The reciprocals of some characteristic 2
“theta series”

Paul Monsky
Brandeis University, Waltham MA 02454-9110, USA
monsky@brandeis.edu

Abstract

Suppose $l = 2m + 1$, $m > 0$. We introduce m “theta-series”, $[1], \ldots, [m]$, in $\mathbb{Z}/2[[x]]$. It has been conjectured that the n for which the coefficient of x^n in $1/[i]$ is 1 form a set of density 0. This is probably always false, but in certain cases, for n restricted to certain arithmetic progressions, it is true. We prove such zero-density results using the theory of modular forms, and speculate about what may be true in general.

1 Introduction

Throughout L is a field of fractions of $\mathbb{Z}/2[[x]]$, viewed as the field of Laurent series with coefficients in $\mathbb{Z}/2$.

Definition 1.1. For $g \neq 0$ in $\mathbb{Z}/2[[x]]$, $B(g)$ is the set of n in \mathbb{Z} for which the co-efficient of x^n in $1/g$ is 1. Note that only finitely many elements of $B(g)$ can be < 0.

Fix $l = 2m + 1$ with $m > 0$. We define certain “theta series” $[i]$ in $\mathbb{Z}/2[[x]]$.

Definition 1.2. $[i] = \sum x^{n^2}$, the sum extending over all n in \mathbb{Z} with $n \equiv i$ (l). (Note that $[0] = 1$, and that $[i] = [j]$ whenever $i \equiv \pm j$ (l). So the ring S generated over $\mathbb{Z}/2$ by all the $[i]$ is just $\mathbb{Z}/2[[1], \ldots, [m]]$.)

In this note we study the sets $B([r])$ for fixed l and r with r prime to l. Note that each j in $B([r])$ is $\equiv -r^2$ (l) and that consequently $B([r])$ has (upper) density at most $1/l$ in the positive integers.

In [1], Cooper, Eichhorn and O’Bryant conjectured, in a slightly different language, that each $B([r])$ has density 0. I think this is never true, but we’ll show that for certain l and r and in certain congruence classes mod a power
of 2, \(B([r]) \) indeed has relative density 0. For example when \(l = 3 \) the relative density is 0 in the classes \(n \equiv 0 \pmod{2} \), \(n \equiv 1 \pmod{4} \) and \(n \equiv 3 \pmod{8} \). I’ll now describe more precisely, what perhaps is true in general, and the small part of it I’m able to prove.

Definition 1.3. Fix \(l, k < 0 \) is “\(l \)-exceptional” if \(k \) is in some \(B([r]) \) with \(r \) prime to \(l \). A “basic congruence class” is a congruence class of the form \(n \equiv k \pmod{8q} \), where \(k \) is \(l \)-exceptional and \(q \) is the largest power of 2 dividing \(k \).

Definition 1.4. An integer \(n \geq 0 \) is in \(U \) if it is in some basic congruence class, and in \(U^* \) otherwise.

Example 1. Suppose \(l = 3 \). Then \(1/\{1\} = x^{-1} + \cdots \). So the only 3-exceptional \(k \) is \(-1\) and the only basic class is \(n \equiv -1 \pmod{8} \). \(U^* \) consists of the integers \(n \geq 0 \) with \(n \equiv 0 \pmod{2} \), \(n \equiv 1 \pmod{4} \), or \(n \equiv 3 \pmod{8} \).

Example 2. Suppose \(l = 9 \). The only \([r]\) we need consider are \([1\), \([2\) and \([4\). Now \(1/\{1\} = x^{-1} + \cdots \), \(1/\{2\} = x^{-4} + \cdots \) and \(1/\{4\} = x^{-16} + x^{-7} + \cdots \). So the basic classes are \(n \equiv 1 \) or \(-1 \pmod{8} \), \(n \equiv -4 \pmod{32} \) and \(n \equiv -16 \pmod{128} \). Then \(U \) consists of the integers \(\geq 0 \) lying in \(16 + 16 + 4 + 1 = 37 \) congruence classes to the modulus 128, and \(U^* \) of the integers \(\geq 0 \) in the remaining 91 classes.

It seems to me plausible that when \(r \) is prime to \(l \) then \(B([r]) \) has relative density 0 in \(U^* \). I’ll show that this holds for \(l \leq 11 \). When \(l = 13 \) or 15, then \(U^* \) is the union of 83 mod 128 congruence classes, and I’ll prove that \(B([r]) \) has relative density 0 in each of these classes, with the possible exception of the class \(n \equiv 48 \pmod{128} \). Unfortunately the proof is not unified—we have to write \(U^* \) as a union of congruence classes and examine each class in turn. To this end we now give the (easily proved) description of \(U^* \) as a union of congruence classes for each \(l \leq 15 \).

\(l \) mod 2	\(l \) mod 4	\(l \) mod 8	\(l \) mod 16	\(l \) mod 32	\(l \) mod 64	\(l \) mod 128
3	0	1	3			
5	1, 2	0, 3	4	12		
7	1	0, 2, 3	4, 6	12		
9	2	3, 5	4, 8	0, 12	16	48
11	1, 3, 6	4, 8, 10	0, 12	16	48	
13	2, 3, 5	4, 8, 14	0, 12	16	48	
15	1, 2, 3	4, 6, 8	0, 12	16	48	
Here’s a rough description of how our proofs proceed. Fix l and $[r]$ and a congruence class $j \mod q$ where q is a power of 2. We’ll construct a g in $\mathbb{Z}/2[[x]]$, depending on l, r, j and q, with the following properties:

1. There are integers c_0, c_1, \ldots such that:

 \begin{enumerate}
 \item $\sum c_n e^{2\pi inz}$ converges in $\text{Im}(z) > 0$ to a modular form of integral weight for a congruence group.
 \item g is the mod 2 reduction of $\sum c_n x^n$
 \end{enumerate}

2. Suppose that $g/[r]^q$ is itself the mod 2 reduction of some $\sum d_n x^n$ where $\sum d_n e^{2\pi inz}$ converges to a modular form as in 1(A) above. Then $B([r])$ has density 0 in the congruence class $j \mod q$.

g is in fact the image of $[r]^{q-1}$ under a certain projection operator $p_{q,j}$ which we describe in the next section. The fact that g is “the reduction of a modular form” comes from a corresponding result for $[r]$; $[r]$ is the reduction of a weight 1 modular form. (The proof of (2) is deeper, coming from a result of Deligne and Serre on the reduction of modular forms.) Once (1) and (2) are established we still need to show that for each of our choices of l, $[r]$, and the congruence class $j \mod q$ lying in U^*, the power series $g/[r]^q$ satisfies the condition (2) above. This is true, for example, whenever $g/[r]^q$ lies in the ring S of Definition 1.2. In certain cases, extensive computer calculations tell us that $g/[r]^q$ lies in S.

At the end of the paper we’ll speculate on the relative density of $B([r])$ in the basic classes. Though we are unable to prove anything, computer calculations suggest that each $B([r])$ has relative density $1/(2l)$ in each basic class.

2 The operators $p_{q,j}$ and the case $l = 3$

If q is a power of 2, let $L^{[a]} \subset L$ consist of all qth powers of elements of L. L is the direct sum of the $L^{[a]}$ vector-spaces $x^j L^{[a]}$, $0 \leq j < q$.

Definition 2.1. $p_{q,j} L \to x^j L^{[a]}$ is the $L^{[a]}$-linear projection map attached to the above direct sum decomposition.

Note that $p_{q,j}(FG) = \sum_{a+b=j} p_{q,a}(F)p_{q,b}(G)$, the sum extending over all pairs (a, b) with $a + b \equiv j \mod (q)$. Furthermore $p_{2q,2j}(F^2) = (p_{q,j}(F))^2$. We’ll use these facts often.

Lemma 2.2. Fix $l = 2m + 1$. Then:

1. $p_{2,0}([2i]) = [i]^4$
(2) The subring S of L generated over $\mathbb{Z}/2$ by all the $[i]$ is stabilized by the operators $p_{8,0}, \ldots, p_{8,7}$.

Proof. Since $[2i] = \sum_{n=2i} (t_n x^n)$, $p_{2,0}(2i) = \sum_{k=0} x^{4k^2} = [i]^4$.

In view of the formula for $p_{8,3}(FG)$, to prove (2) it suffices to show that $p_{8,0}([i]), \ldots, p_{8,7}([i])$ are all in the subring. Now if $j \neq 0, 1$ or 4, each $p_{8,j}([i])$ is 0. Since every odd square is $\equiv 1 \pmod{8}$, $p_{8,1}(2i) = p_{2,1}(2i) = [2i] + [i]^4$. Also $p_{8,0}(4i) = p_{8,0}p_{2,0}(4i) = p_{8,0}(2i)^4 = (p_{2,0}(2i))^4 = [i]^{16}$. Similarly, $p_{8,4}(4i) = (p_{2,1}(2i))^4 = [2i]^4 + [i]^{16}$. □

Suppose for the rest of this section that $l = 3$. In this case the proofs of zero-density in U^* are much easier than the proofs for $l > 3$, requiring neither modular forms nor computer calculations. Observe that if 3 doesn’t divide i, then $[i] = 1$.

Definition 2.3. $a = [1] = [2]$. Note that $p_{2,0}(a) = a^4$.

Theorem 2.4. Suppose $n \equiv 0 \pmod{2}$ and n is in $B(a)$. Then $n/2$ is a square.

Proof. $p_{2,0}(\frac{1}{n}) = \frac{1}{a}p_{2,0}(a) = a^2$. Since n is in $B(a)$ and is even, the coefficient of x^n in a^2 is 1, giving the result. □

Theorem 2.5. Suppose $n \equiv 1 \pmod{4}$ and n is in $B(a)$. Then the number of pairs (s_1, s_2) with s_1 and s_2 squares, and $s_1 + 4s_2 = n$ is odd. Furthermore n is the product of a prime and a square.

Proof. $p_{4,1}(\frac{1}{a}) = \frac{1}{a}p_{4,1}(a^3) = \frac{1}{a}p_{4,1}(a)p_{4,1}(a^2) = \frac{1}{a^7} (a + a^4) a^8 = a^5 + a^8$. Since n is in $B(a)$ and is $\equiv 1 \pmod{4}$, the coefficient of x^n in $a^5 + a^8$ is 1, and so the coefficient in $a^5 = a \cdot a^4$ is 1. So the number of pairs (r_1, r_2) with $r_1 \equiv r_2 \equiv 1 \pmod{3}$ and $r_1^2 + 4r_2^2 = n$ is odd. To each such pair attach the pair (s_1, s_2) with s_1 and s_2 squares, $s_1 + 4s_2 = n$, by setting $s_i = r_i^2$. The function from pairs (r_1, r_2) to pairs (s_1, s_2) is 1-1. Since n is in $B(a)$, $n \equiv -1 \pmod{3}$. So whenever we have a pair (s_1, s_2) as above, s_1 and s_2 are $\equiv 1 \pmod{3}$ and have square roots $\equiv 1 \pmod{3}$. So the function $(r_1, r_2) \rightarrow (s_1, s_2)$ is onto, and we get the first assertion of the theorem. A little arithmetic in $\mathbb{Z}[i]$ gives the second assertion. □

Lemma 2.6. If $n \equiv 3 \pmod{8}$, n is in $B(a)$ if and only if the number of triples (r_1, r_2, r_3) with $r_1 \equiv r_2 \equiv r_3 \equiv 1 \pmod{3}$ and $r_1^2 + 2r_2^2 + 8r_3^2 = n$ is odd.

Proof. $p_{8,3}(\frac{1}{a}) = \frac{1}{a}p_{8,3}(a \cdot a^2 \cdot a^4) = \frac{1}{a^5}p_{8,1}(a)p_{8,2}(a^2)p_{8,0}(a^4) = \frac{1}{a^5} (a + a^4) (a + a^4)^2 a^{16} = a^{11} + a^{14} + a^{17} + a^{20}$. Since $n \equiv 3 \pmod{8}$ the coefficients of x^n in
a^{14}, a^{20}, and $a^{17} = a \cdot a^{16}$ are evidently 0. So n is in $B(a)$ if and only if the coefficient of x^n in $a^{11} = a \cdot a^2 \cdot a^8$ is 1, giving the lemma. \hfill \Box

Lemma 2.7. If $n \equiv 11 \ (24)$ the number of triples (s_1, s_2, s_3) where the s_i are squares and $s_1 + s_2 + s_3 = n$ is 3 \cdot (\text{the number of triples } (r_1, r_2, r_3) \text{ as in Lemma 2.6}).

Proof. If the s_i are as above, two of them are $\equiv 1 \ (3)$ while 3 divides the third. So our lemma states that the number of triples (s_1, s_2, s_3) with the s_i squares, $s_1 + s_2 + s_3 = n$ and $s_3 \equiv 0 \ (3)$ is the number of triples (r_1, r_2, r_3) as in Lemma 2.6. If we have a triple (r_1, r_2, r_3) let $s_1 = r_1^2$, $s_2 = (r_2 - 2r_3)^2$, $s_3 = (r_2 + 2r_3)^2$. Then the s_i are squares, $s_3 \equiv 0 \ (3)$ and $s_1 + s_2 + s_3 = r_1^2 + 2r_2^2 + 8r_3^2 = n$. That $(r_1, r_2, r_3) \rightarrow (s_1, s_2, s_3)$ is 1–1 is easily seen. To prove ontoness suppose we’re given (s_1, s_2, s_3). Then s_1 and s_2 are $\equiv 1 \ (3)$ and have square roots, $\sqrt{s_1}$ and $\sqrt{s_2}$, that are $\equiv 1 \ (3)$. Also, since $n \equiv 3 \ (8)$, the s_i are odd. So we can find a square-root, $\sqrt{s_3}$ of s_3 with $\sqrt{s_3} \equiv \sqrt{s_2} \ (4)$. Then the triple $(\sqrt{s_1}, -\sqrt{s_2-\sqrt{s_3}}, \sqrt{s_2+\sqrt{s_3}})$ has its entries $\equiv 1 \ (3)$ and maps to (s_1, s_2, s_3). \hfill \Box

Theorem 2.8. Suppose $n \equiv 3 \ (8)$ and n is in $B(a)$. Then the number of pairs (s_1, s_2) with s_1 and s_2 squares and $s_1 + 2s_2 = n$ is odd. Furthermore, n is the product of a prime and a square.

Proof. Consider the set of triples (s_1, s_2, s_3) where the s_i are squares and $s_1 + s_2 + s_3 = n$. Since n is in $B(a)$, and $n \equiv 3 \ (8)$, $n \equiv 11 \ (24)$. Lemmas 2.6 and 2.7 then show that the number of such triples is odd. Now $(s_1, s_2, s_3) \rightarrow (s_1, s_3, s_2)$ is an involution on the set of such triples whose fixed points identify with the pairs (s_1, s_2) as in the statement of the theorem. This gives the first assertion of the theorem, and a little arithmetic in $\mathbb{Z}[\sqrt{-2}]$ gives the second. \hfill \Box

Theorem 2.9.

1. Every element n of $B(a)$ that lies in U^* is the product of a prime and a square.
2. The number of elements of $B(a)$ that are $\leq x$ and lie in U^* is $O(x/\log x)$.

Proof. The elements of U^* are $\equiv 0 \ (2)$, 1 (4), or 3 (8), and we use Theorems 2.4, 2.5 and 2.8 to get (1). (2) is an immediate consequence. \hfill \Box

Remark 1. The proof of Theorem 2.9 is easier than that of a similar result in Monsky [2], which makes use of results of Gauss on representations by sums of 3 squares.

Remark 2. The set $B(a + a^4)$ has been more extensively studied. One sees immediately that $a + a^4 = \sum x^{1+24s}$, where s runs over the generalized pen-
tagonal numbers 0, 1, 2, 5, 7, 12, 15, . . . So the elements of $B(a + a^4)$ are all \(\equiv -1\) (24). The mod 2 reduction of a famous identity of Euler tells us that 24\(k - 1\) is in $B(a + a^4)$ if and only if the number of partitions, $p(k)$, of k is odd. Large-scale computer calculations suggest very strongly that the k for which $p(k)$ is odd have density 1/2, so that $B(a + a^4)$ has relative density 1/2 in the congruence class $n \equiv -1$ (24). It’s tempting to believe that $B(a)$ also has relative density 1/2 in this congruence class. This would be in line with the (modest) computer calculations that have been made; see our final section.

3 Enter modular forms. The quintic theta relations

In the proofs of section 2 we expressed $p_{2,0}(\frac{1}{a})$, $p_{4,1}(\frac{1}{a})$, and $p_{8,3}(\frac{1}{a})$ as elements of $\mathbb{Z}/2[a]$, and were able to deduce that $B(a)$ has density 0 in the congruence classes $n \equiv 0$ (2), $n \equiv 1$ (4) and $n \equiv 3$ (8). (Note that $p_{8,7}(\frac{1}{a})$ is not in $\mathbb{Z}/2[a]$. Indeed $p_{8,7}(\frac{1}{a}) = x^{-1} + \cdots$ and is not even in $\mathbb{Z}/2[[x]]$). In our treatment of larger l we’ll use a similar idea, but in most cases we’ll have to rely on a deep result on modular forms due to Deligne and Serre. My thanks go to David Rohrlich for telling me about this result.

The following is well-known; for a more general theorem on definite quadratic forms in an even number of variables see Schöneberg [4].

Theorem 3.1. \(\sum \sum e^{2\pi i(m^2 + n^2)z}\), the sum extending over all pairs (m, n) with m and n in \mathbb{Z} and $n \equiv$ some j mod l, converges in $\text{Im}(z) > 0$ to a weight 1 modular form for a congruence group.

Corollary 3.2. Fix l. Let $u = \sum a_s x^s$ be a product of powers of various $[j]$. Then there are integers c_0, c_1, \ldots such that:

(A) \(\sum c_s e^{2\pi i z} \) converges in $\text{Im}(z) > 0$ to a modular form of integral weight for a congruence group.

(B) The mod 2 reduction of c_s is a_s.

Proof. It’s enough to show this when $u = [j]$. We take our modular form to be that of Theorem 3.1. If we write this form as $\sum c_s e^{2\pi i s z}$, then (A) is satisfied. Furthermore c_s is the number of pairs (m, n) with $n \equiv j \ (l)$ and $m^2 + n^2 = s$. $(m, n) \to (-m, n)$ is an involution on this set of pairs. There is one fixed point if s is the square of some $n \equiv j \ (l)$, and no fixed point otherwise. It follows that the mod 2 reduction of c_s is a_s. \(\square\)

Now fix l. Recall that S is the subring of $\mathbb{Z}/2[[x]]$ generated over $\mathbb{Z}/2$ by all the $[j]$. 6
Theorem 3.3. If \(u = \sum a_n x^n \) is in \(S \), then the set of \(n \) for which \(a_n \) is 1 has density 0.

Proof. We may assume that \(u \) is a product of powers of various \([j]\). As we’ve seen, there are \(c_n \) in \(\mathbb{Z} \), with \(c_n \) reducing to \(a_n \) mod 2, such that \(\sum c_n e^{2\pi i n z} \) converges in \(\text{Im}(z) > 0 \) to a modular form of integral weight for a congruence group. A theorem of Serre [5], based on results of Deligne attaching Galois representations to Hecke eigenforms, shows that the \(n \) divide \(c \) form a set of density 0. \(\square \)

Corollary 3.4. Suppose that \(p_{q,j}(1/\lfloor r \rfloor) \) is in \(S \), or more generally in \(p_{q,j}(S) \). Then \(B([r]) \) has relative density 0 in the congruence class \(j \ mod \ q \).

Now \(p_{q,j}(1/\lfloor r \rfloor) = (1/\lfloor r \rfloor^q) p_{q,j}(\lfloor r \rfloor^{q-1}) \). But to show that this quotient lies in \(p_{q,j}(S) \) for various choices of \(j \) and \(q \) seems very difficult. There is however a technique for showing that a quotient of two elements of \(S \) lies in \(S \) that makes use of certain “quintic theta relations”.

Lemma 3.5. \(p_{2,0}([2i][2j]) = [i+j]^2[i-j]^2 \).

Proof. It suffices to show that the coefficients of \(x^{2n} \) on the two sides are equal. On the left one has the mod 2 reduction of the number of pairs \((r,s)\) with \(r \equiv 2i \ (l) \), \(s \equiv 2j \ (l) \) and \(r^2 + s^2 = 2n \). On the right one has the mod 2 reduction of the number of pairs \((t,u)\) with \(t \equiv i+j \ (l) \), \(u \equiv i-j \ (l) \) and \(t^2 + u^2 = n \). Clearly \((r,s) \rightarrow (\frac{r+s}{2}, \frac{r-s}{2}) \) gives the desired bijection. \(\square \)

Theorem 3.6. \([i]^4[2j] + [j]^4[2i] + [2i][2j] + [i+j]^2[i-j]^2 = 0 \).

Proof. \(p_{2,0}([2i][2j]) = p_{2,0}([2i])p_{2,0}([2j]) + p_{2,1}([2i])p_{2,1}([2j]) = [i]^4[j]^4 + ([i]^4 + [2i]) ([j]^4 + [2j]) \). Now use Lemma 3.5. \(\square \)

Let \(x_1, \ldots, x_m \) (where \(l = 2m + 1 \)) be indeterminates over \(\mathbb{Z}/2 \).

Definition 3.7. If \(r \) is prime to \(l \), \(\phi_r \) is the homomorphism \(\mathbb{Z}/2[x_1, \ldots, x_m] \rightarrow S \) taking \(x_k \) to \([rk] \).

Note that each \(\phi_r \) is onto. We’ll use Theorem 3.6 to construct \(\frac{m(m-1)}{2} \) elements of \(\mathbb{Z}/2[x_1, \ldots, x_m] \) lying in the kernel of each \(\phi_r \).

Theorem 3.8. Suppose that \(m \geq i > j \geq 1 \). For \(1 \leq k \leq m \) define \(x_{1-k} \) to be \(x_k \), so that we have elements \(x_1, \ldots, x_{2m} \) of \(\mathbb{Z}/2[x_1, \ldots, x_m] \). Then if we define \(R_{i,j} \) to be \(x_i^4 x_{2j} + x_j^4 x_{2i} + x_2 x_{2j} + x_i^2 x_{i+j} x_{i-j}^2 \), each \(R_{i,j} \) is in the kernel of each \(\phi_r \).
Proof. The definition of \(x_{m+1}, \ldots, x_{2m} \) shows that \(\phi_r(x_k) = [rk] \) for \(k = 1, \ldots, 2m \). The result now follows from Theorem 3.6 on replacing \(i \) and \(j \) by \(ri \) and \(rj \) throughout.

Theorem 3.9. Let \(u \) and \(v \) be elements of \(\mathbb{Z}/2[x_1, \ldots, x_m] \), and \(N \) the ideal in this ring generated by the \(R_{i,j} \). Suppose that the ideals \((N, v) \) and \((N, u, v) \) are the same. Then the element \(\phi_r(u)/\phi_r(v) \) of the field of fractions of \(S \) in fact lies in \(S \).

Proof. \(u \) is in \((N, v) \). Applying \(\phi_r \) and using Theorem 3.9 we find that in \(S \), \(\phi_r(u) \) lies in the principal ideal \(\phi_r(v) \).

Remark. Commutative algebra computer programs such as Macaulay 2 use Gröbner bases to decide whether 2 ideals in a polynomial ring are equal. We shall use such a program to show that in many cases of interest the quotient \(\phi_r(u)/\phi_r(v) \) lies in \(S \).

There is one further simple result that we’ll use frequently in the calculations to follow.

Lemma 3.10. Suppose that for some \(a \) and \(b \), \(p_{2,0}(a) = b^4 \). Then:

1. \(p_{2,0} \left(\frac{1}{a} \right) = \frac{b^4}{a^4} \)
2. \(p_{4,0} \left(\frac{1}{a} \right) = \frac{b^{12}}{a^{12}} \)
3. \(p_{8,0} \left(\frac{1}{a} \right) = \frac{b^8}{a^8} (p_{2,0}(ab))^4 \)

Proof. \(p_{2,0} \left(\frac{1}{a} \right) = \frac{1}{a^4} p_{2,0}(a) = \frac{b^4}{a^4} \). Then \(p_{4,0} \left(\frac{1}{a} \right) = p_{4,0} p_{2,0} \left(\frac{1}{a} \right) = p_{4,0} \left(\frac{b^4}{a^4} \right) = b^4 \left(p_{2,0} \left(\frac{1}{a} \right) \right)^2 = \frac{b^{12}}{a^{12}} \). Furthermore, \(p_{8,0} \left(\frac{1}{a} \right) = p_{8,0} p_{4,0} \left(\frac{1}{a} \right) = p_{8,0} \left(\frac{b^{12}}{a^{12}} \right) = \frac{b^8}{a^8} p_{8,0}(ab^4) \), giving the last result.

4 \(l = 5 \)

In this section \(l = 5 \), so that \(m = 2 \). Then the ideal \(N \) of Theorem 3.9 is generated by the single element \(R_{2,1} = x_2 x_4 + x_4 x_2 + x_3 x_3 = x_1^5 + x_2^5 + x_1 x_2 + x_2^2 x_3^2 \). Now let \(r = 1 \) or \(2 \) and set \(a = [r], \ b = [2r] \). Then \(p_{2,0}(a) = b^4, \ p_{2,0}(b) = a^4 \) and we have the quintic relation \(a^5 + b^5 + ab + a^2 b^2 = 0 \).

We’ll use the techniques sketched in the last section to show that \(p_{4,1} \left(\frac{1}{a} \right), \ p_{4,2} \left(\frac{1}{a} \right), \ p_{8,0} \left(\frac{1}{a} \right), \ p_{8,3} \left(\frac{1}{a} \right), \ p_{16,4} \left(\frac{1}{a} \right) \) and \(p_{32,12} \left(\frac{1}{a} \right) \) are all in \(S \). Corollary 3.4 in conjunction with the description of \(U^* \) given in the introduction when \(l = 5 \) then tells us that \(B(a) \) has relative density 0 in \(U^* \).
Theorem 4.1. \(p_{8,0} \left(\frac{1}{a} \right) = b^{16} \).

Proof. By Lemma 3.10, \(p_{8,0} \left(\frac{1}{a} \right) = \frac{b^8}{a^4} (p_{2,0}(ab))^4 \). Now \(p_{2,0}(ab) = p_{2,0}([4r][2r]) = [3r]^2 \cdot [r]^2 = a^2b^2 \).

Theorem 4.2. \(p_{4,2} \left(\frac{1}{a} \right), \ p_{4,1} \left(\frac{1}{a} \right) \) and \(p_{8,3} \left(\frac{1}{a} \right) \) are in \(S \).

Proof. We first write these power series as quotients of elements of \(S \).

1. \(p_{4,2} \left(\frac{1}{a} \right) = p_{2,0} \left(\frac{1}{a} \right) + p_{4,0} \left(\frac{1}{x} \right) = \frac{b^4}{a^4} + \frac{b^{12}}{a^{12}} = \left(\frac{b^4}{a^4} \right) (a^2 + b^8) \).
2. \(p_{4,1} \left(\frac{1}{a} \right) = \left(\frac{1}{a^4} \right) p_{4,1}(a)p_{4,0}(a^2) = \left(\frac{1}{a^4} \right) p_{2,1}(a) (p_{2,0}(a))^2 = \left(\frac{b^4}{a^4} \right) (a + b^4) \).
3. \(p_{8,3} \left(\frac{1}{a} \right) = \left(\frac{1}{a^4} \right) p_{8,1}(a)p_{8,2}(a^2)p_{8,0}(a^4) = \left(\frac{1}{a^4} \right) p_{2,1}(a) (p_{2,1}(a))^2 (p_{2,0}(a))^4 = \left(\frac{b^{16}}{a^4} \right) (a + b^4)^3 \).

In view of (1), (2) and (3) it will suffice to show that \(\frac{b^2}{a^2}(a + b^4) \) and \(\frac{b^4}{a^4}(a + b^4) \) are each in \(S \). This can be done by hand, but in the mechanized spirit of the paper I'll give a computer argument. First let \(u = x_2^3(x_1 + x_2^2) \) and \(v = x_1^2 \). Macaulay 2 tells us that \((N, v) = (N, u, v) \). So by Theorem 3.9, \(\phi_r(u)/\phi_r(v) \) is in \(S \). But \(\phi_r(u)/\phi_r(v) = \frac{b^2}{a^4}(a + b^4) \). For the second result we argue similarly taking \(u = x_2^3(x_1 + x_2^2) \) and \(v = x_1^4 \).

Lemma 4.3. \(p_{8,4} \left(\frac{1}{a} \right) + \left(p_{2,1} \left(\frac{1}{a} \right) \right)^4 = a^4 + b^{16} \).

Proof. \(p_{8,4} \left(\frac{1}{a} \right) = p_{4,0} \left(\frac{1}{a} \right) + p_{8,0} \left(\frac{1}{a} \right) = \frac{b^{12}}{a^{12}} + b^{16} \), by Lemma 3.10 and Theorem 4.1. Furthermore \(p_{2,1} \left(\frac{1}{b} \right) = \frac{1}{b} + p_{2,0} \left(\frac{1}{b} \right) = \frac{1}{b} + \frac{a^4}{b^4} \). So the left hand side in the statement of Lemma 4.3 is \(b^{16} + \left(\frac{b^2}{a} + \frac{1}{b} + \frac{a^4}{b^4} \right)^4 \). But the quintic relation \(a^5 + b^5 + ab + a^2b^2 = 0 \) tells us that \(\frac{b^5}{a} + \frac{1}{b} + \frac{a^4}{b^4} = \frac{1}{ab^4} (b^5 + ab + a^5) = a \).

Theorem 4.4. \(p_{16,4} \left(\frac{1}{a} \right) \) and \(p_{32,12} \left(\frac{1}{a} \right) \) are in \(S \).

Proof. Applying \(p_{16,4} \) to the identity of Lemma 4.3 we find that \(p_{16,4} \left(\frac{1}{a} \right) + \left(p_{4,1} \left(\frac{1}{a} \right) \right)^4 = (p_{4,1}(a))^4 = a^4 + b^{16} \). But Theorem 4.2 (with \(r \) replaced by \(2r \)) tells us that \(p_{4,1} \left(\frac{1}{a} \right) \) is in \(S \). Applying \(p_{32,12} \) to the identity of Lemma 4.3 we find that \(p_{32,12} \left(\frac{1}{a} \right) + \left(p_{8,3} \left(\frac{1}{a} \right) \right)^4 = (p_{8,3}(a))^4 = 0 \). And Theorem 4.2 (with \(r \) replaced by \(2r \)) shows that \(p_{8,3} \left(\frac{1}{a} \right) \) is in \(S \).
In this section $l = 7$. Then $m = 3$ and the ideal N is generated by $x_1^3 + x_2^3x_2 + x_1x_2 + x_1^2x_3^2, x_2 + x_1^2x_3 + x_2x_3 + x_2^2x_4^2$ and $x_1^3 + x_2x_3 + x_3x_1 + x_1^2x_2^3$. Let r be 1, 2 or 3, $a = [r], b = [4r], c = [2r]$. Then $p_{2,0}$ takes a, b and c to b^4, c^4 and a^4. Lemma 3.5 shows that $p_{2,0}$ takes ab, bc and ac to a^2b^2, a^2b^2 and b^2c^2. We'll prove that $B(a)$ has relative density 0 in U^* by showing that each of $p_{4,1}\left(\frac{1}{a}\right), p_{8,0}\left(\frac{1}{a}\right), p_{8,3}\left(\frac{1}{a}\right), p_{16,4}\left(\frac{1}{a}\right), p_{16,6}\left(\frac{1}{a}\right)$ and $p_{32,12}\left(\frac{1}{a}\right)$ is in S.

Remark. In this case, as in the case $l = 5$, N is the kernel of each ϕ_r. This is not true when $l = 9$. Whether it holds for all prime l is an interesting question.

Theorem 5.1. $p_{8,0}\left(\frac{1}{a}\right) = b^8c^8$, and $p_{8,2}\left(\frac{1}{a}\right) = (a^2 + b^8)c^8$.

Proof. By Lemma 3.10, $p_{8,0}\left(\frac{1}{a}\right) = \left(\frac{b^8}{a^8}\right)(p_{2,0}(ab))^4 = b^8c^8$. Also, $p_{8,2}\left(\frac{1}{a}\right) = \frac{1}{a^2}p_{2,2}(a)(p_{2,0}(ab))^2 = \frac{1}{a^2}p_{2,1}(a)(p_{2,0}(ab))^2 = (a + b^4)b^4$.

Theorem 5.2. $p_{4,1}\left(\frac{1}{a}\right), p_{8,3}\left(\frac{1}{a}\right)$ and $p_{16,6}\left(\frac{1}{a}\right)$ are in S.

Proof. Again we first write these power series as quotients of elements in S.

1. The proof of Theorem 4.2 shows that $p_{4,1}\left(\frac{1}{a}\right) = \frac{b^8}{a^8}(a + b^4)$, and that $p_{8,3}\left(\frac{1}{a}\right) = \frac{b^{16}}{a^8}(a + b^4)^3$.

2. $p_{16,6}\left(\frac{1}{a}\right) = p_{16,6}p_{2,0}\left(\frac{1}{a}\right) = p_{16,6}\left(\frac{b^4}{a^4}\right) = \left(p_{8,3}\left(\frac{b^2}{a}\right)\right)^2$. Now $p_{8,3}\left(\frac{b^2}{a}\right) = \frac{1}{a^2}p_{8,1}(a)p_{8,2}(ab) = \frac{1}{a^2}p_{2,1}(a)(p_{2,0}(ab))^2 = \frac{1}{a^2}p_{2,1}(a)(p_{2,0}(ab))^2 = \frac{a^4 + b^4 + a^2c^2}{a^4}$. So $p_{8,3}\left(\frac{b^2}{a}\right) = \frac{a^4 + b^4 + a^2c^2}{a^4}$.

We can now use the technique of the last section to prove the theorem. It suffices to show that $\left(\frac{b^8}{a^8}\right)(a + b^4)$ and $\left(\frac{b^{16}}{a^8}\right)(a + b^4)(a^2b^2 + a^4c^4)$ are in S. To prove the second result we take u to be $x_3^3(x_1 + x_3^4)(x_1^2x_3 + x_1^4x_3^2)$, and v to be x_3^8. Macaulay 2 verifies that $(N, v) = (N, u, v)$. So $\phi_r(u)/\phi_r(v)$ is in S, as desired. The first result is proved similarly.

Lemma 5.3. $p_{8,4}\left(\frac{1}{a}\right) + \left(p_{4,2}\left(\frac{1}{c}\right)\right)^2 = u^4$ for some u in S.

Proof. $p_{8,4}\left(\frac{1}{a}\right) = p_{4,0}\left(\frac{1}{a}\right) + p_{8,0}\left(\frac{1}{a}\right)$. By Lemma 3.10 and Theorem 5.1, this is $\frac{b^{12}}{a^8} + b^8c^8$. And $p_{4,2}\left(\frac{1}{c}\right) = p_{2,0}\left(\frac{1}{c}\right) + p_{4,0}\left(\frac{1}{c}\right) = \frac{a^4}{c^4} + \frac{a^2}{c^2}$. So the left-hand side in the statement of the lemma is the fourth power of $\frac{b^8}{a^8} + \frac{b^2c^2}{a^4} + \frac{a^2}{c^2}$. To
show that $\frac{b^2}{c} + \frac{a^2}{c} + x^6$ is in S, we write it as a quotient, $\frac{b^2c^2 + a^3c + a^7}{ac^2}$, and use our Macaulay 2 technique.

Theorem 5.4. $p_{16,4} \left(\frac{1}{a} \right)$ and $p_{32,12} \left(\frac{1}{a} \right)$ are in S.

Proof. Applying $p_{16,4}$ to the identity of Lemma 5.3 we find that $p_{16,4} \left(\frac{1}{a} \right) + \left(p_{8,2} \left(\frac{1}{a} \right) \right)^2 = (p_{4,1}(u))^4$. Now Theorem 5.1 (with r replaced by $2r$) shows that $p_{8,2} \left(\frac{1}{a} \right)$ is in S. Since S is stable under $p_{4,1}$, $p_{16,4} \left(\frac{1}{a} \right)$ is in S. Similarly, applying $p_{32,12}$ to the identity, we find that $p_{32,12} \left(\frac{1}{a} \right) + \left(p_{16,6} \left(\frac{1}{a} \right) \right)^2 = (p_{8,3}(u))^4$. Theorem 5.2 shows that $p_{16,6} \left(\frac{1}{c} \right)$ is in S, and we use the fact that $p_{8,3}$ stabilizes S.

6 $l = 9$

Now $l = 9$. Then $m = 4$ and N is generated by $x_1^5 + x_4^2x_2 + x_1x_2 + x_2^2x_3^2$, $x_2^5 + x_4^2x_2 + x_1x_2 + x_2^2x_3^2$, $x_3^5 + x_4^2x_2 + x_1x_2 + x_2^2x_3^2$, $x_4^5 + x_4^2x_2 + x_1x_2 + x_2^2x_3^2$, $x_1^5 + x_3^2x_1 + x_1x_2 + x_2^2x_3^2$, $x_2^5 + x_3^2x_1 + x_1x_2 + x_2^2x_3^2$, $x_3^5 + x_3^2x_1 + x_1x_2 + x_2^2x_3^2$, and $x_4^5 + x_3^2x_1 + x_1x_2 + x_2^2x_3^2$. Let r be 1, 2 or 4, $a = [r]$, $b = [4r]$, $c = [2r]$ and $d = [3r] = [6r]$. Then $p_{2,0}(d) = d^4$, and $p_{2,0}$ takes a, b and c to b^4, c^4 and a^4. Lemma 3.5 shows that $p_{2,0}$ takes ab, bc and ac to c^2d^2, a^2d^2 and b^2d^2, and that it takes ad, bd and cd to a^2c^2, a^2b^2 and b^2c^2. We'll prove that $B(a)$ has relative density 0 in U^* by showing that each of $p_{4,2} \left(\frac{1}{a} \right)$, $p_{8,3} \left(\frac{1}{a} \right)$, $p_{8,5} \left(\frac{1}{a} \right)$, $p_{16,4} \left(\frac{1}{a} \right)$, $p_{16,8} \left(\frac{1}{a} \right)$, $p_{32,0} \left(\frac{1}{a} \right)$, $p_{64,16} \left(\frac{1}{a} \right)$ and $p_{128,48} \left(\frac{1}{a} \right)$ is in S.

Theorem 6.1. $p_{4,2} \left(\frac{1}{a} \right)$, $p_{8,3} \left(\frac{1}{a} \right)$, $p_{8,5} \left(\frac{1}{a} \right)$, $p_{16,4} \left(\frac{1}{a} \right)$ and $p_{16,8} \left(\frac{1}{a} \right)$ are in S.

Proof. Again we first write these power series as quotients of elements in S.

1. The proof of Theorem 4.2 shows that $p_{4,2} \left(\frac{1}{a} \right) = \left(\frac{b^4}{a^3} \right) (a^2 + b^2)$ while $p_{8,3} \left(\frac{1}{a} \right) = \left(\frac{b^4}{a^3} \right) (a + b)^3$.
2. $p_{8,5} \left(\frac{1}{a} \right) = \left(\frac{1}{a^3} \right) p_{8,0}(a)p_{8,4}(a^2)p_{8,4}(a^4) = \left(\frac{1}{a^3} \right) p_{2,1}(a) \left(p_{4,0}(a) \right)^2 \left(p_{2,1}(a) \right)^4 = \left(\frac{b^4}{a^3} \right) (a + b)^5$.
3. $p_{16,4} \left(\frac{1}{a} \right) = p_{16,4}p_{4,0} \left(\frac{1}{a} \right) = \left(p_{4,1} \left(\frac{b^4}{a^3} \right) \right)^4$. And $p_{4,1} \left(\frac{b^4}{a^3} \right) = \left(\frac{1}{a^3} \right) p_{4,1}(ab)p_{4,0}(a^2b^2)$
 \[
 = \left(\frac{1}{a^3} \right) p_{2,1}(ab) \left(p_{2,0}(ab) \right)^2 = \frac{c^4d^2}{a^3}(ab + c^2d^2).
 \]
4. $p_{8,0} \left(\frac{1}{a} \right) = \left(\frac{b^4}{a^3} \right) \left(p_{2,0}(ab) \right)^4 = \left(\frac{b^4c^4d^2}{a^3} \right)^8$. If follows that $p_{16,8} \left(\frac{1}{a} \right) = p_{16,8}p_{8,0} \left(\frac{1}{a} \right) = \left(\frac{b^4c^4d^2}{a^3} \right)^8$. Now $p_{2,1} \left(\frac{b^4c^4d^2}{a^3} \right) = \left(\frac{1}{a^3} \right) p_{2,1} \left((ab)(cd) \right) = \left(\frac{1}{a^3} \right) (ab^3c^2 + c^3d^3)$.

We conclude with our by now standard computer procedure. For example to show that \(\left(\frac{1}{a} \right) (ab^3c^2 + c^3d^3) \) is in \(S \) we set \(u = x_1x_4^2x_2^2 + x_2^3x_3^3, v = x_1^2 \) and use Macaulay 2 to verify that \((N, v) = (N, u, v) \). \(\square\)

Lemma 6.2. \(p_{16,0} \left(\frac{1}{a} \right) \) is the sixteenth power of \(\frac{d(ab^2 + bc^2 + ca^2)}{a} \).

Proof. Arguing as in the above calculation of \(p_{16,8} \left(\frac{1}{a} \right) \) we find that \(p_{16,0} \left(\frac{1}{a} \right) \) is the eighth power of \(p_{2,0} \left(\frac{bcd}{a} \right) = \frac{abcd}{a^2} + \frac{ab^3c^2 + c^3d^3}{a^2} \). So it suffices to show that \((abcd + ab^3c^2 + c^3d^3) + d^2(a^2b^4 + b^2c^4 + c^2a^4) = 0 \). To do this, set \(u = (x_1x_4x_2x_3 + x_1x_4^3x_2^2 + x_2^3x_3^3) + x_3^2(x_1^2x_4^4 + x_2^2x_4^2 + x_2^2x_4^1) \). Macaulay 2 shows that \((N, u) = N \). So \(u \) is in \(N \) and applying \(\phi_r \) gives the result. \(\square\)

Lemma 6.3. \(p_{16,0} \left(\frac{1}{a} \right) + (p_{8,4} \left(\frac{1}{b} \right))^4 = u^{16} \) for some \(u \) in \(S \).

Proof. \(p_{8,4} \left(\frac{1}{b} \right) = p_{8,0} \left(\frac{1}{b} \right) + p_{4,0} \left(\frac{1}{b} \right) \). Using Lemma 3.10 we find that this is \(\left(\frac{acd}{b} \right)^8 + \left(\frac{b^2}{c} \right)^4 \). So the left-hand side in the statement of the lemma is the sixteenth power of \(u = \frac{d(ab^2 + bc^2 + ca^2)}{a} + \frac{a^2b^2c^2}{b^2} + \frac{c^3}{b} \). It remains to show that this \(u \) is in \(S \). This is established using Macaulay 2 in the usual way. \(\square\)

Theorem 6.4. \(p_{32,0} \left(\frac{1}{a} \right) \) and \(p_{64,16} \left(\frac{1}{a} \right) \) are in \(S \).

Proof. Applying \(p_{32,0} \) to the identity of Lemma 6.3 we find that \(p_{32,0} \left(\frac{1}{a} \right) = (p_{2,0}(u))^{16} \) with \(u \) in \(S \). Applying \(p_{64,16} \) to the identity we find that \(p_{64,16} \left(\frac{1}{a} \right) + \left(p_{16,4} \left(\frac{1}{b} \right) \right)^4 = (p_{4,1}(u))^{16} \). But Theorem 6.1 shows that \(p_{16,4} \left(\frac{1}{b} \right) \) is in \(S \). \(\square\)

Theorem 6.5. \(p_{32,12} \left(\frac{1}{a} \right) \) and \(p_{128,48} \left(\frac{1}{a} \right) \) are in \(S \).

Proof. We show how the second result follows from the first. Applying \(p_{128,48} \) to the identity of Lemma 6.3 we find that \(p_{128,48} \left(\frac{1}{a} \right) + \left(p_{32,12} \left(\frac{1}{b} \right) \right)^4 = (p_{8,3}(u))^{16} \).

Since \(p_{32,12} \left(\frac{1}{b} \right) \) is in \(S \) and \(p_{8,3} \) stabilizes \(S \) we get the second result. To prove the first result we once again express our element as a quotient of two elements of \(S \). \(p_{32,12} \left(\frac{1}{a} \right) = p_{32,12}p_{4,0} \left(\frac{1}{a} \right) = p_{32,12} \left(\frac{b^2}{a^2} \right) = \left(p_{8,3} \left(\frac{b^2}{a} \right) \right)^4 \). So it’s enough to show that \(p_{8,3} \left(\frac{b^2}{a} \right) \) is in \(S \). Now \(p_{8,3} \left(\frac{b^2}{a} \right) = \left(\frac{1}{a^2} \right) p_{8,3} ((a^2b^2)(ab)(a^4)) = \left(\frac{1}{a^2} \right) p_{8,3}(ab) p_{8,5}(ab) p_{8,4}(a^4) \). Now modulo \(a^8 \), \(p_{8,1}(ab) = p_{8,0}(a)p_{8,1}(b) = c^6(b + c^4) \). Also \(p_{4,1}(ab) = p_{2,1}(ab) = ab + c^2d^2 \). So modulo \(a^8 \), \(p_{8,5}(ab) = p_{4,1}(ab) + c^6(b + c^4) = ab + c^2d^2 + c^6(b + c^4) \). We conclude that \(p_{8,3} \left(\frac{b^2}{a^2} \right) \) is the sum of an element of \(S \) and \(\frac{1}{a^2}(a^2b^2 + c^4d^4) \). A Macaulay 2 calculation shows that this last element is in \(S \). \(\square\)
7 \ l = 11, 13 and 15

We state the results for these \(l \) with very brief indications of proofs.

Lemma 7.1. Let \(a = [r] \) with \(r \) prime to \(l \). Then \(p_{8,k} \left(\frac{1}{a} \right), p_{16,2k} \left(\frac{1}{a} \right), p_{32,4k} \left(\frac{1}{a} \right) \) and \(p_{64,8k} \left(\frac{1}{a} \right) \) are all quotients of elements of \(S \) by powers of \(a \).

Proof. \(p_{8,k} \left(\frac{1}{a} \right) = \frac{1}{a^k} p_{8,k}(a^7) \), and we use Lemma 2.2. For the remaining results we may assume that \(r = 4s \). Let \(b = [2s], c = [s], e = [3s] \) so that \(p_{2,0}(a) = b^4, p_{2,0}(ab) = c^2e^2 \). Then \(p_{64,8k} \left(\frac{1}{a} \right) = p_{64,8k}p_{8,0} \left(\frac{1}{a} \right) \). By Lemma 3.10 this is the eighth power of \(p_{8,k} \left(\frac{bce}{a} \right) \), and we use the fact that \(p_{8,k}(a^7bce) \) is in \(S \). \(p_{16,2k} \left(\frac{1}{a} \right) \) and \(p_{32,4k} \left(\frac{1}{a} \right) \) are treated similarly.

Theorem 7.2. Let \(a = [r] \) with \(r \) prime to \(l \).

(1) When \(l = 11 \), \(p_{8,1}, p_{8,3}, p_{8,6}, p_{16,4}, p_{16,8}, p_{16,10}, p_{32,0}, p_{32,12} \) and \(p_{64,16} \) all take \(\frac{1}{a} \) to an element of \(S \).

(2) When \(l = 13 \), \(p_{8,2}, p_{8,3}, p_{8,5}, p_{16,4}, p_{16,8}, p_{16,14}, p_{32,0}, p_{32,12} \) and \(p_{64,16} \) all take \(\frac{1}{a} \) to an element of \(S \).

(3) When \(l = 15 \), \(p_{8,1}, p_{8,2}, p_{8,3}, p_{16,4}, p_{16,6}, p_{16,8}, p_{32,0}, p_{32,12} \) and \(p_{64,16} \) all take \(\frac{1}{a} \) to an element of \(S \).

Idea of proof. By Lemma 7.1 each \(p_{q,j} \left(\frac{1}{a} \right) \) is the quotient of an element of \(S \) by a power of \(a \). It’s clear that one can write down such a representation explicitly. In each case the Macaulay 2 argument using the ideal \(N \) of quintic relations shows that \(p_{q,j} \left(\frac{1}{a} \right) \) is in fact in \(S \).

Corollary 7.3. Suppose \(l = 11, 13, \) or \(15 \). Then in each of the mod 128 congruence classes constituting \(U^* \), with the possible exception of the congruence class \(n \equiv 48 \pmod{128} \), \(B(a) \) has relative density 0.

Proof. This follows from Theorem 7.2, Corollary 3.4 and the explicit description of \(U^* \) as a union of congruence classes.

I’ll now show that when \(l = 11 \) each \(B(a) \) in fact has relative density 0 in the congruence class 48 mod 128.

Lemma 7.4. When \(l = 11 \), \(p_{8,0} \left(\frac{1}{a} \right) + \left(p_{8,4} \left(\frac{1}{b} \right) \right)^4 = u^8 \) for some \(u \) in \(S \).

Idea of proof. As we noted in the proof of Lemma 7.1, \(p_{8,0} \left(\frac{1}{a} \right) = \left(\frac{bce}{a} \right)^8 \). Furthermore \(p_{8,4} \left(\frac{1}{b} \right) = p_{8,4}p_{2,0} \left(\frac{1}{b} \right) = \left(\frac{b}{a} \right)^{p_{8,4}(b^5c^4)}. \) This is the quotient of a
square in S by b^8. It follows that the left-hand side in the statement of Lemma 7.4 is the eighth power of $\frac{w}{ab}$, for some v in S. Our usual Macaulay 2 technique shows that $\frac{w}{ab}$ is in fact in S.

Theorem 7.5. When $l = 11$, $p_{128,48} \left(\frac{1}{a} \right)$ is in $p_{128,48}(S)$. In fact it’s the eighth power of an element of $p_{16,6}(S)$. Corollary 3.4 then shows that $B(a)$ has relative density 0 in the congruence class 48 mod 128, and consequently in U^*.

Proof. Applying $p_{128,48}$ to the identity of Lemma 7.4 we find that $p_{128,48} \left(\frac{1}{a} \right) + \left(p_{32,12} \left(\frac{1}{6} \right) \right)^4 = (p_{16,6}(u))^8$. Now $p_{32,12} \left(\frac{1}{6} \right) = p_{32,12}p_{4,0} \left(\frac{1}{6} \right) = p_{32,12} \left(\frac{\frac{12}{b}}{b^7} \right)$, which is the square of $p_{16,6} \left(\frac{c}{12} \right)$. So $p_{128,48} \left(\frac{1}{a} \right)$ is the eighth power of $p_{16,6} \left(\frac{c}{12} \right) + p_{16,6}(u)$, and it will suffice to show that $p_{16,6} \left(\frac{c}{12} \right)$ is in S. In fact, $p_{8,3} \left(\frac{c^3}{12} \right)$ is in S; the Macaulay 2 calculations going into the proof of Theorem 7.2 show this.

Remarks. We’ve established various zero-density results when $l \leq 15$. If we take $l > 15$, computer trouble arises. Suppose for example we restrict ourselves to congruence classes to the modulus 8 that lie in U^*. Then necessarily $l \leq 21$ or $l = 25$. When $l = 17$, the classes $n \equiv 5 \pmod{8}$ and $n \equiv 6 \pmod{8}$ are in U^*. But the ideal N in $\mathbb{Z}/2[x_1, \ldots, x_8]$ has 28 generators, and attempts, using Macaulay 2, to show that $p_{8,5} \left(\frac{1}{a} \right)$ (or $p_{8,6} \left(\frac{1}{a} \right)$) is in S cause a computer crash. Indeed the computer seemed at its limit in handling the congruence class $n \equiv 16 \pmod{64}$ when $l = 15$; it was an all-day calculation.

For $l = 11$ I don’t know whether Theorem 7.5 can be strengthened to show that $p_{128,48} \left(\frac{1}{a} \right)$ is in S. When $l = 13$ or 15 it’s possible that, as in the case $l = 11$, $p_{128,48} \left(\frac{1}{a} \right)$ is the eighth power of an element of $p_{16,6}(S)$. But there’s no analogue of Lemma 7.4 that could be used to prove this.

8 The basic classes — a little computer evidence

Fix l together with r prime to l and a basic congruence class C. All the elements of $B([r])$ are $\geq -r^2$ and are congruent to $-r^2 \mod l$. There is some evidence that $B([r])$ has density $\frac{1}{2l}$ in C, so that “half the elements of C that are $\geq -r^2$ and are congruent to $-r^2 \mod l$ lie in $B([r])$.”

Suppose for example that $l \leq 9$ and we are looking at the basic classes to the modulus 8. These are:
Consider the first \(2^{17} = 131,072 \) elements of \(C \) that are \(\geq -r^2 \) and congruent to \(-r^2 \mod l \). The number of these lying in \(B([r]) \) has been calculated by O’Bryant [3]. Here are his results.

(1) \(l = 3 \quad n \equiv 7 \pmod 8 \), \(r = 1 \quad 65,411 \)

(2) \(l = 5 \quad n \equiv 7 \pmod 8 \), \(r = 1 \quad 65,397 \quad r = 2 \quad 65,713 \)

(3) \(l = 7 \quad n \equiv 7 \pmod 8 \), \(r = 1 \quad 65,185 \quad r = 2 \quad 65,474 \quad r = 3 \quad 65,622 \)

(4) \(l = 9 \quad n \equiv 1 \pmod 8 \), \(n \equiv 7 \pmod 8 \), \(r = 1 \quad 65,877 \quad r = 2 \quad 65,579 \quad r = 4 \quad 65,813 \)

We may also consider the basic congruence class \(n \equiv 14 \pmod {16} \) when \(l = 7 \). Now if we consider the first 65,536 elements of the class that are \(\equiv -r^2 \mod 7 \) and \(\geq -r^2 \), the number in \(B([r]) \) is 32,673 when \(r = 1 \). It is 32,716 when \(r = 2 \) and 32,981 when \(r = 3 \). All this suggests the following:

Speculation. Suppose that \(\rho > \frac{1}{2} \). Consider a basic class \(C \) and the first \(X \) elements in the class that are \(\geq -r^2 \) and congruent to \(-r^2 \mod l \). Of these elements, the number in \(B([r]) \) is \(\frac{X}{2} + O(X^\rho) \).

We might go even further, speculating that this is true not only for the basic classes, but for any congruence class contained in a basic class.

It would be interesting to test these speculations further experimentally. But some caution is in order. Suppose for example that \(l = 9 \). Then the congruence class \(n \equiv 2 \pmod 4 \) is contained in \(U^* \), and as we’ve seen, \(B([1]), B([2]) \) and \(B([4]) \) all have relative density 0 in this class. Consider now the first \(2^{18} = 262,144 \) elements of this class that are \(\geq -r^2 \) and congruent to \(-r^2 \mod 9 \). The number of these elements that lie in \(B([r]) \) is 102,284 when \(r = 1 \), and 110,034 when \(r = 2 \). This is in good accord with our zero-density result. But when \(r = 4 \) more than half of the elements are in \(B([r]) \)! (The number is 137,657.) So we are advised not to place too much predictive power in such computer counts unless the range over which we’re counting is considerably extended.
References

[1] Cooper J.N., Eichhorn D., O’Bryant K., Reciprocals of binary series, Int. J. Number Theory 2 (2006), 499–522.

[2] Monsky P., Disquisitiones arithmeticae and online sequence A108345, arXiv (NT) 1009.3985.

[3] O’Bryant K., personal communication.

[4] Schöneberg B., Das Verhalten von mehrfachen Thetareihen bei Modulsubstitutionen, Math. Ann. 116 (1939), 511–523.

[5] Serre J.-P., Divisibilité des coefficients des formes modulaires de poids entier, C. R. Acad. Sci. Paris Sér. A 279 (1974), 679–682.