

In univariate analysis (Table 2), for tumor features, CEA was significantly associated with better relapse-free survival (RFS) and overall survival (OS) (p<0.001 and p=0.015, respectively). Number of lymph nodes harvested (LNH) were significantly associated with better OS (p=0.012). Grade reached marginal significance for both RFS and OS (p=0.055 and p=0.068, respectively). For molecular features, BRAF and PTEN mutation were found to be significantly associated with better OS (p=0.007 and p=0.034, respectively), whereas BRAF mutation only reached marginal significance for RFS (p=0.081). For Immune biomarkers, high intraepithelial or stromal CD3+, CD8+, CD45RO+, FOXP3+ TILs were significantly associated with better RFS and OS (all p<0.05), except for high stromal CD45RO+ TILs (p=0.110). PD-L1 was not associated with RFS or OS (p=0.574 and p=0.820, respectively). A multivariate model was developed to test independent prognostic factors for RFS and OS (Table 3). In the first model (Model A, n=168), only tumor features and immune biomarkers with a p<0.100 in univariate analysis were included. CEA (p=0.040; RR, 1.591; 95% CI, 1.022–2.495), intraepithelial CD3+ TILs (p=0.001; RR, 0.192; 95% CI, 0.094–0.395), and stromal FOXP3+ TILs (p=0.032; RR, 0.526; 95% CI, 0.292–0.974) were found to be the strongest prognostic factors for RFS, whereas LNH (p=0.010; RR, 0.374; 95% CI, 0.178–0.784) and stromal FOXP3+ TILs (p=0.031; RR, 0.249; 95% CI, 0.071–0.878) were proven to be independent prognostic factors for OS. The second model added molecular features (Model B, n=129) for analysis, intraepithelial CD3+ (p=0.001; RR, 0.179; 95% CI, 0.082–0.391) and stromal FOXP3+ TILs (p=0.015;
RR, 0.425; 95% CI, 0.214–0.845) retained significance for RFS. While for OS, stromal FOXP3+ TILs (p=0.016; RR, 0.155; 95% CI, 0.034–0.703), LNH (p=0.038; RR, 0.436; 95% CI, 0.199–0.956), and PTEN mutation (p=0.001; RR, 6.526; 95% CI, 2.149–19.815) were the strongest prognostic factors.

Figure 1 Representative examples of immunohistochemical findings for CD3, CD8, CD45RO, FOXP3, and PD-L1 (original magnification, ×400). (A,B) Positive for intraepithelial and stromal CD3; (C,D) positive for intraepithelial and stromal CD8; (E,F) positive for intraepithelial and stromal CD45RO; (G,H) positive for intraepithelial and stromal FOXP3; (I,J) positive for cytoplasmic and membranous PD-L1.
Variables	Subgroup	No. of patients	CD3e	CD8e	CD45ROe	FOXP3e	PD-L1																			
			L	H	p	L	H																			
			L	H	p	L	H	p	L	H	p	L	H	p	L	H	p	L	H	p	L	H	p	L	H	p
Gender	Male	63	33	0.518	0.920	66	0.924	43	0.637																	
		43	29		0.920	66	0.924	29	0.637																	
	Female	49	33	0.426	0.492	53	0.323	54	0.510																	
		57	29		0.492	53	0.323	61	0.466																	
Age	<60	49	33	0.426	0.492	53	0.323	54	0.510																	
	≥60	57	29		0.492	53	0.323	61	0.466																	
CEA	<5.2ng/mL	64	50	0.010	0.061	71	0.013	49	0.962																	
	≥5.2ng/mL	42	12		0.061	71	0.013	49	0.962																	
Chemotherapy	No	41	31	0.196	0.483	47	0.503	42	0.271																	
	Yes	65	31		0.483	47	0.503	42	0.271																	
Location	Colon	52	38	0.150	0.023	56	0.069	62	0.893																	
	Rectum	54	24		0.023	56	0.069	62	0.893																	
Histology type	A	94	58	0.417	0.563	103	0.778	101	0.601																	
	MA	12	4		0.563	103	0.778	101	0.601																	
Grade	Poor	6	0	0.086	0.194	6	0.178	6	0.178																	
	Well /moderate	100	62	0.194	0.539	109	0.539	109	0.539																	
Vascular invasion	No	99	56	0.553	0.337	108	0.350	106	0.400																	
	Yes	7	6		0.337	108	0.350	106	0.400																	
Neural invasion	No	82	51	0.556	0.831	86	0.043	90	0.838																	
	Yes	24	11		0.831	86	0.043	90	0.838																	
pT	pT3	76	40	0.388	0.025	82	0.373	79	0.884																	
	pT4	30	22		0.025	82	0.373	79	0.884																	
LNH	<12	26	12	0.567	0.097	33	0.005	27	0.853																	
	≥12	80	50		0.097	33	0.005	27	0.853																	
MSI status	Low/MSS	74	43	0.212	0.017	84	0.002	81	0.121																	
	high	5	7		0.017	84	0.002	81	0.121																	
APC mutation	Wild-type	27	17	0.983	0.979	29	0.844	28	0.977																	
	Mutant	52	33		0.979	29	0.844	28	0.977																	

(Continued)
Variables	Subgroup	No. of patients											
		CD3e											
		CD8e											
		CD45ROe											
		FOXP3e											
		PD-L1											
		L	H	p	L	H	p	L	H	p	L	H	p
BRAF mutation	Wild type	73	48	0.483	88	33	0.889	80	41	0.273	79	42	0.268
	Mutant	6	2		6	2		7	1		7	1	
KRAS mutation	Wild type	41	28	0.718	51	18	0.844	47	22	0.861	44	25	0.575
	Mutant	38	22		43	17		40	20		42	18	
NRAS mutation	Wild type	75	47	1.000	90	32	0.388	81	41	0.426	81	41	1.000
	Mutant	4	3		4	3		6	1		5	2	
ERBB2 mutation	Wild type	73	44	0.536	88	29	0.086	83	34	0.019	82	35	0.020
	Mutant	6	6		6	6		6	8		4	8	
POLE mutation	Wild type	74	44	0.335	88	30	0.168	81	37	0.336	80	38	0.505
	Mutant	5	6		6	5		6	5		6	5	
PIK3CA mutation	Wild type	64	40	0.887	76	28	0.913	69	35	0.643	68	36	0.640
	Mutant	15	10		18	7		18	7		18	7	
PTEN mutation	Wild type	75	43	0.106	89	29	0.068	81	37	0.336	81	37	0.336
	Mutant	4	7		5	6		6	5		5	6	
TPS3 mutation	Wild type	22	18	0.337	24	16	0.034	21	19	0.025	24	16	0.316
	Mutant	57	32		70	19		66	23		62	27	

(Continued)
Table 1 (Continued).

Variables	Subgroup	No. of patients								
		CD3s	CD8s	CD45ROs	FOXP3s					
		L	H	p	L	H	p	L	H	p
Location	Colon	57	33	0.751	63	27	0.258	52	38	0.432
	Rectum	47	31		48	30		50	28	
Histology type	A	91	61	0.111	98	54	0.267	90	62	0.286
	MA	13	3		13	3		12	4	
Grade	Poor	6	0	0.084	5	1	0.665	5	1	0.405
	Well /moderate	98	64		106	56		97	65	
Vascular invasion	No	99	56	0.081	105	50	0.133	93	62	0.571
	Yes	5	8		6	7		9	4	
Neural invasion	No	82	51	0.896	93	40	0.046	80	53	0.847
	Yes	22	13		18	17		22	13	
pT	pT3	73	43	0.732	74	42	0.383	72	44	0.612
	pT4	31	21		37	15		30	22	
LNH	<12	26	12	0.448	23	15	0.440	24	14	0.851
	≥12	78	52		88	42		78	52	
MSI status	Low/MSS	70	47	0.920	77	40	0.752	73	44	0.217
	high	7	5		7	5		5	7	
APC mutation	Wild type	26	18	0.921	26	18	0.334	30	14	0.255
	Mutant	51	34		58	27		48	37	
BRAF mutation	Wild type	71	50	0.473	78	43	0.713	73	48	0.903
	Mutant	6	2		6	2		5	3	
KRAS mutation	Wild type	38	31	0.283	46	23	0.715	43	26	0.719
	Mutant	39	21		38	22		35	25	
NRAS mutation	Wild-type	72	50	0.701	79	43	1.000	73	49	0.703
	Mutant	5	2		5	2		5	2	
ERBB2 mutation	Wild type	73	44	0.066	79	38	0.109	75	42	0.012
	Mutant	4	8		5	7		3	9	

(Continued)
Nomogram construction, risk group stratification, and benefit from adjuvant chemotherapy

Variables with a p-value <0.10 in the multivariate analysis were included in nomogram construction. Three nomograms were constructed based on variables for RFS (nomogram A) and OS (nomogram B) in Model A and variables for OS (nomogram C) in Model B (see Figure 2), we did not establish a nomogram for RFS in Model B due to limited variables in the final model. Calibration curves were exhibited in Figure S1. For Model A, the nomograms were well calibrated and showed a c-index of 0.751 and 0.757 for RFS and OS, respectively. For Model B, the nomogram for OS was well calibrated and reached a c-index of 0.768. X-tile software was used to select the optimal cutoff values. After stratifying into low- and high-risk groups (Figure S2), for nomogram A, high-risk patients had a significantly worse RFS than low-risk patients (5-year RFS, 16.1% vs 58.2%, $p<0.001$). For nomogram B and nomogram C, worse OS was observed in high-risk group compared with low-risk group (5-year OS, 60.5% vs 90.6%, $p<0.001$; 5-year OS, 45.0% vs 87.7%, $p<0.001$, respectively). The relationship between risk groups and benefit from adjuvant chemotherapy is illustrated in Figure 3. No significant differences for RFS were observed between chemo-treated and chemo-naïve patients in different risk groups ($p=0.625$ and 0.434, respectively). For nomogram B, in high-risk group, chemo-treated patients had a better OS versus chemo-naïve patients, which reached marginal significance (5-year OS, 71.1% vs 34.8%, $p=0.105$). For nomogram C, better OS was observed in chemo-treated patients compared with chemo-naïve patients (3-year OS, 81.9% vs 34.3%, $p=0.006$).

Discussion

The therapeutic success of 5-fluorouracil-based adjuvant chemotherapy has been validated in stage III CRC, but not for patients with stage II disease.24,25 Up to now, only one nomogram predicting recurrence in stage II CRC has been constructed in literature by Hoshino et al26 which included sex, carcinoembryonic antigen, tumor location, tumor depth, lymphatic invasion, venous invasion, and number of lymph nodes studied, rendering a c-index of 0.64. In our study, we first introduced immune biomarkers into nomogram construction, achieving a c-index of overwhelming

Table 1 (Continued)

Variables	Subgroup	No. of patients	CD3s	CD8s	CD45ROs	FOXP3s
			L	H	L	H
POLE	Wild type	70	48	1.000	46	0.073
	Mutant	7	4	0.073	4	0.073
PIK3CA	Wild type	58	46	0.073	43	0.248
	Mutant	19	6	0.248	4	0.248
PTEN	Wild type	71	47	0.765	41	0.313
	Mutant	6	5	0.313	4	0.313
TP53	Wild type	22	18	0.561	15	0.864
	Mutant	34	22	0.561	30	0.561

Note: Molecular features were available in only 129 patients.

Abbreviations: CD3e, intraepithelial CD3+ cells; CD3s, stromal CD3+ cells; CD8e, intraepithelial CD8+ cells; CD8s, stromal CD8+ cells; CD45ROe, intraepithelial CD45RO+ cells; CD45ROs, stromal CD45RO+ cells; FOXP3e, intraepithelial FOXP3+ cells; FOXP3s, stromal FOXP3+ cells; L, low; H, high; CEA, carcinoembryonic antigen; A, adenocarcinoma; MA, mucinous adenocarcinoma; LNH, number of lymph nodes harvested; MSI, microsatellite instability; MSS, microsatellite stable.
In the current study, high and CD8+, CD45RO+, and FOXP3+ cells may benefit from adjuvant chemotherapy. Besides, the risk classification based on nomogram could identify a special high-risk subset of stage II CRC patients who may benefit from adjuvant chemotherapy.

Accumulating evidence suggests that effector/cytotoxic T-cells (CD3+, CD8+, and CD45RO+), memory T-cells (CD45RO+), and regulatory T-cells (FOXP3+) play important roles in antitumor immune response. Thus, the specific subsets of these TILs are thought to be indicators of host immune response to tumor cells and might be a target for immunotherapy. In the current study, we utilized a digitized, high-resolution image analysis system to count the number of TILs, and the mean densities of T-cell subsets were comparable with previous studies (CD3+, CD8+, CD45RO+, and FOXP3+). Previous studies have demonstrated the high density of CD3+, CD8+, CD45RO+, or FOXP3+ TILs with MSI-high. In the current study, high

Variables	RFS		OS			
	HR 95% CI	p	HR 95% CI	p		
Tumor features						
Gender, female vs male	0.829	0.534–1.287	0.742	1.371	0.661–2.843	0.396
Age, ≥60 vs <60	1.258	0.814–1.942	0.301	1.679	0.793–3.554	0.176
CEA, ≥5.2 ng/mL vs <5.2 ng/mL	2.274	1.472–3.515	<0.001	2.468	1.189–5.122	0.015
Adjuvant chemotherapy, yes vs no	1.118	0.722–1.732	0.618	0.825	0.396–1.716	0.606
Location, rectum vs colon	1.335	0.867–2.054	0.189	1.188	0.573–2.462	0.643
Histology type, MA vs A	0.827	0.381–1.795	0.631	0.654	0.155–2.754	0.563
Grade, well/moderate vs poor	0.411	0.166–1.021	0.055	0.328	0.099–1.085	0.068
Vascular invasion, yes vs no	0.780	0.340–1.791	0.538	0.773	0.183–3.256	0.726
Neural invasion, yes vs no	0.934	0.548–1.592	0.802	0.403	0.122–1.332	0.136
pT, T4 vs T3	0.993	0.621–1.587	0.976	1.065	0.485–2.340	0.876
LNH, ≥12 vs <12	0.756	0.464–1.231	0.261	0.389	0.186–0.085	0.012
Molecular features						
MSI status, high vs low/MSS	0.770	0.310–1.915	0.574	0.699	0.165–2.962	0.627
APC mutation, M vs WT	0.988	0.593–0.645	0.962	2.173	0.819–5.765	0.119
KRAS mutation, M vs WT	2.111	0.912–4.888	0.081	4.399	1.507–12.842	0.007
NRAS mutation, M vs WT	1.110	0.687–1.792	0.671	0.870	0.399–1.894	0.725
ERBB2 mutation, M vs WT	0.833	0.335–2.074	0.695	0.326	0.044–2.410	0.272
POLE mutation, M vs WT	0.994	0.430–2.299	0.988	1.531	0.523–4.480	0.437
PIK3CA mutation, M vs WT	0.663	0.338–1.298	0.231	0.862	0.325–2.287	0.765
PTEN mutation, M vs WT	1.061	0.459–2.456	0.889	2.873	1.080–7.640	0.034
TP53 mutation, M vs WT	1.187	0.698–2.019	0.527	1.173	0.493–2.792	0.718
Immune biomarkers, high vs low						
CD3e	0.132	0.066–0.265	<0.001	0.276	0.105–0.726	0.009
CD8e	0.210	0.101–0.437	<0.001	0.253	0.076–0.835	0.024
CD45ROe	0.247	0.131–0.467	<0.001	0.287	0.100–0.825	0.020
FOXP3e	0.211	0.109–0.410	<0.001	0.195	0.059–0.644	0.007
PD-L1	1.134	0.731–1.761	0.574	0.918	0.442–1.910	0.820
CD3s	0.375	0.224–0.638	<0.001	0.356	0.145–0.874	0.024
CD8s	0.361	0.209–0.623	<0.001	0.191	0.058–0.630	0.007
CD45ROs	0.497	0.307–0.805	0.004	0.514	0.228–1.162	0.110
FOXP3s	0.257	0.148–0.444	<0.001	0.148	0.045–0.488	0.002

Note: Cox proportional hazards regression model, molecular features were available in only 129 patients.

Abbreviations: RFS, relapse-free survival; OS, overall survival; M, mutant; WT, wild type; CEA, carcinoembryonic antigen; A, adenocarcinoma; MA, mucinous adenocarcinoma; LNH, number of lymph nodes harvested; MSI, microsatellite instability; MS, microsatellite stability; CD3e, intraepithelial CD3+ cells; CD3s, stromal CD3+ cells; CD8e, intraepithelial CD8+ cells; CD8s, stromal CD8+ cells; CD45ROe, intraepithelial CD45RO+ cells; CD45ROs, stromal CD45RO+ cells; FOXP3e, intraepithelial FOXP3+ cells; FOXP3s, stromal FOXP3+ cells.
densities of CD45RO+ and CD8+ cells, but not that of CD3+ or FOXP3+ cells, are significantly associated with MSI-high. We used multivariate analysis to assess the prognostic roles of these immune biomarkers and found intraepithelial CD3+ TILs and stromal FOXP3+ TILs were the strongest prognostic factors for RFS, whereas only stromal FOXP3+ TILs were an independent prognostic factor for OS. Our study revealed patients with high intraepithelial CD3+ and stromal FOXP3+ TILs had a significantly higher incidence of normal preoperative CEA, which partially explained the good prognosis associated with these biomarkers. Although Li et al21 concluded PD-L1 correlated with better prognosis in CRC patients, our study did not prove the prognostic role PD-L1, which is in agreement with Masugi’s22 study. Despite numerous studies have demonstrated the prognostic roles of immune-related biomarkers using IHC, seldom have these studies involved molecular features for analysis. In our study, 129 patients successfully underwent NGS and classic mutations for CRC were evaluated for their prognostic roles. KRAS mutation and PTEN mutation were found to be significant factors for OS in univariate analysis, while only PTEN mutation was demonstrated as an independent prognostic factor in multivariate analysis after adjusting for clinicopathological features and immune biomarkers. PTEN is a candidate tumor suppressor and key negative regulator of the PI3K pathway, involving in cell proliferation, migration, and survival.35 Somatic mutations in PTEN were detected in about 6% of sporadic CRC, and PTEN mutation was found to be associated with proximal tumors, mucinous histology, MSI-H, CIMP-high, and BRAF mutation.36 In our study, 8.5% PTEN mutation was observed, 36.4% of MSI-high patients were observed in PTEN mutation group compared with 6.8% in the wild-type group, which is in consistence with previous studies.36,37 Recent reports suggest that PTEN exerts an important tumor suppressor role in colorectal carcinogenesis35 and correlative analyses have associated loss of PTEN with poorer survival,38,39 which is in agreement with our study.

Our study is limited as a retrospective study in nature, further validations from other institutions are merited. Secondly, we did not separate colon and rectal cancer for further study due to limited sample size. Moreover, considering intratumoral heterogeneity, we admit that our study might still fall short of capturing heterogeneity within tumor. Despite of these shortcomings, this is the largest study elucidating the prognostic roles of the densities of various types of TILs focusing on stage II CRC, and we first used nomogram to visualize the results and stratify patients into low- and high-risk groups. More importantly, it is easier for clinical use than signatures or other risk classification systems.

Table 3 Multivariate Cox proportional model for predictors of relapse-free and overall survival

DFS	HR	95% CI	p	OS	HR	95% CI	p
Model A (N=168)				Model A (N=168)			
CEA, ≥5.2 ng/mL vs <5.2 ng/mL	1.591	1.022–2.475	0.040	CEA, ≥5.2 ng/mL vs <5.2 ng/mL	2.080	0.995–4.349	0.052
CD3e, high vs low	0.192	0.094–0.395	<0.001	LNH, ≥12 vs <12	0.374	0.178–0.784	0.010
CD8s, high vs low	0.600	0.338–1.064	0.080	CD8s, high vs low	0.325	0.093–1.143	0.080
FOXP3s, high vs low	0.526	0.292–0.974	0.032	FOXP3s, high vs low	0.249	0.071–0.878	0.031
Model B (N=129)				Model B (N=129)			
CD3e, high vs low	0.179	0.082–0.391	<0.001	CD8e, high vs low	0.282	0.067–1.178	0.083
FOXP3s, high vs low	0.425	0.214–0.845	0.015	FOXP3s, high vs low	0.155	0.034–0.703	0.016
LNH, ≥12 vs <12				LNH, ≥12 vs <12	0.436	0.199–0.956	0.038
PTEN mutation, M vs WT	6.526	2.149–19.815	0.001	PTEN mutation, M vs WT			

Notes: Cox proportional hazards regression model. Model A included tumor features and immune biomarkers with a p<0.10 in univariate analysis (N=168). Model B included tumor features, immune biomarkers, and molecular features with a p<0.10 in univariate analysis (N=129). A backward LR (likelihood ratio) elimination with a threshold of p=0.10 was presented in the final model.

Abbreviations: RFS, relapse-free survival; OS, overall survival; M, mutant; WT, wild type; CEA, carcinoembryonic antigen; LNH, number of lymph nodes harvested; CD3e, intraepithelial CD3+ cells; CD8e, intraepithelial CD8+ cells; CD8s, stromal CD8+ cells; FOXP3s, stromal FOXP3+ cells.

Feng et al. Cancer Management and Research 2019:11

submit your manuscript | www.dovepress.com

DovePress

Cancer Management and Research 2019:11

7288
In summary, we constructed nomograms which may help to predict RFS and OS in patients with stage II CRC. Furthermore, we identified a high-risk subset of stage II CRC patients who appeared to benefit from adjuvant chemotherapy.

Figure 2. Nomograms for 1-, 3-, and 5-year probabilities of survival. (A) Nomogram A predicting relapse-free survival based on Model A, with a c-index of 0.751; (B) nomogram B predicting overall survival based on Model A, with a c-index of 0.757; (C) nomogram C predicting overall survival based on Model B, with a c-index of 0.768.

Abbreviations: CEA, carcinoembryonic antigen; LNH, number of lymph nodes harvested; CD3e, intraepithelial CD3+ cells; CD8s, stromal CD8+ cells; CD8e, intraepithelial CD8+ cells; FOXP3s, stromal FOXP3+ cells; PTEN, wild-type.
Ethics approval and consent to participate

Informed consent had been obtained and this study was approved by the institutional review board of the Fudan University Shanghai Cancer Center. The patient consent was written informed consent, and that this study was conducted in accordance with the Declaration of Helsinki.

Figure 3 Relationship between risk groups and benefit from adjuvant chemotherapy in stage II colorectal cancer patients. (A) Relapse-free survival based on nomogram A classification; (B) overall survival based on nomogram B classification; (C) overall survival based on nomogram C classification.
Abbreviation list
TILs, tumor-infiltrating lymphocytes; CRC, colorectal cancer; dMMR, deficient mismatch repair; pMMR, proficient mismatch repair; CEA, carcinoembryonic antigen; PD-1, programmed cell death 1 protein; PD-L1, programmed death-ligand 1 protein; NGS, next-generation sequencing; TMA, tissue microarray; RFS, relapse-free survival; OS, overall survival; LNH, lymph nodes harvested; NCCN, National Comprehensive Cancer Network; MSI, microsatellite instability; MSS, microsatellite stability; CD3\(e\), intraepithelial CD3\(e\) cells; CD3\(s\), stromal CD3\(e\) cells; CD8\(e\), intraepithelial CD8\(+\) cells; CD8\(s\), stromal CD8\(+\) cells; CD45RO\(e\), intraepithelial CD45RO\(+\) cells; CD45RO\(s\), stromal CD45RO\(+\) cells; FOXP3\(e\), intraepithelial FOXP3\(+\) cells; FOXP3\(s\), stromal FOXP3\(+\) cells.

Author contributions
All authors contributed to data analysis, drafting or revising the article, gave final approval of the version to be published, and agree to be accountable for all aspects of the work.

Disclosure
The abstract for this paper was accepted as poster presentation at the 2018 ASCO conference. The authors report no other potential conflicts of interest in this work.

References
1. Kucukcezybek Y, Dirican A, Demir L, et al. Adjuvant chemotherapy and prognostic factors in stage II colon cancer–izmir oncology group study. Asian Pac J Cancer Prev. 2015;16:2413–2418. doi:10.7314/apjcp.2015.16.6.2413
2. Benson AB 3rd, Schrag D, Somerfield MR, et al. American society of clinical oncology recommendations on adjuvant chemotherapy for stage II colon cancer. J Clin Oncol. 2004;22:3408–3419. doi:10.1200/JCO.2004.05.063
3. O’Connor ES, Greenblatt DY, LoConte NK, et al. Adjuvant chemotherapy for stage II colon cancer with poor prognostic features. J Clin Oncol. 2011;29:3381–3388. doi:10.1200/JCO.2010.34.3426
4. Gray R, Barnwell J, McConkey C, Hills RK, Williams NS, Kerr DJ. Adjuvant chemotherapy versus observation in patients with colorectal cancer: a randomised study. Lancet. 2007;370:2020–2029. doi:10.1016/S0140-6736(07)61866-2
5. Quah HM, Chou JF, Gonen M, et al. Identification of patients with high-risk stage II colorectal cancer for adjuvant therapy. Dis Colon Rectum. 2008;51:503–507. doi:10.1007/s10350-008-9246-z
6. Okada K, Sadahiro S, Suzuki T, et al. The size of retrieved lymph nodes correlates with the number of retrieved lymph nodes and is an independent prognostic factor in patients with stage II colorectal cancer. Int J Colorectal Dis. 2015;30:1685–1693. doi:10.1007/s00384-015-2357-9
7. Kumar A, Kennecke HF, Renouf DJ, et al. Adjuvant chemotherapy use and outcomes of patients with high-risk versus low-risk stage II colon cancer. Cancer. 2015;121:527–534. doi:10.1002/cncr.29072
8. Gao S, Tibiche C, Zou J, et al. Identification and construction of combinatory cancer hallmark-based gene signature sets to predict recurrence and chemotherapy benefit in stage II colorectal cancer. JAMA Oncol. 2016;2:37–45. doi:10.1001/jamaoncol.2015.3413
9. Tian X, Zhu X, Yan T, et al. Recurrence-associated gene signature optimizes recurrence-free survival prediction of colorectal cancer. Mol Oncol. 2017;11:1544–1560. doi:10.1016/j.molonc.2017.03.008
10. Galon J, Costes A, Sanchez-Cabo F, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 2006;313:1960–1964. doi:10.1126/science.1129139
11. Naito Y, Saito K, Shiba K, et al. CD8\(+\) T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Cancer Res. 1998;58:3491–3494.
12. Sinicropo FA, Rego RL, Ansell SM, Knutton KL, Foster NR, Sargent DJ. Intraepithelial effector (CD3\(e\))/regulatory (FoxP3\(e\))/T-cell ratio predicts a clinical outcome of human colon carcinoma. Gastroenterology. 2009;137:1270–1279. doi:10.1053/j.gastro.2009.06.053
13. Laghi L, Bianchi P, Miranda E, et al. CD3\(+\) cells at the invasive margin of deeply invading (pT3–T4) colorectal cancer and risk of post-surgical metastasis: a longitudinal study. Lancet Oncol. 2009;10:877–884. doi:10.1016/S1470-2045(09)70186-X
14. Pages F, Berger A, Camus M, et al. Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med. 2005;353:2654–2666. doi:10.1056/NEJMoa051424
15. Pages F, Kirilovsky A, Mleinck B, et al. In situ cytotoxicity and memory T cells predict outcome in patients with early-stage colorectal cancer. J Clin Oncol. 2009;27:5944–5951. doi:10.1200/JCO.2008.19.6147
16. Fontenot JD, Gavin MA, Rudensky A. Foxp3 programs the development and function of CD4\(+\)/CD25\(e\) regulatory T cells. Nat Immunol. 2003;4:330–336. doi:10.1038/nj.2004.160
17. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003;299:1057–1061. doi:10.1126/science.1079490
18. Salama P, Phillips L, Greie F, et al. Tumor-infiltrating FOXP3\(+\) T regulatory cells show strong prognostic significance in colorectal cancer. J Clin Oncol. 2009;27:186–192. doi:10.1200/JCO.2008.17.7229
19. Tumeh PC, Harview CL, Yearley JH, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515:568–571. doi:10.1038/nature13954
20. Le DT, Durham JN. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357:409–413. doi:10.1126/science.aan6733
21. Li Y, Liang L, Dai W, et al. Prognostic impact of programed cell death-1 (PD-1) and PD-ligand 1 (PD-L1) expression in cancer cells and tumor infiltrating lymphocytes in colorectal cancer. Mol Cancer. 2016;15:55. doi:10.1186/s12943-016-0539-x
22. Masugi Y, Nishihara R, Yang J, et al. Tumour CD274 (PD-L1) expression and T cells in colorectal cancer. Mol Cancer. 2015;14:73. doi:10.1186/s12943-015-0261-x
23. Camp RL, Dolled-Filhart M, Rimm DL. X-tile: a new bio-informatics tool for biomarker assessment and outcome-based cut-point optimisation. Clin Cancer Res. 2004;10:7252–7259. doi:10.1158/1078-0432.CCR-04-0713
24. Kohne CH. Should adjuvant chemotherapy become standard treatment for patients with stage II colon cancer? Against the proposal. Lancet Oncol. 2006;7:516–517.
25. Sobrero A. Should adjuvant chemotherapy become standard treatment for patients with stage II colon cancer? For the proposal. Lancet Oncol. 2006;7:515–516. doi:10.1016/S1470-2045(06)70727-6
26. Hoshino N, Hasegawa S, Hida K, et al. Nomogram for predicting recurrence in stage II colorectal cancer. Acta Oncol. 2014;53:1414–1417. doi:10.1080/0284186X.2014.1223881
27. Chiba T, Ohtani H, Mizoi T, et al. Intraepithelial CD8\(+\) T-cell-count becomes a prognostic factor after a longer follow-up period in human colorectal carcinoma: possible association with suppression of micrometastasis. Br J Cancer. 2004;91:1711–1717. doi:10.1038/sj.bjc.6602201
28. Zou W. Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol. 2006;6:295–307. doi:10.1038/nri1806
29. Disis ML, Bernhard H, Jaffee EM. Use of tumour-responsive T cells as cancer treatment. Lancet. 2009;373:673–683. doi:10.1016/S0140-6736(09)60404-9
30. Nosho K, Baba Y, Tanaka N, et al. Tumour-infiltrating T-cell subsets, molecular changes in colorectal cancer, and prognosis: cohort study and literature review. J Pathol. 2010;222:350–366. doi:10.1002/path.2774
31. Suzuki H, Chikazawa N, Tasaka T, et al. Intratumoral CD8(+) T/FOXP3 (+) cell ratio is a predictive marker for survival in patients with colorectal cancer. Cancer Immunol Immunother. 2010;59:653–661. doi:10.1007/s00262-009-0781-9
32. Lee WS, Park S, Lee WY, Yun SH, Chun HK. Clinical impact of tumor-infiltrating lymphocytes for survival in stage II colon cancer. Cancer. 2010;116:5188–5199. doi:10.1002/cncr.25293
33. Guidoboni M, Gafa R, Viel A, et al. Microsatellite instability and high content of activated cytotoxic lymphocytes identify colon cancer patients with a favorable prognosis. Am J Pathol. 2001;159:297–304. doi:10.1016/S0002-9440(10)61951-1
34. Michel S, Benner A, Tariverdian M, et al. High density of FOXP3-positive T cells infiltrating colorectal cancers with microsatellite instability. Br J Cancer. 2008;99:1867–1873. doi:10.1038/sj.bjc.6604756
35. Di Cristofano A, Pandolfi PP. The multiple roles of PTEN in tumor suppression. Cell. 2000;100:387–390. doi:10.1016/s0092-8674(00)80674-1
36. Day FL, Jorissen RN, Lipton L, et al. PIK3CA and PTEN gene and exon mutation-specific clinicopathologic and molecular associations in colorectal cancer. Clin Cancer Res. 2013;19:3285–3296. doi:10.1158/1078-0432.CCR-12-3614
37. Parsons DW, Wang TL, Samuels Y, et al. Colorectal cancer: mutations in a signalling pathway. Nature. 2005;436:792. doi:10.1038/nature03934
38. Laurent-Puig P, Cayre A, Manseau G, et al. Analysis of PTEN, BRAF, and EGFR status in determining benefit from cetuximab therapy in wild-type KRAS metastatic colon cancer. J Clin Oncol. 2009;27:5924–5930. doi:10.1200/JCO.2008.21.6796
39. Sood A, McClain D, Maitra R, et al. PTEN gene expression and mutations in the PIK3CA gene as predictors of clinical benefit to anti-epidermal growth factor receptor antibody therapy in patients with KRAS wild-type metastatic colorectal cancer. Clin Colorectal Cancer. 2012;11:143–150. doi:10.1016/j.ccc.2011.12.001
Figure S1 Calibration of the nomograms for 1-, 3-, and 5-year probabilities of survival. The x-axis shows the nomogram-predicted survival at 1, 3, and 5 years, and the y-axis shows the observed actual survival and 95% confidence intervals. (A) Calibration of nomogram A; (B) calibration of nomogram B; (C) calibration of nomogram C.
Figure S2 Survival curves comparing different risk groups. The patients were stratified into two groups according to the cutoff values generated by X-tile program. (A) Relapse-free survival based on nomogram A classification; (B) Overall survival based on nomogram B classification; (C) overall survival based on nomogram C classification.