On the well posedness of a mathematical model for a singular nonlinear fractional pseudo-hyperbolic system with nonlocal boundary conditions and frictional dampings

Said Mesloub1 Hassan Eltayeb Gadian1, and Lotfi Kasmi2

1Mathematics Department, College of Science, King Saud University, PO Box2455, Riyadh, Saudi Arabia.
mesloub@ksu.edu.sa

2 Applied Mathematics Lab University Kasdi Merbah Ouargla, Algeria.
kasmi.lotfi39@gmail.com

November 23, 2022

Abstract

This paper is devoted to the study of the well-posedness of a singular nonlinear fractional pseudo-hyperbolic system. The fractional derivative is described in Caputo sense. The equations are supplemented by classical and nonlocal boundary conditions. Upon some a priori estimates and density arguments, we establish the existence and uniqueness of the strongly generalized solution for the associated linear fractional system in some Sobolev fractional spaces. On the basis of the obtained results for the linear fractional system, we apply an iterative process in order to establish the well-posedness of the nonlinear fractional system. This mathematical model of pseudo-hyperbolic systems arises mainly in the theory of longitudinal and lateral vibrations of elastic bars (beams), and in some special case it is propounded in unsteady helical flows between two infinite coaxial circular cylinders for some specific boundary conditions.

2010 MSC: 35L70, 35R11, 35B45, 35D30.

Keywords: Pseudo-hyperbolic system; Energy inequality; Existence and uniqueness; Iterative method; Weak solution; Sobolev fractional space; Nonlocal boundary condition.

1 Introduction

In the bounded domain $Q = \Omega \times (0,T) = \{(x,t) : 0 < x < b, 0 < t < T\},$ we are concerned with the well posedness of a nonlinear fractional system with frictional damping. More precisely, the model problem we have in mind is presented in the form

\begin{align}
C\partial^\beta_0 u - \frac{1}{x} (xu_x)_x - \frac{\partial}{\partial x} \left(\frac{1}{x} xu_x \right)_x + z_1 v + u_t &= f(x,t,u,v,u_x,v_x), \\
C\partial^\gamma_0 v - \frac{1}{x} (xv_x)_x - \frac{\partial}{\partial x} \left(\frac{1}{x} xv_x \right)_x + z_2 u + v_t &= g(x,t,u,v,u_x,v_x), \\
u(x,0) &= \varphi_1(x), \quad u_t(x,0) = \varphi_2(x), \\
v(x,0) &= \psi_1(x), \quad v_t(x,0) = \psi_2(x), \\
u_x(b,t) &= 0, \quad v_x(b,t) = 0, \quad \int_0^b xu\,dx = 0, \quad \int_0^b xv\,dx = 0.
\end{align}

1
The functions f, g are $L^2(0, T; L^2_ρ(Ω))$ given Lipschitzian functions, that is there exist two positive constants $δ_1, δ_2$ such that

$$|f(x, t, u_1, v_1, w_1, d_1) - f(x, t, u_2, v_2, w_2, d_2)|$$

$$\leq δ_1(|u_1 - u_2| + |v_1 - v_2| + |w_1 - w_2| + |d_1 - d_2|),$$

$$|g(x, t, u_1, v_1, w_1, d_1) - f(x, t, u_2, v_2, w_2, d_2)|$$

$$\leq δ_2(|u_1 - u_2| + |v_1 - v_2| + |w_1 - w_2| + |d_1 - d_2|),$$

for all $(x, t) ∈ Q$. The functions $φ_1, ψ_1, φ_2$ and $ψ_2$ are in $H^1_ρ(Ω)$, and z_1, z_2 are positive constants. The operator $C^α C^α_0$ denotes the left Caputo fractional derivative, defined in the second section, where $1 < β, γ < 2$.

During the last twenty years, and up to this moment, the fractional order differential equations are the essential tool in the modeling of several phenomena in biology [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 17], in controlling chaotic dynamical systems [12, 13, 14, 15, 16, 18, 41, 42], in heat transfer and diffusion [19, 20, 21, 22, 23, 24, 25, 32, 36], in finance [26, 27, 28, 29, 30, 31], in thermoelasticity [33, 34, 35, 37, 38, 39, 40], in the description of viscoelasticity [43, 44, 45], and some other different fields such as mechanics, engineering, and seismology. The present mathematical model of fractional pseudo-hyperbolic equations arises mainly in the theory of longitudinal and lateral vibrations of elastic bars (beams). For the non fractional case of hyperbolic and pseudo-hyperbolic see for example [46, 47, 48, 49, 50]. In [51], the authors studied a model which is propounded in the investigation of the unsteady helical flows of a generalized Oldroyd-B fluid with fractional calculus between two infinite coaxial circular cylinders with initial conditions and Dirichlet boundary conditions

$$\begin{align*}
λ^α C^α_0 u + u_t - ν_x (xu_x)_x - λ^α C^α_0 λ^α_ν x (xu_x)_x &= 0 \\
λ^α C^α_0 v + v_t - \frac{1}{x} (xv_x)_x - λ^α C^α_0 λ^α_ν x (xv_x)_x &= 0.
\end{align*}$$

This model can be considered as a particular case of our model (1.1) with $z_1 = 0, z_2 = 0, λ^α_1 = λ_2^α = 1, η = 1, f = g = 0$, and the Newmann and integral conditions were replaced by Dirichlet conditions.

The paper is organized as follows: In Section 2, we introduce the needed function spaces, and state some important inequalities, and fractional calculus relations that will be used in the rest of the sequel. In Section 3, we reformulate the fractional linear system associated to the nonlinear problem (1.1) in its operator form. Then in Section 4, we prove the uniqueness of the solution of the fractional linear system, and we present the consequences of the obtained energy estimate (1.1) of the solution. In Section 5, we show the solvability of the associated linear problem. Finally, in Section 6, on the basis of the results obtained in Sections 4 and 5, and on the use of an iterative process, we prove the existence and uniqueness of the solution of the fractional nonlinear system (1.1).

2 Preliminaries and functions spaces

2.1 Functional spaces

Let $L^2(0, T; L^2_ρ(Ω))$ be the space consisting of all measurable functions $Q : [0, T] → L^2_ρ(Ω)$ with scalar product

$$⟨Q, Q'⟩_{L^2(0, T; L^2_ρ(Ω))} = \int_0^T (Q, Q')_{L^2_ρ(Ω)} dt, \quad (2.1)$$
and with the associated finite norm

\[\|Q\|^2_{L^2(0,T;L^2_\rho(\Omega))} = \int_0^T \|Q\|^2_{L^2_\rho(\Omega)} dt, \]

(2.2)

and we denote by \(L^2(0,T;H^1_\rho(\Omega))\) the space of functions which are square integrable in the Bochner sense, with the inner product

\[(Q, Q^*)_{L^2(0,T;H^1_\rho(\Omega))} = \int_0^T (Q(., t), Q^*(., t))_{H^1_\rho(\Omega)} dt, \]

(2.3)

and the associated norm is

\[\|Q\|^2_{L^2(0,T;H^1_\rho(\Omega))} = \int_0^T \|Q(., t)\|^2_{L^2_\rho(\Omega)} dt + \int_0^T \|Q_x(., t)\|^2_{L^2_\rho(\Omega)} dt. \]

(2.4)

We also introduce the fractional functional space \(W^\lambda(Q_T)\) having the inner product

\[(Q, Q^*)_{W^\lambda(Q_T)} = \int_0^T (Q(., t), Q^*(., t))_{H^1_\rho(\Omega)} dt + \int_0^T \left(C^\lambda_0 \partial^\lambda_0 Q(., t), C^\lambda_0 \partial^\lambda_0 Q^*(., t) \right)_{H^1_\rho(\Omega)} dt, \]

(2.5)

and with norm

\[\|Q\|^2_{W^\lambda(Q_T)} = \|Q\|^2_{L^2(0,T;H^1_\rho(\Omega))} + \|C^\lambda_0 \partial^\lambda_0 Q\|^2_{L^2(0,T;H^1_\rho(\Omega))}. \]

(2.6)

We denote by \(C(0, T; L^2(\Omega))\) the set of all continuous functions \(V^*(., t) : [0, T] \rightarrow L^2(\Omega)\) with the norm

\[\|V^*\|^2_{C(0, T; L^2(\Omega))} = \sup_{0 \leq t \leq T} \|V^*(., t)\|^2_{L^2(\Omega)} < \infty. \]

(2.7)

We recall some definitions of fractional derivatives and fractional integral \([52, 53]\). Let \(\Gamma(\cdot)\) denote the Gamma function. For any positive integer \(n\) where: \(n - 1 < \alpha < n\), the Caputo derivative, and fractional integral of order \(\alpha\) are respectively defined by

The left Caputo derivative

\[C^\alpha_0 v(t) = \frac{1}{\Gamma(n-\alpha)} \int_0^t \frac{v^{(n)}(\tau)}{(t-\tau)^{\alpha-n+1}} d\tau, \quad \forall t \in [0, T], \]

(2.8)

The right Caputo derivative

\[C^n_T v(t) = \frac{(-1)^n}{\Gamma(n-\alpha)} \int_t^T \frac{v^{(n)}(\tau)}{(\tau-t)^{\alpha-n+1}} d\tau, \quad \forall t \in [0, T], \]

(2.9)

and the fractional integral

\[I^\alpha_T v(t) = D_0^\alpha v(t) = \frac{1}{\Gamma(\alpha)} \int_t^T \frac{v(\tau)}{(t-\tau)^{1-\alpha}} d\tau, \quad \forall t \in [0, T]. \]

(2.10)
Lemma 2.1 [54]. Let a nonnegative absolutely continuous function $P(t)$ satisfy the inequality
\[C \partial_t^\beta P(t) \leq C P(t) + k(t), \quad 0 < \beta < 1, \]
for almost all $t \in [0, T]$, where C is positive and $k(t)$ is an integrable nonnegative function on $[0, T]$. Then
\[P(t) \leq P(0) \Gamma(\beta) (Ct^\beta) + \Gamma(\beta) \int_0^t k(\tau) d\tau, \]
where $E_\beta(x) = \sum_{n=0}^{\infty} \frac{x^n}{\Gamma(\beta n + 1)}$ and $E_{\beta,\alpha}(x) = \sum_{n=0}^{\infty} \frac{x^n}{\Gamma(\beta n + \alpha)}$ are the Mittag-Leffler functions.

Lemma 2.2 [54]. For any absolutely continuous function $v(t)$ on $[0, T]$, the following inequality holds
\[v(t)^2 \leq C v(t) + \frac{1}{2} \partial_t^\alpha v(t), \quad 0 < \alpha < 1. \]

We use the following Gronwall-Bellman lemma

Lemma 2.3 [55] Let $R(s)$ be nonnegative and absolutely continuous on $[0, T]$, and suppose that for almost all $s \in [0, T]$, the function R satisfies the inequality
\[\frac{dR}{ds} \leq J(s) R(s) + I(s), \quad (2.11) \]
where the functions $J(s)$ and $I(s)$ are summable and nonnegative on $[0, T]$. Then
\[R(s) \leq \exp \left\{ \int_0^s J(t) dt \right\} \left(R(0) + \int_0^s I(t) dt \right), \quad (2.12) \]

We also use the following inequality [54]
\[D_t^{-\alpha} \|f\|^2_{L^2(\Omega)} \leq \frac{t^{\alpha-1}}{\Gamma(\alpha)} \int_0^t \|f\|^2_{L^2(\Omega)} d\tau, \quad (2.13) \]
the Cauchy-\(\varepsilon\)-inequality
\[ab \leq \frac{\varepsilon}{2} a^2 + \frac{1}{2\varepsilon} b^2, \quad \forall \varepsilon > 0, \quad (2.14) \]
where a and b are positive numbers.

and the Poincare type inequalities [56]
\[\|J_x(u)\|^2_{L^2(\Omega)} \leq \frac{b^2}{2} \|u(., t)\|^2_{L^2(\Omega)} \]
\[\|J^2_x(u)\|^2_{L^2(\Omega)} \leq \frac{b^2}{4} \|J_x(u)\|^2_{L^2(\Omega)} \leq \frac{b^5}{4} \|u(., t)\|^2_{L^2(\Omega)}, \quad (2.15) \]
where
\[J_x = \int_0^x \xi v(\xi, t) d\xi, \quad J^2_x = \int_0^x \eta v(\eta, t) d\eta. \]
3 Reformulation of the linear problem

We consider a fractional coupled system of the form

\[
\begin{aligned}
\mathcal{L}_1(u, v) &= C \frac{\partial^3}{\partial t^3} u + \frac{1}{\sqrt{2}} (xu_x)_x - \frac{1}{\sqrt{2}} (xv_x)_x + z_1 v + u_t = f(x, t) \\
\mathcal{L}_2(u, v) &= C \frac{\partial^3}{\partial t^3} v + \frac{1}{\sqrt{2}} (xv_x)_x - \frac{1}{\sqrt{2}} (xu_x)_x + z_2 u + v_t = g(x, t)
\end{aligned}
\]

(3.1)

supplemented by the initial conditions

\[
\begin{aligned}
\ell_1 u &= u(x, 0) = \varphi_1(x), & \ell_2 u &= u_t(x, 0) = \varphi_2(x) \\
\ell_3 v &= v(x, 0) = \psi_1(x), & \ell_4 v &= v_t(x, 0) = \psi_2(x)
\end{aligned}
\]

(3.2)

and the Neumann and integral boundary conditions

\[
\begin{aligned}
u_x(b, t) = 0, & \quad v_x(b, t) = 0, & \int_0^b xudx = 0, \quad \int_0^b xvdx = 0.
\end{aligned}
\]

(3.3)

We assume that there exists a solution \((u, v) \in (C^{2,2}(\overline{Q}))^2\) consisting of the set of functions together with their partial derivatives of order 2 in \(x\) and \(t\), which are continuous on \(\overline{Q}\). The solution of system \((3.1)-(3.3)\) can be regarded as the solution of the operator equation \(XW = F\), where \(W, XW, F\) are respectively the pairs \(W = (u, v), XW = (L_1u, L_2v), F = (F_1, F_2)\), with

\[
L_1 u = \{L_1 u, \ell_1 u, \ell_2 u\}, \quad L_2 v = \{L_2 v, \ell_3 v, \ell_4 v\},
\]

and

\[
F_1 = \{f, \varphi_1, \varphi_2\}, \quad F_2 = \{g, \psi_1, \psi_2\}.
\]

The operator \(X\) is considered from a space \(B\) into a space \(H\), where \(B\) is a Banach space consisting of all functions \((u, v) \in (L^2(0, T; L^2_{\rho}(\Omega)))^2\) satisfying conditions \((3.3)\) and having the finite norm

\[
\|W\|^2_B = \|u\|^2_{W^3(Q_T)} + \|v\|^2_{W^3(Q_T)} + \|u\|^2_{C(0, t; H_{\rho}^1(\Omega))} + \|v\|^2_{C(0, t; H_{\rho}^1(\Omega))},
\]

and \(H = (L^2(Q_T))^2 \times (H^1_{\rho}(\Omega))^4\) is the Hilbert space consisting of vector-valued functions \(S = \{(f, \varphi_1, \psi_1), (g, \varphi_2, \psi_2)\}\) with norm

\[
\|S\|^2_H = \|f\|^2_{L^2(0, T; L^2_{\rho}(\Omega))} + \|g\|^2_{L^2(0, T; L^2_{\rho}(\Omega))} + \|\varphi_1\|^2_{H^1_{\rho}(\Omega)} + \|\varphi_2\|^2_{H^1_{\rho}(\Omega)} + \|\psi_1\|^2_{H^1_{\rho}(\Omega)} + \|\psi_2\|^2_{H^1_{\rho}(\Omega)}.
\]

Let \(D(X)\), be the domain of definition of the operator \(X\), defined by:

\[
D(X) = \left\{(u, v) \in (L^2(0, T; L^2_{\rho}(\Omega)))^2 \mid \begin{array}{l}C \partial^3_{tt} u, C \partial^3_{tt} v, u_x, \\
v_x, u_{xx}, v_{xx}, u_{tx}, u_{txx}, v_{tx}, v_{txx} \in L^2(0, T; L^2_{\rho}(\Omega))
\end{array} \right\}
\]

\[
\begin{aligned}
u_x(b, t) = 0, & \quad v_x(b, t) = 0, & \int_0^b xudx = 0, \quad \int_0^b xvdx = 0.
\end{aligned}
\]

4 Uniqueness of the solution

In this section, we prove the uniqueness result for the fractional system \((3.1)-(3.3)\), that is we establish an energy inequality for the operator \(X\) and we give some of its consequences.
Theorem 4.1 For any \((u, v) \in D(\mathcal{X})\), \(f, g \in L^2(0,T; L^2_{\rho}(\Omega))\), and \(\varphi_1, \psi_1, \varphi_2, \psi_2 \in H^1_{\rho}(\Omega)\), the solution of the problem (3.1)-(3.3) verifies the a priori bound

\[
\begin{align*}
&\|u\|_{H^0(\Omega)}^2 + \|u\|_{V'(\Omega)}^2 + \|u\|_{C(0,T,H^1_{\rho}(\Omega))}^2 + \|v\|_{C(0,T,H^1_{\rho}(\Omega))}^2 \\
&\leq M \left(\|f\|_{L^2(0,T; L^2_{\rho}(\Omega))}^2 + \|g\|_{L^2(0,T; L^2_{\rho}(\Omega))}^2 + \|\varphi_1\|_{H^1_{\rho}(\Omega)}^2 + \|\psi_1\|_{H^1_{\rho}(\Omega)}^2 \\
&+ \|\varphi_2\|_{H^1_{\rho}(\Omega)}^2 + \|\psi_2\|_{H^1_{\rho}(\Omega)}^2 \right),
\end{align*}
\]

where \(M = \mathcal{Y}^{**} e^{T \mathcal{Y}^{**}}\) is a positive constant with

\[
\mathcal{Y}^{**} = \max \left(1, \mathcal{Y}^* \right), \quad \mathcal{Y}^* = \frac{\mathcal{Y}}{\min \left(1, \frac{\mathcal{Y}}{\mathcal{Y}^*} \right)}, \quad \mathcal{Y} = \chi^* \max \left(\frac{T^{\gamma-1}}{T^\beta}, \frac{T^{\gamma-1}}{1/T^\beta} \right)
\]

\[
\chi^* = \Gamma(\beta - 1) E_{\beta-1,\beta-1} \left(\chi^{t-1} \right) \max \left\{ 1, \frac{T^{\beta-1}}{T^{\beta-1} - 1} \right\}, \quad \gamma = D^{**} \left(1 + D^{**} e^{D^{**} T} \right)
\]

\[
D^{**} = D^* \max \left\{ 1, \frac{b^2}{2}, \frac{(2-\beta)(2-\beta) - \beta^2}{(2-\beta)(2-\gamma)} \right\}
\]

\[
D^* = 2 \max \left\{ 3, \frac{b^2}{8} + \frac{1}{2}, \frac{b^2}{8} + \frac{5}{2} \right\}.
\]

Proof. The fractional partial differential equations in (3.1), and the following fractional integro-differential operators

\[
\mathcal{M}_1 u = C \partial_{x}^3 u + u_t - \mathcal{J}_x^2 (\xi u_t), \quad \text{and} \quad \mathcal{M}_2 v = C \partial_{x}^3 v + v_t - \mathcal{J}_x^2 (\xi v_t),
\]

lead to

\[
\begin{align*}
2 \left(C \partial_{x}^3 u, u_t \right)_{L^2_{\rho}(\Omega)} &- \left(C \partial_{x}^3 u, \mathcal{J}_x^2 (\xi u_t) \right)_{L^2_{\rho}(\Omega)} - \left(\frac{1}{x} (xu_x)_x, u_t \right)_{L^2_{\rho}(\Omega)} + \left(\frac{1}{x} (xu_x)_x, \mathcal{J}_x^2 (\xi u_t) \right)_{L^2_{\rho}(\Omega)} \\
+ \left(C \partial_{x}^3 u, C \partial_{x}^3 u \right)_{L^2_{\rho}(\Omega)} &- \left(\frac{1}{x} (xu_x)_x, C \partial_{x}^3 u \right)_{L^2_{\rho}(\Omega)} - \left(\frac{1}{x} (xu_x)_x, C \partial_{x}^3 u \right)_{L^2_{\rho}(\Omega)} \\
+ \left(C \partial_{x}^3 u, z_1 v \right)_{L^2_{\rho}(\Omega)} &+ \left(C \partial_{x}^3 v, C \partial_{x}^3 u \right)_{L^2_{\rho}(\Omega)} - \left(\frac{1}{x} (xv_x)_x, C \partial_{x}^3 v \right)_{L^2_{\rho}(\Omega)} - \left(\frac{1}{x} (xv_x)_x, C \partial_{x}^3 u \right)_{L^2_{\rho}(\Omega)} \\
+ 2 \left(C \partial_{x}^3 v, v_t \right)_{L^2_{\rho}(\Omega)} &+ \left(C \partial_{x}^3 u, 2z_2 u \right)_{L^2_{\rho}(\Omega)} - \left(\frac{1}{x} (xu_x)_x, u_t \right)_{L^2_{\rho}(\Omega)} + \left(\frac{1}{x} (xu_x)_x, \mathcal{J}_x^2 (\xi u_t) \right)_{L^2_{\rho}(\Omega)} \\
+ (z_1 v, u_t)_{L^2_{\rho}(\Omega)} &- (z_1 v, \mathcal{J}_x^2 (\xi u_t))_{L^2_{\rho}(\Omega)} - \left(C \partial_{x}^3 v, \mathcal{J}_x^2 (\xi v_t) \right)_{L^2_{\rho}(\Omega)} \\
- \left(\frac{1}{x} (xv_x)_x, v_t \right)_{L^2_{\rho}(\Omega)} &+ \left(\frac{1}{x} (xv_x)_x, \mathcal{J}_x^2 (\xi v_t) \right)_{L^2_{\rho}(\Omega)} - \left(\frac{1}{x} (xv_x)_x, v_t \right)_{L^2_{\rho}(\Omega)} \\
+ \left(\frac{1}{x} (xv_x)_x, \mathcal{J}_x^2 (\xi v_t) \right)_{L^2_{\rho}(\Omega)} &+ (z_2 u, v_t)_{L^2_{\rho}(\Omega)} - (z_2 u, \mathcal{J}_x^2 (\xi v_t))_{L^2_{\rho}(\Omega)} \\
+ \|u_t\|_{L^2_{\rho}(\Omega)}^2 &+ \|v_t\|_{L^2_{\rho}(\Omega)}^2 - (u_t, \mathcal{J}_x^2 (\xi u_t))_{L^2_{\rho}(\Omega)} - (v_t, \mathcal{J}_x^2 (\xi v_t))_{L^2_{\rho}(\Omega)} \\
= &\left(f, u_t \right)_{L^2_{\rho}(\Omega)} - (f, \mathcal{J}_x^2 (\xi u_t))_{L^2_{\rho}(\Omega)} + (g, v_t)_{L^2_{\rho}(\Omega)} - (g, \mathcal{J}_x^2 (\xi v_t))_{L^2_{\rho}(\Omega)} + \left(f, C \partial_{x}^3 u \right)_{L^2_{\rho}(\Omega)} \\
+ (g, C \partial_{x}^3 v)_{L^2_{\rho}(\Omega)}.
\end{align*}
\]
Using boundary conditions (3.3), we evaluate the following terms on the LHS of (4.3) as follows

\[-\left(C \partial_{0t}^\beta u, \mathcal{J}_x^2(\xi u_t) \right)_{L^2_{\rho}(\Omega)} = \left(C \partial_{0t}^\beta (\mathcal{J}_x(\xi u)), \mathcal{J}_x(\xi u_t) \right)_{L^2(\Omega)}, \quad (4.4)\]

\[-\left(\frac{1}{x} (x u_x)_x, u_t \right)_{L^2_{\rho}(\Omega)} = \frac{1}{2} \frac{\partial}{\partial t} \| u_x \|_{L^2_{\rho}(\Omega)}^2, \quad (4.5)\]

\[-\left(\frac{1}{x} (x u_x)_x, \mathcal{J}_x^2(\xi u_t) \right)_{L^2_{\rho}(\Omega)} = -\left(u_x, \mathcal{J}_x(\xi u_t) \right)_{L^2_{\rho}(\Omega)}, \quad (4.6)\]

\[-\left(\frac{1}{x} (x u_x)_{xt}, u_t \right)_{L^2_{\rho}(\Omega)} = \| u_{xt} \|_{L^2_{\rho}(\Omega)}^2, \quad (4.7)\]

\[-\left(z_1 v, \mathcal{J}_x^2(\xi u_t) \right)_{L^2_{\rho}(\Omega)} = -z_1 \left(\mathcal{J}_x^2(\xi v), u_t \right)_{L^2_{\rho}(\Omega)}, \quad (4.8)\]

\[\left(C \partial_{0t}^\beta u, C \partial_{0t}^\beta u \right)_{L^2_{\rho}(\Omega)} = \| C \partial_{0t}^{\beta-1} u_t \|_{L^2_{\rho}(\Omega)}^2, \quad (4.9)\]

\[-\left(u_t, \mathcal{J}_x^2(\xi u_t) \right)_{L^2_{\rho}(\Omega)} = \| \mathcal{J}_x(\xi u_t) \|_{L^2(\Omega)}^2, \quad (4.10)\]

\[-\left(u_t, \mathcal{J}_x^2(\xi u_t) \right)_{L^2_{\rho}(\Omega)} = \| \mathcal{J}_x(\xi u_t) \|_{L^2(\Omega)}^2, \quad (4.11)\]

\[-\left(u_t, \mathcal{J}_x^2(\xi u_t) \right)_{L^2_{\rho}(\Omega)} = \| \mathcal{J}_x(\xi u_t) \|_{L^2(\Omega)}^2, \quad (4.12)\]

\[-\left(\frac{1}{x} (x u_x)_x, C \partial_{0t}^\beta u \right)_{L^2_{\rho}(\Omega)} = \left(C \partial_{0t}^{\beta-1} u_t, u_x \right)_{L^2_{\rho}(\Omega)}, \quad (4.13)\]

\[-\left(\frac{1}{x} (x u_x)_{xt}, z_1 v \right)_{L^2_{\rho}(\Omega)} = \left(C \partial_{0t}^{\beta-1} u_{xt}, z_1 v \right)_{L^2_{\rho}(\Omega)}, \quad (4.14)\]

In the same fashion, we have the equations (4.4)-(4.15) with \(\beta \) replaced by \(\gamma \), and \(u \) replaced by \(v \).

Since \(0 < \beta - 1 < 1 \), then by using Lemma 2.2, we have

\[2 \left(C \partial_{0t}^\beta u, u_t \right)_{L^2_{\rho}(\Omega)} = 2 \left(C \partial_{0t}^{\beta-1} u_t, u_t \right)_{L^2_{\rho}(\Omega)} \geq C \partial_{0t}^{\beta-1} \| u_t \|_{L^2_{\rho}(\Omega)}^2, \quad (4.16)\]

\[\left(C \partial_{0t}^\beta (\mathcal{J}_x(\xi u)), \mathcal{J}_x(\xi u_t) \right)_{L^2(\Omega)} = \left(C \partial_{0t}^{\beta-1} (\mathcal{J}_x(\xi u)), \mathcal{J}_x(\xi u_t) \right)_{L^2(\Omega)} \geq \frac{1}{2} C \partial_{0t}^{\beta-1} \| \mathcal{J}_x(\xi u_t) \|_{L^2_{\rho}(\Omega)}^2, \quad (4.17)\]

\[\left(C \partial_{0t}^{\beta-1} u_{xt}, u_{xt} \right)_{L^2_{\rho}(\Omega)} \geq \frac{1}{2} C \partial_{0t}^{\beta-1} \| u_{xt} \|_{L^2_{\rho}(\Omega)}^2, \quad (4.18)\]
Combination of (4.2)–(4.18) yields
\[
\begin{align*}
\left\| C\partial_{tt}^{\alpha-1} u_t \right\|_{L^2(\Omega)}^2 + \left\| C\partial_{tt}^{\alpha-1} v_t \right\|_{L^2(\Omega)}^2 + & \frac{1}{2} C\partial_{tt}^{\alpha-1} \| u_t \|_{L^2(\Omega)}^2 + \frac{1}{2} C\partial_{tt}^{\alpha-1} \| v_t \|_{L^2(\Omega)}^2 + \\
+ & \frac{1}{2} C\partial_{tt}^{\alpha-1} \| J_x(\xi u_t) \|_{L^2(\Omega)}^2 + \frac{1}{2} C\partial_{tt}^{\alpha-1} \| J_x(\xi v_t) \|_{L^2(\Omega)}^2 + \frac{\partial}{\partial t} \| u_t \|_{L^2(\Omega)}^2 + \frac{\partial}{\partial t} \| v_t \|_{L^2(\Omega)}^2 + \\
+ & \| J_x(\xi u_t) \|_{L^2(\Omega)}^2 + \| J_x(\xi v_t) \|_{L^2(\Omega)}^2 \\
\leq & \ (f, u_t)_{L^2(\Omega)} - \left(f, J_x^2(\xi u_t) \right)_{L^2(\Omega)} + (g, v_t)_{L^2(\Omega)} - \left(g, J_x^2(\xi v_t) \right)_{L^2(\Omega)} + \left(f, C\partial_{tt}^{\alpha-1} u_t \right)_{L^2(\Omega)} + \\
& \left(g, C\partial_{tt}^{\alpha-1} v_t \right)_{L^2(\Omega)} - \left(C\partial_{tt}^{\alpha-1} u_t, v_t \right)_{L^2(\Omega)} - \left(C\partial_{tt}^{\alpha-1} v_t, u_t \right)_{L^2(\Omega)} \\
& - \left(z_1 v_t, u_t \right)_{L^2(\Omega)} + \left(u_x, J_x(\xi u_t) \right)_{L^2(\Omega)} - \left(u_x, J_x(\xi u_t) \right)_{L^2(\Omega)} + \left(z_1 \left(J_x^2(\xi v_t), u_t \right)_{L^2(\Omega)} + \left(z_2 u_t, v_t \right)_{L^2(\Omega)} + \left(v_x, J_x(\xi v_t) \right)_{L^2(\Omega)} + \left(v_x, J_x(\xi v_t) \right)_{L^2(\Omega)} + z_2 \left(J_x^2(\xi u), v_t \right)_{L^2(\Omega)}
\end{align*}
\]
(4.19)

By applying Cauchy-ε-inequality (2.14) and Poincare type inequalities (2.15) and (2.16) to the the right-hand side of (4.19), we obtain the inequalities
\[
\begin{align*}
(f, u_t)_{L^2(\Omega)} \leq & \frac{\eta_1}{2} \| f \|_{L^2(\Omega)}^2 + \frac{1}{2\eta_1} \| u_t \|_{L^2(\Omega)}^2, \\
(f, J_x^2(\xi u_t))_{L^2(\Omega)} \leq & \frac{1}{2\eta_2} \| f \|_{L^2(\Omega)}^2 + \frac{\eta_2 b^4}{8} \| u_t \|_{L^2(\Omega)}^2, \\
z_1 (v, u_t)_{L^2(\Omega)} \leq & \frac{z_1^2}{2\eta_3} \| v \|_{L^2(\Omega)}^2 + \frac{\eta_3}{2} \| u_t \|_{L^2(\Omega)}^2, \\
\left(u_x, J_x(\xi u_t) \right)_{L^2(\Omega)} \leq & \frac{1}{2} \| u_x \|_{L^2(\Omega)}^2 + \frac{1}{2} \| J_x(\xi u_t) \|_{L^2(\Omega)}^2, \\
\left(u_x, J_x(\xi u_t) \right)_{L^2(\Omega)} \leq & \frac{\eta_4}{2} \| u_x \|_{L^2(\Omega)}^2 + \frac{1}{2\eta_4} \| J_x(\xi u_t) \|_{L^2(\Omega)}^2, \\
z_1 \left(J_x^2(\xi v_t), u_t \right)_{L^2(\Omega)} \leq & \frac{z_1^2 b^4}{8\eta_5} \| v \|_{L^2(\Omega)}^2 + \frac{\eta_5}{2} \| u_t \|_{L^2(\Omega)}^2, \\
\left(f, C\partial_{tt}^{\alpha-1} u_t \right)_{L^2(\Omega)} \leq & \frac{\eta_1}{2} \| C\partial_{tt}^{\alpha-1} u_t \|_{L^2(\Omega)}^2 + \frac{1}{2\eta_1} \| f \|_{L^2(\Omega)}^2, \\
\left(g, C\partial_{tt}^{\alpha-1} v_t \right)_{L^2(\Omega)} \leq & \frac{\eta_2}{2} \| C\partial_{tt}^{\alpha-1} v_t \|_{L^2(\Omega)}^2 + \frac{1}{2\eta_2} \| g \|_{L^2(\Omega)}^2, \\
z_1 \left(C\partial_{tt}^{\alpha-1} u_t, v_t \right)_{L^2(\Omega)} \leq & \frac{\eta_3}{2} \| C\partial_{tt}^{\alpha-1} u_t \|_{L^2(\Omega)}^2 + \frac{z_2^2}{2\eta_3} \| v \|_{L^2(\Omega)}^2, \\
\left(C\partial_{tt}^{\alpha-1} v_t, u_t \right)_{L^2(\Omega)} \leq & \frac{\eta_4}{2} \| C\partial_{tt}^{\alpha-1} v_t \|_{L^2(\Omega)}^2 + \frac{1}{2\eta_4} \| u_t \|_{L^2(\Omega)}^2, \\
\left(C\partial_{tt}^{\alpha-1} u_t, v_t \right)_{L^2(\Omega)} \leq & \frac{\eta_5}{2} \| C\partial_{tt}^{\alpha-1} u_t \|_{L^2(\Omega)}^2 + \frac{1}{2\eta_5} \| u_t \|_{L^2(\Omega)}^2, \\
z_2 \left(C\partial_{tt}^{\alpha-1} v_t, v_t \right)_{L^2(\Omega)} \leq & \frac{\eta_6}{2} \| C\partial_{tt}^{\alpha-1} v_t \|_{L^2(\Omega)}^2 + \frac{z_2^2}{2\eta_6} \| v \|_{L^2(\Omega)}^2.
\end{align*}
\]
(4.20)–(4.29)
\begin{align}
 (g, v_t)_{L^2(\Omega)} &\leq \frac{\eta_6}{2} \|g\|_{L^2(\Omega)}^2 + \frac{1}{2\eta_6} \|v_t\|_{L^2(\Omega)}^2,
 \end{align}

(4.32)

\begin{align}
 - (g, \mathcal{J}_x (\xi v_t))_{L^2(\Omega)} &\leq \frac{1}{2\eta_7} \|g\|_{L^2(\Omega)}^2 + \frac{\eta_7 b^6}{8} \|v_t\|_{L^2(\Omega)}^2,
 \end{align}

(4.33)

\begin{align}
 - z_2 (u, v_t)_{L^2(\Omega)} &\leq \frac{z_2^2}{2\eta_8} \|u\|_{L^2(\Omega)}^2 + \frac{\eta_8}{2} \|v_t\|_{L^2(\Omega)}^2,
 \end{align}

(4.34)

\begin{align}
 (v_x, \mathcal{J}_x (\xi v_t))_{L^2(\Omega)} &\leq \frac{1}{2} \|v_x\|_{L^2(\Omega)}^2 + \frac{1}{2} \|\mathcal{J}_x (\xi v_t)\|_{L^2(\Omega)}^2,
 \end{align}

(4.35)

\begin{align}
 (v_{xt}, \mathcal{J}_x (\xi v_t))_{L^2(\Omega)} &\leq \frac{\eta_9}{2} \|v_{xt}\|_{L^2(\Omega)}^2 + \frac{1}{2\eta_9} \|\mathcal{J}_x (\xi v_t)\|_{L^2(\Omega)}^2,
 \end{align}

(4.36)

\begin{align}
 z_2 (\mathcal{J}_x^2 (\xi u), v_t)_{L^2(\Omega)} &\leq \frac{z_2^2 b^4}{8\eta_{10}} \|u\|_{L^2(\Omega)}^2 + \frac{\eta_{10}}{2} \|v_t\|_{L^2(\Omega)}^2.
 \end{align}

(4.37)

By inserting (4.20)-(4.37) into (4.19), and taking \(\eta_1 = \eta_2 = \eta_3 = \eta_5 = \eta_6 = \eta_7 = \eta_8 = \eta_{10} = 1, \eta_4 = \eta_9 = 1, \eta_{11} = \eta_{12} = \eta_{13} = \eta_{14} = \eta_{15} = \eta_{16} = 1/4\), gives

\begin{align}
 &\|C \partial_{tt}^{-1} u_t\|_{L^2(\Omega)}^2 + \|C \partial_{tt}^{-1} v_t\|_{L^2(\Omega)}^2 + C \partial_{tt}^{-1} \|u_t\|_{L^2(\Omega)}^2
 + C \partial_{tt}^{-1} \|v_t\|_{L^2(\Omega)}^2 + \partial_{tt} \|u_x\|_{L^2(\Omega)}^2 + \partial_{tt} \|v_x\|_{L^2(\Omega)}^2
 + C \partial_{tt}^{-1} \|\mathcal{J}_x (\xi u_t)\|_{L^2(\Omega)}^2 + C \partial_{tt}^{-1} \|\mathcal{J}_x (\xi v_t)\|_{L^2(\Omega)}^2
 + C \partial_{tt}^{-1} \|u_{xt}\|_{L^2(\Omega)}^2 + C \partial_{tt}^{-1} \|v_{xt}\|_{L^2(\Omega)}^2
 \leq D^* \left(\|u_t\|_{L^2(\Omega)}^2 + \|v_t\|_{L^2(\Omega)}^2 + \|u\|_{L^2(\Omega)}^2 + \|v\|_{L^2(\Omega)}^2 + \|u_x\|_{L^2(\Omega)}^2
 + \|v_x\|_{L^2(\Omega)}^2 + \|u_{xt}\|_{L^2(\Omega)}^2 + \|v_{xt}\|_{L^2(\Omega)}^2 + \|\mathcal{J}_x (\xi u_t)\|_{L^2(\Omega)}^2
 + \|\mathcal{J}_x (\xi v_t)\|_{L^2(\Omega)}^2 + \|f\|_{L^2(\Omega)}^2 + \|g\|_{L^2(\Omega)}^2 \right),
 \end{align}

(4.38)

where

\begin{align}
 D^* = 2 \max \left\{ 3, \frac{b^6}{8} + \frac{3}{2}, \frac{(z_1^2 + z_2^2)b^4}{8} + \frac{5}{2} \right\}.
 \end{align}

(4.39)
Replacing t by τ and integrating both sides of (4.38) with respect to τ over $[0,t]$, we obtain

$$\|C \partial_\tau^\beta u\|_{L^2(0,t;L^2(\Omega))} + \|C \partial_\tau^{\gamma-1} u\|_{L^2(0,t;L^2(\Omega))} + \|C \partial_\tau^\gamma u\|_{L^2(0,t;L^2(\Omega))} + \|C \partial_\tau^{\gamma-2} u\|_{L^2(0,t;L^2(\Omega))} + \|C \partial_\tau^{\gamma-3} u\|_{L^2(0,t;L^2(\Omega))}$$

$$> D_0^{\beta-2} \left(\|u_t\|_{L^2(\Omega)} + \|J_x(\nabla u_t)\|_{L^2(\Omega)} \right) + D_0^{\gamma-2} \left(\|v_t\|_{L^2(\Omega)} + \|J_x(\nabla v_t)\|_{L^2(\Omega)} \right) + D_0^{\gamma-2} \left(\|u_{xx}\|_{L^2(\Omega)} + \|v_{xx}\|_{L^2(\Omega)} \right) + D_0^{\gamma-2} \left(\|u_{xxx}\|_{L^2(\Omega)} + \|v_{xxx}\|_{L^2(\Omega)} \right)$$

$$\leq D^* \left(t^2 \frac{\|\varphi_2\|_{L^2(\Omega)}}{2(2-\beta)} \Gamma(2-\beta) \right) \left(\|\varphi_2\|_{L^2(\Omega)} + \|J_x(\nabla \varphi_2)\|_{L^2(\Omega)} \right) + D^* \left(t^2 \frac{\|\varphi_2\|_{L^2(\Omega)}}{2(2-\beta)} \Gamma(2-\beta) \right) \left(\|\nabla \varphi_2\|_{L^2(\Omega)} + \|\varphi_2\|_{L^2(\Omega)} \right).$$

Boundary integral conditions allow us to use the Poincare inequalities

$$\|u\|_{L^2(\Omega)} \leq \frac{b^2}{4} \|u_x\|_{L^2(\Omega)}; \quad \|v\|_{L^2(\Omega)} \leq \frac{b^2}{4} \|v_x\|_{L^2(\Omega)},$$

(4.41)

to get rid of the fourth integral term on the right-hand side of (4.40), and in the mean time, we use Poincare type inequality (2.13), we then have

$$\|C \partial_\tau^\beta u\|_{L^2(0,t;L^2(\Omega))} + \|C \partial_\tau^{\gamma-1} u\|_{L^2(0,t;L^2(\Omega))} + \|C \partial_\tau^{\gamma-2} u\|_{L^2(0,t;L^2(\Omega))} + \|C \partial_\tau^{\gamma-3} u\|_{L^2(0,t;L^2(\Omega))}$$

$$> D^* \left(t^2 \frac{\|\varphi_2\|_{L^2(\Omega)}}{2(2-\beta)} \Gamma(2-\beta) \right) \left(\|\varphi_2\|_{L^2(\Omega)} + \|J_x(\nabla \varphi_2)\|_{L^2(\Omega)} \right) + D^* \left(t^2 \frac{\|\varphi_2\|_{L^2(\Omega)}}{2(2-\beta)} \Gamma(2-\beta) \right) \left(\|\nabla \varphi_2\|_{L^2(\Omega)} + \|\varphi_2\|_{L^2(\Omega)} \right).$$

(4.42)

where

$$D^* = D^* \max \left\{ 1, \frac{b^2}{4}, \frac{T^2-\beta}{2(2-\beta)} \Gamma(2-\beta), \frac{T^2-\gamma}{2(2-\gamma)} \Gamma(2-\gamma) \right\}. $$

(4.43)

If we leave only the last two terms on the left-hand side in inequality (4.42), and use the Gronwall-
Bellman lemma 2.3 [55], with
\[
R(t) = \int_0^t \left(\|u_x\|^2_{L^2_\rho(\Omega)} + \|v_x\|^2_{L^2_\rho(\Omega)} \right) \, ds, \quad R(0) = 0,
\]
\[
\frac{\partial R(t)}{\partial t} = \|u_x\|^2_{L^2_\rho(\Omega)} + \|v_x\|^2_{L^2_\rho(\Omega)},
\]
we obtain
\[
R(t) \leq D^{**}e^{D^{**}T} \left(\int_0^t \left(\|u_s\|^2_{L^2_\rho(\Omega)} + \|J_x(\xi u_s)\|^2_{L^2_\rho(\Omega)} \right) \, ds + \int_0^t \left(\|v_s\|^2_{L^2_\rho(\Omega)} + \|J_x(\xi v_s)\|^2_{L^2_\rho(\Omega)} \right) \, ds \\
+ \|f\|^2_{L^2(0,t;L^2_\rho(\Omega))} + \|g\|^2_{L^2(0,t;L^2_\rho(\Omega))} + \|\varphi_1\|^2_{H^1_\rho(\Omega)} + \|\psi_1\|^2_{H^1_\rho(\Omega)} \right),
\]
(4.44)

By taking into account the inequality (4.44), we have
\[
D_0^\beta - \chi \left(\int_0^t \left(\|u_s\|^2_{L^2_\rho(\Omega)} + \|J_x(\xi u_s)\|^2_{L^2_\rho(\Omega)} \right) \, ds + \int_0^t \left(\|v_s\|^2_{L^2_\rho(\Omega)} + \|J_x(\xi v_s)\|^2_{L^2_\rho(\Omega)} \right) \, ds \\
+ \|f\|^2_{L^2(0,t;L^2_\rho(\Omega))} + \|g\|^2_{L^2(0,t;L^2_\rho(\Omega))} + \|\varphi_1\|^2_{H^1_\rho(\Omega)} + \|\psi_1\|^2_{H^1_\rho(\Omega)} \right),
\]
(4.45)
Owing to the inequalities (4.42), (4.44), and (4.48) that
\[
D^{-\beta} \| f \|_{L^2, \rho}(\Omega) \leq \frac{t^{\beta-1}}{\Gamma(\beta)} \int_0^t \| f \|_{L^2, \rho}(\Omega) \, ds, \quad D^{-\gamma} \| g \|_{L^2, \rho}(\Omega) \leq \frac{t^{\gamma-1}}{\Gamma(\gamma)} \int_0^t \| g \|_{L^2, \rho}(\Omega) \, ds,
\]
we deduce from inequalities (4.32), (4.44), and (4.48) that
\[
\begin{align*}
&\| C \partial_0^\beta u \|_{L^2(0,t;L^2, \rho)(\Omega)}^2 + \| C \partial_0^\beta v \|_{L^2(0,t;L^2, \rho)(\Omega)}^2 + \| C \partial_0^\beta w \|_{L^2(0,t;L^2, \rho)(\Omega)}^2 + \| u \|_{H^1, \rho}(\Omega) + \| v \|_{H^1, \rho}(\Omega) \\
&\leq \mathcal{Y} \left(\| f \|_{L^2(0,t;L^2, \rho)(\Omega)}^2 + \| g \|_{L^2(0,t;L^2, \rho)(\Omega)}^2 + \| \varphi_1 \|_{H^1, \rho}(\Omega) + \| \psi_1 \|_{H^1, \rho}(\Omega) \\
&+ \| \varphi_2 \|_{H^1, \rho}(\Omega) + \| \psi_2 \|_{H^1, \rho}(\Omega) \right),
\end{align*}
\]
(4.51)
where
\[
\mathcal{Y} = \chi \chi \max \left(\frac{T}{\Gamma(\beta)}, \frac{T}{\Gamma(\gamma)} \right).
\]
(4.52)
By virtue of poincare inequalities (4.41), and equivalence of norms, the inequality (4.51) takes the form
\[
\begin{align*}
&\| C \partial_0^\beta u \|_{L^2(0,t;H^1, \rho)(\Omega)}^2 + \| C \partial_0^\beta v \|_{L^2(0,t;H^1, \rho)(\Omega)}^2 + \| u \|_{H^1, \rho}(\Omega) + \| v \|_{H^1, \rho}(\Omega) \\
&\leq \mathcal{Y}^* \left(\| f \|_{L^2(0,t;L^2, \rho)(\Omega)}^2 + \| g \|_{L^2(0,t;L^2, \rho)(\Omega)}^2 + \| \varphi_1 \|_{H^1, \rho}(\Omega) + \| \psi_1 \|_{H^1, \rho}(\Omega) \\
&+ \| \varphi_2 \|_{H^1, \rho}(\Omega) + \| \psi_2 \|_{H^1, \rho}(\Omega) \right),
\end{align*}
\]
(4.53)
where
\[
\mathcal{Y}^* = \frac{\mathcal{Y}}{\min (1, \mathcal{Y})}.
\]
(4.54)
Now by adding the quantity \(\| u \|_{L^2(0,t;H^1, \rho)(\Omega)}^2 + \| v \|_{L^2(0,t;H^1, \rho)(\Omega)}^2 \) to both sides of (4.53), we have
\[
\begin{align*}
&\| C \partial_0^\beta u \|_{L^2(0,t;H^1, \rho)(\Omega)}^2 + \| u \|_{L^2(0,t;H^1, \rho)(\Omega)}^2 + \| u \|_{H^1, \rho}(\Omega) \\
&+ \| C \partial_0^\beta v \|_{L^2(0,t;H^1, \rho)(\Omega)}^2 + \| v \|_{L^2(0,t;H^1, \rho)(\Omega)}^2 + \| v \|_{H^1, \rho}(\Omega) \\
&\leq \mathcal{Y}^{**} \left(\| f \|_{L^2(0,t;L^2, \rho)(\Omega)}^2 + \| g \|_{L^2(0,t;L^2, \rho)(\Omega)}^2 + \| \varphi_1 \|_{H^1, \rho}(\Omega) + \| \psi_1 \|_{H^1, \rho}(\Omega) \\
&+ \| \varphi_2 \|_{H^1, \rho}(\Omega) + \| \psi_2 \|_{H^1, \rho}(\Omega) + \| u \|_{L^2(0,t;H^1, \rho)(\Omega)}^2 + \| v \|_{L^2(0,t;H^1, \rho)(\Omega)}^2 \right)
\end{align*}
\]
(4.55)
Application of Gronwall’s Lemma to (4.55) gives the inequality
\[
\begin{align*}
&\| u \|_{W^\gamma(Q_r)}^2 + \| v \|_{W^\gamma(Q_r)}^2 + \| u \|_{H^1, \rho}(\Omega) + \| v \|_{H^1, \rho}(\Omega) \\
&\leq \mathcal{Y}^{**} e^{T \mathcal{Y}} \left(\| f \|_{L^2(0,T;L^2, \rho)(\Omega)}^2 + \| g \|_{L^2(0,T;L^2, \rho)(\Omega)}^2 + \| \varphi_1 \|_{H^1, \rho}(\Omega) + \| \psi_1 \|_{H^1, \rho}(\Omega) \\
&+ \| \varphi_2 \|_{H^1, \rho}(\Omega) + \| \psi_2 \|_{H^1, \rho}(\Omega) \right).
\end{align*}
\]
(4.57)
The independence of the right-hand side on \(t \) in (4.57), gives
\[
\begin{align*}
&\| u \|_{W^\gamma(Q_r)}^2 + \| u \|_{W^\gamma(Q_r)}^2 + \| u \|_{C(0,T;H^1, \rho)(\Omega)}^2 + \| v \|_{C(0,T;H^1, \rho)(\Omega)}^2 \\
&\leq \mathcal{M} \left(\| f \|_{L^2(0,T;L^2, \rho)(\Omega)}^2 + \| g \|_{L^2(0,T;L^2, \rho)(\Omega)}^2 + \| \varphi_1 \|_{H^1, \rho}(\Omega) + \| \psi_1 \|_{H^1, \rho}(\Omega) \\
&+ \| \varphi_2 \|_{H^1, \rho}(\Omega) + \| \psi_2 \|_{H^1, \rho}(\Omega) \right),
\end{align*}
\]
(4.58)
where $\mathcal{M} = \mathcal{Y}^*e^{T\mathcal{Y}^*}$.

It can be proved in a standard way that the operator $\mathcal{X} : B \to H$ is closable. Let $\overline{\mathcal{X}}$ be its closure.

Proposition 4.1 The operator $\mathcal{X} : B \to H$ has a closure.

Proof: The proof can be established in a similar way as in [57]. These are some consequences of Theorem 4.1.

Corollary 4.1 There exists a positive constant C such that

$$
\|W\|_B \leq C\|\overline{\mathcal{X}}W\|_H, \quad \forall W \in D(\overline{\mathcal{X}}),
$$

where: $C = \sqrt{C_7}$. The inequality (4.59) means that inequality (4.1) can be extended to strong solutions after passing to limit.

We can deduce from inequality (4.59) that a strong solution of the system (3.1)-(3.3) is unique and depends continuously on $\mathcal{F} = (\mathcal{F}_1, \mathcal{F}_2) \in H$, where $\mathcal{F}_1 = \{f, \varphi_1, \varphi_2\}$ and $\mathcal{F}_2 = \{g, \psi_1, \psi_2\}$, and that the image $R(\overline{\mathcal{X}})$ of $\overline{\mathcal{X}}$ is closed in H and $R(\overline{\mathcal{X}}) = R(\mathcal{X})$. So in order to prove that the system (3.1)-(3.3) has a strong solution for arbitrary $(\mathcal{F}_1, \mathcal{F}_2) \in H$, it is sufficient to prove that the range of \mathcal{X} is dense in H, that is $\overline{R(\mathcal{X})} = H$.

5 Existence of the solution of the linear system

Proposition 5.1 If for some function: $Y^*(x, t) = (y_1^*(x, t), y_2^*(x, t)) \in (L^2(0, T; L^2_\rho(\Omega)))^2$, and for all $W(x, t) = (u(x, t), v(x, t)) \in D_0(\mathcal{X}) = \{W/W \in D(\mathcal{X}) : \ell_1u = 0, \ell_2u = 0, \ell_3v = 0, \ell_4v = 0\}$, we have

$$
(\mathcal{L}W, Y^*)_{L^2(0, T; L^2_\rho(\Omega))} = (\mathcal{L}_1u, y_1^*)_{L^2(0, T; L^2_\rho(\Omega))} + (\mathcal{L}_2v, y_2^*)_{L^2(0, T; L^2_\rho(\Omega))} = 0,
$$

then Y^* vanishes a.e in the domain Q.

Proof: We first set

$$
W = (u, v) = (\mathcal{J}_1^i(p_i), \mathcal{J}_2^i(p_2)),
$$

$$
Y^*(x, t) = (y_1^*(x, t), y_2^*(x, t)) = (\mathcal{J}_1(p_1) - \mathcal{J}_2^2(\xi\mathcal{J}_1(p_1)), \mathcal{J}_1(p_2) - \mathcal{J}_2^2(\xi\mathcal{J}_1(p_2))),
$$

where

$$
\mathcal{J}_1(p_1) = \int_0^t p_i(x, s) ds, \quad \mathcal{J}_2^i(p_i) = \int_0^t \int p_i(x, z) dz ds,
$$

$$
\mathcal{J}_2^2(\xi\mathcal{J}_1(p_1)) = \int_0^t \int \int_0^\xi \eta p_i(\eta, s) ds d\eta d\xi, \quad i = 1, 2.
$$

We suppose that the functions $p_i(x, t)$ satisfy conditions (5.5) and such that

$$
p_i, p_{ix}, \mathcal{J}_1(p_i), \mathcal{J}_2^2(p_i), x\mathcal{J}_1^2(p_{ix}), \mathcal{J}_2^2(\xi\mathcal{J}_1(p_i)), C\partial_0^3p_i, C\partial_0^3p_i \in L^2(Q), \quad i = 1, 2.
$$
Now by replacing (5.2) and (5.3) in the relation (5.1), we obtain

\[
\left(C \frac{\partial^3}{\partial t^3} \left(\mathcal{J}_t^2(p_1) \right), \mathcal{J}_t(p_1) \right)_{L^2_{\rho}(\Omega)} - \left((x \left(\mathcal{J}_t^2(p_{1x}) \right)_x, \mathcal{J}_t(p_1) \right)_{L^2(\Omega)} - \left(\left(x \left(\mathcal{J}_t^2(p_{1x}) \right)_x, \mathcal{J}_t(p_1) \right)_{L^2(\Omega)} \\
+ \left(\mathcal{J}_t^2(p_2), \mathcal{J}_t(p_1) \right)_{L^2_{\rho}(\Omega)} - \left(\frac{\partial^3}{\partial t^3} \left(\mathcal{J}_t^2(p_1) \right), \mathcal{J}_t^2(x, \mathcal{J}_t(p_1)) \right)_{L^2_{\rho}(\Omega)} + \left(\left(x \left(\mathcal{J}_t^2(p_{1x}) \right)_x, \mathcal{J}_t^2(x, \mathcal{J}_t(p_1)) \right)_{L^2(\Omega)} \\
+ \left(\left(x \left(\mathcal{J}_t^2(p_{1x}) \right)_x, \mathcal{J}_t^2(x, \mathcal{J}_t(p_1)) \right)_{L^2(\Omega)} - \left(\mathcal{J}_t^2(p_2), \mathcal{J}_t^2(x, \mathcal{J}_t(p_1)) \right)_{L^2_{\rho}(\Omega)} \\
+ \left(\frac{\partial^3}{\partial t^3} \left(\mathcal{J}_t^2(p_1) \right), \mathcal{J}_t(p_2) \right)_{L^2_{\rho}(\Omega)} - \left(\left(x \left(\mathcal{J}_t^2(p_{1x}) \right)_x, \mathcal{J}_t^2(p_2) \right)_{L^2_{\rho}(\Omega)} + \left(\left(x \left(\mathcal{J}_t^2(p_{2x}) \right)_x, \mathcal{J}_t^2(p_2) \right)_{L^2_{\rho}(\Omega)} + \left(\left(x \left(\mathcal{J}_t^2(p_{2x}) \right)_x, \mathcal{J}_t^2(x, \mathcal{J}_t(p_2)) \right)_{L^2(\Omega)} \\
+ \left(\left(x \left(\mathcal{J}_t^2(p_{2x}) \right)_x, \mathcal{J}_t^2(x, \mathcal{J}_t(p_2)) \right)_{L^2(\Omega)} - \left(\mathcal{J}_t^2(p_1), \mathcal{J}_t^2(x, \mathcal{J}_t(p_2)) \right)_{L^2_{\rho}(\Omega)} \right)_{L^2(\Omega)} = 0. \quad (5.4)
\]

Since

\[
\| \mathcal{J}_t^2(p_1) \|_{L^2_{\rho}(\Omega)}^2 \leq \frac{T^2}{2} \| \mathcal{J}_t(p_1) \|_{L^2_{\rho}(\Omega)}^2, \quad i = 1, 2,
\]

then, using conditions (5.3), and computation of each term of (5.4), gives

\[
\left(C \frac{\partial^3}{\partial t^3} \left(\mathcal{J}_t^2(p_1) \right), \mathcal{J}_t(p_1) \right)_{L^2_{\rho}(\Omega)} = \left(C \frac{\partial^3}{\partial t^3} \left(\mathcal{J}_t^2(p_1) \right), \mathcal{J}_t(p_1) \right)_{L^2_{\rho}(\Omega)} + \frac{1}{2} C \frac{\partial^3}{\partial t^3} \| \mathcal{J}_t(p_1) \|_{L^2_{\rho}(\Omega)}^2 \leq \frac{T^2}{4} \| \mathcal{J}_t(p_2) \|_{L^2_{\rho}(\Omega)}^2 + \frac{1}{2} \| \mathcal{J}_t(p_1) \|_{L^2_{\rho}(\Omega)}^2, \quad (5.8)
\]

\[
\left(\mathcal{J}_t^2(p_2), \mathcal{J}_t(p_1) \right)_{L^2_{\rho}(\Omega)} \leq \frac{T^2}{4} \| \mathcal{J}_t(p_2) \|_{L^2_{\rho}(\Omega)}^2 + \frac{1}{2} \| \mathcal{J}_t(p_1) \|_{L^2_{\rho}(\Omega)}^2, \quad (5.9)
\]

\[
\left((x \left(\mathcal{J}_t^2(p_{2x}) \right)_x, \mathcal{J}_t^2(x, \mathcal{J}_t(p_1)) \right)_{L^2(\Omega)} = - \left(\frac{\partial^3}{\partial t^3} \left(\mathcal{J}_t^2(p_1) \right), \mathcal{J}_t^2(x, \mathcal{J}_t(p_1)) \right)_{L^2_{\rho}(\Omega)} \leq \frac{T^2}{4} \| \mathcal{J}_t(p_2) \|_{L^2_{\rho}(\Omega)}^2 + \frac{1}{2} \| \mathcal{J}_t(p_{1x}) \|_{L^2_{\rho}(\Omega)}^2 + \frac{T^2}{4} \| \mathcal{J}_x (x, \mathcal{J}_t(p_1)) \|_{L^2_{\rho}(\Omega)}^2, \quad (5.10)
\]

\[
\left((x \left(\mathcal{J}_t^2(p_{1x}) \right)_x, \mathcal{J}_t^2(x, \mathcal{J}_t(p_1)) \right)_{L^2(\Omega)} = - \left(\mathcal{J}_t^2(p_{1x}), \mathcal{J}_t^2(x, \mathcal{J}_t(p_1)) \right)_{L^2_{\rho}(\Omega)} \leq \frac{1}{2} \| \mathcal{J}_t(p_{1x}) \|_{L^2_{\rho}(\Omega)}^2 + \frac{1}{2} \| \mathcal{J}_x (x, \mathcal{J}_t(p_1)) \|_{L^2_{\rho}(\Omega)}^2, \quad (5.11)
\]
After integration, we entail from (5.13) that
\[
(\mathcal{J}^2_t(p_2), \mathcal{J}_x^2(\xi \mathcal{J}_t(p_1))) \leq \frac{1}{2} \| \mathcal{J}_t^2(p_2) \|_{L^2(\Omega)}^2 + \frac{1}{2} \| \mathcal{J}_x^2(\xi \mathcal{J}_t(p_1)) \|_{L^2(\Omega)}^2 \\
\leq \frac{T^2}{4} \| \mathcal{J}_t(p_2) \|_{L^2(\Omega)}^2 + \frac{b^6}{8} \| \mathcal{J}_t(p_1) \|_{L^2(\Omega)}^2.
\]
(5.12)

Combination of (5.5)–(5.12) and (5.4), yields
\[
\begin{align*}
C_0 \partial_t^{\beta-1} & \left(\| \mathcal{J}_t(p_1) \|_{L^2(\Omega)}^2 + \| \mathcal{J}_x(\xi \mathcal{J}_t(p_1)) \|_{L^2(\Omega)}^2 \right) + \frac{\partial}{\partial t} \| \mathcal{J}_t^2(p_1x) \|_{L^2(\Omega)}^2 \\
& \leq M_1 \left(\| \mathcal{J}_t(p_1) \|_{L^2(\Omega)}^2 + \| \mathcal{J}_x(\xi \mathcal{J}_t(p_1)) \|_{L^2(\Omega)}^2 \right) \\
& \quad + \| \mathcal{J}_t(p_2) \|_{L^2(\Omega)}^2 + \| \mathcal{J}_x(\xi \mathcal{J}_t(p_2)) \|_{L^2(\Omega)}^2,
\end{align*}
\]
(5.13)

where
\[
M_1 = \max \left\{ \frac{T^2}{4}, 1 + \frac{b^6}{8}, 1 + \frac{T^2}{2} \right\}.
\]

After integration, we entail from (5.13) that
\[
\begin{align*}
D_0^{\beta-2} & \| \mathcal{J}_t(p_1) \|_{L^2(\Omega)}^2 + D_0^{\beta-2} \| \mathcal{J}_x(\xi \mathcal{J}_t(p_1)) \|_{L^2(\Omega)}^2 + \| \mathcal{J}_t^2(p_1x) \|_{L^2(\Omega)}^2 \\
& \leq M_1 \left[\int_0^t \left(\| \mathcal{J}_t(p_1) \|_{L^2(\Omega)}^2 + \| \mathcal{J}_x(\xi \mathcal{J}_t(p_1)) \|_{L^2(\Omega)}^2 \right) d\tau \\
& \quad + \int_0^t \left(\| \mathcal{J}_t(p_2) \|_{L^2(\Omega)}^2 + \| \mathcal{J}_x(\xi \mathcal{J}_t(p_2)) \|_{L^2(\Omega)}^2 \right) d\tau \right].
\end{align*}
\]
(5.14)

If we drop the last four terms on the left-hand side of (5.14), apply Lemma 2.1, and use inequality (2.13), we have
\[
\begin{align*}
\int_0^t \left(\| \mathcal{J}_t(p_1) \|_{L^2(\Omega)}^2 + \| \mathcal{J}_x(\xi \mathcal{J}_t(p_1)) \|_{L^2(\Omega)}^2 \right) d\tau \\
& \leq M_1 \Gamma(\beta - 1) E_{\beta-1,\beta-1}(M_1 T^{\beta-1}) D_0^{-\beta} \left(\| \mathcal{J}_t(p_2) \|_{L^2(\Omega)}^2 + \| \mathcal{J}_x(\xi \mathcal{J}_t(p_2)) \|_{L^2(\Omega)}^2 \right).
\end{align*}
\]
(5.15)

Application of inequality (2.13), reduces (5.15) to
\[
\begin{align*}
\int_0^t \left(\| \mathcal{J}_t(p_1) \|_{L^2(\Omega)}^2 + \| \mathcal{J}_x(\xi \mathcal{J}_t(p_1)) \|_{L^2(\Omega)}^2 \right) d\tau \\
& \leq M_2 \left(\int_0^t \left(\| \mathcal{J}_t(p_2) \|_{L^2(\Omega)}^2 + \| \mathcal{J}_x(\xi \mathcal{J}_t(p_2)) \|_{L^2(\Omega)}^2 \right) d\tau \right),
\end{align*}
\]
(5.16)

where
\[
M_2 = M_1 \Gamma(\beta - 1) E_{\beta-1,\beta-1}(M_1 T^{\beta-1}) \frac{T^{\beta-1}}{\Gamma(\beta)}.
\]
(5.17)
We infer from inequalities (5.16) and (5.14) that
\[D_{0t}^2 \| \mathcal{J}_t(p_2) \|^2_{L^2(\Omega)} + D_{0t}^2 \| \mathcal{J}_x (\xi \mathcal{J}_t(p_2)) \|^2_{L^2(\Omega)} + \| \mathcal{J}_t^2(p_2x) \|^2_{L^2(\Omega)} \]
\[D_{0t}^2 \| \mathcal{J}_t(p_1) \|^2_{L^2(\Omega)} + D_{0t}^2 \| \mathcal{J}_x (\xi \mathcal{J}_t(p_1)) \|^2_{L^2(\Omega)} + \| \mathcal{J}_t^2(p_1x) \|^2_{L^2(\Omega)} \]
\[\leq M_3 \left[\int_0^t \left(\| \mathcal{J}_t(p_2) \|^2_{L^2(\Omega)} + \| \mathcal{J}_x (\xi \mathcal{J}_t(p_2)) \|^2_{L^2(\Omega)} \right) d\tau \right], \]
(5.18)

where
\[M_3 = M_1 (1 + M_2). \]

If we now discard the last four terms in the left-hand side of (5.18), and apply Lemma 2.1, we get
\[\int_0^t \left(\| \mathcal{J}_t(p_2) \|^2_{L^2(\Omega)} + \| \mathcal{J}_x (\xi \mathcal{J}_t(p_2)) \|^2_{L^2(\Omega)} \right) d\tau \leq M_4 \left(D_{0t}^2(0) \right) = 0, \]
with \(M_4 = \Gamma(\gamma - 1)E_{\gamma - 1, \gamma - 1}(M_3T^{\gamma - 1}). \)

Hence, we deduce that \(Y^*(x, t) = (y_1^*, y_2^*) = (0, 0) \) almost everywhere in the domain \(Q \).

Theorem 5.1 For any \((f, g) \in (L^2(\rho))^2\) and any \((\varphi_1, \psi_1), (\varphi_2, \psi_2) \in (H^1(\Omega))^2\), there exists a unique strong solution \(W = (X, \mathcal{F}) \in (\mathcal{F}_1, \mathcal{F}_2) \in H, \quad \mathcal{F}_1 = \{ f, \varphi_1, \varphi_2 \}, \quad \mathcal{F}_2 = \{ g, \psi_1, \psi_2 \}, \quad W = (u, v) \) and
\[\| W \|_B \leq C \| X \|_H, \]
for a positive constant \(C \), independent of \(W \).

Proof: We show the validity of \(\overline{R(X)} = H \). Since \(H \) is a Hilbert space, the equality \(\overline{R(X)} = H \) holds if
\[(LW, Y)_H = (\{ L_1(u, v), L_2(u, v) \}, \{ Y_1, Y_2 \})_H = (\{ (L_1(u, v), \ell_1 u, \ell_2 u), (L_2(u, v), \ell_3 v, \ell_4 v) \}, \{ (y_1, y_2, y_3), (y_4, y_5, y_6) \})_H \]
\[= (L_1(u, v), y_1)_{L^2(0, T; L^2(\Omega))} + (\ell_1 u, y_2)_H^{(1)} + (\ell_2 u, y_3)_H^{(2)} \]
\[+ (L_2(u, v), y_4)_{L^2(0, T; L^2(\Omega))} + (\ell_3 v, y_5)_H^{(1)} + (\ell_4 v, y_6)_H^{(2)} = 0. \]
(5.19)

implies that \(y_1 = y_2 = y_3 = y_4 = y_5 = y_6 = 0 \) almost everywhere in the domain \(Q \), where \(\{ (y_1, y_2, y_3), (y_4, y_5, y_6) \} \in \overline{R(X)} \).

By putting \(W \in D_0(X) \) in (5.19), we have
\[(L_1(u, v), y_1)_{L^2(0, T; L^2(\Omega))} + (L_2(u, v), y_4)_{L^2(0, T; L^2(\Omega))} = 0, \]
(5.20)

hence proposition 5.1 implies that: \(y_1 = y_4 = 0 \). Thus (5.19) implies
\[(\ell_1 u, y_2)_H^{(1)} + (\ell_2 u, y_3)_H^{(2)} + (\ell_3 v, y_5)_H^{(1)} + (\ell_4 v, y_6)_H^{(2)} = 0, \quad \forall W \in D_0(X), \]
(5.21)

The four sets \(\ell_1 u, \ell_2 u, \ell_3 v, \) and \(\ell_4 v \) are independent, and the images of the trace operator \(\ell_1, \ell_2, \ell_3, \) and \(\ell_4 \) are respectively everywhere dense in the Hilbert spaces \(H^1(\Omega) \), then it follows from (5.21), that \(y_2 = y_3 = y_5 = y_6 = 0 \) almost everywhere in \(Q \).
6 The nonlinear system

We are now in a position to solve the nonlinear system (1.1). Relying on the results obtained previously, we apply an iterative process to establish the existence and uniqueness of the weak solution of the nonlinear system (1.1). If \((u, v)\) is a solution of system (1.1) and \((\psi, \phi)\) is a solution of the homogeneous system

\[
\begin{aligned}
\left\{
\begin{array}{l}
C \partial_t^3 \psi - \frac{1}{x} (x \psi_x)_x - \frac{1}{x} (x \psi_x)_{xt} + z_1 \psi + \psi_t = 0, \\
C \partial_t^3 \phi - \frac{1}{x} (x \phi_x)_x - \frac{1}{x} (x \phi_x)_{xt} + z_2 \psi + \phi_t = 0,
\end{array}
\right.
\end{aligned}
\]
(6.1)

then \((U, V) = (u - \psi, v - \phi)\) is a solution of the system

\[
\begin{aligned}
\left\{
\begin{array}{l}
C \partial_t^3 U - \frac{1}{x} (x U_x)_x - \frac{1}{x} (x U_x)_{xt} + z_1 V + U_t = F(x, t, U, V, U_x, V_x), \\
C \partial_t^3 V - \frac{1}{x} (x V_x)_x - \frac{1}{x} (x V_x)_{xt} + z_2 U + V_t = G(x, t, U, V, U_x, V_x),
\end{array}
\right.
\end{aligned}
\]
(6.2)

where

\[
F(x, t, U, V, U_x, V_x) = f(x, t, U + \psi, V + \phi, U_x + \psi_x, V_x + \phi_x),
\]

and

\[
G(x, t, U, V, U_x, V_x) = g(x, t, U + \psi, V + \phi, U_x + \psi_x, V_x + \phi_x).
\]

The functions \(F\) and \(G\) are Lipschitzian functions

\[
\begin{aligned}
&|F(x, t, u_1, v_1, w_1, d_1) - F(x, t, u_2, v_2, w_2, d_2)| \\
&\leq \delta_1(|u_1 - u_2| + |v_1 - v_2| + |w_1 - w_2| + |d_1 - d_2|),
\end{aligned}
\]
(6.3)

\[
\begin{aligned}
&|G(x, t, u_1, v_1, w_1, d_1) - G(x, t, u_2, v_2, w_2, d_2)| \\
&\leq \delta_2(|u_1 - u_2| + |v_1 - v_2| + |w_1 - w_2| + |d_1 - d_2|),
\end{aligned}
\]
(6.4)

for all \((x, t) \in Q\).

According to Theorem 5.1, system (6.1) has a unique solution that depends continuously on \((\varphi_1, \varphi_2, \psi_1, \psi_2) \in (H^1_\rho(\Omega))^4\).

We must prove that the system (6.2) admits a unique solution.

Suppose that \(w, U, V \in C^2(Q)\), such that

\[
w(x, T) = 0, \quad w_t(x, T) = 0, \quad \int_0^b xw(x, t)dx = 0.
\]
(6.5)

Consider the identity

\[
\begin{aligned}
&\langle \mathcal{L}_1(U, V), \mathcal{J}_x(w) \rangle_{L^2_0(\Omega);L^2_0(\Omega)} + \langle \mathcal{L}_2(U, V), \mathcal{J}_x(w) \rangle_{L^2(\Omega);L^2_0(\Omega)} \\
&= \langle F, \mathcal{J}_x(w) \rangle_{L^2(\Omega);L^2_0(\Omega)} + \langle G, \mathcal{J}_x(w) \rangle_{L^2(\Omega);L^2_0(\Omega)}.
\end{aligned}
\]
(6.6)
In light of the above assumptions, we obtain

\[
\left(C \partial^3_{w^2} U, J_x(\xi w) \right)_{L^2(0,T;L^2_x(\Omega))} = \left(U, \partial^3_T (J_x(\xi w)) \right)_{L^2(0,T;L^2_x(\Omega))},
\]

(6.7)

\[
- \left(\frac{1}{x} (xU_x)_x, J_x(\xi w) \right)_{L^2(0,T;L^2_x(\Omega))} = (U_x, xw)_{L^2(0,T;L^2_x(\Omega))},
\]

(6.8)

\[
- \left(\frac{1}{x} (xU_x)_xt, J_x(\xi w) \right)_{L^2(0,T;L^2_x(\Omega))} = - (U_x, xw_t)_{L^2(0,T;L^2_x(\Omega))},
\]

(6.9)

\[
(\xi_1 V, J_x(\xi w))_{L^2(0,T;L^2_x(\Omega))} = - \xi_1 (J_x(\xi V), w)_{L^2(0,T;L^2_x(\Omega))},
\]

(6.10)

\[
(U_t, J_x(\xi w))_{L^2(0,T;L^2_x(\Omega))} = - (U_t, J_x(\xi w_t))_{L^2(0,T;L^2_x(\Omega))},
\]

(6.11)

\[
(F, J_x(\xi w))_{L^2(0,T;L^2_x(\Omega))} = - (J_x(\xi F), w)_{L^2(0,T;L^2_x(\Omega))}.
\]

(6.12)

Using the symmetry in the system, and inserting equations (6.7) – (6.12) into (6.6), yields

\[
\left(U, \partial_T^3 (J_x(\xi w)) \right)_{L^2(0,T;L^2_x(\Omega))} + (V, \partial_T^3 (J_x(\xi w)))_{L^2(0,T;L^2_x(\Omega))} + (U_x, xw)_{L^2(0,T;L^2_x(\Omega))}
\]

\[
+ (V_x, xw)_{L^2(0,T;L^2_x(\Omega))} - (U_x, xw_t)_{L^2(0,T;L^2_x(\Omega))} - (V_x, xw_t)_{L^2(0,T;L^2_x(\Omega))}
\]

\[
- \xi_1 (J_x(\xi V), w)_{L^2(0,T;L^2_x(\Omega))} - z_2 (J_x(\xi U), w)_{L^2(0,T;L^2_x(\Omega))} - (U_t, J_x(\xi w_t))_{L^2(0,T;L^2_x(\Omega))}
\]

\[
- (V_t, J_x(\xi w_t))_{L^2(0,T;L^2_x(\Omega))} = (F, J_x(\xi w))_{L^2(0,T;L^2_x(\Omega))} + (G, J_x(\xi w))_{L^2(0,T;L^2_x(\Omega))}.
\]

(6.13)

We write (6.13) in the form

\[
A(w, U, V) = (w, J_x(\xi F))_{L^2(0,T;L^2_x(\Omega))} + (w, J_x(\xi G))_{L^2(0,T;L^2_x(\Omega))},
\]

(6.14)

where \(A(w, U, V)\) denotes the left-hand side of (6.13).

Definition 6.1 A function \((U, V) \in (L^2(0, T; H^1_x(\Omega)))^2\) is called a weak solution of problem (6.12) if (6.14) and conditions \(U_x(b, t) = 0, V_x(b, t) = 0\) hold.

We now consider the iterated system

\[
\begin{align*}
C \partial^3_{w^2} U^{(n)} + & - \frac{1}{x} \left(xU_x^{(n)} \right)_x + \frac{1}{x} \left(xU_x^{(n)} \right)_{xt} + z_1 V^{(n)} + U^{(n)} = F(x, t, U^{(n-1)}, V^{(n-1)}, U_x^{(n-1)}, V_x^{(n-1)}), \\
C \partial^3_{w^2} V^{(n)} + & - \frac{1}{x} \left(xV_x^{(n)} \right)_x + \frac{1}{x} \left(xV_x^{(n)} \right)_{xt} + z_2 U^{(n)} + V^{(n)} = G(x, t, U^{(n-1)}, V^{(n-1)}, U_x^{(n-1)}, V_x^{(n-1)}), \\
U^{(n)}(x, 0) = & 0, \quad U_t^{(n)}(x, 0) = 0, \quad V^{(n)}(x, 0) = 0, \quad V_t^{(n)}(x, 0) = 0, \\
\int_0^b xU^{(n)} \, dx = & 0, \quad \int_0^b xV^{(n)} \, dx = 0, \quad U_x^{(n)}(b, t) = 0, \quad V_x^{(n)}(b, t) = 0,
\end{align*}
\]

(6.15)

where the iterated sequence \(\{U^{(n)}, V^{(n)}\}_{n \geq 0}\) is constructed in the following way: Given: \((U^{(0)}, V^{(0)}) = (0, 0)\) and the element \((U^{(n-1)}, V^{(n-1)})\), then for \(n = 1, 2, \ldots\), we solve the problem (6.15). According to Theorem 5.1, for fixed \(n\), each problem (6.15) has a unique solution \((U^{(n)}, V^{(n)})\).
If we set \((U^{(n)}(x, t), V^{(n)}(x, t)) = (U^{(n+1)}(x, t) - U^{(n)}(x, t), V^{(n+1)}(x, t) - V^{(n)}(x, t))\), then we have the new problem

\[
\begin{align*}
C & \partial_0^\gamma U^{(n)} - \frac{1}{x} \left(xU_x^{(n)}\right)_x - \frac{1}{x} \left(xU_x^{(n)}\right)_t = z_1 V^{(n)} + U_t^{(n)} = H_1^{(n-1)}(x, t), \\
C & \partial_0^\gamma V^{(n)} - \frac{1}{x} \left(xV_x^{(n)}\right)_x - \frac{1}{x} \left(xV_x^{(n)}\right)_t = z_2 U^{(n)} + V_t^{(n)} = H_2^{(n-1)}(x, t), \\
U^{(n)}(x, 0) = 0, & \quad U_t^{(n)}(x, 0) = 0, \\
V^{(n)}(x, 0) = 0, & \quad V_t^{(n)}(x, 0) = 0,
\end{align*}
\]
\hspace{1cm} (6.16)

where

\[
H_1^{(n-1)}(x, t) = F \left(x, t, U^{(n)}, U_x^{(n)}, V^{(n)}, V_x^{(n)}\right) - F \left(x, t, U^{(n-1)}, U_x^{(n-1)}, V^{(n-1)}, V_x^{(n-1)}\right), \\
H_2^{(n-1)}(x, t) = G \left(x, t, U^{(n)}, U_x^{(n)}, V^{(n)}, V_x^{(n)}\right) - G \left(x, t, U^{(n-1)}, U_x^{(n-1)}, V^{(n-1)}, V_x^{(n-1)}\right).
\]
\hspace{1cm} (6.17) \hspace{1cm} (6.18)

Lemma 6.1 Assume that conditions (6.3) and (6.4) hold, then for the fractional linearized system (6.16), we have the a priori estimate

\[
\|U^{(n)}\|_{L^2(0,T;H^1(\Omega))}^2 + \|V^{(n)}\|_{L^2(0,T;H^1(\Omega))}^2 \leq K^* \left(\|U^{(n-1)}\|_{L^2(0,T;H^1(\Omega))}^2 + \|V^{(n-1)}\|_{L^2(0,T;H^1(\Omega))}^2\right),
\]
\hspace{1cm} (6.19)

where \(K^*\) is a positive constant given by

\[
K^* = 4\gamma^{**} e^{TY^{**}} T \left(\delta_1^2 + \delta_2^2\right).
\]
\hspace{1cm} (6.20)

Proof: The consideration of the inner products in \(L^2_\rho(\Omega)\) of the PDEs in (6.16) and the integro-differential operators

\[
\mathcal{M}_1 U^{(n)} = C \partial_0^\gamma U^{(n)} + U_t^{(n)} - J_x^2(\xi U_t^{(n)}), \quad \mathcal{M}_2 V^{(n)} = C \partial_0^\gamma V^{(n)} + V_t^{(n)} - J_x^2(\xi V_t^{(n)}),
\]

respectively, gives the equation

\[
\begin{align*}
\left(C \partial_0^\gamma U^{(n)} - \frac{1}{x} \left(xU_x^{(n)}\right)_x - \frac{1}{x} \left(xU_x^{(n)}\right)_t + z_1 V^{(n)} + U_t^{(n)} - J_x^2(\xi U_t^{(n)})\right)_{L^2_\rho(\Omega)} & = 0, \\
\left(C \partial_0^\gamma V^{(n)} - \frac{1}{x} \left(xV_x^{(n)}\right)_x - \frac{1}{x} \left(xV_x^{(n)}\right)_t + z_2 U^{(n)} + V_t^{(n)} - J_x^2(\xi V_t^{(n)})\right)_{L^2_\rho(\Omega)} & = 0,
\end{align*}
\]

As in the proof of Theorem 4.1, we obtain

\[
\frac{1}{\rho} \frac{d}{dt} \left(\|U^{(n)}\|_{W^{\gamma}(\Omega)}^2 + \|V^{(n)}\|_{W^{\gamma}(\Omega)}^2\right) \leq \gamma^{**} e^{TY^{**}} \left(T \left(\|H_1^{(n-1)}\|_{L^2_\rho(\Omega)}^2 + \|H_2^{(n-1)}\|_{L^2_\rho(\Omega)}^2\right)\right).
\]
\hspace{1cm} (6.22)
By dropping the first two terms on the left hand side of (6.22), to get
\[
\|U^{(n)}\|_{H^1_\rho(\Omega)}^2 + \|V^{(n)}\|_{H^1_\rho(\Omega)}^2 \leq \mathcal{Y}^{**}e^{T\mathcal{Y}^{**}} \left(\int_0^T \|H_1^{(n-1)}\|_{L^2_\rho(\Omega)}^2 \, dt + \int_0^T \|H_2^{(n-1)}\|_{L^2_\rho(\Omega)}^2 \, dt \right), \quad (6.23)
\]
According to conditions (6.3) and (6.4), we estimate the right-hand side of (6.23) to obtain
\[
\int_0^T \|H_i^{(n-1)}\|_{L^2_\rho(\Omega)}^2 \, dt \leq 4\delta_i^2 \left(\|U^{(n-1)}\|_{L^2(0,T;H^1_\rho(\Omega))}^2 + \|V^{(n-1)}\|_{L^2(0,T;H^1_\rho(\Omega))}^2 \right), \quad i = 1, 2. \quad (6.24)
\]
Hence, inequality (6.23) becomes
\[
\|U^{(n)}\|_{H^1_\rho(\Omega)}^2 + \|V^{(n)}\|_{H^1_\rho(\Omega)}^2 \leq 4\mathcal{Y}^{**}e^{T\mathcal{Y}^{**}} \left(\delta_1^2 + \delta_2^2 \right) \left(\|U^{(n-1)}\|_{L^2(0,T;H^1_\rho(\Omega))}^2 + \|V^{(n-1)}\|_{L^2(0,T;H^1_\rho(\Omega))}^2 \right), \quad (6.25)
\]
By integrating both sides of (6.25) with respect to \(t \) over the interval \([0, T]\), we obtain
\[
\|U^{(n)}\|_{L^2(0,T;H^1_\rho(\Omega))}^2 + \|V^{(n)}\|_{L^2(0,T;H^1_\rho(\Omega))}^2 \leq K^* \left(\|U^{(n-1)}\|_{L^2(0,T;H^1_\rho(\Omega))}^2 + \|V^{(n-1)}\|_{L^2(0,T;H^1_\rho(\Omega))}^2 \right). \quad (6.26)
\]
where \(K^* \) is given by (6.20). This achieves the proof of Lemma 6.1.

Theorem 6.1 Suppose that conditions (6.3), and (6.4) hold, and \(K^* < 1/4 \), then the nonlinear fractional system (6.22) admits a weak solution in \(L^2(0,T; H^1_\rho(\Omega)) \).

Proof: From (6.26), we conclude that the series \(\sum_{n=1}^\infty U^{(n)} \) and \(\sum_{n=1}^\infty V^{(n)} \) converge if \(K^* < 1/4 \). Indeed, inequality (6.26), implies
\[
\|U^{(n)}\|_{L^2(0,T;H^1_\rho(\Omega))} \leq \sqrt{K^*} \left(\|U^{(n-1)}\|_{L^2(0,T;H^1_\rho(\Omega))}^2 + \|V^{(n-1)}\|_{L^2(0,T;H^1_\rho(\Omega))}^2 \right)^{1/2}, \quad (6.27)
\]
\[
\|V^{(n)}\|_{L^2(0,T;H^1_\rho(\Omega))} \leq \sqrt{K^*} \left(\|U^{(n-1)}\|_{L^2(0,T;H^1_\rho(\Omega))}^2 + \|V^{(n-1)}\|_{L^2(0,T;H^1_\rho(\Omega))}^2 \right)^{1/2}. \quad (6.28)
\]
It follows from (6.27) and (6.28) that
\[
\|U^{(n)}\|_{L^2(0,T;H^1_\rho(\Omega))} + \|V^{(n)}\|_{L^2(0,T;H^1_\rho(\Omega))} \leq \sqrt{2K^*} \left(\|U^{(n-1)}\|_{L^2(0,T;H^1_\rho(\Omega))}^2 + \|V^{(n-1)}\|_{L^2(0,T;H^1_\rho(\Omega))}^2 \right)^{1/2}. \quad (6.29)
\]
Now since
\[
\|U^{(n)} + V^{(n)}\|_{L^2(0,T;H^1_\rho(\Omega))} \leq \|U^{(n)}\|_{L^2(0,T;H^1_\rho(\Omega))} + \|V^{(n)}\|_{L^2(0,T;H^1_\rho(\Omega))}, \quad (6.30)
\]
then, we infer from (6.29) and (6.30) that
\[
\|U^{(n)} + V^{(n)}\|_{L^2(0,T;H^1_\rho(\Omega))} \leq 2\sqrt{K^*} \left(\|U^{(n-1)}\|_{L^2(0,T;H^1_\rho(\Omega))}^2 + \|V^{(n-1)}\|_{L^2(0,T;H^1_\rho(\Omega))}^2 \right)^{1/2} \leq 2\sqrt{K^*} \left(\|U^{(n-1)} + V^{(n-1)}\|_{L^2(0,T;H^1_\rho(\Omega))}^2 \right)^{1/2} \quad (6.31)
\]
Inequality (6.31), shows that the series \(\sum_{n=1}^{\infty} (U^{(n)} + V^{(n)}) = \sum_{n=1}^{\infty} U^{(n)} + \sum_{n=1}^{\infty} V^{(n)} \) converges if \(K^* < 1/4 \). Since \(\left(U^{(n)}, V^{(n)} \right) = \left(U^{(n-1)} - U^{(n)}, V^{(n-1)} - V^{(n)} \right) \), then it follows that the sequence \(\left(U^{(n)}, V^{(n)} \right)_{n \in \mathbb{N}} \) with \(U^{(n)} \) and \(V^{(n)} \), defined by:

\[
U^{(n)}(x, t) = \sum_{k=0}^{n-1} U^{(k)}(x, t) + U^{(0)}(x, t)
\]

and

\[
V^{(n)}(x, t) = \sum_{k=0}^{n-1} V^{(k)}(x, t) + V^{(0)}(x, t)
\]

converge to an element \((U, V) \in (L^2(0, T; H^1_\rho(\Omega)))^2\), which must be proved that it is a solution of problem (6.2). In other words, \((U, V)\) must satisfy (6.34), and the Neumann boundary conditions.

From the iterated system (6.15), we have:

\[
A\left(w, U^{(n)}(x, t), V^{(n)}(x, t)\right) = \left(w, J_x\left(\xi F\left(\xi, t, U^{(n-1)}, U^{(n-1)}_{\xi}, V^{(n-1)}_{\xi}\right)\right)\right)_{L^2(0, T; L^2_\rho(\Omega))}
\]

\[
+ \left(w, J_x\left(\xi G\left(\xi, t, U^{(n-1)}, U^{(n-1)}_{\xi}, V^{(n-1)}_{\xi}\right)\right)\right)_{L^2(0, T; L^2_\rho(\Omega))}
\]

We infer from (6.34) that

\[
A\left(w, U^{(n)}(x, t) - U, V^{(n)}(x, t) - V\right) + A\left(w, U, V\right)
\]

\[
= \left(w, J_x\left(\xi F\left(\xi, t, U^{(n-1)}, U^{(n-1)}_{\xi}, V^{(n-1)}_{\xi}\right)\right) - J_x\left(\xi F\left(\xi, t, U^{(n)}, U^{(n)}_{\xi}, V^{(n)}_{\xi}\right)\right)\right)_{L^2(0, T; L^2_\rho(\Omega))}
\]

\[
+ \left(w, J_x\left(\xi G\left(\xi, t, U^{(n-1)}, U^{(n-1)}_{\xi}, V^{(n-1)}_{\xi}\right)\right) - J_x\left(\xi G\left(\xi, t, U^{(n)}, U^{(n)}_{\xi}, V^{(n)}_{\xi}\right)\right)\right)_{L^2(0, T; L^2_\rho(\Omega))}
\]

\[
+ (w, J_x\left(\xi F\left(\xi, t, U^{(n)}, U^{(n)}_{\xi}, V^{(n)}_{\xi}\right)\right))_{L^2(0, T; L^2_\rho(\Omega))} + (w, J_x\left(\xi G\left(\xi, t, U^{(n)}, U^{(n)}_{\xi}, V^{(n)}_{\xi}\right)\right))_{L^2(0, T; L^2_\rho(\Omega))}
\]

Now from the FPDEs in (6.15), we obtain

\[
A\left(w, U^{(n)}(x, t), V^{(n)}(x, t)\right) = \left(w, C \frac{\partial}{\partial t} J_x\left(\xi F\left(\xi, t, U^{(n)}, U^{(n)}_{\xi}, V^{(n)}_{\xi}\right)\right)\right)_{L^2(0, T; L^2_\rho(\Omega))}
\]

\[
- \left(w, \frac{\partial}{\partial t} J_x\left(\xi F\left(\xi, t, U^{(n)}(x, t), U^{(n)}_{\xi}, V^{(n)}_{\xi}\right)\right)\right)_{L^2(0, T; L^2_\rho(\Omega))} + z_1 (w, J_x(\xi F(v(n)) - V(n)))_{L^2(0, T; L^2_\rho(\Omega))}
\]

\[
+ \left(w, J_x\left(\xi F\left(\xi, t, U^{(n)}(x, t) - U\right)\right)\right)_{L^2(0, T; L^2_\rho(\Omega))} + (w, C \frac{\partial}{\partial t} J_x\left(\xi F\left(\xi, t, U^{(n)}(x, t) - V\right)\right)\right)_{L^2(0, T; L^2_\rho(\Omega))}
\]

\[
- \left(w, J_x\left(\xi F\left(\xi, t, U^{(n)}(x, t) - U\right)\right)\right)_{L^2(0, T; L^2_\rho(\Omega))} - \left(w, \frac{\partial}{\partial t} J_x\left(\xi F\left(\xi, t, U^{(n)}(x, t) - V\right)\right)\right)_{L^2(0, T; L^2_\rho(\Omega))}
\]

\[
+ z_2 (w, J_x(\xi (U^{(n)} - U)))_{L^2(0, T; L^2_\rho(\Omega))} + (w, J_x(\xi (V^{(n)} - V)))_{L^2(0, T; L^2_\rho(\Omega))}
\]

\[
(6.36)
\]
Conditions on functions \(w, U, V \), and integration of each term on the right-hand side of (6.36), yield

\[
A \left(w, U^{(n)} - U, V^{(n)} - V \right)
= - \left(U^{(n)} - U, C \partial_{tt}^{2} \mathcal{J}_{x} \left(\xi w \right) \right)_{L^{2}(0,T;L_{x}^{2}(\Omega))} - \left(\frac{\partial}{\partial x} \left(U^{(n)} - U \right), xw \right)_{L^{2}(0,T;L_{x}^{2}(\Omega))}
+ \left(\frac{\partial}{\partial x} \left(U^{(n)} - U \right), xw_{l} \right)_{L^{2}(0,T;L_{x}^{2}(\Omega))} - z_{1} \left(V^{(n)} - V, \mathcal{J}_{x} \left(\xi w \right) \right)_{L^{2}(0,T;L_{x}^{2}(\Omega))}
+ \left(U^{(n)} - U, \mathcal{J}_{x} \left(\xi w_{l} \right) \right)_{L^{2}(0,T;L_{x}^{2}(\Omega))} + \left(V^{(n)} - V, \mathcal{J}_{x} \left(\xi w_{l} \right) \right)_{L^{2}(0,T;L_{x}^{2}(\Omega))}
- \left(V^{(n)} - V, C \partial_{tt}^{2} \mathcal{J}_{x} \left(\xi w \right) \right)_{L^{2}(0,T;L_{x}^{2}(\Omega))} - \left(\frac{\partial}{\partial x} \left(V^{(n)} - V \right), xw \right)_{L^{2}(0,T;L_{x}^{2}(\Omega))}
+ \left(\frac{\partial}{\partial x} \left(V^{(n)} - V \right), xw_{l} \right)_{L^{2}(0,T;L_{x}^{2}(\Omega))} - z_{2} \left(U^{(n)} - U, \mathcal{J}_{x} \left(\xi w \right) \right)_{L^{2}(0,T;L_{x}^{2}(\Omega))}
\] (6.37)

Application of the Cauchy–Schwarz inequality, to the terms on the right-hand side of (6.37) gives

\[
- \left(U^{(n)} - U, C \partial_{tt}^{2} \mathcal{J}_{x} \left(\xi w \right) \right)_{L^{2}(0,T;L_{x}^{2}(\Omega))} \leq \left\| U^{(n)} - U \right\|_{L^{2}(0,T;L_{x}^{2}(\Omega))} \left\| C \partial_{tt}^{2} \mathcal{J}_{x} \left(\xi w \right) \right\|_{L^{2}(0,T;L_{x}^{2}(\Omega))}, \quad (6.38)
\]
\[
- \left(\frac{\partial}{\partial x} \left(U^{(n)} - U \right), xw \right)_{L^{2}(0,T;L_{x}^{2}(\Omega))} \leq b \left\| \frac{\partial}{\partial x} \left(U^{(n)} - U \right) \right\|_{L^{2}(0,T;L_{x}^{2}(\Omega))} \left\| w \right\|_{L^{2}(0,T;L_{x}^{2}(\Omega))}, \quad (6.39)
\]
\[
+ \left(\frac{\partial}{\partial x} \left(U^{(n)} - U \right), xw_{l} \right)_{L^{2}(0,T;L_{x}^{2}(\Omega))} \leq b \left\| \frac{\partial}{\partial x} \left(U^{(n)} - U \right) \right\|_{L^{2}(0,T;L_{x}^{2}(\Omega))} \left\| w_{l} \right\|_{L^{2}(0,T;L_{x}^{2}(\Omega))}, \quad (6.40)
\]
\[
- z_{1} \left(V^{(n)} - V, \mathcal{J}_{x} \left(\xi w \right) \right)_{L^{2}(0,T;L_{x}^{2}(\Omega))} \leq z_{1} \left\| V^{(n)} - V \right\|_{L^{2}(0,T;L_{x}^{2}(\Omega))} \left\| \mathcal{J}_{x} \left(\xi w \right) \right\|_{L^{2}(0,T;L_{x}^{2}(\Omega))}, \quad (6.41)
\]
\[
- \left(V^{(n)} - V, C \partial_{tt}^{2} \mathcal{J}_{x} \left(\xi w \right) \right)_{L^{2}(0,T;L_{x}^{2}(\Omega))} \leq \left\| V^{(n)} - V \right\|_{L^{2}(0,T;L_{x}^{2}(\Omega))} \left\| C \partial_{tt}^{2} \mathcal{J}_{x} \left(\xi w \right) \right\|_{L^{2}(0,T;L_{x}^{2}(\Omega))}, \quad (6.42)
\]
\[
- \left(\frac{\partial}{\partial x} \left(V^{(n)} - V \right), xw \right)_{L^{2}(0,T;L_{x}^{2}(\Omega))} \leq b \left\| \frac{\partial}{\partial x} \left(V^{(n)} - V \right) \right\|_{L^{2}(0,T;L_{x}^{2}(\Omega))} \left\| w \right\|_{L^{2}(0,T;L_{x}^{2}(\Omega))}, \quad (6.43)
\]
\[
+ \left(\frac{\partial}{\partial x} \left(V^{(n)} - V \right), xw_{l} \right)_{L^{2}(0,T;L_{x}^{2}(\Omega))} \leq b \left\| \frac{\partial}{\partial x} \left(V^{(n)} - V \right) \right\|_{L^{2}(0,T;L_{x}^{2}(\Omega))} \left\| w_{l} \right\|_{L^{2}(0,T;L_{x}^{2}(\Omega))}, \quad (6.44)
\]
\[
- z_{2} \left(U^{(n)} - U, \mathcal{J}_{x} \left(\xi w \right) \right)_{L^{2}(0,T;L_{x}^{2}(\Omega))} \leq z_{2} \left\| U^{(n)} - U \right\|_{L^{2}(0,T;L_{x}^{2}(\Omega))} \left\| \mathcal{J}_{x} \left(\xi w \right) \right\|_{L^{2}(0,T;L_{x}^{2}(\Omega))}, \quad (6.45)
\]
\[
\left(U^{(n)} - U, \mathcal{J}_{x} \left(\xi w_{l} \right) \right)_{L^{2}(0,T;L_{x}^{2}(\Omega))} \leq \left\| U^{(n)} - U \right\|_{L^{2}(0,T;L_{x}^{2}(\Omega))} \left\| \mathcal{J}_{x} \left(\xi w_{l} \right) \right\|_{L^{2}(0,T;L_{x}^{2}(\Omega))}, \quad (6.46)
\]
\[
\left(V^{(n)} - V, \mathcal{J}_{x} \left(\xi w_{l} \right) \right)_{L^{2}(0,T;L_{x}^{2}(\Omega))} \leq \left\| V^{(n)} - V \right\|_{L^{2}(0,T;L_{x}^{2}(\Omega))} \left\| \mathcal{J}_{x} \left(\xi w_{l} \right) \right\|_{L^{2}(0,T;L_{x}^{2}(\Omega))}, \quad (6.47)
\]

Combination of equality (6.37) and inequalities (6.38)-(6.47), leads to

\[
A \left(w, U^{(n)} - U, V^{(n)} - V \right)
\leq l_{1} \left(\left\| U^{(n)} - U \right\|_{L^{2}(0,T;H_{x}^{1}(\Omega))} \right)
\times \left(\left\| \partial_{tt}^{2} \mathcal{J}_{x} \left(\xi w \right) \right\|_{L^{2}(0,T;L_{x}^{2}(\Omega))} + \left\| \mathcal{J}_{x} \left(\xi w \right) \right\|_{L^{2}(0,T;L_{x}^{2}(\Omega))} + \left\| w \right\|_{L^{2}(0,T;L_{x}^{2}(\Omega))} \right)
\times \left(\left\| \partial_{tt}^{2} \mathcal{J}_{x} \left(\xi w \right) \right\|_{L^{2}(0,T;L_{x}^{2}(\Omega))} + \left\| \mathcal{J}_{x} \left(\xi w \right) \right\|_{L^{2}(0,T;L_{x}^{2}(\Omega))} + \left\| w \right\|_{L^{2}(0,T;L_{x}^{2}(\Omega))} \right),
\] (6.48)
with \(l_1 = l_2 = \max (1, b, z_1, z_2) \).

On the other side, we have
\[
\left(w, \mathcal{J}_x \left(\xi F \left(\xi, t, \mathcal{U}^{(n-1)} \xi \right), V^{(n-1)} \xi, V^{(n-1)} \xi \right) \right) - \mathcal{J}_x \left(\xi F \left(\xi, t, U, \xi \right), V \right) \right)_{L^2(0,T;L^2)} \\
\leq \frac{\delta b}{\sqrt{2}} \left\| U \right\|_{L^2(0,T;L^2)} \left(\left\| U^{(n)} - U \right\|_{L^2(0,T;H^1)} + \left\| V^{(n)} - V \right\|_{L^2(0,T;H^1)} \right), \tag{6.49}
\]
\[
\left(w, \mathcal{J}_x \left(\xi G \left(\xi, t, \mathcal{U}^{(n-1)} \xi \right), V^{(n-1)} \xi, V^{(n-1)} \xi \right) \right) - \mathcal{J}_x \left(\xi G \left(\xi, t, U, \xi \right), V \right) \right)_{L^2(0,T;L^2)} \\
\leq \frac{\delta b}{\sqrt{2}} \left\| U \right\|_{L^2(0,T;L^2)} \left(\left\| U^{(n)} - U \right\|_{L^2(0,T;H^1)} + \left\| V^{(n)} - V \right\|_{L^2(0,T;H^1)} \right). \tag{6.50}
\]
As \(n \to \infty \), it follows from (6.48)-(6.50), and (6.35) that
\[
A (w, U, V) = \left(w, \mathcal{J}_x (\xi F) \right)_{L^2(0,T;L^2)} + \left(w, \mathcal{J}_x (\xi G) \right)_{L^2(0,T;L^2)}.
\]
To conclude that problem (6.2) admits a weak solution, we must show that conditions \(U_x(b,t) = 0, \ V_x(b,t) = 0 \) in (6.2) hold. Since; \((U, V) \in (L^2(0, T; H^1(\Omega)))^2 \), then
\[
\int_0^t U_x(x,s)ds, \int_0^t V_x(x,s)ds \in C(Q),
\]
from which we conclude that: \(U_x(b,t) = 0, \ V_x(b,t) = 0 \), a.e.

It remains now to prove the uniqueness of solution of system (6.2).

Theorem 6.2 If hypotheses (6.3) and (6.4) are satisfied, then the system (6.2) has only one solution.

Proof: Suppose that \((U_1, V_1), (U_2, V_2) \in (L^2(0, T; H^1(\Omega)))^2 \) are two different solutions of the system (6.2), then \((\mathcal{U}, \mathcal{V}) = (U_1 - U_2, V_1 - V_2) \in (L^2(0, T; H^1(\Omega)))^2 \), verifies
\[
\begin{cases}
C \partial_0^2 \mathcal{U} - \frac{1}{\alpha} (x \mathcal{U}_x)_x - \frac{1}{\alpha} (x \mathcal{U}_x)_x + V + \mathcal{U}_n = H_1 (x,t), \\
C \partial_0^2 \mathcal{V} - \frac{1}{\alpha} (x \mathcal{V}_x)_x + \frac{1}{\alpha} (x \mathcal{V}_x)_x + \mathcal{U} + \mathcal{V}_n = H_2 (x,t), \\
\mathcal{U}(x,0) = 0, \mathcal{V}(x,0) = 0, \mathcal{V}(x,0) = 0, \mathcal{V}_n(x,0) = 0, \\
\int_0^b x \mathcal{U} dx = 0, \int_0^b x \mathcal{V} dx = 0, \mathcal{U}_n(b,t) = 0, \mathcal{V}_n(b,t) = 0,
\end{cases} \tag{6.51}
\]
where
\[
H_1 (x,t) = F (x, t, U_1, (U_1)_x, V_1, (V_1)_x) - F (x, t, U_2, (U_2)_x, V_2, (V_2)_x), \tag{6.52}
\]
\[
H_2 (x,t) = G (x, t, U_1, (U_1)_x, V_1, (V_1)_x) - G (x, t, U_2, (U_2)_x, V_2, (V_2)_x). \tag{6.53}
\]
We now consider the scalar product in the space \(L^2(0,T;L^2) \) of the PDEs in (6.51) and the differential operators \(\mathcal{M}_1 \mathcal{U} = C \partial_0^2 \mathcal{U} + \mathcal{U} - \mathcal{J}_x^2 (\xi U) \), \(\mathcal{M}_2 \mathcal{V} = C \partial_0^2 \mathcal{V} + \mathcal{V} - \mathcal{J}_x^2 (\xi V) \), and follow the same computations as in Lemma 6.1, we obatin
\[
\left\| \mathcal{U} \right\|^2_{L^2(0,T;H^1(\Omega))} + \left\| \mathcal{V} \right\|^2_{L^2(0,T;H^1(\Omega))} \leq K^* \left(\left\| \mathcal{U} \right\|^2_{L^2(0,T;H^1(\Omega))} + \left\| \mathcal{V} \right\|^2_{L^2(0,T;H^1(\Omega))} \right), \tag{6.54}
\]
\[23\]
where K^* is the same constant as in Lemma (6.1). Since $K^* < 1/4$, we deduce from (6.54) that

$$(1 - K^*) \left(\|U\|_{L^2(0,T;H^1(\Omega))}^2 + \|V\|_{L^2(0,T;H^1(\Omega))}^2 \right) = 0,$$

(6.55)

which implies that $(U, V) = (U_1 - U_2, V_1 - V_2) = (0, 0)$, and hence

$$U_1 = U_2 \in L^2(0,T;H^1(\Omega)) \quad \text{and} \quad V_1 = V_2 \in L^2(0,T;H^1(\Omega)).$$

This achieves the proof of Theorem (6.2).

Conclusion. A Caputo fractional nonlinear pseudohyperbolic system supplemented by a classical and a nonlocal boundary condition of integral type is investigated. More precisely, in this research work, we search a function $u(x,t)$ verifying (1.1). The associated fractional linear problem is reformulated, and the uniqueness and existence of the strong solutions are proved in a fractional Sobolev space. A priori bound for the solution is obtained from which the uniqueness of the solution follows. By using some density arguments, the solvability of the linear problem is established. To take the well posedness of the fractional nonlinear problem, we relied on the obtained results for the linear fractional system, by applying a certain iterative process. Our study improves and develops some few existence results for the fractional initial boundary value problems when using the method of functional analysis, the so called energy inequality method. We would like to mention that the application of the used method is a little complicated while dealing with the posed problem in the presence of the nonlinear source terms, the fractional terms, the appearance of the singularity and the nonlocal integral conditions.

[1] Higazy, M., Allehiany, F.M., Mahmoud, E.E.: Numerical study of fractional order COVID-19 pandemic transmission model in context of ABO blood group. Results Phys. 22, 103852 (2021).

[2] Moustafa, M., Mohd, M.H., Ismail, A.I., Abdullah, F.A.: Global stability of a fractional order ecoepidemiological system with infected prey. Int. J.Math.Model. Numer. Optim. (2021).

[3] Cardoso, L.C., Camargo, R.F., Dos Santos, F.L.P., Dos Santos, P.C.: Global stability analysis of a fractional differential system in hepatitis B. Chaos Solitons Fractals 143, 110619 (2021).

[4] Agnihotri, K. and Juneja, N, An eco-epidemic model with disease in both prey and predator, IJAEEE, Vol. 4, No. 4, pp.50–54 (2015).

[5] Almeida, R., Cruz, B., Martins, N. and Monteiro, T, An epidemiological MSEIR model described by the Caputo fractional derivative, International Journal of Dynamics and Control, Vol. 7, No. 2, pp.776–784, (2018).

[6] Ansari, S.P., Agrawal, S.K. and Das, S, Stability analysis of fractional-order generalized chaotic susceptible-infected-recovered epidemic model and its synchronization using active control method, Pramana, Vol. 84, No. 1, pp.23–32, (2015).

[7] Bolton, L., Cloot, A.H., Schoombie, S.W. and Slabbert, J.P, A proposed fractional-order Gompertz model and its application to tumour growth data, Mathematical Medicine and Biology: A Journal of the IMA, Vol. 32, No. 2, pp.187–207, (2014).

[8] Jajarmi, A. and Baleanu, D, A new fractional analysis on the interaction of HIV with CD4+T-cells, Chaos, Solitons & Fractals, Vol. 113, pp.221–229, (2018).
[9] Area, I., Batarfi, H., Losada, J., Nieto, J.J., Shammakh, W., Torres, Á.: On a fractional order Ebola epidemic model. Adv. Differ. Equ. 2015(1), 278 (2015).

[10] Baleanu, D., Jajarmi, A., Mohammadi, H.: A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative. Chaos Solitons Fractals 134, 109705 (2020).

[11] Veeresha, P., Baskonus, H.M., Prakasha, D.G., Gao, W., Yel, G.: Regarding new numerical solution of fractional schistosomiasis disease arising in biological phenomena. Chaos Solitons Fractals 133, 109661 (2020).

[12] Ameen, I., Baleanu, D., Ali, H.M.: An efficient algorithm for solving the fractional optimal control of SIRV epidemic model with a combination of vaccination and treatment. Chaos Solitons Fractals 137, 109892 (2020).

[13] Batmani, Y.: Chaos control and chaos synchronization using the state-dependent Riccati equation techniques. Trans. Inst. Meas. Control 41(2), 311–320 (2019).

[14] Dongmo, E.D., Ojo, K.S., Woafo, P., Njah, A.N.: Difference synchronization of identical and nonidentical chaotic and hyperchaotic systems of different orders using active backstepping design. J. Comput. Nonlinear Dyn. 13(5), 051005 (2018).

[15] Wang, H., Ye, J.-M., Miao, Z.-H., Jonckheere, E.A.: Robust finite-time chaos synchronization of time-delay chaotic systems and its application in secure communication. Trans. Inst. Meas. Control 40(4), 1177–1187 (2018).

[16] Chen, Z., Yuan, X., Yuan, Y., Iu, H.H.-C., Fernando, T.: Parameter identification of chaotic and hyper-chaotic systems using synchronization-based parameter observer. IEEE Trans. Circuits Syst. I, Regul. Pap. 63(9), 1464–1475 (2016).

[17] Baleanu, D., Jajarmi, A., Mohammadi, H., Rezapour, S.: A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative. Chaos Solitons Fractals 134, 109705 (2020).

[18] Mirrezapour, S.Z., Zare, A., Hallaji, M.: A new fractional sliding mode controller based on nonlinear fractional-order proportional integral derivative controller structure to synchronize fractional-order chaotic systems with uncertainty and disturbances. J. Vib. Control (2021).

[19] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm Sci 2016. OnLine-First (00). 18. 10.2298/TSCI160111018A.

[20] D. Sierociuk, A. Dzieliński, G. Sarwas, I. Petras, I. Podlubny, T. Skovranek, Modelling heat transfer in heterogeneous media using fractional calculus, Philos. Trans. R. Soc. A 371 (2013) 1–10.

[21] D.W. Hahn, M.N. Ozisik, Heat Conduction, Wiley, 2012.

[22] Monika Zecova, Jan Terpak, Heat conduction modeling by using fractional order derivatives, Applied Mathematics and Computation 257 (2015) 365–373.

[23] O.P. Agrawal, Solution for a fractional diffusion-wave equation defined in a bounded domain, Nonlinear Dyn. 29 (2002).
[24] R. Gorenflo, F. Mainardi, D. Moretti, P. Paradisi, Time fractional diffusion: a discrete random walk approach, Nonlinear Dyn. 29 (2002).

[25] R. Gorenflo, A. Vivoli, Fully discrete random walks for space–time fractional diffusion equations, Signal Process. 83 (11) (2003) 2411–2420.

[26] T. Machado, A. Lopes, Relative fractional dynamics of stock markets. Nonlin. Dynamics 86, No 3 (2016), 1613–1619.

[27] E. Scalas, R. Gorenflo, F. Mainardi, Fractional calculus and continuous-time finance. Phys. A: Stat. Mech. and its Appl. 284, No 1-4 (2000), 376–384.

[28] Tarasov, V.E. On History of Mathematical Economics: Application of Fractional Calculus. Mathematics 2019, 7, 509.

[29] Tenreiro Machado, J.A.; Mata, M.E.; Lopes, A.M. Fractional Dynamics and Pseudo-Phase Space of Country Economic Processes. Mathematics 2020, 8, 81.

[30] Tejado, I.; Pérez, E.; Valério, D. Fractional Derivatives for Economic Growth Modelling of the Group of Twenty: Application to Prediction. Mathematics 2020, 8, 50.

[31] Ming, H.; Wang, J.; Feckan, M. The Application of Fractional Calculus in Chinese Economic Growth Models. Mathematics 2019, 7, 665.

[32] Y. Z. Povstenko, “Fractional radial heat conduction in an infinite medium with a cylindrical cavity and associated thermal stresses,” Mechanics Research Communications, vol. 37, no. 4, pp. 436–440, 2010.

[33] H. Sherief and A. M. Abd El-Latief, “Effect of variable thermal conductivity on a half-space under the fractional order theory of thermoelasticity,” International Journal of Mechanical Sciences, vol. 74, pp. 185–189, 2013.

[34] F. Hamza, M. Abdou, and A. M. Abd El-Latief, “Generalized fractional thermoelasticity associated with two relaxation times,” Journal of Thermal Stresses, vol. 37, no. 9, pp. 1080–1098, 2014.

[35] Y. Wang, D. Liu, Q. Wang, and J. Zhou, “Effect of fractional order parameter on thermoelastic behaviors of elastic medium with variable properties,” Acta Mechanica Solida Sinica, vol. 28, no. 6, pp. 682–692, 2015.

[36] Luchko Yu, Mainardi F, Povstenko Y. 2013 Propagation speed of the maximum of the fundamental solution to the fractional diffusion-wave equation. Comput. Math. Appl. 66, 774.

[37] Povstenko Y. 2015 Fractional thermoelasticity. New York, NY: Springer.

[38] Povstenko Y. 2009 Thermoeelasticity which uses fractional heat conduction equation. J. Math. Sci. 162, 296.

[39] Li C, He T, Tian X. 2019 Transient responses of nanosandwich structure based on size-dependent generalized thermoelastic diffusion theory. J. Therm. Stresses 42, 1171.

[40] Mashat, D.S., Zenkour, A.M., and Abouelregal, A.E., Fractional order Thermoeelasticity Theory for a HalfSpace Subjected to an Axisymmetric Heat Distribution, Mech. Adv. Mater. Struct., 2015, vol. 22, no. 11, pp. 925–932.
[41] Baleanu D., Tenreiro Machado J. A., Luo A. C. J. (Eds.): Fractional Dynamics and Control. Springer, New York (2012).

[42] Tarasov V. E.: Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, Heidelberg (2010).

[43] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College Press, London, (2010).

[44] L. Bagley, P.J. Torvik, On the fractional calculus model of viscoelastic behavior, J. Rheol. 30 (1986) 133–155.

[45] C.H.R. Friedrich, Relaxation and retardation functions of the Maxwell model with fractional derivatives, Rheol. Acta 30 (2) (1991) 151–158.

[46] Igor Fedotov · Michael Shatalov · Julian Marais, Hyperbolic and pseudo-hyperbolic equations in the theory of vibration, Acta Mech 227, 3315–3324 (2016).

[47] Fedotov, I., Polyakin, A.D., Shatalov, M., Tenkam, H.M.: Longitudinal vibration of a Rayleigh–Bishop axisymmetric rod. Dokl. Phys. 434, 1–6 (2010).

[48] Fedotov, I., Marais, J., Shatalov, M., Tenkam, H.M.: Hyperbolic models arising in the theory of longitudinal vibration of elastic bars. Aust. J. Math. Anal. Appl., Vol. 7, Issue 2, Article 14, pp. 1–18 (2013).

[49] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity, 2nd edn. (1906), pp. 408–409. Biblio Life, Charleston (2009).

[50] Demidenko, G.V., Uspenskii, S.V.: Partial differential equations and systems not solvable with respect to the highest-order derivative. Pure and Applied Mathematics, Vol. 256. Marcel Dekker, New York (1998).

[51] Dengke Tong, Xianmin Zhang, Xinhong Zhang, Unsteady helical flows of a generalized Oldroyd-B fluid, J. Non-Newtonian Fluid Mech. 156 (2009) 75–83.

[52] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol.198. Elsevier, Amsterdam, 1998.

[53] Podlubny, Igor; Fractional differential equations, Mathematics in Science and Engineering, vol. 198, Academic Press, San Diego, 1999.

[54] Alikhanov, AA; A priori estimates for solutions of boundary value problems for fractional-order equations, Differential equations, vol.46(5), pp.660–666, 2010.

[55] Ladyzhenskaya, O.L.: The boundary value problems of mathematical physics, Springer-Verlag , New York, (1985).

[56] Mesloub, Said; A nonlinear nonlocal mixed problem for a second order pseudoparabolic equation, Journal of mathematical analysis and applications, vol.316(1), pp.189–209, 2006.

[57] Mesloub, Said and Bouziani, Abdelfatah; On a class of singular hyperbolic equation with a weighted integral condition, International Journal of Mathematics and Mathematical Sciences, vol.22, 1999.