Secure Multi-party Quantum Computing

Claude Crépeau, McGill

Daniel Gottesman, UC Berkeley

Adam Smith, MIT
Preliminary version presented at NEC workshop on quantum crypto after QIP 2000

Since then:

- Protocols have changed a little.
- Definitions have been found.
- Proofs have changed a lot
Classical Distributed Protocols

- Extensively studied
- Many applications
 - Banking / E-commerce
 - Electronic Voting
 - Auctions / Bidding
Questions for Quantum Protocols

• Do existing protocols remain secure?
 – Not always: factoring, discrete log
Questions for Quantum Protocols

• Do existing protocols remain secure?
• Can we find better / more secure protocols for existing tasks?
 – E.g. Key distribution, coin flipping (?), “quantum voting”
Questions for Quantum Protocols

• Do existing protocols remain secure?

• Can we find better / more secure protocols for existing tasks?

• What new, quantum tasks can we perform?
 – E.g. Quantum Secret-Sharing, Zero-Knowledge, Authentication, Entanglement Purification
 – General trend: do cryptography with quantum data
 – Goal: building blocks for complex protocols
Overview

• What is multi-party (quantum) computing?
• A Sketch of the Protocol
• An Impossibility Result
What is Multi-party Computing?
Classical Multi-party Computing

- Network of n players
- Each has input x_i
- Want to compute $f(x_1, \ldots, x_n)$ for some known function f
- E.g. electronic voting
Classical Multi-party Computing

Even if t out of n players try to cheat:

1. Cheaters learn nothing (except output)
2. Cheaters cannot affect output

$1. x_1 \rightarrow \text{Protocol} \rightarrow f(x_1, \ldots, x_n)$

$2. x_2 \rightarrow \text{Protocol} \rightarrow f(x_1, \ldots, x_n)$

$3. x_3 \rightarrow \text{Protocol} \rightarrow f(x_1, \ldots, x_n)$

\ldots

\ldots
Classical Multi-party Computing

Even if t out of n players try to cheat:

1. Cheaters **learn nothing** (except output)
2. Cheaters **cannot affect** output

Even with unbounded computation time
Quantum Multi-party Computing

- Players’ inputs are quantum states
 - Possibly entangled
 - No description necessary
 (protocol is “oblivious”)
- Output is quantum
- Want to evaluate a known quantum circuit U
- Player i gets i-th component of output
Quantum Multi-party Computing

- Players’ inputs form an arbitrary state ρ in $H_1 \otimes H_2 \otimes ... \otimes H_n$
- Player i holds i-th component:
 $\rho_i = \text{tr}_{\{1,...,n\}\setminus i}(\rho)$
Quantum Multi-party Computing

- Players’ inputs form an arbitrary state ρ in $H_1 \otimes H_2 \otimes \ldots \otimes H_n$
- Player i holds i-th component: $\rho_i = \text{tr}_{\{1,\ldots,n\}\setminus i}(\rho)$
- Each player gets one output: $\rho_i' = \text{tr}_{\{1,\ldots,n\}\setminus i}(U\rho U^\dagger)$
Quantum Multi-party Computing

Even if t out of n players try to cheat:

1. Cheaters **learn nothing** (except output)

2. Cheaters **cannot affect output** (except by choice of inputs)
Easy Solution: Trusted Outside Mediator

- If everybody trusts Tom
- Send all inputs to Tom
- Tom:
 - Applies U
 - Distributes outputs
Easy Solution: Trusted Outside Mediator

- If everybody trusts Tom
- Send all inputs to Tom
- Tom:
 - Applies U
 - Distributes outputs

Challenge: Simulate the presence of Tom

$$\rho' = U \rho U^\dagger$$
Results

• $t < n/6$:
 Any Multi-party Quantum Computation

• $t < n/4$:
 Verifiable Secret-Sharing (weaker subtask)

• $t \geq n/4$:
 Even VQSS is impossible
Results

- Classical MPC (with broadcast)
- Classical MPC (without broadcast)
- Quantum MPC
- Verifiable Quantum Secret Sharing (Weaker task, to be defined)

IMPOSSIBLE

$0 \quad n/6 \quad n/4 \quad n/3 \quad n/2 \quad t = \text{number of cheaters}$
MPQC and Fault-Tolerant Computing

- **MPQC is like FTQC with a different error model...**

	FTQC	MPQC
Type of errors	randomly spread, independent	maliciously placed, entangled with data
Error location	Can occur anywhere	At most t positions

- Similar protocol techniques:

 Classical **MPC** [BGW, CCD] \rightarrow **FTQC** [AB99] \rightarrow **MPQC** [us]

- Different proof techniques

 (Need different notion of “proximity” to coding subspaces)
A Sketch of the Protocol
Protocol Overview

• **Share**
 – Each player encodes his input using a QECC
 – Sends i-th component to player i
 – Proves that sharing was done “correctly”
 i.e. distributed shares form a codeword except on positions held by cheaters

• **Compute**
 – Use fault-tolerant circuits to apply U to encoded inputs

• **Distribute**
 – Give each player all components of his output
Why is this enough?

• **If:**
 – All players share their input with a “proper” codeword
 – (and) No information is leaked by proof

• **Then** the cheaters:
 – can’t **disturb** the calculation since QECC and FTQC will tolerate errors in any t locations
 – *(Informally:)* can’t **learn info** since they can’t **disturb**!
An Impossibility Proof
Verifiable Quantum Secret-Sharing

- Idealized “qubit commitment”
- 2-phase protocol
- **Sharing**: Dealer D shares a secret system ρ such that
 - Cheaters can’t learn anything about ρ
 - Dealer can’t change ρ
- **Recovery**: Receiver R specified by context
 - All players send shares to R
 - R reconstructs ρ

Easy Solution: Give ρ to trusted Tom, get it back later.
Verifiable Quantum Secret-Sharing

• Sharing phase of our **MPC** protocol is a **VQSS**

• **My opinion**:

 Most “interesting” **MPC** protocols will imply **VQSS**, since they should allow simulating Tom’s presence in more general tasks

 e.g. **qubit commitment**

• **Theorem**: **VQSS** is impossible for \(t \geq n/4 \)
Theorem: No VQSS tolerates $t \geq n/4$

Lemma:

Any VQSS protocol “is” a QECC correcting t errors

Proof:

- Look at the state $F(|\psi\rangle)$ of protocol at the end of sharing phase when all players are honest, and input is $|\psi\rangle$.
- Protocol is oblivious, so $F(|\psi\rangle) = E|\psi\rangle$ for some trace preserving E.
- At this point, arbitrary corruption of t players can’t change reconstructed secret $|\psi\rangle$.
- Thus E is the encoding operator for a QECC.
Theorem: No VQSS tolerates \(t \geq n/4 \)

Proof:

- **No cloning** says that no QECC can correct \(n/2 \) erasures.
- **Fact:** Any QECC which corrects \(t \) errors can correct \(2t \) erasures.
- Thus no QECC tolerates \(n/4 \) errors.
- All these arguments work regardless of dimension of components of QECC.
- Thus, no VQSS tolerates \(t = n/4 \) cheaters.
Conclusions

• Study general cryptographic tasks in distributed setting

• You can do anything you want when $t < n/6$

• You can’t do much when $t \geq n/4$

• Along the way:
 – First “zero-knowledge” quantum proofs secure against malicious verifiers
 – Refined notions of “proximity” to QECC’s.
 – Wrestled with definitions for malicious quantum adversaries
More Protocol Sketch
How to prove sharing is correct?

• Use Zero-Knowledge Proof techniques due to [Crépeau, Chaum, Damgård1988] (from classical MPC)

• Based on classical Reed-Solomon code:
 – To encode a, pick a random polynomial p of degree $2t$ over \mathbb{Z}_q such that $p(0)=a$ and output $(p(1), \ldots, p(n))$

• We use: “polynomial codes” of [Aharonov, Ben-Or99]

$$ E|a\rangle = \sum_{\substack{p: \deg(p)=2t \\ p(0)=a}} |p(1), p(2), \ldots, p(n)\rangle $$
Basic Step

- Prover takes secret $|\psi\rangle$
 - Shares $E|\psi\rangle$ (system #1)
 - Shares $E(\sum|a\rangle)$ (system #2)
- Players together generate random bit b
- If $b=0$ then do nothing
 - If $b=1$ then “add in Z_q” System #1 to System #2
- Measure System #2 and broadcast results
- Accept if broadcast vector close to a classical codeword

\[
A(|x\rangle|y\rangle) = |x\rangle y + x\rangle \\
A^{\otimes n}(E|\psi\rangle E(\sum|a\rangle)) = E|\psi\rangle E(\sum|a\rangle)
\]
Properties of Basic Step

• **If** dealer passes test many times in
 – computational basis and
 – Rotated “Fourier basis” (q-ary analogue of $|0\rangle+|1\rangle$, $|0\rangle-|1\rangle$)

 Then shared state is “close” to a quantum codeword

• **If** dealer was honest,

 then no information is leaked and state is not disturbed

• This can be “boosted” to get secure protocol for $t < n/4$
What does “close to a codeword” mean?

- Shared state should differ from a codeword only on positions held by cheaters.
- Natural notion of closeness:
 (1) Reduced density matrix of honest players
 = reduced density matrix of some state in coding space Q
- Too strong: Our protocols can’t guarantee that.
- Instead:
 (2) Shares held by honest players pass parity checks restricted to those positions.
What does “close to a codeword” mean?

• (1) ≠ (2)
 – (1) is not even a subspace!
 – Basic problem: errors and data can be entangled
• Analysis of fault-tolerant protocols only requires (1)
• We can only guarantee notion (2)
• Nonetheless, our protocols are secure:
 – Notion (2) strong enough to ensure well-defined decoding:
 changes made by cheaters to a state in (2) cannot affect output
 – Fault-tolerant procedures work for states in (2)