Introduction

The T-cell repertoire available for immunotherapy of cancer is constrained by central and/or peripheral tolerance mechanisms.1−3 The majority of T cells with high avidity for self/tumor antigens are deleted in the thymus resulting in a T-cell repertoire in the periphery specific for self/tumor antigens that display a relatively low affinity.4,5 In addition, both peripheral tolerance mechanisms and tumor-induced tolerance can contribute to the weakening of T-cell responses against self/tumor antigens.6,7 This raises the question whether we can utilize the natural low-affinity T-cell repertoire for immunotherapy. Many vaccine approaches have been tested to induce T-cell responses toward a tumor protein. However, none of the clinical trials show complete tumor eradication, and objective tumor regression is induced in a small percentage of patients.8,9

Weak T-cell antigen receptor (TCR)-ligand interactions are sufficient to activate naïve CD8+ T cells, but generally do not result in tumor eradication. How differences in TCR affinity affect the regulation of T-cell function in an immunosuppressive tumor environment has not been investigated. We have examined the functional differences of high- vs. low-affinity CD8+ T cells and we observed that infiltration, accumulation, survival and cytotoxicity within the tumor are severely impacted by the strength of TCR-ligand interactions. In addition, high-affinity CD8+ T cells were found to exhibit lower expression of inhibitory molecules including PD-1, LAG-3 and NKG2A, thus being less susceptible to suppressive mechanisms. Interferon γ and autocrine interleukin-2 were both found to influence the level of expression of these molecules. Interestingly, although high-affinity CD8+ T cells were superior to low-affinity CD8+ T cells in their ability to effect tumor eradication, they could be further improved by the presence of tumor specific CD4+ T cells. These findings illustrate the importance of both TCR affinity and tumor-specific CD4 help in tumor immunotherapy.

Results

Functional differences between Clone 1 and Clone 4 CD8+ T cells. TCR affinity has been frequently reported to be important for the strength of antiviral and antitumor responses.17,18 To assess more specifically the effects of TCR affinity on CD8+ T cell function in the tumor environment we compared HA-specific Clone 1 (low-affinity) and Clone 4 (high-affinity) cells in tumorbearing RIP-Tag2-HA mice. RIP-Tag2-HA mice received 2 × 10^5 Clone 1 or Clone 4 cells and were immunized with a vaccine containing cognate peptide and poly(I:C) injected s.c. in Incomplete Freund’s adjuvant. As shown previously,10,11 the activation of Clone 1 cells by a viral or peptide vaccine was not sufficient to induce tumor eradication (Fig. 1A). Clone 4 cells were superior
from enhanced effector functions and lower expression of inhibitory molecules in the tumor environment.

CD8+ T-cell infiltration into established tumors. Increased accumulation of Clone 4 cells, compared with Clone 1 cells, in the tumor environment may also be due to differences in their capacity to infiltrate tissues. Activated T cells acquire the ability to infiltrate non-lymphoid sites in which the antigen is localized upon the expression of integrins and selectins.19,20 The stimulation of Clone 1 and Clone 4 cells with cognate peptide in vitro showed a differential expression of CD44, CD62L and CD11a at low peptide doses (Fig. 4A). No differences were observed in the expression levels of CD18 and CD49d (data not shown).

To test whether there is a difference in the ability of activated Clone 4 and Clone 1 cells to migrate into tissues, we used 2 different HA-expressing mouse models. First, we examined CD8+ T-cell infiltration into HA-expressing pancreatic tissues in non-tumor bearing mice. Second, we compared the infiltration of CD8+ T cells in HA-expressing insulinomas from the RIP-Tag2-HA mice. Whereas CD8+Thy1.1+ T-cell numbers in the spleen were not different, activated Clone 4 cells were superior in infiltrating pancreatic tissue and tumors (Fig. 4B–E).

The role of autocrine IL-2 in the tumor environment. Previous experiments from our laboratory showed that tumor specific Clone 1 CD8+ T cells require interleukin-2 (IL-2) from CD4+ cells at the tumor site to promote cytotoxicity and proliferation, and that interferon γ (IFNγ) is needed to enhance recruitment.10 To examine whether the autocrine production of IL-2 by Clone 4 cells was able to promote these functions, we analyzed Clone 4 IL2−/− cells 7 d after transfer and immunization of RIP-Tag2-HA mice. The accumulation of Clone 4 IL2−/− cells in the pancreas was significantly reduced (Fig. 5A). Similarly, blocking IFNγ resulted in the accumulation of far fewer Clone 4 cells. Comparison of Ki-67 expressed by Clone 4 cells indicated that autocrine IL-2 production by Clone 4 cells and IFNγ had no effect on cell division (Fig. 5C). Surprisingly, IL-2 deficiency did not significantly affect the expression of Bim or the
blockade affected NKG2a and PD-1, but only had a minimal effect on the expression of Lag-3 (Fig. 5E).

Clone 4 cells benefit from CD4 help. Considering the increased accumulation and function of high-affinity Clone 4 cells within the tumor, it was of interest to determine whether CD4 help would further increase tumor killing. Thus, we compared Clone 4 cells in the presence or absence of tumor-specific CD4+ SFE cells. RIP-Tag2-HA mice received either 3 × 10⁴ Clone 4 cells alone or together with SFE cells and then were immunized as in Figure 1. Accumulation of Clone 4 cells in the pancreas at day 7 was greatly enhanced in the presence of SFE cells (Fig. 6A). High frequencies of granzyme B+ Clone 4 cells were observed also

Figure 2. High-affinity CD8+ T cells are superior to low-affinity CD8+ T cells in the tumor milieu. 8–9 week old RIP-Tag2-HA mice were immunized with peptide and polyI:C inIFA and Clone 1 or Clone 4 cells (3 × 10⁴) were injected i.v. (A–H) Pancreata and spleens were analyzed at day 7 by flow cytometry to assess percentage of CD8+Thy1.1+ cells, the percentage of cells exhibiting granzyme B, percentage of dividing cells and the expression level of Bim. Data are cumulative from 2 independent experiments with 3 mice per group. (I–J) Pancreas derived CD8+Thy1.1+ cells were analyzed by qRT-PCR for perforin and Bcl-2 mRNA levels. Delta Ct values were compared using actin as the normalization control. Data are from 1 experiment with 3 independent samples per group. *p < 0.05, **p < 0.005, ***p < 0.0005.
It has been previously reported that weak TCR-ligand interactions are sufficient to activate naïve T cells, induce proliferation and generate effector and memory cells. Consistent with these results, we found that, following immunization, low-affinity Clone 1 cells expand, demonstrate effector functions and produce cytokines. However, Clone 1 cells cannot effect tumor eradication. High-avidity CD8+ T cells exhibit improved antitumor efficacy (this manuscript and refs. 22 and 23), but previous studies have not elucidated the factors that are required for such tumor eradication. Our data show that increased tumor eradication by high-avidity CD8+ T cells is paralleled by increased accumulation of CD8+ T cells in the tumor microenvironment. Thus, the presence of SFE cells promoted a reduction in the expression of PD-1, LAG-3 and—to a lesser extent—of NKG2A (Fig. 6E).

To examine whether SFE cells contribute to tumor eradication, we tested the antitumor efficacy of Clone 4 cells in RIP-Tag2-HA mice that received either Clone 4 alone or both Clone 4 and SFE cells. As shown in Figure 1A, 2 x 10^5 Clone 4 cells exhibit tumor-killing abilities, but tumors quickly start growing again, reflected by the rapid decrease in blood glucose levels (Fig. 7A). When tumor-bearing mice received both Clone 4 and SFE cells tumor growth was controlled significantly longer (Fig. 7B). When we tested the antitumor effect of lower numbers of Clone 4 cells, we observed an even stronger impact of the CD4 help. Thirty-thousand Clone 4 cells resulted in a minimal elevation of glucose levels, but in the presence of SFE cells long-term tumor eradication was observed in 5/5 mice (Fig. 7C and D).

Discussion

It has been previously reported that weak TCR-ligand interactions are sufficient to activate naïve T cells, induce proliferation and generate effector and memory cells. Consistent with these results, we found that, following immunization, low-affinity Clone 1 cells expand, demonstrate effector functions and produce cytokines. However, Clone 1 cells cannot effect tumor eradication. High-avidity CD8+ T cells exhibit improved antitumor efficacy (this manuscript and refs. 22 and 23), but previous studies have not elucidated the factors that are required for such tumor eradication. Our data show that increased tumor eradication by high-avidity CD8+ T cells is paralleled by increased accumulation of CD8+ T cells within the tumor microenvironment. Whereas the number of Clone 4 cells in the spleen was only doubled as compared with Clone 1 cells, far greater numbers of Clone 4 cells were found in the pancreas. This is unlikely to be explained by increased T cell proliferation as Clone 1 and Clone 4 cells showed little difference in the percentage of Ki-67+ cells. However, early infiltration into tissues was greatly increased in in vitro activated Clone 4 cells as compared with low-affinity Clone 1 cells (Fig. 4). This might in part be attributed to the expression levels of integrins and lectins such as CD62L and CD11a.
mount optimal secondary proliferative responses. However, we did not observe decreased expression of Ki-67 or an effect on the expression of the pro-apoptotic molecule Bim in IL-2-deficient Clone 4 cells in the pancreas. Thus, further research is needed to understand the role of autocrine IL-2 on the accumulation of CD8+ T cells in the tumor milieu. Production of IL-2 by CD4 helper cells was previously found to promote the induction of granzyme B via STAT5, but, surprisingly, our data show that the lack of autocrine IL-2 does not significantly affect the expression of granzyme B by Clone 4 cells in the tumor microenvironment.

T-cell function and accumulation in the tumor milieu can be regulated by co-inhibitory molecules. LAG-3 and PD-1 have been shown to negatively regulate tumor infiltrating CD8+ T cells. In addition, increased expression of NKG2A has been described to control CD8+ T cell cytotoxicity in the tumor tissue. Indeed, we found an increased expression of LAG-3, PD-1 and NKG2A on Clone 1 cells compared with Clone 4 cells only at the tumor site, correlating with a reduced expression of granzyme B and perforin by low-affinity CD8+ T cells. Furthermore, we demonstrate that the expression of LAG-3, PD-1 and NKG2A can be regulated by IFNγ, autocrine IL-2 and by the presence of tumor specific CD4+ T cells. This is consistent with our data showing the effects of cytokines and CD4+ T cells on CD8+ T cell functions.

As previously reported, we found that autocrine IL-2 production by Clone 4 cells is not required for initial proliferation, as the percentage of IL-2-deficient Clone 4 cells in the spleen was not different from that of wild-type Clone 4 cells (data not shown). In contrast, the accumulation in the pancreas of such cells was greatly reduced, which perhaps may be explained by the finding that autocrine IL-2 is critical for CD8+ T cells to mount optimal secondary proliferative responses. However, we did not observe decreased expression of Ki-67 or an effect on the expression of the pro-apoptotic molecule Bim in IL-2-deficient Clone 4 cells in the pancreas. Thus, further research is needed to understand the role of autocrine IL-2 on the accumulation of CD8+ T cells in the tumor milieu. Production of IL-2 by CD4 helper cells was previously found to promote the induction of granzyme B via STAT5, but, surprisingly, our data show that the lack of autocrine IL-2 does not significantly affect the expression of granzyme B by Clone 4 cells in the tumor microenvironment.

The death of T cells could also influence accumulation. In fact, we observed lower expression of Bim and higher expression of Bcl-2 by Clone 4 cells, consistent with improved survival relative to Clone 1. In the absence of IFNγ, Clone 4 cells upregulated Bim expression. This finding was somewhat unexpected as work from others has shown that IFNγ is required for the death phase of CD4+ and CD8+ lymphocytes. These differences in Bim expression were only detectable in the tumor microenvironment and not in the spleen.

As previously reported, we found that autocrine IL-2 production by Clone 4 cells is not required for initial proliferation, as the percentage of IL-2-deficient Clone 4 cells in the spleen was not different from that of wild-type Clone 4 cells (data not shown). In contrast, the accumulation in the pancreas of such cells was greatly reduced, which perhaps may be explained by the finding that autocrine IL-2 is critical for CD8+ T cells to mount optimal secondary proliferative responses. However, we did not observe decreased expression of Ki-67 or an effect on the expression of the pro-apoptotic molecule Bim in IL-2-deficient Clone 4 cells in the pancreas. Thus, further research is needed to understand the role of autocrine IL-2 on the accumulation of CD8+ T cells in the tumor milieu. Production of IL-2 by CD4 helper cells was previously found to promote the induction of granzyme B via STAT5, but, surprisingly, our data show that the lack of autocrine IL-2 does not significantly affect the expression of granzyme B by Clone 4 cells in the tumor microenvironment.

T-cell function and accumulation in the tumor milieu can be regulated by co-inhibitory molecules. LAG-3 and PD-1 have been shown to negatively regulate tumor infiltrating CD8+ T cells. In addition, increased expression of NKG2A has been described to control CD8+ T cell cytotoxicity in the tumor tissue. Indeed, we found an increased expression of LAG-3, PD-1 and NKG2A on Clone 1 cells compared with Clone 4 cells only at the tumor site, correlating with a reduced expression of granzyme B and perforin by low-affinity CD8+ T cells. Furthermore, we demonstrate that the expression of LAG-3, PD-1 and NKG2A can be regulated by IFNγ, autocrine IL-2 and by the presence of tumor specific CD4+ T cells. This is consistent with our data showing the effects of cytokines and CD4+ T cells on CD8+ T cell functions.

We have previously shown that paracrine IL-2 derived from tumor-specific CD4+ cells is crucial for the functions of low-avidity Clone 1 cells in the pancreas. As discussed above, in the absence of CD4+ cells, high-affinity Clone 4 CD8+ cells are...
T cells is limited due to a lack of well-characterized tumor antigens presented by Class II MHC, as the majority of tumor cells are Class II negative. However, several laboratories have found ways to overcome these limitations and it has been shown that CD4+ T cells transduced with Class I-restricted TCRs can provide antigen-specific helper functions. Our studies highlight the functional advantages of high-affinity CD8+ T cells and the additional effects of CD4 help, emphasizing the importance of including CD4 help in adoptive cell transfer immunotherapy, even when high-affinity TCRs are expressed by tumor-specific CD8+ T cells.

Figure 5. Effects of autocrine IL-2 and IFNγ on function of Clone 4 cells in the tumor microenvironment. 8–9 week old RIP-Tag2-HA mice were immunized with peptide, polyI:C in IFa and Clone 4 or Clone 4 IL-2−/− (3 × 10^6) were injected i.v. One group receiving Clone 4 cells was also injected with IFNγ neutralizing antibodies at days 4, 5 and 6. (A–D) CD8+Thy1.1+ cells from pancreata were analyzed at day 7 by flow cytometry to assess the number of cells in the pancreas, the percentage of cells exhibiting granzyme B, the expression level of Bim and the percentage of dividing cells. Cumulative data are shown from 3 experiments with 2–3 mice per group per experiment. (E) Histograms are representative of 3 independent experiments with 3 mice per group. Isotype control = grey line, Clone 4 = black line, Clone 4 IL2−/− = dashed line, Clone 4 + anti-IFNγ = dotted line.
Adoptive transfer, immunization and analysis of T-cell responses.

Lymph nodes were collected and purified by magnetic cell sorting using CD8+/CD4+ T-cell enrichment sets.

Material and Methods

Mice. B10.D2 rat insulin promoter (RIP)-Tag2-HA mice have been previously described\(^4\) and were used at 8 to 9 weeks of age. B10.D2 Clone 1, Clone 4 and Clone 4 IL2−/− TCR transgenic mice which express a TCR specific for HA\(_{518-526}\) (IYSTVASSL) in the context of HA-2K\(^d\), and SFE TCR transgenic mice, which express TCR that recognizes HA\(_{110-119}\) (SFERFEIFPK) in the context of I-Ed, were bred with the congenic markers Thy1.1 and CD45.1, respectively. All mice were bred in our facility. All animal experiments were conducted in accordance with protocols approved by the Institutional Animal Care and Use Committee of the Scripps Research Institute.

Adoptive transfer, immunization and analysis of T-cell responses. Lymph nodes were collected and purified by magnetic cell sorting using CD8+/CD4+ T-cell enrichment sets.
Cell sorting was performed on a FACS Aria (BD Biosciences). RNA was extracted in TRIzol (Invitrogen) and total RNA was used to make cDNA with High Capacity cDNA Reverse Transcriptase Kit (Applied Biosystems). Primer sets were designed for perforin (Pfr-F 5’-TAG CCA ATT TTG CAG CTG AG-3’ and Prf-R 5’-GGT TTT TGT ACC AGG CGA AA-3’) and Bcl-2 (Bcl-2-F 5’-GGA GAA TGG ATA CGG CAG AA-3’ and Bcl-2-R 5’-TTC CCA GAT CTG TCC TGT CA-3’) using ensemble genome browser and Primer3 input41 and primers were purchased from Valuegene Inc. (San Diego, CA). Reactions were performed in duplicate and we used actin as the internal control. The quantitative data analysis was completed using the SYBR Green PCR Master Mix and a 7900HT FAST Real-time PCR System (Applied Biosystems).

In vitro activation of CD8+ T cells and in vivo tissue/tumor infiltration. To generate effector CD8+ T cells, Clone 1 and Clone 4 cells were isolated from the pancreas of 8–9 week old RIP-Tag2-HA mice. Recipient mice were immunized with 10 μg HA518-526-K4 peptide, 50 μg SFE110-119 and 200 μg poly(inosinic-cytidylic acid) (polyI:C, EMD Biosciences in incomplete Freund’s adjuvant s.c. in the right flank. Neutralizing antibodies against IFNγ (500 μg/mouse, Clone R4–6A2 BioXcell) were injected on day 4, 5 and 6 after the injection of T cells. Glucose levels in the blood were measured as described before.11

Lymphocytes were purified from the pancreas for in vitro analysis as described previously.10 Prior to isolation of insulinoma’s from 14 week old RIP-Tag2-HA mice, mice were perfused with HBSS. Tumors were isolated and lymphocytes were purified as described above for the pancreas. Cells were stained for fluorescence-activated cell sorting (FACS) analysis in HBSS containing 1% FCS and 2 mmol/L EDTA. Antibodies for FACS were used from eBioscience, BD Biosciences and Alexis Biochemicals (BimS/EL/L).

Quantitative PCR. Relative expression levels of Perforin and Bcl-2 in Clone 1 and Clone 4 cells were measured by Quantitative real-time PCR (qPCR). Clone 1 and Clone 4 cells were isolated from the pancreas as described previously10 and subsequently stained with PE anti-mouse CD8 and APC anti-mouse Thy1.1.

Cell sorting was performed on a FACS Aria (BD Biosciences). Purified lymphocytes (2 × 10^5 or 3 × 10^5) were injected into RIP-Tag2-HA mice i.v. Recipient mice were immunized with peptide and polyI:C in IFA and Clone 4 cells (A and B, 2 × 10^5) (C and D, 3 × 10^5) with or without 2 × 10^5 SFE cells were injected i.v. Glucose levels in the blood were measured at the indicated time points, and each line represents one mouse. Data are representative of two independent experiments. (A) compared with (B), p < 0.05; (C) compared with (D), p < 0.0005.

![Figure 7](image_url). Improvement of antitumor efficacy of high-affinity CD8+ T cells by the presence of tumor-specific CD4+ T cells. 8–9 week old RIP-Tag2-HA mice were immunized with peptide and polyI:C in IFA and Clone 4 cells (A and B, 2 × 10^5) (C and D, 3 × 10^5) with or without 2 × 10^5 SFE cells were injected i.v. Glucose levels in the blood were measured at the indicated time points, and each line represents one mouse. Data are representative of two independent experiments. (A) compared with (B), p < 0.05; (C) compared with (D), p < 0.0005.
were incubated for 15 h with 2 × 10⁶ splenocytes pulsed with different concentrations of H2A3b-532-K peptide. Cells were analyzed by FACS for the expression of CD44, CD62L and CD11a.

Statistical analysis. Differences between tumor growth curves were determined by a Mann–Whitney test. Differences between means were determined by an unpaired Student’s t-tests. Data are presented as means ± SEM.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interests were disclosed.

References
1. Kyewski B, Klein L. A central role for central toler- ance. Annu Rev Immunol 2006; 24:571-606; PMID:16551260; http://dx.doi.org/10.1146/annurev.immunol.24.020103.115601.
2. Sprent J, Kishimoto H. The thymus and nega- tive selection. Immunol Rev 2002; 185:126-35; PMID:12199027; http://dx.doi.org/10.1111/j.0161-202x.2002.18512.x.
3. Miller JF, Kursc C, Allison J, Kosaka H, Carbone F, Heath WR. Induction of peripheral CD8+ T-cell tolerant- ness by cross-presentation of self antigens. Immunol Rev 1998; 165:267-77; PMID:9850866; http://dx.doi. org/10.1002/1600-065X.1998.tb01244.x.
4. Bouneaud C, Kourilsky P, Bousso P. Impact of negative selection on the T cell repertoire reactive to a self-pep- tide: a large fraction of T cell clones escapes clonal dele- tion. Immunology 2000; 13:829-40; PMID:11361398; http://dx.doi.org/10.1111/j.1365-2567.2000.tb03080.x.
5. Nugent CT, Morgan DJ, Bigg JA, Ko A, Pilip IM, Pamer EG, et al. Characterization of CD8+ T cells that persist after peripheral tolerance to a self antigen expressed in the pancreas. J Immunol 2000; 164:191-200; PMID:10695011.
6. Pardoll D. Does the immune system see tumors as foreign or self? Annu Rev Immunol 2003; 21:807-39; PMID:15310882.
7. Willimsky G, Blankenstein T. Sporadic immunogenic tumors avoid destruction by inducing T-cell tolerance. Nature 2005; 437:141-6; PMID:16136144; http://dx.doi.org/10.1038/nature03954.
8. Klebanoff CA, Acquavella N, Yu Z, Restifo NP. Therapeutic cancer vaccines: are we there yet? Immunity 2011; 33:27-44; PMID:21218663; http://dx.doi.org/10.1016/j.immuni.2011.12.006.
9. Rosenberg SA, Yang JC, Restifo NP. Cancer immuno- therapy: moving beyond current vaccines. Nat Med 2004; 10:909-15; PMID:15344016; http://dx.doi.org/10.1038/nm1100.
10. Bos R, Sherman LA. CD4+ T-cell help in the tumor milieu is required for recruitment and cytoxicity func- tion of CD8+ T lymphocytes. Cancer Res 2010; 70:8368-77; PMID:20940398; http://dx.doi.org/10.1158/0008-5472.can-10-1522.
11. Morris EC, Tsallios A, Bendle GM, Xue SA, Stauss HJ. T-cell receptors mediate cancer regression and targets normal tissues expressing cognate antigen. Blood 2009; 114:535-46; PMID:19451549; http://dx.doi.org/10.1182/blood-2009-03-217114.
12. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, et al. Cancer regression in patients after transfer of genetically engineered lym- phocytes. Science 2000; 281:126-9; PMID:10694604; http://dx.doi.org/10.1126/science.1084209.
13. Lyman MA, Nugent CT, Manquardt KL, Bigg JA, Pamer EG, Sherman LA. The fate of low affinity tumor-specific CD8+ T cells in tumor-bearing mice. J Immunol 2005; 174:2563-72; PMID:15728662.
14. Dutoit V, Rabin-Godoy Y, Dietrich PY, Quaasres AL, Schnuriger V, Rimoldi D, et al. Heterogeneous T-cell response to MAGE-A10(254-262): high avidity-specific cytolytic T lymphocytes show super-rior antitumor activity. Cancer Res 2001; 61:5850-6; PMID:11470253.
15. Alexander-Miller MA, Leggett GR, Berzofsky JA. Selective expansion of high- or low-avidity cytotoxic T lymphocytes and efficacy for adoptive immuno- therapy. Proc Natl Acad Sci U S A 1996; 93:4102- 7; PMID:8643025; http://dx.doi.org/10.1073/pnas.93.9.4102.
16. Ley K, Laudanna C, Cymbalyuk M, Noushargh S. Getting to the site of inflammation: the leukocyte adhe- sion cascade updated. Nat Rev Immunol 2007; 7:678- 89; PMID:17717539; http://dx.doi.org/10.1038/tnri.2007.46.
17. Marelli-Berg FM, Cannella L, Dazzi F, Mirenda V. The highway code of T cell trafficking. J Pathol 2008; 214:179-89; PMID:18161751; http://dx.doi.org/10.1002/path.2269.
18. Zeh JH 3rd, Perry-Lalley D, Dudley ME, Rosenberg SA, Yang JC. High avidity CTLs for two self-antigens demon- strate superior in vitro and in vivo antitumor efficacy. J Immunol 1999; 162:989-94; PMID:9916724.
19. Bullock TN, Mullins DW, Colella TA, Engelhard VH. Manipulation of avidity to improve effective- ness of adoptively transferred CD8+ T cells for melanoma immunotherapy in human MHC class I-transgenic mice. J Immunol 2001; 167:5824-31; PMID:11698456.
20. Savinov AY, Wong FS, Stonebraker AC, Chervonsky AV. Presentation of antigen by endothelial cells and chemotraction are required for homing of insulinn- specific CD8+ T cells. J Exp Med 2003; 197:645- 56; PMID:12615995; http://dx.doi.org/10.1084/ jem.20021378.
21. Savinov AY, Wong FS, Chervonsky AV. IFN-gamma affects homing of diabetogenic T cells. J Immunol 2001; 167:5932-43; PMID:11714835.
22. Raffaelli Y, Van Parisis L, Alexander SL, Abbas AK. Interferon gamma is required for activation-induced death of T lymphocytes. J Exp Med 2002; 196:999- 1005; PMID:12370621; http://dx.doi.org/10.1084/ jem.20020667.
23. Badovinac VP, Tvinnereim AR, Harty JT. Antigen-presenting cells and naive T-cell priming. Nat Rev Immunol 2005; 5:833-43; PMID:16187535; http://dx.doi.org/10.1038/nri1501.
24. Raffaelli Y, Van Parisis L, Alexander SL, Abbas AK. Interferon gamma eliminates responding CD4 T cells. J Immunol 2001; 167:5932-43; PMID:11714835.
25. Roosen S, Skatleby H, Primer03 on the WWW for gen- eral users and for biologist programmers. Methods Mol Biol 2000; 132:365-86; PMID:10548747.