CP Violation measurements in $B \to$ charm decays at $BABAR$.

Katherine George
Queen Mary, University of London.
Department of Physics, Mile End Road, London E1 4NS, United Kingdom.
(representing the $BABAR$ Collaboration)

Abstract
This article summarises measurements of time-dependent CP asymmetries in decays of neutral B mesons to charm final states using data collected by the $BABAR$ detector at the PEP-II asymmetric-energy B factory. All results are preliminary unless otherwise stated.

Contributed to the Proceedings of ICHEP’06 - XXXIII International Conference on High Energy Physics, Moscow, Russia. July 26 - August 2, 2006.

Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309
Work supported in part by Department of Energy contract DE-AC02-76SF00515.
1 Introduction

The Standard Model (SM) of particle physics describes CP violation as a consequence of a complex phase in the three-generation Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix [1]. In this framework, measurements of CP asymmetries in the proper-time distribution of neutral B decays to CP eigenstates containing a charmonium and K^0 meson provide a direct measurement of $\sin 2\beta$ [2]. The unitarity triangle angle β is $\arg \left[-V_{c d}V_{c b}^*/V_{d c}V_{d b}\right]$ where the $V_{i j}$ are CKM matrix elements.

The BaBar detector [3] is located at the SLAC PEP-II e^+e^- asymmetric energy B-factory. Its program includes the measurement of β through the measurement of time-dependent CP-asymmetries, A_{CP}. At the $T(4S)$ resonance, A_{CP} is extracted from the distribution of the difference of the proper decay times, $t \equiv t_{CP} - t_{tag}$, where t_{CP} refers to the decay time of the signal B meson (B_{CP}) and t_{tag} refers to the decay time of the other B meson in the event (B_{tag}). The decay products of B_{tag} are used to identify its flavor at its decay time.

$$A_{CP}(t) \equiv \frac{N(B^0(t) \rightarrow f) - N(B^0(t) \rightarrow \bar{f})}{N(B^0(t) \rightarrow f) + N(B^0(t) \rightarrow \bar{f})} = S \sin(\Delta m_d t) - C \cos(\Delta m_d t),$$

where $N(B^0(t) \rightarrow f)$ is the number of B^0 that decay into the CP-eigenstate f after a time t and Δm_d is the difference between the B mass eigenstates. The sinusoidal term describes interference between mixing and decay and the cosine term is the direct CP asymmetry. S and C are functions of the parameter λ and are defined as follows:

$$S = \frac{2 \cdot \text{Im} |\lambda|}{1 + |\lambda|^2},$$
$$C = \frac{1 - |\lambda|^2}{1 + |\lambda|^2},$$

$$\lambda = \frac{q}{p} \cdot \frac{A(B^0(t) \rightarrow \bar{f})}{A(B^0(t) \rightarrow f)}.$$ (1)

In Eq. (1) $A(B^0(t) \rightarrow \bar{f}) (A(B^0(t) \rightarrow f))$ is the decay amplitude of B^0 (B^0) to the final state \bar{f} (f).

The physical states (solutions of the complex effective Hamiltonian for the B^0-\bar{B}^0 system) can be written in terms of the parameters p, q and z [4]:

$$|B_L\rangle = p\sqrt{1-z}|B^0\rangle + q\sqrt{1+z}|\bar{B}^0\rangle,$$
$$|B_H\rangle = p\sqrt{1+z}|B^0\rangle - q\sqrt{1-z}|\bar{B}^0\rangle,$$

where H and L denote the Heavy and Light mass eigenstates. Under CPT symmetry, the complex parameter z vanishes. T invariance implies $|q/p| = 1$ and CP invariance requires both $|q/p| = 1$ and $z = 0$. In this article the current status of measurements of CP violation in $B \rightarrow$ charm decays and studies of searches for T, CPT and CP violation in B^0-\bar{B}^0 mixing are presented. All results are preliminary unless otherwise stated.

2 $b \rightarrow c\bar{c}s$ decay modes

The determination of β from $b \rightarrow c\bar{c}s$ decay modes currently provides the most stringent constraint on the unitarity triangle. For these decay modes, the CP violation parameters in Eq. (1) are $S_{b\rightarrow c\bar{c}s} =$
$-\eta_f \sin 2\beta$ and $S_{b\to c\bar{s}} = 0$, where η_f is -1 for $(c\bar{s})K^0_S$ decays (e.g. $J/\psi K^0_S$, $\psi(2S)K^0_S$, $\chi_c K^0_S$, $\eta_c K^0_S$ [5]) and η_f is $+1$ for the $(\bar{c}\bar{s})K^0_S$ (e.g. $J/\psi K^0_L$) state. We use the value $\eta_f = 0.504 \pm 0.033$ for the $J/\psi K^{\pm}(K^{*0} \to K^0_S \pi^0)$ final state since it can be both CP even and CP odd due to the presence of even and odd orbital angular momentum contributions [6]. These modes have been used to measure $\sin 2\beta$ using 348 $M_B\bar{B}$ pairs [7], where an improved event reconstruction has been applied to the complete dataset, and a new $\eta_c K^0_S$ event selection has been developed based on the Dalitz structure of the $\eta_c \to K^0_S K^+\pi^-$ decay. We measure [8]

$$\sin 2\beta = 0.715 \pm 0.034 \pm 0.019,$$

$$|\lambda| = 0.932 \pm 0.026 \pm 0.017$$

which is in agreement with SM expectations. Figure 1 shows the Δt distributions and asymmetries in yields between B^0 tags and $B^\ast 0$ tags for the $\eta_f = -1$ and $\eta_f = +1$ samples as a function of Δt, overlaid with the projection of the likelihood fit result.

3 cos2β measurements

The analysis of $b \to c\bar{s}$ decay modes imposes a constraint on $\sin 2\beta$ only, leading to a four-fold ambiguity in the determination of β. This ambiguity can lead possible new physics undetected even with very high precision measurements of $\sin 2\beta$. Additional constraints are obtained from the ambiguity-free measurement of $\cos 2\beta$ using the angular and time-dependent asymmetry in $B^0 \to J/\psi K^*$ decays and the time-dependent Dalitz plot analyses of $B^0 \to D^{\ast 0} h^0$ and $B^0 \to D^{\ast +} D^{\ast -} K^0_S$. The $B^0 \to J/\psi K^*$ analysis is published in Ref. [9].

A model-independent measurement of $\cos 2\beta$ in $B^0 \to D^{\ast 0} h^0$ decays has been made using a time-dependent Dalitz plot analysis of $D^0 \to K^0_S \pi^+ \pi^-$, where h^0 is a light neutral meson such as π^0, η, η' or ω [10]. The strong phase variation on the $D^0 \to K^0_S \pi^+ \pi^-$ Dalitz plot allows access to the angle β with only a two-fold ambiguity ($\beta + \pi$) [11]. Using 311 $M_B\bar{B}$ pairs, the following values of the CP asymmetry parameters are extracted:

$$\cos 2\beta = 0.54 \pm 0.54 \pm 0.08 \pm 0.18,$$

$$\sin 2\beta = 0.45 \pm 0.36 \pm 0.05 \pm 0.07,$$

$$|\lambda| = 0.975^{+0.093}_{-0.085} \pm 0.012 \pm 0.002,$$

where in addition to the statistical and systematic errors, there are also uncertainties from the signal Dalitz model. Assuming that $\sin 2\beta$ takes the same value as the $b \to c\bar{s}$ decay average in Ref. [12] and that there is no CP violation in $B^0\bar{B}$ mixing, a parameterised Monte Carlo method based on the observed data finds that these measurements favour the solution of $\beta = 22^\circ$ over 68° at an 87% confidence level.

A study of the decay $B^0 \to D^{\ast +} D^{\ast -} K^0_S$ has been made using 230 $M_B\bar{B}$ pairs [13]. The branching fraction $B(B^0 \to D^{\ast +} D^{\ast -} K^0_S) = (4.4 \pm 0.4 \pm 0.7) \times 10^{-3}$ has been measured and evidence found for the decay $B^0 \to D^{\ast +} D_s^{\ast -}(2536) K^0_S$ with a 4.6σ statistical significance. The time-dependent decay rate asymmetry of $B^0 \to D^{\ast +} D^{\ast -} K^0_S$ can be written in terms of the parameters J_0, J_{s1}, J_{s2} and J_c which are integrals over the half Dalitz space of the decay amplitudes of $B^0 \to D^{\ast +} D^{\ast -} K^0_S$ and $B^0 \to D^{\ast +} D^{\ast -} K^0_S$. The fits to the data yield:

$$J_c \over J_0 = 0.76 \pm 0.18 \pm 0.07,$$
Figure 1: a) Number of $\eta_f = -1$ candidates ($J/\psi K_s^0$, $\psi(2S) K_s^0$, $\chi_c1 K_s^0$, and $\eta_c K_s^0$) in the signal region with a B^0 tag N_{B^0} and with a \bar{B}^0 tag $N_{\bar{B}^0}$, and b) the raw asymmetry $(N_{B^0} - N_{\bar{B}^0})/(N_{B^0} + N_{\bar{B}^0})$, as functions of Δt. Figs. c) and d) are the corresponding plots for the $\eta_f = +1$ mode $J/\psi K_{L}^0$. The solid (dashed) curves represent the fit projections in Δt for B^0 (\bar{B}^0) tags. The shaded regions represent the estimated background contributions.
The measured value of J_c/J_0 is significantly different from zero, which, according to Ref. [14], may indicate that there is a sizeable broad resonant contribution to the decay $B^0 \rightarrow D^{*+} D^{*-} K_S^0$ from an unknown D_{s1}^+ state with an unknown width. Under this assumption then the measured value of $2J_{s2}/J_0$ implies that the sign of $\cos 2\beta$ is preferred to be positive at a 94% confidence level.

Figure 2 illustrates the combined constraint on β in the ρ-η plane from the Belle and BABAR $b \rightarrow c\bar{s}s$, $B^0 \rightarrow J/\psi K^*$, $B^0 \rightarrow D^{*0} h^0$ and $B^0 \rightarrow D^{*+} D^{*-} K_S^0$ analyses [12].

Figure 2: Constraint on β in the ρ-η plane, obtained from the analysis of $b \rightarrow c\bar{s}s$ decays, the angular analysis of $B^0 \rightarrow J/\psi K^*$ and the time-dependent Dalitz plot analyses of $B^0 \rightarrow D^{*0} h^0$ and $B^0 \rightarrow D^{*+} D^{*-} K_S^0$. The hatched area corresponding to the solution $\beta = 68.8 \pm 1.0^\circ$ where $\cos 2\beta$ is negative, is strongly disfavoured.

4 Studies of T, CPT and CP violation in B^0-\bar{B}^0 mixing.

Inclusive dilepton events, where both B mesons decay semileptonically represent 4% of all $\Upsilon(4S) \rightarrow B^0\bar{B}^0$ decays and provide a very large sample with which to study T, CPT and CP violation in B^0-\bar{B}^0 mixing. The same-sign dilepton asymmetry $A_{T/CP}$ between the two oscillation probabilities $P(\bar{B}^0 \rightarrow B^0)$ and $P(B^0 \rightarrow \bar{B}^0)$ is sensitive to $|q/p|$ and probes both T and CP symmetries. The
opposite-sign dilepton asymmetry $A_{T/CPT}$ compares the probabilities $P(B^0 \rightarrow B^0)$ and $P(\overline{B}^0 \rightarrow \overline{B}^0)$ and probes CPT and CP violation. It is sensitive to the product $\Delta\Gamma \cdot \text{Re} \, z$ where $\Delta\Gamma$ is the difference between the decay rates of the neutral B mass eigenstates. The result published in Ref. [15] uses a sample of 232 $M\overline{B}\overline{B}$ pairs to measure the T and CP violation parameter

$$|q/p| - 1 = (-0.8 \pm 2.7 \pm 1.9) \times 10^{-3}$$

and the CPT and CP parameters

$$\text{Im} \, z = (-13.9 \pm 7.3 \pm 3.2) \times 10^{-3},$$
$$\Delta\Gamma \cdot \text{Re} \, z = (-7.1 \pm 3.9 \pm 2.0) \times 10^{-3} \text{ ps}^{-1}.$$

The statistical correlation between the measurements of $\text{Im} \, z$ and $\Delta\Gamma \cdot \text{Re} \, z$ is 76%. A search is then made for time-dependent variations in the complex CPT parameter $z = z_0 + z_1 \cos (\Omega t + \phi)$ where Ω is the Earth’s sidereal frequency and t is sidereal time [16]. We measure:

$$\text{Im} \, z_0 = (-14.1 \pm 7.3 \pm 2.4) \times 10^{-3},$$
$$\Delta\Gamma \cdot \text{Re} \, z_0 = (-7.2 \pm 4.1 \pm 2.1) \times 10^{-3} \text{ ps}^{-1},$$
$$\text{Im} \, z_1 = (-24.0 \pm 10.7 \pm 5.9) \times 10^{-3},$$
$$\Delta\Gamma \cdot \text{Re} \, z_1 = (-18.8 \pm 5.5 \pm 4.0) \times 10^{-3} \text{ ps}^{-1}.$$

The statistical correlation between the measurements of $\text{Im} \, z_0$ and $\Delta\Gamma \cdot \text{Re} \, z_0$ is 76%; and between $\text{Im} \, z_1$ and $\Delta\Gamma \cdot \text{Re} \, z_1$ is 79%. Figure 3 shows confidence level contours for the parameters $\text{Im} \, z_1$ and $\Delta\Gamma \cdot \text{Re} \, z_1$ including both statistical and systematic errors. A significance of 2.2σ is found for periodic variations in the CPT violation parameter z at the sidereal frequency, characteristic of Lorentz violation.

![Figure 3](image)

Figure 3: Confidence level contours for the parameters $\text{Im} \, z_1$ and $\Delta\Gamma \cdot \text{Re} \, z_1$. The line contours indicate 1σ, 2σ, and 3σ significance. The star at $\text{Im} \, z_1 = \Delta\Gamma \cdot \text{Re} \, z_1 = 0$ indicates the condition for no sidereal-time dependence in z.

A measurement of the parameter $|q/p|$ has also been made using the partial reconstruction of one of the B mesons in the semileptonic channel $D^{*-} \ell^+ \nu_\ell$, where only the hard lepton and the soft
pion from the $D^* \to D^0 \pi^-$ decay are reconstructed \cite{17}. A data sample of 220 $M_B \overline{M}_B$ pairs are used. We measure

$$|q/p| - 1 = (6.5 \pm 3.4 \pm 2.0) \times 10^{-3}$$

which is consistent with SM expectations.

5 Conclusion

An improved measurement of $\sin^2 \beta$ has been made using $B^0 \to \text{charmonium} + K^0$ decays. This is consistent with SM expectations and continues to provide the most stringent constraint on the unitarity triangle. Analysis of the $b \to c \bar{s}s$, $B^0 \to J/\psi K^*$, $B^0 \to D^{*0} h^0$ and $B^0 \to D^{*+} D^{*-} K_S^0$ modes indicate that the solution $\beta = 21.1 \pm 1.0^\circ$ is strongly preferred. The measurements of $|q/p|$ from analyses of inclusive dilepton and $D^{*-} \ell^+\nu_\ell$ events are in agreement with SM predictions.

References

[1] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963); M. Kobayashi and T. Maskawa, Prog. Th. Phys. 49, 652 (1973).
[2] A.B. Carter and A.I. Sanda, Phys. Rev. D 23, 1567 (1981); I.I. Bigi and A.I. Sanda, Nucl. Phys. B 193, 85 (1981).
[3] BABAR Collaboration, B. Aubert et al., Nucl. Instr. Methods Phys. Res., Sect. A 479, 1 (2002).
[4] O. Schneider, arXiv:hep-ex/0606040 (2006).
[5] Charge-conjugate reactions are included implicitly unless otherwise specified.
[6] BABAR Collaboration, B. Aubert et al., arXiv:hep-ex/0607081 (2006).
[7] BABAR Collaboration, B. Aubert et al., arXiv:hep-ex/0607107 (2006).
[8] Unless otherwise stated, all results are quoted with the first error being statistical and the second systematic.
[9] BABAR Collaboration, B. Aubert et al., Phys. Rev. D 71 032005 (2005).
[10] BABAR Collaboration, B. Aubert et al., arXiv:hep-ex/0607105 (2006).
[11] A. Bondar et al., Phys. Lett. B 624 (2005).
[12] Heavy Flavor Averaging Group: http://www.slac.stanford.edu/xorg/hfag
[13] BABAR Collaboration, B. Aubert et al., arXiv:hep-ex/0608016 (2006).
[14] T.E. Browder et al., Phys. Rev. D 61, 054009 (2000).
[15] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 96, 251802 (2006).
[16] BABAR Collaboration, B. Aubert et al., arXiv:hep-ex/0607103 (2006).
[17] BABAR Collaboration, B. Aubert et al., arXiv:hep-ex/0607091 (2006).