Two *Onosma* Species (*Onosma microcarpum* and *O. nana*) as an Alternative Source of Multifunctional Agents: Biological and Phytochemical Evaluation

**Bulent Kirkan** 1, Cengiz Sarikurkcu 2,*  Cengiz Sarikurkcu 2,*  Riza Binzet 3, Bektas Tepe 4

1 Suleyman Demirel University, Water Institute, Isparta-Turkey; bulentkiran@sdu.edu.tr (B.K.);
2 Afyonkarahisar Health Sciences University, Faculty of Pharmacy, TR-03100, Afyonkarahisar-Turkey; sarikurkcu@gmail.com (C.S.);
3 Mersin University, Faculty of Arts and Science, Department of Biology, TR-33343, Mersin-Turkey; rbinzet@mersin.edu.tr (R.B.);
4 Kilis 7 Aralik University, Faculty of Science and Literature, Department of Biology TR-79000, Kilis-Turkey; bektastepe@yahoo.com (B.T.);

* Correspondence: sarikurkcu@gmail.com (C.S.);

**Abstract:** Phytochemicals have significant biological effects. This study aimed to investigate the chemical composition, antioxidant and inhibitory activities of methanol (MeOH) extracts obtained from the aerial parts of *Onosma microcarpum* DC. and *O. nana* DC. on enzymes that play a critical role in digestive and cholinergic systems and melanogenesis process. The chemical compositions of the extracts were determined by using spectrophotometric and chromatographic methods. The biological activities of the extracts were determined by using antioxidant and enzyme inhibitory test systems. According to spectrophotometric analysis, both phenolic and flavonoid concentrations of *O. nana* were found higher than *O. microcarpum* (44.63 mg GAEs/g and 27.86 mg QEs/g, respectively). Chromatographic analysis shows that *O. nana* contains a high amount of hesperidin (53412.37 µg/g). In comparison, *O. microcarpum* has rosmarinic acid (13181.93 µg/g), apigenin 7-glucoside (11693.97 µg/g), luteolin 7-glucoside (8632.03 µg/g) and pinoresinol (1014.26 µg/g) as the main compounds. In the ferrous ion chelating activity test, extracts exhibited almost similar activities. In contrast, radical scavenging (DPPH and ABTS), reducing power (CUPRAC and FRAP), and phosphomolybdenum tests resulted in the superiority of *O. nana* (229.98, 243.58, 327.46, 189.69, and 783.14, mg TEs/g, respectively). In the α-amylase inhibitory activity test, *O. microcarpum* showed higher activity (406.31 mg ACEs/g). In comparison, α-glucosidase (958.23 mg ACEs/g) and acetylcholinesterase (AChE) (2.80 mg GALAEs/g), butyrylcholinesterase (BChE) (2.59 mg GALAEs/g), and tyrosinase (200.43 mg KAEs/g) inhibitory activity of *O. nana* was found to be stronger than the other sample. (4) Conclusions: The chemical compositions and biological activities of the mentioned Onosma species were brought to the literature for the first time with this study. It is thought that *O. nana* can be an alternative source of phytochemicals in the food, pharmaceutical, and cosmetic industries due to its biological activity potential.

**Keywords:** *Onosma microcarpum*; *Onosma nana*; chemical composition; antioxidant activity; Enzyme inhibitory activity

© 2022 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
1. Introduction

Reactive oxygen species (ROS) perform essential biological functions in organisms (e.g., signal molecules for the cell). However, the imbalance between ROS production and the inactivation of these molecules by biological systems causes oxidative stress. These compounds interact with critical biological molecules, causing the formation of toxic compounds and impairing metabolic processes [1,2]. These free radicals also play a primary role in the pathology of many diseases [3]. The organism uses antioxidant enzymes to limit harmful effects caused by free radicals. However, the antioxidant defense system sometimes is insufficient to combat free radicals [4]. In this case, the organism should be supported with additional antioxidants taken from outside. Plants are known to be rich sources of natural antioxidants [5,6].

Phytochemicals also have significant biological effects on digestive enzymes. Therefore, their potential to be used in the treatment of diabetes is relatively high. Diabetes is a chronic disease caused by high blood glucose levels (hyperglycemia) worldwide. Millions of people suffer from this disease [7,8]. Today, some synthetic hypoglycemic drugs such as biguanides, α-amylase/α-glucosidase inhibitors, and sulfonylureas are used to treat this disease. However, their long-term use causes some side effects (headache and dizziness, nausea, the tendency to obesity, hypoglycemia, etc.) in patients [9,10]. Therefore, discovering more effective and safe molecules that can be used to treat diabetes is needed [11]. With some evidence that phytochemicals are safer than synthetic drugs, researchers have begun to scrutinize herbs to discover new compounds for use in the treatment of diabetes [7,12,13].

Like diabetes, Alzheimer's disease is significantly common worldwide and generally affects the elderly [14]. Although different approaches are used to treat this disease, cholinesterase inhibitors are generally preferred [15,16]. Some synthetic drugs are already used to treat this disease, as in diabetes (e.g., donepezil, galantamine, rivastigmine, etc.) [17]. However, the most effective treatment can be achieved by using compounds that exhibit antioxidant activity and inhibitory effects on acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Although rivastigmine has an inhibitory effect on both enzymes, it does not have antioxidant activity. Therefore, researchers have also scrutinized plants to discover new compounds with antioxidant activity and inhibitory effects on the enzymes in question [18].

The present study also focused on the tyrosinase inhibitory activities of plants. Enzymatic browning is one of the crucial reasons that cause deterioration of the taste and quality of foods and significant commercial losses in the post-harvest period in vegetables and fruits [19]. Therefore, researchers are trying to inhibit polyphenol oxidases, which are the leading cause of enzymatic browning, to protect the quality of foods and prevent commercial losses. Tyrosinase is one of the enzymes in this group [19-21]. Tyrosinase inhibitors are significant for fruit and vegetable processing industries [22,23]. Therefore, it is necessary to use the rich phytochemical pool offered by plants to identify new and effective tyrosinase inhibitors [24].

This study aimed to investigate the chemical composition, antioxidant, α-amylase/α-glucosidase, cholinesterase (ChE), and tyrosinase inhibitory activities of methanol (MeOH) extracts obtained from two different Onosma (O. microcarpum DC. and O. nana DC.) species collected from Kahramanmaras and Nigde (Turkey), respectively.
2. Materials and Methods

2.1. Plant material.

The aerial parts of *O. microcarpum* (470 m., 37°43'22" N 36°41'48” E, Herbarium number: OC.5060) and *O. nana* (2200 m., 37°48'42''N 35°07'02''E, Herbarium number: Binzet 201950) were collected from the 35th km of Kahramanmaras-Goksun highway (Turkey) and south and southeast of Demirkazik village, Yarpuz valley, Nigde (Turkey), respectively. The plants were identified and deposited by Dr. Riza Binzet from the Department of Biology, Mersin University, Mersin-Turkey.

2.2. Preparation of the extracts

The extraction processes of *O. microcarpum* and *O. nana* were carried out using the methods specified in the literature [25,27-31].

2.3. Determination of the phenolic compositions of the extracts.

Chemical compositions of *Onosma* extracts were determined using spectrophotometric and chromatographic methods as specified by Zengin *et al.* [25] and Cittan and Çelik [26].

2.4. Determination of antioxidant and enzyme inhibitory activity.

The extracts' antioxidant and inhibitory enzyme activities were determined using the methods specified in the literature [25,27-31].

2.5. Statistical analysis.

Statistical analysis applied to the data obtained from the current study was carried out using the methods specified in the literature [25,27-31].

3. Results and Discussion

3.1. Phytochemical composition

Total phenolic and flavonoid contents of the MeOH extracts of *O. microcarpum* and *O. nana* were given in Figure 1. Concentrations of phenolic compounds were higher than flavonoids in both plant species. *O. nana* was richer in both phenolics and flavonoids than *O. microcarpum*. *O. nana*'s total phenolic and flavonoid compound concentrations of *O. nana* were determined as 44.63 mg GAEs/g and 27.86 mg QEs/g, respectively, while *O. microcarpum* was 31.61 mg GAEs/g and 23.16 mg QEs/g, respectively. The phenolic and flavonoid compound concentrations of both plant species were statistically different from each other.

In addition to the above analyzes performed to reveal the chemical composition of the extracts, chromatographic analyzes were performed to determine the concentration of some selected phytochemicals in the extracts (Table 1). As a result of chromatographic analysis, it was determined that the concentrations of rosmarinic acid (13181.91 μg/g), apigenin 7-glucoside (11693.97 μg/g), luteolin 7-glucoside (8632.03 μg/g), and pinoresinol (1014.26 μg/g) were higher in *O. microcarpum* extract compared to other phytochemicals. According to the data in Table 1, hyperoside was relatively high in *O. nana* extract (53412.37 μg/g). Some
phenolic acid concentrations were higher in *O. nana* extract than in *O. microcarpum*. In the extract in question, chlorogenic acid (4554.44 µg/g), *p*-coumaric acid (4255.13 µg/g), rosmarinic acid (2846.22 µg/g), caffeic acid (2480.93 µg/g), hyperoside (2399.72 µg/g), pinoresinol (1197.23 µg/g) and protocatechuic acid (1013.42 µg/g) were present in significant amounts.

![Figure 1. Total phenolics and flavonoids of the MeOH extracts of *O. microcarpum* and *O. nana* (GAEs: Gallic acid equivalent, QEs: quercetin equivalent). There is no statistical difference between the values marked with the same superscripts on the bars.](https://doi.org/10.33263/BRIAC131.077)

**Table 1.** Concentration (µg/g extract) of selected phytochemicals in the MeOH extracts of *O. microcarpum* and *O. nana*.

| Compounds                   | *O. microcarpum*       | *O. nana*         |
|-----------------------------|------------------------|-------------------|
| Gallic acid                 | 5.79 ± 0.04<sup>a</sup> | 48.71 ± 0.06<sup>a</sup> |
| Protocatechuic acid         | 92.39 ± 3.91<sup>b</sup> | 1013.42 ± 4.31<sup>b</sup> |
| 3,4-Dihydroxyphenylacetic acid | 5.66 ± 0.29<sup>b</sup>  | 63.66 ± 1.44<sup>b</sup>       |
| (+)-Catechin                | nd                     | nd                |
| Pyrocatechol                | nd                     | 73.57 ± 4.00      |
| Chlorogenic acid            | 2172.22 ± 34.23<sup>b</sup> | 4554.44 ± 66.60<sup>a</sup> |
| 2,5-Dihydroxybenzoic acid  | 359.99 ± 22.64<sup>a</sup> | 263.07 ± 0.76<sup>b</sup>   |
| 4-Hydroxybenzoic acid       | 1184.30 ± 27.37<sup>a</sup> | 982.82 ± 7.65<sup>b</sup>   |
| (-)-Epicatechin             | nd                     | 15.36 ± 1.04      |
| Caffeic acid                | 421.44 ± 1.52<sup>b</sup> | 2480.93 ± 2.24<sup>a</sup> |
| Vanillic acid               | 761.03 ± 37.45<sup>a</sup> | 225.51 ± 15.48<sup>b</sup> |
| Syringic acid               | 80.70 ± 1.53<sup>b</sup>  | 128.33 ± 3.20<sup>b</sup>   |
| 3-Hydroxybenzoic acid       | 21.55 ± 0.34<sup>a</sup>  | 22.37 ± 1.14<sup>a</sup>       |
| Vanillin                    | 134.64 ± 0.73<sup>a</sup> | 54.95 ± 2.44<sup>b</sup>       |
| Verbascoside                | nd                     | 6.18 ± 0.17       |
| Taxifolin                   | nd                     | 32.94 ± 1.41      |
| Sinapic acid                | 36.42 ± 2.73<sup>b</sup>  | 62.96 ± 0.52<sup>a</sup>       |
| *p*-Coumaric acid           | 152.09 ± 3.47<sup>b</sup>  | 4255.13 ± 17.83<sup>a</sup> |
| Ferulic acid                | 266.37 ± 5.27<sup>b</sup>  | 895.68 ± 18.53<sup>a</sup> |
| Luteolin 7-glucoside        | 8632.03 ± 369.10<sup>a</sup> | nd               |
| Hesperidin                  | 33.42 ± 8.34<sup>a</sup>  | 5341.37 ± 369.13<sup>a</sup> |
| Hyperoside                  | 45.34 ± 1.20<sup>b</sup>  | 2399.72 ± 14.48<sup>a</sup> |
| Rosmarinic acid             | 13181.91 ± 277.34<sup>a</sup> | 2846.22 ± 5.05<sup>b</sup> |
| Apigenin 7-glucoside        | 11693.97 ± 285.83      | nd                |
| 2-Hydroxyxymannic acid      | nd                     | 3.56 ± 0.09       |
| Pinoresinol                 | 1014.26 ± 86.74<sup>a</sup> | 1197.23 ± 49.32<sup>a</sup> |
| Eriodictyol                 | nd                     | 41.90 ± 1.05      |
| Quercetin                   | 4.72 ± 0.17<sup>b</sup>  | 520.35 ± 2.75<sup>a</sup>   |
| Luteolin                    | 517.19 ± 11.60         | nd                |
| Kaempferol                  | nd                     | nd                |
| Apigenin                    | 997.63 ± 2.87          | nd                |

<sup>1</sup> There is no statistical difference between values marked with the same superscripts on the same row. nd, not detected.

According to the literature data, the chemical composition of both *Onosma* species examined in the present study has not been investigated before. Only a study investigating the chemical composition of the essential oil obtained from *O. microcarpum* could be reached in [https://biointerfaceresearch.com/](https://biointerfaceresearch.com/)
the literature [32]. Our research group has previously investigated the chemical composition of many Onosma species. Most of the compounds mentioned above were found in many Onosma species examined by our research group (O. sieheana, O. stenoloba, O. aucheriana, O. frutescens, O. sericea, O. pulchra, O. ambigens, O. tauricum var. tauricum, O. gigantea, and O. heterophyllum) has also been found in high amounts [29,33-38].

3.2. Antioxidant activity

The activity results of the extracts obtained from different antioxidant activity tests are given in Figure 2 and Table 2. As will be remembered, according to the data in Figure 1, O. nana extract was richer in terms of both phenolics and flavonoids than the O. microcarpum. It was determined that the antioxidant activities of the extracts and the data presented in Figure 1 were compatible with each other. In all antioxidant test systems, except ferrous ion chelating assay, O. nana exhibited higher activity than O. microcarpum. Although O. microcarpum exhibited more potent activity than O. nana in the ferrous ion chelating assay (28.66 and 28.60 mg EDTAEs/g, respectively), it was understood that the activity potentials of both extracts were almost equal. According to Figure 2, the extracts exhibited higher scavenging activity on ABTS than DPPH. The scavenging activity of O. nana on DPPH and ABTS free radicals was 229.98 and 243.58 mg TEs/g, respectively. In CUPRAC and FRAP tests in which the reducing power activities of the extracts were investigated, O. nana showed an activity of 327.46 and 189.69 mg TEs/g, respectively. The results obtained from the phosphomolybdenum test in which total antioxidant activity was investigated consistent with the results of the radical scavenging and reducing power assays. O. nana extract exhibited 783.14 mg TEs/g activity in this test system. The results obtained from all antioxidant activity tests except the ferrous ion chelating activity showed that the Onosma species in question showed statistically different activity profiles from each other.

Table 2. Antioxidant capacities of the MeOH extracts of O. microcarpum and O. nana

| Assays                        | O. microcarpum | O. nana | Trolox | EDTA |
|-------------------------------|----------------|---------|--------|------|
| Phosphomolybdenum (EC₅₀: mg/mL) | 2.45 ± 0.09ᵇ | 1.37 ± 0.02ᵇ | 1.08 ± 0.04ᵃ | -    |
| CUPRAC reducing power (EC₅₀: mg/mL) | 1.63 ± 0.01ᵇ | 0.86 ± 0.01ᵇ | 0.28 ± 0.03ᵃ | -    |
| FRAP reducing power (EC₅₀: mg/mL) | 1.01 ± 0.08ᵇ | 0.63 ± 0.01ᵇ | 0.12 ± 0.03ᵃ | -    |
| DPPH radical scavenging (IC₅₀: mg/mL) | 3.83 ± 0.05ᵇ | 1.13 ± 0.01ᵇ | 0.26 ± 0.03ᵃ | -    |
| ABTS radical scavenging (IC₅₀: mg/mL) | 2.78 ± 0.02ᵇ | 1.29 ± 0.01ᵇ | 0.32 ± 0.04ᵃ | -    |
| Ferrous ion chelating (IC₅₀: mg/mL) | 1.78 ± 0.02ᵇ | 1.78 ± 0.01ᵇ | -      | 0.051 ± 0.004ᵃ |

¹ There is no statistical difference between values marked with the same superscripts on the same row.

As stated in Section 3.1, in addition to the chemical composition of the Onosma species analyzed in the present study, there is no data in the literature regarding their biological activities. The most rational way to understand the nature of the antioxidant activity exhibited by these species is to establish a relationship between the chemical composition of the extracts and their activities. As detailed above, O. nana exhibited higher antioxidant activity than other Onosma species. According to the data in Table 1, it was determined that the hesperidin content of O. nana was by far higher than other phytochemicals. This situation suggests that the underlying power of the antioxidant activity of O. nana is hesperidin. There are some interesting examples in the literature that hesperidin can contribute to antioxidant activity. In a
study by Tian et al. [39], hesperidin successfully reduced oxidative stress induced by high glucose in LO2 cells. In another study by Kucukler et al. [40], it was reported that hesperidin protects rats against chronic hepato-renal toxicity by reducing oxidative stress. Similar findings were also obtained in the studies conducted by Hager-Theodorides et al. [41] and Zheng et al. [42]. There are also reports in the literature that protocatechuic acid [43], chlorogenic acid [44], caffeic acid [45], p-coumaric acid [46], and hyperoside [47] can contribute to antioxidant activity.

Figure 2. Antioxidant capacities of the MeOH extracts of O. microcarpum and O. nana [TEs: trolox equivalent, EDTAEs: ethylenediaminetetraacetic acid (disodium salt) equivalent]. There is no statistical difference between the values marked with the same superscripts on the bars.

3.3. Enzyme inhibitory activity.

In the present study, the effects of MeOH extracts obtained from Onosma species on digestive and cholinergic systems and melanogenesis process in addition to their antioxidant activities were examined, and the results were given in Figure 3 and Table 3.

| Assays                        | O. microcarpum | O. nana | Acarbose | Galanthamine | Kojic acid |
|-------------------------------|----------------|---------|----------|--------------|------------|
| α-Amylase inhibition (IC₅₀ mg/mL) | 2.58 ± 0.04ᵇ | 2.73 ± 0.01ᵇ | 1.05 ± 0.07ᵇ | -            | -          |
| α-Glucosidase inhibition (IC₅₀ mg/mL) | 2.47 ± 0.12ᵇ | 1.77 ± 0.02ᵇ | 1.70 ± 0.03ᵃ | -            | -          |

Table 3. Enzyme inhibitory activities of the MeOH extracts of O. microcarpum and O. nana

https://biointerfaceresearch.com/
| Assays                  | O. microcarpum | O. nana | Acarbose | Galanthamine | Kojic acid |
|------------------------|----------------|---------|----------|--------------|------------|
| AChE inhibition        | 1.28 ± 0.05<sup>b</sup> | 1.23 ± 0.04<sup>b</sup> | -        | 0.0035 ± 0.0005<sup>a</sup> | -          |
| (IC<sub>50</sub>: mg/mL) | 2.86 ± 0.22<sup>c</sup> | 2.19 ± 0.01<sup>b</sup> | -        | 0.0057 ± 0.0003<sup>a</sup> | -          |
| Tyrosinase inhibition  | 2.08 ± 0.03<sup>c</sup> | 1.50 ± 0.02<sup>b</sup> | -        | -            | 0.30 ± 0.03<sup>a</sup> |
| (IC<sub>50</sub>: mg/mL) |

<sup>1</sup> There is no statistical difference between values marked with the same superscripts on the same row.

It was determined that the inhibitory activity of the extracts on α-glucosidase was higher than on α-amylase. The extracts exhibited different activity profiles on α-amylase and α-glucosidase enzymes. Although the activities of O. microcarpum and O. nana extracts were close to each other in the α-amylase inhibitory activity test, O. microcarpum extract exhibited higher inhibitory activity (406.31 mg ACEs/g). However, in the α-glucosidase inhibitory activity test, O. nana extract was a more effective inhibitory agent (958.23 mg ACEs/g). The extracts exhibited statistically different activities in both test systems.

![Figure 3](https://biointerfaceresearch.com/)

**Figure 3.** Enzyme inhibitory capacities of the MeOH extracts of O. microcarpum and O. nana (GALAEs: galanthamine equivalent, KAEs: kojic acid equivalent, ACEs: acarbose equivalent). There is no statistical difference between the values marked with the same superscripts on the bars.

According to the literature data, the inhibitory activity of O. microcarpum and O. nana on digestive enzymes has not been investigated before. Although there is no clear information about the phytochemicals that contribute to the inhibitory activities of the extracts in the present study, it is possible to reach some literature data on which compounds in the extracts in question
contribute to the activity. The data in Table 1 showed that *O. nana* contains a high amount of hesperidin. However, *in silico* and *in vitro* data in the literature indicate that this compound is not an effective α-amylase inhibitor [48,49]. The literature data are consistent with the results of previous in silico studies conducted by our research group [37]. In the study in question, it was found that the affinity of hesperidin to α-amylase was relatively weak (~3.69 kcal/mol). Additionally, there is no data on the inhibitory activity of this compound on α-glucosidase. It is thought that more detailed chromatographic and enzyme inhibitory activity tests should be performed to determine the phytochemicals responsible for the activity in this extract. On the other hand, it has been suggested that rosmarinic acid, flavonoid glycosides (apigenin 7-glucoside and luteolin 7-glucoside), and pinoresinol itself, or extracts containing high amounts of these compounds, may be effective or contribute to the inhibitory activity of *O. microcarpum* on digestive enzymes [50-56].

The extracts also exhibited remarkable activity on AChE and BChE, critical enzymes of the cholinergic system. The inhibitory activities of the extracts on AChE were higher than on BChE. Although the activity values of the extracts were close to each other in AChE inhibitory activity test, *O. nana* extract exhibited the highest activity on both enzymes. The inhibitory activities of this extract on ACE and BChE were 2.80 and 2.59 mg GALAEs/g, respectively. While the activities of the extracts on AChE were not statistically different from each other, there was a significant difference between their activities on BChE.

It is, of course, possible to correlate the cholinesterase inhibitory activities of the extracts with their chemical composition. The above data show that *O. nana* is effective on both cholinesterases. According to Table 1, *O. nana* extract contained higher hesperidin than the other sample. The first thing that comes to mind is that this compound may have contributed significantly to activity. As a matter of fact, there are some supporting reports in the literature that plant species rich in hesperidin have high cholinesterase inhibitory activities [57,58]. However, some opposing views have been put forward in the literature. In a study conducted by Yilmaz *et al.* [59], it was reported that acetone and MeOH extract were obtained from *Chenopodium album* subsp. *album* var. *microphyllum* exhibited moderate cholinesterase inhibitory activity despite a high amount of hesperidin (9769.13 µg/g). In another study carried out by Senol *et al.* [60], it was suggested that hesperidin exhibits weak cholinesterase inhibitory activity. The last two studies support each other. Therefore, it is thought that there may be other phytochemicals that can contribute to both AChE and BChE inhibitory activities of *O. nana*. The compounds likely to contribute to the AChE inhibitor activity of *O. microcarpum* should also be mentioned here. The data in Table 1 showed that rosmarinic acid, flavonoid glycosides (apigenin 7-glucoside and luteolin 7-glucoside), and pinoresinol were found in high amounts in the extract obtained from this plant. There are some reports in the literature that these compounds themselves or extracts containing high amounts of these compounds exhibit significant AChE inhibitory activity [61-63]. Although it is not completely logical to make a definitive judgment with the available data, it is considered that these compounds may contribute to ChE inhibitory activity.

Tyrosinase inhibitory activity test was used to evaluate the effect of the extracts on the melanogenesis process. As with α-glucosidase, AChE, and BChE enzymes, *O nana* extract exhibited higher inhibitory activity than *O. microcarpum* in this test system. The tyrosinase inhibitory activity of *O. nana* extract was determined to be 200.43 mg KAEs/g. In this test system, the inhibitor activity of *O. microcarpum* remained at 144.38 mg KAEs/g. As can be
understood from the data above, the tyrosinase inhibitory activities of the extracts were statistically significantly different from each other.

There is no data in the literature regarding the tyrosinase inhibitory activity of *O. microcarpum* and *O. nana*. Some reports in the literature show that hesperidin itself exhibits significant inhibitory activity on both human and mushroom tyrosinase [64,65]. In addition, in studies conducted by our research group, it was found that plant extracts rich in hesperidin exhibit substantial tyrosinase inhibitory activities [35-38,66]. In addition, *in silico* data reported by Sarikurkcü et al. [37] show that the binding negative energy between hesperidin and tyrosinase is relatively high (-5.89 kcal/mol). These data show that *O. nana*’s tyrosinase inhibitor activity may be due to hesperidin.

4. Conclusions

This study investigated the chemical compositions antioxidant and inhibitory enzyme activities of the MeOH extracts obtained from *O. microcarpum* and *O. nana*. Spectrophotometric and chromatographic data showed that *O. nana* is richer in phenolics and flavonoids. This was notably consistent with the data obtained from antioxidant activity tests. Therefore, it was concluded that the biological activity potential of this plant is closely related to its chemical composition and can be considered a source of new and alternative phytochemicals in the food, pharmaceutical, and cosmetic industries. However, since it is not possible to clarify the whole chemical composition of the plant, it is thought that more detailed analyzes should be carried out to reveal some other compounds that may contribute to the activity.

Funding

This research received no external funding.

Acknowledgments

None.

Conflicts of Interest

The authors declare no conflict of interest. The funders had no role in the study's design, in the collection, analyses, or interpretation of data, in the writing of the manuscript, or in the decision to publish the results.

References

1. Auten, R.L.; Davis, J.M. Oxygen toxicity and reactive oxygen species: The devil is in the details. *Pediatr. Res.* 2009, 66, 121-127, https://doi.org/10.1203/pdr.0b013e3181a9eafl.

2. Farhan, H.; Malli, F.; Rammal, H.; Hijazi, A.; Bassal, A.; Ajouz, N.; Badran, B. Phytochemical screening and antioxidant activity of Lebanese *Eryngium creticum* L. *Asian Pac. J. Trop. Biomed.* 2012, 2, S1217-S1220, https://doi.org/10.1016/S2221-1691(12)60388-8.

3. Rammal, H.; Bouayed, J.; Younos, C.; Soulimani, R. The impact of high anxiety level on the oxidative status of mouse peripheral blood lymphocytes, granulocytes and monocytes. *Eur. J. Pharmacol.* 2008, 589, 173-175, https://doi.org/10.1016/j.ejphar.2008.06.053.

4. Wang, S.Y.; Kuo, Y.H.; Chang, H.N.; Kang, P.L.; Tsay, H.S.; Lin, K.F.; Yang, N.S.; Shyur, L.F. Profiling and characterization antioxidant activities in *Anoectochilus formosanus* Hayata. *J. Agric. Food Chem.* 2002, 50, 1859-1865, https://doi.org/10.1021/jf0113575.
5. Asraoui, F.; Kounnoun, A.; El Cadi, H.; Cacciola, F.; El Majdoub, Y.O.; Alibrando, F.; Mandolfino, F.; Dugo, P.; Mondello, L.; Louajri, A. Phytochemical investigation and antioxidant activity of *Globularia alpyna* L. *Molecules* 2021, 26, https://doi.org/10.3390/molecules26030759.

6. Farhan, H.; Rammal, H.; Hijazi, A.; Daher, A.; Reda, M.; Annan, H.; Chokr, A.; Bassal, A.; Badran, B. Chemical composition and antioxidant activity of a Lebanese plant *Euphorbia macrolepda schyzoceras*. *Asian Pac. J. Trop. Biomed.* 2013, 3, 542-548, https://doi.org/10.1016/s2221-1691(13)60110-0.

7. Mechchathe, H.; Es-Safi, I.; Louba, A.; Alqahtani, A.S.; Nasr, F.A.; Noman, O.M.; Farooq, M.; Alharbi, M.S.; Alqahtani, A.; Bari, A.; Bekkari, H.; Bousta, D. *In vitro* alpha-amylose and alpha-glucosidase inhibitory activity and *in vivo* antidiabetic activity of *Withania frutescens* L. foliar extract. *Molecules* 2021, 26, 293, https://doi.org/10.3390/molecules26020293.

8. Wild, S.; Roglic, G.; Green, A.; Sicree, R.; King, H. Global prevalence of diabetes - Estimates for the year 2000 and projections for 2030. *Diabetes Care* 2004, 27, 1047-1053, https://doi.org/10.2337/diacare.27.5.1047.

9. Chaudhury, A.; Duvvoor, C.; Dendi, V.S.R.; Kraleti, S.; Chada, A.; Ravilla, R.; Marco, A.; Shekhawat, N.S.; Montales, M.T.; Kuriakose, K.; Sasapu, A.; Beebe, A.; Patil, N.; Musham, C.K.; Lohani, G.P.; Mirza, W. Clinical evaluation of antidiabetic drugs: implications for type 2 Diabetes Mellitus management. *Front. Endocrinol.* 2017, 8, 6, https://doi.org/10.3389/fendo.2017.00006.

10. Edwin, E.; Sheeva, E.; Chaturvedi, M.; Sharma, S.; Gupta, V. A comparative study on antihyperglycemic activity of fruits and barks of *Ficus bengalensis* (L.). *Adv. Clin. Pharmacol. Toxicol. Ther.* 2006, 7, 69-71.

11. Es-Safi, I.; Mechchathe, H.; Amahghouje, A.; El Moussaoui, A.; Cerruti, P.; Avella, M.; Grafov, A.; Bousta, D. Marketing and legal status of phytomedicines and food supplements in Morocco. *Journal of Complementary and Integrative Medicine* 2020, 1, (ahead-of-print), https://doi.org/10.1515/jcim-2020-0168.

12. Mechchathe, H.; Es-safi, I.; Bari, A.; Grafov, A.; Bousta, D. Ethnobotanical survey about the management of diabetes with medicinal plants used by diabetic patients in region of Fez/Meknes, Morocco. *Ethnobot. Res. Appl.* 2020, 19, 1-28, https://ethnobotanyjournal.org/index.php/era/article/view/1783.

13. Mechchathe, H.; Es-safi, I.; Haddad, H.; Bekkari, H.; Grafov, A.; Bousta, D. Combination of Catechin, Epicatechin, and Rutin: Optimization of a novel complete antidiabetic formulation using a mixture design approach. *J. Nutr. Biochem.* 2021, 88, 108520, https://doi.org/10.1016/j.jnutbio.2020.108520.

14. Moya-Alvarado, G.; Gershoni-Emek, N.; Perlson, E.; Bronfman, F.C. Neurodegeneration and Alzheimer's disease (AD). What can proteomics tell us about the Alzheimer's Brain? *Mol. Cell. Proteomics* 2016, 15, 409-425, https://doi.org/10.1074/mcp.r115.053330.

15. Aliev, G.; Obrenovich, M.E.; Reddy, V.P.; Shenk, J.C.; Moreira, P.L.; Nunomura, A.; Zhu, X.W.; Smith, M.A.; Perry, G. Antioxidant therapy in Alzheimer's disease: Theory and practice. *Mini-Rev. Med. Chem.* 2008, 8, 1395-1406, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2921812/.

16. Bonda, D.J.; Lee, H.P.; Lee, H.G.; Friedlich, A.L.; Perry, G.; Zhu, X.W.; Smith, M.A. Novel therapeutics for Alzheimer's disease: An update. *Curr. Opin. Drug Discovery Dev.* 2010, 13, 235-246, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2931269/.

17. Mendiola-Precosa, J.; Berumen, L.C.; Padilla, K.; Garcia-Alcocer, G. Therapies for Prevention and Treatment of Alzheimer's Disease. *Biomed Res. Int.* 2016, 2016, 2589276, https://doi.org/10.1155/2016/2589276.

18. Olasehinde, T.A.; Olaraniran, A.O.; Okoh, A.I. Cholinesterase inhibitory activity, antioxidant properties, and phytochemical composition of *Chlorococcum* sp. extracts. *J. Food Biochem.* 2021, 45, e13959, https://doi.org/10.1111/jfbc.13959.

19. Moon, K.M.; Lee, B.; Cho, W.K.; Lee, B.S.; Kim, C.Y.; Ma, J.Y. Swertiamarin as an anti-browning and antioxidant flavonoid. *Food Chem.* 2018, 252, 207-214, https://doi.org/10.1016/j.foodchem.2018.01.053.

20. Moon, K.M.; Kim, C.Y.; Ma, J.Y.; Lee, B. Xanthone-related compounds as an anti-browning and antioxidant food additive. *Food Chem.* 2019, 274, 345-350, https://doi.org/10.1016/j.foodchem.2018.08.144.

21. Shao, L.L.; Wang, X.L.; Chen, K.; Dong, X.W.; Kong, L.M.; Zhao, D.Y.; Hider, R.C.; Zhou, T. Novel hydroxypropidone derivatives containing an oxime ether moiety: Synthesis, inhibition on mushroom tyrosinase and application in anti-browning of fresh-cut apples. *Food Chem.* 2018, 242, 174-181, https://doi.org/10.1016/j.foodchem.2017.09.054.

22. Carcelli, M.; Rogolin, D.; Bartoli, J.; Pala, N.; Compari, C.; Ronda, N.; Bacciottini, F.; Incerti, M.; Fisicaro, E. Hydroxyphenyl thiosemicarbazones as inhibitors of mushroom tyrosinase and antibrowning agents. *Food Chem. 2020*, 303, 125310, https://doi.org/10.1016/j.foodchem.2019.125310.

23. Xu, J.; Liu, J.; Zhu, X.Q.; Yu, Y.Y.; Cao, S.W. Novel inhibitors of tyrosinase produced by the 4-substitution of TCT. *Food Chem.* 2017, 221, 1530-1538, https://doi.org/10.1016/j.foodchem.2017.05.036.

24. Cabezudo, I.; Ramallo, I.A.; Alonso, V.L.; Furlan, R.L.E. Effect directed synthesis of a new tyrosinase inhibitor with anti-browning activity. *Food Chem.* 2021, 341, https://doi.org/10.1016/j.foodchem.2020.128232.

25. Zengin, G.; Sarikurkcu, C.; Gunes, E.; Uysal, A.; Ceylan, R.; Uysal, S.; Gungor, H.; Aktumsek, A. Two *Ganoderma* species: Profiling of phenolic compounds by HPLC-DAD, antioxidant, antimicrobial and inhibitory activities on key enzymes linked to diabetes mellitus, Alzheimer's disease and skin disorders. *Food Funct.* 2015, 6, 2794-2802, https://doi.org/10.1039/c5fo00665a.
26. Cittan, M.; Çelik, A. Development and validation of an analytical methodology based on Liquid Chromatography–Electrospray Tandem Mass Spectrometry for the simultaneous determination of phenolic compounds in olive leaf extract. J. Chromatogr. Sci. 2018, 56, 336-343, https://doi.org/10.1093/chromsci/bmy003.

27. Apak, R.; Güçlü, K.; Özyürek, M.; Esin Karademir, S.; Erçağ, E. The curcumin ion reducing antioxidant capacity and polyphenolic content of some herbal teas. Int. J. Food Sci. Nutr. 2006, 57, 292-304, https://doi.org/10.1080/09637480600798132.

28. Kocak, M.S.; Sarikurkcu, C.; Cengiz, M.; Kocak, S.; Uren, M.C.; Tepe, B. Salvia cadvica: Phenolic composition and biological activity. Ind. Crops Prod. 2016, 85, 204-212, http://dx.doi.org/10.1016/j.indcrop.2016.03.015.

29. Ozer, M.S.; Kirkan, B.; Sarikurkcu, C.; Cengiz, M.; Ceylan, O.; Atilgan, N.; Tepe, B. Onosma heterophyllum: Phenolic composition, enzyme inhibitory and antioxidant activities. Ind. Crops Prod. 2018, 111, 179-184, https://doi.org/10.1016/j.indcrop.2017.10.026.

30. Tepe, B.; Sarikurkcu, C.; Berk, S.; Alim, A.; Akpulat, H.A. Chemical composition, radical scavenging and antimicrobial activity of the essential oils of Thymus boveii and Thymus hyemalis. Rec. Nat. Prod. 2011, 5, 208-220, https://www.researchgate.net/publication/228554251_Chemical_Composition_Radical_Scavenging_and_Antimicrobial_Acivity_of_the_Essential_Oils_of_Thymus_boveii_and_Thymus_hyemalis.

31. Zengin, G.; Sarikurkcu, C.; Uyar, P.; Aktemsek, A.; Uysal, S.; Kocak, M.S.; Ceylan, R. Crepis foetida L. subsp. rheoadifolia (Bleb.) Celak. as a source of multifunctional agents: Cytotoxic and phytochemical evaluation. J. Funct. Foods 2015, 17, 698-708, http://dx.doi.org/10.1016%2Fj.jff.2015.06.041.

32. Morteza-Semman, K.; Saleei, M.; Akbarzadeh, M.; Moshiri, K. The essential oil composition of Onosma microcarpum DC. Flavour Fragrance J. 2006, 21, 314-316, https://doi.org/10.1002/ffj.1597.

33. Kirkan, B.; Sarikurkcu, C.; Ozer, M.S.; Ceylan, O.; Tepe, B. Phenolic profile, antioxidant and enzyme inhibitory potential of Onosma tauricum var. tauricum. Ind. Crops Prod. 2018, 125, 549-555, https://doi.org/10.1016/j.indcrop.2018.09.043.

34. Sarikurkcu, C.; Kirkan, B.; Ozer, M.S.; Ceylan, O.; Atilgan, N.; Cengiz, M.; Tepe, B. Chemical characterization and biological activity of Onosma gigantea extracts. Ind. Crops Prod. 2018, 115, 323-329, https://doi.org/10.1016/j.indcrop.2018.02.040.

35. Sarikurkcu, C.; Sahinler, S.S.; Ceylan, O.; Tepe, B. Onosma pulchra: Phytochemical composition, antioxidant, skin-whitening and anti-diabetic activity. Ind. Crops Prod. 2020, 154, 112632, https://doi.org/10.1016/j.indcrop.2020.112632.

36. Sarikurkcu, C.; Sahinler, S.S.; Ceylan, O.; Tepe, B. Onosma ambigens: Phytochemical composition, antioxidant and enzyme inhibitory activity. Ind. Crops Prod. 2020, 154, 112651, https://doi.org/10.1016/j.indcrop.2020.112651.

37. Sarikurkcu, C.; Sahinler, S.S.; Husunet, M.T.; İstifli, E.S.; Tepe, B. Two endemic Onosma species (O. sieheana and O. stenoloba): A comparative study including docking data on biological activity and phenolic composition. Ind. Crops Prod. 2020, 154, 112656, https://doi.org/10.1016/j.indcrop.2020.112656.

38. Sarikurkcu, C.; Sahinler, S.S.; Tepe, B. Onosma aucharina, O. frutescens, and O. sericea: Phytochemical profiling and biological activity. Ind. Crops Prod. 2020, 154, 112633, https://doi.org/10.1016/j.indcrop.2020.112633.

39. Tian, M.; Han, Y.B.; Zhao, C.C.; Liu, L.; Zhang, F.L. Hesperidin alleviates insulin resistance by improving HG-induced oxidative stress and mitochondrial dysfunction by restoring miR-149. Diabetol. Metab. Syndr. 2021, 13, 11, https://dmsjournal.biomedcentral.com/articles/10.1186/s13098-021-00664-1.

40. Kucukler, S.; Comakli, S.; Ozdemir, S.; Caglayan, C.; Kandemir, F.M. Hesperidin protects against the chlorpyrifos-induced chronic hepato-renal toxicity in rats associated with oxidative stress, inflammation, apoptosis, autophagy, and up-regulation of PARP-1/VEGF. Environ. Toxicol. 2021, https://doi.org/10.1002/tox.23156.

41. Hager-Theodorides, A.L.; Massouras, T.; Simitzis, P.E.; Moschou, K.; Zoidis, E.; Sfakianaki, E.; Politis, K.; Charismiadou, M.; Goliomytis, M.; Deligeorgis, S. Hesperidin and naringin improve broiler meat fatty acid profile and modulate the expression of genes involved in fatty acid beta-oxidation and antioxidant defense in a dose dependent manner. Foods 2021, 10, 739, https://doi.org/10.3390/foods10040739.

42. Zheng, M.Y.; Lu, S.M.; Xing, J.R. Enhanced antioxidant, anti-inflammatory and alpha-glucosidase inhibitory activities of citrus hesperidin by acid-catalyzed hydrolysis. Food Chem. 2021, 336, 127539, https://doi.org/10.1016/j.foodchem.2020.127539.

43. Li, Z.X.; Liu, Y.J.; Wang, F.; Gao, Z.L.; Elhefny, M.A.; Habotta, O.A.; Moneim, A.E.A.; Kassab, R.B. Neuroprotective effects of protocatechuic acid on sodium arsenate induced toxicity in mice: Role of oxidative stress, inflammation, and apoptosis. Chem. Biol. Interact. 2021, 337, 9, https://doi.org/10.1016/j.cbi.2021.109392.

44. Kim, D.; Jung, D.H.; Sung, J.; Min, I.S.; Lee, S.J. Tart cherry extract containing chlorogenic acid, quercetin, and kaempferol inhibits the mitochondrial apoptotic cell death elicited by airborne PM10 in human epidermal keratinocytes. Antioxidants 2021, 10, 443, https://doi.org/10.3390/antiox10030443.
45. Jamali, N.; Mostafavi-Pour, Z.; Zal, F.; Kasraeian, M.; Poordast, T.; Nejabat, N. Antioxidant ameliorative effect of caffeoic acid on the ectopic endometrial cells separated from patients with endometriosis *. Taiwan J. Obstet. Gynecol. 2021, 60, 216-220, https://doi.org/10.1016/j.tjog.2020.12.003.

46. Kedziorska-Matsyek, M.; Strzyjecka, M.; Teter, A.; Skalecki, P.; Domaradzki, P.; Florek, M. Relationships between the content of phenolic compounds and the antioxidant activity of polish honey varieties as a tool for botanical discrimination. Molecules 2021, 26, 12, https://doi.org/10.3390/molecules26061810.

47. Cai, Y.Q.; Li, B.; Peng, D.; Wang, X.F.; Li, P.; Huang, M.C.; Xing, H.Y.; Chen, J.H. Crm1-Dependent Nuclear Export of Bach 1 is involved in the protective effect of hyperoside on oxidative damage in hepatocytes and CCl4-induced acute liver injury. J. Inflamm. Res. 2021, 14, 551-565, https://doi.org/10.2147/JIR.S279249.

48. Fernandes, A.C.F.; Santana, A.L.; Martins, I.M.; Moreira, D.K.T.; Macedo, J.A.; Macedo, G.A. Antiglycation effect and the alpha-amylase, lipase, and alpha-glycosidase inhibition properties of a polyphenolic fraction derived from citrus wastes. Prep. Biochem. Biotechnol. 2020, 50, 794-802, https://doi.org/10.1080/10826068.2020.1737941.

49. Jiang, C.; Wang, L.; Shao, J.J.; Jing, H.J.; Ye, X.; Jiang, C.Y.; Wang, H.X.; Ma, C.Y. Screening and identifying of alpha-amylase inhibitors from medicine food homology plants: Insights from computational analysis and experimental studies. J. Food Biochem. 2020, 44, e13536, https://doi.org/10.1111/jfbc.13536.

50. Asghari, B.; Mafakheri, S.; Zarabi, M.M.; Erdem, S.A.; Orhan, I.E.; Bahadori, M.B. Therapeutic target enzymes inhibitory potential, antioxidant activity, and rosmarinic acid content of Echium amoenum. S. Afr. J. Bot. 2019, 120, 191-197, https://doi.org/10.1016/sajb.2018.05.017.

51. Kwon, D.; Kim, G.D.; Kang, W.; Park, J.E.; Kim, S.H.; Choe, E.; Kim, J.I.; Auh, J.H. Pinoresinol diglucoside is screened as a putative alpha-glucosidase inhibiting compound in Actinidia arguta leaves. J. Korean Soc. Appl. Biol. Chem. 2014, 57, 473-479, https://appliedbiolchem.springeropen.com/articles/10.1007/s13765-014-4167-0.

52. Mwakalukwa, R.; Amen, Y.; Nagata, M.; Shimizu, K. Postprandial Hyperglycaemia lowering effect of the isolated compounds from olive mill wastes - an inhibitory activity and kinetics studies on alpha-glucosidase and alpha-amylase enzymes. ACS Omega 2020, 5, 20070-20079, https://doi.org/10.1021/acsomega.0c01622.

53. Rasouli, H.; Hosseini-Ghavzini, S.M.B.; Adibi, H.; Khodarahmi, R. Differential alpha-amylase/alpha-glucosidase inhibition of plant-derived phenolic compounds: a virtual screening perspective for the treatment of obesity and diabetes. Food Funct. 2017, 8, 1942-1954, https://doi.org/10.1039/c7fo00220c.

54. Witkowska-Banaszczak, E.; Krajka-Kuzniak, V.; Papierska, K. The effect of luteolin 7-glucoside, apigenin 7-glucoside and Succisa pratensis extracts on NF-kappa B activation and alpha-amylase activity in HepG2 cells. Acta Biochim. Pol. 2020, 67, 41-47, https://doi.org/10.18388/abp.2020.2894.

55. Youssef, F.S.; Ashour, M.L.; El-Beshishy, H.A.; Hamza, A.A.; Singah, A.N.B.; Wink, M. Pinoresinol-4-O-beta-D-glucopyranoside: a lignan from prunes (Prunus domestica) attenuates oxidative stress, hyperglycaemia and hepatic toxicity in vitro and in vivo. J. Pharm. Pharmacol. 2020, 72, 1830-1839, https://doi.org/10.1111/jphp.13358.

56. Zhu, F.X.; Wang, J.; Takano, H.; Xu, Z.M.; Nishiwaki, H.; Yonekura, L.; Yang, R.H.; Tamura, H. Rosmarinic acid and its ester derivatives for enhancing antibacterial, alpha-glucosidase inhibitory, and lipid accumulation suppression activities. J. Food Biochem. 2019, 43, e12719, https://doi.org/10.1111/jfbc.12719.

57. Bahadori, M.B.; Kirkan, B.; Sarikurku, C.; Ceylan, O. Metabolic profiling and health benefits of Stachys cretica subsp. mersiniae as a medicinal food. Ind. Crops Prod. 2019, 131, 85-89, https://doi.org/10.1016/j.indcrop.2019.01.038.

58. Mahmooodally, M.F.; Zengin, G.; Sinan, K.I.; Yildiztugay, E.; Lobine, D.; Ouelbani, R.; Bensari, S.; Ak, G.; Yilmaz, M.A.; Gallo, M.; Montesano, D. A comprehensive evaluation of the chemical profiles and biological properties of six geophytes from Turkey: Sources of bioactive compounds for novel nutraceuticals. Food Res. Int. 2021, 140, 110068, https://doi.org/10.1016/j.foodres.2020.110068.

59. Yilmaz, P.K.; Ertas, A.; Akdeniz, M.; Avcı, M.K.; Kolak, U. Chemical compositions by LC-MS/MS and GC-MS and biological activities of Chenopodium album subsp. album var. microphyllum. Ind. Crops Prod. 2019, 141, 111755, https://doi.org/10.1016/j.indcrop.2019.111755.

60. Senol, F.S.; Ankl, A.; Reich, E.; Orhan, I.E. HPTLC fingerprinting and cholinesterase inhibitory and metal-chelating capacity of various Citrus cultivars and Olea europaea. Food Technol. Biotechnol. 2016, 54, 275-281, https://doi.org/10.17113/tfb.54.03.16.4225.

61. Senol, F.S.; Slusarczyk, S.; Matkowska, A.; Perez-Garrido, A.; Giron-Rodriguez, F.; Ceron-Carrasco, J.P.; den-Haan, H.; Pena-Garcia, J.; Perez-Sanchez, H.; Domaradzki, K.; Orhan, I.E. Selective in vitro and in silico butyrylcholinesterase inhibitory activity of diterpenes and rosmarinic acid isolated from Perovskia atriplicifolia Benth. and Salvia glutinosa L. Phytochemistry 2017, 133, 33-44, https://doi.org/10.1016/j.phytochem.2016.10.012.

62. Tang, H.Y.; Bai, M.M.; Tian, J.M.; Pescielli, G.; Ivisic, T.; Huang, X.H.; Lee, H.; Son, Y.N.; Kim, J.; Kim, Y.H.; Gao, J.M. Chemical components from the seeds of Catalpa bungei and their inhibitions of soluble epoxide hydrolase, cholinesterase and nuclear factor kappa B activities. RSC Adv. 2016, 6, 40706-40716, https://pubs.rsc.org/en/Content/ArticleLanding/2016/RA/c6ra04207d.
63. Uysal, S.; Ugurlu, A.; Zengin, G.; Baloglu, M.C.; Altunoglu, Y.C.; Mollica, A.; Custodio, L.; Neng, N.R.; Nogueira, J.M.F.; Mahomoodally, M.F. Novel \textit{in vitro} and \textit{in silico} insights of the multi-biological activities and chemical composition of \textit{Bidens tripartita} \textit{L.} \textit{Food Chem. Toxicol.} \textbf{2018}, \textit{111}, 525-536, https://doi.org/10.1016/j.fct.2017.11.058.

64. Lou, S.N.; Yu, M.W.; Ho, C.T. Tyrosinase inhibitory components of immature calamondin peel. \textit{Food Chem.} \textbf{2012}, \textit{135}, 1091-1096, https://doi.org/10.1016/j.foodchem.2012.05.062.

65. Zhang, C.W.; Lu, Y.H.; Tao, L.; Tao, X.Y.; Su, X.C.; Wei, D.Z. Tyrosinase inhibitory effects and inhibition mechanisms of nobiletin and hesperidin from citrus peel crude extracts. \textit{J. Enzyme Inhib. Med. Chem.} \textbf{2007}, \textit{22}, 83-90, https://doi.org/10.1080/14756360600953876.

66. Tlili, N.; Sarikurkcu, R.T.; Ceylan, O.; Sarikurkcu, C. \textit{Onosma polyantha} vs. \textit{Onosma mollis}: Analysis of phenolic compounds using liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) and assessment of the antioxidant activity. \textit{Anal. Lett.} \textbf{2021}, \textit{54}, 1389-1400, https://doi.org/10.1080/00032719.2020.1803348.