Research Article

Prenatal Ultrasound Screening for Fetal Anomalies and Outcomes in High-Risk Pregnancies due to Maternal HIV Infection: A Retrospective Study

A. Reitter, A. U. Stücker, H. Buxmann, E. Herrmann, A. E. Haberl, R. Schlößer, and F. Louwen

1 Department of Obstetrics and Gynecology, University Hospital Frankfurt, Goethe-University, Theodor Stern Kai 7, 60590 Frankfurt, Germany
2 Division of Neonatology, Department of Pediatrics, University Hospital Frankfurt, Goethe-University, Theodor Stern Kai 7, 60590 Frankfurt, Germany
3 Department of Biostatistics and Mathematic Modelling, Goethe-University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt, Germany
4 Department of Infectious Diseases, University Hospital Frankfurt, Goethe-University, Theodor Stern Kai 7, 60590 Frankfurt, Germany

Correspondence should be addressed to A. Reitter; ankereitter@googlemail.com

Received 1 July 2013; Revised 20 August 2013; Accepted 21 August 2013

Academic Editor: Bryan Larsen

Copyright © 2013 A. Reitter et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Objective. To assess the prevalence of prenatal screening and of adverse outcome in high-risk pregnancies due to maternal HIV infection.

Study Design. The prevalence of prenatal screening in 330 pregnancies of HIV-positive women attending the department for prenatal screening and/or during labour between January 1, 2002 and December 31, 2012, was recorded. Screening results were compared with the postnatal outcome and maternal morbidity, and mother-to-child transmission (MTCT) was evaluated.

Results. One hundred of 330 women (30.5%) had an early anomaly scan, 252 (74.5%) had a detailed scan at 20–22 weeks, 18 (5.5%) had a detailed scan prior to birth, and three (0.9%) had an amniocentesis. In seven cases (2.12%), a fetal anomaly was detected prenatally and confirmed postnatally, while in eight (2.42%) an anomaly was only detected postnatally, even though a prenatal scan was performed. There were no anomalies in the unscreened group. MTCT occurred in three cases (0.9%) and seven fetal and neonatal deaths (2.1%) were reported. Conclusion. The overall prevalence of prenatal ultrasound screening in our cohort is 74.5%, but often the opportunity for prenatal ultrasonography in the first trimester is missed. In general, the aim should be to offer prenatal ultrasonography in the first trimester in all pregnancies. This allows early reassurance or if fetal disease is suspected, further steps can be taken.

1. Introduction

The majority of women living with HIV are in their reproductive years (ages 15–49) [1, 2]. The dramatic decrease in the risk of mother-to-child HIV transmission (MTCT) is leading to normality in the lives of couples affected by HIV, who want own children. In Europe, the reduction in MTCT to less than 1% is mainly due to highly active antiretroviral therapy (HAART). Effective HAART is resulting in suppressed viral load (VL); thus, a vaginal birth can be as safe as a planned caesarean section [3, 4]. Avoidance of breastfeeding and postnatal neonatal postexposure prophylaxis (PEP) further supports the effective reduction in MTCT [3–5]. Still there is a fear of higher pregnancy complications in women living with HIV [6]. The literature suggests that there is no increased rate of fetal malformations due to the HIV infection or HAART [6, 7]. A pregnant woman with HIV infection usually has intensified prenatal care including referral for prenatal ultrasound screening [8].

Prenatal ultrasound screening is being offered earlier and earlier [9]. Large studies of noninvasive prenatal screening have already indicated that it will lead to a decrease of invasive prenatal screening procedures such as amniocentesis (AC) or chorionic villi biopsy (CVS) [10]. If invasive prenatal testing
Table 1: Maternal and neonatal characteristics.

Characteristics	Value
Maternal age at delivery (±SD)	31.05 ± 5.7
Gravidity	
1	89 (27.3%)
2	104 (31.9%)
3	71 (21.8%)
4	38 (11.7%)
≥5	24 (7.2%)
Parity	
1	162 (49.7%)
2	108 (33.1%)
3	36 (11%)
4	12 (3.7%)
≥5	8 (2.4%)
Duration of pregnancy (weeks of gestation)	320 (9.6%)
24 + 0–33 + 6	32 (9.6%)
34 + 0–36 + 6	90 (26.9%)
>37 + 0	212 (63.5%)
Ethnicity	
Caucasian	95 (33.6%)
African	188 (66.4%)
HIV diagnosis during pregnancy	
Yes	79 (24.2%)
No	243 (75.8%)
Mode of delivery	
Planned caesarean section	257 (77.4%)
Caesarean section in labor	30 (9%)
Emergency caesarean section	1 (0.3%)
Caesarean section after trial of vaginal birth	13 (3.9%)
Spontaneous vaginal delivery	29 (8.7%)
Unplanned vaginal delivery	1 (0.3%)
Operative vag delivery (e.g., forceps)	1 (0.3%)
CD4 count at delivery (cells/μL)	281
<200	30 (10.5%)
200–349	76 (27%)
≥350	175 (62.5%)
Viral load at delivery (copies/mL)	301
<50	168 (55.8%)
50–399	88 (29.2%)
≥400	45 (15%)
HAART before the beginning of pregnancy	289
Yes	181 (62.6%)
No	108 (37.4%)

Table 1: Continued.

Characteristics	Value
HCV (positive anti-HCV test)	N = 280
Yes	25 (8.9%)
Negative	255 (91.1%)
5-min APGAR	N = 330
<4	0
<7	5 (1.5%)
7–10	325 (98.5%)
Arterial cord pH	N = 327
<70	0
7.0–<7.1	2 (0.6%)
7.1–<7.2	16 (4.9%)
≥7.2	309 (94.5%)
Base excess (±SD)	N = 323
−2.98 ± 2.15	
Weight (g) (±SD)	N = 333
2837 ± 656	
Percentile (±SD)	N = 335
<10th	30 (9%)
10–90	291 (86.8%)
>90th	14 (4.2%)
Early anomaly scan (II + 0–14 + 0) weeks of gestation	N = 100
30.5%	
Nuchal translucency	N = 67
20.3%	
Anomaly/detailed scan 20–22 weeks of gestation	N = 252
74.5%	
Anomaly scan any time later in pregnancy	N = 18
5.5%	
Fetal/neonatal anomalies in total	N = 15
4.5%	
MTCT in total	N = 3
0.9%	

MTCT: mother-to-child transmission; SD: standard deviation.

is necessary, it can be done, but in these circumstances, HAART should be started prior to the procedure to suppress the VL below the limit of detection. In these cases current, evidence suggests that MTCT is very unlikely; however, studies reporting on the risk of MTCT in invasive prenatal testing are limited due to small study size [11].

HAART is given during pregnancy for two reasons, first to women with an own indication for HAART (they require treatment for their own health) and secondly to pregnant women starting therapy purely as a prophylactic treatment to reduce MTCT.

The aim of our study was to investigate if pregnant HIV-positive women get referred for special prenatal ultrasound screening services in our tertiary referral center, but also if and at what point the prenatal ultrasonography is performed. Pregnant HIV-positive women usually have a combined
Table 2: Maternal and neonatal characteristics according to duration of pregnancy.

Duration of pregnancy in weeks	24 + 0–33 + 6	34 + 0–36 + 6	37 + 0–42	P value¹
Maternal age at delivery (±SD)	N = 32	N = 90	N = 212	P = 0.102
24 + 0–33 + 6	32.5 ± 5.8	30.2 ± 5.8	31.2 ± 5.6	P > 0.20
34 + 0–36 + 6	34.1 ± 5.8	31.8 ± 5.8	32.4 ± 5.6	P > 0.20
37 + 0–42	36.5 ± 5.8	34.2 ± 5.8	35.7 ± 5.6	P > 0.20

Gravidity n = 326

Gravidity	24 + 0–33 + 6	34 + 0–36 + 6	37 + 0–42	P
1	7 (24.1%)	21 (24.7%)	68 (28.8%)	
2	9 (31%)	28 (32.9%)	67 (31.6%)	
3	7 (24.1%)	19 (22.4%)	45 (21.2%)	
4	3 (10.3%)	9 (10.6%)	26 (12.3%)	
>5	3 (10.3%)	8 (10.1%)	13 (10.7%)	

Parity n = 326

Parity	24 + 0–33 + 6	34 + 0–36 + 6	37 + 0–42	P
1	16 (55.2%)	42 (49.4%)	104 (49.1%)	
2	6 (20.7%)	30 (35.3%)	72 (34%)	
3	4 (13.8%)	9 (10.6%)	23 (10.8%)	
4	0	3 (3.5%)	9 (4.2%)	
>5	3 (10.3%)	1 (1.2%)	4 (1.8%)	

Ethnicity n = 283

Ethnicity	24 + 0–33 + 6	34 + 0–36 + 6	37 + 0–42	P
Caucasian	5 (22.7%)	27 (38.6%)	63 (33%)	
African	17 (77.3%)	43 (61.4%)	128 (67%)	

HIV diagnosis during pregnancy n = 327

HIV diagnosis	24 + 0–33 + 6	34 + 0–36 + 6	37 + 0–42	P
Yes	9 (30%)	19 (22.1%)	51 (24.2%)	
No	21 (70%)	67 (77.9%)	160 (75.88%)	

Mode of delivery n = 332

Mode of delivery	24 + 0–33 + 6	34 + 0–36 + 6	37 + 0–42	P
Planned caesarean section	26 (83.87%)	70 (78.6%)	161 (75.94%)	<0.001
Caesarean section during labor	5 (16.13%)	15 (16.85%)	10 (4.72%)	
Emergency caesarean section	0	0	1 (0.47%)	
Caesarean section after trial of vag birth	0	3 (3.37%)	26 (12.26%)	
Spontaneous vaginal delivery	0	1 (1.12%)	0	
Unplanned vaginal delivery	0	0	13 (6.13%)	
Instrumental vaginal delivery (e.g., Forceps)	0	0	1 (0.47%)	

CD4 count at delivery (cells/µL) n = 281

CD4 count	24 + 0–33 + 6	34 + 0–36 + 6	37 + 0–42	P
<200	2 (8%)	6 (8.3%)	22 (12%)	
200–349	12 (48%)	14 (19.4%)	50 (27.2%)	
>350	11 (44%)	52 (72.2%)	112 (60.9%)	

Viral load at delivery (copies/mL) n = 301

Viral load	24 + 0–33 + 6	34 + 0–36 + 6	37 + 0–42	P
<50	9 (36%)	27 (34.6%)	132 (66.7%)	<0.001
50–399	7 (28%)	32 (41%)	49 (24.7%)	
≥400	9 (36%)	19 (24.4%)	17 (8.6%)	

HAART before beginning of pregnancy n = 289

HAART	24 + 0–33 + 6	34 + 0–36 + 6	37 + 0–42	P
Yes	17 (66.7%)	41 (55.4%)	123 (65.4%)	
No	10 (33.3%)	33 (44.6%)	65 (34.6%)	

HCV (positive anti-HCV test) n = 280

HCV	24 + 0–33 + 6	34 + 0–36 + 6	37 + 0–42	P
Yes	2 (8%)	10 (13.2%)	13 (7.3%)	
No	23 (92%)	66 (86.8%)	166 (92.7%)	

5-min APGAR n = 330

APGAR	24 + 0–33 + 6	34 + 0–36 + 6	37 + 0–42	P
<4	0	0	0	<0.001
<7	5 (17.24%)	0	0	
7–10	24 (82.75%)	90 (100%)	211 (100%)	
antenatal care in a tertiary referral center and with their own gynaecologists.

As well as the prevalence of prenatal ultrasound screening, prenatal, and postnatal finding was recorded. We hypothesized that the fetal anomaly rate in women with HIV-infection is as low as in all other pregnancies (3–5%) [12, 13].

2. Materials and Method

HIV-positive pregnant women who presented in our tertiary referral center between January 1, 2002 and December 31, 2012 were included in this retrospective cohort study.

Only pregnancies ≥24 weeks of gestation were included. Three categories were used: very preterm delivery (24 + 0 to 33 + 6 weeks of gestation), preterm delivery (34 + 0 to 36 + 6 weeks of gestation), and term delivery (≥37 weeks of gestation).

All data regarding early prenatal screening (as, e.g., nuchal translucency measurements) and fetal anomaly scan at 20 weeks of gestation or at first presentation in our center were recorded. Only scans which were performed in our center were included, reflecting the fact that HIV-positive pregnant women are high risk pregnancies, and high-risk pregnancies are referred to a tertiary center or an equivalent specialized center for prenatal screening [14–17]. An early anomaly scan was defined as a first trimester scan; in the study period, the fetal nuchal thickness was assessed; a formal nuchal translucency measurement was included if measured by appropriately qualified sonographers. A fetal anomaly scan was defined as a detailed scan in the second trimester (usually between 20 to 22 weeks of gestation). All the scans performed at a later gestation in our department prior to birth are recorded separately as late scans in the third trimester. We collected the abnormal prenatal sonographic findings and compared prenatal with postnatal detected malformations.

Malformations were any fetal/neonatal disease, which required either surgery or special pediatric care including chromosomal anomalies [18]. All cases with an AC, MTCT, and any intrauterine or postnatal death were evaluated.

Maternal information included age, ethnicity, gestational age at delivery, gravidity and parity, HAART already before the pregnancy, VL (copies/mL), CD4 count (cells/μL) prior to birth, and other risk factors such as coinfection with HCV. The last recorded VL prior to the delivery was used and classified in three risk groups. In the study, a VL below 50 is considered as negative/undetectable. The last CD4 count prior to birth was noted, and again three categories were used. The mode of delivery was classified as (1) planned caesarean section; (2) in cases of rupture of membranes and/or contraction it was recorded as elective caesarean section in labour; (3) emergency caesarean section; (4) caesarean section after planned vaginal birth; (5) vaginal birth; (6) unplanned vaginal birth and (7) instrumental vaginal delivery. In the unit the first planned vaginal birth was recorded in 2009. Before that time, women were offered

Table 2: Continued.

Duration of pregnancy in weeks	24 + 0–33 + 6	34 + 0–36 + 6	37 + 0–42	P value¹
Arterial cord blood levels (n = 327)				
<7.0	0	0	0	P = 0.088
7.0–<7.1	0	0	2	
7.1–<7.2	3 (10%)	3 (3.4%)	10 (4.83%)	
>7.2	27 (90%)	85 (96.6%)	197 (95.17%)	
Base excess (n = 323) (±SD)				
N = 32	-3.77 ± 2.49	-2.65 ± 2.09	-3.02 ± 2.1	P = 0.091
Fetal weight (g) (n = 333) (±SD)				
N = 32	1573.28 ± 517.98	2634.56 ± 463.12	3115.14 ± 460.06	P < 0.001
Percentile (n = 335)				
N = 32	1 (3.3%)	7 (8.2%)	21 (9.9%)	P > 0.20
10–90	28 (84.7%)	80 (88.3%)	183 (86.7%)	
>90	3 (10%)	3 (3.5%)	7 (3.3%)	
Early anomaly scan (11–14 weeks of gestation) (n = 100)	11 (36.7%)	24 (28.2%)	65 (30.7%)	P > 0.20
Anomaly scan (second trimester) (n = 252)	26 (81.2%)	68 (75.6%)	158 (74.5%)	P > 0.20
Anomaly scan at later stage (n = 18 (5.5%))	2	8	8	P > 0.20
Prenatally seen anomalies (n = 7 (2.1%))	3	2	2	P > 0.20
Postnatal confirmed anomalies				
In total n = 15 (4.5%)	4	2	9	P > 0.20

¹P values were calculated without significance correction. Kruskal-Wallis test was used for maternal age, gravidity and parity, APGAR score, apH, vpH, BE, fetal weight and percentile, fetal length, head circumference, early anomaly scan, anomaly scan. Chi² test was used for the other characteristics. SD: standard deviation.
elective caesarean section at around 37 + 0 weeks of gestation [3, 8, 19]. With evidence for the safety of the vaginal birth with undetectable VL, the policy in the unit shifted towards planned vaginal birth, and if caesarean section was offered in these cases, the delivery was delayed until >37 weeks of gestation according to the German-Austrian Guidelines [3, 4, 8]. The following neonatal data were included: APGAR score, arterial cord pH (apH), cord base excess (BE) and neonatal weight (stratified according to 10th, 10–90th and >90th percentile). A weight below the 10th percentile was considered to be intrauterine growth retardation (IUGR).

Information about scan findings was obtained from the record of the ultrasound department, and further information was collected from maternal case notes, pediatric notes, and discharge letters.

Ethics approval for the retrospective study was obtained from the Ethics Committee at the J. W. Goethe University, Frankfurt (number 30/13).

For categorical variables and nominal variables, frequency tables were used for descriptive statistical analysis. For ordinal and quantitative data, mean and standard deviation (SD) or percentiles were used. These data were further analyzed using the Wilcoxon-Mann-Whitney Test, Kruskal-Wallis Test, Spearman-Correlation, Chi²-Test, and Fisher’s Exact Test as appropriate. All tests were 2-sided and a P value below 0.05 was considered statistically significant. In addition, multivariate logistic regression analysis was performed to identify factors associated with a woman having an early anomaly scan.

Statistical analysis was performed using IBM SPSS 20 statistics software.

3. Results

Overall 330 pregnancies were recorded, with 322 singleton pregnancies (97.6%) and in eight twin gestations (2.4%).

One twin pregnancy was conceived due to IVF with first diagnosis of the HIV-infection in the early second trimester. There were 122 preterm deliveries (36.5%) and 90 (26.9%) of these were between 34 and 36 + 6 weeks of gestation. Maternal and neonatal characteristics are presented in Table 1, stratified by pregnancy duration in Table 2.

The mean age at presentation was 31.1 ± 5.7 years. Nearly half of all the women (49.7%) were primiparae. Two thirds of women (66.4%) were of African ethnicity. In one quarter of women, the diagnosis HIV of infection occurred in the pregnancy. More than three quarters 257 (77.4%) of the births were elective caesarean section. In 29 cases (8.7%), women delivered vaginally. The CD4 count (cells/μL) prior to birth was in the majority of 175 (62.5%) ≥350, in 76 (27%) between 200 and 349, and in 30 (10.7%) <200. The VL (copies/mL) in most women 168 (55.8%) was suppressed below 50 copies in 88 (29.2%) 50–399 and in 45 (15%) ≥400. One hundred and eight women (37.4%) were on no HAART treatment at the beginning of the pregnancy. In 25 (8.9%), a positive anti-HCV test was recorded. The average weight of the newborn was 2837 g (±656). Thirty newborns (9%) were classified as below the 10th percentile [20].

In 100 of the 330 pregnancies (30.5%), we did an early ultrasound assessment. The nuchal translucency was measured in 67 (20.3%) of the 330 cases (NT median 1.22 mm (range 0.6–3 mm)). A multivariate analysis for factors influencing a woman having an early anomaly scan (Table 3) showed that African ethnicity and first diagnosis of HIV during the ongoing pregnancy were factors which significantly could be related to not having early prenatal ultrasound screening (Figure 1).

Invasive testing (AC) was done in three (0.9%) of 330 cases. Only one case was done at 25 weeks in our department, and we started HAART and performed the AC after VL was fully suppressed. The Karyotype was normal. Two cases were done for advanced maternal age without control of VL and without specific precautions for example, HAART, and both revealed a normal Karyotype. In all of three cases, no MTCT occurred.

In the second trimester in 252 (74.5%) of 330, a detailed anomaly scan at 20–22 weeks was done. In 18 (5.5%) patients, the scan was performed in the third trimester due to late presentation in our unit. In Table 4, fetal and neonatal malformations as well as chromosomal anomalies are presented. In seven cases of 330 cases (2.1%), we diagnosed

Table 3: Results of multivariate analysis on factors for a woman to have an early anomaly scan.

	OR	95% CI for OR	P value
Ethnicity	2.008	1.155–3.491	0.013
First diagnosis in present pregnancy	2.085	1.033–4.209	0.040
Gravity	0.767	0.581–1.013	0.062
Parity	1.134	0.756–1.702	0.543
Birth weight	1.000	0.999–1.001	0.710
Gestation at delivery	0.950	0.797–1.133	0.596

OR: odds ratio; CI: confidence interval.
Table 4: Fetal and neonatal malformation/chromosomal anomalies.

HAART	Diagnosis prenatally	Early scan (first trimester)	Detailed scan (second trimester)	Diagnosis postnatally	Invasive testing/Karyotype	Maternal coinfection	Duration of pregnancy in weeks + days	Outcome
CBV TDF	CDH	No	Yes	CDH	No	HCV	36 + 4	After operation alive and well
CBV NVP	VSD	Yes	Yes	VSD	No	HCV HBV	33 + 6	MTCT
CBV NVP	Hydrocephalus, radial deviation of hands	No	Yes	confirmed	Yes (normal Karyotype)	No	33 + 1	Died at 1 day
CBV NVP	Dandy Walker malformation	No	Yes	confirmed	Postnatally unbalanced translocation\(^1\)	No	36 + 1	Died with 3 months
TVD AZT	MCDK Potter 2a	No	Yes	confirmed	Yes	No	37 + 1	Alive and well
CBV NVP	Heart defect (ASD and dextrocardia)	No	Yes	confirmed	No	No	37 + 5	Alive and well
TDF NVP 3TC	No	Yes	Yes	Skin tag (manubrium)	No	No	37 + 3	Alive and well
TVD AZT	No	Yes	Yes	Skin tag (finger)	No	No	36 + 1	Alive and well
TVD AZT	No	No	Yes	Skin tag (finger)	No	NO	37 + 714	Alive and well
TVD NVP	No	No	Yes	ASD	No	No	37 + 1	Alive and well
TZV TDF RAL RTV DRV	No	Yes	Yes	Oesophageal atresia	No	Osophageal correction postnatally	33	Alive and well
AZT TVD LPV	No	No	Yes	VSD	No	No	41 + 3	Alive and Well
AZT TVD SQV RTV	No	No	Yes	Trisomy 21	Yes, postnatally	No	38 + 0	Alive and well
LPV/r 3TC TDF AZT	No	No	Yes	Trisomy 21 VSD and small ASD	Yes, postnatally	No	32 + 4	Alive and well
TVD LPV/r	No	Yes	Yes	Omphalocele	No	No	38 + 3	Alive and well
TVD LPV/r	No	Yes	Yes	Sucking blister	No	No	37 + 4	Alive and well
NVP TVD	No	Yes	Yes	Nevus sebaceous	No	No	37 + 2	Alive and well

\(^1\) 46,xy,der(5)(3pter>5p25.1::5p15.31::3p25.1>3pter).

CDH: congenital diaphragmatic hernia; ASD: atrial septal defect; VSD: ventricular septal defect; MCDK: multicystic dysplastic kidney disease (Potter II); CBV: zidovudin/lamivudin; TDF: tenofovir; T20: enfuvirtide; NVP: nevirapin; AZT: zidovudin; 3TC: lamivudin; RAL: raltegravir; DRV: darunavir; SQV: saquinavir; RTV: ritonavir; TVD: tenofovir/emtricitabin; LPV/r: lopinavir/ritonavir.

A fetal malformation. There was no apparent coincidence with HAART or any other recurrence of fetal malformation. Postnatally, all of the seven cases were confirmed, and eight further malformations and two cases with trisomy 21 were detected. The chromosomal anomalies were not suspected. Both women, 33 and 39 years of age, had no early scan or biochemical screening but a scan in our unit (late in the second trimester with no anomalies seen). There were three cases with a skin tag, one nevus sebaceous of the scalp, and one case with a so-called sucking blister on the hand, all considered to be minor. Each of these cases had at least one scan in our department prior to the birth. However, the sucking blister and the nevus were leading to an upgrade in neonatal PEP due to breaking down of protective skin barrier, and one newborn presented with a small omphalocele which was not seen prior to birth. All of these babies were born by
In Table 5, the fetal and postnatal mortalities are recorded. In our cohort, we had six cases of intrauterine or postnatal loss and all were born by caesarean section. We present in Table 6 the three cases of MTCT. All of the three newborns were delivered by caesarean section, and all were preterm (33 + 6, 36 + 3 and 36 + 4 weeks of gestation). In all cases, the VL was detectable, all women were on HAART, and one woman was coinfected with HCV. One woman had already a vertically infected child, and she had a poor compliance.

4. Conclusion

There are conflicting results regarding the risks for HIV-positive mothers for possible adverse effects in their pregnancies [5, 6]. In our study, we confirm the low fetal malformation rate of 4.5% in women living with HIV. There are different national registers collecting data on HAART and pregnancy outcome (e.g., APR: Antiviral Pregnancy Registry; NSHPC: National Study of HIV in Pregnancy and Childhood (UK); ECS: European Collaborative Cohort; EPF—French Perinatal Cohort) [4, 21–24]. These registers confirm the same malformation rate in women taking HAART as in the general population (3–5%) [12, 13].

Prenatal screening was found to be successful in diagnosing major fetal malformations. The postnatal anomalies were minor ones (skin tag, sucking blister) or missed due to minimal extend (omphalocele). The two cases with postnatal trisomy 21 were missed prenatally but were not seen in typical screening periods. There were no anomalies in the unscreened population.

A change in treatment policies is evident over the 11 years of the study, reflected in the changes in delivery mode over time and the gestational age at delivery [8]. A high preterm delivery rate is confirmed by other groups [6]. In our population, 26.9% are late preterm deliveries (34–36 + 6 weeks of gestation) and are mostly iatrogenic due to early caesarean section as in other studies and in the past [25]. The updated national German-Austrian Guidelines now delay elective caesarean section. The overall fetal malformation rate (including the minor anomalies) was 4.5% [18].

In Table 5, the fetal and postnatal mortalities are recorded. In our cohort, we had six cases of intrauterine or postnatal loss and all were born by caesarean section.
caesarean section to term in women with suppressed VL [8]. The numbers of women with fully suppressed VL (VL < 50 copies/mL) (P < 0.001) and CD4 cells ≥350 (P > 0.20) prior to birth increased over the last years.

There are two important screening intervals during the prenatal period. The first is early screening which should take place between 11 + 0 and 14 + 0 weeks of gestation [15]. This early screening was introduced by Nicolaidis in 1992 as a combined method of screening (including ultrasound screening and two maternal biochemical markers: free human chorionic gonadotropin (free hCGβ) and pregnancy-associated plasma protein A (PAPP-A) [26–28]. In Germany this test is not covered by the national health system and there for is paid by the woman herself. Usually at that time an early anomaly ultrasound scan can be performed, which is covered by the health system. The second screening interval is the anomaly scan at 20–22 weeks of gestation [17, 29].

The prevalence of first trimester screening of 97.5% in a low risk general population has been demonstrated [30].

We demonstrate that prenatal screening is offered and available, but that the early screening interval is missed, as only 30.5% women get referred for early anomaly scan. Even so some women may have chosen not to undergo testing for ethical and cultural reasons. As a limitation of our data it could be that the screening which is done at the community-based care is missed, but as indicated usually, it warrants a referral to a highly qualified and specially trained team [16, 29].

In our study, population the majority of 188 (66.4%) women were of African origin, and in 79 (24.2%), the diagnosis HIV-infection occurred in the pregnancy, both factors were significantly related to having no early prenatal screening. Tariq et al. are reporting on late booking for antenatal care in non-Caucasian women compared with caucasian women in this interesting method is not widely available, and more data of this new method are needed.

The authors stated that there are no conflict of interests regarding the publication of this article. Dr. Annette E. Haberl have previously received funding for research, travel grants, consultancy fees, and lecture fees from Bristol-Meyers Squibb and Abbott Laboratories (AR) and for research, travel grants, consultancy fees, and lectures fees from Abbott Laboratories, Boehringer Ingelheim, Bristol-Meyers Squibb, Gilead, Janssen Merck, and ViV (AH). Dr. Eva Herrmann served as a Consultant for Roche and Novartis Pharmaceuticals.

Conflict of Interests

All authors (beside E. Herrmann) belong to the Dreifach Group, which reflects the special interest and expertise in HIV and pregnancy at the J. W. Goethe-University Hospital, Frankfurt.

Acknowledgments

The authors would like to acknowledge Betty-Anne Daviss and Ken Johnson for writing assistance.

References

[1] European Centre for Disease Prevention and Control, HIV/AIDS Surveillance in Europe, 2011, http://ecdc.europa.eu/en/publications/publications/20121130-annual-hiv-surveillance-report.pdf.
[2] UNAIDS, UNAIDS Report on the Global AIDS Epidemic, 2012, http://www.unaids.org/en/media/unaids/contentassets/documents/epidemiology/2012/gr2012/20121120_UNAIDS_Global_Report_2012_en.pdf.
[3] J. Warszawski, R. Tubiana, J. Le Chenadec et al., “Mother-to-child HIV transmission despite antiretroviral therapy in the ANRS french perinatal cohort,” AIDS, vol. 22, no. 2, pp. 289–299, 2008.
[4] C. L. Townsend, M. Cortina-Borja, C. S. Peckham, A. de Ruiter, H. Lyall, and P. A. Tookey, “Low rates of mother-to-child transmission of HIV following effective pregnancy interventions in the United Kingdom and Ireland, 2000–2006,” AIDS, vol. 22, no. 8, pp. 973–981, 2008.
[5] K. Aebi-Popp, F. Mulcahy, T. Glass et al., “Pregnant women with HIV on ART in Europe: how many achieve the aim of undetectable viral load at term and are able to deliver vaginally?”
Journal of the International AIDS Society, vol. 15, supplement 4, p. 18141, 2012.

6. C. L. Townsend, J. Schulte, C. Thorne et al., “Antiretroviral therapy and preterm delivery—a pooled analysis of data from the United States and Europe,” International Journal of Obstetrics and Gynaecology, vol. 117, no. 11, pp. 1399–1410, 2010.

7. K. M. Knapp, S. B. Brogley, D. G. Muenz et al., “Prevalence of congenital anomalies in infants with in utero exposure to antiretrovirals,” The Pediatric Infectious Disease Journal, vol. 31, no. 2, pp. 164–170, 2012.

8. “German-Austrian recommendations for HIV treatment during pregnancy and for newborns exposed to HIV—update 2008,” Deutsche Medizinische Wochenschrift, vol. 134, supplement 1, pp. S40–S54, 2009.

9. A. Hagen, M. Entezami, A. Gasiorek-Wiens et al., “The impact of first trimester screening and early fetal anomaly scan on invasive testing rates in women with advanced maternal age,” Ultraschall in der Medizin, vol. 32, no. 3, pp. 302–306, 2011.

10. A. Tabor and Z. Alfirevic, “Update on procedure-related risks for prenatal diagnosis techniques,” Fetal Diagnosis and Therapy, vol. 27, no. 1, pp. 1–7, 2010.

11. L. Mandelbrot, C. Jasseron, D. Ekoukou et al., “Aminoicentosis and mother-to-child human immunodeficiency virus transmission in the Agence Nationale de Recherches sur le SIDA et les Hépatites Virales French Perinatal Cohort,” American Journal of Obstetrics and Gynecology, vol. 200, no. 2, pp. 160.e1–160.e9, 2009.

12. P. A. Boyd, M. Haeusler, and I. Barisic, “EUROCAT report 2012 surveillance of congenital anomalies in Europe 1980–2008,” Birth Defects Research A, vol. 91, supplement 1, p. S1, 2011.

13. B. Khoshsnood, R. Greenlees, M. Loane, and H. Dolk, “Paper 2: EUROCAT public health indicators for congenital anomalies in Europe,” Birth Defects Research A, vol. 91, supplement 1, pp. S16–S22, 2011.

14. E. Merz, S. Tercanli, and H. Steiner, “Is ultrasound training in special trained qualified prenatal diagnosis in German-speaking countries still sufficient?” Ultraschall in der Medizin, vol. 34, no. 2, pp. 111–112, 2013.

15. L. J. Salomon, Z. Alfirevic, C. M. Bilardo et al., “ISUOG practice guidelines: performance of first-trimester fetal ultrasound scan,” Ultrasound in Obstetrics & Gynecology, vol. 41, no. 1, pp. 102–113, 2013.

16. E. Merz, K. Melin, R. Bald et al., “DEGUM Level III recommendation for follow-up” ultrasound examination (= DEGUM Level II) in the 11–14 week period of pregnancy,” Ultraschall in der Medizin, vol. 25, no. 4, pp. 299–301, 2004.

17. A. Rempen, “Standards of sonographic examination in early pregnancy-recommendations for the German DEGUM stage III by the German society for the use of ultrasound in medicine (gynaecological and obstetrics section) (DEGUM) and by the working team for ultrasound diagnostics in the German society for gynaecology and obstetrics (DGGG),” Zeitschrift für Geburtshilfe und Neonatologie, vol. 205, no. 4, pp. 162–165, 2001.

18. O. P. Heinonen, D. Slone, and S. Shapiro, Birth Defects and Drugs in Pregnancy, PSG Publishing, Littleton, Mass, USA, 1977.

19. K. Boer, J. F. Nellen, D. Patel et al., “The AmRo study: pregnancy outcome in HIV-1-infected women under effective highly active antiretroviral therapy and a policy of vaginal delivery,” International Journal of Obstetrics and Gynaecology, vol. 114, no. 2, pp. 148–155, 2007.

20. M. Voigt, C. Fusch, D. Olbertz et al., “Analysis of the neonatal collective in the Federal Republic of Germany 12th report: presentation of detailed percentiles for the body measurement of newborns,” Geburtshilfe und Frauenheilkunde, vol. 66, no. 10, pp. 956–970, 2006.

21. J. Sibaud, J. Warszawski, R. Tubiana et al., “Premature delivery in HIV-infected women starting protease inhibitor therapy during pregnancy: role of the ritonavir boost?” Clinical Infectious Diseases, vol. 54, no. 9, pp. 1348–1360, 2012.

22. A. S. Sturt, E. K. Dokubo, and T. T. Sint, “Antiretroviral therapy (ART) for treating HIV infection in ART-eligible pregnant women,” Cochrane Database of Systematic Reviews, no. 3, Article ID CD008440, 2010.

23. M. Burgard, C. Jasseron, S. Matheron et al., “Mother-to-child transmission of HIV-2 infection from 1986 to 2007 in the ANRS French Perinatal Cohort EPF-COI,” Clinical Infectious Diseases, vol. 51, no. 7, pp. 833–843, 2010.

24. S. Tariq, C. L. Townsend, M. Cortina-Borja et al., “Use of zidovudine-sparing HAART in pregnant HIV-infected women in Europe: 2000–2009,” Journal of Acquired Immune Deficiency Syndromes, vol. 57, no. 4, pp. 326–333, 2011.

25. K. Aebi-Popp, O. Lapaire, T. R. Glass et al., “Pregnancy and delivery outcomes of HIV infected women in Switzerland 2003–2008,” Journal of Perinatal Medicine, vol. 38, no. 4, pp. 353–358, 2010.

26. K. H. Nicolaides, G. Azar, D. Byrne, C. Mansur, and K. Marks, “Fetal nuchal translucency: ultrasound screening for chromosomal defects in first trimester of pregnancy,” British Medical Journal, vol. 304, no. 6831, pp. 867–869, 1992.

27. A. B. Sparks, C. A. Struble, E. T. Wang, K. Song, and A. Oliphant, “Noninvasive prenatal detection and selective analysis of cell-free DNA obtained from maternal blood: evaluation for trisomy 21 and trisomy 18,” American Journal of Obstetrics and Gynecology, vol. 206, no. 4, pp. 319.e1–319.e9, 2012.

28. M. D. Savvidou, I. Samuel, A. Syngelaki, M. Poulton, and K. H. Nicolaides, “First-trimester markers of aneuploidy in women positive for HIV,” British Journal of Obstetrics and Gynaecology, vol. 118, no. 7, pp. 844–848, 2011.

29. L. J. Salomon, Z. Alfirevic, V. Berghella et al., “Practice guidelines for performance of the routine mid-trimester fetal ultrasound scan,” Ultrasound in Obstetrics and Gynecology, vol. 37, no. 1, pp. 116–126, 2011.

30. K. Spencer, C. E. Spencer, M. Power, C. Dawson, and K. H. Nicolaides, “Screening for chromosomal abnormalities in the first trimester using ultrasound and maternal serum biochemistry in a one-stop clinic: a review of three years prospective experience,” International Journal of Obstetrics and Gynaecology, vol. 110, no. 3, pp. 281–286, 2003.

31. S. Tariq, J. Elford, M. Cortina-Borja, and P. A. Tookey, “The association between ethnicity and late presentation to antenatal care among pregnant women living with HIV in the UK and Ireland,” AIDS Care, vol. 24, no. 8, pp. 978–985, 2012.

32. V. Maisques, A. García-Tejedor, A. Perales, J. Córdoba, and R. J. Esteban, “HIV detection in amniotic fluid samples: amniocentesis can be performed in HIV pregnant women?” European Journal of Obstetrics Gynecology and Reproductive Biology, vol. 108, no. 2, pp. 137–141, 2003.

33. M. H. Yudin, T. L. Prosen, and D. V. Landers, “Multiple-marker screening in human immunodeficiency virus-positive pregnant women: screen positivity rates with the triple and quad screens,” American Journal of Obstetrics and Gynecology, vol. 189, no. 4, pp. 973–976, 2003.
[34] P. Brossard, M. Boulvain, O. Coll et al., “Is screening for fetal anomalies reliable in HIV-infected pregnant women? A multicentre study,” *AIDS*, vol. 22, no. 15, pp. 2013–2017, 2008.

[35] C. Rudin, A. Spaenhauer, O. Keiser et al., “Antiretroviral therapy during pregnancy and premature birth: analysis of Swiss data,” *HIV Medicine*, vol. 12, no. 4, pp. 228–235, 2011.