The Frequency of Comorbidities and Their Effects on Disease Severity in Hidradenitis Suppurativa

Tuğba Kevser Uzunçakmak, Elif Cansel Özçakır, Özge Aşkın, Burhan Engin

Istanbul University Cerrahpasa-Cerrahpasa Faculty of Medicine, Department of Dermatology, Istanbul, Turkey

ABSTRACT

Background: Hidradenitis suppurativa (HS) is a chronic, inflammatory disease of the apocrine glands which may progress with remissions and attacks. Clinically lesions are frequently located in the axillary, perianal, and inguinal regions which may present with painful nodules, abscesses, sinuses, or scars. Metabolic syndrome, cardiovascular diseases, rheumatological diseases can be associated with HS and may cause impaired life quality and mortality risk. In this study, we aimed to determine the demographic data and accompanying comorbidities of patients diagnosed with HS, as well as to investigate whether there is any effect of comorbidities on disease severity.

Materials and Methods: Clinical findings of 120 patients, who were diagnosed as HS in our clinic or consulted to our clinic between 2017 and 2020 were evaluated retrospectively. Demographic and clinical data of the patients including age, gender, Hurley stage at presentation, smoking status, and comorbidities of the patients were obtained from medical records. The statistical analysis was performed with the Statistical Package for the Social Sciences 21.

Results: According to our study results, 49 (40.8%) patients were women and 71 (59.2%) were men. The average age of the patients was 35.23±10.25 (17-59), the average age of our female patients was 32.5±9.47, and the average age of our male patients was 37.1±10.4. The mean age of disease onset was 25.44±9.03 (10-52). Thirteen patients were in Hurley stage 1, 80 patients were in Hurley 2 and 27 patients were in Hurley 3. Ninety-eight patients (81.7%) had a smoking history. Of 121 patients, 59 (49.2%) of our patients had comorbidity. Metabolic syndrome was the most common comorbid disease. The presence of comorbidity only makes a significant difference in terms of being in the first stage of the disease.

Conclusion: HS may be associated with various comorbidities, especially metabolic syndrome. Although we found no significant difference between having a comorbidity and disease stage systemic evaluation of the patients may be useful both in the early diagnosis and treatment of comorbidities and increasing the life quality of these patients.

Keywords: Apocrine glands, Dermatology, Inflammation, Hidradenitis suppurativa, Comorbidities, Metabolic syndrome

Introduction

Hidradenitis suppurativa (HS) is a chronic auto-inflammatory disease with exacerbation episodes observed in areas of skin rich in apocrine glands. The disease is characterized by painful nodules, abscesses, and scars [1]. It is more common in the postpubertal period and women are more affected than men. Its prevalence is between 0.05% and 4% [2,3]. Its etiology is not clear but it is considered a component of the follicular occlusion triad which is thought to begin with hair follicle hyperkeratinization and follicle occlusion [4,5]. Studies have shown that the incidence is higher in smokers [6]. It has been stated that cigarette content, especially nicotine, can increase follicle occlusion, inflammatory cell chemotaxis, and...
tumor necrosis factor-α release, which play a role in pathogenesis [4,5]. The diagnosis of the disease is made by clinical symptoms and signs. The typical appearance of the lesions, their distribution, and their progressive and chronic features with recurrences are important in diagnosis [7]. Histopathological evaluation can be used in cases where the differential diagnosis cannot be made [8]. Hurley staging is used in the severity evaluation of HS [9]. Physical and psychosocial problems are also commonly seen in patients with HS, and the disease may be accompanied by metabolic syndrome, cardiovascular diseases, psychiatric diseases, dermatological diseases, and other inflammatory diseases [10].

Materials and Methods

In this retrospective study, 120 patients who applied to Istanbul University Cerrahpasa-Cerrahpasa Faculty Medicine Dermatology and Venereal Diseases Department between January 2017 and August 2020 and were diagnosed with HS were evaluated. We conducted our research according to the World Medical Association Declaration of Helsinki and obtained the approval of the Istanbul University Cerrahpasa-Cerrahpasa Faculty Medicine Local Ethics Committee (ethical approval: 17.12.2020/164438). The age, gender, Hurley stage at presentation, smoking status, and comorbidities of the patients were retrospectively reviewed and noted.

Statistical Analysis

Statistical analysis was performed using Statistical Package for the Social Sciences version 21. Descriptive analyzes mean and standard deviation, median, 25-75 by data type. It is given as quartiles and percentages. The distribution of continuous data was evaluated with the Shapiro-Wilk and Kolmogorov-Smirnov test. Comparisons between groups were made with Fisher’s Exact test (Fisher’s exact test) when the chi-square test and chi-square test conditions were not met in categorical variables. The Kruskal-Wallis test was used for multiple comparison procedures for continuous data that did not meet the normality conditions. A p value below 0.05 was considered significant.

Results

According to our study results, 49 (40.8%) of our patients were women and 71 (59.2%) were men. The mean age of the patients was 35.23±10.25 (minimum-maximum: 17-59), 32.5±9.47 (minimum-maximum: 17-58) in females, and 37.1±10.4 (minimum-maximum: 18-59) in males. The mean age at disease onset age was 25.44±9.03 (19-30.75). The median age distribution according to the stage of the patients is given in Table 1. No significant correlation was found between the age of onset and the Hurley stage (p=0.136). According to the Hurley classification, 13 patients were in stage 1 (10.8%), 80 were in stage 2 (66.6%), and 27 were in stage 3 (22.5%) (Table 2). Ninety-eight (81.7%) patients had a smoking history, but no significant relationship was found between smoking and disease stage (Fisher’s Exact test, p=0.441) (Table 3). Among the smokers, 9 (9.2%) were in stage 1, 66 (67.3%) were in stage 2 and 23 (23.5%) were in stage 3, and among the non-smokers, 4 (18.2%) patients were in stage 1, 14 (63.6%) patients were in stage 2 and 4 (18.2%) patients were in stage 3. While 59 (49.2%) of our patients had comorbidity, 61 (50.8%) had no accompanying disease. The distribution of comorbidities is shown in Table 4. In 3.4% (n=2) of the patients with comorbidity, the disease is in the first stage, and in 18% (n=11) of the patients without comorbidity, the disease is in the first stage. The presence of comorbidity makes a significant difference in terms of being in the first stage of the disease (Pearson’s chi-square test, p=0.03). There was no difference in the presence of comorbidity in patients in stages 2 and 3 (Table 5).

Discussion

Although the prevalence of HS is not fully known, it is estimated that it occurs in approximately one in 300 adults. The usual onset is in the second or third decade of life and rarely occurs before puberty and after the age of 40 [11]. In our study, HS was more common in young adults. It was reported that women are more likely to develop HS than men in United States-based studies [12].

Table 1. Demographic characteristics of the patients

Clinical findings of the patients	Female	Male	Total
Mean age	32.51±9.47	37.11±10.41	35.23±10.25
Disease onset	23.53±7.98	26.76±9.52	25.44±9.03
Smoking	37	61	98
Metabolic syndrome	14	18	32
Rheumatologic diseases	2	1	3
Psychiatric disorder	4	2	6
Coronary artery disease	2	4	6
Dermatologic diseases	4	2	6
Inflammatory bowel disease	1	1	2
Respiratory tract disease	2	2	4

Table 2. The median age distribution according to the stage of the patients

Hurley	Median (IQR)
Stage 1 (13 patients)	20 (15.5-24.5)
Stage 2 (80 patients)	25 (19.25-30)
Stage 3 (27 patients)	24 (18-35)
Mechanical stresses on the skin, obesity, genetic susceptibility, smoking, diet, and hormonal factors are cited as factors that may be associated with the development or exacerbation of HS [17]. There is a strong relationship between smoking and HS [18]. The nicotine released with sweat is thought to induce epithelial hyperplasia in surrounding cells, causing occlusion and hyperkeratosis in the follicle [19]. In a French case-control study of 302 clinically assessed patients with HS and 906 controls, 76% of the patients with HS versus 25% of the controls were current smokers [20]. In another study which was conducted by Kromann et al. [21], tobacco smoking was reported in 92.2% of the patients with HS. In our study, 81.7% of our patients were smoking. Our study results support the high smoking rate in patients with HS.

In recent years the comorbid diseases accompanying HS have been investigated in several studies. Both inflammatory disorders and autoimmune disorders may be associated with HS. Metabolic syndrome and cardiac diseases were reported as the most common comorbidities in patients with HS [24]. In our study 32 (26.7%) patients had accompanying comorbidity and half of the patients

Table 3. Correlation between smoking and disease severity

Smoking	Stage 1	Stage 2	Stage 3	Total
No smoking	4	14	4	22
% within smoking	18.2%	63.6%	18.2%	100.0%
Smoking	9	66	23	98
% within smoking	9.2%	67.3%	23.5%	100.0%
Total	13	80	27	120
% within smoking	10.8%	66.7%	22.5%	100.0%

Fisher’s Exact test p=0.441

Table 4. Distribution of comorbidities

Comorbidity	Frequency	Percent
No comorbidity		
Stage 1	11	18.0
Stage 2	36	59.0
Stage 3	14	23.0
Total	61	100.0
Metabolic syndrome		
Stage 2	25	78.1
Stage 3	7	21.9
Total	32	100.0
Rheumatologic disorder		
Stage 1	1	33.3
Stage 2	2	66.7
Total	3	100.0
Psychiatric disorder		
Stage 2	4	66.7
Stage 3	2	33.3
Total	6	100.0
Coronary artery disease		
Stage 2	6	100.0
Dermatologic diseases		
Stage 2	5	83.3
Stage 3	1	16.7
Total	6	100.0
Inflammatory bowel disease		
Stage 2	1	50.0
Stage 3	1	50.0
Total	2	100.0
Respiratory tract disorder		
Stage 1	1	25.0
Stage 2	2	25.0
Stage 3	2	50.0
Total	4	100.0

Table 5. Distribution of comorbidities according to stage

Comorbidity	Frequency	Percent	Valid percent
No	61	50.8	50.8
Metabolic syndrome	32	26.7	26.7
Rheumatologic diseases	6	5.0	5.0
Psychiatric disorder	4	3.3	3.3
Coronary artery disease	6	5.0	5.0
Dermatologic diseases	6	5.0	5.0
Inflammatory bowel disease	2	1.7	1.7
Respiratory tract disease	4	3.3	3.3
Total	120	100.0	100.0
who have an accompanying disease had metabolic syndrome. Egeberg et al. [25] reported that Crohn’s disease and ulcerative colitis may be associated with HS. There are some studies about the relationship between rheumatological diseases, especially axial spondyloarthritis, and HS [26,27]. HS can also cause serious psychosocial problems due to its clinical findings [28]. Therefore, patients with HS should be evaluated and supported in terms of quality of life and psychiatry. In our study, 10% of the comorbidities were psychiatric disorders.

There are few studies in the literature regarding the effect of comorbidities on disease severity in patients with HS [29,30]. In a recent study published by Liakou et al. [29], thyroid disease and active smoking were found to be associated with more severe HS. Özkur et al. [15] also reported that presence of comorbidity and having a delayed diagnosis were associated with disease severity. In our study, we found no significant correlation between disease severity and having comorbidity.

Study Limitation
The main limitation of our study is being a retrospective study that was conducted from a single center with a limited patient number.

Conclusion
In conclusion, HS may be associated with various comorbidities, especially metabolic syndrome. Although we found no significant difference between comorbidities and HS severity, the most common disorders should be questioned and consulted with appropriate clinics. Further investigation of HS disease in larger prospective studies is needed to clarify its clinical-epidemiological characteristics and to better understand its etiology and management.

Acknowledgment
The authors of this study wish to express their appreciation to Dr. Ayşenur Özdil for her help during statistical analysis.

Ethics
Ethics Committee Approval: We conducted our research according to the World Medical Association Declaration of Helsinki and obtained the approval of the Istanbul University Cerrahpasa-Cerrahpasa Faculty Medicine Local Ethics Committee (ethical approval: 17.12.2020/164438).

Informed Consent: Retrospective study.

Peer-review: Externally peer-reviewed.

Authorship Contributions
Surgical and Medical Practices: T.K.U., E.C.Ö., Concept: T.K.U., Ö.A., B.E., Design: T.K.U., Ö.A., B.E., Data Collection or Processing: E.C.Ö., Ö.A., Analysis or Interpretation: T.K.U., E.C.Ö., Ö.A., B.E., Literature Search: T.K.U., E.C.Ö., Writing: T.K.U., E.C.Ö.

Conflict of Interest: No conflict of interest was declared by the authors.

Financial Disclosure: The authors declared that this study received no financial support.

References
1. Alikhan A, Sayed C, Alavi A, Alhusayen R, Brassard A, Burkhart C, Crowell K, Eisen DB, Gottlieb AB, Hamzavi I, Hazen PG, Jaleel T, Kimball AB, Kirby J, Lowes MA, Micheleletti R, Miller A, Naik HB, Orgill D, Poulin Y. North American clinical management guidelines for hidradenitis suppurativa: A publication from the United States and Canadian Hidradenitis Suppurativa Foundations: Part I: Diagnosis, evaluation, and the use of complementary and procedural management. J Am Acad Dermatol 2019;81:76-90.

2. Cosmatos I, Matcho A, Weinstein R, Montgomery MO, Stang P. Analysis of patient claims data to determine the prevalence of hidradenitis suppurativa in the United States. J Am Acad Dermatol 2013;69:819.

3. Ingram JR, Jenkins-Jones S, Kline DW, Morgan CL. Cigarette smoke induces CXCL8 production by human neutrophils via activation of TLR9 receptor. Eur Respir J 2010;36:1143-1154.

4. van der Zee HH, Laman JD, Boer J, Prens EP. Hidradenitis suppurativa: viewpoint on clinical phenotyping, pathogenesis and novel treatments. Exp Dermatol 2012;21:735-739.

5. Mortaz E, Adcock IM, Ito K, Kraneveld AD, Nijkamp FP, Folkerts G. Cigarette smoke induces CXCL8 production by human neutrophils via activation of TLR9 receptor. Eur Respir J 2010;36:1143-1154.

6. Garg A, Papagermanos V, Midura M, Strunk A. Incidence of hidradenitis suppurativa among tobacco smokers: a population-based retrospective analysis in the USA Br J Dermatol 2018;178:709-714.

7. Jemec GB. Clinical practice. Hidradenitis suppurativa. N Engl J Med 2012;365:158-164.

8. Alikhan A, Lynch P, Eisen DB. Hidradenitis suppurativa: a comprehensive review. J Am Acad Dermatol 2009;60:539-561.

9. Canous-Poitrins F, Reuv J, Wolkenstein P, Viallette C, Gabison G, Pouget F, Poli F, Faye O, Bastuji-Garin S. Clinical characteristics of a series of 302 French patients with hidradenitis suppurativa, with an analysis of factors associated with disease severity. J Am Acad Dermatol 2009;61:51-57.

10. Dauden E, Lazaro P, Aguilar MD, Blasso AJ, Suzac C, Marin I, Queiro R, Bassas-Vila J, Martorell A, García-Campayo J. Recommendations for the management of comorbidity in hidradenitis suppurativa. J Eur Acad Dermatol Venereol 2018;12:129-144.

11. Slade DE, Powell BW, Mortimer PS. Hidradenitis suppurativa: pathogenesis and management. Br J Plast Surg 2003;56:451-461.

12. Garg A, Lavian J, Lin G, Strunk A, Allon A. Incidence of hidradenitis suppurativa in the United States: A sex- and age-adjusted population analysis. J Am Acad Dermatol 2017;77:118-122.

13. Yang JH, Moon J, Kye YC, Kim KJ, Kim MN, Ro YS, Park MY, Ahn HH, Lee MW, Lee WJ, Lee JH, Lee JB, Jang MS, Choi YS, Choi YW, Suh DH; Korean Society for Acne Research. Demographic and clinical features of hidradenitis suppurativa in Korea. J Dermatol 2018;45:1389-1395.

14. Yüksel M, Basım P. Demographic and Clinical Features of Hidradenitis Suppurativa in Turkey. J Cutan Acad Dermatol 2020;24:55-59.

15. Özkur E, Karadağ AS, Ustüner P, Akşojı B, Eşme P, Çalışkan E, Akoğlu G, Mammadlı K, Baykal Selçuk L, Türköglu Z, Atci T, Didar Balci D, Adıșen E, Aksoy B, Eşme P, Çalışkan E, Akoğlu G, Mammadlı K, Baykal Selçuk L, Türköglu Z, Atci T, Didar Balci D, Adıșen E, Mammadlı K, Baykal Selçuk L, Türköglu Z, Atci T, Didar Balci D, Adıșen E,
Temel B, Aktan S, Kaçar N, Gündüz K, Türel Ermentçan A, Özdemir M, Ünal Çakter A, Çölgeçen E, Üçmenoğlu D, Keleki H, Ataseven A, Durmaz K, Kaya Özen H, Engin B, Yazıcı S, Alpsoy E. Clinical and demographic features of hidradenitis suppurativa: a multicentre study of 1221 patients with an analysis of risk factors associated with disease severity. Clin Exp Dermatol 2021;46:532-540.

16. Happle R. Korean gender differences in hidradenitis suppurativa: nature or nurture? J Eur Acad Dermatol Venereol 2019;33:e256.

17. Seyed Jafari SM, Hunger RE, Schlaphack C. Hidradenitis Suppurativa: Current Understanding of Pathogenic Mechanisms and Suggestion for Treatment Algorithm. Front Med (Lausanne) 2020;7:68.

18. Sartorius K, Emtestam L, Jemec GB, Lapins J. Objective scoring of hidradenitis suppurativa reflecting the role of tobacco smoking and obesity. Br J Dermatol 2009;161:831-839.

19. Kurzen H, Kurokawa I, Jemec GB, Emtestam L, Sellheyer K, Giamarellos-Bourboulis EJ, Nagy I, Bechara FG, Sartorius K, Lapins J, Krah K, Altmeyer P, Revuz J, Zouboulis CC. What causes hidradenitis suppurativa? Exp Dermatol 2008;17:455-46; discussion 457-72.

20. Revuz JE, Canoui-Poitrine F, Wolkenstein P, Viallette C, Gabison G, Pouget F, Poli F, Fayé O, Roujeau JC, Bonnevialle G, Grob JJ, Bastuji-Garin S. Prevalence and factors associated with hidradenitis suppurativa: results from two case-control studies. J Am Acad Dermatol 2008;59:596-601.

21. Kromann CB, Deckers IE, Esmann S, Boer J, Prems EP, Jemec GB. Risk factors, clinical course and long-term prognosis in hidradenitis suppurativa: a cross-sectional study. Br J Dermatol 2014;171:819-824.

22. Garg A, Besen J, Legler A, Lam CS. Factors Associated With Point-of-Care Treatment Decisions for Hidradenitis Suppurativa. JAMA Dermatol 2016;152:553-557.

23. Matusiak L, Bieniek A, Szepietowski JC. Hidradenitis suppurativa and associated factors: still unsolved problems. J Am Acad Dermatol 2009;61:362-365.

24. Kohorst JJ, Kimball AB, Davis MD. Systemic associations of hidradenitis suppurativa. J Am Acad Dermatol 2015;73:27-35.

25. Egeberg A, Jemec GB, Kimball AB, Bachelez H, Gislason GH, Thyssen JP, Mallbris L. Prevalence and Risk of Inflammatory Bowel Disease in Patients with Hidradenitis Suppurativa. J Invest Dermatol 2017;137:1060-1064.

26. Rondags A, Arends S, Wink FR, Horváth B, Spoorenberg A. High prevalence of hidradenitis suppurativa symptoms in axial spondyloarthritis patients: A possible new extra-articular manifestation. Semin Arthritis Rheum 2019;48:611-617.

27. Ben David C, Bragazzi NL, Watad A, Sharif K, Whitby A, Amital H, Adawi M. Hidradenitis suppurativa associated with systemic lupus erythematosus: A case report. Medicine (Baltimore) 2018;97:e1186.

28. Alavi A, Farzanfar D, Rogalska T, Lowes MA, Chavoshi S. Quality of life and sexual health in patients with hidradenitis suppurativa. Int J Womens Dermatol 2018;4:74-79.

29. Liakou AI, Kontochristopoulos G, Marnelakis I, Tsantes AG, Papadakis M, Alevizou A, Rotsiamis N, Rigopoulos D. Thyroid Disease and Active Smoking May Be Associated with More Severe Hidradenitis Suppurativa: Data from a Prospective Cross Sectional Single-Center Study. Dermatology 2021;237:125-130.

30. Preda-Naumescu A, Ahmed HN, Mayo TT, Yusuf N. Hidradenitis suppurativa: pathogenesis, clinical presentation, epidemiology, and comorbid associations. Int J Dermatol 2021;22.