Bioactive substances with anti-neoplastic efficacy from marine invertebrates: Porifera and Coelenterata

Peter Sima, Vaclav Vetvicka

Abstract

An ever increasing demand for new lead compounds in the pharmaceutical industry has led scientists to search for natural bioactive products. Based on this extensive research, marine invertebrates now represent a rich source of novel substances with significant anti-neoplastic activities. As the current approach of synthesizing new and chemically modifying old drugs seems to have slowed down, a new approach is clearly needed. The objective of this review is to present up-to-date data on these newer compounds. Based on the data summarized in this short review, it is clear that marine invertebrates represent an extremely important source of compounds with potential anti-cancer effects. Considering that we tested only a tiny number of Porifera and Coelenterata, the best is yet to come.

© 2011 Baishideng. All rights reserved.

Key words: Cancer; Coelenterata; Invertebrates; Porifera

INTRODUCTION

Adaptive (inducible) immunity emerged together with the appearance of jaws, and is based on the rearrangement of very variable molecules of the immunoglobulin superfamily (antibodies, T cell receptors, MHC molecules, etc.) which are produced in myriads of variants. While, adaptive immunity is regarded as unique among the defensive strategies of metazoans, all members of the invertebrate phyla utilize a plethora of substances in their natural immunity ranging from peptides to steroids and alkaloids for defense and preservation of their internal integrity.

Oceans comprise 70% of the Earth’s area and the marine ecosystem represents 95% of the biosphere. Thirty-three of thirty-four animal phyla live in the marine environment. The diversity of species is extraordinary and in tropical reef zones reaches 1000 different species per square meter. Environmental pressures, competition for space, nutrition, and self-defense have led to the production of a diverse array of compounds—the secondary metabolites, which these organisms use for intercommunication within their environment. These communication molecules evolved within the scope of symbiotic interrelations sensu, and de Barry studied cooperation and neutralism followed by competition and parasitism. Many of these molecules also represent ancient defense factors.

Bioactive substances formed by marine organisms such as bacteria, algae, protozoans, and invertebrates/...
vertebrates have attracted attention due to their antiviral, antimicrobial, antiprotozoal, antifungal, antihelminthic, and anticancer properties[8,9,10]. A vast number of these substances are produced by phylogenetically diverse organisms that have different and often unprecedented chemical structures and are able to kill eukaryotic cells. These so-called “natural substances”, or synonymously “secondary metabolites,” are small molecules (generally up to 3000 Da) and have been the focus of anti-cancer research for more than 40 years[11]. The main sources of natural metabolites which exert antitumor activity are from invertebrates, particularly marine invertebrates.

Up to the end of the first decennium of this century, more than 15 000 natural compounds have been isolated mainly from sessile animals, sponges, corals, mollusks, and chordates. These substances belong to very different families of chemical compounds. Some of them have very exotic structures and their bioactive and antineoplastic activities take effect on different levels including blocking metabolic/enzymatic reactions, interrupting cell cycle, and direct cell killing. During the past few years, a large numbers of novel compounds have been reported[12-14]. Some of them have undergone preclinical and clinical trials and it is expected that they will be used therapeutically in the very near future.

Difficulties still persist regarding the development and commercial production of pharmacologically bioactive substances. First, the samples of pharmacological interest are obtainable only in minute quantities from the source. Thus, it is necessary to gather significant amounts of such organisms which could threaten the stability of their ecosystems. In certain countries, this is often unlawful[15]. Second, bioactive substances often have very complicated structures and their isolation or synthesis is very expensive[16]. Third, the source of these bioactive compounds are from microorganisms living in symbiosis[17,18]. The determination and isolation of the responsible bacterial producers of such bioactive substances are rather complicated because microbial communities within the ecological environment containing marine sessile animals are very complex. To date, only a few studies have determined the bacterial symbionts of these substances[19-22]. Currently, only about 5% of the symbiotic bacteria present in marine specimens can be cultivated under standardized conditions. Conversely, interest in the development of novel therapeutics from marine symbiotic microbiota continues to grow[23]. It would be pointless to introduce a list of known substances with antineoplastic activities that have been derived from marine invertebrate animals. The aim of this review is only to draw attention to this relatively new branch of pharmacological science which is a rapidly developing new discipline.

PORIFERA

Marine sponges are easy to collect and therefore are among the richest sources of bioactive compounds. There are approximately 6000 species of the phylum *Porifera* living in the sea[24]. Sponges are evolutionary and one of the most successful animal groups[25]. Sponges or their associated microorganisms produce a number of secondary metabolites for self-defense[26-28]. More than 5300 chemically different bioactive substances have been discovered in sponges or their symbiotic microorganisms and every year about 200 new compounds are added. Microorganisms comprise up to 40% of the total mass of some sponge species[10]. Many of these substances have pharmaceutical activities against human diseases such as malaria, AIDS, and particularly cancer[29]. They are chemically classified as alkaloids, lipids, steroids, terpenoids or further compounds[30,31]. Cytotoxic substances described, e.g., in *Strongylocentrotus purpuratus* are mainly polyacetylenic lipid derivatives, glycerol ethers, linear alcohols or fatty acids and their esters. Of these compounds, the durissimol-sext strong activity against human gastric tumor cells (NUGC)[32]. A lipid metabolite, plakorsin B from *Plakortis simplex*, is cytotoxic against COLO-250 and KB-16 carcinoma cells, and chondrillin cytotoxic against the human KB-16 cell line. A macrolide, neopololide, which was isolated from *Incertae sedis* species from the family Neopelitidae (Listiida) is cytotoxic to several cancer cell lines[33] IC\textsubscript{50} values of 1.2 nmol/L against the A549 human lung adenocarcinoma cell line, 5.1 nmol/L against the NCI/ADR-RES ovarian sarcoma cell line, and 0.56 nmol/L against the P388 murine leukemia cell line were found. Strong activity was also found in the PANC-1 pancreatic cancer cell line and the DLD-1 colorectal adenocarcinoma cell line, both of which have p53 mutations. This substance has already been synthesized[16]

Our research is also aimed at the clinical use of secondary metabolites for the therapy of cancer. The secondary metabolites of sponges such as crambescidin-816 (*Crambe crambae*), have been shown to beactive against HCT-16 human colon carcinoma cells (IC\textsubscript{50} = 0.24 g/mL). The additional metabolites, discodermolide (*Discodoruma dissoluta*), halichondrin and isohomohalichondrins (*Halichondria okadai*, *Lissodendoryx* sp.); laulimalide and isolaulimalide (*Cavatensis mugilii*), mycaperoxideB (*Mycale sp.*); and spongistatin (*Hytimo erecta*) should also be mentioned. Numerous drugs from marine sponges have been identified as a source of targeting microtubules[35,36]. The anti-cancer activity of these agents may lie mainly in their inhibitory effects on spindle microtubule dynamics, rather than in their effects on microtubule polymer mass[37]. Substances such asjaspolide, dolastatin, halichondrin, morgenstin, hemiasterlin, dictyostatin, discodermolide, laulimalide, peloruseidel A, and zampanolide influence function and are disruptors of the cytoskeleton similar to taxanes (major classes of tubulin polymerization promoters)[37,38] and some tunicate and molluscan molecules[39]. Pharmacologically interesting substances from sponges are lamellarins[40], which were first described in mollusks (see below). Recently, anticancer drug research has focused on a group of low molecular inhibitors of hy-
poxic signaling in tumor tissues. These substances target a key regulator of oxygen homeostasis, hypoxia-inducible transcription factor 1 (HIF-1\(^{40}\)), which represents a negative factor in cancer prognosis. In addition, they induce apoptotic cell death through multi-target mechanisms, including inhibition of topoisomerase II interaction with DNA and direct effects on mitochondria. Inhibition of its function not only suppresses tumor growth, but simultaneously enhances chemo- and radiotherapy. As of 1998, only two substances were known to inhibit HIF-1. Since that time, about 15,000 extracts of plants and marine animals have been investigated for the inhibition of HIF-1. Several groups of chemically related substances were discovered in plants and microorganisms and in marine algae, sponges, echinoderms and tunicates. These were mainly sodwanone (activity against T47D breast tumor cells (IC\(_{50} = 15 \mu M/L\)), PC-3 prostate tumor cells (IC\(_{50} = 15 \mu M/L\)) and MDA-MB-231 breast tumor cells (IC\(_{50} = 23 \mu M/L\)), and yardenone-type triterpenoids, furanolidip, homoscalaranes, esterterpenes, norsterterpenes, diacnoxamines, and lamellarin-like substances. They were discovered in lipophilic extracts of the sponges *Axinella sp.*, *Lendenfeldia sp.*, *Diacarnus levii*, and *Dendrilla nigra*. Further HIV-1 inhibiting substances, meroditerpenoids strongylolipid, homoscalaranes, esterterpenes, terpenes and nortriterpenenes, were obtained from the sponge *Petraia* (Strongylophora) *strongylolide*\(^{41}\).

Many of the bioactive substances from sponges are terpenes which have cytotoxicity against L-1210 cells (IC\(_{50}\) between 2.8 and 8.1 g/mL) and KB cells (IC\(_{50}\) between 1.2 and 7.6 g/mL)\(^{42}\). These compounds are biosynthesized from the five carbon isoprene building units and their structural modification leads to the formation of numerous derivatives with various biological properties. Steroidal terpenoids were the first marine isoprenes discovered during the 1930s-1940s\(^{43}\). Today, marine terpenoids encompass an enormous number of derivatives. Monomeric congeners of jaspolides can be classified into terpenes, esterterpenes, terpenes and norsterterpenes. Jaspolide B showed efficacy comparable to that of paclitaxel and seems to be a promising anticancer agent for the treatment of leukemia due to its ability to block the cell cycle during transition from the G2 phase to mitosis and trigger apoptosis. Examples of bicyclic esterterpenes are thorectandrols isolated from sponges (Thorectandra *sp.*), together with the parent compounds palaurolide and palaurol. All these substances inhibited the growth of MALME-3M (melanoma) and MCF-7 (breast) cancer cell lines in the range 30-40 mg/mL. Similarly, petrosa-spongolides, the first chelantane esterterpenic lactones isolated from a new sponge species *Petrosaspongia nigra*, exerted cytotoxicity against the human bronchopulmonary carcinoma cell line. The group of isomalabaricane-type triterpenoids represents stillettelins. Stellettel A was recognized in 1981 as a yellow triterpenoidal pigment from the sponge *Jasipis stellifer*\(^{41}\), and showed significant cytotoxicity against murine leukemia cells. Geoditins, stelliferin-related isomalabaricane triterpenoids, were obtained from the sponges *Geodia aponica* and *Rhabdastrella aff. Disticha*\(^{44,45}\). These substances showed significant cytotoxicity against several human promyelocytic leukemia, prostate, gastric, breast, cervical and hepatocellular carcinoma cell lines such as NSCLC-N6 bronchopulmonary cells (IC\(_{50}\) between 1.0-32.2 mol/L) leukemia P388 cell line (IC\(_{50}\) = 2.1 nmol/L), leukemia cells HL-60 (IC\(_{50}\) = 0.9 mol/L), prostate cancer cells LNCaP (IC\(_{50}\) = 260 mol/L), and stomach cancer cells AGS (IC\(_{50}\) = 2.9 mol/L). Readers seeking more details regarding the 60 cancer cell lines tested should read this comprehensive review\(^{46}\).

Other chemically different groups of diterpenoid substances constitute terpenyl purines. Some of these (agelasines, asmarines) were isolated mainly from the sponge *Agelas sp.* and *Raspailia sp.*. They display a high general toxicity against protozoa and bacteria including cytotoxicity against several cancer cell lines\(^{47}\). This study found cytotoxic effects against lymphoma L1210 cells (IC\(_{50}\) = 3.1 g/mL), and MEL-28 melanoma cells (IC\(_{50}\) = 1.18 mol/L). Another group of spongian substances with antitumor activity are the alkaloids which include pyridoacridine, indole, pyrrole, pyridine, isoquinoline, guanidine and steroidal alkaloids\(^{48}\).

Pyridoacridines are probably the largest class of the marine alkaloids. Pyridoacridines can be divided into tetracyclic, pentacyclic, hexacyclic, heptacyclic and octacyclic alkaloids. Almost all were isolated from sponges, coelenterates, and ascidians. They show significant cytotoxicity against different types of tumors and contain additional specific biological properties. The most pronounced effects are inhibition of topoisomerase II catalytic activity in human colon cancer cells HCT-116. Numerous additional compounds in this group were isolated; most of which are polycyclic (shermilamine, kuanoniamine, neoamphimedine, arnoamines and styelsamines).

Bisindole alkaloids, drabricadin and dragmacidons, were extracted from the sponges *Dragmacidin sp.*, *Spongiosorites sp.*, and *Hexadella sp.*. Several substances in this family were found to be cytotoxic against several human cancer cell lines such as P388 (IC\(_{50}\) = 15 g/mL), lung cells A-549, colon cells HCT-8 and the breast cancer cell line MDA-MB (IC\(_{50}\) = 10 g/mL)\(^{49}\). New bisindole alkaloids, norterpentin, were isolated from the sponge *Spongiosorites rutzelei*. Some exhibited cytotoxic activity against cancer cell lines. Similarly, terpentin and their derivatives from the sponge *Topsentia genitrix* inhibited proliferation of cultured human and murine tumor cells at micromolar concentrations (IC\(_{50}\) values ranged from 4 to 40 mmol/L) and were active against in vitro P388 leukemia (%T/C = 137, 150 mg/kg, QD1-5) and B16 melanoma (%T/C = 144, 37.5 mg/kg, QD1-9) tumors\(^{49}\). Other bisindole alkaloids, hyrtinadine, hyrtosins from the sponge *Hyrtios sp.*, exhibited in vitro cytotoxicity against murine leukemia and human epidermoid carcinoma cells. In addition, β-carboline alkaloids, hyrtiocretines, and hyrtiocarboline from *Hyrtios reticulatus* showed cytotoxicity against murine leukemia L1210 cells (IC\(_{50}\) = 1 µg/mL) and human epidermoid carcinoma KB cells (IC\(_{50}\) = 3 µg/mL) in vitro\(^{50}\). Manzamines and their congeners from the sponge *Ams-
Table 1 The most important bioactive substances with anti-neoplastic effects isolated from Porifera

Component	Species	Ref.
Durissimols	Stronglyphora durissima	[50]
Plakorin B	Plakortis simplex	[52]
Chondrinil	Xestospongia sp.	[52]
Neopeltoidide	Neopeltidae	[52]
Jaspolide		[50,4]
Dolastatin		[50,4]
Halichondrin		[50,4]
Spongistatin		[50,4]
Dictyostatin		[50,4]
Discodermolide		[50,4]
Lauilmalide		[50,4]
Peloride A		[50,4]
Zampanolide		[50,4]
Lamellarins		[5]
Sodwanone	Axinella sp.	[52]
Tritterpenoids	Axinella sp.	[52]
Furanolidip	Axinella sp.	[52]
Homosalarane	Axinella sp.	[52]
Sesterterpenes	Axinella sp.	[52]
Norsesterpenes	Axinella sp.	[52]
Diacarosides	Axinella sp.	[52]
Stronglyporines	Petroxia strongylata	[52]
Stelletin A	Jaspis stellifera	[52]
Agelasines	Agela sp.	[52]
Amaranines	Agela sp.	[52]
Hyrtiacidin	Dragmacdin sp.	[52]
Nortopsentin	Spongeosorites ruetsleri	[52]
Topsentin	Topshenia genzirix	[52]
Hyrtinidine	Hyrtin sp.	[52]
Hyrtosine	Hyrtin sp.	[52]
Hyrticarboline	Hyrtin reticulatus	[52]
Cylindradines	Axinella cylindratus	[52]
Agelastatins	Agelas dendromorpha	[52]
Ibromophekellstatin	Phakellia mauritiana	[52]

Phimeden sp. also appear to have some potential cancerogenicity towards human hepatocellular carcinoma cells HEPG-2.[53]

Other bioactive substances found in marine sponges are the (brom) pyrrole alkaloids. Cylindradines from Axinella cylindratar displayed moderate cytotoxicity against murine leukemia cells P388[52], and agelastatins (Agelas dendromorpha) and clathrinid (A. clathrodes) showed significant potent in vitro activity against several tumor cell lines. Agelastatin A inhibited OPN protein expression and enhanced expression of the cellular OPN inhibitor, Tcf-4. Agelastatin A treatment also reduced β-catenin protein expression and reduced anchorage-independent growth, adhesion, and invasion in R37 OPN pBK-CMV and C9 cell lines. Similar effects were observed in MDA-MB-231 and MDA-MB-435s human breast cancer cell lines exposed to (-)-agelastatin A[53]. The tetrcyclic pyrrole-imidazole alkaloid, ibromophekellstatin, from Phakellia mauritiana, showed cytostatic activity against a panel of 36 human cancer cell lines in a cell survival and proliferation assay. The ovarian cancer cell line OVXF 899L proved to be most sensitive (IC50 = 0.60 mol/L), followed by the glioblastoma cell line CNXF 498NL (0.93), the nonsmall lung cancer cell line LXF 529L (0.96 mol/L), and the uterine cancer cell line UXF 1138L (1.21 mol/L). The selectivity profile of rac-dibromophakellstatin may be indicative of a novel mechanism of action.[54]

There are many other alkaloids which exert cytotoxic and potentially anticancerogenic activities, which have been identified in various species of marine sponges. Chemically, they belong to the alkaloid groups: the pyrroloquinoline alkaloids (e.g., zyzyzannones, discorhabdins, batzellines, prianosins, makaluvamines, tsitsikammamine), pyrroloquinoline alkaloids (plakinidines), pyrrole alkaloids (perinidins, variolins, halitulins), pyridine alkaloids (pyrindemins, pyridines, amphimedosides, echinoclathrines), isoquinoline alkaloids (cribrostatins), guanidine alkaloids (ptilomycalins, netamines), aminoimidazole alkaloids (leucosolenamines, naamidines), steroidal alkaloids (plakaminines, ritterazines, cortistatins) and many other alkaloid molecules. Our detailed knowledge of these potentially interesting molecules is still limited.

In conclusion, numerous and very different antitumor substances (Table 1) have been isolated from sponges[51]. Many of them are already in clinical use or undergoing the final stages of clinical trials (e.g., antiviral vidarabine or manzaminA with antimalarial, antitubercular and anti-HIV activities)[53].

COELENTERATA

There are two phyla of coelenterate: Cnidaria, comprising more than 9000 species, and Ctenophora with 50 species[54]. Practically all substances with bioactive activities—mainly steroids, terpenes, and other compounds (e.g., ceramides)—were obtained from sea anemones and corals (Anthozoa). The glycosides, cervicosides and prostanoid-sclaviridenones, from the soft corals Sinularia cervicornis and Clavularia viridis were shown to have antitumor activity against human cancer cell lines[51]. A great number of diterpenoids classified into the dollabelane, xenicane, sclaviridenone, from sea anemones and corals (Anthozoa) showed significant antiproliferation activity on cancer cells in vitro and in vivo. The glycosides, cercicosides and prostanoid-sclaviridenones, from the soft corals Sinularia cervicornis and Clavularia viridis were shown to have antitumor activity against human cancer cell lines[51]. A great number of diterpenoids classified into the dollabelane, xenicane, sclaviridenone, from sea anemones and corals (Anthozoa) showed significant antiproliferation activity on cancer cells in vitro and in vivo. The glycosides, cercicosides and prostanoid-sclaviridenones, from the soft corals Sinularia cervicornis and Clavularia viridis were shown to have antitumor activity against human cancer cell lines[51]. A great number of diterpenoids classified into the dollabelane, xenicane, sclaviridenone, from sea anemones and corals (Anthozoa) showed significant antiproliferation activity on cancer cells in vitro and in vivo. The glycosides, cercicosides and prostanoid-sclaviridenones, from the soft corals Sinularia cervicornis and Clavularia viridis were shown to have antitumor activity against human cancer cell lines[51]. A great number of diterpenoids classified into the dollabelane, xenicane, sclaviridenone, from sea anemones and corals (Anthozoa) showed significant antiproliferation activity on cancer cells in vitro and in vivo. The glycosides, cercicosides and prostanoid-sclaviridenones, from the soft corals Sinularia cervicornis and Clavularia viridis were shown to have antitumor activity against human cancer cell lines[51]. A great number of diterpenoids classified into the dollabelane, xenicane, sclaviridenone, from sea anemones and corals (Anthozoa) showed significant antiproliferation activity on cancer cells in vitro and in vivo. The glycosides, cercicosides and prostanoid-sclaviridenones, from the soft corals Sinularia cervicornis and Clavularia viridis were shown to have antitumor activity against human cancer cell lines[51]. A great number of diterpenoids classified into the dollabelane, xenicane, sclaviridenone, from sea anemones and corals (Anthozoa) showed significant antiproliferation activity on cancer cells in vitro and in vivo. The glycosides, cercicosides and prostanoid-sclaviridenones, from the soft corals Sinularia cervicornis and Clavularia viridis were shown to have antitumor activity against human cancer cell lines[51]. A great number of diterpenoids classified into the dollabelane, xenicane, sclaviridenone, from sea anemones and corals (Anthozoa) showed significant antiproliferation activity on cancer cells in vitro and in vivo. The glycosides, cercicosides and prostanoid-sclaviridenones, from the soft corals Sinularia cervicornis and Clavularia viridis were shown to have antitumor activity against human cancer cell lines[51]. A great number of diterpenoids classified into the dollabelane, xenicane, sclaviridenone, from sea anemones and corals (Anthozoa) showed significant antiproliferation activity on cancer cells in vitro and in vivo. The glycosides, cercicosides and prostanoid-sclaviridenones, from the soft corals Sinularia cervicornis and Clavularia viridis were shown to have antitumor activity against human cancer cell lines[51]. A great number of diterpenoids classified into the dollabelane, xenicane, sclaviridenone, from sea anemones and corals (Anthozoa) showed significant antiproliferation activity on cancer cells in vitro and in vivo. The glycosides, cercicosides and prostanoid-sclaviridenones, from the soft corals Sinularia cervicornis and Clavularia viridis were shown to have antitumor activity against human cancer cell lines[51]. A great number of diterpenoids classified into the dollabelane, xenicane, sclaviridenone, from sea anemones and corals (Anthozoa) showed significant antiproliferation activity on cancer cells in vitro and in vivo. The glycosides, cercicosides and prostanoid-sclaviridenones, from the soft corals Sinularia cervicornis and Clavularia viridis were shown to have antitumor activity against human cancer cell lines[51]. A great number of diterpenoids classified into the dollabelane, xenicane, sclaviridenone, from sea anemones and corals (Anthozoa) showed significant antiproliferation activity on cancer cells in vitro and in vivo. The glycosides, cercicosides and prostanoid-sclaviridenones, from the soft corals Sinularia cervicornis and Clavularia viridis were shown to have antitumor activity against human cancer cell lines[51]. A great number of diterpenoids classified into the dollabelane, xenicane, sclaviridenone, from sea anemones and corals (Anthozoa) showed significant antiproliferation activity on cancer cells in vitro and in vivo. The glycosides, cercicosides and prostanoid-sclaviridenones, from the soft corals Sinularia cervicornis and Clavularia viridis were shown to have antitumor activity against human cancer cell lines[51].
be correlated with that shown by any other compounds including the currently used anticancer drugs. The correlation coefficient value was less than 0.5 indicating that these substances may have a new mode of action. Another experiments showed moderate cytotoxic activity against human colorectal adenocarcinoma cells (DLD-1) with an IC₅₀ of 5.0 μg/mL. The lobane diterpenes and lobane lactones (menverins) and several lipidic substances. As an example, strong and increasing polymerization. In addition, this natural product was shown to be a potent cancer cell inhibitor with an IC₅₀ similar to that of paclitaxel (Taxol®) (10-15 nmol/L), and assays in the National Cancer Institute’s 60 cell line panel showed a 100-fold greater potency over the mean cytotoxicity towards breast, renal, ovarian and lung cancer cell lines. Secondary bioactive metabolites were also discovered in gorgonians. They are mainly steroids and terpenoids and several lipidic substances. As an example, strong and selective cytotoxicity was documented for the oxygenated lactones (menverins) from *Menella verrucosa*. Fureen sesquiterpenoids from *Acanthogorgia vegae* exhibited significant cytotoxicity towards the growth of A549, HT-29, KB, P-388 and P-388 cells. For a summary of the most important anticancer molecules (Table 2).

CONCLUSION

Drug discoveries from marine invertebrates have enjoyed a renaissance. Currently, interest in evaluating marine invertebrate products, with the aim of obtaining new antitumor drugs with few side effects, is still growing. In many cases (particularly in sponges), the interesting materials (or the whole organisms) are difficult to obtain in sufficient amounts and researchers, therefore, have to start copying nature and preparing synthetic versions. Some of these therapeutics were approved in the United States and the European Union and many are in the final stages of clinical trials. Not surprisingly, the outlook for the future is more promising than ever.

REFERENCES

1. Hughes AL, Yeager M. Molecular evolution of the vertebrate immune system. *Bioeasys* 1997; 19: 777-786
2. Zapata A, Ameniya CT. Phylogeny of lower vertebrates and their immunological structures. *Curr Top Microbiol Immunol* 2000; 248: 67-107
3. Rosenthal J. Investing in biological diversity. Proc Cairns Conf; Cairns:OECD; 1996:1-56
4. Pomponi SA. The bioprocess-technological potential of the sea. *J Biotechnol* 1999; 70: 5-13
5. Jimeno JM. A clinical armamentarium of marine-derived anti-cancer compounds. *Anticancer Drugs* 2002; 13 Suppl 1: S15-S19
6. De Bary AH. Die Erscheinung der Symbiose. Naturforsch Versamml: Cassel, 1869: 1-103
7. Williams DH, Stone MJ, Hauck PR, Rahman SK. Why are secondary metabolites (natural products) biosynthesized? *J Nat Prod* 1989; 52: 1189-1208
8. Šima P, Trebichavský I, Sigler K. Non-mammalian antibiotic peptides. *Folia Microbiol* 2003; 48: 709-724
9. Donia M, Hamann MT. Marine natural products and their potential applications as anti-infective agents. *Lancet Infect Dis* 2003; 3: 338-348
10. Nagle DG, Zhou Y-D. Marine Natural Products as Inhibitors of Hypoxic Signaling in Tumors. *Phytochem Rev* 2009; 8: 415-429
11. Kinghorn AD. Drug discovery from natural products. In: Lemke TL, Williams DA, editors, Foye’s Principles of Medicinal Chemistry. 6th ed. Philadelphia: Wolters Kluwer/Williams and Wilkins, 2008: 12-25
12. Mayer AM, Gustafson KR. Marine pharmacology in 2000: antitumor and cytotoxic compounds. *Int J Cancer* 2003; 105: 291-299
13. Amador ML, Jimeno J, Paz-Ares L, Cortes-Funes H, Hidalgo M. Progress in the development and acquisition of anticancer agents from marine sources. *Ann Oncol* 2003; 14: 1607-1615
14. Blunt JW, Copp BR, Hu WP, Munro MH, Northcote PT, Prinsep MR. Marine natural products. *Nat Prod Rep* 2009; 26: 170-244
15. Munro MHG, Blunt JW, Lake RJ, Litaudon M, Battershill CN, Page MJ. From seabed to sickbed: What are the prospects? In: Van Soest RWM, van Kempen TMG, Braekman JC, editors. Sponges in time and space. Rotterdam: A.A. Balkema, 1994: 473-484
16. Pomponi SA, Willoughby R. Sponge cell culture for production of bioactive metabolites. In: Van Soest RWM, van Kempen TMG, Braekman JC, editors. Sponges in time and space. Rotterdam: A.A. Balkema, 1994: 395-400
17. Thoms C, Schupp PJ. Biotechnological potential of marine sponges and their associated bacteria as producers of new pharmaceuticals (Part I). *J Internat Biotechnol Let* 2005; 2: 217-220
18. Thoms C, Schupp PJ. Biotechnological potential of marine sponges and their associated bacteria as producers of new pharmaceuticals (Part II). *J Internat Biotechnol Let* 2005; 2: 257-264
19. Bewley CA, Faulkner DJ. Lithistid sponges: Star performers

Table 2 The most important bioactive substances with anti-neoplastic effects isolated from *coelenterata*

Component	Species	Ref.
Cervicosides	*Sinularia cervicornis*	[64]
Claviridenones	*Clavularia viridis*	[61]
Dollabelane	*Nepheta sp.*	[57]
Xenicane	*Nepheta sp.*	[57]
Phenylgermacrane	*Nepheta sp.*	[57]
Clavulactones	*Clavularia sp.*	[57]
Clavilides	*Clavularia sp.*	[57]
Clavudiolis	*Clavularia sp.*	[57]
Cembrane	*Clavularia sp.*	[54]
Eleutherobin	*Eleutherobin sp.*	[64]
Sarcodictyin	*Sarcodictyon roseum*	[62]
Menverins	*Menella verrucosa*	[63]
or hosts to the stars? Angewandte Chemie International Edit 1998; 37: 2162-2178

20 Schmidt EW, Obraztsova AY, Davidson SK, Faulkner DJ, Haygood MG. Identification of theaflavulinal peptide-containing symbiont of the marine sponge T. swinhoei as a novel deltaproteobacterium, “Candidatus Entotheonella paluensis”. Mar Biol 2000; 136: 969-977

21 Burja AM, Hill RT. Microbial symbionts of the Australian Great Barrier Reef sponge, Candidaspongia flabellata. Hydrobiology 2001; 481: 41-47

22 Philipp P, Kohlert-Scupp C, Whetfield S, Engemann A, Rohde S, Hemscheidt T, Fazzulo JM. Cancer chemopreventive and anticancer evaluation of extracts and fractions from marine macro- and micro-organisms collected from twilight zone waters around Guam. Nat Prod Comm 2009, 4: 1717-1728

23 Penesyan A, Kjelleberg S, Egan S. Development of novel drugs from marine surface associated microorganisms. Mar Drugs 2010; 8: 438-459

24 Berquist PR. Sponges. Berkeley: University of California Press, 1978

25 Sipkema D, Franssen MC, Ovinga R, Tramper J, Wijffels RH. Marine sponges as pharmacy. Mar Biotechnol (NY) 2005; 7: 142-162

26 Proksch P. Defensive roles for secondary metabolites from marine sponges and sponge-feeding nudibranchs. Toxicon 1994; 32: 639-655

27 Větvička V, Sima P. Evolutionary mechanism of defense reactions. Berlin: Birkhauser Verlag, 1998: 1-196

28 Fusetani N, Kim W. Marine toxins: an overview. Prog Mol Subcell Biol 2009; 4: 1-44

29 Kikuchi A, Nieda M, Schmidt C, Koekusa Y, Ishihara S, Ishikawa Y, Tadokoro K, Durrant S, Boyd A, Juji T, Nicol A. In vitro anti-tumour activity of alpha-galactosylceramide-stimulated human invariant Valpha24+NKT cells against melanoma. Br J Cancer 2001; 85: 741-746

30 Tan G, Gyllenhaal C, Soejarto DD. Biodiversity as a source of anticancer drugs. Curr Drug Targets 2006; 7: 265-277

31 Zhang W, Guo YW, Gu Y. Secondary metabolites from the South China Sea invertebrates: chemistry and biological activity. Curr Med Chem 2006; 13: 2041-2090

32 Shen WC, Prakash CV. Two new acetylenic derivatives and a new meroditerpenoid from a Taiwanese marine sponge Strongylophora durissima. J Nat Prod 2005; 68: 1686-1688

33 Wright AE, Botelho JC, Guzmán E, Harmody D, Linley P, McCarthy PJ, Pitt T, Pomponi SA, Reed J, Neoptelolide, a macrolide from a lithistid sponge of the family Neopeltidae. J Nat Prod 2007; 70: 412-416

34 Youngsae W, Lowe JT, Pohliki F, Relipo P, Panek JS. Total synthesis and stereochemical realignment of (+)-neoptelolide. Angew Chem Int Ed Engl 2007; 46: 9211-9214

35 Zhou J, Gunnakakou P. Targeting microtubules for cancer chemotherapy. Curr Med Chem Anticancer Agents 2005; 5: 65-71

36 Miller JH, Singh AJ, Northcote PT. Microtubule-stabilizing drugs from marine sponges: focus on peloroside A and zampanolide. Mar Drugs 2010; 8: 1059-1079

37 Kingston DG. Tubulin-interactive natural products as anticancer agents. J Nat Prod 2009; 72: 507-515

38 Saito SY. Toxins affecting actin filaments and microtubules. Prog Mol Subcell Biol 2009; 40: 187-219

39 Urban S, Hobbs L, Hooper JNA, Capon RJ, Lamellarins Q an R: new aromatic metabolites from Australian marine sponge Dendrilla cactos. Aust J Chem 1995; 48: 1491-1494

40 Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 1992; 12: 5447-5454

41 Ebada SS, Lin W, Proksch P. Bioactive sesterterpenes and triterpenes from marine sponges: occurrence and pharmacological significance. Mar Drugs 2010; 8: 313-346

42 Bergmann W, Johnson TB. The chemistry of marine animals. I. The sponge Microciona prolifera. Z Physiol Chem 1933; 222: 220-226

43 Ravi BN, Wells RJ, Craft KD. Malabaricane triterpenes from a Fijian collection of the sponge Jaspis stellifera. J Org Chem 1981; 46: 1998-2001

44 Zhang WH, Che CT. Isomalabaricane-type nortriterpenoids and other constituents of the marine sponge Geodia japonica. J Nat Prod 2001; 64: 1489-1492

45 Ly F, Deng Z, Li J, Fu H, van Soest RW, Proksch P, Lin W. Isomalabaricane-type compounds from the marine sponge Rhabdastrella aff. distincta. J Nat Prod 2004; 67: 2033-2036

46 Gargaliza M, Terpenyl-purines from the sea. Mar Drugs 2009; 7: 833-840

47 Kumar D, Rawat DS. 7. Marine natural alkaloids as anticancer agents. Opp Challenge Scope Nat Prod Med Chem 2001; 37: 213-268

48 Jhang B, Smallheer JM, Amaral-Ly C, Wuonola MA. Total synthesis of (±) Dragmacidin: A cytotoxic bis(indole)alkaloid of marine origin. J Org Chem 1994; 59: 6823-6827

49 Burrens NS, Barber DA, Gunasekera SP, Shen LL, Clement JJ. Antitumor activity and biochemical effects of topsentin. Biochem Pharmacol 1991; 42: 745-751

50 Endo T, Tsuda M, Fromont J, Kobayashi J. Hyrtinadine A, a bis-indole alkaloid from a marine sponge. J Nat Prod 2007; 70: 423-424

51 Samoylenko V, Khan SI, Jacoba MR, Tekwani BL, Walker LA, Hufford CD, Muhammad I. Bioactive (+)-manzamine A and (+)-8-hydroxymanzamine A tertiary bases and salts from Acanthosteglyphora ingens and their preparations. Nat Prod Commun 2009; 4: 185-192

52 Kuramoto M, Miyake N, Ishimaru Y, Ono N, Uno H. Cytindradasine B and novel bromopyrrole alkaloids from the marine sponge Axinella cinctularis. Org Lett 2008; 10: 5465-5468

53 Mason C, McFarlane S, Johnyson PG, Crowe P, Erwin PJ, Domostoj MM, Campbell FC, Maraviaz S, Hale KJ, El-Tanadi M, Ageletastatin A: a novel inhibitor of osteopontin-mediated adhesion, invasion, and colony formation. Mol Canc Therapeut 2008; 7: 548-558

54 Zöllinger M, Kelter G, Fiebig HH, Lindel T. Antitumor activity of the marine natural product dibromophakellstatin in vitro. Biorg Med Chem Lett 2007; 17: 346-349

55 Laport MS, Santos OC, Muricy G. Marine sponges: potential sources of new antimicrobial drugs. Curr Pharm Biotechnol 2009; 10: 86-105

56 Barnes RD. Invertebrate Zoology. Philadelphia: Saunders College Publishing, 1987

57 Iwashima M, Matsumoto Y, Takenaka Y, Iguchi K, Yamori T. A new marin B, novel diterpenoidic alcohols esterified by (E)-N(1)-methylurocanic acid. Isolation from the Mediterranean stoloniferan Sarcodactylis roseus. Helo Chim Acta 1987; 70: 2019-2027

58 Su JH, Wen ZH. Bioactive membrane-based diterpenoids from the soft coral Simuliria triangular. Mar Drugs 2011; 9: 944-951

59 Duh CY, Wang SK, Chu MJ, Sheu JH. Cytotoxic sterols from the soft coral Nephthea erecta. J Nat Prod 1998; 61: 1022-1024

60 Lindel T, Jensen PR, Fenical W, Long BH, Casaza AM, Carboni J, Fairchild CR. Eleutherobin, a new cytotoxic agent that induces tubulin polymerization, is similar to paclitaxel (Taxol). J Am Chem Soc 1997; 119: 8744-8745

61 Long BH, Carboni J, Wasserman AJ, Cornell LA, Casaza AM, Jensen PR, Lindel T, Fenical W, Fairchild CR. Eleutherobin, a novel cytotoxic agent that induces tubulin polymerization, is similar to paclitaxel (Taxol). Cancer Res 1998; 58: 1111-1115

62 Burrens NS, Barber DA, Gunasekera SP, Shen LL, Clement JJ. Antitumor activity and biochemical effects of topsentin. Biochem Pharmacol 1991; 42: 745-751
Sima P et al. Bioactive substances with anti-neoplastic efficacy

63 Hamel E, Sackett DL, Vourloumis D, Nicolaou KC. The coral-derived natural products eleutherobin and sarcodictyins A and B: effects on the assembly of purified tubulin with and without microtubule-associated proteins and binding at the polymer taxoid site. *Biochemistry* 1999; 38: 5490-5498

64 McDaid HM, Bhattacharya SK, Chen XT, He L, Shen HJ, Gutteridge CE, Horvitz SB, Danishefsky SJ. Structure-activity profiles of eleutherobin analogs and their cross-resistance in Taxol-resistant cell lines. *Cancer Chemother Pharmacol* 1999; 44: 131-137

65 Li L, Wang CY, Huang H, Mollo E, Cimino G, Guo YW. Further highly oxygenated guaiiane lactones from the South Sea gorgonian *Menella* sp. *Helv Chim Acta* 2008; 91: 111-117

66 Park HW, Choi SU, Baek NI, Kim SH, Eun JS, Yang JH, Kim DK. Guaiane sesquiterpenoids from *Torilis japonica* and their cytotoxic effects on human cancer cell lines. *Arch Pharm Res* 2006; 29: 131-134

67 Molinski TF, Dalisay DS, Lievens SL, Saludes JP. Drug development from marine natural products. *Nat Rev Drug Discov* 2009; 8: 69-85

S- Editor Yang XC L- Editor Webster JR E- Editor Yang XC