Endophytic Fungi from *Oryza sativa* L.: Isolation, Characterization, and Production of GA\(_3\) in Submerged Fermentation

Anchal Tripathy\(^1\) and Chandi C. Rath\(^2\)*

\(^1\)Department of Botany, College of Basic Science and Humanities, Odisha University of Agriculture and Technology (OUAT), Bhubaneswar, India
\(^2\)Department of Life Sciences, Rama Devi Women’s University, Vidyavihar, Bhubaneswar, India

*Corresponding author

A B S T R A C T

In the present investigation, an attempt was made to isolate endophytic fungi from rice plant (*Oryza sativa* L.). A total of 48 fungi were isolated from 288 segments, from 4 varieties (Gitanjali, Hiranyamayee, Khandagiri and Lalat) of rice plant (*Oryza sativa* L). The colonization frequency of the endophytic fungi were observed to be 16.87% and 16.40% in leaf and stem respectively. All the isolates were screened for GA\(_3\) production both qualitatively and quantitatively under submerged fermentation condition. Two isolates OSLST-4 and OSSLL-4 exhibited maximum GA\(_3\) yield were preferred to study the effect of various physical (pH, temperature, incubation period) and nutritional (Different media, salts, carbon sources, nitrogen sources) parameters on GA\(_3\) production. It was observed that isolate OSLST-4 produced maximum amount of GA\(_3\) (96.821µg/ml) at pH-8, temperature-30°C on 192hrs (8 days) of incubation under submerged fermentation in a medium containing (5%) of NaCl, (0.5%) of sucrose and (0.5%) of sodium nitrate. Whereas, the isolate OSSLL-04 produced maximum amount of GA\(_3\) (78.656µg/ml) under submerged fermentation in a medium containing (3%) of NaCl, (1%) of starch and (0.3%) of ammonium chloride at pH-6, on 240 hrs (10\(^{th}\) days) of incubation period at 25°C. Extracellular production of GA\(_3\) into the medium by the isolates was confirmed by TLC & FTIR analysis. Efforts are on, in our laboratory for further characterization of the isolates to exploit their potential for PGP activities for sustainable agriculture.

Keywords

Oryza sativa, Endophytic fungi, Submerged fermentation, GA3, Condition Optimization, TLC, FTIR

Article Info

Accepted: 10 October 2020
Available Online: 10 November 2020

Introduction

In recent times it has been proclaimed that endophytic fungi can produce phytohormones chiefly gibberellic acids (GAs) that enhance crop growth and mitigate the pernicious effect of abiotic stress (Khan *et al.*, 2011). Gibberellins are tetracyclic diterpenoid acids that regulate various plant developmental and physiological processes including seed germination, seedling development stem and leaf growth, floral initiation and flower and fruit setting (Crozier, 2000; Davies, 2010). Gibberellins also enhance other physiological
process in plants such as root growth and root hair development and inhibit floral bud differentiation in woody angiosperms. Though, 136 known gibberellins are reported from bacteria, plant and even by fungi, GA_1, GA_3, GA_4 and GA_7 are prominently bioactive. Rice is considered as a cardinal food crop universally, as rice offers food to almost half of the world’s population and its consumption has been gaining importance with an escalation in the world’s population (Lee et al., 2001; Gyaneswar et al., 2001). Employment of plant micro-biota has aptitudes to produce phyto-hormone like constituents could be a substitute to not only upsurges crop production but also to lessen the plant disease phenomenon, diminish chemical inputs and decrease emissions of greenhouse gasses, for sustainable agricultural practices. Several reports in literature stresses colonization and isolation of endophytic fungi from different parts of rice plant. Endophytic fungi have mostly been reported for their behaviour to enhance plant growth as it plays pivotal role in plant physiology and host’s protection against biotic and abiotic stresses by producing various kinds of secondary metabolites similar to phytohormones. Phytohormone production by microbes totally rely upon the processed parameters like pH, temperature, incubation period, growth potential and various nutritional conditions (Khan et al., 2012; Wei et al., 2013). Selection of optimal growth condition is necessary to outline the strategies for industrial production of gibberellic acids (GAs).

Computation of such potential would satisfy dual benefits in the enhancement of crop growth and sustainable agricultural yield. The current study was therefore, carried out to evaluate the potency of a novel GA_3 producing endophytic fungi isolated from four varieties of *Oryza sativa* L. (Family-Gramineae or Poaceae, Asian rice), and optimize the effect of various physico-chemical parameters on the maximum gibberellic acid production under submerged fermentation.

Materials and Methods

Sample collection

Healthy (showing no visual symptoms) & matured seedlings of four varieties (Khandagiri, Lalat, Gitanjali & Hiranyamayee) of rice plants (*Oryza sativa* L.) were collected from OUAT (Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India) field (Lat 20˚16'N, Long 85˚47'E). Seedlings were transported to the laboratory aseptically in sterile polythene bags and processed within 24 hours of collection.

Isolation of indigenous endophytic fungi

The four variability of rice seedlings were rinsed gently under running tap water for five minutes for removing dust and debris and were then allowed to air dry. Before surface sterilization the cleaned stems and leaves were cut into 0.5×0.5 cm² size. Isolation and surface sterilization of endophytic fungi were carried out according to the modified immersion procedure described by (Bills and Polishook, 1993; Strobel, 2002). Every set of plant material was immersed consecutively in 70% ethanol for two minutes, followed by immersion in 4% sodium hypochlorite for four minutes and in 70% ethanol for 45 seconds, then dipping systematically thrice with sterile distilled water. The surface sterilized stems and leaves were then air dried under laminar air flow chamber. The surface sterilized stems and leaves were then air dried under laminar air flow chamber. The surface sterilized stems and leaves were then air dried under laminar air flow chamber. The sterilized plant segments were applied over the surface of PDA (Potato dextrose Agar), WA (water agar), RBA (Rose Bengal agar), SDA (Sabourd’s Dextrose Agar), CDA (Czapeck’s dox agar) and MEA (Malt extract agar) plates supplemented with streptomycin.
(100mg/L) to prevent the growth of bacteria. The petridishes were incubated at 28 ± 2°C in BOD incubator. Plates were supervised repeatedly to check the growth of endophytic fungi. Hyphal tips growing out from the edge of the inoculated fragments were instantly transferred into PDA slants, purified, and preserved at 4°C. Non-appearance of any microbial growth form on the media plates drenched with 60µl aliquots of final wash of water displayed the effectiveness of surface disinfection method (Schulz et al., 1993).

Identification of endophytic Fungi

The fungal isolates were identified based on their morphological and reproductive characters using the standard identification manuals (Gillman, 1971; and Barnett & Hunter 1998) by LCB (Lacto Phenol Cotton Blue) staining technique of sticky tape method.

Calculation of colonizing frequency

The colonization frequency of endophytic fungi was calculated by using the formula given by Fisher and Petrini (1987) as follows.

Colonization frequency was expressed as

\[
(CF\%) = \frac{N_{C}}{N_{T}} \times 100
\]

(Where \(N_{C}\) - Total number of plated segments colonized by endophytic fungi, \(N_{T}\) - Total number of segments plated)

Preliminary & Secondary screening of fungal isolates for gibberellic acid production beneath submerged fermentation

All the endophytic fungal isolates were screened for the production of gibberellic acid by plate assay as well as spectrophotometric method by using Follin-wu method (Graham and Henderson, 1961, Patil and Patil, 2014). All the isolates were aseptically inoculated on Czapek’dox modified agar plate and were allowed to incubate for proper growth. After 4-5 days of incubation the preliminary screening of isolates for gibberellic acid were done by spraying the phosphomolybdic reagent using the method of Graham and Henderson (1961).

Endophytic fungi that unveiled gibberellic acid production activity in the preliminary screening were subjected to spectrophotometric quantification following the above said methodology using Czapek’dox media (CD Broth). After ten days of incubation the concentration of gibberellic acid in the culture broth was determined spectrophotometrically using phosphor-molybdic acid reagent. Briefly, 1 ml of culture supernatant was taken in a volumetric flask of 25 ml, mixed with 15 ml of phospho molybdic acid reagent and kept in a boiling water bath for one hr.

After one hr, the temperature of the flasks was reduced to room temperature and then the final volume was made up to 25ml with distilled water. The absorbance was measured at 780 nm using UV-Visible spectrophotometer (Systornics, 118). The two isolates OSLST-4 and OSLL-4 that showed maximum amount of \(GA_3\) production were characterized further.

Condition optimization for maximum production of \(GA_3\) by the isolates

Different physical and chemical parameters were optimized for maximum production of \(GA_3\) by the isolates (OSLST-4 & OSLL-4).

Optimization of physical parameters

Effect of incubation period on \(GA_3\) production

To determine the optimal incubation period for \(GA_3\) synthesis, the two fungal isolates
(OSLST-4 & OSLL-4) were inoculated into culture flasks (250ml) containing 100ml Czapeck’dox broth (CDB) medium incubated for 96hrs, 120hrs, 144hrs, 168hrs, 192hrs, 216hrs, 240hrs, 264hrs, 288hrs at 28 ± 1°C.

After 4th day of incubation, GA3 amount was estimated up to 12th day at 24hrs increment using spectrophotometrical method as described earlier.

Effect of temperature on GA3 production

Culture flasks containing 100 ml of CDB inoculated with the isolates separately were incubated at different temperatures (25, 30, 35, 40 and 45°C) upto 8th day and 10th day. GA3 production was measured spectrophotometrically as described previously.

Effect of pH on GA3 production

For pH optimization, both the isolates OSLST-4 & OSLL-4 were cultured separately in 100ml of CDB at different pH (pH 4-12) and the flasks were incubated at 30°C and 25°C and for 8th (192hrs) & 10th (240hrs) day respectively. Production of GA3 by the isolates were quantified spectrophotometrically as described above.

Optimization of chemical parameters

Effect of media on GA3 production

To determine the suitable media for GA3 synthesis, the two fungal isolates OSLST-4 & OSLL-4 were inoculated into culture flasks (250ml) containing 100ml of different media viz. Potato dextrose broth (PDB), Czapeck’dox broth (CDB), Sabouraud’s dextrose broth (SDB), Malt extract broth (MEB), incubated at 30°C and 25°C for 8th (192hrs) & 10th (240hrs) days respectively. GA3 was estimated using the method of (Patil and Patil, 2014) as described earlier.

Effect of carbon sources on GA3 production

Both the isolates were grown separately in 250ml conical flasks containing 100 ml of CDB supplemented with different carbon sources (sucrose, fructose, maltose, lactose, and soluble starch) at varied concentrations (0.5%, 1%, 1.5%, 2%, 2.5%), and incubated at 30°C and 25°C for 8th (192hrs) & 10th (240 hrs) days respectively. GA3 was estimated as described previously (Patil and Patil, 2014).

Effect of different nitrogen sources on GA3 production

This experiment was designed to study the effect of different nitrogen sources on GA3 production by the isolates. Both the isolates were grown separately in 100ml CDB supplemented with different nitrogen sources (sodium nitrate, potassium nitrate, ammonium chloride, calcium nitrate, and urea) at different concentrations (0.1%, 0.3%, 0.5%, 1%) at 30°C and 25°C for 8th (192 hrs) and 10th (240hrs) days respectively maintaining other parameters (physical and nutritional) optimal. GA3 in the culture filtrate was estimated as described previously.

Effect of NaCl on GA3 production

To determine the effect of NaCl on GA3 synthesis, the two fungal isolates OSLST-4 and OSLL-4 were inoculated into culture flasks (250ml) containing 100ml Czapeck’dox broth (CDB) medium supplemented with various NaCl concentrations (1%, 3%, 5%, 7%, 10%) at 30°C and 25°C for 8th (192hrs) and 10th (240hrs) day respectively keeping other parameters constant. GA3 amount was estimated following the method of (Patil and Patil, 2014) as described earlier.
Gibberellic acid extraction and separation

Eight days old fermented broth (200 ml) was taken filtered in Whatman filter paper (no.1) and then centrifuged at 10000 rpm for 10 min., and the supernatant was collected, acidified to pH 2-2.5 using 1N HCl. Equal volume of ethyl acetate was added and shaken vigorously for 10 minutes. The ethyl acetate fraction was separated and re-extracted the aqueous layer with 200 ml of ethyl acetate. The ethyl acetate fractions collected and was evaporated by a rotary evaporator (Heidolf, USA) at 40°C. Residues dissolved in 2ml of methanol for analytical purposes (TLC and FTIR), was stored at 4°C.

TLC analysis

The slurry of silica gel was poured on a TLC plate, air dried, and the matrix was activated by keeping the plates on hot air oven at 80°C for 1 hr. Plates were run using mobile phase containing solvent isopropanol: ammonia: water (10:1:1v/v/v). The organic extract (30µl) was injected into the TLC plate and the standard GA₃ [(10mg/100ml (Himedia, Pvt, Ltd)] dissolved in methanol was used as reference by using the capillary tube and run for two hour. The plates were removed, sprayed with 3% sulphuric acid containing 50mg FeCl₃ and heated in oven at 80°C for ten minutes. Plates were observed under UV to detect the presence of greenish fluorescence spots, confirming the presence of GA₃ in the extract (Cavel et al., 2016).

FTIR analysis

Further, the extracted GA₃ was subjected to FTIR analysis following the method of Silverstein et al., (2014). The organic extract of both the isolates were completely dried and loaded to FTIR (Thermo nicolet-6700 FTIR unit) at the transmission mode from 400-4000 cm⁻¹. Commercial GA₃ obtained from Himedia, Pvt, Ltd. Mumbai, India was used as standard.

Statistical procedure for data analysis

One way (ANOVA) with Tukey’s multiple comparisons test for preliminary qualitative analysis of fungal isolates, two way ANOVA with Bonferroni multiple comparison spost test for optimization of incubation days, pH, temperature, carbon sources, nitrogen sources, media, and salt stress for two isolates (OSLST-4 and OSLL-4) on GA₃ production were carried out using Graph Pad Prism software (version 5.0, San Diego, California USA). All data are expressed as means of triplicates (Mean ± SE) and values of P≤0.05 were considered as significant.

Results and Discussion

During the study, total 48 fungal strains were isolated from 288 fragments (leaves and stems) on six different media (MEA, SDA, WA, PDA, RBA, CDA) of the four varieties of Oryza sativa L. (Gitanjali, Hiranyamayee, Khandagiri and Lalat) and were used to examine their efficacy to yield gibberellic acid in in-vitro condition. The colonization frequency was highest in leaves (16.87%) followed by stem (16.40%) presented in Table 1.

The present study results are in agreement with the results of (Bhattarani et al., 2014 and Radu et al., 2002) who have stated that colonization frequency is observed higher in leaves than in stem. The isolated strains were distinguished primarily on the basis of morphological characters. In the present exploration, most fungal genera were tentatively identified belonged to the class of ascomycetes (Penicillium, Aspergillus, Colletotrichum and Fusarium spp.). All the endophytic fungal isolates were pure cultured on PDA slants and were maintained at 4°C for future use.
Screening of GA$_3$ production through qualitative and quantitative method

Primarily, all the isolates were screened for GA$_3$ production by plate assay method, (Fig. 1) of which, 15 were positive and screened for GA$_3$ production quantitatively (Fig. 2). Two isolates OSLST-4 and OSLL-4 that showed better activities through this method were characterized further.

Optimization of culture conditions of optimum GA$_3$ Production in submerged fermentation

Optimization of physical parameters

Effect of incubation period

It was observed that the isolates OSLST-4 and OSLL-4 produced maximum amount of GA$_3$ on 8th and 10th days of incubation in CDB medium under submerged fermentation condition (Fig. 3). In corroboration Rangaswamy (2012) reported GA$_3$ production on 8th day by *Fusarium moniliforme* as observed in this study. In contrast, Kahlon *et al.*, (1986) observed 12 days as optimal incubation period for production of GA$_3$ by the same species. However, Shukla *et al.*, (2005) and Escamilla *et al.*, (2000) reported optimal production of GA$_3$ by microorganism varies from 10-18 days. Maximum production of GA$_3$ with 8-10 days by our isolates is suggestive of that these isolates could be an alternative for GA$_3$ production industrially. Optimization of other parameters were studied by incubating at 8th and 10th days respectively specific to the isolates.

Effect of temperature

Temperature plays an important role in production of secondary metabolites by microorganisms including growth hormones. Hence, an experiment was designed to optimize the temperature condition for maximum production of GA$_3$ by the isolates, keeping other parameters constant. It was reported that isolate OSLST-4 and OSLL-4 produced maximum amount of GA$_3$ 84.377µg/ml and 61.207µg/ml respectively, in the growth medium at 30°C and 25°C respectively (Fig. 4). Our above findings in this investigation substantiate with the result of several workers (Kumar and Lonsane, 1990; Pastrana *et al.*, 1995; Cihangir and Aksiiza, 1997; Tomasini *et al.*, 1997; Escamilla *et al.*, 2000; Machado *et al.*, 2002; Corona *et al.*, 2005) who observed maximum production of GA$_3$ between 25°C-34°C by microorganisms in different media. Observance of decline in GA$_3$ production at high temperatures could be due to alteration and denaturation of enzyme action at high temperature. Production of GA$_3$ at different temperatures by our isolates could find their possibility to be used as PGP candidates under diverse temperature in nature.

Effect of pH

Similarly, the effect of different pH on GA$_3$ production by the two isolates were studied by culturing the isolates at different pH in CDB. The isolate OSLST-4 produced maximum amount of GA$_3$ (88.945 µg/ml) on 8th day of incubation at 30°C, at pH 8, whereas, the isolate OSLL-4 produced maximum amount of GA$_3$ (66.642µg/ml) on the 10th day of incubation at 25°C, at pH 6 (Fig. 5). In agreement to our observations (Patil and Patil, 2014), and (Sagar and Desai, 2017) reported maximum GA$_3$ production by fungi at pH 8.0. In addition, Pandya and Desai (2013) also reported maximum GA$_3$ production by the isolate *Bacillus cerus* at pH 6. In contrast to our observations Bilkay *et al.*, (2017) observed highest GA$_3$ production by *A.niger* and *F.moniliforme* at pH 5.0 and 7.0 respectively. Further characterization of other parameters
was carried out a specific pH for the respective isolates.

Optimization of chemical parameters

Media optimization

Production of GA\(_3\) by the two isolates was studied under submerged condition using (CDB, PDB, SDB, MEB) and culturing under optimal physical conditions. It was observed that both the isolates produced highest amount of GA\(_3\) in CDB(Fig. 6) which could be attributable to the low amount of glucose in the above medium (Barborakova et al., 2012). In agreement to our observations Rangaswamy (2012) also reported maximum production of GA\(_3\) in CDB medium.

Effect of different carbon sources

While CDB was supplemented with different carbon sources at varied concentrations and used to study the GA\(_3\) production by the isolates under fermentation (optimized condition) it was observed that OSLST-4 produced maximum amount of GA\(_3\) (96.821µg/ml) at 0.5% of sucrose and OSLL-4 (77.512µg/ml), at1% soluble starch in the medium (Fig. 7). Soluble starch being poly saccharide demonstrated to be very appropriate for Gibberellic acid production, as this result harmony with the result reported by Kumar (1987). In case of the first OSLST-4 our result reinforced with the result obtained by Rangaswamy et al., (2012) i.e. sucrose was the best carbon source at a final concentration of 15g/l under optimized condition, in contrary with the result reported by Lale and Gadre (2010) i.e. glucose was the supplementary carbon source for the optimum production of Gibberellic acid by microbes. In this case we established that by breaking down of sucrose and soluble starch by the isolates quickly swapped to stationary phase and Gibberellic production was observed.

Table.1 Colonization frequency of the isolates

Characters	Plant part inoculated vs endophytic fungi occurrence			
Plant variety	Gitanjali	Hiranyamayee	Khandagiri	Lalat
Stem	32/9	32/5	32/3	32/4
Leaf	40/7	40/7	40/6	40/7
CF% of stem	28.1%	15.6%	9.3%	12.5%
CF% of leaf	17.5%	17.5%	15%	17.5%

Table.2 Condition optimization for maximum synthesis of GA\(_3\) by the isolates

Condition	OSLST-4 (Aspergillus sp.)	OSLL-4 (Colletotrichum sp.)
Media	Czapeck’s dox broth medium	Czapeck’s dox broth medium
Incubation period	192hrs(08\(^{th}\) Day)	240hrs (10\(^{th}\) Day)
Temperature	30\(^{\circ}\)C	25\(^{\circ}\)C
pH	8	6
Carbon source	Sucrose (0.5%)	Starch (1%)
Nitrogen source	Sodium Nitrate (0.5%)	Ammonium chloride (0.3%)
NaCl (%)	5	3
Fig.1 Screening of the isolates for GA₃ production by plate assay method. A: OSLST-4 (Aspergillus sp.) B: OSLL-4 (Colletotrichum sp.)

![Screening of the isolates](image)

Fig.2 Quantitative Screening for Gibberellic Acid activity by the isolates

![Quantitative Screening](image)

Fig.3 Effect of incubation period on GA₃ production of the isolates [OSLST-4 (Aspergillus sp.) and OSLL-4 (Colletotrichum sp.)]

![Effect of incubation period](image)

Fig.4 Effect of temperature on GA₃ production by the isolates [OSLST-4 (Aspergillus sp.) and OSLL-4 (Colletotrichum sp.)]

![Effect of temperature](image)
Fig. 5 Effect of pH on GA₃ production by the isolates [OSLST-4 (*Aspergillus* sp.) and OSLL-4 (*Colletotrichum* sp.)]

![Graph showing the effect of pH on GA₃ production](image)

Fig. 6 Effect of different media on GA₃ yield by the isolates [OSLST-4 (*Aspergillus* sp.) and OSLL-4 (*Colletotrichum* sp.)]

![Graph showing the effect of different media on GA₃ yield](image)

Fig. 7 Effect of different carbon sources on GA₃ production by the isolates. A: OSLST-4 (*Aspergillus* sp.) B: OSLL-4 (*Colletotrichum* sp.). Each value is the mean of three replicates (n=3). Error bars showing the ±SE

![Graph showing the effect of different carbon sources on GA₃ production](image)
Fig. 8 Effect of different nitrogen sources on GA$_3$ production by the isolates. A: OSLST-4 (*Aspergillus sp.*) B: OSLL-4 (*Colletotrichum sp.*). Each value is the mean of three replicates (n=3). Error bars showing the ±SE.

Fig. 9 Effect of NaCl on GA$_3$ production by the isolates [OSLST-4 (*Aspergillus sp.*) and OSLL-4 (*Colletotrichum sp.*)]

Fig. 10 Characterization of GA$_3$ by TLC. Both standard and extract showed similar RF value. A: OSLST-4 (*Aspergillus sp.*) B: OSLL-4 (*Colletotrichum sp.*)
Fig.11 FTIR spectra of GA₃ produced by the isolates. A: OSL-4 (Aspergillus sp.); B: OSLL-4 (Colletotrichum sp.); C: Standard GA₃

Effect of different nitrogen sources

Effect of additional nitrogen supplementation on gibberellic acid production was premeditated. The maximum gibberellic acid production of 95.390µg/ml was witnessed, while the CDB medium was supplemented with 0.5% sodium nitrate inoculated with the isolate OSLST-4 whereas, the maximum gibberellic acid production of 78.656µg/ml with 0.3% ammonium chloride inoculated with the isolate OSLL-4 (Fig. 8). Our results corroborated with the outcome of Sagar and Desai et al., (2017) i.e who reported NH₄Cl (0.5%) as the outstanding nitrogen source for GA₃ production for the isolate K-37 in contrast to the report also spotted by the same author i.e. 0.5% urea was also good for another isolate K-8. The results suggested that with magnification in carbon and nitrogen sources concentration the production of GA₃ diminished significantly. This might be endorsed to the fact that the low concentration of carbon and nitrogen source in the medium terminates exponential growth of microorganism but elicits secondary metabolism (Escmilla et al., 2000).
Effect of NaCl

The isolates OSLST-4 and OSLL-4 produced maximum amount of GA$_3$ under optimized fermentation condition at 5% and 3% of NaCl supplemented to CDB medium (Fig. 9) with optimal C and N and physical parameters. In agreement to our observations Rasulov et al., (2010) cited that salinity not only affects the growth and development of microorganisms but also regulates the secondary metabolite production in the medium.

The maximum production of GA$_3$ by the two fungal isolates OSLST-4 and OSLL-4 were observed in the Czepeak’s dox medium on 8th day (192hrs) and 10th day (240hrs), at 300C and 250C in pH 8 and 6, by using carbon (sucrose 0.5% and starch 1%) and nitrogen (sodium nitrate 0.5% and ammonium chloride 0.3%) sources, with NaCl concentration (5% and 3%) respectively (Table 2).

Characterization of GA$_3$ production by the Isolates

TLC Analysis

The crude extracts of the isolates were subjected to preparatory TLC. Standard GA$_3$ procured from (Himedia, pvt. ltd, Mumbai, India) was served as control. Both the extracts and standard GA$_3$ showed similar RF value of 0.7 confirming the presence of GA$_3$ in the extract (Fig. 10).

FTIR analysis

FTIR spectra revealed the broad spectrum absorption band. The major characteristic peaks achieved by FTIR in standard GA$_3$ (Fig. 11) were at 1000-1260 cm$^{-1}$ corresponds to (C-O) group (stretching and asymmetrical coupled vibration) i.e. the peak at 1127 cm$^{-1}$. The band at 1451cm$^{-1}$ resembles to (C=C) group(stretch consist of asymmetric type).

The peak at 1738cm$^{-1}$ allied to (C=O) stretching from carboxylic group. Further, the peak perceived at 3445cm$^{-1}$ corresponds to (OH) group (intra-molecular hydrogen bonding). For extracted GA$_3$ of OSLST-4 (Fig. 11) the peaks were achieved at 1122cm$^{-1}$ corresponds to (C=O) group, the peak found at 1722cm$^{-1}$ attributed to (C=O) group, and the peak endorsed to 3337cm$^{-1}$ signposted the presence of (OH) group. The peak observed at 1445cm$^{-1}$ ascribed to (C=C) group (stretch consist of asymmetric). For extracted GAs of OSLL-4 (Fig. 11) the peaks were gained at 1115cm$^{-1}$ (C=O), 1714cm$^{-1}$ (C=O), the peak observed at 1449cm$^{-1}$ (C=C) group (Asymmetric stretching), the peak observed at 3318cm$^{-1}$ attributed to (OH) group.

The result of the infrared spectroscopy of the extracted GA$_3$ using FTIR presented that it contained four out of four main characteristic bands existent on the standard GA$_3$ sample. All the perceived characteristic FTIR peaks communally confirm the presence of GA$_3$ like substance in the extract.

In conclusion through this scientific investigation we place in record, isolation of endophytic fungi from rice plant with the ability for GA$_3$ production. The isolates can be exploited industrially for commercial production of GA$_3$ with further scientific investigations. Though, it is a preliminary endeavour, studies such as this is a prerequisite to exploit the biotechnological potential of microbes of special environment, more specifically the endophytic fungi, for production of growth promoting compounds.

Acknowledgement

The authors are thankful to HoD, Department of Botany, College of Basic Science and Humanities, OUAT, for providing laboratory facility. The authors also deeply acknowledge the help and encouragement of Director,
College of Basic Science and Humanities, OUAT, during the study.

References

Barborakova, Z., Labuda, R., Haubl, G., Tancinova, D., 2012. Effect of glucose concentration and growth conditions on the fungal biomass, pH of media and production of Fumagillin by a non-pathogenic strain Penicillium scabrosum. J Microbiol. Biotechnol. Food Sci. (1):466–477.

Barnett, HL., Hunter, BB., 1996. Illustrated Genera Of Imperfect Fungi. APS Press, St. Paul, Minnesota, USA.

Bhattrani, S., Rana, p., Dhalak, M., Dinesh, B., 2014. Diversity and Biological activities of endophytic fungi from Nepalese Woodfordia fruticosa (Linn) Kurz. World J of Pharmaceu. Sci.; (2(11)):1591-1597.

Bilkay, IS., Karakoc, S., Aksoz, N., 2010. Indole-3-acetic acid and gibberellic acid production in Aspergillus niger. Turk. J. Biol. 34: 313-318.

Bills, GF., and Polishook, JD., 1993. Microfungi from Cripinus caroliniana. Can J Bot., 69:1477-1482.

Cavell, BD., MacMillan, J., Pryce, RJ., Sheppard, AC., 1967. Thin layer chromatography of gibberellic acid. Phytochem. 6: 867-871.

Cihangir, N., and Aksıza, N., 1997. Evaluation of some food industry wastes for production of gibberellic acid by fungal source. Env. Technol; 18: 533-537.

Corona, A., Sanchez, D., Agosin, E., 2005. Effect of water activity on gibberellic acid production by Gibberella fujikuroi under solid-state fermentation conditions. Process Biochem; 40: 2655-2658.

Crozier, A., 2000. Biosynthesis of hormones and elicitor molecules. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and Molecular Biology of Plants MD: American Society of Plant Physiologists, Rockville, pp 850–929.

Davies, PJ., 2010. The Plant Hormones: Their Nature, Occurrence, and Functions. In: Plant Hormones. Davies PJ (ed) Springer, Dordrecht, pp 1–15.

Escamilla, EM., Dendooven, L., Magafia, IP., Parra, R., and De La Torre, M., 2000. Optimization of gibberellic acid production by immobilized Gibberella fujikuroi mycelium in fluidized bioreactors. J of Biotechnol; 76: 147-155.

Fisher, PJ., and Petrini, O., 1987. Location of fungal endophytes in tissues of Suaeda fruticosa: a preliminary study. Trans. Br. Mycol. Soc., 89: 246-249.

Gilman, JC., 1971. A manual of soil fungi. Ames, Iowa, Iowa State College Press.;p.450.

Gyaneshwar, P., James, E.K., Mathan, N., Reddy, P.M., Reinhold-Hurek, B., Ladha, J.K., 2001. Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens. J. Bacteriol. 183, 2634-2645.

Henderson, J.H.M., Graham, H.D., 1961. Reaction of giberllic acid and gibberlins with Folin-Wu Phospho molybdic Acid Reagent and it’s use for quantitative assay Plant Physio. The Carver Foundation, Tuskegee Institute, Alabama pg 405-408.

Kahlon, S.S., Malhotra, S., 1986. Production of gibberellic acid by fungal mycelium immobilized in sodium alginate. Enz. Microbial Technol., 8, 613-616.

Khan, AL., Hamayun, M., Kang, SM., Kim, YH., Jung, HY., Lee, JH., Lee, JJ., 2012. Endophytic fungal association via gibberlins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10. BMC Microbiol. 12:1.

Khan, AL., Hamayun, M., Kim, YH., Kang, SM., Lee, JJ., 2011. Ameliorative symbiosis of endophyte (Penicillium funiculosumsp. LHL06) under salt stress elevated plant growth of Glycine max L. Plant PhysiolBiochem. 49:852–861.

Kumar, PKR., and Lonsane, BK., 1990. Solid-state fermentation: physical and nutritional factors influencing gibberellic acid production. Applied Microbiol and Biotechnol; 34: 145-148.

Kumar, PKR., 1987. Extraction of Gibberellic acid from dry moldy bran produced under solid state fermentation. Process biochem.: 139 – 143.

Lale, G., Gadre, R. 2010. Enhanced production of gibberellin A₄ (GA₄) by a mutant of
Gibberella fujikuroi in wheat gluten medium. J Indus. Micro. Biotech., 37(3): 297-306.
Lee, D.H., Kim, Y.S., Lee, C.B., 2001. The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.). J. Plant Physiol. 158, 737-745.
Machado, CMM., Soccol, CR., and Pandey, A., 2002. Gibberellic acid production by solid state fermentation in coffee husk. Applied Biochem and Biotechnol; 102: 179-192.
Pandya, ND., and Desai, PV., 2013. Gibberellic acid production by Bacillus cereus isolated from the rhizosphere of sugarcane. J of Pure and Applied Microbiol.7(4):3239-3242.
Pastrana, LM., González, MP., Torrado, A., and Murado, M A., 1995. A fed-batch culture model for improved production of gibberellic acid from a waste medium, Biotechnology Letters; 17: 263-268.
Patil, G., and Patil, R., 2014. Isolation and characterization of Actinomycetes producing Gibberellic acid. Int. J. Res., 3: 1400-1403.
Prayitno, J., J. Stefaniak., J. McIver., J. J. Weinman., F. B. Dazzo., J. K. Ladha., W. Barraquio., Y. G. Yanni., and B. G. Rolfe., 1999. Interactions of rice seedlings with bacteria isolated from rice roots. Aust. J. Plant Physiol. 26: 521–535.
Radu, S., Kqueeney., 2002. Preliminary screening of endophytic fungi from medicinal plant in Malaysia for antimicrobial and antitumour activity. Malaysian J. Med.Sci.; 92(2):23-30.
Rangaswamy, V., 2012. Improved production of Gibberellic acid by Fusarium moniliforme.
J Microbiol Res 2(3): 51-55.
Rasulov, BA., 2010. Influence of bacteria of Azotobacter genus on growth, development and productivity of different wheat varieties in associative symbiosis. Uzbekistan Biol journal.; 1(2): 17-25.
Sagar, A., Desai, P.V., 2017. Isolation and characterization of gibberellic acid (GA3) producing rhizobacteria from sugarcane roots. Bioscience Discovery. 8(3): 488-494.
Schulz, BU., Wanke, S., and Draeger, HJ., 1993. Endophytes from herbaceous plants and shrubs: effectiveness of surface sterilization methods. Mycol Res., 97: 1447-1450.
Shukla, R., Chand, S., Srivastava, AK., 2005. Batch kinetics and modelling of gibberellic acid production by Gibberella fujikuroi. Enzyme Microb Tech.,36:492-497.
Silverstein, R. M., Webster, F. X., Kiemle, D.J., Bryce D.L., 2014. Spectrometric identification of organic compounds. John Wiley and Sons Inc., New Jersey US.
Strobel GA.2002. Microbial Gifts from rain forests.Can J Plant Path., 24: 14-20.
Tomasini, A., Fajardo, C., and Barrios, González J., 1997. Gibberellic acid production using different solidstate fermentation systems, Word J of Microbiol and Biotechnol; 13: 203-206.
Wei, Z., Liang, X., Pendlowski, H., Hillier, S., Suntornvongsu, K., Sihanonth, P., Gadd, GM., 2013. Fungal biotransformation of zinc silicate and sulfide mineral ores. Environ Microbiol. 15:2173–2186.

How to cite this article:
Anchal Tripathy and Chandi C. Rath. 2020. Endophytic Fungi from Oryza sativa L.: Isolation, Characterization, and Production of GA3 in Submerged Fermentation. Int.J.Curr.Microbiol.App.Sci. 9(11): 1007-1020. doi: https://doi.org/10.20546/ijcmas.2020.911.119