Ambipolar Surface State Thermoelectric Power of Topological Insulator Bi$_2$Se$_3$

Dohun Kim1*, Paul Syers1, Nicholas P. Butch2, Johnpierre Paglione1, and Michael S. Fuhrer1,3*

1. Center for Nanophysics and Advanced Materials, Department of Physics, University of Maryland, College Park, MD 20742-4111, U.S.A.

2. Center for Neutron research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102, U.S.A.

3. School of Physics, Monash University, 3800 Victoria, Australia

ABSTRACT

We measure gate-tuned thermoelectric power of mechanically exfoliated Bi$_2$Se$_3$ thin films in the topological insulator regime. The sign of the thermoelectric power changes across the charge neutrality point as the majority carrier type switches from electron to hole, consistent with the ambipolar electric field effect observed in conductivity and Hall effect measurements. Near charge neutrality point and at low temperatures, the gate dependent thermoelectric power follows the semiclassical Mott relation using the expected surface state density of states, but is larger than expected at high electron doping, possibly reflecting a large density of states in the bulk gap. The thermoelectric power factor shows significant enhancement near the electron-hole puddle carrier density $\sim 0.5 \times 10^{12}$ cm$^{-2}$ per surface at all temperatures. Together with the
expected reduction of lattice thermal conductivity in low dimensional structures, the results demonstrate that nanostructuring and Fermi level tuning of three dimensional topological insulators can be promising routes to realize efficient thermoelectric devices.

KEYWORDS Topological Insulators, Thermoelectric Power, Ambipolar Electric Field Effect, Bismuth Selenide, Charge Transfer Doping.

The efficiency of thermoelectric devices is determined by the thermoelectric figure of merit $ZT = \frac{\sigma S^2 T}{\kappa}$, where S is thermoelectric power (Seebeck coefficient) and σ and κ are electrical and thermal conductivity respectively. For a given thermal conductivity (typically dominated by phonons) and temperature, ZT is determined by the electronic structure of a material through the power factor σS^2. Nanostructuring has long been seen as a promising route to increase ZT both through decreasing κ via phonon boundary scattering, and increasing the power factor through confinement-induced band structure effects\(^1\). The discovery that important thermoelectric materials $\text{Bi}_{1-x}\text{Sb}_x$ and $\text{Bi}_2(\text{Se,Te})_3$ \(^2\)-\(^4\) are in fact 3D topological insulators (TI) has triggered new directions to improve ZT via nanostructuring. The 3D TIs have an insulating bulk but metallic surface states with spin-momentum helicity which cannot be localized by non-magnetic disorder\(^4\),\(^5\). Recent theoretical calculations\(^6\),\(^7\) show that significant enhancement of ZT is expected in 3D TIs particularly in thin film geometry where top and bottom surfaces can hybridize and form a surface gap\(^8\).

Thermoelectric power is also of great interest in understanding the electronic transport properties of Dirac electronic systems\(^9\), thus measurement of the thermoelectric properties of TI surface states can elucidate details of the electronic structure of the ambipolar nature of
topological metallic surface states that cannot be probed by conductance measurements alone10. Although there have been theoretical investigations of thermal and thermoelectric properties of Dirac materials including graphene and TIs6,7,11-15 and thermoelectric transport in carbon nanotubes16 and graphene9,17-19 have been studied experimentally, it has been difficult to experimentally observe clear surface thermoelectric transport in TI materials due to the high level of bulk doping present in as-grown TI crystals20,21.

Here we experimentally demonstrate the first measurement of thermoelectric power of topological insulator Bi\textsubscript{2}Se\textsubscript{3} dominated by metallic surface states. We show a clear ambipolar electric field effect indicated by the sign change of the thermoelectric power across the charge neutrality point where the charge transport exhibits minimum conductivity. We find that the gate dependent thermoelectric power exhibits an agreement with the semiclassical Mott relation10 consistent with surface band structure, however, we also find deviation with expected surface dominated thermoelectric power at high electron doping voltage where bulk states are likely populated. We also demonstrate significant (up to two-fold) enhancement of the power factor σS^2 for a Dirac band as the Fermi energy approaches the Dirac point, indicating that surface state conduction in TI materials is a promising route to thermopower enhancement, even in the absence of a hybridization gap6,7. We also discuss possible routes for further enhancement to the limit predicted theoretically6,7.

We study mechanically exfoliated Bi\textsubscript{2}Se\textsubscript{3} single crystals20 with thickness approximately 13 ± 1 nm which is confirmed using atomic force microscopy (AFM). We use a thermopower measurement technique using micro-fabricated heaters and thermistors, previously developed and used to study thermoelectric properties of carbon nanotubes16 and graphene9,18,19 (see also Methods for description of measurement scheme). As described previously22, we employed
molecular charge transfer \(p \)-type doping by thermal evaporation of 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane to reduce high level of \(n \)-type doping. Further tuning of carrier density is accomplished using a Si back gate and 300 nm SiO\(_2\) gate dielectric. We showed previously [22] that in such thin Bi\(_2\)Se\(_3\) slabs in the TI regime that the top and bottom surfaces are strongly capacitively coupled through the high-dielectric-constant bulk (\(\varepsilon \approx 100 \) [20]) and couple nearly equally to the back gate.

Figures 1a and b show sheet conductivity \(\sigma \) and thermopower \(S \) respectively as a function of back gate voltage \(V_g \) for a representative Bi\(_2\)Se\(_3\) device for several temperatures \(T \) from 10 to 240\(K \). We measure Hall carrier density \(n_H \) about 3 \(\times 10^{12} \) cm\(^{-2} \) at zero gate voltage (see Fig. 1a, inset) at the temperature of 10 \(K \) with the highest Hall mobility at low temperature of \(\approx 1100 \) cm\(^2\)/Vs. The slope \(n_H \) vs. \(V_g \) reflects the expected capacitance of \(\approx 11 \) nFcm\(^{-2} \) for the 300 nm SiO\(_2\) gate dielectric. At \(T = 10 \) \(K \) the device shows clear ambipolar electric field effect which is indicated by minimum conductivity \(\sigma_{\text{min}} \) at charge neutrality point \(V_D \approx -50 \) V and corresponding sign change of Hall carrier density \(n_H \) (see Fig. 1a, inset) consistent with gapless Dirac band structure of topological surface states\(^{22} \). As it was shown previously\(^ {22-24} \), \(\sigma \) is linearly proportional to \(V_g \) near \(V_D \) suggesting that charged impurity scattering limits electronic transport for the present devices\(^ {22} \). The observation of sublinear \(\sigma(V_g) \) at \(V_g \) further away from \(V_D \) may indicate that there are additional types of disorder, e.g. neutral point defects, which need to be considered\(^ {25} \), though as discussed further below it may also reflect the population of lower-conductivity bulk states, most likely by filling in-gap impurity bands. At low temperatures \(T < 150 \) \(K \), we observe a change in sign of \(S \), which indicates the sign of the majority charge carrier from positive to negative as \(V_g \) crosses \(V_D \), consistent with the change in sign of \(n_H \). At temperatures starting from about 70 \(K \), thermal population of hole and electron carriers between
the bulk valence band and the surface state bands becomes important26, resulting in a shift of V_D to negative voltage, reflected also in a shift to negative voltage of the zeroes in S. This thermal activation effect was explained by us in detail in a previous work 26. At higher temperatures $T \geq 150$ K thermal activation is significant enough that the sign change cannot be observed within the range of accessible V_g. The electron-hole asymmetry observed in both σ and S is consistent with the asymmetric surface band structure of Bi\textsubscript{2}Se\textsubscript{3} 3,27. The peak value of S reaches $\sim 170 \mu V/K$ at 240 K in the majority of devices measured.

We now turn to a quantitative analysis of gate-tuned surface state thermopower in the TI regime. For semiclassical transport the carrier-density dependence of the thermopower is described by the Mott relation10

\[S = -\frac{\pi^2 k_B^2 T}{3e} \frac{\partial \ln \sigma}{\partial E_F} = -\frac{\pi^2 k_B^2 T}{3e} \frac{1}{\sigma} \frac{d\sigma}{dV_g} dE_F = -\frac{\pi^2 k_B^2 T}{3e} \frac{1}{\sigma} \frac{d\sigma}{dn} D(V_g), \tag{1} \]

where e is the elementary charge, $n= C_g (V_g-V_D) / e$ is gate induced carrier density with gate capacitance $C_g \approx 11.1$ nF cm$^{-2}$, k_B is the Boltzmann constant, E_F is Fermi energy, and $D(V_g)$ is the gate-voltage-dependent density of states. The first equality can be tested with concurrently measured $\sigma(V_g)$ along with expected band structure and has been shown to provide a good description of $S(V_g)$ in mesoscopic carbon nanotube16 and graphene9,17,18 field-effect devices. For a Dirac material with Coulomb scattering, Eqn. (1) predicts a divergence in $S \sim (V_g - V_D)^{-1/2}$, since $\sigma \sim (V_g - V_D)$ and $E_F \sim (V_g - V_D)^{1/2}$ [9,15]. This enhancement is the essence of the enhanced thermopower expected for Dirac surface states. The divergence is cut off by the electron-hole puddle carrier density n^*; we can estimate $n^* \sim 0.5 \times 10^{12}$ cm$^{-2}$ per surface from the minimum in n_H (see Fig. 1a, inset).
For a detailed comparison with Eqn. (1), we first compare the measured S with predicted S (S_{Mott}) using known surface band structure of Bi$_2$Se$_3$ [3, 27]. We calculate the factor dV_g/dE_F numerically using a band model as developed previously26 using the surface band with dispersion $E_{2D}(k) = \hbar v_{F,0} k + \frac{\hbar^2 k^2}{2m^*_s}$. For the calculation, we used the parameters of the Fermi velocity near Dirac point $v_{F,0} = 3 \times 10^7$ cm/s, and effective mass $m^*_s = 0.3 m_e$ of the surface band which are reasonable for Bi$_2$Se$_3$ from the ARPES measurements3,27. We also calculated expected carrier density using surface band and bulk valence and conduction bands. For the bulk band density of states we used first principles calculation of bulk Bi$_2$Se$_3$ reported elsewhere28.

Figure 2a shows a detailed comparison of the measured thermopower (S, black solid) and calculated surface state thermopower from semi-classical Mott relation (S_{Mott}, red solid) using conductivity data and band model described above for various temperatures from 10 to 240 K. We find a good agreement at low temperature (e.g. 10 K) and near charge neutrality point, as expected for degenerate electrons in the metallic surface band where the entropy transported in the channel is proportional to the number of thermally activated carriers over the degenerate Fermi sea ($S \sim T/E_F$) [9]. This agreement is also true near V_D due to charge inhomogeneity driven puddle density $> 10^{12}$ cm$^{-2}$ which renders the system to remain in the degenerate regime. We observe a peak in S at a gate voltage roughly corresponding to the electron-hole puddle carrier density n^*, below which the value of S decreases due to cancellation of n-type and p-type thermopowers, with a magnitude which can be explained by the Mott relation [Eqn. (1)], as observed previously for graphene9. The Mott relation also reproduces the position and magnitude of some of the fine features in the low-temperature (10 and 20K) gate-voltage dependent thermopower (presumably due to universal conductance fluctuations). Figure 2b shows
calculated surface (black curves) and bulk (blue curves) carrier densities at given total charge
density fixed by \(V_g \) as a function of \(V_g \) at the same temperatures in Fig 2a. We observe
significant thermal activation at the temperatures \(T \geq 150 \, K \) near or below -50\(V \) (Fig. 2b shaded
area) as explored in detail previously26. However, for positive \(V_g \) up to \(V_g=80V \), thermal
activation to bulk conduction band is negligible at all temperatures.

We also observe an additional enhancement of the thermopower which is not predicted
by the Mott relation assuming only surface states. This can be seen especially at high positive \(V_g \)
and high temperature where \(S_{\text{Mott}} \) tends to zero but the measured \(S \) saturates to a constant. The
ratio \(S/S_{\text{Mott}} \) is as large as 7 at \(T = 240 \, K \) and \(V_g = +80 \, V \). Figures 3a and b show the temperature
dependence of the measured \(S \) and predicted \(S_{\text{Mott}} \) at fixed \(V_g \) ranging \(-80 < V_g < 80V \) indicated
in the caption, and Figure 3c shows the additional thermopower \(S - S_{\text{Mott}} \). The additional
thermopower is negative, with magnitude increasing monotonically with temperature, and
roughly independent of gate voltage. Phonon drag is a known contribution to thermopower
beyond Eqn. (1). However, the phonon drag contribution to the thermopower \(S_p \) in a Dirac
electronic system was found to obey Herring’s law \(S_p = -v_s A/\mu_p T \) where \(v_s \) is the sound velocity,
\(A \) the phonon mean free path, and \(\mu_p \) is the phonon-limited carrier mobility29. We expect at high
temperature \(A \sim 1/T, \mu_p \sim 1/nT \)26, and thus \(S_p \sim n/T \), in sharp contrast to the experimental
observation of additional thermopower independent of \(n \) and increasing with \(T \) (roughly
proportional to \(T^2 \) at high \(T \)). Similarly, temperature-dependent screening gives corrections to the
conductivity and thermopower proportional to \((k_B T/E_F)^2 \) 15; such corrections should be
unimportant at high \(V_g \)26, and moreover no strong dependence on \(E_F \) or \(V_g \) is seen. By
measuring an additional sample with factor of three smaller contact area we found quantitatively
similar temperature-dependent thermopower (within 5\(\mu V/K \)), indicating that the effect of contact
barrier on the additional contribution to the measured thermopower is small (see Supplementary Information). In the Supplementary Information, we also show the negligible temperature dependence of the carrier density in the electron-doped regime for a similarly prepared sample, which precludes temperature dependent charge transfer as the source of additional contribution to the thermopower.

We expect that the Mott formula is a good approximation for temperatures $k_B T \lessapprox E_F$. Due to electron-hole puddling the effective Fermi energy is never significantly smaller than 50 meV, and we expect this approximation to be reasonable for the temperature range studied. Furthermore the approximation holds for multiband system, and the Mott relation (second equality in Eqn. [1]) can be inverted using the measured S and $\sigma(V_g)$ to obtain a total density of states D. Figure 4 shows a comparison of the experimentally obtained gate-dependent density of states from inversion of the Mott formula at various temperatures (solid lines) with the expected surface3,27 (dashed lines) and bulk28 (dash-dot lines) densities of states with bulk valence band edge $E_v \approx -60$meV respect to the Dirac point $^3, 26, 27$. Near charge neutrality point of ≈ -50V and at low temperatures, the measured D agrees well with expected surface density of states for Bi$_2$Se$_3$ as expected, reflecting the agreement seen in Fig. 2. Away from charge neutrality point, a large enhancement of D is seen in the conduction band at low temperatures, well below the expected onset of the bulk conduction band density of states at $V_g > 80$V. This possibly reflects a large smearing of the conduction band edge, or the presence of a high density of impurity states in the bulk gap that are not reflected in the carrier density calculation in Fig. 2b. We note that the extraction of D using the Mott relation does not determine whether the states are conducting or insulating. However, Hall carrier density measurements suggest that the vast majority of the gate-induced charge is delocalized. If bulk states contribute to the conduction at large electron
doping, this could provide an alternative explanation for the sublinearity of $\sigma(V_g)$ observed in the same regime.

On raising the temperature, we observe a filling-in of the dip in D associated with the Dirac point. This is qualitatively consistent with thermal smearing. The larger D implies that our gate voltage window accesses a smaller Fermi energy range, therefore larger thermal activation effects are expected. This would also explain the unexpected super-linear $S(T)$ seen in Fig. 3. While the presence of an unexpectedly large D inside the bulk gap qualitatively explains the observed features of the data, a quantitative understanding will require a more detailed knowledge of the origin of such states. Particularly if the states are inhomogeneously distributed through the sample, due to screening of disorder or “puddling”, or due to band-bending, then the extraction of D is only qualitative. We conclude that the thermopower very close to the Dirac point and at low temperature is explained well by the expected D and measured $\sigma(V_g)$ of the surface states alone. Away from the Dirac point, and at higher temperature, deviations are observed which are presumed to be due to additional states in the bulk band gap along with increased thermal activation to these states.

We finally turn to discuss enhanced thermoelectric efficiency in the TI regime. A simple analysis for the Dirac surface state predicts $S \sim (V_g - V_D)^{1/2}$, $\sigma \sim (V_g - V_D)$ hence power factor σS^2 is independent of V_g. In recent theoretical studies6,7, a large enhancement of the power factor is predicted at low Fermi energies when considering thin slabs of Bi$_2$Se$_3$ and Bi$_2$Te$_3$ in which inter-surface hybridization induces a surface gap, but no enhancement of the power factor is predicted for ungapped surface states near the Dirac point6. Figure 5 shows the measured σS^2 as a function of V_g at temperatures from 20 to 240 K. Notably, a clear enhancement of σS^2 can be
observed near $V_g = -40V$ at all temperatures, which corresponds to carrier density $n \sim 1 \times 10^{12} \text{ cm}^{-2}$ or $E_F \sim 40 \text{ meV}$ with respect to the Dirac point assuming a linear Dirac band for Bi$_2$Se$_3$. At all temperatures the enhancement of σS^2 is about factor of two compared to the non-TI regime (bulk conducting). The enhancement near the Dirac point is surprising given that we expect the hybridization gap in our 13 nm thick samples to be negligible (~ 10 µeV [8]). The maximum σS^2 of ~ 3 µWcm$^{-1}$K$^{-2}$ measured at 240 K is an order of magnitude enhancement compared to the value of ~ 0.3 µWcm$^{-1}$K$^{-2}$ at 300 K reported for Bi$_2$Se$_3$ nanoflakes (highly conducting bulk) prepared by solvothermal method30. Admittedly, the absolute value of maximum σS^2 for the present samples are less then best reported value ~ 18 µWcm$^{-1}$K$^{-2}$ of bulk Bi$_2$Se$_3$ [31] at the same temperature.

By controlling doping of exfoliated Bi$_2$Se$_3$ we experimentally confirmed the gapless ambipolar nature of the thermopower that is consistent with the existence of topological metallic surface states. Although more works are needed to quantitatively understand the observed deviation of measured S from the semicalssical Mott relation, we find a clear enhancement of σS^2 near the Dirac point at all temperatures. Since one additionally expects a reduction in thermal conductivity for thin Bi$_2$Se$_3$ compared to bulk32, we find that nanostructuring and Fermi level control of topological insulators are promising strategies to increase ZT by both increasing the power factor and reducing the thermal conductivity. While the power factor for the Bi$_2$Se$_3$ surface states does not exceed the bulk in our samples, there is significant room for improvement; we expect that the enhancement of power factor in thin topological insulators in the topological regime can be improved by increasing surface quality (increase electrical conductivity as well as S by reducing n^\ast and thus more closely approaching the Dirac point). For current samples having thickness ≈ 13 nm we estimate the hybridization gap is in the order of $\approx 10^\ast$
µeV [8], much smaller than charge inhomogeneity driven energy broadening, which limits the thermopower enhancement by a factor of two. Further thinning of the samples to open a sizeable hybridization gap between top and bottom surfaces6,8 as well as further reducing the lattice thermal conductivity32 could produce a larger enhancement of thermoelectric performance.

Methods

Bi\textsubscript{2}Se\textsubscript{3} thermopower device fabrication Low-doped (carrier density $\sim 10^{17}\text{ cm}^{-3}$) bulk Bi\textsubscript{2}Se\textsubscript{3} single crystals with bulk resistivity exceeding 2 $m\Omega \text{cm}$ at 300 K were grown by melting high purity bismuth (6N) and selenium (5N) in sealed quartz ampoules20. The crystals were exfoliated with Scotch tape and deposited on doped Si covered with 300 nm SiO\textsubscript{2}. Thin Bi\textsubscript{2}Se\textsubscript{3} crystals with thickness in the order of $\sim 10\text{ nm}$ were identified by combined use of optical and atomic force microscopy (AFM). Electron beam lithography, thermal evaporation and liftoff techniques were used to make electrical contact, thermistors and external heaters (Cr/Au: 5/70 nm). Typical line widths of thermistors were restricted to be less than 500 nm to ensure local thermometry. Thin films were patterned into Hall bar geometry (see Fig. 1b, inset) with typical aspect ratio (L/W) of about 2 and shortest length exceeding 2 μm using Ar plasma at a pressure of $\sim 6.7\text{ Pa (5 x 10}^{-2}\text{ Torr}$). Molecular charge transfer doping was done by thermal evaporation of $\sim 10\text{ nm}$ of 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane organic molecules (SynQuest Labs) on top of the fabricated samples22,33.

Measurement Thermopower measurement was done using Stanford Research Systems SR830 Lock in amplifiers and a commercial cryostat equipped with 9 T superconducting magnet. Low frequency ac ($\omega < 17\text{ Hz}$) heater currents was applied to the sample and the resultant 2ω thermoelectric voltage ΔV between two ends of thermisters (see Fig. 1b, inset) was detected in
the open circuit condition9,16. Temperature difference ΔT was measured by measuring temperature-calibrated four probe resistances of the two gold thermistors (see Fig. 1b, inset). Finally thermoelectric power was calculated from $S = -\Delta V/\Delta T$. Thermopower of Au leads (~2 $\mu V/K$ at 300 K) at a given temperature is expected to be negligible compared to that of Bi$_2$Se$_3$ and was not subtracted from the measured S. Carrier density was tuned through 300 nm thick SiO$_2$ dielectric back gate. To stay in the linear response regime, heater current was adjusted (typically 3 to 8 mA) so that the condition $\Delta T \ll T$ at given temperature is satisfied9. Electronic transport measurements were performed using similar four probe lock-in technique with rms current amplitude of 100 nA applied to the device and measuring first harmonic (ω) voltage signals.
Ambipolar Surface State Thermoelectric Power of Topological Insulator Bi$_2$Se$_3$
Figure 1. a, 2D conductivity σ as a function of back gate voltage V_g of a ~ 13 nm thick Bi$_2$Se$_3$ measured at temperatures indicated in the caption. The inset shows Hall carrier density n_H simultaneously measured with σ at the temperature of 10 K. b, Thermopower S as a function of V_g measured at the same condition as in a showing ambipolar electric field effect consistent with corresponding σ measurement. The inset shows optical micrograph of the device. The scale bar is 2 μm.
Figure 2. a. Experimentally measured thermopower S (black solid curve) and thermopower estimated from the Mott relation S_{Mott}, including effect of thermal activation of carriers from bulk valence band and shift of Dirac point (see main text for discussion) as a function of V_g at the temperatures from 10 to 240 K. Dashed horizontal lines denote zeros of thermopower. Shaded areas show gate voltage regions where thermal activation of bulk carriers is significant. b. Calculated surface (black curves) and bulk (blue curves) carrier densities as a function of V_g at the same temperatures as in a. using band model described in the main text.
Figure 3. Variation of the a, measured thermo-power S and b, predicted thermopower S_{Mott} at fixed V_g ranging $-80 < V_g < 80$ indicated in the caption as a function of temperature from 10 to 240 K showing nonlinear and non-monotonic temperature dependence. c, $S - S_{\text{Mott}}$ as a function of temperature at the same V_g given in a and b.
Figure 4. Density of states D estimated from Mott relation (Eqn. 1) as a function of gate voltage V_g at temperatures indicated in the caption. Dashed red (dash-dot purple) curves show expected surface (bulk) density of states of Bi$_2$Se$_3$.
Figure 5. Thermoelectric power factor σS^2 as a function of V_g at various temperatures indicated in the caption. A factor of two enhancement of σS^2 is observed near $V_g \sim -40V$ corresponding to total carrier density of $\sim 1 \times 10^{12} \text{ cm}^{-2}$
AUTHOR INFORMATION

Corresponding Author *E-mail: michael.fuhrer@monash.edu

Note The authors declare no competing financial interests.

Present address

† Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA

Author Contributions

D.K. fabricated devices, performed the electrical measurements, and analyzed the data with M.S.F. P.S., N.P.B, and J.P. prepared single crystal Bi$_2$Se$_3$ starting material. D.K. and M.S.F. wrote the manuscript with contributions from all authors.

ACKNOWLEDGMENT

This work was supported by NSF grant number DMR-1105224. Preparation of Bi$_2$Se$_3$ was supported by NSF MRSEC (DMR-0520471) and DARPA-MTO award (N66001-09-c-2067). NPB was partially supported by the Center for Nanophysics and Advanced Materials. MSF is supported by an ARC Laureate Fellowship.

Supporting Information

Thermoelectric measurements on additional sample, reproducibility of additional contribution to thermopower, and F4TCNQ charge doping stability. This material is available free of charge via the Internet at http://pubs.acs.org.

REFERENCES

1 Snyder, G. J.; Toberer, E. S. Complex thermoelectric materials. Nature Mater. 2008, 7, 105-114.
2 Chen, Y. L.; Analytis, J. G.; Chu, J.H.; Liu, Z. K.; Mo, S.K.; Qi, X. L.; Zhang, H. J.; Lu, D. H.; Dai, X.; Fang, Z.; Zhang, S. C.; Fisher, I. R.; Hussain, Z.; Shen, Z.X. Experimental realization of a three-dimensional topological insulator, Bi$_2$Te$_3$. *Science* 2009, 325, 178-181.

3 Zhang, H.; Liu, C. X.; Qi, X.L.; Dai, X.; Fang, Z.; Zhang, S. C.; Zhang. Topological insulators in Bi$_2$Se$_3$, Bi$_2$Te$_3$ and Sb$_2$Te$_3$ with a single Dirac cone on the surface. *Nature Phys.* 2009, 5, 438-442.

4 Hsieh, D.; Xia, Y.; Qian, D.; Wray, L.; Dil, J. H.; Meier, F.; Osterwalder, J.; Patthey, L.; Checkelsky, J. G.; Ong, N. P.; Fedorov, A. V.; Lin, H.; Bansil, A.; Grauer, D.; Hor, Y. S.; Cava, R. J.; Hasan, M. Z. A tunable topological insulator in the spin helical Dirac transport regime. *Nature* 2009, 460, 1101-1105.

5 Fu, L.; Kane, C. L.; Mele, E. J. Topological insulators in three dimensions. *Phys. Rev. Lett.* 2007, 98, 106803.

6 Ghaemi, P.; Mong, R. S. K.; Moore, J. E. In-plane transport and enhanced thermoelectric performance in thin films of the topological Insulators Bi$_2$Te$_3$ and Bi$_2$Se$_3$. *Phys. Rev. Lett.* 2010, 105, 166603.

7 Ryuji, T.; Shuichi, M. Thermoelectric transport in topological insulators. *Semicond. Sci. Technol.* 2012, 27, 124005.

8 Zhang, Y.; He, K.; Chang, C. Z.; Song, C.L.; Wang, L.L.; Chen, X. J.; Jin, F.; Fang, Z.; Dai, X.; Shan, W.Y.; Shen, S.Q.; Niu, Q.Q.; Xia L.; Zhang, S.C.; Ma, X.C.; Xue, Q.K.
Crossover of the three-dimensional topological insulator Bi$_2$Se$_3$ to the two-dimensional limit. *Nature Phys.* 2010, 6, 584-588.

9 Zuev, Y. M.; Chang, W.; Kim, P. Thermoelectric and magnetothermoelectric transport measurements of Graphene. *Phys. Rev. Lett.* 2009, 102, 096807.

10 Cutler, M.; Mott, N. F. Observation of anderson localization in an electron gas. *Phys. Rev.* 1969, 181, 1336-1340.

11 Foster, M. S.; Aleiner, I. L. Slow imbalance relaxation and thermoelectric transport in graphene. *Phys. Rev. B* 2009, 79, 085415.

12 Löfwander, T.; Fogelström, M. Impurity scattering and Mott’s formula in graphene. *Phys. Rev. B* 2007, 76, 193401.

13 Stauber, T.; Peres, N. M. R.; Guinea, F. Electronic transport in graphene: A semiclassical approach including midgap states. *Phys. Rev. B* 2007, 76, 205423.

14 Tretiakov, O. A.; Abanov, A.; Sinova, J. Holey topological thermoelectrics. *Appl. Phys. Lett.* 2011, 99, 113110.

15 Hwang, E. H.; Rossi, E.; Das Sarma, S. Theory of thermopower in two-dimensional graphene. *Phys. Rev. B* 2009, 80, 235415.

16 Small, J. P.; Perez, K. M.; Kim, P. Modulation of thermoelectric power of individual carbon nanotubes. *Phys. Rev. Lett.* 2003, 91, 256801.
17 Wu, X. ; Hu, Y.; Ruan, M. ; Madimanana, N. K. ; Berger, C. ; de Heer, W. A. Thermoelectric effect in high mobility single layer epitaxial graphene. *Appl. Phys. Lett.* 2011, 99, 133102.

18 Wei, P. ; Bao, W. ; Pu, Y. ; Lau, C. N. ; Shi, J. Anomalous thermoelectric transport of Dirac particles in graphene. *Phys. Rev. Lett.* 2009, 102, 166808.

19 Checkelsky, J. G. ; Ong, N. P. Thermopower and Nernst effect in graphene in a magnetic field. *Phys. Rev. B* 2009, 80, 081413.

20 Butch, N. P. ; Kirshenbaum, K. ; Syers, P. ; Sushkov, A. B. ; Jenkins, G. S. ; Drew, H. D. ; Paglione, J. Strong surface scattering in ultrahigh-mobility Bi$_2$Se$_3$ topological insulator crystals. *Phys. Rev. B* 2010, 81, 241301.

21 Kong, D. ; Cha, J. ; Lai, K. Peng, H. ; Analytis, J. G. ; Meister, S. ; Chen, Y. ; Zhang, H. J. ; Fisher, I. R. ; Shen, Z. X. ; Cui, Yi Rapid surface oxidation as a source of surface degradation factor for Bi$_2$Se$_3$. *ACS Nano* 2011, 5, 4698-4703.

22 Kim, D. ; Cho, S. ; Butch, N. P. ; Syers, P. ; Kirshenbaum, K. ; Adam, S. ; Paglione, J. ; Fuhrer, M. S. Surface conduction of topological Dirac electrons in bulk insulating Bi$_2$Se$_3$. *Nature Phys.* 2012, 8, 459-463.

23 Chen, J. H. ; Jang, C. ; Adam, S. ; Fuhrer, M. S. ; Williams, E. D. ; Ishigami, M. Charged-impurity scattering in graphene. *Nature Phys.* 2008, 4, 377-381.

24 Adam, S. ; Hwang, E. H. ; Galitski, V. M. ; Das Sarma, S. A self-consistent theory for graphene transport. *Proc. Natl. Acad. Sci. U. S. A.* 2007, 104, 18392-18397.
25 Das Sarma, S.; Adam, S.; Hwang, E. H.; Rossi, E. Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 2011, 83, 407-470.

26 Kim, D.; Li, Q.; Syers, P.; Butch, N. P.; Paglione, J.; Das Sarma, S.; Fuhrer, M. S. Intrinsic electron-phonon resistivity of Bi$_2$Se$_3$ in the topological regime. Phys. Rev. Lett. 2012, 109, 166801.

27 Zhu, Z. H.; Levy, G.; Ludbrook, B.; Veenstra, C. N.; Rosen, J. A.; Comin, R.; Wong, D.; Dosanjh, P.; Ubaldini, A.; Syers, P.; Butch, N. P.; Paglione, J.; Elfmov, I. S.; Damascelli, A. Rashba spin-splitting control at the surface of the topological insulator Bi$_2$Se$_3$. Phys. Rev. Lett. 2011, 107, 186405.

28 Luo, Xin; Sullivan, Michael B.; Quek, Su Ying First-principles investigations of the atomic, electronic, and thermoelectric properties of equilibrium and strained Bi$_2$Se$_3$ and Bi$_2$Te$_3$ including van der Waals interactions. Phys. Rev. B. 2012, 86, 184111.

29 Kubakaddi, S. S. Interaction of massless Dirac electrons with acoustic phonons in graphene at low temperatures. Phys. Rev. B 2009, 79, 075417.

30 Kadel, K.; Kumari, L.; Li, W.; Huang, J.; Provencio, P. Synthesis and thermoelectric properties of Bi$_2$Se$_3$ nanostructures. Nanoscale Res. Lett. 2011, 6, 57.

31 Hor, Y. S.; Richardella, A.; Roushan, P.; Xia, Y.; Checkelsky, J. G.; Yazdani, A.; Hasan, M. Z.; Ong, N. P.; Cava, R. J. p-type Bi$_2$Se$_3$ for topological insulator and low-temperature thermoelectric applications. Phys. Rev. B 2009, 79, 195208.
32 Li, G.; Liang, D.; Qiu, R. L. J.; Gao, X. P. A. Thermal conductivity measurement of individual Bi$_2$Se$_3$ nano-ribbon by self-heating three-omega method. *Appl. Phys. Lett.* 2013, 102, 043104.

33 Pinto, H.; Jones, R.; Goss, J. P.; Briddon, P. R. p-type doping of graphene with F4-TCNQ. *J. Phys: Condens. Matter* 2009, 21, 402001.