Ceratocystis larium sp. nov., a new species from Styrax benzoin wounds associated with incense harvesting in Indonesia

M. van Wyk1, B.D. Wingfield1, P.A. Clegg2, M.J. Wingfield1

Key words
Ophiostomatoidei fungi phylogenetic inference vascular staining

Abstract
Styrax benzoin trees, native to the island Sumatra, Indonesia are wounded to produce resin that is collected and burned as incense. These wounds on trees commonly develop into expanding cankers that lead to tree death. The aim of this study was to consider whether Ophiostomatoidei fungi, typically associated with wounds on trees might be associated with resin harvesting on S. benzoin. Samples were collected from the edges of artificially induced wounds, and particularly where cankers and staining of the vascular tissue was evident. Tissue samples were incubated in moist chambers and carrot baiting was also used to detect the presence of Ceratocystis spp. Fruiting structures with morphology typical of species in the C. fimbriata s.l. species complex and species in the anamorph genus Thielaviopsis were found, on both the incubated wood and the carrot baits. DNA sequences were generated for the Internal Transcribed Spacer regions 1 and 2 including the 5.8S rRNA gene, part of the β-tubulin and the Transcription Elongation Factor 1α gene regions. These data were compared with those of other species in the C. fimbriata s.l. species complex and Thielaviopsis using phylogenetic analysis. Morphology of the isolates in culture as well as phylogenetic inference showed that the Thielaviopsis sp. present on the wounds was T. basicola. The Ceratocystis sp. from S. benzoin represents a new taxon in the C. fimbriata s.l. complex described here as C. larium sp. nov.

INTRODUCTION

Trees in the genus Styrax are native to the Northern Hemisphere including eastern and south-eastern Asia and South America, where they occur in warm temperate areas (Burrill 1935). There are about 150 species of Styrax and many are used to produce resin that is aromatic when burned. Styrax benzoin trees in Indonesia, specifically Sumatra: commonly referred to as Sumatra Benzoin are tapped for resin, which is collected and dried. The dried resin produces fragrant aromas when burned and is thus a valuable source of incense, which is believed to have magical properties (Wheatley 1959). More than 18,000 families in northern Sumatra alone are dependent on benzoin production (Wollenberg et al. 2004).

Wounds on S. benzoin trees often develop into cankers that can eventually girdle and kill them. Such wounds are commonly associated with vascular staining, typical of that resulting from infection by ophiostomatoidei fungi (Wingfield et al. 1993, Zhou et al. 2008). These fungi and particularly species of Ceratocystis s.l. have the capacity to infect wounds and kill trees (Bretz 1952, Norris 1953, de Vay et al. 1963, Kile 1993).

Ceratocystis s.l. represents a diverse species complex with distinct groups of taxa separated by clear phylogenetic, morphological and ecological boundaries. These groups are in the process of being assigned generic status. Many of these fungi infect wounds on trees but some are also symbionts of conifer infesting bark beetles. Various Ceratocystis spp. have been found infecting wounds on trees made during agronomic practices or bark harvesting, often resulting in serious disease problems (de Vay et al. 1963, Kile 1993, Marin et al. 2003).

The aim of this study was to consider whether wounds made on S. benzoin trees in the resin harvesting process might be infected with Ceratocystis spp. and to identify these fungi based on morphology and phylogenetic analyses.

MATERIALS AND METHODS

Isolates

Wounds made on S. benzoin trees (Fig. 1) were inspected and samples were taken where vascular staining and gummosis was evident (Fig. 1). Samples were wrapped in newspaper and transported to the laboratory. Wood samples were incubated in a moist environment and inspected directly for fungal growth (Fig. 1). Spores produced by fungal structures on the wood surface were transferred onto 2 % malt extract agar (MEA: 20 % w/v; Biolab, Midrand, South Africa) supplemented with 100 mg/L streptomycin sulphate (SIGMA). Pieces of wood were also placed between two slices of 10 mm carrot pieces that were initially treated with streptomycin sulphate to bait for species of Ceratocystis (Möller & de Vay 1986a). Pure cultures were obtained (Fig. 1) and these were deposited in the culture collection (CMW) of the Forestry and Agricultural Biotechnology Institute (FABI), The University of Pretoria, South Africa. Representative isolates were also lodged with the Centraalbureau voor Schimmelcultures (CBS), Utrecht, The Netherlands. Representative cultures were dried and deposited with the National Herbarium of South Africa (PREM).

Phylogenetic analyses

DNA was extracted, as described by van Wyk et al. (2006) for six selected isolates representing two morphological groups. PCR reactions for the Internal Transcribed Spacer regions (ITS) 1 and 2 including the 5.8S rDNA, the β-tubulin and the Transcription Elongation Factor 1α (EF-1α) were prepared as
described by van Wyk et al. (2006). The conditions for the PCRs were as described by van Wyk et al. (2006) with the annealing temperature at 55 °C for all three gene regions. The primers used to amplify the DNA for these three regions were those of White et al. (1990), Glass & Donaldson (1995) and Jacobs et al. (2004), respectively.

An ABI PRISM™ Big DYE Terminator Cycle Sequencing Ready Reaction Kit (Applied BioSystems, Foster City, California, USA) was used to prepare the PCR amplicons for sequencing. An ABI PRISM™ 3100 Autosequencer (Applied BioSystems, Foster City, California, USA) was used to run the sequencing reactions. Sequences were analysed with Chromas Lite 2.01 (http://www.technelysium.com.au). The sequences obtained were subjected to Blast analysis in the National Centre for Biotechnology Information (NCBI) (www.ncbi.nlm.nih.gov) to confirm the identity of the genera present. This showed the presence of isolates representing the C. fimbriata s.l. species complex and others of a Thielaviopsis species.

An ABI PRISM™ Big DYE Terminator Cycle Sequencing Ready Reaction Kit (Applied BioSystems, Foster City, California, USA) was used to prepare the PCR amplicons for sequencing. An ABI PRISM™ 3100 Autosequencer (Applied BioSystems, Foster City, California, USA) was used to run the sequencing reactions. Sequences were aligned using MAFFT (http://align.bmr.kyushu-u.ac.jp/mafft/software/source.html) (Katoh et al. 2002) for each dataset. The alignments were manually inspected and corrected where necessary. Sequences were analysed using Phylogenetic Analysis Using Parsimony (PAUP) v. 4.0b10 (Swofford 2002). A partition homogeneity test (Swofford 2002) was run to determine whether sequence
Morphological and cultural characteristics

Cultures were grown on 2% MEA for 2 wk prior to assessment of morphological characters of the unknown Ceratocystis sp. Fungal structures were mounted on glass slides in lactic acid and these were examined using a Zeiss Axio Vision microscope. Fifty measurements were made for each taxonomically relevant structure. Ranges, averages and standard deviations (SD) were determined for each of these characters. Colours of structures and cultures were assessed using the mycological colour charts of Rayner (1970).

To determine the optimum temperature for growth of isolates, growth studies were performed on three isolates representing the unknown Ceratocystis sp. A 5 mm plug from the margin of an actively growing culture (2-wk-old) was placed at the centres of 90 mm 2% MEA Petri dishes. There were five replicates for each isolate at each temperature and growth was assessed between 5–35 °C at 5 °C intervals after 7 d. The entire study was repeated once.

Table 1 Isolates of Ceratocystis spp. used in this study.

Species	Isolate no.	GenBank accession no.	Host	Geographical origin
C. albifundus	CMW 4068	DQ520638 EF070429 EF070400	Acacia mearnsii	RSA
	CMW 5329	AF388947 DQ371649 EF070401	Acacia mearnsii	Uganda
C. atrox	CMW 19383; CBS 120517	EF070414 EF070430 EF070402	Eucalyptus grandis	Australia
	CMW 19385; CBS 120518	EF070415 EF070431	Eucalyptus grandis	Australia
C. caecofunestia	CMW 15051; CBS 152.62	DQ520636 EF070427 EF070398	Theobroma cacao	Costa Rica
	CMW 14809; CBS 115169	DQ520637 EF070428	Theobroma cacao	Ecuador
C. caraye	CMW 14793; CBS 114716	EF070424 EF070439	Carya cordiformis	USA
	CMW 14608; CBS 115168	EF070423 EF070440	Carya ovata	USA
C. colombiana	CMW 9665; CBS 121790	AY233864 AY233870 EU241487	Soil	Colombia
	CMW 5751; CBS 121792	AY177233 AY177225 EU241493	Coffee arabica	Colombia
	CMW 9572	AY233863 AY233871 EU241488		
C. fimbriata s.str.	CMW 15049; CBS 141.37	DQ520629 EF070442	Ipomoea batatas	USA
	CMW 1547	AY264904 EF070443	Ipomoea batatas	Papua New Guinea
C. fimbriotomima	CMW 24174; CBS 121786	EF190963	Eucalyptus sp.	Venezuela
	CMW 24176; CBS 121787	EF190964	Eucalyptus sp.	Venezuela
C. laurium*	CMW 25434; CBS 122512	EU819106 EU881894 EU881900	Styrox benzoin	Indonesia
	CMW 25435; CBS 122606	EU819107 EU881895 EU881901	Styrox benzoin	Indonesia
	CMW 25436; CBS 122607	EU819108 EU881896 EU881902	Styrox benzoin	Indonesia
	CMW 25437	EU819109 EU881897 EU881903	Styrox benzoin	Indonesia
C. manginecans	CMW 13851; CBS 121659	AY953383 EF433308 EF433317	Mangifera indica	Oman
	CMW 13852; CBS 121660	AY953384 EF433309 EF433318	Hypocypalus mangifera	Oman
C. neglecta	CMW 17808; CBS 121789	EF127990 EF088198	Eucalyptus sp.	Colombia
	CMW 18194; CBS 121017	EF127991 EF881899	Eucalyptus sp.	Colombia
C. obpyriformis	CMW 23807; CBS 122608	EU245004 EU244976 EU244936	Acacia mearnsii	South Africa
	CMW 23808; CBS 122511	EU245003 EU244975 EU244935	Acacia mearnsii	South Africa
C. papilata	CMW 8657	AY233868 AY233878 EU241483	Annona muricata	Colombia
	CMW 8656; CBS 121793	AY233867 AY233874 EU241484	Citrus lemon	Colombia
	CMW 10844	AY177238 AY177229 EU241481	Coffee arabica	Colombia
C. pirilloformis	CMW 6596	AF427104 DQ371652 AY528982	Eucalyptus nitens	Australia
	CMW 6579; CBS 181128	AF427105 DQ371653 AY528983	Eucalyptus nitens	Australia
C. platani	CMW 14802; CBS 115162	DQ520630 EF070425 EF070396	Plataneus occidentalis	USA
	CMW 23918	EF070426 EF070397 EU246554	Plataneus sp.	Greece
C. polychroma	CMW 11424; CBS 115778	AYS28970 AYS28966 AYS28978	Syzygium aromaticum	Indonesia
	CMW 11436; CBS 115777	AYS28971 AYS28967 AYS28979	Syzygium aromaticum	Indonesia
C. polycionia	CMW 23809; CBS 122289	EU245006 EU244978 EU244938	Acacia mearnsii	South Africa
	CMW 23818; CBS122290	EU245007 EU244979 EU244939	Acacia mearnsii	South Africa
C. populicola	CMW 14789; CBS 119.78	EF070418	Populus sp.	Poland
	CMW 14619; CBS 114725	EF070419	Populus sp.	USA
C. smallleyi	CMW 14800; CBS 114724	EF070420	Carya cordiformis	USA
	CMW 26383; CBS 114724	EU246555 EU246556	Carya cordiformis	USA
C. tanganyicensis	CMW 15991; CBS 122295	EU244969 EU244939	Acacia mearnsii	Tanzania
	CMW 15999; CBS 122294	EU244968 EU244970	Acacia mearnsii	Tanzania
C. tsetsikamennis	CMW 14276; CBS 121018	EF408555 EF408569 EF408576	Raphanea melanophloeos	South Africa
	CMW 14278; CBS 121019	EF408556 EF408570 EF408577	Raphanea melanophloeos	South Africa
C. variospora	CMW 20935; CBS 114715	EF070421 EF070437 EF070409	Quercus alba	USA
	CMW 20936; CBS 114714	EF070422	Quercus robur	USA
C. virescens	CMW 11164	DQ520639 EF070441 EF070413	Fagus americana	USA
	CMW 3276	AYS28984 AYS28990 AYS29011	Quercus robur	USA
C. zombamontana	CMW 15235	EU245002 EU244974 EU244934	Eucalyptus sp.	Malawi
	CMW 15236	EU245000 EU244972 EU244932	Eucalyptus sp.	Malawi

* Isolates indicated in **bold** face are described in this study.

Data for three gene regions could be combined. In PAUP, gaps were treated as a fifth character and trees were obtained via stepwise addition of 1 000 replicates, the Mulpar option was in effect and the heuristic search option based on parsimony with stepwise addition was selected. Confidence intervals using 1 000 bootstrap replicates were calculated. Ceratocystis virescens was the designated outgroup for the dataset containing the **C. fimbriata** s.l. species. Ceratocystis fimbriata s.str. was designated as the outgroup for the Thielaviopsis dataset. All sequences derived from this study were deposited in GenBank (Table 1 and 2).
RESULTS

Isolates

Fresh fungal structures were found on the wood surface of the samples collected from wounded *S. benzoin* trees in Indonesia. The fungal structures were characteristic of two different fungi, one with perithecia similar to those of *Ceratocystis* spp. in the *C. fimbriata* s.l. species complex and the other, a *Thielaviopsis* sp. with septate chlamydospores. Sixteen isolates were collected of which six represented a *Thielaviopsis* sp. and the remaining cultures were of a *Ceratocystis* sp.

Phylogenetic analyses

For the *C. fimbriata* s.l. isolates, amplicons of ± 500 bp (ITS and β-tubulin) and ± 800 bp (EF-1α) were obtained. A P-value of 0.01 was obtained for the PHT showing that the three datasets could be combined (Sullivan 1996, Cunningham 1997). This combined dataset consisted of 1 988 characters, of which 1 102 were constant, 46 were parsimony uninformative and 840 were parsimony informative. Seven most parsimonious trees were obtained, one of which was selected for presentation (Fig. 2). The tree was described as follows; Tree length (TL) = 2 030 steps, Consistency Index (CI) = 0.7, Retention Index (RI) = 0.9 and Rescaled Consistency Index (RC) = 0.6.

The isolates representing *C. fimbriata* s.l. grouped phylogenetically separate from all other described species in this species complex with 100 % statistical support. The species phylogenetically closest to the isolates from *S. benzoin* was *C. albifun-dus* (Fig. 2). All posterior probabilities were high, supporting the separate species within the *C. fimbriata* s.l. species complex.

MrModeltest2.2 selected the HKY+I+G model for the ITS gene region as the most suited. For the β-tubulin gene region, the GTR+G model was selected while the HKY+I+G model were selected for the EF-1α gene region. The selected models were incorporated into the Bayesian analysis. Two thousand trees were discarded to exclude any trees that were drawn outside of the point of convergence. All posterior probabilities that were obtained with parsimony were confirmed with the Bayesian analyses (Fig. 2).

In the case of the *Thielaviopsis* isolates, amplicons of ± 500 bp (ITS and β-tubulin) and ± 800 bp (EF-1α) were obtained. A P-value of 0.01 was obtained for the PHT which suggested combinability of the datasets (Sullivan 1996, Cunningham 1997). The *Thielaviopsis* dataset consisted of 1 956 characters, of which 1 206 were constant, 54 were parsimony uninformative and 696 were parsimony informative. One most parsimonious tree was obtained and presented (Fig. 3). The tree is described as follows: TL = 1 730 steps, CI = 0.7, RI = 0.9 and RC = 0.6. The *Thielaviopsis* sp. grouped phylogenetically close to *Thielaviopsis basicola* with a high bootstrap support (100 %).

The models obtained from MrModeltest2.2 for the ITS, β-tubulin gene region and the EF-1α gene region were the GTR+G, GTR+I+G and GTR+I+G, respectively. Two thousand trees were discarded. All posterior probabilities that were obtained with parsimony were confirmed with the Bayesian analyses (Fig. 3).

Morphology and cultural characteristics

Thielaviopsis basicola is a very well-known fungus with characteristic and distinct septate chlamydospores. An isolate (CMW 25438) was selected randomly to confirm that morphological and associated species for description purposes. The cultures of *C. fimbriata* s.l. isolates had a light greyish olive (21****b) colour (Rayner 1970). These isolates were slow growing. No growth was

Table 2 Isolates of *Thielaviopsis* and associated *Ceratocystis* spp. used in this study.

Species Isolate no.	GenBank accession no.	Host	Geographical origin
Thielaviopsis australis / *Ceratocystis australis*			
CMW 2333	FJ411125 FJ4111351 FJ4111299	*Nothofagus cunninghamii*	Australia
CMW 2653	FJ411126 FJ4111352 FJ4111300	*Nothofagus cunninghamii*	Australia
T. eucalypti / *C. eucalypti*			
CMW 3254	FJ411127 FJ4111353 FJ4111301	*Eucalyptus sieberi*	Australia
CMW 4453	FJ411128 FJ4111354 FJ4111302	*Eucalyptus sieberi*	Australia
T. basicola			
CMW 6714	FJ411131 FJ4111357 FJ4111305	Carrots	Australia
CMW 7625; CBS 117828	FJ411132 FJ4111358 FJ4111306	Chicory	South Africa
T. basicola*			
CMW 25438	FJ411133 FJ4111359 FJ4111307	*Styrax benzoin*	Indonesia
CMW 25439	FJ411134 FJ4111360 FJ4111308	*Styrax benzoin*	Indonesia
CMW 25440	FJ411135 FJ4111361 FJ4111309	*Styrax benzoin*	Indonesia
T. neocaledoniana			
CMW 3270	FJ411129 FJ4111355 FJ4111303	Unknown	USA
CMW 26392; CBS 149.83	FJ411130 FJ4111356 FJ4111304	Coffea robusta	USA
T. ovoidea			
CMW 22733; CBS 354.76	FJ411134 FJ4111369 FJ4111317	Fire wood	Netherlands
T. paradoxa / *C. paradoxa*			
CMW 8779	FJ411124 FJ4111349 FJ4111298	Coconut	Indonesia
CMW 8790	FJ411123 FJ4111350 FJ4111297	Coconut	Indonesia
T. populi			
CMW 26387; CBS 484.71	FJ411136 FJ4111362 FJ4111310	*Populus robusta*	Belgium
CMW 26388; CBS 486.71	FJ411137 FJ4111363 FJ4111311	*Populus gelrica*	Belgium
T. punctulata / *C. radicicola*			
CMW 26389; CBS 167.67	FJ411138 FJ4111368 FJ4111316	*Lawsonia inermis*	Europe
CMW 1032; CBS 114.47	FJ411139 FJ4111364 FJ4111312	*Phoenix dactylifera*	USA
CMW 6728	FJ4111340 FJ4111365 FJ4111313	*Daucus carota*	Australia
T. quercina / *C. fagacearum*			
CMW 2039	FJ4111344 FJ4111370 FJ4111318	Quercus sp.	USA
CMW 2658	FJ4111345 FJ4111371 FJ4111319	Quercus sp.	USA
T. thielavioides			
CMW 22736; CBS 148.37	FJ4111342 FJ4111367 FJ4111315	*Lupinus albus*	Italy
CMW 22737; CBS 180.75	FJ4111341 FJ4111366 FJ4111314	*Populus sp.*	Belgium
T. ungeri / *C. coerulescens*			
CMW 26364	FJ4111321 FJ4111347 FJ4111295	*Picea sp.*	USA
CMW 26365; CBS 140.37	FJ4111322 FJ4111348 FJ4111296	*Picea abies*	Germany
CMW 26366; CBS 489.80	FJ4111320 FJ4111346 FJ4111294	*Picea abies*	Finland
C. fimbriata s.str.			
CMW 15049; CBS 141.37	DQ520629 EF074044 EF070394	*Ipomaea batatas*	USA
CMW 1547	AF264904 EF074043 EF070395	*Ipomaea batatas*	Papua New Guinea

* Isolates indicated in bold face are described in this study.
observed at 4 °C and 35 °C. Limited growth was observed at
10 °C (5 mm), 15 °C (10 mm) and 30 °C (6.5 mm). Intermediate
growth was observed at 20 °C (12.4 mm) with optimal growth at
25 °C (13.5 mm) in 7 d. The cultures had a strong banana odour
similar to that of many Ceratocystis spp. Micro-morphological
characteristics distinct for the isolates from Indonesia included
the pirilliform ascomatal bases and both the cylindrical and
barrel-shaped conida were of variable size. Similarly variable
sizes were observed for the chlamydospores.

The Ceratocystis isolates from wounds on S. benzoin trees
are phylogenetically and morphologically distinct from all other
Ceratocystis spp. residing in the C. fimbriata s.l. clade. These
isolates are therefore described as representing a new species
as follows:

CMW15049 C. fimbriata s.s.
CMW1547 C. fimbriata s.s.
CMW15051 C. cacaofunesta
CMW14809 C. cacaofunesta
CMW13851 C. manginecans
CMW13852 C. manginecans
CMW24174 C. fimbriotamimin
CMW24176 C. fimbriotamimin
CMW10844 Coffee Colombia
CMW8857 Annara muriata Colombia
CMW8856 Citrus Colombia
CMW17808 C. neglecta
CMW18194 C. neglecta
CMW9565 Citrus Colombia
CMW9572 Citrus Colombia
CMW5751 Coffee Colombia
CMW14802 C. platani
CMW23918 C. platani
CMW14276 C. taisiakammmensis
CMW14278 C. taisiakammmensis
CMW15991 C. tanginecans
CMW15999 C. tanginecans
CMW6569 C. pirilliformis
CMW6579 C. pirilliformis
CMW15236 C. zambamontana
CMW15235 C. zambamontana
CMW23808 C. obpyriformis
CMW23807 C. obpyriformis
CMW23809 C. polycondia
CMW23818 C. polycondia
CMW11424 C. polychroma
CMW11436 C. polychroma
CMW19383 C. atrox
CMW19385 C. atrox
CMW4068 C. abfilundus
CMW5329 C. abfilundus
CMW25434 Styrax benzoin Indonesia
CMW25436 Styrax benzoin Indonesia
CMW25437 Styrax benzoin Indonesia
CMW25435 Styrax benzoin Indonesia

Fig. 2 One of seven most parsimonious phylogenetic trees, based on the combined regions of the ITS, β-tubulin and EF-1α for Ceratocystis larium and other species in the C. fimbriata s.l. species complex. Ceratocystis virescens represents the outgroup taxon. Bootstrap values are indicated at the branch nodes and Bayesian values in parentheses.
Fig. 3 Most parsimonious tree based on the combined regions of the ITS, β-tubulin and EF-1α for T. basicola and other species in the Thielaviopsis genus. Ceratocystis fimбриata s.str. represents the outgroup taxon. Bootstrap values are indicated at the branch nodes and Bayesian values in parentheses.

Ceratocystis larium M. van Wyk & M.J. Wingf., sp. nov. — MycoBank MB512564; Fig. 4

Anamorph. Thielaviopsis sp.

Bases ascomatum fusce pirliformes inornatae (101–)120–184 (–243) μm latae. Conidia primaria doliformia vel obtusa, (6–)7–9 (–13) μm longa 4–6 (–7) μm lata. Chlamydosporae concolorae, (44–)50–86 (–99) μm longa, 4–6 μm lata. Conidia ascosporae oblongae, (8–)11–21 (–28) μm longa, (2–)3–5 (–6) μm lata. Conidiali phialidic, apices wide, (44–)50–86 (–99) μm longa, 4–6 (–7) μm lata. Chromyosporae hair-brown (17°), prolate spheroidal to perprolatae, (8–)9–14 (–16) μm longa, (7–)8–10 (–11) μm lata.

Habitat — Wounds on Styrax benzoin trees. Known distribution — Northern Sumatra, Indonesia.

Two species of Ceratocystis s.l. were isolated from wounds on S. benzoin trees in this study. These fungi were identified based on morphology and phylogenetic inference and included Thielaviopsis basicola and an undescribed species of Ceratocystis residing in the C. fimбриata s.l. species complex and which has been given the name C. larium. Both fungi were commonly found on the surface of wounds on S. benzoin trees and C. larium was also easily collected from stained tissue using carrot baiting.

Thielaviopsis basicola is a well-known soil-borne pathogen of many root crops (Nag Raj & Kendrick 1975, Geldenhuis et al. 2006) and its presence on the surface of wounds on trees might seem unusual. However, it has been identified as being associated with insects that vector the conidia and/or chlamydospores (Labuschagne & Kotze 1991, Stanghellini et al. 1999). It is thus possible that insects, for example ants that live in the soil, are attracted by the aromatic gum that accumulates at the wound sites of the trees, thereby carrying the soil-borne fungus to the sites from which it was isolated in this study. Because it is also a caroten pathogen (Geldenhuis et al. 2006), it can be found on carrot baits used to isolate Ceratocystis spp., but in the case of this study it was found sporulating on the surface of wounds and had no association with carrots.

The presence of a Ceratocystis sp. associated with wounds on S. benzoin trees is not surprising as these fungi are commonly found on wounds on trees (Kile 1993). Indeed, various species of Ceratocystis have been trapped from the environment by artificially wounding trees (Barnes et al. 2003). In this case, wounds are visited by sap-feeding insects that are also attracted to the fruity aromas produced by many Ceratocystis spp. (Moller & de Vay 1968b). We hence assume that C. larium was carried to wounds on S. benzoin by such insects.

Ceratocystis larium represents a discrete taxa. Based on phylogenetic inference for the ITS, β-tubulin and the EF-1α gene regions, C. larium is most closely related to C. albifundus. Ceratocystis albifundus is most distinct from all the other species within the C. fimбриata s.l. species complex with no species phylogenically closely related to it. Ceratocystis larium, residing in a phylogenetically sister group to C. albifundus, is thus also clearly distinct from all other species in the C. fimбриata s.l. species complex.

Morphologically, C. larium is similar to other species in the C. fimбриata s.l. species. In this regard, it has a grey to green colony colour and a fruity odour. Similar to C. pirilliformis (Barnes et al. 2003) and C. obpyriformis (Heath et al. 2009), it has pirilliform ascospatal bases. However, the cylindrical conidia in C. larium long, (2–)3–5 μm wide at the apices, 4–6–(–7) μm wide at broadest points and (3–)4–6–(–7) μm wide at bases. Secondary conidiophores phialidic, apices wide, (44–)50–86 (–99) μm long, 4–6 μm wide at the apices, 3–5 (–6) μm wide at bases. Primary conidia cylindrical to oblong with truncated apices in shape, (8–)11–21 (–28) μm long, (2–)3–5–6 μm wide. Secondary conidia, barrel-shaped to obtuse, (6–)7–9 (–13) μm long, 4–6 (–7) μm wide. Chlamydosporae hair-brown (17°), prolate spheroidal to perprolatae, (8–)9–14 (–16) μm longa, (7–)8–10 (–11) μm lata.

Habitat — Wounds on Styrax benzoin trees. Known distribution — Northern Sumatra, Indonesia.
Ceratocystis larium differ substantially in size and shape from each other and this distinct variation is also true for the barrel-shaped conidia. Although variation is expected within a species, there is no other species in the *C. fimbriata* s.l. species complex that displays this remarkable variability in size and shape of the conidia. Chlamydospores in *C. larium* are also variable in shape, ranging from prolate spheroidal to perprolate and these structures are also abundant in this species.

Ceratocystis larium is clearly an opportunistic fungus that infects wounds made to tap the resin of *Styrax benzoin* trees. Nothing is known regarding the pathogenicity of this fungus or *T. basicola* on these trees. However, many wounds made to the trees develop into significant cankers that appear to eventually lead to tree death. Pathogenicity of these fungi should thus be tested and if they are contributing to the death of trees, efforts should be made to restrict their presence.

Acknowledgements We thank Mr. Jongi Seraghi for assisting us to collect samples and Dr Hugh Glen for proposing a name for the new species and for providing the Latin translation. We also thank the DST/NRF Centre of Excellence in Tree Health Biotechnology (CTHB) for providing funding that made this study possible.
REFERENCES

Barnes I, Roux J, Wingfield BD, Dudzinski MJ, Old KM, Wingfield MJ. 2003. Ceratocystis pirilliformis, a new species from Eucalyptus nitens in Australia. Mycologia 95: 865–871.

Bretz TW. 1952. The asciogenous stage of the oak wilt fungus. Phytopathology 42: 435–437.

Burkill IH. 1935. Styrax. In: A dictionary of the economic products of the Malay Peninsula. The Government of the Straits Settlements and Federated Malay States. Vol. II: 2101–2108. The Crown Agents for the Colonies, London.

Cunningham CW. 1997. Can three incongruence tests predict when data should be combined? Molecular Biology and Evolution 14: 733–740.

Geldenhuis MM, Roux J, Cilliers AJ, Wingfield BD, Wingfield MJ. 2006. Clonality in South African isolates and evidence for a European origin of the root pathogen Thielaviopsis basicola. Mycological Research 110: 306–311.

Glass NL, Donaldson GC. 1995. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous Ascomycetes. Applied and Environmental Microbiology 61: 1323–1330.

Heath RN, Wingfield BD, Wingfield MJ, Meke G, Mbaga A, Roux J. 2009. Ceratocystis spp. on Acacia mearnsii and Eucalyptus spp. in eastern and southern Africa including six new species. Fungal Diversity 34: 41–68.

Jacobs K, Bergdahl DR, Wingfield MJ, Halik S, Seifert KA, Bright DE, Wingfield BD. 2004. Leptographium wingfieldii introduced into North America and found associated with exotic Tomixs piniperda and native bark beetles. Mycological Research 108: 411–418.

Kile GA 1993. Plant diseases caused by species of Ceratocystis sensu stricto and Chalara. In: Wingfield MJ, Seifert KA, Webber JF (eds), Ceratocystis and Ophiostoma: Taxonomy, ecology, and pathogenicity: 173–183. APS Press, St. Paul, Minnesota.

Labuschagne N, Kotze JM. 1991. Incidence of Chalara elegans in groundnut seed samples and seed transmission of blackhall. Plant Pathology 40: 639–642.

Marin M, Castro B, Gaitan A, Preisig O, Wingfield BD, Wingfield MJ. 2003. Relationships of Ceratocystis fimbriata isolates from Colombian coffee-growing regions based on molecular data and pathogenicity. Journal of Phytopathology 151: 395–405.

Moller WJ, Vay JE de. 1968a. Carrot as a species-selective isolation medium for Ceratocystis fimbriata. Phytopathological Notes 58: 123–126.

Moller WJ, Vay JE de. 1968b. Insect transmission of Ceratocystis fimbriata in deciduous fruit orchards. Phytopathology 58: 1499–1508.

Nag Raj TR, Kendrick B. 1975. A monograph of Chalara and allied genera. Wilfrid Laurier University Press, Waterloo.

Norris DN. 1953. Insect transmission of oak wilt in Iowa. Plant Disease Report 37: 417–418.

Rayner RW. 1970. A mycological colour chart. Commonwealth Mycological Institute and British Mycological Society, Kew, Surrey.

Stanghellini ME, Rasmussen SL, Kim DH. 1999. Aerial transmission of Thielaviopsis basicola, a pathogen of corn-salad, by adult shore flies. Phytopathology 89: 476–479.

Sullivan J. 1996. Combining data with different distributions of among-site variation. Systematic Biology 45: 375–380.

Wheatley P. 1959. Geographical notes on some commodities involved in Sung maritime trade. Journal of the Malayian Branch of the Royal Asiatic Society 32: 1–140. Tien Wah Press Ltd., Singapore.

White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds), PCR protocols: A sequencing guide to methods and applications: 315–322. Academic Press, San Diego, USA.

Wollenberg E, Belcher B, Sheil D, Dewi S, Moeliono M. 2004. Governance brief 2004. Why are forest areas relevant to reducing poverty in Indonesia? 4: 1–6. (http://www.cifor.cgiar.org/Publications/).

Zhou XD, Jacobs K, Kirisits T, Chhetri DB, Wingfield MJ. 2008. Leptographium bhutanense sp. nov., associated with the root collar weevil Hylobitelus chenkupordjorii on Pinus wallichiana in Bhutan. Persoonia 21: 1–6.