Conservation of stored food using plant’s extracts. Effect of oregano (Origanum vulgarius) essential oils on the reproduction and development of flour moth (Ephestia kuehniella)

Taibi Faiza1, Boumendjel Mahieddine2, Zaafour Moncef3, Sekiou Omar2, Khaldi Taha1, Delimi Amel1, Abdessmad Safa1, Rebani Hassiba1, Chnouga Hanène1, Siakhène Nacira1, Boumendjel Amel1, Messarah Mahfoud2

1 Laboratory of Biodiversity and Ecosystems Pollution, Chadli Bendjedid University, El-Tarf, Algeria
2 Laboratory of Biochemistry and Environmental Toxicology, Badji Mokhtar Annaba University, Algeria
3 Department of Biology, Faculty of Sciences, Badji Mokhtar Annaba University, Algeria

Correspondence to: taibi.faiza@yahoo.fr
Received October 26, 2017; Accepted July 5, 2018; Published July 30, 2018

Abstract: In the search for effective methods of biological control of stored products insect-pests, the essential oil of Origanum vulgarius was extracted using Clevenger apparatus and tested on reproduction and mortality of flour moth Ephestia kuehniella. Bio-insecticide works with a double action mechanism; administered by inhalation in pupae, essential oil affects their pupal development. It also disrupts the reproduction of exuviated adults by extending the preoviposition period and reducing the period of egg laying and fecundity because fecundated females cannot live more than four days compared to control group. Moreover, the essential oil administered by inhalation in adults causes a significant mortality rate compared to control group by reducing their lifespan. A repellent effect against larvae and adults of this pest was noticed in this work. This allowed us ranking this oil as "moderately repulsive".

Key words: Bio-insecticide; Essential oil; Pests; Origanum vulgarius; Ephestia kuehniella.

Introduction

Cereals and their derivatives which are economically important in Algeria are the main source of protein in many developing countries. However, losses of this type of food during storage is estimated at 100 million tons of which 13 million are originally caused by insects (1). Storage enemies include several species among which are mentioned insect pests of stored products; they are very numerous and diverse mainly in Africa (2). Lepidoptera family gathers moths such as cacao moth, tobacco moth and rice moth, raisin moth, dried fruits moth, seeds moth and flour moth. These insects cause significant losses and generate high costs for food industry. At present, the widespread use of pesticides has led to the appearance of some forms of resistance in treated insects (3). The success of this operation remains subject to several factors, among which should be mentioned: the careful choice of the pesticide, the intervention period and the quality of application (4). However several toxicology researches show the impact of these dangerous products on the human health and the environment (4, 5), which led the World Health Organization (WHO) to prohibit the use of these chemical insecticides. Therefore, several other integrated control methods have been developed such as the biological control with natural active and clean substances for a safer control (6). The International Federation of Agriculture announced that "Organic agriculture is a production system that sustains the health of soils, ecosystems and people. It relies on ecological processes, biodiversity and cycles adapted to local conditions, rather than the use of inputs with adverse effects. Organic agriculture combines tradition, innovation and science to benefit the shared environment and promote fair relationships and a good quality of life for all involved". Numerous studies are currently being developed to isolate plants from secondary substances with insecticidal activity whether repellent or antifeedant vis-à-vis insects. Their identification is done by chromatography or mass spectroscopy (?). Essential oils extracted from plants are used in Algerian folk medicine for their biological activities: antioxidant, anti-diabetic, antibacterial, and also insecticidal activities (8, 9, 10, 11). They are considered as a real bank of chemical molecules represented by the allelochemical substances that they contain (12, 13). The insecticidal effect of the essential oils by contact, by ingestion and by fumigation has been effectively demonstrated against stored products pests (14). Nadio et al. (15) have assessed the insecticidal & repellent potential of Ocinum sanctum essential oil by contact on various larval stages and adults of Dysdercus voelkeri. The results of this study have shown that this essential oil has interesting insecticidal & repellent properties against this pest at all its stages of development. In 2004, El Idriss et al. (16) have concluded that D. ambrosioides essential oil has highly shortened the survival of S. oryzae adults by fumigation without affecting the germination capacity of the treated seeds of durum wheat. In 2012, the work of Ayvaz et al. (17) estimated the insecticidal activity of essential oils of different plants against three insects of the stored products. This work has shown that the Turkish Oregano was very effective against P. interpunctella and E. kuehniella with a 100% mortality rate obtained after 24 hours.
at 9 and 25 μl / l of air for P. interpunctella et E. kuehniella respectively. Other works were able to estimate the toxicity of Cymbopogon schoenanthus essential oil evaluated on Aphis gossypii et compare its effect with Acetamiprid which is an insecticide commonly used by farmers (used in experimental conditions as a positive control). Finding from this study have clearly demonstrated C. schoenanthus essential oil turned out lightly less toxic whereas the repulsion tests indicated a very repellent (PR=84,6%) of piperitone component present at 66,40% in the tested essential oil (18). Moreover, Artemisia herba alba was also tested on E. kuehniella adults, this oil features an insecticidal activity and induce in females insects a very significant reduction of the rate of egg laying and hatching laid by treated females (19).

Materials and Methods

Presentation of the insect and its breeding
Breeding is conducted in the laboratory in an oven under optimum development conditions at a temperature of 27°C and a relative humidity of about 70% in the dark. Adults were placed in glass jars covered with a tulle piece maintained by elastic containing flour.

Preparation of the plant and extraction of essential oils
The used biomass consists of the aerial part of the selected plant Origanum vulgaris which has been harvested in April in the region of Seraïdi located at 15km from the wilaya of Annaba and at about 900m altitude. The plants were identified by Professor Moncef ZAAF-OUR from the department of Biology at Badji Mokhtar Annaba University. The extraction of oregano essential oils was carried out in the laboratory according to the AFNOR (French Agency for Standardization) and ISO (International Standardization Organization) standards.

A sample of 100 g of dried leaves under shelter at room temperature (25°C±2°C ; HR 80%) served for the extraction of essential oil by steam distillation during one (01) hour using a Clevenger apparatus. The extracted raw essential oil has been kept in refrigerator at 4°C to estimate its biopesticide effect. Hence, a dose of the essential oil was sprayed over a pleated paper placed in a tube containing 30 g of flour. The tube was infested with ten (10) newly exuviated adults (males and females). Seven (07) repetitions are needed for the statistical processing.

Pupal development Period
The pupal development period represents the time in days between the pupal and adult exuviation. To estimate the effect of bio-pesticides over that period, the oregano essential oils were sprayed on a pleated paper on which newly exuviated pupae were filed. The pleated paper of control group has not undergone any treatment. The pupal dating is made a day after the exuviation.

Reproduction and fecundity of females
Once an adult is exuviated, a couple is placed in a tube containing 30g of flour with a paper pleated and sprayed with 1μl, 3μl or 5μl of the treatment. Several parameters of reproductive potential are estimated such as the preoviposition and oviposition periods and female fecundity. Control group has not received any treatment.

Estimation of essential oil effect on the insects’ longevity
The oregano essential oil was administered to insects by saturating their environment (inhalation) in order to estimate its biopesticide effect. Hence, a dose of the essential oil was sprayed over a pleated paper placed in a tube containing 30 g of flour. The tube was infested with ten (10) newly exuviated adults (males and females). Seven (07) repetitions are needed for the statistical processing.

Repellency test
The aim of this test is to study the repellent effects of the oregano essential oil on the Flour Moth pest Ephestia kuehniella. For this, we have established the following protocol:

• Cutting into two equal parts a Canson paper with a diameter equivalent to the Petri dish.
• Spraying a part of the paper with a selected dose of essential oil and keeping the other part of the paper without treatment.
• Gathering, after the solvent is evaporated, the two sides of the paper with adhesive tape.
• Putting within the box ten (10) insectes of the same age (once they are exuviated).
• Counting, after half an hour, the insects found on each side of the paper.

The percentage repellency (PR) is calculated as follows:

$$PR = \frac{NC - NT}{NC + NT \times 100}$$

NC: The number of insects on the untreated part of the paper
NT: The number of insects on the treated part of the paper with different doses of the essential oil (1, 3 or 5μl/ml of acetone)

The average repellence percentage for each dose is calculated. Thus, the oil will be allocated to one of several repulsive classes as ranked by Mc Donald et al. (20).

Statistical treatment
The values of the different tested parameters of the control and the treated groups are expressed as the average ± standard deviation. The Student t test enabled us comparing the pairwise averages of control and treated groups. The Minitab software was used for statistical data processing.
Taibi Faiza et al. Conservation of foods using oregano essential oil as bio-pesticide.

Table 1. The insecticidal effect of the *Origanum vulgaris* essential oil administered by inhalation on the pupal development period (in days) in *Ephestia kuehniella* (m ± s, n = 7 repetitions).

Pupal development (days)	Control	1 µl	3 µl	5 µl
7.57 ± 0.53	10.14 ± 1.00***	10.57 ± 0.53***	10.00 ± 0.57***	

***Very highly significant difference (p≤0.0001).

Figure 1. Insecticidal effect of the *Origanum vulgaris* essential oil administered by inhalation on the pupal development period (in days) in *Ephestia kuehniella*.

Results

The effect of the essential oil administered by inhalation on the reproduction

The obtained results are shown in Table 1. This work shows that the application of the essential oil on the pupae, once they are exuviated, extends their pupal development time compared to the control group. According to this table, it is noticed that the pupal development in the control group lasts about 7.57 ± 0.53 days. This period is extended when introducing the essential oil. Indeed, the Student’s *t* test reveals a highly significant effect of the three (03) tested doses (Figure 1).

Effect of the essential oil administered by inhalation on the preoviposition period

The results obtained after the essential oil is administered by inhalation on pupae show that the preoviposition period is significantly prolonged for both 1 and 3 µl doses (p = 0.00) compared to control group (Table 2, Figure 2).

The Effect of essential oil administered by inhalation on the oviposition period

In female *Ephestia kuehniella* of the control group, oviposition takes about 4.24 ± 0.75 days. However, when treating pupae with the essential oil, the oviposition period is significantly reduced to 2.85 ± 0.30 days with 5 µl dose (Table 3, Figure 3).

Table 2. Insecticidal effect of the *Origanum vulgaris* essential oil administered by inhalation on the preoviposition period in *Ephestia kuehniella* (m ± s, n = 7 repetitions, 1 couple / repetition).

P. Preoviposition	Control	1 µl	3 µl	5 µl
1.00 ± 0.00	1.57 ± 0.53*	1.71 ± 0.50*	1.14 ± 0.37	

*: Significant Difference (p≤0.05).

Table 3. Insecticidal effect of the *Origanum vulgaris* essential oil administered by inhalation on the oviposition period (in days) in *Ephestia kuehniella* (m ± s, n = 7 repetitions, 1 couple/repetitions)

P. Oviposition	Control	1 µl	3 µl	5 µl
4.24 ± 0.75	4.71 ± 0.48	3.42 ± 0.78	2.85 ± 0.30*	

*: Significant Difference (p≤0.05).

Effect of the essential oil administered by inhalation on female fecundity

One day after mating, the females immediately begin laying their eggs during the entire oviposition period. A control female lays averagely 185.60 eggs, while the essential oil administration reduces significantly this number to 59.60 ± 10.10; 56.29 ± 9.95 and 53.30 ± 15.50 respectively with three (03) administered doses (Table 4, Figure 4).

Effect on adult mortality

Control of the mortality was done after dead insects were counted from on day one (01) of treatment until
the death of all individuals; a statistical comparison is achieved between the control and treatment series. In our study, maximum mortality of control series is reached only at the 21st day, while when introducing the highest dose of essential oil, we noticed that all of the insects are dead at the 13th day only. The statistical processing therefore points out a significant reduction of the longevity of the adults treated with the highest dose since the 05th day (Table 5). The observed mortality after applying of oils can be explained by the strong presence within the essential oil of Oregano oxygenates mainly phenolic (Carvacrol).

Insects repellent Effect of the Oregano

The behaviour of insects under test was visible after half an hour of exposure to treatment. The repellency rate against adults and larvae are shown in Table 6. According to the obtained results, this work enabled us classifying the different doses of oregano essential oil that we used according to their percentage repellency (PR).

In adults, the PR is equal to 52.37% with the dose (5µl), which enables us to attribute the rating of "moderately repellent", while 1 µl and 3µl doses are "weakly repulsive" with 23.28 % and 33.32% respectively.

With regard to the larvae, the doses of 3µl and 5µl are rated as "moderately repulsive" while the 1µl dose is rated as "low repulsive" with 23.80% according to results obtained from the experiment.

Days	Control	1 µl	3 µl	5 µl
1	0.00±0.00	0.00±0.00	0.00±0.00	0.00±0.00
2	0.00±0.00	0.00±0.00	0.00±0.00	0.00±0.00
3	0.00±0.00	0.00±0.00	0.00±0.00	0.00±0.00
4	0.00±0.00	0.00±0.00	0.00±0.00	0.00±0.00
5	0.00±0.00	0.00±0.00	0.00±0.00	1.00±1.00
6	0.33±0.57	0.00±0.00	0.66±1.15	1.33±0.57 *
7	0.33±0.57	0.00±0.00	1.33±0.57 *	2.66±1.15 *
8	0.33±0.57	1.33±0.57 *	2.66±1.15 *	3.00±1.00 *
9	0.33±0.57	3.33±0.57 *	2.66±1.15 *	5.33±1.52 *
10	0.33±0.57	3.33±0.57 *	3.33±1.15 *	6.33±2.08*
11	0.33±0.57	3.66±0.57 *	4.33±0.57 *	7.66±0.57**
12	0.33±0.57	4.33±0.57 *	4.66±0.57 **	9.66±0.57 *
13	0.33±0.57	4.66±0.57 *	4.66±0.57 **	10.00±0.00*
14	0.33±0.57	4.66±0.57 *	5.66±1.52 **	10.00±0.00**
15	2.66±0.57	6.00±1.00 *	6.00±1.00 *	10.00±0.00**
16	2.66±0.57	6.33±0.57 *	8.33±1.52 **	10.00±0.00**
17	2.66±0.57	7.33±0.57 *	10.00±0.00**	10.00±0.00**
18	4.33±2.08	8.00±0.00*	10.00±0.00*	10.00±0.00*
19	6.66±1.52	10.00±0.00*	10.00±0.00*	10.00±0.00*
20	9.33±1.15	10.00±0.00	10.00±0.00	10.00±0.00
21	10.00±0.00	10.00±0.00	10.00±0.00	10.00±0.00

*: Significant difference (p≤0.05) **: highly significant difference (p≤0.001).
The main constituents of the (Algerian oregano) plant have been outlined by Aiboud (21). This researcher recorded chiefly 10.71% of Para-cymene and 8.25% of gamma Terpinene (mon terpene), in addition to 66.8 Carvacrol (Phenols). This study also revealed that the insecticidal activity of the essential oil extracted from the oregano tree *Origanum vulgare* on a pest of stored food. The results of the experiment clearly show the disturbance in the reproduction of insects subject to the oregano essential oil by inhalation through extending their pupal development and preoviposition period and reducing the laying period and female fecundity.

Delimi et al., (19, 22) reported that the essential oil extracted from the white wormwood *Artemisia herba alba* is considered a reproduction disruptive insecticide. They showed that the toxic effect varies according to the dose given and by extending the preoviposition duration and the length of pupal development and reducing the laying period.

According Aiboud (21) a very interesting biological activity regarding fertility of *C. maculatus* female was reported. This researcher has noticed a significant decrease in the number of eggs laid on the grains. Moreover, Gbolade and Adebayo (23) have highlighted the activity of essential oils extracted from leaves of *Lippia adenensis*, *Cymbopogon citratus*, *C. odorata* and *Eugenia uniflora* on the Cowpea Weevil (*Callosobruchus maculatus*). They have also noticed that spawning is completely inhibited by the oils of *Eimeria adenensis* and *Cymbopogon citratus*. However, essential oils of *Rosmarinus officinalis* and *Thymus vulgaris* disrupt the reproduction of *Acoscelides obtectus* and *Teneola biselliella* through completely inhibiting fecundity (24).

The obtained results show that different doses of essential oil show a significant effect on the longevity of *Ephestia kuehniella* adults. These results are consistent with the work of several authors. Indeed, the essential oils of *Mentha pulegium* and *Mentha rotundifolia* as well as that of *Mentha spicata* and *Syzygium aromatica* cause high toxicity against stored products insects (25, 26).

Ayvaz et al. (17) have also tested the insecticidal activity of essential oils extracted from the *Origanum onites*, *thymbra* and *myruts* against pests of stored products such as *E. kuehniella* and *P. interpunctella*. The authors observed that the oregano and Savory oils cause up to 100% mortality after 24 hours of exposure. While other researchers have recorded a slight decrease of longevity from the lowest dose used (2 μl) of 8, 9, 8.75 and 3.5 days. These values are respectively consistent with the oils extracted from Lemon, Sweet Orange, Grapefruit and Bitter Orange. Other results show that essential oils of aromatic plants have an undeniable insecticidal activity vis-à-vis *Callosobruchus maculatus* F. (27, 28).

The repellent effect of certain vegetable oils has been considered in numerous studies. Hence, our experiment on the effect of oregano essential oil confirms a moderate repellent effect on larvae and adults of the Lepidoptera *Ephestia kuehniella* after half an hour of exposure to different doses of tested biopesticide. Our work is consistent with many scientists. In 2006, Al-Jabr (29) highlighted the repellent effect of *Cinnamomum camphora*, *Rosmarinus officinalis*, *Mentha viridis* and *Simmondsia chinensis* on *Oryzaephilus surinamensis* and *Triobolium castanum*. According to Ndomo et al. (30), the different doses of essential oils extracted from the leaves of *Callistemon viminalis* have caused a repulsion of *Anathoscelede obtectus* adults (Coleoptera: Bruchidea), which varies in rate from 36 to 80% after two hours of exposure. Moreover, Agarwal et al. (31) have demonstrated the toxicity and repellent effect of the compound 1,8-cineole contained in Eucalyptus against *C. maculatus, Rhyzopertha dominica* and *Saracildium oryzae*. This chemotype has proven to be repellent with a recursion rate ranging from 65 to 74% vis-à-vis these three insect pests at a dose of 4μl/ml after an hour of exposure. Other authors have tested the repellency of many other essential oils such as *Cinnamomum zeylanicum* and *Eucalyptus citriodora* which have proven to be very repellent with rates of 90% and 86.6% (Class IV). Essential oils of *Eucalyptus globulus, Myruts communis, Pogestemon cabilin* and *Cypressus sempervirens* have been classified as moderately repellent (Class III) (32).

This study demonstrates insecticidal activity of Oregano *Origanum vulgare* against the stored foodstuffs pest *Ephestia kuehniella* (Lepidoptera, Pyralidae). Undeniably, there is a disturbance of various reproductive parameters and a toxic effect on adults. The obtained results have led us to believe that:

• The duration of pupal development was significantly elongated by introducing the essential oil of oregano *Origanum vulgare*.

• Furthermore, according to this study, it appears that fecundity was significantly reduced due to a decrease of the oviposition period of the treated females, and similarly the number of hatched eggs.

• A toxic effect was revealed on adult mortality. The lifespan of the control group is about 22 days; it decreases several days by administering the oregano essential oil.

A repellency test was conducted in this study. Our findings clearly show that the used essential oil has a repellent effect against adults and larvae of this insect. Calculating the repellency percentage has allowed us to consider the studied oil as "moderately repellent oil."

Acknowledgments

Authors would like to thank sincerely Mr Adel Touhami for his language correction.

Interest conflict

The authors declare that there is no interest conflict.

Author’s contribution

Each author participated actively to this work. Taibi Faiza, Boumedjel Mahieddine, Zaafour Moncef, Delimi Amel: provided the biological materials, proposed the experimental plan, supervised the experiments and redacted and corrected the paper. Abdessmad Safa, Rebani Hassiba, Chnouga Hanène: conducted the experiments in the lab. Sekiou Omar, Khaldi Taha, Siakhène Nacira, Boumedjel Amel and Messarah Mahfoud: corrected the document, analysed data, translated the paper.
References

1. Silvie P, Goze E. Estimation des pertes de production dues aux ravageurs du cotonnier au Tchad. Coton Fibr. trop. 1991;46(1): 1-15.
2. Danho M, Haubrege E. Comportement de ponte et stratégie reproductive de Sitophilus zeamais (Coleoptera: Curculionidae). Phytoprotec. 2003: 84(2): 59-67. DOI : http://dx.doi.org/10.7202/007808ar
3. Nguemtchouin MGM, Ngassoum MB, Chalier P, KamgaR, Ngamo LST, Cret M. Oximom grattissimum essential oil and modified montmorillonite clay, a means of controlling insect pests in stored products. J Stored Prod Res. 2013: 52: 57–62.10.1016/j.jspr.2012.09.006.
4. Taibi F, Boumendjel M. Conservation et stockage des denrées alimentaires. 2015; Editions universitaires européennes. ISBN 978-3-8417-4151-6
5. Taibi F, Smagghie G, Amrani L, Soltani-Mazouni N. Effect of ecysdose agonist RH-0345 on reproduction of mealworm, Tenebrio molitor. Comparative Biochim and Physio. 2003; 135 (c): 257-267.
6. Benayad N. Les huiles essentielles extraites de plantes médicinales marocaines moyenne efficace contre les ravageurs des denrées alimentaires stockées. Projet de recherche. Faculté des sciences de Rabat, Maroc. 2008; 59p.
7. Lognay G, Marlier M, Haubrege E, Trevejo E, Severin M. Study Of The Lipids From Rennelma alpinia (Rott) Maas. Grass Y Aceites, 1989; 40 (6): 351-355.
8. Khalidi T, Rouibah Z., Rouag M., Messarah M., Boumendjel A. Protective Effects of Nigella Sativa Oil on IL-4 and Nitric Oxide Levels in a Model of Experimental Asthma in Wistar Rat. In book: Recent Adv Env Sc from the Euro-Mediterranean and Surrounding Regions. 2018. DOI 10.1007/978-3-319-70548-4 363
9. Khalidi T, Chechkahi N., Boumendjel M., Taibi F., Abdellouafi M., Messarah M., Boumendjel A. Ameliorating effects of Nigella sativa oil on aggravation of inflammation, oxidative stress and cytotoxicity induced by smokeless tobacco extract in an allergic asthma model in Wistar rats. Allergologia et Immunopathologia. 2018. https://doi.org/10.1016/j.aller.2018.02.005
10. Sekiou O., Boumendjel M., Taibi F., Boumendjel A. & Messarah M. Mitigating effects of antioxidant properties of Artemisia herba alba aqueous extract on hyperlipidemia and oxidative damage in alloxaninduced diabetic rats. Archives Physio and Biochem. 2018; 1-11. https://doi.org/10.1080/13813455.2018.1443470
11. Zemmouri H, Sekiou O., Ammar S., El Feki A., Bouaziz M., Messarah M., Boumendjel A. Urgica dioica attenuates ovalbumin-induced inflammation and lipid peroxidation of lung tissues in rat asthma model. Pharmaceutical Biol, 2017; 55:1, 1561-1568, http://dx.doi.org/10.1080/13880209.2017.1310905
12. Boeke SJ, Boersma MG, Alink GM, Van Loon JAA, Van Huis M., Dicke M, Rietjens IM. Safety evaluation of neem (Azadirachta indica) derived pesticides. J. Ethnopharm., 94 (1): 25–41. https://doi.org/10.1016/j.jep.2004.05.011
13. Ho G, Chen TL, Chisholm RL. Both the amino and carboxyl termini of Dictyostelium myosin essential light chain are required for binding to myosin heavy chain. J Biol Chem, 1995; 270 (46): 27977-27981. https://doi.org/10.1074/jbc.270.46.27977
14. Feng R, Isman BM. Selection for resistance to azadirachtin in the green peach aphid, Myzus persicae. Experientia, 1994; 51(8): 831-833. https://doi.org/10.1007/BF01922438
15. Nadio NA, Poutouli WP, Akantetou PK, Nadio NA, Laba B, Tozoou P, raynaud C, Sanda K. Evaluation du potentiel insecticide et repulsif de l’huile essentielle de cymbopogon schoenanthus (L.) spreng. Sur Aphis gossypii Glover (Homoptera: Aphididae), ravageur du cotonnier au Togo. Science de la vie, de la terre et agronomie. Rev. Cames. 2014; (02) :02. http://publication.lecames.org/index.php/svt/article/download/421/280
16. Delimi A, Taibi F, Bouchelaghem S, Boumendjel M, Hennou-ni-Sakhene N, Cheffrou A. Chemical Composition and Insecticidal Activity of Essential Oil of Artemisia herba alba (Asteraceae) Against Ephesia kuehniella (Lepidoptera: Pyralidae). Int J Biosci. 2017; (10):130-137. http://dx.doi.org/10.12692/jib/10.2.130-137
17. Mc Donald LL, Gy, H, Speire RD. Preliminary evaluation of new condoliate materials as toxicants, repellents and attractants against stored product insects. Marketing Research Report No 882. Washington: Agricultural Research Service United State Department of Agriculture, Washington, 1970; 183 p.
18. Aiboud K. Etude de l’efficacité de quelques huiles essentielles à l’égard de la bruche de niébé Callosobruchus maculatus (Coleoptera : Bruchidae) et impact de traitement sur la germination des graines de Vigna unguiculata L. Walp. Université Mouloud Mammeri de Tizi Ouzou (Algérie), Faculté des sciences biologiques et des sciences agronomiques, Département de biologie animale et végétale, 2012; 58 p. http://www.ummtmz.dz/IMG/pdf/Binder1-6.pdf
19. Delimi A, Taibi F, Fissah A, Gherib S, Bouhakari M, Cheffrou A. Bio-activité des huiles essentielles de l’Armoise blanche Artemisia herba alba : effet sur la reproduction et la mortalité des adultes d’un ravageur des denrées stockées Ephesia kuehniella (Lepidoptera). Afrique Sci. 2013; 9(3): 82-90. https://www.ajol.info/index.php/afsic/article/download/112194/101950
20. Gbolade AA, Adeyabo TA. Protection of stored cowpea from Callosobruchus maculatus using plants products. Int J Trop Insect Sci. 1994; 15(2): 185-189. https://doi.org/10.1017/S1742758400015435
21. Bouchikhi Tani Z, Bendahou M, Khelifi MA. Lutte contre la bruche Acanthoscelides obtectus et la mite Tineola bisselliella par les huiles essentielles extraites de deux plantes aromatiques d’Algérie. Lebanese Sci J. 2008; 11(1): 1-14. http://lsj.cnrs.edu.lb/wp-content/uploads/2015/12/bouchikhi.pdf
22. Kellouche A, Soltani N, Kreiter S, Auger J, Arnold I, Kreiter P. Biological activity of four vegetable oils on Callosobruchus maculatus (Fabricius) (Coleoptera : Bruchidae). Redia, 2004; LXXXVII: 39-47.
23. Kellouche A, Soltani N. Activité de reproduction et capacité de développement de la descendance de Callosobruchus maculatus (Fabricius) (Coleoptera : Bruchidae) dans les graines de différents cultivars de Vigna unguiculata (Walp.) et Cicer arrietum (L.). Int J Trop Insect Sci, 2004; 24(4): 304-310.
24. Gakuru S, Foua-Bi K. Effet comparé des huiles essentielles de quatre espèces végétales contre la bruche du niébé (Callosobruchus maculatus Fab.) et le charançon du riz (Sitophilus oryzae L.). Tropicultura. 1995; 13(4): 143-146. http://revues.cirad.fr/index.php/cahiers-agricultures/article/download/29926/29686
25. Gillio IA, Ketoh KG, Koumaglo HK. Effets de quelques huiles essentielles sur l’activité reproductrice de Callosobruchus maculatus Fab. Ann. De l’Université de Ouagadougou, Série B. 1997; (5): 174-
29. Al-Jabr AM. Toxicity and repellency of seven plants essential oils to Oryzaphilus surinamensis (Coleoptera: Silvanidea) and Tribolium castaneum (Coleoptera: Tenebrionidea). Scienti J King Faisal Univ. 2006; Vol. 7 (1): 49-60.

30. Ndomo AF, Tapondjou LA, Ngamo LT, Hance T. Insecticidal activities of essential oil of Callistemon viminalis applied as fumigant and powder against two bruchids. J Appl Ento. 2010; 134 (4): 333–341. https://doi.org/10.1111/j.1439-0418.2009.01475.x

31. Agarwal M, Walia S, Dhindra S, Khambay B P S. Insect growth inhibition, antifeedant and antifungal activity of compounds isolated/derived from Zingiber officinale Roscoe (Ginger) rhizomes. Pest Manag Sci. 2001; 57: 289-300. https://doi.org/10.1002/ps.263

32. Kellouche A, Ait-Aider F, Labdaoui K, Moula D, Ouendi K, Hamadi N, Oramdane A, Frerot B, Mellouk M. Biological activity of ten essential oils against cowpea beetle, Callosobruchus maculatus Fabricius (Coleoptera : Bruchidae). Int J. Integ. Biol. 2010; 10(2): 86-89.