both approaches are not feasible in resource-limited countries. POG9031 either with high dose chemotherapy or hyperfractionated radiotherapy.

5-year overall survival was 80.8% among standard-risk patients and 74.2% of patients who had relapsed was treated by three cycles of HDCx/AuHPCR. She is disease-free for over three years following relapse treatment.

A second isolated metastatic recurrence within the left frontal horn occurred 13 months post-treatment, which was treated with two cycles of cyclophosphamide/etoposide followed by two cycles of HDCx/AuHPCR. MRI of the brain showed no residual tumor one month post-treatment. He currently awaits follow-up stereotactic radiosurgery. CONCLUSION: Patients with recurrent Wnt-MB may be treated with curative intent using a multidisciplinary approach that includes HDCx/AuHPCR, and minimization or avoidance of re-irradiation.

MBCL-48. OUTCOMES OF TREATMENT BASED ON THE ST. JUDE MEDULLOBLASTOMA-96 REGIMEN FOR JAPANESE CHILDREN WITH MEDULLOBLASTOMA

Junya Fujimura1, Tomonari Suzuki2, Yoko Watanabe1, Hidetaka Nizuma1, Ryuta Saito3, Masayuki Kanamori4, Yukihito Sonoda5, Atsuko Watanabe6, Ryutaro Takada7, Megumi Sonoda8, Akira Yaguchi9, Takashi Ishibashi9, Tsuchiya Tomura10, Akira Imaguchi11, Takaaki Yanagisawa12, Teji Tominga13, Royo Nishikawa14, and Hajime Arai15. 1Department of Pediatrics, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan, 2Department of Neuro-Oncology/Neurosurgery, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan, 3Department of Pediatrics, Tokohu University Graduate School of Medicine, Sendai, Miyagi, Japan, 4Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan, 5Department of Neurosurgery, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan, 6Department of Pediatrics, Tokohu University Graduate School of Medicine, Sendai, Miyagi, Japan, 7Department of Pediatrics, Tokyo Women's Medical University, Hachioji, Tokyo, Japan, 8Department of Neurosurgery, Jikei University School of Medicine, Minato-ku, Tokyo, Japan

Medulloblastoma is a type of malignant embryonal tumor in childhood that is considered to require multagent chemotherapy followed by radical resection and craniospinal irradiation (CSI). However, the outcomes of chemotherapy for this tumor in Japan are unclear. Here, we performed a multicenter retrospective study to determine the prognosis of pediatric medulloblastoma patients treated with the St. Jude medulloblastoma-96 regimen. Thirty patients with newly diagnosed medulloblastoma received treatment with the SJMB96 regimen at Juntendo University Hospital in Tokyo (n=10), Saitama Medical University International Medical Center in Saitama (n=10), and Tokohu University Hospital in Miyagi (n=10) from 2011 to 2018. All patients underwent tumor resection and CSI, with radiation doses of 23.4 Gy for standard-risk patients (n=11) and 39.6 Gy for high-risk patients (n=19). Six weeks after radiation therapy, patients received four cycles of high-dose chemotherapy with autologous peripheral blood stem cell transplantation according to the SJMB96 regimen. We found that 5-year overall survival was 80.8% among standard-risk patients and 74.2% among high-risk patients. No treatment-related deaths occurred. Eight patients who experienced recurrence died within 80 months of diagnosis. As these treatment outcomes are comparable to those previously reported outside of Japan, our findings indicate that this regimen is a therapeutic option for medulloblastoma patients in Japan.

MBCL-50. DISMAL OUTCOME OF HIGH RISK MEDULLOBLASTOMA TREATED WITH CHEMOTHERAPY FIRST APPROACH IN MALAYSIA

Shiao Wei Queah1, EJ Abdul Rahman2, H Mohd Ibrahim3, Z Muda4, IS Othman5, MN Mohamed Unmi6, K Gunsagarasam7, MP Ang8, CB Goh9, and KH Teh10. 1Paediatric Haematology & Oncology Unit, Paediatric Department, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia

INTRODUCTION: Patients with high risk medulloblastoma are treated either with high dose chemotherapy or hyperfractionated radiotherapy. Both approaches are not feasible in resource-limited countries. POG9031 trial has reported favourable outcome for high risk medulloblastoma using standard chemotherapy and radiotherapy only. Hence, we have adopted the protocol using chemotherapy first approach due to logistical reasons. OBJECTIVE: To review the outcome of children diagnosed with high risk medulloblastoma in Hospital Kuala Lumpur. METHODS: Patients diagnosed with high risk medulloblastoma between January 2015 and June 2018 treated using the chemotherapy first approach as per POG9031 protocol were identified. Data was then extracted and analysed. RESULTS: Nine patients were identified, 3 boys and 6 girls. Median age at diagnosis was 3.1 years (range 0.4 – 15.9 years). Median follow up for survivors is 3.6 years. Five patients (55.6%) had macroscopic metastatic disease at diagnosis. All patients had significant residual disease post-op. Only 3 patients are disease free till last follow up, giving a 3 years event free survival of 16%. Of the patients who had no evidence of disease at three years overall survival of 40%. Patient with no metastasis at diagnosis (M0) fared better with 3 years event free survival of 38%, but 3 years event free survival for patients with macroscopic metastatic disease (M+) was 0%. CONCLUSION: Outcome of children with high risk medulloblastoma treated with chemotherapy first approach was dismal.

MBCL-51. POST-AUTOLOGOUS HEMATOPOIETIC CELL TRANSPLANTATION (AUHCT) PRACTICES FOR YOUNG CHILDREN WITH MALIGNANT BRAIN TUMORS

Mahvish Rahman1,2, Jeffrey Auellette3, Girish Dhali4, Jonathan Finlay4, and Scott Cover4. 1Indiana University School of Medicine, Indianapolis, IN, USA, 2Riley Hospital for Children, Indianapolis, IN, USA, 3Nationwide Children’s Hospital, Columbus, OH, USA, 4The Ohio State University College of Medicine, Columbus, OH, USA, 5Children’s of Alabama, Birmingham, AL, USA

BACKGROUND: “Head Start” protocols have used autologous hematopoietic stem cell transplant (AuHCT) for infants and young children with recurrent brain tumors in order to avoid cranial irradiation. We present the endocrine profile for our patients who underwent AuHCT for children with a brain tumor diagnosis varies greatly. The goal of this research study is to explore practices and attitudes about post-AuHCT care for children with brain tumors. DESIGN: An anonymous REDCap survey link was provided to all site primary investigators and additional support personnel at “Head Start” institutions. The survey questions defined the role of the medical provider completing the form and explored the various practices relating to transition, management, communication, and support. RESULTS: Twenty-six of the 34 individual responders have been received so far. The majority report that prophylactic medicines were discontinued upon WBC recovery; however, management of discontinuation was split evenly between the neuro-oncology and stem-cell transplant teams. Nearly half of responders follow T-cell recovery following transplant without immunology guidance. Post-AuHCT vaccination practices are highly variable, with no clear consensus. Lastly, most responders reported adequate ease of transition and communication between the neuro-oncology and transplant teams. CONCLUSIONS: This work underscores the need for both multidisciplinary communication for children with brain tumors in the post-AuHCT period and for the development of standardized vaccination and other prophylaxis practices.

MBCL-52. ENDOCRIINE PROFILE AFTER MEDULLOBLASTOMA TREATMENT

Miriam Pavon-Mengual1, Helen Curry2, Vrinda Saraf2, Zaunah Mohamed3, Helen Bengath2, Daniel Ford2, Andrew Peet2, Jenny Adamski1, and Martin English1. 1Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, United Kingdom, 2University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom

BACKGROUND: Treatment of medulloblastoma has evolved substantially with more chemotherapy, risk-adapted dosing of radiotherapy (RT) and new RT techniques. We present the endocrine profile for our patients treated over a 20-year period. METHODS: The charts of patients treated for medulloblastoma between 1/1/00 and 31/12/19 were reviewed. 105 were available. Group 1 received chemotherapy alone, Group 2 received 23.4 Gy whole CNS RT with primary site boost to 54 Gy, Group 3 received > 35 Gy whole CNS RT with PF boost to 54–59 Gy, Group 4 received PF RT to 54 Gy. All received chemotherapy according to national guidelines or clinical trials relevant at the time. RESULTS: Group 1 (M/F: 36/69; age 2) had no endocrinopathies, Group 2 (M/F: 51/54; age 2) had no endocrinopathies. One boy with Wnt-MB and one boy with MBCL-48. OUTCOMES OF TREATMENT BASED ON THE ST. JUDE MEDULLOBLASTOMA-96 REGIMEN FOR JAPANESE CHILDREN WITH MEDULLOBLASTOMA
endocrinopathy after treatment for medulloblastoma that can be used for future comparisons.

MEDULLOBLASTOMA (RESEARCH)

MBRS-01. DISSECTING REGULATORS OF THE ABERRANT POST-TRANSCRIPTIAL LANDSCAPE IN MYC-AMPLIFIED GROUP 3 MEDULLOBLASTOMA
Micha Kudielka1, Xiaoze Zhang2, Helen Zhu3, En-Ching Luo4, Chitra Venugopal5, Agata Xella6, Kevin Brown1, Raymond Fox7, Brian Yee8, Sansi Xing9, Frederic Tan10, David Bakshishyan11, Ashley Adile1, Minomi Subapanditha12, Daniel Picard13, Jason Moffat14, Adam Fleming15, Kristen Hope16, Prowais John17, Marc Remke18, Yu Lz19, Tannishtha Rey20, Jun Remand21, Robert Wechsler-Reya22, Gene Xeo23, and Sheila Singh24
1McMaster, Hamilton, ON, Canada, 2University of Toronto, Toronto, Ontario, Canada, UCSD, San Diego, CA, USA, 3Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA, 4University of Toronto, Toronto, ON, Canada, 5McMaster, Hamilton, ON, Canada, UCSD, San Diego, ON, Canada, 6University Hospital Dusseldorf, Dusseldorf, Germany, 7UCSD, San Diego, CA, USA, 8Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, Canada

Medulloblastoma (MB) is the most common solid malignant pediatric brain neoplasm, with Group 3 (G3) MB representing the most aggressive subgroup. MYC amplification is an independent poor prognostic factor in G3 MB; however, therapeutic targeting of the MYC pathway remains limited and alternative therapies for G3 MB are urgently needed. Here we show that an RNA-binding protein, Musashi-1 (MSH1) is an essential mediator of G3 MB in both MYC-overexpressing mouse models and patient-derived xenografts. Unbiased integrative multi-omics analysis of MSH1 function in human G3 MB suggests a paradigm shift beyond traditional gene-based profiling of oncopgenes. Here we identify MSH1 as an oncogene in G3 MB driving stem cell self-renewal through stabilization of HIF1k mRNA, a downstream context-specific therapeutic target for drug discovery.

MBRS-02. BET BROMODOMAIN PROTEIN-KINASE INHIBITOR COMBINATIONS FOR THE TREATMENT OF MEDULLOBLASTOMA
Nagi Ayad1, Robert Suter1, David Robbins2, and Martine Roussef3
1University of Miami, Miami, FL, USA, 2St. Jude Children's Research Hospital, Memphis, TN, USA

Recent sequencing studies have implicated many epigenetic regulators in medulloblastoma. The epigenetic reader protein Brd4 has been implicated in various cancers including medulloblastoma. Brd4 controls expression of the medulloblastoma essential genes MYC and G3 MB, which have poor prognosis as well as GLI1 and GLI2 levels in Sonic hedgehog (SHH) driven medulloblastomas, which have intermediate prognosis. Highly selective Brd4 inhibitors have been developed that reduce MYC, GLI1 and GLI2 levels. These inhibitors have gone into clinical trials for multiple cancer indications including medulloblastoma. However, resistance is common for Brd4 inhibitors warranting combination therapies for improved clinical outcome. We have developed a computational pipeline termed SynergySeq that predicts patient specific combinations of Brd4 inhibitors along with kinase inhibitors. We demonstrate that Brd4-kinase inhibitors robustly reduce proliferation and MYC driven medulloblastoma cells. Improved efficacy is related to dampening the adaptive kinome reprogramming response that occurs after Brd4 inhibition. Our findings suggest that SynergySeq can be utilized to inform patient selection for clinical trials utilizing Brd4 inhibitors in medulloblastoma and other brain tumors.

MBRS-03. SINGLE NUCLEUS TRANSCRIPTOME PROFILES FROM HUMAN DEVELOPING CEREBELLUM REVEAL POTENTIAL CELLULAR ORIGINS OF MEDULLOBLASTOMA BRAIN TUMORS
Konstantin Okomenkova1,2, Mari Sepp1, Kevin Less1, Lena Kutschker1, Kati Ernst1,2, David Jones1,2, Natalie Jager1, Kristian W. Pajler1,2, Henrik Kaestmann1, and Stefan M. Pfister1,2; Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany, 3German Cancer Research Center (DKFZ), Heidelberg, Germany, 4Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany

Medulloblastoma (MB) is a highly malignant pediatric brain tumor occurring in the posterior fossa. WNT and SHH-activated medulloblastoma are the two main subgroups forming this heterogeneous tumor entity was initially achieved from transcriptome characterization and further strengthened using DNA methylation profiling. While subgroup classification improved clinical diagnosis and treatment options, the lack of knowledge of the cell-of-origin for some of the subgroups hinders further treatment improvements. In addition identification of the precise cells of origin for each subgroup could help to understand tumor cell biology. Single cell sequencing is the optimal way to solve this task; recently, there were attempts to uncover putative MB cell-of-origin by using such information obtained from the cerebellum. However, such a comparative strategy can miss important results due to the differences between mouse and human. To solve this issue, we performed global single nucleus sequencing on human cerebellum pre- and postnatal materials across several developmental time points and generated transcriptome profiles from ~200k single cells. We identified known cell types forming the human cerebellum and performed detailed comparison of normal cells to RNA-seq bulk data from MB brain tumors across all subgroups. By selecting an optimal comparison strategy, we verified granule neuron precursors as cells of origin for the SHH MB subgroup. Additionally, we also found other cell types in conjunction with the remaining MB subgroups, suggesting new potential targets for investigation. Notably, this strategy can be further applied to the examination of other brain tumors and has perspectives in medical application.

INTRODUCTION: Long non-coding RNAs (lncRNAs) are functionally defined as transcripts longer than 200 nucleotides in length with no protein coding potential. lncRNA involvement in human cancers etiology is being increasingly proved. Cancer-secreted long non-coding RNAs (lncRNAs) in exosomes are emerging models for cancer-host immunon communication in tumor microenvironments. The ability to monitor and detect tumor markers in real time enables access to tumor biology and may allow highly personalized treatment for each patient. METHODS AND RESULTS: We analyzed RNA sequencing of 64 Medulloblastoma samples and quantified the genome wide long non-coding RNAs (lncRNA) expression levels. We identified a lncRNA that is distinctly highly expressed in group 4 (MB4). MB4 expression was further examined in microarray analysis on a larger cohort of medulloblastoma patient samples and a large cohort of normal brain and different brain tumor samples. MB4 proved to be specific and highly expressed in group 4 Medulloblastoma. MB4 was detected in the plasma of medulloblastoma patients with active disease, or subtotal resection. MB4 was expressed in patients that their tumors were resected. MB4 expression is not detected in the serum of medulloblastoma type SHH, pipecidoma, ewing sarcoma and neuroblastoma patients. CONCLUSIONS: We have found that MB4 lncRNA is a highly specific medulloblastoma tumor biomarker and is sensitive and noninvasive biomarker that can be quantified from a blood test. MB4 can be a good diagnostic marker, and in future both may also be a good target for therapy.

MBRS-06. GLI3 INDUCES NEUROBLASTOMA DEVELOPMENT IN WNT- AND SHH-ACTIVATED MEDULLOBLASTOMA
Manabu Natsumeda1, Hiroaki Miyahara2, Junichi Yoshimura1, Yoshitomo Otsukamoto3, Takafumi Takahashi3, Michiaki Fuji3, Ivana Hopp4, Robert Hopp5, Kenneth Robbins4, and Jeffrey Oh1
1Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan, 2Department of Neuropathology, Institute for Medical Science of Ageing, Akita Medical University, Akita, Japan, 3Department of Neurosurgery, Shizuoka Children's Hospital, Shizuoka, Japan, 4Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA, 5Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan

BACKGROUND: We have previously investigated the expression of Glir3, a downstream target of the Sonic Hedgehog pathway, which main function is to suppress Glir12 in medulloblastomas. We found that Glir3 is associated with neuronal and glial differentiation in desmoplasic / nodular (D/N) type medulloblastomas (Miyahara et al., Neuropathology, 2013). In the present study, we investigated the expression of Glir3 in molecular subgroups. METHOD: Thirty-four medulloblastomas treated at Niigata University between 1982 and 2013 were studied. Molecular classification into 4 subgroups (WNT-activated, SHH-activated, Group 3 and Group 4) using Nanostring and immunohistochemistry was performed. Furthermore, Glir3 and Glir1 expression in human cases following the more recent WHO classification was performed. RESULTS: Nanostring was considered reliable (confidence > 0.9) in 28 cases. Four cases were classified as WNT-, 3 cases as SHH-activated, 4 cases as Group 3 and 16 cases as Group 4. Glir3 was positive in 7 out of 4 cases, 3 out of 3 cases and 5 out of 16 cases, respectively. Glir1 was positive in 3 out of 4 cases, 2 out of 3 cases, and 6 out of 16 cases, respectively. R2 database analysis confirmed that Glir3 was significantly elevated in WNT- and SHH-activated medulloblastoma. Glir1 was elevated in SHH-activated cases but suppressed in WNT-activated cases. IHC analysis revealed that Glir3 was elevated inside nodules showing neuronal differentiation in D/N type.