2E8 Binds to the High Affinity I-domain in a Metal Ion-dependent Manner

A SECOND GENERATION MONOCLONAL ANTIBODY SELECTIVELY TARGETING ACTIVATED LFA-1*

Received for publication, February 9, 2010, and in revised form, July 21, 2010 Published, JBC Papers in Press, August 19, 2010, DOI 10.1074/jbc.M110.111591

Roberto Carreño1† Wells S. Brown61, Dan Li6, Jessica A. Hernandez6, Yang Wang6, Tae Kon Kim6, John W. Craft, Jr.**, Krishna V. Komanduri6, Laszlo G. Radvanyi6, Patrick Hwu6, Jeffrey J. Molldrem6, Glen B. Legge**, Bradley W. McIntyre5, and Qin Ma62

From the 6Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, Department of Immunology, and 6Department of Melanoma Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, the 6Adult Stem Cell Transplant Program, University of Miami Sylvester Comprehensive Cancer Center, Miami, Florida 33136, and the **Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204

The activation of leukocyte function-associated antigen-1 (LFA-1) plays a critical role in regulating immune responses. The metal ion-dependent adhesion site on the I-domain of LFA-1 αL subunit is the key recognition site for ligand binding. Upon activation, conformation changes in the I-domain can lead LFA-1 from the low affinity state to the high affinity (HA) state. Using the purified HA I-domain locked by disulfide bonds for immunization, we developed an mAb, 2E8, that specifically binds to cells expressing the HA LFA-1. The surface plasmon resonance analysis has shown that 2E8 only binds to the HA I-domain and that the dissociation constant (Kd) for HA I-domain is 197 nM. The binding of 2E8 to the HA I-domain is metal ion-dependent, and the affinity decreased as Mn2+ was replaced sequentially by Mg2+ and Ca2+. Surface plasmon resonance analysis demonstrates that 2E8 inhibits the interaction of HA I-domain and ICAM-1. Furthermore, we found that 2E8 can detect activated LFA-1 on both JY and Jurkat cells using flow cytometry and parallel plate adhesion assay. In addition, 2E8 inhibits JY cell adhesion to human umbilical vein endothelial cells and homotypic aggregation. 2E8 treatment reduces the proliferation of both human CD4+ and CD8+ T cells upon OKT3 stimulation without the impairment of their cytolytic function. Taken together, these data demonstrate that 2E8 is specific for the high affinity form of LFA-1 and that 2E8 inhibits LFA-1/ICAM-1 interactions. As a novel activation-specific monoclonal antibody, 2E8 is a potentially useful reagent for blocking high affinity LFA-1 and modulating T cell activation in research and therapeutics.

Leukocyte function-associated antigen-1 (LFA-1,αLβ2 integrin, CD11a/CD18) belongs to the β2 subclass of integrins and is important for leukocyte adherence and T cell activation (1, 2). The ligands for LFA-1 are intercellular adhesion molecule-1 (ICAM-1), ICAM-2, and ICAM-3, which are members of the Ig superfamily (1). Although LFA-1 is constitutively expressed on the surface of leukocytes in an inactive state, binding to its ligands requires cellular activation involving both affinity (conformational change within the molecule) and avidity (receptor clustering) enhancement (3–5). The regulation of LFA-1 activation plays a critical role during inflammatory and immune responses in mice and humans (6–9).

The αL subunit of LFA-1 has two prominent structural features, an inserted-domain (I-domain) of about 200 amino acid residues and three EF hand-like repeats containing putative divalent cation binding sites (1). The I-domain of the LFA-1 αL subunit is the ligand binding site and changes conformation upon activation (10). The changes in the I-domain from the low affinity state to the high affinity state lead to an increased affinity for ligand binding (11–15). The key recognition site for ligand binding is at the metal ion-dependent adhesion site (MIDAS) on the I-domain of the LFA-1 αL subunit (1, 2). Constitutively expressed on the surface of leukocytes in an inactive state, LFA-1 activation undergoes two distinct conformational changes that allow ligand binding: 1) a switchblade-like motion that exposes the I-domain, which increases its accessibility; 2) conformational changes in the I-domain that reorient the divalent cation within the MIDAS to be exposed and thus increase the affinity of LFA-1 to its ligand (10, 11). The conformational states of the I-domain can be classified as low affinity (LA) and high affinity (HA) when in the inactive and active state, respectively. The I-domain exists in open and closed conformations and a recently described intermediate affinity (IA) conformation, which differs in affinity for ligand (16). By introducing disulfide bonds into the I-domain, LFA-1 can be locked in either the open or the closed conformation, which represents the HA (K287C/K297C) or LA (K287C/K294C) state, respectively (13–15). We identified antibodies that are sensitive to the
affinity changes in the I-domain of mouse LFA-1 and showed that the activation-dependent epitopes were exposed upon mouse T cell activation (17). Taken together, these data demonstrated that the I-domain of LFA-1 changes to the high affinity state upon leukocyte activation.

The I-domain of LFA-1 has been a therapeutic target for regulating inflammatory responses (18–22). Efalizumab, an mAb blocking non-selectively the HA and LA LFA-1, has been approved for the treatment of psoriasis (21). However, the withdrawal of Efalizumab due to viral-induced progressive multifocal leukoencephalopathy indicates that the effectiveness of anti-LFA-1 therapy might be limited by the inability to target the activated form of LFA-1 (23, 24). With recent advances in understanding the structure and function of LFA-1 activation, developing second generation mAbs that selectively target the HA I-domain may prove clinically advantageous as a result of improved specificity and potency. Herein, we report the generation and characterization of an anti-human LFA-1 mAb 2E8.

2E8 binds to the HA I-domain in a metal ion-dependent manner and blocks the binding of HA I-domain to ICAM-1. In addition, the binding of 2E8 is sensitive to the activation and affinity up-regulation of LFA-1 on human cell lines. 2E8 has differential effects on human T cell proliferation and cytotoxicity.

EXPERIMENTAL PROCEDURES

LFA-1 I-domain Constructs—Human wild type (WT), locked HA (K287C/K297C), and IA (L161C/F299C) mutant I-domain constructs were kindly provided by Dr. Timothy Springer and expressed in supplemented M9 minimal media using Escherichia coli BL21 (DE3) cells (16). The recombinant proteins were subsequently refolded and purified as described (25). Proteins were concentrated using a C10 Centriprep (Millipore Corp.), and sample concentrations were determined by both BCA (Pierce Chemicals, Inc.) and A280 nm. Each LFA-1 I-domain was 15N-labeled for acquisition of 1H/15N heteronuclear single quantum coherence nuclear magnetic resonance spectra for quality assurance prior to surface plasmon resonance (SPR) analysis.

Production and Screening of 2E8—The mAb 2E8 was generated from a hybridoma fusion using draining lymph node lymphocytes from a BALB/c mouse immunized with purified human locked HA (K287C/K297C) mutant I-domain. The mAb 2E8 was then screened by flow cytometry analysis (FACS) for the specific ability to bind only to K562 cells expressing HA (K287C/K297C) LFA-1, but not LA (K287C/K294C) LFA-1 (14).

Binding Specificity of 2E8 Measured by SPR—2E8 was purified by protein A column, fractions were combined, and sample concentration was determined by A280 nm. The 2E8 mAb was coupled to a CM5 sensor chip by amine coupling using the manufacturer’s protocols (Biacore/GE Healthcare, Inc.). LFA-1 I-domains (WT, IA, and HA) at concentrations of 100, 200, 400, or 800 nM were subsequently injected over the chip at 10 μl/min with Running Buffer A (10 mM HEPES (pH 7.4), 150 mM NaCl, 2 mM MgSO4, 0.005% (v/v) Tween 20). The samples were run under different metal ions, replacing the MgSO4 with 2 mM CaSO4 or 2 mM MnSO4.

Inhibition of LFA-1 HA I-domain Binding to ICAM-1-Fc by 2E8—ICAM-1-Fc (R&D Systems) was coupled onto a CM5 sensor chip by amine coupling. LFA-1 HA I-domain at a concentration of 2 μM was injected over the chip at 10 μl/min with Running Buffer A. Titrations of 0.5, 1, 2, and 4 μM 2E8 mAb were incubated with LFA-1 HA simultaneously overnight and injected over the chip as stated previously.

Biacore Binding Analysis—All Biacore sensorgrams were analyzed from triplicate runs using a 1:1 Langmuir model by Scrubber (version 2.0; Center for Biomolecular Interaction Analysis, University of Utah). Binding studies were performed using SPR on a Biacore 2000 instrument as described (26).

Parallel Plate Flow Detachment Assay—The parallel plate flow detachment assay was modified from a previous procedure (27). For cell adhesion to mAb, 2E8 at 5 μg/ml was immobilized on 2E8 mAb for the High Affinity I-domain of Human LFA-1

![FIGURE 1. Binding of 2E8 to K562 cells expressing HA LFA-1. The binding of isotype control, 2E8, or MHM24 mAb to K562 cells expressing locked HA (K287C/K297C), LA (K287C/K294C), or WT LFA-1 was determined by flow cytometric analysis. The x axis depicts the relative fluorescence intensity of individual cells, and the y axis represents the cell count. The percentage of gated cells positive for each mAb was displayed in each histogram.](http://www.jbc.org/...
overnight at 4 °C to 24 × 50-mm plastic slides. The slides were then washed with PBS and blocked with 2% BSA before being assembled to a parallel plate flow chamber. For cell adhesion to human umbilical vein endothelial cells (HUVECs) (Lonza, Switzerland), slides were coated with HUVECs in culture media for 24 h. 4

medium at a final concentration of 0.5 × 10^7 cells/ml. Cells were treated with various reagents and then incubated in media at 37 °C in for 1 h. The scores were obtained based on the following criteria: 0 indicated that less than 10% of cells were aggregated; 1 indicated that less than 50% of cells were aggregated; 2 indicated that more than 50% of cells were aggregated; 3 indicated that nearly 100% of cells were in small, loose clusters; 4 indicated that nearly 100% of cells were in large clusters.

T Cell Proliferation Assay—Peripheral blood mononuclear cells (PBMCs) were obtained by sedimentation with Histopaque-1077 (Sigma-Aldrich) using blood from healthy volunteers. All cell preparations were >95% viable by trypan blue exclusion. For the T cell proliferation assay, PBMCs were stimulated with anti-CD3 mAb (OKT3) at 300 ng/ml for 5 days. For the CFSE experiments, PBMCs were washed and resuspended in PBS with 1 μM CFSE (Molecular Probes-Invitrogen). Cell division was monitored by using the FITC channel in a FACScanto II flow cytometer (BD Biosciences).

Cytotoxicity Assay—The effector cells were PBMCs generated and primed with OKT3 stimulation for 5 days in vitro. The cytotoxic specificity of human cytolytic T lymphocytes (CTLs) was determined using the flow cytometry-based CTL assay measuring the cleavage of caspase-3 in targets cells (28). The target cells were P815 labeled with a far red fluorescent marker dye, DDAO-SE (Invitrogen), and then incubated with CTLs at different effector:target (E:T) ratios for 3–4 h and fixed, permeabilized, and stained with a phycoerythrin-conjugated anti-cleaved caspase-3 rabbit mAb (BD Biosciences). The stained cells were analyzed using a FACScanto II flow cytometer.
RESULTS

mAb 2E8 Specifically Binds to the HA LFA-1—To generate mAb that targets the high affinity LFA-1, purified human HA (K287C/K297C) mutant I-domain was purified for the immunization. 350 hybridoma clones were screened by FACS using K562 cells expressing WT, HA, or LA LFA-1 (14). Only one clone, designated 2E8 with the subtype of IgG1, bound to K562 cells expressing locked HA LFA-1. As shown in Fig. 1, purified 2E8 bound to 97.7% of cells expressing HA LFA-1. There was minimal detectable binding of 2E8 to cells expressing LA (11.7%) and WT (18.3%) LFA-1. MHM24, an mAb for the I-domain of human LFA-1 and humanized for Efalizumab, was used as control (27). In contrast to 2E8, MHM24 bound equally well to cells expressing HA (98.7%), LA (97.8%), or WT (99.4%) LFA-1. Thus, mAb 2E8 specifically binds to the HA LFA-1.

The Binding of 2E8 for HA I-domain Is Metal Ion-dependent—To further determine the specificity for the I-domain, 2E8 was immobilized on a CM5 sensor chip. Various I-domains (WT, IA, and HA) at concentrations of 100 nM were subsequently injected over the chip. As shown in Fig. 2A of the SPR data, 2E8 only bound to the HA I-domain but not to the WT or IA I-domain. Because the IA I-domain is in the inactive state in the absence of ICAM-1 (16), 2E8 therefore specifically bound to the activated I-domain. We determined that the kinetics and the dissociation constant (KD) of 2E8 for HA I-domain is 197 nM (Table 1).

To examine whether the binding of 2E8 to I-domain is metal ion-dependent, HA I-domain was diluted to a constant concentration of 400 nM with different HBS divalent cation buffers (HBS-Mn²⁺/H11001, HBS-Mg²⁺/H11001, HBS-Ca²⁺/H11001, and HBS-EDTA). As shown in Fig. 2B, 2E8 bound to the HA I-domain in the presence of divalent cations. The affinity decreased as Mn²⁺/H11001 was replaced sequentially by Mg²⁺/H11001 and Ca²⁺/H11001, and the binding was abolished in the presence of EDTA. Thus, the binding of 2E8 to the HA I-domain is metal ion-dependent.

2E8 Inhibits the Binding of HA I-domain to ICAM-1—To determine whether 2E8 can inhibit the binding of LFA-1 I-domain...
main to its ligand ICAM-1, ICAM-1-Fc was coupled onto a CM5 sensor chip. HA I-domain at a concentration of 2 μM with the titrated 2E8 was injected over the chip simultaneously. As shown in Fig. 3, the SPR analysis showed an exponential decay of the binding response of the HA I-domain to ICAM-1-Fc as the 2E8 concentration increased. These data demonstrated that 2E8 inhibits the interaction of HA I-domain and ICAM-1.

2E8 Binds to Activated LFA-1 on Jurkat and JY Cells—Our data demonstrated that 2E8 specifically bound the locked HA mutant I-domains and blocked ICAM-1 interaction. We further investigated whether the similar binding specificity can be achieved for activated WT LFA-1 on human cell lines. As shown in Fig. 4A, the percentage of Jurkat cells binding to 2E8 was significantly increased when LFA-1 was activated in the presence of Mn2⁺ when compared with untreated control (70.6% versus 21.1%), whereas MHM24 binding remained unchanged. The same trend was observed for the mean fluorescence intensity of 2E8 binding cells (mean fluorescence intensity: 19 versus 8). Similar results were obtained from JY cells with increased 2E8 binding for cells activated by Mn2⁺ when compared with the untreated cells (Fig. 4B). Thus, 2E8 is an activation-sensitive mAb and recognizes Mn2⁺-activated LFA-1.

In addition, we examined whether LFA-1 can bind to 2E8 under shear force using parallel plate flow, which is a physiologic model for the study of cell rolling and adhesion mediated by integrins (29). JY cells were first injected into the flow chamber and allowed to adhere to slides coated with mAbs. As shown in Fig. 5A (top), when cells were treated with Mn2⁺, there was no increased adhesion to isotype control when compared with untreated sample (NT). In addition, JY cells persistently adhered to MHM24 up to 45 dynes/cm² in the absence and presence of Mn2⁺. Although the adhesion of JY cells to 2E8 was similar to BSA control in the untreated sample, adding Mn2⁺ increased the adhesion to 100% at low shear forces, and the adhesion slowly decreased to about 60% at 45 dynes/cm² (Fig. 5A, bottom). Similar results were observed using Jurkat cells (Fig. 5B). The data demonstrated that 2E8 binds to Mn2⁺-activated LFA-1 and that the binding is resistant to shear stress.

2E8 Inhibits the Adhesion and Homotypic Aggregation of JY Cells—We further examined the effect of 2E8 on LFA-1-mediated adhesion to HUVEC using a parallel plate flow assay. HUVECs were first plated on the slides and cultured in media overnight. Subsequently TNF-α (10 units/ml) was added in the fresh media to stimulate HUVECs for 24 h before placing the cells in the flow chamber. Activated JY cells were pretreated with mAb and then injected into the flow chamber and allowed to adhere to slides coated with HUVECs. As shown in Fig. 6A, MHM24 blocked about 80% of JY cell adhesion to HUVECs at low shear force of 15 dynes/cm² and achieved near 100% blockade at high shear force of 45 dynes/cm². Although 2E8 exhibited the ability to inhibit JY cell adhesion under various shear steady rate of detachment as the shear forces increase over time. A linear gradient of shear flow increasing from 0–51 dynes/cm² was perfused over the adhered cells, and the extent of adhesion was determined by the percentage of cells remaining at particular shear forces. The baseline of cell adhesion for each mAb was established with the untreated sample (NT), which showed a linear
2E8, mAb for the High Affinity I-domain of Human LFA-1

forces, there were about 20% of cells adhered to HUVECs at 45 dynes/cm². In addition, we examined the effect of 2E8 on cell homotypic aggregation. JY cells were pretreated with Mn²⁺ or phorbol 12-myristate 13-acetate in flat bottom 96-well plates in the presence of 2E8, MHM24, or isotype control. As shown in Fig. 6B, both 2E8 and MHM24 blocked the homotypic aggregation of JY cells, but 2E8 was less efficient when compared with MHM24 at equivalent concentrations. Thus, our data demonstrated that 2E8 can inhibit JY cell adhesion to HUVECs and homotypic aggregation.

2E8 Has Differential Effects on Human T Cell Proliferation and Cytotoxicity—LFA-1, as a costimulatory molecule, is important in regulating T cell activation and cytolytic function in the context of the immunological synapse (30, 31). We examined whether 2E8 treatment affects human T cell proliferation upon T cell receptor stimulation. First, we examined the effect of 2E8 at various concentrations on the proliferation of both CD4⁺ and CD8⁺ T cells using CFSE-labeled cells stimulated with OKT3. As shown in Fig. 7A, the inhibition of T cell proliferation by 2E8 is dose-dependent. With the increase of 2E8 concentration from 0.5 μg/ml to 5 μg/ml and 50 μg/ml, the frequency of dividing cells were decreased from 83% to 73 and 67% for CD4⁺ T cells and from 88% to 78 and 62% for CD8⁺ T cells, respectively. However, in the presence of 5 μg/ml MHM24 (shadow), the majority of T cells remained undivided (the first peak on the left). The cell division index was determined based on the proliferation kinetics and normalized to the isotype control (Fig. 7B). Although both 2E8 and MHM24 can decrease the division index about 20% in CD4⁺ T cells, the p value was not significant. For CD8⁺ T cells, 2E8 and MHM24 significantly reduced the division index to about 60 and 20% of the isotype control, respectively. Thus, 2E8 can inhibit the proliferation of human T cells upon T cell receptor stimulation but less efficiently than MHM24.

To determine whether 2E8 affects cytotoxicity, we assessed the cytolytic capacity of effector cells from PBMCs primed and expanded with OKT3. Using P815 cells as a target, we compared the specific lysis in the presence of 2E8 and MHM24 using cytotoxicity assay (28). As shown in Fig. 8A, the specific lysis of P815 by a representative human CTLs was measured in the presence of 2E8 (20 μg/ml), and the killing of target cells at various E:T ratios was not compromised. However, MHM24 at the concentration of 0.2 μg/ml was already effective in inhibiting the cytotoxicity, and we observed similar results using EL-4 as the target cells (data not shown). The inhibition of cytotoxicity (relative percentage of caspase-3 positive cells normalized to isotype control) by 2E8 and MHM24 at E:T ration of 20:1 was summarized in Fig. 8B, showing that 2E8 treatment did not affect the cytolytic function, whereas MHM24 significantly inhibited the specific lysis of target cells.

DISCUSSION

We report a novel mAb, 2E8, that specifically binds to the HA I-domain of LFA-1. In addition, 2E8 blocks the interaction of LFA-1 to its ligand ICAM-1. The binding of 2E8 is metal ion-dependent, and thus the binding site is likely associated with the MIDAS. Furthermore, 2E8 recognizes Mn²⁺-activated LFA-1 but not LFA-1 in the resting state on human cells. Therefore,
2E8 is an activation-sensitive mAb and demonstrates the appearance of activation-induced conformational changes in the I-domain. More importantly, we have shown here that 2E8 can inhibit human T cell proliferation without affecting their cytolytic function.

LFA-1 is an important molecule in the immune system, and its activation state influences the outcome of T cell activation (30, 31). There has been long standing interest in LFA-1 as a therapeutic target for regulating immunity. Efalizumab binds to LFA-1 with high affinity \((K_D: \text{2 nM}) \) for both active HA and inactive LA I-domain and sterically inhibits the binding of LFA-1 to ICAM-1 (32). Although Efalizumab showed promise in treating psoriasis patients, it was voluntarily removed from the market due to patients developing progressive multifocal leukoencephalopathy, possibly through completely down-regulating T cell function. Developing the second generation of antibodies, such as 2E8, that specifically target the HA LFA-1 I-domain as therapeutic inhibitors is the logical next step.

AL-57, an mAb against both the HA and the IA I-domain of LFA-1, was developed recently by phage display and recognizes the affinity-up-regulated I-domain in a ligand mimetic fashion (32, 33). The crystal structures (3HI5 and 3HI6) of the Fab fragment of AL-57 in complex with the locked IA I-domain demonstrates that AL-57 coordinates with the MIDAS in a similar geometry as ICAM-1 and that the binding site of AL-57 overlaps the ICAM-1 binding site on the I-domain (34). Additionally, a hydrophobic patch further stabilizes the AL-57/I-domain interface to outcompete ICAM-1 for the MIDAS site (32, 34).

Similar to ICAM-1, the binding of 2E8 to the I-domain requires the presence of a divalent cation and thus is metal ion-dependent (32). This indicates that the 2E8/I-domain binding possibly acts in a typical ligand/integrin MIDAS interaction, which requires an acidic

![Figure 7](http://www.jbc.org/)

FIGURE 7. Effect of 2E8 and MHM24 on human T cell proliferation. PBMCs labeled with CFSE were stimulated by OKT3 (300 ng/ml) for 5 days in the presence of various concentrations of 2E8 (solid line: 0.5, 5, or 50 \(\mu \)g/ml) or MHM24 (shadow: 5 \(\mu \)g/ml). A, T cell proliferation was assessed by CFSE dye dilution following sequential gating on lymphocytes (by scatter) and CD4 \(^+\) or CD8 \(^+\) T cells. Each histogram plot represents the cell division overlay in the presence of different concentrations of 2E8 (solid line) and 5 \(\mu \)g/ml MHM24 (shadow). The percentage of dividing cells in the presence of various concentration of 2E8 was shown on the histogram. Representative sample data of three independent experiments were presented. B, the relative division index of CD4 \(^+\) and CD8 \(^+\) T cells in the presence of 2E8 and MHM24. The proliferation kinetics were analyzed by FlowJo, and cell proliferation models were generated based on the CFSE histogram data. The cell division index was calculated by FlowJo based on the proliferation kinetics. Data shown here are representative of three independent experiments from three different samples. Results were mean and S.D. of three independent samples. The asterisk represents data with \(p \) value less than 0.05 in the Student’s t test.
2E8, mAb for the High Affinity I-domain of Human LFA-1

has been used in the clinic to target the I-domain of LFA-1 in inflammatory responses (18–22). It binds to both the low and the high affinity form of I-domain (23, 24). We found that 2E8 can block both human primary CD4+ and human primary CD8+ T cell proliferation, albeit less efficiently than MHM24. Interestingly, the cytolytic activity of human T cells remains intact in the presence of 2E8, which is in contrast to MHM24, which can significantly inhibit specific lysis of target cells. The data suggest that there might be differential requirement of LFA-1 activation in T cell proliferation and cytolytic function, which remains to be investigated and understood in the future.

In summary, we developed and characterized 2E8 that specifically binds to the MIDAS site of the high affinity I-domain of LFA-1. Our study improves the understanding of the structure and function aspects of LFA-1 biology. Furthermore, 2E8 is a potentially novel reagent for blocking high affinity LFA-1 and modulating T cell activation.

Acknowledgments—We thank Dr. Timothy Springer for providing reagents. The animal experiments were approved by the Institutional Animal Care and Use Committee at University of Texas M.D. Anderson Cancer Center.

REFERENCES

1. Springer, T. A. (1994) Cell. 76, 301–314
2. Dustin, M. L. (2003) Annu. N.Y. Acad. Sci. 987, 51–59
3. Carman, C. V., and Springer, T. A. (2003) Curr. Opin. Cell Biol. 15, 547–556
4. Hogg, N., Smith, A., McDowall, A., Giles, K., Stanley, P., Laschinger, M., and Henderson, R. (2004) Immunol. Lett. 92, 51–54
5. Hynes, R. O. (2003) Science. 300, 755–756
6. Schmits, R., Küng, T. M., Baker, D. M., Shumaker, G., Simard, J. L., Duncan, G., Wakeham, A., Shahinian, A., van der Heiden, A., Bachmann, M. F., Ohashi, P. S., Mak, T. W., and Hickstein, D. D. (1996) J. Exp. Med. 183, 1415–1426
7. Berlin-Rufenach, C., Otto, F., Mathies, M., Westermann, J., Owen, M. J., Hamann, A., and Hogg, N. (1999) J. Exp. Med. 189, 1467–1478
8. Blazar, B. R., Taylor, P. A., Panoskaltsis-Mortari, A., Gray, G. S., and Vallera, D. A. (1995) Blood 85, 2607–2618
9. Lebwohl, M., Tyring, S. K., Hamilton, T. K., Toth, D., Glazer, S., Tawfik, N. H., Walicke, P., Dummer, W., Wang, X., Garovoy, M. R., and Pariser, D. (2003) N. Engl. J. Med. 349, 2004–2013
10. Shimaoka, M., Takagi, J., and Springer, T. A. (2002) Annu. Rev. Biophys. Biomol. Struct. 31, 485–516
11. Legge, G. B., Morris, G. M., Sanner, M. F., Takada, Y., Olson, A. J., and Grynspan, F. (2002) Proteins. 48, 151–160
12. Luo, B. H., Carman, C. V., and Springer, T. A. (2007) Annu. Rev. Immunol. 25, 619–647
13. Lu, C., Shimaoka, M., Zhang, Q., Takagi, J., and Springer, T. A. (2001) Proc. Natl. Acad. Sci. U.S.A. 98, 2393–2398
14. Shimaoka, M., Lu, C., Palframan, R. T., von Andrian, U. H., McCormack, A., Takagi, J., and Springer, T. A. (2001) Proc. Natl. Acad. Sci. U.S.A. 98, 6009–6014
15. Ma, Q., Shimaoka, M., Lu, C., Jing, H., Carman, C. V., and Springer, T. A. (2002) J. Biol. Chem. 277, 10638–10641
16. Shimaoka, M., Xiao, T., Liu, J. H., Yang, Y., Dong, Y., Jun, C. D., McCormack, A., Zhang, R., Joachimiak, A., Takagi, J., Wang, J. H., and Springer, T. A. (2003) Cell. 112, 99–111
17. Wang, Y., Li, D., Nurieva, R., Yang, J., Sen, M., Carreno, R., Lu, S., McIntyre, B. W., Mollrem, J. L., Legge, G. B., and Ma, Q. (2009) J. Biol. Chem. 284, 12645–12653
18. Nicolls, M. R., and Gill, R. G. (2006) Am. J. Transplant. 6, 27–36
19. Scheinfield, N. (2006) Expert. Opin. Drug. Saf. 5, 197–209
20. Matthews, J. B., Ramos, E., and Bluestone, J. A. (2003) Am. J. Transplant. 3, 794–803
21. Gordon, K. B., Papp, K. A., Hamilton, T. K., Walicke, P. A., Dummer, W., Li, N., Bresnahan, B. W., Menter, A., and Efalizumab Study Group (2003) JAMA 290, 3073–3080
22. Giblin, P. A., and Lemieux, R. M. (2006) Curr. Pharm. Des. 12, 2771–2795
23. Pugashetti, R., and Koo, J. (2009) J. Dermatolog. Treat. 20, 132–136
24. Major, E. O. (2010) Annu. Rev. Med. 61, 35–47
25. Legge, G. B., Kriwacki, R. W., Chung, J., Hommel, U., Ramage, P., Case, D. A., Dyson, H. J., and Wright, P. E. (2000) J. Mol. Biol. 295, 1251–1264
26. Carreno, R., Li, D., Sen, M., Nira, I., Yamakawa, T., Ma, Q., and Legge, G. B. (2008) J. Biol. Chem. 283, 10642–10648
27. Hildreth, J. E., Gotch, F. M., Hildreth, P. D., and McMichael, A. J. (1983) Eur. J. Immunol. 13, 202–208
28. He, L., Hakimi, J., Salha, D., Miron, I., Dunn, P., and Radvanyi, L. (2005) J. Immunol. Methods. 304, 43–59
29. Mitchell, I. S., Brown, W. S., Woodside, D. G., Vanderslice, P., and McIntyre, B. W. (2009) Immunol. Cell Biol. 87, 324–336
30. Huppa, J. B., and Davis, M. M. (2003) Nat. Rev. Immunol. 3, 973–983
31. Dustin, M. L. (2007) Curr. Opin. Cell Biol. 19, 529–533
32. Shimaoka, M., Kim, M., Cohen, E. H., Yang, W., Astrof, N., Peer, D., Salas, A., Ferrand, A., and Springer, T. A. (2006) Proc. Natl. Acad. Sci. U.S.A. 103, 13991–13996
33. Huang, L., Shimaoka, M., Rondon, I. J., Roy, I., Chang, Q., Po, M., Dransfield, D. T., Ladner, R. C., Edge, A. S., Salas, A., Wood, C. R., Springer, T. A., and Cohen, E. H. (2006) J. Leukoc. Biol. 80, 905–914
34. Zhang, H., Liu, J. H., Yang, W., Springer, T., Shimaoka, M., and Wang, J. H. (2009) Proc. Natl. Acad. Sci. U.S.A. 106, 18345–18350
35. Song, G., Yang, Y., Liu, J. H., Casasnovas, J. M., Shimaoka, M., Springer, T. A., and Wang, J. H. (2005) Proc. Natl. Acad. Sci. U.S.A. 102, 3366–3371
2E8 Binds to the High Affinity I-domain in a Metal Ion-dependent Manner: A SECOND GENERATION MONOClonAL ANTIBODY SELECTIVELY TARGETING ACTIVATED LFA-1

Roberto Carreño, Wells S. Brown, Dan Li, Jessica A. Hernandez, Yang Wang, Tae Kon Kim, John W. Craft, Jr, Krishna V. Komanduri, Laszlo G. Radvanyi, Patrick Hwu, Jeffrey J. Molldrem, Glen B. Legge, Bradley W. McIntyre and Qing Ma

J. Biol. Chem. 2010, 285:32860-32868. doi: 10.1074/jbc.M110.111591 originally published online August 19, 2010

Access the most updated version of this article at doi: 10.1074/jbc.M110.111591

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 35 references, 12 of which can be accessed free at http://www.jbc.org/content/285/43/32860.full.html#ref-list-1