Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Taxonomy, Classification and Nomenclature of Viruses

C M Fauquet, Danforth Plant Science Center, St. Louis, MO, USA
© 2008 Elsevier Ltd. All rights reserved.

Glossary

Classification The categorization of organisms into defined groups on the basis of identified characteristics.
Family A category in the virus taxonomic classification of related organisms, comprising one or more genera.
Genus A category in the virus taxonomic classification of related organisms, comprising one or more species.
Nomenclature The assigning of names to organisms in a scientific classification system.
Order A category in the virus taxonomic classification of related organisms, comprising one or more families.
Species A virus species is a polythetic class of viruses that constitutes a replicating lineage and occupies a particular ecological niche.
Taxonomy The science of classifying plants, animals, and microorganisms into increasingly broader categories based on shared features. The practice or principles of classification.

Introduction

Virus taxonomy is a very important but controversial field of science. It was ranked as the first constraint for the modern development of virus databases, and the exponential increase in virus sequencing is worsening the situation. However, substantial progress has been made particularly in the last 20 years, both on the conceptual framework and practical implication of virus taxonomy. The International Committee on Taxonomy of Viruses (ICTV) is the only committee of the Virology Division, of the International Union of Microbiological Societies (IUMS), in charge of that task since 1966, for the international virology community. Virus Taxonomy Reports have been published regularly by ICTV and they became the reference in virus taxonomy and nomenclature. This article aims at providing some historical information about the establishment and changes in virus taxonomy and describes the current status of virus classification, nomenclature, and orthography.

There is no such thing as a 'natural' or a 'biological' classification; by essence any classification is an arbitrary human invention and viruses are no exception. The question really is “How can we classify viruses in such way that it makes sense and is useful to many scientists?” The need for virus classification is not only supported by the common human need for organization, but also as a scientific tool to compare viruses and extrapolate useful information from one virus to another and from one family to another. Crucial biological information can be extrapolated directly from human viruses like picornaviruses to plant comoviruses and vice versa, when the classification indicates many structural and genomic common characteristics. When a newly discovered virus is assigned to a particular taxon, this virus can immediately be granted a number of a priori properties that only need confirmation and that have an immediate impact on specific virological studies. Furthermore, although it is not clearly stated by ICTV that the current classification is thought to reflect virus evolution, it is accepted that virus taxonomy is aiming at this objective and could become a tool by itself to study and evaluate virus evolution.

Virus nomenclature cannot be dissociated from classification. There must be a coherent system for naming viruses accompanied with a system for classifying viruses. Furthermore, using correct orthography and typography of virus taxa is not simply an exercise meant to complicate the task of virologists but is based on rules that help scientists to extract useful information from what is written down. It is therefore important to establish and follow guidelines for orthography, nomenclature, and classification of viruses. For all these reasons, virus classification and nomenclature have always been very controversial and have led to passionate discussions over the past four decades.

Historical Background of Virus Taxonomy

The first evidence for the existence of viruses was shown by Beijerinck in 1898, but it was not until the 1920s that virologists began to classify viruses. The first system referred to pathogenic properties of animal and human viruses and to symptoms for plant viruses. For example, viruses sharing the pathogenic properties causing hepatitis (e.g., hepatitis A virus, hepatitis B virus, yellow fever virus, Rift Valley fever virus) were grouped together as ‘the hepatitis viruses’. In 1939, Holmes published a classification of plant viruses dependent on host reactions and differential host species using a binomial–trinomial nomenclature based on the name of the infected plant. It was only in the 1950s, with the utilization of the electron microscope, that
the first real virus classification was established. Naturally the shape and size of virus particles became major criteria for virus classification. Because of that powerful and rapid technology the number of newly discovered viruses increased rapidly and several hundreds of new viruses were listed in a short period of time.

In 1966 in Moscow, at the International Congress for Microbiology, 43 virologists created the International Committee on Nomenclature of Viruses (ICNV) with the aim of developing a worldwide recognized taxonomy and nomenclature system for all viruses. The name of the ICNV was changed in 1974 to the more appropriate ICTV. The ICTV, which is the only committee of the Virology Division of the International Union of Microbiological Societies, is now recognized as the official international body that decides on all matters related to taxonomy and nomenclature of viruses.

Since 1966, virologists have agreed that all viruses isolated from different organisms should be classified together in a unique system, separate from that of microorganisms such as fungi, bacteria, and mycoplasma. However, there has been much controversy on how to achieve this aim. Lwoff, Horne, and Tournier in 1962 proposed the adoption of a system classifying viruses into subphyla, classes, orders, suborders, and families. It was also proposed that the hierarchical classification would be based on the type of nucleic acid (DNA or RNA), the strandedness (single = ss or double = ds), the presence or absence of an envelope, the capsid symmetry, the type of replication cycle (with or without an RNA intermediate for DNA viruses), and the number of genome segments. This hierarchical classification system has never been recognized by the ICTV, but most of the criteria used to demarcate the major classes of viruses formed the basis of the universal taxonomy system now in place, and all published ICTV reports have used this scheme with only minor changes.

It is only in the last 15 years that a hierarchical classification level higher than the family was proposed and accepted. A first order, Mononegavirales, was accepted in 1990, and the orders Caudovirales and Nidovirales were adopted in 1996. In 2005, ICTV considered introducing four new orders namely Picornavirales, Herpesvirales, Reovirales, and Retrovirales, and these may become accepted in the near future.

It is important to note that the species category for viruses was only adopted in 1991. From then onwards viruses were assigned to species or tentative species. In addition, a list of species demarcation criteria has been established for each family. It is anticipated that by 2010 the ICTV will have introduced species criteria for all viruses and that some level of homogeneity will have been reached, although it is perfectly acceptable to have different sets of criteria for different families of viruses.

Since the establishment of the ICTV, a total of eight virus taxonomic reports have been published. At the first meeting of the Committee in Mexico City in 1970, two families with corresponding two genera and 24 floating genera were adopted to begin grouping the vertebrate, invertebrate, and bacterial viruses together, and in addition, 16 plant virus ‘groups’ were introduced. Although virologists working with vertebrate viruses had assigned viruses to genera and families for many years, plant virologists until 1993 used the term ‘group’ to designate viruses with similar properties. It was only in 1995 that the ICTV adopted a uniform system for all viruses, encompassing 2,644 assigned viruses. The Eighth ICTV Report on Virus Taxonomy, published in 2005 describes a Universal Virus Classification that comprises 3 orders, 73 families, 9 subfamilies, 287 genera, and 5,450 viruses belonging to 1950 species (Table 1).

Over the past four decades the number of classified viruses, as well as the number of each type of taxa, has increased exponentially and continues to grow (Figure 1). Because DNA sequencing has become a routine technique, it seems likely that the number of recognizes viruses and viral taxa will continue to grow exponentially. Furthermore, virus genome sequences provide qualitative and quantitative criteria for defining the molecular variability of viruses that are useful for classification purposes. Sequencing will also permit identification and classification of many viruses that are difficult to isolate and characterize by other methods.

Organization and Structure of ICTV

The ICTV is the only Committee of the Virology Division of the International Union of Microbiological Societies. It is a non-profit organization composed of volunteered virologists from many countries who make decisions on virus names and taxa through a democratic process. The ICTV operates through subcommittees and study groups consisting of more than 500 virologists with expertise in human, animal, insect, protozoa, archaea, bacteria, mycoplasma, fungi, algae, and plant viruses.

Taxonomic proposals are initiated and formulated by study groups or by single individuals. The proposals are examined, offered to public scrutiny, accepted by the relevant subcommittee and presented for approval by the Executive Committee of the ICTV. All decisions are ratified by postal vote, where all members of the ICTV and more than 50 national microbiological societies are represented. Presently, there are 75 study groups working in concert with six subcommittees: one each for the vertebrate, invertebrate, plant, bacterial, and fungal viruses and one for the virus ICTV Database (ICTVdB). The ICTV does not impose taxa but ensures that all propositions are compatible with the International Code for Virus Classification and Nomenclature for accuracy, homogeneity, and consistency. The ICTV regularly
Order	Family	Subfamily	Genus	Type species	Host
The DNA viruses					
The dsDNA viruses					
Caudovirales					
Myoviridae					
"T4-like viruses"	Enterobacteria	phage T4	B		
"P-like viruses"	Enterobacteria	phage P	B		
"P-like viruses"	Enterobacteria	phage P	B		
"Mu-like viruses"	Enterobacteria	phage Mu	B		
"SP1-like viruses"	Bacillus phage	SP1	B		
"φH-like viruses"	Halobacterium	phage φH	Ar		
Siphoviridae					
"λ-like viruses"	Enterobacteria	phage λ	B		
"T1-like viruses"	Enterobacteria	phage T1	B		
"T5-like viruses"	Enterobacteria	phage T5	B		
"L5-like viruses"	Mycobacterium	phage L5	B		
"c2-like viruses"	Lactococcus	phage c2	B		
"ψM1-like viruses"	Methanobacterium	phage ψM1	Ar		
"ψC31-like viruses"	Streptomyces	phage ψC31	B		
"N15-like viruses"	Enterobacteria	phage N15	B		
Podoviridae					
"T7-like viruses"	Enterobacteria	phage T7	B		
"P2-like viruses"	Enterobacteria	phage P2	B		
"ψ29-like viruses"	Bacillus phage	ψ29	B		
"N4-like viruses"	Enterobacteria	phage N4	B		
Tectiviridae	Tectivirus				
Corticoviridae	Corticovirus	Pseudalteromonas	phage PM2	B	
Plasmaviridae	Plasmavirus	Achromobacter	phage L2	B	
Lipothrixviridae	Alphalipothrixvirus	Thermoproteus	tenax virus 1	Ar	
Betalipothrixvirus	Sulfolobus	islandicus filamentous virus	Ar		
Gammalipothrixvirus	Acidinius	filamentous virus 1	Ar		
Rudiviridae	Rudivirus	Sulfolobus	islandicus rod-shaped virus 2	Ar	
Fuselloviridae	Fusellovirus	Sulfolobus	spindle-shaped virus 1	Ar	
Sulterprovirus	His1 virus				
Gutaviridae	Gutavirus	Sulfolobus	Newzealandicus droplet-shaped virus	Ar	
Poxviridae	Chordopoxvirinae				
Orthopoxivirus	Vaccinia virus				
Parapoxivirus	Orf virus				
Avipoxivirus	Fowlpox virus				
Capripoxivirus	Sheepox virus				
Leporipoxivirus	Myxoma virus				
Suipoxivirus	Swinepox virus				
Molluscipoxivirus	Molluscum	contagiosum virus			
Yatapoxivirus	Yaba monkey	tumor virus			

Continued
Order	Family	Subfamily	Genus	Type species	Host
Alphaentomopoxvirus	Melolontha melolontha	entomopoxvirus	I		
Betaentomopoxvirus	Amsacta moorei	entomopoxvirus ‘L’	I		
Gammaentomopoxvirus	Chironomus luridus	entomopoxvirus	I		
Asfarviridae	Asfivirus		African swine fever virus		V, I
Iridoviridae	Iridovirus		Invertebrate iridescent virus 6		I
	Chloriridovirus		Invertebrate iridescent virus 3		I
	Ranavirus		Frog virus 3		V
	Lymphocystivirus		Lymphocysts disease virus 1		V
	Megalocytivirus		Infectious spleen and kidney necrosis virus		V
Phycodnaviridae	Chlorovirus		Paramecium bursaria Chlorella virus 1		Al
	Coccolithovirus		Emiliania huxleyi virus 86		Al
	Prasinovirus		Micromonas pusilla virus SP		Al
	Phymnesiovirus		Chrysochromulina brevifilum virus PW1		Al
	Phaeovirus		Ectocarpus siliculosus virus 1		Al
	Raphidovirus		Heterosigma akashiwo virus 01		Al
Baculoviridae	Nucleopolyhedrovirus		Autographa californica multiple	nuleopolyhedrovirus	I
	Granulovirus		Cylidia pomonella granulovirus		I
Nimaviridae	Whispovirus		White spot syndrome virus 1		I
Herpesviridae	Alphaherpesvirinae		Simplexvirus	Human herpesvirus 1	V
	Varicellovirus		Human herpesvirus 3		V
	Mardivirus		Gallid herpesvirus 2		V
	Iltovirus		Gallid herpesvirus 1		V
Betaherpesvirinae	Cytomegalovirus		Human herpesvirus 5		V
	Muromegalovirus		Murid herpesvirus 1		V
	Roseolovirus		Human herpesvirus 6		V
Gammaherpesvirinae	Lymphocryptovirus		Human herpesvirus 4		V
	Rhadinovirus		Sariminae herpesvirus 2		V
Adenoviridae	Ictaurivirus		Ictalurid herpesvirus 1		V
	Mastadenovirus		Human adenovirus C		V
	Aviadenovirus		Fowl adenovirus A		V
	Atadenovirus		Ovine adenovirus D		V
	Sidadenovirus		Frog adenovirus		V
Polyomaviridae	Polymavirus		Simian virus 40		V
Papillomaviridae	Alphapapillomavirus		Human papillomavirus 32		V
	Betapapillomavirus		Human papillomavirus 5		V
	Gammapapillomavirus		Human papillomavirus 4		V
	Deltapapillomavirus		European elk papillomavirus		V
Papillomaviridae	Species	Common Name			
------------------	---------	-------------			
Epsilonpapillomavirus	Bovine papillomavirus 5				
Zetapapillomavirus	Equine papillomavirus 1				
Etapapillomavirus	Fringilla coelebs papillomavirus				
Thetapapillomavirus	Psittacus erithacus timneh papillomavirus				
Iotapapillomavirus	Mastomys natalensis papillomavirus				
Kappapapillomavirus	Cotton tail rabbit papillomavirus				
Lambdapapillomavirus	Canine oral papillomavirus				
Mupapillomavirus	Human papillomavirus 1				
Nupapillomavirus	Human papillomavirus 41				
Xipapillomavirus	Bovine papillomavirus 3				
Omikronpapillomavirus	Phocoena spinipinnis papillomavirus				
Pipapillomavirus	Hamster oral papillomavirus				

Polydnaviridae	Species	Common Name
Bracovirus	Cotesia melanoscela bracovirus	
Ichnovirus	Campoletis sonorensis ichnovirus	

Ascoviridae	Species	Common Name
Ascovirus	Spodoptera frugiperda ascovirus 1a	

Unassigned	Species	Common Name
Mimivirus	Acanthamoeba polyphaga mimivirus	

The ssDNA viruses

Inoviridae	Species	Common Name
Inovirus	Enterobacteria phage M13	
Plectrovirus	Acholeplasma phage L51	

Microviridae	Species	Common Name
Microvirus	Enterobacteria phage ψX174	
Chlamydiamicrovirus	Chlamydia phage 1	
Bdellomicrovirus	Bdellovibrio phage MAC1	
Spiromicrovirus	Spiroplasma phage 4	

Geminiviridae	Species	Common Name
Mastrevirus	Maize streak virus	
Curtovirus	Beet curly top virus	
Topocuvirus	Tomato pseudo-curly top virus	
Begomovirus	Bean golden yellow mosaic virus	

Circoviridae	Species	Common Name
Circovirus	Porcine circovirus-1	
Gyrovirus	Chicken anemia virus	

Unassigned	Species	Common Name
Anellovirus	Torque teno virus	
Nanoviridae	Subterranean clover stunt virus	
Babuvirus	Banana bunchy top virus	

Paroviridae	Species	Common Name
Parovirus	Minute virus of mice	
Erythrovirus	Human parovirus B9	
Dependovirus	Adeno-associated virus 2	
Amdovirus	Aleutian mink disease virus	
Bocavirus	Bovine parovirus	

Densovirinae	Species	Common Name			
Densovirus	Junonia coenia densovirus				
Iteravirus	Bombyx mori densovirus				
Brevidendovirus	Aedes aegypti densovirus				
Pefudenvirus	Periplaneta fuliginosa densovirus				
Order	Family	Subfamily	Genus	Type species	Host
-------	--------	-----------	-------	--------------	------
The DNA and RNA reverse transcribing viruses					
Hepadnaviridae	Orthohepadnavirus		Hepatitis B virus	V	
	Avihepadnavirus		Duck hepatitis B virus	V	
Caulimoviridae	Caulimovirus		Cauliflower mosaic virus	P	
	Petuvirus		Petunia vein clearing virus	P	
	Soyimovirus		Soybean chlorotic mottle virus	P	
	Cavemovirus		Cassava vein mosaic virus	P	
	Badnavirus		Commeilina yellow mottle virus	P	
	Tungro virus		Rice tungro bacilliform virus	P	
Pseudoviridae	Pseudovirus		Saccharomyces cerevisiae Ty1 virus	F, P	
	Hemivirus		Drosophila melanogaster copia virus	F, I	
	Sirevirus		Glycine max SIRE1 virus	P	
Metaviridae	Metavirus		Saccharomyces cerevisiae Ty3 virus	F, P, I	
Retroviridae	Orthoretrovirinae				
	Alpharetrovirus		Avian leukemia virus	V	
	Betaretrovirus		Mouse mammary tumor virus	V	
	Gammaretrovirus		Murine leukemia virus	V	
	Deltaretrovirus		Bovine leukemia virus	V	
	Epsilonretrovirus		Walleye dermal sarcoma virus	V	
	Lentivirus		Human immunodeficiency virus 1	V	
	Spumaretrovirinae				
	Spumavirus		Simian foamy virus	V	
The RNA viruses					
The dsRNA viruses					
Cystoviridae	Cystovirus		Pseudomonas phage 6	B	
Reoviridae	Orthoreovirus		Mammalian orthoreovirus	V	
	Orbivirus		Bluetongue virus	V, I	
	Rotavirus		Rotavirus A	V	
	Coltivirus		Colorado tick fever virus	V, I	
	Seadornavirus		Banna virus	V	
	Aquareovirus		Aquareovirus A	V	
	Idnoreovirus		Idnoreovirus 1	I	
	Cypovirus		Cypovirus 1	I	
	Fiji virus		Fiji disease virus	P, I	
	Phytoreovirus		Wound tumor virus	P, I	
	Orzyavirus		Rice ragged stunt virus	P, I	
	Mycoreovirus		Mycoreovirus 1	F	
Birmaviridae	Aquabirnavirus		Infectious pancreatic necrosis virus	V	
	Avibirnavirus		Infectious bursal disease virus	V	
Family	Genus	Species			
---------------------	------------------------------	---			
Totivirus	Totivirus	Saccharomyces cerevisiae virus L-A			
		Giardia lambia virus			
		Leishmania RNA virus 1–1			
Partitivirus	Partitivirus	Atkinsonella hyphoxylon virus			
		White clover cryptic virus 1			
		White clover cryptic virus 2			
Chrysovirus	Chrysoirus	Pericillium chrysogenum virus			
Hypoviridae	Hypovirus	Cryptonectria hypovirus 1			
		Vicia faba endornavirus			
Unassigned					

The negative-stranded ssRNA viruses

Mononegavirales

Family	Genus	Species
Bornaviridae	Bornavirus	Borna disease virus
Rhabdoviridae	Visceral virus	Vesicular stomatitis Indiana virus
	Lyssavirus	Rabies virus
	Ephemeral virus	Bovine ephemeral fever virus
	Novirhabdovirus	Infectious hematopoietic necrosis virus
	Cytomervirus	Lettuce necrotic yellow virus
	Nucleothovirus	Potato yellow dwarf virus
Filoviridae	Marburgivirus	Lake Victoria marburgivirus
	Ebola virus	Zaire ebolavirus
Paramyxoviridae	Paramyxovirinae	
	Rubulavirus	Mumps virus
	Avulavirus	Newcastle disease virus
	Respirovirus	Sendai virus
	Henipavirus	Hendra virus
	Morbillivirus	Measles virus
Pneumovirinae		
	Pneumovirus	Human respiratory syncytial virus
	Metapneumovirus	Avian metapneumovirus
	Varicosavirinae	Lettuce big-vein associated virus
	Ophiovirus	Citrus psorosis virus
Orthomyxoviridae	Influenza virus A	Influenza A virus
	Influenza virus B	Influenza B virus
	Influenza virus C	Influenza C virus
	Thogotovirus	Thogoto virus
	Isavirus	Infectious salmon anemia virus
Bunyaviridae	Orthobunyavirus	Bunyamwera virus
	Hantavirus	Hantaan virus
	Nairobi virus	Dugbe virus
	Phlebovirus	Rift Valley fever virus
	Tospovirus	Tomato spotted wilt virus
	Tenuivirus	Rice stripe virus
	Arenavirus	Lymphocytic chorionema virus

Continued
Order	Family	Subfamily	Genus	Type species	Host
				Deltavirus	V
The positive-stranded ssRNA viruses			Levivirus	Enterobacteria phage MS2	B
Leviviridae	Levivirus				
	Allolevivirus			Enterobacteria phage Q1	B
Namnaviridae	Namnavirus			Saccharomyces 20S namnavirus	F
	Mitovirus			Cryphonectria mitovirus 1	F
Picornavirida	Enterovirus			Poliovirus	V
	Rhinovirus			Human rhinovirus A	V
	Cardiovirus			Encephalomyocarditis virus	V
	Aphthovirus			Foot-and-mouth disease virus	V
	Hepatovirus			Hepatitis A virus	V
	Parechovirus			Equine rhinitis B virus	V
	Erbovirus			Aichi virus	V
	Kobuvirus			Porcine teschovirus	V
	Teschovirus				I
	Unassigned				I
	Inflaviridae			Infectious flacherie virus	I
	Cripavirus			Cricket paralysis virus	I
	Marnaviridae		Marnavirus	Heterosigma akashiwo RNA virus	F
	Sequiviridae		Sequivirus	Parsnip yellow fleck virus	P
	Waikavirus			Rice tungro spherical virus	P
	Unassigned				P
	Sadnavirus			Satsuma dwarf virus	P
	Chervirus			Cherry rasp leaf virus	P
	Comoviridae		Comovirus	Cowpea mosaic virus	P
	Fabavirus			Broad bean wilt virus 1	P
	Nepovirus			Tobacco ringspot virus	P
	Potyviridae		Potyvirus	Potato virus Y	P
	Ipomovirus			Sweet potato mild mottle virus	P
	Macluravirus			Maclura mosaic virus	P
	Rymovirus			Ryegrass mosaic virus	P
	Tritimovirus			Wheat streak mosaic virus	P
	Bymovirus			Barley yellow mosaic virus	P
	Caliciviridae		Lagovirus	Rabbit hemorrhagic disease virus	V
	Norovirus			Norwalk virus	V
	Saposivirus			Sapporo virus	V
	Vesivirus			Vesicular exanthema of swine virus	V
	Unassigned				V
	Hepeviridae			Hepatitis E virus	V
	Astroviridae		Avastrovirus	Turkey astrovirus	V
	Mamastrovirus			Human astrovirus	V
	Nodaviridae		Alphanodavirus	Nodamura virus	I
	Betanodavirus			Striped jack nervous necrosis virus	V
	Tetaviridae		Betatetravirus	Nudaurella capensis f virus	I

Table 1 Continued
Classification	Species	Common Name	Type		
Unassigned	Omegatetravirus	Nudaurelia capensis o virus	I		
Luteoviridae	Sobemovirus	Southern bean mosaic virus	P		
	Luteovirus	Barley yellow dwarf virus-PAV	P		
	Polerovirus	Potato leafroll virus	P		
	Enamovirus	Pea mottle mosaic virus-1	P		
Unassigned	Umbra virus	Carrot mottle virus	P		
Tombusviridae	Dianthovirus	Carnation ringspot virus	P		
	Tombusvirus	Tomato bushy stunt virus	P		
	Aureusvirus	Pothos latent virus	P		
	Avenaviruses	Oat chlorotic stunt virus	P		
	Camovirus	Carnation mottle virus	P		
	Necrovirus	Tobacco necrosis virus A	P		
	Panicotavirus	Pancum mosaic virus	P		
	Machlovirus	Maize chlorotic mottle virus	P		
Nidovirales	Coronaviridae	Coronavirus infectious bronchitis virus	V		
	Torovirus	Equine torovirus	V		
Arteriviridae	Arterivirus	Equine arteritis virus	I		
Flaviviridae	Flavivirus	Yellow fever virus	V, I		
	Pestivirus	Bovine viral diarrhea 1 virus	V		
	Hepacivirus	Hepatitis C virus	V		
Togaviridae	Alphavirus	Sindbis virus	V, I		
	Rubivirus	Rubella virus	V		
Unassigned	Tobamovirus	Tobacco mosaic virus	P		
	Tobaviruses	Tobacco rattle virus	P		
	Hordevirus	Barley stripe mosaic virus	P		
	Furivirus	Soil-borne wheat mosaic virus	P		
	Pomovirus	Potato mop-top virus	P		
	Peckvirus	Peanut clump virus	P		
	Benyvirus	Beet necrotic yellow vein virus	P		
Bromoviridae	Alfamovirus	Alfalfa mosaic virus	P		
	Bromovirus	Brome mosaic virus	P		
	Cucumovirus	Cucumber mosaic virus	P		
	Ilarvirus	Tobacco streak virus	P		
	Oleaviruses	Olive latent virus 2	P		
Unassigned	Ourmiavirus	Ourmia melon virus	P		
	Ideovirus	Raspberry bushy dwarf virus	P		
Tymoviridae	Tyomovirus	Turnip yellow mosaic virus	P		
	Marafivirus	Maize rayado fino virus	P, I		
	Maculavirus	Grapevine fleck virus	P		
Closteroviridae	Closterovirus	Beet yellows virus	P		
	Ampelovirus	Grapevine leafroll-associated virus 3	P		
	Crinitivirus	Lettuce infectious yellows virus	P		
Order	Family	Subfamily	Genus	Type species	Host
------------	-----------------	-----------------	-------------------	-------------------------------	------
Flexiviridae	Potexvirus		Potato virus X	P	
	Mandarivirus		Indian citrus ringspot virus	P	
	Allexivirus		Shallot virus X	P	
	Carlavirus		Carnation latent virus	P	
	Foveavirus		Apple stem pitting virus	P	
	Capillovirus		Apple stem grooving virus	P	
	Vitivirus		Grapevine virus A	P	
	Trichovirus		Apple chlorotic leaf spot virus	P	
	Barnavirus		Mushroom bacilliform virus	F	

Unassigned viruses

Unassigned Vertebrate Viruses

Unassigned Invertebrate Viruses

Unassigned Prokaryote Viruses

Unassigned Fungus Viruses

Unassigned Plant Viruses

The subviral agents: Viroids, satellites and agents of spongiform encephalopathies (prions)

Viroids

- **Pospiviroidae**
 - Pospiviroid
 - Hop stunt viroid
- **Hostuviroid**
- **Cocadviroid**
- **Apscaviroid**
- **Coleviroid**
 - Coleus blumei viroid 1

Avsunviroidae

- **Avsunviroid**
- **Pelamoviroid**

Satellites

- **Vertebrate Prions**
- **Fungi prions**

Virus hosts: Al, Algae; Ar, Archaea; B, Bacteria; F, Fungi; I, Invertebrates; P, Plants; Pr, Protozoa; V, Vertebrates.
publishes reports describing all existing virus taxa and containing a complete list of classified viruses with their abbreviations. The ICTV published its Eighth Report in 2005. An internet website is also maintained where all new taxonomic proposals are loaded and where the most important information relative to virus taxonomy is made available and updated regularly. The increasing number of virus species and virus strains being identified, along with the explosion of data on many descriptive aspects of viruses and viral diseases, particularly sequence data, has led the ICTV to launch an international virus database project (ICTVdB) and a Taxonomic Proposal Management System specifically to handle taxonomic proposals.

Polythetic Classification and Demarcation Criteria

There are currently two systems in use for classifying organisms: the Linnean and the Adansonian systems. The Linnean system is the monothetic hierarchical classification applied by Linnaeus to plants and animals, while the Adansonian is a polythetic hierarchical system. Although convenient to use, the Linnean system has shortcomings when applied to the classification of viruses because there is no obvious reason to privilege one criterion over another. The Adansonian system considers all available criteria at once and makes several classifications, taking the criteria successively into consideration. Criteria leading to the same classifications are considered correlated and are therefore not discriminatory. Subsequently, a subset of criteria is considered, and the process is repeated until all criteria can be ranked to provide the best discrimination of the species. Furthermore, qualitative and quantitative data can be simultaneously considered when building such a classification. In the case of viruses, the method is not used on a systematic basis, although it has been shown that at least 60 characters are needed for a complete virus description (Table 2).

The increasing number of reported viral nucleic acid sequences allows the construction of phylogenetic trees based on a single gene or a group of genes. Sequence comparisons by themselves have not satisfactorily provided a clear classification of all viruses together but are widely used at the order, family, and genus levels. Recently the National Center for Biotechnology Information (NCBI) in Washington developed a system of pairwise sequence comparisons (the so-called PASC system) between viral sequences which allows a new virus to be assigned to known taxa. It seems probable that, in future, virus classification will make increasing use of sequence data.

For more than 40 years, the ICTV has been classifying viruses essentially at the family and genus levels using a nonsystematic polythetic approach. Viruses are first clustered in genera and then in families. A subset of characters including physicochemical, structural, genomic, and biological criteria is then used to compare and group viruses. This subset of characters may change from one family to another according to the availability of the data and depending on the importance of a particular character for a particular family. Obviously, there is no homogeneity in this respect in the current virus classification system, and virologists weigh the criteria in a subjective process. Nevertheless, over time, there has been a great stability of the current classification at the genus and family levels. It is also clear that hierarchical classification above the family level will encounter conflicts between phenotypic and genotypic criteria and that virologists may have to reconsider the entire classification process in order to progress at this level.

Virus Taxa Descriptions

Virus classification continues to evolve with the technologies available for describing viruses. The first wave of descriptions, those before 1940, took into account mostly the visual symptoms of viral diseases along with modes of viral transmission. A second wave, between 1940 and
1970, brought together an enormous amount of information from studies of virion morphology (electron microscopy, structural data), biology (serology and virus properties), and physicochemical properties of viruses (nature and size of the genome, number and size of viral proteins). The impact of descriptions on virus classification has been particularly influenced by electron microscopy and the negative-staining technique for virions in the 1960s and 1970s. With this technique, viruses could be identified from poorly purified preparations of all tissue types and information about size, shape, structure, and symmetry could be quickly provided. As a result, virology progressed simultaneously for all viruses infecting animals, insects, plants, and bacteria. Since 1970, the virus descriptors list has included genome and replication information (sequence of genes, sequence of proteins), as well as molecular relationships with virus hosts.

The most recent wave of information used to classify viruses is virus genome sequences. Genome sequence comparisons are becoming more and more prevalent in virus taxonomy as exemplified by the presence of a significant number of phylogenetic trees in the *Eighth ICTV Report*. Some scientists promote the concept of quantitative taxonomy, aimed at demonstrating that virus genome sequences contain all the coding information required for all the biological properties of the viruses. This is in complete agreement with the polythetic concept of virus species definition if one considers that the unique sequence of a genome contains in fact all the information of the virus to perform all the steps of its replication cycle with structural and nonstructural genes and all of its biological functions. A good example of quantitative taxonomy is the re-classification of flaviviruses from the genus *Flavivirus* in the family *Togaviridae* into the new family *Flaviviridae* based upon sequencing of the yellow fever virus genome and comparisons with the gene sequence arrangement of members of the genus *Alphavirus* in the family *Togaviridae*. Another recent example is the merging of the genera *Rhinovirus* and *Enterovirus* in the family *Picornaviridae*, based on the fact that phylogenetic trees and pairwise comparisons did not support the continued distinction between the two genera.

There is a correlative modification of the list of virus descriptors, and Table 2 lists the family and genus descriptors which are used in the current ICTV report. Table 2 lists 45 different types of properties where each property (e.g., morphology) can take on different individual states (e.g., filamentous, icosahedral, etc.). A universal lists of virus descriptors has been established which is used by the ICTVdB. It contains a common set of descriptors for all viruses and subsets for specific viruses in relation to their specific hosts (human, animal, insect, plant, and bacterial).

Table 2 Virus family descriptors used in virus taxonomy

I. Virion properties	
A. Morphology properties of virions	
1. Virion size	
2. Virion shape	
3. Presence or absence of an envelope and peplomers	
4. Capsomeric symmetry and structure	
B. Physical properties of virions	
1. Molecular mass of virions	
2. Buoyant density of virions	
3. Sedimentation coefficient	
4. pH stability	
5. Thermal stability	
6. Cation (Mg$^{2+}$, Mn$^{2+}$) stability	
7. Solvent stability	
8. Detergent stability	
9. Radiation stability	
C. Properties of genome	
1. Type of nucleic acid – DNA or RNA	
2. Strandedness – single stranded or double stranded	
3. Linear or circular	
4. Sense – positive, negative, or ambisense	
5. Number of segments	
6. Size of genome or genome segments	
7. Presence or absence and type of 5’-terminal cap	
8. Presence or absence of 5’-terminal covalently linked polypeptide	
9. Presence or absence of 3’-terminal poly(A) tract (or other specific tract)	
10. Nucleotide sequence comparisons	
D. Properties of proteins	
1. Number of proteins	
2. Size of proteins	
3. Functional activities of proteins (especially virion transcriptase, virion reverse transcriptase, virion hemagglutinin, virion neuraminidase, virion fusion protein)	
4. Amino-acid-sequence comparisons	
E. Lipids	
1. Presence or absence of lipids	
2. Nature of lipids	
F. Carbohydrates	
1. Presence or absence of carbohydrates	
2. Nature of carbohydrates	
II. Genome organization and replication	
1. Genome organization	
2. Strategy of replication of nucleic acid	
3. Characteristics of transcription	
4. Characteristics of translation and post-translational processing	
5. Site of accumulation of virion proteins, site of assembly, site of maturation and release	
6. Cytopathology, inclusion body formation	
III. Antigenic properties	
1. Serological relationships	
2. Mapping epitopes	
IV. Biological properties	
1. Host range, natural and experimental	
2. Pathogenicity, association with disease	
3. Tissue tropisms, pathology, histopathology	
4. Mode of transmission in nature	
5. Vector relationships	
6. Geographic distribution	
The Order of Presentation of the Virus Classification

Currently, and for practical reasons only, virus classification is structured according to the ‘Order of Presentation of Viruses’ indicated in Table 1. The presentation of virus orders, families, and genera in this particular order reflects convenience rather than any hierarchical or phylogenetic consideration. The Order of Presentation of Viruses follows four criteria: (1) the nature of the viral nucleic acid, (2) the strandedness of the nucleic acid (single stranded (ss) or double stranded (ds)), (3) the use of a reverse transcription process (DNA or RNA), and (4) the sense of gene coding on the encapsidated genome (positive, negative, or ambisense). These four criteria give rise to six clusters comprising the 86 families and unassigned genera (genera without a designated family). Within each cluster, families and unassigned genera have been listed according to their possible affinities. For example, the families Picornaviridae, Dicistroviridae, Segnaviridae, Comoviridae, and Potyviridae are listed one after another because they share a number of similarities in their genome organization and sequence relatedness and they may form the basis for a proposed order in the future.

A New Virus Taxon: The Virus Species

For many years, virologists debated the existence of virus species which was a very controversial issue and a series of definitions surfaced at regular intervals but none was adopted. However, in 1991, the ICTV Executive Committee accepted the species concept and the adopted definition is “A virus species is a polythetic class of viruses that constitutes a replicating lineage and occupies a particular ecological niche.” This simple definition has already and will continue to have a profound effect on virus classification. In the Eighth Report of the ICTV, the ‘List of Species’ and the ‘List of Tentative Species’ are accompanied by a ‘List of Species Demarcating Criteria’ provided for each genus. Naturally, this list of criteria should follow the polythetic nature of the species definition, and more than one criterion should be used to determine a new species. It is obvious that most criteria are shared among the different genera, within and across families. These shared criteria include host range, serological relationships, vector transmission type, tissue tropism, genome rearrangement, and sequence homology (Table 3). However, while the nature of the criteria is similar, the levels of demarcation clearly differ from one family to another. This may reflect differences in appreciation from one family to another, but most likely reflects the differential ranking of a particular criterion in different families. The huge differences in sequence homologies (up to 30%) among lentivirus nucleoprotein sequences may not have the same biological significance as small differences for potyvirus capsid protein sequences (0–10%), and therefore universal levels of sequence identity for similar genes may not exist for viruses. However, it is important to note that the nature of the demarcating criteria at the genus level will probably not change since they have passed the test of years. Despite the fact that they were mostly established using biochemical and structural criteria, most of them have remained valid when correlated with genome organization and sequence data.

A Uniform Nomenclature for All Virus Taxa

Nomenclature is tightly associated with classification, in the sense that the taxonomic names indicate, to some extent, the nature of the taxa. Similarly for viruses, the ICTV has set rules for virus nomenclature and the orthography of taxonomic names that are regularly revised and improved. The international virus species names end in ‘virus’, international genus names in

Table 3	List of criteria demarcating different virus taxa
I. Order	Common properties between several families including:
	Biochemical composition
	Virus replication strategy
	Particle structure (to some extent)
	General genome organization
II. Family	Common properties between several genera including:
	Biochemical composition
	Virus replication strategy
	Nature of the particle structure
	Genome organization
III. Genus	Common properties within a genus including:
	Virus replication strategy
	Genome size, organization, and/or number of segments
	Sequence homologies (hybridization properties)
	Vector transmission
IV. Species	Common properties within a species including:
	Genome arrangement
	Sequence homologies (hybridization properties)
	Serological relationships
	Vector transmission
	Host range
	Pathogenicity
	Tissue tropism
	Geographical distribution
‘...virus’, international subfamily names in ‘...virinae’, international family names in ‘...viridae’, and international order names in ‘...virales’. In formal taxonomic usage, the virus order, family, subfamily, genus, and species names are printed in italics (or underlined) and the first letter is capitalized. For all taxa except species, new names are created following ICTV guidelines. Because of the difficulty in creating new official international names for virus species, it has been decided in 1998 by the ICTV to use the existing English vernacular virus names. However, to differentiate virus species names from virus names it has also been decided that their typography would be different, that is, the species names would be italicized, and the first letter of the name capitalized while the virus names would not. In addition ICTV had created an additional category called ‘Tentative Species Names’ to accommodate viruses that seemed to belong to a new species, but did not have enough data to support this decision; it was also a way to ‘reserve’ a name already used in literature. In 2005, ICTV decided to replace this category by ‘Unassigned Virus names’. In formal usage, the name of the taxon precedes the name of the virus but replacing the word ‘virus’ by the genus name: for example, Cucumber mosaic cucumovirus and Tobacco mosaic tobamovirus. This system is called ‘the non-latinized binomial system’, although the binomial order is the opposite of the typical latinized binomial system where the genus name ends with the virus name. Though this usage is favored by many scientists, and examples of such a practice can be found for human, animal, and insect viruses (e.g., Human rhinovirus, Canine calicivirus, and Acheta densovirus), it has not yet been adopted as a universal system by the ICTV; however, it has been decided that each study group would decide what is best for the viruses they deal with and the new names would have to be ratified through a formal taxonomic proposal by the ICTV.

In formal usage, the name of the taxon precedes the name of the taxonomic unit: for example, “the family Picornaviridae” or “the genus Rhinovirus”. In informal vernacular usage, virus order, family, subfamily, genus, and species names are written in lower case roman script; they are not capitalized or italicized (or underlined) – for example ‘animal reoviruses’. To avoid ambiguous identifications, it has been recommended to journal editors that published virological papers follow ICTV guidelines for proper virus identification and nomenclature and that viruses should be cited with their full taxonomic terminology when they are first mentioned in an article, for example, order Mononegavirales, family Paramyxoviridae, subfamily Pneumovirinae, genus Pneumovirus, species Human respiratory syncytial virus.

A Universal Classification System

The present universal system of virus taxonomy is set arbitrarily at the hierarchical levels of order, family, subfamily, genus, and species. Lower hierarchical levels, such as suborder, subgenera, and subspecies, may be considered in the future if need arises. Hierarchical levels under the species level such as strains, serotypes, variants, and pathotypes are established by international specialty groups and/or by culture collections, but not by the ICTV.

Species

The species taxon is always regarded as the most important taxonomic level in classification but has proved difficult to apply to viruses. In 1991, the ICTV accepted the definition of species, stated above, proposed by Marc van Regenmortel. The major advantage of this definition is that it can accommodate the inherent variability of viruses and is not dependent on the existence of a unique set of characteristics. Members of a polythetic class are defined by more than one property and no single property is absolutely indispensable. Thus, in each family, it might be possible to determine the set of properties of the class ‘species’ and thus to verify if the family members are representatives of the class ‘species’ or if they belong to a different taxonomic level.

Many practical matters are related to the definition of a virus species. These include (1) homogeneity of the different taxa across the classification, (2) diagnostic-related matters, (3) virus collections, (4) evolution studies, (5) biotechnology, (6) sequence database projects, (7) virus database projects, (8) publication matters, and also (9) intellectual property rights.

Genera

There is no formal ICTV definition for a genus, but it is commonly considered as “a population of virus species that share common characteristics and are different from other populations of species.” Although this definition is somewhat elusive, this level of classification seems stable and useful. Some genera have been moved from one
family to another (or from one family to an unassigned genus status such as the genus *Hepevirus*) over the years, but the composition and description of these genera has remained very stable. The characters defining a genus are different from one family to another. The use of subgenera has been abandoned in current virus classification.

Families

Genera are usually clustered in families, and most of the time, when a new genus, obviously not belonging to any existing family, is created, virologists also create a new family. Even after the creation of the ICTV, plant virologists have continued to classify plant viruses in ‘groups’, refusing to place them in genera and families. This position was mostly caused by a refusal to accept a binomial nomenclature. However, because of obvious similarities, plant reoviruses and rhabdoviruses had been integrated into the families *Reoviridae* and *Rhabdoviridae* (Table 1).

Plant virologists subsequently accepted in 1995 the placing of plant viruses into species, genera, and families. The number of unassigned genera is regularly decreasing with time; the most recent clustering is the creation of the family *Flexiviridae* with the genera *Potexvirus*, *Carlavirus*, *Mandarivirus*, *Foveavirus*, *Capillovirus*, *Allexivirus*, *Vitivirus*, and *Trichovirus*. However, there are still 22 unassigned genera that do not belong to any family. Their presence originates mostly from the preference of plant virologists for accumulating data on virus species and genera before clustering genera in families. The unassigned genus status is now being used by animal virologists as a convenient temporary classification status. Examples are the unassigned genera *Anellovirus*, that is close to the family *Circoviridae* but different enough to be separated, the previously unassigned genus *Cripavirus* that has been upgraded to full family status (*Dicistroviridae*), and another unassigned genus *Iflavirus* that has been created to accommodate new picorna-like viruses that are not typical picornaviruses.

Orders

As mentioned above, the higher hierarchical levels for virus classification are extremely difficult to establish. To date only three orders have been accepted: *Caudovirales*, *Mononegavirales*, and *Nidovirales*. The first order, *Mononegavirales*, was established in 1990 and comprises the nonsegmented ssRNA negative-sense viruses, namely, the families *Bornaviridae*, *Filoviridae*, *Paramyxoviridae*, and *Rhabdoviridae*. This order was formed because of the great similarity between these families over many criteria, including their replication strategies. A second order, *Caudovirales*, contains all families of dsDNA phages possessing a tail, including the families *Myoviridae*, *Podoviridae*, and *Siphoviridae*. The order *Nidovirales* comprises the families *Coronaviridae*, *Arteriviridae*, and *Retroviridae* and was created because it was clear that the viruses belonging to these families share many properties and yet are so different that they cannot be placed together in the same family. Many members of the ICTV advocate the creation of many more orders, and as a matter of fact four new orders encompassing the families *Herpeviridae*, *Picornaviridae*, *Reoviridae*, and *Retroviridae* have been proposed and provisionally named but it has been decided to proceed cautiously in this area so as to avoid creation of short-lived orders. The creation of formal taxa higher than the orders—for example kingdoms, classes, and subclasses—has not been considered by the ICTV.

See also: Nature of Viruses; Phylogeny of Viruses; Virus Classification by Pairwise Sequence Comparison (PASC); Virus Databases; Virus Species.

Further Reading

Adams MJ, Antoniw JF, Bar-Joseph M, et al. (2004) The new plant virus family *Flexiviridae* and assessment of molecular criteria for species demarcation. *Archives of Virology* 149: 1045–1060.

Dolja VV, Boyko VP, Agranovskiy AA, and Koonin EV (1991) Phylogeny of capsid proteins of rod-shaped and filamentous RNA plant viruses: Two families with distinct patterns of sequence and probably structure conservation. *Virology* 184: 79–86.

Dolja VV and Koonin EV (1991) Phylogeny of capsid proteins of small icosahedral RNA plant viruses. *Journal of General Virology* 72: 1481–1486.

Fauquet CM, Mayo MA, Maniloff J, Desselberger U, and Ball LA (eds.) (2004) *Virus Taxonomy: Eigth Report of the International Committee on Taxonomy of Viruses*, p.1258. San Diego, CA: Elsevier Academic Press.

Francki RB, Milne RG, and Hatta T (1985) *Atlas of Plant Viruses*. Boca Raton, FL: CRC Press.

Harrison BD, Finch JT, Gibbs AJ, et al. (1971) Sixteen groups of plant viruses. *Virology* 45: 356–363.

Koonin EV (1991) The phylogeny of RNA-dependent RNA polymerases of positive-strand RNA viruses. *Journal of General Virology* 72: 2197–2206.

Mayo MA and Horzinek MC (1998) A revised version of the International Code of Virus Classification and Nomenclature. *Archives in Virology* 143: 1645–1654.

Van Regenmortel M-HV (1999) Virus species, a much overlooked but essential concept in virus classification. *Interivirology* 31: 241–254.

Van Regenmortel M-HV, Bishop DHL, Fauquet CM, Mayo MA, Maniloff J, and Calisher CH (1997) Guidelines to the demarcation of virus species. *Archives of Virology* 142: 1505–1518.

Relevant Website

http://www.ictv.ird.fr – ICTV; Taxonomic Proposal Management System.