Neonatal form of biotin-thiamine-responsive basal ganglia disease. Clues to diagnosis

Aydan Değerliyurt1, Mehmet Gündüz2, Serdar Ceylaner3, Özlem Ünal2, Sevim Ünal4

Departments of 1Pediatric Neurology, 2Pediatric Metabolism and Nutrition, and 4Neonatology, Ankara Pediatrics, Hematology-Oncology Training and Research Hospital; 3Intergen Genetics Centre, Ankara, Turkey. E-mail: degerliyurta@gmail.com

Received: 27th January 2018, Revised: 19th March 2018, Accepted: 20th March 2018

SUMMARY: Değerliyurt A, Gündüz M, Ceylaner S, Ünal Ö, Ünal S. Neonatal form of biotin-thiamine-responsive basal ganglia disease. Clues to diagnosis. Turk J Pediatr 2019; 61: 261-266.

Biotin-thiamine-responsive basal ganglia disease is characterized by seizures, dystonia and encephalopathy attacks, with an acute-subacute onset in childhood. It causes cerebral damage especially with caudate head and putamen involvement and may lead to severe sequelae and even death if left untreated. We report a patient with the neonatal form of biotin-thiamine-responsive basal ganglia disease who presented with encephalopathy and lactic acidosis in the neonatal period together with the diagnostic magnetic resonance imaging (MRI) clues. MRI in the neonatal period revealed bilateral involvement of the putamen, thalami, and perirolandic cortical regions. However, MRI obtained at 32 months revealed involvement of the caudate nuclei in addition to the putamen and thalami. The neuroimaging findings of our patient and relevant literature indicate that patients with biotin-thiamine-responsive basal ganglia disease who are symptomatic in the neonatal period have putamen, thalami, and perirolandic cortical involvement. However, these patients do not have caudate involvement, unlike the patients who present in childhood.

Key words: basal ganglia, biotin-thiamine-responsive basal ganglia disease, Leigh syndrome, SLC19A3, thiamine transporter 2.
Reference	Patient 1: 1 M	Patient 2: 2 M	Patient 3: 2 M	Patient 4: 2 M
Yamada et al. 2010	Bad temper, opisthotonic posture (1 M),	Epileptic spasms (2.5 M),	Same as the first patient	Poor feeding, vomiting, irritability
Neurological findings	Absent head control, mental retardation, dysphagia, pyramidal signs, spastic diplegia	(At 4 months)	Same as the first patient	Same as the first patient
Laboratory				
MRI/ spectroscopy				
Treatment	No treatment	No treatment	Thiamine 20 mg/kg/day (at age 1 months)	Biotin(5 mg/kg/day) (At age 19 months),
Prognosis	Alive at age 18 years, bedridden, gastrostomy			Alive at age 6 years, bedridden, gastrostomy

Table I. Genetically Confirmed Neonatal and Early Infantile Onset BTBGD Cases.
Gerards et al. 2013	Patient 5:	Sucking difficulty, lethargy, convulsions	Hypotonia, hyperreflexia, positive Babinski sign	Slightly increased lactate in blood and CSF	Hyperintensity in the basal ganglia, thalami, mesencephalon, brainstem. (Caudate sparing)	No treatment	Died after 4 weeks
Gerards et al. 2013	Patient 6: 1 M	irritability, alternating hypotonia and hypertonia	Not mentioned	(At age 1 year) CT: hypodense areas in basal ganglia, thalami (Caudate sparing)	Severe mental retardation, gastrosomy, died at age 20 years		
Gerards et al. 2013	Patient 7: 1 M	Inconsolable crying, hypertonia, seizures at age 1 year	Not mentioned	(At age 6 years) hyperintensity in the putamen, thalami, dentate nucleus and to a lesser extent in the globus pallidus (Caudate sparing)	Severe psychomotor retardation, gastrosomy, died at age 15 years		
Gerards et al. 2013	Patients 8,9,10,11	These children had a disease course and features similar to patient 6 and 7	Not mentioned	(In mitochondrial cocktail)			
Haack et al. 2014	Patient 1: neonatal	Neonatal onset Leigh syndrome	Elevated lactate in blood, Symmetrical basal ganglia and brainstem lesions, pre- and postcentral gry/lactate peak	Biotin 10 mg/kg/day, Thiamine 15 mg/kg/day (from the onset)	Adequate developmental progress at age 4 months	No treatment	Died at age 2 months
Haack et al. 2014	Patient 2: 18 days	irritability, seizures, vomiting	Elevated lactate in blood and CSF Basal ganglia and brainstem lesions, pre- and postcentral gry/lactate peak	Biotin 10 mg/kg/day, Thiamine 15 mg/kg/day (from the onset)	Adequate developmental progress at age 4 months	Developed but dystonic symptoms present, moderate delays in fine and gross motor functions	Died at age 8 weeks
Ygberg et al. 2016	Patient 1: 5 weeks	Poor feeding, reduced contact	Normal lactate in CSE increased lactate in organic acid analysis Abnormal signal intensity in basal ganglia, thalamus, brainstem, and widespread cortical areas including pre- and postcentral gry	Biotin 10 mg/kg/day, Thiamine 60 mg/kg/day, (from the onset)	Alive but dystonic symptoms present, moderate delays in fine and gross motor functions	No treatment	Died at age 8 weeks
Ygberg et al. 2016	Patient 2: 5 weeks	Poor feeding, reduced responsiveness	Normal lactate in blood Abnormal signal intensity in basal ganglia, thalamus and widespread cortical areas including pre- and postcentral gry /lactate peak	Biotin 10 mg/kg/day, Thiamine 60 mg/kg/day, (from the onset)	Alive but dystonic symptoms present, moderate delays in fine and gross motor functions	No treatment	Died at age 8 weeks
Kevelam et al. 2013	7 patients, symptom onset at 8 weeks to 5.5 months, mean 2.7 months	Irritability, seizures or suspected seizures, infantile spasms, feeding difficulties, failure of achieving developmental milestones	Progressive spasticity, decreased contact, pyramidal signs, optic atrophy	Lactate elevated in 5 patients, Hyperintensity in the thalamus, putamen, globus pallidus, caudate nucleus, dentate nucleus, and widespread cortical areas /lactate peak	Rapid and severe regression of neurological functions, 6 patients died before the age 2 years, 1 patient died at the age of 4.5 years		
Kohrogi et al. 2015	5 M	Bending backward, irritability, Rigidly, increased deep tendon reflexes, loss of consciousness	Slightly increased lactate in serum and CSF Bilateral high signal in subcortical white matter, thalami and basal ganglia	Biotin 20 mg/day, thiamine 100 mg/day (from the onset)	Alive aged 13 months, his development is catching up to other children his age		
of the patient had died at the age of 2 months with a diagnosis of Leigh syndrome. The patient’s cerebrospinal fluid (CSF) biochemistry was normal. There was no growth on culture. The blood lactate level was 51 mg/dl (normal <19.8 mg/dl) and the pyruvate level was 1.04 mg/dl (normal <0.7 mg/dl). The lactate to pyruvate ratio was markedly increased. Detailed metabolic studies (ammonia level, blood gases, blood and CSF amino acids, urine organic acids, acylcarnitines, biotinidase activity) revealed normal results. Cerebral MRI showed edema and signal increase in bilateral putamen, globus pallidus, thalamus and pons dorsal segments and the perirolandic area together with diffusion restriction (Fig. 1). The patient was considered to be suffering from Leigh syndrome and was started carnitine, coenzyme Q₁₀, and B group vitamins (half tablet daily of Benexol® containing 250 mg thiamine HCl). The seizures resolved completely, and the patient was discharged on phenobarbital and phenytoin treatments. No seizures occurred until the patient was 5 months old when jerks and flexor spasms started and hypsarrhythmia was detected on electroencephalography (EEG). The MRI showed that the signal changes and diffusion restriction in the initial MRI had disappeared when the patient was 6 months old (Fig. 2). MR spectroscopy at the age of 1 year revealed increased lactate peak.

Immunohistochemical analysis of the muscle biopsy at 2 years of age was normal. The patient eventually developed microcephaly, hypotonia, motor retardation and intermittent dystonia during follow-up. MRI at the age of 32 months revealed signal changes at bilateral caudate heads and putamen extending to the thalami and ventral globus pallidus together with cerebral atrophy (Fig. 3), leading to a suspicion of biotin-thiamine-responsive basal ganglia disease. After obtaining parental written informed consent, we planned to perform SLC19A3 gene sequence analysis but could not manage amplification with any one of the amplicons using in-house designed primers. We then decided to perform deletion analysis with positive and negative control samples, which revealed a homozygote deletion of the complete gene. As this is a very severe mutation, this abnormality causes complete absence and loss of function of the gene products.

The patient used the recommended vitamin treatment irregularly until the time of diagnosis. Thiamine 30 mg/kg/day and biotin 10 mg/kg/day were started at the age of 3 years.
The patient is currently 5 years old. Head control is present, but he cannot sit unsupported. He recognizes family members, can smile, understands some simple commands, and can speak a few words. However, he cannot play with his toys and the intermittent dystonia continues. Deep tendon reflexes are bright, Babinski reflex is bilaterally positive and extremity spasticity is present together with axial hypotonia. He suffers one or two seizures daily and is therefore on triple antiepileptic treatment.

Discussion

Early diagnosis of BTBGD is vital importance as only 6 of the 29 reported patients who became symptomatic in the newborn period or early infancy (<6 months) are still alive (Table I). Swelling and vasogenic edema in the putamen and bilateral caudate nucleus heads are typical on MRI. Signal changes can also be seen in the mesencephalon, cortical-subcortical regions, and thalamic nuclei while the globus pallidus is usually protected in the acute stage of the childhood form.1,13 Our patient did not show caudate involvement on the early MRI in neonatal period unlike childhood onset patients.

Some studies have also emphasized that involvement of the basal ganglia, thalami, brain stem, cerebellum, and perirolandic cortical area were present but the caudate nuclei were preserved on MRIs in 12 newborns.4,5,12 Similar results were also reported in the acute MRIs of 4 patients with the neonatal Leigh phenotype in two other studies. No information on caudate involvement was provided in either study but the caudate nuclei are seen to be preserved in the figures.6,7 Another 2 studies have reported involvement of the basal nuclei including the caudates, thalami, white matter, cortex, pons and midbrain. However, these patients had presented in early infancy and not in the neonatal period.8,11 These results indicate that those who are symptomatic in the neonatal period do not have caudate involvement, unlike patients presenting in later periods.4-7 However, these patients can show caudate involvement after a while, as also seen in our case. The different age-related energy requirements of the various brain regions or the differing localization of gene expression by age could lead to the lack of involvement from the disorder in the caudate nuclei in the neonatal period.4

Another feature of our patient was the involvement of the perirolandic cortical areas in the acute stage. Cortical involvement in the acute stage has been reported in newborns with detailed MRI reports. Basal ganglia involvement accompanying cortical involvement is a well-known feature of the childhood form of BTBGD.9

A few patients who became symptomatic in the newborn period or early infancy (<6 months) were alive up to the time of reporting. Four of the surviving 6 patients were diagnosed and treated early.4,6,7,12,14 Our patient was only diagnosed at 3 years and not during the

Fig. 3. (a-b) Axial T2 images, (c) FLAIR image at the age of 32 months revealed hyperintense signal changes in bilateral caudate nucleus heads and putamen extending to the thalami and ventral globus pallidus together with widespread cerebral atrophy.
newborn period when he first presented but he had received irregular thiamine and biotin within the mitochondrial cocktail up to the time of diagnosis. Perhaps this is the reason for survival despite severe sequelae. Recognizing the MRI findings of the neonatal form is therefore of great importance in making the diagnosis early and starting treatment before sequelae develop.

One of the major causes of lactic acidosis and encephalopathy in the newborn is Leigh syndrome due to pyruvate dehydrogenase complex deficiency. However, the lactate/pyruvate ratio is normal and neuroimaging frequently shows globus pallidus involvement and structural brain abnormalities in pyruvate dehydrogenase complex deficiency.\(^\text{12,15}\) We therefore did not consider pyruvate dehydrogenase complex deficiency in our patient. Leigh syndrome shows pronounced putamen involvement together with caudate nuclei and brainstem involvement on MRI. Basal ganglia and cortical involvement together is not typical of Leigh syndrome.\(^\text{16}\) Moreover, thalamic lesions were found at a low rate in Leigh syndrome.\(^\text{17}\) The presence of marked thalamic involvement in newborns with the SLC19A3 mutation is another important finding against Leigh syndrome (Table I).

In conclusion, one must consider biotin-thiamine-responsive basal ganglia disease, one of the rare Leigh syndrome phenotypes that can be treated, if putamen, thalamic and cortical involvement is present while the caudate nuclei are preserved on MRI in patients who present with lactic acidosis and encephalopathy in the neonatal period. Treatment should be started promptly to ensure a better prognosis and avoid the development of sequelae and death.

REFERENCES

1. Alfadhel M, Almuntashri M, Jada RH, et al. Biotin-responsive basal ganglia disease should be renamed biotin-thiamine-responsive basal ganglia disease: a retrospective review of the clinical, radiological and molecular findings of 18 new cases. Orphanet J Rare Dis 2013; 8: 83.

2. Zeng WQ, Al-Yamani E, Aciero JS Jr, et al. Biotin-responsive basal ganglia disease maps to 2q36.3 and is due to mutations in SLC19A3. Am J Hum Genet 2005; 77: 16-26.

3. Subramanian VS, Marchant JS, Said HM. Biotin-responsive basal ganglia disease-linked mutations inhibit thiamine transport via hTHTR2: biotin is not a substrate for hTHTR2. Am J Physiol Cell Physiol 2006; 291; C851-C859.

4. Pérez-Dueñas B, Serrano M, Rebollo M, et al. Reversible lactic acidosis in a newborn with thiamine transporter-2 deficiency. Pediatrics 2013; 131: e1670-e1675.

5. Gerards M, Kamps R, van Oevelen J, et al. Exome sequencing reveals a novel Moroccan founder mutation in SLC19A3 as a new cause of early-childhood fatal Leigh syndrome. Brain 2013; 136 (Pt3): 882-890.

6. Haack TB, Klee D, Strom TM, et al. Infantile Leigh-like syndrome caused by SLC19A3 mutations is a treatable disease. Brain 2014; 137 (Pt 9) : e295.

7. Ygberg S, Naess K, Eriksson M, et al. Biotin and thiamine responsive basal ganglia disease: A vital differential diagnosis in infants with severe encephalopathy. Eur J Paediatr Neurol 2016; 20: 457-461.

8. Yamada K, Miura K, Hara K, et al. A wide spectrum of clinical and brain MRI findings in patients with SLC19A3 mutations. BMC Med Genet 2010; 11: 171.

9. Tabarki B, Al-Shafi S, Al-Shahwan S, et al. Biotin-responsive basal ganglia disease revisited. Clinical radiologic, and genetic findings. Neurology 2013; 80: 261-267.

10. Kono S, Miyajima H, Yoshida K, Togawa A, Shirakawa K, Suzuki H. Mutations in a thiamine-transporter gene and Wernicke’s-like encephalopathy. N Engl J Med 2009; 360: 1792-1794.

11. Kevelam SH, Bugiani M, Salomons GS, et al. Exome sequencing reveals mutated SLC19A3 in patients with an early-infantile, lethal encephalopathy. Brain 2013; 136 (Pt 5): 1534-1543.

12. Ortigoza-Escobar JD, Serrano M, Moler M, et al. Thiamine transporter-2 deficiency: outcome and treatment monitoring. Orphanet J Rare Dis 2014; 9: 92.

13. Kassem H, Wafaie A, Alsuhibani S, Farid T. Biotin-responsive basal ganglia disease: neuroimaging features before and after treatment. Am J Neuroradiol 2014; 35: 1990-1995.

14. Kohrogi K, Imagawa E, Muto Y, et al. Biotin-responsive basal ganglia disease: a case diagnosed by whole exome sequencing. J Hum Genet 2015; 60: 381-385.

15. Bhandary S, Aguan K. Pyruvate dehydrogenase complex deficiency and its relationship with epilepsy frequency – An overview. Epilepsy Res 2015; 116: 40-52.

16. Distelmaier F, Huppke P, Pieperhoff P, et al. Biotin-responsive basal ganglia disease: a treatable differential diagnosis of Leigh syndrome. JIMD Rep 2014; 13: 53-57.

17. Bonfante E, Koenig MK, Adejumo RB, Perinjelil V, Riascos RF. The neuroimaging of Leigh syndrome: case series and review of the literature. Pediatr Radiol 2016; 46: 443-451.