Systematic derivation of a Single Particle Model with Electrolyte and Side Reactions (SPMe+SR) for degradation of lithium-ion batteries

Ferran Brosa Planellaa,b,*, W. Dhammika Widanagea,b

aWMG, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
bThe Faraday Institution, Harwell Campus, Didcot, OX11 0RA, United Kingdom

Abstract

Battery degradation, which is the reduction of performance over time, is one of the main roadblocks to the wide deployment of lithium-ion batteries. Physics-based models, such as those based on the Doyle-Fuller-Newman (DFN) model, are invaluable tools to understand and predict such phenomena. However, these models are often too complex for practical applications, so reduced models are needed. In this article we introduce the Single Particle Model with electrolyte and Side Reactions (SPMe+SR), a reduced model with electrochemical degradation which has been formally derived from the DFN model with Side Reactions (DFN+SR) using asymptotic methods. The SPMe+SR has been validated against the DFN+SR for three scenarios (SEI growth, lithium plating, and both effects combined) showing similar accuracy at a much lower computational cost. The implications of the results are twofold: the SPMe+SR is simple and accurate enough to be used in most real practical applications, and the reduction framework used is robust so it can be extended to account for further degradation effects.

Keywords: lithium-ion batteries, model reduction, Single Particle Model, lithium plating, SEI growth, asymptotic methods

Contents

1 Introduction 2

2 Single Particle Model with electrolyte and Side Reactions (SPMe+SR) 4
 2.1 Examples of SR models ... 8
 2.2 Conservation of lithium ... 9

3 Derivation of the SPMe+SR 10
 3.1 Rescaled dimensionless model 10
 3.2 Asymptotic reduction ... 12
 3.3 Model summary ... 16

4 Results & discussion 19

5 Conclusions 23

Appendix A Doyle-Fuller-Newman model with Side Reactions (DFN+SR) 26
 Appendix A.1 Dimensional model 26
 Appendix A.2 Dimensionless model 28

*Corresponding author: Ferran.Brosa-Planella@warwick.ac.uk

arXiv:2206.05078v1 [physics.chem-ph] 10 Jun 2022
1. Introduction

Reverting climate emergency is one of the biggest challenges we face as society, and lithium-ion batteries are called to play a central role in the transition to a more sustainable future, in particular in the areas of transport electrification and off-grid energy storage. One of the main roadblocks for the wide deployment of batteries, especially in electric vehicles, is the decrease in the energy and power output as batteries age, known as degradation. Understanding and reducing such degradation would be extremely useful to extend the operation time of batteries and enable more efficient repurposing and recycling at the end of their life.

As described in [7, 16], degradation is caused by different mechanisms (or combinations thereof), which are triggered by multiple phenomena (e.g. high charge/discharge rates, extreme temperatures). These mechanisms contribute to the degradation modes: loss of active material (in each electrode), loss of lithium inventory, stoichiometric drift and impedance change [16]. Ultimately, these modes manifest as a fade in the battery capacity and power outputs. According to [16], the main degradation mechanisms are solid-electrolyte interphase (SEI) growth and lithium plating (in the negative electrode), structural change and decomposition (in the positive electrode), and particle fracture (in both electrodes). Moreover, the mechanisms are not independent from each other, and positive feedback loops between various mechanisms have been reported [16, 42].

Mathematical models are an extremely valuable tool to understand, predict and, eventually, reduce battery degradation via smart control of the batteries. However, these models are very expensive from the computational point of view, which makes them unsuitable for many practical applications, especially those requiring a large number of simulations such as battery design and control. Therefore, there is a clear need for fast (yet accurate) models that capture battery degradation.

There are various approaches to battery modelling but here we focus our attention on physics-based continuum models [21]. Physics-based continuum models treat the battery as a continuum material (i.e. they do not consider the atomistic level) and describe their behaviour by using conservation laws and constitutive relations to describe the transport of conserved quantities. These typically yield a coupled system of differential equations that needs to be solved numerically in order to determine any variable of interest. For a detailed review on continuum models for batteries, we refer the reader to the review article by Brosa Planella et al. [10]. Continuum models can include a wide range of physics but the cornerstone are electrochemical models, which describe the transport of lithium in the battery. There are different models in this category, with different levels of complexity, as reviewed in [10]. The most popular ones are the Doyle-Fuller-Newman model (DFN) introduced in [15, 17] and Single Particle Models (SPM), which are simpler. The latter can be defined either with electrolyte dynamics (e.g. [11, 31]) or without (e.g. [8]). Any further effects, such as thermal and degradation, need to be coupled to an electrochemical model. In this article we focus our attention on two degradation mechanisms: SEI growth and lithium plating. These are probably the two most common degradation mechanisms, and they have been widely reported in the literature. For more information, we direct the reader to the review article by Edge et al. on battery degradation [16], and its companion article by O’Kane et al. on how to model it [35].

The SEI is a passivation layer deposited at the surface of the electrode particles and which behaves like a solid electrolyte. This layer is created by the decomposition of the liquid electrolyte when it operates below its stability voltage window. During the formation phase of a newly assembled battery, the SEI layer is grown in a controlled manner. This causes a decrease in the battery capacity, but significantly reduces further reactions. However, as the battery ages, this layer grows again causing power and capacity fade. In the literature, we find three main approaches to physics-based modelling of SEI growth: density functional theory (DFT) models, continuum models and zero-dimensional models [30]. DFT models describe the processes at atomistic level and are extremely complex from the computational point of view [6, 45]. Continuum models describe the SEI layer at a continuum level and account for the electron, ion and interstitial transport across this layer [13, 14, 30]. Zero-dimensional models can be seen as a reduced version of continuum models in
which the whole behaviour of the film is encapsulated by a boundary condition at the surface of the electrode particles. These are simpler models that can be easily coupled to the electrochemical models. As discussed in [30], there are multiple instances of such models depending on the included physics (e.g. electron tunnelling [24], interstitials transport [46], and solvent diffusion with reactions [27, 39, 43]) or the limiting processes (e.g. solvent diffusion limited [40], electron migration limited [38], and reaction limited [41]).

Lithium plating is a reaction in which lithium ions, deposit on the electrode particles surface instead of intercalating into them. This reaction is reversible, but plated lithium is more prone to react and form SEI and, in turn, the SEI growth can electrically isolate the plated lithium, leading to a loss of lithium inventory. Lithium plating can also lead to dendrite growth which can cause the internal short circuit of the battery, and is exacerbated by fast charging, so in the recent years this degradation mechanism has received a lot of attention [28, 48]. From the modelling point of view, lithium plating has been mostly described by zero-dimensional models. The first DFN model with lithium plating was introduced by Arora et al. [2]. This initial model assumed a constant exchange current density, and a dependency on the lithium ion and plated lithium concentration was introduced first in [49] for lithium metal electrodes, and later in [50] for porous electrodes. It is worth noting that, in the literature, we find models assuming asymmetric [2, 50] and symmetric plating reactions [36, 49], the latter being simpler.

Despite being fundamentally different from the chemical point of view, these two mechanisms are very similar from the modelling point of view (they are both side reactions) and that is why they are often considered together, including in the present article. In the recent years, there has been a surge in the interest of modelling SEI growth and lithium plating together. For example, the model in [51] combines the solvent diffusion with reactions SEI model from [43] with an irreversible plating model similar to [2], and its analysis has shown that the interactions between SEI growth and lithium plating trigger nonlinear aging, also known as the knee (see [4] for a detailed review on the knee). Similar results have been reported in [3] (which includes two types of SEI reactions) and [22] (which includes partially reversible lithium plating). The latter showed that at least a fraction of irreversible lithium plating is required in order to trigger the knee. In all three cases, the models are validated with experimental data, showing good agreement. Finally, in [35], SEI growth and lithium plating are also coupled with particle cracking and loss of active material, showcasing a very diverse range of behaviours depending on the cycling profile. The authors highlight the need for further studies and more accurate parameter sets in order to discover potential new degradation regimes.

As explained earlier, degradation models are coupled to electrochemical models, to which they add complexity. If the standard DFN model is already complex enough for many applications, adding degradation effects only increases this complexity. For this reason, researchers have explored coupling degradation effects to simpler models, such as Single Particle Models [26, 37, 43]. However, this is typically done in an ad hoc manner, which often leads to inconsistencies. For example, in [26, 37] the loss of interfacial current to the SEI reaction is not taken into account, and thus the total amount of lithium is not conserved. Therefore, it is clear that such simplified models for battery degradation should be rigorously derived to ensure they are consistent with the physical principles of the DFN model. Asymptotic methods provide a robust framework to simplify complex models in a systematic manner. These methods have already been applied to battery models such as the DFN model to derive Single Particle Models and other reduced models (e.g. [11, 31, 33]) but, to the best of our knowledge, they have not yet been applied to derive models accounting for degradation.

Asymptotic methods use a priori assumptions about the size of certain dimensionless parameters to simplify the model. These methods are also known as perturbation methods and have solid mathematical foundations [5, 19]. The advantages of asymptotic methods are that they are

- **Generic**: they can be applied to any model.
- **Systematic**: they ensure consistency between full and reduced models.
- **Flexible**: correction terms can be calculated to obtain the desired accuracy.

Therefore, we can use these methods to simplify degradation models while ensuring that the reduced models are physically consistent with the full models.
In this article we present the Single Particle Model with electrolyte and Side Reactions (SPMe+SR), a simplified model for electrochemical battery degradation (Section 2). The SPMe+SR is formally derived from the Doyle-Fuller-Newman model with Side Reactions (DFN+SR) using asymptotic methods (Section 3). The SPMe+SR is generic enough to account for a wide range of side reactions, and is found to offer similar accuracy to the DFN+SR while being much simpler (see Section 4). This means that the SPMe+SR is easier to analyse and faster to simulate, making it suitable to a wider range of applications than the DFN+SR. The method presented here to derive the SPMe+SR can be applied to models accounting for other degradation mechanisms, and thus it is a stepping stone towards a robust and unified framework for reduced models for battery degradation.

2. Single Particle Model with electrolyte and Side Reactions (SPMe+SR)

In this section we present the reduced model for battery degradation that we named Single Particle Model with electrolyte and Side Reactions (SPMe+SR). This model belongs to the family of Single Particle Models with electrolyte dynamics (see [10, 11] for detailed discussions on this model family), and models a single averaged (or representative) particle to describe the behaviour of all the particles within each electrode. SPMe+SR is an electrochemical model accounting for degradation in the negative electrode caused by a side reaction (i.e. an undesired reaction that consumes lithium ions and produces new material that blocks the pores in the electrode). The model could be very easily extended to account for side reactions in the positive electrode. The key advantage of the SPMe+SR model, with respect to the DFN+SR, is that it only requires solving for the particle and electrolyte concentrations, and the electrode porosity, while all the other variables of interest (such as the potentials and currents) can be calculated from explicit expressions.

The geometry of the model is as shown in Figure 1. The two averaged electrode particles are defined in the domain $0 \leq r \leq R_k$ (for $k \in \{n, p\}$), where the subscripts n and p denote the negative and positive electrode, respectively. The domain for the electrolyte is $0 \leq x \leq L$, and includes the negative electrode ($0 \leq x \leq L_n$), the separator ($L_n \leq x \leq L - L_p$), and the positive electrode ($L - L_p \leq x \leq L$). In each electrode particle we solve a partial differential equation (PDE) for the lithium concentration (1)-(3), while in the electrolyte domain we solve a PDE for the ion concentration in the electrolyte (4) and one for the porosity (5) (note that the latter only applies to the electrolyte in the negative electrode subdomain). The
key advantage of the SPMe+SR is that all the PDEs involved are time dependent and thus, after spatial
discretisation (and assuming that the current is the input), they become a system of ordinary differential
equations (ODEs) rather than a system of differential-algebraic equations (DAEs) which would be much
harder to solve numerically. The main difference with the standard SPMe is that for the SPMe+SR the
various PDEs are coupled together through the side reaction. This is similar to what occurs with the thermal
SPMe derived in [11], so we refer the keen reader to that article for more details on SPMe.

The SPMe+SR is derived from the DFN+SR using asymptotic methods (see Section 3 for details), and
this analysis is based on certain assumptions that define the range of validity of the SPMe+SR. The two
assumptions are: small deviations from the open-circuit potential and weak side reaction. The first one is
reasonable for low to moderate C-rates, and would only break down at high C-rates. However, in practice,
other limiting phenomena occur before, such as electrolyte depletion. The second assumption is reasonable
because, if the side reaction was not small compared to the intercalation reaction, the battery would show
a Coulombic efficiency much lower than what is observed in practice [51]. Therefore, the two assumptions
are reasonable for a broad range of operating conditions. Having discussed its range of validity, we can now
define the SPMe+SR.

Particle equations. The equation for the lithium concentration in the negative averaged (or representative)
particle reads

$$\frac{\partial \bar{c}_n}{\partial t} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 D_n(\bar{c}_n) \frac{\partial \bar{c}_n}{\partial r} \right),$$

in $0 < r < R_n$, \hspace{1cm} (1a)

$$\frac{\partial \bar{c}_n}{\partial r} = 0,$$

at $r = 0$, \hspace{1cm} (1b)

$$-D_n(\bar{c}_n) \frac{\partial \bar{c}_n}{\partial r} = \frac{1}{a_n F} \left(\frac{i_{\text{app}}}{L_n} - J_{\text{SR}} \right),$$

at $r = R_n$, \hspace{1cm} (1c)

$$\bar{c}_n = c_{n,\text{init}},$$

at $t = 0$, \hspace{1cm} (1d)

where

$$J_{\text{SR}} = \frac{1}{L_n} \int_0^{L_n} J_{\text{SR}} \, dx,$$ \hspace{1cm} (2a)

$$J_{\text{SR}} = -a_n j_{\text{SR}} \exp \left(-\alpha_{\text{SR}} \frac{F}{RT} \left(\phi_n - \phi_e - U_{\text{SR}} - \frac{i_{\text{app}} L_{f,n}}{a_n \Sigma_{f,n}} \right) \right).$$ \hspace{1cm} (2b)

Here the variable to solve for is the concentration in the negative averaged particle \bar{c}_n, and the parameters
are the diffusivity $D_n(\bar{c}_n)$, the surface area per unit volume a_n, the Faraday constant F, the applied current
density i_{app}, the thickness of the negative electrode L_n, and the initial concentration of the particle $c_{n,\text{init}}$.
The side reaction current density (per unit volume) is J_{SR}, and the parameters that define it are the exchange current density j_{SR} (which may be a function of the variables of the problem, see Section 2.1), the transfer coefficient α_{SR}, the gas constant R, the temperature T, the open-circuit potential U_{SR}, and the film conductivity $\Sigma_{f,n}$. The electrode and electrolyte potentials (ϕ_n and ϕ_e, respectively) and the film thickness $L_{f,n}$ are quantities that depend on the variables of the model and are computed from the expressions (7)-(9).

Note that we use the overhead bar to define the average over the thickness of the corresponding electrode, as
defined in (2a). The definition of the concentration $\bar{c}_n(r)$ as an averaged quantity arises from the definition
of the Single Particle Model (see Section 3).

The equation for the lithium concentration in the positive averaged (or representative) particle equation
reads

\[
\frac{\partial \bar{c}_p}{\partial t} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 D_p(\bar{c}_p) \frac{\partial \bar{c}_p}{\partial r} \right), \quad \text{in } 0 < r < R_p, \tag{3a}
\]

\[
\frac{\partial \bar{c}_p}{\partial r} = 0, \quad \text{at } r = 0, \tag{3b}
\]

\[
-D_p(\bar{c}_p) \frac{\partial \bar{c}_p}{\partial r} = -\frac{1}{a_p F \bar{L}_p} i_{\text{app}}, \quad \text{at } r = R_p, \tag{3c}
\]

\[
\bar{c}_p = c_{p,\text{init}}, \quad \text{at } t = 0. \tag{3d}
\]

Here the variable to solve for is the concentration in the positive averaged particle \(\bar{c}_p(r) \), and the parameters are analogous to those in the negative electrode particle.

Electrolyte equation. The equation for the ion concentration in the electrolyte reads

\[
\frac{\partial}{\partial t} \left(\varepsilon c_e \right) = \frac{\partial}{\partial x} \left(D_e(c_e) B(x, t) \frac{\partial c_e}{\partial x} + (1 - t^+(c_e)) \frac{i_e}{F} \right), \quad \text{in } 0 \leq x \leq L, \tag{4a}
\]

\[
\frac{\partial c_e}{\partial x} = 0, \quad \text{at } x = 0, L, \tag{4b}
\]

\[
c_e = c_{e,\text{init}}, \quad \text{at } t = 0. \tag{4c}
\]

Here the variable to solve for is the lithium ion concentration in the electrolyte \(c_e(x) \), and the parameters are the diffusivity \(D_e(c_e) \), the transport efficiency (also known as inverse MacMullin number) \(B(x, t) \), the transference number \(t^+(c_e) \), and the initial concentration \(c_{e,\text{init}} \). The current in the electrolyte \(i_e \) is defined as in (8c), and the porosity \(\varepsilon \) is calculated from (6).

Porosity equation. The equation for the the porosity in the negative electrode is

\[
\frac{\partial \varepsilon_n}{\partial t} = \frac{M_{\text{SR}}}{n_{\text{SR}} \rho_{\text{SR}} F} J_{\text{SR}}, \tag{5}
\]

where \(M_{\text{SR}} \) and \(\rho_{\text{SR}} \) are the molar weight and density of the side reaction material, respectively, and \(n_{\text{SR}} \) the number of electrons involved in the side reaction. The porosity across the battery is defined piecewise as

\[
\varepsilon(x, t) = \begin{cases}
\varepsilon_n(x, t), & \text{if } 0 \leq x < L_n, \\
\varepsilon_s(x), & \text{if } L_n \leq x < L - L_p, \\
\varepsilon_p(x), & \text{if } L - L_p \leq x \leq L.
\end{cases} \tag{6}
\]

In this case, we define the side reaction only in the negative electrode and thus the porosity in the separator and positive electrode remain constant in time, but the model could be easily extended to account for a side reaction and porosity variation in the positive electrode as well.

The thickness of the side reaction film can be calculated as

\[
L_{t,k} = L_{t,k,\text{init}} - \frac{1}{a_k} (\varepsilon_k - \varepsilon_{k,\text{init}}), \tag{7}
\]

and note that this reduces to a trivial \(L_{t,k} = L_{t,k,\text{init}} \) in the case where the porosity does not change (i.e. the film does not grow).

After solving equations (1), (3), (4) and (5) to determine \(\bar{c}_n, \bar{c}_p, \bar{c}_e \) and \(\varepsilon \), we can compute any other variable of interest from explicit expressions.
Currents in the electrodes and electrolyte. The currents in the electrodes and electrolyte are defined as follows. In the negative electrode (0 ≤ x ≤ Ln) the current is

$$i_n(x) = \frac{i_{\text{app}}}{L_n} (L_n - x), \quad (8a)$$

while in the positive electrode (L − Lp ≤ x ≤ L) it is

$$i_p(x) = \frac{i_{\text{app}}}{L_p} (x - (L - L_p)). \quad (8b)$$

The current in the electrolyte is

$$i_e(x) = \begin{cases} \frac{i_{\text{app}}}{L_n} x, & \text{if } 0 \leq x < L_n, \\ i_{\text{app}}, & \text{if } L_n \leq x < L - L_p, \\ \frac{i_{\text{app}}}{L_p} (L - x), & \text{if } L - L_p \leq x \leq L. \end{cases} \quad (8c)$$

Potentials in the electrodes and electrolyte. The potentials in the electrodes and electrolyte are defined as follows. In the negative and positive electrodes, respectively, the potentials are

$$\phi_n(x) = U_n \left(\bar{e}_n | r=R_n \right) - \frac{i_{\text{app}}}{2L_n \sigma_n} \frac{2L_n - x}{3} + \frac{i_{\text{app}}}{L_n} \ln \frac{\sigma_x(s,t)B(s,t)}{\sigma_n} dx + \frac{RT}{L_n} \left[\int_{0}^{x} \left(1 - t^+(c_e(s,t)) \right) \left(1 + \frac{\partial f^+}{\partial c_e} \right) \frac{\partial \log c_e(s,t)}{\partial s} ds \right] dx$$

$$+ \frac{2RT}{L_n} \left[\int_{0}^{x} \left(1 - t^+(c_e(s,t)) \right) \left(1 + \frac{\partial f^+}{\partial c_e} \right) \frac{\partial \log c_e(s,t)}{\partial s} ds \right] dx$$

$$\phi_p(x) = U_p \left(\bar{e}_p | r=R_p \right) + \frac{i_{\text{app}}}{2L_p \sigma_p} \frac{2L_p + 3}{6} + \frac{i_{\text{app}}}{L_p} \ln \frac{\sigma_x(s,t)B(s,t)}{\sigma_p} dx + \frac{RT}{L_p} \left[\int_{0}^{x} \left(1 - t^+(c_e(s,t)) \right) \left(1 + \frac{\partial f^+}{\partial c_e} \right) \frac{\partial \log c_e(s,t)}{\partial s} ds \right] dx$$

$$- \frac{2RT}{L_p} \left[\int_{0}^{x} \left(1 - t^+(c_e(s,t)) \right) \left(1 + \frac{\partial f^+}{\partial c_e} \right) \frac{\partial \log c_e(s,t)}{\partial s} ds \right] dx, \quad (9a)$$

$$\phi_e(x) = - \int_{0}^{x} \frac{i_e}{\sigma_e(c_e(s,t))B(s,t)} ds + \frac{2RT}{F} \left[\int_{0}^{x} \left(1 - t^+(c_e(s,t)) \right) \left(1 + \frac{\partial f^+}{\partial c_e} \right) \frac{\partial \log c_e(s,t)}{\partial s} ds \right], \quad (9b)$$

with the intercalation exchange current density defined as

$$j_k = m_k \sqrt{c_k \bar{c}_k \left(\varepsilon_k^\text{max} - \bar{e}_k \right)} \bigg|_{R_k}. \quad (10)$$

Here the new parameters introduced (for k ∈ {n, p}) are the open-circuit potentials of the electrodes $U_k(c_k)$, the electrode electronic conductivities σ_k, the electrolyte conductivity $\sigma_e(c_e)$, the thermodynamic factor $\left(1 + \frac{\partial f^+}{\partial c_e} \right)$, the intercalation reaction constant m_k, and the maximum concentration in the particles $\varepsilon_k^\text{max}. \quad 7$
Terminal voltage. The terminal voltage can be calculated from the electrode potentials as
\[V = \phi_p|_{x=L} - \phi_n|_{x=0}. \] (11)

Using the definitions for the potentials (9a)-(9b), we can write the terminal voltage as
\[V = U_{eq} + \eta_i + \eta_e + \Delta \phi_e + \Delta \phi_s + \Delta \phi_r, \] (12a)

where
\[U_{eq} = U_p \left(\hat{c}_p|_{r=R_p} \right) - U_n \left(\hat{c}_n|_{r=R_n} \right), \] (12b)
\[\eta_i = -\frac{2RT}{F} \left(\int_{L-L_p}^{L} \text{arcsinh} \left(\frac{i_{app}}{a_pL_pj_p} \right) \, dx + \int_{0}^{L_n} \text{arcsinh} \left(\frac{i_{app}}{a_nL_nj_n} \right) \, dx \right), \] (12c)
\[\eta_e = \frac{2RT}{F} \left(\int_{L-L_p}^{L} \int_{0}^{x} (1 - t^+ \left(c_e(s, t) \right)) \frac{\partial \log c_e(s, t)}{\partial s} \, ds \, dx \right) \] (12d)
\[\Delta \phi_e = -\frac{1}{L_p} \left[\int_{L-L_p}^{L} \int_{0}^{x} \frac{i_e(s, t)ds}{\sigma_e(c_e(s, t))B(s, t)} \, dx + \int_{0}^{L_n} \int_{0}^{x} \frac{i_e(s, t)ds}{\sigma_e(c_e(s, t))B(s, t)} \, dx \right], \] (12e)
\[\Delta \phi_s = -\frac{i_{app}}{3} \left(\frac{L_p}{\sigma_p} + \frac{L_n}{\sigma_n} \right), \] (12f)
\[\Delta \phi_r = -i_{app} \left(\frac{L_{f,p}}{L_p \sigma_f \sigma_p} + \frac{L_{f,n}}{L_n a_n \sigma_f \sigma_n} \right). \] (12g)

Each term in the voltage expression has a physical interpretation: \(U_{eq} \) is the equilibrium (or open-circuit) potential of the cell, \(\eta_i \) is the intercalation reaction overpotential, \(\eta_e \) is the electrolyte concentration overpotential, \(\Delta \phi_e \) are the Ohmic losses in the electrolyte, \(\Delta \phi_s \) are the Ohmic losses in the electrode, and \(\Delta \phi_r \) are the Ohmic losses in the interface film.

2.1. Examples of SR models

The SPM+SR is generic enough to account for a wide range of side reactions (or combinations thereof). In Section 4 we have simulated three cases: SEI growth, lithium plating, and their combined effect. Both SEI and plating models are taken to match those in [51], so they are a solvent diffusion with reactions model for SEI growth and an irreversible model for lithium plating. For SEI, we define \(j_{SR} = j_{SEI} \) where
\[j_{SEI} = F k_{SEI} c_{SEI}, \] (13)
and the concentration of the SEI material (e.g., ethylene carbonate, also called EC) is given by
\[c_{SEI} = c_{SEI,\text{init}} + \frac{j_{SEI} L_i}{F D_{SEI}}. \] (14)

Here \(c_{SEI} \) is the concentration of the SEI material, \(k_{SEI} \) is the reaction rate of the SEI reaction, \(c_{SEI,\text{init}} \) is the initial SEI concentration, and \(D_{SEI} \) is the solvent diffusivity. More details on this model can be found in [43, 51].

For lithium plating we define \(j_{SR} = j_{Li} \) where
\[j_{Li} = F k_{Li} c_e, \] (15)
and \(k_{Li} \) is the lithium plating reaction rate. This model is slightly different to that in [51] as the plating exchange current density depends on the ion concentration in the electrolyte. More details of this model can be found in [36].
Finally, both models can be combined to account for simultaneous SEI growth and lithium plating. In this case, we need to define \(J_{\text{SR}} = J_{\text{SEI}} + J_{\text{Li}} \), where

\[
J_{\text{SEI}} = -a_n j_{\text{SEI}} \exp \left(-\frac{\alpha_{\text{SEI}} F}{RT} \left(\phi_n - \phi_e - u_{\text{SEI}} - \frac{i_{\text{app}} L_{\text{f,n}}}{L_n a_n \Sigma_{\text{f,n}}} \right) \right),
\]

\[
J_{\text{Li}} = -a_n j_{\text{Li}} \exp \left(-\frac{\alpha_{\text{Li}} F}{RT} \left(\phi_n - \phi_e - u_{\text{Li}} - \frac{i_{\text{app}} L_{\text{f,n}}}{L_n a_n \Sigma_{\text{f,n}}} \right) \right),
\]

and \(j_{\text{SEI}} \) and \(j_{\text{Li}} \) are defined from (13)-(15). We now need to be careful on how to define the porosity variation as both reactions will contribute to it. In this case it is easier to define the thickness of the films created by each reaction as

\[
\frac{\partial L_{\text{f,SEI}}}{\partial t} = -\frac{M_{\text{SEI}}}{n_{\text{SEI}} p_{\text{SEI}} F} J_{\text{SEI}},
\]

\[
\frac{\partial L_{\text{f,Li}}}{\partial t} = -\frac{M_{\text{Li}}}{n_{\text{Li}} p_{\text{Li}} F} J_{\text{Li}}.
\]

With the two thicknesses separately, we can define the total film thickness as \(L_{\text{f,n}} = L_{\text{f,SEI}} + L_{\text{f,Li}} \), and the film conductivity according to modelling assumptions of our choice. For the results in Section 4, we assume that plated lithium is an ideal conductor and therefore the film Ohmic losses are caused by SEI only.

We can then retrieve the porosity from inverting (7), which yields

\[
\varepsilon_k = \varepsilon_{k,\text{init}} - a_k (L_{\text{f,k}} - L_{\text{f,k,init}}).
\]

Note that taking the time derivative of this equation and substituting (17) into it, we obtain the porosity equation stated in [51]

\[
\frac{\partial \varepsilon_n}{\partial t} = -\frac{M_{\text{SEI}}}{n_{\text{SEI}} p_{\text{SEI}} F} J_{\text{SEI}} + \frac{M_{\text{Li}}}{n_{\text{Li}} p_{\text{Li}} F} J_{\text{Li}}.
\]

2.2. Conservation of lithium

A fundamental feature of any battery model is to conserve lithium. In this section we prove that the SPMe+SR conserves the total amount of lithium. The total amount of lithium in the battery \(N_{\text{tot}} \) is given by

\[
N_{\text{tot}}(t) = N_n(t) + N_p(t) + N_e(t) + N_{\text{SR}}(t),
\]

where the total amounts of lithium in each domain are \(N_n \) for the negative electrode, \(N_p \) for the positive electrode, \(N_e \) for the electrolyte and \(N_{\text{SR}} \) for the side reaction material. These quantities are defined as the integral of the corresponding concentration of lithium species over the domain they occupy, hence

\[
N_n(t) = A L_n \int_0^{R_n} r^2 \varepsilon_n \, dr,
\]

\[
N_p(t) = A L_p \int_0^{R_p} r^2 \varepsilon_p \, dr,
\]

\[
N_e(t) = A \int_0^L \varepsilon_e \, dx,
\]

\[
N_{\text{SR}}(t) = A \int_0^L \frac{n_{\text{SR}} p_{\text{SR}}}{M_{\text{SR}}} (\varepsilon_{n,\text{init}} - \varepsilon_n) \, dx,
\]

where \(\varepsilon_{a,k} \) for \(k \in \{ n, p \} \) is the volume fraction of active material in each electrode.

We want to prove that \(\frac{dN_n}{dt} = 0 \), therefore we need to calculate the time derivatives for the total amount of lithium in each domain. For example, for the negative electrode we have

\[
\frac{dN_n}{dt} = A L_n \int_0^{R_n} r^2 \frac{\partial \varepsilon_n}{\partial t} \, dr.
\]
and using the expressions in (1a) and (1c) we can rewrite it as
\[
\frac{dN_n}{dt} = AL_n \frac{3\varepsilon_{s,n}}{R_n^3} \int_0^{R_n} \frac{\partial}{\partial r} \left(r^2 D_0 (\bar{c}_n) \frac{\partial \bar{c}_n}{\partial r} \right) dr = AL_n \frac{3\varepsilon_{s,n}}{R_n^3} r^2 D_0 (\bar{c}_n) \frac{\partial \bar{c}_n}{\partial r} \bigg|_{r=R_n} = -AL_n \frac{3\varepsilon_{s,n}}{R_n^3} a_n F \left(\frac{i_{i\text{pp}}}{L_n} - J_{SR} \right) = \frac{A}{F} \left(i_{i\text{pp}} - J_{SR} L_n \right),
\]
where we have used that for spherical particles \(a_k = \frac{3\varepsilon_{s,n}}{a_k} \), for \(k \in \{n, p\} \).

Similarly, we can show that
\[
\begin{align*}
\frac{dN_p}{dt} &= \frac{A}{F} i_{i\text{pp}}, \\
\frac{dN_e}{dt} &= 0, \\
\frac{dN_{SR}}{dt} &= -\frac{A}{F} J_{SR} L_n,
\end{align*}
\]
so the variation of the total amount of lithium is
\[
\frac{dN_{\text{tot}}}{dt} = \frac{A}{F} \left(-i_{i\text{pp}} + J_{SR} L_n + i_{i\text{pp}} - J_{SR} L_n \right) = 0,
\]
hence the total amount of lithium is conserved.

3. Derivation of the SPMe+SR

In this section we derive the reduced SPMe+SR model from the full DFN+SR model presented in Appendix A. We first state the rescaled dimensionless model (Section 3.1), which is the starting point of the asymptotic reduction in Section 3.2. A summary of the model is presented in Section 3.3.

3.1. Rescaled dimensionless model

We derive the SPMe+SR model from the isothermal DFN+SR, the dimensionless version of which is presented in Appendix A.2. The model has a set of dimensionless parameters which are defined in (A.14). The analysis is in the limit of large \(\lambda \), so here we present the dimensionless model again, but introducing the rescalings of the relevant dimensionless numbers with powers of \(\lambda^{-1} \), which is the small parameter for the asymptotic reduction.

We introduce the rescalings
\[
\gamma_{SR} = \lambda^{-1} \tilde{\gamma}_{SR}, \quad \tilde{j}_{SR} \exp (\alpha_{SR} U_{SR}) = \lambda^{-1} j_{SR}.
\]
Note that, from the values in Table A.5, \(\gamma_{SR} \) could be \(\mathcal{O}(1) \) (e.g., for lithium plating). However, if \(\gamma_{SR} = \mathcal{O}(1) \) then the leading order porosity does not change, so assuming \(\gamma_{SR} = \mathcal{O}(\lambda^{-1}) \) allows us to capture a broader range of scenarios. On the other hand, we can check that \(\tilde{j}_{SR} \exp (\alpha_{SR} U_{SR}) = \mathcal{O}(\lambda^{-1}) \). Note that both \(j_{SR} \) and \(\tilde{j}_{SR} \) can depend on other variables of the system, such as SEI concentration in (13) or electrolyte concentration in (15). As discussed in [43], a typical approach is to include the open-circuit potential contribution into the reaction rate, which is the approach we have used when setting the parameters (see Table 2). Therefore, the exponential term is equal to one and we only need to focus our attention to \(j_{SR} \). Because we are interested in the order of magnitude, we can set \(\tilde{c}_e = 1 \) and \(\tilde{L}_f = 1 \). Then, from (B.1)-(B.2) we find that for SEI growth \(j_{SR} \approx 6.12 \cdot 10^{-4} \lambda^{-1} \), while from (B.3) we find that for lithium plating \(j_{SR} \approx 1.31 \cdot 10^{-3} \lambda^{-1} \) (where \(C \) is the typical applied C-rate). Again, we could assume \(j_{SR} = \mathcal{O}(\lambda^{-2}) \), but this is even a more strict assumption and would neglect the side reactions which we want to include in the model.
For simplicity of the notation, we drop the hats used to represent dimensionless variables (in Section Appendix A.2) as all the equations in this section are in dimensionless form. The model for concentration in the particles reads

\[
C_k \frac{\partial c_k}{\partial t} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 D_k \frac{\partial c_k}{\partial r} \right), \quad \text{in } 0 < r < 1, \quad (27a)
\]

\[
\frac{\partial c_k}{\partial r} = 0, \quad \text{at } r = 0, \quad (27b)
\]

\[
-D_k \frac{\partial c_k}{\partial r} = \frac{C_k}{\alpha_k \gamma_k} J_{k, \text{int}}, \quad \text{at } r = 1, \quad (27c)
\]

\[
c_k = \mu_k, \quad \text{at } t = 0, \quad (27d)
\]

and the potential in each electrode is given by

\[
\frac{\partial i_k}{\partial x} = -J_k, \quad (27e)
\]

\[
i_k = -\lambda \Sigma_k \frac{\partial \phi_k}{\partial x}. \quad (27f)
\]

The \(x \) domain is defined to be \(0 \leq x \leq \ell_n \) if \(k = n \), and \(1 - \ell_p \leq x \leq 1 \) if \(k = p \).

The electrolyte equations, which are defined in the domain \(0 \leq x \leq 1 \), are

\[
C_e \gamma_e \frac{\partial}{\partial t} (\varepsilon c_e) = -\gamma_e \frac{\partial N_e}{\partial x} + C_e J, \quad (27g)
\]

\[
\frac{\partial i_e}{\partial x} = J, \quad (27h)
\]

with

\[
N_e = -D_e B(x) \frac{\partial c_e}{\partial x} + t^+ \frac{C_e}{\gamma_e} i_e, \quad (27i)
\]

\[
i_e = -\Sigma_e \sigma_e B(x) \left(\frac{\partial \phi_e}{\partial x} - 2(1 - t^+) \left(1 + \frac{\partial f_k}{\partial c_e} \right) \frac{\partial \log c_e}{\partial x} \right). \quad (27j)
\]

The intercalation reaction between the electrode and the electrolyte is given by

\[
J = \begin{cases}
J_n = J_{n, \text{int}} + J_{SR}, & \text{if } 0 \leq x \leq \ell_n, \\
0, & \text{if } \ell_n < x \leq 1 - \ell_p, \\
J_p = J_{p, \text{int}}, & \text{if } 1 - \ell_p < x \leq 1,
\end{cases} \quad (28a)
\]

where the intercalation reaction kinetics are driven by

\[
J_{k, \text{int}} = \frac{\gamma_{k}}{C_{r,k}} \sqrt{c_e c_k (1 - c_k)} \bigg|_{r=1} \sinh \left(\frac{1}{2} \left[\lambda \left(\phi_k - U_k \right) \big|_{r=1} \right) - \phi_e - \frac{J_k L_{l,n}}{\Sigma_{l,k}} \right), \quad (28b)
\]

and the side reaction kinetics are driven by

\[
J_{SR} = -\lambda^{-1} \gamma_{SR} \exp \left(-\alpha_{SR} \left(\lambda \phi_n - \phi_e - \frac{J_n L_{l,n}}{\Sigma_{l,n}} \right) \right). \quad (28c)
\]

This side reaction causes a change in the porosity that follows

\[
\frac{\partial \varepsilon_n}{\partial t} = \frac{\lambda}{n_{SR} \gamma_{SR}} J_{SR}, \quad (29)
\]
and the corresponding film thickness can be calculated as
\[L_{f,k} = 1 - \frac{1}{\beta_k} (\varepsilon_k - \varepsilon_{k,\text{init}}). \] (30)

The boundary conditions at current collector ends are
\[i_n = i_{\text{app}}, \quad N_c = 0, \quad \phi_e = 0, \quad \text{at } x = 0, \] (31a)
\[i_p = i_{\text{app}}, \quad N_c = 0, \quad i_e = 0, \quad \text{at } x = 1, \] (31b)
and at the electrode-separator interfaces are
\[i_n = 0, \quad \text{at } x = \ell_n, \] (31c)
\[i_p = 0, \quad \text{at } x = 1 - \ell_p. \] (31d)

Finally, the initial condition for the electrolyte is
\[c_e = 1, \quad \text{at } t = 0. \] (31e)

3.2. Asymptotic reduction

We now proceed to perform the asymptotic reduction of the model presented in the previous section. We perform the expansion in the limit of large \(\lambda \) so we define our small parameter as \(\lambda^{-1} \ll 1 \) (which physically means small deviations from the equilibrium potential). Then, we expand the variables of the model in powers of \(\lambda^{-1} \) using the notation
\[\phi_n = \phi_{n0} + \lambda^{-1} \phi_{n1} + \lambda^{-2} \phi_{n2} + \ldots, \] (32)
and similarly for the other variables.

Leading-order electrode potential. Before starting the asymptotic expansion note that, integrating (27e) and using the electrode current boundary conditions in (31), we can determine
\[\bar{J}_n = \frac{1}{\ell_n} \int_0^{\ell_n} J_n \, dx = \frac{i_{\text{app}}}{\ell_n}, \] (33a)
\[\bar{J}_p = \frac{1}{\ell_p} \int_{1-\ell_p}^1 J_p \, dx = -\frac{i_{\text{app}}}{\ell_p}. \] (33b)
These averaged current densities will be useful later on in the asymptotic analysis.

We now consider the leading order term of (27f), which gives
\[\partial \phi_{k0} \partial x = 0, \] (34)
and from which we can conclude that \(\phi_{k0} = \phi_{k0}(t) \), for both \(k \in \{n, p\} \).

Interface reactions. The next step is to consider the interface reaction equations (28) and the porosity variation equation (29). Given that we are only considering a side reaction in the negative electrode, the analysis in the positive electrode will follow identically as in [11] and thus we do not reproduce the details here. For simplicity, we rewrite (28) using the following notation
\[J_n = J_{n,\text{int}} + J_{\text{SR}} = j_n \sinh \left(\frac{1}{2} \left[\lambda (\phi_n - U_n(c_n|_{r=1})) - \phi_e - \frac{J_n L_{f,n}}{\Sigma f,n} \right] \right) \]
\[- \lambda^{-1} J_{\text{SR}} \exp \left(-\alpha_{\text{SR}} \left[\lambda \phi_n - \phi_e - \frac{J_n L_{f,n}}{\Sigma f,n} \right] \right), \] (35)
with
\[
 j_n = \frac{\gamma_n}{C_{r,n}} \sqrt{c_n (1 - c_n)} |_{r=1}.
\]

We have that \(J_n = O(1) \), and the porosity variation equation (29) requires \(J_{\text{SR}} = O(\lambda^{-1}) \) because \(\frac{\partial n}{\partial t} = O(1) \). Then, we require that \(J_{n,\text{int}} = O(1) \). Expanding \(J_{n,\text{int}} \) in powers of \(\lambda^{-1} \) we have
\[
 J_{n,\text{int}} = (J_{n0} + \lambda^{-1} J_{n1} + \ldots) \times \sinh \left(\frac{1}{2} \lambda (\phi_{n0} - U_n(c_{n0}|_{r=1})) + \phi_{n1} - \phi_{e0} - U_n'(c_{n0}|_{r=1}) c_{n1}|_{r=1} - \frac{J_{n0}L_{f,n0}}{\Sigma_{l,n}} + \ldots \right),
\]
so the large terms in the \(\sinh \) need to cancel. This requires \(\phi_{n0}(t) = U_n(c_{n0}|_{r=1}) \). Because we know that \(\phi_{n0} \) does not depend on \(x \), we can conclude that \(c_{n0}|_{r=1} \) does not depend on \(x \) either. This means that the surface concentration will be identical across the particles in the negative electrode and thus, if the particles start with identical concentrations, then they will evolve with identical concentrations. From here we can deduce that the boundary flux of all the particles must be identical as well, so
\[
 J_{n,\text{int0}} = j_{n0} \sinh \left(\frac{1}{2} \left(\phi_{n1} - \phi_{e0} - U_n'(c_{n0}|_{r=1}) c_{n1}|_{r=1} - \frac{J_{n0}L_{f,n0}}{\Sigma_{l,n}} \right) \right),
\]
does not depend on \(x \).

Now we focus our attention on \(J_{\text{SR}} \), and expanding the potentials again in powers of \(\lambda^{-1} \) we have
\[
 J_{\text{SR}} = -\lambda^{-1} \tilde{J}_{\text{SR}} \exp \left(-\alpha_{\text{SR}} \lambda \phi_{n0} \right) \exp \left(-\alpha_{\text{SR}} \left(\phi_{n1} - \phi_{e0} - \frac{J_{n0}L_{f,n0}}{\Sigma_{l,n}} \right) \right).
\]
We can expand the rescaled exchange current density as
\[
 \tilde{J}_{\text{SR}} = \tilde{J}_{\text{SR}0} + \lambda^{-1} \tilde{J}_{\text{SR}1} + \ldots,
\]
which yields
\[
 J_{\text{SR}} = \lambda^{-1} J_{\text{SR}0} = -\lambda^{-1} \tilde{J}_{\text{SR}0} \exp \left(-\alpha_{\text{SR}} \lambda \phi_{n0} \right) \exp \left(-\alpha_{\text{SR}} \left(\phi_{n1} - \phi_{e0} - \frac{J_{n0}L_{f,n0}}{\Sigma_{l,n}} \right) \right) + \ldots.
\]

Now we consider the total interfacial reaction current. At leading order, from (35) we obtain
\[
 J_{n0} = J_{n,\text{int0}} = j_{n0} \sinh \left(\frac{1}{2} \left(\phi_{n1} - \phi_{e0} - U_n'(c_{n0}|_{r=1}) c_{n1}|_{r=1} - \frac{J_{n0}L_{f,n0}}{\Sigma_{l,n}} \right) \right).
\]
This implies that \(J_{n0} \) is homogeneous in space too and hence it must be equal to its averaged value, calculated in (33), so
\[
 J_{n0} = J_{n,\text{int0}} = \frac{i_{\text{app}}}{\ell_n}.
\]
For the positive electrode the analysis follows identically to that in [11], and we find that \(J_{p0} = \frac{i_{\text{app}}}{\ell_p} \).

Porosity variation. For the porosity (29) we find that, at leading order, it is described by
\[
 \frac{\partial \varepsilon_{n0}}{\partial t} = \frac{J_{\text{SR}0}}{n_{\text{SR}} \tilde{J}_{\text{SR}}}.
\]
This has an effect on the film thickness that appears in the reaction overpotentials. At leading order, the film thickness is calculated as
\[
 L_{f,k0} = 1 - \frac{1}{\beta_k} (\varepsilon_{k0} - \varepsilon_{k,\text{init}}).
\]

Electrode particles. Let’s now consider the equations for electrode particles. In the positive electrode particle there is no side reaction and the analysis follows identically to that in [11], so here we focus our attention on the negative electrode particle. At $O(1)$ we have

$$
C_n \frac{\partial c_{n0}}{\partial t} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 D_n(c_{n0}) \frac{\partial c_{n0}}{\partial r} \right), \quad \text{in } 0 < r < 1, \quad (46a)
$$

$$
- \frac{\partial c_{n0}}{\partial r} = 0, \quad \text{at } r = 0, \quad (46b)
$$

$$
- D_n(c_{n0}) \frac{\partial c_{n0}}{\partial r} = \frac{C_n}{\alpha_n \gamma_n} J_n, \quad \text{at } r = 1, \quad (46c)
$$

$$
c_{n0} = \mu_n, \quad \text{at } t = 0, \quad (46d)
$$

which we can solve numerically using the expression for J_n in (43). In fact, because c_{n0} does not depend on x we can interchangeably consider the x-averaged concentration \bar{c}_{n0} given that $\bar{c}_{n0} = c_{n0}$. At $O(\lambda^{-1})$ we have

$$
C_n \frac{\partial \bar{c}_{n1}}{\partial t} - \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 D_n(c_{n0}) \frac{\partial \bar{c}_{n1}}{\partial r} + D_n'(c_{n0}) \bar{c}_{n1} \frac{\partial \bar{c}_{n0}}{\partial r} \right) = 0, \quad \text{in } 0 < r < 1, \quad (47a)
$$

$$
- \left(D_n(c_{n0}) \frac{\partial \bar{c}_{n1}}{\partial r} + D_n'(c_{n0}) \bar{c}_{n1} \frac{\partial \bar{c}_{n0}}{\partial r} \right) = 0, \quad \text{at } r = 0, \quad (47b)
$$

$$
- \left(D_n(c_{n0}) \frac{\partial \bar{c}_{n1}}{\partial r} + D_n'(c_{n0}) \bar{c}_{n1} \frac{\partial \bar{c}_{n0}}{\partial r} \right) = \frac{C_n}{\alpha_n \gamma_n} J_n, \quad \text{at } r = 1, \quad (47c)
$$

$$
\bar{c}_{n1} = 0, \quad \text{at } t = 0. \quad (47d)
$$

We can now x-average (47) to obtain an equation for \bar{c}_{n1}. We also make use of the fact that $\bar{c}_{n0} = c_{n0}$ to simplify the resulting equation into

$$
C_n \frac{\partial \bar{c}_{n1}}{\partial t} - \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 D_n(c_{n0}) \frac{\partial \bar{c}_{n1}}{\partial r} + D_n'(c_{n0}) \bar{c}_{n1} \frac{\partial \bar{c}_{n0}}{\partial r} \right) = 0, \quad \text{in } 0 < r < 1, \quad (48a)
$$

$$
- \left(D_n(c_{n0}) \frac{\partial \bar{c}_{n1}}{\partial r} + D_n'(c_{n0}) \bar{c}_{n1} \frac{\partial \bar{c}_{n0}}{\partial r} \right) = 0, \quad \text{at } r = 0, \quad (48b)
$$

$$
- \left(D_n(c_{n0}) \frac{\partial \bar{c}_{n1}}{\partial r} + D_n'(c_{n0}) \bar{c}_{n1} \frac{\partial \bar{c}_{n0}}{\partial r} \right) = \frac{C_n}{\alpha_n \gamma_n} J_n, \quad \text{at } r = 1, \quad (48c)
$$

$$
\bar{c}_{n1} = 0, \quad \text{at } t = 0. \quad (48d)
$$

We need to calculate J_n. Averaging the $O(\lambda^{-1})$ term of (35) over the negative electrode yields

$$
J_n = J_{n, \text{int1}} + J_{SR0}, \quad (49)
$$

and from (33) we deduce that $J_{n1} = 0$, so we conclude that $J_{n, \text{int1}} = -J_{SR0}$. Therefore, for the negative electrode particle we cannot conclude that $\bar{c}_{n1} = 0$ as it occurs with the positive electrode particle (see [11]). Instead, \bar{c}_{n1} captures the contribution of the side reaction. To determine it we need to solve (48), which can be easily done numerically.

Electrolyte. We now consider the equations for the electrolyte (27g)-(27j). First we calculate the leading order current, which is determined by

$$
\frac{\partial c_{00}}{\partial x} = J_0 = \begin{cases}
J_{00} = \frac{i_{\text{app}}}{\ell_n}, & \text{if } 0 \leq x < \ell_n, \\
0, & \text{if } \ell_n \leq x < 1 - \ell_p, \\
J_{00} = -\frac{i_{\text{app}}}{\ell_p}, & \text{if } 1 - \ell_p \leq x \leq 1.
\end{cases} \quad (50)
$$
Integrating and imposing continuity of current we find
\begin{align*}
i_{e0} = \begin{cases} \frac{i_{app}}{\ell_n} x, & \text{if } 0 \leq x < \ell_n, \\ i_{app}, & \text{if } \ell_n \leq x < 1 - \ell_p, \\ \frac{i_{app}}{\ell_p} (1 - x), & \text{if } 1 - \ell_p \leq x \leq 1. \end{cases} \tag{51}
\end{align*}

Now we consider ion concentration in the electrolyte. At leading order it is governed by
\begin{align*}
C_e \gamma_e \frac{\partial}{\partial t} (\varepsilon_0 c_{e0}) &= \frac{\partial}{\partial x} \left(\gamma_e D_e(c_{e0})B_0(x) \frac{\partial c_{e0}}{\partial x} + (1 - t^+(c_{e0})) C_e i_{e0} \right), \\
\frac{\partial c_{e0}}{\partial x} &= 0, \\
c_{e0} &= 1,
\end{align*}
\begin{align*}
in \leq x \leq 1, \\
{\text{at } x = 0, 1,} \\
{\text{at } t = 0}, \tag{52-54}
\end{align*}
where \(i_{e0}\) is piecewise linear as determined in (51). This equation can be solved numerically to compute \(c_{e0}\), as it is done in the standard SPMe.

Finally, we need to calculate the electrolyte potential. At leading order we have
\begin{align*}
i_{e0} &= -\sum_k \sigma_k(c_{e0}) B_0(x) \left(\frac{\partial \phi_{e0}}{\partial x} - 2(1 - t^+(c_{e0})) \left(1 + \frac{\partial f_\pm}{\partial c_{e0}} \right) \frac{\partial \log c_{e0}}{\partial x} \right), \tag{55}
\end{align*}
which we can rearrange into
\begin{align*}
\frac{\partial \phi_{e0}}{\partial x} &= -\frac{i_{e0}}{\sum_c \sigma_c c_{e0} B_0(x)} + 2(1 - t^+(c_{e0})) \left(1 + \frac{\partial f_\pm}{\partial c_{e0}} \right) \frac{\partial \log c_{e0}}{\partial x}. \tag{56}
\end{align*}
Integrating from 0 to \(x\) and using the fact that \(\phi_{e0} = 0\) at \(x = 0\) (31) we obtain
\begin{align*}
\phi_{e0} &= -\int_0^x \frac{i_{e0}}{\sum_c \sigma_c(c_{e0}(s, t)) B_0(s)} \text{d}s + \int_0^x 2(1 - t^+(c_{e0}(s, t))) \left(1 + \frac{\partial f_\pm}{\partial c_{e0}} \right) \frac{\partial \log c_{e0}(s, t)}{\partial s} \text{d}s. \tag{57}
\end{align*}

Higher-order electrode potential. We finally calculate the higher order terms for the electrode potentials, which will allow us to determine the terminal voltage. At \(O(\lambda^{-1})\) we have
\begin{align*}
-\sum_k \frac{\partial^2 \phi_{k1}}{\partial x^2} &= -J_0, \tag{58}
\end{align*}
for \(k \in \{n, p\}\). Integrating, we find
\begin{align*}
\phi_{k1} &= \frac{J_0}{2\sum_k} x^2 + A_k x + B_k, \tag{59}
\end{align*}
where \(A_k\) and \(B_k\) are integration constants. We can determine \(A_k\) from the flux boundary conditions obtaining
\begin{align*}
\phi_{n1} &= -\frac{i_{app}(2\ell_n - x)}{2\ell_n \Sigma_n} + B_n, \tag{60a} \\
\phi_{p1} &= \frac{i_{app}(2(1 - \ell_p) - x)}{2 \ell_p \Sigma_p} + B_p. \tag{60b}
\end{align*}
We calculate \(B_k\) from the interface reaction as it relates the electrode and electrolyte potentials. From (42) we have
\begin{align*}
\phi_{k1} - \phi_{e0} - U'_k(c_{k0}) c_{k1} |_{r=1} &= -\frac{J_0 L_{k1, 0}}{\Sigma_k} = 2 \text{arcsinh} \left(\frac{J_0}{J_{k0}} \right). \tag{61}
\end{align*}
We now average (61) over the corresponding electrode. This will not affect \(B_k \), as they are constants, and will make the calculations simpler.

We now need to distinguish between the positive and the negative electrode. For the positive electrode we have \(\bar{c}_{p1} = 0 \) (see details in [11]), while for the negative electrode this is not true due to the side reaction. Then, we have

\[
\begin{align*}
B_n &= \frac{i_{\text{app}} \ell_n}{3 \Sigma_n} + U'_n(c_{e0}) \bar{c}_{n1} \bigg|_{r=1} + \frac{i_{\text{app}} L_{f,n0}}{\ell_n \Sigma_f,n} \int_0^{\ell_n} \int_0^x i_{e0}(s,t) d\sigma(c_{e0}(s,t)) B_0(s) \ dx \\
&+ \frac{1}{\ell_n} \int_0^{\ell_n} \int_0^x 2(1 - t^+(c_{e0}(s,t))) \left(1 + \frac{\partial f_{\pm}}{\partial c_{e0}}\right) \frac{\partial \log c_{e0}(s,t)}{\partial s} ds dx + \frac{2}{\ell_n} \int_0^{\ell_n} \arcsinh \left(\frac{i_{\text{app}}}{\ell_n \sigma_0} \right) dx, \\
B_p &= -\frac{i_{\text{app}}(2\ell_p^2 - 6\ell_p + 3)}{6\ell_p \Sigma_p} - \frac{i_{\text{app}} L_{f,p0}}{\ell_p \Sigma_f,p} - \frac{1}{\ell_p \Sigma_e} \int_{1 - \ell_p}^{1} \int_0^x i_{e0}(s,t) d\sigma(c_{e0}(s,t)) B_0(s) \ dx \\
&+ \frac{1}{\ell_p} \int_{1 - \ell_p}^{1} \int_0^x 2(1 - t^+(c_{e0}(s,t))) \left(1 + \frac{\partial f_{\pm}}{\partial c_{e0}}\right) \frac{\partial \log c_{e0}(s,t)}{\partial s} ds dx - \frac{2}{\ell_p} \int_{1 - \ell_p}^{1} \arcsinh \left(\frac{i_{\text{app}}}{\ell_p \sigma_0} \right) dx.
\end{align*}
\]

Therefore we can now write the potentials as

\[
\begin{align*}
\phi_{n1} &= -\frac{i_{\text{app}}(2\ell_n - x)x}{2\ell_n \Sigma_n} + \frac{i_{\text{app}} \ell_n}{3 \Sigma_n} + U'_n(c_{e0}) \bar{c}_{n1} \bigg|_{r=1} + \frac{i_{\text{app}} L_{f,n0}}{\ell_n \Sigma_f,n} \int_0^{\ell_n} \int_0^x i_{e0}(s,t) d\sigma(c_{e0}(s,t)) B_0(s) \ dx \\
&+ \frac{1}{\ell_n} \int_0^{\ell_n} \int_0^x 2(1 - t^+(c_{e0}(s,t))) \left(1 + \frac{\partial f_{\pm}}{\partial c_{e0}}\right) \frac{\partial \log c_{e0}(s,t)}{\partial s} ds dx + \frac{2}{\ell_n} \int_0^{\ell_n} \arcsinh \left(\frac{i_{\text{app}}}{\ell_n \sigma_0} \right) dx, \\
\phi_{p1} &= -\frac{i_{\text{app}}(2(1 - \ell_p) - x)x}{2\ell_p \Sigma_p} - \frac{i_{\text{app}}(2\ell_p^2 - 6\ell_p + 3)}{6\ell_p \Sigma_p} - \frac{i_{\text{app}} L_{f,p0}}{\ell_p \Sigma_f,p} - \frac{1}{\ell_p \Sigma_e} \int_{1 - \ell_p}^{1} \int_0^x i_{e0}(s,t) d\sigma(c_{e0}(s,t)) B_0(s) \ dx \\
&+ \frac{1}{\ell_p} \int_{1 - \ell_p}^{1} \int_0^x 2(1 - t^+(c_{e0}(s,t))) \left(1 + \frac{\partial f_{\pm}}{\partial c_{e0}}\right) \frac{\partial \log c_{e0}(s,t)}{\partial s} ds dx - \frac{2}{\ell_p} \int_{1 - \ell_p}^{1} \arcsinh \left(\frac{i_{\text{app}}}{\ell_p \sigma_0} \right) dx.
\end{align*}
\]

With the potential expressions at \(\mathcal{O}(\lambda^{-1}) \) we have all the components we need for the SPMe+SR model, which we present together in the next section.

3.3. Model summary

We now write the SPME+SR in a more compact way. We have leading order expressions for each variable, except for the particle concentrations and electrode potentials for which we have also computed the first order corrections. Then, we define each variable as:

\[
\begin{align*}
\bar{c}_k &\approx \bar{c}_{k0} + \lambda^{-1} \bar{c}_{k1}, \\
c_c &\approx c_{e0}, \\
\varepsilon &\approx \varepsilon_0, \\
L_{f,k} &\approx L_{f,k0}, \\
\phi_k &\approx \phi_{k0} + \lambda^{-1} \phi_{k1}, \\
\phi_c &\approx \phi_{c0}.
\end{align*}
\]
Particle equations. The equation for the concentration in the negative averaged particle reads

\[C_n \frac{\partial \bar{c}_n}{\partial t} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 D_n (\bar{c}_n) \frac{\partial \bar{c}_n}{\partial r} \right), \quad \text{in } 0 < r < 1, \tag{65a} \]

\[\frac{\partial \bar{c}_n}{\partial r} = 0, \quad \text{at } r = 0, \tag{65b} \]

\[-D_n (\bar{c}_n) \frac{\partial \bar{c}_n}{\partial r} = \frac{C_n}{\alpha_n \gamma_n} \left(\frac{i_{\text{app}}}{\ell_n} - J_{SR} \right), \quad \text{at } r = 1, \tag{65c} \]

\[\bar{c}_n = \mu_n, \quad \text{at } t = 0. \tag{65d} \]

where

\[J_{SR} = \frac{1}{\ell_n} \int_0^{\ell_n} J_{SR} dx, \tag{66a} \]

\[J_{SR} = -j_{SR} \exp \left(-\alpha_{SR} \left(\lambda (\phi_n - U_{SR}) - \phi_e - \frac{i_{\text{app}}}{\ell_n \Sigma_{f,n}} \right) \right). \tag{66b} \]

The positive electrode averaged particle equation reads

\[C_p \frac{\partial \bar{c}_p}{\partial t} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 D_p (\bar{c}_p) \frac{\partial \bar{c}_p}{\partial r} \right), \quad \text{in } 0 < r < 1, \tag{67a} \]

\[\frac{\partial \bar{c}_p}{\partial r} = 0, \quad \text{at } r = 0, \tag{67b} \]

\[-D_p (\bar{c}_p) \frac{\partial \bar{c}_p}{\partial r} = -\frac{C_p}{\alpha_p \gamma_p} \frac{i_{\text{app}}}{\ell_p}, \quad \text{at } r = 1, \tag{67c} \]

\[\bar{c}_p = \mu_p, \quad \text{at } t = 0. \tag{67d} \]

Electrolyte equation. The equation for the electrolyte concentration reads

\[C_e \gamma_e \frac{\partial (\varepsilon c_e)}{\partial t} = \frac{\partial}{\partial x} \left(\gamma_e D_e (c_e) B(x) \frac{\partial c_e}{\partial x} \right) + \left(1 + t^+ (c_e) \right) C_e i_e, \quad \text{in } 0 \leq x \leq 1, \tag{68} \]

\[\frac{\partial c_e}{\partial x} = 0, \quad \text{at } x = 0, 1, \tag{69} \]

\[c_e = 1, \quad \text{at } t = 0. \tag{70} \]

with

\[i_e = \begin{cases} \frac{i_{\text{app}}}{\ell_n} x, & \text{if } 0 \leq x < \ell_n, \\ i_{\text{app}}, & \text{if } \ell_n \leq x < 1 - \ell_p, \\ \frac{i_{\text{app}}}{\ell_p} (1 - x), & \text{if } 1 - \ell_p \leq x \leq 1. \end{cases} \tag{71} \]

Porosity variation. The equation for the variation of the porosity is

\[\frac{\partial \varepsilon_n}{\partial t} = \frac{J_{SR}}{\eta_{SR} \gamma_{SR}}, \tag{72} \]

and the film thickness can be calculated as

\[L_{f,k} = 1 - \frac{1}{\beta_k} (\varepsilon_k - \varepsilon_{k,\text{init}}). \tag{73} \]
Expressions for the potentials. The potentials in the electrodes and electrolyte read

\[
\phi_n = U_n (\bar{c}_n|_{r=1}) + \lambda^{-1} \left(-\frac{i_{\text{app}}(2\ell_n - x)x}{2\ell_n\Sigma_n} + \frac{i_{\text{app}}\ell_n}{\ell_n \Sigma_n} + \frac{i_{\text{app}}\bar{L}_{t,n}}{\ell_n \Sigma_n} - \frac{1}{\ell_n \Sigma_n} \int_0^{\ell_n} \int_0^\infty \frac{i_e(s,t)ds}{\sigma_e(c_e(s,t))B(s,t)}dx \right)
\]

\[
+ \frac{1}{\ell_n} \int_0^{\ell_n} \int_0^\infty 2(1-t^+(c_e(s,t))) \left(1 + \frac{\partial f_\pm}{\partial c_e} \right) \frac{\partial \log c_e(s,t)}{ds}dsdx + \frac{2}{\ell_n} \int_0^{\ell_n} \arcsinh \left(\frac{i_{\text{app}}}{\ell_n j_n} \right)dx, \quad (74a)
\]

\[
\phi_p = U_p \left(\bar{c}_p|_{r=1} \right) + \lambda^{-1} \left(\frac{i_{\text{app}}(2(1 - \ell_p) - x)x}{2\ell_p^2 \Sigma_p} - \frac{i_{\text{app}}(2\ell_p^2 - 6\ell_p + 3)}{6\ell_p \Sigma_p} - \frac{i_{\text{app}}\bar{L}_{t,p}}{\ell_p \Sigma_p} \right)
\]

\[
- \frac{1}{\ell_p \Sigma_p} \int_{1-\ell_p}^{1} \int_0^\infty \frac{i_e(s,t)ds}{\sigma_e(c_e(s,t))B(s)}dx \]

\[
+ \frac{1}{\ell_p} \int_{1-\ell_p}^{1} \int_0^\infty 2(1-t^+(c_e(s,t))) \left(1 + \frac{\partial f_\pm}{\partial c_e} \right) \frac{\partial \log c_e(s,t)}{ds}dsdx - \frac{2}{\ell_p} \int_{1-\ell_p}^{1} \arcsinh \left(\frac{i_{\text{app}}}{\ell_p j_p} \right)dx, \quad (74b)
\]

\[
\phi_e = - \int_0^\infty \int_0^{x} \frac{i_e(s,t)ds}{\sigma_e(c_e(s,t))B(s)}dx + \int_0^\infty 2(1-t^+(c_e(s,t))) \left(1 + \frac{\partial f_\pm}{\partial c_e} \right) \frac{\partial \log c_e(s,t)}{ds}ds, \quad (74c)
\]

where

\[
j_k = \frac{\gamma_k}{C_{e,k}} \sqrt{c_e c_k (1 - c_k)} \bigg|_{r=1}. \quad (75)
\]

Note that, to be precise, in the exchange current density we should have \(\bar{c}_{k0} \) instead of \(\bar{c}_k \). However, the contribution of \(\bar{c}_{k0} \) is very small so this is a reasonable assumption. This correction would be included in the next correction to the voltage, but that would require solving additional equations for the potentials and the electrolyte concentration.

Finally, the terminal voltage can be calculated by taking

\[
V = \phi_p|_{x=1} - \phi_n|_{x=0}. \quad (76)
\]

We can write this expression as

\[
V = U_{eq} + \eta_r + \eta_c + \Delta \phi_e + \Delta \phi_s + \Delta \phi_i, \quad (77a)
\]

where

\[
U_{eq} = U_p \left(\bar{c}_p|_{r=1} \right) - U_n \left(\bar{c}_n|_{r=1} \right), \quad (77b)
\]

\[
\eta_r = -2\lambda^{-1} \left(\frac{1}{\ell_p} \int_{1-\ell_p}^{1} \arcsinh \left(\frac{i_{\text{app}}}{\ell_p j_p} \right) dx + \frac{1}{\ell_n} \int_0^{\ell_n} \arcsinh \left(\frac{i_{\text{app}}}{\ell_n j_n} \right) dx \right), \quad (77c)
\]

\[
\eta_c = \lambda^{-1} \left(\frac{1}{\ell_p} \int_{1-\ell_p}^{1} \int_0^{\ell_p} 2(1-t^+(c_e(s,t))) \left(1 + \frac{\partial f_\pm}{\partial c_e} \right) \frac{\partial \log c_e(s,t)}{ds}dsdx \right)
\]

\[
- \frac{1}{\ell_n} \int_0^{\ell_n} \int_0^\infty 2(1-t^+(c_e(s,t))) \left(1 + \frac{\partial f_\pm}{\partial c_e} \right) \frac{\partial \log c_e(s,t)}{ds}dsdx, \quad (77d)
\]

\[
\Delta \phi_e = \lambda^{-1} \left(-\frac{1}{\ell_p \Sigma_p} \int_{1-\ell_p}^{1} \int_0^{\ell_p} \frac{i_e(s,t)ds}{\sigma_e(c_e(s,t))B(s)}dx + \frac{1}{\ell_n \Sigma_n} \int_0^{\ell_n} \int_0^\infty \frac{i_e(s,t)ds}{\sigma_e(c_e(s,t))B(s,t)}dx \right), \quad (77e)
\]

\[
\Delta \phi_s = -\lambda^{-1} i_{\text{app}} \left(\frac{\ell_p}{\Sigma_p} + \frac{\ell_n}{\Sigma_n} \right), \quad (77f)
\]

\[
\Delta \phi_i = -\lambda^{-1} i_{\text{app}} \left(\frac{\bar{L}_{t,p}}{\ell_p \Sigma_p} + \frac{\bar{L}_{t,n}}{\ell_n \Sigma_n} \right). \quad (77g)
\]

The redimensionalised form of this model is the one provided in Section 2.
4. Results & discussion

After introducing the SPMe+SR model in Section 2 and providing its formal derivation from the DFN+SR model using asymptotic methods in Section 3, we now validate it by comparing its performance against the full DFN+SR model. As detailed in this section, we find that the SPMe+SR provides very similar results to the DFN+SR for the three tested scenarios (SEI growth, lithium plating and both effects combined), while being an order of magnitude smaller and significantly faster. Both models have been implemented in PyBaMM, an open-source battery modelling package [47]. The code to reproduce the results of this article is publicly available (see “Data and Code availability”). In order to solve both models, we have used the method of lines [44] with a finite volume method for the spatial discretisation [23]. For the results here, we use 20 points in each particle and in each electrode and separator. For the solvers, we have tested scikits.odes [29] and CasADI [1], both based on the suite of solvers SUNDIALS [20] and readily available in PyBaMM. The parameters used in the simulations are shown in Tables 1 and 2.

Before showing the simulation results, we compare the size of the systems of equations obtained after discretisation for both SPMe+SR and DFN+SR. Assuming that the discretisation has \(N_x \) points in each electrode and separator and \(N_r \) points in each particle, and defining \(k \) as the number of side reactions, the sizes of the systems follow the expressions shown in Table 3 and plotted in Figure 2. We observe two main differences on how the systems scale. First, the number of differential equations in SPMe+SR scales linearly with each variable, while in DFN+SR it scales as \(N_x N_r \). Second, the number of algebraic equations in the SPMe+SR is zero (if the current is prescribed) while for the DFN+SR it scales linearly with \(N_x \). In the particular case of \(N_x = N_r = 20 \) and \(k = 1 \), which is the one used in the results here, the SPMe+SR consists only of 121 differential equations (and no algebraic equations), while the DFN+SR consists of 881 differential equations and 100 algebraic equations.

In addition to the size of the system, we study the solving time for different solvers, experiments and mesh sizes. In practical applications we might be constrained by the simulation platform on the solvers to use, so here we test two different families of solvers to see the variability: the CasADI solvers and the scikits.odes solvers. Both solvers are built on top of the suite SUNDIALS and can handle both ODEs (using SUNDIALS’ CVODE) and DAEs (using SUNDIALS’ IDA). We also consider two different
Table 2: Dimensional parameters for the side reaction models. The parameters have mostly been taken to match [51] but, where applicable, we have cited the original source. The open-circuit potential of the SEI reaction U_{SEI} is not provided in [51], but we set it to zero as its effect has been absorbed by k_{SEI} (see [43] for a detailed discussion). The diffusivity in the SEI material D_{SEI} has been adjusted to yield reasonable results for the LG M50. The reaction rate of lithium plating k_{Li} has been calculated to match the value provided in [51], and the initial thickness of plated lithium has been assumed to be zero. Finally, plated lithium has been assumed to be a perfect conductor, so the conductivity is not needed.

Table 3: Size of discretised systems for the SPMe+SR and DFN+SR. N_x is the number of points in each electrode and separator, N_r is the number of points in each particle, and k is the number of side reactions. Note that the case when the applied current is prescribed. If instead the voltage or power are prescribed, this will introduce additional algebraic equations.

Figure 2: Comparison of the number of differential (colour solid lines) and algebraic equations (black dashed line) as a function of the mesh size in the electrodes and separator (N_x) and in the particles (N_r). Here we have assumed only one side reaction ($k = 1$).
Table 4: Solving times for the SPMe+SR and DFN+SR for different experiments, mesh sizes and solvers. The two experiments are a 1C CC discharge and 10 cycles of a 1C CC discharge followed by a C/2 4.2 V CCCV charge, with a C/20 cut-off current. The mesh sizes comprise the four different combinations of N_x, $N_r \in \{20,40\}$. The solvers studied are the CasADI solvers [1] and the scikits.odes solvers [29].

	CasADI	scikits.odes		
	SPMe+SR	DFN+SR	SPMe+SR	DFN+SR
CC discharge				
$N_x = N_r = 20$	0.30 ± 0.03	0.96 ± 0.10	0.23 ± 0.03	9.33 ± 0.43
$N_x = 20$, $N_r = 40$	0.40 ± 0.08	1.36 ± 0.11	0.25 ± 0.03	25.63 ± 0.89
$N_x = 40$, $N_r = 20$	0.91 ± 0.14	1.63 ± 0.19	0.57 ± 0.09	28.39 ± 0.35
$N_x = N_r = 40$	0.99 ± 0.17	2.40 ± 0.20	0.57 ± 0.09	111.59 ± 1.59
CCCV cycles				
$N_x = N_r = 20$	17.65 ± 0.44	39.93 ± 1.58	8.73 ± 0.38	240.18 ± 4.71
$N_x = 20$, $N_r = 40$	18.05 ± 0.26	53.71 ± 0.68	10.30 ± 0.53	723.20 ± 16.11
$N_x = 40$, $N_r = 20$	58.66 ± 0.68	68.00 ± 3.58	17.68 ± 0.27	1032.11 ± 8.99
$N_x = N_r = 40$	59.15 ± 0.71	96.81 ± 2.11	21.24 ± 0.82	3281.00 ± 42.69

experiments: a single constant current (CC) discharge, and 10 cycles of CC discharge and constant current constant voltage (CCC) charge. In all cases, the discharge rate is 1C and the charge rate is C/2, followed by a 4.2 V CV step with a C/20 cut-off current. Note that in the CC discharge for the SPMe+SR, the resulting system consists only of ODEs so we can use the ode solver, while for the CCCV scenario and the DFN+SR model we need to use the das solver. For each experiment and model we record the solving time for different mesh sizes. Before going ahead, we want to remark that the objective here is not to provide a thorough performance comparison. We leave the thorough comparison as an area of future work, given that it would require a much more detailed study of model parameters, mesh sizes and solver settings. The computational times have been calculated on a laptop with an Intel Core i7-7660U (2.50Ghz) processor and 16 GB RAM.

As shown in Table 4, we observe a significant reduction in the SPMe+SR compared to the DFN+SR. For the CasADI solvers we observe that the SPMe+SR is up to 2 or 3 times faster than the DFN+SR, even though differences reduce for larger systems, potentially due to how event detection is handled. However, for the scikits.odes solvers we observe a much more dramatic speed-up which is a lot more sensitive to the mesh sizes and the experiments, ranging from a factor of 40 in the CC discharge for the coarser mesh, to a factor of over 150 in the CCCV cycles for the finer mesh. Another interesting aspect is that the scikits.odes solvers, compared to the CasADI ones, are consistently faster for the SPMe+SR model but significantly slower for the DFN+SR, which highlights that, in practice, the choice of solver needs to be studied in an almost case by case basis. In summary, this comparison of the solving times shows how the SPMe+SR is consistently faster than the DFN+SR across different experiments and solvers.

We validate the SPMe+SR model for three different types of side reaction: SEI growth, lithium plating, and both reactions together. The SEI growth model is a solvent diffusion model with reaction, as defined in (13)-(14), while for the lithium plating we use the irreversible model defined in (15). The combined model is defined by (13)-(19). We simulate 1000 cycles, where each cycle is defined as a 1C CC discharge, followed by a C/2 and 4.2 V CCCV charge. The cut-off voltages are 4.2 V and 2.5 V, while the cut-off current for the CV step is C/20. Other combinations of charge (C/2 and C/3) and discharge (1C and 2C) rates have been considered, finding very similar results. The plots for these additional cycling conditions can be found in the Supplementary Information.

For all figures comparing SPMe+SR and DFN+SR, the colour dashed lines correspond to the SPMe+SR (different colours for different scenarios), while the solid black lines represent the DFN+SR (i.e. the benchmark). We find that across the various plots, the SPMe+SR results are very similar to the DFN+SR ones. Figure 3 shows both the theoretical capacity (equivalent to an infinitely slow discharge) and the capacity for a C/3 Reference Performance Test (RPT). RPTs are simulated in parallel by taking the initial state at the beginning of each tested cycle (i.e. fully charged battery) and then performing a C/3 CC discharge and taking the discharge capacity at the end of discharge as the RPT capacity for that cycle. In this particular case, we perform RPT every 10 cycles (i.e. first cycle plus all multiples of 10). As expected, the capacity
Figure 3: Comparison between the SPMe+SR and the DFN+SR of the discharge capacity as a function of the cycle number. The theoretical capacity corresponds to that of the total cyclable lithium (i.e. equivalent to an infinitely slow discharge) while the RPT capacity corresponds to a discharge rate of C/3.

Figure 4: Comparison between the SPMe+SR and the DFN+SR of the negative electrode porosity. For each case, we plot the capacity every 100 cycles (plus the initial cycle).

Figure 5: Comparison between the SPMe+SR and the DFN+SR of the voltage profile at different cycles. For each side reaction we plot the first, middle and last cycle. For SEI growth and lithium plating, middle cycle is 500 and final cycle is 1000, while for the SEI growth + lithium plating the middle cycle is 402 and the final cycle is 804.
of the battery fades over time, and it ages faster when both SEI growth and lithium plating are included. Figure 4 shows the spatially distributed porosity every 100 cycles. We observe that both side reactions tend to grow near the separator (right hand side of the plots) given that the overpotentials are larger there. Finally, Figure 5 shows the voltage profiles versus discharge capacity for the first, middle and final cycles. We observe that the agreement between both models is quite good except for the final cycle of the model accounting for both SEI growth and lithium plating, which is after 804 cycles (rather than 1000) due to electrolyte depletion. This discrepancy is due to a mismatch in the electrolyte states (both concentration and potential) caused by the underestimation of the porosity by SPMe+SR, which is amplified due to the low overall porosity (see Figure 4). From the three figures, we can observe a very good agreement between the SPMe+SR and DFN+SR for a wide range of degradation models and operating conditions, with deviations only becoming noticeable with cycling for the combined SEI and lithium plating due to electrolyte states.

Overall, we find that the SPMe+SR captures accurately the various scales and features involved in the DFN+SR while being much simpler and faster to simulate. In particular, we observe that the SPMe+SR, despite being a single particle model, can predict not only the global states of the battery, such as capacity and voltage, but also spatially distributed internal states like the porosity. Moreover, this accuracy spans across the two time scales involved in the simulation: single cycle (e.g. voltage vs discharge capacity for a given cycle in Figure 5) and battery lifetime (e.g. capacity vs cycle number in Figure 3). The main discrepancies are observed only after hundreds of cycles and even then they are within a reasonable range given how simpler the reduced model is. Moreover, for practical applications, we could use control techniques to correct these deviations [25]. The main limitation of the SPMe+SR model can be observed in Figure 3 for the SEI growth + lithium plating model, in which we notice that the simulation for the SPMe+SR stops earlier than the DFN+SR one. This is caused by electrolyte depletion during the charge step, which means that due to the lower porosity, the ions in the electrolyte intercalate at a faster rate than they can be transported in the electrolyte. This leads to a region of the negative electrode near the current collector not receiving ions. In this case, the SPMe+SR breaks down as the assumption of uniform behaviour for all electrode particles is no longer true, and it is an area for future work to explore how the SPMe+SR (or other reduced models) can be extended to account for such situations.

5. Conclusions

We have introduced the Single Particle Model with electrolyte and Side Reactions (SPMe+SR), a reduced physics-based model for electrochemical degradation. To the best of our knowledge, this is the first time that a model of this class has been formally derived from a Doyle-Fuller-Newman model with Side Reactions (DFN+SR) [51], as opposed to other similar models in the literature which have been posed in an ad hoc manner that often leads to inconsistencies [26, 37]. To derive the SPMe+SR we have used asymptotic methods which, by exploiting some a priori assumptions on the size of the dimensionless quantities of the model, allow us to simplify the DFN+SR model in a generic, systematic and flexible way. The analysis is based on the assumptions of small overpotentials and weak side reaction, which are reasonable in the vast majority of practical scenarios, including SEI growth, lithium plating and both mechanisms combined.

We found that the SPMe+SR retains most of the accuracy of the DFN+SR but it is one order of magnitude simpler and significantly faster (over 150 times faster in some cases, but strongly dependent on solver and mesh size). The simulations of the SPMe+SR have been compared against those from DFN+SR, for three scenarios (SEI growth, lithium plating, and both effects combined) showing that the former can capture accurately the various features of degradation (capacity fade, voltage profile and porosity distribution) at the two time scales of the system (a single cycle and battery lifetime). The main limitation of the SPMe+SR is that it cannot capture electrolyte depletion because in that situation some particles are lithiated and some are not, breaking down the homogeneous electrode behaviour that the SPMe+SR describes. Apart from presenting the reduced model, this article also provides a formal framework to derive it using asymptotic methods, which can be applied to models including different degradation mechanisms. The SPMe+SR provides similar results to the DFN+SR, which is the state-of-the-art in terms of physics-based models for battery degradation, but with a much lower complexity. This means that the model is simpler (i.e. fewer and simpler equations) which makes it easier to analyse, understand and implement, and faster to simulate.
these advantages make the SPMe+SR suitable for demanding battery applications, such as design, control and diagnosis. In particular, given that it has the structure of a Single Particle Model, existing techniques for such models can be used (e.g. develop an observer for control use [25]). Future areas of research include validating the SPMe+SR against experimental data, extending it to account for electrolyte depletion, and developing techniques based on the reduced model for parameterisation of degradation models.

Data and code availability

The code to reproduce the results presented in this article is publicly available on the repository: https://www.github.com/brosaplanella/SPMe_SR (DOI: 10.5281/zenodo.6624983).

A checklist detailing key aspects of the model [32] is provided in the Supplementary Information.

Acknowledgements

This work is supported by The Faraday Institution “Multi-Scale Modelling” project [EP/S003053/1 grant numbers FIRG003 and FIRG025] and the Innovate UK “COBRA: Cloud/On-board Battery Remaining useful life Algorithm” project [TSB number 100831]. The authors would like to thank the team at Eatron Technologies for the useful discussions.

References

[1] Joel A. E. Andersson, Joris Gillis, Greg Horn, James B. Rawlings, and Moritz Diehl. CasADi: a software framework for nonlinear optimization and optimal control. *Mathematical Programming Computation*, 11(1):1–36, mar 2019.

[2] Pankaj Arora, Marc Doyle, and Ralph E White. Mathematical Modeling of the Lithium Deposition Overcharge Reaction in Lithium-Ion Batteries Using Carbon-Based Negative Electrodes. *Journal of The Electrochemical Society*, 146(10):3543–3553, oct 1999.

[3] Selcuk Atalay, Muhammad Sheikh, Alessandro Mariani, Yu Merla, Ed Bower, and W. Dhammika Widanage. Theory of battery ageing in a lithium-ion battery: Capacity fade, nonlinear ageing and lifetime prediction. *Journal of Power Sources*, 478:229026, dec 2020.

[4] Peter M. Attia, Alexander Allen Bills, Ferran Brosa Planella, Philipp Dechent, Goncalo dos Reis, Matthieu Dubarry, Paul Gasper, Richard Gilchrist, Samuel Greenbank, David Howey, Ouyang Liu, Edwin Khoo, Yuliya Preger, Abhishek Soni, Shashank Sripad, Anna Stefanopoulou, and Valentin Sulzer. Review—“Knees” in Lithium-Ion Battery Aging Trajectories. *Journal of The Electrochemical Society*, may 2022.

[5] Carl M. Bender and Steven A. Orszag. *Advanced Mathematical Methods for Scientists and Engineers I*. Springer New York, New York, NY, 1999.

[6] Laura Benitez and Jorge M. Seminario. Ion Diffusivity through the Solid Electrolyte Interphase in Lithium-Ion Batteries. *Journal of The Electrochemical Society*, 164(11):E3159–E3170, may 2017.

[7] Christoph R. Birkl, Matthew R. Roberts, Euan McTurk, Peter G. Bruce, and David A. Howey. Degradation diagnostics for lithium ion cells. *Journal of Power Sources*, 341:373–386, feb 2017.

[8] Adrien M. Bizeray, Jin-Ho Kim, Stephen R. Duncan, and David A. Howey. Identifiability and Parameter Estimation of the Single Particle Lithium-Ion Battery Model. *IEEE Transactions on Control Systems Technology*, 27(5):1862–1877, sep 2019.

[9] Oleg Borodin, Grant D Smith, and Peng Fan. Molecular Dynamics Simulations of Lithium Alkyl Carbonates. *The Journal of Physical Chemistry B*, 110(45):22773–22779, nov 2006.

[10] Ferran Brosa Planella, Weilong Ai, Adam M. Boyce, Abir Ghosh, Ivan Korotkin, Smita Sahu, Valentin Sulzer, Robert Timms, Thomas G. Tranter, Maxim Zyskin, Samuel J. Cooper, Jacqueline S. Edge, Jamie M. Foster, Monica Marinescu, Billy Wu, and Giles Richardson. A Continuum of Physics-Based Lithium-Ion Battery Models Reviewed. Submitted for publication, mar 2022.

[11] Ferran Brosa Planella, Muhammad Sheikh, and W. Dhammika Widanage. Systematic derivation and validation of a reduced thermal-electrochemical model for lithium-ion batteries using asymptotic methods. *Electrochimica Acta*, 388:138524, aug 2021.

[12] Chang-Hui Chen, Ferran Brosa Planella, Kieran O'Regan, Dominika Gastol, W. Dhammika Widanage, and Emma Kendrick. Development of Experimental Techniques for Parameterization of Multi-scale Lithium-Ion Battery Models. *Journal of The Electrochemical Society*, 167(8):080534, may 2020.

[13] John Christensen and John Newman. A Mathematical Model for the Lithium-Ion Negative Electrode Solid Electrolyte Interphase. *Journal of The Electrochemical Society*, 151(11):A1977, 2004.

[14] Andrew M. Colclasure, Kandler A. Smith, and Robert J. Kee. Modeling detailed chemistry and transport for solid-electrolyte-interface (SEI) films in Li-ion batteries. *Electrochimica Acta*, 58(1):33–43, dec 2011.
Marc Doyle, Thomas F. Fuller, and John Newman. Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell. Journal of The Electrochemical Society, 140(6):1526–1533, 1993.

Jacqueline S. Edge, Simon O’Kane, Ryan Prosser, Niall D. Kirkaldy, Anisha N. Patel, Alastair Hales, Abir Ghosh, Weilong Ai, Jingyi Chen, Jiang Yang, Shen Li, Mei Chuin Pang, Laura Bravo Diaz, Anna Tomaszewska, Waseem Marzook, Karthik N. Radhakrishnan, Huizhi Wang, Yatish Patel, Billy Wu, and Gregory J. Offer. Lithium ion battery degradation: what you need to know. Physical Chemistry Chemical Physics, 23(14):8200–8221, apr 2021.

Thomas F. Fuller, Marc Doyle, and John Newman. Simulation and Optimization of the Dual Lithium Ion Insertion Cell. Journal of The Electrochemical Society, 141(1):1–10, 1994.

William M. Haynes, editor. CRC Handbook of Chemistry and Physics. CRC Press, jun 2014.

E. J. Hinch. Perturbation Methods. Cambridge University Press, Cambridge, may 1991.

Alan C. Hindmarsh, Peter N. Brown, Keith E. Grant, Steven L. Lee, Radu Serban, Dan E. Shumaker, and Carol S. Woodward. SUNDIALS: Suite of nonlinear and differential/algorithmic equation solvers. ACM Transactions on Mathematical Software, 31(3):363–396, sep 2005.

David A. Howey, Scott A. Roberts, Venkatasubramanian Viswanathan, Aashutosh Mistry, Martin Beuse, Edwin Khoo, Steven C. DeCaluwe, and Valentin Sulzer. Free Radicals: Making a Case for Battery Modeling. The Electrochemical Society Interface, 29(4):30–34, dec 2020.

Jonas Keil and Andreas Jossen. Electrochemical Modeling of Linear and Nonlinear Aging of Lithium-Ion Cells. Journal of The Electrochemical Society, 167(11):A10535, jan 2020.

R.J. LeVeque. Finite Volume Methods for Hyperbolic Problems, volume 54. Cambridge University Press, 2002.

Dongjiang Li, Dmitry Danilov, Zhongru Zhang, Huixin Chen, Yong Yang, and Peter H. L. Notten. Modeling the SEI-Formation on Graphite Electrodes in LiFePO4 Batteries. Journal of The Electrochemical Society, 162(6):A858–A869, feb 2015.

Liuying Li, Yaxing Ren, Kieran O’Regan, Upender Rao Koleti, Emma Kendrick, W. Dhammika Widanage, and James Marco. Lithium-ion battery cathode and anode potential observer based on reduced-order electrochemical single particle model. Journal of Energy Storage, 44:2352–152, dec 2021.

Xianke Lin, Xiaoguang Hao, Zhenyu Liu, and Weiqiang Jia. Health conscious fast charging of Li-ion batteries via a single particle model with aging mechanisms. Journal of Power Sources, 400:305–316, oct 2018.

Lin Liu, Jonghyun Park, Xianke Lin, Ann Marie Sastry, and Wei Lu. A thermal-electrochemical model that gives spatial-dependent growth of solid electrolyte interphase in a Li-ion battery. Journal of Power Sources, 268:482–490, dec 2014.

Qianqian Liu, Chunyu Du, Bin Shen, Pengjian Zuo, Xinzun Cheng, Yulin Ma, Geping Yin, and Yunzhi Gao. Understanding undesirable anode lithium plating issues in lithium-ion batteries. RSC Advances, 6(91):88683–88700, 2016.

Benny Malengier, Pavol Kison, James Tocknell, Claas Abert, Florian Bruckner, and Marc-Antonio Bistotti. ODES: a high level interface to ODE and DAE solvers. The Journal of Open Source Software, 3(22):165, feb 2018.

Scott G. Marquis. Long-Term Degradation of Lithium-ion Batteries. PhD thesis, University of Oxford, 2020.

Scott G. Marquis, Valentin Sulzer, Robert Timms, Colin P. Please, and S. Jon Chapman. An Asymptotic Derivation of a Single Particle Model with Electrolyte. The Journal of The Electrochemical Society, 166(15):A3693–A3706, nov 2019.

Aashutosh Mistry, Ankit Verma, Shashank Srivapad, Rebecca Ciez, Valentin Sulzer, Ferran Brosa Planella, Robert Timms, Yumin Zhang, Rachel Kurchin, Philipp Dechent, Weihan Li, Samuel Greenbank, Zeeshan Ahmad, Dilip Krishnamurthy, Alexis M. Penton, Kevin Tenny, Prehit Patel, Daniel Juarez Robles, Paul Gasper, Andrew Colclasure, Artem Baskin, Corinne D. Scown, Venkat R. Subramanian, Edwin Khoo, Srikant Allu, David Howey, Steven DeCaluwe, Scott A. Roberts, and Venkatasubramanian Viswanathan. A Minimal Information Set To Enable Verifiable Theoretical Battery Research. ACS Energy Letters, 6(11):3831–3835, oct 2021.

Iain R. Moyles, Matthew G. Hennessey, Timothy G. Myers, and Brian R. Wetton. Asymptotic reduction of a porous electrode model for lithium-ion batteries. SIAM Journal on Applied Mathematics, 79(4):1528–1549, may 2019.

Andreas Nyman, Mårten Behm, and Göran Lindbergh. Electrochemical characterisation and modelling of the mass transport phenomena in LiPF6-EC-EMC electrolyte. Electrochimica Acta, 53(22):6356–6365, 2008.

Simon E. J. O’Kane, Weilong Ai, Ganesh Madabattula, Diego Alonso-Alvarez, Robert Timms, Valentin Sulzer, Jacqueline Sophie Edg, Billy Wu, Gregory J. Offer, and Monica Marinescu. Lithium-ion battery degradation: how to model it. Physical Chemistry Chemical Physics, 24(13):7909–7922, dec 2022.

Simon E. J. O’Kane, Ian D. Campbell, Mohamed W. J. Marzook, Gregory J. Offer, and Monica Marinescu. Physical Origin of the Differential Voltage Minimum Associated with Lithium Plating in Li-Ion Batteries. Journal of The Electrochemical Society, 167(9):695040, may 2020.

Hui Pang, Lianjing Mou, Long Guo, and Fengqi Zhang. Parameter identification and systematic validation of an enhanced single-particle model with aging degradation physics for Li-ion batteries. Electrochimica Acta, 307:474–487, jun 2019.

E Peled. The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—The Solid Electrolyte Interphase Model. Journal of The Electrochemical Society, 126(12):2047–2051, 1979.

Matthew B. Pinson and Martin Z. Bazant. Theory of SEI Formation in Rechargeable Batteries: Capacity Fade, Accelerated Aging and Lifetime Prediction. Journal of The Electrochemical Society, 160(2):A243–A250, 2013.

Harry J. Ploehn, Premanand Ramadass, and Ralph E. White. Solvent Diffusion Model for Aging of Lithium-Ion Batteries. Journal of The Electrochemical Society, 151(3):A545, 2004.

P. Ramadass, Bala Haran, Parthasarathy M. Gomadam, Ralph White, and Branko N. Popov. Development of First Principles Capacity Fade Model for Li-Ion Cells. Journal of The Electrochemical Society, 151(2):A196, 2004.

Jorn M Reniers, Grietus Mulder, and David A Howey. Review and Performance Comparison of Mechanical-Chemical Degradation Models for Lithium-Ion Batteries. Journal of The Electrochemical Society, 166(14):A3189–A3200, sep 2019.

M. Safari, M. Morcrette, A. Teyssot, and C. Delacour. Multimodal Physics-Based Aging Model for Life Prediction of Lithium/Polymer/Insertion Cell. Journal of The Electrochemical Society, 141(1):1–10, 1994.

H. H. Woodward. SUNDIALS: Suite of nonlinear and differential/algorithmic equation solvers. ACM Transactions on Mathematical Software, 31(3):363–396, sep 2005.

David A. Howey, Scott A. Roberts, Venkatasubramanian Viswanathan, Aashutosh Mistry, Martin Beuse, Edwin Khoo, Steven C. DeCaluwe, and Valentin Sulzer. Free Radicals: Making a Case for Battery Modeling. The Electrochemical Society Interface, 29(4):30–34, dec 2020.
Appendix A. Doyle-Fuller-Newman model with Side Reactions (DFN+SR)

In this section we state the dimensional model of the Doyle-Fuller-Newman model with Side Reactions (DFN+SR) and derive its dimensionless form. This dimensionless form is the starting point of the asymptotic reduction presented in Section 3. We include the side reaction on the negative electrode only, but note that the model could be easily extended to include side reactions in the positive electrode as well. The parameters and variables involved in the model are introduced in Section 2.

Appendix A.1. Dimensional model

In each particle, the lithium concentration is governed by

\[
\frac{\partial c_k}{\partial t} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 D_k \frac{\partial c_k}{\partial r} \right), \quad \text{in } 0 < r < R_k, \tag{A.1a}
\]

\[
\frac{\partial c_k}{\partial r} = 0, \quad \text{at } r = 0, \tag{A.1b}
\]

\[
-D_k \frac{\partial c_k}{\partial r} = \frac{J_{k,\text{int}}}{\sigma_k F}, \quad \text{at } r = R_k, \tag{A.1c}
\]

\[
c_k = c_{k,\text{init}}, \quad \text{at } t = 0, \tag{A.1d}
\]

and the potential in each electrode is described by

\[
\frac{\partial i_k}{\partial x} = -J_k, \tag{A.1e}
\]

\[
i_k = -\sigma_k \frac{\partial \phi_k}{\partial x}. \tag{A.1f}
\]

In both cases, the x domain is defined to be \(0 \leq x \leq L_n\) if \(k = n\), and \(L - L_p \leq x \leq L\) if \(k = p\).

The electrolyte equations, which are defined in the domain \(0 \leq x \leq L\), are

\[
\frac{\partial}{\partial t} (\varepsilon c_e) = -\frac{\partial N_e}{\partial x} + \frac{J}{F}, \tag{A.1g}
\]

\[
\frac{\partial i_e}{\partial x} = J. \tag{A.1h}
\]
with

\[N_e = -D_e B(x) \frac{\partial c_e}{\partial x} + t^+ \frac{\partial c_e}{\partial x} + t + i_e F, \quad (A.1i) \]
\[i_e = -\sigma_e B(x) \left(\frac{\partial \phi_e}{\partial x} - 2(1 - t^+) \left(1 + \frac{\partial f_{\pm}}{\partial c_e} \right) \frac{RT}{F} \frac{\partial \log c_e}{\partial x} \right). \quad (A.1j) \]

The intercalation reaction between the electrode and the electrolyte is given by

\[J(x) = \begin{cases} J_n = J_{n,\text{int}} + J_{SR}, & \text{for } 0 \leq x \leq L_n, \\ 0, & \text{for } L_n < x \leq L - L_p, \\ J_p = J_{p,\text{int}}, & \text{for } L - L_p < x \leq L, \end{cases} \quad (A.2a) \]

where the intercalation reaction kinetics are driven by

\[J_{k,\text{int}} = a_k m_k \sqrt{c_e \epsilon_k \left(\epsilon^\text{max}_k - \epsilon_k \right)} \left| r = R_k \right| \sinh \left(\frac{1}{2} \frac{F}{RT} \eta_k \right), \quad (A.2b) \]
\[\eta_k = \phi_k - \phi_e - U_k \left(\epsilon_k \bigg| r = R_k \right) - J_k \frac{L_{f,k}}{a_k \sigma_{f,k}}, \quad (A.2c) \]
and the side reaction kinetics are driven by

\[J_{SR} = -a_n j_{SR} \exp \left(-\alpha_{SR} \frac{F}{RT} \eta_{SR} \right), \quad (A.2d) \]
\[\eta_{SR} = \phi_n - \phi_e - U_{SR} - J_n \frac{L_{f,n}}{a_n \sigma_{f,n}}, \quad (A.2e) \]

where \(j_{SR} \) is the side reaction exchange current density which might involving solving additional equations (e.g. the SEI models in [3, 51]).

This side reaction causes a change in the porosity of the negative electrode that follows

\[\frac{\partial \epsilon}{\partial t} = \frac{M_{SR}}{n_{SR} \rho_{SR} F J_{SR}}, \quad (A.3) \]

and the porosity across the cell is defined as

\[\epsilon(x, t) = \begin{cases} \epsilon_n(x, t), & \text{if } 0 \leq x < L_n, \\ \epsilon_s(x), & \text{if } L_n \leq x < L - L_p, \\ \epsilon_p(x), & \text{if } L - L_p \leq x \leq L. \end{cases} \quad (A.4) \]

Note that the porosity can be related to the film thickness as

\[L_{f,k} = L_{f,k,\text{init}} - \frac{1}{a_k} \left(\epsilon_k - \epsilon_{k,\text{init}} \right), \quad (A.5) \]
so we could write an ODE for film thickness instead of this one for the porosity.

The boundary conditions are the following. At the current collector ends we impose

\[i_n = i_{\text{app}}, \quad N_e = 0, \quad \phi_e = 0, \quad \text{at } x = 0, \quad (A.6a) \]
\[i_p = i_{\text{app}}, \quad N_e = 0, \quad i_e = 0, \quad \text{at } x = L, \quad (A.6b) \]

and using conservation of charge in the electrolyte we can derive the additional condition \(i_e = 0 \) at \(x = 0 \), which can be helpful in some situations.

At the electrode-separator interfaces, we impose zero current in the electrodes

\[i_n = 0, \quad \text{at } x = L_n, \quad (A.6c) \]
\[i_p = 0, \quad \text{at } x = L - L_p. \quad (A.6d) \]

Finally, we impose the initial condition for the electrolyte concentration

\[c_e = c_{e,\text{init}}, \quad \text{at } t = 0. \quad (A.6e) \]
Appendix A.2. Dimensionless model

We define the following scalings of the problem

\[
\begin{align*}
 t &= t_0 \hat{t}, \\
 x &= L \hat{x}, \\
 c_k &= c_k^{\max} \hat{c}_k, \\
 \phi_k &= \phi_0 \hat{\phi}_k, \\
 i_k &= i_0 \hat{i}_k, \\
 J_k &= \frac{i_0}{L} \hat{J}_k, \\
 r_k &= R_k \hat{r}_k, \\
 D_k &= D_{k,\text{typ}} \hat{D}_k, \\
 \eta_k &= \frac{RT}{\hat{F}} \hat{\eta}_k, \\
 i_{\text{app}} &= i_0 \hat{i}_{\text{app}}, \\
 L_{\ell,k} &= L_{\ell,k,\text{init}} \hat{L}_{\ell,k}, \\
 \sigma_e &= \sigma_e,_{\text{typ}} \hat{\sigma}_e, \\
 D_e &= D_{e,\text{typ}} \hat{D}_e, \\
 U_k &= \phi_0 \hat{U}_k, \\
 N_e &= \frac{D_{e,\text{typ}} \bar{c}_{e,\text{init}}^L}{L} \hat{N}_e,
\end{align*}
\]

and we choose the time scale \(t_0 \) to be the discharge time scale

\[
t_0 = \frac{F_{\text{typ}}^L}{i_0}.
\]

The parameters \(i_0 \) and \(\phi_0 \) are the typical current and electrode potential, respectively, and the subscript \(\text{typ} \) denotes the typical value of that parameter.

Then, we can write the dimensionless model as follows. The model for concentration in the particles reads

\[
\begin{align*}
 C_k \frac{\partial \hat{c}_k}{\partial \hat{t}} &= \frac{1}{\hat{r}^2} \frac{\partial}{\partial \hat{r}} \left(\hat{r}^2 \hat{D}_k \frac{\partial \hat{c}_k}{\partial \hat{r}} \right), & \text{in } 0 < \hat{r} < 1, & (A.9a) \\
 \frac{\partial \hat{c}_k}{\partial \hat{r}} &= 0, & \text{at } \hat{r} = 0, & (A.9b) \\
 -\hat{D}_k \frac{\partial \hat{c}_k}{\partial \hat{r}} &= \frac{C_k}{\alpha_k \gamma_k} \hat{J}_{k,\text{int}}, & \text{at } \hat{r} = 1, & (A.9c) \\
 \hat{c}_k &= \mu_k, & \text{at } \hat{t} = 0, & (A.9d)
\end{align*}
\]

and the potential in each electrode is given by

\[
\begin{align*}
 \frac{\partial \hat{i}_k}{\partial \hat{x}} &= -\hat{J}_k, & (A.9e) \\
 \hat{i}_k &= -\lambda \Sigma_k \frac{\partial \hat{\phi}_k}{\partial \hat{x}}, & (A.9f)
\end{align*}
\]

Now, the \(\hat{x} \) domain is defined to be \(0 \leq \hat{x} \leq \ell_n \) if \(k = n \), and \(1 - \ell_p \leq \hat{x} \leq 1 \) if \(k = p \).

The electrolyte equations, which are defined in the domain \(0 \leq \hat{x} \leq 1 \), are

\[
\begin{align*}
 C_e \gamma_e \frac{\partial}{\partial \hat{x}} (\hat{\epsilon} \hat{c}_e) &= -\gamma_e \frac{\partial \hat{N}_e}{\partial \hat{x}} + C_e \hat{J}, & (A.9g) \\
 \frac{\partial \hat{i}_e}{\partial \hat{x}} &= \hat{J}, & (A.9h)
\end{align*}
\]

with

\[
\begin{align*}
 \hat{N}_e &= -\hat{D}_e \hat{B}(\hat{x}) \frac{\partial \hat{c}_e}{\partial \hat{x}} + t^+ \frac{C_e}{\gamma_e} \hat{i}_e, & (A.9i) \\
 \hat{i}_e &= -\Sigma_e \hat{\sigma}_e \hat{B}(\hat{x}) \left(\frac{\partial \hat{\phi}_e}{\partial \hat{x}} - 2(1 - t^+) \left(1 + \frac{\partial f_+}{\partial \hat{c}_e} \right) \frac{\partial \log \hat{c}_e}{\partial \hat{x}} \right). & (A.9j)
\end{align*}
\]
The intercalation reaction between the electrode and the electrolyte is given by
\[\dot{J} = \begin{cases} \dot{J}_n = \dot{J}_{n,\text{int}} + \dot{J}_{SR}, & \text{if } 0 \leq \hat{x} \leq \ell_n, \\ 0, & \text{if } \ell_n < \hat{x} \leq 1 - \ell_p, \\ \dot{J}_p = \dot{J}_{p,\text{int}}, & \text{if } 1 - \ell_p < \hat{x} \leq 1, \end{cases} \] (A.10a)
where the intercalation reaction kinetics are driven by
\[\dot{J}_{k,\text{int}} = \frac{\gamma_k}{C_{r,k}} \sqrt{c_e \hat{c}_k (1 - \hat{c}_k)} \sinh \left(\frac{\hat{\eta}_k}{2} \right), \] (A.10b)
\[\dot{\eta}_k = \lambda \left(\dot{\phi}_k - \dot{U}_k (\hat{c}_k|_{\hat{x}=1}) \right) - \dot{\phi}_e - \frac{\dot{J}_k L_{t,k}}{\Sigma_{t,k}}, \] (A.10c)
and the side reaction kinetics are driven by
\[\dot{J}_{SR} = -\dot{J}_{SR} \exp (-\alpha_{SR} \hat{\eta}_{SR}), \] (A.10d)
\[\dot{\eta}_{SR} = \lambda \left(\dot{\phi}_n - \dot{U}_{SR} \right) - \dot{\phi}_e - \frac{\dot{J}_{n,\text{init}} L_{t,n}}{\Sigma_{t,n}}. \] (A.10e)
This side reaction causes a change in the porosity of the negative electrode that follows
\[\frac{\partial \hat{\varepsilon}_n}{\partial t} = \frac{1}{\gamma_{SR} \Sigma_{t,n}} \dot{J}_{SR}, \] (A.11)
and the corresponding film thickness can be calculated as
\[\dot{L}_{t,k} = 1 - \frac{1}{\beta_k} (\varepsilon_k - \varepsilon_{k,\text{init}}). \] (A.12)

The boundary conditions at current collector ends are
\[\dot{i}_n = \dot{i}_{\text{app}}, \quad \dot{N}_e = 0, \quad \dot{\phi}_e = 0, \quad \text{at } \hat{x} = 0, \] (A.13a)
\[\dot{i}_p = \dot{i}_{\text{app}}, \quad \dot{N}_e = 0, \quad \dot{\phi}_e = 0, \quad \text{at } \hat{x} = 1, \] (A.13b)
and at the electrode-separator interfaces are
\[\dot{i}_n = 0, \quad \text{at } \hat{x} = \ell_n, \] (A.13c)
\[\dot{i}_p = 0, \quad \text{at } \hat{x} = 1 - \ell_p. \] (A.13d)

Finally, the initial condition for the electrolyte is
\[\hat{c}_e = 1, \quad \text{at } \hat{t} = 0. \] (A.13e)

The dimensionless parameters of the model are
\[C_k = \frac{R_k^2}{D_{k,\text{typ}} \ell_0}, \quad C_e = \frac{L^2}{D_{e,\text{typ}} \ell_0}, \quad C_{r,k} = \frac{F}{m_k a_k \sqrt{c_{e,\text{init}} \ell_0}}, \quad \mu_k = \frac{c_{k,\text{max}}}{c_k}, \quad \alpha_k = a_k R_k, \]
\[\gamma_k = \frac{c_{k,\text{max}}}{c_k}, \quad \gamma_e = \frac{c_{e,\text{init}}}{c_{e,\text{max}}}, \quad \gamma_{SR} = \frac{\rho_{SR}}{M_{SR} c_{e,\text{max}}}, \quad \lambda = \frac{\beta_k F}{\sqrt{\Sigma_{e,\text{typ}}}}, \quad \beta_k = a_k L_{t,k,\text{init}} \] (A.14)
\[\Sigma_k = \frac{RT}{F L_{\ell_0}} \sigma_{s,k}, \quad \Sigma_e = \frac{RT}{F L_{\ell_0}} \sigma_{e,\text{typ}}, \quad \Sigma_{t,k} = \frac{RT}{F L_{t,k,\text{init}} \ell_0} \sigma_{t,k,\text{init}} L, \quad \ell_k = \frac{L_k}{L}. \]

The typical values of these parameters are shown in Table A.5.
Table A.5: Dimensionless parameters for the model, calculated from the dimensional parameters in Tables 1 and 2. Even though the model allows for an SEI layer on the positive electrode, in the simulations we do not account for them so we do not have parameter values for $\Sigma_{f,p}$ and β_p. The two values for γ_{SR} correspond to SEI and lithium plating, respectively.

Appendix B. Dimensionless form of SR models

Even though it is not necessary for the analysis, for completion we present here the dimensionless form of the examples presented in Section 2.1. Using the scaling in (A.7) and defining $\hat{c}_{SEI} = c_{SEI,init}c_{SEI}$, we find that the SEI growth model is

$$\hat{j}_{SEI} = \frac{1}{C_{r,SEI}} \tilde{\epsilon}_{SEI},$$

with

$$\tilde{\epsilon}_{SEI} = 1 + C\hat{j}_{SEI}L_f,$$

and

$$\hat{j}_{Li} = \frac{1}{C_{r,Li}} \tilde{\epsilon}_e,$$

where the dimensionless parameters have been defined as

$$C_{r,SEI} = \frac{c_{n,SEI}^{\max}}{a_nk_{SEI}^0c_{SEI,init}^{\max}} \approx 1675C, \quad C_{SEI} = \frac{L_{t,init}c_{n,SEI}^{\max}}{t_0a_nD_{SEI,SEI,init}^{\max}} \approx 41.9C, \quad C_{r,Li} = \frac{c_{n,SEI}^{\max}}{a_nk_{Li}^0t_0c_e,init} \approx 761C.$$

The values have been calculated from the parameter values in Tables 1 and 2.

Appendix C. Parameter values

In this section we provide details on the parameters that are functions, which were too long to be included in Table 1. These parameters are taken from [12] (but note that the electrolyte parameters come from [34]).

The ion diffusivity in the electrolyte, measured in $m^2 \cdot s^{-1}$, is given by

$$D_e(c_e) = 8.794 \cdot 10^{-11}c_e^2 - 3.972 \cdot 10^{-10}c_e + 4.862 \cdot 10^{-10}.$$

while the conductivity of the electrolyte, measured in $S \cdot m^{-1}$, is given by

$$\sigma_e(c_e) = 0.1297c_e^3 - 2.51c_e^{1.5} + 3.329c_e.$$

In both cases, the ion concentration in the electrolyte is measured in mol dm^{-3}.

30
The open-circuit potentials for the positive and negative electrodes, respectively, as a function of the stoichiometry are

\[U_p(x) = -0.8090x + 4.4875 - 0.0428 \tanh (18.5138(x - 0.5542)) \]
\[- 17.7326 \tanh (15.7890(x - 0.3117)) + 17.5842 \tanh (15.9308(x - 0.3120)), \quad (C.3a) \]

\[U_n(x) = 1.9793 \exp (-39.3631x) + 0.2482 - 0.0909 \tanh (29.8538(x - 0.1234)) \]
\[- 0.04478 \tanh (14.9159(x - 0.2769)) - 0.0205 \tanh (30.4444(x - 0.6103)). \quad (C.3b) \]
Supplementary Information: Systematic derivation of a Single Particle Model with electrolyte and a side reaction (SPMe+SR) for degradation of lithium-ion batteries

Ferran Brosa Planellaa,b,*, W. Dhammika Widanagea,b

aWMG, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
bThe Faraday Institution, Harwell Campus, Didcot, OX11 0RA, United Kingdom

Contents

1 Additional simulations 1
 1.1 SEI growth ... 1
 1.2 Lithium plating .. 4
 1.3 SEI growth and lithium plating 6

2 Model checklist 8

1. Additional simulations

To validate the reduced model we performed the simulations for the four possible combinations of charge rates (C/3 and C/2) and discharge rates (1C and 2C). In the main body of the article we only showed C/2 charge – 1C discharge as it was representative enough, but for completeness here we provide the other simulations. The code to reproduce these results is available at https://www.github.com/brosaplanella/SPMe_SR.

1.1. SEI growth

First we show the results for SEI growth only.

*Corresponding author: Ferran.Brosa-Planella@warwick.ac.uk

Preprint submitted to Elsevier

June 13, 2022
Figure 1: Compare capacity for the model with SEI growth and porosity change.

Figure 2: Compare porosity for the model with SEI growth and porosity change.
Figure 3: Compare voltage for the model with SEI growth and porosity change.
1.2. Lithium plating

Next we show the results for lithium plating only.

Figure 4: Compare capacity for the model with lithium plating and porosity change.

Figure 4: Compare capacity for the model with lithium plating and porosity change.
Figure 5: Compare porosity for the model with lithium plating and porosity change.

Figure 6: Compare voltage for the model with lithium plating and porosity change.
1.3. SEI growth and lithium plating

Finally, we show the results for SEI growth and lithium plating combined.

Figure 7: Compare capacity for the model with SEI growth, lithium plating and porosity change.
Figure 8: Compare porosity for the model with SEI growth, lithium plating and porosity change.

Figure 9: Compare voltage for the model with SEI growth, lithium plating and porosity change.
2. Model checklist

#	Question	Y/N/NA	Remarks
1	Have you provided all assumptions, theory, governing equations, initial and boundary conditions, material properties (e.g., open circuit potential) with appropriate precision and literature sources, constant states (e.g., temperature), etc.?	Y	Remarks: The code is publicly available.
2	If the calculations have a probabilistic component (e.g. Monte Carlo, initial configuration in Molecular Dynamics, etc.), did you provide statistics (mean, standard deviation, confidence interval, etc.) from multiple (≥ 3) runs of a representative case?	NA	Remarks: The article does not include any probabilistic calculations.
3	If data-driven calculations are performed (e.g. Machine Learning), did you specify dataset origin, the rationale behind choosing it, what all information does it contain and the specific portion of it being utilized? Have you described the thought process for choosing a specific modeling paradigm?	NA	Remarks: The article does not include any data-driven calculations.
4	Have you discussed all sources of potential uncertainty, variability, and errors in the modeling results and their impact on quantitative results and qualitative trends? Have you discussed the sensitivity of modeling (and numerical) inputs such as material properties, time step, domain size, neural network architecture, etc. where they are variable or uncertain?	Y	Remarks: The details of the numerical methods used have been provided.
5	Have you sufficiently discussed new or not widely familiar terminology and descriptors for clarity? Did you use these terms in their appropriate context to avoid misinterpretation? Enumerate these terms in the ‘Remarks’.	Y	Remarks: The acronyms appearing in the article have been described the first time they appear. These include: Single Particle Model with electrolyte (SPMe), Doyle-Fuller-Newman model (DFN), solid-electrolyte interphase (SEI), ordinary differential equations (ODEs), differential-algebraic equations (DAEs).

* I verify that this form is completed accurately in agreement with all co-authors, to the best of my knowledge.

† Y ≡ the question is answered completely. Discuss any N or NA response in ‘Remarks’.