Compound-specific $^{15}$N analysis of amino acids: A tool to estimate the trophic position of tropical seabirds in the South China Sea

Libin Wu$^{1,2}$ | Xiaodong Liu$^{1,2}$ | Liqiang Xu$^3$ | Linjie Li$^4$ | Pingqing Fu$^5$

$^1$Institute of Polar Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, China
$^2$Anhui Province Key Laboratory of Polar Environment and Global Change, University of Science and Technology of China, Hefei, Anhui, China
$^3$School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui, China
$^4$LAPC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
$^5$Institute of Surface-Earth System Science, Tianjin University, Tianjin, China

Correspondence
Libin Wu and Xiaodong Liu, Institute of Polar Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China.
Emails: wulbustc@mail.ustc.edu.cn; ycx@ustc.edu.cn

Funding information
This work was funded by the National Natural Science Foundation of China (Nos. 41376124, 41576183, 41776188 and 41402148), and the Fundamental Research Funds for the Central Universities (Grant number JZ2017HTB0201)

Abstract
Compound-specific $^{15}$N analysis of amino acids (AAs) is a powerful tool to determine the trophic position (TP) of organisms. However, it has only been used in a few studies of avian ecology because the AA patterns in the consumer-diet nitrogen trophic discrimination factor ($\text{TDF}_{\text{Glu-Phe}} = \Delta^{15}N_{\text{Glu}} - \Delta^{15}N_{\text{Phe}}$) were unknown in birds until recently, and tropical seabirds have never been investigated with this methodology. Here, we explore the application of this method to tropical seabirds. In this study, we recovered the fossilized bones of tropical seabirds from ornithogenic sediments on two coral islands in the Xisha Islands, South China Sea, as well as the bones and muscle of their predominant food source, flying fish (Exocoetus volitans). Compound-specific $^{15}$N and $^{13}$C analyses of AAs in both seabird and flying fish bone collagen were conducted. The TP of flying fish was calculated based on a widely used single TDF$_{\text{Glu-Phe}}$ approach. We then calculated the TP of tropical seabirds in three different ways: (a) according to the composition of their diet; (b) based on the single TDF$_{\text{Glu-Phe}}$ approach; and (c) using a multi-TDF$_{\text{Glu-Phe}}$ approach. The results of the multi-TDF$_{\text{Glu-Phe}}$ approach were much closer to the results based on the composition of the seabird diet than the results of the single TDF$_{\text{Glu-Phe}}$ approach, confirming its applicability for tropical seabirds. For seabird bone samples of different ages, TP determined from the multi-TDF$_{\text{Glu-Phe}}$ approach was most similar to that of bulk $\delta^{15}$N of bird collagen, with seabirds occupying higher TPs during the Little Ice Age, as previously shown. In addition, the $^{13}$C Suess effect was reflected in the AAs $\delta^{13}$C in our samples. This study applied a compound-specific $^{15}$N analysis of AAs to determine the TP of tropical seabirds that has potential to extend to all tropical seabirds many of which are widely distributed and play a key role in the evolution of coral island ecosystems.

KEYWORDS
amino acids, compound-specific isotope analysis, multi-TDF$_{\text{Glu-Phe}}$ approach, South China Sea, trophic position, tropical seabirds
Stable isotope analysis is a widely used technique in ecology (Fry, 2006), especially for investigations of long-ranging species. It has been demonstrated that δ¹⁵N is a robust marker of trophic position (TP) due to its general increase in organisms along the food chain, when nitrogen fractionates from prey to predator (Hobson, 1999; Post, 2002). With an increase in one trophic level, the average δ¹⁵N in tissues tends to be enhanced by about 3.4‰ (DeNiro & Epstein, 1981; Minagawa & Wada, 1984; Post, 2002). Therefore, we can estimate the TP of a consumer by a simple formula: TPconsumer = (δ¹⁵Nconsumer − δ¹⁵Nproducer)/3.4 + 1. If the organism bulk δ¹⁵N of both the consumer (δ¹⁵Nconsumer) and producer (δ¹⁵Nproducer) are known. However, δ¹⁵Nproducer is sometimes difficult to determine because there are temporal and spatial variations in the isotopic baseline (producers) and adequate sampling is essential. Thus, we cannot compare bond cleaves during metabolic transamination accompanied by an ultimate the trophic discrimination factor (α) for avian studies is supposed to be 7.6‰ commonly, which has been reported in literature. However, many studies have shown that the TEFs for δ¹³C values of nonessential AAs usually showed little or no trophic enrichment between predators and their food, and the TEFs for δ¹³C values of essential AAs were likely to be relevant to the composition and quality of the diet (Howland et al., 2015). Thus, δ¹³C values in AAs, especially essential AAs, have the potential to infer habitat use and source organism production (e.g., Arthur, Kelez, Larsen, Choy, & Popp, 2014; Paolini, Ziller, Laursen, Husted, & Camin, 2015) just like bulk δ¹³C values (DeNiro & Epstein, 1978). However, many studies have shown that δ¹³C values in inorganic and organic materials have decreased rapidly since 1850 AD as
a result of the $^{13}$C Suess effect, which is caused by fossil fuel combustion and the emission of carbon with fewer $^{13}$C isotopes (Blight, Hobson, Kyser, & Arcese, 2015; Pereira et al., 2018), for example, $\delta^{13}$C decreased about 1.8‰ until 2014 in the South China Sea (Jia et al., 2013; Wu, Liu, Fu, Xu, Wang, et al., 2017). It is therefore important to pay careful attention to this effect in paleo-ecological studies using $\delta^{13}$C data (including AAs data). The application of AA $\delta^{13}$C analyses is currently expanding, but further studies are still required to determine the suitability of AA $\delta^{13}$C and $\delta^{15}$N for tracing an animal diets and estimating TP, because carbon and nitrogen isotope ratios vary among different AAs (Nielsen, Clare, Hayden, Brett, & Kratina, 2017).

Tropical seabirds play a key role in the evolution of coral island ecosystems in the tropics (Allaway & Ashford, 1984; Xu et al., 2011), but their TPs have not been analyzed using a compound-specific stable isotope analysis of their AAs, which has a better precision and possibly can yield new ecological information. Although bulk isotopes of seabirds were analyzed (Wu, Liu, Fu, Xu, Li, et al., 2017), they could not quantify historical seabird TP without data on the $\delta^{15}$N in producers. Tropical seabirds have a simple food source in that they predominantly feed on flying fish (e.g., Exocoetus volitans in this study) and squid (e.g., Loligo chinensis; Cherel et al., 2008; Xu, Liu, & Jiang, 2014). In this study, we focused on the Xisha Islands, South China Sea, where there is an abundance of tropical seabirds (Cao, Pan, & Liu, 2007). In our previous studies, we collected a number of fossilized tropical seabird bones from this location and quantitatively calculated the composition of their diet based on a nitrogen isotope mass balance (Wu, Liu, Fu, Xu, Li, et al., 2017). The characteristics and factors influencing bulk $\delta^{13}$C and $\delta^{15}$N in the muscle and scales of the tropical seabird predominant food source (i.e., flying fish) have previously been analyzed in detail (Wu, Xu, et al., 2017). The average bulk $\delta^{13}$C of plant tissues from the Xisha Islands has also been reported (Wu, Liu, & Xu, 2017), and there is the potential for further studies to assess the possibility of seabirds feeding on plants. In this study, a hypothesis was proposed that flying fish have been the predominant food item for tropical seabirds in the Xisha Islands during the past 1,200 years, as is currently the case (Cao, 2005). We conducted a compound-specific $^{15}$N and $^{13}$C analysis of AAs in seabird and fish bone samples to test whether the multi-TDF$_{\text{Glu-Phe}}$ approach of McMahon et al. (2015) was applicable to tropical seabirds, because both tropical seabirds and penguins are marine foragers. We also investigated the potential ecological significance of AAs $\delta^{13}$C and $\delta^{15}$N at the same time, including what nitrogen and carbon TEFs in AAs indicated and how the TPs of seabirds changed in the past. For comparison, the TP of seabirds based on the composition of their diet (Wu, Liu, Fu, Xu, Li, et al., 2017) was calculated after the TP of flying fish and squid were determined, and the TP of seabirds was therefore based on a single TDF$_{\text{Glu-Phe}}$ approach. Our study was the first to apply a stable isotope analysis of individual AAs to tropical seabirds and could help to generalize previous studies of penguins (McMahon et al., 2015) to other seabirds worldwide.

2 | MATERIALS AND METHODS

2.1 | Study area and sample collection

The South China Sea (3°00′ – 23°37′N, 99°10′ – 122°10′E) (Figure 1), located in the tropics, is one of the largest marginal seas in the world and is connected to the Pacific Ocean through the Luzon Strait between the Taiwan and Luzon Islands. The Xisha Islands,

FIGURE 1  Map of the South China Sea showing sampling locations GJ2 and ZS2 at Guangjin and Zhaoshu islands, respectively
in the northwest South China Sea, comprise a group of about 30 islands, most of which are coral and have a typical tropical marine climate with a year-round high temperature (the annual average temperature usually ranges from 26–27°C). The central area of some islands is covered by trees *Pisonia grandis* and *Guettarda speciosa* and shrubs (*Scaevola taccada*). According to previous reports (Cao, 2005), many tropical seabirds occur on the islands, with the red-footed booby (*Sula sula*) being the most important. Tens of thousands of red-footed boobies inhabit Dongdao Island in the Xisha Islands (Exploration Group of Xisha Islands of Institute of Soil Science of Chinese Academy of Sciences (CAS), 1977; Hainan Ocean Administration, 1999; Cao et al., 2007).

Guangjin Island (16°27′N, 111°42′E) has an area of about 0.06 km²; its interior is mainly covered by *G. speciosa* and *P. grandis*, and it is bordered by the shrubs *S. taccada*, *Messerschmidia argentea*, and *Morinda citrifolia*. Zhaoshu Island (16°59′N, 112°16′E) has an area of about 0.20 km²; its center is mainly covered by dense patches of *S. taccada* and a small number of herbaceous *Lepturus repens* plants that grow at the margins. Unfortunately, we did not observe any seabirds on Guangjin or Zhaoshu Islands during field trips. However, a large number of guano pellets, eggshells, bird bones, fish scales, and fish bones were observed in the coral sand ornithogenic sediments underneath the dense vegetation, providing strong evidence of past seabird activity.

Sample sediment profiles, GJ2 and ZS2, were taken from Guangjin and Zhaoshu islands, respectively (Figure 1). To obtain sufficient seabird remains for analyses, a coarse fraction of sediment samples from an adjacent duplicate pit (about 1 × 1 m) was separated at intervals of 1–2 cm using a 10-mesh stainless steel sieve in situ. Tropical seabird bones were sorted from these ornithogenic sediment samples and were most likely from red-footed boobies, which is currently the most abundant species in the Xisha Islands (Cao, 2005; Wu, Liu, Fu, Xu, Li, et al., 2017). Both *20*Pb and radiocarbon (AMS14C) dating were used to establish the chronology of the profiles and seabird bones. The results were reported in our earlier studies (Wu, Liu, Fu, Xu, Li, et al., 2017; Xu et al., 2016). Wu, Liu, Fu, Xu, Li, et al. (2017) suggested that these bone samples were well preserved based on their collagen C/N ratios as the ratios were within the range 2.9–3.6 (DeNiro, 1985). The composition of the diet of these tropical seabirds was determined based on a bulk stable nitrogen isotope analysis. To estimate the TP of food sources, three flying fish samples were collected around Yongxing Island (16°50′N, 112°20′E), which is close to both Guangjin and Zhaoshu islands. The samples were frozen at −20°C before defrosting and dissecting.

### 2.2 Sample preparation and analysis

Before pretreatment and stable isotope analyses, the fish were weighed and their standard length was measured. Bird and fish bones were pretreated, and their collagen was extracted using methods reported in previous studies (Brown, Nelson, Vogel, & Southon, 1988; Longin, 1971; Xu et al., 2014). The bones were cleaned using an ultrasonic bath. After cleaning, the dried bones were gently crushed into small fragments. The chemically cleaned samples were then reacted under vacuum with 1 HCl to dissolve the bone mineral and release carbon dioxide from bioapatite. The residue was filtered, rinsed with deionized water, and heated at 80°C for 6 hr under slightly acid conditions (pH = 3) to dissolve collagen and leave humic substances in the precipitate. The collagen solution was then collected through centrifugation and dried to isolate pure collagen. Fish muscle samples were treated with (1:1) chloroform/methanol for more than 12 hr to extract and remove lipids (Inamura, Zhang, & Minagawa, 2012).

We used isotope ratio mass spectrometry (IRMS MAT 253; Thermo Fisher Scientific, Waltham, MA, USA) to analyze δ15N and δ13C levels in fish muscle samples after removing lipids (Wu, Liu, Fu, Xu, Li, et al., 2017). Collagen bulk sample δ15N and δ13C were measured using a PDZ Europa ANCA-GSL elemental analyzer interfaced to a PDZ Europa 20-20 IRMS (Sercon, Cheshire, UK) at the University of California, Davis (Davis, CA, USA). The stable isotopic composition of the samples was expressed in δ notation as the deviation from standards in parts per thousand (‰), δ15N = [(Rsample/Rstandard) − 1] × 1000 (where R is the ratio 15N/14N and the Rstandard value is based on atmospheric air nitrogen), and δ13C = [(Rsample/Rstandard) − 1] × 1000 (‰) (where R is the ratio 13C/12C and the Rstandard value is based on Vienna Pee Dee Belemnite (V-PDB)). Analytical precision (the standard deviation) for δ13C and δ15N was less than ±0.1‰ and ±0.2‰, respectively.

Bird and fish bone collagen extracts were also sent to UC Davis for compound-specific 15N and 13C analysis of AAs, using the method of Walsh, He, and Yarnes (2014). Sample preparation involved acid hydrolysis for the liberation of AAs from proteins and derivatization by methyl chloroformate to produce compounds amenable to gas chromatography (GC) analyses. A condition of pH < 1 is strictly controlled by re-suspending the dried hydrolysates in 0.4 M HCl prior to derivatization, and this had been proven to avoid uncertainty in the analysis especially for Glu (Sacks & Brenna, 2005; Yarnes & Herszage, 2017). AA derivatives were injected in splitless mode and separated on an Agilent J&W factor FOUR VF-23 ms column (30 m × 0.25 mm ID, 0.25 μm film thickness; Agilent Technologies, Santa Clara, CA, USA). After separation, AA derivatives were finally converted to N2 and CO2 to enter the spectrometer. The final δ-values were obtained after adjusting the provisional values to account for changes in linearity and instrumental drift, enabling the correct δ-values for laboratory standards to be obtained. To ensure the accuracy of data, two mixtures composed of pure amino acids of calibrated δ15C and δ15N and natural materials were used as quality assurance materials and co-measured with samples during the AAs isotopes analyses. The δ15N and δ13C of 11 AAs [Ala, aspartic acid (Asp), Glu, glycine (Gly), Ile, leucine (Leu), lysine (Lys), Met, Phe, Pro, and Val] were determined by this method.

### 2.3 Data analysis

The TP of tropical seabirds was estimated using three methods based on: (a) the composition of their diet; (b) a single TDF$_{Glu-Phe}$
(nitrogen isotope trophic discrimination factor between Glu and Phe) approach; and (c) a multi TDFGlu-Phe approach.

(a) First, because tropical seabirds in the Xisha Islands predominantly prey on flying fish and squid (Cao, 2005; Wu, Liu, Fu, Xu, Li, et al., 2017), the TP of tropical seabirds was inferred from their diet (TP
diet) as follows:

\[
TP_{\text{diet}} = f \times TP_{\text{flying fish}} + (1 - f) \times TP_{\text{squid}} + 1
\] (1)

where \(f\) represents the mass proportion of flying fish in the diet of seabirds, which was quantified in our earlier study (Wu, Liu, Fu, Xu, Li, et al., 2017). The flying fish consumed by tropical seabirds had an average muscle bulk \(\delta^{15}N\) value of 9.2‰ (Wu, Liu, Fu, Xu, Li, et al., 2017). The three flying fish samples had a different mass and standard length from the average values for flying fish in seabird prey (Wu, Liu, Fu, Xu, Li, et al., 2017), and there was a possible difference in the bulk muscle \(\delta^{15}N\) values because the size of an organism can influence tissue \(\delta^{15}N\) values (Olsson, Valters, & Burreau, 2000; Wu, Xu, et al., 2017). Thus, a correction was necessary and the average TP in flying fish consumed by seabirds was determined by (TP
driving fish sample + (9.2 – \(\delta^{15}N\) flying fish sample)/3.4), where \(\delta^{15}N\) flying fish sample represents the average TP and muscle bulk \(\delta^{15}N\) values in the three flying fish samples used in this study, because the TPconsumer = \((\delta^{15}N_{\text{consumer}} – \delta^{15}N_{\text{producer}})/3.4 + 1\) (Post, 2002). We adopted the single TDFGlu-Phe approach (Chikaraishi et al., 2009) to calculate the TP of flying fish as follows:

\[
TP_{\text{CSIA-single TDF}} = 1 + \left[ \frac{\delta^{15}N_{\text{Glu}} – \delta^{15}N_{\text{Phe}} – \beta}{\text{TDF}_{\text{Glu-Phe}}} \right]
\] (2)

where \(\delta^{15}N_{\text{Glu}}\) and \(\delta^{15}N_{\text{Phe}}\) represent the stable nitrogen isotope values in bone collagen Glu and Phe, respectively. \(\beta\) represents the difference in the \(\delta^{15}N\) values between the Glu and Phe of primary producers (3.4‰ for aquatic cyanobacteria and algae), and the literature value of TDFGlu-Phe was 7.6‰ (Chikaraishi et al., 2010). Thus:

\[
TP_{\text{Glu/Phe}} = 1 + \left[ \frac{\delta^{15}N_{\text{Glu}} – \delta^{15}N_{\text{Phe}} – 3.4}{7.6} \right] / 7.6
\] (3)

The TP of squid was then inferred from bulk \(\delta^{15}N\) values in both flying fish and squid muscle (squid in seabird prey had an average muscle bulk \(\delta^{15}N\) value of 10.2 ± 0.4‰, Wu, Liu, Fu, Xu, Li, et al., 2017), and the nitrogen isotope discrimination factor in the food chain, that is, the bulk \(\delta^{15}N\) value in tissues tended to increase to about 3.4‰ with an increase in one trophic level (DeNiro & Epstein, 1981; Minagawa & Wada, 1984; Post, 2002). The TP of tropical seabirds (TP
diet) was then calculated using formula (1).

(b) Second, we calculated the TP of tropical seabirds (TPGlu/Phe 1) using the single TDFGlu-Phe approach (TPCSIA-single TDF) referred to above (formula (3)).

(c) Finally, we calculated the TP of tropical seabirds (TPGlu/Phe 2) using a multi-TDFGlu-Phe approach (TPCSIA-multi TDF), which included an avian-specific TDFGlu-Phe value of penguins (McMahon et al., 2015) because tropical seabirds and penguins are similar in being both seabirds and marine foragers:

\[
TP_{\text{CSIA-multi TDF}} = 2 + \left[ \frac{\delta^{15}N_{\text{Glu}} – \delta^{15}N_{\text{Phe}} – \text{TDF}_{\text{Glu-Phe}} – \beta}{\text{TDF}_{\text{Glu-Phe}} – \beta} \right]
\] (4)

where TDFGlu-Phebird = 7.6‰, which is typical of plankton and other lower trophic level marine organisms (e.g., Chikaraishi et al., 2009), and TDFGlu-Phebird represents the avian-specific TDFGlu-Phe value of 3.5 ± 0.4‰ based on a previously reported feeding experiment (McMahon et al., 2015). The TDFGlu-Phe value was obtained from penguin feathers, but we applied it to our bone samples because in many cases avian feathers and bone collagen have similar bulk \(\delta^{15}N\) values (Hobson, Alisauskas, & Clark, 1993; Huang, Sun, Long, Wang, & Huang, 2013). Therefore:

\[
TP_{\text{Glu/Phe}} = 2 + \left[ \frac{\delta^{15}N_{\text{Glu}} – \delta^{15}N_{\text{Phe}} – 7.6 – 3.4}{3.5} \right]
\] (5)

In our previous study (Wu, Liu, Fu, Xu, Li, et al., 2017), we calculated the composition of the diet of tropical seabirds over the past 1,200 years and compared the results between different periods, including the Medieval Warm Period (MWP, 850–1200 AD) and the Little Ice Age (LIA, 1400–1850 AD). We calculated the TP of seabirds during these and other periods using formulas (1), (3), and (5).

3 | RESULTS

3.1 | TP of food sources for tropical seabirds

The results of a compound-specific \(15\)N analysis of the 11 AAs in flying fish bone collagen indicated that the \(\delta^{15}N\) values of each AA were consistent for the three flying fish samples (Table 1, Figure 2). The TP of the fish was calculated based on the single TDFGlu-Phe approach [Formula (3)], yielding an average of 2.64 ± 0.10, with a muscle bulk \(\delta^{15}N\) of 10.1 ± 0.2‰. The average TP of flying fish preyed on by tropical seabirds was TPflying fish = 2.38 ± 0.10 after the correction.

Based on the reported average muscle bulk \(\delta^{15}N\) value (10.2 ± 0.4‰) of squid in seabird prey (Wu, Liu, Fu, Xu, Li, et al., 2017), the TP of squid TPsquid = 2.38 + (10.2–9.2)/3.4 was 2.67 ± 0.10. Because tropical seabirds predominantly prey on flying fish and squid, their TP based on the composition of their diet was TPDiet = 2.38 × f + 2.67 × (1 – f) + 1 = 3.67–0.29 × f, where \(f\) is the proportion of flying fish.

3.2 | TP of ancient tropical seabirds

As with the flying fish samples, the overall \(\delta^{15}N\) values of each AA varied little in the tropical seabird bone samples (Table 2, Figure 3) and the average value of the calculated TP was 2.68 ± 0.10 and
**TABLE 1** Mass and standard length, muscle δ\(^{15}\)N and δ\(^{15}\)C values in bulk tissue, and individual amino acids (AAs) of bone collagen for flying fish. TP\(_{\text{Glu}/\text{Phe} 1}\) was calculated based on formula (3)

| No.  | 1     | 2     | 3     | Average |
|------|-------|-------|-------|---------|
| Mass (g)  | 334.3 | 300.5 | 241.0 | 291.9 ± 38.6 |
| Standard length (cm) | 29.0  | 28.0  | 25.5  | 27.5 ± 1.5  |
| Muscle bulk δ\(^{15}\)N (%) | 10.4  | 10.0  | 10.0  | 10.1 ± 0.2   |
| Collagen bulk δ\(^{15}\)N (%) | 8.0   | 7.3   | 6.7   | 7.3 ± 0.5    |
| Collagen individual AAs δ\(^{15}\)N (%) |       |       |       |           |
| Ala   | 19.7  | 19.2  | 19.7  | 19.6 ± 0.2  |
| Asp   | 18.7  | 18.6  | 17.8  | 18.4 ± 0.4  |
| Glu   | 18.0  | 19.7  | 19.3  | 19.0 ± 0.7  |
| Gly   | -0.4  | -0.9  | -1.8  | -1.0 ± 0.6  |
| Ile   | 19.9  | 20.1  | 20.4  | 20.2 ± 0.2  |
| Leu   | 18.6  | 18.8  | 17.6  | 18.3 ± 0.5  |
| Lys   | 1.8   | 2.5   | 5.2   | 3.2 ± 1.5   |
| Met   | 9.3   | 9.6   | 8.9   | 9.3 ± 0.3   |
| Phe   | 3.0   | 3.8   | 2.5   | 3.1 ± 0.6   |
| Pro   | 14.2  | 14.1  | 12.8  | 13.7 ± 0.6  |
| Val   | 22.5  | 22.0  | 21.3  | 21.9 ± 0.5  |
| TP\(_{\text{Glu}/\text{Phe} 1}\) | 2.53  | 2.63  | 2.76  | 2.64 ± 0.10 |

**FIGURE 2** The δ\(^{15}\)N values in bulk samples (muscle (M) and bone collagen (C)) and individual amino acids (AAs) (in bone collagen) of the three modern-day flying fish samples.

3.44 ± 0.26 using formula (3) and (5), respectively. A statistical analysis indicated that there was a significant difference between the results from these two formulas (Student’s t-test, p < 0.001).

### 3.3 Nitrogen and carbon trophic enrichment in AAs

The TEF values (Δ\(^{15}\)N<sub>bird-fish</sub> or Δ\(^{13}\)C<sub>bird-fish</sub>) for each AA or bulk sample for tropical seabird and flying fish bone δ\(^{15}\)N or δ\(^{13}\)C values were calculated, and the results are shown in Figures 4 and 5. For “trophic” ( Ala, Asp, Glu, Leu, Pro) and “source” (Gly, Phe) AAs, Δ\(^{15}\)N<sub>bird-fish</sub> are very low and around 0 except for Gly and Pro, and there is no obvious difference between those in “trophic” and “source” ones (Student’s t-test, p = 0.16). For essential (Ile, Leu, Phe, Val) and nonessential ( Ala, Asp, Glu, Gly, Pro) AAs, there is also no obvious difference between them in Δ\(^{13}\)C<sub>bird-fish</sub> (Student’s t-test, p = 0.08). Δ\(^{13}\)C<sub>bird-fish</sub> for most AAs are around 2‰ but are ~0 if the \(^{13}\)C Suess effect (-1.8‰, Jia et al., 2013) was excluded (Figure 5) as bird bones are historical samples but fish bones are in the present. However, we need to point out that what seabirds consume is fish muscle but we used fish bone collagen samples, so we did not calculate the TDFs as they would be meaningless in this analysis.

### 3.4 TP of seabirds in different periods

The TP of seabirds during the MWP, LIA, and the past 1,200 years calculated from formulas (1), (3), and (5) are shown in Table 3 and Figure 6. Bone collagen δ\(^{15}\)N values and the TP calculated from formula (5) (TP\(_{\text{Glu}/\text{Phe} 2}\)) versus age are also plotted in Figure 7. The TP of seabirds from formula (5) (TP\(_{\text{Glu}/\text{Phe} 2}\)) overall changed consistently with bone bulk δ\(^{15}\)N values.

### 4 DISCUSSION

#### 4.1 Nitrogen and carbon trophic enrichment in AAs

We first analyze the TEFs in AAs between bird and fish bones to preliminarily discuss the tissue-specific isotopes including AAs isotopes for seabirds and fish. The TEF values (Figures 4 and 5) between tropical seabird and flying fish bone AAs δ\(^{15}\)N or δ\(^{13}\)C values were quite different from those reported in previous studies of birds (Hebert et al., 2016; McMahon et al., 2015). For example, the avian-specific nitrogen TEF of Glu was higher (TEF\(_{\text{Glu}} = 3.8 ± 0.6‰) in previous study (McMahon et al., 2015). We initially attributed this to the different organs and tissues used among the different studies. Many studies have identified bulk δ\(^{15}\)N and δ\(^{13}\)C discrepancies (isotopic fractionation) among different tissue constituents, including avian and fish tissues (e.g., Cano-Rocabayera et al., 2015; Hobson, 1995; Thorold, Campana, & Swart, 1997; Wu, Xu, et al., 2017). The average flying fish bulk collagen δ\(^{15}\)N value in the present study was 7.3 ± 0.5‰, which was confusing because the average seabird bone collagen bulk δ\(^{15}\)N was 13.5 ± 0.8‰ and should be at a higher trophic level than flying fish, although the actual bulk δ\(^{15}\)N difference (13.5‰ – 7.3‰ = 6.2‰) was very large. However, considering that the average flying fish muscle bulk δ\(^{15}\)N value was 10.1 ± 0.2‰, it was reasonable. Thus, the method used to estimate TP based on a compound-specific \(^{15}\)N analysis of AAs has merit in this respect, and we obtained a reasonable result from all muscle, bone, or other tissue samples of the organisms investigated (Hoen et al., 2014; Nielsen et al., 2015; and this study). As seabird food source is mainly flying fish muscle rather than fish bone collagen, we did not use the
In our data, there were larger TEF values for δ\(^{13}\)C than reported in a previous study, in which δ\(^{13}\)C TEF values between Gentoo penguins and their food source, Atlantic herring (Clupea harengus), were around 0 for essential AAs (Ile, Val, Phe, Leu, etc.), and were also very small (0‰–2.4‰) for nonessential AAs (Gly, Ser, Ala, Asp, Glu, Pro, etc.) (McMahon et al., 2015). The δ\(^{13}\)C TEF values in the present study were higher for all essential and nonessential AAs, except Ala and Gly, and the TEF for bulk δ\(^{13}\)C (2.6 ± 1.3‰) was higher than reported previously (1.0 ± 0.3‰) (McMahon et al., 2015). In addition to isotopic fractionation among different tissue samples, we suggest that the 13C Suess effect caused by fossil fuel combustion and carbon emissions with fewer 13C isotopes, also led to this difference and TDF value of our data, but cite the result from another study to estimate seabird TP.

In our data, there were larger TEF values for δ\(^{13}\)C than reported in a previous study, in which δ\(^{13}\)C TEF values between Gentoo penguins and their food source, Atlantic herring (Clupea harengus), were around 0 for essential AAs (Ile, Val, Phe, Leu, etc.), and were also very small (0‰–2.4‰) for nonessential AAs (Gly, Ser, Ala, Asp, Glu, Pro, etc.) (McMahon et al., 2015). The δ\(^{13}\)C TEF values in the present study were higher for all essential and nonessential AAs, except Ala and Gly, and the TEF for bulk δ\(^{13}\)C (2.6 ± 1.3‰) was higher than reported previously (1.0 ± 0.3‰) (McMahon et al., 2015). In addition to isotopic fractionation among different tissue samples, we suggest that the 13C Suess effect caused by fossil fuel combustion and carbon emissions with fewer 13C isotopes, also led to this difference and TDF value of our data, but cite the result from another study to estimate seabird TP.

In our data, there were larger TEF values for δ\(^{13}\)C than reported in a previous study, in which δ\(^{13}\)C TEF values between Gentoo penguins and their food source, Atlantic herring (Clupea harengus), were around 0 for essential AAs (Ile, Val, Phe, Leu, etc.), and were also very small (0‰–2.4‰) for nonessential AAs (Gly, Ser, Ala, Asp, Glu, Pro, etc.) (McMahon et al., 2015). The δ\(^{13}\)C TEF values in the present study were higher for all essential and nonessential AAs, except Ala and Gly, and the TEF for bulk δ\(^{13}\)C (2.6 ± 1.3‰) was higher than reported previously (1.0 ± 0.3‰) (McMahon et al., 2015). In addition to isotopic fractionation among different tissue samples, we suggest that the 13C Suess effect caused by fossil fuel combustion and carbon emissions with fewer 13C isotopes, also led to this difference and TDF value of our data, but cite the result from another study to estimate seabird TP.

In our data, there were larger TEF values for δ\(^{13}\)C than reported in a previous study, in which δ\(^{13}\)C TEF values between Gentoo penguins and their food source, Atlantic herring (Clupea harengus), were around 0 for essential AAs (Ile, Val, Phe, Leu, etc.), and were also very small (0‰–2.4‰) for nonessential AAs (Gly, Ser, Ala, Asp, Glu, Pro, etc.) (McMahon et al., 2015). The δ\(^{13}\)C TEF values in the present study were higher for all essential and nonessential AAs, except Ala and Gly, and the TEF for bulk δ\(^{13}\)C (2.6 ± 1.3‰) was higher than reported previously (1.0 ± 0.3‰) (McMahon et al., 2015). In addition to isotopic fractionation among different tissue samples, we suggest that the 13C Suess effect caused by fossil fuel combustion and carbon emissions with fewer 13C isotopes, also led to this difference and

| No. | 1    | 2    | 3    | 4    | 5    | 6    | 7    | Average |
|-----|------|------|------|------|------|------|------|---------|
| Age (AD) | 1913 | 1680 | 1574 | 1477 | 1341 | 1082 | 1020 |         |
| Profile | ZS2  | ZS2  | GJ2  | GJ2  | ZS2  | GJ2  | GJ2  |         |
| Collagen individual AAs δ\(^{15}\)N(‰) |     |      |      |      |      |      |      |         |
| Ala  | 18.8 | 17.8 | 19.6 | 18.7 | 20.3 | 20.1 | 18.4 | 19.1 ± 0.8 |
| Asp  | 15.6 | 16.6 | 18.6 | 19.0 | 16.7 | 19.1 | 17.0 | 17.5 ± 1.3 |
| Glu  | 19.2 | 19.8 | 20.9 | 19.1 | 19.6 | 20.6 | 19.0 | 19.8 ± 0.7 |
| Gly  | 8.5  | 8.8  | 11.9 | 11.3 | 8.5  | 9.7  | 9.6  | 9.8 ± 1.3 |
| Ile  | 18.6 | 18.1 | 21.0 | 20.8 | 20.1 | 21.7 | 21.0 | 20.2 ± 1.3 |
| Leu  | 17.4 | 16.8 | 18.7 | 18.5 | 18.6 | 19.7 | 18.9 | 18.4 ± 0.9 |
| Lys  | 3.0  | 7.5  | 6.0  | 5.4  | 4.0  | 5.4  | 4.1  | 5.1 ± 1.4 |
| Met  | 9.7  | 10.1 | –    | –    | 9.5  | –    | –    | 9.8 ± 0.2 |
| Phe  | 4.1  | 2.4  | 4.2  | 4.3  | 2.2  | 4.6  | 3.5  | 3.6 ± 0.9 |
| Pro  | 19.4 | 19.7 | 23.6 | 21.9 | 21.9 | 22.3 | 20.4 | 21.3 ± 1.4 |
| Val  | 20.9 | 21.1 | 23.7 | 21.7 | 22.2 | 22.0 | 22.0 | 21.9 ± 0.9 |
| Collagen bulk δ\(^{15}\)N (‰) |      |      |      |      |      |      |      | 14.9 ± 1.4 |
| TP\(_{\text{Glu/Phe 1}}\) | 2.54 | 2.83 | 2.75 | 2.51 | 2.84 | 2.66 | 2.60 | 2.68 ± 0.10 |
| TP\(_{\text{Glu/Phe 2}}\) | 3.14 | 3.78 | 3.61 | 3.07 | 3.80 | 3.40 | 3.27 | 3.44 ± 0.26 |

**TABLE 2** The δ\(^{15}\)N values in bulk tissue and individual amino acids (AAs) of seabird collagen and the trophic position (TP) calculated using formulas (3) (TP\(_{\text{Glu/Phe 1}}\)) and (5) (TP\(_{\text{Glu/Phe 2}}\)). (“–” means no data because of an insufficient amount of sample)
marine organisms) and were tropical seabirds. Terrestrial plants could not contribute to these food sources because plants in the Xisha Islands have an average δ\(^{13}\)C value of −28.93 ± 0.81‰ (Wu, Liu, & Xu, 2017), while for our bird bone bulk sample it was −13.3 ± 0.8‰, and for compound-specific AAs it ranged from −24.6‰ to −8.8‰.

### 4.2 | Comparisons for TP calculations

Flying fish prey on phytoplankton and zooplankton (Wu, Xu, et al., 2017), which have a TP of 1 and ≥2 (~2.5 in some studies), respectively (Rybczynski, Walters, Fritz, & Johnson, 2008; Sommer et al., 2005). Thus, the TP of flying fish should be between 2 and 3 and our result (2.38 ± 0.10) is therefore quite reasonable (Table 1). Other studies also proved the rationality of this result, for example, Choy, Popp, Hannides, and Drazen (2015) reported that Exocoetus volitans had a Δ\(^{15}\)N\(_{\text{Glu-Phe}}\) of 17.4‰, which is quite consistent with that in our study (15.9 ± 0.9‰), Mancini and Bugoni (2014) summarized that δ\(^{15}\)N in flying fish is ~3‰ higher than that in plankton and the bulk isotope ratio of nitrogen discriminates at 2~5‰ in each TP. The results of a nitrogen isotope mass balance indicate that flying fish feed primarily on phytoplankton (at least 62 ± 10%) and secondly on zooplankton (at most 38 ± 10%) (Saito, Johnson, Bartholow, & Hanna, 2001; Wu, Liu, Fu, Xu, Li, et al., 2017). The derived TP (2.67 ± 0.10) of squid (L. chinensis) is similar to that of cuttlefish Spirula spirula at 2.5~2.8 (Ohkouchi et al., 2013). Our results generally corresponded to the TPs of marine organisms with similar food sources, which can be inferred from a traditional stable isotope or diet analysis (Lin, 2013). Thus, formula (3) and the single TDF\(_{\text{Glu-Phe}}\) approach were applicable for the aquatic organisms investigated in our study.

When we calculated the TP of tropical seabirds based on a compound-specific δ\(^{15}\)N analysis of AAs, we found that the results using formula (3) were unreasonable, with the average value of 2.68 ± 0.12 being only slightly higher than that of flying fish (2.38 ± 0.10). Therefore, the conventional literature value (7.6‰) and widely used formula (3) are not applicable to avian species, although they work well for aquatic organisms (e.g., Bradley et al., 2015; Nielsen et al., 2015; Ohkouchi et al., 2013). However, the average of 3.44 ± 0.26 obtained using formula (5) was nearly the same as that based on the composition of the diet (3.44 ± 0.13) (Tables 2 and 3, Figure 6). Thus, we suggest that the multi-TDF\(_{\text{Glu-Phe}}\) approach and formula (5) from McMahon et al. (2015) are applicable for tropical seabirds. The avian-specific nitrogen TDF of Glu and Phe (TDF\(_{\text{Glu-Phe}}\) = 3.5 ± 0.4‰) was significantly lower than the conventional value reported in the literature (7.6‰), because of the relatively low TEF of the trophic AA Glu (McMahon et al., 2015). According to previous studies, there are several possible reasons for the lower TDF\(_{\text{Glu-Phe}}\) values of birds than other taxa, for example,

![FIGURE 5](image5.png)

**FIGURE 5** Trophic enrichment factors (TEF values) between tropical seabird and flying fish bone AAs (and bulk bone samples) δ\(^{13}\)C (n = 3 for fish, and n = 7 for birds). The solid dots represent the results of original data, and the hollow squares are those from original data minus 1.8‰.

![FIGURE 6](image6.png)

**FIGURE 6** Trophic position (TP) of ancient tropical seabirds calculated from the composition of their diet (formula (1), TP\(_{\text{diet}}\), formula (3) (TP\(_{\text{Glu/Phe1}}\)), and formula (5) (TP\(_{\text{Glu/Phe2}}\)), in different periods [Medieval Warm Period (MWP); Little Ice Age (LIA)].

| Period          | Seabird diet | TP\(_{\text{diet}}\) | TP\(_{\text{Glu/Phe1}}\) | TP\(_{\text{Glu/Phe2}}\) |
|-----------------|--------------|----------------------|--------------------------|--------------------------|
| MWP             | Flying fish: 88 ± 2%; squid: 12%   | 3.41 ± 0.01          | 2.63 ± 0.03            | 3.34 ± 0.06            |
|                 | Squid: 63%   |                      |                          |                          |
| LIA             | Flying fish: 37 ± 30%; squid: 63%   | 3.56 ± 0.10          | 2.70 ± 0.14            | 3.40 ± 0.30            |
|                 | Squid: 80 ± 40%; squid: 20%   |                      |                          |                          |
| Past 1,200 years | Flying fish: 80 ± 40%; squid: 20%   | 3.44 ± 0.13          | 2.68 ± 0.12            | 3.44 ± 0.26            |

**TABLE 3** Trophic position (TP) of ancient tropical seabirds calculated from the composition of their diet [formula (1), TP\(_{\text{diet}}\), formula (3) (TP\(_{\text{Glu/Phe1}}\)), and formula (5) (TP\(_{\text{Glu/Phe2}}\)). The composition of the seabird diet is taken from Wu, Liu, Fu, Xu, Li, et al. (2017).
birds grow rapidly and trophic AAs could be less enriched in growing animals; birds with a high TP have high quality food sources (rich in protein and similar AA compositions with birds), and nitrogen is excreted by birds through the production of $^{15}$N-enriched urea and uric acid (Germain et al., 2013; McMahon & McCarthy, 2016). Although formula (5) was derived from penguins, it is suitable for use with tropical seabirds in the South China Sea. The two groups of birds are quite similar in some aspects; for example, penguins and tropical seabirds prey on marine fish and squid. This similar feeding habit may account for the similar nitrogen TDFs (TDF) of AAs. Thus, we can estimate the actual TP of tropical seabirds based only on the $^{15}$N values in their tissue Glu and Phe, which is a simpler and more convenient method. Although the very small nitrogen isotope difference between TEF-Glu and TEF-Phe for flying fish and tropical seabirds bones (Figure 4), not 3.5% as revealed by penguin feathers, and implies that AAs $^{15}$N in organisms is tissue specific; this did not have an impact on the use of formula (5) to estimate TP.

### 4.3 | TP of tropical seabirds in the past

The TP for each seabird bone sample was calculated based on formula (5) (Table 2). In our previous study, seabirds from the MWP and LIA were combined to compare their relative TP (Wu, Liu, Fu, Xu, Li, et al., 2017). In this manner, the size of the seabirds, which would affect the TP [e.g., Olsson et al., 2000], was excluded. The results based on an analysis of their diet suggested that tropical seabirds were at a TP of $3.41 \pm 0.01$ in the MWP, and $3.56 \pm 0.10$ in the LIA. Similarly, the calculations based on formula (5) indicated that seabirds were at a TP of $3.34 \pm 0.06$ and $3.40 \pm 0.30$ in the MWP and LIA, respectively. The difference from Wu, Liu, Fu, Xu, Li, et al. (2017) was attributed to a change in their diet, with seabirds preying more on squid, which is at a higher TP, than flying fish in the LIA, while they mainly fed on flying fish in the MWP and in the present-day (Wu, Liu, Fu, Xu, Li, et al., 2017). This change in their diet was a result of changes in population size, with fewer seabirds in the MWP and the flying fish population therefore being sufficient to feed them. However, there was a larger seabird population size in the LIA (Wu, Liu, Fu, Xu, Li, et al., 2017; Xu et al., 2016), at a time when flying fish were not as abundant and more squid was consumed in the diet of seabirds.

From Figure 7, the TP of seabirds from formula (5) ($TP_{Glu/Phe}$) changed consistently with bone bulk $^{15}$N values, except for the most recent (AD 1913) sample, which was probably more affected by human disturbance, for example, the presence of people on the islands. The similar trends suggest that both bulk $^{15}$N and the multi-TDF$_{Glu-Phe}$ approach have the potential to reflect the TP of seabirds. However, the bulk $^{15}$N values only reflect the relative TP and background $^{15}$N changes must also be known. Fortunately, the multi-TDF$_{Glu-Phe}$ approach ($TP_{Glu/Phe}$) provides a quantitative TP with no additional conditions, and we can also distinguish the changes in background $^{15}$N values and TP variances of seabirds from $^{15}$N$_{Glu}$ and $^{15}$N$_{Phe}$. Because seabirds are widely distributed in the tropics and play a key role in the evolution of coral island ecosystems, our study is relevant to many other regions and can be used to inform other studies of the stable isotope ecology of tropical seabirds and coral island ecosystems.

### ACKNOWLEDGMENTS

This work was funded by the National Natural Science Foundation of China (Nos. 41376124, 41576183, 41776188 and 41402148), and the Fundamental Research Funds for the Central Universities (Grant number JZ2017HGTB0201). We thank two anonymous reviewers for constructive comments. All members of field study team, including the Chinese People’s Liberation Army, and Liguang Sun, Yi Liu, Hong Yan, Jia Yang, Yuwan Luo, Zijun Wu; Xisha Deep Sea Marine Environment Observation and Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences and Chang Chen, Daning Li, Lin Chen and Zhenhua Long are acknowledged and thanked for their help in sample collection. We are especially grateful to Steven D. Emslie and Michael J. Polito for their comments on the manuscript and contributions to improving the English.

### CONFLICT OF INTEREST

The authors have no conflict of interests to declare.

### AUTHOR CONTRIBUTIONS

Libin Wu, Xiaodong Liu, and Liqiang Xu designed the study and prepared the manuscript. Xiaodong Liu, Libin Wu, and Liqiang Xu collected the samples. Libin Wu, Linjie Li, and Pingqing Fu performed the experiments. All authors contributed to discussion of the results.

### DATA ACCESSIBILITY

All data used in this manuscript are present in the manuscript.

### ORCID

Xiaodong Liu [http://orcid.org/0000-0002-4333-8197](http://orcid.org/0000-0002-4333-8197)
REFERENCES

Allaway, W. G., & Ashford, A. E. (1984). Nutrient input by seabirds to the forest on a coral island of the Great Barrier Reef. Marine Ecology Progress Series, 19, 297–298. https://doi.org/10.3354/meps01929

Arthur, K. E., Kellez, S., Larsen, T., Choy, C. A., & Popp, B. N. (2014). Tracing the biosynthetic source of essential amino acids in marine turtles using $\delta^{13}C$ fingerprints. Ecology, 95, 1285–1293. https://doi.org/10.1890/13-0263.1

Blight, L. K., Hobson, K. A., Kyser, T. K., & Arcese, P. (2015). Changing gull diet in a changing world: A 150-year stable isotope ($\delta^{13}C$, $\delta^{15}N$) record from feathers collected in the Pacific Northwest of North America. Global Change Biology, 2, 1497–1507. https://doi.org/10.1111/gcb.12796

Bradley, C. J., Wallsgrove, N. J., Choy, C. A., Drazen, J. C., Hetherington, Cao, L., Pan, Y. L., & Liu, N. F. (2007). Waterbirds of the Xisha archipelago, Cao, L. (2005). Population ecology of the red-footed booby on the Xisha archipelago. PhD Dissertation, Lanzhou University. Cao, L., Pan, Y. L., & Liu, N. F. (2007). Waterbirds of the Xisha archipelago. South China Sea. Waterbirds, 30, 296–300. https://doi.org/10.1675/1524-4695(2007)30[296:WOTXAS]2.0.CO;2

Cherel, Y., Le Corre, M., Jaquemet, S., Ménard, F., Richard, P., & Weimerskirch, H. (2008). Resource partitioning within a tropical seabird community: New information from stable isotopes. Marine Ecology Progress Series, 366, 281–291. https://doi.org/10.3354/meps07587

Chikaraishi, Y., Kashiyama, Y., Ogawa, N. O., Kitazato, H., & Ohkouchi, N. (2007). Metabolic control of nitrogen isotope composition of amino acids in macroalgae and gastropods: Implications for aquatic food web studies. Marine Ecology Progress Series, 342, 85–90. https://doi.org/10.3354/meps342085

Chikaraishi, Y., Ogawa, N. O., Kashiyama, Y., Takano, Y., Suga, H., Tomitani, A., ... Ohkouchi, N. (2009). Determination of aquatic food-web structure based on compound-specific nitrogen isotopic composition of amino acids. Limnology and Oceanography, Methods, 7, 740–750. https://doi.org/10.4319/lom.2009.7.740

Chikaraishi, Y., Ogawa, N. O., & Ohkouchi, N. (2010). Further evaluation of the trophic level estimation based on nitrogen isotopic composition of amino acids. Earth, life, and isotopes. Kyoto, Japan: Kyoto University Press 415.

Chikaraishi, Y., Steffan, S. A., Ogawa, N. O., Ishikawa, N. F., Sasaki, Y., Tsuchiya, M., & Ohkouchi, N. (2014). High-resolution food webs based on nitrogen isotopic composition of amino acids. Ecology and Evolution, 4, 2423–2449. https://doi.org/10.1002/ece3.1103

Chikaraishi, Y., Steffan, S. A., Takano, Y., & Ohkouchi, N. (2015). Diet quality influences isotopic discrimination among amino acids in an aquatic vertebrate. Ecology and Evolution, 5, 2048–2059. https://doi.org/10.1002/ece3.1491

Choy, C. A., Popp, B. N., Hannides, C., & Drazen, J. C. (2015). Trophic structure and food resources of epipelagic and mesopelagic fishes in the North Pacific Subtropical Gyre ecosystem inferred from nitrogen isotopic compositions. Limnology and Oceanography, 60, 1156–1171. https://doi.org/10.1002/ino.10085

DeNiro, M. J. (1985). Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature, 317, 806. https://doi.org/10.1038/317806a0

DeNiro, M. J., & Epstein, S. (1978). Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta, 42, 495–506. https://doi.org/10.1016/0016-7037(78)90199-0

DeNiro, M. J., & Epstein, S. (1981). Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica et Cosmochimica Acta, 45, 341–351. https://doi.org/10.1016/0016-7037(81)90244-1

Eagle, H. (1959). Amino acid metabolism in mammalian cell cultures. Science, 130, 432–437. https://doi.org/10.1126/science.130.3373.432

Exploration Group of Xisha Islands of Institute of Soil Science of Chinese Academy of Sciences (CAS) (1977). Soil and Guano Phosphorus Mine in Xi-Sha. Beijing, China: Science Press (in Chinese with English abstract).

Fry, B. (2006). Stable isotope ecology. New York, NY: Springer. https://doi.org/10.1007/0-387-33745-8

Germain, L. R., Koch, P. L., Harvey, J., & McCarthy, M. D. (2013). Nitrogen isotope fractionation in amino acids from harbor seals: Implications for compound-specific trophic position calculations. Marine Ecology Progress Series, 482, 265–277. https://doi.org/10.3354/meps10257

Hainan Ocean Administration (1999). The professional proceedings of the integrated investigation research on sea islands resource of Hainan province. Beijing, China: China Ocean Press 1–1174 (in Chinese).

Hebert, C. E., Popp, B. N., Fernie, K. J., Ka'apu-Lyons, C., Rattner, B. A., & Wallsgrove, N. (2016). Amino acid specific stable nitrogen isotope values in avian tissues: Insights from captive American kestrels and wild herring gulls. Environmental Science & Technology, 50, 12928–12937. https://doi.org/10.1021/acs.est.6b04407

Hobson, K. A. (1995). Reconstructing avian diets using stable-carbon and nitrogen isotope analysis of egg components: Patterns of isotopic fractionation and turnover. Condor, 97, 752–762. https://doi.org/10.2307/1369183

Hobson, K. A. (1999). Tracing origins and migration of wildlife using stable isotopes: A review. Oecologia, 120, 314–326. https://doi.org/10.1007/s004420050865

Hobson, K. A., Alisauskas, R. T., & Clark, R. G. (1993). Stable-nitrogen isotope enrichment in avian tissues due to fasting and nutritional stress: Implications for isotopic analyses of diet. Condor, 95, 388–394. https://doi.org/10.2307/1369361

Hoen, D. K., Kim, S. L., Hussey, N. E., Wallsgrove, N. J., Drazen, J. C., & Popp, B. N. (2014). Amino acid $^{15}N$ trophic enrichment factors of four large carnivorous fishes. Journal of Experimental Marine Biology and Ecology, 453, 76–83. https://doi.org/10.1016/j.jembe.2014.01.006

Howland, M. R., Corr, L. T., Young, S. M., Jones, V., Jim, S., Van Der Merwe, N. J., ... Evershed, R. P. (2003). Expression of the dietary isotope signal in the compound-specific $\delta^{14}C$ values of pig bone lipids and amino acids. International Journal of Osteoarchaeology, 13, 54–65. https://doi.org/10.1002/(ISSN)1099-1212

Huang, T., Sun, L. G., Long, N. Y., Wang, Y. H., & Huang, W. (2013). Penguin tissue as a proxy for relative krill abundance in East Antarctica during the Holocene. Scientific Reports, 3, 2807. https://doi.org/10.1038/srep02807

Hückstädt, L. A., McCarthy, M. D., Koch, P. L., & Costa, D. P. (2017). What difference does a century make? Shifts in the ecosystem structure of the Ross Sea, Antarctica, as evidenced from a sentinel species, the Weddell seal Proceedings of the Royal Society B. The Royal Society, 284, 20170927. https://doi.org/10.1098/rspb.2017.0927

Inamura, O., Zhang, J., & Minagawa, M. (2012). $\delta^{13}C$ and $\delta^{15}N$ values in scales of Micropterus salmoides largemouth bass as a freshwater environmental indicator. Rapid Communications in Mass Spectrometry, 26, 17–24. https://doi.org/10.1002/rcm.5288
acids. *Geochimica et Cosmochimica Acta*, 74, 241–251. https://doi.org/10.1016/j.gca.2009.09.022

Thorrold, S. R., Campana, S. E., Jones, C. M., & Swart, P. K. (1997). Factors determining $\delta^{13}C$ and $\delta^{18}O$ fractionation in aragonitic otoliths of marine fish. *Geochimica et Cosmochimica Acta*, 61, 2909–2919. https://doi.org/10.1016/S0016-7037(97)00141-5

Walsh, R., He, S., & Yarnes, C. T. (2014). Compound-specific stable isotope analysis of amino acids by GC-C-IRMS of methyl chloroformate derivatives. *Rapid Communications in Mass Spectrometry*, 28, 96–108. https://doi.org/10.1002/rcm.6761

Webb, E. C., Honch, N. V., Dunn, P. J., Linderholm, A., Eriksson, G., Lidén, K., & Evershed, R. P. (2018). Compound-specific amino acid isotopic proxies for distinguishing between terrestrial and aquatic resource consumption. *Archaeological and Anthropological Sciences*, 10, 1–18. https://doi.org/10.1007/s12520-015-0309-5

Wu, L. B., Liu, X. D., Fu, P. Q., Xu, L. Q., Li, D. N., & Li, Y. L. (2017). Dietary change in seabirds on Guangjin Island, South China Sea, over the past 1200 years inferred from stable isotope analysis. *Holocene*, 27, 331–338. https://doi.org/10.1177/095968361660163

Wu, L. B., Liu, X. D., Fu, P. Q., Xu, L. Q., Wang, X. Y., Sun, Y., & Li, Y. L. (2017). Identification and stable isotope analyses of flying fish scales from ornithogenic sediments at three islands in the South China Sea. *Marine Ecology Progress Series*, 585, 175–183. https://doi.org/10.3354/meps12382

Wu, L. B., Liu, X. D., & Xu, L. Q. (2017). Change of organic $\delta^{13}C$ in ornithogenic sediments of the Xisha archipelago, South China Sea and its environmental implication. *Acta Geologica Sinica, English Edition*, 91, 1109–1119. https://doi.org/10.1111/1755-6724.13327

Wu, L. B., Xu, L. Q., Sun, J., Wang, X. Y., Wei, Y. Y., Li, Y. L., & Liu, X. D. (2017). Correlation of $\delta^{13}C$ and $\delta^{15}N$ in flying fish (*Exocoetus volitans*) muscle and scales from the South China Sea. *Oceanological and Hydrobiological Studies*, 46, 307–313.

Xu, L. Q., Liu, X. D., & Jiang, S. (2014). Late-Holocene seabird palaeodietary record from Ganquan Island, South China Sea. *Quaternary International*, 333, 139–145. https://doi.org/10.1016/j.quaint.2014.01.001

Xu, L. Q., Liu, X. D., Sun, L. G., Yan, H., Liu, Y., Luo, Y. H., & Huang, J. (2011). Geochemical evidence for the development of coral island ecosystem in the Xisha Archipelago of South China Sea from four ornithogenic sediment profiles. *Chemical Geology*, 286, 135–145.

Xu, L. Q., Liu, X. D., Wu, L. B., Sun, L. G., Zhao, J. J., & Chen, L. (2016). Decline of recent seabirds inferred from a composite 1000-year record of population dynamics. *Scientific Reports*, 6, 35191. https://doi.org/10.1038/srep35191

Yarnes, C., & Herszage, J. (2017). The relative influence of derivatization and normalization procedures on the compound-specific stable isotope analysis of nitrogen in amino acids. *Rapid Communications in Mass Spectrometry*, 31, 693–704. https://doi.org/10.1002/rcm.7832

Zhang, Z. Y., Tian, J., Xiao, H. W., Zheng, N. J., Gao, X. F., Zhu, R. G., & Xiao, H. W. (2016). A reliable compound-specific nitrogen isotope analysis of amino acids by GC-C-IRMS following derivatisation into N-pivaloyl-iso-propyl (NPIP) esters for high-resolution food webs estimation. *Journal of Chromatography B*, 1033, 382–389. https://doi.org/10.1016/j.jchromb.2016.09.004

---

**How to cite this article:** Wu, L., Liu, X., Xu, L., Li, L., Fu, P. Compound-specific $^{15}N$ analysis of amino acids: A tool to estimate the trophic position of tropical seabirds in the South China Sea. *Ecol Evol*. 2018;8:8853–8864, https://doi.org/10.1002/ece3.4282