Possible evidence of non-Fermi liquid behaviour from Quasi-one-dimensional indium nanowires

C G Hwang, N D Kim, S Y Shin and J W Chung

Physics Department, Pohang University of Science and Technology, San 31 Hyoja Dong, Pohang 790-784, Korea
E-mail: jwc@postech.ac.kr

New Journal of Physics 9 (2007) 249
Received 12 June 2007
Published 1 August 2007
Online at http://www.njp.org/
doi:10.1088/1367-2630/9/8/249

Abstract. We report possible evidence of non-Fermi liquid (NFL) observed at room temperature from the quasi one-dimensional (1D) indium (In) nanowires self-assembled on Si(111)-7×7 surface. Using high-resolution electron-energy-loss spectroscopy, we have measured energy and width dispersions of a low energy intrasubband plasmon excitation in the In nanowires. We observe the energy-momentum dispersion ω(q) in the low q limit exactly as predicted by both NFL theory and the random-phase-approximation. The unusual non-analytic width dispersion ζ(q) ∼ q^α measured with an exponent α = 1.40 ± 0.24, however, is understood only by the NFL theory. Such an abnormal width dispersion of low energy excitations may probe the NFL feature of a non-ideal 1D interacting electron system despite the significantly suppressed spin-charge separation (⩽ 40 meV).

Contents

1. Introduction 2
2. Experiments 3
3. Results and discussions 3
4. Conclusion 8
Acknowledgments 9
References 9

1 Author to whom any correspondence should be addressed.
1. Introduction

Since the early prediction of non-Fermi liquid (NFL) behaviour for a one-dimensional (1D) interacting electron system [1], numerous efforts have been made to find evidence of NFL from various forms of 1D conductors including the earlier fractional quantum Hall system [2], carbon nanotubes [3], self-assembled nanowires on solid surfaces [4]–[6], and anisotropic bulk materials [7]–[10]. The essential nature of NFL in the 1D electrons systems with enhanced electron correlations is the low energy bosonic collective excitations rather than the single-particle excitations in Fermi liquids [11]. Photoemission spectroscopy (PES) has been used most extensively to probe characteristic features of NFL such as the power law behaviours of spectral function near Fermi level [3, 10], the spin-charge separation [4, 7, 8], and the presence of pseudo-gap [9]. Since any deviation from an ideal 1D electrons system such as the presence of impurities, disorder, and thermal fluctuation may sensitively affect the dynamics of these collective excitations [10]–[12] continued discussions have been made for some NFL systems claimed earlier [4, 5]. Although one expects infinite life time for such excitations in an ideal NFL, added interactions due to any deviations in real 1D systems may cause the damping of life time τ. Samokhin showed that the damped life time caused by collisions between the excitations due to the non-linear band curvature even in a clean NFL system could manifest itself as the non-analytic dispersion $\xi(q)$ for the width ($\sim \tau^{-1}$) of a spectral peak stemming from the excitations [11, 12]. Such a peculiar spectral behaviour may sensitively probe the NFL nature when other spectroscopic evidence is intriguingly suppressed in pragmatic 1D systems.

High energy-resolution ($\lesssim 3$ meV) electron-energy-loss spectroscopy (HREELS) has been used to detect such damped collective excitations, plasmons in particular, in the 1D interacting electron systems [13]–[15]. In the long wavelength limit, intrasubband plasmon shows an almost linear energy-momentum dispersion $\omega(q)$ as observed experimentally [16] and also predicted theoretically both by a NFL theory such as a Luttinger theory and by a typical nearly free-electron gas theory of the random-phase-approximation (RPA) [17]. Despite numerous theoretical [11, 12, 17, 18] and experimental studies [13, 16, 19] on plasmon excitations, no unambiguous clue for the NFL behaviour due to the damped life time, however, has been reported to our knowledge.

Here, we report evidence of the NFL in the quasi-1D indium (In) nanowires self-assembled on the Si(111)-7×7 surface at room temperature. We find a width dispersion $\xi(q) \sim q^{\alpha}$ with an exponent $\alpha = 1.40 \pm 0.24$ of the low energy intrasubband plasmon excitation. This non-analytic width dispersion is understood only within the framework of NFL theory, never expected from the RPA [11]–[13]. Unlike the clean NFL, such a peculiar behaviour may arise from the non-ideal features of a real 1D sample including the quasi 1D nature allowing extra conduction channels or localization due to impurities and thermal agitation at finite temperature. It has been, indeed, discussed for any signature of the NFL from the 1D conducting In nanowires at room temperature [6], [20]–[24].

Although extra interactions due to such deviations may suppress typical NFL features observed in PES studies significantly, the width dispersion, however, appears to survive and exhibits its unique non-analytic dispersion of the NFL even at room temperature.

The atomic arrangement of the In nanowires is depicted in figure 1(a), where four In nanowires form a metallic bundle along the direction parallel to the nanowires ([110]) [20]. Note that the In bundles are arranged periodically along the direction ([112]) perpendicular to the length of the bundles. Although, the transition from the metallic 4×1 at room temperature to
Figure 1. (a) Atomic arrangement of In nanowires of the In/Si(111)-4×1 surface. Indium atoms forming quasi 1D nanowires are drawn as dark circles while substrate silicon atoms as grey circles. Four In nanowires form a bundle of width \(a = 6.9 \ \text{Å} \), and the bundles are separated by \(d = 13.3 \ \text{Å} \) from each other [20]. (b) LEED pattern obtained from the dominant single domain In/Si(111)-4×1 surface.

the insulating 8 × 2 phase below \(T_c = 120 \ \text{K} \) has been understood in terms of Peierls instabilities accompanying the formation of charge-density-wave (CDW) with a doubled periodicity [6, 24, 25], some observations, for example, the partially suppressed spectral intensity near Fermi level below \(T_c \) have not been properly understood [6, 24]. We ascribe such spectral features to the intrinsic nature of the NFL phase.

2. Experiments

We have obtained our HREELS data by using a Leybold–Heraeus ELS-22 spectrometer under ultra-high vacuum environment of a base pressure below \(1 \times 10^{-10} \ \text{mbar} \). The optimum energy resolution and the half-acceptance angle of the detector are 19 meV and 2°, respectively. The dispersion data have been obtained by rotating the sample holder while the monochromator and the analyser are fixed in position. Indium atoms were deposited on to the Si(111)-7 × 7 surface by thermally evaporating the In rod wrapped by a tungsten filament. The single domain 4 × 1 phase shown in figure 1(b) has been obtained by controlling the direction of heating current at 400°C. By using a high spatial resolution low energy electron diffraction (SPA-LEED), we estimate the single domains covering the sample surface more than 93%. No vibrational loss peaks associated with contamination have been detected during the measurements.

3. Results and discussions

We present angle-resolved EEL spectra in figure 2 with the wavevector (\(q \)) parallel (a) and perpendicular (b) to the length of In nanowire. The parallel component of the wave vector \(q_\parallel \) is determined by

\[
q_\parallel = \sqrt{\frac{2m}{\hbar^2}} \left[(E_p - \hbar \omega)^{1/2} \sin \theta_s - E_p^{1/2} \sin \theta_i \right],
\]
where E_p is primary electron energy and $h\omega$ is loss energy. θ_s (θ_i) is scattered (incident) angle of the electron beam. The spectra have been fitted to determine values of energy and width of the loss peaks as a function of q. Inset in figure 2 shows the Lorentzian fit functions (dashed curves) and the inverse polynomial background (dotted curves) subtracted from the raw spectra as done earlier [26]. The resulting fit-curves (solid curves) are superimposed on the data revealing excellent fits.

One finds two loss peaks in figure 2(a), a weak non-dispersive L_1 peak of loss energy centred at 378 ± 11 meV and another quite dispersive L_2 peak along the parallel direction. Note that there exists only L_1 along the direction perpendicular to the In nanowires. The non-dispersive L_1 is ascribed to an interband transition between the three surface bands m_1, m_2 and m_3 found in photoemission near the Fermi level, because they are nearly parallel each other with a separation of ~ 350 meV [6, 22]. This interband transition then has to be visible along both directions parallel and perpendicular to the In nanowires. The significant anisotropic dispersions shown in figure 2 nicely demonstrate the 1D character of the In nanowires. The loss peaks marked by arrows in the spectra of 8° and 10° in figure 2(b) are of the L_2 origin stemming from the minor rotational domains due to the 120° rotational symmetry of a Si(111) surface as discussed later. The strongly dispersive peak L_2 is unique only in the metallic 4×1 phase since it is absent both in the clean Si(111)-7×7 and in the In/Si(111)-$\sqrt{3}T \times \sqrt{3}T$.

Figure 2. Angle-resolved EELS spectra obtained from the In/Si(111)-4×1 surface along the parallel (a) and perpendicular (b) directions to the In nanowires. All spectra are normalized and the primary electron energy is 5.0 eV. $\Delta \theta$ is the angle off from the specular geometry. In (a) two loss peaks of Lorentzian shape, L_1 (dashed vertical line) and L_2, are found from best fit (see inset) of the spectra while only one non-dispersive L_1 is found in (b). The peaks marked by arrows in (b) are of the same origin with the L_2 from minor domains (see text).
One may think of several possible origins for L_2; an interband transition, a local atomic vibration, and a collective excitation such as plasmon or surface phonon. Since the three surface bands near the Fermi level are quite parallel to each other \cite{6, 22}, no dispersive interband transition is allowed for the 4×1 phase. The relatively broad linewidth of L_2 (≥ 137 meV) rules out the local vibrational origin of width typically less than 25 meV. Since the loss energy of L_2 (up to 619 ± 23 meV) far exceeds the highest energy of optical phonon of Si crystal (~ 60 meV) in addition to the absence of multiple phonon peaks, one may safely consider L_2 as a plasmon due to the collective excitation of conduction electrons along the nanowires. Furthermore this peak should not be associated with the well known Peierls instability of a 1D metallic system since the range of momentum measured ($0 \AA^{-1} \leq q \leq 0.034 \AA^{-1}$) is far from the wavevectors $2k_F = 0.82 \AA^{-1}$ for the intrinsic Peierls instability \cite{6} or that of the Landau damping where the plasmon can decay directly into single particle–hole excitations as will be discussed later \cite{13, 14}. Therefore the plasmon observed is not affected by such singularities \cite{17}.

We then compare our experimental energy dispersion curves $\omega(q)$ of the plasmon to the one predicted by the NFL theory, which is given below for a 1D interacting electron system near Fermi level \cite{1}.

$$
\omega(q) = q \left[v_F^2 + \frac{2}{\pi h} v_F V(q) \right]^{1/2}, \quad (2)
$$

where

$$
V(q) = \frac{2e^2}{4\pi \epsilon} K_0(qa). \quad (3)
$$

$v_F = \hbar k_F/m^*$ is the 1D Fermi velocity with effective mass m^*, $V(q)$ is the Coulomb potential, and K_0 is the modified Bessel function of the second kind. Note that the spin excitation alone gives only the first term in equation (2) so that the spin-charge separation is due essentially to the second term when $V(q) \neq 0$. Incidentally one finds that the RPA for a 1D nearly free-electron gas gives the same q-dependence as in equation (2) in the small q limit \cite{17}. Therefore the energy dispersion $\omega(q)$ alone would not distinguish the NFL from the RPA.

Using $a = 6.9 \AA$, we have fitted our energy dispersion data with equation (2) floating m^* as a fitting parameter. The results depicted in figure 3(a) exhibit charge (solid) and spin (dashed) dispersions with a maximum spin-charge separation of about 40 meV (see inset). One also notes that all our data points locate below the estimated Landau edge $q_c = 0.041 \AA^{-1}$ determined by the crossing q-value between the charge dispersion and the upper edge of the single particle–hole continuum \cite{17}. Naturally the two dispersions merge to $\omega = 0$ as q approaches 0 as observed also by Nagao et al \cite{27} from the Au-induced 1D chains on stepped Si(111) surfaces. The spin dispersion found within the single particle–hole continuum and the relatively small spin-charge separation ($\Delta E \leq 40$ meV) may explain why previous photoemission study with energy resolution greater than 100 meV has failed to detect any spin-charge separation at room temperature.

Despite the hidden evidence of NFL in previous photoemission study \cite{6}, some observations still challenge a possibility for the NFL behaviour of this 1D metal system. Unlike the bands m_2 and m_3 showing a typical Fermi liquid behaviour, the band m_1, despite its typical Fermi edge at room temperature, becomes severely quenched in spectral intensity at low temperature similar to the NFL behaviour of the carbon nanotubes \cite{3}. Moreover, the asymmetric parameter 0.09 obtained for m_1 in \cite{6} remains unaltered despite the phase transition upon cooling, which is not properly understood in terms of either CDW mechanism or metal-insulator transition of Fermi liquids. Previous EELS study challenges no CDW gap.
or a possibility of partly metallic phase at low temperature [23]. Another theory paper even predicts a metallic surface due to \(m_1 \) band for both above and below \(T_c \) partially supporting the idea suggested by the EELS study [24]. Such a so-called pseudo-gap feature suggested by the significantly depressed spectral intensity near the Fermi level of an interacting 1D electrons system may be another clue for NFL as for the (tetrathiafulvalene–tetracyanoquinodimethane) (TTF–TCNQ) [9].

Now the effective masses \(m^* \) obtained from the best fits for each of the three parallel surface bands \(m_1, m_2 \) and \(m_3 \) are \(m^*/m \approx 0.025, 0.11 \) and 0.17, where \(m \) is the mass of a free electron. The Fermi wavevectors \(k_F \) associated with these are found to be 0.75, 0.54 and 0.41 Å\(^{-1} \), respectively [22]. The 1D nature of the \(L_2 \) is seen also from the two peaks marked by arrows in figure 2(b) originated from minor domains rotated by ±60° from [110] direction. When the data points for these loss peaks are projected on to the wire direction of the single domain by multiplying cos(60°) to \(q \), they appear to fall on to the same dispersion curve of the \(L_2 \) in figure 3(a).

We now consider a so-called ‘band effect’ by including the inter-bundle interactions along the [112] direction. With a separation \(d = 13.3 \) Å between neighbouring bundles, we have modified \(V(q) \) by adding the second term in equation (4) in the long wavelength limit [17].

\[
V(q) = \frac{2e^2}{4\pi\epsilon} \left\{ K_0(qa) + 2 \sum_{s=1}^{\infty} K_0(sqd) \cos(G_y sd) \right\},
\]

\[(4) \]

Figure 3. Fitting the loss energy versus momentum data (empty circles and triangles) with a theoretical formula \(\omega(q) \) in equation (2) without (a) and with (b) inclusion of inter-In bundle interactions. In (a), the theory accounts for our data quite well although the spin (dashed) and charge (solid) separation \(\Delta E \) is relatively small (\(\lesssim 40 \) meV, see inset). Shaded area corresponds to the single particle–hole excitation continuum. In (b), all the data points for \(q \leq q_c \) are found within the two limiting dispersions for \(G_y = 0 \) and \(\pi/d \) when inter-bundle interactions are included.
Figure 4. (a) Results of the fits of our width data (crossed squares and circles) of the intrasubband plasmon with a theoretical fit function $\zeta(q) \sim q^\alpha$. The best fit curve (solid curve) gives $\alpha = 1.40 \pm 0.24$. (b) The estimated dispersions for nearly free-electron gas in quasi-1D (dotted curve) and 3D (dashed curve in inset) electron systems.

where G_y is the lattice vector perpendicular to the nanowires. As seen in figure 3(b), we find all the data points for $q \leq q_c$ are contained within the two limiting dispersion curves for two values $G_y = 0$ and π/d. We thus conclude that the loss peak L_2 is an intrasubband plasmon excitation with its energy dispersion well described either by the RPA or the NFL theory for $q \leq q_c$.

Although the energy dispersion $\omega(q)$ shows identical behaviour for both NFL and nearly free-electron gas in the low q limit, the width dispersion $\zeta(q) \sim q^\alpha$ of the NFL, however, clearly distinguish the NFL nature from nearly free-electron gas when the exponent α appears to be non-analytic [11, 12]. In order to determine this crucial element α, we have fitted two sets of width values of the L_2 with $\zeta(q) \sim q^\alpha$. The best fit (solid curve) gives $\alpha = 1.40 \pm 0.24$ as shown in figure 4(a). As discussed below, this non-analytic width dispersion, in fact, strongly supports the NFL description of the 1D conducting In nanowires at room temperature.

Although the width of a plasmon excitation may change due to various possible causes such as disorder, instrumental resolution, and superposition of multiple bands, we have excluded these possibilities since the surface phase remained unchanged maintaining the single domain ($\geq 93\%$) ordered In/Si(111)-4×1 phase during the entire course of the measurements done with a fixed instrumental resolution ($\Delta q = 0.0038 \pm 0.0002$ Å$^{-1}$). This was confirmed by observing both no noticeable spectral changes at a fixed momentum and no loss peaks associated with contamination or local defects before and after measurements. The quite symmetric line-shape of the L_2 peak for all q values obtained by subtracting the L_1 as well as the background intensity from the raw spectra excludes also the possibility of broadening due to the superposition of multiple bands.

We now discuss physical significance of a non-analytic exponent α in real 1D conducting samples. It has been predicted $\alpha = 1.5$ for a NFL system with enhanced collisions between
bosonic excitations due to non-linear band curvature, which is quite distinct from the clean NFL [1, 11, 13]. This may be quite plausible for the In nanowires since the three surface bands \(m_1, m_2\) and \(m_3\) of the In/Si(111)-4\(\times\)1 surface have quite non-linear band dispersions. We note also that our width dispersion with \(\alpha = 1.40 \pm 0.24\) is clearly distinguished from the non-linear dispersion of quasi-1D nearly free-electron systems where two particle–hole pair excitations play a vital role [28]. Such a non-linear dispersion is drawn in figure 4(b) by the dotted curve, which apparently is far from our experimental data. Obviously the dispersion with \(\alpha = 2\) for volume (3D) plasmons in conventional metals (see inset in figure 4(b)) may also be safely ruled out since it deviates too far from experimental data [29]. It is important to notice that our width dispersion in figure 4(a) apparently extrapolates to a non-zero value as \(q\) approaches zero. The finite width at \(q = 0\) may be ascribed to the correlation effect as also noticed by Nagao et al [27]. Such correlation interactions are believed to cause significant plasmon life-time decay at momentum even below \(q_c\), which has never been expected for nearly free-electron gas. We find that such a correlation effect appears to cause a non-analytic exponent in the width dispersion revealing NFL behaviour for the interacting 1D electrons system.

The damping of life time (or equivalently \(\zeta^{-1}(q)\)) due to thermal fluctuation has also been observed in the single walled carbon nanotubes [3]. Ishii et al reported that single walled carbon nanotubes show the NFL behaviour enhanced with decreasing temperature. The finite spectral intensity at Fermi level at room temperature has been interpreted as a result of the NFL features by thermal fluctuation smearing the pseudo gap of the NFL. The reduced spectral intensity near Fermi level observed also for these In nanowires may also be ascribed partially to thermal fluctuation, which may be a signature of the smeared pseudo gap of the NFL phase [6]. Zwick et al provides another example of the NFL phase in the 1D organic conductor TTF–TCNQ where a pseudo gap growing with increasing temperature and the much reduced spectral weight near Fermi level are observed. These are considered as evidence of the NFL phase despite the absence of the spin-charge separation [9]. We thus conclude that the In nanowires, despite their non-ideal quasi-1D nature and finite temperature, reveals the NFL property through the peculiar behaviour of the width dispersion of intrasubband plasmon.

4. Conclusion

We have measured the dispersion of an intrasubband plasmon of the quasi-1D In nanowires self-assembled on the Si(111)-7\(\times\)7 surface at room temperature. We observe quite anisotropic dispersions along the directions parallel and perpendicular to the nanowires demonstrating the 1D nature of the intrasubband plasmon. The non-dispersive EELS peak appearing in both directions is ascribed to an interband transition between three parallel surface bands near Fermi level. The energy dispersion \(\omega(q)\) of the unique dispersive peak agrees quite well with predictions by the NFL theory and also by the RPA. The peculiar non-analytic width dispersion of the plasmon apparently not stemming from experimental artifacts such as sample defects and instrumental resolution, however, as predicted only by the NFL theory strongly supports the NFL nature of the In nanowires even though spin-charge separation is not significant. One may observe similar non-analytic width dispersion of low energy excitations indicating the NFL feature in other real 1D conducting systems.
Acknowledgments

This work was supported by the Korea Research Foundation Grants (KRF-2004-041-C00131 and KRF-2003-041-C00098).

References

[1] Voit J 1995 Rep. Prog. Phys. 58 977
[2] Chang A M, Pfeiffer L N and West K W 1996 Phys. Rev. Lett. 77 2538
[3] Ishii H et al 2003 Nature 426 540
[4] Segovia P, Purdie D, Hengsberger M and Baer Y 1999 Nature 402 504
[5] Losio R, Altman K N and Himpsel F J 2000 Phys. Rev. Lett. 85 808
 Losio R, Altman K N and Himpsel F J 2001 Phys. Rev. Lett. 86 4632
[6] Yeom H W, Horikoshi K, Zhang H M, Ono K and Uhrberg R I G 2002 Phys. Rev. B 65 241307(R)
 Yeom H W, Horikoshi K, Zhang H M, Ono K and Uhrberg R I 1999 Phys. Rev. Lett. 82 4898
[7] Kim C, Matsuura A Y, Shen Z -X, Motoyama N, Eisaki H, Uchida S, Tohyama T and Maekawa S 1996 Phys. Rev. Lett. 77 4054
[8] Auslaender O M, Steinberg H, Yacoby A, Tserkovnyak Y, Halperin B I, Baldwin K W, Pfeiffer L N and West K W 2005 Science 308 88
[9] Zwick F, Jérome D, Margaritondo G, Onellion M, Voit J and Grioni M 1998 Phys. Rev. Lett. 81 2974
[10] Hager J, Matzdorf R, He J, Jin R, Mandrus D, Cazalilla M A and Plummer E W 2005 Phys. Rev. Lett. 95 186402
[11] Samokhin K V 1998 J. Phys.: Condens. Matter 10 L533
[12] Capurro F, Polini M and Tosi M P 2003 Physica B 325 287
[13] vom Felde A, Sprüsser-Prou J and Fink J 1989 Phys. Rev. B 40 10181
[14] Nagao T, Hildebrandt T, Henzler M and Hasegawa S 2001 Phys. Rev. Lett. 86 5747
[15] Bertsch G F, Esbensen H and Reed B W 1998 Phys. Rev. B 58 14031
[16] Göni A R, Pinczuk A, Weiner J S, Calleja J M, Dennis B S, Pfeiffer L N and West K W 1991 Phys. Rev. Lett. 67 3298
[17] Das Sarma S and Hwang E H 1996 Phys. Rev. B 54 1936
 Das Sarma S and Hwang E H 1985 Phys. Rev. 32 1401
 Das Sarma S and Hwang E H 1992 Phys. Rev. 45 13713
[18] Borges A N, Leão S A and Hipólito O 1997 Phys. Rev. B 55 4680
[19] Kuzmenko I, Gredekful S, Kikoin K and Avishai Y 2003 Phys. Rev. B 67 115331
[20] Bunk O, Falkenberg G, Zeysing J H, Lottermoser L, Johnson R L, Nielsen M, Berg-Rasmussen F, Baker J and Feidenhans’l 1999 Phys. Rev. B 59 12228
[21] Kumpf C, Bunk O, Zeysing J H, Su Y, Nielsen M, Johnson R L, Feidenhans’l R and Bechgaard K 2000 Phys. Rev. Lett. 85 4916
[22] Ahn J R, Byun J H, Koh H, Rotenberg E, Kevan S D and Yeom H W 2004 Phys. Rev. Lett. 93 106401
[23] Sakamoto K, Ashima H, Yeom H W and Uchida W 2000 Phys. Rev. B 62 9923
[24] Cho J H, Lee J Y and Kleinman L 2005 Phys. Rev. B 71 081310(R)
[25] Lee S S, Ahn J R, Kim N D, Min J H, Hwang C G, Chung J W, Yeom H W, Ryjkov S V and Hasegawa S 2002 Phys. Rev. Lett. 88 196401
[26] Laitenberger P and Palmer R E 1996 Phys. Rev. Lett. 76 1952
[27] Nagao T, Yaginuma S, Inaoka T and Sakurai T 2006 Phys. Rev. Lett. 97 116802
[28] Tanatar B 1995 Phys. Rev. B 51 14410
[29] Sturm K and Oliveira L E 1981 Phys. Rev. B 24 3054

New Journal of Physics 9 (2007) 249 (http://www.njp.org/)