A meta-analytic review of prevalence for Brugada ECG patterns and the risk for death

Xiao-Qing Quan, MD, PhD\textsuperscript{a}, Song Li, MD\textsuperscript{b}, Rui Liu, MD\textsuperscript{b}, Kai Zheng, MD, PhD\textsuperscript{a}, Xiao-Fen Wu, MD, PhD\textsuperscript{b}, Qiang Tang, MD, PhD\textsuperscript{c,}\textsuperscript{*}

1. Introduction

Since 1992, when Brugada syndrome (BrS) was first described,\textsuperscript{1,11} the BrS has been universally recognized as a cause of arrhythmia, syncope, ventricular fibrillation (VF), and sudden cardiac death (SCD) without structural heart disease.\textsuperscript{2} BrS is responsible for up to 20\% of SCDs (worldwide) in patients with structurally normal hearts.\textsuperscript{3,4} The prevalence of Brugada ECG pattern (BrEP) is different in different regions, and its mean prevalence over the world is unknown. The risk of people with BrEP for death remains unknown. We performed a meta-analysis to determine the prevalence of BrEP and risk ratio (RR) for death.

Methods: Relevant studies published between July 1, 2000 and August 20, 2016, which contain prevalence and RR for all-cause death and cardiac death, were included. The prevalence and RR are analyzed using meta-analysis.

Results: We finally retrieved 24 studies of the prevalence for BrEP and 5 studies of the RR for all-cause death and cardiac death. The worldwide mean prevalence of BrEP is 0.4\%, with highest in Asia (0.9\%) and lowest in North America (0.2\%). Additionally, the mean prevalence in male is 0.9\%, whereas it is 0.1\% in female. The RR of BrEP for all-cause death is 0.78 (95\% confidence interval 0.45–1.37), and for cardiac death it is 0.92 (95\% confidence interval 0.23–3.66).

Conclusion: The prevalence of BrEP is about 0.4\% around the world with different prevalence in region and sex. Our study shows that BrEP may not be taken as a predictor of all-cause death and cardiac death.

Abbreviations: BrEP = Brugada ECG pattern, BrS = Brugada syndrome, RR = risk ratio, SCD = sudden cardiac death, VF = ventricular fibrillation.

Keywords: Brugada ECG pattern, Brugada syndrome, risk ratio, sudden cardiac death, ventricular fibrillation

Editor: Manal Elbibra, XQ and SL contributed equally to the article, so they should be considered as the co-first authors.

Authors’ contributions: QT and XQ conceived and designed the experiments; SL and RL performed the experiments; SL, RL, KZ, and XW analyzed the data; QT and SL contributed to the writing of the manuscript; and XQ revised the manuscript.

Funding: This work is supported by the grant from the National Natural Science Foundation of China (81301053).

The authors have no conflicts of interest to disclose.

\textsuperscript{a} Department of Geriatrics, \textsuperscript{b} Second Clinical School, Tongji Hospital, \textsuperscript{c} Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.

Correspondence: Qiang Tang, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China (e-mail: tangqiang_tjmu@hust.edu.cn).

Copyright © 2016 the Author(s). Published by Wolters Kluwer Health, Inc. All rights reserved.

This is an open access article distributed under the Creative Commons Attribution License 4.0 (CCBY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Medicine (2016) 95(65643)

Received: 23 August 2016 / Received in final form: 5 November 2016 / Accepted: 19 November 2016

http://dx.doi.org/10.1097/MD.0000000000005643

2. Methods

This systematic review and meta-analysis was launched based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. There are no ethical issues involved in our study as our data were based on published studies.
2.1. Definition of Brugada ECG

Brugada ECG has been divided into 3 types, defined as follows:\(^6\):

- **Type I**: Prominent coved ST-T segment with a J-wave amplitude, or ST-segment elevation ≥2 mm at the peak with a negative T-wave without isoelectric separation followed.
- **Type II**: High take-off ST segment with a J-wave amplitude ≥2 mm followed by gradually decreasing ST-segment elevation (≥1 mm above the baseline), and a biphasic or positive T-wave that arises saddle-back configuration.
- **Type III**: Right precordial ST-segment elevation <1 mm of a saddle-back type or/with coved type.

2.2. Study selection

We performed a comprehensive and systematic search of retrospective, prospective, randomized, or nationwide studies in PubMed, EMBASE, Medline, and The Cochrane Library using terms “Brugada ECG patterns,” “Brugada syndrome,” “prevalence of Brugada,” “death,” “prognosis,” “mortality,” and “meta-analysis.” Only the studies whose patients have BrEP will be included in our study. As the prevalence of BrEP has been estimated about 0.5\(^{10}\), we only choose the studies whose total number of the patients is more than 200. And, as we hope to find out the regional prevalence of BrEP, the studies are also limited to regional investigations which were made in a random group of people.

The detailed selection process is listed in Fig. 1. We searched 626 studies totally, but only 24 studies can be included for the calculation of prevalence. Only 5 of the 24 studies can be used for meta-analysis of risk ratio (RR). According to the endpoint, we performed meta-analysis of the risk of BrEP for all-cause death and cardiac death.

2.3. Data extraction

From each retrieved study, the following data were extracted: name of the lead investigator and year of the paper, the region or country where the study was performed, sample size, proportions of men and women, the mean age, follow-up time, total prevalence, male prevalence and female prevalence, types of BrEP, the primary and secondary endpoints, RR, or hazard ratio (HR) with 95% confidence interval (CI).

The following criteria are used for the assessment of the risk of bias and methodological quality: definition of BrEP, sample size, study design, inclusion criteria, sex ratio, and the duration of the follow-up.

2.4. Data synthesis

With the basis of random-effects model developed by DerSimonian and Laird, the Begg test, which has been demonstrated with Cochran \(Q\) test and \(I^2\) statistic of the homogeneity of the results, was used for the evaluation of publication bias. And finally, we...
omitted each study 1 at a time to perform sensitivity analysis to examine the influence of each study on the pooled estimation. RR and 95% CI were calculated or recalculated for each study.11,13

Chi-square-based Q test was performed for the analysis of the heterogeneity of reported prevalence with 95% CI.12,13 After the heterogeneity test, we found important variations between studies. So, with the purpose of getting better results, we used the random-effects model14,15 for the estimation of the prevalence of BrEP.

The results are shown in forest plots (the point estimations and their 95% CI). Statistical significance was set at a P value <0.05, and all tests performed were 2-sided.16 Meta-analysis was performed using Stata version 12 (StataCorp LP, College Station, TX).

3. Results

After search and selection, we finally found 24 articles to be included in our study (Table 1).17–40 Only 2 studies30,32 have included merely type I BrEP, the rest studies have included all the 3 types of ECG patterns. Eleven of the 24 studies21–23,25,26,28–30,34,38,40 have also studied the sex differences for the prevalence of BrEP. Five studies21–23,33,38,40 have studied the RR of all-cause death and cardiac death for the patients with BrEP. All the 5 studies21–23,33,38,40 we used for meta-analysis of RR included all the 3 ECG patterns.

All these studies cover an extensive area all over the world, including Asia, Europe, and North America. According to these studies, the mean prevalence of BrEP across the world is 0.4% (Fig. 2, Table 2). The results of regional prevalence of BrEP are presented in Table 2. The prevalence of BrEP is 0.9%, 0.3%, and 0.2% in Asia,19,21,24,25,28,30,32–34,38–40 and Europe17,22,23,26,29,31,36,37 and North America18,27,33, respectively (Table 2).

Eleven articles21–23,25,26,28–30,34,38,40 have studied the sex differences of the prevalence of BrEP (Table 2). The mean prevalence of BrEP in male is 0.9%, whereas that in female is 0.1% in the world. Additionally, the prevalence in male is always higher than that in female in all regions. The prevalence of both male (1.9%) and female (0.2%) is the highest in Asia.

Five studies21–27,33,38,40 have studied the RR of all-cause death and cardiac death for the people with BrEP (Table 3). The RR of BrEP for all-cause death is 0.78 (95% CI 0.45–1.37; Fig. 3), and for cardiac death it is 0.92 (95% CI 0.23–3.66; Fig. 4).

4. Discussion

This study yielded the following novel findings: the prevalence of BrEP is about 0.4% around the world with different prevalence in region and sex; BrEP may not be taken as a predictor of all-cause death and cardiac death.

The right bundle-branch block and ST-segment elevation in the right precordial leads (V1–V3) are the main characteristics of BrEP.25 BrS has been considered as a cause of arrhythmia, syncope, VF, and SCD without structural heart disease.22 According to the 2013 consensus report, the finding of type I Brugada ECG pattern is the basis of the diagnosis of BrS.7 However, some experts have suggested that either symptoms such as agonal nocturnal respiration, cardiac arrest, unexplained syncope, and documented ventricular tachycardia/VF, or positive family history such as diagnosed BrS in a first-degree relative or unexplained SCD <45 years be included in the diagnostic criteria.13 If a type I Brugada ECG pattern is observed without any clinical criteria, this should be referred to as “idiopathic BrEP” and not as BrS.41,42

The present study shows that the prevalence of BrEP is significantly different between Asia, Europe, and North America.

Table 1

Summary characteristics of prevalence of BrEP in each study.

| Study               | Region                | Year | Total (N) | Men (%) | Mean age | Prevalence (%) | Men with BrEP (%) | Women with BrEP (%) | Brugada ECG Types | Follow-up |
|---------------------|-----------------------|------|-----------|---------|----------|----------------|-------------------|---------------------|-------------------|-----------|
| Hermida et al[17]   | France                | 2000 | 1000      | 63      | NA       | 6.1            | NA                | NA                  | I, II, III         | 49 ± 30 mos |
| Monroe and Littmann[18] | America             | 2000 | 12000     | NA      | > 18     | 0.43           | NA                | NA                  | I, II, III         | 2 yrs     |
| Vishik et al[19]    | Israel                | 2000 | 592       | 58.4    | 36 ± 10  | 0.85           | NA                | NA                  | I, II, III         | NA        |
| Funahashi et al[20] | Japan                 | 2001 | 8612      | 69.5    | 49.2     | 0.14           | NA                | NA                  | I, II, III         | NA        |
| Miyazaki et al[21]  | Japan                 | 2001 | 13929     | 26.5    | 58 ± 10  | 0.7            | 2.14              | 0.018               | I, II              | 2.6 ± 0.3 yrs|
| Junttila et al[22]  | Finland               | 2004 | 3621      | 91.1    | 19–60    | 0.61           | 0.61              | 0.37                | I, II, III         | 19 ± 2 yrs |
| Blangy et al[23]    | France                | 2005 | 35309     | 47      | 37.2     | 0.3            | 0.08              | 0.03                | I, II, III         | 30 mos     |
| Shin et al[24]      | Korea                 | 2005 | 225       | 100     | 44 ± 13  | 1.3            | NA                | NA                  | I, II, III         | NA        |
| Ot et al[25]        | Japan                 | 2005 | 21944     | 51.4    | 6–7      | 0.02           | 0.017             | 0.019               | I, II, III         | 6.8 ± 1.0 yrs|
| Bozkurt et al[26]   | Southern Turkey       | 2006 | 1238      | 54.2    | 38 ± 17.6| 0.48           | 0.74              | 0.17                | I, II, III         | 9–84 mos   |
| Ito et al[27]       | Japanese-American     | 2006 | 8006      | NA      | 45–68    | 0.29           | NA                | NA                  | I, II              | 30 yrs    |
| Bigi et al[28]      | Southern Iran         | 2007 | 3695      | 46.0    | 38 ± 11.9| 0.54           | 3.68              | 1.62                | I, II              | NA        |
| Letonas et al[29]   | Greece                | 2007 | 11488     | 57.8    | 36 ± 19.2| 0.22           | 0.35              | 0.04                | I, II, III         | 24 ± 12 mos|
| Kii et al[30]       | China                 | 2008 | 1817      | 62.2    | NA       | 7.26           | 10.52             | 1.86                | I                  | NA        |
| Gallagher et al[31] | Italy                 | 2008 | 12012     | 90.8    | 39       | 0.26           | NA                | NA                  | I, II, III         | 10.1 ± 5.5 yrs|
| Givarcie-Domingo et al[32] | Philippines    | 2008 | 3907      | NA      | ≥ 20     | 2.1            | 3.1               | 1                   | I                  | NA        |
| Tsuji et al[33]     | Japan                 | 2008 | 15904     | 26      | 58 ± 10  | 0.7            | NA                | NA                  | I, II, III         | 7.8 ± 1.6 yrs|
| Wajed et al[34]     | Pakistan              | 2008 | 1100      | 64.7    | NA       | 0.8            | 0.8               | 0.5                 | I, II, III         | NA        |
| Patel et al[35]     | America               | 2009 | 162590    | NA      | 0.012    | NA             | NA                | NA                  | I, II, III         | NA        |
| Pecini et al[36]    | Denmark               | 2010 | 18974     | NA      | ≥ 20     | 0.07           | NA                | NA                  | I, II              | ≥ 33 yrs   |
| Schukro et al[37]   | Austria               | 2010 | 52097     | NA      | 43.2–11.6| 0.05           | NA                | NA                  | I, II, III         | NA        |
| Juang et al[38]     | Taiwan                | 2011 | 20562     | 38.8    | 49 ± 21  | 0.13           | 0.14              | 0.12                | I, II, III         | 57.1 ± 15.8 mos |
| Uhrn et al[39]      | Korea                 | 2011 | 10867     | 100     | 20.9 ± 4.5| 0.90           | NA                | NA                  | I, II, III         | NA        |
| Juang et al[40]     | Taiwan                | 2015 | 5214      | 48.5    | 69 ± 8   | 1.38           | 2.21              | 0.60                | I, II, III         | 4 yrs      |

BrEP = Brugada ECG pattern, NA = not available.
It shows that the racial differences, geographical differences, and regional tradition may play roles in the prevalence of BrEP. The prevalence in Asia is much higher than that in the other places of the world, over 4 times as much as it is in North America. And the prevalence in Europe is close to the average level of the world, with a prevalence of 0.3%. Our study shows that men are over 4 times easier to get BrEP than women (Table 2). These results are consistent with previous studies,[5,6,43] and we confirm the existence of the regional and sex difference in prevalence of BrEP.

Our study shows that the RR of BrEP for all-cause death and cardiac death are 0.78 and 0.92, respectively, for people with BrEP. It shows that BrEP may not be taken as a predictor of all-cause death and cardiac death. However, according to the previous observations, the people with BrEP are at high risk of sudden death.[44–47] These studies are mainly hospital-based studies. The people included in these studies have symptoms like syncope and VF, or history of SCD. The studies we included are community-based studies[21,40] and population-based studies,[27,33,38] in which the prevalence of BrEP is close to the world average.

(Table 2). It shows that the racial differences, geographical differences, and regional tradition may play roles in the prevalence of BrEP. The prevalence in Asia is much higher than that in the other places of the world, over 4 times as much as it is in North America. And the prevalence in Europe is close to the average level of the world, with a prevalence of 0.3%. Our study shows that men are over 4 times easier to get BrEP than women (Table 2). These results are consistent with previous studies,[5,6,43] and we confirm the existence of the regional and sex difference in prevalence of BrEP.

![Figure 2. Result of the mean global prevalence of Brugada ECG pattern (BrEP).](image)

Table 2

| Region       | Mean prevalence (%) | Mean prevalence in male (%) | Mean prevalence in female (%) |
|--------------|---------------------|-----------------------------|------------------------------|
| Asia         | 0.9[19–21,24,25,28,30–34,38–40] | 1.0[21,25,28,30,34,38,40] | 0.2[21,25,28,30,34,38,40] |
| Europe       | 0.3[17,22,23,26,29,31,36,37] | 0.4[22,23,26,29] | 0.004[22,23,26,29] |
| North America| 0.2[18,27,35]       | NA                          | NA                           |
| The world    | 0.4                 | 0.9                         | 0.1                          |

| Study        | Total | All-cause death | Cardiac death | Total | All-cause death | Cardiac death |
|--------------|-------|-----------------|---------------|-------|-----------------|---------------|
| Miyasaka et al[21] | 98    | 1               | NA            | 15331 | 139             | NA            |
| Ito et al[27]   | 23    | 0               | NA            | 7983  | 339             | NA            |
| Tsuji et al[33] | 98    | 4               | 1             | 13806 | 612             | 142           |
| Juang et al[40] | 26    | 4               | 0             | 20536 | 2899            | 207           |
| Juang et al[40] | 173   | 2               | 0             | 5041  | 139             | 26            |

Table 3

| Study        | With BrEP | Without BrEP |
|--------------|-----------|--------------|
| Miyasaka et al[21] | 98 | 13331        |
| Ito et al[27]     | 23 | 339          |
| Tsuji et al[33]   | 98 | 13806        |
| Juang et al[40]   | 26 | 20536        |
| Juang et al[40]   | 173| 5041         |

BrEP = Brugada ECG pattern, NA = not available.
participants may not have symptoms or history as mentioned above. Another possible reason for the negative result of present study is that all the studies \cite{21,27,33,38,40} we used for meta-analysis of RR included all the 3 types of ECG patterns. Previous studies showed that type I BrEP is at high risk, whereas types II and III are at low risk.\cite{2,6,42} Further studies are needed to estimate type I BrEP for all-cause death and cardiac death.

4.1. Limitations

Our study has the following limitations:

1. The subjects in our study are mostly from Asia and their parameters could not represent the state of the whole population worldwide.

2. We included the people with BrEP into our study, and the symptoms such as cardiac arrest and unexplained syncope were not considered as criteria. Further studies based upon both BrEP and clinical symptoms, or history, are needed.

3. Most of the studies in our research included all the 3 ECG patterns. Further studies which focus on type I BrEP are needed.

5. Conclusions

The prevalence of BrEP in the general population is about 0.4\%, whereas it differs extensively in terms of region and sex. BrEP may not be taken as a predictor of all-cause death and cardiac death.
References

[1] Brugada P, Brugada J. Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome. A multicenter report. J Am Coll Cardiol 1992;20:1391–6.

[2] Brugada P. Brugada syndrome: more than 20 years of scientific excitement. J Cardiol 2016;67:215–20.

[3] Zheng J, Zhou F, Su T, et al. The biophysical characterization of the first SCN5A mutation R1512W identified in Chinese sudden unexplained nocturnal death syndrome. Medicine (Baltimore) 2016;95:e3836.

[4] Chen Z, Mu J, Chen X, et al. Sudden unexplained nocturnal death syndrome in central China (Hubei): a 16-year retrospective study of autopsy cases. Medicine (Baltimore) 2016;95:e2882.

[5] Blangy H, Sadoul N, Coutelour JM, et al. Prevalence and prognosis of Brugada-type ECG pattern in a young and middle-aged Finnish population. Eur Heart J 2004;25:874–8.

[6] Gehi AK, Duong TD, Metz LD, et al. Risk stratiﬁcation, and management. Curr Opin Cardiol 2016;31:37–45.

[7] Priori SG, Wilde AA, Horie M, et al. HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes: document endorsed by HRS, EHRA, and AFPSR in May 2013 and by ACCF, AHA, PACES, and AEPC in June 2013. Heart Rhythm 2013;10:1932–63.

[8] Kurihara K, Ohtsuki M, Arai Y, et al. Prevalence of the Brugada-type ECG in the general Japanese population: a nation-wide community-based study (HALST cohort). Circ J 2013;77:2103–9.

[9] Ohtsuki T, Umemura S, Akita T, et al. Prevalence and incidence of the Brugada-type ECG in central Japan: a 16-year retrospective study of 7,621 patients. J Electrocardiol 2015;48:339–43.

[10] Lyu T, Zhao Y, Zhang T, et al. Natriuretic peptides as an adjunctive diographic criteria for diagnosis of Brugada pattern: a consensus report. J Electrocardiol 2012;45:433–42.

[11] Ayub Med Coll Abbottabad 2008;20:121–4.

[12] Patel SS, Anees S, Ferrick KJ. Prevalence of a Brugada pattern electrocardiogram in an urban population in the United States. Pac Clin Electrophysiol 2009;32:704–8.

[13] Pecini R, Cedergreen P, Theilade S, et al. The prevalence and relevance of Brugada electrocardiogram in the Danish general population: data from the Copenhagen City Heart Study. Europace 2010;12:982–6.

[14] Schukro G, Berger T, Stix G, et al. Regional prevalence and clinical beneﬁt of implantable cardioverter deﬁbrillators in Brugada syndrome. Int J Cardiol 2010;144:191–4.

[15] Lyu T, Zhao Y, Zhang T, et al. Natriuretic peptides as an adjunctive diographic criteria for diagnosis of Brugada pattern: a consensus report. J Electrocardiol 2012;45:433–42.

[16] Yeung HM, Hung MW, Lau CF, et al. Cardioprotective effects of coronary plaque and distal embolization after coronary intervention in acute coronary syndrome patients: insights from a meta-analysis of virtual histology-intravascular ultrasound studies. PLoS One 2014;9:e106583.

[17] Viskin S, Fish R, Eldar K, et al. Prevalence of the Brugada sign in idiopathic ventricular fibrillation and healthy controls. Heart 2000;84:31–6.

[18] Furushashi M, Uno K, Tsuchihashi K, et al. Prevalence of asymptomatic ST segment elevation in right precordial leads with right bundle branch block (Brugada-type ST shift) among the general Japanese population. Heart 2001;86:161–6.

[19] Hirose A, Maruyama S, Inada S, et al. Prevalence and clinical signiﬁcance of the Brugada-type ECG in Japanese elderly men with follow-up of three decades. Am J Med 2006;131:25–9.

[20] Antzelevitch C, Brugada P, Borggrefe M, et al. Brugada syndrome: report of the Ad Hoc Scientiﬁc Task force of the Working Group of Arrhythmias of the European Society of Cardiology. Europace 2005;7(Suppl 2):i54–62.

[21] Brugada R, Campuzano O, Sarquella-Brugada G, et al. Brugada syndrome. Methodist Debakey Cardiovasc J 2014;10:25–8.

[22] Antzelevitch C, Brugada P, Borggrefe M, et al. Brugada syndrome: report of the Ad Hoc Scientiﬁc Task force of the Working Group of Arrhythmias of the European Society of Cardiology. Europace 2005;7(Suppl 2):i54–62.

[23] Postema PG. About Brugada syndrome and its prevalence. Europace 2005;69:1064–7.

[24] Kim JY, Oh KS, Hong SH, et al. Prevalence of the Brugada-type ECG in Korean men and women: a population-based study. J Am Coll Cardiol 2015;66:1046–7.

[25] Viskin S, Fish R, Eldar K, et al. Arrhythmogenic marker for sudden unexplained death syndrome in Thai men. Circulation 1997;96:2595–600.

[26] Priori SG, Napolitano C, Gasparini M, et al. Clinical and genetic heterogeneity of right bundle branch block and ST-segment elevation syndrome: a prospective evaluation of S2 families. Circulation 2000;102: 2309–15.