EFFECTS OF PAPAVERINE, BENACTYZINE AND D600 ON Ca²⁺ EFFLUX, DETERMINED BY MEANS OF A Ca²⁺-SELECTIVE ELECTRODE, FROM GUINEA PIG TAENIA COLI INTO A Ca²⁺-FREE PHYSIOLOGICAL SOLUTION

Toshiharu SHIBA, Tsutomu URUNO, Kazuhiko KUBOTA and Keijiro TAKAGI

Department of Pharmacology, Faculty of Pharmaceutical Sciences, Science University of Tokyo, Ichigaya, Shinjuku-ku, Tokyo 162, Japan

Accepted March 6, 1981

Abstract—The effects of papaverine, benactyzine and D600 on Ca²⁺ efflux from the taenia coli of guinea pig into a Ca²⁺-free physiological solution were studied. The effluxed free Ca²⁺ concentrations in the solution were continuously monitored during 30 min by means of a Ca²⁺-selective electrode. Papaverine (5×10⁻⁵ and 10⁻⁴ M) increased the amount of effluxed Ca²⁺ after a 10-min efflux time. The increase in the rate of Ca²⁺ efflux by papaverine was observed after a 4-min efflux time and lasted for the following 15–20 min. Dibutyryl cyclic AMP induced the increase in Ca²⁺ efflux in a similar manner as papaverine. Benactyzine at a concentration of 10⁻⁴ M, which exerts a non-specific antispasmodic action, produced an increase in the amount of effluxed Ca²⁺ during a 30-min efflux period, and the increase in the rate of Ca²⁺ efflux was observed only 1 min after the efflux initiation. D600 (10⁻⁶ M) had no effect on Ca²⁺ efflux and the rate of Ca²⁺ efflux, while an increase in the concentration of D600 to 10⁻⁵ M produced an enhancement of Ca²⁺ efflux and an increased rate of efflux, during the 30-min efflux period. These results suggest that smooth muscle relaxants, papaverine, benactyzine and D600, may increase Ca²⁺ efflux from the guinea pig taenia coli into a Ca²⁺-free physiological solution, in a different manner(s).

Contraction of the smooth muscle may be dependent upon an increase in the influx of extracellular Ca and/or in the release of intracellular stored Ca, while its relaxation may be dependent upon the increased Ca efflux from the cell, the rebinding of cytoplasmic Ca²⁺ to the intracellular storage sites, a decrease in the Ca influx or the combination of these processes. Spasmolitics may, therefore, elicit relaxation of the smooth muscle by affecting, at least, one of these Ca translocation processes in some manners.

Non-specific antispasmodics such as papaverine and benactyzine have been divided into two groups according to their mechanisms of action; potent, basic compounds or synthetic antispasmodics such as benactyzine hydrochloride and 1.1-diphenyl-3-piperidinobutanol hydrochloride (Aspaminol), and weak basic compounds such as papaverine (1–4). It has been reported that papaverine inhibits the supply of Ca to the contractile elements at the cell membrane (5), and that benactyzine and Aspaminol, synthetic antispasmodics, compete with Ca²⁺ at the surface sites of the muscle cell...
membrane related to Ca uptake process, thus decreasing the supply of Ca to the contractile elements (6). Moreover, it has been reported that papaverine strongly inhibits phosphodiesterase and increases the intracellular level of cyclic 3',5' adenosine monophosphate (cyclic AMP), while benactyzine and Aspaminol have no effect upon the cyclic AMP level (3, 4, 7). Thus, it is generally accepted that papaverine and benactyzine have different mechanisms of action.

On the other hand, it has been documented that specific Ca antagonists such as D600, a methoxy derivative of verapamil, induce relaxation by inhibiting Ca influx through Ca channels in the cell membrane (8) and block Ca influx in various smooth muscles (9-11).

In the present studies, we investigated the effects of papaverine, benactyzine and D600 on Ca efflux from the taenia coli of guinea pig into a Ca-free physiological solution by means of a Ca-selective electrode, and compared their actions on the Ca efflux. In addition, the effect of papaverine on the Ca efflux was compared with that of N6, O2'-dibutyryl-3',5'-cyclic adenosine monophosphate (dibutyryl cyclic AMP).

MATERIALS AND METHODS

Apparatus and calibration of the electrode: The potentiometric set-up for Ca determination consisted of an F2112Ca Calcium Selectrode, a K401 saturated calomel electrode, a PHM64 pH meter (Radiometer A/S, Copenhagen, Denmark) and a recorder. An amplifier (ME Commercial, Tokyo, Japan) with an offset voltage controller (12) was inserted in series between the pH meter output and the recorder input.

Ca concentrations were measured in the mV-range. A Ca electrode was calibrated by successive addition of 5 n moles Ca with a concentrated CaCl stock solution and a calibration curve for the Ca electrode was obtained by plotting changes in potential (J mV) against the logarithm to the added Ca concentrations. Since the potential decreases with increasing Ca concentration in the solution, changes in the potential were expressed in terms of absolute values. Under the conditions used here, calibration curves became linear within the range of Ca concentrations from 5×10^-6 to 2.5×10^-5 M.

Tissue preparation: Pieces of taenia coli (50 mm long in situ) were dissected from the caecum of male guinea pig weighing 400-500 g. Before determination of Ca effluxes, the tissues were allowed to equilibrate for 120 min in a normal Tris-solution, bubbled with 100 % O2, at 26°C. The normal Tris-solution used was the following composition (mM): NaCl 137; KCl 2.7; CaCl2 1.4; glucose 8.0 and tris (hydroxymethyl) aminomethane (Tris) 5.0. The Tris-solution was adjusted to pH 7.5 with 6 N HCl.

Measurement of Ca efflux: After equilibration, the tissue was rinsed in a Ca-free Tris-solution (5 ml) for 1 min in order to remove free Ca in the extracellular space of the tissue. The Ca-free Tris-solution was prepared by omitting CaCl2 from the normal Tris-solution. The tissue was, then, blotted on ashless filter paper (Whatman No. 42) and placed in a vessel containing the Ca-free Tris-solution (5 ml). Free Ca ions effluxed from the tissue into the Ca-free Tris-solution were continuously measured during 30-min efflux period by using the Ca electrode. Measurement of Ca efflux was performed at 26°C to slow the rate of Ca efflux and to minimize evaporation of the efflux solution. Under the present experimental conditions, the Ca concentrations effluxed from the tissues into the Ca-free Tris-solution (5 ml) for 30 min were approximately 6×10^-6-10^-5 M. Stirring of the...
The efflux solution was accomplished by the bubbling of 100% O₂.

To examine the effects of relaxants on Ca²⁺ efflux, the Ca²⁺ efflux into the Ca²⁺-free Tris-solution containing a relaxant was measured and in this case the calibration for the Ca²⁺ electrode was performed in the presence of the relaxant.

After determination of Ca²⁺ efflux, the tissue was gently blotted on ashless filter paper, transferred into a quartz tube, dried at 100°C for 12 hr and weighed to obtain its dry weight. The dry weights of the tissues were approximately 7–10 mg. Ca²⁺ concentrations effluxed into the medium were expressed as μ moles Ca²⁺/kg dry wt and the rate of Ca²⁺ efflux as μ moles Ca²⁺/kg dry wt·min.

Water and drugs: All solutions were made using reagent-grade water obtained through Milli-Q systems (Millipore Corp., Bedford). The drugs used were as follows: papaverine hydrochloride (Sigma, St. Louis), benactyzine hydrochloride (Tokyo-Kasei Co., Tokyo), D600 hydrochloride (Knoll, A.G., Ludwigshafen/RH) and N⁶,O²'-dibutyril-3',5'-cyclic adenosine monophosphate (dibutyryl cyclic AMP) (Sigma, St. Louis). The other reagents used here were of the highest purity available. Concentrations given in this paper represented final vessel concentrations in terms of free base.

Statistical analysis: The results were expressed as the mean ± S.E. Differences between experiments were compared with Student’s t-test for paired samples. P values of 0.05 or less were considered to be significant.

RESULTS

Figure 1 shows the effect of papaverine on Ca²⁺ efflux from the taenia coli of guinea pig into the Ca²⁺-free Tris-solution. Papaverine at a concentration of 5 × 10⁻⁵ M,
which suppressed the carbachol (10^{-5} M)-induced contraction by 50% in the normal Tris-solution, significantly increased the amount of effluxed Ca^{2+} after an efflux time of 10 min (Fig. 1, A). The papaverine (5 \times 10^{-5} M)-induced increase in the rate of Ca^{2+} efflux was observed at a 4-min efflux time and this increase lasted for the following 15–20 min (Fig. 1, B). The increases in the amount of effluxed Ca^{2+} and the rate of Ca^{2+} efflux were also observed at a concentration of 10^{-4} M papaverine, which completely abolished the carbachol (10^{-5} M)-induced contraction. Although papaverine at both concentrations of 5 \times 10^{-5} and 10^{-4} M induced the increase in Ca^{2+} efflux from the tissue in a similar manner, the dose-dependent relationship was not observed (Fig. 1).

It has been reported that papaverine strongly inhibits phosphodiesterase, thus increasing the intracellular level of cyclic AMP (3, 4, 13) and that dibutyryl cyclic AMP has effects similar to papaverine (5, 14). Therefore, we investigated the effect of dibutyryl cyclic AMP on Ca^{2+} efflux from the guinea pig taenia coli into the Ca^{2+}-free Tris-solution. Dibutyryl cyclic AMP (10^{-4} M) increased the amount of effluxed Ca^{2+} (Fig. 2) in a similar time course as papaverine (Fig. 1). The increase in the rate of Ca^{2+} efflux induced by dibutyryl cyclic AMP was observed at a 2-min efflux time and lasted for the following 10 min (Fig. 2, B).

It is well known that benactyzine has, at least, two pharmacological actions (1). At a concentration below 10^{-5} M, benactyzine showed an anticholinergic action, while it exerted a non-specific antispasmodic one at concentrations above 3 \times 10^{-5} M (data not shown). Benactyzine at a concentration of 1.6 \times 10^{-7} M, which suppressed the carbachol (10^{-5} M)-induced contraction by 50%, did not affect Ca^{2+} efflux (data not shown). Benactyzine (5 \times 10^{-6} M), which abolished the carbachol (10^{-5} M)-induced contraction, increased the amount of effluxed Ca^{2+} at 10, 15 and 20-min efflux times as shown in Fig. 3, A. At a concentration of 10^{-4} M, benactyzine which showed a non-specific antispasmodic action, increased the amount of effluxed Ca^{2+} at all efflux times (Fig. 3, A). The significant increase in the rate of Ca^{2+} efflux induced by benactyzine (10^{-4} M) was, however, observed during the first 1-min...
efflux period (p<0.05) (Fig. 3, B).

Figure 4 shows the effect of D600 on Ca\(^{2+}\) efflux from the taenia coli of guinea pig into the Ca\(^{2+}\)-free Tris-solution. D600 at a concentration of 10\(^{-6}\) M induced no increase in Ca\(^{2+}\) efflux at all efflux times (data not shown). In contrast with papaverine, D600 at concentrations of 4×10\(^{-6}\) and 10\(^{-5}\) M dose-dependently increased Ca\(^{2+}\) efflux after a 1-min efflux time (Fig. 4, A). D600 at a concentration of 4×10\(^{-6}\) M increased the rate of Ca\(^{2+}\) efflux only during the first 1-min efflux period, while during 30-min efflux period, 10\(^{-5}\) M D600 increased the efflux rates.

Fig. 3. Effects of benactyzine on Ca\(^{2+}\) efflux (A) and the rate of Ca\(^{2+}\) efflux (B). O, control; ●, 5×10\(^{-6}\) M benactyzine; △, 10\(^{-4}\) M benactyzine. The data is the average of 4 experiments. In (A), significant difference from control: (*) p<0.05; (**) p<0.01; (***) p<0.005. The other expressions are the same as described for Fig. 1.

Fig. 4. Effects of D600 on Ca\(^{2+}\) efflux (A) and the rate of Ca\(^{2+}\) efflux (B). O, control; ●, 4×10\(^{-6}\) M D600, △, 10\(^{-5}\) M D600. The data is the average of 4 experiments. In (A), significant difference from control: (*) p<0.05; (**) p<0.005. The other expressions are the same as described for Fig. 1.
DISCUSSION

Intracellular organelles such as sarcoplasmic reticulum and mitochondria, cytoplasm and plasma membrane have been usually accepted as Ca locations in smooth muscle cells (15-17). Moreover, plasma membrane Ca fractions have been suggested to be present in two forms, differing either in site of binding or in binding energy: "superficial" and "sequestered (or less superficial)" (18, 19). On the other hand, Karaki et al. (20) have divided cellular Ca into two parts using the results of 45Ca uptake (4 min wash) experiments, in which the fractions which did and did not exchange within 4 min have been termed the "loosely" and the "tightly bound fraction", respectively.

We have reported that a Radiometer Ca2+-selective electrode can accurately and continuously monitor free Ca2+ ions effluxed from smooth muscles into a Ca2+-free physiological solution, at micromolar levels (21, 22). It has been, however, reported that in various types of smooth muscle, the effluxed 45Ca is much greater into a medium containing 40Ca than that into a 40Ca-free medium, due to the presence of a 40Ca-45Ca exchange mechanism at the binding sites of the cell surface (23, 24). In previous work (22), we observed in the taenia coli of guinea pig and the thoracic aorta of rabbit that after incubation in a Ca2+-free medium for different periods, the tissue, in which the residual Ca gradually decreased with increasing the time of incubation, maintained superficially-bound Ca which is readily displaced by La3+. These results suggested that superficially-bound Ca may not be readily omitted by incubation of the tissues in a Ca2+-free medium for the given period. Therefore, under the present experimental conditions, it could be assumed that the drugs which interact with Ca at the superficial Ca binding sites of the plasma membrane increase Ca2+ efflux in the initial phase of efflux periods, and that the drugs which influence some Ca sinks in the cytoplasm increase Ca2+ efflux in the later phase of efflux periods.

Tomiyama et al. (14) reported that papaverine increases 45Ca efflux from the guinea pig taenia coli into a medium containing 40Ca, while Banerjee and Lewis (25) reported that papaverine decreases 47Ca efflux from the guinea pig ileum. Thus, there are discrepancies regarding the effect of papaverine on Ca efflux. In this study, the significant increase in the amount of Ca2+ effluxed into the Ca2+-free Tris-solution induced by papaverine (5×10^{-5} and 10^{-4} M) was observed after an efflux time of 10 min, although the increase in the rate of Ca2+ efflux was observed after 4-min efflux periods (Fig. 1). These results suggest that papaverine may not directly influence the superficial Ca binding sites of the plasma membrane. Since it has been reported that papaverine exists for the most part as non-ionized molecule in a physiological solution (1) this drug may intracellularly exert its action on Ca2+ efflux of the taenia coli into a Ca2+-free medium. It is also suggested that the increased Ca2+ efflux induced by papaverine might be derived from intracellular origin and/or from the superficial binding sites into the medium by translocation of Ca from the "sequestered" sites to the superficial sites of the plasma membrane.

Papaverine did not increase Ca2+ efflux in a dose-dependent manner (Fig. 1, A). This might be related to the stimulatory effect of papaverine on Ca uptake by microsomal fraction (6) and/or mitochondrial fraction (26) of smooth muscles and to the inhibitory effect of papaverine on Ca release by microsomal fraction (27).

Papaverine strongly inhibits phosphodiesterase thus increasing the intracellular level of cyclic AMP (3, 4, 7, 13) and dibutyl cyclic AMP as well as papaverine induces
the increase in 45Ca efflux into a medium containing 40Ca (14). Dibutyryl cyclic AMP (10$^{-4}$ M), as shown in Fig. 2, increased the amount of effluxed Ca$^{2+}$ and the rate of Ca$^{2+}$ efflux in a similar time course as papaverine, although the increase in the rate of Ca$^{2+}$ efflux induced by the former did not last so long as that induced by the latter. From the present results, it might be assumed that the increase in the Ca$^{2+}$ efflux into the Ca$^{2+}$-free Tris-solution induced by papaverine is partly mediated through an increase of the intracellular level of cyclic AMP as the result of the inhibition of phosphodiesterase.

Since synthetic antispasmodics such as benactyzine and Aspaminol exist mainly in an ionized form in a physiological solution, most of these antispasmodic molecules fail to penetrate a cell (1). These drugs have no effect upon the cyclic AMP level (2–4.7). Takayanagi et al. (6) reported that benactyzine and Aspaminol compete with Ca$^{2+}$ at the surface sites of the muscle membrane concerned with Ca uptake process, thus decreasing the supply of Ca$^{2+}$ to the contractile elements. In the present experiments, benactyzine (10$^{-4}$ M) increased Ca$^{2+}$ efflux from the guinea pig taenia coli into the Ca$^{2+}$-free Tris-solution (Fig. 3, A). In contrast with papaverine, benactyzine (10$^{-4}$ M) significantly increased the amount of effluxed Ca$^{2+}$ at an efflux time of 1 min (p<0.05) and the significant increase in the rate of Ca$^{2+}$ efflux was observed only during the first 1-min efflux period (p<0.05). Benactyzine at a concentration of 3x10$^{-5}$ M had an effect similar to that of 10$^{-4}$ M benactyzine and a dose-dependent relationship was observed (data not shown). These results suggest that the antispasmodic action of benactyzine may be mainly related to an interaction with Ca at the superficial binding sites of the plasma membrane and consequently benactyzine may increase Ca$^{2+}$ release at the initial phase of the efflux. Our results support the suggestion proposed by Takayanagi et al. (6).

It has been reported that D600 inhibits 45Ca influx in smooth muscles (9–11). D600 at a concentration of 4x10$^{-6}$ M, significantly increased the amount of effluxed Ca$^{2+}$ at 1.5 and 10-min efflux times, while significant increase in the rate of Ca$^{2+}$ efflux was observed only during the first 1-min efflux period (Fig. 4). The effects of D600 at this concentration are quite similar to those of benactyzine (10$^{-4}$ M) (Fig. 3). These results suggest the possibility that D600 might increase Ca$^{2+}$ efflux from the guinea pig taenia coli into a Ca$^{2+}$-free medium in a manner similar to benactyzine. However, D600 at a higher concentration of 10$^{-5}$ M increased the amount of effluxed Ca$^{2+}$ and the rate of Ca$^{2+}$ efflux at all the efflux times. It is thus impossible to explain the effects of D600 on Ca$^{2+}$ efflux from the taenia coli into the Ca$^{2+}$-free medium only on the basis of inhibition of backinflux of Ca$^{2+}$ from the external Ca$^{2+}$-deficient medium. Church and Zsotér (28) reported that Ca$^{2+}$ antagonists such as nifedipine have intracellular actions because nifedipine increases 45Ca efflux from membrane-bound and intracellular sites of the rabbit mesenteric veins into a Ca$^{2+}$-free medium. From these results, the increased Ca$^{2+}$ efflux by D600 at a higher concentration of 10$^{-5}$ M might be exerted by its effect on the intracellular sites and/or the binding sites of the plasma membrane.

In summary, we could differentiate the effects of three antispasmodics, papaverine, benactyzine and D600, on Ca$^{2+}$ efflux from the taenia coli of guinea pig into a Ca$^{2+}$-free physiological solution by means of a Ca$^{2+}$-selective electrode. In addition, our results suggest that these three relaxants may have different mechanisms of action on Ca$^{2+}$ efflux of the tissue into a Ca$^{2+}$-free physiological solution.
REFERENCES

1) Takagi, K., Takayanagi, I. and Fujie, K.: Chemi-
copharmacological studies on antispasmodic
action. Non-specific antispasmodic action on
tracheal muscle. Chem. Pharm. Bull. 6, 716–720
(1958)

2) Takayanagi, I., Uchida, M., Abe, T., Tomiyama,
A. and Takagi, K.: Relaxing action of synthetic
antispasmodics on the intestinal smooth muscle
of guinea pig. Japan. J. Pharmacol. 23, 737–739
(1973)

3) Uruno, T., Takayanagi, I., Kubota, K. and Takagi,
K.: Comparison of action of papaverine,
Aspaminol and isoprenaline on isolated rat
uterus. Japan. J. Pharmacol. 24, 219–226
(1974)

4) Inatomi, N., Takayanagi, I., Uchida, M. and
Takagi, K.: Intracellular cyclic AMP level and
intestinal smooth muscle relaxation. Europ. J.
Pharmacol. 26, 73–76 (1974)

5) Takagi, K., Takayanagi, I. and Tomiyama, A.: Action of dibutyryl cyclic adenosine mono-
phosphate, papaverine and isoprenaline on the
intestinal smooth muscle. Japan. J. Pharmacol.
21, 477–483 (1971)

6) Takayanagi, I., Hisayama, T., Yoshida, Y. and
Koike, K.: Effects of nonspecific smooth muscle
relaxants on calcium-uptake by microsomal
fraction and their inhibitory action in rabbit
taenia coli. J. Pharm. Dyn. 3, 160–166 (1980)

7) Takayanagi, I., Karasawa, A. and Kasuya, Y.: Relaxation of depolarized guinea pig taenia
caecum induced by some antispasmodics. Europ. J. Pharmacol. 50, 137–143 (1978)

8) Fleckenstein, A.: Specific pharmacology of
calcium in myocardium, cardiac pacemakers
and vascular smooth muscle. A. Rev. Pharmacol.
Toxicol. 17, 149–166 (1977)

9) Mayer, C.J., van Breemen, C. and Casteels, R.: The action of lanthanum and D600 on the
calcium exchange in the smooth muscle cells of the guinea-pig taenia coli. Pflügers Arch. 337, 333–350 (1972)

10) Kroeger, E.A., Marshall, J.M. and Bianchi, C.P.: Effect of isoprenaline and D600 on calcium
movement in rat myometrium. J. Pharmacol.
exp. Ther. 193, 309–316 (1976)

11) Rosenberger, L.B. and Triggle, D.J.: The
mechanism of action of ionophore A23187 on
guinea pig intestinal smooth muscle. Canad.
J. Physiol. Pharmacol. 57, 348–358 (1979)

12) Madeira, V.M.C.: A rapid and ultrasensitive
method to measure Ca2+ movements across
biological membranes. Biochem. biophys. Res.
Commun. 64, 870–876 (1975)

13) Desmesy-Waelede, F. and Stoclet, J.C.: Effect
of papaverine on cyclic nucleotide levels in the
isolated rat aorta. Europ. J. Pharmacol. 46,
63–66 (1977)

14) Tomiyama, A., Takayanagi, I. and Takagi, K.: Relaxation of intestinal smooth muscle and
calcium movements. J. Pharmacol. Pharmacol. 25,
65–68 (1973)

15) Somlyo, A.P., Somlyo, A.V., Devine, C.E.,
Peters, P.D. and Hall, T.A.: Electron microscopy
and electron probe analysis of mitochondrial
cation accumulation in smooth muscle. J. cell
Biol. 61, 723–742 (1974)

16) Devine, C.E., Somlyo, A.V. and Somlyo, A.P.:
Sarcoplasmic reticulum and excitation-con-
traction coupling in mammalian smooth muscle. J. cell Biol. 52, 690–718 (1972)

17) Gabella, G.: Relationship between sarcoplasmic
reticulum and caveolae intracellulars in the
intestinal smooth muscle. J. Physiol. 216,
429–449 (1971)

18) Hurwitz, L., Hagen, S.V. and Joiner, P.D.: Acetylcholine and calcium on membrane
permeability and contraction of intestinal
smooth muscle. J. gen. Physiol. 50, 1157–1172
(1967)

19) Daniel, E.E.: Attempted synthesis of data
regarding divalent ions in muscle function.
Muscle, Edited by Paul, W.M., Daniel, E.E.,
Kay, C.M. and Monekton, G., p. 295–313,
Pergamon Press, Oxford (1965)

20) Karaki, H., Ikeda, M. and Urakawa, N.: Move-
ments of calcium during tension development
induced by barium and high potassium in
guinea pig taenia coli. J. Pharmacol. 19, 291–299 (1969)

21) Uruno, T., Shiba, T. and Kubota, K.: Application of Ca2+-selective electrode for determination of Ca2+ efflux from smooth muscles into Ca2+-free
physiological solution. J. Pharmacol. Methods
5, 127–135 (1981)

22) Shiba, T., Uruno, T., Kubota, K. and Takagi, K.: Determination of calcium ions effluxed from
smooth muscle into Ca2+-free physiological solution by means of Ca2+-selective electrode. J. Pharm. Dyn. 4, 109–115 (1981)

23) Hudgins, P.M. and Weiss, G.B.: Characteristics of 45Ca binding in vascular smooth muscle.
Am. J. Physiol. 217, 1310–1315 (1969)

24) van Breemen, C., Daniel, E.E. and van Breemen,
D.: Calcium distribution and exchange in the
rat uterus. J. gen. Physiol. 49, 1285–1297
(1966)

25) Banerjee, A.K. and Lewis, J.J.: The effects of
smooth muscle stimulants on the movement of
calcium-47 in the guinea-pig ileum in vitro.
26) Sakai, K., Takayanagi, I., Uchida, M. and Takagi, K.: Effect of papaverine on Ca\(^{2+}\) uptake by a mitochondrial fraction isolated from rat uterine smooth muscle. Europ. J. Pharmacol. 50, 131–136 (1978)

27) Takayanagi, I., Hisayama, T. and Suzuki, S.: Effects of nonspecific smooth muscle relaxants and Ca-blocker on Ca-release and Ca-binding in microsomal fractions from rabbit taenia coli. Japan. J. Pharmacol. 30, 641–646 (1980)

28) Church, J. and Zsotér, T.T.: Calcium antagonistic drugs. Mechanism of action. Canad. J. Physiol. Pharmacol. 58, 254–264 (1980)