Two dimensional MRT LB model for compressible and incompressible flows

Feng Chen\(^1\)*, Aiguo Xu\(^2\)†, Guangcai Zhang\(^2\), Yonglong Wang\(^1\)

\(^1\)School of science, Institute of condensed matter physics, Linyi University, Linyi 276005, China

\(^2\)National Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, P. O. Box 8009-26, Beijing 100088, P.R.China

(Dated: May 22, 2013)

Abstract

In the paper we extend the Multiple-Relaxation-Time (MRT) Lattice Boltzmann (LB) model proposed in [Europhys. Lett. 90, 54003 (2010)] so that it is suitable also for incompressible flows. To decrease the artificial oscillations, the convection term is discretized by the flux limiter scheme with splitting technique. New model is validated by some well-known benchmark tests, including Riemann problem and Couette flow, and satisfying agreements are obtained between the simulation results and analytical ones. In order to show the merit of LB model over traditional methods, the non-equilibrium characteristics of system are solved. The simulation results are consistent with physical analysis.

PACS numbers: 47.11.-j, 51.10.+y, 05.20.Dd

Keywords: lattice Boltzmann method; multiple-relaxation-time; flux limiter technique; Prandtl numbers effect; non-equilibrium characteristic

* Corresponding author. E-mail: shanshiwycf@163.com

† Corresponding author. E-mail: Xu_Aiguo@iapcm.ac.cn
I. INTRODUCTION

In recent years, the Lattice Boltzmann (LB) method has emerged as an attractive computational approach for complex physical systems [1–3]. The lattice Bhatnagar-Gross-Krook (BGK) model, based on a single-relaxation-time approximation, is the simplest and the most popular form. However, this simplicity also leads to some deficiencies, such as the numerical stability problem, and fixed Prandtl number. To overcome these deficiencies of BGK model, the Multiple-Relaxation-Time (MRT) lattice Boltzmann method [4, 5] has been developed, and successfully used in simulating various fluid flow problems [6–15]. Most of the existing MRT models work only for isothermal system. To simulate system with temperature field, many attempts have been made [16–18].

Besides the models mentioned above, we proposed a MRT Finite Difference lattice Boltzmann model for compressible flows with arbitrary specific heat ratio and Prandtl number in previous work [19]. In the model, the kinetic moment space and the equilibria of nonconserved moments are constructed according to the seven-moment relations associated with the local equilibrium distribution function. Numerical experiments showed that compressible flows with strong shocks can be well simulated by this model.

In the paper we extend the MRT LB model so that it is suitable also for incompressible flows. In order to efficiently decrease the unphysical oscillations, the flux limiter scheme [20–22] with splitting technique is incorporated into the new model. When the system deviates more from equilibrium, the LB simulation can give more physical information [23–25], such as the non-equilibrium characteristics of system. Here, in the new MRT LB model, the non-equilibrium characteristics of system are solved through a dynamic procedure where a shock wave propagates from a heavy medium to a light one.

The rest of the paper is organized as follows. Section II presents the extended MRT LB model. Section III describes the finite difference schemes. Section IV is for the validation and verification of the new LB model. Non-equilibrium characteristics are shown and analyzed in section V. Section VI makes the conclusion for the present paper.
II. MODEL DESCRIPTION

According to the main strategy of MRT LB method, the MRT LB equation can be described as:

$$\frac{\partial f_i}{\partial t} + v_i \alpha \frac{\partial f_i}{\partial x_\alpha} = -M^{-1}_{il} \hat{S}_{lk}(\hat{f}_k - \hat{f}^{eq}_k), \quad (1)$$

where f_i and \hat{f}_i are the particle distribution function in the velocity space and the kinetic moment space respectively, v_i is the discrete particle velocity, $i = 1, \ldots , N$, N is the number of discrete velocities, the subscript α indicates x or y. The matrix $\hat{S} = MSM^{-1} = diag(s_1, s_2, \cdots , s_N)$ is the diagonal relaxation matrix. M is the transformation matrix between the velocity space and the kinetic moment space. $\hat{f}_i = m_{ij}f_j$, m_{ij} is an element of the transformation matrix. \hat{f}^{eq}_i is the equilibrium value of distribution function \hat{f}_i in the kinetic moment space.

In the previous work, we constructed a two-dimensional MRT LB model based on the model by Kataoka and Tsutahara [26] (see Fig. 1):

$$(v_{i1},v_{i2}) = \begin{cases} \text{cyc} : (\pm 1, 0), & \text{for } 1 \leq i \leq 4, \\ \text{cyc} : (\pm 6, 0), & \text{for } 5 \leq i \leq 8, \\ \sqrt{2}(\pm 1, \pm 1), & \text{for } 9 \leq i \leq 12, \\ \frac{3}{\sqrt{2}}(\pm 1, \pm 1), & \text{for } 13 \leq i \leq 16, \end{cases}$$

where cyc indicates the cyclic permutation. Transformation matrix M and the equilibrium distribution function \hat{f}^{eq}_i in the moment space are chosen according to the seven-moment
relations (see Appendix for details). At the continuous limit, the above formulation recovers the following Navier-Stokes (NS) equations:

\[
\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u_x)}{\partial x} + \frac{\partial (\rho u_y)}{\partial y} = 0, (2a)
\]

\[
\frac{\partial (\rho u_x)}{\partial t} + \frac{\partial (\rho u_x^2)}{\partial x} + \frac{\partial (\rho u_x u_y)}{\partial y} = -\frac{\partial P}{\partial x} + \frac{\partial}{\partial y} \left[\frac{\rho RT}{s_7} \left(\frac{\partial u_y}{\partial x} + \frac{\partial u_x}{\partial y} \right) \right] + \frac{\partial}{\partial x} \left[\frac{\rho RT}{s_5} \left(1 - \frac{2}{b} \right) \left(\frac{\partial u_x}{\partial x} + \frac{\partial u_y}{\partial y} \right) + \frac{\rho RT}{s_6} \left(\frac{\partial u_x}{\partial y} - \frac{\partial u_y}{\partial y} \right) \right], (2b)
\]

\[
\frac{\partial (\rho u_y)}{\partial t} + \frac{\partial (\rho u_x u_y)}{\partial x} + \frac{\partial (\rho u_y^2)}{\partial y} = -\frac{\partial P}{\partial y} + \frac{\partial}{\partial x} \left[\frac{\rho RT}{s_7} \left(\frac{\partial u_y}{\partial x} + \frac{\partial u_x}{\partial y} \right) \right] + \frac{\partial}{\partial y} \left[\frac{\rho RT}{s_5} \left(1 - \frac{2}{b} \right) \left(\frac{\partial u_x}{\partial x} + \frac{\partial u_y}{\partial y} \right) - \frac{\rho RT}{s_6} \left(\frac{\partial u_x}{\partial y} - \frac{\partial u_y}{\partial y} \right) \right], (2c)
\]

\[
\frac{\partial e}{\partial t} + \frac{\partial}{\partial x} ((e + 2P)u_x) + \frac{\partial}{\partial y} ((e + 2P)u_y) = 2 \frac{\partial}{\partial x} \left[\frac{\rho RT}{s_8} \left(\frac{b}{2} + 1 \right) \frac{\partial T}{\partial x} + \frac{\partial u_x}{\partial y} - \frac{2}{b} \frac{\partial u_x}{\partial y} - \frac{2}{b} \frac{\partial u_y}{\partial y} \right] + \frac{\partial}{\partial y} \left(\frac{\rho RT}{s_9} \left(\frac{b}{2} + 1 \right) \frac{\partial T}{\partial y} + \frac{\partial u_y}{\partial y} + \frac{\partial u_x}{\partial y} + \frac{2}{b} \frac{\partial u_x}{\partial y} - \frac{2}{b} \frac{\partial u_y}{\partial y} \right). (2d)
\]

where \(P = \rho RT \), \(e = \beta \rho RT + \rho u_x^2 \) is twice of the total energy, and \(b \) is a constant related to the specific-heat-ratio \(\gamma = (b + 2)/b \).

In order to maintain the isotropy constraint of viscous stress tensor and heat conductivity, some of the relaxation parameters should be equal to one another, namely \(s_5 = s_6 = s_7 \), \(s_8 = s_9 \). The above NS equations reduce to

\[
\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u_\alpha)}{\partial x_\alpha} = 0, (3a)
\]

\[
\frac{\partial (\rho u_\alpha)}{\partial t} + \frac{\partial (\rho u_\alpha u_\beta)}{\partial x_\beta} = -\frac{\partial P}{\partial x_\alpha} + \frac{\partial}{\partial x_\beta} \left[\left(\mu \frac{u_\alpha}{x_\beta} + \frac{u_\beta}{x_\alpha} - \frac{2}{3} \frac{\partial u_\chi}{\partial x_\alpha} \delta_{\alpha \beta} \right) + \frac{\partial}{\partial x_\chi} \delta_{\alpha \beta} \right], (3b)
\]

\[
\frac{\partial e}{\partial t} + \frac{\partial}{\partial x_\alpha} [(e + 2P)u_\alpha] = 2 \frac{\partial}{\partial x_\beta} \left[\frac{b}{2} + 1 \right] \lambda' \frac{\partial T}{\partial x_\beta} + \lambda \left(\frac{\partial u_\alpha}{\partial x_\beta} + \frac{\partial u_\beta}{\partial x_\alpha} - \frac{2}{b} \frac{\partial u_\chi}{\partial x_\alpha} \delta_{\alpha \beta} \right) u_\alpha, (3c)
\]

where the viscosity \(\mu = \rho RT/s_5 \), the bulk viscosity \(\mu_B = \left(2/3 - 2/b \right) \rho RT/s_5 \), \(\lambda' = \rho RT/s_8 \), \((\alpha, \beta, \chi = x, y) \).
However, the viscous coefficient in the energy equation (3c) is not consistent with that in the momentum equation (3b). By modifying the collision operators of the moments related to energy flux:

$$\hat{S}_{88}(\hat{f}_8 - \hat{f}_{eq}^{8}) \Rightarrow \hat{S}_{88}(\hat{f}_8 - \hat{f}_{eq}^{8}) + (s_8/s_5 - 1)\rho T u_x$$

$$\times (4 \frac{\partial u_x}{\partial x} - 4 \frac{\partial u_x}{b \partial x} - 4 \frac{\partial u_y}{b \partial y}) + (s_8/s_5 - 1)\rho T u_y(2 \frac{\partial u_y}{\partial y} + 2 \frac{\partial u_x}{\partial y}),$$

(4a)

$$\hat{S}_{99}(\hat{f}_9 - \hat{f}_{eq}^{9}) \Rightarrow \hat{S}_{99}(\hat{f}_9 - \hat{f}_{eq}^{9}) + (s_9/s_5 - 1)\rho T u_x$$

$$\times (2 \frac{\partial u_y}{\partial x} + 2 \frac{\partial u_x}{\partial y}) + (s_9/s_5 - 1)\rho T u_y(4 \frac{\partial u_y}{b \partial x} - 4 \frac{\partial u_x}{b \partial y}),$$

(4b)

we get the following energy equation:

$$\frac{\partial e}{\partial t} + \frac{\partial}{\partial x_\alpha} [(e + 2P) u_\alpha] = 2 \frac{\partial}{\partial x_\beta} [\lambda \frac{\partial T}{\partial x_\beta}] + \mu \frac{\partial u_\alpha}{\partial x_\beta} + \frac{\partial u_\beta}{\partial x_\alpha} - 2 \frac{\partial u_\chi}{b \partial x_\chi} \delta_{\alpha \beta} u_\alpha],$$

(5)

where the thermal conductivity $\lambda = (b^2/2 + 1)R\lambda'.

III. FINITE DIFFERENCE SCHEME

In the original LB model[19], the time evolution is based on the usual first-order forward Euler scheme, while space discretization is performed through a Lax-Wendroff scheme. In this work, the flux limiter scheme with splitting technique corresponding to the MRT model is adopted. The proposed flux limiter scheme can efficiently decrease the unphysical oscillations around the interfaces.

Figure 2 shows the characteristic lines in the flux limiter scheme and corresponding projections in x and y directions. $(J - 1)|_x$ and $(J - 1)|_y$ are corresponding projections of node $J - 1$ in the x and y directions. Let $f^n_{i,J}$ be the value of distribution function at time t in the node J along the direction i, we rewrite the evolution of f_i in node J at time step $t + dt$ as follows,

$$f_{i,J}^{n+1} = f_{i,J}^n - \frac{dt}{A_i dx} [F_{i,J+1/2}^n x - F_{i,J-1/2}^n x] - \frac{dt}{A_i dy} [F_{i,J+1/2}^n y - F_{i,J-1/2}^n y] - dt M^{-1}_{il} \hat{S}_{lk}(\hat{f}_{k,J}^n - \hat{f}_{k,J}^{n,eq}),$$

(6)

where

$$A_i = \begin{cases}
1, & \text{for } 1 \leq i \leq 4, \\
1/6, & \text{for } 5 \leq i \leq 8, \\
1/\sqrt{2}, & \text{for } 9 \leq i \leq 12, \\
\sqrt{2}/3, & \text{for } 13 \leq i \leq 16.
\end{cases}$$

(7)
The flux limiter is expressed as

$$
\psi_\alpha (ix, iy) = \begin{cases}
0, & \theta^n_i (ix, iy)|_\alpha \leq 0 \\
2 \theta^n_i (ix, iy)|_\alpha, & 0 \leq \theta^n_i (ix, iy)|_\alpha \leq \frac{1}{3} \\
(1 + \theta^n_i (ix, iy)|_\alpha)/2, & \frac{1}{3} \leq \theta^n_i (ix, iy)|_\alpha \leq 3 \\
2, & 3 \leq \theta^n_i (ix, iy)|_\alpha
\end{cases}
$$

(9)

where the smoothness functions are

$$\theta^n_i (ix, iy)|_x = \frac{f^n_i (ix, iy) - f^n_i (ix - A_i v_{ix}, iy)}{f^n_i (ix + A_i v_{ix}, iy) - f^n_i (ix, iy)},$$

(10a)

$$\theta^n_i (ix, iy)|_y = \frac{f^n_i (ix, iy) - f^n_i (ix, iy - A_i v_{iy})}{f^n_i (ix, iy + A_i v_{iy}) - f^n_i (ix, iy)}.$$

(10b)

FIG. 2: Characteristic lines and corresponding projections in the x and y directions. (a): $f_1(x, t)$; (b): $f_9(x, t)$.

$F^n_{i,J+1/2}|_x (F^n_{i,J-1/2}|_x)$ and $F^n_{i,J+1/2}|_y (F^n_{i,J-1/2}|_y)$ are x and y components of the outgoing (incoming) flux in node J along the direction i,
FIG. 3: Simulation results with various difference schemes at $t = 0.06$.

The Lax-Wendroff scheme is recovered for the flux limiter $\psi_x = \psi_y = 1$, and the first order upwind scheme is recovered when $\psi_x = \psi_y = 0$.

IV. VALIDATION AND VERIFICATION

A. Performance on discontinuity

In order to check the performance of flux limiter scheme on discontinuity, we construct the following problem

\[
\begin{aligned}
\begin{cases}
(\rho, u_1, u_2, T) &= (1.5, 0.666667, 0.0, 1.55556), & x \leq L/2, \\
(\rho, u_1, u_2, T) &= (1.0, 0.0, 0.0, 1.0), & L/2 < x < L.
\end{cases}
\end{aligned}
\]

L is the length of computational domain. In the x direction, $f_i = M_{ij}^{-1} \hat{f}_{ij}^{eq}$ is set, where the macroscopic quantities adopt the initial values. In the y direction, the periodic boundary condition is adopted. The physical quantities on the two sides satisfy the Hugoniot relations.

Fig. 3 shows the simulation results of density, pressure, $x-$ component of velocity, and temperature at time $t = 0.06$ using different space discretization schemes. The parameters are $\gamma = 2$, $dx = dy = 0.001$, $dt = 10^{-5}$, $s_5 = s_6 = s_7 = 5 \times 10^4$, and other collision parameters are 10^5. The simulations with Lax-Wendroff scheme have strong unphysical oscillations in the shocked region. The second order upwind scheme results in unphysical
FIG. 4: LB simulation results and exact solutions for Lax shock tube at $t = 0.45$.

‘overshoot’ phenomena at the shock front. The simulation results with flux limiter scheme are much more accurate, and this scheme has the ability to decrease the unphysical oscillations at the discontinuity.

B. Lax shock tube problem

The initial condition of the problem is:

$$
\begin{align*}
(\rho, u_1, u_2, T) &= (0.445, 0.698, 0.0, 7.928), \quad x \leq L/2. \\
(\rho, u_1, u_2, T) &= (0.5, 0.0, 0.0, 1.142), \quad L/2 < x < L.
\end{align*}
$$

The profiles of density, pressure, $x-$ component of velocity, and temperature at $t = 0.45$ are shown in Fig. 4, where the exact solutions are presented with solid lines for comparison. The parameters are $\gamma = 1.4$, $dx = dy = 0.003$, $dt = 10^{-5}$, $s_5 = s_6 = s_7 = 2 \times 10^3$, $s_8 = s_9 = 10^3$, and other collision parameters are 10^5. Obviously, the simulation results agree well with the exact solutions.

The above simulations show that compressible flows, especially those with discontinuity and shock waves, can be well simulated by the present model.
FIG. 5: Temperature profiles of Couette flow. (a) $\gamma = 2$, $Pr = 0.5$ corresponds to $s_5 = 10^3$, $s_8 = 5 \times 10^2$, $Pr = 5$ corresponds to $s_5 = 2 \times 10^2$, $s_8 = 10^3$, and (b) $\gamma = 1.4$, $Pr = 0.1$ corresponds to $s_5 = 10^3$, $s_8 = 10^2$, $Pr = 5$ corresponds to $s_5 = 2 \times 10^2$, $s_8 = 10^3$ (other collision parameters are 10^3).

C. Couette flow

Here we conduct a series of numerical simulations of Couette flow. In the simulation, the left wall is fixed and the right wall moves at speed $u_x = 0$, $u_y = 0.1$. The initial state of the fluid is $\rho = 1$, $T = 1$, $u_x = 0$, $u_y = 0$. The simulation results are compared with the analytical solution:

$$T = T_1 + (T_2 - T_1) \frac{x}{H} + \frac{\mu}{2\lambda} u_y \frac{x}{H} (1 - \frac{x}{H}), \quad (13)$$

where T_1 and T_2 are temperatures of the left and right walls ($T_1 = 1$, $T_2 = 1.005$), H is the width of the channel. Periodic boundary conditions are applied to the bottom and top boundaries, and the left and right walls adopt the nonequilibrium extrapolation method. Fig. 5 shows the comparison of LB results with analytical solutions for thermal Couette Flows. (a) corresponds to $\gamma = 2$, and (b) corresponds to $\gamma = 1.4$. It is clearly shown that the simulation results of new model are in agreement with the analytical solutions, and the Prandtl number effects are successfully captured. New model is suitable for incompressible flows.
FIG. 6: LB numerical results and non-equilibrium characteristics at $t = 0.3$.

V. NON-EQUILIBRIUM CHARACTERISTIC

To show the merit of LB method over traditional ones, in this section we study the non-equilibrium characteristics using the new model. Among the moment relations required by each LB model, only for the first three (density, momentum and energy), the equilibrium distribution function f_i^{eq} can be replaced by the distribution function f_i. If we replace f_i^{eq} by f_i in the left hand of other moment relations, the value of left side will have a difference from that of the right side. This difference represents the deviation of system from its thermodynamic equilibrium\[23–25\]. In this MRT LB model, the kinetic moment space and the corresponding equilibria of nonconserved moments are constructed according to the seven-moment relations. So, the deviation from equilibrium in this model can be defined as $\Delta_i = \hat{f}_i - \hat{f}_i^{eq} = M_{ij}(f_j - f_j^{eq})$. Δ_i contains the information of macroscopic flow velocity u_{α}. Furthermore, we replace $v_{i\alpha}$ by $v_{i\alpha} - u_{\alpha}$ in the transformation matrix M, named M^* (see Appendix for details). $\Delta^*_i = M^*_{ij}(f_j - f_j^{eq})$ is only the manifestation of molecular thermal motion and does not contain the information of macroscopic flow.

Now, we study the following dynamic procedure. An incident shock wave with Mach
number 1.414 travels from a heavy medium and hits a light one, where the two different fluids are separated by an unperturbed interface. The initial macroscopic quantities are as follows:

\[
\begin{align*}
(\rho, u_1, u_2, p)_s &= (1.5, 0.666667, 0, 2.33334), \\
(\rho, u_1, u_2, p)_h &= (1, 0, 0, 1), \\
(\rho, u_1, u_2, p)_l &= (0.5, 0, 0, 1),
\end{align*}
\]

where the subscripts \(s \), \(h \), \(l \) indicate the shock wave region, the heavy medium region, and the light medium region. In our simulations, the computational domain is \([0, 1.2] \times [0, 0.01]\), and divided into 1200 \(\times \) 10 mesh-cells. The initial position of shock wave is \(x = 0.24 \), the unperturbed interface lies at the position \(x = 0.4 \). Inflow boundary is applied at the left side, outflow boundary is applied at the right side, and periodic boundary conditions are applied at the top and bottom boundaries. \(\gamma = 2 \) in the whole domain. The density, pressure, \(x \)-component of velocity and temperature profiles and \(\Delta^*_i \) \((i = 5, 6, 7, 10, 11) \) on the center line \(y = 0.005 \) at time \(t = 0.3 \) are shown in Fig. 6. The parameters are \(dt = 10^{-5} \), \(s_5 = s_6 = s_7 = 5 \times 10^4 \), and other collision parameters are \(10^5 \).

In the figures, the system shows three different interfaces, rarefaction wave, material interface, and shock wave. Physical quantities change significantly at the three interfaces, and vertical lines indicate the positions of interfaces. The system starts to deviate from equilibrium once the physical quantities starts to change. When the physical quantities arrives at its steady-state required by the Hugoniot relations, the system goes back to its equilibrium state. The peak values of deviations \(\Delta^*_i \) at shock wave interface are larger than the others. This is because the shock dynamic procedure is faster than the other two processes, and the system has less time to relax to its thermodynamic equilibrium.

At the interfaces, \(\Delta^*_5 \), \(\Delta^*_7 \) and \(\Delta^*_11 \) have small amplitudes. \(\Delta^*_5 \) contains two parts, \(x \) and \(y \) components of internal translational kinetic energy. This indicates that the two parts deviate from equilibrium in opposite directions with the same amplitude. \(\Delta^*_6 \) shows an opposite deviation for the rarefaction wave interface and the shock interface. The physical reason is as below. The temperature gradient first initiates variance of the internal kinetic energy in the direction of temperature gradient. (Here, the temperature shows gradient in the \(x \) direction.) Then, part of internal kinetic energy variance is transferred to other degrees of freedoms via collisions of molecules. The internal kinetic energy in the temperature gradient direction further varies, and so on. The shock wave increases density, pressure and
temperature, while the rarefaction wave decreases those quantities. So, Δ_g shows a negative deviation for the rarefaction wave interface, while shows a positive deviation for the shock interface. The values of Δ_{10} at material interface and shock wave interface have the same order, and are much larger than that at rarefaction wave. This is because the sizes of temperature variation near the material interface and shock wave differ little, and larger than that near the rarefaction wave. When the temperature gradient vanishes, the system attains its thermodynamic equilibrium.

VI. CONCLUSIONS

In the paper a MRT LB model for compressible flows is extended so that it is suitable also for incompressible flows. In order to efficiently decrease the unphysical oscillations, space discretization adopts flux limiter scheme with splitting technique. It is validated and verified via same well-known benchmark tests, including Riemann problem and Couette flow, and satisfying agreements are obtained between the new model results and analytical ones. In order to show the merit of LB model over traditional methods, we studied the behaviors of system deviating from its equilibrium through a dynamic procedure where shock wave propagates from a heavy material to a light one. The simulation results are consistent with the physical analysis.

Acknowledgements

The authors would like to sincerely thank S. Succi and C. Lin for many instructive discussions. We acknowledge support of National Natural Science Foundation of China [under Grant Nos. 11075021 and 11047020]. AX and GZ acknowledge support of the Science Foundation of CAEP [under Grant Nos. 2012B0101014 and 2011A0201002] and the Foundation of State Key Laboratory of Explosion Science and Technology [under Grant No. KFJJ14-1M].
Appendix A: Transformation matrix and equilibria of the nonconserved moments

In the model by Kataoka and Tsutahara, the local equilibrium distribution function \(f_i^{eq} \) satisfies the following relations:

\[
\rho = \sum f_i^{eq}, \quad (A1a)
\]

\[
\rho u_\alpha = \sum f_i^{eq} v_{i\alpha}, \quad (A1b)
\]

\[
\rho (bRT + u_\alpha^2) = \sum f_i^{eq} \left(v_{i\alpha}^2 + \eta_i^2 \right), \quad (A1c)
\]

\[
P \delta_{\alpha\beta} + \rho u_\alpha u_\beta = \sum f_i^{eq} v_{i\alpha} v_{i\beta}, \quad (A1d)
\]

\[
\rho \left[(b + 2) RT + u_\beta^2 \right] u_\alpha = \sum f_i^{eq} \left(v_{i\beta}^2 + \eta_i^2 \right) v_{i\alpha}, \quad (A1e)
\]

\[
\rho \left[RT \left(u_\alpha \delta_{\beta\chi} + u_\beta \delta_{\alpha\chi} + u_\chi \delta_{\alpha\beta} \right) + u_\alpha u_\beta u_\chi \right] = \sum f_i^{eq} v_{i\alpha} v_{i\beta} v_{i\chi}, \quad (A1f)
\]

\[
\rho \left\{ (b + 2) R^2 T^2 \delta_{\alpha\beta} + [(b + 4) u_\alpha u_\beta + u_\beta^2 \delta_{\alpha\beta}] RT + u_\alpha u_\beta \right\} = \sum f_i^{eq} \left(v_{i\alpha}^2 + \eta_i^2 \right) v_{i\alpha} v_{i\beta}, \quad (A1g)
\]

where a parameter \(\eta_i \) is introduced, in order to describe the \((b - 2)\) extra-degrees of freedom corresponding to molecular rotation and/or vibration, where \(\eta_i = 5/2 \) for \(i = 1, \ldots, 4 \), and \(\eta_i = 0 \) for \(i = 5, \ldots, 16 \).

The transformation matrix \(\mathbf{M} \) in the MRT model is composed as below: \(\mathbf{M} = (m_1, m_2, \ldots, m_{16})^T \),

\[
m_{1i} = 1, \quad (A2a)
\]

\[
m_{2i} = v_{ix}, \quad (A2b)
\]

\[
m_{3i} = v_{iy}, \quad (A2c)
\]

\[
m_{4i} = v_{ix}^2 + v_{iy}^2 + \eta_i^2, \quad (A2d)
\]

\[
m_{5i} = v_{ix}^2 + v_{iy}^2, \quad (A2e)
\]

\[
m_{6i} = v_{ix}^2 - v_{iy}^2, \quad (A2f)
\]

\[
m_{7i} = v_{ix} v_{iy}, \quad (A2g)
\]

\[
m_{8i} = v_{ix} \left(v_{ix}^2 + v_{iy}^2 + \eta_i^2 \right), \quad (A2h)
\]

\[
m_{9i} = v_{iy} \left(v_{ix}^2 + v_{iy}^2 + \eta_i^2 \right), \quad (A2i)
\]

\[
m_{10i} = v_{ix} \left(v_{ix}^2 + v_{iy}^2 \right), \quad (A2j)
\]

\[
m_{11i} = v_{iy} \left(v_{ix}^2 + v_{iy}^2 \right), \quad (A2k)
\]
where $i = 1, \cdots, 16$.

Replacing $v_{i\alpha}$ by $v_{i\alpha} - u_{\alpha}$ in the transformation matrix M, matrix M^* is expressed as follows: $M^* = (m^*_1, m^*_2, \cdots, m^*_16)^T$,

$$m^*_{1i} = 1,$$ \hspace{1cm} (A3a)

$$m^*_{2i} = v_{ix} - u_x,$$ \hspace{1cm} (A3b)

$$m^*_{3i} = v_{iy} - u_y,$$ \hspace{1cm} (A3c)

$$m^*_{4i} = (v_{ix} - u_x)^2 + (v_{iy} - u_y)^2 + \eta_i^2,$$ \hspace{1cm} (A3d)

$$m^*_{5i} = (v_{ix} - u_x)^2 + (v_{iy} - u_y)^2,$$ \hspace{1cm} (A3e)

$$m^*_{6i} = (v_{ix} - u_x)^2 - (v_{iy} - u_y)^2,$$ \hspace{1cm} (A3f)

$$m^*_{7i} = (v_{ix} - u_x)(v_{iy} - u_y),$$ \hspace{1cm} (A3g)

$$m^*_{8i} = (v_{ix} - u_x)[(v_{ix} - u_x)^2 + (v_{iy} - u_y)^2 + \eta_i^2],$$ \hspace{1cm} (A3h)

$$m^*_{9i} = (v_{iy} - u_y)[(v_{ix} - u_x)^2 + (v_{iy} - u_y)^2 + \eta_i^2],$$ \hspace{1cm} (A3i)

$$m^*_{10i} = (v_{ix} - u_x)[(v_{ix} - u_x)^2 + (v_{iy} - u_y)^2],$$ \hspace{1cm} (A3j)

$$m^*_{11i} = (v_{iy} - u_y)[(v_{ix} - u_x)^2 + (v_{iy} - u_y)^2],$$ \hspace{1cm} (A3k)

$$m^*_{12i} = (v_{ix} - u_x)[(v_{ix} - u_x)^2 - (v_{iy} - u_y)^2],$$ \hspace{1cm} (A3l)

$$m^*_{13i} = (v_{iy} - u_y)[(v_{ix} - u_x)^2 - (v_{iy} - u_y)^2],$$ \hspace{1cm} (A3m)

$$m^*_{14i} = [(v_{ix} - u_x)^2 + (v_{iy} - u_y)^2][v_{ix} - u_x] + (v_{iy} - u_y)^2 + \eta_i^2],$$ \hspace{1cm} (A3n)

$$m^*_{15i} = (v_{ix} - u_x)(v_{iy} - u_y)[v_{ix} - u_x] + (v_{iy} - u_y)^2 + \eta_i^2],$$ \hspace{1cm} (A3o)

$$m^*_{16i} = [(v_{ix} - u_x)^2 - (v_{iy} - u_y)^2][v_{ix} - u_x] + (v_{iy} - u_y)^2 + \eta_i^2],$$ \hspace{1cm} (A3p)

where $i = 1, \cdots, 16$.

14
The equilibria of nonconserved moments are as follows:

\[
\begin{align*}
\hat{f}_{eq}^6 &= 2P + (j_x^2 + j_y^2)/\rho, \quad (A4a) \\
\hat{f}_{eq}^6 &= (j_x^2 - j_y^2)/\rho, \quad (A4b) \\
\hat{f}_{eq}^7 &= j_xj_y/\rho, \quad (A4c) \\
\hat{f}_{eq}^8 &= (e + 2P)j_x/\rho, \quad (A4d) \\
\hat{f}_{eq}^9 &= (e + 2P)j_y/\rho, \quad (A4e) \\
\hat{f}_{eq}^{10} &= (4P + j_x^2/\rho + j_y^2/\rho)j_x/\rho, \quad (A4f) \\
\hat{f}_{eq}^{11} &= (4P + j_x^2/\rho + j_y^2/\rho)j_y/\rho, \quad (A4g) \\
\hat{f}_{eq}^{12} &= (2P + j_x^2/\rho - j_y^2/\rho)j_x/\rho, \quad (A4h) \\
\hat{f}_{eq}^{13} &= (-2P + j_x^2/\rho - j_y^2/\rho)j_y/\rho, \quad (A4i) \\
\hat{f}_{eq}^{14} &= 2(b + 2)\rho R^2 T^2 + (6 + b)RT(j_x^2 + j_y^2)/\rho + (j_x^2 + j_y^2)^2/\rho^3, \quad (A4j) \\
\hat{f}_{eq}^{15} &= [(b + 4)P + (j_x^2 + j_y^2)/\rho]j_xj_y/\rho^2, \quad (A4k) \\
\hat{f}_{eq}^{16} &= [(b + 4)P + (j_x^2 + j_y^2)/\rho](j_x^2 - j_y^2)/\rho^2. \quad (A4l)
\end{align*}
\]

[1] S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Oxford University Press, New York (2001).

[2] R. Benzi, S. Succi, and M. Vergassola, Phys. Rep. 222 (1992) 145.

[3] Aiguo Xu, G. Gonnella, and A. Lamura, Phys. Rev. E 67 (2003) 056105; Phys. Rev. E 74 (2006) 011505; Physica A 331 (2004) 10; Physica A 344 (2004) 750; Physica A 362 (2006) 42.

[4] F. J. Higuera, S. Succi, and R. Benzi, Europhys. Lett. 9 (1989) 345. F. J. Higuera, J. Jimenez, Europhys. Lett. 9 (1989) 662.

[5] D. d’Humières, Generalized lattice-Boltzmann equations, in Rarefied Gas Dynamics: Theory and Simulations, edited by B. D. Shizgal and D. P Weaver, Progress in Astronautics and Aeronautics, Vol. 159(AIAA Press, Washington, DC, 1992), pp450-458.

[6] P. Lallemand, L. S. Luo, Phys. Rev. E 61 (2000) 6546.
[7] D. d’Humières, M. Bouzidi, and P. Lallemand, Phys. Rev. E 63 (2001) 066702.
[8] M. E. McCracken, J. Abraham, Phys. Rev. E 71 (2005) 036701.
[9] K. N. Premnath, J. Abraham, J. Comp. Phys. 224 (2007) 539.
[10] H. D. Yu, L. S. Luo, and S. S. Girimaji, Computers Fluids 35 (2006) 957.
[11] P. Asinari, Comput. Math. Appl. 55 (2008) 1392.
[12] I. Rasin, S. Succi, and W. Miller, J. Comput. Phys. 206 (2006) 453.
[13] H. Yoshida, M. Nagaoka, J. Comput. Phys. 229 (2010) 7774.
[14] Z. H. Chai, T. S. Zhao, Phys. Rev. E 86 (2012) 016705.
[15] J. J. Huang, H. B. Huang, C. Shu, Y. T. Chew and S. L. Wang, J. Phys. A: Math. Theor. 46 (2013) 055501.
[16] P. Lallemand, L. S. Luo, Phys. Rev. E, 68 (2003) 036706.
[17] L. Zheng, B.C. Shi, Z.L. Guo, Phys. Rev. E, 78 (2008) 026705.
[18] A. Mezrhab, M. A. Moussaouia, M. Jami, H. Naji, and M. Bouzidi, Phys. Lett. A, 374 (2010) 3499.
[19] F. Chen, Aiguo Xu, G. C. Zhang, Y. J. Li, and S. Succi, Europhys. Lett. 90 (2010) 54003.
[20] A. Cristea, V. Sofonea, Proceedings of the Romanian Academy, Series A 4 (2003) 59; Central European J. Phys. 2 (2004) 382.
[21] V. Sofonea, A. Lamura, G. Gonnella, A. Cristea, Phys. Rev. E 70 (2004) 046702.
[22] F. Chen, Aiguo Xu, G. C. Zhang, Y. J. Li, Commun. Theor. Phys. 56 (2011) 333.
[23] Aiguo Xu, G. C. Zhang, Y. B. Gan, F. Chen, X. Yu, Front. Phys. 7 (2012) 582.
[24] B. Yan, Aiguo Xu, G. C. Zhang, Y. J. Ying, H. Li, Front. Phys. 8 (2013) 94.
[25] C. Lin, Aiguo Xu, G. Zhang, Y. Li, and S. Succi, e-print [arXiv:1302.7104v1].
[26] T. Kataoka, M. Tsutahara, Phys. Rev. E 69 (2004) 035701(R).