We describe the main ideas of Ray Heitmann’s proof of the Direct Summand Conjecture in dimension 3 for a ring of mixed characteristic \([1]\). In the first section we describe the main methods which are used and prove the necessary lemmas. In the second section we prove the main result of Heitmann’s paper. Finally, in the third section we give a proof of the Canonical Element Conjecture using this result.

1. AN OUTLINE OF THE METHODS USED IN THE PROOF

Let \(R\) be a Noetherian local ring of mixed characteristic \(p\) of dimension 3. We assume that \(R\) is an integrally closed domain and is a homomorphic image of a regular local ring. In fact, the questions we consider can be reduced to the case of a complete integrally closed domain, and complete local rings are homomorphic images of regular local rings by the Cohen structure theorems.

Let \((p, x, y)\) be a system of parameters for \(R\). Let \(z\) be an element of \(R\) such that \(p^Nz \in (x, y)\). The aim is to find a finite extension of \(R\) in which \(z\) is in the ideal generated by \(x\) and \(y\). If this is always possible, then it is not difficult to prove the Direct Summand Conjecture (or any of several equivalent conjectures). This aim is not quite reached, but a weaker result, which is also enough to prove these conjectures, is proven instead. However, to motivate the construction in the proof, we first discuss the question of attempting to find an extension in which \(z \in (x, y)\).

We assume throughout that \(R\) is an integrally closed domain.

The equation for which we are trying to find a solution is

\[
z = wx + vy,
\]

where \(w\) and \(v\) are in a finite extension of \(R\). This means that \(w\) is integral over \(R\), so it is a root of a polynomial

\[
f(T) = T^n + a_1T^{n-1} + \cdots + a_n
\]

with coefficients in \(R\). Since \(z, x,\) and \(y\) are in \(R\), we can solve the equation \(z = wx + vy\) for \(v\), and \(v\) will be in the field generated by \(w\) over the quotient field of \(R\):

\[
v = \frac{z - wx}{y}.
\]

From this equation we can use Taylor’s formula to find a polynomial \(h(T)\) whose root is \(v\), as we show below. If we can find a polynomial \(f(T)\) such that the corresponding polynomial \(h(T)\) with root \(v\) also has coefficients in \(R\), we have solved the problem, since then both \(w\) and \(v\) are integral over \(R\).

Suppose that \(f(T) = T^n + a_1T^{n-1} + \cdots + a_n\) is a polynomial such that \(f(w) = 0\). We show how to find the polynomial \(h(T)\) with root \(v\). Let \(F(S, U)\) be \(f(T)\) made
homogeneous; that is, if \(f(T) = T^n + a_1T^{n-1} + \cdots + a_n \), we let
\[
F(S, U) = S^n + a_1S^{n-1}U + \cdots + a_nU^n.
\]

By Taylor’s Theorem, we have
\[
F(S - T, U) = \sum_{i=0}^{n} (-1)^i \frac{1}{i!} F^{(i)}(S, U) T^i,
\]
where \(F^{(i)}(S, U) \) denotes the \(i \)th derivative of \(F(S, T) \) with respect to the first variable. We will use this notation for the derivative of a homogeneous polynomial with respect to the first variable, and we will refer to it as the derivative of the polynomial, throughout the paper. Applying this equation with \(S = z, T = z - wx \), and \(U = x \) we obtain
\[
F(z - (z - wx), x) = \sum_{i=0}^{n} (-1)^i \frac{1}{i!} F^{(i)}(z, x)(z - wx)^i.
\]

On the other hand, we have
\[
F(z - (z - wx), x) = F(wx, x) = x^n F(w, 1) = x^n f(w) = 0.
\]

Hence if we let
\[
b_i = (-1)^{n-i} \frac{1}{(n-i)!} F^{(n-i)}(z, x)
\]
and let
\[
g(T) = T^n + b_1T^{n-1} + \cdots + b_n,
\]
then \(g(z - wx) = 0 \). Finally, if we let \(c_i = b_i/y^i \) and \(h(T) = T^n + c_1T^{n-1} + \cdots + c_n \), then \(h((z - wx)/y) = 0 \).

To summarize, we wish to find a polynomial \(f(T) \) with coefficients in \(R \) so that the resulting polynomial \(h(T) \) also has coefficients in \(R \). Tracing back through the construction of \(h(T) \), we see that this means that
\[
\frac{1}{(n-i)!} F^{(n-i)}(z, x) \in y^i R
\]
for \(i = 0, \ldots, n \).

The strategy is to start with \(\frac{1}{(n-1)!} F^{(n-1)}(z, x) \), which is the next to the last term in the Taylor expansion, and construct the previous terms inductively, essentially by integration, finally ending up with a polynomial of degree \(n \) with the required properties.

Before continuing the discussion, we recall some facts about the coefficients which arise in the Taylor expansion and introduce some notation. Let \(f(T) = \sum_{k=0}^{n} a_k T^{n-k} \) as above. Then
\[
\frac{1}{(n-i)!} f^{(n-i)}(T) = \sum_{j=0}^{i} \binom{n-j}{i-j} a_j T^{i-j}.
\]

To see this, simply compute both sides for \(f(T) = a_j T^{n-j} \): in computing the left hand side we obtain
\[
\frac{(n-j)(n-j-1)\cdots(n-j-(n-i)+1)}{(n-i)!} a_j T^{n-j-(n-i)} = \binom{n-j}{n-i} a_j T^{i-j} = \binom{n-j}{i-j} a_j T^{i-j}.
\]
While this fact is quite straightforward, we mention it explicitly to explain our interest in binomial coefficients of the form \(\binom{n-j}{i-j} \), for example in Lemma 3.

Applying equation (1) to the polynomial \(F(S,U) \) evaluated at \(z,x \), we have

\[
\frac{1}{(n-i)!} F^{(n-i)}(z, x) = \sum_{j=0}^{i} \binom{n-j}{i-j} a_j z^{i-j} x^j.
\]

Since the main step in the construction involves integration and adjusting constants, we introduce special notation for it. Given a homogeneous polynomial \(G(S,U) = \sum_{j=0}^{i} a_j S^{i-j} U^j \) of degree \(i \) and an integer \(n > i \), we let

\[
\text{Int}_n(G)(S,U) = (n-i) \sum_{j=0}^{i} a_j \left(\frac{s^{i-j+1}}{i-j+1} \right) U^j.
\]

This definition depends not only on \(G(S,U) \), but also on \(n \); in fact, we are thinking of \(G(S,U) \) as the \((n-i)\)th term in the Taylor expansion of a polynomial of degree \(n \), and \(\text{Int}_n(G)(S,U) \) is then a candidate for the previous term; it is in fact the unique choice with coefficient of \(U^{i+1} \) equal to zero. That is the reason for including the factor \(n-i \).

We now return to the main discussion. We have a system of parameters \(p, x, y \) for \(R \) and an element \(z \) with \(p^N z + ax \in yR \). We want to find a homogeneous polynomial \(F(S,U) \) of degree \(n = p^L \) for some \(L \) such that

\[
\frac{1}{(n-i)!} F^{(n-i)}(z, x) \in y^i R
\]

for \(i = 0, \ldots, n \). Since \(n = p^L \), for \(i = 1 \) this expression becomes

\[
\frac{1}{(n-1)!} F^{(n-1)}(z, x) = \left(\begin{array}{c} p^L \\ 1 \end{array} \right) z + \left(\begin{array}{c} p^L - 1 \\ 0 \end{array} \right) a_1 x = p^L z + a_1 x.
\]

From the above condition on \(z \), if we let \(L = N \) and \(a_1 = a \), we have

\[
p^L z + a_1 x \in yR,
\]

which is the required condition for \(i = 1 \). We let \(F_1(S,U) = p^L S + a_1 U \).

As stated above, we wish to construct \(F(S,U) \) by repeated integration. If we knew that \(\text{Int}_{p^L}(F_1)(z,x) \) were in the ideal \((x^2, y^2) \), we could find an element \(a_2 \) such that

\[
\text{Int}_{p^L}(F_1)(z,x) + a_2 x^2 = \left(\begin{array}{c} p^L \\ 2 \end{array} \right) z^2 + \left(\begin{array}{c} p^L - 1 \\ 1 \end{array} \right) a_1 zx + \left(\begin{array}{c} p^L - 2 \\ 0 \end{array} \right) a_2 x^2 \in y^2 R.
\]

and continue the construction. Unfortunately, this is not necessarily possible (we recall that although we are discussing the question of trying to show that \(z \in (x,y)R' \) for a finite extension \(R' \) of \(R \), the actual result we prove is somewhat weaker). However, the next lemma shows that although we cannot solve this problem in \(R \), we can solve it in \(R[p^{-1}] \).

Lemma 1. Let \(\bar{R} \) be a ring which contains a field of characteristic zero, and let \(H(S,T) \) be a homogeneous polynomial of degree \(n \) with coefficients in \(\bar{R} \). Suppose that \(x,y,z \) are elements of \(\bar{R} \) such that \(z \in (x,y) \) and such that

\[
H^{(n-i)}(z, x) \in y^i \bar{R} \quad \text{for} \quad i = 0, \ldots, n-1.
\]
Then

\[H(z, x) \in (x^n, y^n). \]

Proof. Since \(z \in (x, y) \), we can write \(z = cx - dy \) for some \(c \) and \(d \) in \(\tilde{R} \). Using Taylor's formula, we have

\[H(S + T, U) = \sum_{i=0}^{n} \frac{1}{(n-i)!} H^{(n-i)}(S, U) T^n - i. \]

We apply this formula with \(S = z, U = x \), and \(T = dy \), giving

\[H(z + dy, x) = \sum_{i=0}^{n} \frac{1}{(n-i)!} H^{(n-i)}(z, x) (dy)^{n-i}. \]

Since \(H^{(n-i)}(z, x) \in y^i\tilde{R} \) for \(i = 0, \ldots, n - 1 \), each term in the sum on the right is in \(y^n\tilde{R} \) except possibly the term with \(i = n \), which is \(H(z, x) \). Hence we can write

\[H(z + dy, x) = H(z, x) + ay^n \]

for some \(a \in \tilde{R} \). Since \(z = cx - dy \), we also have

\[H(z + dy, x) = H(cx, x) = x^n H(c, 1) \in x^n\tilde{R}. \]

Thus

\[H(z, x) = H(z + dy, x) - ay^n \in (x^n, y^n). \]

Let \(u_2 = \text{Int}_{p^L} F_1(z, x) \) as above. Then Lemma 1 implies that \(u_2 \in (x^2, y^2) R[p^{-1}] \), so there is an integer \(D \) such that \(p^L u_2 \in (x^2, y^2) \). The main part of the proof consists of adjusting \(u_2 \) so that it lies in \((x^2, y^2) \) (and similarly adjusting the corresponding element at the \(i \)th stage so that it lies in \((x^i, y^i) \)). There are essentially three possibilities:

1. The element \(u_2 \) itself lies in \((x^2, y^2) \). In this case, as outlined above, there is no problem.
2. There is an element \(c \in R \) such that \(u_2 \equiv cxyz \) modulo\((x^2, y^2)\). We recall that we had \(p^L z \in (x, y) \), so \(p^L xyz \in (x^2, y^2) \). In this case, we can add \((-c)xyz\) to \(u_2 \) and proceed as before (we will explain this in detail below).
3. The first two possibilities do not apply. In this case we have to multiply \(u_2 \) by a power of \(p \). We recall that \(L \) was chosen so that \(p^L z \in (x, y) \). Now we are raising the power of \(p \) needed, and we have to increase \(L \). Thus we are now looking for a polynomial of larger degree.

These three procedures form the basis of the construction. One of the main facts which makes this construction work is that after a certain point the third case will no longer occur. The lemma we use here is the following.

Lemma 2. Let \(R \) be a ring as above. For each \(i \), let

\[J_i = \{ r \in R | p^N r \in (x^i, y^i) \text { for some } N \}. \]

Let \(Q_i = J_i / (x^i, y^i) \). Then

1. \(Q_i \) has finite length for all \(i \).
2. There exists an integer \(n \) such that for all \(k \geq n \), the map from \(Q_n \) to \(Q_k \) induced by multiplication by \(x^{k-n} y^{k-n} \) is an isomorphism.
Proof. The fact that \(Q_i \) has finite length follows immediately from the fact that \(p, x, y \) is a system of parameters.

Since \(x, y \) form part of a system of parameters and \(R \) is assumed to be integrally closed, \(x, y \) form a regular sequence. It follows that the map from \(Q_n \) to \(Q_k \) induced by multiplication by \(x^{k-n}y^{k-n} \) is always injective. To prove the second statement it must be shown that this map is also surjective for large enough \(n \).

To prove this assertion we use the fact that the local cohomology module \(H^2_m(R) \) has finite length, which follows from the assumptions we have made on \(R \). More specifically, since \(R \) is an integrally closed domain of dimension three, its non-Cohen-Macaulay locus is supported at the maximal ideal. It then follows from local duality and the assumption that \(R \) is a homomorphic image of a regular local ring that the local cohomology module \(H^2_m(R) \) has finite length (see [2], section 3.5). We remark that this is the only place where the assumption that \(R \) is a homomorphic image of a regular local ring is used.

The local cohomology module can be computed as the homology of the sequence

\[
R_p \times R_x \times R_y \xrightarrow{d_1} R_{px} \times R_{py} \times R_{xy} \xrightarrow{d_2} \frac{R_{pxy}}{},
\]

where the first map sends \((\alpha_1, \alpha_2, \alpha_3)\) to \((\alpha_1 - \alpha_2, \alpha_3 - \alpha_1, \alpha_2 - \alpha_3)\), and the second map sends \((\beta_1, \beta_2, \beta_3)\) to \(\beta_1 + \beta_2 + \beta_3\). Since \(H^2_m(R) \) is finitely generated, there is an integer \(n \) such that \(H^2_m(R) \) is generated by elements which can be written in the form

\[
\left(\frac{a}{(px)^n}, \frac{b}{(py)^n}, \frac{c}{(xy)^n} \right).
\]

Let \(k \geq n \). Let \(r \) be an element of \(R \) and \(N \) an integer such that

\[
p^N r = sa^k + ty^k
\]

for \(s \) and \(t \) in \(R \). We then have that the element

\[
\left(\frac{-t}{p^N x^k}, \frac{-s}{p^N y^k}, \frac{r}{x^k y^k} \right) \in R_{px} \times R_{py} \times R_{xy}
\]

is in the kernel of \(d_2 \). By our choice of \(n \), there is an element of the form

\[
\left(\frac{a}{(px)^n}, \frac{b}{(py)^n}, \frac{c}{(xy)^n} \right)
\]

such that the difference between this element and our original one is in the image of \(d_1 \). Looking at the third component, we can thus find an integer \(m \) and \(e, f \in R \) with

\[
\frac{r}{x^k y^k} - \frac{c}{(xy)^n} = \frac{e}{x^m} - \frac{f}{y^m}.
\]

Multiplying this equation by \(x^{k+m}y^{k+m} \), we obtain

\[
x^m y^m (r - cx^{k-n} y^{k-n}) \in (x^{k+m}, y^{k+m}).
\]

Since the map induced by multiplication by \(x^m y^m \) from \(R/(x^k, y^k) \) to \(R/(x^{k+m}, y^{k+m}) \) is injective, we can thus conclude that the image of \(r \) in \(R/(x^k, y^k) = Q_k \) is equal to \(x^{k-n} y^{k-n} \) times the image of \(e \) in \(R/(x^n, y^n) = Q_n \). Thus the map induced by multiplication by \(x^{k-n} y^{k-n} \) from \(Q_n \) to \(Q_k \) is surjective.

The proof of the main theorem of this paper proceeds by repeating the process of integrating as we have outlined in the construction of \(F_2 \) from \(F_1 \) above. In the process, we obtain elements \(z_i \) at stage \(i \) and attempt to add a \(U^i \) term in such a way to assure that if \(F_i(S, U) \) is the new polynomial, we have \(F_i(z, x) \in y^l R \).
At each stage there are three cases as above. If the first case holds, there is no problem. If the second case holds, we adjust z_i and show that we can still continue as before. If we are in the third case, we have to multiply by a power of p and it is necessary to increase L. Using lemma 2, we can show that eventually the third case will not occur.

The other thing we have to keep track of is the divisibility of binomial coefficients by powers of p. For this we introduce the function τ defined as follows. Let $\tau(n)$ equal the sum of digits of $n-1$ in its p-adic expansion. Then let $\tau(n) = \tau(n)/(p-1)$. We let $\tau(1) = 0$. We note that $\tau(n)$ is a rational number with denominator dividing $p-1$, and we emphasize the fact that $\tau(n)$ is defined by the p-adic expansion of $n-1$ rather than that of n.

As an example, we compute $\tau(p^n)$ and $\tau(p^n + 1)$. Since the p-adic expansion of $p^n - 1$ consists of n digits each equal to $p-1$, we have $\tau(p^n) = n(p-1)/(p-1) = n$.

The p-adic expansion of p^n consists of a 1 followed by n zeros, so $\tau(p^n + 1) = 1/(p-1)$.

We next compute the difference $\tau(n) - \tau(n-1)$ for any $n > 1$. Let a be the largest integer for which p^a divides $n-1$ (a will be zero if p does not divide $n-1$). Then the last a digits of the p-adic expansion of $n-2$ are equal to $p-1$ and the $a+1$ digit is less than $p-1$. Thus when we add 1 to $n-2$, the last a digits are replaced with zeros and the $a+1$ digit is increased by 1. Hence we have

$$\tau(n) - \tau(n-1) = \frac{1}{p-1} - a. \quad (1)$$

The connection between τ and binomial coefficients comes from the following lemma. In this lemma and the following discussion we use the notation $p^k||n$ to mean that p^k is the highest power of p which divides n.

Lemma 3. Let $0 < j \leq i \leq p^L$ be integers. Then $p^k || \binom{p^L - j}{i - j}$, where

$$k = \tau(j) + \tau(i - j + 1) - \tau(i).$$

Proof We fix j and L and prove the result by induction on i. If $j = i$, then

$$\binom{p^L - j}{i - j} = 1$$

and $\tau(j) + \tau(i - j + 1) - \tau(i) = \tau(j) + \tau(1) - \tau(j) = 0$; since the highest power of p which divides 1 is p^0, the result is true in this case.

Now assume that $j < i \leq p^L$ and that the result is true for $i - 1$. We compute how each side of the equation changes when we go from $i-1$ to i.

For the left hand side, we compute

$$\binom{p^L - j}{i - j} = \frac{p^L - j}{(i-1) - j} \times \frac{p^L - j - (i-j) + 1}{i-j} =$$

$$= \frac{p^L - j}{(i-1) - j} \times \frac{p^L - i + 1}{i-j}.$$

Hence the highest power of p which divides this binomial coefficient remains the same unless p divides $p^L - i + 1$ or p divides $i - j$. Let $p^a || (p^L - i + 1)$ and $p^b || (i - j)$. Then we obtain the highest power of p dividing $\binom{p^L - j}{i - j}$ from that for

$$\binom{p^L - j}{(i-1) - j}$$

by adding $a - b$.

We now compute how $\tau(j) + \tau(i - j + 1) - \tau(i)$ changes as we pass from $i - 1$ to i. We have

$$[au(j) + \tau(i - j + 1) - \tau(i)] - [\tau(j) + \tau(i - 1) - j + 1] - \tau(i - 1)] = [\tau(j) + \tau(i - j + 1) - \tau(i)] - [\tau(j) + \tau(i - j) - \tau(i - 1)]$$

We will now express this difference using the a and b defined earlier in the proof. We have defined b by the condition $p^b \parallel (i - j)$ and a by the condition $p^a \parallel (p^L - i + 1)$. However, since $0 < j < i \leq p^L$, we have $0 < i - 1 < p^L$, and thus we also have $p^a \parallel (i - 1)$. Hence from equation 1 we obtain

$$[\tau(i - j + 1) - \tau(i)] - [\tau(i)] - \tau(i - 1)] = \frac{1}{p - 1} - b \left(\frac{1}{p - 1} - a\right) = a - b.$$

This is the same quantity as we computed for the left hand side of the equation, so this proves the lemma by induction.

The above proof of Lemma 3 is the shortest way to obtain the result we need for binomial coefficients that appear in Taylor expansions but it may appear somewhat unmotivated. We outline the steps of a more natural approach to this result.

We let σ_p denote the function given by $\sigma_p(n) = \tau(n)$ the sum of the digits in the p-adic expansion of n for an integer $n \geq 0$; note that we thus have $\tau(n) = \sigma_p(n)/pq^1$.

1. Show by induction that $p^a/n!$ where $a = \sigma_p(n)/(p-1)$.
2. Use step 1 to derive a formula for the highest power of p that divides the binomial coefficient $\binom{n}{k}$ for integers $0 \leq k \leq n$.
3. Apply the formula from step 2 to compute the highest power of p that divides $\binom{p^L - j}{i - j}$ and prove Lemma 3.

2. Proof of the Main Theorem.

Theorem 1. (Heitmann) Let R be an integrally closed local domain of mixed characteristic p and of dimension 3. Let p, x, y be a system of parameters for R. Assume that R contains an element σ such that $\sigma^{p-1} = 1$. Let z be an element of R and N a positive integer such that $p^N z \in (x, y)$. Then for any rational number $\epsilon > 0$, there exists a finite extension R' of R in which $p^\epsilon z \in (x, y)R'$.

The main idea, as in the analogous situation explained in the previous section, is to prove the existence of a monic polynomial $f(T)$ satisfying conditions which imply that if w is a root of $f(T)$, then $p^\epsilon w$ will be integral over R, and if we let v be the element such that $p^\epsilon z = p^\epsilon wx + p^\epsilon vy$, then $p^\epsilon v$ is also integral over R. We next prove the main lemma which shows that this can be done.

We remark that the reason for requiring that R contain the element σ is that we will need to define powers p^r of p where r is a rational number of the form $n/(p-1)$ for some integer n. We can then define $p^r = p^{n/(p-1)} = a^n$.

Lemma 4. Let $R, p, x, y,$ and z be as in the statement of Theorem 1, and let K be a positive integer. Then there exists an integer L and a polynomial

$$f(T) = T^{p^L} + a_1 T^{p^{L-1}} + \cdots + a_p,$$

satisfying the following conditions:

1. $a_j \in p^{K-\tau(i)}$ for $j = 1, \ldots, p^L$.
2. If we let $F(S,U) = S^{p^k} + a_1 S^{p^{k-1}} U + \cdots + a_p U^p$ as in the previous section, we have

$$F^{(k)}(z,x) \in y^{p^L-k} R[p^{-1}]$$

for $k = 0, \ldots, p^L$.

Proof. We fix a positive integer K.

As outlined in the previous section, we construct the polynomial $F(S,U)$ inductively starting with degree 1. Throughout the construction we will make use of the quantity E_i defined by the formula

$$E_i = K - \tau(i) + \tau(2).$$

Note the E_i is a rational number with denominator dividing $p - 1$ and that it can be positive or negative.

We now state the situation we have after the ith step precisely. We assume that we have, for each integer k with $1 \leq k \leq i$,

1. A homogeneous polynomial $F_k(S,U)$ of degree k,
2. an integer $L_k > K$ with $p^{L_k} > k$ for all $k < i$ (we may have $p^{L_i} = i$; in that case L_i will be the L of the Lemma and we will be done),
3. an element z_k in R with $p^{N_k} z_k \in (x^k, y^k)$ for some integer N_k.

Furthermore, these polynomials, elements of R, and integers will satisfy the following conditions:

(A) The coefficient of S^k in $F_k(S,U)$ is $\binom{p^{L_k}}{k}$. Thus we can write

$$F_k(S,U) = \binom{p^{L_k}}{k} S^k + \binom{p^{L_k}-1}{k-1} a_{k1} S^{k-1} U + \cdots + \binom{p^{L_k}-k}{0} a_{k(k-1)} U^k,$$

where the a_{kj} are elements of $R[p^{-1}]$ but may not be in R.

(B) For $j = 1, \ldots, k$ we have $a_{kj} \in p^{K-\tau(j)}$.

(C) $F^{(m)}(z,x) \in y^{k-m} R[p^{-1}]$ for $m = 0, \ldots, k$.

(D) If we let $G_1(S,U) = S$ and $G_k(S,U) = p^{-E_k} \text{Int}_{p^{L_k-1}} F_{k-1}(S,U)$ for $2 \leq k \leq i$, then $G_i(z,x) = z_i$.

This is a lengthy induction hypothesis; however, the induction step is itself quite complicated and this information from previous steps is used.

We now do the first step, where $i = 1$. By hypothesis, there is nonnegative integer $N_1 > 0$ such that $p^{N_1} z \in (x, y)$, so we can find an $a \in R$ such that $p^{N_1} z + ax \in yR$. Multiplying this expression by p^K we have that $p^{N_1+K} z + p^K a \in yR$. We let $L_1 = N_1 + K$ and $a_{11} = p^K a$, and we define

$$F_1(S,U) = p^{N_1+K} S + p^K a U = p^{L_1} S + a_{11} U.$$

Then F_1 is a homogeneous polynomial of degree 1 as required. Let $z_1 = z$. Then we have $L_1 > K$, $p^{L_1} > 1$, and $p^{N_1} z_1 \in (x, y)$, so conditions 1 through 3 are satisfied.
The coefficient of S in F_1 is $p^{L_1} = \left(\begin{smallmatrix} p^{L_1} \\ 1 \end{smallmatrix}\right)$, so condition A holds. Since $\left(\begin{smallmatrix} p^{L_1} \\ 0 \end{smallmatrix}\right) = 1$, we have

$$F_1(S, U) = \left(\begin{smallmatrix} p^{L_1} \\ 1 \end{smallmatrix}\right) S + \left(\begin{smallmatrix} p^{L_1} \\ 0 \end{smallmatrix}\right) a_{11} U.$$

Condition B states that $a_{11} \in p^{K - \tau(1)}R = p^K R$, which is true since we defined $a_{11} = p^K a$. Condition C states that

$$F_1(z, x) = p^{L_1} z + a_1 x = p^{N+K} z + p^K a x \in yR[p^{-1}],$$

which is also true by construction (in fact, we have $p^{N+K} z + p^K a x \in yR$ in this case). Finally, since $G_1(S, U) = S$, we have $z_1 = z = G_1(z, x)$. Hence all the necessary conditions are satisfied for $i = 1$.

We now suppose that L_k, z_k, and $F_k(S, U)$ have been defined for $1 \leq k < i$ and define $F_i(S, U)$, L_i, and z_i.

As stated in the previous section, the main idea is to integrate $F_{i-1}(S, U)$ and modify it so that it will satisfy the conditions listed above. However, to make the construction work it is also necessary to multiply the integral by a power of p using the number $E_i = K - \tau(i) + \tau(2)$ defined above.

As a first approximation to F_i, we let

$$G_i(S, U) = p^{-E_i \text{Int}_{p^{L_{i-1}}} (F_{i-1}(S, U))}.$$

(This is the same polynomial as in condition D for $i \geq 2$.)

Let

$$z_i = G_i(z, x).$$

We claim that z_i is an element of R. To simplify notation we let $a_j = a_{i-1,j}$ for $j = 0, \ldots, i-1$ (with $a_0 = 1$), so that we have

$$F_{i-1}(S, U) = \sum_{j=0}^{i-1} \left(\begin{smallmatrix} p^{L_{i-1} - j} \\ i - 1 - j \end{smallmatrix}\right) a_j S^{i-1-j} U^j.$$

We then have that $a_j \in p^{K - \tau(j)}$ for $j = 1, \ldots, i-1$ by induction.

By the definitions of z_i and $G_i(S, U)$, we have that

$$z_i = p^{-E_i} \sum_{j=0}^{i-1} \left(\begin{smallmatrix} p^{L_{i-1} - j} \\ i - j \end{smallmatrix}\right) a_j z^{i-j} x^j.$$

We show that each term of this sum is in R; to do so we distinguish two cases.

If $j = 0$, then $a_0 = 1$, and we must show that $p^{-E_i} \left(\begin{smallmatrix} p^{L_{i-1}} \\ i \end{smallmatrix}\right) \in R$. To see this, we note that the highest power of p divides $\left(\begin{smallmatrix} p^{L_{i-1}} \\ i \end{smallmatrix}\right)$ is $p^{L_{i-1} - k}$, where $p^k || i$ (of course, k can be zero). Thus to show that $p^{-E_i} \left(\begin{smallmatrix} p^{L_{i-1}} \\ i \end{smallmatrix}\right) \in R$ we must show that

$$-E_i + L_i - k = -K + \tau(i) - \tau(2) + L_{i-1} - k \geq 0.$$

Since $L_{i-1} > K$, this reduces to showing that $\tau(i) + 1 \geq \tau(2) + k$. Since p^k divides i, the p-adic expansion of $i - 1$ ends with k digits equal to $p - 1$. Hence

$$\tau(i) + 1 \geq k + 1 \geq k + (1/(p-1)) = k + \tau(2),$$

so the inequality holds.
We now consider the general case, where \(i \leq p^{L_{i-1}} \) and \(0 < j < i \). In this case we use Lemma 3. We must show that \(p^{-E_i}(p^{L_{i-1}} - j) a_j \in R \). Putting together the powers of \(p \) dividing the factors in this product, and using the fact that the highest power of \(p \) that divides \((p^{L_{i-1}} - j) \) is \(\tau(j) + \tau(i - j + 1) - \tau(i) \), the inequality to be proven is

\[
-K + \tau(i) - \tau(2) + \tau(j) + \tau(i - j + 1) - \tau(i) + K - \tau(j) \geq 0.
\]

This expression simplifies to

\[
\tau(i - j + 1) - \tau(2) \geq 0,
\]

which is true since \(i > j \), so that \(i - j + 1 \geq 2 \) and thus \(\tau(i - j + 1) \geq \tau(2) \).

Thus we have shown that \(z_i \in R \). We claim that we also have that \(p^{N_i} z_i \in (x^i, y^i) R \) for some \(N_i \). If we can show that \(z_i \in (x^i, y^i) R[p^{-1}] \), then we can conclude that \(p^{N_i} z_i \in (x^i, y^i) R \) for some \(N_i \) by clearing denominators. To show that \(z_i \in (x^i, y^i) R[p^{-1}] \) we use the fact that \(G_i(S, U) \) is, up to a constant which is a unit in \(R[p^{-1}] \), the integral of \(F_{i-1}(S, U) \), and \(z_i = G_i(z, x) \). Hence, again up to constants which again are units in \(R[p^{-1}] \), we have that \(G_i^{(k)}(z, x) \) agrees with \(F_{i-1}^{(k-1)}(z, x) \) for \(k = 1, \ldots, i \). By induction we have that \(F_{i-1}^{(k-1)}(z, x) \in y^{(i-1)-(k-1)} R[p^{-1}] \) for \(k = 1, \ldots, i \). It thus follows that \(G_i^{(k)}(z, x) \in y^{i-k} R[p^{-1}] \) for \(k = 1, \ldots, i \). Hence Lemma 1 implies that \(G_i(z, x) \in (x^i, y^i) R[p^{-1}] \) as was to be shown.

To summarize the argument up to this point, we have defined

\[
G_i(S, U) = p^{-E_i} \text{Int}_{p^{L_{i-1}}} (F_{i-1}(S, U)),
\]

defined \(z_i = G_i(z, x) \), and shown that \(z_i \) is an element of \(R \) such that \(p^{N_i} z_i \in (x^i, y^i) \) for some integer \(N_i \). We now wish to add a \(U^i \) term to \(G_i(S, U) \) so that if we evaluate the resulting polynomial at \((z, x) \) the result is in \(y^i R[p^{-1}] \) and continue the induction. In fact, \(G_i(S, U) \) may have to be modified first as we show below. We distinguish three cases.

Case 1. The first, and easiest, case, is when \(z_i \in (x^i, y^i) R \). We then know that there exists an element \(a \) such that

\[
z_i + ax^i \in y^i R.
\]

We now let

\[
F_i(S, U) = p^{E_i} (G_i(S, U) + a U^i).
\]

It is clear that \(F_i(z, x) = p^{E_i} (z_i + ax^i) \in y^i R[p^{-1}] \). Furthermore, since the derivatives of \(F_i \) with respect to \(S \) are, up to a constant which is a unit in \(R[p^{-1}] \), the same as those of \(G_i \), it follows from the argument in the next to the last paragraph that

\[
F_i^{(k)}(z, x) \in y^{i-k} R[p^{-1}]
\]

for \(k = 1, \ldots, i \), and hence, since this condition also holds for \(k = 0 \), it holds for \(k = 0, \ldots, i \).

We let \(L_i = L_{i-1} \). Then \(L_i > K \), and conditions (1) through (3) are satisfied except that we may have \(p^{\mu_i} = i \), which would mean that we could not continue the induction to \(i + 1 \). However, we claim that in this case the polynomial

\[
f(T) = F_i(T, 1)
\]
satisfies the conditions required in the conclusion of Lemma 4 and we are done. However, we first verify that conditions A through D hold.

Conditions A and D hold by construction, and we have already checked condition C. That leaves condition B, that the coefficients a_{ij} are in $p^{K-\tau(j)}R$. For $j < i$, we have $a_{ij} = a_{i-1,j}$, and this condition follows by induction. Thus we must check that $a_i \in p^{K-\tau(i)}R$. Since $a \in R$, we have $a_i = p^{E_i}a \in p^{E_i}R = p^{K-\tau(i)+\tau(2)}R \subseteq p^{K-\tau(i)}R$, which proves that the condition holds in this case as well.

We now return to the case in which $p^L_i = i$. If we let $f(T) = F_i(T,1)$, then the leading coefficient of $f(T)$ is $(p^{L_i})_i$, which is 1, so $f(T)$ is monic as required. Furthermore, conditions (1) and (2) of Lemma 4 follow immediately from conditions B and C of the induction hypothesis. Thus if $p^L_i = i$, the proof of Lemma 4 is complete.

If $p^L_i > i$, we continue the induction. We remark that the argument that $a_{ii} \in p^{K-\tau(i)}R$ and the fact that the proof of Lemma 4 is complete when $p^L_i = i$ will be used in the other cases as well.

Case 2. We assume now that z_i is not in (x^i, y^i), but that we can write z_i modulo (x^i, y^i) in terms of z_k for $1 \leq k < i$ in the following sense: there exist c_1, \ldots, c_{i-1} such that

$$z_i + c_{i-1}xyz_{i-1} + \cdots + c_1x^{i-1}y^{i-1}z_1 \in (x^i, y^i)R.$$

We recall that for each $k = 1, \ldots, i-1$ we have

$$z_k = G_k(z, x),$$

where G_k is the homogeneous polynomial of degree k defined above. We now let

$$\tilde{F}_i(S, U) = G_i(S, U) + c_{i-1}yUg_{i-1}(S, U) + \cdots + c_1y^{i-1}U^{i-1}G_i(S, U).$$

From the above equation we thus have

$$\tilde{F}_i(z, x) \in (x^i, y^i),$$

so we can find an element $a \in R$ such that

$$\tilde{F}_i(z, x) + ax^i \in y^iR.$$

We define

$$F_i(S, U) = p^{E_i}\left(\tilde{F}_i(S, U) + aU^i\right).$$

We must now check that F_i has the required properties. We let $L_i = L_{i-1}$ as in the previous case. Since the coefficient of S^i in F_i is the same as that of $p^{E_i}G_i = \text{Int}_{p^{E_{i-1}}}(F_{i-1})$, we have by induction that this coefficient is $(p^{E_i})_i$ as required. We now check that $a_{ij} \in p^{K-\tau(j)}R$ for $j = 1, \ldots, i-1$; the verification that $a_{ii} \in p^{K-\tau(i)}R$ is the same as in the previous case. We must show that the coefficients of $p^{E_i}F_i(S, U)$ satisfy Condition B, and, since the coefficients of $p^{E_i}G_i(S, U)$ satisfy this condition, it suffices to show that the contributions of the coefficients of $p^{E_i}y^{-k}U^{-k}G_k$ satisfy the condition for each $k = 1, \ldots, i-1$.

Let k be an integer with $1 \leq k \leq i-1$. By construction, we can write

$$G_k(S, U) = p^{-E_k}\left(\sum_{j=0}^{k-1} \binom{p^{L_k} - j}{k - j}a_{kj}S^{k-j}U^j\right),$$

where a_{kj} are in R for $1 \leq k \leq i-1$.
where \(a_{kj} \in p^{K-\tau(j)}R \). What we have to show is that if we write

\[
p^{E_i}U^{i-k}G_k(S, U) = \sum_{m=0}^{i-1} \binom{p^{L_i} - m}{i-m} a_m^i S^{i-m} U^m,
\]
then we have \(a_m^i \in p^{K-\tau(m)}R \).

We note that the since we are multiplying by \(U^{i-k} \), the term of \(G_k(S, U) \) which contains \(a_{kj} \) corresponds to the term of \(p^{E_i}U^{i-k}G_k(S, U) \) which contains \(a_{j+i-k} \).

Thus we have to show that if \(a_{kj} \in p^{K-\tau(j)}R \) and

\[
p^{E_i}p^{-E_k} \binom{p^{L_k} - j}{k-j} a_{kj} = \binom{p^{L_i} - (j + i - k)}{i - (j + i - k)} a_{j+i-k},
\]
then \(a_{j+i-k} \in p^{K-\tau(j+k-i)}R \). Dividing by the binomial coefficient on the right, this means that

\[
p^{E_i}p^{-E_k} \binom{p^{L_k} - j}{k-j} p^{K-\tau(j)} \binom{p^{L_i} - (j + i - k)}{i - (j + i - k)}^{-1} \in p^{K-\tau(j+k-i)}R.
\]

To verify this statement we use Lemma 3 to determine the power of \(p \) dividing the binomial coefficients in this expression. We also use the above expressions for \(E_i \) and \(E_k \). What results is that we must prove the inequality

\[
(K - \tau(i) + \tau(2)) - (K - \tau(k) + \tau(2)) + (\tau(j) + \tau(k - j + 1) - \tau(k)) + (K - \tau(j)) - (\tau(j + i - k) + \tau(k - j + 1) - \tau(i)) \geq K - \tau(j + i - k).
\]

When this is worked out, it is seen that the two sides of the equation are in fact equal.

We must now prove the Condition C on derivatives. By construction, we have

\[
F_i(z, x) \in y^i R[p^{-1}].
\]

To prove that \(E_i^{(k)}(z, x) \in y^{i-k}R[p^{-1}] \) for \(k \geq 1 \) it suffices to prove the corresponding condition for \(F_i \), and to prove this it suffices to prove for each term in the sum defining \(F_i \). For \(G_i \) the proof is the same as in the previous case. For \(c_m y^{-m} U^{i-m} G_m(S, U) \), it suffices to show that if we let \(H(S, U) = y^{-m} G_m(S, U) \), then \(H^{(k)}(z, x) \in y^{i-k}R[p^{-1}] \) for \(k \geq 0 \). By construction, we have that \(G_m^{(k)}(z, x) \in y^{m-k} R[p^{-1}] \) for \(k \geq 0 \). Hence

\[
H^{(k)}(z, x) = y^{i-m} G_m^{(k)}(z, x) \in y^{i-m} y^{i-k} R[p^{-1}] = y^{i-k} R[p^{-1}]
\]
as was to be shown.

This finishes the second case.

Case 3. This is the case in which \(z_i \) cannot be forced into \((x^i, y^i)R \) even after modifying it by multiples of \(x^{i-k} y^{i-k} z_k \). Let \(N_i \) be a positive integer such that \(p^{N_i} z_i \in (x^i, y^i)R \). We now let \(L_i = L_{i-1} + N_i \). Note that this is the only case where we increase \(L_i \). We now let

\[
\tilde{F}_i(S, U) = \binom{p^{L_i}}{i} \binom{p^{L_{i-1}}}{i}^{-1} G_i(S, U).
\]

Regardless of what \(i \) is, the highest power of \(p \) dividing \(\binom{p^{L_i}}{i} \binom{p^{L_{i-1}}}{i}^{-1} p^{L_i - L_{i-1}} = p^{N_i} \). Hence, since \(p^{N_i} z_i \in (x^i, y^i)R \), we have \(\tilde{F}_i(z, x) \in (x^i, y^i) \), and we can find an
element \(a \) such that \(\bar{F}_1(z, x) + ax^i \in y^i R \). We now let
\[
F_i(S, U) = p^{E_i}(\bar{F}_1(S, U) + aU^i).
\]

Since \(F_i \) is, apart from the \(U^i \) term, a constant multiple of \(G_i \) by a unit in \(R[p^{-1}] \), the condition on derivatives is clear in this case. Furthermore, we have constructed \(F_i \) so that the coefficient of \(S^i \) is \(\left(\frac{p^{L_i}}{i} \right) \), so it satisfies the Condition A. We now check the Condition B on the \(a_{ij} \). In fact, it follows from Lemma 3 that the highest power of \(p \) dividing \(\left(\frac{p^{L_i}}{i-j} \right) \) is the same as the highest power of \(p \) dividing \(\left(\frac{p^{L_i-1}}{i-j} \right) \) for all \(j = 1, \ldots, i-1 \). Hence the divisibility conditions on \(a_{ij} \) for \(G_i \) are the same as those for \(F_i \). Thus, since the \(a_{ij} \) are, up to units in \(R \), multiples of \(a_{1-1,j} \) by \(p^{N_j} \), the condition follows. Thus all the conditions hold, and this completes the proof of Case 3.

To finish the proof of the lemma, we invoke Lemma 2. As in that lemma, we let \(Q_i \) denote the submodule of \(R/(x^i, y^i) \) consisting of elements \(u \) annihilated by \(p^N \) for some \(N \). Lemma 2 states that for large \(i \) multiplication by \(x^k y^k \) identifies \(Q_i \) with \(Q_{i+k} \) for all \(k \geq 0 \). Let \(i \) be large enough so that this holds. For each \(n \) let \(M_n \) denote the submodule of \(Q_n \) generated by \(z_n, x y z_{n-1}, \ldots, x^{n-1} y^{n-1} z_1 \), and for each \(k \geq 0 \) let \(N_k \) be the submodule of \(Q_i \) corresponding to \(M_{i+k} \) under the above identification. Since the \(N_k \) form an increasing sequence of submodules of \(Q_i \), we must have \(N_k = N_{k+1} \) for sufficiently large \(k \). It follows that multiplication by \(x y \) identifies \(M_i \) with \(M_{i+1} \) for large \(i \). Thus for large \(i \) it is always possible to write \(z_i \) in terms of \(z_{i-1}, \ldots, z_1 \) as in Case 2, and Case 3 will not occur. Thus we will eventually reach the situation where \(i = p^{L_i} \), and at that point \(F_i(S, U) \) will satisfy the required conditions.

We now prove the theorem. Assume that \(p^N z \in (x, y) \), where \(p, x, y \) form a system of parameters. We wish to show that for all rational \(\epsilon > 0 \), we have \(p^\epsilon z \in (x, y) R' \) for some finite extension \(R' \) of \(R \). Choose \(K > 0 \) such that \(1/p^K < \epsilon \); we can in fact assume that \(\epsilon = 1/p^K \). Let \(f(T) \) be a polynomial such that
\[
\begin{aligned}
& (1) \quad f(T) = T^n + a_1 T^{n-1} + \ldots + a_n, \\
& (2) \quad \tilde{f}^{(k)}(z, x) \in y^{n-k} R[p^{-1}] \text{ for } k = 0, \ldots, n, \text{ and} \\
& (3) \quad a_j \in p^{K-\tau(j)} R \text{ for } j = 1, \ldots, n.
\end{aligned}
\]

We claim that if we let \(g(T) = \sum_{j=0}^n p^{\tau(j)j} a_j T^{n-j} \), then \(g(T) \) has coefficients in \(R \). This amounts to the statement that
\[
\begin{aligned}
& j \epsilon + K - \tau(j) = j/p^K + K - \tau(j) \geq 0 \\
& \text{for all } j.
\end{aligned}
\]

To prove this inequality, we first note that if \(j \leq p^K \), then \(\tau(j) \leq K \) and the inequality is clear. Thus we may assume that \(j > p^K \), and this implies that there is a nonnegative integer \(M \) such that \(p^{K+M} \leq j \leq p^{K+M+1} \).

The inequalities \(p^{K+M} \leq j \leq p^{K+M+1} \) imply that \(j/p^K \geq p^M \) and \(\tau(j) \leq K + M + 1 \). We thus have
\[
\begin{aligned}
& j/p^K + K - \tau(j) \geq p^M + K - (K + M + 1) = p^M - M - 1.
\end{aligned}
\]

It thus suffices to show that for all nonnegative integers \(M \) and all prime numbers \(p \) we have \(p^M \geq M + 1 \). For \(M = 0 \) this states that \(p^0 \geq 1 \), and for \(M = 1 \) it states
that \(p \geq 2 \), and both of these statements are true. The general case can be shown by an easy induction on \(M \).

Thus \(g(T) \) has coefficients in \(R \). Let \(w \) be a root of \(f(T) \); we then have that \(p^e w \) is a root of \(g(T) \) so is integral over \(R \). The condition on derivatives in Lemma 4 implies that if we let \(v = (z - wx)/y \), then \(v \) is integral over \(R[p^{-1}] \), and hence \(p^e v \) is also integral over \(R[p^{-1}] \). Furthermore, \(p^e v = (p^e z - (p^e w)x)/y \) is a quotient of an element integral over \(R \) by \(y \) so is clearly integral over \(R[y^{-1}] \). Thus \(p^e v \) is integral over \(R[p^{-1}] \) and \(R[y^{-1}] \), so, since \(p \) and \(y \) generate an ideal of height 2 in \(R \) and \(R \) is a normal domain, \(p^e v \) is integral over \(R \). We now have

\[
p^e z = (p^e w)x + (p^e v)y,
\]

so \(p^e z \) is in the ideal generated by \(x \) and \(y \) in a finite extension of \(R \). This concludes the proof of the theorem.

3. A proof of the Canonical Element Conjecture in dimension 3

In this section we show how Heitmann’s theorem can be used to give a direct proof of the Canonical Element Conjecture in dimension 3. We recall the statement of one version of this conjecture.

Let \(x_1, \ldots, x_d \) be a system of parameters for \(R \). Let \(K_* \) be the Koszul complex on \(x_1, \ldots, x_d \), and let \(F_* \) be a minimal free resolution of \(R/(x_1, \ldots, x_d) \). Since \(K_* \) is a complex of free modules and \(F_* \) is exact, there is a map of complexes \(\phi_* : K_* \to F_* \) which is the identity map in degrees 0 and 1 (note that the maps \(K_1 \to K_0 \) and \(F_1 \to F_0 \) are the same). The Canonical Element Conjecture states that

\[
\phi_d(1) \notin mF_d.
\]

In dimension 3 in mixed characteristic, we can assume that the system of parameters is of the form \(p^N, x, y \), where \(x, y \) form a regular sequence. Then the homology of the Koszul complex \(K_* \) in degree 1 is isomorphic to \(Q/(x, y) \), where \(Q = \{ r \in R[p^N r] \in (x, y) \} \). If \(s \in R \) is such that \(sQ \subseteq (x, y) \), then \(s \) annihilates the homology of \(K_* \) in degree 1. Thus, since \(K_* \) is exact in degrees 2 and 3, we can construct a map \(\psi_* : F_* \to K_* \) such that \(\psi_* \) is multiplication by \(s \) in degrees 0 and 1.

Now suppose that we had \(\phi_d(1) \in mF_d \). We take \(s = p^e \) for some small rational number \(e \). Let \(R' \) be a finite integrally closed extension of \(R \) containing \(p^e \) and such that \(p^e(QR') \subseteq (x, y)R' \); the existence of such an extension \(R' \) is guaranteed by Heitmann’s Theorem. By the previous paragraph, there is a map \(\psi_* : F_* \otimes R' \to K_* \otimes R' \) which is multiplication by \(p^e \) in degrees 0 and 1. Thus the composition \(\psi_* \phi_* \) is a map from \(K_* \otimes R' \) to itself which is also given by multiplication by \(p^e \) in degrees 0 and 1 (we use the notation \(\phi_* \) also to denote the extension of the original \(\phi_* \) to \(R' \)). Since \(K_* \otimes R' \) is exact in degrees 2 and 3, we can conclude that multiplication by \(p^e \) is homotopic to \(\psi_* \phi_* \). Thus there is a map \(\sigma \) from \(K_3 \otimes R' \) to \(K_2 \otimes R' \) such that for all \(a \in K_3 \otimes R' \) we have

\[
p^e a = \psi_* \phi_*(a) + \sigma(d_3^K(a)).
\]

Since we are assuming that \(\phi_d(a) \in mR' \), and \(d_3^K(a) \) is clearly in \(mR' \), this implies that \(p^e \in mR' \). The next lemma shows that this is impossible if we take \(e \) small enough.
Lemma 5. Let R be a local integral domain with maximal ideal m, and let c be a nonzero element of R. Then for sufficiently small rational $e > 0$, for any finite extension R' of R, we have $ce \notin m$.

Proof We use the fact that there is a discrete valuation v on R such that $v(m) > 0$ for all $m \in m$. Let u be the minimum of $v(m)$ for a set of generators m of m. Then if we choose $e < u/v(c)$, since v can be extended to any finite extension R' of R, we have that $v(c^e) = ev(c) < u \leq v(m)$ for all m in a set of generators for mR'. Thus $v(c^e) < v(m)$ for all $m \in mR'$, so $c^e \notin mR'$.

References

[1] R. Heitmann, *The direct summand conjecture in dimension three*, Annals of Mathematics 156 (2002), 695–712.

[2] W. Bruns and J. Herzog, *Cohen-Macaulay Rings*, Cambridge University Press, Cambridge 1993.