Determination of critical control points of the technological process for the production of whipped frozen fruit and berry dessert from milk whey

S E Terentev¹, Ya M Rebezov², N P Tropnikova³, E N Sepiashvili⁴ and K V Vlasova⁴

¹ Smolensk State Agricultural Academy, 10/2 Bolshaya Sovetskaya ulitsa, 214000, Smolensk, Russia
² Prokhorov General Physics Institute of the Russian Academy of Science, 38, Vavilova str., Moscow, 119991, Russian Federation
³ South-Ural State Agrarian University, 13 Gagarina st., Troitsk, 457100, Russian Federation
⁴ K G Razumovsky Moscow State University of technologies and management (the First Cossack University), 73 Zemlyanoy Val, Moscow, 109004, Russian Federation

E-mail: xomyak4583@yandex.ru

Abstract. The use of whey in the manufacture of food products is among the important areas of using milk as a raw material. Milk whey has a fairly high biological and nutritional value. It contains about 50% of all nutrients that are in milk. When manufacturing any product, it is necessary to take into account all possible hazards that can change the characteristics of the product and, subsequently, harm a person. HACCP is the implementation of a regular approach to ensuring the safety of manufactured products. The purpose of our research is to determine the critical control points of the production process "Frozen whipped fruit and berry dessert from whey". As a result of the research, it was revealed that in the technological process of the production of whipped frozen fruit and berry dessert from whey, there are four critical control points: KKT1 - pasteurization, KKT2 - cooling and temporary storage, KKT3 - adding fruit and berry filler, citric acid, KKT4 - packaging, hardening, packaging.

1. Introduction

The dairy industry is an important branch of the food industry in the Russian Federation. It includes various sub-sectors that specialize in the manufacture of a particular dairy product from milk [1-6]. The latest developments from dairy raw materials are constantly being introduced into production, after the optimization of technological processes [7-12].

The use of whey in the manufacture of food products is among the important areas of using milk as a raw material [13-15]. This direction turned out to be little studied on the territory of our country. At the same time, up to 80% of whey in the Russian Federation is currently not subjected to any processing. It should also be borne in mind that when draining the whey into the sewer network, great harm to the environment is caused. At the same time, it turns out that enterprises, as a result, receive less of their profit, which they could get in the case of the manufacture of a particular product based on whey. Milk whey has a fairly high biological and nutritional value. It contains about 50% of all nutrients that are in
milk. Its energy value is provided largely due to its high lactose content, which is 36% of the level of whole milk. Whey proteins, which are abundant in whey, are well balanced in terms of the composition of amino acids, primarily sulfur-containing ones. Among them, methionine and cysteine should be noted. As a result, there is a real possibility of regenerating liver proteins, improving the amount of hemoglobin in the blood and increasing the level of proteins. Whey contains mineral salts that are almost the same as whole milk salts. They have special "protective" complexes with anti-sclerotic effects. The loss of whey ultimately leads to a decrease in the efficiency of milk processing. Nowadays, various methods of whey processing are known: drying, concentration, obtaining various useful components from it, synthesis of useful substances, etc. As a result, the resulting products can be used in the future to make various food products, create feed and feed additives for farm animals and birds [16-22].

One of the main directions of the dairy industry is the production of ice cream. When manufacturing any product, it is necessary to take into account all possible hazards that can change the characteristics of the product and, subsequently, harm a person [23-29]. Now, based on the currently existing concept of quality management, it is taken into account that the implementation of product quality control should be carried out within the framework of the production process, and not at its completion. This concept is answered by a system based on the principles of HACCP.

HACCP is the implementation of a regular approach to ensuring the safety of manufactured products. At the heart of this is various real possibilities for preventing certain risks that may arise. The abbreviation translated from English means the analysis of the existing risks and the definition of existing critical control points.

The purpose of our research is to determine the critical control points of the production process of whipped frozen fruit and berry dessert from milk whey.

2. Material and methods
Frozen whipped fruit and berry dessert is produced according to the traditional technology of ice cream production.

The difference in production technology lies in the constituent components. First of all, caramel syrup, stabilizer, sugar (at the stage of preparation and mixing of raw materials) are added to the whey. Citric acid and fruit and berry fillers are added after cooling the prepared mixture to the milling stage.

Dessert composition: milk serum, granulated sugar, caramel treacle, fruit and berry filler with pieces of fruit and berries, stabilizer "Palsgaard 811", lemon acid.

3. Results and discussion
A hazard assessment is carried out in relation to the identified product hazard. This allows you to detect the need for the obligation to eliminate the hazard, or to reduce it. In addition, it is ultimately possible to determine the control measures that are required to achieve the appropriate hazard level. Any hazard is assessed taking into account the severity of possible adverse consequences that can be caused to human health. It is envisaged to apply the scoring in accordance with the matrix of the significance of existing hazards.

Hazard severity: Insignificant - nothing more than a mild poisoning that does not lead to illness; Moderate - food contamination leads to mild illness; Critical - food contamination leads to serious illness; Catastrophic - food contamination is fatal.

Probability of danger: Unlikely - very rare; Rarely; Periodically - from time to time; Probably - happens several times; Often - according to historical data, production occurs frequently.

In the production of dairy products, the following types of risks occur: microbiological, chemical and physical.

Possible hazardous factors at all stages of the technological process of dessert production are presented in table 1.
Table 1. Potential hazards at the stages of the technological process.

Stage of the technological process	Hazard factor
Acceptance of raw materials, auxiliary equipment and packaging; quality control	Microbiological, physical, chemical
Adding and mixing of components	Microbiological, physical, chemical
Pasteurization	Microbiological, physical, chemical
Filtration	Physical, chemical
Homogenization	Physical, chemical
Refrigeration, temporary storage	Microbiological, physical, chemical
Adding fruit and berry filler, citric acid	Microbiological, physical, chemical
Milling	Physical, chemical
Packing, hardening, packaging storage	Microbiological, physical, chemical
Storage	Physical

This step is important in practice for the purpose of determining the points as well as the procedures in which the control can be used. In the future, as a result, it is possible to prevent the occurrence of one or another dangerous factor in advance, or eliminate it, if it already exists. A critical control point is any stage directly related to the occurrence of a hazard and the possibility of its prevention. In this case, the total number of critical control points is determined in practice by the variety of products produced, the complexity of the production process carried out, which fall into the scope of the analysis.

The selection of critical control points of the dessert production process is carried out by the "decision tree" method, presented in figure 1.

![Figure 1. Decision tree for production steps.](image_url)
Description of the identification and establishment of critical control points (matrix of significance and analysis of possible risks) is presented in tables 2-11.

Table 2. Significance matrix, analysis of possible risks when accepting whey, raw materials.

Factor	Severity	Probability	Significance	Decision tree	
	B1	B2	B3	B4	№
1 Chemical:					KKT
- washing, disinfecting	2	2	No	No	– a
facilities;					–
- microtoxins;	3	1	Yes	Yes	No
- pesticides;	3	1	Yes	Yes	No
- radionuclides;	3	1	Yes	No	No
- heavy metals;	2	1	No	–	–
- allergens.	2	2	No	–	–
2 Physical:					
- staff;	2	1	No	Yes	–
- fragments of rubber seals	2	1	No	No	–
- fragments of lavsan bags;	2	2	No	No	–
- pests.	2	1	No	Yes	–
3 Microbiological:					
- BGKP;	3	3	Yes	Yes	No
- yeast, mold;	3	3	Yes	Yes	No
- staphylococcus;	3	1	Yes	Yes	No
- salmonella.	4	1	Yes	Yes	No

a Skipping a stage.

According to table 2, it can be seen that at the stage of acceptance of whey and raw materials, critical control points are not defined and not established.

Table 3. Significance matrix, analysis of possible risks at the stage of introducing and mixing raw materials.

Factor	Severity	Probability	Significance	Decision tree	
	B1	B2	B3	B4	№
1 Chemical:					KKT
- washing, disinfecting	2	2	No	Yes	–
disinfecting facilities;					–
- allergens.					–
2 Physical:					
- plastic;	4	2	Yes	Yes	No
- staff;	2	1	No	–	–
- paper packaging materials;	2	1	No	Yes	–
- pests.					–
3 Microbiological:					
- BGKP;	3	3	Yes	Yes	No
- staphylococcus;	3	1	Yes	Yes	No
- salmonella.	4	1	Yes	Yes	No

According to table 3, it can be seen that at the stage of introducing and mixing raw materials, critical control points are not defined and not established.
Table 4. Significance matrix, analysis of possible risks during pasteurization.

Factor	Severity	Probability	Significance	Decision tree	№ KKT
				B1 B2 B3 B4	
1 Chemical:					
Washing, disinfecting	2	2	No	No	–\(^a\) – – –
facilities.					
2 Physical:					
Fragments of rubber	2	1	No	No	– – – –
seals.					
3 Microbiological:					
BGKP;	3	3	Yes	Yes	Yes Yes No KKT 1.1
KMAFanM	3	3	Yes	Yes	Yes Yes No KKT 1.2

\(^a\) Skipping a stage.

According to table 4, it can be seen that at the stage of pasteurization of the mixture, the critical control points are determined and set as KKT 1 for the microbiological hazard.

Table 5. Significance matrix, analysis of possible risks at the stage of mixture filtration.

Factor	Severity	Probability	Significance	Decision tree	№ KKT
				B1 B2 B3 B4	
1 Chemical:					
Washing, disinfecting	2	2	No	No	–\(^a\) – – –
facilities.					
2 Physical:					
Fragments of rubber	2	1	No	No	– – – –
seals.					

\(^a\) Skipping a stage.

According to the data in Table 5, it can be seen that at the stage of filtering the mixture, the critical control points are not defined and not established.

Table 6. Significance matrix, analysis of possible risks during homogenization of the mixture.

Factor	Severity	Probability	Significance	Decision tree	№ KKT
				B1 B2 B3 B4	
1 Chemical:					
Washing, disinfecting	2	2	No	No	–\(^a\) – – –
facilities.					
2 Physical:					
Fragments of rubber	2	1	No	No	– – – –
seals.					

\(^a\) Skipping a stage.

According to the data in Table 6, it can be seen that at the stage of homogenization of the mixture, the critical control points are not defined and not established.

Table 7. Significance matrix, analysis of possible risks during cooling and temporary storage of the mixture.

Factor	Severity	Probability	Significance	Decision tree	№ KKT
				B1 B2 B3 B4	
1 Chemical:					
Washing, disinfecting	2	2	No	No	–\(^a\) – – –
facilities.					

\(^a\) Skipping a stage.
2 Physical:

Factor	Severity	Probability	Significance	Decision tree	№ KKT
fragments of rubber seals; pests.	2	1	No	No	–
	2	1	No	No	–

3 Microbiological:

Factor	Severity	Probability	Significance	Decision tree	№ KKT
BGKP; yeast, mold.	3	3	Yes	Yes	No
	3	3	Yes	Yes	No

* Skipping a stage.

According to the data in Table 7, it can be seen that at the stage of cooling and temporary storage of the mixture, the critical control points are defined and set as KKT 2.

Table 8. Significance matrix, analysis of possible risks at the stage of adding fruit and berry filler and citric acid.

Factor	Severity	Probability	Significance	Decision tree	№ KKT
1 Chemical: washing, disinfecting facilities; Allergens.	2	2	No	No	–
	2	1	No	No	–

2 Physical:

Factor	Severity	Probability	Significance	Decision tree	№ KKT
Plastic; Staff; Paper packaging materials; Pests.	4	2	Yes	Yes	Yes
	2	1	No	No	–

3 Microbiological:

Factor	Severity	Probability	Significance	Decision tree	№ KKT
BGKP; Staphylococcus; Salmonella.	3	3	Yes	Yes	No
	3	1	Yes	Yes	No
	4	1	Yes	Yes	No

* Skipping a stage.

According to table 8, it can be seen that at the stage of adding fruit and berry filler and citric acid, the critical control points are determined and set as KKT 3.

Table 9. Significance matrix, analysis of possible risks at the milling stage (* Skipping a stage).

Factor	Severity	Probability	Significance	Decision tree	№ KKT
1 Chemical: washing, disinfecting facilities.	2	2	No	No	–

2 Physical:

Factor	Severity	Probability	Significance	Decision tree	№ KKT
fragments of rubber seals.	2	1	No	No	–

According to the data in table 9, it can be seen that at the stage of milling the mixture, the critical control points are not defined and not established.
Table 10. Significance matrix, analysis of possible risks at the stage of filling, hardening and packaging.

Factor	Severity	Probability	Significance	Decision tree	№ KKT			
				B1	B2	B3	B4	
1 Chemical:								
washing, disinfecting	2	2	No	No	–	–	–	–
facilities								
2 Physical:								
plastic;	4	2	Yes	Yes	Yes	–	–	–
staff;	2	1	No	No	–	–	–	–
paper packaging materials;	2	1	No	No	–	–	–	–
pests;	2	1	No	No	–	–	–	–
bones, branches from fillers.	3	2	Yes	No	No	–	–	–
3 Microbiological:								
BGKP;	3	3	Yes	Yes	No	Yes	No	No
staphylococcus;	3	1	Yes	Yes	No	Yes	No	No
salmonella;	4	1	Yes	Yes	No	Yes	No	No
yeast, mold.	3	3	Yes	Yes	No	Yes	No	No

* Skipping a stage

According to table 10, it can be seen that at the stage of filling, hardening and packaging, critical control points are defined and set as KKT 4.

Table 11. Significance matrix, analysis of possible risks when storing dessert.

Factor	Severity	Probability	Significance	Decision tree	№ KKT			
				B1	B2	B3	B4	
Physical:								
Pests	2	1	No	Yes	–	–	–	–

According to the data in Table 11, it can be seen that at the stage of storing the dessert, critical control points are not defined and not established.

4. Conclusion

Thus, in the technological process of the production of whipped frozen fruit and berry dessert from whey, we have identified four critical control points: KKT1 - pasteurization, KKT2 - cooling and temporary storage, KKT3 - adding fruit and berry filler, citric acid, KKT4 - packing, hardening packing.

References

[1] Gavrilova N, Chernopolskaya N, Rebezov M, Shchetinina E, Suyazova I, Safronov S, Ivanova V and Sultanova E 2020 Development of specialized food products for nutrition of sportsmen Journal of Critical Reviews 7(4) 233-6 DOI: 10.31838/jcr.07.04.43

[2] Smolnikova F, Toleubekova S, Temerbayeva M, Cherkasova E, Gorelik O., Kharlap S, Derkho M, Rebezov M and Penkova I 2018 Nutritive Value Of Curd Product Enriched With Wheat Germ Research Journal of Pharmaceutical, Biological and Chemical Sciences 9(3) 1003-8 WOS:000438847100131

[3] Temerbayeva M et al. 2018 Development of Yoghurt from Combination of Goat and Cow Milk Annual Research & Review in Biology 23(6) 1-7 DOI: 10.9734/arrb/2018/38800

[4] Chernopolskaya N, Gavrilova N, Rebezov M, Dolmatova I, Zaitseva T, Somova Y, Babaeva M,
Ponomarev E and Voskanyan O 2019 Biotechnology of specialized product for sports nutrition *International Journal of Engineering and Advanced Technology* **8**(4) 40-5 DOI: 10.35940/ijrte.B3158.078219

[5] Serikova А, Smolnikova F, Rebezov M, Okuskhanova E, Temerbayeva M, Gorelik O, Kharlap S, Baitukenova Sh, Baitukenova S and Tumbasova Y 2018 Development Of Technology Of Fermented Milk Drink With Immune Stimulating Properties *Research Journal of Pharmaceutical Biological and Chemical Sciences* **9**(4) 495-500 WOS:000438848100062

[6] Gavrilova N, Chernopolskaya N, Molyboga E, Shipkova K, Dolmatova I, Demidova V, Rebezov M, Kuznetsova E and Ponomareva L 2019 Biotechnology application in production of specialized dairy products using probiotic cultures immobilization *International Journal of Innovative Technology and Exploring Engineering* **8**(6) 642-8

[7] Gavrilova N, Chernopolskaya N, Rebezov M, Moisejkina D, Dolmatova I, Mironova I, Peshcherov G, Gorelik O and Derkho M 2019 Advanced Biotechnology of Specialized Fermented Milk Products *International Journal of Innovative Technology and Exploring Engineering* **8**(6) 642-8 DOI: 10.35940/ijrte.B3158.078219

[8] Gavrilova N, Chernopolskaya N, Rebezov M, Shchetinina E, Dogareva N, Likhodeevskaya O, Knysh I and Sanova Z 2020 Specialized sports nutrition foods: review *International Journal of Pharmaceutical Research* **12**(2) 998-1003

[9] Chernopolskaya N, Gavrilova N, Rebezov M, Harlap S, Nigmatyanov A, Peshcherov G, Bychkova T, Vlasova K and Karapetyan I 2019 Biotechnology of specialized fermented product for elderly nutrition *International Journal of Pharmaceutical Research* **11**(1) 545-50 DOI: 10.35940/ijrte.B3158.078219

[10] Ashan S *et al.* 2020 Functional exploration of bioactive moieties of fermented and non-fermented soy milk with reference to nutritional attributes *J Microbiol Biotech Food Sci* **10**(1) 145-9 doi: 10.15414/jmbfs.2020.10.1.145-149

[11] Gorelik O *et al.* 2017 Study of chemical and mineral composition of new sour milk bio-product with sapropel powder *Annual Research & Review in Biology* **18**(4) 1-5 DOI: 10.9734/ARRB/2017/36937

[12] Smolnikova F, Rebezov M, Shaydullin R, Knysh I, Yudina O, Nikolaeva N, Sorokin A, Zubtsova Yu and Kozlov V 2020 Vegetable stabilizers used in the production of fermented milk drinks and yogurts *International Journal of Psychosocial Rehabilitation* **24**(6) 7663-7 DOI: 10.37200/IJPR/V24I6/PR260775

[13] Temerbayeva M *et al.* 2018 Technology of Sour Milk Product For Elderly Nutrition Research *Journal of Pharmaceutical, Biological and Chemical Sciences* **9**(1) 291-5

[14] Kassymov S, Amirzhan T, Moldabayeva Zh, Rebezov M, Sharova T, Nikolaeva N, Gribkova V, Gaidarenko L and Karapetyan I 2020 Nutritional and biological value of bakery products with the addition of vegetable powders and milk whey *International Journal of Psychosocial Rehabilitation* **24**(7) 3985-9 DOI: 10.37200/IJPR/V24I7/PR270394

[15] Kassymov S *et al.* 2020 Nutritional and biological value of bakery products with the addition of vegetable powders and milk whey *International Journal of Psychosocial Rehabilitation* **24**(7) 3985-9 DOI: 10.37200/IJPR/V24I7/PR270394

[16] Belookov A, Belookova O, Zhuravel V, Gritsenko S, Bobyleva I, Ermolova E, Ermolov S, Matrosova Y, Rebezov M and Ponomarev E 2019 Using of EM-technology (effective microorganism) for increasing the productivity of calves *International Journal of Engineering and Advanced Technology* **8**(4) 1058-61

[17] Khabirov A, Khaziakhmetov F, Kuznetsov V, Tagirov H, Rebezov M, Andreyeva A, Basharov A, Yessimbekov Z and Ayaz M 2021 Effect of Normosil Probiotic Supplementation on the Growth Performance and Blood Parameters of Broiler Chickens *Indian J of Pharmaceutical Education and Research* **55**(1) DOI: 10.5530/ijper.54.2s.x

[18] Khaziakhmetov F *et al.* 2018 Effect Of Probiotics On Calves, Weaned Pigs And Lamb Growth *Research Journal of Pharmaceutical, Biological and Chemical Sciences* **9**(3) 866-70
[19] Khaziakhmetov F, Khabirov A, Rebezov M, Basharov A, Ziangulov I and Okuskhanova E 2018 Influence of probiotics "Stimix Zootstim" on the microflora of faeces, hematological indicators and intensitivity of growth of calves of the dairy period International Journal of Veterinary Science 7(4) 178-81

[20] Sharipova A, Khaziev D, Kanareikina S, Kanareikin V, Rebezov M, Kazanina M, Andreeva A, Okuskhanova E, Yessimbekov Zh and Bykova O 2017 The effects of a probiotic dietary supplementation on the amino acid and mineral composition of broilers meat Annual Research & Review in Biology 21(6) 1-7 DOI: 10.9734/ARRB/2017/38429

[21] Sharipova A, Khaziev D, Kanareikina S, Kanareikin V, Rebezov M, Okuskhanova E, Suychinov A and Esimbekov Zh 2017 The effects of a probiotic dietary supplementation on the livability and weight gain of broilers Annual Research & Review in Biology 19(6) 1-5 DOI: 10.9734/ARRB/2017/37344

[22] Morozova L et al. 2020 Improving the physiological and biochemical status of high-yielding cows through complete feeding International Journal of Pharmaceutical Research Supplementary Issue 1 2181-90 https://doi.org/10.31838/ijpr/2020.SP1.319

[1] Akhmetova S, Suleimenova M and Rebezov M 2019 Mechanism of an improvement of business processes management system for food production: case of meat products enterprise Entrepreneurship and sustainability issues 7(2) 1015-35 Doi 10.9770/jesi.2019.7.2(16)

[23] Kuramshina N et al. 2018 Heavy Metals Contamination of Soil in Urban Areas of Southern Ural Region of Russia International Journal of Engineering and Technology (UAE) 7(4.42) 1-8 DOI: 10.14419 / ijet.v7i4.42.25536

[24] Maksimuk N N, Rebezov M B and Guber N B 2018 Experience in auditing in the food safety management system Economics of Agriculture of Russia doi:10.32651/2070-0288-2018-9-15-21

[25] Kuramshina N, Rebezov M, Kuramshin E, Tretyak L, Topuria G, Kulikov D, Evtushenko A, Harlap S and Okuskhanova E 2019 Heavy metals content in meat and milk of Orenburg region of Russia International Journal of Pharmaceutical Research 11(1) 1301-5 DOI: 10.21668/health.risk/2019.2.04.eng

[26] Duysssembaev S, Serikova A, Okuskhanova E, Ibragimov N, Bekturova N, Ikimbayeva N, Rebezov Y, Gorelik O and Baybalinova M 2017 Determination of Cs-137 Concentration in Some Environmental Samples around the Semipalatinsk Nuclear Test Site in the Republic of Kazakhstan Annual Research & Review in Biology 15(4) 1-8 DOI: 10.9734/ARRB/2017/35239

[27] Rebezov M et al. 2020 Improvement of Laboratory Services When using Sample Preparation in Microwave System International Journal of Current Research and Review 12(16) 29-33 doi:10.31782/IJCRR.2020.12167

[28] Ahsan S et al. 2020 Safety assessment of milk and indigenous milk products from different areas of Faisalabad J Microbiol Biotech Food Sci 9(6) 1197-1203 DOI: 10.15414/jmbfs.2020.9.6.1197-1203