Расчет и анализ распределения поля лазерного пучка после реальной оптической системы

М.Л. Галкин1, П.А. Носов1, М.С. Ковалёв1, Н.М. Вереникина1

1МГТУ им. Н.Э. Баумана, ул. 2-я Бауманская, 5, стр. 1, Москва, Россия, 105005

Аннотация. При проектировании высококачественных оптических систем необходимо рассчитывать реальное распределение поля формируемого пучка. В работе решение данной задачи рассматривается методом скалярной теории дифракции. Для вычисления дифракционного интеграла и визуализации результатов используется программный пакет Математика (Wolfram Mathematica). Аберрационный анализ лазерных оптических систем и моделирование в программе Математика выходного распределения поля показали существенное искажение распределения поля и отклонение пространственных параметров пучка от идеального, описываемого аналитическими выражениями.

1. Введение
В настоящее время выпускается большое количество лазеров, которые широко используются в науке, технике, промышленности и других отраслях народного хозяйства. Однако очень часто при проектировании лазерных оптико-электронных приборов оптики-расчётики учитывают только длину волны излучения, расходимость и диаметр пучка на выходе лазера. Данные параметры не полностью характеризуют лазерное излучение, сформированное оптическим резонатором. Об этом также свидетельствует то обстоятельство, что в паспорте на лазер отсутствуют, за редким исключением, оптическая схема резонатора и его конструктивные параметры, которые и определяют весь набор параметров выходного излучения. Тем не менее, знание всех параметров излучения лазера необходимо для корректного расчёта формирующей лазерной оптической системы (ЛОС). Правильный расчёт ЛОС, как показывает практика, позволяет повысить качество формируемого пучка и технические характеристики разрабатываемых лазерных приборов и систем за счёт проектирования оптического блока с меньшими габаритами, массой, используя при этом источник лазерного излучения меньшей мощности, т.е. снизить электропотребление [1-5].

Для расчёта оптических систем различных типов разработаны соответствующие методики [2,3,6-8]. При этом в оптике широко распространены дифракционные методы расчёта. Также полный анализ свойств лазерного излучения, формируемого оптическими резонаторами, позволяют провести дифракционные методы [1,2]. При разработке высококачественных ЛОС окончательная оценка качества формируемого оптической системой пучка также должна проводиться дифракционными методами. Поскольку численное решение дифракционного интеграла является достаточно трудоёмкой задачей, в инженерной практике важное значение имеют приближённые методы расчёта, которые при разумных допущениях позволяют
существенно упростить рассматриваемую задачу. Такой подход позволяет получить приближённые аналитические выражения для проведения оценочного расчёта.

Принципиально важным для решения многих задач оптики является вычисление интеграла от быстро осциллирующих функций. Это приводит к необходимости применения специальных численных методов и алгоритмов. В работе для вычисления дифракционного интеграла используется программный пакет Mathematica, который позволяет успешно решить указанную проблему. Помимо результатов прямого вычисления дифракционного интеграла для нахождения параметров формируемого ЛОС пучка с помощью программы Mathematica в работе приводятся приближённые аналитические выражения, позволяющие провести анализ аберрационных искажений лазерного пучка на выходе оптической системы.

2. Основные расчётные соотношения

Рассматриваемый в работе метод расчёта распределения комплексной амплитуды поля лазерного излучения на выходе оптической системы с учётом её аберраций базируется на скалярной теории дифракции. Согласно формуле Релея-Зоммерфельда распределение комплексной амплитуды поля \(\psi' \) после ЛОС в точке \(Q \) с координатами \((x,y,z_{\text{PA}}) \) определяется следующим выражением [9] (см. рис. 1):

\[
\psi'(x,y,z_{\text{PA}}) = \frac{1}{i\lambda} \int \int \psi(\xi,\eta) \exp(ikr_{PQ}) \cos{\delta} d\Sigma,
\]

где \(\psi \) – распределение комплексной амплитуды поля лазерного пучка на выходной опорной сфере \(\Sigma \); \(k = 2\pi/\lambda \) – волновое число; \(\lambda \) – длина волны излучения; \(r_{PQ} \) – расстояние между произвольной точкой \(P \) на выходной опорной сфере, где рассчитывается функция волновой аберрации ЛОС, и точкой анализа \(Q \); \(\delta \) – угол между \(r_{PQ} \) и нормально к \(\Sigma \) в точке \(P \); \(d\Sigma \) – элемент площади \(\Sigma \) в точке \(P \). Интегрирование ведётся по поверхности \(\Sigma \).

Рисунок 1. Преобразование лазерного пучка реальной ЛОС: \(2h_p, 2\theta, z_k \) – диаметр перетяжки, угловая расходимость и параметр конфокальности преобразуемого пучка; \(s_p \) – положение перетяжки относительно первой поверхности ЛОС; \(H, H' \) – главные точки ЛОС; \(2h_0 \) – диаметр пучка моды \(TEM_{mn} \) на входе ЛОС, определяемый методом моментов [10] (\(m, n \) – поперечные индексы моды, \(m, n = 0,1,2,\ldots \)).

Распределение комплексной амплитуды поля эрмит-гауссова пучка на выходной опорной сфере \(\Sigma \) после реальной ЛОС с точностью до постоянного фазового множителя определяется следующим выражением [11]:

...
\[\psi(\xi,\eta) = \frac{1}{\beta^2}a\left(\frac{\xi}{\beta'}\right)\exp[ikW(\xi,\eta)]. \]
(2)

Здесь \(a \) – распределение амплитуды поля эрмит-гауссова пучка моды \(TEM_{mn} \) на входе ЛОС в плоскости \(x_1,y_1 \); \(\beta' \) – коэффициент, характеризующий отношение размера лазерного пучка в плоскостях \(\xi,\eta \) и \(x_1,y_1 \); волновая аберрационная функция реальной ЛОС от поперечных координат \(\xi,\eta \) на выходной опорной сфере \(\Sigma \) имеет вид (см. рисунок 1):

\[W(\xi,\eta) = -\frac{\rho^2}{2f'}(\chi + \alpha\rho^2 + \beta\rho^4 + \gamma\rho^6 + \ldots), \]
(3)

где \(\rho^2 = \xi^2 + \eta^2 \); \(f' \) – заднее фокусное расстояние ЛОС; коэффициенты разложения \(\chi', \alpha, \beta \) и \(\gamma \) характеризуют, соответственно, дефокусировку и аберрации ЛОС 3-го, 5-го и 7-го порядков.

Приведённые выражения позволяют провести численное моделирование распространения лазерного пучка через реальную оптическую систему и построить функции искажения распределений амплитуды и фазы поля, а также рассчитать отклонение пространственных параметров реального пучка от идеального, сформированного идеальной (безаберрационной) ЛОС. При этом важно учитывать отличия расчёта аберрационных искажений оптической системы лазерного и классического излучений. Во-первых, лазерный пучок описывается только косыми лучами (так называемый, лучевой пакет) [3,12]; во-вторых, радиусы кривизны входной и выходной опорных сфер рассчитываются по формулам лазерной оптики [3] через параксиальные параметры преобразуемого и преобразованного пучков соответственно:

\[R_\Phi = -(z_1^2 + s_\rho^2)/s_\rho, \quad R'_\Phi = (z_1'^2 + s'_\rho^2)/s'_\rho, \]

где \(z_1' \) – параметр конфокальности пучка на выходе идеальной ЛОС.

Чтобы получить приближённое аналитическое выражение для распределения амплитуды поля преобразованного ЛОС пучка в дифракционном интеграле (1) необходимо сделать следующие допущения и преобразования. Во-первых, угловой коэффициент \(\cos \delta \) считать равным единице и в знаменателе подынтегрального выражения \(P\Sigma \approx \frac{1}{2f} \). Во-вторых, в фазовом множителе подынтегрального выражения \(P\Sigma \) представить в виде степенного ряда Тейлора, учитывая что члены до восьмого порядка малости, и провести экономизацию полученного выражения с помощью полиномов Чебышева на каноническом отрезке \([0;+1]\). При этом апертура компонентов ЛОС считается много больше (в 2,5…3,0 раза) размера пучка. В результате можно выделить главную часть аберрационных членов (квадратичную), в которой учтена 1/2, 15/32, 7/16 части аберраций ЛОС 3-го, 5-го и 7-го порядков [11]:

\[\chi_{\text{max}} = \chi + h_{\text{max}}^2 \left(\alpha + \frac{15}{16} \beta h_{\text{max}}^2 + \frac{7}{8} \gamma h_{\text{max}}^4 \right), \]

где \(2h_{\text{max}} \) – световой диаметр последней преломляющей поверхности ЛОС.

После аналитического интегрирования дифракционного интеграла получено распределение поля и обобщённые зависимости лазерного пучка с учётом аберраций ЛОС. Поскольку они учитывают большую часть аберраций ЛОС, то они описывают, соответственно, аберрационный эрмит- и лагерр-гауссовые пучки. Зависимости для огибающей произвольной поперечной моды \(TEM_{mn} \) (\(h_{mn,ab} \)) и радиуса кривизны волнового фронта \((R_{\Phi,ab}) \) от положения плоскости анализа \(z_{\text{ПА}} \) имеют вид [11]:

IV Международная конференция и молодёжная школа «Информационные технологии и нанотехнологии» (ИТНТ-2018)
\[
\begin{align*}
R'_{\phi, ab}(z_{\Pi A}) &= \frac{(z_{\Pi A} + 1)^2 + (z_{\Pi A} B)^2}{\mu_1 \left(\mu_1 \cdot (A + 1/z_{\Pi A}) - z_{\Pi A} \left((A + 1/z_{\Pi A})^2 + B^2 \right) \right)}. \tag{4}
\end{align*}
\]

Здесь \(\kappa_{nn} \) — коэффициент, определяющий увеличение размера пятна высшей поперечной моды TEM\(_{00}\) по сравнению с основной TEM\(_{00}\) (рассчитывается методом моментов [10]). В приведённых соотношениях аберрации ЛОС входят в параметр \(A \) в виде коэффициента \(\chi_{nn} \) при полиноме Чебышева 1-го порядка:

\[
A = A(\chi, \alpha, \beta, \gamma, z_{\Pi A}) = \frac{\mu_1 \mu_5 - 1}{z_{\Pi A}} \chi_{nn} \frac{1}{f} \quad B = \frac{\lambda \kappa_{nn}^2}{\pi(\beta h_0)}.
\]

\[
\mu_1 = \mu_1(z_{\Pi A}) = 1 - \frac{u_{\max}^2}{4z_{\Pi A}^2} - \frac{15 u_{\max}^4}{32 z_{\Pi A}^4} + \frac{35 u_{\max}^4}{128 z_{\Pi A}^4}.
\]

\[
\mu_5 = \mu_5(z_{\Pi A}) = 1 + \frac{z_{\Pi A}}{R'_\Phi} + \frac{h_{\max}^2}{4R'_\Phi^2} \left[1 + \frac{z_{\Pi A}}{R'_\Phi} + \frac{15 h_{\max}^2}{32 R'_\Phi^2} \left(1 + \frac{z_{\Pi A}}{R'_\Phi} \right) + \frac{7 h_{\max}^4}{128 R'_\Phi^4} \left(1 - \frac{5z_{\Pi A}}{R'_\Phi} \right) \right],
\]

\[
u_{\max}^2 = u_{\max}^2(z_{\Pi A}) = (h_{\max} + h'_{\max})^2 + \left(z_{\Pi A} + R'_\Phi \left(1 - \frac{1 - h_{\max}^2}{R'_\Phi^2} \right) \right)^2 - z_{\Pi A}^2.
\]

В приведённых формулах величины \(h_{\max} \) и \(h'_{\max} \) характеризуют максимальный размер области (её полудиаметр) на выходной опорной сфере \(\Sigma \) и в плоскости анализа выходного поля, в которых сосредоточена основная часть энергии заданной поперечной моды пучка.

Из формулы (4) следует, что огибающая преобразованного ЛОС лазерного пучка с учётом аберраций уже не является поверхностью второго порядка (гиперболоид вращения), как в случае параксиального приближения.

Основные пространственные параметры аберрационного пучка (положение перетяжки и её размер, угловая расходимость) и параметр качества пучка \(M^2 \) могут быть рассчитаны по следующим формулам [11]:

\[
\begin{align*}
2\theta'_{\max} &= 2A_{\max} \frac{\lambda A_{\max}^2}{f', \pi B} = \frac{\lambda \kappa_{nn}^2}{\pi(\beta h_0)} = \lambda \frac{f', \pi}{f' \pi} = \lambda f'^2, \\
A_{\max} &= \frac{\kappa_{nn}^2}{\mu_1(s_{p, ab})} \left[A_{\max} \left(s_{p, ab} \right) + B^2 \right] = \frac{\kappa_{nn}^2}{\mu_1(s_{p, ab})} \left[A_{\max} \left(s_{p, ab} \right) + B^2 \right], \tag{5}
\end{align*}
\]

где \(A_{\max} = \frac{\chi_{nn}}{f'} + \frac{1}{R'_\Phi} \left[1 + \frac{h_{\max}^2}{4R'_\Phi^2} \left(1 + \frac{15 h_{\max}^2}{32 R'_\Phi^2} + \frac{35 h_{\max}^4}{128 R'_\Phi^4} \right) \right].\)

Оценка порядка величин \(A \) и \(B \) даёт: \(A \sim 1/f' \quad B = \lambda \kappa_{nn}^2 \left[\pi(\beta h_0) \right]^2 \lambda f'^2 \quad (l = f'/\kappa_{nn}/(\beta h_0)) \) и с точностью до множителя \(l^2/\pi \) пропорциональна \(\lambda/f'^2 \), т.е. практически выполняется неравенство \(B \ll A \). Тогда формулы (5) упрощаются:

\[
\begin{align*}
\begin{alignat}{2}
\theta'_{\max} &= -\frac{1}{A(s_{p, ab})}, \\
\kappa_{nn} \mu_1(s_{p, ab}) &= \beta h_0, \tag{6}
\end{alignat}
\end{align*}
\]
Согласно формуле (6) для диаметра и положения выходной перетяжки величина A, учитывающая аберрации ЛОС, находится в знаменателе, а для угловой расходности – в числителе. Поэтому наличие аберраций по-разному влияет на параметры пучка на выходе ЛОС.

3. Пример анализа искажений на выходе реальной ЛОС

Рассмотрим преобразование гауссова пучка ($\lambda = 0,63$ мкм, $h_p = 0,63$ мм, $s_p = -35,0$ мм, $2\theta = 0,63$ мрад, $\kappa_{\varphi} = 1$). Конструктивные параметры ЛОС с фокусным расстоянием $f' = 14,15$ мм приведены в таблице 1.

r, мм a	d, мм b	n b
9,146	3,0	1,6105 (ТК16)
-4,712	1,73	1,7347 (ТФ4)
-22,632		

a r – радиусы кривизны преломляющих поверхностей оптических элементов;
b d – толщины оптических элементов и воздушных промежутков;
b n – показатель преломления среды для рабочей длины волны лазерного излучения 0,63 мкм.

Для рассматриваемой ЛОС продольное увеличение равно $\alpha = 5 \cdot 10^{-5}$, т.е. она относится к фокусирующему типу. Пространственные параметры пучка на выходе идеальной ЛОС имеют значения: параметр конфокальности пучка $z'_i = 0,1$ мм, положение перетяжки относительно последней поверхности ЛОС $s'_p = 11,78$ мм, полудиаметр выходной перетяжки $h'_p = 4,49$ мм, угловая расходимость $2\theta' = 0,09$ рад. Полудиаметр и положение перетяжки пучка, определённые путём расчёта в программном пакете Математика дифракционного интеграла (1) для идеальной ЛОС, равны 4,50 мм и 11,78 мм, т.е. совпадают с результатами расчёта по аналитическим формулам.

Чтобы оценить искажения поля выходного пучка методом лучевого пакета была рассчитана волновая аберрация ЛОС [11]. Коэффициенты разложения функции волновой аберрации имеют значения: $\chi = 4,17 \cdot 10^{-7}$, $\alpha = -3,47 \cdot 10^{-3}$ мм$^{-2}$, $\beta = -3,52 \cdot 10^{-4}$ мм$^{-2}$, $\gamma = -2,06 \cdot 10^{-5}$ мм$^{-6}$. Перепад функции волновой аберрации ЛОС равен: $\Delta W = W_{\text{max}} - W_{\text{min}} = 0,71 \lambda$.

Полудиаметр и положение выходной перетяжки пучка, а также параметр M^2, рассчитанные по формулам (5), соответственно равны 4,52 мм, 11,85 мм и 1,003. Полудиаметр и положение перетяжки пучка, определённые путём расчёта в программном пакете Математика дифракционного интеграла (1) с учётом (2) и (3), имеют значения 4,55 мм и 11,81 мм.

Для ЛОС с таким же фокусным расстоянием 14,15 мм, но с другими конструктивными параметрами, при которых коэффициенты разложения функции волновой аберрации χ, α, β и γ положительные, перетяжка выходного пучка смещается влево относительно параксиального положения, т.е. находится на расстоянии $s'_p < 11,78$ мм. Этот вывод согласуются с результатами расчёта положения выходной перетяжки по формуле (5). Для примера, при $\chi = 2 \cdot 10^{-5}$, $\alpha = 3,5 \cdot 10^{-3}$ мм$^{-2}$, $\beta = 4 \cdot 10^{-4}$ мм$^{-2}$, $\gamma = 2,1 \cdot 10^{-5}$ мм$^{-6}$ положение выходной перетяжки, рассчитанное по формуле (6), равно 11,71 мм, а в результате расчёта дифракционного интеграла – 11,73 мм. Когда коэффициенты разложения функции волновой
аберрации ЛОС имеют разные знаки, однозначный вывод о направлении смещения выходной перетяжки сделать нельзя.

4. Заключение
Анализ распространения лазерного пучка через оптическую систему при учёте её аберраций показал, что расчёт распределения поля и пространственных параметров пучка по приближённым формулам согласуется с результатами прямого вычисления дифракционного интеграла. Отличие вызвано учётом всех аберраций ЛОС и свободного пространства, а также повышенной точностью вычисления дифракционного интеграла в программном пакете Математика. Кроме того, отклонение пространственных параметров пучка (в частности, смещение выходной перетяжки относительно её параксиального положения) определяется функцией волновой аберрации ЛОС. Полученные в работе результаты следует учитывать при проектировании лазерной оптики для прецизионных лазерных технологий.

5. Благодарности
Исследование выполнено при поддержке РФФИ в рамках научного проекта № 16-08-00936 а.

6. Литература
[1] Пахомов, И.И. Оптико-электронные квантовые приборы / О.В. Рожков, В.Н. Рождествин; под ред. И.И. Пахомова. – М.: Радио и связь, 1982. – 456 с.
[2] Климков, Ю.М. Прикладная лазерная оптика. – М.: Машиностроение, 1985. – 128 с.
[3] Пахомов, И.И. Расчёт оптических систем лазерных приборов / И.И. Пахомов, А.Б. Цибуля. – М.: Радио и связь, 1986. – 150 с.
[4] Пахомов, И.И. К расчету двухлинзовых нескленных объективов для лазерного излучения / И.И. Пахомов, А.Ф. Ширанков // Вестник МГТУ имени Н.Э. Баумана. Сер. Приборостроение. – 1994. – № 3. – С. 101-108.
[5] Аниканов, А.Г. Структурный синтез лазерных оптических систем при ограничениях их параметров / А.Г. Аниканов, И.И. Пахомов, А.Ф. Ширанков // Оптический журнал. – 2010. – Т. 77, № 2. – С. 30-36.
[6] Слюсарев, Г.Г. Расчет оптических систем / Г.Г. Слюсарев. – Л.: Машиностроение, 1975. – 640 с.
[7] Родионов, С.А. Автоматизация проектирования оптических систем / С.А. Родионов. – Л.: Машиностроение, 1982. – 270 с.
[8] Русинов, М.М. Композиция оптических систем / М.М. Русинов. – Л.: Машиностроение, 1989. – 383 с.
[9] Гудмен, Д. Введение в фурье-оптику / Д. Гудмен. – М.: Мир, 1970. – 364 с.
[10] ГОСТ Р ИСО 11146-1-2008. Лазеры и лазерные установки (системы). Методы измерений ширин, углов расходимости и коэффициентов распространения лазерных пучков. Часть 1. Стигматические (гомоцентрические) и слабоастигматические пучки. Введён 01.01.2010. – М.: Стандартинформ, 2010. – 13 с.
[11] Пахомов, И.И. Описание, расчёт и анализ искажений многомодовых лазерных пучков / И.И. Пахомов, А.Ф. Ширанков, П.А. Носов // Оптический журнал. – 2010. – Т. 77, № 2. – С. 37-43.
[12] Носов, П.А. Аберрационный синтез оптических систем, предназначенных для преобразования лазерных пучков / П.А. Носов, В.Ю. Павлов, И.И. Пахомов, А.Ф. Ширанков // Оптический журнал. – 2011. – Т. 78, № 9. – С. 34-44.
Calculation and analysis of the laser beam field distribution formed by a real optical system

M.L. Galkin¹, P.A. Nosov¹, M.S. Kovalev¹, N.M. Verenikina¹

¹Bauman Moscow State Technical University, ul. Baumanskaya 2-ya, 5/1, Moscow, Russia, 105005

Abstract. When designing high-quality optical systems, it is necessary to calculate the real field distribution of the output beam. In this work, the solution of this problem by the method of the scalar theory of diffraction is considered. For calculate the diffraction integral and visualize the results, the software package Mathematica (Wolfram Mathematica) is used. Aberration analysis of laser optical systems and simulation in the program Mathematica of the output field distribution showed a significant distortion of the field distribution and deviation of the spatial beam parameters from the ideal one, described by analytic expressions.

Keywords: diffraction, diffraction integral, calculus of approximations in optics, laser optical system, distortion of laser beam.