BOUNDED TOPOLOGICAL GROUPS

KAZEM HAGHNEJAD AZAR

Abstract. In this note for a topological group \(G \), we introduce a bounded subset of \(G \) and we find some relationships of this definition with other topological properties of \(G \).

1. preliminaries and Introduction

Suppose that \(G \) is a topological group and \(E \subseteq G \). In this paper, we want to know when \(E \) is bounded or unbounded subset of \(G \) and if \(G \) is metrizability, we show that \(E \subseteq G \) is bounded with respect to topology if and only if it is bounded with respect to metric. Let \(E \subseteq G \) be bounded and closed. Then \(E \) is compact subset of \(G \). Conversely if \(E \) is a component of \(e \) and compact, then \(E \) is bounded. We investigated some topological property for bounded subset of \(G \).

Now we introduce some notations and definitions that we used throughout this paper.

For topological group \(G \), \(e \) is identity element of \(G \) and for \(E \subseteq G \), \(E^{-} \) is closure of \(E \) and for every \(n \in \mathbb{N} \),

\[
E^n = \{x_1x_2x_3...x_n : x_i \in E, 1 \leq i \leq n\}.
\]

A topological space \(X \) is \(O - \)dimensional if the family of all sets that are both open and closed is open basic for the topology.

2. Bounded Topological Groups

Definition 2-1. Let \(G \) be topological group and \(E \subseteq G \). We say that \(E \) is bounded subset of \(G \), if for every neighborhood \(V \) of \(e \), there is natural number \(n \) such that \(E \subseteq V^n \).

It is clear that if \(E \) is bounded subset of \(G \) and \(H \) is subgroup of \(G \), then \(E/H \) is bounded subset of \(G/H \).

Theorem 2-2. Let \(G \) be topological group and metrizable with respect to a left invariant metric \(d \). Then \(G \) is bounded with respect to topology if and only if \(G \) is bounded with respect to metric \(d \).

\[2000\text{ Mathematics Subject Classification.} \quad 46L06; 46L07; 46L10; 47L25.
\]
\[2000\text{ Mathematics Subject Classification.} \quad 46L06; 46L07; 46L10; 47L25.
\][2000 Mathematics Subject Classification. 46L06; 46L07; 46L10; 47L25.
\]
\[\text{Key words and phrases.} \quad \text{Topological Group, Bounded Topological Groups, Group.}\]
Proof. Let G be a bounded topological group and $\varepsilon > 0$. Take $d([0,\varepsilon)) = U \times V$ where U and V are neighborhoods of e. Suppose that W is symmetric neighborhood of e such that $W \subseteq U \cap V$. Then there is natural number n such that $W^n = G$. Since $d(W \times W) < \varepsilon$, we show that $d(W^2 \times W^2) < 2\varepsilon$, and so $d(W^n \times W^n) < n\varepsilon$. Assume that $x, y, x', y' \in W$. Then we have

$$d(xy, x'y') \leq d(xy, e) + d(e, x'y') = d(y, x^{-1}) + d(x^{-1}, y') < 2\varepsilon.$$

Then $d(G \times G) = d(W^n \times W^n) < n\varepsilon$.

Conversely, suppose that G is bounded with respect to metric d. Then there is $M > 0$ such that $d(G \times G) < M$. Let U be a neighborhood of e. Choose $\varepsilon > 0$ such that $d^{-1}([0,\varepsilon)) \subseteq U \times U$. Then there is $\varepsilon > M$. Then we have

$$G \times G = d^{-1}([0,M)) = d^{-1}([0,n\varepsilon)) \subseteq V^n \times V^n.$$

It follows that $G = V^n$, and so that G is bounded.

\[\square \]

Theorem 2-3. Let G be topological group and let H be a normal subgroup of G. If H and G/H are bounded, then G is bounded.

Proof. Let U be a neighborhood of e. Put $V = U \cap H$. Then there are natural numbers m and n such that

$$(U/H)^n = G/H \text{ and } V^m = H.$$

We show that $U^{n+m} = G$.

Let $x \in G$. Then if $x \in H$, we have

$$x \in V^m \subseteq U^m \subseteq U^{n+m}.$$

Now let $x \notin H$. Then $xH \in (U/H)^n$. Assume that $x_1, x_2, ..., x_n \in U$ such that

$$xH = x_1x_2...x_nH.$$

Consequently there is $h \in H$ such that $xh \in U^n$, and so $x \in U^nH \subseteq U^nV^m \subseteq U^nU^m = U^{n+m}$. We conclude that $U^{n+m} = G$, and so G is bounded. \[\square \]

Theorem 2-4. If G is a locally compact O-dimensional topological group, then G is unbounded.

Proof. Let U be a neighborhood of e such that $U^{-} \text{ is compact and } U^{-} \neq G$. Since G is a O-dimensional topological group, U contains an open and closed neighborhood as V. Then V is a compact neighborhood of e. By apply [1, Theorem 4.10] to obtain a neighborhood W of e such that $WV \subseteq V$. Take $W_0 = W \cap V$. Then $W_0^2 \subseteq WV \subseteq V \subseteq U^{-}$. By finite induction, we have

$$W_0^n \subseteq W_0W_0^{n-1} \subseteq WV \subseteq V \subseteq U^{-},$$

for every natural number n. It follows that $W_0^n \not\subseteq G$ for every natural number n, and so G is unbounded. \[\square \]

Theorem 2-5. Suppose that G is a locally compact, Hausdorff, and totally disconnected topological group. Then G is unbounded.

Proof. By using [1, Theorem 3.5] and Theorem 2-4, proof is hold. \[\square \]

Theorem 2-6. Let G be topological group. Then we have the following assertions.
(1) If $E \subseteq G$ is bounded, then E^- is bounded subset of G.
(2) If G is bounded, then G is connected and moreover G has no proper open subgroups.

Proof. 1) Let U be a neighborhood of e and suppose that V is a neighborhood of e such that $V^- \subset U$. Since E is bounded subset of G, there is natural number n such that $E \subset V^n$. Then $E^- \subset (V^n)^- \subset (V^-)^n \subset U^n$. It follows that E^- is a bounded subset of G.

2) Since G is bounded, there is a natural number n such that $G = V^n$ where V is neighborhood of e. By using [1, Corollary 7.9], proof is hold.

□

Corollary 2-7. Assume that G is a locally compact topological group. Then every bounded and closed subset of G is compact, moreover if $E \subseteq G$ is bounded, then E^- is compact.

Every bounded topological group G, in general, is not compact, for example \mathbb{R}/\mathbb{Z} is bounded, but is not compact.

Theorem 2-8. Let G be topological group and suppose that $E \subseteq G$ is the component of e. If E is compact, then E is bounded.

Proof. Since E is the component of e, by using [1, Theorem 7.4], for every neighborhood U of e, we have $E \subseteq \bigcup_{k=1}^{\infty} U^k$. Since E is compact there is natural number n such that $E \subseteq U^n$. Then E is bounded subset of G.

In general, every compact subset E of a topological group G is not bounded and in above Theorem, it is necessary that E must be a component of e. For example $Z_n = \{0, 1, 2, ..., n\}$ for every $n \geq 1$, with discrete topology is not bounded, but it is compact.

Corollary 2-9. If G is a locally compact topological group, then the component of e is bounded.

Theorem 2-10. Let G and G' be topological group and suppose that $\pi : G \rightarrow G'$ is group isomorphism. If π is continuous and $E \subseteq G$ is a bounded subset of G, then $\pi(E)$ is bounded subset of G'.

Proof. Let V' be a neighborhood of $e' \in G'$. Then $\pi^{-1}(V')$ is a neighborhood of e. Since E is a bounded subset of G, there is a natural number n such that $E \subseteq (\pi^{-1})^n(V') \subseteq \pi^{-1}(V'^n)$ implies that $\pi(E) \subseteq V'^n$. Thus $\pi(E)$ is a bounded subset of G'.

□

Definition 2-11. Let G and G' be topological group. We say that the mapping $\pi : G \rightarrow G'$ is compact, if for every bounded subset $E \subseteq G$, $\pi(E)$ is relatively compact.
Theorem 2-12. Let G and G' be topological group and suppose that $\pi : G \to G'$ is continuous and group isomorphism. Then if G' is locally compact, then π is compact.

Proof. Let $E \subseteq G$ be bounded. By using Theorem 2.10, $\pi(E)$ is bounded subset of G' and by using Theorem 2.6, $\pi(E)^-$ is compact, and so that π is compact.

References

1. E. Hewitt, K. A. Ross, Abstract harmonic analysis, Springer, Berlin, Vol I 1963.