Karyotype variability in six Amazonian species of the family Curimatidae (Characiformes) revealed by repetitive sequence mapping

Juliana Nascimento Moraes¹, Patrik Ferreira Viana¹, Ramon Marin Favaratol, Vanessa Susan Pinheiro-Figliuolo¹ and Eliana Feldberg¹

¹Instituto Nacional de Pesquisas da Amazônia (INPA), Coordenação de Biodiversidade, Laboratório de Genética Animal, Manaus, AM, Brazil.

Abstract

Fishes of the Curimatidae family represent one of the most important freshwater ichthyofauna groups of Central and South America, with 117 recognized species distributed in eight genera. In this study, six species – Curimata inornata, Curimatella dorsalis, and Psectrogaster falcata collected from the Lower Araguaia River, Pará, Brazil; Curimata vittata, Curimatella meyeri, and Psectrogaster rutiloides collected from the Catalão Lake, Amazonas, Brazil – were cytogenetically analyzed, investigating the occurrence and distribution of repetitive DNA classes in the karyotypes. All species had 2n=54 metacentric/submetacentric chromosomes. Despite the conservative diploid number, we observed variations in the karyotypic structure among species. Ribosomal DNA (rDNA) 18S and 5S were found in single or multiple sites, with the first report of synteny in Curimatella dorsalis, and the occurrence of several interstitial telomeric sequences (ITSs) in species of the genera Curimatella and Psectrogaster. Interspecific karyotypic diversity both concerning structure and location/position of the nucleolar organizer regions (NORs) and ribosomal DNA, suggesting the occurrence of several non-Robertsonian rearrangements driving the evolution of this family.

Keywords: Cytogenetics, rDNA, ITS, chromosomal rearrangements.

Received: April 27, 2021; Accepted: May 17, 2022.

The Curimatidae family currently encompasses 117 fish species, allocated in eight genera: Curimata, Curimatella, Curimatopsis, Cyphocharax, Potamorhina, Psectrogaster, Pseudocurimata, and Steindachnerina (Fricke et al., 2021). The species are widely distributed throughout Central and South America River basins, inhabiting different aquatic environments. Ecologically, these fishes have an important role as food resources for larger predatory fish and act in recycling organic material due to detritivores’ eating habits, being easily distinguished from the other taxa of the Characiformes order by their complete absence of teeth (Vari, 1989, 2003).

Cytogenetically, this family shows 2n=54 with biarmed chromosomes as the most frequent in the analyzed species (Table 1). However, despite this apparent conservative karyotype and chromosome morphology, variations in diploid number have been reported in at least six species, in addition to the occurrence of B chromosomes, as well as interspecific variation in the location/position of the nucleolar organizer regions (NORs) (Venere and Galetti, 1989; Feldberg et al., 1992; Navarrete and Júlio-Júnior, 1997; Brassesco et al., 2004; Venere et al., 2008) (Table 1).

The chromosomal mapping of repetitive sequences, such as 5S and 18S ribosomal DNAs (rDNA) and telomeric DNA (TTAGGG)n, has proven to be an excellent tool for the chromosomal characterization in different groups of Neotropical fishes (Cioffi and Bertollo, 2012; Viana et al., 2017; Ferreira et al., 2020), providing a set of relevant information that can contribute to cytotaxonomy, elucidate geographic distribution patterns and evidence sex chromosomes. In Curimatidae, even with scarce data on mapping these sequences, evident interspecific differences were already observed (De Rosa et al., 2006, 2007; Teribele et al., 2008; Oliveira, 2010; Pinheiro et al., 2016; Sampaio et al., 2016) (Table 1).

The present study aims to investigate the chromosomal composition and structure of the karyotypes of six Amazonian Curimatidae species. The results were compared with the data available in the literature to infer the hypothetical chromosomal rearrangements involved in the chromosomal evolution process.

A total of 52 individuals from six species of the Curimatidae family were cytogenetically analyzed (Table 2). The fishes were collected under authorization from the Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio, SISBIO - 28095-1). All procedures followed the guidelines of the Ethics Committee for Experimental Use of Animals of the National Institute of Amazonian Research (004/2018-CEUA/INPA), and the specimens were deposited in the INPA Ichthyology Collection (INPA-ICT 059622 - INPA-ICT 059627).

We followed the protocol described by Gold et al. (1990) to obtain the mitotic chromosomal preparations. Constitutive heterochromatin (CH) was detected according to Sumner (1972), with modifications where the staining was performed with a solution containing 0.5 µL of propidium iodide in 20 µL of Vectashield®, according to Lui et al. (2012). Active nucleolar organizer regions (NORs) were identified using the silver staining method, according to Howell and Black (1980). For molecular cytogenetic analyses, genomic DNA was extracted from muscle, according to Sambrook et al. (1989).
Species	Locality	2n	FN	Karyotype formula	Ag-NOR pair / position	C Banding	rDNA 18S Pair / position	rDNA 5S Pair / position	Telomere	Reference	
Curimatata											
C. cyprinoides	Negro and Solimões River/AM	54	108	44m+10sm	3m/qt	–	–	–	–	3	
	Araguaia River/MT	54	108	44m+10sm	7m/qt	–	–	–	–	16	
C. inornata	Negro and Solimões River/AM	54	108	40m+14sm	21sm/pi	–	–	–	–	3	
	Araguaia River/MT	54	108	40m+14sm	3m22sm/qt	pc/t	20sm/qt	9m/pi	t	22	
C. knerií	Negro and Solimões River/AM	54	108	40m+12am+2st	27st/qt	–	–	–	–	3	
	Araguaia River/PA	54	108	38m+16sm	20sm/qt	pc/t	2m22sm/qt	25sm21sm/qt	t	22	
C. ocellata	Uatumã River/AM	54	112	40m+16sm	26sm/pi	–	–	–	–	3	
C. vittata	Negro and Solimões River/AM	54	108	42m+12sm	sm/qt	–	–	–	–	3	
	Catalão Lake/AM	54	108	38m+16sm	20m21sm/qt	pc/t	20m21am/qt	25m/pi	t	22	
Curimatella											
C. albina	Negro and Solimões River/AM	54	108	46m+8sm	14m/qt	–	–	–	–	3	
C. dorsalis	Miranda River/MS	54	108	46m+8sm	13m/qt	pc	–	–	–	7	
	Paraná River/AR	54	108	54m2sm	2m/qt	c/t	–	–	–	11	
Araguaia River/PA	54	108	44m+10sm	2m/qt	pc/t	2m/qt	2m/qi	t	14 pairs		
C. immaculata	Araguaia River/GO	54	108	46m+8sm	24sm/qt	–	–	–	–	16	
C. leptidura	São Francisco River/SP	54	108	54m2sm	9m/qt	–	–	–	–	2	
C. meyeri	Negro and Solimões River/AM	54	108	46m+8sm	9m/qt	–	–	–	–	3	
	Catalão Lake/AM	54	108	46m+8sm	9m/qt	pc/t/i	7m/qt	9m/qi	26sm/pi	14 pairs	
Curimatopsis											
C. myersi	Miranda River/MS	46	92	42m+4sm	–	–	–	–	–	7	
Cyphocharax											
C. gilbert	Paraibuna River/SP	54	108	44m+10sm	2m/qt	pc/t	–	–	–	16	
C. cf. gilli	Bento Gomes River/MT	54	108	54m2sm	1m/qi	–	–	–	–	2	
C. gouldangi	Araguaia River/GO	54	108	54m+1B	2m/qt	–	–	–	–	16	
C. modestus	Águas de São Pedro/SP	54	108	54m2sm	2m/qt	–	–	–	–	2	
Três Bocas Stream/PR	54	108	54m+sm+B	2m/qt	pc/t	2/qt	–	–	14 pairs		
Mogi-Guaçu River/SP	54	108	54m+sm+B	–	pc	–	–	–	8		
Taquari River/PR	54	108	54m+sm+B	2m/qt	pc/t	2/qt	–	–	13,15		
Tihagi River/PR	54	108	54m2sm	2m/qt	–	2/qt	–	–	15		
Água da Floresta River/PR	54	108	54m2sm	2m/qt	–	2/qt	–	–	15		
Species	Locality	2n	FN	Karyotype formula	Ag-NOR pair / position	C Banding	rDNA 18S Pair / position	rDNA 5S Pair / position	Telomere	Reference	
---------	----------	----	----	------------------	------------------------	-----------	------------------------	------------------------	----------	-----------	
Paranapanema River/SP	54	108	54m/sm+B	2m/qt	pc/t	2/qt	3,20/pi	–	12,14,17		
Tietê River/SP	54	108	54m/sm+B	2m/qt	pc/t	2/qt	3,20/pi	–	11,12,14,17		
C. naegeli	Mogi-Guçu River/SP	54	108	54m/sm	25/qt	–	–	–	–	2	
	Mogi-Guçu River/SP	54	108	46m+8 sm	1,2,11/1q6/pt	21/pt	pc/t	–	–	16	
Ribeirão Minhoca/MG	54	108	54m/sm+B	6/qt	pc/t	6/qt	3,20/pi	t/ITS 2 pairs	18		
C. platanus	Paraná River/AR	58	116	52m/sm+6st	5m/qt	–	–	–	–	11	
Pirá-Pytá Stream/AR	58	116	48m+4sm+6st	6m/qt	pc/t	–	–	–	16		
C. cf. epiphys	Madeira River/RO	54	108	54m/sm	10m/qt	–	–	–	–	2	
C. stipolus	Paraná River/AR	54	108	54m/sm+B	1/qi	pc/t	–	–	–	10,11	
	Capivara Stream/RS	54	108	54m/sm+B	2/qt	pc/t	2/qt	–	–	19,20	
	Gasômetro/RS	54	108	54m/sm+B	2/qt	pc/t	2/qt	3crom/pi	–	19,20	
C. vanderi	Preto River/SP	54	108	54m/sm	6/qt	–	–	–	–	2	
C. vogae	Bolacha Stream/RS	54	108	54m/sm	6/qt	–	–	–	–	2	
Paraná River/AR	54	108	54m/sm	qt	pc/i	–	–	–	11		
Saco da Alemoa River/RS	54	108	54m/sm+B	5/qt	pc/t	5/qt	–	–	19,20		
	Capivara Stream/RS	54	108	54m/sm+B	5/qt	pc/t	5/qt	–	–	19,20	
	Gasômetro/RS	54	108	54m/sm+B	5/qt	pc/t	5/qt	–	–	19,20	
	Barros Lagoon/RS	54	108	54m/sm+B	5/qt	pc/t	5/qt	2crom/pi	–	19,20	
	Quadros Lagoon/RS	54	108	54m/sm+B	5/qt	pc/t	5/qt	–	–	19,20	
C. saladensis	A.E.S. UFRGS Dam/RS	54	108	54m/sm+B	8/qt	pc/t	8m/qt	2crom/pi	–	19,20	
Potamorhina	P. altamazonica	Negro and Solimões River/AM	102	106	2m+2sm+98a	5a/qt	pc/i	5a/qt	41a/qi	t	4,21
	P. latior	Negro and Solimões River/AM	56	112	52m+2sm+2st	25m/qt	pc/i	25m/qt	4m/qt	t/ITS 18 pairs	4,21
	P. pristigaster	Negro and Solimões River/AM	54	108	42m+12sm	25m/qt	pc	–	–	–	4
	Negro and Solimões River/AM	54	108	44m+10sm	5m/qt	pc/t	5m/qt	4m/qt	t/ITS 1 pair	21	
	P. squamoralevis	Paraná River/AR	102	116	14m+88a	q/i	pc	–	–	–	11
Psectrogaster	P. amazonica	Araguaia River/MT	54	108	44m+10sm	17m/qt	–	–	–	–	16
	P. cuiviventricis	Miranda River/MS	54	108	42m+12sm	20m/qt	pc	–	–	–	7
	Paraná River/AR	54	108	54m/sm	q/i	pc/t	–	–	–	11	
	P. falcata	Araguaia River/PA	54	108	40m+14sm	13m/qt	pc/t	13m/qt	24sm/pi	t/ITS 15 pairs	22
	P. rutiloides	Negro and Solimões River/AM	54	108	42m+12sm	9m/qt	–	–	–	3	
	Catalão Lake/AM	54	108	46m+8sm	16m/qt	pc/i	16m/qt	5m/qt 22am/qi	t/ITS 18 pairs	22	
Species	Locality	2n	FN	Karyotype formula	Ag-NOR pair / position	C Banding	rDNA 18S Pair / position	rDNA 5S Pair / position	Telomere	Reference	
---------------------	---------------------------	----	----	-------------------	------------------------	-----------	-------------------------	-------------------------	-----------	-----------	
Steinichthysina											
S. amazonica	Araguaia River/GO	54	108	42m+12sm	2m23sm/qt	pc/t	–	–	–	16	
S. biornata	Forquetinha River/RS	54	108	54m/sm+B	3m/qt	pc/t	4crom/qt	–	–	19, 20	
S. brevipinna	Miranda River/MS	54	108	46m+6sm	17m/qt	c/t	–	–	–	7	
S. conspersa	Paraná River/AR	54	108	54m/sm	15m/qt	pc/t	–	–	–	11	
S. elegans	Paraguai River/MS	54	108	54m/sm	2m/qi	–	–	–	–	2	
S. gracilis	Paraná River/AR	54	108	54m/sm	2m/qt	pc/t	–	–	–	11	
S. cf guentheri	São Francisco River/AC	54	108	54m/sm	24pt	pc/t	–	–	–	9	
S. insculpta	Mogi-Guaçu River/SP	54	108	54m/sm	25/pt	–	–	–	–	2	
S. leucisca	Mogi-Guaçu River/SP	54	108	54m/sm	25/pt	–	–	–	–	2	
S. lenicua	Mogi-Guaçu River/SP	54	108	54m/sm	25/pt	–	–	–	–	2	
S. leucisca	Mogi-Guaçu River/SP	54	108	54m/sm	25/pt	–	–	–	–	2	

Table 1 - Cont.

1- Venere and Galetti (1985); 2- Venere and Galetti (1989); 3- Feldberg et al. (1992); 4- Feldberg et al. (1993); 5- Oliveira and Foresti (1993); 6- Martins et al. (1996); 7- Navarrete and Júlio Jr (1997); 8- Venere et al. (1999); 9- Carvalho et al. (2001); 10- Fenocchio et al. (2003); 11- Brassesco et al. (2004); 12- De Rosa et al. (2006); 13- Gravena et al. (2007); 14- De Rosa et al. (2007); 15- Teribele et al. (2008); 16- Venere et al. (2008); 17- De Rosa et al. (2008); 18- Oliveira (2010); 19- Sampaio et al. (2011); 20- Sampaio et al. (2016); 21- Pinheiro et al. (2016); 22- Present study.
Table 2 - Cytogenetic data of fish species from Curimatidae family analyzed in this study. M= male; F= female; ?= Unknown sex; 2n= diploid number; FN= fundamental number; Ag-NOR= nucleolar organizer regions; rDNA= ribosomal DNA; m= metacentric; sm= submetacentric; p= short arm; q= long arm; t= terminal; i= interstitial.

Species	Sex	Locality / Coordinates	2n	FN	2n	18S rDNA Pair / Position	5S rDNA Pair / Position	Ag-NOR Pair / Position
Curimatella meyeri	4	Catalão lake, AM	54	108	108	9m/pt	16m/pt	10m/pt
Curimatella inornata	2	Araguaia river, PA	25	54	54	6m/pt	26m/pt	9m/pt
Curimatella dorsalis	4	Catalão lake, AM	54	108	108	9m/pt	16m/pt	10m/pt
Psectrogaster rutiloides	10	Catalão lake, AM	54	108	108	9m/pt	16m/pt	10m/pt

Ribosomal DNA (rDNA) 18S, 5S, and telomeric probes were amplified by Polymerase Chain Reaction (PCR) using the following primers: 18Sf (5’-CCGCTTTTGTTGACTCTTGAT-3’) and 18Sr (5’-CCGAGGACCTACTAAACCA-3’) (Gross et al., 2010), 5Sf (5’-TAC GCC CGA TCT CGT CGG ATC) and 5Sr (5’-CAGGCT GTG ATG GCC GTA AGC-3’) (Martins and Galetti Jr., 1999), (TTAGGG) 5 and (CCCTAA) 5 (Ijdo et al., 1991). Probes were labeled using nick-translation with biotin-14-dATP (Biotin Nick Translation Mix; Invitrogen) for SS rDNA and digoxigenin-11-dUTP (Dig-Nick Translation Mix; Roche) for 18S rDNA and telomere, following the recommendations of the manufacturer.

FISH followed Pinkel et al. (1986), with modifications. The slides with chromosome preparations were denatured in 70% formamide/2x SSC at 70 °C, pH 7, and dehydrated in 100% ethanol. Then, 20 μL of hybridization mix (100 ng of each probe, 100% formamide, 20x SSC buffer, and 10% dextran sulfate) were placed on each slide, being hybridized at 37 °C for 24 h in a humid chamber, containing distilled water. Chromosomes were counterstained with DAPI (1.2 μg/mL) in an antifade solution (Vector, Burlingame, CA, EUA).

At least 30 metaphase spreads of each individual were analyzed to confirm the diploid number and karyotype structure. The chromosomes were classified as metacentric (m) and submetacentric (sm) (Levan et al., 1964).

The six species analyzed presented 2n=54 and FN=108 (Fundamental number) (Figure 1, Table 2), it is highlighted that the karyotype of Psectrogaster falcata is presented here for the first time. CH was observed in pericentromeric blocks in all chromosomes of the six species, except in pairs 5 and 18 of P. falcata. Furthermore, additional blocks located in the terminal portions of several chromosomes of the six species were also observed. C. meyeri showed interstitial blocks in the long arms of pair 5; and pairs 2, 19, and 21 in P. rutiloides (Figure 1).

Five species presented NOR in only one chromosome pair in the terminal portion of the short arms: C. inornata, P. falcata, and P. rutiloides (pairs 20, 13, and 16, respectively), and in the end of the long arms in C. dorsalis and C. meyeri (pairs 2 and 9, respectively). C. vittata exhibited NORs in two chromosome pairs (multiple NORs) in the terminal portion of the long arms (pairs 20 and 21). The six species showed the NORs colocated with heterochromatic blocks (Figure 1, box Ag-NOR).

The rDNA mapping corroborates the NORs in all the species studied, including an additional site observed in the end of the short arm of pair 7 in C. meyeri, which is also colocalized to the constitutive heterochromatin (Figure 2, 18S). The SS rDNA sequences mapping revealed a species-specific pair with interstitial signals: pair 9 in C. inornata, pair 25 in C. vittata, pair 2 in C. dorsalis, pair 26 in C. meyeri, and pair 24 in P. falcata. P. rutiloides presented SS sites in two pairs: pair 5 in the terminal portion of the short arm and interstitial in pair 22. C. dorsalis showed synteny of 5S and 18S (Figure 2). Telomeric sequences (TTAGGG), were located in the terminal region of all chromosomes of the six species. Additionally, interstitial telomeric sequences (ITSs) were observed in several chromosomes of Curimatella and Psectrogaster species, with some conspicuous blocks (Figure 2).
Chromosomal evolution of the family Curimatidae was defined as being highly conservative chromosome morphology and diploid number: $2n=54$ m-sm, $FN=108$ for the majority of the species (Table 1). These traits, considered plesiomorphic for the family, were also evidenced in the species analyzed here in. According to Oliveira et al. (1988) and De Oliveira et al. (2009), this conservative chromosomal structure may be related to the ecological characteristics of these fishes, that is, high vagility and large shoal formation, allowing high rates of gene flow and genetic diversity (Landínez-García and Marquez, 2018). However, this apparent conservation is revealed when other cytogenetic markers, such as repetitive DNA sequences (e.g., ribosomal and telomeric) are applied.

Curimatids, in general, have a large amount of HC, and in *Psectrogaster* species for example, pericentromeric and terminal blocks were observed in several chromosome pairs (Figure 1). Beyond that, large heterochromatic blocks are often coincident or adjacent to the NORs, with interspecific

Figure 1. Karyotypes of the species of the Curimatidae family analyzed in conventional Giemsa stain (left), C banding (right) and nucleolar organizer regions (NOR, box). Scale bar=10μm.
and interpopulation differences, both in the number of loci (single or multiple NORs) and in the chromosomal location/position in the karyotype (Table 1), as seen in the present study as well as in previous studies (Feldberg et al., 1992; Navarrete and Júlio-Júnior, 1997; Brassesco et al., 2004; Venere et al., 2008). These differences may be related to the
repetitive and highly transcribed structure of rDNA, where the number of copies might vary owing to rearrangements of the chromosomal microstructure, such as duplications, translocations and/or inversions (Symonová et al., 2013; Goffová and Fajkus, 2021).

The mapping of the 18S rDNA sequence confirmed Ag-NOR in all species with an additional site in C. meyeri, similar situation also reported by Sampaio et al. (2016) in Steindachnerina biornata. This additional site might be related to the lack of transcriptional activity, which depends on cell activity (Rosa et al., 2012), or simply associated with the presence of pseudogenic rDNA variants (Gong et al., 2021).

The 5S rDNA localization in interstitial region, ranging from two to four chromosomes, is a pattern found in most curimatids corroborated in the present study. However, markings in terminal chromosomal regions have also been reported in this family (Pinheiro et al., 2016; present study), again evidencing the occurrence of non-Robertsonian rearrangements in chromosome microstructure of these species. The location of 18S and 5S rDNA in different chromosome pairs is a trait found in all curimatid species (Table 1). Interestingly, Curimatella dorsalis seems to be the first case to show synteny between these rDNAs in curimatids, which may have arisen independently during non-Robertsonian rearrangements (Symonová et al., 2013), demonstrating the dynamic nature of the 18S and 5S rDNA sites, prone to recombination events. Synteny between 18S and 5S rDNA is an atypical situation, including for the superfamly Anostomoidae (Anostomidae, Chilodontidae, Prochilodontidae and Curimatidae), which has been reported only in lineages derived of the Anostomidae (De Barros et al., 2017; Dulz et al., 2019), Prochilodontidae (Vicari et al., 2006; Terencilio et al., 2012; Voltolin et al., 2013) and Curimatidae families (present study).

Chromosome mapping of telomeric sequences revealed a high degree of chromosome structure variation in Curimatella and Pscectrogaster species, presenting ITSs in several chromosome pairs. ITS has been observed in several vertebrate species and is classified into short ITS (s-ITS) and heterochromatic ITS (Het-ITS) (Bolzán, 2017). In the case of the curimatids here analyzed, we classify the ITSs as Het-ITSs, since the signals are colocalized with heterochromatic blocks. Many authors relate the presence of Het-ITSs to ancestral chromosomal fusion events and are generally associated with a reduction in diploid number (Meyne et al., 1990; Rosa et al., 2012; Schneider et al., 2013; Sember et al., 2015). Similarly, there are reports of Het-ITSs in species that present the conserved karyotype (Metcalfe et al., 2004; Di-Nizio et al., 2020), as observed in the present study, considering that 2n=54 is the ancestral diploid number for the whole superfamly Anostomoidae.

Thus, the appearance of these Het-ITSs may be related to other mechanisms, such as (1) occurrence of pericentric inversions or translocations with the insertion of s-ITSs, followed by amplification of these regions and subsequent heterochromatinization; (2) transpositions, mediated by transposable elements, which are internally reinserted into the chromosomes and undergo an amplification process; and, (3) telomeric sequences (TTAGGG), would constitute the main repetitive motif of centromeric DNA, as observed in amphibians and marsupials (Meyne et al., 1990; Paço et al., 2012; Bolzán, 2017; Clemente et al., 2020).

Regardless of the mechanism that gave rise to Het-ITSs in the curimatids here analyzed, these sequences are an important component of the karyotype diversification. As observed in another genus of Curimatidae, in Potamorhina ITSs are involved in multiple chromosomal fissions in the ancestor of the species P. latior (2n=56, 18 pairs with ITS), P. altamazonica (2n=102), and P. squamoralevis (2n=102) (Pinheiro et al., 2016), as suggested in molecular phylogeny of Dorini et al. (2020). Thus, the Het-ITSs present in Curimatella and Pscectrogaster can signal the presence of “hot spots” for the occurrence of recombination, which according to Bolzán (2017), can lead to new karyotypes and even new species.

Thus, despite the conservative diploid number for most species of the Curimatidae (2n=54), our data highlights a high level of variation in repetitive DNA sequences among species, suggesting that additional integrative analyzes, involving the mapping of other repetitive sequences classes as well as investigation in other species/populations of curimatids, will produce a more complete picture of the chromosomal evolution of this family.

Acknowledgments
We are grateful to Dr. Jansen Zuanon for the identification of the fishes. This study was supported by INPA and the Graduate Program in Genetics, Conservation, and Evolutionary Biology: Receiving support from two projects: “The Center for studies of the adaptations of the aquatic biota of Amazonia – ADAPTA (INCT/CNPq/FAPEAM 573976/2008-2)” and “Dynamics and Rex-type transposable elements in Amazonian fish during environmental change – Nº. 002/2018 – FAPEAM/UNIVERSAL AMAZONAS”. Bench fees of the scientific productivity grant of Eliana Feldberg, CNPq - Process Nº 302421/2014-9. FAPEAM/SEDECT/GOVERNO DO ESTADO DO AMAZONAS - EDITAL PAPAC 005/2019. This paper was translated for proper English language by qualified professionals from the AGS tradução team.

Conflict of Interest
The authors declare no conflict of interest.

Author Contributions
JNM and EF conceived the study and collected the fish; JNM, VSPF, and EF analyzed the karyotype data; JNM, VSPF, RMF, PFV, and EF conducted the experiments, supervised the study and contributed to the preparation of the manuscript. All the authors revised and approved the final manuscript.

References
Bolzán AD (2017) Intersitial telomeric sequences in vertebrate chromosomes: Origin, function, instability and evolution. Mutat Res Rev Mutat Res 773:51-65.
Brassesco MS, Pastori MC, Roncati HA and Fenocchio AS (2004) Comparative cytotogenetic studies of Curimatidae (Pisces, Characiformes) from the middle Paraná River (Argentina). Genet Mol Res 3:293-301.
Carvalho ML, Oliveira C and Foresti F (2001) Cytogenetic analysis of three species of the families Characidae and Curimatidae (Teleostei, Characiformes) from the Acre River. Chromosome Sci 5:91-96.
Karyotype variability in curimatids

Cioffi MB and Bertollo LAC (2012) Chromosomal distribution and evolutionary repetitive DNAs in fish. In: Garrido-Ramos MA (eds), Repetitive DNA. Karger, Basel, vol. 7, pp. 197-221.

Clemente L, Mazzeneli S, Bellavita EP, Augstenová B, Auer M, Prachag P, Protiva T, Velenský P, Wagner P, Fritz U et al. (2020) Intersitial telomeric repeats are rare in turtles. Genes 11:657.

Da Rosa R, Rubert M, Martins-Santos IC and Giuliano-Caetano L (2012) Evolutionary trends in Hoploerythrus untitaeniatus (Agassiz 1829) (Characiformes, Erythriniidae). Rev Fish Biol Fisheries 22:467–475.

De Barros LC, Galetti Jr PM and Feldberg E (2017) Mapping 4S and 5S ribosomal genes in chromosomes of Anostomidae fish species (Ostariophysi, Characiformes) from different Amazonian water types. Hydrobiologia 789:77-89.

De Oliveira RR, Feldberg E, Dos Anjos MB and Zuanon J (2009) Karyotype evolution in Curimatidae (Teleostei, Characiformes). Cytogenet Genome Res 160:539–553.

Di-Nizo CB, Ferguson-Smith MA and Silva MJDJ (2020) Extensive genomic reshuffling involved in the karyotype evolution of genus Cerradomys (Rodentia: Sigmodontinae: Oryzomyini). Genet Mol Biol 43:e20200149.

Dorini BF, Ribeiro-Silva LR, Foresti F, Oliveira C and Melo BF (2020) Identification and description of distinct B chromosomes in Cyphocharax modestus (Characiformes, Characidae). Cytologia 62:241–247.

Dulz TA, Lorscheider CA, Nascimento VD, Noleto RB, Moreira-Filho O, Nagaroto V and Vicari MR (2019) Comparative cytogenetics among four curimatids from the Paraguay basin, Brazil (Pisces: Cyphocharacidae). Biochem Biophys Res Commun 534:233-239.

Eldridge MDB and Johnston PG (2004) Mapping the distribution of the telomeric sequence (T2AG3) n in the 2n= 14 ancestral marsupial complement and in the macropodines (Marsupialia: Macropodidae) by fluorescence in situ hybridization. Chromosome Res 12:405-414.

Feldberg E, Porto JIR and Bertollo LAC (1992) Karyotype evolution in Curimatidae (Teleostei, Characiformes) of the Amazon region. I. Studies on the genera Curimata, Pseuodogaster, Steindachnerina and Curimatella. Rev Bras Genet 15:369–383.

Feldberg E, Porto JIR, Nakayama CM and Bertollo LAC (1993) Karyotype evolution in Curimatidae (Teleostei, Characiformes) from the Amazon region. II. Centric fissions in the genus Potamorhina. Genome 36:372–376.

Fenocchio AS, Pastori MC, Roncati HA, Moreira-Filho O and Bertollo LAC (2003) A cytogenetic survey of the fish fauna from Argentina. Cytologia 2:197–204.

Ferreira M, De Jesus IS, Viana PF, Garcia C, Matoso DA, Cioffi MB, Bertollo LAC and Feldberg E (2020) Chromosomal Evolution in Aspredinidae (Teleostei, Siluriformes): Insights on Intra- and Interspecific Relationships with Related Groups. Cytogenet Genome Res 160:539–553.

Fricke R, Eschmeyer WN and Van der Laan R (2021) Eschmeyer’s catalog of fishes: Genera, Species, References, http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp (accessed 8 March 2021).

Goffová I and Fajkus J (2021) The rDNA loci - intersections of replication, transcription, and repair pathways. Int J Mol Sci 22:1302.

Gold JR, Li C, Shipley NS and Powers PK (1990) Improved methods for working with fish chromosomes with a review of metaphase chromosome banding. J Fish Biol 37:563-575.

Gong L, Shi W, Yang M and Luo H (2021) Variations in the conserved 18S and 5.8S reveal the putative pseudogenes in 18S-ITS1-5.8S rDNA of Cynoglossus melampus (Pleuronectiformes: Cynoglossidae). Biochem Biophys Res Commun 534:233-239.

Gravena W, Teribeke R, Giuliano-Caetano L and Dias AL (2007) Occurrence of B chromosomes in Cyphocharax modestus (Fernández-Yépez, 1948) and Steindachnerina insculpta (Fernández-Yépez, 1948) (Characiformes, Curimatidae) from the Tiquia River basin (Paraná State, Brazil). Braz J Biol 67:905-908.

Gross MC, Schneider CH, Valente GT, Martins C and Feldberg E (2010) Variability of 18S rDNA locus among Symphysodon fishes: chromosomal rearrangements. J Fish Biol 76:1117-1127.

Howell WM and Black DA (1980) Controlled silver staining nucleolus organizer region probes in the smooth koala's mitotic chromosomes. Genetica 56:21-27.

Ijdo JW, Wells RA, Baldini A and Reeder ST (1991) Improved Propidium iodide for making heterochromatin more evident in the C-banding technique. Biotech Histochem 87:433–438.

Landinez-Garcia RM and Marquez EJ (2018) Microsatellite loci development and population genetics in Neotropical fish Curimata mivartii (Characiformes: Curimatidae). PeerJ 6:e5959.

Levan A, Fredga K and Sandberg AA (1964) Nomenclature for centromeric position of chromosomes. Heredity 52:201-220.

Lui RL, Blanco DR, Moreira-Filho O and Margarido VP (2012) Propidium iodide for making heterochromatin more evident in the C-banding technique. Biotech Histochem 87:433–438.

Martins C, Giuliano-Caetano L and Dias AL (1996) Occurrence of a B chromosome in Cyphocharax modestus (Characiformes, Curimatidae). Cytobios 85:247–253.

Martins C and Galetti PM Jr (1999) Chromosomal localization of 5S rDNA genes in Leporinus (Characiformes, Characidae). Chromosome Res 7:363-367.

Metcalfe CJ, Eldridge MDB and Johnston PG (2004) Mapping the distribution of the telomeric sequence (T2AG3) n in the 2n= 14 ancestral marsupial complement and in the macropodines (Marsupialia: Macropodidae) by fluorescence in situ hybridization. Chromosome Res 12:405-414.

Meyne J, Baker RJ, Hobart HH, Hsu TC, Ryder OA, Ward OG, Wiley JE, Wurster-Hill DH, Yates TL and Myozis RK (1990) Distribution of non-telomeric sites of the (TTAGGG) n telomere detection using a telomere repeat probe (TTAGGG) n generated by PCR. Nucleic Acids Res 19:4780.

Nocera MC, Schneider CH, Chaves R and Adega F (2012) The karyotypes of four curimatids from the Paraguay basin, Brazil (Pisces: Curimatidae). Cytogenet Genome Res 141:150-159.

Oliveira RM (2010) Citogenética clássica e molecular de três espécies de curimatídeos, com ênfase no cromossomo B de Cyphocharax nagelii (Characiformes, Curimatidae). D. Sc. Thesis, Universidade Federal de São Carlos, São Carlos, 137 p.

Paço A, Chaves R, Vieira-da-Silva A and Adegá F (2012) The involvement of repetitive sequences in the remodelling of karyotypes: the Phodopus genomes (Rodentia, Cricetidae). Micron 46:27-34.
Pinheiro VS, Carvalho ND, Carmo EJ, Schneider CH, Feldberg E and Gross MC (2016) Karyoevolution in Potamorhina (Cope, 1878) (Ostariophysi, Curimatidae): Using repetitive DNA for the elucidation of genome organization. Zebraphy 13:118-31.

Pinkel D, Straume T and Gray JW (1986) Cytogenetic analysis using quantitative, high sensitivity, fluorescence hybridization. Proc Natl Acad Sci U S A 83:2934-2938.

Rosa KO, Ziemniczak K, De Barros AV, Nogaroto V, Almeida MC, Cestari MM, Artoni RF and Vicari MR (2012) Numeric and structural chromosome polymorphism in Rineloricaria lima (Siluriformes: Loriciaridae): Fusion points carrying SS rDNA or telomere sequence vestiges. Rev Fish Biol Fish 22:739-749.

Sambrook J, Fritsch EF and Maniatis T (1989) Molecular cloning: A laboratory manual. 2nd edition. Cold Springs Harbor Laboratory Press, Cold Springs Harbor, 1546 pp.

Sampaio TR, Gravena W, Gouveia JG, Giuliano-Caetano L and Dias AL (2011) B microchromosomes in the family Curimatidae (Characiformes): Mitotic and meiotic behavior. Comp Cytogenet 5:301–313.

Sampaio TR, Pires LB, Venturelli NB, Usso MC, Rosa R and Dias AL (2016) Evolutionary trends in the family Curimatidae (Characiformes): Inferences from chromosome banding. Comp Cytogenet 10:77-95.

Schneider CH, Gross MC, Terencio ML, Artoni RF, Vicari MR, Martins C and Feldberg E (2013) Chromosomal evolution of Neotropical cichlids: The role of repetitive DNA sequences in the organization and structure of karyotype. Rev Fish Biol Fish 23:201-214.

Sember A, Bohlen J, Šlechtová V, Altmanová M, Symonová R and Šlezák P (2015) Karyotype differentiation in 19 species of river loach fishes (Nemacheilidae, Teleostei): Extensive variability associated with rDNA and heterochromatin distribution and its phylogenetic and ecological interpretation. BMC Evol Biol 15:251.

Sumner AT (1972) A simple technique for demonstrating centromere heterochromatin. Exp Cell Res 75:304–306.

Symonová R, Majtáňová Z, Sember A, Staaks GB, Bohlen J, Freyhof J, Rábová M and Šlezák P (2013) Genome differentiation in a species pair of coregonine fishes: An extremely rapid speciation driven by stress-activated retrotosposons mediating extensive ribosomal DNA multiplications. BMC Evol Biol 13:42.

Terencio ML, Schneider CH, Gross MC, Vicari MR and Feldberg E (2012) Stable karyotypes: A general role for the fish of the family Prochilodontidae? Hydrobiologia 686:147-156.

Teribele R, Gravena W, Carvalho K, Giuliano-Caetano L and Dias AL (2008) Karyotypic analysis in two species of fishes of the family Curimatidae: Ag-NO3, CMA3 and FISH with 18S probe. Caryologia 61:211–215.

Vicari MR, Almeida MCD, Bertollo LAC, Gross MC and Feldberg E (2006) Cytogenetic analysis and chromosomal characteristics of the polymorphic 18S rDNA in the fish Prochilodus lineatus (Characiformes, Prochilodontidae). Genet Mol Biol 29:621–625.

Volkolin TA, Penitente M, Mendoça BB, Senhorini JA, Foresti F and Porto-Foresti F (2013) Karyotypic conservatism in five species of Prochilodus (Characiformes, Prochilodontidae) disclosed by cytogenetic markers. Genet Mol Biol 36:347-352.

Associate Editor: Maria José de Jesus Silva

License information: This is an open-access article distributed under the terms of the Creative Commons Attribution License (type CC-BY), which permits unrestricted use, distribution and reproduction in any medium, provided the original article is properly cited.