Investigation of copper lattice structures using a Split Hopkinson Pressure Bar

Sören Bieler1,∗, Sung Gyu Kang2, Daniel Heußen1, Rajaprakash Ramachandramoorthy2, Gerhard Dehm2, and Kerstin Weinberg1

1 Lehrstuhl für Festkörpermechanik, Universität Siegen, Paul-Bonatz-Straße 9-11, 57068 Siegen, Germany
2 Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
3 Fraunhofer-Institut für Lasertechnik ILT, Steinbachstr. 15, 52074 Aachen, Germany

The paper deals with experiments on 3D printed lattices in a Split Hopkinson Pressure Bar. An energy-based evaluation of the measured wave signals enables us to compare the damping properties of two different copper lattice structures.

© 2021 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.

1 Introduction

The ability to model a wide variety of structures through 3D printing processes is a relatively new field, which is highly important for many disciplines. The response of such structures on mechanical or thermal loadings is therefore of great interest. This paper presents experiments on high strain-rate loading of printed copper lattices performed with a Split Hopkinson Pressure Bar (SHPB).

Typically, the SHPB is used to determine elastic and plastic material properties, and a cylindrical probe made of homogenous material works as a specimen. The conventional evaluation of the SHPB experiment presumes a uniform state of stress in the specimen. Therefore samples with a micro-structure are only suitable to a limited extent for determining material properties since the waves do not move through the specimen’s body over a homogeneous cross-section.

With the aim to understand the energy absorption of 3D-printed structures under impact, we chose here an energy-based evaluation of the measured signals. Our SHPB device uses aluminum material for the striker, the incident, and the transmission bar. The bars have a diameter of 20 mm and a length of 1800 mm. Strain gauges are applied in the center of each bar, which allows us to record the propagating pulses. Further details on our setup can be found in [1, 2].

2 Copper lattice structures

We investigate two types of 3D-printed lattice structures. They have an octet-truss and a F2CCZ lattice as unit-cells; both show different nodal connectivity. The truss diameter and the length of the unit cell are 200 µm and 1 mm, respectively. Each lattice structure has $5 \times 5 \times 5$ unit-cell repetitions. For the fabrication of specimens, a system with infra-red laser source was used. The material was pure Cu-ETP powder with diameter of 16-63 µm. Laser power, scan speed, and layer height are 600 W, 800 mm/s, and 30 µm, respectively. We used a contour scanning strategy, and the beam compensation was 70 µm. The fabricated lattices are cube-shaped with a length of 5 mm, as shown in Fig. 1.

![Fig. 1: Two copper lattice structures: octet truss (left) and F2CCZ truss (right)](image)

3 Energy of specimen deformation in the SHPB

The elastic energy of a pulse in a bar can be determined as

$$ W = \int_V w^2 \, dV = A c t_0 \int_0^\epsilon \sigma(\epsilon') \, d\epsilon' \quad \text{with} \quad t_0 = 2 \frac{l_{\text{Striker}}}{c} \quad (1) $$

∗ Corresponding author: e-mail soeren.bieler@uni-siegen.de, phone +49 (0271) 740-4644, fax +49 (0271) 740-12225

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
where \(V, A \) and \(c \) are the volume, the cross section area and the elastic wave speed of the bar, respectively. The duration of the pulse is \(t_0 \) and determined by the length of the striker in a SHPB. Assuming a rectangular strain pulse and an elastic behavior of the bar, \(\sigma = E \varepsilon \), we obtain for a constant Young’s modulus \(E \) after integration: \(W(\varepsilon) = \frac{1}{2}EAc t_0 \varepsilon^2 \). In the SHPB experiment three waves are measured: the incident \((I) \), the reflected \((R) \) and the transmitted strain pulse \((T) \). For each of these pulses corresponding energy can be calculated:

\[
W_I = \frac{1}{2}EAc t_0 \varepsilon_I^2 \quad W_R = \frac{1}{2}EAc t_0 \varepsilon_R^2 \quad W_T = \frac{1}{2}EAc t_0 \varepsilon_T^2
\]

For a system of two bars without a specimen, the energy balance holds that: \(W_I = W_R + W_T \). When a specimen is sandwiched between the bars, an energy difference is measured. This energy difference can be calculated accordingly, \(\Delta W = W_I - W_R - W_T \). We assume the specimen to be small and in stress equilibrium [3], i.e.,

\[
\varepsilon_T = \varepsilon_I + \varepsilon_R
\]

and after evaluation of these expressions, we obtain the energy difference:

\[
\Delta W = EAc t_0 (\varepsilon_I + \varepsilon_R) (\varepsilon_I - \varepsilon_T) .
\]

This energy is stored in the specimen and can considered to be the damping of the propagating wave. Depending on the specific material used, this energy can be converted into elastic, viscoelastic or elastic-plastic deformation.

![Wave signals measured from strain gauges of the SHPB with a striker length of 300 mm and a velocity of 3.3 m/s](image)

Fig. 2: Wave signals measured from strain gauges of the SHPB with a striker length of 300 mm and a velocity of 3.3 m/s

4 Results and conclusion

From the measured incident, reflected, and transmitted signals of the SHPB, we calculated the relative energy difference for the two different copper lattice structures as

\[
\frac{\Delta W}{W_I} (\text{F2CCZ}) = 0.218 \quad \text{and} \quad \frac{\Delta W}{W_I} (\text{octet-truss}) = 0.229 .
\]

The stored energy of two lattice structures differs because of their different deformation mechanisms. The octet-truss lattice has higher nodal connectivity than the F2CCZ and so the deformation is mostly stretch-dominated [4]. Apart from that, the F2CCZ lattice has relatively low nodal connectivity, and the nodal bending or shear lowers the compressive strength of the structure. Therefore, an octet-truss structure requires more energy to deform than a F2CCZ structure. Our SHPB results confirm this general observation.

This short study demonstrates that specimens with internal structure can be characterized and that the energy-based SHPB approach can be applied to 3D architected material to evaluate the energy or shock absorption efficiency.

Acknowledgements Open access funding enabled and organized by Projekt DEAL.

References

[1] Weinberg, K.; Khosravani, M.; Thimm, B.; Reppel, T.; Bogunia, L.; Aghayan, S. and Nötzel, R. Hopkinson bar experiments as a method to determine impact properties of brittle and ductile materials. *GAMM-Mitteilungen – Surveys for Applied Mathematics and Mechanics*, 41(2):e201800008, 2018.

© 2021 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.

www.gamm-proceedings.com
[2] Khosravani, M.; Silani, M.; Weinberg, K.: An investigation of the mechanical properties of materials at very high rates of loading, Theoretical and Applied Fracture Mechanics 93, 302–310, 2018.

[3] Chen, W.; Song, B.: Split Hopkinson (Kolsky) bar: design, testing and applications, Springer Science & Business Media, 2010.

[4] Maconachie, T. et al.: SLM lattice structures: Properties, performance, applications, and challenges, Materials and Design 183 (2019) 108137.