Research Article

Qingdong Guo and Wenhua Wang*

The molecular characterization of anisotropic Herz-type Hardy spaces with two variable exponents

https://doi.org/10.1515/math-2020-0031
received April 4, 2019; accepted January 18, 2020

Abstract: In this article, the authors establish the characterizations of a class of anisotropic Herz-type Hardy spaces with two variable exponents associated with a non-isotropic dilation on \(\mathbb{R}^n \) in terms of molecular decompositions. Using the molecular decompositions, the authors obtain the boundedness of the central \(\delta \)-Calderón-Zygmund operators on the anisotropic Herz-type Hardy space with two variable exponents.

Keywords: anisotropic Herz-type Hardy space, two variable exponents, molecular decomposition, central \(\delta \)-Calderón-Zygmund operator, boundedness

MSC 2010: Primary: 42B30, Secondary: 42B35, 46E30

1 Introduction

The theory of function spaces with variable exponents has rapidly made progress in the past 20 years since some elementary properties were established by Kováčik and Rákosník [1]. Lebesgue and Sobolev spaces with variable exponents have been extensively investigated, see [2] and the references therein. In 2012, Almeida and Drihem [3] introduced the Herz spaces with two variable exponents and obtain the boundedness of some sublinear operators on those spaces. In the same year, Wang and Liu [4] introduced the Herz-type Hardy spaces with variable exponents \(HK_p^{\alpha,q}(\mathbb{R}^n) \) and \(HK_p^{\alpha,q}(\mathbb{R}^n) \), which is a generalization of the classical Herz-type Hardy spaces. In 2015, Dong and Xu [5] introduced the Herz-type Hardy spaces with two variable exponents \(HK_p^{\alpha,q}(\mathbb{R}^n) \) and \(HK_p^{\alpha,q}(\mathbb{R}^n) \).

Recently, extending classical function spaces arising in harmonic analysis of Euclidean spaces to other domains and non-isotropic settings is an important topic. In 2003, Bownik [6] introduced the anisotropic Hardy spaces \(H^p_\delta(\mathbb{R}^n) \) associated with very general discrete groups of dilations. This formulation includes the classical isotropic Hardy space theory established by Fefferman and Stein [7] and the parabolic Hardy space theory established by Calderón and Torchinsky [8,9]. In 2008, Ding et al. [10] introduced the anisotropic Herz-type Hardy spaces \(HK_p^{\alpha,q}(A; \mathbb{R}^n) \) and \(HK_p^{\alpha,q}(A; \mathbb{R}^n) \) and established their atomic and molecular decompositions. In 2018, Zhao and Zhou [11] introduced the variable anisotropic Herz-type Hardy spaces \(HK_p^{\alpha,q}(A; \mathbb{R}^n) \) and \(HK_p^{\alpha,q}(A; \mathbb{R}^n) \) and established their atomic and molecular decompositions. Using these decompositions, they gave some applications. In 2019, Wang and Guo [12] introduced the variable anisotropic Herz-type Hardy spaces \(HK_p^{\alpha,q}(A; \mathbb{R}^n) \) and \(HK_p^{\alpha,q}(A; \mathbb{R}^n) \) and established their atomic decomposition and some applications.

* Corresponding author: Wenhua Wang, College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, P. R. China, e-mail: wangwhmath@163.com
Qingdong Guo: College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, P. R. China, e-mail: guoqingdongshuxin@126.com

Open Access. © 2020 Qingdong Guo and Wenhua Wang, published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 Public License.
Inspired by the previous study, we would like to declare that the goal of this study is to establish the characterizations of a class of anisotropic Herz-type Hardy spaces with two variable exponents associated with a non-isotropic dilation on \mathbb{R}^n in terms of molecular decompositions and obtain the boundedness of the central δ-Calderón-Zygmund operators on the anisotropic Herz-type Hardy space with two variable exponents.

First, we recall some standard notations in variable function spaces. A measurable function $p(\cdot): \mathbb{R}^n \to (0, \infty)$ is called a variable exponent. Let f be a measurable function on \mathbb{R}^n and $p(\cdot) \in \mathcal{P}$. Then, the modular function (or, for simplicity, the modular) $\varrho_{p(\cdot)}$, associated with $p(\cdot)$, is defined by setting

$$
\varrho_{p(\cdot)}(f) = \int_{\mathbb{R}^n} |f(x)|^{p(x)} \, dx
$$

and the Luxemburg (also called Luxemburg–Nakano) quasi-norm $\|f\|_{L^{p(\cdot)}}$ by

$$
\|f\|_{L^{p(\cdot)}} = \inf\{\lambda \in (0, \infty) : \varrho_{p(\cdot)}(f/\lambda) \leq 1\}.
$$

Moreover, the variable Lebesgue space $L^{p(\cdot)}$ is defined to the set of all measurable functions f satisfying that $\varrho_{p(\cdot)}(f) < \infty$, equipped with the quasi-norm $\|f\|_{L^{p(\cdot)}}$. For any variable exponent $p(\cdot)$, let

$$
p_+ = \text{ess inf}_{x \in \mathbb{R}^n} p(x) \quad \text{and} \quad p_- = \text{ess sup}_{x \in \mathbb{R}^n} p(x).
$$

Denote by \mathcal{P} the set of all variable exponents $p(\cdot)$ satisfying $p_- > 1$ and $p_+ < \infty$. We call $p'(\cdot)$ the conjugate exponent to $p(\cdot)$, that is, $p'(\cdot) = \frac{p_-}{p_-(p_--1)}$. Let \mathcal{B} be the set of $p(\cdot) \in \mathcal{P}$, such that the Hardy–Littlewood maximal operator M is bounded on $L^{p(\cdot)}$. It is well known that if $p(\cdot) \in \mathcal{P}$ and satisfies the following global log-Hölder continuous, then $p(\cdot) \in \mathcal{B}$.

Definition 1.1. Let $\alpha(\cdot)$ be a real function on \mathbb{R}^n.

(i) $\alpha(\cdot)$ is called log-Hölder continuous on \mathbb{R}^n if there exists $C > 0$, such that

$$
|\alpha(x) - \alpha(y)| \leq \frac{C}{\log(e + 1/|x-y|)}
$$

for all $x, y \in \mathbb{R}^n$ and $|x-y| < \frac{1}{2}$.

(ii) $\alpha(\cdot)$ is called log-Hölder continuous at origin (or has a log decay at the origin), if there exists $C > 0$, such that

$$
|\alpha(x) - \alpha(0)| \leq \frac{C}{\log(e + 1/|x|)}
$$

for all $x \in \mathbb{R}^n$.

(iii) $\alpha(\cdot)$ is called log-Hölder continuous at infinity (or has a log decay at the infinity), if there exist some $\alpha_{\infty} \in \mathbb{R}^n$ and $C > 0$, such that

$$
|\alpha(x) - \alpha_{\infty}| \leq \frac{C}{\log(e + |x|)}
$$

for all $x \in \mathbb{R}^n$.

By $\mathcal{P}_0(\mathbb{R}^n)$ and $\mathcal{P}_\infty(\mathbb{R}^n)$, we denote the class of all exponents $p \in \mathcal{P}(\mathbb{R}^n)$, which are locally log-Hölder continuous at the origin and at the infinity, respectively.
Next, we will recall the notion of expansive dilations on \mathbb{R}^n; see [6, p. 5]. A real $n \times n$ matrix A is called an expansive dilation, if all eigenvalues λ of A satisfy $|\lambda| > 1$. Suppose $\lambda_1, \ldots, \lambda_n$ are eigenvalues of A (taken according to the multiplicity), so that $1 < |\lambda_i| \leq \ldots \leq |\lambda_n|$. A set $\Delta \in \mathbb{R}^n$ is said to be an ellipsoid if $\Delta = \{x \in \mathbb{R}^n: |P| < 1\}$, for some nondegenerate $n \times n$ matrix P, where $|\cdot|$ denotes the Euclidean norm in \mathbb{R}^n. For a dilation A, there exists an ellipsoid Δ and $r > 1$, such that $\Delta \subset r\Delta \subset AD$, where $|\Delta|$, the Lebesgue measure of Δ, equals 1. Let $B_k = A^k\Delta$ for $k \in \mathbb{Z}$, then we have $B_k = rB_k \subset B_{k+1}$, and $B_k = b^k$, where $b = |\det A| > 1$. Let n be the smallest integer, so that $2B_0 \subset A^nB_0 = B_n$. A homogeneous quasi-norm associated with an expansive matrix A is a measurable mapping $\rho_A: \mathbb{R}^n \to [0, \infty)$ satisfying

$$\rho_A(x) > 0 \text{ for } x \neq 0, \quad \rho_A(Ax) = |\det A|\rho_A(x) \text{ for } x \in \mathbb{R}^n,$$

where C_A is a positive constant.

It was proved, in [6, p. 6, Lemma 2.4], that all homogeneous quasi-norms associated with a given dilation A are equivalent. Define the step homogeneous quasi-norm ρ on \mathbb{R}^n induced by dilation A as

$$\rho(x) = \begin{cases} b^i, & \text{if } x \in B_{i+1} \setminus B_i, \\ 0, & \text{if } x = 0. \end{cases}$$

Then, for any $x, y \in \mathbb{R}^n$, $\rho(x + y) \leq b^n(\rho(x) + \rho(y))$.

In the following we denote $C_k = B_k \setminus B_{k-1}$ for $k \in \mathbb{Z}$. Let $\mathbb{N} = \{1, 2, \ldots\}$ and $\mathbb{Z}_+ = \{0\} \cup \mathbb{N}$, denote $\chi_k = \chi_{C_k}$ for $k \in \mathbb{Z}$, $\tilde{\chi}_k = \chi_k$ if $k \in \mathbb{Z}_+$, and $\tilde{\chi}_0 = \chi_{B_0}$, where χ_{C_k} is the characteristic function of C_k. Throughout this paper, we denote by C a constant, which is independent of the main parameters and whose value may vary.

Definition 1.2. Let $a(\cdot): \mathbb{R}^n \to \mathbb{R}$ with $a(\cdot) \in L^\infty(\mathbb{R}^n)$, $0 < q \leq \infty$ and $p(\cdot) \in \mathcal{P}(\mathbb{R}^n)$. The homogeneous anisotropic Herz space $K^a_p (A; \mathbb{R}^n)$ associated with the dilation A is defined by

$$K^a_p (A; \mathbb{R}^n) = \left\{ f \in L^p_{loc}(\mathbb{R}^n) \setminus \{0\}: \|f\|_{K^a_p (\cdot)} < \infty \right\},$$

where

$$\|f\|_{K^a_p (\cdot)} \equiv \left\{ \sum_{k=-\infty}^{\infty} \|b^{kar(\cdot)} f_{\tilde{\chi}_k} \|_{L^p(\mathbb{R}^n)}^q \right\}^{1/q}.$$

The nonhomogeneous anisotropic Herz space $K^a_p (A; \mathbb{R}^n)$ associated with the dilation A is defined by

$$K^a_p (A; \mathbb{R}^n) = \left\{ f \in L^p_{loc}(\mathbb{R}^n): \|f\|_{K^a_p (\cdot)} < \infty \right\},$$

where

$$\|f\|_{K^a_p (\cdot)} \equiv \left\{ \sum_{k=-\infty}^{\infty} \|b^{kar(\cdot)} f_{\tilde{\chi}_k} \|_{L^p(\mathbb{R}^n)}^q \right\}^{1/q}.$$

Here, the usual modifications are made when $q = \infty$.

In variable L^p spaces, there are some important lemmas as follows.
Lemma 1.3. [1] Let \(p(\cdot) \in \mathcal{P}(\mathbb{R}^n) \). If \(f \in L^{p(\cdot)}(\mathbb{R}^n) \) and \(g \in L^{p(\cdot)}(\mathbb{R}^n) \), then \(fg \) is integrable on \(\mathbb{R}^n \) and
\[
\int_{\mathbb{R}^n} |f(x)g(x)| \, dx \leq r_p \|f\|_{L^{p(\cdot)}(\mathbb{R}^n)} \|g\|_{L^{p(\cdot)}(\mathbb{R}^n)},
\]
where \(r_p = 1 + 1/p^- - 1/p^+ \).

The following lemmas are from [13].

Lemma 1.4. Suppose \(p(\cdot) \in \mathcal{B}(\mathbb{R}^n) \). Then, there exists a constant \(C > 0 \), such that for all balls \(B \) in \(\mathbb{R}^n \),
\[
\frac{1}{|B|} \|\chi_B \|_{L^{p(\cdot)}(\mathbb{R}^n)} \|\chi_B \|_{L^{p(\cdot)}(\mathbb{R}^n)} \leq C.
\]

Lemma 1.5. Let \(p(\cdot) \in \mathcal{P}(\mathbb{R}^n) \). Then, there exist \(0 < \delta_1, \delta_2 < 1 \) depending only on \(p(\cdot) \) and \(n \), such that for all measurable subsets \(S \subset B \),
\[
\frac{\|\chi_S \|_{L^{p(\cdot)}(\mathbb{R}^n)}}{\|\chi_B \|_{L^{p(\cdot)}(\mathbb{R}^n)}} \leq \left(\frac{|S|}{|B|} \right)^{\delta_1},
\]
\[
\frac{\|\chi_S \|_{L^{p(\cdot)}(\mathbb{R}^n)}}{\|\chi_B \|_{L^{p(\cdot)}(\mathbb{R}^n)}} \leq \left(\frac{|S|}{|B|} \right)^{\delta_2}.
\]

Next, we introduce the definition of homogeneous anisotropic Herz-type Hardy space with two variable exponents \(HK_{p(\cdot)}^{a_1, q_1}(A; R^n) \) and the nonhomogeneous anisotropic Herz-type Hardy space with two variable exponents \(HK_{p(\cdot)}^{a_2, q_2}(A; R^n) \) and the atomic characterization of \(HK_{p(\cdot)}^{a_1, q_1}(A; R^n) \) and \(HK_{p(\cdot)}^{a_2, q_2}(A; R^n) \), which were obtained by Wang and Guo [12].

A \(C^\infty \) complex-valued function \(\varphi \) is said to belong to the Schwartz class \(S \), if for every integer \(\ell \in \mathbb{Z} \), and multi-index \(a, \|\varphi\|_{a, \ell} = \sup_{x \in R^n} |\partial^a \varphi(x)| < \infty \). The dual space of \(S \), namely, the space of all tempered distributions on \(R^n \) equipped with the weak-* topology, is denoted by \(S' \). For any \(N \in \mathbb{Z} \), let
\[
S_N = \{ \varphi \in S : \|\varphi\|_{a, \ell} \leq 1, \ |a| \leq N, \ell \leq N \}.
\]

For \(\varphi \in S \), \(k \in \mathbb{Z} \) and \(x \in R^n \), let \(\varphi_k(x) = b^{-k} \varphi(A^{-k}x) \).

Let \(f \in S' \). The non-tangential maximal function \(M_\varphi(f) \) with respect to \(\varphi \) is defined by setting, for any \(x \in R^n \),
\[
M_\varphi(f)(x) = \sup \{|f \ast \varphi_k(y) : x - y \in B_k, k \in \mathbb{Z} \}.
\]

For any given \(N \in \mathbb{N} \), the non-tangential grand maximal function \(M_\varphi(f) \) of \(f \in S' \) is defined by setting, for any \(x \in R^n \),
\[
M_N(f)(x) = \sup_{\varphi \in S_N} M_\varphi(f)(x).
\]

For \(0 < q < \infty \), we denote
\[
N_q = \left\lfloor \frac{(1/q - 1) \ln b / \ln \lambda - 2, \ 0 < q \leq 1,}{2, \ \ q > 1.}\right\rfloor
\]

Definition 1.6. Let \(a(\cdot) \in L^\infty \), \(0 < q \leq \infty \), \(p(\cdot) \in \mathcal{P} \), and \(N > N_q \). The homogeneous anisotropic Herz-type Hardy space with variable exponents \(HK_{p(\cdot)}^{a(\cdot), q}(A; R^n) \) and the nonhomogeneous anisotropic Herz-type Hardy space with variable exponents \(HK_{p(\cdot)}^{a(\cdot), q}(A; R^n) \) are defined, respectively, by setting,
\[H^a_{p(\cdot)}(A; \mathbb{R}^n) = \{ f \in S': M_{\mathcal{N}}(f) \in \mathring{K}^{a(\cdot),q}_{p(\cdot)}(A; \mathbb{R}^n) \} \]

and

\[H^{\infty}_{p(\cdot)}(A; \mathbb{R}^n) = \{ f \in S': M_{\mathcal{N}}(f) \in K^{\infty}_{p(\cdot)}(A; \mathbb{R}^n) \}, \]

where

\[\| f \|_{H^{\infty}_{p(\cdot)}(A; \mathbb{R}^n)} = \| M_{\mathcal{N}}(f) \|_{K^{\infty}_{p(\cdot)}(A; \mathbb{R}^n)} \quad \text{and} \quad \| f \|_{\mathring{H}^{\infty}_{p(\cdot)}(A; \mathbb{R}^n)} = \| M_{\mathcal{N}}(f) \|_{\mathring{K}^{\infty}_{p(\cdot)}(A; \mathbb{R}^n)}. \]

Definition 1.7. Let \(p(\cdot) \in \mathcal{P}, a(\cdot) \in L^\infty \cap \mathcal{P}_0 \cap \mathcal{P}_0^\log \), and nonnegative integer \(s \geq \max\{[(a(0) - \delta) \ln b / \ln \lambda], [(a_\infty - \delta) \ln b / \ln \lambda] \} \), where \(\delta \) as in Lemma 1.5. Here, \(a_0 = a_0, \) if \(l < 0, a_l = a_\infty, \) if \(l > 0. \)

1. An anisotropic central \((a(\cdot), p(\cdot), s)-\)atom is a measurable function \(a \) on \(\mathbb{R}^n \) satisfying

 (i) \(\operatorname{supp} a \subset B_l \), for some \(l \in \mathcal{Z} \);

 (ii) \(\| a \|_{L^p(B_l)} \leq |b|^{-ka}; \)

 (iii) \(\int_{\mathbb{R}^n} a(x) x^\beta dx = 0 \) for any \(\beta \in \mathbb{Z}_n^+ \) with \(|\beta| \leq s. \)

2. An anisotropic central \((a(\cdot), p(\cdot), s)-\)atom of restricted type is a measurable function \(a \) on \(\mathbb{R}^n \) satisfying

 (i) \(\operatorname{supp} a \subset B_l, \) for some \(l \in \mathcal{Z} \);

 (ii) \(\| a \|_{L^p(B_l)} \leq |b|^{-ka_\infty}; \)

 (iii) \(\int_{\mathbb{R}^n} a(x) x^\beta dx = 0 \) for any \(\beta \in \mathbb{Z}_n^+ \) with \(|\beta| \leq s. \)

2 Molecular decompositions of \(H^{\infty}_{p(\cdot)}(A; \mathbb{R}^n) \)

In this section, we first give the definitions of the molecules of the anisotropic Herz-type Hardy spaces with variable exponents. Before stating our results, we first give the notations of molecules.

Definition 2.1. Let \(0 < q < \infty, p(\cdot) \in \mathcal{P}(\mathbb{R}^n), a(\cdot) \in L^\infty \cap \mathcal{P}_0 \cap \mathcal{P}_0^\log, \) and nonnegative integer \(s \geq \max\{[(a(0) - \delta) \ln b / \ln \lambda], [(a_\infty - \delta) \ln b / \ln \lambda] \} \), where \(\delta \) as in Lemma 1.5. Set \(\varepsilon > \max(s, (a(0) + \delta_1 - 1) \ln b / \ln \lambda, (a_\infty + \delta_1 - 1) \ln b / \ln \lambda) \) and \(d = 1 - \delta_1 + \varepsilon. \) Moreover, for any \(l \in \mathcal{Z}, \) when \(l < 0, a_l := a(0) \) and \(a := 1 - \delta_1 - a(0) + \varepsilon; \) when \(l \geq 0, a_l := a_\infty \) and \(a := 1 - \delta_1 - a_\infty + \varepsilon. \)

1. A function \(M_l \in L^p(l) \) with \(l \in \mathcal{Z} \) is said to be a dyadic central \((a(\cdot), p(\cdot); s, \varepsilon)_l\)-molecule if it satisfies

 (i) \(\| M_l \|_{L^p(l)} \leq b^{-ln}; \)

 (ii) \(\mathcal{R}_{p(\cdot)}(M_l) = \| M_l \|_{L^p(l)} \| (p(\cdot))_l M_l \|_{L^q(l)} < \infty; \)

 (iii) \(\int_{\mathbb{R}^n} M_l(x) x^\beta dx = 0, \) for any \(\beta \in \mathbb{Z}_n^+ \) with \(|\beta| \leq s. \)

2. A function \(M_l \in L^p(l) \) with \(l \in \mathbb{N}_0 \) is said to be a dyadic central \((a(\cdot), p(\cdot); s, \varepsilon)_l\)-molecule of restricted type if it satisfies (ii), (iii) and

 (i') \(\| M_l \|_{L^p(l)} \leq b^{-ln}. \)

Definition 2.2. Let \(0 < q < \infty, p(\cdot) \in \mathcal{P}(\mathbb{R}^n), a(\cdot) \in L^\infty \cap \mathcal{P}_0 \cap \mathcal{P}_0^\log, \) and nonnegative integer \(s \geq \max\{[(a(0) - \delta) \ln b / \ln \lambda], [(a_\infty - \delta) \ln b / \ln \lambda] \} \), where \(\delta \) as in Lemma 1.5. Set \(\varepsilon > \max(s, (a(0) + \delta_1 - 1) \ln b / \ln \lambda, (a_\infty + \delta_1 - 1) \ln b / \ln \lambda) \) and \(d = 1 - \delta_1 + \varepsilon. \) Moreover, for any function \(M \in L^p(l) \), when \(\| M \|_{L^p(l)} > 1, a := 1 - \delta_1 - a(0) + \varepsilon; \) when \(\| M \|_{L^p(l)} \leq 1, a := 1 - \delta_1 - a_\infty + \varepsilon. \)
(1) A function \(M \in L^p \) is said to be a central \((\alpha(\cdot), p(\cdot); s, \varepsilon)\)-molecule if it satisfies

(i) \(\mathcal{R}_{p(\cdot)}(M) = \|M^{\alpha/d}\|_p \|\rho(\cdot)^d M\|_{L^p}^{1-a/d} < \infty \);

(ii) \(\int_{\mathbb{R}^n} M(x) x^\beta \, dx = 0 \), for any \(\beta \) with \(|\beta| \leq s \).

(2) A function \(M \in L^p \) is said to be a central \((\alpha(\cdot), p(\cdot); s, \varepsilon)\)-molecule of restricted type if it satisfies (i), (ii) and

(i') \(\|M\|_{L^p} \leq 1 \).

The following lemma shows that a central \((\alpha(\cdot), p(\cdot); s, \varepsilon)\)-molecule is a generalization of the central \((\alpha(\cdot), p(\cdot), s)\)-atom.

Lemma 2.3. Let \(0 < q < \infty \), \(p(\cdot) \in \mathcal{B}(\mathbb{R}^n) \), \(\alpha \in L^\infty \cap \mathcal{P}_0 \cap \mathcal{P}_\infty \), and nonnegative integer \(s \geq \max\{[(\alpha(0) - \delta_1) \ln b/\ln \lambda_1], [(\alpha_\infty - \delta_1) \ln b/\ln \lambda_1], [(\alpha(0) - \delta_2) \ln b/\ln \lambda_2], [(\alpha_\infty - \delta_2) \ln b/\ln \lambda_2]\} \), where \(\max\{|\delta_1, \delta_2| \leq \alpha(0), \alpha_\infty < \infty \) and \(\delta_1, \delta_2 \) as in Lemma 1.5. Set \(\varepsilon > \max\{\alpha(0), \alpha_\infty - (\delta_1 - 1) \ln b/\ln \lambda_1, (\alpha_\infty + \delta_1 - 1) \ln b/\ln \lambda_1\} \) and \(d = 1 - \delta_1 + \varepsilon \). Moreover, for any function \(M \in L^p \), when \(\|M\|_{L^p} > 1 \), \(a := 1 - \delta_1 - \alpha(0) + \varepsilon \); when \(\|M\|_{L^p} \leq 1 \), \(a := 1 - \delta_1 - \alpha_\infty + \varepsilon \).

(i) If \(M \) is a central \((\alpha(\cdot), p(\cdot), s)\)-atom, then \(M \) is a central \((\alpha(\cdot), p(\cdot); s, \varepsilon)\)-molecule, such that \(\mathcal{R}_{p(\cdot)}(M) < C \) with \(C \) independent of \(M \).

(ii) If \(M \) is a central \((\alpha(\cdot), p(\cdot), s)\)-atom of restricted type, then \(M \) is a central \((\alpha(\cdot), p(\cdot); s, \varepsilon)\)-molecule of restricted type, such that \(\mathcal{R}_{p(\cdot)}(M) < C \) with \(C \) independent of \(M \).

Proof. We only prove (i). (ii) can be proved in the similar way.

Let \(M \) be a \((\alpha(\cdot), p(\cdot), s)\)-atom with support on a ball \(B_k \), then we get

\[
\|M\|_{L^p}^{\alpha/d} \|\rho(\cdot)^d M\|_{L^p}^{1-a/d} \leq L \|M\|_{L^p} \leq C.
\]

Now, we give the molecular decompositions of anisotropic Herz-type Hardy spaces with two variable exponents.

Theorem 2.4. Let \(0 < q < \infty \), \(p(\cdot) \in \mathcal{B}(\mathbb{R}^n) \), \(\alpha \in L^\infty \cap \mathcal{P}_0 \cap \mathcal{P}_\infty \), and nonnegative integer \(s \geq \max\{[(\alpha(0) - \delta_1) \ln b/\ln \lambda_1], [(\alpha_\infty - \delta_1) \ln b/\ln \lambda_1], [(\alpha(0) - \delta_2) \ln b/\ln \lambda_2], [(\alpha_\infty - \delta_2) \ln b/\ln \lambda_2]\} \), where \(\max\{|\delta_1, \delta_2| \leq \alpha(0), \alpha_\infty < \infty \) and \(\delta_1, \delta_2 \) as in Lemma 1.5. Set \(\varepsilon > \max\{\alpha(0), \alpha_\infty - (\delta_1 - 1) \ln b/\ln \lambda_1, (\alpha_\infty + \delta_1 - 1) \ln b/\ln \lambda_1\} \) and \(d = 1 - \delta_1 + \varepsilon \). Moreover, for any function \(M \in L^p \), when \(\|M\|_{L^p} > 1 \), \(a := 1 - \delta_1 - \alpha(0) + \varepsilon \); when \(\|M\|_{L^p} \leq 1 \), \(a := 1 - \delta_1 - \alpha_\infty + \varepsilon \).

(i) \(f \in HK_{p(\cdot), q}^{\alpha(\cdot), \beta}(A; \mathbb{R}^n) \) if and only if \(f \) can be represented as

\[
f = \sum_{k=-\infty}^{\infty} \lambda_k M_k, \text{ in } S',
\]

where each \(M_k \) is a dyadic central \((\alpha(\cdot), p(\cdot); s, \varepsilon)\)-molecule and \(\sum_{k=-\infty}^{\infty} |\lambda_k|^p < \infty \). Moreover,

\[
\|f\|_{HK_{p(\cdot), q}^{\alpha(\cdot), \beta}(A; \mathbb{R}^n)} \sim \inf \left(\sum_{k=-\infty}^{\infty} |\lambda_k|^p \right)^{1/p},
\]

where the infimum is taken over all above decompositions of \(f \).

(ii) \(f \in HK_{p(\cdot), q}^{\alpha(\cdot), \beta}(A; \mathbb{R}^n) \) if and only if \(f \) can be represented as

\[
f = \sum_{k=0}^{\infty} \lambda_k M_k, \text{ in } S',
\]

where each \(M_k \) is a dyadic central \((\alpha(\cdot), p(\cdot); s, \varepsilon)\)-molecule of restricted type and \(\sum_{k=0}^{\infty} |\lambda_k|^p < \infty \). Moreover,
where the infimum is taken over all above decompositions of \(f \).

Theorem 2.5. Let \(0 < q < 1, \, p(\cdot) \in B(\mathbb{R}^n), \, \alpha \in L^\infty \cap \mathcal{P}_0 \cap \mathcal{P}_{\infty}, \) and nonnegative integer \(s \geq \max([((\alpha(0) - \delta_1) \ln b/\ln \lambda.), \, ((\alpha_\infty - \delta_1) \ln b/\ln \lambda.), \, ((\alpha(0) - \delta_2) \ln b/\ln \lambda.), \, ((\alpha_\infty - \delta_2) \ln b/\ln \lambda.)], \) where \(\max(\delta_1, \delta_2) \leq \alpha(0), \, \alpha_\infty < \infty \) and \(\alpha_\infty, \, \delta_1, \) \(\alpha_\infty, \, \delta_2 \) as in Lemma 1.5. Set \(\varepsilon > \max(s, (\alpha(0) + \delta_1 - 1) \ln b/\ln \lambda., \, (\alpha_\infty + \delta_1 - 1) \ln b/\ln \lambda.) \) and \(d = 1 - \delta_1 + \varepsilon. \) Moreover, for any function \(M \in L^{p(\cdot)}, \) when \(\|M\|_{L^{p(\cdot)}} > 1, \, a := 1 - \delta_1 - \alpha(0) + \varepsilon; \) when \(\|M\|_{L^{p(\cdot)}} \leq 1, \, a := 1 - \delta_1 - \alpha_\infty + \varepsilon. \)

(i) \(f \in H_{p(\cdot)}^{\alpha(\cdot), q}(A; \mathbb{R}^n) \) if and only if can be represented as

\[
f = \sum_{k=0}^{\infty} \lambda_k M_k, \quad \text{in } S',
\]

where each \(M_k \) is a central \((\alpha(\cdot), p(\cdot); s, \varepsilon)\)-molecule and \(\sum_{k=0}^{\infty} |\lambda_k|^q < \infty. \) Moreover,

\[
\|f\|_{H_{p(\cdot)}^{\alpha(\cdot), q}(A; \mathbb{R}^n)} \sim \inf \left(\sum_{k=0}^{\infty} |\lambda_k|^q \right)^{1/q},
\]

where the infimum is taken over all above decompositions of \(f. \)

(ii) \(f \in H_{p(\cdot)}^{\alpha(\cdot), q}(A; \mathbb{R}^n) \) if and only if can be represented as

\[
f = \sum_{k=0}^{\infty} \lambda_k M_k, \quad \text{in } S',
\]

where each \(M_k \) is a central \((\alpha(\cdot), p(\cdot); s, \varepsilon)\)-molecule of restricted type and \(\sum_{k=0}^{\infty} |\lambda_k|^q < \infty. \) Moreover,

\[
\|f\|_{H_{p(\cdot)}^{\alpha(\cdot), q}(A; \mathbb{R}^n)} \sim \inf \left(\sum_{k=0}^{\infty} |\lambda_k|^q \right)^{1/q},
\]

where the infimum is taken over all above decompositions of \(f. \)

By theorem 3.2 of [12] and Lemma 2.3, we see that Theorems 2.4 and 2.5 can be obtained from the following lemma.

Lemma 2.6. Let \(0 < q < \infty, \, p(\cdot) \in B(\mathbb{R}^n), \, \alpha \in L^\infty \cap \mathcal{P}_0 \cap \mathcal{P}_{\infty}, \) and nonnegative integer \(s \geq \max([((\alpha(0) - \delta_1) \ln b/\ln \lambda.), \, ((\alpha_\infty - \delta_1) \ln b/\ln \lambda.), \, ((\alpha(0) - \delta_2) \ln b/\ln \lambda.), \, ((\alpha_\infty - \delta_2) \ln b/\ln \lambda.)], \) where \(\max(\delta_1, \delta_2) \leq \alpha(0), \, \alpha_\infty < \infty \) and \(\alpha_\infty, \, \delta_1, \) \(\alpha_\infty, \, \delta_2 \) as in Lemma 1.5. Set \(\varepsilon > \max(s, (\alpha(0) + \delta_1 - 1) \ln b/\ln \lambda., \, (\alpha_\infty + \delta_1 - 1) \ln b/\ln \lambda.) \) and \(d = 1 - \delta_1 + \varepsilon. \) Moreover, for any function \(M \in L^{p(\cdot)} \) and \(l \in \mathbb{Z}, \) when \(\|M\|_{L^{p(\cdot)}} > 1 \) or \(l \geq 0, \) let \(a_l := \alpha(0) \) and \(a := 1 - \delta_1 - \alpha(0) + \varepsilon; \) when \(\|M\|_{L^{p(\cdot)}} \leq 1 \) or \(l \geq 0, \) let \(a_l := \alpha_\infty \) and \(a := 1 - \delta_1 - \alpha_\infty + \varepsilon. \)

(i) If \(0 < q \leq 1, \) there exists a constant \(C, \) such that for any central \((\alpha(\cdot), p(\cdot); s, \varepsilon)\)-molecule \(M \) and any central \((\alpha(\cdot), p(\cdot); s, \varepsilon)\)-molecule of restricted type \(M, \)

\[
\|M\|_{H_{p(\cdot)}^{\alpha(\cdot), q}(A; \mathbb{R}^n)} \leq C \quad \text{and} \quad \|M\|_{H_{p(\cdot)}^{\alpha(\cdot), q}(A; \mathbb{R}^n)} \leq C,
\]

respectively.

(ii) There exists a constant \(C, \) such that for any dyadic central \((\alpha(\cdot), p(\cdot); s, \varepsilon)\)-molecule \(M_l, \) \(l \in \mathbb{Z}, \) and any dyadic central \((\alpha(\cdot), p(\cdot); s, \varepsilon)\)-molecule of restricted type \(M_l, \) \(l \in \mathbb{N}_0, \)

\[
\|M_l\|_{H_{p(\cdot)}^{\alpha(\cdot), q}(A; \mathbb{R}^n)} \leq C \quad \text{and} \quad \|M_l\|_{H_{p(\cdot)}^{\alpha(\cdot), q}(A; \mathbb{R}^n)} \leq C,
\]

respectively.
Proof. We only prove (i) for the homogeneous case, the proof of the nonhomogeneous case and (ii) are similar.

Suppose that M is a central $(\alpha(\cdot), p(\cdot); s, \varepsilon)$-molecule. Taking

$$r = \begin{cases} \|M\|_{L^{p(\cdot)}}^{1/\alpha(0)}, & \|M\|_{L^{p(\cdot)}} > 1, \\ \|M\|_{L^{p(\cdot)}}^{1/\alpha(\infty)}, & \|M\|_{L^{p(\cdot)}} \leq 1, \end{cases}$$

and denote by σ_n, the unique integer satisfying $b^{\sigma_n} < r \leq b^{\sigma_n+1}$. Denote $E_0 = B_0$, and $E_k = B_{b^r \cdot k} \setminus B_{b^r \cdot k - 1}$ for $k \in \mathbb{N}$. Set

$$M(x)\chi_{E_k}(x) = \frac{\chi_{E_k}(x)}{|E_k|} \int_{\mathbb{R}^n} M(y)\chi_{E_k}(y) dy = H_k(x) - F_k(x).$$

It follows that

$$M(x) = \sum_{k=0}^{\infty} (H_k(x) - F_k(x)) + \sum_{k=0}^{\infty} \frac{\chi_{E_k}(x)}{|E_k|} \int_{\mathbb{R}^n} M(y)\chi_{E_k}(y) dy.$$

Obviously, $supp (H_k(x) - F_k(x)) \subset B_{b^r \cdot k}$ and $\int_{\mathbb{R}^n} (H_k(x) - F_k(x)) dx = 0$. We claim that

(a) There is a positive constant C and a sequence of numbers $\{\lambda_k\}$, such that

$$\sum_{k=0}^{\infty} |\lambda_k|^N < \infty, \quad H_k - F_k = \lambda_k a_k,$$

where each a_k is a $(\alpha(\cdot), p(\cdot), 0)$-atom;

(b) $\sum_{k=0}^{\infty} F_k$ has a $(\alpha(\cdot), p(\cdot), 0)$-atom decomposition,

then our desired conclusion can be deduced directly.

We first show (a). Without loss of generality, we can suppose that $\mathcal{R}_{p(\cdot)}(M) = 1$, which implies that

$$\|\rho(\cdot)^d M\|_{L^{p(\cdot)}} = \|M\|_{L^{p(\cdot)}}^{a/d - a} = r^a.$$

For $k = 0$, we have

$$\|H_0(x) - F_0(x)\|_{L^{p(\cdot)}} \leq \|M\|_{L^{p(\cdot)}} + \frac{\|X_{B_{b^r}}\|_{L^{p(\cdot)}}}{|B_{b^r}|} \int_{\mathbb{R}^n} \left| M(y)\chi_{B_{b^r}} \right| dy$$

$$\leq C \|M\|_{L^{p(\cdot)}} = C \cdot |B_{b^r}|^{-a},$$

and for $k \in \mathbb{N}$,

$$\|H_k(x) - F_k(x)\|_{L^{p(\cdot)}} \leq \|H_k(x)\|_{L^{p(\cdot)}} + \|F_k(x)\|_{L^{p(\cdot)}}$$

$$\leq \|H_k(x)\|_{L^{p(\cdot)}} + \frac{C}{|E_k|} \|H_k(x)\|_{L^{p(\cdot)}} \|\chi_{E_k}\|_{L^{p(\cdot)}} \|\chi_{E_k}\|_{L^{p(\cdot)}}$$

$$\leq C \|H_k(x)\|_{L^{p(\cdot)}}$$

$$\leq C \|\rho(\cdot)^d M\|_{L^{p(\cdot)}} \cdot (b^{a \cdot k})$$

$$= Cr \cdot (b^{a \cdot k})^{-d} \leq Cr^{-d} \cdot |b^r \cdot k|^{-a}.$$

Thus, for any $k \in \mathbb{N} \cup \{0\}$, there is a constant C independent of k, such that
\[\|H_k(x) - F_k(x)\|_{L^p} \leq C b^{-ka} |B_{a+k}|^{-a_0}. \]

If we denote \(\lambda_{i,k} = C b^{-ka} \) and \(a_{i,k} = (H_k(x) - F_k(x))/\lambda_{i,k} \), then the \(a_{i,k} \) are central \((c(\cdot), p(\cdot), 0)\)-atoms and \(\sum_{k=0}^{\infty} (H_k(x) - F_k(x)) = \sum_{k=0}^{\infty} \lambda_{i,k} a_{i,k}(x) \). Moreover,

\[
\sum_{k=0}^{\infty} |\lambda_{i,k}|^{p} \leq C \sum_{k=0}^{\infty} b^{-ka} \leq C,
\]

where \(C \) is independent of \(M \).

Next, we will show (b). Set

\[
m_k = \sum_{i=k}^{\infty} \int_{\mathbb{R}^n} M(x) \chi_\varepsilon(x) \, dx, \quad \varphi_k(x) = \frac{\chi_\varepsilon(x)}{|E_k|}.
\]

Noting that \(m_0 = 0 \), summing by parts, we have

\[
\sum_{i=k}^{\infty} F_k(x) = \sum_{i=k}^{\infty} (m_k - m_{k+1}) \varphi_k(x) = \sum_{i=k}^{\infty} m_{k+1} (\varphi_{k+1}(x) - \varphi_k(x)).
\]

Clearly,

\[
\int_{\mathbb{R}^n} m_{k+1}(\varphi_{k+1}(x) - \varphi_k(x)) \, dx = 0, \quad \text{supp}(m_{k+1}(\varphi_{k+1} - \varphi_k)) \subset B_{a+k+1},
\]

and

\[
m_k = m_0 - \int_{B_{a+k-1}} M(x) \, dx.
\]

Hence, we obtain

\[
\|m_{k+1}(\varphi_{k+1} - \varphi_k)\|_{L^p} = \left\| \int_{B_{a+k-1}} M(x) \chi_\varepsilon(x) \, dx (\varphi_{k+1} - \varphi_k) \right\|_{L^p} \leq \left\| \sum_{i=k}^{\infty} \int_{B_{a+k-1}} M(x) \chi_\varepsilon(x) \, dx (\varphi_{k+1} - \varphi_k) \right\|_{L^p}.
\]

where \(C \) is independent of \(k \). Setting
\[
\lambda_{2,k} = Cb^{-ka} \quad \text{and} \quad a_{2,k} = m_{k+1}(\varphi_{k+1} - \varphi_k)/\lambda_{2,k},
\]

we have
\[
\sum_{k=0}^{\infty} \frac{X_{E_k(x)}}{|E_k|} \int_{\mathbb{R}^n} M(y) \chi_{E_k}(y) dy = \sum_{k=0}^{\infty} \lambda_{2,k} a_{2,k},
\]

where the \(a_{2,k}\) are central \((a(\cdot), p(\cdot), 0)\)-atoms. Furthermore,
\[
\sum_{k=0}^{\infty} |\lambda_{2,k}|^p \leq C \sum_{k=0}^{\infty} b^{kaq} \leq C,
\]

where \(C\) is independent of \(M\). The conclusion (b) then holds. Hence, the proof of Lemma 2.6 is completed. \(\square\)

3 Applications

In this section, we give an application of the molecular decomposition theory established in Section 2. We study the boundedness of the central \(\delta\)-Calderón-Zygmund operators from \(HK^{a(\cdot), q}_{\rho(\cdot)}(A; \mathbb{R}^n)\) to \(HK^{a(\cdot), q}_{\rho(\cdot)}(A; \mathbb{R}^n)\). The following condition is necessary for our discussion on the central \(\delta\)-Calderón-Zygmund operators on the \(HK^{a(\cdot), q}_{\rho(\cdot)}(A; \mathbb{R}^n)\) spaces:

\[
f = \sum_{i \in \mathbb{N}} \lambda_i a_i \text{ in } S' \implies Tf = \sum_{i \in \mathbb{N}} \lambda_i Ta_i \text{ in } S'.
\]

The central \(\delta\)-Calderón-Zygmund operators, which are more general than the classical Calderón-Zygmund operators, were introduced by Lu and Yang [14] in the isotropic setting of \(\mathbb{R}^n\). Moreover, Ding et al. [10] extended them to the following non-isotropic setting of \(\mathbb{R}^n\) associated with the dilation \(A\).

Definition 3.1. Let \(0 < \delta < 1\) and \(1 < p < \infty\). Let \(T: S'(\mathbb{R}^n) \to S'(\mathbb{R}^n)\) be a linear continuous operator. If there exists \(K(x, y) \in S'(\mathbb{R}^n \times \mathbb{R}^n)\), being continuous away from the diagonal in \(\mathbb{R}^{2n}\) and satisfying:

(i) \(K(x, 0) + |K(0, x)| \leq C (\rho(x))^{-1}, \text{ for all } x \neq 0;\)
(ii) \(K(x, 0) - K(0, x) + |K(0, x) - K(y, x)| \leq C (\rho(y))^{\delta} (\rho(x))^{-1-\delta}, \text{ when } \rho(x) \geq b^{2p} \rho(y);\)
(iii) \(\langle T(f), g \rangle = \int_{\mathbb{R}^n} K(x, y) f(y) g(x) dx, \text{ for } f, g \in S(\mathbb{R}^n)\) with disjoint supports, and if \(T\) can be extended to a bounded operator on \(L^p(\mathbb{R}^n)\), then we say \(T\) is a central \(\delta\)-Calderón-Zygmund operator in \(L^p(\mathbb{R}^n)\).

Using the molecular theory of \(HK^{a(\cdot), q}_{\rho(\cdot)}(A; \mathbb{R}^n)\), we can prove the following theorem:

Theorem 3.2. Let \(0 < \delta < 1\), \(0 < q < \infty\), \(p(\cdot) \in \mathcal{B}(\mathbb{R}^n)\), \(a(\cdot) \in L^\infty \cap \mathcal{P}_0 \cap \mathcal{P}_\infty\) and \(\max \{\delta_2, \delta_1\} \leq \delta_1 < \min \{(\delta_1 + \delta) \ln \lambda / \ln b, (\delta_2 + \delta) \ln \lambda / \ln b\}\) with \(\alpha_i\) as in Definition 1.7. Suppose that \(T\) is a central \(\delta\)-Calderón-Zygmund operator and is bounded on \(L^p(\mathbb{R}^n)\). If \(T\) satisfies (3.1) for every central atomic decomposition and \(\int_{\mathbb{R}^n} Ta(x) dx = 0\) for each central \((a(\cdot), p(\cdot), 0)\)-atom \(a(x)\), then \(T\) can be extended to a bounded operator from \(HK^{a(\cdot), q}_{\rho(\cdot)}(A; \mathbb{R}^n)\) to \(HK^{a(\cdot), q}_{\rho(\cdot)}(A; \mathbb{R}^n)\).
Remark 3.3. The boundedness of the central δ-Calderón-Zygmund operators on the homogeneous anisotropic Herz-type Hardy space $HK^{a,q}_{\rho}(A; \mathbb{R}^n)$ is contained by Theorem 3.2, and the results also hold for the nonhomogeneous anisotropic Herz-type Hardy space $HK^{a,q}_{\rho}(A; \mathbb{R}^n)$.

Proof. Case 1. For $0 < q < 1$. Let a be a central $(\alpha(), p(\cdot), 0)$-atom with its support in B_k for some $k \in \mathbb{Z}$. If Ta is a central $(\alpha(), p(\cdot); 0, \varepsilon)$-molecule for some $\delta + \delta_1 > \delta + \alpha_1 - 1$ and by condition (3.1) and Lemma 2.6, we have $\|Ta\|_{HK^{a,q}_{\rho}(A; \mathbb{R}^n)} \leq C$. Then, for homogeneous case

$$\|Ta\|_{HK^{a,q}_{\rho}(A; \mathbb{R}^n)} \leq \sum_{k=-\infty}^{\infty} |\lambda_k| \|Ta\|_{HK^{a,q}_{\rho}(A; \mathbb{R}^n)} \leq \infty.$$

Thus, T is a bounded operator on $HK^{a,q}_{\rho}(A; \mathbb{R}^n)$ by taking supremum of the above formula. It suffices to show Ta is a central $(\alpha(), p(\cdot), 0, \varepsilon)$-molecule for some $\delta + \delta_1 > \delta + \alpha_1 - 1$. To this aim, let $a = 1 - \delta_1 - \alpha_1 + \varepsilon, d = 1 - \delta_1 + \varepsilon$. Obviously, we only need to verify the size condition of molecules, that is,

$$R_{p(\cdot)}(Ta) = \|Ta\|_{L^{p(\cdot)}(\mathbb{R}^n)} \|p(\cdot)\|_{L^{p(\cdot)}(\mathbb{R}^n)} \|\alpha(\cdot)\|_{L^{p(\cdot)}(\mathbb{R}^n)} \leq C,$$

with C independent of a. From the hypothesis of the theorem, we need to show only (3.2). To do this, we first estimate $\|p(\cdot)\|_{L^{p(\cdot)}(\mathbb{R}^n)}$. By the boundedness of T on the $L^{p(\cdot)}$, we have

$$\|p(\cdot)\|_{L^{p(\cdot)}(B_{2^k,2^n})} = Cb^{n\delta} \|Ta\|_{L^{p(\cdot)}(B_{2^k,2^n})} \leq Cb^{n\delta} \|a\|_{L^{p(\cdot)}(B_{2^k,2^n})} \leq Cb^{n(d-a)}.$$

On the other hand, if $x \in B_{2^k,2^n}$, from the condition(ii) of definition 3.1 and $\int_{B_k} \alpha(x) dx = 0$, we can get

$$|T(a)| = \left| \int_{B_k} (K(x, y) - K(x, 0)) a(y) dy \right| \leq C \int_{B_k} \frac{\rho(y)^\delta}{\rho(x)^\delta} \alpha(y) dy \leq Cb^{k(1+\delta)} \rho(x)^{1-\delta} \alpha(x) \int_{B_k} \alpha(x) dx \leq Cb^{k(1+\delta)} \alpha(x)^{1-\delta} \frac{1}{|B_k|} \int_{B_k} \alpha(x) dx \leq Cb^{k(1+\delta)} \alpha(x)^{1-\delta} M(\alpha)(x).$$

Therefore, noting that $\varepsilon < \delta + \delta_1$, we have

$$\|p(\cdot)\|_{L^{p(\cdot)}(B_{2^k,2^n})} \leq Cb^{k(1+\delta)} \|p(\cdot)\|_{L^{p(\cdot)}(B_{2^k,2^n})} \leq Cb^{k(1+\delta)} \|Ma(\cdot)\|_{L^{p(\cdot)}(\mathbb{R}^n)} \leq Cb^{k(1+\delta)} \|a(\cdot)\|_{L^{p(\cdot)}(\mathbb{R}^n)} \leq Cb^{k(1+\delta)} \alpha(x)^{1-\delta} M(\alpha)(x).$$

That is, $\|p(\cdot)\|_{L^{p(\cdot)}(\mathbb{R}^n)} \leq Cb^{k(1+\delta)}$. Thus,

$$R_{p(\cdot)}(Ta) = \|Ta\|_{L^{p(\cdot)}(\mathbb{R}^n)} \|p(\cdot)\|_{L^{p(\cdot)}(\mathbb{R}^n)} \|\alpha(\cdot)\|_{L^{p(\cdot)}(\mathbb{R}^n)} \leq Cb^{n\delta} \|Ta\|_{L^{p(\cdot)}(\mathbb{R}^n)} \|p(\cdot)\|_{L^{p(\cdot)}(\mathbb{R}^n)} \|\alpha(\cdot)\|_{L^{p(\cdot)}(\mathbb{R}^n)}$$

$$\leq Cb^{n\delta} \|Ta\|_{L^{p(\cdot)}(\mathbb{R}^n)} \|p(\cdot)\|_{L^{p(\cdot)}(\mathbb{R}^n)} \|\alpha(\cdot)\|_{L^{p(\cdot)}(\mathbb{R}^n)} \leq Cb^{n\delta} \|a\|_{L^{p(\cdot)}(\mathbb{R}^n)} \|p(\cdot)\|_{L^{p(\cdot)}(\mathbb{R}^n)} \|\alpha(\cdot)\|_{L^{p(\cdot)}(\mathbb{R}^n)} \leq Cb^{n(d-a)} \|a\|_{L^{p(\cdot)}(\mathbb{R}^n)} \|p(\cdot)\|_{L^{p(\cdot)}(\mathbb{R}^n)} \|\alpha(\cdot)\|_{L^{p(\cdot)}(\mathbb{R}^n)} \leq Cb^{n(d-a)} \|a\|_{L^{p(\cdot)}(\mathbb{R}^n)} \|p(\cdot)\|_{L^{p(\cdot)}(\mathbb{R}^n)} \|\alpha(\cdot)\|_{L^{p(\cdot)}(\mathbb{R}^n)} \leq C < \infty,$$

where C is independent of a.

Case 2. For $1 < q < \infty$. By a proof similar to that of [3, Proposition 3.8], we easily obtain an important lemma as follows. \hfill \Box
Lemma 3.4. Let \(\alpha(\cdot) \in L^\infty \cap \mathcal{P}_{0} \cap \mathcal{P}_{s}, \ p(\cdot) \in \mathcal{P} \) and \(q \in (0, \infty) \), then

\[
\| \mathcal{A} \|_{p,q}^{\mathcal{A}(\mathbb{R}^n)} \approx \left(\sum_{k=0}^{\infty} b^{\alpha_k q} \| f_k \|_{L^p}^q \right)^{1/q} + \left(\sum_{k=0}^{\infty} b^{\alpha_k q} \| f_k \|_{L^p}^q \right)^{1/q}.
\]

We now proceed with the proof of Theorem 3.2. Let \(a \) be a central \((\alpha(\cdot), p(\cdot), 0)\)-atom with its support in \(B_k \) for some \(k \in \mathbb{Z} \). We write

\[
\| M_N T(f) \|_{p(1)}^{q} \approx \left| \sum_{k=0}^{\infty} b^{\alpha_k q} \| M_N T(f) \|_{L^p}^q \right| + \left| \sum_{k=0}^{\infty} b^{\alpha_k q} \| M_N T(f) \|_{L^p}^q \right|
\]

For \(I_3 \), it is easy to see that

\[
I_3 \leq C \left| \sum_{k=0}^{\infty} b^{\alpha_k q} \left(\sum_{j=0}^{\infty} |\lambda_j| \| M_N T(a_j) \|_{L^p}^q \right) \right|^q + C \left| \sum_{k=0}^{\infty} b^{\alpha_k q} \left(\sum_{j=k-\sigma}^{\infty} |\lambda_j| \| M_N T(a_j) \|_{L^p}^q \right) \right|^q
\]

We first estimate \(M_N T(a) \) on \(C_k \) for \(k \geq k_0 + \sigma + 1 \). For any \(x \in C_k, \varphi \in S_N, j \in \mathbb{Z} \) and a polynomial \(P_s \) of degree \(s \), by a proof similar to those of [10, p. 1454], we have

\[
M_N T(a)(x) \leq C b^{\alpha_0 \cdot \delta_0} \| x \|_{L^p} \| x \|_{L^p} \leq b^{\alpha_s \cdot \delta_s} \| x \|_{L^p} \leq b^{\alpha_s \cdot \delta_s} \| x \|_{L^p}
\]

where \(m = k - k_0 - 1 - \sigma \). By the Hölder inequality, \(|b^{\alpha_0 \cdot \delta_0} \| x \|_{L^p} < 1 \) and (3.3), we obtain

\[
I_{31} \leq C \left| \sum_{k=0}^{\infty} b^{\alpha_k q} \left(\sum_{j=0}^{\infty} |\lambda_j| \| M_N T(a_j) \|_{L^p}^q \right) \right|^q
\]

\[
\leq C \left| \sum_{k=0}^{\infty} b^{\alpha_k q} \left(\sum_{j=k-\sigma}^{\infty} |\lambda_j| \| M_N T(a_j) \|_{L^p}^q \right) \right|^q
\]

\[
\leq C \left| \sum_{k=0}^{\infty} \sum_{j=k-\sigma}^{\infty} |\lambda_j|^q \| b^{\alpha_0 \cdot \delta_0} \| x \|_{L^p}^q \right|^q
\]

\[
\leq C \left| \sum_{k=0}^{\infty} \sum_{j=k-\sigma}^{\infty} |\lambda_j|^q \| b^{\alpha_0 \cdot \delta_0} \| x \|_{L^p}^q \right|^q
\]

\[
\leq C \sum_{j=k-\sigma+1}^{\infty} |\lambda_j|^q \| b^{\alpha_0 \cdot \delta_0} \| x \|_{L^p}^q
\]

\[
\leq C \sum_{j=k-\sigma+1}^{\infty} |\lambda_j|^q.
\]
From the $L^{p(\cdot)}$ boundedness of M_N, the size condition of a, and the Hölder inequality, we conclude that

$$ I_{32} \leq C \sum_{k=-\infty}^{-1} b_{n,k}^{a_{q,k}} \left(\sum_{j=k-\theta}^{+\infty} |\lambda_j|q T(a) \chi_{\lambda_k} \|L^{p(\cdot)}\right)^q $$

$$ \leq C \sum_{k=-\infty}^{-1} b_{n,k}^{a_{q,k}} \left(\sum_{j=k-\theta}^{+\infty} |\lambda_j||B_j|^{-a_{q,j}} \right)^q $$

$$ \leq C \sum_{k=-\infty}^{-1} b_{n,k}^{a_{q,k}} \left(\sum_{j=k-\theta}^{-1} |\lambda_j||B_j|^{-a_{q,j}} \right)^q + C \sum_{k=-\infty}^{-1} b_{n,k}^{a_{q,k}} \left(\sum_{j=0}^{+\infty} |\lambda_j||B_j|^{-a_{q,j}} \right)^q $$

$$ \leq C \sum_{k=-\infty}^{-1} b_{n,k}^{a_{q,k}} \left(\sum_{j=k-\theta}^{-1} |\lambda_j||B_j|^q |B_j|^{-a_{q,j}/2} \right)^q $$

$$ \leq C \sum_{j=0}^{+\infty} \sum_{k=-\infty}^{-1} |\lambda_j|^q b_{n,k}^{a_{q,k} |B_j|^q |B_j|^{-a_{q,j}/2}} + C \sum_{j=0}^{+\infty} |\lambda_j|^q $$

$$ \leq C \sum_{j=0}^{+\infty} |\lambda_j|^q $$

Therefore, we finish the proof of Theorem 3.2.

The proof of I_4 is similar to I_3, we are omitting it there. From the I_3, I_4, we can get

$$ \|M_N T(f)\|_{\mathcal{L}^{p(\cdot),q}(A;R)} \leq C \sum_{j \in \mathcal{Z}} |\lambda_j|^q. $$

Thus,

$$ \|T(f)\|_{\mathcal{L}^{p(\cdot),q}(A;R)} \leq C \|f\|_{\mathcal{L}^{p(\cdot),q}(A;R)}. $$

References

[1] O. Kováčik and J. Rákosník, *On spaces $L^{p(\cdot)}$ and $W^{k,p(\cdot)}*\text{,} Czechoslovak Math. J. 41 (1991), 592–618.

[2] L. Diening, P. Harjulehto, P. Hästö and M. Ružička, *Lebesgue and Sobolev spaces with variable exponents*, Lecture Notes in Mathematics, Springer, Heidelberg, 2017.

[3] A. Almeida and D. Drihem, *Maximal, potential and singular type operators on Herz spaces with variable exponents*, J. Math. Anal. Appl. 394 (2012), 781–795.

[4] H. Wang and Z. Liu, *The Herz-type Hardy spaces with variable exponent and their applications*, Taiwanese J. Math. 16 (2012), 1363–1389.

[5] B. Dong and J. Xu, *Variable exponent Herz type Hardy spaces with and their applications*, Anal. Theory Appl. 31 (2015), 321–353.

[6] M. Bownik, *Anisotropic Hardy spaces and wavelets*, Mem. Am. Math. Soc. 164 (2003), no. 781, vi+122.

[7] C. Fefferman and E. Stein, *H^p spaces of several variables*, Acta Math. 129 (1972), 137–193.

[8] A. Calderón and A. Torchinsky, *Parabolic maximal functions associated with a distribution*, Adv. Math. 16 (1975), 1–64.

[9] A. Calderón and A. Torchinsky, *Parabolic maximal functions associated with a distribution II*, Adv. Math. 24 (1977), 101–171.
[10] Y. Ding, S. Lan and S. Lu, *New Hardy spaces associated with some anisotropic Herz spaces and their applications*, Acta Math. Sin. 24 (2008), 1449–1470.

[11] H. Zhao and J. Zhou, *Anisotropic Herz-type Hardy spaces with variable exponent and their applications*, Acta Math. Hungar. 156 (2018), 309–335.

[12] W. Wang and Q. Guo, *Anisotropic Herz-type Hardy spaces with two variable exponents and boundedness of some sublinear operators*, Indian J. Pure Appl. Math.

[13] M. Izuki, *Boundedness of commutators on Herz spaces with variable exponent*, Rend. Circ. Mat. Palermo 59 (2010), 199–213.

[14] S. Lu and D. Yang, *Some new Hardy spaces associated with Herz spaces and their wavelet characterization*, J. Beijing Normal Univ. (Nat. Sci.). 29 (1993), 10–19.