Tunicamyluracil antibiotics are a novel class of toxigenic glycolipids that are synthesized by several soil-associated Actinomycetes. The acquisition of a tunicamyluracil biosynthetic gene cluster (TGC) in Rathayibacter toxicus has led to the emergence of the only described, naturally occurring tunicamyluracil-associated mammalian disease, annual ryegrass toxicity of livestock. Endemic to Australia, R. toxicus is obligately vectored by Anguinid seed gall nematodes to the developing seedheads of forage grasses, in which the bacteria synthesize tunicamyluracils that may subsequently be consumed by livestock and result in high rates of mortality and morbidity. The potential impact of R. toxicus on U.S. agriculture has led the U.S. Department of Agriculture – Animal and Plant Health Inspection Service to list R. toxicus as a Plant Pathogen Select Agent. R. toxicus is the only characterized phytopathogenic bacterium to produce tunicamyluracils, but numerous R. toxicus-like livestock poisonings outside Australia suggest additional bacterial sources of tunicamyluracils may exist. To investigate the conservation of the TGC in R. toxicus and whether the TGC is present in other Rathayibacter species, we analyzed genome sequences of members of the Rathayibacter genus. Putative TGCs were identified in genome sequences of R. toxicus, R. iranicus, R. agropyri, and an undescribed South African Rathayibacter species. In the latter three species, the putative TGCs have homologs of tunicamyluracil-related genes essential for toxin production, but the TGCs differ in gene number and order. The TGCs appear at least partially functional because in contrast to atoxigenic species, TGC-containing Rathayibacter species were each able to tolerate exogenous applications of tunicamycin from Streptomyces chartreusis. The North American R. agropyri TGC shows extensive diversity among the sequenced isolates, with presence/absence polymorphisms in multiple genes or even the whole TGC. R. agropyri TGC structure does not appear to correlate with date or location
INTRODUCTION

Rathayibacter toxicus is a nematode-transmitted Actinobacterium that is endemic to Australia and infects a variety of forage grasses through its close association with Anguina seed gall nematodes (Price et al., 1979; Bird, 1981). Due to its ability to synthesize a neurotoxicogenic tunicamyluracil antibiotic, it was listed as a Plant Pathogen Select Agent by the U.S. Department of Agriculture – Animal and Plant Health Inspection Service in 2008 (Murray et al., 2015). Animals that consume *R. toxicus*-infected plant material develop bacterial toxicosis-related symptoms, which are referred to as “annual ryegrass toxicity” or “flood plain staggers” (McKay et al., 1993). Poisoned animals display a variety of neurological symptoms including convulsions, paralysis, excessive salivation, muscle and head tremors, abortions, and death (Bourke et al., 1992; Finnie, 2006).

Mammalian disease symptoms are mainly neurological due to the toxin inhibiting N-linked glycosylation, which impairs the cardiovascular system and leads to oxygen deprivation and tissue damage (Jago et al., 1983; Finnie and Jago, 1985; Bourke et al., 1992; Finnie, 2006). Bacterial toxicosis caused by *R. toxicus* poisoning has resulted in severe losses for the Australian livestock industry. From 1970 to 1974, 58 outbreaks were reported in Western Australia, which resulted in the loss of thousands of sheep and cattle with morbidity and mortality rates reaching 100 and 77%, respectively (Berry and Wise, 1975). Similar devastating outbreaks reoccurred in the early 1990s in New South Wales, Australia, with the deaths of thousands of grazing livestock (Davis et al., 1995). The association of toxicosis to *R. toxicus* has only been implicated in Australia, but other undiagnosed *R. toxicus*-like poisoning events have been reported outside the country (Mullins, 1941; Haag, 1943; Shaw and Muth, 1949; Cunningham and Hartley, 1959; Galloway, 1961; Schneider, 1981).

In South Africa, between 1979 and 1980, *R. toxicus*-like poisoning symptoms were observed in sheep and cattle that were fed plant material infected with nematode and bacterial galls, from which a *Rathayibacter* species was isolated (Schneider, 1981). In 2009, several horses died in the same Western Cape Province of South Africa after consuming infected plant material (Grewar et al., 2009). A suspected toxigenic *Rathayibacter* species was isolated from dune grass (*Ehrharta villosa* var. *villosa*) leaf galls in 2003 from the same South African region and labeled as ‘woodi’ due to its co-isolation and association with the leaf gall nematode *Anguina woodi* (Riley and Swart, 2004; Riley et al., 2004; Murray et al., 2017). Additional livestock poisonings, with symptoms similar to *R. toxicus* poisoning, were documented in New Zealand and the United States during the mid-twentieth century (Mullins, 1941; Haag, 1943; Shaw and Muth, 1949; Cunningham and Hartley, 1959; Galloway, 1961). Several livestock neurological poisonings in Oregon between 1943–1961 were associated with grasses contaminated with *Anguina* species galls, but no toxigenic bacteria were identified or confirmed to be the causative agents in these cases (Haag, 1943; Shaw and Muth, 1949; Galloway, 1961; Jensen, 1961).

Tunicamyluracils are a novel class of toxigenic nucleoside antibiotics that possess a unique 11-carbon tunicamine backbone, N-acetylglucosamine, uracil, and an assortment of fatty acid chains that vary amongst members in the class (Takatsuki et al., 1971–1961 were associated with grasses contaminated with *Anguina* species galls, but no toxigenic bacteria were identified or confirmed to be the causative agents in these cases (Haag, 1943; Shaw and Muth, 1949; Galloway, 1961; Jensen, 1961).

Rathayibacter toxicus persists in both soil and plant environments, the latter of which exposes livestock to an otherwise soil-associated antibiotic. *R. toxicus* is obligately vectored and requires a successful nematode infestation before bacterial colonization of the plant and developing seed head can occur. Following seasonal rains, dormant nematodes and bacteria rehydrate and emerge from their overwintering galls. Juvenile nematodes migrate toward emerging grass seedlings and *R. toxicus* can adhere to the nematode cuticle and co-colonize the developing grass ovules (Price et al., 1979). As the nematodes complete their lifecycles by modifying nascent ovules into nematode galls, *R. toxicus* may outcompete the nematodes and transform the modified seed gall into a toxigenic bacterial gall (Price et al., 1979; Stynes and Bird, 1982). Both the nematode and bacterial galls are capable of persisting in extreme environments for decades until favorable environmental conditions arise (Murray et al., 2015). The complex, nematode-dependent lifecycle presents many challenges to studying *R. toxicus*. Moreover, molecular...
investigations are exceedingly difficult to conduct because *R. toxicus* is listed as a biological select agent, recalcitrant to genetic modification, and averse to tunicamyluracil production in vitro (Payne and Cockrum, 1988).

Here, we investigated (i) if TGCs are unique to *R. toxicus* or present in other grass-associated Rathayibacter species and determined (ii) the prevalence and diversity of the TGC within Rathayibacter species. Genomic analyses of globally collected Rathayibacter species identified three previously unknown tunicamyluracil-related gene clusters in *R. iranicus*, the undescribed South African Rathayibacter species ‘woodii,’ and the North American species, *R. agropyri*. The TGCs have high sequence similarity to the TGC-essential genes of *R. toxicus* and *Streptomyces chartreusis*.

MATERIALS AND METHODS

Bacterial Strains, Growth Conditions, and DNA Extraction

Rathayibacter species evaluated are listed in Table 1. Cultures were preserved in 15% glycerol and stored at −80°C for long term storage. Depending upon the species, Rathayibacter strains were incubated for 3–6 days at 25–28°C on modified YGM media (Sechler et al., 2017). The MasterPure Gram-Positive DNA Purification Kit (Epicentre, Madison, WI, United States) was used to extract genomic DNA according to the manufacturer’s protocol, and the DNA was quantified with a Nanodrop-2000 (Thermo Fisher Scientific, Waltham, MA, United States).

Genome Sequencing and Assembly

Three sequencing platforms, 454 Junior (Roche, Basel, Switzerland), Illumina (Illumina, San Diego, CA, United States), and PacBio RSII (Pacific Biosciences, Menlo Park, CA, United States), were used to sequence Rathayibacter strains (Supplementary Table S1). For *R. woodii* FH236, *R. iranicus* FH6, and *R. iranicus* FH177, a shotgun DNA library was constructed for the 454 Junior according to the manufacturer’s instructions, and three sequencing runs were performed. An additional PacBio sequencing library was prepared for *R. iranicus* FH6 and sequenced by the Genomics Lab at Washington State University. NGS DNA PCR-free libraries for *R. agropyri* strains and *R. iranicus* FH164 and FH176 were prepared according to the manufacturer’s protocols and sequenced on an Illumina MiSeq by the Georgia Genomics and Bioinformatics Core at the University of Georgia. Sequence data was assembled using Lasergene Ngen v12.0 (DNASTar), PATRIC v3.5.41 (Wattam et al., 2017), or Pacific Bioscience’s Hierarchical Genome-Assembly Process, as previously described (Savory et al., 2017; Sechler et al., 2017; Davis et al., 2018).

Gene Annotation, Sequence Analysis, and Detection

The putative tunicamyluracil gene clusters were identified and manually annotated using a combination of programs, including antiSMASH (Weber et al., 2015), BLAST search tools (default settings with *R. toxicus* TGC queries) (Altschul et al., 1997), InterPro (Finn et al., 2017), and Artemis v17.0.1 (Rutherford et al., 2000). Sequence conservation between the Rathayibacter species tunicamyluracil-related gene clusters was analyzed using the default TBLASTX settings with the Artemis Comparison Tool v17.0.1 (Rutherford et al., 2000; Carver et al., 2005). The tunicamyluracil gene cluster schematics were constructed and annotated using Easyfig v2.2.4 (Sullivan et al., 2011). Percent amino acid identity relative to *R. toxicus* FH79 was calculated using Clustal O (Clustal2.1) at EMBL-EBI (Sievers et al., 2011; Li et al., 2015). Pairwise average nucleotide identities (ANI) were calculated using autoANI and methods previously described (Goris et al., 2007; Davis et al., 2016, 2018). Publicly available tunicamyluracil gene cluster sequences for Rathayibacter and related Actinobacteria species were downloaded from NCBI in October of 2017 (Land et al., 2009; Tancos et al., 2020).

Table 1 Overview of the putative tunicamyluracil gene clusters (TGC) evaluated in the current study.

Species	No. of sequences analyzed	No. of TGC genes	TGC size (bp)	GC content of TGC (%)	GC content of genome (%)	MIC (µg/mL)	References
Rathayibacter toxicus	26	14	13,402	52	61.5	8.0	Arif et al., 2016; Sechler et al., 2017; Davis et al., 2018
Rathayibacter iranicus	6	16	14,104	56	67.1	8.0	This study and Davis et al., 2018
Rathayibacter agropyri	12	14	14,067	56	68.0	Variable2	This study and Davis et al., 2018
Rathayibacter woodii	1	14	16,384	57	65.4	8.0	This study
Rathayibacter rathayi	1	–	–	–	69.3	<0.0625	Davis et al., 2018
Rathayibacter tritici	2	–	–	–	69.5	<0.0625	NZ_CP0165515; PRJNA429011
Streptomyces chartreusis	1	14	11,988	65	70.8	nd	Doroghazi et al., 2011
Streptomyces clavuligerus	1	14	12,056	67	72.3	nd	Song et al., 2010
Actinosynnema minum	1	12	10,993	75	73.7	nd	Land et al., 2009

(a) The number of putative genes present in the identified tunicamyluracil gene clusters. *(b)* The TGC size is based on the reference strains, *R. toxicus* FH79 (Sechler et al., 2017), *R. iranicus* FH6, *R. agropyri* CA4 (Schoeder et al., 2018), *R. woodii* FH236, *S. chartreusis* NRRL 3882 (Doroghazi et al., 2011), *S. clavuligerus* NRRL 3585 (Song et al., 2010), and *A. minum* DSm 43827 (Land et al., 2009). *(c)* The tunicamycin-minimum inhibitory concentration (MIC) values for evaluated Rathayibacter species. *(d)* See Figure 3 for details. –, Not applicable; nd, not determined.

Frontiers in Microbiology | www.frontiersin.org 3 January 2020 | Volume 10 | Article 2914
Song et al., 2010; Doroghhazi et al., 2011; Schler et al., 2017; Davis et al., 2018).

Actinobacteria sequences for the conserved reference genes (gyrB, dnaA, rpoB, recA, atpD, and 16S RNA genes) were identified based on protein or DNA homology to genes of *R. toxicus*. The full length DNA sequences were concatenated and aligned with Muscle in MEGA v7.0 (Kumar et al., 2016). A maximum likelihood phylogeny was estimated using W-IQ-TREE (Trifinopoulos et al., 2016) using the best-fit substitution model with branch support being assessed with the Shimodaira-Hasegawa-like approximate likelihood ratio (SH-aLRT) (Guindon et al., 2010) and Ultrafast Bootstrap Approximation tests (UBF) (Hoang et al., 2018) using 1000 bootstrap replicates for each method. Trees were visualized using FigTree v1.4.4. The same approach was used to construct phylogenetic trees of the putative tunicamyluracil-associated genes (tunA-tunF, tunH-tunL).

MEGA v7.0, using Muscle and Clustal alignment default features, was used to assess the genetic diversity observed within the TGCs of *R. toxicus*, *R. iranicus*, and *R. agropyri* (Kumar et al., 2016). The predicted effects of missense mutations, among the TGC-conserved Rathayibacter genes (tunA-tunL), were predicted in silico with PROVEAN (Protein Variation Effect Analyzer) (Choi and Chan, 2015). If a missense mutation was predicted by PROVEAN to be deleterious, the effect of the mutation was analyzed using the program SIFT (Sorting Intolerant From Tolerant) (Vaser et al., 2016). The database for SIFT analyses consisted of amino acid sequences from *Streptomyces chartreusis* NRRL 3882, *S. clavuligerus* NRRRL 3585, *Actinosynemma mirum* DSM 43827, *R. toxicus* FH79, *R. toxicus* FH232, and *R. woodii* FH236. A missense mutation was designated deleterious only if both algorithms predicted a deleterious mutation.

PCR was used to test for the presence of a TGC in strains of *R. toxicus*, *R. iranicus*, and *R. woodii* without associated genome sequences. Primers designed to amplify tunA, tunC, tunF were used (Supplementary Table S4). Amplification using EmeraldAmp MAX HS PCR Master Mix (Takara Bio Inc., Otsu, Shiga, Japan) or PrimeSTAR GXL DNA polymerase (Takara Bio Inc., Otsu, Shiga, Japan) was performed in an Applied Biosystems GeneAmp 9700 thermal cycler (Thermo Fisher Scientific, Waltham, MA, United States). Approximately 30 ng of extracted total DNA was used per 25 µL reaction with 0.2 µM of each primer. PCR using EmeraldAmp was performed with the following parameters: initial preheat for 2 min at 98°C; 32 cycles at 98°C for 10 s, a primer-pair-specific temperature for 20 s (Supplementary Table S4), and 72°C for 90 s; a final extension at 72°C for 2 min; and held at 10°C. PCR using PrimeSTAR was performed as a two-step reaction with 32 cycles at 98°C for 10 s and 75°C for 10 min. PCR products were electrophoresed on 1% GelGreen-stained 0.5x TAE agarose gels at 80 V for 45–60 min.

Tunicamycin Sensitivity Assays

Differences in tunicamycin sensitivity were assessed with *Streptomyces*-produced tunicamycin (Sigma-Aldrich, St. Louis, MO, United States). Standardized methods for determining the minimum inhibitory concentration for tunicamycin were performed (Andrews and Andrews, 2001). Independent batches of tunicamycin were dissolved in alkaline water (pH > 9.0) and prepared as twofold dilutions in 6-well Falcon tissue culture plates (Corning Inc., Corning, NY, United States) containing 3 mL of modified YGM media. Wells were inoculated with 3 µL (1:1000) of a fresh Rathayibacter culture (OD₆₀₀ < 1.0) and incubated on a rotary shaker at 28°C. Each plate contained positive (no tunicamycin) and negative (media only) control wells. Atoxigenic Rathayibacter species consisted of four strains of *R. rathayi* and three strains of *R. tritici*. Toxigenic Rathayibacter species consisted of four strains of *R. iranicus*, three strains of *R. toxicus*, 12 strains of *R. agropyri*, and two strains of *R. woodii*. Growth was observed visually at 7- and 14-days post inoculation. The entire experiment was repeated twice.

RESULTS

To determine if the TGC is unique to *R. toxicus*, we analyzed both previously and newly sequenced Rathayibacter genomes (Supplementary Table S1). Twenty-one globally collected Rathayibacter strains were previously sequenced, representing 18 strains of *R. toxicus*, 2 strains of *R. iranicus*, and one strain of *R. agropyri* (Schler et al., 2017; Davis et al., 2018). To complement the previously sequenced genomes, a single isolate of *R. woodii*, 11 *R. agropyri* strains, and an additional four *R. iranicus* strains were sequenced (Supplementary Table S1) (Davis et al., 2018).

Rathayibacter woodii Represents a New Species Group in the Rathayibacter Genus

Previous chemotaxonomic reports suggested that *R. woodii* is a distinct Rathayibacter species (Riley et al., 2004). Results from an Average Nucleotide Identity comparison and maximum likelihood (ML) phylogenetic analysis were consistent with the previous chemotaxonomic reports (Figure 1 and Supplementary Table S2). The phylogenetic analysis based on six conserved loci had similar topology to the whole-genome ML tree recently constructed for the Rathayibacter genera (Davis et al., 2018).

All tested Rathayibacter species cluster together and clearly separate from the closely related genus *Leifsonia* and related Actinobacteria (Figure 1). Within the Rathayibacter clade, *R. woodii* is on a separate branch and appears most genetically similar to *R. toxicus*, as determined on the basis of strong bootstrap support (100%) (Figure 1).

Three Species of Rathayibacter Have Novel Tunicamyluracil Biosynthetic Gene Clusters

The *R. toxicus* TGC contains 14 genes, of which 13 genes (all except tunC) are predicted to comprise a single polycistronic operon (Figure 2) (Schler et al., 2017). These TGC-associated genes and those of *S. chartreusis* were used as queries to search for homologs of tunicamyluracil-related genes.

1. http://tree.bio.ed.ac.uk/software/figtree/
in the newly sequenced *Rathayibacter* genomes. Three tunicaminyuracil-related biosynthetic gene clusters were identified in *R. iranicus*, *R. woodii*, and *R. agropyri*. Most genes necessary for tunicaminyuracil biosynthesis were conserved among the four *Rathayibacter* species, *Streptomyces* species, and *Actinosynnema mirum*, and unique genes were also present (Tables 1, 2). The TGCs of the four *Rathayibacter* species are similar in having lower GC-content relative to their respective genomes and having homologous genes essential for tunicaminyuracil biosynthesis (Table 1). No homologs of essential tunicaminyuracil-related genes were identified in other sequenced *Rathayibacter* species.

The TGCs of the other three species vary in gene order, direction, and total gene count relative to that of *R. toxicus* (Tables 1, 2 and Figure 2). The *R. woodii*-TGC is larger (~16 kb in length) than the *R. toxicus*-TGC, likely a consequence of the insertion of transposase genes between an inverted *tunC* and the rest of the locus. *R. woodii* has homologs of the 13 genes present in the TGC of *R. toxicus* (*tunA*-*tunL*, *tunP*); the hypothetical *R. toxicus* gene *tunO* is replaced by an enoyl-CoA hydratase/isomerase gene (*tunQ*). The phospholipid phosphatase-encoding gene (*tunL*) of *R. woodii* is approximately double the length of *tunL* homologs in other *Rathayibacter* species and its translated sequence shares 30% amino acid identity to the C-terminal region of the *R. toxicus* TunL; however, the N-terminal region (~318 aa) lacks any conserved motifs (Table 2). In *R. woodii* there is an inversion of *tunG* and *tunH*, interrupting a locus that would otherwise have the potential to encode a single polycistronic message (Figure 2).

Rathayibacter iranicus possesses a similarly sized TGC (~14 kb in length) to *R. toxicus* and has 16 possible genes (Table 1). Three of the hypothetical open reading frames (ORFs), *tunS*, *tunT*, and *tunR*, appear to be unique. However, TunT appears to be a truncated C-terminal variant of TunG, as it shares 47% amino acid identity. *R. iranicus* lacks *tunG*. TunR is predicted to encode a 4′-phosphopantetheinyl transferase and its gene (*tunR*) is located at the end of the locus.

The TGC of *R. agropyri* is most similar in gene sequence, composition, and order as the TGC of *R. iranicus* (Figure 2). *R. agropyri* lacks the histidine phosphatase gene (*tunG*) and possesses the 4′-phosphopantetheinyl transferase (*tunR*) gene at the terminal end of the locus. However, *R. agropyri* contrasts with other TGC-containing *Rathayibacter* species, in exhibiting a high degree of presence/absence polymorphisms of the TGC within the taxon. Eight strains are predicted to have complete TGCs. However, we could not identify a TGC locus in the
Tunicaminyluracil Gene Clusters in Rathayibacter Species

FIGURE 2 | Tunicaminyluracil-related gene cluster comparisons of Rathayibacter species. Microsynteny and sequence conservation between the tunicaminyluracil-related gene clusters for Rathayibacter species. Predicted ORFs are shown in their respective orientation with alignment blocks corresponding to the level of sequence identity.

Independent Horizontal Gene Transfer of the Rathayibacter TGC

Despite the genetic relatedness of Rathayibacter species, the TGC of R. woodii is different from those of R. toxicus, R. iranicus, and R. agropyri (Figure 2). A phylogenetic analysis based on the concatenation of eleven TGC-conserved genes placed the TGCs from R. toxicus, R. iranicus, and R. agropyri into a clade with bootstrap support of 100% (Figure 4). The Eurasiatic R. iranicus isolates and the North American R. agropyri isolates appear to have highly conserved TGCs. However, the TGC of R. woodii is on a branch separate from R. toxicus, R. iranicus, R. agropyri, and all other characterized TGC-possessing Actinobacteria (Figure 4). The phylogeny of the conserved TGC is incongruent with the Rathayibacter genera phylogenetic tree, suggesting independent horizontal gene transfer of the R. woodii TGC. Further evidence of horizontal TGC transfers is the combination of a low GC content, relative to the genome, and flanking transposase genes (Table 1).

Presence of Rare Regulatory Codons in the Rathayibacter TGC

The overrepresentation of rare TTA leucine codons in Rathayibacter TGCs, relative to the rest of the genome, could be indicative of past horizontal gene transfer events and post-translational regulation, as in other Actinobacteria (Chandra and Chater, 2008; Bedhomme et al., 2019) (Table 3). Approximately 2.4% of R. toxicus leucine codons are represented by the rare TTA codon in the genome; however, within the TGC, the rare TTA codon represents 11% of all sites coding for leucine (Table 3). Similarly, R. iranicus, R. woodii, and R. agropyri have <1% of rare TTA codons represented in their genomes, but between 4.2–5.7% within their respective TGCs. In contrast, Streptomyces species possess a similar percentage of rare TTA codons (<1%) in both the TGC and genome (Table 3).

Non-synonymous Mutations Within the TGCs of R. toxicus and R. iranicus Are Not Predicted to Impact Protein Function

The TGC is present in all 37 strains of R. toxicus and 23 strains of R. iranicus (Supplementary Table S1). Sequence analysis of the R. toxicus TGC revealed a total of 66 single nucleotide polymorphisms (SNPs) present within the tunicaminyluracil-associated genes, relative to FH79. A total of three R. toxicus-TGC haplotypes were identified between the 26 sequenced strains with most SNPs belonging to the TGC of R. toxicus FH100/232 (Table 4). Only 2 SNPs (tunB and tunD)
differentiated the emerging *R. toxicus* population, SA03-04, from the type strain, *R. toxicus* FH79. Comparing the dominant *R. toxicus* TGC haplotype to *R. toxicus* FH100/232 revealed numerous polymorphisms, non-synonymous mutations, and insertions/deletions (INDELs) (Table 4). A six nucleotide INDEL was present at the 3′ end of *tunD*, resulting in a premature stop codon and subsequent truncation by two amino acids. The INDEL further modified the downstream gene *tunE* via the addition of two amino acids to the N-terminus (Table 4). Within *R. toxicus*, *tunA* was the most polymorphic gene with 21 SNPs corresponding to 2.1% variation. No SNPs were observed in *tunF*, *tunJ*, and *tunK*. With the exception of the INDEL, all remaining 35 non-synonymous mutations resulted in missense mutations that were predicted in silico by PROVEAN software to not affect protein function (Table 4) (Choi and Chan, 2015).

Sequence data from six diverse *R. iranicus* strains collected from Iran and Turkey revealed five unique TGC haplotypes, corresponding to approximately 600 SNPs (Table 4). The TGC of *R. iranicus* type strain FH6 differed from *R. iranicus* FH154, FH157, and FH177 by only 1-2 SNPs; however, most TGC-associated SNPs were attributed to *R. iranicus* strains FH164 and FH176. A 15 nucleotide INDEL at the beginning of *tunA* was identified in both *R. iranicus* FH164 and FH176 and is predicted to result in a truncated protein (Table 4). *R. iranicus* FH6, FH154, FH157, and FH177 each have a premature stop codon, predicted to truncate TunT 22 amino acids from the start position. An additional three nucleotide INDEL in *tunT* is present in *R. iranicus* FH164 and FH176, resulting in the deletion of a codon for tryptophan (W77). The sequence diversity observed in the TGC of *R. iranicus* FH164 and FH176 were mirrored in the rest of the genome, consistently separating *R. iranicus* FH164 and FH176 from the *R. iranicus* type strain FH6 (Figures 1, 4). A total of 223 non-synonymous mutations were identified within the *R. iranicus* TGC, but the missense mutations were predicted to be tolerated on the basis of in silico analysis (Table 4) (Choi and Chan, 2015; Vaser et al., 2016). A single amino acid substitution in *TunB* (I487T) of *R. iranicus* FH164 and FH176 was predicted by PROVEAN, but not SIFT, to affect protein function (Table 4).

Genetic Variability Within *R. agropyri* Has Resulted in Strains Having Complete, Partial, or No TGC

Sequencing an additional 11 *R. agropyri* strains, collected from the Western United States, revealed eight strains with a complete TGC, three strains with TGC remnants, and a single strain (CA-49) that had no evidence of a TGC (Figure 3). The presence of a TGC does not appear to be spatially or temporally correlated, with *R. agropyri* strains collected between 1945 and 2013 possessing complete TGCs (Figure 3 and Supplementary Table S1). Among the eight strains that possess a TGC, a total of 6 unique haplotypes were identified with 359 SNPs and a single 901 bp transposase in *tunR* of strain CA-34. The 4′-phosphopantetheinyl transferase (*tunR*) gene has the highest percentage of mutations, which resulted in frame shifts,

TABLE 2 | Genes associated with the putative tunicamycin/yuracil-related gene clusters of *Rathayibacter toxicus* FH79 (Sechler et al., 2017), *R. agropyri* CA4 (Schoeder et al., 2018), *R. iranicus* FH164, *R. woodii* FH236, Streptomyces chartreusis 3882 (Doroghazi et al., 2011), and Actinosynnema mirum DSM 43827 (Land et al., 2009).

Gene	Description	*R. toxicus* Protein length (aa)	*R. agropyri* Protein length (aa)	*R. iranicus* Protein length (aa)	*R. woodii* Protein length (aa)	*S. chartreusis* Protein length (aa)	*A. mirum* Protein length (aa)
tunA	Epimerase	330 (45%)	320 (53%)	318 (45%)	331 (46%)	321 (42%)	322 (38%)
tunB	Radical SAM	337 (48%)	337 (45%)	338 (71%)	331 (38%)	318 (28%)	318 (29%)
tunC	Acetyltransferase	333 (52%)	333 (51%)	330 (38%)	345 (40%)	472 (37%)	451 (38%)
tunD	Glycosyltransferase	454 (55%)	453 (55%)	456 (40%)	472 (37%)	451 (38%)	
tunE	N-deacetylase	232 (62%)	230 (62%)	222 (49%)	234 (42%)	230 (43%)	
tunF	Epimerase	320 (60%)	312 (60%)	338 (45%)	327 (35%)	328 (35%)	
tunG	Histidine phosphatase	192	-	192 (36%)	-	203 (31%)	
tunH	Nucleotide pyrophosphatase	515	509 (50%)	499 (39%)	515 (38%)	510 (37%)	
tunI	ABC transporter	330	320 (49%)	324 (34%)	304 (32%)	302 (29%)	
tunJ	ABC-2 transporter	262	261 (65%)	260 (47%)	262 (44%)	253 (47%)	
tunK	Acyl carrier protein	96	96 (45%)	96 (44%)	98 (33%)	81 (30%)	
tunL	Phospholipid phosphatase	247	239 (32%)	243 (31%)	537 (22%)	229 (22%)	
tunM	Methyltransferase	-	-	-	216	-	
tunN	Pyrophosphatase	-	-	-	-	-	
tunO	Hypothetical protein	224	-	-	152	-	
tunP	Polyketide synthase	407	408 (57%)	407 (58%)	408 (48%)	-	-
tunQ	Enoyl-CoA hydratase/isomerase	-	351	351	279	-	
tunR	4′-phosphopantetheinyl transferase	-	224	224	-	-	
tunS	Hypothetical protein	-	-	122	-	-	
tunT	Hypothetical protein	-	-	111	-	-	

*Genes in bold text are essential for tunicamycin biosynthesis and immunity in Streptomyces chartreusis (Widdick et al., 2018). *Absence of gene.*
nonsense mutations, or INDELS in five of the eight \textit{R. agropyri} strains (Table 4 and Figure 3). A total of 158 non-synonymous mutations were identified within the \textit{R. agropyri} TGC with most missense mutations predicted to be tolerated \textit{in silico} (Choi and Chan, 2015; Vaser et al., 2016). However, the single amino acid substitutions in TunB (D282Y) and TunD (G30R) of \textit{R. agropyri} strains CA-1, CA-2, CA-4, CA-21, and CA-46 were predicted to affect protein function in both PROVEAN and SIFT analyses (Table 4 and Figure 3). An additional amino acid substitution in TunH (R247C) of \textit{R. agropyri} strains CA-1, CA-2, CA-4, CA-21, and CA-46 was predicted by PROVEAN, but not SIFT, to affect protein function (Table 4).

The four \textit{R. agropyri} strains that either lacked or had remnants of a TGC were isolated from samples collected between 1950 and 2014 from Idaho, Colorado, or Washington (Supplementary Table S1). Complete or partial TGCs were in the same chromosomal position with flanking ORFs, except for strain CA-49, which lacked a TGC. \textit{Rathayibacter agropyri} strains CA-3, CA-47, and CA-80 had complete tunF and tun1 ORFs and approximately 5 and 25 amino acids of the N-terminus of TunA and TunC, respectively. tunF was complete in CA-47 but contained nonsense mutations and transposon insertions in CA-3 and CA-80, respectively. tunR was complete in CA-3 and CA-80, while CA-47 contained an early nonsense mutation.

\textbf{Rathayibacter Strains With a TGC Locus Are Tolerant to Exogenous Tunicamycin}

Tolerance by atoxigenic and toxigenic \textit{Rathayibacter} species to tunicamycin was determined to evaluate the presence or absence of the TGC influenced tunicamycin sensitivity. Atoxigenic strains of \textit{R. rathayi} and \textit{R. tritici} were highly sensitive to externally applied tunicamycin with a minimum inhibitory concentration (MIC) value < 0.0625 \(\mu\)g/mL (Table 1 and Supplementary Table S3). In contrast, putatively toxigenic \textit{R. toxicus}, \textit{R. iranicus}, and \textit{R. woodii} were each tolerant, with MIC values of 8.0 \(\mu\)g/mL to externally applied tunicamycin (Table 1 and Supplementary Table S3). \textit{R. agropyri} strains showed a range of sensitivity from <0.0625 to 8.0 \(\mu\)g/mL with sensitivity correlated to the absence of a complete TGC. No bacterial growth was observed in the negative control wells.

\section*{DISCUSSION}

The distribution and conservation of tunicamyluracil gene clusters within the nematode-vected, grass-associated \textit{Rathayibacter} genera has not been previously investigated; and tunicamyluracil biosynthesis has been reported in only a handful of soil-associated bacterial species (Doroghazi et al., 2011). Therefore, genomic analyses were performed on available toxigenic and atoxigenic \textit{Rathayibacter} species isolated from diverse geographic locations to determine if putative TGCs were conserved in this plant pathogenic taxon. In this study, we identified novel tunicamyluracil-related gene clusters in three suspected toxigenic \textit{Rathayibacter} species that infect wheat and grasses.

The first confirmed appearance of \textit{R. toxicus}-like poisoning outside of Australia was documented in the Western Cape Province of South Africa in 1980 (Schneider, 1981). Schneider (1981) identified a \textit{Rathayibacter} species in contaminated fodder that was responsible for livestock poisonings and quickly presumed it to be \textit{R. toxicus}, although the identity of the bacterial species was never confirmed. Based on our results, it is plausible that the South African livestock poisonings were caused by an endemic toxigenic \textit{Rathayibacter} species, such as \textit{R. woodii}, as opposed to a foreign \textit{R. toxicus} strain. Numerous nematode and \textit{R. woodii} bacterial galls were isolated in the same Western Cape Province where the previous suspected \textit{R. toxicus}–like poisonings occurred (Schneider, 1981; Riley and Swart, 2004; Grewar et al., 2009). \textit{R. woodii} was isolated from dune grass (\textit{Ehrharta villosa} var. \textit{villosa}) in association with the leaf gall nematode, \textit{Anguina woodii} (Riley et al., 2004; Riley and Swart, 2004). In contrast, Schneider (1981) associated the isolated toxigenic \textit{Rathayibacter} species with \textit{Lolium} species seed and the seed gall nematode \textit{Anguina agrosis}. However, numerous studies have demonstrated that \textit{Rathayibacter} grass-host range is determined by the nematode vector and not the bacterium, with \textit{R. toxicus} being able to colonize multiple grass and \textit{Anguina} species (Edgar et al., 1982; Riley and McKay, 1990, 1991; Riley et al., 2001). Future research will be needed to evaluate the ability of \textit{R. woodii} to attach to the cuticle of other \textit{Anguina} species.

Genetically similar tunicamyluracil-related gene clusters were also identified in the geographically separated populations of \textit{R. iranicus} and \textit{R. agropyri}. \textit{R. iranicus} has only been identified in Iran and Turkey and causes a gumming disease of wheat.
The tunicamyluracil-related gene cluster of *Rathayibacter woodii* is distinct from associated Actinobacteria. The phylogeny is based on concatenated tunicamyluracil-related genes (*tunA-tunL*), with the exception of *tunG* due to the lack of conservation between species. The percentage of replicate trees in which the associated taxa clustered together are shown at the nodes: IQ-TREE SH-aLRT bootstrap support/Ultrafast bootstrap support.

Similar to atoxigenic *R. tritici* (Bird, 1981; Postnikova et al., 2009; Fattah and Al-Assas, 2010). No supporting literature has described *R. toxicus*-like poisonings of livestock in Iran or Turkey, but wheat seed is rarely utilized as a food source for livestock. In contrast, historical accounts of livestock poisonings, associated with fodder contaminated with nematode galls, were documented in Oregon during the mid-twentieth century (Haag, 1943; Shaw and Muth, 1949; Galloway, 1961; Jensen, 1961).

The TGCs of *R. iranicus* and *R. agropyri* both lack the histidine phosphatase gene *tunG*. In place of *tunG*, *R. iranicus* has two hypothetical ORFs, with one of these putative genes (*tunT*) predicted to encode a truncated protein with homology to the C-terminal portion of TunG. However, the accumulation of mutations in *tunT* across diverse *R. iranicus* strains, and the lack of a conserved histidine phosphatase catalytic core, suggests that *tunT* may be a non-functional remnant of a histidine phosphatase. It remains unknown if *R. iranicus* or *R. agropyri* synthesize tunicamyluracil, but Widdick et al. (2018) determined that just six genes (*tunABCDEH*) are essential for tunicamycin biosynthesis in *S. chartreusis*, with *tunI* and *tunJ* being required for immunity (Widdick et al., 2018). The remaining non-essential TGC-associated genes (*tunFGKL*) appear redundant with homologs involved in *S. chartreusis* primary metabolism, but may allow for proper stoichiometric mixtures at the initial stages of tunicamycin biosynthesis (Widdick et al., 2018).

Environmental factors that trigger the synthesis of tunicamyluracil antibiotics in *Rathayibacter* species are unknown, and in-field production appears to be sporadic in the case of *R. toxicus* infections (Kowalski et al., 2007). The inconsistent production of tunicamyluracil, both in vitro and in vivo, could be due to a variety of complex interactions, but it does not appear to be a result of *R. toxicus* strains lacking a functional TGC. The TGC was conserved in all strains of *R. toxicus*, *R. woodii*, and *R. iranicus*, and mutations were not predicted to disrupt protein function. In contrast, *R. agropyri* genotypes were highly diverse with strains having complete, partial, or missing TGCs. The accumulation of mutations predicted to impact protein function in TunB and TunD were also prevalent in *R. agropyri*. Of the 12 *R. agropyri* strains, only three strains, CA-44, CA-45, and CA-34, have all the essential genes (without mutations) necessary for tunicamyluracil production. Interestingly, *R. agropyri* CA-45 was collected from Oregon in 1950 during the state's reported *R. toxicus*-like poisoning events. Similarly, strains CA-44, CA-46, CA-2, CA-47, and CA-49 were collected in 1950 from nearby states, but either lacked or had diverse TGC loci. Recently collected *R. agropyri* isolates (CA-34, CA-21, and CA-80) possess TGCs that mirror the diversity observed in strains collected during the mid-20th century, with *R. agropyri* CA-34 possessing all essential tunicamyluracil genes. The diversity of TGC sequences in *R. agropyri* genotypes could be one explanation for why
TABLE 3 | The overrepresentation of rare TTA leucine codons within the tunicamyluracil biosynthetic gene clusters of putatively toxigenic Rathayibacter and Streptomyces species.

Gene	R. toxicus FH79	R. iranicus FH6	R. woodii FH236	R. agropyri CA34	S. clavuligerus 3585	S. chartreusis 3882
tunA	3 (13.6)	2 (7.4)	1 (3.2)	1 (3.8)	0 (0.0)	3 (8.8)
tunB	6 (16.7)	2 (5.4)	0 (0.0)	3 (8.1)	0 (0.0)	0 (0.0)
tunC	4 (13.8)	3 (10.0)	0 (0.0)	3 (10.7)	0 (0.0)	0 (0.0)
tunD	6 (11.5)	2 (4.0)	3 (5.4)	2 (3.9)	0 (0.0)	0 (0.0)
tunE	2 (9.1)	0 (0.0)	1 (7.7)	0 (0.0)	0 (0.0)	0 (0.0)
tunF	2 (9.5)	1 (3.6)	0 (0.0)	1 (3.7)	0 (0.0)	0 (0.0)
tunG	1 (5.9)	–	2 (10.5)	–	0 (0.0)	0 (0.0)
tunH	6 (12.5)	3 (6.5)	2 (3.9)	4 (8.3)	0 (0.0)	0 (0.0)
tunI	4 (11.4)	0 (0.0)	3 (7.5)	1 (2.6)	0 (0.0)	0 (0.0)
tunJ	4 (10.3)	1 (2.6)	0 (0.0)	2 (5.1)	0 (0.0)	0 (0.0)
tunK	0 (0.0)	0 (0.0)	1 (9.1)	0 (0.0)	0 (0.0)	0 (0.0)
tunL	2 (11.1)	2 (8.0)	3 (4.7)	2 (8.0)	0 (0.0)	0 (0.0)
tunM	–	–	–	–	1 (3.6)	1 (4.0)
tunN	–	–	–	–	0 (0.0)	0 (0.0)
tunO	1 (5.6)	–	–	–	–	–
tunP	3 (12.0)	0 (0.0)	1 (2.9)	0 (0.0)	–	–
tunQ	–	3 (8.3)	3 (8.3)	5 (13.2)	–	–
tunR	–	0 (0.0)	–	–	–	–
tunS	–	1 (12.5)	–	–	–	–
tunT	–	0 (0.0)	–	–	–	–
TGC Total	44 (11.2)	20 (4.5)	20 (4.2)	24 (5.7)	1 (0.2)	4 (0.9)
Genome Total	1619 (2.4)	457 (0.5)	593 (0.7)	359 (0.4)	172 (0.1)	Not sequenced

*–, absence of gene.

widespread livestock toxicosis events are not reported in the United States as they are in Australia.

There are three R. agropyri strains with partial TGCs: CA-3, CA-47, and CA-80. The only two genes present in all three strains, tunI and tunJ, are the two required for immunity in S. chartreusis (Widdick et al., 2018). However, the requirements for full immunity to exogenous tunicamycin appear to be more complex in R. agropyri. None of these three strains grow at high concentrations of tunicamycin as many of the strains with complete TGCs (Figure 3) and CA-3 exhibits no immunity to tunicamycin despite full-length copies of tunI and tunJ. Therefore, it is likely that additional genes, either in the TGC or elsewhere in the genome, contribute to full immunity in R. agropyri. Never the less, it is possible that the partial immunity given by tunI and tunJ confers a selective advantage to R. agropyri.

The low GC-content, overrepresentation of rare leucine codons, nearby transposase genes, and incongruence of phylogenetic trees strongly suggest that the TGC was horizontally acquired in the Rathayibacter genera, with likely at least two independent genetic transfer events. Although the origin of the R. woodii TGC remains unknown, it appears to be from a source that is different than the donor to R. toxicus. The TGC of R. woodii possesses the complete suite of tunicamyluracil-related genes but is different in structure. Moreover, the putative TGC of R. woodii does not cluster with R. toxicus, despite the close genetic distance between the two species. While there are additional Streptomyces and Actinosynnema that contain TGCs closely related to the ones included in our analyses, there are no other putative TGCs in available bacterial genome sequences. Therefore, it is difficult to speculate on the origin of any of the Rathayibacter TGCs.

The presence of the TGC within multiple Rathayibacter species, the prevalence of the TGC locus among strains evaluated, the conservation and homology of tunicamyluracil-essential genes, the increased tolerance to exogenous tunicamycin, and the historic reports of livestock poisonings, all suggest that these species possess(ed) functional tunicamyluracil-related gene clusters. However, it is challenging to demonstrate that these Rathayibacter species synthesize biologically active tunicamyluracil. The biological/environmental triggers that initiate tunicamyluracil production in vitro are unknown and could differ among the species. Payne and Cockrum (1988) were intermittently able to induce in vitro production of tunicamyluracil with R. toxicus, but required fresh field isolates, the process was highly strain specific, and tunicamyluracil production was rapidly lost in vitro with successive subculturing (Payne and Cockrum, 1988). In fact, successful in vitro tunicamyluracil production has only been consistently demonstrated within the Streptomyces genera, in which Streptomyces species are induced to synthesize tunicamycin under extended anaerobic conditions (Chen et al., 2010). Due to these limitations, tolerance to exogenous...
TABLE 4 | Genetic variation of the tunicamyluracil biosynthetic gene cluster in sequenced Rathayibacter toxicus, R. iranicus, and R. agropyri strains, and their predicted impact to protein function.

Gene	Gene size (bp)	No. of strains	No. of haplotypes	No. (%) of polymorphic sites	No. of INDELs (bp)	No. of non-synonymous mutations	Type of non-synonymous mutation	Predicted mutation tolerated
tunA	993	26	2	21 (2.1%)	–	8	Missense Neutral	
tunB	1014	26	3	4 (0.4%)	–	1	Missense Neutral	
tunC	1002	26	2	8 (0.8%)	–	2	Missense Neutral	
tunD	1365	26	3	5 (0.4%)	1 (6 bp)	3	Nonsense/Missense Neutral	
tunE	699	26	2	11 (1.6%)	1 (6 bp)	4	Missense Neutral	
tunF	963	26	2	0 (0.0%)	–	0	–	
tunG	579	26	2	1 (0.2%)	–	0	–	
tunH	1548	26	2	6 (0.4%)	–	4	Missense Neutral	
tunI	993	26	2	6 (0.6%)	–	5	Missense Neutral	
tunJ	789	26	2	0 (0.0%)	–	0	–	
tunK	291	26	2	0 (0.0%)	–	0	–	
tunL	744	26	2	1 (0.1%)	–	1	Missense Neutral	
tunO	675	26	2	10 (1.5%)	–	6	Missense nd	
tunP	1224	26	2	1 (0.1%)	–	1	Missense nd	
tunA	978	6	2	41 (4.3%)	1 (15 bp)	12	Missense Neutral	
tunB	1014	6	3	42 (4.1%)	–	12	Missense Neutral	
tunC	1002	6	3	54 (5.4%)	–	20	Missense Neutral	
tunD	1362	6	3	51 (3.7%)	–	20	Missense Neutral	
tunE	693	6	3	16 (2.3%)	–	2	Missense Neutral	
tunF	939	6	3	30 (3.2%)	–	11	Missense Neutral	
tunH	1530	6	3	76 (5.0%)	–	36	Missense Neutral	
tunI	963	6	4	31 (3.2%)	–	14	Missense Neutral	
tunJ	786	6	3	27 (3.4%)	–	7	Missense Neutral	
tunK	291	6	2	24 (2.2%)	–	11	Missense Neutral	
tunL	732	6	3	25 (3.4%)	–	15	Missense Neutral	
tunP	1224	6	3	32 (2.6%)	–	8	Missense nd	
tunQ	1056	6	2	31 (2.9%)	–	15	Missense nd	
tunR	675	6	3	20 (3.0%)	–	11	Missense nd	
tunS	369	6	2	41 (11.1%)	–	26	Missense nd	
tunT	213	6	2	5 (2.3%)	1 (3 bp)	3	Nonsense/Missense Neutral	
tunA	963	8	5	23 (2.4%)	–	7	Missense Neutral	
tunB	1014	8	4	25 (2.5%)	–	7	Missense Deleterious	
tunC	996	8	4	21 (2.1%)	–	7	Missense Neutral	
tunD	1362	8	6	29 (2.1%)	–	13	Missense Deleterious	
tunE	693	8	6	14 (2.0%)	–	4	Missense Neutral	
tunF	939	8	5	25 (2.7%)	–	13	Missense Neutral	
tunH	1530	8	5	52 (3.4%)	–	22	Missense Neutral Neutral^a	
tunI	963	8	6	38 (3.9%)	–	15	Missense Neutral	
tunJ	786	8	4	16 (2.0%)	–	3	Missense Neutral	
tunK	291	8	4	8 (2.7%)	–	5	Missense Neutral	
tunL	720	8	5	15 (2.1%)	1 (3 bp)	8	Missense Neutral	
tunP	1227	8	6	22 (1.8%)	–	9	Missense nd	
tunQ	1056	8	6	24 (2.3%)	–	12	Missense nd	
tunR	675	8	6	50 (7.4%)	2 (1 bp)	33	Nonsense/Missense nd	

^a The gene size based on the reference strains R. toxicus FH79 (Zecher et al., 2017), R. iranicus FH6, and R. agropyri CA4 (Schroeder et al., 2018). The number of unique INDELs (insertion/deletion) within sequenced fragments. Each INDEL was treated as a single polymorphic site. The number of non-synonymous mutations does not include INDELs. The functional effect of missense mutations, among the TGC-conserved Rathayibacter genes, were predicted in silico with PROVEAN (Protein Variation Effect Analyzer) and SIFT (Sorting Intolerant From Tolerant) (Choi and Chan, 2015; Vaser et al., 2016). ^a, a missense mutation was predicted to be deleterious with PROVEAN, but tolerated with SIFT; nd, not determined due to the lack of adequate reference sequences.
tunicamycin was used as a partial proxy for the TGCs functionality in *Rathayibacter* species. The genes required for tunicamycin immunity appear to be functional since TGC-containing *Rathayibacter* species were able to tolerate exogenous applications of tunicamycin, in contrast to atoxigenic species. Interestingly, the newly described TGCs do not appear to possess any regulatory genes, similar to *S. chartreusis* and *R. toxicus* (Wyszynski et al., 2010; Sechler et al., 2017). However, tunicamyluracil production in *R. toxicus* (and other *Rathayibacter* species) may be translationally regulated through the utilization of rare TTA leucine codons, which are overrepresented in *Rathayibacter* TGCs, in a similar manner to antibiotic production in *Streptomyces* where Leu tRNA_{UAU} is temporally regulated and accumulates late in growth (Lawlor et al., 1987; Chater and Chandra, 2008). Unlike *R. toxicus* and the associated bacteriophage NCPPB3778, no bacteriophage have been implicated in toxin production by *R. iranicus*, *R. agropyri*, or *R. woodii* (Murray et al., 2017; Schneider et al., 2017).

The nematode vector *Anguina funesta*, and other *Anguina* species, are present in the United States (Meng et al., 2012). As discussed by Murray et al. (2017), the potential introduction of toxigenic *Rathayibacter* species, along with native *Anguina* species nematode populations, could have severe implications for United States agriculture. The widespread distribution and conservation of tunicamyluracil-essential genes in diverse *Rathayibacter* species, collected from Australia, South Africa, Iran, Turkey, and the United States, warrants increased sampling of *Rathayibacter* species to determine the distribution of tunicamyluracil-producing strains, the triggers of toxin production, and the role of toxin production in *Rathayibacter* ecology.

DATA AVAILABILITY STATEMENT

All unpublished genome data have been deposited in GenBank SRA as BioProject PRJN573074 (CA1 SAMN12797986, CA2 SAMN12797987, CA3 SAMN12797988, CA21 SAMN12797990, CA34 SAMN12797991, CA44 SAMN12797992, CA45 SAMN12797993, CA46 SAMN12797994, CA80 SAMN12797997, CA49 SAMN12797996, CA-47 SAMN12797995, FH164 SAMN12797998, FH176 SAMN12797999, FH 236 SAMN12798000).

REFERENCES

Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Res.* 25, 3389–3402. doi: 10.1093/nar/25.17.3389

Andrews, J. M., and Andrews, J. M. (2001). Determination of minimum inhibitory concentrations. *J. Antimicrob. Chemother.* 48(Suppl. 1), 5–16. doi: 10.1093/jac/48.suppl.1.5

Arif, M., Busot, G. Y., Mann, R., Rodoni, B., Liu, S., and Stack, J. P. (2016). Emergence of a new population of *Rathayibacter toxicus*: an ecologically complex, geographically isolated bacterium. *PLoS One* 11:e0156182. doi: 10.1371/journal.pone.0156182

Bedhomme, S., Amorós-Moya, D., Valero, L. M., Bonifaci, N., Pujana, M. À, Bravo, I. G., et al. (2019). Evolutionary changes after translational challenges imposed by horizontal gene transfer. *Genome Biol. Evol.* 11, 814–831. doi: 10.1093/gbe/evz031

Bourke, C. A., Carrigan, M. J., and Love, S. C. J. (1992). Flood plain staggers, a complex, geographically isolated bacterium. *Aust. Vet. J.* 70, 525–530. doi: 10.1111/j.1751-0813.1992.tb09932.x

Berry, P. H., and Wise, J. L. (1975). Wimmera rye grass toxicity in Western Australia. *Aust. Vet. J.* 51, 253–530. doi: 10.1111/j.1751-0813.1975.tb06903.x

Bird, A. F. (1981). “The *Anguina*-Coryneform association,” in *Plant Parasitic Nematodes*, eds B. M. Zuckerman, and R. A. Rhode, (New York, NY: Academic Press), 303–323. doi: 10.1016/0978-0-12-782203-7.50018-2

Boone, B. N., de la Cruz, J., and van Leeuwenhoek, 94, 111–126. doi: 10.1007/s10482-008-9231-5

Chandra, G., and Chater, K. F. (2008). The nematode vector *Anguina funesta*, and other *Anguina* species, are present in the United States (Meng et al., 2012). As discussed by Murray et al. (2017), the potential introduction of toxigenic *Rathayibacter* species, along with native *Anguina* species nematode populations, could have severe implications for United States agriculture. The widespread distribution and conservation of tunicamyluracil-essential genes in diverse *Rathayibacter* species, collected from Australia, South Africa, Iran, Turkey, and the United States, warrants increased sampling of *Rathayibacter* species to determine the distribution of tunicamyluracil-producing strains, the triggers of toxin production, and the role of toxin production in *Rathayibacter* ecology.

AUTHOR CONTRIBUTIONS

MT designed the study, analyzed the sequences, and wrote the manuscript draft. AS assisted with sequence analysis. ED performed ANI analysis. TM and BS provided strains and sequences. JC and ER acquired funding and supervised the study. All authors read and approved the final manuscript.

FUNDING

Funding for this research was from the United States Department of Agriculture, Agricultural Research Service appropriated project 8044-22000-044-00D. ED was supported by a Provost’s Distinguished Graduate Fellowship awarded by Oregon State University (OSU). This material is based upon work supported by the NSF Graduate Research Fellowship under Grant No. DGE-1314109 to ED. This work was also supported by a 2016 Farm Bill grant, Section 10201 administered through the USDA, Animal and Plant Health Inspection Service (APHIS) projects 3.0532.02 to JC and 13-8130-0247-CA and 14-8130-0367-CA to BS, TM, and ER.

ACKNOWLEDGMENTS

The authors thank Dr. Ian Riley for isolating and providing numerous *Rathayibacter* strains, Dr. James Stack for providing *R. toxicus* sequence data, and Dr. William Schneider for assistance in experimental design.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmicb.2019.02914/full#supplementary-material
and environmental adaptation in Streptomyces. J. Microbiol. 46, 1–11. doi: 10.1007/s12275-007-0233-1

Chen, W., Qi, J., Wu, P., Wan, D., Liu, J., Feng, X., et al. (2016). Natural and engineered biosynthesis of nucleoside antibiotics in Actinomycetes. J. Ind. Microbiol. Biotechnol. 43, 401–417. doi: 10.1007/s10529-015-1636-3

Chen, W., Qu, D., Zhai, L., Tao, M., Wang, Y., Lin, S., et al. (2010). Characterization of the tunicamycin gene cluster unveiling unique steps involved in its biosynthesis. Protein Cell 1, 1093–1105. doi: 10.1007/s13238-010-0127-6

Choi, Y., and Chan, A. P. (2015). PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 31, 2745–2747. doi: 10.1093/bioinformatics/btv195

Cunningham, I. J., and Hartley, W. J. (1959). Ryegrass staggers. N. Z. Vet. J. 7, 1–7.

Davis, E., Curran, G., Hetherington, W., Norms, D., Wise, G., Rothi, I., et al. (1995). Gall-Doroghazi, J. R., Ju, K. S., Brown, D. W., Labeda, D. P., Deng, Z., Metcalf, Davis, E. W., Tabima, J. F., Weisberg, A. J., Lopes, L. D., Wiseman, M. S., Wiseman, Cunningham, I. J., and Hartley, W. J. (1959). Ryegrass staggers.

Fattah, F. A., and Al-Assas, K. (2010). Histopathological comparison of galls induced by Anguina tritici with galls subsequently colonised by Rathayibacter tritici in wheat. Nematol. Mediterr. 38, 173–177.

Finney, J. W., and Jago, M. V. (1985). Experimental production of annual ryegrass toxicity with tunicamycin. Aust. J. Agric. Res. 36, 518–522. doi: 10.1071/AR9880063

Finn, R. D., Attwood, T. K., Babbitt, P. C., Bateman, A., Bork, P., Bridge, A. J., et al. (2017). InterPro in 2017-beyond protein family and domain annotations. Nucleic Acids Res. 45, D190–D199. doi: 10.1093/nar/gkw1107

Finn, J. W. (2006). Review of cortoxynitosis causative agents of annual ryegrass toxicity; their identification as tunicamycin group antibiotics. J. Chem. Soc. Chem. Commun. 4, 222–224. doi: 10.1039/c9820000222

Fattah, F. A., and Al-Assas, K. (2010). Histopathological comparison of galls induced by Anguina tritici with galls subsequently colonised by Rathayibacter tritici in wheat. Nematol. Mediterr. 38, 173–177.

Finn, R. D., Attwood, T. K., Babbitt, P. C., Bateman, A., Bork, P., Bridge, A. J., et al. (2017). InterPro in 2017-beyond protein family and domain annotations. Nucleic Acids Res. 45, D190–D199. doi: 10.1093/nar/gkw1107

Finn, J. W. (2006). Review of cortoxynitosis causative agents of annual ryegrass toxicity; their identification as tunicamycin group antibiotics. J. Chem. Soc. Chem. Commun. 4, 222–224. doi: 10.1039/c9820000222

Finn, J. W., and Jago, M. V. (1985). Experimental production of annual ryegrass toxicity with tunicamycin. J. Agric. Res. 82, 248–249. doi: 10.1017/SAVA1985.i607256x

Galloway, J. H. (1961). Grass seed nematode poisoning in livestock. J. Am. Vet. Med. Assoc. 139, 1212–1214

Gors, J., Konstantinidis, K., Klappenbach, J. A., Coenye, T., Vandamme, P., and Tiedje, J. M. (2007). DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol. 57, 81–91. doi: 10.1099/ijs.0.64848-0

Grewar, J. D., Allen, J. G., and Guthrie, A. J. (2009). Annual ryegrass toxicity in thoroughbred horses in cereals in the western cape province, South Africa. J. S. Afr. Vet. Assoc. 80, 220–223. doi: 10.4102/jsava.v80i4.211

Mullins, J. (1941). “Staggers” in animals. N. Z. J. Agric. Res. 62:169.

Ritchie, I. T., Schmitz, A., and de Silva, P. (2001). Anguina australis, a vector for plant pathogenic microorganisms to the cuticle of nematodes in the genus Polypogon monspeliensis. Plant Dis. 77, 635–641.

Meng, S., Alderman, S., Fraley, C., Ludy, R., Sun, F., and Osterbauer, N. (2012). Identification of Anguina funesta from annual ryegrass seed lots in Oregon. Plant Heal. Prog. 13. doi: 10.1094/PHYT-02-17-0047-RV

Payne, A. L., and Cockrum, P. A. (1988). Production of cortoxynitos in vitro by Corynebacterium sp. isolated from annual ryegrass seedheads. Aust. J. Agric. Res. 39, 63–70. doi: 10.1071/AR9880063

Price, P. C., Fisher, J. M., and Kerr, A. (1979). Annual ryegrass toxicity: parasitism of Polypogon monspeliensis J. Bacteriol. 139, 1212–1214.

Price, P. C., Fisher, J. M., and Kerr, A. (1979). Annual ryegrass toxicity: parasitism of Polypogon monspeliensis J. Bacteriol. 139, 1212–1214.

Price, P. C., Fisher, J. M., and Kerr, A. (1979). Annual ryegrass toxicity: parasitism of Polypogon monspeliensis J. Bacteriol. 139, 1212–1214.

Price, P. C., Fisher, J. M., and Kerr, A. (1979). Annual ryegrass toxicity: parasitism of Polypogon monspeliensis J. Bacteriol. 139, 1212–1214.
Tancos et al. Tunicaminyuracil Gene Clusters in Rathayibacter Species

Schröder, B. K., Schneider, W. L., Luster, D. G., Sechler, A., and Murray, T. D. (2018). Rathayibacter agropyri (non O’Gara 1916) comb. nov., nom. rev., isolated from western wheatgrass (Pascopyrum smithii). Int. J. Syst. Evol. Microbiol. 68, 1519–1525. doi: 10.1099/ijsem.0.002708

Sechler, A. J., Tancos, M. A., Schneider, D. J., King, J. G., Fennessey, C. M., Schröder, B. K., et al. (2017). Whole genome sequence of two Rathayibacter toxicus strains reveals a tunicamycin biosynthetic cluster similar to Streptomyces chartreusis. PLoS One 12:e0183005. doi: 10.1371/journal.pone.0183005

Shaw, J. N., and Muth, O. H. (1949). Some types of forage poisoning in Oregon cattle and sheep. J. Am. Vet. Med. Assoc. 114, 315–317.

Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., et al. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7:539. doi: 10.1038/msb.2011.75

Song, J. Y., Jeong, H., Yu, D. S., Fischbach, M. A., Park, H. S., Kim, J. J., et al. (2010). Draft genome sequence of Streptomyces clavuligerus NRRL 3585, a producer of diverse secondary metabolites. J. Bacteriol. 192, 6317–6318. doi: 10.1128/JB.00859-10

Stynes, B. A., and Bird, A. F. (1982). Development of galls induced in Lolium rigidum by Anguina agrostis. Phytopathology 72, 336–346.

Sullivan, M. J., Petty, N. K., and Beatson, S. A. (2011). Easyfig: a genome comparison visualizer. Bioinformatics 27, 1009–1010. doi: 10.1093/bioinformatics/btr039

Takatsuki, A., Arima, K., and Tamura, G. (1971). Tunicamycin, a new antibiotic: I. Isolation and characterization of tunicamycin. J. Antibiot. 24, 215–223. doi: 10.7164/antibiotics.24.215

Tkacz, J. S., and Lampen, J. O. (1975). Tunicamycin inhibition of polyisoprenyl N-acetylglucosaminyl pyrophosphate formation in calf-liver microsomes. Biochem. Biophys. Res. Commun. 65, 248–257. doi: 10.1016/S0006-291X(75)80086-6

Trifinopoulos, J., Nguyen, L. T., von Haeseler, A., and Minh, B. Q. (2016). W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 44, W232–W235. doi: 10.1093/nar/gkw256

Vaser, R., Adusumalli, S., Leng, S. N., Sikic, M., and Nj, P. C. (2016). SIFT missense predictions for genomes. Nat. Protoc. 11, 1–9. doi: 10.1038/nprot.2015.123

Wattam, A. R., Davis, J. J., Assaf, R., Boisvert, S., Brettin, T., Bun, C., et al. (2017). Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res. 45, D535–D542. doi: 10.1093/nar/gkw1017

Weber, T., Blin, K., Duddela, S., Krug, D., Kim, H. U., Brucoleri, R., et al. (2015). AntiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res. 43, W237–W243. doi: 10.1093/nar/gkv437

Widdick, D., Vior, N. M., Gomez-Escribano, J. P., Bibb, M. J., Royer, S. F., Wang, H., et al. (2018). Analysis of the tunicamycin biosynthetic gene cluster of Streptomyces chartreusis reveals new insights into tunicamycin production and immunity. Antimicrob. Agents Chemother. 62:e00130-18. doi: 10.1128/AAC.00130-18

Wyszyński, F. J., Hesketh, A. R., Bibb, M. J., and Davis, B. G. (2010). Dissecting tunicamycin biosynthesis by genome mining: cloning and heterologous expression of a minimal gene cluster. Chem. Sci. 1:581. doi: 10.1039/c0sc00325e

Disclaimers: Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity provider and employer.

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Tancos, Sechler, Davis, Chang, Schroeder, Murray and Rogers. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.