A Solution to an Ambarzumyan Problem on Trees

C.K. Law* and E. Yanagida†

October 1, 2010

Abstract

We consider the Neumann Sturm-Liouville problem defined on trees such that the ratios of lengths of edges are not necessarily rational. It is shown that the potential function of the Sturm-Liouville operator must be zero if the spectrum is equal to that for zero potential. This extends previous results and gives an Ambarzumyan theorem for the Neumann Sturm-Liouville problem on trees. To prove this, we compute approximated eigenvalues for zero potential by using a generalized pigeon hole argument, and make use of recursive formulas for characteristic functions.

AMS Subject Classification (2000) : 34A55, 34B24.

*Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan 804, R.O.C., and National Center for Theoretical Sciences, Taiwan. Email: law@math.nsysu.edu.tw

†Department of Mathematics, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan. Email: yanagida@math.titech.ac.jp
1 Introduction

In this paper we study an eigenvalue problem for a Neumann Sturm-Liouville operator defined on a metric tree (a connected graph with no cycles) \(\Gamma = \{V, E\} \), where \(V = \{v_j : j = 0, \ldots, J\} \) is the set of all vertices and \(E = \{\gamma_i : i = 1, \ldots, I\} \) is the set of all edges with lengths \(a_i \in (0, \infty) \). We let \(\partial \Gamma \) be the set of all pendant (boundary) vertices. Any edge connected to a pendant vertex is called a boundary edge. For any internal vertex \(v \), we let \(I(v) \) be the set of all indices \(i \) such that the edge \(\gamma_i \) is connected to \(v \). The degree of \(v \) is defined as \(|I(v)| \). We also choose an arbitrary internal vertex \(v_0 \) to be the root. Then we assign local coordinates to the edges such that for any edge \(\alpha_i \in E \), the endpoint of \(\gamma_i \) further from the root has local coordinates 0, while the endpoint closer to the root has local coordinate \(a_i \). Thus all pendant vertices have local coordinate 0, while the root \(v_0 \) has local coordinate \(a_i \) corresponding to the edge \(\gamma_i \) connected to it. Thus the Neumann Sturm-Liouville problem can be expressed as functions \(y_i \)'s defined on the edges \(\gamma_i \)'s satisfying

\[
- y_i'' + q_i(x)y_i = \lambda y_i \quad 0 < x < a_i, \quad i = 1, 2, \ldots, I, \tag{1.1}
\]

where each \(q_i \) is the potential function defined on \(\gamma_i \) \((i = 1, \ldots, I) \), and,

(A1) \(y_i'(0) = 0 \) whenever \(\gamma_i \) is a boundary edge.

Also continuity and Kirchhoff conditions are imposed at each internal vertex. At any internal vertex \(v \) other than the root, there are some incoming edges \(\gamma_i \)'s and one outgoing edge \(\gamma_k \). The local coordinates of \(v \) is 0 with respect to \(\gamma_k \) but \(a_i \) with respect to the other \(\gamma_i \)'s.

(A2) The continuity and Kirchhoff conditions at \(v \) are defined as

\[
y_k(0) = y_i(a_i), \quad \text{and} \quad y_k'(0) = \sum_i y'_i(a_i),
\]

wherever \(i \) is such that \(i \in I(v) \) but \(i \neq k \).

At the root \(v_0 \), all the connecting edges are incoming. Hence

(A3) the continuity and Kirchhoff conditions are defined as: for any \(i, k \in I(v_0) \),

\[
y_k(a_k) = y_i(a_i), \quad \text{and} \quad \sum_{i \in I(v_0)} y'_i(a_i) = 0,
\]

The above formulation of the Sturm-Liouville problem on \(\Gamma \) is essentially the same as in [10]. Note that the Neumann boundary conditions (A1) can be viewed as a special case of (A2), for the degree of a pendant vertex is 1, hence continuity condition is empty and right hand side of the Kirchhoff condition vanishes. It is well-known that the above
problem has a discrete spectrum. A real number λ is an eigenvalue of the above problem if it has a nontrivial solution (y_1, \ldots, y_I), i.e., at least one of y_i's is nontrivial. We write $Q = (q_1, \ldots, q_I)$, and let $\sigma(Q)$ be the set of eigenvalues for the vector potential function Q. In particular, $\sigma(0)$ denotes the set of eigenvalues for $Q = 0$, i.e., $q_i \equiv 0$ for all $i = 1, \ldots, I$.

In the simplest case $I = 1$, the above problem is reduced to a usual Sturm-Liouville problem on a finite interval $(0, a_1)$ with the Neumann boundary condition. In this case, in 1929, Ambarzumyan [1] showed that $\sigma(Q) = \sigma(0)$ implies $Q = 0$ almost everywhere. This seems to be the first example of an inverse problem where the potential function can be determined uniquely by the spectrum, without any additional data. Later, Chern and Shen [4] extended the result to vectorial Sturm-Liouville systems. In the case of the Dirichlet boundary condition, it was shown by Chern et al. [3] that the potential function must be identically equal to 0 if an additional condition

$$\int_0^{a_1} q_1(x) \cos\left(\frac{2\pi}{a_1} x\right) dx = 0$$

is imposed. Recently, the Ambarzumyan problem for periodic boundary conditions was studied by Yang et al. [14]. They showed that for a vectorial Sturm-Liouville system of dimension d with the periodic boundary condition, if the eigenvalues are $(2n\pi)^2$ with multiplicities $2d$, then the vector potential must be 0. Thus the Ambarzumyan theorem, originally specified for the Neumann boundary condition, can be generalized to several Ambarzumyan problems with different boundary conditions.

The aim of this paper is to study the Ambarzumyan problem for the Neumann Sturm-Liouville problems defined on trees. In this direction, Pivovarchik [11] showed that when Γ consists of three edges with equal length and one triple junction, an analogue of Ambarzumyan theorem is valid for the problem (1.1) with (A1)\textasciitilde(A3). Later, Carlson and Pivovarchik [2] extended the result to any trees such that $\{a_i/L\}$ are all rational numbers, where L is the total length of Γ given by

$$L := \sum_{i=1}^{I} a_i.$$

In this case, we can find infinitely many eigenvalues explicitly given by

$$\left(\frac{mm_0}{L} \pi\right)^2 \in \sigma(0), \quad m = 0, 1, 2, \ldots$$

for some integer m_0, which makes the analysis much easier than a more general case. As for the Dirichlet problem on a star-shaped graph, we refer to a recent paper by Hung et al [5]. See also [6, 7, 8, 9, 10, 11, 13] for related results on the Sturm-Liouville problems on graphs.

In this paper we consider the Sturm-Liouville problem on trees such that $\{a_i/L\}$ are not necessarily rational. The following theorem is a main result of this paper, which gives a solution to the Ambarzumyan problem on general trees.
Theorem 1.1. For the Neumann Sturm-Liouville operator defined on Γ, $\sigma(Q) = \sigma(0)$ implies $Q = 0$ almost everywhere.

When we deal with general trees, we encounter two kinds of difficulty. The first one is that we must handle trees with arbitrary number of edges. Moreover, even if the number of edges is given, there are various trees with different topology. In order to handle all trees, we shall derive a recursive formula for characteristic functions whose zeros are the square roots of eigenvalues. The second one is that we may not have explicit eigenvalues as (1.2). To overcome the difficulty, we approximate $\{a_i/L\}$ precisely by rational numbers at the same time by applying a (generalized) pigeon hole argument.

In Section 2, we shall study direct problems and derive recursive formulas for characteristic functions. In Section 3, we compute the expansion of characteristic functions. In Section 4, we present a key lemma for the approximation of eigenvalues. Finally Section 5 is devoted to the proof of Theorem 1.1.

Hereafter in this paper, we shall let v_1 be a pendant vertex which is an endpoint of the edge γ_1, while v_2 is another vertex at the other end. And without loss of generality, we assume that γ_2 is connected to v_2, and is closer to v_0 than γ_1.

2 Recursive formula for characteristic functions

Let $\rho > 0$, and let $y = C_i(x; \rho)$ and $y = S_i(x; \rho)$ be (linearly independent) solutions of

$$-y'' + q_i(x)y = \rho^2 y, \quad 0 < x < a_i \quad (2.1)$$

with the initial conditions

$$y(0) = 1, \quad y'(0) = 0,$$

and

$$y(0) = 0, \quad y'(0) = 1,$$

respectively. We sometimes write $C_i(x; \rho)$ as $C_i(x)$ and $S_i(x; \rho)$ as $S_i(x)$ just for simplicity. For each edge γ_i, we write y_i as

$$y_i = A_i C_i(x) + B_i S_i(x).$$

Then from (A1)∼(A3), we have a system of linear equations for the unknowns $\{A_i\}$ and $\{B_i\}$. Thus we may express the coefficient matrix of the system of linear equations as

$$\Phi_N(\rho) = \begin{bmatrix}
C'_1(0) & S'_1(0) & 0 & 0 & 0 & \cdots & 0 \\
C_1(a_1) & S_1(a_1) & -C_2(0) & -S_2(0) & 0 & \cdots & 0 \\
C'_1(a_1) & S'_1(a_1) & -C'_2(0) & -S'_2(0) & * & \cdots & * \\
0 & 0 & * & * & * & \cdots & * \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & * & * & * & \cdots & * & *
\end{bmatrix}, \quad (2.2)$$
where the first row corresponds to the Neumann boundary condition at \(v_1 \in \Gamma \), and the second and third rows correspond to the continuity condition and the Kirchhoff condition at \(v_2 \). Note that in the first row, we include the term \(S'_1(0) \) although the corresponding coefficient \(B_1 = 0 \). We do this in order to have a systematic form of \(\Phi_N \) during reductions, as we shall see later. We define a characteristic function by

\[
\varphi_N(\rho) := \det \Phi_N(\rho),
\]

so that \(\lambda = \rho^2 \in \sigma(Q) \) if and only if \(\varphi_N(\rho) = 0 \). We note that the characteristic function depends on the orientation of edges and how to express the coefficient matrix, but the set of zeros of \(\varphi_N(\rho) \) does not depend on them.

Next we introduce another eigenvalue problem by replacing (A1) with the following condition:

(A4) If \(v_1 \) is an endpoint of any boundary edge \(\gamma_i \), the solution of (1.1) satisfies the zero Dirichlet boundary condition

\[
y_i(0) = 0 \quad (\text{or} \quad y_i(a_i) = 0)
\]

At other boundary vertices, the solution satisfies the homogeneous Neumann boundary condition as in (A1).

Hereafter, we call (1.1) with (A2)~(A4) the Dirichlet-Neumann problem. If we impose the zero Dirichlet condition at \(\alpha(\gamma_1) \in \partial \Gamma \), then \(A_1 = 0 \). Thus we may express the corresponding coefficient matrix by

\[
\Phi_D(\rho) = \begin{bmatrix}
C_1(0) & S_1(0) & 0 & 0 & 0 & \cdots & 0 \\
C_1(a_1) & S_1(a_1) & -C_2(0) & -S_2(0) & 0 & \cdots & 0 \\
C'_1(a_1) & S'_1(a_1) & -C'_2(0) & -S'_2(0) & * & \cdots & * \\
0 & 0 & * & * & * & \cdots & * \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & * & * & * & \cdots & *
\end{bmatrix}.
\]

Then we define a characteristic function for the Dirichlet-Neumann problem by

\[
\varphi_D(\rho) := \det \Phi_D(\rho).
\]

Again, the set of zeros of \(\varphi_D(\rho) \) does not depend on the orientation of edges and how to express the coefficient matrix. Our interest will be only in zeros of the characteristic functions, and hence the non-uniqueness of characteristic functions will not affect the following argument.

For a general tree, it is not easy to express explicitly the characteristic functions \(\varphi_N \) and \(\varphi_D \). Instead, we may compute these functions recursively as follows. Let \(\tilde{\Gamma} \) be a subtree of \(\Gamma \) obtained by removing \(\gamma_1 \). We denote by \(\tilde{\varphi}_N \) the corresponding characteristic
function of the problem with Neumann condition at v_2 in case $I(v) = \{1, 2\}$. However if the degree of v_2 is greater than 2, then we take the continuity and Kirchhoff conditions at v_2 instead. Thus we say $\tilde{\varphi}_N$ the characteristic function for a Neumann/Kirchhoff problem on $\tilde{\Gamma}$. (see fig. 1)

If we remove γ_1 and replace the matching conditions (A2) and (A3) by $y_j = 0$ at the vertex v_2 for any $j \in I(v_2)$, we have subtrees of Γ on which the Dirichlet-Neumann problems are defined. For each subtree, a characteristic function of the Dirichlet-Neumann problem is defined as above. We denote by $\tilde{\varphi}_D(\rho)$ the product of these characteristic functions.

For trees with two or more edges, we have the following recursive formulas.

Lemma 2.1. Assume that $I \geq 2$. Then the characteristic functions have the following properties:

(a) $\varphi_N(\rho) = C_1(a_1)\tilde{\varphi}_N(\rho) - C'_1(a_1)\tilde{\varphi}_D(\rho)$.

(b) $\varphi_D(\rho) = -S_1(a_1)\tilde{\varphi}_N(\rho) + S'_1(a_1)\tilde{\varphi}_D(\rho)$.

Proof. Since $C'_1(0) = 0$ and $S'_1(0) = 1$, by expansions with respect to the first row and
the first column, we have
\[
\det \Phi_N(\rho) = -\det \begin{bmatrix}
C_1(a_1) & -C_2(0) & -S_2(0) & 0 & \cdots & 0 \\
C'_1(a_1) & -C'_2(0) & -S'_2(0) & * & \cdots & *
\end{bmatrix}
\]
\[
0 & * & * & \cdots & *
\]
\[
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & * & * & \cdots & *
\]

= \det \left(C_1(a_1) \det \Phi_N(\rho) - C'_1(a_1) \det \Phi_D(\rho) \right),
\]

where \(\Phi_N \) and \(\Phi_D \) are \((2I - 2) \times (2I - 2)\) matrices given by
\[
\Phi_N(\rho) = \begin{bmatrix}
C'_2(0) & S'_2(0) & * & \cdots & * \\
* & * & * & \cdots & *
\end{bmatrix}
\]
and
\[
\Phi_D(\rho) = \begin{bmatrix}
C_2(0) & S_2(0) & 0 & \cdots & 0 \\
* & * & * & \cdots & *
\end{bmatrix},
\]
respectively. Noting that \(\Phi_N \) describes conditions on the Neumann/Kirchhoff problem for \(\Gamma \) with \(\gamma_1 \) removed, we have
\[
\det \Phi_N(\rho) = \tilde{\varphi}_N(\rho).
\]
Similarly, since \(\Phi_D \) describes conditions on the Dirichlet-Neumann problems for subtrees of \(\Gamma \) obtained by removing \(\gamma_1 \), we have
\[
\det \Phi_N(\rho) = \tilde{\varphi}_D(\rho).
\]

Thus the proof of (a) is completed.

Next, let us consider the Dirichlet-Neumann problem. In this case, we have the expansion, since \(C_1(0) = 1 \) and \(S_1(0) = 0 \),
\[
\det \Phi_D(\rho) = \det \begin{bmatrix}
S_1(a_1) & -C_2(0) & -S_2(0) & 0 & \cdots & 0 \\
S'_1(a_1) & -C'_2(0) & -S'_2(0) & * & \cdots & *
\end{bmatrix}
\]
\[
0 & * & * & \cdots & *
\]
\[
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & * & * & \cdots & *
\]

= \det \left(-S_1(a_1) \det \Phi_N(\rho) + S'_1(a_1) \det \Phi_D(\rho) \right).
\]
This proves (b).\[\square\]
Remark 2.2. More general recursive formulas were obtained in a recent paper by Law and Pivovarchik [10]. Interested readers might like to read a spectral determinant approach to the same formulas [12].

Now we compute the characteristic function of a general tree as follows. Given a tree with two or more edges, we remove one of the edges of Γ and use the recursive formulas. Repeating this procedure, we will reach to problems on single edges. For a single edge γ_i, we may define its characteristic functions by

$$\tilde{\varphi}_N(\rho) := -C_i'(a_i), \quad \tilde{\varphi}_D := S_i'(a_i). \quad (2.3)$$

Thus we can express $\varphi_N(\rho)$ and $\varphi_D(\rho)$ as polynomials of $\{C_i(a_i)\}$ and $\{S_i(a_i)\}$.

Next, we consider the zero potential $Q = 0$, and denote by $\psi_n(\rho)$ and $\psi_D(\rho)$ the corresponding characteristic functions of the Neumann/Kirchhoff problem and the Dirichlet-Neumann problem, respectively. Similarly, we denote by $\tilde{\psi}_N$ and $\tilde{\psi}_D$ be characteristic functions for the Neumann and Dirichlet-Neumann problems for Γ with γ_1 removed. For a tree with a single edge γ_i, to be consistent with (2.3), we define its characteristic functions by

$$\tilde{\psi}_N(\rho) := \sin(\rho a_i), \quad \tilde{\psi}_D(\rho) := \cos(\rho a_i). \quad (2.4)$$

For trees with two or more edges, the characteristic functions can be computed by using the following recursive formulas repeatedly and (2.4).

Lemma 2.3. Assume $I \geq 2$. Then the characteristic functions for $Q = 0$ have the following properties:

(a) $\psi_N(\rho) = \cos(\rho a_1)\tilde{\psi}_N(\rho) + \sin(\rho a_1)\tilde{\psi}_D(\rho)$.

(b) $\psi_D(\rho) = -\sin(\rho a_1)\tilde{\psi}_N(\rho) + \cos(\rho a_1)\tilde{\psi}_D(\rho)$.

Proof. For $q_i(x) \equiv 0$, the solutions of (2.1) are given by $C_i(x; \rho) = \cos(\rho x)$ and $S_i(x; \rho) = \sin(\rho x)$. Then the above recursive formulas can be obtained in the same way as Lemma 2.1.

3 Expansion of characteristic functions

In this section we show the following asymptotic formulas for $C_i(a_i; \rho)$ and $S_i(a_i; \rho)$ as $\rho \to \infty$.

Lemma 3.1. As $\rho \to \infty$, one has

$$C_i(a_i; \rho) = \cos(\rho a_i) + \rho^{-1}K_i \sin(\rho a_i) + o(\rho^{-1}),$$

$$C_i'(a_i; \rho) = -\rho \sin(\rho a_i) + K_i \cos(\rho a_i) + o(1),$$

$$S_i(a_i; \rho) = \rho^{-1} \sin(\rho a_i) - \rho^{-2}K_i \cos(\rho a_i) + o(\rho^{-2}),$$

$$S_i'(a_i; \rho) = \cos(\rho a_i) + \rho^{-1}K_i \sin(\rho a_i) + o(\rho^{-1}),$$
where

\[K_i := \frac{1}{2} \int_0^{a_i} q_i(x) \, dx. \]

Proof. By the variation of constants method, it is easy to show that \(C_i(x) \) satisfies

\[C_i(x) = \cos(\rho x) + \frac{1}{\rho} \int_0^x \sin(\rho(x - t)) q_i(t) C_i(t) \, dt. \]

Hence

\[C_i(x) = \cos(\rho x) + O(\rho^{-1}) \]

and

\[C_i'(x) = -\rho \sin(\rho x) + \int_0^x \cos(\rho(x - t)) q_i(t) C_i(t) \, dt \]

\[= -\rho \sin(\rho x) + \int_0^x \cos(\rho(x - t)) \cos(\rho t) q_i(t) \, dt + O(\rho^{-2}) \]

\[= -\rho \sin(\rho x) + \frac{1}{2} \int_0^x (\cos(\rho x) + \cos(\rho(x - 2t))) q_i(t) \, dt + O(\rho^{-1}) \]

\[= -\rho \sin(\rho x) + \frac{\cos(\rho x)}{2} \int_0^x q_i(t) \, dt + o(1). \]

Furthermore,

\[C_i'(x) = -\rho \sin(\rho x) + \int_0^x \cos(\rho(x - t)) q_i(t) C_i(t) \, dt \]

\[= -\rho \sin(\rho x) + \frac{1}{2} \int_0^x (\cos(\rho x) + \cos(\rho(x - 2t))) q_i(t) \, dt + O(\rho^{-1}) \]

Evaluating at \(x = a_i \), we obtain the asymptotic formulas for \(C_i(a_i) \) and \(C_i'(a_i) \).

The asymptotic formulas for \(S_i(a_i) \) and \(S_i'(a_i) \) can be derived similarly by using

\[S_i(x) = \frac{\sin(\rho x)}{\rho} + \frac{1}{\rho^2} \int_0^x \sin(\rho(x - t)) q_i(t) S_i(t) \, dt. \]

We omit the details.

Lemma 3.2. The characteristic functions \(\varphi_N \) and \(\varphi_D \) have the following properties:

(a) \(\varphi_N(\rho) = \rho \psi_N(\rho) - \left(\sum_{i=1}^{l} K_i \right) \psi_D(\rho) + o(1) \) as \(\rho \to \infty \).

(b) \(\varphi_D(\rho) = \psi_D(\rho) + \rho^{-1} \left(\sum_{i=1}^{l} K_i \right) \psi_N(\rho) + o(\rho^{-1}) \) as \(\rho \to \infty \).
Proof. If Γ consists of a single edge, then by Lemma 3.1 we have
\[
\varphi_N(\rho) = -C'_1(a_1) = \rho \sin(\rho a_1) - K_1 \cos(\rho a_1) + o(1),
\]
\[
\varphi_D(\rho) = S'_1(a_1) = \cos(\rho a_1) + \rho^{-1} K_1 \sin(\rho a_1) + o(\rho^{-1}),
\]
so that
\[
\varphi_N(\rho) = \rho \psi_N(\rho) - K_1 \psi_D(\rho) + o(1),
\]
\[
\varphi_D(\rho) = \psi_D(\rho) + \rho^{-1} K_1 \psi_N(\rho) + o(\rho^{-1}).
\]
Hence (a) and (b) hold in this case.

Suppose now that (a) and (b) hold for any subtree of Γ. Then by Lemmas 2.1 and 2.3 we have
\[
\varphi_N(\rho) = C'_1(a_1) \tilde{\varphi}_N(\rho) - C'_1(a_1) \tilde{\varphi}_D(\rho)
\]
\[
= \left\{ \cos(\rho a_1) + \rho^{-1} K_1 \sin(\rho a_1) + o(1) \right\} \left\{ \rho \tilde{\psi}_N(\rho) - \left(\sum_{i=2}^{I} K_i \right) \tilde{\psi}_D(\rho) + o(1) \right\}
\]
\[
- \left\{ - \rho \sin(\rho a_1) + K_1 \cos(\rho a_1) + o(1) \right\} \left\{ \tilde{\psi}_D(\rho) + \rho^{-1} \left(\sum_{i=2}^{I} K_i \right) \tilde{\psi}_N(\rho) + o(\rho^{-1}) \right\}
\]
\[
= \rho \cos(\rho a_1) \tilde{\psi}_N(\rho) + K_1 \sin(\rho a_1) \tilde{\psi}_N(\rho) - \cos(\rho a_1) \left(\sum_{i=2}^{I} K_i \right) \tilde{\psi}_D(\rho)
\]
\[
+ \rho \sin(\rho a_1) \tilde{\psi}_D(\rho) - K_1 \cos(\rho a_1) \tilde{\psi}_D(\rho) + \sin(\rho a_1) \left(\sum_{i=2}^{I} K_i \right) \tilde{\psi}_N(\rho) + o(1)
\]
\[
= \rho \psi_N(\rho) - K_1 \psi_D(\rho) - \left(\sum_{i=2}^{I} K_i \right) \psi_D(\rho) + o(1),
\]
\[
= \rho \psi_N(\rho) - \left(\sum_{i=1}^{I} K_i \right) \psi_D(\rho) + o(1).
\]
Similarly,
\[\varphi_D(\rho) = -S_1(a_1)\tilde{\varphi}_N(\rho) + S'_1(a_1)\tilde{\varphi}_D(\rho) \]

\[= -\left\{ \rho^{-1}\sin(\rho a_1) - \rho^{-2}K_1 \cos(\rho a_1) + o(\rho^{-2}) \right\} \left\{ \rho\tilde{\psi}_N(\rho) - \left(\sum_{i=2}^I K_i \right)\tilde{\psi}_D(\rho) + o(1) \right\} \]

\[+ \left\{ \cos(\rho a_1) + \rho^{-1}K_1 \sin(\rho a_1) + o(1) \right\} \left\{ \tilde{\psi}_D(\rho) + \rho^{-1}\left(\sum_{i=2}^I K_i \right)\tilde{\psi}_N(\rho) + o(\rho^{-1}) \right\} \]

\[= -\sin(\rho a_1)\tilde{\psi}_N(\rho) + \rho^{-1}\left\{ K_1 \cos(\rho a_1)\tilde{\psi}_N(\rho) + \sin(\rho a_1)\left(\sum_{i=2}^I K_i \right)\tilde{\psi}_D(\rho) \right\} + o(\rho^{-1}) \]

\[+ \cos(\rho a_1)\tilde{\psi}_D(\rho) + \rho^{-1}\left\{ K_1 \sin(\rho a_1)\tilde{\psi}_D(\rho) + \cos(\rho a_1)\left(\sum_{i=2}^I K_i \right)\tilde{\psi}_N(\rho) \right\} + o(1) \]

\[= \psi_D(\rho) + \rho^{-1}\left\{ K_1 \psi_N(\rho) + \left(\sum_{i=2}^I K_i \right)\psi_N(\rho) \right\} + o(\rho^{-1}) \]

\[= \psi_D(\rho) + \rho^{-1}\left(\sum_{i=1}^I K_i \right)\psi_N(\rho) + o(\rho^{-1}). \]

Hence the assertion holds for the whole tree. Thus by induction, the proof is complete.

4 Approximation of eigenvalues

In this section we compute approximate eigenvalues for \(\Gamma \) with \(Q = 0 \). We begin with the following lemma.

Lemma 4.1. There exist infinite sequences of natural numbers \(\{m_n\} \) and \(\{k_{i,n}\} (i = 1, \ldots, I) \) such that \(m_n \to \infty \) as \(n \to \infty \) and

\[\left| \frac{a_i}{L} - \frac{k_{i,n}}{m_n} \right| < m_n^{-1-1/I} \]

for all \(i = 1, 2, \ldots, I \) and \(n = 1, 2, \ldots, \).

Proof. If \(a_i/L \) (\(i = 1, \ldots, I \)) are all rational numbers, we can find natural numbers \(p \) and \(q_i \) such that

\[\frac{a_i}{L} = \frac{q_i}{p}, \quad i = 1, 2, \ldots, I. \]

Then we may take

\[k_{i,n} = nq_i, \quad m_n = np. \]
Assume that not all of a_i/L ($i = 1, \ldots, I$) are rational. We consider the I-dimensional unit cube

$$\{x = (x_1, x_2, \ldots, x_I) \in \mathbb{R}^I : 0 \leq x_i \leq 1 \text{ for } i = 1, 2, \ldots, I\},$$

and divide it into n^I smaller cubes with edge length $1/n$. We shall approximate the vector $(a_1/L, \ldots, a_I/L)$ by a rational point in the unit cube as follows. For each $p = 0, 1, 2, \ldots, n^I$, there exists $q_i \in \mathbb{N}$ such that

$$0 \leq p \frac{a_i}{L} - q_i < 1.$$

Then by the pigeonhole principle, there exist vectors U_1 and U_2 of the form

$$U_j = (p_j \frac{a_1}{L} - q_{1,j}, \ldots, p_j \frac{a_I}{L} - q_{I,j}), \quad j = 1, 2,$$

that fall into the same small cube. Then for $m_n = p_2 - p_1 \leq n^I$ and $k_{i,n} = q_{i,2} - q_{i,1}$, we have

$$|m_n \frac{a_i}{L} - k_{i,n}| < \frac{1}{n},$$

so that

$$\left| \frac{a_i}{L} \right| \frac{k_{i,n}}{m_n} < \frac{1}{mn} \leq \frac{1}{m_n^{1+1/I}}.$$

The proof is complete since from (4.1), $m_n \to \infty$ as $n \to \infty$.

\[\square\]

Remark 4.2.

(a) Since

$$|m_n - \sum_{i=1}^{I} k_{i,n}| \leq m_n \sum_{i=1}^{I} \left| \frac{a_i}{L} - k_{i,n} \right| < \frac{I}{n},$$

the equality

$$m_n = \sum_{i=1}^{I} k_{i,n}$$

holds for all $n \geq I$.

(b) Using $\sum_{i=1}^{I} (a_i/L) = 1$, we may apply the pigeonhole principle on the $(I - 1)$-dimensional hyperplane

$$\{x = (x_1, x_2, \ldots, x_I) \in \mathbb{R}^I : x_1 + x_2 + \cdots + x_I = 1\}.$$

Then we can improve the result in Lemma 4.1 to

$$\left| \frac{a_i}{L} - \frac{k_{i,n}}{m_n} \right| = O(m_n^{-1/(I-1)}).$$
Let \(\{m_n\} \) be the sequence given in Lemma 4.1. We define a sequence \(\{\mu_n\} \)

\[
\mu_n := \frac{2m_n\pi}{L}, \quad n = 1, 2, \ldots,
\]

and compute the values of \(\psi_N, \psi_D \), and their derivatives at \(\rho = \mu_n \) as follows.

Lemma 4.3. The characteristic functions \(\psi_N \) and \(\psi_D \) have the following properties:

(a) \(\psi_N(\mu_n) = O(\mu_n^{-1/1}) \) and \(\frac{d\psi_N}{d\rho}(\mu_n) = L + O(\mu_n^{-1/1}) \) as \(n \to \infty \).

(b) \(\psi_D(\mu_n) = 1 + O(\mu_n^{-1/1}) \) and \(\frac{d\psi_D}{d\rho}(\mu_n) = O(\mu_n^{-1/1}) \) as \(n \to \infty \).

Proof. By Lemma 2.3 and

\[
\mu_n a_i = \frac{m_n\pi}{L} a_i = 2k_{i,n}\pi + O(\mu_n^{-1/1}),
\]

we have

\[
\psi_N(\mu_n) = \cos(\mu_n a_1) \tilde{\psi}_N(\mu_n) + \sin(\mu_n a_1) \tilde{\psi}_D(\mu_n) = \tilde{\psi}_N(\mu_n) + O(\mu_n^{-1/1}) \tilde{\psi}_D(\mu_n),
\]

and

\[
\psi_D(\mu_n) = -\sin(\mu_n a_1) \tilde{\psi}_N(\mu_n) + \cos(\mu_n a_1) \tilde{\psi}_D(\mu_n) = \tilde{\psi}_D(\mu_n) + O(\mu_n^{-1/1}) \tilde{\psi}_N(\mu_n).
\]

Using these equalities repeatedly on (2.4), we obtain

\[
\psi_N(\mu_n) = O(\mu_n^{-1/1}), \quad \tilde{\psi}_N(\mu_n) = O(\mu_n^{-1/1}),
\]

and

\[
\psi_D(\mu_n) = 1 + O(\mu_n^{-1/1}), \quad \tilde{\psi}_D(\mu_n) = 1 + O(\mu_n^{-1/1}).
\]

Also, we have

\[
\frac{d\psi_N}{d\rho}(\mu_n) = \frac{d}{d\rho} \left\{ \cos(\rho a_1) \tilde{\psi}_N + \sin(\rho a_1) \tilde{\psi}_D \right\}(\mu_n)
\]

\[
= -a_1 \sin(\mu_n a_1) \tilde{\psi}_N(\mu_n) + \cos(\mu_n a_1) \frac{d\tilde{\psi}_N}{d\rho}(\mu_n)
\]

\[
+ a_1 \cos(\mu_n a_1) \tilde{\psi}_D(\mu_n) + \sin(\mu_n a_1) \frac{d\tilde{\psi}_D}{d\rho}(\mu_n)
\]

\[
= \frac{d\tilde{\psi}_N}{d\rho}(\mu_n) + a_1 + O(\mu_n^{-1/1})
\]
and
\[
\frac{d\psi_D}{d\rho}(\mu_n) = \frac{d}{d\rho}\{ -\sin(\rho a_1)\tilde{\psi}_N + \cos(\rho a_1)\tilde{\psi}_D \}(\mu_n)
\]
\[= -a_1 \cos(\mu_n a_1)\tilde{\psi}_N(\mu_n) - \sin(\mu_n a_1)\frac{d\tilde{\psi}_N}{d\rho}(\mu_n)
\]
\[\quad - a_1 \sin(\mu_n a_1)\tilde{\psi}_D(\mu_n) + \cos(\mu_n a_1)\frac{d\tilde{\psi}_D}{d\rho}(\mu_n)
\]
\[= \frac{d\tilde{\psi}_D}{d\rho}(\mu_n) + O(\mu_n^{-1/4}).\]

Using these equalities repeatedly and (2.4), we obtain
\[
\frac{d\psi_N}{d\rho}(\mu_n) = \sum_{i=1}^{I} a_i + O(\mu_n^{-1/4})
\]
and
\[
\frac{d\psi_D}{d\rho}(\mu_n) = O(\mu_n^{-1/4}).
\]

The proof is complete. □

As an immediate consequence of Lemma 4.3, we have the following result concerning the location of zeros of \(\psi_N\).

Lemma 4.4. There exists a sequence of positive numbers \(\{\rho_n\}\) such that \(\psi_N(\rho_n) = 0\) for \(n = 1, 2, \ldots\) and \(\rho_n = \mu_n + O(\mu_n^{-1/4})\) as \(n \to \infty\).

Proof. By Lemma 4.3, there exists \(M > 0\) independent of \(n\) such that \(|\psi_N(\mu_n)| \leq M\mu_n^{-1/4}\) for all large \(n\). On the other hand, by (2.4) and Lemma 2.3, \(\psi_N(\rho)\) and \(\psi_D(\rho)\) must be some polynomials of \(\sin(\rho a_i)\) and \(\cos(\rho a_i)\) \((i = 1, 2, \ldots, I)\) with constant coefficients. This implies that \(|(d^2/d\rho^2)\psi_N|\) is uniformly bounded in \(\rho > 0\). Hence by Lemma 4.3, there exists \(\delta > 0\) independent of \(n\) such that
\[
\frac{d}{d\rho}\psi_N(\rho) > \frac{L}{2} \quad \text{for } \rho \in (\mu_n - \delta, \mu_n + \delta).
\]

Therefore \(\psi_N(\rho)\) must vanish at some \(\rho_n\) such that
\[
|\rho_n - \mu_n| \leq (2M/L)\mu_n^{-1/4}.
\]

This completes the proof. □
5 Proof of Theorem 1.1

In this section we complete the proof of Theorem 1.1. By Lemma 3.2 \(\varphi_N \) satisfies

\[
\varphi_N(\rho) = \rho \psi_N(\rho) - \left(\sum_{i=1}^I K_i \right) \psi_D(\rho) + o(1) \quad \text{as } \rho \to \infty.
\]

Here, setting \(\rho = \rho_n \), we have \(\varphi_N(\rho_n) = 0 = \psi_N(\rho_n) \) by \(\sigma(Q) = \sigma(0) \). Also, by Lemmas 4.3 (b) and 4.4 we have

\[
\psi_D(\rho_n) = 1 + O(\rho_n^{-1/I}) \quad \text{as } n \to \infty.
\]

Thus we obtain

\[
\left(\sum_{i=1}^I K_i \right) \left\{ 1 + O(\rho_n^{-1/I}) \right\} + o(1) = 0.
\]

Letting \(n \to \infty \), we conclude

\[
\sum_{i=1}^I K_i = \frac{1}{2} \sum_{i=1}^I \int_0^{a_i} q_i(x) dx = 0. \tag{5.1}
\]

On the other hand, since \(\lambda = 0 \) is the first eigenvalue, it follows from the variational principle that the inequality

\[
\sum_{i=1}^I \int_0^{a_i} \left\{ (y'_i)^2 + q_i(x)(y_i)^2 \right\} dx \geq 0
\]

\[
\sum_{i=1}^I \int_0^{a_i} (y_i)^2 dx
\]

holds for any test function in \(H^1(\Gamma) \). By (5.1), the infimum is attained by \(y_i(x) = 1 \) for \(i = 1, \ldots, I \). This implies that the constant vector \((1, \ldots, 1) \) is an eigenfunction associated with \(\lambda = 0 \). Then by simple substitution, we conclude that \(q_i = 0 \) a.e. on \([0, a_i], i = 1, 2, \ldots, I \). Thus the proof is complete.

Acknowledgments

E. Yanagida was supported in part by the Grant-in-Aid for Scientific Research (A) (No. 19204014) from the Japan Society for the Promotion of Science. C.K. Law was supported in part by National Science Council, Taiwan under grant number NSC 97-2115-M-110-005-MY2. Law would like to thank the organizers of the Analysis on Graphs - Follow-up Workshop held at Isaac-Newton Institute of Mathematical Sciences (July 26-30th 2010) for their hospitality. The workshop made an impact on the final form of this paper.
References

[1] V.A. Ambarzumyan, Über eine Frage der Eigenwerttheorie, Z. Phys. 53 (1929), 690-695.

[2] R. Carlson and V. Pivovarchik, Ambarzumian’s theorem for trees, Electronic J. Diff. Eqns., 2007 (2007), 1-9.

[3] H.H. Chern, C.K. Law, and H.J. Wang, Extension of Ambarzumyan’s theorem to general boundary conditions, J. Math. Anal. Appl., 263 (2001), 333-342; Corrigendum, 309 (2005), 764-768.

[4] H.H. Chern and C.L. Shen, On the n-dimensional Ambarzumyan’s theorem, Inverse Problems, 13 (1997) 15-18.

[5] Y.C. Hung, C.K. Law and C.T. Shieh, Some Ambarzumyan problems for the Sturm-Liouville operator on star graphs, preprint.

[6] R. Ikota and E. Yanagida, A stability criterion for stationary curves to the curvature-driven motion with a triple junction, Differential and Integral Equations, 16 (2003), 707-726.

[7] R. Ikota and E. Yanagida, Stability of stationary interfaces of binary-tree type, Calc. Var. Partial Differential Equations, 22 (2005), 375-389.

[8] P. Kuchment, Graph models for waves in thin structures, Waves in Random Media, 12 (2002), 1-24.

[9] P. Kuchment, Quantum graphs. I. Some basic structures, Waves in Random Media, 14 (2004), 107-128.

[10] C.K. Law and V. Pivovarchik, Characteristic functions of quantum graphs, J. Phys. A. Math. Theor., 42 (2009) no.3, 035302, 12pp.

[11] V.N. Pivovarchik, Ambarzumian’s Theorem for a Sturm-Liouville boundary value problem on a star-shaped graph, Funct. Anal. Appli., 39 (2005), 148-151.

[12] C. Texier, On a spectrum of the Laplace operator of metric graphs attached at a vertex - spectral determinant approach, J. Phys. A. Math. Theor., 41 (2008), no.8, 085207, 9pp.

[13] E. Yanagida, Stability of nonconstant stationary solutions for reaction-diffusion systems on graphs, Japan J. Indust. Appl. Math., 18 (2001), 25–42.

[14] C.F. Yang, Z.Y. Huang, X.P. Yang, Ambarzumyan’s Theorems for vectorial Sturm-Liouville systems with coupled boundary conditions, Taiwanese J. Math., 14 (2010), 1429-1437.