The efficacy of 12 weeks supervised exercise in obesity management

L. Y. Herring¹,², C. Wagstaff¹ and A. Scott¹

What is already known about this subject

• Research supports a multidisciplinary teamed (MDT) weight management approach for weight loss, the Royal College of Physicians state that MDTs are needed nationwide to tackle severe and complex obesity.
• Current MDT programmes predominantly adopt an educational approach, focusing on psychological aspects of behaviour change, dietetics by modifying nutritional intake and physical activity advice.
• Aerobic training has been labelled the most important exercise component in obesity programme prescription.

What this study adds

• This is the first randomized controlled trial to report the outcomes for introducing and monitoring a structured and supervised exercise programme as an adjunct to a multidisciplinary teamed (MDT) weight-loss lifestyle programme for morbidly obese patients.
• Those patients who receive the MDT weight management education alone displayed further reductions in their functional capacity.
• Supervised and structured exercise interventions regardless of modality in addition to an educational MDT weight management programme significantly improved anthropometric, psychological and cardiovascular function measures compared with MDT education alone (CON).

Summary

The objective of this randomized controlled trial was to investigate the effect of adding either aerobic training (AT) or resistance training (RT) to a multidisciplinary teamed (MDT) educational weight management programme on the health-related fitness of morbidly obese individuals. Males (n = 9) and females (n = 24) aged between 24 and 68 years with a body mass index (BMI) of ≥40 kg·m² (≥35 kg·m² with comorbidities) undertaking a weight management programme were recruited (Completion: M = 8, F = 19). Participants were randomly allocated to either AT (n = 12), RT (n = 11) or CON (n = 10). AT and RT undertook three structured ∼60 min moderate intensity sessions weekly, two supervised gym-based and one structured home-based session for 12 weeks; CON undertook usual care alone. Anthropometric, psychological and functional capacity measures were obtained pre- and post-intervention. Both exercise interventions elicited improvements compared with CON in the: shuttle walk test (AT [Δ 207.0 ± 123.0 metres, 68.0%, P = 0.04], RT [Δ 165.0 ± 183.3 m, 48.8%, P = 0.06], CON [Δ −14.3 ± 38.7 m, −6.2%]), triceps skin-fold (P ≤ 0.001), self-efficacy (P = 0.005) and interest/enjoyment (P = 0.006). RT displayed additional improvements compared with CON in BMI (RT [Δ −1.02 ± 0.91 kg·m², −2.5%, P = 0.033], AT [Δ −1.84 ± 2.70 kg·m², −4.3%, P = 0.142], CON [Δ −0.31 ± 1.47 kg·m², −0.6%]), waist circumference (P = 0.022), competence (P = 0.019), biceps skin-fold (P = 0.012) and medial calf skin-fold (P = 0.013). No significant differences were observed between exercise modalities. Regardless of exercise mode, the addition of supervised and structured exercise to a MDT weight management programme significantly improved anthropometric, functional and psychological measures in obese participants with a BMI of ≥35 kg·m².

Keywords: Exercise, health services, obesity, weight loss.
Introduction

Overweight and obesity in England affects 61.3% of the population and is associated with many chronic and debilitating diseases, such as diabetes mellitus and cardiovascular diseases (1,2). Diet and pharmacotherapy alone has been deemed less effective and 2.5-fold more expensive than a combined diet, exercise and behaviour modification approach (3). Previous research supports a multidisciplinary team (MDT) weight management approach for weight loss (4–6) with the Royal College of Physicians (6) stating that MDTs are needed nationwide to tackle severe and complex obesity. Current MDT programmes predominantly adopt an educational approach, focusing on psychological aspects of behaviour change, dietetics by modifying nutritional intake and physical activity (PA) advice (7). An important factor in weight management is regular PA, which positively effects metabolic and psychological parameters, however, when employed alone weight loss is often less than expected, usually because of increased energy intake (8). Therefore, by combining structured exercise with dietetics and behaviour change, physiological, psychological and functional health benefits should improve (9–11).

Fat mass reduction is greater when undertaking structured exercise under the supervision of a qualified exercise specialist (12). Exercise adherence in obesity can be dependent on the professional, supportive, encouraging and friendly nature of the instructor, whereas an exercise leader lacking in motivational skills has been attributed to non-adherence to exercise (13). Instructors help overcome typical barriers associated with exercise in this client group, such as self-consciousness, lack of exercise knowledge, boredom, low motivation and the fear of pain and injury (9). Personalized exercise for obese individuals can affect obesity treatment, however, it is unknown how effective exercise regimes are in class III obesity (body mass index [BMI] ≥40 kg·m²) (14,15).

Combined aerobic training (AT) and resistance training (RT) has been readily researched in obesity, predominantly investigating weight loss and fat mass reduction outcomes (16). Combined exercise programmes lead to decreased abdominal subcutaneous and visceral fat compared with AT alone (17). AT and RT both positively affect health-related fitness parameters and previously untrained individuals undertaking RT alone experience early adaptations associated with AT (18) with a 12-week intervention finding that both the AT and RT groups’ exercise capacity improved (19). AT improved depression symptoms and cardiovascular fitness (VO₂max) vs. RT which improved muscle strength and basal metabolic rate (19,20). However, the benefits of the individual exercise modes on specific health-related fitness parameters in the obese population are still unclear.

AT has been labelled as the most important exercise component in obesity programme prescription, generating the negative energy balance required for weight-loss and reducing related comorbidities (21,22). Hansen et al. (16) also found that RT had no effect on fat mass loss. Others conclude that AT outweighs RT in improving cardiovascular fitness and fat mass loss and therefore should be used in obesity management as a preventative measure of associated lifestyle-related diseases (10). Contrary to this, early research indicated that RT is equal to AT in facilitating fat mass loss while promoting fat free mass gain (23). These inconsistent findings demonstrate the need for further exploration and clarification (16,23,24).

Therefore, the purpose of this preliminary study was to assess the efficacy of adding supervised AT or RT to a community MDT tier 2 obesity service. It was hypothesized that both AT and RT would significantly improve health-related fitness parameters following 12 weeks of structured exercise compared with control (CON).

Materials and methods

Participants

Male (n = 8) and female (n = 19) participants in a community weight-loss service with a BMI of ≥40 or ≥35 kg·m² with comorbidities were recruited and written informed consent obtained. Participants mean baseline characteristics ± standard deviation were stretch stature 168.2 ± 6.8 cm, BMI 44.45 ± 6.11 kg·m², body mass 126.4 ± 23.3 kg, systolic blood pressure 129 ± 11 mmHg, diastolic blood pressure 80 ± 8 mmHg with ages ranging from 24 to 68 years.

Volunteers with unstable diabetes, orthopaedic limitations, motor neurone disease, stage II hypertension cardiovascular disease, pulmonary disease, renal disease and chair bound were excluded. A favourable ethical opinion was provided by the South-Central National Health Service (NHS) Research Ethics Service (Reference: 11/SC/0353).

Study design

The study employed a randomized controlled trial design with three groups: AT, RT and CON. A priori power analysis using G*Power (Franz Faul, Universitat Kiel, Germany) suggested that 21 participants were required in total based on waist circumference data from a similar research design (25). Therefore, 10–11 participants per group were recruited to account for attrition.

Procedures

Recruitment and randomization

Participants were recruited between November 2011 and March 2012 upon commencing the community weight-loss...
programme’s structured 12-week group education sessions. Participants were randomly allocated to a group in order of appointment, according to non-blocked computer-generated sequences. The principal investigator informed the participants following their pre-measures being taken.

Control group

CON consisted of 12 weekly educational MDT sessions, one weekly session provides PA advice to overcome barriers and advice for aerobic and resistance exercise (usual care). This group were not restricted from performing PA of their own accord and any such activities were recorded.

Exercise interventions

The interventions consisted of two supervised gym-based sessions and one structured home-based session, totalling three ~1 h sessions per week for 12 weeks, in addition to the routine education programme. AT and RT consisted of a 45–60-min moderate intensity main programme, with a 5–10-min aerobic warm-up and cool-down. Each intervention was personalized taking into consideration comorbidities such as hypertension, musculoskeletal restrictions and medication.

AT participants exercised at an intensity relative to their heart rate reserve (%HRR). The warm-up and cool-downs were 30–45% HRR and in the main session was 50–70% (moderate) HRR. The AT group were asked to record any other structured exercise.

RT participants also performed at a moderate intensity expressed as 60% of their estimated one-repetition maximum (14). Participants were closely monitored initially to ensure the programme was appropriate and that no further adaptations were needed; 30–60 s rest between sets was advised. RT predominantly used compound exercises, utilizing the main muscles and opposing muscle groups. The RT group record any other structured exercise.

Participants received personalized programmes detailing durations, sets and repetitions and a method for personal progression to ensure a progressive overload. Participants’ attendance, activities and heart rate (pre-, midway and post-exercise) were recorded in each session.

Outcome measures

Measurements were recorded pre- and post-intervention. Post-intervention assessments were performed at least 48 h following the last exercise session for both exercise groups.

Anthropometric measurements were obtained using the International Society for the Advancement of Kinanthropometry accredited methods, ensuring consistency and were repeated for precision. Body mass and stretch stature were measured and BMI calculated. Waist (~1 cm above the iliac crest) and hip circumferences (widest area around the gluteus maximus) were recorded and waist:hip ratio calculated. Three skin-fold measures were obtained (triceps, biceps and medial calf); landmarks were identified ensuring skin-folds were accurately repeated measuring site-specific adipose tissue.

The incremental shuttle walk test (SWT) comprised of 10 m shuttles in which the participants followed the beep (26). Participants’ aimed to walk for as long as possible until attaining test termination criteria (27,28).

Psychological parameters measured included; motives for PA, self-efficacy to regulate PA (SERPA) and the hospital anxiety and depression scale (29–31).

Statistical analyses

The data are presented as mean ± standard deviation and percentage change. A descriptive exploratory analysis of all data was completed checking parametric assumptions using PASW (version 20, SPSS, Armonk, NY, USA). The data were normally distributed, apart from two psychological measures. The alpha level was set at $P \leq 0.05$ to indicate any significant differences between measures.

Differences between the three groups were analysed using a one-way analysis of variance. The one-way analysis of variance determined any significant differences between the three groups using pre- and post-deltas (Δ). A post hoc Scheffe Test was applied to determine pairwise comparisons for all measures between groups because of its highly cautious nature in reducing the risk of type 1 errors (32).

For non-normally distributed data, the Kruskal–Wallis test was undertaken with a post hoc Mann–Whitney U-test (33). Univariate analyses of effect size and observed power were undertaken for each measure using partial eta squared. Paired sample t-tests and Mann–Whitney U-test were undertaken on pre- and post-data for the three groups to determine pre- and post-differences.

Results

Figure 1 outlines participant progression. CON consisted of three males and four females ($n = 7$); RT two males and eight females ($n = 10$); and AT three males and seven females ($n = 10$).

All significant effects were due to differences between CON and the exercise intervention groups. No significant differences occurred between the RT and AT groups following the 12-week intervention. Anthropometric data are displayed in Table 1.

The triceps skin-fold significantly decreased in AT ($\Delta −9.29 \pm 3.33$ mm, $−25.6\%$, $P = 0.01$) and RT ($\Delta −9.03 \pm 5.80$ mm, $−24.8\%$, $P = 0.01$) compared with CON ($\Delta 0.50 \pm 3.34$ mm, 1.5%), displaying a large effect and statistical power >80%. The medial calf skin-fold decreased significantly in RT ($\Delta −9.03 \pm 3.71$ mm, $−24.9\%$, $P = 0.013$) compared with CON ($\Delta −0.29 \pm 4.83$ mm, $−0.7\%$); the biceps skin-fold also improved significantly in
RT ($\Delta -9.27 \pm 4.55$ mm, -30.0%, $P = 0.012$) compared with CON group ($\Delta -1.31 \pm 2.01$ mm, -4.1%).

RT significantly improved BMI ($\Delta -1.02 \pm 0.91$ kg m2, -2.5%, $P = 0.033$) compared with CON ($\Delta -0.31 \pm 1.47$ kg m2, -0.6%) and hip circumference ($\Delta -4.71 \pm 2.19$ cm, -3.6%, $P = 0.022$) compared with CON ($\Delta -1.93 \pm 2.12$ cm, -1.3%).

The biceps skin-fold measurement significantly improved in AT and RT, as shown in Fig. 2. Statistical power was $>80\%$ and there was a medium effect size. A greater mean body mass was highlighted at baseline in the CON group compared with RT and AT, however, no statistically significant differences occurred in body mass at baseline between groups.

The SWT distance was significantly farther in AT ($\Delta 207.0 \pm 123.0$ m, 69.4%, $P = 0.04$) and RT ($\Delta 165.0 \pm 183.30$ m, 53.7%, $P = 0.06$) compared with CON ($\Delta -14.3 \pm 38.7$ m, -9.7%), with $>80\%$ power ($\chi^2 = 0.825$) and a medium effect size, as shown in Fig. 3. A significant difference in the SWT was seen between RT and CON at baseline. Psychological parameters are presented in Table 2.

The interest/enjoyment PA motive category was significantly improved in AT ($\Delta -82 \pm 12.52$, 39.9%, $P = 0.041$) and RT ($\Delta -50.00 \pm 6.45$, 19.8%, $P = 0.006$) compared with CON ($\Delta 5.70 \pm 8.00$, 3.7% decrease). The competence PA motive was significantly higher than CON ($\Delta -0.29 \pm 6.75$, -1.8%) in RT ($\Delta 7.8 \pm 6.23$, 31.7%, $P = 0.019$), with no significant difference between AT and CON.

A significant improvement in the SERPA scores were reported ($H_{(2)} = 9.843$; $P = 0.007$, $Z = -2.689$; $P = 0.005$) with a large effect size. AT ($\Delta 376.00 \pm 375.68$, 56.8%) and RT ($\Delta 329.5 \pm 283.1$, 45.1%) scored significantly higher than CON ($\Delta -22.14 \pm 391.8$, -4.9%), as shown in Fig. 4.

Discussion

The main findings were that the addition of a structured moderate intensity AT or RT programme to a 12-week MDT weight-loss and lifestyle programme significantly improves anthropometric, psychological and functional measures in obese patients with a BMI of ≥ 35 kg m2. Due to the nature of the weight-loss programme, an improvement was expected in all groups, as the three-component educational approach of diet, exercise and behaviour modification is specifically designed to aid weight loss. However, analyses revealed numerous significant differences between CON and exercise groups. AT and RT demonstrated significant improvements in the incremental SWT, triceps skin-fold, self-efficacy and interest/enjoyment compared with the CON. RT displayed additional improvements in BMI, waist circumference, competence, biceps skin-fold and medial calf skin-fold.
Previous literature has shown improved VO\textsubscript{2max} in a MDT weight-loss programme when an additional aerobic exercise component is added (34). In the current study, both exercise groups significantly improved incremental SWT distance compared with CON, indicating that an individualized, supervised and structured exercise programme, regardless of exercise type, can increase functional capacity in the early stages of obesity management. Improved mobility in the RT group may be a contributing factor for this increased speed and distance walked, supporting previous research (35). The reduction in the SWT distance in CON suggests that the educational PA element of the MDT programme is insufficient in enhancing physical activity participation (34). These data extend the findings of Pavlou \textit{et al.} (34) who found an improved VO\textsubscript{2max} in their AT group compared with CON when combined with a MDT weight-loss programme, but they did not have a RT group to compare with.
Anthropometric measurements in both of the exercise groups significantly improved. In RT, all three skin-fold measurements, hip circumference and BMI significantly decreased while only the triceps skin-fold significantly decreased in the AT group. The combined reduction in BMI and all skin-fold measures suggest a greater fat mass reduction in the RT group compared with CON. In combination with this, circumferences indicated a positive trend, with mean relaxed arm circumferences decreasing in all three groups with greater improvements in the exercise groups. Flexed arm circumference increased in the RT group, but decreased in the AT and CON groups, indicating an improvement in body composition through fat mass loss and fat free mass gain when RT (16, 23). One could assume the additional benefits in the RT group could be due to an increase in muscle mass and basal metabolic rate, this, however, need to be assessed objectively to confirm this assumption (19, 20).

Although the AT and RT exercise programmes were both performed at a moderate intensity to ensure both groups were working at an equivalent work rate (1), it cannot be confirmed that caloric expenditure was identical between or within modalities. Caloric expenditure can differ depending on the patients’ ability, the type of exercise performed, the duration of aerobic exercise, the sets and repetitions of resistance exercise (36). Due to the nature of the research, breath by breath analysis to measure energy expenditure was not possible.

Anxiety and depression scores improved in all groups, with no significant difference between groups. Both exercise regimes showed significantly higher SERPA scores compared with CON. Participants in the exercise groups displayed improved self-belief in their ability to regulate PA in different situations even when feeling tired or depressed,
whereas those in the MDT-only CON group demonstrated a reduction in self-belief and appeared less confident. This suggests that a prescriptive approach to exercise in MDT weight management programmes improves self-belief (SERPA), confidence and being able to overcome barriers. This supervised prescriptive approach provided regular professional and peer support, ongoing counselling and an increased knowledge and understanding of exercise which all contribute to increased self-belief and confidence (9,13). When Nicolai et al. (12) compared supervised and non-supervised exercise, exercising under the supervision of a qualified exercise specialist elicited significant reductions in body weight and fat mass compared with non-supervised. The findings of the present study combined with the literature highlight the importance of supervised and prescriptive exercise on psychological and physiological outcomes in an obese population (9,12,13).

Supervised and prescriptive exercise such as that reported in the present study is imperative to a MDT approach to weight loss. Exercise education alone is insufficient in halting declines in health-related fitness parameters, such as psychological parameters and SWT distance, where reductions were seen in CON compared with the significant improvement in the exercise groups. This measure reflects cardiovascular function which can indicate the ease of undertaking daily tasks (e.g. walking) and premature mortality (37).

Research has previously focused on strategies to increase exercise adherence in obesity management (9). The exercise adherence and drop-out pattern seen in the study are similar to previous research for this population, with a higher attrition rate for CON (30%) compared with 9% and 17% for RT and AT, respectively (Fig. 1). The rate of attrition is superior to previous research; a systematic review revealed completion rates of only 12–42% for 10–12-week programmes (13), the current study revealed completion rates of 70% for CON, 83% for AT and 91% for RT. This reduced drop-out rate in the exercise intervention groups reflects previous research, as adherence to exercise is more likely if combined with multidisciplinary interventions which have a focus on PA maintenance (13).

The addition of structured exercise regardless of exercise mode to the educational approach adopted might aid in the retention of individuals in the MDT weight-loss programme, however, this requires further examination. The exercise group self-reported the intrinsic factors that contributed to their adherence included noticeable changes in body composition, fitness and self-efficacy through personal achievement, visible progression and maintenance (13,38). Extrinsic motivational factors should be further explored because the motivational skills of the exercise instructor and the supervised structured and individualized exercise programmes could have provided additional peer support and motivation. Previous research supports this, with strong associations between exercise professionals and adherence/non-adherence combined with personal social, physical and psychological parameters (12,13). Williams et al. (13) recognized that satisfaction was prominently linked to the staff providing such exercise programmes.

All motives for undertaking PA increased in the exercise groups, whereas interest/enjoyment and competence motives decreased in CON. AT and RT's interest/enjoyment motive significantly improved while competence only significantly improved in RT compared with CON. In the pre-intervention assessment, the predominant PA motive was appearance, reflecting the Allied Dunbar National Fitness Survey results, which associated weight control and appearance as predominantly female exercise motives (39). The high number of female participants may indicate why appearance was the predominant PA motive. Future research should recruit a larger sample in a multicentre trial to corroborate these preliminary findings. Furthermore, a study employing a 12-month follow-up design should be incorporated to determine whether these short-term improvements can be maintained on completion of the supervised exercise phases.

This preliminary study suggests that supervised structured exercise should be further explored as an addition to MDT weight-loss programmes. The study highlights significant improvements in health-related fitness outcomes compared with routine treatment alone and with lower attrition rates in the exercise groups (RT and AT combined 14%) compared with CON (30%). RT and AT exercise interventions significantly improved anthropometric, psychological and functional capacity measures compared with routine care. Further research is required to confirm whether the addition of supervised and structured exercise to MDT weight-loss programmes is cost-effective and has longer-term efficacy in improving health-related fitness parameters in class II/III obesity.

Conflict of interest statement

No conflict of interest was declared.

Acknowledgements

The authors thank the Oxfordshire Weight-Loss and Lifestyle Service (OWLS) and staff who provided their participants and funding for gymnasium admissions. Blackbird Leys sport centre for providing their gymnasium facilities. Finally, thank you to the Royal Berkshire NHS Foundation Trust and Oxfordshire Primary Care Trust for supporting this research.

Sources of funding

The Oxfordshire Weight-Loss Lifestyle Service paid for the gym admissions for the study participants during the 12-week intervention.
References

1. Donnelly JE, Blair SN, Jakicic JM et al. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med Sci Sports Exerc 2009; 41: 459–471.
2. Department of Health. Reducing Obesity and Improving Diet. Department of Health: London, 2013.
3. Roux L, Kunz KM, Donaldson C, Goldie SJ. Economic evaluation of weight loss interventions in overweight and obese women. Obesity 2006; 14: 1093–1106.
4. Roux L, Ubach C, Donaldson C, Ryan M. Valuing the benefits of weight loss programs: an application of the discrete choice experiment. Obes Res 2004; 12: 1342–1351.
5. Kmiotowicz Z. Multidisciplinary teams are needed throughout the UK to manage obesity. BMJ 2013; 346: e6879.
6. Royal-College-of-Physicians (RCP). Action on Obesity: Comprehensive Care for All. Report of a Working Party. RCP: London, 2013.
7. Tanas R, Marcolongo R, Pedretti S, Gilli G. A family-based education program for obesity: a three-year study. BMC Pediatr 2007; 7: 33.
8. Doucet E, King N, Levine JA, Ross R. Update on exercise and weight control. J Obes 2011; 2011: 1–4.
9. Dalle Grave R, Calugi S, Centis E, El Ghoch M, Marchesini G. Cognitive-behavioral strategies to increase the adherence to exercise versus resistance training on cardiovascular fitness in obese sedentary females. Asian J Sports Med 2010; 1: 177–184.
10. Chaudhary S, Kang MK, Sandhu JS. The effects of aerobic versus resistance training on cardiovascular fitness in obese sedentary females. Asian J Sports Med 2010; 1: 177–184.
11. Vigorito C, Giallauria F, Palomba S et al. Beneficial effects of a three-month structured exercise training program on cardiopulmonary functional capacity in young women with polycystic ovary syndrome. J Clin Endocrinol Metab 2007; 92: 1379–1384.
12. Nicolai SPA, Kruidenier LM, Leffers P et al. Supervised exercise versus non-supervised exercise for reducing weight in obese adults. J Sports Med Phys Fitness 2009; 49: 85–90.
13. Williams NH, Hendry M, France B, Lewis R, Wilkinson C. Effectiveness of exercise-referral schemes to promote physical activity in adults: systematic review. Br J Gen Pract 2007; 57: 979–986.
14. Okay DM, Jackson PV, Marcinkiewicz M, Papino MN. Exercise and obesity. Prim Care 2009; 36: 379–393.
15. ACSM. American College of Sports medicines (ACSM) Resource Manual for Guidelines for Exercise Testing and Prescription, Sixth edn. Lippincott Williams & Wilkins: Baltimore, MD, 2010.
16. Hansen D, Dendale P, Berger J, van Loon LJ, Meeusen R. The effects of exercise training on fat-mass loss in obese patients during energy intake restriction. Sports Med 2007; 37: 31–46.
17. Park SK, Park JH, Kwon YC et al. The effect of combined aerobic and resistance exercise training on abdominal fat in obese middle-aged women. J Physiol Anthropol Appl Hum Sci 2003; 22: 129–135.
18. Brown J, Brechue W. Metabolic, Cardiovascular, Pulmonary, and Endocrine Responses and Adaptation to Resistance Exercise. Human Kinetics: Campaign, 2001.
19. Sarsan A, Ardiz F, Ozgen M, Topuz O, Sermey Z. The effects of aerobic and resistance exercises in obese women. Clin Rehabil 2006; 20: 773–782.
20. Kraemer WJ, Ratamess NA, French DN. Resistance training for health and performance. Curr Sports Med Rep 2002; 1: 165–171.
21. Rippe JM, McInnis KJ, Melanson KJ. Physician involvement in the management of obesity as a primary medical condition. Obes Res 2001; 9: 3025–3118.
22. Belanger M, Boulay P. Effect of an aerobic exercise training program on resting metabolic rate in chronically [beta]-adrenergic blocked hypertensive patients. J Cardiopulm Rehabil Prev 2005; 25: 354–360.
23. Ballard DL, Keesey RE. A meta-analysis of the factors affecting exercise-induced changes in body mass, fat mass and fat-free mass in males and females. Int J Obes 1991; 15: 717–726.
24. Strasser B, Schobersberger W. Evidence for resistance training as a treatment therapy in obesity. J Obes 2011; 2011: 1–9.
25. Woolf-May K, Scott A, Kearney E, Jones D. The effect of 24 weeks of moderate intensity walking upon metabolic syndrome risk factors in previously sedentary/low active men. J Exerc Physiol 2011; 14: 145–156.
26. Singh SJ, Morgan MD, Scott S, Walters D, Hardman AE. Development of a shuttle walking test of disability in patients with chronic airways obstruction. Thorax 1992; 47: 1019–1024.
27. Lewis ME, Newall C, Townend JN, Hill SL, Bonser RS. Incremental shuttle walk test in the assessment of patients for heart transplantation. Heart 2001; 86: 183–187.
28. Revill SM, Morgan MD, Singh SJ, Williams J, Hardman AE. The endurance shuttle walk: a new field test for the assessment of endurance capacity in chronic obstructive pulmonary disease. Thorax 1999; 54: 213–222.
29. Bandura A. Guide for constructing self-efficacy scales. In: Pajares F, Urdan T (eds). Self-efficacy Beliefs of Adolescents. Information Age Publishing: Charlotte, NC, 2006, pp. 307–337.
30. Ryan R, Frederick C, Lepes D, Rubio N, Sheldon K. Intrinsic motivation and exercise adherence. Int J Sport Psychol 1997; 28: 335–344.
31. Snaith R. The hospital anxiety and depression scale. Health Qual Life Outcomes 2003; 1: 1–4.
32. Pallant J (ed.). SPSS Survival Manual, 4th edn. The McGraw-Hill Companies: Berkshire, 2010.
33. Field A (ed.). Discovering Statistics Using SPSS (Introducing Statistical Methods), 3rd edn. SAGE Publications LTD: London, 2009.
34. Pavlou KN, Krey S, Steffee WP. Exercise as an adjunct to weight loss and maintenance in moderately obese subjects. Am J Clin Nutr 1989; 49: 1115–1123.
35. Valtonen A, Pöyhönen T, Sipilä S, Heinonen A. Effects of aquatic resistance training on mobility limitation and lower-limb impairments after knee replacement. Arch Phys Med Rehabil 2010; 91: 833–839.
36. De Mello Meirelles C, Sergio Chagas Gomes P. Acute effects of resistance exercise on energy expenditure: revisiting the impact of the training variables. Rev Bras Med Esporte 2004; 10: 131–138.
37. Newman AB, Simonsick EM, Naydeck BL et al. Association of long-distance corridor walk performance with mortality, cardiovascular disease, mobility limitation, and disability. JAMA 2006; 295: 2018–2026.
38. Annesi JJ. Goal-setting protocol in adherence to exercise by adults. Percept Mot Skills 2002; 94: 453–458.
39. Biddle SJH, Mutrie N. Psychology of Physical activity Determinants, Well-Being & Interventions. Taylor & Francis: Abingdon, 2008.

© 2014 The Authors
Clinical Obesity © 2014 World Obesity. clinical obesity 4, 220–227