Liu, Hui; Wang, Yuchen
Multiplicity of non-contractible closed geodesics on Finsler compact space forms. (English)
Calc. Var. Partial Differ. Equ. 61, No. 6, Paper No. 224, 18 p. (2022)

The authors establish multiplicity results for non-contractible closed geodesics on certain Finsler manifolds by using the Fadell-Rabinowitz index theory.

Reviewer: Dumitru Motreanu (Perpignan)

MSC:
53C22 Geodesics in global differential geometry
58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces
58E10 Variational problems in applications to the theory of geodesics (problems in one independent variable)
53C60 Global differential geometry of Finsler spaces and generalizations (areal metrics)

Keywords:
closed geodesics; Finsler manifold; Betti number; free loop space; Morse theory

Full Text: DOI arXiv

References:
[1] Bangert, V., On the existence of closed geodesics on two-spheres, Internat. J. Math., 4, 1, 1-10 (1993) · Zbl 0791.53048 · doi:10.1142/S0129167X93000029
[2] Bangert, V.; Hingston, N., Closed geodesics on manifolds with infinite abelian fundamental group, J. Differ. Geom., 19, 277-282 (1984) · Zbl 0545.53036
[3] Bangert, V.; Long, Y., The existence of two closed geodesics on every Finsler 2-sphere, Math. Ann., 346, 335-366 (2010) · Zbl 1187.53040 · doi:10.1007/s00208-009-0401-4
[4] Ballmann, W.; Thorbergsson, G.; Ziller, W., Closed geodesics and the fundamental group, Duke Math. J., 48, 585-588 (1981) · Zbl 0476.58010 · doi:10.1215/S0012-7094-81-04832-8
[5] Ballmann, W.; Thorbergsson, G.; Ziller, W., Existence of closed geodesics on positively curved manifolds, J. Differ. Geom., 18, 2, 221-252 (1983) · Zbl 0514.53044
[6] Birkhoff, G.: Dynamical Systems. Colloquium publications of American Mathematical Society (1927)
[7] Chang, KC, Infinite dimensional morse theory and multiple solution problems (1993), Boston: Birkhäuser, Boston · Zbl 0779.58005 · doi:10.1007/978-1-4612-0385-8
[8] Duan, H.; Long, Y., Multiple closed geodesics on bumpy Finsler \(\backslash (n\}\)-spheres, J. Differ. Equa., 233, 1, 221-240 (2007) · Zbl 1106.53048 · doi:10.1016/j.jde.2006.10.002
[9] Duan, H.; Long, Y., The index growth and multiplicity of closed geodesics, J. Funct. Anal., 259, 1850-1913 (2010) · Zbl 1206.53043 · doi:10.1016/j.jfa.2010.05.003
[10] Duan, H.; Long, Y.; Wang, W., Two closed geodesics on compact simply-connected bumpy Finsler manifolds, J. Differ. Geom., 104, 2, 275-289 (2016) · Zbl 1357.53096
[11] Duan, H.; Long, Y.; Wang, W., The enhanced common index jump theorem for symplectic paths and non-hyperbolic closed geodesics on Finsler manifolds, Calc. Var. and PDEs., 55, 6, 1-28 (2016) · Zbl 1381.53071 · doi:10.1007/s00526-016-1075-7
[12] Duan, H.; Long, Y.; Xiao, Y., Two closed geodesics on \(\backslash ((\mathbb{R}^\dagger P^\dagger n)\}\) with a bumpy Finsler metric, Calc. Var. and PDEs., 54, 2883-2894 (2015) · Zbl 1330.53096 · doi:10.1007/s00526-015-0887-1
[13] Ekeland, I., Convexity methods in hamiltonian mechanics (1990), Berlin: Springer, Berlin · Zbl 0707.70003 · doi:10.1007/978-3-642-74331-3
[14] Ekeland, I.; Hofer, H., Convex Hamiltonian energy surfaces and their closed trajectories, Comm. Math. Phys., 113, 419-467 (1987) · Zbl 0641.58038 · doi:10.1007/BF01221255
[15] Fadell, E.; Rabinowitz, P., Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Invent. Math., 45, 2, 139-174 (1978) · Zbl 0403.57001 · doi:10.1007/BF01390270
Liu, H.; Xiao, Y., Resonance identity and multiplicity of non-contractible closed geodesics on Finsler $\mathbb{R}P^n$
doi:10.1016/j.aim.2009.03.007

Long, Y.; Duan, H., Multiple closed geodesics on 3-spheres, Adv. Math., 221, 1757-1803 (2009)

Rademacher, H-B, A Sphere Theorem for non-reversible Finsler metrics, Math. Ann., 328, 373-387 (2004)

Gromoll, D.; Meyer, W., On differentiable functions with isolated critical points, Topology, 8, 361-369 (1969)

Klingenberg, W.; Takens, F., Generic properties of geodesic flows, Math. Ann., 197, 323-334 (1972)

Long., Y.: Index Theory for Symplectic Paths with Applications. Progress in Math. 207, Birkhäuser. (2002)

doi:10.1007/978-3-0348-6188-1_9

Rademacher, H-B, The average indices of closed geodesics, J. Diff. Geom., 29, 65-83 (1989)

Shen, Z., Lectures on Finsler Geometry (2001), Singapore: World Scientific, Singapore

doi:10.1007/978-981-322-937-0_2

Rademacher, H-B, Existence of closed geodesics on positively curved Finsler manifolds, Ergod. Th. Dyn. Sys., 27, 3, 957-969 (2007)

doi:10.1017/S0143385706001064

Rademacher, H-B, The second closed geodesic on Finsler manifolds of dimension \((n>2) \), Trans. Amer. Math. Soc., 362, 3, 1413-1421 (2010)

doi:10.1090/S0002-9947-09-04745-X

Rademacher, H-B; Taimanov, IA, The second closed geodesic, the fundamental group, and generic Finsler metrics, Math. Z., 302, 629-640 (2022)

Shen, Z., Lectures on Finsler Geometry (2001), Singapore: World Scientific, Singapore
doi:10.1142/4619

Taimanov, IA, The type numbers of closed geodesics, Regul. Chaotic Dyn., 15, 1, 84-100 (2010)

doi:10.1134/S1560354710010053

Taimanov, IA, The spaces of non-contractible closed curves in compact space forms, Mat. Sb., 207, 10, 105-118 (2016)

Vigué-Poirrier, M.; Sullivan, D., The homology theory of the closed geodesic problem, J. Differ. Geom., 11, 633-644 (1976)

Wang, W., Closed geodesics on positively curved Finsler manifolds, Ergod. Th. Dyn. Sys., 27, 3, 957-969 (2007)

doi:10.1017/S0143385706001064

Wang, W., On a conjecture of Anosov, Adv. Math., 230, 1597-1617 (2012)

doi:10.1016/j.aim.2012.04.006

Wang, W., On the average indices of closed geodesics on positively curved Finsler spheres, Math. Ann., 355, 1049-1065 (2013)

doi:10.1007/s00208-012-0812-2

Xiao, Y.; Long, Y., Topological structure of non-contractible loop space and closed geodesics on real projective spaces with odd dimensions, Adv. Math., 279, 159-200 (2015)

doi:10.1016/j.aim.2015.03.013

Ziller, W., Geometry of the Katok examples, Ergod. Th. Dyn. Sys., 3, 135-157 (1983)

doi:10.1017/S0143385700001851

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.