The Dark Side of the COVID-19 Treatments on Mycobacterium Tuberculosis Infection

Flavio De Maio1,2, Delia Mercedes Bianco2 and Giovanni Delogu2,3.

1 Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Rome, Italy.
2 Dipartimento di Scienze biotecnologiche di base, cliniche intensivologiche e peritooperatorie – Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy.
3 Mater Olbia Hospital, Olbia, Italy.

Competing interests: The authors declare no conflict of Interest.

Abstract. Since the emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) at the end of 2019, a number of medications have been used to treat the infection and the related Coronavirus disease – 19 (COVID-19).

Some of the administered drugs were tested or used in practice only on the basis of biological plausibility; a promising strategy was to target the host immune response, with host directed therapies (HDTs), to reduce systemic hyperinflammation and hypercytokinemia responsible for additional tissue damage.

We summarize the treatments against SARS-CoV-2 and underline their possible effects on Mycobacterium tuberculosis (\textit{Mtb}) infection. Both SARS-CoV-2 and \textit{Mtb} respiratory infections impair the host’s immune response. Furthermore, little research has been conducted on the impact of medicaments used to counteract COVID-19 disease in patients with Latent Tuberculosis Infection (LTBI). A number of these drugs may modulate host immune response by modifying LTBI dynamic equilibrium, favoring either the host or the bacteria.

Keywords: SARS-CoV-2, Mycobacterium tuberculosis, COVID-19, Tuberculosis, Host directed therapies.

Introduction. COVID-19 pandemic has shown a significant disruptive impact on Tuberculosis (TB) services, with negative effects on prompt diagnosis, treatment and immunization.1,2 Pressure on laboratories and pharmaceutical industries led to the readaptation of many TB labs to detect SARS-CoV-2 as well as Bacillus Calmette-Guérin (BCG) shortages and consequent decrease of newborn vaccinations.3 Estimates indicate a 25\% drop in the global BCG coverage and an increase in pediatric deaths ranging from 0.5\% to 17\%.4

In several countries, reports suggest a decline in case notification in the last few months due to massive cancellation of routine health services in many settings.5–7 Although it has been noted that many of the preventive measures implemented to reduce SARS-CoV-2 incidence also have a clear benefit on reducing Mycobacterium tuberculosis (\textit{Mtb}) transmission, 2020 saw the first year-over-year increase in TB deaths from 2005, regardless of physical distancing and PPE (personal protective equipment) wearing measures.2,8

In Canada, the pandemic significantly affected latent TB infection (LTBI) and active TB treatment, leading to ineffective measures for TB elimination.9 In Spain, newly diagnosed TB patients had more extended pulmonary disease, moreover there was a rise in household transmission probably due to anti-COVID-19
measures. Also, in England, it has been observed a fall in rates of TB treatment initiation during the period of government-imposed lockdown (March 23–May 10, 2020), and an increase of cases of disseminated TB during the COVID-19 pandemic. All this makes it important to evaluate the measures against COVID-19 globally and not only considering the pathologies related to SARS-CoV-2.

The COVID-19 emergence prompted the scientific community to focus on determining the mechanisms of transmission, the identification of virulence factors of SARS-CoV-2 and the development of suitable therapies. Therapeutical management of COVID-19 is in constant change, and treatment guidelines are readily updated based on scientific evidence and experts’ opinion (National Institutes of Health, n.d.) as we entered in an era of “hype-based medicine”, the long forgotten eminence-based medicine regained importance as the number of trials on possible therapies multiplied, some of them causing overnight changes in the management of COVID-19 patients. The lack of antiviral therapies and the rapid spread of the infection convinced investigators and pharmaceutical companies to focus on the development of vaccines, able to induce neutralizing antibodies against SARS-CoV-2 Spike protein in naive subjects. The developed vaccines do not only trigger a humoral response against the protein, but they impact all the components of the immune response.

As most of the therapies used against COVID-19 disease therapies do not target SARS-CoV-2, but aim to regulate the host immune response, it is reasonable to consider the long-term effects of these therapies on subjects with latent TB infection (LTBI).

In this commentary, we aim to summarize treatments against SARS-CoV-2 and underline their possible effects on Mtb infection highlighting likely “side” effects that could help to contain virus-mediated damage and, conversely, prompt mycobacterial replication in both early infection or during Mtb latency. Therapies Against SARS-CoV-2 Infection. SARS-CoV-2 represents the biggest therapeutic challenge of our century. At present, approximately 2900 clinical trials have been registered, designing new molecules and repurposing existing drugs based on the virus biology and pathogenesis.

Therapeutical approaches range from convalescent plasma of people who have recovered from COVID-19, to medications which are commonly used to treat autoimmune or inflammatory diseases as well as drugs used to treat other infections.

Pharmaceuticals used for COVID-19 target different pathogenetic mechanisms, with the aim of a) blocking viral replication, summarized in points 1-3 of the Figure 1, and b) reducing tissue damage, modulating the immune responses, and preventing over-inflammation (Figure 1, points 4-6).

The first class includes antivirals to prevent spike-protein-mediated cell fusion, thus blocking viral entry (Figure 1, point 1), inhibit gene transcription (Figure 1, point 2) or prevent proteolytic processing and block viral docking (Figure 1, point 3), as explained in Table 1. Interestingly, several agents show no effects on SARS-CoV-2 even though they were described to have activity against other infections.

SARS-CoV-2 infection causes an overproduction of type I interferons triggering the transcription of several genes and the recruitment of CD4+ T helper lymphocytes, responsible for the Th1/Th2 response. For this reason, immunomodulators (corticosteroids, interferons, monoclonal antibodies against inflammatory cytokines) have been suggested, and largely used, to reduce the over-inflammation that is responsible for several systemic disease manifestations.

However, the NHS Panel failed to evaluate the real role of some of these therapies due to insufficient evidence to recommend either for or against their use.

Examples of drugs in this category are IL-1 inhibitors, colchicine, the antiparasitic agent ivermectin, colchicine, the antiparasitic agent ivermectin, thalidomide. Some others are currently recommended as IL-6 inhibitors and Janus Kinase inhibitors (refer to Table 1 and Figure 1, point 4 to 6).

Although, the use of immunomodulatory treatments had an immediate impact on the care of patients infected with SARS-CoV-2, their long-term effects are unknown.

Impact of the Therapies Against SARS-CoV-2 on Mycobacterium Tuberculosis. Mtb infection represents a classical model of persistent infection, a situation in which a microorganism can persist indefinitely within the host, establishing an equilibrium between the pathogen and the host immune response whose modification could increase the risk of relapse and disease. Indeed, host immune response can limit Mtb spread, after macrophages killing evasion, creating a multicellular structure known as granuloma, which entraps mycobacteria that persist in a heterogeneous range of states. In the last decades, to deal with the emergence of Mtb strains resistant anti-TB drugs (MDR/RR-Mtb and XDR-Mtb), a novel approach has been proposed targeting the host and so named host directed therapies (HDTs).

HDTs can support antimycobacterial host response at different stages: a) perturbing granuloma integrity to enhance drug penetration; b) modifying autophagy or phagosome maturation to increase intracellular killing; c) promoting cell-mediated response; d) inducing antimicrobial peptides and controlling inflammation response by avoiding tissue damage. While the use of HDTs seem to support anti-TB treatment in symptomatic individuals, no data nor anecdotal knowledge support the use of such therapies in people with asymptomatic or...
Figure 1. Schematic representation of the pharmaceuticals used against SARS-CoV-2 infection. The first class of molecules includes antivirals to prevent viral entry (point 1); the second class includes compounds that inhibit gene transcription (point 2) and the third class accounts molecules that prevent proteolytic processing and block viral docking (point 3). The points 4-6 described medications that reduce tissue damage, modulating the immune responses or preventing over-inflammation.

In other words, it is undeniable that some immunomodulatory treatments may alter the host-\textit{Mtb} equilibrium, favoring either the host or the bacteria. In this scenario, we cannot exclude that those immunomodulatory therapies used against COVID-19 may have a negative effect on infected individuals causing symptomatic TB.

A recent paper highlighted the relationship between SARS-CoV-2 and \textit{Mtb} infection, showing that asymptomatic SARS-CoV-2 seropositive individuals with a positive IGRA exhibited heightened levels of humoral, cytokine production, and systemic inflammation compared to individuals negative for \textit{Mtb} infection.\(^\text{39}\) \textit{Mtb} is apparently able to modulate the host immune response in SARS-CoV-2-infected individuals. Furthermore, various clinical cases describe TB reactivation following SARS-CoV-2 infection confirming the concerns that COVID-19 associated CD4+ T-cell depletion or altered T-cell function can have similar implications as HIV for TB disease progression, promoting the development of active TB.\(^\text{25,40}\) Moreover, some studies highlighted a higher probability to develop severe disease in patients with SARS-CoV-2 / \textit{Mtb} co-infection compared to COVID-19 patients.\(^\text{41,42}\) Unfortunately, we have little information on TB occurrence after COVID-19 treatments.\(^\text{43}\) On the other hand, there was a delay in the onset of the pandemics in many countries endemic for TB. Moreover, those countries showed lower COVID-19’s severe cases and SARS-CoV-2 related-mortality.\(^\text{44}\) Intriguingly, one of the variables that was mathematically linked to COVID-19 low spread was BCG vaccination,\(^\text{45}\) which is known to stimulate non-specific heterologous immune responses inducing cross-protective effects toward non-tuberculosis-related diseases, included SARS-CoV-2.\(^\text{15,46,47}\) Indeed, numerous clinical trials are currently registered to update on the benefits of BCG vaccinations against SARS-CoV-2 exposure.\(^\text{15,47}\)

We can classify therapies used against COVID-19 based on their activity on \textit{Mtb} infection in four main drug classes: a) drugs acting directly on \textit{Mtb} (\textbf{Figure 2}, point 1); b) drugs that modify phagosome acidification (\textbf{Figure 2}, point 2); c) drugs with adjuvant function that can indirectly modulate the infection (\textbf{Figure 2}, point 3) and d) drugs with immunomodulatory activity (\textbf{Figure 2}, point 4). Although many anti-COVID-19 pharmaceutics appeared to impair mycobacterial growth in \textit{in vitro} experiments, (\textbf{Figure 2}, point 1),\(^\text{48-51}\) we focus our attention on their immunomodulatory effects (\textbf{Table 1}).

subclinical infection.\(^\text{38}\)

\(\text{www.mjhid.org Mediterr J Hematol Infect Dis 2022; 14; e2022021}\)
DRUG CLASS	DRUG	Mechanism of action against SARS-CoV-2	REFERENCE	Mechanism of action against *M. tuberculosis*	REFERENCE
Anti-gout	Colchicine	Down regulates multiple inflammatory pathways and modulates innate immunity.	Schlesinger N. et al, 2020	Not useful in TB pericarditis	Liebenberg J.J. et al, 2016
Statins	Statins	Inhibit pro-inflammatory cytokine production (TNF-α, IL-10, IL-6 and IL-8) in mononuclear, synovial and endothelial cells, Inhibit T-cell proliferation affecting MHC-II mediated T-cell activation	Satoh M. et al, 2015	Promotes phagosome maturation and autophagy resulting in a decreased *Mtb* load	Parthar S.P. et al. 2014
Corticosteroids	Dexamethasone	Theoretically suppress systemic and lung inflammation related to SARS-CoV-2 infection	Martinez M.A. et al, 2019	Reduce ARDS in TB patients	Hagan G. et al, 2013
Anti-fibrotic /anti-inflammatory	Pirfenidone	Inhibits the effects mediated by IL-1 and IL-4	Vitiello A. et al, 2020	Has a detrimental effect on *Mtb* containment in granulomas and results in an accelerated cavitation and reduced bacterial clearance	Ahidjo, Bintou A et al, 2016
Recombinant human DNase I	Dornase alfa	Improves oxygenation and ventilation by reducing Neutrophilic Extracellular Trap (NET)	Weber A.G. et al, 2020	-	-
Bruton’s tyrosine kinase inhibitor	Acalabrutinib	Regulates macrophage signaling and activation, targeting excessive host inflammation	Roschewski, Mark et al, 2020	NA	-
Immunomodulatory	Thalidomide	Attenuates exaggerated inflammation and cytokine storms	Khalil A. et al, 2020	Inhibits TNF-alpha secretion promoting mycobacterial replication	Wang L. et al, 2017, Tramontana J.M. et al, 1995, Verbon, A et al., 2000
IL-6 antagonist	Tocilizumab	Counteracts cytokine storm indirectly blocking mIL-6R and sIL-6R transduction signals	Le RQ. Et al, 2018	Potential reactivation of LTBI	Lim C.H. et al, 2017
IL-1 blocker	Anakinra	Dumpers inflammatory responses	Shakoory B. et al, 2016	Increases the risk of opportunistic infections	Salliot C. et al, 2009
Anti-IL-1β antibody	Canakinumab				
Anti-IFNγ	Emapalumab	Proposed to reduce inflammatory response	Magro G., 2020	IFNγ neutralization could potentially facilitate the development of infections caused by several pathogens including mycobacteria	Merli P. et al 2020
Calcineurin inhibitors	Cyclosporine A Tacrolimus	Halts the production of the pro-inflammatory molecules (TNF-α and IL-2)	Pfefferle S. et al, 2011	NA	NA
Immunomodulatory	IFN-β	Stimulates the immune system to blunt viral replication and eradicate offending pathogens	Bakadia B.M. et al, 2021	IFN-β plays may be a useful therapeutic strategy to control *Mtb* infection	Sabir N. et al, 2017
Anticoagulant	Low molecular weight heparin	Reduces clot pathway hyperactivity related to pro-inflammatory state	Heng M. et al, 2020	Prevent concomitant pulmonary embolism	Osorio N. et al, 2020

www.mjhid.org Mediterr J Hematol Infect Dis 2022; 14; e2022021

Pag. 4 / 9
DRUG CLASS	DRUG	Mechanism of action against SARS-CoV-2	REFERENCE	Mechanism of action against *M. tuberculosis*	REFERENCE	
Antibiotics	Macrolide	Azithromycin	Reduces production of pro-inflammatory cytokines such as IL-8, IL-6, TNF alpha, reduce oxidative stress, and modulate T-helper functions	Pani A. et al, 2020	Long-term azithromycin use may predispose CF patients to NTM infection In the acute phase, azithromycin reduces the production of pro-inflammatory cytokines (IL-8, IL-6, TNF alpha, and MMPs). In the resolution phase, it increases neutrophil apoptosis and the oxidative stress inflammation-related	Renna M. et al. 2011 Amsoen GW. 2005, Lin S.J. Et al. 2016
	Tetracycline	Doxycycline	Exhibits anti-inflammatory effects along with *in vitro* antiviral activity against several RNA viruses	Castro J.Z. et al, 2010	Blocks mycobacterial growth in infected macrophages suppressing MMP-1 and MMP-3 secretion Reduces pro-inflammatory cytokines, including IL-6 and tumor necrosis factor (TNF)-α and suppresses TNF-α secretion by macrophages	Walker N.F. et al. 2012 Fredeking T. et al, 2015, Walker N.F. et al, 2012
Antiviral	Remdevisir	Favipiravir	Inhibits viral RNA polymerase decreasing viral replication	Barlow A. et al, 2020 Javorac D. et al, 2020	Reduces levels of IL-1β, TNF-α, IL-6 and IL-18 Decreases levels of TNF-α	Li Y.-N. et al, 2020 Tanaka T. et al, 2017 Abutidze A. et al, 2016 Liao S.et al,2017
	Ribavirin		Inhibits viral RNA synthesis	Barlow A. et al, 2019	Reactivation during therapy against HCV Decreases levels of IL-1β, TNF-α, IL-6 and IFN-γ	
Protease inhibitors	Lopinavir/ ritonavir		Inhibits 3-chymotrypsin-like protease resulting in decreased viral replication	Fagone P. et al, 2015	Lopinavir reduces levels of IL-6 and TNF-α; Ritonavir reduces levels of IFN-γ and IL-10	Fagone P. et al., 2015 Sriram D et al, 2008, Britting A. et al, 2010, Shen YUN. Et al, 2001
	Nelfinavir		Inhibits cell fusion caused by the SARS-CoV-2 spike (S) glycoprotein	Musarrat F. et al, 2020	Nelfinavir diester derivatives shows antimycobacterial activity	
	Atazanavir		Blocks the major protease of SARS-CoV-2	Fintelman-Rodrigues N. et al, 2020	Reduces levels of IL-6 and TNF- α	Fintelman-Rodrigues N. et al., 2020
	Darunavir/ cobicistat		Inhibits viral entry	Kalil AC. Et al, 2020	NA	-
Antipsychotics	Chlorpromazine		Decreases virus entry inhibiting clathrin-mediated endocytosis	Plaze M. et al, 2020	Enhance macrophagic mediated killing by promoting vacuolar acidification (M. bovis BCG)	Machado D. et al, 2016
Antiparasitic	Hydroxychloroquine		Potentially inhibits cell entry impairing affinity between Spike protein and ACE 2 receptor	Infante M. et al, 2020	Impairs Mtb growth inactivating D+ NAD+ dependent DNA ligase A Modulates phagolysosomal pH inhibiting intracellular bacterial growth Shows bactericidal activity against mycobacterial species	Singh V. et al, 2010 Rolain J.M. et al, 2007 Lim L. E. et al, 2013, Ranjbar S. et al, 2019, Cavanaugh J.S. et al, 2017
	Ivermectin		Modulates immune response through IFN-γ production	Soboslay P.T. et al, 1994		
	Nitazoxanide		Potential antiviral properties (clinical trials in influenza and other virus infections)	Kelleni MT et al, 2020	Inhibits the growth of diverse strains of Mtb	
Janus kinase (JAK) inhibitor	Baricitinib		Prevent viral entry and intracellular assembly of viral particles	Lu R. et al, 2020	Affects immune cell functions with negligible risk of active TB in low endemic areas	Cantini F. et al, 2020

Table 1. Summary reporting experimental evidence of the impact of drugs used against SARS-CoV-2 infection on *Mycobacterium tuberculosis* infection.
Hydroxychloroquine inactivates mycobacterial NAD+ dependent DNA ligase A and modulates phagolysosome, reducing intracellular mycobacterial growth. Similarly, chlorpromazine, an antipsychotic drug, has been observed to have antimycobacterial activity and to promote macrophagic killing by increasing phagosome acidification. Acidification may though differently affect phagosomes at different stages of maturation. Moreover, \textit{Mtb} itself can influence phagosome maturation potentially counteracting these drugs.

Nitazoxanide, which has been also suggested to modulate immune response inducing interferon-\(\gamma\), inhibits intracellular \textit{Mtb} growth while amplifying \textit{Mtb}-induced gene expression.

Thalidomide represents a compound that has been tested against \textit{Mtb} infection showing a detrimental effect on infection control due to TNF-\(\alpha\) inhibition with consequent increase in mycobacterial replication (Figure 2 and Table 1). Interestingly, several drugs that have been proposed against SARS-CoV-2 have not been tested \textit{in vitro} against \textit{Mtb} infection (Table 1). This is true for several molecules that act on the host immune system to prevent over inflammation (which has been observed as a critical point for the progression of SARS-CoV-2 infection). These compounds, that dampen pro-inflammatory cytokines, could impair the fine equilibrium between \textit{Mtb} replication and the host immune system response, thus promoting active disease. Among them, monoclonal antibodies such as IL-6 antagonists and antivirals have been observed to significantly modulate host cytokine response and potentially alter host immune response versus \textit{Mtb} replication. Interestingly, \textit{Mtb} regulates IL-6 secretion to inhibit type I interferon signaling and causes disease progression which appears to be associated to \textit{sigH} gene expression. For this reason, IL-6 antagonist could have important implications during \textit{Mtb} infection.

Another example are corticosteroids that are beneficial in hospitalized COVID-19 patients, but, conversely, could increase the risk of LTBI reactivation or progression of sub-clinical TB.

Conclusions. Given the specific effect of COVID-19 on T-cells and for anti-COVID-19 treatments on LTBI, clinicians should consider monitoring patients with both previous COVID-19 infection and LTBI to rapidly
identify active disease and prevent *Mtbc* transmission.

References:

1. Furtado I, Aguiar A, Daute R. Getting back on the road towards tuberculosis elimination: lessons learnt from the COVID-19 pandemic. *J Bras Pneumol*. 2021;47(7):e20210123. https://doi.org/10.36416/1806-3756e20210123

PMID:33900099 PMCID:PMC8332847

2. Pau M, Kasaeva T, Swaminathan S. Covid-19’s Devasting Effect on Tuberculosis Care - A Path to Recovery. *N Engl J Med*. [Internet]. 2022(0):null. https://doi.org/10.1056/NEJMep2118145

PMID:34986295

3. Jain VK, Iyengar KP, Samy DA, Vaishya R. Tuberculosis in the era of COVID-19 in India. *Diabetes Metab Syndr Clin Res Rev [Internet]*. 2020;14(5):1439-43. https://doi.org/10.1016/j.dsx.2020.07.034

PMID:32755848 PMCID:PMC7387287

4. Shaikh N, Pelzer PT, Thysen SM, Roy P, Harris RC, White RG. Impact of COVID-19 Disruptions on Global BCG Coverage and Paediatric TB Mortality: A Modelling Study. *Vaccines*. 2021 Oct;9(11). https://doi.org/10.3390/vaccines91101122

PMID:34835161 PMCID:PMC8624525

5. Malik AA, Safdar N, Chandar S, Khan U, Khowaja S, Riaz N, et al. Tuberculosis control and care in the era of COVID-19. *Health Policy Plan*. 2020;35(8):1130-2. https://doi.org/10.1093/heapol/czaa109

PMID:32832996 PMCID:PMC7499582

6. Janice K. Louie, Rocio Agraz-Lara LR, Felix Crespin, Lisa Chen 1, Malik AA, Safdar N, Chandar S, Khan U, Khowaja S, Riaz N, et al. Multidrug-resistant tuberculosis in COVID-19: Double trouble. *Med J Armed Forces India [Internet]*. 2021;77:S479-82. https://doi.org/10.1016/j.mjaf.2021.05.002

PMID:34334915 PMCID:PMC8313087

7. Marwah V, Peter DK, Ajai Kumar T, Bhati G, Kumar A. Thalidomide for Multidrug-resistant tuberculosis in COVID-19 pandemic: a systematic review and meta-analysis. *Medicine* 2021 Dec; https://doi.org/10.1093/md/maa6608

PMID:34919700 PMCID:PMC8755327

8. Aznar ML, Espinosa-Pereiro J, Sabort N, Jové N, Sánchez Martínez F, Pérez-Recasens S, et al. Impact of the COVID-19 pandemic on tuberculosis management in Spain. *Int J Infect Dis* IJID Off Publ Int Soc Infect Dis. 2021 Jul;108:300-5. https://doi.org/10.1016/j.ijid.2020.07.034

PMID:3390543 PMCID:PMC8078060

9. Barrett J, Painter H, Rajagopal A, Keane D, John L, Papineni P, et al. Increase in disseminated TB during the COVID-19 pandemic. *Vol. 25.* The international journal of tuberculosis and lung disease: the official journal of the International Union against Tuberculosis and Lung Disease. France; 2021. p. 160-6. https://doi.org/10.5588/jiltld.20.0846

PMID:33654632

10. Tu YF, Chien CS, Yarmishyn AA, Lin YY, Luo YH, Lin YT, et al. A review of sars-cov-2 and the ongoing clinical trials [Internet]. *Vol. 21.* International Journal of Molecular Sciences. 2020. p. 2657. https://doi.org/10.3390/ijms21072472

PMID:3220293 PMCID:PMC8179708

11. Pearson H. How COVID broke the evidence pipeline. *Nature*. 2021;593(7858):182-5. https://doi.org/10.1038/d41586-021-01246-x

PMID:33981057

12. No authors listed. Evidence-based medicine: how COVID can drive positive change. *Vol. 593.* Nature. England; 2021. p. 168. https://doi.org/10.1038/d41586-021-01255-w

PMID:33981058

13. Gong W, Aspatwar A, Wang S, Parkkila S, Wu X. COVID-19 pandemic: SARS-CoV-2 specific vaccines and challenges, protection via BCG trained immunity, and clinical trials. *Expert Rev Vaccines*. 2021 Jul;20(7):857-80. https://doi.org/10.1080/14760584.2021.1928550

PMID:34078215 PMCID:PMC8220438

14. Hu B, Guo H, Zou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. *Nat Rev Microbiol*. [Internet]. 2021;19(3):141-54. https://doi.org/10.1038/s41579-020-00459-7

PMID:33024307 PMCID:PMC7537588

15. Petersen E, Koopmans M, Go U, Hamer DH, Petrozillo N, Castelli F, et al. Personal View Comparing SARS-CoV-2 with SARS-CoV and influenza pandemics. *Lancet Infect Dis* [Internet]. 2020;20(9):e238-44. https://doi.org/10.1016/S1473-3099(20)30484-9

PMID:32986295

16. Nitulesscu GM, Paunescu H, Moschos SA, Petrakis D, Nitulesscu G, Ion GND, et al. Comprehensive analysis of drugs to treat SARS-CoV-2 infection: Mechanistic insights into current COVID-19 therapies (Review). *Int J Mol Med*. 2020;46(2):467-88. https://doi.org/10.3892/ijmm.2020.4608

PMID:32468014 PMCID:PMC7307820

17. Joyner MJ, Wright RS, Fairweather DL, Senefeld JW, Bruno KA, Klassen SA, et al. Early safety indicators of COVID-19 convalescent plasma in 5,000 patients. *medRxiv*. 2020;2020.10.30.20207613

PMID:32511566 PMCID:PMC7274247

18. Sarma P, Shekhar N, Prajapat M, Awi P, Kaur H, Kumar S, et al. In-silico homology assisted identification of inhibitor of RNA binding against 2019-nCoV N-protein (terminal domain). *medRxiv*. 2020;2020.05.006

PMID:32452252 PMCID:PMC7229964

19. Infante M, Ricordi C, Alejandro R, Caprio M, Fabbri A. Hydroxychloroquine in the COVID-19 pandemic era: in pursuit of a rational use for prophylaxis of SARS-CoV-2 infection. *Expert Rev Anti Infect Ther*. 2020;18(10):1131-41. https://doi.org/10.1080/14787210.2020.1799785

PMID:32693652 PMCID:PMC7441799

20. Tina M. Kellen. Letter to the Editor Nitzoxanide/azithromycin combination for COVID-19: A suggested new protocol for early management. *Pharmacol Res*. [Internet]. 2020;150(9):105215

PMID:32090944 preprint2020.04.332v1

21. Riou C, du Bruyn E, Stéck C, Daroowala R, Goliath RT, Abrahams F, et al. Relationship of SARS-CoV-2-specific CD4 response to COVID-19 severity and impact of HIV-1 and tuberculosis coinfection. *J Clin Invest*. [Internet]. 2021;131(12).

PMID:31172567 PMC149125

22. National Institutes of Health. COVID-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines [Internet]. [cited 2021 Aug 12].

23. Chen C, Qi F, Shi K, Li Y, Li J, Chen Y, et al. Thalidomide Combined with Low-dose Glucocorticoid in the Treatment of COVID-19 Pneumonia [Internet]. Preprints; 2020 [cited 2021 Aug 13].

PMID:34078215 PMCID:PMC8220438

24. Fisher RA, Gollan B, Helaine S. Persistent bacterial infections and persister cells. *Nat Rev Microbiol*. 2017 Aug;15(8):453-64. https://doi.org/10.1038/nrmicro.2017.42

PMID:28529326
30. Russell DG, Cardona PJ, Kim MJ, Allain S, Altare F, Foamy macropages and the progression of the human tuberculosis granuloma. Nat Immunol. 2009;10(9):943-8. https://doi.org/10.1038/nn.1781
PMid:1966295 PMCID:PMC259071

31. Delougo G, Sali M, Fadda G. The biology of mycobacterium tuberculosis infection. Meditter J Hematol Infect Dis. 2013;5(1). https://doi.org/10.4084/mjhid.2013.070
PMid:23463885 PMCID:PMC3867229

32. Kaufmann SHE, Derhou A, Hotchkiss RS, Bartenschlager R. Host-directed therapies for bacterial and viral infections. Nat Rev Drug Discov [Internet]. 2018;17(1):35-56. https://doi.org/10.1038/nrd.2017.162
PMid:28935918 PMCID:PMC7097079

33. Palucci I, Maucci G, De Maio F, Sali M, Romagnoli A, Petrone L, et al. Inhibition of Transglutaminase 2 as a Potential Host-Directed Therapy Against Mycobacterium tuberculosis. Front Immunol. 2020;10(1):1-13. https://doi.org/10.3389/fimmu.2019.01042
PMid:32088614 PMCID:PMC6929358

34. Kumar R, Kolloli A, Singh P, Vinnard C, Kaplan G, Subbian S. Thalidomide and Phosphodiesterase 4 Inhibitors as Host Directed Therapeutics for Tuberculous Meningitis: Insights From the Rabbit Model. Front Cell Infect Microbiol [Internet]. 2020;9:450. https://doi.org/10.3389/fimmu.2019.00450
PMid:32080408 PMCID:PMC6972908

35. Costa DL, Maiga M, Subbian S. Editorial: Host-Directed Therapies for Tuberculosis. Front Cell Infect Microbiol [Internet]. 2021;11:736. https://doi.org/10.3389/fimmu.2021.724053
PMid:34422685 PMCID:PMC8377667

36. Kolloli A, Kumar R, Singh P, Narang A, Kaplan G, Sigal A, et al. Aggregation state of Mycobacterium tuberculosis impacts host immunity and augments pulmonary disease pathology. Commun Biol. 2021 Nov;4(1):1256. https://doi.org/10.1038/s41419-021-02769-9
PMid:34732811 PMCID:PMC8366596

37. Wallis RS, Ginindza S, Beattie T, Arjun N, Likoti M, Edward VA, et al. Adjunctive host-directed therapies for pulmonary tuberculosis: a prospective, open-label, phase 2, randomised controlled trial. Lancet Respir Med [Internet]. 2021;9(8):897-908. https://doi.org/10.1016/S2213-2600(20)30448-3
PMid:34422685 PMCID:PMC8377667

38. Richards AS, Sossen P, Emery JC, Horton KC, Heinsohn T, Frascella B, et al. The natural history of TB disease-a synthesis of data to quantify immunity and augments pulmonary disease pathology. Commun Biol. 2021 Nov;4(1):1256. https://doi.org/10.1038/s41419-021-02769-9
PMid:34732811 PMCID:PMC8366596

39. Kolloli A, Kumar R, Singh P, Narang A, Kaplan G, Sigal A, et al. Aggregation state of Mycobacterium tuberculosis impacts host immunity and augments pulmonary disease pathology. Commun Biol. 2021 Nov;4(1):1256. https://doi.org/10.1038/s41419-021-02769-9
PMid:34732811 PMCID:PMC8366596

40. Wallis RS, Ginindza S, Beattie T, Arjun N, Likoti M, Edward VA, et al. Adjunctive host-directed therapies for pulmonary tuberculosis: a prospective, open-label, phase 2, randomised controlled trial. Lancet Respir Med [Internet]. 2021;9(8):897-908. https://doi.org/10.1016/S2213-2600(20)30448-3
PMid:34422685 PMCID:PMC8377667

41. Richards AS, Sossen P, Emery JC, Horton KC, Heinsohn T, Frascella B, et al. The natural history of TB disease—a synthesis of data to quantify immunity and augments pulmonary disease pathology. Commun Biol. 2021 Nov;4(1):1256. https://doi.org/10.1038/s41419-021-02769-9
PMid:34732811 PMCID:PMC8366596

42. Kolloli A, Kumar R, Singh P, Narang A, Kaplan G, Sigal A, et al. Aggregation state of Mycobacterium tuberculosis impacts host immunity and augments pulmonary disease pathology. Commun Biol. 2021 Nov;4(1):1256. https://doi.org/10.1038/s41419-021-02769-9
PMid:34732811 PMCID:PMC8366596

43. Wallis RS, Ginindza S, Beattie T, Arjun N, Likoti M, Edward VA, et al. Adjunctive host-directed therapies for pulmonary tuberculosis: a prospective, open-label, phase 2, randomised controlled trial. Lancet Respir Med [Internet]. 2021;9(8):897-908. https://doi.org/10.1016/S2213-2600(20)30448-3
PMid:34422685 PMCID:PMC8377667

44. Kolloli A, Kumar R, Singh P, Narang A, Kaplan G, Sigal A, et al. Aggregation state of Mycobacterium tuberculosis impacts host immunity and augments pulmonary disease pathology. Commun Biol. 2021 Nov;4(1):1256. https://doi.org/10.1038/s41419-021-02769-9
PMid:34732811 PMCID:PMC8366596

45. Wallis RS, Ginindza S, Beattie T, Arjun N, Likoti M, Edward VA, et al. Adjunctive host-directed therapies for pulmonary tuberculosis: a prospective, open-label, phase 2, randomised controlled trial. Lancet Respir Med [Internet]. 2021;9(8):897-908. https://doi.org/10.1016/S2213-2600(20)30448-3
PMid:34422685 PMCID:PMC8377667

46. Richards AS, Sossen P, Emery JC, Horton KC, Heinsohn T, Frascella B, et al. The natural history of TB disease—a synthesis of data to quantify immunity and augments pulmonary disease pathology. Commun Biol. 2021 Nov;4(1):1256. https://doi.org/10.1038/s41419-021-02769-9
PMid:34732811 PMCID:PMC8366596

47. Kolloli A, Kumar R, Singh P, Narang A, Kaplan G, Sigal A, et al. Aggregation state of Mycobacterium tuberculosis impacts host immunity and augments pulmonary disease pathology. Commun Biol. 2021 Nov;4(1):1256. https://doi.org/10.1038/s41419-021-02769-9
PMid:34732811 PMCID:PMC8366596

48. Wallis RS, Ginindza S, Beattie T, Arjun N, Likoti M, Edward VA, et al. Adjunctive host-directed therapies for pulmonary tuberculosis: a prospective, open-label, phase 2, randomised controlled trial. Lancet Respir Med [Internet]. 2021;9(8):897-908. https://doi.org/10.1016/S2213-2600(20)30448-3
PMid:34422685 PMCID:PMC8377667

49. Richards AS, Sossen P, Emery JC, Horton KC, Heinsohn T, Frascella B, et al. The natural history of TB disease—a synthesis of data to quantify immunity and augments pulmonary disease pathology. Commun Biol. 2021 Nov;4(1):1256. https://doi.org/10.1038/s41419-021-02769-9
PMid:34732811 PMCID:PMC8366596

50. Wallis RS, Ginindza S, Beattie T, Arjun N, Likoti M, Edward VA, et al. Adjunctive host-directed therapies for pulmonary tuberculosis: a prospective, open-label, phase 2, randomised controlled trial. Lancet Respir Med [Internet]. 2021;9(8):897-908. https://doi.org/10.1016/S2213-2600(20)30448-3
PMid:34422685 PMCID:PMC8377667

51. Richards AS, Sossen P, Emery JC, Horton KC, Heinsohn T, Frascella B, et al. The natural history of TB disease—a synthesis of data to quantify immunity and augments pulmonary disease pathology. Commun Biol. 2021 Nov;4(1):1256. https://doi.org/10.1038/s41419-021-02769-9
PMid:34732811 PMCID:PMC8366596

52. Wallis RS, Ginindza S, Beattie T, Arjun N, Likoti M, Edward VA, et al. Adjunctive host-directed therapies for pulmonary tuberculosis: a prospective, open-label, phase 2, randomised controlled trial. Lancet Respir Med [Internet]. 2021;9(8):897-908. https://doi.org/10.1016/S2213-2600(20)30448-3
PMid:34422685 PMCID:PMC8377667
59. Urdahl KB, Shafiani S, Ernst JD. Initiation and regulation of T-cell responses in tuberculosis. Vol. 4, Mucosal Immunology. 2011. p. 288-93. [PMid:29209113 PMCid:PMC5703932]
https://doi.org/10.1038/mi.2011.10

60. Martinez AN, Mehra S, Kausal D. Role of interleukin 6 in innate immunity to Mycobacterium tuberculosis infection. J Infect Dis. 2013 Apr;207(8):1253-61. [PMid:23359519 PMCid:PMC3693587]
https://doi.org/10.1093/infdis/jit037

61. The RECOVERY Collaborative Group. Dexamethasone in Hospitalized Patients with Covid-19. N Engl J Med [Internet]. 2020 Jul 17;384(8):693-704. [PMid:32678530 PMCid:PMC7383595]
https://doi.org/10.1056/NEJMoa2021436

62. Liu J, Zhang S, Dong X, Li Z, Xu Q, Feng H, et al. Corticosteroid treatment in severe COVID-19 patients with acute respiratory distress syndrome. J Clin Invest. 2020 Dec;130(12):6417-28. [PMid:33141117 PMCid:PMC7685724]
https://doi.org/10.1172/JCI140867