The TCH Machine Translation System for IWSLT 2008

Haifeng Wang

Toshiba (China) R&D Center
Oct. 20, 2008
Outline

• Overview
• Modules
 – Dictionary, segmentation, alignment, NE
 – LM, Punctuation and case restoration
• Tasks
 – CE: CT, BTEC
 – EC: CT
 – CS: BTEC
 – CES: PIVOT
• Evaluation Results
• Summary
Introduction

• Tasks
 – BTEC tasks: BTEC_CE, BTEC_CS
 – Challenge tasks: CT_CE, CT_EC
 – Pivot task: PIVOT_CES

• Methods
 – SMT
 – RBMT
 – Pivot SMT
 – Combination
 – Module improvement

• Resources
 – Supplied resources provided for each data track
 – Other publicly available resources
MT Methods

• SMT
 – Phrase-based SMT: Moses
• Pivot SMT
 (Wu and Wang, ACL 2007)
 – Phrase translation probability
 – Lexical weight
• RBMT
 – Publicly available software: Dr. eye
• Combination of RBMT and SMT
 (Hu, Wang and Wu, EMNLP 2007)
 – Using SMT system as the main MT system
 – Using RBMT system to produce synthetic bilingual corpus
 – The SMT system is trained using both real and synthetic corpus
• Translation selection
 – 5-gram LM method (Chen et al. IWSLT 2006)
 – Target sentence average length method
Modules

- Dictionary
- Chinese Word Segmentation
- Word Alignment
- Named Entity Translation
- Language Model
- Punctuation Restoration
- Case Restoration
Bilingual Dictionary

- Existed bilingual dictionary
 - General dictionary
 - LDC Chinese-English translation lexicon
 - NE dictionary
 - LDC Chinese <-> English Name Entity Lists
 - Person names and location names

- Dictionary extracted from corpus
 - Automatically extracted from in-domain corpus
 - Bidirectional word alignment
 - Filtering
 - Translation probability
 - Co-occurring frequency
 - Check
Chinese Monolingual Dictionary

• Dictionaries
 – General dictionary
 • Extracted from LDC Chinese-English lexicon
 – NE dictionary
 • Extracted from LDC Chinese-English NE list
 – In-domain dictionary
 • Extracted from in-domain corpus

• Word granularity
 – Tune the word unit referring to its translation in target language
 • Word
 • Multi-word expression
Chinese Word Segmentation

- Initial experiments
 - Segmentation ambiguity in domain-specific spoken language is not serious

- Segmentation method
 - Forward maximum-matching
 - Basic segmentation method
 - Back one character method
 - To identify ambiguous fragment
 - Ambiguous fragments database
 - For disambiguation

- Word normalization
 - To deal with data sparseness
 - Extract a synonym list from translation dictionary and corpus
 - Only used when Chinese is source language
Word Alignment

• Alignment algorithm
 – Bidirectional word alignment using IBM models
 – Keep links in the intersection set
 – Keep links occurring in bilingual dictionaries
 – Delete links conflicting with the links in the final alignment set
 – Keep remained links
 – Different alignment heuristics
 • Grow-diag (CE, CS), grow (EC), grow-diag-final (ES)

• Resources
 – Bilingual corpus
 – General dictionary
 – Domain-specific dictionary
Named Entity Translation

• NE recognition and translation

Method	Digit	Date	Time	Person name	Location name
Rule	Rule	Rule	Rule	Dictionary	Dictionary

• NE processing in SMT
 – Training
 • Replace NEs in the training data with NE tags
 • Train model on the data with NE tags
 – Translating
 • Replace NEs in the input sentence with NE tags
 • Translate
 • Restore the NE tags with their translations
Language Model

• In-domain corpus
 – Target language part of the provided corpus for a given track

• Out-of-domain corpus
 – Publicly available corpus
 – Selection
 • Perplexity
 • Sentence
 • Using the in-domain LM

• Interpolation
 – Linear interpolation using SRILM
 – Weight tuned on development sets
Punctuation Restoration

• Restore punctuation in source language
• English
 – Hidden-ngram (SRILM toolkit)
 – Rules
 • By hand
 • Based on some keywords, e.g. a sentence begin with “could”
• Chinese
 – Maximum entropy model
 – 2 steps
 • Position determination
 • Punctuation determination
 – Features
 • Words around a boundary
 • Words at the beginning or end of a sub-sentence
Case Restoration

- Restore case in target language
 - English
 - Spanish

- Method
 - recaser
 - In the training scripts of Moses
 - As a MT problem
 - Trained on the corpus with case information
 - Lexicon based post-processing
 - To process English words that should be capitalized
 Such as proper nouns
 - The lexicon is extracted from some available resources
 Such as training text in respective tasks, HIT corpus, Tanaka corpus
Tasks

• Five tasks
 – Chinese-English
 • Challenge task (CT_CE)
 • BTEC task (BTEC_CE)
 – English-Chinese
 • Challenge task (CT_EC)
 – Chinese-Spanish
 • BTEC task (BTEC_CS)
 – Chinese-English-Spanish
 • Pivot task (PIVOT_CES)

• Input
 – Spontaneous speech (SS)
 – Read speech (RS)
 – Correct recognition result (CRR)
Chinese-English Tasks – Data

- **Dictionary**

Type	General	Domain	NE
Source	LDC2002L27	Extracted from In-domain corpus	LDC2005T34
Number	54,170	38,620	47,692

- **Training Corpus**

Corpus	BTEC	HIT	CLDC	Tanaka
# sentence pairs	19,972	80,868	200,732	149,207
# source words	177,168	802,454	2,113,534	-
# target words	182,627	822,508	2,096,731	1,351,645

- Selection and preprocessing
- **Development set**
 - devset1, devset2, devset4
- **Test set**
 - devset3 (2005), devset5 (2006), devset6 (2007)
Chinese-English Tasks – Experimental Results

Results (Case sensitive BLEU score, CRR input)

	devset3	devset5	devset6
RBMT	0.4253	0.2020	0.2086
Baseline	0.5186	0.2013	0.2807
Our segmenter	0.5425	0.2047	0.3029
+HIT	0.5697	0.2323	0.3416
+Dic	0.5819	0.2375	0.3456
+NE	0.5838	0.2396	0.3537
+CLDC	0.5891	0.2445	0.3554
+RBMT	0.6091	0.2536	0.3570
+LM Inter.	0.6223	0.2516	0.3823

Translation selection

- **Mert**
 - Default: default in Moses
 - Mert1: best on devset5
 - Mert2: Stable
- **Selection metric: voting, length**

	devset3	devset5	devset6
Default	0.5927	0.2547	0.3453
Mert1	0.6061	0.2679	0.3837
Mert2	0.6274	0.2551	0.3863
Select	0.6260	0.2627	0.3882
English-Chinese Tasks – Data

- Dictionary
 - General dictionary, domain dictionary, NE dictionary
 (Same as CE tasks)
- Training Corpus

Corpus	BTEC	HIT
# sentence pairs	19,972	89,318
# source words	189,041	945,010
# target words	178,339	914,121

- Selection
- Preprocessing
 - English abbreviation restoration
 - Without Chinese word normalization

- Development and test set
 - devset, devset3
 - No MERT
English-Chinese Tasks – Experimental Results

Results

	devset3	devset
RBMT	0.4362	0.4425
Baseline	0.4455	0.4511
Our segmenter	0.4528	0.4564
+Dic	0.4551	0.4684
+NE	0.4558	0.4773
+HIT	0.4830	0.5325
+RBMT	0.5131	0.5426
+Select	0.5133	0.5551

Translation selection

- **2 Candidates**
 - Without RBMT
 - With RBMT
- Selection metric: LM
Chinese-Spanish Tasks

• Training Corpus
 – BTEC data provided for this task
 – Preprocessing similar as CE task

• Dictionary
 – Extracted from the training corpus (9990 entries)

• Test set
 – Devset3

• Post-processing
 – Rule-based, such as question mark "?" and "¿"

• Experimental Results

	Baseline	Our segmenter	+dic
BLEU	0.3596	0.3726	0.3839
Chinese-English-Spanish – Data

• Dictionary
 – LDC CE dictionary
 – CE dictionary extracted from BTEC and HIT CE corpus (39010)
 – ES dictionary extracted from BTEC and Europarl ES corpus (10426)

• Training Corpus

Corpus	BTEC CE	HIT CE	BTEC ES	Europarl ES	Tanaka
# sentence pairs	20,000	80,868	19,972	400,000	149,207
# source words	164,957	802,454	182,627	8,485,253	-
# target words	182,793	822,508	185,527	8,219,380	1,351,645

 – Selection and preprocessing

• Test set
 – devset3
Chinese-English-Spanish – Experimental Results

• Results

	Baseline	+dic+HIT+Europarl	+RBMT
Pivot model	0.2791	0.3616	0.4136
Transfer model	0.3243	0.4139	0.4423
Trans. selection	-	-	0.4510

• RBMT
 – Translate the English part of ES corpus into Chinese -> synthetic CE corpus
 – Synthetic CE corpus is used in pivot and transfer model

• Transfer model is better than pivot model
 – CE translation is quite good (0.6024)
 – English and Spanish are more similar than Chinese and Spanish
 – pivot model contains much more noise than the transfer model

• Translation selection
 – Selection metric: length
IWSLT 2008 Evaluation Results

	\([\text{Bleu + Meteor}}/2\)	Bleu	Meteor	Human Eval.
CT_EC				
SS	0.5647	0.4818	0.6476	0.3906
CRR	0.6566	0.5912	0.7219	-
CT_CE				
SS	0.5257	0.4166	0.6347	0.4516
CRR	0.5909	0.4980	0.6837	-
BTEC_CE				
RS	0.5358	0.4474	0.6241	0.4730
CRR	0.5887	0.5085	0.6688	-
BTEC_CS				
RS	0.3273	0.3218	0.3328	0.4316
CRR	0.3597	0.3582	0.3611	-
PIVOT_CES				
RS	0.3620	0.3657	0.3583	0.4624
CRR	0.4044	0.4157	0.3931	-
Summary

• Tasks
 – BTEC_CE, BTEC_CS, CT_CE, CT_EC, PIVOT_CES

• Resources
 – Supplied resources provided for each data track
 – Other Publicly available resources

• Methods
 – Adaptation of Chinese word segmentation
 – Word alignment refinement using dictionary and various heuristics
 – Named entities translation
 – Additional corpus (In-domain, Out-of-domain)
 – Combination of SMT and RBMT
 – Translation selection
Thanks!