Crowd-Anticrowd Theory of Multi-Agent Market Games

M. Hart1, P. Jefferies1, P.M. Hui2 and N.F. Johnson1

1Physics Department, Oxford University, Oxford, OX1 3PU, U.K.
2Physics Department, Chinese University of Hong Kong, Shatin, Hong Kong

March 21, 2022

Abstract

We present a dynamical theory of a multi-agent market game, the so-called Minority Game (MG), based on crowds and anticrowds. The time-averaged version of the dynamical equations provides a quantitatively accurate, yet intuitively simple, explanation for the variation of the standard deviation (‘volatility’) in MG-like games. We demonstrate this for the basic MG, and the MG with stochastic strategies. The time-dependent equations themselves reproduce the essential dynamics of the MG.

Agent-based games have great potential application in the study of fluctuations in financial markets. Challet and Zhang’s Minority Game (MG)\cite{1,2} offers possibly the simplest example and has been the subject of much research\cite{3}. The MG comprises an odd number of agents N choosing repeatedly between option 0 (e.g. buy) and option 1 (e.g. sell). The winners are those in the minority group, e.g. sellers win if there is an excess of buyers. The outcome at each timestep represents the winning decision, 0 or 1. A common bit-string of the m most recent outcomes is made available to the agents at each timestep\cite{3}. The agents randomly pick s strategies at the beginning of the game, with repetitions allowed - each strategy is a bit-string of length 2^m which predicts the next outcome for each of the 2^m possible histories. Agents reward successful strategies with a (virtual) point. At each turn of the basic MG, the agent uses her most successful strategy, i.e. the one with the most virtual points. Here we develop a dynamical theory for MG-like games based on the formation of crowds and anticrowds.

The number of agents holding a particular combination of strategies can be written as a $D \times D \times \ldots$ (s terms) dimensional matrix Ω, where D is the total number of available strategies. For $s = 2$, this is simply a $D \times D$ matrix where the entry (i, j) represents the number of agents who picked strategy i and then j. The strategy labels are given by the decimal representation of the strategy plus unity, for example the strategy 0101 for $m = 2$ has strategy label $5+1=6$. Ω is fixed at the beginning of the game (‘quenched disorder’) and can represent either the full strategy space or the reduced strategy space\cite{1}, depending on the choice of D. Σ is another time-independent matrix, containing all the strategies in the required space in their binary form: $\Sigma_{r,h}+1$ describes the prediction of strategy r given the history h (where h is the decimal corresponding to the m-bit binary history string).

We introduce a vector $\underline{n}(t)$: this contains the number of agents using each strategy at time t, in order of increasing strategy label. The vector $S(t)$ contains the virtual score for each strategy at time t in order of increasing strategy label. The vector $R(t)$ lists the strategy label in order of best-to-worst virtual points score at time t; if any strategies are tied in points then the strategy with the lower-value label is listed first. The vector $\rho(t)$ shows the rank of the strategy listed in order of increasing strategy label at time t. Hence $R(t)$ and $\rho(t)$ can be found from $S(t)$ using simple sort operations. The vector $\underline{n}(t)$ is the sum of

two terms
\[\mathbf{v}(t) = \mathbf{v}^0(t) + \mathbf{v}^d(t). \] (1)

Here \(\mathbf{v}^0(t) \) gives the number of agents using each strategy; however where any strategies are tied in virtual score, \(\mathbf{v}^0(t) \) assumes that the agent will use the strategy with the lower-value label by virtue of the definition of \(\mathbf{R}(t) \). The term \(\mathbf{v}^d(t) \) accounts for tied strategies, and hence provides a correction to \(\mathbf{v}^0(t) \).

\(\mathbf{v}^0(t) \) is given by
\[\mathbf{v}^0(t)_r = \sum_{i=\rho(t)}^{2^{m+1}} [\hat{f}(\Omega)]_{r,R(t)}, \] (2)

where \([\hat{f}(\Omega)]_{\alpha,\beta} = \Omega_{\alpha,\beta} + \Omega_{\beta,\alpha} - \delta_{\alpha,\beta} \Omega_{\alpha,\beta} \). The vector \(\mathbf{v}^d(t)_r \) is given by
\[\mathbf{v}^d(t)_r = \sum_{r' \neq r} \delta_{s(t),r',s(t),r'} Sgn(r' - r) Bin_{r',r} \] (3)

where: \(Bin_{r',r} \sim B([\hat{f}(\Omega)]_{r',r}, \frac{1}{2}) \) and \(Bin_{r',r} = Bin_{r,r'} \). The standard notation \(Bin \) represents the binary distribution. Note the condition \(Bin_{r',r} = Bin_{r,r'} \) which guarantees conservation of agents, as in the basic MG. The outcome parameter \(\Upsilon(t) \) denotes which choice, 0 or 1, is the minority (and hence winning) decision at time \(t \):
\[\Upsilon(t) = \mathcal{H}[-[\mathbf{v}(t)^T \Sigma']_{h(t)+1}] \] (4)

where \(\Sigma' = 2\Sigma - 1 \). The history, i.e. bit-string of the \(m \) most recent outcomes, and the virtual scores of the strategies are updated as follows:
\[h(t+1) = 2[h(t) - 2^{m-1} \mathcal{H}[h(t) - 2^{m-1}]] + \Upsilon(t) \] (5)

where \(\mathcal{H} \) is the Heaviside function, and
\[\mathbf{S}(t+1) = \mathbf{S}(t) + \Sigma'_{h(t)+1} [2\Upsilon(t) - 1]. \] (6)

Equations (1-6) are a set of time-dependent equations which reproduce the essential dynamics of the basic MG, and can be easily extended to describe MG generalizations. Iterating these equations is equivalent to running a numerical simulation, but is far easier and can even be done analytically. A slight difference may arise as a result of the method chosen for tie-breaking between strategies with equal virtual points: a numerical program will typically break this tie using a separate coin-toss for each agent, whereas the dynamical equations group together those agents using the same pair of strategies and then assign a proportion of that group to a particular strategy using a coin-toss. This difference is typically unimportant.

As an example of the implementation of these equations, consider a time \(t_e \) during the following game: \(m = 2 \), \(s = 2 \) and \(N = 101 \) in the reduced strategy space, with a strategy configuration \(\Omega \) and strategy score given as follows:
\[\Omega = \left(\begin{array}{cccccc} 2 & 3 & 2 & 3 & 5 & 3 & 1 & 1 \\ 1 & 3 & 2 & 2 & 1 & 2 & 1 & 2 \\ 1 & 0 & 2 & 0 & 1 & 3 & 1 & 3 \\ 1 & 1 & 0 & 1 & 1 & 0 & 1 & 3 \\ 4 & 5 & 1 & 1 & 2 & 0 & 0 & 0 \\ 2 & 1 & 2 & 1 & 0 & 2 & 0 & 4 \\ 1 & 2 & 1 & 2 & 0 & 0 & 2 & 4 \\ 1 & 2 & 2 & 1 & 1 & 1 & 1 & 2 \end{array} \right) \]

\[\mathbf{S}(t_e) = \left(\begin{array}{c} 3 \\ -1 \\ -3 \\ 1 \\ 1 \\ 1 \\ -3 \end{array} \right), \text{ with } \Sigma = \left(\begin{array}{cccc} 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{array} \right). \]

Using these values for \(\Omega \) and \(\mathbf{S}(t_e) \) we can obtain values for \(\mathbf{v}(t) \) and ultimately \(\mathbf{S}(t_e+1) \). \(\Omega \) and \(\mathbf{S}(t_e) \) imply that
\[\mathbf{v}^0(t_e) = \left(\begin{array}{c} 31 \\ 15 \\ 7 \\ 13 \\ 5 \\ 15 \\ 13 \\ 2 \end{array} \right), \text{ and } \mathbf{v}^d(t_e) = \left(\begin{array}{c} -3 \\ -2 \\ -5 \\ 0 \\ 2 \\ 3 \\ 0 \\ 5 \end{array} \right) \]

with probability \(\frac{105}{65536} \), yielding \(\mathbf{v}(t_e) \) when summed. (When two strategies are tied, agents holding these strategies each flip a coin to decide which strategy to
use. The separate probabilities for all tied strategies, when multiplied together, yield the probability of the current \(\mathbf{u}^{(t)} \) being chosen.

Suppose \(h(t) = 2 \), i.e. the last two minority groups were '1' then '0'. Hence \(\Upsilon(t) = 0 \), \(h(t+1) = 0 \) and consequently

\[
\mathbf{s}(t+1) = \begin{pmatrix} 4 \\ -2 \\ -2 \\ 0 \\ 0 \\ 2 \\ 2 \\ -4 \end{pmatrix}.
\]

An expression for the time-averaged quantity called the 'volatility' (standard deviation of the number of agents choosing one particular group) can be easily found using the above formalism:

\[
\sigma_{MG} = \frac{\left[\sum_{t=t_1}^{t_2} \left(\varepsilon(t) - \overline{\varepsilon} \right)^2 \right]^{\frac{1}{2}}}{t_2 - t_1}\]

(7)

where \(\varepsilon(t) = \left[\mathbf{u}(t) \right]_{h(t)+1} \) and \(\overline{\varepsilon} \) is the time-average of \(\varepsilon(t) \) from time \(t_1 \) to \(t_2 \). Here \(t_1 \) and \(t_2 \) denote the time window over which the volatility is calculated. In the reduced strategy space \(\Omega \) a similar quantity to this standard deviation can also be written down using our previously introduced (time-averaged) crowd-anticrowd framework [3]:

\[
\sigma_{CA} = \frac{\sum_{t=t_1}^{t_2} \left[\frac{1}{4} \sum_{r=1}^{2^m} \left[\mathbf{u}(t)_r - \mathbf{u}(t)_{2^m+1-r} \right]^2 \right]^{\frac{1}{2}}}{t_2 - t_1}.
\]

(8)

For a given run of the game \(\sigma_{MG} \neq \sigma_{CA} \), however these quantities become quantitatively the same (within the limits of sample size) when averaged over initial configurations of strategies [3]. \(\sigma_{CA} \) mirrors the semi-analytic approach introduced to motivate the time-independent crowd-anticrowd theory of Ref. [3] (see Fig. 1 of Ref. [3]). Indeed, the dynamical equations can be linked more formally with our previous time-averaged approach [3]. Consider, for example, the situation where no two strategies are tied in virtual points and there are an equal number of agents having each possible pairing of strategies (low \(m \) limit and reduced strategy space), i.e. all elements in \(\Omega \) are equal and non-zero. It is then easy to show that \(n^0_\rho(t) \), reduces to \(n^0_\rho = \frac{N}{t^{2m+1}} \left[1 + 2(2^m+1 - \rho(t)) \right] \); this is precisely the vector of the quantity \(n_\rho \) introduced in Ref. [3] now written in order of increasing strategy label. If we allow for tied strategies, \(\mathbf{u}^0(t) \) will be non-zero thus reducing the size of large crowds and increasing the size of the smaller crowds (and hence anticrowds), thereby leading to a smaller standard deviation.

We now turn to a comparison between the standard deviation or ‘volatility’ \(\sigma \) obtained from numerical simulations and our (time-averaged) crowd-anticrowd theory. We start with the basic MG. Figure 1 shows the spread of numerical values for different numerical runs (open circles), the full crowd-anticrowd theoretical calculation (large solid circles) and various limiting analytic curves (solid lines) for which closed-form expressions were given in Ref. [3]. Fuller details are provided in Ref. [3]. The time-averaged dynamics can be described using a quantity \(P(r' = \bar{r}) \) which represents the probability that any strategy \(r' \) is the anti-correlated partner of strategy \(r \) [3]. To produce the limiting analytic curves in Fig. 1, \(P(r' = \bar{r}) \) is taken to be either a delta-function or a flat distribution. The full theory takes the relevant form of \(P(r' = \bar{r}) \) from the game. The agreement is very good, confirming that our theory captures the essential physics.

In a variant of the basic MG, agents pick which strategy to use stochastically at each timestep. Focussing on \(s = 2 \), numerical simulations [3] found that the larger-than-random \(\sigma \) in the ‘crowded’ regime (i.e. small \(m \)) becomes smaller-than-random when the strategy-picking rule is made increasingly stochastic. Our crowd-anticrowd theory provides a quantitative explanation of this effect. Let \(\theta \) be the probability that the agent uses the worst of her \(s = 2 \) strategies. Figure 2 shows a comparison between numerical simulation (open circles) and analytic expressions (monotonically-decreasing solid lines) obtained using our crowd-anticrowd theory (full details are given in Ref. [3]). These analytic expressions vary in their choice of \(P(r' = \bar{r}) \): the upper line \(\sigma_{\text{delta}} \) in
Fig. 2 assumes a delta function while the lower line σ_{flat} assumes a flat distribution. The theory agrees well in the range $\theta = 0 \rightarrow 0.35$ and provides a quantitative, yet physically intuitive, explanation for the previously unexplained transition in σ from larger-than-random to smaller-than-random as θ increases.

Above $\theta = 0.35$, the numerical data tend to flatten off while the analytic expressions predict a decrease in σ as $\theta \rightarrow 0.5$. This is because the analytic theory averages out the fluctuations in strategy-use at each time-step. In Ref. [6] we showed how to correct this shortcoming of the analytic theory. Consider $\theta = 0.5$; Fig. 2 inset (a) shows the measured numerical distribution in σ for $\theta = 0.5$, while inset (b) shows the result from the semi-analytic procedure introduced in Ref. [6]. The two distributions are in good agreement. Note that the non-zero average (4.7 for $N = 101$, $m = 2$ and $s = 2$) for each distribution lies below the random coin-toss limit $\sqrt{N}/2$. It is also possible to perform a fully analytic calculation of the average σ_{θ} in the $\theta \rightarrow 0.5$ limit [3]; this value (which is also 4.7 for $N = 101$, $m = 2$ and $s = 2$) is shown in Fig. 2.

In summary, we have demonstrated that the crowd-anticrowd approach can be applied to explain many aspects of MG games, yielding both time-averaged and time-dependent theories (see also Ref. [7]). Our efforts to develop such simplified market games in order to describe real-world financial markets are described elsewhere [8].

We thank A. Short for useful discussions.

References

[1] D. Challet and Y.C. Zhang, Physica A 246, 407 (1997); *ibid.* 256, 514 (1998); *ibid.* 269, 30 (1999); D. Challet and M. Marsili, Phys. Rev. E 60, R6271 (1999); D. Challet, M. Marsili, and R. Zecchina, Phys. Rev. Lett. 84, 1824 (2000).

[2] See http://www.unifr.ch/econophysics for a detailed account of previous work on agent-based games such as the Minority Game.

[3] See D. Challet and M. Marsili, cond-mat/0004196 for demonstrations confirming the relevance of the actual memory, in contrast to the claim of A. Cavagna, Phys. Rev. E 59, R3783 (1999).

[4] M. Hart, P. Jefferies, N.F. Johnson and P.M. Hui, cond-mat/0004196.

[5] A. Cavagna, J.P. Garrahan, I. Giardina and D. Sherrington, Phys. Rev. Lett. 83, 4429 (1999); J.P. Garrahan, E. Moro and D. Sherrington, cond-mat/0004277.

[6] M. Hart, P. Jefferies, N.F. Johnson and P.M. Hui, cond-mat/0006141.

[7] N.F. Johnson, P.M. Hui, D. Zheng and M. Hart, J. Phys. A: Math. Gen. 32 L427 (1999); N.F. Johnson, M. Hart and P.M. Hui, Physica A 269, 1 (1999).

[8] P. Jefferies, M. Hart, N.F. Johnson, Eur. Phys. J. B, this issue.
FIG. 1. Theoretical crowd-anticrowd calculation (solid circles) and numerical simulations (open circles) for the standard deviation σ in basic MG with $s = 2$ and $N = 101$. 16 numerical runs are shown for each m. Solid lines correspond to analytic expressions representing special cases within the time-averaged crowd-anticrowd theory of Ref. \cite{4}.

FIG. 2. Theoretical crowd-anticrowd calculation and numerical simulations (circles) for σ vs. the probability parameter θ in the stochastic MG. Here $N = 101, m = 2$ and $s = 2$. Monotonically decreasing solid lines correspond to analytic expressions σ_{delta} and σ_{flat} (see text). Dashed line shows random coin-toss value. Solid arrow indicates theoretical value $\sigma_{\theta \rightarrow 0.5} = 4.7$ for $\theta \rightarrow 0.5$. Inset shows distribution of σ values at $\theta = 0.5$ for several thousand randomly-chosen initial strategy configurations: (a) numerical simulation, (b) semi-analytic theory of Ref. \cite{6}.

\cite{4}
Fig. 2