Case Report
Balloon catheter cannulation for route identification and axis stabilization during direct freehand cholangioscopy
Vincent Zimmer1,2,*

A B S T R A C T

Freehand techniques for direct cholangioscopy access have received little attention, given disappointing initial results and high perceived and/or real technical challenges. However, while pure freehand intubation appears feasible in a significant proportion of individuals, technical advancements and tricks of the trade are being developed. Along these lines, herein I present another rescue technique assisting in freehand access for direct cholangioscopy, the “balloon-catheter-cannulation technique”, which may be instrumental in overcoming two major hurdles of the procedure, i.e., stable intubation of the papillary orifice with adequate orientation and scope advancement in the common bile duct vis-à-vis gastric loop formation. To further disseminate direct cholangioscopy in the endoscopy community, technical beyond technological advancements, as for instance dedicated next-generation cholangioscopes, appear essential. Herein, I present a technical case report focussing on the limitations of the pure freehand and relative advantages of the “balloon catheter cannulation-assisted” approach for direct cholangioscopy access.

Keywords: Cholangiopancreatography, endoscopic retrograde; Choledocholithiasis; Direct cholangioscopy

Introduction
Recent developments in direct cholangioscopy (DC) have renewed interest in this innovative biliary endoscopy modality with potential benefits, among others, in management of complex bile duct stone disease, clinical work-up of indeterminate biliary stricture, and inconclusive cholangiographic findings. While implementation of specifically dedicated accessories, such as second-generation anchoring balloons, has been propagated, successful freehand intubation of the bile duct after wide-incision papillotomy and/or papillary balloon dilation has been reported in case series and individual reports using ultra-slim as well as standard-size scopes. Of interest, recently high rates of ancillary-free bile duct intubations were reported for a next-generation double-bending cholangioscope. A priori freehand DC access may reduce procedure-related accessory consumption and, thus, costs, and may help disseminate this disruptive endoscopic approach to a wider range of endoscopy services. However, in cases where pure freehand approaches fail, re-purposed use of endoscopic or radiologic equipment has been reported, e.g., by using a so-called Kautz probe or a colonoscopy-devoted stiffening wire. Furthermore, in a recent case series snare-assisted DC has been introduced. Herein, I present a video paper demonstrating the limitations of the pure freehand approach and present the relative advantages of the “balloon catheter cannulation-assisted” DC access.

During the procedure, there are typically three categories of challenges encountered: (1) stable intubation of the papillary orifice itself with adequate visual orientation, (2) stable scope advancement in the distal bile duct portion during loop resolution, and (3) navigation up to or, at least, adequate endoscopic visualization of the liver hilum as a proxy of procedural completeness.

Case Report
This is a case, in which DC was indicated for definitive exclusion of remnant common bile duct (CBD) stones, given a markedly dilated biliary system up to 25 mm, in which the sensitivity of cholangiography is known to become utterly decreased (Fig. 1A). Beforehand, a revisional endoscopic papillary large-balloon dilation up to 12 mm (CRE Balloon Dilator; Boston Scientific, Ratingen, Germany) was performed due to papillary stenosis after...
As is illustrated in the supplementary video sequence (Supplementary Video 1), pure freehand intubation of the papilla using an ultraslim upper endoscope (outer diameter 5.9 mm, working channel 2.0 mm, Fujinon EG-530NW; Fujifilm, Düsseldorf, Germany) repeatedly failed due to blurred vision and axis deviation during forward movements of the endoscope after an adequate duodenal J maneuver (Fig. 1B, 2A, 2B). Therefore, after alignment into the papillary orifice in a freehand fashion, a 5 F balloon catheter (Endoflex, Voerde, Germany) was advanced to a minimum extent to resolve the “red out” situation, overcoming challenge (1) as described above (Fig. 2C). This step follows a similar rationale as a novel technique called the “tip-of-the-biopsy-forceps”, in which the tip of a biopsy forceps is minimally advanced to gain distance from the mucosa and thus reestablish proper visual orientation for papillary intubation. Next, the tip of the balloon was further advanced to improve further stabilization of the force axis during push movements on the endoscope. Given an inadequate inflated balloon diameter relative to diffuse biliary tract dilation, true anchoring to allow push/pull movements (expectedly) failed, nonetheless adequate progress in scope advancement was achieved. This eliminated challenge (2) (Fig. 1C, 2C, 2D). At the time, with the cholangioscope in the
middle of the CBD, endoscopic visualization up to the hilum was achieved and unequivocally excluded remnant stone disease (Fig. 2E). Albeit navigation into the hilar region was not feasible (and in this case not mandatory) due to recurrent loop formation, switching from a simple balloon catheter to a biopsy forceps, for which anchoring and successful pulling up has been described ("the elevator technique") might have represented valid option.\(^{10}\)

Discussion

To conclude, DC remains a fascinating area in interventional pancreaticobiliary endoscopy, in which both innovative technological and technical progress is underway to move the field forward and disseminate the modality. Beyond pure freehand techniques, accessory-assisted troubleshooter approaches such as the "balloon-catheter-cannulation technique" may be instrumental to rescue DC access. While there are no direct systematic analyses comparing rescue biopsy forceps- versus balloon-assisted freehand DC and, in principle, consumption of accessories may increase, cost estimates may nonetheless indicate significant earnings relative to specialized cholangioscopy accessories such as dedicated access balloon and/or implementation of next-generation scope technologies.\(^4,11\) As for now, the presented "balloon-catheter-cannulation technique" might be attractive in individual cases to overcome DC access-related difficulties in route identification and axis stabilization. Limitations of the technique include, as has been presented, the reduced anchoring capability in a profusely dilated biliary system; however, true anchoring to facilitate pull movements is not invariably necessary for advancement in the bile duct.

Conflicts of Interest

No potential conflict of interest relevant to this article was reported.

Supplementary Materials

Supplementary data is available at https://doi.org/10.18528/ijgi180002.

References

1. Moon JH, Terheggen G, Choi HJ, Neuhaus H. Peroral cholangioscopy: diagnostic and therapeutic applications. Gastroenterology. 2013;144:276-82.
2. Brauer BC, Chen YK, Shah RJ. Single-step direct cholangioscopy by freehand intubation using standard endoscopes for diagnosis and therapy of biliary diseases. *Am J Gastroenterol.* 2012;107:1030-5.
3. Zimmer V, Lammert F. A "tandem approach" using sequential diagnostic (ultraslim) and therapeutic (standard size) direct freehand cholangioscopy to guide mechanical lithotripsy of a giant cystic duct remnant stone. *Endoscopy.* 2017;49:E160-2.
4. Beyna T, Farnik H, Sarrazin C, Greges C, Neuhaus H, Albert JG. Direct retrograde cholangioscopy with a new prototype double-bending cholangioscope. *Endoscopy.* 2016;48:929-33.
5. Lenze F, Nowacki TM, Beyna T, Ullerich H. Direct peroral cholangioscopy with a new anchoring technique using the guide probe of Kautz: first clinical experience. *Endoscopy.* 2017;49:909-12.
6. Zimmer V. Re-purposed use of a stiffening wire as a novel adjunct for direct cholangioscopy access. *Endoscopy.* 2017;49:1118-9.
7. Huang YH, Chang H, Yao W, Zhang YP, Li K, Wang Y. A snare-assisted peroral direct choledochoscopy and pancreatoscopy using an ultra-slim upper endoscope: a case series study. *Dig Liver Dis.* 2017;49:657-63.
8. Donatelli G, Dumont JL, Cereatti F, Tuszynski T, Vergeau BM, Meduri B. Revision of biliary sphincterotomy by re-cut, balloon dilation or temporary stenting: comparison of clinical outcome and complication rate [with video]. *Endosc Int Open.* 2017;5:E395-401.
9. Zimmer V. Knock-knock-knockin’ on bile duct’s door: the “tip-of-the-biopsy-forceps technique” – probing the route during freehand-intubated direct cholangioscopy. *Endoscopy.* 2017;49:E153-4.
10. Zimmer V. Novel biopsy forceps anchoring technique for completion of direct cholangioscopy after freehand intubation. *Dig Endosc.* 2017;29:638-9.
11. Lee YN, Moon JH, Choi HJ, Kim HS, Choi MH, Kim DC, et al. A newly modified access balloon catheter for direct peroral cholangioscopy by using an ultra-slim upper endoscope [with videos]. *Gastrointest Endosc.* 2016;83:240-7.