Abstract

Single stranded DNA binding proteins (SSBs) are vital for the survival of organisms. Studies on SSBs from the prototype, *Escherichia coli* (*EcoSSB*) and, an important human pathogen, *Mycobacterium tuberculosis* (*MtuSSB*) had shown that despite significant variations in their quaternary structures, the DNA binding and oligomerization properties of the two are similar. Here, we used the X-ray crystal structure data of the two SSBs to design a series of chimeric proteins (*m*1*β*1–*β*2, *m*1–*β*5, *m*1–*β*6 and *m*4–*β*5) by transplanting *β*1, *β*1–*β*2, *β*1–*β*5, *β*1–*β*6 and *β*4–*β*5 regions, respectively of the N-terminal (DNA binding) domain of *MtuSSB* for the corresponding sequences in *EcoSSB*. In addition, *m*1*β*1–*β*2SSW SSB was generated by mutating the *MtuSSB* specific ‘PRIY’ sequence in the β2 strand of *m*1*β*1–*β*2 SSB to *EcoSSB* specific ‘ESWR’ sequence. Biochemical characterization revealed that except for *m*1 SSB, all chimeras and a control construct lacking the C-terminal domain (ΔC SSB) bind DNA in modes corresponding to limited and unlimited modes of binding. However, the DNA on *MtuSSB* may follow a different path than the *EcoSSB*. Structural probing by protease digestion revealed that unlike other SSBs used, *m*1 SSB was also hypersensitive to chymotrypsin treatment. Further, to check for their biological activities, we developed a sensitive assay, and observed that *m*1–*β*6, *MtuSSB*, *m*1*β*2 and *m*1–*β*5 SSBs complemented *E. coli Δssb* in a dose dependent manner. Complementation by the *m*1–*β*5 SSB was poor. In contrast, *m*1*β*2ESWR SSB complemented *E. coli* as well as *EcoSSB*. The inefficiently functioning SSBs resulted in an elongated cell/filamentation phenotype of *E. coli*. Taken together, our observations suggest that specific interactions within the DNA binding domain of the homotetrameric SSBs are crucial for their biological function.

Introduction

Single stranded DNA binding protein (SSB) plays a vital role in DNA replication repair and recombination [1–5]. SSBs are found in all organisms and, besides their crucial function in DNA transactions, they protect transiently generated single stranded DNA (ssDNA) from nuclease or chemical attacks [6]. Although the architecture of SSBs from different sources differs, they all possess an oligonucleotide binding fold (OB fold) in the N-terminal domain responsible for their oligomerization and ssDNA binding. Based on their oligomeric status, SSBs can be classified into monomeric, homo-dimeric, hetero-trimeric and homo-tetrameric proteins [6–12]. The C-terminal domain of the prokaryotic SSBs possesses a conserved acidic tail important in protein-protein interactions [13–16].

SSB from *Escherichia coli* (*EcoSSB*) has been an archetype to understand the biochemical, biophysical and the structural properties of the related SSBs [6]. *EcoSSB* consists of an N-terminal domain (~115 amino acids) rich in β-sheets and a C-terminal domain without a defined tertiary structure [17,18]. The C-terminal domain can be divided into a spacer region rich in glycine and proline residues, and a highly conserved region consisting of negatively charged residues (acidic tail). *EcoSSB* functions as a homo-tetramer consisting of four OB folds and interacts with ssDNA in different binding modes. In low salt (<20 mM NaCl) and high protein to DNA ratios, only two of the four subunits bind to ~35 nucleotides in an unlimited cooperative manner to long ssDNA, known as SSB15 mode [19–22]. While in high salt (>0.2 M NaCl) and low protein to DNA ratios, all four subunits bind to ~65 nucleotides in a limited cooperative manner to polynucleotides known as SSB65 mode [19–22]. The dynamic transition between these binding modes may be relevant for the *in vivo* function of SSBs [6,23].

Unlike most other bacterial SSBs, SSBs from *Deinococcus*/*Thermus* group have been characterized to form homodimers [24–28]. However, in these SSBs, each monomer contains two OB folds. Studies with *Deinococcus radiodurans* SSB (*DraSSB*) show that the mechanism of DNA wrapping onto it is not identical to that of *EcoSSB* [27]. However, the DNA binding affinity, rate constant and association mechanisms of *DraSSB* are similar to those of *EcoSSB*. Interestingly, *DraSSB* complements *E. coli* for the essential function of SSB [26]. SSB from *Helicobacter pylori* which is closer to *EcoSSB* for its various properties is also known to function in *E. coli* [29,30].
SSB from *M. tuberculosis* (*MtuSSB*) shares ~30% identity and ~39% similarity with *EcoSSB* in its primary sequence. Although the dynamics and the mode of DNA binding to *MtuSSB* have not been studied in detail, the initial biochemical characterization has shown that like *EcoSSB*, *MtuSSB* is a homotetramer and binds to ssDNA in two modes similar to *EcoSSB* [31]. The three-dimensional structure of SSB from *M. tuberculosis* suggested significant variability in its quaternary structure. The *MtuSSB* has unique dimeric interface facilitated by the clamp structures formed by β6 strands of the interacting subunits [32]. Such structural differences were also observed in SSBs of other mycobacteria (*M. avium* and *M. leprae*) [33,34].

To further our understanding of the structure-function relationship of eubacterial SSBs, in this study, we have generated a number of chimeric SSBs by swapping different regions of *EcoSSB* and *MtuSSB* and analyzed them for their in vitro and, in vivo properties using a sensitive assay system designed in this study.

Results

Generation of chimeric SSBs

Chimeric constructs were designed based on the three-dimensional structures of *EcoSSB* and *MtuSSB* (Figure 1). Details of generation of the chimeric constructs are provided in the supporting material (Methods S1), and shown schematically is Figure 2. In our earlier study [35], we generated a chimeric *MtuEcoSSB* which has been renamed as m*1–6* (Figure 2, iii), possessing the N-terminal region (amino acids 1–130; the initiating methionine is numbered as 1) from *MtuSSB* and the C-terminal region (131–178) from *EcoSSB*. The crystal structure of *MtuSSB* [32] revealed a novel hook like structure formed by the presence of the β6 strand, an element absent from *EcoSSB* (Figure 1, i; Figure 2, i and ii). Hence, the m*1–5* SSB containing β1 to β5 strands (first 111 amino acids) from *MtuSSB* and the remainder of the sequence from *EcoSSB* (Figure 2, iv) was also designed.

In other constructs, various secondary structural elements in the N-terminal domain of *EcoSSB* were replaced with the corresponding regions of *MtuSSB* (Figure 2). The m*1–5* SSB, contained the first 73 amino acids comprising β1, β2, β3 strands and the α-helix from *EcoSSB*, and amino acids 74 to 111 comprising β4, β4*5*, β4*5* and β3 strands from *MtuSSB*, followed by amino acids 112 to the end of the protein from *EcoSSB* (Figure 2, v). In the m*1* SSB (Figure 2, vi) amino acids 6–11 in the β1 strand of *EcoSSB* were substituted with the corresponding *MtuSSB* sequence (Table 1, S3).

The above constructs possessed substitutions of *EcoSSB* regions involved in subunit-subunit interactions. Hence, we generated m*1β2* SSB wherein amino acids 21 to 45 comprising β1’ and β2 strands positioned in the exterior of the tetramer (Figure 1, ii), were exchanged with the corresponding sequences from *MtuSSB* (Figure 2, vii). The m*1β2ESWR* SSB was generated from m*1β2* SSB by replacing four amino acids of the *MtuSSB* origin at positions 39 to 42 [PRIY, in the β2 strand] with the *EcoSSB* specific sequence, ESWR (Figure 2, ix). And, a clone with deletion of C-terminal domain of *EcoSSB*, ΔC SSB (Figure 2, vi), was identified serendipitously during sequence analysis of the generated constructs.

Oligomerization status of chimeric SSBs

Analysis of the purified SSBs using native PAGE is shown in Figure 3A. On such a gel, *EcoSSB* and *MtuSSB* were shown to migrate as homotetramers [31,35]. The migration of many chimeras was comparable to *EcoSSB* or *MtuSSB* suggesting their homotetrameric nature. However, we observed diffuse migration of m*1* and m*1β2* SSBs, suggesting alteration(s) in their oligomerization/folding properties. Interestingly, introduction of *EcoSSB* specific ‘ESWR’ sequence in m*1β2ESWR* SSB in place of *MtuSSB* specific ‘PRIY’ sequence (in m*1β2* SSB), restored its mobility as a tetramer (Figure 3A, lanes 8 and 9). To further analyze the oligomerization status of the chimeric SSBs, we performed gel filtration chromatography wherein *EcoSSB* eluted as tetramer (Figure 3C, i). The oligomeric nature of other SSBs was

Figure 1. Comparison of tertiary and quaternary structures of *EcoSSB* and *MtuSSB*. (i) Tertiary structures of *EcoSSB* and *MtuSSB* are represented in green and red, respectively. The secondary structure elements including the β6, which facilitates formation of a hook like structure in *MtuSSB* [32] are as shown. (ii) Quaternary structure of *EcoSSB* highlighting the regions away from the subunit-subunit interface. A ribbon diagram of SSB (PDB 1KAW) is depicted through PyMol (http://www.pymol.org/). The region corresponding to β1’ and β2 is shown in red.

doi:10.1371/journal.pone.0027216.g001
determined from a standard plot of V_e/V_o versus log molecular weight (Figure 3B). Consistent with the diffuse mobility of $\text{m}\beta_1$ SSB in native PAGE (Figure 3A), it eluted in the void volume suggesting alteration in its oligomerization/folding properties (Figure 3C, ii). On the other hand, while a fraction of the $\text{m}\beta_1\beta_2$ SSB eluted as tetramer, its elution continued beyond the tetramer peak suggesting poor tetramerization (Figure 3C, iii). However, as expected from the native gel analysis, introduction of ESWR sequence in $\text{m}\beta_1\beta_2$ SSB (in place of PRIY sequence) restored its oligomeric status as a tetramer, and it eluted same as EcoSSB (Figure 3C, iv). Other chimeras eluted as tetramers (Figure S1). As expected, the elution profile of ΔC SSB suggested it to be tetramer but smaller in molecular weight.

DNA binding activity of chimeric SSBs

Using electrophoretic mobility shift assays (EMSA) [31,35] we observed that all SSBs formed protein-DNA complexes (Figures 4A–C). However, the complex formation with $\text{m}\beta_1$ SSB was extremely poor and detectable only at the highest concentration of the protein (Figure 4C, lanes 1–4). Also, in such assays, EcoSSB and MtuSSB have been shown to bind longer DNA oligomers in two forms corresponding to SSB$_{35}$ and SSB$_{56/65}$ binding modes of EcoSSB [31]. As a 79mer DNA was used, at higher molar ratios of SSB to DNA, two major complexes were seen with all except $\text{m}\beta_1$ SSB which showed poor binding, and the ΔC SSB showed additional complexes (compare lanes 3 and 4, with 2; 7 and 8 with 6; 11 and 12 with 10 in Figures 4A–C, respectively). However, at low SSB to DNA ratios, a single complex of mobility corresponding to SSB$_{56/65}$ was seen (compare lanes 2 with 1; 6 with 5; and 10 with 9 in Figures 4A and 4B). Highly compromised binding of $\text{m}\beta_1$ SSB (Figure 4C, lanes 1–4) is consistent with its altered oligomerization/folding properties (Figure 3). However, the DNA binding ability of $\text{m}\beta_1\beta_2$ SSB (Figure 4C, lanes 5 to 8) which showed weak tetramerization (Figure 3C) appeared not as compromised. The nature of the complexes seen with ΔC SSB, was not investigated. However, the presence of multiple bands (Figure 4B, lane 12) may indicate that the C-terminal domain may contribute to remodeling DNA binding predominantly in SSB$_{35}$ and SSB$_{56/65}$ modes.

Susceptibility of chimeric SSBs to chymotrypsin digestion

Chymotrypsin which cleaves at the carboxyl side of the aromatic amino acids (F, Y and W) has 14 cleavage sites in EcoSSB. While the sites within the N-terminal domain are protected by a well formed structure, the sites within the C-terminal domain are sensitive to cleavage. As shown earlier [18], the sites at 136 and 148 positions are particularly prone to cleavage, and at early time points in the reaction, two bands...
corresponding to ~14 kD and ~15 kD are seen. Upon DNA binding the conformational changes in the C- terminal domain make the site at position 136 more accessible and a single product corresponding to ~14 kD is seen [18]. We used this assay to probe for conformational changes in the chimeric SSBs upon ssDNA binding. Chymotrypsin cleavage pattern of the free and DNA bound EcoSSB (Figure 5A) was the same as reported [18]. The digestion of MtuSSB also resulted in two products migrating as a doublet; and the presence of ssDNA resulted in a single band corresponding to the lower band of the doublet (Figure 3B). The cleavage patterns of the chimeric SSBs followed the same trend, resulting in relative accumulation of the smaller product (bands marked with arrowheads) upon DNA binding (Figures 5C–E and I). The Δ C SSB lacking C terminal domain, as expected, did not result in change in the digestion pattern (Figure 5F). The m1 SSB, defective in oligomerization/folding, was more sensitive to digestion of Mtu

Table 1. List of strains, plasmids and DNA oligomers.

Strain/plasmids/DNA oligomer	Details	Reference
E. coli strains		
RDP 317	E. coli (Δssb-kan) harboring pRPZ150 (ColE1 ori, TetR)	[41], [42]
RDP 317-1	E. coli (Δssb-kan) harboring pHYDEcoSSB (ColE1 ori, CamR) whose replication is dependent upon the presence of IPTG.	This work
TG1	An E. coli K strain, F' λAM1 mph-1	[49]
BL21 (DE3)	Harbors T7 RNA polymerase gene under the control of LacI	Novagen
Plasmids		
pTrcEcoSSB	pTrc99C containing Eco-sorb ORF	[35]
pTrcEcoSSB (G114A)	pTrc99C containing Eco-sorb ORF wherein G114A mutation was incorporated to generate NheI site. This mutant was functional in the plasmid bumping assay.	This work
pTrcMtuSSB	pTrc99C containing Mtu-sorb ORF	[35]
pTrcMtuSSB (R111A)	pTrc99C containing Mtu-sorb ORF wherein R111A mutation was generated to create NheI site.	This work
pHYDEcoSSB	Derived from pHYD1621 containing IPTG dependent ColE1 ori of replication (a gift from Dr. J. Gowrishanker, CDFD, Hyderabad India); EcoRV to PstI fragment from pTrcEcoSSB was subcloned cloned into EcoI136II and PstI digested pHYD1621.	This work
pTrc m\(j1\)–j6 SSB	pTrc99C containing chimeric SSB, wherein the first 130 amino acids are from MtuSSB and the remaining (131 to 178) are from EcoSSB (renamed from MtuEcoSSB)	[35]
pTrc m\(m9\)–j5 SSB	pTrc99C containing chimeric SSB wherein the first 111 amino acids are from MtuSSB (R111A) and the remaining (112 to 176) are from EcoSSB.	This work
pTrc Δ C SSB	pTrc99C containing chimeric SSB wherein the first 113 amino acids are from EcoSSB, and the remaining (114 to 133) are due to MtuSSB or vector encoded amino acids.	This work
pTrc m\(j4\)–j5 SSB	pTrc99C containing chimeric SSB wherein the first 73 amino acids are from EcoSSB (containing R73A mutation) and the remaining (74 to 176) from m\(j1\)–j5 SSB.	This work
pTrc m\(j1\) SSB	pTrc99C containing chimeric SSB wherein the first 5 amino acids are from EcoSSB, amino acids 6 to 11 are from MtuSSB (corresponding to residues 4–9 in MtuSSB) and the remaining (12 to 178) are from EcoSSB.	This work
pTrc m\(j1\)–j2 SSB	pTrc99C containing chimeric SSB wherein the first 20 amino acids are from EcoSSB, amino acids 21 to 45 (corresponding to residues 19–43 in MtuSSB) are from MtuSSB and the remaining (46 to 178) are from EcoSSB.	This work
pTrc m\(j1\) [j2\(\text{ssb}\)] SSB	pTrc99C containing m\(j1\) [j2 [ssb]] wherein the p\(\text{PRIY}_{142}\) (corresponding to residues 37–40 in MtuSSB) of m\(j1\) [j2 SSb] was changed with EcoSSB specific sequence p\(\text{ESWR}_{142}\).	This work
pET11D	pET11D (ColE1 ori, Amp\(^\text{R}\)). A T7 RNA polymerase based expression vector.	Novagen
pET m\(j1\)–j6 SSB	pET11D containing m\(j1\)–j6 SSB	This work
pET m\(j1\)–j5 SSB	pET11D containing m\(j1\)–j5 SSB	This work
pET m\(j4\)–j5 SSB	pET11D containing m\(j4\)–j5 SSB	This work
pET m\(j1\) SSB	pET11D containing m\(j1\) SSB	This work
pET ΔC SSB	pET11D containing ΔC SSB	This work
pUC m\(j1\) SSB	Eco32I-HindIII fragment from pTrc m\(j1\) SSB was mobilized to EcoI136II and HindIII digested pUC18R (Amp\(^\text{R}\), multicopy plasmid).	This work
pBAD/His B	pBAD/Hisb plasmid (ColE1 ori, Amp\(^\text{R}\)). An expression vector containing arabinose inducible promoter.	Invitrogen
pBAD ΔC SSB	pBAD/Hisb containing ΔC SSB	This work
pBAD m\(j4\)–j5 SSB	pBAD/Hisb containing m\(j4\)–j5 SSB	This work
pBAD m\(j1\) SSB	pBAD/Hisb containing m\(j1\) SSB	This work
pBAD m\(j1\) [j2\(\text{ssb}\)] SSB	pBAD/Hisb containing m\(j1\) [j2 [ssb]]	This work
pBAD m\(j1\) [j2\(\text{ssb}\)] SSB	pBAD/Hisb containing m\(j1\) [j2 [ssb]]	This work
DNA oligomer		
79 mer ssDNA	gcactagtgcggatagccccctttttctgactgccgggaattgcaacggaattggaatggctggctgc 3’	This work

doi:10.1371/journal.pone.0027216.t001
digestion. And, consistent with its poor DNA binding (Figure 4C) it did not show a relative accumulation of the smaller sized product upon DNA binding (Figure 5G). While mβ1β2 SSB (Figure 5H) was somewhat more sensitive to chymotrypsin than the other constructs (Figures 5A–E), substitution of the PRIY sequence in its β2 strand with ESWR (in mβ1β2ESWR SSB) rescued it from its protease sensitivity (Figure 5I), as it did its oligomerization and DNA binding properties (Figure 3A, lanes 8 and 9; 3C, iii and iv; and Figure 4C, lanes 5–12). These observations lend further support to the observations (Figures 3 and 4) that mβ1 and mβ1β2 SSBs suffer from structural alterations.

Fluorescence titration of SSBs

Fluorescence reverse titrations have been used to determine the binding site sizes of SSBs [19–22,27]. We performed such experiments to determine the kinetic parameters for DNA binding to various SSBs using poly (dT) in 50 and 200 mM NaCl. Except for mβ1 SSB which revealed altered structure, highly compromised DNA binding, and high sensitivity to chymotrypsin (Figures 3, 4, 5), other SSBs resulted in similar fluorescence quenching (Figure S2). We then processed these data to estimate values of maximal fluorescence quenching (Qmax), binding site size (n), binding constant (Kobs) and co-operativity (ω) for each of the chimeras except for mβ1 SSB (Table 2). The values of Qmax, n and ω of EcoSSB, MtuSSB and the other SSBs were comparable.

As reported previously [19], we observed that the binding site size of EcoSSB increased from 50 to 68 when NaCl concentration was changed from 50 mM to 200 mM, respectively. On the contrary, MtuSSB did not show a similar increase in binding site size upon increase in salt concentration. Binding site size of MtuSSB was observed to be 72 in 50 mM NaCl and it changed to 76 in 200 mM NaCl. The chimeric SSBs (except mβ1β2ESWR SSB) exhibited comparable binding site sizes in the presence of 200 mM NaCl. At 50 mM salt, ssDNA binding with mβ1β2, mβ1β2ESWR, mβ1β6 SSBs showed binding site sizes comparable to EcoSSB. The binding site sizes of mβ1β5, mβ4β5 and ΔC...
SSBs were 30, 32 and 36, respectively in 50 mM salt. DNA binding experiments in the presence of 50 mM and 200 mM NaCl suggested that MtuSSB may follow a different DNA binding path than the EcoSSB.

In vivo complementation analysis of the chimeric SSBs

To further characterize the chimeric SSBs, it was of interest to determine if they complemented E. coli for the in vivo function of SSB. We first used the ‘plasmid bumping’ method [35,41; and Methods S2] where the test ssb construct (in a ColE1 ori plasmid, AmpR) was introduced in a Δssb E. coli strain harboring pBAD (KanR) to design a series of chimeric SSBs, which complement E. coli Δssb strain with variable efficiencies. One of the constructs, mβ1β2ESWR SSB, caused a notable filamentation phenotype with increased number of nucleoids per cell, as revealed by the DAPI staining (Figure 8D). Importantly, the morphology of E. coli cells harboring mβ1β2ESWR SSB was very similar to those harboring wild-type EcoSSB (Figures 8F and 8A).

Discussion

We used the crystal structure data of EcoSSB [12] and MtuSSB [32] to design a series of chimeric SSBs, which complement E. coli Δssb strain with variable efficiencies. One of the constructs, mβ1β2ESWR SSB complements the strain as well as EcoSSB. And, while the MtuSSB, mβ1β6 SSB and mβ1β2 complement the strain weakly, they show a limited improvement in rescuing it in a
dose dependent manner as the inducer concentration is increased (Figure 7). However, under the same conditions, the rescue offered by the mb1–b5 SSB is poor. The mb4–b5, mb1 and DC SSBs do not rescue the strain for its growth highlighting the intricacies and significance of the specificity of inter-subunit interactions for a fully functional SSB. Furthermore, as the mb1–b5 and mb4–b5 SSBs are proficient in tetramerization and DNA binding, our observations suggest that the importance of inter-subunit interactions is not limited to merely provide these functions. The nature of these interactions may be crucial in allowing conformational changes (‘cross-talk’) between various regions of SSB, necessary for the in vivo function of SSBs. For example, in mb1–b5 SSB, presence of EcoSSB sequences downstream to mb1–b5 resulted in a change in the mode of DNA binding. However, an additional presence of MtuSSB sequences (b6) in mb1–b6 SSB resulted in a mode of binding comparable to EcoSSB and also resulted in better growth. Moreover, the tip of the L45 loop in EcoSSB (Figure 1A, panel ii) undergoes a conformational change of ~2 Å upon DNA binding [43]. The L45 loop at the tetramer-tetramer interface is predicted to be important for the SSB35 mode of DNA binding [12,43] and is thus important in cooperativity of SSB binding to DNA. We should say that while our fluorescence reverse titrations (Table 2)

Table 2. Kinetic parameters of SSB interaction with poly dT.

SSB constructs	Buffer A containing ~200 mM NaCl	Buffer A containing ~50 mM NaCl						
	Q_{max}	n	K_{obs}	η	Q_{max}	n	K_{obs}	Ω
EcoSSB	88.21	68.0	0.007	0.53	78.1	50	0.0013	0.55
MtuSSB	77.90	76.0	0.055	0.51	62.25	72	0.0152	0.53
mb1–b2 SSB	83.80	76.0	0.039	0.51	68.94	52	0.0013	0.55
mb1–b2_{ESWR}	85.39	64.0	0.004	0.53	71.92	46	0.0001	0.60
mb1–b6 SSB	75.69	74.0	0.029	0.52	68.83	52	0.0024	0.54
mb1–b6 SSB	81.19	72.0	0.019	0.52	80.27	30	0.0004	0.60
mT4–b5 SSB	80.08	78.0	0.057	0.51	69.93	32	0.0038	0.60
DC SSB	93.40	74.0	0.02	0.52	69.58	36	0.0004	0.58
mb1 SSB	-ND-							

Estimated binding constant (K_{obs} mM⁻¹), maximal fluorescence quenching (Q_{max}), binding site size (n) and co-operativity (η) are as shown. ND: Not determined. doi:10.1371/journal.pone.0027216.t002
do not reveal significant differences in the cooperativity of DNA binding by the SSBs, small differences, undetectable in this assay may be significant in vivo. The mβ1–β3 SSB possesses the L45 loop region from MtuSSB, and while it retains the oligomeric status and DNA binding ability, it may be compromised for in vivo cooperativity. Recent computational analysis has indeed suggested that the movement of L45 loop in EcoSSB, MtuSSB, and Streptomycetes coelicolor SSB is different [34]. However, as the mβ1–β6 SSB construct complemented E. coli for the essential function of SSB, albeit less efficiently, our observations suggest that the L45 loop movements could be influenced by the context of the neighboring sequence. This may also be a reason why the mβ1–β3 SSB lacking the MtuSSB specific region downstream of the β3 strand, is unable to offer a significant rescue of the Δssb strain of E. coli for its growth. Further studies would be required to understand the contributions of specific interactions of the L45 loop with the neighboring sequences.

Furthermore, as revealed by the native-PAGE, gel filtration chromatography and chymotrypsin digestion analyses, the mβ1 SSB wherein the β1 strand was from MtuSSB, was destabilized at least in its quaternary structure and highly compromised for DNA binding, suggesting that the β1 strand is involved in specific interactions not compensated for by the heterologous sequences from MtuSSB. Recently, the β1 strand of EcoSSB was shown to be involved in direct hydrogen bonding in monomer-monomer interactions; whereas the same region in MtuSSB establishes water mediated hydrogen bonds [34]. Replacement of β1β9 and β2 strands of EcoSSB with those from MtuSSB (in mβ1β9β2 SSB) also resulted in structural alterations (Figure 3). However, unlike the mβ1 SSB, the mβ1β9β2 SSB is able to bind DNA and resist complete digestion by chymotrypsin (Figures 4C; 5G and 5H). Interestingly, micromanipulation of this construct by introduction of EcoSSB specific ‘ESWR’ sequence (in place of the MtuSSB specific ‘PRIY’) important for oligomerization of SSB [34],

Figure 6. Functional analysis of SSBs. (A) Transformants of chimeric SSB constructs in E. coli RDP 317-1 in the presence of 0.02% arabinose (and absence of IPTG). Panels: (i) pBAD-EcoSSB, (ii) pBAD-MtuSSB, (iii) pBAD-mβ1–β6, (iv) pBAD-mβ1–β5, (v) pBAD-mβ4–β5, (vi) pBAD-ΔC, (vii) pBAD-mβ1, (viii) pBAD-mβ1β2, and (ix) pBAD-mβ1β2-ESWR. (B) Expression analysis of SSBs in E. coli TG1. SDS-PAGE analysis of 10 μg total cell proteins of the transformants harboring SSB constructs as indicated on top of the gel. (C) Immunoblot analysis of 10 μg total cell proteins of transformants as indicated on top of the blot using antibodies against MtuSSB and EcoRRF (host protein used as loading control). Lane M, is the marker lane containing 80 ng and 180 ng of MtuSSB and EcoRRF, respectively. (D) Streaking of the overnight cultures of the various transformants obtained in panel (A) on LB-agar containing Kan, Amp and arabinose (0.0–0.2%) and incubated at 37°C for ~12 h. Sectors: 1, pBAD-EcoSSB; 2, pBAD-MtuSSB; 3, pBAD-mβ1–β6; 4, pBAD-mβ1–β5; 5, pBAD-mβ1β2; and 6, pBAD-mβ1β2-ESWR. (E) Cell viability of RDP 371-1 supported with various SSB constructs. Colony forming units (cfu) were determined at 6, 12, 18 and 24 h of the culture growth.

doi:10.1371/journal.pone.0027216.g006
Figure 7. Growth of *E. coli* RDP317 (Δssb:kan) supported by various SSBs in the absence (panel i) or presence of 0.002, 0.02 or 0.2% arabinose (panels ii–iv, respectively). Averages (±SEM) of the growth of three independent colonies are plotted. doi:10.1371/journal.pone.0027216.g007

Figure 8. Microscopic observations of *E. coli* Δssb:kan supported by various SSB constructs. Phase contrast, and DAPI stained images, as marked, are shown on the left and right sides, respectively of each panel. doi:10.1371/journal.pone.0027216.g008
converted the new chimera, mβ1'β2ESWR SSB, into a more efficient protein (Figures 3, 5, 7 and 9).

In EcoSSB, W40 and W54 are important for DNA binding. In MutSSB, these residues are replaced by I39 and F54. The model of MutSSB-ssDNA reveals that the absence of W54 in MutSSB is compensated for by W60. Also, there are ten basic residues in MutSSB as opposed to six in EcoSSB. Additional ionic residues are predicted to compensate for the absence of W40 of EcoSSB. Even though the DNA binding properties of EcoSSB, MutSSB, and various nonfunctional chimeras are similar, the precise mode of DNA binding in them may be different due to alteration of the residues crucial in determining the mode of DNA interactions [32]. And, as is evident from the elongated cell/filamentation phenotypes of MutSSB, mβ1–β6, mβ1'β2 and mβ1–β5 SSBs, even the minor deficiencies in the varied DNA transaction activities of SSB may be significant from the in vivo perspective.

It had been reported that overexpression of DNA SSB in E. coli results in elongated cell phenotype [44], which appeared unlikely due to a marginal overexpression (1.2 to 1.5 fold) of SSB gene product known to cause inhibition of cell division. In our studies, the level of expression of mβ1–β3 SSB is the same as those of MutSSB or mβ1–β6 SSB (Figure 6C). However, among these while the mβ1–β5 SSB caused a filamentation phenotype, the other two (MutSSB and mβ1–β6 SSB) resulted in a milder phenotype of elongated cells. Also, the level of expression of EcoSSB, and mβ1'β2ESWR SSBs (readily detected by commassie blue staining of SDS-PAGE, Figure 6B) is much higher than that of MutSSB, mβ1–β6, or mβ1–β5 SSBs (immunoblotting was needed for their clear visualization, Figure 6C). However, neither the EcoSSB nor the mβ1'β2ESWR SSB result in either an elongated cell or filamentation phenotypes. Taken together, these observations suggest that, at least in our study, the elongated cell/filamentation phenotype is not due to overexpression of SSB, but rather due to inefficient function of SSB. In fact, in a more recent report [45], it was observed that when the SSB levels were decreased, it resulted in a filamentation phenotype in E. coli. Importantly, further studies using mβ1–β5 SSB may prove useful in understanding the mechanism of filamentation phenotype in E. coli.

Finally, a recent study on DnaSSB having only two C-terminal tails, showed that it complemented E. coli for its essential function of EcoSSB in the ‘plasmid bumping’ assay. Hence, it was somewhat surprising that using the same assay, both in our earlier study [35] as well as the present study, we failed to see complementation of E. coli Δssb strain by MutSSB or some of the chimeric SSBs. Likewise, despite the fact that the DNA binding domain of HmtSSB shared similarity with the corresponding domain of EcoSSB, a chimera wherein the DNA binding domain of EcoSSB was replaced with the corresponding domain of HmtSSB [46,47] failed to function in E. coli [48]. At least, in the case of MutSSB and mβ1–β6 SSB (and the other constructs), it is now clear that the conditions used for the ‘plasmid bumping’ assay did not overcome the fitness disadvantage for the E. coli Δssb strains to sustain exclusively on these SSBs (as opposed to those harboring both the EcoSSB and the test SSB). Importantly, the new assay developed in this study, overcomes the fitness disadvantage of a weakly functioning SSB by selective blocking of the replication of the parent plasmid by (i.e. by withdrawal of IPTG needed for the replication of pHYDE-SSB). In fact, this assay allowed us to detect in vivo functioning of even the mβ1–β5 SSB, wherein the total viable counts, at saturation, were about three orders of magnitude lower than the strain harboring EcoSSB. Also, this assay has the advantage of not requiring multiple sub-culturing to bump out the original EcoSSB construct. Thus, we believe that the assay developed in this study may be better suited to detect activities of the SSB constructs that offer weak complementation.

Materials and Methods

DNA oligomers, bacterial strains and media

DNA oligomers (Table 1, S2) were obtained from Sigma-Aldrich, India. E. coli strains (Table 1) were grown in Luria-Bertani (LB) medium. LB-agar contained 1.6% (w/v) agar (Difco, USA). Ampicillin (Amp, 100 µg ml⁻¹), kanamycin (Kan, 25 µg ml⁻¹), tetracycline (Tet, 7.5 µg ml⁻¹), or chloramphenicol (Cam, 15 µg ml⁻¹) were added to the growth media as required.

Cloning, overexpression and purification of SSBs and their analysis on native gels

To generate chimeric SSBs, EcoSSB sequences were substituted with the corresponding sequences from MutSSB (Table 1, S3, and Methods S1). SSB open reading frames were also subcloned into pET11D, pUC18R or pBAD/His B (Invitrogen) from the respective pTrc99C constructs using standard methods [49]. The pET11D based expression constructs for mβ1–β6, mβ1–β5, mβ1–β3, mβ1 and AC SSBs were introduced into E. coli BL21(DE3).

The pTrc99C based expression constructs for EcoSSB, MutSSB, mβ1'β2 SSB and mβ1'β2ESWR SSB; and the pUC18R based construct for mβ1 SSB were introduced into E. coli TG1. Cultures (1.2 L) were grown to OD₆₀₀ of ~0.5 to 0.6 at 37°C under shaking, supplemented with 0.5 mM isopropyl-β-D-galactopyranoside (IPTG) and the growth continued further for 4 h. Cells were harvested and processed [31] to obtain pure SSB preparations, estimated by Bradford’s method using BSA as standard, and stored in 50 mM Tris.HCl, pH 8.0, 0.1 mM Na₂EDTA, 500 mM NaCl and 10% glycerol. Analysis of the proteins on the native polyacrylamide gels (native-PAGE) was as described before [31].

Gel filtration analysis of SSB proteins

Oligomeric status of various SSB proteins were determined by gel filtration chromatography. Proteins were chromatographed on Superose™ 6HR 10/30 column (bed volume ~24 ml) attached to an AKTA basic FPLC (GE HealthCare Lifesciences). The column was equilibrated with buffer containing 20 mM Tris.HCl pH 8.0, 500 mM NaCl and 0.1 mM Na₂EDTA. The flow rate was maintained at 0.3 ml⁻¹ and elution profile was monitored by absorbance at 280 nm. The void volume (V₀) was determined by blue dextran and the column was calibrated using following standard molecular size markers: thyroglobulin (670 kDa), EcoSSB (76 kDa), chicken globulin (44 kDa), equine myoglobin (17 kDa), vitamin B12 (1.3 kDa). Various amounts of SSB proteins (10–200 µg) were loaded on to the column. The % of the column was found to be 7.5 ml. The elution volumes (Vₑ) of marker proteins and SSB proteins were determined and the oligomeric status of SSB proteins was determined from the plot of Vₑ/V₀ versus log of molecular size markers.

Electrophoretic mobility shift assays (EMSA)

SSBs (0.2, 2 and 10 pmol) were mixed with 5’ [³²P]-end labeled 79mer DNA (1 pmol, ~20,000 cpm) in 15 µl reactions containing 20 mM Tris.HCl, pH 8.0, 50 mM NaCl, 5% glycerol (v/v) and 50 µg/ml BSA, incubated for 30 min at 4°C and electrophoresed on 8% native-PAGE (30:0.5, acrylamide:bisacrylamide) using 1 x TBE (Tris-Borate-Na₂EDTA) for 1–2 h at 15 V cm⁻¹ in cold room, and visualized by BioImage Analyzer (FLA2000, Fuji).
Functional Characterization of SSB

Equilibrium DNA binding of SSBs was monitored by intrinsic Trp fluorescence quenching in a Fluoromax-4 spectrophotofluorometer (HORIBA Jobin Yvon). SSBs (0.1 μM) were taken in 450 μl buffer A (20 mM Tris.HCl, pH 8.0, 0.1 mM Na2-EDTA) containing 200 mM NaCl or 50 mM NaCl in 0.5 ml cuvettes, poly(dT) was denatured DNA. The DNA was prepared by digestion of 1m MC a Cl2 and 5% glycerol (v/v), incubated for 30 min on ice. The reactions were initiated by adding ~100 ng chymotrypsin (Amresco) for various times at 37°C, stopped by adding 1× SDS sample loading dye and heating at 90°C for 5 min, and analyzed on SDS-PAGE (17.5%) followed by coomassie brilliant blue staining.

Fluorescence titrations

Equilibrium DNA binding of SSBs was monitored by intrinsic Trp fluorescence quenching in a Fluoromax-4 spectrophotofluorometer (HORIBA Jobin Yvon). SSBs (0.1 μM) were taken in 450 μl buffer A (20 mM Tris.HCl, pH 8.0, 0.1 mM Na2-EDTA) containing 200 mM NaCl or 50 mM NaCl in 0.5 ml cuvettes, poly(dT) was denatured DNA. The DNA was prepared by digestion of 1m MC a Cl2 and 5% glycerol (v/v), incubated for 30 min on ice. The reactions were initiated by adding ~100 ng chymotrypsin (Amresco) for various times at 37°C, stopped by adding 1× SDS sample loading dye and heating at 90°C for 5 min, and analyzed on SDS-PAGE (17.5%) followed by coomassie brilliant blue staining.

Fluorescence titrations

Equilibrium DNA binding of SSBs was monitored by intrinsic Trp fluorescence quenching in a Fluoromax-4 spectrophotofluorometer (HORIBA Jobin Yvon). SSBs (0.1 μM) were taken in 450 μl buffer A (20 mM Tris.HCl, pH 8.0, 0.1 mM Na2-EDTA) containing 200 mM NaCl or 50 mM NaCl in 0.5 ml cuvettes, poly(dT) was denatured DNA. The DNA was prepared by digestion of 1m MC a Cl2 and 5% glycerol (v/v), incubated for 30 min on ice. The reactions were initiated by adding ~100 ng chymotrypsin (Amresco) for various times at 37°C, stopped by adding 1× SDS sample loading dye and heating at 90°C for 5 min, and analyzed on SDS-PAGE (17.5%) followed by coomassie brilliant blue staining.

Fluorescence titrations

Equilibrium DNA binding of SSBs was monitored by intrinsic Trp fluorescence quenching in a Fluoromax-4 spectrophotofluorometer (HORIBA Jobin Yvon). SSBs (0.1 μM) were taken in 450 μl buffer A (20 mM Tris.HCl, pH 8.0, 0.1 mM Na2-EDTA) containing 200 mM NaCl or 50 mM NaCl in 0.5 ml cuvettes, poly(dT) was denatured DNA. The DNA was prepared by digestion of 1m MC a Cl2 and 5% glycerol (v/v), incubated for 30 min on ice. The reactions were initiated by adding ~100 ng chymotrypsin (Amresco) for various times at 37°C, stopped by adding 1× SDS sample loading dye and heating at 90°C for 5 min, and analyzed on SDS-PAGE (17.5%) followed by coomassie brilliant blue staining.

Estimation of binding constant (K_{ob}, mM$^{-1}$), maximal fluorescence quenching (Q_{max}), binding site size (n) and co-operativity (ω)

These parameters were estimated by fitting a non-linear least squares isotherm onto the data-points obtained by reverse fluorescence titration experiments. We used the binding curve fitting protocol [36] and estimated the above parameters by performing least squares minimization using the ‘Solver’ tool added in Microsoft Excel [37]. The equations applied to obtain initial values for K_{ob}, Q_{max} and ω are as follows:

$$L_b(i) = \frac{Q_{obs}(i)}{Q_{max}}L_r(i),$$

where $L_b(i)$ = protein bound to DNA, $L_r(i)$ = total protein concentration, $Q_{obs}(i)$ = observed fluorescence quenching, Q_{max} = maximal fluorescence quenching

$$v(i) = L_b(i)/D_{exp}(i),$$

where $v(i)$ = moles of bound ligand per mole of total lattice residues, $D_{exp}(i)$ = i^{th} experimental total nucleic acid concentration.

These values are substituted into the McGhee-von Hippel model (McGhee & von Hippel, 1974), as modified by Lohman and Mascotti (1992) to include both noncooperative and cooperative binding, to obtain the concentration of free protein, $L_f(i)$:

$$L_f(i) = v(i)\left(\frac{K_{ob}[1-m(i)][2\omega[1-m(i)]/[2\omega-1]\times[1-m(i)]+v(i)+R]}{[1-(n+1)v(i)+R]/[2[1-nv(i)]]^2}\right)^{1/n-1}$$

where $\omega = \left(1 - (n + 1)v(i))^2 + 4\omega v(i)[1-nv(i)] \right)^{1/2}$

n is the site size (i.e. the number of bases occluded by binding), ω is the cooperativity parameter, and K_{ob} is the intrinsic binding constant observed at the specified pH and salt concentrations.

A new value for $L_b(i)$ is calculated from the total protein concentration,

$$L_b(i) = L_r(i) - L_f(i),$$

and the corresponding value for the total DNA concentration, $D_{exp}(i)$, is calculated using the definition of the binding density

$$D_{calc}(i) = L_b(i)/v(i),$$

$D_{calc}(i)$ is compared to the experimental value $D_{exp}(i)$, and $v(i)$ is iteratively incremented until the difference between the calculated and experimental D_i values is acceptably small (typically less than 0.01% error). The value of $Q_{obs}(i)$ which corresponds to the final $D_{calc}(i)$ [i.e. $D_{exp}(i)$], is calculated by rearrangement of eq 1:

$$Q_{obs}(i) = Q_{max}L_b(i)/L_r(i),$$

Thus, $Q_{obs}(i)$ has been calculated for a given value of $D_{exp}(i)$.

The function requires four parameters, K_{ob}, n, ω, and Q_{max}, which were optimized by nonlinear regression (Bevington & Robinson, 1992).

We report the parameters that yielded the minimum value for the sum of the squared differences between the newly calculated $Q_{calc}(i)$ and the actual $Q_{obs}(i)$.

The function requires four parameters, K_{ob}, n, ω, and Q_{max}, which were optimized by nonlinear regression [40]. The parameters reported in Table 2 yielded the minimum value for the sum of the squared differences between the newly calculated $Q_{calc}(i)$ and the actual $Q_{obs}(i)$.

Complementation analysis

The pBAD based expression constructs were introduced into E. coli RDP317-1 harboring pHYDEEoSBB (ColE1 ori, CamR) whose replication is dependent on the presence of IPTG, and the transformants selected on LB agar containing Kan, Amp and 0.02% arabinose (or Kan, Amp and 0.5 mM IPTG, as control). The isolated colonies were grown in 2 ml LB containing Kan, Amp and 0.02% arabinose to late stationary phase and streaked on LB agar containing Kan and Amp with various concentration of arabinose.

Expression analysis of SSBs

E. coli TG1 strains harboring pBAD constructs of SSBs were grown to mid log phase in 2–3 ml cultures. Aliquots (1 ml) were either not supplemented or supplemented with 0.02-0.2% arabinose, and grown further for 3 h. Cells were harvested at 5000 rpm for 5 min, resuspended in 200 μl TME (25 mM Tris.HCl, pH 8.0, 2 mM β-mercaptoethanol and 1 mM Na2-EDTA) and subjected to sonication (10 s pulses on/off; 4–5 times). The cell-free extracts were separated by centrifugation at 12000 rpm for 10 min at 4°C. Cell-free extracts (10 μg total protein) were resolved on SDS-PAGE (15%). Expression of EoSBB, mB4-mB5, ΔC, mB1, mB1’2, mB1’2susw could be detected by coomassie blue staining. For a clear detection of
Functional Characterization of SSB

Supporting Information

Methods S1 Generation of chimeric constructs of SSB. (DOC)

Methods S2 Plasmid bumping experiment. (DOC)

Figure S1 The gel filtration chromatography elution profiles of EoSSB, MnaSSB, mβ1–β6 and mβ1–β5 constructs, the resolved proteins were electroeluted onto polyvinylidene difluoride membrane (PVDF, GE Healthcare) and detected by immunoblotting [13]. Briefly, the membrane was blocked overnight with 5% non-fat dry milk in TBST (20 mM Tris.HCl, pH7.4, 0.2% Tween 20, 150 mM NaCl), washed thrice with TBS, incubated with rabbit anti-SecA sera (1:2000 dilution) containing anti-MnaSSB and anti-RRF (for loading control) polyclonal antibodies for 2 h at room temperature, washed thrice with TBS, incubated with anti rabbit goat IgG secondary antibody conjugated with HRP (horse radish peroxidase) at a dilution of 1:2000 for 2 h, washed again with TBS, equilibrated in 10 mM Tris.HCl, pH 7.5, 150 mM NaCl and developed with 3, 3’-diaminobenzidine (DAB) in the presence of 0.03% H₂O₂.

Growth curve analysis

Five independent cultures were inoculated in LB containing Kan, Amp and 0.02% arabinose to obtain late stationary phase cultures; and inoculated at 0.1% level in LB containing Kan, Amp and arabinose (as indicated) in the honeycomb microtitre plates. The growth was recorded at 600 nm using Bioscreen C growth reader (OY growth, Finland) at 37°C on hourly basis. Average values (±SEM) for three isolates were plotted.

Microscopic studies

Fresh transformants of *E. coli* Δssb strain harboring SSB constructs (pBAD series) were grown to log phase (7–9 h in 2 ml LB containing 0.02% arabinose). Bacterial cells were collected by centrifugation at 5,000 rpm for 5 min, washed with PBS (20 mM sodium phosphate, pH 7.2 containing 0.8% NaCl), suspended in 500 µl of 4% paraformaldehyde solution in 0.1 M sodium phosphate buffer (pH 7.2), and incubated at 4°C for ~4 h. The fixed cells were collected by centrifugation at 5000 rpm for 5 min and resuspended in 66× diluted PBS. The wells of the multi-well slide were coated with 10 µl of 0.1% (w/v) poly-L-lysine (Sigma-Aldrich) for 10 min. Poly-L-lysine was removed and 10 µl of fixed bacterial cells (appropriately diluted) were kept on the wells for 15 min, washed first with PBS and then with 66× diluted PBS. The bacterial cells were stained with 0.25 µg ml⁻¹ solution of 4’, 6-diamidino-2-phenylindole (DAPI) in 66× diluted PBS for 5 min in dark, washed with PBS followed by 66× diluted PBS, and visualized in fluorescence microscope (ZEISS, Axio Imager) with 100× objective lens.

References

1. Meyer RR, Glassberg J, Kornberg A (1979) An Escherichia coli mutant defective in single-strand binding protein is defective in DNA replication. Proc Natl Acad Sci U S A 76: 1702–1705.

2. Lieberman HB, Witkin EM (1981) Variable expression of the ssb–1 allele in different strains of *Escherichia coli* K12 and B: differential suppression of its growth curve in different strains of *Escherichia coli*. Nucleic Acids Res 25: 207–215.

3. Kumar NV, Varshney U (1997) Contrasting effects of single stranded DNA binding protein on the activity of uracil DNA glycosylase from *Escherichia coli* towards different DNA substrates. Nucleic Acids Res 25: 2336–2343.

4. Purnapatre K, Handa P, Venkatesh J, Varshney U (1999) Differential effects of poly(U) on the DNA gyrase activity of *Escherichia coli* SSB. J Biol Chem 274: 3847–3852.

5. Suck D (1997) Common fold, common function, common origin? Nat Struct Biol 4: 161–165.

6. Cadman CJ, McGlynn P (2004) PriA helicase and SSB interact physically and further details see Figure 3. (TIF)

7. Murzin AG (1993) OB(oligonucleotide/oligosaccharide binding)-fold: common structural and functional solution for non-homologous sequences. EMBO J 12: 861–867.

8. Shammu Y, Friedman AM, Parsons MR, Konigsherg WH, Steitz TA (1995) Crystal structure of a replication fork single-stranded DNA binding protein (T4 gp32) complexed to DNA. Nature 376: 362–366.

9. Suck D (1997) Common fold, common function, common origin? Nat Struct Biol 4: 161–165.

10. Chedin F, Seitz EM, Kowalczykowski SC (1998) Novel homologs of replication protein A in archaea: implications for the evolution of ssDNA-binding proteins. Trends Biochem Sci 23: 273–277.

11. Bochkarev A, Pluzhnikov RA, Edwards AM, Frappier L (1997) Structure of the single-stranded-DNA-binding domain of replication protein A bound to DNA. Nature 385: 176–181.

12. Raghunathan S, Ricard CS, Lohman TM, Waksman G (1997) Crystal structure of the hetero-termeric DNA binding domain of *Escherichia coli* single-stranded DNA binding protein determined by multiscan weaver x-ray diffraction on the selenomethionyl protein at 2.9 Å resolution. Proc Natl Acad Sci U S A 94: 6652–6657.

13. Handa P, Acharya N, Varshney U (2001) Chimeras between single-stranded DNA-binding proteins from *Escherichia coli* and *Mycobacterium tuberculosis* reveal that their C-terminal domains interact with uracil DNA glycosylases. J Biol Chem 276: 16992–16997.

14. Cadman CJ, McGlynn P (2004) PriA helicase and SSB interact physically and functionally. Nucleic Acids Res 32: 6378–6387.
31. Purnapatre K, Varshney U (1999) Cloning, over-expression and biochemical properties of the C-terminus of Escherichia coli single-stranded DNA-binding protein. Evidence for a functionally homologous domain in both the Escherichia coli and T4 DNA-binding proteins. J Biol Chem 274: 3346–3355.

30. Chan KW, Lee YJ, Wang CH, Huang H, Sun YJ (2009) Single-stranded DNA-binding protein stimulation of exonuclease I. Proc Natl Acad Sci U S A 106: 9169–9174.

29. Sancar A, Williams KR, Chase JW, Rupp WD (1981) Sequences of the sbg gene and protein. Proc Natl Acad Sci U S A 78: 4274–4278.

28. Witte G, Fedorov R, Curth U (2008) Biophysical analysis of Thermus aquaticus single-stranded DNA-binding protein. J Mol Biol 388: 508–519.

27. Kozlov AG, Eggington JM, Cox MM, Lohman TM (2010) Binding of the DNA-binding protein of Deinococcus radiodurans. BMC Microbiol 4: 2.

26. Roy R, Kozlov AG, Lohman TM, Ha T (2007) Dynamic structural rearrangements between DNA binding modes of E. coli SSB protein. J Mol Biol 369: 1244–1257.

25. Bernstein DA, Eggington JM, Haruta N, Wood EA, Cox MM (2004) The single-stranded DNA-binding protein of Deinococcus radiodurans. BMC Microbiol 4: 2.

24. Eggington JM, Haruta N, Wood EA, Cox MM, et al. (2004) Crystal structure of the Deinococcus radiodurans single-stranded DNA-binding protein suggests a mechanism for coping with DNA damage. Proc Natl Acad Sci U S A 101: 8572–8580.

23. Roy R, Kozlov AG, Lohman TM, Ha T (2007) Dynamic structural rearrangements between DNA binding modes of E. coli SSB protein. J Mol Biol 369: 1244–1257.

22. Bujalowski W, Overman LB, Lohman TM (1986) Binding modes of the Escherichia coli single-stranded DNA-binding protein. J Mol Biol 187: 603–615.

21. Lohman TM, Overman LB (1986) Salt-dependent changes in the DNA binding co-operativity of Escherichia coli single strand binding protein. J Mol Biol 187: 603–615.

20. Bujalowski W, Overman LB, Datta S (1986) Salt-dependent changes in the DNA binding co-operative of Escherichia coli single strand binding protein. J Mol Biol 187: 603–615.

19. Lohman TM, Overman LB (1986) Two binding modes in Escherichia coli single strand binding protein-single stranded DNA complexes. Modulation by NaCl concentration. J Biol Chem 261: 3594–3603.

18. Williams KR, Spicer EK, LePresti MB, Guggenheim RA, Chase JW (1983) Physical Sciences: McGraw-Hill, New York.

17. Kemmer G, Keller S (2010) Nonlinear least-squares data fitting in Excel spreadsheets. Nat Protoc 5: 267–281.

16. Lu D, Keck JL (2008) Structural basis of Escherichia coli single-stranded DNA-binding protein stimulation of exonuclease I. Proc Natl Acad Sci U S A 105: 9169–9174.

15. Buss JA, Kanura Y, Bianco PR (2008) RecG interacts directly with SSB: implications for stalled replication fork regression. Nucleic Acids Res 36: 7029–7042.

14. Andreoni F (2008) SSB and Genetic Instability. Ph.D. thesis, The University of Cambridge.

13. Bujalowski W, Overman LB, Lohman TM (1986) Two binding modes in Escherichia coli single strand binding protein-single stranded DNA complexes. Modulation by NaCl concentration. J Biol Chem 261: 3594–3603.

12. Raghunathan S, Kozlov AG, Lohman TM, Ha T (2007) Dynamic structural rearrangements between DNA binding modes of E. coli SSB protein. J Mol Biol 369: 1244–1257.

11. Kemmer G, Keller S (2010) Nonlinear least-squares data fitting in Excel spreadsheets. Nat Protoc 5: 267–281.

10. Bujalowski W, Overman LB, Lohman TM (1986) Binding mode transitions of Escherichia coli single strand binding protein-single stranded DNA complexes. Cation, amine, pH, and binding density effects. J Biol Chem 261: 4629–4640.

9. Roy R, Kozlov AG, Lohman TM, Ha T (2007) Dynamic structural rearrangements between DNA binding modes of E. coli SSB protein. J Mol Biol 369: 1244–1257.

8. Witte G, Urbanke C, Curth U (2005) Single-stranded DNA-binding protein of Deinococcus radiodurans: a biophysical characterization. Nucleic Acids Res 33: 1662–1670.

7. Kozlov AG, Eggington JM, Cox MM, Lohman TM (2010) Binding of the dimeric Deinococcus radiodurans single-stranded DNA binding protein to single-stranded DNA. Biochemistry 49: 8266–8275.

6. Kemmer G, Keller S (2010) Nonlinear least-squares data fitting in Excel spreadsheets. Nat Protoc 5: 267–281.

5. Kemmer G, Keller S (2010) Nonlinear least-squares data fitting in Excel spreadsheets. Nat Protoc 5: 267–281.

4. Kemmer G, Keller S (2010) Nonlinear least-squares data fitting in Excel spreadsheets. Nat Protoc 5: 267–281.

3. Kemmer G, Keller S (2010) Nonlinear least-squares data fitting in Excel spreadsheets. Nat Protoc 5: 267–281.

2. Kemmer G, Keller S (2010) Nonlinear least-squares data fitting in Excel spreadsheets. Nat Protoc 5: 267–281.

1. Kemmer G, Keller S (2010) Nonlinear least-squares data fitting in Excel spreadsheets. Nat Protoc 5: 267–281.