Preparation and Evaluation of Physicochemical and Antimicrobial Properties of Biological Nanostructures Polyolactic Acid / Calcium Oxide by Hydrothermal Assisted Microwave Method

Mohammad Hasan Moshafi, Mehdi Ranjbar, Zahra Zeinalizadeh Rafsanjani, Fatemeh Mehrabi

1. Professor of Pharmaceutics Research Center, Kerman University of Medical Sciences, Kerman, Iran
2. Assistant professor of Pharmaceutics Research Center, Kerman University of Medical Sciences, Kerman, Iran
3. Graduate of General Pharmacy, Student research committee, Kerman university of medical sciences, Kerman, Iran
4. Student of General Pharmacy, Student research committee, Kerman university of medical sciences, Kerman, Iran

ABSTRACT

Background: Today, with the development of human life and the overwhelming fall of antibiotics and uncontrolled bacterial resistance, the need to find materials with antimicrobial effects is felt more than ever. Nanotechnology has created a new opportunity to investigate the antimicrobial effects of nanomaterials.

Materials & Methods: In this study, using hydrothermal and microwave auxiliary chemicals, polyolactic acid / calcium oxide nanostructures were prepared and the physicochemical and microbial properties of these nanostructures were evaluated. Bacterial strains were obtained from the Scientific and Industrial Research Organization of Iran, the collection center of industrial microorganisms.

Results: Physicochemical characterization of optimized polyolactic acid / calcium oxide nanostructures showed the antimicrobial effect of nanoparticles on 3 strains gram-positive bacteria Micrococcus luteus (PTCC 1110), Bacillus subtilis (PTCC 1023), Staphylococcus aureus (PTCC 1112) and 4 strains gram-negative bacteria Escherichia coli (PTCC 1330), Klebsiella pneumonia (PTCC 1053), Serratia marcescens (PTCC 1621), Pseudomonas aeruginosa (PTCC 1074). In this study, the observed MIC (minimum growth inhibition concentration) observed for both Gram-positive and Gram-negative bacteria ranged between 0.5 ≤MIC≤8.

Conclusion: Antimicrobial effect of polyolactic acid / calcium oxide nanostructures was observed on all the mentioned bacteria except E. coli. It is recommended to conduct microbial and cellular studies on these nanomaterials.

Keywords: CaO/Polylactic Acid Nanofibers, Gram Positive and Negative Bacteria, Antibacterial Properties

Received: 2020/03/29; Accepted: 2020/06/14; Published Online: 2020/06/18

Introduction

A biological system can shrink to an infinite size and still maintain its former performance and even add new applications. In fact, there are many small cells that are known to be very active in spite of their small dimensions, producing various materials and doing various tasks on their own. This philosophy is one of the starting points for inspiration in nanoscience (1-3). In the recent years, nanotechnology and nanotechnology have begun to make dramatic changes in...
Various sciences, especially medical sciences. It can be widely said that the science and engineering of nanotechnology is defined as the design, fabrication, characterization and application of materials and tools that are particles ranging from a few nanometers to hundreds of nanometers in size (4-6). The overall definition of nanoparticles refers to particles in the range of 1 to 100 nm (7). These particles are designed to exhibit new, specially controlled properties of their raw material in the usual size, which results from precise control over their fabrication process.

One of the most important issues in drug delivery systems and the science of pharmaceutics is improving drug targeting for specific cells and reducing drug accumulation in cells, as high amounts are not necessary for a good function and might be toxic as well (8,9). This is often because the size of commonly used drug molecules is ten times larger than the size of a red blood cell and so the drug penetrates the cells far less than expected and as a result, we will have to increase the dosage or frequency of use to achieve our goals, which can lead to more toxicity and unintended side effects (10,11). Nowadays, by the use of nanomedicine, targeted drug delivery, reduced toxicity and consequently increased efficacy of antimicrobial drugs at lower concentrations have been achieved (10,13,14). On the other hand, in the treatment of infectious diseases, bacterial resistance to newer antibiotics has always been important, and bacterial resistance will lead to increased doses of antibiotics, increased medication to antimicrobial regimens, increased hospitalization and finally, the mortality rate of hospitalized patients will increase (15,16). Treatment of bacterial infections has been a matter of concern in the past until now (17,18). The use of nanotechnology by numerous approaches has so far been identified as one of the most important ways of overcoming bacterial resistance (19-21, 32). Among the things that can be described as a new generation of antibacterial compounds are nanoparticles containing biopolymers such as chitosan (22), nanoparticles containing metals such as Au (23), Ag (24), Mg (25), Cd (26), Bi and Cu (27). Multiple antimicrobial agents are drug bound to nanoparticles (15,16). The necessity of this research is to create nanostructures based on bio polymeric structure with calcium oxide nanoparticles as one of the cheapest nanoparticles for investigation of antimicrobial properties. Also, the use of chemical imaging and microwave radiation as environmentally friendly and cost-effective methods is one of the unique features of this research work. The aim of this study was to synthesize and optimize particle size of calcium oxide nanoparticles loaded with 1%, 0.5% and 0.25 wt% in poly lactic acid with 1%, 0.75% and 0.5 wt% percentage by chemical mimicry and using microwave waves and on 3 gram-positive bacteria evaluation of minimum growth inhibition concentration (MIC) in bacterial strains Micrococcus luteus, Bacillus subtilis, Staphylococcus aureus and 4 gram-negative bacteria Escherichia coli, Klebsiella pneumonia, Serratia marcescens, Pseudomonas aeruginosa.

Materials and Methods

Among the materials used in this study, Ca(NO)\textsubscript{2}·4H\textsubscript{2}O as a source of calcium and poly lactic acid was purchased from Kimia Exir in Iran, an importer of German-Indian Merck products. The NaOH used in this study was purchased from Dr. Abidi’s laboratory materials company. The distilled water used was provided by the Ab Ban company. To investigate the properties of nanostructures from X-ray machine of Kashan University with (Rigaku D-max C III X-ray) specifications. Scanning electron microscopy (LEO 1455VP) was also used at Razi Metallurgical Research center for imaging nanostructures. Nanoparticle tests were performed at Dr. Ranjbar’s pharmaceutical nanomaterials and nanostructures laboratory as well as antibacterial tests at Dr. Moshafi’s microbiology laboratory at Kerman university of medical sciences.

Synthesis of CaO/PLA nanocomposites

For preparation of PLA/CaO nanocomposites, the dry powder of the nanoparticles synthesized from the preceding steps were blended together as follows.

Sediments from calcium oxide weighing 0.25 grams and sediments from polyolactic acid weighing 0.5 grams, sediments from calcium oxide weighing 0.5 grams and sediments from polyolactic acid weighing 0.75 grams and sediments from calcium oxide weighing 1 g and sediments from polyolactic acid weighing 1 g were mixed and the synthesized nanocomposites were named A\textsubscript{1}, A\textsubscript{2} and A\textsubscript{3}, respectively. The precipitate mixture was refluxed with 10 ml of the 1: 2 ratios of dimethylformamide (DMF) and water for 30 min at 50 °C with magnetic stirrer. The mixture was placed in a microwave oven at 300 W for 15 minutes with 1: 2 on-off cycles and the final precipitate was collected from the filter paper dry. Table 1 shows in vitro conditions for making calcium-containing polyolactic acid nanoparticles.

Sample	Nanoparticle	PLA (g)	CaO (g)	DMF: H\textsubscript{2}O (ml)	pH	Temp (°C)
1	A\textsubscript{1}	0.5	0.25	20	8-9	50
2	A\textsubscript{2}	0.75	0.5	20	8-9	50
3	A\textsubscript{3}	1	1	20	8-9	50
Preparation of Half McFarland Solution

First, 0.5 mL of two hydrated barium chloride was prepared at a concentration of 1.175 wt.% in 1% sulfuric acid. The constant stirring turned out to be a one-stop suspension. The solution density was measured using optical absorption measurement in spectrophotometer with 1 cm optical path length equal to 1.5. The 5 mL solution was poured into coiled tubes the same size as the bacterial suspension tubes and kept in space. The solution was examined before each use for the presence of large particles with the naked eye and then stirred vigorously to create a uniform opacity. Suspension that is similar to the half-McFarland solution for opacity is 1.5×10^8 microorganisms.

Preparation of Muller Hinton agar and Muller Hinton broth culture medium

The 7.6 g of powder was mixed with 200 mL distilled water and then dissolved by heat and continued heating until the solution was clear. It was then removed by pipette, 18 mL of this medium, poured into large reflux tubes and sterilized by autoclaving at 121°C and a pressure of 15 pounds per square inch for 15 minutes. After sterilization, the medium was synthesized with two millimeters of the mixture and the molar Hinton broth medium prepared in various dilutions. It was then removed by pipette, 18 mL of this medium, poured into large reflux tubes and sterilized by autoclaving at 121°C and a pressure of 15 pounds per square inch for 15 minutes. After sterilization, the medium was synthesized with two millimeters of the mixture and the molar Hinton broth medium prepared in various dilutions. To prepare this medium, the culture was poured 1/2 g of the powder in 100 mL of distilled water and stirred until the powder was completely dissolved. Then, two millimeters of the prepared medium was poured into small flask tubes and sterilized by autoclaving at 121°C for 15 minutes at a pressure of 15 pounds per square inch. Mulberry Hinton agar medium was sterilized in autoclave, poured into 18 mL large test tubes. The dilutions of the 2 mL sample were mixed with a well of melt medium and transferred to a plate. Thus, the final dilutions in the plates were 0.5, 1, 2, 4, 8, 16, 32 and 64 μg/mL. Positive and negative control plates were also prepared on the back of the plates before labeling clearly for the concentration of antimicrobial agent and the culture location of each microbe. Bacteria that were cultured 24 h in the remaining 7 tubes containing 2 mL of Müller Hinton broth were microbial suspensions similar to 0.5 McFarland’s solution in opium. For this purpose, the loops were sterilized each time by the flame and after that the temperature was lowered to the point that it did not harm the living bacteria, the colonies were removed and dispersed well in a liquid fist medium.

Results

The X-ray diffraction pattern of a sample of calcium oxide-containing polylactic acid nanoparticles is shown in Figure 1. The peaks that determine and confirm the structure of the nanoparticles are clearly identified in the spectrum. Using the Debar Shear equation, the particle size can be calculated from the following equation:

$$D_c = \frac{K\lambda}{\beta \cos \theta}$$ \hspace{1cm} \text{Equation 1}

Where θ is the X-ray diffraction angle, $K\lambda$ denotes the wavelength of the beam at a constant whose value is 0.9. And the number in d_c estimates the diameter of calcium-containing polyelectric acid crystalline nanostructures at about 150 nm.

To study the exact size of nanostructures, dynamic light scattering (DLS) technique was used to accurately measure the size of the light scattering particles. The nanoparticles prepared are shown in Figure 2, which confirms the approximate size of the nanoparticles in the range of 150 to 450 nm.
To investigate the surface structure and shape characteristics of nanostructures, imaging was performed using scanning electron microscopy. The results of scanning electron microscopy images for samples A\textsubscript{1}, A\textsubscript{2} and A\textsubscript{3} are shown in Figures 3a, 3b and 3c, respectively.

Infrared spectroscopy (FT-IR) was used to identify the functional groups and interconnections formed. The infrared spectrum of the nanocomposites is shown in Figure 4. The wavelengths appearing in the region of 3500 cm-1 are related to the O-H group hydroxide bonds in the structure. C-C bonds appear at wavelengths of about 2920 cm-1 and 2850 cm-1. The C\textequals O bonds present in the polymer base structure of polylactic acid in the region of 1617 cm-1 are shown in the FT-IR infrared spectrum. The presence of Ca-O metal bonds on the polylactic acid substrate in the area below 1000 cm-1 is shown as weak peaks.
MIC method was used to investigate the antimicrobial effects of the synthesized compounds. In the MIC results tables, the positive sign indicates growth and the negative sign indicates bacterial growth. Table 2 shows the antimicrobial effects of A₁ nanoparticles using the MIC method. Also, positive control of the culture medium without microbial inoculation and negative control of the culture medium without microbial inoculation were simultaneously included in all experiments. Figure 5 shows the comparison of the minimum growth inhibitory concentration in all three nanocomposites.

Table 2. Results of standard bacterial growth at 8 different concentrations of A₁ nanoparticles

Concentration	E.coli	K. pneumoniae	S. marcescens	P. aeruginosa	S. aureus	M. luteus	B. subtilis	Control +	Control -
64 µg/ml	-	-	-	-	-	-	-	+	-
32 µg/ml	-	-	-	-	-	-	-	+	-
16 µg/ml	-	-	-	-	+	+	-	-	-
8 µg/ml	-	-	-	-	+	+	-	+	+
4 µg/ml	-	-	-	+	+	+	-	+	+
2 µg/ml	-	-	-	+	+	+	-	+	+
1 µg/ml	-	-	-	+	+	+	-	+	+
0.5 µg/ml	-	-	-	+	+	+	-	+	+

Figure 5. Comparison of growth inhibitory concentration in all three nanocomposites

Discussion

In recent years, the study on the antimicrobial properties of metal oxide has shown promising results. In this study, the optimum nanostructures were selected by particle size and morphology by structural optimization and phase determination. As can be seen in the light diffraction graph of the CaO/PLA crystal nanostructures, the peak has become ring-shaped, confirming the existence of a normal and uniform particle size distribution, which is in clear agreement with the SEM images. The best morphology and uniformity of particle size in A₁ nanostructures can also be observed through scanning electron microscopy. And this sample is selected as the optimal sample. Investigation of infrared spectroscopic spectra also shows the loading of calcium oxide nanoparticles in polymeric structures. In line with these studies, it has been observed that biopolymeric polymeric nanostructures containing calcium oxide made by chemical and microwave and hydrothermal synthesis have synergistic effects on Escherichia coli strains, Lactobacillus plantarum, Staphylococcus aureus and Staphylococcus aureus. And they have good antimicrobial properties. Ciprofloxacin as a modern antibiotic is effective against most gram-positive and gram-negative microorganisms and is a good positive test for this test. Pseudomonas aeruginosa 0.5 µg/mL ≤ MIC < 1 µg/mL, Streptococcus pyogenes 0.5 µg/mL IC MIC < 1 µg/mL, Serratia and Klebsiella 0.25 MIC ≤, Staphylococcus epidermidis 1 µg/mL ≤ MIC < 2 µg/mL,
Luteus is 8 μg/mL <MIC ≤ 16μg/mL, bacillus MIC> 64 μg/mL, which has fewer positive effects on gram-positive bacteria than the results obtained in this study. In 2014, a study on the antimicrobial properties of Copaiba oil showed that pyrrolidone and polyactic acid increased the amount of oil released from the polymer substrate and compared to our work, the results of this article on bacterial strains have received a weaker antibacterial response (28). In 2007, it was observed that a composite made of pectin polymer and polyactic acid produced a heterogeneous biphasic structure that could be observed by electron microscopy and was able to inhibit the growth of Lactobacillus plantarum and concluded that it can be suitable for the packaging industry (29). In addition, another study in 2018 found that the combination of cinnamon, silver nanoparticles, cobalt and antimicrobial agents such as ciprofloxacin increased the antimicrobial effects, therefore, the applications of this polymer in wound healing and drug release can be of more interest (30). Previously used in a study of polycrystalline acid / silicon / calcium carbonate membrane composite containing mercapto groups (PSC-SH) to investigate the antibacterial and stimulating properties of osteoblast activity. This compound owes its properties mainly to the mercapto group, but this study has also shown that polyactic acid polymer can be a significant substrate for material release (31). In the present study, we tried to compare the microbial effects by combining different concentrations of calcium oxide metal nanoparticles in the polymeric lactic acid as a substrate. As the MIC results show, all concentrations had inhibitory effects on the 7 bacterial strains. However, this inhibition did not follow a fixed pattern.

In one study, three different concentrations of calcium oxide nanoparticles were synthesized by microwave and combined with three different concentrations of polymer nanostructures using aqueous solvent-aqueous (hydrothermal) method with specific ratios. Structural and morphological identification were performed with SEM and XRD analysis. All of the synthesized nanoparticles were nanometer sized, but differed in dispersion and surface properties and the particle size distribution followed the normal distribution. The nanoparticle diameter measurements were confirmed by dynamic scattering of light by electron microscopy images. At all concentrations, inhibitory effects of growth on the tested bacteria were observed. There was no difference in the effect of nanocomposite on gram positive and negative bacteria in the tests. For Gram-positive Bacillus subtilis bacteria the MIC range remained constant with increasing percentage of calcium oxide and observed no effect of increasing antimicrobial concentration. Also, for gram-negative bacteria Escherichia coli, the antimicrobial effect decreased with increasing percentage of calcium oxide. It seems that this compound can be studied for wound healing formulations.

Conclusion

Bio-lactic acid / calcium oxide nanostructures with nanoscale sizes are highly capable of destroying nosocomial microbes and can be used as a highly effective synthetic antibiotic in the pharmaceutical industry.

Acknowledgment

We would like to thank Kerman University of Medical Sciences, Pharmaceutics Research Center as well as the Student Research Committee of Kerman University for their contribution to this research project.

Conflict of Interest

Authors declared no conflict of interests.
تهیه و ارزیابی خصوصیات فیزیکوشیمیایی و ضدمیکروبی نانوساختارهای زیستی
پلی لیکتیک اسید/کلسیم اسکساید به روش کمکی هیدروترمال و ماکروروسیتی

محمدحسین مسحی، مهدی رنجبر، زهرا زینلی زاده رفسنجانی، فاطمه مهرابی

اطلاعات مقاله

تاريخ مقاله
دریافت: ۱۳۹۹/۱/۱۰
پذیرش: ۱۳۹۹/۳/۲۵
انتشار آنلاین: ۱۳۹۹/۳/۲۹

موضوع:
نانو بیوتیکولوژی در پزشکی

نویسنده مسئول:
مهدی رنجبر، استادیار، علمی عضو هیئت علمی
مرکز تحقیقات فارماوسینتیکس دانشگاه علوم پزشکی کرمان، ایران
Mehdi.Ranjbar@kmu.ac.ir

چکیده

زیستی و اهداف: امروزه همگام با توسعه یکی از پیشگامان در ایجاد کمک به یافتن مواد با تاثیرات ضد میکروبی، نانو ساختارهای هیدروترمال ساخته شده که می‌تواند ویژگی‌هایی را به دست آورد که به طور کاملاً جدید می‌باشد. در این تحقیق، کمک هیدروترمال ساختارهای پلی لیکتیک اسید/کلسیم اسکساید تهیه شد.

مداد و روش کار: این مطالعه با استفاده از روش شیمیایی کمکی هیدروترمال و ماکروروسیتی ساخته شد. سپس ساختارهای پلی لیکتیک اسید/کلسیم اسکساید تهیه شد. سپس ساختارهای پلی لیکتیک اسید/کلسیم اسکساید ساخته شد. سپس ساختارهای پلی لیکتیک اسید/کلسیم اسکساید خاصیت ضد میکروبی این نانوساختارها مورد آزمایش قرار گرفت.

نتیجه‌گیری: نتایج نشان می‌دهد، استفاده از پلی لیکتیک اسید/کلسیم اسکساید با روش تهیه‌شده با کمک هیدروترمال می‌تواند ویژگی‌هایی را به دست آورد که به طور کاملاً جدید می‌باشد.

کلید واژه‌ها: نانوکاتیپولوژی، پلی لیکتیک اسید/کلسیم اسکساید، باکتری‌های میکروبی، ضد میکروبی

مقدمه

در سال‌های اخیر، نانوتکنولوژی و نانوهندسی مطالعه و به‌ویژه تحقیقات در علم مختلف علوم پزشکی کرده است. نانو مواد با توجه به ویژگی‌های خاص و فردی که به‌وجود آمده‌اند، باید توانسته باشند تا تاثیرات ضد میکروبی محدودی ایجاد کنند.

پژوهشی
نام ذرات اکسید کلسیم بعنوان یکی از از ارزانترین نانوذرات به‌منظور بررسی خواص ضد میکروبی استفاده می‌شود که خواص جدیدی را به خصوص، و کنترل شده‌ای را از ماده اولیه خود در سایر محصولات به‌نام باکتری‌دار که خواص در نتیجه کنترل دقیق بر فراوانی ساخت آنها به‌دست می‌آید. یکی از موارد بسیار مهم در سیستم‌های دارویی و عمل‌های میکروبیولوژیک استفاده می‌شود که هدف‌گذاری دارویی برای محلین خاص و کاهش تجمع داروها در سلول‌های خاصی است. هدف‌گذاری دارویی برای محلین خاص و کاهش تجمع داروها در سلول‌های خاصی است.

روش پژوهش

از جمله مواد مورد استفاده در این تحقیق شامل دستگاه‌های آنتی‌بیوتیک در آزمایشگاه‌های دکتر مصحفی، آزمایشگاه نانو‌مواد دارویی و نانوساختارهای دکتر رنجبر و همچنین نانوذرات اکسید کلسیم با وزن %5، %10، %15 در سلول‌های خاصی است. هدف‌گذاری دارویی برای محلین خاص و کاهش تجمع داروها در سلول‌های خاصی است. هدف‌گذاری دارویی برای محلین خاص و کاهش تجمع داروها در سلول‌های خاصی است.

در این کار تحقیقاتی است. هدف از انجام این تحقیق، تحقیق در خواص ضد میکروبی است. همچنین استفاده از روش سنتز نانوکامپوزیت به‌منظور یکی از ارزانترین نانوذرات به‌منظور سنتز شده از مراحل قبل را به ترتیب زیر با هم مخلوط شدند.

روش سنتز نانوکامپوزیت با استفاده از چربه‌ای اکسید کلسیم

پلی‌لاکتیک اسید با وزن 139 (درصد وزنی) در ناحیه‌های دکتر رنجبر و دکتر مصحفی در سایر محصولات به‌نام باکتری‌دار که خواص در نتیجه کنترل دقیق بر فراوانی ساخت آنها به‌دست می‌آید. یکی از موارد بسیار مهم در سیستم‌های دارویی و عمل‌های میکروبیولوژیک استفاده می‌شود که هدف‌گذاری دارویی برای محلین خاص و کاهش تجمع داروها در سلول‌های خاصی است. هدف‌گذاری دارویی برای محلین خاص و کاهش تجمع داروها در سلول‌های خاصی است.

پلی‌لاکتیک اسید با وزن 139 (درصد وزنی) در ناحیه‌های دکتر رنجبر و دکتر مصحفی در سایر محصولات به‌نام باکتری‌دار که خواص در نتیجه کنترل دقیق بر فراوانی ساخت آنها به‌دست می‌آید. یکی از موارد بسیار مهم در سیستم‌های دارویی و عمل‌های میکروبیولوژیک استفاده می‌شود که هدف‌گذاری دارویی برای محلین خاص و کاهش تجمع داروها در سلول‌های خاصی است. هدف‌گذاری دارویی برای محلین خاص و کاهش تجمع داروها در سلول‌های خاصی است.
مخلوط شد و نانوکامپوزیتهای سنگر شده را به ترتیب A1، A2 و A3 نام گذاری شدند. مخلوط روش‌های با میلیلتر از مخلوط دی‌تایی فرمائید و آب به نسبت 1:3 در مدت زمان 30 دقیقه در دمای 50 درجه سلسیوس با کمک همگن‌سازی رفلکس شد و مخلوط در ماکروویو با توان 3000 وات و مدت زمان 15 دقیقه با جدول 1 شیار ظرفیت آزمایشگاهی برای ساخت نانوذرات پلی لایکتیک اسید/کلسیم اکساید

شماره آزمایش	PLA وزن (گرم)	CaO وزن (گرم)	pH	دما (درجه سلسیوس)
A1	5/10	1/250	7.8-9	50
A2	5/10	1/250	7.8-9	50
A3	5/10	1/250	7.8-9	50

روش تهیه محلول نیم‌فک هارد
50 میلیلتر از مرکر کلاکد دو هیدراته دی‌هیدراته ای معکس 2/1 درجه سلسیوس و با هم مخلوط می‌شود. ترشیح نانوذرات جلوگیری از تغییر ترکیب به حدی لوله خوبی مخلوط کرده و به پلیت منتقل شدند. به این ترتیب، کیفیتهای منفی و مثبت نیز تهیه شدند.

روش تهیه محلول نیم‌فک آگار و مول هیبنتون پرات
مقدار 4/6 میلیلتر از محلول محلول نیم‌فک کلاکد دو هیدراته دی‌هیدراته ای معکس 2/1 درجه سلسیوس و با هم مخلوط می‌شود. ترشیح نانوذرات جلوگیری از تغییر ترکیب به حدی لوله خوبی مخلوط کرده و به پلیت منتقل شدند. به این ترتیب، کیفیتهای منفی و مثبت نیز تهیه شدند.

یافته‌ها
الگوی پراش اشعه ایکس نانوذرات تهیه شده از پلی لایکتیک اسید/کلسیم اکساید در شکل 1 مشاهده می‌شود. پیک‌های افوجی نانوذرات ماتریکس کریستال در حالت قوی و در محیط مایع به مرکز و توسط شش اشتهای استریل شد و بر اساس آنکه دمای که بایستی به شکل پایین آمد، که به اکثریت چند آن آماده و نه نکات قلوی نه مرکز براشته شدند و در محیط کنت ماپا به خوبی براشته شدند.

روش تهیه محلول نیم‌فک آگار و مول هیبنتون پرات
مقدار 4/6 میلیلتر از محلول محلول نیم‌فک کلاکد دو هیدراته دی‌هیدراته ای معکس 2/1 درجه سلسیوس و با هم مخلوط می‌شود. ترشیح نانوذرات جلوگیری از تغییر ترکیب به حدی لوله خوبی مخلوط کرده و به پلیت منتقل شدند. به این ترتیب، کیفیتهای منفی و مثبت نیز تهیه شدند.
پهندیدن آمده در (θ) زاویه تفرق پراش اشعه ایکس، Kλ حاصل ضرب طول موج اشعه در نتایج دستگاه رو به مقدار 0.9 برابر با عدد اسید حاوی کلسیم را حدود 150 نانومتر تخمین می‌زند.

به منظور بررسی اندازه دقیق نانوساختارها از دیاگرام اندازه ذرای تفرق دیمیک نور (DLS) استفاده می‌شود. در این آزمایش با استفاده از برهمکنش نور با ذره، اندازه ذرات به‌صورت دقیق بدست می‌آید. نتیجه بررسی اندازه ذره‌ای تفرق دیمیک نور نمونه نانوذره به‌منظور بررسی ساختار سطحی و ویژگی‌های شکل نانوساختارها تصویربرداری با استفاده از میکروسکوب الکترونی روبشی انجام شد. نتایج حاصل از تصاویر میکروسکوب الکترونی روبشی برای نمونه‌های ε، γ و A به ترتیب در شکل‌های (a) و (b) و (c) آورده شده است.
بیان شناسایی گروه‌های عاملی و پیوندهای تشکیل شده به‌منظور شناسایی گروه‌های عاملی و پیوندهای تشکیل شده

ملاحظه می‌شود که ساختار طیف مادون قرمز نانوساختارهای کریستالی پلی‌لیکسیکسیدی گروه O-H در سایت است. پیوندهای C=O موجود در ساختار پایه پلی‌لیکسیکسید در ناحیه 1 - 1617 cm⁻¹ در سیکتروسکوپی مادون قرمز FT-IR (استفاده شد).

میانگین طول موج که در ناحیه 1 - 2920 cm⁻¹ و 1 - 2850 cm⁻¹ نشان می‌دهد.

پیوندهای Ca-O روی بستر پلی‌لیکسیکسید در ناحیه زیر 1 - 1000 cm⁻¹ بیش از پیک‌های عضوی نمایان می‌شوند.

برای بررسی اثرات ضدمیکروبی ترکیبات سنتزشده از روش MIC استفاده شد. در جداول نتایج MIC نشاندهدش رشد و علائم منفی نشان دهنده عدم رشد باکتری است. جدول 3 اثرات ضدمیکروبی مربوط به نانوذرات A1 با استفاده از روش MIC را نشان می‌دهد. همچنین منظور از کنترل مثبت، میکرو از کنترل مثبت است. جدول 3 نتایج حاکی رشد باکتری‌های استاندارد در 8 غلظت مختلف از نانوذرات A1.
مقاله میکروبیشناسی پزشکی ایران
سال 14 شماره 3 خرداد - تیر 1399

بحث

در سال‌های اخیر مطالعه به‌روی خواص ضد میکرو‌بی‌ماری اکسیدات فلزی تأثیر بخاری نشان داده است. در این مطالعه ابتدا با بهره‌برداری از کالری‌بخاری و اینفلوکسیون، نتایجی به‌نهایت پذیرفته شد که با کمک آن می‌توان به‌کار گیری اکسیدات فلزی مناسبی بر روی آنتی‌بله باکتری‌ها در میکرو‌بی‌ماری تأثیرگذاری داشته و به‌روی آن‌ها کاهش منفی در میکرو‌بی‌ماری حاصل می‌شود.

این مطالعه ابتدا با بهره‌برداری از کالری‌بخاری و اینفلوکسیون، نتایجی به‌نهایت پذیرفته شد که با کمک آن می‌توان به‌کار گیری اکسیدات فلزی مناسبی بر روی آنتی‌بله باکتری‌ها در میکرو‌بی‌ماری تأثیرگذاری داشته و به‌روی آن‌ها کاهش منفی در میکرو‌بی‌ماری حاصل می‌شود.

این مطالعه ابتدا با بهره‌برداری از کالری‌بخاری و اینفلوکسیون، نتایجی به‌نهایت پذیرفته شد که با کمک آن می‌توان به‌کار گیری اکسیدات فلزی مناسبی بر روی آنتی‌بله باکتری‌ها در میکرو‌بی‌ماری تأثیرگذاری داشته و به‌روی آن‌ها کاهش منفی در میکرو‌بی‌ماری حاصل می‌شود.

این مطالعه ابتدا با بهره‌برداری از کالری‌بخاری و اینفلوکسیون، نتایجی به‌نهایت پذیرفته شد که با کمک آن می‌توان به‌کار گیری اکسیدات فلزی مناسبی بر روی آنتی‌بله باکتری‌ها در میکرو‌بی‌ماری تأثیرگذاری داشته و به‌روی آن‌ها کاهش منفی در میکرو‌بی‌ماری حاصل می‌شود.

این مطالعه ابتدا با بهره‌برداری از کالری‌بخاری و اینفلوکسیون، نتایجی به‌نهایت پذیرفته شد که با کمک آن می‌توان به‌کار گیری اکسیدات فلزی مناسبی بر روی آنتی‌بله باکتری‌ها در میکرو‌بی‌ماری تأثیرگذاری داشته و به‌روی آن‌ها کاهش منفی در میکرو‌بی‌ماری حاصل می‌شد.
پیدا کرده است. به نظر می‌رسد این ترکیب می‌تواند برای فرمولاسیون‌های ترمیم زخم مورد مطالعه قرار گیرد.

نتیجه‌گیری
نمونه‌های شیمیایی و میکروبی نانوساختارها بسیار زیست‌پذیر و حساس به مایعات فلزی هستند. این مسئله نشان می‌دهد که این ماده‌ها می‌توانند به عنوان یک منبع پیشیبیو تدریجی در بی‌خونی معده و بی‌خونی معده در صورت بیماری‌های ثانویه تحقیق شوند.

سپاسگزاری
بی‌خونی معده از مرکز تحقیقات فارماسیوتیکس دانشگاه علوم زیستی و پزشکی ایران، تست سنجشی طبیعی با نانوپارتن‌ها و مواد شیمیایی ساختاری و مورفولوژی قرار گرفتن نمی‌دهد. تجربه‌های نانوپارتن‌های اختصاصی در جدیدترین این روش‌ها مختلف از نانوپارتن‌های اکسید می‌باشد. در اینجا، تحقیقاتی شامل ترکیب‌های شیمیایی می‌باشد که در روش‌های مختلف از جمله ترکیب‌های شیمیایی می‌باشد.

اطلاعات در منافع
ابن مقابله با مصرف‌های مستقیم قبلاً مطرح شده است. در اینجا، تحقیقات ساختاری، نانوپارتن‌های پلیمری و شیمیایی مورد بررسی قرار گرفته‌اند.

Referance
1. Bhushan B. Introduction to nanotechnology. Springer handbook of nanotechnology: Springer; 2010. p. 1-13. [DOI:10.1007/978-3-642-02525-9_1]
2. Golabiazar R, Othman KI, Khalid KM, Maruf DH, Aulla SM. Green Synthesis, Characterization, and Investigation Antibacterial Activity of Silver Nanoparticles Using Pistacia atlantica Leaf Extract. Bionanoscience. 2019;9(2):323-33. [DOI:10.1007/s12668-019-0069-2]
3. Allahverdiyev AM, Abanor ES, Bagirova M, Rafaelovich MJFm. Antimicrobial effects of TiO2 and Ag2O nanoparticles against drug-resistant bacteria and leishmania parasites. Future Microbiol. 2018; 4 (4):113-123.
4. Khanipour A, Bahmani Z, Oromiehie A, Motalebi AJ. Effect of packaging with nano-composite clay/LDPE film on the quality of rainbow trout (Oncorhynchus mykiss) fillet at refrigerated storage. IRAN J FISH SCI. 2020;19(2):698-714.
5. Cao F, Ju E, Zhang Y, Wang Z, Liu C, Li W, et al. An efficient and benign antimicrobial depot based on silver-infused MoS2. ACS Nano. 2017;11(5):4651-9. [DOI:10.1021/acsnano.7b01095] [PMID]
6. Shi L-E, Li Z-H, Zheng W, Zhao Y-F, Jin Y-F. Synthesis, antibacterial activity, antibacterial mechanism and food applications of ZnO nanoparticles: a review. Food Additives & Contaminants. Part A. 2014;31(2):173-86. [DOI:10.1080/19440029.2013.865147] [PMID]
7. Naito M, Yokoyama T, Hosokawa K, Nogi K. Nanoparticle technology handbook: Elsevier; 2018.
8. Heidari AJMIO. Vibrational biospectroscopic studies on anti-cancer nanopharmaceuticals (Part II). Nanomed. 2018;20(1):74-117.
9. Yousefsaaz H, Aminosobhani M, Shokri M, Shahbazi RJEjotm. Anti-bacterial properties of calcium hydroxide in combination with silver, copper, zinc oxide or magnesium oxide. Eur J Transl Myol. 2018;28 (4):22-28. [DOI:10.1080/19440029.2013.865147] [PMID]}
10. Silva GA. Introduction to nanotechnology and its applications to medicine. Surg Neurol. 2004;61(3):216-20. [DOI:10.1016/j.surneu.2003.09.036] [PMID]
11. Raghupathi KR, Koodali RT, Manna ACJL. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir. 2011;27(7):4020-8. [DOI:10.1021/la104825u] [PMID]

12. Honary S, Zahir FJTJoPR. Effect of zeta potential on the properties of nano-drug delivery systems-a review. AJOL. 2013;12(2):265-73. [DOI:10.4314/prv.v12i2.20]

13. Nanoparticle-Based Medicines: A Review of FDA-Approved Materials and Clinical Trials to Date. Pharm Res. 2016;33(10):2373-87. [DOI:10.1007/s11095-016-1958-5] [PMID]

14. Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SRJoJ. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res. 2015;34(9):71-89.

15. Pelgrift RY, Friedman AJ. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev. 2013;65(13):1803-15. [DOI:10.1016/j.addr.2013.07.011] [PMID]

16. Pelgrift RY, Friedman AJ. Nanotechnology as a therapeutic tool to combat microbial resistance. 2013;65(13-14):1803-15. [DOI:10.1016/j.addr.2013.07.011] [PMID]

17. Shorr AFJCCcm. Review of studies of the impact on Gram-negative bacterial resistance on outcomes in the intensive care unit. Crit Care Med. 2009;37(4):1463-9. [DOI:10.1097/CCM.0b013e31819ced02] [PMID]

18. Zaidi S, Misba L, Khan AUJNN, Biology, Medicine. Nano-therapeutics: a revolution in infection control in post antibiotic era. Nanomedicine. 2017;13(7):2281-301. [DOI:10.1016/j.nano.2017.06.015] [PMID]

19. ALrawashdeh IN, Qaralleh H, Al-lmoun MO, Khlefat KMJapa. Antibacterial Activity of Astersicrus graveolens Methanolic Extract: Synergistic Effect with Fungal Mediated Nanoparticles against Some Enteric Bacterial Human Pathogens. J. basic appl. Res. biomed. 2015;5(2):98.

20. Basavalingaiah K, Harishkumar S, Nagaraju GIF. Uniform deposition of silver dots on sheet like BiVO4 nanomaterials for efficient visible light active photocatalyst towards methylene blue degradation. FlatChem. 2020;19 (4):113-142. [DOI:10.1016/j.flatc.2019.100142]

21. Lam SJ, Wong EH, Boyer C, Qiao GGJPPs. Antimicrobial polymeric nanoparticles. Progress in Poly. Sci. 2018;76:40-64. [DOI:10.1016/j.progpolymsci.2017.07.007]

22. Rahman PM, Mujeeb VA, Muraleedharan K, Thomas SKJASc. Chitosan/nano-ZnO composite films: enhanced mechanical, antimicrobial and dielectric properties. Arab. J. Chem. 2018;11(1):120-7. [DOI:10.1016/j.ajchem.2016.09.008]

23. Zheng K, Setyawati MI, Leong DT, Xie JJAn. Antimicrobial gold nanoclusters. ACS Nano. 2017;11(7):6904-10. [DOI:10.1021/acsnano.7b02035] [PMID]

24. Shahriary M, Veisi H, Hekmati M, Hemmati SJMS, C E. In situ green synthesis of Ag nanoparticles on herbal tea extract (Stachys lavandulifolia)-modified magnetic iron oxide nanoparticles as antibacterial agent and their 4-nitrophenol catalytic reduction activity. Mater. Sci. Eng. C. 2018;90:57-66. [DOI:10.1016/j.msec.2018.04.044] [PMID]

25. Verghese M, Vishal SKJP. Green synthesis of magnesium oxide nanoparticles using Trigonella foenum-graecum leaf extract and its antibacterial activity. Int. J. Pharmacogn. Phytochem. 2018;7:1193-200.

26. Abd Elsalam SS, Taha RH, Tawfelik AM, El-Monem A, Mohamed O, Mahmoud HAJTEJoHM. Antimicrobial activity of bio and chemical synthesized cadmium sulfide nanoparticles. Egypt. J. Hosp. Med. 2018;70(9):1494-507. [DOI:10.12816/00446675]

27. Lv Q, Zhang B, Xing X, Zhao Y, Cai R, Wang W. Biosynthesis of copper nanoparticles using Shewanella loihica PV-4 with antibacterial activity: Novel approach and mechanisms investigation. J Hazard Mater. 2018;347:141-9. [DOI:10.1016/j.jhazmat.2017.12.070] [PMID]

28. Bonan RF, Bonan PR, Sampaio FC, Albuquerque AJ. In vitro antimicrobial activity of solution blow spun poly (lactic acid)/polyvinylpyrrolidone nanofibers loaded with Copaiba (Copaifera sp.) oil. Mat. Sci. Eng. Matt. 2015;48:372-7. [DOI:10.1016/j.msec.2014.12.021] [PMID]

29. Liu L, Finkenstadt V, Liu CK, Jin T, Fishman M, Hicks KJJoAPS. Preparation of poly (lactic acid) and pectin composite films intended for applications in antimicrobial packaging. J. Appl. Polym. Sci. 2007;106(2):801-10. [DOI:10.1002/app.26590]

30. Scaffaro R, Lopresti F, Marino A, Nostro A. Antimicrobial additives for poly (lactic acid) materials and their applications: current state and perspectives. Biotech. 2018;102(18):7739-56. [DOI:10.1007/s00253-018-9220-1] [PMID]

31. Tokuda S, Obata A, Kasuga T. Preparation of poly(lactic acid)/siloxane/calcium carbonate composite membranes with antibacterial activity. Acta Biomaterialia. 2009;5(4):1163-8. [DOI:10.1016/j.actbio.2008.10.005] [PMID]

32. Niakan S, Niakan M, Hesaraki S, Nejadmoghaddam MR, Moradi M, Hanafiabdar M, et al. Comparison of the Antibacterial Effects of Nanosilver With 18 Antibiotics on Multidrug Resistance Clinical Isolates of Acinetobacter baumannii. Jundishapur J Microbiol. 2013;6(5):e8341. [Article] [DOI:10.5812/jim.8341]