A remark on calibrations and Lie groups

Nigel Hitchin

January 19, 2022

Dedicated to Blaine Lawson on the occasion of his 80th birthday

Abstract

We use the notion of the principal three-dimensional subgroup of a simple Lie group to identify certain special subspaces of the Lie algebra and address the question of whether these are calibrated for invariant forms on the group.

1 Introduction

The notion of a calibrated differential form φ, as introduced in [3], has become very important especially in the study of Calabi-Yau, G_2 and $Spin(7)$-manifolds, where φ is a covariant constant form. On the other hand, the manifolds which have most covariant constant forms, namely compact simple Lie groups G, have received less attention, although they are addressed in [12],[8],[9],[11].

Recall that the cohomology of a simple Lie group G of rank ℓ is an exterior algebra on ℓ generators with harmonic representatives φ_i of odd degree d_i which are covariant constant. The Cartan 3-form φ_1 is the generator of smallest degree and Tasaki [12] showed that this defines a calibration and moreover that a three-dimensional subgroup associated to the highest root is calibrated for this form and is volume-minimizing.

He also showed that the Hodge dual $*\varphi_1$ calibrates the codimension 3 subspace of non-regular elements of G.

Amongst the three-dimensional subgroups there is a particularly distinguished one, the principal three-dimensional subgroup, and Kostant showed [6] that under the action of this group the Lie algebra decomposes $\mathfrak{g} = V_1 \oplus V_2 \oplus \cdots \oplus V_\ell$ into irreducible
representations of $SO(3)$ whose dimensions are precisely the degrees d_i of the generators of the cohomology. The author conjectured in [5] that there is an exact fit here – that for each subspace V_i there exists a corresponding generator which restricts nontrivially. To the author’s knowledge this has not yet been confirmed, though there is some information in [1]. In any case, if the restriction is non-zero it opens up the possibility of more complex calibrated submanifolds.

In this paper we observe first that the function defined by φ_i on the Grassmannian of oriented subspaces of \mathfrak{g} of dimension d_i has a critical point on V_i. If this critical value is nonzero then any submanifold of dimension d_i tangential to a conjugate of V_i will be minimal [11]. If the non-zero value is the maximum then φ_i defines a calibration and any such submanifold is volume minimizing.

We then search for non-zero values by using the transitive action of groups on odd-dimensional spheres S^{2m+1}, and an argument initiated by X.Liu [8]. This consists of pulling back the volume form on the sphere and averaging over the group to produce an invariant form on G of degree $2m + 1$. We use the well-known list of groups with transitive actions to show that in each case the pull-back of the volume form restricted to a corresponding V_i is non-negative and hence its average is non-zero, providing some evidence for the conjecture. The relevant degrees are $2n - 1$ for $SO(2n)$ and $SU(n)$, $4n - 1$ for $Sp(n)$, 7 for $Spin(7)$ and 15 for $Spin(9)$.

Finally we mention the entirely different context [5] in which the conjecture arose, involving the moduli space of stable bundles on a curve C.

2 Invariant forms

Let G be a compact simple Lie group. The covariant constant forms on G are the bi-invariant forms and these are defined as multilinear alternating forms α on \mathfrak{g} by

$$\alpha(a_1, \ldots, a_{2m+1}) = p(a_1, [a_2, a_3], \ldots, [a_{2m}, a_{2m+1}])$$

where p is an adjoint-invariant polynomial of degree $m + 1$. These polynomials correspond under the Chern-Weil homomorphism to characteristic classes like Chern or Pontryagin classes and we shall often label the invariant forms this way – as classes of degree $2m + 2$ in the cohomology $H^*(B_G)$ of the classifying space. The Killing form is a quadratic polynomial and yields the Cartan 3-form.

The irreducible representations of the three-dimensional group $SU(2)$ are symmetric powers S^n of the standard complex 2-dimensional representation S. The space S^n may be thought of as the action on homogeneous polynomials $p(z_1, z_2)$ of degree n.

2
or more conveniently the polynomial $p(z) = p(z_1/z_2, 1)$ and is therefore of dimension $n + 1$. Since $-1 \in SU(2)$ acts trivially if n is even, these are the irreducibles for $SO(3)$ and are real. When n is odd they are quaternionic representations of $SU(2)$.

The Clebsch-Gordon formula tells us how to decompose a tensor product: if $m \geq n$ then

$$S^m \otimes S^n = S^{m+n} \oplus S^{m+n-2} \oplus \cdots \oplus S^{m-n}.$$

The decomposition involves contraction with the skew form on S and it follows then that $S^n \otimes S^n = S^{2n} \oplus S^{2n-2} \oplus \cdots$ and the skew part $\Lambda^2S^n = S^{2n-2} \oplus S^{2n-6} \oplus \cdots$.

The generators of the cohomology $H^*(G)$ have degrees $d_i = 2\lambda_i + 1$ where λ_i are the exponents of the Lie algebra. For completeness we list them:

- $A_\ell : 1, 2, 3, \ldots, \ell,$
- $B_\ell : 1, 3, 5, \ldots, 2\ell - 1,$
- $C_\ell : 1, 3, 5, \ldots, 2\ell - 1.$
- $D_\ell (\ell \text{ odd}) : 1, 3, 5, \ldots, 2\ell - 3,$
- $F_4 : 1, 5, 7, 11,
- $G_2 : 1, 5.$
- $E_6 : 1, 4, 5, 7, 8, 11,$
- $E_7 : 1, 5, 7, 9, 11, 13, 17,$
- $E_8 : 1, 7, 11, 13, 17, 19, 23, 29.$

In this list for each group the exponents are distinct, but for D_ℓ where ℓ is even the exponent $\ell - 1$ occurs twice. In terms of $SO(4n)$ characteristic classes the two invariants can be taken to be the Euler class and a Pontryagin class of the same degree. The generators are not unique, just as we can take a basis of invariant polynomials for $SU(n)$ as $\text{tr} a^k (k = 2, \ldots, n)$ or the coefficients of $\det(\lambda - a)$.

Kostant’s theorem [6] tells us that under the action of the principal three-dimensional subgroup, which is unique up to conjugation, $g = V_1 \oplus V_2 \oplus \cdots \oplus V_\ell$ where $V_i \cong S^{2\lambda_i}$. Clearly $\lambda_1 = 1$ gives the Lie algebra of the subgroup.

As an example, the irreducible representation S^n defines a homomorphism $SU(2) \to SU(n+1)$ whose image is the principal three-dimensional subgroup and the Lie algebra $\mathfrak{su}(n+1)$ is isomorphic to the trace zero elements in $\text{Hom}(S^n, S^n) \cong S^n \otimes S^n$. The Clebsch-Gordon formula gives $S^2 \oplus \cdots \oplus S^{2n}$ as the decomposition $V_1 \oplus V_2 \oplus \cdots \oplus V_\ell$.

3 Critical points

Given an invariant form φ_i of degree d_i we can evaluate it on an oriented d_i-dimensional subspace of g to obtain a function f_i on the oriented Grassmannian $\widetilde{Gr}(d_i, g)$ of such subspaces.

Theorem 1 The function f_i has a critical point at $[V_i]$.

3
Proof: Using the metric on the Grassmannian, the gradient of f_i at $[V_i]$ is a tangent vector which, by virtue of the adjoint invariance of φ_i, is invariant under the action of $SU(2)$ which stabilizes $[V_i]$. The tangent space of the Grassmannian at $[V_i]$ is isomorphic to $\text{Hom}(V_i, g/V_i)$, but as we have seen, except for the case D_ℓ where ℓ is even, the exponents are distinct and so the irreducible V_i does not occur in the decomposition of g/V_i. By $SU(2)$-invariance, the homomorphism is zero and so the gradient is zero. It therefore remains to consider the case of $SO(4n)$.

The principal three-dimensional subgroup in $SO(4n)$ acts reducibly on \mathbb{R}^{4n}. It is the representation $1 \oplus S^{4n-2}$ and so $g \cong \Lambda^2(1 \oplus S^{4n-2}) = S^{4n-2} \oplus \Lambda^2(S^{4n-2})$. Denote by V the first subspace here. Using the Clebsch-Gordan decomposition we have $\Lambda^2(S^{4n-2}) = S^{8n-6} \oplus S^{8n-10} \oplus \cdots \oplus S^2$ which contains a copy of S^{4n-2} which we call V'. If e_0, e_1, \ldots is an orthonormal basis of $1 \oplus S^{4n-2}$ with e_0 spanning the trivial component then $(e_0, e_1, \ldots) \mapsto (-e_0, e_1, \ldots)$ is an orientation-reversing involution σ commuting with $SO(3)$ and acting as -1 on V and $+1$ on V'. The invariant polynomial on $\mathfrak{so}(4n)$ defined by the Pfaffian $\sqrt{\det a}$ changes sign under change of orientation so it defines an invariant form φ such that $\sigma^* \varphi = -\varphi$, hence φ evaluated on V' is zero since $\sigma = 1$ there. We therefore associate V to φ and V' to φ', defined by the Pontryagin class, and consider the corresponding functions f, f'. Pontryagin classes are of course orientation-independent. The function f' is σ-invariant and so its gradient at $[V']$ is an invariant element of $\text{Hom}(V', V)$, but the action here is -1, so the gradient vanishes and this is a critical point. The case of f is similar, taking into account the fact that σ changes orientation on V.

\[\square \]

4 Groups acting on spheres

4.1 The invariant forms

We focus now on a family of covariant constant forms which arise geometrically. If a simple group G acts transitively on an odd-dimensional sphere then we have the projection $p : G \to S^{2m+1} = G/H$ and averaging over G the pull-back $p^* \omega$ of the volume form on S^{2m+1} gives an invariant $(2m+1)$-form. Since $p^* \omega$ is H-invariant this is equivalent to averaging over the sphere as in [8]. We know in advance that this form is non-zero for, by [7] (see also [10]), the stabilizer H is not homologous to zero and so the cohomology class $[p^* \omega] \neq 0$.

The groups acting transitively on spheres are well-known, especially from their appearance as special holonomy groups. For a simple group G and an odd-dimensional
sphere we have:

\[\text{SO}(2n), \quad \text{SU}(n), \quad \text{Sp}(n), \quad \text{Spin}(7) \subset \text{SO}(8), \quad \text{Spin}(9) \subset \text{SO}(16). \]

A universal multiple of the invariant form which the averaging produces can be labelled by a characteristic class which restricts to zero in the cohomology \(H^*(B_H) \) of the classifying space of the stabilizer \(H \) of the action. The group \(H \) stabilizes a vector in an even-dimensional space so this is the Euler class for \(\text{SO}(2n) \), the Chern class \(c_n \) for \(\text{SU}(n) \), the Chern class \(c_{2n} \) for \(\text{Sp}(n) \subset \text{SU}(2n) \). The last two examples in the list are stabilizers of a vector in the spin representation and expressing the Euler class for the spin representation in terms of the basic weights gives multiples of \(p_1^2 - 4p_2 \) for \(\text{Spin}(7) \) and \(p_1^4 - 8p_1^2p_2 + 16p_2^2 - 64p_4 \) in the case of \(\text{Spin}(9) \) (see also [2]).

We want to prove that the invariant form is non-zero on the component \(S^{2m} \subset g \), the tangent space at the identity. As in [3], the translate of \(p^*\omega \) from a general point \(g \) with \(p(g) = v \in S^{2m+1} \subset \mathbb{R}^{2m+2} \) to the identity gives a form on the Lie algebra which, evaluated on \((a_1, \ldots, a_{2m+1}), a_i \in g \), is \(\det(v, a_1v, a_2v, \ldots, a_{2m+1}v) \). If \((a_1, \ldots, a_{2m+1}) \) forms a basis for \(S^{2m} \) and this is nonnegative and not identically zero for all \(v \) in the sphere, then the average will be positive and the invariant form will be nonzero. We proceed to consider the different cases.

4.2 The case \(\text{SO}(2n) \)

As noted above, the principal 3-dimensional subgroup in this case arises from a reducible representation \(1 \oplus S^{2n-2} \) and the subspace \(V_i \subset \mathfrak{so}(2n) \) of dimension \(2n - 1 \) is spanned by \(a_i = e_0 \otimes e_i - e_i \otimes e_0 \) for \(1 \leq i \leq 2n - 1 \). Then \(a_i(v) = v_ie_0 - v_0e_i \) and, since \(\|v\|^2 = 1 \),

\[
v \wedge a_1v \wedge \cdots \wedge a_{2n-1}v = v_0^{2n-2}e_0 \wedge e_1 \wedge \cdots \wedge e_{2n-1}.
\]

This is non-negative hence the average is non-zero.

This formula is Example 3.7 in [3], where Lemma 3.5 in that paper shows that in \(\mathfrak{so}(2n) \) for general \(a_i \)

\[
\det(v, a_1v, a_2v, \ldots, a_{2n-1}v) = \|v\|^2Q_{2n-2}(v) \tag{1}
\]

where \(Q_{2n-2}(v) \) is homogeneous in \(v \) of degree \(2n - 2 \). In our situation where \(a_1, \ldots, a_{2n-1} \) span one of the spaces \(V_i \), this will be an invariant of the \(\text{SU}(2) \) action on \(\mathbb{R}^{2n} \) and the focus of our attention in the other cases.
4.3 The case \(SU(n) \)

Here the principal three-dimensional subgroup is the action of \(SU(2) \) in its irreducible representation \(\mathbf{S}^{n-1} \), and so its image in \(SU(n) \) is a copy of \(SU(2) \) for \(n \) even and \(SO(3) \) for \(n \) odd. The \(2n - 1 \)-dimensional subspace \(V_i \) is \(\mathbf{S}^{2n-2} \) and so we have an inclusion

\[
\mathbf{S}^{2n-2} \subset \text{Hom}(\mathbf{S}^{n-1}, \mathbf{S}^{n-1}) \cong \mathbf{S}^{n-1} \otimes \mathbf{S}^{n-1}
\]

and we can recognize this from the Clebsch-Gordon formula.

In terms of polynomials \(p(z) \) it is the adjoint of the multiplication map, but a more convenient description is to identify \(\mathbf{S}^m \) with \(H^0(P^1, \mathcal{O}(m)) \), holomorphic sections of the line bundle of degree \(m \) on the projective line. Since each \(\mathbf{S}^m \) has either a nondegenerate skew or symmetric form we also have an invariant identification \(\mathbf{S}^m \cong H^1(P^1, \mathcal{O}(-m-2)) \) by Serre duality. Then we have a natural tensor product map

\[
H^1(P^1, \mathcal{O}(-2n)) \otimes H^0(P^1, \mathcal{O}(n-1)) \rightarrow H^1(P^1, \mathcal{O}(-n-1)) \cong H^0(P^1, \mathcal{O}(n-1))
\]

which realizes the map \(\mathbf{S}^{2n-2} \otimes \mathbf{S}^{n-1} \rightarrow \mathbf{S}^{n-1} \). This is the action of \(V_i \subset \mathfrak{su}(n) \) on \(\mathbb{C}^n \).

Consider first the case where \(n = 2m + 1 \) is odd, then \(\mathbf{S}^{n-1} = \mathbf{S}^{2m} \) is even and has a real structure and so we can write a complex vector \(v = v_1 + iv_2 \) where \(v_1, v_2 \) are real. Of course \(SU(n) \) does not preserve the real structure, only the three-dimensional subgroup does. Now \(\mathbf{S}^{2m} \subset \mathbf{S}^{2m} \otimes \mathbf{S}^{2m} \) is symmetric and real and elements of \(V_i \subset \mathfrak{su}(2m + 1) \) are of the form \(iA \) for a real symmetric matrix \(A \).

As in equation \(\Box \) we are concerned with the expression \(v \wedge a_1 v \wedge \cdots \wedge a_{2n-1} v \) considering \(\mathbb{C}^n \) as a real vector space where the \(a_j \) lie in \(V_i \). This vanishes when some linear combination of the \(a_i \) has \(v \) as a real eigenvector. But the \(a_i \) are skew adjoint so it can only be the zero eigenvalue. Now each \(a \in V_i \) is of the form \(iA \) for \(A \) real, and so \(iA(v_1 + iv_2) = -Av_2 + iAv_1 \) and if this vanishes then \(Av_1 = 0 = Av_2 \).

Represent \(A \) as an element \([A] \) of \(H^1(P^1, \mathcal{O}(-2n)) \) and \(v_1 \) as a section \(s \) of \(\mathcal{O}(n-1) \) then \(Av_1 = 0 \) has an interpretation in algebraic geometry: consider the exact sequence of sheaves

\[
0 \rightarrow \mathcal{O}(-2n) \xrightarrow{s} \mathcal{O}(-n-1) \rightarrow \mathcal{O}_D(-n-1) \rightarrow 0
\]

where \(D \) is the divisor of zeros of \(s \). Then the long exact cohomology sequence gives

\[
0 \rightarrow H^0(D, \mathcal{O}_D(-n-1)) \xrightarrow{\delta} H^1(P^1, \mathcal{O}(-2n)) \xrightarrow{\delta} H^1(P^1, \mathcal{O}(-n-1)) \rightarrow 0
\]

so that \([A]s = 0 \) if and only if \([A] = \delta t \) for a section \(t \) of \(\mathcal{O}(-n-1) \) on the zero-dimensional cycle \(D \).
Let s_1 and s_2 be two sections representing v_1, v_2 which have a common zero x then the cycles D_1, D_2 intersect and taking t as a section of $\mathcal{O}(-n - 1)$ on x defines $\delta(t) = [\alpha]$ which annihilates both s_1 and s_2. Hence $[\alpha]$ represents a linear combination of a_j such that $v \wedge a_1 v \wedge \cdots \wedge a_{2n-1} v$ vanishes when $v = v_1 + iv_2$ and v_1, v_2 are represented by s_1, s_2 which have a common zero. These are polynomials $p_1(z), p_2(z)$ of degree $n - 1$ and the condition for a common zero is the vanishing of the resultant

$$R(p_1, p_2) = a_0^{n-1} b_0^{n-1} \prod_{i,j} (\lambda_i - \mu_j) = a_0^{n-1} \prod_{i} p_2(\lambda_i)$$

where λ_i, μ_j are the roots of $p_1(z) = a_0 z^{n-1} + \cdots + a_{n-1}, p_2(z) = b_0 z^{n-1} + \cdots + b_{n-1}$. This is a polynomial in $v = v_1 + iv_2$ homogeneous of degree $2n - 2$. Its vanishing implies Q_{2n-2} from equation (1) vanishes, but these two invariant polynomials have the same degree and the resultant is irreducible hence they are multiples of each other.

The real structure on \mathbf{S}^{n-1} is inherited from the quaternionic structure of \mathbf{S} so a real polynomial of degree $2m$ satisfies $p(-1/z) = z^{-2m} p(z)$ and there is a free involution $\lambda \mapsto -1/\bar{\lambda}$ on the roots of p. Let $\lambda_1, \ldots, \lambda_m, -1/\bar{\lambda}_1, \ldots, -1/\bar{\lambda}_m$ be the roots of p_1, then

$$R(p_1, p_2) = a_0^{2m} \prod_{i=1}^{m} p_2(\lambda_i) p_2(-1/\bar{\lambda}_i) = (a_0 \prod_{i=1}^{m} \bar{\lambda}_i^{-1})^{2m} \prod_{i=1}^{m} |p_2(\lambda_i)|^2.$$

Reality implies $a_{2m} = \bar{a}_0$ so that the product of the roots is \bar{a}_0/a_0 and $a_0 \prod_{i=1}^{m} \bar{\lambda}_i^{-1}$ is real. Hence the resultant is non-negative and averaging gives a non-zero evaluation of the form.

When $n = 2m$ is even, \mathbf{S}^{2m-1} has a complex symplectic structure and a quaternionic structure: an antilinear involution J with $J^2 = -1$. Then $\mathbf{S}^{4m-2} \subset \mathbf{S}^{2m-1} \otimes \mathbf{S}^{2m-1}$ is symmetric which places it in the Lie algebra of complex symplectic transformations. But it is also real and so commutes with J. In this case if a linear combination of the a_i annihilates v it annihilates Jv so we again have a 2-dimensional kernel and the criterion is the vanishing of the resultant of two polynomials — p and its transform p^* by J where $p^*(z) = z^{2m-1} p(-1/\bar{z})$. Then the resultant $R(p, p^*)$ is

$$(a_0 \bar{a}_{2m-1})^{2m-1} \prod_{i,j} (\lambda_i + \bar{\lambda}_j^{-1}) = (a_0 \bar{a}_{2m-1})^{2m-1} \prod_{i} (|\lambda_i|^2 + 1) \prod_{i<j} |\lambda_i \bar{\lambda}_j + 1|^2 \left(\prod_{j} \bar{\lambda}_j^{-1} \right)^{2m-1}$$

and since $\prod_j \bar{\lambda}_j = -\bar{a}_{2m-1}/a_0$ this expression is non-positive. Again the average is non-zero.
4.4 The case $Sp(n)$

The group $Sp(n) \subset SU(2n)$ is the subgroup which commutes with a quaternionic structure J and we have just observed that the appropriate V_i does just that, so that it lies in the Lie algebra $\mathfrak{sp}(n)$. The result follows from the previous section.

4.5 The case $Spin(7)$

Here the principal three-dimensional subgroup of $Spin(7)$ projects to the principal one in $SO(7)$. This is the irreducible representation S_6 and from the characters we deduce that the 8-dimensional spin representation is $1 \oplus S_6$. This means that the subgroup fixes a spinor and so lies in the stabilizer G_2.

The Lie algebra of G_2 decomposes as $S^2 \oplus S^{10}$ and so $\mathfrak{so}(7) = S^2 \oplus S^6 \oplus S^{10}$ with respect to the same 3-dimensional group. It follows that S^6 is the orthogonal complement of g_2. Translated around $Spin(7)$ this is the horizontal subspace for the fibration $p : Spin(7) \to S^7$. This is a Riemannian submersion so $p^* \omega$ is always non-zero on this subspace.

4.6 The case $Spin(9)$

The defining 9-dimensional representation is here S^8 and, from the characters again, the 16-dimensional spin representation is $S^{10} \oplus S^4$. In the Lie algebra $\mathfrak{so}(9) \cong \Lambda^2 S^8$ the 15-dimensional component is S^{14} and we are concerned with its action on $S^{10} \oplus S^4$. Since $\Lambda^2(S^{10} \oplus S^4) \cong \Lambda^2(S^{10}) \oplus (S^{10} \otimes S^4) \oplus \Lambda^2 S^4$ there are copies of S^{14} in the first two summands and the action is a linear combination of the two.

We consider again when a linear combination of $a_1, \ldots, a_{15} \in V_i$ has a non-trivial kernel. Suppose $(p, q) \in S^{10} \oplus S^4$ are polynomials in the kernel of $a \in S^{14}$ then we may write this as $(Ap + Bq, -B^T p) = 0$ where $a = (A, B) \in \Lambda^2(S^{10}) \oplus (S^{10} \otimes S^4)$. Now $B^T : S^4 \to S^{10}$ is given by the map

$$H^1(P^1, O(-16)) \otimes H^0(P^1, O(4)) \to H^1(P^1, O(-12))$$

as in Section 4.3 and B by the map

$$H^1(P^1, O(-16)) \otimes H^0(P^1, O(10)) \to H^1(P^1, O(-6))$$

for a class $[\beta] \in H^1(P^1, O(-16)) \cong S^{14}$. If p, q have a common zero then there exists $[\beta]$ with $Bp = 0, B^T q = 0$ represented by a class supported at a single point in P^1, 8
the common zero. If we take this point to be $z = 0$ then $[\beta]$ can be identified with the polynomial $z^{14} \in S^{14}$.

Consider now $A : S^{10} \to S^{10}$ defined by z^{14}. This consists of contracting in $S^{14} \otimes S^{10}$ seven pairs of terms and symmetrizing. If p vanishes at 0, contraction with z^{14} vanishes also. We deduce that the vanishing of the resultant $R(p, q)$ is a condition for the existence of $a \in V_i$ which annihilates (p, q). This is a polynomial in the coefficients of degree $4 + 10 = 14$. But $Q_{2m-2}(v) = Q_{14}(v)$ in (1) is of degree 14 and so Q_{14} is a multiple of the resultant of two real polynomials u, v of even degrees 4, 10. As in Section 4.3 this is non-negative.

5 Conclusion

We have shown that in certain degrees and certain groups there exists an invariant form which is nonvanishing on V_i. This is true for V_i for any G, where of course the Cartan three-form restricts non-trivially to any three-dimensional subgroup, not just the principal one. When G has rank $\ell = 2$ we have $g = V_1 \oplus V_2$, an orthogonal decomposition, and the Hodge star of the Cartan 3-form calibrates V_2 so all cases are covered. Another example is the group $SU(4)$ which acts transitively on S^7 and also on S^5 under the homomorphism $SU(4) \to SO(6)$, identifying $SU(4)$ with $Spin(6)$, so we have forms in all degrees 3, 5, 7 in this case, but for higher rank the arguments in this article only relate to a restrictive number of forms.

6 Polyvector fields

We conclude with a brief discussion of the origin in [5] of the conjecture that for each subspace V_i there is an invariant form φ_i on g which restricts nontrivially. The context is a Riemann surface C of genus $g > 1$ and the moduli space M of stable holomorphic principal $G\mathfrak{c}$-bundles P on C for a complex simple Lie group $G\mathfrak{c}$. The cotangent space at a point of M is isomorphic to $H^0(C, \text{ad}(P) \otimes K)$ where K is the canonical bundle and evaluating an invariant polynomial p of degree k defines a holomorphic section of K^k on C. Taking the dual of $H^0(C, K^k)$ this yields a map $H^1(C, K^{1-k}) \to H^0(M, S^kT)$ which is well-known to be injective and to generate holomorphic sections of the symmetric powers S^kT of the tangent bundle which commute using the Schouten-Nijenhuis bracket [4], or equivalently define Poisson-commuting functions on the cotangent bundle T^*M.

If we now use an invariant alternating form φ of degree d then evaluation yields a
section of K^d and dually we have a map $H^1(C, K_{1-d}^d) \to H^0(M, \Lambda^dT)$ into the space of polyvector fields on M and these also Schouten-commute [5]. However, whereas using the spectral curve one can see that in the symmetric case the map is injective, for the skew-symmetric case this is not apparent. Instead consider the G^c-bundle associated to a rank 2 stable bundle V by the principal homomorphism $SL(2, C) \to G^c$ then we can restrict a form φ_i to the subspace $H^0(C, S^{2\lambda_i} V \otimes K) \subset H^0(C, \text{ad}(P) \otimes K)$. By Riemann-Roch this has dimension $(2\lambda_i + 1)(g - 1)$ so if the conjecture held then choosing $n = 2\lambda_i + 1$ holomorphic sections s_j with $s_1 \wedge s_2 \wedge \cdots \wedge s_n$ not identically zero, we could deduce that φ_i gives a nonzero section of K^{d_i}. There may of course be simpler ways of achieving this.

References

[1] N. Bushek and S. Kumar, Hitchin’s conjecture for simply-laced Lie algebras implies that for any simple Lie algebra. Differential Geom. Appl., 35 (2014), 210–223.

[2] T. Friedrich, Weak Spin(9) structures on 16-dimensional Riemannian manifolds. Asian J. Math., 5 (2001), 129–160.

[3] R. Harvey and H. B. Lawson Jr., Calibrated geometries. Acta Math, 148 (1982), 47–157.

[4] N. J. Hitchin, Stable bundles and integrable systems. Duke Math J. 54 (1987), 91–114.

[5] N. J. Hitchin, Stable bundles and polyvector fields, in Complex and Differential Geometry, W.Ebeling et al (eds), Springer Proceedings in Mathematics 8 Springer Verlag, Heidelberg (2011), 135–156.

[6] B. Kostant, The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. Math. 81 (1959), 973–1032.

[7] T. Kudo, Homological properties of fibre bundles. J. Inst. Polytech. Osaka City Univ. 1 (1950), 101–114.

[8] X. Liu, Volume minimizing cycles in compact Lie groups. Amer. J. Math 117 (1995), 1203–1248.

[9] X. Liu, Rigidity of the Gauss map in compact Lie groups. Duke Math. J. 77 (1995), 447–481.
[10] Y. Matsushima, On a type of subgroups of a compact Lie group. *Nagoya Math. J.* 2 (1951), 1–15.

[11] C. Robles, Parallel calibrations and minimal submanifolds. *Illinois J. Math.* 56 (2012), 383–395.

[12] H. Tasaki, Certain minimal or homologically volume minimizing submanifolds in compact symmetric spaces. *Tsukuba J. Math.* 35 (1985), 117–131.

Mathematical Institute
Woodstock Road
Oxford OX2 6GG
UK