(2P₂, K₄)-Free Graphs are 4-Colorable

Serge Gaspers† Shenwei Huang‡

July 17, 2018

Abstract

In this paper, we show that every (2P₂, K₄)-free graph is 4-colorable. The bound is attained by the five-wheel and the complement of seven-cycle. This answers an open question by Wagon [6] in 1980s.

1 Introduction

All graphs in this paper are finite and simple. We say that a graph G contains a graph H if H is isomorphic to an induced subgraph of G. A graph G is H-free if it does not contain H. For a family of graphs ℱ, G is ℱ-free if G is H-free for every H ∈ ℱ. In case that ℱ consists of two graphs, we write (H₁, H₂)-free instead of {H₁, H₂}-free. As usual, let Pₜ and Cₙ denote the path on t vertices and the cycle on s vertices, respectively. The complete graph on n vertices is denoted by Kₙ. The n-wheel Wₙ is the graph obtained from Cₙ by adding a new vertex and making it adjacent to every vertex in Cₙ. For two graphs G and H, we use G + H to denote the disjoint union of G and H. For a positive integer r, we use rG to denote the disjoint union of r copies of G. The complement of G is denoted by G. A hole in a graph is an induced cycle of length at least 4. A hole is odd if it is of odd length.

A q-coloring of a graph G is a function φ : V(G) → {1, . . . , q} such that φ(u) ̸= φ(v) whenever u and v are adjacent in G. We say that G is q-colorable if G admits a q-coloring. The chromatic number of G, denoted by χ(G), is the minimum number q such that G is q-colorable. The clique number of G, denoted by ω(G), is the size of a largest clique in G. Obviously, χ(G) ≥ ω(G) for any graph G.

A family ℱ of graphs is said to be χ-bounded if there exists a function f such that for every graph G ∈ ℱ and every induced subgraph H of G it holds that χ(H) ≤ f(ω(H)). The function f is called a χ-binding function for ℱ. The class of perfect graphs (a graph G is perfect if for every induced subgraph H of G it holds that χ(H) = ω(H)), for instance, is a χ-bounded family with χ-binding function f(x) = x. Therefore, χ-boundedness is a generalization of perfection. The notion of χ-bounded families was introduced by Gyárfás [5] who make the following conjecture.

Conjecture 1 (Gyárfás [4]). For every forest T, the class of T-free graphs is χ-bounded.

Gyárfás [5] proved the conjecture for T = P₁; every P₁-free graph G has χ(G) ≤ (t−1)ω(G)−1. The result was slightly improved by Gravier, Hoang and Maffray in [3] that every P₁-free graph G has χ(G) ≤ (t−2)ω(G)−1. This implies that every P₅-free graph G has χ(G) ≤ 3ω(G)−1. Note that this χ-binding function is exponential in ω(G). For ω(G) = 3, Esperet, Lemoine, Maffray and Morel [2] obtained the optimal bound on the chromatic number: every (P₅, K₄)-free graph is 5-colorable. They also demonstrated a (P₅, K₄)-free graph whose chromatic number is 5. On

† School of Computer Science and Engineering, UNSW Sydney, Sydney 2052, Australia.
‡ Decision Sciences Group, Data61, CSIRO, Sydney 2052, Australia.
‡ Department of Mathematics, Wilfrid Laurier University, Waterloo N2L3C5, Canada.
that the other hand, a polynomial \(\chi \)-binding function for the class of 2\(P_2 \)-free graphs was shown by Wagon [6] who proved that every such graph has \(\chi(G) \leq \left(\omega(G)/2 + 1 \right) \). This implies that every (2\(P_2 \), \(K_4 \))-free graph is 6-colorable. In [6] it was asked if there exists a (2\(P_2 \), \(K_4 \))-free graph whose chromatic number is 5 or 6.

We observe that the (\(P_5 \), \(K_4 \))-free graph with chromatic number 5 given in [2] contains an induced 2\(P_2 \). This is the starting point of this research. In this paper we settle Wagon’s question by proving the following.

Theorem 1. Every (2\(P_2 \), \(K_4 \))-free graph \(G \) has \(\chi(G) \leq 4 \).

The bound in Theorem 1 is attained by the five-wheel \(W_5 \) and the complement of a seven-cycle \(\overline{C_7} \).

The **neighborhood** of a vertex \(v \) in a graph \(G \), denoted by \(N_G(v) \), is the set of neighbors of \(v \). We simply write \(N(v) \) if the graph \(G \) is clear from the context. Two nonadjacent vertices \(u \) and \(v \) in \(G \) are **comparable** if either \(N(v) \subseteq N(u) \) or \(N(u) \subseteq N(v) \). Observe that if \(N(u) \subseteq N(v) \), then \(\chi(G - u) = \chi(G) \). Therefore, it suffice to prove Theorem 1 for every connected (2\(P_2 \), \(K_4 \))-free graph with no pair of comparable vertices. We do so by proving a number of lemmas below.

The idea is that we assume the occurrence of some induced subgraph \(H \) in \(G \) and then argue that the theorem holds in this case. Afterwards, we can assume that \(G \) is \(H \)-free in addition to being (2\(P_2 \), \(K_4 \))-free. We then pick a different induced subgraph as \(H \) and repeat. In the end, we are able to show that the theorem holds if \(G \) contains a \(C_5 \) (see Lemma 2-Lemma 5 below). Therefore, the remaining case is that \(G \) is (odd hole, \(K_4 \))-free. In this case, the theorem follows from a known result by Chudnovsky, Robertson, Seymour and Thomas [1] that every (odd hole, \(K_4 \))-free graph is 4-colorable. This proves Theorem 1.

The proof idea stems from [2] in which it was proved that every (\(P_5 \), \(K_4 \))-free graph is 5-colorable. In particular, the graph \(H_1 \) (see Figure 1) that plays an important role in our proof was first discovered and used in [2]. However, to prove 4-colorability we need to use the argument of comparable vertices and extensively extend the structural analysis in [2]. The remainder of the paper is organized as follows. In section 2 we present some preliminary results. In section 3 and section 4 we prove Lemma 2 and Lemma 3, respectively. We then prove Lemma 4 and Lemma 5 in section 5.

2 Preliminaries

We present the structure around a five-cycle in (2\(P_2 \), \(K_4 \))-free graphs that will be used in section 4 and section 5. Let \(G \) be a (2\(P_2 \), \(K_4 \))-free graph and \(C = 12345 \) be an induced \(C_5 \).
of \(G \). All indices below are modulo 5. We partition \(V \setminus C \) into following subsets:

\[
Z = \{ v \in V \setminus C : N_C(v) = \emptyset \},
R_i = \{ v \in V \setminus C : N_C(v) = \{i - 1, i + 1\} \},
Y_i = \{ v \in V \setminus C : N_C(v) = \{i - 2, i, i + 2\} \},
F_i = \{ v \in V \setminus C : N_C(v) = C \setminus \{i\} \},
U = \{ v \in V \setminus C : N_C(v) = C \}.
\]

Lemma 1. Let \(G \) be a \((2P_2, K_4)\)-free graph and \(C = 12345 \) be an induced \(C_5 \) of \(G \). Then \(V(G) = C \cup Z \cup (\bigcup_{i=1}^5 R_i) \cup (\bigcup_{i=1}^5 Y_i) \cup (\bigcup_{i=1}^5 F_i) \cup U \).

Proof. Suppose that there is a vertex \(v \in V(G) \setminus C \) that does not belong to any of \(Z, R_i, Y_i, F_i \) and \(U \). Note that \(v \) has at least one and at most three neighbors on \(C \). Moreover, these neighbors must be consecutive on \(C \). Without loss of generality, we may assume that \(v \) is adjacent to 1 and not adjacent to 3 and 4. Now 34 and 1

It suffices to prove for \(i \in \{1, 2, 3\} \) that \(\{i, y, i - 2, i + 2\} \) induces a \(K_4 \). ■

We now prove some structural properties of these sets.

(1) \(Z \cup R_i \) is independent.

If \(Z \cup R_i \) contains an edge \(xy \), then \(xy \) and \((i - 2)(i + 2) \) induce a \(2P_2 \), a contradiction. ■

(2) \(U \cup Y_i \) and \(U \cup F_i \) are independent.

If either \(U \cup Y_i \) or \(U \cup F_i \) contains an edge \(xy \), then \(\{x, y, i - 2, i + 2\} \) induces a \(K_4 \). ■

(3) \(R_i \) and \(R_{i+1} \) are complete.

It suffices to prove for \(i = 1 \). If \(r_1 \in R_1 \) and \(r_2 \in R_2 \) are not adjacent, then \(5r_1 \) and \(3r_2 \) induce a \(2P_2 \). ■

(4) \(Y_i \) and \(Y_{i+1} \) are complete.

It suffices to prove for \(i = 1 \). If \(y_1 \in Y_1 \) and \(y_2 \in Y_2 \) are not adjacent, then \(5y_2 \) and \(3y_1 \) induce a \(2P_2 \). ■

(5) \(R_i \) and \(Y_i \) are complete.

It suffices to prove for \(i = 1 \). If \(r_1 \in R_1 \) and \(y_1 \in Y_1 \) are not adjacent, then \(5r_1 \) and \(3y_1 \) induce a \(2P_2 \). ■

(6) Either \(R_i \) and \(Y_{i+1} \) are anti-complete or \(R_{i+1} \) and \(Y_i \) are anti-complete.

Suppose, by contradiction, that there exist vertices \(r_i \in R_i \), \(r_{i+1} \in R_{i+1} \), \(y_i \in Y_i \), \(y_{i+1} \in Y_{i+1} \) such that \(r_i \) and \(r_{i+1} \) are adjacent to \(y_{i+1} \) and \(y_i \), respectively. Then it follows from \((3), (4) \) and \((5) \) that \(\{r_i, r_{i+1}, y_i, y_{i+1}\} \) induces a \(K_4 \). ■

(7) Each vertex in \(Y_i \) is anti-complete to either \(Y_{i-2} \) or \(Y_{i+2} \).

It suffices to prove for \(i = 1 \). If \(y_1 \in Y_1 \) is adjacent to a vertex \(y_i \in Y_i \) for \(i = 3, 4 \), then \(\{1, y_1, y_3, y_4\} \) induces a \(K_4 \) by \((4) \). ■

(8) \(F_i \) is complete to \(Y_{i-2} \cup Y_{i+2} \) and anti-complete to \(Y_{i-1} \cup Y_i \cup Y_{i+1} \).

It suffices to prove for \(i = 5 \). Let \(f \in F_5 \). Recall that \(f \) is adjacent to \(1, 2, 3, 4 \) but not adjacent to \(5 \) by the definition of \(F_5 \). Suppose first that \(f \) is not adjacent to a vertex \(y \in Y_2 \cup Y_3 \). Note that \(y \) is adjacent to \(5 \) by the definition of \(Y_2 \) and \(Y_3 \). Now either \(3f \) or \(2f \) forms a \(2P_2 \) with \(5y \) depending on whether \(y \in Y_2 \) or \(y \in Y_3 \). This proves the first part of \((8) \). Suppose now that \(f \) is adjacent to a vertex \(y \in Y_i \) for some \(i \in \{1, 4, 5\} \). Since \(i \not\in \{2, 3\} \), it follows that \(5 \not\in \{i - 2, i + 2\} \). Therefore, \(f \) is adjacent to \(i - 2 \) and \(i + 2 \). This implies that \(\{f, y, i - 2, i + 2\} \) induces a \(K_4 \). This proves the second part of \((8) \). ■
Let V be a set of vertices. We first show that V is complete to $R_i - 1 \cup R_{i+1}$.

It suffices to prove $i = 5$. If $f \in F_5$ is not adjacent to $r \in R_1 \cup R_4$, then either f_3 or f_2 forms a $2P_2$ with $5r$ depending on whether $r \in R_1$ or $r \in R_4$.

(10) If $U \neq \emptyset$, then Y_i and Y_{i+2} are anti-complete.

Let $u \in U$. If $y_i \in Y_i$ and $y_{i+2} \in Y_{i+2}$ are adjacent, then $y_i y_{i+2}$ and $u(i+1)$ induce a $2P_2$ since u is adjacent to neither y_i nor y_{i+2} by (2), a contradiction.

(11) Either F_i or F_{i+2} is empty.

It suffices to prove for $i = 3$. Suppose that F_i contains a vertex $f_i \in F_i$ for $i = 3, 5$. Then either $3f_5$ and $5f_3$ induce a $2P_2$ or $\{1, 2, f_3, f_5\}$ induces a K_4 depending on whether f_3 and f_5 are nonadjacent or not.

(12) If G is H_1-free, then the following holds: if $F_i \neq \emptyset$, then R_{i+1} is anti-complete to $Y_{i+2} \cup Y_i$ and R_{i-1} is anti-complete to $Y_{i-2} \cup Y_i$.

It suffices to prove for $i = 5$. Let $f \in F_5$. Suppose, by contradiction, that there exists vertices $r \in R_1$ and $y \in Y_2 \cup Y_5$ such that r and y are adjacent. Note that f is adjacent to r by (9). If $y \in Y_2$, then f is adjacent to y by (8) and this implies that $\{f, y, r, 2\}$ induces a K_4. If $y \in Y_5$, then f is not adjacent to y by (8) and this implies that $C \cup \{1\} \cup \{f, y, r\}$ induces an H_1 (see Figure 1). This proves that R_1 is anti-complete to $Y_2 \cup Y_5$. The proof for the second part is symmetric.

(13) Each vertex in R_i is anti-complete to either Y_{i+1} or Y_{i+2}. By symmetry, each vertex in R_i is anti-complete to either Y_{i-1} or Y_{i-2}.

Suppose, by contradiction, that there exists a vertex $r_i \in R_i$ such that r_i is adjacent to a vertex $y_{i+1} \in Y_{i+1}$ and a vertex $y_{i+2} \in Y_{i+2}$. By (4), y_{i+1} and y_{i+2} are adjacent. This implies that \{\{r_i, y_{i+1}, y_{i+2}, i - 1\}\} induces a K_4.

3 Eliminate H_1

Lemma 2. Let G be a connected $(2P_2, K_4)$-free graph with no pair of comparable vertices. If G contains an induced H_1, then $\chi(G) \leq 4$.

Proof. Let $H = C \cup \{w\}$ be an induced H_1 in G where $C = \{1, 2, 3, 4, 5, 6\}$ induces a C_6 such that ij is an edge if and only if $|i - j| = 1$, and w is adjacent to $1, 2, 4$ and 5. All the indices below are modulo 6. We partition $V(G)$ into following subsets:

$$Z = \{v \in V \setminus C : N_C(v) = \emptyset\},$$
$$D_{i,i+1} = \{v \in V \setminus C : N_C(v) = \{i, i+1\}\},$$
$$T_i = \{v \in V \setminus C : N_C(v) = \{i - 1, i, i + 1\}\},$$
$$F_{i,i+1} = \{v \in V \setminus C : N_C(v) = \{i - 1, i, i + 1, i + 2\}\},$$
$$W = \{v \in V \setminus C : N_C(v) = N_C(w) = \{1, 2, 4, 5\}\}.$$

Let $D = \bigcup_{i=1}^{6} D_{i,i+1}$, $T = \bigcup_{i=1}^{6} T_i$ and $F = \bigcup_{i=1}^{6} F_{i,i+1}$. We choose H such that $|T| + |F|$ is maximum. We first show that $V(G) = C \cup Z \cup D \cup T \cup F \cup W$.

(1) There is no vertex $v \in V \setminus C$ such that v is adjacent to i but adjacent to neither $i - 1$ nor $i + 1$ for any $1 \leq i \leq 6$.

Suppose that such a vertex v exists. Then it follows that vi and $(i-1)(i+1)$ induce a $2P_2$.■
(2) If a vertex in $V \setminus C$ has at most two neighbors on C, then $v \in Z \cup D$.

Suppose not. Let $v \in V \setminus C$ that has at most two neighbors on C and $v \notin Z \cup D$. Then either v has exactly one neighbor on C or has two neighbors on C that are not consecutive. By symmetry, we may assume that v is adjacent to 1 but not adjacent to 2 and 6. This contradicts (1). ■

(3) If a vertex $v \in V \setminus C$ that has exactly three neighbors on C, then $v \in T$.

Suppose not. Let $v \in V \setminus C$ that has exactly at three neighbors on C. By symmetry, we may assume that v is adjacent to 1. It follows from (1) that v is adjacent to either 2 or 6, say 2. If v is not adjacent to 3 or 6, then it contradicts (1) for $i = 4$ or $i = 5$. Therefore, $v \in T_1$ or $v \in T_2$.

(4) If a vertex $v \in V \setminus C$ that has exactly four neighbors on C, then $v \in F \cup W$.

By (1), v must have two consecutive neighbors on C. If v has three consecutive neighbors on C, then all four neighbors must be consecutive by (1) and so $v \in F$. Now $N_C(v) = \{i, i + 1, i + 3, i + 4\}$ for some i. If $i = 1$, then $v \in W$. Suppose that $i = 2$ (and the case $i = 3$ is symmetric). Then either $w1$ and $v6$ induce a $2P_2$ or $\{w, v, 2, 5\}$ induces a K_4, depending on whether w and v are non-adjacent or not.

(5) There is no vertex in $V \setminus C$ that has more than four neighbors.

Suppose not. Let $v \in V \setminus C$ have at least five neighbors on C. By symmetry, we may assume that v is adjacent to i for each $1 \leq i \leq 5$. Then $\{1, 3, 5, v\}$ induces a K_4.

It follows from (2)-(5) that $V(G) = C \cup Z \cup D \cup T \cup F \cup W$. Note that each of the subset defined is a stable set since G is $(2P_2, K_4)$-free. We further investigate the adjacency among those subsets.

(6) The set W is anti-complete to Z.

If $w \in W$ and $z \in Z$ are adjacent, then wz and 36 induce a $2P_2$, a contradiction.

(7) The set W is complete to $D_{i,i+1}$ for $i \in \{2, 3, 5, 6\}$ and anti-complete to $D_{i,i+1}$ for $i \in \{1, 4\}$.

Suppose that $w \in W$ is not adjacent some vertex $d \in D_{i,i+1}$ for some $i \in \{2, 3, 5, 6\}$. By symmetry, we may assume that $i = 2$. Then $d3$ and $w4$ induce a $2P_2$, a contradiction. Suppose that $w \in W$ is adjacent some vertex $d \in D_{1,2} \cup D_{4,5}$. Then dw and 36 induce a $2P_2$, a contradiction.

(8) The set W is complete to $T_1 \cup T_2 \cup T_3 \cup T_5$ and anti-complete to $T_3 \cup T_6$.

Suppose that $w \in W$ is not adjacent some vertex $t \in T_i$ for some $i \in \{1, 2, 4, 5\}$. By symmetry, we may assume that $i = 1$. Then $t6$ and $w5$ induce a $2P_2$. Suppose that $w \in W$ is adjacent some vertex $t \in T_i$ for some $i \in \{3, 6\}$. By symmetry, we may assume that $i = 3$. Then $\{w, t, 2, 4\}$ induces a K_4.

(9) The set W is anti-complete to $F_{i,i+1}$ for $i \in \{2, 3, 5, 6\}$ and complete to $F_{i,i+1}$ for $i \in \{1, 4\}$.

Suppose that $w \in W$ is not adjacent some vertex $f \in F_{i,i+1}$ for some $i \in \{2, 3, 5, 6\}$. By symmetry, we may assume that $i = 2$. Then $\{f, w, 1, 4\}$ induces a K_4. Suppose that $w \in W$ is not adjacent some vertex $f \in F_{i,i+1}$ for some $i \in \{1, 4\}$. By symmetry, we may assume that $i = 1$. Then $6f$ and $5w$ induce a $2P_2$.

(10) The set Z is anti-complete to $D \cup T \cup (F \setminus (F_{1,2} \cup F_{4,5}))$.

Suppose that $z \in Z$ is adjacent to some vertex $x \in D \cup T \cup (F \setminus (F_{1,2} \cup F_{4,5}))$. If $x \in D \cup T$, then there exists a vertex $i \in C$ such that x is not adjacent to $i - 1$ and $i + 1$. Then zx
and \((i - 1)(i + 1)\) induce a \(2P_2\). If \(x \in F_{i,i+1}\) for some \(i = 2, 3, 5, 6\), then \(xw \notin E\) by (9). Moreover, there exists a vertex \(j \in N_C(w)\) such that \(xj \notin E\). Then \(wj\) and \(zx\) induce a \(2P_2\).

It follows from and (6) and (10) that any vertex in \(Z\) has neighbors only in \(F_{1,2} \cup F_{4,5}\). On the other hand, \(w\) is complete to \(F_{1,2} \cup F_{4,5}\) by (9). Since \(G\) contains no pair of comparable vertices, it follows that \(Z = \emptyset\).

(11) For each \(i\), \(D_{i,i+1}\) is anti-complete to \(D_{i+1,i+2}\), complete to \(D_{i+2,i+3}\) and anti-complete to \(D_{i+3,i+4}\).

By symmetry, it suffices to prove the claim for \(i = 1\). Let \(d \in D_{1,2}\). If \(d\) is adjacent to \(d' \in D_{2,3}\), then \(46\) and \(dd'\) induce a \(2P_2\). If \(d\) is not adjacent to \(d' \in D_{3,4}\), then \(2d\) and \(3d'\) induce a \(2P_2\). If \(d\) is adjacent to \(d' \in D_{4,5}\), then \(36\) and \(dd'\) induce a \(2P_2\).

(12) For each \(i\), \(F_{i,i+1}\) is anti-complete to \(F_{i+1,i+2} \cup F_{i+3,i+4}\) and complete to \(F_{i+2,i+3}\).

By symmetry, it suffices to prove the claim for \(i = 1\). Let \(f \in F_{1,2}\). If \(f\) is adjacent to a vertex \(f' \in F_{2,3}\), then \(\{1, 3, f, f'\}\) induces a \(K_4\). If \(f\) is not adjacent to a vertex \(f' \in F_{3,4}\), then \(5f'\) and \(6f\) induce a \(2P_2\). If \(f\) is adjacent to a vertex \(f' \in F_{4,5}\), then \(\{3, 6, f, f'\}\) induces a \(K_4\).

(13) The sets \(T_1\) and \(T_{i+1}\) are anti-complete for \(i \in \{1, 4\}\).

By symmetry, it suffices to prove this for \(i = 1\). If \(t_1 \in T_1\) and \(t_2 \in T_2\) are adjacent, then \(w\) is adjacent to both \(t_1\) and \(t_2\) by (8). But now \(\{t_1, t_2, w, 1\}\) induces a \(K_4\).

(14) The sets \(T_3\) and \(T_1 \cup T_5\) are complete. By symmetry, \(T_6\) and \(T_2 \cup T_4\) are complete.

Suppose that \(t_3 \in T_3\) is not adjacent to some vertex \(t \in T_1 \cup T_5\). By (8), \(w\) is adjacent to \(t\) but not to \(t_3\). Then \(3t_3\) and \(wt\) induce a \(2P_2\), a contradiction.

(15) The sets \(T_1\) and \(T_{i+3}\) are complete for each \(1 \leq i \leq 6\).

By symmetry, it suffices to prove this for \(i = 1\). If \(t_1 \in T_1\) and \(t_4 \in T_4\) are not adjacent, then \(2t_1\) and \(3t_4\) induce a \(2P_2\).

(16) For each \(i\), \(D_{i,i+1}\) is anti-complete to \(T_{i-1} \cup T_1 \cup T_{i-1} \cup T_{i+2}\) and complete to \(T_{i+3} \cup T_{i+4}\).

We note that \(D_{1,2}\) and \(D_{4,5}\) are symmetric, and \(D_{2,3}, D_{3,4}, D_{5,6}\) and \(D_{6,1}\) are symmetric. So, it suffices to prove the claim for \(D_{1,2}\) and \(D_{2,3}\).

Let \(d \in D_{1,2}\). Suppose that \(d\) is adjacent to some vertex \(t \in T_6 \cup T_1 \cup T_2 \cup T_3\). By symmetry, we may assume that \(i \in \{1, 3\}\). If \(i = 1\), then \(td\) and \(35\) induce a \(2P_2\). If \(i = 3\), then \(w\) is not adjacent to \(d\) and \(t\) by (7) and (8). Then \(dt\) and \(w5\) induce a \(2P_2\). Now suppose that \(d\) is not adjacent to some vertex \(t \in T_4 \cup T_5\). By symmetry, we may assume that \(t \in T_4\). Then \(d2\) and \(t3\) induce a \(2P_2\). This proves the claim for \(D_{1,2}\).

Let \(d \in D_{2,3}\). Suppose that \(d\) is adjacent to some vertex \(t \in T_2 \cup T_3\). By symmetry, we may assume that \(t \in T_2\). Then \(dt\) and \(46\) induce a \(2P_2\). Suppose that \(d\) is not adjacent to some vertex \(t \in T_5 \cup T_6\). By symmetry, we may assume that \(t \in T_5\). Then \(d3\) and \(t4\) induce a \(2P_2\).

By (7) and (8), \(\{2, w\}\) is complete to \(D_{2,3} \cup T_1\). It follows from \(K_4\)-freeness of \(G\) that \(D_{2,3}\) is anti-complete to \(T_1\). It remains to show that \(D_{2,3}\) is anti-complete to \(T_4\). Suppose that \(d\) is adjacent to some vertex \(t_4 \in T_4\). Note that \(C' = C \setminus \{1\} \cup \{t_4\}\) induces a \(C_6\) and \(H' = C' \cup \{w\}\) induces a subgraph isomorphic to \(H_1\). By (13) and (14), all vertices in \(T_1 \cup T_4 \cup T_5 \cup T_6\) remain to be \(T\)-vertices with respect to \(C'\). Moreover, all vertices in \(T_3 \cup F\) remain to be \(F\)-vertices or \(T\)-vertices. By the choice of \(C\), there exists a vertex \(t \in T_3\) that is not adjacent to \(t_4\). Then \(dt_4\) and \(1t_2\) induce a \(2P_2\), a contradiction. This proves the claim for \(D_{2,3}\).
(17) For each i, $F_{i,i+1}$ is anti-complete to $T_i \cup T_{i+1}$ and complete to $T_{i+3} \cup T_{i+4}$.
By symmetry of C, it suffices to prove this for $i = 1$. Let $f \in F_{1,2}$. If f is adjacent to some vertex $t \in T_1 \cup T_2$, then either $\{6,2,f,t\}$ or $\{1,3,f,t\}$ induces a K_4 depending on whether $t \in T_1$ or $t \in T_2$. Suppose that f is not adjacent to some vertex $t \in T_4 \cup T_5$. By symmetry, we may assume that $t \in T_4$. Then $6f$ and $5t$ induce a $2P_2$, a contradiction. ■

(18) The sets $F_{i,i+1}$ and T_{i-1} are complete for $i \in \{2,5\}$, and $F_{i,i+1}$ and T_{i+2} are complete for $i \in \{3,6\}$.
Let $f \in F_{i,i+1}$ and $t \in T_i$ be nonadjacent. By (9) and (8), w is adjacent to t but not f. It can be readily checked that in each of the cases wt and $f3$ or wt and $f6$ induce a $2P_2$. ■

(19) The set $D_{1,2}$ is anti-complete to $F_{5,1} \cup F_{2,3}$ and complete to $F_{4,5}$.
The set $D_{3,4}$ is anti-complete to $F_{3,4} \cup F_{5,6}$ and complete to $F_{3,5}$.
The set $D_{2,3}$ is anti-complete to $F_{4,5}$ and complete to $F_{5,6}$.
The set $D_{6,1}$ is anti-complete to $F_{1,2}$ and complete to $F_{2,3} \cup F_{3,4}$.
The set $D_{5,6}$ is anti-complete to $F_{4,5}$ and complete to $F_{2,3} \cup F_{3,4}$.

Note that $D_{1,2}$ and $D_{6,1}$ are symmetric, and $D_{2,3}, D_{3,4}, D_{5,6}$ and $D_{6,1}$ are symmetric. So, it suffices to prove the claim for $D_{1,2}$ and $D_{2,3}$. Let $d \in D_{1,2}$. If d is adjacent to some vertex $f \in F_{6,1} \cup F_{2,3}$, then w is not adjacent to d and f by (7) and (9). Now df and $w4$ or $d4$ and $w5$ induce a $2P_2$ depending on whether $f \in F_{6,1}$ or $f \in F_{2,3}$. If d is not adjacent to some vertex $f \in F_{4,5}$, then $d2$ and $f3$ induce a $2P_2$. This proves the claim for $D_{1,2}$.

Now let $d \in D_{2,3}$. By (7), it follows that $wd \in E$. If d is adjacent to a vertex $f \in F_{1,2}$, then $\{d, f, 2, w\}$ induces a K_4 by (9). If d is not adjacent to a vertex $f \in F_{5,6} \cup F_{6,1}$, then $6f$ and wd induce a $2P_2$ by (9). This proves the claim for $D_{2,3}$. ■

We proceed with a few claims that help to show that certain sets are empty.

Claim 1. Either $D_{1,2}$ or $D_{4,5}$ is empty.

Proof of Claim 1. Suppose not. Let $d_{12} \in D_{1,2}$ and $d_{45} \in D_{4,5}$. By (7)-(19), $N(d_{12}) \subseteq N(w)$ unless d_{12} has a neighbor $f \in F_{3,4} \cup F_{5,6}$. Similarly, $N(d_{45}) \subseteq N(w)$ unless d_{45} has a neighbor $f' \in F_{3,4} \cup F_{5,6}$. By (11) and (19), $d_{12}f$ and $d_{45}f'$ induce a $2P_2$, a contradiction. ■

Claim 2. Each vertex in T_1 has a non-neighbor in T_5 and each vertex in T_5 has a non-neighbor in T_1.
By symmetry, each vertex in T_2 has a non-neighbor in T_4 and each vertex in T_4 has a non-neighbor in T_2.

Proof of Claim 2. Let $t_1 \in T_1$. Let

$$X = \{6,1,2\} \cup W \cup D_{3,4} \cup D_{4,5} \cup T_3 \cup T_4 \cup T_2 \cup F_{3,4} \cup F_{4,5}.$$

Note that $N(4) = \{X \cup T_5 \cup F_{5,6} \cup N(t_1) \subseteq X \cup T_5 \cup F_{5,6} \cup T_6 \}$ by the properties we have proved. Since G contains no pair of comparable vertices, t_1 has a neighbor $t_6 \in T_6$ and there exists a vertex $t \in N(4) \setminus N(t_1)$. Clearly, $t \in F_{5,6} \cup T_5$. If $t \in F_{5,6}$, then $4t$ and $t_1 t_6$ induce a $2P_2$ since $F_{5,6}$ and T_6 are anti-complete by (17). This shows that t_1 has a non-neighbor $t \in T_5$.
By symmetry, each vertex in T_5 has a non-neighbor in T_1. ■

Claim 3. Each vertex in T_6 has a neighbor in $T_1 \cup T_5$. By symmetry, each vertex in T_3 has a neighbor in $T_2 \cup T_4$.

7
Figure 2: The adjacency among T_i and $D_{i,i+1}$. A thick line between two sets means that the two sets are complete, a thin line means the edges between the two sets can be arbitrary, and no line means that the two sets are anti-complete. For clarity, edges between two $D_{i,i+1}$ are not shown.

Proof of Claim 3. Let $t_6 \in T_6$. Let

$$X = \{5, 6, 1\} \cup D_{2,3} \cup D_{3,4} \cup T_2 \cup T_3 \cup T_4 \cup F_{2,3} \cup F_{3,4}.$$

Note that $N(3) = X \cup F_{1,2} \cup F_{4,5}$ and $N(t_6) \subseteq X \cup T_1 \cup T_5 \cup F_{12} \cup F_{45}$. Since G contains no pair of comparable vertices, t_6 has a neighbor in $T_1 \cup T_5$. \hfill \Box

Claim 4. If $D_{5,6} \cup D_{6,1} \neq \emptyset$, then T_2 and T_4 are complete. By symmetry, if $D_{2,3} \cup D_{3,4} \neq \emptyset$, then T_1 and T_3 are complete.

Proof of Claim 4. Let $d \in D_{5,6} \cup D_{6,1}$. Suppose that $t_2 \in T_2$ and $t_4 \in T_4$ are not adjacent. If $d \in D_{5,6}$, then $dt_2 \in E$ and $dt_4 \notin E$ by (16). Then dt_2 and $4t_4$ induce a $2P_2$. If $d \in D_{6,1}$, then $dt_4 \in E$ and $dt_2 \notin E$ by (16). Then dt_4 and $2t_2$ induce a $2P_2$. \hfill \Box

Claim 5. One of $F_{6,1}$, $F_{1,2}$ and $F_{2,3}$ is empty. By symmetry, one of $F_{3,4}$, $F_{4,5}$ and $F_{5,6}$ is empty.

Proof of Claim 5. Suppose that $f_{61} \in F_{6,1}$, $f_{12} \in F_{1,2}$, and $f_{23} \in F_{2,3}$. Then $f_{61}f_{23}$ and f_{12w} induce a $2P_2$ by (9) and (12). \hfill \Box

By Claim 1, we may assume that $D_{4,5} = \emptyset$. It follows from (13), (14) and (15) that either T_1 and T_5 are complete or T_2 and T_4 are complete for otherwise G would contain a $2P_2$ (see Figure 2). By symmetry, we may assume that T_1 and T_5 are complete. It then follows from Claim 2 and Claim 3 that $T_1 \cup T_5 \cup T_6 = \emptyset$.

If $D_{5,6} \cup D_{6,1} \neq \emptyset$, then $T_2 \cup T_3 \cup T_4 = \emptyset$ due to Claim 2-Claim 4. In the following we shall use this fact without explicitly mentioning it. We divide our proof into four cases depending on whether $F_{1,2}$ and $F_{4,5}$ are empty or not. One can verify that each of the partitions of $V(G)$ into 4 subsets in the following is a 4-coloring of G using the properties we have proved. For convenience, we draw Figure 3 to visualize the adjacency among $D_{i,i+1}$ and $F_{i,i+1}$. From Figure 3 it can be seen that if $T_2 \cup T_3 \cup T_4 = \emptyset$, then we can use the symmetry of H under its automorphism $f : V(H) \to V(H)$ with $f(1) = 2$, $f(2) = 1$, $f(3) = 6$, $f(4) = 5$, $f(5) = 4$, $f(6) = 3$ and $f(w) = w$.

8
Case 1. Both $F_{1,2}$ and $F_{4,5}$ are not empty. Let $f_{12} \in F_{1,2}$ and $f_{45} \in F_{4,5}$. We first show that $F_{1,2} \cup F_{4,5}$ is anti-complete to $D_{2,3} \cup D_{3,4} \cup D_{5,6} \cup D_{6,1}$. By symmetry, it suffices to show that $F_{1,2} \cup F_{4,5}$ is anti-complete to $D_{2,3}$. Suppose that $d \in D_{2,3}$ and $f \in F_{1,2} \cup F_{4,5}$ are adjacent. By (19), $f \in F_{4,5}$. Then df and f_{12} induce a $2P_2$. On the other hand, it follows from Claim 5 and (12) that at most one of $F_{2,3}, F_{3,4}, F_{5,6}$ and $F_{6,1}$ is not empty.

- If $F_{2,3} \neq \emptyset$, then G has a 4-coloring:
 \[
 F_{4,5} \cup D_{2,3} \cup D_{3,4} \cup \{1\} \cup T_4, \\
 F_{2,3} \cup D_{1,2} \cup W \cup \{6\} \cup T_3, \\
 F_{1,2} \cup \{4,5\} \cup T_2, \\
 D_{5,6} \cup D_{6,1} \cup \{2,3\}.
 \]

- Suppose that $F_{6,1} \neq \emptyset$.
 If $D_{5,6} \cup D_{6,1} \neq \emptyset$, then G has a 4-coloring:
 \[
 F_{4,5} \cup D_{5,6} \cup D_{6,1} \cup \{2\}, \\
 F_{6,1} \cup D_{1,2} \cup W \cup \{3\}, \\
 F_{1,2} \cup \{4,5\}, \\
 D_{2,3} \cup D_{3,4} \cup \{1,6\}.
 \]
If \(D_{5,6} \cup D_{6,1} = \emptyset \), then \(G \) has a 4-coloring:

\[
\begin{align*}
F_{4,5} &\cup \{1, 2\} \cup T_1, \\
F_{6,1} &\cup D_{1,2} \cup W \cup \{3\}, \\
F_{1,2} &\cup \{4, 5\} \cup T_2, \\
D_{2,3} &\cup D_{3,4} \cup \{6\} \cup T_3.
\end{align*}
\]

- Suppose that \(F_{3,4} \neq \emptyset \). Note first that no vertex \(d \in D_{1,2} \) can have a neighbor in both \(F_{1,2} \) and \(F_{3,4} \) for otherwise a neighbor of \(d \) in \(F_{1,2} \), a neighbor of \(d \) in \(F_{3,4} \), \(d \) and 2 induce a \(K_4 \). Let \(D'_{1,2} \) be the set of vertices in \(D_{1,2} \) that are anti-complete to \(F_{3,4} \) and \(D''_{1,2} = D_{1,2} \setminus D'_{1,2} \). Then \(G \) has a 4-coloring:

\[
\begin{align*}
F_{4,5} &\cup D_{2,3} \cup D_{3,4} \cup \{1\} \cup T_4, \\
F_{3,4} &\cup D'_{1,2} \cup W \cup \{6\} \cup T_3, \\
F_{1,2} &\cup D''_{1,2} \cup \{4, 5\} \cup T_2, \\
D_{5,6} &\cup D_{6,1} \cup \{2, 3\}.
\end{align*}
\]

- Suppose that \(F_{5,6} \neq \emptyset \). Note first that no vertex \(d \in D_{1,2} \) can have a neighbor in both \(F_{1,2} \) and \(F_{5,6} \) for otherwise a neighbor of \(d \) in \(F_{1,2} \), a neighbor of \(d \) in \(F_{5,6} \), \(d \) and 1 induce a \(K_4 \). Let \(D'_{1,2} \) be the set of vertices in \(D_{1,2} \) that are anti-complete to \(F_{5,6} \) and \(D''_{1,2} = D_{1,2} \setminus D'_{1,2} \). By (17) and (18), \(F_{5,6} \) and \(T_3 \cup T_4 \) are complete. Since \(G \) is \(K_4 \)-free, \(T_3 \) and \(T_4 \) are anti-complete. Then \(G \) has a 4-coloring:

\[
\begin{align*}
F_{4,5} &\cup D_{5,6} \cup D_{6,1} \cup \{2\}, \\
F_{5,6} &\cup D'_{1,2} \cup W \cup \{3\}, \\
F_{1,2} &\cup D''_{1,2} \cup \{4, 5\} \cup T_2, \\
D_{2,3} &\cup D_{3,4} \cup \{1, 6\} \cup T_3 \cup T_4.
\end{align*}
\]

Case 2. Both \(F_{1,2} \) and \(F_{4,5} \) are empty. By (12) and the fact that \(G \) is 2\(P_2 \)-free, one of \(F_{2,3} \), \(F_{3,4} \), \(F_{5,6} \) and \(F_{6,1} \) is empty. By (11), (19), (12) and \(K_4 \)-freeness of \(G \), either \(D_{5,6} \) and \(F_{5,6} \) are anti-complete or \(D_{3,4} \) and \(F_{3,4} \) are anti-complete.

- Suppose that \(F_{6,1} = \emptyset \).

 If \(D_{5,6} \) and \(F_{5,6} \) are anti-complete, then \(G \) has a 4-coloring:

\[
\begin{align*}
F_{2,3} &\cup F_{3,4} \cup W \cup \{6\} \cup T_3, \\
F_{5,6} &\cup D_{5,6} \cup \{2, 3\}, \\
D_{1,2} &\cup D_{6,1} \cup \{4, 5\} \cup T_2, \\
D_{2,3} &\cup D_{3,4} \cup \{1\} \cup T_4.
\end{align*}
\]

Now assume that \(D_{3,4} \) and \(F_{3,4} \) are anti-complete.

If \(D_{5,6} \cup D_{6,1} \neq \emptyset \), then \(G \) has a 4-coloring:

\[
\begin{align*}
F_{2,3} &\cup F_{5,6} \cup W, \\
F_{3,4} &\cup D_{3,4} \cup \{6, 1\}, \\
D_{1,2} &\cup D_{2,3} \cup \{4, 5\}, \\
D_{5,6} &\cup D_{6,1} \cup \{2, 3\}.
\end{align*}
\]
If $D_{5,6} \cup D_{6,1} = \emptyset$, then G has a 4-coloring:

\[
\begin{align*}
F_{2,3} & \cup D_{1,2} \cup W \cup \{6\} \cup T_3, \\
F_{3,4} & \cup D_{3,4} \cup \{1\} \cup T_1, \\
F_{5,6} & \cup \{2, 3\}, \\
D_{2,3} & \cup \{4, 5\} \cup T_2.
\end{align*}
\]

- Suppose that $F_{2,3} = \emptyset$.
 Suppose first that $D_{3,4}$ and $F_{3,4}$ are anti-complete.
 If $D_{5,6} \cup D_{6,1} \neq \emptyset$, then G has a 4-coloring:

\[
\begin{align*}
F_{6,1} & \cup F_{5,6} \cup W \cup \{3\}, \\
F_{3,4} & \cup D_{3,4} \cup \{6, 1\}, \\
D_{1,2} & \cup D_{2,3} \cup \{4, 5\}, \\
D_{6,1} & \cup D_{5,6} \cup \{2\}.
\end{align*}
\]

If $D_{5,6} \cup D_{6,1} = \emptyset$, then G has a 4-coloring:

\[
\begin{align*}
F_{6,1} & \cup F_{5,6} \cup W \cup \{3\}, \\
F_{3,4} & \cup D_{3,4} \cup \{6\} \cup T_3, \\
D_{1,2} & \cup D_{2,3} \cup \{4, 5\} \cup T_2, \\
\{1, 2\} & \cup T_4.
\end{align*}
\]

Suppose now that $D_{3,4}$ and $F_{3,4}$ are not anti-complete and that $D_{5,6}$ and $F_{5,6}$ are anti-complete. By (16) and (17), $D_{3,4} \cup F_{3,4}$ are anti-complete to $T_3 \cup T_4$. Since G is $2P_2$-free, it follows that T_3 and T_4 are anti-complete. Then G has a 4-coloring:

\[
\begin{align*}
F_{6,1} & \cup F_{3,4} \cup W, \\
F_{5,6} & \cup D_{5,6} \cup \{2, 3\}, \\
D_{1,2} & \cup D_{6,1} \cup \{4, 5\} \cup T_2, \\
D_{2,3} & \cup D_{3,4} \cup \{6, 1\} \cup T_3 \cup T_4.
\end{align*}
\]

- Suppose that $F_{5,6} = \emptyset$. If $F_{6,1} = \emptyset$, then G has a 4-coloring as above. So, we can assume that $F_{6,1} \neq \emptyset$. Let $f_{61} \in F_{6,1}$. If $d \in D_{2,3}$ and $f \in F_{2,3}$ are adjacent, then $\{2, f_{61}, d, f\}$ induces a K_4 by (12) and (19). So, $D_{2,3}$ and $F_{2,3}$ are anti-complete. By (17) and (18), $F_{6,1}$ and $T_2 \cup T_3$ are complete. Since G is K_4-free, T_2 and T_3 are anti-complete. Then G has a 4-coloring:

\[
\begin{align*}
F_{3,4} & \cup F_{6,1} \cup W, \\
F_{2,3} & \cup D_{1,2} \cup D_{2,3} \cup \{5, 6\} \cup T_2 \cup T_3, \\
D_{3,4} & \cup \{1, 2\} \cup T_4, \\
D_{5,6} & \cup D_{6,1} \cup \{3, 4\}.
\end{align*}
\]

- Suppose that $F_{3,4} = \emptyset$. If $F_{2,3} = \emptyset$, then G has a 4-coloring as above. So, we can assume that $F_{2,3} \neq \emptyset$. Let $f_{23} \in F_{2,3}$. If $d \in D_{6,1}$ and $f \in F_{6,1}$ are adjacent, then $\{1, f_{23}, d, f\}$ induces a K_4 by (12) and (19). So, $D_{6,1}$ and $F_{6,1}$ are anti-complete.
If $D_{5,6} \cup D_{6,1} \neq \emptyset$, then G has a 4-coloring:

- $F_{5,6} \cup F_{2,3} \cup W$,
- $F_{6,1} \cup D_{1,2} \cup D_{6,1} \cup \{3, 4\}$,
- $D_{5,6} \cup \{1, 2\}$,
- $D_{3,4} \cup D_{2,3} \cup \{5, 6\}$.

If $D_{5,6} \cup D_{6,1} \neq \emptyset$, then G has a 4-coloring:

- $F_{5,6} \cup F_{6,1} \cup W \cup \{3\}$,
- $F_{2,3} \cup D_{1,2} \cup \{6\} \cup T_3$,
- $D_{2,3} \cup \{4, 5\} \cup T_2$,
- $D_{3,4} \cup \{1, 2\} \cup T_4$.

Case 3. The set $F_{1,2} = \emptyset$ but the set $F_{4,5} \neq \emptyset$. By Claim 5, either $F_{3,4} = \emptyset$ or $F_{5,6} = \emptyset$. By (11), (19), (12) and K_4-freeness of G, either $D_{2,3}$ and $F_{2,3}$ are anti-complete or $D_{6,1}$ and $F_{6,1}$ are anti-complete.

- Suppose that $F_{5,6} = \emptyset$.
 If $D_{6,1}$ and $F_{6,1}$ are anti-complete, then G has a 4-coloring:

- $F_{2,3} \cup F_{3,4} \cup W \cup \{6\} \cup T_3$,
- $F_{6,1} \cup D_{1,2} \cup D_{6,1} \cup \{3, 4\}$,
- $F_{4,5} \cup D_{5,6} \cup \{1, 2\} \cup T_4$,
- $D_{2,3} \cup D_{3,4} \cup \{5\} \cup T_2$.

Now assume that $D_{2,3}$ and $F_{2,3}$ are anti-complete.
If $D_{5,6} \cup D_{6,1} \neq \emptyset$, then G has a 4-coloring:

- $F_{3,4} \cup F_{6,1} \cup W$,
- $F_{2,3} \cup D_{1,2} \cup D_{2,3} \cup \{5, 6\}$,
- $F_{4,5} \cup D_{3,4} \cup \{1, 2\}$,
- $D_{5,6} \cup D_{6,1} \cup \{3, 4\}$.

If $D_{5,6} \cup D_{6,1} = \emptyset$, then G has a 4-coloring:

- $F_{3,4} \cup W \cup \{6\} \cup T_3$,
- $F_{2,3} \cup D_{1,2} \cup D_{2,3} \cup \{5\} \cup T_2$,
- $F_{4,5} \cup D_{3,4} \cup \{1, 2\} \cup T_4$,
- $F_{6,1} \cup \{3, 4\}$.

- Suppose that $F_{3,4} = \emptyset$. Suppose first that $D_{2,3}$ and $F_{2,3}$ are anti-complete.
 If $D_{5,6} \cup D_{6,1} \neq \emptyset$, then G has a 4-coloring:

- $F_{5,6} \cup F_{6,1} \cup W \cup \{3\}$,
- $F_{2,3} \cup D_{1,2} \cup D_{2,3} \cup \{5, 6\}$,
- $F_{4,5} \cup D_{3,4} \cup \{1, 2\}$,
- $D_{5,6} \cup D_{6,1} \cup \{4\}$.
If $D_{5,6} \cup D_{6,1} = \emptyset$, then G has a 4-coloring:

\[
\begin{align*}
F_{5,6} \cup F_{6,1} \cup W \cup \{3\}, \\
F_{2,3} \cup D_{1,2} \cup D_{2,3} \cup \{6\} \cup T_3, \\
F_{4,5} \cup D_{3,4} \cup \{1,2\} \cup T_4, \\
\{4,5\} \cup T_2.
\end{align*}
\]

Now suppose that $D_{2,3}$ and $F_{2,3}$ are not anti-complete and that $D_{6,1}$ and $F_{6,1}$ are anti-complete. Then T_2 and T_3 are anti-complete for otherwise an edge between T_2 and T_3 and an edge between $D_{2,3}$ and $F_{2,3}$ induce a $2P_2$ by (16) and (17). Then G has a 4-coloring:

\[
\begin{align*}
F_{5,6} \cup F_{2,3} \cup W, \\
F_{6,1} \cup D_{1,2} \cup D_{6,1} \cup \{3,4\}, \\
F_{4,5} \cup D_{5,6} \cup \{1,2\} \cup T_4, \\
D_{2,3} \cup D_{3,4} \cup \{5,6\} \cup T_2 \cup T_3.
\end{align*}
\]

Case 4. The set $F_{4,5} = \emptyset$ but the set $F_{1,2} \neq \emptyset$. By Claim 5, either $F_{2,3} = \emptyset$ or $F_{6,1} = \emptyset$. By (19) and (12), $F_{3,4}$ is complete to $D_{5,6} \cup F_{5,6}$. So, if $F_{3,4} \neq \emptyset$, then $D_{5,6}$ and $F_{5,6}$ are anti-complete for otherwise G would contain a K_4. By symmetry, if $F_{5,6} \neq \emptyset$, then $D_{3,4}$ and $F_{3,4}$ are anti-complete. Moreover, either $D_{3,4}$ and $F_{3,4}$ are anti-complete or $D_{5,6}$ and $F_{5,6}$ are anti-complete. Similarly, either $D_{2,3}$ and $F_{2,3}$ are anti-complete or $D_{6,1}$ and $F_{6,1}$ are anti-complete.

- Suppose that $F_{6,1} = \emptyset$. If both $F_{3,4}$ and $F_{5,6}$ are not empty, then consider the following 4-coloring of $G - (D_{2,3} \cup D_{6,1})$:

\[
\begin{align*}
I_1 &= F_{2,3} \cup D_{1,2} \cup W \cup \{6\} \cup T_3, \\
I_2 &= F_{3,4} \cup D_{3,4} \cup \{1\} \cup T_4, \\
I_3 &= F_{5,6} \cup D_{5,6} \cup \{2,3\}, \\
I_4 &= F_{1,2} \cup \{4,5\} \cup T_2.
\end{align*}
\]

If $D_{2,3}$ and $F_{3,4}$ are anti-complete, then G has a 4-coloring: I_1, $I_2 \cup D_{2,3}$, I_3 and $I_4 \cup D_{6,1}$. If $D_{6,1}$ and $F_{5,6}$ are anti-complete, then G has a 4-coloring: I_1, $I_2 \cup D_{6,1}$ and $I_4 \cup D_{2,3}$. So, one of $F_{3,4}$ and $F_{5,6}$ is empty.

Suppose that $F_{5,6} = \emptyset$. Recall that no vertex in $D_{1,2}$ can have a neighbor in both $F_{1,2}$ and $F_{3,4}$. Let $D'_{1,2}$ be the set of vertices in $D_{1,2}$ that are anti-complete to $F_{1,2}$ and $D''_{1,2} = D_{1,2} \setminus D'_{1,2}$. Then G has a 4-coloring:

\[
\begin{align*}
F_{1,2} \cup D'_{1,2} \cup \{4,5\} \cup T_2, \\
F_{2,3} \cup F_{3,4} \cup D''_{1,2} \cup W \cup \{6\} \cup T_3, \\
D_{2,3} \cup D_{3,4} \cup \{1\} \cup T_4, \\
D_{5,6} \cup D_{6,1} \cup \{2,3\}.
\end{align*}
\]

Suppose now that $F_{5,6} \neq \emptyset$ and $F_{3,4} = \emptyset$. Note that no vertex in $D_{1,2}$ can have a neighbor in both $F_{1,2}$ and $F_{5,6}$. Let $D'_{1,2}$ be the set of vertices in $D_{1,2}$ that are anti-complete to $F_{1,2}$ and $D''_{1,2} = D_{1,2} \setminus D'_{1,2}$. Moreover, recall that since $F_{5,6} \neq \emptyset$, T_3 and T_4 are anti-complete. Then G
has a 4-coloring:

\[
F_{1,2} \cup D_{2,3} \cup D'_{1,2} \cup \{4, 5\} \cup T_2, \\
F_{2,3} \cup F_{3,6} \cup D''_{1,2} \cup W, \\
D_{3,4} \cup \{6, 1\} \cup T_3 \cup T_4, \\
D_{5,6} \cup D_{6,1} \cup \{2, 3\}.
\]

- Suppose that \(F_{2,3} = \emptyset \). If both \(F_{3,4} \) and \(F_{5,6} \) are not empty, then consider the following 4-coloring of \(G - (D_{2,3} \cup D_{6,1}) \):

\[
I_1 = F_{6,1} \cup D_{1,2} \cup W \cup \{3\}, \\
I_2 = F_{5,6} \cup D_{5,6} \cup \{2\}, \\
I_3 = F_{3,4} \cup D_{3,4} \cup \{6, 1\} \cup T_3 \cup T_4, \\
I_4 = F_{1,2} \cup \{4, 5\} \cup T_2.
\]

If \(D_{2,3} \) and \(F_{3,4} \) are anti-complete, then \(G \) has a 4-coloring: \(I_1, I_2, I_3 \cup D_{2,3} \) and \(I_4 \cup D_{6,1} \). If \(D_{6,1} \) and \(F_{5,6} \) are anti-complete, then \(G \) has a 4-coloring: \(I_1, I_2 \cup D_{6,1}, I_3 \) and \(I_4 \cup D_{2,3} \). So, one of \(F_{3,4} \) and \(F_{5,6} \) is empty.

Suppose that \(F_{5,6} \neq \emptyset \). So, \(F_{3,4} = \emptyset \). Recall that no vertex in \(D_{1,2} \) can have a neighbor in both \(F_{1,2} \) and \(F_{3,4} \). Let \(D'_{1,2} \) be the set of vertices in \(D_{1,2} \) that are anti-complete to \(F_{1,2} \) and \(D''_{1,2} = D_{1,2} \setminus D'_{1,2} \). Moreover, \(T_3 \) and \(T_4 \) are anti-complete. Then \(G \) has a 4-coloring:

\[
F_{1,2} \cup D'_{1,2} \cup \{4, 5\} \cup T_2, \\
F_{6,1} \cup F_{3,4} \cup D''_{1,2} \cup W \cup \{3\}, \\
D_{6,1} \cup D_{5,6} \cup \{2\}, \\
D_{2,3} \cup D_{3,4} \cup \{6, 1\} \cup T_3 \cup T_4.
\]

Suppose now that \(F_{5,6} = \emptyset \). Recall that no vertex in \(D_{1,2} \) can have a neighbor in both \(F_{1,2} \) and \(F_{3,4} \). Let \(D'_{1,2} \) be the set of vertices in \(D_{1,2} \) that are anti-complete to \(F_{1,2} \) and \(D''_{1,2} = D_{1,2} \setminus D'_{1,2} \). If \(D_{5,6} \cup D_{6,1} \neq \emptyset \), then \(G \) has a 4-coloring:

\[
F_{1,2} \cup D_{6,1} \cup D'_{1,2} \cup \{4, 5\}, \\
F_{6,1} \cup F_{3,4} \cup D''_{1,2} \cup W, \\
D_{5,6} \cup \{2, 3\}, \\
D_{2,3} \cup D_{3,4} \cup \{6, 1\}.
\]

If \(D_{5,6} \cup D_{6,1} = \emptyset \), then \(G \) has a 4-coloring:

\[
F_{1,2} \cup D_{2,3} \cup D'_{1,2} \cup \{4, 5\} \cup T_2, \\
F_{3,4} \cup D''_{1,2} \cup W \cup \{6\} \cup T_3, \\
F_{5,6} \cup \{3\}, \\
D_{3,4} \cup \{1, 2\} \cup T_4.
\]

In any case we have found a 4-coloring of \(G \). This completes our proof. \qed
4 Eliminate H_2

Lemma 3. Let G be a connected $(2P_2, K_4, H_1)$-free graph with no pair of comparable vertices. If G contains an induced H_2, then $\chi(G) \leq 4$.

Proof. Let $H = C \cup \{ f \}$ be an induced H_2 where $C = 12345$ induces a C_5 and f is adjacent to 1, 2, 3 and 4. We partition $V \setminus C$ into subsets of Z, R_i, Y_i, F_i and U as in section 2. By the fact that G is H_1-free and (11), it follows that $F_i = \emptyset$ for $i \neq 5$. Note that $f \in F_5$. We choose H such that

- $|U|$ is minimum.
- $|F_5|$ is minimum subject to the above.

(a) U is complete to R_i for $1 \leq i \leq 5$.

Suppose not. Let $u \in U$ be nonadjacent to $r_i \in R_i$ for some i. Suppose first that $1 \leq i \leq 4$. Note that $C' = C \setminus \{i\} \cup \{r_i\}$ induces a C_5 and $H' = C' \cup \{u\}$ induces an H_2. Since $5 \in C'$, it follows that $F_5 \cap U' = \emptyset$ and $U' \subseteq U$. Moreover, $u \in U$ is not in U' since u is not adjacent to r_i. This implies that $|U'| < |U|$, contradicting the choice of H.

Now suppose that $i = 5$. Note that $C' = C \setminus \{5\} \cup \{r_5\}$ induces a C_5 and $H' = C' \cup \{u\}$ induces an H_2. Note that $U' \subseteq F_5 \cup U$ and $u \notin U'$ since u is not adjacent to r_i. By the choice of H, there exists a vertex $f' \in F_5$ such that f' is adjacent to r_5. By (2), u and f are not adjacent. But then $f_r 5$ and $5u$ induce a $2P_2$.

(b) If $U \neq \emptyset$, then R_i and R_{i+2} are anti-complete.

Let $u \in U$. If $r_i \in R_i$ and $r_{i+2} \in R_{i+2}$ are not adjacent, then $\{r_i, r_{i+2}, i + 1, u\}$ induces a K_4, since u is adjacent to r_i and r_{i+2} by (a).

Suppose first that $U \neq \emptyset$. By (b), R_i and R_{i+2} are anti-complete. Recall that Y_i and Y_{i+2} are anti-complete by (10). By (12), R_i is anti-complete to $Y_5 \cup Y_2$ and R_4 is anti-complete to $Y_5 \cup Y_3$. By (8), F_5 is anti-complete to $Y_1 \cup Y_4$. By (6), either Y_3 and R_2 are anti-complete or Y_2 and R_3 are anti-complete.

If Y_3 and R_2 are anti-complete, then G admits the following 4-coloring:

\[
\begin{align*}
Y_1 & \cup Y_4 \cup U \cup F_5 & (10)(2)(8) \\
Y_2 & \cup Y_5 \cup R_4 \cup \{1\} & (10)(12) \\
Y_3 & \cup R_2 \cup R_4 \cup \{2, 4\} & (b)(12) \\
R_3 & \cup R_5 \cup Z \cup \{3, 5\} & (b)(2)
\end{align*}
\]

If Y_2 and R_3 are anti-complete, then G admits the following 4-coloring:

\[
\begin{align*}
Y_1 & \cup Y_4 \cup U \cup F_5 & (10)(2)(8) \\
Y_3 & \cup Y_5 \cup R_4 \cup \{4\} & (10)(12) \\
Y_2 & \cup R_1 \cup R_3 \cup \{1, 3\} & (b)(12) \\
R_2 & \cup R_5 \cup Z \cup \{2, 5\} & (b)(2)
\end{align*}
\]

This shows that if $U \neq \emptyset$, then G has a 4-coloring. Therefore, we can assume in the following that $U = \emptyset$.

(c) Each vertex in $R_2 \cup R_3$ is either complete or anti-complete to F_5.

Suppose not. Let $r \in R_2 \cup R_3$ be adjacent to $f \in F_5$ and not adjacent to $f' \in F_5$. By symmetry, we may assume that $r \in R_2$. Note that $C' = C \setminus \{2\} \cup \{r\}$ induces a C_5 and $H' = C' \cup \{f\}$ induces an H_2. Clearly, $f' \notin F_5$. By the choice of H, there exists a vertex
y ∈ Y such that y ∈ F′. This means that y is not adjacent to 5 but adjacent to 1, 3, 4 and r2. This implies that y ∈ Y1. By (8), f′ and y are not adjacent. But now f′′ and yr2 induce a 2P2.

By (8), (9) and (c), only vertices in R5 ∪ Z can distinguish two vertices in F5. By (1), R5 ∪ Z is stable and so (F5, R5 ∪ Z) is a 2P2-free bipartite graph. This implies that F5 = {f} since any two vertices in F are comparable. Let R′1 = N(f) ∩ R1 and R′′1 = R1 \ R′1 for i = 2, 3, 5. We now prove properties of R′ i and R′′ i.

(d) R′ 5 is anti-complete to R′ 3 ∪ R′ 3.

Suppose that r′ 5 ∈ R′ 5 and r′ 3 ∈ R′ 3 are adjacent. Then {r′ 5, r′ 3, 1, f} induces a K4.

(e) R′ 5 is anti-complete to Y2 ∪ Y3.

Suppose that r′ 5 ∈ R′ 5 and y2 ∈ Y2 are adjacent. By (8), f and y2 are adjacent. Then {r′ 5, 4, y2, f} induces a K4.

(f) R′ 5 is anti-complete to R′ 4. By symmetry, R′ 5 is anti-complete to R1.

Suppose that r′ 5 ∈ R′ 5 and r4 ∈ R4 are adjacent. By (9), f and r4 are adjacent. Then {r′ 5, r4, 3, f} induces a K4.

(g) R′′ 5 is anti-complete to R′′ 3 ∪ R′′ 3.

Suppose that r′′ 5 ∈ R′′ 5 and r′′ 3 ∈ R′′ 3 are adjacent. Then r′′ 5 and f2 induce a 2P2.

(h) Y5 is anti-complete to R′′ 2 ∪ R′′ 3.

Suppose that y5 ∈ Y5 and r′′ 3 ∈ R′′ 3 are adjacent. By (8), f and y are not adjacent. Then y5y′′ 3 and f4 induce a 2P2.

(i) R′′ 5 is anti-complete to Y1 ∪ Y4.

Suppose that r′′ 5 ∈ R′′ 5 and y4 ∈ Y4 are adjacent. By (8), f and y4 are not adjacent. Then y′′ 5y4 and f2 induce a 2P2.

(j) R′′ 5 is anti-complete to Y1. By symmetry, R′′ 5 is anti-complete to Y4.

Suppose that r′′ 5 ∈ R′′ 5 and y1 ∈ Y1 are adjacent. By (8), f and y1 are not adjacent. Then y′′ 5y1 and f2 induce a 2P2.

(k) R′′ 5 is anti-complete to Y3. By symmetry, R′′ 5 is anti-complete to Y2.

Suppose that r′′ 5 ∈ R′′ 5 and y3 ∈ Y3 are adjacent. By (9), f and y3 are adjacent. Then {r′′ 5, y3, 3, f} induces a K4.

(l) Y5 is complete to R′′ 2 ∪ R′′ 3.

Suppose that y5 ∈ Y5 and r′ 2 ∈ R′′ 2 are not adjacent. By (8), f and y5 are not adjacent. Then fyr′ 2 and 5y5 induce a 2P2.

We now prove properties of Z.

(m) Any vertex in Z is anti-complete to either Y2 or Y3.

Suppose not. Then there exists a vertex z ∈ Z that is adjacent to a vertex yi ∈ Y i for i = 2, 3. By (8), f is adjacent to y2 and y3. Moreover, y2 and y3 are adjacent by (4). This implies that f and z are not adjacent for otherwise {f, z, y1, yi+1} would induce a K4.

We now show that z is anti-complete to Y1 ∪ Y4 ∪ Y5. Suppose not. Let z be adjacent to a vertex y ∈ Y1 ∪ Y4 ∪ Y5. Note that there exists a vertex i ∈ NC(f) such that i is not adjacent to y. Moreover, f and y are not adjacent by (8). Then zy and if induce a 2P2.
This shows that z is anti-complete to $Y_1 \cup Y_4 \cup Y_5$. Recall that Z is anti-complete to R_i for each i by (1). Therefore, $N(z) \subseteq Y_2 \cup Y_3 \subseteq N(f)$, contradicting the assumption that G has no pair of comparable vertices. ■

(n) If $z \in Z$ is not adjacent to $y_i \in Y_i$, then y_i is complete to $N(z) \setminus Y_i$.

It suffices to prove for $i = 1$ by symmetry. Note that $N(z) \setminus Y_1 = (N(z) \cap (Y_2 \cup Y_5)) \cup (N(z) \cap (Y_3 \cup Y_4))$. By (4), y_i is complete to $N(z) \cap (Y_2 \cup Y_5)$. It remains to show that y_1 is complete to $N(z) \cap (Y_3 \cup Y_4)$. Suppose not. Let $y \in N(z) \cap (Y_3 \cup Y_4)$ be nonadjacent to y_1. By symmetry, we may assume that $y \in Y_3$. Then zy and y_1y induce a $2P_2$. ■

(o) If z is anti-complete to Y_i for some $i \in \{2, 3\}$, then $Y_i = \emptyset$.

Suppose that z is anti-complete to Y_2 and Y_2 contains a vertex y_2. It follows from (n) that $N(z) \subseteq N(y_2)$, contradicting the assumption that G contains no pair of comparable vertices. ■

If $Y_5 = \emptyset$, then $N(5) = \{1, 4\} \cup R_1 \cup R_4 \cup Y_2 \cup Y_3 \subseteq N(f)$ by (8) and (9). This contradicts the assumption G contains no pair of comparable vertices. So, we assume in the following that Y_5 contains a vertex y_5. We claim now that either R''_2 or R''_3 is empty. Suppose not. Let $r''_i \in R''_i$ for $i = 2, 3$. By (3), r''_2 and r''_3 are adjacent. Moreover, y_5 is not adjacent to r''_2 and r''_3 by (h). Then $r''_2r''_3$ and y_5y induce a $2P_2$. This proves that either R''_2 or R''_3 is empty. We consider two cases depending on whether f has a neighbor in R_5.

Case 1. $R''_5 = \emptyset$, i.e., f has no neighbors in R_5. Therefore, $R_5 = R''_5$. Recall that either R''_2 or R''_3 is empty. By symmetry, we may assume that $R''_2 = \emptyset$. Then $R_2 = R'_2$ and so R_2 and R_4 are anti-complete by (1). Let $Y'_2 = \{y \in Y_2 : y$ is anti-complete to $Y_5\}$ and $Y''_2 = Y_2 \setminus Y'_2$. Note that each vertex in Y''_2 has a neighbor in Y_5 by the definition and so is anti-complete to Y_4 by (7). Then the following is a 4-coloring of $G - (R_3 \cup Z)$:

$$
\begin{align*}
I_1 &= Y''_2 \cup Y_5 \cup R_1 \cup \{1\} \\
I_2 &= Y''_2 \cup Y_4 \cup R_4 \cup \{3\} \\
I_3 &= R_2(= R'_2) \cup R_4 \cup Y_3 \cup \{2, 4\} & \text{(Definition of Y''_2)} \\
I_4 &= Y_1 \cup R_5(= R''_5) \cup \{f, 5\} & \text{(12) (k)}
\end{align*}
$$

We now extend ϕ to R_3 as follows. Since R_3 is stable by (1), it suffices to explain how to extend ϕ to each vertex in R_3 independently. Let $r_3 \in R_3$ be an arbitrary vertex. Suppose first that $r_3 \in R'_3$. By (f) and (k), r_3 is anti-complete to $R_1 \cup R_2$. By (13), r_3 is anti-complete to either Y_4 or Y_5. Therefore, we can add r_3 to either I_1 or I_2. Now suppose that $r_3 \in R''_3$. By (g) and (j), r_3 is anti-complete to $Y_4 \cup R_5$. By (13), r_3 is anti-complete to either Y_1 or Y_2. Therefore, we can add r_3 to either I_2 or I_4. This shows that $G - Z$ admits a 4-coloring $\phi' = \{(I'_1, I'_2, I'_3, I'4)\}$ with $I_i \subseteq I'_i$ for each $1 \leq i \leq 4$.

We now obtain a 4-coloring of G by either extending ϕ' to Z or by finding another 4-coloring of G. If Z is anti-complete to Y_3, then we can extend ϕ' by adding Z to I'_3. So, we assume that there is a vertex $z \in Z$ that is adjacent to a vertex in Y_3. It then follows from (m) and (o) that $Y_2 = \emptyset$. If each vertex in Z is anti-complete to one of Y_3, Y_4 and Y_5, then we can extend ϕ' to Z by adding each vertex in Z to I'_1, I'_2 or I'_4 (since $Y_2 = \emptyset$). Therefore, let $z \in Z$ be adjacent to $y_i \in Y_i$ for $i \in \{3, 4, 5\}$. We prove some additional properties using the existence of y_3, y_4 and y_5. First of all, R_1 and R_4 are anti-complete. Suppose not. Let $r_1 \in R_1$ and $r_4 \in R_4$ be adjacent. By (12), y_5 is not adjacent to r_1 and r_4. Then r_1r_4 and z_5y induce a $2P_2$. Secondly, y_3 and y_5 are not adjacent for otherwise $\{y_3, y_4, y_5, z\}$ induces a K_4. Thirdly, Y_1 and Y_4 are anti-complete to each other. Suppose not. Then Y_1 contains a vertex y_1 that is not anti-complete to Y_4. By (7), y_1 is anti-complete to Y_3. Then fy_3 and y_1y_5 induce a $2P_2$. Now
G admits the following 4-coloring:

\[
\begin{align*}
Y_1 & \cup R''_3(= R_3) \cup Y_4 \cup \{f, 5\} & (i) \\
Y_3 & \cup R''_2(= R_2) \cup \{2\} & (k) \\
R_1 & \cup R_4 \cup Y_5 \cup \{1, 4\} & (12) \\
R_4 & \cup Z \cup \{3\} & (1)
\end{align*}
\]

Case 2. $R'_y \neq \emptyset$. Let $r'_y \in R'_y$. If $r_1 \in R_1$ and $r_4 \in R_4$ are adjacent, then $\{r_1, r_4, r'_y, f\}$ induces a K_4 by (3) and (9). So, R_1 and R_4 are anti-complete. We now consider two subcases.

Case 2.1. R''_3 and Y_3 are not anti-complete. Let $r''_3 \in R''_2$ and $y_3 \in Y_3$ be adjacent. We claim first that Y_1 and Y_4 are anti-complete. Suppose not. Let $y_1 \in Y_1$ and $y_4 \in Y_4$ be adjacent. Then y_3 and y_4 are adjacent by (4). By (7), y_1 is not adjacent to y_3. Moreover, y_1 is not adjacent to r''_3 by (j). But now $4y_1$ and $5y_3$ induce a $2P_3$. This shows that Y_1 and Y_4 are anti-complete. Moreover, Y_2 and R_3 are anti-complete by (6). Therefore, the following is a 4-coloring ϕ of $G - (R''_2 \cup Z)$.

\[
\begin{align*}
I_1 & = R_4 \cup Y_5 \cup R_1 \cup \{1, 4\} & (12) \\
I_2 & = Y_1 \cup R''_3 \cup Y_4 \cup \{f, 5\} & (i) \\
I_3 & = R_3 \cup Y_2 \cup \{3\} & (6) \\
I_4 & = Y_3 \cup R''_2 \cup R''_5 \cup \{2\} & (d)(e)(k)
\end{align*}
\]

We now explain how to extend ϕ to each vertex in $R''_2 \cup Z$. Since $R''_2 \cup Z$ is stable by (1), this will give a 4-coloring of G. By (m), we can add each vertex in Z to either I_3 or I_4. Let $s'' \in R''_2$ be an arbitrary vertex. Then s'' is anti-complete to $R''_3 \cup Y_1$ by (g) and (j). If s'' is not anti-complete to Y_3, then s'' is anti-complete to Y_4 by (13) and thus we can add s'' to I_2. Now s'' is anti-complete to Y_3. We claim that s'' is anti-complete to R''_3. Suppose not. Then s'' is adjacent to some vertex $r' \in R''_3$. Note that y_3 is not adjacent to s'' by our assumption. Moreover, y_3 is not adjacent to r' by (e). Then $s''r'$ and $5y_3$ induce a $2P_2$. This shows that s'' is anti-complete to R''_3 and thus we can add s'' to I_4.

Case 2.2. R''_3 and Y_3 are anti-complete. By symmetry, R''_2 and Y_2 are anti-complete. It follows from (k) that R_2 and Y_3 are anti-complete and R_3 and Y_2 are anti-complete. Recall that either R''_2 or R''_3 is empty. By symmetry, we may assume that $R''_2 = \emptyset$. Then $R_2 = R''_3$. We now claim that R''_3 is anti-complete to Y_4. Suppose not. Let $r'_3 \in R''_3$ be adjacent to $y_4 \in Y_4$. By (l), r'_3 is adjacent to y_5. But this contradicts (13). So, R''_3 is anti-complete to Y_4. By symmetry, R''_2 is anti-complete to Y_1. This together with (j) implies that R_3 and R_2 are anti-complete to Y_4 and Y_1, respectively. Let $Y'_4 = \{y \in Y_4 : y$ is anti-complete to $Y_1\}$ and $Y''_4 = Y_4 \setminus Y'_4$. Note that each vertex in Y''_4 has a neighbor in Y_1 and so is anti-complete to Y_2 by (7). Now $G - Z$ admits a 4-coloring ϕ:

\[
\begin{align*}
I_1 & = R_4 \cup Y_5 \cup R_1 \cup \{1, 4\} & (12) \\
I_2 & = Y_1 \cup R''_3 \cup Y'_4 \cup \{f, 5\} & (i) \\
I_3 & = R_3 \cup Y_2 \cup Y''_4 \cup \{3\} & (6) \\
I_4 & = Y_3 \cup R''_2 \cup R''_5 \cup \{2\} & (d)(e)(k)
\end{align*}
\]

We now explain how to obtain a 4-coloring of G based on ϕ. If Z is anti-complete to Y_3, then we can add Z to I_4. So, assume that there exists a vertex in Z that is adjacent to some vertex in Y_3. It then follows from (m) and (o) that $Y_2 = \emptyset$. If each vertex in Z is anti-complete to one of Y_3, Y''_4 and Y_5, then we can extend ϕ' to Z by adding each vertex in Z to I_1, I_3 or I_4 (since $Y_2 = \emptyset$). Therefore, let $z \in Z$ be adjacent to $y_i \in Y_i$ for $i \in \{3, 5\}$ and be adjacent to $y_4 \in Y'_4$. Note that y_3 and y_5 are not adjacent for otherwise $\{y_3, y_4, y_5, z\}$ induces a K_4. We
claim that Y_1 and Y_4 are anti-complete to each other. Suppose not. Then Y_1 contains a vertex y_1 that is not anti-complete to Y_4. By (7), y_1 is anti-complete to Y_3. Then fy_3 and y_1y_5 induce a $2P_2$. Now G admits the following 4-coloring:

$$
\begin{align*}
R_4 \cup Y_5 &\cup R_1 \cup \{1,4\} \\
Y_1 \cup R'_2 &\cup Y_4 \cup \{f,5\} \\
R_3 &\cup Z \cup \{3\} \\
Y_3 &\cup R'_2 \cup R'_3 \cup \{2\}
\end{align*}
\tag{12}
$$

This completes our proof. \hfill \Box

5 Eliminate W_5 and C_5

Lemma 4. Let G be a $(2P_2, K_4, H_1, H_2)$-free graph with no pair of comparable vertices. If G contains an induced W_5, then $\chi(G) \leq 4$.

Proof. Let $W = C \cup \{u\}$ be an induced W_5 such that $C = 12345$ induces a C_5 in this order and u is complete to C. We partition $V \setminus C$ into subsets of Z, R_i, Y_i, F_i and U as in section 2. Note that $u \in U$. Since G is H_2-free, it follows that $F_i = \emptyset$ for each i. We prove the following properties.

(a) U is complete to R.

If $u' \in U$ is not adjacent to $r_i \in R_i$, then $C \setminus \{i\} \cup \{r_i, u\}$ induces an H_2. This contradicts our assumption that G is H_2-free. \hfill \Box

(b) R_i and R_{i+2} are anti-complete.

Suppose that $r_i \in R_i$ and $r_{i+2} \in R_{i+2}$ are not adjacent. By (a), u is adjacent to both r_i and r_{i+2}. This implies that $\{r_i, r_{i+2}, i+1, u\}$ induces a K_4. \hfill \Box

(c) R_i and Y_{i+1} are anti-complete.

It suffices to prove for $i = 1$. If $r_1 \in R_1$ and $y_2 \in Y_2$ are adjacent, then $C \setminus \{1\} \cup \{r_1, y_2\}$ induces an H_2, a contradiction. \hfill \Box

(d) Y_i and Y_{i+2} are anti-complete.

Since $U \neq \emptyset$, (d) follows directly from (10). \hfill \Box

It follows from (b)-(d) and (1)-(2) that G admits the following 4-coloring:

$$
\begin{align*}
R_1 &\cup R_3 \cup Z \cup \{1,3\} &\text{(b)} \\
R_2 &\cup Y_3 \cup R_4 \cup \{2,4\} &\text{(b)} \\
Y_1 &\cup R_5 \cup Y_4 \cup \{5\} &\text{(c)} \\
Y_2 &\cup Y_5 \cup U &\text{(d)}
\end{align*}
\tag{12}
$$

This completes our proof. \hfill \Box

Lemma 5. Let G be a connected $(2P_2, K_4, H_1, H_2, W_5)$-free graph with no pair of comparable vertices. If G contains an induced C_5, then $\chi(G) \leq 4$.

Proof. Let $C = 12345$ be an induced C_5 in this order. We partition $V \setminus C$ into subsets of Z, R_i, Y_i, F_i and U as in section 2. Since G is (H_2, W_5)-free, both U and F_i are empty. It then follows from Lemma 1 that $V(G) = C \cup Z \cup (\bigcup_{i=1}^{5} R_i) \cup (\bigcup_{i=1}^{5} Y_i)$. We first prove the following properties of R_i and Z.

19
(a) Each vertex in \(R_i \) is anti-complete to either \(R_{i-2} \) or \(R_{i+2} \).

It suffices to prove for \(i = 4 \). Suppose that \(r_1 \in R_4 \) is adjacent to a vertex \(r_i \in R_i \) for \(i = 1, 2 \). By (3), \(r_1 \) and \(r_2 \) are adjacent. This implies that \(\{r_1, r_2, 3, 4, 5, r_1\} \) induces a subgraph isomorphic to \(H_2 \). This contradicts the assumption that \(G \) is \(H_2 \)-free. ■

(b) \(R_i \) and \(Y_{i+1} \) are anti-complete.

It suffices to prove for \(i = 1 \). If \(r_1 \in R_1 \) and \(y_2 \in Y_2 \) are adjacent, then \(C \setminus \{1\} \cup \{r_1, y_2\} \) induces an \(H_2 \). ■

(c) Each vertex in \(Z \) cannot have a neighbor in each of \(Y_i \) for \(1 \leq i \leq 5 \).

Suppose that \(z \in Z \) has a neighbor \(y_i \in Y_i \) for each \(1 \leq i \leq 5 \). By (4), \(y_i \) and \(y_{i+1} \) are adjacent. This implies that \(y_i \) and \(y_{i+2} \) are not adjacent, for otherwise \(\{y_i, y_{i+1}, y_{i+2}, z\} \) induces a \(K_4 \). But now \(\{y_1, y_2, y_3, y_4, y_5, z\} \) induces a \(W_5 \). ■

(d) If \(z \in Z \) has a neighbor in each of \(Y_i, Y_{i+1}, Y_{i+2} \) and \(Y_{i+3} \), then \(Y_{i+4} \) is anti-complete to \(N(z) \).

It suffices to prove for \(i = 1 \). Let \(y_i \in Y_i \) be a neighbor of \(z \) for \(1 \leq i \leq 4 \). By (c), \(z \) is anti-complete to \(Y_5 \) and so \(N(z) \subseteq Y_1 \cup Y_2 \cup Y_3 \cup Y_4 \) by (1). Let \(y_5 \) be an arbitrary vertex in \(Y_5 \). By (4), \(y_5 \) is complete to \(Y_1 \cup Y_4 \). Therefore it remains to show that \(y_5 \) is complete to \(N(z) \cap (Y_2 \cup Y_3) \). If \(y_5 \) is not adjacent to a vertex \(y \in N(z) \cap (Y_2 \cup Y_3) \), then either \(3y_5 \) or \(2y_5 \) forms a \(2P_2 \) with \(zy \) depending on whether \(y \in Y_2 \) or \(y \in Y_3 \). ■

(e) If \(Z \) contains a vertex that has a neighbor in \(Y_i, Y_{i+1}, Y_{i+2} \) and \(Y_{i+3} \), then \(Y_{i+4} = \emptyset \).

Let \(z \in Z \) have neighbor in \(Y_i \) for \(1 \leq i \leq 4 \). By (c), \(z \) is anti-complete to \(Y_5 \). If \(Y_5 \) contains a vertex \(y \), then \(N(z) \subseteq N(y) \) by (d). This contradicts the assumption that \(G \) contains no pair of comparable vertices. ■

Let \(Y'_4 = \{y \in Y_4 : y \text{ is anti-complete to } Y_1\} \) and \(Y''_4 = Y_4 \setminus Y'_4 \). Note that each vertex in \(Y''_4 \) has a neighbor in \(Y_1 \) by the definition and so is anti-complete to \(Y_2 \) by (7). Similarly, let \(R'_4 = \{r \in R_4 : r \text{ is anti-complete to } R_1\} \) and \(R''_4 = R_4 \setminus R'_4 \). By (a), \(R''_4 \) is anti-complete to \(R_2 \). We now consider the following two cases.

Case 1. \(Z \) contains a vertex that has a neighbor in four \(Y_i \). It then follows from (e) that \(Y_j = \emptyset \) for some \(j \). We may assume by symmetry that \(j = 5 \). These facts and (b) imply that \(G \) admits the following 4-coloring:

\[
\begin{align*}
Y_1 &\cup R_5 \cup Y'_4 \cup \{5\}, \\
Y_2 &\cup R_3 \cup Y''_4 \cup \{3\}, \\
R_1 &\cup Z \cup R'_4 \cup \{1\}, \\
R_2 &\cup Y_3 \cup R''_4 \cup \{2, 4\}.
\end{align*}
\]

Case 2. Each vertex in \(Z \) has a neighbor in at most three \(Y_i \). Note that \(G - Z \) admits the following 4-coloring \(\phi \) by (b):

\[
\begin{align*}
I_1 &= Y_1 \cup R_5 \cup Y'_4 \cup \{5\}, \\
I_2 &= Y_2 \cup R_3 \cup Y''_4 \cup \{3\}, \\
I_3 &= R_1 \cup Y_5 \cup R'_4 \cup \{1\}, \\
I_4 &= R_2 \cup Y_3 \cup R''_4 \cup \{2, 4\}.
\end{align*}
\]
We now explain how to extend ϕ to Z. For this purpose we partition Z into the following two subsets:

$$Z_1 = \{ z \in Z : z \text{ is anti-complete to either } Y_3 \text{ or } Y_5 \},$$

$$Z_2 = Z \setminus Z_1.$$

We first claim that each vertex in Z_2 has a neighbor in Y_4. Suppose not. Let $z \in Z_2$ be a vertex such that z is anti-complete to Y_4. Since z has a neighbor in both Y_3 and Y_5, z is anti-complete to either Y_1 or Y_2 by the assumption that each vertex in z has a neighbor in at most three Y_i. If z is anti-complete to Y_1, then $N(z) \subseteq Y_2 \cup Y_3 \cup Y_5 \subseteq N(5)$. If z is anti-complete to Y_2, then $N(z) \subseteq Y_1 \cup Y_3 \cup Y_5 \subseteq N(3)$. In either case, it contradicts the assumption that G contains no pair of comparable vertices. This proves the claim. Consequently, Z_2 is anti-complete to $Y_1 \cup Y_2$. We now claim that each vertex in Z_2 is anti-complete to either Y'_4 or Y''_4. Suppose not. Let $z \in Z_2$ have a neighbor $y'_4 \in Y_4$ and a neighbor $y''_4 \in Y''_4$. By the definition of Y''_4, it follows that y''_4 has a neighbor $y_1 \in Y_1$. Then $3y_1$ and y'_4z induce a $2P_2$ since y'_4 is not adjacent to y_1. Now we can extend ϕ to Z by adding each vertex in Z_1 to I_3 or I_4 and by adding each vertex in Z_2 to I_1 or I_2.

Acknowledgments. Serge Gaspers is the recipient of an Australian Research Council (ARC) Future Fellowship (FT140100048) and acknowledges support under the ARC’s Discovery Projects funding scheme (DP150101134).

References

[1] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas. K_4-free graphs with no odd holes. *J. Combin. Theory, Ser. B*, 100:313–331, 2010.

[2] L. Esperet, L. Lemoine, F. Maffray, and G. Morel. The chromatic number of \{P_5, K_4\}-free graphs. *Discrete Math.*, 313:743–754, 2013.

[3] S. Gravier, C. T. Ho` ang, and F. Maffray. Coloring the hypergraph of maximal cliques of a graph with no long path. *Discrete Math.*, 272:285–290, 2003.

[4] A. Gyárfás. On ramsey covering numbers. *Coll. Math. Soc. János Bolyai*, 10:801–816, 1973.

[5] A. Gyárfás. Problems from the world surrounding perfect graphs. *Zastosowania Matematyki*, XIX:413–441, 1987.

[6] S. Wagon. A bound on the chromatic number of graphs without certain induced subgraphs. *J. Combin. Theory, Ser. B*, 29:345–346, 1980.