Abstract

In the local, characteristic 0, non archimedean case, we consider distributions on $GL(n+1)$ which are invariant under the adjoint action of $GL(n)$. We prove that such distributions are invariant by transposition. This implies that an admissible irreducible representation of $GL(n+1)$, when restricted to $GL(n)$ decomposes with multiplicity one.

Similar Theorems are obtained for orthogonal or unitary groups.

Introduction

Let F be a local field non archimedean and of characteristic 0. Let W be a vector space over F of finite dimension $n+1 \geq 1$ and let $W = V \oplus U$ be a direct sum decomposition with $\dim V = n$. Then we have an imbedding of $GL(V)$ into $GL(W)$. Our goal is to prove the following Theorem:

Theorem 1: If π (resp. ρ) is an irreducible admissible representation of $GL(W)$ (resp. of $GL(V)$) then

$$\dim \left(\text{Hom}_{GL(V)}(\pi|_{GL(V)}, \rho) \right) \leq 1.$$
The transposition map is an involutive anti-automorphism of $GL(n + 1, \mathbb{F})$ which leaves $GL(n, \mathbb{F})$ stable. It acts on the space of distributions on $GL(n + 1, \mathbb{F})$.

Theorem 1 is a Corollary of:

Theorem 2: A distribution on $GL(W)$ which is invariant under the adjoint action of $GL(V)$ is invariant by transposition.

One can raise a similar question for orthogonal and unitary groups. Let D be either \mathbb{F} or a quadratic extension of \mathbb{F}. If $x \in D$ then \overline{x} is the conjugate of x if $D \neq \mathbb{F}$ and is equal to x if $D = \mathbb{F}$.

Let W be a vector space over D of finite dimension $n + 1 \geq 1$. Let $\langle \cdot, \cdot \rangle$ be a non degenerate hermitian form on W. This form is bi-additive and

$$\langle dw, d'w' \rangle = d_1 \overline{d_2} \langle w, w' \rangle, \quad \langle w', w \rangle = \overline{\langle w, w' \rangle}.$$

Given a D–linear map u from W into itself, its adjoint u^* is defined by the usual formula

$$\langle u(w), w' \rangle = \langle w, u^*(w') \rangle.$$

Choose a vector e in W such that $\langle e, e \rangle \neq 0$; let $U = De$ and $V = U^\perp$ the orthogonal complement. Then V has dimension n and the restriction of the hermitian form to V is non degenerate.

Let M be the unitary group of W, that is to say the group of all D–linear maps m of W into itself which preserve the hermitian form or equivalently such that $mm^* = 1$. Let G be the unitary group of V. With the p-adic topology both groups are of type lctd (locally compact, totally discontinuous) and countable at infinity. They are reductive groups of classical type.

The group G is naturally imbedded into M.

Theorem 1’: If π (resp ρ) is an irreducible admissible representation of M (resp of G) then

$$\dim \left(\text{Hom}_G(\pi|_G, \rho) \right) \leq 1.$$

Choose a basis e_1, \ldots, e_n of V such that $\langle e_i, e_j \rangle \in \mathbb{F}$. For

$$w = x_0e + \sum_{i=1}^{n} x_i e_i$$
put

\[\overline{w} = x_0 e + \sum_{i=1}^{n} x_i e_i. \]

If \(u \) is a \(\mathbb{D} \)-linear map from \(W \) into itself, let \(\overline{u} \) be defined by

\[\overline{u}(w) = u(\overline{w}). \]

Let \(\sigma \) be the anti-involution \(\sigma(m) = \overline{m}^{-1} \) of \(M \); Theorem 1’ is a consequence of

Theorem 2’: A distribution on \(M \) which is invariant under the adjoint action of \(G \) is invariant under \(\sigma \).

Let us describe briefly our proof. In section 2 we recall why Theorem 2 (2’) implies Theorem 1(1’).

Then we proceed with \(\text{GL}(n) \). The proof is by induction on \(n \); the case \(n = 0 \) is trivial. In general we first linearize the problem by replacing the action of \(G \) on \(\text{GL}(W) \) by the action on the Lie algebra of \(\text{GL}(W) \). As a \(G \)-module this Lie algebra is isomorphic to a direct sum \(g \oplus V \oplus V^* \oplus F \) with \(g \) the Lie algebra of \(G \), \(V^* \) the dual space of \(V \). The group \(G = \text{GL}(V) \) acts trivially on \(F \), by the adjoint action on its Lie algebra and the natural actions on \(V \) and \(V^* \). The component \(F \) plays no role. Let \(u \) be a linear bijection of \(V \) onto \(V^* \) which transforms some basis of \(V \) into its dual basis. The involution may be taken as

\[(X, v, v^*) \mapsto (u^{-1} X u, u^{-1}(v^*), u(v)). \]

We have to show that a distribution \(T \) on \(g \oplus V \oplus V^* \) which is invariant under \(G \) and skew relative to the involution is 0.

In section 2 we prove that such a distribution must have a singular support. On the \(g \) side, using Harish-Chandra descent we get that the support of \(T \) must be contained in \(z \times N \times (V \oplus V^*) \) where \(z \) is the center of \(g \) and \(N \) the cone of nilpotent elements in \(g \). On the \(V \oplus V^* \) side we show that the support must be contained in \(g \times \Gamma \) where \(\Gamma \) is the cone \(\langle v, v^* \rangle = 0 \) in \(V \oplus V^* \). On \(z \) the action is trivial so we are reduced to the case of a distribution on \(N \times \Gamma \).

In section 3 we consider such distributions. The end of the proof is based on two remarks. First, viewing the distribution as a distribution on
$\mathcal{N} \times (V \oplus V^*)$ its partial Fourier transform relative to $V \oplus V^*$ has the same invariance properties and hence must also be supported by $\mathcal{N} \times \Gamma$. This implies in particular a homogeneity condition on $V \oplus V^*$. The idea of using Fourier transform in this kind of situation goes back at least to Harish-Chandra ([Ha]) and is conveniently expressed using a particular case of the Weil or oscillator representation.

For $(v, v^*) \in \Gamma$, let X_{v,v^*} be the map $x \mapsto \langle x, v^* \rangle v$ of V into itself. The second remark is that the one parameter group of transformations

$$(X, v, v^*) \mapsto (X + \lambda X_{v,v^*}, v, v^*)$$

is a group of (non linear) homeomorphisms of $[g, g] \times \Gamma$ which commute with G and the involution. It follows that the image of the support of our distribution must also be singular. Precisely this allows us to replace the condition $\langle v, v^* \rangle = 0$ by the stricter condition $X_{v,v^*} \in \text{Im ad}X$.

Using the stratification of \mathcal{N} we proceed one nilpotent orbit at a time, transferring the problem to $V \oplus V^*$ and a fixed nilpotent matrix X. The support condition turns out to be compatible with direct sum so that it is enough to consider the case of a principal nilpotent element. In this last situation the key is the homogeneity condition coupled with an easy induction.

The orthogonal and unitary cases are proved roughly in the same way. In section 4 we reduce the support to the singular set. Here the main difference is that we use Harish-Chandra descent directly on the group. Note that some Levi subgroups have components of type GL so that theorem 2 has to be assumed. Finally in section 5 we consider the case of a distribution with singular support; the proof follows the same line as in section 3.

We systematically use two classical results: Bernstein’s localization principle and a variant of Frobenius reciprocity which we call Frobenius descent. For the convenience of the reader they are both recalled in a short Appendix.

Similar theorems should be true in the archimedean case. A partial result is given by [A-G-S].

Let us add some comments on the Theorems themselves. First note that Theorem 1’ gives an independent proof of a well known theorem of Bernstein: choose a basis e_1, \ldots, e_n of V, add some vector e_0 of W to obtain a basis of W and let P be the isotropy of e_0 in $\text{GL}(W)$. Then Theorem B of [Ber] says that a distribution on $\text{GL}(W)$ which is invariant under the action of P is invariant under the action of $\text{GL}(W)$. Now, by Theorem 1’ such a distribution is invariant under the adjoint action of the transpose of P and
the group of inner automorphisms is generated by the images of P and its transpose. We thus get an independent proof of Kirillov conjecture in the characteristic 0, non archimedean case.

The occurrence of involutions in multiplicity at most one problems is of course nothing new. The situation is fairly simple when all the orbits are stable by the involution thanks to Bernstein’s localization principle and constructibility theorem ([B-Z], [G-K]). In our case this is not true: only generic orbits are stable. Non stable orbits may carry invariant measures but they do not extend to the ambient space (a similar situation is already present in [Ber]).

An illustrative example is the case $n = 1$ for GL. It reduces to F^* acting on F^2 as $(x, y) \mapsto (tx, t^{-1}y)$. On the x axis the measure $d^*x = dx/|x|$ is invariant but does not extend invariantly. However the symmetric measure

$$f \mapsto \int_{F^*} f(x, 0)d^*x + \int_{F^*} f(0, y)d^*y$$

does extend.

As in similar cases (for example [J-R]) our proof does not give a simple explanation of why all invariant distributions are symmetric. The situation would be much better if we had some kind of density theorem. For example in the GL case let us say that an element (X, v, v^*) of $g \oplus V \oplus V^*$ is regular if $(v, Xv, \ldots X^{n-1}v)$ is a basis of V and $(v^*, \ldots, t^1X^{n-1}v^*)$ is basis of V^*. The set of regular elements is a non empty Zariski open subset; regular elements have trivial isotropy subgroups. The regular orbits are the orbits of the regular elements; they are closed, separated by the invariant polynomials and stable by the involution (see [R-S-I]). In particular they carry invariant measures which, the orbits being closed, do extend and are invariant by the involution. It is tempting to conjecture that the subspace of the space of invariant distributions generated by these measures is weakly dense. This would provide a better understanding of Theorem 2. Unfortunately if true at all, such a density theorem is likely to be much harder to prove.

Assuming multiplicity at most one, a more difficult question is to find when it is one. Some partial results are known.

For the orthogonal group (in fact the special orthogonal group) this question has been studied by B. Gross and D.Prasad ([G-P], [Pra-2]) who formulated a precise conjecture. An up to date account is given by B.Gross and M.Reeder ([G-R]). In a different setup, in their work on ”Shintani” functions A.Murase and T.Sugano obtained complete results for $GL(n)$ and the split
orthogonal case but only for spherical representations ([K-M-S],[M-S]). Finally we should mention, Hakim’s publication [H], which, at least for the discrete series, could perhaps lead to a different kind of proof.

Acknowledgements
The first two authors would like to thank Joseph Bernstein for their mathematical education. They cordially thank Joseph Bernstein and Eitan Sayag for guiding them through this project. They would also like to thank Yuval Flicker, Erez Lapid, Omer Offen and Yiannis Sakellaridis for useful remarks.

The first two authors worked on this project while participating in the program Representation theory, complex analysis and integral geometry of the Hausdorff Institute of Mathematics (HIM) at Bonn joint with Max Planck Institute fur Mathematik. They wish to thank the organizers of the activity and the director of HIM for inspiring environment and perfect working conditions.

Finally, the first two authors wish to thank Vladimir Berkovich, Stephen Gelbart, Maria Gorelik and Sergei Yakovenko from the Weizmann Institute of Science for their encouragement, guidance and support.

The last author thanks the Math Research Institute of Ohio State University in Columbus for several invitations which allowed him to work with the third author.

1. Theorem 2(2′) implies Theorem 1(1′)

A group of type lctd is a locally compact, totally discontinuous group which is countable at infinity. We consider smooth representations of such groups. If \((\pi, E_\pi)\) is such a representation then \((\pi^*, E_\pi^*)\) is the smooth contragradient. Smooth induction is denoted by \(Ind\) and compact induction by \(ind\). For any topological space \(T\) of type lctd, \(S(T)\) is the space of functions locally constant, complex valued, defined on \(T\) and with compact support. The space \(S'(T)\) of distributions on \(T\) is the dual space to \(S(T)\).

Proposition 1.1 Let \(M\) be a lctd group and \(N\) a closed subgroup, both unimodular. Suppose that there exists an involutive anti-automorphism \(\sigma\) of \(M\) such that \(\sigma(N) = N\) and such that any distribution on \(M\), biinvariant under
N, is fixed by σ. Then, for any irreducible admissible representation π of M
\[\dim \left(\Hom_M(\text{ind}_N^M(1), \pi) \right) \times \dim \left(\Hom_M(\text{ind}_N^M(1), \pi^\ast) \right) \leq 1. \]

This is well known (see for example [Pra-2]).

Remark. — There is a variant for the non unimodular case; we will not need it.

Corollary 1.1 Let M be a lctd group and N a closed subgroup, both unimodular. Suppose that there exists an involutive anti-automorphism σ of M such that $\sigma(N) = N$ and such that any distribution on M, invariant under the adjoint action of N, is fixed by σ. Then, for any irreducible admissible representation π of M and any irreducible admissible representation ρ of N
\[\dim \left(\Hom_N(\pi|_N, \rho^\ast) \right) \times \dim \left(\Hom_N((\pi^\ast)|_N, \rho) \right) \leq 1. \]

Proof. Let $M' = M \times N$ and N' be the closed subgroup of M' which is the image of the homomorphism $n \mapsto (n, n)$ of N into M. The map $(m, n) \mapsto mn^{-1}$ of M' onto M defines a homeomorphism of M'/N' onto M. The inverse map is $m \mapsto (m, 1)N'$. On M'/N' left translations by N' correspond to the adjoint action of N onto M. We have a bijection between the space of distributions T on M invariant under the adjoint action of N and the space of distributions S on M' which are biinvariant under N'. Explicitly
\[\langle S, f(m, n) \rangle = \langle T, \int_N f(mn, n)dn \rangle. \]

Suppose that T is invariant under σ and consider the involutive anti-automorphism σ' of M' given by $\sigma'(m, n) = (\sigma(m), \sigma(n))$. Then
\[\langle S, f \circ \sigma' \rangle = \langle T, \int_N f(\sigma(n)\sigma(m), \sigma(n))dn \rangle. \]

Using the invariance under σ and for the adjoint action of N we get
\[
\langle T, \int_N f(\sigma(n)\sigma(m), \sigma(n))dn \rangle = \langle T, \int_N f(\sigma(n)m, \sigma(n))dn \rangle \\
= \langle T, \int_N f(mn, n)dn \rangle \\
= \langle S, f \rangle.
\]

7
Hence S is invariant under σ'. Conversely if S is invariant under σ' the same computation shows that T is invariant under σ. Under the assumption of the corollary we can now apply Proposition 1-1 and we obtain the inequality

$$\dim \left(\text{Hom}_{M'}(\text{ind}_{N'}^M(1), \pi \otimes \rho) \right) \times \dim \left(\text{Hom}_{M'}(\text{ind}_{N'}^M(1), \pi^* \otimes \rho^*) \right) \leq 1.$$

We know that $\text{Ind}_{N'}^M(1)$ is the smooth contragredient representation of $\text{ind}_{N'}^M(1)$; hence

$$\text{Hom}_{M'}(\text{ind}_{N'}^M(1), \pi^* \otimes \rho^*) \approx \text{Hom}_{M'}(\pi \otimes \rho, \text{Ind}_{N'}^M(1)).$$

Frobenius reciprocity tells us that

$$\text{Hom}_{M'}(\pi \otimes \rho, \text{Ind}_{N'}^M(1)) \approx \text{Hom}_{N'}((\pi \otimes \rho)|_{N'}, 1).$$

Clearly

$$\text{Hom}_{N'}((\pi \otimes \rho)|_{N'}, 1) \approx \text{Hom}_{N}(\rho, (\pi|_{N})^*) \approx \text{Hom}_{N}(\pi|_{N}, \rho^*).$$

Using again Frobenius reciprocity we get

$$\text{Hom}_{N}(\rho, (\pi|_{N})^*) \approx \text{Hom}_{M}(\text{ind}_{N}^M(\rho), \pi^*).$$

In the above computations we may replace ρ by ρ^* and π by π^*. Finally

$$\text{Hom}_{M'}(\text{ind}_{N'}^M(1), \pi^* \otimes \rho^*) \approx \text{Hom}_{N}(\rho, (\pi|_{N})^*)$$

$$\approx \text{Hom}_{N}(\pi|_{N}, \rho^*)$$

$$\approx \text{Hom}_{M}(\text{ind}_{N}^M(\rho), \pi^*).$$

$$\text{Hom}_{M'}(\text{ind}_{N'}^M(1), \pi \otimes \rho) \approx \text{Hom}_{N}(\rho^*, ((\pi^*)|_{N})^*)$$

$$\approx \text{Hom}_{N}((\pi^*)|_{N}, \rho)$$

$$\approx \text{Hom}_{M}(\text{ind}_{N}^M(\rho^*), \pi).$$

\[\square \]

Going back to our situation and keeping the notations of the introduction consider first the case of the general linear group. We take $M = GL(W)$ and $N = GL(V)$. Let E_π be the space of the representation π and let E_π^* be the smooth dual (relative to the action of $GL(W)$). Let E_ρ be the space of ρ and E_ρ^* be the smooth dual for the action of $GL(V)$. We know ([B-Z] section 7), that the contragredient representation π^* in E_π^* is isomorphic to the representation $g \mapsto \pi(t^i g^{-1})$ in E_π. The same is true for ρ^*. Therefore an
element of \(\text{Hom}_N(\pi_N, \rho^*) \) may be described as a linear map \(A \) from \(E_\pi \) into \(E_\rho \) such that, for \(g \in N \)
\[
A\pi(g) = \rho(^g - 1)A.
\]
An element of \(\text{Hom}_N((\pi^*)_N, \rho) \) may be described as a linear map \(A' \) from \(E_\pi \) into \(E_\rho \) such that, for \(g \in N \)
\[
A'\pi(^g - 1) = \rho(g)A'.
\]
We have obtained the same set of linear maps:
\[
\text{Hom}_N((\pi^*)_N, \rho) \approx \text{Hom}_N(\pi_N, \rho^*).
\]
We are left with 2 possibilities: either both spaces have dimension 0 or they both have dimension 1 which is exactly what we want.

From now on we forget Theorem 1 and prove Theorem 2.

Consider the orthogonal/unitary case, with the notations of the introduction. In Chapter 4 of [M-V-W] the following result is proved. Choose \(\delta \in GL_F(W) \) such that \(\langle \delta w, \delta w' \rangle = \langle w', w \rangle \). If \(\pi \) is an irreducible admissible representation of \(M \), let \(\pi^* \) be its smooth contragredient and define \(\pi^\delta \) by
\[
\pi^\delta(x) = \pi(\delta x \delta^{-1}).
\]
Then \(\pi^\delta \) and \(\pi^* \) are equivalent. We choose \(\delta = 1 \) in the orthogonal case \(\mathbb{D} = \mathbb{F} \). In the unitary case, fix an orthogonal basis of \(W \), say \(e_1, \ldots, e_{n+1} \), such that \(e_2, \ldots, e_{n+1} \) is a basis of \(V \); put \(\langle e_i, e_i \rangle = a_i \). Then
\[
\langle \sum x_i e_i, \sum y_j e_j \rangle = \sum a_i x_i \overline{y_i}.
\]
Define \(\delta \) by
\[
\delta \left(\sum x_i e_i \right) = \sum \overline{x_i} e_i.
\]
Note that \(\delta^2 = 1 \).

Let \(E_\pi \) be the space of \(\pi \). Then, up to equivalence, \(\pi^* \) is the representation \(m \mapsto \pi(\delta m \delta^{-1}) \). If \(\rho \) is an admissible irreducible representation of \(G \) in a vector space \(E_\rho \) then an element \(A \) of \(\text{Hom}(\pi^*_G, \rho) \) is a linear map from \(E_\pi \) into \(E_\rho \) such that
\[
A\pi(\delta g \delta^{-1}) = \pi(g)A, \quad g \in G.
\]
In turn the contragredient ρ^* of ρ is equivalent to the representation $g \mapsto \rho(\delta g \delta^{-1})$ in E_ρ. Then an element B of $\text{Hom}(\pi|_G, \rho^*)$ is a linear map from E_π into E_ρ such that

$$B \pi(g) = \rho(\delta g \delta^{-1})B, \quad g \in G.$$

As $\delta^2 = 1$ the conditions on A and B are the same:

$$\text{Hom}(\pi|_G, \rho) \approx \text{Hom}(\pi|_G, \rho^*).$$

However, assuming Theorem 2', by Corollary 1-1 we have

$$\dim\bigg(\text{Hom}(\pi|_G, \rho)\bigg) \times \dim\bigg(\text{Hom}(\pi|_G, \rho^*)\bigg) \leq 1,$$

so that both dimensions are 0 or 1. Replacing ρ by ρ^* we get Theorem 1'. From now on we forget about Theorem 1'.

2. Reduction to the singular set: the $\text{GL}(n)$ case

If H is a topological group of type lctd, acting continuously on a topological space E of the same type and if χ is a continuous character of H we denote by $\mathcal{S}(E)^H_{\chi}$ the space of distributions T on E such that $\langle T, f(h^{-1}x) \rangle = \chi(h) \langle T, f \rangle$ for any $f \in \mathcal{S}(E)$ and any $h \in H$.

Consider the case of the general linear group. From the decomposition $W = V \oplus \mathbb{F}e$ we get, with obvious identifications

$$\text{End}(W) = \text{End}(V) \oplus V \oplus V^* \oplus \mathbb{F}.$$

Note that $\text{End}(V)$ is the Lie algebra \mathfrak{g} of G. The group G acts on $\text{End}(W)$ by

$$g(X, v, v^*, t) = (gXg^{-1}, gv, ^t g^{-1}v^*, t).$$

As before choose a basis (e_1, \ldots, e_n) of V and let (e^*_1, \ldots, e^*_n) be the dual basis of V^*. Define an isomorphism u of V onto V^* by $u(e_i) = e^*_i$. On $GL(W)$ the involution σ is $h \mapsto u^{-1}h^{-1}u$. It depends upon the choice of the basis but the action on the space of invariant distributions does not depend upon this choice.

It will be convenient to introduce an extension \tilde{G} of G. Let $\text{Iso}(V, V^*)$ be the set of isomorphisms of V onto V^*. We define $\tilde{G} = G \cup \text{Iso}(V, V^*)$. The group law, for $g, g' \in G$ and $u, u' \in \text{Iso}(V, V^*)$ is

$$g \times g' = gg', \quad u \times g = ug, \quad g \times u = ^t g^{-1}u, \quad u \times u' = ^t u^{-1}u'.$$
Now from $W = V \oplus F e$ we obtain an identification of the dual space W^* with $V^* \oplus F e^*$ with $\langle e^*, V \rangle = (0)$ and $\langle e^*, e \rangle = 1$. Any u as above extends to an isomorphism of W onto W^* by defining $u(e) = e^*$. The group \tilde{G} acts on $GL(W)$:

$$h \mapsto ghg^{-1}, \quad h \mapsto t(uh u^{-1})$$

and also on $End(W)$ with the same formulas.

Let χ be the character of \tilde{G} which is 1 on G and -1 on $Iso(V, V^*)$. Our goal is to prove that $S'(GL(W))^{\tilde{G}, \chi} = (0)$.

Proposition 2.1 If $S'(g \oplus V \oplus V^*)^{\tilde{G}, \chi} = (0)$ then $S'(GL(W))^{\tilde{G}, \chi} = (0)$.

Proof. We have $End(W) = (End(V) \oplus V \oplus V^*) \oplus F$ and the action of \tilde{G} on F is trivial thus $S'(g \oplus V \oplus V^*)^{\tilde{G}, \chi} = (0)$ implies that $S'(End(W))^{\tilde{G}, \chi} = (0)$. Let $T \in S'(GL(W))^{\tilde{G}, \chi}$. Let $h \in GL(W)$ and choose a compact open neighborhood K of $Det h$ such that $0 \not\in K$. For $x \in End(W)$ define $\varphi(x) = 1$ if $Det x \in K$ and $\varphi(x) = 0$ otherwise. Then φ is a locally constant function. The distribution $(\varphi|GL(W))T$ has a support which is closed in $End(W)$ hence may be viewed as a distribution on $End(W)$. This distribution belongs to $S'(End(W))^{\tilde{G}, \chi}$ so it must be equal to 0. It follows that T is 0 in the neighborhood of h. As h is arbitrary we conclude that $T = 0$.

Our task is now to prove that $S'(g \oplus V \oplus V^*)^{\tilde{G}, \chi} = (0)$. We shall use induction on the dimension n of V. The action of \tilde{G} is, for $X \in g, v \in V, v^* \in V^*, g \in G, u \in Iso(V, V^*)$

$$(X, v, v^*) \mapsto (gXg^{-1}, gv, ^t g^{-1} v^*), \quad (X, v, v^*) \mapsto (^t(uX u^{-1}), ^t u^{-1} v^*, uv).$$

The case $n = 0$ is trivial.

We suppose that V is of dimension $n \geq 1$, assuming the result up to dimension $n - 1$ and for all F. If $T \in S'(g \oplus V \oplus V^*)^{\tilde{G}, \chi}$ we are going to show that its support is contained in the "singular set". This will be done in two stages.

On $V \oplus V^*$ let Γ be the cone $\langle v^*, v \rangle = 0$. It is stable under \tilde{G}.

Lemma 2.1 The support of T is contained in $g \times \Gamma$.

11
Proof. For \((X, v, v^*) \in \mathfrak{g} \oplus V \oplus V^*\) put \(q(X, v, v^*) = \langle v^*, v \rangle\). Let \(\Omega\) be the open subset \(q \neq 0\). We have to show that \(S'(\Omega)^{\tilde{G}, x} = (0)\). By Bernstein's localization principle (Corollary 6-1) it is enough to prove that, for any fiber \(\Omega_t = q^{-1}(t), \ t \neq 0\), one has \(S'(\Omega_t)^{\tilde{G}, x} = (0)\).

\(G\) acts transitively on the quadric \(\langle v^*, v \rangle = t\). Fix a decomposition \(V = F_\varepsilon \oplus V_1\) and identify \(V^* = F_\varepsilon^* \oplus V_1^*\) with \(\langle \varepsilon^*, \varepsilon \rangle = 1\). Then \((X, \varepsilon, t\varepsilon^*) \in \Omega_t\) and the isotropy subgroup of \((\varepsilon, t\varepsilon^*)\) in \(\tilde{G}\) is, with an obvious notation \(\tilde{G}_{n-1}\). By Frobenius descent (Theorem 6-2) there is a linear bijection between \(S'(\Omega_t)^{\tilde{G}, x}\) and the space \(S'(g)^{\tilde{G}_{n-1}, x}\) and this last space is (0) by induction.

\[\square\]

Let \(\mathfrak{z}\) be the center of \(\mathfrak{g}\) that is to say the space of scalar matrices. Let \(\mathcal{N} \subset [\mathfrak{g}, \mathfrak{g}]\) be the nilpotent cone in \(\mathfrak{g}\).

Lemma 2.2 The support of \(T\) is contained in \(\mathfrak{z} \times \mathcal{N} \times \Gamma\).

Proof. We use Harish-Chandra’s descent. For \(X \in \mathfrak{g}\) let \(X = X_s + X_n\) be the Jordan decomposition of \(X\) with \(X_s\) semisimple and \(X_n\) nilpotent. This decomposition commutes with the action of \(\tilde{G}\). The centralizer \(Z_G(X)\) of an element \(X \in \mathfrak{g}\) is unimodular ([Sp-St] page 235) and there exists an isomorphism \(u\) of \(V\) onto \(V^*\) such that \(tX = uXu^{-1}\) (any matrix is conjugate to its transpose). It follows that the centralizer \(Z_{\tilde{G}}(X)\) of \(X\) in \(\tilde{G}\), a semi direct product of \(Z_G(X)\) and \(S_2\) is also unimodular.

Let \(E\) be the vector space of monic polynomials, of degree \(n\), with coefficients in \(F\). For \(p \in E\), let \(\mathfrak{g}_p\) be the set of all \(X \in \mathfrak{g}\) with characteristic polynomial \(p\). Note that \(\mathfrak{g}_p\) is fixed by \(\tilde{G}\). By Bernstein localization principle (Corollary 6-1) it is enough to prove that if \(p\) is not \((T - \lambda)^n\) for some \(\lambda\) then \(S'(\mathfrak{g}_p \times V \times V^*)^{\tilde{G}, x} = (0)\).

Fix \(p\). We claim that the map \(X \mapsto X_s\) restricted to \(\mathfrak{g}_p\) is continuous. Indeed let \(\tilde{\mathbb{F}}\) be a finite Galois extension of \(\mathbb{F}\) containing all the roots of \(p\). Let \(\tilde{\mathbb{F}}\) be the decomposition of \(p\). Recall that if \(X \in \mathfrak{g}_p\) and \(V_i = \text{Ker}(X - \lambda_i)^{n_i}\) then \(V = \oplus V_i\) and the restriction of \(X_s\) to \(V_i\) is the multiplication by \(\lambda_i\). Then choose a polynomial \(R\), with coefficients in \(\tilde{\mathbb{F}}\) such that for all \(i\), \(R\) is congruent to \(\lambda_i\) modulo \((\xi - \lambda_i)^{n_i}\) and \(R(0) = 0\) to respect the tradition.
Clearly $X_s = R(X)$. As the Galois group of \tilde{F} over F permutes the λ_i we may even choose $R \in F[\xi]$. This implies the required continuity.

There is only one semi-simple orbit γ_p in g_p and it is closed. We use Frobenius descent for the map $(X, v, v^*) \mapsto X_s$ from $g_p \times V \times V^*$ to γ_p.

Fix $a \in \gamma_p$; its fiber is the product of $V \oplus V^*$ by the set of nilpotent elements which commute with a. It is a closed subset of the centralizer $m = 3g(a)$ of a in g. Let $M = Z_G(a)$ and $\tilde{M} = Z_{\tilde{G}}(a)$.

Following ([Sp-St]) let us describe these centralizers. Let P be the minimal polynomial of a; all its roots are simple. Let $P = P_1 \ldots P_r$ be the decomposition of P into irreducible factors, over F. Then the P_i are two by two relatively prime. If $V_i = \text{Ker} P_i(a)$, then $V = \oplus V_i$ and $V^* = \oplus V_i^*$. An element x of G which commutes with a is given by a family (x_1, \ldots, x_r) where each x_i is a linear map from V_i to V_i, commuting with the restriction of a to V_i. Now $F[\xi]$ acts on V_i, by specializing ξ to $a|_{V_i}$ and P_i acts trivially so that, if $F_i = F[\xi]/(P_i)$, then V_i becomes a vector space over F_i. The $F -$linear map x_i commutes with a if and only if it is $F_i -$linear.

Fix i. Let ℓ be a non zero $F-$linear form on F_i. If $v_i \in V_i$ and $v_i' \in V_i^*$ then $\lambda \mapsto \langle \lambda v_i, v_i' \rangle$ is an $F-$linear form on F_i, hence there exists a unique element $S(v_i, v_i')$ of F_i such that $\langle \lambda v_i, v_i' \rangle = \ell(\lambda S(v_i, v_i'))$. One checks trivially that S is $F_i -$linear with respect to each variable and defines a non degenerate duality, over F_i between V_i and V_i^*. Here F_i acts on V_i^* by transposition, relative to the $F-$duality $\langle ., . \rangle$, of the action on V_i. Finally if $x_i \in \text{End}_{F_i} V_i$, its transpose, relative to the duality $S(.,.)$ is the same as its transpose relative to the duality $\langle ., . \rangle$.

Thus M is a product of linear groups and the situation (M, V, V^*) is a composite case, each component being a linear case (over various extensions of F).

Let u be an isomorphism of V onto V^* such that $^t a = u a u^{-1}$ and that, for each i, $u(V_i) = V_i^*$. Then $u \in \tilde{M}$ and $\tilde{M} = M \cup u M$.

Suppose that a does not belong to the center of g. Then each V_i has dimension strictly smaller than n and we can use the inductive assumption. Therefore $S_k(\mathfrak{m} \oplus V \oplus V^*)^{M, x} = 0$. However the nilpotent cone \mathcal{N}_m in \mathfrak{m} is a closed subset so $S_k(\mathcal{N}_m \times V \times V^*)^{\tilde{M}, x} = 0$ which is what we need.

If a belongs to the center then $\tilde{M} = \tilde{G}$ and the fiber is $(a + \mathcal{N}) \times V \times V^*$. Therefore we have proved the following Proposition:
Proposition 2.2 If \(T \in S'(g \oplus V \oplus V^*)^{\tilde{G}, \chi} \) then the support of \(T \) is contained in \(z \times N \times \Gamma \).

If \(S'(N \times \Gamma)^{\tilde{G}, \chi} = (0) \) then \(S'(g \oplus V \oplus V^*)^{\tilde{G}, \chi} = (0) \).

Remark. — Strictly speaking the singular set is defined as the set of all \((X, v, v^*)\) such that for any polynomial \(P \) invariant under \(\tilde{G} \) one has \(P(X, v, v^*) = P(0) \). So we should take care of the invariants \(P(X, v, v^*) = \langle v^*, Xp^2v \rangle \) for all \(p \) and not only for \(p = 0 \). It can be proved, a priori, that the support of the distribution \(T \) has to satisfy these extra conditions. As this is not needed in the sequel we omit the proof.

3. End of the proof for \(\text{GL}(n) \)

In this section we consider a distribution \(T \in S'(N \times \Gamma)^{\tilde{G}, \chi} \) and prove that \(T = 0 \). The following observation will play a crucial role.

Choose a non trivial additive character \(\psi \) of \(F \). On \(V \oplus V^* \) we have the bilinear form

\[
((v_1, v_1^*), (v_2, v_2^*)) \mapsto \langle v_1^*, v_2 \rangle + \langle v_2^*, v_1 \rangle.
\]

Define the Fourier transform by

\[
\hat{\varphi}(v_2, v_2^*) = \int_{V \oplus V^*} \varphi(v_1, v_1^*)(\langle v_1^*, v_2 \rangle + \langle v_2^*, v_1 \rangle) \, dv_1dv_1^*
\]

with \(dv_1dv_1^* \) is normalized so that there is no constant factor appearing in the inversion formula.

This Fourier transform commutes with the action of \(\tilde{G} \); hence the (partial) Fourier transform \(\hat{T} \) of our distribution \(T \) has the same invariance properties and the same support conditions as \(T \) itself.

Let \(N_i \) be the union of nilpotent orbits of dimension at most \(i \). We will prove, by descending induction on \(i \), that the support of any \((\tilde{G}, \chi)\)–equivariant distribution must be contained in \(N_i \times \Gamma \). Suppose we already know that, for some \(i \), the support must be contained in \(N_i \times \Gamma \). We must show that, for any nilpotent orbit \(O \) of dimension \(i \), the restriction of the distribution to \(O \times \Gamma \) is 0.

If \(v \in V \) and \(v^* \in V^* \) we call \(X_{v,v^*} \) the rank one map \(x \mapsto \langle v^*, x \rangle v \). Let

\[
\nu_\lambda(X, v, v^*) = (X + \lambda X_{v,v^*}, v, v^*), \quad (X, v, v^*) \in g \times \Gamma, \quad \lambda \in F.
\]
Then ν_λ is a one parameter group of homeomorphisms of $g \times \Gamma$ and note that $[g, g] \times \Gamma$ is invariant. The key observation is that ν_λ commutes with the action of \tilde{G}. Therefore the image of T by ν_λ transforms according to the character χ of \tilde{G}. Its support is contained in $[g, g] \times \Gamma$ and hence must be contained in $\mathcal{N} \times \Gamma$ and in fact in $\mathcal{N}_i \times \Gamma$. This means that if (X, v, v^*) belongs to the support of T then, for all λ, $(X + \lambda X_{v,v^*}, v, v^*)$ must belong to $\mathcal{N}_i \times \Gamma$.

The orbit O is open in \mathcal{N}_i. Thus if $X \in O$ the condition $X + \lambda X_{v,v^*} \in \mathcal{N}_i$ implies that, at least for $|\lambda|$ small enough, $X + \lambda X_{v,v^*} \in O$. It follows that X_{v,v^*} belongs to the tangent space to O at the point X and this tangent space is the image of $\text{ad}X$.

Let us call $Q(X)$ the set of all pairs (v, v^*) such $X_{v,v^*} \in \text{Im} \text{ad}X$.

Therefore it is enough to prove the following Lemma:

Lemma 3.1 Let $T \in \mathcal{S}'(\mathcal{O} \times V \times V^*)^{\tilde{G},X}$. Suppose that the support of T and of \hat{T} are contained in the set of triplets (X, v, v^*) such that $(v, v^*) \in Q(X)$. Then $T = 0$.

Note that the trace of X_{v,v^*} is $\langle v^*, v \rangle$ and that $X_{v,v^*} \in \text{Im} \text{ad}X$ implies that its trace is 0. Therefore $Q(X)$ is contained in Γ.

We proceed in three steps. First we transfer the problem to $V \oplus V^*$ and a fixed nilpotent endomorphism X. Then we show that if Lemma 3-1 is true for (V_1, X_1) and (V_2, X_2) then it is true for the direct sum $(V_1 \oplus V_2, X_1 \oplus X_2)$. Finally using the decomposition of X in Jordan blocks we are left with the case of a principal nilpotent element for which we give a direct proof, using Weil representation.

Consider the map $(X, v, v^*) \mapsto X$ from $\mathcal{O} \times V \times V^*$ onto \mathcal{O}. Choose $X \in \mathcal{O}$ and let C (resp. \tilde{C}) be the stabilizer in G (resp. in \tilde{G}) of an element X of \mathcal{O}; both groups are unimodular, hence we may use Frobenius descent (Theorem 6-2).

Now we have to deal with a distribution, which we still call T, which belongs to $\mathcal{S}'(V \oplus V^*)^{\tilde{G},X}$ such that both T and its Fourier transform are supported by $Q(X)$. Let us say that X is nice if the only such distribution is 0. We want to prove that all nilpotent endomorphisms are nice.

Lemma 3.2 Suppose that we have a decomposition $V = V_1 \oplus V_2$ such that $X(V_i) \subset V_i$. Let X_i be the restriction of X to V_i. Then if X_1 and X_2 are nice, so is X.

15
Proof of Lemma 3.2. Let \(Q(X) \) be the set of pairs \((v,v^*)\) such that \(X_{v,v^*} \) belongs to the image of \(\text{ad}X \). Let \((v,v^*) \in Q(X) \) and choose \(A \in \mathfrak{g} \) such that \(X_{v,v^*} = [A,X] \). Decompose \(v = v_1 + v_2 \), \(v^* = v_1^* + v_2^* \) and put

\[
A = \begin{pmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{pmatrix}.
\]

Writing \(X_{v,v^*} \) as a 2 by 2 matrix and looking at the diagonal blocks one gets that \(X_{v_i,v_i^*} = [A_{i,i}, X_i] \). This means that

\[
Q(X) \subset Q(X_1) \times Q(X_2).
\]

For \(i = 1,2 \) let \(C_i \) be the centralizer of \(X_i \) in \(GL(V_i) \) and \(\tilde{C}_i \) the corresponding extension by \(S_2 \). Let \(T \) be a distribution as above and let \(\varphi_2 \in S(V_2 \oplus V_2^*) \). Let \(T_1 \) be the distribution on \(V_1 \oplus V_1^* \) defined by \(\varphi_1 \mapsto \langle T, \varphi_1 \otimes \varphi_2 \rangle \). The support of \(T_1 \) is contained in \(Q(X_1) \) and \(T_1 \) is invariant under the action of \(C_1 \). We have

\[
\langle \tilde{T}_1, \varphi_1 \rangle = \langle T_1, \varphi_1 \rangle = \langle T, \varphi_1 \otimes \varphi_2 \rangle = \langle \tilde{T}, \varphi_1 \otimes \varphi_2 \rangle.
\]

Here \(\varphi_1(v_1,v_1^*) = \varphi_1(-v_1,-v_1^*) \). By assumption the support of \(\tilde{T} \) is contained in \(Q(X) \) so that the support of \(\tilde{T}_1 \) is supported in \(-Q(X_1) = Q(X_1)\). Because \((X_1)\) is nice this implies that \(T_1 \) in invariant under \(\tilde{C}_1 \). Imbedding \(\tilde{C}_1 \) into \(\tilde{C} \) we get that \(T \) is invariant under \(\tilde{C}_1 \). Similarly it is invariant under \(\tilde{C}_2 \). However the subgroup \(\tilde{C}_1 \times \tilde{C}_2 \) of \(\tilde{C} \) is not contained in \(C \) so that \(T \) must be invariant under \(\tilde{C} \) and hence must be 0.

Decomposing \(X \) into Jordan blocks we still have to prove Lemma 3-1 for a principal nilpotent element. We need some preliminary results.

Lemma 3.3 The distribution \(T \) satisfies the following homogeneity condition:

\[
\langle T, f(tv, tv^*) \rangle = |t|^{-n}\langle T, f(v, v^*) \rangle.
\]

Proof of Lemma 3.3. We use a particular case of Weil or oscillator representation. Let \(E \) be a vector space over \(\mathbb{F} \) of finite dimension \(m \). To simplify assume that \(m \) is even. Let \(q \) be a non degenerate quadratic form on \(E \) and let \(b \) be the bilinear form

\[
b(e, e') = q(e + e') - q(e) - q(e') \text{.}
\]
Fix a continuous non trivial additive character \(\psi \) of \(\mathbb{F} \). We define the Fourier transform on \(E \) by
\[
\hat{f}(e') = \int_E f(e) \psi(b(e,e')) \, de
\]
where \(de \) is the self dual Haar measure.

There exists ([R-S-2]) a representation \(\pi \) of \(SL(2,\mathbb{F}) \) in \(\mathcal{S}(E) \) such that:
\[
\pi \begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix} f(e) = \psi(uq(e)) f(e)
\]
\[
\pi \begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix} f(e) = \frac{\gamma(q)}{\gamma(tq)} |t|^{m/2} f(te)
\]
\[
\pi \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} f(e) = \gamma(q) \hat{f}(e).
\]

The \(\gamma(tq) \) are complex numbers of modulus 1. In particular if \((E,q) \) is a sum of hyperbolic planes these numbers are all equal to 1.

We have a contragredient action in the dual space \(\mathcal{S}'(E) \).

Suppose that \(T \) is a distribution on \(E \) such that \(T \) and \(\hat{T} \) are supported by the isotropic cone \(q(e) = 0 \). This means that
\[
\langle T, \pi \begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix} f \rangle = \langle T, f \rangle, \quad \langle \hat{T}, \pi \begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix} f \rangle = \langle \hat{T}, f \rangle.
\]

Using the relation
\[
\langle \hat{T}, \varphi \rangle = \langle T, \overline{\gamma(q)} \pi \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} f \rangle
\]
the second relation is equivalent to
\[
\langle T, \pi \begin{pmatrix} 1 & 0 \\ -u & 0 \end{pmatrix} f \rangle = \langle T, f \rangle.
\]

The matrices
\[
\begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix}, \quad \text{and} \quad \begin{pmatrix} 1 & 0 \\ u & 1 \end{pmatrix}, \quad u \in \mathbb{F}
\]
generate the group \(SL(2,\mathbb{F}) \). Therefore the distribution \(T \) is invariant by \(SL(2,\mathbb{F}) \). In particular
\[
\langle T, f(te) \rangle = \frac{\gamma(tq)}{\gamma(q)} |t|^{-m/2} \langle T, f \rangle
\]
and $T = \gamma(q)\hat{T}$.

Remark. For m even $\gamma(tq)/\gamma(q)$ is a character and there do exist non zero distributions invariant under $SL(2,\mathbb{F})$. In odd dimension we get a representation of the 2-fold covering of $SL(2,\mathbb{F})$ and we obtain the same homogeneity condition. However $\gamma(tq)/\gamma(q)$ is not a character; hence the distribution T must be 0.

In our situation we take $E = V \oplus V^*$ and $q(v, v^*) = \langle v^*, v \rangle$. Then

$$b((v_1, v_1^*), (v_2, v_2^*)) = \langle v_1^*, v_2 \rangle + \langle v_2^*, v_1 \rangle.$$

The Fourier transform commutes with the action of \tilde{G}. Both T and \hat{T} are supported by $Q(X)$ which is contained in Γ. As $\gamma(tq) = 1$ this proves the Lemma and also that $T = \hat{T}$. □

Remark. The same type of argument could have been used for the quadratic form $Tr(XY)$ on $sl(V) = [g, g]$. This would have given a short proof for even n and a homogeneity condition for odd n.

Now we find $Q(X)$.

Lemma 3.4 If X is principal then $Q(X)$ is the set of pairs (v, v^*) such that for $0 \leq k < n$, $\langle v^*, X^k v \rangle = 0$.

Proof of Lemma 3.4. Choose a basis (e_1, \ldots, e_n) of V such that $Xe_1 = 0$ and $Xe_j = e_{j-1}$ for $j \geq 2$. Consider the map $A \mapsto XA - AX$ from the space of n by n matrices into itself. A simple computation shows that the kernel of this map, that is to say the Lie algebra \mathfrak{c} of the centralizer C, is the space of polynomials (of degree at most $n-1$) in X. It is of dimension n. The image is of codimension n and calling b_{ij} the coefficients of an n by n matrix, a set of independent equations for this image is

$$\sum_{j=1}^{n-r} b_{j+r,j} = 0, \quad r = 0, \ldots, n-1.$$

Let (e_1^*, \ldots, e_n^*) be the dual basis. Call x_1, \ldots, x_n the coordinates of v and (x_1^*, \ldots, x_n^*) the coordinates of v^*. The matrix of X_{v,v^*} is then given by $b_{i,j} = x_i x_j^*$ and we get the lemma. □

End of the proof of Lemma 3.1. For X principal, we proceed by induction on n. Keep the above notations. The centralizer C of X is the space of
polynomials (of degree at most \(n - 1\)) in \(X\) with non zero constant term. In particular the orbit \(\Omega\) of \(e_n\) is the open subset \(x_n \neq 0\). We shall prove that the restriction of \(T\) to \(\Omega \times V^*\) is 0. Note that the centralizer of \(e_n\) in \(C\) is trivial. By Frobenius descent (Theorem 6-2), to the restriction of \(T\) corresponds a distribution \(R\) on \(V^*\) with support in the set of \(v^*\) such that \((e_n, v^*) \in Q(X)\). By the last Lemma this means that \(R\) is a multiple \(a\delta\) of the Dirac measure at the origin. The distribution \(T\) satisfies the two conditions

\[
\langle T, f(v, v^*) \rangle = |t|^n \langle T, f(tv, tv^*) \rangle.
\]

therefore

\[
\langle T, f(v, t^2v^*) \rangle = |t|^{-n} \langle T, f(v, v^*) \rangle.
\]

Now \(T\) is recovered from \(R\) by the formula

\[
\langle T, f(v, v^*) \rangle = \int_C \langle R, f(ce_n, t^{-1}v^*) \rangle dc = a \int_C f(ce_n, 0) dc, \quad f \in \mathcal{S}(\Omega \times V^*).
\]

Unless \(a = 0\) this is not compatible with this last homogeneity condition.

Exactly in the same way one proves that \(T\) is 0 on \(V \times \Omega^*\) where \(\Omega^*\) is the open orbit \(x^*_1 \neq 0\) of \(C\) in \(V^*\). The same argument is valid for \(\hat{T}\) (which is even equal to \(T\) . . .).

If \(n = 1\) then \(T\) is obviously 0. If \(n \geq 2\) then there exists a distribution \(T'\) on

\[
\bigoplus_{1 < j < n} F e_j \oplus F e_j^*
\]

such that,

\[
T = T' \otimes \delta_{x_n=0} \otimes dx_1 \otimes \delta_{x_1^*=0} \otimes dx_n^*.
\]

Let \(u\) be the isomorphism of \(V\) onto \(V^*\) given by \(u(e_j) = e_{n+1-j}^*\). Recall that it acts on \(g \times V \times V^*\) by \((X, v, v^*) \mapsto ((uXu^{-1}), u^{-1}v^*, uv)\). It belongs to \(\hat{C}\) but not to \(C\) so it must transform \(T\) into \(-T\).

The case \(n = 1\) has just been settled. If \(n = 2\) in the above formula \(T'\) should be replaced by a constant. The constant must be 0 if we want \(u(T) = -T\). If \(n > 2\) let

\[
V' = \left(\bigoplus_{1}^{n-1} F e_i \right) / F e_1
\]

and let \(X'\) be the nilpotent endomorphism of \(V'\) defined by \(X\). We may consider \(T'\) as a distribution on \(V \oplus V'\) and one easily checks that, with obvious notations, it transforms according to the character \(\chi\) of the the centralizer \(\hat{G}'\) of \(X'\) in \(\hat{G}'\). By induction \(T' = 0\), hence \(T = 0\). \(\square\)
4. Reduction to the singular set: the orthogonal and unitary cases

We now turn our attention to the unitary case. We keep the notations of the introduction. In particular $W = V \oplus De$ is a vector space over \mathbb{D} of dimension $n + 1$ with a non degenerate hermitian form $\langle \cdot , \cdot \rangle$ such that e is orthogonal to V. The unitary group G of V is embedded into the unitary group M of W.

Let A be the set of all bijective maps u from V to V such that

\[
\begin{align*}
 u(v_1 + v_2) &= u(v_1) + u(v_2), \\
 u(\lambda v) &= \bar{\lambda} u(v), \\
 \langle u(v_1), u(v_2) \rangle &= \langle v_1, v_2 \rangle.
\end{align*}
\]

An example of such a map is obtained by choosing a basis e_1, \ldots, e_n of V such that $\langle e_i, e_j \rangle \in \mathbb{F}$ and defining

\[
u(\sum x_i e_i) = \sum \bar{x}_i e_i.
\]

Any $u \in A$ is extended to W by the rule $u(v + \lambda e) = u(v) + \bar{\lambda} e$ and we define an action on $GL(W)$ by $m \mapsto um^{-1}u^{-1}$. The group G acts on $GL(W)$ by the adjoint action.

Let \tilde{G} be the group of bijections of $GL(W)$ onto itself generated by the actions of G and A. It is a semi direct product of G and S_2. We identify G to a subgroup of \tilde{G} and A to a subset. When a confusion is possible we denote the product in \tilde{G} with a \times.

We define a character χ of \tilde{G} by $\chi(g) = 1$ for $g \in G$ and $\chi(u) = -1$ for $u \in \tilde{G} \setminus G$. Our overall goal is to prove that $S'(M)^{\tilde{G} \times} = (0)$.

Let \tilde{G} act on $G \times V$ as follows:

\[
g(x, v) = (gxg^{-1}, gv), \quad u(x, v) = (ux^{-1}u^{-1}, -u(v)), \quad g \in G, u \in A, x \in G, v \in V
\]

Our first step is to replace M by $G \times V$.

Proposition 4.1 Suppose that for any V and any hermitian form $S'(G \times V)^{\tilde{G} \times} = (0)$, then $S'(M)^{\tilde{G} \times} = (0)$.

Proof. We have in particular $S'(M \times W)^{\tilde{M} \times} = (0)$. Let Y be the set of all (m, w) such that $\langle w, w \rangle = \langle e, e \rangle$; it is a closed subset, invariant under \tilde{M}, hence $S'(Y)^{\tilde{M} \times} = (0)$. By Witt’s theorem M acts transitively on $\Gamma = \{w|\langle w, w \rangle = \langle e, e \rangle\}$. We can apply Frobenius descent (Theorem 6-2) to the map $(m, w) \mapsto w$ of Y onto Γ. The centralizer of e in \tilde{M} is isomorphic to \tilde{G}.
acting as before on the fiber $M \times \{e\}$. We have a linear bijection between $S'(M)\tilde{G},\chi$ and $S'(Y)\tilde{M},\chi$; therefore $S'(M)\tilde{G},\chi = (0)$.

The proof that $S'(G \times V)\tilde{G},\chi = (0)$ is by induction on n. If g is the Lie algebra of G we shall prove simultaneously that $S'(g \times V)\tilde{G},\chi = (0)$. In this case G acts on its Lie algebra by the adjoint action and for $u \in \tilde{G} \setminus G$ one puts, for $X \in g$, $u(X) = -uxu^{-1}$.

The case $n = 0$ is trivial so we may assume that $n \geq 1$. If $T \in S'(G \times V)\tilde{G},\chi$ in this section we will prove that the support of T must be contained in the “singular set”.

Let Z (resp. \tilde{z}) be the center of G (resp. g) and U (resp. N) the (closed) set of all unipotent (resp. nilpotent) elements of G (resp. g).

Lemma 4.1 If $T \in S'(G \times V)\tilde{G},\chi$ (resp. $T \in S'(g \times V)\tilde{G},\chi$) then the support of T is contained in $ZU \times V$ (resp. $z \times N \times V$).

This is Harish-Chandra’s descent. We first review some facts about the centralizers of semi-simple elements, following [Sp-St].

Let $a \in G$, semi-simple; we want to describe its centralizer M (resp. \tilde{M}) in G (resp. in \tilde{G}) and to show that $S'(M \times V)\tilde{M},\chi = (0)$.

View a as a \mathbb{D}–linear endomorphism of V and call P its minimal polynomial. Then, as a is semi-simple, P decomposes into irreducible factors $P = P_1 \ldots P_r$ two by two relatively prime. Let $V_i = \text{Ker}P_i(a)$ so that $V = \bigoplus V_i$. Any element x which commutes with a will satisfy $xV_i \subset V_i$ for each i. For

$$R(\xi) = d_0 + \cdots + d_m \xi^m, \quad d_0d_m \neq 0$$

let

$$R^*(\xi) = \overline{d_0} \xi^m + \cdots + \overline{d_m}.$$

Then, from $aa^* = 1$ we obtain, if m is the degree of P

$$\langle P(a)v, v' \rangle = \langle v, a^{-m} P^*(a)v' \rangle$$

(note that the constant term of P can not be 0 because a is invertible). It follows that $P^*(a) = 0$ so that P^* is proportional to P. Now $P^* = P_1^* \ldots P_r^*$; hence there exists a bijection τ from $\{1, 2, \ldots, r\}$ onto itself such that P_i^* is proportional to $P_{\tau(i)}$. Let m_i be the degree of P_i. Then, for some non zero constant c

$$0 = \langle P_i(a)v_i, v_j \rangle = \langle v_i, a^{-m_i} P_i^*(a)v_j \rangle = c \langle v_i, a^{-m_i} P_{\tau(i)}(a)v_j \rangle, \quad v_i \in V_i, \ v_j \in V_j.$$
We have two possibilities.

Case 1: $\tau(i) = i$. The space V_i is orthogonal to V_j for $j \neq i$; the restriction of the hermitian form to V_i is non degenerate. Let $D_i = \mathbb{D}[\xi]/(P_i)$ and consider V_i as a vector space over D_i through the action $(R(\xi), v) \mapsto R(a)v$. As $a_{|V_i}$ is invertible, ξ is invertible modulo (P_i); choose η such that $\xi \eta = 1$ modulo (P_i). Let σ_i be the semi-linear involution of D_i; as an algebra over D:

$$\sum d_j \xi^j \mapsto \sum d_j \eta^j \pmod{(P_i)}$$

Let \mathbb{F}_i be the subfield of fixed points for σ_i. It is a finite extension of \mathbb{F}, and \mathbb{D}_i is either a quadratic extension of \mathbb{F}_i or equal to \mathbb{F}_i. There exists a \mathbb{D}-linear form $\ell \neq 0$ on D_i such that $\ell(\sigma_i(d)) = \sigma_i(\ell(d))$ for all $d \in D_i$. Then any \mathbb{D}-linear form L on D_i may be written as $d \mapsto \ell(\lambda d)$ for some unique $\lambda \in D_i$.

If $v, v' \in V_i$ then $d \mapsto \langle d(a)v, v' \rangle$ is \mathbb{D}-linear map on D_i; hence there exists $S(v, v') \in D_i$ such that

$$\langle d(a)v, v' \rangle = \ell(dS(v, v')).$$

One checks that S is a non degenerate hermitian form on V_i as a vector space over D_i. Also a \mathbb{D}-linear map u_i from V_i onto itself, such that $u_i(\lambda v) = \overline{\lambda} u(v)$ and $S(u_i(v), u_i(v')) = \overline{S(v, v')}$. Then because of our original choice of ℓ we also have $\langle u_i(v), u_i(v') \rangle = \langle v, v' \rangle$. Note that $(a_{|V_i})^{-1} u^{-1} = a_{|V_i}$.

Case 2. Suppose now that $j = \tau(i) \neq i$. Then $V_i \oplus V_j$ is orthogonal to V_k for $k \neq i, j$ and the restriction of the hermitian form to $V_i \oplus V_j$ is non degenerate, both V_i and V_j being totally isotropic subspaces. Choose an inverse η of ξ modulo P_j. Then for any $P \in \mathbb{D}[\xi]$

$$\langle P(a)v_i, v_j \rangle = \langle v_i, \overline{P}(\eta(a))v_j \rangle, \quad v_i \in V_i, \ v_j \in V_j$$

where \overline{P} is the polynomial deduced from P by changing its coefficients into their conjugate. This defines a map, which we call σ_j from D_i onto D_j. In a similar way we have a map σ_j which is the inverse of σ_i. Then, for $\lambda \in D_i$ we have $\langle \lambda v_i, v_j \rangle = \langle v_i, \sigma_i(\lambda)v_j \rangle$.

22
View V_i as a vector space over \mathbb{D}_i. The action

$$(\lambda, v_j) \mapsto \sigma_i(\lambda)v_j$$

defines a structure of \mathbb{D}_i-vector space on V_j. However note that for $\lambda \in \mathbb{D}$ we have $\sigma_i(\lambda) = \overline{\lambda}$ so that $\sigma_i(\lambda)v_j$ may be different from λv_j. To avoid confusion we shall write, for $\lambda \in \mathbb{D}_i$

$$\lambda v_i = \lambda \ast v_i \quad \text{and} \quad \sigma_i(\lambda)v_j = \lambda \ast v_j.$$

As in the first case choose a non zero \mathbb{D}-linear form ℓ on \mathbb{D}_i. For $v_i \in V_i$ and $v_j \in V_j$ the map $\lambda \mapsto \langle \lambda \ast v_i, v_j \rangle$ is a \mathbb{D}-linear form on \mathbb{D}_i; hence there exists a unique element $S(v_i, v_j) \in \mathbb{D}_i$ such that, for all λ

$$\langle \lambda \ast v_i, v_j \rangle = \ell(\lambda S(v_i, v_j)).$$

The form S is \mathbb{D}_i-bilinear and non degenerate so that we can view V_j as the dual space over \mathbb{D}_i of the \mathbb{D}_i-vector space V_i.

Let $(x_i, x_j) \in \text{End}_\mathbb{D}(V_i) \times \text{End}_\mathbb{D}(V_j)$. They commute with (a_i, a_j) if and only if they are \mathbb{D}_i-linear. The original hermitian form will be preserved, if and only if $S(x_i v_i, x_j v_j) = S(v_i, v_j)$ for all v_i, v_j. This means that x_j is the inverse of the transpose of x_i. In this situation we define G_i as the linear group of the \mathbb{D}_i-vector space V_i.

Let u_i be a \mathbb{D}_i-linear bijection of V_i onto V_j. Then $u_i(a v_i) = a^{-1}u_i(v_i)$ and $u_i^{-1}(a v_j) = a^{-1}u_i^{-1}(v_j)$.

Recall that M is the centralizer of a in G. Then (M, V) decomposes as a "product", each "factor" being either of type (G_i, V_i) with G_i a unitary group (case 1) or $(G_i, V_i \times V_j)$ with G_i a general linear group (case 2). Gluing together the u_i (case 1) and the (u_i, u_i^{-1}) (case 2) we get an element $u \in \widetilde{G} \setminus G$ such that $ua^{-1}u^{-1} = a$ which means that it belongs to the centralizer of a in \tilde{G}. Finally if \tilde{M} is the centralizer of a in \tilde{G} then (\tilde{M}, V) is imbedded into a product each "factor" being either of type (\tilde{G}_i, V_i) with G_i a unitary group (case 1) or $(\tilde{G}_i, V_i \times V_j)$ with G_i a general linear group (case 2).

If a is not central then for each i the dimension of V_i is strictly smaller than n and from the result for the general linear group and the inductive assumption in the orthogonal or unitary case we conclude that $\mathcal{S}'(M \times V)^{\tilde{M}, x} = (0)$.

Proof of Lemma 4.1. in the group case. Consider the map $g \mapsto P_g$ where P_g is the characteristic polynomial of g. It is a continuous map from G into the set of polynomials of degree at most n. Each non empty fiber \mathcal{F} is stable
under G but also under $\tilde{G} \setminus G$. Bernstein’s localization principle tells us that it is enough to prove that $S'(\mathcal{F} \times V)^{\tilde{G},\chi} = (0)$.

Now it follows from [Sp-St] chapter IV that \mathcal{F} contains only a finite number of semi-simple orbits; in particular the set of semi-simple elements \mathcal{F}_s in \mathcal{F} is closed. Let us use the multiplicative Jordan decomposition into a product of a semi-simple and a unipotent element. Consider the map θ from $\mathcal{F} \times V$ onto \mathcal{F}_s which associates to (g, v) the semi-simple part g_s of g. This map is continuous (see the corresponding proof for GL) and commutes with the action of \tilde{G}. In \mathcal{F}_s each orbit γ is both open and closed therefore $\theta^{-1}(\gamma)$ is open and closed and invariant under \tilde{G}. It is enough to prove that for each such orbit $S'(\theta^{-1}(\gamma))^{\tilde{G},\chi} = (0)$. By Frobenius descent (Theorem 6-2), if $a \in \gamma$ and is not central, this follows from the above considerations on the centralizer of such an a and the fact that $\theta^{-1}(a)$ is a closed subset of the centralizer of a in \tilde{G}, the product of the set of unipotent element commuting with a by V. Now g_s is central if and only if g belongs to ZU, hence the Lemma. For the Lie algebra the proof is similar, using the additive Jordan decomposition.

\[\square \]

Going back to the group if a is central we see that it suffices to prove that $S'(U \times V)^{\tilde{G},\chi} = (0)$ and similarly for the Lie algebra it is enough to prove that $S'(N \times V)^{\tilde{G},\chi} = (0)$.

Now the exponential map (or the Cayley transform) is a homeomorphism of N onto U commuting with the action of \tilde{G}. Therefore it is enough to consider the Lie algebra case.

We now turn our attention to V. Let

$$\Gamma = \{ v \in V | \langle v, v \rangle = 0 \}.$$

Proposition 4.2 If $T \in S'(N \times V)^{\tilde{G},\chi}$ then the support of T is contained in $N \times \Gamma$.

Proof. Let

$$\Gamma_t = \{ v \in V | \langle v, v \rangle = 0 \}.$$

Each Γ_t is stable by \tilde{G}, hence, by Bernstein’s localization principle (Corollary 6-1), to prove that the support of T is contained in $N \times \Gamma_0$ it is enough to prove that, for $t \neq 0$, $S'(N \times \Gamma_t)^{\tilde{G},\chi} = (0)$.

24
By Witt’s theorem the group G acts transitively on Γ_t. We can apply Frobenius descent to the projection from $N \times \Gamma_t$ onto Γ_t. Fix a point $v_0 \in \Gamma_t$. The fiber is $N \times \{v_0\}$. Let \tilde{G}_1 be the centralizer of v_0 in \tilde{G}. We have to show that $S'(\mathcal{N})^{\tilde{G}_1,\chi} = (0)$ and it is enough to prove that $S'(g)^{\tilde{G}_1,\chi} = (0)$.

The vector v_0 is not isotropic so we have an orthogonal decomposition

$$V = Dv_0 \oplus V_1$$

with V_1 orthogonal to v_0. The restriction of the hermitian form to V_1 is non degenerate and G_1 is identified with the unitary group of this restriction, and \tilde{G}_1 is the expected semi-direct product with S_2. As a \tilde{G}_1-module the Lie algebra g is isomorphic to a direct sum

$$g \approx g_1 \oplus V_1 \oplus W$$

where g_1 is the Lie algebra of G_1 and W a vector space over \mathbb{F} of dimension 0 or 1 and on which the action of \tilde{G}_1 is trivial. The action on $g_1 \oplus V_1$ is the usual one so that, by induction, we know that $S'(g_1 \oplus V_1)^{\tilde{G}_1,\chi} = (0)$. This readily implies that $S'(g)^{\tilde{G}_1,\chi} = (0)$.

Summarizing: we have to prove that $S'(\mathcal{N} \times \Gamma)^{\tilde{G},\chi} = (0)$.

5. End of the proof in the orthogonal and unitary cases

We keep our general notations. We have to show that a distribution on $\mathcal{N} \times \Gamma$ which is invariant under G is invariant under \tilde{G}. To some extent the proof will be similar to the one we gave for the general linear group.

In particular we will use the fact that if T is such a distribution then its partial Fourier transform on V is also invariant under G. The Fourier transform on V is defined using the bilinear form

$$(v_1, v_2) \mapsto \langle v_1, v_2 \rangle + \langle v_2, v_1 \rangle$$

which is invariant under \tilde{G}.

For $v \in V$ put

$$\varphi_v(x) = \langle x, v \rangle v, \quad x \in V.$$

It is a rank one endomorphism of V and $\langle \varphi_v(x), y \rangle = \langle x, \varphi_v(y) \rangle$.

25
Lemma 5.1 i) In the unitary case, for $\lambda \in \mathbb{D}$ such that $\lambda = -\bar{\lambda}$ the map
\[
\nu_\lambda : (X, v) \mapsto (X + \lambda \varphi_v, v)
\]
is a homeomorphism of $[\mathfrak{g}, \mathfrak{g}] \times \Gamma$ onto itself which commutes with \tilde{G}.

ii) In the orthogonal case, for $\lambda \in \mathbb{F}$ the map
\[
\mu_\lambda : (X, v) \mapsto (X + \lambda \varphi_v + \lambda \varphi_v X, v)
\]
is a homeomorphism of $[\mathfrak{g}, \mathfrak{g}] \times \Gamma$ onto itself which commutes with \tilde{G}.

The proof is a trivial verification.

We now use the stratification of \mathcal{N}. Let us first check that an adjoint orbit is stable not only by G but by \tilde{G}.

Choose a basis e_1, \ldots, e_n of V such that $\langle e_i, e_j \rangle \in \mathbb{F}$; this gives a conjugation $u: v = \sum x_i e_i \mapsto \overline{v} = \sum \overline{x_i} e_i$ on V. If A is any endomorphism of V then \overline{A} is the endomorphism $v \mapsto A(\overline{v})$. The conjugation u is an element of $\tilde{G} \setminus G$ and, as such, it acts on $\mathfrak{g} \times V$ by $(X, v) \mapsto (-uXu^{-1}, -u(v)) = (-\overline{X}, -\overline{v})$.

In [M-V-W] Chapter 4 Proposition 1-2 it is shown that for $X \in \mathfrak{g}$ there exists an \mathbb{F}-linear automorphism a of V such that $\langle a(x), a(y) \rangle = \langle x, y \rangle$ (this implies that $a(\lambda x) = \overline{\lambda} x$) and such that $aXa^{-1} = -X$. Then $g = ua \in G$ and $\overline{g}Xg^{-1} = -\overline{X}$ so that $-\overline{X}$ belongs to the adjoint orbit of X. Note that $a \in \tilde{G} \setminus G$ and as such acts as $a(X, v) = (X, -a(v))$; it is an element of the centralizer of X in $\tilde{G} \setminus G$.

Remark. We need to check this only for nilpotent orbits and this will be done later in an explicit way, using the canonical form of nilpotent matrices.

Let \mathcal{N}_i be the union of all nilpotent orbits of dimension at most i. We shall prove, by descending induction on i, that the support of a distribution $T \in S'(\mathcal{N} \times \Gamma)^{G, \chi}$ must be contained in $\mathcal{N}_i \times \Gamma$.

So now assume that $i \geq 0$ and that we already know that the support of any $T \in S'(\mathcal{N} \times \Gamma)^{\tilde{G}, \chi}$ must be contained in $\mathcal{N}_i \times \Gamma$. Let \mathcal{O} be a nilpotent orbit of dimension i; we have to show that the restriction of T to \mathcal{O} is 0.

In the unitary case fix $\lambda \in \mathbb{D}$ such that $\lambda = -\bar{\lambda}$ and consider, for every $t \in \mathbb{F}$ the homeomorphism $\nu_{t\lambda}$; the image of T belongs to $S'(\mathcal{N} \times \Gamma)^{\tilde{G}, \chi}$ so that the image of the support of T must be contained in $\mathcal{N}_i \times \Gamma$. If (X, v) belongs to this support this means that $X + t\lambda \varphi_v \in \mathcal{N}_i$.

If $i = 0$ so that $\mathcal{N}_i = \{0\}$ this implies that $v = 0$ so that T must be a multiple of the Dirac measure at the point $(0, 0)$ and hence is invariant under \tilde{G} so must be 0.
If \(i > 0 \) and \(X \in \mathcal{O} \) then as \(\mathcal{O} \) is open in \(\mathcal{N} \), we get that, at least for \(|t| \) small enough, \(X + t\lambda \varphi_v \in \mathcal{O} \) and therefore \(\lambda \varphi_v \) belongs to the tangent space \(\text{Im} \, \text{ad}(X) \) of \(\mathcal{O} \) at the point \(X \). Define

\[
Q(X) = \{ v \in V | \varphi_v \in \text{Im} \, \text{ad}(X) \}, \quad X \in \mathcal{N}, \quad \text{(unitary case)}.
\]

Then we know that the support of the restriction of \(T \) to \(\mathcal{O} \) is contained in

\[
\{ (X, v) | X \in \mathcal{O}, v \in Q(X) \}
\]

and the same is true for the partial Fourier transform of \(T \) on \(V \).

In the orthogonal case for \(i = 0 \), the distribution \(T \) is the product of the Dirac measure at the origin of \(\mathfrak{g} \) by a distribution \(T' \) on \(V \). The distribution \(T' \) is invariant under \(G \) but the image of \(\tilde{G} \) in \(\text{End}(V) \) is the same as the image of \(G \) so that \(T' \) is invariant under \(\tilde{G} \) hence must be 0.

If \(i > 0 \) we proceed as in the unitary case, using \(\mu_\lambda \). We define

\[
Q(X) = \{ v \in V | X \varphi_v + \varphi_v X \in \text{Im} \, \text{ad}(X) \}, \quad X \in \mathcal{N}, \quad \text{(orthogonal case)}
\]

and we have the same conclusion.

In both cases, for \(i > 0 \), fix \(X \in \mathcal{O} \). We use Frobenius descent for the projection map \((Y, v) \mapsto Y \) of \(\mathcal{O} \times V \) onto \(\mathcal{O} \). Let \(C \) (resp. \(\tilde{C} \)) be the stabilizer of \(X \) in \(G \) (resp. \(\tilde{G} \)). We have a linear bijection of \(S'(\mathcal{O} \times \Gamma)^{\tilde{G},X} \) onto \(S'(V)^{\tilde{C},X} \).

Lemma 5.2 Let \(T \in S'(V)^{\tilde{C},X} \). If \(T \) and its Fourier transform are supported in \(Q(X) \) then \(T = 0 \).

Let us say that a nilpotent element \(X \) is nice if the above Lemma is true.

Suppose that we have a direct sum decomposition \(V = V_1 \oplus V_2 \) such that \(V_1 \) and \(V_2 \) are orthogonal. By restriction we get non degenerate hermitian forms \(\langle ., . \rangle_i \) on \(V_i \). We call \(G_i \) the unitary group of \(\langle ., . \rangle_i \), \(\mathfrak{g}_i \) its Lie algebra and so on. Suppose that \(X(V_i) \subset V_i \) so that \(X_i = X|_{V_i} \) is a nilpotent element of \(\mathfrak{g}_i \).

Lemma 5.3 If \(X_1 \) and \(X_2 \) are nice so is \(X \).

Proof of Lemma 5.3. We claim that \(Q(X) \subset Q(X_1) \times Q(X_2) \). Indeed if

\[
A = \begin{pmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{pmatrix} \in \mathfrak{g}
\]
then from
\[\langle A \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right), \left(\begin{array}{c} y_1 \\ y_2 \end{array} \right) \rangle + \langle \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right), A \left(\begin{array}{c} y_1 \\ y_2 \end{array} \right) \rangle = 0 \]
we get in particular
\[\langle A_{i,i}x_i, y_i \rangle + \langle x_i, A_{i,i}y_i \rangle = 0 \]
so that \(A_{i,i} \in g_i \). Note that
\[[X, A] = \left(\begin{array}{cc} [X_1, A_{1,1}] & * \\ * & [X_2, A_{2,2}] \end{array} \right). \]

If \(v_i \in V_i \) and \(v_j \in V_j \) we define \(\varphi_{v_i,v_j} : V_i \mapsto V_j \) by \(\varphi_{v_i,v_j}(x_i) = \langle x_i, v_i \rangle v_j \). Then, for \(v = v_1 + v_2 \)
\[\varphi_v = \left(\begin{array}{cc} \varphi_{v_1,v_1} & \varphi_{v_1,v_2} \\ \varphi_{v_2,v_1} & \varphi_{v_2,v_2} \end{array} \right). \]
Therefore if, for \(A \in g \) we have \(\varphi_v = [X, A] \) then \(\varphi_{v_i,v_i} = [X_i, A_{i,i}] \). This proves the assertion for the unitary case. The orthogonal case is similar.

The end of the proof is the same as the end of the proof of Lemma 3-2.

Now in both orthogonal and unitary cases nilpotent elements have normal forms which are orthogonal direct sums of ”simple” nilpotent matrices. This is precisely described in [Sp-St] IV 2-19 page 259. By the above Lemma it is enough to prove that each ”simple” matrix is nice.

Unitary case. There is only one type to consider. There exists a basis \(e_1, \ldots, e_n \) of \(V \) such that \(Xe_1 = 0 \) and \(Xe_i = e_{i-1} \), \(i \geq 2 \). The hermitian form is given by
\[\langle e_i, e_j \rangle = 0 \text{ if } i + j \neq n + 1, \quad \langle e_i, e_{n+1-i} \rangle = (-1)^{n-i} \alpha \]
with \(\alpha \neq 0 \). Note that \(\overline{\alpha} = (-1)^{n-1} \alpha \). Suppose that \(v \in Q(X) \); for some \(A \in g \) we have \(\lambda \varphi_v =XA - AX \). For any integer \(p \geq 0 \)
\[\text{Tr}(\lambda \varphi_vX^p) = \text{Tr}(XAX^p - AX^{p+1}) = 0. \]

Now \(\text{Tr}(\varphi_vX^p) = \langle X^p v, v \rangle \) Let \(v = \sum x_i e_i \). Hence
\[\langle X^p v, v \rangle = \sum_{i=1}^{n-p} x_{i+p} \langle e_i, v \rangle = \sum_{i=1}^{n-p} (-1)^{n-i} \alpha x_{i+p} \overline{\alpha}_{n+1-i} = 0. \]
For $p = n - 1$ this gives $x_n \bar{\pi}_n = 0$. For $p = n - 2$ we get nothing new but for $p = n - 3$ we obtain $x_{n-1} = 0$. Going on, by an easy induction, we conclude that $x_i = 0$ if $i \geq (n + 1)/2$.

If $n = 2p + 1$ is odd put $V_1 = \oplus_i^p \mathbb{D}e_i$, $V_0 = \mathbb{D}e_{p+1}$ and $V_2 = \oplus_{p+2}^{2p+1} \mathbb{D}e_i$. If $n = 2p$ is even put $V_1 = \oplus_i^p \mathbb{D}e_i$, $V_0 = \{0\}$ and $V_2 = \oplus_{p+1}^{2p} \mathbb{D}e_i$. In both cases we have $V = V_1 \oplus V_0 \oplus V_2$. We use the notation $v = v_2 + v_0 + v_1$.

The distribution T is supported by V_1. Call δ_1 the Dirac measure at 0 on V_i. Then we may write $T = U \otimes \delta_0 \otimes \delta_2$ with $U \in S'(V_1)$. The same thing must be true of the Fourier transform of T. Note that \hat{T} is a distribution on V_2, that $\hat{\delta_2}$ is a Haar measure dv_1 on V_2 and that, for n odd $\hat{\delta_0}$ is a Haar measure dv_0 on V_0. So we have $\hat{T} = dv_1 \hat{\otimes} \hat{U}$ if n is even and $\hat{T} = dv_1 \otimes dv_0 \otimes \hat{U}$ if n is odd. In the odd case this forces $T = 0$. In the even case, up to a scalar multiple the only possibility is $T = dv_1 \otimes \delta_2$.

Let

$$a : \sum x_i e_i \mapsto \sum (-1)^i \pi_i e_i.$$

Then $a \in \tilde{C} \setminus G$. It acts on g by $Y \mapsto -aY a^{-1}$ and in particular $-aX a^{-1} = X$ so that $a \in \tilde{C} \setminus C$. The action on V is given by $v \mapsto -a(v)$. It is an involution. The subspace V_1 is invariant and so dv_1 is invariant. This implies that T is invariant under \tilde{C} so it must be 0.

Orthogonal case. There are two different types of "simple" nilpotent matrices.

The first type is the same as the unitary case, with $\alpha = 1$ and thus n odd but now our condition is that $X \varphi_v + \varphi_v X = [X, A]$ for some $A \in \mathfrak{g}$. As before this implies that $Tr(\varphi_v X^q) = 0$ but only for $q \geq 1$. Put $n = 2p + 1$; we get $x_j = 0$ for $j > p + 1$. Decompose V as before: $V = V_1 \oplus V_0 \oplus V_2$. Our distribution T is supported by the subspace $v_2 = 0$ so we write it $T = U \otimes \delta_2$ with $U \in S'(V_1 \oplus V_0)$. This is also true for the distribution \hat{T} so we must have $U = dv_1 \otimes R$ with R a distribution on V_0. Finally $T = dv_1 \otimes R \otimes \delta_2$. Now $-Id \in \tilde{C}$ and T is invariant under \tilde{C} so that R must be an even distribution.

On the other end the endomorphism a of V defined by $a(e_i) = (-1)^{i-p-1} e_i$ belongs to C and $aX a^{-1} = -X$ and $u : (X, v) \mapsto (-X, -v)$ belongs to $\tilde{G} \setminus G$.

The product $a * u$ of a and u in \tilde{G} belongs to $\tilde{C} \setminus C$. Clearly T is invariant under $a \ast u$ so that T is invariant under \tilde{C} so it must be 0.

The second type is as follows. We have $n = 2m$, an even integer and a decomposition $V = E \oplus F$ with both E and F of dimension m. We have a
basis e_1, \ldots, e_m of E and a basis f_1, \ldots, f_m of F such that

$$\langle e_i, e_j \rangle = \langle f_i, f_j \rangle = 0$$

and

$$\langle e_i, f_j \rangle = 0 \text{ if } i + j \neq m + 1 \text{ and } \langle e_i, f_{m+1-i} \rangle = (-1)^{m-i}.$$

Finally X is such that $Xe_i = e_{i-1}$, $Xf_i = f_{i-1}$.

Let ξ be the matrix of the restriction of X to E or to F. Write an element $A \in g$ as 2 by 2 matrix $A = (a_{i,j})$. Then

$$[X, A] = \begin{pmatrix}
[\xi, a_{1,1}] & [\xi, a_{1,2}]

[\xi, a_{2,1}] & [\xi, a_{2,2}]
\end{pmatrix}.$$

Suppose that $v \in Q(X)$ and let

$$v = e + f \text{ with } e = \sum x_i e_i, \ f = \sum y_i f_i.$$

We get

$$X \varphi_v + \varphi_v X = \begin{pmatrix}
\xi \varphi_{f,e} + \varphi_{f,e} \xi & \xi \varphi_{f,f} + \varphi_{f,f} \xi

\xi \varphi_{e,e} + \varphi_{e,e} \xi & \xi \varphi_{e,f} + \varphi_{e,f} \xi
\end{pmatrix}$$

where, for example $\varphi_{e,e}$ is the map $f' \mapsto \langle f', e \rangle$ from F into E. Thus, for some A,

$$\xi \varphi_{e,e} + \varphi_{e,e} \xi = \xi a_{2,1} - a_{2,1} \xi$$

In this formula, using the basis (e_i), (f_i) replace all the maps by their matrices.

Then, as before, we have $\text{Tr}(\varphi_{e,e} q^q) = 0$ for $1 \leq q \leq m-1$. If $e' = \sum x_i f_i$ (the x_i are the coordinates of e), then $\text{Tr}(q^e \varphi_{e,e})$ is $\langle q^e, e' \rangle$. Thus, as in the other cases, we have $x_j = 0$ for $j > n/2$ if n is even and $j > (n+1)/2$ if n is odd. The same thing is true for the y_i.

If $n = 2p$ is even, let $V_1 = \oplus_{i \leq p}(\mathbb{F}e_i \oplus \mathbb{F}f_i)$ and $V_2 = \oplus_{i > p}(\mathbb{F}e_i \oplus \mathbb{F}f_i)$; write $v = v_1 + v_2$ the corresponding decomposition of an arbitrary element of V. Let δ_2 be the Dirac measure at the origin in V_2 and dv_1 a Haar measure on V_1. Then, as in the unitary case, using the Fourier transform, we see that the distribution T must be a multiple of $dv_1 \otimes \delta_2$.

The endomorphism a of V defined by $a(e_i) = (-1)^i e_i$ and $a(f_i) = (-1)^{i+1} f_i$ belongs to G and $aXa^{-1} = -X$. The map $u : (Y, v) \mapsto (-Y, -v)$ belongs to $\tilde{G} \setminus G$ so that the product $a \times u$ in \tilde{G} belongs to $\tilde{C} \setminus C$. It clearly leaves T invariant so that $T = 0$.

30
Finally if \(n = 2p + 1 \) is odd we put \(V_1 = \bigoplus_{i \leq p} (F e_i \oplus F f_i) \), \(V_0 = F e_{p+1} \oplus F f_{p+1} \), \(V_2 = \bigoplus_{i \geq p+2} (F e_i \oplus F f_i) \). As in the unitary case we find that \(T = dv_1 \otimes R \otimes \delta_2 \) with \(R \) a distribution on \(V_0 \). As \(-\text{Id} \in C\) we see that \(R \) must be even. Then again, define \(a \in G \) by \(a(e_i) = (-1)^i e_i \) and \(a(f_i) = (-1)^i f_i \) and consider \(a * u \) with \(u(Y,v) = (-Y,-v) \). As before \(a * u \in \tilde{C} \setminus C \) and leaves \(T \) invariant so we have to take \(T = 0 \).

\[\square \]

6 Appendix

We shall state two theorems which are systematically used in our proof.

If \(X \) is a Hausdorff totally disconnected locally compact topological space (lctd space in short) we denote by \(\mathcal{S}(X) \) the vector space of locally constant applications with compact support of \(X \) into the field of complex numbers \(\mathbb{C} \). The dual space \(\mathcal{S}'(X) \) of \(\mathcal{S}(X) \) is the space of distributions on \(X \). All the lctd spaces we introduce are countable at infinity.

If an lctd topological group \(G \) acts continuously on a lctd space \(X \) then it acts on \(\mathcal{S}(X) \) by

\[(gf)(x) = f(g^{-1}x)\]

and on distributions by

\[(gT)(f) = T(g^{-1}f)\]

The space of invariant distributions is denoted by \(\mathcal{S}'(X)^G \). More generally, if \(\chi \) is a character of \(G \) we denote by \(\mathcal{S}'(X)^{G,\chi} \) the space of distributions \(T \) which transform according to \(\chi \) that is to say \(T(f(g^{-1}x)) = \chi(g)T(f) \).

The following result is due to Bernstein [Ber], section 1.4.

Theorem 6.1 (Localization principle) Let \(q : Z \to T \) be a continuous map between two topological spaces of type lctd. Denote \(Z_t := q^{-1}(t) \). Consider \(\mathcal{S}'(Z) \) as \(\mathcal{S}(T) \)-module. Let \(M \) be a closed subspace of \(\mathcal{S}'(Z) \) which is an \(\mathcal{S}(T) \)-submodule. Then \(M = \bigoplus_{t \in T}(M \cap \mathcal{S}'(Z_t)) \).

Corollary 6.1 Let \(q : Z \to T \) be a continuous map between topological spaces of type lctd. Let an lctd group \(H \) act on \(Z \) preserving the fibers of \(q \). Let \(\mu \) be a character of \(H \). Suppose that for any \(t \in T \), \(\mathcal{S}'(q^{-1}(t))^H_{\mu} = 0 \). Then \(\mathcal{S}'(Z)^H_{\mu} = 0 \).

The second theorem is a variant of Frobenius reciprocity.
Theorem 6.2 (Frobenius descent) Let a unimodular lcld topological group H act transitively on an lcld topological space Z. Let $\varphi : E \to Z$ be an H-equivariant map of lcld topological spaces. Let $x \in Z$. Suppose that its stabilizer $\text{Stab}_H(x)$ is unimodular. Let W be the fiber of x. Let χ be a character of H. Then

(i) There exists a canonical isomorphism $\text{Fr} : \mathcal{S}'(E)^{H,x} \to \mathcal{S}'(W)^{\text{Stab}_H(x),\chi}$.

(ii) For any distribution $\xi \in \mathcal{S}'(E)^{H,x}$, $\text{Supp}(\text{Fr}(\xi)) = \text{Supp}(\xi) \cap W$.

(iii) Frobenius descent commutes with Fourier transform.

Namely, let W be a finite dimensional linear space over \mathbb{F} with a nondegenerate bilinear form B. Let H act on W linearly preserving B.

Then for any $\xi \in \mathcal{S}'(Z \times W)^{H,x}$, we have $\mathcal{F}_B(\text{Fr}(\xi)) = \text{Fr}(\mathcal{F}_B(\xi))$ where Fr is taken with respect to the projection $Z \times W \to Z$.

References

[A-G] A. Aizenbud, D. Gourevitch, A proof of the multiplicity one conjecture for $\text{GL}(n)$ in $\text{GL}(n + 1)$, arXiv:0707.2363v2 [math.AG].

[A-G-S] Avraham Aizenbud, Dmitry Gourevitch, Eitan Sayag, $(\text{GL}(n+1,R),\text{GL}(n,R))$ is a Gelfand pair, arXiv:0709.1273.

[Ber] J. Bernstein, P-invariant Distributions on $\text{GL}(N)$ and the classification of unitary representations of $\text{GL}(N)$ (non-archimedean case), Lie group representations, II (College Park, Md., 1982/1983), 50–102, Lecture Notes in Math., 1041, Springer, Berlin (1984).

[B-Z] J. Bernstein, A.V. Zelevinsky, Representations of the group $\text{GL}(n, F)$, where F is a local non-Archimedean field, Uspekhi Mat. Nauk 10, No.3, 5-70 (1976).

[G-K] I.M. Gelfand, D. Kazhdan Representations of the group $\text{GL}(n, F)$, where F is a local non-Archimedean field. Uspekhi Mat. Nauk 10, No.3, 5-70 (1976).

[G-P] B.H. Gross, and D. Prasad, On the decomposition of a representation of SO_n when restricted to SO_{n-1}, Can. J. Math, 44, no 5, pp 974-1002 (1992).
[G-R] B.H. Gross, and M. Reeder, *From Laplace to Langlands via representations of orthogonal groups*, Bull. Amer. Math. Soc. (N.S.), 43, no. 2, pp 163–205 (2006).

[H] J. Hakim, *Supercuspidal Gelfand pairs*, J. Number Theory 100, no. 2, pp 251–269 (2003).

[Ha] Harish-Chandra, *Admissible invariant distributions on reductive p-adic groups* Preface and notes by Stephen DeBacker and Paul J. Sally, Jr. University Lecture Series, 16 American Mathematical Society, Providence, RI, 1999. xiv+97 pp. ISBN: 0-8218-2025-7

[J-R] H. Jacquet, S. Rallis *Uniqueness of linear periods*, Compositio Mathematica, 102, n.o. 1, p. 65-123 (1996).

[K-M-S] Kato, Shin-ichi and Murase, Atsuchi and Sugano, Takashi, *Whittaker- Shintani functions for orthogonal groups*, Tohoku Math. J. (2), 55, no 1, pp 1-64 (2003).

[M-S] Murase, Atsuchi and Sugano Takashi, *Shintani functions and automorphic L-functions for GL(n)*, Tohoku Math. J. (2), 48, no 2, pp 165-202 (1996).

[M-V-W] C.Mœglin, M.F. Vignéras, J.L. Waldspurger, *Correspondances de Howe sur un corps p-adique (French) [Howe correspondences over a p-adic field]*, Lecture Notes in Mathematics, 1291, Springer-Verlag, Berlin, 1987. viii+163 pp. ISBN: 3-540-18699-9

[Pra-1] D. Prasad, *Trilinear forms for representations of GL_2 and local ε factors*. Compositio Mathematica 75, N.1, page 1-46 (1990).

[Pra-2] D. Prasad, *On the decomposition of a representation of GL(3) restricted to GL(2) over a p-adic field*, Duke Math. J., 69, no 1, pp 167-177 (1993).

[R-S-1] S. Rallis, G. Schiffmann, *Multiplicity one Conjectures*, arXiv:0705.2168v1 [math.RT].

[R-S-2] S. Rallis, G. Schiffmann, *Représentations supercuspidales du groupe métaplectique*, J. Math. Kyoto Univ. 17, no. 3, 567-603 (1977).
[Sp-St] T. A. Springer, R. Steinberg, *Conjugacy classes*. 1970, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) pp. 167-266 Lecture Notes in Mathematics, Vol. 131, Springer, Berlin.

A. Aizenbud
Faculty of Mathematics and Computer Science, Weizmann Institute of Science POB 26, Rehovot 76100, ISRAEL.
E-mail: aizentr@yahoo.com

D. Gourevitch
Faculty of Mathematics and Computer Science, Weizmann Institute of Science POB 26, Rehovot 76100, ISRAEL.
E-mail: guredim@yahoo.com.

S. Rallis
Department of Mathematics Ohio State University,
COLUMBUS, OH 43210
E-mail: haar@math.ohio-state.edu

G. Schiffmann
Institut de Recherche Mathématique Avancée,
Université Louis-Pasteur et CNRS, 7, rue René-Descartes,
67084 Strasbourg Cedex, France.
e-mail: schiffma@math.u-strasbg.fr