Identification of a cryptic submicroscopic deletion using a combination of fluorescence in situ hybridization and array comparative genomic hybridization in a t(3;5)(q25;q35)-positive acute myeloid leukemia patient

A case report and review of the literature

Man Gao, MD, PhD; Shibo Li, MD; Lina Wang, MM; Shu Nie, MD; Hui Pang, MD; Xianglan Lu, MD; Xianfu Wang, MD; Mingwei Wang, MM; Shirong Guo, MM; Yuhan Ma, MM; Fanzheng Meng, MD, PhD*

Abstract

Rationale: The advent of high-resolution genome arrays including array comparative genomic hybridization (aCGH) has enabled the detection of cryptic submicroscopic deletions flanking translocation breakpoints in up to 20% of the apparently “balanced” structural chromosomal rearrangements in hematological disorders. However, reports of submicroscopic deletions flanking the breakpoints of t(3;5)(q25;q35) are rare and the clinical significance of submicroscopic deletions in t(3;5) has not been explicitly identified.

Patient concerns: We present a 47-year-old man with acute myeloid leukemia. G-banding analysis identified t(3;5)(q25;q35).

Diagnosis: Array CGH-based detection initially confirmed only the deletion of chromosome 3. Further characterization using fluorescence in situ hybridization identified a cryptic submicroscopic deletion including 5’ MLF1-3’ NPM1 flanking the breakpoint on the derivative chromosome 3.

Interventions: The patient started “7+3” induction chemotherapy with cytosine arabinoside and daunorubicin, and subsequently received 2 cycles of high-dose intermittent acronym of cytosine arabinoside or cytarabine.

Outcomes: The patient did not undergo complete remission and died from an infection due to neutropenia.

Lessons: Haploinsufficiency of NPM1 or other deleted genes, including SSR3, may be responsible for the phenotype of t(3;5)(q25; q35)-positive myeloid neoplasms with submicroscopic deletions.

Abbreviations: ABMT = allogeneic bone marrow transplantation, aCGH = array comparative genomic hybridization, AML = acute myeloid leukemia, BAC = bacterial artificial chromosome, CBC = complete blood count, CR = complete remission, FISH = fluorescence in situ hybridization, HCC = hepatocellular carcinoma, ISCN = International System for Human Cytogenetic Nomenclature, MDS = myelodysplastic syndrome, OS = overall survival, RAEB-2 = refractory anemia with excess blasts-2, SNP = single nucleotide polymorphism, WBC = white blood cell.

Keywords: acute myeloid leukemia, array comparative genomic hybridization, fluorescence in situ hybridization, submicroscopic deletion, t(3;5)(q25; q35)
1. Introduction

Following the first description of the association between t(3;5) and acute myeloid leukemia (AML) in 1976 by Rowley and Potter,[1] t(3;5) is recognized as a nonrandom and uncommon abnormality occurring in AML and myelodysplastic syndromes (MDS). Although there are variable breakpoints in t(3;5), NPM1/MLF1 is the most probable fusion protein according to the literature.[2,3] G-banding and fluorescence in situ hybridization (FISH) identify the majority of abnormalities, although the advent of high-resolution genome arrays, including array comparative genomic hybridization (aCGH), has enabled the detection of cryptic submicroscopic deletions flanking the translocation breakpoints in up to 20% of the apparently “balanced” structural chromosomal rearrangements in hematological disorders.[4–7] However, only 3 previous reports have shown submicroscopic deletions at the breakpoint regions in NPM1/MLF1 positive cases.[8–10] Here we present the fourth report of a t(3;5)(q25;q35)-positive AML case complicated with a submicroscopic deletion on the derivative chromosome 3.

2. Case presentation

The medical records of a patient with t(3;5)(q25;q35)-positive AML were retrospectively reviewed. The study was approved by the Committee for Medical and Health Research Ethics of the First Hospital of Jilin University and written informed consent for publication of case details was obtained from the patient. All patient information has been anonymized.

2.1. Case history

A 47-year-old man originally presented to our hospital with diabetic ketoacidosis. His initial complete blood count (CBC) showed a white blood cell count (WBC) of 71.2 × 10^9/L (no blasts were noted), a hemoglobin count of 43g/L, and a platelet count of 21 × 10^9/L. The peripheral blood smear showed striking dysplastic changes and rare (1–2%) blasts were seen. He had no exposure to known leukemogens and no history of chemotherapy or radiotherapy. Myeloblasts were noted at 13% in aspirate smears and at 17% in the touch preparation. Flow cytometric analysis of the aspirate identified myeloblasts at only 4%. The immunophenotype of the myeloblasts included expression of CD13 and CD33, with partial expression of CD117 and CD15, and only slight expression of CD34. The most appropriate diagnosis based on the information available at that time appeared to be refractory anemia with excess blasts-2 (RAEB-2); while acute myeloid leukemia could not entirely be excluded. He started “7+3” induction chemotherapy with cytosine arabinoside and daunorubicin. He did not completely recover, and showed residual disease after induction therapy. On the 45th day after induction therapy, biopsy showed approximately 40% blasts, consistent with persistent AML. He subsequently received 2 cycles of high-dose intermittent acronym of cytosine arabinoside or cytarabine; however, he did not completely recover and later died from an infection due to neutropenia.

2.2. Detection of a submicroscopic deletion in t(3;5)(q25;q35)

A fresh bone marrow specimen was collected during the patient’s initial visit and the specimen was analyzed cyogenetically as part of our diagnostic routine. Overnight culture was set up and harvested using Chang Marrow (Irvine Scientific, CA) according to our standard laboratory protocols.[11] G-banding using trypsin-Giemsa (GTG-banding) staining was used to prepare chromosomes. Karyotypes were described according to the International System for Human Cytogenetic Nomenclature 2013 (ISCN 2013).[12] Twenty metaphases were analyzed yielding the karyotype: 46,XY,t(3;5)(q25;q35)[13]/46,XY[7] (Fig. 1).

FISH analysis was performed on the fixative-preserved cell pellets obtained from the patient’s bone marrow specimen taken at the initial diagnosis. All probes used are listed in Table 1 and Fig. 2 shows the probes schematically. All bacterial artificial chromosome (BAC) clones were selected according to physical and genetic mapping data of chromosome 3 and chromosome 5, as reported by the Human Genome Browser at the University of California, Santa Cruz website [http://genome.ucsc.edu/, Feb 2009 Assembly (GRCh37/hg19), last accessed April 2013] and purchased from the BAC/PAC Resources Center (Children’s Hospital Oakland Research Institute, Oakland, CA). To determine whether t(3;5) formed the NPM1/MLF1 fusion gene, FISH analysis was performed using cohybridization of the RP11-163116 probe on 3q25.32 labeled with SpectrumOrange, and the RP11-1021H23 probe on 5q35.1 labeled with SpectrumGreen. Two hundred cells (including cells at metaphase and interphase) were screened. One hundred and twenty-three cells showed 1 red signal on the normal chromosome 3, 1 green signal on the normal chromosome 5, and 1 yellow (overlapped green and orange signal) fused signal on the derivative chromosome 5, resulting in a 1R1G1F signal pattern (Fig. 3A and B). The yellow fused signal represented the 5′NPM1-3′MLF1 fusion gene; however, the expected fusion signal representing the 5′MLF1-3′NPM1 fusion gene on the derivative chromosome 3 was absent, thereby indicating a cryptic submicroscopic deletion.

Array CGH analysis was performed on genomic DNA isolated from an uncultured bone marrow specimen collected during the initial visit using a commercial DNA extraction kit (Puregene Blood Kit; Qiagen, Valencia, CA) to reveal the precise breakpoints of the microdeletion, according to the manufacturer’s instructions.[13] A 2.016-Mb deletion from 3q25.31 to 3q25.32 (position 156,296,873-158,312,638 on hg19) was identified in this patient (Fig. 4A). This deletion encompassed 10 genes: TIPARP, LEKR1, CCNL1, VEPH1, PTX3, C3orf55, PQLC2, SHOX2, RSRC1, and 5′ MLF1. However, no deletion was detected on chromosome 5 (Fig. 4B).

Confirmatory FISH analysis using dual-color break-apart probes hybridizing to the 5′ MLF1 (RP11-615G7, Spectrum-Green) and 3′MLF1 (RP11-1120M18, SpectrumOrange) loci confirmed the loss of a 5′ MLF1 component on the derivative chromosome 3 and the presence of a 3′MLF1 component on the derivative chromosome 5 (Fig. 3C and D). Confirmatory FISH analysis using dual-color break-apart probes hybridizing to the Cep/NPM1 (RP11-1072I20, SpectrumOrange) and Tel/NPM1 (RP11-624J8, SpectrumGreen) loci confirmed the loss of a 3′ NPM1 and FGFI8 component on the derivative chromosome 3 (Figs. 2 and 3E, F). Meanwhile, in FISH analysis using subtelomeric probes for 5pter and 5qter (Abbott, Downers Grove, IL) all cells showed 2 red signals and 2 green signals. However, a red 5qter signal was seen on the derivative chromosome 3 but not on the derivative chromosome 5 (Fig. 3G and H). Overall, the combination of FISH and array CGH results confirmed an interstitial submicroscopic deletion including the 5′ MLF1-3′ NPM1 fusion gene on the derivative chromosome 3.
3. Discussion
Cryptic microdeletions surrounding the breakpoints of recurrent chromosomal translocations are well-documented, with a reported incidence ranging from 2% to 20% in various types of leukemia[4–6]. Submicroscopic deletions flanking the breakpoints of t(3;5)(q25;q35) in hematologic malignancies are rarely reported. To the best of our knowledge, only 3 studies (examining 6 patients in total) have reported 5’ MLF1-3’ NPM1 deletion on the derivative chromosome 3 in myeloid malignancy with t(3;5)(q25;q35).[8–10] We have described a new case in the present report. FISH tests detected a cryptic loss of the 5’ MLF1 -3’ NPM1 fusion gene on the derivative chromosome 3 (Fig. 3A and B) and array CGH confirmed a microdeletion flanking the cytogenic breakpoint on chromosome 3, covering 10 genes extending from TIPARP to 5’ MLF1 (Fig. 4A). However, array CGH did not detect any deletion on chromosome 5 (Fig. 4B). Confirmatory FISH analysis using subtelomeric probes for 5pter and 5qter indicated the occurrence of t(3;5) (Fig. 3G and H). Meanwhile, FISH analysis using dual-color break-apart probes hybridizing to the Cep’NPM1 (RP11-1072120, orange) and Tel’NPM1 (RP11-624J8, green) loci confirmed the loss of a 3’ NPM1 and FGF18 component on the derivative chromosome 3 (Fig. 3E and F).

It has been reported that many submicroscopic deletions associated with recurrent chromosomal translocations may have an adverse prognostic impact on cancer progression.[4,14–19] However, the clinical significance of the submicroscopic deletion in t(3;5) has not been explicitly identified. The NPM1/MLF1 fusion related to t(3;5) is considered as an MDS-related abnormality by the 2016 WHO classification,[20] and patients with t(3;5)(q25;q35) have a 34% survival rate after 10 years.

Table 1	Probes used for FISH analysis.			
Probes	**Localization**	**Clone position**	**Genes covered**	**Probe color**
RP11-615G7	3q25.32	chr3:158225170-158365579	5’RSRC1, 5’MLF1	Vysis SpectrumGreen
RP11-1120M18	3q25.32	chr3:158200537-158433201	5’MLF1, 5’RARRES1, 5’GFM1	Vysis SpectrumOrange
RP11-16316	3q25.32	chr3:158225170-158365579	5’RSRC1, MLF1, 5’GFM1	Vysis SpectrumOrange
RP11-107220	5q35.1	chr5:170551213-170764033	RANBP17, TLX3, 5’NPM1, 5’FGF18	Vysis SpectrumOrange
RP11-624J8	5q35.1	chr5:170825116-171006814	TLX3, NPM1, FGF18	Vysis SpectrumGreen
RP11-1021H23	5q35.1	chr5:170739614-170920861		5p- SpectrumGreen
Subtelomeric 5	5pter, 5qter			5q- SpectrumOrange

FISH = fluorescence in situ hybridization.
which indicates an intermediate prognosis. \cite{9,21} Additionally, a multicenter study showed that patient characteristics of those with t(3;5) did not differ significantly from patients with normal karyotypes. \cite{21} We reviewed and analyzed the 7 reported cases with submicroscopic deletions\cite{8–10} (Table 2). All the patients were relatively young and 4 were diagnosed with AML with myelodysplasia-related changes. t(3;5) was the only cytogenetic abnormality present in all cases. The deletion of the MLF1/ NPM1 fusion gene on derivative chromosome 3 was identified using only FISH analysis in 3 cases; in another 2 cases, including

Figure 2. Probe schematic for the BAC clones. A. 3q25 MLF1 gene region. For the MLF1 gene, 3 BAC clones were used: RP11-615G7 was labeled with Vysis SpectrumGreen, and RP11-1120M18 and RP11-163I16 were labeled with Vysis SpectrumOrange. B. 5q35 NPM1 gene region. For the NPM1 gene, 3 BAC clones were used: RP11-1072I20 was labeled with Vysis SpectrumOrange and RP11-624J8 and RP11-1021H23 were labeled with Vysis SpectrumGreen. BAC=bacterial artificial chromosome.

Figure 3. FISH results. A and B. Cohybridization with dual-color dual-fusion probes RP11-163I16 and RP11-1021H23 showed a 1R1G1F signal pattern: one 5′-NPM1-3′-MLF1 fusion signal (yellow) on the derivative chromosome 5, and 1 red signal and 1 green signal on the normal chromosome 3 and chromosome 5, respectively. There was no 5′-MLF1-3′-NPM1 yellow fusion signal on the derivative chromosome 3. C and D. FISH with dual-color break-apart probes RP11-615G7 and RP11-1120M18 showed a fusion signal (yellow) on the normal chromosome 3 and a 3′-MLF1 signal (red) on the derivative chromosome 5. No 5′ MLF1 green signal was detected on the derivative chromosome 3. E and F. FISH analysis with the dual-color break-apart probes hybridizing to the Cep NPM1 (RP11-1072I20, SpectrumOrange) and Tel NPM1 (RP11-624J8, SpectrumGreen) loci confirmed the loss of green signal on the derivative chromosome 3. G and H. FISH analysis using subtelomeric probes for 5pter and 5qter revealed that all cells had 2 red signals and 2 green signals. However, a red 5qter signal was present on the derivative chromosome 3, but not on the derivative chromosome 5. FISH=fluorescence in situ hybridization.
Array CGH analysis. A. Array CGH analysis of chromosome 3. A 2.016-Mb deletion from 3q25.31 to 3q25.32 (156,296,873–158,312,638 on hg19) was identified for this patient, indicated by a black arrow. This deletion encompassed 10 genes: TIPARP, LEKR1, CCNL1, VEPH1, PTX3, C3orf55, PQLC2, SHOX2, RSRC1, and 5’ MLF1. B. Array CGH analysis of chromosome 5. No deletion was detected on chromosome 5. CGH = comparative genomic hybridization.

Table 2
Clinico-biological characteristics of the NPM1/MLF1 positive cases with submicroscopic deletion.

Case number	Age/Gender	Diagnosis	Karyotype	Molecular technique	Deleted genes	CR after induction	ABMT, mo	OS, mo	Reference
1	28/F	AML, MDS	46,x,t(3;5)(q25.1;q34-35)	FISH	MLF1/NPM1	Not reported	Not reported	Not reported	Dragon-Durey et al[8]
2	52/M	Acute leukemia	46,X,Y(5)(q21;q31)?c(20)	FISH	MLF1/NPM1	Not reported	Not reported	Not reported	Aypar et al[9]
3	40/M	Abnormal blood smear	46,X,Y(3;5)(q21;q31)[17]/46,X,Y[3]	FISH	MLF1/NPM1	Not reported	Not reported	Not reported	Aypar et al[9]
4	30/M	Thrombocytopenia, MDS, RAEB-2	46,X,Y(3;5)(q21;q31)[20]	FISH	MLF1/NPM1	Not reported	Not reported	Not reported	Aypar et al[9]
5	9/F	AML	46.X,Y(3;5)(q21;q33)[20]	FISH	MLF1/NPM1	Not reported	Not reported	Not reported	Aypar et al[9]
6	52/M	AML, MDS, RAEB-2	46.X,Y(3;5)(q25;q35)[18]/46,X,Y[2]	FISH SNP array	KCNA1, SDR3, TIPARP, PA254P4, LEKR1, CCNL1, UNO530, VEPH1, PTX3, C3orf55, SHOX2, RSRC1, 5’MLF1, 3’NPM1, FGFl8, FBXW11, STK10, EFCAB9, UBTD2, SH3PXD2B	Yes	Yes (6)	69+	Gao et al[10]
7	47/M	AML RAEB-2	46.X,Y(3;5)(q25;q35)[13]/46,X,Y[7]	FISH Array CGH	TIPARP, LEKR1, CCNL1, VEPH1, PTX3, C3orf55, PQLC2, SHOX2, RSRC1, 5’MLF1, 3’NPM1, FGFl8	No	No	3	The present case

+= alive; ABMT = allogeneic bone marrow transplantation; AML = acute myeloid leukemia; CGH = array comparative genomic hybridization; CR = complete remission; FISH = fluorescence in situ hybridization; MDS = myelodysplastic syndrome; OS = overall survival; RAEB-2 = refractory anemia with excess blasts-2; SNP = single nucleotide polymorphism.
the present case, the fusion gene was detected using a combination of FISH and a high resolution technique (single nucleotide polymorphism or CGH array). Unfortunately, for the former 5 cases there was no information regarding prognoses, so we could not predict the possible impact of these submicroscopic deletions on prognosis. In the present case, the patient did not achieve complete remission after induction therapy and died 4 months after the diagnosis, although 1 previously reported case showed a relatively favorable prognosis. We analyzed the gene content of deleted region to investigate the possible involvement of specific genes in the clinical phenotype. The genes TIPARP, LEKRI, CCNL1, VEPH1, PTX3, C3orf55, PQLC2, SHOX2, RSRC1, and 5′ MLF1 from chromosome 3, and 3′ NPM1 and FGFI8 from chromosome 5 were deleted in both cases. KCNAB1 and SSR3 from chromosome 3, and FBXW11, STK10, EFCA89, UBDT2, and SH3PXD2B from chromosome 5 were not deleted in the present case. Of all the undeleted genes, SSR3 (a member of signal sequence receptor family) is heavily involved in cell growth and differentiation and closely associated with many tumor types. SSR3 acts as a novel oncogene in hepatocellular carcinoma (HCC) and therefore can serve as a biomarker for the prognosis of HCC patients. However, there are no reports of a relationship between this gene and hematological disorders. Further experiments are needed to confirm whether SSR3 is related with the poor prognosis of the present case. Additionally, it has been reported that NPM1 haploinsufficiency acts together with the 5′NPM1-3′MLF1 fusion gene to enhance myeloid progenitor activity; thus, we cannot rule out the possibility that haploinsufficiency of 3′ NPM1, or other deleted genes in our case, may adversely affect disease progression. However, we cannot draw conclusions from this single case.

As we know, array CGH provides an accurate, cost-effective, and time-efficient whole-genome analysis at a significantly higher resolution than that of conventional karyotyping and FISH. However, in the present case, array CGH detected the cryptic microdeletion flanking the cytogenetic breakpoint on chromosome 3, while it did not detect any deletion on chromosome 5. Additional FISH analyses confirmed the loss of a 3′ NPM1 and FGFI8 component on the derivative chromosome 3. According to the literature, array CGH has advantages in identification of cryptic imbalances and detection of clonal aberrations in non-dividing cancer cells or samples with a resolution of at least 0.1Mb, but it cannot detect balanced rearrangements or genomic imbalances that are present in <10% to 20% of the cells. FISH can also detect genomic abnormalities in metaphase or non-dividing interphase cells with a resolution of 150 to 900kb, depending on the probe size, and it may detect as low as 3% to 10% of the abnormal cells. In the present case, the percentage of abnormal cells in cultured bone marrow was confirmed as 61.5% through FISH analysis, but it was impossible to determine in uncultured bone marrow because of sample deficiencies. Additionally, we examined Nimblegen’s chips and found that only 2 probes on the chips cover the chr:5:170825116-171006814 (RP11-624J8) region. Maybe our array could not detect this deletion because of the lower percentage of abnormal cells or the lower density of oligonucleotide probes in the deleted region. Nevertheless, in contrast to FISH, microarray analysis utilizes data from multiple oligonucleotide probes and does not require pre-existing knowledge of possible regions of interest, adding power to reveal low level mosaicism and cryptic alterations throughout the entire genome. The combination of FISH and array CGH can therefore better identify cryptic aberrations.

4. Conclusion

In summary, we identified a cryptic submicroscopic deletion flanking the breakpoint in a t(3;5)(q25;q35)-positive AML case using a combination of FISH and array CGH. Even though the loss of genes flanking the breakpoints in t(3;5)(q25;q35) may possibly impact disease prognosis, solid conclusions cannot be drawn due to the limited number of cases. Through comparisons with previously reported cases, we analyzed the function of related genes and deduced that haploinsufficiency of NPM1 or other deleted genes, including SSR3, may be responsible for the phenotype of the t(3;5)(q25;q35) myeloid neoplasms. Additionally, the abnormal cell percentage and the density of oligonucleotide probes may affect array CGH results; thus, the combination of FISH and array CGH can better identify cryptic aberrations and shed light on clinical anomalies.

Author contributions

Conceptualization: Man Gao, Fanzheng Meng, Shibo Li. Data curation: Mingwei Wang, Shirong Guo, Yuhan Ma. Investigation: Man Gao, Shu Nie, Fanzheng Meng. Methodology: Hui Pang, Xianglan Lu, Xianfu Wang, Shibo Li. Supervision: Shibo Li. Writing – original draft: Man Gao. Writing – review & editing: Fanzheng Meng, Shibo Li.

References

[1] Rowley JD, Potter D. Chromosomal banding patterns in acute nonlymphocytic leukemia. Blood 1976;47:703–21.
[2] Yoneda-Kato N, Look AT, Kirsten MN, et al. The t(3;5)(q25.1q34) of myelodysplastic syndrome and acute myeloid leukemia produces a novel fusion gene, NPM-MLF1. Oncogene 1996;12:265–75.
[3] Raimondi SC, Dubé I, Valentine MB, et al. Clinicopathologic manifestations and breakpoints of the t(3;5) in patients with acute nonlymphocytic leukemia. Leukemia 1989;3:42–7.
[4] Kolomietz E, Al-Maghrabi J, Brennan S, et al. Primary chromosomal rearrangements of leukemia are frequently accompanied by extensive submicroscopic deletions and may lead to altered prognosis. Blood 2001;97:5381–8.
[5] Bacher U, Schnittger S, Kern W, et al. Detection of submicroscopic deletions in reciprocal translocations is similar in acute myeloid leukemia, BCR-ABL positive acute lymphoblastic leukemia, and chronic myeloid leukemia. Haematologica 2003;98:538–9.
[6] Moon HW, Chang VH, Kim TY, et al. Incidence of submicroscopic deletions vary according to disease entities and chromosomal translocations in hematologic malignancies: investigation by fluorescence in situ hybridization. Cancer Genet Cytogenet 2007;176:166–8.
[7] Kjeldsen E. Oligo-based high-resolution aCGH analysis enhances routine cytogenetic diagnostics in haematological malignancies. Cancer Genomics Proteomics 2015;12:301–37.
[8] Dragon-Durey MA, Goguel AF, Leonard C, et al. Non-Hodgkin’s lymphomas and myeloid disorders: detections associated with t(2;3) and t(3;5) detected by FISH. Leukemia 1998;12:1159–62.
[9] Aypar U, Knudson RA, Pearce KE, et al. Development of an NPM1-MLF1-D-FISH probe set for the detection of t(3;5)(q25;q35) identified in patients with acute myeloid leukemia. J Mol Diagn 2014;16:527–32.
[10] Gao M, Wang G, Wang X, et al. A cryptic submicroscopic deletion of 5′ MLF1-3′ NPM1 segment on derivative chromosome 3 in a patient with acute myeloid leukemia with t(3;5)(q25;q35). Leuk Lymphoma 2015;56:2735–8.
[11] Zhang R, Kim YM, Lu X, et al. Characterization of a novel t(2;5;11) in a patient with concurrent AML and CML: a case report and literature review. Cancer Genet 2011;204:328–33.
[12] Shaffer LG, McGowan-Jordan J, Schmid M. ISCN 2013: An International System for Human Cytogenetic Nomenclature. Basel: Karger; 2013.

[13] Gao M, Pang H, Kim YM, et al. An extra chromosome 9 derived from either a normal chromosome 9 or a derivative chromosome 9 in a patient with acute myeloid leukemia positive for t(9;11)(p21.3;q23.3): a case report. Oncol Lett 2019;18:6725–31.

[14] Sinclair PB, Nacheva EP, Leversha M, et al. Large deletions at the t (9; 22) breakpoint are common and may identify a poor-prognosis subgroup of patients with chronic myeloid leukemia. Blood 2000;95:738–43.

[15] Cohen N, Rozenfeld-Granot G, Hardan I, et al. Subgroup of patients with Philadelphia-positive chronic myelogenous leukemia characterized by a deletion of 9q proximal to ABL gene: expression profiling, resistance to interferon therapy, and poor prognosis. Cancer Genet Cytogenet 2001;128:114–9.

[16] Huntly BJ, Reid AG, Bench AJ, et al. Deletions of the derivative chromosome 9 occur at the time of the Philadelphia translocation and provide a powerful and independent prognostic indicator in chronic myeloid leukemia. Blood 2003;98:1732–8.

[17] van Der Kolk DM, Vellenga E, van Der Veen AY, et al. Deletion of the multidrug resistance protein MRP1 gene in acute myeloid leukemia: the impact on MRP activity. Blood 2000;95:3514–9.

[18] Batanian JR, Huang Y, Fallon R. Deletion of 3′-CBFB gene in association with an inversion (16)(p13q22) and a loss of the Y chromosome in a 2-year-old child with acute myelogenous leukemia-M4. Cancer Genet Cytogenet 2000;121:216–9.

[19] Egan N, O’Reilly J, Chipper L, et al. Deletion of CBFB in a patient with acute myelomonocytic leukemia (AML M4Eo) and inversion 16. Cancer Genet Cytogenet 2004;154:60–2.

[20] Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to world health organization classification of myeloid neoplasms and acute leukemia. Blood 2016;127:2391–405.

[21] Grim wade D, Hills RK, Moorman AV, et al. Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council Trials. Blood 2010;116:354–65.

[22] Huang S, Zhong W, Shi Z, et al. Overexpression of signal sequence receptor-γ predicts poor survival in patients with hepatocellular carcinoma. Human Pathol 2018;81:47–54.

[23] Lee WH, Salek-Ardakani S, Pandolfi PP, et al. NPM-MLF1 synergizes with Npm haploinsufficiency to enhance myeloid progenitor activity. Leukemia 2012;26:1110–2.

[24] Peterson JF, Aggarwal N, Smith CA, et al. Integration of microarray analysis into the clinical diagnosis of hematological malignancies: how much can we improve cytogenetic testing. Oncotarget 2015;6:18845–62.

[25] Shiaw M, Cheung SW. The array CGH and its clinical applications. Drug Discov Today 2008;13:760–70.

[26] Shao L, Kang SH, Li J, et al. Array comparative genomic hybridization detects chromosomal abnormalities in hematological cancers that are not detected by conventional cytogenetics. J Mol Diagn 2010;12:670–9.

[27] Rack K, Vidrequin S, Dargent JL. Genomic profiling of myeloma: the best approach, a comparison of cytogenetics, FISH and array-CGH of 112 myeloma cases. J Clin Pathol 2016;69:82–6.

[28] Tiu RV, Gondek LP, O’Keefe CL, et al. New lesions detected by single nucleotide polymorphism array-based chromosomal analysis have important clinical impact in acute myeloid leukemia. J Clin Oncol 2009;27:5219–26.

[29] Jacoby MA, Walter MJ. Detection of copy number alterations in acute myeloid leukemia and myelodysplastic syndromes. Expert Rev Mol Diagn 2012;12:253–64.

[30] Gibson SE, Luo J, Sathasivam M, et al. Whole-genome single nucleotide polymorphism array-based chromosomal analysis is complementary to classical cytogenetic analysis in the evaluation of lymphoid proliferations. Am J Clin Pathol 2014;141:247–55.

[31] Okada M, Suto Y, Hirai M, et al. Microarray CGH analyses of chromosomal 201 deletions in patients with hematopoietic malignancies. Cancer Genet 2012;205:18–24.

[32] Xu X, Johnson EB, Leverton L, et al. The advantage of using SNP array in clinical testing for hematological malignancies—a comparative study of three genetic testing methods. Cancer Genet 2013;206:317–26.

[33] Kolquist KA, Schultz RA, Furrow A, et al. Microarray-based comparative genomic hybridization of cancer targets reveals novel, recurrent genetic aberrations in the myelodysplastic syndromes. Cancer Genet 2011;204:603–28.