The impact of climate change on three indicator Galliformes species in the northern highlands of Pakistan

Babar Zahoor1 · Xuehua Liu1 · Melissa Songer2

Received: 29 October 2021 / Accepted: 5 March 2022 / Published online: 17 March 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
The rise in global temperature is one of the main threats of extinction to many vulnerable species by the twenty-first century. The negative impacts of climate change on the northern highlands of Pakistan (NHP) could change the species composition. Range shifts and range reduction in the forested landscapes will dramatically affect the distribution of forest-dwelling species, including the Galliformes (ground birds). Three Galliformes (e.g., Lophophorus impejanus, Pucrasia macrolopha, and Tragopan melanocephalus) are indicator species of the environment and currently distributed in NHP. For this study, we used Maximum Entropy Model (MaxEnt) to simulate the current (average for 1960–1990) and future (in 2050 and 2070) distributions of the species using three General Circulation Models (GCMs) and two climate change scenarios, i.e., RCP4.5 (moderate carbon emission scenario) and RCP8.5 (peak carbon emission scenario). Our results indicated that (i) under all three climate scenarios, species distribution was predicted to both reduce and shift towards higher altitudes. (ii) Across the provinces in the NHP, the species were predicted to average lose around one-third (35%) in 2050 and one-half (47%) by 2070 of the current suitable habitat. (iii) The maximum area of climate refugia was projected between the altitudinal range of 2000 to 4000 m and predicted to shift towards higher altitudes primarily > 3000 m in the future. Our results help inform management plans and conservation strategies for mitigating the impacts of climate change on three indicator Galliforms species in the NHP.

Keywords MaxEnt · Current suitable habitat · Future suitable habitat · Climate refugia · RCP4.5 & RCP8.5

Introduction
Global average temperature has increased by 0.74 °C during last few decades, and is projected to further rise by up to 1.4–5.8 °C by the end of this century (Schneider and Root 1998; IPCC 2001; Reilly et al. 2001; Hotta et al. 2019). Most landscapes and ecosystems were predicted be affected significantly due to changes in species distribution, composition, and productivity (Negi et al. 2012). Climatic changes could have both positive and negative effects on biodiversity. For instance, increased precipitation may also benefit some species depending on them. More clement temperatures and increased CO2 are likely to be beneficial to many plants, resulting in an acceleration of biomass production. Milder winters might increase the survival of many currently threatened species in temperate regions (Peterson et al. 2008). However, changes in temperature and precipitation may cause shifts in habitat and reduction in the habitat of many species, and is projected to become the main threat to their survival (Hoffmann et al. 2019). Due to rise in temperature, it is roughly estimated that about 30% of plant and animal species (including a significant number of endemic species) may become extinct by the end of this century (IPCC 2013, 2014). Although species typically adapt to minor environmental fluctuations, however, it could take millennia for species to adapt and adjust their range in response too broad environmental and habitat changes that can result from climate change other changes to the environment (Luniak 2004; Su et al. 2018). Currently, formulation of effective strategies for the conservation of biodiversity in the context of climate...
change has become a major concern among governmental and non-governmental organizations, scientists, and public (Keith et al. 2008; Moss et al. 2009; Fordham et al. 2020).

At the species level, climate change directly affects the spatial & temporal variations of climate variables related to species’ climatic niches (Roman-Palacios and Wiens 2020). When the current suitable habitat becomes no longer suitable for a species, its survival depends on the ability to respond through adaptation via plasticity or micro evolutionary processes and failure could lead to extinction (Bellard et al. 2012; Scheiner et al. 2020; Zanatta et al. 2020). Steady climate change poses a challenge to the survival and conservation of many species, particularly those that are endemic, rare, and endangered (Lewis 2006; Roman-Palacios and Wiens 2020; Sax et al. 2013). Climate change may cause changes in these species’ distribution areas, and can include range shifts, range reduction/expansion and habitat fragmentation (Dai et al. 2019a; VanDerWal et al. 2013). Extrapolating the current and future geographical distribution of species under climate change scenarios is one of the best approaches for the formulation of early conservation strategies (Songer et al. 2012; Dai et al. 2021; Zahoor et al. 2021c; Zahoor et al. 2022). Besides, the identification of climate refugia is particularly vital, as these regions have relatively stable climatic conditions and are suitable in both current and future climate scenarios (Dai et al. 2019a; Li et al. 2019; Morelli et al. 2016; Zahoor et al. 2022). Various ecological niche models use bioclimatic and non-climatic variables to explain current distributions of species and further predict future distributions (Li et al. 2018). The Maximum Entropy Model (MaxEnt) has an outstanding predictive power in simulation and evaluation of presence-only data, and creates distribution maps and variable response curves by testing the reserved part of the training data (Phillips et al. 2006; Yang et al. 2013; Remya et al. 2015; Zhang et al. 2019).

Previous studies have been reported that (due to rise in temperature) shifts in species range towards northeastern and northwestern regions of the Northern temperate regions (Lehikoinen and Virkkala 2016). The Himalayan ecosystems are considered as some of the most vulnerable to the impacts of climate change (IPCC 2014). The bird species in the Himalayan biodiversity hotspot are facing a range of threats due to consistent degradation and fragmentation of forested landscapes due to anthropogenic pressure (Tylianakis et al. 2008; Hu et al. 2015). Studies have reported that birds with limited ranges and lower mobility such as ground birds/Galliformes are likely to be at high risk of extinction due to disturbances in mountainous regions and climate change (Sekercioglu et al. 2007). The Galliformes, also known as “gallinaceous,” is a birds’ group that evolved as terrestrial birds and inhabit in a variety of habitats from deserts to forested landscapes (Coles 2009). In spite of their attractive plumage and their role as indicators of habitat quality, these birds are among the least studied animals (Bagaria et al. 2021).

The IUCN Red List described the worldwide distribution of 290 species of Galliformes (IUCN 2001) in the families such as Phasianidae (181 species), Cracidae (51), Megapodidae (21), Odontophoridae (31), and Numididae (6) (BirdLife International 2012). There are 17 species of ground birds (from the family Phasianidae) are currently distributed in Pakistan (McGowan et al. 2012; BirdLife International 2016). The northern highlands of Pakistan (NHP) are part of the western Himalayan region and are rich in biodiversity, including some rare and endemic Galliformes/ground bird species (Zahoor et al. 2021a).

The three sympatric Galliformes species, i.e., koklas pheasant (Pucrasia macrolopha), monal pheasant (Lophophorus impejanus), and western horned tragopan (Tragopan melanopechalus), are currently distributed in the forested landscapes of the NHP (Fig. 1; Shah et al. 2013; Awan and Francis 2014; Ahmad et al. 2019). Though Pucrasia macrolopha and Lophophorus impejanus are categorized as Least Concern on the IUCN’s Red List of Threatened Species and Tragopan melanopechalus is considered Vulnerable, yet all three are being indicator species play a very important role in the maintenance of the ecosystem (Chhetri et al. 2021). The habitat regimes of Galliformes are under high anthropogenic pressure in the NHP and people are often involving in hunting and destruction of the breeding grounds of these species (Abdul 2014; Awan and Francis 2014; Ahmad et al. 2019). Now, climate change has become an additional threat to the persistence of such species due to changes in community structure and function of vegetation, which ultimately may lead to declines in their populations in the NHP (Santhakumar et al. 2018; Rai et al. 2020).

Although some studies have addressed the GIS and modeling-based analysis of koklas, monal, and tragopan pheasants in Eastern to Western Himalayan regions (including Bhutan, China, India, Nepal, and Myanmar) under climate change, no study has been conducted (on these species) in the Western most parts of Himalaya such as in Pakistan (Singh et al. 2020a; Bagaria et al. 2021; Chhetri et al. 2021). In our study, we projected suitable habitat of three Galliformes species under climate change, based on species presence data and used bioclimatic and non-climatic variables to predict the distribution of these species in the NHP. Our objectives were to (i) project the current and future distribution of three Galliformes species and (ii) identify the potential climate refugia (static suitable habitat under the current and future scenarios). Our study provides useful baseline data and scientific information to inform governmental and non-governmental organizations developing early strategies for the conservation and management of these species in the NHP.
Material and methods

Study area

Our study was carried out in the NHP with an area of 16,3870 km² that covers total land area of two provinces, i.e., Azad Jammu and Kashmir (AJ&K) and Gilgit Baltistan (GB), while parts of 3 provinces, i.e., Federally administered tribal areas (FATA), Khyber Pakhtunkhwa (KPK), and Punjab. There are many protected areas such as national parks, game reserves, and wildlife sanctuaries in the area but their number and size may not sufficient to support the Galliformes populations under the impact of climate change (Fig. 2, Supplementary 1, Zahoor et al. 2021a). The NHP region falls under the Himalaya, Karakorum, and Hindu Kush mountain ranges (Kabir et al. 2017; Zahoor et al. 2021a) that providing habitat to many endemic and endangered species of wild flora and fauna (Shinwari and Shinwari 2010) but poor conservation planning, high anthropogenic pressure, and climate change could lead to the extirpation of many species including Galliformes in the region.

Data collection

A total of 250 presence points were collected for three Galliformes species (*Lophophorus impejanus* = 98, *Pucrasia macrolopha* = 106, *Tragopan melanocephalus* = 46) between 2019 and 2021 from the NHP. Data was collected...
over the last three decades (i.e., from 1990 – now) from GBIF (https://www.gbif.org), based on human observations only and excluded data based on fossil records and preserved specimens (Table 1). For validation and ground trothing, all presence points were crosschecked by habitat information using Google Earth v 7.1.2. To minimize the autocorrelation, the area was divided into 1 km × 1 km grids (using fish net tool in ArcGIS10.2.2) and selected (randomly) 1 presence point/grid using spatial thinning processes (Dai et al. 2019a, b; Zhang et al. 2019; Zahoor et al. 2021c).

Table 1 Occurrence records and source of information of three galliformes species in the northern highlands of Pakistan

Species	No. of presence points	Total points	Source
Lophophorus impejanus	10	98	Camera traps
	6		Signs, i.e., feathers
	31		Previous studies (Abdul 2014; Shah et al. 2014; Shah 2015)
	51		GBIF (https://www.gbif.org)
Pucrasia macrolopha	5	106	Camera traps
	7		Signs, i.e., feathers
	29		Previous studies (Abdul 2014; Shah et al. 2014; Shah 2015)
	65		GBIF (https://www.gbif.org)
Tragopan melanoccephalus	6	46	Camera traps
	16		Previous studies (Awan 2014; Awan and Francis 2014; Awan 2015; Shabbir 2018)
	24		GBIF (https://www.gbif.org)
Bioclimatic and non-climatic data & climate change scenarios

We downloaded 19 bioclimatic variables data with 1-km resolution for current (average for 1960–1990) and future (2050 and 2070) scenarios from the WorldClim 1.4 database (Hijmans et al. 2005). Based on the geographical environmental characteristics of three Galliformes species (i.e., species ecology, human disturbance, and those used in previously published articles), we chose climatic variables useful for predicting their distributions (Singh et al. 2020a; Chhetri et al. 2021). To project possible changes in the future, we used the same bioclimatic variables from three widely used General Circulation Models (GCMs) in Himalayan regions (Dai et al. 2021; Singh et al. 2020b; Zahoor et al. 2021a; Zahoor et al. 2022). We selected BCC-CSM1-1 (Beijing Climate Center Climate System Model), CCSM4 (Community Climate System Model), and HadGEM2-AO (Hadley Global Environment Model 2), to project future species distributions. For each GCM, we selected two emission scenarios (Representative Concentration Pathways: RCP4.5, and RCP8.5; Singh et al. 2020b; Dai et al. 2021; Zahoor et al. 2021a, b, c) to denote the medium and extreme optimistic and the most pessimistic concentrations of greenhouse gases up to the twenty-first century (Weyant 2009).

We downloaded the elevation data (at 1-km resolution) from GTOPO30 (https://lta.cr.usgs.gov/GMTED2010; Danielson and Gesch 2011) and extracted the aspect and slope from it. We collected the data of soil parameters, i.e., soil texture represented by percentage of sand, silt and clay, bulk density, soil classes from https://soilgrids.org/ (Ramesh et al. 1999; Singh et al. 2020a). The global human influence index data (1995 to 2004) at 1-km resolution were downloaded from http://sedac.ciesin.columbia.edu/. Moreover, current global land cover data (at 300-m spatial resolution) were obtained from http://due.esrin.esa.int/page_globe_cover.php.

All the variable layers were resampled to 1-km resolution (30 arc sec) and projected under the coordinate system of WGS_1984_UTM_Zone_43N in ArcGIS 10.2.2 (ESRI Inc.). We used the band collection statistics tool in ArcGIS 10.2 to eliminate highly correlating variables where |r| > 0.8 to reduce the multicollinearity of variables (Supplementary 2, Brown 2014; Dai et al. 2019a; Zahoor et al. 2021a, c; Zahoor et al. 2022). (ii) The variables were uploaded into the MaxEnt model and after running the model, variables with contribution rates < 1 were excluded. (iii) The most important variables were selected from the first output, and reran the model along with future (2050 and 2070) variables to get the final results (Table 1).

Modeling the habitat suitability

We used maximum entropy (MaxEnt) working on “species presence-only data” to model the current and future distribution of three Galliformes species for our study area (Phillips et al. 2006; Li et al. 2017; Thapa et al. 2018; Yu et al. 2019; Dai et al. 2021). A total of 75% of species presence points were randomly selected as training data to establish the model, while the remaining (25%) were selected as testing data to verify the model. All other setting was left as default values. We ran 15 replicates by performing a cross validation (Dai et al. 2019a, b; Zahoor et al. 2021a, c). The percent contribution, jackknife test, and marginal response curves were used to estimate the importance of variables for the three Galliformes species distribution map (Elith et al. 2011). To distinguish unsuitable and suitable habitats, we selected a threshold value for maximum training sensitivity and specificity (MTSPS) logistic threshold and grids with probability values greater than this threshold were considered as a suitable habitat (Liu et al. 2013; Dai et al. 2019a; Zahoor et al. 2021a, c). AUC has an independent threshold value that validates the accuracy of model outputs. This value ranges from 0 to 1, thus we assessed the model performance based on the following criteria; the value (of AUC) between < 0.6 = flop, 0.6–0.7 = bad, 0.7–0.8 = good, 0.8–0.9 = better, and > 0.9 = excellent (Phillips et al. 2006; Antunez et al. 2018; Kamyo and Asanok 2020; Singh et al. 2020b).

Geographical features of climate refugia

Altitudinal characteristics of climate refugia (the area that are currently suitable and predicted to remain suitable under the future scenario) were studied by overlaying the climate refugia map with the layer of elevation in ArcGis 10.2.2, clipping them and counting the number of grid cells under different altitudinal ranges.

Results

The habitat suitability of three Galliformes species was modeled based on the occurrence points and variables for Lophophorus impejanus, 94 occurrence points and 8 variables for Pucrasia macrolopha, and 40 occurrence points and 9 variables for Tragopan melanocephalus.

Maxent output

For each of the Galliformes species, the maximum contribution was observed by the variable temperature annual range (Bio_7), i.e., for 75.2% for the prediction of model for Lophophorus impejanus, 81.4% for Pucrasia macrolopha, and 76.4% for Tragopan melanocephalus of the prediction (Table 2). The jackknife test and marginal response curves further indicated the contribution rate of variables (Supplementary
The MaxEnt output performance was found excellent under a 15-times cross validation (Fig. 3, Table 3).

Projected distributions of three Galliformes species

The presence probability distributions of *Lophophorus impejanus*, *Pucrasia macrolopha*, and *Tragopan melanocephalus* under current and future climate scenarios are in Figs. 4 and 5. The maximum training sensitivity plus specificity logistic threshold (MTSPS) values for *Lophophorus impejanus*, *Pucrasia macrolopha*, and *Tragopan melanocephalus* were 0.1389, 0.2018, and 0.1274, respectively. The binary distribution maps of all the three species were also obtained based on these values (Fig. 6).

The current total suitable habitat area of the *Lophophorus impejanus*, *Pucrasia macrolopha*, and *Tragopan melanocephalus* was determined as 33,228 km², 25,438 km², and 17,729 km². Under the current and future climate scenarios, the KPK held the largest proportion of potential distribution area, while Punjab held the least potential distribution area for all the Galliformes species (Fig. 6, Table 4). All the species experienced range contractions in 2050 and 2070 under both RCPs. The distribution of *Lophophorus impejanus* was projected to decline by ratios of \(-28.58\%\) and \(-38.33\%\) in 2050 while \(-33.21\%\) and \(-27.34\%\) in 2070 under RCP4.5 and RCP8.5 respectively (Fig. 6a). The distribution of *Pucrasia macrolopha* decreased by ratios of \(-14.25\%\) and \(-38.23\%\) in 2050 and \(-58.20\%\) and \(-72.85\%\) in 2070 under RCP4.5 and RCP8.5, respectively (Fig. 6b). Whereas, the distribution of *Tragopan melanocephalus* decreased by ratios of \(-32.86\%\) and \(-36.73\%\) in 2050 and \(-27.97\%\) and \(-22.36\%\) in 2070 under RCP4.5 and RCP8.5 respectively (Fig. 6c, Table 4). For *Lophophorus impejanus* and *Tragopan melanocephalus* the suitable habitats were predicted to shift towards north in 2050 under RCP8.5 and in 2070 under both RCPs.

Table 2

Code	Variables	Unit	*Lophophorus impejanus*	*Pucrasia macrolopha*	*Tragopan melanocephalus*
Bio_1	Annual mean temperature	°C	5.8	3.1	3.6
Bio_2	Mean diurnal range	°C			
Bio_3	Temperature consistency	°C			
Bio_4	Temperature seasonality	°C	4.3	5.6	5.3
Bio_5	Max temperature of warmest month	°C			
Bio_6	Min temperature of coldest month	°C			
Bio_7	Annual temperature range	°C	75.2	81.4	76.4
Bio_8	Mean temperature of wettest quarter	°C			
Bio_9	Mean temperature of driest quarter	°C			
Bio_10	Mean temperature of warmest quarter	°C			
Bio_11	Mean temperature of coldest quarter	°C			
Bio_12	Annual precipitation	mm			
Bio_13	Precipitation of wettest month	mm			
Bio_14	Precipitation of driest month	mm			
Bio_15	Precipitation seasonality	mm	5.2		
Bio_16	Precipitation of wettest quarter	mm			
Bio_17	Precipitation of driest quarter	mm			
Bio_18	Precipitation of warmest quarter	mm			
Bio_19	Precipitation of coldest quarter	mm	6.4		
Ele	Elevation	m			
Asp	Aspect	m	0.7	1.7	
Slop	Slope	M	1.7	2.7	
HII	Human influence index	M			
LC	Land cover	M	4.2	1.3	5.7
BD	Bulk density	M	1.9	1.7	
CC	Clay content	M			
San	Sand	M	0.7	1.8	
Sil	Silt	M			
SC	Soil classes	M	1.6	0.9	1.2
Fig. 3 A1, B1, and C1 are the receiver operating characteristic (ROC) curve and average test AUC accuracy analysis for the prediction of habitat suitability for *Lophophorous impejanus*, *Pucrasia macrolopha*, and *Tragopan melanocephalus* respectively. A2, B2, and C2 are investigating the test omission rate and predicted area, where values are showing the training gain only with variables for *Lophophorous impejanus*, *Pucrasia macrolopha*, and *Tragopan melanocephalus* respectively.
Projected climate refugia with altitudinal range

The sum total area of climate refugia for *Lophophorus impejanus* was projected to be 23,167 km² and 20,418 km² (under RCP4.5 and RCP8.5 respectively) in 2050, and 21,119 km² and 21,948 km² (under RCP4.5 and RCP8.5 respectively) in 2070. For *Pucrasia macrolopha*, the total area of climate refugia was projected as 19,972 km² and 15,046 km² (under RCP4.5 and RCP8.5, respectively) in 2050, and 10,098 km² and 6453 km² (under RCP4.5 and RCP8.5 respectively) in 2070. For *Tragopan melanocephalus*, the total area of climate refugia was projected as 10,787 km² and 11,010 km² (under RCP4.5 and RCP8.5 respectively) in 2050, and 11,255 km² and 10,545 km² (under RCP4.5 and RCP8.5 respectively) in 2070. The climate refugia for all Galliformes species was primarily projected in the KPK, followed by AJK under all RCPs in 2050 and 2070 (Fig. 7).

Under climate change, the distribution areas of climate refugia for two Galliformes species are predicted to shift towards higher altitudinal areas, with the shift of *Lophophorus impejanus* being higher than *Tragopan melanocephalus* (Figs. 7, 8). Currently, the altitudinal distribution of all three Galliformes species was projected between 2000 to 4000 m. The projected rate of shifting was observed above 3000 m for *Lophophorus impejanus* and *Tragopan melanocephalus* under both RCPs in 2050 and 2070, and the rate was even higher under RCP8.5. In contrast, a consistent decline in the altitudinal range of climate refugia for *Pucrasia macrolopha* was observed in the future (2050 and 2070) under both RCPs (Fig. 8).

Suitable habitats and climate refugia under the protected areas

Some protected areas of central region (from east to west) of NHP overlap suitable habitats and climate refugia of three Galliformes species under the current and future scenarios (in 2050 and 2070 under both RCPs). Out of the total 93 protected areas, about 37 protected areas, such as National Parks, Game Reserves (i.e., Government Game Reserves and Community Game Reserves), and wildlife sanctuaries, fall within current and future suitable habitats (Figs. 4, 5, 6, and 7, Supplementary 1).

Discussion

Predicting the future habitat suitability of species through SDMs is pivotal to understanding the ecological needs of a particular species and their biological and ethological traits.
responses to climate change (Aitken et al. 2008; Alexander et al. 2018). This is the first detailed study that highlighted the impact of climate change on the habitat suitability of three Galliformes species in the NHP under the current and future scenarios (2050 and 2070). While modeling the habitat suitability of the Galliformes species, we found excellent performance and high accuracy of our model. The projection of current suitable habitat of all the species lined up precisely with the collected presence points used in this study (Fig. 4).

The impact of climate change on habitat suitability of Galliformes species

Our results predict that Lophophorus impejanus, Pucrasia macrolopha, and Tragopan melanocephalus will all be negatively impacted by the climate change due to habitat loss and shifts in habitat regimes towards higher altitudes in 2050 and 2070 under RCP4.5 and RCP8.5. The shift in the distribution of species towards high altitudes and latitudes is one of the most common types of change in suitable habitat suitability.
expected as a result of climate change (Kharouba and Wolkovich 2020; Penteriani et al. 2019; Dai et al. 2021; Zahoor et al. 2021c). Previous studies have predicted that changes in climate promote alterations in habitat distribution patterns to higher latitudes and lower altitudes (Lenoir and Svenning 2015). Our findings are consistent with the recent studies suggesting that habitat of Galliformes species is likely to decline and shift towards higher altitudinal ranges in the future (Singh et al. 2020a; Chhetri et al. 2021). However, the change rates of distribution areas varied under different RCP scenarios, likely due to the fluctuation in CO2 emissions in 2050 and 2070 (Abbasi et al. 2020; Behera and Dash 2017). Our model projected no shift towards higher altitudes for Pucrasia macrolopha, and could be more alarming for the species existence. Among all three species, our model predicted the maximum suitable habitat area for Lophophorus impejanus and minimum suitable habitat area for Tragopan melanocephalus. But all three species are predicted to experience the huge loss in suitable habitat from the southern regions mainly from the AJK and KPK.

The altitudinal range of climate refugia

Refugia, by definition, play an important role in contributing to the survival of species and communities by buffering environmental conditions through time and across scales, ranging from microrefugia to continental biodiversity hotspots (Myers et al. 2000; Dobrowski 2011; Morelli et al.
Our study projects that the altitudinal range of climate refugia between 2000 and 4000 m would provide ideal habitat to these species, which is consistent with the elevation ranges of these species in Pakistan reported in other studies (Figs. 7, 8). For instance, *Lophophorus impejanus* is mainly distributed in the range of 2600–4000 m (Ahmad et al. 2019), *Pucrasia macrolopha* is distributed in the range of 2000–3700 m (Shah et al. 2013) while *Tragopan melanoccephalus* is distributed in the range of 2400–3600 m (Awan and Francis 2014). Forested landscapes at these elevations provide food and shelter to these ground birds for concealment and rest, and to escape danger. Shifts in the tree line and a reduction of the suitable habitat area in the future could limit natural resources such as food, water, and shelter, which could increase the pressure from interspecific and intraspecific competitions, and could lead to local extirpations. Current distribution of *Tragopan melanoccephalus* indicates that the range of the species is extended from the eastern parts of the AJK to the western part of the KPK. However, previous studies indicated the presence of this...
species only in the AJK as Abdul (2014) and Shah (2015) conducted some basic studies for this species in the KPK but found no records. However, we collected the presence data for this species (from KPK) via GBIF (https://www.gbif.org) based on human observations from the year 1990 to 2000. Therefore, an extensive field survey in the KPK is needed to monitor this species, and if the species is not found then plans are needed to restore the species, as the KPK is currently and even in the future is providing maximum suitable habitat to this species. For this prevention of anthropogenic activities, deforestation, regulations related to the species breeding sites, and restrictions against damaging their eggs and hunting in particular must be under consideration.

Projected current and suitable habitats under protected areas

Our model projected that most of the suitable habitat outside of the protected areas for all species. Out of a total 93 protected areas, only about 40% (n = 37) protected areas (under

Fig. 6 Binary distribution maps of three galliform species: a *Lophophorus impejanus*, b *Pucrasia macrolopha*, and c *Tragopan melanocephalus* under the future scenario (in 2050 and 2070) of RCP 4.5 and RCP 8.5 in the northern highlands of Pakistan. Future habitat suitability are the intersection area of the three GCMs (BCC-CSM1-1, CCSM4, and HadGEM2-AO)
Species	Province	Current (km²)	2050 RCP4.5	2050 RCP8.5	2070 RCP4.5	2070 RCP8.5	
		Area (km²)	Area (%)	Area (km²)	Area (%)	Area (km²)	Area (%)
Lophophorus impejanus	AJK	5912	17.79	1907	8.04	3025	14.76
	FATA	2577	7.76	2257	9.51	1621	7.91
	GB	1121	3.37	630	2.65	396	1.93
	KPK	23398	70.42	18926	79.75	15444	75.36
	PB	220	0.66	12	0.05	7	0.03
Pucrasia macrolopha	AJK	5700	22.41	4921	22.56	4600	29.27
	FATA	1350	5.31	429	1.97	299	1.90
	GB	568	2.23	480	2.20	184	1.17
	KPK	17512	68.84	15769	72.29	10511	66.89
	PB	308	1.21	214	0.98	120	0.76
Tragopan melanocephalus	AJK	4645	26.20	1416	11.90	2401	21.40
	FATA	491	2.77	767	6.44	326	2.91
	GB	127	0.72	23	0.19	15	0.13
	KPK	12391	69.89	9696	81.46	8474	75.54
	PB	75	0.42	1	0.01	2	0.02
current and future scenarios) overlapped suitable habitat, and most of them fell in the suitable habitat area of species *Lophophorus impejanus*. Additionally, the sizes of these protected areas are very small and insufficient for conservation purposes. Thus, establishment of new protected areas and improvement and increasing status of existing protected areas are much needed for the conservation of biodiversity, including Galliformes species in the NHP.

Under the impact of climate change, the distribution of these three indicator species in the NHP region will greatly change in the future. Vulnerability of current suitable habitat could be as high as one-quarter in 2050 and one-third in 2070 (Fig. 6, Table 4). All the provinces will face a similar decline in suitable habitat; however, Punjab will be seriously threatened as the province is currently has only a few, small patches of suitable habitat for these species, and no demarcated protected areas. In addition, forested landscapes of both protected and non-protected areas of the NHP are under high anthropogenic pressure as people stay as temporary residents (from early spring to early autumn) and carry out...
activities such as deforestation, hunting, agricultural practices, and collection of medicinal plants (Kabir et al. 2017; Zahoor et al. 2021a). Thus, the area may have a more profound negative impact due to climate change and ultimately lead to the local extirpation of the species.

Conservation implications

In order to mitigate the risk of species extinction in NHP, some conservation measures should be taken by governmental and non-governmental bodies. Our main recommendations are (i) some avian reserves in the region be established on the suitable habitat areas for Galliformes species, and that meet international standards for protected areas. (ii) The size of current protected areas in the projected suitable habitats of the species should be increased to reach the potential of serving as a “stepping stone” for conservation of these species in the future. (iii) Provincial border areas that currently provide a great proportion of habitat suitable for Galliformes species should be protected to promote habitat connectivity and facilitate the dispersal of individuals across the provinces. To achieve this, provincial governments from provinces with the maximum suitable habitat, i.e., KPK and AJK, could work together to establish new protected areas that cross borders and promote biodiversity conservation. (iv) Adding projected range shifts into biodiversity management planning is a practical approach to help mitigate the impacts of climate change on forested landscapes and thus, on the animals that dependent on them for survival.

Study limitations

There are some limitations to our study, for example, topographic and soil type variables data, the human influence index data, and land cover data were available only for the current scenario, so we had to use the same layers for modeling future distributions. Non-climatic variables, e.g., biotic interaction, dispersal mode, invasive species, and outbreaks of diseases, were also avoided during the study which could interrupt the distribution of the species and could potentially be a major shortcoming of this study. Although uncertainties and assumptions are existing in the study, these models could play a significant role to formulate the conservation strategies to mitigate the impact of climate change in the future on such endangered Galliformes species (Ackerly et al. 2010; Wiens et al. 2010).

Conclusion

Our model projected suitable habitat under current and future (in 2050 and 2070) scenarios and climate refugia for three Galliformes species *Lophophorus impejanus*, *Pucrasia macrolopha*, and *Tragopan melanocephalus* in the NHP. The model projected the spatial variation of suitable habitats for all the three Galliformes species currently and in the future. We found habitat reduction and shift of suitable habitat towards higher elevations, with more area in 2070 and under RCP8.5. Conservation implications such as establishment and increased status and improvement of the protected areas (particularly at the provincial borders) with the proper management system are required for the conservation of these three indicator species in the NHP.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s11356-022-19631-y.

Acknowledgements We thank Mr. Naeem Iftikhar Dar, Director of the Department of Wildlife and Fisheries of Azad Jammu and Kashmir, and wildlife staff for their support during the camera trapping study in the Machiara National Park.

Author contribution Paper concept: B.Z.; Primary authorship: B.Z.; Additional review and editing: X.L. and M.S.; All authors have read and agreed to publish the final version.
Funding This research was supported by two NSFC (Natural Science Foundation of China) projects (No. 41671183 and No. 41271194) and Rufford small grant (project no. 27847–1).

Data availability The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Declarations

Ethical approval Not applicable.

Consent to participate Not applicable.

Consent to publish All the authors have declared their consent to publish the manuscript.

Conflict of interest The authors declare no competing interests.

References

Abbasi MA, Parveen S, Khan S, Kamal MA (2020) Urbanization and energy consumption effects on carbon dioxide emissions: evidence from Asian-8 countries using panel data analysis. Environ Sci Pollut Res 27(15):18029–18043

Abdul H (2014) Status and habitat utilization of Western Tragopan in Kaghan Valley, Pakistan. Final Progress Report submitted to Oriental Bird Club, UK. pp. 22

Ackerley DD, Loarie SR, Cornwell WK, Weiss SB, Hamilton H, Brancheforte R, Kraft NJB (2010) The geography of climate change: implications for conservation biogeography. Divers Distrib 16(3):476–487

Ahmad B, Noor F, Awani MS, Minhas RA, Ali U (2019) Distribution and population status of Himalayan Monal pheasant (Lophophorus impejanus) in Salkhala game reserve, Neelum valley Azad Jammu and Kashmir (Pakistan). J Anim Plant Sci 29(4):1150–1159

Aitken SN, Yeaman S, Holliday JA, Wang T, Curtis-McLane S (2008) Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol Appl 1(1):95–111

Alexander JM, Chalmendrier L, Leonor J, Burgess TJ, Essl F, Haider S, Pellissier L (2018) Lags in the response of mountain plant communities to climate change. Glob Chang Biol 24(2):563–579

Antunez P, Suarez-Mota ME, Valenzuela-Encinas C, Ruiz-Aquino F (2021) Distribution modelling and climate change risk assessment strategy for rare Himalayan Galliformes species using archetypal data abundant cohorts for adaptation planning. Clim Risk Manag 31:100264

Behera SR, Dash DP (2017) The effect of urbanization, energy consumption, and foreign direct investment on the carbon dioxide emission in the SSEA (South and Southeast Asian) region. Renew Sustain Energy Rev 70:96–106

Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15(4):365–377

BirdLife International (2012) Data Zone. Available at www.birdlife.org/datazone/species/search. Accessed on 16 October 2012

BirdLife International and Handbook of the Birds of the World (2016) Bird species distribution maps of the world. Version 6.0. Available at http://datazone.birdlife.org/species/requestsd. Accessed 26 July 2021

Brown JL (2014) SDM toolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol Evol 5(7):694–700

Chhetri B, Badola HK, Barat S (2021) Modelling climate change impacts on distribution of Himalayan pheasants. Ecol Indic 123:107368

Coles BH (2009) Galliformes. In: Handbook of Avian Medicine. WB Saunders, pp. 309–334

Dai Y, Hacker CE, Zhang Y, Li W, Li J, Zhang Y, Bona G, Liu H, Li, Y, Xue Y, Li D (2019a) Identifying climate refugia and its potential impact on Tibetan brown bear (Ursus arctos pruinosus) in Sanjiangyuan National Park. China. Ecol Evol 1:1–15. https://doi.org/10.1002/ecs3.5780

Dai Y, Hacker CE, Zhang Y, Li W, Zhang Y, Liu H, Zhang J, Ji Y, Xue Y, Li D (2019b) Identifying the risk regions of house break-ins caused by Tibetan brown bears (Ursus arctos pruinosus) in the Sanjiangyuan region. China. Ecol Evol 1:12. https://doi.org/10.1002/ecs3.5835

Dai Y, Peng G, Wen C, Zahoob B, Ma X, Hacker CE, Xue Y (2021) Climate and land use changes shift the distribution and dispersal of two umbrella species in the Hindu Kush Himalayan region. Sci Total Environ 777:146207

Danielson JJ, Gesch DB (2011) Global multi-resolution terrain elevation data 2010 (GMETD2010) (p. 26). In: US Department of the Interior. US Geological Survey

Dobrowski SZ (2011) A climatic basis for microrefugia: The influence of terrain on climate. Glob Chang Biol 17:1022–1035

Ellith J, Phillips SJ, Hastic T, Dudik M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x

Fordham DA, Jackson ST, Brown SC, Huntley B, Brook BW, Dahl-Jensen D, Nogues-Bravo D (2020) Using paleo-archives to safeguard biodiversity under climate change. Science 369(6507)

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25(15):1965–1978

Hoffmann AA, Rymer PD, Byrne M, Ruthoff KX, Whinam J, McGeeoch M, Bergstrom DM, Guerin GR, Sparrow B, Joseph L, Hill SJ, Andrew NR, Camac J, Bell N, Riegler M, Gardner JL, Williams SE (2019) Impacts of recent climate change on terrestrial flora and fauna: Some emerging Australian examples. Austral Ecol 44(1):3–27. https://doi.org/10.1111/aeec.12674

Hotta M, Tsuyama I, Nakao K, Ozeki M, Higa M, Kominami Y, Hamada T, Matsui T, Yasuda M, Tanaka N (2019a) Modeling future wildlife habitat suitability: serious climate change impacts on the potential distribution of the Rock Ptarmigan Lagopus muta japonica in Japan’s northern Alps. BMC Ecol 19(1):1–23. https://doi.org/10.1186/s12899-019-0238-8

Hu GX, Jin Y, Wang RX, Mao FJ, Li Y (2015) Predicting impacts of future climate change on the distribution of the widespread conifer Platyclusus orientalis. PLoS One 1:15. https://doi.org/10.1371/journal.pone.0132326

IPCC (2001) Climate change 2001: The scientific basis in contribution of working group I to the 3rd assessment report of the
Shinwari MI, Shinwari MI (2010) Botanical diversity in Pakistan: past present and future. World Environ 1:85–104
Singh H, Kumar N, Kumar M, Singh R (2020a) Modelling habitat suitability of western tragopan (Tragopan melanocephalus) a range-restricted vulnerable bird species of the Himalayan region, in response to climate change. Clim Risk Manag 29:100241
Singh PB, Mainali K, Jiang Z, Thapa A, Subedi N, Awan MN, Ilyas O, Luitel H, Zhou Z, Hu H (2020b) Projected distribution and climate refugia of endangered Kashmir musk deer Moschus cupreus in greater Himalaya, South Asia. Sci Rep 10(1):1–13
Schneider SH, Root TL (1998) Climate change. In: Mac MJ, Ople PA, Puckett Haecke CE, Doran PD (eds) Status and trends of the nation’s biological resources. United States Geological Survey
Sax DF, Early R, Bellmamere J (2013) Niche syndromes, species extinction risks, and management under climate change. Trends Ecol Evol 28(9):517–523
Songer M, Delion M, Biggs A, Huang Q (2012) Modeling impacts of climate change on giant panda habitat. Int J Ecol:1-12.https://doi.org/10.1155/2012/108752
Su J, Aryan A, Hegab IM, Shrestha UB, Coogan SC, Sathyakumar S, Dalannast M, Dou Z, Suo Y, Dabu X, Fu H (2018) Decreasing brown bear (Ursus arctos) habitat due to climate change in central Asia and the Asian highlands. Ecol Evol 8(23):11887–11899. https://doi.org/10.1002/2013.34645
Thapa A, Wu R, Hu Y, Nie Y, Singh PB, Khatiwada JR, Yan L, Gu X, Wei F (2018) Predicting the potential distribution of the endangered red panda across its entire range using MaxEnt modeling. Ecol Evol 8:10542–10554. https://doi.org/10.1002/2018.01250.x
Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008) Global change and species interactions in terrestrial ecosystems. Ecol Lett 11:1351–1363. https://doi.org/10.1111/j.1461-0248.2008.01250.x
VanDerWal J, Murphy HT, Kutt AS, Perkins GC, Bateman BL, Perry JJ, Reside AE (2013) Focus on poleward shifts in species’ distribution underestimates the fingerprint of climate change. Nat Clim Chang 3(3):239–243
Wiens JJ, Ackery DD, Allen AP, Anacker BL, Buckley LB, Cornell HV, Damschen EI, Jonathan DT, Grytnes JA, Harrison SP, Hawkins BA (2010) Niche conservatism as an emerging principle in ecology and conservation biology. Ecol Lett 13(10):1310–1324
Weyant JP (2009) A perspective on integrated assessment. Clim Chang 95(3–4):317
Yang XQ, Kushwaha SPS, Saran S, Xu J, Roy PS (2013) Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecol Eng 51:83–87
Yu F, Wang T, Groen TA, Skidmore AK, Yang X, Ma K, Wu Z (2019) Climate and land use changes will degrade the distribution of rhododendrons in China. Sci Total Environ 659:515–528
Zahoor B, Liu X, Ahmad B, Kumar L, Songer M (2021a) Impact of climate change on Asiatic black bear (Ursus thibetanus) and its autumn diet in the northern highlands of Pakistan. Glob Chang Biol. https://doi.org/10.1111/gcb.15743
Zahoor B, Ahmad B, Minhas RA, Awan MS (2021b) Damages done by black bear (Ursus thibetanus) in Moji Game Reserve and its surroundings, Leepa valley, Azad Jammu and Kashmir (Pakistan). Pak J Zool:1–9. https://doi.org/10.17582/journal.pjz/20170317130336
Zahoor B, Liu X, Kumar L, Dai Y, Tripathy BR, Songer M (2021c) Projected shifts in the distribution range of Asiatic black bear (Ursus thibetanus) in the Hindu Kush Himalaya due to climate change. Ecol Inform 63:101312. https://doi.org/10.1016/j.ecoinf.2021.101312
Zahoor B, Liu X, Dai Y, Kumar L, Songer M (2022) Identifying the habitat suitability and built-in corridors for Asiatic black bear (Ursus thibetanus) movement in the northern highlands of Pakistan. Ecol Inform 68:101532
Zanatta F, Engler R, Collart F, Broennimann O, Mateo RG, Papp B, Muñoz J, Baurain D, Guisan A, Vanderpoorten A (2020) Bryophytes are predicted to lag behind future climate change despite their high dispersal capacities. Nat Commun 11(1):1–9
Zhang J, Jiang F, Li G, Qin W, Li S, Gao H, Cai Z, Lin G, Zhang T (2019) Maxent modeling for predicting the spatial distribution of three raptors in the Sanjiangyuan national park. China. Ecol Evol 9(11):6643–6654

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.