ПОДХОДЫ К АНАЛИЗУ ЭФФЕКТИВНОСТИ СРЕДСТВ ЗАЩИТЫ ОРГАНОВ ДЫХАНИЯ КАК МЕР СНИЖЕНИЯ РИСКА НАРУШЕНИЯ ЗДОРОВЬЯ ВО ВРЕМЯ ПАНДЕМИИ COVID-19

Е.А. Шашина1, Т.С. Исютина-Федотова1, В.В. Макарова1, О.А. Груздева1,2, О.В. Митрохин1

1Первый Московский государственный медицинский университет имени И.М. Сеченова, Россия, 119991, г. Москва, ул. Трубецкая, 8, стр. 2
2Филиал ФБУЗ «Центр гигиены и эпидемиологии в городе Москве» в Центральном административном округе города Москвы, Россия, 123317, г. Москва, Красногвардейский бульвар, 17, стр. 1

Использование средств защиты органов дыхания (СЗОД) являлось важнейшей мерой сдерживания распространения коронавирусной инфекции.

В связи с этим осуществлен анализ эффективности разнообразных СЗОД, используемых населением во время пандемии COVID-19. Проведен обзор СЗОД по стандартам разных стран по их изготовление и качество, проанализирован Государственный реестр медицинских изделий Федеральной службы по надзору в сфере здравоохранения, а также рынок доступных населению средств защиты органов дыхания.

СЗОД отличаются большим разнообразием по таким показателям, как эффективность бактериальной фильтрации, количество слоев и состав материала, из которых они изготовлены, степень пропускания, размер (детские/взрослые), условия применения (время ношения, возможность повторного использования и обеззараживания). Представленная при реализации средств защиты населения информации крайне скудна и противоречива (нет понимания, что скрывается за названиями масок, в какой мере они обеспечивают защиту органов дыхания). Число средств защиты органов дыхания, зарегистрированных в российском Государственном реестре медицинских изделий Федеральной службы по надзору в сфере здравоохранения, составляет лишь 24 % от общего числа реализуемых населению изделий. Учитывая многообразие характеристик масок, предложена классификация СЗОД по эффективности защиты от инфекций, распространяемых воздушно-капельным путем. Наиболее эффективными являются респираторы FFP3/KN100/N99/N100. Средней эффективностью обладают респираторы FFP2/KN95/N95/DS/DL2/KF94. Эффективность ниже среднего у респираторов FFP1 и медицинских масок – нетканых типа II R, II, I, тканевых марлевых масок (указаны в порядке убывания эффективности). Низкая и крайне низкая соответственно – у различных немедицинских масок ( нетканых, тканевых хлопчатобумажных и синтетических) и лицевых щитков.

При производстве и реализации СЗОД отсутствуют четкие критерии эффективности защиты. Нет единого подхода к понятиям «медицинская» и «немедицинская» маска. Большая часть реализуемых населению средств защиты не зарегистрирована в Государственном реестре медицинских изделий Федеральной службы по надзору в сфере здравоохранения. Предложенная классификация позволяет выработать унифицированный подход к предоставлению информации об изделии потребителям.

Ключевые слова: пандемия, COVID-19, средства защиты органов дыхания, маска медицинская, маска немедицинская, эффективность бактериальной фильтрации, Государственный реестр медицинских изделий, рынок продаж средств защиты.

© Шашина Е.А., Исютина-Федотова Т.С., Макарова В.В., Груздева О.А., Митрохин О.В., 2021
Шашина Екатерина Андреевна — кандидат медицинских наук, доцент кафедры общей гигиены (e-mail: shashina_e@staff.sechenov.ru; тел.: 8 (499) 248-51-55; ORCID: http://orcid.org/0000-0002-5294-6813).
Исютина-Федотова Татьяна Сергеевна — кандидат медицинских наук, доцент кафедры общей гигиены (e-mail: isyutina-fedotkova_t@staff.sechenov.ru; тел.: 8 (499) 248-51-55; ORCID: https://orcid.org/0000-0001-8423-9243).
Макарова Валентина Владимировна — кандидат медицинских наук, доцент кафедры общей гигиены (e-mail: makarova_v_v@staff.sechenov.ru; тел.: 8 (499) 248-51-55; ORCID: http://orcid.org/0000-0002-7213-4265).
Груздева Ольга Александровна — доктор медицинских наук, главный врач (e-mail: fguzmosca@mail.ru; тел.: 8 (499) 256-71-15; ORCID: http://orcid.org/0000-0002-1244-1925).
Митрохин Олег Владимирович — доктор медицинских наук, профессор, заведующий кафедрой общей гигиены (e-mail: mitrokhin_o_v@staff.sechenov.ru; тел.: 8 (499) 248-53-85; ORCID: http://orcid.org/0000-0002-6403-0423).
Пандемия коронавирусной инфекции, начавшаяся в декабре 2019 г. в г. Ухань китайской провинции Хубэй, в течение 2020 г. охватила практически все население земного шара и превратилась в глобальную угрозу всему человечеству [1]. По данным Всемирной организации здравоохранения (ВОЗ) по состоянию на 10 февраля 2021 г. во всем мире зарегистрировано 106 555 206 подтвержденных случаев COVID-19, в том числе 2 333 446 случаев смерти, в России – 4 012 710 и 78 134 соответственно [2].

Усилия многочисленной армии ученых увенчались созданием вакцин против COVID-19 и позволили начать массовую иммунизацию населения. Однако по прогнозам ВОЗ коллективный иммунитет к коронавирусу начнет формироваться в мире только к концу 2021 г. [3].

Поскольку основными путями передачи COVID-19 являются воздушно-капельный и контактный, важным становится внедрение неспецифических профилактических мероприятий, к которым относятся социальное дистанцирование, отслеживание контактов, карантин, изоляция, гигиена рук [4–7]. Среди этих мероприятий использование средств индивидуальной защиты оказалось одной из наиболее эффективных мер защиты от передачи вируса воздушно-капельным путем [8, 9].

Всемирная организация здравоохранения, основываясь на многочисленных научных исследованиях, рекомендовала использовать маски для лица в качестве первоочередной меры в борьбе с распространением COVID-19. И в 2021 г. ВОЗ рассматривает ношение масок населением как важнейшую меру сдерживания и ликвидации пандемии и указывает на необходимость носить маску внутри и вне помещений при невозможности соблюдения безопасного расстояния в 1 м [10].

Мasks позволяют контролировать источники инфекции, предотвращая передачу вируса и уменьшая тем самым риск инфицирования людьми друг друга. Многочисленные научные исследования, в том числе с применением методов математического моделирования, показывают, что даже незначительное уменьшение индивидуальной передачи вируса может привести к значительному сокращению его распространения среди населения [11–14].

Ношение масок относится к числу профилактических мер, которые могут быть быстро и эффективно реализованы с минимальными затратами. При этом важным моментом, влияющим на обеспечение населения масками, является их повсеместная доступность для населения.

В большинстве субъектов Российской Федерации в соответствии с постановлениями главного государственного санитарного врача, а также местных органов власти введен обязательный масочный режим в местах массового пребывания людей, общественном транспорте, лифтах, на всех объектах, связанных со сферой обслуживания, в учреждениях здравоохранения, образования1.

Кроме того, риск возникновения биологических угроз будет сохраняться в будущем (мутации изученных и появление новых микробов), поэтому проблема обеспечения населения качественными средствами защиты органов дыхания сохраняется.

Цель исследования — анализ эффективности средств защиты органов дыхания, используемых населением во время пандемии COVID-19. Для достижения поставленной цели решались следующие задачи: обзор средств защиты органов дыхания (СЗОД), используемых в качестве мер неспецифической профилактики во время пандемии; анализ государственного реестра медицинских изделий и организаций (индивидуальных предприимателей) Федеральной службы по надзору в сфере здравоохранения; анализ рынка продаж средств защиты органов дыхания, доступных населению России; разработка классификации СЗОД.

Материалы и методы. Обзор средств защиты органов дыхания проводился по российским, межгосударственным, европейским, китайским и амERICANским стандартам; санитарным правилам и постановлениям Государственной санитарной службы, Федеральной Федерации; методическим рекомендациям Министерства здравоохранения России, ВОЗ и центров по контролю и профилактике США о профилактике коронавирусной инфекции и использовании средств защиты органов дыхания во время пандемии. Анализ рыночных предложений различных производителей средств защиты органов дыхания для населения осуществлен на примере сервиса для выбора товаров «Яндекс. Маркет».

Результаты и их обсуждение. Обзор средств защиты органов дыхания, используемых в качестве мер неспецифической профилактики во время пандемии. В данную пандемию населением используются самые разнообразные СЗОД. Фильтрующие лицевые полумаски — это респираторное защитное устройство, характеризующееся очень плотной посадкой на лице и предназначенные для защиты органов дыхания как от твердых, так и от жидких аэрозолей. Респираторы с фильтрующей маской (FFP (Европейский Союз), N (США), KN (Китай), DS/DL (Япония) и KF (Южная Корея)) состоят из нескольких слоев (не менее шести), как правило, нетканых материалов из полиэтилена. Среди этих слоев наиболее важным является слой, полученный методом выдувания из расплава — прочность которых в многократном использовании сохраняется.

1 СП 3.1.3597-20. Профилактика новой коронавирусной инфекции (COVID-19) [Электронный ресурс] // КонсультантПлюс. – URL: http://www.consultant.ru/document/cons_doc_LAW_353494/e4deaf074c290821400cfad27f87d23d667c4cfd/ (дата обращения: 03.02.2021); О дополнительных мерах по снижению рисков распространения COVID-19 в период санитарно-эпидемиологического подъема заболеваемости острыми респираторными инфекциями и гриппом: Постановление Главного государственного санитарного врача РФ от 16.10.2020 // Гарант: информационно-правовое обеспечение. – URL: http://base.garant.ru/74811008/ (дата обращения: 03.02.2021).
Подходы к анализу эффективности средств защиты органов дыхания …

ный нетканый материал, в котором волокна могут складываться в стопку и создавать трехмерную сеть с пористостью 90%, что приводит к высокой воздухопроницаемости [15]. Таким образом, респираторы позволяют достигать баланса фильтрации и воздухопроницаемости. Респираторы могут быть с клапаном и без клапана выдоха, одноразовые (NR) или с возможностью повторного использования (R).

Респираторы класса FFP1 имеют достаточно низкую степень фильтрации. Респираторы класса FFP2/N95 и FFP3 рекомендуются ВОЗ, Минздравом России и центрами по контролю и профилактике заболеваний в США (CDC) в качестве средств индивидуальной защиты для медицинских работников, занятых в непосредственном оказании помощи пациентам с COVID-19, в условиях процедур, которые сопровождаются образованием вирусных аэрозолей [16, 17].

В России требования к респираторам определяются государственным стандартом 3.

Лицевые щитки представляют собой защитный экран, выполненный из прозрачного пластика, в виде закругленной по краям пластины с креплениями на голову. Они удобны в ношении, просты в очистке, способны снижать уровень автоконклюзии за счет предотвращения прикосновения носителя к лицу, эффективно защищают пользователя от прямого контакта с каплями жидкости, вследствие блокировки начального поступательного движения струи жидкости [18]. Однако выброшенные капли могут относительно легко перемещаться вокруг козырька и распространяться по большой площади в зависимости от условий окружающей среды [19].

ВОЗ рекомендует лицевые щитки в случае отсутствия лицевых масок для обеспечения комфортного общения с видимым выражением лица или для носения людьми, которым по каким-либо причинам не подходит медицинские маски (например, лицам с нарушениями психического здоровья, нарушениями зрения, страдающим глухотой или тугоухостью), а также детям [10].

Критерии отнесения продукции к медицинским изделиям утверждены рекомендацией Евразийской экономической комиссии 2. Этим документом определяется, что в случае, если продукция предназначена производителем для применения в медицинских целях, то она может относиться к медицинским изделиям. В противном случае маски и респираторы для защиты органов дыхания не относятся к медицинским изделиям, единые нормативные требования для них не установлены. Такая продукция не является объектом обязательного подтверждения соответствия 4.

Медицинская маска является средством защиты, которое закрывает нос и рот и обеспечивает барьер для минимизации прямой передачи инфекционных агентов между персоналом и пациентом 5.

Согласно определению ВОЗ, медицинские маски являются медицинским изделием, относятся к категории «средства индивидуальной защиты» и подлежат сертификации [10]. В США изготовление медицинских масок регулируется в соответствии с требованиями кодифицированного сборника основных постановлений и приказов органов федеральной исполнительной власти.

В России выделяют маски I и II типа, в зависимости от эффективности бактериальной фильтрации. Тип II можно разделить на два подтипа (II и IIR) в зависимости от устойчивости маски к брызгам. Медицинские маски типа I рекомендованы пациентам для снижения риска распространения инфекции, особенно при эпидемиях и пандемиях. Маски типа II преимущественно используются профессионалами в области здравоохранения в операционных или в иных медицинских помещениях с аналогичными требованиями. Маски типа IIR используются профессионалами в лабораториях и на производствах, где требуется полная стерильность, и в операционных для антисептической защиты пациента.

Для изготовления масок используют нетканый материал СМС (спанбонд / мельтблаун / спанбонд) и СС (спанбонд / спанбонд) или хлопчатобумажная марля. Последние используются для снижения риска инфицирования населения вне медицинских организаций. Медицинские маски являются одноразовыми медицинскими изделиями, которые рекомендуется менять не реже чем каждые 2–3 ч 6.

__________

2 Временные методические рекомендации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 9 (26.10.2020). – Министерство здравоохранения Российской Федерации. – 2020. – 235 с.

3 ГОСТ 12.4.294-2015. Средства индивидуальной защиты органов дыхания. Полумаски фильтрующие для защиты от аэрозолей [Электронный ресурс] // КОДЕКС: электронный фонд правовой и нормативно-технической документации. – URL: docs.cntd.ru/document/551663485 (дата обращения: 03.02.2021).

4 О Критериях отнесения продукции к медицинским изделиям в рамках Евразийского экономического союза: Рекомендация Коллегии ЕЭК от 12.11.2018 № 25 [Электронный ресурс] // КОДЕКС: электронный фонд правовой и нормативно-технической документации. – URL: docs.cntd.ru/document/551663485 (дата обращения: 03.02.2021).

5 Code of Federal Regulations (annual edition). Title 21 – Food and Drugs. Chapter I - food and drug administration, department of health and human services (continued). Subchapter H – Medical devices. Part 878 – General and plastic surgery devices [Электронный ресурс] // U.S. Food and Drug Administration. – URL: docs.cntd.ru/document/551663485 (дата обращения: 03.02.2021).

6 ГОСТ Р 58396-2019. Маски медицинские. Требования и методы испытаний [Электронный ресурс] // КОДЕКС: электронный фонд правовой и нормативно-технической документации. – URL: docs.cntd.ru/document/1200163559/ (дата обращения: 03.02.2021).

МР 3.1/3.5.0172/1-20. Рекомендации по применению средств индивидуальной защиты (в том числе многоразового использования) для различных категорий граждан при рисках инфицирования COVID-19: методические рекомендации. – М: Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека, 2020. – 17 с.

ISSN (Print) 2308-1155 ISSN (Online) 2308-1163 ISSN (Eng-online) 2542-2308 153
ВОЗ рекомендует носить медицинские маски в лечебных учреждениях, если не выполняются процедуры, сопровождающиеся образованием аэрозолей. При рассмотрении вопроса об использовании масок населением в быту лицам, принимающим решения, рекомендуется воспользоваться подходом на основе оценки рисков. Так, медицинские маски рекомендуются для ношения лицам старше 60 лет и лицам с сопутствующими заболеваниями при невозможности соблюдения безопасной дистанции не менее 1 м. Также лицам, осуществляющим уход либо совместно проживающим с людьми с предполагаемым или подтвержденным диагнозом COVID-19 и при нахождении в одном помещении с такими людьми, независимо от наличия симптомов инфекции [10].

Немедицинские маски являются санитарно-гигиеническими изделиями. Их изготавливают из различных тканых и нетканых материалов.

По требованиям ВОЗ немедицинские маски должны быть изготовлены не менее чем из трех слоев: внутренний слой из гидрофильного материала (например хлопок или смесовая ткань с хлопком); наружный слой из гидрофобного материала (например полиэстер, полиэстер или их смеси), который может защищать нос или рот пользователя от попадания загрязнителей; средний слой из гидрофобного синтетического нетканого материала, такого как полиэстер, либо из хлопка, который может улучшать фильтрующие свойства или удерживать капельные частицы. Маски можно повторно использовать после стирки в воде с моющими средством при температуре не ниже 60 °С, не реже одного раза в день [16].

Немедицинские маски рекомендованы ВОЗ для ношения населением в качестве барьерного средства для снижения риска распространения инфекций, передающихся воздушно-капельным путем, либо при нахождении в помещениях в случае неудовлетворительного качества вентиляции, независимо от соблюдения безопасной дистанции, либо на улице в случае невозможности соблюдения безопасной дистанции не менее 1 м [10].

Вместе с тем центры по контролю и профилактике заболеваний США рекомендуют населению в возрасте старше двух лет для защиты себя и окружающих в период пандемии носить самодельные и «промышленные» тканевые маски (минимум двухслойные) из хорошо вентилируемых материалов, а также банданы и шарфы-трубы (снуды). В холодное время года надевать шарф, дырявую маску или балаклаву поверх маски. Не рекомендуют использовать маски с клапаном (поскольку загрязненный воздух может выходить в окружающую среду при выдохе), респираторы (поскольку они должны быть зарегистрированы для медицинских работников) и лицевые щитки (поскольку их эффективность недостаточно изучена) [17].

Суммируя характеристики масок, изложенные выше, средства защиты органов дыхания можно объединить в следующие группы:

Респираторы:
– нетканые (пропилен), нестерильные, 6–8-слойные, взрослые разных размеров, с клапаном / без клапана.

Медицинские маски:
– нетканые (спанбонд / мельтблаун), одноразовые, с бактерицидным слоем или без: нестерильные 3-слойные (типа I и II), стерильные 4-слойные (типа IIR – с дополнительным брызгостойчивым слоем); – тканевые хлопчатобумажные (марля, марля / мадаполам), нестерильные: одноразовые 4-слойные, многоразовые 5-10-слойные.

Немедицинские маски: 1–4-слойные, нестерильные, взрослые разных размеров / детские; – нетканые (спанбонд / мельтблаун) одноразовые; – тканевые многоразовые: хлопчатобумажные (вафельная ткань, марля, бязь, миткаль), синтетические (неопрен, полиэстер / спандекс).

Лицевые щитки: многоразовые, взрослые / детские, пластиковые.

По эффективности фильтрации, которую устанавливают стандарты, средства защиты органов дыхания распределены следующим образом (табл. 1).

Анализ рынка продаж средств защиты органов дыхания в России. Как следует из проведенного обзора, маски различаются по составу, слоистости, плотности слоев, эффективности и режиму применения.

Изучены рыночные предложения различных производителей масок на примере сервиса для выбора товаров «Яндекс. Маркет». На сервисе по состоянию на декабрь 2020 г. продавалось 838 видов различных СЗОД, из них большинство являлось 3-слойными (табл. 2).

Наши попытки выяснить, сколько из представленных видов являются медицинскими изделиями, потерпели неудачу, так как невозможно понять, что производители масок вкладывают в понятие «медицинскaя» и «немедицинская» маска. Используются самые разнообразные названия масок: медицинская, защитная медицинская, маска-респиратор, маска-респиратор защитная, немедицинская, защитная немедицинская, гигиеническая, защитная гигиеническая, гигиеническая бытовая, марлевая гигиеническая, защитная, санитарно-гигиеническая и т.д.

При анализе Государственного реестра медицинских изделий и организаций (индивидуальных предпринимателей) Федеральной службы по надзору в сфере здравоохранения, осуществляющих производство и изготовление медицинских изделий, установлен 201 вид масок, имеющих регистрационное удостоверение (на декабрь 2020 г.). При этом все зарегистрированные виды масок подразделяются на медицинские маски и респираторы, однако не всегда указывается количество слоев, из которых изготовлено изделие (табл. 3).

Из данных, представленных в табл. 1 и 2, видно, что менее четверти (24 %) имеющихся на рынке изделий имеет регистрационное удостоверение (РУ)
Росздравнадзора и допущено к обращению на территории Российской Федерации.

В связи с пандемией в 2020 г. (на начальном этапе) была введена упрощенная схема регистрации, что привело к резкому увеличению количества зарегистрированных масок (табл. 4). По состоянию на декабрь 2020 г. 16 РУ отозвано.

Примечание: * – эффективность фильтрации в отношении частиц аэрозоля размером 0,3 мкм (частицы NaCl); ** – эффективность бактериальной фильтрации.

Таблица 1

| Вид маски                     | Эффективность фильтрации в % с указанием стандарта |
|-------------------------------|-----------------------------------------------|
| Респиратор FFP1/KN90*        | Не менее 80°                                 |
| Отсутствует                    |                                               |
| Респиратор FFP2/KN95/N95/DS/DL2/ KP94* | 95                |
| Отсутствует                    |                                               |
| Респиратор FFP3/KN100/N99/N100* | 97; 99            |
| Отсутствует                    |                                               |
| Мaska медицинская нетканая тип I* | Не менее 95          |
| Отсутствует                    |                                               |
| Мaska медицинская нетканая тип II и IR** | Не менее 98        |
| Отсутствует                    |                                               |
| Мaska немедицинская**        | Не менее 70°                                 |
| Отсутствует                    |                                               |

Таблица 2

| Вид маски | Количество слоев | Сумма |
|-----------|------------------|-------|
| Одноразовые | 1 2 3 4 5 6 | 354   |
| Многоразовые | 1 2 3 4 5 6 | 339   |
| Не указан   | 1 2 3 4 5 6 | 145   |
| Сумма      | 1 2 3 4 5 6 | 838   |

Таблица 3

| Вид маски                     | Количество слоев |
|-------------------------------|------------------|
| Медицинские одноразовые      | 2 2 3 4 5 6      |
| Медицинские многоразовые     | – – – 1 1 2      |
| Респираторы                   | – – – 2 – 4      |
| Сумма                         | 2 2 3 4 5 6      |

Таблица 4

| Год     | Выдано РУ | РУ более чем на один вид масок | Отменено РУ |
|---------|-----------|-------------------------------|-------------|
| 2017    | 7         | 1                             | 0           |
| 2018    | 7         | 1                             | 0           |
| 2019    | 3         | 2                             | 0           |
| 2020    | 159       | Большинство                   | 16          |

Таким образом, анализ рынка показал, что все существующие виды СЗОД представлены в продаже в России, но информация о предоставляемом товаре крайне противоречивая. Далеко не все производители правильно классифицируют свой товар (является ли он медицинским изделием или нет), не все предоставляют информацию о наличии регистрационного удостоверения, многие не пишут даже состав, из которого изготовлен СЗОД. Отражены, как правило, две характеристики маски: количество слоев (слойность) и возможность повторного применения. Купленные изделия не всегда имеют правильно оформленную маркировку, подтверждающую информацию, заявленную в рекламе товара на сайте.

* National Institute for Occupational Safety and Health (NIOSH). NIOSH Guide to the Selection and Use of Articulate Respirators. Department of Health and Human Services (DHHS) NIOSH publication number 96-101, 1996; Европейский стандарт EN149: 2001+A1.

11 ГОСТ 12.4.294-2015. Средства индивидуальной защиты органов дыхания. Полумаски фильтрующие для защиты от аэрозолей. – М., 2015.

12 ГОСТ Р 58396-2019. Маски медицинские. – М., 2019.

13 AFNOR. 2020. SPEC S76-001: Masque barrière. Guide d’exigence minimales, de méthode d’essais, de confection et d’usage [Электронный ресурс]. – URL: https://masques-barrieres.afnor.org/home/telechargement (дата обращения: 4.06.2020).
Предложенная классификация позволяет выработать единый подход к предоставлению информации об изделии для потребителя, особенно при покупке малых партий в розничной торговой сети и через Интернет. Производителю необходимо указывать все характеристики, предусмотренные стандартами по маркировке товаров (материал, слойность, условия использования и т.д.), и эффективность защиты предлагаемого изделия.

Выходы:
1. При производстве и реализации СЗОД крайне актуальным представляется разработка четких критериев эффективности защиты.
2. Требуется разработка унифицированного подхода к понятию «медицинская» и «немедицинская» маска, в том числе при размещении информации для потребителей.
3. Число средств защиты органов дыхания, зарегистрированных в российском Государственном реестре медицинских изделий и организаций (индивидуальных предпринимателей) Федеральной службы по надзору в сфере здравоохранения, составляет лишь 24 % от числа реализуемых населению СЗОД.
4. Разработана и предложена классификация СЗОД по эффективности защиты от инфекций, распространяемых воздушно-капельным путем, которая учитывает эффективность фильтрации, степень прилегания, слойность, материал изготовления, рекомендации экспертов ВОЗ и Минздрава России.

Финансирование. Исследование не имело спонсорской поддержки.

Конфликт интересов. Авторы данной статьи сообщают об отсутствии конфликта интересов.

Список литературы
1. ВОЗ. Посление Генерального директора ВОЗ: COVID-19, год спустя [Электронный ресурс] // Всемирная организация здравоохранения. – 2020. – URL: https://www.who.int/ru/news/item/30-12-2020-covid-19-anniversary-and-looking-forward-to-2021 (дата обращения: 10.02.2021).
2. ВОЗ. Coronavirus Disease (COVID-19) Dashboard [Электронный ресурс] // World health organization. – 2020. – URL: https://covid19.who.int/ (дата обращения: 10.02.2021).
3. ВОЗ. Коллективный иммунитет, меры самоизоляции и COVID-19 [Электронный ресурс] // Всемирная организация здравоохранения. – 2020. – URL: https://www.who.int/ru/news-room/q-a-detail/herd-immunity-lockdowns-and-covid-19 (дата обращения: 10.02.2021).
4. ВОЗ. Передача SARS-CoV-2: значение для мер предосторожности по профилактике инфекций: научный отчет, 9 июля 2020 г. [Электронный ресурс] // Всемирная организация здравоохранения. – 2020. – URL: https://apps.who.int/iris/handle/10665/333114 (дата обращения: 10.02.2021).
5. Число средств защиты органов дыхания, зарегистрированных в российском Государственном реестре медицинских изделий и организаций (индивидуальных предпринимателей) Федеральной службы по надзору в сфере здравоохранения, составляет лишь 24 %. Число реализуемых населению СЗОД.
6. Разработана и предложена классификация СЗОД по эффективности защиты от инфекций, распространяемых воздушно-капельным путем, которая учитывает эффективность фильтрации, степень прилегания, слойность, материал изготовления, рекомендации экспертов ВОЗ и Минздрава России.

Финансирование. Исследование не имело спонсорской поддержки.

Конфликт интересов. Авторы данной статьи сообщают об отсутствии конфликта интересов.

Список литературы
1. ВОЗ. Посление Генерального директора ВОЗ: COVID-19, год спустя [Электронный ресурс] // Всемирная организация здравоохранения. – 2020. – URL: https://www.who.int/ru/news/item/30-12-2020-covid-19-anniversary-and-looking-forward-to-2021 (дата обращения: 10.02.2021).
2. ВОЗ. Coronavirus Disease (COVID-19) Dashboard [Электронный ресурс] // World health organization. – 2020. – URL: https://covid19.who.int/ (дата обращения: 10.02.2021).
3. ВОЗ. Коллективный иммунитет, меры самоизоляции и COVID-19 [Электронный ресурс] // Всемирная организация здравоохранения. – 2020. – URL: https://www.who.int/ru/news-room/q-a-detail/herd-immunity-lockdowns-and-covid-19 (дата обращения: 10.02.2021).
4. ВОЗ. Передача SARS-CoV-2: значение для мер предосторожности по профилактике инфекций: научный отчет, 9 июля 2020 г. [Электронный ресурс] // Всемирная организация здравоохранения. – 2020. – URL: https://apps.who.int/iris/handle/10665/333114 (дата обращения: 10.02.2021).
5. Число средств защиты органов дыхания, зарегистрированных в российском Государственном реестре медицинских изделий и организаций (индивидуальных предпринимателей) Федеральной службы по надзору в сфере здравоохранения, составляет лишь 24 %. Число реализуемых населению СЗОД.
6. Разработана и предложена классификация СЗОД по эффективности защиты от инфекций, распространяемых воздушно-капельным путем, которая учитывает эффективность фильтрации, степень прилегания, слойность, материал изготовления, рекомендации экспертов ВОЗ и Минздрава России.

Финансирование. Исследование не имело спонсорской поддержки.

Конфликт интересов. Авторы данной статьи сообщают об отсутствии конфликта интересов.

Список литературы
1. ВОЗ. Посление Генерального директора ВОЗ: COVID-19, год спустя [Электронный ресурс] // Всемирная организация здравоохранения. – 2020. – URL: https://www.who.int/ru/news/item/30-12-2020-covid-19-anniversary-and-looking-forward-to-2021 (дата обращения: 10.02.2021).
2. ВОЗ. Coronavirus Disease (COVID-19) Dashboard [Электронный ресурс] // World health organization. – 2020. – URL: https://covid19.who.int/ (дата обращения: 10.02.2021).
3. ВОЗ. Коллективный иммунитет, меры самоизоляции и COVID-19 [Электронный ресурс] // Всемирная организация здравоохранения. – 2020. – URL: https://www.who.int/ru/news-room/q-a-detail/herd-immunity-lockdowns-and-covid-19 (дата обращения: 10.02.2021).
4. ВОЗ. Передача SARS-CoV-2: значение для мер предосторожности по профилактике инфекций: научный отчет, 9 июля 2020 г. [Электронный ресурс] // Всемирная организация здравоохранения. – 2020. – URL: https://apps.who.int/iris/handle/10665/333114 (дата обращения: 10.02.2021).
5. Число средств защиты органов дыхания, зарегистрированных в российском Государственном реестре медицинских изделий и организаций (индивидуальных предпринимателей) Федеральной службы по надзору в сфере здравоохранения, составляет лишь 24 %. Число реализуемых населению СЗОД.
6. Разработана и предложена классификация СЗОД по эффективности защиты от инфекций, распространяемых воздушно-капельным путем, которая учитывает эффективность фильтрации, степень прилегания, слойность, материал изготовления, рекомендации экспертов ВОЗ и Минздрава России.

Финансирование. Исследование не имело спонсорской поддержки.

Конфликт интересов. Авторы данной статьи сообщают об отсутствии конфликта интересов.

Список литературы
1. ВОЗ. Посление Генерального директора ВОЗ: COVID-19, год спустя [Электронный ресурс] // Всемирная организация здравоохранения. – 2020. – URL: https://www.who.int/ru/news/item/30-12-2020-covid-19-anniversary-and-looking-forward-to-2021 (дата обращения: 10.02.2021).
2. ВОЗ. Coronavirus Disease (COVID-19) Dashboard [Электронный ресурс] // World health organization. – 2020. – URL: https://covid19.who.int/ (дата обращения: 10.02.2021).
3. ВОЗ. Коллективный иммунитет, меры самоизоляции и COVID-19 [Электронный ресурс] // Всемирная организация здравоохранения. – 2020. – URL: https://www.who.int/ru/news-room/q-a-detail/herd-immunity-lockdowns-and-covid-19 (дата обращения: 10.02.2021).
4. ВОЗ. Передача SARS-CoV-2: значение для мер предосторожности по профилактике инфекций: научный отчет, 9 июля 2020 г. [Электронный ресурс] // Всемирная организация здравоохранения. – 2020. – URL: https://apps.who.int/iris/handle/10665/333114 (дата обращения: 10.02.2021).
5. Число средств защиты органов дыхания, зарегистрированных в российском Государственном реестре медицинских изделий и организаций (индивидуальных предпринимателей) Федеральной службы по надзору в сфере здравоохранения, составляет лишь 24 %. Число реализуемых населению СЗОД.
6. Разработана и предложена классификация СЗОД по эффективности защиты от инфекций, распространяемых воздушно-капельным путем, которая учитывает эффективность фильтрации, степень прилегания, слойность, материал изготовления, рекомендации экспертов ВОЗ и Минздрава России.
Use of respiratory protective equipment (RPE) has become the most significant way to prevent the coronavirus infection from its rapid spread.

Our research goal was to analyze efficiency of various RPE used by people during COVID-19 pandemic.

We made a review focusing on RPE manufactured and tested as per standards existing in different counties; we also analyzed the State Medical Equipment Register of the Federal Service for Surveillance in Public Healthcare as well as a model where RPE is quite variable as per such parameters as bacterial filtration efficiency, number of layers and quality of a material it is made of, being fit to a person’s face (masks for children/adults), conditions for use (a time of use, whether a mask can be disinfected and used again, etc.). Data provided for customers when respiratory protective equipment is sold are rather scarce and controversial.
sial (people do not understand what a mask name means and how efficiently it protects their respiratory organs). Respiratory protective equipment which is registered within the State Medical Equipment Register of the Federal Service for Surveillance in Public Healthcare accounts for only 24% of the overall equipment sold to consumers. Taking into account variable and multiple properties of different masks, we developed a RPE classification basing on their efficiency when it comes down to protection from respiratory infections. FFP3/KN100/N99/N100 respirators are the most efficient ones. FFP2/KN95/N95/DS/DL2/KF94 respirators have an average efficiency. FFP1 respirators and nonwoven medicals masks, II R, II, I type, and woven gauze masks have efficiency that is lower than average (RPE is mentioned in a descending order as per its efficiency). Low and extremely low efficiency was established accordingly for various non-medical masks (nonwoven, woven cotton, and synthetic ones) and face shields.

When RPE is manufactured and sold, there are no precise criteria for assessing its protective efficiency. There is either no unified approach to such concepts as «medical» and «non-medical» masks. Most respiratory protective equipment sold on the consumer market in Russia is not registered within the Russian State Medical Equipment Register of the Federal Service for Surveillance in Public Healthcare. Our classification allows working out a unified approach to providing data on respiratory protective equipment for consumers.

Key words: pandemic, COVID-19, respiratory protective equipment, medical mask, non-medical mask, bacterial filtration efficiency, the State Medical Equipment Register, protective equipment market.

References

1. COVID-19: One year later – WHO Director-General’s New Year message. World health organization, 2020. Available at: https://www.who.int/nr/news-room/item/30-12-2020-covid-19-anniversary-and-looking-forward-to-2021 (10.02.2021).
2. WHO Coronavirus Disease (COVID-19) Dashboard. World health organization, 2020. Available at: https://covid19.who.int/ (10.02.2021).
3. Coronavirus disease (COVID-19): Herd immunity, lockdowns and COVID-19. World health organization, 2020. Available at: https://www.who.int/ru/news-room/q-a-detail/herd-immunity-lockdowns-and-covid-19 (10.02.2021).
4. Transmission of SARS-CoV-2: implications for infection prevention precautions: scientific brief, 09 July 2020. World health organization, 2020. Available at: https://apps.who.int/iris/handle/10665/333114 (10.02.2021).
5. Shashina E.A., Isiutina-Fedotkova T.S., Makarova V.V., Gruzdeva O.A., Mitrokhin O.V. Approaches to analyzing efficiency of respiratory protective equipment as a way to reduce health risks during COVID-19 pandemic. Health Risk Analysis, 2021, no. 1, pp. 151–158. DOI: 10.21668/health.risk/2021.1.16.en