PERFECT MATCHINGS IN HYPERGRAPHS AND THE ERDŐS MATCHING CONJECTURE

JIE HAN

Abstract. We prove a new upper bound for the minimum d-degree threshold for perfect matchings in k-uniform hypergraphs when d < k/2. As a consequence, this determines exact values of the threshold when 0.42k ≤ d < k/2 or when (k, d) = (12, 5) or (17, 7). Our approach is to give an upper bound on the Erdős Matching Conjecture and convert the result to the minimum d-degree setting by an approach of Kühn, Osthus and Townsend. To obtain exact thresholds, we also apply a result of Treglown and Zhao.

1. Introduction

1.1. Perfect matchings via minimum degree conditions. Given k ≥ 2, a k-uniform hypergraph (or a k-graph) H is a pair H = (V, E), where V is a finite vertex set and E is a family of k-element subsets of V. Given a k-graph H and a set S of d vertices in V(H), 0 ≤ d ≤ k − 1, we denote by deg_H(S) the number of edges of H containing S. The minimum d-degree of H then is defined as

\[\delta_d(H) = \min \left\{ \deg_H(S) : S \in \binom{V(H)}{d} \right\}. \]

Note that \(\delta_0(H) = |E(H)| \) is the number of edges of H.

A matching M in H is a collection of disjoint edges of H. The size of M is the number of edges in M. We say M is a perfect matching if it has size \(\frac{|V|}{k} \). For integers n, k, d, s satisfying 0 ≤ d ≤ k − 1 and 0 ≤ s ≤ n/k, let \(m^*_d(k, n) \) be the smallest integer m such that every n-vertex k-graph H with \(\delta_d(H) \geq m \) has a matching of size s. For simplicity, we write \(m_d(k, n) \) for \(m_d^*(k, n) \). Throughout this note, \(o(1) \) stands for some function that tends to 0 as n tends to infinity. The following conjecture [10, 17] has received much attention in the last decade (see [1, 3, 10, 12, 11, 14, 15, 16, 17, 21, 22, 24, 25, 26, 27, 28] and the recent surveys [23, 29]).

Conjecture 1.1. For 1 ≤ d ≤ k − 1 and k \(\mid n \),

\[m_d(k, n) = \left(\max \left\{ \frac{1}{2} \left(1 - \left(1 - \frac{1}{k} \right)^{k-d} \right) \right\} + o(1) \right) \frac{n-d}{k-d}. \]

We remark that the quantities in the lower bound of the conjecture come from two different constructions. The second term can be seen by the following k-graph. Let G(s) be the k-graph on V whose edges are all k-sets that intersect a fixed S ⊆ V with |S| = s < n/k. Clearly G(n/k − 1) has no perfect matching.

On the other hand, the quantity 1/2 comes from the following parity construction. Given a partition V into non-empty sets A, B, let \(B_{n,k}(A, B) \) (or \(B_{n,k}(A, B) \)) be the k-uniform hypergraph with vertex set V and whose edge set consists of all k-element subsets of V that contains an odd (or even) number of vertices in A. Define \(H_{ext}(n, k) \) to be the collection of all hypergraphs \(B_{n,k}(A, B) \) where |A| = n/k is odd, and all hypergraphs \(B_{n,k}(A, B) \) where |A| − n/k is odd. It is easy to see that no hypergraph in \(H_{ext}(n, k) \) contains a perfect matching (see [3]). Define \(\delta(n, k, d) \) to be the maximum of the minimum d-degrees among all the hypergraphs in \(H_{ext}(n, k) \). Note that \(\delta(n, k, d) = (1/2 + o(1)) \frac{n-d}{k-d} \) but the general formula is unknown (see [20] for more discussion).

Given k ≥ 3, Rödl, Ruciński and Szemerédi [27] showed that \(m_{k-1}(k, n) = \delta(n, k, k-1) + 1 \) for large n. Treglown and Zhao [26, 27] generalized their result and showed that \(m_d(k, n) = \delta(n, k, d) + 1 \) for all
For $d \geq k/2$. For $d < k/2$, Conjecture [13] has been verified [10] [14] [15] [19] [28] for only a few cases, i.e., for $(k, d) \in \{(3, 1), (4, 1), (5, 1), (5, 2), (6, 2), (7, 3)\}$. Moreover, exact values of $m_d(k, n)$ are known for $(k, d) \in \{(3, 1), (4, 1), (5, 2), (7, 3)\}$. In general for $d < k/2$, the following best known upper bound is due to Kühn, Osthus and Townsend [18] Theorem 1.2, which improves earlier results by Hán, Person and Schacht [10], and Markström and Ruciński [21].

Theorem 1.2. [18] Let n, $1 \leq d < k/2$ be such that $n, k, d, n/k \in \mathbb{N}$. Then

$$m_d(k, n) \leq \left(\frac{k - d}{k} - \frac{k - d - 1}{k^{k-d}} + o(1)\right) \left(\frac{n - d}{k - d}\right).$$

In this paper we show the following new upper bound on $m_d(k, n)$ for $1 \leq d < k/2$.

Theorem 1.3. Let $n, k \geq 3$, $1 \leq d < k/2$ be integers and $n \in k\mathbb{N}$. Then

$$m_d(k, n) \leq \max \left\{\delta(n, k, d) + 1, (g(k, d) + o(1)) \left(\frac{n - d}{k - d}\right)\right\},$$

where

$$g(k, d) := 1 - \left(1 - \frac{(k-d)(k-2d-1)}{(k-1)^2}\right) \left(1 - \frac{1}{k}\right)^{k-d}.$$

Here we compare the bounds in Theorems 1.2 and 1.3. First consider the case $d = xk$ for some fixed $x \in (0, 1/2)$. Let $g(x) := \lim_{k \to \infty} g(k, xk)$ and clearly $g(x) = 1 - (3x - 2x^2) e^{x-1}$. Straightforward application of Calculus shows that $g(x) \leq 1 - \frac{2}{3}x \approx 1 - 1.1x$. Note that when $d = xk$ and k tends to infinity, the corresponding coefficient in the bound of Theorem 1.2 becomes $1 - x$. So in this range, when k is sufficiently large, our bound is better than that of Theorem 1.2. Second, by simply plugging in values of k, d, one can see that the bound in Theorem 1.2 is better for small values of k or when d is much smaller than k.

Theorem 1.3 also provides some new exact values of $m_d(k, n)$.

Corollary 1.4. Given $1 \leq d < k/2$, let $n \in k\mathbb{N}$ be sufficiently large. Then $m_d(k, n) = \delta(n, k, d) + 1$ if $0.42k \leq d < k/2$ or $(k, d) \in \{(12, 5), (17, 7)\}$.

Proof. For all cases, since n is sufficiently large, by Theorem 1.3 it suffices to show $g(k, d) < 1/2$. The cases when $k \leq 20$ can be verified by hand. For $k \geq 20$, let $d = xk$ for some $x \in (1/4, 1/2)$. Note that $\frac{k-2d}{(k-1)^2} < \frac{k-d}{k}$, then by definition, we have

$$g(k, xk) \leq 1 - \left(1 - (1-x)(1-2x)\right) \left(1 - \frac{1}{k}\right)^{(1-x)k} = 1 - (3x - 2x^2) \left(1 - \frac{1}{k}\right)^{(1-x)k}.$$

Let $h(k, x) := 1 - (3x - 2x^2) (1 - \frac{1}{k})^{(1-x)k}$ and note that for $x \in (1/4, 1/2)$ and $k \geq 2$, $h(k, x)$ is decreasing on x and k, respectively. So we are done by noticing that $h(20, 0.42) < 1/2$.

1.2. Perfect fractional matchings in hypergraphs.

As shown in [10] [18] [28], to get upper bounds on $m_d(k, n)$, it suffices to study so-called perfect fractional matchings. A fractional matching in a k-graph $H = (V, E)$ is a function $w : E \to [0, 1]$, such that for each $v \in V$ we have $\sum_{e \in E} w(e) \leq 1$. The size of w is $\sum_{e \in E} w(e)$ and we say w is a perfect fractional matching if it has size $|V|/k$. For $s \in \mathbb{R}$, let $f^s_d(k, n)$ denote the smallest integer m such that every n-vertex k-graph H with $\delta_d(H) \geq m$ has a fractional matching of size s. Note that the k-graph $G(n/k - 1)$ shows that $f^s_d(k, n) \geq \left(1 - \frac{1}{k}\right)^{k-d} + o(1)$ $\left(\frac{n}{k}\right)$.

As the key component of the proof of Theorem 1.3 we show the following upper bound on $f^s_d(k, n)$ for $1 \leq d < k/2$. Let $c^*_{d, k} := \limsup_{n \to \infty} f^s_d(k, n)/\left(\frac{n-d}{k-d}\right)$.

Theorem 1.5. Let $n, k \geq 3$, $1 \leq d < k/2$ be integers. Then

$$f^s_d(k, n) \leq (g(k, d) + o(1)) \left(\frac{n-d}{k-d}\right),$$

or, equivalently, $c^*_{d, k} \leq g(k, d)$.
Now Theorem 2.2 immediately follows from Theorem 1.3 and the following theorem of Treglown and Zhao [28, Theorem 2].

Theorem 2.2. [28] Fix integers k, d with $d \leq k - 1$ and let $n \in k\mathbb{N}$. Then

$$m_d(k, n) = \max \left\{ \delta(n, k, d) + 1, \left(c_{k,d}^* + o(1) \right) \left(\frac{n - d}{k - d} \right) \right\}.$$

1.3. The Erdős Matching Conjecture. The following classical conjecture is due to Erdős [4] in 1965. Here we prefer the notation from Extremal Set Theory, where a k-uniform family $\mathcal{F} \subseteq \binom{[n]}{k}$ is a collection of k-subsets of $[n]$ (so it is a k-graph). Given a family \mathcal{F}, $\nu(\mathcal{F})$ is the size of the maximum matching in \mathcal{F}.

Conjecture 1.7. [4] If $\mathcal{F} \subseteq \binom{[n]}{k}$ and $\nu(\mathcal{F}) = s$ such that $n \geq k(s + 1) - 1$ then

$$|\mathcal{F}| \leq \max \left\{ \left(\frac{k(s + 1) - 1}{k} \right), \left(\frac{n}{k} \right) - \left(\frac{n - s}{k} \right) \right\}$$

holds.

The two quantities in the above conjecture come from the following two simple constructions.

$$\mathcal{A}(k, s) := \left(\left(\frac{k(s + 1) - 1}{k} \right), \mathcal{A}(n, 1, s) := \left\{ A \in \binom{[n]}{k} : A \cap [s] \neq \emptyset \right\}. $$

Note that $\mathcal{A}(n, 1, s)$ is isomorphic to $G(s)$.

The case $s = 1$ is the classical Erdős-Ko-Rado Theorem [9]. For $k = 1$ the conjecture is trivial and for $k = 2$ it was proved by Erdős and Gallai [5]. For general $k \geq 3$, Erdős [4] proved the conjecture for $n \geq n_0(k, s)$. Bollobás, Daykin and Erdős [2] improved $n_0(k, s)$ to $2sk^3$, which was subsequently lowered to $3sk^2$ by Huang, Loh and Sudakov [13]. The best known bound on n_0 is $(2k - 1)s + k$ by Frankl [9]. Recently, Conjecture [1.7] is verified for $k = 3$ by Luczak and Mieczkowska [20] for large n and by Frankl [8] for all n.

Here we show a result from a different point of view. Instead of looking for exact solutions for smaller values of n, we give an upper bound on the size of the family for the unsolved cases. Note that Frankl [7] showed that $|\mathcal{F}| \leq s\left(\frac{n - 1}{k - 1} \right)$ for all n, k, s.

Theorem 1.8. Suppose n, k, s are non-negative integers and $\alpha \in (1, 2 - 1/k]$ is a real number such that $n \geq \alpha k(s + 1) + k - 1$. Let $\mathcal{F} \subseteq \binom{[n]}{k}$ and $\nu(\mathcal{F}) = s$ then

$$|\mathcal{F}| \leq \left(\frac{n}{k} \right) - \left(\frac{n - s}{k} \right) + \left(\frac{2 - \alpha}{\alpha k - 1} \right) s\left(\frac{n - s - 1}{k - 1} \right).$$

Note that Theorem 1.8 can be translated into the language of $m_0^s(k, n)$. In fact, for any upper bound $h(n, k, s)$ on $|\mathcal{F}|$ where $\nu(\mathcal{F}) = s \leq n/k - 1$, we immediately have

$$m_0^{s+1}(k, n) \leq h(n, k, s) + 1.$$

2. Proof of Theorem 1.8

Our proof of Theorem 1.8 is adapted from the proof of [9, Theorem 1.1]. Let us first recall two results from [9]. For a family $\mathcal{F} \subseteq \binom{[n]}{k}$, its shadow is defined as

$$\partial \mathcal{F} := \left\{ G \in \binom{[n]}{k - 1} : \exists F \in \mathcal{F}, G \subseteq F \right\}.$$

Theorem 2.1. [9, Theorem 1.2] If $\mathcal{F} \subseteq \binom{[n]}{k}$ and $\nu(\mathcal{F}) = s$, then

$$s|\partial \mathcal{F}| \geq |\mathcal{F}|.$$

The families $\mathcal{F}_1, \mathcal{F}_2, \ldots, \mathcal{F}_{s+1}$ are called nested if $\mathcal{F}_{s+1} \subseteq \mathcal{F}_s \subseteq \cdots \subseteq \mathcal{F}_1$ holds. The families $\mathcal{F}_1, \mathcal{F}_2, \ldots, \mathcal{F}_{s+1}$ are called cross-dependent if there is no choice of $F_i \in \mathcal{F}_i$ such that F_1, \ldots, F_{s+1} are pairwise disjoint. Here we use a theorem in [9] in a slightly different form, which follows from the original proof.

Theorem 2.2. [9, Theorem 3.1] Let $\beta \in (0, 1)$ and let $\mathcal{F}_1, \mathcal{F}_2, \ldots, \mathcal{F}_{s+1} \subseteq \binom{[Y]}{t}$, be nested, cross-dependent families, $|Y| \geq t\ell$. Suppose further that $t \geq \beta(2s + 1)$, then

$$|\mathcal{F}_1| + |\mathcal{F}_2| + \cdots + |\mathcal{F}_s| + (s + 1)|\mathcal{F}_{s+1}| \leq \frac{s}{\beta^2} \left(\frac{|Y|}{\ell} \right).$$

It is well known that in proving Theorem 1.8 one can assume that \mathcal{F} is stable. That is, for all $1 \leq i < j \leq n$ and $F \in \mathcal{F}$, the conditions $i \notin F, j \in F$ imply that $F \cup \{i\} \setminus \{j\}$ is in \mathcal{F} as well.

Proof of Theorem 1.8. Let $\mathcal{F} \subseteq \binom{[n]}{k}$ be a stable family with $\nu(\mathcal{F}) = s, n \geq \alpha k(s+1) + k - 1$. Note that $\alpha > 1$ and thus $n > k(s+1)$. We need to show that

$$|\mathcal{F}| \leq |\mathcal{A}(n, 1, s)| + \frac{(2 - \alpha)k - 1}{\alpha k - 1}s\left(n - s - 1\right) \left(k - 1\right).$$

Let us write \mathcal{A} instead of $\mathcal{A}(n, 1, s)$ throughout the proof. In order to compare \mathcal{F} and \mathcal{A}, we partition both families according to the intersection of their edges with $[s+1]$: For a subset $Q \subseteq [s+1]$ define

$$\mathcal{F}(Q) := \{ F \in \mathcal{F} : F \cap [s+1] = Q \}, \quad \mathcal{A}(Q) := \{ A \in \mathcal{A} : A \cap [s+1] = Q \}.$$

Let $m := n - s - 1$ and note that for $|Q| \geq 2$, we have $|\mathcal{A}(Q)| = \binom{m}{|Q| - 1}$, which implies $|\mathcal{F}(Q)| \leq |\mathcal{A}(Q)|$.

For $1 \leq i \leq s, |\mathcal{A}(i)| = \binom{m}{k-1}$ and $\mathcal{A}([s+1]) = \emptyset$. Thus it suffices to show

$$|\mathcal{F}(\emptyset)| + \sum_{i=1}^{s+1} |\mathcal{F}(\{i\})| \leq s\left(\frac{m}{k-1}\right) + \frac{(2 - \alpha)k - 1}{\alpha k - 1}s\left(\frac{m}{k-1}\right) = \frac{2k - 2}{\alpha k - 1}s\left(\frac{m}{k-1}\right).$$

Note that $\nu(\mathcal{F}(\emptyset)) \leq s$ and $|\partial(\mathcal{F}(\emptyset))| \leq |\mathcal{F}(\{s+1\})|$, where the latter is because every $H \in \partial(\mathcal{F}(\emptyset))$ satisfies that $H \cup \{s+1\} \in \mathcal{F}(\{s+1\})$. Then by Theorem 2.1 we have

$$|\mathcal{F}(\emptyset)| \leq \nu(\mathcal{F}(\emptyset))|\partial(\mathcal{F}(\emptyset))| \leq s|\mathcal{F}(\{s+1\})|.$$

Plugging this into (2.1), we see that it suffices to show

$$|\mathcal{F}(\emptyset)| + \cdots + |\mathcal{F}(\{s\})| + (s+1)|\mathcal{F}(\{s+1\})| \leq \frac{2k - 2}{\alpha k - 1}s\left(\frac{m}{k-1}\right).$$

To apply Theorem 2.2 set $\mathcal{F}_i := \{ F \setminus \{i\} : F \in \mathcal{F}(\{i\}) \}$. Since \mathcal{F} is stable, $\mathcal{F}_1, \ldots, \mathcal{F}_{s+1}$ are nested. Also, since $\nu(\mathcal{F}) = s, \mathcal{F}_1, \ldots, \mathcal{F}_{s+1}$ are cross-dependent. Setting $\ell := k - 1, Y := [s+2, n]$ and thus

$$|Y| = m \geq (\alpha k - 1)(s+1) + k - 1 = \left(\frac{\alpha k - 1}{k} + \frac{1}{2s + 1}\right)(2s + 1) + 1 > \left(\frac{\alpha k - 1}{2k - 2}\right)(2s + 1)$$

So all conditions of Theorem 2.2 are satisfied for $t = \left(\frac{\alpha k - 1}{2k - 2}\right)(2s + 1)$ and $\beta = \frac{\alpha k - 1}{2k - 2}$. Thus (2.2) follows from Theorem 2.2.

\[\square \]

3. Proof of Theorem 1.5

Here we use the approach in [18] as well as two propositions. In fact, we only replace their Theorem 1.8 by our Theorem 1.8.

Proposition 3.1. [18] Proposition 4.1 Let k, d, n be integers with $n \geq k \geq 3$, and $1 \leq d \leq k - 2$. Let $a \in [0, 1/k]$. Suppose H is a k-uniform hypergraph on n vertices such that $\delta_a(H) \geq f_0^n(k-d, n-d)$, then H has a fractional matching of size an.

Proposition 3.2. [18] Proposition 2.3 Suppose that $k \geq 2$ and $a \in (0, 1/k), c \in (0, 1)$ are fixed. Then for every $\epsilon > 0$ there exists $n_0 = n_0(\epsilon, c)$ such that if $n \geq n_0$ and $f_0^n(k, n) \leq c(\epsilon)^{n/2}$ then $f_0^{n+1}(k, n) \leq (c + \epsilon)^{n/2}$.

Proof of Theorem 1.5. Let $k' := k - d$ and $n' := n - d$. Let $\alpha := k/k'$ and $s + 1 := \lfloor (n' - k' + 1)/k' \rfloor$, then applying Theorem 1.8 with n', k', s, α implies that

$$m_{0}^{s+1}(k', n') \leq \left(\begin{array}{c} n' \\ k' \end{array}\right) - \left(\begin{array}{c} n' - s \\ k' \end{array}\right) + \frac{k - 2d - 1}{k - 1}\left(\begin{array}{c} s - 1 \\ k' - 1 \end{array}\right) + 1 \leq \left(\begin{array}{c} n' \\ k' \end{array}\right) - \left(1 - \frac{k - 2d - 1}{k - 1}\cdot\frac{k - d}{k' - 1}\right)\left(\begin{array}{c} s - 1 \\ k' \end{array}\right) + 1 = (g(k, d) + o(1))\left(\begin{array}{c} n' \\ d \end{array}\right).$$

Here the last equality is due to that $n' - s = (k - 1 + o(1))s = (1 - 1/k + o(1))n'$, which follows from the definition of s. Since $n/k \leq s + 3$, by Proposition 3.2 and the trivial fact that $f_0^{s+1}(k', n') \leq m_{0}^{s+1}(k', n')$, we get

$$f_0^{n/k}(k - d, n - d) = f_0^{n/k}(k', n') \leq m_{0}^{s+1}(k', n') + o(1)\left(\begin{array}{c} n' \\ k' \end{array}\right) \leq (g(k, d) + o(1))\left(\begin{array}{c} n - d \\ k - d \end{array}\right).$$
So Theorem 1.5 follows now from Proposition 3.1.

4. Acknowledgement

We thank two anonymous referees for the comments and Andrew Treglown and Yi Zhao for helpful discussions and comments.

References

[1] N. Alon, P. Frankl, H. Huang, V. Rödl, A. Ruciński, and B. Sudakov. Large matchings in uniform hypergraphs and the conjecture of Erdős and Samuels. J. Combin. Theory Ser. A, 119(6):1200–1215, 2012.
[2] B. Bollobás, D. E. Daykin, and P. Erdős. Sets of independent edges of a hypergraph. Quart. J. Math. Oxford Ser. (2), 27(105):25–32, 1976.
[3] A. Czygrinow and V. Kamat. Tight co-degree condition for perfect matchings in 4-graphs. Electron. J. Combin., 19(2):Paper 20, 16, 2012.
[4] P. Erdős. A problem on independent r-tuples. Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 8:93–95, 1965.
[5] P. Erdős and T. Gallai. On maximal paths and circuits of graphs. Acta Math. Acad. Sci. Hungar, 10:337–356 (unbound insert), 1959.
[6] P. Erdős, C. Ko, and R. Rado. Intersection theorems for systems of finite sets. Quart. J. Math. Oxford Ser. (2), 12:313–320, 1961.
[7] P. Frankl. The shifting technique in extremal set theory. In Surveys in combinatorics 1987 (New Cross, 1987), volume 123 of London Math. Soc. Lecture Note Ser., pages 81–110. Cambridge Univ. Press, Cambridge, 1987.
[8] P. Frankl. On the Maximum Number of Edges in a Hypergraph with Given Matching Number. ArXiv e-prints, May 2012.
[9] P. Frankl. Improved bounds for Erdős’ matching conjecture. Journal of Combinatorial Theory, Series A, 120(5):1068 – 1072, 2013.
[10] H. Hàn, Y. Person, and M. Schacht. On perfect matchings in uniform hypergraphs with large minimum vertex degree. SIAM J. Discrete Math, 23:732–748, 2009.
[11] J. Han. Near Perfect Matchings in k-uniform Hypergraphs II. SIAM J. Discrete Math., to appear.
[12] J. Han. Near perfect matchings in k-uniform hypergraphs. Combin. Probab. Comput., 24(5):723–732, 2015.
[13] H. Huang, P. Loh, and B. Sudakov. The size of a hypergraph and its matching number. Combinatorics, Probability and Computing, 21:442–450, 5 2012.
[14] I. Khan. Perfect matchings in 3-uniform hypergraphs with large vertex degree. SIAM J. Discrete Math., 27(2):1021–1039, 2013.
[15] I. Khan. Perfect matchings in 4-uniform hypergraphs. Journal of Combinatorial Theory, Series B, 116:333–366, 2016.
[16] D. Kühn and D. Osthus. Matchings in hypergraphs of large minimum degree. J. Graph Theory, 51(4):269–280, 2006.
[17] D. Kühn and D. Osthus. Embedding large subgraphs into dense graphs. In surveys in combinatorics 2009, volume 365 of London Math. Soc. Lecture Note Ser., pages 137–167. Cambridge Univ. Press, Cambridge, 2009.
[18] D. Kühn, D. Osthus, and T. Townsend. Fractional and integer matchings in uniform hypergraphs. European J. Combin., 38:83–96, 2014.
[19] D. Kühn, D. Osthus, and A. Treglown. Matchings in 3-uniform hypergraphs. J. Combin. Theory Ser. B, 103(2):291–305, 2013.
[20] T. Łuczak and K. Mieczkowska. On Erdős’ extremal problem on matchings in hypergraphs. J. Combin. Theory Ser. A, 124:178–194, 2014.
[21] K. Markström and A. Ruciński. Perfect Matchings (and Hamilton Cycles) in Hypergraphs with Large Degrees. Eur. J. Comb., 32(5):677–687, July 2011.
[22] O. Pikhurko. Perfect matchings and K^3_4-tilings in hypergraphs of large codegree. Graphs Combin., 24(4):391–404, 2008.
[23] V. Rödl and A. Ruciński. Dirac-type questions for hypergraphs a survey (or more problems for endre to solve). An Irregular Mind, Bolyai Soc. Math. Studies 21:561–590, 2010.
[24] V. Rödl, A. Ruciński, and E. Szemerédi. Perfect matchings in uniform hypergraphs with large minimum degree. European J. Combin., 27(8):1333–1349, 2006.
[25] V. Rödl, A. Ruciński, and E. Szemerédi. Perfect matchings in large uniform hypergraphs with large minimum collective degree. J. Combin. Theory Ser. A, 116(3):613–636, 2009.
[26] A. Treglown and Y. Zhao. Exact minimum degree thresholds for perfect matchings in uniform hypergraphs. J. Combin. Theory Ser. A, 119(7):1500–1522, 2012.
[27] A. Treglown and Y. Zhao. Exact minimum degree thresholds for perfect matchings in uniform hypergraphs II. J. Combin. Theory Ser. A, 120(7):1463–1482, 2013.
[28] A. Treglown and Y. Zhao. A note on perfect matchings in uniform hypergraphs. Electron. J. Combin., 23:#P1.16, 2016.
[29] Y. Zhao. Recent advances on dirac-type problems for hypergraphs. In Recent Trends in Combinatorics, volume 159 of the IMA Volumes in Mathematics and its Applications. Springer, New York, 2015.

School of Mathematics, University of Birmingham, Birmingham, B15 2TT, UK
E-mail address: J.Han@bham.ac.uk, jhan@ime.usp.br