LIVING ROOM VENTILATION AND URBAN ENVIRONMENTAL HEALTH CASE IN DKI JAKARTA

Evi Frimawaty
School of Environmental Science, Universitas Indonesia, Indonesia, frimatop@yahoo.com

Muhammad Mundzir Kamiluddin
School of Environmental Science, Universitas Indonesia, Indonesia

Follow this and additional works at: https://scholarhub.ui.ac.id/jessd

Part of the [Architecture Commons](https://scholarhub.ui.ac.id/jessd) and the [Clinical and Medical Social Work Commons](https://scholarhub.ui.ac.id/jessd)

Recommended Citation
Frimawaty, Evi and Kamiluddin, Muhammad Mundzir (2020). LIVING ROOM VENTILATION AND URBAN ENVIRONMENTAL HEALTH CASE IN DKI JAKARTA. *Journal of Environmental Science and Sustainable Development, 3*(1), 195-209.
Available at: https://doi.org/10.7454/jessd.v3i1.1046
LIVING ROOM VENTILATION AND URBAN ENVIRONMENTAL HEALTH: CASE IN DKI JAKARTA

Evi Frimawaty¹, Muhammad Mundzir Kamiluddin¹
¹School of Environmental Science, Universitas Indonesia, Indonesia

*Corresponding author: e-mail: frimatop@yahoo.com

(Received: 4 June 2020; Accepted: 29 July 2020; Published: 31 July 2020)

Abstract

In developing countries, on average, one out of five children die from pneumonia. Death from pneumonia is most prevalent in Southeast Asia, particularly in Indonesia. Many factors can cause pneumonia. In Jakarta, the prevalence period of pneumonia in toddlers reached 19.6‰, which is higher than the national prevalence period of only 18.5‰. This study used a cross-sectional research design to analyze the relationship between disease prevalence and risk factors simultaneously. Results showed that, out of 721 children under 5 years old investigated in this study, 31 toddlers suffered from pneumonia. Furthermore, bivariate analysis showed that two variables were related to the incidence of pneumonia, namely, low maternal education (odds ratio [OR] = 2.325, 95% confidence interval [CI] = 1.093–4.946) and living room ventilation <10% of the total space (OR = 3.223, 95% CI = 1.215–8.549). Maternal education influences the incidence of pneumonia in toddlers. Thus, to reduce the incidence of pneumonia in toddlers, maternal education needs to be improved. The lack of living room ventilation also, if not most prominently, influences the incidence of pneumonia in toddlers. The incidence of pneumonia in toddlers can be reduced by ensuring that the ventilation of the house is >10% of the total space because the lack of air circulation induces the transmission of pneumonia.

Keywords: maternal education; pneumonia; room ventilation; toddlers; urban.

1. Introduction

In developing countries, the general problem of indoor air pollution involves internal contamination from cooking or wood burning for heating without an adequate chimney. Other pollutants that have a negative effect on health are O₃, ionizing radiation, and cigarette smoke. The World Health Organization estimated approximately 3 million cases of indoor air pollution and 0.2 million cases of outdoor air pollution every year (World Health Organization, 1997). Ventilation helps control indoor air temperature and remove or dilute pollutants from indoor sources. Consequently, the ventilation system reduces the contamination level and improves indoor air quality. The introduction of outdoor air is an essential factor in promoting good air...
quality (EPA, n.d.). Air circulates in a house in various ways, that is, natural ventilation (windows or doors), mechanical ventilation, and/or air conditioning systems. Air circulation also occurs through infiltration, a process by which air flows into houses through openings, joints, and cracks in walls, floors, and ceilings, and around windows and doors.

Natural ventilation is described as the flow of external air to an indoor space through open windows and doors. If used properly, natural ventilation helps reduce indoor air temperature. In some cases, indoor air temperature overheats a house with an improper cooling system. Moreover, natural ventilation improves indoor air quality by reducing pollutants. Meanwhile, the rate of ventilation airflow is calculated as the percentage of outside airflow to the building per unit of time and often expressed in units of cubic feet per minute (cfm) or liters per second (L/s). “Ventilation level” is usually calculated as the level of ventilation airflow divided by the number of people in the building (producing cfm/person or L/s/person), indoor air volume (resulting in hourly [h⁻¹] air changes), or indoor floor area (yielding cfm/ft² or L/s/m²) (Berkeley Lab, 2018).

Pneumonia is an inflammation of the pulmonary parenchyma that usually occurs in children and clinically arises as a primary disease or a complication from other diseases (Hockenberry et al., 2016). The symptoms of pneumonia include fever >38°C and WBC >12,000/mm³ or <6,000/mm³, as well as mental changes in elderly patients (Kim et al., 2014). Pneumonia is responsible for 18% of approximately 7.6 million deaths of children under 5 years old worldwide (Liu et al., 2014). In 2015, pneumonia killed approximately 920,000 children under 5 years old, accounting for 16% of all deaths of children under 5 years old. Pneumonia is caused by the lack of exclusive breastfeeding, low nutrition, low birth weight, and lack of immunization (Noordam et al., 2015). Pneumonia affects children and families everywhere but is most prevalent in South Asia and Sub-Saharan Africa (World Health Organization, 2019). Pneumonia is caused by some infectious agents, including viruses, bacteria, and fungi, the most common of which are Streptococcus pneumoniae, Haemophilus influenzae type b, and respiratory syncytial virus (Ostapchuk, Roberts, & Haddy, 2004; Wardlaw et al., 2006). In infants infected with HIV, Pneumocystis jiroveci is one of the most common causes of pneumonia, responsible for at least a quarter of all deaths from pneumonia of HIV-infected infants.

Research conducted in Finland showed that pneumonia is exacerbated by sweet foods (Tapiainen et al., 2014). Meanwhile, studies conducted in Australia and China showed that age factors affect the incidence of pneumonia (Zhu., 2015; Chen., 2014). In India and Gambia,
environmental pollution and malnutrition are two major risk factors for severe pneumonia and the associated deaths from pneumonia (Shah et al., 1994; De Francisco et al., 1993). Studies conducted in South Africa and Mozambique showed that demographics, virulent bacteria, and malnutrition increase the risk of poor pneumonia treatment outcomes (McNally et al., 2007; Sigauque et al., 2009). Furthermore, the latest research conducted in the Netherlands proved that people who live close to poultry are prone to pneumonia (Freidl et al., 2017). Pneumonia is not only an independent variable but also a dependent variable of disease progression, as pneumonia has become a risk factor for liver abscess disease in Taiwan (Ho et al., 2017).

In 2012, the number of pneumonia cases of children under 5 years old in DKI Jakarta reached 96,043, with a level of discovery and handling coverage of only 28% (26,910 case findings). Among the six administrative areas of Jakarta, only Seribu Archipelago showed the highest level of handling coverage, which is 71% of the total cases (Kemkes, 2012). In 2013, the prevalence of pneumonia in toddlers in DKI Jakarta exceeded the national prevalence period. The national prevalence period was only 18.5‰, whereas that of DKI Jakarta reached 19.6‰. This finding indicates that DKI Jakarta can be classified as one of the areas with the highest cases of pneumonia in children (Rikesdas, 2013). On the basis of these data, this study aims to determine the risk factors that cause the high rates of pneumonia in toddlers in DKI Jakarta.

2. Methods
This research used a cross-sectional research design to analyze secondary data from Basic Health Research (RISKESDAS) Year 2013. The dependent variable is pneumonia in children under 5 years old. The independent variables consist of house physical environment factors (i.e., occupancy density, house ventilation, house natural lighting, type of wall, and type of ceiling), family socioeconomic factors (i.e., maternal education and family economic status), characteristic factors of children (i.e., sex or gender, nutritional status, birth weight, and vitamin A supplementation), and air pollution factors in the home (i.e., family members’ smoking habit and use of fire/electric mosquito repellent). The determination of the incidence of pneumonia is based on interviews with the mothers of children under 5 years old, operational limits used by health personnel to detect pneumonia, and symptoms of pneumonia within the last 12 months.

Limitations were set on the basis of the information obtained from the Basic Health Research (RISKESDAS) questionnaire. Data were obtained from the Health Research and
Development Agency (Balitbangkes), Ministry of Health, Republic of Indonesia. The total sample size was 1,059 toddlers; however, 721 toddlers were left after selection. Thus, the data processed had to be reduced. Incomplete data were not considered and processed. This study used bivariate and multivariate analyses. Bivariate analysis was performed to determine the relationship between the variables suspected or estimated to be associated with pneumonia and the incidence of pneumonia (odds ratio [OR]).

Bivariate analysis used the chi-square test with a p value of 0.05 and a confidence interval (CI) of 95%. Multivariate analysis was conducted to determine which risk factor has the most significant influence on the incidence of pneumonia in toddlers. Multivariate analysis used the logistic regression test because the independent and dependent variables were classified as categorical data. The statistical test was performed by SPSS 22.0 software. In the multivariate test, the variables included in the analysis were the variables of bivariate analysis with a p value of <0.25.

3. Results and Discussions

According to the responses to the RISKESDAS questionnaire, the results of bivariate analysis with chi-square test of socioeconomic characteristics (Table 1) indicate that the maternal education variable is related to the incidence of pneumonia in toddlers. In Table 1, the p value is 0.031, which indicates a relationship between maternal education and incidence of pneumonia in toddlers because it is <0.05. The OR is 2.325, which indicates that toddlers with less educated mothers are 2.325 times more at risk of suffering from pneumonia than toddlers with well-educated mothers. Meanwhile, the p value of the economic status variable is >0.05, which indicates that there is no relationship between economic status and incidence of pneumonia in toddlers.

Table 1. Relationship between socioeconomic characteristics in the series of pneumonia cases

Variable	Pneumonia in Toddlers	OR (95% CI)	p value					
	Non-pneumonia	Pneumonia	Total					
	n	%	n	%	N	%		
Maternal Education	High	430	97.3	12	2.7	442	100	0.031

DOI: https://doi.org/10.7454/jessd.v3i1.1046
The results of the analysis of the relationship between the characteristics of toddlers and the incidence of pneumonia are shown in Table 2. Four variables, namely, infant birth weight, sex or gender, infant nutritional status, and history of vitamin A supplementation, were investigated. None of the four variables exhibited a relationship with the incidence of pneumonia in toddlers because the p value obtained was >0.05. The results of this study are consistent with those obtained in a study conducted in China in 2015, which showed that sex or gender is unrelated to the incidence of pneumonia (Zhu et al., 2015). By contrast, a research conducted in Japan determined that the occurrence of pneumonia is associated with sex or gender (Manabe et al., 2015).

Table 2. Relationship between the characteristics of toddlers in the series of pneumonia cases

Variable	Non-pneumonia	Pneumonia	Total	OR (95% CI)	p value	
	n	%	n	%	N	%
Low Economic Status	262	93.9	17	6.1	279	100
High	533	96.7	18	3.3	551	100
Low Economic Status	159	93.5	11	6.5	170	100
Weight at Birth	367	96.2	13	3.5	380	100
Normal	41	93.2	3	6.8	44	100

N, number of populations; n, number of samples; OR, odds ratio; CI, confidence interval

Source: Authors (2020)
Variable	Non-pneumonia	Pneumonia	Total	OR (95% CI)	p value
Low Nutritional Status					
Good	532	95.9	23	1.832 (0.532–6.306)	1.000
Bad	160	96.4	6	0.867 (0.347–2.167)	0.421
Provision of Vitamin A					
Yes	223	97.0	7	0.669 (0.282–1.590)	1.590
No					

N, number of populations; n, number of samples; OR, odds ratio; CI, confidence interval

Source: Authors (2020)

The statistical test results shown in Table 3 indicate the relationship between air pollution characteristics in a house and occurrence of pneumonia. Two variables, namely, the presence of family members who smoke and the use of mosquito coils in the house, were analyzed. However, the chi-square test results showed that the p values of the two variables are all >0.05. This finding indicates that the two variables are unrelated to the incidence of pneumonia in toddlers.

Table 3. Relationship between air pollution characteristics in the series of pneumonia cases

Variable	Non-pneumonia	Pneumonia	Total	OR (95% CI)	p value	
Presence of a Smoker						
No	256	95.5	12	0.832 (0.391–1.770)	0.696	
Yes	436	96.2	17			1.770
Variable	Pneumonia in Toddlers	OR (95% CI)	p value			
---	---	---	---			
Non-pneumonia	Pneumonia	Total				
n	%	n	%	N	%	
 Mosquito Repellant Coil Usage
No | 526 | 95.5 | 25 | 4.5 | 551 | 100
Yes | 166 | 97.6 | 4 | 2.4 | 170 | 100

OR: 0.507 (0.174–1.478) p: 0.180

Variable	Pneumonia in Toddlers	OR (95% CI)	p value
Non-pneumonia	Pneumonia	Total	
n	%	n	%
 Residential Density
Not Dense | 394 | 96.8 | 13 | 3.2 | 407 | 100
Dense | 298 | 94.9 | 16 | 5.1 | 314 | 100

OR: 1.627 (0.771–3.435) p: 0.200

OR: 3.435 p: 0.000

N: number of populations; n: number of samples; OR, odds ratio; CI, confidence interval

Source: Authors (2020)

The results of the analysis of the relationship between physical environment characteristics of a house and the incidence of pneumonia are shown in Table 4. The physical environment characteristics of a house consist of seven variables. Out of the seven variables, the variable related to the incidence of pneumonia in toddlers is living room ventilation. Its p value of 0.018 (<0.05), with the OR of 3.223 (95% CI = 1.215–8.549), indicates that toddlers living in a house with less than standard living room ventilation are 3.223 times more likely to suffer pneumonia than toddlers living in a house with adequate ventilation space. The Decree of the Minister of Health of the Republic of Indonesia No. 829/Menkes/ SK/VII/1999 states that house ventilation should be >10% of the floor area. In addition to the living room ventilation variables, the statistical test results show that the other variables are unrelated to the incidence of pneumonia in toddlers because their p values are >0.05.

Table 4. Relationship between physical environment factors in the series of pneumonia cases

DOI: https://doi.org/10.7454/jessd.v3i1.1046
Variable

	Non-pneumonia	Pneumonia	Total	OR (95% CI)	p value
Bedroom					
Ventilation					
Adequate	1.147 (0.482–2.729)				
Less	2.729				
Living Room					
Ventilation	3.223 (1.215–8.549)				
Adequate	0.834				
Less	0.018				
Natural Lighting					
in the Bedroom	1.508 (0.688–3.305)				
Adequate	1.717 (0.578–5.099)				
Less	0.666				
Wall Types					
Wall	1.311 (0.300–5.726)				
Not a Wall					

N, number of populations; *n*, number of samples; OR, odds ratio; CI, confidence interval

Source: Authors (2020)
Each independent variable is associated with the dependent variable (bivariate analysis). If the result of bivariate analysis yields a p value of <0.25, then the variable can be directly incorporated into the multivariate analysis stage. If an independent variable shows a bivariate result with a p value of >0.25 and has substantial importance to be tested, then the variable can be incorporated into the multivariate test model. The results of bivariate selection are listed in Table 5.

Independent Variables	OR	p value	Explanation
Maternal Education	2.325	0.031	Continue
Economic Status	2.049	0.074	Continue
Gender	1.289	0.572	Discontinue
Weight at Birth	1.832	0.413	Discontinue
Nutritional Status	0.867	1.000	Discontinue
Provision of Vitamin A	0.669	0.421	Discontinue
Presence of Smokers	0.832	0.696	Discontinue
Mosquito Repellant Coil Usage	0.507	0.180	Continue
Dwelling Density	1.627	0.200	Continue
Bedroom Ventilation	1.147	0.834	Discontinue
Living Room Ventilation	3.223	0.018	Continue
Natural Lighting in the Bedroom	0.818	0.703	Discontinue
Natural Lighting in the Living Room	1.508	0.289	Discontinue
Type of Wall	1.717	0.309	Discontinue
Type of Ceiling	1.311	0.666	Discontinue

Source: Authors (2020)

The results of bivariate selection show that the variables with a p value of <0.25 are maternal education, economic status, use of mosquito coils, occupancy density, and living room ventilation. These variables are used for the multivariate analysis. The logistic regression test was used for the multivariate analysis because the independent and dependent variables were classified as categorical data. In the multivariate modeling stage, all of the independent variables were analyzed simultaneously. The independent variables included in multivariate modeling were maternal education, economic status, use of mosquito coils, occupancy density,
and living room ventilation. The variables were gradually modeled by selecting the variable with the most significant p value until all variables have a p value of <0.05. Table 6 shows the results of multivariate modeling.

Variable	OR	p value								
ME	1.90	0.117	ME	1.92	0.1	11	ME	2.14	0.050	6
ES	1.39	0.437	ES	1.44	0.3	86	MCU	0.45	0.149	3
MCU	0.45	0.148	MCU	0.44	0.1	42	LVR	3.03	0.027	6
DO	1.17	0.682	LVR	2.90	0.0	7	34			
LVR	2.83	0.040								

OR, odds ratio; ME, maternal education; ES, economic status; MCU, mosquito coil usage; DO, density of occupancy; LVR, living room ventilation

Source: Authors (2020)

The results of the first multivariate modeling showed that the variable with a p value of <0.05 is living room ventilation (LVR) and the variable with the largest p value is density of occupancy (DO). Thus, the variable DO was removed and the model was retested. The second multivariate modeling showed that three variables had a p value of >0.05, except for LVR (0.034). Moreover, economic status had the largest p value (0.386). Thus, economic status was removed in the third multivariate modeling. The third calculation showed that MCU had the largest p value. When this variable was removed and the model was retested, two variables remained, namely, ME and LVR. In the last multivariate modeling, LVR had a p value of 0.032. The analysis determined that LVR exhibited the most significant influence on the incidence of pneumonia in toddlers in DKI Jakarta. The results further showed that LVR had an OR of 2.928, which indicated that children who live in houses with living room ventilation <10% of the floor area are 2.928 times more likely to suffer from pneumonia than children who live in houses with adequate ventilation.

DOI: https://doi.org/10.7454/jessd.v3i1.1046
Pneumonia is the primary cause of childhood morbidity and mortality, causing approximately 1.4 million deaths annually (Rudan et al., 2008; Zar et al., 2014). In this study, 15 independent variables were investigated, and bivariate analysis of the statistical test results showed that maternal education and living room ventilation are the risk factors for pneumonia cases in Jakarta. Families with less educated mothers are 2.325 times more at risk of suffering from pneumonia than those with well-educated mothers. Similar results were obtained in Bangladesh where more children of poorly educated mothers suffered from pneumonia (Ferdous et al., 2014; Saha et al., 2016). This finding indicates that improving maternal education is an essential strategy to decrease childhood morbidity and mortality caused by pneumonia.

This research determined that living room ventilation has a significant influence on the incidence of pneumonia in toddlers. DKI Jakarta has a dense neighborhood; thus, ambient air quality in houses is poor. Moreover, nonstandard living room ventilation will aggravate the air quality inside the house, particularly the kitchen and other adjacent rooms without the appropriate separators (Buchner et al., 2015; Naz et al., 2017). The statistical analysis conducted in this study showed that living room ventilation is the variable that most significantly influences the incidence of pneumonia in toddlers.

Toddlers who live in houses with living room ventilation <10% of the floor area is 2.928 times more likely to suffer from pneumonia than those who live in houses with living room ventilation >10% of the floor area. The transmission of pneumonia is also high if a toddler frequently engages with other members of the family in a living room with ventilation that does not meet the standards. Therefore, a solution to prevent pneumonia is compliance with ventilation standards when building a house. Pneumonia and other illnesses can be prevented by improving air circulation (Bruce et al., 2013). Moreover, the authorities of DKI Jakarta can grant renovation assistance for people in poor residences. Another research conducted in Southeast Asia determined that a high occupancy density influences the incidence of pneumonia (Turner et al., 2013).

The results of this study showed only 2 related variables out of the 15 variables investigated. This finding can be attributed to the limited number of cases, that is, out of 721 children examined, only 31 suffered from pneumonia. In further research, the number of samples needs to be increased to obtain more comprehensive and visible perspectives.
4. Conclusion

This study concluded that the lack of living room ventilation affect the incidence of pneumonia for toddlers. Furthermore maternal education level is another risk factor to the pneumonia occurrence. The strategy to fill the gaps is the minimum requirement for the ventilation of the house is more than 10% of the total space, considering insufficient of airflow circulation in the house area induces the transmission of pneumonia, and improve education level of mothers. Finally, result of this study proposes the policymaker to develop regulation to improve public health in urban, especially for the toddlers.

Acknowledgement

The author would like to acknowledge the beneficial and support for the completion of this paper from University of Indonesia and DKI Jakarta Government.

Author Contribution

Evi Frimawaty and Muhammad Mundzir Kamiluddin conceived the idea. Muhammad Mundzir Kamiluddin collected and analyzed data, under Evi Frimawaty supervision. All authors discussed the results and contributed to the final manuscript.

References

Berkeley Lab. (2018). Ventilation rates and health in homes. Quality Edge.
https://www.qualityedge.com/wp-content/uploads/2018/07/Ventilation-Rates-and-Health-in-Homes-_--Indoor-Air-Quality-IAQ-Scientific-Findings-Resource-Bank-IAQ-SFRB.pdf

Bruce N. G., Dherani, M. K., Das J. K., Balakrishnan, K., Adair-Rohani, H., Bhutta, & Z. A., Pope Dan. (2013). Control of household air pollution for child survival: estimates for intervention impacts. *BMC Public Health, 13*(S8).
https://doi.org/10.1186/1471-2458-13-S3-S8

Buchner, H., & Rehfuess, E. A. (2015). Cooking and season as risk factors for acute lower respiratory infections in African children: a cross-sectional multi-country analysis. *PLoS ONE, 10*(e0128933).
https://doi.org/10.1371/journal.pone.0128933

Chen, Y., Williams, E., Kirk, M. (2014). Risk factors for acute respiratory infection in the Australian community. *PLoS ONE, 9*(e101440).
https://doi.org/10.1371/journal.pone.0101440

DOI: https://doi.org/10.7454/jessd.v3i1.1046
De Francisco, A., Morris, J., Hall, A. J., Schellenberg, J. R. M. A., & Greenwood, B. M. (1993). Risk factors for mortality from acute lower respiratory tract infections in young Gambian children. *International Journal of Epidemiology, 22*(1174–82).
https://doi.org/10.1093/ije/22.6.1174

EPA (Environmental Protection Agency). (n.d.). Improving indoor air quality.
https://www.epa.gov/indoor-air-quality-iaq/improving-indoor-air-quality

Ferdous, F., Dil Farzana, F., Ahmed, S., Das, S. K., Malek, M. A., Das, J., … & Chisti, M. J. (2014). Mothers’ perception and healthcare seeking behavior of pneumonia children in rural Bangladesh. *ISRN Family Medicine, 2014.*

Freidl, G. S., Spruijt, I. T., Borlée, F, Smit, L. A. M., van Gageldonk-Lafeber, A. B., Heederik, D. J. J., … van der Hoek, W. (2017). Livestock-associated risk factors for pneumonia in an area of intensive animal farming in the Netherlands. *PLoS ONE, 12*(3): e0174796.
https://doi.org/10.1371/journal.pone.0174796

Hockenberry, M. J., Wilson, D., & Rodgers, C. C. (2016). *Wong’s essentials of pediatric nursing*. Missouri: Elsevier Health Sciences.

Ho, S-W, Yeh, C-B, Yang, S-F, Yeh, H-W, Huang, J-Y, & Teng, Y-H. (2017). Pneumonia is an independent risk factor for pyogenic liver abscess: A population-based, nested, case-control study. *PLoS ONE, 12*(12), e0178571.
https://doi.org/10.1371/journal.pone.0178571

Kemkes (2012). *Health Profile of DKI Jakarta 2012.*
https://pusdatin.kemkes.go.id/resources/download/profil/PROFIL_KES_PROVINSI_2012/11%20Profil_Kes.Prov.DKIJakarta_2012.pdf

Kim, J. E., Kim, U. J., Kim, H. K., Cho, S. K., An, J. H., Kang, S-J, … Jang, H-C. (2014). Predictors of viral pneumonia in patients with community-acquired pneumonia. *PLoS ONE, 9*, e114710.
https://doi.org/10.1371/journal.pone.0114710

Liu, L., Oza, S., Hogan, D., Perin, J., Rudan, I., Lawn, J. E., … Black R. (2015). Global, regional, and national causes of child mortality in 2000–13, with projections to inform post-2015 priorities: an updated systematic analysis. *The Lancet, 385*(9966), 430–440.
https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(14)61698-6/fulltext

Manabe, T., Teramoto, S., Tamiya, N., Okochi, J., Hizawa, N. (2015). Risk factors for aspiration pneumonia in older adults. *PLoS ONE, 10*, e0140060.
https://doi.org/10.1371/journal.pone.0140060
McNally, L. M., Jeena, P. M., Gajee K, Thula, S. A., Sturm, A. W., Cassol, S., … Goldblatt, D. (2007). Effect of age, polymicrobial disease, and maternal HIV status on treatment response and cause of severe pneumonia in South African children: a prospective descriptive study. The Lancet, 369(8571), 1440–1451.
https://doi.org/10.1016/S0140-6736(07)60670-9

Naz, S., Page, A, Agho, K. E. (2017). Household air pollution from use of cooking fuel and under-five mortality: the role of breastfeeding status and kitchen location in Pakistan. PLoS ONE, 12, e0173256.
https://doi.org/10.1371/journal.pone.0173256

Noordam, A. C., Carvajal-Velez, L., Sharkey, A. B., Young, M., & Cals, J. W. L. (2015). Care seeking behaviour for children with suspected pneumonia in countries in sub-Saharan Africa with high pneumonia mortality. PLoS ONE, 10, e0117919.
https://doi.org/10.1371/journal.pone.0117919

Ostapchuk, M., Roberts, D. M., & Haddy, R. (2004). Community-Acquired Pneumonia in Infants and Children. American Family Physician, 70(5), 899-908.
https://www.aafp.org/afp/2004/0901/p899.html

Report on result of National Basic Health Researches (RISKESDAS). (2013). Jakarta: Research and Development Agency of the Indonesia Ministry of Health. Depkes.
http://www.depkes.go.id/resources/download/general/Hasil%20Riskesdas%202013.pdf

Rudan, I., Boschi-Pinto, C., Biloglav, Z., Mulholland, K., & Campbell, H. (2008). Epidemiology and etiology of childhood pneumonia. Bulletin of the World Health Organization, 86, 408-416B.
https://www.scielosp.org/article/bwho/2008.v86n5/408-416B/pt/

Saha S, Hasan M, Kim L, Farrar, J. L., Hossain, B., Islam, M., … Saha, S. K. (2016). Epidemiology and risk factors for pneumonia severity and mortality in Bangladeshi children <5 years of age before 10-valent pneumococcal conjugate vaccine introduction. BMC Public Health, 16, 1233.
https://doi.org/10.1186/s12889-016-3897-9

Shah, N., Ramankutty, V., Premila, P. G., & Sathy, N. (1994). Risk factors for severe pneumonia in children in south Kerala: a hospital-based case-control study. Journal of Tropical Pediatrics, 40, 201–2066.
https://doi.org/10.1093/tropej/40.4.201
Sigaúque, B., Roca, A., Bassat, Q., Morais, L., Quintó, L., Berenguera, A., … Alonso, P. L. (2009). Severe pneumonia in Mozambican young children: clinical and radiological characteristics and risk factors. Journal of Tropical Pediatrics, 55(6), 379–387. https://doi.org/10.1093/tropej/fmp030

Tapiainen, T., Paalanne, N., Arkkola, T., Renko, M., Pokka, T., Kaïjalainen, T., & Uhari, M. (2014). Diet as a risk factor for pneumococcal carriage and otitis media: a cross-sectional study among children in day care centers. PLoS ONE, 9, e90585. https://doi.org/10.1371/journal.pone.0090585

Turner, C., Turner, P., Carrara, V., Burgoine, K., Htoo, S. T. L., Watthanaworawit, W., … Nosten, F. (2013). High rates of pneumonia in children under two years of age in a South East Asian refugee population. PLoS ONE 2013, 8, e54026. https://doi.org/10.1371/journal.pone.0054026

Wardlaw, T. M., Johansson, E. W., & Hodge, M. J. (2006). Pneumonia: the forgotten killer of children. New York: UNICEF.

World Health Organization. (1997). Health and environment in sustainable development: five years after the Earth Summit: executive summary. https://apps.who.int/iris/bitstream/handle/10665/63708/WHO_EHG_97.12_eng.pdf;jsessionid=DC47D185263DC5C1C7738FA8774D7154?sequence=1

World Health Organization. (2019). Pneumonia: fact sheet. https://www.who.int/news-room/fact-sheets/detail/pneumonia

Zar, H. J., & Ferkol, T. W. (2014). The global burden of respiratory disease—impact on child health. Pediatric Pulmonology, 49(5), 430–434. https://doi.org/10.1002/ppul.23030

Zhu, J., Zhang, X., Shi, G., Yi, K., & Tan, X. (2015). Atrial fibrillation is an independent risk factor for hospital-acquired pneumonia. PLoS ONE, 10, e0131782. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0131782