Involvement of subventricular zone shortened the survival of pediatric glioblastoma

Yang Jiao (yangkkk123@126.com)
Zhengzhou University First Affiliated Hospital
https://orcid.org/0000-0002-3453-2887

Meng Wang
Zhengzhou University First Affiliated Hospital

Xueyou Liu
Zhengzhou University First Affiliated Hospital

Juankuan Wang
Zhengzhou University First Affiliated Hospital

Zeming Wang
Zhengzhou University First Affiliated Hospital

Wenzheng Luo
Zhengzhou University First Affiliated Hospital

Yang Yu
Zhengzhou University First Affiliated Hospital

Hongwei Sun
Zhengzhou University First Affiliated Hospital
https://orcid.org/0000-0002-8222-5136

Research Article

Keywords: pediatric glioblastoma, subventricular zone, clinical features, survival outcomes

DOI: https://doi.org/10.21203/rs.3.rs-550315/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

PURPOSE

Glioblastoma involved with subventricular zone (SVZ) predicted a worse outcome in adult, but we know less about it based on children population due to the rarity of pediatric glioblastoma (pGBM). We performed this study to probe into the clinical and prognostic features of glioblastoma involved with SVZ in children.

METHODS

We selected thirty-one patients diagnosed with pediatric supratentorial glioblastoma at our department between January 2015 and January 2020. Clinical data and prognostic results were reviewed retrospectively.

RESULTS

Involvement of SVZ was associated with larger tumor volume (p = 0.007), lower edema index (EI) (p = 0.010), passive adjuvant therapy (p = 0.029), worse progression-free survival (PFS) (p = 0.001) and overall survival (OS) (p < 0.001), it didn't correlate to age, sex, preoperative KPS, extent of resection (EOR), tumor side, Ki-67, expression of P53 and ATRX and mutation of IDH1 and IDH2 genes. Independent of EOR and adjuvant therapies, involvement of SVZ was a prognostic factor of PFS and OS in pGBM.

CONCLUSION

Involvement of SVZ was an independent prognostic factor of PFS and OS in pGBM, and it associated with large volume, mild edema and passive adjuvant therapy. More research should be developed to optimize the treatment strategy of pGBM involved with SVZ.

Introduction

Glioblastoma (GBM) is a rare malignant tumor of the central nervous system in children. According to statistics, the annual incidence rate is 1.4/ million, accounting for 3% of the primary tumors of the central nervous system in children [1, 2]. Several studies had demonstrated that maximum safe resection of tumor and postoperative radiotherapy (RT) and chemotherapy (CT) were effective treatment for pediatric glioblastoma (pGBM) [3–7]. However, the median overall survival (OS) was still between one and two years after active treatment [5, 8, 9].

Subventricular zone (SVZ) is a neurogenic area which harbors neural stem cells. In recent research, glioma stem cells were found in SVZ, which play a critical role in the occurrence and progression of
glioma [10–12]. It has been proved that adult GBM involved with SVZ predict an adverse prognosis and tend to present a multifocal tumor phenotype in many studies [13–16].

Because of the rarity of pGBM, the clinical features and prognostic outcomes about pGBM involved with SVZ had never been described before. To better comprehend its clinical features and provided basis for judgment of prognosis preoperatively, we retrospectively analyzed the institutional database for 31 patients with pediatric supratentorial GBM diagnosed and treated at our hospital during 2015–2020.

Materials And Methods

Ethical statement

The implementation of this study had been approved by the ethics committee of the First Affiliated Hospital of Zhengzhou University. The use of data for analysis had been agreed by all patients. No personal information was disclosed in this article.

Patient selection

Thirty-one patients with histopathologically confirmed diagnosis of GBM at our hospital between January 2015 and January 2020 were selected for review. All patients were newly diagnosed with primary supratentorial GBM and were under 18 years at the time of diagnosis. In addition, cases with incomplete clinical data or not treated according to the Stupp protocol were excluded.

Data collection

Data collection included age of diagnosis, sex, preoperative KPS, tumor side, adjuvant therapy, tumor volume, edema index (EI), extent of resection (EOR), involvement of SVZ, immunohistochemistry indexes (ATRX, Ki-67, P53), genetic testing (IDH1 and IDH2), overall survival (OS) and progression-free survival (PFS). Evaluating of KPS was routinely completed by the neurosurgeon before operation. Postoperative radiotherapy was given at 2gy per day, 5 days per week, with a total dose of 50-60gy. Temozolomide was prescribed for chemotherapy according to Stupp 5/28 regime [3]. Tumor volume was measured with a preoperative T1-weighted MR images after injection of gadolinium. Peritumoral brain edema (PTBE) was evaluated on T2-weighted images. The maximum perpendicular diameters (A and B) of the tumor and the PTBE were measured on the axial images, and the diameter in the coronal direction (C) was measured on the coronal or sagittal image, the formula used to calculate tumor and PTBE volume was \(V = \frac{4}{3}\pi \times \frac{A}{2} \times \frac{B}{2} \times \frac{C}{2} \). To reduce artificial bias, tumor and PTBE volume were measured by three neurosurgeons and the mean value was recorded. Severity of edema was evaluated by edema index (EI), it was calculated by the formula: \(EI = \frac{V_{tumor} + V_{edema}}{V_{tumor}} \) [17]. The extent of resection was verified by comparing preoperative MRI with that performed within 72 hours after surgery. GTR was defined as no residual enhancement on postoperative enhanced MRI and STR was defined while any residual enhancement was observed. Typical images of involvement with SVZ are shown in Fig. 1. The neurosurgeons who completed the collection of imaging data knew nothing about the clinical
characteristics and outcomes of the patients. OS was defined as time between the initial treatment and death or the last follow-up. PFS was defined as time between the initial treatment and diagnosis of tumor recurrence. Follow-up was performed for all patients by making phone call once every two months or outpatient review on a timely basis.

Statistical analysis

Age, tumor volume, EI, Ki-67, PFS and OS were analyzed as continuous variables, whereas gender, tumor side, immunohistochemistry indexes (positive or negative), genetic testing (mutant or wild-type), KPS (≥ 80 or < 80), EOR (GTR or STR), adjuvant therapy (Radiotherapy combined with chemotherapy; Other: incomplete adjuvant therapies including chemotherapy only, radiotherapy only and none) and involvement with SVZ were analyzed as a categorical variables. Mann Whitney U test was used to evaluate the distribution of continuous variables and Fisher's exact test was employed to evaluate the distribution of categorical variables. Kaplan–Meier method was used to estimate progression-free survival (PFS) and overall survival (OS). Variables analyzed in univariate Cox regression model analysis included the variables that may affect the survival including age, sex, tumor volume, EI, preoperative KPS, EOR, adjuvant therapy, Ki67 and SVZ involvement. Log-rank test was employed to compare survival distribution. Multivariate Cox proportional hazard model analysis included all variables with P < 0.05 in univariate analysis. P < 0.05 was defined as statistically significant. All statistical analyses were performed using IBM SPSS 22.0 software. Box plots and survival curves were completed by Graph Pad Prism 9.

Results

Involvement of SVZ relates to large tumor volume, mild edema, passive treatment and poor prognosis.

The distributions of continuous variables and categorical variables with statistical analysis results were summarized in Table 1 and Table 2 respectively. Box graphs showing the distribution of continuous variables were presented in Fig. 2. No gender or side predominance was found for tumor involved with SVZ. Age, Ki-67, EI, EOR and preoperative KPS didn't differ in patients who had a tumor involved with SVZ. However, patients who had a tumor involve with SVZ were more likely to receive passive adjuvant therapy (p = 0.029). There were no differences in the results of ATRX and p53 immunohistochemistry between patients with SVZ involvement and patients without SVZ involvement. The tumor volume was significantly larger when SVZ was involved (p = 0.007), but it tended to have a mild PTBE (p = 0.010). We observed a decline on PFS (p = 0.001) and OS (p < 0.001) in subset of tumor involve with SVZ.

Involvement of SVZ is an independent prognostic factor for pGBM.

The median follow-up was 12 months (range 2 to 48 months). Median PFS and OS were respectively 6 and 10.5 months. Half-year, 1-year and 2-year PFS rates were 80.6%, 48.4% and 12.9%, respectively, vs. OS counterparts of 58.1%, 19.4% and 6.5%, respectively. Involvement of SVZ (p = 0.001 for PFS; p < 0.001 for OS), EOR (p = 0.003 for PFS; p = 0.003 for OS), adjuvant therapy (p = 0.007 of PFS; p = 0.007 for OS)
were identified as prognostic factor for PFS and OS on univariate analysis, patients with tumor involve SVZ, STR or incomplete adjuvant therapy predicted a worse PFS and OS (Table 3, Fig. 3, Fig. 4). Multivariate analysis showed patients with tumor involve SVZ ($HR = 2.888; 95\% CI, 1.096–7.630; p = 0.032$ for PFS and $HR = 6.033; 95\% CI, 1.789–20.343; p = 0.004$ for OS), STR ($HR = 3.490; 95\% CI, 1.381–8.819; p = 0.008$ for PFS and $HR = 3.305; 95\% CI, 1.366–7.995; p = 0.008$ for OS) or incomplete adjuvant therapy ($HR = 3.405; 95\% CI, 1.348–8.600; p = 0.010$ for PFS and $HR = 2.587; 95\% CI, 1.093–6.124, p = 0.031$ for OS) were independent risk factor for bad PFS and OS.

Discussion

Involvement of SVZ had been proved to be a prognostic factor for adult GBM in many researches [14–16, 18–21]. The clinical significance of this finding was to help us judge the prognosis of patients before surgery. On the one hand, several studies have reported the discovery of glioma stem cell in SVZ, where provides a protective environment and increase resistance to irradiation and chemotherapy [22–29]. On the other hand, tumor cells could shed into the lateral ventricle and spread with cerebrospinal uid, resulting in poor progression free survival and overall survival. However, due to the rarity of pediatric glioblastoma, nearly all of the reports about SVZ were based on adult population in the past. The only report containing some cases of high-grade glioma in children found a poor prognosis for high-grade glioma patients with involvement of SVZ, suggesting that the prognosis of high-grade glioma patients with involvement of SVZ in children may be as poor as that of adults [15]. We are the first to research on the impact of tumor involved with SVZ on survival in children population. Our results indicated that involvement of SVZ is a prognostic factor for PFS and OS in pGBM independent of EOR and adjuvant therapy.

Researchers held different opinions on the relationship between SVZ involvement and total resection rate in the past reports [14, 21]. In order to avoid the risk of communicating hydrocephalus and the spread of tumor with cerebrospinal fluid caused by ventriculotomy, many neurosurgeons tend not to remove the entire tumor which involved lateral ventricle [30]. However, it had also been reported that surgical incision of lateral ventricle to achieve complete resection of supratentorial GBM has a better prognosis [31]. Our results confirmed that there was no relationship between GTR and involvement of SVZ, however, since GTR could prolong the survival of pGBM in our study, we advise to realize GTR with the application of microsurgical technology and intraoperative neuronavigation as far as possible even facing tumor involved with SVZ.

Adult GBM with no SVZ involvement were more likely to receive active adjuvant therapy in the literature [14], they attributed this difference to raised gumption for treatment given by mild symptoms (higher KPS) of patients, we also found active treatment were given to patients with no SVZ in pGBM cases, but our patients didn’t represent a serious condition when SVZ was involved.

Harat M et al. showed SVZ infiltration of GBM by O-(2-[18F] fluoroethyl)-L-tyrosine (FET) PET scan, they found SVZ infiltration was correlated to larger tumor volumes [32]. Our results also showed that
supratentorial GBM with SVZ infiltration were larger in children. To some extent, tumor itself may not originated from SVZ, but invaded SVZ with its growth. This view was supported by the theory that tumor stem cells migrate along the CXCL12 / CXCR axis or pleiotrophin-driven axis to SVZ [33, 34]. According to our results, we could speculate that the same mechanism of glioma stem cell migration also exists in children.

Although it has been reported that the degree of PTBE is not related to tumor volume [35], however, surprisingly, we found that pGBM exposed to SVZ had lower edema index (EI), which may be related to the expression of aquaporins and tumor microenvironment, we hope the specific mechanism can be studied in future. Meanwhile, mild PTBE suggests that patients with SVZ involvement may needn't to use steroids or mannitol before surgery to reduce tumor edema.

Status of IDH gene has been tested routinely in our center. Because of the low incidence of IDH gene mutation, relationship between IDH gene mutation and SVZ involvement cannot be analyzed properly. In consideration of it had been reported that IDH gene mutation is not associated with SVZ infiltration in adults GBM [25, 36], we need a larger sample size to confirm the result in pGBM. In addition, we found that there was no difference in the expression of ATRX and p53 between SVZ contact subset and no SVZ contact subset, which indicated that the poor prognosis caused by SVZ exposure was not related to these pathological prognostic indicators.

At present, no particular treatment was applied on GBM with SVZ involvement. In the retrospective analysis, whether patients can benefit from radiotherapy for SVZ is still controversial [37, 38]. A prospective study found that patients with radiation necrosis in SVZ have a longer survival time [39]. Several drug treatments are being studied, it had been reported that CXCL12 inhibitors can improve radiosensitivity and reduce tumor cell proliferation in animal models [33]. Besides, administration of drugs, vectors or cells in the lateral ventricles, which can bypass the blood-brain barrier, have been considered as a more effective treatment in theory, and obtained positive results in animal models [40–43]. Our study shows that RT + CT is still an effective therapy of pGBM, but the treatment of pGBM with SVZ infiltration needs further study in the future.

Conclusion

We have proved that SVZ involvement is an independent prognostic factor in this study, and we found it also associate with large tumor volume, mild PTBE and passive adjuvant therapy. Even though there weren't any available specific treatment for GBM with SVZ involvement, some possible therapies have been proved to be effective in animal models. We hope more research could be developed to optimize the treatment strategy of GBM involved with SVZ.

Abbreviations

SVZ, subventricular zone
pGBM, pediatric glioblastoma
GBM, glioblastoma
EI, edema index
PTBE, peritumoral brain edema
PFS, progression-free survival
OS, overall survival
EOR, extent of resection
RT, radiotherapy
CT, chemotherapy

Declarations

ACKNOWLEDGMENTS

We thank all the patients who trusted us and all the physicians and staff who helped this study and authors whose work was referred or quoted in this study.

Funding

Medical Science and Technology Project of Henan Province (SBGJ202003032)

Conflicts of interest

Neither I nor my spouse/partner has a commercial interest, financial interest, and/or other relationship with manufacturers of pharmaceuticals, laboratory supplies, and/or medical devices or with commercial providers of medically related services.

Availability of data and material

The datasets used during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable

Authors’ contributions

Yang Jiao: Conceptualization, Data Curation, Writing-Original Draft Preparation.
Ethics approval

The implementation of this study has been approved by the ethics committee of the First Affiliated Hospital of Zhengzhou University. The use of data for analysis has been agreed by all patients. No personal information will be disclosed in this article.

Consent to participate

Consent to participate in our study had been obtained from parents of every patient.

Consent for publication

Written informed consent for publication was obtained from all participants.

References

1. Dolecek TA, Propp JM, Stroup NE, Kruchko C. (2012) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005-2009. Neuro Oncol;14 Suppl 5:v1-49.https://doi.org/10.1093/neuonc/nos218.

2. Ostrom QT, Gittleman H, Liao P, et al. (2014) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007-2011. Neuro Oncol;16 Suppl 4:iv1-63.https://doi.org/10.1093/neuonc/nou223.

3. Stupp R, Mason WP, van den Bent MJ, et al. (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med;352:987-96.https://doi.org/10.1056/NEJMoa043330.

4. Adams H, Adams HH, Jackson C, Rincon-Torroella J, Jallo GI, Quiñones-Hinojosa A. (2016) Evaluating extent of resection in pediatric glioblastoma: a multiple propensity score-adjusted population-based analysis. Childs Nerv Syst;32:493-503.https://doi.org/10.1007/s00381-015-3006-x.

5. Das KK, Mehrotra A, Nair AP, et al. (2012) Pediatric glioblastoma: clinico-radiological profile and factors affecting the outcome. Childs Nerv Syst;28:2055-62.https://doi.org/10.1007/s00381-012-1890-x.
6. Song KS, Phi JH, Cho BK, et al. (2010) Long-term outcomes in children with glioblastoma. J Neurosurg Pediatr;6:145-9.https://doi.org/10.3171/2010.5.Peds09558.

7. Yang T, Temkin N, Barber J, et al. (2013) Gross total resection correlates with long-term survival in pediatric patients with glioblastoma. World Neurosurg;79:537-44.https://doi.org/10.1016/j.wneu.2012.09.015.

8. Liu M, Thakkar JP, Garcia CR, et al. (2018) National cancer database analysis of outcomes in pediatric glioblastoma. Cancer Med;7:1151-9.https://doi.org/10.1002/cam4.1404.

9. Suri V, Das P, Pathak P, et al. (2009) Pediatric glioblastomas: a histopathological and molecular genetic study. Neuro Oncol;11:274-80.https://doi.org/10.1215/15228517-2008-092.

10. Sanai N, Alvarez-Buylla A, Berger MS. (2005) Neural stem cells and the origin of gliomas. The New England journal of medicine;353:811-22.https://doi.org/10.1056/NEJMra043666.

11. Wang Y, Yang J, Zheng H, et al. (2009) Expression of mutant p53 proteins implicates a lineage relationship between neural stem cells and malignant astrocytic glioma in a murine model. Cancer cell;15:514-26.https://doi.org/10.1016/j.ccr.2009.04.001.

12. Lee JH, Lee JE, Kahng JY, et al. (2018) Human glioblastoma arises from subventricular zone cells with low-level driver mutations. Nature;560:243-7.https://doi.org/10.1038/s41586-018-0389-3.

13. Jungk C, Warta R, Mock A, et al. (2019) Location-Dependent Patient Outcome and Recurrence Patterns in IDH1-Wildtype Glioblastoma. Cancers;11.https://doi.org/10.3390/cancers11010122.

14. Berendsen S, van Bodegraven E, Seute T, et al. (2019) Adverse prognosis of glioblastoma contacting the subventricular zone: Biological correlates. PLoS One;14:e0222717.https://doi.org/10.1371/journal.pone.0222717.

15. Mistry AM, Dewan MC, White-Dzuro GA, et al. (2017) Decreased survival in glioblastomas is specific to contact with the ventricular-subventricular zone, not subgranular zone or corpus callosum. J Neurooncol;132:341-9.https://doi.org/10.1007/s11060-017-2374-3.

16. Lim DA, Cha S, Mayo MC, et al. (2007) Relationship of glioblastoma multiforme to neural stem cell regions predicts invasive and multifocal tumor phenotype. Neuro Oncol;9:424-9.https://doi.org/10.1215/15228517-2007-023.

17. Osawa T, Tosaka M, Nagaishi M, Yoshimoto Y. (2013) Factors affecting peritumoral brain edema in meningioma: special histological subtypes with prominently extensive edema. Journal of neuro-oncology;111:49-57.https://doi.org/10.1007/s11060-012-0989-y.

18. Adeberg S, Bostel T, König L, Welzel T, Debus J, Combs SE. (2014) A comparison of long-term survivors and short-term survivors with glioblastoma, subventricular zone involvement: a predictive factor for survival? Radiat Oncol;9:95.https://doi.org/10.1186/1748-717x-9-95.

19. Mistry AM, Hale AT, Chambless LB, Weaver KD, Thompson RC, Ihrie RA. (2017) Influence of glioblastoma contact with the lateral ventricle on survival: a meta-analysis. J Neurooncol;131:125-33.https://doi.org/10.1007/s11060-016-2278-7.

20. Comas S, Luguera E, Molero J, et al. (2021) Influence of glioblastoma contact with the subventricular zone on survival and recurrence patterns. Clin Transl Oncol;23:554-
64. https://doi.org/10.1007/s12094-020-02448-x.

21. Chaichana KL, McGirt MJ, Frazier J, Attenello F, Guerrero-Cazares H, Quinones-Hinojosa A. (2008) Relationship of glioblastoma multiforme to the lateral ventricles predicts survival following tumor resection. J Neurooncol;89:219-24. https://doi.org/10.1007/s11060-008-9609-2.

22. Gimple RC, Bhargava S, Dixit D, Rich JN. (2019) Glioblastoma stem cells: lessons from the tumor hierarchy in a lethal cancer. Genes Dev;33:591-609. https://doi.org/10.1101/gad.324301.119.

23. Goffart N, Lombard A, Lallemant F, et al. (2017) CXCL12 mediates glioblastoma resistance to radiotherapy in the subventricular zone. Neuro Oncol;19:66-77. https://doi.org/10.1093/neuonc/nox136.

24. Wang S, Chen C, Li J, Xu X, Chen W, Li F. (2020) The CXCL12/CXCR4 axis confers temozolomide resistance to human glioblastoma cells via up-regulation of FOXM1. J Neurol Sci;414:116837. https://doi.org/10.1016/j.jns.2020.116837.

25. Piccirillo SG, Spiteri I, Sottoriva A, et al. (2015) Contributions to drug resistance in glioblastoma derived from malignant cells in the sub-ependymal zone. Cancer Res;75:194-202. https://doi.org/10.1158/0008-5472.CAN-13-3131.

26. Dedobbeleer M, Willems E, Freeman S, Lombard A, Goffart N, Rogister B. (2017) Phosphatases and solid tumors: focus on glioblastoma initiation, progression and recurrences. Biochem J;474:2903-24. https://doi.org/10.1042/BCJ20170112.

27. Blough MD, Westgate MR, Beauchamp D, et al. (2010) Sensitivity to temozolomide in brain tumor initiating cells. Neuro Oncol;12:756-60. https://doi.org/10.1093/neuonc/noq032.

28. Bao S, Wu Q, McLendon RE, et al. (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature;444:756-60. https://doi.org/10.1038/nature05236.

29. Chen J, Li Y, Yu TS, et al. (2012) A restricted cell population propagates glioblastoma growth after chemotherapy. Nature;488:522-6. https://doi.org/10.1038/nature11287.

30. Elliott JP, Keles GE, Waite M, Temkin N, Berger MS. (1994) Ventricular entry during resection of malignant gliomas: effect on intracranial cerebrospinal fluid tumor dissemination. J Neurosurg;80:834-9. https://doi.org/10.3171/jns.1994.80.5.0834.

31. Saito T, Muragaki Y, Maruyama T, et al. (2020) Influence of wide opening of the lateral ventricle on survival for supratentorial glioblastoma patients with radiotherapy and concomitant temozolomide-based chemotherapy. Neurosurgical Review;43:1583-93. https://doi.org/10.1007/s10143-019-01185-2.

32. Harat M, Malkowski B, Roszkowski K. (2019) Prognostic value of subventricular zone involvement in relation to tumor volumes defined by fused MRI and O-[(18)F]fluoroethyl-L-tyrosine (FET) PET imaging in glioblastoma multiforme. Radiat Oncol;14:37. https://doi.org/10.1186/s13014-019-1241-0.

33. Goffart N, Kroonen J, Di Valentin E, et al. (2015) Adult mouse subventricular zones stimulate glioblastoma stem cells specific invasion through CXCL12/CXCR4 signaling. Neuro Oncol;17:81-94. https://doi.org/10.1093/neuonc/nou144.
34. Qin YE, Cooper DD, Abbott KL, et al. (2017) Neural Precursor-Derived Pleiotrophin Mediates Subventricular Zone Invasion by Glioma. Cell;170:845-59 e19.https://doi.org/10.1016/j.cell.2017.07.016.

35. Bebawy JF. (2012) Perioperative steroids for peritumoral intracranial edema: a review of mechanisms, efficacy, and side effects. Journal of neurosurgical anesthesiology;24:173-7.https://doi.org/10.1097/ANA.0b013e3182578bb5.

36. Han S, Li X, Qiu B, Jiang T, Wu A. (2015) Can lateral ventricle contact predict the ontogeny and prognosis of glioblastoma? J Neurooncol;124:45-55.https://doi.org/10.1007/s11060-015-1818-x.

37. Lee P, Eppinga W, Lagerwaard F, et al. (2013) Evaluation of high ipsilateral subventricular zone radiation therapy dose in glioblastoma: a pooled analysis. International journal of radiation oncology, biology, physics;86:609-15.https://doi.org/10.1016/j.ijrobp.2013.01.009.

38. Valiyaveettil D, Malik M, Akram KS, Ahmed SF, Joseph DM. (2020) Prospective study to assess the survival outcomes of planned irradiation of ipsilateral subventricular and periventricular zones in glioblastoma. Ecancermedicalscience;14:1021.https://doi.org/10.3332/ecancer.2020.1021.

39. Iuchi T, Hatano K, Kodama T, et al. (2014) Phase 2 trial of hypofractionated high-dose intensity modulated radiation therapy with concurrent and adjuvant temozolomide for newly diagnosed glioblastoma. International journal of radiation oncology, biology, physics;88:793-800.https://doi.org/10.1016/j.ijrobp.2013.12.011.

40. Meijer DH, Maguire CA, LeRoy SG, Sena-Esteves M. (2009) Controlling brain tumor growth by intraventricular administration of an AAV vector encoding IFN-beta. Cancer Gene Ther;16:664-71.https://doi.org/10.1038/cgt.2009.8.

41. Kim DG, Kim KH, Seo YJ, et al. (2016) Anti-miR delivery strategies to bypass the blood-brain barrier in glioblastoma therapy. Oncotarget;7:29400-11.https://doi.org/10.18632/oncotarget.8837.

42. Panciani PP, Fontanella M, Tamagno I, et al. (2012) Stem cells based therapy in high grade glioma: why the intraventricular route should be preferred? Journal of neurosurgical sciences;56:221-9.

43. Brown CE, Aguilar B, Starr R, et al. (2018) Optimization of IL13RAlpha2-Targeted Chimeric Antigen Receptor T Cells for Improved Anti-tumor Efficacy against Glioblastoma. Mol Ther;26:31-44.https://doi.org/10.1016/j.ymtl.2017.10.002.

Tables
Table 1
Comparisons of categorical variables and statistical results based on SVZ involvement.

	SVZ contact	No SVZ contact	Fisher exact text (Two-side)
Gender			
Male	6	10	P = 0.722
Female	7	8	
KPS			
≥80	5	10	P = 0.473
<80	8	8	
EOR			
GTR	4	11	P = 0.149
STR	9	7	
Side			
Left	5	6	P > 0.999
Right	8	12	
Adjuvant therapy			
RT + CT	3	12	P = 0.029
Other	10	6	
ATRX			
Positive	10	13	P = 0.999
Negative	3	5	
P53			
Positive	10	14	P = 0.999
Negative	3	4	
IDH1			
Mutant	1	1	P = 0.999
Wild-type	12	17	

EOR, extent of resection; GTR, gross total resection; STR, sub-total resection; RT, radiotherapy; CT, chemotherapy.
	SVZ contact	No SVZ contact	Fisher exact text (Two-side)
IDH2 Mutant	0	0	Unavailable
Wild-type	13	18	

EOR, extent of resection; GTR, gross total resection; STR, sub-total resection; RT, radiotherapy; CT, chemotherapy.

Table 2
Comparisons of continuous variables and statistical results based on SVZ involvement.

	SVZ contact (mean ± SD)	No SVZ contact (mean ± SD)	Mann Whitney U test (Two side)
Age (years)	11.5 ± 5.1	13.2 ± 4.1	p = 0.409
Volume (cm³)	52.1 ± 32.9	20.6 ± 15.4	P = 0.007
Ki-67 (%)	41.9 ± 21.6	43.8 ± 18.7	P = 0.929
EI	1.8 ± 0.8	4.2 ± 3.7	P = 0.010
OS (months)	7.6 ± 4.1	19.4 ± 9.9	P < 0.001
PFS (months)	5.4 ± 3.0	13.6 ± 10.5	P = 0.001

EI, edema index; OS, overall survival; PFS, progression-free survival
Table 3
Univariate and multivariate analysis of prognostic factors for PFS and OS.

Prognostic Factors	Univariate analysis	Multivariate analysis
	PFS OS PFS OS	
Age		
HR	0.970 0.936	
95%CI	0.890–1.058 0.856–1.024	
P Value	0.498 0.150	
Sex		
HR	1.297 1.352	
95%CI	0.615–2.734 0.633–2.888	
P Value	0.494 0.436	
Volume		
HR	1.005 1.105	
95%CI	0.989–1.022 0.998–1.032	
P Value	0.504 0.083	
EI		
HR	0.979 0.926	
95%CI	0.827–1.158 0.773–1.110	
P Value	0.803 0.406	
KPS		
HR	1.951 2.101	
95%CI	0.877–4.343 0.976–4.522	

PFS, progression-free survival; OS, overall survival; EI, edema index; EOR, extent of resection; HR, hazard ratio; SVZ, subventricular zone.
Prognostic Factors	Univariate analysis	Multivariate analysis
P Value	0.102 0.058	
Ki-67	1.001 1.005	
HR	0.980–1.021 0.984–1.027	0.970 0.636
95%CI	0.984–1.027	0.980–1.021
P Value	4.023 8.829 2.888 6.033	1.744–9.279 2.982–26.14
SVZ contact	1.093–7.630 1.789–20.343	1.344–6.204 1.348–8.600
HR	0.001 0.000 0.032 0.004	0.007 0.007 0.010 0.031
95%CI	0.032 0.004	0.010 0.031
P Value	0.003 0.003 0.008 0.008	0.007 0.007 0.010 0.031

PFS, progression-free survival; OS, overall survival; EI, edema index; EOR, extent of resection; HR, hazard ratio; SVZ, subventricular zone.

Figures
GTR was defined as no residual enhancement on postoperative enhanced MRI and STR was defined while any residual enhancement was observed. Typical images of involvement with SVZ are shown in Fig1.

Figure 1

Box graphs showing the distribution of continuous variables were presented in Fig2.

Figure 2

Box graphs showing the distribution of continuous variables were presented in Fig2.

Figure 3
OS counterparts of 58.1%, 19.4% and 6.5%, respectively. Involvement of SVZ (p=0.001 for PFS; p<0.001 for OS), EOR (p=0.003 for PFS; p=0.003 for OS), adjuvant therapy (p=0.007 of PFS; p=0.007 for OS) were identified as prognostic factor for PFS and OS on univariate analysis, patients with tumor involve SVZ, STR or incomplete adjuvant therapy predicted a worse PFS and OS (Table 3, Fig 3, Fig4).

Figure 4

OS counterparts of 58.1%, 19.4% and 6.5%, respectively. Involvement of SVZ (p=0.001 for PFS; p<0.001 for OS), EOR (p=0.003 for PFS; p=0.003 for OS), adjuvant therapy (p=0.007 of PFS; p=0.007 for OS) were identified as prognostic factor for PFS and OS on univariate analysis, patients with tumor involve SVZ, STR or incomplete adjuvant therapy predicted a worse PFS and OS (Table 3, Fig 3, Fig4).