Spatial Consistency Loss for Training
Multi-Label Classifiers from Single-Label Annotations

Supplementary material

A. Data-augmentation settings

We use the following data-augmentation pipeline during trainings:

MS-COCO 2014, Pascal VOC 2012, NUS-WIDE, CUB-Birds 200-2011

Train

- Resize to square image of resolution 672×672
- Random square crop with cropped area uniformly varying between 0.25 and 1 (torchvision [38] RandomResizedCrop implementation), resized to 448×448
- Random horizontal flip

Test

- Resize to square image of size 448×448

Imagenet-1k ILSVRC2012

Train

- Random square crop with cropped area uniformly varying between 0.08 and 1 and aspect ratio between 3/4 and 4/3 (torchvision [38] RandomResizedCrop implementation with default arguments, same as [19]), resized to size 224×224
- Random horizontal flip

Test

- Resize smallest image side to 256
- Center crop of 224×224 pixels

B. Comparison with Hill/SPLC

Zhang et al. [59] use different splits on MS-COCO [33] to evaluate training from a single positive label. In addition, they perform experiments on the partial label settings where 75% and 40% of the positive labels are annotated, and no annotated negatives. We evaluate our method on their dataset with our setup as described in section 4. Table B.1 shows that our results surpass those of [59] in all scenarios.

C. Ablation on the crop parameters

Figure B.1 shows the accuracies obtained with AN, and CL/SCL (with EN), when varying the random interval for the area of the crop data-augmentation. We see that CL and SCL are able to benefit more from the crop data-augmentation, compared to AN. This is consistent with our intuition that the crop data-augmentation can lead to incorrect supervision due to the single annotated objects being possibly partially or entirely cropped out. Moreover, SCL’s improvements over CL are consistent over the different data-augmentation parameters.

D. Analysis over object sizes

We check the impact of object size by splitting the positive annotations of the COCO val split into equally-sized bins, grouped by relative area of the ground truth bounding box. Then, for each bin we compute the mAP using the positive labels within that bin, and negatives over the whole val split since negatives have no object size. Figure D.1 shows that the usage of consistency loss (CL) and spatial consistency loss (SCL) both improve mAP for all object sizes, compared to the AN baseline. Interestingly, SCL
Table B.1. Comparison with Hill/SPLC \cite{59} with ResNet-50 \cite{19} on MS-COCO \cite{33}. Results with † are reported by \cite{59}.

Baselines	75% labels	40% labels	1 label	
BCE (fully annotated)	80.32	80.32	80.32	
AN †	76.81	70.49	68.57	
WAN †	77.25	72.05	70.17	
BCE-LS †	78.27	73.13	70.53	
Focal \cite{32} †	76.95	71.66	70.19	
ASL \cite{42} †	77.97	72.70	71.67	
Hill \cite{59} †	78.84	75.15	73.17	
BCE + pseudo label †	77.05	71.46	69.77	
ROLE \cite{9} †	78.43	73.67	70.90	
Focal margin + SPLC \cite{59} †	78.44	75.69	73.18	
Ours	BCE (fully annotated)	80.2	80.2	80.2
AN	76.8	71.7	69.8	
EN + CL	77.6	75.8	74.1	
EN + SCL	79.3	75.9	74.7	

![Figure E.1](image.png)

Figure E.1. Analysis of distance functions with ℓ_1 norm, ℓ_2 norm, Jensen–Shannon divergence (JSD) over weights γ.

yields higher mAP gains for smaller object sizes. Our hypothesis is that smaller objects are more likely to be cropped out, which is handled by the SCL. In addition, the crop augmentation zooms in on small objects, and those soft labels are recorded in the heatmaps as supervision.

E. Ablation of distance functions and weights

Figure E.1 compares different distance functions to measure the difference between exponential moving averages and predictions for (spatial) consistency losses.

F. Score distributions

Figure F.1 shows the distributions of the top-4 scores over all validation images. In contrast to the fully annotated baseline, the single-positive dataset in combination with AN loss leads to low-scoring predictions. SCL with EN loss (eq. (8)) reduces the amount of false negative labels and leads to a distribution more akin to the fully annotated case.

G. Details on heatmaps computation

We store heatmaps on 2 times the resolution of the feature maps (e.g. input resolution of 448×448 results in feature maps of 14×14 is stored in heatmaps of 28×28 pixels.). Heatmaps are stored in 8-bit unsigned integer format.

For ImageNet-1K \cite{10} (section 4.3), we reduce the memory load by only keeping heatmaps for the top-k classes. The selection is based on the per-class EMA scores s_{ni} computed as described in eq. (4), after the 5 epochs of pretraining the linear layer. In our experiments, we select the 10 highest-scoring classes per image based on s_{ni}. Heatmaps of other classes are assumed to be uniformly 0 in the SCL. Given 1.3 million training images, heatmaps of 14×14 and 1000 classes stored in uint8, this optimization reduces the required memory from approximately 250 GB to 2.5 GB.

H. Impact of SCL on heatmaps

A comparison of the heatmaps generated with and without SCL is given in fig. H.1 as an extra example in addition to fig. 4.

I. Uncurated heatmap examples

Figures K.1 and K.2 show the heatmaps corresponding to the samples with lowest COCO image id having suitable licenses for reproduction in the paper. In agreement with the observations in section 4.2 we see that the SCL tends to improve the object localization in the heatmaps, especially.
Figure F.1. Score distribution over all MS-COCO validation images, for 1st, 2nd, 3rd and 4th highest predicted scores per image. The BCE method is a fully annotated baseline. Training with AN and a single-positive label leads to a bias towards single positive predictions. With EN and SCL, the network more confidently predicts multiple positives.

Figure H.1. Comparison of heatmaps generated in the final training epoch with and without spatial consistency loss (second example).

when looking at the negative classes which tend to be more present when using the EN alone.

J. Distribute property of final pooling and linear layer

To obtain predictions for each spatial position, we flip the order of the average pooling layer and the final linear classification layer. The linear layer can be executed as a 1×1 convolution over the feature map, resulting in class-wise predictions per spatial position. While this introduces extra computations at training time, the inference time is not impacted. Due to the distributive property, the order of the average pooling and 1×1 convolutions can be reversed at inference time without affecting the network outputs. Indeed, denoting by ϕ the $G \times G \times M$ network output before average pooling and 1×1 convolution, and by A the $M \times L$ matrix representing the 1×1 convolution, it can be seen that

$$\frac{1}{G^2} \sum_{g,g'=1}^{G} \sum_{m=1}^{M} A_{ml} \phi_{g'g} m = \sum_{m=1}^{M} A_{ml} \frac{1}{G^2} \sum_{g,g'=1}^{G} \phi_{gg'} m$$

for all l. That is, convolving and then average pooling is equal to average pooling and then convolving.

K. Dataset statistics

Table K.1 lists some statistics on the datasets used in the paper, as well as the value of the hyperparameter K computed on the validation set based on these statistics. Tables K.2 and K.3 show detailed breakdown of positive annotations per class in the MS-COCO and Pascal datasets using the splits of [?].
Figure K.1. Heatmaps and scores of the top-5 scoring classes in the last epoch training with EN+SCL, along with the corresponding heatmaps for EN alone.
Figure K.2. Heatmaps and scores of the top-5 scoring classes in the last epoch training with EN+SCL, along with the corresponding heatmaps for EN alone.
Table K.1. Dataset statistics. For COCO, VOC, NUS and CUB we use the train/val/test splits from \cite{lin2014microsoft}. For ImageNet-1K we report both the original \cite{deng2009imagenet} and multi-label ReaL \cite{goyal2017una} validation sets. K is the average number of positives per image on the validation set.

Dataset	Num. classes	Number of images	Number of annotations	K				
		train	val	test	train	val	test	
MS-COCO 2014 \cite{lin2014microsoft}	80	65,665	16,416	40,137	193078	47957	116592	2.9
Pascal VOC 2012 \cite{everingham2010pascal}	20	4574	1143	5823	6665	1143	5823	1.5
NUS-WIDE \cite{chen2015nus}	81	120000	30000	60260	226833	57778	113418	1.9
CUB-200-2011 \cite{wah2011caltech}	312	4795	1199	5794	150551	37792	182704	31.5
ImageNet-1K \cite{deng2009imagenet}	1000	1,281,167	50,000/46,837	-	1,281,167	50,000/46,837	-	1/1.2
Table K.2. Annotation statistics on MS-COCO [33]. For each class, we show the total amount of annotations in the original MS-COCO annotations (total), as well as the percentage of single-positive annotations selected for that class in the splits of [9].

Class	# train	# val	# test
all classes	193078	47957	116592
person	36192	34%	8982
chair	7138	22%	1812
car	6895	30%	1711
dining table	6701	21%	1677
cup	5219	20%	1299
bottle	4790	20%	1178
bowl	4042	21%	986
handbag	3927	23%	934
truck	3447	33%	874
backpack	3109	25%	815
bench	3078	34%	766
book	2994	22%	746
cell phone	2644	29%	678
sink	2640	33%	651
tv	2525	23%	666
couch	2515	22%	655
clock	2506	50%	655
potted plant	2497	24%	587
knife	2491	20%	609
dog	2428	39%	613
sports ball	2401	30%	585
traffic light	2292	37%	601
cat	2267	43%	551
bus	2240	33%	551
umbrella	2183	30%	566
tie	2132	34%	535
fork	2058	18%	479
bed	2054	48%	385
vase	2025	35%	505
skateboard	2021	40%	490
spoon	2005	18%	488
motorcycle	1961	37%	481
train	1958	58%	506
laptop	1943	24%	532
tennis racket	1903	35%	465
surfboard	1876	44%	467
toilet	1842	58%	475
airplane	1797	68%	446
bird	1784	64%	457

Table K.3. Annotation statistics on Pascal VOC 2012 [14]. For each class, we show the total amount of annotations in the original MS-COCO annotations (total), as well as the percentage of single-positive annotations selected for that class in the splits of [9].

Class	# train	# val	# test
all classes	6665	68%	1666
person	1584	59%	410
dog	504	83%	128
car	474	68%	116
chair	457	49%	107
cat	436	90%	103
bird	310	93%	85
bottle	294	51%	71
aeroplane	264	95%	63
ryder	233	61%	57

Class	# train	# val	# test
train	220	85%	53
pottedplant	214	47%	35
motorbike	206	65%	59
sofa	201	53%	56
bicycle	200	64%	68
horse	195	69%	42
bus	176	67%	37
sheep	135	90%	36
cow	129	86%	22