Associations of number of daily eating occasions with type 2 diabetes risk in the Women’s Health Initiative Dietary Modification Trial

Authors: Marian L Neuhouser*, Betsy C. Wertheim, Martine M. Perrigue, Melanie Hingle, Lesley F. Tinker, James M. Shikany, Karen C. Johnson, Molly E. Waring, Rebecca A. Seguin-Fowler, Mara Z. Vitolins, Eliezer Schnall, Linda Snetselaar, Cynthia Thomson

Marian L Neuhouser, PhD, RD (corresponding author)*
Cancer Prevention Program
Division of Public Health Sciences
1100 Fairview Ave North, M4B402
Seattle, WA 98019
tel 206-667-4797
mneuhous@fredhutch.org

Betsy C. Wertheim, MS
University of Arizona Cancer Center
1515 N Campbell Ave
PO Box 245024
Tucson, AZ 85724
bwertheim@uacc.arizona.edu

Martine M. Perrigue, PhD, RD
Department of Nutrition and Exercise Physiology
Elson S. Floyd College of Medicine
Washington State University
PO Box 1495
Spokane, WA 99210-1495
martine.perrigue@wsu.edu

Melanie Hingle, PhD, MPH, RDN
Department of Nutritional Sciences
College of Agriculture & Life Sciences
The University of Arizona
1177 E 4th Street, Shantz Building Room 328
Tucson, AZ 85721
hinglem@email.arizona.edu

Lesley F Tinker, PhD, RD
Fred Hutchinson Cancer Research Center
Division of Public Health Sciences
1100 Fairview Avenue North
Seattle, WA 98109
ltinker@whi.org
James M Shikany, DrPH
Division of Preventive Medicine
School of Medicine
University of Alabama at Birmingham
Birmingham, Alabama
js_hikany@uabmc.edu

Karen C. Johnson, MD, MPH
Chair and Endowed Professor of Women’s Health
University of Tennessee Health Science Center
Department of Preventive Medicine
66 N. Pauline, suite 633
Memphis, TN 38163
kjohnson@uthsc.edu

Molly E. Waring, PhD
Department of Allied Health Sciences
University of Connecticut, 358 Mansfield Road, Unit 1101
Storrs, CT 06269
Email molly.waring@uconn.edu

Rebecca A. Seguin-Fowler, PhD, CSCS, RD
Department of Nutrition and Life Science
Texas A&M University
Agriculture and Life Sciences Building
600 John Kimbrough Boulevard, Suite 512
College Station, TX 77843-2142
r.seguin-fowler@ag.tamu.edu

Mara Z. Vitolins, DrPH, RD
Wake Forest School of Medicine
Division of Public Health Sciences
Department of Epidemiology and Prevention
Medical Center Boulevard
Winston-Salem, NC 27157
mvitolin@wakehealth.edu

Eliezer Schnall, PhD
Clinical Professor of Psychology
Psychology Department
Yeshiva University
500 West 185th Street
New York, NY 10033
schnall@yu.edu

Linda Snetselaar, PhD, RD
Professor and Chair
Preventive Nutrition Education
Department of Epidemiology
College of Public Health
D425CPHB
University of IA
Iowa City, IA
linda-snetselaar@uiowa.edu

Cynthia Thomson, PhD, RD
Professor, Health Promotion Sciences
Director, University of Arizona Canyon Ranch Center for Prevention & Health Promotion
Mel & Enid Zuckerman College of Public Health
1295 N Martin
Drachman Hall A260
PO Box 245209
Tucson, AZ 85724
cthomson@email.arizona.edu

Financial Support: This work was supported by the National Heart, Lung, and Blood Institute, National Institutes of Health, U.S. Department of Health and Human Services (contract numbers HHSN268201600018C, HHSN268201600001C, HHSN268201600002C, HHSN268201600003C, and HHSN268201600004C

WHI data collections tools, data dictionary, the protocol and instructions for data use requests are available at www.whi.org

Neuhouser, Wertheim, Perrigue, Hingle, Tinker, Shikany, Johnson, Waring, Seguin-Fowler, Vitolins, Schnall, Snetselaar, Thomson: no conflicts of interest

Word Count:
Abstract: 300
Text: 3210
Tables: 3

Running head: Daily eating occasions and type 2 diabetes

Abbreviations:
BMI: Body mass index
DGA: Dietary Guidelines for Americans
DPP: Diabetes Prevention Program
HEI: Healthy Eating Index
NDS: Nutrition Data Systems
NSES: neighborhood socioeconomic status
24HR: 24-hour recall
T2D: Type 2 diabetes
WHI: Women’s Health Initiative
WHI-DM: Women’s Health Initiative Dietary Modification Trial
Abstract

Background: Over 23 million Americans have type 2 diabetes (T2D). Eating habits such as breakfast consumption, time-restricted eating and limiting daily eating occasions have been explored as behaviors for reducing T2D risk, but prior evidence is inconclusive.

Objective: To examine associations between number of daily eating occasions and T2D risk in the Women’s Health Initiative Dietary Modification Trial (WHI-DM) and whether associations vary by body mass index (BMI), age, or race/ethnicity.

Methods: Participants were postmenopausal women in the WHI-DM who comprised a 4.6% subsample completing 24-hour dietary recalls (24HR) at years 3 and 6 as part of trial adherence activities (n=2,159). Numbers of eating occasions/day were obtained from the year 3 24HR and participants were grouped into approximate tertiles as 1-3 (n=795), 4 (n=713) and ≥5 (n=651) daily eating occasions as the exposure. Incident diabetes was self-reported on semi-annual questionnaires as the outcome. WHI-DM is registered at clinicaltrials.gov (NCT00000611).

Results: Fifteen percent (15.4%, n=332) of the WHI-DM 24HR cohort reported incident diabetes at follow-up Cox proportional hazards regression tested associations of eating occasions with T2D adjusted for neighborhood socioeconomic status (NSES), BMI, waist circumference, race/ethnicity, family history of T2D, recreational physical activity, Healthy Eating Index (HEI)-2005, 24HR energy intake and WHI-DM arm. Compared to women reporting 1-3 meals/day, those consuming 4 meals/day had a T2D HR=1.38 (95%CI 1.03-1.84) without further increases in risk for ≥5 meals/day. In stratified analyses, associations for 4 meals/day compared to 1-3 meals/day were stronger in
women with BMI <30.0 kg/m² (HR=1.55, 95% CI 1.00-2.39) and women ≥ age 60 (HR=1.61, 95% CI 1.11-2.33).

Conclusions: 4 daily meals/day compared to 1-3 meals/day was associated with increased risk of T2D in postmenopausal women, but no dose-response effect was observed for additional eating occasions. Further studies are needed to understand eating occasions in relation to T2D risk.

Introduction

The prevalence of Type 2 diabetes mellitus (T2D) is very high in the United States (1), and is projected to nearly triple over the coming decades (2). According to the Centers for Disease Control and Prevention (CDC), more than 23 million Americans have T2D, which is the seventh leading cause of death in the U.S. (1). T2D is a serious public health problem due to the associated significant comorbidities and medical complications. In 2017, expenditures for T2D and related complications were estimated at $327 billion dollars (3, 4).

T2D is a preventable disease. Genetic susceptibility influences risk of T2D, but modifiable lifestyle habits such as body weight, diet and physical activity are equally, if not more important risk factors (5-7). The Diabetes Prevention Program (DPP) Clinical Trial demonstrated that individuals at increased risk of T2D who were randomized to an energy- and fat-restricted dietary intervention reduced T2D incidence by more than 50% compared to control (8, 9). Further, the Look AHEAD study demonstrated that an intensive weight loss/lifestyle intervention was associated with continuous sustained partial or complete remission of T2D for up to 4 years (10). Other dietary-modification
approaches include consumption of healthy dietary patterns (6) and reducing dietary glycemic load (11, 12).

Eating behaviors such as regular breakfast consumption, time-restricted eating (eating only during specific hours of the day) and the number of daily eating occasions have emerged as potential, but not confirmed, independent factors influencing T2D risk (13-16). There is no consensus as to whether eating frequency increases or decreases risk, independent of associations with weight management. Chronic exposure to hyperglycemia, which could occur with more frequent eating episodes, damages pancreatic β-cell function leading to impaired glucose regulation and increased T2D risk (17). The scientific and clinical dilemma is whether mildly elevated glucose throughout the day that accompanies frequent eating is more (or less) detrimental with regards to T2D risk compared to larger glucose oscillations that occur following sizeable but less frequent meals (14, 18-22). Research examining total eating occasions as an independent and modifiable risk factor for T2D may help address this question. Therefore, our objective was to evaluate the relationship between the number of daily eating occasions and T2D risk in the Women’s Health Initiative Dietary Modification Clinical Trial (WHI-DM) and whether these associations varied by participant characteristics such as BMI, age or race/ethnicity. We hypothesized that eating more times throughout the day would be associated with increased risk of T2D.

Methods

The design, recruitment and data collection methods of the Women’s Health Initiative Dietary Modification Trial (WHI-DM) have been previously described (23, 24). Briefly, from 1993-98, 48,835 postmenopausal women from 40 U.S. clinical centers
were randomized to a low-fat dietary pattern (n= 19,541, 40%) or a comparison/usual diet group (n=29,294, 60%) using a permuted block algorithm with blocks of size 5, 10 or 15 and stratified by clinical center and baseline age group (50-54-, 55-59-, 60-69- and 70-79-years-old). The intervention was a behavioral modification program designed to lower fat intake to 20% of total energy and to increase fruit and vegetable and grain servings to at least 5 and 6 servings per day, respectively. Neither energy intake restrictions nor weight loss goals were intervention components. The primary trial outcomes were breast and colorectal cancer and a secondary outcome was coronary heart disease. While T2D was not a designated primary or secondary outcome, the low-fat high fruit and vegetable diet intervention did not increase the risk for T2D and may have slowed progression (T2D was not an exclusion for WHI-DM participation) (25, 26).

The WHI-DM protocol and all procedures were approved by the institutional review boards at each of the 40 clinical centers and at the WHI Clinical Coordinating Center. All women signed written informed consent. WHI is registered at clinicaltrials.gov as NCT00000611.

WHI-DM participants attended baseline clinic visits where standardized questionnaires on personal and family medical history of major chronic diseases, current and past smoking history, recreational physical activity (usual frequency and duration of recreational physical activity such as walking, biking and computed as MET hours/week) (27), self-reported race/ethnicity, education (categorical with options ranging from less than high school completion to advanced and professional degrees), income (categorical) and other demographic and lifestyle characteristics were completed as part of the WHI protocol (24). Clinic staff measured waist circumference,
height and weight using standardized study protocols and body mass index (BMI) was computed as weight(kg)/height(m).²

Dietary Assessment

Dietary intake for the WHI-DM was monitored primarily by a food frequency questionnaire (FFQ) designed for the WHI (28). The FFQ was administered to all participants during screening (baseline), one year after randomization, and thereafter annually to one-third of the participants on a rotating basis. Baseline dietary data examined for this analysis included daily intake of energy, added sugars, total sugars and computed Healthy Eating Index 2005 (HEI-2005) scores, which measures adherence to the Dietary Guidelines for Americans (DGA) (29). HEI-2005 is on a scale of 1-100 where a higher score reflects greater adherence to DGA. The WHI-DM also included a 4.6% subsample of participants who provided one 24-hour dietary recall (24HR) at both years 3 and 6 (but not at WHI-DM enrollment/baseline) as part of trial adherence activities. The year 3 24HRs are used in the analysis in this report to create a measure of eating frequency, as food frequency questionnaires lack data on meal composition and meal timing. Selection to the WHI 24HR cohort was achieved using sampling stratified on clinic, age and race/ethnicity. Women from race/ethnic minority groups were oversampled for the 24 HR cohort because the WHI scientific goals included having the statistical power for race/ethnic-specific analyses of trial response (23, 24). The 24HR were collected by trained interviewers who used the USDA multiple pass method (30) and the Nutrition Data Systems (NDS) software (Nutrition Coordinating Center, University of Minnesota). Quality assurance was performed and 10% of all 24HR records were reviewed by a Registered Dietitian supervisor.
The 24HR data are well-suited for studying meal timing and the number of daily meals since discrete eating occasions and time of consumption are collected as part of the recall record. The 24HR protocol included collection of all meals and snacks for foods and beverages consumed the previous day. The number of daily eating occasions was calculated by summing the number of distinct occasions recorded in the recall record as the variable MEALNAME in NDS: Breakfast, Lunch, Dinner, Snack(s). For this analysis, eating occasions were defined in 30-minute increments such that 30 minutes between recorded eating episodes was recorded as a new eating event. Participants were grouped into approximate tertiles according to their eating occasion totals: 1-3/day, 4/day and ≥5/day.

Outcomes

Prevalent diabetes was documented by self-report at the WHI baseline visit by asking each participant if she has ever been told by a physician that she has “sugar diabetes” when not pregnant. Incident T2D during follow-up was documented by self-report at each semiannual contact when participants were asked: “Since the date given on the front of this form, has a doctor prescribed any of the following pills or treatments?” Response options included “pills for diabetes” and “insulin shots for diabetes.” The self-report for these medications was previously shown to be very consistent with medication inventories (31, 32). During the trial period follow-up through 2005, 18.6% of all WHI-DM participants were diagnosed with T2D. For this analysis we excluded those with either any reported T2D prior to the cohort entry time at WHI-DM year 3 as well as those diagnosed within the first three years of follow-up.
Statistical analysis

The 24HR cohort began recalls in Year 3 (WHI-DM baseline and year 1 used Four Day Food Records for adherence and retention activities), so the 24HR cohort (n=2,460) entry date was designated as WHI-DM year three. Exclusions for analysis included 24HR energy intake <600 kcals or >5000 kcals (n=49), as these were considered unreliable intakes, baseline history of self-reported diabetes (n=142), incident diabetes between recall cohort start date and 12 months later (n=91), and loss to follow-up (n=19) leaving n=2,159 for analysis. Missing data for covariates were all less than 1% with the exception of neighborhood socioeconomic status (n=201, 9.3%) and recreational physical activity (n=255, 11.8%). Participants with missing data drop out of multivariate adjusted models.

Cox proportional hazards regression was used to examine the relationship across the tertiles of eating occasions and risk of T2D. *A priori* subgroup analyses examined these associations stratified by baseline BMI (<30.0/≥30.0 kg/m²) race/ethnicity and age. The WHI-DM was one of the first dietary intervention trials to have specific minority recruitment goals as well as goals to achieve a broad distribution across the range of the postmenopausal years (33). This heterogeneity has enabled many subgroup analyses not possible without this heterogeneity (for example, (34-36) and supports the *a priori* subgroups for this analysis. All models were adjusted for neighborhood socio-economic status (NSES) (37), race/ethnicity, BMI, waist circumference, recreational physical activity, family history of diabetes,, self-reported energy intake from the 24HR, time between study enrollment and recall administration,
HEI-2005 and WHI trial arm assignment. Models are intended to be parsimonious to avoid overfitting; therefore, variables without evidence of confounding in this study sample, such as smoking were not included. All tests were two-sided and P<0.05 was considered statistically significant. Statistical analyses were conducted in Stata (StataCorp LLC. College Station, TX).

Results

The characteristics of the study sample by tertiles of eating occasions are presented in Table 1. Fifteen percent (15.4%, n=332) of the sample reported incident diabetes after the start of the recall cohort. Compared to the referent (1-3 eating occasions per day), women reporting 4 daily eating occasions had a multivariate-adjusted diabetes HR =1.38 (95% CI 1.03-1.84) (Table 2). Among women reporting 5 or more eating occasions per day the multivariate-adjusted HR was attenuated and not statistically significant (HR=0.95, 95% CI 0.70-1.29).

We next examined whether BMI, race/ethnicity or age influenced the eating occasions-diabetes risk associations in stratified analyses (Table 3). Women with BMI <30 kg/m² who reported 4 eating occasions/day had a significantly increased risk of diabetes (HR=1.55, 95% CI 1.00-2.39) compared to those reporting 1-3 meals/day. However, among women with BMI ≥ 30 kg/m² the number of daily eating occasions had no apparent relationship to diabetes risk. Older (≥60 years), but not younger, women who reported 4 eating occasions per day had nearly a 60% greater risk for diabetes (HR=1.61, 95% CI 1.11-2.33) compared to those reporting 1-3 eating occasions per day. Associations of eating occasions with T2D risk did not differ by race/ethnicity.
Discussion

In the Women’s Health Initiative Dietary Modification Trial, participants who reported 4 daily eating occasions had a 36% increased risk of incident diabetes compared to those reporting 1-3 daily eating occasions. These associations were stronger in women with BMI < 30 kg/m² or in women ≥60 years of age. No additional increase in risk was found for higher daily eating occasions (≥5/day) and no dose-response was detected. We are not certain why the results became attenuated and null for >5 eating occasion/day and we cannot rule out chance as a reason for any of the findings. It is possible that the participants with >5 eating occasions per day represents a heterogeneous phenotype because the range of eating occasions in this tertile was 5-10. Combining into a single group could have masked other characteristics that we are unable to discern at this time.

The hypothesis for this study was based on the following biological rationale. Eating multiple times throughout the day keeps blood glucose and insulin at mildly elevated levels but with lower peaks and troughs, effectively demonstrated by Munsters et al (38). Importantly, insulin resistance, which is known to escalate with age (39, 40), may increase the irregularity in circulating glucose, supporting our finding in women over 60 years of age. Further, a constant postprandial state that accompanies multiple eating occasions places excess stress on the pancreas while continued insulin secretion prevents the secretion of counterregulatory hormones. Animal models consistently demonstrate metabolic advantage and reduced metabolic stress in mice consuming kcal-controlled and time-controlled eating (41). Recent studies of intermittent
Fasting in humans suggest that meal restriction may benefit metabolic health and diabetes risk (22, 42-44). In contrast, other research findings have reported metabolic advantages with more, not less, frequent eating. Jenkins et al. conducted a randomized crossover trial in 17 overweight men (45). Participants in one arm consumed provided foods on an outpatient basis three times daily (termed the ‘meals’ phase). On the other arm, the same foods were divided into 17 energy- and macronutrient-equivalent portions and participants were instructed to consume one food packet per hour (termed the ‘nibbling’ phase). Serum insulin and C-peptide were substantially and significantly lower following the nibbling phase compared to the meals phase. Heden et al. reported that the incremental area under the curve for insulin was significantly larger following a three meal per day experimental condition in eight obese women compared to a six meal per day condition (21). We previously reported a randomized crossover trial comparing meals (eating 3 times per day) to grazing (eating 8 times per day) (46). A Registered Dietitian gave detailed guidance to study participants as they prepared and consumed their own meals throughout the two study periods. The protocol specified that total energy and macronutrient distribution were to be kept constant on both study arms. We found that compared to the grazing pattern, the meals pattern led to significantly higher serum IGF-1, which is secreted in response to an insulin stimulus (46). Taken together, the data to date are not consistent.

Behavioral factors may account for our findings in this WHI report. It is possible that those who limit eating occasions to 1-3 times per day (referent group) have less emotional and binge eating levels. In the Diabetes Prevention Program (DPP), higher scores on food cravings, binge eating and episodic overeating were linked with higher
baseline BMI, which is a strong risk factor for T2D (47). We were not able to specifically evaluate these eating behavioral measures as these were not part of the WHI-DM trial data collection protocol.

Few prospective studies on total eating occasions in healthy volunteers at average risk of T2D have been conducted. The Nurses’ Health Study examined breakfast consumption and skipping breakfast, but not eating occasions per se not eating occasion per se as a goal (14). However, one of their subgroup analyses found no association of number of daily eating occasions with T2D risk (14). In the Health Professionals’ Follow-Up Study, a similar analysis focused primarily on breakfast consumption also included a subgroup analysis incorporating both breakfast consumption and number of meals per day (15). The association of 4-7 meals per day with increased risk of T2D was strongest among those who reported no breakfast (15). Both the Health Professionals and Nurses’ Health Studies inquired about breakfast on separate questionnaires. WHI did not explicitly inquire about breakfast consumption so we are not able to perform a similar analysis. Other published studies have primarily examined inclusion or omission of a specific meal on T2D risk (48), and there remains a paucity of data on whether fewer, or greater overall eating occasions per day is associated with higher or lower T2D risk. Numerous studies, including randomized controlled trials (20) have examined the optimal number of daily eating occasions for management of existing T2D, but we are unaware of additional prospective studies aimed at understanding dietary behavioral risk factors for subsequent diagnosis of T2D.

This report focused on examining whether a modifiable risk factor, the number of eating occasions per day was associated with T2D risk. We recognize that analysis of
daily eating occasions is notoriously difficult due to problems with methodology and meal definitions (49). In this study we used the eating occasions as reported on the 24 HR recall record. Some studies have used a single question with unknown validity on how many meals are consumed daily (49). Other complexities in studying eating occasions relates to diet quality; foods and beverages commonly consumed, as “snacks” tend to have a less favorable nutrient profile and higher energy density (e.g., fats and sweets, baked goods, dairy-based desserts, chips, cookies, and crackers) (50, 51). Increased frequency of intake is also highly correlated with overall energy intake and weight gain – both risk factors for T2D (51-54). Randomized controlled trials testing low vs. high eating frequency while maintaining eucaloric energy as well as comparable macronutrient distribution and diet quality are well-suited to testing whether the number of eating occasions affects metabolic health (21, 55). However, such studies are usually short term and typically employ surrogate endpoints (e.g., biomarkers, weight) as outcomes instead of disease endpoints; cohort studies such as WHI afford the opportunity to test these important associations with confirmed disease endpoints.

The strengths of this study include embedding the analysis in a randomized controlled trial, trained interviewers who followed a standardized protocol to collect the 24HR data, a diverse study sample, and carefully collected disease endpoints. Additionally, the WHI-DM 24HR cohort was designed to have higher race/ethnicity diversity than the overall WHI-DM. Limitations include the use of one 24HR, which we recognize may not reflect usual dietary patterns or eating frequency habits. No consensus exists on whether eating frequency occasions should be any reported eating occasion, minimal kcal thresholds, time intervals or other criteria (49). We used a 30-
minute interval between reported eating occasions to allow enough time for completion
of an eating occasion in this postmenopausal age group. An alternative approach could
have used 15 minute intervals as used in some other studies (49, 56, 57). Another
limitation is that we were not able to assess the nutritional quality of specific foods
because these 24HR were collected prior to the routine inclusion of food group data in
the 24HR output. The lack of technical ability to map eating occasions with specific
foods could have affected the interpretation of the findings across the tertiles of eating
occasions. Furthermore, since the 24HR cohort was a 4.6% subsample of the WHI-DM,
results may not pertain to all WHI participants. Another limitation is that all studies of
dietary self-report are subject to misreporting and measurement error, including the WHI
(58, 59). While we have not specifically examined measurement error in this study,
others have reported measurement error in reporting of eating frequency and that such
measurement error may influence eating frequency-disease association outcomes (60, 61).
Finally, with all studies, uncontrolled confounding may occur when potential
confounding variables are either not measured or not measured with precision.

In conclusion, data from the WHI Dietary Modification Trial suggest that eating 4
times per day compared to 1-3 times per day is associated with a 38% higher risk of
T2D, but no association was observed when daily eating occasions equaled or
exceeded five times per day, possibly due to too much variation in the top tertile (5-10
eating occasions/day). The risk was shown to be slightly stronger among women with a
BMI <30.0 kg/m² (55% higher risk) or in women ≥ 60 years of age (61% higher risk).
Since our results are not entirely consistent with our hypothesized dose-response
association, future cohort studies would be informed by including biomarkers of insulin
resistance that would provide more definitive evidence on whether the total number of daily eating occasions is or is not associated with risk of T2D.

Acknowledgements

MLN, MMP and CT designed research; MLN, MMP, BCW and CT conducted research; BCW analyzed data; MLN and CT wrote the paper; BCW, MMP, MH; LFT. JMS, KCJ, MEW, RAS-F, MZV, ES, LA, and CT gave critical feedback on the data analysis and manuscript writing; MLN had primary responsibility for final content. All authors read and approved the final manuscript.

Acknowledgements: The authors would like to acknowledge the WHI Program Office: (National Heart, Lung, and Blood Institute, Bethesda, Maryland) Jacques Rossouw, Shari Ludlam, Joan McGowan, Leslie Ford, and Nancy Geller; the WHI Clinical Coordinating Center: (Fred Hutchinson Cancer Research Center, Seattle, WA) Garnet Anderson, Ross Prentice, Andrea LaCroix, and Charles Kooperberg; the WHI Investigators and Academic Centers: (Brigham and Women's Hospital, Harvard Medical School, Boston, MA) JoAnn E. Manson; (MedStar Health Research Institute/Howard University, Washington, DC) Barbara V. Howard; (Stanford Prevention Research Center, Stanford, CA) Marcia L. Stefanick; (The Ohio State University, Columbus, OH) Rebecca Jackson; (University of Arizona, Tucson/Phoenix, AZ) Cynthia A. Thomson; (University at Buffalo, Buffalo, NY) Jean Wactawski-Wende; (University of Florida, Gainesville/Jacksonville, FL) Marian Limacher; (University of Iowa, Iowa City/Davenport, IA) Jennifer Robinson; (University of Pittsburgh, Pittsburgh, PA) Lewis Kullar; (Wake Forest University School of Medicine, Winston-Salem, NC) Sally Shumaker; (University of Nevada, Reno, NV) Robert Brunner; and the WHI Memory Study: (Wake Forest University School of Medicine, Winston-Salem, NC) Mark Espeland. For a list of all the investigators who have contributed to WHI science, please visit:
References

1. Bullard KM, Cowie CC, Lessem SE, Saydah SH, Menke A, Geiss LS, Orchard TJ, Rolka DB, Imperatore G. Prevalence of Diagnosed Diabetes in Adults by Diabetes Type - United States, 2016. MMWR Morb Mortal Wkly Rep. 2018 Mar 30;67:359-61.

2. Lin J, Thompson TJ, Cheng YJ, Zhuo X, Zhang P, Gregg E, Rolka DB. Projection of the future diabetes burden in the United States through 2060. Popul Health Metr. 2018 Jun 15;16:9.

3. Economic Costs of Diabetes in the U.S. in 2017. Diabetes Care. 2018 May;41:917-28.

4. Bommer C, Sagalova V, Heesemann E, Manne-Goehler J, Atun R, Barnighausen T, Davies J, Vollmer S. Global Economic Burden of Diabetes in Adults: Projections From 2015 to 2030. Diabetes Care. 2018 May;41:963-70.

5. Siegel KR, Bullard KM, Imperatore G, Ali MK, Albright A, Mercado CI, Li R, Gregg EW. Prevalence of Major Behavioral Risk Factors for Type 2 Diabetes. Diabetes Care. 2018 May;41:1032-9.

6. Cespedes EM, Hu FB, Tinker L, Rosner B, Redline S, Garcia L, Hingle M, Van Horn L, Howard BV, Levititan EB et al. Multiple healthful dietary patterns and type 2 diabetes in the Women's Health Initiative. Am J Epidemiol. 2016 Apr 1;183:622-33.

7. Dunkley AJ, Bodicoat DH, Greaves CJ, Russell C, Yates T, Davies MJ, Khunti K. Diabetes prevention in the real world: effectiveness of pragmatic lifestyle interventions for the prevention of type 2 diabetes and of the impact of adherence to guideline
recommendations: a systematic review and meta-analysis. Diabetes Care. 2014 Apr;37:922-33.

8. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, Nathan DM. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002 Feb 7;346:393-403.

9. Knowler WC, Fowler SE, Hamman RF, Christophi CA, Hoffman HJ, Brenneman AT, Brown-Friday JO, Goldberg R, Venditti E, Nathan DM. 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study. Lancet. 2009 Nov 14;374:1677-86.

10. Gregg EW, Chen H, Wagenknecht LE, Clark JM, Delahanty LM, Bantle J, Pownall HJ, Johnson KC, Safford MM, Kitabchi AT et al. Association of an intensive lifestyle intervention with remission of type 2 diabetes. JAMA. 2012 Dec 19;308:2489-96.

11. Runchey SS, Pollak MN, Valsta LM, Coronado GD, Schwarz Y, Breymeyer KL, Wang C, Wang CY, Lampe JW, Neuhouser ML. Glycemic load effect on fasting and post-prandial serum glucose, insulin, IGF-1 and IGFBP-3 in a randomized, controlled feeding study. Eur J Clin Nutr. 2012 Oct;66:1146-52.

12. McKeown NM, Meigs JB, Liu S, Saltzman E, Wilson PW, Jacques PF. Carbohydrate nutrition, insulin resistance, and the prevalence of the metabolic syndrome in the Framingham Offspring Cohort. Diabetes Care. 2004 Feb;27:538-46.

13. Chaix A, Zarrinpar A, Miu P, Panda S. Time-Restricted Feeding Is a Preventative and Therapeutic Intervention against Diverse Nutritional Challenges. Cell Metab. 2014; 20:991-1005.
14. Mekary RA, Giovannucci E, Cahill L, Willett WC, van Dam RM, Hu FB. Eating patterns and type 2 diabetes risk in older women: breakfast consumption and eating frequency. Am J Clin Nutr. 2013 Aug;98:436-43.

15. Mekary RA, Giovannucci E, Willett WC, van Dam RM, Hu FB. Eating patterns and type 2 diabetes risk in men: breakfast omission, eating frequency, and snacking. Am J Clin Nutr 2013; 98:436-43.

16. Hutchison AT, Wittert GA, Heilbronn LK. Matching Meals to Body Clocks-Impact on Weight and Glucose Metabolism. Nutrients. 2017 Mar 2;9 (3) piiE222.

17. Faerch K, Vaag A, Holst JJ, Hansen T, Jorgensen T, Borch-Johnsen K. Natural history of insulin sensitivity and insulin secretion in the progression from normal glucose tolerance to impaired fasting glycemia and impaired glucose tolerance: the Inter99 study. Diabetes Care. 2009 Mar;32:439-44.

18. Zarrinpar A, Chaix A, Panda S. Daily Eating Patterns and Their Impact on Health and Disease. Trends Endocrinol Metab. 2016 Feb;27:69-83.

19. Kliewer KL, Ke JY, Lee HY, Stout MB, Cole RM, Samuel VT, Shulman GI, Belury MA. Short-term food restriction followed by controlled refeeding promotes gorging behavior, enhances fat deposition, and diminishes insulin sensitivity in mice. J Nutr Biochem. 2015; 7:721-8.

20. Kahleova H, Belinova L, Malinska H, Oliyarnyk O, Trnovska J, Skop V, Kazdova L, Dezortova M, Hajek M, Tura A et al. Eating two larger meals a day (breakfast and lunch) is more effective than six smaller meals in a reduced-energy regimen for patients with type 2 diabetes: a randomised crossover study. Diabetologia. 2014 Aug;57:1552-60.
21. Heden TD, Liu Y, Sims LJ, Whaley-Connell AT, Chockalingam A, Dellsperger KC, Kanaley JA. Meal frequency differentially alters postprandial triacylglycerol and insulin concentrations in obese women. Obesity. 2013;21:123-9.

22. Mattson MP. The need for controlled studies of the effects of meal frequency on health. GLAN Lancet. 2005;365:1978-80.

23. Anderson GL, Manson J, Wallace R, Lund B, Hall D, Davis S, Shumaker S, Wang CY, Stein E, Prentice RL. Implementation of the Women's Health Initiative study design. Ann Epidemiol. 2003 Oct;13:S5-17.

24. Design of the Women's Health Initiative clinical trial and observational study. The Women's Health Initiative Study Group. Control Clin Trials. 1998;19:61-109.

25. Howard BV, Aragaki AK, Tinker LF, Allison M, Hingle MD, Johnson KC, Manson JE, Shadyab AH, Shikany JM, Snetselaar LG, et al. A Low-Fat Dietary Pattern and Diabetes: A Secondary Analysis From the Women's Health Initiative Dietary Modification Trial. Diabetes Care. 2018 Apr;41:680-7.

26. Tinker LF, Bonds DE, Margolis KL, Manson JE, Howard BV, Larson J, Perri MG, Beresford SA, Robinson JG, Rodriguez B, et al. Low-fat dietary pattern and risk of treated diabetes mellitus in postmenopausal women: the Women's Health Initiative randomized controlled dietary modification trial. Arch Intern Med. 2008 Jul 28;168:1500-11.

27. Neuhouser ML, Di C, Tinker LF, Thomson C, Sternfeld B, Mossavar-Rahmani Y, Stefanick ML, Sims S, Curb JD, LaMonte M, et al. Physical activity assessment: biomarkers and self-report of activity-related energy expenditure in the WHI. Am J Epidemiol. 2013 Mar 15;177:576-85.
28. Patterson RE, Kristal AR, Tinker LF, Carter RA, Bolton MP, Agurs-Collins T. Measurement characteristics of the Women’s Health Initiative food frequency questionnaire. Ann Epidemiol. 1999 Apr;9:178-87.

29. Guenther PM, Reedy J, Krebs-Smith SM. Development of the Healthy Eating Index-2005. J Am Diet Assoc. 2008 Nov;108:1896-901.

30. Conway JM, Ingwersen LA, Vinyard BT, Moshfegh AJ. Effectiveness of the US Department of Agriculture 5-step multiple-pass method in assessing food intake in obese and nonobese women. Am J Clin Nutr. 2003 May;77:1171-8.

31. Margolis KL, Lihong Q, Brzyski R, Bonds DE, Howard BV, Kempainen S, Simin L, Robinson JG, Safford MM, Tinker L, et al. Validity of diabetes self-reports in the Women’s Health Initiative: comparison with medication inventories and fasting glucose measurements. Clin Trials. 2008;5:240-7.

32. Jackson JM, DeFor TA, Crain AL, Kerby TJ, Strayer LS, Lewis CE, Whitlock EP, Williams SB, Vitolins MZ, Rodabough, RJ, et al. Validity of diabetes self-reports in the Women’s Health Initiative. Menopause. 2014 Aug;21:861-8.

33. Ritenbaugh C, Patterson RE, Chlebowski RT, Caan B, Fels-Tinker L, Howard B, Ockene J. The Women’s Health Initiative Dietary Modification trial: overview and baseline characteristics of participants. Ann Epidemiol. 2003 Oct;13:S87-97.

34. Ma Y, Hebert JR, Manson JE, Balasubramanian R, Liu S, Lamonte MJ, Bird CE, Ockene JK, Qiao Y, Olendzki, B, et al. Determinants of racial/ethnic disparities in incidence of diabetes in postmenopausal women in the U.S.: The Women’s Health Initiative 1993-2009. Diabetes Care. 2012 Nov;35:2226-34.
35. Manini TM, Lamonte MJ, Seguin RA, Manson JE, Hingle M, Garcia L, Stefanick ML, Rodriguez B, Sims S, Limacher M. Modifying effect of obesity on the association between sitting and incident diabetes in post-menopausal women. Obesity (Silver Spring). 2014 Apr;22:1133-41.
36. Prentice RL, Aragaki AK, Howard BV, Chlebowski RT, Thomson CA, Van Horn L, Tinker LF, Manson JE, Anderson GL, Kuller LE, et al. Low-Fat Dietary Pattern among Postmenopausal Women Influences Long-Term Cancer, Cardiovascular Disease, and Diabetes Outcomes. J Nutr. 2019 Sep 1;149:1565-74.
37. Dubowitz T, Ghosh-Dastidar M, Eibner C, Slaughter ME, Fernandes M, Whitsel EA, Bird CE, Jewell A, Margolis KL, Li W, et al. The Women’s Health Initiative: The food environment, neighborhood socioeconomic status, BMI, and blood pressure. Obesity (Silver Spring). 2012 Apr;20:862-71.
38. Munsters MJ, Saris WH. Effects of meal frequency on metabolic profiles and substrate partitioning in lean healthy males. PLoS One. 2012;7:e38632.
39. Navin Cristina TJ, Stewart Williams JA, Parkinson L, Sibbritt DW, Byles JE. Identification of diabetes, heart disease, hypertension and stroke in mid- and older-aged women: Comparing self-report and administrative hospital data records. Geriatr Gerontol Int. 2016 Jan;16:95-102.
40. Geiss LS, Wang J, Cheng YJ, Thompson TJ, Barker L, Li Y, Albright AL, Gregg EW. Prevalence and incidence trends for diagnosed diabetes among adults aged 20 to 79 years, United States, 1980-2012. JAMA. 2014 Sep 24;312:1218-26.
41. Hatori M, Vollmers C, Zarrinpar A, DiTacchio L, Bushong EA, Gill S, Leblanc M, Chaix A, Joens M, Fitzpatrick JA, et al. Time-restricted feeding without reducing caloric
intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 2012;15:848-60.

42. Mattson MP, Allison DB, Fontana L, Harvie M, Longo VD, Malaisse WJ, Mosley M, Notterpek L, Ravussin E, Scheer FA, et al. Meal frequency and timing in health and disease. Proc Natl Acad Sci U S A. 2014 Nov 25;111:16647-53.

43. McCrory MA, Campbell WW. Effects of eating frequency, snacking, and breakfast skipping on energy regulation: symposium overview. J Nutr. 2011 Jan;141:144-7.

44. Horne BD, Muhlestein JB, Anderson JL. Health effects of intermittent fasting: hormesis or harm? A systematic review. Am J Clin Nutr. 2015 Aug;102:464-70.

45. Jenkins DJ, Wolever TM, Vuksan V, Brighenti F, Cunnane SC, Rao AV, Jenkins AL, Buckley G, Patten R, Singer W, et al. Nibbling versus gorging: metabolic advantages of increased meal frequency. NE J Med. 1989;321:929-34.

46. Perrigue MM, Drewnowski A, Wang CY, Song X, Kratz M, Neuhouser ML. Randomized Trial Testing the Effects of Eating Frequency on Two Hormonal Biomarkers of Metabolism and Energy Balance. Nutr Cancer. 2017 Jan;69:56-63.

47. Delahanty LM, Meigs JB, Hayden D, Williamson DA, Nathan DM. Psychological and behavioral correlates of baseline BMI in the diabetes prevention program (DPP). Diabetes Care. 2002 Nov;25:1992-8.

48. Ballon A, Neuenschwander M, Schlesinger S. Breakfast Skipping Is Associated with Increased Risk of Type 2 Diabetes among Adults: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. J Nutr. 2019 Jan 1;149:106-13.
49. St-Onge MP, Ard J, Baskin ML, Chiuve SE, Johnson HM, Kris-Etherton P, Varady K. Meal Timing and Frequency: Implications for Cardiovascular Disease Prevention: A Scientific Statement From the American Heart Association. Circulation. 2017 Feb 28;135:e96-e121.

50. Kant AK. Eating patterns of US adults: Meals, snacks, and time of eating. Physiol Behav. 2018 Sep 1;193:270-8.

51. Leech RM, Timperio A, Livingstone KM, Worsley A, McNaughton SA. Temporal eating patterns: associations with nutrient intakes, diet quality, and measures of adiposity. Am J Clin Nutr. 2017 Oct;106:1121-30.

52. Kahleova H, Lloren JI, Mashchak A, Hill M, Fraser GE. Meal Frequency and Timing Are Associated with Changes in Body Mass Index in Adventist Health Study 2. J Nutr. 2017 Sep;147:1722-8.

53. Zhu Y, Hollis JH. Associations between eating frequency and energy intake, energy density, diet quality and body weight status in adults from the USA. Br J Nutr. 2016 Jun;115:2138-44.

54. Wang YQ, Zhang YQ, Zhang F, Zhang YW, Li R, Chen GX. Increased Eating Frequency Is Associated with Lower Obesity Risk, But Higher Energy Intake in Adults: A Meta-Analysis. Int J Environ Res Public Health. 2016;13.

55. Neuhouser ML, Clowry C, Beatty SJ, Wang CY, Drewnowski A, Perrigue MM. Rationale and design of the frequency of eating and Satiety Hormones (FRESH) study: A randomized cross-over clinical trial. Contemp Clin Trials Commun. 2019 Jun;14:100334.
56. Duval K, Strychar I, Cyr MJ, Prud'homme D, Rabasa-Lhoret R, Doucet E. Physical activity is a confounding factor of the relation between eating frequency and body composition. Am J Clin Nutr. 2008 Nov;88:1200-5.

57. Leech RM, Timperio A, Worsley A, McNaughton SA. Eating patterns of Australian adults: associations with blood pressure and hypertension prevalence. Eur J Nutr. 2019 Aug;58:1899-909.

58. Neuhouser ML, Tinker L, Shaw PA, Schoeller D, Bingham SA, Horn LV, Beresford SA, Caan B, Thomson C, Satterfield S, et al. Use of recovery biomarkers to calibrate nutrient consumption self-reports in the Women's Health Initiative. Am J Epidemiol. 2008 May 15;167:1247-59.

59. Prentice RL, Mossavar-Rahmani Y, Huang Y, Van Horn L, Beresford SA, Caan B, Tinker L, Schoeller D, Bingham S, Eaton CB, et al. Evaluation and comparison of food records, recalls, and frequencies for energy and protein assessment by using recovery biomarkers. Am J Epidemiol. 2011 Sep 1;174:591-603.

60. Leech RM, Worsley A, Timperio A, McNaughton SA. The role of energy intake and energy misreporting in the associations between eating patterns and adiposity. Eur J Clin Nutr. 2018 Jan;72:142-7.

61. Murakami K, Livingstone MBE. Eating frequency in relation to body mass index and waist circumference in British adults. Int J Obes. 2014; 38:1200-6.
Table 1. Baseline characteristics of participants in the Women’s Health Initiative Dietary Modification Trial with available 24-hr dietary recall data at year 3, by number of eating occasions per day (n=2159)

Characteristic	Number of eating occasions per day
	1–3 (n = 795)
	4 (n = 713)
	5+ (n = 651)
Mean ±SD or N (%)	
Demographics	
Age (y)	62.6 ± 6.7
	62.0 ± 6.8
	60.4 ± 6.5
NSES¹	73.1 ± 10.5
	74.6 ± 9.3
	75.2 ± 8.8
Race/ethnicity	
Non-Hispanic white	420 (52.8)
	434 (60.9)
	428 (65.8)
Black	220 (27.7)
	145 (20.3)
	91 (14.0)
Hispanic	72 (9.06)
	53 (7.43)
	50 (7.68)
Asian / Pacific Islander	48 (6.04)
	47 (6.59)
	60 (9.22)
Other / unknown	35 (4.40)
	34 (4.77)
	22 (3.38)
Anthropometry	
Weight (kg)	78.0 ± 17.5
	75.0 ± 15.1
	74.3 ± 16.0
Body mass index (kg/m²)	29.8 ± 6.3
	28.6 ± 5.2
	28.3 ± 5.4
Waist circumference (cm)	89.7 ± 13.8
	87.7 ± 12.6
	86.4 ± 12.9
Physical activity (MET-hr/wk)	10.2 ± 13.1
	9.7 ± 10.8
	10.6 ± 12.7
Current Smoking (yes)	47 (6.0)
	44 (6.3)
	42 (6.5)
Family history of diabetes³	277 (37.4)
	247 (36.5)
	242 (38.9)
Current Smoking (yes)	47 (6.0)
	44 (6.3)
	42 (6.5)
Family history of diabetes³	277 (37.4)
	247 (36.5)
	242 (38.9)
Dietary intake²	
Energy (kcal/d)	1753 ± 731
	1772 ± 693
	1831 ± 723
Total sugar (g/d)	94.0 ± 45.7
	96.2 ± 44.5
	98.1 ± 45.3
Added sugar (g/d)	51.8 ± 35.3
	51.2 ± 31.1
	53.6 ± 33.5
Diet quality (HEI-2005)	63.2 ± 10.3
	64.1 ± 10.3
	64.0 ± 9.5
Energy from 24-hr recall (kcal)	1431 ± 495
	1568 ± 523
	1648 ± 510

¹ NSES = neighborhood socioeconomic status
² Baseline intake assessed by food frequency questionnaire
³ Type 2 diabetes
Table 2. Associations of daily eating occasions with incident diabetes in the Women’s Health Initiative Dietary Modification Trial

Eating frequency	n events / total (%)	Model 1¹	Model 2²
	HR (95% CI)	HR (95% CI)	
1–3 times/day	117/795 (14.7)	1.0 (ref)	1.0 (ref)
4 times/day	129/713 (18.1)	1.18 (0.92 - 1.51)	1.38 (1.03 - 1.84)
5+ times/day³	86/651 (13.2)	0.80 (0.61 - 1.06)	0.95 (0.70 - 1.29)

1. Model 1 adjusted for age
2. Model 2 adjusted for age, NSES, race/ethnicity, BMI, waist circumference, energy intake from 24-hr recall, family history of type 2 diabetes, physical activity, HEI-2005, time between baseline and 24-hr recall, and WHI clinical trial arm(s)
3. range -5-10 times/day
Table 3. Associations of daily eating occasions with incident diabetes in the Women’s Health Initiative Dietary Modification Trial, stratified by BMI**, race/ethnicity and age*

Eating frequency	BMI < 30 kg/m²			BMI ≥ 30 kg/m²		
	n events / total (%)	HR (95% CI)		n events / total (%)	HR (95% CI)	
1–3 times/day	43 / 461 (9.33)	1.0 (ref)		74 / 331 (22.4)	1.0 (ref)	
4 times/day	71 / 460 (15.4)	1.55 (1.00 - 2.39)		58 / 251 (23.1)	1.14 (0.76 - 1.69)	
5+ times/day¹	42 / 428 (9.81)	0.80 (0.47 - 1.34)		44 / 222 (19.8)	0.72 (0.45 - 1.14)	
Non-Hispanic white				All other race/ethnicities		
1–3 times/day	50 / 420 (11.9)	1.0 (ref)		67 / 375 (17.9)	1.0 (ref)	
4 times/day	66 / 434 (15.2)	1.45 (0.95 - 2.21)		63 / 279 (22.6)	1.26 (0.85 - 1.89)	
5+ times/day¹	47 / 428 (11.0)	0.71 (0.43 - 1.15)		39 / 223 (17.5)	0.86 (0.52 - 1.41)	
Age < 60 y				Age ≥ 60 y		
1–3 times/day	49 / 268 (18.3)	1.0 (ref)		68 / 527 (12.9)	1.0 (ref)	
4 times/day	46 / 268 (17.2)	1.13 (0.71 - 1.82)		83 / 445 (18.7)	1.61 (1.11 - 2.33)	
5+ times/day¹	45 / 319 (14.1)	1.06 (0.48 - 1.32)		41 / 332 (12.4)	0.77 (0.47 - 1.24)	

* Models are adjusted for age, NSES, race/ethnicity, waist circumference, physical activity, family history of type 2 diabetes, HEI-2005, HEI-2005, energy intake from 24-hr recall, time between baseline and 24-hr recall, and clinical trial arm(s)

** BMI <30 kg/m² combines normal and overweight; BMI ≥30.0 kg/m² is obese.
¹ Range -5-10 times/day