Paint Viscosity Evaluation and Preservation against Bacterial Species Contamination Using Extracts of Bryophyllum Pinnatum

Dr. Lawrence Bassey Etim
Senior Lecturer, Dept of Microbiology, Cross River University of Technology, Calabar, Nigeria

Abstract:
Viscosity and viscosity control of microbial contaminated latex paint was evaluated using the ball and cylinder method, MBC and MIC. The contaminated bacterial genera isolated were that of Pseudomonas, Bacillus and Micrococcus. The viscosity instability and loss caused by the organisms was obvious and significant (p<0.01) in the order: Pseudomonas>Micrococcus>Bacillus spp. Their susceptibility to the phytoextract act of B. pinnatum as a means of preservation was high, positively correlated (r = 0.05) and significant (p<0.01). Also, the phytobioactive activity significantly (p<0.01) reduced viscosity loss as compared with the control. The MIC and MBC levels (250mg/100mL<500mg/100mL) and (500mg/100mL>250mg/100mL) demonstrated an excellent preservative properties of B.pinnatum against activities of Pseudomonas sp, Micrococcus sp and Bacillus sp. The result obtained indicated that latex paint subjected to bacterial viscosity loss can be controlled with phytobioactive agents that could significantly bring about paint preservation. Therefore, empirical formulation of plants extract with high antibacterial potency can be supplemented in paint manufacturing process to control at first hand bacterial paint viscosity loss that often resulted to paint quality and financial loss.

Keywords: Viscosity loss, phytoextract, paint molecule, degradation, preservation

1. Introduction

Paint is a mastic composition of pigments, filters, thickeners, binders, oil and solvents. Each of these components contain a wide range of organic and inorganic constituents that provide different ecological niches exploited by a large variety of microbial species. These molecules as a substrate support the growth of microorganisms such as bacteria, fungi and algae under favourable conditions e.g. humidity, temperature, light and to some extent pH(Etim and Antia, 2014). The microbial attack on paint often results in colloidal loss in value, aesthetics and financial loss.

Microbial degradation problems associated with paint include viscosity loss, malodouration, discoloration, gassing, frothing, sedimentation and pH change. Viscosity loss occurs as a result of pH changes and the presence of cellulose as the source of carbon-energy required for the growth of bacteria. Bacterial utilization of the cellulotic ether is considered the primary cause of the decrease in paint viscosity. Most microbial cellulases as adapting enzymes occur as a typical extracellular enzyme (Banik and Prakash, 2004).

These extracellular enzymes enable the organisms to metabolize large paint molecules found outside the cell. Therefore, cellulotic bacteria including Pseudomonas species produced cellulase either in a solution or on painted film surfaces (Naranjoret al., 2007).

Bacterial growth on paint and painted surfaces is invisible to the eye compared to that of algae and fungi. Bacteria are often the first to colonize paint and painted surfaces. The bacteria species frequently isolated from paint and painted objects are Pseudomonas, Arthrobacter, Streptomyces, Sarcina, Bacillus, Micrococcus, Norcadia, Flavobacterium and Alcaligens spp (Atenburgeret al., 1996; Etim and Antai,2014). Therefore, bacterial colonization of paint film destroys the decorative properties, durability potential of paint film, can paint and irreversible loss of viscosity. Bryophyllum pinnatum is a succulent perennial shrub implicated in ethnomedicinal practices (Ofokinsiet al., 2005; Etim et al.,2016). The plant is confirmed in various studies to contain a high level of polyphenolic compounds with antimicrobial potency. B. pinnatum’s antimicrobial potency favours the treatment of bacterial infections caused by Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, Klebsiella aerogenosa and Klebsiella pneumonia (Okwu and Josiah,2006). The studytherefore attempts to evaluate viscosity loss control and paint preservation against bacterial species contamination using phytobioorganic properties of Bryophyllum pinnatum extract.
2. Materials and Methods

2.1. Paint Effluent

Paint effluent used for the isolation of the test cells (Pseudomonas sp, Bacillus sp, Micrococcus sp) species was collected from a paint industry located at Calabar Free Export Processing Zone (EPZ). The sample was collected into a 2.0L capacity sterile plastic bottle in an ice packed cooler (4°C) and transported to the laboratory for microbial analysis within 2 hours.

2.2. Paint Sample

Four (4.0L) liters sealed container of latex (Everbright) paint was bought from the paint store located within the Calabar municipality. The container was thoroughly checked for possible leakage and damage that may lead to the contamination of the paint sample.

2.3. Phytochemical Agent

Fresh leaves of Bryophyllum pinnatum was obtained from a botanical garden, in Calabar, Nigeria. The leaf sample was washed, pulverized and dried in an oven at 45°C to dehydrate the sample for excess water for 2 weeks (Shahidi, 2004; Etim et al., 2016). The dried material was milled into fine powder and preserved in an airtight plastic bottle and stored at room temperature (28 ± 2°C).

2.4. Isolation and Identification of Bacterial Contaminants

One (1.0mL) milliliter of paint industrial effluent was cultured on nutrient agar for 18 hours. The colonies developed were discretely picked and purified by subculturing on nutrient agar. Subsequently, the method described by Bharathi and Vasuduvan (2001) was adopted to conduct microscopic, macroscopic, biochemical reactions and sugar fermentation on the 18 hours old isolates as a means of identification.

2.5. Determination of Viscosity Loss in Paint Contaminated by Bacterial Species

The viscosity loss of paint by Pseudomonas, Bacillus, Micrococcus spp contamination was determined using the ball and cylinder method described by Okeke et al. (2006). In this method, a tall glass graduated cylinder and a metal ball of a known weight (density) and diameter was used. Ten 250mL capacity Erlemeyer flasks were filled with 200mL of filter-sterilized latex paint. A set of 5 flasks were inoculated with 5.0mL McFarland standard (approximately 1.5 to 2.0 × 10^8 cfu/mL) of an overnight (18 hours) broth culture of Pseudomonas, Bacillus, Micrococcus spp. Another set of 5 flasks containing paint were uninoculated to serve as controls. The contaminated and control flasks were incubated on a shaker at room temperature (28 ± 2°C) for 25 days. Every 5 days, duplicate flasks of contaminated and control samples were removed and the extent of viscosity loss was determined in triplicate using the ball and cylinder method.

2.6. Control of Viscosity Loss in Paint Using Phytoactive Agents of B. Pinnatum against the Activities of Pseudomonas, Micrococcus, Bacillus Spp

The ball and cylinder method described above was used. Ten 250mL capacity Erlemeyer flasks were filled with 200mL of filter-sterilized latex paint. A set of 5 flasks were inoculated with 5.0mL of an overnight (18 hours) broth cultures of Pseudomonas spp, Micrococcus sp, Bacillus sp and supplemented with 500mg of B. pinnatum aqueous extract. Another set of 5 flasks without cells and extract treatments were prepared and set aside as control. Then the inoculated and extract treated flasks were incubated at room temperature (28 ± 2°C) on a shaker for 25 days. Every 5 days, each representative flasks and control were removed and the extent of viscosity was determined.

2.7. Antibacterial Potential of B. Pinnatum on the Isolates

The aqueous extracts of B. pinnatum were prepared using soxhlet extraction to obtain the bioactive compound as described by Brooks and Etim (2004) and Achi (2006). The dehydrated extracts were resuspended in dimethylsulfoxide (DMSO) to prepare various concentrations of aqueous extract which was subsequently used in the susceptibility assay (Achi, 2006). An 18-hour broth culture of each organism was diluted with sterile physiological saline (0.85% w/v sodium chloride) and the cell concentration compared to 0.5 McFarland standard (approximately 1.5 to 2.0 × 10^8 cfu/mL). Then 3.0mL portion of the test cell was placed onto the surface of a pre-dried Mueller Hinton (Biomark Laboratory, India) agar plates and spread around evenly with a sterile bent glass rod. Then cut sterilized 6mm Whatman No. 1 filter disks were used to absorb approximately 1.5mg/100mL of the suspended (DMSO) extract and was placed on top of the agar surface (Aida et al., 2001).

The plates were allowed to stand for 15 minutes at room temperature (28 ± 2°C) for the extracts to diffuse across the surface of the agar before incubation at 35°C for 18 hours. The diameter of the zone of inhibition was measured with a meter rule in triplicate (Choet al., 1995).

2.8. Determination of the Preservative Property (MIC, MBC) Of B. Pinatumphyto bioactive Agents against Bacterial Species Contaminated Paint

The preservative potential of B.pinnatum extract on paint contaminated by microbial species was determined by estimating the total viable count (TVC) of paint contaminant as described by Achi, (2006). Fifteen 250mL capacity flasks were suspended with 98.0mL of distilled water and autoclave at 121°C and 15psi. On cooling, 5.0mL of pressurized filter
sterilized latex paint, 0.2ml of Pseudomonas cells (approximately 1.5 to 2.0 × 10^8 cfumL^-1) and 250mg/100mL and 500mg/100mL of aqueous extracts of B. pinnatum were added separately to 2 subsets of 5 flasks respectively. Then the third subsets of 5 flasks without the extract were set aside as controls. Each of the flasks were arranged and incubated at room temperature (28 ± 2°C) for 25 days on a shaker, rotating at 110rpm.

At interval of 5 days, 10.0mL of representative sample from each flask was aseptically drawn and was used to determine the total viable count (TVC) in ten-fold serial count as an index of paint preservation against the bacterial contaminants.

2.9. Statistical Analysis

The data collected were subjected to mean calculation, percentage determination and correlation analysis of variance (ANOVA) using Statistical Analysis System, Generalized Linear Model (SASGLM,SAS version 8.02(SAS,2000). Results are discussed based on the various statistical conclusions and recommendations put forward accordingly.

3. Result

The rate of viscosity loss created by Pseudomonas, Micrococcus, and Bacillus spp as contaminants is presented in Figure 1. Bacillus sp exerted the greatest loss then followed by Micrococcus and Pseudomonas. The extracts produced strong growth inhibitory effect on Pseudomonas sp than Micrococcus and Bacillus spp as presented in Figure 2. The rate of viscosity loss by each contaminant and the inhibitory effect of the plant extract were significant (p>0.10) with increase in incubation period. As a result, the paint became liquidified and less viscous. Secondly, the time the ball travel through the contaminated paint column varied tremendously and positive in (r=0.10) relation to incubation period.

The antibacterial and preservative efficacy of phytoextracts of B. pinnatum against the activity of paint degraders is presented on Figures 3 and 4. Results obtained indicated that the extract concentration as MIC (250mg/100mL and 500mg/100mL) exhibited different degrees of toxic effect on the paint degraders. The 500mg/100mL concentration exhibited twice the toxic effect on the cells than 250mg/100mL. Pseudomonas sp (16.6-23.8cm) appeared to be the most sensitive with significant (p>0.01) inhibitory or preservative effect at 500mg/100mL. For example, on day 25, the mean effect of B.pinnatum for the isolates were Pseudomonas=23.8 > Bacillus=14.6>Micrococcus=14.3. with significant (p>0.01) shift in cell count. In each case, the cell count (MBC) significantly(p>0.01) dropped with increase in incubation period with reference to the control. The control of the test cells induced viscosity loss in latex paint by B. pinnatum phytoactive aqueous extract is presented in Figure 5.

4. Discussion

Paints composed of inorganic and organic compounds are eminent substrates for the growth and multiplication of microorganisms. Slive et al., (1999) reported that microbial flora, transient or permanent colonizing paint and painted structures depends among other factors on the chemical nature of the substrate and biochemical reactions catalyzed by the microbial species e.g. Pseudomonas, Micrococcus and Bacillus. This therefore accounts for the presence of Pseudomonas, Micrococcus and Bacillus obtained in the study.

Bryophyllum pinnatum is reported to possess a variety of secondary bioactive phytometabolites such as bryophillin, potassium malates, ascorbic, malic, citric acids, phenolic compounds, riboflavin, thiamin and niacin (Ofokansi et al., 2004). The presence of phenolic compounds and flavonoids indicates that the B.pinnatum is antimicrobial and antioxidant. Recently many authors have established that these phenolic properties of B. pinnatum were responsible for the effective treatment of Pseudomonas aeruginosa and other Gram-positive organisms' infection (Okwu, 2001, 2003, 2004). The result obtained correlate with these reports. B. pinnatum in this study demonstrated high degree of antimicrobial potency on these test organisms. The degree of antibacterial potency of B.pinnatum inhibits significant growth of the bacterial species. Consequently, reduction in growth rate significantly correlates (r = 0.05) with the decrease in paint viscosity loss. This suggests that the activities of the organisms against the paint thickener (the organic material responsible for paint body stability) was relatively inhibited and controlled by the phenolic compounds in B.pinnatum. The preservative properties of B.pinnatum on paint against bacterial contamination are considered a function of extract concentration (MIC and MBC), type of extract and incubation duration. The higher extract concentration (500mg/100mL) is considered to contain higher amount of the phenolic compounds. The higher extract concentration is considered to be responsible for the high toxic level resulting in double cell count reduction per incubation time.

5. Conclusion

Latex paint by its composition is rich in various forms of carbon that encourage bacterial growth and energy. The presence of Pseudomonas, Bacillus, and Micrococcus species as contaminants resulted in paint viscosity loss. However, the use of the phytoactive agent from Bryophyllum pinnatum extract effectively reduced the rate of this loss. Therefore, empirical formulation of the extract could be applied in paint preservation measures.
Figure 1: Determination of Viscosity Loss of Latex Paint by Bacterial Isolates

Figure 2: MIC (250mg) B. Pinnatum Extract on Bacterial Isolates: Preservative Effect of Bryophyllum Pinnatum Extract against Pseudomonas Cultures on Latex Paint

Figure 3: MIC (500mg) B. Pinnatum Extract on Bacterial Isolates
Figure 4: Preservative Effect of 500mg (MIC) of B. Pinnatum Extract on Bacterial Induced Viscosity Loss on Paint

6. References

i. Achi, O.K. (2006). Composition and antibacterial activities of Tetrapleuratetraperta Taub. pod extracts. Research Journal of Microbiology, 1(5): 416-422.

ii. Aida, P., Rosa, V., Blamea, F., Tomas, A. and Salvador, C. (2001). Paraguayan plants used in traditional medicine. Journal of Ethnopharmacology, 16: 93-98

iii. Attenburger, P., Kamper, P., Makristanthis, A., Lubitz, W. and Busse, H. J. (1996). Classification of bacteria isolated from a medical wall painting. Journal of Biotechnology, 47: 39-52.

iv. Badal, C.S. (2004). Production and purification of cellulose by Aspergillus niger fermented with paper sawmill wastes. Process Biochemistry, 39: 1871-1876.

v. Banik, R.M. and Prakash, M. (2004). Optimization of protease enzyme production. Microbiology Research, 159(2): 135-140.

vi. Bharathi, S. and Vasudevan, N. (2001). Utilization of petroleum hydrocarbons by Pseudomonas fluorescens isolated from petroleum contaminated soil. Environmental International, 26: 413-416.

vii. Bock, E. and Sand, W. (1993). The microbiology of masonry biodeterioration. Journal of Applied Bacteriology, 74: 503-514.

viii. Brooks, A.A. and Etim, L.B. (2004). Antifungal activities of leaf extract of Grassophalum crepidiodes on selected dematophytes and Candida albicans. Global Journal of Pure and Applied Sciences, 10(4): 497-500.

ix. Cho, S.H., Lee, J.W., Kim, G.H., and Seol, I.W. (1995). Development and application of natural antimicrobial agents isolated from grape-fruit seed extract. Journal of Food Hygiene and Safety, 10: 33-39.

x. Etim, L. B. and Antia, S.P. (2014). Effects of temperature and pH on bacterial degradation of latex paint in humid environment. Global Journal of Pure and Applied Sciences, 20: 89-94.

xi. Etim, L. B., Godwin, Attah Obande, Chuku, Aleruchi and V.E. Bassey (2016). Antibacterial potential of Bryophyllum pinnatum leaf extracts on bacteria obtained from infected infant respiratory tract. British Journal of Pharmaceutical Research 10(6): 1-8.

xii. Gibb, C.F., Paugh, K.B. and Andrew, A. (2001). Quantitative studies in marine biodegradation of oil. Royal Society of London Series B, 188: 83-94.

xiii. Naranjo, L., Urbina, H., De Sisto, A. and Leon, V. (2007). Isolation of autochthonous non-white rod fungi with potential for enzyme degrading of Venezuelan extra-heavy crude oil. Biocatalytic and Transformation, 25(24): 341-349.

xiv. Nicell, J.A. (2001). Environmental application of enzymes. Interdisciplinary Review, 3: 14-41.

xv. Ofokansi, K.C., Estimone, C.O. and Anele, C.K. (2005). Evaluation of in-vitro combined antibacterial effects of the leaf extracts of Bryophyllum pinnatum (Fam. Labiate). Plant product Resources Journal, 9: 23-27.

xvi. Okeke, P.N., Osuwa, J.C., Menkiti, A.I., Ofoegbu, C.O. and Emerebe, H.U. (2006). Preliminary Practical Physics manual. 2nd Edition, pp 105-108. Nigerian University Physics Series: Vol. 2.

xvii. Okwu, D. E. and Josiah, C. (2006). Evaluation of the chemical composition of two Nigerian medicinal plants. African Journal of Biotechnology, 5(4): 357-361.

xviii. Rolleke, S., Muyzer, G., Wawar, C., Wanner, G. and Lubitz, W. (1996). Identification of bacteria in a biodegraded wall painting by denaturing gradient gel electrophoresis of P.C. R-ampliroid gene fragments coding for 16 rRNA. Applied Environmental Microbiology, 62: 2059-2065.

xix. SAS institute (2000). SAS/SAT user’s Guide: 8; 1, 2 and 3. SAS Institute, Gray, NC, USA.

xx. Shahidi, B.G. H (2004). Evaluation of antibacterial properties of Iranian medicinal plants against Micrococcus aureus, Serratia marcesceus, klebsiella pneumonia and Bordella bruchoseptica. Asian Journal of Science, 3(1) 82-86.