The roles of beta-adrenergic receptors in tumorigenesis and the possible use of beta-adrenergic blockers for cancer treatment: possible genetic and cell-signaling mechanisms

Khanh vinh quốc Lương
Lan Thi Hoàng Nguyễn
Vietnamese American Medical Research Foundation, Westminster, California, USA

Abstract: Cancer is the leading cause of death in the USA, and the incidence of cancer increases dramatically with age. Beta-adrenergic blockers appear to have a beneficial clinical effect in cancer patients. In this paper, we review the evidence of an association between β-adrenergic blockade and cancer. Genetic studies have provided the opportunity to determine which proteins link β-adrenergic blockade to cancer pathology. In particular, this link involves the major histocompatibility complex class II molecules, the renin–angiotensin system, transcription factor nuclear factor-kappa-light-chain-enhancer of activated B cells, poly(ADP-ribose) polymerase-1, vascular endothelial growth factor, and the reduced form of nicotinamide adenine dinucleotide phosphate oxidase. Beta-adrenergic blockers also exert anticancer effects through non-genomic factors, including matrix metalloproteinase, mitogen-activated protein kinase pathways, prostaglandins, cyclooxygenase-2, oxidative stress, and nitric oxide synthase. In conclusion, β-adrenergic blockade may play a beneficial role in cancer treatment. Additional investigations that examine β-adrenergic blockers as cancer therapeutics are required to further elucidate this role.

Keywords: β-adrenergic blocker, neoplasm, β-adrenergic antagonism, non-genomic factor

Introduction
The relationship between β-adrenergic antagonism and cancer has been well established in the literature. The function of β-adrenergic receptors was demonstrated in the cell membranes of breast cancer cells by the significant increase in cyclic adenosine monophosphate (cAMP) production induced by different concentrations of isoproterenol compared with cells that were unstimulated (control).1 Further, β-adrenergic receptors were implicated in the regulation of cell growth in lung cancer cell lines via the cAMP signaling pathway.2,3 Beta-adrenergic receptors were more highly expressed in oral squamous-cell carcinomas than in normal controls cells, and their expression was correlated with cervical lymph node metastasis, age, tumor size, and clinical stage.4 The β2-adrenergic receptor density in hepatocellular carcinoma (HCC) cellular membranes was higher than the β1-adrenergic receptor density in nonadjacent non-tumor liver cell membranes.5 Isoproterenol significantly increased cell proliferation via β-adrenergic receptors in a dose-dependent manner, with the concomitant activation of the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) signaling pathway in pancreatic cancer cells.6 In several experimental cancer models, the activation of the sympathetic nervous system promotes the metastasis of solid epithelial
tumors and the dissemination of hematopoietic malignancies via the β-adrenergic receptor-mediated activation of protein kinase A (PKA) and the activation of exchange proteins by the adenylate cyclase signaling pathways. Interestingly, common haplotypes of the β2-adrenergic receptor, which affect its translational efficiency, are associated with longevity in men and the level of β2-adrenergic receptor protein is inversely associated with male lifespan. These findings may well have clinical implications for treating patients with β-adrenergic receptor agonists or antagonists.

Beta-blockers, used in a clinical context, reduced the rates of progression of several solid tumors. Chronic stress can accelerate the progression of human acute lymphoblastic leukemia via β-adrenergic signaling. Psychological stress promotes the progression of pancreatic cancer xenografts via neurotransmitter-induced activation of multiple pathways and increases systemic and tumor levels of norepinephrine (NE), epinephrine, cortisol, vascular endothelial growth factor (VEGF), and cAMP. Social stress also stimulates non-small cell lung carcinoma (NSCLC) by increasing nicotinic acetylcholine receptor-mediated stress neurotransmitter signaling. These findings are consistent with sympathetic effects on cell growth in cancer.

Epinephrine significantly increased the esophageal squamous-cell carcinoma cell proliferation that accompanied the elevation of intracellular cAMP levels, which were decreased by β-adrenergic antagonists. The development of lumbar lymph node metastases of human prostate cancer cells in athymic BALB/c nude mice increased with the application of NE via micro-osmotic pumps, and propranolol inhibited this effect. Exposure to nicotine either by tobacco smoke or nicotine supplements facilitates the growth and progression of NSCLC, and pharmacological intervention with β-blockers may lower the risk of NSCLC development among smokers. In elderly malnourished cancer patients, atenolol and propranolol treatment reduced resting energy expenditure, and propranolol decreased patient’s basal metabolic rates. Beta-blockers have also been associated with reduced prostate cancer-specific mortality, a 54% reduction in epithelial ovarian cancer death, a reduced risk in progression of thick malignant melanoma, the inhibition of astrocytoma cell proliferation, the induction of human gastric cancer cell apoptosis, the stimulation of cell cycle arrest, and the prevention of pancreatic cancer. In breast cancer, β-blocker use improved relapse-free survival in all patients with breast cancer; this effect was particular pronounced in patients with triple-negative breast cancer. The use of β-blockers resulted in a 57% reduction in the risk of metastasis and a 71% reduction in the 10-year mortality rate, and β-blockers could potentially be administered concomitantly with chemotherapy to increase treatment efficacy in breast cancer patients.

Following β-adrenergic-receptor stimulation, receptor activator of nuclear factor kappa-B ligand (RANKL) expression was induced in bone marrow osteoblasts and increased the migration of metastatic breast cancer MDA-231 cells in vitro. Further, RANKL expression can be blocked with the β-blocker propranolol in MDA-231 cells. Beta-blockers and drugs that interfere with RANKL signaling, such as denosumab, could increase patient survival if used as an adjuvant therapy to inhibit the early colonization of bone by metastatic breast cancer cells. In a retrospective study, propranolol treatment decreased the incidence of HCC in patients with compensated hepatitis C virus cirrhosis. Carvedilol was a very potent inhibitor of cell proliferation in cells derived from breast tumors (MDA-MB-361), melanoma (Fem-x), cervix adenocarcinomas (HeLa) and human myelogenous leukemia. In addition, ICI 118551, a β2-adrenoceptor blocker, significantly synergized the antiproliferative and pro-apoptotic effects induced by gemcitabine to inhibit the proliferation of pancreatic cancer cells. The use of propranolol as an adjunctive treatment has been reported for severe recurrent respiratory papillomatosis. Propranolol enhanced the sensitivity of gastric cancer cells to radiation by inhibiting β-adrenergic receptors and the downstream nuclear factor kappa-B cells (NF-κB)-VEGF/epidermal growth factor receptor/cyclooxygenase (COX)-2 pathway. Propranolol also had antiproliferative and apoptotic effects on multiple myeloma cells. These findings suggest that β-adrenergic blockade might play a role in cancer treatment.

Based on the evidence described above, in this review, we discuss the role of β-adrenergic blockers in cancer.

Figure 1 illustrates the signaling pathways and their connections to β-adrenergic receptors.

Genetic factors that relate to β-adrenergic inhibition and cancer

The major histocompatibility complex (MHC) class II molecules play an important role in the immune system and are essential in the defense against infection. The human MHC class II molecules are encoded by three different human leukocytic antigen (HLA) isotypes: HLA-DR, HLA-DQ, and HLA-DP. Published studies have suggested that several genes within the MHC region promote cancer susceptibility. A chimeric DR4 homozygous transgenic mouse line was reported to spontaneously develop diverse hematological
malignancies at a high frequency. Most of these neoplasms were highly similar to the types of neoplasms that are found in human diseases. HLA-DR antigen expression was correlated with histopathological type and with the degree of cell differentiation in cutaneous squamous-cell carcinomas. In southern Tunisia, the DRB1*03 and DR-B1*13 alleles were significantly more frequent in patients with nasopharyngeal carcinoma (NPC). The DRI gene was shown to be strongly associated with thyroid carcinoma. HLA-DR was also increased in poorly differentiated thyroid carcinoma and in the anaplastic type of this carcinoma in particular. In Chinese populations, the DQA1*0102 and DPB1*0501 alleles have been reported to be significantly more common in patients with HCC than in controls. Among Korean study populations, the frequency of the DRB1*0404 allele was significantly higher in gastric cancer patients than in gastritis patients. However, the frequencies of the DRB1*0405 and DQB1*0401 alleles were increased in Japanese patients with intestinal-type gastric cancer compared with controls. Somatic mutations affecting HLA class II genes may lead to a loss of HLA class II expression due to the formation of microsatellites in unstable colorectal carcinomas (CRCs). The DRB1*15 allele and the DRB1*15 DQB1*0602 haplotype have been associated with human papillomavirus-16 positive invasive cervical cancer in Mexican women. It has been demonstrated that the DRB1*0410 allele is the susceptibility allele in Japanese patients with testicular germ cell carcinoma. Furthermore, the frequencies of the DRB1*09 and DQB1*03 alleles were increased in patients with non-Hodgkin’s lymphoma and diffuse large B-cell lymphoma compared with normal controls. In a study of Turkish children, the frequencies of the DRB1*04 and DRB1*15 alleles were significantly higher in patients with acute leukemia than in controls. In Eastern Canada, the DRB1*16 allele was a marker for a significant risk of chronic myelogenous leukemia. The DRB1*04 and DRB5 alleles were associated with disease progression in Iranian patients with chronic lymphocytic leukemia. Moreover, cardiac β-adrenergic receptors and adenylate cyclase activity in dilated cardiomyopathy were shown to be modulated by circulating autoantibodies against the cardiac β1-adrenoceptor; the presence of these autoantibodies is controlled by the HLA-DR. Furthermore, propranolol-abrogated interferon-gamma increased HLA class II expression and interleukin-1-beta (IL-1β) secretion. HLA-DR was significantly reduced in the lymphocytes of carvedilol-treated chronic heart failure patients. These findings suggest that β-adrenergic blockers may have an effect on cancer by suppressing the expression of MHC class II antigens.

The primary function of the renin–angiotensin system (RAS) is to maintain fluid homeostasis and regulate blood pressure. The angiotensin-converting enzyme (ACE) is a key enzyme in the RAS that converts angiotensin (AT) I to the potent vasoconstrictor AT II. The local RAS may influence tissue angiogenesis, cellular proliferation, apoptosis, and inflammation. Epidemiological and experimental studies have suggested that the RAS might contribute to the paracrine regulation of tumor growth. Renin levels are elevated in patients with liver cirrhosis and HCC and have been positively correlated with α-fetoprotein. The overexpression

![Diagram](image_url)
of ACE has been reported in extra-hepatic cholangio-carcinoma,55 leukemic myeloid blast cells,56 and macrophages in the lymph nodes of Hodgkin’s disease patients.57 AT II receptors were also shown to be expressed in all human gastric cancer lines,58 premalignant and malignant prostate cells,59 human lung cancer xenografts,60 and ovarian cancer.61 The RAS mutation in codon 61 was the most common genetic alteration in poorly differentiated thyroid carcinomas.62 The ACE I/D polymorphism has been identified as a possible target for developing genetic markers for breast cancer in Brazilian women.63 The ACE I/D polymorphisms were shown to play an important role in breast cancer risk and disease-free survival in Caucasian postmenopausal women.64 Carriers of the high-activity DD genotype exhibited an increased risk of breast cancer compared with low activity II/ID genotype carriers.65 The DD genotype was associated with patients with an aggressive stage of prostate cancer.66 ACE2 expression was decreased in NSCLC and in pancreatic ductal adenocarcinoma, in which AT II levels were higher than in controls.67,68 ACE2 has been suggested as a potential molecular target for pancreatic cancer therapy.69 The AT II concentration was significantly higher in the gastric cancer region than in adjacent tissue.70 Furthermore, angiotensin II-receptor blockers suppressed the cell proliferation effects of AT II in breast cancer cells.71 The addition of ACE inhibitors or angiotensin II-receptor blockers to platinum-based first-line chemotherapy contributed to prolonged survival in patients with advanced lung cancer72 and positively affected the prognosis of advanced pancreatic cancer patients receiving gemcitabine.73 RAS inhibitors also improved the outcome of sunitinib treatment in metastatic renal cell carcinoma.74

Moreover, catecholamines can alter the release of AT II. Ming et al75 demonstrated that isoproterenol enhances the stimulatory effect of dexamethasone on the expression of the AT gene via β\textsubscript{2}-adrenergic receptors in mouse hepatoma cells. Isoproterenol promoted an increase in the release of AT II from isolated perfused mesenteric arteries, and this release was blocked by propranolol.76 In other studies, isoproterenol also increased the secretion of AT II in neuronal cultures, cultured bovine aortic endothelial cells, and the brachial arteries of hypertensive subjects.77,78 Propranolol treatment reduced plasma renin activity, AT I, AT II, and AT \textsubscript{1,2} in the portal vein and periphery in cirrhotic patients compared with non-treated patients.80 Carvedilol inhibited basal and stimulated ACE production in human endothelial cells81 and exhibited beneficial effects on ACE activity and plasma renin activity levels in chronic heart failure patients.82 In addition, proliferating infantile hemangioma expressed two essential components of the RAS, namely ACE and the AT II receptor, that accounted for the propranolol-induced accelerated involution of large proliferating infantile hemangioma.83–85 Thus, taken together, these findings suggest that the RAS is activated in cancer patients and β-adrenergic blockers may play a role in cancer by modulating the RAS.

The transcription factor NF-κB is a hetero-dimeric, sequence-specific transcription factor that is expressed in many cell types. NF-κB has been implicated in chronic inflammatory diseases and is a key regulator of genes that are involved in responses to infection, inflammation, and stress. The NF-κB family of transcription factors plays a crucial role in inflammation as well as in the development and progression of cancer. The NF-κB pathway is dysregulated in prostate cancer and has been implicated in the progression to the androgen-independent state that ultimately leads to patient death.86 NF-κB activity has been correlated with the progression and prognosis of pancreatic cancer in a mouse model.87 NF-κB expression was higher in renal cancer specimens than in a control group,88 and NF-κB is known to play an important role in endometrial cancer pathogenesis.89 NF-κB signaling is important for medulloblastoma tumor growth, and the inhibition of NF-κB reduced tumor size and viability in vivo.90 It has been reported that the association of the RE-1-silencing transcription factor with NF-κB increases risks of CRC, colon cancer, and rectal cancer.91 NF-κB alleles are associated with oral carcinogenesis.92 NF-κB, and NF-κBIA polymorphisms are associated with an increased risk for sporadic colorectal cancer in a southern Chinese population.93 A homozygous NFκBα rs17103265 deletion is a novel genetic risk factor for gastric carcinogenesis, particularly for the development of certain subtypes of gastric cancer in a southern Chinese population.94 NFκB\textsubscript{1} insertion/deletion promoter polymorphism increases the risk of advanced ovarian cancer in Chinese populations.95 The functional NFκB\textsubscript{1} 94 insertion/deletion ATTG (adenine-thymidine-thymidine-guanine) polymorphism was associated with cervical squamous-cell carcinoma, particularly in individuals who were 35 years of age or younger.96 A meta-analysis revealed that a common insertion/deletion (NFκB\textsubscript{1} -94 insertion/deletion ATTG, rs28362491) polymorphism in the NFκB\textsubscript{1} gene might be associated with a decreased cancer risk, especially in Asian populations.97 Moreover, cardiac collagen volume fraction and apoptotic cell numbers were elevated in ketamine-treated rats compared with control animals; these effects were prevented by the co-administration of metoprolol. The NFκB cells were increased after ketamine treatment and sharply reduced after metoprolol administration.98 Carvedilol
blocked in vitro human peripheral blood T-cell activation by downregulating NF-κB activity. Propranolol repressed gastric cancer cell growth through downstream NF-κB. Beta-2-adrenergic antagonists suppressed the activation of NF-κB and potentiated the antiproliferative effects of gemcitabine by inducing apoptosis in pancreatic cancer cells. Taken together, the evidence indicates that β-adrenergic antagonists may suppress NF-κB activation in cancer.

Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear protein that contributes to both cell death and survival under stressful conditions. PARP-1 catalytic activity is stimulated by DNA strand breaks. Parp-1-deficient cells exhibited enhanced sensitivity to the lethal effects of ionizing radiation and alkylating agents, whereas Parp-1 knock-out mice developed spontaneous mammary and liver tumors. The overexpression of PARP-1 has been reported in Ewing’s sarcoma, malignant lymphomas, CRC, HCC, breast cancer, pediatric central nervous system tumors, and ovarian cancer. In a meta-analysis, PARP-1 mRNA expression was correlated with higher grades, medullary histological types, tumor sizes, worse metastasis-free survival rates, and decreased overall survival rates in human breast cancer. PARP-1 polymorphisms have been associated with gastric cancer, prostate cancer, esophageal squamous-cell carcinoma, and lung cancer in Han Chinese individuals but with a reduced risk of non-Hodgkin lymphoma in Korean males. PARP-1 polymorphism reduced PARP-1 catalytic activity by 30%-40%. A meta-analysis found no significant association between PARP-1 V762 polymorphism and cancer risk. However, the A variant allele of the PARP-1 V762 polymorphism was associated with an increased risk of cancer among the Asian population but a decreased risk among Caucasians, particularly with respect to glioma. Moreover, rabbits treated with ketamine exhibited decreased left ventricular ejection fractions, reduced ventricular conduction velocity, and increased susceptibility to ventricular arrhythmia. Metoprolol treatment prevented these pathophysiological alterations. The expression of PARP-1 and apoptosis-inducing factor were increased after ketamine treatment and sharply reduced after metoprolol administration. Propranolol treatment markedly suppressed PARP activation in the skeletal muscle biopsies of pediatric burn patients. Propranolol also protected against staurosporine-induced DNA fragmentation and PARP cleavage in SH-SY5Y neuroblastoma cells. The nonselective β-blocker carvedilol significantly inhibited apoptosis and suppressed activated PARP-1 cleavage in human cardiac tissue. Carvedilol significantly decreased ischemiareperfusion-induced poly- and mono(ADP-ribo)sylation in heart perfusion and in a rheological model. Carvedilol also decreased PARP activity in the hippocampus and protected neurons against death after transient forebrain ischemia. Metipranol blunted sodium nitroprusside-induced breakdown of PARP-1 in rat eyes and retina. These findings suggest that PARP-1 is activated in cancer patients and β-adrenergic antagonists may have an effect on cancer by suppressing PARP-1.

Angiogenesis is a complex process that involves the coordinated steps of endothelial cell activation, proliferation, migration, tube formation, and capillary sprouting and requires the participation of many intracellular signaling pathways. VEGF is a key mediator of angiogenesis. Vascular changes associated with angiogenesis typically occur in cancer, but they have also been reported in inflammatory diseases. Statistically significant increases in VEGF expression relative to normal tissue have been reported in gastric cancer tissue, urothelial cell carcinoma of the urinary bladder, pancreatic cancer, thyroid cancer, esophageogastric cancer, gastric cancer, osteosarcoma, HCC, inflammatory breast cancer, and ovarian cancer. VEGF polymorphisms were found to be a critical risk factor for genetic susceptibility to lung cancers in the ethnic Han Chinese of North China. A meta-analysis has suggested that the VEGF-400T/C, VEGF-634G/C, and VEGF-2578C/A gene polymorphisms are associated with CRC. A weak association between the VEGF+405G/C polymorphism and malignancy susceptibility was reported in an African population. VEGF-A and VEGF-D overexpression suggested poor prognosis in patients with gastric cancer and VEGF was identified as a marker of poor prognosis for patients with head and neck cancer. NE and isoproterenol significantly enhanced VEGF production in the ovarian cell lines and cultured NPC tumor cells. These effects were blocked by the β-adrenergic antagonist propranolol, supporting a role for β-adrenergic receptors in these effects. NE also induced the invasiveness of all NPC cell lines in a dose-dependent manner, which was blocked by propranolol. Propranolol significantly decreased VEGF activity in a phorbol myristate acetate-activated human leukemic cell line. Further, propranolol repressed gastric cancer cell growth through downstream effects on VEGF. NE increased the expression of VEGF and this effect was inhibited by propranolol in pancreatic cancer cells. In addition, epinephrine enhanced the expression of VEGF in colon adenocarcinoma cells. The stimulatory action of
adrenaline on colon cancer growth was blocked by atenolol and ICI-118,551, which are β1 and β2-selective antagonists, respectively. These findings suggest that β-adrenergic antagonists may modulate VEGF expression in cancer.

The reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) enzyme complex mediates critical physiological and pathological processes including cell signaling, inflammation, and mitogenesis through the generation of reactive oxygen species (ROS) from molecular oxygen. It has been demonstrated that NOX1 is required for Ras oncogene-induced cell transformation.144 The NOX subunit p22phox was reported to inhibit the function of the tumor suppressor protein tuberin in renal carcinoma cells.145 The activation of NOXs has been demonstrated in the development of numerous cancers, including melanoma,146 leukemia,147 esophageal adenocarcinoma,148 HCC,149 prostate cancer,150 colon cancer,151 glioblastoma multiforme,152 and multiple myeloma.153 NADPH polymorphisms were reported to be associated with myelodysplastic syndrome, de novo acute myeloid leukemia,154,155 esophageal cancer,156 lung cancer,157,158 non-Hodgkin lymphoma,159 childhood acute leukemia,160 postmenopausal breast cancer,161 and gastric cancer.162 Moreover, nebivolol, a third-generation selective β-adrenoceptor antagonist, improved left ventricle dysfunction and survival early after myocardial ischemia and inhibited cardiac NOX activation.163 Treatment with nebivolol was associated with improvement in insulin resistance, reduced proteinuria, and decreased NOX activity/levels of ROS in kidney and skeletal muscle tissue in the transgenic TG(mRen2)27 rat.164,165 Nebivolol also improved diastolic relaxation, fibrosis, and remodeling in Zucker obese rats, with reductions in NOX-dependent superoxide.166 Carvedilol attenuated the increased protein expression of NOX subunits in the heart and kidney in daunorubicin-induced cardiotoxicity and nephrotoxicity in rats.167 NOX activity in whole blood and isolated neutrophils was inhibited in a dose-dependent manner by nebivolol, whereas atenolol, metoprolol, and carvedilol were markedly less effective in Watanabe heritable hyperlipidemic rabbits.168 Celiprolol, a specific β1-antagonist with weak β2-agonistic action, suppressed NOX p22phox, p47phox, gp91phox, and NOX1 expression in the left ventricle of deoxycorticosterone acetate-salt hypertensive rats.169 Thus, taken together, findings suggest that β-adrenergic antagonists may have a role in cancer by suppressing NADPH expression.

The role of β-adrenergic blockers in cancer
Matrix metalloproteinases (MMPs) are proteolytic enzymes that are responsible for extracellular matrix remodeling and the regulation of leukocyte migration through the extracellular matrix, an important step in inflammatory and infectious pathophysiology. MMPs are produced by many types of cells, including lymphocytes, granulocytes, astrocytes, and activated macrophages. Activation of MMPs contributes to tumor angiogenesis and metastasis. MMP-1 expression has been linked to sarcoma cell invasion.170 MMP-2 expression has been found increased in gastric cancer cells171 and CRC.171 MMP-9 was shown to be expressed in many cancer cells, including those associated with NSCLC,172 lymph node metastasis in human breast cancer,173 ovarian cancer invasion and metastasis,174 glioblastoma multiforme,175 and adamantinous craniopharyndioma.176 The secretion of MMP-2 and MMP-9 by leukemic cells increased the permeability of the blood–brain barrier of the central nervous system by disrupting tight junction proteins.177 In gastric cancer, MMP-2 and MMP-9 were shown to play important roles in tumor invasion and metastasis.178 The risks for the development of hypophyseal adenoma and cervical neoplasia were greater in patients with MMP-1 polymorphisms than in those with the wild-type allele.179 The MMP-2 polymorphism contributed to prostate cancer susceptibility in Northern India180 and to the clinical outcomes of Chinese patients with NSCLC treated with first-line platinum-based chemotherapy.181 The MMP-7 polymorphisms were associated with esophageal squamous-cell carcinoma, gastric cardiac adenocarcinoma, NSCLC, and CRC.115,160,181 The single-nucleotide polymorphisms (SNPs) in the MMP-2 and MMP-9 region are associated with susceptibility to head and neck squamous-cell carcinoma in an Indian population.184 The SNPs of genes encoding MMPs (MMP-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, MMP-12, MMP-13, and MMP-21) were shown to be related to breast cancer risk, progression, and survival.185 Based on a meta-analysis, an MMP-2 allele (−1306T) may be a protective factor against digestive cancer risk.186 The MMP-9 polymorphism was associated with a lower risk of CRC187 and polymorphisms in the promoter regions of MMP-1, MMP-3, MMP-7, and MMP-9 were associated with metastasis in certain cancers.188 A meta-analysis revealed that polymorphisms of MMP-1 (−1607) and MMP-3 (−1612) increase the risk of CRC.189 Moreover, propranolol inhibited tubulogenesis of human brain endothelial cells and MMP-9 secretion.190 A selective β1-adrenoceptor agonist prevented human myometrial remodeling and the activation of MMP-2 and MMP-9 in an in vitro model of chorioamnionitis.191 NE treatment increased MMP-2 and MMP-9 levels in cultured NPC tumor cells, which was inhibited by propranolol. NE also induced the invasiveness of all NPC cell lines in
a dose-dependent manner, which could be blocked by an MMP inhibitor and propranolol. Propranolol significantly decreased MMP-2 activity in a phorbol myristate acetate-activated human leukemic cell line. Propranolol-induced growth inhibition was associated with G_0/G_1 arrest, G_2/M arrest, and repressed gastric cancer cell growth through the downstream inhibition of MMP-2 and MMP-9. NE increased the expression of MMP-2 and MMP-9 and these effects were inhibited by propranolol in pancreatic cancer cells. Epinephrine upregulated MMP-9 activity in human colon adenocarcinoma HT-29 cells, which was blocked by atenolol, a β_1-selective adrenergic antagonist, or ICI-118,551, a β_2-selective adrenergic antagonist. These studies suggested that β-adrenergic antagonists may play an important role in the pathological process of cancer by downregulating the level of MMPs and regulating the level of tissue inhibitors of metalloproteinases.

The MAPK pathways provide a key link between the membrane-bound receptors that receive these cues and changes in the pattern of gene expression, including the ERK cascade, the stress-activated protein kinases/c-jun N-terminal kinase (JNK) cascade, and the p38 MAPK/high osmolarity glycerol HOG cascade. MAPK activation was higher in renal cancer specimens than in control group specimens. Renal tumor diameter and grade increase were directly correlated with p38 MAPK expression. The p38 levels were significantly higher in the HCC patients with a larger tumor (>3 cm) and satellite tumors, and were significantly correlated with p-JNK levels. High p38 and low p-JNK expression was associated with poor survival in HCC patients. Increased MAPK activity and mitogen-activated protein kinase phosphatase-1 overexpression were associated with the carcinogenesis of human gastric adenocarcinoma. Overexpression of the Ras and MAPK proteins (Ras p21, ERK-1, JNK-1, and p38) conferred a progressive tendency toward invasive growth, advanced-stage cancer, and decreased levels of estrogen receptor-α protein in advanced-stage human breast cancer. The MAPK pathway was shown to be critical to oncogenic signaling in the majority of patients with malignant melanoma. The tumor suppressive actions of transforming growth factor beta-1 decreased cell viability and induced apoptosis in invasive prostate cancer and bladder cancer cells via the Akt-independent, p38 MAPK, and stress-activated protein kinases/JNK-mediated activation of caspases. Genetic variation in the MAPK-signaling pathway influenced colorectal cancer risk and survival after diagnosis. Expression of the MAPK phosphatase DUSP4 was associated with microsatellite instability in CRC and caused increased cell proliferation. Moreover, the stimulation of β-adrenoceptors can activate cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) and mitogen-activated protein kinase (MAPK) pathways in pancreatic cancer cells. Pathways in pancreatic cancer cells. The β_2-adrenergic antagonists suppressed invasion and proliferation by inhibiting both cAMP/PKA and Ras, which regulate activation of the MAPK pathway. NE stimulates pancreatic cancer cell proliferation, migration and invasion via β-adrenergic receptor-dependent activation of the p38 MAPK pathway. These stimulatory effects were completely stopped by propranolol or p38 MAPK-inhibitor SB203580. Propranolol was shown to exert its suppressive effects on hemangiomas through the hypoxia-inducible factor-1α–VEGF–angiogenesis axis, with effects mediated by the phosphoinositide 3-kinase/Akt and p38 MAPK pathways. Thus, these findings suggest that β-adrenergic antagonists may have a role in cancer by suppressing the MAPK pathway.

Prostaglandins play a role in inflammatory processes. COX participates in the conversion of arachidonic acid into prostaglandins. Tumor inflammation is now recognized as one of the hallmarks of cancer. The overexpression of COX-2 is associated with resistance to apoptosis, increased angiogenesis, and increased tumor invasiveness in various cancers. Increased COX-2 expression was reported in endometrial adenocarcinoma, breast cancer, reno-medullary interstitial cell tumor, CRC, gastric cancer, carcinoma of the cervix, and familial adenomatous polyposis. The deletion of COX-2 in mouse mammary epithelial cells delayed breast cancer onset. COX-2 inhibitors also decreased the growth and induced regression of human esophageal adenocarcinoma xenografts in nude mice and retarded murine mammary tumor progression by reducing tumor cell migration, invasiveness, and angiogenesis. Genetic variability in enzymes could have an impact on the disease risk. COX-2 polymorphisms were reported to be associated with bladder cancer, biliary tract cancer, lung cancer, nonmelanoma skin cancer after organ transplantation, esophageal squamous-cell carcinoma, NPC, pancreatic cancer, invasive ovarian carcinoma, breast cancer, gastric carcinoma, acute myeloid leukemia, prostate cancer, head and neck cancer, colorectal adenoma, and HCC. In a meta-analysis, the COX-2 1195G>A polymorphism was significantly associated with an increased risk for digestive system cancers, particularly in Asian populations. In addition, the COX-2 -765G>C polymorphism may have caused an increased risk of CRC and esophageal cancer in patients of Asian descent, whereas the 8473T>C polymorphism may have caused a decreased risk of breast and lung cancer.
addition, prostaglandin E\(_2\) (PGE\(_2\)) has been reported to be associated with colorectal adenoma,\(^{230}\) pancreatic tumor,\(^{231}\) and childhood neuroblastoma.\(^{232}\) Suppression of PGE\(_2\) receptors inhibited human lung carcinoma cell growth.\(^{233}\) Moreover, adrenaline increased PGE\(_2\) release in human colon adenocarcinoma HT-29 cells, which can be blocked by COX-2 inhibitor or by atenolol, a \(\beta_1\)-selective adrenergic antagonist, or ICI-118,551, a \(\beta_2\)-selective adrenergic antagonist.\(^{143}\) The \(\beta_2\)-adrenergic antagonists suppressed COX-2 expression in pancreatic cancer cells.\(^{108}\) Propranolol inhibits cell proliferation and represses gastric cancer cell growth through the downstream COX-2 pathway.\(^{21,22}\) In addition, propranolol and COX-2 inhibitor administration, which can be applied peripherally in most cancer patients with minimal risk and at low cost, counteracted several immunologic and endocrinologic perturbations and improved recurrence-free survival rates in mice undergoing primary tumor excision.\(^{234,235}\) Celiprolol activates endothelial nitric oxide synthase (NOS) through the phosphatidylinositol 3-kinase/Akt pathway via NF-\(\kappa\)B induced by oxidative stress.\(^{169}\) These findings suggest that \(\beta\)-adrenergic antagonists may play a role in modulating the inflammatory process in cancer.

ROS play a major role in various cell-signaling pathways. ROS activate various transcription factors and increase the expression of proteins that control cellular transformation, tumor cell survival, tumor cell proliferation and invasion, angiogenesis, and metastasis. ROS have been shown to play an important role in the initiation and progression of many cancers.\(^{236-241}\) SNPs of antioxidant defense genes may significantly modify the functional activity of encoded proteins. Women with genetic variability in the iron-related oxidative stress pathways may be at increased risk for postmenopausal breast cancer.\(^{242}\) The \(\text{ala}\) variant of superoxide dismutase was associated with a moderately increased risk of prostate cancer.\(^{243}\) Based on a meta-analysis, manganese superoxide dismutase polymorphisms may contribute to cancer development (Val-9Ala)\(^{244}\) and prostate cancer susceptibility (Val-16Ala)\(^{245}\) but not to breast cancer susceptibility\(^{246}\) (Val-16Ala). Moreover, myocardial tissue sections revealed increased ROS after traumatic brain injuries. Treatment with propranolol decreased ROS levels.\(^{247}\) Carvedilol can modulate ROS-induced signaling. Carvedilol significantly decreased the ischemia-reperfusion-induced free-radical production and nicotinamide adenine dinucleotide catabolism, and decreased the lipid peroxidation and red blood cell membrane damage as determined by free malondialdehyde production in heart perfusion and in a rheological model.\(^ {120}\) Nebivolol improved diastolic dysfunction and myocardial remodeling through reductions in oxidative stress in the transgenic (mRen2) rat.\(^ {248}\) These findings suggest that \(\beta\)-adrenergic antagonists modulate oxidative stress in cancer.

NOS is an enzyme that is involved in the synthesis of nitric oxide (NO), which regulates a variety of important physiological responses including cell migration, immune response, and apoptosis. NO and calcium were reported to regulate mitochondrial biogenesis in follicular thyroid carcinoma cells.\(^{249}\) There is a link between NO and the induction of apoptotic cell death in head and neck squamous-cell carcinoma.\(^{250}\) Cytokines, especially interferon-gamma, induced apoptosis in acute leukemia via the NO and caspase-3 pathways.\(^ {251}\) The reduction of NO levels enhanced the radiosensitivity of hypoxic NSCLC.\(^ {252}\) Increased NO may be a sign of subclinical cardiotoxicity of doxorubicin.\(^ {253}\) High NO concentrations at the periphery of a melanoma may contribute to metastasis by stimulating cell proliferation, inhibiting apoptosis, or acting as a lymphangiogenic factor.\(^ {254}\) Inducible NOS mRNA expression was considerably higher in glioblastoma specimens than in meningioma specimens.\(^ {255}\) Inducible NOS expression has been correlated with angiogenesis, lymphangiogenesis, and poor prognosis in gastric cancer patients and estrogen receptor-negative breast cancer patients.\(^ {256}\) NOS inhibition enhanced the antitumor effect of radiation in the treatment of squamous carcinoma xenografts.\(^ {257}\) NOS polymorphisms were reported to be associated with bladder cancer,\(^ {258}\) urothelial carcinoma,\(^ {260}\) gastric cancer,\(^ {261}\) colorectal cancer,\(^ {262}\) and non-Hodgkin’s lymphoma.\(^ {263}\) In a meta-analysis, endothelial NOS \(894G>T\) polymorphism was associated with breast cancer.\(^ {254}\) Moreover, metipranolol blunted NO-induced lipid peroxidation in rat eyes and retinas.\(^ {153}\) Nebivolol prevented vascular NOS III uncoupling in experimental hyperlipidemia.\(^ {158}\) Propranolol suppressed hemangioma growth by inhibiting the expression of endothelial NOS protein and the subsequent production of NO.\(^ {265}\) These findings suggest that \(\beta\)-adrenergic antagonists may have a role in cancer by inhibiting the expression of NOS.

Conclusion

Beta-adrenergic blockade may play a role in the prevention and treatment of cancer. Genetic studies have provided the opportunity to determine the proteins that link \(\beta\)-adrenergic antagonism to cancer pathology. Beta-adrenergic inhibition also exerts its effect on cancer via non-genomic mechanisms. Further investigation of the relationship between \(\beta\)-adrenergic antagonists and cancer is required.
Disclosure
The authors declare no conflicts of interest in this work.

References
1. Badino GR, Novelli A, Girardi C, Di Carlo F. Evidence for functional beta-adrenoceptor subtypes in CG-5 breast cancer cell. Pharmacol Res. 1996;33(4-5):255–260.
2. Schuller HM, Cole B. Regulation of cell proliferation by beta-adrenergic receptors in a human lung adenocarcinoma cell line. Carcinogenesis. 1989;10(9):1753–1755.
3. Park PG, Merryman J, Orloff M, Schuller HM. Beta-adrenergic mitogenic signal transduction in peripheral lung adenocarcinoma: implications for individuals with preexisting chronic lung disease. Cancer Res. 1995;55(16):3504–3508.
4. Shang ZJ, Liu K, Liang de F. Expression of beta2-adrenergic receptor in oral squamous cell carcinoma. J Oral Pathol Med. 2009;38(4):371–376.
5. Kassahun WT, Guenl B, Ungemach FR, Jonas S, Abraham G. Expression and functional coupling of liver β2—adrenoceptors in the human hepatocellular carcinoma. Pharmacology. 2012;89(5–6):313–320.
6. Lin X, Luo K, Lv Z, Huang J. Beta-adrenoceptor action on pancreatic cancer cell proliferation and tumor growth in mice. Hepatogastroenterology. 2012;59(114):584–588.
7. Zhao L, Yang F, Xu K, et al. Common genetic variants of the β2-adrenergic receptor affect its transcriptional efficiency and are associated with human longevity. Aging Cell. 2012;11(6):1094–1101.
8. Cole SW, Sood AK. Molecular pathways: beta-adrenergic signaling in cancer. Clin Cancer Res. 2012;18(5):1201–1206.
9. Lamkin DM, Sloan EK, Patel AJ, et al. Chronic stress enhances progression of acute lymphoblastic leukemia via β-adrenergic signaling. Brain Behav Immun. 2012;26(4):635–641.
10. Schuller HM, Al-Wadei HA, Ullah MF, Plummer HK 3rd. Regulation of pancreatic cancer by neuropsychological stress responses: a novel target for intervention. Carcinogenesis. 2012;33(1):191–196.
11. Al-Wadei HA, Plummer HK 3rd, Ullah MF, Unger B, Brody JR, Schuller HM. Social stress promotes and reduced disease progression in patients with thick melanoma. Exp Clin Endocrinol Diabetes. 2011;127(2):375–378.
12. Diaz ES, Karlan BY, Li AJ. Impact of beta blockers on epithelial ovarian cancer survival. Gynecol Oncol. 2012;127(2):375–378.
13. De Giorgi V, Grazzini M, Gandini S, et al. Treatment with β-blockers and reduced disease progression in patients with thick melanoma. Arch Intern Med. 2011;171(8):779–781.
14. Al-Wadei HA, Al-Wadei MH, Schuller HM. Prevention of pancreatic cancer by the beta-blocker propranolol. Anticancer Drugs. 2009;20(6):477–482.
15. Barron TI, Connolly RM, Sharp L, Bennett K, Visvanathan K. Beta blockers and breast cancer mortality: a population-based study. J Clin Oncol. 2011;29(19):2635–2644.
16. Melhem-Bertrandt A, Chavez-Macgregor M, Lei X, et al. Beta-blocker use is associated with improved relapse-free survival in patients with triple-negative breast cancer. J Clin Oncol. 2011;29(19):2645–2652.
17. Powe DG, Voss MJ, Zanker KS, et al. Beta-blocker drug therapy reduces secondary cancer formation in breast cancer and improves cancer specific survival. Oncotarget. 2010;1(7):628–638.
18. Pasquier E, Ciccolini J, Carre M, et al. Propranolol potentiates the antiangiogenic effects and anti-tumor efficacy of chemotherapeutic agents: implications in breast cancer treatment. Oncotarget. 2011;2(10):797–809.
19. Campbell JP, Karolak MR, Ma Y, et al. Stimulation of host bone marrow stromal cells by sympathetic nerves promotes breast cancer bone metastasis in mice. PLoS Biol. 2012;10(7):e1001363.
20. Toll L, Jimenez L, Waleh N, et al. β2-adrenergic receptor agonists inhibit the proliferation of 1321N1 astrocytoma cells. J Pharmacol Exp Ther. 2011;336(2):524–532.
21. Long H, et al. Effects of propranolol in combination with radiation on apoptosis and survival of gastric cancer cells in vitro. Radiat Oncol. 2010;5:98.
22. Al-Wadei HA, Al-Wadei MH, Schuller HM. Prevention of pancreatic cancer by the beta-blocker propranolol. Anticancer Drugs. 2009;20(6):477–482.
23. Stanojkovic TP, Zizak Z, Mihailovic-Stanojevic N, Petrovic T, Juranic Z. Inhibition of proliferation on some neoplastic cell lines-act of carvedilol and captopril. J Exp Clin Cancer Res. 2005;24(3):387–395.
24. Shan T, Ma Q, Zhang D, et al. β2-adrenoceptor blocker synergizes with gemcitabine to inhibit the proliferation of pancreatic cancer cells via apoptosis induction. Eur J Pharmacol. 2011;665(1–3):1–7.
25. Maturo S, Tse SM, Kinane TB, Hartnick CJ. Initial experience using propranolol as an adjunctive treatment in children with aggressive recurrent respiratory papillomatosis. Ann Otol Rhinol Laryngol. 2011;120(1):17–20.
26. Liao X, Che X, Zhao W, Zhang D, Bi T, Wang G. The β-adrenoceptor antagonist, propranolol, induces human gastric cancer cell apoptosis and cell cycle arrest via inhibiting nuclear factor kB signaling. Oncol Rep. 2010;24(6):1669–1676.
27. Kozanoglu I, Yandik MK, Cincin ZB, Ozdogu H, Cakmakoglu B, Baran Y. New indication for therapeutic potential of an old well-known drug (propranolol) for multiple myeloma. J Cancer Res Clin Oncol. 2012. Epub Oct 19.
28. Raffegerst SH, Hoelzligwerner G, Kunder S, Myśliwietz J, Quintanilla-Martinez L, Schendel DJ. Diverse hematological malignancies including hodgkin-like lymphomas develop in chimeric MHC class II transgenic mice. PLoS One. 2009;4(12):e8539.
29. Garcia-Plata D, Mozos E, Carrasco L, Solana R. HLA molecule expression in cutaneous squamous cell carcinomas: an immunopathological study and clinical-immunohistopathological correlations. Histol Histopathol. 1993;8(2):219–226.
30. Makri H, Daoud J, Ben Salah H, et al. HLA association with nasopharyngeal carcinoma in southern Tunisia. Mol Biol Rep. 2010;37(5):2533–2539.
31. Panza N, Del Vecchio L, Maio M, et al. Strong association between an HLA-DR antigen and thyroid carcinoma. Tissue Antigens. 1992;48(3):291–297.
32. Lindhorst E, Schumm-Draeger PM, Bojunga J, Usadel KH, Herrmann G. Differences in tumor cell proliferation, HLA DR antigen and thyroid carcinoma. Tissue Antigens. 1995;55(16):3504–3508.
33. Kozanoglu I, Y Anderson MK, Cincin ZB, Ozdogu H, Cakmakoglu B, Baran Y. New indication for therapeutic potential of an old well-known drug (propranolol) for multiple myeloma. J Cancer Res Clin Oncol. 2012. Epub Oct 19.
34. Raffegerst SH, Hoelzligwerner G, Kunder S, Myśliwietz J, Quintanilla-Martinez L, Schendel DJ. Diverse hematological malignancies including hodgkin-like lymphomas develop in chimeric MHC class II transgenic mice. PLoS One. 2009;4(12):e8539.
40. Lee HW, Hahm KB, Lee JS, Ju YS, Lee KM, Lee KW. Association of the human leukocyte antigen class II alleles with chronic atrophic gastritis and gastric carcinoma in Koreans. J Dig Dis. 2009;10(4):265–271.

41. Ando T, Ishikawa T, Kato H, et al. Synergistic effect of HLA class II loci and cytokine gene polymorphisms on the risk of gastric cancer in Japanese patients with Helicobacter pylori infection. Int J Cancer. 2009;125(1):2595–2602.

42. Michel S, Linnebacher M, Alcaniz I, et al. Lack of HLA class II antigen expression in microsatellite unstable colorectal carcinomas is caused by mutations in HLA class II regulatory genes. Int J Cancer. 2010;127(4):889–898.

43. Hernández-Hernández DM, Cerda-Flores RM, Juárez-Cedillo T, et al. Human leukocyte antigens I and II haplotypes associated with human papillomavirus 16-positive invasive cervical carcinoma in Mexican women. Int J Gynecol Cancer. 2009;19(6):1099–1106.

44. Ozdemir E, Kakehi Y, Mishima M, et al. High-resolution HLA-DRB1 and DQB1 genotyping in Japanese patients with testicular germ cell carcinoma. Br J Cancer. 1997;76(10):1348–1352.

45. Choi HB, Roh SY, Choi EJ, et al. Association of HLA alleles with non-Hodgkin's lymphoma in Korean population. Int J Hematol. 2008;87(2):202–209.

46. Ozdilli K, Oguz FS, Anak S, Kekik C, Carin M, Gedikoglu G. The frequency of HLA class I and II alleles in Turkish childhood acute leukemia patients. J Int Med Res. 2010;38(5):1835–1844.

47. Naugler C, Liwski R. HLA risk markers for chronic myelogenous leukemia in Eastern Canada. Leuk Lymphoma. 2009;50(2):254–259.

48. Hojjat-Farsangi M, Jeddi-Tehrani M, Amirzargar AA, et al. Human leukocyte antigen class II allele association to disease progression in Iranian patients with chronic lymphocytic leukemia. Hum Immunol. 2008;69(10):666–674.

49. Limas CJ, Goldenberg IF, Limas C. Influence of anti-beta-receptor antibodies on cardiac adenylate cyclase in patients with idiopathic dilated cardiomypathy. Am Heart J. 1990;119(6):1322–1328.

50. Li Q, Milo R, Panitch H, Bever CT Jr. Effect of propranolol and IFN-beta on the induction of MHC class II expression and cytokine production by IFN-gamma in THP-1 human monocyctic cells. Immunopharmacol Immunotoxicol. 1998;20(1):39–61.

51. Shaw SM, Coppinger T, Waywell C, et al. The effect of beta-blockers on the adaptive immune system in chronic heart failure. Cardiovasc Thera. 2009;27(3):181–186.

52. Johnston CJ. Tissue angiotensin converting enzyme in cardiac and vascular hypertrophy, repair, and remodeling. Hypertension. 1994;23(2):258–268.

53. Deshayes F, Nahmias C. Angiotensin receptors: a new role in cancer? Trends Endocrinol Metab. 2005;16(7):293–299.

54. Lotfy M, El-Kenawy Ael-M, Abdel-Aziz MM, El-Kady I, Talaat A. Elevated renin levels in patients with liver cirrhosis and hepatocellular carcinoma. J Int Med Res. 2009;37(5):1263–1266.

55. Beyazit Y, Purnak T, Suvak B, et al. Increased ACE in extrahepatic cholangiocarcinoma as a clue for activated RAS in biliary neoplasms. Exp Biol Med (Maywood). 2009;234(9):1239–1244.

56. Koca E, Haznedaroğlu IC, Uner A, Sayinalp N, Saglam AE, et al. Angiotensin-converting enzyme antagonist suppression of immunoreactive angiotensin II in human colorectal cancer: a retrospective examination. Eur J Surg Oncol. 2009;35(10):1263–1266.

57. Wang X, Wang S, Lin YY, et al. Angiotensin-converting enzyme gene insertion/deletion polymorphism and the risk of prostate cancer in the Han population of China. Med Oncol. 2012;29(3):1964–1971.

58. Feng Y, Wang H, Liu J, et al. The angiotensin-converting enzyme 2 enzyme in human gastric cancer: correlation with tumor progression through the activation of ERK1/2, NF-kappaB and survivin. Int J Oncol. 2009;34(6):1573–1582.

59. Zhou L, Zhan R, Yao W, Wang J, Qian A, et al. Decreased expression of angiotensin-converting enzyme 2 in pancreatic ductal adenocarcinoma is associated with tumor progression. Tohoku J Exp Med. 2009;217(2):123–131.

60. Zhou L, Zhang R, Zhang L, Yao W, Li J, Yuan Y. Angiotensin-converting enzyme 2 acts as a potential molecular target for pancreatic cancer therapy. Cancer Lett. 2011;307(1):18–25.

61. Kinoshita J, Fushida S, Harada S, et al. Local angiotensin II-generation in human gastric cancer: correlation with tumor progression through the activation of ERK1/2, NF-kappaB and survivin. Int J Oncol. 2009;35(6):1573–1582.

62. Du N, Feng J, Hu LJ, et al. Angiotensin II receptor type 1 blockers suppress the cell proliferation effects of angiotensin II in breast cancer cells by inhibiting AT1R signaling. Oncol Rep. 2012;27(6):1893–1903.

63. Wilop S, von Hobe S, Crysandt M, Esser A, Osieka R, Jost E. Impact of angiotensin I converting enzyme inhibitors and angiotensin II type 1 receptor blockers on survival in patients with advanced non-small-cell lung cancer undergoing first-line platinum-based chemotherapy. J Cancer Res Clin Oncol. 2009;135(10):1429–1435.

64. Nakai Y, Isayama H, Iijichi H, et al. Inhibition of renin-angiotensin system affects prognosis of advanced pancreatic cancer receiving gemcitabine. Br J Cancer. 2010;103(11):1644–1648.

65. Keizman D, Huang P, Eisenberger MA, et al. Angiotensin system inhibitors and outcome of sunitinib treatment in patients with metastatic renal cell carcinoma: a retrospective analysis. Eur J Cancer. 2011;47(13):1955–1961.

66. Ming M, Wu J, Lachance S, Delalandre A, Carrière S, Chan JS. Beta-adrenergic receptors and angiotensinogen gene expression in mouse hepatoma cells in vitro. Hypertension. 1995;25(1):105–109.

67. Nakamura M, Jackson KE, Inagami T. Beta-adrenoceptor-mediated release of angiotensin II from mesenteric arteries. Am J Physiol. 1986;250(1 Pt 2):H144–H148.

68. Richards EM, Hermann K, Summers C, Raizada MK, Phillips MI. Release of immunoreactive angiotensin II from neuronal cultures: adrenergic influences. Am J Physiol. 1989;257(3 Pt 1):C588–C595.

69. Tang SS, Stevenson L, Dzau VJ. Endothelial renin-angiotensin pathway. Adrenergic regulation of angiotensin secretion. Circ Res. 1990;66(1):103–108.
97. Wang S, Zhang M, Zeng Z, et al. NFκB1 insertion/deletion polymorphism on the risk of colorectal cancer. Br J Cancer. 2012;6(4):463–466.

98. Li Y, Shi J, Yang BF, et al. Ketamine-induced ventricular structural, sympathetic and electrophysiological remodelling: pathological consequences and protective effects of metoprolol. Br J Pharmacol. 2012;165(6):1748–1756.

99. Yang SP, Ho LJ, Lin YL, et al. Carvedilol, a new antioxidative beta-blocker, blocks in vitro human peripheral blood T cell activation by downregulating NF-kappaB activity. Cardiovasc Res. 2003;59(3):776–787.

100. Zhang D, Ma QY, Hu HT, Zhang M. β2-adrenergic antagonists suppress pancreatic cancer cell invasion by inhibiting CREB, NFκB and AP-1. Cancer Biol Ther. 2010;10(1):19–29.

101. Masutani M, Nakagama H, Sugimura T. Poly(ADP-ribose) and carcinogenesis. Genes Chromosomes Cancer. 2003;38(4):339–348.

102. Tong WM, Yang YG, Cao WH, et al. Poly(ADP-ribose) polymerase-1 plays a role in suppressing mammary tumourigenesis in mice. Oncogene. 2007;26(26):3857–3867.

103. Tong WM, Cortes U, Hande MP, et al. Synergistic role of Ku80 and poly(ADP-ribose) polymerase in suppressing chromosomal aberrations and liver cancer formation. Cancer Res. 2002;62(23):6990–6996.

104. Prasad SC, Thraves PJ, Bhagia KG, Smulson ME, Dritschilo A. Enhanced poly(adenosine diphosphate ribose) polymerase activity and gene expression in Ewing’s sarcoma cells. Cancer Res. 1990;50(1):38–43.

105. Tomoda T, Kurashige T, Moriki T, Yamamoto H, Fujimoto S, Taniguchi T. Enhanced expression of poly(ADP-ribose) synthetase gene in malignant lymphoma. Am J Hematol. 1991;37(4):222–227.

106. Fujino K, Yamanoi K, Nakatani H, Mikami M, et al. Overexpression of poly(ADP-ribose) polymerase-1 (PARP-1) in the early stage of colorectal carcinogenesis. Eur J Cancer. 2006;42(14):2374–2381.

107. Quiles-Perez R, Muñoz-Gámez JA, Ruiz-Extremera A, et al. Inhibition of poly adenosine diphosphate-ribose polymerase decreases hepatocellular carcinoma growth by modulation of tumor-related gene expression. Hepatology. 2010;51(1):255–266.

108. Rojo F, García-Parra J, Zazo S, et al. Nuclear PARP-1 protein overexpression is associated with poor overall survival in early breast cancer. Ann Oncol. 2012;23(5):1156–1164.

109. Barton VN, Donson AM, Kleinschmidt-DeMasters BK, Gore L, Liu AK, Foreman NK. PARP1 expression in pediatric central nervous system tumors. Pediatr Blood Cancer. 2009;53(7):1227–1230.

110. Barnett JC, Bean SM, Nakayama JM, Kondoh E, Murphy SK, Berchuck A. High poly(adenosine diphosphate-ribose) polymerase expression and poor survival in advanced-stage serous ovarian cancer. Obstet Gynecol. 2010;115(1):49–54.

111. Gonçalves A, Finetti P, Sabatier R, et al. Poly(ADP-ribose) polymerase-1 mRNA expression in human breast cancer: a meta-analysis. Breast Cancer Res Treat. 2011;127(1):271–281.

112. Zhang Q, Li Y, Li X, et al. PARP-1 Val762Ala polymorphism, CagA+ H. pylori infection and risk for gastric cancer in Han Chinese population. Mol Biol Rep. 2009;36(6):1461–1467.

113. Lockett KL, Hall MC, Xu J, et al. The ADPRT V762A genetic variant contributes to prostate cancer susceptibility and deficient enzyme function. Cancer Res. 2004;64(17):6344–6348.

114. Hao B, Wang H, Zhou K, et al. Identification of genetic variants in base excision repair pathway and their associations with risk of esophageal squamous cell carcinoma. Cancer Res. 2004;64(12):4378–4384.

115. Zhang J, Jin X, Fang S, et al. The functional polymorphism in the matrix metalloproteinase-7 promoter increases susceptibility to esophageal squamous cell carcinoma, gastric cardiac adenocarcinoma and non-small cell lung carcinoma. Carcinogenesis. 2005;26(10):1748–1753.

116. Jin XM, Kim HN, Lee IK, Park KS, Kim HJ, et al. PARP-1 Val762Ala polymorphism is associated with reduced risk of non-Hodgkin lymphoma in Korean males. BMC Med Genet. 2010;11:38.

117. Wang XG, Wang ZQ, Tong WM, Shen Y. PARP1 Val762Ala polymorphism reduces enzymatic activity. Biochem Biophys Res Commun. 2007;354(1):122–126.

118. Yu H, Ma H, Yin M, Wei Q. Association between PARP-1 V762A polymorphism and cancer susceptibility: a meta-analysis. Genet Epidemiol. 2011;36(1):56–65.

119. Oláh G, Finnerty CC, Sbrana E, et al. Increased poly(ADP-ribose)ylation in skeletal muscle tissue of pediatric patients with severe burn injury: prevention by propranolol treatment. Shock. 2011;36(1):18–23.
120. Mikami M, Goubauca F, Song JH, Lee HT, Yang J. beta-Adrenoceptor blockers protect against staurosporine-induced apoptosis in SH-SY5Y neuroblastoma cells. *Eur J Pharmacol*. 2008;589(1–3): 14–21.

121. Usta E, Mustafi M, Straub A, Ziemer G. The nonselective beta-blocker carvedilol suppresses apoptosis in human cardiac tissue: a pilot study. *Heart Surg Forum*. 2010;13(4):E218–E222.

122. Habon T, Szabados E, Kesmarky G, et al. The effect of carvedilol on enhanced ADP-ribosylation and red blood cell membrane damage caused by free radicals. *Cardiovasc Res*. 2001;52(1):153–160.

123. Stroznajder RP, Jesko H, Dziewulska J. Effect of carvedilol on neuronal survival and poly(ADP-ribose) polymerase activity in hippocampus after transient forebrain ischemia. *Acta Neurobiol Exp (Wars)*, 2005;65(2):137–143.

124. Osborne NN, Wood JP. Metipranolol blunts nitric oxide-induced lipid peroxidation and death of retinal photoreceptors: a comparison with other anti-glaucoma drugs. *Invest Ophthalmol Vis Sci*. 2004;45(10):3787–3795.

125. Partyka R, Gonciarz M, Jałowiecki P, Kukociński H. Effect of the nonselective beta-adrenoceptor blocker carvedilol on the contractility of human coronary artery rings. *Pharmacol Rep*. 2010;62(2):442–448.

126. Zaravinos A, Vellanis D, Lambrou GI, Delakas D, Spandidos DA. The role of the polymorphic E157K variant of the renin-angiotensin system in the postoperative treatment in gastric cancer. *Heart Surg Forum*. 2012;15(10):1390–1394.

127. Gray RT, O’Donnell ME, Mcguigan JA, Spence GM. Quantification of tumour and circulating vascular endothelial growth factor (VEGF) in patients with oesophagealagastotic cancer: a long-term follow-up study. *Br J Biomed Sci*. 2012;69(2):71–75.

128. Villarazo-Campos P, Padilla-Valverde D, Martin RM, et al. Serum VEGF and VEGFβ protein expression in advanced gastric cancer. *Clin Transl Oncol*. Epub July 24, 2012.

129. Lammler J, Fan M, Rosenthal HG, et al. Expression of Vascular Endothelial Growth Factor correlates with the advance of clinical oesophageal cancer. *Int Orthop*. 2012;36(11):2307–2313.

130. Yen CJ, Lin YJ, Yen CS, et al. Hepatitis B virus protein upregulates mTOR signaling through IKKβ to increase cell proliferation and VEGF production in hepatocellular carcinoma. *PLoS One*. 2012;7(7):e41931.

131. Aria-Pulido H, Chaher N, Gong Y, Qualls C, Vargas J, Royce M. Prognostic value of vascular endothelial growth factor in patients with head and neck cancer: A meta-analysis. *Head Neck*. Epub September 12, 2012.

132. Lutgendorf SK, Cole S, Costanzo E, et al. Stress-related mediators stimulate vascular endothelial growth factor secretion by two ovarian cancer cell lines. *Clin Cancer Res*. 2003;9(12):4514–4521.

133. Yang EV, Sood AK, Chen M, et al. Norepinephrine up-regulates the expression of vascular endothelial growth factor, matrix metalloproteinase (MMP)-2, and MMP-9 in nasopharyngeal carcinoma tumor cells. *Cancer Res*. 2006;66(21):10357–10364.

134. Bandiera E, Franceschini R, Specchia C, et al. Prognostic significance of vascular endothelial growth factor (VEGF-A) genetic polymorphisms with cancer risk and survival in advanced-stage oral squamous cell carcinoma patients. *Int Orthop*. 2011;35(5):715–720.

135. Supic G, Jovic N, Zeljic K, Kozomara R, Magic Z. Association of vascular endothelial growth factor gene polymorphisms with colorectal cancer: a meta-analysis of epidemiologic studies. *Genet Test Mol Biomarkers*. 2012;16(12):1390–1394.

136. Zhao Z, Ba C, Wang W, Wang X, Xue R, Wu X. Vascular endothelial growth factor (VEGF) gene polymorphisms and colorectal cancer: a meta-analysis involving 30 studies. *Twin Res Hum Genet*. 2012;15(4):496–502.

137. Peng L, Zhan P, Zhou Y, et al. Prognostic significance of vascular endothelial growth factor immunohistochemical expression in gastric cancer: a meta-analysis. *Mol Biol Rep*. 2012;39(10):9473–9484.

138. Hsieh CH, Shyu WC, Chiang CY, Kuo JW, Shen WC, Liu RS. NADPH oxidase Nox2 but not Nox4 is independent predictors in hepatocellular carcinoma after hepatectomy. *Tumour Biol*. 2011;32(6):1173–1182.

139. Kim J, Koyanagi T, Mochly-Rosen D. PKCθ inhibition contributes to development of esophageal adenocarcinoma via activation of NADPH oxidase NOX5–6. *Am J Physiol Gastrointest Liver Physiol*. 2010;299(3):G697–G706.

140. Lu CL, Qiu JL, Huang PZ, et al. NADPH oxidase DUOX1 and DUOX2 to cycling hypoxia-promoted tumor progression in glioblastoma cells. *Radic Res*. Epub 2012;13(4):223–230.

141. Yamaura M, Mitsushita J, Furuta S, et al. NADPH oxidase 4 contributes to transformation phenotype of melanoma cells by regulating G2-M cell cycle progression. *Cancer Res*. 2009;69(6):2647–2654.

142. Maraldi T, Prata C, Viecelli Dalla Sega F, et al. NADPH oxidase isoform Nox2 plays a prosurvival role in human leukemia cells. *Free Radic Res*. 2009;43(11):1111–1121.

143. Hong J, Rensnick M, Behar J, et al. Acid-induced p16 hypermethylation contributes to development of esophageal adenocarcinoma via activation of NADPH oxidase NOX5–6. *Am J Physiol Gastrointest Liver Physiol*. 2010;299(3):G697–G706.

144. Bandiera E, Franceschini R, Specchia C, et al. Prognostic significance of vascular endothelial growth factor gene polymorphisms with colorectal cancer risk in advanced-stage oral squamous cell carcinoma patients. *Oncol Rep*. 2012;28(4):1159–1166.

145. Hu K, Zhang Y, Wang R, Li G, Li G, Zhang D. Current evidence on VEGF+405G/C polymorphism and malignancy susceptibility: a meta-analysis involving 30 studies. *Twin Res Hum Genet*. 2012;15(4):496–502.

146. Peng L, Zhan P, Zhou Y, et al. Prognostic significance of vascular endothelial growth factor immunohistochemical expression in gastric cancer: a meta-analysis. *Mol Biol Rep*. 2012;39(10):9473–9484.

147. Fang Y, Zhang Y, Wang R, Li G, Li G, Zhang D. Current evidence on VEGF+405G/C polymorphism and malignancy susceptibility: a meta-analysis involving 30 studies. *Twin Res Hum Genet*. 2012;15(4):496–502.

148. Lu CL, Qiu JL, Huang PZ, et al. NADPH oxidase DUOX1 and DUOX2 to cycling hypoxia-promoted tumor progression in glioblastoma cells. *Radic Res*. Epub 2012;13(4):223–230.

149. Hsieh CH, Shyu WC, Chiang CY, Kuo JW, Shen WC, Liu RS. NADPH oxidase subunit 2p2phox inhibits the function of the tumor suppressor protein tuberin. *Am J Pathol*. 2010;176(5):2447–2455.

150. Yang EV, Sood AK, Chen M, et al. NADPH oxidase 4 contributes to transformation phenotype of melanoma cells by regulating G2-M cell cycle progression. *Cancer Res*. 2009;69(6):2647–2654.

151. Block K, Gorin Y, New DD, et al. The NADPH oxidase subunit NOX4 mediates angiogenesis via NADPH oxidase activity in PC-3 prostate cancer cells. *Prostate*. 2011;71(9):946–954.

152. Yang EV, Sood AK, Chen M, et al. NADPH oxidase overexpression in human cancer cells and rat colon tumors induced by 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). *Int J Cancer*. 2011;128(11):2581–2590.

153. Kim J, Koyanagi T, Mochly-Rosen D. PKCθ activation mediates angiogenesis via NADPH oxidase activity in PC-3 prostate cancer cells. *Prostate*. 2011;71(9):946–954.

154. Bandiera E, Franceschini R, Specchia C, et al. Prognostic significance of vascular endothelial growth factor gene polymorphisms with colorectal cancer risk in advanced-stage oral squamous cell carcinoma patients. *Oncol Rep*. 2012;28(4):1159–1166.

155. Li Y, Liang J, Liu X, et al. Correlation of polymorphisms of the vascular endothelial growth factor gene and the risk of lung cancer in an ethnic Han group of North China. *Exp Ther Med*. 2012;3(4):673–676.

156. Supic G, Jovic N, Zeljic K, Kozomara R, Magic Z. Association of VEGF-A genetic polymorphisms with cancer risk and survival in advanced-stage oral squamous cell carcinoma patients. *Oncol Rep*. 2012;28(4):1159–1166.

157. Zhao Z, Ba C, Wang W, Wang X, Xue R, Wu X. Vascular endothelial growth factor (VEGF) gene polymorphisms and colorectal cancer: a meta-analysis of epidemiologic studies. *Genet Test Mol Biomarkers*. 2012;16(12):1390–1394.
Hamajima N, Matsuo K, Iwata H, et al. NAD(P)H: quinone oxidoreductase 1 (NQO1) C609T polymorphism and the risk of eight cancers. *Int J Cancer*. 2002;7(2):103–108.

Chen EC, Lam SY, Fu KH, Kwong YL. Polymorphisms of the GSTM1, GSTP1, MPO, XRCC1, and NQO1 genes in Chinese patients with non-small cell lung cancer: relationship with aberrant promoter methylation of the CDKN2A and RARB genes. *Cancer Genet Cytoenet*. 2005;162(1):10–20.

Lan Q, Zheng T, Shen M, et al. Genetic polymorphisms in the oxidative stress pathway and susceptibility to non-Hodgkin lymphoma. *Hum Genet*. 2007;121(2):161–168.

Hoffmann M, Schirmer MA, Tzetevkov MV, et al; German Study Group for High-Grade Non-Hodgkin Lymphoma. A functional polymorphism in the NAD(P)H oxidase subunit CYBA is related to gene expression, enzyme activity, and outcome in non-Hodgkin lymphoma. *Cancer Res*. 2010;70(6):2328–2338.

Gra OA, Glotov AS, Kozhekbaeva ZH, Makarova O V, Nasedkina TV. Genetic polymorphisms in oxidative stress-related genes and postmenopausal breast cancer risk. *Int J Cancer*. 2011;129(6):1467–1476.

Malik MA, Sharma KL, Zargar SA, Mittal B. Association of matrix metalloproteinase-7 (-181 A>G) polymorphism with risk of esophageal squamous cell carcinoma in Kashmir Valley. *Saudi J Gastroenterol*. 2011;17(3):301–306.

Sorrentino SA, Doerries C, Manes C, et al. Nebivolol exerts beneficial effects on endothelial function, early endothelial progenitor cells, myocardial neovascularization, and left ventricular dysfunction early after myocardial infarction beyond conventional β1-blockade. *J Am Coll Cardiol*. 2011;57(5):601–611.

Maurique C, Lastra G, Habibi J, et al. Nebivolol improves insulin sensitivity in the TGR(Ren2)27 rat. *Metabolism*. 2011;60(12):1757–1766.

Whaley-Connell A, Habibi J, Johnson M, et al. Nebivolol reduces effects on endothelial function, early endothelial progenitor cells, myocardial neovascularization, and left ventricular dysfunction early after myocardial infarction beyond conventional β1-blockade. *J Am Coll Cardiol*. 2011;57(5):601–611.

Mollnau H, Schulz E, Daiber A, et al. Matrix metalloproteinase 2 promotes cell growth and invasion in colorectal cancer. *Acta Biochim Biophys Sin (Shanghai)*. 2011;43(11):840–848.

Peng WJ, Zhang JQ, Wang BX, Pan HF, Lu MM, Wang J. Prognostic value of matrix metalloproteinase 9 expression in patients with non-small cell lung cancer. *Clin Chim Acta*. 2012;413(13–14):1121–1126.

Qiu J, Shao S, Yang G, Shen Z, Zhang Y. Association of Toll like receptor 9 expression with lymph node metastasis in human breast cancer. *Neoplasma*. 2011;58(3):251–255.

Zhang W, Yang HC, Wang Q, et al. Clinical value of combined detection of serum matrix metalloproteinase-9, heparanase, and cathepsin for determining ovarian cancer invasion and metastasis. *Anticancer Res*. 2011;31(10):3423–3428.

Yan W, Zhang W, Sun L, et al. Identification of MMP-9 specific microRNA expression profile as potential targets of anti-invasion therapy in glioblastoma multiforme. *Brain Res*. 2011;1411:108–115.

Xia Z, Liu W, Li S, et al. Expression of matrix metalloproteinase-9, type IV collagen and vascular endothelial growth factor in adantaminous craniopharyngioma. *Neurochem Res*. 2011;36(12):2346–2351.

Feng S, Cen J, Huang Y, et al. Matrix metalloproteinase-2 and -9 secreted by leukemic cells increase the permeability of blood-brain barrier by disrupting tight junction proteins. *PLoS One*. 2011;6(8):e20599.

Parsons SL, Watson SA, Collins HM, Griffin NR, Clarke PJ, Steele RJ. Gelatinase (MMP-2 and -9) expression in gastrointestinal malignancy. *Br J Cancer*. 1998;78(11):1495–1502.

Altas M, Bayrak OF, Ayan E, et al. The effect of polymorphisms in the promoter region of the MMP-1 gene on the occurrence and invasive- ness of hypophyseal adenoma. *Acta Neurochir (Wien)*. 2010;152(9):1611–1617.

Tee YT, Liu YF, Chang JT, et al. Single-nucleotide polymorphisms and haplotypes of membrane type 1-matrix metalloproteinase in susceptibility and clinical significance of squamous cell neoplasia of uterine cervix in Taiwan women. *Reprod Sci*. 2012;19(9):932–938.

Srivastava P, Lonza T, Kapoor R, Mittal RD. Association of promoter A/G polymorphism of the MMP2 and TIMP2 with prostate cancer susceptibility in North India. *Arch Med Res*. 2012;43(2):117–124.

Zhao X, Wang X, Wu W, et al. Matrix metalloproteinase-2 polymorphisms and clinical outcome of Chinese patients with nonsmall cell lung cancer treated with first-line, platinum-based chemotherapy. *Cancer*. 2012;118(14):3587–3598.

Dziiki L, Przybyłowska K, Majsterek I, Trzcisński R, Mik M, Sygut A. A/G polymorphism of the MMP-7 gene promoter region in colorectal cancer. *Pol Przegl Chir*. 2011;83(11):622–626.

Chaudhary AK, Pandya S, Mehrotra R, Singh M, Singh M. Role of functional polymorphism of matrix metalloproteinase-2 (-1306 C/T and -166 G/T) and MMP-9 (-1502 C/T) polymorphism in acute leukemia. *Arch Med Res*. 2011;42(5):1004–1013.

Parsons SL, Watson SA, Collins HM, Griffin NR, Clarke PJ, Steele RJ. Gelatinase (MMP-2 and -9) expression in gastrointestinal malignancy. *Br J Cancer*. 1998;78(11):1495–1502.

Zhao X, Wang X, Wu W, et al. Matrix metalloproteinase-2 polymorphisms and clinical outcome of Chinese patients with nonsmall cell lung cancer treated with first-line, platinum-based chemotherapy. *Cancer*. 2012;118(14):3587–3598.

Dziiki L, Przybyłowska K, Majsterek I, Trzcisński R, Mik M, Sygut A. A/G polymorphism of the MMP-7 gene promoter region in colorectal cancer. *Pol Przegl Chir*. 2011;83(11):622–626.

Chaudhary AK, Pandya S, Mehrotra R, Singh M, Singh M. Role of functional polymorphism of matrix metalloproteinase-2 (-1306 C/T and -166 G/T) and MMP-9 (-1502 C/T) polymorphism in acute leukemia. *Arch Med Res*. 2011;42(5):1004–1013.

Parsons SL, Watson SA, Collins HM, Griffin NR, Clarke PJ, Steele RJ. Gelatinase (MMP-2 and -9) expression in gastrointestinal malignancy. *Br J Cancer*. 1998;78(11):1495–1502.

Zhao X, Wang X, Wu W, et al. Matrix metalloproteinase-2 polymorphisms and clinical outcome of Chinese patients with nonsmall cell lung cancer treated with first-line, platinum-based chemotherapy. *Cancer*. 2012;118(14):3587–3598.
213. Kang S, Kim YB, Kim MH, et al. Polymorphism in the nuclear factor kappa-B binding promoter region of cyclooxygenase-2 is associated with an increased risk of bladder cancer. Cancer Lett. 2005;217(1):11–16.

214. Sakoda LC, Gao YT, Chen BE, et al. Prostaglandin-endoperoxide synthase 2 (PTGS2) gene polymorphisms and risk of biliary tract cancer and gallstones: a population-based study in Shanghai, China. Carcinogenesis. 2006;27(6):1251–1256.

215. Park JM, Choi JE, Chae MH, et al. Relationship between cyclooxygenase 8473T>C polymorphism and the risk of lung cancer: a case-control study. BMC Cancer. 2006;6:70.

216. Lira MG, Mazzola S, Tessari G, et al. Association of functional gene variants in the regulatory regions of COX-2 gene (PTGS2) with nonmelanoma skin cancer after organ transplantation. Br J Dermatol. 2007;157(1):49–57.

217. Upadhyay R, Jain M, Kumar S, Ghoshal UC, Mittal B. Functional polymorphisms of cyclooxygenase-2 (COX-2) gene and risk for esophageal squamous cell carcinoma. Mutat Res. 2009;663(1–2):52–59.

218. Ben Nasr H, Chahed K, Bouaouina N, Chouchane L. PTGS2 (COX-2) -765 G > C functional promoter polymorphism and its association with risk and lymph node metastasis in nasopharyngeal carcinoma. Mol Biol Rep. 2009;36(1):193–200.

219. Zhao D, Xu D, Zhang X, et al. Interaction of cyclooxygenase-2 variants and smoking in pancreatic cancer: a possible role of nucleophosmin. Gastroenterology. 2009;136(5):1659–1669.

220. Li Y, Terry KL, Wilkens LR, et al. Pooled analysis of the association of PTGS2 rs5275 polymorphism and NSAID use with invasive ovarian carcinoma risk. Cancer Causes Control. 2010;21(10):1731–1741.

221. Abraham JE, Harrington P, Driver KE, et al. Common polymorphisms in the prostaglandin pathway genes and their association with breast cancer susceptibility and survival. Clin Cancer Res. 2009;15(6):2181–2191.

222. Li Y, He W, Liu T, Zhang Q. A new cyclooxygenase-2 gene variant in the Han Chinese population is associated with an increased risk of gastric carcinoma. Mol Diag Ther. 2010;14(6):351–355.

223. Zheng J, Chen S, Jiang L, You Y, Wu D, Zhou Y. Functional genetic variations of cyclooxygenase-2 and susceptibility to acute myeloid leukemia in a Chinese population. Eur J Haematol. 2011;87(6):486–493.

224. Amirian ES, Ittmann MM, Scheurer ME. Associations between arachidonate acid metabolism gene polymorphisms and prostate cancer risk. Prostate. 2011;71(13):1382–1389.

225. Peters WH, Lacko M, Te Morsche RH, Voogd AC, Oude Ophuis MB, Manni JJ. COX-2 polymorphisms and the risk for head and neck cancer in white patients. Head Neck. 2009;31(7):938–943.

226. Gong Z, Bostick RM, Xie D, et al. Genetic polymorphisms in the cyclooxygenase-1 and cyclooxygenase-2 genes and risk of colorectal adenoma. Int J Colorectal Dis. 2009;24(6):647–654.

227. Akkız H, Bayram S, Bekar A, Akgöllü E, Ülger Y. Functional polymorphisms of cyclooxygenase-2 gene and risk for hepatocellular carcinoma. Mol Cell Biochem. 2011;347(1–2):201–208.

228. Dong J, Dai J, Zhang M, Hu Z, Shen H. Potentially functional COX-2-1195G>A polymorphism increases the risk of digestive system cancers: a meta-analysis. J Gastroenterol Hepatol. 2010;25(6):1042–1050.

229. Zhu W, Wei BB, Shan X, Liu P. -765G>C and 8473T>C polymorphisms of COX-2 and cancer risk: a meta-analysis based on 33 case-control studies. Mol Biol Rep. 2010;37(1):277–288.

230. Shurbholse MJ, Cai Q, Wen W, et al. Urinary prostaglandin E2 metabolite and risk for colorectal adenoma. Cancer Prev Res (Phila). 2012;5(2):336–342.

231. Hogendorf P, Durczynska A, Kumar A, Strzelczyk J. Prostaglandin E2 (PGE2) in portal blood in patients with pancreatic tumor – a single institution series. J Invest Surg. 2012;25(1):8–13.

232. Rasmussen A, Kock A, Fuskevá OM, et al. Autocrine prostaglandin E2 signaling promotes tumor cell survival and proliferation in childhood neuroblastoma. Plos One. 2012;7(1):e29331.

233. Han S, Roman J. Suppression of prostaglandin E2 receptor subtype EP2 by PPARgamma ligands inhibits human lung carcinoma cell growth. Biochem Biophys Res Commun. 2004;314(4):1093–1099.
234. Glaser A, Avraham R, Rosenne E, et al. Improving survival rates in two models of spontaneous postoperative metastasis in mice by combined administration of a beta-adrenergic antagonist and a cyclooxygenase-2 inhibitor. J Immunol. 2010;184(5):2449–2457.

235. Benish M, Bartal I, Goldfarb Y, et al. Perioperative use of beta-blockers and COX-2 inhibitors may improve immune competence and reduce the risk of tumor metastasis. Ann Surg Oncol. 2008;15(7):2042–2052.

236. Gupta SC, Hevia D, Patchva S, Park B, Keh W, Aggarwal BB. Upsides and downsides of reactive oxygen species for cancer: the roles of reactive oxygen species in tumorigenesis, prevention, and therapy. Antioxid Redox Signal. 2012;16(11):1295–1332.

237. Marra M, Sordelli IM, Lombardi A, Lamberti M, Tarantino L, et al. Molecular targets and oxidative stress biomarkers in hepatocellular carcinoma: an overview. J Transl Med. 2011;9:171.

238. Zhang Q, Ma Y, Cheng YF, Li WJ, Zhang Z, Chen SY. Involvement of reactive oxygen species in 2-methoxyestradiol-induced apoptosis in human neuroblastoma cells. Cancer Lett. 2011;313(2):201–210.

239. Wang HC, Choudhary S. Reactive oxygen species-mediated therapeutic control of cancer. Nat Rev Urol. 2011;8(11):608–616.

240. Rogalska A, Gajek A, Szwed M, Jóźwiak Z, Marczak A. The role of reactive oxygen species in WP 631-induced death of human ovarian cancer cells: a comparison with the effect of doxorubicin. Toxicol in Vitro. 2011;25(8):1712–1720.

241. Gupta-Elera G, Garrett AR, Robison RA, O’Neill KL. The role of oxidative stress in prostate cancer. Eur J Cancer Prev. 2012;21(2):155–162.

242. Hong CC, Ambrosone CB, Ahn J, et al. Genetic variability in iron-oxidative stress pathways (Nfr2, Nqo1, Nos3, and Ho-1), iron intake, and risk of postmenopausal breast cancer. Cancer Epidemiol Biomarkers Prev. 2007;16(9):1784–1794.

243. Woodson K, Tangrea JA, Lehman TA, et al. Manganese superoxide dismutase (MnSOD) polymorphism, alpha-tocopherol supplementa- tion and prostate cancer risk in the alpha-tocopherol, beta-carotene cancer prevention study (Finland). Cancer Causes Control. 2003;14(6):513–518.

244. Wang S, Wang F, Shi X, et al. Association between manganese superoxide dismutase (MnSOD) Val9Ala polymorphism and cancer risk – A meta-analysis. Eur J Cancer Prev. 2009;18(5):2874–2881.

245. Mao C, Qiu LX, Zhan P, et al. MnSOD Val16Ala polymorphism and prostate cancer susceptibility: a meta-analysis involving 8,962 subjects. J Cancer Res Clin Oncol. 2010;136(7):975–979.

246. Ma X, Chen C, Xiong H, et al. No association between SOD2 Val16Ala polymorphism and breast cancer susceptibility: a meta-analysis based on 9,710 cases and 11,041 controls. Breast Cancer Res Treat. 2010;122(2):509–514.

247. Larson BE, Stockwell DW, Boas S, Andrews T, Wellman GC, et al. Cardiac reactive oxygen species after traumatic brain injury. J Surg Res. 2012;173(2):73–81.

248. Ma L, Gul R, Habibi J, et al. Nebivolol improves diastolic dysfunction and myocardial remodeling through reductions in oxidative stress in the transgenic (mRen2) rat. Am J Physiol Heart Circ Physiol. 2002;302(11):H2341–H2351.

249. Le Pennec S, Mirebeau-Prunier D, Boutet-Bouzamondo N, et al. Nitric oxide and calcium participate in the fine regulation of mitochondrial biogenesis in follicular thyroid carcinoma cells. J Biol Chem. 2011;286(20):18229–18239.

250. Bentz BG, Chandra R, Haines GK 3rd, Robinson AM, Shah P, Radosevich JA. Nitric oxide and apotosis during human head and neck squamous cell carcinoma development. Am J Otolaryngol. 2002;23(1):4–11.

251. Siripin D, Fucharoen S, Tanyong D. Nitric oxide and caspase 3 mediated cytokine induced apoptosis in acute leukemia. Asian Pac J Allergy Immunol. 2011;29(1):102–111.

252. Saleem W, Suzuki Y, Mobarak A, Yoshida Y, Noda S, et al. Reduction of nitric oxide level enhances the radiosensitivity of hypoxic non-small cell lung cancer. Cancer Sci. 2011;102(12):2150–2156.

253. Guler E, Baspinar O, Cekmen M, Kilinc M, Balat A. Nitric oxide: a new biomarker of Doxorubicin toxicity in children? Pediatr Hematol Oncol. 2011;28(5):395–402.

254. Chin MP, Deen WM. Prediction of nitric oxide concentrations in melanomas. Nitric Oxide. 2010;23(4):319–326.

255. Ellie E, Loiseau H, Lafond F, Arsault J, Denotes-Mainard J. Differential expression of inducible nitric oxide synthase mRNA in human brain tumours. Neuroreport. 1995;7(1):294–296.

256. Zhang W, He XJ, Ma YY, et al. Inducible nitric oxide synthase expression correlates with angiogenesis, lymphangiogenesis, and poor prognosis in gastric cancer patients. Hum Pathol. 2011;42(9):1275–1282.

257. Scholarship, Boersma BJ, Dorsey TH, et al. Increased NOS2 predicts poor survival in estrogen receptor-negative breast cancer patients. J Clin Invest. 2010;120(11):3843–3854.

258. Cardnell RJ, Mikkelsen RB. Nitric oxide synthase inhibition enhances the antitumor effect of radiation in the treatment of squamous carci- noma xenografts. PLoS One. 2011;6(5):e20147.

259. Ryk C, Steineck G, Wiklund NP, Nyberg T, de Verdier PJ. The (CCTTT) n microsatellite polymorphism in the nitric oxide synthase 2 gene may influence bladder cancer pathogenesis. J Urol. 2010;184(5):2150–2157.

260. Shen CH, Wang YH, Wang WC, et al. Inducible nitric oxide synthase promoter polymorphism, cigarette smoking, and urethelial carcinoma risk. Urology. 2007;69(5):1001–1006.

261. Kaise M, Miwa J, Suzuki N, et al. Inducible nitric oxide synthase gene promoter polymorphism is associated with increased gastric mRNA expression of inducible nitric oxide synthase and increased risk of gastric carcinoma. Eur J Gastroenterol Hepatol. 2007;19(2):139–145.

262. Arikan S, Cacina C, Guler E, Çulcu S, Tuna G, Yañılm-Eraltan I. The effects of NOS3 Glu298Asp variant on colorectal cancer risk and progression in Turkish population. Mol Biol Rep. 2012;39(3):3245–3249.

263. Han X, Zheng T, Lan Q, et al. Genetic polymorphisms in nitric oxide synthase genes modify the relationship between vegetable and fruit intake and risk of non-Hodgkin lymphoma. Cancer Epidemiol Biomarkers Prev. 2009;18(5):1429–1438.

264. Hao Y, Montiel R, Huang Y. Endothelial nitric oxide synthase (eNOS) 894 G>T polymorphism is associated with breast cancer risk: a meta-analysis. Breast Cancer Res Treat. 2010;124(3):809–813.

265. Dai Y, Hou F, Buckmiller L, et al. Decreased eNOS protein expression in involving and propranolol-treated hemangiomas. Arch Otolaryngol Head Neck Surg. 2012;138(2):177–182.