Effect of non-magnetic rare earth substitution for A site in mixed anion APX superconductors

*H Kitô1, K Kawashima1,2, S Ishida1, K Oka1, H Fujihisa1, Y Gotoh1, A Iyo1, H Ogino1, H Eisaki1 and Y Yoshida1

1National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan

2IMRA Material R&D Co., Ltd, Kariya, Aichi 448-0032, Japan

corresponding author’s e-mail address: h.kito@aist.go.jp

Abstract. We report the improvement of superconducting transition temperature (T_c) by non-magnetic rare earth atom substitution for A site in APX-based Zr(P, S), Hf(P, Se), and Hf(P, S) superconductors. The partial non-magnetic rare earth Lu atom substitution at Zr site of ZrPS, as opposed to the case of Zr(P, Se)$_2$, shows that lattice constants a and c decrease monotonically with increasing nominal substitution y. It is shown that the maximum T_c for ZrPS was increased from 3.70 K to 5.36 K. In HfP$_{1.35}$Se$_{0.45}$, when Hf site is partially substituted with Lu atoms (or Y atoms), lattice constant a shrinks and c expands monotonically with increasing nominal rare earth substitution y. T_c was also increased from 4.88 K to 5.89 K. In HfP$_{1.45}$Se$_{0.55}$, when Hf site is partially substituted with Lu atoms (or Y atoms), lattice constant a shrinks slightly and c expands monotonically with increasing y. T_c was also increased from 3.16 K to 5.86 K. In this paper, the doping behaviour by partial substitution and the increase of T_c is discussed.

1. Introduction

The mixed anion PbFCl-type intermetallic AP$_2$X$_i$ (A=Zr, Hf, X=S and Se) superconductors has a tetragonal layer-like structure consisting of alternately stacked A-(P, X) frame units and P square net layers along the c-axis (see Figure 1). This crystal structure is the same as the topological Dirac ZrSiS semiconductor [1].

Using polycrystalline sample study, many new superconductors such as Zr-P-Se, Zr-P-S, Hf-P-Se, and Hf-P-S and their superconducting properties were reported [2, 3]. In ZrP$_2$Se$_4$, superconducting transition temperature (T_c) increases with increasing nominal composition x at first, and reaches its maximum T_c value (6.31 K) at around nominal composition $x=0.75$, after which it decreases monotonically [2, 3]. In AP$_2$X$_i$ (A=Zr, Hf, X=S and Se), T_c was controlled by the nominal substitution concentration x of (P, X) site in A-(P, X) frame units. The resultant phase diagrams are thus dome-like substitution dependence, as seen in high- T_c cuprates [4] or iron-based superconductors [5]. From these results, an enhancement of T_c was revealed by increasing the bonding length between P-P and nominal substitution concentration x of (P, X) site in A-(P, X) frame units.

By non-magnetic rare earth (Ln= La, Y and Lu) substitution of Zr site for Zr-(P, X) frame units in ZrP$_2$Se$_4$, T_c of (Zr$_{1-x}$Ln$_x$)P$_2$Se$_4$ shows also dome-like y dependence and implying T_c was controlled
by nominal non-magnetic rare earth concentration \(y \) [6, 7]. From these results, \(T_c \) may rise further if \(Zr \) is substituted by trivalent ions, which dissolve well for \(Zr-(P, Se) \) frame units.

In this study, \((A_{1-y}Ln_y)P_{2-x}X_x (A=Zr, Hf, Ln = Lu and Y, X=S and Se)\) polycrystalline samples were synthesized by a high-pressure technique using a cubic anvil press.

![Figure 1](image)

Figure 1. The crystal structure for mixed anion intermetallic PbFCl-type \(AP_{2-x}X_x (A=Zr, Hf, X=S, Se)\) superconductors. This PbFCl-type superconductor has a tetragonal layer-like structure consisting of alternately stacked \(A-(P, X)\) frame units and \(P \) square net layers along the \(c\)-axis.

2. Experiment and results

2.1. Experiment

\((A_{1,y}Ln_y)P_{2-x}X_x (A=Zr, Hf, Ln = Lu and Y, X=S and Se)\) polycrystalline samples were synthesized by a high-pressure technique using a cubic anvil press. \(Zr \) (powder, 98 %), \(Hf \) (powder, 99.9 %), \(Lu \) (powder, 99.9 %), \(Y \) (powder, 99.9 %), \(P \) (grain, 99.999%) and \(Se \) (grain, 99.999%) were mixed and pelletized in a nitrogen-filled glove box. The pellets (total mass: \(\sim 0.35 \) g) were put into BN crucibles and heated at \(\sim 1,425 \) \(^\circ\)C \(\sim 1,651 \) \(^\circ\)C under a pressure of approximately \(\sim 2.0 \) GPa for 1.0 h and then rapidly quenched to room temperature. Starting nominal compositions were \((Zr_{1-y}Ln_y)PS (Ln = Lu, Y), (Hf_{1-y}Ln_y)P_{1.5}Se_{0.45} (Ln = Lu, Y), and (Hf_{1-y}Ln_y)P_{1.42}S_{0.55} (Ln = Lu, Y)\), respectively.

The crystal structure was examined using the powder X-ray diffraction (XRD) technique. The intensity data were measured with a Rigaku Ultima-IV diffractometer using Cu K\(\alpha \) radiation and were collected over a 2\(\theta \) range of \(3 \sim 80^\circ \) with a step width of 0.02\(^\circ \) at 40 kV and 40 mA and a counting rate of 8.0\(^\circ \) / minutes. Lattice parameters are calculated by least squares fitting to the positions of the reflection peaks in the diffraction patterns between \(3 \sim 80^\circ \).

The temperature (\(T \)-) dependence of the DC magnetic susceptibility \(\chi (T) \) was measured at 20 Oe using a superconducting quantum interference device (SQUID) magnetometer (Quantum Design MPMS). The data were collected during warming after zero-field cooling (Z.F.C) and then during field cooling (F.C).
2.2.1 Results in \((Zr_{1-y}Ln_{y})PS (Ln = Lu, Y)\) system.

In \(Zr(P_2 Se_3)\), single phase range was \(0.4 \leq y \leq 0.8\) for nominal Se substitution [3]. In \(Zr(P_2 S_3)\), single phase was \(0.4 \leq y \leq 0.6\) for nominal S substitution. In this study, we synthesized pseudo-quaternary intermetallic \((Zr_{1-y}Ln_{y})P_{1.5}S_{0.5}\) \((Ln = Lu and Y)\) system in advance, but it was difficult to judge the improvement in \(T_c\). Then, we synthesized \((Zr_{1-y}Ln_{y})PS (Ln = Lu and Y)\) system.

Figure 2(a) and 2(b) shows powder X-ray diffraction for obtained pseudo-quaternary intermetallic \((Zr_{1-y}Ln_{y})PS (Ln = Lu and Y)\) polycrystalline samples taken at room temperature. The impurity phase tends to precipitate with the increasing \(Ln\) atom substitution amount.

Figure 3(a) show the dependence of lattice parameters on \(y\). Both the \(a\)-axis and \(c\)-axis tend to monotonically shrink with increasing \(y\). These lattice parameters for the \(a\)-axis and \(c\)-axis show a linear behaviour and fulfil Vegard’s law. The changes in \(a\)-axis and \(c\)-axis length due to partial substitution for \(Zr\) sites by \(Y\) atoms are larger than these for \(Zr\) sites by \(Lu\) atoms. The 9-coordinate \(Zr\) metal atom radius were 1.587 Å, \(Lu\) metal atom radius were 1.727 Å and \(Y\) metal atom radius were 1.785 Å, respectively [8]. It is considered that \(Y\) atom substitution for \(Zr\) site in \(ZrPS\) distorts the crystal structure more than \(Lu\) atom substitution.

![Figure 2(a)](image_url)
Figure 2(a) Powder X-ray diffraction pattern of obtained \((Zr_{1-y}Ln_{y})PS (Ln = Lu)\) polycrystalline samples taken at room temperature. **2(b)** Powder X-ray diffraction pattern of obtained \((Zr_{1-y}Ln_{y})PS (Ln = Y)\) polycrystalline samples taken at room temperature.
With increasing the Lu atom substitution, T_c shows a maximum at $y \approx 0.40$ (see Figure 3(c)). T_c reached 6.36 K for (Zr$_{0.60}$Lu$_{0.40}$)PS and 5.36 K for (Zr$_{0.50}$Y$_{0.50}$)PS. These T_c values are clearly higher.
than T_c value of Zr(P, S)e value (5.0 K) [2]. It was clarified that controlling T_c by carrier doping associated with non-magnetic rare earth atom substitution for Zr site is more effective than controlling T_c by increasing P-P distance.

2.2.2 Results in (Hf$_{1-y}$Ln$_y$)P$_{1.55}$Se$_{0.45}$ ($Ln = Lu, Y$) system

The Zr metal atom radius and the Hf metal atom radius are 1.587 Å and 1.575 Å, respectively, which are almost the same size [8]. In Hf(P$_z$Se$_z$), single phase range x was very narrow around ≈ 0.4 for nominal Se substitution.

Figure 4(a) show the dependence of lattice parameters on y. In HfP$_{1.55}$Se$_{0.45}$, when Hf site is partially substituted with Lu atoms, lattice constant a-axis shrinks and c-axis expands monotonically with increasing y.

T_c shows a maximum at $y \sim 0.40$ for Lu atom substitution and at $y \sim 0.20$ for Y atom substitution (Figure 4(b)). The T_c reached at 5.89 K for (Hf$_{0.60}$Lu$_{0.40}$)P$_{1.55}$Se$_{0.45}$ and 4.96 K for (Hf$_{0.80}$Y$_{0.20}$)P$_{1.55}$Se$_{0.45}$, respectively. Maximum T_c value for (Hf$_{1-y}$Lu$_y$)P$_{1.55}$Se$_{0.45}$ was higher than T_c value for Hf(P, Se)$_2$ (5.5 K) [2]. In (Hf$_{1-y}$Ln$_y$)(P$_{1.55}$Se$_{0.45}$), T_c is improved by the effect of the carrier concentration control of Hf site in Hf-(P, Se) frame units accompanying non-magnetic rare earth atom substitution.

Figure 4(a) The y dependence of lattice parameters in (Hf$_{1-y}$Ln$_y$)P$_{1.55}$Se$_{0.45}$ ($Ln = Lu$ and Y). **4(b)** The y dependence of T_c for (Hf$_{1-y}$Ln$_y$)P$_{1.55}$Se$_{0.45}$ ($Ln = Lu$ and Y).
2.2.3 Results in (Hf$_{1-y}$Ln$_{y}$)P$_{1.45}$S$_{0.55}$ (Ln = Lu, Y) system

In Hf(P$_{2-x}$S$_x$), single phase range x was very narrow around $x=0.55$ for nominal S substitution. Figure 5(a) show the dependence of lattice parameters on y. In HfP$_{1.45}$S$_{0.55}$, when Hf site is partially substituted with Lu atoms, lattice constant a-axis shrinks slightly and c-axis expands monotonically with increasing y.

T_c shows a maximum at $y \approx 0.50$ for Lu atom substitution and at $y \approx 0.40$ for the Y atom substitution (Figure 5(b)). T_c reached at 5.89 K for (Hf$_{0.60}$Lu$_{0.40}$)P$_{1.45}$S$_{0.55}$ and 4.72 K for (Hf$_{0.60}$Y$_{0.40}$)P$_{1.45}$S$_{0.55}$. These T_c values were clearly higher than T_c value of Hf(P, S)$_2$ (3.16 K) [2]. In (Hf$_{1-y}$Ln$_y$)P$_{1.45}$S$_{0.55}$, T_c is improved by the effect of the carrier concentration control of Hf site in Hf-(P, S) frame units accompanying non-magnetic rare earth atom substitution.

![Figure 5(a)](image1)

Figure 5(a) The y dependence of lattice parameters in (Hf$_{1-y}$Ln$_y$)P$_{1.45}$S$_{0.55}$ (Ln = Lu and Y).

![Figure 5(b)](image2)

Figure 5(b) The y dependence of T_c for (Hf$_{1-y}$Ln$_y$)P$_{1.45}$S$_{0.55}$ (Ln = Lu and Y).

3. Summary

From this study, it has been clarified that T_c is improved by the effect of the carrier concentration control of A site in A-(P, X) frame units of $AP_{2-x}X_x$ (A = Zr, X = Se) accompanying non-magnetic rare earth atom substitution.
The maximum T_c was increased from 3.70 K to 6.36 K by Lu atom substitution for Zr site in ZrPS. In HfP$_{1.55}$Se$_{0.45}$, T_c was also increased from 4.88 K to 5.89 K by Lu atom substitution for Hf site. In HfP$_{1.45}$S$_{0.55}$, T_c was also increased from 3.16 K to 5.86 K by Lu atom substitution for Hf site.

Acknowledgement
This work partially supported by JSPS KAKENHI Grant-in-Aid for Scientific Research on Innovative Areas “Mixed anion” (Grant Number JP16H6439).

References
[1] Schoop L M, Ali M N, Strasser C, Topp A, Varykhalov A, Marchenko D, Duppel V, Parkin S S P, Lotsch B V and Ast C R 2016 Nat. Commun. 7 11696
[2] Kitô H, Yanagi Y, Ishida S, Oka K, Gotoh Y, Fujihisa H, Yoshida Y, Iyo A, and Eisaki H 2014 J. Phys. Soc. Jpn. 83 074713.
[3] Ishida S, Fujihisa H, Hase I, Yanagi Y, Kawashima K, Oka K, Gotoh Y, Yoshida Y, Iyo A, Eisaki H, and Kito H 2016 Supercond. Sci. Technol. 29 055004.
[4] Takagi H, Ido T, Shibashi S, Uota M, Uchida S, and Tokura Y 1989 Phys. Rev. B40 2254.
[5] Rotter M, Pangerl M, and Johrendt D 2008 Angew. Chem. Int. Ed. 47 7949.
[6] Iwakiri K 2016 Graduation Thesis (Tokyo Univ. of Science).
[7] Iwakiri K, Nishio T, Kawashima K, Ishida S, Oka K, Fujihisa H, Gotoh Y, Iyo A, Ogino H, Eisaki H, Yoshida Y, and H Kitô 2018 J. Phys. Conf. Series 1054 012002.
[8] Pauling L 1948 The Nature of the Chemical Bond (Cornell University Press, Ithaca, NY, 3rd edn.)