Pleiotropic fitness effects of the IncRNA Uhg4 in Drosophila melanogaster

Rebecca A. MacPherson1, Vijay Shankar1, Lakshmi T. Sunkara2, Rachel C. Hannah1, Marion R. Campbell III1, Robert R. H. Anholt1* and Trudy F. C. Mackay1*

Abstract
Background: Long noncoding RNAs (lncRNAs) are a diverse class of RNAs that are critical for gene regulation, DNA repair, and splicing, and have been implicated in development, stress response, and cancer. However, the functions of many lncRNAs remain unknown. In Drosophila melanogaster, U snoRNA host gene 4 (Uhg4) encodes an antisense long noncoding RNA that is host to seven small nucleolar RNAs (snoRNAs). Uhg4 is expressed ubiquitously during development and in all adult tissues, with maximal expression in ovaries; however, it has no annotated function(s).

Results: We used CRISPR-Cas9 germline gene editing to generate multiple deletions spanning the promoter region and first exon of Uhg4. Females showed arrested egg development and both males and females were sterile. In addition, Uhg4 deletion mutants showed delayed development and decreased viability, and changes in sleep and responses to stress. Whole-genome RNA sequencing of Uhg4 deletion flies and their controls identified co-regulated genes and genetic interaction networks associated with Uhg4. Gene ontology analyses highlighted a broad spectrum of biological processes, including regulation of transcription and translation, morphogenesis, and stress response.

Conclusion: Uhg4 is an lncRNA essential for reproduction with pleiotropic effects on multiple fitness traits.

Keywords: Noncoding RNA, Systems genetics, Oviposition, Stress response, CRISPR, snoRNA

Background
Long noncoding RNAs (lncRNAs) are a diverse class of non-coding RNAs of at least 200 nucleotides in length. Although lncRNAs were initially thought to be “junk” due to their noncoding status, we now know that lncRNAs are critical for various biological processes, including, but not limited to, transcription and gene regulation [1–8], chromatin architecture [9–11], DNA damage response [12–14], and scaffolding and nuclear organization [15–18]. LncRNAs can also act as miRNA sponges [19–21], regulate gene splicing [17, 22–25], and be translated into functional peptides [26–28]. LncRNAs can be localized in the nucleus, cytoplasm, or to a specific organelle [29–32], can act in cis or in trans [8, 23, 33], and may be conserved across taxa in sequence and/or function [34–36]. Across taxa, lncRNA dysregulation has been implicated in cancer [37–40], neurological disorders [6, 41–43], and immune and stress response [44–47]. Additional studies in Drosophila melanogaster have demonstrated critical roles for lncRNAs in development [48–53], gonadal function [48, 54–56], sleep [19], locomotion [57], and courtship behavior [58, 59].

Roles for lncRNAs in development, viability, and fertility have been identified in multiple model systems [4, 8, 34, 55, 60, 61]. However, fitness roles for some mammalian lncRNAs, including lncRNAs previously linked to fitness traits with gene-knockdown experiments, have not been replicated using CRISPR-based cell line or animal model knockouts [62–65]. Other recently discovered mammalian lncRNAs with expression limited to reproductive tissues do not affect reproductive phenotypes in...
knockout mice [66, 67]. This controversy also extends beyond mammalian systems. Drosophila and zebrafish studies on CRISPR-mediated deletions of developmentally-expressed IncRNAs – some of which were previously implicated in development via RNA interference or morpholino-induced knockdown studies – also failed to identify roles for these IncRNAs in development, viability, or embryogenesis after no overt phenotypes were detected in knockout animals [68–70]. Inconsistencies across IncRNA studies may be due to the method of gene perturbation (e.g., RNAi interference, CRISPR-Cas9), discordant phenotyping, transcriptional noise competing with low expression of some IncRNAs, differences in the genetic background of organisms used across studies on the same IncRNA, and/or functional redundancy of the IncRNA [61, 69, 71, 72]. Furthermore, given the abundance of sex-specific and tissue-specific IncRNA expression, it is also possible that broader developmental pathways may overshadow effects due to loss of a IncRNA or be limited to a single tissue or behavioral phenotype [61, 72].

Here, we evaluate the effects of loss of function alleles of the D. melanogaster gene encoding U snoRNA host gene 4 (Uhg4; FBgn0083124). Uhg4 is a IncRNA with unknown function and is the host gene for seven intronic small nucleolar RNAs (snoRNAs), which guide posttranscriptional ribosomal RNA modification and processing [73, 74]. Some U snoRNA host genes interact with regulatory proteins controlling piwi-interacting RNAs (piRNAs) [75], which are noncoding RNAs involved in transposon silencing in germ cells [76, 77]. Although adult expression of Uhg4 is highest in ovaries, it is expressed ubiquitously during development and in other adult tissues, including the brain and central nervous system, fat body, and trachea [78, 79]. Uhg4 expression is correlated with modulation of expression of a subset of snoRNAs in response to developmental alcohol exposure in Drosophila females [80]. We used CRISPR/Cas9 germline gene editing to create deletions in the promoter region and first exon of Uhg4. These mutations have pleiotropic effects on fitness-related traits, stress responses, sleep and activity phenotypes, and transcript abundances of both non-coding and protein-coding RNAs.

Results

Generation of Uhg4 Null Alleles

Uhg4 is a long noncoding RNA that is host to seven small nucleolar RNAs (snoRNAs), and is expressed ubiquitously throughout development and in adults, with the highest adult expression in ovaries [78, 79]. We used CRISPR-Cas9 and a double guide RNA vector to target the deletion of a ~685 bp region that includes the promoter region upstream of Uhg4 as well as the first exon of Uhg4 (Fig. 1) in two lines of the Drosophila melanogaster Genetic Reference Panel (DGRP [81]), DGRP lines, DGRP_208 and DGRP_705. We isolated seven independent deletion mutations in DGRP_208, most of which varied from one another by a few base pairs (Fig. 1). The DGRP_208 deletions spanned the promoter region and the first exon of Uhg4. We also isolated four independent identical mutations in DGRP_705. The DGRP_705 deletions removed the Uhg4 promoter region and retained the first exon, and included a 44 bp AT-rich insertion in the first Uhg4 intron upstream of the start of snoRNA:Psi28S-2949 (Fig. 1). Sanger sequencing shows that the small nucleolar RNA (snoRNA) snoRNA:Psi28S-2949 within the first exon of Uhg4 is intact for all independently obtained deletions (Fig. 1).

Here, we focus on deletions Uhg4208–ΔA, Uhg4208–ΔF, Uhg4208–ΔG, and Uhg4705–ΔB, hereafter referred to as 208–ΔA, 208–ΔF, 208–ΔG, and 705–AB, respectively. We randomly selected these mutations for further study after several generations of backcrossing to the original genetic background. Both genetic backgrounds are highly inbred and free of inversions, and DGRP_208 is free of Wolbachia infection [81]. Flies homozygous for the DGRP_208 Uhg4 deletions show changes in their resting wing position (File S1, S2). Compared to the control, Uhg4 deletion flies carry their wings in an elevated and partially horizontally spread position.

Effects of Uhg4 Deletions on Fitness Traits

Fertility and Mating Behavior

When we generated the Uhg4 deletion fly stocks, we did not observe eggs in vials that contained only flies homozygous for a Uhg4 deletion and we needed to use a CyO balancer chromosome to maintain the deletion lines (Figure S1). To test whether the lack of eggs could be due to a failure of the Uhg4 deletion flies to mate, we assessed mating latency and copulation duration and found that, although deletion flies do not produce progeny when mated, they do exhibit normal mating latencies, copulation times, and proportion of flies mated (Figure S2, Tables S1A, S1B).

After crossing flies with the deletion to wild-type DGRP_208 flies of the opposite sex, we observed that Uhg4 deletion females do not lay eggs, regardless of mating status or genotype of the male partner, and wild-type eggs fertilized by Uhg4 deletion males do not develop past the embryo stage. To further probe why Uhg4 deletion females are sterile, we dissected their ovaries after mating. Whereas ovaries in control DGRP_208 flies contain late-stage oocytes with dorsal filaments (Fig. 2A), we did not observe any late-stage (>11) oocytes in ovaries of Uhg4 deletion females (Fig. 2B and C). We did not perform these analyses for
the 705-ΔB Uhg4 allele because it is nearly lethal as a homozygote, with rare viable adults. However, the few escaper 705-ΔB females did not lay eggs. These results show that Uhg4 is critical for fertility in both sexes and that the sterility of Uhg4 deletion in females may stem from a lack of fully developed eggs.

Fig. 1 Uhg4 deletions. Diagram showing deletions across the Uhg4 locus with Sanger sequencing data for the wildtype (DGRP_208, DGRP_705) and mutant genotypes. Genomic coordinates are shown at the top of the figure. The blue and green font colors indicate nucleotides of Uhg4 and snoRNA:Psi28S-2949 coding regions, respectively. Red font colors indicate the PAM sites. * indicates deleted nucleotides and N refers to multiple different nucleotides between the two wild-type DGRP lines. Genotypes used for phenotypic analyses are designated with a star.

Fig. 2 Late-stage oocytes are absent in Uhg4 deletion lines. Maximum projection z-stack images (60 slices) of DAPI-stained developing egg chambers. A Control Uhg4 (DGRP_208) ovaries. B 208-ΔF ovaries. C 208-ΔG ovaries. Compared to wild type, late-stage oocytes (stage number > 11) and any dorsal filaments are absent in the ovaries of flies with a Uhg4 deletion. Scale bars represent 75 µm. Numbers represent stages based on Jia et al. [110]
Development Time and Viability

During maintenance of CyO/Uhg4-deletion flies, we observed delayed emergence and skewed non-Mendelian ratios of CyO/deletion heterozygotes and homozygous deletion progeny. We formally assessed egg-adult development time and viability for the DGRP_208 Uhg4 deletion lines compared to the wild-type control. We placed 50 eggs from matings of 208-ΔA/CyO, 208-ΔF/CyO, 208-ΔG/CyO or DGRP_208/CyO (wild type control) flies in 25 vials each and recorded the day each fly emerged, as well as the sex, balancer genotype (Cy or straight wing), and the total number of flies for each sex and balancer genotype that emerged. Compared to the wild-type controls, flies with Uhg4 deletions have delayed development by about one day (p < 0.0001, Fig. 3A, Table S1C). Furthermore, 208-ΔA males and all Uhg4 deletion females show a 2.0- to 5.7-fold decrease in viability (p < 0.0001 for all lines, Fig. 3B, Table S1D, S1E). These results suggest that Uhg4 is necessary for the normal timing of egg-adult development and viability.

Effects of Uhg4 Deletions on Responses to Stressors and Sleep Traits

Stress Responses

We assessed the effect of several stress conditions (heat shock, chill coma recovery, and ethanol sedation) on Uhg4 deletion and wild-type control flies (Fig. 4). On average, Uhg4 deletion lines take longer to recover from a chill-induced coma than the wild-type in analyses pooled across sexes and all deletion genotypes (p = 0.013, Table S1F), although there is no difference in the proportion of flies that recover from a chill-induced coma for the deletion lines compared to the control (Table S1G). However, the response to a chill-induced coma is both sex- and genotype-specific. The chill coma recovery time for all deletion lines compared to the wild type is significant for males (p = 0.0015) but not females (p = 0.666); and males are only significant for the 208-ΔA (p = 0.0016, Table S1F). These effects were genotype-specific as well; only 208-ΔF (p = 0.0013) and 208-ΔG (p = 0.034) were formally significantly different from the wild type, although 208-ΔA trended in the same direction (p = 0.093) (Fig. 4B). In contrast to temperature-related stressors, Uhg4 deletion flies show decreased susceptibility to ethanol-induced stress. The time to sedation in response to acute ethanol exposure is significantly increased averaged over all Uhg4 deletion lines compared to the wild

![Fig. 3](image-url)

Fig. 3 Effects of Uhg4 deletion on egg-adult development and viability. A Stacked bar plots showing the average number of flies homozygous for 208-ΔA, 208-ΔF, 208-ΔG, or wild type Uhg4 (DGRP_208) that emerge from crosses of 208-ΔA/CyO, 208-ΔF/CyO, 208-ΔG/CyO and DGRP_208/CyO flies. B Boxplots displaying viability coefficients for females (B) and males (C) for Uhg4 deletion lines (208-ΔA, 208-ΔF, 208-ΔG) and the wild type (DGRP_208). Males are shown in blue and females are shown in pink. N = 25 vials of 50 embryos each per genotype. See Table S1 for all ANOVAs. p-values on the figure are for the comparisons of each sex to the control, by genotype. *** p < 0.001, **** p < 0.0001
type in the analyses pooled across sexes ($p < 0.0001$) as well as in females ($p = 0.0007$) and males ($p < 0.0001$) (Table S1F). Although all $Uhg4$ deletion sex/genotype comparisons had significantly increased sedation times relative to the control, there was heterogeneity in the magnitudes of effects among the deletion genotypes and sexes. In females, $208-\Delta F$ ($p < 0.0001$) had larger effects than $208-\Delta A$ ($p = 0.016$) and $208-\Delta G$ ($p = 0.036$); while in males all $Uhg4$ deletion lines had similar effects ($p < 0.0001$ for all) (Fig. 4C).

Sleep and Activity
We used the Drosophila Activity Monitor (DAM) System to assess the effects of $Uhg4$ deletions on sleep and activity traits. ΔA, $208-\Delta F$, and $208-\Delta G$ flies sleep more during the day ($p = 0.0009$ from the analysis of all deletion lines pooled across sexes compared to the wild type, Fig. 5A, Table S1H) and night ($p = 0.031$ from the analysis of all deletion lines pooled across sexes compared to the wild type, Fig. 5B, Table S1H). The effects of the deletions are much greater on day than on night sleep. In addition, day sleep is significant averaged over all deletion lines for males ($p = 0.026$) and females ($p = 0.014$); while the effect on night sleep is male-specific ($p = 0.011$) (Table S1H). Although the $Uhg4$ deletions sleep longer than the wild type during the day and night, they also have more fragmented sleep, as the number of sleep bouts increases both during the day ($p = 0.002$ from the analysis of all deletion lines pooled across sexes compared to the wild type, Fig. 5C, Table S1H) and night ($p = 0.0001$ from the analysis of all deletion lines pooled across sexes compared to the wild type, Fig. 5D, Table S1H). Concomitant with increased day and night sleep, the $Uhg4$ deletions on average have decreased length of activity bouts during the day ($p = 0.0061$, Fig. 5E, Table S1H as well as decreased total locomotor activity ($p = 0.0062$ from the analysis of all deletion lines pooled across sexes compared to the wild type, Fig. 5F, Table S1H).

Effects of $Uhg4$ Deletions on Genome-Wide Gene Expression
To gain insights into the mechanisms by which $Uhg4$ exerts its pleiotropic effects, we assessed the consequences of deletion of $Uhg4$ on genome-wide gene expression, and performed RNA-sequencing on $208-\Delta A$, $208-\Delta F$, $208-\Delta G$, and DGRP_208 whole flies, separately for males and females. We performed factorial fixed effect ANOVAs for each of the 16,212 genes expressed in young adult flies that evaluate the significance of the main effects of the four $Uhg4$ genotypes (Line), Sex, and the Line by Sex interaction. Plotting ordered raw p-values and adjusted p-values using a false discovery rate (FDR) correction using the Benjamini–Hochberg procedure (BH-FDR) against the number of tests revealed a non-monotonic relationship between raw p-values and adjusted p-values (Figure S3a). This relationship caused an artificial inflation in the number of differentially expressed genes at BH-FDR < 0.1. Therefore, we used a BH-FDR thresholding approach to identify statistically
significant genes at BH-FDR < 0.1. Briefly, after ordering the genes based on ascending raw p-values, we compared each gene's raw p-value to its BH-FDR critical value calculated as \(\text{rank} \times \frac{Q}{\text{number of tests}} \) at both \(Q = 0.05 \) and \(Q = 0.1 \) (Figure S3b). For both critical values, p-value thresholds were determined as the first occurrence of the raw p-value greater than critical values. Using this method, we identified 17 differentially expressed genes at a BH-FDR < 0.05 for the Line and/or Line by Sex terms (Table S2, Table S3). The top three differentially expressed genes were \(\text{Uhg4} \), \(\text{snoRNA:Psi28S-2949} \), and \(\text{snoRNA:Oraca5} \). The near-complete loss of \(\text{Uhg4} \) expression in the deletion genotypes is expected due to the deletions of the promoter region and exon 1. The two snoRNAs are located in the first two introns of \(\text{Uhg4} \). Decreased expression of \(\text{snoRNA:Psi28S-2949} \) and \(\text{snoRNA:Oraca5} \) suggests the \(\text{Uhg4} \) deletions affect regulatory sequences common to both snoRNAs, since their coding sequences are not altered (Fig. 1). Ten of the 17 differentially expressed genes are computationally predicted genes and/or noncoding RNAs, including \(\text{Uhg4} \), and have limited to no information on gene function. One of the 17 significantly differentially expressed genes was \(\text{insulin-like peptide 6 (Ilp6)} \).

A total of 17 genes that are differentially expressed in \(\text{Uhg4} \) null genotypes is not sufficient to infer the function
of Uhg4 from the enrichment of Gene Ontologies (GO) and networks of the co-regulated genes. Therefore, we relaxed the significance threshold to BH-FDR < 0.1 for the Line and Line by Sex terms of the ANOVA models. This resulted in 180 differentially expressed genes (Table S2). Notably, all genes significant for the Line by Sex terms also had significant Line effects (Table S3). For these 180 genes, only one GO term (humoral immune response GO:0,006,959) was enriched at BH-FDR < 0.05 (Table S4). However, 47 of the 180 genes did not map to a GO term. These analyses suggest that although deletion of Uhg4 and its co-regulated genes, we used the FlyBase database of known genetic and physical interactions within D. melanogaster [79] to generate interaction networks for the subset of 180 co-regulated genes at BH-FDR < 0.1. We also included first-degree interaction neighbors, genes, or proteins that are recorded in the database as directly interacting with at least one of the 180 focal genes. These networks revealed nine subclusters containing genes enriched for a broad spectrum of biological processes, including ion transport, fatty acid metabolism, temperature stress response, membrane trafficking, and morphogenesis (Fig. 6, Table S4). Cluster 9, which contains the genes Ubx, dlp, and Pten, among others, was enriched for hundreds of GO terms, far more than any other cluster, suggesting genes in this cluster are critical for a wide range of processes, including morphogenesis, cell differentiation, transcription factor signaling, sleep and activity, reproduction, stress response, and metabolism (Table S4). Cluster 4 was not enriched for any GO terms and attempts at manual annotation did not reveal related functions for genes in this cluster (Table S4). These results indicate that the lncRNA Uhg4 contributes to diverse cellular functions.

Discussion

We used Uhg4-knockout flies to assess the role of the lncRNA Uhg4 across multiple fitness traits. We present evidence that Uhg4 is critical for egg development and fertility and has pleiotropic effects on viability, development, stress responses, and sleep. Genome-wide gene expression data support the finding that Uhg4 has pleiotropic effects, as Uhg4 is co-regulated with genes involved in a wide range of biological processes, including development, trafficking, metabolism, and stress response. We also observed that many of the genes differentially expressed upon loss of Uhg4 are also noncoding RNAs in addition to predicted genes. We can speculate that Uhg4 exerts its pleiotropic effects through broad-based gene regulatory networks. Further studies will be needed to obtain more detailed mechanistic insights into the effects on fitness traits of noncoding RNAs in D. melanogaster.

Although many of the coregulated genes themselves do not have associated GO terms, many biological processes and functions implicated by GO analysis align with observed changes in organismal phenotypes. Terms involving response to external stimuli such as temperature and ethanol, as well as terms relating to immune system response, are enriched in multiple k-means and interaction network clusters. These terms align with the increased susceptibility of the Uhg4 deletion flies to extreme hot and cold temperatures, as well as the decreased susceptibility to ethanol-mediated stressors. Interestingly, Alcohol dehydrogenase (Adh) interacts with at least two genes coregulated with Uhg4, providing a possible mechanistic link between Uhg4 and ethanol response; Uhg4 has been previously implicated in developmental ethanol exposure, which also results in decreased susceptibility to ethanol exposure in adult flies [80]. Although not annotated in Fig. 6, interaction cluster nine is enriched for genes involved in wing morphogenesis and gamete generation (Table S4), which
could explain the changes to wing position and sterility phenotypes, respectively, observed in *Uhg4* deletion flies. We constructed interaction networks from an input of 20 differentially expressed genes and NTRs (BH-FDR < 0.05) including neighbors within at least 1 degree (Figure S5A) and less stringent networks with input of 180 coregulated genes (BH-FDR < 0.1) including neighbors within at least 2 degrees (Figure S5B). Cluster 9 in Table S4, and its more stringent 2-degree interaction counterpart (Cluster 3 in Figure S5B), are enriched for hundreds of GO terms (Table S4), indicating that these genes have wide-ranging impacts. Thus, the effects of *Uhg4* deletion may extend to additional traits that we did not assess, such as iron ion transport, or other intracellular phenotypes.

Based on the DAPI-stained ovary images (Fig. 2) showing a lack of late-stage oocytes, we hypothesize that *Uhg4*-deletion females are capable of laying eggs but do not develop late-stage oocytes. This oocyte development phenotype is supported by the high expression of *Uhg4* in ovaries. However, this does not explain why embryos from wild-type females and *Uhg4* deletion males fail to develop.

Bootlegger (*Boot*), a gene located immediately upstream of and in opposite orientation to *Uhg4*, is also critical for proper egg development [83, 84]. Our Sanger sequencing data indicate that *Boot* is intact in all deletions and our RNAseq data do not show *Boot* to be differentially expressed. Furthermore, unlike *Uhg4*, *Boot* is minimally expressed in males and would unlikely be responsible for
the sterility observed in *Uhg4*-deficient males. We are therefore confident that the phenotypes observed in our *Uhg4* deletion flies can be attributed to *Uhg4*, though it is possible that *Uhg4* and *Boot* share promoter elements in their intergenic region.

The role of some snoRNA host genes such as *Uhg4* was thought to facilitate transcription and splicing of snoRNAs [85–87]. Based on our results, we hypothesize that *Uhg4* has roles independent of hosting snoRNAs, as most of its snoRNAs are not differentially expressed in *Uhg4* deletion flies. The abundance of genes/NTRs coregulated with *Uhg4* that are noncoding RNAs and/or have no known function makes speculation about the possible functional mechanisms by which *Uhg4* affects a wide range of pleiotropic phenotypes challenging. *Uhg4* could bind directly to DNA or transcription factors to modulate transcriptional regulation, acting in cis to regulate the expression of snoRNA:Psi285-2949 and snoRNA:Oraca5, or in trans to regulate the expression of other genes we observed to be differentially expressed. *Uhg4* may also serve an oncogenic role, as overexpression of *Uhg4* in a Drosophila cell line is associated with tumor growth, and *Uhg4* is a downstream target of *Myc* [88]. *Uhg4* may also act to regulate gene expression at an epigenetic level via histone modifications (Cluster 8, Fig. 6). Other IncRNAs in Drosophila that are important for thermotolerance are essential for remobilization of heterogenous ribonucleoprotein particles (hnRNPs) [41, 44]. *Uhg4*, as a host gene for snoRNAs, which also form ribonucleoproteins, might also modulate response to thermal stressors via ribonucleoproteins. *Uhg4* could also act in a similar manner to the transcript of *oskar*, which is critical for oogenesis in Drosophila [54, 89, 90]. *oskar* RNA facilitates oogenesis through multiple mechanisms, as it binds a translational regulator at one locus, has a separate 3' region critical for proper egg-laying, and may also be involved in scaffolding of ribonucleoproteins [89].

Conclusion

Uhg4 is a unique example of a lncRNA with pleiotropic functions that is indispensable for viability and reproduction in *D. melanogaster*.

Methods

Generation of *Uhg4* null alleles

We used the flyCRISPR target finder [91] to design gRNAs flanking *Uhg4* Exon 1 (upstream: 5'- GAAGTA AAACTTCTTTGCACCTGG -3'; downstream: 5'- GATA GTATTATAGATAGATAGG -3') that did not overlap with known genes and did not have predicted off-target effects, resulting in a 685 bp deletion. We then synthesized a single guide RNA (gRNA) vector containing both gRNAs [92]. Briefly, synthesized phosphorylated gRNAs with complementary sequences were ligated to form double-stranded gRNAs with CTTC overhangs. One double-stranded gRNA was cloned into pBFv-U6.2 (Addgene #138,400), and the other double-stranded gRNA was cloned into pBFv-U6.2B (Addgene #138,401). Using flanking EcoRI and NotI sites, the resulting U6 promoter and gRNA within pBFv-U6.2 were excised and ligated into the U6.2B vector, creating a double-gRNA vector. Sanger sequencing confirmed the proper insertion of gRNAs.

The completed dual gRNA vector and pBFv-nosP-Cas9 (Addgene #138,402) were purified and co-injected (BestGene Inc., Chino Hills, CA) into at least 300 embryos from two different *D. melanogaster* Genetic Reference Panel (DGRP) lines [81, 93], DGRP_208 and DGRP_705. These lines have minimal heterozygosity and are homo-sequential for the standard karyotype for all common inversions; DGRP_208 is also free of Wolbachia infection [81].

To preserve the inbred genetic background of the DGRP lines, we screened flies for the presence of a deletion by individually isolating DNA from clipped wings of virgin female and male flies [94]. Fly wings were covered with 10 μL of 400 μg/mL protease K in a 10 mM Tris–Cl at pH 8.2, 1 mM EDTA and 25 mM NaCl buffer and incubated at 37 °C for 2 h followed by 95 °C for 2 min. We used 2μL of the resulting DNA mixture in a PCR reaction with primers (Left: 5'- CTAGCAGGGAAC CCTGGAAT -3'; Right: 5'- GCAGCGCTAGTAA CACAGA -3') according to ApexRedTaq (Genesee Scientific, El Cajon, CA) manufacturer instructions, with a 61 °C annealing temperature for 30 s and 30 cycles. The deletion mutations *Uhg4*208ΔA, *Uhg4*208ΔF, *Uhg4*208ΔG, and *Uhg4*705ΔB (hereafter referred to as 208-ΔA, 208-ΔF, 208-ΔG and 705-ΔB, respectively) were isolated and placed over a CyO balancer chromosome in the appropriate genetic background. *Uhg4* wild-type lines (DGRP_208 and DGRP_705) are used as controls in this study.

Drosophila culture

Flies were reared at 25 °C with 50% humidity on standard cornmeal-molasses-agar medium (Genesee Scientific, El Cajon, CA), supplemented with yeast. Flies were maintained at controlled density on a 12-h light–dark cycle (lights on at 6 am). Unless otherwise indicated, all behavioral assays were performed on 3–5 day old homozygous flies from 8:30 am to 11:30 am.

Sanger sequencing

DNA from homozygous mutant flies was sequenced by the Sanger chain termination method using a BigDye Terminator Kit v3.1 (ThermoFisher Scientific, Waltham, MA), with the same primers used to identify deletions.
Sequencing was performed on an Applied Biosystems 3730xl DNA Analyzer (ThermoFisher Scientific, Waltham, MA).

Quantitative real-time PCR
Flies were flash-frozen for RNA extraction at 3–5 days of age. Each sample contained 30 whole flies and was homogenized using a Fisherbrand™ Bead Mill (ThermoFisher Scientific, Waltham MA). RNA was extracted using the Direct-zol RNA Miniprep kit (Zymo Research, Irvine, CA), resuspended in RNase-free water, and kept at -80 °C until further use. cDNA was synthesized using the iScript™ Reverse Transcription Supermix for RT-qPCR (Bio-Rad Laboratories, Inc., Hercules, CA) according to the manufacturer’s instructions. Quantitative real-time PCR to detect expression was performed on three biological replicates and two technical replicates per sample (except 208-ΔA, which had two biological replicates), using SYBR™ Green PCR Master Mix (ThermoFisher Scientific, Waltham, MA) and primers (Uhg4-Forward: 5’- TGGTTCTTTGATTTGATT -3’; Uhg4-Reverse: 5’- TGTGTTAGTGACCCAGTTTG -3’, spanning exons 4–5 of Ug4) according to the manufacturer’s instructions. Percent knockdown was assessed using ΔΔct [95]. No amplification was observed in non-template negative controls.

Viability and development time
We placed 75 male–female pairs of flies from each of the DGRP_208 Uhg4 genotypes (DGRP_208/CyO; 208-ΔA/CyO, 208-ΔF/CyO, 208-ΔG/CyO) in large embryo collection cages (Genesee Scientific, San Diego, CA), supplemented with fresh yeast paste and grape juice-agar plates containing 3% agar and 1.2% sucrose in a 25% Welch’s Grape Juice concentrate solution every 12 h. After 36 h, we placed 50–12 h embryos in each of 25 vials per genotype. From days 9–13 after egg-laying, we collected adult flies once daily and recorded the sex, wing phenotype, and day of emergence for each fly, including flies that eclosed, but died in the food. We calculated relative egg-adult viability (v) for each vial as the proportion of homozygous Uhg4 adults (1-r) relative to the proportion of Uhg4/CyO heterozygote adults (r) as v = 2(1-r)/r [96].

Fertility
We assessed the fertility of homozygous males and females from the DGRP_208 Uhg4 deletion lines by crossing virgin deletion mutant flies to virgin DGRP_208 flies, respectively, of the opposite sex. In addition, we also performed crosses of males and females within each Uhg4 deletion line. We set up four vials each with four males and four virgin females for each genotype. For each cross, qualitative observations (presence/absence) were made for each stage of development (embryos, first instar larvae, second instar larvae, third instar larvae, pupae, adult flies). We did not perform a formal fertility assay with the 705-ΔB deletion line due to the very low viability of 705-ΔB homozygotes.

Mating behavior
For each DGRP_208 Uhg4 genotype (208-ΔA, 208-ΔF, 208-ΔG, DGRP_208), we placed 22–24 pairs of virgin flies in separate mating chambers [97, 98] to acclimate overnight. Between 8 and 10 am, fly pairs were united and video-recorded for 30 min. Copulation duration and mating latency were recorded in seconds for each fly pair. We only included flies that mated in the analyses of mating behaviors and recorded the number of pairs that did not mate during the 30-min testing period. We selected 208-ΔG as a representative Uhg4 mutant line and assessed the mating behaviors of crosses of 208-ΔG males to DGRP_208 virgin females and 208-ΔG virgin females to DGRP_208 males.

Survival after heat shock
Vials with 2 ml of medium and 9 homozygous flies per sex and Uhg4 genotype were placed in a 37 °C incubator for 2 or 3 h beginning at 1 pm, with five replicate vials per sex per genotype per exposure time. After the heat shock, flies were transferred to fresh vials with 2 ml of medium and allowed to recover overnight. Twenty-four hours after the heat shock, the number of surviving flies in each vial was recorded.

Chill coma recovery time
For each genotype we placed four vials containing 15 flies without medium on ice for 3 h, sexes separately, and allowed the flies to recover in a 6-well cell culture plate (five flies per well, two genotypes per plate) for 30 min. We recorded the time until each fly righted itself by standing up [99]. Only flies that recovered within 30 min of being removed from the ice were included in the analysis (n = 48–57 flies per sex per line), although we also recorded the number of flies that did not recover.

Ethanol sensitivity
We assessed the time to sedation in response to acute ethanol exposure [100] on 44–52 flies per sex per Uhg4 genotype. Briefly, flies were aspirated into a 24-well cell culture plate and placed opposite a 24-well cell culture plate containing 100% ethanol, separated by a layer of fine
screen mesh. We recorded the time to sedation, defined as the moment each fly loses postural control.

Sleep and locomotor activity
We collected sleep and locomotor activity data using Drosophila Activity Monitors (DAM) (TriKinetics, Waltham, MA). Briefly, we placed 1–2 day-old flies into DAM monitor tubes containing 2% agar with 5% sucrose, with two DAM monitors per sex per Ulhg4 genotype, for a total of 64 flies per sex and genotype. Sleep and activity data were recorded on days 3–8 of the fly lifespan on a 12-h light–dark cycle. Sleep was defined as at least 5 min of inactivity. Only flies that survived the entire testing period were included in analyses, resulting in 61–64 flies per sex per Ulhg4 genotype (except for 208-ΔG females, for which there was only one replicate of 32 individuals). The DAM data were initially processed with Shiny-RDAM [101] and resulting raw sleep and activity output files were downloaded for further statistical analysis.

Statistical analyses
Unless otherwise indicated, all behavioral assays were analyzed using the “PROC MIXED” command (for a fixed-effects model) or “PROC GLM” command (for a Type III Analysis of Variance (ANOVA). Where appropriate, flies were analyzed using the “PROC MIXED” command (for a mixed-effects model) in SAS v3.8 as a Type III ANOVA model. Development time (day of eclosion) was analyzed according to the model

\[Y_{\text{development}} = \mu + L + S + G + L \times S + L \times G + S \times G + L \times S \times G + \text{Rep}(L) + S \times \text{Rep}(L) + G \times \text{Rep}(L) + S \times G \times \text{Rep}(L) + \varepsilon. \]

Heat shock (time to sedation, in seconds) were analyzed according to the model

\[Y_{\text{heat shock}} = \mu + L + S + L \times S + \text{Rep}(L) + S \times \text{Rep}(L) + \varepsilon. \]

Chill coma recovery time (time to recover, in seconds) and ethanol sensitivity (time to recovery, in seconds) were analyzed according to the model

\[Y_{\text{chill coma recovery}} = \mu + L + S + L \times S + \text{Rep}(L) + S \times \text{Rep}(L) + \varepsilon. \]

where \(Y \) is phenotype of interest, \(\mu \) is the overall mean, \(L \) is the fixed effect of Line (DGRP_208, 208-ΔA, 208-ΔF, 208-ΔG), \(S \) is the fixed effect of sex (male, female), \(G \) is the fixed effect of genotype (Ulhg4/CyO heterozygote, Ulhg4 homozygote), \(\text{Rep} \) is replicate nested within lines, and \(\varepsilon \) is the residual error. We performed pairwise comparisons of each Ulhg4 deletion line (208-ΔA, 208-ΔF, or 208-ΔG) with the Ulhg4 wild type control, as well as a pooled comparison across all deletion lines compared to the control. For mating phenotypes, we also compared 208-ΔG females × DGRP_208 males and DGRP_208 females × 208-ΔG males to the control. We used Fisher’s exact tests to assess the proportion of flies that mated and the proportion of flies that recovered from a chill-induced coma in mating and chill coma recovery time, respectively using the R stats package. Models were also run separately by sex. For development time, models were also run separately for Ulhg4/CyO heterozygotes and Ulhg4 homozygotes.

Ovary dissection
We placed mated females from representative Ulhg4 deletion lines and their controls (208-ΔF, 208-ΔG, DGRP_208) in fresh food vials supplemented with yeast paste every 12 h for 36 h prior to dissection. Flies were dissected in 1X PBS and ovarioles were gently separated. Ovaries were fixed in 4% paraformaldehyde for 15 min, followed by three 15-min washes in PBS with 0.2% Triton X-100. Following a final 15-min wash in PBS, ovaries were stained with DAPI (Invitrogen) (1 μg/mL) for 10 min and mounted with ProLong Gold (Invitrogen) immediately after the final PBS wash. Ovaries were imaged on an Olympus Fluoview FV3000 microscope at 20 × magnification. Images were processed in Fiji [102].

RNA sequencing
We prepared libraries for RNA sequencing from each RNA sample used in the RT-qPCR analyses according to Universal RNA-Seq with NuQuant+ UDI (Tecnogenomics, Inc., Redwood City, CA) manufacturer instructions. Specifically, 100 ng of total RNA was converted into cDNA via integrated DNase treatment. Second strand cDNA was fragmented using a Covaris ME220 Focused-ultrasonicator (Covaris, Woburn, MA) to 350 bp. Drosophila AnyDeplete probes were used to deplete remaining ribosomal RNA and final libraries were amplified using 17 PCR cycles. We used TapeStation High Sensitivity D1000 Screentape (Agilent Technologies, Inc., Santa Clara, CA) and a Qubit™ 1X dsDNA HS Assay kit (Invitrogen, Carlsbad, CA) to measure the final library insert sizes and concentration, respectively. Final libraries were diluted to 4 nM and sequenced on a NovaSeq6000 (Illumina, Inc., San Diego, CA) using an S1 flow cell. We sequenced two biological replicates per sex per line (208-ΔA, 208-ΔF, 208-ΔG, DGRP_208), with ~20–74 million reads per sample.

Barcoded reads were demultiplexed using the NovaSeq Illumina BaseSpace sequencing pipeline and merged across S1 flow cell lanes. We used the AfterQC pipeline (version 0.9.7) [103] to filter out low-quality, short, and adapter reads and the bbduk command within the BBTools package [104] to detect levels of rRNA contamination. We used GMAP-GSNAP [105] to align filtered reads to the D. melanogaster reference genome v6.13 and the featurecounts pipeline from the Subread...
package [106] to count unique alignments to Drosophila genes. Expression for novel transcribed regions (NTRs) was estimated by first compiling a list of NTRs detected from RNA sequencing of young adult DGRP flies [82]. The coordinates of these NTRs were converted from R5 to R6 using the Coordinate Converter tool on FlyBase. A new gene transfer format file was constructed using the coordinate-converted NTR gene models and was used in conjunction with the alignment files for expression estimation. Counts data for each sample were filtered to omit genes for which the median count was less than two, as well as genes for which the proportion of null values across all samples was less than 0.25. The data were then normalized for gene length and library size using GE-TMM [107]. Filtered and normalized data were analyzed for differential expression using the "PROC glm" command in SAS v3.8 (Cary, NC) according to the ANOVA model \(Y = \mu + S + L + S \times L + \varepsilon \), where Line (L), Sex (S), and Line \(\times \) Sex (L \(\times \) S) are fixed effects, \(Y \) is gene expression, \(\mu \) is the overall mean, and \(\varepsilon \) is residual error. A false discovery rate (FDR) correction using the Benjamini–Hochberg procedure (BH-FDR) for multiple tests was applied across all genes to determine the subset of differentially expressed genes significant at BH-FDR < 0.05 and BH-FDR < 0.1 for either the Line or Line \(\times \) Sex terms. NTR expression counts were analyzed using the same approach described above but as a separate dataset. For the bulk RNA sequencing data, plotting ordered raw \(p \)-values and BH-FDR adjusted \(p \)-values against the number of tests revealed a non-monotonic relationship between raw \(p \)-values and adjusted \(p \)-values. Therefore, we used a BH-FDR thresholding approach to identify genes with statistically significant \(p \)-values from the ANOVA model. Briefly, after ordering the genes based on ascending raw \(p \)-values, we compared each gene's raw \(p \)-value to FDR critical values calculated as rank\(^* \)Q/number of tests at both Q = 0.05 and Q = 0.1. For both critical values, \(p \)-value thresholds were determined as the first occurrence of the raw \(p \)-values greater than critical values. Genes with raw \(p \)-values below the \(p \)-value threshold at critical values Q = 0.05 and Q = 0.1 were considered for downstream analyses. We used the resulting 180 genes significant at FDR < 0.1 for network construction and included the 13 differentially expressed NTRs (BH-FDR < 0.1) with these 180 genes for k-means clustering.

We performed k-means clustering (k = 8, average linkage algorithm) on the Ge-TMM-normalized least squares means of the 193 coregulated genes. We performed iterative k-means clustering with different k values to determine the largest number of clusters without redundant expression patterns across clusters. We used Cytoscape v3.9.1 and the interaction networks from FlyBase [79] (FB_2021_05) to create protein and genetic interaction networks including first-degree neighbors, clustered via MCODE score [108] where applicable. Cluster annotations are based on significantly enriched Gene Ontology (GO) terms. We performed GO statistical overrepresentation analyses with GO: Biological Process Complete, Molecular Function Complete, and Reactome Pathway terms (GO Ontology database released 2021–11-16) using Panther db v16.0 [109] using Fisher Exact tests with BH-FDR correction.

Abbreviations
BH-FDR: Benjamini–Hochberg procedure for obtaining adjusted \(p \) values based on False Discovery Rate. DGRP: Drosophila melanogaster Genetic Reference Panel. gRNA: Guide RNA. IncRNA: Long noncoding RNA. snRNA: Small nuclear RNA. Uh4g: Unknown host gene 4.

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s12864-022-09872-0.
Additional file 9: Figure S2. Mating phenotypes of Uhg4 deletion flies. Boxplots displaying time, in seconds, of (A) mating latency (time until mating begins) and (B) mating duration (length of copulation) for each of the Uhg4 mutant lines (208-ΔA, 208-ΔF, 208-ΔG), the control line DGRP_208 (208wt), and a representative mutant (208-ΔG) versus DGRP_208 wildtype pairings (208-ΔG females x 208wt males, 208wt females x 208-ΔG males). N = 22-24 pairings of 3-5 day old virgin flies per line. Only flies which successfully initiated or completed mating within 30 minutes were included in analysis for mating latency and mating duration, respectively. See Table S1A. * p<0.05

Additional file 10: Figure S3. Non-monotonic relationship between raw and Benjamini-Hochberg adjusted p-values. (A) raw p-values plotted against number of tests; (B) BH-FDR thresholds on raw p-values. Raw and adjusted p-values are shown in blue and red, respectively. “1”: rank, “m”: number of tests. See corresponding Table S2.

Additional file 11: Figure S4. K-means clusters. K-means clusters derived from genes and NTRs with differential expression in a global transcriptomic analysis using genes significant for the Line or Line×Sex terms (BH-FDR < 0.05) including neighbors within at least 1 degree. (B) Networks generated from an input of 180 coregulated genes (BH-FDR < 0.1) including neighbors within at least 2 degrees. Annotation is based on enriched Gene Ontology terms. Dark green indicates the genes in the input data set and light green indicates interaction neighbors. Names are Drosophila gene symbols. See Table S4.

Additional file 12: Figure S5. Line interaction networks containing physical and genetic interactions with genes with a significant Line effect. (A) Networks generated from an input of 20 differentially expressed genes/NTRs (BH-FDR < 0.05) including neighbors within at least 1 degree. (B) Networks generated from an input of 180 coregulated genes (BH-FDR < 0.1) including neighbors within at least 2 degrees. Annotation is based on enriched Gene Ontology terms. Dark green indicates the genes in the input data set and light green indicates interaction neighbors. Names are Drosophila gene symbols. See Table S4.

References
1. Brannan CI, Dees EC, Ingram RS, Tilghman SM. The product of the H19 gene may function as an RNA. Mol Cell Biol. 1990;10:28–36. https://doi.org/10.1128/mcb.10.1.28-36.1990.
2. Brockdorff N, Ashworth A, Kay G, McCabe VM, Norris DP, Cooper PJ, et al. The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell. 1992;71:515–26. https://doi.org/10.1016/0092-8674(92)90519-I.
3. Brown CJ, Hendrich BD, Rupert JL, Lafrenière RG, Xing Y, Lawrence J, et al. The human XIST gene: Analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell. 1992;71:527–42. https://doi.org/10.1016/0092-8674(92)90520-M.
4. Kung JTY, Colognori D, Lee JT. Long noncoding RNAs: past, present, and future. Genetics. 2013;193:651–69. https://doi.org/10.1534/genetics.112.146704.
5. McHugh CA, Chen C, Chow A, Surka CF, Tran C, McDonel P, et al. The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature. 2015;521:232–6. https://doi.org/10.1038/nature14443.
6. Rom A, Melamed L, Gil N, Goldrich MJ, Kadir R, Golan M, et al. Regulation of CDH2 expression by the Chaser long noncoding RNA gene is essential for viability. Nat Commun. 2019;10:5092. https://doi.org/10.1038/s41467-019-13075-8.
7. Pandyja-Jones A, Markaki Y, Serizay J, Chitashvili T, Mancia Leon WR, Damianov A, et al. A protein assembly mediates Xist localization and gene silencing. Nature. 2020;587:145–51. https://doi.org/10.1038/s41586-020-2703-0.
8. Statello L, Guo C, Chen L, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2021;22:96–118. https://doi.org/10.1038/s41580-020-00315-9.
9. Engreitz JM, Pandyja-Jones A, McDonel P, Shishkin A, Sirokom K, Surka C, et al. The Xist IncRNA Exploits Three-Dimensional Genome Architecture to Spread Across the X Chromosome. Science. 2013;341:125793.
10. Li X, Zhou B, Chen L, Gou L, Li H, Fu X. GRID-seq reveals the global RNA-chromatin interactome. Nat Biotechnol. 2017;35:940–50. https://doi.org/10.1038/nbt.3968.
11. Mumbach MR, Granja JM, Flynn RA, Roake CM, Satpathy AT, Rubin AJ, et al. HiChIP reveals RNA-associated chromosome conformation. Nat Methods. 2019;16:489–92. https://doi.org/10.1038/s41592-019-0407-x.
12. Sánchez Y, Segura V, Marín-Béjar O, Athie A, Marchese FR, González J, et al. Genome-wide analysis of the human p53 transcriptional network unveils an IncRNA tumour suppressor signature. Nat Commun. 2014;5:5812. https://doi.org/10.1038/ncomms6812.
13. Michelin F, Pitchaya S, Vetteli V, Sharma S, Gioia U, Pessina F, et al. Damage-induced lncRNAs control the DNA damage response through interaction with DDRNAs at individual double-strand breaks. Nat Cell Biol. 2017;19:1400–11. https://doi.org/10.1038/ncb3643.
14. Uroda T, Anastasakou E, Rossi A, Teulon J, Pellequer J, Annibale P, et al. Conserved Pseudoknots in IncRNA MEG3 Are Essential for Stimulation of the p53 Pathway. Mol Cell. 2017;75:982-95.e9. https://doi.org/10.1016/j.molcel.2017.09.025.

15. Clemson CM, Hutchinson JN, Sara SA, Ensminger AW, Fox AH, Chess A, et al. An Architectural Role for a Nuclear Noncoding RNA: NEAT1. RNA Is Essential for the Structure of Paraspeckles. Mol Cell. 2009;33:717–26. https://doi.org/10.1016/j.molcel.2009.01.026.

16. Hacisuleyman E, Shukla CJ, Weiner CL, Rinn JL. Function and evolution of local repeats in the Fire locus. Nat Commun. 2016;7:10212. https://doi.org/10.1038/ncomms10212.

17. Wu H, Yin Q, Luo Z, Yao R, Zheng C, Zhang J, et al. Unusual Processing Generates SPA LncRNAs that Sequester Multiple RNA Binding Proteins. Mol Cell. 2016;64:534–48. https://doi.org/10.1016/j.molcel.2016.10.007.

18. Fei J, Jadaliha M, Harmon TS, Li ITS, Hua B, Hao Q, et al. Quantitative Analysis of Multilayer organization of proteins and RNA in nuclear speckles at super resolution. J Cell Sci. 2017;130:4180–92. https://doi.org/10.1242/jcs.209854.

19. Soshnev AA, Ishimoto H, McCallister BF, Li X, Wehling MD, Kitamoto T, et al. A Conserved Long Noncoding RNA Affects Sleep Behavior in Drosophila. Genetics. 2011;189:455–68. https://doi.org/10.1534/genet ics.111.131706.

20. Thomson DW, Dinger ME. Endogenous microRNA sponges: evidence and controversy. Nat Rev Genet. 2016;17:272–83. https://doi.org/10.1038/nrd.2016.20.

21. Hu WL, Jin L, Xu A, Wang YF, Thorne RF, Zhang XD, et al. GUARDIN is Essential for the Structure of Paraspeckles. Mol Cell. 2009;33:717–26. https://doi.org/10.1016/j.molcel.2009.01.026.

22. Yin Q, Yang L, Zhang Y, Xiang J, Wu Y, Carmichael G, et al. Long Noncoding RNAs with snoRNA End. Mol Cell. 2012;48:219–30. https://doi.org/10.1016/j.molcel.2012.07.033.

23. Engreitz JM, Haines JE, Perez EM, Munson G, Chen J, Kane M, et al. Local regulation of gene expression by IncRNA promoters, transcription and splicing. Nature. 2016;539:452–5. https://doi.org/10.1038/nature20149.

24. Peng W, Koirala P, Mo Y. LncRNA-mediated regulation of cell signaling in cancer. Oncogene. 2017;36:5661–7. https://doi.org/10.1038/onc. 2017.184.

25. Carlevaro-Fira J, Lanzotto A, Feuerbach L, Hong C, Mas-Ponte D, Pedersen JS, et al. Cancer LncRNA Census reveals evidence for deep functional conservation of long noncoding RNAs in tumorigenesis. Commun Biol. 2020;3:56. https://doi.org/10.1038/s42003-019-0741-7.

26. Yang M, Lu H, Liu J, Wu S, Kim P, Zhou X. IncRNAfunc: a knowledge-base of IncRNA function in human cancer. Nucleic Acids Res. 2022;50:D129–36. https://doi.org/10.1093/nar/gkaa1035.

27. Lo Piccolo L, Yamaguchi M. RNAi of arcRNA hsrω affects sub-cellular localization of Drosophila FUS to drive neurodegeneration. Exp Neurol. 2017;292:125–34. https://doi.org/10.1016/j.expneurol.2017.03.011.

28. Muraoka Y, Nakamura A, Tanaka R, Suda K, Azuma Y, Kushimura Y, et al. Genetic screening of the genes interacting with Drosophila FIG4 identified a novel link between CMT-causing gene and long noncoding RNAs. Exp Neurol. 2018;310:1–13. https://doi.org/10.1016/j.expneurol.2018.08.009.

29. Wei C, Luo T, Zou S, Wu A. The Role of Long Noncoding RNAs in Central Nervous System and Neurodegenerative Diseases. Front Behav Neurosci. 2018;12:175. https://doi.org/10.3389/fnbeh.2018.00175.

30. Lakhotia SC, Mallik S, Singh AK, Ray M. The large noncoding hsrω transcripts are essential for thermostability and remodeling of hnrNPs. HP1 and RNA polymerase II during recovery from heat shock in Drosophila. Chromosoma. 2012;121:49–70. https://doi.org/10.1007/ s00412-011-0341-x.

31. Kukharsky MS, Ninkina NN, An H, Telezhkin V, Wei W, Merlins Ctd. Long non-coding RNA Neat1 regulates adaptive behavioural response to stress in mice. Transl Psychiatry. 2020;10:171. https://doi.org/10.1038/s41398-020-0854-2.

32. Gao J, Chow EML, Wang H, Xu X, Cai C, Song Y, et al. LncRNA DINOR is a virulence factor and global regulator of stress responses in Candida auris. Nat Microbiol. 2021;6:842–51. https://doi.org/10.1038/ s41556-021-01393-2.

33. Zeni PF, Mraz M. LncRNAs in adaptive immunity: role in physiological and pathological conditions. RNA Biol. 2021;18:619–32. https://doi.org/10.1080/ 15476 286. 2020. 18387 97.

34. Carlevaro-Fira J, Lanzotto A, Feuerbach L, Hong C, Mas-Ponte D, Pedersen JS, et al. Cancer LncRNA Census reveals evidence for deep functional conservation of long noncoding RNAs in tumorigenesis. Commun Biol. 2020;3:56. https://doi.org/10.1038/s42003-019-0741-7.

35. Lakhotia SC, Mallik S, Singh AK, Ray M. The large noncoding hsrω transcripts are essential for thermostability and remodeling of hnrNPs. HP1 and RNA polymerase II during recovery from heat shock in Drosophila. Chromosoma. 2012;121:49–70. https://doi.org/10.1007/ s00412-011-0341-x.

36. Kukharsky MS, Ninkina NN, An H, Telezhkin V, Wei W, Merlins Ctd. Long non-coding RNA Neat1 regulates adaptive behavioural response to stress in mice. Transl Psychiatry. 2020;10:171. https://doi.org/10.1038/s41398-020-0854-2.

37. Gao J, Chow EML, Wang H, Xu X, Cai C, Song Y, et al. LncRNA DINOR is a virulence factor and global regulator of stress responses in Candida auris. Nat Microbiol. 2021;6:842–51. https://doi.org/10.1038/ s41556-021-01393-2.

38. Zeni PF, Mraz M. LncRNAs in adaptive immunity: role in physiological and pathological conditions. RNA Biol. 2021;18:619–32. https://doi.org/10.1080/ 15476 286. 2020. 18387 97.
54. Jenny A, Hachet O, Závorszky P, Cyrklaff A, Weston MD, Johnston DS, et al. A translation-independent role of oskar RNA in early Drosophila oogenesis. Development. 2006;133:2827–33 (doi: 10.1126/dev.133.15/2827 [pii]).

55. Wen K, Yang L, Xiong T, Di C, Ma D, Wu M, et al. Critical roles of long noncoding RNAs in Drosophila spermatogenesis. Genome Res. 2016;26:1233–44. https://doi.org/10.1101/gr.199547.115.

56. Maeda RK, Sinik JL, Frei Y, Prince E, Gligorov D, Wolfner MF, et al. The IncRNA male-specific abdominal plays a critical role in Drosophila accessory gland development and male fertility. PLoS Genet. 2018;14:e1007519. https://doi.org/10.1371/journal.pgen.1007519.

57. Li M, Wen S, Guo X, Bai B, Gong Z, Liu X, et al. The novel long noncoding RNA CRG regulates Drosophila locomotor behavior. Nucleic Acids Res. 2012;40:1174–27. https://doi.org/10.1093/nar/gks943.

58. Bender W. MicroRNAs in the Drosophila bithorax complex. Genes Dev. 2008;22:14–9. https://doi.org/10.1101/gad.1614208.

59. Dai H, Chen Y, Chen S, Mao Q, Kennedy D, Landback P, et al. The Evolution of Courtship Behaviors through the Origination of a New Gene in Drosophila. PNAS. 2008;105:7478–83. https://doi.org/10.1073/pnas.0800693105.

60. Lee H, Zhang Z, Krause HM. Long Noncoding RNAs and Repetitive Elements: Junk or Intimate Evolutionary Partners? Trends Genet. 2019;35:892–902. https://doi.org/10.1016/j.tig.2019.09.006.

61. Amândio AR, Necsulea A, Joye E, Mascrez B, Duboule D. Hotair is dispensable for mouse development. PLoS Genet. 2016;12:e1006252. https://doi.org/10.1371/journal.pgen.1006252.

62. Bell CC, Amaral PP, Kalsbeek A, Magor GW, Gillinder KR, Tangermann R, et al. Transcriptome sequencing during mouse brain development identifies long non-coding RNAs functionally involved in neurogenic commitment. EMBO J. 2013;32:3145–60. https://doi.org/10.1038/emboj.2013.36.

63. Li C, Shen C, Shang X, Tang L, Xiong W, Ge H, et al. Two novel testis-specific long non-coding RNAs have compensatory fertility roles in C. elegans. MicroPubl Biol. 2022; https://doi.org/10.1093/micb/mjy003.

64. Majumder S, Hadden MJ, Thieme K, Batchu SN, Niveditha D, Choudhury S, et al. Dysregulated expression but redundant function of the long non-coding RNA HOTAIR in diabetic kidney disease. Diabetologia. 2019;62:1219–26. https://doi.org/10.1007/s00125-019-4967-1.

65. Li C, Shen C, Shang X, Tang L, Xiong W, Ge H, et al. Two novel testis-specific long non-coding RNAs produced by 1700121C10Rik are dispensable for male fertility in mice. J Reprod Dev. 2020;66:657–65. https://doi.org/10.1093/jrd/joy012.

66. Zhu Y, Lin Y, He Y, Wang H, Chen S, Li Z, et al. Deletion of IncRNA5512 has no effect on spermatogenesis and reproduction in mice. Reprod Fertil Dev. 2020;32:706–13. https://doi.org/10.1071/RD192046.

67. Kok F, Shin M, Ni C, Gupta A, Grosse A, van Impel A, et al. The Evx1/Evx1as gene locus regulates anterior-posterior pattern formation during gastrulation. Sci Rep. 2016;6:26657. https://doi.org/10.1038/srep26657.

68. Lykke-Andersen S, Chen Y, Ardal BR, Lilje B, Waage J, Sandelin A, et al. Human nonsense-mediated RNA decay initiates widely by endonucleolyis and targets snoRNA host genes. Genes Dev. 2014;28:2498–517. https://doi.org/10.1101/gad.246538.114.

69. Kondo S, Ueda R. Highly improved gene targeting by germline-directed repair in Drosophila. Genetics. 2014;196:961–71. https://doi.org/10.1534/genetics.113.160713.

70. Kenny A, Morgan MB, Mehr S, Macdonald PM. Knock down analysis reveals critical phases for specific oskar noncoding RNA functions during Drosophila oogenesis. Genetics. 2015;13:25. https://doi.org/10.1534/genetics.113.156737.
94. Carvalho GB, Ja WW, Benzer S. Non-lethal PCR genotyping of single Drosophila. Biotechniques. 2009;46:312–4. https://doi.org/10.2144/000113088.

95. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−ΔΔCT) method. Methods. 2001;25:402–8. https://doi.org/10.1006/meth.2001.1262.

96. Mackay TFC, Lyman RF, Jackson MS. Effects of P element insertions on quantitative traits in Drosophila melanogaster. Genetics. 1992;130:313–32.

97. Drapeau MD, Long AD. The Copulatron, a multi-chamber apparatus for observing Drosophila courtship behaviors. Drosophila Information Service. 1996;83:194–6.

98. Gaertner BE, McCoy LJ, Moore JM, Wolfner MF, Mackay TFC. Heritable variation in courtship patterns in Drosophila melanogaster. G3 (Bethesda). 2015;5:531–9. doi: https://doi.org/10.1534/g3.114.014811.

99. Morgan TJ, Mackay TFC. Quantitative trait loci for thermotolerance phenotypes in Drosophila melanogaster. Heredit. 2006;96:232–42. https://doi.org/10.1038/sj.hdy.6800786.

100. Sass TN, MacPherson RA, Mackay TFC, Anholt RRH. High-Throughput Method for Measuring Alcohol Sedation Time of Individual Drosophila melanogaster. J Vis Exp. 2020. https://doi.org/10.3791/61108.

101. Cichewicz K, Hirsh J. ShinyR-DAM: a program analyzing Drosophila activity, sleep, and circadian rhythms. Commun Biol. 2018;1:25. https://doi.org/10.1038/s42003-018-0031-9.

102. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–82. https://doi.org/10.1038/nmeth.2019.

103. Chen S, Huang T, Zhou Y, Han Y, Xu M, Gu J. AfterQC: automatic filtering, trimming, error removing and quality control for fastq data. BMC Bioinformatics. 2017:1880. https://doi.org/10.1186/s12859-017-1469-3.

104. Bushnell B. BBMap. SOURCEFORGE. 2014.

105. Wu TD, Reeder J, Lawrence M, Becker G, Brauer MJ. GMAP and GSNAP for genomic sequence alignment: Enhancements to speed, accuracy, and functionality. In: Mathé E, Davis S, editors. Statistical Genomics: Methods and Protocols. New York, NY: Springer New York; 2016. pp. 283–334.

106. Liao Y, Smyth GK, Shi W. The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res. 2013;41:e108. https://doi.org/10.1093/nar/gkt214.

107. Smid M, Coebergh van den Braak, Robert R. J., van de Werken, Harmen J. G., van Riet J, van Galen A, de Weerd V, et al. Gene length corrected trimmed mean of M-values (GetMM) processing of RNA-seq data performs similarly in intersample analyses while improving intrasample comparisons. BMC Bioinformatics. 2018;19:236. doi: https://doi.org/10.1186/s12859-018-2246-7.

108. Bader GD, Hogue CWV. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics. 2003;4:2. https://doi.org/10.1186/1471-2105-4-2.

109. Mi H, Muruganujan A, Thomas PD. PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res. 2013;41:D377–86. https://doi.org/10.1093/nar/gkt1118.

110. Jia D, Xu Q, Xie Q, Mio W, Deng W. Automatic stage identification of Drosophila egg chamber based on DAPI images. Sci Rep. 2016;6:18850. https://doi.org/10.1038/srep18850.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.