Tripartite Neutrino Mass Matrix

Ernest Ma

Physics Department, University of California, Riverside, California 92521

Abstract

The 3×3 Majorana neutrino mass matrix is written as a sum of 3 terms, i.e. $M_\nu = M_A + M_B + M_C$, where M_A is proportional to the identity matrix and $M_{B,C}$ are invariant under different Z_3 transformations. This M_ν is very suitable for understanding atmospheric and solar neutrino oscillations, with $\sin^2 2\theta_{atm}$ and $\tan^2 \theta_{sol}$ fixed at 1 and 0.5 respectively, in excellent agreement with present data. It has in fact been proposed before, but only as an ansatz. This paper uncovers its underlying symmetry, thus allowing a complete theory of leptons and quarks to be constructed.
With the recent experimental progress in measuring atmospheric [1] and solar [2] neutrino oscillations, the mass-squared differences of the 3 active neutrinos and their mixing angles are now known with some precision. Typical values at 90% confidence level are [3]

\[(\Delta m^2)_{\text{atm}} \sim (1.3 - 3.0) \times 10^{-3} \text{ eV}^2, \quad \sin^2 2\theta_{\text{atm}} \sim 0.88 - 1, \quad (1)\]

\[(\Delta m^2)_{\text{sol}} \sim (6 - 9) \times 10^{-5} \text{ eV}^2, \quad \tan^2 2\theta_{\text{sol}} \sim 0.33 - 0.76. \quad (2)\]

These few numbers have inspired the writing of hundreds of papers on the structure of the resulting 3×3 Majorana neutrino mass matrix \mathcal{M}_ν. Is the problem that complicated? Perhaps not, if it is looked at with the proper perspective.

Motivated by the idea that \mathcal{M}_ν should satisfy [4, 5]

\[UM_\nu U^T = \mathcal{M}_\nu, \quad (3)\]

where U is a specific unitary matrix, a very simple form of \mathcal{M}_ν is here proposed:

\[\mathcal{M}_\nu = \mathcal{M}_A + \mathcal{M}_B + \mathcal{M}_C, \quad (4)\]

where

\[\mathcal{M}_A = A \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \mathcal{M}_B = B \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}, \quad \mathcal{M}_C = C \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}. \quad (5)\]

Since the invariance of \mathcal{M}_A requires only $U_A U_A^T = 1$, U_A can be any orthogonal matrix. As for \mathcal{M}_B and \mathcal{M}_C, they are both invariant under the Z_2 transformation [6, 7]

\[U_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad U_2^2 = 1, \quad (6)\]

and each is invariant under a Z_3 transformation, i.e. $U_B^3 = 1$ and $U_C^3 = 1$, but $U_B \neq U_C$.

Specifically,

\[U_B = \begin{pmatrix} -1/2 & -\sqrt{3}/8 & -\sqrt{3}/8 \\ \sqrt{3}/8 & 1/4 & -3/4 \\ \sqrt{3}/8 & -3/4 & 1/4 \end{pmatrix}, \quad U_C = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}. \quad (7)\]
Note that U_B commutes with U_2, but U_C does not. If U_C is combined with U_2, then the non-Abelian discrete symmetry S_3 is generated.

First consider $C = 0$. Then $\mathcal{M}_\nu = \mathcal{M}_A + \mathcal{M}_B$ is the most general solution of

$$U_B \mathcal{M}_\nu U_B^T = \mathcal{M}_\nu,$$

and the eigenvectors of \mathcal{M}_ν are ν_e, $(\nu_\mu + \nu_\tau)/\sqrt{2}$, and $(\nu_\mu - \nu_\tau)/\sqrt{2}$ with eigenvalues $A - B$, $A - B$, and $A + B$ respectively. This explains atmospheric neutrino oscillations with $\sin^2 2\theta_{atm} = 1$ and

$$\left(\Delta m^2\right)_{atm} = (A + B)^2 - (A - B)^2 = 4BA.$$

Now consider $C \neq 0$. Then in the basis spanned by ν_e, $(\nu_\mu + \nu_\tau)/\sqrt{2}$, and $(\nu_\mu - \nu_\tau)/\sqrt{2}$,

$$\mathcal{M}_\nu = \begin{pmatrix}A - B + C & \sqrt{2}C & 0 \\ \sqrt{2}C & A - B + 2C & 0 \\ 0 & 0 & A + B\end{pmatrix}.$$

The eigenvectors and eigenvalues become

$$\nu_1 = \frac{1}{\sqrt{6}}(2\nu_e - \nu_\mu - \nu_\tau), \quad m_1 = A - B,$$

$$\nu_2 = \frac{1}{\sqrt{3}}(\nu_e + \nu_\mu + \nu_\tau), \quad m_2 = A - B + 3C,$$

$$\nu_3 = \frac{1}{\sqrt{2}}(\nu_\mu - \nu_\tau), \quad m_3 = A + B.$$

This explains solar neutrino oscillations as well with $\tan^2 \theta_{sol} = 1/2$ and

$$\left(\Delta m^2\right)_{sol} = (A - B + 3C)^2 - (A - B)^2 = 3C(2A - 2B + 3C).$$

Whereas the mixing angles are fixed, the proposed \mathcal{M}_ν has the flexibility to accommodate the three patterns of neutrino masses often mentioned, i.e.

(I) the hierarchical solution, e.g. $B = A$ and $C << A$;

(II) the inverted hierarchical solution, e.g. $B = -A$ and $C << A$;
the degenerate solution, e.g. $C \ll B \ll A$.

In all cases, C must be small. Therefore \mathcal{M}_ν of Eq. (4) satisfies Eq. (8) to a very good approximation, and $Z_2 \times Z_3$ as generated by U_2 and U_B should be taken as the underlying symmetry of this model.

Since \mathcal{M}_C is small and breaks the symmetry of $\mathcal{M}_A + \mathcal{M}_B$, it is natural to think of its origin in terms of the well-known dimension-five operator

$$L_{eff} = \frac{f_{ij}}{2\Lambda} (\nu_i \phi^0 - l_i \phi^+)(\nu_j \phi^0 - l_j \phi^+) + H.c.,$$

(15)

where (ϕ^+, ϕ^0) is the usual Higgs doublet of the Standard Model and Λ is a very high scale. As ϕ^0 picks up a nonzero vacuum expectation value v, neutrino masses are generated, and if $f_{ij}v^2/\Lambda = C$ for all i, j, \mathcal{M}_C is obtained. Since Λ is presumably of order 10^{16} to 10^{18} GeV, C is of order 10^{-3} to 10^{-5} eV. Using Eq. (14) and Eq. (2), $A - B + 3C/2$ is then of order 10^{-2} to 1 eV. This range of values is just right to encompass all three solutions mentioned above.

As for the form of \mathcal{M}_C, it may be understood as coming from effective universal interactions among the leptons at the scale Λ. For example, if Eq. (15) has S_3 symmetry as generated by U_2 and U_C, the most general form of \mathcal{M}_C would be

$$\mathcal{M}_C = C \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} + C' \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}. \quad (16)$$

However, the C' term can be absorbed into \mathcal{M}_A, so again \mathcal{M}_ν of Eq. (4) is obtained. This form of the neutrino mass matrix has in fact been discussed as an ansatz in a number of recent papers [9] [10] [11] [12] [13].

Consider now \mathcal{M}_ν of Eq. (4) rewritten as

$$\mathcal{M}_\nu = (A + C) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - B \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} + C \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} + C \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}. \quad (17)$$
Note that each of the above four matrices is a group element of S_3. This is the recent proposal of Harrison and Scott [12]. The difference here is that the underlying symmetry of \mathcal{M}_ν has been identified, thus allowing a complete theory of leptons and quarks to be constructed.

Going back to U_B of Eq. (7), its eigenvectors and eigenvalues are

\begin{align}
\frac{1}{\sqrt{2}}(\nu_\mu - \nu_\tau), & \quad \lambda_1 = 1, \\
\frac{i}{\sqrt{2}}\nu_e + \frac{1}{2}(\nu_\mu + \nu_\tau), & \quad \lambda = \omega, \\
\frac{i}{\sqrt{2}}\nu_e - \frac{1}{2}(\nu_\mu + \nu_\tau), & \quad \lambda = \omega^2,
\end{align}

where $\omega = e^{2\pi i/3}$. To accommodate this Z_3 symmetry in a complete theory, the Standard Model of particle interactions is now extended [5] to include three scalar doublets (ϕ_0^i, ϕ_i^-) and one very heavy triplet (ξ^{++}, ξ^+, ξ^0). The leptonic Yukawa Lagrangian is given by

\[\mathcal{L}_Y = h_{ij}[\xi^0 l_i l_j - \xi^+(\nu_i l_j + l_i \nu_j)/\sqrt{2} + \xi^{++}l_i l_j] + f_{ik}(\nu_i \phi_0^j - \nu_j \phi_0^i)l^c_k + H.c., \]

where, under the Z_3 transformation,

\begin{align}
(\nu, l)_i & \rightarrow (U_B)_{ij}(\nu, l)_j, \quad l^c_k \rightarrow l^c_k, \\
(\phi^0, \phi^-)_i & \rightarrow (U_B)_{ij}(\phi^0, \phi^-)_j, \quad (\xi^{++}, \xi^+, \xi^0) \rightarrow (\xi^{++}, \xi^+, \xi^0).
\end{align}

This means

\[U_B^T h U_B = h, \quad U_B^T f^k U_B = f^k, \]

resulting in

\[h = \begin{pmatrix} a - b & 0 & 0 \\ 0 & a & -b \\ 0 & -b & a \end{pmatrix}, \quad f^k = \begin{pmatrix} a_k - b_k & d_k & d_k \\ -d_k & a_k & -b_k \\ -d_k & -b_k & a_k \end{pmatrix}. \]

Note that h has no d terms because it has to be symmetric. Note also that both h and f are invariant under U_2 of Eq. (6). Whereas the neutrino mass matrix $\mathcal{M}_A + \mathcal{M}_B$ is obtained with $A = 2a\langle \xi^0 \rangle$ and $B = 2b\langle \xi^0 \rangle$, the charged-lepton mass matrix \mathcal{M}_l linking l_i to l^c_k has
each of its 3 columns given by

$$(\mathcal{M}_l)_{ik} = \begin{pmatrix} (a_k - b_k)v_1 + d_k(v_2 + v_3) \\ -d_kv_1 + a_kv_2 - b_kv_3 \\ -d_kv_1 - b_kv_2 + a_kv_3 \end{pmatrix}, \quad (26)$$

where $v_i \equiv \langle \phi_i^0 \rangle$. Assume $d_k, b_k << a_k$ and $v_{1,2} << v_3$, then all elements in the first, second, and third rows are of order $a_kv_1 + d_kv_3$, $a_kv_2 - b_kv_3$, and a_kv_3 respectively. It is clear that they may be chosen to be of order $a_kv_1 + d_kv_3$, $a_kv_2 - b_kv_3$, and a_kv_3 respectively. It is clear that they may be chosen to be of order m_e, m_μ, and m_τ, in which case \mathcal{M}_l will become nearly diagonal by simply redefining the l_k^c basis. The mixing matrix V_L in the l_i basis (such that $V_L^\dagger \mathcal{M}_L^\dagger V_L^\dagger$ is diagonal) will be very close to the identity matrix with off-diagonal terms of order m_e/m_μ, m_e/m_τ, and m_μ/m_τ. This construction allows \mathcal{M}_ν of Eq. (4) to be in the $(\nu_e, \nu_\mu, \nu_\tau)$ basis as a very good approximation. The small deviation is also desirable for obtaining a nonzero but small value of U_{e3}, which is restricted by reactor data \cite{14} to be less than about 0.16 in magnitude. The consequences of having three Higgs doublets in this model are very similar to those discussed in Ref. [5] and are repeated here below.

The Yukawa couplings of the three Higgs doublets are given by Eq. (25). Taking the limit that only v_3 is nonzero, the charged-lepton mass matrix is simply given by

$$\mathcal{M}_l = v_3 \begin{pmatrix} d_1 & d_2 & d_3 \\ -b_1 & -b_2 & -b_3 \\ a_1 & a_2 & a_3 \end{pmatrix}, \quad (27)$$

whereas ϕ_1^0 and ϕ_2^0 couple to $l_i l_j^c$ according to

$$\begin{pmatrix} a_1 - b_1 & a_2 - b_2 & a_3 - b_3 \\ -d_1 & -d_2 & -d_3 \\ -d_1 & -d_2 & -d_3 \end{pmatrix}, \quad \begin{pmatrix} d_1 & d_2 & d_3 \\ a_1 & a_2 & a_3 \\ -b_1 & -b_2 & -b_3 \end{pmatrix}, \quad (28)$$

respectively. Assuming the hierarchy $d_k << b_k << a_k$ and rotating \mathcal{M}_l of Eq. (27) in the l_j^c basis to define the state corresponding to τ, it is clear from Eq. (28) that the dominant coupling of ϕ_1^0 is $(m_\tau/v_3)e\tau^c$ and that of ϕ_2^0 is $(m_\tau/v_3)\mu\tau^c$. Other couplings are at most of order m_μ/v_3 in this model, and some are only of order m_e/v_3. The smallness of flavor
changing decays in the leptonic sector is thus guaranteed, even though they should be present and may be observable in the future.

Using Eq. (28), we see that the decays $\tau^- \to e^- e^+ e^-$ and $\tau^- \to e^- e^+ \mu^-$ may proceed through ϕ^0_1 exchange with coupling strengths of order $m_\mu m_\tau / v^2_3 \simeq (g^2 / 2) (m_\mu m_\tau / M_W^2)$, whereas the decays $\tau^- \to \mu^- \mu^+ \mu^-$ and $\tau^- \to \mu^- \mu^+ e^-$ may proceed through ϕ^0_2 exchange also with coupling strengths of the same order. We estimate the order of magnitude of these branching fractions to be

$$B \sim \left(\frac{m_\mu^2 m_\tau^2}{m_{1,2}^4} \right) B(\tau \to \mu \nu \nu) \simeq 6.1 \times 10^{-11} \left(\frac{100 \text{ GeV}}{m_{1,2}} \right)^4,$$

(29)

which is well below the present experimental upper bound of the order 10^{-6} for all such rare decays [15].

The decay $\mu^- \to e^- e^+ e^-$ may also proceed through ϕ^0_1 with a coupling strength of order m_μ^2 / v^2_3. Thus

$$B(\mu \to eee) \sim \frac{m_\mu^4}{m_1^4} \simeq 1.2 \times 10^{-12} \left(\frac{100 \text{ GeV}}{m_1} \right)^4,$$

(30)

which is at the level of the present experimental upper bound of 1.0×10^{-12}. The decay $\mu \to e \gamma$ may also proceed through ϕ^0_2 exchange (provided that $Re \phi^0_2$ and $Im \phi^0_2$ have different masses) with a coupling of order $m_\mu m_\tau / v^2_3$. Its branching fraction is given by [16]

$$B(\mu \to e \gamma) \sim \frac{3 \alpha}{8 \pi} \frac{m_\tau^4}{m_{eff}^4},$$

(31)

where

$$\frac{1}{m_{eff}^2} = \frac{1}{m_{2R}^2} \left(\ln \frac{m_{2R}^2}{m_\tau^2} - \frac{3}{2} \right) - \frac{1}{m_{2I}^2} \left(\ln \frac{m_{2I}^2}{m_\tau^2} - \frac{3}{2} \right).$$

(32)

Using the experimental upper bound [17] of 1.2×10^{-11}, we find $m_{eff} > 164 \text{ GeV}$.

In the quark sector, if we use the same 3 Higgs doublets for the corresponding Yukawa couplings, the resulting up and $down$ mass matrices will be of the same form as Eq. (26). Because the quark masses are hierarchical in each sector, we will also have nearly diagonal
mixing matrices as in the case of the charged leptons. This provides a qualitative understanding in our model of why the charged-current mixing matrix linking up quarks to down quarks has small off-diagonal entries.

Once ϕ_0^1 or ϕ_0^2 is produced, its dominant decay will be to $\tau^\pm e^\mp$ or $\tau^\pm \mu^\mp$ if each couples only to leptons. If they also couple to quarks (and are sufficiently heavy), then the dominant decay products will be $t\bar{u}$ or $t\bar{c}$ together with their conjugates. As for ϕ_0^3, it will behave very much as the single Higgs doublet of the Standard Model, with mostly diagonal couplings to fermions. It should also be identified with the ϕ of Eq. (15).

In conclusion, a simple tripartite neutrino mass matrix has been proposed, where the first two parts, $\mathcal{M}_A + \mathcal{M}_B$, are invariant under U_B of Eq. (7) with $U_B^3 = 1$. The third part \mathcal{M}_C is considered as a small perturbation which is democratic in the $(\nu_e, \nu_\mu, \nu_\tau)$ basis. The resulting sum of the three parts is invariant under U_2 of Eq. (6) with $U_2^2 = 1$ and fixes $\sin^2 2\theta_{atm} = 1$ and $\tan^2 \theta_{sol} = 0.5$; but it also has 3 free parameters A, B, C which determine the 3 neutrino mass eigenvalues as given in Eqs. (11) to (13). This structure with the underlying symmetry $Z_3 \times Z_2$ is supported in the context of a complete theory of leptons (that may be extended to quarks) which includes one very heavy Higgs triplet and three Higgs doublets at the electroweak scale, with experimentally verifiable properties.

This work was supported in part by the U. S. Department of Energy under Grant No. DE-FG03-94ER40837.

References

[1] C. K. Jung, C. McGrew, T. Kajita, and T. Mann, Ann. Rev. Nucl. Part. Sci. 51, 451 (2001).
[2] Q. R. Ahmad et al., SNO Collaboration, Phys. Rev. Lett. 89, 011301, 011302 (2002); K. Eguchi et al., KamLAND Collaboration, Phys. Rev. Lett. 90, 021802 (2003).

[3] For a recent review, see for example J. W. F. Valle, hep-ph/0307192.

[4] E. Ma, Phys. Rev. Lett. 90, 221802 (2003).

[5] E. Ma and G. Rajasekaran, hep-ph/0306264.

[6] E. Ma, Phys. Rev. D66, 117301 (2002).

[7] W. Krolikowski, Acta Phys. Polon. B34, 4157 (2003).

[8] S. Weinberg, Phys. Rev. Lett. 43, 1566 (1979).

[9] P. F. Harrison, D. H. Perkins, and W. G. Scott, Phys. Lett. B530, 167 (2002).

[10] Z.-Z. Xing, Phys. Lett. B533, 85 (2002).

[11] P. F. Harrison and W. G. Scott, Phys. Lett. B535, 163 (2002).

[12] P. F. Harrison and W. G. Scott, Phys. Lett. B557, 76 (2003).

[13] X.-G. He and A. Zee, Phys. Lett. B560, 87 (2003).

[14] M. Apollonio et al., Phys. Lett. B466, 415 (1999); F. Boehm et al., Phys. Rev. D64, 112001 (2001).

[15] K. Hagiwara et al., Particle Data Group, Phys. Rev. D66, 011501 (2002).

[16] E. Ma and G. Rajasekaran, Phys. Rev. D64, 113012 (2001).

[17] M. L. Brooks et al., Phys. Rev. Lett. 83, 1521 (1999).