Actin cytoskeletal control during epithelial to mesenchymal transition: focus on the pancreas and intestinal tract

H T Morris¹ and L M Machesky*¹

¹The CRUK Beatson Institute for Cancer Research and University of Glasgow College of Medical, Veterinary and Life Sciences, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK

The formation of epithelial tissues allows organisms to specialise and form tissues with diverse functions and compartmentalised environments. The tight controls on cell growth and migration required to maintain epithelia can present problems such as the development and spread of cancer when normal pathways are disrupted. By attaining a deeper understanding of how cell migration is suppressed to maintain the epithelial organisation and how it is reactivated when epithelial tissues become mesenchymal, new insights into both cancer and development can be gained. Here we discuss recent developments in our understanding of epithelial and mesenchymal regulation of the actin cytoskeleton in normal and cancerous tissue, with a focus on the pancreas and intestinal tract.

Epithelia are highly organised sheets of cells that serve to form a barrier between external and internal spaces in tissues. They are important for the formation of tubes and the creation of a luminal space where the internal environment can be rendered distinct from the outside world. Epithelial specialisation arose when eukaryotic organisms committed to being multicellular and having functionally specialised tissues, rather than just growing as colonies of more or less identical clonal cells. Epithelial cells are polarised with respect to top and bottom, as well as within the plane of the tissue. Epithelial cells form junctions with their neighbours, involving specialised cytoskeletal protein assemblies. While metazoans have the clearest commitment to epithelial specialisation, it is interesting that epithelial-associated junctional proteins have been found in more ancient organisms and structures resembling epithelia have been described for example in the social amoeba Dictyostelium discoideum (Dickinson et al, 2011). Cancers arising in epithelial tissues are known as carcinomas and much effort has been devoted to unravelling the molecular programmes that occur during formation and progression of carcinomas. One of the most well-studied features of carcinomas, associated with increased aggressiveness and metastatic spread, is the loss of epithelial integrity and specialisation, called epithelial to mesenchymal transition or EMT.

EMT results in loss of features characteristic of epithelial cells – cell–cell adhesions, polarity and amotility and acquisition of a mesenchymal phenotype – spindled shape, motility and ability to invade. These phenotypic changes are accompanied by a loss of epithelial cell markers such as E-cadherin and increased expression of mesenchymal markers such as N-cadherin, vimentin and fibronectin (Figure 1). EMT was first described in the early 1980s (Greenburg and Hay, 1982) but was termed as epithelial–mesenchymal transformation. This was later amended to epithelial–mesenchymal transition, to reflect the fact that the changes are reversible by mesenchymal–epithelial transition (MET). EMT is crucial to many of the normal developmental processes of metazoans. For example, in mammals, the early embryo forms as a ball of epithelial-like cells and must undergo EMT to invade and grow in the uterus (a process known as implantation). There has been much debate about how to define EMT; for example, should cells that have developed some mesenchymal features but still retain some epithelial ones be classed as having undergone EMT, or does this represent ‘partial’ EMT? This remains a subject of continuing controversy, which we will not touch on here. In 2008, three types of EMT were defined at a meeting of experts at Cold Spring Harbor Laboratory (Kalluri and Weinberg, 2009; Zeisberg and Neilson, 2009). Although this was by no means the end of the ongoing discussions about how to define EMT, we believe that it forms a useful basis for discussion for this review and a starting
mesenchymal markers

Epithelial markers

Epithelial features

Apical–basal polarity
Cell–cell junctions
Non-migratory
Cortical actin

Mesenchymal features

Front–rear polarity
Loss of cell–cell junctions
Migratory
Actin stress fibres

E-cadherin

AJ

Lateral AJ

AJ

Cortactin

E-cadherin

Vimentin

Fibronectin

Exocytic vesicle

Scar/WAVE complex

Fascin

Actin cytoskeletal control during EMT

point for gaining a deeper understanding of EMT in development and cancer:

Type 1 EMT: this is the 'normal' process of transition of epithelial cells to a mesenchymal state during implantation and embryonic development, as part of the processes of gastrulation and neural crest formation.

Type 2 EMT: this EMT programme occurs in response to inflammation and is integral to the processes of tissue repair, regeneration and in cases where the inflammatory response is prolonged, fibrosis. This type can also be induced in cancer.

Type 3 EMT: this EMT programme is observed in neoplastic tumour-forming cells as a part of tumour dedifferentiation. Once having undergone EMT, tumour cells are able to invade and migrate to distant sites where they may establish metastases – by definition, conferring properties of malignancy on these cells. This can be accompanied by MET whereby the metastatic tumour nodule once again takes on epithelial characteristics.

For transitions between epithelial and mesenchymal states, cells need to tightly control their motility programmes. Control happens at multiple levels, including gene expression, post-translational modifications and reorganisation of the actin cytoskeleton. Here we discuss EMT during development and in cancer of the pancreas and intestinal tract and we highlight some of the actin cytoskeletal changes that occur during EMT and our emerging understanding of how the cytoskeleton and motility are regulated during these processes.

All types of EMT are driven by a combination of intrinsic programming of cells and environmental factors, such as signals from the stroma. Two of the most important signalling pathways driving EMT are the transforming growth factor beta (TGFβ) and Wnt pathways (Tam and Weinberg, 2013). Other pathways include receptor tyrosine kinase, Notch and Hedgehog signalling pathways. These signalling pathways trigger a reprogramming of gene expression patterns via various methods, including transcriptional changes, alternative splicing pathways and altered expression of micro-RNA (miR). Transcriptional changes are largely thought to be governed by a handful of so-called EMT transcription factors or EMT Tfs (Figure 1) that include the Snail superfamily (e.g., Snail, Slug, Zeb1/2, Twist 1/2, bHLH and KLF8; reviewed in Diaz-Lopez et al, 2014). These transcription factors repress the epithelial programme of gene expression (e.g., E-cadherin) and enhance mesenchymal expression (e.g., upregulate N-cadherin and vimentin). Alternative splicing occurs in EMT and changes the expression pattern of many proteins via factors such as ESRP1/2 and hnRNPM (Ishii et al, 2014; Xu et al, 2014). MiRs are small non-coding RNA that interact with mRNA and cause silencing or regulation of transcription (Diaz-Lopez et al, 2014). MiRs are also major players in the EMT process and are a subject of much research for pancreatic and intestinal cancers, for example, miR-200 and miR34 (Figure 1 and Diaz-Lopez et al, 2014). Together these transcriptional and post-transcriptional regulators, driven by signalling pathways from the microenvironment, regulate the various programmes that have been described collectively as EMT, but although there are common threads, different tissues and environmental contexts can trigger quite diverse changes associated with loss of epithelial status and gain of mesenchymal functions.

Downstream of transcriptional changes, alternative splicing and miRNA regulation, many cytoskeletal proteins are altered in their expression, localisation or activity. In addition to the
downregulation of E-cadherin, cells gain the intermediate filament protein vimentin and change their expression patterns of several other adhesion molecules such as integrins and cell surface glycoproteins. They may upregulate other cadherin isoforms, such as N-cadherin. The actin bundling protein fascin is specifically expressed in response to the EMT programme in colorectal and pancreatic cancers (Li et al, 2014) but less is known about its role in developmental delamination. Cells undergoing EMT also modulate production of extracellular matrix proteins such as fibronectin (Chen et al, 2008; Medici et al, 2008). At least in breast cancer, alternative splicing controls proteins such as the actin-binding protein Mena, which switches to an invasion promoting form (Mena-inv) and the membrane receptor CD44 (Goswami et al, 2009; Pignatelli et al, 2014; Xu et al, 2014). The organisation of the actin cytoskeleton is tightly linked to cell–cell junctions in the epithelia and this changes dramatically when cells delaminate and lose their adherens and tight junctions (Figure 1). Many of the actin filament nucleating proteins are not transcriptionally regulated, but are differently localised or regulated. For example, the actin nucleation proteins Scar/WAVE complex, N-WASP, Arp2/3 complex and cortactin localise to cell–cell junctions in epithelial cells, but are released from junctions and redirected to cell-leading edges when cells become mesenchymal (Figure 1). Many of these changes are controlled by the activity of the Rho-family small GTPases, including Rac1 and Cdc42, which have both tension by myosin-II (Wu et al, 2009). In contrast, Rac1 was implicated in the mobilisation of E-cadherin junctions (Han et al, 2014; Figure 1). This junctional tension can regulate whether cells are integrated or excluded from the epithelial monolayers, so is an interesting potential contributor to delamination and extrusion from the epithelium. Ras-transformed cells undergo abnormal extrusion from epithelial tissues (Hogan et al, 2009) and this may contribute to cancer cells breaking away from primary tumours and thus gaining access to other tissues in the body. The actin nucleation-promoting protein cortactin is implicated as a major scaffold in epithelial cell junctions, with direct interactions between cortactin, N-WASP and E-cadherin having a role in recruitment of Arp2/3 complex and the Scar/WAVE complex, to promote actin nucleation at adherens junctions (Han et al, 2014; Figure 1). In contrast, N-WASP, Scar/ WAVE proteins, cortactin and Arp2/3 complex localise to leading edge protrusions of migrating cells, where they contribute to membrane dynamics and protrusion (Figure 1). Clearly, ancient proteins involved in motility, such as WASP-family proteins, have evolved features that allow them to promote epithelial cell organisation when they need to be restricted from nucleating leading edge actin assembly and we propose that gaining a deeper understanding of these features would make a valuable contribution to our understanding of EMT and cancer spread.

Emt and cell migration during development of the pancreas and intestinal tract

EMT first occurs very early in the development of the intestinal tract. Under the influence of Wnt signalling (Liu et al, 1999) and downstream mediators belonging to the TGFβ/ superfamily (Andersson et al, 2007), epithelial cells in the primitive streak of the embryo undergo EMT, migrating internally to produce the mesoderm and endoderm. The mechanisms by which this is orchestrated are reviewed in Chuai et al (2012). The epiblast cells that do not undergo EMT remain on the surface, forming the ectoderm (Acloque et al, 2009) and subsequently cells of the endoderm form an epithelial tube extending for the length of the embryo. This tube differentiates to form three different sections – the foregut (gives rise to the pharynx, oesophagus and stomach), midgut (gives rise to the small intestine and proximal large intestine) and hindgut (gives rise to the mid and distal large intestine). At midgestation, the endoderm undergoes further differentiation in response to signals from the mesoderm and eventually the intestinal epithelium specialises to form villi and crypts containing specialised cell types.

In contrast to the intestinal lining, which retains its epithelial status from the time of formation of the endoderm, some components of the pancreas and liver require the cells to undergo a further round of EMT and MET. For example, pancreatic bud cells undergo EMT and migrate away from the epithelium to form the endocrine cells of the Islets of Langerhans (Johansson and Grapin-Botton, 2002). E-cadherin expression is repressed in a subset of cells, termed neurogenin3+ expressing insulin-producing cells, leading to migration and clustering to form islets. The EMT transcription factor Slug (also called Snail2) inversely correlates with E-cadherin expression in the developing pancreas and has been implicated in delamination and migration of the neurogenin3+ endocrine progenitor cells during islet formation (Rukstalis and Habener, 2007).

The Rho-family GTPase Cdc42 and its downstream target N-WASP are key players in pancreatic islet formation, as the expression of constitutively active Cdc42 prevents delamination, disassembly of actin at cell–cell junctions and migration (Kesavan et al, 2014). N-WASP depletion can partially rescue this phenotype, suggesting that N-WASP-mediated stabilisation of junctional actin needs to be repressed for the delamination process to complete (Kesavan et al, 2009; Kesavan et al, 2014). Cdc42 is also implicated in the formation of tubules in the developing pancreas as it has a central role in apical polarisation and thus lumen formation (Kesavan et al, 2009). In contrast, Rac1 was implicated in the mobilisation of E-cadherin junctions in the developing islets, as expression of a dominant negative Rac1 prevented migration (Greiner et al, 2009).

Under the control of the Rho GTPases, the actin cytoskeleton has an important role in epithelial cell–cell junctions, providing connectivity and strength and serving as a platform for signalling and membrane trafficking. Although next to nothing is known of the specific roles of the actin nucleation proteins in the intestinal tract, the key actin organisers N-WASP, cortactin and Arp2/3 complex have all been implicated in actin dynamics at cell–cell junctions in epithelia in tissue culture systems. Rather than stimulating new actin polymerisation for protrusion and migration, as it does in mesenchymal migrating cells, N-WASP functions together with its binding partner WIRE to stabilise and bundle actin filaments at cell–cell junctions to allow for generation of tension by myosin-II (Wu et al, 2014; Figure 1). This junctional tension can regulate whether cells are integrated or excluded from the epithelial monolayers, so is an interesting potential contributor to delamination and extrusion from the epithelium. Ras-transformed cells undergo abnormal extrusion from epithelial tissues (Hogan et al, 2009) and this may contribute to cancer cells breaking away from primary tumours and thus gaining access to other tissues in the body. The actin nucleation-promoting protein cortactin is implicated as a major scaffold in epithelial cell junctions, with direct interactions between cortactin, N-WASP and E-cadherin having a role in recruitment of Arp2/3 complex and the Scar/WAVE complex, to promote actin nucleation at adherens junctions (Han et al, 2014; Figure 1). In contrast, N-WASP, Scar/ WAVE proteins, cortactin and Arp2/3 complex localise to leading edge protrusions of migrating cells, where they contribute to membrane dynamics and protrusion (Figure 1). Clearly, ancient proteins involved in motility, such as WASP-family proteins, have evolved features that allow them to promote epithelial cell organisation when they need to be restricted from nucleating leading edge actin assembly and we propose that gaining a deeper understanding of these features would make a valuable contribution to our understanding of EMT and cancer spread.
'grade' of cancer (Grades 1–3 for colorectal cancer). Likewise, pancreatic ductal adenocarcinoma is thought to arise by gradual increases in the dysplasia, which is graded as Pancreatic Intraepithelial Neoplasia stages 1–3 (Distler et al, 2014). The role of EMT transcription factors and EMT in these changes is only partially understood and most of the pancreatic precancerous lesions in a mouse model of PDAC retained E-cadherin junctions even though at later stages they expressed the EMT transcription factor Slug (Li et al, 2014). Human intestinal adenomas contain hallmarks of some aspects of EMT (Chen et al, 2008).

There is a large body of evidence to suggest that EMT associated changes in gene expression and cell morphology occur in carcinomas and that they contribute to the aggressiveness, invasiveness and spread (Tam and Weinberg, 2013). Studies investigating the prognostic significance of EMT markers in human cancers are summarised in Table 1. Two of the most heavily implicated pathways in cancer EMT are the Wnt and TGFβ signalling pathways. Greater than 80% of all sporadic colorectal carcinomas harbour mutations in the Wnt signalling pathway, such as loss of adenomatous polyposis coli (APC) leading to the constitutive hyperactivation of Wnt signalling. Low E-cadherin correlates with poor survival in multiple clinical studies and is an independent prognostic indicator in at least five studies (Table 1). However, APC loss alone, although it triggers hyperproliferation and benign tumour formation, is insufficient to drive the development of cancer; increasing genetic instability is thought to be another major contributing factor (Bogaert and Preneen, 2014) as is signalling from TGFβ and Wnt signalling from the stroma. EMT is often only apparent at the tumour–stroma interface in colorectal cancers, because there seems to be a threshold of signalling necessary to sustain nuclear β-catenin and to drive invasive behaviour (Brabletz et al, 2001). The cells at the leading tumour edges frequently show elevation of Zeb1 transcription factor (reviewed in Schmalhofer et al (2009)) and Zeb1 is a Wnt target in colorectal cancer (Sanchez-Tillo et al, 2011) that correlates with poor survival (Table 1). Zeb1 promotes EMT changes partly by repression of miR-200 family members (Burk et al, 2008) and Table 1). Several miRs have been implicated as correlating with poor survival in colorectal cancer (Table 1) and low miR-212 is an independent prognostic indicator of poor outcome (Table 1). Other EMT transcription factors, Snail1/2 and Twist also have been correlated with poor survival in GI cancers (Table 1) as have hallmarks of EMT such as increased vimentin and fibronectin (Table 1).

In addition to transcriptional changes, EMT in cancer promotes similar changes to the cytoskeleton as developmental EMT, with cell–cell adherens junctions becoming more labile and cell migration increasing. Although we know almost nothing about how this works in pancreatic and intestinal cancers, studies from other cell types might inform future research. For example, in A431 human squamous carcinoma cells, E-cadherin mobility and turnover at junctions increases in invading tumours (Serrels et al, 2009). In many cell types, collective invasion, where cells move together in strands, but maintain some junctional contacts with neighbours, can be mediated by the loss of E-cadherin and full or partial replacement with N-cadherin (reviewed recently in Etienne-Manneville (2014)). N-cadherin promotes mobility and has recently been found to treadmill along the adjacent side interfaces between migrating astrocytes to promote collective migration (Pegion et al, 2014). N-cadherin has been implicated in EMT changes in colorectal cancer (Hu et al, 2014), so these mechanisms may be relevant for tumour invasion. In addition to the breakdown of cell–cell adhesions, proteins such as N-WASP, Scar/WAVE complex, cortactin and Arp2/3 complex mobilise away from junctions and towards the leading edges of cells where they actively induce protrusions that can interact with and remodel the surrounding stroma (Figure 1 and reviewed in McNiven (2013)).

Actin polymerisation driven by these protein assemblies drives cell protrusion and migration away from the tumour site. Cells assemble matrix-degrading structures termed invadopodia that contain major actin nucleation proteins and that interface with adhesion and matrix metalloprotease secretion machinery (for recent reviews, see McNiven (2013); Beaty and Condeelis (2014)). The actin bundling protein fascin is also a major target of cancer EMT and is thought to promote invasiveness, migration and metastatic potential in multiple cancer types, including pancreatic (Li et al, 2014) and colorectal (Hashimoto et al, 2006). Secretion of matrix metalloproteases increases during EMT (Ota et al, 2009) and cells gain the ability to migrate through three-dimensional (3D) extracellular matrix and to breach tight barriers such as the basement membranes that surround epithelial organs.

The appearance of tumour buds, or clusters of invaded cells surrounding a tumour, is a feature particularly associated with metastasis and poor prognosis in cancers of the gastrointestinal tract, including colorectal and pancreatic cancer (Park et al, 2005; Karamitopoulou et al, 2013). These budding cells have many features that support the hypothesis that they have undergone EMT, including decrease or loss of E-cadherin, expression of mesenchymal markers and activation of the Wnt signalling pathway (Lugli et al, 2012). A recent study of invasive cancers used 3D reconstruction of serial sections of tumour margins to demonstrate that human pancreatic, lung, breast and colorectal cancers invade almost exclusively as collective strands rather than as individual cells (Bronsert et al, 2014). Tumour buds were visualised in 3D reconstructions as strands of cells still attached to the primary tumour that had altered E-cadherin staining, increased expression of Zeb1 and altered polarity features. It would be interesting to know how EMT changes in tumour buds correlate with actin cytoskeletal mobilisation and reorganisation, but this awaits more advanced imaging methods and cancer models.

We have mostly discussed the role of the actin machinery in migration of cells away from the primary tumour, but metastasis involves many steps, including also seeding of escaped tumour cells in distant sites. Two recent studies highlight the actin cytoskeletal and integrin-dependent pathways that contribute to seeding of cancer cells in the lungs and formation of early metastatic nodules (Shibue et al, 2012; Shibue et al, 2013). The authors identify actin-rich filopod-like protrusions (FLP) that contain integrin and allow cells to attach to matrix and activate their prosurvival and growth pathways via focal adhesion kinase. These FLP structures are enhanced by the actin nucleation formin protein mDia2 and regulated by the small GTPase Rho (Shibue et al, 2012). In addition, FLPs are enhanced by expression of the integrin:actin linker protein β-parvin (Shibue et al, 2013). It is not clear yet whether this pathway is controlled by cancer associated EMT, but expression of the EMT transcription factors Twist or Snail or knockdown of E-cadherin enhanced the FLP pathway, suggesting a potential connection (Shibue et al, 2013).

SUMMARY

The formation of epithelia by multicellular organisms has required that cells evolve mechanisms to tightly control protein expression, activation status and localisation. Most epithelial tissues have some plasticity in their differentiation status and can convert between epithelial and mesenchymal if the right signals are given. During cancer, the EMT programme becomes unregulated or misregulated to produce changes that resemble type-1 developmental EMT, but that also have significant differences. Many different signals can provoke EMT-like changes in cancer that lead to breakdown or mobilisation of epithelial junctions and enhance the progression and spread of the cancer. There is a wealth of evidence from the
Table 1. Summary of cancer studies implicating EMT markers in prognosis and outcomes for several epithelial cancers of the gastrointestinal tract

Marker	Authors	Year	Journal	Site	Method	No. of cases	KMC LRT P-value	CoxPH HR	HR P-value	Outcome	Notes
E-cadherin	Kroepki et al	2013	BMC Cancer	Colorectal	TMA IHC	250	0.087	NT	Not shown	OS	
	Bellovin et al	2005	Cancer Res	Colorectal	TMA IHC	557	0.00127	Not shown	NS	OS	
	Knisel et al	2012	Int J Colorectal Dis	Colorectal (high grade)	TMA IHC	402	0.003	NT	5.098 (1.801-14.430)	DFS	0.002
	Yun et al	2014	Oncology	Colorectal	TMA IHC	409	0.009	19.84 (0.539-79.26)	0.303	OS	
	Yun et al	2014	Oncology	Colorectal	TMA IHC	409	0.003	NT	224.9 (1.64-4.33)	DFS	0.0158
	Jie et al	2013	Dig Dis Sci	Colorectal	WTB IHC	108	< 0.001	NT	5.098 (1.801-14.430)	DFS	0.0208
	Shioiri et al	2006	Br J Cancer	Gastric	WTB IHC	138	0.0066	NT	0.574 (0.371-0.886)	OS	0.012
	Fujikawa et al	2012	J Gastroenterol	Colorectal	qPCR	102	0.01	Not shown	NS	OS	
	Nitta et al	2014	BJC	Bile duct	TMA IHC	117	0.0066	NT	2.249 (1.64-4.33)	DFS	0.002
	Chen et al	2014	Tumour Biol	Gallbladder	WTB IHC	93	0.001	NT	1.856 (1.034-2.976)	DFS	0.026
	Hou et al	2012	Med Oncol	Gastric	WTB IHC	158	< 0.001	OS	5.098 (1.801-14.430)	DFS	0.0208
	Kim et al	2009	Histopathol	Gastric	TMA IHC	598	0.0006	NT	0.574 (0.371-0.886)	OS	0.012

Summary: 9/10 significant differences in OS, 1/1 significant difference in DFS, 4/8 independent prognostic variable OS, 1/1 independent prognostic variable DFS

Snail	Kroepli et al	2013	BMC Cancer	Colorectal	TMA IHC	251	0.57	NT	Not shown	OS	
	Franci et al	2009	PLoS One	Colorectal	TMA IHC	162	0.011	NT	Not shown	OS	
	Kim et al	2014	Oncol Rep	Colorectal	qPCR	109	0.014	NT	2.11 (1.03-4.33)	DFS	0.041
	Nitta et al	2014	BJC	Bile duct	TMA IHC	117	0.3413	NT	Not shown	OS	
	Shin et al	2012	BMC Cancer	Gastric	TMA IHC	314	0.023	NT	0.590 (0.363-0.958)	DFS	0.033
	Kim et al	2009	Histopathol	Gastric	TMA IHC	998	< 0.0001	NT	1.856 (1.034-2.976)	DFS	0.026

Summary: 4/6 significant differences in OS, 3/3 independent prognostic variable of OS

| Slug | Shioiri et al | 2014 | Br J Cancer | Gastric | TMA IHC | 117 | 0.6143 | NT | 2.212 (1.127-4.342) | OS | 0.021 |
| | Nitta et al | 2014 | BJC | Bile duct | TMA IHC | 117 | 0.0001 | NT | 1.856 (1.034-2.976) | DFS | 0.026 |

Summary: 1/2 significant difference in OS, 1/1 independent prognostic variable of OS

Twist	Gomez et al	2011	PLoS One	Colorectal	qPCR	151	0.001	NT	2.73 (1.5-4.84)	OS	0.001
	Kim et al	2011	PLoS One	Colorectal	qPCR	151	0.16 (0.02 for Stage 1 only)	NT	1.99 (1.05-3.82)	DFS	0.036
	Nitta et al	2014	BJC	Bile duct	TMA IHC	117	0.3543	NT	2.29 (1.04-5.00)	DFS	0.039
	Ru et al	2010	Path and Oncol Res	Gastric (Stages 1–3)	TMA IHC	436	< 0.005	NT	5.744 (1.347-24.29)	DFS	0.018
	Yu et al	2013	World J Gastroenterol	Colorectal	TMA IHC	93	0.015	NT	3.264 (1.455-7.375)	DFS	0.004

Summary: 4/5 significant differences in OS, 2/2 significant difference in DFS, 4/4 independent prognostic variable OS, 2/2 significance as independent prognostic variable of DFS

Zeb	Liu et al	2012	Cancer Sci	Gastric	WTB IHC	203	< 0.005	NT	2.371 (1.008-4.78)	OS	0.048
	Zhang et al	2013	Oncol Lett	Gastric	qPCR	92	0.01	NT	2.371 (1.008-4.78)	OS	0.048
	Nitta et al	2014	Br J Cancer	Bile duct	TMA IHC	117	0.379	NT	1.99 (1.05-3.82)	DFS	0.036
	Bronsert et al	2014	Surgery	Pancreas (Tumour)	WTB IHC	117	0.0043	Not shown	OS	0.001	
	Bronsert et al	2014	Surgery	Pancreas (Stroma)	WTB IHC	117	0.0032	Not shown	OS	0.001	
	Kahler et al	2011	Cancer Sci	Gastric (invasive front)	IHC	175	< 0.0001	NT	1.772 (1.033-3.041)	DFS	0.038
	Nitta et al	2014	Br J Cancer	Bile duct	TMA IHC	117	0.938	NT	2.48 (1.16-5.27)	DFS	0.02
	Dai et al	2012	Dig Dis Sci	Gastric	WTB IHC	76	< 0.005	NT	2.48 (1.16-5.27)	DFS	0.02

Summary: 5/7 significant differences in OS, 1/1 significant difference in CSS, 2/3 independent prognostic variable of OS, 1/1 showed significance as independent prognostic variable of CSS
Marker	Authors	Year	Journal	Site	Method	No. of cases	KMC LRT P-value	CoxPH HR	HR P-value	Outcome	Notes
Vimentin +	Yun et al	2014	Oncology	Colorectal	TMA IHC	409	NT	0.769	0.398	OS	
	Nitta et al	2014	BJ Cancer	Bile duct	TMA IHC	117	0.0193	1.21	0.5662	OS	
	Chen et al	2014	Tumour Biol	Gastric	TMA IHC	93	NT	1.645	0.0043	OS	
	Hou et al	2012	Med Oncol	Gastric	TMA IHC	158	0.029	1.444	0.119	OS	
	Otsuki et al	2011	Onco Rap	Gastric	qPCR	106	0.019	2.1	0.036	DFS	
Summary:	3/3 significant differences in OS, 1/1 significant difference in DFS, 1/5 independent prognostic variable of OS, 1/1 independent prognostic variable of DFS										
Fibronectin +	Yun et al	2014	Oncology	Colorectal	TMA IHC	409	NT	0.802	0.478	OS	
	Nitta et al	2014	BJC Cancer	Bile duct	TMA IHC	117	0.0092	1.08	0.9093	OS	
Summary:	1/1 significant difference in OS, 0/2 significance as independent variable of OS										
alpha-SMA +	Yun et al	2014	Oncology	Colorectal	TMA IHC	409	NT	0.997	0.991	OS	
	Nitta et al	2014	BJ Cancer	Bile duct	TMA IHC	117	0.05216	NT	0.991	OS	
Summary:	0/1 significant difference in OS, 0/1 independent variable of OS										
N-cadherin +	Jie et al	2013	Dg Da Sci	Colorectal	WTB IHC	108	0.41	NT	0.0004	OS	
	Nitta et al	2014	BJ Cancer	Bile duct	TMA IHC	117	0.0004	2.53	0.0038	OS	
Summary:	2/3 significant differences in OS, 2/3 independent variable of OS										
TGF-Beta +	Calon et al	2012	Cancer Cell	Colorectal	qPCR	335	Not shown	0.00001	DFS	<0.0001	
miR	miR132 (low)	Zheng et al	2014	World J Gastroenterol	Colorectal	qPCR	62	<0.001	NT	DFS	
	miRNA-19b (high)	Kahler et al	2011	Cancer Sci	Colorectal	liver mets	qPCR	30	0.04	NT	OS
	miR149 (low)	Kahler et al	2011	Cancer Sci	Colorectal	liver mets	qPCR	30	0.002	NT	OS
	miR149 (high)	Kahler et al	2011	Cancer Sci	Colorectal	liver mets	qPCR	30	0.003	NT	OS
	miR212 (low)	Meng et al	2013	Gastroenterology	Colorectal	qPCR	180	0.0015	0.403	0.28	OS
	miR212 (low)	Meng et al	2013	Gastroenterology	Colorectal	qPCR	180	0.0045	NT	OS	
	miR30a (low)	Liu et al	2016	Febs Letters	Hepatobiliary	qPCR	63	0.015	3.2	0.002	DFS
Summary:	3/3 significant differences in OS, 5/5 significant difference in DFS, 3/5 significant difference in OS, 1/1 similarity as independent variable of OS, 1/1 similarity as independent variable of DFS										

Combination ("mesenchymal phenotype")

Vim: E-cad ratio > 1.24	Snail1 +, Vimentin +, E-cad -, CD44 +	Snail1 +, Vimentin +, E-cad -, CD44 +	Low E-cad, vimentin +	Twist +, Bmi-1 +				
Mashita et al	2014	J Surg Oncol	Colorectal	qPCR	150	0.0085	1.48	DFS
Ryu et al	2012	Hum Pathol	Gastric	qPCR	276	<0.001	2.072	DFS
Iwahashi et al	2014	J Gastroenterol Hepato	Pancreatic (IPMN)	qPCR	33	0.007	1.93	DFS
Summary:	2/2 significant differences in OS, 3/3 significant difference in DFS, 2/2 similarity as independent variable of OS, 0/2 similarity as independent variable of DFS							

Abbreviations: CoxPH = Cox proportional hazards multivariate analysis; CSS = cancer-specific survival; DFS = disease-free survival; HR = hazard ratio; IHC = immunohistochemistry; IPMN = intraductal papillary mucinous neoplasm; KMC LRT = Kaplan-Meier survival curve log-rank test; NS = not significant; NT = not tested; OS = overall survival; qPCR = quantitative PCR; TMA = tissue microarray; WTB = whole tissue blocks. Recent studies showing the usefulness of various markers of EMT, such as transcription factors, cytoskeletal markers and micro-RNAs are summarized.
clinical literature suggesting a positive correlation between EMT signalling and transcriptional changes and poor outcome in many cancers, including those of the pancreas and intestinal tract. Very little is known about how the motility machinery reorganises during EMT. Although the loss of E-cadherin junctions is the most prominent feature of most EMT transitions, many other changes occur and the actin nucleation-promoting proteins such as N-WASP, Scar/WAVE and cortactin have specific roles both in epithelial and mesenchymal cells. Rho-family GTPases participate in regulation of the actin cytoskeleton in both epithelial and mesenchymal cells and seem to have important roles in developmental and cancer-related EMT.

Cancer EMT is clearly very different from developmental EMT, but parallels exist and EMT-related changes in cancer correlate strongly with progression and poor outcome. Cancer EMT can be partial and both solid tumours and circulating tumour cells may co-express epithelial and mesenchymal markers (Armstrong et al., 2011). Furthermore, the mesenchymal status is not sufficient in all cases to confer metastasis, as there are some benign tumours (which by definition, do not usually metastasise) that typically show aggressive local invasion, for example, giant cell tumour of the bone (Fletcher et al., 2002) and ameloblastoma (Barnes, 2005). The importance of EMT in cancer has been challenged (Tarin et al., 2005) and it appears that many tumours that histologically are 'epithelial' can be aggressively metastatic. Many questions remain about which aspects of EMT promote metastatic dissemination and how cancers hijack developmental EMT to progress. Likewise, the precise regulation of key actin motility proteins during EMT and MET is only beginning to be understood and may provide insight that will be clinically useful.

REFERENCES

Acloque H, Adams MS, Fishwick K, Bronner-Fraser M, Nieto MA (2009) Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest 119(6): 1438–1449.
Andersson O, Bertolino P, Ibanez CF (2007) Distinct and cooperative roles of mammalian Vgl homologs GDF1 and GDF3 during early embryonic development. Dev Biol 311(2): 500–511.
Armstrong AJ, Marengo MS, Oltean S, Kemeny G, Bitting RL, Turnbull JD, Herold CI, Marcom PK, George DJ, Garcia-Blanco MA (2011) Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers. Mol Cancer Res 9(8): 997–1007.
Barnes L (2005) Pathology and Genetics of Head and Neck Tumours. IARC Press: Lyon.
Beatty BT, Condeelis J (2014) Digging a little deeper: The stages of invadopodium formation and maturation. Eur J Cell Biol 93(10-12): 438–444.
Bogaert J, Prehen H (2014) Molecular genetics of colorectal cancer. Ann Gastroenterol 27(1): 9–14.
Braet L, Jung A, Reu S, Porzner M, Hubeck F, Kunz-Schughart LA, Knuechel R, Kirchner T (2001) Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci USA 98(18): 10356–10361.
Bronsert P, Enderle-Ammour K, Bader M, Timme S, Kuehs M, Csanadi A, Hogan C, Dupre-Crochet S, Norman M, Kajita M, Zimmermann C, Pelling AE, Brakebusch C, Semb H (2009) Cdc42-mediated tubulogenesis controls cell interface. J Pathol 218(3): 410–422.
Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S, Braet L (2008) A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep 9(6): 582–589.
Chen X, Halberg RB, Burch RP, Dove WF (2008) Intestinal adenomatogenesis involves core molecular signatures of the epithelial-mesenchymal transition. J Mol Histol 39(3): 283–294.
Chuai M, Hughes D, Weijer CJ (2012) Collective epithelial and mesenchymal cell migration during gastrulation. Curr Genomics 13(4): 267–277.
Diaz-Lopez A, Moreno-Bueno G, Cano A (2014) Role of microRNA in epithelial to mesenchymal transition and metastasis and clinical perspectives. Cancer Manag Res 6: 205–216.
Dickinson DJ, Nelson WJ, Weis WI (2011) A polarized epithelium organized by beta- and alpha-catenin predates cadherin and metazoan origins. Science 331(6022): 1336–1339.
Ditler M, Aust D, Weitz J, Pilarczyk C, Gruttman R (2014) Precursor lesions for sporadic pancreatic cancer: PanIN, IPMN, and MCN. Biomed Res Int 2014: 479405.
Etienne-Manneville S (2014) Neighboring relations during collective migration. Curr Open Cell Biol 30C: 51–59.
Fearn ER, Vogelestein B (1990) A genetic model for colorectal tumorigenesis. Cell 61(5): 759–767.
Fletcher CDM, Unni KK, Mertens F (2002) Pathology and Genetics of Tumours of Soft Tissue and Bone. IARC Press: Lyon, France.
Gossawi S, Philippar U, Sun D, Patsalou A, Avraham J, Wang W, Di Modugno F, Nistico P, Gertler FB, Condeelis JS (2009) Identification of invasion specific splice variants of the cytoskeletal protein Mena present in mammary tumor cells during invasion in vivo. Clin Exp Metastas 26(2): 153–159.
Greenburg G, Hay ED (1982) Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells. J Cell Biol 95(1): 333–339.
Greiner TU, Kesavan G, Stahlberg A, Semb H (2009) Rac1 regulates pancreatic islet morphogenesis. BMC Dev Biol 9: 2.
Han SP, Gambin Y, Gomez GA, Verma S, Giles N, Michael M, Wu SK, Guo Z, Johnston W, Sierieczi E, Parton RG, Alexandrov K, Yap AS (2014) Cortactin scaffolds Arp2/3 and WAVE2 at the epithelial zonula adherens. J Biol Chem 289(11): 7764–7777.
Hashimoto Y, Skacel M, Laverty JC, Mukherjee AL, Casey G, Adams JC (2006) Prognostic significance of fascin expression in advanced colorectal cancer: an immunohistochemical study of colorectal adenomas and adenocarcinomas. BMC Cancer 6: 241.
Hogan C, Dupre-Crochet S, Norman M, Kajita M, Pelling AE, Piddini E, Baena-Lopez LA, Vincent JP, Itoh Y, Hosoya H, Pichaud F, Fujita Y (2009) Characterization of the interface between normal and transformed epithelial cells. Nat Cell Biol 11(4): 460–467.
Hu TH, Yao Y, Yu S, Han LL, Wang WJ, Guo H, Tian T, Ruan ZP, Kang XM, Wang J, Wang SH, Nan KJ (2014) SDF-1/CXCR4 promotes epithelial-mesenchymal transition and progression of colorectal cancer by activation of the Wnt/beta-catenin signaling pathway. Cancer Lett 354(2): 417–426.
Ishii H, Saitoh M, Sakamoto K, Kato T, Katoh R, Tanaka S, Motizuki M, Masuyama K, Miyazawa K (2014) Epithelial splicing regulatory proteins 1 (ESRP1) and 2 (ESRP2) suppress cancer cell motility via different mechanisms. J Biol Chem 289(40): 27386–27399.
Johansson KA, Grapin-Botton A (2002) Development and diseases of the pancreas. Clin Genet 62(1): 14–23.
Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Investig 119(5): 1420–1428.
Karamitopoulou E, Zlobec I, Born D, Kondi-Pafiti A, Lykoudis P, Mellou A, Gennatas K, Gloor B, Lugli A (2013) Tumor budding is a strong and independent prognostic factor in pancreatic cancer. Eur J Cancer 49(5): 1032–1039.
Kesavan G, Lieven O, Mamidi A, Ohlin ZL, Johansson JK, Li WC, Lommel S, Greiner TU, Semb H (2014) Cdc42/N-WASP signaling links actin dynamics to pancreatic beta cell delamination and differentiation. Development 141(3): 685–696.
Kesavan G, Sand PW, Grapin-Botton A, Johansson JK, Kobberup S, Wu X, Brakebusch C, Semb H (2009) Cdc42-mediated tubulogenesis controls cell specification. Cell 139(4): 791–801.
Li A, Morton JP, Ma Y, Karim SA, Zhou Y, Faller WJ, Woodham EF, Morris HT, Stevenson RP, Juin A, Jamieson NB, Mackay CJ, Carter CR, Leung HY, Yamashiro S, Blyth K, Sansom OJ, Machesky LM (2014) Fascin is regulated by slug, promotes progression of pancreatic cancer in mice, and is associated with patient outcomes. Gastroenterology 146(5): 1386–96 e1-17.
Liu F, Wakamiya M, Shea MJ, Albrecht U, Behringer RR, Bradley A (1999) Requirement for Wnt3 in vertebrate axis formation. Nat Genet 22(4): 361–365.
Lugli A, Karamitopoulou E, Zlobec I (2012) Tumor budding: a promising parameter in colorectal cancer. Br J Cancer 106(11): 1713–1717.
McNiven MA (2013) Breaking away: matrix remodeling from the leading edge. Trends Cell Biol 23(1): 16–21.

www.bjcancer.com | DOI:10.1038/bjc.2014.658
Medici D, Hay ED, Olsen BR (2008) Snail and Slug promote epithelial-mesenchymal transition through beta-catenin-T-cell factor 4-dependent expression of transforming growth factor-beta3. *Mol Biol Cell* 19(11): 4875–4887.

Ota I, Li XY, Hu Y, Weiss SJ (2009) Induction of a MT1-MMP and MT2-MMP-dependent basement membrane transmigration program in cancer cells by Snail1. *Proc Natl Acad Sci USA* 106(48): 20318–20323.

Park KJ, Choi HJ, Roh MS, Kwon HC, Kim C (2005) Intensity of tumor budding and its prognostic implications in invasive colon carcinoma. *Dis Colon Rectum* 48(8): 1597–1602.

Peglion F, Llense F, Etienne-Manneville S (2014) Adherens junction treadmilling during collective migration. *Nat Cell Biol* 16(7): 639–651.

Pignatelli J, Goswami S, Jones IG, Rohan TE, Pieri E, Chen X, Adler E, Cox D, Maleki S, Bresnick A, Gertler FB, Condeelis JS, Oktay MH (2014) Invasive breast carcinoma cells from patients exhibit MenaINV- and macrophage-dependent transendothelial migration. *Sci Signal* 7(353): ra112.

Rukstalis JM, Habener JF (2007) Snail2, a mediator of epithelial-mesenchymal transitions, expressed in progenitor cells of the developing endocrine pancreas. *Gene Expr Patterns* 7(4): 471–479.

Sanchez-Tillo E, de Barrios O, Siles L, Cuatrecasas M, Castells A, Postigo A (2011) beta-catenin/TCF4 complex induces the epithelial-to-mesenchymal transition (EMT)-activator ZEB1 to regulate tumor invasiveness. *Proc Natl Acad Sci USA* 108(48): 19204–19209.

Schmalhofer O, Brabletz S, Brabletz T (2009) E-cadherin, beta-catenin, and ZEB1 in malignant progression of cancer. *Cancer metast Rev* 28(1-2): 151–166.

Serrels A, Timpson P, Canel M, Schwarz JP, Carragher NO, Frame MG, Brunton VG, Anderson KI (2009) Real-time study of E-cadherin and membrane dynamics in living animals: implications for disease modeling and drug development. *Cancer Res* 69(7): 2714–2719.

Shibue T, Brooks MW, Inan ME, Reinhardt F, Weinberg RA (2012) The outgrowth of micrometastases is enabled by the formation of filopodium-like protrusions. *Cancer Discov* 2(8): 706–721.

Shibue T, Brooks MW, Weinberg RA (2013) An integrin-linked machinery of cytoskeletal regulation that enables experimental tumor initiation and metastatic colonization. *Cancer Cell* 24(4): 481–498.

Tam WL, Weinberg RA (2013) The epigenetics of epithelial-mesenchymal plasticity in cancer. *Nat Med* 19(11): 1438–1449.

Tarin D, Thompson EW, Newgreen DF (2005) The fallacy of epithelial mesenchymal transition in neoplasia. *Cancer Res* 65(14): 5996–6000; discussion 6000–1.

Woodham EF, Machesky LM (2014) Polarised cell migration: intrinsic and extrinsic drivers. *Curr Opin Cell Biol* 30C: 25–32.

Wu SK, Gomez GA, Michael M, Verma S, Cox HL, Lefevre JG, Parton RG, Hamilton NA, Neufeld Z, Yap AS (2014) Cortical F-actin stabilization generates apical-lateral patterns of junctional contractility that integrate cells into epithelia. *Nat Cell Biol* 16(2): 167–178.

Xu Y, Gao XD, Lee JH, Huang H, Tan H, Ahn J, Reinke LM, Peter ME, Feng Y, Gius D, Siziopikou KP, Peng J, Xiao X, Cheng C (2014) Cell type-restricted activity of hnRNP M promotes breast cancer metastasis via regulating alternative splicing. *Genes Dev* 28(11): 1191–1203.

Zeisberg M, Neilon EG (2009) Biomarkers for epithelial-mesenchymal transitions. *J Clin Invest* 119(6): 1429–1437.

This work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 4.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/