Using context information to enhance simple question answering

Lin Li¹ · Mengjing Zhang¹ · Zhaohui Chao¹ · Jianwen Xiang¹

Received: 19 October 2019 / Revised: 1 June 2020 / Accepted: 10 September 2020 / © Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract

With the rapid development of knowledge bases (KBs), question answering (QA) based on KBs has become a hot research issue. The KB-QA technology can be divided into two technical routes: (1) symbol based representations, such as traditional semantic parsing, and (2) distribution based embedding. With the emergence of deep learning, the development of NLP has greatly promoted. The effect of KB-QA can be improved by combining deep learning with the above two technical routes respectively. In this paper, the impact of the second route (i.e., Distribution Embedding) combined with deep learning is mainly discussed. This route can be divided into pipeline frameworks and end-to-end frameworks. For comprehensive analysis, two frameworks (i.e., a pipeline framework, an end-to-end framework) are proposed to focus on answering single-relation factoid questions. In both of two frameworks, the effect of context information on the quality of QA is studied, such as the entity’s notable type, out-degree. In the pipeline framework, it includes two cascaded steps: entity detection and relation detection. In this framework, multiple modules need to be built, and corresponding training data sets must be constructed for them respectively. The entire process of the pipeline framework is complex, costly and has the problem of error propagation. In the end-to-end framework, the two subtasks of entity detection and relation detection are merged together, and then combined into one framework. Questions, entities and relations are mapped into the same semantic space through the encoding of the recurrent neural network. Moreover, the question-entity similarity and the question-relation similarity are calculated, so that the candidate answers can be sorted and selected. Moreover, character-level(char-level) encoding and self-attention mechanisms are combined using weight sharing and multi-task strategies to enhance the accuracy of QA. Experimental results show that context information can get better results of simple QA whether it is the pipeline framework or the end-to-end framework. In addition, the end-to-end framework achieves results competitive with state-of-the-art approaches in terms of accuracy.

Keywords Question answering · Knowledge base · Context information · Self-attention mechanisms

Extended author information available on the last page of the article.
1 Introduction

QA is a classic natural language processing (NLP) task, which aims at building systems that automatically answer questions formulated in natural language [8], such as community question answering services (CQA) [49], question answering over knowledge base (KB-QA) [59], etc. KB-QA is defined as the task of retrieving the correct entity or a set of entities from a KB given a query expressed as a question in natural language [8]. For instance, in order to answer the question “where was former U.S. President Obama born?”, the entity /m/02mjmr need to be retrieved in Freebase to represent former U.S. president Barack Obama and the relation /people/person.place_of_birth corresponds to the relation of this question. With the entity and the relation, a corresponding structured query can be formed. As a result, the right answer Honolulu (id: /m/02hrh0) can be obtained. Typically, with SPARQL (an RDF query language) people can extract information expressed in natural language from KBs, just like cross-modal retrieval [57].

The KB-QA technology can be divided into two technical routes: (1) symbol-based representations, such as traditional semantic parsing, and (2) distribution-based embedding. The former transforms the semantics of the question into a structured query, and then returns the answer by the structured query, such as λ paradigm [29] and DCS-Tree [31]. The corresponding semantic parsing methods are: combined category grammar (CCG) [12] and dependent combination grammar (DCS) [3]. The method is efficient. However, in this process, experts are required to formulate dictionaries or grammar rules etc. Not only does it need a large amount of human resources, it is also difficult to migrate [66]. In the latter route, the candidate answers are first determined in the KBs based on the question. The question and the candidate answers are mapped to a low-dimensional space, therefore their distributed representations (i.e., Distributed Embedding) are obtained, which is trained by the training data, therefore the question vector and its corresponding correct answer vector are in a low-dimensional space. The matching score is as high as possible. When the training of the model is completed, it can be screened according to the score of the vector expression of the candidate answer and the question, and the highest score is found as the final answer. This route can be divided into pipeline frameworks and end-to-end frameworks. It has strong operability and does not require any manual features. Therefore its improvement space is relatively large.

With the emergence of deep learning, the development of NLP has greatly promoted. The effect of KB-QA can be improved by combining deep learning with the above two technical routes respectively. In this paper, the impact of the second route (i.e., Distribution Embedding) combined with deep learning is mainly discussed. Unlike traditional methods, deep learning can capture the semantic information of the text at multiple levels through learning, including words, phrases, sentences, paragraphs and chapters. Therefore the semantic gap in traditional NLP is improved or solved to some extent. Questions expressed in natural language can be answered directly. The core idea of deep learning system in KB-QA tasks is representation and matching. First, representations of both the question and the fact of KBs should be learned, which contains literature level and semantic level. Then the correlation need to be calculated between question and fact. The work of answering single-relation factoid questions was first proposed by Bordes et al. [7]. In this work, they employ Memory Networks and introduce a new dataset SimpleQuestions, which is built on Freebase. For each triple (entity1, relation, entity2), it shows the relationship between entity1 and entity2 [62]. The relation consists of entity’s type and properties, defined by the Freebase ontology [47]. There are currently two main frameworks for solving KB-QA, pipeline frameworks [14, 15, 21, 64] and end-to-end frameworks [7, 8, 19, 22, 32, 53–55, 63] respectively. As in
the latter case, the data processing procedure is more concise, so it is more popular than the former.

In this paper, we focus on answering single-relation factoid questions (i.e., simple questions), which can be answered by a single fact of the KBs. The task is also called simple QA. Thereby two different frameworks are explored to answer such questions, analyzing the impact of entity’s context information to answer selection. It can be found that combining the entity’s out-degree and notable type can improve the accuracy of answers. Moreover, our end-to-end framework that combines context information achieves a competitive result with state-of-the-art work of Lukovnikov et al. [32], while running much faster than it.

In our pipeline framework and end-to-end framework, there are different ways to integrate entities’ type information and out-degree information. This paper selects the type information and out-degree information of entities as context information to reorder the candidate answers, so that to improve the effect of KB-QA. In Freebase, the entity attribute “object.type.notable_types” corresponds to the atomic label of the entity, which is used to represent the type information of the entity. Out-degree refers to the number of triples (subject, predicate, object) for entity s(subject) in the knowledge base, that is, the number of triples with entity s as entity subject is called the out-degree of the entity. The greater the number of occurrences of an entity is, the more times it appears in the knowledge base, and the greater the scope of association is. That is, the greater the out-degree is, the more popular the entity is, just as one paper was cited by others. The entity type information can help to identify entities with the same entity label, try to solve the ambiguity problem, improve the discrimination of entities with the same name, and thus filter the candidate set of answers. The out-degree information can be used to reorder the candidate results so that to solve the situation where multiple candidate answer triples have the highest matching score at the same time.

The experimental results show that the accuracy of both frameworks is improved after combining the context information. What’s more, in our end-to-end framework, combining type information, using char-level embedding and self-attention mechanisms, model QA-T can get better results. As is known, the work done by Lukovnikov et al [32] using end-to-end framework gets 71.2% accuracy, and takes 48 hours. However, our work achieves 71.8% but only takes 4 hours. The result is a little better, and the time spent is greatly shortened.

The rest paper is structured as follows: Related work is introduced in Section 2. Our two different frameworks are presented in details in Section 3. The experiment configuration and results of the pipeline framework and the end-to-end framework are shown in Section 4 and Section 5 respectively, and then we conclude in Section 6 with some discussions for future work.

2 Related work

Knowledge graph is discussed to give its overview. And then two mainstream technical routes for the KB-QA task is described, i.e., the pipeline framework and the end-to-end framework, especially focusing on the development of deep learning technology.

2.1 Knowledge graph

In recent years, several large-scale general purpose KBs have been constructed, including Freebase [5, 6], its main data source is Wikipedia, and some data comes from IMDB and other Websites [30], YAGO [43], DBpedia [1] and Wikidata [48], Babelnet [35]. Also, the
open Chinese KBs include Zhishi.me [36], CN-DBpedia [60], Xlore [52], etc. In addition, there are some commercial KBs that are not completely open, such as Google Knowledge Graph [30, 39, 44] and the Facebook Graph. The data of entities and relations can be accessed through a specific API. As Google puts forward the concept of knowledge graph, the related research of KBs has reached a new level of popularity.

The father of the World Wide Web Berners-Lee [4] proposed the concept of semantic Web in 1998. Different from traditional Web networks, semantic and structured descriptions are introduced in the Semantic Network, which realizes semantic-based associations between data. And it can promote the development of computers in the direction of semantic-based information exchange [47]. RDF (Resource Description Framework) is a simple and flexible data model used to describe the semantic network proposed by the World Wide Web Consortium (W3C) [16]. Most of KBs store information in the form of RDF triples (subject, predicate, object) [9, 16, 17]. For example, (/m/02mjmr, /people/person.place_of_birth, /m/02hrh0), where /m/02mjmr is the Freebase id for Barack Obama, and /m/02hrh0 is the id for Honolulu. By structuring knowledge stored in this basic form, both of industry and academia can better organize, manage, and utilize vast amounts of knowledge. But people cannot directly understand and extract the knowledge in the knowledge graph without structured query language. Therefore by mapping the natural language questions to the triples in the KBs, the correct answer can be retrieved, which becomes a good way to use the KBs. With the development of KBs, question answering over knowledge base (KB-QA) [59] has attracted more and more attention.

2.2 Pipeline frameworks

In pipeline frameworks, the KB-QA task is decomposed into two subtasks: entity detection and relation detection. Dai et al. [15] use the bidirectional cyclic neural network (i.e., Bi-GRU-CRF) combined with the conditional random field (i.e., CRF) to identify the questions, and cut the entity candidate sets according to the entity identification results. They also use a Bi-GRU network to encode relations in relation matching. Yin et al. [64] divide the task into two parts: entity linking and fact selection, they use the convolutional neural network based on character level (char-level) and word level (word-level) to perform entity matching and relation matching respectively, and they use the pooling method combined attention mechanism in the relation matching process. Cui et al. [14] design a new kind of question representation: templates, and use them to improve the semantic representations of questions and better judge the type and intent of questions. Moreover, they increase the coverage of the KB by 57 times through expanding predicates in the KB. Hao et al. [21] use Bi-LSTM-CRF to identify the entities in questions, then the question templates are used to correct the entity recognition results, and the relation detection is combined to improve fact selection. Multi-granular coding and multi-dimensional information are utilized in this framework.

2.3 End-to-end frameworks

In end-to-end frameworks, Bordes et al. [8] present the question and fact triples in the KBs as numerical vectors of the same semantic space by embedding models, and the similarity of their vectors is measured to sort the candidate triples. Yih et al. [63] build a semantic matching model using convolutional neural networks, and propose a QA framework for single-relation questions based on semantic similarity. By measuring the entity text and entity labels, relation templates and relations in the question respectively, the similarity between the two completes the sorting of the candidate answers. Golub and He [19] employ
a char-level, attention-based encoder-decoder framework for QA. The model is robust for unseen entities since it adopts char-level modeling. Hao et al. [22] present an end-to-end neural network model to represent the questions, which improves the representations of questions via cross-attention mechanisms. Lukovnikov et al. [32] present an end-to-end neural network. They merge word-level and char-level representations of questions. Wu et al. [53–55] employ attention mechanisms and joint learning, and they design an end-to-end network structure.

Although the above two frameworks have achieved good results on QA, they have not used context information for in-depth analysis to improve the accuracy of QA. Therefore, in this paper, the impact of context information is mainly discussed on the accuracy of QA. Context information is an effective way to improve the quality of various tasks, not only for QA tasks Mensio et al. [34], but also for other domains, such as music recommendation Wang et al. [50], Reading Comprehension (RC) Wang et al. [51], Indurthi et al. [26]. Usually context information is related to specific tasks also including season, weather, time, location, etc.

2.4 Attention mechanism

The attention mechanism is derived from the visual field. When the human eyes observe an image, it is preferred to quickly scan the entire image first and find the areas in the image that need to be focused, then they focus on these areas, carefully observe and analyze, and get more detailed information. The attention mechanism can be divided into Hard Attention, Soft Attention, Local Attention and Global Attention. Xu et al. [61] divide attention into Soft Attention and Hard Attention in dealing with image description generation tasks. The former refers to assigning weights to all regions of the original image. Part of the original image is assigned a corresponding weight. The latter can reduce the amount of calculations compared to the former. Relative to Global Attention, Luong et al. [33] propose Local Attention. By setting a context window, only a small part of the source language can be generated when generating the context vector, and some irrelevant information can be filtered to reduce the amount of calculation. Bahdanau et al. [2] successfully apply the attention mechanism to the field of machine translation, greatly improving the translation effect. Wu et al. [54] present a Siamese attention architecture, and embed the attention mechanism into spatial gated recurrent units to selectively propagate relevant features and memorize their spatial dependencies through the network. Wu et al. [56] propose a deep attention-based spatially recursive model that can learn to attend to critical object parts and encode them into spatial representations, which is composed of two-stream CNN layers, bilinear pooling, and spatial recursive encoding with attention, is end-to-end trainable to serve as the part detector and feature extractor whereby relevant features are localized, extracted, and encoded spatially for recognition purpose. Wu et al. [58] propose a network which is further augmented with 3D part alignment module to learn local features through Soft Attention module. These attended features are statistically aggregated to yield identity-discriminative representations.

Self attention is a special case of the attention mechanism. Different from the above, the self-attention mechanism only needs a sequence to calculate the representation. Through the interaction of the internal elements of the sequence, the structural information inside the sequence is learned to obtain better representation learning. It has achieved very good results in many NLP tasks, including machine translation [46], reading comprehension [10], statement representation, text summary [37], language comprehension [41] and other tasks. In this paper, the self-attention mechanism is added in our pipeline framework.
3 Our two frameworks

3.1 Task definition

Single-relation factoid questions (i.e., simple questions) can be answered by a single fact of the KBs. The formal definition is as follows. KB \(\{s_i, r_i, o_i\} \) is a set of triples, where \(s_i \) and \(o_i \) are the subject entity and object entity, \(r_i \) is the relation, \((s_i, r_i, o_i) \) corresponds to one fact. For the purpose of answering question \(q \) formulated in natural language, a triple \((s, r, o)\) need to be found, where \(s \) and \(o \) corresponds to the subject and predicate in the question \(q \), then \(o \) is the answer to the question \(q \). Therefore, as long as the corresponding subject and predicate are found, the question can be turned into a structured query to obtain the answer.

SimpleQuestions dataset is studied, which is released by Bordes et al. [7] and consists of 108442 questions written in natural language. It is constructed according corresponding facts in Freebase. The format of each fact is (subject, predicate, object). According to the original data division ratio, there are 75910 training data, 21687 test data, and 10845 validation data. This dataset also provides two subsets of Freebase: FB2M and FB5M. They are represented as sets of triples. FB2M is taken as background KB, it includes 2 million entities and 6701 relations. In addition, Freebase data dumps (22 GB compressed, 250 GB uncompressed) is used to extract entities’ notable type information.

3.2 Our pipeline framework

3.2.1 Model description

In this section, the QA task is divided into two subtasks: entity detection and relation detection.

1. Entity candidate set \(E \) is generated by entity detection.
2. Based on entity candidate set \(E \), all relations associated with the entity candidates are obtained.
3. Then the semantic similarity between the relation and the question is calculated by semantic matching model, and the relation \(r \) with the highest matching score is taken as the result of relation detection.
4. Finally the corresponding triple is selected as the answer based on \(r \).

As shown in the Figure 1, after getting entity candidate set, “/music/album/album_content_type” is the highest matching relation with the question. At this time, the entity-relation pair is obtained. According to the entity-relation pair, the triple \((m.01hmylb, /music/album/album_content_type, m.06vw6v)\) can be obtained as the fact to answer the given question.

3.2.2 Entity detection

Following the traditional approach, entity recognition is conducted to mark out the words that belong to the entity in the question. Like the mainstream method, it is treated as a sequence labeling task. A bidirectional LSTM [20, 25] network is trained to detect the entity text in the question. As shown in Figure 2, the character “e” is the entity text, and “c” is the context text. The word which belongs to the entity text is marked e, and the word which does not belong to the entity text is marked c. The fragment of the entity text refers to the sequence of words corresponding to each consecutive segment e.
what is the content type of voodoo lounge?

Entity Detection

voodoo lounge

Entity Candidates Set

m.0343vfn
m.01hmylb
m.0g3qwzg
m.0g162_w

Relation Candidates Set

/music/release/label
/music/release/format
/music/release/region
/music/release/album
/music/alubm/release_type
/common/topic/notable_types
type/object/type
/music/alubm/artist
/music/alubm/alubm_content_type
/music/alubm/releases
/music/alubm/primary_release
/music/alubm/genre
/base/philbuniverse/musical_album_detailed_view/artist_s_or_band_s

/subject/relation pair

Figure 1 One example of the simple QA process: First, the entity is retrieved through entity detection according to the given question, and the entity corresponding to the fact in the KB is matched to obtain an entity candidate set. Second, according to the entities in the entity candidate set, the related relations are found, and the relation candidate set is formed. At last, according to the matching of the relation and the question, the relation with the highest matching degree is obtained, and the best entity-relation pair is obtained accordingly.

Because some results of entity recognition may not be completely correct, some strategies need to be employed to remedy it. The method proposed by Ture et al. [45] is borrowed. Based on the result of entity recognition, the fragment of the entity text is obtained. And then the entity candidate set can be construct through the following process.

1. All entities in FB2M whose alias exactly equal to the fragment of the entity text need to be found out, and then the entity candidate set E is formed. If there is no exact match entity, go to the next step.
2. The 1-gram, 2-gram and 3-gram from each fragment of the entity text are extracted. If a tuple is a subset of another tuple, the long one should be kept and the short one should be discarded. Then a set of n-gram G can be formed.

Figure 2 The architecture of entity recognition: Bi-LSTM for entity recognition is used to extract the entity text.
3. The entities based on n-gram and an entity candidate set E need to be searched. The weight of the entity need to be calculated using (1). And then the entity with the weight equal to the highest score is taken as the result of entity detection.

$$score_i = \frac{N_i}{L_i C_i}$$ (1)

Where N_i is the number of words in G, L_i is the number of words contained in the entity tag of the retrieved entity, and C_i is the number of entities in the E.

3.2.3 Relation detection

In this subtask, our core mission is to measure the semantic similarity between the relations and questions. Therefore, a semantic matching model is designed. The matching task is taken as a binary classification problem, matching or not matching. First a binary classification network is designed. Instead of using the classification result directly, the value of the output layer is used as the matching score.

As shown in Figure 3, in this process, the sequence texts for the question and the relation are input, and the word vector representation of each word is obtained through the Embedding layer.

And then the semantic representations of the question and relation are obtained through Bi-GRU [11, 13], and stitch them into a vector. As well as through a fully connected layer, the final score can be obtained in the output layer. By the way, sigmoid is used as the activation function of the output layer. In Dense layer, the question vector and the relation vector are simply stitched without word interaction between the two. Recently, Zhang et al. [65] proposed to learn word-level interactions between the question and the relation, and the attention mechanism is incorporated for a fine-grained alignment between words for relation detection of KB-QA. It can alleviate the problem of information loss to a certain extent.

3.2.4 Context information of our pipeline framework

In this paper, entities’ context information can be explored to improve the resolution of the entities with the same name. Here context information includes the entities’ out-degree and notable type. In our pipeline framework, for the combination of out-degree information, after the entity candidate set and the relation with the highest matching degree are obtained, in order to solve the case where multiple entities in the entity candidate set have the same

![Figure 3](image-url) The network structure of the semantic matching model
relation, these entities are reordered by using the out-degree information to generate a final result. For the incorporation of type information of the entity, the matching score of the question-type pair is calculated to mine the entity type information in the question, and sort the entity candidate set and the relation candidate set to achieve final screening of the results. In the following it will be shown in details.

According to whether or not the context information is combined, the selection of the entity-relation pair is divided into three different algorithms: no context information (Pipeline QA without context information i.e., P-QA) as shown in Algorithm 1, combined with out-degree information (Pipeline QA with out-degree information i.e., P-QA-Out) as shown in Algorithm 2 and combined with type information (Pipeline QA with type information i.e., P-QA-Type) as shown in Algorithm 3.

1. In Algorithm 1, after obtaining the entity candidate set \(E(e_1, e_2, ..., e_m) \) and the relation \(r \) with the highest matching degree, the entity with the relation \(r \) can be selected as the result of the final entity detection.

Algorithm 1 Prediction algorithm without context information(P-QA).

Input: question \(Q \)

- entity recognition model \(EM \)
- relation matching model \(RM \)

Output: “entity-relation” dual group \((e, r) \)

1. The model \(EM \) is used to perform entity identification on the question \(Q \), and then the entity text \(P \) is obtained.
2. The entity candidate set \(E \) is generated using entity retrieval algorithm.
3. According to the entity candidate set \(E \), a relation candidate set \(R \) is formed.
4. The matching scores of the question \(Q \) and all relations are calculated according to the relation matching model.
5. According to the relation matching results, the relation \(r \) with the highest score is selected as the result of the relation matching.
6. The corresponding entity \(e \) is found from the entity candidate set \(E \) according to \(r \).
7. The prediction results i.e., entity-relation \((e, r) \) dual group is output.

2. However, sometimes there are multiple entities in \(E \) that have the same relation \(r \), therefore here the re-sorting of the entities is performed using the out-degree information to generate the final result. In Algorithm 2, the entity candidate set is ranked based on the out-degree. The out-degree of the entity \(e \) is the number of triples in the KB in which \(e \) is the subject. The greater the number of out-degree of an entity is, the greater the scope of its association is in the KB.

Algorithm 2 Prediction algorithm with out-degree information(P-QA-Out).

Input: entity candidate set \(E(e_1, e_2, ..., e_m) \)

- relation \(r \)

Output: ”entity-relation” dual group \((e, r) \)

1. The entity candidate set \(E \) is pruned according to \(r \), and an entity candidate subset \(E'(e'_1, e'_2, ..., e'_k) \) with the relation \(r \) can be generated.
2. The out-degree of all entities in the candidate set \(E' \) is calculated, and \(O_i(o'_1, o'_2, ..., o'_k) \) can be generated.
3. Then \(E'(e'_1, e'_2, ..., e'_k) \) is sorted in descending order according to \(O_i \).
4. The entity with the highest degree of \(e \) is selected as the result of entity detection.
5. The prediction results i.e., entity-relation \((e, r) \) dual group is output.
3. In Algorithm 3, the type information of the entity is used to distinguish the entities with the same name. The notable type of the entity in FreeBase is a simple atomic label that indicates what the entity is notable for [18]. Freebase was acquired by Google in 2010 and officially shut down in 2016. Its data was migrated to Wikidata. Since Freebase’s online API is closed, it is impossible to get the notable type information directly. The Freebase data dumps can be downloaded in an N-Triples RDF format.

Algorithm 3 Prediction algorithm with entity type (P-QA-Type).

Input: question Q
- entity candidate set $E(e_1, e_2, ..., e_m)$
- relation candidate set $R(r_1, r_2, ..., r_n)$

Output: "entity-relation" dual group (e, r)
1. The entity type is extracted and a type list $T(t_1, t_2, ..., t_m)$ is generated corresponding to the entity candidate set E.
2. The semantic matching score between the entity type T and the question Q is calculated, $S_t(s^1_t, s^2_t, ..., s^n_t)$ is generated.
3. The semantic matching score between the relation R and the question Q is calculated, $S_r(s^1_r, s^2_r, ..., s^n_r)$ and entity-relation binary list $P(p_1, p_2, ..., p_m)$ are generated.
4. S_t and S_r are added one by one according to the list P to generate $S(s_1, s_2, ..., s_m)$.
5. The list P in descending order is sorted according to the comprehensive score S.
6. The prediction results i.e., entity-relation (e, r) dual group is output.

The notable type information is extracted from the dump files. There are 1275 kinds of notable types in 2 million entities of FB2M. Then the same network structure like relation detection is used to calculate the matching scores between questions and notable types. And the matching scores can be used to improve the accuracy of entity recognition by ranking candidate entities.

Here, the matching score of the entity type information and the question is recorded as S_t, and the matching score of the relation and the question is recorded as S_r. And then the two are added to obtain the “entity-relation” binary group and the matching score of question S is shown in (2). The final screening of the results is achieved by scoring and sorting the entity-relation pairs.

$$S = S_t + S_r$$ (2)

3.2.5 Loss functions of our pipeline framework

In our pipeline framework, two different loss functions are used.

1. In entity recognition, categorical cross-entropy (i.e., (3)) is used as the loss function.

$$C = -\frac{1}{n} \sum_x [yln a + (1 - y)ln(1 - a)]$$ (3)

Where y is the expected output and a is the actual output. This function has two properties: (1) non-negative. (2) when the actual output a is close to the expected output y, the loss function is close to 0. (For instance, $y=0$, $a=0$; $y=1$, $a=1$, the loss function is both close to 0.). In addition, this function also can overcome the problem that the variance cost function updates the weight too slowly.
2. In relation matching and in the matching of questions and type information which use Algorithm 3. The (4) is as the loss function, which is a little different from (3), and all characters represent the same meaning.

\[C = -\frac{1}{n}[y\ln a + (1 - y)\ln(1 - a)] \]

(4)

3.3 Our end-to-end framework

3.3.1 Model description

In this section, an end-to-end framework is explored for answering simple questions. Without entity recognition, the entity \(e \) is retrieved directly by retrieving the n-gram tuple generated by the question \(q \), through entering the question and each fact into this model, the \(\text{score}(\text{fact}) \) of each fact can be obtained. And then the facts are sorted by these scores, therefore the final answer can be obtained according to the sort result. This approach aims to build a more versatile QA model. In addition, self-attention mechanisms and joint representation learning are also used to build an end-to-end joint learning model that combines self-attention mechanisms.

As shown in Figure 4, our entire model consists of 5 major layers (or 9 small layers). The first 4 parts get the cosine similarity scores of the question-entity pair and question-relation pair respectively. And then the fact is scored according to two different methods (QA-S and QA-T) as follows. The shared part of the above two methods in the model is further elaborated in Section 3.3.2.

1. QA-S: the automatic QA method based on weight sharing (it will be called as QA-S below), which is further elaborated in Section 3.3.3.
2. QA-T: the automatic QA method based on weight sharing and multi-task (it will be called as QA-T below), which is further elaborated in Section 3.3.4.

3.3.2 Description of each layer

1. In Input layer: The fact \(f(\text{subject, predicate, object}) \) and question \(q \) are input to the model, retrieve the subject, the predicate and send them with the question to the model for the next module to process.
2. In Word encoder layer: The retrieved subject, question, and predicate are encoded to get their word vector representations, using multi-granular coding method, and the network structure is shown in Figure 5. This encoding combines word-level encoding and char-level encoding to obtain the semantic vector of the word. For the word \(w \) \((c_1, c_2, ..., c_n)\), where \(c_i \) is the i-th character of the word \(w \), the corresponding word vector is \(\vec{v}_w \). First, the character sequence \((c_1, c_2, ..., c_n)\) is input to the GRU network, with the last hidden layer state \(\vec{h}_i \) as the word \(w \)'s semantic representation \(\vec{v}_c \) of the char-level, then \(\vec{v}_w \) and \(\vec{v}_c \) are concatenated as the semantic vector \(v[\vec{v}_w, \vec{v}_c] \) of the word \(w \).
3. Semantic encoder layer: It consists of three parts: LSTM, Self-attention layer and Flatten layer.
 (a) In LSTM: The semantic vector sequences of the subject, the question, and the predicate obtained by the word encoder layer are sent into the same LSTM recurrent neural network for semantic encoding. In this part, subjects, questions and predicates share weights, which makes the processing more concise.
Figure 4 Visualization of the whole model. Subject, question, predicate are sequentially respectively encoded by this model, producing their word vector representations, and then they are encoded into their semantic vector representations. Question-subject pair and question-predicate pair are scored using a cosine similarity between their representing vectors, and then the score(fact) is obtained in two different ways.

Figure 5 The network structure of word encoder layer
(b) In Self-attention layer: The self-attention mechanism is added to the semantic vector representations of the subject, the question and the predicate, which can capture the long-distance interdependent features in the sentence. Since the final hidden layer state \mathbf{h}_t of LSTM is used as the semantic encoding of subjects, questions, and predicates, and the previous $t-1$ states have been discarded. However, the hidden state set $\mathbf{h} = [\mathbf{h}_1, \mathbf{h}_2, ..., \mathbf{h}_n]$ also corresponds to the semantic information of the current sentence. Therefore, by adding a self-attention mechanism, the model can fully calculate the internal structure of the sentence by calculating the attention between the hidden layer state sets \mathbf{h}. And the model can generate a sentence-level embedding matrix, which makes the semantic representations vector more accurately reflect the contents of the subject, the question, and the predicate.

(c) In Flatten layer: The semantic representation matrix vectors of the subject, the question, and the predicate obtained in the previous layer are compressed into one-dimensional semantic representation vectors for convenient processing.

4. Semantic relevance calculation layer: It consists of Fully connected layer, Dropout layer and Cosine similarity calculation.

(a) In Fully connected layer: All the semantic vectors obtained are respectively made into a nonlinear transformation to obtain the probability distribution of the subject, the predicate and the question. The activation function used here is Rectified Linear Unit (i.e., ReLU) as (5).

$$d = f(W_ax + b)$$

(5)

Where W_a is the weight coefficient of the full connection, b is the bias term, and f is the ReLU activation function as shown in (6).

$$f(x) = \max(0, x)$$

(6)

(b) In Dropout layer: It mainly prevents the over-fitting by temporarily discarding the neural network unit from the network according to a certain probability. The Dropout concept was proposed by Hinton et al. [24] to solve the over-fitting problem in deep image classification. Dropout refers to setting the output of each hidden neural unit to 0 with probability p, therefore the neural unit whose output is set to 0 will not participate in the subsequent forward transmission of the network, and will not participate in the reverse. In addition, Dropout can reduce the complex co-adaptation between neurons and force the network to learn more general characteristics [28].

(c) In Cosine similarity calculation: The matching score $score(q, s)$ between the question and the subject and the matching score $score(q, p)$ of the question and the predicate are calculated through (7) and (8), respectively. The cosine similarity calculation formula is shown in (9).

$$score(q, s) = \cos(\mathbf{q}, \mathbf{s})$$

(7)

$$score(q, p) = \cos(\mathbf{q}, \mathbf{p})$$

(8)

$$\cos(a, b) = \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\| \|\mathbf{b}\|}$$

(9)

The above are the shared parts of the two scoring methods. Below the two different scoring methods will be described in details.
3.3.3 Description of QA-S

Through the first eight parts of the model, the matching scores of the question-subject pair and the question-predicate pair can be obtained. Based on the concatenation of them, the score(fact) is obtained through (10)

\[
score = W[S_{q,s}; S_{q,p}]
\]

Where \(W \) is the weight matrix, \(S_{q,s} \) is the matching score of the question-subject pair, and \(S_{q,p} \) is the matching score of the question-predicate pair.

3.3.4 Description of QA-T

Multi-task learning has been successful in machine learning, such as NLP, voice recognition, and image annotation. It improves the generalization of the model by using shared representations and learning multiple tasks at the same time, and learning domain knowledge in related tasks during the training process. Rei \([40]\) propose a sequence tagging framework with auxiliary tasks to improve the performance of the main task, which motivate the model to learn the general patterns of semantics and syntax by training the context of the predicted words. Segaard et al. \([42]\) propose a multi-level sharing model, which outputs low-level tasks in low-level networks and outputs advanced tasks in high-level networks, that is, design sharing patterns according to the semantic level of tasks. Hashimoto et al. \([23]\) construct an end-to-end NLP framework for multi-task joint learning, which can be used to handle tasks such as part-of-speech tagging, chunking, dependency parsing, and textual entailment.

Different from QA-S, the cosine similarity of the question-subject pair and the question-predicate pair is not concatenated. However, separately, they are linearly transformed according to (11) and (12) to obtain the score of subject \(s \) and predicate \(p \) respectively.

\[
score(q, s) = w_a \cos(\vec{q}, \vec{s})
\]

\[
score(q, p) = w_b \cos(\vec{q}, \vec{p})
\]

Where \(w_a, w_b \) are the linear conversion coefficients of the subject and predicate, respectively.

The above is the full introduction of our end-to-end framework. Two different methods are used to score the facts and our models and methods will be evaluated in Section 5.

3.3.5 Context information of our end-to-end framework

Similar to Section 3.2.4, the role of context information in the end-to-end framework is explored for QA accuracy in this section. Here, type information is incorporated into two different methods. The first is to concatenate the entity type information with the entity tag and input it as a new tag of the entity into the multitasking end-to-end model (QA-T) to sort the answers. The second is to add a matching task between the entity type information and the question on the basis of QA-T, the entity type information is added to the original input layer, through the model the semantic matching score between the type information and the question can be obtained, then the answers are sorted based on matching scores to get the final answer. In addition, for the out-degree information of the entity, it is used to sort the answers with the highest matching score, so as to further sort and filter the answers. The detailed method will be described later.

1. Two different methods are used to incorporate entity type information, as follows:
(a) In the end-to-end framework using method QA-T, the strategy adopted is to integrate the entity type information into the entity tag encoding process corresponding to the entity, that is, to convert the entity tag into an entity tag with entity type information. For example, for the question “how was germany released?”, the subject is “germany”, its corresponding target entity is m.017hzy7, the entity type is “musical recording”, then the entity type information is incorporated into the entity tag, therefore the new entity label “musical recording germany” corresponding to m.017hzy7 can be obtained. In addition, for the two methods that do not use or use the self-attention mechanism, they are recorded as QA-T-wt and QA-T-swt, respectively.

(b) In the same framework with method QA-T as above, a strategy different from the above is adopted. In the Section 3.2.4, a matching model of the question and the entity type information is specifically established in order to calculate the matching score of the question and the relation. Therefore drawing on this idea, the matching of the question with the entity type information is an independent task. That is, on the output of QA-T, the matching score of the entity type information and the question is added. As an auxiliary task, it can not only improve the model to mine the entity type information in the question, but also promote the matching of the entity, the relation and the question. According to the use and non-use of the self-attention mechanism, two methods are recorded as QA-T-mwt and QA-T-mwst respectively.

2. In addition to using entity type information to help distinguish entities of the same name, the out-degree information can also be used to sort the answers with the highest matching, in order to further sort and filter the answers. This section verifies the effect of the out-degree from the “Word”, “Word + Self Attention” based on the end-to-end framework with QA-S, and from the end-to-end framework with QA-T that combines the entity type information. The specific experimental results will be shown in Section 5.3.

3.3.6 Loss functions of our end-to-end framework

In our end-to-end framework, a total of three loss functions are used, in which all characters have the same meaning, where s^+ is the positive sample of the entity corresponding to the question q, i.e., the target entity. t^+ is the entity type information of s^+, s^- is the negative sample of the entity corresponding to q, t^- is the entity type information of s^-; p^+ is the positive sample of the relation corresponding to q, i.e., the target relation, and p^- is the negative sample of the relation corresponding to q, γ is a hyperparameter. S_s, S_p and S_t are the matching scores corresponding to the question-subject pair, the question-predicate pair, and the question-type pair respectively.

Through the established model in Section 3.3.2, the semantic matching scores of the question-subject pair, the question-predicate pair can be separately calculated. In the training process, the positive entity sample s^+ and the positive relation sample r^+ of the question q are input, and a group is also input. Corresponding negative entity sample s^- and negative relation sample r^-. Under normal circumstances, the matching score of the question and the positive sample should be as much as possible compared to the matching score of the question and the negative sample.

1. For the end-to-end framework with method QA-S, the loss function is shown in (13). Because the matching scores of questions and subjects and predicates have been merged
into a score at the output layer of the model, that is, the matching scores of the question and the “subject-predicate” corresponding to $S(q, s^+, p^+)$ and $S(q, s^-, p^-)$.

$$\text{loss} = \max(0, S(q, s^-, p^-) + \gamma - S(q, s^+, p^+))$$ \hspace{1cm} (13)

2. For the end-to-end framework with method QA-T, the loss function is shown in (14). The value of the formula consists of two parts: the entity matching loss value and the relation matching loss value.

$$\text{loss} = \sum_{(q, s^+, p^+)} (\max(0, S_s(q, s^-) - S_s(q, s^+) + \gamma) + \max(0, S_p(q, p^-) - S_p(q, p^+) + \gamma))$$ \hspace{1cm} (14)

The purpose of using the loss function is not to focus on the specific numerical value of the matching scores, but to focus on the difference of matching scores between the positive and negative samples and the question q, therefore strengthen the model’s ability to distinguish between positive and negative samples, which can make the model learn better. The hyperparameter γ is defined, therefore the similarity value between the question and the positive sample can exceed the range of the similarity value between the question and the negative sample, as shown in (15).

$$S_s(q, s^+) - S_s(q, s^-) \geq \gamma$$ \hspace{1cm} (15)

3. In addition, since in Section 3.3.5 the matching score of the entity type and the question is added in the second method of incorporating the type information, the loss function is different from the above, and the matching score of the question and the entity type is added based on the (14), as shown in (16).

$$\text{loss} = \sum_{q, s^+, p^+, t^+} (\max(0, S_s(q, s^-) + \gamma - S_s(q, s^+)) + \max(0, S_p(q, p^-) + \gamma - S_p(q, p^+))$$

$$+ \max(0, s^-t(q, t^-) + \gamma - S_t(q, t^+)))$$ \hspace{1cm} (16)

4 Experiment configuration and results of our pipeline framework

4.1 Generation of the training set

4.1.1 Construction of the negative training set

1. **Generation of the Entity training set $E^-(e_1, e_2, ..., e_{n-1})$:** In order to generate annotation data for entity identification, it is necessary to solve the string matching of the question q with the corresponding entity e to separate the entity text from the context text. By analyzing the experimental data, the entity text in some questions q is not strictly matched with the target entity e, and there are problems such as singular and plural numbers, misspellings, etc. Therefore it is impossible to perform only an exact match between the question q and the entity e. in order to properly flag all questions, the following algorithm are designed:

(a) First, the question’s word sequence $q(w_1, w_2, ..., w_n)$ is input to generate a 1-(n-1) tuple of q, which is denoted as $g(g_1, g_2, ..., g_n)$.

(b) Then the following operations are performed on each entity in the KB: The edit distance \(l(l_1, l_2, ..., l_n) \) of entity \(e \) and each element in the \(g \) is calculated, and the tuple \(g \) corresponding to \(l \) is taken as the matching segment.

c) Finally, according to the question \(q \) marked by \(g \), all the word sequences corresponding to \(q \) are marked as ‘e’, and other words are marked as ‘c’, and all word sequences marked as ‘e’ constitute the Entity training set \(E^- (e_1, e_2, ..., e_{n-1}) \).

2. **Generation of the Relation training set** \((q, r, \text{tag})\): According to the first word of each relation, all relations are divided into 89 major categories, representing 89 domains. For example, in the domain of music, several relation examples are shown in Table 1. training data is generated in units of questions.

(a) For each question \(q \) and the triple \((e, r, o)\), the domain \(D \) is determined according to the golden relation \(r \) firstly.

(b) Then all the relations \(R \) of the domain \(D \) are obtained. pairs formatted in the form of \((q, R_i, \text{tag})\) where \(\text{tag} \) is equal to 0 or 1 are generated.

(c) As illustrated in Figure 6, the relation corresponding to the question belongs to the music domain. Thus, all the relations belonging to the music domain are paired with questions and form corresponding tags. Where if relation is the target relation, then \(\text{tag}=1 \), otherwise \(\text{tag}=0 \). The Relation training set is constructed.

In addition, positive cases are copied three times in order to reduce or avoid the impact of data imbalance. It is because in the construction of training data, the proportion of negative samples generated is much larger than positive samples.

4.2 **Training settings**

The model word embeddings are initialized with the 300-dimensional pre-trained vectors provided by Glove [38]. We update network weights by using the Adam [27] optimizer with learning rate 0.001. The hidden layer size of Bi-LSTM and Bi-GRU are set to 100. In the semantic matching model, Dropout is set to 0.1.

4.3 **Initial preparation work**

1. All entity names are divided into words, and 1-gram, 2-gram and 3-gram are generated. Then an inverted index \(I \) that maps all n-grams to the entity’s alias text is built.
2. The entity’s notable type information is extracted from Freebase data dumps.
3. According to the training set, the question text should be labeled and an entity recognition training set is generated.

Table 1	Several relation examples in music domain
/music/live_album/concert_tour	
/music/composition/compose	
/music/release/label	
/music/album/content_type/albums	
/music/recording/producer	
/music/genre/parent_genre	
/music/artist/concert_tours	
/music/album/compositions	
......	
4.4 Experimental results and discussions

When the entity and the relation are correctly predicted, the question q is considered being answered correctly. Therefore, the accuracy of entity-relation pair is used to measure the final QA results.

4.4.1 Entity detection

The experiment result shows that the accuracy rate of entity recognition is 82.2%, of which 31.7% of entities cannot be uniquely identified because one name or alias may corresponds to multiple entities. In this case, the corresponding entity cannot be uniquely identified by the name or alias alone. Besides, 17.8% of entities are not fully labeled correctly. This part needs to retrieve entities based on the result of entity recognition and form entity candidate sets.

4.4.2 Relation detection

A test data set for the model of relation detection is generated based on the test set. For each question, the relations associated with its golden entity are taken as the relation candidates. Then the highest matching relation is found through the model. After testing, the accuracy rate of relation matching can reach 90.1%.

4.4.3 Combination with out-degree and notable type information

As shown in Table 2, after adding the out-degree information (method P-QA-Out), the accuracy rate increases from 65.5% to 66.6%, an increase of 0.9%, and the “Error with same label entity” has decreased by 1.1%. When the entity type information (method P-QA-Type) is added, the accuracy rate is increased by 0.7%, and the proportion of the error type “Error with same label entity” is also reduced by 0.7%.
Table 2 Comparison of results after integrating type information and out-degree in our pipeline framework

Approach	Error with same label entity	Accuracy
P-QA	15.3%	65.5%
P-QA-Out	14.2%	66.6%
P-QA-Type	14.6%	66.2%
P-QA-Out-Type	14.3%	66.5%
P-QA-Type-Out	14.5%	66.3%

“Error with same label entity” means that the entity label in the prediction result is the same as the label of the target entity, but the entity ID is different.

Data in bold is the best results in the experiment.

At the same time, the combination of out-degree information and entity type information is explored. Based on the method P-QA-Out, the answers are reordered by combining the entity type information to obtain the result of the method P-QA-Out-Type. It can be seen that the final accuracy is reduced by 0.1%. In addition, in the method P-QA-Type, the answers are reordered by combining the out-degree information to obtain the result of the method P-QA-Type-Out. Comparing method P-QA-Type-Out with method P-QA-Type, the final accuracy rate is improved by 0.1%.

4.4.4 Using the entity linking result from Yin et al. [64]

In the related work of combining entity type information in the QA, Dai et al. [15] transformed the matching problem of entity types and relations into a multi-classification task, that is, the training model classifies the question and determines the corresponding entity type in the question. On the Pipeline technical route, no strict comparisons have been found on the SimpleQuestions dataset to distinguish entities with the same name based on out-degree information.

On the Pipeline technical route, in the entity identification process, Dai et al. [15] use the Bi-GRU-CRF framework for entity identification and use Bi-GRU networks for relation matching. Yin et al. [64] use the Bi-LSTM-CRF framework for entity recognition, and then combine the character matching algorithm to classify the entity candidate set. In the fact selection process, entity label matching and relation matching are performed using a convolutional neural network (CNN) based on char-level and word-level, respectively. In this paper, we use the results of entity linking provided by Yin et al. [64], combined with the entity detection model, and the experiments are carried out according to the method in Section 3.2, and the results are shown in Table 3.

As can be seen from Table 3, compared with Table 2, the overall result of the experiment is greatly improved, and the effect is more obvious when using the entity type information and out-degree information. After combining them, the experimental results are found to increase by 1.1% and 1.2%, respectively. Therefore, it can be seen that entity identification and entity detection have a great influence on the results of subsequent processes, and there is a problem of error transmission.

The experimental results show that the pipeline-based technical route can effectively complete the QA task. The type information and out-degree information can improve the QA results. In this process, multiple modules need to be built, and corresponding training data sets must be constructed separately. The whole process is complex and costly, and the error transmission problem needs to be solved.
Table 3 Comparison of results after integrating entity type information and out-degree in our pipeline framework using the entity linking result from Yin et al. [64]

Approach	Error with same label entity	Accuracy
PC-QA	9.1%	70.4%
PC-QA-Out	8.3%	71.2%
PC-QA-Type	8.2%	71.3%
PC-QA-Out-Type	8.0%	71.5%
PC-QA-Type-Out	7.9%	71.6%

Data in bold are the best results in the experiment

5 Experiment configuration and results of our end-to-end framework

5.1 Generation of the training set

5.1.1 Construction of the negative training set

As there are thousands of subjects and predicates in the KBs, it is impossible to use all subjects except the true subject and all predicates except the true predicate as the negative training data. For efficient issue, the training data set is generated in the following three steps:

1. **Generation of the dictionary** D_{rr}: The edit distance L of each predicate in the Predicate set P and other predicates except it (which are expressed as p') is calculated, then all p' are sorted in ascending order according to L, thereby the dictionary D_{rr} is generated.

2. **Generation of the Subject training set** $S^-(s_1, s_2, ..., s_{n-1})$: For question q, the target subject is denoted as s with a label, the predicate is p, and the generated subject candidate set is $S(s_1, s_2, ..., s_n)$. First, the subject which has the same label with the target subject from the subject candidate set S is removed. Then the remaining subjects constitute the Subject training set $S^-(s_1, s_2, ..., s_i)$ whose size is i. If i is less than 5, randomly select $(5-i)$ subjects from the subject candidate set S. Each time a training subject is randomly selected from $S^-(s_1, s_2, ..., s_5)$.

3. **Generation of the Predicate training set** $P^-(p_1, p_2, ..., p_{n-1})$: The true predicate p is removed from the candidate predicate set P (which is composed of all predicates related to the subject s), then the remaining predicates constitute the Predicate training set P^- whose size is j. If j is less than 50, it is sequentially added from the dictionary D_{rr} until equal to 50. Each time a negative sample is randomly selected from P^- without returning.

5.2 Training settings

Our method is evaluated on the SimpleQuestions dataset which contains $N = 21,687$ questions and the corresponding triples. For each question we follow the procedure described in Section 3.3 to find whether adding char-level encoding or adding self-attention mechanisms will help the matching of the question and the target fact, and which scoring method can get the answer of the question more accurately.
5.3 Experimental results and discussions

First, it can be seen from the Table 4 that the multi-tasking end-to-end model based on weight sharing (QA-T) is better than the end-to-end model based on weight sharing (QA-S). The following sections will compare the two aspects of char-level encoding and self-attention mechanisms.

5.3.1 The overall comparison of model QA-S and model QA-T

From the overall comparison of model QA-S and model QA-T, it can be found that the latter have a bigger improvement compared to the former. Under the same conditions, the addition of the self-attention mechanism can get improvement in both models, and the effect is more obvious in the model QA-S. The effect of the word encoder layer incorporating words’ char-level encoding is reflected in the model QA-S, Which can alleviate the problem of OOV and enhance the semantic representation of each word. In the model QA-T, The embedding of char-level encoding can increase the accuracy of the model by 1.2% without adding the self-attention mechanism. However, after adding the attention mechanism, the character information has a negative impact on the model’s effect, down by 0.9%.

The reason why the accuracy of the model QA-T has decreased may be that the character vector is initialized by a random vector and is continuously tuned during the training of the model. However, the data in the training data set is limited, therefore it results in a low quality of the character vector. When each element interacts in the self-attention mechanism, the noise is amplified, resulting in a decrease in the final result.

5.3.2 The effect of self-attention mechanism

The experimental results show that self-attention mechanisms can better mine the internal structure of questions, entities and relations, and achieve better results without additional use of character information. The following is an example to explore the impact of the self-attention mechanism on the semantic encoder layer. For example, the question “Which genre of album is harder faster?”, the corresponding subject is “harder faster”,

Approach	Accuracy model QA-S	Accuracy model QA-T
Word	56.1%	67.6%
Word + Self Attention	67.3%	70.7%
Word + Character	59.4%	68.8%
Word + Character + Self Attention	64.0%	69.8%

“Word” means that only word-level encoding is used in the word encoder layer, and char-level encoding is not incorporated. “Word + Self Attention” refers to the application of the self-attention mechanism at the semantic encoder level based on the “Word” coding. “Word + Character” is a multi-granular encoding method that uses word-level encoding and char-level encoding in the word encoder layer. “Word + Character + Self Attention” refers to the application of the self-attention mechanism in the semantic encoder layer based on “Word + Character”.

Data in bold is the best results in the experiment.
and the corresponding relation is “music/album/genre”. The attention weight matrix corresponding to the question and relation is shown in Figures 7 and 8 respectively. The darker the color is, the larger the weight is.

It can be seen from Figure 7 that in the attention matrix of the question, the three words “harder … faster” are given a large weight, corresponding to the subject in the question. In addition, the word “genre” is given a relatively large weight in the question. It shows that the internal structure of the sentence is well studied by using the self-attention mechanism, and the subject information and predicate information are more concerned in the question.

In the attention matrix corresponding to the relation “music/album/genre” as shown in Figure 8, the weight of “genre” is large, which in turn corresponds to the predicate information “genre” in the above question. This shows that the use of the self-attention mechanism not only captures the important and discriminative information in the relation, but also echoes the predicate information in the question.

5.3.3 Combination with char-level encoding and self-attention mechanisms

1. It can be seen that after the character information is integrated into the word encoder layer (i.e., from “Word” to “Word+Character”), it has increased by 3.3% in the model QA-S, from 56.1% to 59.4%. In the model QA-T, it increased from 67.6% to 68.8%, an increase of 1.2%.
2. After adding the self-attention mechanism to the semantic encoder layer (i.e., from “Word” to “Word+Self Attention”), it can be seen that the result of the model QA-S has improved from 56.1% to 63.7%, which improved by 7.6%; and the accuracy of the model QA-T has increased from 67.6% to 70.7%, an increase of 3.1%.
3. After adding the self-attention mechanism to the word encoder layer based on the embedding of character information (i.e., from “Word+Character” to “Word+Character+Self Attention”), the result of the model QA-S is from 59.4% to 64.0%, an increase of 4.6%; the result of the model QA-T has increased by 1.0%, from 68.8% to 69.8%.
4. After the multi-granularity encoding method is adopted on the basis of the semantic encoder layer adding the self-attention mechanism (i.e., from “Word + Self Attention”...
Figure 8 Relation weight distribution with example. As can be seen in this figure, 'genre’ has the largest weight in the relation '/music/album/genre'

to “Word+Character+Self Attention”). the result of the model QA-S has increased by 0.3%. However, the result of Model QA=T has decreased by 0.9%.

5.3.4 Combination with out-degree and notable type information

In Table 5, QA-T-w represents the method of applying char-level encoding in the multi-task end-to-end model based on weight sharing(QA-T), and QA-T-ws represents the application of self-attention mechanism on the basis of QA-Tw. “Wrong S” stands for “Wrong Subject Mention” and “Wrong P” stands for “Wrong Predicate”.

As can be seen from Table 5, after the entity tag combines the entity type information, the accuracy of the model QA-T-wt is 1.0% higher than that of the model QA-Tw, and the case of “Ambiguity” is reduced from 5.0% to 4.0%. Therefore, when the self-attention mechanism is not added, the introduction of entity type information enriches the coding information of the entity and enhances the resolving power of the model for the case of “Ambiguity”.

After adding the self-attention mechanism, the QA-T-wst model has no improvement in the final accuracy of the model compared with the QA-T-ws model, and the error rate of the entity (“Wrong S”) has increased, but its “Ambiguity” situation has dropped from 4.8% to 3.8%.

From the methods QA-T-mw and QA-T-mwst, it can be seen that the matching of the entity type and the question is a separate task, the effect of the model has been significantly

Approach	Indistinguishable	Ambiguity	Wrong_S	Wrong_P	Accuracy
QA-T-w	3.4%	5.0%	5.5%	7.4%	67.3%
QA-T-wt	3.5%	4.0%	5.8%	7.1%	68.3%
QA-T-mwt	3.5%	3.9%	5.4%	7.3%	68.6%
QA-T-ws	3.7%	4.8%	3.1%	6.8%	70.3%
QA-T-wst	3.5%	3.8%	6.9%	6.2%	68.3%
QA-T-mwst	3.5%	3.8%	3.0%	6.8%	71.5%

Data in bold is the best results in the experiment.
improved. Method QA-T-mwt is 1.3% higher than QA-T-w. Compared with the model QA-T-ws, the accuracy rate of the model QA-T-mwst has increased from 70.3% to 71.5%, increased by 1.2%, and the “Ambiguity” error rate decreased by 1.0%, while the entity label error rate (“Wrong_s”) fell by 0.1%.

In addition to using entity type information to help distinguish entities with the same name, the out-degree information is also used. Here the effect of it is shown in Table 6. It can be seen that when the out-degree information is added, the results of each method will have an improvement of about 0.4%, the highest result of the experiment in this paper is 71.8% on the SimpleQuestions dataset using the QA-T-mwst method. Therefore, combining the type information and the out-degree information can effectively improve the effect of QA.

5.3.5 Comparisons with the popular end-to-end frameworks

The relevant research results of the currently known end-to-end framework on the SimpleQuestions dataset are shown in Table 7. In the end-to-end route, the work of Lukovnikov et al. [32] is currently known to be the best, and our work uses a much less time than theirs to achieve a slightly better result than theirs, an increase of 0.6%. The best result of this paper is obtained by incorporating entity type information on a multi-task end-to-end framework using word-level encoding combined with a self-attention mechanism. Lukovnikov et al. [32] also utilized character information in the encoding of questions. They use CNN to semantically model the character sequence of each word, and then the character semantic information is incorporated into the semantic representation of the corresponding word, which is used to alleviate the OOV problem and also at the cost of partial time.

The GPU as a hardware device for deep learning is very critical, and has a great impact on the model speed. The GPU of Lukovnikov et al. [32] is slightly better than ours, and the

Table 6 Comparison of the results of the model before and after adding out-degree information

Approach	Accuracy	
	unsorted	sorted
QA-T-w	67.3%	67.6%
QA-T-ws	70.3%	70.7%
QA-T-mwst	71.5%	71.8%

Data in bold is the best results in the experiment

Table 7 Comparisons with the popular end-to-end frameworks

Approach	Accuracy
Bordes et al. [7]	62.7%
Yin et al. [64]	68.3%
Dai et al. [15]	62.6%*
Golub and He al. [19]	70.9%
Lukovnikov et al. [32]	71.2%
Our approach	71.8%

*indicates that the result is a model result when FB5M is the background KB

Data in bold is the best results in the experiment
overall computation performance of the two types of GPU listed in Table 8 are not much different. The parameters of different models to achieve the optimal results are different, and it is difficult to be generalized and fixed in some configuration. As show in Table 8, with the optimized combination of batch size and the number of epochs, our model is easier to converge, and the overall running time is less.

6 Conclusion and future work

In this paper, we comprehensively discuss and compare the impact of the entity’s out-degree, notable type information on answering single-relation factoid questions based on KBs through two different frameworks: a pipeline framework and an end-to-end framework. In the former, this task is divided into two subtasks: entity detection and relation detection. In the latter, char-level encoding and self-attention mechanisms are combined, using sharing weights and multitasking on fact selection. As the experimental results show, combining context information can improve the accuracy of QA in both frameworks. It helps to distinguish ambiguity of entities with the same name. In addition, it is observed that there are some ambiguities that cannot be resolved in limited context information. In practical applications, the combination of the questioner’s identity information (user profile information) and more context information may solve the problem to some extent. Moreover, the accuracy of QA also can benefit from the adding of char-level encoding information and self-attention mechanisms. Which can help to obtain a more accurate semantic representation of the entity, so that to find the better match of facts, therefore questions can be answered with the better answer.

In future work, the accuracy of QA will be improved from the following aspects:

1. In this paper, CNN is used to semantically encode questions, entities and relations, map them to the same semantic space, and then get the matching scores between semantic vectors by measuring the similarity of semantic vectors. However, there is no interaction between the character information of questions, entities and relations. Therefore in the subsequent research, more deep semantic matching models will be combined.

2. Two kinds of context information are mainly used in this paper: entity type and out-degree information. In the future, introducing more context information can be considered. For example, in Freebase, the entity also has the attribute “common / topic / description”, which is a holistic description of the entity. In addition, the context information of the target entity can also be tried to use as feedback to correct the results of QA.

3. It can be seen from the experimental process that the proportion of negative samples has a great influence on the training result of the model within a certain range. In the follow-up study, the negative sampling method can be further explored to further improve the training efficiency and the effect of the QA model.
References

1. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: Dbpedia: a nucleus for a Web of open data. In: The semantic Web, 6th international semantic web conference, 2nd asian semantic Web conference, ISWC 2007 + ASWC 2007, Busan, Korea, November 11-15, 2007, pp. 722–735 (2007)

2. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. In: 3rd international conference on learning representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, conference track proceedings (2015)

3. Berant, J., Chou, A., Frostig, R., Liang, P.: Semantic parsing on freebase from question-answer pairs. In: The 2013 conference on empirical methods in natural language processing, EMNLP 2013, 18-21 October 2013, Grand Hyatt Seattle, Seattle, Washington, USA, pp. 1533–1544 (2013)

4. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Int. J. Semantic Web Inf. Syst. 5(3), 1–22 (2009)

5. Bollacker, K.D., Cook, R.P., Tufts, P.: Freebase: a shared database of structured general human knowledge. In: The Twenty-Second AAAI Conference on Artificial Intelligence, July 22-26, 2007, Vancouver, British Columbia, Canada, pp. 1962–1963 (2007)

6. Bollacker, K.D., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: The ACM SIGMOD international conference on management of Data, SIGMOD 2008, Vancouver, BC, Canada, June 10-12, 2008, pp. 1247–1250 (2008)

7. Bordes, A., Usunier, N., Chopra, S., Weston, J.: Large-scale simple question answering with memory networks. arXiv:1506.02075 (2015)

8. Bordes, A., Weston, J., Usunier, N.: Open question answering with weakly supervised embedding models. In: Machine learning and knowledge discovery in databases - european conference, ECML PKDD 2014, Nancy, France, September 15-19, 2014, pp. 165–180 (2014)

9. Chah, N.: Freebase-triples: a methodology for processing the freebase data dumps. arXiv:1712.08707 (2017)

10. Cheng, J., Dong, L., Lapata, M.: Long short-term memory-networks for machine reading. In: Proceedings of the 2016 conference on empirical methods in natural language processing, EMNLP 2016, Austin, Texas, USA, November 1-4, 2016, pp. 551–561 (2016)

11. Cho, K., van Merrienboer, B., Bahdanau, D., Bengio, Y.: On the properties of neural machine translation: encoder-decoder approaches. In: Proceedings of SSST@EMNLP 2014, eighth workshop on syntax, semantics and structure in statistical translation, Doha, Qatar, 25 October 2014, pp. 103–111 (2014)

12. Choi, E., Kwiatkowski, T., Zettlemoyer, L.: Scalable semantic parsing with partial ontologies. In: The 53rd annual meeting of the association for computational linguistics and the 7th international joint conference on natural language processing of the asian federation of natural language processing, ACL 2015, July 26-31, 2015, Beijing, China, pp. 1311–1320 (2015)

13. Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv:1412.3555 (2014)

14. Cui, W., Xiao, Y., Wang, H., Song, Y., Hwang, S., Wang, W.: KBQA: Learning question answering over QA corpora and knowledge bases. VLDB Endow. 10(5), 565–576 (2017)

15. Dai, Z., Li, L., Xu, W.: CFO: conditional focused neural question answering with large-scale knowledge bases. In: Proceedings of the 54th annual meeting of the association for computational linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany (2016)

16. Das, S., Srinivasan, J.: Database technologies for RDF. In: 5th international summer school 2009, Brixen-Bressanone, Italy, August 30 - September 4, 2009, tutorial lectures, pp. 205–221 (2009)

17. Dong, X., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K., Strohmann, T., Sun, S., Zhang, W.: Knowledge vault: a Web-scale approach to probabilistic knowledge fusion. In: The 20th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’14, New York, NY, USA - August 24 - 27, 2014, pp. 601–610 (2014)

18. Du, L., Kumar, A., Johnson, M., Ciaramita, M.: Using entity information from a knowledge base to improve relation extraction. In: The australasian language technology association workshop, ALTA 2015, Parramatta, Australia, December 8 - 9, 2015, pp. 31–38 (2015)

19. Golub, D., He, X.: Character-level question answering with attention. In: Proceedings of the 2016 conference on empirical methods in natural language processing, EMNLP 2016, Austin, Texas, USA, November 1-4, 2016, pp. 1598–1607 (2016)

20. Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw. 18(5-6), 602–610 (2005)

21. Hao, Y., Liu, H., He, S., Liu, K., Zhao, J.: Pattern-revising enhanced simple question answering over knowledge bases. In: The 27th international conference on computational linguistics, COLING 2018, Santa Fe, New Mexico, USA, August 20-26, 2018, pp. 3272–3282 (2018)
22. Hao, Y., Zhang, Y., Liu, K., He, S., Liu, Z., Wu, H., Zhao, J.: An end-to-end model for question answering over knowledge base with cross-attention combining global knowledge. In: The 55th annual meeting of the association for computational linguistics, ACL 2017, Vancouver, Canada, July 30 - August 4, pp. 221–231 (2017)

23. Hashimoto, K., Xiong, C., Tsuruoka, Y., Socher, R.: A joint many-task model: Growing a neural network for multiple NLP tasks. In: Proceedings of the 2017 conference on empirical methods in natural language processing, EMNLP 2017, Copenhagen, Denmark, September 9-11, 2017, pp. 1923–1933 (2017)

24. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv:1207.0580 (2012)

25. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

26. Indurthi, S.R., Yu, S., Back, S., Cuayahuitl, H.: Cut to the chase: a context zoom-in network for reading comprehension. In: The 2018 conference on empirical methods in natural language processing, Brussels, Belgium, October 31 - November 4, 2018, pp. 570–575 (2018)

27. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 3rd international conference on learning representations, ICLR 2015, San Diego, CA, USA, May 7-9 (2015)

28. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems 25: 26th annual conference on neural information processing systems 2012. Lake Tahoe, Nevada, United States, December 3-6, 2012, pp. 1106–1114 (2012)

29. Kwiatkowski, T., Zettlemoyer, L.S., Goldwater, S., Steedman, M.: Lexical generalization in CCG grammar induction for semantic parsing. In: The 2011 conference on empirical methods in natural language processing, EMNLP 2011, 27-31 July 2011, pp. 1512–1523 (2011)

30. Li, Y.: Research and analysis of semantic search technology based on knowledge graph. In: 2017 IEEE international conference on computational science and engineering, CSE 2017, and IEEE international conference on embedded and ubiquitous computing, EUC 2017, Guangzhou, China, July 21-24, 2017, pp. 887–890 (2017)

31. Liang, P., Jordan, M.I., Klein, D.: Learning dependency-based compositional semantics. Comput. Linguistics 39(2), 389–446 (2013)

32. Lukovnikov, D., Fischer, A., Lehmann, J., Auer, S.: Neural network-based question answering over knowledge graphs on word and character level. In: The 26th international conference on World Wide Web, WWW 2017, Perth, Australia, April 3-7, 2017, pp. 1211–1220 (2017)

33. Luong, M., Pham, H., Manning, C.D.: Effective approaches to attention-based neural machine translation. In: Proceedings of the 2015 conference on empirical methods in natural language processing, EMNLP 2015, Lisbon, Portugal, September 17-21, 2015, pp. 1412–1421 (2015)

34. Mensio, M., Rizzo, G., Morisio, M.: Multi-turn QA: a RNN contextual approach to intent classification for goal-oriented systems. In: The Web conference 2018, WWW 2018, Lyon, France, April 23-27, 2018, pp. 1075–1080 (2018)

35. Navigli, R., Ponzetto, S.P.: Babelnet: the automatic construction, evaluation and application of a wide-coverage multilingual semantic network. Artif. Intell. 193, 217–250 (2012)

36. Niu, X., Sun, X., Wang, H., Rong, S., Qi, G., Yu, Y.: Zhishi.Me - weaving chinese linking open data. In: The semantic Web - ISWC 2011 - 10th international semantic Web conference, Bonn, Germany, October 23-27, 2011, pp. 205–220 (2011)

37. Paulus, R., Xiong, C., Socher, R.: A deep reinforced model for abstractive summarization. In: 6th international conference on learning representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3 (2018)

38. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: The 2014 conference on empirical methods in natural language processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, pp. 1532–1543 (2014)

39. Qiao, L., Yang, L., Hong, D., Yao, L., Zhiguang, Q.: Knowledge graph construction techniques. J. Comput. Res. Develop. 53(3), 582–600 (2016)

40. Rei, M.: Semi-supervised multitask learning for sequence labeling. In: Proceedings of the 55th annual meeting of the association for computational linguistics, ACL 2017, Vancouver, Canada, July 30 - August 4, pp. 2121–2130 (2017)

41. Shen, T., Zhou, T., Long, G., Jiang, J., Pan, S., Zhang, C.: Disan: directional self-attention network for rnn/cnn-free language understanding. In: Proceedings of the thirty-second AAAI conference on artificial intelligence, (AAAI-18), the 30th innovative applications of artificial intelligence (IAAI-18), and the 8th AAAI symposium on educational advances in artificial intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, pp. 5446–5455 (2018)

42. Søgaard, A., Goldberg, Y.: Deep multi-task learning with low level tasks supervised at lower layers. In: The 54th annual meeting of the association for computational linguistics, ACL 2016, August 7-12 2016, Berlin, Germany (2016)
43. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In: The 16th international conference on World Wide Web, WWW 2007, Banff, Alberta, Canada, May 8-12, 2007, pp. 697–706 (2007)

44. Tang, C., Rao, Y., Yu, H., Cheng, J.: Research progress of knowledge graph based on knowledge base embedding. In: 4th international conference of pioneering computer scientists, engineers and educators, ICPCSSEE 2018, Zhengzhou, China, September 21-23, 2018, pp. 176–191 (2018)

45. Türe, F., Jojic, O.: No need to pay attention: simple recurrent neural networks work! In: The 2017 conference on empirical methods in natural language processing, EMNLP 2017, Copenhagen, Denmark, September 9-11, 2017, pp. 2866–2872 (2017)

46. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is All You Need. In: Advances in neural information processing systems 30: annual conference on neural information processing systems 2017, 4-9 December 2017, Long Beach, CA, USA, pp. 5998–6008 (2017)

47. Virgilio, R.D., Nostro, P.D., Gianforme, G., Paolozzi, S.: A metamodel approach to semantic Web data management. In: Virgilio, R.D., Giunchiglia, F., Tanca, L. (eds.) Semantic Web information management - a model-based perspective, pp. 67–91. Springer, New York (2009)

48. Vrandecic, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Commun. ACM 57(10), 78–85 (2014)

49. Wan, Y., Xu, G., Chen, L., Zhao, Z., Wu, J.: Exploiting cross-source knowledge for warming up community question answering services. Neurocomputing 320, 25–34 (2018)

50. Wang, L., Wang, Y., Shao, L., Li, X., Gao, J., Zhao, W., Shen, K., Sun, M., Jia, R., Liu, J.: Multi-perspective context aggregation for semi-supervised cloze-style reading comprehension. In: Proceedings of the 27th international conference on computational linguistics, COLING 2018, Santa Fe, New Mexico, USA, August 20-26, 2018, pp. 857–867 (2018)

51. Wang, L., Wang, Y., Gao, J., Li, X., Gao, J.: Deep adaptive feature embedding with local sample distributions for person re-identification. In: Pattern Recognit., vol. 73, pp. 275–288 (2018)

52. Wang, Z., Li, J., Wang, Z., Li, S., Li, M., Zhang, D., Shi, Y., Liu, Y., Zhang, P., Tang, J.: Xlore: a large-scale english-chinese bilingual knowledge graph. In: The ISWC 2013 Posters & Demonstrations Track, Sydney, Australia, October 23, 2013, pp. 121–124 (2013)

53. Wu, L., Wang, Y., Gao, J., Li, X.: Deep attention-based spatially recursive networks for fine-grained visual recognition. IEEE Trans. Cybern. 49(5), 1791–1802 (2019)

54. Wu, L., Wang, Y., Shao, L., Cui, W., Xiao, Y.: 3-D personvlad: learning deep global representations for video-based person re-identification. In: 10th International Conference on Knowledge-Based Intelligent Information and Engineering Systems, KES 2016, Lecture Notes in Computer Science, vol. 9893, pp. 189–198 (2016)

55. Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A.C., Salakhutdinov, R., Zemel, R.S., Bengio, Y.: Show, attend and tell: neural image caption generation with visual attention. In: Proceedings of the 32nd international conference on machine learning, ICML 2015, Lille, France, 6-11 July 2015, pp. 2048–2057 (2015)

56. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. In: 3rd international conference on learning representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015 (2015)

57. Yin, W., Yu, M., Xiang, B., Zhou, B., Schütze, H.: Simple question answering by attentive convolutional neural network. In: COLING 2016, 26th international conference on computational linguistics,
proceedings of the conference: technical papers, December 11-16, 2016, Osaka, Japan, 1746–1756, ACL. https://www.aclweb.org/anthology/C16-1164/ (2016)
65. Zhang, H., Xu, G., Liang, X., Xu, G., Li, F., Fu, K., Wang, L., Huang, T.: An attention-based word-level interaction model for knowledge base relation detection. IEEE Access 6, 75429–75441 (2018)
66. Zhang, J., Li, W., Ogunbona, P.: Cross-dataset recognition: A survey. arXiv:1705.04396 (2017)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Affiliations

Lin Li1 · Mengjing Zhang1 · Zhaohui Chao1 · Jianwen Xiang1

Mengjing Zhang
zhangmengjing@whut.edu.cn

Zhaohui Chao
chaozhaohui@whut.edu.cn

Jianwen Xiang
xiangjw@gmail.com

1 School of Computer Science and Technology, Wuhan University of Technology, Wuhan, China