Effects of omega-3 fatty acid on major cardiovascular outcomes
A systematic review and meta-analysis
Fangyu Yu, MD* ©, Shun Qi, BD, Yanan Ji, MD, Xizhi Wang, MD, Shaohong Fang, BD, Ruokui Cao, BD

Abstract

Background: The effects of omega-3 fatty acid on cardiovascular health obtained inconsistent results. A systematic review and meta-analysis were therefore conducted to assess the effects of omega-3 fatty acid supplementation for primary and secondary prevention strategies of major cardiovascular outcomes.

Methods: The databases of PubMed, Embase, and the Cochrane library were systematically searched from their inception until September 2020. Relative risks (RRs) with 95% confidence intervals were used to assess effect estimates by using the random-effects model.

Results: Twenty-eight randomized controlled trials involving 136,965 individuals were selected for the final meta-analysis. Omega-3 fatty acid was noted to be associated with a lower risk of major cardiovascular events (RR, 0.94; 95% CI, 0.89–1.00; \(P = .049 \)) and cardiac death (RR, 0.92; 95% CI, 0.85–0.99; \(P = .022 \)). However, no significant differences was noted between omega-3 fatty acid and the control for the risks of all-cause mortality (RR, 0.97; 95% CI, 0.92–1.03; \(P = .301 \)), myocardial infarction (RR, 0.90; 95% CI, 0.80–1.01; \(P = .077 \)), and stroke (RR, 1.02; 95% CI, 0.94–1.11; \(P = .694 \)).

Conclusions: Major cardiovascular events and cardiac death risks could be avoided with the use of omega-3 fatty acid. However, it has no significant effects on the risk of all-cause mortality, myocardial infarction, and stroke.

Abbreviations: BMI = body mass index, CVD = cardiovascular disease, DM = diabetes mellitus, MACEs = major cardiovascular events, MI = myocardial infarction, RCTs = randomized controlled trials, RRs = relative risks.

Keywords: omega-3 fatty acid, cardiovascular disease, meta-analysis

1. Introduction

Cardiovascular disease (CVD) is the leading cause of death accounting for 179 million deaths annually worldwide. The incidence of CVD remains high although patients at high cardiovascular risk were treated with primary and secondary prevention strategies.[1–3] Patients still suffer substantial residual cardiovascular risk even if the CVD risk was significantly reduced in patients using appropriate treatment with statins.[4] An elevated triglyceride level was considered as an independent factor for the high residual risk on subsequent CVD.[1,2] Therefore, additional strategies should be applied to further reduce residual risk in patients.

Omega-3 fatty acids have already been approved by the US Food and Drug Administration to further reduce elevated triglyceride levels. However, studies found that long-chain omega-3 fatty acids, which including eicosapentaenoic (EPA) and docosahexaenoic acids (DHA), did not show CVD benefits, irrespective of primary or secondary prevention.[7,8] Moreover, the use of omega-3 fatty acid showed better tolerability and safety for preventing further CVD risk.[9] Furthermore, lowering of blood pressure, increasing plaque stability, and improving endothelial function are the potential benefits of omega-3 fatty acids.[10–12] Furthermore, the effects of omega-3 fatty acids on the risk of major cardiovascular outcomes obtained inconsistent results. Numerous randomized controlled trials (RCTs) have already been completed. Khan conducted a systematic review and found EPA and DHA reduced cardiovascular mortality and improved cardiovascular outcomes.[13] However, other omega-3 fatty acid (e.g., fish oils and \(\alpha \)-linolenic acid) were not included in Khan’s study which also suggested favorable effect to cardiovascular outcomes.[14] Therefore, these data should be entered into the meta-analysis and the pooled conclusions updated. Therefore, a systematic review and meta-analysis of RCTs were conducted to evaluate the effects of omega-3 fatty acid supplementation on major cardiovascular outcomes. Moreover, the effects of omega-3 fatty acid according to the different characteristics of patients were also illustrated.

Funding information was not available.

The authors have no conflicts of interest to disclose.

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Zhejiang Province, China.

*Correspondence: Fangyu Yu, Taizhou Hospital of Traditional Chinese Medicine, No. 278 West Zhongshan Road, Jiaolong District, Taizhou, Zhejiang Province, 318000, China (e-mail: TZZSYycu@163.com).

Received: 9 November 2020 / Received in final form: 9 May 2022 / Accepted: 10 May 2022

http://dx.doi.org/10.1097/MD.0000000000029556

Copyright © 2022 the Author(s). Published by Wolters Kluwer Health, Inc. This is an open access article distributed under the Creative Commons Attribution License 4.0 (CCBY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Yu F, Qi S, Ji Y, Wang X, Fang S, Cao R. Effects of omega-3 fatty acid on major cardiovascular outcomes: a systematic review and meta-analysis. Medicine. 2022;101:30(e29556).
2. Methods

2.1. Ethical approval and clinical registration
This study is a meta-analysis and does not contain any information of patients and ethical approval and clinical registration are not applicable.

2.2. Data sources, search strategy, and selection criteria
The Preferred Reporting Items for Systematic Reviews and Meta-Analysis Statement was used to guide the performance and conduct of this systematic review and meta-analysis.14 Included in this study were RCTs that investigated the effects of omega-3 fatty acid supplementation on major cardiovascular outcomes. However, the language of publication was restricted to English. The electronic databases of PubMed, Embase, and the Cochrane library were systematically searched for eligible studies using the following search terms: “omega-3 FA,” “omega-3 polyunsaturated fat,” “fish oils,” “ω-3 FA,” and “randomized controlled trial.” The publication data for the trials were from their inception until September 2020. The ongoing RCTs were also identified in https://clinicaltrials.gov/ which summarizes the trials that have already registered or have been completed but not yet published. The bibliographies of the retrieved trials were also manually reviewed for any new relevant trials.

Two reviewers independently performed the literature search and study selection. Inconsistencies between reviewers were resolved by group discussion. The trial was included if they met the following inclusion criteria: (1) participants (patients with cardiovascular disease (CVD) history or at high risk for CVD); (2) intervention (omega-3 fatty acid supplementation); (3) control (omega-6 fatty acid supplementation, placebo, or usual care); (4) outcome (the study should have reported at least one of the major cardiovascular events (MACEs), all-cause mortality, cardiac death, myocardial infarction (MI), and stroke); and (5) study design (the study had to have the RCT design).

2.3. Data collection and quality assessment
The data from the retrieved trials were independently abstracted by two reviewers. The collected data included the first author or the name of the study group, publication year, country, sample size, mean age, male gender (in percent), body mass index (BMI), smoking (in percent), hypertension (in percent), diabetes mellitus (DM), prevention, intervention, follow-up duration, and reported outcomes. The Jadad scale, which was based on randomization, concealment of the treatment allocation, blinding, completeness of follow-up, or the use of the intention-to-treat analysis, was used by two reviewers to independently assess the quality of the individual trial. The scale system ranged from 0–5.15 Conflicts on data collection and quality assessment between reviewers were settled by an additional reviewer who referred to the original article.

2.4. Statistical analysis
The results of MACEs, all-cause mortality, cardiac death, MI, and stroke in each trial were assigned as dichotomous data. In addition, the individual relative risk (RR) with 95% confidence interval (CI) was calculated before data pooling. Furthermore, random-effects were applied to calculate the pooled effect estimates considering the underlying variations across the included trials.16,17 The F and Q statistics were used to assess the heterogeneity across the included trials. Significant heterogeneity was defined as $I^2 > 50.0\%$ or $P < .10$.15 Sensitivity analysis was conducted to assess the stability of pooled conclusions by sequentially excluding individual trials.20 Subgroup analyses were performed for MACEs, all-cause mortality, cardiac death, MI, and stroke according to sample size, mean age, male (in percent), BMI (in percent), smoking (in percent), hypertension (in percent), DM (in percent), prevention, follow-up, or study quality. Moreover, the interaction tests, which was based on Student’s t-distribution, was used to evaluate the differences between subgroups.21 The qualitative (funnel plot) and quantitative methods (Egger and Begg tests) were also used to evaluate reported outcomes of publication biases.22,23 The inspective level for pooled results is two-sided, and 0.05 was regarded as the cutoff. All statistical analyses in this study were conducted using the software STATA (version 10.0 StataCorp, College Station, TX).

3. Results

3.1. Search for published literature
Initial electronic searches identified 4371 records, and 2697 articles were retained after the duplicates were removed. Identified for full-text evaluations were 245 articles, and 217 studies were excluded because of insufficient data (n = 89), absence of an RCT design (n = 76), and other intervention (n = 52). Reviewing the reference lists of the remaining trials yielded 25 potentially eligible trials. All of these trials were included in initial electronic searches. The remaining 28 RCTs were then selected for the final meta-analysis.24–31 The details of the study selection are shown in Figure 1.

3.2. Characteristics of the included studies
Table 1 shows the baseline characteristics of the included studies and involved patients. Of the 28 included trials, 136,965 patients at high cardiovascular risk were recruited. The included trials were published between 1989 and 2019, and 101–25,871 patients were included in individual trials. Twelve and 18 trials applied omega-3 fatty acids as primary and secondary preventions, respectively. The mean follow-up duration ranged from 1–7.4 years, and the Jadad scale for the included trials ranged from 3–5. Twelve, ten, and six trials scored 5, 4, and 3, respectively. The trials that scored 4 or 5 in this study were considered as high quality.

3.3. Major cardiovascular events
Twenty-two RCTs showed the effect of omega-3 fatty acids on the risk of MACEs. Omega-3 fatty acids was associated with a reduced risk of MACEs (RR, 0.94; 95% CI, 0.89–1.00; $P = .049$; Fig. 2). In addition, significant heterogeneity was seen across included trials ($I^2 = 62.0\%$; $P < 0.001$). The pooled conclusion for MACEs was variable after sequentially excluding individual trials because of the marginal 95% CI (Supplemental Digital Content 1, http://links.lww.com/MD2/B85). Subgroup analysis suggested that the beneficial effect of omega-3 fatty acids on MACEs risk was mainly observed in the groups with a sample size of ≥1,000, a male proportion of ≥80.0%, omega-3 fatty acids used as primary prevention, follow-up duration of ≥3 years, and trials of high quality (Table 2). Moreover, the differences among subgroups based on smoking ($P < .001$) and hypertension proportions ($P = .002$) were associated with statistical significance. No significant publication bias for MACEs was observed (P-value for Egger, 0.648; P value for Begg, 0.236; Supplemental Digital Content 2, http://links.lww.com/MD2/B86).
3.4. All-cause mortality
Twenty-four RCTs showed the effect of omega-3 fatty acids on the risk of all-cause mortality. No significant difference was noted between omega-3 fatty acids and control for the risks of all-cause mortality (RR, 0.97; 95% CI, 0.92–1.03; P = .301; Fig. 3). Potential significant heterogeneity was detected across included trials (I² = 35.6%; P = .044). The pooled conclusion was robustness and was not changed when a sensitivity analysis was conducted (Supplemental Digital Content 1, http://links.lww.com/MD2/B85). Subgroup analysis suggested that omega-3 fatty acids could protect against all-cause mortality risk when the mean age of individuals was <60 years (Table 2). Moreover, the effects of omega-3 fatty acids on the risk of all-cause mortality could be affected by mean age (P = .004), smoking proportion (P = .017), and follow-up duration (P = .024). No significant publication bias was noted for all-cause mortality (P value for Egger, 0.337; P value for Begg, 0.309; Supplemental Digital Content 2, http://links.lww.com/MD2/B86).

3.5. Cardiac death
Nineteen RCTs showed the effect of omega-3 fatty acids on the risk of cardiac death. The pooled RR indicated that omega-3 fatty acids could protect against cardiac death risk (RR, 0.92; 95% CI, 0.85–0.99; P = .022; Fig. 4) and potential heterogeneity among included trials (I² = 33.0%; P = .082). The pooled conclusion for cardiac death risk was variable owing to the marginal 95% CI (Supplemental Digital Content 1, http://links.lww.com/MD2/B85). Subgroup analysis found that the beneficial effects of omega-3 fatty acids on cardiac death were mainly observed in the groups with a sample size of ≥1,000, mean age of <60 years, a male proportion of <80%, BMI of <28 kg m⁻², the smoking proportion of ≥30% or trials that did not report smoking proportion, trials that did not report hypertension proportion, DM proportion of ≥20%, follow-up duration of <3 years, and trials of high quality (Table 2). Moreover, the risk of cardiac death for the use of omega-3 fatty acids could be affected by mean age (P = .015), smoking proportion (P = .016), and follow-up duration (P = .012). Moreover, no significant publication bias for cardiac death was detected (P value for Egger, .282; P value for Begg, 0.576; Supplemental Digital Content 2, http://links.lww.com/MD2/B86).

3.6. Myocardial infarction
Eighteen RCTs showed the effect of omega-3 fatty acids on the risk of MI. Omega-3 fatty acids was noted to not be associated with the risk of MI.
Study	Country	Sample size	Mean age (yr)	Male (%)	BMI (kg/m2)	Smoking (%)	Hypertension (%)	DM (%)	Prevention	Intervention	Follow-up	Study quality
Burr 1989	UK	2033	56.5	100.0	NA	62.0	23.6	NA	Secondary	N-3 EPA + DHA vs nil or oily fish advice (or capsule) vs not	2.0 yr	3
GISSI-P 1999	Italy	11324	59.4	85.3	26.5	42.4	35.6	14.8	Secondary	N-3 EPA + DHA vs nil	3.5 yr	5
Nilsen 2001	Norway	300	64.0	79.3	26.0	38.7	24.3	10.3	Secondary	N-3 EPA + DHA vs corn oil	2.0 yr	3
Bemelmans 2002	Netherlands	266	54.1	44.0	NA	49.2	48.5	NA	Primary	a-linolenic acid vs omega-6	2.0 yr	4
Burr 2003	UK	3114	61.1	100.0	28.2	23.7	48.0	12.4	Secondary	Oily fish or capsules n-3 EPA + DHA vs nil	3.0–9.0 yr	3
Leaf 2005	USA	402	65.5	83.1	NA	12.2	NA	NA	Secondary	N-3 EPA + DHA vs MUFA	1.0 yr	4
Raftt 2005	USA	200	62.5	86.0	NA	50.5	23.5	NA	Secondary	N-3 EPA + DHA vs MUFA	2.0 yr	4
Brouwer 2006	Europe (8 countries)	546	61.5	84.1	26.9	12.3	50.7	15.9	Secondary	N-3 EPA + DHA vs MUFA and n6 omega-6 EPA capsule vs nil	5.0 yr	4
Yokoyama 2007	Japan	18645	61.0	31.5	24.0	19.0	35.5	16.0	Primary and secondary	Omega-3 vs olive oil	1.0 yr	5
GISSI-HF 2008	Italy	6975	67.0	78.3	27.0	14.2	54.6	28.3	Secondary	N-3 EPA + DHA vs MUFA	3.9 yr	5
Turtle 2008	USA	101	60.0	74.3	30.5	27.7	46.5	19.8	Secondary	N-3 EPA + DHA vs MUFA	2.0 yr	4
Quinn 2010	USA	402	76.0	47.8	26.0	23.4	NA	NA	Primary	N-3 EPA + DHA vs n-6 LA	1.5 yr	5
Kromhout 2010	Netherlands	4837	69.0	78.1	27.8	16.8	89.7	21.0	Secondary	N-3 EPA + DHA vs nil	3.3 yr	5
Einvik 2010	Norway	563	70.1	100.0	26.5	34.0	28.0	14.5	Primary	N-3 EPA vs n-6 LA	3.0 yr	4
Rauch 2010	Germany	3818	64.0	74.4	27.5	36.7	66.5	27.0	Secondary	Omega-3 vs olive oil	1.0 yr	5
Galan 2010	France	2501	60.6	79.4	27.2	10.9	NA	NA	Primary	N-3 omega-3 vs paraffin (non-fat), also B vitamin comparison	4.0 yr	5
ORIGIN 2012	40 locations in Europe and the Americas	12536	63.5	65.0	29.8	12.3	79.5	NA	Primary	N-3 omega-3 vs MUFA	6.0 yr	5
Macchia 2013	Argentina	586	66.1	54.8	NA	7.6	91.4	12.9	Secondary	N-3 EPA + DHA vs MUFA	1.0 yr	4
Risk & Prevention 2013	Italy	12513	64.0	61.5	NA	21.8	84.6	59.9	Primary	N-3 omega-3 vs olive oil	5.0 yr	4
Nigam 2014	Canada	316	61.0	66.8	29.0	NA	43.4	8.2	Secondary	N-3 EPA + DHA vs n-6	1.0 yr	3
AREDS2 2014	Japan	4203	74.3	43.2	NA	56.6	43.4	8.2	Secondary	N-3 EPA + DHA vs nil	5.0 yr	5
Doi 2014	Japan	115	70.0	74.8	24.0	34.8	68.7	37.4	Secondary	N-3 EPA + DHA vs nil	1.0 yr	3
Altaddighi 2017	UK	240	63.0	85.0	30.7	NA	83.3	28.3	Secondary	N-3 EPA + DHA vs nil	2.5 yr	3
ASCEND 2018	UK	15480	63.3	62.6	30.8	8.3	NA	100.0	Primary	N-3 EPA + DHA vs MUFA	7.4 yr	5
Pahor 2019	USA	289	77.6	52.6	31.4	NA	69.2	23.5	Primary	N-3 vs PUFA plus or minus losartan	1.0 yr	4
Bhatt 2019	11 Countries in Westernized, Eastern Europe, Asia Pacific	8179	64.0	71.2	30.8	NA	58.5	Primary and secondary	N-3 omega-3 vs paraffin oil	4.9 yr	5	
Manson 2019	USA	25871	67.1	49.4	28.1	7.2	49.8	13.7	Primary	N-3 omega-3 vs MUFA	5.3 yr	5

DM = diabetes mellitus.
with a reduced risk of MI (RR, 0.90; 95% CI, 0.80–1.01; P = .077; Fig. 5), and significant heterogeneity was detected across included trials (I² = 48.9%; P = .010). Sensitivity analysis indicated that the risk of MI may be reduced by sequentially excluding individual trials (Supplemental Digital Content 1, http://links.lww.com/MD2/B85). Subgroup analysis suggested that omega-3 fatty acids significantly reduced the risk of MI when the mean age was ≥60 years, the male proportion was <80%, trials on smoking proportion were not reported, DM proportion was ≥20% or <20%, omega-3 fatty acids were used as primary prevention, follow-up duration was ≥3 years, and trials were of high quality (Table 2). Moreover, smoking proportion (P = .001), DM proportion (P < .001), and study quality (P = .022) could affect the effects of omega-3 fatty acids on the risk of MI. No significant publication bias exists for the risk of MI (P value for Egger, .979; P value for Begg, .880; Supplemental Digital Content 2, http://links.lww.com/MD2/B86).

3.7. Stroke

Fifteen RCTs showed the effect of omega-3 fatty acids on the risk of stroke. No significant differences were noted between omega-3 fatty acids and control for the risk of stroke (RR, 1.02; 95% CI, 0.94–1.11; P = .694; Fig. 6). In addition, unimportant heterogeneity was seen among the included trials (I² = 9.1%; P = .351). The pooled conclusion was robustness and was not altered by sequentially excluding individual trials (Supplemental Digital Content 1, http://links.lww.com/MD2/B85). Subgroup analysis suggested that omega-3 fatty acids could protect against stroke risk when pooled trials did not report smoking proportion (Table 2). Moreover, the effects of omega-3 fatty acids on the risk of stroke could be affected by BMI (P = .047) and smoking proportion (P = .019). No significant publication bias was detected for the risk of stroke (P value for Egger, .893; P value for Begg, .767; Supplemental Digital Content 2, http://links.lww.com/MD2/B86).

4. Discussion

An observational study initially reported the potential role of omega-3 fatty acids for in preventing the risks of major cardiovascular outcomes.[52] However, this effect lacks further intervention RCTs confirmed to date. The current study included RCTs and assessed the effects of omega-3 fatty acids on the outcomes of MACEs, all-cause mortality, cardiac death, MI, and stroke. This comprehensive, quantitative meta-analysis involved 136,965 individuals from 28 trials across a wide range of characteristics. Furthermore, this study suggested that omega-3 fatty acids could protect against the risk of MACEs and cardiac death. However, omega-3 fatty acids were not associated with the risk of all-cause mortality, MI, and stroke. The effects of omega-3 fatty acids could be affected by mean age, BMI, smoking proportion, hypertension proportion, DM proportion, follow-up duration, and study quality as found in the results of subgroup analysis.

The role of omega-3 fatty acids on major cardiovascular outcomes have already been illustrated in several systematic reviews and meta-analyses. A meta-analysis conducted by Marik et al contained 11 RCTs and found that dietary supplementation with omega-3 fatty acids could reduce the risk of nonfatal MACEs, cardiac death, sudden cardiac death, and all-cause mortality. Thus, it should be applied as a secondary prevention for major cardiovascular outcomes.[53] On the other hand, Filion et al conducted a meta-analysis of 29 RCTs and found that omega-3 fatty acids did not yield significant benefits on the risk of all-cause mortality and restenosis for patients at high cardiovascular risk.[54] On the other hand, Kwak et al performed a meta-analysis of 14 RCTs and found that the use of omega-3 fatty acids as secondary prevention...
Table 2

Subgroup analyses.

Outcomes	Variables	Group	RR and 95% CI	P value	Heterogeneity (%)	P value for heterogeneity	P value between subgroups
Major cardiovascular events	Sample size	= 1000	0.94 (0.89–1.00)	.038	65.3	.001	1.000
	< 1000	0.89 (0.68–1.17)	.406	61.4	.008		
	Mean age (yr)	= 60.0	0.96 (0.91–1.02)	.184	57.6	.001	1.000
	< 60.0	0.76 (0.57–1.02)	.066	79.5	.008		
	Male proportion (%)	= 80.0	0.92 (0.85–0.99)	.036	0.0	.781	0.399
	< 80.0	0.95 (0.88–1.01)	.122	69.7	.479		
	BMI (kg/m²)	= 28.0	0.90 (0.79–1.04)	.158	81.6	.119	
	< 28.0	0.97 (0.90–1.03)	.323	36.2	.637		
	Smoking (%)	= 30.0	0.96 (0.86–1.07)	.479	34.4	.165	
	< 30.0	0.96 (0.91–1.02)	.161	50.0	.029		
	Hypertension (%)	= 1000	0.94 (0.85–1.03)	.498	0.0	.494	0.002
	< 1000	0.89 (0.81–1.00)	.076	63.0	.008		
	DM (%)	= 20.0	0.96 (0.88–1.05)	.346	72.5	.134	
	< 20.0	0.91 (0.81–1.02)	.108	54.9	.018		
	Prevention	Primary	0.92 (0.85–1.00)	.050	68.0	.001	.237
	Secondary	0.97 (0.88–1.07)	.540	57.3	.007	.877	
	Follow-up (yr)	= 3.0	0.94 (0.89–1.00)	.040	65.1	.001	
	< 3.0	0.94 (0.80–1.11)	.474	62.5	.003		
	Study quality	High	0.93 (0.88–1.00)	.037	70.0	.619	
	Low	1.00 (0.86–1.15)	.949	28.4	.212		
All-cause mortality	Sample size	= 1000	0.98 (0.93–1.03)	.421	47.6	.029	.158
	< 1000	0.77 (0.56–1.07)	.121	7.7	.371		
	Mean age (yr)	= 60.0	0.99 (0.95–1.04)	.751	16.0	.255	.004
	< 60.0	0.79 (0.63–0.99)	.042	38.3	.182		
	Male proportion (%)	= 80.0	0.86 (0.70–1.01)	.135	61.0	.012	.155
	< 80.0	0.98 (0.94–1.02)	.358	4.7	.400		
	BMI (kg/m²)	= 28.0	0.99 (0.91–1.07)	.750	48.2	.085	.621
	< 28.0	0.97 (0.89–1.07)	.593	33.4	.123		
	DM (%)	= 20.0	0.96 (0.88–1.05)	.346	72.5	.134	
	< 20.0	0.91 (0.81–1.02)	.108	54.9	.018		
	Prevention	Primary	0.92 (0.85–1.00)	.050	68.0	.001	.237
	Secondary	0.97 (0.88–1.07)	.540	57.3	.007	.877	
	Follow-up (yr)	= 3.0	0.94 (0.89–1.00)	.040	65.1	.001	
	< 3.0	0.94 (0.80–1.11)	.474	62.5	.003		
	Study quality	High	0.93 (0.88–1.00)	.037	70.0	.619	
	Low	1.00 (0.86–1.15)	.949	28.4	.212		
Cardiac death	Sample size	= 1000	0.92 (0.85–1.00)	.050	48.7	.029	.205
	< 1000	0.70 (0.45–1.08)	.105	0.0	.702		
	Mean age (yr)	= 60.0	0.95 (0.88–1.02)	.146	20.6	.224	.015
	< 60.0	0.78 (0.67–0.92)	.003	9.2	.347		
	Male proportion (%)	= 80.0	0.83 (0.63–1.09)	.189	68.5	.004	.518
	< 80.0	0.93 (0.88–0.99)	.013	0.0	.768		
	BMI (kg/m²)	= 28.0	0.95 (0.82–1.10)	.492	64.8	.014	.431
	< 28.0	0.90 (0.84–0.97)	.007	0.0	.755		
	Not reported	0.85 (0.62–1.15)	.279	40.7	.150		
	Smoking (%)	= 30.0	0.80 (0.71–0.91)	.001	0.0	.721	.016
	< 30.0	0.97 (0.89–1.05)	.462	33.1	.134		
	Hypertension (%)	= 50.0	0.95 (0.89–1.02)	.151	0.0	.594	.135
	< 50.0	0.91 (0.75–1.10)	.306	55.6	.021		
	DM (%)	= 20.0	0.91 (0.85–0.97)	.006	0.0	.516	.774
	< 20.0	0.94 (0.76–1.15)	.518	52.3	.040		
	Not reported	0.86 (0.65–1.14)	.289	53.3	.092		
	Prevention	Primary	0.93 (0.86–1.00)	.053	0.0	.506	.838
	Secondary	0.91 (0.79–1.04)	.173	51.3	.025		

(Continued)
did not contribute sufficient effects on MACEs for patients with CVD history.\cite{55} Moreover, a meta-analysis conducted by Rizos et al included 20 RCTs and found that the use of omega-3 fatty acids did not yield significant benefits for cardiovascular outcomes.\cite{56} Furthermore, Casula et al conducted a meta-analysis of 11 RCTs to assess the effects of long-term omega-3 fatty acids for the secondary prevention of major cardiovascular outcomes and found the protective role of long-term high-dose omega-3 fatty acids on the risk of cardiac death, sudden death, and MI for patients with CVD history.\cite{57} In addition, a meta-analysis conducted by Wen et al included 14 RCTs and found that omega-3 fatty acids have no significant effect on the risk of MACEs while it could reduce the risk of all-cause mortality, cardiac death, and sudden cardiac death for patients with coronary heart disease.\cite{58} Moreover, Aung et al conducted a meta-analysis of 10 RCTs and found that omega-3 fatty acids were not associated with the risk of fatal or nonfatal coronary heart disease or MACEs.\cite{59} Furthermore, Popoff et al conducted a meta-analysis of 10 RCTs and found that omega-3 fatty acids did not provide significant benefits on cardiovascular health for patients after acute MI.\cite{60} However, several new published RCTs should be included and the pooled conclusions needed to be updated. Therefore, the current systematic review and meta-analysis were conducted to assess the effects of omega-3 fatty acids on major cardiovascular outcomes.

Table 2

Outcomes Variables	Group	RR and 95% CI	P value for heterogeneity	P value	P value between subgroups		
	Follow-up (yr) = 3.0	0.95 (0.88–1.03)	.245	37.1	.112	.012	
	< 3.0	0.80 (0.70–0.90)	.001	0.0	.626	.430	
Study quality	High	0.92 (0.87–0.97)	.001	0.0	.708	.818	
	Low	0.85 (0.52–1.37)	.500	80.7	.001	.968	
Sample size	= 1000	0.90 (0.79–1.02)	.001	63.4	.002	.217	
	< 1000	0.97 (0.59–1.59)	.890	0.0	.431	.818	
Mean age (yr)	= 60.0	0.87 (0.77–0.99)	.028	47.9	.023	.010	
	< 60.0	1.03 (0.68–1.55)	.889	46.8	.021	.130	
Male proportion (%)	= 80.0	1.07 (0.73–1.59)	.723	39.1	.177	.082	
	< 80.0	0.87 (0.76–0.98)	.026	48.7	.021	.130	
BMI (kg/m²)	= 28.0	0.84 (0.68–1.04)	.102	79.5	.001	.424	
	< 28.0	0.91 (0.79–1.04)	.165	0.6	.419	.818	
Not reported		1.01 (0.76–1.33)	.956	17.0	.304	.130	
Smoking (%)	= 30.0	1.09 (0.88–1.36)	.441	12.4	.336	.001	
	< 30.0	0.89 (0.78–1.00)	.055	36.4	.117	.818	
Hypertension (%)	= 50.0	0.98 (0.87–1.11)	.762	2.4	.407	.051	
	< 50.0	0.92 (0.72–1.17)	.501	58.1	.026	.968	
DM (%)	= 20.0	0.82 (0.71–0.93)	.003	24.7	.249	.818	
	< 20.0	0.83 (0.72–0.97)	.017	12.9	.359	.130	
Not reported		1.13 (0.97–1.31)	.127	3.9	.373	.818	
Prevention	Primary	0.86 (0.74–1.00)	.045	62.7	.006	.190	
Follow-up (yr)	= 3.0	0.86 (0.75–0.98)	.022	61.3	.008	.053	
	< 3.0	1.07 (0.83–1.38)	.588	10.2	.359	.818	
Study quality	High	0.86 (0.76–0.97)	.013	50.1	.020	.022	
	Low	1.23 (0.92–1.64)	.167	0.4	.404	.818	
Stroke	Sample size	= 1000	1.03 (0.93–1.13)	.616	32.7	.146	.861
	< 1000	0.92 (0.93–3.25)	.861	0.0	.736	.818	
Mean age (yr)	= 60.0	1.00 (0.92–1.09)	.976	10.7	.340	.171	
	< 60.0	1.23 (0.92–1.64)	.163	0.0	.545	.818	
Male proportion (%)	= 80.0	1.23 (0.91–1.64)	.174	-	.183	.818	
	< 80.0	1.00 (0.92–1.09)	1.000	4.7	.400	.818	
BMI (kg/m²)	= 28.0	0.94 (0.84–1.05)	.279	18.0	.297	.047	
	< 28.0	1.11 (0.97–1.27)	.145	0.0	.771	.818	
Not reported	1.23 (0.95–1.59)	.112	0.0	.710	.818		
Smoking (%)	= 30.0	1.17 (0.92–1.48)	.193	0.0	.671	.019	
	< 30.0	1.03 (0.95–1.12)	.511	0.0	.663	.818	
Hypertension (%)	= 50.0	1.08 (0.90–1.29)	.436	29.6	.224	.372	
	< 50.0	1.07 (0.93–1.23)	.322	0.0	.758	.818	
Not reported	0.94 (0.77–1.14)	.512	41.4	.163	.818		
DM (%)	= 20.0	1.02 (0.82–1.28)	.851	62.5	.031	.354	
	< 20.0	1.08 (0.95–1.23)	.252	0.0	.926	.818	
Not reported	0.94 (0.81–1.08)	.365	0.0	.695	.818		
Prevention	Primary	0.99 (0.89–1.09)	.796	0.0	.766	.818	
Follow-up (yr)	= 3.0	1.01 (0.91–1.11)	.872	31.1	.169	.226	
	< 3.0	1.19 (0.90–1.58)	.213	0.0	.803	.818	
Study quality	High	1.02 (0.93–1.12)	.684	23.8	.210	.757	
	Low	1.08 (0.72–1.61)	.719	0.0	.645	.818	

BMI = body mass index, CI = confidence interval, DM = diabetes mellitus.
trials did not find significant differences between omega-3 fatty acids and control, while four trials reported a similar conclusion.[24,33,34,50] The GISSI-Prevenzione trial found that dietary supplementation with omega-3 fatty acids could yield significant benefits on MACEs (all-cause mortality, nonfatal MI, and nonfatal stroke).[24] The Japan EPA Lipid Intervention Study trial suggested that the use of eicosapentaenoic acid should be considered as a promising strategy for the prevention of MACEs for hypercholesterolemic patients.[33] The THIS-DIET trial found active intervention with the Mediterranean-style diet and could provide significant benefits on cardiovascular health in patients after MI.[35] The REDUCE-IT trial found that the risk for MACEs was significantly reduced for patients with elevated triglyceride levels applied with 2 g of omega-3 fatty acids.[50] The potential reason for this could be that omega-3 fatty acids have antiarrhythmic effects.[61,62] Moreover, the use of omega-3 fatty acids could reduce platelet aggregation,[63,64] vasodilation,[65,66] antiproliferation,[67] plaque stabilization,[68] and reduction in lipid action.[69,70]

The use of omega-3 fatty acids was noted to prevent the risk of cardiac death. However, it has no significant effects on the risk of all-cause mortality, MI, and stroke. The protective role of omega-3 fatty acids on cardiac death could be explained by the low dose of omega-3 fatty acids that could prevent sudden cardiac death through an antiarrhythmic effect.[71] Sensitivity analysis found that omega-3 fatty acids may play a beneficial effect on the risk of all-cause mortality. This result could be explained by the high proportion of death caused by cardiac reasons. Furthermore, the use of omega-3 fatty acids did not affect the risk of MI and stroke. These results could be affected by the dose and duration of omega-3 fatty acid supplementation.

Significant heterogeneity exists for several major cardiovascular outcomes, and subgroup analysis was performed to assess the role of omega-3 fatty acids in patients with specific characteristics. Mean age, BMI, smoking proportion, hypertension proportion, DM proportion, follow-up duration, and study quality were noted to affect the effects of omega-3 fatty acids on major cardiovascular outcomes. Several reasons could explain these results. First, cardiovascular risk could be affected by the mean age of the patients, and the proportion of comorbidity across patients is different, which could affect the progression of major cardiovascular outcomes. Second, the role of omega-3 fatty acids may be more evident for patients at low cardiovascular risk, including the characteristics of BMI, smoking proportion, hypertension, and DM proportion. Third, the follow-up duration is significantly correlated with the duration of the use of omega-3 fatty acids and the events of interest outcome. Fourth, the quality of the trials was related to the evidence level and the reliability of the pooled conclusions.

Several limitations of this study should be mentioned. First, the type of omega-3 fatty acids may affect the progression of major cardiovascular outcomes. Second, the treatment effect between the omega-3 fatty acids and control could be affected by the background intake of omega-3 fatty acids and other treatment strategies. Third, the definition of MACEs is different across the included trials, and the risk of MACEs for individuals using omega-3 fatty acids could be affected. Fourth, the subgroup analyses according to background therapies were not conducted because the stratified data according to the specific treatment strategy were not available. Lastly, inherent limitations exist for meta-analysis based on pooled data, including inevitable publication bias and restricted detailed analyses.
Study	Risk ratio (95% CI)	% Weight
Burr 1989	0.67 (0.51, 0.89)	5.6
GISSI-P 1999	0.84 (0.72, 0.97)	11.5
Nilsen 2001	1.00 (0.89, 1.25)	0.6
Bemelmans 2002	1.44 (0.09, 22.78)	0.1
Burr 2003	1.27 (1.03, 1.57)	8.0
Leaf 2005	1.01 (0.41, 2.49)	0.7
Raitt 2005	0.40 (0.08, 2.01)	0.2
Brouwer 2006	0.46 (0.18, 1.20)	0.6
Yokoyama 2007	0.93 (0.56, 1.55)	2.0
GISSI-HF 2008	0.93 (0.85, 1.02)	16.3
Tuttte 2008	0.14 (0.01, 2.73)	0.1
Kromhout 2010	0.99 (0.73, 1.34)	4.8
Einvik 2010	0.63 (0.25, 1.61)	0.6
Rauch 2010	0.95 (0.57, 1.59)	1.9
ORIGIN 2012	0.98 (0.88, 1.10)	14.7
Risk & Prevention 2013	1.04 (0.83, 1.31)	7.1
ASCEND 2018	0.82 (0.68, 0.98)	9.3
Bhatt 2019	0.82 (0.67, 0.99)	8.8
Manson 2019	0.96 (0.76, 1.21)	7.2
Overall	0.92 (0.85, 0.99)	100.0

Figure 4. Forest plot for the effects of omega-3 fatty acids on the risk of cardiac death.

Study	Risk ratio (95% CI)	% Weight
Burr 1989	1.49 (0.97, 2.30)	5.2
GISSI-P 1999	0.97 (0.77, 1.23)	9.8
Nilsen 2001	1.40 (0.75, 2.61)	3.0
Bemelmans 2002	0.21 (0.01, 3.93)	0.2
Raitt 2005	0.33 (0.04, 3.15)	0.3
Brouwer 2006	0.33 (0.03, 3.18)	0.3
Yokoyama 2007	0.76 (0.56, 1.04)	7.7
GISSI-HF 2008	0.83 (0.64, 1.06)	9.3
Tuttte 2008	0.50 (0.16, 1.61)	1.0
Galan 2010	1.14 (0.69, 1.88)	4.2
ORIGIN 2012	1.08 (0.93, 1.26)	12.7
Macchia 2013	1.03 (0.06, 16.35)	0.2
Risk & Prevention 2013	0.89 (0.66, 1.20)	8.0
AREDS2 2014	0.89 (0.54, 1.49)	4.1
Doi 2014	3.05 (0.13, 73.39)	0.1
ASCEND 2018	0.93 (0.76, 1.13)	11.1
Bhatt 2019	0.70 (0.60, 0.82)	12.5
Manson 2019	0.73 (0.59, 0.90)	10.5
Overall	0.90 (0.80, 1.01)	100.0

(l-square: 33.0%; P=0.082)

Figure 5. Forest plot for the effects of omega-3 fatty acids on the risk of myocardial infarction.
In conclusion, this study found that the use of omega-3 fatty acids could significantly reduce the risk of MACEs and cardiac death. However, no significant differences were found between omega-3 fatty acids and control for the risk of all-cause mortality, MI, and stroke. Further large-scale RCT should be conducted to assess the effects of omega-3 fatty acids on major cardiovascular outcomes. In addition, a cumulative meta-analysis should be conducted to assess the pooled effect estimates in clinical practice.

Author contributions

Conceptualization: Fangyu Yu, Shun Qi.
Data curation: Ruokui Cao, Shaohong Fang, Shun Qi, Xizhi Wang, Yanan Ji.
Formal analysis: Fangyu Yu, Yanan Ji.
Methodology: Fangyu Yu.
Project administration: Fangyu Yu.
Writing – original draft: Fangyu Yu, Ruokui Cao, Shaohong Fang, Shun Qi, Xizhi Wang, Yanan Ji.
Writing – review & editing: Ruokui Cao, Shaohong Fang, Shun Qi, Xizhi Wang.

References

[1] Bhatt DL, Eagle KA, Ohman EM, et al. Comparative determinants of 4-year cardiovascular event rates in stable outpatients at risk of or with atherothrombosis. JAMA. 2010;304:1350–7.
[2] Nambi V, Bhatt DL. Primary prevention of atherosclerosis: time to take a selfie? J Am Coll Cardiol. 2017;70:2992–4.
[3] Vaduganathan M, Venkataramani AS, Bhatt DL. Moving toward global primordial prevention in cardiovascular disease: the heart of the matter. J Am Coll Cardiol. 2015;66:1535–7.
[4] Sampson UK, Fazio S, Linton MF. Residual cardiovascular risk despite optimal LDL cholesterol reduction with statins: the evidence, etiology, and therapeutic challenges. Curr Atheroscler Rep. 2012;14:1–10.
[5] Klimpfen R, Erez A, Sagit BZ, et al. Elevated triglyceride level is independently associated with increased all-cause mortality in patients with established coronary heart disease: twenty-two-year follow-up of the bezafibrate infarction prevention study and registry. Circ Cardiovasc Qual Outcomes. 2016;9:100–8.
[6] Toth PP, Granowitz C, Hall M, et al. High triglycerides are associated with increased cardiovascular events, medical costs, and resource use: a real-world administrative claims analysis of statin-treated patients with high residual cardiovascular risk. J Am Heart Assoc. 2018;7:e008740.
[7] Libby P. Triglycerides on the rise: should we swap seats on the seesaw? Eur Heart J. 2015;36:774–6.
[8] Ganda OP, Bhatt DL, Mason RP, et al. Unmet need for adjunctive dyslipidemia therapy in hypertriglyceridemia management. J Am Coll Cardiol. 2018;72:330–43.
[9] Siscovick DS, Barringer TA, Fretts AM, et al. Omega-3 polyunsaturated fatty acid (fish oil) supplementation and the prevention of clinical cardiovascular disease: a science advisory from the American Heart Association. Circulation. 2017;135:e867–84.
[10] British Nutrition Foundation. n-3 Fatty acids and health. London: British Nutrition Foundation; 1999; Available at: https://www.nutrition.org.uk/attachments/156_n-3%20Fatty%20acids%20health%20summary.pdf.
[11] Bhattachar D, Durrington PN. Omega-3 fatty acids: their role in the prevention and treatment of atherosclerosis related risk factors and complications. Int J Clin Pract. 2003;57:305–14.
[12] Thies F, Garry JM, Yaqoob P, et al. Association of n-3 polyunsaturated fatty acids with stability of atherosclerotic plaques: a randomised controlled trial. Lancet. 2003;361:477–85.
[13] Khan SU, Lone AN, Khan MS, et al. Effect of omega-3 fatty acids on cardiovascular outcomes: a systematic review and meta-analysis. EClinicalMedicine. 2021;38:100997.
[14] Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097.
[15] Jadad AR, Moore RA, Carroll D, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials. 1996;17:1–12.
[16] DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–88.
[17] Ades AE, Lu G, Higgins JP. The interpretation of random-effects meta-analysis in decision models. Med Decis Making. 2015;35:646–54.
[18] Deeks JJ, Higgins J, Altman DG. Higgins J, Green S. Analysing Data and Undertaking Meta-Analyses. Cochrane Handbook for Systematic Reviews of Interventions UK: Oxford; 2008;243–96.
[19] Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–60.
[20] Tobias A. Assessing the influence of a single study in the meta-analysis estimate. Stata Technical Bulletin. 1999;8:7526–9.
[21] Altman DG. Statistics notes: interaction revisited: the difference between two estimates. BMJ. 2003;326:219–1219.
[22] Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.
in rabbits caused by all-cis-5, 8, 11, 14, 17-icosapentaenoic acid. J Atheroscler Thromb. 2002;9:170–7.

[69] Nozaki S, Matsuzawa Y, Hirano K, et al. Effects of purified eicosapentaenoic acid ethyl ester on plasma lipoproteins in primary hypercholesterolemia. Int J Vitam Nutr Res. 1992;62:256–60.

[70] Ando M, Sanaka T, Nihei H. Eicosapentanoic acid reduces plasma levels of remnant lipoproteins and prevents in vivo peroxidation of LDL in dialysis patients. J Am Soc Nephrol. 1999;10:2177–84.

[71] Kang JX, Leaf A. Prevention of fatal cardiac arrhythmias by polyunsaturated fatty acids. Am J Clin Nutr. 2000;71:202S–7S.