Two-generated verbally closed subgroups of a free solvable group G are retracts of G

V.A. Roman’kov, E.I. Timoshenko

Abstract

We prove that every verbally closed two-generated subgroup of a free solvable group G of a finite rank is a retract of G.

1 Introduction

Algebraically closed objects play an important part in modern algebra. In this paper we study verbally closed and algebraically closed subgroups of free solvable groups.

We first recall that a subgroup H is called algebraically closed in a group G if for every finite system of equations $S = \{E_i(x_1, \ldots, x_n, H) = 1 \mid i = 1, \ldots, m\}$ with constants from H the following holds: if S has a solution in G then it has a solution in H. Then we recall that a subgroup H of a group G is called a retract of G, if there is a homomorphism (termed retraction) $\phi : G \to H$ which is identical on H. It is easy to show that every retract of G is algebraically closed in G. Furthermore, if G is finitely presented and H is finitely generated then the converse is also true (see [1]). This result still holds for any finitely generated group G which is equationally Noetherian. Recall that a group G is called equationally Noetherian if for any n every system of equations in n variables with coefficients from G is equivalent (has the same solution set in G) to some finite subsystem of itself (see [2], [3].

Let $F(X)$ be the free group of countably infinite rank with basis $X = \{x_1, x_2, \ldots, x_n, \ldots\}$. For $w = w(x_1, \ldots, x_n) \in F(X)$ and a group G by $w[G]$ we denote the set of all w-elements in G, i.e., $w[G] = \{w(g_1, \ldots, g_n) \mid g_1, \ldots, g_n \in G\}$. The verbal subgroup $w(G)$ is the subgroup of G generated by $w[G]$. The w-width $l_w(g) = l_w,G(g)$ of an element $g \in w(G)$ is the minimal natural number n such that g is a product of n w-elements in G or their inverses; the width of $w(G)$ is the supremum of widths of its elements. The first question about w-width goes back to the Ore’s paper [4] where he asked whether the $[x, y]$-width (the commutator width) of every element in a non-abelian finite simple group is equal to 1 (Ore Conjecture). The conjecture was established in [5]. Observing paper [6] and monographs [7], [8] present results about verbal width in groups.

Two important questions arise naturally for an extension $H \leq G$ and a given word $w \in F(X)$:

- when it is true that $w[H] = w[G] \cap H$?
- when $l_{w,G}(h) = l_{w,H}(h)$ for a given $h \in w(H)$?
To approach these questions Mysnikov and the author introduced in [1] a new notion of verbally closed subgroups.

Definition 1.1. A subgroup H of G is called *verbally closed* if for any word $w \in F(X)$ and element $h \in H$ equation $w(x_1, \ldots, x_n) = h$ has a solution in G if and only if it has a solution in H, i.e., $w[H] = w[G] \cap H$ for every $w \in F(X)$.

Theorem 1.2. [1]. Let F be a free group of a finite rank. Then for a subgroup H of F the following conditions are equivalent:

a) H is a retract of F.

b) H is a verbally closed subgroup of F.

c) H is an algebraically closed subgroup of F.

This result clarifies the nature of verbally or algebraically closed subgroups in F. Surprisingly, the "weak" verbal closure operator in this case is as strong as the standard one.

Similar result is true for any free nilpotent group N of a finite rank.

Theorem 1.3. [9]. Let N be a free nilpotent group of a finite rank and class c. Then for a subgroup H of N the following conditions are equivalent:

a) H is a retract of N.

b) H is a verbally closed subgroup of N.

c) H is an algebraically closed subgroup of N.

d) H is a free factor of the free group N in the variety N_c of all nilpotent groups of the class $\leq c$.

2 Preliminaries

In this section we collect some known or simple facts on verbally or algebraically closed subgroups.

Proposition 2.1. [1]. Let $H \leq G$ be a group extension. Then the following holds:

1) If H is a retract of G then H is algebraically closed in G.

2) Suppose G is finitely presented and H is finitely generated. Then H is algebraically closed in G if and only if H is a retract.

3) Suppose G is finitely generated relative to H and H is equationally Noetherian. Then H is algebraically closed in G if and only if H is a retract.

Further in the paper M_r denotes a free metabelian group of rank r and M_{rk} denotes a free metabelian nilpotent of class k group of rank r.

The following statement was proved in [10] (see also [8]).
Let G denote M_2 or $M_{rk}, k \geq 4$, with basis z_1, z_2. Let tuple (g_1, g_2) is a solution of the equation

$$(x_2, x_1, x_1, x_2) = (z_2, z_1, z_1, z_2).$$

(1)

Then $g_i \equiv z_i^{+1} \pmod{G'}, i = 1, 2$.

Lemma 2.3 ([9], Lemma 1.1). Let G be a group and let N be a verbal subgroup of G. If H is a verbally closed subgroup of G then its image H_N is verbally closed in $G_N = G/N$.

Proof. Suppose that equation $w(x_1, ..., x_n) = h$ ($h \in H_N$) has a solution $(g_1, ..., g_n)$ in G_N. Let $(g_1', ..., g_n')$ be a preimage of this solution in G. Then $(g_1', ..., g_n')$ is a solution of the equation $w(x_1, ..., x_n) = f'$ in G. Here $f' = w(g_1', ..., g_n')$ is a preimage of h in G. There also is a preimage h' of h in H. Then $f' = h'v, v \in N$. Let $v = v(x_{n+1}, ..., x_{n+m})$ be a corresponding to N word that has value 1 in G/N. The equation $w(x_1, ..., x_n)v(x_{n+1}, ..., x_{n+m})^{-1} = h'$ is solvable in G. Then it has a solution in H. The image of the n first components of this solution will be a solution of $w(x_1, ..., x_n) = h$ in H_N.

Lemma 2.4. Let $H = gp(g, f)$ be a two-generated verbally closed noncyclic subgroup of a free solvable group $S_{rd}(r, d \geq 2)$. Then the image H in the abelianization $A_r = S_{rd}/S_{rd}'$ (that is a free abelian group of rank r) is a direct factor of rank 2, and H is a free solvable group of rank 2 and class d.

Proof. By Lemma 2.3 H is verbally closed in A_r. By Theorem 1.3 H is a direct factor of A_r. Obviously, H is non-trivial. We need to prove that H is not cyclic. By induction on d, we can assume that the image of H in $S_{rd−1}/S_{rd}'$ is generated by g_i's of g (so it is cyclic) and that $f \in S_{rd}'$. Let $f(z_1, ..., z_r)$ be an expression of f in the free generators $z_1, ..., z_r$ of S_{rd}. The equation $f(x_1, ..., x_r) = f$ is solvable in S_{rd}. Hence, it has a solution $h_1, ..., h_r$ in H. Then we can write the components in the form $h_i = g_i^{t_i}, t_i \in Z, \alpha_i \in Z[g_i']$, $i = 1, ..., r$. Then $f(h_1, ..., h_r) = f(g_1^{t_1}, ..., g_r^{t_r})f^{\delta} = f^{\delta}$, where $\delta = \sum_{i=1}^{r} \alpha_i d_i(f)$ and $d_i(f)$ is a value of i-th partial Fox derivation in $Z[g_i']$. Details about Fox derivatives see in [5]. It is easy to compute δ directly without Fox derivatives. We can collect exponents of f from the expression $f(h_1, ..., h_r)$. Note that δ belongs to the fundamental ideal of $Z[g_i']$, because $f(x_1, ..., x_r)$ is a commutator word. Then $f_1^{1−\delta} = 1$ and $1 − \delta \neq 0$. This is impossible because S_{rd}' has no module torsion (see [5]).

By the G. Baumslag’s result [11] $H = gp(g, f)$ is free solvable group of rank 2 and class d with basis g, f. Recall that Baumslag proved in [11] the following statement: A subgroup H of a free solvable group S is itself a free solvable group if and only if there exists a set Y of generators of H which freely generates, modulo some term of the derived series of S, a free abelian group. He also gave an obvious formula of the solvability class of H. See also [12].

3 Description of verbally and algebraically closed cyclic subgroups of free solvable groups

We start with the case of a cyclic subgroup.
Lemma 3.1. Let S be a free solvable group of a finite rank r and let $H = gp(h)$ be a cyclic subgroup of S generated by a non-trivial element $h \in S$. Then the following conditions are equivalent:

1) H is verbally closed in S;
2) H is a retract of S;
3) the image of h in the abelianization $A_r = S/S'$ (that is free abelian group of rank r) is primitive.

Proof. Let $\{z_1, \ldots, z_r\}$ be a basis of S. The element h can be expressed uniquely in the form

$$h = z_1^{k_1} \ldots z_r^{k_r} h'(z_1, \ldots, z_r), \quad (2)$$

where $k_1, \ldots, k_r \in \mathbb{Z}$ and $h'(z_1, \ldots, z_r)$ is a product of commutators of words in z_1, \ldots, z_r (a commutator word). Then $h' \in S'$.

To show that 1) \rightarrow 3) assume that h has a non primitive image in A_r, i.e., either $h \in S'$ or $gcd(k_1, \ldots, k_r) = d > 1$.

We first suppose that $h \in S'$, so $k_1 = \ldots = k_r = 0$. Replacing each z_i by a variable x_i in (2) one gets an equation $h = x_1^{k_1} \ldots x_r^{k_r} h'(x_1, \ldots, x_r)$, with h as a constant from H, which has a solution in S. However, this equation does not have a solution in H, since H is abelian, so $h'(h_1, \ldots, h_r) = 1$ for any $h_1, \ldots, h_r \in H$. This shows that H is not verbally closed in S - contradiction. So $h \notin S'$. Then in this case $gcd(k_1, \ldots, k_r) = d > 1$. The equation

$$h = x_1^{k_1} \ldots x_r^{k_r} h'(x_1, \ldots, x_r)$$

still has a solution in S, but for any $h_1, \ldots, h_r \in H$ one has

$$h_1^{k_1} \ldots h_r^{k_r} h'(h_1, \ldots, h_r) = h_1^{k_1} \ldots h_r^{k_r} = h_{ds} \neq h,$$

for some $s \in \mathbb{Z}$. Hence, the equation does not have a solution in H, so H is not verbally closed - contradiction.

To show that 3) \rightarrow 2) assume that h is primitive in the abelianization of S. Then there are integers t_1, \ldots, t_r such that $k_1t_1 + \ldots k rt_r = 1$. Now we define a homomorphism $\varphi : S \rightarrow H = gp(h)$ by putting $\varphi(z_i) = h_{i}$ for $i = 1, \ldots, r$. Since H is abelian $\varphi(h') = 1$, so $\varphi(h) = h$ and φ is a retraction. Hence H is a retract, as claimed.

2) \rightarrow 1) follows from Proposition 2.1 statement 1). \(\square\)

4 Description of verbally and algebraically closed two-generated subgroups of free metabelian groups

Further in the Section, z_1, \ldots, z_r is denoted a basis of group G that is M_r or M_{rk}.

Theorem 4.1. Let $H = gp(g, f)$ be a two-generated subgroup of G that is M_r or M_{rk}, $r \geq 2, k \geq 4$. Then the following conditions are equivalent:

1) H is a retract of G.

4
2) H is a algebraically closed subgroup of G_r.

3) H is an verbally closed subgroup of G.

Proof. The implications 1) \rightarrow 2) \rightarrow 3) are obvious. We are to prove that 3) \rightarrow 1).

By Lemma 2.3 the image of H in the abelianization $A_r = G/G'$ is verbally closed. By Lemma 2.4 this image is a direct factor of A_r of rank 2. We can assume that $g = uz_1, uG'$ and $f = vz_2, vG'$. Let $g(z_1, ..., z_r)$ and $f(z_1, ..., z_r)$ be expressions of g and f respectively. Then an equation

$$(f(x_1, ..., x_r), g(x_1, ..., x_r), g(x_1, ..., x_r), f(x_1, ..., x_r)) = (f, g, g, f)$$

has a solution in G. Thus it has a solution in H. It means that there are elements $h_1, ..., h_r$ in H such that

$$(f(h_1, ..., h_r), g(h_1, ..., h_r), g(h_1, ..., h_r), f(h_1, ..., h_r)) = (f, g, g, f).$$

Now we consider the case $G = M_r$. By the Baumslag’s theorem (see above) [14] it is an inner automorphism (see also [12]).

Recall that an element u of a group G is said to be test element if any endomorphism $\alpha : G \rightarrow G$ for which $\alpha(g) = g$ is an automorphism of G. Timoshenko proved in [13] that every non-trivial element of M'_r is a test element for M_2. Hence the following map

$$g \mapsto g(h_1, ..., h_r), f \mapsto f(h_1, ..., h_r)$$

defines an automorphism of H. Let $\epsilon, \eta = 1$. Then this automorphism is identical $(mod H')$. By Bachmuth’s theorem [14] it is an inner automorphism (see also [12]). Then there is an element $v \in H$ for which

$$g(h_1, ..., h_r) = g^v, f(h_1, ..., h_r) = f^v.$$ \hspace{1cm} (7)

It follows that $(f, g, g, f)^v = (f, g, g, f)$. Then $v \in H'$ because the centralizer of any non-trivial element of the commutant M'_r of M_r is equal to M'_r. This statement was proved by Mal’cev in [12].

Define an endomorphism of M_r by the map

$$\beta : z_i \mapsto h_i^{v^i}, i = 1, ..., r.$$ \hspace{1cm} (8)

The image $\beta(M_r)$ lies in H. Moreover,

$$\beta(g) = \beta(g(z_1, ..., z_r)) = g(h_1, ..., h_r)^{v^{-1}} = g,$$

$$\beta(f) = \beta(f(z_1, ..., z_r)) = f(h_1, ..., h_r)^{v^{-1}} = f.$$ \hspace{1cm} (9)

Thus β is identical on H and so β is a retraction and H is a retract.

Now let $(\epsilon, \eta) \neq (1, 1)$. As above the following map

$$g^\epsilon \mapsto g(h_1, ..., h_r), f^\epsilon \mapsto f(h_1, ..., h_r)$$ \hspace{1cm} (10)

defines an automorphism of H. A composition of this automorphism with itself is identical $(mod H')$ and we can finish our proof as above.

Let $G = M_{rk}$. This group is free in a nilpotent variety N. Then a pair of elements $g, f \in H$ which induce a pair of free generators \bar{g}, \bar{f} in $A_r = M_{rk}/M'_{rk}$, generate a free N-factor in M_{rk}. This factor is obviously a retract of M_{rk}. \hspace{1cm} \square
5 Description of verbally and algebraically closed two-generated subgroups of free solvable groups

To prove the main result of this section in the case of group S_{r^3} we will use a concrete example of a test element of S_{23}, that was constructed in \[15\]. The proof in the general case of group S_{r^d} will be slightly different.

Example 5.1. Let x, y be a basis of S_{23}. For any pair of positive integers k and l we denote by $z(k; l)(x, y)$ the element $(y, x; k, y; l-1)$, and by $w(k; l; m; n)(x, y)$ we denote the element $(z(k; l)(x, y), z(m; n)(x, y))$. Then

$$u(x, y) = w(3; 2; 1; 1)(x, y)w(2; 2; 1; 2)(x, y)$$

(11)

is a test element of S_{23}.

The following lemma was proved in \[15\].

Lemma 5.2. Let ϕ be an endomorphism of S_{23} for which $\phi(u) \equiv u(\mod \gamma_8 S_{23})$ where u is the element in Example 5.1. Then ϕ is an automorphism identical modulo S'_{23}. In this case ϕ is inner by theorem proved in \[16\] (see also \[17\]).

The following more general result was proved in \[18\].

Lemma 5.3. Let S_{r^d} be a free solvable group of rank 2 and class $d \geq 2$ with basis z_1, z_2, and let $v \in S^{'(d-1)}_{r^d}, v \neq 1$. Then there is a positive number m such that element $u = u^{(1-z_1^m)(1-z_2^m)}$ is a test element. Moreover, for every automorphism ϕ if $\phi(u) = u$ then $\varphi = \phi^2$ is an inner automorphism.

Theorem 5.4. Let $H = gp(g, f)$ be a two-generated subgroup of $S_{r^d}, r, d \geq 2$. Then the following conditions are equivalent:

1) H is a retract of S_{r^d}.

2) H is an algebraically closed subgroup of S_{r^d}.

3) H is a verbally closed subgroup of S_{r^d}.

Proof. The implications 1) \rightarrow 2) \rightarrow 3) are obvious. We are to prove that 3) \rightarrow 1).

Case of group S_{r^3}. Let $z_1, ..., z_r$ be a basis of S_{r^3}. By Theorem 4.1 and Lemmas 2.2 and 2.3 we can assume that $g = vz_1, v \in S'_{r^3}$, and $f = wz_2, w \in S'_{r^3}$. Let $g(z_1, ..., z_r)$ and $f(z_1, ..., z_r)$ be two expressions of g and f respectively. Let u be the element described by Example 5.1. Then equation

$$u(g(x_1, ..., x_r), f(x_1, ..., x_r)) = u(g, f)$$

(12)

has a solution in S_{r^3}. Hence it has a solution $h_1, ..., h_r$ in H. The map $z_i \mapsto h_i, i = 1, ..., r,$ defines an endomorphism S_{r^3} with the image in H. It maps $g \rightarrow g(z_1, ..., z_r)$ to $g(h_1, ..., h_r)$, and $f \rightarrow f(z_1, ..., z_r)$ to $f(h_1, ..., h_r)$. By Lemma 5.2 the map $g \mapsto g(h_1, ..., h_r), f \mapsto f(h_1, ..., h_r)$ defines an inner automorphism of H. Then there is $t \in H$ for which

$$g(h_1, ..., h_r) = g^t, f(h_1, ..., h_r) = f^t.$$

(13)
It follows that \(u(g, f)^t = u(g, f) \). In any group \(S_{rd}, r, d \geq 2 \), the centralizer of any non-trivial element \(y \in S_{rd}^{(d-1)} \) coincides with \(S_{rd}^{(d-1)} \) [12]. Hence \(t \in H^{(2)} \).

Let \(\phi \) be an endomorphism of \(S_{rd} \) defined by the map: \(z_i \mapsto h_{t i}^{-1}, i = 1, \ldots, r \). The image \(\phi(S_{rd}) \) lies in \(H \), and

\[
\phi(g) = \phi(g(z_1, \ldots, z_r)) = g(h_1, \ldots, h_r)_{t i}^{-1} = g, \phi(f) = \phi(f(z_1, \ldots, z_r))(f(h_1, \ldots, h_r))_{t i}^{-1} = f. \quad (14)
\]

Hence \(\phi \) is a retraction, and \(H \) is a retract.

Case of group \(S_{rd}, d \geq 2 \). Now \(u \) is defined in Lemma 5.3. We repeat all the arguments as above until we get the map \(g \mapsto g(h_1, \ldots, h_r) \), \(f \mapsto f(h_1, \ldots, h_r) \) which defines an automorphism \(\phi \) of \(H \). Then \(\phi(S_{rd}) \subseteq H \). By Lemma 5.3 \(\phi^2 \) is an inner automorphism of \(H \). For some \(t \in H \) we have equalities (13). Then we finish proof as in the previous case.

6 Open problems

Problem 6.1. Is it true that for any subgroup \(H \) of any free solvable group \(S_{rd} \) of rank \(r \geq 2 \) and class \(d \geq 2 \) the following conditions are equivalent:

1) \(H \) is a retract of \(S_{rd} \),
2) \(H \) is a algebraically closed subgroup of \(S_{rd} \),
3) \(H \) is an verbally closed subgroup of \(S_{rd} \)?

It is likely that the answer to this question is negative. By Timoshenko’s theorem (see [18] or [19]) the test rank of \(S_{rd}, r, d \geq 2 \), is \(r - 1 \). Recall, that test rank of a group \(G \) is the minimal number of elements of \(G \) such that every endomorphism fixing any of this elements is automorphism. In the general case \(H \) does not contain a test element. Hence, the methods of this paper do not work completely.

Problem 6.2. Is it true that for any two-generated subgroup \(H \) of any free polynilpotent group \(P \) of rank \(r \geq 2 \) and class \((c_1, c_2, \ldots, c_l) \), \(l \geq 1 \), the following conditions are equivalent:

1) \(H \) is a retract of \(P \),
2) \(H \) is a algebraically closed subgroup of \(P \),
3) \(H \) is an verbally closed subgroup of \(P \)?

By Timoshenko’s theorem [18] (see also [19]) any free solvable group \(S_{2d}, d \geq 2 \), contains test elements, all belong to \(S_{2d}^{(d-1)} \). For the affirmative solution to this problem sufficient to prove that any \(S_{2d} \) contains a test element with properties as in Lemma 5.2. Note that the reference to the statement in [18] (or [17]) in Lemma 5.2 works in the general case. Namely, any automorphism of \(S_{2d}, d \geq 2 \) identical mod \(S_{2d}^{(d-1)} \), is inner.

Note, that by Gupta and the second author’s theorem [20] (see also [19]) any free polynilpotent group of class \((c_1, c_2, \ldots, c_l) \) for \(l \geq 1 \) has a test element. We need in analog of Lemma 2.4 to solve this problem affirmatively.
References

[1] A. Myasnikov, V. Roman’kov. Verbally closed subgroups of free groups. J. Group Theory. 2014. 17, 29-40.

[2] G. Baumslag, A. Myasnikov and V. Roman’kov. Two theorems about equationally Noetherian groups. J. Algebra. 1997. 194, 654-664.

[3] G. Baumslag, A. Myasnikov and V. Remeslennikov. Algebraic geometry over groups I. Algebraic sets and ideal theory. J. Algebra. 1999. 219, 16-79.

[4] O. Ore. Some remarks on commutators. Proc. Amer. Math. Soc. 1951. 2, 307-314.

[5] M. Liebeck, E. O’Brien, A. Shalev A. and P. Tiep. The Ore conjecture. J. European Math. Soc. 2010. 12, 939-1008.

[6] V. Roman’kov. Equations over groups. Groups, Complexity, Cryptology. 2012. 4, No. 2, 191-239.

[7] D. Segal. Words: notes on verbal width in groups. London Math. Soc. Lect. Notes Ser. 361. Cambridge: Cambridge Univ. Press, 2009. 134 p.

[8] V.A. Romankov. Essays in algebra and cryptology. Solvable groups. Omsk: Omsk State University Publishing House, 2017. 207 p.

[9] V.A. Roman’kov, N.G. Khisamiev. Verbally and existentially closed subgroups of free nilpotent groups. Algebra and Logic. 2013. 52, No. 4, 336-351.

[10] V.A. Roman’kov. Equations in free metabelian groups. Siberian Mathematical Journal. 1979. 20, No. 3, 469-471.

[11] G. Baumslag. Some subgroup theorems for free v-groups. Trans. Amer. Math. Soc. 1963. 108. 516525.

[12] A. I. Malcev. On free soluble groups. Soviet Math. Dokl. 1960. 1, 65-68.

[13] E.I. Timoshenko. Test elements and test rank of a free metabelian group. Siberian Mathematical Journal. 2000. 41. No. 6. 1200-1204.

[14] S. Bachmuth. Automorphisms of free metabelian groups. Trans. Amer. Math. Soc. 1965. 118, 93-104.

[15] V.A. Roman’kov. Test elements for free solvable groups of rank 2. Algebra and Logic. 2001. 40, No. 2, 106-111.

[16] S. Bachmuth, E. Formanek, H.Y. Mochizuki. IA-automorphisms of two-generated torsion free groups. J. Algebra. 1976. 40, 19-30.

[17] V.A. Roman’kov. Normal automorphisms of discrete groups. Siberian Mathematical Journal. 1983. 24, No. 4, 604-614.
[18] E.I. Timoshenko. Computing test rank for a free solvable group. Algebra and Logic. 2006. 45, No. 4, 254-260.

[19] E.I. Timoshenko. Endomorphisms and universal theories of solvable groups (in Russian). Novosibirsk: NSTU Publishers. 2011. 327 p. (“NSTU Monograph” Series).

[20] C.K. Gupta, E.I. Timoshenko. Test rank for some free polynilpotent groups. Algebra and logic. 2003. 42, 20-27.