Towards a Standard Feature Set for Network Intrusion Detection System Datasets

Mohanad Sarhan1 · Siamak Layeghy1 · Marius Portmann1

Accepted: 31 August 2021 / Published online: 10 November 2021 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract

Network Intrusion Detection Systems (NIDSs) are important tools for the protection of computer networks against increasingly frequent and sophisticated cyber attacks. Recently, a lot of research effort has been dedicated to the development of Machine Learning (ML) based NIDSs. As in any ML-based application, the availability of high-quality datasets is critical for the training and evaluation of ML-based NIDS. One of the key problems with the currently available NIDS datasets is the lack of a standard feature set. The use of a unique and proprietary set of features for each of the publicly available datasets makes it virtually impossible to compare the performance of ML-based traffic classifiers on different datasets, and hence to evaluate the ability of these systems to generalise across different network scenarios. To address that limitation, this paper proposes and evaluates standard NIDS feature sets based on the NetFlow network meta-data collection protocol and system. We evaluate and compare two NetFlow-based feature set variants, a version with 12 features, and another one with 43 features. For our evaluation, we converted four widely used NIDS datasets (UNSW-NB15, BoT-IoT, ToN-IoT, CSE-CIC-IDS2018) into new variants with our proposed NetFlow based feature sets. Based on an Extra Tree classifier, we compared the classification performance of the NetFlow-based feature sets with the proprietary feature sets provided with the original datasets. While the smaller feature set cannot match the classification performance of the proprietary feature sets, the larger set with 43 NetFlow features, surprisingly achieves a consistently higher classification performance compared to the original feature set, which was tailored to each of the considered NIDS datasets. The proposed NetFlow-based NIDS feature set, together with four benchmark datasets, made available to the research community, allow a fair comparison of ML-based network traffic classifiers across different NIDS datasets. We believe that having a standard feature set is critical for allowing a more rigorous and thorough evaluation of ML-based NIDSs and that it can help bridge the gap between academic research and the practical deployment of such systems.

Keywords Machine learning · NetFlow · Network intrusion detection system

1 Introduction

Network Intrusion Detection Systems (NIDSs) aim to detect network attacks and to preserve the three principles of information security: confidentiality, integrity, and availability [9]. Signature-based NIDSs match attack signatures to observed traffic, giving a high detection accuracy to known attacks. However, these systems are unable to detect previously unseen (zero-day) attacks or new variants of known attacks. Therefore, researchers have investigated anomaly-based NIDSs that focus on matching attack behaviours and patterns [5]. Machine Learning (ML), a sub-field of artificial intelligence, is capable of learning and extracting complex network attack patterns that may threaten computer networks if undetected [13]. All network intrusions generate a unique set of security events, that would aid in their classification process. These identifying patterns can be extracted from network traffic in the form of data features. To generate a dataset, corresponding data features form network data flows that are ideally labelled with an attack or a benign class to allow for a supervised ML methodology.

1 University of Queensland, Brisbane QLD 4072, Australia
Real-world network flow datasets with labels that identify the attack and benign flows are challenging to obtain, mainly due to security and privacy concerns. Therefore, researchers have designed network test-beds to generate synthetic datasets that consist of labelled network data flows [17]. The data flows are made of several network features that are often preselected based on the authors’ domain knowledge and available extraction tools. As a result, the currently available NIDS datasets are very distinct in terms of their feature sets and therefore the security events represented by the data flows. Due to the great impact of data features on the performance of ML models [2], the evaluation of the proposed ML-based NIDSs are often unreliable when tested on multiple datasets using their original feature sets. Finally, as certain network data features require a complex and deep packet inspection, the computational complexity of feature extraction and processing is not feasible.

The importance of having a standard feature set for all datasets is paramount. It will facilitate a fair and reliable evaluation of proposed ML models across various network environments and attack scenarios. This also enables an evaluation of the generalisability of the model, and hence its performance when deployed in practical network scenarios. Moreover, a standard feature set will ensure that the security events and network information presented by NIDS datasets are the same and in a controlled manner. NetFlow is an industry-standard protocol for network traffic collection [4]. Its practical and scalable deployment properties are capable of enhancing the deployment feasibility of ML-based NIDSs. NetFlow features are capable of presenting key security events that are crucial in the identification of network attacks. Therefore, we believe that applying NetFlow-based features in the design of a universal feature set will facilitate the successful deployment of ML-based NIDS in practical network scenarios.

Four widely used NIDS datasets, referred to as UNSW-NB15 [10], BoT-IoT [7], ToN-IoT [1], and CIC-CSE-IDS2018 [16] have been converted into a common basic NetFlow-based feature set [15]. The NetFlow datasets address some of the current research issues by applying a common feature set across multiple datasets. However, due to the insufficient security information represented by the basic NetFlow feature set, the ML models lead to limited detection accuracy, in particular when performing multi-class experiments. Therefore, this paper proposes an extended NetFlow feature set as the standard version to be used in future NIDS datasets. As part of its evaluation, the features have been extracted and labelled from four well-known datasets. The datasets generated are named NF-UNSW-NB15-v2, NF-BoT-IoT-v2, NF-ToN-IoT-v2, NF-CSE-CIC-IDS2018-v2 and NF-UQ-NIDS-v2, and have been made publicly available for research purposes [14].

This paper explores two variants of NetFlow-based feature sets along with their proprietary feature sets. The rest of the paper is organised as follows. Existing NIDS datasets and their limitations are discussed in Section 2. Section 3 motivates the case for having a standard and a common feature set in NIDS datasets. It also illustrates our methodology of extracting the proposed feature. In Section 4, we use an Extra Tree classifier to compare the predictive power of our proposed NetFlow based feature set, with the proprietary features sets provided with the original benchmark NIDS datasets. Finally, Section 5 concludes the paper.

2 Limitations of existing datasets

Researchers have created engineered benchmark NIDS datasets because of the complexity in obtaining labelled realistic network traffic. A network testbed is designed to simulate the network behaviour of multiple end nodes. The artificial network environment overcomes the security and privacy issues faced by real-world networks. Besides, labelling the network flows generated by such controlled environments is more reliable than the open-world nature of realistic networks. During the experiments, benign network traffic and various attack scenarios are generated and conducted over the network testbed. In the meanwhile, the network packets are captured in their native packet capture (pcap) format and dumped onto storage devices. A set of network data features are extracted from the pcap files using appropriate tools and methods, forming network data flows. The result is a data source of labelled network flows reflecting benign and malicious network behaviour. The generated datasets are published and made publicly accessible for use in the design and evaluation phases of ML-based NIDS models [12].

The network data features that form these data flows are critical as they need to represent an adequate amount of security events that would aid in the ML model’s classification of benign and attack classes. They also need to be feasible in count and extraction’s complexity for scalable and practical deployments. A key task of designing an ML-based NIDS is the selection of the utilised data features. However, due to the lack of a standard feature set in generating NIDS datasets, the authors have applied their domain experience in the selection of these features. As a result, each available dataset is made up of its own unique set of features that its authors believe would lead to the best possible results in the classification stage. Each of the current feature sets is almost exclusive and completely
different from other sets, sharing only a small number of features. The current evaluation method of ML models across multiple datasets requires the usage of the unique feature sets presented by each dataset.

The differences in the security information represented by each dataset’s feature set have caused limitations and concerns regarding the reliability of the evaluation methods followed. The three main issues of not having a standard feature set are; 1. Complex extraction of several features from network traffic, some of which are irrelevant due to the lack of security events and 2. Limited ability to evaluate an ML model’s generalisation to a targeted feature set across multiple datasets and 3. Lack of a universal dataset containing network data flows collected over multiple network environments. It is believed that the lack of reliable evaluation methods has caused a gap between the extensive academic research produced and the practical deployment of ML-based NIDS models in production networks [18].

Four of the most recent and widely-used NIDS datasets are discussed, which represent modern behavioural network attacks due to their production time.

- **UNSW-NB15** The Cyber Range Lab of the Australian Centre for Cyber Security (ACCS) released the widely used, UNSW-NB15, dataset in 2015. The IXIA PerfectStorm tool was utilised to generate a hybrid of testbed-based benign network activities as well as synthetic attack scenarios. The tcpdump tool was implemented to capture a total of 100 GB of pcap files. Argus and Bro-IDS, now called Zeek, and twelve additional SQL algorithms were used to extract the dataset’s original 49 features [10]. The dataset contains 2,218,761 (87.35%) benign flows and 321,283 (12.65%) attack ones, that is, 2,540,044 flows in total.

- **BoT-IoT** The Cyber Range Lab of the Australian Centre for Cyber Security (ACCS) designed a network environment in 2018 that consists of normal and botnet traffic [7]. The Ostinato and Node-red tools were utilised to generate the non-IoT and IoT traffic respectively. A total of 69.3GB of pcap files were captured and the Argus tool was used to extract the dataset’s original 42 features. The dataset contains 477 (0.01%) benign flows and 3,668,045 (99.99%) attack ones, that is, 3,668,522 flows in total.

- **ToN-IoT** A recent heterogeneous dataset released in 2019 [1] that includes telemetry data of Internet of Things (IoT) services, network traffic of IoT networks, and operating system logs. In this paper, the portion containing network traffic flows is utilised. The dataset is made up of a large number of attack scenarios conducted in a representation of a realistic large-scale network at the Cyber Range Lab by ACCS. Bro-IDS, now called Zeek, was used to extract the dataset’s original 44 features. The dataset is made up of 796,380 (3.56%) benign flows and 21,542,641 (96.44%) attack samples, that is, 22,339,021 flows in total.

- **CSE-CIC-IDS2018** A dataset released by a collaborative project between the Communications Security Establishment (CSE) & Canadian Institute for Cybersecurity (CIC) in 2018 [16]. The victim network consisted of five different organisational departments and an additional server room. The benign packets were generated by network events using the abstract behaviour of human users. The attack scenarios were executed by one or more machines outside the target network. The CICFlowMeter-V3 tool was used to extract the original dataset’s 75 features. The full dataset has 13,484,708 (83.07%) benign flows and 2,748,235 (16.93%) attack flows, that is, 16,232,943 flows in total.

In Fig. 1, the shared and unique features of the aforementioned datasets are displayed. The set of features available in all four datasets contains 3 features, and the pairwise shared feature numbers vary from 1 to 5. As most of the features are exclusive to individual datasets, the evaluation of proposed ML models using a targeted feature set across the four datasets is challenging. Moreover, the ratio of the classes, i.e., benign and attack flows, is extremely varied in each dataset. Where the UNSW-NB15 and CSE-CIC-IDS2018 datasets have very high benign-to-attack ratios, whereas the ToN-IoT and BoT-IoT datasets are mainly made up of attack samples, which do not represent a realistic network behaviour. Also, some of the features in the UNSW-NB15, BoT-IoT, and CSE-CIC-IDS2018 datasets are handcrafted features that are not originally found in network packets but are statistically calculated based on other features, such as the total number of bytes transferred over the last 100 seconds. All these differences in the security information presented by the datasets have led to the design of a standard feature set for NIDS datasets.

3 Benchmarking a standard feature set

Due to the aforementioned limitations faced by current NIDS datasets made up of unique feature sets, in this paper, a standard feature set is proposed. The feature set will be evaluated and benchmarked to be used in the releases of new NIDS datasets to efficiently design ML-based NIDS. The design of ML-based NIDS requires a feature set to be extracted and scanned for intrusions when implemented. The choice of these features significantly alters the performance of the NIDS as they need to contain an adequate amount of security events to aid the ML model classification. By having a standard feature set, researchers can evaluate their model’s classification...
Fig. 1 Venn diagram of the shared and exclusive features of four NIDS datasets

ability based on their chosen features, across multiple datasets and hence different attack scenarios conducted over several network environments. This can be used to make sure their measured model performance generalises when deployed over different networks. Moreover, by having datasets sharing a common ground feature set, they can be merged to create a universal comprehensive source of data. Finally, having a standard feature set will grant control over the security information presented by NIDS datasets. We believe that a standard feature set will narrow the gap between the number of research experiments and the practical deployment of ML-based NIDS [18].

3.1 NetFlow

The collection and storage of network traffic are important for organisations to monitor, analyse, and audit their network environments. However, network traffic tends to overload in volume and therefore are aggregated in terms of flows. A network data flow is a sequence of packets, in either uni- or bi-direction, between two unique endpoints sharing some attributes such as source/destination IP address and L4 (transport layer) ports, and the L4 protocol, also known as the five-tuple [15]. A data flow can also be enhanced with additional features, each representing details of the respective network traffic. The information provided by these features contains security events that are essential in analysing network traffic in case of a threat [8].

Network flows can be represented in various formats where the NetFlow is the de-facto industry standard, developed and proposed by Darren and Barry Bruins from Cisco in 1996 [6]. NetFlow evolved over the years, where version 9 is the most common due to its larger variety of data features and bidirectional flow support [3].

Most of the network devices such as routers and switches are capable of extracting NetFlow records. NetFlow is widely used as an industry standard for exporting and analysing network information. This is a great motivation for standardising NetFlow features for NIDS datasets, as the level of complexity and resources required to collect and store them is lower. In this paper, NetFlow v9 features have been utilised to form the proposed feature set, listed and described in Table 1. There are 43 features in total with some providing information on general flow statistics and others on specific protocol applications such as DNS and FTP. All features are flow-based, meaning they are extracted from packet headers and do not depend on the payload information which is often encrypted in secure communications due to privacy concerns. The chosen features are numerical in type for efficient ML experiments. These features contain useful security events to enhance the models’ intrusions detection capabilities.

3.2 Datasets

Figure 2 shows the procedure of generating NIDS datasets using the proposed feature set. The nProbe tool by Ntop [11] is utilised to extract 43 NetFlow version 9 features from the publicly available pcap files. The output format is chosen as text flows, in which each feature is separated by a comma (,) to be utilised as CSV files. Two label features are created by matching the five flow identifiers; source/destination IPs.
Table 1 List of the proposed standard NetFlow features

Feature	Description
IPV4_SRC_ADDR	IPv4 source address
IPV4_DST_ADDR	IPv4 destination address
L4_SRC_PORT	IPv4 source port number
L4_DST_PORT	IPv4 destination port number
PROTOCOL	IP protocol identifier byte
L7_PROTO	Application protocol (numeric)
IN_BYTES	Incoming number of bytes
OUT_BYTES	Outgoing number of bytes
IN_PKTS	Incoming number of packets
OUT_PKTS	Outgoing number of packets
FLOW_DURATION	Flow duration in milliseconds
TCP_FLAGS	Cumulative of all TCP flags
CLIENT_TCP_FLAGS	Cumulative of all client TCP flags
SERVER_TCP_FLAGS	Cumulative of all server TCP flags
DURATION_IN	Client to Server stream duration (msec)
DURATION_OUT	Client to Server stream duration (msec)
MIN_TTL	Min flow TTL
MAX_TTL	Max flow TTL
LONGEST_FLOW_PKT	Longest packet (bytes) of the flow
SHORTEST_FLOW_PKT	Shortest packet (bytes) of the flow
MIN_IP_PKT_LEN	Len of the smallest IP packet observed
MAX_IP_PKT_LEN	Len of the largest IP packet observed
SRC_TO_DST_SECOND_BYTES	Src to dst Bytes/sec
DST_TO_SRC_SECOND_BYTES	Dst to src Bytes/sec
RETRANSMITTED_INBYTES	Number of retransmitted TCP flow bytes (src->dst)
RETRANSMITTED_INPKTS	Number of retransmitted TCP flow packets (src->dst)
RETRANSMITTED_OUTBYTES	Number of retransmitted TCP flow bytes (dst->src)
RETRANSMITTED_OUTPKTS	Number of retransmitted TCP flow packets (dst->src)
SRC_TO_DST_AVG_THROUGHPUT	Src to dst average thpt (bps)
DST_TO_SRC_AVG_THROUGHPUT	Dst to src average thpt (bps)
NUM_PKTS_UP_TO_128BYTES	Packets whose IP size <= 128
NUM_PKTS_128_TO_256BYTES	Packets whose IP size > 128 and <= 256
NUM_PKTS_256_TO_512BYTES	Packets whose IP size > 256 and <= 512
NUM_PKTS_512_TO_1024BYTES	Packets whose IP size > 512 and <= 1024

Table 1 (continued)

Feature	Description
NUM_PKTS_1024_TO_1514BYTES	Packets whose IP size > 1024 and <= 1514
TCP_WIN_MAX_IN	Max TCP Window (src->dst)
TCP_WIN_MAX_OUT	Max TCP Window (dst->src)
ICMP_TYPE	ICMP Type * 256 + ICMP code
ICMP_IPV4_TYPE	ICMP Type
DNS_QUERY_ID	DNS query transaction Id
DNS_QUERY_TYPE	DNS query type (e.g., 1=A, 2=NS..)
DNS_TTL_ANSWER	TTL of the first A record (if any)
FTP_COMMAND	FTP client command return code

and ports and protocol to the ground truth attack events published by the original dataset. If a data flow is located in the attack events it would be labelled as an attack (class 1) in the binary label and its respective attack’s type would be recorded in the attack label, otherwise, the sample is labelled as a benign flow (class 0).

In this paper, the proposed feature set has been extracted from four well-known datasets; UNSW-NB15, BoT-IoT, ToN-IoT, and CSE-CIC-IDS2018. Their publicly available pcap files and ground truth events have been utilised in the features extraction and labelling processes respectively. The generated datasets have been named NF-UNSW-NB15-v2, NF-BoT-IoT-v2, NF-ToN-IoT-v2, NF-CSE-CIC-IDS2018-v2 and NF-UQ-NIDS-v2. The later dataset is a merge of all other datasets, which is a practical advantage of having a common feature set. Table 2 lists the NetFlow datasets and compares their properties to the original datasets in terms of the Feature Extraction (FE) tool utilised, the number of features, file size and the benign to attack samples ratio. As illustrated, two NetFlow datasets are corresponding to each original NIDS dataset, where v1 and v2 are the basic and extended versions respectively. The fifth NetFlow dataset is a comprehensive dataset that combines all four.

– **NF-UNSW-NB15-v2** The NetFlow-based format of the UNSW-NB15 dataset, named NF-UNSW-NB15,
Table 2 Specifications of the datasets proposed in this paper, compared to the original and basic NetFlow datasets

Dataset	Release year	Feature extraction tool	Number of features	Benign to attack samples ratio
UNSW-NB15	2015	Argus, Bro-IDS and MS SQL	49	8.7 to 1.3
NF-UNSW-NB15	2020	nProbe	12	9.6 to 0.4
NF-UNSW-NB15-v2	2021	nProbe	43	9.6 to 0.4
BoT-IoT	2018	Argus	42	0.0 to 10
NF-BoT-IoT	2020	nProbe	12	0.2 to 9.8
NF-BoT-IoT-v2	2021	nProbe	43	0.0 to 10.0
ToN-IoT	2020	Bro-IDS	44	0.4 to 9.6
NF-ToN-IoT	2020	nProbe	12	2.0 to 8.0
NF-ToN-IoT-v2	2021	nProbe	43	3.6 to 6.4
CSE-CIC-IDS2018	2018	CICFlowMeter-V3	75	8.3 to 1.7
NF-CSE-CIC-IDS2018	2020	nProbe	12	8.8 to 1.2
NF-CSE-CIC-IDS2018-v2	2021	nProbe	43	8.8 to 1.2
NF-UQ-NIDS	2020	nProbe	12	7.7 to 2.3
NF-UQ-NIDS-v2	2021	nProbe	43	3.3 to 6.7

Values of the new dataset captured in bold

been extended with additional NetFlow features and labelled with its respective attack categories. The total number of data flows are 2,390,275 out of which 95,053 (3.98%) are attack samples and 2,295,222 (96.02%) are benign. The attack samples are further classified into nine subcategories, Table 3 represents the NF-UNSW-NB15-v2 dataset’s distribution of all flows.

- **NF-BoT-IoT-v2** An IoT NetFlow-based dataset is generated by expanding the NF-BoT-IoT dataset. The features were extracted from the publicly available pcap files and the flows were labelled with their respective attack categories. The total number of data flows are 37,763,497 out of which 37,628,460 (99.64%) are attack samples and 135,037 (0.36%) are benign. There are four attack categories in the dataset, Table 4 represents the NF-BoT-IoT-v2 distribution of all flows.

- **NF-ToN-IoT-v2** The publicly available pcaps of the ToN-IoT dataset are utilised to generate its NetFlow records, leading to a NetFlow-based IoT network dataset called NF-ToN-IoT. The total number of data flows are 2,390,275 out of which 95,053 (3.98%) are attack samples and 2,295,222 (96.02%) are benign. The attack samples are further classified into nine subcategories, Table 3 represents the NF-UNSW-NB15-v2 dataset’s distribution of all flows.

Table 3 NF-UNSW-NB15-v2 distribution

Class	Count	Description
Benign	2295222	Normal unmalicious flows
Fuzzers	22310	An attack in which the attacker sends large amounts of random data which cause a system to crash and also aim to discover security vulnerabilities in a system.
Analysis	2299	A group that presents a variety of threats that target web applications through ports, emails and scripts.
Backdoor	2169	A technique that aims to bypass security mechanisms by replying to specific constructed client applications.
DoS	5794	Denial of Service is an attempt to overload a computer system’s resources with the aim of preventing access to or availability of its data.
Exploits	31551	Are sequences of commands controlling the behaviour of a host through a known vulnerability.
Generic	16560	A method that targets cryptography and causes a collision with each block-cipher.
Reconnaissance	12779	A technique for gathering information about a network host and is also known as a probe.
Shellcode	1427	A malware that penetrates a code to control a victim’s host.
Worms	164	Attacks that replicate themselves and spread to other computers.
flows are 16,940,496 out of which 10,841,027 (63.99%) are attack samples and 6,099,469 (36.01%) are benign. Table 5 lists and defines the distribution of the NF-ToN-IoT-v2 dataset.

- **NF-CSE-CIC-IDS2018-v2** The original pcap files of the CSE-CIC-IDS2018 dataset are utilised to generate a NetFlow-based dataset called NF-CSE-CIC-IDS2018-v2. The total number of flows are 18,893,708 out of which 2,258,141 (11.95%) are attack samples and 16,635,567 (88.05%) are benign ones, Table 6 represents the dataset’s distribution.

- **NF-UQ-NIDS-v2** A comprehensive dataset, merging all the aforementioned datasets. The newly published dataset represents the benefits of the shared dataset feature sets, where the merging of multiple smaller datasets is possible. This will eventually lead to a bigger and universal NIDS dataset containing flows from multiple network setups and different attack settings. It includes an additional label feature, identifying the original dataset of each flow. This can be used to compare the same attack scenarios conducted over two or more different testbed networks. The attack categories have been modified to combine all parent categories. Attacks named DoS attacks-Hulk, DoS attacks-SlowHTTPTest, DoS attacks-GoldenEye and DoS attacks-Slowloris have been renamed to the parent

Class	Count	Description
Benign	135037	Normal unmalicious flows
Reconnaissance	2620999	A technique for gathering information about a network host and is also known as a probe.
DDoS	18331847	Distributed Denial of Service is an attempt similar to DoS but has multiple different distributed sources.
DoS	16673183	An attempt to overload a computer system’s resources with the aim of preventing access to or availability of its data.
Theft	2431	A group of attacks that aims to obtain sensitive data such as data theft and keylogging

Table 5 NF-ToN-IoT-v2 distribution

Class	Count	Description
Benign	6099469	Normal unmalicious flows
Backdoor	16809	A technique that aims to attack remote-access computers by replying to specific constructed client applications
DoS	712609	An attempt to overload a computer system’s resources with the aim of preventing access to or availability of its data.
DDoS	2026234	An attempt similar to DoS but has multiple different distributed sources.
Injection	684465	A variety of attacks that supply untrusted inputs that aim to alter the course of execution, with SQL and Code injections two of the main ones.
MITM	7723	Man In The Middle is a method that places an attacker between a victim and host with which the victim is trying to communicate, with the aim of intercepting traffic and communications.
Password	1153323	covers a variety of attacks aimed at retrieving passwords by either brute force or sniffing.
Ransomware	3425	An attack that encrypts the files stored on a host and asks for compensation in exchange for the decryption technique/key.
Scanning	3781419	A group that consists of a variety of techniques that aim to discover information about networks and hosts, and is also known as probing.
XSS	2455020	Cross-site Scripting is a type of injection in which an attacker uses web applications to send malicious scripts to end-users.
Table 6 NF-CSE-CIC-IDS2018-v2 distribution

Class	Count	Description
Benign	16635567	Normal unmalicious flows
BruteForce	120912	A technique that aims to obtain usernames and password credentials by accessing a list of predefined possibilities
Bot	143097	An attack that enables an attacker to remotely control several hijacked computers to perform malicious activities.
DoS	483999	An attempt to overload a computer system’s resources with the aim of preventing access to or availability of its data.
DDoS	1390270	An attempt similar to DoS but has multiple different distributed sources.
Infiltration	116361	An inside attack that sends a malicious file via an email to exploit an application and is followed by a backdoor that scans the network for other vulnerabilities
Web Attacks	3502	A group that includes SQL injections, command injections and unrestricted file uploads

DoS category. Attacks named DDoS attack-LOIC-UDP, DDoS attack-HOIC and DDoS attacks-LOIC-HTTP have been renamed to DDoS. Attacks named FTP-BruteForce, SSH-Bruteforce, Brute Force -Web and Brute Force -XSS have been combined as a brute-force category. Finally, SQL Injection attacks have been included in the injection attacks category. The NF-UQ-NIDS dataset has a total of 75,987,976 records, out of which 25,165,295 (33.12%) are benign flows and 50,822,681 (66.88%) are attacks. Table 7 lists the distribution of the final attack categories.

4 Evaluation

In this section, the proposed NetFlow feature set is evaluated across five NIDS datasets; NF-UNSW-NB15-v2, NF-BoT-IoT-v2, NF-ToN-IoT-v2, NF-CSE-CIC-IDS2018-v2 and NF-UQ-NIDS-v2. An ensemble ML classifier, known as Extra Trees, that belongs to the trees family has been utilised for this purpose. The evaluation is conducted by comparing the classifier performance with the corresponding metrics of the basic NetFlow and original datasets. Various classification metrics are collected such as accuracy, Area Under the Curve (AUC), F1 Score, Detection Rate (DR), False Alarm Rate (FAR) and time required to predict a single test sample in microseconds (μs). As part of the data pre-processing, the flow identifiers such as IDs, source/destination IP and ports, timestamps, and start/end time are dropped to avoid learning bias towards attacking and victim end nodes. For the UNSW-NB15 and NF-UNSW-NB15-v2 datasets, the Time To Live (TTL)-based features are dropped due to their extreme correlation with the labels. Additionally, the min-max normalisation technique has been applied to scale all datasets’ values between 0 and 1. The datasets have been split into 70%-30% for training and testing purposes. For a fair evaluation, five cross-validation splits are conducted and the mean is measured.

Table 7 NF-UQ-NIDS-v2 distribution

Class	Count	Class	Count
Benign	25165295	Scanning	3781419
DDoS	21748351	Fuzzers	22310
Reconnaissance	2633778	Backdoor	18978
Injection	684897	Bot	143097
DoS	17875585	Generic	16560
Brute Force	123982	Analysis	2299
Password	1153323	Shellcode	1427
XSS	2455020	MITM	7723
Infiltration	116361	Worms	164
Exploits	31551	Ransomware	3425
Theft	2431		

© Springer
4.1 Binary-class classification

In Table 8, the attack detection (binary classification) performance of the datasets has been measured and compared to the original and basic NetFlow datasets. Using the NF-UNSW-NB15-v2 dataset, the ML model’s performance has significantly increased with an AUC of 0.9845, compared to 0.9485 and 0.9545 when using the NF-UNSW-NB15 and UNSW-NB15 datasets respectively. The model achieved the highest F1 score of 0.97 in the shortest prediction time when using the extended NetFlow feature set. The NF-BoT-IoT-v2 dataset has enabled the ML model to achieve the highest possible detection accuracy and F1 score, the same as the BoT-IoT dataset. However, the model has a significantly lower FAR and prediction time, resulting in an increased AUC of 0.9987 and a lower prediction time of 3.90μs compared. Using the extended NetFlow feature set, the ML model achieved significantly higher accuracy than NF-BoT-IoT of 100% compared to 93.82%.

The intrusion detection results of the ML model using the NF-ToN-IoT-v2 dataset are superior to its original ToN-IoT dataset. Compared to NF-ToN-IoT, it achieved a higher DR of but a slightly higher FAR. Overall, the accuracy achieved by the model using the NF-ToN-IoT-v2 is 99.64%, which is higher than ToN-IoT (97.86%) and similar to NF-ToN-IoT (99.66%). The model performance when using the NF-CSE-CIC-IDS2018-v2 dataset is notably more efficient than the CSE-CIC-IDS2018 and NF-CSE-CIC-IDS2018 datasets. It achieved a high DR of 96.89% and a low FAR of 0.31% and required 21.75μs per sample prediction. The overall accuracy achieved is 99.35%, which is higher than both the CSE-CIC-IDS2018 (98.31%) and NF-CSE-CIC-IDS2018 (95.33%) datasets. The merged NF-UQ-NIDS-v2 dataset enabled the model to achieve an accuracy of 97.90%, a DR of 97.12% and a FAR of 0.52%, outperforming the NF-UQ-NIDS dataset with a lower prediction time of 14.18μs.

Figure 3 visually represents the F1 score obtained when applying an Extra Trees classifier on the three different feature sets of five NIDS datasets: the original as well as basic and proposed NetFlow feature sets. This fair comparison between the NetFlow feature sets demonstrates the benefit of having a common feature set across multiple datasets. It enables the evaluation of various attack detections using a common feature set. Overall, the proposed (extended) NetFlow feature set has outperformed the original and basic feature sets in terms of attack detection performance. All datasets have significantly achieved a higher or similar F1 score to their respective datasets. It is clear that using the proposed feature set achieves a reliable detection performance. This indicates that the additionally extracted NetFlow features contain valuable security events that aid ML models in successful intrusion detection. Further feature selection experiments are required to identify its key features to enhance the extraction tasks.

4.2 Multi-class classification

To further evaluate the proposed NetFlow feature set, multi-classification experiments are conducted to measure the weighted average of DR, F1 score and prediction time of each class present in the datasets. Tables 9, 10, 11, 12 and 13 represent the performances of the NF-UNSW-NB15-v2, NF-BoT-IoT-v2, NF-ToN-IoT-v2, NF-CSE-CIC-IDS2018-v2 and NF-UQ-NIDS-v2 datasets. The values of the new dataset captured in bold.
Table 9 NF-UNSW-NB15-v2 multi-class classification results

Class Name	UNSW-NB15	NF-UNSW-NB15	NF-UNSW-NB15-v2			
	DR	F1 Score				
Benign	99.72%	1.00	99.02%	0.99	99.85%	1.00
Analysis	4.39%	0.03	28.28%	0.15	30.89%	0.17
Backdoor	13.96%	0.08	39.17%	0.17	40.30%	0.18
DoS	13.63%	0.18	31.84%	0.41	29.57%	0.36
Exploits	83.25%	0.80	81.04%	0.82	80.41%	0.84
Fuzzers	50.50%	0.57	62.63%	0.55	80.57%	0.85
Generic	86.08%	0.91	57.13%	0.66	85.15%	0.90
Reconnaissance	75.90%	0.80	76.89%	0.82	80.02%	0.83
Shellcode	53.61%	0.59	87.91%	0.75	87.67%	0.69
Worms	5.26%	0.09	52.91%	0.55	85.98%	0.69
Weighted Average	**98.19%**	**0.98**	**97.62%**	**0.98**	**98.90%**	**0.99**
Prediction Time (μs)	**9.94**	**9.35**	**8.81**			

Final average values captured in bold

Table 10 NF-BoT-IoT-v2 multi-class classification results

Class Name	BoT-IoT	NF-BoT-IoT	NF-BoT-IoT-v2			
	DR	F1 Score				
Benign	99.58%	0.99	98.65%	0.43	99.76%	1.00
DDoS	100.00%	1.00	30.37%	0.28	99.99%	1.00
DoS	100.00%	1.00	36.33%	0.31	99.99%	1.00
Reconnaissance	100.00%	1.00	89.95%	0.90	99.93%	1.00
Theft	91.16%	0.95	88.06%	0.18	83.01%	0.85
Weighted Average	**100.00%**	**1.00**	**73.58%**	**0.77**	**99.99%**	**1.00**
Prediction Time (μs)	**12.63**	**9.19**	**11.86**			

Final average values captured in bold
Table 11 NF-ToN-IoT-v2 multi-class classification results

Class Name	ToN-IoT DR	F1 Score	NF-ToN-IoT DR	F1 Score	NF-ToN-IoT-v2 DR	F1 Score	
Benign	89.97%	0.94	98.97%	0.99	99.44%	0.99	
Backdoor	98.05%	0.31	99.22%	0.98	99.79%	1.00	
DDoS	96.90%	0.98	63.22%	0.72	98.76%	0.99	
DoS	53.89%	0.57	95.91%	0.48	89.41%	0.91	
Injection	96.67%	0.96	41.47%	0.51	90.14%	0.91	
MITM	66.25%	0.16	52.81%	0.38	37.45%	0.45	
Password	86.99%	0.92	27.36%	0.24	97.16%	0.97	
Ransomware	89.87%	0.11	87.33%	0.83	97.29%	0.98	
Scanning	75.05%	0.85	31.30%	0.08	99.67%	1.00	
XSS	98.83%	0.99	24.49%	0.19	96.83%	0.96	
Weighted Average	84.61%	0.87	56.34%	0.60	98.05%	0.98	
Prediction Time (μs)	12.02	21.21	12.15	12.15	24.17	17.29	27.28

Final average values captured in bold

and NF-UQ-NIDS-v2 datasets respectively. The datasets made up of the original and basic NetFlow feature sets are provided for comparison purposes. In Table 9, the benefits of using the NF-UNSW-NB15-v2 over the former datasets are realised by increasing the Ml model's F1 score to 0.99 from 0.98 and decreasing the prediction time to 8.81μs. The DR of certain attack types such as fuzzers, generic, and worms have significantly improved while the others have remained at slightly the same rate. The detection of the analysis, backdoor and DoS attacks are still unreliable when using the extended Netflow feature set, further analysis is required to identify the missing key features. However, due to their small number of samples, the overall accuracy of the NF-UNSW-NB15-v2 is higher (98.90%) than UNSW-NB15 (98.19%) and NF-UNSW-NB15 (97.62%).

Table 10 shows that when using the NF-BoT-IoT-v2 dataset, the ML model is achieving the almost perfect multi-classification performance gained when using the BoT-IoT

Table 12 NF-CSE-CIC-IDS2018-v2 multi-class classification results

Class Name	CSE-CIC-IDS2018 DR	F1 Score	NF-CSE-CIC-IDS2018 DR	F1 Score	NF-CSE-CIC-IDS2018-v2 DR	F1 Score
Benign	89.50%	0.94	69.83%	0.82	99.69%	1.00
Bot	99.92%	0.99	100.00%	1.00	100.00%	1.00
Brute Force -Web	71.36%	0.01	50.21%	0.52	28.05%	0.01
Brute Force -XSS	72.17%	0.72	49.16%	0.39	29.34%	0.00
DDoS attack-HOIC	100.00%	1.00	45.66%	0.39	57.33%	0.73
DDoS attack-LOIC-UDP	83.59%	0.82	80.98%	0.82	99.29%	1.00
DDoS attacks-LOIC-HTTP	99.93%	1.00	99.93%	0.71	100.00%	1.00
DoS attacks-GoldenEye	99.97%	1.00	99.32%	0.98	100.00%	1.00
DoS attacks-Hulk	100.00%	1.00	99.65%	0.99	100.00%	1.00
DoS attacks-SlowHTTPTest	69.80%	0.60	0.00%	0.00	100.00%	1.00
DoS attacks-Slowloris	99.44%	0.62	99.95%	1.00	99.99%	1.00
FTP-BruteForce	68.76%	0.75	100.00%	0.79	100.00%	1.00
Infiltration	36.15%	0.08	62.66%	0.04	39.58%	0.43
SQL Injection	49.34%	0.30	25.00%	0.22	41.44%	0.00
SSH-Bruteforce	99.99%	1.00	99.93%	1.00	100.00%	1.00
Weighted Average	90.28%	0.94	71.92%	0.80	96.90%	0.98
Prediction Time (μs)	24.17	17.29	27.28	12.15	24.17	17.29

Final average values captured in bold
Table 13 NF-UQ-NIDS-v2 multi-class classification results

Class Name	NF-UQ-NIDS DR	NF-UQ-NIDS F1 Score	NF-UQ-NIDS-v2 DR	NF-UQ-NIDS-v2 F1 Score
Analysis	69.63%	0.21	78.43%	0.24
Backdoor	90.95%	0.92	89.61%	0.93
Benign	71.70%	0.83	93.45%	0.96
Bot	100.00%	1.00	100.00%	1.00
Brute Force	99.94%	0.85	98.16%	0.74
DoS	55.54%	0.62	99.46%	1.00
Exploits	80.65%	0.81	85.16%	0.84
Fuzzers	63.24%	0.54	80.58%	0.84
Generic	58.90%	0.61	85.41%	0.88
Infiltration	60.57%	0.03	21.66%	0.19
Reconnaissance	88.96%	0.88	98.24%	0.76
Shellcode	83.89%	0.15	89.35%	0.34
Theft	87.22%	0.15	81.66%	0.22
Worms	52.97%	0.46	87.20%	0.71
DDoS	77.08%	0.69	99.43%	1.00
Injection	40.58%	0.50	90.03%	0.90
MITM	57.99%	0.10	35.97%	0.43
Password	30.79%	0.27	97.09%	0.97
Ransomware	90.85%	0.85	96.82%	0.87
Scanning	39.67%	0.08	97.36%	0.98
XSS	30.80%	0.21	95.72%	0.95
Weighted Average	**70.81%**	**0.79**	**96.93%**	**0.97**
Prediction Time (μs)	**14.74**			**25.67**

dataset of 100% accuracy and 1.00 F1 Score. The four attack categories are almost fully detected except for the theft attacks, where only 83.01% were successfully detected. The accuracy of the ML model is increased from 73.58% to 99.99% and the F1 score from 0.77 to 1.00 when applied to the extended NetFlow feature set compared to the basic set. Overall, it is a significant improvement that overcomes the performance limitations faced by the basic NetFlow datasets, despite the slight increase in prediction time.

In Table 11, the NF-ToN-IoT-v2 dataset has enabled the ML model to achieve outstanding results when conducting multi-classification experiments. The extended NetFlow feature set notably outperformed both the ToN-IoT and NF-ToN-IoT feature sets by increasing the model’s weighted F1 score to 0.98 from 0.87 and 0.60 respectively. The model also requires a lower prediction time compared to when applied to the basic NetFlow dataset. The extended Netflow feature set has increased the DR of all attack types except for DoS, MITM, and XSS attacks. Further analysis of features containing useful security events is essential to aid in their detection. Overall, the feature set of NF-ToN-IoT-v2 has aided the ML model in the detection of the attacks present in the dataset, with an enhanced accuracy of 98.05% confirming the reliability of the extended NetFlow feature set.

Table 12 presents the detection results of the NF-CSE-CIC-IDS2018-v2 dataset. The ML model has improved the DR of most of the attacks present in the dataset, achieving an accuracy of 96.90% and an F1 score of 0.98. Most attacks were fully detected with a DR ranging between 99% to 100%. However, the detection of certain attack types such as Brute Force, DDoS attack-HOIC, infiltration, and SQL injection is still unreliable when using the extended Netflow feature set. Their respective F1 score is lower due to a high number of false positives. Overall, the performance of the ML model when applied to the NF-CSE-CIC-IDS2018-v2 dataset is superior compared to when using the CSE-CIC-IDS2018 and NF-CSE-CIC-IDS2018 datasets. However, there is an increased prediction time of 27.28μs compared to 24.17μs and 17.29μs, respectively.

Table 13 compares the attack detection results of the merged NIDS dataset; NF-UQ-NIDS-v2 compared to its former (NF-UQ-NIDS) dataset. Most of the attacks DR has increased by using the extended NetFlow feature set. The detection of attacks such as DoS, Generic, Worms, DDoS, Injection, password, scanning and XSS has significantly
improved. However, attacks such as infiltration and MITM have been detected less accurately. Moreover, the time consumed to predict a single test sample has increased from 14.74μs to 25.67μs. An increased accuracy from 70.81% to 96.96% and an F1 score from 0.79 to 0.97 confirms the enhanced ML model detection capabilities when applied to the extended NetFlow feature set across 20 attack types conducted over several network environments.

Overall, the proposed NetFlow feature set has significantly improved the multi-class classification performance of the datasets as displayed in Fig. 4. The F1 score is plotted on the y-axis and the datasets in their three feature sets are on the x-axis. The detection performance is often comparable to the original feature set but remarkably superior to the basic NetFlow feature set. Hence, the generated datasets enjoy the benefits of adopting a standard common NetFlow feature set and with enhanced detection performance. The extracted NetFlow features are further enhancing the intrusion identification capabilities of ML models due to the presence of effective security events. This motivates the usage of the proposed feature set across future NIDS datasets and encourages researchers to generate their datasets in the proposed format for efficient and reliable ML experiments.

5 Conclusion

This paper proposes a NetFlow based standard feature set for NIDS datasets, as listed in Table 2. The importance of having a standard feature set allows the reliable evaluation of ML-based NIDS across multiple datasets, network environments, and attack scenarios. Moreover, the use of a standard feature set allows multiple NIDS datasets to be merged, leading to a larger variety of labelled datasets. As part of the proposed feature set evaluation, five new NIDS datasets have been generated from existing NIDS benchmark datasets. These new dataset variants have been made publicly available to the research community. Our evaluation based on an Extra Tree classifier has shown that our NetFlow-based feature set with 43 features achieves a higher classification performance (F1-Score) than the proprietary feature sets, for all the considered benchmark NIDS datasets, for both binary and multi-class classification scenarios.

The proposed NetFlow-based feature sets have the further advantage of being highly practical and scalable, due to the wide availability of efficient NetFlow exporter and collections. The key benefit of having a standard feature set for NIDS datasets, and the key contribution of this paper, is the ability to more rigorously and reliably evaluate ML-based traffic classifiers across a wide range of datasets, and hence a wider range of attack types, network topologies, etc. This allows the evaluation of how well these ML-based NIDSs can generalise from the dataset they have been trained on, to other network scenarios. We believe the inability to perform such thorough and rigorous evaluation is one of the reasons for the limited deployment of ML-based NIDSs in practical network settings. Therefore, we believe the contributions of this paper can provide a step towards bridging the gap between academic research on ML-based NIDSs and their practical deployment.

Declarations

Conflicts of Interest The authors declare that they have no conflict of interest.

References

1. Alsaeedi A, Moustafa N, Tari Z, Mahmood A, Anwar A (2020) Ton_iot telemetry dataset: A new generation dataset of iot and iiot for data-driven intrusion detection systems. IEEE Access 8:165130–165150. https://doi.org/10.1109/ACCESS.2020.3022862
2. Binbusayis A, Vaiyapuri T (2019) Identifying and benchmarking key features for cyber intrusion detection: An ensemble approach, vol 7. https://doi.org/10.1109/access.2019.2929487
3. Cisco Systems (2011) Cisco IOS NetFlow Version 9 Flow-Record Format - White Paper https://www.cisco.com/en/US/technologies/tk648/tk362/technologies_white_paper09186a00800a3db9.pdf
4. Claise B, Sadasivan G, Valluri V, Dijermae M (2004) Cisco systems netflow services export version, 9
5. Garcia-Teodoro P, Diaz-Verdejo J, Macià-Fernández G, Vázquez E (2009) Anomaly-based network intrusion detection: Techniques, systems and challenges. Comput Secur 28(1-2):18–28
6. Kerr DR, Bruins BL (2001) Network flow switching and flow data export
7. Koroniotis N, Moustafa N, Sitnikova E, Turnbull B (2018) Towards the development of realistic botnet dataset in the internet of things for network forensic analytics: Bot-iot dataset. arXiv:1811.00701
8. Li B, Springer J, Bebis G, Hadi Gunes M (2013) A survey of network flow applications. J Netw Comput Appl 36(2):567–581. https://doi.org/10.1016/j.jnca.2012.12.020
9. Modi CN, Patel DR, Patel A, Mutukurushran R (2012) Bayesian classifier and snort based network intrusion detection system in cloud computing. In: 2012 Third international conference on computing, communication and networking technologies (ICCCNT’12). IEEE, pp 1–7
10. Moustafa N, Slay J (2015) Unsw-nb15: a comprehensive data set for network intrusion detection systems (unsw-nb15 network data set) 2015 Military Communications and Information Systems Conference (MilCIS). https://doi.org/10.1109/milcis.2015.7348942
11. Ntop (2017) nProbe, An Extensible NetFlow v5/v9/IPFIX Probe for IPv4/v6. https://www.ntop.org/guides/nprobe/cli_options.html
12. Ring M, Wunderlich S, Scheuring D, Landes D, Hotho A (2019) A survey of network-based intrusion detection data sets. Comput Secur 86:147–167. https://doi.org/10.1016/j.cose.2019.06.005
13. Sahu SK, Sarangi S, Jena SK (2014) A detail analysis on intrusion detection datasets. In: 2014 IEEE International advance computing conference (IACC), pp 1348–1353. https://doi.org/10.1109/IAdCC.2014.6779523
14. Sarhan M (2020) Netflow datasets. http://staff.itee.uq.edu.au/marius/NIDS_datasets/
15. Sarhan M, Layeghy S, Moustafa N, Portmann M (2020) Netflow datasets for machine learning-based network intrusion detection systems. arXiv:2011.09144
16. Sharafaldin I, Habibi Lashkari A, Ghorbani AA (2018) Toward generating a new intrusion detection dataset and intrusion traffic characterization. In: Proceedings of the 4th international conference on information systems security and privacy. https://doi.org/10.5220/0006639801080116. https://registry.opendata.aws/cse-cic-ids2018/
17. Shiravi A, Shiravi H, Tavallaee M, Ghorbani AA (2012) Toward developing a systematic approach to generate benchmark datasets for intrusion detection. Comput Secur 31(3):357–374. https://doi.org/10.1016/j.cose.2011.12.012. http://www.sciencedirect.com/science/article/pii/S0167404811001672
18. Sommer R, Paxson V (2010) Outside the closed world: On using machine learning for network intrusion detection. In: 2010 IEEE Symposium on security and privacy. https://doi.org/10.1109/sp.2010.25

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.