Existence of Wormholes in Einstein-Kalb-Ramond space time

F.Rahaman*, M.Kalam**, and A.Ghosh*

Abstract

In recent, Kar.S et.al [Phys Rev D 67,044005 (2003)] have obtained static spherically symmetric solutions of the Einstein-Kalb-Ramond field equations. We have shown that their solutions, indeed, represent Wormholes.

In Einstein-Cartan theory, the symmetric Christoffel connection is modified with the introduction of an anti-symmetric tensorial term, known as space time torsion, which is presumed to have a direct relation with spin [1]. It has been shown that the massless anti-symmetric tensor Kalb-Ramond field, \(B_{\mu\nu} \) equivalent to torsion is an inherent feature in the low energy effective string action. Several authors [2] have shown that the presence of Kalb-Ramond field in the background space time may lead to various interesting astrophysical and cosmological phenomena such as cosmic optical activity, neutrino lecility flip, parity violation etc. Recently, Kar et.al [3] have carried out the most general study of the existence carried out of possible spherical symmetric solutions of the Einstein-Kalb-Ramond field equations. They have studied gravitational lensing and perihelion precession in these space-time. They have also shown that for a special case, one can get wormhole for a real Kalb-Ramond field. In this article, we have shown that their general solutions, indeed, always represent wormholes. According to the formation in [3], the action is given by

\[
S = \int d^4 x \sqrt{-g} \left[\frac{\mathcal{R}(g)}{k} - \frac{1}{12} H_{\mu\nu\lambda} H^{\mu\nu\lambda} \right]
\]

(1)

where \(\mathcal{R}(g) \) is Ricci scalar curvature and \(H_{\mu\nu\lambda} \) is Kalb-Ramond field strength and \(k = 8\pi G \).

*Pacs Nos : 04.70 Dy,04.20 Gz,04.50 + h

Key words: Wormholes , Kalb-Ramond field

*Dept.of Mathematics, Jadavpur University, Kolkata-700 032, India

E-Mail: farook.rahaman@yahoo.com

**Dept. of Phys. , Netaji Nagar College for Women , Regent Estate, Kolkata-700092, India
The field equations are
\[R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = kT_{\mu\nu} \] (2)
\[D_{\mu}H^{\mu\nu\lambda} = \frac{1}{\sqrt{-g}}\partial_{\mu}(\sqrt{-g}H^{\mu\nu\lambda}) = 0 \] (3)

\(T_{\mu\nu} \) is a symmetric two tensor which is analogous to the energy momentum tensor and is given by
\[T_{\mu\nu} = \frac{1}{4}(3g_{\nu\rho}H_{\alpha\beta\mu}H^{\alpha\beta\rho} - \frac{1}{2}g_{\mu\nu}H_{\alpha\beta\gamma}H^{\alpha\beta\gamma}) \] (4)

The asymmetric property of \(H_{\mu\nu\lambda} \) implies it has only four independent components. According to Sengupta and Sur [4], the only nonzero component is \(H_{023} \). We denote \(H_{023} = [h(r)]^2 \).

Kar et al. [3] have considered the general spherical symmetric metric structure as
\[ds^2 = B(r)dt^2 - \frac{dr^2}{A(r)} - r^2d\Omega^2 \] (5)

From the gravitational field equations, they have obtained the solutions as [3]
\[B(r) = 1 + \frac{c_1}{r} + \frac{bc_1}{6r^3} - \frac{b^2c_1}{6r^4} + \frac{6bc_1^3 + 3b^2c_1}{40r^5} + \ldots \] (6)
\[A(r) = 1 + \frac{c_1}{r} - \frac{b}{r^2} - \frac{bc_1}{2r^3} + \frac{b^2c_1}{3r^4} + \frac{1}{4r^5}(bc_1^3 + \frac{b^2c_1}{6}) + \ldots \] (7)
\[h(r) = \sqrt{\frac{\bar{k}}{k}r^2}[1 - \frac{c_1}{r} + \frac{c_1^2}{r^2} - \frac{1}{r^3}(c_1^3 + \frac{bc_1}{6}) + \ldots] \] (8)

where \(\bar{k} = \frac{3k}{4} \) and \(b, c_1 \) are arbitrary constants.

They have noticed that if \(c_1 = 0 \), then \(B(r) = 1, A(r) = 1 - \frac{b}{r^2} \) which represent a wormhole.

Now, we shall show that general solutions (6) and (7) always represent wormholes. To show this we rewrite the metric into the Morris-Thorne Canonical form [5]
\[ds^2 = e^{2f(r)}dt^2 - \frac{1}{[1 - b(r)/r]}dr^2 - r^2d\Omega^2 \] (9)

where, \(r \in (-\infty, +\infty) \).

To represent a wormhole, one must impose the following conditions on the metric (9) as [6]:
1) The redshift function, \(f(r) \) must be finite for all values of \(r \). This means no horizon exists in the space time.
2) The shape function, \(b(r) \) must obey the following conditions at the throat \(r = r_0 \) :
\(b(r_0) = r_0 \) and \(b'(r_0) < 1 \) [these are known as Flair-out conditions].

3) \(\frac{b(r)}{r} < 1 \) for \(r > r_0 \) i.e. out of throat.

4) The space time is asymptotically flat i.e. \(\frac{b(r)}{r} \to 0 \) as \(|r| \to \infty \).

Here, the red-shift function and shape function take the form

\[
2f = \ln[1 + \frac{c_1}{r} + \frac{bc_1}{6r^3} - \ldots]
\]

\[
b(r) = -c_1 + \frac{b}{r} - \frac{bc_1}{2r^2} + \frac{bc_1^2}{3r^3} - \ldots
\]

The throat of the wormhole occurs at \(r = r_0 \) where \(r_0 \) satisfies the equation \(b(r) = r \).

Suppose \(\frac{1}{r} = y \), then \(b(r) = r \) implies

\[
g(y) = -c_1y + by^2 - \frac{bc_1}{2}y^3 + \frac{bc_1^2}{3}y^4 - \ldots - 1 = 0
\]

Since \(\frac{1}{r_0} \) is a root of equation (12), then by standard theorem of algebra, either \(g(y) > 0 \) for \(y > \frac{1}{r_0} \) and \(g(y) < 0 \) for \(y < \frac{1}{r_0} \) or \(g(y) < 0 \) for \(y > \frac{1}{r_0} \) and \(g(y) > 0 \) for \(y < \frac{1}{r_0} \). Let us take the first possibility and one can note that for \(y = \frac{1}{r} < \frac{1}{r_0} \) i.e. \(r > r_0 \), \(g(y) < 0 \), in other words, \(b(r) < r \). But when \(y = \frac{1}{r} > \frac{1}{r_0} \) i.e. \(r < r_0 \), \(g(y) > 0 \), this means, \(b(r) > r \), which violates the wormhole structure given in equation (9).

Here \(e^{2f(r)} \equiv B(r) \) has no zero for \(r \geq r_0 > 0 \) (as one can not assume \(r < r_0 \)) because (1) at \(r \to \infty \), \(B \to 1 \), so \(e^{2f(r)} \neq 0 \) at \(r \to \infty \) (2) if \(B(r) = 0 \) at \(r = r_0 \), then \(B(r_o) - A(r_0) = 0 \) i.e.

\[
\frac{b}{r_0^2} - \frac{bc_1}{3r_0^3} + \frac{bc_1^2}{6r_0^4} + \ldots = 0
\]

But, \(A(r_0) \equiv [1 - \frac{b(r_0)}{r_0}] = 0 \) implies

\[
1 + \frac{c_1}{r_0} - \frac{b}{r_0^2} + \frac{bc_1}{2r_0^3} - \frac{bc_1^2}{3r_0^4} + \frac{1}{4r_0^5}(bc_1^3 + \frac{b^2c_1}{6})\ldots = 0
\]

One can note that the above two equations could not hold simultaneously.

Hence \(B(r_0) \neq 0 \). In other words, no horizon exists in the space time. Also, \(\frac{b(r)}{r} \to 0 \) as \(|r| \to \infty \). Thus the space-time with the solutions (6) and (7) describes static spherically symmetric wormholes.
Retaining a few terms, the shape of the wormhole takes the form:

\[0.4 \quad 0.5 \quad 0.6 \quad 0.7 \quad 0.8 \quad 0.9 \]

\[2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \ r \]

Figure 1: Shape of the wormhole for \(c_1 = -1 \) and \(b = -1 \)

The asymptotical wormhole mass reads

\[M = \lim_{r \to \infty} \frac{1}{2} b(r) = -\frac{1}{2} c_1 \] \hspace{1cm} (15)

The axially symmetric embedded surface \(z = z(r) \) shaping the Wormhole's spatial geometry is a solution of

\[\frac{dz}{dr} = \pm \frac{1}{\sqrt{r b(r)} - 1} \] \hspace{1cm} (16)

By the definition of Wormhole, we can note that at the value \(r = r_0 \) (the wormhole throat radius) equation (16) is divergent i.e. embedded surface is vertical there. According to Morris and Thorne [5], the 'r' co-ordinate is ill-behaved near the throat, but proper radial distance

\[l(r) = \pm \int_{r_0}^{r} \frac{dr}{\sqrt{1 - \frac{b(r)}{r}}} \] \hspace{1cm} (17)

must be well behaved everywhere i.e. we must require that \(l(r) \) is finite throughout the space-time.
For this Model,

\[l(r) = \pm \int_{r_0}^{r} \frac{dr}{\sqrt{1 - \frac{1}{r^2}\left[-c_1 \frac{b}{r^2} - \frac{bc_1}{3r^3} + \ldots\right]}} \] (18)

Though it is not possible to get the explicit form of the integral but one can see that the above integral is a convergent integral i.e. proper length should be finite.

To summarize, we have shown that the static spherically symmetric solutions of the Kalb-Ramond field equations obtained by Kar et.al always represent Wormholes.

According to Morris-Thorne [5], to keep a wormhole open, the stress energy tensor of matter violates the null energy conditions. As a result, the energy density of matter may be seen as negative by some observer. Since maximum Kalb-Ramond energy density is negative [3], it is clear that one can always construct wormhole supported by Kalb-Ramond field. Finally, if we take the parameter \(c_1 < 0 \), then asymptotic mass \(M' \) of the Kalb-Ramond wormhole is positive i.e. a distant observer could not see any difference of gravitational nature between Wormhole and a compact mass 'M'.

Acknowledgements

F.R is thankful to Jadavpur University and DST , Government of India for providing financial support under Potential Excellence and Young Scientist scheme.

References

[1] A.K.Roychoudhuri , Theo. Cosmology , Clarendon Press , Oxford (1979).
[2] S.Kar, P.Majumder, S.Sengupta and A.Sinha, Euro.Phys.J.C 23, 357 (2002); S.Kar, P.Majumder, S.Sengupta, A.Sinha and S.Sur, Class.Quan.Grav. 9, 677 (2002); S. Sengupta and A. Sinha , Phys. Lett. B 514, 109 (2001) .
[3] S. Kar, S. Sengupta and S. Sur , Phys. Rev. D 67, 044005 (2003) .
[4] S. Sengupta and S. Sur , Phys. Lett. B 521, 350 (2001) .
[5] M. Morris and K. Thorne , American J. Phys. 56, 39 (1988).
[6] M. Visser , Lorentzian Wormhole: From Einstien to Hawking , AIP Press (1995) .