Time Efficient Data Migration among Clouds

Syeda Munazza Marium, Liaquat Ali Thebo, Syed Naveed Ahmed Jaffari
Computer System Engineering Department
Mehran University of Engineering & Technology
Sindh Pakistan
munazza.syed_1@yahoo.com,
liaquat.thebo@faculty.muet.edu.pk,
Naveed.jaffari@faculty.muet.edu.pk

Muhammad Hunain Memon
School of Information Science and Technology
University of Science and Technology of China,
Hefei, China
hunainmemon@ieee.org

Abstract—Cloud computing is one of the chief requirements of modern IT trade. Today’s cloud industry progressively dependent on it, which lead mutually abundant solutions and challenges. Among the numerous challenges of cloud computing, cloud migration is one of the major concern, and it is necessity to design optimize solutions to advance it with time. Data migration researchers attempt to move data concerning varying geographical locations, which contain huge data volumes, compact time limit and problematical architectures. Researchers aim to transfer data with minimal transmission cost and used various efficient scheduling methods and other techniques to achieve this objective. In former research struggles, numerous solutions have proposed. In our proposed work, we have explore the contextual factors to accomplish shorter transmission time. Entity Framework Core technology is utilize for conceptual modelling, mapping and storage modelling. Meant for minimum transmission cost Object Related Mapping is designated. Desired objective to achieve time efficiency during data migration has been accomplished. Results obtained when data transmission occur among azure and gearhost cloud with implementation of proposed framework with some size limitations.

Keywords-component; Cloud Computing, Cloud Migration, Entity Framework Core, Object Related Mapping, Structure Query Language, Data Migration

I. INTRODUCTION

This Cloud computing emerging very speedily as a pervasive computational paradigm. It is a software package that continuously gaining recognition and acceptance as a resource of economical and dependable computing solution and services through internet. According to the statistical analysis worth of cloud computing market is billion dollars. It has three models which are IaaS, PaaS, SaaS (Infrastructure as a service), (platform as a service) and (software as a service) respectively. Whereas IaaS provide (storage, network, CPU, etc.) as a service. Nowadays, a large number of applications store their data on storage servers, these applications include sensor networks, search engine cluster, video on demand servers and grid computing. In such application data migration among clouds demands lots of services, because every server run on different protocol.

In this paper they focused on an existing cloud computing technology and also forthcoming inquiries in this area and in different cloud environment, explore, service equivalence [35]. This researched focused on an issue called cloud migration. Transferring data from one cloud to another with efficiency and operational processing is aimed here. Proposed online lazy migration (OLM) algorithm and a randomized fixed horizon control (RFHC) algorithm as a solution for cost-minimization problem in data migration [31]. This work is dedicated to key challenges emerged when dealing with IaaS Infrastructure as a service and networking architecture of cloud like Software-defined networking (SDN) and other architectures [29]. In this paper author investigates mobile cloud architecture and present critical analysis over application model classification, decision making entities, execution delay, cloud application models and mobile synchronization policies [32]. Author addresses the security issues when upload data on cloud and migrate it (i-e privacy-preservation, accountability, Integrity, confidentiality, availability) [30]. This paper covers energy efficiency domain of cloud computing separated into two domains Server and network. It determine and show correlation among various domains of ICT related to energy efficiency [24]. Here author puts light on the cloud interoperability matter, discuss band of challenges like resource availability and scalability, avoiding vendor lock, interoperability, low latency and other legal issues [27]. This paper is a review of Cloud Computing (CC) and Information Technology Outsourcing (ITO) address variance among infrastructure and software services, utilization of cloud self-service and emerging role of IT in it and coded contributing elements which effect these decision [23]. Following paper author discourse about an important issue, the heterogeneous mobile platform for cloud computing. Performed examination on origins of Mobile Cloud Computing (MCC) heterogeneity factors like vendors, platform, network API and other features and recognized many challenges, to overcome these limitations analyses different architectures SOA, virtualization and middleware, etc. [25]. Author considers both spectrum efficiency and pricing efficiency of cloud and analyse power and interference management in cloud network. Proposed iterative algorithm as a solution to achieve steadiness [21]. This survey focused resource scheduling architecture of cloud computing. The survey classified resource scheduling in three categories (a) application layer scheduling (b) virtualization layer scheduling (c) deployment layer scheduling [19]. Increasing traffic requirements decrease energy efficiency of a cloud. To increase
energy efficiency three approaches are presented (a) MIMO (b) Dynamic spectrum access technology (c) Design frequency reuse scenario by creating smaller cells. Cloud Radio Access Network (C-RAN) with multimode support is a new model to achieve efficiency.[17]Computation offloading classify into three manners .(a) remote cloud service (b) opportunistic ad hoc cloud service and (c) connected ad hoc cloud service [18]. Virtual migration scenario is demonstrated for private cloud of organization whose applications reside on network .VM produce efficiency by removing data duplication during data migration in active and in active state [15]. Cloud resource management and scheduling performance achieve by implementing QoS-constrained algorithm on static and dynamic load which improve resource utilization and security [16]. Analyseproposed big data migration framework in current scenario using APACHE, HADOOP and SPARK utilizing various data processing schemes and machine learning algorithms, and present 5G wireless architecture prototype to process huge amount of data[9]. Flexibility of CC achieve by infrastructure virtualization. Mainly it depends on cloud computing infrastructure and design and development of application [13].

II. CLOUD COMPUTING

Earlier Network Diagrams used cloud as a symbol to represent Wide Area Network (WAN) with this context word cloud used with the internet. Now term cloud and computing used together, although cloud represent internet and computing embody services .It is blend of several amenities, which involve application development platform, shared pool resources, system management, Scalability, and multiple other services enlisted in Figure 1.

A. Key Advantages of Cloud Computing

Cloud computing delivers computational services like software integration, server space, database, storage space, backup, recovery, analytics and etc. These services are paid according to the demand and usage.

- Budget Effective: CC is cost proficient. There is no need to buy costly hardware and software. You can use them on cloud, according to Pay-as-you-go Plans. It saves money and provide well-organized resource utilization as per need.
- Universal scale: Cloud data centers are universal they are spread globally so accurate amount of bandwidth, resources can be delivered at any time. From any geographic area, one can access cloud resources.
- Throughput: Maximum output can be achieved because IT team has no burden to manage hardware, software integrity and resource handling. So entire time can be spent to achieve business goals.
- Speed: It is so quick to get access of any hardware and software service according to demand on cloud in just few minutes. So it makes so flexible to acquire such resources.
- Performance: The cloud data centers equipped with the latest technology hardware and software resources and always up to date. So these resources deliver high performance computing for your business goals.
- Trustworthiness: CC comes with backup, data recovery and disaster plan which introduce more reliability and less risk factor in computing when we are using resources from the cloud. Cloud provider network mirrored our data in a secure environment.

![Figure 1. Cloud Computing Advantages.](image)

B. Categories of Cloud Services

CC services mainly divided into three classes. Every so often is known as computing Stack because they are in stack manner. They are dependent, but different from each other explained below and shown in Figure 2.

- Infrastructure-as-a-service (IaaS): Provide virtualized computing resources like network bandwidth, processor cycles and host virtualized infrastructure using hypervisor. This class can rent infrastructure, network, server, storage, virtual machines etc. from a cloud as according to your demand. IaaS vendors include Amazon, Rackspace, Cloud Foundry.

Identify applicable sponsor/s here. (sponsors)
Platform as a service (PaaS): It deliver adaptable and optimal environment. For development purpose this service is used to develop applications on cloud platforms so there is no need to worry about databases, storage, network and other resources essential for software development some examples of PaaS vendors include Microsoft Azure, Amazon, Force.com.

Software as a service (SaaS): This distribution model is persistent, accessible, and scalable eliminate expense of Licensing, maintenance provisioning etc. It allow to use desired application over the cloud. Application maintenance, security and updates is not consumer nuisance it is a responsibility of cloud service providers. Consumer only need browser to connect with it. There are many examples of SaaS vendors – Salesforce.com, Google Apps, Ning, Cenzic and etc.

Figure 2. Cloud Computing Services

C. Equations

CC services can be deployed in three different ways.

- Public cloud: In public cloud after deployment of your data you are not responsible to manage, maintain and host your data in the datacentre.

- Private Cloud: These clouds are also called as enterprise clouds, it is managed and maintain via internal sources in a private environment.

- Hybrid Cloud): It is a combination of public and private clouds. Data can be moved among both clouds with permission it provides flexible environment.

III. IMPORTANCE OF CLOUD MIGRATION

In every organization database technology is fundamental tool. The need and importance of databases are growing with the growth of IT technology. Powerful database systems have been introduced. As the world is becoming a global village, many organizations are handling their business from remote locations. As this is an era of cloud computing organization keep their data in the cloud, moreover there is a need arise to migrate data among the clouds. Whereas Data migration is a process where we extract, clean, transform and upload data into the new platform [8].

A. Cloud Migration Process:

These few steps will be followed by cloud migration process shown in Figure 3:

![Cloud Migration Procedure](image)

Before migration below mention parameters of the database must be examined.

- Format Check: Check level of consistency and usability of the database.

- Consistent data: Exclude data which disrupt the logical consistency during the commit procedures.

- Length Check: examine length of your data when converting from one type to another.

- Range Check: Scrutinize the length of your data to assign an appropriate data type for memory efficiency.
B. **Data Migration Approaches**

Previously, many approaches used for migration of data between systems. Many tools are fabricated with DBMS to accomplish this. Migration categorizes in three classes:

(a) By tools
(b) Manual data Migration
(c) User define new System for data migration and etc.

According to research published in 2017 following technologies used by the developers cloud migration [7]. Mention in TABLE I.

TECHNOLOGIES USED FOR CLOUD MIGRATION
1
2
3
4
5
6
7

In our research, we want transfer data among clouds so we will use a third approach means we will program our user defined system to transfer data among the clouds.

![Cloud Migration Flow](image)

IV. **PROBLEM STATEMENT**

When there is data transfer between cloud rate of accuracy and speed is a main challenge. Previous researches transfer table data in columns and Obtained time efficiency [38]. In this research text files as well as image files would be transferred among cloud to accomplish time efficiency. Flow of migration strategy shown in Fig. 4.

A. **Data Integration:**

Data integration is a scenario where data from various sources combine at one place, and produce a unified and meaningful view of data. Design such a system with maximum efficiency is a challenge. It is usually characterized by an architecture.

(a) Architecture of global schema
(b) Architecture of set of sources

Global schema contains a virtual view of data while the sources contain a the real data [42]. The difficult part in designing a data integration system is to design source depiction writing, mapping and schema which require expertise knowledge to write scripts [34].

Factors for Data Integration:

(a) XML
(b) Elastic Query Processing
(c) Model Organization
(d) Data organization
(e) P2P Data Organization

• XML (extensible mark-up language): XML is one of the pillars in the development of data integration. Reason behind this is its syntactic format so data can easily share among sources. For good data integration the system should capable of handling complex XML. So it was challenging to design such a system which can interpret Nested and complex HTML tags [40]

• Elastic query processing: When a query posted on a schema and its task is to gather data from a set of sources to create a view. In order to form that view the query must be very efficient. There are many techniques available for efficient query processing, but in data integration system these techniques not completely applicable because its optimizer not contained detailed information so good path selection is not possible sometimes for query execution.

• Model Organization: For management of data integration system main task is to design a mapping route among schemas. So algebraic operation would be a solution to map between schemas, but it is a complex task.

• P2P Data Organization: Peer to peer is an architecture which shares data by means of distributed contrivance. In a distributed system complex semantic mappings are programmed individually among a set of sources and global schema network paths.

B. **Data Access Technique**

These are data mapping techniques which used to access data from one or more sources. The data can be accessed from tables in a different manner. Here we will discuss about few data mapping techniques to access data

(a) Semantic Mapping
(b) Data Driven Mapping
(c) Object Related Mapping

• Semantic Mapping: This technique detects and discover exact matches. Any logical alteration of column data cannot be handled and recognized by it. Semantic system signifies information associated with a particular domain and concepts. It can provide, capable and
potential domain dependent system schema to access data [10]. This is a process where an object, action, identities devoted to entities and algebraic sequences mapped them shown in Figure 5. The disadvantage of this technique is that it is domain dependent, does not support logic implementation of data and do not consult the metadata registry for synonym search.

Figure 5. Semantic Mapping [43]

- **Data-Driven Mapping:** This technique evaluates data two times. (a) Heuristic evaluation (b) Statistical evaluation, so it is capable of automatic discovery complex mapping routes among a set of sources for data access and data integration [10]. With this approach set of sources can produce results which contain concatenations, arithmetic calculations, logical transformations, substrings, other data manipulation operations as shown in Figure 6. It can also define and handle exceptions.

Figure 6. Data Driven Mapping [45]

- **ORM Mapping:** While need arises to transfer data between systems which are not compatible with each other, then the technique Object Relational Mapping (ORM) is used. Object oriented programming is used to create maps with relational database systems, XML repositories and other data sources, etc. Virtual object databases, create with this technique so data can be mapped and access [10]. Mostly database system deals with scalar values for extract, transform, load (ETL) and data manipulation operations so it is necessary that the object must behave both as an object and scalar value as per as need. As we have a logical representation of the object here so difficult part is that to store them in the database as an object and it should be capable of preserving their properties and its relationship with entities for reuse as scenario described in Figure 7(a) and Figure 7(b).

Figure 7(a). Object Related Mapping

V. **METHODOLOGY**

For migration of data from azure cloud to gearhost cloud so we are using ORM technique. We have interact with object for efficient data migration. We will follow the entity data model and entity frame core (EF core) technology as shown in Fig. 9 for our research work.

A. **Entity Data Model**

This model do not consider in which form data is stored it focuses on a concept regarding the structure of data.

- Conceptual Schema: This defines the scenario where we examine our entities, and decide which entity classes are required to accomplish tasks and establish relationship among them. By following these steps here we will produce a high level view of our database.
- Mapping: Both designed conceptual and storage schema will be mapped at this stage.

This model describes a relational model and data storage representation in Figure 8. Processing performed using Conceptual schema definition language (CSDL), mapping specification language (MSL), and store schema definition language (SSDL).
A. EDM Data Structure Concepts

This model do not consider in which form data is stored it focuses on a concept regarding the structure of data.

- **Entity**: Structure of data describes in EDM come under the umbrella of this concept.
- **Association**: Referential concepts in tables describe through different association type in our database. Like Primary key, Foreign key, composite key, etc.
- **Property type**: Here we define property to the pre-defined entities. Like here we will define the data type of the columns, which can be primitive or complex.

B. Data Loading

For loading data into application from your database we have three types of loadings.

(a) Lazy Loading
(b) Explicit Loading
(c) Eager Loading.

- Lazy Loading: This is default data loading. It loads the main entity reference in the query instead of related entity reference in the query, which makes it slow.
- Explicit Loading: If we disable lazy loading so we can manually add related entity references to the query using load() method.
- Eager Loading: It loads all the related entities. But after the loading of the main entity of query. For this purpose, its use includes () and then include () methods. Advantage of eager loading is that it extracts massive data in one query processing.

VI. EF CORE (ENTITY FRAMEWORK WORK)

It lightweight, extensible technology and it support cross platform development. It can also provide functionality of ORM mapper by using objects created in .net application code. It supports many database engines like SQL Server, SQLite, Oracle, Microsoft Access files, PostgreSQL and etc. In our research we are dealing with SQL Server. [34]

![Methodology Diagram]

Steps Shown in Figure 9 are the operations we have perform to achieve cloud database migration.

A. Prerequisite

Installed following application packages before starting configuration and ORM class and object defining scenario.
Microsoft.EntityFrameWorkcore.SqlServer
Microsoft.EntityFrameWorkcore.Tools -Pre
Microsoft.EntityFrameWorkcore.SqlServer.Domain [34].

B. Creating Model

We have Fluent API configuration for creating the entity model. The Model builder API used to configure it. For defining properties data annotations have been used. Entity model has metadata of type blog.

C. Keys Constraint
Primary keys and other unique identifiers are defined using the model builder API without effecting entity classes.

D. Value Generation
Value generated by the user in the database every time we populate database entities with data and that value is saved using savechanges() method.

E. Required Entities
In our framework 7 entities have been defined PersonalID, LastName, FirstName, Address, City, TextFile, Picture. Among them only required entity is PersonalID entity. Remaining entities left optional in order to test result in three different categories (a) column text data transfer (b) mage file migration (c) text file migration.

F. Relational Modelling
: For relational database modeling of discussed framework this package (Microsoft.EntityFrameworkCore.Relational package) is installed.

G. Table Mapping
The above mentioned package is used for table mapping DbSet<TEntity>. If table entity is not defined in dbset context, then class name will use for mapping [34].

H. Column Mapping
This mapping is performed to map column, that after query which column data should fetch and save in table of other database after migration.

I. Data Mapping
Datatype of columns are also mapped among databases as we are using the same database in different clouds so we will map datatype and their maximum length. Here we are using dbo schema in our databases.

VII. Migration
We have used Migration builder API for data transfer by using Migration Builder Operations () following up method approach.

VIII. Results
In our research, we have migrated data from one cloud to another both having different architectures. We are using EFcore technology for this purpose and ORM technique for object mapping. We will observe time efficiency in results when we compare it with and without EFcore and ORM.

Formulae For Result Calculations
Save Time Efficiency = Save OLD - Save ORM
Transfer Time Efficiency = Transfer OLD - Transfer ORM
Total Time Efficiency = Save Time Efficiency + Transfer Time Efficiency

Table III
Image GB Time Efficiency Analysis

GB	ISTE(GB)	ITTE(GB)	ITTTE(GB)
6478 ms	13048 ms	19526 ms	
-994 ms	1557 ms	563 ms	
5236 ms	-1768 ms	3468 ms	
662 ms	18145 ms	18807 ms	
-269 ms	11171 ms	3153 ms	
-1329 ms	8838 ms	-2435 ms	
4072 ms	-4589 ms	-517 ms	
295 ms	-3949 ms	-3654 ms	
1111 ms	-1315 ms	-204 ms	

ISTE=Image Save Time Efficiency, ITTE= Image Transfer Time Efficiency, ITTTE= Image Total Transfer Time Efficiency, GB=gigabytes, ms=milliseconds

Figure 10. Image (GB) Saving Time Analysis, I(GB)=Image in GB

Figure 11. Image (GB) Transfer Time Analysis
Figure 12. Image (GB) Total Process Time Analysis

TABLE IV

ISTE(KB)	ITTE(KB)	ITTTE(KB)
-74 ms	-508 ms	-582 ms
2516 ms	1511 ms	2326 ms
-2126 ms	1114 ms	-1012 ms
1364 ms	8603 ms	9967 ms
375 ms	120 ms	495 ms
577 ms	3649 ms	4226 ms
1077 ms	5921 ms	6998 ms
4735 ms	2228 ms	6963 ms
1059 ms	3159 ms	4218 ms
412 ms	1212 ms	1625 ms

ISTE=Image Save Time Efficiency, ITTE= Image Transfer Time Efficiency, ITTTE= Image Total Transfer Time Efficiency, KB=kilobytes, ms=milliseconds

Figure 13. File (KB) Saving Time Analysis, I(kB)=Image in KB

TABLE V

FSTE(kb)	FTTE(kb)	FTTTE(kb)
-167 ms	427 ms	260 ms
936 ms	-516 ms	420 ms
333 ms	829 ms	1162 ms
2871 ms	975 ms	3846 ms
3309 ms	-560 ms	2749 ms
672 ms	-236 ms	436 ms
1816 ms	222 ms	2038 ms
-207 ms	-996 ms	-1203 ms
1446 ms	-446 ms	1000 ms
81 ms	140 ms	221 ms

FSTE=File Save Time Efficiency, FTTE= File Transfer Time Efficiency, FTTTE= File Total Transfer Time Efficiency, KB=kilobytes, ms=milliseconds

Figure 14. File (KB) Transfer Time Analysis

Figure 15. File (KB) Total Process Time Analysis
Figure 16. File (KB) Saving Time Analysis, f(MB)=File in KB

Figure 17. File (KB) Transfer Time Analysis

Figure 18. File (KB) Total Process Time Analysis

Figure 19. File (GB) Saving Time Analysis, (GB)=File in GB

Figure 20. File (GB) Transfer Time Analysis

TABLE VI

FILE GB TIME EFFICIENCY ANALYSIS

FSTE(GB)	FTTE(GB)	FTTTE(GB)
-1089 ms	131 ms	1473 ms
23 ms	1126 ms	3142 ms
9680 ms	198 ms	10696 ms
-33 ms	121 ms	1030 ms
10439 ms	-608 ms	11605 ms
37 ms	12 ms	938 ms
9901 ms	223 ms	10936 ms
38 ms	321 ms	1260 ms
-78 ms	420 ms	1384 ms
151 ms	-225 ms	74 ms

FSTE=File Save Time Efficiency, FTTE=File Transfer Time Efficiency, FTTTE=File Total Transfer Time Efficiency, GB=gigabytes, ms=milliseconds
Results calculated in four categories (a) images in MB (b) images in KB (c) Text Files in MB (d) Text Files in KB. We have tested each category with 100 input files. But here we are showing results of only 10 individual cases in each category to demonstrate efficiency because it is not possible to show the results of all input files also taking the average of these input files can mislead to a conclusion.

The above chart shows the number of successful and failed Cases in each category.

X. CONCLUSION

From the above results multiple things can be observed like sometimes Save Time Efficiency is negative and Sometimes Transfer Time Efficiency is negative so both of these factors are responsible for negative results. Whereas, one more important factor is speed of internet if good internet speed is constant, results can be more constant. Also image migration consuming more time than text file migration. If we combine the results of these 4 categories statistically we can say that we have achieved approximately 80% efficiency.

XI. FUTURE WORK

It is still an ongoing research area in future instead of two clouds, multiple clouds can be used and test results, to find out the appropriate reason of negative efficiency. As we have transfer input from 100kb to 8GB. One can target to transfer images and files more than 8 GB to achieve positive time efficiency.

ACKNOWLEDGMENT

I would like to thank Muhammad Bilal Amjad from Microsoft for providing research resources of azure cloud.

REFERENCES

[1] A. M. S. W, and K. K. L, “LiveS ervice Migration in Mobile Edge C louds,” pp. 2–9, 2017.
[2] G. J. L. Pauraj, S. A. J. Francis, J. D. Peter, and I. J. Jebadurai, “Resource-aware virtual machine migration in IoT cloud,” Futur. Gener. Comput. Syst., vol. 85, pp. 173–183, 2018.
[3] M. C. Silva Filho, C. C. Monteiro, P. R. M. Inácio, and M. M. Freire, “Approaches for optimizing virtual machine placement and migration in cloud environments: A survey,” J. Parallel Distrib. Comput., vol. 111, pp. 222–250, 2018.
[4] S. Zimányi, E., Jallow, B., Kashef, “Object Relational Mapping and Entity Framework,” pp. 1–16, 2018.
[5] N. Sunderhauf, T. T. Pham, Y. Latif, M. Milford, and I. Reid, “Meaningful maps with object-oriented semantic mapping,” IEEE Int. Conf. Robot. Syst., vol. 2017–September, pp. 5079–5085, 2017.
[6] H. reza Bazi, A. Hassanzadeh, and A. Moeini, “A comprehensive framework for cloud computing migration using Meta-synthesis approach,” J. Syst. Softw., vol. 128, pp. 87–105, 2017.
[7] D. M. Pro, “Data Migration Research Study,” 2017.
[8] A. Botta, W. De Donato, V. Persico, and A. Pescapé, “Integration of Cloud computing and Internet of Things: A survey,” Futur. Gener. Comput. Syst., vol. 56, pp. 684–700, 2016.
[9] E. Zeydan et al., “Big data caching for networking: Moving from cloud to edge,” IEEE Commun. Mag., vol. 54, no. 9, pp. 36–42, 2016.
[10] A. G. Huth, W. A. De Heer, T. L. Griffiths, F. E. Theunissen, and J. L. Gallant, “Natural speech reveals the semantic maps that tile human cerebral cortex,” Nature, vol. 532, no. 7600, pp. 453–458, 2015.
[11] Q. Yan, F. R. Yu, S. Member, G. Gong, and J. Li, “Software-Defined Networking (SDN) and Distributed Denial of Service (DDoS) Attacks in Cloud Computing Environments : A Survey , Some Research Issues , and Challenges,” no. c, pp. 1–23, 2015.
[12] B. C. Stahl, J. O. B. Timmermans, and B. D. Mittelstadt, “The Ethics of Computing : A Survey of the Computing-Oriented,” vol. 48, no. 4, 2016.
[13] C. Colman-meixner, C. Develder, M. Tornatore, and B. Mukherjee, “A Survey on Resiliency Techniques in Cloud Computing Infrastructures and Applications,” no. i, 2016.
[14] [14] Y. Li, K. Gai, L. Qiu, M. Qiu, and H. Zhao, “Intelligent cryptography approach for secure distributed big data storage in cloud computing,” Inf. Sci. (Ny.), vol. 387, pp. 103–115, 2017.
[15] N. Bila et al., “Energy-Oriented Partial Desktop Virtual Machine Migration,” ACM Trans. Comput. Syst., vol. 33, no. 1, pp. 1–51, 2015.
[16] X. Wu, G. F. Liu, J. J. Xu, and Ieee, “A QoS-Constrained Scheduling for Access Requests in Cloud Storage,” Proc. 2015 10th Ieee Conf. Ind. Electron. Appl., pp. 155–160, 2015.

[17] J. Wu, Z. Zhang, Y. Hong, and Y. Wen, “Cloud radio access network (C-RAN): A primer,” IEEE Netw., vol. 29, no. 1, pp. 35–41, 2015.

[18] M. Chen, Y. Hao, Y. Li, C. Lai, and D. Wu, “O N T H E C OMPUTATION O FFLOADING AT A D H OC C LOUDLET,” no. June, pp. 18–24, 2015.

[19] Z.-H. Zhan, X.-F. Liu, Y.-J. Gong, J. Zhang, H. S.-H. Chung, and Y. Li, “Cloud Computing Resource Scheduling and a Survey of Its Evolutionary Approaches,” ACM Comput. Surv., vol. 47, no. 4, pp. 1–33, 2015.

[20] I. Kostavelis and A. Gasteratos, “Semantic mapping for mobile robotics tasks: A survey,” Rob. Auton. Syst., vol. 66, pp. 86–103, 2015.

[21] Z. Yin, F. R. Yu, S. Bu, and Z. Han, “Joint cloud and wireless networks operations in mobile cloud computing environments with telecom operator cloud,” IEEE Trans. Wirel. Commun., vol. 14, no. 7, pp. 4020–4033, 2015.

[22] M. Ali, S. U. Khan, and A. V. Vasilakos, “Security in cloud computing: Opportunities and challenges,” Inf. Sci. (Ny), vol. 305, pp. 357–383, 2015.

[23] S. Schneider and A. Sunyaev, “Determinant factors of cloud-sourcing decisions: Reflecting on the IT outsourcing literature in the era of cloud computing,” J. Inf. Technol., vol. 31, no. 1, pp. 1–31, 2016.

[24] T. MASTELIC, A. OLEKSIAK, H. CLAUSSEN, I. BRANDIC, J.-M. PIERSON, and A. V VASILAKOS, “Cloud Computing: Survey on Energy Efficiency,” ACM Comput. Surv., vol. 47, no. 2, p. 33:1–33:36, 2015.

[25] S. A. Z. Sanaei A. Gani, R. Buyya, “Heterogeneity in Mobile Cloud Computing:Taxonomy and Open Challenges,” IEEE Commun. Surv. Tutorials (Accepted Publ., vol. 16, no. 1, pp. 1–24, 2013.

[26] L. Wei et al., “Security and privacy for storage and computation in cloud computing,” Inf. Sci. (Ny), vol. 258, no. May, pp. 371–386, 2014.

[27] A. N. Toosi, R. N. Calheiros, and R. Buyya, “Interconnected Cloud Computing Environments,” ACM Comput. Surv., vol. 47, no. 1, pp. 1–47, 2014.

[28] P. Pant and S. Thakur, “Data Migration Across The Clouds,” Int. J. Soft Comput. Eng., vol. 3, no. 2, pp. 14–21, 2013.

[29] S. Azodolmolky, P. Wieder, R. Yahyapour, and G. Wissenschaftliche, “Cloud Computing Networking: Challenges and Opportunities for Innovations,” no. July, pp. 54–62, 2013.

[30] Z. Xiao, Y. Xiao, and S. Member, “Security and Privacy in Cloud Computing,” vol. 15, no. 2, pp. 843–859, 2013.

[31] L. Zhang, C. Wu, Z. Li, C. Guo, M. Chen, and F. C. M. Lau, “Moving Big Data to The Cloud: An Online Cost-Minimizing Approach,” vol. 31, no. 12, pp. 2710–2721, 2013.

[32] R. Khan, M. Othman, S. A. Madani, and I. Member, “A Survey of Mobile Cloud Computing Application Models,” pp. 1–21, 2013.

[33] B. Di Martino and A. Esposito, “Semantic and Agnostic Representation of Cloud Patterns for Cloud Interoperability and Portability,” 2013.

[34] N. G. Fielding, “Triangulation and Mixed Methods Designs: Data Integration With New,” 2012.

[35] W. Ventsers and E. A. Whiteley, “researching desires and realities,” vol. 27, no. 3, pp. 179–197, 2012.

[36] S. Sakr, A. Liu, D. M. Batista, and M. Alomari, “A Survey of Large Scale Data Management Approaches in Cloud Environments,” vol. 13, no. 3, pp. 311–336, 2011.

[37] C. Wang, K. Ren, W. Lou, and J. Li, “Toward Publicly Auditable Secure Cloud Data Storage Services,” no. August, pp. 19–24, 2010.

[38] D. Maturana, P. Chou, M. Uenoyama, and S. Scherer, “Real-Time Semantic Mapping for Autonomous Off-Road Navigation,” pp. 335–350, 2009.

[39] X. Luna, D. Alon, and H. Cong, Data integration with uncertainty. 2009.

[40] A. Halevy and J. Ordille, “Data Integration: The Teenage Years,” pp. 9–16.

[41] A. Doan and A. Y. Halevy, “Research in the A Brief Survey,” vol. 26, no. 1, pp. 83–94, 2005.

[42] M. Lenerini, L. Sapienza, V. Salaria, and I.- Roma, “Data Integration: A Theoretical Perspective,” pp. 233–246, 2002.

[43] J. F. Sequeda, S. H. Tirimizu, O. Corcho, and D. P. Miranker, “Survey of directly mapping SQL databases to the Semantic Web,” Knowledge Engineering Review. 2011.

[44] Codemag.com. (2018). Introduction to ADO.NET Entity Framework. [online] Available at: https://www.codemag.com/article/0711051/Introducing-ADO.NET-Entity-Framework [Accessed 14 Aug. 2018].

[45] Inc., A. (2018). Why Data Visualization with Tableau? - Advanz101. [online] Advanz101. Available at: http://www.advanz101.com/data-visualization-services-with-tableau/ [Accessed 14 Aug. 2018].