Medical and Surgical Treatment of Reproductive Outcomes in Polycystic Ovary Syndrome: An Overview of Systematic Reviews

Moustafa A. Gadalla, M.Sc.1, 2*, Robert J. Norman, M.D., FRANZCOG.2, Chau T Tay, Ph.D.3, 4, Danielle S. Hiam, Ph.D.5, Angela Melder, Ph.D.3, Jyotsna Pundir, M.D., Ph.D.6, Shakila Thangaratinam, Ph.D.7, Helena J Teede, Ph.D.3, 4, Ben W. J. Mol, M.D., Ph.D.2, 8, Lisa J. Moran, Ph.D.2, 3

1. Women’s Health Hospital, Department of Obstetrics and Gynaecology, Assiut University, Assiut, Egypt
2. Robinson Research Institute, Discipline of Obstetrics and Gynaecology, University of Adelaide, Adelaide, Australia
3. Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Victoria, Melbourne, Australia
4. Monash Diabetes and Endocrinology Units, Monash Health, Victoria, Melbourne, Australia
5. Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Australia
6. Centre of Reproductive Medicine, St Bartholomew’s Hospital, London, United Kingdom
7. Women’s Health Research Unit, Barts and the London School of Medicine and Dentistry, Queen Mary University London, London, United Kingdom
8. Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Melbourne, Australia

Abstract

Polycystic ovary syndrome (PCOS) is a common, complex condition that affects up to 18% of reproductive-aged women, causing reproductive, metabolic and psychological dysfunctions. We performed an overview and appraisal of methodological quality of systematic reviews that assessed medical and surgical treatments for reproductive outcomes in women with PCOS. Databases (MEDLINE, EMBASE, CINAHL PLUS and PROSPERO) were searched on the 15th of September 2017. We included any systematic review that assessed the effect of medical or surgical management of PCOS on reproductive, pregnancy and neonatal outcomes. Eligibility assessment, data extraction and quality assessment by the Assessing the Methodological Quality of Systematic Reviews (AMSTAR) tool were performed in duplicate. We identified 53 reviews comprising 44 reviews included in this overview; the majority were moderate to high quality. In unselected women with PCOS, letrozole was associated with a higher live birth rate than clomiphene citrate (CC), while CC was better than metformin or placebo. In women with CC-resistant PCOS, gonadotrophins were associated with a higher live birth rate than CC plus metformin, which was better than laparoscopic ovarian drilling (LOD). LOD was associated with lower multiple pregnancy rates than other medical treatments. In women with PCOS undergoing in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI), the addition of metformin to gonadotrophins resulted in lower ovarian hyperstimulation syndrome (OHSS), and higher pregnancy and live birth rates than gonadotrophins alone. Gonadotrophin releasing hormone (GnRH) antagonist was associated with less OHSS, gonadotrophin units and shorter stimulation length than GnRH agonist. Letrozole appears to be a good first line treatment and gonadotrophins, as a second line treatment, for anovulatory women with PCOS. LOD results in lower multiple pregnancy rates. However, due to the heterogeneous nature of the included populations of women with PCOS, further larger scale trials are needed with more precise assessment of treatments according to heterogeneous variants of PCOS.

Keywords: Infertility, Polycystic Ovary Syndrome, Review, Therapeutics, Treatment Outcome

Introduction

Polycystic ovary syndrome (PCOS) is one of the most important dilemmas in reproductive medicine. PCOS is a member of the World Health Organization group II ovulation disorders, and has a 9-18% prevalence among reproductive-aged women (1) and nearly 80% among infertile anovulatory women (1, 2). There is an ongoing debate related to its definition, aetiology, diagnosis and treatment for its clinical phenotypes (3). Since first described by Stein and Leventhal (4), a number of reports and meetings have suggested diagnostic criteria for this condition (3, 5, 6). However, the criteria reported by ESHRE/ASRM in Rotterdam in 2003 are most com-
commonly used both in research and clinical care. These criteria propose that two out of three domains should be present to establish a diagnosis of PCOS. These domains are: an-/oligo-ovulation, hyperandrogenism (clinical ± biochemical) and polycystic ovary morphology on ultrasound examination, with exclusion of other causes of hyperandrogenism (6). In 2012, the National Institute of Health reinforced the need for identification of four phenotypes within the Rotterdam criteria in women with PCOS, which refer to the combination of diagnostic criteria (7). By using the possible combinations of these criteria, four different phenotypes of PCOS are now identified: i. Hyperandrogenism (clinical or biochemical) and chronic anovulation (H-CA), ii. Hyperandrogenism and polycystic ovaries on ultrasound (PCOm), but with ovulatory cycles (H-PCOm), iii. Chronic anovulation and polycystic ovaries without hyperandrogenism (CA-PCOm), and iv. Hyperandrogenism, chronic anovulation and polycystic ovaries (H-CA-PCOm). The identification of specific phenotypes in women with PCOS seems to be justified from the metabolic point (3).

This heterogeneous condition manifests with many clinical presentations, including infertility, pregnancy complications, and psychological and metabolic features. The reproductive problems associated with PCOS consist mainly of menstrual dysfunction, infertility and pregnancy complications. Many treatments are proposed by different guidelines for infertility with PCOS, and include clomiphene citrate (CC), letrozole and gonadotrophins. However, there is a lack of clarity around the relative efficacy of these different treatments. Despite the agreement between most guidelines of the importance and priority of lifestyle modification in PCOS and weight loss, where women are overweight or obese, there are still limited studies that compare lifestyle modification and pharmacological drugs for reproductive outcomes (8). With regards to pharmacological treatment in isolation, CC is recommended as first-line treatment for ovulation induction (OI) in infertile women with PCOS with the alternative treatment, letrozole, which has encouraging results in many recent trials (1, 2, 8-10). Although the insulin sensitiser metformin has been recently recommended as a first-line treatment (11), its role and specific indication are controversial (1-3). The second-line treatment is usually recommended as gonadotrophins or laparoscopic ovarian drilling (LOD) (2). Additional issues relating to treatment of reproductive outcomes which are still somewhat controversial include the best time to use in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) in women who failed to become pregnant after pharmacological treatment, and the potential benefit of modern techniques like in vitro maturation (IVM) (2, 3).

The aim of this review was to perform an overview to summarize and appraise the content, results and quality of systematic reviews that assess medical or surgical treatments for reproductive outcomes in women with PCOS.

Materials and Methods

Inclusion criteria

The Participant, Intervention, Comparison, Outcomes and Studies (PICOS) framework was used for this review. This overview is part of a larger overview of systematic reviews. For this broader overview, we included any systematic review or meta-analysis where the assessment or management of PCOS was the primary focus of the review, either as interventions in PCOS or a comparison of women with and without PCOS for a specific outcome. Exclusion criteria were studies where PCOS was a secondary condition assessed as part of a broader topic. For this specific overview, we included any systematic review that assessed the effect of medical or surgical management of PCOS on reproductive outcomes. The specific inclusion criteria were: i. Published from 2009 onwards, as this was the date of publication of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement as a guideline for conducting systematic reviews (12), ii. Must have included a search strategy that contained at least key words or terms, iii. Must include the number of identified and included articles, and iv. The review needed to conduct some form of quality appraisal of the articles. The comparisons term was not applicable in this review context. The outcomes assessed were reproductive outcomes, specifically live birth, clinical pregnancy, miscarriage, ovulation, multiple pregnancy, menstrual cycle frequency, follicular size, pregnancy related outcomes (gestational diabetes, pregnancy-induced hypertension and pre-eclampsia), neonatal outcomes, costs and side effects. Only articles published in English were included. The protocol is registered in the International Prospective Register of Systematic Reviews PROSPERO (CRD42016052649).

Article selection

A comprehensive database search was conducted on the 17th of October 2016, which was last updated on 15th September 2017. The following electronic databases were used to identify relevant published literature: Medline in-process and other non-indexed citations [Ovid MEDLINE(R) In-Process & Other Non-Indexed Citations, Ovid MEDLINE(R) Daily and Ovid MEDLINE(R) 1946 to Present]; EMBASE (EBM Reviews - Cochrane Database of Systematic Reviews 2005 to September 15, 2017, EBM Reviews - ACP Journal Club 1991 to September 2017, EBM Reviews - Database of Abstracts of Reviews of Effects 1st Quarter 2016, EBM Reviews - Cochrane Central Register of Controlled Trials September 2017, EBM Reviews - Cochrane Methodology Register 3rd Quarter 2012, EBM Reviews - Health Technology Assessment 4th Quarter 2016, EBM Reviews - NHS Economic Evaluation Database 1st Quarter 2016); and CINAHL PLUS. The search strategy is documented in Supplementary Appendix 1 (See Supplementary On-
line Information at www.celljournal.org). This search was modified for EMBASE and CINAHL using their subject headings instead of the MeSH subject headings. The International Prospective Register of Systematic Reviews PROSPERO (http://www.crd.york.ac.uk/PROSPERO/) was additionally searched on the 15th September 2017 using the key words “PCOS” or “polycystic ovary syndrome”. In addition, experts in the field were asked to provide any potentially relevant studies for consideration. Two independent reviewers, who were not blinded to the names of investigators or sources of publication, identified and selected the articles that met the inclusion criteria (L.J.M, D.H or C.T.T). Disagreements between reviewers were discussed and resolved by consensus or arbitration with a third reviewer.

Data extraction

All eligible systematic reviews included were examined and extracted independently by two reviewers (L.J.M, M.G or C.T.T). Disagreements were discussed and resolved by consensus or arbitration with a third reviewer. The data extracted included information on author(s), year, country of author, inclusion criteria, study methodology, study outcomes, number of studies identified, number of participants in the review, whether a meta-analysis was conducted, and quality of identified articles in each review (as reported by the systematic review authors as overall quality of the entire study or evidence or reported as unclear if not summarized by the systematic review authors).

Data synthesis

A narrative description of the included reviews was performed. We presented results per reproductive outcome.

Quality assessment of systematic reviews

All included reviews were evaluated by two independent reviewers (L.J.M, M.G or C.T.T) using the Assessing the Methodological Quality of Systematic Reviews (AMSTAR) tool (13, 14). Disagreements were discussed and resolved by consensus or arbitration with a third reviewer. The AMSTAR tool contains 11 items to appraise the methodological aspects of the systematic reviews. Each item was scored 1 for “yes” and 0 for “no” or “not applicable” with a total score range from 0 to 11. The methodological quality for each review was classified as low [≤ 3], moderate [4-7] and high [8-11] (15).

Results

Characteristics of included reviews

The search yielded 978 citations, with 60 citations identified from PROSPERO and one citation identified from expert assessors, for a total of 1039 citations. There were 831 citations that remained after removal of duplicates. Based on a priori selection criteria, screening for title or abstract identified 276 articles for assessment of the full text. Of these, 128 articles were excluded for the following: not conducting quality assessment, not in English, no search terms detailed or no identified search strategy (Supplementary Appendix 2) (See Supplementary Online Information at www.celljournal.org). We included 139 full-text articles for our final analysis, of which 53 articles were related to the theme of medical or surgical treatment on reproductive outcomes in PCOS, with the remaining eligible articles assessed in separate overviews of systematic reviews and excluded from this specific review. These 53 articles comprised 44 reviews (Fig.1).

![Fig.1: Study selection.](image-url)
reviews such as PRISMA, Meta-analyses Of Observational Studies in Epidemiology (MOOSE), Quality of Reporting of Meta-analyses (QUORUMS) or Cochrane (16, 17, 19, 23, 25, 27, 29, 32, 34, 36, 39-46, 50, 51, 58, 59). Meta-analyses were performed in 39 reviews (18-32, 34-43, 45-50, 52-59). The systematic reviews did not apply language restrictions in 28 reviews (16, 17, 19, 20, 24-26, 28, 29, 34, 36, 38-47, 50, 53-56, 58, 59), restricted the search to articles in English in 12 reviews (18, 21, 22, 27, 32, 33, 35, 37, 48, 49, 52, 57), restricted the search to articles in English and Chinese in two reviews (30, 31) and did not state if language restrictions were applied in two reviews (23, 51). The quality of included studies in each review was not reported by authors or was not able to be easily interpreted in 31 reviews (16, 17, 20-29, 32, 36, 38, 39, 42, 43, 45-47, 50-59), low or insufficient in eight reviews (18, 31, 34, 35, 37, 40, 41, 44), low to moderate in two reviews (19, 48) and low to high in three reviews (30, 33, 49).

Quality of included reviews

The quality of the included reviews are presented in Supplementary Appendix 4 (See Supplementary Online Information at www.celljournal.org). Seven reviews were of low quality (28, 30, 33, 36, 51, 52, 58), 22 reviews were of moderate quality (16, 20-27, 31, 32, 35, 37, 38, 40, 50, 53-57, 59) and 15 reviews were of high quality (17-19, 29, 34, 39, 41-49). Twenty reviews had pre-specified their clinical question and inclusion criteria (16-19, 29, 33, 34, 39-49, 55, 59). Nineteen reviews conducted study selection and data extraction in duplicate (17-19, 21, 23, 26, 27, 29, 32, 34, 37, 39, 42-45, 50, 55, 57). Twenty-eight reviews conducted a comprehensive literature search (16-19, 21, 24-26, 28-31, 34, 38-49, 53, 54, 59). Twenty reviews included grey literature searches (16, 17, 19, 25, 26, 29, 34, 38-47, 53, 54, 59). Twenty-four reviews listed included and excluded studies (16, 17, 19, 23-27, 29, 32, 34, 38, 39, 41-46, 48-50, 57, 59). Forty reviews described the characteristics of the included studies (18-29, 32-59). Thirty-eight reviews assessed study quality (16-27, 29-35, 37-50, 54, 56, 57, 59, 60). Nineteen reviews used the scientific quality of their included studies in formulating results (18, 20-22, 24, 25, 29, 31, 32, 34, 35, 39, 40, 45-49, 57). Thirty-seven reviews combined the studies using appropriate methods (18-32, 35-43, 45, 46, 48-50, 52-59). Twenty-two reviews addressed the risk of reporting bias, and used a statistical test where appropriate (16-19, 32, 34, 35, 37-39, 41-44, 46, 47, 50, 52, 53, 55, 56, 58). Seven reviews addressed the potential for conflict of interest (16, 17, 29, 43, 47-49).

Types of interventions

Letrozole

Six reviews (three high quality (19, 39, 49) and three moderate quality (20, 27, 32) assessed interventions that contained letrozole, comprising a total of 89 trials and 14 008 participants. Of these, five assessed letrozole ± other OI drugs versus OI drugs, including letrozole alone (20, 27, 32, 39, 49) and one assessed letrozole versus LOD (19). The populations studied were women with PCOS who were treatment-naïve (27), CC resistant (32), or treatment-naïve ± CC resistant or unknown treatment status (20, 39, 49).

The meta-analyses reported statistically significant results for higher live birth, pregnancy and ovulation after letrozole compared to CC followed by timed intercourse in overall women with PCOS, and higher live birth and pregnancy after letrozole in women with PCOS and body mass index (BMI) >25 kg/m² (20, 27, 39, 49). In women with CC resistance, letrozole with or without metformin resulted in higher live births compared to CC with metformin (32, 39), letrozole resulted in higher pregnancy and ovulation than anastrozole and higher ovulation than LOD (49). Long-term letrozole (10 days) resulted in higher pregnancy than short-term letrozole (5 days) (Tables 1, 2) (49).

Review	Population	Outcomes assessed	Comparison	Outcomes with significant results
Abu Hashim et al. (32), 2015	CC resistant PCOS	Live birth, Pregnancy, Ovulation, Miscarriage, Multiple pregnancy, OHSS	Letrozole+metformin vs. CC+metformin	Live birth/woman: OR: 0.21, 95% CI: 0.05 to 0.87
Franik et al. (39), 2014	PCOS, reproductive age	Live birth, Pregnancy, Miscarriage, Multiple pregnancy, OHSS	Letrozole vs. CC (BMI >25 kg/m²), Letrozole vs. CC (with or without adjuncts followed by timed intercourse), Letrozole vs. CC (with or without adjuncts followed by IUI), Letrozole vs. CC resistant, Letrozole+metformin vs. CC+metformin	Live birth/woman: OR: 1.67, 95% CI: 1.31 to 2.11, Live birth/woman: OR: 1.64, 95% CI: 1.32 to 2.04, Pregnancy/woman: OR: 1.71, 95% CI: 1.30 to 2.25, Pregnancy/woman: OR: 1.40, 95% CI: 1.18 to 1.65, Live birth/woman: OR: 1.66, 95% CI: 1.23 to 2.22, Live birth/woman: OR: 4.5, 95% CI: 1.09 to 18.50
Table 1: Continued

Study	Type	Intervention 1	Intervention 2	Outcome 1	Outcome 2	Effect Size
He and Jiang (20), 2011	PCOS	Pregnancy/woman	Letrozole vs. CC	Mature follicles/cycle	Ovulation/cycle	RR: 1.29, 95% CI: 1.12 to 1.49
Misso et al. (49), 2012	PCOS	Live birth	Letrozole long-term (10 days) vs. Letrozole short-term (5 days)	Pregnancy/cycle	Higher in long-term (10 days)	
Rosque et al. (27), 2015	PCOS (therapy naive)	Live birth	Letrozole vs. CC	Live birth/woman	RR: 1.55, 95% CI: 1.26 to 1.90	
Abu Hashim et al. (32), 2015	CC resistant PCOS	CC resistant PCOS	CC=metformin vs. Gonadotrophins	Live birth/woman	OR: 0.33, 95% CI: 0.13 to 0.85	
Brown and Farquhar (46), 2017	WHO group 2 anovulation	Live birth	CC vs. Placebo CC vs. Gonadotrophins	Pregnancy/woman	OR: 5.91, 95% CI: 1.77 to 19.68	
Ding et al. (36), 2016	PCOS	Pregnancy/woman	Late CC vs. Early CC	Mature follicles/ cycle	MD: 1.82, 95% CI: 0.86 to 2.78	
Farquhar et al. (19), 2012	CC resistant PCOS	CC resistant PCOS	LOD vs. CC=metformin	Live birth/woman	OR: 0.44, 95% CI: 0.24 to 0.82	
Gill et al. (33), 2014	CC resistant PCOS, reproductive age	Pregnancy/woman	CC=metformin vs. CC	Ovulation/woman	OR: 0.23, 95% CI: 0.13 to 0.40	
Palomba et al. (24), 2009	PCOS	Pregnancy/woman	Metformin vs. CC=metformin	Live birth/woman	OR: 0.23, 95% CI: 0.15 to 0.34	
Siebert et al. (28), 2012	PCOS (therapy naive)	Pregnancy/woman	Metformin vs. CC	Live birth/woman	OR: 0.23, 95% CI: 0.14 to 0.37	
Tang et al. (41), 2012	PCOS	Pregnancy/woman	Metformin vs. CC=metformin	Live birth/woman	OR: 0.48, 95% CI: 0.31 to 0.73	
Thakker et al. (47), 2015	PCOS	Pregnancy/woman	NAC vs. Placebo (CC resistant PCOS)	Live birth/woman	OR: 3.0, 95% CI: 1.05 to 8.6	

Reproductive Outcomes in PCOS
Table 1: Continued

Gadalla et al.
Insulin sensitizers
Xiao et al. (30), 2012
Tang et al. (41), 2012
Feng et al. (52), 2015
Tan et al. (58), 2016
Li et al. (22), 2011
Thakker et al.(47), 2015
Al Khalifah et al. (34), 2016
Fang et al. (37), 2017
Pundir et al. (38), 2017

BMI: Body mass index; **CC:** Clomiphene citrate; **DEK:** Dexamethasone; **GDM:** Gestational diabetes mellitus; **GIT:** Gastrointestinal tract; **IUGR:** Intra-uterine growth restriction; **IOI:** Intra-uterine insemination; **LOD:** Laparoscopic ovarian drilling; **MD:** Mean difference; **NAC:** N-acetyl cysteine; **OCP:** Oral contraceptive pills; **OHSS:** Ovarian hyper-stimulation syndrome; **OR:** Odds ratio; **PCOS:** Polycystic ovary syndrome; **PH/PE:** Pregnancy induced hypertension/Preeclampsia; **RCT:** Randomized controlled trial; **FFSH:** Recombinant follicle stimulating hormone; **RR:** Risk ratio; **SMD:** Standardized mean difference; **WHO:** World Health Organization.
Table 2: Results of their interventions

Study	Interventions	Outcome 1	Outcome 2	OR (95% CI)
Bordewijk et al. (45), 2017	PCOS and anovulatory women	Live birth	Pregnancy	1.94 (1.10 to 3.44)
	Clinical pregnancy	Ovulation	FSH + metformin vs. FSH in PCOS resistant	2.31 (1.23 to 4.34)
	Multiple pregnancy	Miscarriage	FSH + metformin vs. FSH in PCOS resistant	2.46 (1.36 to 4.46)
	OHSS	Adverse effects	FSH + metformin vs. FSH in PCOS resistant	2.50 (1.60 to 3.86)
Farquhar et al. (19), 2012	CC resistant PCOS	Live birth	Pregnancy	2.47 (1.05 to 5.81)
	Ovulation	Miscarriage	LOD vs. Metformin	2.47 (1.05 to 5.81)
	Multiple pregnancy	OHSS	LOD vs. other medical treatments	2.07 (0.89 to 4.78)
Moazami Goudarzi et al. (23), 2014	CC-resistant PCOS	Live birth	Pregnancy	1.40 (1.05 to 1.83)
	Pregnancy	Ovulation	LOD vs. Metformin	2.47 (1.05 to 5.81)
	Multiple pregnancies	Miscarriage	LOD vs. other medical treatments	2.07 (0.89 to 4.78)
Palomba et al. (40), 2014	PCOS	Live birth	Pregnancy	2.26 (1.30 to 3.93)
	Ovulation	Miscarriage	LOD vs. Metformin	2.47 (1.05 to 5.81)
	Multiple pregnancy	OHSS	LOD vs. other medical treatments	2.07 (0.89 to 4.78)
Weiss et al. (29), 2015	CC-resistant and failure PCOS	Live birth	Pregnancy	2.07 (1.30 to 3.28)
	Women treated with prior metformin use	Clinical pregnancy	LOD vs. Metformin	2.47 (1.05 to 5.81)
	+/- CC	Miscarriage	LOD vs. other medical treatments	2.07 (0.89 to 4.78)
	Women with prior electrocautery of ovaries.	Multiple pregnancy	LOD vs. Metformin	2.47 (1.05 to 5.81)
	OHSS	Ovulation	LOD vs. other medical treatments	2.07 (0.89 to 4.78)
		OHSS	LOD vs. other medical treatments	2.07 (0.89 to 4.78)

Laparoscopic ovarian drilling (LOD)

Study	Interventions	Outcome 1	Outcome 2	OR (95% CI)
Farquhar et al. (19), 2012	CC resistant PCOS	Live birth	Pregnancy	1.40 (1.05 to 1.83)
	Ovulation	Miscarriage	LOD vs. Metformin	2.47 (1.05 to 5.81)
	Multiple pregnancy	OHSS	LOD vs. other medical treatments	2.07 (0.89 to 4.78)
Baghdadi et al. (56), 2012	CC resistant PCOS	Pregnancy	Ovulation	1.40 (1.05 to 1.83)
	Ovulation	Miscarriage	LOD vs. Metformin	2.47 (1.05 to 5.81)
	Multiple pregnancy	OHSS	LOD vs. other medical treatments	2.07 (0.89 to 4.78)

IUI/IVF/ICSI related interventions

Study	Interventions	Outcome 1	Outcome 2	OR (95% CI)
Luo et al. (57), 2014	PCOS undergoing COS/IUI	Live birth	Pregnancy	1.40 (1.05 to 1.83)
	Clinical pregnancy	Ovulation	GnRH antagonist + IUI vs. Control IUI	4.6 (0.9 to 8.31)
	Miscarriage	LH	GnRH antagonist + IUI vs. Control IUI	4.6 (0.9 to 8.31)
		Premature luteinization rate	GnRH antagonist + IUI vs. Control IUI	4.6 (0.9 to 8.31)
Kollman et al. (18), 2016	PCOS	Live birth	Pregnancy	1.40 (1.05 to 1.83)
	Clinical pregnancy	Ovulation	Inositol vs. Placebo	1.41 (1.05 to 1.89)
	Miscarriage	LH	IVF	1.41 (1.05 to 1.89)
	OHSS	Premature luteinization rate	Myo-inositol vs. D-chiro-inositol	2.86 (1.14 to 7.16)
		OHSS	Antagonist	2.86 (1.14 to 7.16)
		OHSS	Agonist	2.86 (1.14 to 7.16)
		OHSS	Mannitol vs. Placebo	0.63 (0.49 to 0.80)

Reproductive Outcomes in PCOS
Study	Study Design	Outcome	Intervention Comparison	Effect Size
Palomba et al.	PCOS undergoing IVF	Live birth, Pregnancy, Miscarriage, OHSS	Gonadotrophins + metformin vs. Gonadotrophins (Metformin stopping time until 12 weeks of gestation)	OR: 75.6, 95% CI: 8.03 to 711.5
Huang et al.	PCOS undergoing IVF/ICSI	Live birth, Clinical pregnancy, Miscarriage, OHSS	Metformin vs. Placebo	RR: 0.44; 95% CI: 0.26 to 0.77
Pundir et al.	PCOS undergoing IVF with or without ICSI	Live birth, Clinical pregnancy, Miscarriage, OHSS	GnRH antagonist vs. Agonist	WMD: -0.28, 95% CI: -0.43 to 0.13

Gadalla et al.

Table 2: Continued
Clomiphene citrate

Seventeen reviews, [seven high quality (19, 39, 41, 46-49), six moderate quality (16, 20, 24, 27, 32, 38) and four low quality (28, 30, 33, 36)] assessed interventions that contained CC, comprising a total of 203 trials with 26 731 participants. One review assessed CC versus LOD (19). One review assessed early follicular versus late luteal CC administration (36). The remaining 14 reviews assessed CC ± other OI drugs such as metformin, inositol, N-acetyl cysteine (NAC) and others versus other OI drugs, including CC. The populations studied were women with PCOS who were treatment-naïve (27), CC resistant (19, 32, 33) and women with PCOS who were treatment-naïve ± CC resistant PCOS or unknown treatment status.

The meta-analyses reported in overall women with PCOS that CC compared to placebo had statistically higher pregnancy and ovulation (46). Early follicular CC had higher pregnancy than late luteal CC (46) but with less mature follicles (36). Higher live birth, pregnancy, and ovulation resulted after CC compared to metformin mainly in women with BMI ≥30 kg/m² (28, 30, 41) while metformin resulted in higher pregnancy than CC in women with BMI <30 kg/m² (41). CC plus metformin was of more benefit than CC or metformin alone with regards to live birth (24), pregnancy and ovulation, but had higher gastrointestinal side effects (24, 28, 30, 33, 41). Higher live birth and pregnancy resulted after gonadotrophins compared to CC and 10 days of CC compared to 5 days of CC, respectively (46).

In women with CC resistant PCOS, gonadotrophins resulted in statistically higher live birth, pregnancy and ovulation than CC plus metformin (32, 46) which, in turn, resulted in higher live birth than LOD (19). In the same population of women, the addition of dexamethasone, NAC or contraceptive pills to CC resulted in higher live births, pregnancy and ovulation than CC alone (46, 47). Furthermore, the addition of metformin to CC resulted in more favourable outcomes compared with the addition of NAC with regards to pregnancy and ovulation. However, the cost of treatment was greater for gonadotrophins followed by LOD then CC plus metformin (19).

Gonadotrophins

Ten reviews [six high quality (19, 29, 39, 45, 46, 49) and four moderate quality (23, 32, 40, 59)] assessed interventions containing gonadotrophins, which comprised 146 trials with 18 379 participants. Two reviews assessed gonadotrophins versus LOD (19, 23). Three reviews assessed the effectiveness of adding metformin to gonadotrophins during OI (40, 45) and IVF (59). Two reviews assessed gonadotrophins versus anti-oestrogens ± adjunctive drugs (32, 46). Two reviews assessed gonadotrophins versus aromatase inhibitors (39, 49). One review assessed the effectiveness of different types of gonadotrophins (29). The populations studied were women with CC resistant PCOS (19, 23, 29, 32) and women who were treatment-naïve ± CC resistant PCOS women or unknown treatment status.

The meta-analyses reported that in women with CC resistant PCOS, gonadotrophins resulted in statistically higher live births, multiple pregnancies, and costs of short- and long-term treatment in comparison to LOD (19, 23) and higher live births, pregnancy and ovulation in comparison to CC ± metformin (32, 46), but lower pregnancy in comparison to letrozole (39). Adding metformin to gonadotrophins, compared to gonadotrophins alone, resulted in higher live birth and pregnancy in OI (40, 45) and higher live birth, implantation rate, lower miscarriage, ovarian hyperstimulation syndrome (OHSS) and number of oocyte retrieved in IVF (59). Recombinant follicle stimulating hormone (FT.) resulted in lower dose and stimulation duration than other urinary gonadotrophins in OI (29).

Insulin sensitizers

Thirty reviews (12 reviews of high quality (18, 19, 34,
39, 41, 42, 44-49), 13 reviews of moderate quality (16, 21, 22, 24, 25, 32, 35, 37, 38, 40, 53, 54, 59) and five reviews of low quality (28, 30, 33, 52, 58) assessed interventions that contained insulin sensitizers comprising 398 trials with 45 031 participants. Four reviews assessed metformin versus placebo (18, 21, 41, 42). Four reviews assessed metformin during pregnancy (52-54, 58). One review assessed the effect of pre-gestational metformin on risk of miscarriage (25). One review assessed rosiglitazone, pioglitazone, and D-chiro-inositol versus placebo (41). One review assessed metformin versus thiazolidinediones (22). One review assessed LOD versus metformin (19). One review assessed NAC versus placebo or metformin (47). One review assessed oral contraceptive pills versus metformin (34). One review assessed the benefit of adding vitamin D to metformin (37). Three reviews had CC resistant PCOS women as participants (19, 32, 33) while the others did not clarify the treatment status.

The meta-analyses reported that, overall in women with PCOS, metformin resulted in higher live births, pregnancy, and gastrointestinal side effects with lower OHSS than placebo when used in addition to IVF (18, 21, 42) and higher pregnancy, ovulation, side effects and menstrual frequency in OI (41). Metformin had higher gastrointestinal side effects than thiazolidinediones (22). In women with CC resistant PCOS, NAC resulted in higher live births, pregnancy and ovulation than placebo, but lower pregnancy and ovulation than metformin (47). Oral contraceptive pills were better than metformin in improving menstrual frequency (34). Adding vitamin D to metformin improved menstrual frequency than metformin alone (37). Inositol resulted in higher pregnancy than placebo with more benefit of myoinositol over D-chiro inositol in IVF (18), while inositol resulted in higher ovulation than placebo in OI. Roziglitazone, pioglitazone and inositol improved menstrual frequency in OI (38). In women with PCOS who became pregnant, metformin intake during pregnancy resulted in higher live birth and lower miscarriage, preterm labour, gestational hypertension, preeclampsia, gestational diabetes and intrauterine growth retardation (52-54, 58).

Laparoscopic ovarian drilling

Six reviews [four high quality (19, 32, 39, 49) and two moderate quality (23, 56)] assessed ovarian ablation therapy and LOD as an intervention in PCOS comprising 97 trials with 13 617 participants. Three reviews had participants as CC resistant PCOS (19, 23, 56).

The meta-analyses reported that LOD resulted in lower live births than CC plus metformin and gonadotrophins, respectively (19, 23), higher pregnancy than metformin alone (19), lower ovulation than letrozole (49), higher costs than CC plus metformin but lower than gonadotrophins (19) and lower multiple pregnancy rate than other medical treatments (19). Pregnancy and ovulation were higher in lean women (BMI <25 kg/m²) with CC resistant PCOS than in overweight and obese women (BMI ≥25 kg/m²) undergoing LOD (56).

Intrauterine insemination, in vitro fertilization, intracytoplasmic sperm injection related interventions

Nine reviews [three high quality (17, 18, 42)] and six moderate quality (21, 26, 31, 50, 57, 59) assessed different interventions in women with PCOS undergoing assisted reproductive techniques [intrauterine insemination (IUI), IVF/ICSI] comprising 126 trials with 12 298 participants in eight reviews and 333 cycles in the ninth review which did not report on the number of participants (57). Three reviews assessed gonadotrophin releasing hormone (GnRH) antagonist as an adjuvant intervention in controlled ovarian stimulation plus IUI (57) and in comparison with GnRH agonist during IVF/ICSI (26, 31). Three reviews assessed the effect of metformin during IVF/ICSI (21, 42, 59). Two reviews assessed the use of IVM (17, 50).

The meta-analyses reported statistically significant results for lower progesterone, luteinizing hormone (LH) and premature luteinisation rate during IUI after GnRH antagonist (57) and lesser dose, duration of gonadotrophins and OHSS rate after GnRH antagonist during IVF/ICSI . Metformin compared to placebo in IVF resulted in higher live births (18, 59), pregnancy (18, 42), lower miscarriage (59), lower OHSS (18, 21, 42, 59), and lower oestradiol (E2), gonadotrophin dose and higher implantation rate (59); however, disadvantages included more, yet mild, gastrointestinal side effects (42). Compared to placebo, inositol resulted in higher pregnancy with better results after myoinositol than D-Chiro inositol, while mannitol resulted in lower OHSS (18). IVM used in women with PCOS had higher pregnancy, lower cancelled cycles, higher implantation but lower mature oocytes than IVM in non-PCOS patients (50).

Other interventions

A low quality review reported that bariatric surgery improved menstrual frequency in women with PCOS in six trials and 264 participants (51). A high quality review reported that statins did not improve menstrual frequency or ovulation in women with PCOS not trying to conceive in four trials and 244 participants (43). A high quality review (44) assessed the use of antidepressants in women with PCOS, and identified no studies reporting on any of the primary reproductive outcomes with the exception of one RCT that reported on endocrine and metabolic outcomes between fluoxetine with sibutramine found no significant difference between both drugs (61). A moderate quality review assessed orlistat versus other anti-obesity drugs and found no difference in reproductive outcomes (55).

Discussion

We reported the first overview of systematic reviews on treatment for reproductive outcomes in women with PCOS. This review follows a process of systematic reviews proposed by the Cochrane collaboration that sum-
marizes evidence from more than one systematic review of different interventions for the same condition (62, 63). This type of review can be utilized as a rich source of data synthesis for developing and updating guidelines, and for healthcare policy makers. Our overview included 53 systematic reviews (9 older versions and 44 currently updated articles), 498 studies, and 56,057 participants. The quality of most included reviews was moderate to high, although the quality of included studies was variable.

Our results align with most current guidelines on PCOS. According to many guidelines, treatment of anovulation in PCOS should start with lifestyle modification before commencing pharmacological agents, especially in obese women with BMI >30 kg/m² (1, 3, 8, 10, 11). The first-line pharmacological agent is usually CC (2, 3, 11, 64, 65) and some guidelines propose letrozole as an alternative (1, 8, 10). Our results suggest that, overall, in women with PCOS (with or without CC resistance), letrozole resulted in higher live birth and clinical pregnancy rates than other OI drugs, especially CC. This is consistent with many reviews and RCTs (9, 20, 27, 32, 39, 49, 66-68), despite the fact that letrozole is an off-label drug in OI. Nevertheless, the issue of safety in pregnancy for both CC and letrozole has not been completely resolved. Most large retrospective studies found no evidence of any difference between these drugs (69). Metformin is recommended in many guidelines as an adjunctive treatment with CC in women with glucose intolerance and in obese women (1-3, 8, 10), while the National Institute for Health and Clinical Excellence Guidance (NICE) recommended metformin alone or with CC as a first-line treatment (11). Our results suggest that, overall, in women with PCOS, CC plus metformin also resulted in better reproductive outcomes than CC or metformin alone. The Australian National Health and Medical Research Council (NHMRC) evidence-based guidelines suggested that it is acceptable to use gonadotrophins as a first-line treatment (8). Our results suggest that the use of gonadotrophins resulted in higher live birth and clinical pregnancy rates than CC, overall, in women with PCOS.

CC is usually used for six months, which is recommended by many guidelines (1, 8, 11). After that, women are considered to be CC resistant, which necessitates a second-line treatment. Most fertility guidelines recommend low dose gonadotrophins or LOD as a second-line treatment (1-3, 8, 10, 11). CC plus metformin was also recommended by some guidelines, if not already used as a first-line treatment (8, 11). Gonadotrophins have the disadvantage of cost and increased rates of multiple pregnancies, while LOD has a risk with anaesthesia, decreased ovarian reserve, and the need to use adjuvant drugs for OI after surgery (3). Our results suggest that, in women with CC resistant PCOS, gonadotrophins resulted in better reproductive outcomes than many OI drugs with the disadvantages of increased multiple pregnancies and increased cost (19, 23, 32, 46). We found that women who used gonadotrophins had higher live birth than those who were prescribed CC plus metformin or LOD respectively, and higher clinical pregnancy and ovulation rates than CC plus metformin. CC plus metformin resulted in higher live birth rate and lower cost than LOD. Gonadotrophins are more expensive than LOD. LOD has the advantage of lower rates of multiple pregnancies compared to other interventions, such as gonadotrophins, in CC resistant PCOS (19). LOD in lean women seem to have better reproductive outcomes than in overweight and obese women.

Current recommendations state that IVF should be used in case of CC failure, which is defined by failure of conception after 6-9 months (1, 11). Our results support the current evidence for use of GnRH agonists and addition of metformin to GnRH agonist to decrease OHSS (1). There is lack of data on use of IVM in PCOS (1), which is reported by one of included reviews (17). Another review by the same author reported higher pregnancy and implantation rates with lower cancellation rate in women with PCOS undergoing IVM compared to IVM in non-PCOS women (50).

Despite the large number of reviews and RCTs that have been conducted assessing different treatments for management of reproductive outcomes in women with PCOS, there are still a considerable number of research gaps. Recently, the international evidence-based guideline for the assessment and management of PCOS has issued new recommendations for the diagnosis and management of PCOS (70). These guidelines state that letrozole should be considered first-line pharmacological treatment for OI in women with PCOS with anovulatory infertility and no other infertility factors to improve ovulation, pregnancy, and live birth rates. This is consistent with our results in this overview. They also stated that inositol (in any form) should currently be considered an experimental therapy in PCOS, with emerging evidence on efficacy highlighting the need for further research (70). Furthermore, research on the possible reasons for CC resistance and failure utilizing unified definitions is needed. This is particularly relevant given that some recent reviews revealed that the antiestrogenic effect of CC, specifically on endometrial tissue, is not enough rationale for resistance and failure (66). Furthermore, a recent crossover RCT found that there is no difference in clinical pregnancy and live birth rates between CC and letrozole when used as a second line treatment in women who failed to ovulate or conceive with CC or letrozole as first line of treatment (9).

Limitations include our search strategy with reviews published...
lished from 2009 onwards, coinciding with the PRISMA statement publication for conducting systematic reviews. While this would miss earlier reviews, later included reviews would be likely to be of higher quality and aligned with the PRISMA statement. We applied language restrictions including only articles in English, which might lead to bias in exclusion of other languages. We found insufficient data on the quality of included studies in each review. We did not perform a quality assessment of each of the individual trials within each systematic review and relied instead on the judgement of the authors which varied from cursory to comprehensive; although we note that performing a quality assessment of 498 total studies would have been an extensive task. We note that the actual effect of different treatments in each treatment status and PCOS phenotypes is still unclear. We also note wide variability in the definition of outcomes across reviews and included studies. For instance, although pregnancy was reported as clinical pregnancy in most included reviews, ongoing pregnancy was reported in some reviews (26, 45) and pregnancy was not predefined in others (22, 24, 36, 40, 51, 56). The definition of clinical pregnancy varied across the included studies within each review.

Conclusion

We report here a significant contribution to the literature in the overview and synthesis of systematic reviews that assessed medical and surgical treatments for reproductive outcomes in women with PCOS. In agreement with most recent international guidelines on management of PCOS, letrozole was superior to other OI agents as a first-line pharmacological treatment with gonadotrophins and PCOS phenotypes is still unclear. We also note wide variability in the definition of outcomes across reviews and included studies. For instance, although pregnancy was reported as clinical pregnancy in most included reviews, ongoing pregnancy was reported in some reviews (26, 45) and pregnancy was not predefined in others (22, 24, 36, 40, 51, 56). The definition of clinical pregnancy varied across the included studies within each review.

Acknowledgements

There is no financial support and Conflict of interest in this study.

Authors’ Contributions

L.J.M., D.S.H., B.W.J.M., A.M., H.J.T., S.T., J.P., R.J.N., M.A.G., C.T.T.; Participated in conception and design. L.J.M., D.S.H., C.T.T.; Participated in identification and selection of included articles. L.J.M., M.A.G., C.T.T.; Participated in data extraction and quality assessment of included articles. M.A.G.; Drafted the manuscript, revising by all authors. All authors read and approved the final manuscript.

References

1. Balen AH, Morley LC, Misso M, Franks S, Legro RS, Wijeyaratne CN, et al. The management of anovulatory infertility in women with polycystic ovary syndrome: an analysis of the evidence to support the development of global WHO guidance. Hum Reprod Update. 2016; 22(6): 687-708.
2. Thessaloniki ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Consensus on infertility treatment related to polycystic ovary syndrome. Hum Reprod. 2008; 23(3): 462-477.
3. Conway G, Dewailly D, Diamanti-Kandarakis E, Escobar-Morreale HF, Franks S, Gambineri A, et al. The polycystic ovary syndrome: a position statement from the European Society of Endocrinology. Eur J Endocrinol. 2014; 171(4): P1-P29.
4. Stein IF, Leventhal ML. Amenorrhea associated with bilateral polycystic ovaries. Am J Obstet Gynecol. 1935; 29(2): 181-191.
5. Azziz R, Carmina E, Dewailly D, Diamanti-Kandarakis E, Escobar-Morreale HF, Futterweit W, et al. The androgen excess and PCOS society criteria for the polycystic ovary syndrome: the complete task force report. Fertil Steril. 2009; 91(2): 456-488.
6. Rotterdam ESHRE/ASRM-Sponsored PCOS consensus workshop group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod. 2004; 19(1): 41-47.
7. Final Report National Institute of Health. Evidence-based Methodology Workshop on Polycystic Ovary Syndrome. Executive summary at https://prevention.nih.gov/sites/default/files/2018-06/ Evidence-based_MWS_Final_Report.pdf. 2015.
8. Evidence-based guidelines for the assessment and management of polycystic ovary syndrome. Jean Hailes for Women’s Health on behalf of the PCOS Australian Alliance; Melbourne. https://jeanhailies.org.au/contents/documents/Resources/Tools/PCOS_evidence-based_guideline_for_assessment_and_management_pcos.pdf. 2015.
9. Amer SA, Smith J, Mahar an A, Fox F, Fakis A. Double-blind randomized controlled trial of letrozole versus clomiphene citrate in subfertile women with polycystic ovarian syndrome. Hum Reprod. 2017; 32(6): 1631-1638.
10. Goodman NF, Cobin RH, Futterweit W, Glueck JS, Legro RS, Carmina E, et al. american association of clinical endocrinologists, american college of endocrinology, and androgen excess and pcos society disease state clinical review: guide to the best practices in the evaluation and treatment of polycystic ovarian syndrome--part 2. Endocr Pract. 2015; 21(12): 1415-1426.
11. National Collaborating Centre for Women’s and Children’s Health (UK). Fertility: assessment and treatment for people with fertility problems. 2016. Available from: https://www.ncbi.nlm.nih.gov/books/NBK247932/. (Feb 2013).
12. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, et al. PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol. 2009; 62(10): e1-e34.
13. Shea BJ, Grimshaw JM, Wells GA, Andersson N, Hamel C, et al. Development of AMSTAR: a measurement tool to assess the methodological quality of systematic reviews. BMC Med Res Methodol. 2007; 7: 10.
14. Shea BJ, Bouter LM, Petersen J, Boers M, Andersson N, Ortiz Z, et al. External validation of a measurement tool to assess systematic reviews (AMSTAR). PLoS One. 2007; 2(12): e135.
15. Surya V, Grande AJ, Carvalho AP, Mantibianco AL, Riera R. Overview of systematic reviews - a new type of study. Part II. Sao Paulo Med J. 2015; 133(3): 206-217.
16. Sinawat S, Buppasiri P, Lumbiganon P, Pattanittum P. Long versus short course treatment with metformin and clomiphene citrate for ovulation induction in women with PCOS. Cochrane Database Syst Rev. 2012; 10: CD006226.
17. Sristatidis CS, Vrachnis N, Creatsa M, Maheshwari A, Bhattacharya S. In vitro maturation in subfertile women with polycystic ovarian syndrome undergoing assisted reproductive technology. Cochrane Database Syst Rev. 2013; (10): CD006606.
18. Kollmann M, Martins WP, Lima ML, Craciunas L, Nastri CO, Richardson A, et al. Strategies for improving outcome of assisted reproduction in women with polycystic ovary syndrome: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2016; 48(6): 709-718.
19. Farquhar C, Brown J, Marjoribanks J. Laparoscopic drilling by diathermy or laser for ovulation induction in anovulatory polycystic ovary syndrome. Cochrane Database Syst Rev. 2012; (6): CD001122.
20. He D, Jiang F. Meta-analysis of letrozole versus clomiphene citrate in polycystic ovary syndrome. Reprod Biomed Online. 2011; 23(1): 91-96.
21. Huang X, Wang P, Tal R, Lv F, Li Y, Zhang X. A systematic review and meta-analysis of metformin among patients with polycystic ovary syndrome undergoing assisted reproductive technology procedures. Int J Gynaecol Obstet. 2015; 131(2): 111-116.
22. Li XJ, Yu YX, Liu CQ, Zhang W, Zhang HJ, Yan B, et al. Metformin vs thiazolidinediones for treatment of clinical, hormonal and metabolic characteristics of polycystic ovary syndrome: a meta-analysis. Clin Endocrinol (Oxf). 2011; 74(4): 332-339.

23. Moazami Goudarzi Z, Falahazadeh H, Aflatoonian A, Mirzaei M. Laparoscopic ovarian electrocautery versus gonadotropin therapy in infertile women with clomiphene citrate-resistant polycystic ovary syndrome: A systematic review and meta-analysis. Iran J Reprod Med. 2014; 12(8): 531-538.

24. Palomba S, Pasquali R, Oriol F Jr, Nestler JE. Metformin, clomiphene citrate or both as first-step approach in treating anovulatory infertility in patients with polycystic ovary syndrome (PCOS): a systematic review of head-to-head randomized controlled studies and meta-analysis. Clin Endocrinol (Oxf). 2009; 70(2): 311-321.

25. Palomba S, Falbo A, Oriol F Jr, Zulfo F. Effect of preconceptional metformin on abortion risk in polycystic ovary syndrome: a systematic review and meta-analysis of randomized controlled trials. Fertil Steril. 2009; 92(5): 1646-1658.

26. Pundir J, Sakera SK, El-Toukhy T, Khalfay A. Meta-analysis of GnRH antagonist protocols: do they reduce the risk of OHSS in PCOS? Reprod Biomed Online. 2012; 24(1): 6-22.

27. Roque M, Tostes AC, Valle M, Sampaio M, Geber S. Letrozole versus clomiphene citrate in polycystic ovary syndrome: systematic review and meta-analysis. Gynecol Endocrinol. 2015; 31(12): 917-921.

28. Siebert TI, Viola MI, Steyn DW, Kruger TF. Is metformin indicated for subfertile women with polycystic ovary syndrome? Cochrane Database Syst Rev. 2014(11): CD006105.

29. Raval AD, Hunter T, Sluckey B, Hart RJ. Statins for women with polycystic ovary syndrome not actively trying to conceive. Cochrane Database Syst Rev. 2011; (10): CD008565.

30. Zhuang J, Wang X, Lu L, Wu T, Kang D. Antidepressants for polycystic ovary syndrome. Cochrane Database Syst Rev. 2013; (5): CD008575.

31. Bordewijk EM, Nahuiss M, Costello MF, Van der Veen F, Tsao LO, Mol BW, et al. Metformin during ovulation induction with gonadotrophins followed by timed intercourse or intrauterine insemination for subfertility associated with polycystic ovary syndrome. Cochrane Database Syst Rev. 2017; 1: CD009090.

32. Brown J, Faragouni J, Ghayaty E and other anti-oestrogens for ovulation induction in polycystic ovarian syndrome. Cochrane Database Syst Rev. 2016; 12: CD002249.

33. Thakker D, Raval A, Patel I, Walia R. N-Acetylcycteine for polycystic ovary syndrome: a systematic review and meta-analysis of randomized controlled clinical trials. Obstet Gynecol Int. 2015; 2015: 817849.

34. Missos ML, Costello MF, Garrubba M, Wong J, Hart R, Rombauts L, et al. Metformin versus clomiphene citrate for infertility in non-obese women with polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod Update. 2013; 19(1): 2-11.

35. Missos ML, Wong JL, Teede HJ, Hart R, Rombauts L, Melder AM, et al. Aromatase inhibitors for PCOS: a systematic review and meta-analysis. Hum Reprod Update. 2012; 18(3): 301-312.

36. Siristatidis C, Sergentanis TN, Vogiatzi P, Kanavids P, Cherelias C, Papapoulos N, et al. Metformin or metformin plus weight loss in women with PCOS: a systematic review and meta-analysis. PloS One. 2015; 10(8): e0134696.

37. Butterworth J, Degauna J, Borg CM. Bariatric Surgery, polycystic ovary syndrome, and infertility. J Obes. 2016; 2016: 1871594.

38. Feng L, Lin XF, Wan ZH, Hu D, Du YK. Efficacy of metformin on pregnancy complications in women with polycystic ovary syndrome: a meta-analysis. Gynecol Endocrinol. 2015; 31(11): 833-839.

39. Zeng XL, Zhang YF, Tian Q, Xue Y, An RF. Effects of metformin on pregnancy outcomes in women with polycystic ovary syndrome: a meta-analysis. Medicine (Baltimore). 2016; 95(36): e4526.

40. Zhuo Z, Wang A, Yu H. Effect of metformin intervention during pregnancy on the gestational diabetes mellitus in women with polycystic ovary syndrome: a systematic review and meta-analysis. J Obstet Gynaecol Res. 2014; 40(5): e120-e131.

41. Graff SK, Mario FM, Ziegelmann P, Spritzer PM. Effects of orlistat producing overviews of reviews. Res Synth Methods. 2010; 1(3-4): 269.
63. Becker LA OA. Overviews of reviews. In: Higgins JPT, Green S, editors. Cochrane Handbook for Systematic Reviews of Interventions. The Cochrane Collaboration; 2011. Available from: https://community.cochrane.org/book_pdf/764. (02 Nov 2018).

64. Moghetti P, Carmina E, De Leo V, Lanzone A, Orio F, Pasquali R, et al. How to manage the reproductive issues of PCOS: a 2015 integrated endocrinological and gynecological consensus statement of the Italian Society of Endocrinology. J Endocrinol Invest. 2015; 38(9): 1025-1037.

65. Vause TDR, Cheung AP; Reproductive Endocrinology and Infertility Committee. Ovulation induction in polycystic ovary syndrome. J Obstet Gynaecol Can. 2010; 32(5): 495-502.

66. Gadalla MA, Huang S, Wang R, Norman RJ, Abdullah SA, El Saman AM, et al. Effect of clomiphene citrate on endometrial thickness, ovulation, pregnancy and live birth in anovulatory women: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2018; 51(1): 64-76.

67. Wang R, Kim BV, van Wely M, Johnson NP, Costello MF, Zhang H, et al. Treatment strategies for women with WHO group II anovulation: systematic review and network meta-analysis. BMJ. 2017; 356: j138.

68. Legro RS, Brzyski RG, Diamond MP, Coutifaris C, Schlaff WD, Casson P, et al. Letrozole versus clomiphene for infertility in the polycystic ovary syndrome. N Engl J Med. 2014; 371(2): 119-129.

69. Sharma S, Ghosh S, Singh S, Chakravarty A, Ganesh A, Rajani S, et al. Congenital malformations among babies born following letrozole or clomiphene for infertility treatment. PLoS One. 2014; 9(10): e108219.

70. Teede HJ, Misso ML, Costello MF, Dokras A, Laven J, Moran L, et al. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Hum Reprod. 2018; 33(9): 1602-1618.