BRAUER GROUP OF MODULI SPACES OF PGL(r)–BUNDLES OVER A CURVE

INDRANIL BISWAS AND AMIT HOGADI

ABSTRACT. We compute the Brauer group of the moduli stack of stable PGL(r)–bundles on a curve X over an algebraically closed field of characteristic zero. We also show that this Brauer group of such a moduli stack coincides with the Brauer group of the smooth locus of the corresponding coarse moduli space of stable PGL(r)–bundles on X.

1. Introduction

Let k be an algebraically closed field of characteristic zero. Let X be an irreducible smooth projective curve defined over k of genus g, with g ≥ 2. Fix an integer r ≥ 2. Let N(r) be the moduli stack of stable PGL(r, k) bundles on X. Let

\[N(r) \to N(r) \]

be the coarse moduli space. Our aim is to study the Brauer group of N(r) and that of the smooth locus of N(r).

Throughout this paper we assume that if g = 2, then r is at least three.

The following proposition is proved in Section 2 (see Proposition 2.4):

Proposition 1.1. The morphism N(r) \to N(r) is an isomorphism outside a codimension three closed subset. In particular, this morphism identifies the Brauer group of the smooth locus of N(r) with the Brauer group \(Br(N(r)) \).

Let

\[N^0(r) \subset N(r) \]

be the locus of stable projective bundles admitting no nontrivial automorphisms. Similarly, let \(N^0(r) \subset N(r) \) be the substack of stable projective bundles whose automorphism group is trivial. Then the natural morphism \(N^0(r) \to N^0(r) \) is an isomorphism.

Fix a line bundle ξ over X. Let \(M(r, ξ) \) denote the moduli stack of stable vector bundles \(E \to X \) of rank r and determinant ξ, meaning \(\bigwedge^r E \) is isomorphic to ξ. This moduli stack \(M(r, ξ) \) is an irreducible smooth Deligne–Mumford stack having a smooth quasiprojective coarse moduli space. This coarse moduli space, which is of dimension

2000 Mathematics Subject Classification. 14F05, 14D20.

Key words and phrases. Brauer group, moduli stack, gerbe, stable bundle.
\((g - 1)(r^2 - 1)\), will be denoted by \(M(r, \xi)\). The Brauer group of \(M(r, \xi)\) has the following description: the natural morphism
\[
\mathcal{M}(r, \xi) \rightarrow M(r, \xi)
\]
is a \(\mathbb{G}_m\)-gerbe, and its class in \(Br(M(r, \xi))\) is a generator of order \(\gcd(r, \deg(\xi))\) \([2]\).

The connected components of both \(N(r)\) and \(N(r)\) are indexed by \(\mathbb{Z}/r\mathbb{Z}\)
\[
N(r) = \bigcup_{i \in \mathbb{Z}/r\mathbb{Z}} N(r)_i \quad \text{and} \quad N(r) = \bigcup_{i \in \mathbb{Z}/r\mathbb{Z}} N(r)_i .
\]
The component \(N(r)_i\) corresponds to the projective bundles associated to the vector bundles on \(X\) of degree \(i\). More precisely, if \(\deg(\xi) \equiv i \mod r\), then \(N(r)_i\) is the quotient of \(M(r, \xi)\) by the subgroup \(\Gamma \subset \text{Pic}(X)\) of \(r\)-torsion points; the action of any \(\zeta \in \Gamma\) sends any \(E\) to \(E \otimes \zeta\).

As before, fix a line bundle \(\xi \rightarrow X\). The image of degree(\(\xi\)) in \(\mathbb{Z}/r\mathbb{Z}\) will be denoted by \(i\). If \(g = 2\), then we assume that \(r \geq 3\). For any \(\zeta \in \Gamma\), let \(\widehat{\zeta} : M(r, \xi) \rightarrow M(r, \xi)\) be the automorphism defined by \(E \mapsto E \otimes \zeta\). Let
\[
\mathcal{L}_0 \in \text{Pic}(M(r, \xi)) = \mathbb{Z}
\]
be the ample generator. Let \(\tilde{\Gamma}_i\) be the group of pairs of the form \((\zeta, \sigma)\), where \(\zeta \in \Gamma\) and \(\sigma\) is an isomorphism of \(\mathcal{L}_0\) with \(\widehat{\zeta}^* \mathcal{L}_0\). So we have a central extension
\[
0 \rightarrow k^* \rightarrow \tilde{\Gamma}_i \rightarrow \Gamma \rightarrow 0 .
\]
Let \(\nu_i \in H^2(\Gamma, k^*)\) be the corresponding extension class.

We prove the following theorem; its proof is given in Section \[3\].

Theorem 1.2. There is a short exact sequence
\[
0 \rightarrow H^2(\Gamma, k^*)_H \rightarrow Br(N(r)_i) \rightarrow \mathbb{Z}/\delta \mathbb{Z} \rightarrow 0 ,
\]
where \(H \subset H^2(\Gamma, k^*)\) is the subgroup of order \(\delta := \text{g.c.d.}(r, i)\) generated by \(\nu_i\).

The class \(\nu_i\) is described in Remark \[3.3\]

The short exact sequence in Theorem \[1.2\] is constructed using the Leray spectral sequence for the quotient map \(M(r, \xi) \rightarrow M(r, \xi)/\Gamma = N(r)_i\).

The following theorem provides more information on the exact sequence in Theorem \[1.2\]

Theorem 1.3. For a point \(x \in X(k)\), let \(i_x : N(r) \rightarrow N(r) \times_k X\) be the constant section of the projection \(N(r) \times_k X \rightarrow N(r)\) passing through \(x\). Let \(\alpha \in Br(N(r))\) be the class of the projective bundle obtained by pulling back the universal \(\text{PGL}(r, k)\) bundle over \(N(r) \times_k X\) by \(i_x\).
Then the following two hold:

(i) The class α is independent of x, and $\tau(\alpha) = 1 \in \mathbb{Z}/\delta\mathbb{Z}$, where τ is the homomorphism in Theorem 1.2.

(ii) The order of α restricted to each component of $\mathcal{N}(r)$ is exactly r. Therefore, the short exact sequence in Theorem 1.2 is split if and only if $\delta = r$.

From the second part of Theorem 1.3 it follows that the principal $\text{PGL}(r, k)$–bundle over $N^0(r)$ obtained by restricting the projective bundle in Theorem 1.3 is stable (see Corollary 5.1).

Acknowledgements. We thank the referee for comments to improve the exposition.

2. Fixed points of the moduli space

Throughout this section we fix a line bundle ξ over X, and we also fix an integer $r \geq 2$. As mentioned in the introduction, if $g = 2$, then r is taken to be at least three. Let $M(r, \xi)$ denote the moduli space of stable vector bundles $E \to X$ of rank r with $\bigwedge^r E = \xi$. For convenience the moduli space $M(r, \xi)$ will also be denoted by M. Let

$$\Gamma := \text{Pic}^0(X)_r = \{ \eta \in \text{Pic}^0(X) \mid \eta^{\otimes r} \cong \mathcal{O}_X \}$$

be the subgroup of r–torsion points of the Picard group of X. For any $\eta \in \Gamma$, we have the automorphism

$$\phi_\eta : M \to M$$

that sends any E to $E \otimes \eta$. Let

$$\phi : \Gamma \to \text{Aut}(M)$$

be the homomorphism defined by $\eta \mapsto \phi_\eta$.

Take any nontrivial line bundle

$$\eta \in \Gamma \setminus \{ \mathcal{O}_X \}.$$

Let

$$M^\eta \subset M$$

be the closed subvariety fixed by the automorphism ϕ_η in (2.2). We will describe M^η.

Let m be the order of η. Fix a nonzero section

$$\sigma : X \to \eta^{\otimes m}.$$

Consider the morphism of varieties

$$f_\eta : \eta \to \eta^{\otimes m}$$

defined by $v \mapsto v^{\otimes m}$. Set

$$Y := f_\eta^{-1}(\sigma(X)) \subset \eta,$$
where σ is the section in (2.5). Let

\[(2.7) \quad \gamma : Y \longrightarrow X\]

be the morphism obtained by restricting the natural projection of η to X. So γ is an étale Galois covering of degree m.

The curve Y is irreducible. To prove this, let Y_1 be an irreducible component of Y. Let m_1 be the degree of the restriction $\gamma_1 := \gamma|_{Y_1}$, where γ is defined in (2.7). We have a nonzero section of $\eta^{\otimes m_1}$ whose fiber over any point $x \in X$ is $\bigotimes_{\theta \in \gamma_1^{-1}(x)} \theta$ (recall that $\gamma_1^{-1}(x)$ is a subset of the fiber η_x). Therefore, the line bundle $\eta^{\otimes m_1}$ is trivial. Since the order of η is precisely m, we have $Y_1 = Y$. Hence Y is irreducible.

We note that the covering Y is independent of the choice of the section σ. Indeed, if σ is replaced by $c \cdot \sigma$, where $c \in k^*$, then the automorphism of η defined by multiplication with c takes Y in (2.6) to the covering corresponding to the section $c \cdot \sigma$.

Lemma 2.1. There is a nonempty Zariski open subset $U \subset N_\gamma$ such that for any $F \in U$, $\gamma_* F \in M^\eta$.

Furthermore, the morphism

$$U \longrightarrow M^\eta$$

defined by $F \longmapsto \gamma_* F$ is surjective.

Proof. Note that the line bundle $\gamma^* \eta$ has a tautological trivialization because Y is contained in the complement of the image of the zero section in the total space of η over which the pullback of η is tautologically trivial. Take any vector bundle V over Y. The trivialization of $\gamma^* \eta$ yields an isomorphism

$$V = V \otimes \mathcal{O}_Y \longrightarrow V \otimes \gamma^* \eta.$$

This isomorphism gives an isomorphism

$$\gamma_* V \longrightarrow \gamma_*(V \otimes \gamma^* \eta) = (\gamma_* V) \otimes \eta$$

(the vector bundle $(\gamma_* V) \otimes \eta$ is identified with $\gamma_*(V \otimes \gamma^* \eta)$ using the projection formula).

Therefore, if $V \in N_\gamma$, and $\gamma_* V$ is stable, then $\gamma_* V \in M^\eta$.

Take any $E \in M^\eta$. Fix an isomorphism

$$\beta : E \longrightarrow E \otimes \eta.$$

Since E is stable, it follows that E is simple, which means that all global endomorphisms of E are constant scalar multiplications. Therefore, any two isomorphisms between E and $E \otimes \eta$ differ by multiplication with a constant scalar.
We re-scale the section β by multiplying it with a nonzero scalar such that the m–fold composition

\[
\underbrace{\beta \circ \cdots \circ \beta}_{m\text{-times}} : E \rightarrow E \otimes \eta^\otimes m
\]

coincides with $\text{Id}_E \otimes \sigma$, where σ is the section in (2.5).

Let

\[
\theta \in H^0(X, \text{End}(E) \otimes \eta)
\]

be the section defined by β. Consider the pullback

\[
\gamma^* \theta \in H^0(Y, \gamma^* \text{End}(E) \otimes \gamma^* \eta)
\]

of the section in (2.9). Using the canonical trivialization of $\gamma^* \eta$, it defines a section

\[
\theta_0 \in H^0(Y, \gamma^* \text{End}(E)) = H^0(Y, \text{End}(\gamma^* E))
\]

Since Y is irreducible, the characteristic polynomial of $\theta_0(y)$ is independent of $y \in Y$. Therefore, the eigenvalues of $\theta_0(y)$, along with their multiplicities, do not change as y moves over Y. Consequently, for each eigenvalue λ of $\theta_0(y)$, we have the associated generalized eigenbundle

\[
\gamma^* E \supset E^\lambda \rightarrow Y
\]

whose fiber over any $y \in Y$ is the generalized eigenspace of $\theta_0(y) \in \text{End}((\gamma^* E)_y)$ for the fixed eigenvalue λ.

Since the composition in (2.8) coincides with $\text{Id}_E \otimes \sigma$, we have

\[
\underbrace{\theta_0 \circ \cdots \circ \theta_0}_{m\text{-times}} = \text{Id}_{\gamma^* E},
\]

where θ_0 is constructed in (2.10) from β. Therefore, if λ is an eigenvalue of $\theta_0(x)$, then $\lambda^m = 1$.

The Galois group $\text{Gal}(\gamma)$ for the covering γ in (2.7) is identified with the group of all m–th roots of 1; the group of m–th roots of 1 will be denoted by μ_m. The action of μ_m on Y is obtained by restricting the multiplicative action of \mathbb{G}_m on the line bundle η. Note that $\text{Gal}(\gamma)$ has a natural action on the pullback $\gamma^* E$ which is a lift of the action of $\text{Gal}(\gamma)$ on Y. Examining the construction of θ_0 from β it follows that the action of any $\rho \in \text{Gal}(\gamma) = \mu_m$

on $\gamma^* E$ takes the eigenbundle E^λ (see (2.11)) to the eigenbundle $E^{\lambda \rho}$. This immediately implies that each element of μ_m is an eigenvalue of $\theta_0(y)$ (we noted earlier that the eigenvalues lie in μ_m), and the multiplicity of each eigenvalue of $\theta_0(y)$ is r/m.

Consider the subbundle

\[
E^1 \rightarrow Y
\]
of \(\gamma^*E \), which is the eigenbundle for the eigenvalue \(1 \in \mu_m \) (see (2.11)). Define
\[
\widetilde{E}^1 := \bigoplus_{\rho \in \text{Gal}(\gamma)} \rho^*E^1.
\]
There is a natural action of \(\text{Gal}(\gamma) = \mu_m \) on \(\widetilde{E}^1 \). Since the action of any \(\rho \in \mu_m \) on \(\gamma^*E \) takes the eigenbundle \(E^\lambda \) to the eigenbundle \(E^{\lambda\rho} \), it follows immediately that we have a \(\text{Gal}(\gamma) \)-equivariant identification
\[
(2.13) \quad \gamma^*E = \widetilde{E}^1 := \bigoplus_{\rho \in \text{Gal}(\gamma)} \rho^*E^1.
\]
In view of this \(\text{Gal}(\gamma) \)-equivariant isomorphism we conclude that the vector bundle \(\gamma^*E^1 \) is isomorphic to \(E \).

To complete the proof of the lemma it remains to show that the vector bundle \(E^1 \) is stable.

Take any vector bundle \(W \to Y \). Since the map \(\gamma \) is finite, we have
\[
H^i(Y, W) = H^i(X, \gamma_*W)
\]
for all \(i \). Let \(d_W \) (respectively, \(\overline{d} \)) be the degree of \(W \) (respectively, \(\gamma_*W \)), and let \(r_W \) be the rank of \(W \); so, \(\text{rank}(\gamma_*W) = mr_W \). From Riemann–Roch theorem and the Hurwitz’s formula
\[
(2.14) \quad \text{genus}(Y) = m(g - 1) + 1
\]
we have
\[
\chi(W) = d_W - r_W m(g - 1) = \overline{d} - m r_W (g - 1) = \chi(\gamma_*W).
\]
Hence
\[
(2.15) \quad d_W = \overline{d}.
\]
We now note that if \(W_1 \subset W \) is a nonzero algebraic subbundle such that
\[
\text{degree}(W_1)/\text{rank}(W_1) \geq \text{degree}(W)/\text{rank}(W),
\]
then from (2.15) we have
\[
\text{degree}(\gamma_*W_1)/\text{rank}(\gamma_*W_1) \geq \text{degree}(\gamma_*W)/\text{rank}(\gamma_*W).
\]
Hence \(W \) is stable if \(\gamma_*W \) is so. In particular, \(E^1 \) is stable because \(\gamma_*E^1 = E \) is stable. \(\square \)

Using (2.14), we have
\[
(2.16) \quad \dim N_\gamma = \frac{r^2}{m^2} (\text{genus}(Y) - 1) + 1 - g = (g - 1) \left(\frac{r^2}{m} - 1 \right).
\]
Hence \(\dim M - \dim N_\gamma > 3 \). Let
\[
(2.17) \quad Z := \bigcup_{L \in \Gamma \setminus \{O_X\}} M^L \subset M
\]
be the closed subscheme. We note that Lemma 2.1 has the following corollary.

Corollary 2.2. The codimension of the closed subscheme \(Z \subset M \) is at least three.
For a vector space V, by $\mathbb{P}(V)$ we will denote the projective space parametrizing all lines in V. Similarly, for a vector bundle W, by $\mathbb{P}(W)$ we denote the projective bundle parametrizing all lines in W.

Lemma 2.3. Take any $E \in M \setminus \mathcal{Z}$, where \mathcal{Z} is constructed in (2.17). Consider the vector bundle $F = \phi_\eta(E) = E \otimes \eta$, where ϕ_η is the automorphism in (2.2). Then there is a unique isomorphism of the projective bundle

$\mathbb{P}(F) \rightarrow X$

with $\mathbb{P}(E) \rightarrow X$ over the identity map of X.

Proof. There is a natural isomorphism of $\mathbb{P}(E)$ with $\mathbb{P}(E \otimes \eta)$. If there are two distinct isomorphisms of $\mathbb{P}(E)$ with $\mathbb{P}(E \otimes L)$, we get a nontrivial automorphism of $\mathbb{P}(E)$.

Let $f : \mathbb{P}(E) \rightarrow \mathbb{P}(E)$ be a nontrivial automorphism. There is a line bundle L_0 and an isomorphism of vector bundles

$\tilde{f} : E \rightarrow E \otimes L_0$

such that \tilde{f} induces f. Since \tilde{f} induces an isomorphism of $\det E$ with $\det(E \otimes L_0) = (\det E) \otimes L_0^{\otimes r}$, we conclude that $L_0 \in \Gamma$. Next note that L_0 must be trivial because $E \notin \mathcal{Z}$.

The vector bundle E is simple because it is stable. Hence all automorphisms of E induce the identity map of $\mathbb{P}(E)$. Therefore, $\mathbb{P}(E)$ does not admit a nontrivial automorphism. This completes the proof of the lemma.

Proposition 2.4. The morphism $N(r) \rightarrow N(r)$ in (1.1) is an isomorphism in codimension three.

Proof. Let $i \in \mathbb{Z}/r\mathbb{Z}$ be the image of degree(ξ). In the proof of Lemma 2.3 we saw that if a projective bundle $P \in N(r)_i$ admits a nontrivial automorphism, then P lies in the image of the subscheme \mathcal{Z} by the projection $M(r, \xi) \rightarrow N(r)_i$. Therefore, the proposition follows from Corollary 2.2.

Let

$$U := M \setminus \mathcal{Z},$$

be the Zariski open subset, where \mathcal{Z} is constructed in (2.17). Let

$$P \rightarrow M \times X$$

be the universal projective bundle (see [2]).

Fix a point $x \in X$. Consider the restriction

$$P_x : = P|_{M \times \{x\}} \rightarrow M.$$

Let

$$P^0 : = P_x|_U \rightarrow U$$

be the restriction of P_x to the open subset U defined in (2.18).
The action of Γ on M (see (2.3)) clearly preserves U. The resulting action of Γ on U and the trivial action of Γ on X together define an action of Γ on $U \times X$.

Lemma 2.3 has the following corollary:

Corollary 2.5. There is a unique lift of the action of Γ on $U \times X$ to the projective bundle $P^U := P|_{U \times X} \to U \times X$, where P is defined in (2.19). In particular, the projective bundle P^0 in (2.21) admits a canonical lift of the action of Γ on U, which is obtained by restricting the action of Γ on $P|_{U \times X}$.

Remark 2.6. Take any vector bundle $E \in M^\eta$ with $\eta \neq O_X$. Then the automorphism of $P(E)$ given by an isomorphism of E with $E \otimes \eta$ is nontrivial. Therefore, a vector bundle F lies in U if and only if the projective bundle $P(F)$ does not admit any nontrivial automorphism.

3. Moduli space of PGL(r,k–bundles

Define

\begin{equation}
U_P := U/\Gamma,
\end{equation}

where U and Γ are defined in (2.18) and (2.1) respectively. Note that Γ acts freely on U and thus U_P is an open substack of the component N of $N(r)$, where

\[\deg \xi \equiv i \mod r.\]

In fact, U_P is also the moduli stack of stable PGL(r,k–bundles over X without automorphisms and with topological invariant degree(ξ) $\in \mathbb{Z}/r\mathbb{Z}$ (see Remark 2.6).

We will now recall the descriptions of Pic(U_P) and Pic($M(r,\xi)$). Let δ be the greatest common divisor of r and degree(ξ). Fix a semistable vector bundle

\[F \to X\]

such that rank(F) = r/δ and

\[\text{degree}(F) = \frac{r(g-1) - \text{degree}(\xi)}{\delta}.
\]

Let \tilde{N} be the moduli space of semistable vector bundles of rank r^2/δ and degree $r^2(g-1)/\delta$. This moduli space has the theta divisor Θ that parametrizes vector bundles V with $h^0(V) \neq 0$ (from Riemann–Roch, $h^0(V) = h^1(V)$ for all $V \in \tilde{N}$). We have a morphism

\[\psi : M(r,\xi) \to \tilde{N}\]

defined by $E \mapsto E \otimes F$, where F is the vector bundle fixed above.

The Picard group of $M(r,\xi)$ is isomorphic to \mathbb{Z}, and the ample generator of Pic($M(r,\xi)$) is the pull back

\begin{equation}
L_0 := \psi^*O_{\tilde{N}}(\Theta) \to M(r,\xi)
\end{equation}

(see [4]).
Remark 3.1. From Corollary 2.2 it follows that the inclusion of \mathcal{U} in $M(r, \xi)$ (see (2.18) for \mathcal{U}) induces an isomorphism of Picard groups. Therefore, $\text{Pic}(\mathcal{U}) = \mathbb{Z}$, and it is generated by the restriction of \mathcal{L}_0.

Lemma 3.2. Let \mathcal{U}_P be the quotient defined in (3.1). Then the image of the homomorphism

$$\text{Pic}(\mathcal{U}_P) \rightarrow \text{Pic}(\mathcal{U})$$

induced by the quotient map is generated by \mathcal{L}_δ, where $\delta = \text{g.c.d.}(r, \text{degree}(\xi))$, and \mathcal{L}_0 is the line bundle in (3.2).

The above lemma follows from [3, p. 184, Theorem].

The quotient

(3.3) $\mathcal{P}^U/\Gamma \rightarrow \mathcal{U}_P \times X$

(see Corollary 2.5) is the universal projective bundle. Let

(3.4) $\mathcal{P}_P^0 := (\mathcal{P}^U/\Gamma)|_{\mathcal{U}_P \times \{x\}} \rightarrow \mathcal{U}_P$

be the projective bundle, where x is a fixed point of X as in (2.20). Note that

$$\mathcal{P}_P^0 = \mathcal{P}^0/\Gamma,$$

where \mathcal{P}^0 is constructed in (2.21), and the quotient is for the canonical action of Γ constructed in Corollary 2.5.

Proof of Theorem 1.2. Fix a line bundle $\xi \rightarrow X$ such that $\text{deg}(\xi) \equiv i \mod r$. Let

$$\pi : \mathcal{U} \rightarrow \mathcal{U}/\Gamma$$

be the quotient map (see (3.1)). By Leray spectral sequence, and the identification

$$\text{H}^1(\Gamma, \text{Pic}(\mathcal{U})) = \text{H}^1(\Gamma, \mathbb{Z}) = 0,$$

we get the following exact sequence:

(3.5) $\text{Pic}(\mathcal{U}_P) \rightarrow \text{Pic}(\mathcal{U})^\Gamma \xrightarrow{\varphi} \text{H}^2(\Gamma, k^*) \rightarrow \text{Br}(\mathcal{U}_P) \rightarrow \text{Br}(\mathcal{U})^\Gamma$.

The action of Γ on $\text{Pic}(\mathcal{U})$ is trivial because the action of Γ preserves the ample generator of $\text{Pic}(\mathcal{M}(r, \xi)) = \text{Pic}(\mathcal{U})$ (see Remark 3.1). Thus by Lemma 3.2 the cokernel of the homomorphism

$$\text{Pic}(\mathcal{N}(r,i)) \rightarrow \text{Pic}(\mathcal{M}(r, \xi))^\Gamma$$

is isomorphic to \mathbb{Z}/δ, where $\delta = \text{g.c.d.}(r, i)$.

From Corollary 2.2 it follows that the inclusion map of \mathcal{U} in $M(r, \xi)$ induces an isomorphism of Brauer groups. The Brauer group of $M(r, \xi)$ is generated by the class of the projective bundle \mathcal{P}^0 constructed in (2.21) [2]. Therefore, by Corollary 2.5 the homomorphism

$$\text{Br}(\mathcal{U}_P) \rightarrow \text{Br}(\mathcal{U})$$

is surjective.
From Corollary 2.2 we know that the inclusion map of U_P in $N(r)$ induces an isomorphism of Brauer groups (see also Proposition 2.4). Thus we get the following exact sequence

\[(3.6) \quad 0 \rightarrow H^2(\Gamma, k^*) \rightarrow Br(N(r)_i) \rightarrow \tau/\delta \rightarrow 0,\]

where $H \subset H^2(\Gamma, k^*)$ is the subgroup of order δ. It remains to find the generator of H.

Consider the line bundle L_0 in (3.2). Let $\tilde{\Gamma}_i$ be the group of all pairs of the form (ζ, σ), where $\zeta \in \Gamma$, and σ is an isomorphism $L_0 \rightarrow \phi^*_\zeta L_0$; the map $\phi\zeta$ is defined in (2.2). The group operation on $\tilde{\Gamma}_i$ is the following:

\[(\zeta_1, \sigma_1(\phi\zeta(z))) \cdot (\zeta, \sigma(z)) = (\zeta_1 \otimes \zeta, (\sigma_1 \circ \sigma)(z)),\]

where $z \in M(r, \xi)$. There is a natural projection $\tilde{\Gamma}_i \rightarrow \Gamma$ that sends any (ζ, σ) to ζ. Consequently, we have the central extension

\[0 \rightarrow k^* \rightarrow \tilde{\Gamma}_i \rightarrow \Gamma \rightarrow 0.\]

Let

\[(3.7) \quad \nu_i \in H^2(\Gamma, k^*)\]

be the corresponding extension class. First note that

\[\nu_i = \varphi(L_0),\]

where φ is the homomorphism in (3.5). Recall that L_0 is the generator of $\text{Pic}(U)$. Hence the subgroup H is (3.6) is generated by ν_i. This completes the proof of the theorem. \square

Remark 3.3. Let $\bigwedge^2 \Gamma$ be the quotient of $\Gamma \otimes \Gamma$ by the subgroup of elements of the form $x \otimes y - y \otimes x$, where $x, y \in \Gamma$. The space of all extensions of Γ by k^* is parametrized by $\text{Hom}(\bigwedge^2 \Gamma, k^*)$ (see [6, pp. 217–218, Theorem 4.4]). We have $\Gamma = H^1_{et}(X, \mu_r)$, and $\text{Hom}(\bigwedge^2 \Gamma, k^*) = \text{Hom}(\bigwedge^2 H^1_{et}(X, \mu_r), \mu_r)$, where μ_r is the group of r–th roots of 1. The cup product

\[H^1_{et}(X, \mu_r) \otimes H^1_{et}(X, \mu_r) \rightarrow H^2_{et}(X, \mu_r) = \mu_r\]

defines an element $\hat{\nu} \in \text{Hom}(\bigwedge^2 H^1_{et}(X, \mu_r), \mu_r)$. The element ν_i in (3.7) coincides with $(r/\delta) \cdot \hat{\nu}$.

4. Twisted Bundles on a μ_r–Gerbe over a Curve

In this section we prove some results on twisted sheaves on a μ_r–gerbe over a curve; these will be required in the proof of Theorem 1.3. We fix the following notation:

- K is any field of characteristic zero, and \overline{K} is an algebraic closure of K.
- X/K is a smooth projective geometrically connected curve of genus $g \geq 2$, and having a K–point.
- \mathcal{L} and Λ are line bundles on X, with $\text{degree}(\mathcal{L}) = d$ and $\text{degree}(\Lambda) = 1$.
- $h : Y \rightarrow X$ is a μ_r–gerbe; if $g = 2$, then we assume that $r \geq 3$.

• \mathcal{T} is the moduli stack of stable twisted sheaves on X of rank r and determinant \mathcal{L}, and $q : \mathcal{T} \to T$ is its coarse moduli space.

• $E \to T \times_K Y$ is the universal twisted bundle.

• $T := \mathcal{T} \times_K \overline{K}$, and $\overline{T} := T \times_K \overline{K}$.

Let ξ be a line bundle on X of degree d. As before, $\mathcal{M}(r, \xi)$ will denote the moduli stack of vector bundles over X of rank r and determinant ξ. Let $\pi : \mathcal{M}(r, \xi) \times X \to \mathcal{M}(r, \xi)$ denote the natural projection. Let

$$\delta = g.c.d.(r, d) = g.c.d.(r, \chi),$$

where $\chi = \chi(\xi) - (r - 1)(g - 1)$. So $\chi = \chi(E)$ for any vector bundle $E \to X$ parametrized by $\mathcal{M}(r, \xi)$. Let

$$\mathcal{E} \to \mathcal{M}(r, \xi) \times X$$

be the universal vector bundle. Define the line bundle

$$(4.1) \quad F := \det(\pi_* \mathcal{E}) \otimes \det(\mathcal{R}^1 \pi_* \mathcal{E})^* \to \mathcal{M}(r, \xi)$$

be the line bundle. Let $i_x : \mathcal{M}(r, \xi) \to \mathcal{M}(r, \xi) \times X$ be the constant section determined by a K–point $x \in X(K)$.

See [4] for the following theorem.

Theorem 4.1. The line bundle $(F^*)^{\otimes \frac{1}{\delta}} \otimes (i_x^* \det(\mathcal{E}))^{\otimes \frac{1}{\delta}}$ descends to a line bundle on the coarse moduli space $M(r, \xi)$, where F is constructed in (4.1). Moreover, this descended line bundle is the ample generator of $\text{Pic}(M(r, \xi)) = \mathbb{Z}$.

Proposition 4.2. Using the above notation:

(i) \overline{T} is non–canonically isomorphic to the moduli stack of stable vector bundles on $X \times_K \overline{K}$ of rank r and determinant ζ for some fixed line bundle ζ. Further, if

$$Y \times_K \overline{K} \to X \times_K \overline{K}$$

is a neutral μ_r–gerbe, then $\text{degree}(\zeta) \equiv d \text{ mod } r$ for any such ζ.

(ii) $\text{Pic}(T) = \text{Pic}(\overline{T}) = \mathbb{Z}$.

(iii) The natural homomorphism $\text{Br}(K) \to \text{Br}(T)$ is injective.

Proof. (i): This is proved in [5 3.1.2.1].

(ii): This follows from statement (i) and Theorem [4.1].

(iii): This follows immediately from statement (ii) and the exactness of the following sequence:

$$0 \to \text{Pic}(T) \to \text{Pic}(\overline{T})^{\text{Gal}(K)} \to \text{Br}(K) \to \text{Br}(T).$$

This completes the proof of the proposition. \square

Proposition 4.3. Assume the μ_r–gerbe $Y \to X$ is a pull back of a μ_r–gerbe on $\text{Spec}(K)$ which defines a class of order r in $\text{Br}(K)$. For any K–point x in X, let

$$i_x : T \to T \times_K X$$

denote the corresponding section. Then the following two statements hold.
(i) The class in $Br(T)$ defined by the \mathbb{G}_m-gerbe $T \rightarrow T$ has order exactly equal to $\delta = \text{g.c.d.}(r, d)$.

(ii) The order of $i^*_x(\text{End}(E))$ is exactly equal to r.

Proof. Let γ denote the class of $T \rightarrow T$ in $Br(T)$. Let us first show that γ is annihilated by r. Consider the Azumaya algebra $\text{End}(E)$ on $T \times_K X$. The class of $i^*_x(\text{End}(E))$ in $Br(T)$ is $\gamma + \beta$ where $\beta \in Br(T)$ is the image, by the natural homomorphism $Br(K) \rightarrow Br(T)$, of the class in $Br(K)$ defined by the restriction of $Y \rightarrow X$ to x. We have $r \cdot \beta = 0$ because β is associated to a μ_r-gerbe. Moreover, $r \cdot (\gamma + \beta) = 0$ since $\gamma + \beta$ is represented by an Azumaya algebra of rank r^2. Thus $r \cdot \gamma = 0$.

Proof of (i): Note that after base field extension to \overline{K}, the image of γ in $Br(\overline{T})$ is precisely δ. Thus it is sufficient to show $\delta \cdot \gamma = 0$. There exists an integer m and a twisted vector bundle F on Y of rank r^m and trivial determinant. Consider the vector bundle

$$\mathcal{H} = E \otimes F^*$$

on $T \times Y$. This vector bundle descends to a vector bundle on $T \times X$. Also note that the class of $i^*_x(\text{End}(\mathcal{H}))$ in $Br(T)$ is precisely γ. Let $\pi : T \times X \rightarrow T$ denote the natural projection. \mathcal{H} can be thought of as a family of vector bundles on X parametrized by T. Since this family is bounded, there exists an integer m_0 such that for all $m \geq m_0$,

$$\mathcal{H} \otimes \Lambda^m$$

has no higher cohomology on fibers of π. The vector bundle

$$\pi^*(\mathcal{H} \otimes \Lambda^m)$$

is a twisted vector bundle on T of rank

$$d + rm + (r^m + r) \cdot (1 - g) .$$

Thus γ is annihilated by $d + rm + (r^m + r) \cdot (1 - g)$. We already know that it is annihilated by r. This proves $\delta \cdot \gamma = 0$.

Proof of (ii): Let $a(\gamma + \beta) = 0$. We will show a is divisible by r. Since the image of γ in $Br(\overline{T})$ has order δ and image of β in $Br(\overline{T})$ is zero, it follows that a is divisible by δ. Thus we get

$$a \cdot \beta = 0 .$$

By Proposition 4(ii), the order of the class β is r. Hence (4.2) implies that a is divisible by r. This completes the proof of the proposition. □

5. Proof of Theorem 1.3

Proof of (i): Let E be the universal vector bundle over $\mathcal{M}(r, \xi) \times X$. For any point $x \in X$, let $E_x \rightarrow \mathcal{M}(r, \xi)$ be the vector bundle obtained by restricting E to $\mathcal{M}(r, \xi) \times \{x\}$. Take two points $x, y \in X$. Note that the multiplicative action of k^* on E induces a trivial action of k^* on $E_x^* \otimes E_y$. Therefore, $E_x^* \otimes E_y$ descends to $\mathcal{M}(r, \xi)$. This descended vector bundle on $\mathcal{M}(r, \xi)$ will also be denoted by $E_x^* \otimes E_y$. Next we note that the action of Γ on
\(\mathcal{M}(r, \xi) \) lifts to an action of \(\Gamma \) on the vector bundle \(E^*_x \otimes E_y \). Let \(\mathcal{W} \) denote the vector bundle on \(\mathcal{U}_p \) defined by the \(\Gamma \)-equivariant vector bundle \(E^*_x \otimes E_y \). It is easy to see that the \(\text{PGL}(r^3, k) \)-bundle \(\mathcal{P}_p^0 \otimes \mathbb{P}(\mathcal{W}) \), where \(\mathcal{P}_p^0 \) is constructed in [3.4], is isomorphic to \(\mathcal{P}_p^{y,0} \otimes \mathbb{P}(\text{End}(E_x)) \), where \(\mathcal{P}_p^{y,0} \) is the projective bundle obtained by substituting \(x \) with \(y \) in the construction of \(\mathcal{P}_p^0 \). Consequently, the class \(\alpha \) in Theorem 1.3 is independent of \(x \). From [2] we know that \(\alpha \) maps to the generator of \(Br(\mathcal{M}(r, \xi)) \). Hence \(\alpha \) maps to \(1 \in \mathbb{Z}/\delta \mathbb{Z} \) in Theorem 1.2.

Proof of (ii): Let \(\mathcal{N}(r)_i \) be a connected component of \(\mathcal{N}(r) \) for \(i \in \mathbb{Z}/r \). To prove the theorem it is enough to construct a \(k \)-scheme \(T \) together with an Azumaya algebra \(B \) on \(T \times_k X \) such that

(i) \(B \) gives a family of stable \(\text{PGL}(r, k) \) bundles on \(X \) lying in component \(\mathcal{N}(r)_i \), and

(ii) if \(i_x : T \to T \times_k X \) is the section given by the point \(x \), then \(i_x^* B \) has order precisely \(r \) in \(Br(T) \).

We carry out this construction below.

We first claim that there is a field extension \(K/k \) such that \(Br(K) \) contains an element \(\beta \) of order \(r \). To prove this, take the purely transcendental extension \(K = k(x, y) \), and define \(\beta \) to be the class of the cyclic algebra \((x, y)_\zeta \), where \(\zeta \) is a primitive \(r \)-th root of unity. Note that \((x, y)_\zeta \) is a division algebra.

In an earlier version, we had a very long argument for the existence of \(K \) and \(\beta \). The above short argument was provided by the referee.

Define \(X_K := X \times_k K \). Let \(\beta' \) denote the pullback of \(\beta \) in \(Br(X_K) \). Since \(\beta' \) is of order \(r \), there is a \(\mu_r \)-gerbe

\[Y \to X_K \]

representing the class \(\beta' \). We fix the following notation:

- \(\mathcal{T} \) be the moduli stack of stable twisted rank \(r \) vector bundles on \(Y \) with determinant \(\mathcal{L} \), where \(\text{deg}(\mathcal{L}) \equiv i \mod r \).
- Let \(E \) be the universal bundle on \(\mathcal{T} \times_K Y \).
- Let \(\mathcal{T} \to T \) be the coarse moduli space of \(\mathcal{T} \).

Now \(\text{End}(E) \) descends to an Azumaya algebra on \(T \times_k X \). Since this is a stable family, we get a map \(T \to \mathcal{N}(r)_i \). The proof now follows from Proposition 4.3 since order of \(i_x^* \text{End}(E) \) in \(Br(T) \) is precisely \(r \). This completes the proof of the theorem. \(\square \)

Let \(S \) be a smooth variety defined over \(k \), with \(\text{dim } S \geq 1 \). Let

\[\mathbb{P}_S \to S \]

be a projective bundle of relative dimension \(r - 1 \). So \(\mathbb{P}_S \) defines an algebraic principal \(\text{PGL}(r, k) \)-bundle

\[E_{\text{PGL}(r, k)} \to S. \]
Let
\[\beta \in Br(S) \]
be the class defined by \(\mathbb{P}_S \). If the order of \(\beta \) is \(r \), then \(E_{PGL(r,k)} \) does not admit any reduction of structure group to any proper parabolic subgroup of \(PGL(r,k) \) over any nonempty open subset of \(S \) (see [2, p. 267, Lemma 2.1]).

Suppose there is an irreducible normal projective variety \(\overline{S} \) over \(k \) such that \(S \) is the smooth locus of \(\overline{S} \). Fix a polarization on \(\overline{S} \). Assume that the order of \(\beta \) in (5.2) is \(r \). Since \(E_{PGL(r,k)} \) does not admit any reduction of structure group to any proper parabolic subgroup of \(PGL(r,k) \) over any nonempty open subset of \(S \), the principal \(PGL(r,k) \)–bundle in (5.1) is stable.

Consider \(N^0(r) \) defined in (1.2). Let
\[F_{PGL(r,k)} \to N^0(r) \]
be the principal \(PGL(r,k) \)–bundle obtained by pulling back the universal projective bundle using the map \(i_x \) in Theorem 1.3 (recall that \(N^0(r) \) is isomorphic to \(N^0(r) \)). From the second part of Theorem 1.3 (combined with Proposition 1.1) we have the following corollary:

Corollary 5.1. The principal \(PGL(r,k) \)–bundle \(F_{PGL(r,k)} \to N^0(r) \) is stable.

REFERENCES

[1] V. Balaji, I. Biswas, D. S. Nagaraj and P. E. Newstead, Universal families on moduli spaces of principal bundles on curves, *Int. Math. Res. Not.* (2006), Article Id 80641, doi:10.1155/IMRN/2006/80641.

[2] V. Balaji, I. Biswas, O. Gabber and D. S. Nagaraj, Brauer obstruction for a universal vector bundle, *Comp. Rend. Math. Acad. Sci. Paris* 345 (2007), 265–268.

[3] A. Beauville, Y. Laszlo and C. Sorger, The Picard group of the moduli of \(G \)–bundles on a curve, *Compos. Math.* 112 (1998), 183–216.

[4] J.-M. Drezet and M. S. Narasimhan, Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques, *Invent. Math.* 97 (1989), 53–94.

[5] M. Lieblich, Moduli of twisted sheaves, *Duke Math. Jour.* 138 (2007), 23–118.

[6] M. S. Raghunathan, Universal central extensions (Appendix to “Symmetries and quantization”), *Rev. Math. Phy.* 6 (1994), 207–225.

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India

E-mail address: indranil@math.tifr.res.in

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India

E-mail address: amit@math.tifr.res.in