CENTER MANIFOLDS FOR ILL-POSED STOCHASTIC EVOLUTION EQUATIONS

ZONGHAO LI AND CAIBIN ZENG*

School of Mathematics, South China University of Technology
Guangzhou 510640, China
(Communicated by Björn Schmalfuß)

Abstract. The aim of this paper is to develop a center manifold theory for a class of stochastic partial differential equations with a non-dense domain through the Lyapunov-Perron method. We construct a novel variation of constants formula by the resolvent operator to formulate the integrated solutions. Moreover, we impose an additional condition involving a non-decreasing map to deduce the required estimate since Young’s convolution inequality is not applicable. As an application, we present a stochastic parabolic equation to illustrate the obtained results.

1. Introduction. In this paper, we shall study the existence of center invariant manifolds of the following Stratonovich stochastic evolution equation

\[
\begin{aligned}
 du &= A u t + F(u) + u \circ dW, \quad t \in [0,T] \\
 u(0) &= u_0 \in D(A).
\end{aligned}
\]

(1.1)

where \(A : D(A) \subset X \to X \) is a linear operator and \(D(A) \neq X \), namely, its domain is non-densely defined. Indeed, \(W \) is a one-dimensional Brownian motion and \(F : \overline{D(A)} \to X \) is globally Lipschitz continuous. Note that the Cauchy problem to (1.1) is ill-posed if the Hille-Yosida theory for \(C_0 \)-semigroup generated by \(A \) breaks down. Such Cauchy problems with a non-dense domain cover several types of differential equations, such as delay differential equations, age-structured models and some partial differential equations, evolution equations with nonlinear boundary conditions. To overcome the embarrassment, the integrated semigroup theory allows us to define a suitable mild solution. The concept of integrated semigroup was first introduced by Arendt [1, 2] and it was applied to study the existence and uniqueness of solutions to such non-homogeneous Cauchy problem in a deterministic setting by Da Prato and Sinestrari [9]. Later on, Thieme [23, 24] established the well-posedness of non-autonomous and semilinear Cauchy problems under a priori Hille-Yosida type estimate for the resolvent of non-densely defined operators. By discarding the mentioned estimate, Magal and Ruan [14, 15, 16] improved the above results and applied the obtained center manifold theorem to study Hopf bifurcation of age-structured models. Recently, Neamtu [19] extended the mentioned theory of integrated semigroups to ill-posed stochastic evolution equations (1.1).
and established the existence of random stable/unstable manifolds based on the Lyapunov-Perron method. A similar idea was extended to study the invariant foliations of (1.1) by Shen and Zeng [21]. The mentioned work brings much interest to discern the long-time dynamics of (1.1).

There are several results regarding invariant manifolds in the framework of random dynamical systems. Mohammed and Scheutzow [18] studied the existence of local stable and unstable manifolds of stochastic differential equations driven by semimartingales. Results regarding stable and unstable manifolds for stochastic partial differential equations can be looked up to the work of Duan et al. [11], Lu and Schmalfuss [13] and Caraballo et al. [5]. As for center manifolds, Chen et al. [8] studied center manifolds for stochastic partial differential equations under an assumption of exponential trichotomy. Boxler [4] used the multiplicative ergodic theorem to obtain a stochastic version of center manifolds theorems for finite-dimensional random dynamical systems. Shi [22] studied the limiting behavior of center manifolds for a class of singularly perturbed stochastic partial differential equations in terms of the phase spaces.

It needs to emphasize that the standard variation of constants formula is not applicable due to the non-densely defined operator A. Even worse, Young’s convolution inequality is not available such that the Gronwall-type lemma fails to deduce estimates of the solutions. For the former, we will construct a new variation of constants formula by the resolvent operator connecting $D(A)$ and X. While for the latter, we will impose an additional condition to complete the required estimates.

The remaining part of this article is structured as follows. In Section 2, we collect some essential results on random dynamical systems and integrated semigroups, and layout the basic assumptions. Then in Section 3, we prove the existence of invariant center manifolds based on the Lyapunov-Perron method. Finally, we present an illustrative example with a stochastic parabolic equation in Section 4.

2. Preliminaries.

2.1. Random Dynamical Systems. Let us look at flows on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$, where a flow $\theta : \mathbb{R} \times \Omega \rightarrow \Omega$ of $\{\theta_t\}_{t \in \mathbb{R}}$ is defined on the sample space Ω having following properties:

(i) the mapping $(t, \omega) \mapsto \theta_t \omega$ is $(\mathcal{B}(\mathbb{R}) \otimes \mathcal{F}, \mathcal{F})$-measurable.
(ii) $\theta_0 = I_\Omega$.
(iii) $\theta_{t+s} = \theta_t \circ \theta_s$ for all $t, s \in \mathbb{R}$.

In addition, we assume that \mathbb{P} is ergodic with respect to $\{\theta_t\}_{t \in \mathbb{R}}$. Then the quadruple $(\Omega, \mathcal{F}, \mathbb{P}, \{\theta_t\}_{t \in \mathbb{R}})$ is called a metric dynamical system. Usually, let $W(t)$ be a two-sided Wiener process with trajectories in the space $\Omega := C_0(\mathbb{R}, \mathbb{R})$ of real continuous functions defined on \mathbb{R} which is a set equipped with compact open topology $\mathcal{F} := \mathcal{B}(C_0(\mathbb{R}, \mathbb{R}))$. On this set we consider the measurable flow $\{\theta_t\}_{t \in \mathbb{R}}$ defined by $\theta_t \omega(\cdot) = \omega(\cdot + t) - \omega(t)$ which is called the Wiener shift, the associated distribution \mathbb{P} is a Wiener measure defined on \mathcal{F}. A set Ω is called $\{\theta_t\}_{t \in \mathbb{R}}$-invariant if $\theta_t \Omega = \Omega$ for $t \in \mathbb{R}$. For more details, see [3]. Using these notations, we could present the definition of random dynamical system.

Definition 2.1. Let X be a separable Hilbert space. A continuous random dynamical system on X over a metric dynamical system $(\Omega, \mathcal{F}, \mathbb{P}, \{\theta_t\}_{t \in \mathbb{R}})$ is a mapping

$$\varphi : \mathbb{R} \times \Omega \times X \rightarrow X, \ (t, \omega, x) \mapsto \varphi(t, \omega, x),$$

such that

(i) $\varphi(t, \omega, \cdot)$ is measurable on X for each $(t, \omega) \in \mathbb{R} \times \Omega$;
(ii) $\varphi(0, \omega, x) = x$ for all $x \in X$;
(iii) $\varphi(t, \theta_s \omega, \varphi(s, \omega, x)) = \varphi(t+s, \omega, \varphi(s, \omega, x))$ for all $t, s \in \mathbb{R}$.

Remark 2.2. The family $\{\mathcal{F}_t\}_{t \in \mathbb{R}}$ of sub-σ-algebras of \mathcal{F} is called the natural filtration of the process X. The natural filtration $\{\mathcal{F}_t\}_{t \in \mathbb{R}}$ is the smallest filtration of \mathcal{F} containing $\{\theta_t\}_{t \in \mathbb{R}}$ and \mathbb{P}.

Definition 2.3. A continuous random dynamical system $(X, \varphi, \{\theta_t\}_{t \in \mathbb{R}})$ is called a random dynamical system if φ is a measurable map from $\mathbb{R} \times \Omega \times X$ to X with the following properties:

(i) $\varphi(t, \omega, \cdot)$ is measurable on X for each $(t, \omega) \in \mathbb{R} \times \Omega$;
(ii) $\varphi(0, \omega, x) = x$ for all $x \in X$;
(iii) $\varphi(t, \theta_s \omega, \varphi(s, \omega, x)) = \varphi(t+s, \omega, \varphi(s, \omega, x))$ for all $t, s \in \mathbb{R}$.

2.2. Random Semigroups.

Let X be a separable Hilbert space. Consider a continuous random dynamical system $(X, \varphi, \{\theta_t\}_{t \in \mathbb{R}})$ and a random function $F : X \rightarrow X$. Let $U : \mathbb{R} \times \Omega \rightarrow \mathcal{B}(X)$ be a measurable map such that $U(t, \omega) \circ \varphi(t, \omega, x)$ is $\mathcal{B}(X)$-valued for each $(t, \omega) \in \mathbb{R} \times \Omega$. Then U is called a random semigroup generated by F if $U(t, \omega) \circ \varphi(t, \omega, x)$ is $(\mathcal{B}(X) \otimes \mathcal{F}, \mathcal{F})$-measurable for each $(t, \omega) \in \mathbb{R} \times \Omega$. If U is $\mathcal{B}(X) \otimes \mathcal{F}$-measurable for each $(t, \omega) \in \mathbb{R} \times \Omega$, then U is called a semigroup generated by F.
which is \((B(\mathbb{R}) \otimes F \otimes B(X), B(X))\)-measurable and satisfies:

(i) \(\varphi (0, \omega, x) = x\), for \(x \in X\) and \(\omega \in \Omega\).

(ii) \(\varphi (t + s, \omega, x) = \varphi (t, \theta_s \omega, \varphi (s, \omega, x))\), for all \(t, s \in \mathbb{R}, x \in X\) and all \(\omega \in \Omega\).

We will use a coordinate transform to convert the stochastic partial differential equation (1.1) into a random evolution equation \([6, 10, 11]\). To do this, we consider the linear stochastic differential equation

\[
dz + \mu z dt = dW,
\]

where \(\mu\) is a positive parameter. We extract the important results on the stationary Ornstein-Uhlenbeck process from \([6, 11]\) in the following.

Lemma 2.1. (i) There exists a \(\{\theta_t\}_{t \in \mathbb{R}}\)-invariant set \(\tilde{\Omega} \subset C_0(\mathbb{R}, \mathbb{R})\) of full measure satisfying the sublinear growth condition

\[
\lim_{t \to \pm \infty} \frac{|\omega (t)|}{|t|} = 0, \ \omega \in \tilde{\Omega}.
\]

(ii) The random variable \(z (\omega) = -\mu \int_{-\infty}^{0} e^{ts} \omega (s) ds\) is well defined for all \(\omega \in \tilde{\Omega}\) and generates a unique stationary solution of (2.1) given by

\[
(t, \omega) \mapsto z (\theta_t \omega) = -\mu \int_{-\infty}^{0} e^{ts} \theta_t \omega (s) ds = -\mu \int_{-\infty}^{0} e^{ts} \theta_t \omega (s + t) ds + \mu \omega (t).
\]

The mapping \(t \mapsto z (\theta_t \omega)\) is continuous.

(iii) Moreover

\[
\lim_{t \to \pm \infty} \frac{|z (\theta_t \omega)|}{|t|} = 0,
\]

for all \(\omega \in \tilde{\Omega}\).

(iv) In addition

\[
\lim_{t \to \pm \infty} \frac{1}{t} \int_{0}^{t} z (\theta_s \omega) ds = 0,
\]

for all \(\omega \in \tilde{\Omega}\).

From now on, we will work on \((\tilde{\Omega}, \tilde{F}, \tilde{P}, \{\theta_t\}_{t \in \mathbb{R}})\), where \(\tilde{F}\) is the trace algebra of \(\tilde{\Omega}\) and the restriction of Wiener measure to this \(\sigma\)-algebra \(\tilde{F}\) is denoted by \(\tilde{P}\). With a slight abuse of notation, we again denote the metric dynamical system by \((\Omega, F, P, \{\theta_t\}_{t \in \mathbb{R}})\) in the following context.

2.2. Integrated Semigroups.

In this subsection, we collect some basic results about non-densely defined operator and integrated semigroups from \([14, 15, 16]\). Since \(A\) is a non-densely defined linear operator in a Hilbert space \(X\), its resolvent set is denoted by \(\rho (A) = \{\lambda \in \mathbb{C} : \lambda I - A \text{ is invertible}\}\), and \(\rho (A) \neq \emptyset\). Thus the spectrum of \(A\) is denoted by \(\sigma (A) := \mathbb{C} \setminus \rho (A)\). Moreover, let \(X_0 = D(A)\) and construct the part of \(A\) denoted by \(A_0 : D(A_0) \subset X_0 \rightarrow X_0\), which is a linear operator on \(X_0\) defined by

\[
A_0 x = Ax, \forall x \in D(A_0) := \{y \in D(A) : Ay \in X_0\}.
\]

Assume that there exists a constant \(\vartheta\) satisfying \((\vartheta, + \infty) \subset \rho (A)\), it is easy to check that for each \(\lambda > \vartheta\),

\[
D(A_0) = (\lambda I - A)^{-1} X_0, \ (\lambda I - A_0)^{-1} = (\lambda I - A)^{-1} |_{X_0}.
\]
Therefore, it follows from [16, Lemma 2.1] that \(\rho(A) = \rho(A_0) \), and thus \(\sigma(A) = \sigma(A_0) \). Indeed, we need the following result.

Lemma 2.2. [14, Lemma 2.1] Let \((X, \| \cdot \|) \) be a Banach space and \(A : D(A) \subset X \to X \) be a linear operator. Assume that there exists \(\vartheta \in \mathbb{R} \), such that \((\vartheta, +\infty) \subset \rho(A) \) and
\[
\limsup_{\lambda \to +\infty} \lambda \| (\lambda I - A)^{-1} \|_{\mathcal{L}(X_0)} < +\infty.
\]

Then the following assertions are equivalent:

(i) \(\lim_{\lambda \to +\infty} \lambda (\lambda I - A)^{-1} x = x, \forall x \in X_0 \).

(ii) \(\lim_{\lambda \to +\infty} (\lambda I - A)^{-1} x = 0, \forall x \in X \).

(iii) \(D(A_0) = X_0 \).

Now we are ready to present the definition of integrated semigroups.

Definition 2.2. Let \((X, \| \cdot \|) \) be a Banach space. A family of bounded linear operators \(\{S(t)\}_{t \geq 0} \) on \(X \) is called an integrated semigroup if

(i) \(S(0) = 0 \).

(ii) The map \(t \to S(t)x \) is continuous on \([0, +\infty) \) for each \(x \in X \).

(iii) \(S(t) \) satisfies
\[
S(s)S(t) = \int_0^t (S(r + t) - S(r)) \, dr, \forall s, t \geq 0.
\]

We next discuss some basic assumptions about operator \(A \) and show that it can generate an integrated semigroup. Note that \(A \) is said to be a Hille-Yosida operator if there exist two constants, \(\vartheta \in \mathbb{R} \) and \(M \geq 1 \), such that \((\vartheta, +\infty) \subset \rho(A) \) and
\[
\| (\lambda I - A)^{-k} \|_{\mathcal{L}(X)} \leq \frac{M}{(\lambda - \vartheta)^k}, \forall \lambda > \vartheta, \forall k \geq 1.
\]

Lemma 2.3. [20, Theorem 5.3] A linear operator \(A : D(A) \subset X \to X \) is an infinitesimal generator of a \(C_0 \)-semigroup \(\{T(t)\}_{t \geq 0} \) satisfying \(\| T(t) \| \leq Me^{\vartheta t} \), if and only if

(i) \(A \) is densely defined in \(X \);

(ii) \(A \) is a Hille-Yosida operator.

Assumption 2.1. Let \((X, \| \cdot \|) \) be a Banach space and let \(A : D(A) \subset X \to X \) be a linear operator. Assume that

(a) \(A \) is a Hille-Yosida operator on \(X_0 \);

(b) \(\lim_{\lambda \to +\infty} (\lambda I - A)^{-1} x = 0, \forall x \in X \).

According to Lemma 2.3 and Assumption 2.1, we know that \(A_0 \) generates a \(C_0 \)-semigroup on \(X_0 \) denoted by \(\{T(t)\}_{t \geq 0} \). It can also be denoted by \(\{e^{A_0 t}\}_{t \geq 0} \). Besides, as concluded in [15, Proposition 2.5], \(A \) generates an integrated semigroup on \(X \) denoted by \(\{S(t)\}_{t \geq 0} \). For each \(x \in X, t \geq 0 \), and \(\lambda > \vartheta \), \(\{S(t)\}_{t \geq 0} \) is given by
\[
S(t)x = \lambda \int_0^t T(s)(\lambda I - A)^{-1} xds + (I - T(t))(\lambda I - A)^{-1} x.
\]

Also, the map \(t \to S(t) \) is continuously differentiable if and only if \(x \in X_0 \) and
\[
\frac{dS(t)x}{dt} = T(t)x, \forall t \geq 0, \forall x \in X_0.
\]
Lemma 2.4. [14, Lemma 2.6] For each \(f \in C^1([0,T];X) \), define
\[
(S \ast f) (t) = \int_0^t S(t-s) f(s) ds, \ \forall t \in [0,T].
\]
Then we have the following:
(i) The map \(t \to (S \ast f) (t) \) is continuously differentiable on \([0,T]\).
(ii) \((S \ast f) (t) \in D(A), \ \forall t \in [0,T] \).
(iii) For each \(\lambda > \vartheta \), and each \(t \in [0,T] \), we have
\[
(\lambda I - A)^{-1} \frac{d}{dt} (S \ast f) (t) = \int_0^t T(t-s) (\lambda I - A)^{-1} f(s) ds.
\]

Assumption 2.2. Assume that there exists real number \(T > 0 \), and a non-decreasing map \(\delta : [0,T] \to [0, +\infty) \) such that for each \(f \in C^1([0,T];X) \),
\[
\left\| \frac{d}{dt} (S \ast f) (t) \right\| \leq \delta (t) \sup_{s \in [0,t]} \| f(s) \|, \ \forall t \in [0,T].
\]

In order to define the mild solution to (1.1), we recall the non-homogeneous Cauchy problem [14, 15, 16]
\[
\frac{du}{dt} = Au(t) + f (t), \ t \in [0,T], \ u(0) = x \in X_0,
\]
where the linear operator \(A \) is the same as in this article. For each \(f \in C^1([0,T];X) \), we denote
\[
(S \circ f) (t) = \frac{d}{dt} (S \ast f) (t), \ \forall t \in [0,T].
\]
According to Lemma 2.4 and Lemma 2.2(i), we have
\[
(S \circ f) (t) = \lim_{\lambda \to +\infty} \int_0^t T(t-s) \lambda (\lambda I - A)^{-1} f(s) ds, \ \forall t \in [0,T], \ \forall \lambda > \vartheta.
\]
Under Assumptions 2.1 and 2.2, equation (2.3) has a unique integrated solution \(u \) in \(C([0,T],X_0) \), given by
\[
u(t) = T(t)x + (S \circ f)(t).
\]
Assumption 2.3. \(F : X_0 \to X \) is globally Lipschitz continuous, i.e.
\[
|F(u_1) - F(u_2)| \leq L|u_1 - u_2|,
\]
for any \(u_1, u_2 \in X_0 \), where \(L \) is the Lipschitz constant and \(F(0) = 0 \).

To our aim, we define the coordinate transform
\[
v = \Xi (u, \omega) = ue^{-z(\theta,\omega)},
\]
and its reverse transform
\[
u = \Xi^{-1} (v, \omega) = ve^{z(\theta,\omega)},
\]
for \(t \geq 0 \). Performing the transformation \(\Xi (v, \omega) \) into (1.1), we obtain
\[
\begin{cases}
\frac{dv}{dt} = Avdt + z(\theta,\omega) vdt + G(\omega, v) dt, \ t \in [0,T] \\
v(0) = v_0 \in X_0,
\end{cases}
\]
where \(G(\omega, v) = e^{-z(\theta,\omega)} F(e^{z(\theta,\omega)} v) \). Obviously, \(G \) and \(F \) have the same Lipschitz constant.

Definition 2.3. A mapping \(v \in C([0,T];X) \) is called an integrated solution of (2.4) if and only if for \(\forall t \in [0,T] \),
It follows from Definition 2.3 that
\[v(t) = v_0 + A \int_0^t v(s) \, ds + \int_0^t z(\theta s \omega) \, v(s) \, ds + \int_0^t G(\omega, v(s)) \, ds. \]

We claim that if \(A \) is a closed operator, then an integrated solution always belongs to \(X_0 \). In fact,
\[v'(t) = \lim_{h \to 0} \frac{v(t+h) - v(t)}{h} \implies v(t) = \lim_{h \to 0} \frac{1}{h} \int_t^{t+h} v(s) \, ds. \]

It follows from Definition 2.3 that
\[\int_t^{t+h} v(s) \, ds \in D(A), \]
and thus the required claim is sure. For the linear part of (2.4), we define
\[\phi_{A_0}(t, s) = e^{A_0(t-s)} + \int_s^t z(\theta r \omega) \, dr = T(t-s) e^{\int_s^t z(\theta r \omega) \, dr}. \]

As in (2.3), one could define the mile solution to (2.4) as follows.
\[v(t) = \phi_{A_0}(t, 0) v_0 + \lim_{\lambda \to +\infty} \int_0^t \phi_{A_0}(t, s) \lambda(\lambda I - A)^{-1} G(\theta s \omega, v(s)) \, ds. \tag{2.5} \]

The following result was proved in [19, Theorems 4.1 & 4.2].

Lemma 2.5. Under Assumptions 2.1-2.3, equation (2.4) has a unique integrated solution given by (2.5), which generates a random dynamical system \(\Phi \). Moreover,
\[(t, \omega, x) \to \Xi^{-1}(\theta t \omega, \Phi(t, \omega, \Xi(\omega, x))) =: \hat{\Phi}(t, \omega, x), \]

is a random dynamical system. Also, this process is a solution of (1.1) for \(x \in X_0 \).

2.3. Exponential Trichotomy.

Assumption 2.4. We assume \(T(t) \) satisfies the exponential trichotomy with exponents \(\alpha > \gamma \geq 0 \geq -\gamma > -\beta \) and bound \(K \), thus there exist two continuous linear projection operators with finite-rank \(\Pi_{0c} \in \mathcal{L}(X_0) \setminus \{0\} \) and \(\Pi_{0u} \in \mathcal{L}(X_0) \) such that
\[\Pi_{0u} \Pi_{0c} = \Pi_{0c} \Pi_{0u} = 0, \]
and
\[\Pi_{0k} T(t) = T(t) \Pi_{0k}, \forall t \geq 0, \forall k \in \{c, u\}. \]

Denote
\[\Pi_{0s} = \Pi_{X_0} - (\Pi_{0c} + \Pi_{0u}), \quad X_{0c} = \Pi_{0c} X_0, \quad X_{0u} = \Pi_{0u} X_0, \quad X_{0s} = \Pi_{0s} X_0, \]
and for all \(x \in X_0 \), it holds
\[\|T_{\alpha_0}(t)\Pi_{0c} x\| \leq K e^{\gamma t} \|x\|, \forall t \in \mathbb{R}, \tag{2.6} \]
\[\|T_{\alpha_0}(t)\Pi_{0u} x\| \leq K e^{\alpha t} \|x\|, \forall t \leq 0, \tag{2.7} \]
\[\|T_{\alpha_0}(t)\Pi_{0s} x\| \leq K e^{-\beta t} \|x\|, \forall t \geq 0, \tag{2.8} \]
where \(A_{0p} = A_0|_{X_{0p}} \) and \(T_{A_0p}(t) \) is the \(C_0 \)-semigroup generated by \(A_{0p}, \forall p \in \{c, u, s\} \).

Remark 2.1. Since for each \(k \in \{c, u\}, \Pi_{0k} \) is finite-rank projection, then \(X_{0k} \) is a finite dimensional subspace of \(X_0 \). Then \(T_{A_0k}(t) \) which acts on \(x \in X_{0k} \) can be extended to a \(C_0 \)-semigroup, \(k \in \{c, u\} \).
Remark 2.2. Consulting [8], we have that if X_0 is a finite dimensional space and there exist eigenvalues with negative, zero, positive real parts, then the exponential trichotomy holds, and if X_0 is an infinite dimensional space and the spectrum of A_0 satisfies $\sigma(A_0) = \sigma^{0s} \cup \sigma^{0c} \cup \sigma^{0u}$, where $\sigma^{0s} = \{\lambda \in \sigma(A_0) : \text{Re}(\lambda) \leq -\beta\}$, $\sigma^{0c} = \{\lambda \in \sigma(A_0) : |\text{Re}(\lambda)| \leq \gamma\}$, $\sigma^{0u} = \{\lambda \in \sigma(A_0) : \text{Re}(\lambda) \geq \alpha\}$, and A_0 generates a strong continuous semigroup, then the exponential trichotomy holds, too (see [12, page 267]. Since $\sigma(A) = \sigma(A_0)$, the spectrum of A can be split as A_0.

Since we only require the Hille-Yosida condition on X_0, one needs to extend the mentioned projections from X_0 to X and outline the associated statement below.

Lemma 2.6. [16, Proposition 3.5] Let $\Pi_0 : X_0 \to X_0$ be a bounded linear projection satisfying

$$\Pi_0(\lambda I - A_0)^{-1} = (\lambda I - A_0)^{-1}\Pi_0, \forall \lambda > \vartheta.$$

and

$$\Pi_0 X_0 \subset D(A_0), \text{ and } A_0|_{\Pi_0 X_0} \text{ is bounded.}$$

Then there exists a unique bounded projection $\Pi : X \to X$ such that

(i) $\Pi|_{X_0} = \Pi_0$;
(ii) $\Pi(X) \subset X_0$;
(iii) $\Pi(\lambda I - A)^{-1} = (\lambda I - A)^{-1}\Pi, \forall \lambda > \vartheta$.

Furthermore, for each $x \in X$, we have

$$\Pi x = \lim_{t \to +\infty} \Pi_0 \lambda (\lambda I - A)^{-1} x = \lim_{h \to 0^+} \frac{1}{h} \Pi_0 S(h) x,$$

where S is the integrated semigroup generated by A.

With the mentioned information at hand, we are ready to state the decomposition on X. For each $k \in \{c, u\}$, denote by $\Pi_k : X \to X$ the unique extension of Π_{0k} and

$$\Pi_s = I_X - (\Pi_c + \Pi_u).$$

Then we have for each $p \in \{c, u, s\}$,

$$\Pi_p(\lambda I - A)^{-1} = (\lambda I - A)^{-1}\Pi_p, \forall \lambda > \vartheta,$$

and

$$\Pi_p(X_0) \subset X_0.$$

Then for each $p \in \{c, u, s\}$, set

$$X_{0p} = \Pi_p(X_0), \text{ } X_p = \Pi_p(X), \text{ and } A_p = A|_{X_p}.$$

Then for each $k \in \{c, u\}$,

$$X_{0k} = X_k, \text{ } X_0 = X_{0s} \oplus X_{0c} \oplus X_{0u}, \text{ and } X = X_s \oplus X_c \oplus X_u.$$

Herein, X_{0c}, X_{0u} and X_{0s} are called centre subspace, unstable subspace and stable subspace of X_0 respectively. For more details, see [16, page 22].
2.4. Estimate of Random Wick Convolution. For the sake of notational simplicity, we introduce the notation of random Wick convolution to rewrite (2.5). In fact, it follows that

$$v(t) = \phi_{A_0}(t,0)v_0 + (S \circ G(v))(t),$$

where

$$(S \circ G(v))(t) = \lim_{\lambda \to +\infty} \int_0^t T(t-s) e^{\int_s^t z(\theta, \omega) ds} \chi(\lambda I - A)^{-1} G(\theta, \omega, v(s)) \, ds$$

$$= \lim_{\lambda \to +\infty} \int_0^t \phi_{A_0}(t,s) \lambda(\lambda I - A)^{-1} G(\theta, \omega, v(s)) \, ds.$$

Before presenting the useful estimate, we recall a result on $(S \circ f)(t)$.

Lemma 2.7. [16, Proposition 2.13] Let Assumptions 2.1 and 2.2 be satisfied. Then for $\kappa > \vartheta$, there exists $C_\kappa > 0$ such that $f \in C([0, T]; X)$ and

$$\| (S \circ f)(t) \| \leq C_\kappa \sup_{s \in [0, t]} e^{\kappa(t-s)} \| f(t) \|, \forall t \in [0, T].$$

Moreover, for each $\varepsilon > 0$, if $\tau_\varepsilon > 0$ satisfying $M \delta(\tau_\varepsilon) \leq \varepsilon$, it holds

$$C_\kappa = \frac{2\varepsilon \max(1, e^{-\kappa \tau_\varepsilon})}{1 - e^{(\vartheta - \kappa) \tau_\varepsilon}}.$$

Proposition 2.1. Let Assumptions 2.1 and 2.4 be satisfied, then we have

$$\Pi_{0s} (S \circ G(v))(t) = \lim_{\lambda \to +\infty} \int_0^t \phi_{A_0}(t,s) \lambda(\lambda I - A)^{-1} \Pi_s G(\theta, \omega, v(s)) \, ds, \quad (2.9)$$

while for each $k \in \{c, u\}$,

$$\Pi_{0k} (S \circ G(v))(t) = \int_0^t \phi_{A_0k}(t,s) \Pi_k G(\theta, \omega, v(s)) \, ds. \quad (2.10)$$

Moreover, for each $\zeta > -\beta$, there exists $C_\zeta > 0$, such that for $\forall t \in [0, T]$, we obtain

$$\| \Pi_{0s} (S \circ G(v))(t) \| \leq C_\zeta \sup_{s \in [0, t]} e^{\kappa(t-s)} e^{\int_s^t z(\theta, \omega) ds} \| G(\theta, \omega, v(s)) \|. \quad (2.11)$$

Proof. We first extract some facts from [16, Proposition 3.7] based on Assumption 2.1. To this end, denote $\Pi : X \to X$ by a bounded linear projection and assume

$$\Pi(\lambda I - A)^{-1} = (\lambda I - A)^{-1} \Pi, \forall \lambda > \vartheta.$$

Then the linear operator $A|\Pi(X) = A|\Pi(X)$ satisfies Assumption 2.1 in $\Pi(X)$. Moreover, if Π has a finite rank and $\Pi(X) \subset X_0$, then $\Pi(X) = \Pi(X_0) \subset \Pi(D(A_0)) \subset D(A_0)$. $A|\Pi(X)$ is a bounded linear operator from $\Pi(X_0)$ to itself. In particular, $A|\Pi(X) = A_0|\Pi(X_0)$. For each $x \in X_0$, if we set for each $t \in [0, T]$, that

$$v(t) = \phi_{A_0}(t,0)x + (S \circ G(v))(t),$$

then the map $t \to \Pi v(t)$ solves

$$\left\{ \begin{array}{l}
\Pi v(t) = A_0|\Pi(X_0) \Pi v(t)dt + \Pi_z(\theta, \omega)v(t)dt + \Pi G(\theta, \omega, v(t))dt,
\Pi v(0) = \Pi x.
\end{array} \right.$$

in $\Pi(X_0)$. This further implies that

$$\Pi v(t) = \phi_{A_0|\Pi(X_0)}(t,0) \Pi x + \left(S_{A|\Pi(X)} \circ \Pi G(v)\right)(t),$$
and

\[\Pi v(t) = \Pi x + A|\Pi (X)| \int_0^t \Pi v(s)ds + \int_0^t \Pi z(\theta_s \omega)v(s) + \Pi G(\theta_s \omega, v(s))ds. \]

We now turn to the associated projections and the required estimate. Note that \(\Pi_s : X \to X \) is a bounded linear projection satisfying

\[\Pi_s(\lambda I - A)^{-1} = (\lambda I - A)^{-1} \Pi_s, \quad \forall \lambda > \vartheta. \]

Also, \(A|_{\Pi_s(X)} = A|_{\Pi_s(X)} = A|_{X_s} = A_s \) satisfies Assumption 2.1 in \(\Pi_s(X) = X_s \). Moreover, we know that \(\Pi_s \) has a finite rank and \(\Pi_s(X) \subset X_0 \), which further indicates that \(A_0|_{\Pi_s(X_0)} = A_0|_{X_0} = A_0 \) and \(A|_{\Pi_s(X)} = A|_{X_s} = A_s \). Thus if for each \(x \in X_0 \) and each \(t \in [0, T] \), we still set

\[v(t) = \phi_{A_0}(t, 0) x + (S \circ G(v))(t), \]

then the map \(t \to \Pi_s v(t) \) solves

\[\begin{cases} d\Pi_s v(t) = A_0 \Pi_s v(t)dt + \Pi_s z(\theta_t \omega)v(t)dt + \Pi_s G(\theta_t \omega, v(t))dt, \\ \Pi_s v(0) = \Pi_s x, \end{cases} \]

in \(\Pi_s(X_0) = X_{0s} \). Then

\[\Pi_s v(t) = \phi_{A_0}|_{\Pi_s(x)}(t, 0) \Pi_s x + \left(S|_{\Pi_s} \circ G(v) \right)(t) = \phi_{A_0}(t, 0) \Pi_s x + \left(S_{A_s} \circ G(v) \right)(t) = \phi_{A_0}(t, 0) \Pi_s x + \lim_{\lambda \to +\infty} \int_0^t \phi_{A_0}(t, s) \lambda(\lambda I - A_s)^{-1} \Pi_s G(\theta_s \omega, v(s))ds. \]

(2.12)

It is easy to prove that \(\Pi_s \) is a extension of \(\Pi_{0s} \) from \(X_0 \) to \(X \), then we apply \(\Pi_{0s} \) to \(v(t) \). In fact, we have

\[\Pi_{0s} v(t) = \Pi_s v(t) = \phi_{A_0}(t, 0) \Pi_s x + \Pi_{0s} (S \circ G(v))(t). \]

(2.13)

Comparing (2.12) and (2.13), we obtain the required expression (2.9). Similarly, we can prove that for each \(k \in \{c, u\} \),

\[\Pi_{0k} (S \circ G(v))(t) = \lim_{\lambda \to +\infty} \int_0^t \phi_{A_0}(t, s) \lambda(\lambda I - A_k)^{-1} \Pi_k G(\theta_s \omega, v(s))ds. \]

Since \(\Pi_k(X) \subset X_0 \), (2.10) is sure by Lemma 2.2. Finally, it is straightforward to observe that the required estimate (2.11) is accessible by applying Lemma 2.7 to \(\Pi_{0s} (S \circ G(v))(t) = (S_{A_s} \circ \Pi_s G(v))(t) \) and (2.9).

3. Center Manifolds. This section is dedicated to the existence of invariant manifolds of (1.1) through the Lyapunov-Perron method. Precisely, we shall prove the existence of the invariant center manifold for (2.4), then use the inverse transformation \(\Xi^{-1} \) to get a center manifold of (1.1).

Definition 3.1. A random set \(M(\omega) \) is called invariant for a random dynamical system \(\varphi(t, \omega, x) \) if \(\varphi(t, \omega, M(\omega)) \subset M(\theta \omega) \) for \(t \geq 0 \).

For each \(\eta > 0 \) and a Banach space \((X, \| \cdot \|_X) \), we define the Banach space

\[C_{\varphi}(\mathbb{R}; X) = \left\{ f \in C(\mathbb{R}; X) : \sup_{t \in \mathbb{R}} e^{-\eta |t|} \int_0^{|t|} \| z(\theta_s \omega) \| ds \| f(t) \|_X < \infty \right\}, \]
with the norm
\[
\|f(t)\|_{C_\eta(\mathbb{R};X)} = \sup_{t \in \mathbb{R}} e^{-\eta|t|} \int_0^t z(\theta, \omega) ds \|f(t)\|_X.
\]
Set
\[
M^c(\omega) := \{v_0 \in X_0 : v(t, \omega, v_0) \in C_\eta(\mathbb{R}; X_0)\},
\]
where \(v(t, \omega, v_0)\) is the solution of (2.4) with the initial data \(v(0) = v_0\). We below prove that \(M^c(\omega)\) is invariant and it is given by a graph of a Lipschitz function.

Theorem 3.1. Assume Assumptions 2.1-2.4 hold. If \(\gamma < \eta < \min\{\alpha, \beta\}\) and \(-\beta < \zeta < -\eta\) with
\[
KL \left(C_{\zeta} + \frac{1}{\eta - \gamma} + \frac{1}{\alpha - \eta} \right) < 1, \tag{3.1}
\]
then there exists a center invariant manifold for (2.4), given by
\[
M^c(\omega) = \{\xi + h^c(\xi, \omega) : \xi \in X_{0c}\},
\]
where \(h^c(\xi, \omega) : X_{0c} \to X_{0a} \oplus X_{0a}\) is a Lipschitz continuous map and \(h^c(0, \omega) = 0\).

Proof. We proceed it in four steps.

Step 1. We prove that \(v_0 \in M^c(\omega)\) if and only if there exists a function \(v(\xi, \omega, v_0) \in C_\eta(\mathbb{R}, X_0)\) with \(v(0) = v_0\) which satisfies
\[
v(t, \omega, v_0) = \phi_{A_{0c}}(t, 0) \xi + \int_0^t \phi_{A_{0c}}(t, s) \Pi_c G(\theta_s \omega, v(s)) ds
\]
\[\quad - \int_t^{+\infty} \phi_{A_{0u}}(t, s) \Pi_u G(\theta_s \omega, v(s)) ds \tag{3.2}
\]
\[\quad + \lim_{\lambda \to +\infty} \int_{-\infty}^t \phi_{A_{0u}}(t, s) \lambda(\lambda I - A_s)^{-1} \Pi_c G(\theta_s \omega, v(s)) ds,
\]
where \(\xi = \Pi_{0c} v_0\).

To this aim, we let \(v_0 \in M^c(\omega)\) and assume that \(v \in C_\eta(\mathbb{R}; X_0)\) is a solution of (2.4). Then by the procedure of proof to the Lemma 2.1, for \(k \in \{c, u\}\), we have
\[
\frac{d\Pi_k v(t)}{dt} = \frac{d\Pi_{0k} v(t)}{dt} = \Pi_{0k} \Pi_k v(t) + \Pi_k z(\theta_t \omega) v(t) + \Pi_k G(\theta_t \omega, v(t))
\]
\[= \Pi_{0k} \Pi_{0k} v(t) + \Pi_k z(\theta_t \omega) v(t) + \Pi_k G(\theta_t \omega, v(t)).
\]
By the variation of constants formula, one further gets
\[
\Pi_{0c} v(t, \omega, v_0) = \phi_{A_{0c}}(t, 0) \xi + \int_0^t \phi_{A_{0c}}(t, s) \Pi_c G(\theta_s \omega, v(s)) ds, \tag{3.3}
\]
for all \(t, l \in \mathbb{R}\) with \(t < l\),
\[
\Pi_{0u} v(t, \omega, v_0) = \phi_{A_{0u}}(t, l) \Pi_{0u} v(l) + \int_t^l \phi_{A_{0u}}(t, s) \Pi_u G(\theta_s \omega, v(s)) ds. \tag{3.4}
\]
According to (2.7), for \(l \geq 0\),
\[
\|\phi_{A_{0u}}(t, l) \Pi_{0u} v(l)\| \leq K e^\alpha (t-l) + \int_0^l e^{-\eta s} z(\theta_s \omega) ds \|v(l)\|
\]
\[\leq K e^\alpha (t-l) + \int_0^l e^{-\eta s} z(\theta_s \omega) ds \|v(l)\| \leq K e^{-\eta t} \int_0^l e^{-\eta s} z(\theta_s \omega) ds \|v(l)\| \leq K e^{-\eta (t-l)} + \int_0^l e^{-\eta s} z(\theta_s \omega) ds \|v(l)\| \leq K e^{-\eta (t-l)} + \int_0^l e^{-\eta s} z(\theta_s \omega) ds \|v(l)\| \leq K e^{-\eta (t-l)} + \int_0^l e^{-\eta s} z(\theta_s \omega) ds \|v(l)\|. \tag{3.5}
\]
Let $l \to +\infty$, we have
\[
\Pi_{0u}v(t, \omega, v_0) = -\int_t^{+\infty} \phi_{A_0u}(t, s) \Pi_u G(\theta_s \omega, v(s))ds. \tag{3.5}
\]
Moreover, for all $t, l \in \mathbb{R}$ with $t \geq l$,
\[
\Pi_{0u}v(t) = \phi_{A_0u}(t, l) \Pi_{0u}v(l) + \Pi_{0u}(S \circ G(v(l + .))) (t - l) \\
= \phi_{A_0u}(t, l) \Pi_{0u}v(l) + \lim_{\lambda \to +\infty} \int_l^t \phi_{A_0u}(t, s) \lambda (\lambda I - A_s)^{-1} \\
\times \Pi_u G(\theta_s \omega, v(s)) ds. \tag{3.6}
\]
According to (2.7), for $l \geq 0$,
\[
\|\phi_{A_0u}(t, l) \Pi_{0u}v(l)\| \leq K e^{\alpha(t - l) + f^*_0 z(\theta_s \omega)} \|v(l)\| \\
\leq K e^{\alpha(t - l) + \eta l + f^*_0 z(\theta_s \omega)} e^{-\eta(t - l) - f^*_0 z(\theta_s \omega)} \|v(l)\| \\
\leq K e^{-(\alpha - \eta)t + \alpha t + f^*_0 z(\theta_s \omega)} \|v\| C_\eta(\mathbb{R}; X_0).
\]
Let $l \to +\infty$, we have
\[
\Pi_{0u}v(t, \omega, v_0) = -\int_t^{+\infty} \phi_{A_0u}(t, s) \Pi_u G(\theta_s \omega, v(s))ds. \tag{3.7}
\]
Moreover, for all $t, l \in \mathbb{R}$ with $t \geq l$,
\[
\Pi_{0u}v(t) = \phi_{A_0u}(t, l) \Pi_{0u}v(l) + \Pi_{0u}(S \circ G(v(l + .))) (t - l) \\
= \phi_{A_0u}(t, l) \Pi_{0u}v(l) + \lim_{\lambda \to +\infty} \int_l^t \phi_{A_0u}(t, s) \lambda (\lambda I - A_s)^{-1} \\
\times \Pi_u G(\theta_s \omega, v(s)) ds. \tag{3.8}
\]
According to (2.8), for $l \leq 0$,
\[
\|\phi_{A_0u}(t, l) \Pi_{0u}v(l)\| \leq K e^{-\beta(t - l) + f^*_0 z(\theta_s \omega)} \|v(l)\| \\
\leq K e^{-\beta(t - l) - \eta l + f^*_0 z(\theta_s \omega)} e^{\eta(t - l) - f^*_0 z(\theta_s \omega)} \|v(l)\| \\
\leq K e^{-(\beta - \eta)t - \beta t + f^*_0 z(\theta_s \omega)} \|v\| C_\eta(\mathbb{R}; X_0).
\]
Let $l \to -\infty$, we have
\[
\Pi_{0u}v(t, \omega, v_0) = \lim_{\lambda \to +\infty} \int_l^t \phi_{A_0u}(t, s) \lambda (\lambda I - A_s)^{-1} \Pi_u G(\theta_s \omega, v(s))ds. \tag{3.9}
\]
By summing up (3.3), (3.6) and (3.7), we get (3.2). Conversely, if there exists a $v \in C_\eta(\mathbb{R}; X_0)$ satisfying (3.2), then from (2.10), (3.3) and (3.4), we have
\[
\Pi_{0v}v(t, \omega, v_0) = \phi_{A_0v}(t, 0) \Pi_{0v}v_0 + \Pi_{0v}(S \circ G(v)) (t),
\]
and
\[
\Pi_{0u}v(t, \omega, v_0) = \phi_{A_0u}(t, 0) \Pi_{0u}v_0 + \Pi_{0u}(S \circ G(v)) (t).
\]
From (3.8), we have
\[
\Pi_{0u}v(t, \omega, v_0) = \phi_{A_0u}(t, 0) \Pi_{0u}v_0 + \Pi_{0u}(S \circ G(v)) (t).
\]
Thus v is a solution of (2.4), which means $v_0 \in X_0$.

Step 2. We claim that (3.2) has a unique solution in $C_\eta(\mathbb{R}, X_0)$ with $\xi \in X_0$.

To show this claim, we denote \(J(v, \xi) \) the right side of (3.2), i.e.

\[
J(v, \xi) = \phi_{A_{oc}}(t, 0) \xi + \int_0^t \phi_{A_{oc}}(t, s) \Pi_c G(\theta_s \omega, v(s)) \, ds
- \int_t^{+\infty} \phi_{A_{uc}}(t, s) \Pi_u G(\theta_s \omega, v(s)) \, ds
+ \lim_{\lambda \to +\infty} \int_{-\infty}^t \phi_{A_{uc}}(t, s) \lambda (\lambda I - A_s)^{-1} \Pi_u G(\theta_s \omega, v(s)) \, ds.
\]

(3.10)

So it needs to show that \(J \) maps from \(C_\eta(\mathbb{R}, X_0) \times X_{oc} \) to \(C_\eta(\mathbb{R}, X_0) \) and it is a uniform contraction. For \(v, \tilde{v} \in C_\eta(\mathbb{R}, X_0) \)

\[
\|J(v, \xi) - J(\tilde{v}, \xi)\|_{C_\eta(\mathbb{R}, X_0)} = \sup_{t \in \mathbb{R}} e^{-\eta|t| - \int_0^t z(\theta_s \omega) \, ds} \|J(v, \xi) - J(\tilde{v}, \xi)\|
:= \sup_{t \in \mathbb{R}} e^{-\eta|t| - \int_0^t z(\theta_s \omega) \, ds} (J_1 + J_2 + J_3),
\]

where

\[
J_1 = \left\| \int_0^t T_{A_{oc}}(t - s) e^{\int_s^t z(\theta_r \omega) \, dr} \Pi_c (G(\theta_s \omega, v(s)) - G(\theta_s \omega, \tilde{v}(s))) \, ds \right\|,
\]

\[
J_2 = \left\| \int_t^{+\infty} T_{A_{uc}}(t - s) e^{\int_s^t z(\theta_r \omega) \, dr} \Pi_u (G(\theta_s \omega, \tilde{v}(s)) - G(\theta_s \omega, v(s))) \, ds \right\|,
\]

\[
J_3 = \left\| \lim_{\lambda \to +\infty} \int_{-\infty}^t \phi_{A_{uc}}(t, s) \lambda (\lambda I - A_s)^{-1} \Pi_u (G(\theta_s \omega, v(s)) - G(\theta_s \omega, \tilde{v}(s))) \, ds \right\|.
\]

For the center part, it yields

\[
\sup_{t \in \mathbb{R}} e^{-\eta|t| - \int_0^t z(\theta_s \omega) \, ds} J_1 \leq KL \sup_{t \in \mathbb{R}} \int_0^t e^{(\gamma - \eta)|t-s| - \eta|s| - \int_s^r z(\theta_r \omega) \, dr} \|v - \tilde{v}\| \, ds
\leq KL \sup_{t \in \mathbb{R}} \int_0^t e^{(\gamma - \eta)|t-s|} \|v - \tilde{v}\|_{C_\eta(\mathbb{R}; X_0)}
\leq KL \frac{1}{\eta - \gamma} \|v - \tilde{v}\|_{C_\eta(\mathbb{R}; X_0)}.
\]

For the unstable part, it follows that

\[
\sup_{t \in \mathbb{R}} e^{-\eta|t| - \int_0^t z(\theta_s \omega) \, ds} J_2 \leq KL \sup_{t \in \mathbb{R}} \int_0^{+\infty} e^{(\alpha - \eta)(t-s) - \eta|s| - \int_s^\infty z(\theta_r \omega) \, dr} \|v - \tilde{v}\| \, ds
\leq KL \sup_{t \in \mathbb{R}} \int_0^t e^{(\alpha - \eta)(t-s)} \|v - \tilde{v}\|_{C_\eta(\mathbb{R}; X_0)}
\leq KL \frac{1}{\alpha - \eta} \|v - \tilde{v}\|_{C_\eta(\mathbb{R}; X_0)},
\]

(3.11)
For the stable part, according to (2.11), for $-\beta < \zeta < -\eta$, we have
\[
J_3 = \left\| \lim_{\lambda \to +\infty} \lim_{r \to -\infty} \int_r^0 \phi_{A_\lambda} (t, s) \lambda (I - A_\lambda)^{-1} \Pi_\lambda (G \left(\theta_1, \omega, v(s) \right) - G \left(\theta_1, \omega, \tilde{v}(s) \right)) ds \right\|
\]
\[
= \left\| \lim_{\lambda \to +\infty} \lim_{r \to -\infty} \int_0^{t-r} \phi_{A_\lambda} (t, t+r) \lambda (I - A_\lambda)^{-1} \times \Pi_\lambda (G \left(\theta_{t+r}, \omega, v(t+r) \right) - G \left(\theta_{t+r}, \omega, \tilde{v}(t+r) \right)) dl \right\|
\]
\[
\leq \lim_{r \to -\infty} LC_\zeta \sup_{t \in [0, t-r]} e^{c \left(t-r \right)} e^{\left(t-r \right) \epsilon(\theta_1, \omega) dr} \left\| v(t+r) - \tilde{v}(t+r) \right\|
\]
\[
= LC_\zeta \sup_{t \in (-\infty, t]} e^{c \left(t-\sigma \right)} e^{\left(t-\sigma \right) \epsilon(\theta_1, \omega) dr} \left\| v(\sigma) - \tilde{v}(\sigma) \right\|
\]

implying that
\[
\sup_{t \in \mathbb{R}} e^{-\eta |t|} \int_0^t z(\theta_1, \omega) ds J_3 \leq LC_\zeta \sup_{t \in \mathbb{R}} e^{-\eta |t|} \sup_{\sigma \in (-\infty, t]} e^{c |\sigma| + \zeta (t-\sigma)}
\]
\[
\times \left\| v(\sigma) - \tilde{v}(\sigma) \right\|
\]
\[
\leq LC_\zeta \sup_{t \in \mathbb{R}} e^{-\eta |t|} \sup_{\sigma \in (-\infty, t]} e^{c |\sigma| + \zeta (t-\sigma)} \left\| v - \tilde{v} \right\|_{C_\eta (\mathbb{R}; X_0)}.
\]

Since $\zeta + \eta < 0$, if $t \leq 0$,
\[
LC_\zeta \sup_{t \leq 0} e^{-\eta |t|} \sup_{\sigma \in (-\infty, t]} e^{c |\sigma| + \zeta (t-\sigma)} \left\| v - \tilde{v} \right\|_{C_\eta (\mathbb{R}; X_0)}
\]
\[
= LC_\zeta \sup_{t \leq 0} e^{(\eta + \zeta) t} \sup_{\sigma \in (-\infty, t]} e^{-(\eta + \zeta) \sigma} \left\| v - \tilde{v} \right\|_{C_\eta (\mathbb{R}; X_0)}
\]
\[
= LC_\zeta \sup_{t \leq 0} e^{(\eta + \zeta) t} e^{-(\eta + \zeta) \sigma} \left\| v - \tilde{v} \right\|_{C_\eta (\mathbb{R}; X_0)}
\]
\[
= LC_\zeta \left\| v - \tilde{v} \right\|_{C_\eta (\mathbb{R}; X_0)}.
\]

Since $\zeta + \eta < 0$ and $\eta > 0$, we have $\eta - \zeta > 0$, if $t \geq 0$,
\[
LC_\zeta \sup_{t \geq 0} e^{-\eta |t|} \sup_{\sigma \in (-\infty, t]} e^{c |\sigma| + \zeta (t-\sigma)} \left\| v - \tilde{v} \right\|_{C_\eta (\mathbb{R}; X_0)}
\]
\[
= LC_\zeta \sup_{t \geq 0} e^{(\eta - \zeta) t} \sup_{\sigma \in (-\infty, t]} e^{-(\eta - \zeta) \sigma} \left\| v - \tilde{v} \right\|_{C_\eta (\mathbb{R}; X_0)}
\]
\[
\leq LC_\zeta \sup_{t \geq 0} e^{(\eta - \zeta) t} \max \left(\sup_{\sigma \in (-\infty, 0]} e^{-(\eta + \zeta) \sigma}, \sup_{\sigma \in [0, t]} e^{(\eta - \zeta) \sigma} \right) \left\| v - \tilde{v} \right\|_{C_\eta (\mathbb{R}; X_0)}
\]
\[
= LC_\zeta \left\| v - \tilde{v} \right\|_{C_\eta (\mathbb{R}; X_0)}.
\]

Thus
\[
\sup_{t \in \mathbb{R}} e^{-\eta |t|} \int_0^t z(\theta_1, \omega) ds J_3 \leq LC_\zeta \left\| v - \tilde{v} \right\|_{C_\eta (\mathbb{R}; X_0)}.
\]

By combining the above estimates, we have
\[
\left\| J(v, \xi) - J(\tilde{v}, \xi) \right\|_{C_\eta (\mathbb{R}; X_0)} \leq KL \left(C_\zeta + \frac{1}{\eta - \gamma} + \frac{1}{\alpha - \eta} \right) \left\| v - \tilde{v} \right\|_{C_\eta (\mathbb{R}; X_0)},
\]
which implies that J is a uniform contraction with respect to v. Furthermore, it is straightforward that J is well defined from $C_\eta (\mathbb{R}, X_0) \times X_{0c}$ to $C_\eta (\mathbb{R}, X_0)$ by setting $\tilde{v} = 0$. From the contraction mapping principle, for any given $\xi \in X_{0c}$, $J(\cdot, \xi)$ has
a unique fixed point \(\overline{\tau} \in C_\eta (\mathbb{R}; X_0) \). That is, for each \(t \in \mathbb{R} \), \(\overline{\tau}(t, \omega, \xi) \) is a unique solution to \((3.2)\) and
\[
J (\overline{\tau}, \xi) = \tau(t, \omega, \xi).
\]

Also, for \(\forall \xi_1, \xi_2 \in X_{0c} \),
\[
\| J (\overline{\tau}, \xi_1) - J (\overline{\tau}, \xi_2) \|_{C_\eta (\mathbb{R}; X_0)}
= \| \overline{\tau}(t, \omega, \xi_1) - \overline{\tau}(t, \omega, \xi_2) \|_{C_\eta (\mathbb{R}; X_0)}
\leq K |\xi_1 - \xi_2| + KL \left(C_\zeta + \frac{1}{\eta - \gamma} + \frac{1}{\alpha - \eta} \right) \| \overline{\tau}(t, \omega, \xi_1) - \overline{\tau}(t, \omega, \xi_2) \|_{C_\eta (\mathbb{R}; X_0)}.
\]
Thus
\[
\| \overline{\tau}(t, \omega, \xi_1) - \overline{\tau}(t, \omega, \xi_2) \|_{C_\eta (\mathbb{R}; X_0)} \leq \frac{K}{1 - KL \left(C_\zeta + \frac{1}{\eta - \gamma} + \frac{1}{\alpha - \eta} \right)} |\xi_1 - \xi_2|.
\]

So \(\overline{\tau}(t, \omega, \cdot) \) is Lipschitz continuous from \(X_{0c} \) to \(C_\eta (\mathbb{R}; X_0) \). Since \(\overline{\tau}(\cdot, \omega, \xi) \) can be an \(\omega \)-wise limit of the iteration of contraction mapping \(J \) starting at 0 and \(J \) maps a measurable function to a measurable function, \(\overline{\tau}(\cdot, \omega, \xi) \) is measurable. By [7, Lemma III.14], the mapping \(\overline{\tau}(t, \omega, \cdot) \) is measurable with respect to \((\cdot, \omega, \xi)\).

Step 3. We will prove that the center manifold is given by a graph of a Lipschitz continuous map.

Let \(h^c(\xi, \omega) = \Pi s (0, \omega, \xi) + \Pi_0 (0, \omega, \xi) \), then by \((3.7)\) and \((3.9)\),
\[
h^c(\xi, \omega) = \lim_{\lambda \to +\infty} \int_0^\infty \phi_{A_\alpha}(0, s, \lambda) (\lambda I - A_s)^{-1} \Pi_s G(\theta_s, \tau(s, \omega, \xi)) \, ds
- \int_0^{+\infty} \phi_{A_0 s}(0, s) \Pi_s G(\theta_s, \tau(s, \omega, \xi)) \, ds.
\]
Since \(\overline{\tau}(0, \omega, \nu_0) = \nu_0 \), we have \(h^c(0, \omega) = 0 \) and thus \(h^c \) is \(\mathcal{F} \)-measurable. Indeed, by \((3.11)-(3.13)\), it follows that
\[
|h^c(\xi_1, \omega) - h^c(\xi_2, \omega)| \leq \frac{K (KL + C_\zeta L (\alpha - \eta))}{(\alpha - \eta) (1 - KL \left(C_\zeta + \frac{1}{\eta - \gamma} + \frac{1}{\alpha - \eta} \right))} |\xi_1 - \xi_2|.
\]

From the definition of \(h^c(\xi, \omega) \) and the claim in **Step 1**, it follows that \(\nu_0 \in M^c(\omega) \) if and only if there exists \(\xi \in X_{0c} \) such that \(\nu_0 = \xi + h^c(\xi, \omega) \). Therefore, we have
\[
M^c(\omega) = \{ \xi + h^c(\xi, \omega) : \xi \in X_{0c} \}.
\]

Step 4. Finally, we prove \(M^c(\omega) \) is invariant.

Following Definition 3.1, we need to show that for each \(\nu_0 \in M^c(\omega) \), \(v(r, \omega, \nu_0) \in M^c(\omega) \) for all \(r \geq 0 \). By the cocycle property, \(v(t + r, \omega, \nu_0) = v(t, \theta_r \omega, v(r, \omega, \nu_0)) \) and the fact that \(v(t + r, \omega, \nu_0) \in C_\eta (\mathbb{R}; X_0) \), we have \(v(t, \theta_r \omega, v(r, \omega, \nu_0)) \in C_\eta (\mathbb{R}; X_0) \). By the definition of \(M^c(\omega) \), we have \(v(r, \omega, \nu_0) \in M^c(\theta_r \omega) \).

Theorem 3.2. Let \(v(t, \omega, x) \) be a solution of \((2.4)\) and \(u(t, \omega, x) \) be the solution of \((1.1)\), then \(M^{c*}(\omega) = \Xi^{-1}(\omega, M^c(\omega)) \) is a center invariant manifold of \((1.1)\).

Proof. In fact, it follows from Lemma 2.5 that
\[
u(t, \omega, M^{c*}(\omega)) = \Xi^{-1}(\theta_t \omega, v(t, \omega, \Xi(\omega, M^{c*}(\omega))))
= \Xi^{-1}(\theta_t \omega, v(t, \omega, M^c(\omega))) \subset \Xi^{-1}(\theta_t \omega, M^c(\theta_t \omega))
= M^{c*}(\theta_t \omega).
\]
So $M^c(\omega)$ is invariant. Moreover, for $t \geq 0$,
\[
M^c(\omega) = \Xi^{-1}(\omega, M^c(\omega)) = \begin{cases}
0 = \Xi^{-1}(\omega, \xi + h^c(\xi, \omega)) : \xi \in X_{0c} \\
0 = e^{z(\theta, \omega)}(\xi + h^c(\xi, \omega)) : \xi \in X_{0c} \\
0 = \xi + e^{z(\theta, \omega)}h^c(e^{-z(\theta, \omega)}\xi, \omega) : \xi \in X_{0c}
\end{cases}.
\]
Therefore, $M^c(\omega)$ is a Lipschitz center invariant manifold given by the graph of a Lipschitz continuous function $h^c(\xi, \omega) = e^{z(\theta, \omega)}h^c(e^{-z(\theta, \omega)}\xi, \omega)$ over X_{0c}.

4. Illustrative example. Consider the following stochastic Stratonovich parabolic partial equation
\[
\begin{aligned}
\frac{\partial u(t, x)}{\partial t} &= \left(\frac{\partial^2 u(t, x)}{\partial x^2} + \pi^2 u(t, x) + g_0(u(t, x))\right) dt + u(t, x) \circ dW(t) \\
- \frac{\partial u(t, 0)}{\partial x} &= g_1(u(t, \cdot)) \\
\frac{\partial u(t, 1)}{\partial x} &= g_2(u(t, \cdot)) \\
u(0, \cdot) &= u_0 \in L^2(0, 1)
\end{aligned}
\] (4.1)
where $t > 0, x \in (0, 1), g_0 : L^2(0, 1) \to L^2(0, 1), g_1, g_2 : L^2(0, 1) \to \mathbb{R}$ are arbitrary nonlinear functions, which are assumed to be globally Lipschitz continuous and $g_0(0) = g_1(0) = g_2(0) = 0$. Herein, W is a one-dimensional Brownian motion and $L^2(0, 1)$ is the usual L^2-space on the interval $(0, 1)$. In order to incorporate the boundary conditions, we define
\[
\mathcal{Y} = \mathbb{R} \times \mathbb{R} \times L^2(0, 1) \text{ and } \mathcal{Y}_0 = \{0\} \times \{0\} \times L^2(0, 1),
\]
which are Banach spaces equipped with the usual product norm. Let us denote
\[
A \begin{pmatrix} 0 \\ \varphi \end{pmatrix} = \begin{pmatrix} \varphi'(0) \\ -\varphi'(1) \end{pmatrix}
\]
with domain $D(A) = \{0\} \times \{0\} \times \mathbb{R}^{2,2}(0, 1)$ and its part
\[
A_0 \begin{pmatrix} 0 \\ \varphi \end{pmatrix} = \begin{pmatrix} 0 \\ \varphi'' \end{pmatrix}
\]
with domain $D(A_0) = \{0\} \times \{0\} \times \{\varphi \in \mathbb{R}^{2,2}(0, 1) : \varphi'(0) = \varphi'(1) = 0\}$, where $
\mathbb{R}^{2,2}(0, 1)$ is the usual Sobolev space. Notice that
\[
\mathcal{Y}_0 = \overline{D(A)} = \{0\} \times \{0\} \times L^2(0, 1) \neq \mathcal{Y}
\]
and take
\[
F \begin{pmatrix} 0 \\ \varphi \end{pmatrix} = \begin{pmatrix} g_0(\varphi) \\ g_1(\varphi) \\ g_2(\varphi) \end{pmatrix}, \quad u^*(t, \cdot) = \begin{pmatrix} 0 \\ 0 \\ u(t, \cdot) \end{pmatrix}, \quad \omega(t) = \begin{pmatrix} 0 \\ 0 \\ W(t) \end{pmatrix}.
\]
Then we can rewrite (4.1) as
\[
\begin{cases}
du^*(t) = ((A + \pi^2 I) u^*(t) + F(u^*(t))) dt + u^*(t) \circ d\omega(t), \\
u^*(0) = u_0^* \in \mathcal{Y}_0.
\end{cases}
\]
According to [17, Lemma 6.1 & Lemma 6.3] that the linear operator A_0 is the infinitesimal generator of $(T_\alpha t)_t \geq 0$ a C_0-semigroup on \mathcal{Y}_0 and the non-densely defined operator A is $3/4$-almost sectorial, namely, its resolvent satisfies
\[
0 < \liminf_{\lambda \to \infty} \lambda^{\frac{3}{4}} \left\| (\lambda I - A)^{-1} \right\|_{\mathcal{L}(\mathcal{Y})} \leq \limsup_{\lambda \to \infty} \lambda^{\frac{3}{4}} \left\| (\lambda I - A)^{-1} \right\|_{\mathcal{L}(\mathcal{Y})} < \infty.
\]
Then [15, Lemma 8.5] guarantees Assumption 2.2. Moreover, the spectrum of A_0 is given by
\[
\sigma (A_0) = \left\{- (\pi k)^2 : k \in \mathbb{N} \right\}.
\]
Moreover, $(A + \pi^2 I)_0^*$, the part of $(A + \pi^2 I)$, is the infinitesimal generator of a C_0-semigroup on \mathcal{Y}_0 denoted by $(T_{(A + \pi^2 I)_0}(t))_{t \geq 0}$. Also, according to [17, Lemma 6.4] and [14, 15, Proposition 2.5], we get that Assumption 2.1 is satisfied, which means A does not satisfy the Hille-Yosida condition but $(A + \pi^2 I)$ generates a integrated semigroup $(S_{(A + \pi^2 I)}(t))_{t \geq 0}$. In addition, Assumption 2.3 is obvious by the Lipschitz continuity of $g_i, i = 0, 1, 2$. So we next check Assumption 2.4. In fact, by [17, Lemma 6.2] and [16, Lemma 2.1], we have $\sigma (A_0) = \sigma (A)$, then
\[
\sigma (A + \pi^2 I) = \sigma (A_0 + \pi^2 I) = \left\{ - (\pi k)^2 + \pi^2 : k \in \mathbb{N} \right\} = \left\{ \pi^2, 0, -3\pi^2, -8\pi^2, -15\pi^2, ... \right\},
\]
and each eigenvalue $\lambda_k = (1 - k^2) \pi^2$ corresponding to the eigenfunction
\[
\psi_k (x) = \sin (\pi k x).
\]
By Remark 2.2, we could take $\alpha = 3\pi^2 - \epsilon^*, \beta = \pi^2 + \epsilon^*$ and $\gamma = \gamma^* \in (0, \min \{ \pi^2 + \epsilon^*, 3\pi^2 - \epsilon^* \})$ for any $\epsilon^* > 0$. Thus the spectrum of $A_0 + \pi^2 I$ could be split into three parts $\sigma^{0s} = \left\{ (1 - k)^2 \pi^2 : k = 2, 3, ... \right\}$, $\sigma^{0c} = \{ 0 \}$, $\sigma^{0u} = \{ \pi^2 \}$. So $A_0 + \pi^2 I$ satisfies the exponential trichotomy condition and the Assumption 2.4 is satisfied. The center subspace \mathcal{Y}_{0c}, stable subspace \mathcal{Y}_{0s} and unstable subspace \mathcal{Y}_{0u} of \mathcal{Y}_0 are span $\{ \sin (\pi x) \}$, span $\{ \sin (\pi nx), n = 2, 3, ... \}$, and $\{ 0 \}$, respectively.

Therefore, the results obtained in Theorems 3.1 and 3.2 are applicable and thus justify the existence of Lipschitz center manifolds for (4.1).

Acknowledgments. This research was partially supported by the National Natural Science Foundation of China (No. 11871225) and Guangdong Basic and Applied Basic Research Foundation (No.2019A1515011350). We sincerely thanks the anonymous referee for his/her careful reading the manuscript and a number of excellent criticisms and suggestions.

REFERENCES

[1] W. Arendt, Resolvent positive operators, Proc. London Math. Soc., 54 (1987), 321–349.
[2] W. Arendt, Vector valued Laplace transforms and Cauchy problems, Israel J. Math., 59 (1987), 327–352.
[3] L. Arnold, Random Dynamical Systems, Springer, 1998.
[4] P. Boxler, How to construct stochastic center manifolds on the level of vector fields, in Lyapunov Exponents (eds. L. Arnold, H. Crauel and J.-P. Eckmann), Springer, 1486 (1991), 141–158.
[5] T. Caraballo, J. Duan, K. Lu and B. Schmalfuß, Invariant manifolds for random and stochastic partial differential equations, Adv. Nonlinear Stud., 10 (2010), 23–52.
[6] T. Caraballo, J. A. Langa and J. A. Robinson, A stochastic pitchfork bifurcation in a reaction-diffusion equation, R. Soc. Lond. Proc. Ser. A, 457 (2001), 2041–2061.
[7] C. Castaing and M. Valadier, *Convex Analysis and Measurable Multifunctions*, Springer, 1977.

[8] X. Chen, A. J. Roberts and J. Duan, *Centre manifolds for stochastic evolution equations*, J. Difference Equ. Appl., 21 (2015), 606–632.

[9] G. Da Prato and E. Sinestrari, *Differential operators with non-dense domain*, Ann. Scuola Norm-Sci., 14 (1987), 285–344.

[10] J. Duan, K. Lu and B. Schmalfuß, *Invariant manifolds for stochastic partial differential equations*, Ann. Probab., 31 (2003), 2109–2135.

[11] J. Duan, K. Lu and B. Schmalfuß, *Smooth stable and unstable manifolds for stochastic evolutionary equations*, J. Dynam. Differential Equations, 16 (2004), 949–972.

[12] T. Gallay, A center-stable manifold theorem for differential equations in Banach spaces, Comm. Math. Phys., 152 (1993), 249–268.

[13] K. Lu and B. Schmalfuß, *Invariant manifolds for stochastic wave equation*, J. Differential Equations, 236 (2007), 460–492.

[14] P. Magal and S. Ruan, *On integrated semigroups and age-structured models in L^p space*, Differential Integral Equations, 20 (2007), 197–239.

[15] P. Magal and S. Ruan, *On semilinear Cauchy problems with non-dense domain*, Adv. Difference Equations, 14 (2009), 1041–1084.

[16] P. Magal and S. Ruan, *Center manifolds for semilinear equations with non-dense domain and applications to Hopf bifurcation in age structured models*, Mem. Amer. Math. Soc., 202 (2009), vi+71 pp.

[17] P. Magal and O. Seydi, *Variation of constants formula and exponential dichotomy for non-autonomous non densely defined Cauchy problems*, arXiv:1608.07079

[18] S.-E. A. Mohammed, M. K. R. Scheutzow, *The stable manifold theorem for stochastic differential equations*, Ann. Probab., 27 (1999), 615–652.

[19] A. Neamtu, *Random invariant manifolds for ill-posed stochastic evolution equations*, Stoch. Dyn., 20 (2020), 2050013, 31pp.

[20] A. Pazy, *Semigroups of Linear Operator and Applications to Partial Differential Equations*, Springer, 1983.

[21] J. Shen and C. Zeng, *Invariant foliations for stochastic partial differential equations with non-dense domain*, submitted.

[22] L. Shi, *Smooth convergence of random center manifolds for SPDEs in varying phase spaces*, J. Differential Equations, 269 (2020), 1963–2011.

[23] H. R. Thieme, *Semiflows generated by Lipschitz perturbations of non-densely defined operators*, Differential Integral Equations, 3 (1990), 1035–1066.

[24] H. R. Thieme, “Integrated semigroups” and integrated solutions to abstract Cauchy problems, J. Math. Anal. Appl., 152 (1990), 416–447.

Received December 2020; revised March 2021.

E-mail address: 20202129528@mail.scut.edu.cn
E-mail address: macbzeng@scut.edu.cn