An Analysis of the Dynamic Asymmetric Impact of the COVID-19 Pandemic on the RMB Exchange Rate

Xing Fang1, a, Yu Zhang1
1 School of Finance, Capital University of Economics and Business, China

Keywords: vecm, rmb exchange rate, covid-19

10.46557/001c.18644

I. Introduction

In this paper, we assume that the COVID-19 pandemic exerts a time-varying asymmetric impact on the RMB exchange rate. Based on the Taylor rule model, we examine the RMB exchange rate fluctuations around the outbreak of COVID-19. We find that the RMB rate rose steadily before the outbreak but fluctuated during the pandemic. This shows that the pandemic had a transient time-varying impact on the RMB exchange rate.

II. Data and results

A. Data

This paper selects monthly data on five variables: namely, the RMB-USD exchange rate (EX), CFUS, GAP, ID, and CPI. In our model, EX is the dependent variable, and the explanatory variables include: GAP (is industrial value-added to represent the output gap difference), ID (is the difference between the Shanghai Interbank Offered Rate and the US Federal Funds Rate), CPI (is the difference between the CPI growth rate of China and the United States); and CFUS (is China’s new foreign exchange expressed as the difference between reserves and trade surplus and actual use of foreign direct investment). These data are from the WIND Economic Database, the National Bureau of Statistics of China, the General Administration of Customs of China, and the US BEA Database. The sample size is chosen from January 2005 to June 2020, leading to a total of 186 observed values.

B. Model

According to Lansing & Ma (2017), the mathematical de-
rivation of the Taylor rule model is:
\[e_t = s_1 E e_{t-1} + s_2 CFUS_t - s_3 \lambda t_{t-1} - i_{t-1} \]
\[- s_1 (1 - \lambda) (\mu_t - \bar{\mu}_t) - s_1 (1 - \bar{\lambda}) \]
\[- s_2 (1 - \lambda) \{(\alpha_1 - \lambda \alpha_3) \bar{\mu}_t \}
\[- s_2 (1 - \bar{\lambda}) \{(\alpha_1 - \bar{\lambda} \alpha_3) \bar{\mu}_t \}
\]
\[\alpha_2 (y_t - \bar{y}_t) \] (1)
The model rests on the assumption that \(CFUS, ID, GAP, CPI, \) and \(CPI \) have an asymmetric effect on the RMB exchange rate.

The precondition of VECM analysis is that "all the roots of the equation fall within the unit circle is a stable process", but in the process of using data difference to obtain data stability, some effective information will be lost, and more attention will be paid to the relationship between variables. In the short-term change process, less attention is paid to the long-term change process. In order to maintain the original appearance of the data and obtain the long-term equilibrium relationship between time series, a VECM can be established to investigate the long-term equilibrium relationship between time series vectors.

C. ADF and Johansen cointegration tests

We use the ADF test to examine the stationarity of variables. The test results show that the original sequences of all variables are not stationary at the 1% level of significance, but their first-order difference sequence are all stationary, which indicates that these sequences are first-order integrated series. Next, the Johansen cointegration approach is used to conduct the cointegration test. We find that there are at least two long-term cointegration relationships between the variables. Therefore, the VECM can be estimated.

The essence of the VECM is a restrictive VAR model, which can examine the dynamic impact of various variables on the RMB exchange rate in the context of the COVID-19 pandemic from both short-term fluctuations and long-term equilibrium. The following equations can be estimated by estimating the VECM:
\[\Delta ER_t = 6.08 * ECM_{t-1} - 0.007885 * ECM_{t-2} + 5.36 * \Delta CFUS_{t-1} + 1.14 * \Delta CFUS_{t-2} - 0.005995 * \Delta CPI_{t-1} - 0.000580 * \Delta CPI_{t-2} - 0.001392 * \Delta GAP_{t-1} - 0.002134 * \Delta GAP_{t-2} + 0.011711 * \Delta ID_{t-1} + 0.003913 * \Delta ID_{t-2} - 0.004603 \] (2)
The coefficient of \(\Delta CPI \) is negative—that is, \(CPI \) expansion is negatively correlated with the rise of the RMB exchange rate, the stability of the price level difference contributes to the stability of the RMB exchange rate. The coefficient of \(\Delta AGAP \) is negative—that is, the \(GAP \) is negatively correlated with the rise in the RMB exchange rate. In the long run, we should maintain stable output, if the output gap is too large, it will be detrimental to China’s economic growth.

In order to test the stability of the VECM, the unit root test is performed on it. Except for the unit root assumed by the VECM itself, all the eigenvalues of the adjoint matrix fall within the unit circle, and most of them are far away from the unit circle. The model is stable, which ensures the significance analysis of impulse response analysis.

D. Impulse response analysis

The impulse response function can be used to describe the impact of a standard deviation shock on the random error term, reflecting the current and future impacts on endogenous variables. The figure shows the effects of \(CFUS, GAP, ID, \) and \(CPI \) on the \(ER \).

Figure 1 shows that by comparing the impact of \(CFUS \) on the \(ER \) at different times, we can find that long-term fluctuations are greater than short- and mid-term fluctuations, and the short-term dynamic asymmetry is the strongest. A positive impact of a one standard deviation of \(CFUS \) shock has a positive impact on the \(ER \). Here, the \(ER \) adopts the direct pricing method, that is, the positive changes in capital flows bring about the appreciation of the \(ER \). The reason is that China reformed its exchange rate system after 2005, from a fixed exchange rate system to a floating exchange rate system and established a mechanism for the formation of the central parity rate of the RMB exchange rate. The impact of \(CFUS \) on the \(ER \) has increased, especially during the COVID-19 pandemic. It will be able to return to a stable level in the short term, and the confidence of other global economies in the Chinese market will increase. Capital inflows in the short term will bring about an appreciation of the \(ER \).

As for \(CPI \), a positive impact of a one standard deviation \(CPI \) shock has a negative impact on the \(ER \), and the negative impact was greatest in period 2. The negative impact in the short-term is more pronounced than in the mid- to long-term, indicating that the impact of the COVID-19 pandemic on the RMB exchange rate is short-lived, and in the long run it still depends on macroeconomic fundamentals. In February 2020, China’s \(CPI \) remained at a high level of 5.2%. To relieve inflationary pressures, monetary authorities issued base currency in the market. However, an increase in the currencies circulated in the market gave rise to inflation. In case of inflation, domestic currency depreciates, and foreign currencies appreciate; as a result, international hot money flows out from the home country and flows into the foreign currency markets, prompting a tighter monetary policy response from the central bank. Raising interest rates has led to an increase in the demand for the RMB and an appreciation of the \(ER \). However, in the long run, the continued increase in inflation will bring about a devaluation of the RMB exchange rate. According to purchasing power parity theory, the price level rises and the purchasing power of the RMB declines, leading to a depreciation trend.

The positive impact of a one standard deviation increase in \(GAP \) has a negative impact on the \(ER \), and the negative impact reached the maximum effect in period 4.5. The \(GAP \) variable has a greater negative impact on the \(ER \) in the short term than in the long term. This shows that \(GAP \) has a negative impact on the stability of the \(ER \). This negative impact is small and has a certain lag. When China’s output growth rate is higher than that of the United States, it will lead to an appreciation of the RMB exchange rate in the short term. However, as China’s economy continues to grow, in order to stimulate exports and absorb excess domestic production capacity, the RMB exchange rate will depreciate. On the other hand, the continuous increase in China’s output growth will bring about a higher inflation rate, and it will also bring about the devaluation of the RMB exchange rate. In February 2020, China’s trade surplus declined rapidly due to the impact of the COVID-19 pandemic. When China’s output gap widens, market expectations will rise, and China will adopt a tighter monetary policy.

In terms of \(ID \), the positive impact of a one standard deviation increase in \(ID \) mainly has a negative impact on the \(ER \), and the negative impact reached its maximum in 4 periods. The larger the \(ID \), that is, when the RMB interest rate
is higher than the USD interest rate, the RMB will appreciate. This is because when the RMB interest rate rises, the demand for the RMB increases, and the RMB shows an appreciating trend. The impact of ID on the ER has a time lag. In February 2020, influenced by the pandemic, the China Banking Regulatory Commission required banks to lower loan interest rates, and the negative impact of China-US interest rate differential on the RMB exchange rate weakened.

III. Conclusion

In this paper, we study the evolution of the RMB exchange rate. Our analysis shows that the impact of the COVID-19 pandemic on the RMB exchange rate is transient. We discover that the short-term fluctuations in the RMB exchange rate are largely influenced by the China-US interest rate differential, while the mid- and long-term fluctuations are influenced by capital flows. Increase in capital inflows in the short term will lead to an appreciation of the RMB exchange rate. Moreover, the asymmetry of the impact of inflation and output gap on the RMB exchange rate is more obvious in the long term. The reason is that inflation levels and output gaps still depend on long-term economic fundamentals.

Acknowledgement

Helpful comments and suggestions from an anonymous reviewer of this journal helped improve the paper. The usual disclaimer applies. We acknowledge the funding by the Beijing Municipal Education Commission (Project code: SM201110058008). All errors are our own.

Submitted: October 28, 2020 AEDT, Accepted: January 03, 2021 AEDT
REFERENCES

Chen, C., Yao, S., & Ou, J. (2017). Exchange rate dynamics in a Taylor rule framework. *Journal of International Financial Markets, Institutions and Money, 46*, 158–175. https://doi.org/10.1016/j.intfin.2016.07.008

Devereux, M. B., & Yu, C. (2019). Evaluating the role of capital controls and monetary policy in emerging market crises. *Journal of International Money and Finance, 95*, 189–211. https://doi.org/10.1016/j.jimonfin.2018.06.009

Dueker, M. J., Psaradakis, Z., Sola, M., & Spagnolo, F. (2013). State-Dependent Threshold Smooth Transition Autoregressive Models. *Oxford Bulletin of Economics and Statistics, 75*(6), 835–854. https://doi.org/10.1111/j.1468-0084.2012.00719.x

Iqbal, N., Fareed, Z., Shahzad, F., He, X., Shahzad, U., & Lina, M. (2020). The nexus between COVID-19, temperature and exchange rate in Wuhan city: New findings from partial and multiple wavelet coherence. *Science of The Total Environment, 729*, 138916. http://doi.org/10.1016/j.scitotenv.2020.138916

Lansing, K. J., & Ma, J. (2017). Explaining exchange rate anomalies in a model with Taylor-rule fundamentals and consistent expectations. *Journal of International Money and Finance, 70*, 62–87. https://doi.org/10.1016/j.jimonfin.2016.08.004

Narayan, P. K. (2020a). Has COVID-19 Changed Exchange Rate Resistance to Shocks? *Asian Economics Letters, 1*(1). https://doi.org/10.46557/001c.17389

Narayan, P. K. (2020b). Did Bubble Activity Intensify During COVID-19? *Asian Economics Letters, 1*(2). https://doi.org/10.46557/001c.17654

Narayan, P. K., Devpura, N., & Wang, H. (2020). Japanese currency and stock market—What happened during the COVID-19 pandemic? *Economic Analysis and Policy, 68*, 191–198. https://doi.org/10.1016/j.eap.2020.09.014

Wang, R., Morley, B., & Stamatogiannis, M. P. (2019). Forecasting the exchange rate using nonlinear Taylor rule based models. *International Journal of Forecasting, 35*(2), 429–442. https://doi.org/10.1016/j.ijforecast.2018.07.017