RESPIRATORY RESPONSE TO THE CHEMICAL CUES OF INJURED CONSPECIFICS AND HISTOLOGY OF SKIN IN ROUND GOBY, *NEOGOBIUS MELANOSTOMUS* (ACTINOPTERYGII: PERCIFORMES: GOBIIDAE)

Žilvinas PŪTYS*, Linas LOŽYS, and Vincas BŪDA

1Nature Research Centre, Vilnius, Lithuania

Pūtys Ž., Ložys L., Būda V. 2015. Respiratory response to the chemical cues of injured conspecifics and histology of skin in round goby, *Neogobius melanostomus* (Actinopterygii: Perciformes: Gobiidae). Acta Ichthyol. Piscat. 45 (4): 411–415.

Abstract. Round goby, *Neogobius melanostomus* (Pallas, 1814), responded significantly to conspecific skin extract by decreasing the frequency of opercular movements during the first minute of post-stimulus period, suggesting cryptic behaviour as antipredator reaction of this species. Examination of skin samples of the goby revealed the presence of club cells in the epidermis, the putative source of chemical cues that induce antipredator reactions in other fish species and may be the source of round goby injury-released alarm signals. Observed change in opercular movements is the first evidence of a round goby response to the chemical cues of injured conspecifics.

Keywords: anti-predator behaviour, club cells, gill ventilation rate, opercular beat rate

Early detection of the presence of predators is often the key to the survival of prey. Although visual signals during these interactions are often stronger and are transmitted more rapidly than chemical cues, the sense of smell is a very important source of information, including impending predatory attack, in aquatic ecosystems, especially under low-visibility conditions (Smith 1992). Chemical cues that signal alarm to prey species are very important for assessing the threat from predators, as well as facilitating cognitive and learning processes that give rise to behavioural, morphological, and life history adaptations (Ferrari et al. 2010). Specific forms of chemical information are characteristic for various predator–prey interaction stages such as detection, attack, capture, and ingestion (Chivers and Smith 1998). Alarm cues can be in the form of disturbance cues, diet cues, predator odours, and injury-released alarm cues (Chivers et al. 2007, Vavrek and Brown 2009, Maniak et al. 2000). Chemical alarm cues released following injury to prey, have recently become a widely and frequently studied topic. Various anti-predator behavioural reactions to chemical cues released by injured conspecifics are typical for most aquatic organisms, including many groups of fishes: cyprinids, salmonids, percids, catfish—both freshwater and marine (Chivers and Smith 1998, Ferrari et al. 2010). Response to injury signals has also been found among some gobies (Gobiidae) (Smith et al. 1991, Smith 1992, McCormick and Larson 2007, Marsh-Hunkin et al. 2013). Round goby, *Neogobius melanostomus* (Pallas, 1814), originating from the Pontic-Caspian region, invaded the Baltic Sea and the Great Lakes in North America during the last decade of the 20th century (see Kornis et al. 2012 for review). Goby populations can reach high densities, competing with native species for food and habitats, changing the dynamic balance of the ecosystem (Corkum et al. 2004). It is well documented that the round goby became an important food source for piscivorous predators in newly colonized territories (Bzoma and Meissner 2005, Pūtys and Zarankaitė 2010, Reyjol et al. 2010). Although reproductive strategy (e.g., parental care), diet breadth, or environmental tolerances were identified as the most important attributes for successful invasion (Garcia-Berthou 2007), ability to effectively avoid predators might be another important mechanism leading to successful establishment in new areas. This study investigated round goby responses to conspecific chemical cues released following injury.

Adult round gobies were collected in the northern part of the Curonian Lagoon (Lithuania) during October–November. Fish were held in a closed recirculating system and exposed to a natural photoperiod regime at the temperature of 17–18°C, ~ 7.6 pH and fed ad libitum once a day with frozen *Chironomus* sp. larvae. The total length (TL, cm, mean ± standard error of the mean) of round gobies exposed to skin extract (15.6 ± 0.9) and distilled water (15.4 ± 0.5) did not differ (Mann–Whitney *U* test, *P* = 0.57). Fish transportation, holding, and experiments were performed in accordance with the general guidelines for animal studies and applicable laws of Lithuania.

* Correspondence: dr. Žilvinas Pūtys, Gamtos tyrimų centras, Akademijos g. 2, LT-08412 Vilnius, Lithuania, phone: +37052729284; e-mail: (ŽP) putys@ekoi.lt, (LL) lozys@ekoi.lt, (VB) vincas.buda@gamtos tyrimai.lt.
The procedure for skin extract preparation was adopted from Brown et al. (2004). Skin extract was prepared using two donor fish (TL, 12.5 and 11.2 cm), killed with a sharp blow to the head. Skin tissue without fragments of muscle tissue were removed from both sides of the fish after making shallow cuts with a scalpel. Fillets of skin were measured using electronic callipers, placed in 50 mL of chilled distilled water, homogenized with a blender, and filtered. The filtrate was diluted with chilled distilled water to produce a solution of 10 mm² of skin per 1 mL of distilled water. The diluted filtrate was then immediately frozen in 1.5 mL aliquots and stored at −20°C prior to its use in experiment.

Three fish were used for preparation of histological sections. Skin tissue with underlying musculature from the anterior dorsal area of the body was removed for preparation of histological sections and preserved in 10% formaldehyde. Skin samples were then mounted in paraffin wax blocks, sliced with a microtome to a thickness of 3 μm, stained with Schiff reagent, and counterstained with haematoxylin (PAS-H) (Ide et al. 2003). Stained sections were mounted on glass microscope slides and examined for presence of club cells under a compound light microscope at 200× magnification.

Rate of gill ventilation was studied as a potential response to conspecific skin extract because preliminary tests did not reveal locomotor reactions. Randomly selected fish were placed individually into non-recirculating 16 L glass aquaria containing 12 L of non-chlorinated tap water aerated continuously with an air stone. The rear and side walls of the test aquaria were covered with an opaque coating. A ceramic shelter (9 cm high, 18 cm long, and 6 cm wide) was placed into the aquarium. Twenty specimens (adult animals of both sexes) were used in the experiment, each fish was used for the test only once. Fish were fed before transfer to a test aquarium and left for acclimation per night for at least 16 h. The test aquarium were fed before transfer to a test aquarium and left for experiment, each fish was used for the test only once. Fish specimens (adult animals of both sexes) were used in the experiment.

Fig. 1. Transverse section of epidermis of round goby, Neogobius melanostomus; Black arrows indicate club cells.
Histological examination of round goby skin revealed the presence of large cells consistent with those of other fish club cells in epidermal tissue. It has been demonstrated that in some fish species alarm cues released following skin damage are associated with epidermal club cells (Smith 1973). These cells originally were described as characteristic of fish in the superorder Ostariophysi (see Pfieffer 1977), however, they have been subsequently found in many other fish species (Chivers and Smith 1998, Ferrari et al. 2010). Club cells have also been recently identified in the epidermis of gobiid fish (Gobiidae) (Barreto et al. 2014). The primary function of these cells is immune response, and their alarm function evolved secondarily (Wisenden and Smith 1998, Chivers et al. 2007, Halbgewachs et al. 2009). However, anti-predator responses to injury-released cues are unrelated to club cell function in some species. An esociform (Esociformes) fish, the central mudminnow, Umbridae (Kirtland, 1840), exhibited anti-predator behavioural responses to chemical alarm cues released by damaged epidermis, although the presence or absence of club cells in this species was not considered (Wisenden et al. 2007). Fathead minnows, Pimephales promelas Rafinesque, 1820, respond with anti-predator behaviour to skin extract prepared from larval fathead minnows that do not yet possess any epidermal club cells (Carreau-Green et al. 2008). Nile tilapia, Oreochromis niloticus (Linnaeus, 1758), have been reported as having displayed an anti-predator reaction to a conspecific blood cue (Barreto et al. 2013).

Prey can respond to damage-released alarm cues by changing locomotor activity (Smith and Lawrence 1992), timing and duration of shelter occupation (Wisenden et al. 2010), feeding activity (Maniak et al. 2000), social interactions (Barbosa Júnior et al. 2010, Barreto et al. 2010), avoidance of cue labelled areas (Chivers and Smith 1994). Fish also exhibit physiological stress responses to alarm cues (Barcellos et al. 2007). Some fish species have shown increased ventilation intensity following exposure to predator signals (Gibson and Mathis 2006, Barreto et al. 2010). Response to conspecific injury signals has also been found among some gobies (Gobiidae), expressed as cryptic behaviour—by reduced movement and feeding activity (Smith 1989, Smith and Lawrence 1992, McCormick and Larson 2007, Marsh-Hunkin et al. 2013, Barreto et al. 2014). Decreases in ventilation rate in response to exposure to conspecific skin extract was previously reported for speckled catfish, Pseudoplatystoma coruscans (Spix et Agassiz, 1829) (see Barreto et al. 2012). The decrease in gill ventilation is suggestive of cryptic behaviour as an anti-predator reaction and, consequently, helps fish to become less detectable by predators (Mathis and Smith 1993). The magnitude of increase in gill ventilation rate during the later phase was considerably lower, however more prolonged, when compared to the rate of decrease during the first minute after exposure to the skin extract treatment and might be a compensatory process that follows a period of hypoventilation.

The changes in the opercular rate observed in this study cannot be conclusively attributed to an anti-predatory response to the skin extract. Although change in gill ventilation rate has often been suggested to be a response to stress (Barreto and Volpato 2004), it may also be related to being behaviour. Skin extract contains a mix of different substances which can induce feeding behaviour in fish as well, and therefore a change in feeding may be responsible for the observed change in the opercular rate. This alternative hypothesis, however, needs further testing via studies on round goby behavioural responses to conspecific damage cues.

ACKNOWLEDGEMENTS

This research was funded by the Lietuvos Mokslo Ta rytba (Research Council of Lithuania) under project “Postdoctoral Fellowship Implementation in Lithuania” (grant No. 004-110) and supported by the Open Access to research infrastructure of the Nature Research Centre under Lithuanian open access network initiative. We thank G. Valkiūnas for help in preparing histological sections. Dr Harry Gorfine kindly reviewed the accuracy of the English.

REFERENCES

Barbosa Júnior A., Magalhães E.J., Hoffmann A., Ide L.M. 2010. Conspecific and heterospecific alarm substance induces behavioral responses in piay fish Leporinus piau. Acta Ethologica 13 (2): 119–126. DOI: 10.1007/s10211-010-0081-6

Barcellos L.J.G., Ritter F., Kreutz L.C., Quevedo R.M., da Silva L.B., Bedin A.C., Finco J., Cericato L. 2007. Whole-body cortisol increases after direct and visual contact with a predator in zebrafish, Danio rerio. Aquaculture 272 (1–4): 774–778. DOI: 10.1016/j.aquaculture.2007.09.002

Barreto R.E., Barbosa Júnior A., Giassi A.C.C., Hoffmann A. 2010. The ‘club’ cell and behavioural and physiological responses to chemical alarm cues in

Fig. 2. Relative change in opercular beat rate of round goby, Neogobius melanostomus, per 1 min period after exposure to distilled water control and skin extract treatment (values are mean ± standard error of the mean)
the Nile tilapia. Marine and Freshwater Behaviour and Physiology 43 (1): 75–81. DOI: 10.1080/10236241003654139

Barreto R.E., Barbosa Júnior A., Hoffmann A. 2012. Ventilatory responses to skin extract in catfish. Aquatic Biology 15 (3): 205–214. DOI: 10.3354/ab00429

Barreto R.E., Barbosa-Júnior A., Urbiniati E.C., Hoffmann A. 2014. Cortisol influences the antipredator behavior induced by chemical alarm cues in the Frillifin goby. Hormones and Behavior 65 (4): 394–400. DOI: 10.1016/j.yhbeh.2014.03.007

Barreto R.E., Miyai C.A., Sanches F.H.C., Giaquinto P.C., Delicio H.C., Volpato G.L. 2014. Cortisol infl uences the antipredator behavior in Nile tilapia conspecifi cs. PloS One 8 (1): e54642. DOI: 10.1371/journal.pone.0054642

Barreto R.E., Volpato G.L. 2004. Caution for using ventilatory frequency as an indicator of stress in fi sh. Behavioural Processes 66 (1): 43–51. DOI: 10.1016/j.beproc.2004.01.001

Brown G.E., Foam P.E., Cowell H.E., Fiore P.G., Marsh-Hunkin K.E., Gochfeld D.J., Slattery M. 2003. The role of olfaction in the behavioural and physiological responses to conspecifi c skin extract in Brycon cephalus. Journal of Fish Biology 63 (2): 332–343. DOI: 10.1046/j.1095-8649.2003.01152.x

Kornis M.S., Mercado-Silva N., Vander Zanden M.J. 2010. Diet of the great cormorant (Phalacrocorax carbo sinensis) at the Judoantrė Colony, Lithuania. Acta Zoologica Lituanica 20 (3): 179–189. DOI: 10.2478/v10043-010-0031-6
Reyjol Y., Brodeur P., Mailhot Y., Mingelbier M., Dumont P. 2010. Do native predators feed on non-native prey? The case of round goby in a fluvial piscivorous fish assemblage. Journal of Great Lakes Research 36 (4): 618–624.
DOI: 10.1016/j.jglr.2010.09.006

Smith R.J.F. 1973. Testosterone eliminates alarm substance in male fathead minnows. Canadian Journal of Zoology 51 (8): 875–876.
DOI: 10.1139/z73-130

Smith R.J.F. 1989. The Response of Asterropteryx semipunctatus and Gnatholepis anjerensis (Pisces, Gobiidae) to chemical stimuli from injured conspecifics, an alarm response in gobies. Ethology 81 (4): 279–290.
DOI: 10.1111/j.1439-0310.1989.tb00774.x

Smith R.J.F. 1992. Alarm signals in fishes. Reviews in Fish Biology and Fisheries 2 (1): 33–63.
DOI: 10.1007/BF00042916

Smith R.J.F., Lawrence B.J. 1992. The response of a bumblebee goby, Brachygobius sabanus, to chemical stimuli from injured conspecifics. Environmental Biology of Fishes 34 (1): 103–108.
DOI: 10.1007/BF00004789

Smith R.J.F., Lawrence B.J., Smith M.J. 1991. Cross-reaction to skin extract between two gobies, Asterropteryx semipunctatus and Brachygobius sabanus. Journal of Chemical Ecology 17 (11): 2253–2259.
DOI: 10.1007/bf00988005

Vavrek M.A., Brown G.E. 2009. Threat-sensitive responses to disturbance cues in juvenile convict cichlids and rainbow trout. Annales Zoologici Fennici 46 (3): 171–180.
DOI: 10.5735/086.046.0302

Wisenden B.D., Binstock C.L., Knoll K.E., Linke A.J., Demuth B.S. 2010. Risk-sensitive information gathering by cyprinids following release of chemical alarm cues. Animal Behaviour 79 (5): 1101–1107.
DOI: 10.1016/j.anbehav.2010.02.004

Wisenden B.D., Karst J., Miller J., Miller S., Fuselier L. 2007. Anti-predator behaviour in response to conspecific chemical alarm cues in an esociform fish, Umbra limi (Kirtland 1840). Environmental Biology of Fishes 82 (1): 85–92.
DOI: 10.1007/s10641-007-9255-0

Wisenden B.D., Smith R.J.F. 1998. A re-evaluation of the effect of shoalmate familiarity on the proliferation of alarm substance cells in ostariophysan fishes. Journal of Fish Biology 53 (4): 841–846.
DOI: 10.1111/j.1095-8649.1998.tb01837.x

Received: 31 March 2015
Accepted: 8 August 2015
Published electronically: 31 December 2015