NONEXISTENCE OF ALMOST COMPLEX STRUCTURES ON THE PRODUCT
\(S^{2m} \times M \)

PRATEEP CHAKRABORTY AND AJAY SINGH THAKUR

Abstract. In this note we give a necessary condition for having an almost complex structure on the product \(S^{2m} \times M \), where \(M \) is a connected orientable closed manifold. We show that if the Euler characteristic \(\chi(M) \neq 0 \), then except for finitely many values of \(m \), we do not have almost complex structure on \(S^{2m} \times M \). In the particular case when \(M = \mathbb{C}P^n, n \neq 1 \), we show that if \(n \not\equiv 3 \pmod{4} \) then \(S^{2m} \times \mathbb{C}P^n \) has an almost complex structure if and only if \(m = 1, 3 \). As an application we obtain conditions on the nonexistence of almost complex structure on Dold manifolds.

1. Introduction

Recall that an oriented manifold \(X \) has an almost complex structure (a.c.s. for short) if there is a complex vector bundle \(\xi \) such that the underlying real bundle \(\xi_R \) of \(\xi \) is isomorphic to the tangent bundle \(\tau_X \) of \(X \) as oriented bundles.

It is well known [1] that the only even dimensional spheres admitting an a.c.s are \(S^2 \) and \(S^6 \). The product of even dimensional spheres, \(S^{2m} \times S^{2n} \) with \(m, n \neq 0 \), has an a.c.s. if and only if \((m, n) = (1, 1), (1, 3), (3, 1), (1, 2), (2, 1) \) or \((3, 3) \) (see, for example, [2] and [9]). In [11], Tang showed that \(S^{2m} \times \mathbb{C}P^2 \) has an a.c.s. if and only if \(m = 1, 3 \), and \(S^{2m} \times \mathbb{C}P^3 \) has an a.c.s. if and only if \(m = 1, 2, 3 \).

In this note we deal with the question of existence of an a.c.s. on the general product of the form \(S^{2m} \times M \), where \(M \) is a connected orientable closed manifold of even dimension and \(m \neq 0 \). We have the following main result.

Theorem 1.1. If \(S^{2m} \times M \) has an a.c.s. then \(2^r \cdot (m-1)! \) divides the Euler characteristic \(\chi(S^{2m} \times M) \), where \(2^r \) is the highest power of 2 dividing \(m \).

In the special case when \(M = \mathbb{C}P^n \), we have the following result.

Theorem 1.2. Let \(n > 1 \) and \(n \not\equiv 3 \pmod{4} \). Then \(S^{2m} \times \mathbb{C}P^n \) has an a.c.s. if and only if \(m = 1, 3 \).

We also observe that \(S^2 \times \mathbb{C}P^1 \) has exactly two almost complex structures whereas \(S^2 \times \mathbb{C}P^2 \) and \(S^4 \times \mathbb{C}P^3 \) have infinitely many almost complex structures. As an application we obtain a result on the nonexistence of a.c.s. on Dold manifolds which strengthens the result obtained in [12].

For any real or complex vector bundle \(\xi \) over a CW-complex \(X \), we shall denote its stable class in \(\widetilde{KO}(X) \) or \(\widetilde{K}(X) \) by \([\xi] \). Let \(Vect_n(X) \) be the set of all isomorphism classes of \(n \)-rank complex vector bundles over \(X \). One of the stability properties of vector bundles over \(X \) is that if \(X \) is of dimension \(2n \) then the map \(Vect_n(X) \to \widetilde{K}(X) \) which takes the complex vector bundle \(\xi \) to its stable class \([\xi] \) is bijective (see [7] Chapter 9, Theorem 1.5). If \(\rho: \widetilde{K}(X) \to \widetilde{KO}(X) \) is the realization map then the proof of our result is based on the following theorem.

2010 Mathematics Subject Classification. 57R15 (57R20).

Key words and phrases. Almost complex structure, Characteristic classes, Dold manifold.

The research of second author is supported by DST-Inspire Faculty Scheme(IF A-13-MA-26).
Theorem 1.3. ([9] Theorem 1.1 and [14] Lemma 1.1) A 2n-dimensional connected oriented manifold \(X \) admits an a.c.s. if and only if there exists an element \(a \in \tilde{K}(X) \) such that \(\rho(a) = [\tau_X] \) and nth-Chern class \(c_n(a) \) equals to the Euler class \(e(X) \). \(\square \)

In this note, if \(X \) is a complex manifold then the holomorphic tangent bundle of \(X \) will be denoted by \(T_X \). All the manifolds \(M \) we consider here will be connected, closed, orientable and of dimension \(2n \).

2. Almost Complex Structures on \(S^{2m} \times M \)

We first fix our notations. Let \(\nu \) be the canonical complex line bundle over \(S^2 \). Let \(g = (\nu - 1) \in \tilde{K}(S^2) \) be a generator. Then by the Bott-Periodicity, \(g^m \in \tilde{K}(S^{2m}) \) is a generator. We fix the generator \(y_m \in H^{2m}(S^{2m}; \mathbb{Z}) \) such that the total Chern class \(c(g^m) = 1 + (m - 1)! \cdot y_m \). The Bott Integrability Theorem [7] Chapter 20, Corollary 9.8 says that for any \(a \in \tilde{K}(S^{2m}) \), the top Chern class \(c_m(a) \) is divisible by \((m - 1)! \). (Here divisibility is in the sense that \(c_m(a) = (m - 1)! \cdot c_i \) for some \(c_i \in H^{2m}(S^{2m}; \mathbb{Z}) \)).

In the following proposition we shall give a condition on the Chern classes of any vector bundle over the smash product \(S^{2m} \times M \).

Proposition 2.1. For an element \(a \in \tilde{K}(S^{2m} \times M) \), each Chern class \(c_i(a) \) is divisible by \((m - 1)! \).

Proof. Let \(a \in \tilde{K}(S^{2m} \times M) \). Then by the Bott-Periodicity, \(a = g^m \otimes (\beta - n) \) for some complex vector bundle \(\beta \) of rank \(n \) over \(M \). Let \(c(\beta) = \prod_k (1 + s_k) \) be the formal factorization obtained by using the splitting principle. As in the proof of Lemma 2.1(2) [10], we can formally write the total Chern class of \(a \) as follow

\[
c(a) = c(g^m \otimes (\beta - n)) = \prod_k (1 + (m - 1)! \cdot y_m ((1 + s_k)^{-m} - 1)) \tag{1}
\]

The last equality in Equation 1 is due to the fact that \(y_m^r = 0 \). The summation \(\sum_k s_k \) can be expressed as a polynomial in Chern classes of \(\beta \) with integer coefficients (by Newton-Girard formula). From here it is clear that each Chern class \(c_i(a) \) is divisible by \((m - 1)! \). \(\square \)

Next we shall obtain conditions on Chern classes of any element in \(\tilde{K}(S^{2m} \times M) \). Consider the following split exact sequence

\[
0 \rightarrow \tilde{K}(S^{2m} \times M) \rightarrow \tilde{K}(S^{2m} \times M) \rightarrow \tilde{K}(S^{2m}) \oplus \tilde{K}(M) \rightarrow 0.
\]

Hence any element \(a \in \tilde{K}(S^{2m} \times M) \) can be written as \(a = a_1 + a_2 + a_3 \), where \(a_1 \in \tilde{K}(S^{2m} \times M) \), \(a_2 \in \tilde{K}(S^{2m}) \) and \(a_3 \in \tilde{K}(M) \). In the following proposition we choose an orientation on \(S^{2m} \times M \).

Proposition 2.2. For any \(a \in \tilde{K}(S^{2m} \times M) \), all the Chern numbers of \(a \) are divisible by \((m - 1)! \).

Proof. Let \(a = a_1 + a_2 + a_3 \) be as described above. Let the total Chern class \(c(a_1) = 1 + y_m x_1 + y_m x_2 + \cdots + y_m x_n \), \(c(a_2) = 1 + b y_m \) and \(c(a_3) = 1 + z_1 + z_2 + \cdots + z_n \) where \(x_i, z_i \in H^2(M; \mathbb{Z}) \) and \(b \) is an integer. Since \(a_1 \in \tilde{K}(S^{2m} \times M) \), by Proposition 2.1 it is clear that each \(y_m x_i \) is divisible by \((m - 1)! \). Also since \(a_2 \in \tilde{K}(S^{2m}) \), by Bott Integrability Theorem, we have that \(b \) is divisible by \((m - 1)! \). Now the proof of the proposition follows easily. \(\square \)
To prove our main result consider the following commutative diagram

\[
\begin{array}{ccc}
\tilde{K}(S^{2m} \times M) & = & \tilde{K}(S^{2m} \land M) \\
\downarrow \rho & & \downarrow \rho \\
\tilde{KO}(S^{2m} \times M) & = & \tilde{KO}(S^{2m} \land M) \\
\end{array}
\]

In view of Theorem 1.3 if \(a \in \tilde{K}(S^{2m} \times M) \) gives an a.c.s. on \(S^{2m} \times M \) then \(\rho(a) = [\tau_S \times M] \) and the top Chern class \(\tau_{m+n}(a) = e(S^{2m} \times M) \). If we write \(a = a_1 + a_2 + a_3 \) then using the fact that \([\tau_S \times M] = [\tau_M] \), we have \(\rho(a_1) = 0, \rho(a_2) = 0, \rho(a_3) = [\tau_M] \).

Proof of Theorem 1.1. Suppose \(a \in \tilde{K}(S^{2m} \times M) \) gives an a.c.s. on \(S^{2m} \times M \). From Proposition 2.2 and as \(\tau_{m+n}(a) = e(S^{2m} \times M) \), it follows that \((m-1)!\) divides \(\chi(S^{2m} \times M) \). Hence in the case when \(m \) is odd, the proof of the theorem is complete.

Next assume that \(m = 2p \). As above we write \(a = a_1 + a_2 + a_3 \). First observe that the realization map \(\rho : \tilde{K}(S^{4p}) \to \tilde{KO}(S^{4p}) \) is injective, and since \(\rho(a_2) = 0 \), we have \(a_2 = 0 \). Next note that \(\rho(a_1) = 0 \) and this implies that \(a_1 + \overline{a_1} = 0 \). Hence \(2c_2(a_1) = 0 \) for \(i > 0 \) as the non-trivial cup-products in the cohomology of the smash product \(S^{4p} \times M \) are zero. Therefore the top Chern class

\[
c_{2p+n}(a) = \sum_{2i+1+j=2p+n} c_{2i+1}(a_1)c_j(a_3).
\]

Now consider the element \(a'_1 \in \tilde{K}(S^{4p+2} \land M) \) given as \(a'_1 = g \otimes a_1 \). We can write \(a_1 = g^{2p} \otimes (\beta - n) \) for some complex vector bundle \(\beta \) of rank \(n \) over \(M \) and let \(c(a_1) = 1 + y_{2p}x_1 + y_{2p}x_2 + \cdots + y_{2p}x_n \). Then as in the proof of Proposition 2.4, the total Chern class of \(a'_1 \) will be

\[
c(a'_1) = c(g \otimes a_1) = 1 + y_{2p+1}(\sum_{i \geq 1} (2p+i)x_i).
\]

Since \(a'_1 \in \tilde{K}(S^{4p+2} \land M) \), by Proposition 2.2 we have that each \((2p+i)y_{2p+1}x_i \) is divisible by \((2p)! \). This immediately implies that \((2p)! \) divides \((2p+i)y_{2p+1}x_i \). Hence for each odd \(i \), \((2p)! \) will divide

\[
\left(\prod_j (2p+j) \right) \cdot y_{2p}x_i,
\]

where the product varies over odd \(j \) and \(1 \leq j \leq n \). Hence by Equation 2 we have that \((2p)! \) divides

\[
\left(\prod_j (2p+j) \right) \cdot \chi(S^{4p} \times M),
\]

where \(j \) is odd and \(1 \leq j \leq n \). Now the proof of the theorem follows from the fact that \((2p-1)! \) divides \(\chi(S^{4p} \times M) \).

From Theorem 1.1 we can observe that for a given \(M \) with \(\chi(M) \neq 0 \), except for finitely many values of \(m \), we do not have a.c.s on \(S^{2m} \times M \). In particular we have the following corollary whose proof follows immediately.

Corollary 2.3. Let \(\chi(M) \neq 0 \) (mod 4) or \(\chi(M) \) be a power of two. Then \(S^{2m} \times M \) does not have an a.c.s. for \(m \neq 1, 2, 3 \).

The restriction on \(m \) in Corollary 2.3 is the best possible as we know that \(S^2 \times \mathbb{C}P^n \), \(S^6 \times \mathbb{C}P^n \), \(S^4 \times S^2 \) and \(S^4 \times \mathbb{C}P^3 \) (see Example 3.10 below) admit a.a.c.
3. Almost complex structure on $S^{2m} \times \mathbb{CP}^n$

In this section we shall deal with the case when M is a complex projective space \mathbb{CP}^n. By Corollary 2.3 we know that in the case when $n \not\equiv 3 \pmod{4}$ or $n + 1 = 2k$ for some $k \geq 0$, the product $S^{2m} \times \mathbb{CP}^n$ does not admit a.c.s. for $m \not\equiv 1, 2$ and 3. We shall prove that if $n \not\equiv 3 \pmod{4}$ and $n > 1$ then $S^4 \times \mathbb{CP}^n$ also does not admit a.c.s.

Let H be the canonical line bundle over \mathbb{CP}^n. Let $x = c_1(H) \in H^2(\mathbb{CP}^n; \mathbb{Z})$ be a generator. Let $\eta = H - 1 \in \tilde{K}(\mathbb{CP}^n)$ and $r = \lfloor n/2 \rfloor$. For $\alpha \in \tilde{K}(S^{2m})$ and $\beta \in \tilde{K}(\mathbb{CP}^n)$ we shall write the external product $\alpha \otimes \beta \in \tilde{K}(S^{2m} \wedge \mathbb{CP}^n)$ as $\alpha \beta$. In view of Lemma 3.5 [4] we have the following lemma whose proof follows from the Bott-Periodicity.

Lemma 3.1. Each of the following system of elements form an integral basis of $\tilde{K}(S^{2m} \wedge \mathbb{CP}^n)$.

(i) $g^m \eta, g^m \eta(\eta + \bar{\eta}), \cdots, g^m \eta(\eta + \bar{\eta})^{r-1}, g^m(\eta + \bar{\eta}), g^m(\eta + \bar{\eta})^2, \cdots, g^m(\eta + \bar{\eta})^r$, and also in case n is odd, $g^m \eta^{2r+1} = g^m \eta(\eta + \bar{\eta})^r$;

(ii) $g^m \eta, g^m \eta(\eta + \bar{\eta}), \cdots, g^m \eta(\eta + \bar{\eta})^{r-1}, g^m(\eta - \bar{\eta}), g^m(\eta - \bar{\eta})(\eta + \bar{\eta}), \cdots, g^m(\eta - \bar{\eta})(\eta + \bar{\eta})^{r-1}$, and also in case n is odd, $g^m \eta^{2r+1} = g^m \eta(\eta + \bar{\eta})^r$. \hfill \Box

Let $w_k = g^m(H^k - 1) - g^m(H^k - 1) \in \tilde{K}(S^{2m} \wedge \mathbb{CP}^n)$. Similar to Proposition 4.3 [13], we have the following three propositions.

Proposition 3.2. Let $m \equiv 1, 3 \pmod{4}$. Then the kernel of the realization map $\rho : \tilde{K}(S^{2m} \wedge \mathbb{CP}^n) \to \tilde{KO}(S^{2m} \wedge \mathbb{CP}^n)$ is freely generated by w_1, w_2, \cdots, w_r.

Proof. It is clear that all w_k’s are in the kernel of the realization map. Further it can be proved using the fact that $\bar{g} = -g$ in $\tilde{K}(S^2)$ and using induction on k that

$$g^m(\eta + \bar{\eta})^k = w_k + \text{(linear combination of } w_1, \cdots, w_{k-1}).$$

Now using the structure of $\tilde{KO}^{-2m}(\mathbb{CP}^n)$ (see [4]) and the fact that the \mathbb{Q}-linear map

$$\rho \otimes \text{Id} : \tilde{K}(S^{2m} \wedge \mathbb{CP}^n) \otimes \mathbb{Q} \to \tilde{KO}(S^{2m} \wedge \mathbb{CP}^n) \otimes \mathbb{Q}$$

is surjective, we can see that w_1, \cdots, w_k freely generates the kernel of ρ. \hfill \Box

For next two propositions we first note that if m is even then

$$g^m(\eta - \bar{\eta})(\eta + \bar{\eta})^{k-1} = w_k + \text{(linear combination of } w_1, \cdots, w_{k-1}),$$

whose proof can again be given using induction on k. Next consider the following commutation diagram,

$$\begin{array}{ccc} \tilde{K}(S^{2m} \wedge S^{2n}) & \longrightarrow & \tilde{K}(S^{2m} \wedge \mathbb{CP}^n) \\ \rho \downarrow & & \rho \downarrow \\ \tilde{KO}(S^{2m} \wedge S^{2n}) & \longrightarrow & \tilde{KO}(S^{2m} \wedge \mathbb{CP}^n) \\ \rho \downarrow & & \rho \downarrow \\ \tilde{KO}(S^{2m} \wedge S^{2n}) & \longrightarrow & \tilde{KO}(S^{2m} \wedge \mathbb{CP}^n) \longrightarrow \tilde{KO}(S^{2m} \wedge \mathbb{CP}^{n-1}) \end{array}$$

Now the proof of the following two propositions follow from the fact that the realization map $\rho : \tilde{K}(S^l) \to \tilde{KO}(S^l)$ is nonzero for $l \not\equiv 3 \pmod{4}$.

Proposition 3.3. Let $m \equiv 0 \pmod{4}$. Then the kernel of the realization map $\rho : \tilde{K}(S^{2m} \wedge \mathbb{CP}^n) \to \tilde{KO}(S^{2m} \wedge \mathbb{CP}^n)$ is freely generated by

1. w_1, w_2, \cdots, w_r when n is even;
2. $w_1, w_2, \cdots, w_r, g^m \eta^n$, when $n \equiv 3 \pmod{4}$;
In the above proposition, using that the fact that a binomial coefficient
\(\binom{s}{t} \) is even if \(s \) is even and \(t \) is odd, one can see that if \(m \) is even and \(n > 1 \) then for any \(a_1 \in \tilde{K}(S^{2m} \wedge \mathbb{C}P^n) \) such that \(\rho(a_1) = 0 \) we have that \(4 \cdot (m-1)! \) divides each Chern class \(c_i(a_1) \).

Proposition 3.4. Let \(m \equiv 2 \pmod{4} \). Then the kernel of the realization map \(\rho : \tilde{K}(S^{2m} \wedge \mathbb{CP}^n) \to KO(S^{2m} \wedge \mathbb{CP}^n) \) is freely generated by

1. \(w_1, w_2, \ldots, w_r \) when \(n \) is even;
2. \(w_1, w_2, \ldots, w_r, g^m \eta^n \), when \(n \equiv 1 \pmod{4} \);
3. \(w_1, w_2, \ldots, w_r, 2g^m \eta^n \), when \(n \equiv 3 \pmod{4} \).

Next we shall describe the Chern classes of elements in the Kernel of the realization map \(\rho : \tilde{K}(S^{2m} \wedge \mathbb{CP}^n) \to KO(S^{2m} \wedge \mathbb{CP}^n) \). Using Lemma 2.1(2) \([10]\) and by the fact that \(y_m^2 = 0 \), we can easily compute the total Chern class of \(w_k \). When \(m \) is even then

\[
c(w_k) = 1 - (m-1)! \sum_{i \geq 1} 2 \left(\frac{m + 2i - 2}{2i - 1} \right) k^{2i-1} y_m x^{2i-1}.
\]

When \(m \) is odd we have

\[
c(w_k) = 1 + (m-1)! \sum_{i \geq 1} 2 \left(\frac{m + 2i - 1}{2i} \right) k^{2i} y_m x^{2i}.
\]

To compute the Chern class of \(g^m \eta^n \in \tilde{K}(S^{2m} \wedge \mathbb{CP}^n) \), consider the following exact sequence

\[
0 \to \tilde{K}(S^{2m} \wedge S^{2n}) \to \tilde{K}(S^{2m} \wedge \mathbb{CP}^n) \to \tilde{K}(S^{2m} \wedge \mathbb{CP}^{n-1}).
\]

The element \(g^m \eta^n \in \tilde{K}(S^{2m} \wedge \mathbb{CP}^n) \) is a generator of the kernel of the last map in the above sequence. Hence the total Chern class of \(g^m \eta^n \) is as follows:

\[
c(g^m \eta^n) = 1 \pm (m + n - 1)! \cdot y_m x^n
\]

\[
= 1 \pm (m - 1)! \cdot n! \cdot \left(\frac{m+n-1}{n} \right) y_m x^n.
\]

We have the following proposition whose proof follows from the above discussion.

Proposition 3.5. The total Chern class of any element in the kernel of the realization map \(\rho : \tilde{K}(S^{2m} \wedge \mathbb{CP}^n) \to KO(S^{2m} \wedge \mathbb{CP}^n) \) is of the form

1. \(1 + 2 \cdot (m-1)! \cdot \left[\sum_{i \geq 1} \left(\frac{m+2i-2}{2i-1} \right) \left(\sum_{k=1}^r b_k k^{2i-1} \right) y_m x^{2i} \right] \), when \(m \) is odd.
2. \(1 - 2 \cdot (m-1)! \cdot \left[\sum_{i \geq 1} \left(\frac{m+2i-1}{2i} \right) \left(\sum_{k=1}^r b_k k^{2i-1} \right) y_m x^{2i-1} \right] \), when \(m, n \) are even.
3. \(1 - (m-1)! \cdot \left[2 \sum_{i=1}^{r+1} \left(\frac{m+2i-2}{2i-1} \right) \left(\sum_{k=1}^r b_k k^{2i-1} \right) y_m x^{2i-1} \pm \left(\frac{m+n-1}{n} \right) \cdot n! \cdot b_{r+1} y_m x^n \right] \), when \(m \equiv 0 \pmod{4} \) and \(n \equiv 3 \pmod{4} \), or \(m \equiv 2 \pmod{4} \) and \(n \equiv 1 \pmod{4} \).
4. \(1 - 2 \cdot (m-1)! \cdot \left[\sum_{i=1}^{r+1} \left(\frac{m+2i-2}{2i-1} \right) \left(\sum_{k=1}^r b_k k^{2i-1} \right) y_m x^{2i-1} \pm \left(\frac{m+n-1}{n} \right) \cdot n! \cdot b_{r+1} y_m x^n \right] \), when \(m \equiv 0 \pmod{4} \) and \(n \equiv 1 \pmod{4} \), or \(m \equiv 2 \pmod{4} \) and \(n \equiv 3 \pmod{4} \),

for \(b_1, b_2, \ldots, b_r, b_{r+1} \in \mathbb{Z} \).

Remark 3.6. In the above proposition, using that the fact that a binomial coefficient \(\binom{s}{t} \) is even if \(s \) is even and \(t \) is odd, one can see that if \(m \) is even and \(n > 1 \) then for any \(a_1 \in \tilde{K}(S^{2m} \wedge \mathbb{CP}^n) \) such that \(\rho(a_1) = 0 \) we have that \(4 \cdot (m-1)! \) divides each Chern class \(c_i(a_1) \).
Proposition 3.7. If $S^{4p} \times \mathbb{C}P^n$ has a.c.s. then $2 \cdot (2p-1)!$ divides $\chi(\mathbb{C}P^n) = (n+1)$.

Proof. Suppose $a \in \tilde{K}(S^{4p} \times \mathbb{C}P^n)$ gives an a.c.s. on $S^{4p} \times \mathbb{C}P^n$ with $a = a_1 + a_2 + a_3$. As we argued in the proof of Theorem 1.1, we have $a_2 = 0$. By Remark 3.6 we have that if $n > 1$ then $4 \cdot (2p-1)!$ divides each Chern class $c_i(a_1)$. Hence in the case $n > 1$, we have that $4 \cdot (2p-1)!$ divides the Euler characteristic $\chi(S^{4p} \times \mathbb{C}P^n) = 2(n+1)$. In the case when $n = 1$, we know that $S^{4p} \times \mathbb{C}P^1$ has a.c.s only when $p = 1$. This completes the proof of the proposition.

Next we recall that for any element $a_3 \in \tilde{K}(\mathbb{C}P^n)$ such that $\rho(a_3) = [\tau_{\mathbb{C}P^n}]$, the total Chern class of a_3 has been described on p.130 of [13] as

$$c(a_3) = (1-x)^{n+1}(1 \pm (n-1)!x^n)^{ud_{r+1}} \prod_{1 \leq k \leq r} \frac{1+kx}{1-kx} d_k,$$

where d_i’s are integers and

- $u = 0$ if n is even,
- $u = 1$ if $n \equiv 3 \pmod{4}$,
- $u = 2$ if $n \equiv 1 \pmod{4}$.

We remark that there is a typographical error in the signs in the first two products of the right hand side of Equation 3 as expressed in [13]. For example one can easily compute $c(\eta^2) = (1 + (n-1)!x^n)$ when $n = 1, 3$ whereas $c(\eta^2) = (1 - x^2)$ when $n = 2$.

We know that $S^{2m} \times \mathbb{C}P^1$ has a.c.s. if and only if $m = 1, 2$ and 3. Next we give the proof of Theorem 1.2.

Proof of Theorem 1.2. First note that $S^2 \times \mathbb{C}P^n$, $S^6 \times \mathbb{C}P^n$ have a.c.s. By Corollary 2.3 and Proposition 3.7, only thing that remains to complete the proof of the theorem is to show that for $q > 0$ there is no a.c.s. on $S^4 \times \mathbb{C}P^{4q+1}$. Suppose $a \in \tilde{K}(S^4 \times \mathbb{C}P^{4q+1})$ gives an a.c.s. on $S^4 \times \mathbb{C}P^{4q+1}$ with $a = a_1 + a_2 + a_3$. As observed in the proof of Theorem 1.1, we have $a_2 = 0$. The total Chern class of a_1 is given in (3) of Proposition 3.5 as

$$c(a_1) = 1 - 2 \sum_{i=1}^{2q+1} 2i \left(\sum_{k=1}^{2q} b_k k^{2i-1} \right) y_2 x^{2i-1} \pm (4q+2)! \cdot b_{2q+1} y_2 x^{4q+1}$$

where b_i’s are integers. The total Chern class of a_3 as described in Equation 3 is as follows

$$c(a_3) = (1-x)^{4q+2} (1 \pm (4q)!x^{4q+1})^{2d_{2q+1}} \prod_{1 \leq k \leq 2q} \left(\frac{1+kx}{1-kx} \right)^{d_k},$$

where d_i’s are integers. After simplifying we can write

$$c(a_3) = 1 + \sum_{i=1}^{2q} \left(\frac{4q+2}{2i} \right) x^{2i} + A$$

where A is a polynomial in x with even coefficients. As $c(a) = c(a_1)c(a_3)$, the top Chern class

$$c_{4q+3}(a) = (-2 \sum_{i=1}^{2q+1} 2i \left(\frac{4q+2}{2i} \right) \sum_{k=1}^{2q} b_k k^{2i-1} + h) y_2 x^{4q+1}$$

where h is a multiple of 8. We shall next prove that the coefficient

$$h_k := -2 \sum_{i=1}^{2q+1} 2i \left(\frac{4q+2}{2i} \right) k^{2i-1}$$
of $b_ky_2x^{4q+1}$ in Equation 4 is a multiple of 8. Clearly, when k is even then h_k is a multiple of 8. Next consider the case when k is odd. Consider the following equality.

$$(4q + 2)(1 + k)^{4q+1} = \sum_{l=1}^{4q+2} \binom{4q+2}{l} l^{k-1}.$$

As k is odd, the left hand summation is a multiple of 4. The right hand summation can be decomposed into three parts as follows:

$$\sum_{i=1}^{2q+1} 2i^{(4q+2)}k^{2i-1} + \sum_{j=1}^{q} \binom{4q+2}{2j-1} (2j - 1)k^{2j-2} + (4q - 2j + 3)k^{4q-2j+2} + (4q+2)k^{2q+2}.$$

The middle term in the above summation is a multiple of 4. To see that $(\frac{4q+2}{2q+1})$ is a multiple of 4, we write

$$\binom{4q+2}{2q+1} = \frac{(4q+2)(4q+1)}{(2q+1)^2} = \frac{4q}{2q}$$

and use the fact that $(\frac{4q}{2q})$ is even which can be seen from the following equality

$$2^{4q} = (1 + 1)^{4q} = \sum_{i=0}^{4q} \binom{4q}{i}.$$

This completes the proof that each h_k is a multiple of 8. Since a gives an a.c.s. on $S^4 \times \mathbb{CP}^{4q+1}$, the top Chern class $c_{4q+3}(a)$ is multiple of 8. This implies that 8 divides the Euler characteristic $2(4q + 2)$. But this is a contradiction. Hence there is no a.c.s. on $S^4 \times \mathbb{CP}^{4q+1}$. This completes the proof of the theorem.

The above construction helps us to give an explicit way to obtain almost complex structures on $S^{2m} \times \mathbb{CP}^n$ for few values of m and n. In particular when $m = 2$ and $n = 3$ we show that $S^4 \times \mathbb{CP}^4$ has infinite number of almost complex structures. We fix an orientation on $S^{2m} \times \mathbb{CP}^n$ such that $e(S^{2m}) = -2y_m$ and $e(\mathbb{CP}^n) = (-1)^n(n + 1)\chi^n$. We fix an orientation on $S^{2m} \times \mathbb{CP}^n$ arising by taking the orientation on each factor.

Example 3.8. Let $m = 1$ and $n = 1$. From Propositions 3.2 and 3.8 we get that $a = a_1 + a_2 + a_3 \in \tilde{K}(S^2 \times \mathbb{CP}^1)$ gives an a.c.s. on $S^2 \times \mathbb{CP}^1 = S^2 \times S^2$ if and only if there are integers d_1, d_2 such that $a_1 = 0, a_2 = 2d_1\eta$ and $a_3 = [T_{\mathbb{CP}^1}] + 2d_2\eta$ and $c_2(a) = e(S^2 \times S^2) = (-2y_1)(-2x) = 4y_1x$. This gives the equation

$$4d_1(d_2 - 1) = 4,$$

which has the following two solutions: $d_1 = 1, d_2 = 2$ and $d_1 = -1, d_2 = 0$. Therefore we have the following two possibilities: $a = 2\eta + [T_{\mathbb{CP}^1}] + 4\eta$ and $a = -2\eta + [T_{\mathbb{CP}^1}]$. By stability property, we thus have that there are exactly two non-isomorphic a.c.s. on $S^2 \times \mathbb{CP}^1$. Hence the only two almost complex structures are $T_S^2 \oplus T_{\mathbb{CP}^1}$ and $T_{S^2} \oplus T_{\mathbb{CP}^1}$. Here T_{S^2} is complex conjugate bundle of T_{S^2} and $[T_{\mathbb{CP}^1}] = [T_{\mathbb{CP}^1}] + 4\eta$. We note here that if we change the orientation on $S^2 \times S^2$, a similar argument will say that again it has exactly two almost complex structures which will be given by $T_S^2 \oplus T_{\mathbb{CP}^1}$ and $T_{S^2} \oplus T_{\mathbb{CP}^1}$. The existence of exactly two almost complex structures on $S^2 \times S^2$ was also observed by Sutherland in [9].

Example 3.9. Let $m = 1$ and $n = 2$. As in Example 3.8 an element $a \in \tilde{K}(S^2 \times \mathbb{CP}^2)$ gives an a.c.s. on $S^2 \times \mathbb{CP}^2$ if and only if there are integers b_1, d_1 and d_2 such that $a_1 = b_1(g(H - 1) - g(H - 1))$,

$$a_2 = 2d_1\eta + 2d_2\eta$$

and $c_2(a) = e(S^2 \times S^2) = (-2y_1)(-2x) = 4y_1x$. This
\[a_2 = 2d_1 \eta, \ a_3 = [T_{\mathbb{C}P^2}] + d_2 (H - \bar{H}) \] and \(c_3(a) = -6y_1 x^2 \). This gives the following equations

\[b_1 + d_1 (-4d_2 + 4\left(\frac{d_2}{2}\right) + 3) = -3 \quad \text{when} \ d_2 \geq 0 \]

\[b_1 + d_1 (-8d_2 + 4\left(\frac{-d_2}{2}\right) + 3) = -3 \quad \text{when} \ d_2 < 0. \]

Clearly, we shall get infinite number of solutions of the above equations and by stability property, we have infinite number of almost complex structures on \(S^2 \times \mathbb{CP}^2 \). The solution \(b_1 = 0, d_1 = -1 \) and \(d_2 = 0 \) corresponds to the a.c.s. given by the holomorphic tangent bundle \(T_S^2 \oplus T_{\mathbb{C}P^2} \). Similarly, if we change the orientation on \(S^2 \times \mathbb{CP}^2 \), we shall again get infinite number of almost complex structures.

Example 3.10. Let \(m = 2 \) and \(n = 3 \). Going along the same line of arguments as we did in last two examples we observe that number of almost complex structures on \(S^4 \times \mathbb{CP}^3 \) is in one to one correspondence with the number of solutions of the following equation

\[b_1 (4 - 3d_1 + 2\left(\frac{d_1}{2}\right) + 3)b_2 = -1 \quad \text{when} \ d_1 \geq 0 \]

\[b_1 (4 - 5d_1 + 2\left(\frac{-d_1}{2}\right) + 3)b_2 = -1 \quad \text{when} \ d_1 < 0. \]

For each \(k \in \mathbb{Z} \), by taking \(b_1 = -7 + 6k, b_2 = 1 \) and \(d_1 = 1 \) we get infinite number of solutions of the above equation and thus this gives infinite number of almost complex structures on \(S^4 \times \mathbb{CP}^3 \). Again the reverse orientation on \(S^4 \times \mathbb{CP}^3 \) has infinite number of almost complex structures. We remark that the existence of an a.c.s. on \(S^4 \times \mathbb{CP}^3 \) also follows from Theorem 2 of [6] and this was observed by Tang in [11].

We end this section with a result on nonexistence of a.c.s. on the Dold manifold \(D(m, n) \). It is known (see [3]) that \(D(m, n) \) is orientable if and only if \(m + n \) is odd. So an even dimensional orientable Dold manifold is of the form \(D(2p, 2q + 1) \) for some \(p, q \geq 0 \). By considering the 2-fold covering map \(S^{2p} \times \mathbb{CP}^{2q+1} \rightarrow D(2p, 2q + 1) \), we note that the nonexistence of an a.c.s. on \(S^{2p} \times \mathbb{CP}^{2q+1} \) will imply the nonexistence of an a.c.s. on \(D(2p, 2q + 1) \). We have the following result.

Theorem 3.11. Let \(p > 0 \). Then \(D(2p, 2q + 1) \) has no a.c.s. if one of the following is true

1. \(p \) is odd.
2. \(p \equiv 0 \ (\text{mod} \ 4) \) and \((q + 1)\) is not a multiple of \(2^{r-2} \cdot (p - 1)! \), where \(2^r \) is the maximum power of \(2 \) dividing \(p \).
3. \(p \equiv 2 \ (\text{mod} \ 4) \) and \((q + 1)\) is not a multiple of \((p - 1)! \).
4. \(p = 2 \) and \(q \) is even.

Proof. Statement (1) follows from Theorem 3.2 of [12]. The proof of statements (2), (3) and (4) follow from Theorem [13] Proposition 3.7 and Theorem 1.2 respectively.

From the above theorem it is clear that \(D(2p, 2q + 1) \) does not admit an a.c.s. if \(p \) is odd or \(q \) is even.

Acknowledgement: We are grateful to Aniruddha Naolekar for several valuable discussions and useful comments.

References

[1] Borel, A., Serre, J. P., *Groupes de Lie et puissances réduites de Steenrod*, Amer. J. Math. **75** (1953), 409-448.
[2] Datta, B., Subramanian, S., *Nonexistence of almost complex structures on products of even-dimensional spheres*, Topology Appl. **36** (1990), no. 1, 39-42.
[3] Dold, A., *Erzeugende der Thomsenen Algebra*?, Math. Z. **65** (1956), 2535.
[4] Fujii, M., *KU-groups of Dold manifolds*, Osaka J. Math. **3** (1966), 49-64.
ALMOST COMPLEX STRUCTURE ON $S^{2m} \times M$

[5] Fujii, M., *KO-groups of projective spaces*, Osaka J. Math. **4** (1967), 141-149.

[6] Heaps, T., *Almost complex structures on eight- and ten-dimensional manifolds*, Topology **9** (1970), 111-119.

[7] Husemoller, D., *Fibre bundles* Third edition. Graduate Texts in Mathematics, 20. Springer-Verlag, New York, 1994.

[8] Kobayashi, T., *Note on almost complex structures on products of lens spaces* Math. Proc. Cambridge Philos. Soc. **96** (1984), no. 1, 81-83.

[9] Sutherland, W. A., *A note on almost complex and weakly complex structures*, J. London Math. Soc. **40** (1965), 705-712.

[10] Tanaka, R., *On trivialities of Stiefel-Whitney classes of vector bundles over iterated suspension spaces*, Homology, Homotopy Appl. **12** (2010), no. 1, 357-366.

[11] Tang, Z., *Almost complex structures on $S^{2m} \times \mathbb{CP}^2$ and $S^{2m} \times \mathbb{CP}^3$*, Chinese Sci. Bull. **37** (1992), no. 24, 2025-2028.

[12] Tang, Z., *Nonexistence of almost complex structures on Dold manifolds*, Sci. China Ser. A **39** (1996), no. 9, 919-924.

[13] Thomas, A., *Almost complex structures on complex projective spaces*, Trans. Amer. Math. Soc. **193** (1974), 123-132.

[14] Thomas, A., *Counting almost complex structures on products of lens spaces*, J. London Math. Soc. (2) **7** (1974), 761-768.

Stat-Math Unit, Indian Statistical Institute, 8th Mile, Mysore Road, RVCE Post, Bangalore 560059, INDIA.

E-mail address: chakraborty.prateep@gmail.com

Stat-Math Unit, Indian Statistical Institute, 8th Mile, Mysore Road, RVCE Post, Bangalore 560059, INDIA.

E-mail address: thakur@isibang.ac.in