Übersichten

Nitrate

K. Reynen
Medizinische Klinik II mit Poliklinik (Direktor: Prof. Dr. K. Bachmann) der Universität Erlangen—Nürnberg

William Heberden beschrieb 1768 erstmals die Angina pectoris als Symptom; die kausale Verbindung zu einer Mangeldurchblutung des Herzens durch eine obliterierende Koronarsklerose wurde jedoch erst in den folgenden Jahrzehnten durch Edward Jenner und Caleb H. Parry hergestellt (65). Vor 125 Jahren wurde erstmals über die medikamentöse Kupierung eines Angina-pectoris-Anfalls durch Inhalation von Amylnitrit berichtet (5); wenige Jahre später, 1879, wurde ein Bericht über die Wirkung am Herzen und in den Arterien von Nitroglycerin publiziert (45). Seit der Entdeckung der vasodilatierenden Eigenschaften von Isosorbiddinitrat 1938 (23) ist neben der Behandlung akuter und chronischer Beschwerden durch Nitropräparate auch deren medikamentöse Prävention möglich geworden. In die klinische Praxis wurden die Langzeitnitrate Anfang der sechziger Jahre eingeführt (61). Durch Dilatation der epikardialen Gefäße wie durch hämodynamische Entlastung verbessern sie die Sauerstoffbilanz des Herzens. Ihre Wirkung auf muskuläre Ebene entfalten sie analog dem körpereigenen endothelium-derived relaxing factor (EDRF), dessen Identität mit Stickstoffmonoxid (NO) inzwischen gesichert ist (50).

Diese neuen molekularbiologischen Erkenntnisse haben die Diskussion über die vermeidbare Nitratwirkung in den Hintergrund gedrängt und lassen auch eine Einflußnahme der Nitrate auf die Pathogenese der Arteriosklerose möglich erscheinen.

Pharmakologie der Nitrate

Organische Nitrate sind Ester der Salpetersäure mit monomethoxigenen Alkoholen; so lautet die chemische Bezeichnung für Nitroglycerin Glyceroltrinitrat und diejenige für Isosorbiddinitrat (ISDN) 1,4:3,6-Dianhydroxysorbitol 2,5-Dinitrat. Während Nitroglycerin bei Raumtemperatur eine ölge Flüssigkeit ist, ist ISDN ein weißes, kristallines Pulver. Die Grundwirkung der Nitrate besteht in der Relaxation glatter Muskulatur: Aus organischen Nitrat wird in den glatten Gefäßmuskulatur Stickstoffmonoxid (NO) enzymatisch freigesetzt. NO erhöht durch Aktivierung der löslichen Guanylatcyclase den intrazellulären Gehalt an zyklischem 3‘-5‘-Guanosinmonophosphat (cGMP); cGMP vermindert die zytosolische Calciumkonzentration und löst damit eine Relaxation und Vasodilatation aus (42, 48). Auf der venösen Seite ist auch die endotheliale Bildung von NO aus organischen Nitrat an der Wirkung beteiligt. In der Mikrozirkulation ist die vasodilatierende Wirkung von Nitroglycerin nahezu ausgeprägt; es wird angenommen, daß in den glatten Muskulatur der kleinen koronaren Widerstandsgefäße (< 100 μm) die Enzyme oder Kofaktoren zur Metabolisierung organischer Nitrate zu NO nicht vorhanden sind (38). Die uniforme Dilatation koronarer Widerstandsgefäße jedweder Größe ist auch nicht wünschenswert, da sie eine Perfusionminderung ischämischer Myokardareale (»steal-Effekt«) verursachen könnte (38). Nitroglycerin führt auch zu einer signifikanten, jedoch nur kurzzeitigen Relaxation der Bronchialmuskulatur und der Muskulatur der Gallenblase, des Gallenganges sowie des Dünn- und Dickdarmes einschließlich der Sphinkteren (37).

Organische Nitrate werden rasch von der Haut und den Schleimhäuten aufgenommen; die Resorption aus dem Magen-Darm-Trakt erfolgt langsamer; führt aber bei den Nitratestern höherer Alkohole zu einer verlängerten Wirkung (37). Da sie in der Leber einem ausgeprägten »first-pass«-Metabolismus unterliegen, wurde ihre Wirkung nach oraler Gabe in Frage gestellt, zumal die Metaboliten als gefäßaktiv erachtet wurden (47). Inzwischen ist aber gut belegt, daß nach oraler Gabe von ISDN sowohl die aktive Blutdruckwirkung als auch die zytosolisch und endothelial angreifende Wirkung nachweisbar sind (3, 66, 67). Die Resorption organischer Nitrate nach oraler Gabe wird durch Nahrungsaufnahme oder eine Herzinsuffizienz nicht beeinträchtigt (19,
die interindividuelle Schwankungsbreite jedoch ist groß (3, 19). Die Metaboliten von ISDN sind Isosorbid-5-Mononitrat (IS-5-MN), Isosorbid-2-Mononitrat (IS-2-MN) und demitierte Isosorbide (3). Während die Plasmahalbwertszeit von ISDN 20–30 Minuten beträgt, ist die der Metaboliten IS-2-MN und IS-5-MN mit 2 bzw. 4–5 Stunden erheblich länger (37). Auch die Metaboliten sind therapeutisch wirksam. Je lipophiler das Nitrat, desto ausgeprägter ist die gefäßrelaxierende Wirkung: So ist Glyceroltrinitrat bei gleicher Dosis wesentlich wirksamer als Isosorbiddinitrat und dies wiederum wirksamer als Isosorbid-5-Mononitrat (48).

Di- und Mononitrate werden teils unverändert, teils als Glucuronide ausgeschieden. Eine Dosisreduktion bei Niereninsuffizienz ist nicht erforderlich (3); da die Metabolisierung von ISDN nicht nur in der Leber, sondern ubiquitär erfolgt, wird die Pharmakokinetik von ISDN auch bei einer Leberinsuffizienz nicht wesentlich beeinflußt (66).

Klinische Wirkung der Nitrate

Der Angina pectoris liegt ein Mißverhältnis zwischen Sauerstoffangebot und Sauerstoffbedarf des Herzmuskels zugrunde, in der Regel bedingt durch eine hämodynamisch wirksame stenosierende koronare Herzkrankheit. Auslösend können physische und psychische Belastung, Kälte und reichliche Mahlzeiten wirken. Angina schwellen sowie Häufigkeit und Dauer ischämischer Episoden sind jedoch beim einzelnen Patienten variabel (46). Dies läßt sich durch das Konzept der »dynamischen« Koronarstenosen erklären: In mehr als der Hälfte der arteriosklerotischen Läsionen ist das Restlumen exzentrisch; es bleibt ein Wandsegment mit erhalte- ner glatter Gefäßmuskulatur, das auf vasokonstriktorische und -dilatierende Reize reagieren kann (54). Seltener ist die verkalkte, ringförmig das Lumen einengende, rigide Plaque. Eben Myokardschämien können gelegentlich auch lokale, passagere Koronarspasmen zugrunde liegen, seltener in normalen Kranzarterien, häufiger im Bereich arteriosklerotischer Läsionen (Prinzmetal-Angina). Extrakoronare Faktoren können ebenfalls eine Minderdurchblutung bedingen, zum Beispiel eine linksventrikuläre Hypertrophie und eine Erhöhung des linksventrikulären enddiastolischen Drucks bei Hypertonie oder Aortenstenose, eine Hypotonie oder Herzrhythmusstörungen. Zudem können eine Anämie, eine Kohlenmonoxydvergiftung oder eine Lungenerkrankung zu einer Sauerstoffmangelversorgung auch des Herzens führen.

Ziel der antianginösen Therapie ist einerseits die Senkung des Sauerstoffbedarfs, andererseits die Verbesserung der Sauerstoffzufuhr. Nicht nur die symptomatische, sondern auch die prognostisch ebenso bedeutsame stumme Myokardschämie (44) soll vermieden werden.

Die Fähigkeit der Nitrate, akut wie prophylaktisch auf die pektanginösen Beschwerden einwirken, beruht auf ihren gefäßrelaxierenden Eigenschaften sowohl im venösen als auch im arteriellen Stromgebiet. Ursprünglich wurde die Reduktion des venösen Rückstroms durch das venöse
»pooling« als das alleinige Wirkprinzip angesehen (26). Durch diesen unblutigen Aderlauf kommt es über eine Reduktion der Vorlast zu einer Abnahme des unter Ischämie erhöhten linksventrikulären end-diastolischen Drucks; dadurch erhöht sich die Perfusion im subendokardialen Myokard. Zudem wird durch die Abnahme der Wandspannung, einer wesentlichen Determinante des myokardialen Sauerstoffverbrauchs, der Sauerstoffbedarf reduziert. Neben der im Vordergrund stehenden Vorlastsenkung wirken Nitrate insbesondere bei hohen Dosen auch nachlastsenkend. Obwohl zunächst in Zweifel gezogen (22), ist die Dilatation der epikardialen Leitungsgefaße ein wesentliches Element der therapeutischen Wirkung organischer Nitrate (4) (Abbildung 1). Intrakoronar injiziertes Nitroglycerin konnte die Querschnittsfläche von Koronarstenosen um 22–36% vergrößern; 90% der Stenosen zeigten eine signifikante Dilatation (4). Auch die belastungsabhängige Vasokonstriktion im Bereich von Koronarstenosen wird durch Nitroglycerin aufgehoben (21). Bereits nach minimalen Nitroglycerindosen (0,025 mg Nitroglycerin als Bolus intravenös) ist eine Zunahme des Stenodurchmessers nachweisbar (62), ohne daß periphere Kreislaufwirkungen eintreten. Interessanterweise war bei diesen minimalen Dosen die Lumenweite gesunder Gefäßabschnitte nicht verändert. Die Reaktion der Stenosen auf Nitrate, ob niedrig oder normal dosiert, ist aber nicht uniform, bei einem geringen Teil bleibt eine signifikante Erweiterung aus (55, 62). Als Ursache werden Einflüsse des autonomen Nervensystems oder die ringförmige Einlagerung von Plaquematerial in die Gefäßwand angenommen.

Objektiviert wird die therapeutische Wirksamkeit antianginöser Substanzen in der Regel durch ein symptomlimitiertes Belastungs-EKG unter Beachtung von Ischämiezeichen und Belastungsdauer oder durch ST-Strecken-Analyse im 24-Stunden-EKG.

Angina-pectoris-Anfall

Der akute Angina-pectoris-Anfall läßt sich zuverlässig durch die sublinguale Applikation von Nitrokörpern beherrschen (27), sie sind unumstritten das Medikament der ersten Wahl. Durch die rasche Aufnahme über die Mundschleimhaut ist nach sublingualer Gabe als Spray oder Kapsel ein schneller Wirkungseintritt gewährleistet. Dabei werden mit jedem Sprühstoß 0,4 mg Glyceryltriminapril appliziert. Nach Zerreißen einer Kapsel, die 0,8–1,2 mg Glyceryltriminapril in einer ölfigen Lösung enthält, ist mit dem klinischen Wirkungseintritt nach 1–3 Minuten zu rechnen, nach Zerkauen einer Tablette mit 5 oder 10 mg ISDN nach 2–3 Minuten. Beschwerdefreiheit wird in der Regel nach 4–6 Minuten erreicht (33). Verzögertes Ansprechen kann ein Hinweis auf eine schwere diffuse Koronarsklerose oder ausgeprägte hämodynamische Verände-

rungen und linksventrikuläre Wandbewegungsstörungen sein (27). Bei prolongierten Beschwerden kann nach 4–5 Minuten eine weitere Kapsel oder Tablette verabreicht werden. Bei zusätzlichen Dosen innerhalb von 15 Minuten können jedoch Hypotone und Reflexstachykarde resultieren und die Symptomatik verschärmen. Die Wirkungsdauer beträgt nach sublingualer Nitroglyceringabe 10–30 Minuten und ist nach sublingual verabreichtem ISDN mit 30–60 Minuten deutlich länger. IS-5-MN ist nur gering lipiddöslich, so daß es sublingual appliziert nicht resorbiert wird; es eignet sich daher nicht für die Anfallsbehandlung.

Bei thorakalen Schmerzen kann der sublingualen Nitratgabe auch differentialdiagnostische Bedeutung zukommen, da bei Fehlen einer stenosierenden koronaren Herzerkrankung in der Regel keine subjektive Beschwerdeverbesserung innerhalb weniger Minuten eintritt (27). Bei typischer anginöser Symptomatik oder bekannter koronarer Herzerkrankung ist dagegen bei nitratrefraktären Schmerzen (keine deutliche Linderung innerhalb von spätestens 15 Minuten nach Nitratinnahme) eine Infarktdiagnostik einzuleiten.

Stabile und instabile Angina pectoris

Bei stabiler Angina, das heißt konstanter Beschwerden, die nur bei körperlicher oder emotionaler Belastung auftreten, ist vor angina-auslösenden Situationen die prophylaktische, sublinguale Applikation von Nitroglycerin oder ISDN denkbar; beide Substanzen setzen in gleicher Weise die Ischämieschwellen herauf (24). In der Regel aber wird man ein orales Langzeitnitrat als Basismedikation bevorzugen. Auch wenn Nitroglycerin in Tablettenform (2,6 mg dreimal täglich) die Belastungskapazität von Koronarkranken signifikant steigern könnte (71), ist doch die orale Gabe von Mono- oder Dinitratgegenpräparaten präferenzbedingt. Sie können die Häufigkeit und Dauer symptomatischer wie asymptomatischer Ischämieepisoden signifikant senken (25,64), der akute Nitroglycerinverbrauch wird vermindert. Das Ausmaß der Steigerung der Belastungstoleranz ist jedoch interindividuell sehr verschieden. Einer Wirkungsabschwächung bei chronischer Therapie ist durch ein ausreichend langes nitratfreies Intervall vorzubeugen (57, 63). Durch einmalige, hochdosierte morgendliche Gabe eines Langzeitnitrats wird der hohen Ischämieinzidenz am Morgen und Nachmittag Rechnung getragen (46), bei vorwiegend nächtlichen Attacken ist das Dosierungsschema entsprechend anzupassen. Nach oraler Gabe von ISDN wird eine Wirkung nach 10–15 Minuten, in retardierter Formulierung nach etwa 20 Minuten meßbar. Nach oraler Gabe von 20 mg retardiertem ISDN beträgt die Wirkungsdauer 6–10 Stunden, nach 120 mg mehr als 12 Stunden, nach nicht-retardiertem IS-5-MN 8–10 Stunden (37, 64).
Manche Patienten bevorzugen wegen ihrer leichten Handhabung Nitratpflaster. Ihre antianginöse Wirksamkeit ist abhängig vom Applikationsort und der Pflastergröße; sie setzen innerhalb von 24 Stunden 5–10 mg Glyceroltrinitrat bei einer Pflastergröße von 10 bis 32 cm² an der Haut frei. Bereits nach einräumiger, kontinuierlicher, transdermaler Wirkstoffabgabe war jedoch kein antiischämischer Effekt mehr nachweisbar (17, 68). Um eine Toleranzentwicklung zu vermeiden, muß das Pflaster nach 12–14 Stunden entfernt werden (17).

Falls eine Monotherapie mit Nitraten nicht zu ausreichender Symptomlinderung führt, im obligatorischen nitratfreien Intervallischämische Episoden auftreten oder sich eine Dosissteigerung wegen Nebenwirkungen verbietet, empfiehlt sich eine Kombinationstherapie mit β-Rezeptorenblockern und (oder) Calciumantagonisten. Durch β-Rezeptorenblocker wird einerseits der nitratbedingte Herzfrequenzanstieg vermieden, andererseits wird der Anstieg des linksventrikulären enddiastolischen Drucks aufgrund der negativ-inotropen Wirkung der β-Rezeptorenblocker durch Nitrate kompensiert. Problemlos können Nitrate auch mit Calciumantagonisten kombiniert werden, die Nachlastsenkung wird verstärkt. Neben Molsidomin eignen sich besonders Calciumantagonisten zur Überbrückung des in der Regel nächtlichen, obligatorischen nitratfreien Intervalls.

Unter einer instabilen Angina pectoris versteht man das Neuauftreten einer Angina pectoris, die zunehmende Schwere, Dauer oder Häufigkeit pektanginöser Anfälle oder eine neu aufgetretene Ruhe- oder nächtliche Angina. Ihr liegt in der Regel die Zunahme des Grades einer organischen Stenose durch Plaqueruptur mit Einblutung und Thrombogenadenhäsion sowie Anstieg des Vasomotorentonus zugrunde. Der Übergang in einen akuten Myokardinfarkt ist häufig. Hochdosierte intravenöse Nitratgaben haben sich bei der Stabilisierung dieser Patienten bewährt (15, 31). Dabei wird der erhöhte Vasomotorentonus im noch normalen Wandsegment gesenkt, und Kollateralen werden erweitert; der Hemmnis der Plattchenaggregation kommt besondere Bedeutung zu (14).

Akuter Myokardinfarkt

Der akute Myokardinfarkt ist in der Regel bedingt durch den thrombotischen Verschluß eines Herzkrankenäses. Therapieziele sind die schnelle Reperfusion des Infarktnäses mit Limitierung der Infarktgröße, der Verbesserung der Durchblutung ischämischer Randareale und der Senkung des myokardialen Sauerstoffverbrauchs. Der okkludierende Thrombus kann durch Thrombolytica aufgelöst werden; die Verbesserung der Sauerstoffzufuhr und die Senkung des Sauerstoffbedarfs des Herzmuskels aber können durch die vasodilatierenden Nitrate erreicht werden, Infarktgröße sowie Früh- und Spätabehandlung werden vermindert (7, 30). Die vor- und nachlastsenkenden Eigenschaften der Nitrate bessern zudem eine bestehende Linksherzinsuffizienz, bei erhöhtem Füllungdruck steigt das Herzzeitvolumen. Die Nitrattherapie, ob Nitroglycerin oder ISDN, beim akuten Myokardinfarkt erfolgt vorzugsweise intravenös, die Dosierung (1–8 mg/h) hat sich am arteriellen Blutdruck zu orientieren. Eine ausgeprägte arterielle Drucksenkung ist wegen der damit verbundenen Minderung des koronaren Perfusionsdrucks zu vermeiden (7), ebenso Nitrate beim kardiogenen Schock in der Regel kontraindiziert. Eine Wirkungsabschwächung während intravenöser Dauerinfusion von Nitroglycerin wurde bereits innerhalb von 24 Stunden beobachtet, unter ISDN dagegen blieben die positiven, hämodynamischen Effekte über 24 Stunden stabil (9). Die Entwicklung einer Toleranz erfolgt im Lungenkreislauf offensichtlich dosisabhängig – niedrige Dosen von Nitroglycerin (2 mg/h) führten im Gegensatz zu hohen (8 mg/h) nicht zu Toleranz –, während sie im arteriellen System dosisunabhängig war (17, 43). Vor allem bei hohen Dosen empfiehlt sich daher täglich eine mindestens achtstündige Nitratpause (17). Eine Auswertung aller randomisierten Studien zur Nitrattherapie im akuten Myokardinfarkt ergab eine Letalitätsersenkung von 35% (73). Auch in der Postinfarktphase war die Unterlassung einer Langzeitmedikation mit Nitraten eine unabhängige Variable für eine erhöhte Spätabehandlung (56).

Linksherzinsuffizienz

Die vorteilhaft Wirkung der Nitrate bei der chronischen Herzinsuffizienz über die Senkung des linksventrikulären enddiastolischen Drucks wurde Anfang der siebziger Jahre beschrieben (18); auch die akute Linksherzinsuffizienz mit Lungenödem kann durch sublinguale Applikation von Nitrokörpern wirkungsvoll behandelt werden (8). Steigerung der Myokarddurchblutung und Abnahme der Nachlast führen zudem zu einer Zunahme der Ventrikelwandbewegung vorwiegend in hypokinetischen, seltener in akinetischen Myokardarealen (58). Auch konnte eine Prognoseverbesserung chronisch herzinsuffizienter Patienten unter einer vor- und nachlastsenkenden Therapie mit Nitraten und Hydralazin gesichert werden (10). Allerdings berücksichtigte die Dosierung mit viermal 40 mg Isosorbidendinitrat täglich in sechsständigen Abständen nicht, daß bei Fehlen eines nitratfreien Intervalls häufig eine Wirkungsabschwächung auftritt. Auch die Langzeitwirksamkeit von Hydralazin ist unsicher. Aus diesem Grund ist die Frage, ob die Langzeitprognose herzinsuffizienter Patienten durch ACE-Hemmer deutlicher als durch die Kombination von Nitrat mit Hydralazin gebebt werden kann (11), letztendlich noch nicht entschieden. Auch die Bewertung der Wirksamkeit einer Kombination von ACE-Hemmer mit Nitraten verglichen mit den Einzelsubstanzen steht aus.
Bei der hypertensiven Krise bewirken Nitrate eine suffiziente Blutdrucksenkung; sie scheinen nicht zuletzt vorteilhaft, da hypertensive Entgleisungen häufig zu myokardialer Insuffizienz bis Lungenödem, Angina pectoris oder Myokardinfarkt führen (6).

Toleranz

Als Toleranz oder Gewöhnung bezeichnet man die Wirkungsab schwächung eines Pharmakons bei regelmäßiger Zufuhr; um die gleiche Wirkung zu erzielen, muß die Dosis fortlaufend erhöht werden. Diese Abnahme der Empfindlichkeit entwickelt sich langsam im Laufe von Tagen im Gegensatz zur Tachyphylaxie, die innerhalb von Minuten oder Stunden eintritt. Die Toleranz ist reversibel, nach einem einnahmefreien Intervall kehrt die ursprüngliche Empfindlichkeit wieder. Als Ursachen gelten insbesondere eine beschleunigte Elimination des Medikaments durch Induktion der metabolisierenden Enzyme und die verminderte Ansprechbarkeit des Erfolgsorgans (37). Toleranzphänomene bei den Nitraten werden bereits an der Tatsache erkennbar, daß der nitratbedingte Kopfschmerz wenige Tage nach fortgesetzter Therapie nachläßt (27). Ihre Inzidenz ist noch nicht exakt definiert, jedoch entwickelte sich mindestens bei der Hälfte der Patienten, die wegen einer Herzinsuffizienz eine kontinuierliche Nitroglycerin-Infusion erhielten, eine Toleranz innerhalb von 24–48 Stunden (12, 17). Eine Abschwächung des Blutdruckabfalls und des Herzfrequenzanstiegs konnte auch nach mehrwöchiger, oraler Einnahme von ISDN in sechsstündigen Abständen dokumentiert werden (52, 67). Das individuelle Ausmaß der Toleranzentwicklung war variabel. Nach einer Nitratpause von 12 Stunden war die ursprüngliche, blutdruckmindernde Reaktion wiederhergestellt (52). Ob damit auch eine Abnahme der antianginösen Wirkung verbunden ist, wird uneinheitlich beurteilt; so wurde teils die parallele Entwicklung von hämodynamischer und antianginöser Toleranz beobachtet (57, 67), teils aber keine Wirkungsminderung (39) oder sogar eine dosislineare Wirkungssteigerung bis zu sechsmal 80 mg Isosorbiddinitrat täglich festgestellt (60). Es wurde spekuliert, daß möglicherweise die koronardilatierende Wirkung erhalten bleibt. Eine Wirkungsab schwächung wurde auch auf der venösen Seite gefunden: So wurde bei Patienten mit dilatativer Kardiomyopathie nicht nur ein Nachlassen der Wirkung auf den systolischen wie diastolischen Blutdruck, sondern auch auf den pulmonalerarteriellen Druck festgestellt (2). Aber auch hier sind die Daten widersprüchlich: Teils war die Belastbarkeit nach oraler Langzeitbehandlung von Patienten mit kongestiver Kardiomyopathie mit 40 mg ISDN alle 6 Stunden über 3 Monate erhöht bei konstant reduzierten pulmonalen Drücken (40), teils war sie unter der chronischen Therapie mit ISDN oder hochdosiertem Mononitrat vermindert (2, 29). Als Ursache galten konstant hohe Serum-Nitratspiegel. Um die Entwicklung einer Toleranz zu vermeiden, wurde ein mehrstündiges nitratarmes Intervall innerhalb von 24 Stunden festgelegt: Bei Gabe von 20 oder 80 mg ISDN morgens und mittags (57, 63) ebenso wie nach einmaliger, morgendlicher Gabe von 80 oder 120 mg in retardierter Form fand sich keine Wirkungsab schwächung (63, 64). Das Ziel fluktuierender Plasmaspiegel läßt sich zwar auch durch mehrmals tägliche Gabe niedrigdosierten un retardierten Nitrats erreichen, die einmalige hochdosierte Gabe eines retardierten Präparates dürfte jedoch die Zuverlässigkeit der Einnahme erhöhen. Die diskontinuierliche Verabreichung von Nitraten kann allerdings zur Folge haben, daß während der nitratarmen Phasen kein ausreichender Ischämienschutz besteht und eine Kombinations therapie notwendig wird. Der Mechanismus der Nitrat toleranz ist noch nicht geklärt; alle verfügbaren Daten sprechen aber für eine verminderte Metabolisierung organischer Nitrate zu NO. Da die Wirkung organischer Nitrate in den glatten Gefäßmuskelzellen mit einer Verarmung an thiolhaltigen Verbindungen einhergeht, wurden Sulfhydryl-(SH)-Gruppen (Cystein, Acetylcystein) für die NO-Bildung aus organischen Nitraten erforderlich gehalten und ihrem Mangel eine wesentliche Rolle bei der Entwicklung der Nitrat toleranz zugesprochen (28, 35, 48). Zu ihrer Regeneration ist ein mehrstündiges nitratfreies Intervall nötig. Die Gabe von SH-Gruppen-Donatoren wie N-Acetylcystein oder des ACE-Hemmers Captopril führte jedoch zu widersprüchlichen Befunden: Einerseits konnte ein Wirkungsverlust verhindert oder zumindest gemildert werden (41, 49), andererseits die Entwicklung einer Toleranz nicht abgewendet werden (12, 16, 51). SIN-1, der gefäßwirksame Metabolit von Molsidomin, setzt dagegen NO direkt ohne Metabolisierung frei, ein signifikanter Wirkungsverlust wird nicht beobachtet (48). Gegen regulatorische, neurohumorale Mechanismen (vermehrte Katecholaminausschüttung und Stimulation des Renin-Angiotensin-Systems) werden ebenfalls als ursächlicher Faktor der Nitrat toleranz – in diesem Fall Pseudotoleranz – diskutiert, sie lassen sich durch ACE-Hemmer aufheben (16, 34).

Nebenwirkungen

Die bekannteste und den Patienten am meisten belästigende Nebenwirkung ist der Nitratkopfschmerz bei Therapiebeginn, der auf der Dilatation der Meningealgefäße beruht (37). Gewöhnlich verschwindet er nach mehreren Tagen fortgesetzter Medikation. Insbesondere nach der ersten Gabe kann es auch zu ausgeprägter arterieller Hypotone mit Reflexschwindel kommen, die mit Schwindel und Schwächezuständen verbunden sein kann. Selten sind Kreislaufkollaps und Synkope (Nitrat synkope) (27). Bei Neigung zu hypotoner Kreislauf Dysregulation sollten deshalb Nitrate mit Vorsicht angewendet werden. Ein ausgeprägter Blutdruckabfall kann über die Abnahme des koronaren Perfusionsdrucks zu einer Verschärfung der Anfallssymptomatik führen.
(paradoxer Nitrateffekt) (59). Weitere bekannte Nebenwirkungen sind die Gesichtsrötung durch Erweiterung der Hautgefäße sowie Bradykardie, Übelkeit und Erbrechen aufgrund der zentralen Vagusregulation. Bei Überdosierung in suizidaler Absicht (1200 mg ISDN) traten Gesichtsrötung, Kopfschmerz, Blutdruckabfall von initial hypertonen auf normotone Werte, Tachykardie, Lichtempfindlichkeit, Quincke-Ödeme, Parästhesien und Verwirrtheit auf (74). Eine Methämoglobinbildung, wie sie bei anorganischen Nitriten und Amynitril beobachtet wird, tritt beim Erwachsenen nicht auf. Sie kann jedoch bei Kindern in einer schweren Methämoglobinvergiftung führen, da die Nitrate durch Darmbakterien, insbesondere durch Kolibakterien, in Nitrite überführt werden. Bei Erwachsenen sind gewöhnlich alle Nitrate bereits resorbiert, bevor eine Reduktion zu Nitriten stattfinden kann, so daß lediglich nach Ingestion außerordentlich hoher Nitratdosen eine Gefährdung besteht (37). Eine teratogene Wirkung organischer Nitrate ist nicht bekannt; in bezug auf ihre Kanzerogenität scheint das mögliche Risiko einer vermehrten endogenen Nitrosaminbildung – die tägliche Nitritaufnahme kann unter hochdosierter Nitrattherapie um 27–60% erhöht werden – angesichts ihrer therapeutischen Notwendigkeit vernachlässigbar (1).

Kontraindikationen für eine Therapie mit Nitraten sind neben einer ausgeprägten Hypotonie und dem kardiogenen Schock eine hypertrophoblastische Kardiomyopathie und eine hochgradige Aortenstenose. – Heute sind zahlreiche Nitroverbindungen erhältlich, die gebräuchlichsten sind in Tabelle 1 aufgelistet.

Molekularbiologischer Aspekt

Nitrate sind exogene EDRF-Analoga. EDRF wurde 1980 als Mediator endothelialer Relaxation postuliert (20); seit 1987 ist seine Identität mit Stickstoffmonoxid (NO) (50). Endogenes Substrat für die Bildung von NO in vaskulären Endothelzellen ist L-Arginin, von dem es enzymatisch abgespalten wird. Auch aus exogenem Nitrat wird NO freigesetzt (28, 48). EDRF wird von intaktem Endothel kontinuierlich gebildet und führt über die Stimulation der löslichen Guanylatcyclase mit Bildung des zyklischen Guanosinmonophosphats (cGMP) zu einer Vasodilatation durch Relaxation der benachbarten Gefäßmuskulatur sowie zu einer Hemmung der Adhäsion und Aggregation von Thrombozyten am Endothel (53). EDRF hemmt auch die Produktion von Endothelin, einem vom Endothel synthetisierten Peptid, das als der potenteste bisher bekannte Vasokonstriktor gilt (42, 72). Stimulatoren der Bildung von NO sind neben Acetylcholin und physikalischen (Schmerz, Hypoxie) sowie hormonellen Reizen (Noradrenalin, Angiotensin II, Histamin, Bradykinin) auch die Thrombozytenprodukte Adenosintriphospat und -diphosphat (69). Hypertonie, erhöhtes low-density-ldioprotein«-Cholesterin (LDL-Cholesterin) und Diabetes führen jedoch zu endothelialer Funktionsstörung mit vermindertem Bildung von EDRF (42). Plattchenadhäsion und Endothelinfreisetzung werden erleichtert. Die Blutplättchen aber lassen ihre Mitogene wie PDGF (platelet-derived growth factors) während der Endotheladhäsion frei. Auch Endothelin stimuliert die Migration und Proliferation glatter Muskelzellen (36), ein Prozeß, der in der Pathogenese arteriosklerotischer Läsionen von Bedeutung ist und zur Bildung des fibrösen Plaques führt. So hat EDRF (NO) eine indirekte antiproliferative Wirkung. Nitrate substituieren NO, ihre hemmende Wirkung auf die Plattchenaggregation wurde in vitro wie in vivo nachgewiesen (13). Das Ausmaß der Hemmung der Thrombozytenaggregation ist vergleichbar der von Acetylsalicylsäure, beide Substanzen wirken additiv (32). Ihre Wirkung auf die glatten Gefäßmuskulatur ist unabhängig von intaktem Endothel; die durch das Fehlen von EDRF in arteriosklerotisch veränderten Gefäßsegmenten bedingte Konstriktion wird durch Nitrate aufgehoben. Nitrate steigern auch die Produktion des Prostaglandins Prostacyclin (69). Prostacyclin wird ebenfalls von der Endothelzelle produziert; es wirkt auch

Tab. 1 Organische Nitrate, Applikation und Dosierung sowie empfohlene Einnahmezeiten bei oraler Dauertherapie

Behandlungsweise	Präparat	Dosis	Applikationsmodus
Anfallsbehandlung (sublingual)	Glycerolnitrat-Spray	0,4 mg pro Sprühstoß	zwei- bis dreimal täglich (7, 12 und 15 Uhr)
	Glycerolnitrat-Zerbeißkapseln	0,8 oder 1,2 mg pro Kapsel	zwei- bis dreimal täglich (7, 12 und 15 Uhr)
	Isosorbiddinitrat-Spray	1,25 mg pro Spraysstoß	zweimal täglich (7 oder 8 Uhr und 14 oder 15 Uhr)
	Isosorbiddinitrat-Kautablette	5 oder 10 mg pro Tablette	einmal täglich (7 oder 8 Uhr)
orale Dauertherapie	Isosorbiddinitrat	10, 20 oder 40 mg	zweimal täglich (7 oder 8 Uhr und 14 oder 15 Uhr)
	Isosorbiddinitrat (retardiert)	20, 40, 60 oder 80 mg	zweimal täglich (7 oder 8 Uhr und 14 oder 15 Uhr)
	Isosorbiddinitrat	120 mg	einmal täglich (7 oder 8 Uhr)
	Isosorbiddinitrat	20 oder 40 mg	zweimal täglich (7 oder 8 Uhr und 14 oder 15 Uhr)
transdermale Pflastertherapie	Glycerolnitrat-Wirkstoffreigabe	0,2 oder 0,4 mg/h	
intravenöse Akutbehandlung	Glycerolnitrat-Lösung	2–8 (10) mg/h	
	Isosorbiddinitrat-Lösung	2–8 (10) mg/h	
vasodilatatorisch und hemmt die Plättchenausschüttung. Prostacyclin erhöht zudem die Aktivität von Enzymen, die Cholesterinester in glatten Muskelzellen metabolisieren, es unterdrückt die Akkumulation von Cholesterinestern in Makrophagen und verhindert die Freisetzung von Wachstumsfaktoren, die eine Zunahme der Gefäßwanddicke bewirken (70). So gibt es gute Gründe, eine antiatherosklerotische Wirkung der Nitrate anzunehmen.

Resümee

Nitrate sind wirksam bei der Behandlung und Prophylaxe pektanginöser Beschwerden, sie verbessern die Prognose bei akutem Myokardinfarkt. Nitroverbindungen sind gut verträglich und auch bei Patienten mit deutlich eingeschränkter Auswurffraktion mit oder ohne Zeichen der Herzinsuffizienz einsetzbar. Wegen der schnellen Entwicklung einer Toleranz ist auf eine nitratfreie Intervall je nach Patientenstruktur und (oder) Calciumantagonisten angezeigt. Neue molekularbiologische Erkenntnisse lassen einen antiproliferativen Effekt der Nitrate vermuten; ein Eingriff in die Pathogenese der Arteriosklerose erscheint möglich.

Literatur

1. Berger, M. R.: Kanzerogenität von Nitriten? Dtsch. med. Wochr. 110 (1985), 116.
2. Blasini, R., K.-L. Froer, G. Blümel, W. Rudolph: Wirkungsverlust von Isosorbiddinitrat bei Langzeitbehandlung der chronischen Herzinsuffizienz. Herz 7 (1982), 250–258.
3. Bogaert, M. G., M. T. Rosseel: Fate of orally given isosorbide dinitrate in man. Z. Kardiol. 72, Suppl. 3 (1983), 11–13.
4. Brown, B. G., E. Bollon, R. B. Petersen, C. D. Pierce, H. T. Dodge: The mechanisms of nitroglycerin action. Circulation 64 (1981), 1089–1097.
5. Brunton, T. L.: Use of nitrite of amyl in angina pectoris. Lancet 1867, 97–98.
6. Bussmann, W.-D., D. P. Kenedi, H. J. von Mengden, H. P. Nast, M. Racher: Nitroglycerin im Vergleich zu Nifedipin bei Patienten mit hypertensiver Krise. Z. Kardiol. 82 (1993), 33–37.
7. Bussmann, W.-D., D. Passek, W. Seidel, M. Kaltenbach: Reduktion von CK und CK-MB-Indices von Infarct size by intravenous nitroglycerin. Circulation 63 (1981), 615–622.
8. Bussmann, W.-D., D. Schupp: Effect of sublingual nitroglycerin in emergency treatment of severe pulmonary edema. Amer. J. Cardiol. 41 (1978), 931–936.
9. Dintrone, G. B., S. P. Glasser, B. A. Weston, E. Linares, C. R. Conti and Participating Investigators: Effect of intravenous isosorbide dinitrate versus nitroglycerin on elevated pulmonary arterial wedge pressure during acute myocardial infarction. Amer. J. Cardiol. 61 (1988), 21–25.
10. Cohn, J. N., D. G. Archibald, S. Ziesche, J. A. Franciosa, W. E. Harston, F. E. Tristani, W. B. Dunkman, W. Jacobs, G. S. Francis, K. H. Flibor, S. Goldman, F. R. Cobb, P. M. Shah, R. Saunders, R. D. Fletcher, H. S. Loeb, V. C. Hughes, B. Baker: Effect of vasodilator therapy on mortality in chronic congestive heart failure. New Engl. J. Med. 314 (1986), 1547–1552.
11. Cohn, J. N., G. Johnson, S. Ziesche, F. Cobb, G. Francis, F. Tristani, R. Smith, B. Dunkman, H. Loeb, M. Wong, C. Bhat, S. Goldman, R. D. Fletcher, J. Doherty, C. V. Hughes, P. Carson, G. Dintrone, R. Shabeti, C. Haakenson: A comparison of enalapril with hydralazine – isosorbide dinitrate in the treatment of chronic congestive heart failure. New Engl. J. Med. 325 (1991), 303–310.
12. Dakik, N., M. Makhouli, M. Y. Flugelman, A. Merdler, H. Shehata, A. Schneeweiss, D. A. Halon, B. S. Lewis: Failure of captopril to prevent nitrate tolerance in congestive heart failure secondary to coronary artery disease. Amer. J. Cardiol. 66 (1990), 608–613.
13. De Caterina, R., D. Giannessi, F. Crea, S. Chierchia, W. Berzini, P. Gazzetti, A. L’Abbate: Inhibition of platelet function by injectable isosorbide dinitrate. Amer. J. Cardiol. 53 (1984), 1683–1687.
14. Di Mario, J., F. Thomet, J.-G. Latour, L. Lacoste, J. Y. T. Lam, D. Waters: Effects of nitroglycerin at therapeutic doses on platelet aggregation in unstable angina pectoris and acute myocardial infarction. Amer. J. Cardiol. 66 (1990), 633–638.
15. Distante, A., F. Sabino, A. L’Abbate: Cooling down unstable angina with high dosage of isosorbide dinitrate (ISDN) continuously infused. Europ. Heart J. 9, Suppl. A (1988), 155–164.
16. Dupuis, J., G. Lalande, R. Lemieux, J. L. Rouleau: Tolerance to intravenous nitroglycerin in patients with congestive heart failure. Amer. J. Cardiol. 41 (1990), 923–931.
17. Hayayams, U.: Tolerance to organic nitrates. Ann. intern. Med. 114 (1991), 667–671.
18. Franciosa, J. A., E. M. Mikulic, J. N. Cohn, E. Jose, A. Fabian: Hemodynamic effects of orally administered isosorbide dinitrate in patients with congestive heart failure. Circulation 50 (1974), 1020–1024.
19. Fung, H.-L., D. Ruggirello, J. A. Stone, J. O. Parker: Effects of disease, route of administration, cigarette smoking, fast food intake on the pharmacokinetics and circulatory effects of isosorbide dinitrate. Z. Kardiol. 72, Suppl. 3 (1983), 5–10.
20. Furthgott, R. F., J. V. Zawadzki: The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature (Lond.) 288 (1980), 373–376.
21. Gage, J. E., O. M. Hess, T. Murakami, M. Ritter, J. Grimm, H. P. Kravenbühel: Vasoconstriction of stenotic coronary arteries during dynamic exercise in patients with classic angina pectoris. Circulation 73 (1986), 865–876.
22. Ganz, W., H. S. Marcus: Failure of intracoronary nitroglycerin to alleviate pacing-induced angina. Circulation 46 (1972), 880–889.
23. Goldberg, L.: Pharmacological properties of organic nitrate. Acta physiol. scand. 15 (1948), 172–187.
24. Goldstein, R. E., D. R. Rosing, D. R. Redwood, G. D. Beiser, S. E. Epstein: Clinical and circulatory effects of isosorbide dinitrate. Comparison with nitroglycerin. Circulation 43 (1971), 629–640.
25. Hausmann, D., P. Nikutta, W. G. Daniel, C.-H. Harwig, P. Wenzlaff, R. Richter: Hochdosierte Einmalgabe von isosorbiddinitrat. Einfluß auf die tageszeitliche Verteilung von transitorischen Myokardischämien bei Patienten mit stabiler Angina pectoris. Z. Kardiol. 78 (1989), 413–420.
26. Hönig, C. R., S. M. Tenney, P. V. Gabel: The mechanism of cardiovascular action of nitroglycerine. Amer. J. Med. 29 (1960), 910–923.
27. Horwitz, L. D., M. V. Herman, R. Gerlin: Clinical response to nitroglycerin as a diagnostic test for coronary artery disease. Amer. J. Cardiol. 29 (1972), 149–153.
28. Ignarro, L. J., H. L. Lippton, J. C. Edwards, W. H. Baricco, A. L. Hyman, J. P. Kodawitz, C. A. Grueter: Mechanism of vascular smooth muscle relaxation by organic nitrates, nitrates, nitroglycerine and nitric oxide. J. Pharmacol. exp. Ther. 218 (1981), 739–749.
29. Jansen, W., A. Oesterpey, M. Tauchert, G. Schmid, U. Schell, M. Fuchs, V. Hombach, H. H. Hilger: 5-Isosorbiddimmononitrat unter Ruhe- und Belastungsbedingungen bei koronarer Herzkrankheit. Dtsch. med. Wochr. 107 (1982), 1499–1506.
30. Jürgutt, B. L., J. I. Warnau: Intravenous nitroglycerin therapy to limit myocardial infarct size, expansion, and complications. Circulation 78 (1988), 906–919.
Radomski, M. W., R. M. J. Palmer, S. Moncada: Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet 1987/I, 1074–1076.

Rafflenbeul, W., P. R. Lichtlen: Zum Konzept der dynamischen Koronarstenose. Z. Kardiol. 71 (1982), 439–444.

Rafflenbeul, W., F. Urracher, R. O. Russell, P. Lichtlen, T. N. James: Dilatation of coronary artery stenosis after isosorbide dinitrate in man. Brit. Heart J. 43 (1980), 546–549.

Rapaport, E., P. Remedis: The high risk patient after recovery from myocardial infarction. Recognition and management. J. Amer. Coll. Cardiol. 2 (1983), 391–400.

Rudolph, W., R. Blasini, G. Reiniger, U. Brüggman: Tolerance development during isosorbide dinitrate treatment. Can it be circumvented? Z. Kardiol. 72, Suppl. 3 (1983), 195–198.

Rudolph, W., S. Dacian, J. Dirschinger, E. Fleck, C. Loracher, A. Redl: Der Einfluss von Nitraten auf regionale Myokarddurchblutung und regionale Ventrikelwandbewegung. Med. Klin. 71 (1976), 1529–1535.

Russek, H. I., K. F. Urbach, B. L. Zohnmann: Paradoxical action of glyceryl trinitrate (nitroglycerin) in coronary patients. J. Amer. med. Ass. 158 (1953), 1017–1021.

Schneider, W. U., W.-D. Busmann, B. Stahl, M. Kaltenbach: Dose-response relation of antiangiotal activity of isosorbide dinitrate. Amer. J. Cardiol. 53 (1984), 700–705.

Sherber, D. A., I. J. Gelb: Treatment of coronary insufficiency with isosorbide dinitrate. Circulation 22 (1960), 809.

Siewert, H., W.-D. Busmann, G. Seiler, G. Kober, M. Kaltenbach: Koronardilatierende Wirkung minimaler Nitroglycerin-dosen. Z. Kardiol. 76 (1987), 626–629.

Silber, S., A. C. Vogler, K.-H. Krause, M. Vogel, K. Theisen: Induction and circvention of nitrate tolerance applying different dosage intervals. Amer. J. Med. 83 (1987), 860–870.

Silber, S., A. C. Vogler, F. Spiegelsberger, M. Vogel, K. Theisen: Antischmecic effects of a newly developed capsule containing 120mg isosorbide dinitrate in sustained release form. Amer. J. Cardiol. 61 (1988), 1352–1353.

Snellen, H. A.: History of Cardiology (Donker: Rotterdam 1984), 154–170.

Taylor, T., L. F. Chaoussoud, E. Doyle, R. Bonn, A. Darragh, R. F. Lambe: Isosorbide dinitrate pharmacokinetics. Drug Res. 32 (1982), 1329–1333.

Thadani, U., H.-L. Fung, A. C. Darke, J. O. Parker: Oral isosorbide dinitrate in angina pectoris. Amer. J. Cardiol. 49 (1982), 411–419.

Thadani, U., S. F. Hamilton, E. Olson, J. Anderson, W. Voyles, R. Prasad, S. M. Teague: Transdermal nitroglycerin patches in angina pectoris. Ann. intern. Med. 105 (1986), 485–492.

Vane, J. R., E. E. Anggard, R. M. Botting: Regulatory functions of the vascular endothelium. New Engl. J. Med. 323 (1990), 27–36.

Willis, A. L., D. L. Smith, C. Vigo, A. F. Kluge: Effects of prostacyclin and orally active stable mimetic agent RS-93427-007 on basic mechanisms of atherosclerosis. Lancet 1986/I, 682–685.

Winsor, T. H., J. H. Berger: Oral nitroglycerin as a prophylactic antianginal drug. Amer. Heart J. 90 (1975), 611–626.

Yanagisawa, M., H. Kurthara, S. Kimura, Y. Tomobe, M. Kobayashi, Y. Mitsui, Y. Yasaki, K. Goto, T. Masaki: A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature (London) 332 (1988), 411–415.

Yusuf, S., S. MacMahon, H. Collins, R. Peto: Effect of intravenous nitrates on mortality in acute myocardial infarction. An overview of the randomized trials. Lancet 1988/I, 1088–1092.

Ziemer, M., J. Wdowski, R. Bonn, W.-D. Busmann: Klinische und pharmakokinetische Beobachtungen nach extrem hoher Dosierung von Isosorbiddinitrat. Intensivmed. 18 (1981), 223–225.

Dr. K. Regen

Medizinische Klinik II mit Poliklinik der Universität Erlangen–Nürnberg
Östliche Stadtmauerstr. 29
91054 Erlangen