Research Article

Apache Spark and Deep Learning Models for High-Performance Network Intrusion Detection Using CSE-CIC-IDS2018

Abdulnaser A. Hagar and Bharti W. Gawali

1Faculty of Administrative and Computer Sciences, AlBaydha University, AlBaydha, Yemen
2Department of Computer Science and Information Technology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India

Correspondence should be addressed to Abdulnaser A. Hagar; csit.hagar@bamu.ac.in

Received 9 June 2022; Revised 18 July 2022; Accepted 22 July 2022; Published 26 August 2022

Academic Editor: Muhammad Fazal Ijaz

Copyright © 2022 Abdulnaser A. Hagar and Bharti W. Gawali. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Keeping computers secure is becoming challenging as networks grow and new network-based technologies emerge. Cybercriminals’ attack surface expands with the release of new internet-enabled products. As many cyberattacks affect businesses’ confidentiality, availability, and integrity, network intrusion detection systems (NIDS) show an essential role. Network-based intrusion detection uses datasets like CSE-CIC-IDS2018 to train prediction models. With fourteen types of attacks included, the latest big data set for intrusion detection is available to the public. This work proposes three models, two deep learning convolutional neural networks (CNN), long short-term memory (LSTM), and Apache Spark, to improve the detection of all types of attacks. To reduce the dimensionality, random forests (RF) was employed to select the important features; it gave 19 from 84 features. The dataset is imbalanced; thus, oversampling and undersampling techniques reduce the imbalance ratio. The Apache Spark model produced the best results across all 15 classes, with accuracy as high as 100% for all classes, as seen by the experiments’ findings. For the F1-score, Apache Spark showed the highest results with 1.00 for most classes. The findings of the three models showed outstanding results for multiclassification network intrusion detection.

1. Introduction

Information and computer security is a growing concern. Over the past two decades, infiltration techniques and security defenses have progressed significantly. Even though cyberattacks have developed new approaches, most firms continue to employ the previous generation of cybersecurity solutions [1, 2]. These new attacks can get past the static defenses that companies have already implemented. The fact that Americans spent more than $600 billion on e-commerce in one year raises serious questions about cyber security in today’s world [3]. Security professionals struggle to safeguard this increasingly vital cyberspace [4, 5]. When applying security analytics, the issue of class imbalance is a crucial consideration for defenders [6]. The term “class imbalance” refers to how one class label is underrepresented while other classes have high representation [7].

Big data frameworks, such as Apache Spark and deep learning (DL) algorithms, are being implemented to improve the system’s overall efficacy and scalability. The DL algorithms’ CNN has proven to be quite valuable in computer vision, particularly for tasks such as recognizing people, digits, and various types of classification. The convolutional procedure extracts information from a predetermined kernel or window [8]. The LSTM is a type of recurrent neural network (RNN). The LSTM organizes its units using the gating concept. One of the main issues with RNNs is that they cannot learn about the environment for a long time; this is called the “vanishing gradient problem,” and it happens when there is no new data to train. As a result, RNNs cannot acquire knowledge from dependents at a great distance [9]. Utilizing an LSTM architecture is one approach that is considered to resolve this matter. It avoids the vanishing gradient problem and, as a result, makes it possible to hold on to the context information for a longer
period. The Spark from Apache is one hundred times quicker than Hadoop [10]. Spark employs RDDs, and Hadoop employs map-reduce. Because network traffic is expanding quickly, a modern intrusion detection system (IDS) coupled with Apache, Hadoop, and Apache Spark is needed. One of our models used Apache Spark, a free source large data processing engine. Spark can analyze datasets on many nodes in parallel, prioritizing speed. It is 100 times faster than Hadoop and Storm [11].

The data must first be preprocessed, clearing the data of undesired values and redundant features. The proposed work needs to supply high-quality data for step processing the data when the data are analyzed to refine the data more effectively. The data standard is an essential factor in the outcomes. Preprocessing the data means solving the null values and deleting the features containing zero values after data preprocessing, selecting the most important features using random forest, which gave 19 from 84 features. Three models were proposed, two deep learning (CNN and LSTM) and Apache Spark. The Apache Spark model gave the best results for 15 classes. The accuracy and F1-score performance metrics are used to evaluate the three models for NIDS using the CSE-CIC-IDS2018 datasets.

The course of the present research work is motivated by providing supportive evidence for using the best techniques for detecting intrusions and attacks on Big Data. Furthermore, exploring different approaches used for addressing IDS over Big Data is one of the aspects of the present research. Moreover, the overall objective is to detect the intrusion from Big Data in NIDS with less time and high accuracy. As per the development in Internet technology and the rising number of network attacks, network ID has become an investigation issue.

The contributions of this work are as follows:

(i) It has reduced the dimensionality of the features from 84 to the most important 19 features
(ii) It decreased the imbalanced data using oversampling and undersampling techniques to reduce the imbalance ratio
(iii) To increase IDS performance, it built three models, Apache Spark, CNN, and LSTM
(iv) This paper proposed the Apache Spark model, the fastest model compared to DL models and previous work, with only 7.56 minutes of training time

The remaining sections of the paper are structured as follows: Section 2 is a literature review on IDS attacks in a network environment. Section 3 introduces the proposed system. Section 4 deals with results and discussion, and Section 5 includes conclusion and future work.

2. Literature Review

Literature research's primary topic was the technology behind big data and IDS based on machine learning. The following section discusses the strategies utilized in some of the most advanced NIDS available today. These systems are developed with machine learning and big data technology.

None of the four preceding studies' [1, 12–14] class imbalance analysis produced any findings for attacks that were made using CSE-CIC-IDS2018. There is no application of sampling approaches to investigate class imbalance concerns regarding attacks in CSE-CIC-IDS2018. None of the four investigations examined CSE-CIC-typical IDS2018’s traffic (overall days) in conjunction with the assaults. We can experiment with the class imbalance and big data difficulties by reducing the class imbalance. For each of the three distinct web attack categories (“Brute Force-Web,” “Brute Force-XSS,” and “SQL Injection”), three of the four studies [1, 12, 14] used multiclass classification for “Web” attacks, resulting in deficient classification performance. For aggregated web attacks, categorization results are exceptionally high.

Based on computing restrictions, Basnet et al. [12] used the CSE-CIC-IDS2018 and offered comprehensive findings. They classified cyberattacks with 99.9% accuracy. Due to class imbalance, 99.9% accuracy is feasible even with zero positive class classifications in aggregated online attacks. High-class imbalance requires more sensitive performance metrics. Basnet et al. deleted twenty thousand samples with “Infinity,” “NaN,” and missing values from CSE-CIC-IDS2018. Except for the destination port and protocol, other features are numeric. Eight fields with zero values are among their 79 cleansed features. These zero-filled fields should have been filtered out. None of the eight features that have zero values indicated were filtered out.

Atefinia and Ahmadi [1] suggest a “modular deep neural network model” using CSE-CIC-IDS2018 data. Their multiclass classification was terrible. Only one customized learner makes benchmarking challenging. Atefinia and Ahmadi’s guidelines are ambiguous. According to Atefinia and Ahmadi, online attacks combine the two attack days with typical traffic for only those two days. The other three CSE-CIC-IDS2018 experiments investigate these two days individually. Their new model misclassifies Web attacks and ignores class imbalance. Atefinia and Ahmadi provide no preprocessing data other than mentioning that missing rows and columns are removed. This comment is ambiguous because they could have mentioned the missing columns. A small portion of CSE-CIC-IDS2018 contains only 59 instances of null values infinity, and NaN is not recognized.

Ferrag et al. [15] compared multiple deep learning models and network intrusion datasets available to researchers. They provide an explanation of each of the different DL approaches as well as a description of 35 different datasets. They then performed their experiments using two of the listed datasets and seven models, including supervised and unsupervised learners. Their experiments were run using the Bot-IoT dataset which is high, with each model performing at around 98% accuracy. The models included are RNN, DNN, restricted Boltzmann machine (RBM), CNN, deep Boltzmann machines (DBM), and DAE.

Dwibedi et al. [16] analyzed and contrasted several recently released intrusion detection datasets. Statistical analysis focused on the distribution of protocols and attacks and compared performance analysis. They used various ML models, both classical and deep learning, to evaluate
performance. SVM, RF, XGBoost, and Keras were among
the models used. To develop and validate the models, we
used several datasets. Experimentally, all models scored
exceptionally well, except for Keras, which came in last with
a precision and recall rate of only 97%.
Basumallik et al. [17] used convolutional neural net-
works to detect packet-data anomalies. Event signatures
are extracted using a convolutional neural network filter (fea-
tures). Two different bus systems are used to build the phasor
measurement unit buses. The study found that an accuracy
of 98.67% can be reached. They claim that the convolutional
neural network-based filter outperforms other machine
learning approaches such as RNN, LSTM, SVM, and bagged
and boosted approaches.
Fu et al. [18] created a framework that uses a con-
volutional neural network to capture the inherent patterns
of fraud behaviour to detect credit card fraud. Zhang et al. [19]
trained and tested a convolutional neural network using the
data. A month’s worth of data was split into training and
testing sets. The study claims a 91% accuracy rate and a 94% recall rate. In comparison with Fu et al. [18], these findings
have been improved by 26% and 2%, respectively.
Nasr et al. [20] introduced a convolutional neural net-
work called DeepCorr for intrusion detection. A neural
network with three linked layers and two convolutional
layers is used to build DeepCorr. According to an experi-
ment, DeepCorr performs best with a learning rate of 0.0001
while utilizing a false positive rate of 10–3.
Zhang et al. [21] created an anomaly traffic identification
model based on two layers of neural networks. The first layer
is an updated version of the LetNet-5 convolutional neural
network. In the second layer, we make use of our long-term
memory. The flow will first have its features connected to
space and time extracted, and then the second layer’s fea-
tures will have their time-related characteristics extracted.

3. Proposed System

It is explained in this section how NIDS’s deep learning and
Apache Spark are designed. The CSE-CIC-IDS2018 dataset,
a real-world network traffic dataset, is used in this section for
NIDS implementation. The ideal technique to test and
evaluate a network’s applications and lowest-level entities is
through Amazon (AWS) real-time traffic, a transition from
static to dynamic data [21].
All zero-valued features were removed from the CSE-
CIC-IDS2018 dataset and converted each class to a numeric
value. The main processes in the proposed network intrusion
detection system are data preprocessing, feature selection,
and three models (CNN, LSTM, and Apache Spark). Figure 1
shows the proposed system framework.

3.1. Description of the Dataset. This analysis will use the
Canadian Institute of Cybersecurity’s 2018 CSE-CIC-IDS2018
data set. The AWS CLI is a command-line interface for Am-
azon Web Services that can be used to get the PCAP, CSV, and
log files from an Amazon web server [22]. This study relied on
CSV files. It contains 6.89 GB of data spread out among 10

![Figure 1: Framework for the proposed system.](image-url)
features were removed from the dataset after it was determined that it had no data. The dataset had object, float, and integer as data types. It should be in float to increase its usability and prepare it for algorithms. Infinity and NaN values were transformed using the median.

(ii) Attack encoding: the attack encoding approach is a popular choice when dealing with categorical variables. Each label is assigned a unique integer in this method. The dataset has been labelled with fifteen different types of attacks, fourteen attacks, and benign. To get it ready for machine learning, it is numbered from 0 to 14.

(iii) Class imbalance on dataset: class imbalance is the number of occurrences in which classes are out of balance. Many classification issues with real-world data show an imbalance in the number of classes. The benign class has the most samples in the CSE-CIC-IDS2018 dataset, which has a class imbalance. This huge mismatch makes classification challenging. Misclassification of the minority class is common when datasets are unbalanced, which causes a bias in classification towards the majority class. The class imbalance has been solved using an oversampling technique. Oversampling and undersampling techniques are part of this strategy. There are a variety of tools available for resampling datasets. Adding random instances from the minority class to the dataset is known as random oversampling.

(iv) Random undersampling (RUS): this sampling method removes instances from the majority class to improve class imbalances toward the desired target classes. In [26, 27], RUS is more successful than other sampling methods. Additionally, RUS has been used in other studies [28, 29] to address the issue of class imbalance.

CSE-CIC-IDS2018 has a colossal imbalance because the benign class was 13484708, and the smallest class was only 87. After resampling, as shown in Table 1, variances between classes have been reduced. The variance between class 13 and class 0 was (87/13,484,708), which equals 0.0000006, but after resampling and undersampling, it is (30,000/300,000), which equals 0.1. Table 1 illustrates the number of samples before and after notice; only classes 2, 3, 5, and 13 had upsampling, and class 0 had undersampling. Attack names and the number of samples before sampling in Table 1 are available in the “Label” column in the dataset [23].

3.3. Feature Selection. It is necessary to consider the varied importance of each feature to determine the essential features [30]. In some cases, feature selection can advance the model’s understanding of the solved problem [31, 32]. For selecting the features, the study used Scikit learn and RF to get the essential features. Features are given importance in the random forest algorithm. An IDS intended for big data networks with high volume and velocity must use a feature selection mechanism. The random forest (RF) classifier methods are used to choose the features in this research. Experiments have shown that the feature set picked by our suggested RF approach appears promising and suited for large-scale network IDSs, as demonstrated by the findings.

The important features are selected using the RF. The dataset splits into 70% for training and 30% for testing with random_state = 42, and n_estimators = 1000. The training time took 64.12 minutes. Then, the selector from the random forest classifier model identifies the features that have importance more than the 0.20 threshold. The training time of the selector took 64.9 minutes. The selector model gave 19 features, as shown in Figure 2.

3.4. Implementation Environment. In the proposed study, we used Anaconda 3, the Python 3 distribution, Jupyter Notebook, the Sklearn Python Machine learning RF, deep learning CNN and LSTM, and Python Pyspark to eliminate unnecessary features, reduce the dataset’s dimension, and build the three models. The proposed models are implemented in Python programming (Anaconda and Jupyter) using the machine learning RF algorithm and deep learning MLP algorithm. Tests were conducted on a personal computer with a 2.6 GHz Core (TM) i7-10750H CPU and 32 GB of memory under Windows10.

3.5. Models. When selecting neural networks, it is crucial to consider the features’ characteristics. This study benefited from Apache Spark logistic regression, CNN, and LSTM because the traffic data are arranged as a sequence. Keras, which is built on the top of Tensorflow, is used to construct deep learning models and is then used to apply deep learning...
3.5.1. Apache Spark. It is a cluster computing platform built primarily to process massive amounts of data. It is an open-source project. It uses a multistaged in-memory processing technique that results in processing that is 100 times quicker than map-reduce processing. Spark can manage Hadoop clusters, access and analyze any Hadoop data source, and run Hadoop jobs. The core of Apache Spark is where some of the program’s most fundamental capabilities are housed [34]. The use of logistic regression as a technique for predicting a categorical response is quite common. It is a subtype of a generalized linear model that can predict the likelihood of various events. You can use ML logistic regression in Spark to predict a binary outcome by employing binomial logistic regression, or you can use it to predict a multiclass outcome.

The study proposed three models, one using Apache Spark and for supervised deep learning using CNN and LSTM.
Figure 4: CNN performance plots.

Figure 5: LSTM performance plots.

Figure 6: Time of training and evaluation.
by employing multinomial logistic regression. Both of these methods are described in the following paragraphs. The logistic regression multinomial method is utilized for multi-classification purposes on Apache Spark. Figure 3 illustrates the framework of Apache Spark.

3.5.2. Convolutional Neural Network (CNN). It is a sophisticated model implemented in various contexts. An operation that combines two processes that are happening at the same time is called a continuous convolution function [24, 35]. A comparison is made between the CNN model based on feature sequencing and the existing convolutional neural network. The input layer, the convolution layer, the pooling layer, the full connection layer, and the output layer are the components that make up the CNN, which is a feedforward neural network [36]. In the same way as conventional neural networks, it is made up of neurons with weights that can be taught and bias constants that can be adjusted. In the convolution layer, the implicit unit is the only one that can connect a portion of the input unit; it cannot connect all of the input units. The conventional CNN alternates the convolution layer and the pooling layer. The number of convolution layers and activation functions of CNNs with varied topologies is also different [37, 38].

3.5.3. Long Short-Term Memory (LSTM). As proposed by Hochreiter and Schmidhuber [39], it is ideally suited for learning from experience and classifying time series. The LSTM recurrent neural network structure was made to deal with the problem of long-term dependence. It adds a gate for forgetting, input, and output to the conventional Recurrent Neural Networks (RNN) [40]. When a neural network
According to Table 2 and Figure 2, our proposed models achieve significant features and 5,835,771 rows, totalling 5,835,771. Computation without losing vital information. Following feature selection by RF, the resulting dataset had only the 19 most significant features and 5,835,771 rows, totalling 5,835,771. Figure 2 illustrates the importance of the chosen features. In this experiment, the hyperparameters for CNN and LSTM are hidden nodes “200,” loss “categorical_crossentropy,” batch size “128,” and initial learning rate “0.0001,” activation function “Softmax,” and optimizer “Adam.” Training will proceed slowly if the learning rate is too low since only a few updates will be to the network’s weights. The dataset splits into 70% for training and 30% for testing. This study used accuracy and F1-score to evaluate the performance of the models. The accuracy of the Spark model is 100%, as Table 3 illustrates the accuracy of the three models; moreover, the F1-score is the best in the Apache Spark model; it gave 1 for most classes. For the LSTM and CNN models, the accuracy and F1-score are high for most classes, as shown in Tables 2 and 3.

4. Results and Discussion

Feature reduction, also known as dimensionality reduction, decreases the number of features in a resource-intensive computation without losing vital information. Following feature selection by RF, the resulting dataset had only the 19 most significant features and 5,835,771 rows, totalling 5,835,771. Figure 2 illustrates the importance of the chosen features. According to Table 2 and Figure 2, our proposed models achieve the best reduction in feature count from 84 to 19 features.

In this experiment, the hyperparameters for CNN and LSTM are hidden nodes “200,” loss “categorical_crossentropy,” batch size “128,” and initial learning rate “0.0001,” activation function “Softmax,” and optimizer “Adam.” Training will proceed slowly if the learning rate is too low since only a few updates will be to the network’s weights. The dataset splits into 70% for training and 30% for testing. This study used accuracy and F1-score to evaluate the performance of the models. The accuracy of the Spark model is 100%, as Table 3 illustrates the accuracy of the three models; moreover, the F1-score is the best in the Apache Spark model; it gave 1 for most classes. For the LSTM and CNN models, the accuracy and F1-score are high for most classes, as shown in Tables 2 and 3.

4.1. The Performance Plots of the Deep Learning Models

Model accuracy and log loss are computed for each epoch’s training and testing sets. It helps to determine whether the model has been successfully trained to classify various attack
types and how many samples in the testing set have been accurately classified. The loss represents the total number of mistakes for each training sample. In the study of the log loss (categorical_crossentropy) for the DL models, it is evident from the loss plot that the testing set has extremely few incorrect predictions. To correctly train the models, the number of epoch values is 50 for this experiment phase due to the dataset size. Figures 4 and 5 demonstrate that the suggested models can categorize various types of intrusions in the selected datasets.

The Apache Spark model gave the best result for all classes as multiclassification; furthermore, it took the least time for training and evaluating, only 7.56 minutes for training and 39 seconds for evaluating, while the LSTM model took 125.29 minutes for training and 124.65 seconds for evaluating. CNN took 150.26 minutes and 120.65 seconds to evaluate, as shown in Figure 6.

The Apache Spark model is the fastest if compared with all previous works. Moreover, the Apache Spark model has the best result with 100% accuracy for all classes and the best results for the F1-score, as shown in Tables 2 and 3. Furthermore, our proposed models used the RF method to reduce the dimensionality of features, the best feature set for large-scale NIDS. RF gave the most important features and reduced the features from 84 to only 19, as shown in Figure 2.

The three models are multiclassification for detecting 14 attacks and benign if comparing the results of the proposed models to the deep learning and Apache Spark literature works. The three models gave the best results (accuracy and F1-score), especially the Apache Spark model. Furthermore, the three models are multiclassification for detecting 14 attacks and benign. Moreover, the proposed work reduces dimensionality from 84 features to only 19, with the best
result (accuracy and F1-score). The Apache Spark model is faster than deep learning and models of all previous works.

4.2. Confusion Matrix. In contrast to binary categorization, neither positive nor negative classifications exist here. Since there are no positive or negative classes, it may initially be challenging to determine TP, TN, FP, and FN. Start determining TP, TN, FP, and FN for each class. Then, let us check the values of the confusion matrix’s metrics.

The confusion matrix technique is typically utilized to solve classification problems because it accurately represents the actual and predicted classes’ output. Using resemblance measures determines the pairwise similarity between every class set. Figures 7–9 show the confusion matrices.

5. Conclusion

This study proposed three models, Apache Spark, CNN, and LSTM, to detect network attacks. The proposed models reduced the dimensionality for feature reduction from 84 to 19 using the random forest algorithm. The following studies with fourteen sorts of attacks, and the introduced work focuses on the three models for categorizing attacks. The dataset is imbalanced; therefore, oversampling and undersampling are employed to lower the imbalance ratio. Accuracy and F1-score are used to compare the detection ability of these three models.

Moreover, Apache Spark gave 100% accuracy for all classes and F1-score 1 for ten classes and 0.99, 0.98, 0.97, and 0.98 for the remaining classes. The Apache Spark is the fastest model compared to DL models and previous related work, with only 7.56 minutes of training time. Accordingly, there are limitations to the study; it only detects the existing signature-based intrusion detection systems. Thus, we suggest important future work, including semisupervised learning.

Data Availability

The article includes the tables and figures that support this study’s findings.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] R. Atefinia and M. Ahmadi, “Network intrusion detection using multi-architectural modular deep neural network,” The Journal of Supercomputing, vol. 77, no. 4, pp. 3571–3593, 2021.
[2] A. Roy, S. Razia, N. Parveen, A. S. Rao, S. R. Nayak, and R. C. Poonia, “Fuzzy rule based intelligent system for user authentication based on user behaviour,” Journal of Discrete Mathematical Sciences and Cryptography, vol. 23, no. 2, pp. 409–417, 2020.
[3] R. Zuech, J. Hancock, and T. M. Khoshgoftaar, “Investigating rarity in web attacks with ensemble learners,” J. Big Data, vol. 8, no. 1, p. 71, 2021.
[4] E. S. Babu, I. Kavati, S. R. Nayak, U. Ghosh, and W. Al Numay, “Secure and transparent pharmaceutical supply chain using permissioned blockchain network,” International Journal of Logistics Research and Applications, vol. 1, pp. 1–28, 2022.
[5] S. I. Khan, Z. Qadir, H. S. Munawar et al., “UA’s path planning architecture for effective medical emergency response in future networks,” Physical Communication, vol. 47, Article ID 101337, 2021.
[6] J. L. Leevy, J. Hancock, R. Zuech, and T. M. Khoshgoftaar, “Detecting cybersecurity attacks using different network features with LightGBM and XGBoost learners,” in Proceedings of the 2020 IEEE Second International Conference on Cognitive Machine Intelligence (CogMI) 2020, pp. 190–197, IEEE, Atlanta, GA, USA, October 2020.
[7] I. Amit, J. Matherly, W. Hewlett, Z. Xu, Y. Mashi, and Y. Weinberger, “Machine Learning in Cyber-Security - Problems, Challenges and Data Sets,” 2018, http://arxiv.org/abs/1812.07858.
[8] S. Kabir, S. Sakib, M. A. Hossain, S. Islam, and M. I. Hossain, “A convolutional neural network based model with improved activation function and optimizer for effective intrusion detection and classification,” in Proceedings of the 2021 International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE) 2021, pp. 373–378, IEEE, Greater Noida, India, March 2021.
[9] B. Roy and H. Cheung, “A deep learning approach for intrusion detection in internet of things using Bi-directional long short-term memory recurrent neural network,” in Proceedings of the 2018 28th International Telecommunication Networks and Applications Conference (ITNAC) 2018, pp. 1–6, IEEE, Sydney, NSW, Australia, November 2019.
[10] S. V. Sivareddy and S. Saravananan, “Performance evaluation of classification algorithms in the Design of Apache spark based intrusion detection system,” in Proceedings of the 5th Int. Conf. Commun. Electron. Syst. ICCES 2020, pp. 443–447, Icces 2020, Coimbatore, India, July 2020.
[11] A. Dobson, K. Roy, X. Yuan, and J. Xu, “Performance evaluation of machine learning algorithms in Apache spark for intrusion detection,” in Proceedings of the 2018 28th International Telecommunication Networks and Applications Conference (ITNAC) 2018, pp. 1–6, IEEE, Sydney, NSW, Australia, November 2019.
[12] R. B. Basnet, R. Shash, C. Johnson, L. Walgren, and T. Doleck, “Towards detecting and classifying network intrusion traffic using deep learning frameworks,” J. Internet Serv. Inf. Secur., vol. 9, no. 4, pp. 1–17, 2019.
[13] L. D’hooge, T. Wouters, B. Volckaert, and F. De Turck, “Inter-dataset generalization strength of supervised machine learning methods for intrusion detection,” Journal of Information Security and Applications, vol. 54, Article ID 102564, 2020.
[14] X. K. Li, W. Chen, Q. Zhang, and L. Wu, “Building Auto-Encoder Intrusion Detection System based on random forest feature selection,” Computers & Security, vol. 95, Article ID 101851, 2020.
[15] M. A. Ferrag, L. Maglaras, S. Moscholios, and H. Janicke, “Deep learning for cyber security intrusion detection: approaches, datasets, and comparative study,” Journal of Information Security and Applications, vol. 50, Article ID 102419, 2020.
[16] S. Dwibedi, M. Pujari, and W. Sun, “A comparative study on contemporary intrusion detection datasets for machine learning research,” in Proceedings of the 2020 IEEE
Computational Intelligence and Neuroscience 11

International Conference on Intelligence and Security Informatics (ISI) 2020, IEEE, Arlington, VA, USA, November 2020.

[17] S. Basumallik, R. Ma, and S. Eftekharnejad, “Packet-data anomaly detection in PMU-based state estimator using convolutional neural network,” International Journal of Electrical Power & Energy Systems, vol. 107, pp. 690–702, November 2018.

[18] K. Fu, D. Cheng, and Y. Tu, Credit Card Fraud Detection Using Convolutional Neural Networks Kar. pp. 483–490, Springer, Cham, New York, NY, USA, 2016.

[19] Z. Zhang, X. Zhou, X. Zhang, L. Wang, and P. Wang, “A model based on convolutional neural network for online transaction fraud detection,” Security and Communication Networks, vol. 2018, pp. 1–9, Article ID 5680264, 2018.

[20] M. Nasr, A. Bahramali, and A. Houmansadr, “DeepCorr: strong flow correlation aacks on tor using deep learning,” in Proceedings of the 2018 ACM SIGSAC Conference on Computers and Communications Security, pp. 1962–1976, IEEE, Canada, CA, USA, October 2018.

[21] J. L. Leevy and T. M. Khoshgoftaar, “A survey and analysis of intrusion detection models based on CSE-CIC-IDS2018 Big Data,” J. Big Data, vol. 7, no. 1, p. 104, 2020.

[22] R. I. Farhan, A. T. Maolood, and N. F. Hassan, “Performance analysis of flow-based attacks detection on CSE-CIC-IDS2018 dataset using deep learning,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 20, no. 3, p. 1413, 2020.

[23] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating a new intrusion detection dataset and intrusion traffic characterization,” in Proceedings of the 4th Int. Conf. Inf. Syst. Secur. Priv., vol. 2018, pp. 108–116, SCITEPRESS (Science and Technology Publications, July 2018.

[24] S. Gopalakrishnan, S. Sridharan, S. R. Nayak, J. Nayak, and S. Venkataraman, “Central hubs prediction for bio networks by directed hypergraph-GA with validation to COVID-19 PPI,” Pattern Recognition Letters, vol. 153, pp. 246–253, 2022.

[25] A. A. Hagar and B. W. Gawali, “Implementation of machine and deep learning algorithms for intrusion detection system,” in Intelligent Communication Technologies and Virtual Mobile Networks, pp. 1–20, Springer, New York, NY, USA, 2022.

[26] T. Hasanin, T. M. Khoshgoftaar, J. L. Leevy, and R. A. Bauder, “Severely imbalanced Big Data challenges: investigating data sampling approaches,” J. Big Data, vol. 6, no. 1, p. 107, 2019.

[27] R. Zuech, J. Hancock, and T. M. Khoshgoftaar, “Detecting web attacks using random undersampling and ensemble learners,” J. Big Data, vol. 8, no. 1, p. 75, 2021.

[28] R. A. Bauder and T. M. Khoshgoftaar, “The effects of varying class distribution on learner behavior for medicare fraud detection with imbalanced big data,” Health Information Science and Systems, vol. 6, no. 1, p. 9, 2018.

[29] C. L. Calvert and T. M. Khoshgoftaar, “Impact of class distribution on the detection of slow HTTP DoS attacks using Big Data,” J. Big Data, vol. 6, no. 1, p. 67, 2019.

[30] M. Sarhan, S. Layeghy, and M. Portmann, “Feature analysis for ML-based IIoT intrusion detection,” 2021, http://arxiv.org/abs/2108.12732.

[31] G. Chandrashekar and F. Sahin, “A survey on feature selection methods,” Computers & Electrical Engineering, vol. 40, no. 1, pp. 16–28, 2014.

[32] R. Panigrahi, S. Borah, M. Pramanik et al., “Intrusion detection in cyber–physical environment using hybrid Naive Bayes—decision table and multi-objective evolutionary feature selection,” Computer Communications, vol. 188, pp. 133–144, 2022.

[33] A. A. Hagar, D. G. Chaudhary, A. L. I. A. Al-bakhrahi, and B. W. Gawali, “Big data analytic using machine learning algorithms for intrusion detection system,” A Survey, vol. 10, 3, pp. 6063–6084, 2020.

[34] A. Oussous, F. Z. Benjelloun, A. Ait Lahcen, and S. Belkhay, “Big Data technologies: a survey,” Journal of King Saud University - Computer and Information Sciences, vol. 30, no. 4, pp. 431–448, 2018.

[35] B. Lee, S. Amareesh, C. Green, D. Engels, and D. W. Engels, “Comparative study of deep learning models for network intrusion detection,” Other Comput. Eng. Commons, Other Comput. Sci. SMU Data Sci. Rev. vol. 1, no. 1, 2018.

[36] A. Vulli, P. N. Srinivasu, M. S. K. Sashank, J. Shafi, J. Choi, and M. F. Ijaz, “Fine tuned DenseNet 169 for breast cancer metastasis prediction using FastAI and 1 cycle policy,” Sensors, vol. 22, no. 8, p. 2988, 2022.

[37] W. F. Zheng, “Intrusion detection based on convolutional neural network,” in Proceedings of the 2020 International Conference on Computer Engineering and Application (ICCEA) 2020, pp. 273–277, IEEE, Guangzhou, China, March 2020.

[38] S. Ranjithkumar, S. Chenthur Pandian, S. Ahmed, A. Alhumam, R. Singla, and M. Fazal Ijaz, “Automatic license plate recognition system for vehicles using a cnn,” Computers, Materials & Continua, vol. 71, no. 1, pp. 35–50, 2022.

[39] F. Jiang, Y. Fu, B. B. Gupta et al., “Deep learning based multi-channel intelligent attack detection for data security,” IEEE Trans. Sustain. Comput., vol. 5, no. 2, pp. 204–212, 2020.

[40] P. N. Srinivasu, J. G. Sivasai, M. F. Ijaz, A. K. Bhoi, W. Kim, and J. J. Kang, “Classification of skin disease using deep learning neural networks with mobilenet v2 and lstm,” Sensors, vol. 21, no. 8, p. 2852, 2021.

[41] P. Lin, K. Ye, and C. Z. Xu, Dynamic Network Anomaly Detection System by Using Deep Learning Techniques, vol. 11513 LNCS, Springer International Publishing, New York, NY, USA, 2019.