Solution to a conjecture on the maximal energy of bipartite bicyclic graphs∗

Bofeng Huo1,2, Shengjin Ji1, Xueliang Li1, Yongtang Shi1

1Center for Combinatorics and LPMC
Nankai University, Tianjin 300071, China
Email:huobofeng@mail.nankai.edu.cn; jishengjin@mail.nankai.edu.cn;
lxl@nankai.edu.cn; shi@nankai.edu.cn

2Department of Mathematics and Information Science
Qinghai Normal University, Xining 810008, China

Abstract

The energy of a simple graph G, denoted by $E(G)$, is defined as the sum of the absolute values of all eigenvalues of its adjacency matrix. Let C_n denote the cycle of order n and $P_n^{6,6}$ the graph obtained from joining two cycles C_6 by a path P_{n-12} with its two leaves. Let B_n denote the class of all bipartite bicyclic graphs but not the graph $R_{a,b}$, which is obtained from joining two cycles C_a and C_b ($a, b \geq 10$ and $a \equiv b \equiv 2 \pmod{4}$) by an edge. In [I. Gutman, D. Vidović, Quest for molecular graphs with maximal energy: a computer experiment, J. Chem. Inf. Sci. 41 (2001), 1002–1005], Gutman and Vidović conjectured that the bicyclic graph with maximal energy is $P_n^{6,6}$, for $n = 14$ and $n \geq 16$. In [X. Li, J. Zhang, On bicyclic graphs with maximal energy, Linear Algebra Appl. 427 (2007), 87–98], Li and Zhang showed that the conjecture is true for graphs in the class B_n. However, they could not determine which of the two graphs $R_{a,b}$ and $P_n^{6,6}$ has the maximal value of energy. In [B. Furtula, S. Radenković, I. Gutman, Bicyclic molecular graphs with the greatest energy, J. Serb. Chem. Soc. 73(4) (2008), 431–433], numerical computations up to $a + b = 50$ were reported, supporting the conjecture. So, it is still necessary to have a mathematical proof to this conjecture. This paper is to show that the energy of $P_n^{6,6}$ is larger than that of $R_{a,b}$, which proves the conjecture for bipartite bicyclic graphs. For non-bipartite bicyclic graphs, the conjecture is still open.

Keywords: Coulson integral formula; maximal energy; bicyclic graph; bipartite graph

AMS Classification: 05C50, 05C35, 92E10

∗Supported by NSFC and “the Fundamental Research Funds for the Central Universities”.

17 Feb 2011
1 Introduction

Let G be a graph of order n and $A(G)$ the adjacency matrix of G. The characteristic polynomial of G is defined as

$$
\phi(G, x) = \text{det}(xI - A(G)) = \sum_{i=0}^{n} a_i x^{n-i}.
$$

(1.1)

The roots $\lambda_1, \lambda_2, \ldots, \lambda_n$ of $\phi(G, x) = 0$ are called the eigenvalues of G.

If G is a bipartite graph, the characteristic polynomial of G has the form

$$
\phi(G, x) = \left\lfloor \frac{n}{2} \right\rfloor \sum_{k=0}^{\left\lfloor \frac{n}{2} \right\rfloor} a_{2k} x^{n-2k} = \sum_{k=0}^{\left\lfloor \frac{n}{2} \right\rfloor} (-1)^k b_{2k} x^{n-2k},
$$

where $b_{2k} = (-1)^k a_{2k}$ for all $k = 1, \ldots, \left\lfloor \frac{n}{2} \right\rfloor$, especially $b_0 = a_0 = 1$. In particular, if G is a tree, the characteristic polynomial of G can be expressed as

$$
\phi(G, x) = \sum_{k=0}^{\left\lfloor \frac{n}{2} \right\rfloor} (-1)^k m(G, k) x^{n-2k},
$$

where $m(G, k)$ is the number of k-matchings of G.

In the following, two basic properties of the characteristic polynomial $\phi(G)$ \[1\] will be stated:

Proposition 1.1 If G_1, G_2, \ldots, G_r are the connected components of a graph G, then

$$
\phi(G) = \prod_{i=1}^{r} \phi(G_i).
$$

Proposition 1.2 Let uv be an edge of G. Then

$$
\phi(G, x) = \phi(G - uv, x) - \phi(G - u - v, x) - 2 \sum_{C \in \mathcal{C}(uv)} \phi(G - C, x),
$$

where $\mathcal{C}(uv)$ is the set of cycles containing uv. In particular, if uv is a pendent edge with pendent vertex v, then $\phi(G, x) = x \phi(G - v, x) - \phi(G - u - v, x)$.

The energy of G, denoted by $E(G)$, is defined as $E(G) = \sum_{i=0}^{n} |\lambda_i|$. This definition was proposed by Gutman \[4\]. The following formula is also well-known

$$
E(G) = \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{1}{x^2} \log |x^n \phi(G, i/x)| \, dx,
$$
where \(i^2 = -1 \). Moreover, it is known from [1] that the above equality can be expressed as the following explicit formula:

\[
E(G) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{1}{x^2} \log \left[\left(\sum_{i=0}^{\lfloor n/2 \rfloor} (-1)^i a_{2i} x^{2i} \right)^2 + \left(\sum_{i=0}^{\lfloor n/2 \rfloor} (-1)^i a_{2i+1} x^{2i+1} \right)^2 \right] dx,
\]

where \(a_1, a_2, \ldots, a_n \) are the coefficients of the characteristic polynomial \(\phi(G, x) \). For more results about graph energy, we refer the readers to a survey of Gutman, Li and Zhang [9].

Since 1980s, the extremal energy \(E(G) \) of a graph \(G \) has been studied extensively, but the common method makes use of the quasi-order. When the graphs are acyclic, bipartite or unicyclic, it is almost always valid. However, for general graphs, the quasi-order method is invalid. Recently, for these quasi-order incomparable problems, we found an efficient way to determine which one attains the extremal value of the energy, see [11–16], especially, in [15] we completely solved a conjecture that \(P_{6}^n \) has the maximal energy among all unicyclic graphs of order \(n \geq 16 \).

In this paper, graphs under our consideration are finite, connected and simple. Let \(P_n \) and \(C_n \) denote the path and cycle with \(n \) vertices, respectively. Let \(P_n^t \) be the unicyclic graph obtained by joining a vertex of \(C_t \) with a leaf of \(P_{n-t} \), and \(P_n^6,6 \) the graph obtained from joining two cycles \(C_6 \) by a path \(P_{n-12} \) with its two leaves. Denote by \(R_{a,b} \) the graph obtained from connecting two cycles \(C_a \) and \(C_b \) (\(a, b \geq 10 \) and \(a \equiv b \equiv 2 \pmod{4} \)) by an edge. Let \(\mathcal{B}_n \) be the class of all bipartite bicyclic graphs but not the graph \(R_{a,b} \). In [8], Gutman and Vidović proposed the following conjecture on bicyclic graphs with maximal energy:

Conjecture 1.3 For \(n = 14 \) and \(n \geq 16 \), the bicyclic molecular graph of order \(n \) with maximal energy is the molecular graph of the \(\alpha, \beta \) diphenyl-polyene \(C_6H_5(CH)_{n-12}C_6H_5 \), or denoted by \(P_n^{6,6} \).

For bipartite bicyclic graphs, Li and Zhang in [17] got the following result, giving a partial solution to the above conjecture.

Theorem 1.4 If \(G \in \mathcal{B}_n \), then \(E(G) \leq E(P_n^{6,6}) \) with equality if and only if \(G \cong P_n^{6,6} \).

However, they could not compare the energies of \(P_n^{6,6} \) and \(R_{a,b} \). Furtula et al. in [3] showed that \(E(P_n^{6,6}) > E(R_{a,b}) \) by numerical computations up to \(a + b = 50 \), supporting that the conjecture is true for bipartite bicyclic graphs. It is evident that a mathematical proof is still needed. This paper is to give such a proof. We will use Coulson integral formula and some knowledge of real analysis as well as combinatorial method to show the following result:

Theorem 1.5 For \(n - t, t \geq 10 \) and \(n - t \equiv t \equiv 2 \pmod{4} \), \(E(R_{n-t,t}) < E(P_n^{6,6}) \).
As Furtula et al. noticed in [3], since for odd \(n \) the graph \(R_{a,b} \) \((a + b = n) \) is not bipartite, therefore, for odd \(n \), it is known that \(P_n^{6,6} \) is the maximal energy bipartite bicyclic graph from [17]. Therefore, combining Theorems 1.4 and 1.5 we get:

Theorem 1.6 Let \(G \) be any connected, bipartite bicyclic graph with \(n \) \((n \geq 12)\) vertices. Then \(E(G) \leq E(P_n^{6,6}) \) with equality if and only if \(G \cong P_n^{6,6} \).

So, Conjecture 1.3 is true for all connected bipartite bicyclic graphs of order \(n \) with \(n = 14 \) and \(n \geq 16 \). However, it is still open for non-bipartite bicyclic graphs.

2 Proof of Theorem 1.5

Before giving the proof of Theorem 1.5, we shall state some knowledge on real analysis [20].

Lemma 2.1 For any real number \(X > -1 \), we have

\[
\frac{X}{1 + X} \leq \log(1 + X) \leq X.
\]

In particular, \(\log(1 + X) < 0 \) if and only if \(X < 0 \).

The following lemma is a well-known conclusion due to Gutman [6] which will be used later.

Lemma 2.2 If \(G_1 \) and \(G_2 \) are two graphs with the same number of vertices, then

\[
E(G_1) - E(G_2) = \frac{1}{\pi} \int_{-\infty}^{+\infty} \log \frac{\phi(G_1; ix)}{\phi(G_2; ix)} dx.
\]

One can easily obtain the following recursive equations from Propositions 1.1 and 1.2.

Lemma 2.3 For any positive number \(n \geq 8 \),

\[
\begin{align*}
\phi(P_n, x) &= x\phi(P_{n-1}, x) - \phi(P_{n-2}, x), \\
\phi(C_n, x) &= \phi(P_n, x) - \phi(P_{n-2}, x) - 2, \\
\phi(P_n^6, x) &= x\phi(P_{n-1}^6, x) - \phi(P_{n-2}^6, x);
\end{align*}
\]

for any positive number \(n \geq 6 \) and \(t \geq 3 \),

\[
\phi(R_{n-t,t}, x) = \phi(C_{n-t}, x)\phi(C_t, x) - \phi(P_{n-t-1}, x)\phi(P_{t-1}, x).
\]
Next, we introduce some convenient notations as follows, which will be used in the sequel.

\[Y_1(x) = \frac{x + \sqrt{x^2 - 4}}{2}, \quad Y_2(x) = \frac{x - \sqrt{x^2 - 4}}{2}. \]

It is easy to verify that \(Y_1(x) + Y_2(x) = x, \) \(Y_1(x)Y_2(x) = 1, \) \(Y_1(ix) = \frac{x + \sqrt{x^2 + 4}}{2}i \) and \(Y_2(ix) = \frac{x - \sqrt{x^2 + 4}}{2}i. \) Furthermore, we define

\[Z_1(x) = -iY_1(ix) = \frac{x + \sqrt{x^2 + 4}}{2}, \quad Z_2(x) = -iY_2(ix) = \frac{x - \sqrt{x^2 + 4}}{2}. \]

Note that \(Z_1(x) + Z_2(x) = x, \) \(Z_1(x)Z_2(x) = -1. \) Moreover, \(Z_1(x) > 1 \) and \(-1 < Z_2(x) < 0, \) if \(x > 0; \) \(0 < Z_1(x) < 1 \) and \(Z_2(x) < -1, \) otherwise. In the rest of this paper, we abbreviate \(Z_j(x) \) to \(Z_j \) for \(j = 1, 2. \) Some more notations will be used frequently in the sequel.

\[
A_1(x) = \frac{Y_1(x)\phi(P_{13}^{6,6}, x) - \phi(P_{13}^{6,6}, x)}{(Y_1(x))^{14} - (Y_1(x))^{12}}, \quad A_2(x) = \frac{Y_2(x)\phi(P_{13}^{6,6}, x) - \phi(P_{13}^{6,6}, x)}{(Y_2(x))^{14} - (Y_2(x))^{12}}, \\
B_1(x) = \frac{Y_1(x)(x^2 - 1) - x}{(Y_1(x))^3 - Y_1(x)}, \quad B_2(x) = \frac{Y_2(x)(x^2 - 1) - x}{(Y_2(x))^3 - Y_2(x)}.
\]

By some simple calculations, we have that \(\phi(P_{13}^{6,6}, x) = x^{13} - 14x^{11} + 74x^9 - 188x^7 + 245x^5 - 158x^3 + 40x \) and \(\phi(P_{12}^{6,6}, x) = x^{12} - 13x^{10} + 62x^8 - 138x^6 + 153x^4 - 81x^2 + 16, \) and then

\[A_1(ix) = \frac{Z_1g_{13} + g_{12}Z_2}{Z_1^2 + 1}, \quad A_2(ix) = \frac{Z_2g_{13} + g_{12}Z_1}{Z_2^2 + 1}, \]

where \(g_{13} = x^{13} + 14x^{11} + 74x^9 + 188x^7 + 245x^5 + 158x^3 + 40x \) and \(g_{12} = x^{12} + 13x^{10} + 62x^8 + 138x^6 + 153x^4 + 81x^2 + 16. \) Notice that \(A_j(ix) \) has a good property, i.e., its sign is always positive for all real number \(x, \) for \(j = 1, 2. \)

Observation 2.4 For all real number \(x, \) \(A_j(ix) > 0, \) \(j = 1, 2. \)

Proof. Since, by some directed calculations, we have

\[A_1(ix)A_2(ix) = \frac{(x^6 + 8x^4 + 19x^2 + 16)^2(x^2 + 1)^4}{x^2 + 4} > 0 \text{ for all } x. \]

Besides, from the expression of \(A_1(ix), \) we obviously obtain that \(A_1(ix) > 0 \) for all real \(x. \) Thus, we conclude that \(A_2(ix) > 0. \) For convenience, we abbreviate \(A_j(ix) \) and \(C_j(ix) \) to \(A_j \) and \(C_j \) for \(j = 1, 2, \) respectively.

The following lemma will be used in the showing of the later results, due to Huo et al. [13–15].

Lemma 2.5 For \(n \geq 4 \) and \(x \neq \pm 2, \) the characteristic polynomials of \(P_n \) and \(C_n \) possess the following forms:

\[
\phi(P_n, x) = B_1(x)(Y_1(x))^n + B_2(x)(Y_2(x))^n
\]
and

\[\phi(C_n, x) = (Y_1(x))^n + (Y_2(x))^n - 2. \]

Lemma 2.6 For \(n \geq 12 \), the characteristic polynomial of \(P_{n}^{6,6} \) has the following form:

\[\phi(P_{n}^{6,6}, x) = A_1(x)(Y_1(x))^n + A_2(x)(Y_2(x))^n \]

where \(x \neq \pm 2 \).

Proof. Note that, \(\phi(P_{n}^{6,6}) \) satisfies the recursive formula \(f(n, x) = xf(n - 1, x) - f(n - 2, x) \) in terms of Lemma 2.3. Therefore, the form of the general solution of the linear homogeneous recursive relation is \(f(n, x) = D_1(x)(Y_1(x))^n + D_2(x)(Y_2(x))^n \). By some simple calculations, together with the initial values \(\phi(P_{12}^{6,6}) \) and \(\phi(P_{13}^{6,6}) \), we can get that \(D_i(x) = A_i(x), i = 1, 2 \).

From Lemmas 2.3 and 2.5 and Proposition 1.1 by means of elementary calculations it is easy to deduce the following result. The details of its proof is omitted.

Lemma 2.7 For \(n \geq 6 \) and \(t \geq 3 \), the characteristic polynomial of \(R_{n-t,t} \) has the following form:

\[\phi(R_{n-t,t}, x) = C_1(x)(Y_1(x))^n + C_2(x)(Y_2(x))^n - 2((Y_1(x))^t + (Y_2(x))^t) + 4 \]

where \(x \neq \pm 2 \), \(C_1(x) = 1 + (Y_2(x))^{2t} - 2(Y_2(x))^t - (B_1(x))^2(Y_2(x))^2 - B_1(x)B_2(x)(Y_2(x))^{2t} \) and \(C_2(x) = 1 + (Y_1(x))^{2t} - 2(Y_1(x))^t - (B_2(x))^2(Y_1(x))^2 - B_1(x)B_2(x)(Y_1(x))^{2t} \).

In terms of the above lemma, we can get the following forms for \(C_j(ix) (j = 1, 2) \) by some simplifications,

\[C_1(ix) = 1 + \frac{x^2 + 3}{x^2 + 4} Z_2^{2t} + 2 Z_1^t + \frac{Z_1^2}{(Z_2^2 + 1)^2} \]

\[C_2(ix) = 1 + \frac{x^2 + 3}{x^2 + 4} Z_1^{2t} + 2 Z_2^t + \frac{Z_2^2}{(Z_1^2 + 1)^2}. \]

Proof of Theorem 1.5

From the above analysis, we only need to show that \(E(R_{n-t,t}) < E(P_{n}^{6,6}) \), for every positive number \(t = 4k_1 + 2 \) \((t \geq 10) \), \(n - t \geq 10 \) and \(n = 4k_2 \) \((n \geq 2t) \). Without loss of generality, we assume \(n - t \geq t \), that is, \(n \geq 2t \). From Lemma 2.2 we have that

\[E(R_{n-t,t}) - E(P_{n}^{6,6}) = \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{\phi(R_{n-t,t}; ix)}{\phi(P_{n}^{6,6}; ix)} \, dx. \]
First of all, we shall will that the integrand \(\log \frac{\phi(R_{n-t,t}; ix)}{\phi(P_{n-4}; ix)} \) is monotonically decreasing in \(n \) for \(n = 4k \), that is,

\[
\log \frac{\phi(R_{n+4-t,t}; ix)}{\phi(P_{n+4}; ix)} - \log \frac{\phi(R_{n-t,t}; ix)}{\phi(P_{n}; ix)} = \log \frac{\phi(R_{n+4-t,t}; ix)\phi(P_{n}; ix)}{\phi(R_{n-t,t}; ix)} = \log \left(1 + \frac{K(n, t, x)}{H(n, t, x)} \right),
\]

where \(K(n, t, x) = \phi(R_{n+4-t,t}; ix)\phi(P_{n}; ix) - \phi(P_{n+4}; ix)\phi(R_{n-t,t}; ix) \) and \(H(n, t, x) = \phi(P_{n+4}; ix)\phi(R_{n-t,t}; ix) > 0 \). From Lemma 2.1, we only need to verify that \(K(n, t, x) < 0 \). By means of some directed calculations, we arrive at

\[
K(n, t, x) = (Z_{1}^{2} - Z_{2}^{2})(A_{2}C_{1} - A_{1}C_{2}) + (2Z_{1} + 2Z_{2}^t + 4)(A_{1}Z_{1}^n(1 - Z_{1}^{4}) + A_{2}Z_{2}^n(1 - Z_{2}^{4})).
\]

Noticing that \(Z_{1} > 1 \) and \(0 > Z_{2} > -1 \) for \(x > 0 \), we have \(Z_{1}^{n} \geq Z_{1}^{2t} > 0 \) and \(0 < Z_{2}^t \leq Z_{2}^{2t} \). Meanwhile, from \(0 < Z_{1} < 1 \) and \(Z_{2} < -1 \) for \(x < 0 \), we have \(0 < Z_{1}^{n} \leq Z_{1}^{2t} \) and \(Z_{2}^t \geq Z_{2}^{2t} > 0 \). Therefore,

\[
A_{1}Z_{1}^n(1 - Z_{1}^{4}) + A_{2}Z_{2}^n(1 - Z_{2}^{4}) \leq A_{1}Z_{1}^n(1 - Z_{1}^{2t}) + A_{2}Z_{2}^n(1 - Z_{2}^{2t}).
\]

Namely, \(K(n, t, x) \leq K(2t, t, x) = (Z_{1}^{4} - Z_{2}^{4})(A_{2}C_{1} - A_{1}C_{2}) + (2Z_{1} + 2Z_{2}^t + 4)(A_{1}Z_{1}^2(1 - Z_{1}^{4}) + A_{2}Z_{2}^2(1 - Z_{2}^{4})) \). Now let \(f(t, x) = K(2t, t, x) \). By some simplifications, it is easy to get

\[
f(t, x) = \alpha_{0}Z_{1}^{3t} + \alpha_{1}Z_{1}^{-3t} + \beta_{0}Z_{1}^{2t} + \beta_{1}Z_{1}^{-2t} + \gamma_{0}Z_{1}^{t} + \gamma_{1}Z_{1}^{-t} + a_{0},
\]

where

\[
\begin{align*}
\alpha_{0} &= 2A_{1}(1 - Z_{1}^{4}), \\
\alpha_{1} &= 2A_{2}(1 - Z_{2}^{4}), \\
\beta_{0} &= A_{1}\left(4(1 - Z_{1}^{4}) - (Z_{1}^{4} - Z_{2}^{4})\frac{x^2 + 3}{x^2 + 4}\right), \\
\beta_{1} &= A_{2}\left(4(1 - Z_{2}^{4}) + (Z_{1}^{4} - Z_{2}^{4})\frac{x^2 + 3}{x^2 + 4}\right), \\
\gamma_{0} &= 2A_{1}((1 - Z_{1}^{4}) - (Z_{1}^{4} - Z_{2}^{4})), \\
\gamma_{1} &= 2A_{2}((1 - Z_{2}^{4}) + (Z_{1}^{4} - Z_{2}^{4})),
\end{align*}
\]

and

\[
a_{0} = (Z_{1}^{4} - Z_{2}^{4})\left(A_{2}\left(1 + \frac{Z_{2}^{3}}{(Z_{2}^{2} + 1)^2}\right) - A_{1}\left(1 + \frac{Z_{2}^{3}}{(Z_{2}^{2} + 1)^2}\right)\right).
\]

Claim 1. \(f(t, x) \) is monotonically decreasing in \(t \).

Note the facts that \((1 - Z_{1}^{4}) < 0 \) for \(x > 0 \), \((1 - Z_{1}^{4}) > 0 \) for \(x < 0 \); \((1 - Z_{2}^{4}) > 0 \) for \(x > 0 \), \((1 - Z_{2}^{4}) < 0 \) for \(x < 0 \); \((Z_{1}^{4} - Z_{2}^{4}) > 0 \) for \(x > 0 \), \((Z_{1}^{4} - Z_{2}^{4}) < 0 \) for \(x < 0 \). It is not difficult to check that \(\alpha_{0} < 0, \beta_{0} < 0 \) and \(\gamma_{0} < 0 \) for \(x > 0 \), \(\alpha_{0} > 0, \beta_{0} > 0 \) and \(\gamma_{0} > 0 \), otherwise; thus \(\alpha_{1} > 0, \beta_{1} > 0 \) and \(\gamma_{1} > 0 \) for \(x > 0 \), \(\alpha_{1} < 0, \beta_{1} < 0 \) and \(\gamma_{1} < 0 \), otherwise. Therefore, no matter which of \(x > 0 \) or \(x < 0 \) happens, we can always deduce that

\[
\frac{\partial f(t, x)}{\partial t} = (3\alpha_{0}Z_{1}^{3t} - 3\alpha_{1}Z_{1}^{-3t} + 2\beta_{0}Z_{1}^{2t} - 2\beta_{0}Z_{1}^{-2t} + \gamma_{0}Z_{1}^{t} - \gamma_{1}Z_{1}^{-t})\log Z_{1} < 0.
\]
The proof of Claim 1 is thus complete.

From Claim 1, it follows that for \(t \geq 10, \)

\[
K(n, t, x) \leq f(10, x) = -4x^2(x^2 + 1)^2(x^{18} + 23x^{16} + 224x^{14} + 1203x^{12} + 3887x^{10} + 7731x^8 + 9285x^6 + 6301x^4 + 2077x^2 + 224) - (x^{10} + 13x^8 + 62x^6 + 131x^4 + 109x^2 + 16)
\times x^2(x^4 + 5x^2 + 6)(x^4 + 3x^2 + 1)(x^2 + 1)^2 < 0.
\]

Therefore, we have verified that the integrand \(\log \frac{\phi(R_{n-t,t};ix)}{\phi(P_{n,t};ix)} \) is monotonically decreasing in \(n \) for \(n = 4k \). That is, \(E(R_{n-t,t}) - E(P_{n,6}) \leq E(R_{10,10}) - E(P_{12,6}) < 0 \) for every positive number \(t = 4k_1 + 2 (n \geq 10), n - t \geq 10 \) and \(n = 4k_2 (n \geq 2t) \). Therefore, the entire proof of Theorem 1.5 is now complete.

Acknowledgement. The authors are very grateful to the referees for helpful comments and suggestions, which improved the presentation of the original manuscript.

References

[1] D. Cvetković, M. Doob, H. Sachs, Spectra of Graphs – Theory and Application, *Academic Press, New York*. 1980.

[2] G. Caporossi, D. Cvetković, I. Gutman, P. Hansen, Variable neighborhood search for extremal graphs. 2. Finding graphs with extremal energy, *J. Chem. Inform. Comput. Sci. 39*(1999), 984–996.

[3] B. Furtula, S. Radenković, I. Gutman, Bicyclic molecular graphs with the greatest energy, *J. Serb. Chem. Soc. 73*(4)(2008), 431–433.

[4] I. Gutman, Acyclic systems with extremal Hückel \(\pi \)-electron energy, *Theor. Chim. Acta. 45*(1977), 79–87.

[5] I. Gutman, Acyclic conjugated molecules, trees and their energies, *J. Math. Chem. 1*(1987), 123–143.

[6] I. Gutman, *The Energy of a Graph: Old and New Results*, in: A. Betten, A. Kohnert, R. Laue, A. Wassermann (Eds.), *Algebraic Combinatorics and Applications, Springer-Verlag, Berlin*. 2001, pp.196–211.

[7] I. Gutman, O.E. Polansky, Mathematical Concepts in Organic Chemistry, *Springer-Verlag, Berlin*. 1986.

[8] I. Gutman, D. Vidović, Quest for molecular graphs with maximal energy: a computer experiment, *J. Chem. Inf. Sci. 41*(2001), 1002-1005.
[9] I. Gutman, X. Li, J. Zhang, Graph Energy, in: M. Dehmer, F. Emmert-Streib (Eds.), Analysis of Complex Networks: From Biology to Linguistics, Wiley-VCH Verlag, Weinheim. (2009), 145-174.

[10] Y. Hou, Bicyclic graphs with minimal energy, Linear and Multilinear Algebra. 49 (2001), 347–354.

[11] B. Huo, J. Ji, X. Li, Note on unicyclic graphs with given number of pendent vertices and minimal energy, Linear Algebra Appl. 433 (2010), 1381–1387.

[12] B. Huo, J. Ji, X. Li, Solutions to unsolved problems on the minimal energies of two classes of graphs, MATCH Commun. Math. Comput. Chem. 66(3) (2011).

[13] B. Huo, J. Ji, X. Li, Y. Shi, Complete solution to a conjecture on the fourth maximal energy tree, MATCH Commun. Math. Comput. Chem. 66(3) (2011).

[14] B. Huo, X. Li, Y. Shi, Complete solution to a problem on the maximal energy of unicyclic bipartite graphs, Linear Algebra Appl. 434 (2011), 1370–1377.

[15] B. Huo, X. Li, Y. Shi, Complete solution to a conjecture on the maximal energy of unicyclic graphs, European J. Combin. doi: 10.1016/j.ejc.2011.02.011, to appear.

[16] B. Huo, X. Li, Y. Shi, L. Wang, Determining the conjugated trees with the third through the sixth minimal energies, MATCH Commun. Math. Comput. Chem. 65 (2011), 521-532.

[17] X. Li, J. Zhang, On bicyclic graphs with maximal energy, Linear Algebra Appl. 427 (2007), 87–98.

[18] X. Li, J. Zhang, L. Wang, On bipartite graphs with minimal energy, Discrete Appl. Math. 157 (2009), 869–873.

[19] X. Li, J. Zhang, B. Zhou, On unicyclic conjugated molecules with minimal energies, J. Math. Chem. 42 (2007), 729–740.

[20] V.A. Zorich, Mathematical Analysis, MCCME. 2002.