FPGA controlled five level soft switching full bridge DC-DC converter for high power applications

J. Sivavara Prasad1*, Y.P. Obulesh2 and Ch. Sai Babu3

Abstract: The objective of the paper is to develop soft switching for the novel five level full bridge DC-DC converter for high power applications. The use of conventional DC-DC converter is likely to decrease the efficiency because of the hard switching, which generates losses during the switch on/off. This paper mainly deals with the development of zero voltage and zero current switching for five level full bridge DC-DC converter. The proposed topology will provide five level DC-DC output voltage, thereby the size of filter in both input and output sides will get reduced as compared to the existing topologies. By increasing the voltage levels, the stress across each switch and DC filter in the rectifier side will get reduced. Only eight switches are used for generating five levels in the proposed converter topology which reduces cost and also total switching losses, thus improves the overall efficiency of a system and it is very much suitable for high power DC-DC applications. The control signals for the proposed converter are developed from the Field Programmable Gate Array. The simulation and experimental results are presented for prototype model of 500 W.

Keywords: zero voltage switching (ZVS); zero current switching (ZCS); full bridge DC-DC converter; field programmable gate array; soft switching converters

ABOUT THE AUTHORS
J. Sivavara Prasad received the BTech from JNT University, Hyderabad (Electrical and Electronics Engineering), MTech in Power and Industrial Drives from JNTU, Anantapur and pursuing PhD in Switched mode resonant converter from JNTU, Kakinada. Currently he is working as an Associate Professor in Department of EEE in LBRCE, Mylavaram. He has published several National and International Journals and Conferences. His area of interest is Power Electronics and Drives, HVDC Converter Reliability.

Y.P. Obulesh is working as a Dean of Evaluation in KLU, Vijayawada. His area of interest is Power Electronics and Drives, Power System Reliability, HVDC Converter Reliability, Optimization of Electrical Systems and Real Time Energy Management.

Ch. Sai Babu is working as a Professor in Department of EEE in JNTUK, Kakinada. He has published several National and International Journals and Conferences. His area of interest is Power Electronics and Drives, Power System Reliability, HVDC Converter Reliability, Optimization of Electrical Systems and Real Time Energy Management.

PUBLIC INTEREST STATEMENT
This paper consists of the design, development, and verification of a two-stage converter for high power DC-DC applications. The first stage consists of soft-switching interleaved DC-AC converter and it converts battery input to 1-phase five levels AC voltage. The second stage is a rectifier which provides required DC voltage for high power load applications. The proposed DC-DC converter will provide electrical isolation between battery and load; thereby the changes made in the load may not affect the battery due to isolation. This scheme provides low switching and conduction losses and high efficiency. Because of 1-phase five levels inverter voltage in DC-AC stage, the size of filter in the input and load side will be reduced to a greater value.
1. Introduction

A Three-Level Full-Bridge Zero-Voltage Zero-Current Switching Converter with a Simplified Switching Scheme (Carr, Rowden, & Balda, 2009) is having eight control switches for generating three levels. The size of the filter elements in this paper is high and more number of switches are required for three level operation, hence the cost is high. The Three-Level Combined DC-DC Converter without Added Primary Clamping Devices contains six control switches for three level dc-dc converter operation (Carr et al., 2009; Chen & Ruan, 2008; dos Santos Garcia Giacomini, Scholtz, & Mezaroba, 2008; Lin & Chao, 2013; Lin, Huang, & Wan, 2008; Mousavi, Das, & Moschopoulos, 2012; Nabae, Takahashi, & Akagi, 1981; Shi & Yang, 2014, 2016; Tolbert & Peng, 2000; Wu, Zhang, Ye, & Qian, 2008).

The controlled switches such as IGBTs and MOSFETs are having many advantages in terms of speed of response and system size but these switches are unable to operate at high voltages. The advantages of these smaller size, faster responses, different multi level topologies are been proposed (Choi, Cho, & Cho, 1991; Lai & Peng, 1996; Loh, Holmes, Fukuta, & Lipo, 2003; Wang, Su, Jiang, & Lin, 2008; Zhang, Peng, & Qian, 2004) in order to reduce the voltage across each switching device. The different multi level topologies are flying capacitor, diode clamped and cascaded converters are providing for division of voltage across the switching devices (Loh et al., 2003). During the switching instants, the losses in the switching converter will become increased by increasing the switching frequency. The soft switching converters are proposed in order to reduce the switching losses.

The multi level inverter (Loh et al., 2003) is used to produce the stress across each switch. But this converter is not operating under soft switching scheme. Hence, the switching losses are high and efficiency becomes poor. To overcome all these problems, the proposed five level full bridge zero voltage current switching dc-dc converter is suitable.

In this paper, a soft switching technique has been proposed for five level full bridge converter which reduces total switching losses. The proposed work has been implemented effectively and it is verified through simulation and experimentation results. Because of five level operation, the size of dc filter elements are reduced to a greater value and this topology is very much suitable for high power applications. As voltage levels increases, the stress across a switch and filter size in the dc rectifier gets reduced. Only eight switches are used in proposed converter topology which reduces cost and also total switching losses, thus improves the overall efficiency of a system. The control signals for the proposed converter are developed from the Field Programmable Gate Array.
2. Five level full bridge ZVZCS DC-DC converter

Figure 1 shows the circuit diagram of the proposed five level full bridge DC-DC converter topology. Table 1 gives the proposed switching states and the corresponding output of the transformer for each switching state. The switching frequency is fixed and each switch is ON for exactly half a switching cycle and turn on and turn off of each switch is controlled, so that the DC-bus voltage is applied across the transformer for the desired time. If the switches S1, S4, S5 and S8 are operating or if the switches S2, S3, S6 and S7 are operating then the transformer primary voltage becomes zero. If the switches S1, S2, S5 and S6 are operating then the transformer primary voltage becomes \(V_{DC} \). If the switches S3, S4, S7 and S8 are operating then the transformer primary voltage becomes \(-V_{DC}\). If the switches S1, S5 and S6 are operating or if the switches S2, S5 and S6 are operating then the transformer primary voltage becomes \(V_{DC}/2 \). If the switches S3, S7 and S8 are operating or if the switches S4, S7 and S8 are operating then the transformer primary voltage becomes \(-V_{DC}/2\). Here, the switches S1–S8 are operating under ZVS switching during the time of turn-off and ZCS during the time of turn-on. The filter elements \(L_f \) and \(C_f \) are used to remove the ripple content in the rectifier output voltage.

If the converter is in state 3, then the average voltage at the rectifier will be

\[
V_0 = \frac{D \times V_{DC}}{n}
\]

(1)

where \(n \) is the turn’s ratio of the transformer. This provides the desired DC voltage conversion and shows that the system operates as a transformer zed buck converter. This topology is an advantage compared to other 3 L FB soft-switching topologies which require complex switching control schemes, such as double-phase-shifted control. The proposed converter is operating in three, four and five level DC-DC operation.

Table 2 shows the comparison of proposed five level DC-DC converter with conventional DC-DC converter. It is clear that, the number of switches in the proposed converter is less than the conventional converter (i.e. cascaded). So, the efficiency of the proposed converter is high and the size of DC side filter is less as compared to conventional.

Type of element	Cascaded multi level converter (Loh et al., 2003)	Proposed
Main switches	\((m-1) \times 2\)	\((m-1) \times 2\)
Main diodes	\((m-1) \times 2\)	\((m-1) \times 2\)
Gate-Amp	\((m-1) \times 2\)	\(m\)
Switching losses	High	Low
DC-Link capacitors	Isolated	Bulk capacitors
3. Operation modes
The operational waveforms of the proposed DC-DC converter are shown in Figure 2. The various operating modes of the five level converter are as follows.

Figures of 3–14 show the operational modes of the ZVZCS DC-DC Full bridge converter. The following analysis is made based on the assumption that the blocking capacitors are large enough to act as a constant voltage source.

3.1. Operational mode 1: \(t_0 \leq t \leq t_1 \)
At time \(t = t_0 \), the switch \(S_1 \) is turned on under ZVS and \(S_5 \) is turned on under ZCS and transformer primary does not receive any DC voltage as shown in Figure 3. In this instant, the primary voltage of the transformer is zero and hence the DC rectified output voltage becomes zero.
Figure 4. Operation mode 2 ($t_1 \leq t \leq t_2$) of the proposed converter.

Figure 5. Operation mode 2 (before time $t = t_2$) of the proposed converter.

Figure 6. Operation mode 3 ($t_2 \leq t \leq t_3$) of the proposed converter.
3.2. Operational mode 2: $t_1 \leq t < t_2$

At time $t = t_1$, the switch S_8 is turned off under ZVS and switch S_6 is turned on under ZCS and thereby the switch S_8 is turned off automatically under ZCS. The capacitor C_2 starts discharging through the current in the primary winding of the transformer and hence the transformer primary receiving half of the input voltage with positive polarity as shown in Figure 4 and the capacitor C_4 starts charging with the direction of current in the circuit. Before time $t = t_2$, the capacitor C_2 is completely discharged to zero, so its body diode D_2 starts conducting. And it is shown in Figure 5. If the switch S_2 is triggered at this instant then it is operating under ZVS.

Switches S_1 and S_5 can be gated ON under complete at any time after t_2. The duration of this mode is related to the voltage conversion ratio by the duty cycle parameter D, which is given by

$$\frac{V_0}{V_{DC/2}} = \frac{D}{n} = \frac{((t_{ON})(T_{sw}/2))}{n} = \frac{(t_2 - t_1)/(T_{sw}/2)}{n}$$

(2)

Since interval t_1 is so short, t_{ON} is set equal to t_2 and...
Figure 9. Operation mode 5 ($t_4 \leq t \leq t_5$) of the proposed converter.

Figure 10. Operation mode 6 ($t_5 \leq t \leq t_6$) of the proposed converter.

Figure 11. Operation mode 6 (before time $t = t_6$) of the proposed converter.
Figure 12. Operation mode 7 ($t_6 \leq t \leq t_7$) of the proposed converter.

Figure 13. Operation mode 7 ($t_7 \leq t \leq t_8$) of the proposed converter.

Figure 14. Operation mode 8 (before time $t = t_8$) of the proposed converter.
3.3. **Operation mode 3: t_2 \leq t < t_3**

At time $t = t_2$, the switch S_2 is turned on under ZVS along with the conducting switches S_1, S_5, and S_6 then the transformer primary receiving full DC input voltage. The rectifying diode D_1 is operating and the rectified voltage is supplied to DC load as shown in Figure 6.

At $t = t_2$, switches S_1, S_2, S_5, and S_6 being conducting and (V_{DC}) is applied to the primary of the transformer. As a result the primary current rapidly rises from 0 to the reflected output current.

\[I_{P0} = \frac{I_0}{n} \]

where I_{P0} is the peak value of the primary side current going into the transformer, I_0 is the current through L_f, and n is the turns ratio of the transformer. The voltage applied to the transformer leakage inductor L_{lk} during this period is V_{DC}, and the duration of this period is

\[t_2 - 0 = t_1 = \frac{L_{lk} \times I_{P0}}{V_{DC}} \]

The load current is not completely supplied by V_{DC} during this period, so the excess current freewheels through the secondary rectifier diode D_1.

3.4. **Operation mode 4: t_3 \leq t < t_4**

At time $t = t_3$, the switches S_2, S_5, and S_6 are operating then the transformer primary receiving half of the input voltage and simultaneously the switch S_1 is turned off under ZVS. The rectifying diode D_1 is operating and the rectified voltage is supplied to DC load. The capacitor C_1 starts charging and capacitor C_3 starts discharging as shown in Figure 7. Assume the width of time between t_3 and t_4 is long enough to make discharging of capacitor C_3 to zero and correspondingly its body diode of D_3 is on as shown in Figure 8.

3.5. **Operation mode 5: t_4 \leq t < t_5**

At time $t = t_4$, the switch S_3 is turned on under ZVS and switch S_7 is turned on under ZCS whereas the switch S_5 is turned off under ZCS and it is shown in Figure 9. So, the transformer primary receiving zero voltage and correspondingly the rectified output voltage becomes zero.

3.6. **Operation mode 6: t_5 \leq t < t_6**

At time $t = t_5$, the switch S_3 is turned on under ZCS then the transformer primary receiving half of the input voltage in the reverse direction and simultaneously the switch S_3 is tuned off under ZVS and switch S_6 is turned off automatically under ZCS as shown in Figure 10. The rectifying diode D_2 is operating and the rectified voltage is supplied to DC load. The capacitor C_4 starts charging and capacitor C_3 starts discharging. Before time $t = t_5$, the capacitor C_3 is completely discharged to zero and correspondingly the body diode of switch S_3 is on and it shown in Figure 11.

3.7. **Operation mode 7: t_6 \leq t < t_7**

At time $t = t_6$, the switch S_4 is turned on under ZVS then the transformer primary receiving full DC input voltage in the reverse direction as shown in Figure 12. The rectifying diode D_2 is operating and the rectified voltage is supplied to DC load.

3.8. **Operation mode 8: t_7 \leq t < t_8**

At time $t = t_7$, the switch S_4, S_7, and S_8 are operating then the transformer primary receiving half of the input voltage in the reverse direction and simultaneously the switch S_4 is tuned off under ZVS as

\[D = \frac{t_2}{T_{sw}/2} \]
shown in Figure 13. The rectifying diode D_2 is operating and the rectified voltage is supplied to DC load. The capacitor C_1 starts charging and capacitor C_3 starts discharging. Before time $t = t_p$, the capacitor C_1 is completely discharged to zero and correspondingly the body diode of switch S_1 is on.

4. Design equations

The design of the converter involves determining values for C_{DC1}, C_{DC2}, C_1, C_2, C_3, C_4, L_{lk}, and the output filter. The output filter should be large enough to maintain the load current for the entire switching period T_{sw} while the transformer leakage inductance L_{lk} should be minimized in order to minimize the reset time. Beyond these restrictions, transformer and filter design principles also apply.

Capacitors C_{DC1} and C_{DC2} are essential for the proper voltage division across the switching devices. Consequently, they should be selected with identical values using tight tolerance parts. In practice, the DC-bus capacitors are required to maintain the voltage through changes in the input voltage V_{DC} using voltage spikes caused by parasitic inductances, so a large value may be required. Smaller capacitors with high-frequency response may be placed in parallel with the bulk DC-bus capacitors in order to handle high-frequency ripple due to parasitic components.

Figure 2 shows that they conduct during mode 3 and its mirror mode 8. These capacitors must maintain a near-constant voltage during the entire cycle; thus, they should be selected so that they do not experience more than a 5% voltage change during mode 3. Each capacitor conducts $I_{P0}/2$ during mode 3, and its nominal voltage is $V_{DC}/2$.

The size of the parallel capacitors, C_r, is determined by the minimum requirement to achieve ZVS during turn-OFF, which requires that the parallel capacitors must be large enough to hold the voltage close to zero during the current fall-time of the device t_{fi}, which can be determined from the data sheet. Once this parameter has been determined, C_r can be calculated as follows

$$C_r = \frac{t_{fi} \times I_{P0}}{V_{DC}} \quad (6)$$

A large value of V_{stop} is desirable in order to quickly reset the primary current during mode 4, but for the “OFF” devices, is seen as $(V_{DC} + V_{stop})/2$ at the end of mode 2. Thus, the value of V_{stop} should be limited to one-fifth the DC-bus voltage in order to limit the voltage stress on the devices. Capacitor C_{b0} is charged from $-V_{stop}$ to $+V_{stop}$ during mode 2 by I_p at a value of I_{P0}.

4.1. Soft-switching range

ZVS is accomplished when I_{so} discharges the parallel capacitors across the leading switches during mode 3. The length of mode 3, referred to as the dead time, limits the maximum duty cycle that can be commanded by the controller, which, in turn, limits the maximum voltage that can be achieved on the secondary and the maximum power that can be delivered to the load. Since ZVS, and hence the dead time occurs twice per half cycle, the maximum duty cycle is

$$D_{max} = 1 - 2 \times \frac{t_{dead}}{T_{sw}/2} \quad (7)$$

Once the dead time is fixed, there is a minimum value of the load current under which ZVS no longer occurs since the leading switches will be switched before the parallel capacitors are completely discharged. This minimum load current is given by

$$I_{P0,min} = C_r \times \frac{V_{DC}}{t_{dead}} \quad (8)$$

The dead time must not only be selected to maximize the load current range for which ZVS occurs but must also minimize the reduction of the duty cycle. The precise value of the dead time will vary.
depending upon the needs of the application, i.e. whether the application will require high duty cycles or a large soft-switching range.

ZCS is accomplished when the blocking capacitor voltage drives the primary current to zero before the state change occurs at \(T_{sw}/2 \). The current begins to be reset at \(t_2 = D \times T_{sw}/2 \), so the total time available to reset the current is

\[
T_{reset,\text{max}} = (1 - D) \times \frac{T_{sw}}{2}
\]

(9)

ZCS will be achieved if the reset period from (6) is less than \(T_{reset,\text{max}} \), and using the value for \(V_{cb0} \) from (12)

\[
\frac{4 \times f_{sw} \times C_{DC1} \times L_{ik}}{D} \leq (1 - D) \times \frac{T_{sw}}{2}
\]

(10)

It can be noted from this equation that achieving ZCS is independent of the load current, though the voltage across \(C_{cb0} \) may become very large if the primary current exceeds the maximum load current used in (6) to calculate the value of the blocking capacitor. There is a limit to the range of duty cycles for which ZCS occurs, given by

\[
1 - \sqrt{1 - 32 \times f_{sw}^2 \times C_{DC1} \times L_{ik}} \leq D \leq 1 + \sqrt{1 - 32 \times f_{sw}^2 \times C_{DC1} \times L_{ik}}
\]

(11)

5. Simulation results of the five level ZVZCS DC-DC converter

The parameters of the proposed converter are shown in the Table 3. The gate signals of the proposed converter are shown in Figure 15. In the proposed converter, there are total of five control switches. For getting positive output, the diagonal switches (\(S_1 \) and \(S_2 \)) will operate along with switch \(S_5 \) and input voltage is applied to primary of the transformer. Similarly for getting the negative output, the other diagonal switches (\(S_3 \) and \(S_4 \)) will operate along with \(S_5 \) and negative voltage is applied to the primary of the transformer. All the control switches in the proposed converter are operating under soft switching.

The control signals for the switches have been developed and as shown in Figure 15. The dead band is created between the signals \(S_1 \), \(S_5 \), \(S_3 \), and \(S_4 \) to achieve the ZVS condition.

ZVS is accomplished when primary current discharges the parallel capacitors across the leading switches during dead band time.

\[
I_{P0,\text{min}} = C_s \times \frac{V_{DC}}{t_{\text{dead}}}
\]

(12)

S. No.	Parameter	Range
1	DC input voltage	200 V
2	DC output voltage	24 V
3	Switching frequency	10 KHz
4	Load current	(1–20) A
5	DC bus capacitance	100 mF
6	Parasitic capacitance	1 PF
7	Filter inductor	10 mH
8	Filter capacitor	5 uF
Figure 15. Gate pulses for five level DC-DC converter. (a) Gate pulse of switch S_1 and S_2, (b) Gate pulse of switch S_3 and S_4, (c) Gate pulse of switch S_5 and S_6, and (d) Gate pulse of switch S_7 and S_8.

Figure 15 shows the control pulses for the proposed five level DC-DC converter. Suppose at the time $t = 2.6$ ms, the pulse is given to switch S_2 then the voltage across the switch is zero. Similarly at this time, the pulse for switch S_3 is off then the voltage across the switch is equal to the supply voltage. So, the Switches S_3 and S_2 are receiving inverted pulses. But switch S_1 is ON at $t = 2.62$ ms and is OFF at $t = 2.63$ ms. The normal switches S_1–S_4 are operating under frequency (f) but the auxiliary switch S_5 is operating under frequency ($f/4$).

Figure 16. Transformer primary and secondary voltages.
Figure 16 shows the transformer primary and secondary voltages of the converter circuit. If switches S_1, S_2 are in conduction then the transformer primary voltage is V_{DC} from 2.03 to 2.05 ms. If switches S_1, S_5 are in conduction then transformer primary voltage becomes $V_{DC}/2$ from 2.01 to 2.03 ms. If switches S_3, S_4 are in conduction then transformer primary voltage is $-V_{DC}$ from 2.18 to 2.2 ms. If switches S_3, S_5 are in conduction then transformer primary voltage is $-V_{DC}/2$ from 2.16 to 2.18 ms. If t switches S_1, S_3 or S_2, S_4 are in conduction then the transformer primary voltage becomes zero.

Figure 17 shows the DC output voltage of five level DC-DC converter. If the 200 V DC input voltage is given to five level DC-DC converter then the transformer primary gets five levels these five levels are step down to 24 V by using step down transformer. The output voltage of the transformer is rectified by using diode bridge rectifier and this rectified voltage is filtered by using L-C filter and finally get the DC output voltage of 24 V across load.

Figure 18. (a) Gate pulse and voltage across switch S_3 from OFF to ON and (b) Gate pulse and voltage across switch S_3 from ON to OFF.
Figure 18(a and b) shows the gate pulse and voltage across S_3. If the switch S_3 is on at time $t = 2.06 \text{ ms}$, the voltage across the switch is zero before time $t = 2.06 \text{ ms}$. If the switch S_3 is off at time $t = 3.3 \text{ ms}$, the voltage across the switch is reached zero before time $t = 3.3 \text{ ms}$. So, it indicates that the switch S_3 is operating under ZVS condition. In a similar manner, the switches S_1, S_2, and S_4 are operating under ZVS.

Figure 19(a) and (b) shows the gate pulse and current through switch S_5. If the switch S_5 is on at time $t = 2.77 \text{ ms}$, the current through the switch is zero before time $t = 2.77 \text{ ms}$. If the switch S_5 is off at time $t = 2.79 \text{ ms}$, the current through the switch is reached zero before time $t = 2.79 \text{ ms}$. So, it indicates that the switch S_2 is operating under ZCS condition. In a similar manner, the switches S_6, S_7, and S_8 are operating under ZVS.

Figure 20. Efficiency for different load currents.
5.1. Five level- with soft switching

Table 4 shows the efficiency and output power of proposed converter with soft switching. For suppose a load current of 10 Amps, the efficiency of the converter is 89.2%. With soft switching. So, if the converter is operating under soft switching, the switching losses are decreases and efficiency is increased and it is shown in Figure 20 for different load currents. The Table 5 shows the values of filter elements for different voltage levels of the proposed converter. As the voltage levels increased then the size of filter elements will get reduced.

6. Hardware implementation of FPGA based control of ZVS DC-DC converter

Figure 21 shows the hardware implementation of the FPGA controlled zero voltage and zero current switching five level DC-DC converter. The hardware kit consists of the following parts:

- FPGA kit to generate the control signals.
- Driver Circuit to strengthen the control pulses of FPGA kit.

| Table 4. Efficiency of proposed converter for various load currents |
|-----------------|-----------------|-----------------|-----------------|
S. No.	Load current (Amps)	Output power (Watts)	Input power (Watts)	Efficiency (%)
1	3	80.55	86.9	92.7
2	5	134.6	144.3	93.3
3	10	261.8	278.0	94.2
4	16	420	441.7	95.1
5	20	523.3	548.0	95.5

| Table 5. Filter elements for different voltage levels |
|-----------------|-----------------|
S. No.	Inverter level	Selection of filter elements	
1	3	L (mH)	C (uF)
		25	100
2	4	20	50
3	5	10	5
Figure 22. Gate pulses for the proposed DC-DC converter (voltage of 10 V/div and time of 25 μS/div).

(a)

(b)

(c)

(d)

Figure 23. Transformer primary voltage (voltage of 100 V/div and time of 25 μS/div).
6.1. Hardware results

Figure 22 shows the control pulses for inverter circuit with 10 KHz frequency. These pulses are getting from driver circuit. The driver circuit is used to amplify the pulse coming from FPGA controller and also, the driver circuit will provide isolation between low power and high power terminals of the switch.

Figures 23 and 24 show the transformer primary and secondary five level voltages of the proposed DC-DC converter and the levels are $+V_{dc}$, $+V_{c/2}$, zero and $-V_{dc}$ and $-V_{c/2}$.

Figure 25 shows the voltage across switch S_3. Channel 2 shows the pulse given to the switch and channel 1 represents the voltage across drain and source terminals of the switch. From Figure 26, it

- 12 and 5 V DC power supply circuits.
- Power circuit.
is evident that before turning-ON the switch S_3, voltage across it becomes zero. So, the switches are turned on under ZVS condition. Figure 13 (ii) shows the condition for ZVS of the switch S_3 during turn on to off period. The channel 2 indicates gate pulse and channel 1 indicates the voltage between drain and source terminals of switch.

The rectifier output voltage is fed to the capacitor filter. The output of the filter is pure DC as shown in Figure 27 and it is equal to 24 V for arc welding applications.

7. Conclusion

This paper proposed a five level full bridge zero voltage and zero current switching DC-DC converter scheme in which all the main switches are operating under soft switching. Hence, the switching losses are reduced. The proposed topology has been suitable for three, four and five level operation with only eight control switches. By increasing the voltage levels, the size of the filter elements and voltage stress across switches were reduced. The control signals for the proposed converter was generating from field programmable gate array. The proposed work has been implemented and it was verified through simulation and experimentation results. Hence, there is scope for developing soft switching mechanism for various multi level topologies also. This topology is very much suitable for high power DC-DC applications.

Funding

The authors received no direct funding for this research.

Author details

J. Sivavara Prasad1
E-mail: jonapatrisivavara@gmail.com
Y.P. Obulesh2
E-mail: ypobulesh1@gmail.com
Ch. Sai Babu3
E-mail: chs_eee1@yahoo.co.in

1 Department of Electrical and Electronics Engineering, Lakireddy Bali Reddy College of Engineering, Mylavaram, India.
2 K L University, Vijayawada, India.
3 Department of Electrical and Electronics Engineering, J N Tech. University, Kakinada, India.

Citation information

Cite this article as: FPGA controlled five level soft switching full bridge DC-DC converter for high power applications, J. Sivavara Prasad, Y.P. Obulesh & Ch. Sai Babu, Cogent Engineering (2016), 3: 1253933.

References

Carr, J. A., Rowden, B., & Baldo, J. C. (2009, February). A three-level full-bridge zero-voltage zero-current switching converter with a simplified switching scheme. IEEE Transactions on Power Electronics, 24, 329–338. http://dx.doi.org/10.1109/TPEL.2008.2007211

Chen, W., & Ruan, X. (2008, February). Zero-voltage-switching PWM hybrid full-bridge three-level converter with secondary-voltage clamping scheme. IEEE Transactions on Industrial Electronics, 55, 644–654. http://dx.doi.org/10.1109/TIE.2007.907676

Choi, N. S., Cho, J. G., & Cho, G. H. (1991, June). A general circuit topology of multilevel inverter. Power Electronic Specialists Conference, 96–103.

dos Santos Garcia Giacomini, P., Scholtz, J. S., & Mezaroba, M. (2008, October). Step-up/step-down DC–DC ZVS PWM converter with active clamping. IEEE Transactions on Industrial Electronics, 55, 3635–3643.

Lai, J. S., & Peng, F. Z. (1996, May–June). Multilevel converters—A new breed of power converters. IEEE Transactions on Industry Applications, 32, 509–517.

Lin, B. R., & Chao, C. H. (2013, July). Analysis of interleaved three level ZVS converter with series connected transformers. IEEE Transactions on Power Electronics, 28, 3088–3099.

Lin, B.-R., Huang, C.-L., & Wan, J.-F. (2008, April). Analysis, design, and implementation of a parallel ZVS converter. IEEE Transactions on Industrial Electronics, 55, 1586–1594.

Loh, P. C., Holmes, D. F., Fukuta, Y., & Lipo, T. A. (2003, September–October). Reduced common-mode modulation strategies for cascaded multilevel inverters. IEEE Transactions on Industry Applications, 39, 1386–1395.

Mousavi, A., Das, P., & Moschopoulos, G. (2012, March). A comparative study of a new ZCS DC-DC full bridge boost converter with a ZVS active clamp converter. IEEE Transactions on Power Electronics, 27, 1347–1358. http://dx.doi.org/10.1109/TPEL.2011.2181233

Nobae, A., Takahashi, I., & Akagi, H. (1981, September–October). A new neutral point clamped PWM inverter. IEEE Transactions on Industry Applications, 17, 518–523.

Shi, Y., & Yang, X. (2014, October). Wide-range soft-switching PWM three-level combined DC–DC converter without added primary clamping devices. IEEE Transactions on Power Electronics, 29, 5157–5171.

Shi, Y., & Yang, X. (2016, May). Wide load range ZVS three-level DC–DC converter: Four primary switches, capacitor clamped, two secondary switches, and smaller output filter volume. IEEE Transactions on Power Electronics, 31, 3431–3443. http://dx.doi.org/10.1109/TPEL.2015.2464093

Tolbert, L. M., & Peng, F. Z. (2000). Multilevel converters as a utility interface for renewable energy systems. Power Engineering Society Summer Meeting, 2, 1271–1274.

Wang, C.-M., Su, C.-H., Jiang, M.-C., & Lin, Y.-C. (2008, February). A ZVS-PWM single-phase inverter using a simple ZVS–PWM commutation cell. IEEE Transactions on Industrial Electronics, 55, 758–766. http://dx.doi.org/10.1109/TIE.2007.919125

Wu, X., Zhang, J., Ye, X., & Qian, Z. (2008, February). Analysis and derivations for a family of ZVS converter based on a new active clamp ZVS cell. IEEE Transactions on Industrial Electronics, 55, 773–781. http://dx.doi.org/10.1109/TIE.2007.907675

Zhang, F., Peng, F. Z., & Qian, Z. (2004). Study of the multilevel converters in DC-DC applications. IEEE Annual Power Electronics Specialists Conference (PESC ’04), 2, 1702–1706.
