Organic flash memory on various flexible substrates for foldable and disposable electronics

Seungwon Lee¹, Hyejeong Seong², Sung Gap Im², Hanul Moon¹ & Seunghyup Yoo¹

With the emergence of wearable or disposable electronics, there grows a demand for a flash memory realizable on various flexible substrates. Nevertheless, it has been challenging to develop a flash memory that simultaneously exhibits a significant level of flexibility and performance. This is mainly due to the scarcity of flexible dielectric materials with insulating properties sufficient for a flash memory, which involves dual dielectric layers, respectively, responsible for tunneling and blocking of charges. Here we report ultra-flexible organic flash memories based on polymer dielectrics prepared by initiated chemical vapor deposition. Using their near-ideal dielectric characteristics, we demonstrate flash memories bendable down to a radius of 300 μm that exhibits a relatively long-projected retention with a programming voltage on par with the present industrial standards. The proposed memory technology is then applied to non-conventional substrates, such as papers, to demonstrate its feasibility in a wide range of applications.
Flash memory is a non-volatile, transistor-based data-storage device that has become essential in most electronic systems found in modern daily life. With straightforward operation mechanisms and easy integration into NAND or NOR array architectures, flash memories have been established as by far the most successful and dominant non-volatile memory technology. Above all, their direct electrical programming requiring no mechanical parts greatly reduces the weight of an overall system as well as the power consumption, making it hugely popular in portable electronics spanning from thumb drives and memory cards to solid-state drives in smart phones and laptops.

Emerging areas, such as wearable, body-attachable, or disposable electronic cards to solid-state drives in smart phones and laptops, will also greatly benefit from such characteristics of flash memories as well as from their well-established circuit infrastructure, provided that they can be realized on various non-rigid substrates and, at the same time, can exhibit a memory performance that is sufficient for real-world applications. In these respects, many studies have been devoted to the development of flash memories based on organic or other emerging electronic materials that can potentially be compatible with flexible substrates.

Despite promising demonstrations in the early stages, however, the overall progress in this field has been far slower than that of thin-film transistors (TFTs) or other devices based on flexible materials. Major challenges lie in the core structure of flash memories, which involves dielectric bilayers sandwiching a charge storage layer such as a floating gate (FG) electrode (Fig. 1a). In addition to playing a regular role as a gate insulator, these two dielectric layers have to provide a reliable and controllable means by serving, respectively, (i) as a tunneling dielectric layer (TDL) through which to inject charges into the FG for programming or to remove charges therefrom for erasing via control of a control gate (CG) bias; and (ii) as a blocking dielectric layer (BDL) to prevent charge leakage to confined memory retention and to ensure that charge flow occurs only through the TDL during programming/erasing (Fig. 1b). For reasonably low-programming/erasing voltages, these dielectric layers should not be made too thick; this unfortunately contradicts the conditions for long memory retention in many cases. A best-case scenario would thus be to use dielectric layers that are thin enough to enable low-voltage programming/erasing and yet can provide leak-free insulating properties even at such small thickness. Finding such an ideal dielectric layer has been very difficult for polymeric layers, which are the most prominent candidate material for flexible electronics. The solution processing used for most polymeric dielectric layers also makes it difficult to use them in flash memories due to the complexity involved in the formation

Fig. 1 Structure of thin-film transistor-based organic flash memories and their operation mechanism. **a** The schematic device structure of the proposed flash memory and a false-color cross-sectional TEM image of the fabricated flash memory device. TDL, BDL, CG, FG, and S/D refer to tunneling dielectric layer, blocking dielectric layer, control gate, floating gate, and source/drain, respectively. **b** Energy band diagrams of the flash memory device under study for various operation regimes. The total voltages across BDL (\(V_{BDL}^{(total)}\)) and TDL (\(V_{TDL}^{(total)}\)) are determined by the various factors such as built-in voltages, applied \(V_{CG}\) and coupling ratio, \(V_{in}\) shift due to stored or depleted charges, etc., as described in details in Supplementary Table 1. **c** Chemical structures of the poly(1,3,5-trimethyl-1,3,5-trivinyl cyclotrisiloxane) (pV3D3) and the poly(ethylene glycol dimethacrylate) (pEGDMA) polymers used as TDL and BDL, respectively.

appearing later have been measured under controlled atmosphere in an N2-vapor-phase growth technique for polymers pioneered by Gleason and her coworkers. With tunneling-limited field-enhanced J−E characteristics of Al/pEGDMA (36 nm)/Al devices measured at various device temperatures (T) and Arrhenius plots (right) transformed from them. a, b Sketches of electric field (shown as arrows) distribution inside flash memory under programming (c) and erasing (d) operations. Statistical distribution of J−E characteristics of Al/pEGDMA (36 nm)/Al devices with various pEGDMA thicknesses. e–i Device characteristics of the proposed flash memories fabricated on a PET substrate: transfer memory characteristics (f), endurance test result over repeated programming/erasing operations (g), data retention characteristics (h), and memory speed characteristics for various programming/erasing voltages (i). All the transistor and memory characteristics in Fig. 2 and those appearing later have been measured under controlled atmosphere in an N2-filled glove box, unless specified otherwise.

of the bilayer dielectric structure, which is the key to flash memory operations. All of these considerations have made it highly challenging to realize true flash memories in flexible form factors. Hence, we try to overcome these hurdles and realize highly flexible flash memories by employing thin polymeric insulators grown with initiated chemical vapor deposition (iCVD), a vapor-phase growth technique for polymers pioneered by Gleason and her coworkers. With tunneling-limited characteristics, these dielectrics have recently been demonstrated as flexible gate insulators that are important for low-voltage flexible TFTs. In this work, it is further shown that the iCVD-based polymeric insulators can make a significant contribution to flash memories as well. With a rational design and material choice that carefully consider both applied and built-in electric fields across the dielectric layers for each operating condition, the proposed approach simultaneously enables long retention (projected to be ~10 years) and low-programming/erasing voltages comparable to the present industrial standards (~±10 V). We then take full advantage of the mild, solvent-free, and low-temperature growth of iCVD to demonstrate flexible flash memories on various non-rigid substrates including ultrathin plastics and paper.

Results
Design and characterization of organic flash memories. The proposed non-volatile memory devices are based on C60-based organic TFTs, wherein the gate insulator is replaced with a TDL/FG/BDL, as shown in the schematic device structure presented in Fig. 1a. C60 was chosen mainly for its consistency that led to a mobility larger than 1 cm² V⁻¹ s⁻¹ with a good run-to-run reproducibility. Two iCVD processed polymer films of poly(1,3,5-trimethyl-1,3,5-trivinyl cyclooctisiloxane) (pV3D3) and poly(ethylene glycol dimethacrylate) (pEGDMA), whose chemical structures are shown in Fig. 1c, are employed for TDL and BDL, respectively. While pV3D3 was chosen for ash memories as well. With a rational design

Fig. 2 Properties of iCVD-processed polymer dielectric layers and an organic flash memory made thereof on plastic substrates. a J−E characteristics of a Al/pEGDMA (48 nm)/Al device. The vertical, dashed lines are a guide to eyes that divides low-field, direct-like tunneling regime and high-field, Fowler–Nordheim (F−N)-like tunneling regime. The latter can be easily distinguished from the low-field regime due to the clear field-enhanced J₁ over E₁. In both regimes, it is likely that each tunneling mechanism is coupled with trap-assisted tunneling (TAT). b) J−E characteristics of Al/pEGDMA (36 nm)/Al devices measured at various device temperatures (T) and Arrhenius plots (right) transformed from them. c, d) Sketches of electric field (shown as arrows) distribution inside flash memory under programming (c) and erasing (d) operations. e) Statistical distribution of J₁ at E₁ of 3 MV cm⁻¹ obtained for the Al/pEGDMA/Al devices with various pEGDMA thicknesses. f–i) Device characteristics of the proposed flash memories fabricated on a PET substrate: transfer memory characteristics (f), endurance test result over repeated programming/erasing operations (g), data retention characteristics (h), and memory speed characteristics for various programming/erasing voltages (i). All the transistor and memory characteristics in Fig. 2 and those appearing later have been measured under controlled atmosphere in an N2-filled glove box, unless specified otherwise.
previously been reported by Moon et al.52, pEGDMA was selected not only for its consistent insulating performance comparable to that of pV3D3, but also for its dielectric constant larger than that of pV3D3, which will be discussed later in details. As can be seen in the false-color high-resolution transmission electron microscopy (HRTEM) image in Fig. 1a, these polymers make a conformal coating on the bumpy Al surfaces used as a CG and a FG, respectively, thanks to the characteristics inherent to the vapor-based iCVD method. This conformal growth is highly beneficial in the present case because it can minimize a chance of forming accidental electrical short paths. Like pV3D352, pEGDMA polymer layers also have superb insulating properties even on flexible substrates, with low leakage current density (J_i) and a relatively high breakdown field of over 6 MV cm$^{-1}$ (Fig. 2a). This is due not only to the conformal coverage but also to the tunneling-limited insulating properties of iCVD-based polymers, which are characteristic to near-ideal dielectric layers with low trap densities52. The tunneling-limited behavior can be verified from their J_i vs. applied electric field (E_i) characteristics, which are almost independent of the device temperature over a wide range, as shown in ref. 51 for pV3D3 and in Fig. 2b for pEGDMA.

From the viewpoint of memory operation, the J_i-E_i characteristics of a metal-insulator-metal (MIM) device with near-ideal dielectric layers may be divided into two distinctive regions as shown for pEGDMA in Fig. 2a: (i) a low-E_i regime where J_i is significantly low due to direct-like tunneling where tunneling should be made through a full barrier width; and (ii) a high-E_i regime where J_i exhibits field-enhanced behavior, due to Fowler–Northrheim (F–N)-like tunneling, which involves tunneling through field-induced triangular barriers. It should be noted that, in both regimes, each tunneling mechanism could be further assisted with trap-assisted tunneling (TAT) found in not only pV3D3, but also for its dielectric constant larger than that of parylene, a polymer produced from vapor phase and commonly used in many areas, is on par with that of pEGDMA. Hence parylene could also be used for a BDL in this scheme. One concern for parylene is, however, its relatively low break-down field60. Nevertheless, the report by Song et al. demonstrates that the dielectric properties of polymers could be significantly improved upon use of soft contacts such as transferred graphene61. If the break-down field of parylene can further be increased in this way, parylene may also be used as one of the gate dielectric layers for memory devices.

Once k_{TDL} and k_{BDL} are chosen, one needs to determine the thicknesses of BDL ($=d_{BDL}$) and TDL ($=d_{TDL}$) that can fulfill the field requirements for all the memory operation conditions. In the real memory structure (instead of the aforementioned simplified case), the detailed energy band alignment should be carefully taken into account, because it can lead to built-in fields across BDL and TDL and thus exert an influence on the net field across these layers. It should further be noted that the built-in field is strongly depending on the memory state because they are influenced by the differential increase or decrease in the amount of charge confined within FG (see Supplementary Table 1 and description therein for further details). Another complication, which results from the inherent properties of a typical organic TFT, is the change in α_{CR} associated with the dependence of the capacitance of the FG/TDL/channel/S(D) structure (C_{TDL}) on the operation modes. Due to the gate-modulated conductivity of the channel, the effective thickness and area determining C_{TDL} during programming (i.e., channel is ON) are d_{TDL} and the area underneath the channel that overlaps with FG, respectively; in contrast, those relevant to the erasing process (i.e., channel is OFF) are d_{TDL} plus the channel thickness ($d_{channel}$) and the area underneath D and S electrodes overlapping with FG, respectively (Fig. 2c, d). The energy diagrams in Fig. 1b were constructed by considering the location of Fermi level for CG and its interfacial alignment with CA62. The spatial distribution of the vacuum level shift associated with the confined charges, the applied V_{CG} (if any), and operation-mode-dependent α_{CR}, etc. With a BDL thicker than a TDL (in this work, $d_{BDL}/d_{TDL} = 1.8–5$), energy diagrams are configured in such a way that F–N-like tunneling can occur efficiently across TDL, while it is much less effective for BDL due either to the low net electric field (during the programming operation; Fig. 1b “programming”) or to the energy barrier configuration, which is relevant to direct tunneling instead of F–N tunneling (during the erasing operation; Fig. 1b “erasing”).

When choosing d_{TDL} and d_{BDL}, it should also be kept in mind that these values should be larger than the critical thickness ($=d_{crit}$) of the corresponding dielectric layer, below which the layer’s insulating properties will quickly be degraded67, 63. A statistical study done for pEGDMA-based MIM devices fabricated in several batches indicates that d_{crit} of pEGDMA is ca. 30 nm (Fig. 2e). We have thus adopted the pEGDMA layer that is at least thicker than ca. 30-40 nm. With d_{crit} of pV3D3 being ca. 10 nm,52 the total dielectric thickness can be maintained within 50–68 nm. With this total thickness, we were able to keep the programming and erasing voltages (V_{prg} and V_{ers}) relatively low while still fulfilling all the requirements mentioned above. For example, the proposed flexible organic flash memory with 40-nm-thick pEGDMA and 16-nm-thick pV3D3 on PET substrates exhibited transistor characteristics that can be switched on at less than 3 V; the device also showed a sufficient voltage shift (ΔV_{th}) of \pm5 V with V_{prg} and V_{ers} as low as \pm10 V (Fig. 2f). Note that these levels of ΔV_{th} and programming/erasing voltages are comparable to those of conventional Si-based flash memory devices2, 64. With $|\Delta n_{eg}| = C_{BDL} \times |\Delta V_{th}|/e_i$, wherein Δn_{eg} and e_i
Fig. 3 Characteristics of the proposed flexible flash memory under or after mechanical deformation. **a, b** \(V_{\text{th}} \) measured upon programming/erasing operations for devices under various bending induced tensile strains (**a**), and \(V_{\text{th}} \) measured after repetitive bending cycles with tensile strain of 1.1% (**b**). (inset: a photograph of the flexible organic flash memory fabricated on 100 \(\mu \)m-thick PET films). **c** \(I - V \) values of AL/pEGDMA (40 nm)/Al devices at an \(E \) of 3 MV cm\(^{-1}\) measured as a function of various tensile strains. **d** \(I - V \) characteristics of the proposed memory devices fabricated on 6 \(\mu \)m-thick MylarTM substrates (“ultrathin Mylar” hereafter) in their flat and folded states, and after 1200-time folding cycles. Folding radius is 300 \(\mu \)m and defined by the radius of a piano wire. Inset shows a photograph of the folded flash memory fabricated on the MylarTM film. **e** Photograph of a memory device on the ultrathin Mylar being characterized under the folded state. A top-view microscope image and a side-view probing diagram are also presented to show that folding-induced strain is applied exactly along the channel parallel to the long edges of S and D electrodes as shown in the schematic diagram presented in the inset. Such alignment can be verified by the contact pads (shown as areas surrounded by the dashed lines) of S and D that are overlapped each other. Note that the probe for S makes a contact from underneath the folded device. **f** A schematic diagram showing the method for alternating between “relaxed” and “folded” states for measurement of memory characteristics after repeated folding cycles. **g** \(V_{\text{th}} \) of the memory on ultrathin Mylar substrates measured upon programming/erasing operations after repeated folding cycles at 300 \(\mu \)m bending radius vs. the number of folding cycles.

Moreover, the proposed memory devices exhibited significantly long retention time \(t_{\text{ret}} \), estimated to be \(3.2 \times 10^8 \) s (\(\approx 10 \) years), during which over 50% of the initial \(\Delta V_{\text{th}} \) is projected to be preserved (Fig. 2b). As can be seen in the energy diagram given in Fig. 2b) for “Programmed state”, presence of the stored charges in FG tends to yield band bending in energy bands for both TDL and BDL. Because their slopes are still relatively small, however, the field across the insulators remain within the low-field regime. In this case, tunneling probability can be maintained low enough to enable long retention, provided that there are no other leakage paths such as electrical shorts. The observed level of large \(t_{\text{ret}} \) is thus consistent with tunneling-limited insulating properties of pV3D3 and pEGDMA used in this work. Nonetheless, one should

refer to the change in carrier density stored in FG and charge of an electron, respectively, the observed \(\Delta V_{\text{th}} \) corresponds to \(\Delta n_{\text{fg}} \) of \(2.1 \times 10^{12} \) cm\(^{-2}\), which is on par with those of most flash-like memories found in the literature (see Supplementary Table 2). The reason why \(\Delta n_{\text{fg}} \) exhibits little variation among different devices, albeit their widespread \(\Delta V_{\text{th}} \), is that a flash memory with lower \(C_{\text{BDL}} \) generally requires higher operating voltages and thus demands higher \(\Delta V_{\text{th}} \) for proper memory operation, making the \(C_{\text{BDL}} \Delta V_{\text{th}} \) product (and thus \(\Delta n_{\text{fg}} \)) remain in the similar range among different systems. In addition, the flexible memory devices in this study showed reliable programming and erasing behaviors for repetitive operations of 1000 times (Fig. 2g and Supplementary Fig. 2).
keep in mind that the quoted retention time is the extrapolated value that considers only the electrical aspects and that the actual memory retention is subject to degradation depending on ambient conditions. The long-term test with proper encapsulation should be made to fully assess their actual retention time in practice. As for programming/erasing speed, the device showed a ΔV_{th} of ca. 2 V at t_{prg} and t_{ers} as low as 10 ms (Fig. 2i), simultaneously fulfilling all the requirements for key performance parameters—reasonably low voltage and short time span for programming and erasing; and sufficiently long retention.

Mechanical flexibility of the proposed organic flash memories.

To estimate the mechanical durability of the proposed organic flash memory, a device fabricated on a 250-µm-thick PET substrate was tested as a function of flexural tensile strain by adjusting the bending radius of curvature. The device showed consistent programming/erasing behaviors after flexural deformation corresponding to tensile strain of up to 2.8% (Fig. 3a and Supplementary Fig. 3), and it still exhibited memory characteristics even after the 10,000 bending cycles at a flexural strain of 1.1% (Fig. 3b and Supplementary Fig. 4). This excellent mechanical durability against flexural strain can be attributed to the highly flexible nature of the iCVD-based polymeric dielectric layers. Both the pEGDMA and pV3D3 dielectric layers maintained their insulating property at tensile strain of up to 4% in a bending test using MIM devices (Fig. 3c, Supplementary Fig. 3, and refs. 51, 52). These results are in sharp contrast to the cases of inorganic dielectric layers that typically lose their insulating property with strain of ~1% in a similar test.

It is noteworthy that the onset strain for failure (t_{onset}) is lower for flexible memory devices than for the corresponding flexible MIM devices. This is attributed to the relatively complex device structure of memory devices, which involves a larger number of heterogeneous interfaces than is present in MIM devices. This is consistent with the t_{onset} value of 3.3% obtained for a C_{th}-based TFT transistor having the same configuration as the proposed flash memory except that Al FG is not included (see Supplementary Fig. 5).

Even with a value of t_{onset} smaller than those of the corresponding TFTs or MIM devices, the observed value is still unprecedented for flexible flash memories and is large enough to realize ultra-flexible form factors with a thin plastic substrate. This will allow for a greater degree of freedom in designing flexible electronic systems, e.g., for wearable or skin-attachable electronic products. To verify this, the memory devices under study were fabricated on 6-µm-thick Mylar™ films using 33 nm-thick pEGDMA as a BDL and 17 nm-thick pV3D3 as a TDL. As can be seen in Fig. 3d, the devices were easily bendable over a needle with the radius of merely 300 µm. The resultant devices show non-volatile memory operation comparable to that of the devices prepared on thick PET substrates. As the 6-µm-thick plastic substrate significantly reduces the bending-induced strain at its surface, the achievable bending radius can become so small that devices on top of it can almost be folded. When tested with a custom-designed bending machine that can define a sub-mm bending radius with the assistance of a rigid piano wire (Fig. 3e, f, Supplementary Fig. 6, and Supplementary Movies 1 and 2), these devices were shown to maintain their programming and erasing capabilities in the folded state as well as after 1200-time folding cycles (Fig. 3d, g) for a bending radius of 300 µm. This demonstrates their potential as nearly foldable and light-weight flash memory devices, which will be pivotal for epidermal or imperceptible electronics.

The possibility of fabricating these devices on Mylar™ or PET substrates is a direct benefit of the low-temperature processability of the iCVD process, as these polyester films have relatively low-service temperature and glass-rubber transition temperature. Upon comparison with the previous works, the result shown here can be regarded as a significant breakthrough toward realization of highly flexible flash memory that satisfies both low V_{prg}, V_{ers}, and long t_{rect} (Supplementary Table 2 and Supplementary Fig. 7).
Realization of flash memories on papers for disposable electronics. Another advantage of the iCVD process that can be useful for flexible memory devices is its solvent-free nature52, 65, 66. Together with the conformal coating capability and low-temperature processability, this benefit provides the potential to build memory devices on a wide range of unconventional substrates, including those with a low damage threshold to liquid as well as those with relatively large roughness52, 65, 66. In this respect, one attractive yet highly challenging substrate to build memory devices on is paper, which has all the unfavorable conditions mentioned above52-59. To determine whether substrates for the proposed memory can be extended even to paper, we built our devices on so-called dye-sublimation papers (DP), which has a significantly rough surface with bumps in both micro- and nano-scale (Fig. 4a, b and Supplementary Fig. 8). Note that DP does not have a plastic coating unlike the thick specialty photo paper used for inkjet printing of photographs. It was found that, thanks to the conformal coating capability of iCVD, a 111 nm-thick pEGDMA layer exhibited a considerable insulating property even on such a rough DP surface, as shown as a black line with squares in Fig. 4c. An organic flash memory fabricated on the DP surface with the 111 nm-thick pEGDMA-based BDL and a 44 nm-thick pV3D3-based TDL was shown to be successfully operable with ΔV_{th} of ± 13 V for V_{pg} or V_{er} of ± 25 V (Fig. 4d).

To further drive down the operation voltage of memory devices on paper, we used the iCVD process to apply a 1.5 µm-thick poly (divinylbenzene) (pDVB) layer on the pristine DP surface so that nano-scale bumps were smoothened and only the relatively large micron-scale profiles remained. pDVB was chosen mainly for its relatively high deposition rate ($\sim \mu$m h$^{-1}$) and, moreover, for its planarizing capability. (Fig. 4e, f and Supplementary Fig. 8) In this case, even a 44 nm-thick pEGDMA layer showed a sufficiently good insulating property that was on par with the property observed in devices on glass or plastic substrates, as can be seen as a red line with circles in Fig. 4c. With this modification, the organic flash memory with the 44 nm-thick pEGDMA BDL and a 24 nm-thick pV3D3 TDL showed non-volatile memory operation with ΔV_{th} of ca. 8 V at V_{pg} or V_{er} of ± 15 V (Fig. 4g, h).

To the best of our knowledge, this is the first demonstration of the flash memories on paper with practically meaningful operation voltage and a sufficient memory window. The results clearly demonstrate the immense potential of the iCVD process for flash memories on almost any kinds of flexible substrates.

Methods

Initiated chemical vapor deposition process. Each of the monomers called ethylene glycol dimethacrylate (EGDMA), 1,3,5-trimethyl-1,3,5-trivinyl cyclotrisilo-xane (V3D3), and divinylbenzene (DV) was vaporized and delivered to a custom-built iCVD reactor with the Initiator, tert-buty1 peroxide (TBP), and iCVD process, respectively, via free-radical polymerization reaction. The growth rates of pV3D3, pEGDMA, and pDV were 1.5, 5, and 15 nm min$^{-1}$, respectively. The process pressure was maintained at 70–300 mTorr, and the filament was heated to 160–200 °C. The substrate temperature was maintained at 40 °C. The thickness of the deposited polymer films was controlled in situ by a He–Ne laser (JDS Uniphase) interferometer system.

Surface and film characterization. To observe the cross-sectional structure of the non-volatile organic flash memory devices, the devices were sliced using a dual-beam focused ion beam (FIB, Helios Nanolab 450). HRTEM (Titan cbed G2 60-300) images were then obtained. The surface morphology of the bare dye-sublimation paper (DP) and the DP coated with pDV was characterized using AFM (Nanosurf Nanite AFM & C3000 controller).

Device fabrication. The glass substrates were cleaned with detergent dissolved in deionized (DI) water, DI water, acetone, and isopropanol alcohol (IPA) successively and subsequently dried at 100 °C for 12 h in a vacuum oven. PET substrates were cleaned with IPA. Ultra-thin Mylar and DP substrates were not cleaned with solvent; instead, a stream of compressed N$_2$ gas was just blown onto the substrates before fabrication.

For the planarization, PET and Mylar substrates were treated with air plasma (CUTE-IMP, Femto Science Inc., pV3D3), and pDV, and then 70 W. Directly after the plasma treatment, PET and Mylar films were spin-coated with a transparent photoresist (SU-8, Kayaku Microchem) at 2000 rpm (30 s).

For the fabrication of the bottom-gated C$_6$H$_5$-based non-volatile flash memory, 100 nm-thick Al as CG was deposited by thermal evaporation with a base pressure lower than 10$^{-7}$ Torr using shadow masks with a deposition rate of ~ 0.1 nm s$^{-1}$, and pEGDMA polymer insulators as the BDL were deposited by the iCVD process on the top of CG electrodes with the desired thicknesses. The 15 or 50 nm-thick Al as the FG was then thermally evaporated in the same manner as Al prepared for the CG, pV3D3 polymer insulators as TDL were then deposited by the iCVD process on top of the FG electrodes. The memory devices were then completed by sequential thermal evaporation of 50 nm-thick C$_6$H$_5$ channel layers (~ 0.07 nm s$^{-1}$) and Ca (20 nm)/Al(100 nm) layers as source (S) and drain (D) electrodes. Patterns for electrodes were defined with shadow masks.

Electrical characterization of devices. All current density vs. voltage characteristics (J–V) were analyzed using a semiconductor parameter analyzer (HP4155A or HP4156C, Agilent). Electrical characteristics of any devices with C$_{ref}$ were measured under controlled atmosphere in an N$_2$-filled glove box unless noted otherwise. Capacitance vs. voltage characteristics (C–V) of MIM devices were measured using a precision LCR meter (HP4284A, Agilent). Dielectric constants (K) were estimated by using the relationship among C, k, and thickness of an insulator, following the procedure described in “Methods” section in the previous work by Moon et al. To measure the J–V characteristics of the MIM devices with various values of device temperature (T_{dev}), the samples were placed on a hot chuck in a customized vacuum chamber with probe tips, and T_{dev} was systematically controlled by a combination of liquid N$_2$ gas flow and the chuck heating. To evaluate the electrical properties of the flexible (or foldable) MIM and non-volatile memory devices as a function of the bending radius and the number of bending cycles, the devices were tested with a custom-built bending tester. In case of a sub-mm bending radius, a piano-wire was employed and held tightly to maintain a proper tension for straightness. For nearly foldable devices on Mylar(TM) substrates, the center of the bending was carefully aligned to the center of individual MIMs and memory devices by using a microscope.
Data availability. All relevant data supporting the findings of this study are included within the paper and its Supplementary Information File, or available from the corresponding authors on reasonable request.

Received: 28 December 2016 Accepted: 31 July 2017

Published online: 28 September 2017

References

1. Pavan, P., Bez, R., Olivo, P. & Zanoni, E. Flash memory cells—an overview. Proc. IEEE 85, 1248–1271 (1997).
2. Bez, R., Camerlenghi, E., Modelli, A. & Visconti, A. Introduction to flash memory. Proc. IEEE 91, 489–502 (2003).
3. Son, D. et al. Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat. Nanotechnol. 9, 397–404 (2014).
4. Zeng, W. et al. Fiber-based wearable electronics: a review of materials, fabrication devices, and applications. Adv. Mater. 26, 5310–5336 (2014).
5. Wang, X., Gu, Y., Xiong, Z., Cui, Z. & Zhang, T. Silk-molded flexible, ultrtrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv. Mater. 26, 1336–1342 (2014).
6. Kim, D.-H. et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 9, 511–517 (2010).
7. Hwang, S.-W. et al. A physically transient form of silicon electronics. Science 337, 1640–1644 (2012).
8. Kang, S.-K. et al. Bioresorbable silicon electronic sensors for the brain. Nature 530, 71–76 (2016).
9. Salvatore, G. A. et al. Wafer-scale design of lightweight and transparent electronics that wraps around hairs. Nat. Commun. 5, 2982 (2014).
10. Sekitani, T., Zschieschang, U., Klaui, H. & Somsya, T. Flexible organic transistors and circuits with extreme bending stability. Nat. Mater. 9, 1015–1022 (2010).
11. Yi, H. T., Payne, M. M., Anthony, J. E. & Podzorov, V. Ultra-flexible solution-processed organic field-effect transistors. Nat. Commun. 3, 1259 (2012).
12. Fukuda, K. et al. Fully-printed high-performance organic thin-film transistors and circuitry on one-micron-thick polymer films. Nat. Commun. 5, 4147 (2014).
13. Sekitani, T. et al. Organic nonvolatile memory transistors for flexible sensor arrays. Science 336, 1516–1519 (2009).
14. Kaltenbrunner, M. et al. Anodized aluminium oxide thin films for room-temperature processable, low-voltage organic non-volatile memory elements with excellent charge retention. Adv. Mater. 23, 4892–4896 (2011).
15. Kim, S.-J., Song, J.-M. & Lee, J.-S. Transparent organic thin-film transistors and nonvolatile memory devices fabricated on flexible plastic substrates. J. Mater. Chem. 21, 14516–14522 (2011).
16. Kim, S.-J. et al. Transparent and flexible graphene charge-trap memory. ACS Nano 6, 7879–7884 (2012).
17. Han, S. T. et al. Layer-by-layer-assembled reduced graphene oxide/gold nanoparticle hybrid double-floating-gate structure for low-voltage flexible flash memory. Adv. Mater. 25, 872–877 (2013).
18. Kim, S.-J. & Lee, J.-S. Flexible organic memory transistors. Nano Lett. 10, 2884–2889 (2010).
19. Baeg, K. J., Noh, Y. Y., Sirringhaus, H. & Kim, D. Y. Controllable shifts in the floating gate of polymer/ZnO nanocomposites. Nano Lett. 15, 9034–9038 (2015).
20. Chang, H. C., Lu, C., Liu, C. L. & Chen, W. C. Single-crystal C60 needle/Cu/Pt nanoparticle double floating-gate for low-voltage organic transistors based on non-volatile memory devices. Adv. Mater. 27, 27–33 (2015).
21. Shih, C. C., Chiu, Y. C., Lee, W. Y., Chen, J. Y. & Chen, W. C. Conjugated polymer nanoflakes as electrets for high performance nonvolatile organic transistor memory devices. Adv. Funct. Mater. 25, 1511–1519 (2015).
22. Lee, S. Y. et al. Chemically modulated band gap in bilayer graphene memory transistors with high on/off ratio. ACS Nano 9, 9034–9042 (2015).
23. Li, D. et al. Nonvolatile floating-gate memories based on stacked black phosphorus–boron nitride–MoSe2 heterostructures. Adv. Funct. Mater. 25, 7360–7365 (2015).
24. Han, S.-T. et al. Two-dimensional molybdenum disulphide nanosheet-covered metal nanoparticle array as a floating gate in multi-functional flash memories. Nanoscale 7, 17496–17503 (2015).
25. Bertolazzi, S., Krasnozhon, D. & Kis, A. Nonvolatile memory cells based on MoSe2/graphene heterostructures. ACS Nano 7, 3246–3252 (2013).
26. Liu, Z., Xue, F., Su, Y., Lvov, Y. M. & Varahramyan, K. Memory effect of a polymer thin-film transistor with self-assembled gold nanoparticles in the gate dielectric. IEEE Trans. Nanotechnol. 5, 379–384 (2006).
27. Lee, S.-T. et al. Overcoming the "retention vs. voltage" trade-off in nonvolatile organic memory: Ag nanoparticles covered with dipolar self-assembled monolayers as robust charge storage nodes. Org. Electron. 14, 3260–3266 (2013).
28. Kaltenbrunner, M. et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 458–463 (2013).
29. Kim, R. H. et al. Non-volatile organic memory with sub-millimetre bending radius. Nat. Commun. 5, 3583 (2014).
30. Yokota, T. et al. Ultraflexible organic photonic skin. Sci. Adv. 2, e1501856 (2016).
31. White, M. S. et al. Ultrathin, highly flexible and stretchable PLEDs. Nat. Photon. 7, 811–816 (2013).
32. Kaltenbrunner, M. et al. Ultrathin and lightweight organic solar cells with high flexibility. Nat. Commun. 3, 770 (2012).
33. Choi, M. K. et al. Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing. Nat. Commun. 6, 7149 (2015).
34. Asadi, K., De Leeuw, D. M., De Boer, B. & Blom, P. W. Organic non-volatile memories from ferroelectric phase-separated blends. Nat. Mater. 7, 547–550 (2008).
35. Jeong, H. Y. et al. Graphene oxide thin films for flexible nonvolatile memory applications. Nano Lett. 10, 4381–4386 (2010).
36. Yao, J. et al. Highly transparent nonvolatile resistive memory devices from silicon oxide and graphene. Nat. Commun. 3, 1101 (2012).
37. Jin, W. et al. Flexible and twistable non-volatile memory cell array with all-organic one diode—one resistor architecture. Nat. Commun. 4, 2707 (2013).
38. Facchetti, A., Yoon, M. H. & Marks, T. J. Gate dielectrics for organic field-effect transistors: new opportunities for organic electronics. Adv. Mater. 17, 1705–1725 (2005).
39. Veres, J., Öger, S., Lloyd, G. & De Leeuw, D. Gate insulators in organic field-effect transistors. Chem. Mater. 16, 4543–4555 (2004).
40. Sirringhaus, H. Device physics of solution-processed organic field-effect transistors. Adv. Mater. 17, 2411–2425 (2005).
41. Ling, Q.-D. et al. Polymer electronic memories: materials, devices and mechanisms. Prog. Polym. Sci. 33, 917–978 (2008).
42. Bazanmusa, S. H., Im, S. G. & Gleason, K. J. Initiated and oxidative chemical vapor deposition: a scalable method for conformal and functional polymer films on real substrates. Phys. Chem. Chem. Phys. 11, 5227–5240 (2009).
43. Moon, H. et al. Synthesis of ultrathin polymer insulator layers by initiated chemical vapour deposition for low-power soft electronics. Nat. Mater. 14, 628–635 (2015).
44. Zhan, X.-H., Domenq, R. & Kippelen, B. High-performance and electrically stable C60 organic field-effect transistors. Appl. Phys. Lett. 91, 092114 (2007).
45. Anthopoulos, T. D. et al. High performance n-channel organic field-effect transistors and ring oscillators based on C60 fullerene films. Appl. Phys. Lett. 89, 213504 (2006).
46. Itaka, K. et al. High-mobility C60 field-effect transistors fabricated on molecularly-wetting controlled substrates. Adv. Mater. 18, 1713–1716 (2006).
47. Schwabegger, G. et al. High mobility, low voltage operating C60 based n-type organic field effect transistors. Synth. Met. 161, 2058–2062 (2011).
48. Specht, M., Städele, M., Jakschik, S. & Schröder, U. Transport mechanisms in atomic-layer-deposited Al2O3 dielectrics. Appl. Phys. Lett. 84, 3076–3078 (2004).
49. Wang, Y.-L., Lai, P. & Wong, H. Conduction mechanisms in MOS gate dielectric films. Microelectron. Reliab. 44, 709–718 (2004).
59. Seong, H., Pak, K., Joo, M., Choi, J. & Im, S. G. Vapor-phase deposited ultrathin polymer gate dielectrics for high-performance organic thin film transistors. Adv. Electron. Mater. 2, 1500209 (2016).

60. Kondo, M. et al. Ultraflexible and ultrathin polymeric gate insulator for 2 V organic transistor circuits. Appl. Phys. Express 9, 061602 (2016).

61. Song, J. et al. A general method for transferring graphene onto soft surfaces. Nat. Nanotechnol. 8, 356–362 (2013).

62. Yi, Y. & Kang, S. J. Interfacial electronic structures between fullerene and calcium for high performance n-type organic semiconductor devices. Thin Solid Films 519, 3119–3122 (2011).

63. Cheng, X. et al. Air stable cross-linked cytop ultrathin gate dielectric for high yield low-voltage top-gate organic field-effect transistors. Chem. Mater. 22, 1539–1566 (2010).

64. Takeuchi, K. Novel co-design of NAND flash memory and NAND flash controller circuits for sub-30 nm low-speed high-speed solid-state drives (SSD). IEEE J. Solid State Circuits 44, 1227–1234 (2009).

65. Lewis, H. G. P., Bansal, N. P., White, A. J. & Handy, E. S. HWCVD of polymers: commercialization and scale-up. Thin Solid Films 517, 3551–3554 (2009).

66. Alf, M. E. et al. Chemical vapor deposition of conformal, functional, and responsive polymer films. Adv. Mater. 22, 1993–2027 (2010).

67. Tobjörk, D. & Österbacka, R. Paper electronics. Adv. Mater. 23, 1935–1961 (2011).

68. Andersson, P. et al. Active matrix displays based on all-organic electrochemical smart pixels printed on paper. Adv. Mater. 14, 1460–1464 (2002).

69. Eder, F. et al. Organic electronics on paper. Appl. Phys. Lett. 84, 2673–2675 (2004).

70. Kim, Y.-H., Moon, D.-G. & Han, J.-I. Organic field-effect transistors with 3551–3554 (2009).

71. Fortunato, E. et al. High-performance flexible hybrid field-effect transistors based on cellulose fiber paper. IEEE Electron Dev. Lett. 29, 988–990 (2008).

72. Zschieschang, U. et al. Organic electronics on banknotes. Adv. Mater. 23, 654–658 (2011).

73. Martins, R. et al. Complementary metal oxide semiconductor technology with on and on paper. Adv. Mater. 23, 4491–4496 (2011).

74. Khan, M. A., Bhansali, U. S. & Alshareef, H. N. High-performance non-volatile organic ferroelectric memory on banknotes. Adv. Mater. 24, 2165–2170 (2012).

75. Lee, B.-H. et al. Foldable and disposable memory on paper. Sci. Rep. 6, 38389 (2016).

76. Ferreira, I. et al. Solid-state paper batteries for controlling paper transistors. Electrochim. Acta 56, 1099–1105 (2011).

77. Martins, R. F. et al. Recyclable, flexible, low-power oxide electronics. Adv. Funct. Mater. 23, 2153–2161 (2013).

78. Zhang, L. et al. Substrate-free ultra-flexible organic field-effect transistors and five-stage ring oscillators. Adv. Mater. 25, 5455–5460 (2013).

79. Pereira, L. et al. The influence of fibril composition and dimension on the performance of paper-gated oxide transistors. Nanotechnology 25, 094007 (2014).

80. Takimiya, K. et al. 2, 7-Diphenyl [1] benzothieno [3, 2-b] benzo thiophene, a new organic semiconductor for air-stable organic field-effect transistors with mobilities up to 2.0 cm2 V-1 s-1. J. Am. Chem. Soc. 128, 12604–12605 (2006).

81. Zschieschang, U. et al. Flexible low-voltage organic transistors and circuits based on a high-mobility organic semiconductor with good air stability. Adv. Mater. 22, 982–985 (2010).

Acknowledgements
This work was supported by Samsung Research Funding Center of Samsung Electronics under Project Number SRCF-MA1402-04. H.M. is grateful to Brain Korea 21 Plus Program for post-doctoral fellowship.

Author contributions
S.L., H.S., S.G.I., H.M., and S.Y. designed the experiments on the use of iCVD-based polymers as dielectrics for non-volatile organic flash memory devices. S.L. carried out fabrication and characterization of organic flash memory devices on plastic substrates as well as on paper. H.S and S.G.I. carried out process design, fabrication, and characterization of iCVD-processed polymer films. S.L., H.M., and S.Y. worked on the design and electrical analysis of a device structure and electrical analysis. S.L., H.M., and S.Y. wrote the manuscript. All authors read and commented on the manuscript. H.M. and S.Y. contributed equally as corresponding authors.

Additional information
Supplementary Information accompanies this paper at doi:10.1038/s41467-017-00805-z.

Competing interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.