Nucleation and growth of TiAl$_3$ intermetallic phase in diffusion bonded Ti/Al Metal Intermetallic Laminate

N. Thiyaneshwaran, K. Sivaprasad & B. Ravisankar

A novel nucleation and growth phenomenon for TiAl$_3$ intermetallic phase in Ti/Al diffusion couple is proposed based on diffusion kinetics. The interdiffusion and intrinsic diffusion co-efficients are calculated to make evident of dominant diffusion of Al towards Ti in Ti/Al diffusion couple obtained by solid state diffusion bonding. It was surprising to observe that the diffusion rate of Al was around 20 times higher than Ti with the formation of Kirkendall pores near the Al/TiAl$_3$ interface. With such dominant diffusion of Al towards Ti, the nucleation and growth of TiAl$_3$ intermetallic phase in Ti/Al couple happens mainly at the Ti/TiAl$_3$ interface rather than Al/TiAl$_3$ interface which is evident by the presence of very fine nearly nano-sized TiAl$_3$ nuclei/grains near the Ti/TiAl$_3$ interface. Even though the intermetallic phase is expected to nucleate at Al/TiAl$_3$ interface, the relatively larger TiAl$_3$ grains near that interface depicts grain growth with minimal nucleation. The theoretical calculations on diffusion parameters are in accordance with experimental observations of TiAl$_3$ intermetallic growth phenomenon in Ti/Al system.

Ti/TiAl$_3$/Al metal intermetallic laminates (MILs) are considered to be one of the promising materials for defense and aerospace applications due to its combined properties such as lower density, high specific strength and relatively good oxidation and corrosion resistance$^{1-4}$. In these MILs, TiAl$_3$ is the only intermetallic phase that formed between Ti and Al at relatively lower temperatures (below Al melting point) as other intermetallic phases such as Ti$_3$Al, TiAl and TiAl$_2$ are expected to form either at higher temperatures or after the consumption of Al$^5$. The nucleation and growth of TiAl$_3$ intermetallic phase (below Al melting temperature) in the Ti/Al system mostly depends on the interdiffusion and relative rates of diffusion of Ti and Al atoms as well on thermodynamic factors. Almost, the studies conducted on Ti/Al system depicts, Al to be the dominant diffusing species at temperatures below Al melting point while Ti was considered to diffuse faster at higher temperatures especially above Al melting temperature$^{6-9}$. This led to the conclusion that TiAl$_3$ nucleates due to the high diffusion of Al towards Ti and the nucleation of TiAl$_3$ phase should be concentrated mostly at Ti/TiAl$_3$ interface. In contrast, Xu et al.$^{10}$ observed the diffusion of both Al and Ti through TiAl$_3$ layer in the Ti/Al system regardless of the bonding temperature (below or above Al melting point) employed, emphasizing the growth of TiAl$_3$ on both Ti/TiAl$_3$ and Al/TiAl$_3$ interfaces. It is also assumed that the solid solution formation of Al(Ti) preceding the TiAl$_3$ nucleation on Al/TiAl$_3$ interface helps in the faster nucleation of TiAl$_3$ nuclei at Al/TiAl$_3$ side due to less solubility of Ti in Al$^{10,11}$. On the other hand, Mirjalili et al.$^{7}$ observed dominant diffusion of Al towards Ti layer and formation of fine equiaxed TiAl$_3$ grains near Ti/TiAl$_3$ interface, claiming dominant nucleation of TiAl$_3$ nuclei at the Ti/TiAl$_3$ interface. While at the Al/TiAl$_3$ interface, coarse grains were observed indicating the growth of initial TiAl$_3$ grains than nucleation. It is now obvious that there exist contradictory viewpoints or observations regarding the nucleation and growth of TiAl$_3$ phase and there are no supporting interdiffusion parameter calculations to validate dominant diffusion of Al atoms in Ti/Al system. As the nucleation and growth of TiAl$_3$ is also dependent on the diffusion kinetics, the diffusion parameter calculation helps in understanding the nucleation and growth phenomenon in the system.

Advanced Materials Processing Laboratory Department of Metallurgical & Materials Engineering, National Institute of Technology Tiruchirappalli, Tamil Nadu, 620015, India. Correspondence and requests for materials should be addressed to K.S. (email: ksp@nitt.edu)
Hence, the present work is mainly focused on calculating interdiffusion co-efficient of Ti and Al and thereby to clarify the contradictions in nucleation and growth phenomenon of TiAl₃ intermetallic phase in multi-laminated Ti/Al diffusion couple.

**Methods**

Ti/TiAl₃/Al MILs were prepared using commercially pure Ti and Al sheets of 0.5 mm thickness through solid state diffusion bonding technique. The bonding was carried out at temperatures 550 and 575 °C for bonding times of 2, 4 and 6 h in vacuum (−760 mm of Hg). The sheets were rinsed with 10% HF solution and ultrasonically cleaned prior to bonding to remove surface oxides and impurities. The cleaned sheets were stacked alternatively in the bonding setup and a uniaxial pressure of 4 MPa was applied throughout the bonding time to prepare MILs with a total thickness of 5 mm. To analyse the growth of the intermetallic phases on Ti/TiAl₃ and Al/TiAl₃ interfaces, the 6 h bonded MILs already containing a specific intermetallic phase along the Ti/Al interface, were again annealed for 12, 24, 36 and 48 h duration at their respective bonding temperatures without external pressure. A brief schematic of the sample preparation process can be found elsewhere (See Supplementary Fig. S1).

The microstructural characterization and phase analysis were performed on the cross section of the MILs using Hitachi S3000H scanning electron microscope (SEM) attached with Thermo USA energy dispersive spectroscopy (EDS). X-Ray diffraction (XRD) study was performed on the annealed sample to analyse the phases formed in the intermetallic region. Totally three samples in each condition are used to analyse the results.

The diffusion parameters such as interdiffusion co-efficient and tracer diffusion co-efficient were calculated using Wagner’s method in the MILs annealed for different duration. The nucleation and growth phenomenon of TiAl₃ phase at Ti/TiAl₃ and Al/TiAl₃ interfaces are analysed based on the grain size distribution of TiAl₃, obtained through orientation imaging microscopy (OIM) micrographs taken using electron backscattered diffraction (EBSD) technique.

**Results**

**Microstructure Evolution.** Figure 1a shows the back scattered electron (BSE) mode SEM image of the MIL bonded at 575 °C for 6 h duration. The bright and dark regions in the image represent the Ti and Al sheets used for multi-laminated Ti/Al diffusion couple. The grey coloured layer in between the Ti and Al sheets denotes the product phase that was formed due to the inter-diffusion of Ti and Al atoms. Through EDS analysis, the composition of the product phase was found to be nearly 25 at% Ti and 75 at% Al, which reveals that the phase formed was TiAl₃ intermetallic compound and its growth is mainly facilitated due to low free energy of formation.

Figure 1b shows a typical EDS spectrum obtained from the product phase of the MIL bonded at 575 °C for 6 h. The TiAl₃ phase was found to grow with further annealing at both the annealing temperatures, with increase in annealing time, by which complete consumption of the Al layer was achieved after 48 h annealing at 575 °C. The TiAl₃ phase was found to grow with further annealing at both the annealing temperatures, with increase in annealing time, by which complete consumption of the Al layer was achieved after 48 h annealing at 575 °C. Figure 1c,d shows the SEM images exhibiting the TiAl₃ layer growth in the MILs annealed for 36 h duration at temperatures 550 and 575 °C respectively. It can be seen from the Fig. 1c that the Ti/TiAl₃ interface is smoother than Al/TiAl₃ interface and fine pores are found near the Ti/TiAl₃ interface. These pores are considered to be Kirkendall pores which are formed mainly due to the difference in the diffusivities of the bonding materials. In Ti/Al diffusion couple, the diffusion rates of Ti and Al atoms are different due to the difference in the melting temperature of the diffusing species. The pore formation is also directly associated with vacancy motion as unequal flow of Ti and Al atoms towards either side results in equivalent flow of vacancy to the net flow of atoms.
The arrows in Fig. 1c,d represent the straight line Kirkendall pores in the samples annealed for 36 h duration at bonding temperatures of 550 and 575 °C respectively. It can be observed that both fine and coarse pores are present which are always concentrated near the Al/TiAl₃ interface. Figure 1e shows the highly-magnified SE image of the Kirkendall pore as encircled in Fig. 1d. The XRD patterns of the sample annealed at 575 °C for 48 h duration is shown in Fig. 1f. Only peaks corresponding to Ti and TiAl₃ were identified during the analysis, as Al was fully consumed during the annealing process. It is evident from the XRD results that the intermetallic phase formed is TiAl₃. The presence of any phase gradient in the intermetallic layer was analysed using EDS line scan and area mapping. The line scan across the intermetallic layer revealed that there is no concentration gradient of Ti and Al in the intermetallic region (See Supplementary Fig. S2(a)). The elemental area map over the TiAl₃ layer exhibited the density and elemental distribution of Al is higher than Ti which evidently confirms the TiAl₃ phase formation (See Supplementary Fig. S2). To support the claim of dominant diffusion of Al towards Ti side, it is important to calculate the diffusion parameters for Ti and Al in the TiAl₃ intermetallic region.

**Diffusion Parameters.** The integrated interdiffusion co-efficient of Al and Ti intermixing can only be calculated over unknown composition gradient of TiAl₃ in the MILs annealed at 550 and 575 °C for 36 h duration, as TiAl₃ exists over a narrow homogeneity range without any concentration gradient, using equation (1) derived by Alok Paul et al.¹⁷ based on Wagner’s approach¹².

\[
\int D_{\text{int}} \, dN = \beta \frac{N^B N^A}{N^A N^B} - \beta \frac{N^B N^A}{N^A N^B} \Delta x^B \frac{1}{2t}
\]

where \( D_{\text{int}} \) is the integrated interdiffusion co-efficient of the phase of interest integrated over unknown homogeneity range of the phase, \( N_B = N^B - N^B_i \) is the unknown homogeneity range of phase of interest and \( \beta \frac{N^B N^A}{N^A N^B} \Delta x^B \frac{1}{2t} \) is the interdiffusion co-efficient. Since TiAl₃ is the only intermetallic phase formed as a result of inter-diffusion of Al and Ti atoms which has narrow homogeneity range¹³ and there is no influence of other phases on the growth of TiAl₃, the contribution of other phases in equation (1) can be neglected and rewritten as

\[
\int D_{\text{int}} \, dN = \frac{(N_B - N_B_i)(N^A_B - N^A_B)}{N^A_B - N^4_B} \Delta x^B \frac{1}{2t} = \frac{N^T_{\text{TiAl}} - N_{\text{TiAl}}}{N_{\text{TiAl}} - N^T_{\text{TiAl}}} (N^A_{\text{TiAl}} - N^A_{\text{TiAl}}) \Delta x^A \frac{1}{2t}
\]

where \( D_{\text{int}}^{\text{TiAl}} \) is the integrated interdiffusion co-efficient of Ti and Al in TiAl₃ phase, \( \beta \) is the TiAl₃ phase, \( \Delta x \) is the layer thickness of the TiAl₃ in the Ti/Al diffusion couple, \( N^T_{\text{TiAl}} \) is atomic fraction of Ti in the TiAl₃ phase, \( N^A_{\text{TiAl}} \) and \( N^A_{\text{TiAl}} \) is the atomic fraction of Ti on the Al side respectively in the diffusion couple. The values of the parameters involved in equation (2) can be obtained from the composition profile across Ti/Al/TiAl₃ layer using EDS analysis. From Al-Ti phase diagram¹³, it can be seen that TiAl₃ exists as a line compound with 25 at.% of Ti. Hence, \( N^T_{\text{TiAl}} \) is equal to 0.25. \( N^A_{\text{TiAl}} \) is the atomic fraction of Ti on the Al side which is equal to zero and \( N^A_{\text{TiAl}} \) is the atomic fraction of Ti on Ti side which is equal to one. The schematic of the diffusion couple before and after bonding and the composition profile are shown in Fig. 2a. Using equation (2), the integrated diffusion co-efficient for intermixing of Al and Ti in MIL bonded at 550 °C and 575 °C for 36 h duration was found to be 5.882 × 10⁻¹⁵ m²/s and 34.42 × 10⁻¹⁵ m²/s respectively. The values indicate that the integrated diffusion co-efficient is higher for the MILs annealed at 575 °C.

For better understanding of relative diffusion between Al and Ti atoms, it is necessary to calculate the intrinsic diffusivities of the individual Al and Ti components. It is difficult to calculate the absolute intrinsic diffusivities of individual Ti and Al, as the intrinsic diffusivities can only be measured at a composition indicated by inert markers/tracer. So, the basic criteria to calculate the tracer diffusivities is to find the position of the tracer in the
Table 1. Calculated values of integrated diffusion co-efficient, ratio of tracer diffusion co-efficient and absolute values of tracer diffusion co-efficient.

| Conditions | $v_m^B$ ($\times 10^{-5}$ m$^3$/mole) | Integrated Diffusion Co-efficient, $D_{int}^B$ ($\times 10^{-15}$ m$^2$/s) | Tracer Diffusion Co-efficient Ratio, $D_{Ti}^B/D_{Al}^B$ | Tracer Diffusion Co-efficient, $D_{Ti}^B, D_{Al}^B$ ($\times 10^{-15}$ m$^2$/s) |
|------------|---------------------------------|-------------------------------------------------|-----------------------------|-----------------------------|
| 550°C, 36 h | 3.845                            | 5.882                                           | 17                          | 4.297, 0.254                |
| 575°C, 36 h | 3.845                            | 34.42                                           | 22.6                        | 27.133, 1.202               |

Diffusion, Nucleation and Growth. In Ti/Al diffusion couple, the initial TiAl$_3$ intermetallic phase nucleates as a result of reaction between Ti and Al atoms along the Ti/Al interface. In the present work, the grey coloured coarse globular like TiAl$_3$ phase (as shown in Fig. 1a) shows the initial stage of nucleation and the couple is further employed for different annealing runs to study the nucleation and growth phenomenon of TiAl$_3$ along Ti/TiAl$_3$ to Al/TiAl$_3$ interfaces. Figure 3a,b shows the IPF Z map and band contrast image of such MILs annealed at 550°C and 575°C for 36 h duration respectively. It can be observed from Fig. 3b that the distribution of TiAl$_3$ grains was found to be 17 and 22.6 respectively for the MILs annealed at 550°C and 575°C for 36 h duration. This denotes that the diffusivity of Al is higher than Ti in both the MILs.

The absolute values of the tracer diffusion co-efficient are calculated using the equation (6) from Aloke Paul et al.\textsuperscript{17}

$$\widetilde{D}_{int}^B = -\left(\frac{N_{Ti}^A D_{Ti}^B + N_{Al}^A D_{Al}^B}{v_m} \right) \frac{\Delta \Phi}{RT} = -\left(\frac{N_{Ti}^{TiAl_3} D_{Ti}^B + N_{Al}^{TiAl_3} D_{Al}^B}{v_m} \right) \frac{\Delta \Phi_{TiAl_3}}{RT}$$

where $N_{Ti}^{TiAl_3}$ and $N_{Al}^{TiAl_3}$ are the atomic fractions of Ti and Al present in the TiAl$_3$ phase respectively, $\Delta \Phi_{TiAl_3}$ is the free energy for the formation of TiAl$_3$, R is the universal gas constant and T is the bonding temperature. The free energy for the formation of TiAl$_3$ was obtained from the work of Peng et al.\textsuperscript{29} and is used for the calculation.
observed to be present near the Al/TiAl₃ interface and their direction of movement of these pores is towards the Al side (See Supplementary image S3) which is mainly due to high diffusion flux of Al than Ti. It is evident from the calculated intrinsic diffusion co-efficient of Al and Ti. Finally, if complete consumption of Al is achieved during annealing runs, these pores are expected to concentrate over the centre portion of TiAl₃ intermetallic layer. We can even observe the presence of larger grains near the Kirkendall pores indicating grain growth and minimal TiAl₃ nucleation at the Al/TiAl₃ interface. It can be ascertained that the EBSD analysis of the MILs annealed at both the conditions as shown in Figs 3 and 4 reveals similar TiAl₃ grain structure and growth phenomenon throughout the entire intermetallic layer thickness.

Discussion

On discussing the TiAl₃ growth phenomenon in Ti/Al couple, diffusion kinetics plays an important role in determining the interface where the faster growth of TiAl₃ takes place, as the individual Ti and Al atoms diffuse across the intermetallic layer to react with the respective interfaces. It is expected that Ti(Al) and Al(Ti) solid solution formation precedes the TiAl₃ nucleation at both Ti/TiAl₃ and Al/TiAl₃ interfaces. From Ti-Al binary phase

Figure 3. OIM micrographs of MIL annealed at 550°C for 36 h duration (a) IPF Z Map (b) Band contrast image.

Figure 4. OIM micrographs of MIL annealed at 575°C for 36 h duration (a) IPF Z Map (b) Band contrast image.
diagram\textsuperscript{13}, it can be ascertained that the Ti(Al) solid solution exists over a wide composition range whereas Al(Ti) solid solution regime appears to be narrow signifying higher solubility of Al in Ti rather than Ti in Al. With the above phenomenon, Xu \textit{et al.}\textsuperscript{10} claimed earlier saturation of Al(Ti) solid solution than Ti(Al), due to less solubility resulting in faster nucleation of TiAl\textsubscript{3} nuclei along Al/TiAl\textsubscript{3} interface and supposed that the extended solubility of Al in Ti is for TiAl\textsubscript{3} nucleation rather than TiAl\textsubscript{3}. It was also expected that the distribution of TiAl\textsubscript{3} nuclei near Al/TiAl\textsubscript{3} interface must be fine and uniform, while on the other side it would be relatively coarse\textsuperscript{10}.

In the present study, the distribution of these TiAl\textsubscript{3} nuclei/grains are exactly opposite, that fine, uniform and densely populated TiAl\textsubscript{3} nuclei are visible only at the Ti/TiAl\textsubscript{3} interface whereas relatively larger nuclei are observed at the Al/TiAl\textsubscript{3} interface as shown in Figs 3 and 4. Also, the formation of Ti(Al) and Al(Ti) solid solution phases are not visible along the interfaces. Figure 5a,b shows the schematic of the Ti/Al diffusion process and TiAl\textsubscript{3} grains distribution in which black dots represents the TiAl\textsubscript{3} nuclei. Considering the diffusion kinetics in the present system, as Al diffuses faster (at the employed temperatures) than Ti, more number of Al atoms are expected to present near the Kirkendall marker plane than Ti. These Al atoms, with respect to the basic diffusion law tends to move from high to low concentration region i.e. it always move from Al to Ti side through the intermetallic layer, ensuring high flow of Al atoms towards Ti/TiAl\textsubscript{3} interface for reaction. In other words, the chemical reactivity/potential for Al atoms to interact with Ti/TiAl\textsubscript{3} is higher than at the Al/TiAl\textsubscript{3} interface. As the activation energy for grain boundary diffusion is generally lower than lattice diffusion, the TiAl\textsubscript{3} grain boundaries acts as faster diffusion channels for the moving Al atoms.

In contrast, even if grain boundary diffusion dominates, relatively low diffusivity of Ti towards Al is expected (annealing temperature is almost 1/3rd of melting temperature of Ti), resulting in less availability of Ti atoms at Al/TiAl\textsubscript{3} interface for TiAl\textsubscript{3} nucleation. This strongly suggests, although Al(Ti) solid solution saturates earlier than Ti(Al), the limited availability of Ti atoms for interaction with Al at the Al/TiAl\textsubscript{3} interface restricts faster nucleation, ensuing relatively coarse and not so densely populated TiAl\textsubscript{3} nuclei. On the other hand, at the Ti side, as solubility of Al in Ti is higher, TiAl\textsubscript{3} nuclei should form at the Ti grain boundaries which facilitates faster diffusion of Al and earlier saturation of Ti(Al) solid solution when the solubility gets locally exceeded, than at the lattice. The activation energy for such grain boundary diffusion controlled (\texttilde{}33 kJ mol\textsuperscript{-1}) TiAl\textsubscript{3} intermetallic layer growth is always lower than lattice diffusion controlled growth (\texttilde{}295 kJ mol\textsuperscript{-1})\textsuperscript{9}. This concludes that abundant availability of Al atoms at the Ti/TiAl\textsubscript{3} interface facilitates faster TiAl\textsubscript{3} nucleation than at Al/TiAl\textsubscript{3} side resulting in tri-modal grain structure of TiAl\textsubscript{3} phase. Figure 5b shows the schematic of TiAl\textsubscript{3} grain structure after annealing.

A better understanding of nucleation and growth phenomenon of TiAl\textsubscript{3} intermetallic phase can be achieved by considering a Ti/Al/Ti tri-layer system rather than Ti/Al diffusion couple. Figure 6 shows the schematic of TiAl\textsubscript{3} growth phenomenon in a Ti/Al/Ti tri-layer system. Figure 6a shows the stacking of Ti/Al/Ti sheets of equal thickness before bonding. While diffusion bonding, the individual Ti and Al atoms inter-diffuse over time to form initial TiAl\textsubscript{3} intermetallic phase along the Ti/Al interface which is shown in Fig. 6b. After annealing, a tri-modal TiAl\textsubscript{3} grain structure was observed between Ti and Al sheets, consisting of nearly nano-sized TiAl\textsubscript{3} grains/nuclei near Ti/TiAl\textsubscript{3} interface, coarse grain structure at the centre part and relatively small TiAl\textsubscript{3} grains/nuclei at the Al/ TiAl\textsubscript{3} interface. Figure 6c shows the schematic of Ti/Al/Ti tri-layer system with tri-modal TiAl\textsubscript{3} grain structure, which are represented as region A, B and C respectively. As Al diffuses faster than Ti, we can expect huge mass transport from Al to Ti side i.e. more number of Al atoms will be moved towards Ti side. Whereas relatively lower diffusivity of Ti does not ensure equivalent mass transport towards the Al side ensuring net mass transport of atoms towards Ti. This is illustrated in Fig. 6d by the presence of red (Al atoms) and blue (Ti atoms) dots of different densities at the Ti/TiAl\textsubscript{3} and Al/TiAl\textsubscript{3} interfaces. As relatively faster growth of TiAl\textsubscript{3} nuclei occurs at Ti/TiAl\textsubscript{3} interface than at Al/TiAl\textsubscript{3} side, the growth of new TiAl\textsubscript{3} nuclei at Ti/TiAl\textsubscript{3} side will shift the already present TiAl\textsubscript{3}.

Figure 5. Schematic of (a) Ti/Al diffusion process and (b) TiAl\textsubscript{3} grain structure.
grains i.e. Region A towards Al side, simultaneously shifting the regions B and C towards Al side. The arrows near the denoted regions A, B and C in Fig. 6d represents the shifting direction. When the annealing is continued for further growth of new TiAl₃ nuclei at Ti/TiAl₃ side, the regions A, B and C always tend to move towards Al side, such that if complete consumption of Al is achieved in the growth process, intermixing of the regions B and C is expected at the center portion of the intermetallic layer. Figure 6e shows the schematic of TiAl₃ grain structure after complete consumption of Al sheet. Thus, the final TiAl₃ grain structure consists of newly grown fine TiAl₃ nuclei at Ti/TiAl₃ interface (Region D), Region A with minimal growth shifted towards Al side, adjacent to region D and intermixed regions B and C at the centre portion. The above-mentioned grain structure was observed in the MIL annealed at 575 °C for 48 h in which Al sheet was completely consumed in the TiAl₃ growth process. Figure 7a,b shows the IPF Z map and band contrast image of MIL annealed at 575 °C for 48 h obtained through EBSD where the different grain structures are denoted as A, B, C and D. We can observe that the TiAl₃ grains near both the Ti/TiAl₃ interfaces are very fine-sized (Region D), with moderately grown TiAl₃ grains (Region A), adjacent to Region D and the presence of both coarse and fine grains at the centre part (intermixed regions B and C). This clearly denotes that diffusion kinetics plays an important role in nucleation of TiAl₃ phase in Ti/Al system which is mainly concentrated along the Ti/TiAl₃ interface during annealing due to the dominant diffusion of Al towards Ti side. Whereas, TiAl₃ grains near the Al/TiAl₃ interface are found to grow during annealing with minimal nucleation due to less diffusion of Ti towards Al side. And if, solid solution formation precedes the TiAl₃ nucleation, the formation of Ti(Al) solid solution near Ti/TiAl₃ interface is in favour of growth of TiAl₃ than Ti₃Al due to low free energy of formation of TiAl₃. Thus, in contrast to the viewpoints of Xu et al., the low solubility of Ti in Al did not favour faster nucleation of TiAl₃ near Al/TiAl₃ interface and it is faster only at the Ti/TiAl₃ interface.

Figure 6. Schematic of TiAl₃ growth phenomenon in a Ti/Al/Ti tri-layer system (a) Ti/Al/Ti stacking (b) Initial TiAl₃ growth (c) Tri-modal TiAl₃ grain structure (d) TiAl₃ growth process in Ti/Al/Ti Tri-layer system (e) Final TiAl₃ grain structure in the Ti/Al/Ti system after Al consumption.

Figure 7. OIM micrographs of MIL annealed at 575 °C for 48 h duration (a) IPF Z Map (b) Band contrast image.
In conclusion, a novel growth phenomenon for TiAl₃ intermetallic phase in Ti/Al diffusion couple was proposed based on diffusion kinetics. The dominant diffusion of Al towards Ti in Ti/Al binary diffusion couple was strongly revealed through the interdiffusion and intrinsic diffusion co-efficient calculations based on Wagner’s approach. The nucleation site of TiAl₃ intermetallic phase was found to be concentrated mostly along Ti/TiAl₃ interface rather than Al/TiAl₃ due to dominant diffusion of Al towards Ti side which was supported by the diffusion parameter calculations. Thus, the present work provides better phenomenon and clears the ambiguity involved in the nucleation and growth sites of TiAl₃ intermetallic phase in Ti/Al diffusion system.

References
1. Vecchio, K. S. Synthetic multifunctional metallic-intermetallic laminate composites. JOM 57, 25–31 (2005).
2. Fan, M. et al. Effect of original layer thicknesses on the interface bonding and mechanical properties of Ti-Al laminate composites. Mater. and Des. 99, 535–542 (2016).
3. Li, T., Jiang, F., Olevsky, E. A., Vecchio, K. S. & Meyers, M. A. Damage evolution in Ti6Al4V–Al₃Ti meta-intermetallic laminate composites. Mater. Sci. and Eng. A. 443, 1–15 (2007).
4. Price, R. D., Jiang, F., Kulin, R. M. & Vecchio, K. S. Effects of ductile phase volume fraction on the mechanical properties of Ti–Al/Ti metal-intermetallic laminate (MIL) composites. Mater. Sci. and Eng. A 528, 3134–3146 (2011).
5. Shen, Z. Z., Lin, J. P., Liang, Y. F., Zhang, L. Q. & Hao, G. J. Reaction behaviors occurring in Ti/Al foil metallurgy. Rare Met. 35, 100–105 (2016).
6. Peng, L. M., Wang, J. H., Li, H., Zhao, J. H. & He, L. H. Synthesis and microstructural characterization of Ti–Al/Ti metal–intermetallic laminate (MIL) composites. Scr. Mater. 52, 243–248 (2005).
7. Thiyoransharan, N., Sivaprasad, K. & Raviasankar, B. Work hardening behavior of Ti/Al-based metal intermetallic laminates. Int. J. Adv. Manuf. Tech. 93, 361–374 (2016).
8. Bataev, I. A., Bataev, A. A., Mali, A. A. & Pavliukova, D. V. Structural and mechanical properties of metal–metallic–metallic laminate composites produced by explosive welding and annealing. Mater. and Des. 35, 225–234 (2012).
9. Mirjalili, M., Soltanizadeh, M., Matsuura, K. & Ohno, M. On the kinetics of TiAl₃ intermetallic layer formation in the titanium and aluminum diffusion couple. Intermetallics 32, 297–302 (2013).
10. Xu, L., Cui, Y. Y., Hao, Y. L. & Yang, R. Growth of intermetallic layer in multi-laminated Ti/Al diffusion couples. Mater. Sci. and Eng. A 435, 638–647 (2006).
11. Assari, A. H. & Eghbali, B. Solid state diffusion bonding characteristics at the interfaces of Ti and Al layers. J. Alloy Compd. 773, 50–58 (2019).
12. Wagner, C. The evaluation of data obtained with diffusion couples of binary single-phase and multiphase systems. Acta Metall. 17, 99–107 (1969).
13. Kattner, U. R., Lin, J. C. & Chang, Y. A. Thermodynamic Assessment and Calculation of the Ti-Al system. Metall. Trans. A 23, 2081–2090 (1992).
14. Wei, Y., Aiping, W., Guisheng, Z. & Jiale, R. Formation process of the bonding joint in Ti/Al diffusion bonding. Mater. Sci. Eng. A 480, 456–463 (2008).
15. Van Loo, F. & Rieck, G. Diffusion in the titanium-aluminium system—I. Interdiffusion between solid Al and Ti or Ti-Al alloys. Acta Metall. 21, 61–71 (1973).
16. Addaschain, R., Abbashian, L., & Reed-Hill, R. E. Physical metallurgy principles (ed. Gowans, H.) 355–356 (Cengage learning, 2009).
17. Paul, A., Laurila, T., Voirinen, V. & Divinski, S. V. Thermodynamics, Diffusion and the Kirkendall Effect in Solids 307–325 (Springer International publishing, 2014).

Acknowledgements
This work was financially supported by the Defence Research and Development Organization (DRDO) of India under project sanction no. ERIP/ER/1006013/M/01/1374.

Author Contributions
KSP has formulated the problem and guided NT. NT has executed the majority of the research work and prepared the initial draft manuscript. BRS has provided some facilities and co-guided NT. KSP and BRS have corrected the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-35247-0.

Competing Interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.