PRODUCTION OF Z BOSON PAIRS
AT PHOTON LINEAR COLLIDERS

Duane A. Dicus
Center for Particle Physics, University of Texas at Austin, Austin, TX 78712, USA

and

Chung Kao
Department of Physics, B-159, Florida State University, Tallahassee, FL 32306, USA

The ZZ pair production rate in high energy $\gamma\gamma$ collisions is evaluated with photons from laser backscattering. We find that searching for the Standard Model Higgs boson with a mass up to, or slightly larger than, 400 GeV via the ZZ final state is possible via photon fusion with backscattered laser photons at a linear e^+e^- collider with energies in the range $600 \text{ GeV} < \sqrt{s_{e^+e^-}} < 1000 \text{ GeV}$.
I. INTRODUCTION

In many cases, interesting physics processes can be studied with high precision at linear e^+e^- colliders where the background is usually low and the signal is much cleaner than that of hadron colliders. The Next Linear Collider (NLC) is a projected linear e^+e^- collider with a center of mass (CM) energy ($\sqrt{s_{e^+e^-}}$) of 500 GeV and a yearly integrated luminosity of about 10 fb^{-1}. In e^+e^- collisions, the Higgs boson of the Standard Model (SM) with a mass, M_H, up to 350 GeV \cite{1,2} will be observable at the NLC. Improvements in the technology of laser backscattering have made it likely that the NLC could be run as a high energy photon collider \cite{3}-\cite{7}. Photon fusion can become a promising source to produce and study the Higgs bosons \cite{8}-\cite{12} of the SM and its extensions when the high energy $\gamma\gamma$ luminosity at linear e^+e^- colliders is greatly enhanced by laser backscattering. However, it was recently found \cite{13,14}, that the transverse Z_TZ_T pair produced from photon fusion can become a serious irreducible background and make the Higgs search via the ZZ decay mode in $\gamma\gamma$ collisions impossible at the NLC and higher energy linear e^+e^- colliders if M_H is larger than about 350 GeV.

In this letter, the complete SM calculation of $\gamma\gamma \rightarrow ZZ$ is evaluated independently. A non-linear gauge is used to greatly reduce the number of diagrams and simplify the Feynman rules. The total cross section and invariant mass distribution of ZZ pair at photon colliders is presented and the search for the SM Higgs boson is examined. Our cross sections of $\gamma\gamma \rightarrow ZZ$ for monochromatic photon photon collisions agree with that of Ref. \cite{13} where a different non-linear gauge was used, and Ref. \cite{14} where a linear gauge was adopted and unpolarized initial e^+e^- and laser beams were considered. We have also checked the total cross section and invariant mass distribution for ZZ pair production with the polarizations of initial e^+e^- and laser beams as well as CM energies of e^+e^- considered in Ref. \cite{13}, and have found good agreement. In addition, we have considered other CM energies of e^+e^- and other polarizations of the electron positron and laser beams. Our conclusion as to a viability of a Higgs search with a realistic energy spectrum for backscattered photons is slightly more
optimistic than that of Ref. [13] or [14].

II. NON-LINEAR GAUGE FIXING AND LOOP INTEGRATION

In the SM, the lowest order $\gamma\gamma ZZ$ coupling comes from the 1-loop diagrams of the leptons (l), the quarks (q), and the physical W boson (W^\pm) in the unitary gauge. The Higgs boson has a significant effect on the W loop and the top quark loop contributions. The Nambu-Goldstone boson (G^\pm) and the Fadeev-Popov ghosts ($\theta^\pm, \bar{\theta}^\pm$) play important roles in a general gauge and make W loop calculation unnecessarily complicated. It has been demonstrated for processes with photons that a carefully chosen non-linear gauge [15]-[19] can remove the mixed vertices of photon-W-G ($A^\mu W^\mu G^-_\mu$) and Higgs-photon-W-G ($H A^\mu W^\mu G^-_\mu$), reduce the number of loop diagrams and simplify the Feynman rules.

In this letter, a non-linear R_ξ gauge is introduced to remove not only the mixed vertices γWG and $\gamma H WG$ but also the vertices ZWG and $ZHWG$. The gauge fixing terms are chosen to be

$$L_{GF} = -\frac{1}{\xi_W} f^+ f^- - \frac{1}{2\xi_Z} (f^Z)^2 - \frac{1}{2\xi_A} (f^A)^2$$

where f^- is the Hermitian conjugate of f^+, M_W and M_Z are masses of the W and Z bosons, $g = e/\sin\theta_W$ and θ_W is the Weinberg angle. The ghost couplings that depend on the gauge fixing term (1); and all modified Feynman rules are given in an appendix. The gauge parameters are all taken to be unity, $\xi_W = \xi_Z = \xi_A = 1$, which corresponds to a non-linear 't Hooft-Feynman gauge. In this new gauge, there are 3 pure classes of diagrams for the W boson (W-loop), the Nambu-Goldstone boson (G-loop) and the Fadeev-Popov ghosts (θ-loop) with the same mass $M_W = M_G = M_\theta$. Further, the ghost loops
contribute -2 times the Nambu-Goldstone boson loops except for those loops with a $ZZ\theta\theta$ coupling. In addition to the box (4-point) and the triangle (3-point) diagrams which appear in the fermion loops, there are also bubble (2-point) diagrams in the W, G and θ loops: 24 box, 48 triangle and 12 bubble diagrams without the Higgs boson; 8 triangle and 4 bubble diagrams with the Higgs boson; which add up to 96 diagrams in this gauge. In the linear R_ξ gauge \[14\], there are 188 diagrams: 108 box, 48 triangle and 6 bubble diagrams without the Higgs boson; 20 triangle and 6 bubble diagrams with the Higgs boson. The fermion loops are obtained from an earlier calculation of $gg \to ZZ$ \[20,21\] with a modification of couplings. All loop integrations have been calculated with the computer program LOOP \[22,23\], which evaluates one loop integrals analytically and generates numerical data. The resulting numerical program is checked by replacing the polarization vector for one of the photons with its four-momentum. Gauge invariance requires that this yield a vanishing result which checks all integrals and algebra involved.

III. MONOCROMATIC $\gamma\gamma$ COLLISIONS

The amplitude of $\gamma\gamma \to ZZ$ can be written as

$$M_{\lambda_1\lambda_2\lambda_3\lambda_4} = \epsilon_1^\mu\epsilon_2^\nu\epsilon_3^\rho\epsilon_4^\sigma T_{\mu\nu\rho\sigma}(p_1, p_2, p_3, p_4)$$

where $\lambda_{1,2}$ and $\lambda_{3,4}$ are the helicities of the photons and the Z’s, the p’s are the momenta and the ϵ’s are the polarization vectors.

The cross sections of $\gamma\gamma \to ZZ$ in different helicity states of ZZ are presented in Figure 1 as a function of $\sqrt{s_{\gamma\gamma}}$ for both polarizations, ++ and +−, of the photons. The parameters used are $\alpha = 1/128$, $\sin^2 \theta_W = 0.230$, $M_Z = 91.17$ GeV and $M_W = M_Z \cos \theta_W$. The Higgs mass (M_H) is taken to be 300, 400, 500, and 800 GeV. If not mentioned, the top quark mass (m_t) is considered to be 140 GeV. Also shown is the ++ LL cross section without the Higgs boson, which is the same as taking $M_H = \infty$. As can be easily seen, the Z_TZ_T cross section dominates and almost approaches a constant as $\sqrt{s_{\gamma\gamma}} > 1$ TeV, except for $M_H < 300$ GeV.
where the $++LL$ cross section is larger. Not shown are the individual contributions from the W loop and fermion loops. The W loop is usually at least about 10 times larger. Only in the $++LL$ state and for large m_t and high energy, can the top quark loop be comparable to the W loop; and only in the $++LT$ state at low energy, can the fermion loop dominate. For $M_H = \sqrt{s_{\gamma\gamma}} > 450$ GeV, the $++TT$ cross section is almost an order of magnitude larger than that of $++LL$, which makes the Higgs search in the ZZ mode via photon fusion impossible for $M_H > 450$ GeV, unless the transverse and longitudinal polarizations of the Z boson can be distinguished. All our numerical data agree with those in Ref. [13], except the cross section for $++LL$ cross section with $M_H = \infty$.

The m_t dependence and the interference between the W loop and fermion loop for the $++LL$ helicity states are shown in Figure 2 for $m_t = 120, 160$ and 200 GeV. The W loop cross section is not sensitive to the top quark mass; it depends on m_t only in the Higgs width and therefore is evaluated with $m_t = 160$ GeV only. The total cross section at $\sqrt{s_{\gamma\gamma}} = M_H = 300 - 800$ GeV are also presented in Table I for $m_t = 120, 140, 160, 180$ and 200 GeV where the precise value of m_t is used everywhere. Several interesting aspects can be learned from Fig. 2 and Table I: (1) The W loop and the fermion loop interfere destructively. (2) For M_H below 300 GeV, the total $++LL$ cross section grows with m_t, while for M_H above 700 GeV it decreases as m_t becomes larger. (3) For $M_H = 400, 500$ and 600 GeV there is a minimum which appears at about $m_t = 130, 160$ and 180 GeV, respectively. The $++LL$ cross section always depends on the m_t which appears in the Yukawa coupling of the top quark to the Higgs boson. Not shown is the TT cross section which become insensitive to m_t for $\sqrt{s_{\gamma\gamma}} > 500$ GeV.

The Higgs boson contributes only to the states with the same photon helicities and the same Z helicities. In order to improve the ratio of signal to background while saving most of the LL signal, we consider a cut on the CM scattering angle $|\cos(\theta^*)| = |z| < 0.8$ which reduces about 30% of the $++TT$, and more than 45% of the $+-TT$ background while saves about 80% of the $++LL$ signal. For the total cross section, the efficiency of this
angular cut and one with $|z| < \cos(30^\circ)$ are presented in Table II for $\sqrt{s_{\gamma\gamma}} = M_H = 300, 400$ and 500 GeV.

IV. BACKSCATTERED LASER $\gamma\gamma$ COLLISIONS

It has been shown that $\gamma\gamma ZZ$ can hardly be observed with the Weizsäcker-Williams photons [13], because the $\gamma\gamma$ luminosity falls rapidly as the $\gamma\gamma$ invariant mass increases. Fortunately, Compton laser backscattering can produce high energy photons with high luminosity. The total cross section of ZZ pair production at linear e^+e^- colliders with backscattered laser photons is evaluated from the differential cross section of the photon fusion subprocess $\gamma\gamma \rightarrow ZZ$ with the convolution of photon spectrum.

\[
d\sigma_{\lambda_3\lambda_4} = \kappa \int_{4m_{Z}^2/s}^{y_m^2} d\tau \frac{dL_{\gamma\gamma}}{d\tau} \left[\frac{1+<\xi_1\xi_2>}{2} d\hat{\sigma}_{++\lambda_3\lambda_4} + \frac{1-<\xi_1\xi_2>}{2} d\hat{\sigma}_{+-\lambda_3\lambda_4} \right],
\]

\[
dL_{\gamma\gamma}/d\tau = \int_{\tau/y_m}^{\tau/y_m} dy f_{\gamma/e}(y/x) f_{\gamma/e}(\tau/y, x),
\]

\[
r = M_{ZZ}/\sqrt{s},
\]

\[
\tau = \hat{s}/s = r^2,
\]

\[
y = E_\gamma/E_e,
\]

\[
y_m = \frac{x}{x+1},
\]

\[
x = 4E_e\omega_0/m_e^2
\]

where $f_{\gamma/e}$ is the photon energy distribution function, M_{ZZ} is the invariant mass of the ZZ pair, E_e is the initial electron energy, E_γ is backscattered photon energy, ω_0 is the laser photon energy, κ is the number of high energy photons per one electron, and $\xi_{1,2}$ is the mean helicities of the photon beams. The maximal energy available in the CM frame of $\gamma\gamma$ is $E_{MAX} = y_m\sqrt{s_{e^+e^-}}$. We have taken $\kappa = 1$, and $x = 4.8$ which gives $y_m = 0.83$. As noted in Ref. [3], if $x > 4.8$, number of high energy photons will be reduced by unwanted e^+e^- pair production. The $f_{\gamma/e}$ and ξ_i are taken from equations (4), (12) and (17) of Ref. [4].

The energy spectrum of photons from Compton laser backscattering depends on the product $2\lambda_e\lambda_\gamma$ [4], where λ_e is the degree of polarization (mean helicity) of the initial electron.
(positron) and λ_γ is the degree of circular polarization or mean helicity of the laser beam.
The number of high energy photons increases while the number of soft photons decreases when $-2\lambda_e\lambda_\gamma$ becomes larger. We have studied the photon energy spectrum with $x = 4.8$ for three combinations of polarizations of the initial e^+e^- and laser beams: (a) $\lambda_e = 0.5$ and $\lambda_\gamma = -1.0$, polarized e^+e^- and laser beams with $2\lambda_e\lambda_\gamma = -1$; (b) $\lambda_e = 0.5$ and $\lambda_\gamma = 1.0$, polarized e^+e^- and laser beams with $2\lambda_e\lambda_\gamma = +1$; and (c) $\lambda_e = 0$ and $\lambda_\gamma = 0$, unpolarized e^+e^- and laser beams with $2\lambda_e\lambda_\gamma = 0$. Several interesting aspects have been found: (1) All of them produce about the same number of photons at an energy fraction $y_0 = E_\gamma/E_e = 0.7$. (2) Below y_0, the photon luminosity of case (b) is slightly larger than the others. However, it falls off rapidly for $y > y_0$. Case (a) rises sharply for $y > y_0$, but yields the smallest number of photons below y_0. (3) In case (c), $2\lambda_e\lambda_\gamma = 0$, the spectrum is almost flat below y_0, and the photon luminosity rises significantly as $y > y_0$. (4) In $\gamma\gamma$ collisions, the energy fractions y_1 and y_2 are related by $y_1y_2 = \tau$. With $\lambda_{e_1} = \lambda_{e_2} = \lambda_e$ and $\lambda_{\gamma_1} = \lambda_{\gamma_2} = \lambda_\gamma$, case (a) has the highest photon photon luminosity for $r = M_{ZZ}/\sqrt{s_{e^+e^-}} > 0.7$ while case (b) dominates for $r < 0.6$. Case (c) produces a larger number of photons in a broad range of energies.

Our main purpose is to enhance the Higgs signal as much as possible. The Stokes parameters $<\xi_1\xi_2>$ in Eq. (6) play important roles in enhancing or reducing the Higgs signal. To study the effect of $<\xi_1\xi_2>$ with $\lambda_{e_1} = \lambda_{e_2} = \lambda_e$ and $\lambda_{\gamma_1} = \lambda_{\gamma_2} = \lambda_\gamma$ in photon photon collisions, we have considered two more cases, (d) $\lambda_e = 0.5$ and $\lambda_\gamma = 0$, polarized e^+e^- and unpolarized laser beams; and (e) $\lambda_e = 0$ and $\lambda_\gamma = 1.0$, unpolarized e^+e^- and polarized laser beams; in addition to the three cases just considered for the photon energy spectrum. Since the Higgs appears only in the same helicity states of $\gamma\gamma ZZ$, we would like to enhance the cross section of $\hat{\sigma}^{\pm_+\lambda_3\lambda_4}$ while reducing $\hat{\sigma}^{\pm_-\lambda_3\lambda_4}$. We have found that, in case (d), $<\xi_1\xi_2>$ is always positive, and is enhanced as M_{ZZ} becomes larger. Case (b) usually has positive $<\xi_1\xi_2>$ and it is the largest at low M_{ZZ}, however it drops rapidly for $r > 0.7$. In case (a), $<\xi_1\xi_2>$ is usually positive for $r < 0.30$ and $r > 0.63$, but usually negative in between. In Case (c), $<\xi_1\xi_2> = 0$. In case (e), $<\xi_1\xi_2>$ is usually positive for $r < 0.54$ and $r > 0.76$, but becomes negative in between. The combination of polarizations $-\lambda_e$ and
−λγ has the same product 2λeλγ as that of λe and λγ, therefore produces the same energy spectrum but it yields <ξ1ξ2> with an opposite sign. As a combined effect from energy spectrum and the Stokes parameters, case (d) seems to be the best choice for a the Higgs search over a broad range of MH, case (a) is the best for MH > 0.7√s_{e^+e^-}, and case (b) is the best for MH < 0.6√s_{e^+e^-}.

The total cross section of γγ → ZZ in high energy photon photon collisions with backscattered laser photons is presented as a function of √s_{e^+e^-} in Table III, for mt = 140 GeV and mH = 300, 400 GeV and ∞ (the background) and the five combinations of polarizations for the initial e^+e^- and laser beams used for studying the Stokes parameters. From Table III, we can find that (1) For M_H close to E_{MAX}, λ_e1 = λ_e2 = 0.5 and λ_γ1 = λ_γ2 = −1.0 produces the largest cross section; (2) For M_H much smaller than E_{MAX}, λ_e1 = λ_e2 = 0.5 and λ_γ1 = λ_γ2 = 1.0 produces the largest cross section; and (3) the unpolarized initial e^+e^- or laser beams, yield a clear Higgs signal for a broad range of energy.

To study the observability of the Higgs signal as a pronounced peak in the ZZ invariant mass distribution, we consider the total contribution without the Higgs boson as the background and show the Higgs signal with the background in Figures 3 and 4. The invariant mass distribution of ZZ for γγ → ZZ at the NLC, √s_{e^+e^-} = 500 GeV, is shown in Figure 3 for the three most promising polarizations of initial electron(positron) and laser beams: (a) λ_e1 = λ_e2 = 0.45 and λ_γ1 = λ_γ2 = −1.0, (b) λ_e1 = λ_e2 = 0 and λ_γ1 = λ_γ2 = 0, (c) λ_e1 = λ_e2 = 0.45 and λ_γ1 = λ_γ2 = 0, and also (d) λ_e1 = λ_e2 = 0 and λ_γ1 = λ_γ2 = 1.0, for completeness. The difference between λ_e’s being 0.45 and 0.5 is about 5% for case (c) and less than 3% for case (a) in the invariant mass differential cross section. At the NLC, the Higgs signal appears as a pronounced peak in the ZZ invariant mass distribution, up to M_H = 390 GeV. We can find in Fig. 3 that the ratio of Signal/Background is enhanced for, λ_e1 = λ_e2 close to +0.5 and λ_γ1 = λ_γ2 = 0 in a broad range.

Figures 4 shows that the Higgs signal for M_H = 400 GeV is visible in the invariant mass distribution of ZZ, at √s_{e^+e^-} = (a) 600, (b)700 and (c) 1000 GeV, in γγ collisions with photons from backscattered laser beams for λ_e1 = λ_e2 = 0.45 and λ_γ1 = λ_γ2 = 0. The cross
sections at the Higgs pole for $\lambda_{e1} = \lambda_{e2} = 0$ and $\lambda_{\gamma1} = \lambda_{\gamma2} = 0$ are about 25% smaller. The combination of $\lambda_{e1} = \lambda_{e2} = 0$ and $\lambda_{\gamma1} = \lambda_{\gamma2} = \pm 1.0$ is slightly better than unpolarized e^+e^- and laser beams if $r < 0.5$ or $r > 0.8$. A more realistic study for the signal and background with the final states of $l^+l^-\nu\bar{\nu}$ and $l^+l^-q\bar{q}$ is under investigation.

V. CONCLUSIONS

In high energy $\gamma\gamma$ collisions, the TT cross section of $\gamma\gamma \rightarrow ZZ$ dominates if $M_H > 350$ GeV. With $2\lambda_e\lambda_\gamma = 0$, the photon spectrum is almost flat, and it is possible to search for the Higgs signal in a broad range below $\sqrt{s_{e^+e^-}}$. The best case to search for the Higgs signal is to have $\lambda_{e1} = \lambda_{e2}$ close to +0.5 and $\lambda_{\gamma1} = \lambda_{\gamma2} = 0$, because the photon energy spectrum is almost flat and the contribution from $\hat{\sigma}_{++LL}$ is enhanced by the Stokes parameters; however, even in the best case, using polarized electrons or laser photons yields only a small advantage over the totally unpolarized case. At the NLC, a Higgs signal is possible for M_H up to 390 GeV in the invariant mass distribution of ZZ. For larger CM energies, 600 GeV $< \sqrt{s_{e^+e^-}} < 1000$ GeV, it is possible to find a Higgs with a mass slightly larger than 400 GeV. Thus there is not much advantage for this process in higher e^+e^- energies. Furthermore, there is not much advantage in the $\gamma\gamma$ mode; e^+e^- collisions at the NLC, by themselves, can search for the Higgs up to a mass of 350 GeV. The unique strength of high energy $\gamma\gamma$ collisions in the Higgs search is probably to measure the $H\gamma\gamma$ coupling with high precision beyond the intermediate Higgs mass range.

ACKNOWLEDGMENTS

The authors would like to thank David Bowser-Chao, Kingman Cheung and George Jikia for discussions and Scott Willenbrock for suggestions and comments. This research was supported in part by DOE contracts DE-FG03-93-ER40757 and DE-FG05-87-ER40319.
APPENDIX A: RELEVANT FEYNMAN RULES IN THE NON-LINEAR GAUGE

In this appendix, relevant Feynman rules in the non-linear gauge described in section 2 are presented in our conventions. There are 3- and 4-point vertices among the gauge boson fields, W_μ^\pm, Z_μ, A_μ; the Nambu-Goldstone boson fields, G^\pm, G^0; the Fadeev-Popov ghost fields, θ^\pm, $\bar{\theta}^\pm$, θ^Z, $\bar{\theta}^Z$, θ^A, $\bar{\theta}^A$; and the Higgs boson field H. The gauge parameters are all taken to be unity, $\xi_W = \xi_Z = \xi_A = 1$, which corresponds to a non-linear 't Hooft-Feynman gauge. In this gauge, the W boson (W^\pm), the Nambu-Goldstone boson (G^\pm), and the Fadeev-Popov ghosts (θ^\pm) have the same mass $M_W = M_G = M_\theta$. The Feynman rules for relevant interactions involved in the W, G and θ loops which appear in the reaction $\gamma\gamma \rightarrow ZZ$ are shown in Table IV.
REFERENCES

[1] V. Barger, K. Cheung, B. A. Kniehl and R. J. N. Phillips, Phys. Rev. D46 (1992) 3725.

[2] J. F. Gunion, to appear in Proceedings of the International Workshop on Physics and Experiments with Linear e^+e^- Colliders, Hawaii, USA (1993), UCD-93-24, and references therein.

[3] I. F. Ginzburg, G. L. Kotkin, V. G. Serbo and V. I. Telnov, Nucl. Instrum. Methods 205, (1983) 47.

[4] I. F. Ginzburg, G. L. Kotkin, S. L. Panfil, V. G. Serbo and V. I. Telnov, Nucl. Instrum. Methods 219, (1984) 5.

[5] T. L. Barklow, SLAC-PUB-3564 (1990), to appear in The Proceedings of the 1990 DPF Summer Study on High Energy Physics, Snowmass (1990).

[6] V. I. Telnov, Nucl. Instrum. Methods A294, (1990) 72.

[7] D. L. Borden, D. A. Bauer, D. O. Caldwell, SLAC preprint SLAC-PUB-5715 (1992).

[8] J. F. Gunion and H. E. Haber, The Proceedings of the 1990 Summer Study on High Energy Physics, Snowmass (1990); J. F. Gunion and H. E. Haber, UCD-92-22 (1992).

[9] H. E. Haber, in Proceedings of the 1st International Workshop on Physics and Experiments with Linear e^+e^- Colliders, Saariselkä, Finland, 1992, World Scientific Publishing, Singapore, (1992).

[10] E. E. Boos and G. V. Jikia, Phys. Lett. B275, (1992) 164.

[11] J. F. Gunion, UCD-93-8 (1993).

[12] D. Bowser-Chao and K. Cheung, Phys. Rev. D48, 89 (1993).

[13] G. V. Jikia, Phys. Lett. B298, (1993) 224; G. V. Jikia, IHEP 93-37 (1993).

[14] M. S. Berger, MAD/PH/771 (1993).
[15] K. Fujikawa, Phys. Rev. D7 (1973) 393.

[16] M. Bace and N. D. Hari Dass, Ann. Phys. 94 (1975) 349.

[17] M. Gavela, G. Girardi, C Malleville and P. Sorba, Nucl. Phys. B193 (1981) 257.

[18] N. G. Deshpande and M. Nazerimonfared, Nucl. Phys. B213 (1983) 390.

[19] F. Boudjema, Phys. Lett. B187 (1987) 362.

[20] D. A. Dicus, C. Kao, and W. W. Repko, Phys. Rev. D36 1570 (1987); D. A. Dicus, Phys. Rev. D38 394 (1988).

[21] E. W. N. Glover and J. J. van der Bij, Phys. Lett. B219, 488 (1989); Nucl. Phys. B321, 561 (1989).

[22] D. Dicus and C. Kao, LOOP, a FORTRAN program for doing loop integrals of 1, 2, 3 and 4 point functions with momenta in the numerator, unpublished, (1991).

[23] G. ’t Hooft and M. Veltman, Nucl. Phys. B153, 365 (1979). G. Passarino and M. Veltman, Nucl. Phys. B160, 151 (1979).

[24] K.-I. Aoki, et al., Prog. Theo. Phys. Suppl. No. 73 (1982).
TABLE I. The effect of m_t on the cross section of $\gamma\gamma ZZ$ in fb at $\sqrt{s_{\gamma\gamma}} = M_H = 300, 400, 500, 600, 700,$ and 800 GeV, in the $++ LL$ helicity state, for $m_t = 120, 140, 160, 180$ and 200 GeV.

m_t (GeV)/ M_H (GeV)	300	400	500	600	700	800
120	360	55	22	14	11	9.4
140	660	57	13	8.1	7.1	6.6
160	790	87	11	4.2	4.0	4.2
180	810	160	16	2.6	1.8	2.4
200	830	210	29	3.3	0.69	1.1
TABLE II. The total cross section of $\gamma\gamma ZZ$ in fb at $\sqrt{s_{\gamma\gamma}} = M_H = 300, 400$ and 500 GeV, in each helicity states for $m_t = 140$ GeV after different cuts on the CM scattering angle $|\cos(\theta^*)| < z_0$: $z_0 = 1.0, \cos(30^\circ)$ and 0.8.

z_0/Helicities	$++ LL$	$++ TT$	$++ LT$	$+- LL$	$+- TT$	$+- LT$
(a) $\sqrt{s_{\gamma\gamma}} = M_H = 300$ GeV						
1.0	660	160	0.099	1.4	47	8.0
$\cos(30^\circ)$	580	130	0.073	1.4	32	7.5
0.8	530	120	0.057	1.3	26	7.1
(b) $\sqrt{s_{\gamma\gamma}} = M_H = 400$ GeV						
1.0	57	180	0.061	1.1	74	5.5
$\cos(30^\circ)$	49	150	0.037	1.1	45	5.1
0.8	46	130	0.027	1.1	35	4.8
(c) $\sqrt{s_{\gamma\gamma}} = M_H = 500$ GeV						
1.0	13	240	0.034	0.96	98	3.9
$\cos(30^\circ)$	12	180	0.017	0.95	53	3.5
0.8	11	160	0.012	0.93	40	3.2
TABLE III. Total cross section of $\gamma\gamma \rightarrow ZZ$ in fb as a function of $\sqrt{s_{e^+e^-}}$ with backscattered laser photons, for $|\cos(\theta^*)| < 0.8$, $m_t = 140$ GeV, $M_H = 300, 400$ GeV and ∞, and five combinations of polarizations of initial e^+e^- and laser beams with $\lambda_{e_1} = \lambda_{e_2} = \lambda_e$ and $\lambda_{\gamma_1} = \lambda_{\gamma_2} = \lambda_{\gamma}$.

M_H (GeV) / $\sqrt{s_{e^+e^-}}$ (GeV)	240	300	400	500	600	700	1000
(a) $\lambda_e = 0.5$, $\lambda_\gamma = -1.0$							
300	0.55	8.9	62	48	58	67	76
400	0.47	7.7	30	54	59	66	75
∞	0.45	7.4	28	46	58	65	74
(b) $\lambda_e = 0.5$, $\lambda_\gamma = +1.0$							
300	2.8	1.5	18	44	61	78	104
400	2.7	1.3	10	27	47	63	96
∞	2.6	1.3	9.8	25	42	58	94
(c) $\lambda_e = 0$, $\lambda_\gamma = 0$							
300	0.39	4.5	26	37	48	57	72
400	0.38	4.3	16	30	42	52	70
∞	0.37	4.2	15	28	40	49	69
(d) $\lambda_e = 0.5$, $\lambda_\gamma = 0$							
300	0.19	4.1	38	49	62	72	89
400	0.17	3.6	18	39	54	67	87
∞	0.16	3.5	17	35	51	64	86
(e) $\lambda_e = 0$, $\lambda_\gamma = +1.0$							
300	0.29	4.8	25	35	47	55	77
400	0.27	4.4	16	30	40	51	71
∞	0.26	4.4	15	27	38	48	69
TABLE IV. The Feynman rules for relevant interactions involved in the W, G and θ loops which appear in the reaction $\gamma\gamma \to ZZ$ as modified by the non-linear gauge condition which is described in Sec 2. These can be compared to the unmodified rules given in Ref. [24]. (Note that not all of the rules below are modified.) All momenta (e.g., k, p and q) and charges are incoming to the vertices. $g_{\mu\nu} \equiv \text{diag}(+,-,-,-)$ is the metric tensor, s_W is $\sin \theta_W$ and c_W is $\cos \theta_W$.

3-point vertices	Feynman Rules	4-point vertices	Feynman Rules
$A_{\mu}(k)W_{\nu}^+(p)W_{\rho}^-(q)$	$-c_{\mu\nu}(k - p)_{\rho}$	$A_{\mu}A_{\nu}W_{\rho}^+W_{\sigma}^-$	$-2c_{\mu\nu}g_{\rho\sigma}$
	$+c_{\nu}(p - q)_{\mu}$		
	$+c_{\rho}(q - k + p)_{\nu}$		
$A_{\mu}(k)G^+(p)G^-(q)$	$+c_{\mu}(p - q)_{\mu}$	$A_{\mu}A_{\nu}G^+G^-$	$+2c_{\mu\nu}$
$A_{\mu}(k)\theta^+(p)\theta^+(q)$	$+c_{\mu}(p - q)_{\mu}$	$A_{\mu}A_{\nu}\theta^+\theta^+$	$+2c_{\mu\nu}$
$A_{\mu}(k)\theta^-(p)\theta^-(q)$	$-c_{\mu}(p - q)_{\mu}$	$A_{\mu}A_{\nu}\theta^-\theta^-$	$+2c_{\mu\nu}$
$Z_{\mu}(k)W_{\nu}^+(p)W_{\rho}^-(q)$	$-gc_{W}(g_{\mu\nu}(k - p)_{\rho} + \frac{s^2_{W}}{c^2_{W}}q_{\rho})$	$Z_{\mu}Z_{\nu}W_{\rho}^+W_{\sigma}^-$	$-2c_{\nu}(2g_{\mu\nu}g_{\rho\sigma}$
	$+c_{\nu}(p - q)_{\mu}$		
	$+c_{\rho}(q - k + p)_{\nu}$		
$Z_{\mu}(k)G^+(p)G^-(q)$	$+\frac{1}{2}g_{\mu}(\frac{1-2s^2_{W}}{c^2_{W}})(p - q)_{\mu}$	$Z_{\mu}Z_{\nu}G^+G^-$	$+\frac{1}{2}g^2_{\nu}(\frac{1-2s^2_{W}}{c^2_{W}})^2g_{\mu\nu}$
$Z_{\mu}(k)\theta^+(p)\theta^+(q)$	$-gc_{W}(\frac{s^2_{W}}{c^2_{W}}p_{\mu} + q_{\mu})$	$Z_{\mu}Z_{\nu}\theta^+\theta^+$	$-2c_{\nu}g_{\mu\nu}$
$Z_{\mu}(k)\theta^-(p)\theta^-(q)$	$+gc_{W}(\frac{s^2_{W}}{c^2_{W}}p_{\mu} + q_{\mu})$	$Z_{\mu}Z_{\nu}\theta^-\theta^-$	$-2c_{\nu}g_{\mu\nu}$
$HZ_{\mu}Z_{\nu}$	$+\frac{g}{c_{W}}M_{Z}g_{\mu\nu}$	$Z_{\mu}A_{\nu}W_{\rho}^+W_{\sigma}^-$	$-egc_{W}(2g_{\mu\nu}g_{\rho\sigma}$
$HW_{\mu}W_{\nu}^-$	$+gM_{W}g_{\mu\nu}$		$-\frac{1}{c_{W}}(g_{\mu\nu}g_{\rho\sigma} + g_{\mu\sigma}g_{\nu\rho})$
HG^+G^-	$-\frac{1}{2}g_{\mu}M_{W}^2$	$Z_{\mu}A_{\nu}G^+G^-$	$+eg(\frac{1-2s^2_{W}}{c^2_{W}})g_{\mu\nu}$
$H\theta^+\theta^\pm$	$-\frac{1}{2}gM_{W}$	$Z_{\mu}A_{\nu}\theta^+\theta^\pm$	$+eg(\frac{1-2s^2_{W}}{c^2_{W}})g_{\mu\nu}$
FIGURES

FIG. 1. The cross section of $\gamma\gamma \rightarrow ZZ$ as a function of $\sqrt{s_{\gamma\gamma}}$ for the LL (solid), TT (dash-dotted) and LT (dashed) helicity states of ZZ in (a) ++ and (b) +- helicity states of the photon with $m_t = 140$ GeV. The ++LL cross section is evaluated with $M_H = 300, 400, 500, 800$ GeV and ∞.

FIG. 2. The cross section of $\gamma\gamma \rightarrow ZZ$ as a function of $\sqrt{s_{\gamma\gamma}}$ in the ++ LL state, for fermion loops alone (dotted), the W loop alone (dashed) and the sum of all loops (solid), with $m_t = 120, 160$ and 200 GeV and $M_H = 500$ GeV. The W loop cross section has been evaluated with $m_t = 160$ GeV.

FIG. 3. Invariant mass distribution of $\gamma\gamma \rightarrow ZZ$ in high energy photon photon collisions from laser backscattered photons, for the NLC energy, $\sqrt{s_{e^+e^-}} = 500$ GeV, $m_t = 140$ GeV, and $M_H = 250, 300, 350$ and 390 GeV. The polarizations of the initial e^-e^+ and laser beams are taken to be (a) $\lambda_{e_1} = \lambda_{e_2} = 0.45$ and $\lambda_{\gamma_1} = \lambda_{\gamma_2} = -1.0$, (b) $\lambda_{e_1} = \lambda_{e_2} = 0$ and $\lambda_{\gamma_1} = \lambda_{\gamma_2} = 0$, (c) $\lambda_{e_1} = \lambda_{e_2} = 0.45$ and $\lambda_{\gamma_1} = \lambda_{\gamma_2} = 0$ and (d) $\lambda_{e_1} = \lambda_{e_2} = 0$ and $\lambda_{\gamma_1} = \lambda_{\gamma_2} = 1.0$.

FIG. 4. Invariant mass distribution of $\gamma\gamma \rightarrow ZZ$ in high energy photon photon collisions from laser backscattered photons with polarizations of the initial e^-e^+ and laser beams being $\lambda_{e_1} = \lambda_{e_2} = 0.45$ and $\lambda_{\gamma_1} = \lambda_{\gamma_2} = 0$, for $m_t = 140$ GeV, $M_H = 250, 300, 350, 400, 450$, and 500 GeV, and (a) $\sqrt{s_{e^+e^-}} = 600$ GeV (without $M_H = 500$ GeV), (b) $\sqrt{s_{e^+e^-}} = 700$ GeV, and (c) $\sqrt{s_{e^+e^-}} = 1000$ GeV.