THE Na 8200 Å DOUBLET AS AN AGE INDICATOR IN LOW-MASS STARS

JOSHUA E. SCHLIEDER1,2,6, SÉBASTIEN LÉPINE3, EMILY RICE3,7, MICHAL SIMON1,6, DRUMMOND FIELDING4, AND RACHAEL TOMASINO5

1 Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794, USA; michal.simon@stonybrook.edu, schlieder@mpia-hd.mpg.de
2 Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany
3 Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA; lepine@amnh.org, erice@amnh.org
4 Department of Physics and Astronomy, Johns Hopkins University, 366 Bloomberg Center, 3400 North Charles Street, Baltimore, MD 21218, USA; dfieldi1@jhu.edu
5 Department of Physics, Central Michigan University, Mount Pleasant, MI 48859, USA; tomas1r@cmich.edu

Received 2011 August 4; accepted 2012 February 18; published 2012 April 11

ABSTRACT

We investigate the use of the gravity sensitive neutral sodium (Na i) doublet at 8183 Å and 8195 Å (Na 8200 Å doublet) as an age indicator for M dwarfs. We measured the Na doublet equivalent width (EW) in giants, old dwarfs, young dwarfs, and candidate members of the β Pic moving group using medium-resolution spectra. Our Na 8200 Å doublet EW analysis shows that the feature is useful as an approximate age indicator in M-type dwarfs with \((V - K_s) \geq 5.0\), reliably distinguishing stars older and younger than 100 Myr. A simple derivation of the dependence of the Na EW on temperature and gravity supports the observational results. An analysis of the effects of metallicity shows that this youth indicator is best used on samples with similar metallicity. The age estimation technique presented here becomes useful in a mass regime where traditional youth indicators are increasingly less reliable, is applicable to other alkali lines, and will help identify new low-mass members in other young clusters and associations.

Key words: open clusters and associations: individual (Beta Pictoris moving group) – stars: atmospheres – stars: pre-main sequence

Online-only material: color figures

1. INTRODUCTION

The members of nearby, young moving groups (NYMGs; see Zuckerman & Song 2004; Torres et al. 2008, hereafter T08) are important because (1) they represent well-characterized samples with close, young stars for the study of their astrophysical properties at \(>3\) times the resolution possible in the nearest star-forming regions, (2) study of NYMG kinematics can infer the recent star formation history in the solar neighborhood, and (3) gas giant planets are still self-luminous from gravitational collapse at ages 10–100 Myr. This leads to an increased contrast ratio between planet and host. Thus, NYMG members are of great interest to planet hunters (see Lafrenière et al. 2008; Biller et al. 2010; Wahhaj et al. 2011). However, it is difficult to identify the members of spectral types (SpTy) later than M4 because the usual age diagnostics become unreliable.

West et al. (2008, 2011) showed that the fraction of Hα emitting M dwarfs in the Sloan Digital Sky Survey (York et al. 2000) Data Release 7 (Abazajian et al. 2009) spectroscopic sample is strongly dependent on SpTy. Nearly all stars later than \(\sim\)M4 emit Hα, while Hα emission is only seen in early-type M dwarfs that are young (\(<\)1 Gyr). This is probably a consequence of the change in the magnetic dynamo with the onset of fully convective interiors and also applies to more energetic emission, such as X-rays, since they are often correlated with Hα (see Covey et al. 2008). Li absorption can also serve as an age indicator in low-mass stars, but does not reliably reproduce the expected ages of young cluster members when observations are compared to theory (see Yee & Jensen 2010). This discrepancy may be explained by the dependence of Li depletion on stellar accretion history (Baraffe & Chabrier 2010). Lithium is also depleted quickly in low-mass stars and may be absent by the ages of the NYMGs (Stahler & Palla 2004).

Gravity sensitive photospheric lines, such as those of the alkali metals Na and K, can also indicate a star’s age. It is well known that the neutral sodium (Na i) lines in the optical and near-infrared are sensitive to photospheric surface gravity in the sense that the stronger the gravity, the greater the line equivalent width (EW). As the radius of the star decreases on the approach to the main sequence, the photospheric gravity, \(g = GM_*/R_+^2\), increases, and the line widths change accordingly. Alkali atoms are easily pressure broadened because of their single valence electron. Early studies showed that Na i doublet at \(\sim5900\) Å (Na D) is useful as a luminosity class indicator in late-K and early-M SpTy’s (Luyten 1923; Spinrad 1962). Unfortunately TiO absorption renders the Na D EW useless for these purposes beyond SpTy’s \(\sim\)M2.

Spectroscopic observations of candidate young stars in Taurus, Upper-Scorpius, the Pleiades, and the Solar neighborhood reveal that the Na i subordinate doublet at 8183 and 8195 Å (Na 8200 Å) is useful for distinguishing young, mid-M, and later-type dwarfs from field dwarfs and giants (Steele & Jameson 1995, hereafter SJ95; Schiavon et al. 1995; Briceño et al. 1998; Martín et al. 2004; Slesnick et al. 2006a, 2006b, 2008; Takagi et al. 2010). These empirical results exhibit sufficient EW scatter such that the Na i measurement does not provide a precise estimate of age, but does reliably distinguish the stars in young clusters, such as the Pleiades (\(\sim\)125 Myr), and billion year old stars in the field (Martín et al. 2010, hereafter M10).
Here we concentrate on the doublet at 8200 Å (Section 2) and measure the EW in the spectra of old dwarfs, giant standards, and candidate members of the β Pic moving group (BMPG, age 10–20 Myr; T08). We interpret the empirical gravity sensitive behavior of the doublet using calculated, synthetic spectra (Section 3) and line formation of very optically thick, pressure broadened lines in stellar atmospheres (Section 4). A discussion and summary follow in Sections 5 and 6.

2. THE Na 8200 Å DOUBLET, SAMPLE SELECTION, AND MEASUREMENTS

The Na D doublet originates in the 3s ground state of Na i with wavelengths 5890 Å (3s 2S 1/2−3p 2P 1/2) and 5896 Å (3s 2S 1/2−3p 2P 3/2). The 8200 Å doublet (Na i subordinate doublet) is the transition split 3p upper level of the Na D lines at 8183 (3p 2P 1/2−3d 2D 3/2) and 8195 Å (3p 2P 1/2−3d 2D 5/2; Figure 1; Bashkin & Stoner 1975). Figure 2 shows a representative sample of low-mass dwarf spectra. The Na D doublet becomes difficult to observe in stars with SpTy’s later than K7 (SJ95, their Figure 2).

2.1. Samples and Observations

To gauge the gravity sensitivity of the Na 8200 Å doublet we used four samples of stars with varying surface gravities.

High‐velocity M Dwarfs: dwarf stars with large transverse velocities (HV; V sin i > 75 km s⁻¹) are kinematically consistent with being members of the thick disk population. Thus, they are expected to be old (>1 Gyr) and have surface gravity log(g) ≲ 5.0 (Drilling & Landolt 2000, hereafter DL2000). We chose 203 solar metallicity, HV K7−M9 dwarfs from the LSPM catalogs (Lépine & Shara 2005a, hereafter LS05a, 2005b) for follow-up. The metal content of these stars was determined using the procedures detailed in Lépine et al. (2007, hereafter L07). These stars were observed using several medium-resolution spectrographs on different telescopes (S. Lépine 2011, private communication).

Giants. The surface gravities of red giants lie in the range 1.0 ≤ log(g) ≤ 3.0 (DL2000). We selected 4 M giants from the

Stony Brook/SMARTS Spectral Standards Library⁸,⁹ (Table 1). The giants were observed using the RC Cassegrain Spectrograph on the SMARTS 1.5 m telescope at the Cerro Tololo Interamerican Observatory (CTIO) by service observers using grating 58 in the first order. These settings provide a spectral range 6000–9000 Å and a resolution of 6.5 Å.

Known β Pic moving group. Members of the 10–20 Myr old BMPG are expected to have surface gravities intermediate to giants and old dwarfs. The radii of these dwarfs are ≤ 2 times their main-sequence radius. Therefore, we expect their log(g)’s to be ≤ 0.3 of the field dwarfs. We chose a sample of 11 late-type members from T08, Schlieder et al. (2010), and J. E. Schlieder et al. (2012, in preparation) for follow-up (Table 2). Observations were made during 2009 December using the MKIII spectrograph on the 1.3 m McGraw-Hill telescope at the MDM Observatory. We used the 300 line mm⁻¹ grating blazed at 8000 Å in the first order to produce spectra with a resolution of 6.0 Å.

Young β Pic moving group candidates. We studied a sub-sample of 18 probable young candidates (PYCs) selected via proper motions, photometry, and activity as a youth indicator in Schlieder et al. (2012). This subsample is comprised of two types of PYCs, those for which the activity-based youth indicator V − Ks < 5.0) and those for which activity is an ambiguous youth indicator (V − Ks < 5.0). We refer to the first subsample as candidates with reliable youth indicators

Table 1

Name	α(2000.0)	δ(2000.0)	V (mag)	Ks (mag)	SpTy	EW (Å)
HD 1879	5.768131	−15.942617	6.5	2.3	M2III	1.8
HD 27598	65.172214	−16.830004	7.1	1.8	M4III	1.8
HD 198026	311.934330	−5.0276032	4.5	−0.3	M3III	1.3
HD 207076	326.632640	−2.212806	6.8	−1.7	M7III	0.6

Table 2

Name	α(2000.0)	δ(2000.0)	V (mag)	Ks (mag)	SpTy	EW (Å)
TYC 1208 468 1b	24.414167	18.592500	10.7	6.7	K7V	1.6
HIP 11152b	35.860833	22.735278	11.6	7.3	M1V	2.1
AG Tri	36.872083	30.973611	10.2	7.1	K7V	1.7
BD+05 378d	40.357917	5.988333	10.2	7.1	K7V	1.7
PM 10439+3723b	70.987083	37.384250	13.4	8.8	M2V	3.1
V 1005 Ori	74.895000	1.783611	10.3	6.3	M0V	2.0
TYC 1281 1672 1b	75.205375	15.450194	11.0	7.6	K7V	1.8
PYC 105019+0108d	75.485625	1.145250	13.2	7.7	M5V	3.3
V 1311 Ori	83.018750	−3.091389	11.4	7.0	M2V	2.7
PM 107295+3556b	112.379900	35.393389	12.1	7.8	M1V	2.5
PYC 212176+0137	324.417500	1.620556	13.6	7.9	M5V	3.6
BD-13 6424c	353.128725	−12.264444	10.9	6.6	M0V	2.2

Notes.

⁸ ICRS epoch J2000.0 R.A. and decl. in decimal degrees.
⁹ Schlieder et al. (2010).
ARGE Torres et al. (2008).
⁵ ICRS epoch J2000.0 R.A. and decl. in decimal degrees.
⁶ Schlieder et al. (2010).
⁷ J. E. Schlieder et al. (2012, in preparation).
The Na 8200 Å doublet becomes prominent around SpTy M0 (see Figure 2). We placed all spectra on the same 3 Å resolution and measured the doublet in all stars where it was apparent in a visual inspection of the spectra. Since the Na 8200 Å doublet is unresolved in our spectra, we chose a central wavelength (λ_c) of 8190 Å and integrated the flux in a 22 Å region around λ_c.

To normalize the line width, we calculated the average flux in pseudo-continuum regions blueward and redward of the doublet. For all dwarf samples these regions were 8149–8169 Å and 8236–8258 Å. Slightly different continuum regions were chosen for the giants but λ_c remained the same. We maintained the same measurement procedure, identical λ_c’s and nearly identical continuum regions despite the diverse range of instruments used. This minimizes the systematic uncertainty introduced by the use of different instruments. Our code allowed widths to be measured on a star-by-star basis while monitoring signal to noise, thereby avoiding particularly noisy measurements.

Figure 3 shows the Na 8200 Å EW as a function of ($V - K_s$) for the observed samples. The V magnitudes of the dwarf samples were calculated from USNO1.0-B (Monet et al. 2003) B, R, and I values following the methods described in LS05a, K_s magnitudes were drawn from Two Micron All Sky Survey (2MASS; Skrutskie et al. 2006). Figure 3 shows a second-order polynomial fit to the HV M dwarf data (dashed gray line) with measurement uncertainties. The individual data for the HV SpTy’s for all dwarf samples were determined using the methods described in Lépine et al. (2003). The giant standard spectra were reduced by F. Walter using his pipeline procedures (Walter et al. 2004). Giant SpTy’s were taken from the Stony Brook/SMARTS Spectral Standards Library. The telluric H$_2$O feature that contaminates the 8200 Å doublet was corrected in all spectra using custom software written in IDL (S. Lépine, private communication). If uncorrected, this feature can increase the measured EW of the doublet by \sim10% (SJ95).

The Na 8200 Å doublet becomes prominent around SpTy M0 (see Figure 2). We placed all spectra on the same 3 Å resolution and measured the doublet in all stars where it was apparent in a visual inspection of the spectra. Since the Na 8200 Å doublet is unresolved in our spectra, we chose a central wavelength (λ_c) of 8190 Å and integrated the flux in a 22 Å region around λ_c.

To normalize the line width, we calculated the average flux in pseudo-continuum regions blueward and redward of the doublet. For all dwarf samples these regions were 8149–8169 Å and 8236–8258 Å. Slightly different continuum regions were chosen for the giants but λ_c remained the same. We maintained the same measurement procedure, identical λ_c’s and nearly identical continuum regions despite the diverse range of instruments used. This minimizes the systematic uncertainty introduced by the use of different instruments. Our code allowed widths to be measured on a star-by-star basis while monitoring signal to noise, thereby avoiding particularly noisy measurements.

Figure 3 shows the Na 8200 Å EW as a function of ($V - K_s$) for the observed samples. The V magnitudes of the dwarf samples were calculated from USNO1.0-B (Monet et al. 2003) B, R, and I values following the methods described in LS05a, K_s magnitudes were drawn from Two Micron All Sky Survey (2MASS; Skrutskie et al. 2006). Figure 3 shows a second-order polynomial fit to the HV M dwarf data (dashed gray line) with measurement uncertainties. The individual data for the HV SpTy’s for all dwarf samples were determined using the methods described in Lépine et al. (2003). The giant standard spectra were reduced by F. Walter using his pipeline procedures (Walter et al. 2004). Giant SpTy’s were taken from the Stony Brook/SMARTS Spectral Standards Library. The telluric H$_2$O feature that contaminates the 8200 Å doublet was corrected in all spectra using custom software written in IDL (S. Lépine, private communication). If uncorrected, this feature can increase the measured EW of the doublet by \sim10% (SJ95).

The Na 8200 Å doublet becomes prominent around SpTy M0 (see Figure 2). We placed all spectra on the same 3 Å resolution and measured the doublet in all stars where it was apparent in a visual inspection of the spectra. Since the Na 8200 Å doublet is unresolved in our spectra, we chose a central wavelength (λ_c) of 8190 Å and integrated the flux in a 22 Å region around λ_c.

To normalize the line width, we calculated the average flux in pseudo-continuum regions blueward and redward of the doublet. For all dwarf samples these regions were 8149–8169 Å and 8236–8258 Å. Slightly different continuum regions were chosen for the giants but λ_c remained the same. We maintained the same measurement procedure, identical λ_c’s and nearly identical continuum regions despite the diverse range of instruments used. This minimizes the systematic uncertainty introduced by the use of different instruments. Our code allowed widths to be measured on a star-by-star basis while monitoring signal to noise, thereby avoiding particularly noisy measurements.

Figure 3 shows the Na 8200 Å EW as a function of ($V - K_s$) for the observed samples. The V magnitudes of the dwarf samples were calculated from USNO1.0-B (Monet et al. 2003) B, R, and I values following the methods described in LS05a, K_s magnitudes were drawn from Two Micron All Sky Survey (2MASS; Skrutskie et al. 2006). Figure 3 shows a second-order polynomial fit to the HV M dwarf data (dashed gray line) with measurement uncertainties. The individual data for the HV SpTy’s for all dwarf samples were determined using the methods described in Lépine et al. (2003). The giant standard spectra were reduced by F. Walter using his pipeline procedures (Walter et al. 2004). Giant SpTy’s were taken from the Stony Brook/SMARTS Spectral Standards Library. The telluric H$_2$O feature that contaminates the 8200 Å doublet was corrected in all spectra using custom software written in IDL (S. Lépine, private communication). If uncorrected, this feature can increase the measured EW of the doublet by \sim10% (SJ95).

The Na 8200 Å doublet becomes prominent around SpTy M0 (see Figure 2). We placed all spectra on the same 3 Å resolution and measured the doublet in all stars where it was apparent in a visual inspection of the spectra. Since the Na 8200 Å doublet is unresolved in our spectra, we chose a central wavelength (λ_c) of 8190 Å and integrated the flux in a 22 Å region around λ_c.

To normalize the line width, we calculated the average flux in pseudo-continuum regions blueward and redward of the doublet. For all dwarf samples these regions were 8149–8169 Å and 8236–8258 Å. Slightly different continuum regions were chosen for the giants but λ_c remained the same. We maintained the same measurement procedure, identical λ_c’s and nearly identical continuum regions despite the diverse range of instruments used. This minimizes the systematic uncertainty introduced by the use of different instruments. Our code allowed widths to be measured on a star-by-star basis while monitoring signal to noise, thereby avoiding particularly noisy measurements.

Figure 3 shows the Na 8200 Å EW as a function of ($V - K_s$) for the observed samples. The V magnitudes of the dwarf samples were calculated from USNO1.0-B (Monet et al. 2003) B, R, and I values following the methods described in LS05a, K_s magnitudes were drawn from Two Micron All Sky Survey (2MASS; Skrutskie et al. 2006). Figure 3 shows a second-order polynomial fit to the HV M dwarf data (dashed gray line) with measurement uncertainties. The individual data for the HV SpTy’s for all dwarf samples were determined using the methods described in Lépine et al. (2003). The giant standard spectra were reduced by F. Walter using his pipeline procedures (Walter et al. 2004). Giant SpTy’s were taken from the Stony Brook/SMARTS Spectral Standards Library. The telluric H$_2$O feature that contaminates the 8200 Å doublet was corrected in all spectra using custom software written in IDL (S. Lépine, private communication). If uncorrected, this feature can increase the measured EW of the doublet by \sim10% (SJ95).
Figure 3. Na 8200 Å EW as a function of \((V−K_s)\) for the stellar samples described in the text (see key). The dashed gray line is a second-order polynomial fit to our HV M dwarf sample (see Section 5 and Figure 8). We used the SDF2000 PMS evolution models to connect a stellar model of a specific mass and age with a model atmosphere of the corresponding \((T_{\text{eff}}, \log(g))\) to plot isochrones and mass tracks. The figure shows that (1) \((V−K_s) \gtrsim 5.0\) BPMG members and some candidates are clearly separated from the HV dwarf sample and are consistent with young model isochrones, (2) hence the 8200 Å doublet is a useful age diagnostic for stars of SpTy \(\sim M4\) and later (to the right of the second, thick, red, dotted line), where activity indicators become unreliable, and (3) for \((V−K_s) < 5.0\) the EW is not useful because of quick convergence to the main sequence. We also show the region where the Na D line is useful as a luminosity class diagnostic (to the left of the first, red, dotted line). The predicted change in EW and color with metallicity is shown in orange.

(A color version of this figure is available in the online journal.)

3. COMPARISON TO MODELS

We compared our observations to model predictions using Siess et al. (2000, hereafter SDF2000)\(^\text{10}\) and Baraffe et al. (1998, hereafter BCAH98)\(^\text{11}\) solar metallicity, pre-main-sequence (PMS) evolutionary models combined with synthetic spectra generated using the PHOENIX stellar atmospheres code (Hauschildt et al. 1999; Rice et al. 2010, hereafter R10). We obtained effective temperature \((T_{\text{eff}})\) and \(\log(g)\) data for grids of PMS models with ages 1 Myr–1 Gyr and masses 0.1\(M_\odot\)–0.5\(M_\odot\). To measure the EW of the 8200 Å doublet for the models we produced theoretical spectra for our \((T_{\text{eff}}, \log(g))\) grid using PHOENIX. We reduced the spectra to 3 Å resolution and measured the doublet EW in the same way as the observed dwarf spectra. Figure 4 shows \(T_{\text{eff}} = 3300\) K theoretical spectra with 4 \(\log(g)\)'s which approximately represents the contraction of a 0.2\(M_\odot\) star to the main sequence. The increase in Na line width with \(\log(g)\) is apparent.

In Figure 5, we show trimmed, convolved PHOENIX synthetic spectra compared to observations across the entire observed wavelength range. In the top of the figure, observed spectra (black) of old, weakly active dwarfs are compared to 1 Gyr old model spectra (red). A likely young, mid-M dwarf is compared to a 10 Myr old model (green) in the bottom of the figure. The chosen observed spectra have temperatures consistent with the models using the \(T_{\text{eff}}\) to SpTy conversion of Kenyon & Hartmann (1995, hereafter KH95)\(^\text{12}\) for the main-sequence stars and the conversion scale of Luhman et al. (2003) for the young dwarf (see Table 4). The figure shows that for both main-sequence and young M dwarfs the observed and model spectra match both the continuum and absorption features well across the observed wavelength range. There are deviations in some of the molecular bands due to missing opacity in the models, particularly the TiO band at \(\sim 5900\) Å. This arises from the incomplete treatment of complex molecular line lists suffered by the models (Chabrier & Baraffe 1997; BCAH98). The discrepancy in

\(^{10}\) See http://www-astro.ulb.ac.be/~siess/Main/HomePage
\(^{11}\) See http://perso.ens-lyon.fr/isabelle.baraffe/
\(^{12}\) See also the conversion table by Eric Mamajek at http://www.pas.rochester.edu/~emamajek
For several other comparisons (not shown) the differences were attributable to instrumental effects. Measured Na 8200 Å doublet EW differences between observed spectra and their synthetic counterparts are less than the differences attributable to gravity at (V − Ks) ≥ 5.0. This simple visual comparison shows that the observed spectra and models match well not only in the region of interest around the Na 8200 Å doublet, but across red, optical wavelengths. Our comparison is motivation for a full analysis of optical model fits to observed low-mass dwarfs spanning a range of masses, ages, activity levels, and metallicities. This analysis is the focus of another paper (J. E. Schlieder et al. 2012, in preparation).

The SDF2000 models provide V and K magnitudes from the empirical T_eff to color conversion of KH95 (see Table 4). We checked the conversion from the model K mag to K_s mag and found the average difference to be ~0.04 mag, which is insignificant in our analysis. In Figure 3, we show only SDF2000 isochrones because the BCAH98 models are consistent when their T_eff’s are used to interpolate magnitudes from the KH95 scale. We do not show the 1 Myr, 100 Myr, and 1 Gyr data point for the 0.1 M⊙ model because the predicted temperatures at these ages are beyond the limits of the KH95 conversion scale.

A star’s metallicity affects both its 8200 Å doublet EW and (V − K_s) color. The Na 8200 Å doublet is saturated, hence its EW is a strong function of metallicity. We used SDF2000 models to obtain colors at Z = 0.01, 0.02, and 0.04 for 0.5 and 0.2 M⊙ stars at 1 Gyr age. The shifts in the ((V − K_s), EW) plane are indicated by the orange vectors in Figure 3; the dots indicate the extremes of metallicity, twice solar and half solar. The increment in EW is given by its Na 8200 Å doublet color. The Na 8200 Å doublet is saturated, hence its EW is a strong function of metallicity.

The increase in line width with increasing log(g) is evident.

(A color version of this figure is available in the online journal.)
The Astronomical Journal, 143:114 (9pp), 2012 May

Table 4

Age (Myr)	T_{eff} (K)	log(g)	EW (Å)	$(V - K)^b$
0.5 M_\odot				
1	3771	3.5	1.6	3.8
5	3760	4.0	1.7	3.8
10	3764	4.2	1.7	3.8
50	3796	4.5	1.8	3.7
100	3828	4.7	1.9	3.6
0.3 M_\odot				
1	3360	3.5	1.9	5.3
5	3429	4.0	1.9	4.9
10	3475	4.2	2.0	4.7
50	3531	4.5	2.2	4.4
100	3529	4.7	2.5	4.4
0.2 M_\odot				
1	3075	3.5	2.3	7.1
5	3235	4.0	2.3	6.2
10	3290	4.2	2.4	5.8
50	3330	4.7	2.9	5.5
100	3317	4.9	3.6	5.6
0.1 M_\odot				
1	2928	3.5
5	3023	4.0	3.0	7.5
10	3075	4.2	3.3	7.1
50	3055	4.7	5.0	7.3
100	3000	4.9
(1 Gyr Stars)				
SpTyb	T_{eff} (K)	log(g)	EW (Å)	$(V - K)^b$
M0	3804	4.9	1.9	3.7
M2	3669	5.0	2.8	4.5
M4	3290	5.1	4.2	5.6
M6	2780	5.3

Notes.

a From Siess et al. (2000) models,

b From KH95, K is consistent with K_\star.

We used the PHOENIX code to calculate line profiles and evaluate the temperature and gravity dependence of the Na doublets in low-mass stars. To calculate the spectra, PHOENIX derives the structures of the atmospheres in terms of temperature (T), gas pressure (P_g), electron pressure (P_e), and optical depth (τ). We calculated two sets of models: (1) stars of mass 0.7, 0.5, 0.4, 0.2, and 0.1 M_\odot at 1 Gyr age, and (2) stars of mass 0.7, 0.2, and 0.1 M_\odot, at ages 1, 10, 50, and 100 Myr, and thus model their photospheres as they contract.

The fraction of Na that remains neutral in the atmospheres of these stars is given by the Saha equation

$$\frac{[\text{Na}^+]}{[\text{Na}]} = \frac{Z_{\text{II}}}{Z_{\text{I}}} \left(\frac{2\pi m_e k T}{h^2} \right)^{3/2} e^{-\frac{\xi_1}{T}},$$

where $[\text{Na}^+]$, $[\text{Na}^0]$, and N_e are the densities of singly ionized and neutral sodium, and electrons. With first-ionization potential $\xi_1 = 5.1$ eV, $P_e = N_e k T$ and the ratio of partition functions $Z_{\text{II}}/Z_{\text{I}} = 1.0/2.0$ (Cayrel & Jugaku 1963),

$$\frac{[\text{Na}^+]}{[\text{Na}]} = 0.33 \frac{T^2}{P_e} e^{-\frac{3\times10^4}{T}}.$$

The second-ionization potential of Na is 47 eV; hence at the temperatures of these stars, Na III/Na II is negligibly small and, to an excellent approximation, the total abundance of Na is $N_{\text{Na tot}} = N_{\text{Na}^+} + N_{\text{Na}^0}$.

Figure 6 shows the results as a function of continuum optical depth in 1 Gyr old stars; as T_{eff} of the star decreases an increasingly larger fraction of Na remains neutral. This explains the increasing strength of the 8200 Å doublet in stars cooler than M0. The increasing fraction of neutral Na compensates for the precipitous decrease of the population in the $3p$ to $3s$ levels. The Boltzmann equation,

$$\frac{[\text{Na}^+]}{[\text{Na}]} = \frac{g_{3p}}{g_{3s}} e^{-\frac{j_1}{T}} \propto e^{-\frac{2400}{T}},$$

shows that

$$\frac{[\text{Na}^+]}{[\text{Na}]} \approx \frac{1}{150} \frac{1}{T},$$

for $T = 4000$–3000 K. The Na D lines would also appear very strong at spectral types cooler than M0 were it not for their obscuration by TiO, since essentially all Na I is in the ground state,

$$[\text{Na I}] \approx \frac{N_{\text{Na}^0}}{N_{\text{Na}^0}} \propto P_{\text{gas}}.$$

To calculate the strength of the 8200 Å doublet in absorption we follow the approach of Gray (1992, hereafter G92) and write for the increment of opacity in the line, τ_{line},

$$d\tau_{\text{line}} = (\kappa_{\text{cont}} + \kappa_{\text{line}})dx = \left(1 + \frac{\kappa_{\text{line}}}{\kappa_{\text{cont}}}\right)\kappa_{\text{cont}}dx,$$

where κ_{line} is the absorption coefficient in the 8200 Å doublet and κ_{cont} is the absorption coefficient in the continuum near the lines. The opacity in the line plus continuum is necessarily greater than in the continuum alone and the line forms higher in the stellar photosphere than the continuum. Since the temperature is lower at the higher levels the line appears in absorption. In low-mass stars such as these, κ_{cont} is bound-free absorption of H$^-$. It dominates except for wavelength regions where absorption bands such as those of TiO and VO are strong. Absorption by H$_2$O becomes important below $T_{\text{eff}} \sim 2500$ K (Auman 1969). The bound-free absorption coefficient of H$^-$ evaluated at $\lambda = 8200$ Å is (G92, Equations (8.11) and (8.12))

$$\kappa_{\text{cont}}(H^-, 8200 \text{ Å}) = 0.194 \frac{P_e}{T^{5/2}} 10^{3800/T} \frac{P_{\text{gas}}}{T} \propto P_e P_{\text{gas}} h(T),$$

where $h(T)$ contains the temperature dependence.

The line absorption coefficient is (G92, Equation (11.12))

$$\kappa_{\text{line}} = \frac{\pi e^2}{m_e^2} N_i f_{i,u} \phi(v - v_{i,u}),$$

where N_i is the population of the lower level, here $N(3p)$, $f_{i,u}$ is the lower to upper level oscillator strength, and ϕ is the line shape function, normalized such that $\int \phi(\Delta v)d(\Delta v) = 1$, where $\Delta v = v - v_0$ and v_0 is the frequency of the center line.

The Na D and 8200 Å doublets are optically thick (see Figure 4). The very large line widths, several decades larger than the thermal widths, are produced by van der Waals broadening (Curtis & Jefferies 1967; Burrows & Volobuev 2003). It is conventional to designate the van der Waals “damping
5. DISCUSSION

5.1. Effect of Metallicity on EW and Color

Figure 8 shows the Na 8200 Å EW as a function of \((V - K_s)\) for four samples of M dwarfs with increasingly smaller metallicity. In the figure, the solar metallicity, HV M dwarfs are represented by black dots. The second-order polynomial fit to their distribution (gray, dashed line) is described in the caption. The three other samples are K7–M8 sequences of low-metallicity, subdwarf, extreme subdwarf, and ultrusubdwarf standards from L07. L07 determined their metallicities from the observed TiO/CaH ratio. The ultrusubdwarfs represent the most metal-poor M dwarfs in the galactic halo.

Of the stars observed for the Na 8200 Å age indicator analysis, only the HV M dwarfs have measured metallicity. However, all of the \(\beta\) Pic moving group members and candidates have kinematics consistent with the solar neighborhood and most are known to be young. Thus, we expect their metallicities to be approximately solar or super-solar. If these dwarfs are very metal rich, based on predictions, we expect their positions in Figure 8 and 3 to be systematically shifted to the upper right. This is not consistent with the observations. We therefore conclude that the dwarfs used in the age indicator analysis represent a homogeneous, approximately solar metallicity sample in which stars with systematically small Na 8200 Å EWs are young.

5.2. Application of Results to Other Alkali Lines

The gravity and temperature sensitivity of the optical Na doublets discussed here is applicable to the other Na i lines in Figure 1 and other alkali atoms and ions with similar electronic structure. For example, Greene & Lada (1996) show that the combined EWs of Na i at \(\sim 2.2 \mu m\) and Ca i triplet around 2.3 \(\mu m\) in young stellar objects in \(\rho\) Oph are intermediate to main-sequence dwarfs and giants, consistent with our results.

Figure 6. Ratios of Na1/Na tot (solid) and H−/H tot (dashed) as a function of \(\tau\) for 1 Gyr old stars. The lines show the ratio of the K7–M6 SpTy sequence (bottom line to top line) predicted from BCAH98 model data and PHOENIX model atmospheres. In the top of the figure, as \(T_{\text{eff}}\) of the star decreases an increasingly larger fraction of Na remains neutral. Thus, the 8200 Å doublet increases in strength in stars cooler than M0. In the bottom of the figure, the H ratio remains roughly constant with \(T_{\text{eff}}\) but increases substantially with increasing \(\tau\).
for the Na 8200 Å doublet. In addition, McGovern et al. (2004) show that K\textsc{i}, Rb\textsc{i}, and Cs\textsc{i} in the optical and K\textsc{i} in the near-IR J-band exhibit the same gravity sensitivity discussed here. These features are useful as youth diagnostics in the very cool photospheres of brown dwarfs.

6. SUMMARY

We present an analysis of the Na 8200 Å doublet in several stellar samples to show its usefulness as an age indicator for dwarfs of mid-M SpTy and later. The samples were chosen to be representative of different stages of stellar evolution, from the PMS to evolved giants, which in turn trace the evolution of photospheric gravity. We measured the EWs of the 8200 Å doublet and compared the empirical results to isochrones generated using BCAH98 and SDF2000 evolution models and the PHOENIX model atmosphere code. We find that the Na 8200 Å doublet is useful as an approximate discriminant of youth for stars with $(V−K_s) \gtrsim 5.0$, or ∼M4 SpTy and later. The empirical results are consistent with previous studies and with the theoretically derived dependence of the doublet EW on temperature and gravity. The EW of the doublet is useful for...
We thank the referee for an exceptionally helpful and prompt report. We thank T. Barman for many useful discussions. J. E. S. thanks T. Herbst for helpful discussions. The work of J. E. S. and M. S. was supported in part by NSF grant AST 09-07745.

The work of S. L. was supported by NSF grants AST 06-07757 and AST 09-08406. The work of D. F. and R. T. was supported by NSF REU site grant PHY-0851594. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and Space Administration and the National Science Foundation. This research has made use of the SIMBAD database, Aladin, and Vizier, operated at CDS, Strasbourg, France.

REFERENCES

Abazajian, K. N., Adelman-McCarthy, J. K., Ageros, M. A., et al. 2009, ApJS, 182, 543

Auman, J. R. 1969, ApJ, 157, 799

Baraffe, I., & Chabrier, G. 2010, A&A, 521, 44

Baraffe, I., Chabrier, G., Allard, F., & Hauschildt, P. 1998, A&A, 337, 403

Bashkin, S., & Stoner, J. O., Jr. 1975, Atomic Energy Levels and Grotrian Diagrams. 1. Hydrogen I: Phosphorus XV (Amsterdam: North-Holland)

Bessell, M. S., & Brett, J. M. 1988, PASP, 100, 1134

Biller, B. A., Liu, M. C., Wahhaj, Z., et al. 2010, ApJ, 720, L82

Bricelj, C., Hartman, L., Stauffer, J., & Martin, E. 1998, AJ, 115, 2074

Burrows, A., & Volobuyev, M. 2003, ApJ, 583, 985

Cayrel, R., & Jugaku, J. 1963, Ann. Astrophys., 26, 495

Chabrier, G., & Baraffe, I. 1997, A&A, 327, 1039

Covey, K. R., Agüeros, M. A., Green, P. J., et al. 2008, ApJS, 178, 339

Curtis, G. W., & Jefferys, J. T. 1967, ApJ, 150, 1061

Drilling, J. S., & Landolt, A. U. 2000, in Allen’s Astrophysical Quantities, ed. A. N. Cox (4th ed.; New York: Springer), 381

Gray, D. F. 1992, The Observation and Analysis of Stellar Photospheres (2nd ed.; Cambridge: Cambridge Univ. Press)

Greene, T. P., & Lada, C. J. 1996, AJ, 112, 214B

Hauschildt, P. H., Allard, F., & Baron, E. 1999, ApJ, 512, 377

Johnson, J. A., & Appks, K. 2009, ApJ, 699, 933

Kenyon, S. J., & Hartmann, L. 1995, ApJS, 101, 117

Lafrenière, D., Jayawardhana, R., & van Kerkwijk, M. H. 2008, ApJ, 689, L153

Lépine, S., Rich, M. R., & Shara, M. M. 2003, AJ, 125, 1598

Lépine, S., Rich, M. R., & Shara, M. M. 2007, ApJ, 669, 1235

Lépine, & Shara, M. M. 2005a, AJ, 129, 1483

Lépine, & Shara, M. M. 2005b, BASS, 37, 150.01

Luhman, K. L., Stauffer, J. R., Munen, A. A., et al. 2003, ApJ, 593, 1093

Luyten, W. J. 1923, PASP, 35, 175

Martin, E. L., Delfosse, X., & Guieu, S. 2004, AJ, 127, 449

Martin, E. L., Phan-Bao, N., Bessel, M., et al. 2010, A&A, 517, 53

McGovern, M., Kirkpatrick, J. D., McLean, I. S., et al. 2004, ApJ, 600, 1020

Monet, D. G., Levine, S. E., Canzian, B., et al. 2003, AJ, 125, 984

Oke, J. B. 1990, AJ, 99, 1621

Rice, E. L., Barman, T., Mclean, I. S., Prato, L., Kirkpatrick, J. D., et al. 2010, ApJS, 186, 63

Schiavon, R. P., Bathala, C., & Barbuy, B. 1995, A&A, 301, 840

Schliefi, J. E., Lépine, S., & Simon, M. 2010, AJ, 140, 119

Schliefi, J. E., Lépine, S., & Simon, M. 2012, AJ, 143, 80

Siess, L., Dufour, E., & Forestini, M. 2000, A&A, 358, 593

Skrutskie, M. F., Cutri, R. M., Stiening, R., et al. 2006, AJ, 131, 1163

Slesnick, C. L., Carpenter, J. M., & Hillenbrand, L. A. 2006a, AJ, 131, 3016

Slesnick, C. L., Carpenter, J. M., & Hillenbrand, L. A., & Mamajek, E. E. 2006b, AJ, 132, 2665

Slesnick, C. L., Hillenbrand, L. A., & Carpenter, J. M. 2008, ApJ, 688, 377

Spinrad, H. 1962, ApJ, 135, 715

Steele, I. A., & Jameson, R. F. 1995, MNRAS, 272, 630

Takagi, Y., Itoh, Y., & Oasa, Y. 2010, PASJ, 62, 501

Torres, C. A. O., Quast, G. R., Melo, C. H. F., & Sterzik, M. F. 2008, in Handbook of Star-forming Regions, Vol. II, ed. B. Reipurth (San Francisco, CA: ASP), 757

Unsöld, A. 1955, Physik der Sternatmospharen: Mit besonderer Berucksichtigung der Sonne (Berlin: Springer)

Wahhaj, Z., Liu, M. C., Biller, B. A., et al. 2011, ApJ, 729, 139

Walter, F. M., Stringfellow, G. S., Sherry, W. H., & Field-Pollatou, A. 2004, AJ, 128, 1872

West, A. A., Hawley, S. L., Bochanski, J. J., et al. 2008, AJ, 135, 785

West, A. A., Morgan, D. P., Bochanski, J. J., et al. 2011, AJ, 141, 97

Yee, J. C., & Jensen, E. L. N. 2010, ApJ, 711, 303

York, D. G., Adelman, J., Anderson, J. E., Jr., et al. 2000, AJ, 120, 1579

Zuckerman, B., & Song, I. 2004, ARA&A, 42, 685