Oxygen and Carbon Isotope Composition in Primary Carbonatites of the World: Data Summary and Linear Trends

Alexander V. Bolonin

Central Geological Research Institute for Nonferrous and Precious Metals (TSNIGRI), Moscow, Russia
Email: bolonin.a@inbox.ru

Abstract

The article contains the results of statistical processing of a large summary of δ¹⁸O-δ¹³C isotope values in the primary carbonatites of the world. From literary sources, 1593 paired values δ¹⁸O-δ¹³C from 173 carbonatite occurrences of the world were collected. This report exceeds all previously published reports on С-О isotopes in carbonatites by quantity of the used values and carbonatite occurrences. Statistical data analysis is performed on diagrams in the coordinates δ¹⁸O (‰, V-SMOW) - δ¹³C (‰, V-PDV). For each carbonatite occurrence, not only the arithmetic mean values are calculated, but also the regression line. Distinct linear trend of δ¹⁸O-δ¹³C values is found in half of the carbonatite occurrences. The starting, middle, and ending points of the trend line are determined. The slope of the trend line (angular coefficient) varies over a wide range. The trend is dominated by an average angular coefficient of 0.30 (positive correlation δ¹⁸O-δ¹³C). In the literature, it is associated with the Rayleigh high-temperature fractionation of carbonatite melts or with their sedimentary contamination. Half of the carbonatite occurrences do not show a linear trend of δ¹⁸O-δ¹³C values, probably due to the combined action of multidirectional trends. The initial ratio ⁸⁷Sr/⁸⁶Sr in the used carbonatite occurrences varies from 0.701 to 0.708. Statistics show no correlation of ⁸⁷Sr/⁸⁶Sr with the δ¹⁸O-δ¹³C system.

Keywords
Carbonatite Occurrences, Oxygen, Carbon and Strontium Isotopes, Linear Trends

1. Introduction

Oxygen and carbon isotope composition of carbonatites were summarized in a
number of previous works. The largest number of δ¹⁸O-δ¹³C values (about 440) was collected and used to construct histograms in [1]. In the work [2], 56 values from 8 carbonatite occurrences of Kola Alkaline Province were used, linear trends were identified. In the work [3], 70 analyzes from 20 carbonatite occurrences of Siberia and Mongolia were used; a diagram was proposed for determining the type of mantle using the ratio of O-C isotopes. In the work [4], the fields of point values are outlined in the δ¹⁸O-δ¹³C diagram for the Greenland, Europe, and North and South America regions without a division for individual carbonatite occurrences. The fields of primary igneous carbonatites on the δ¹⁸O-δ¹³C diagram are outlined in the works [1] [5] [6] [7]. These fields are used in the analysis of local isotope data in carbonatite studies.

This paper uses 1593 pairs of conjugate values of δ¹⁸O-δ¹³C out of 173 carbonatite occurrences of the world. In addition, a linear regression analysis of the values is performed for most occurrences. This paper exceeds all previously published reports on C-O isotopes in carbonatites by quantity of the used values and carbonatite occurrences. Data on the ratio ⁸⁷Sr/⁶⁶Sr in 92 carbonatite occurrences are taken additionally from the sources used. The limited size of the article does not allow to provide a complete database and a list of used references (about 100 titles).

Carbonatite occurrences are represented by bodies of various shapes and sizes (complexes, massifs, dikes, facies zones). Isotope analysis is applied to carbonatite rocks (sovite, alvikite, beforsite, etc.), monofractions of calcite, dolomite, ankerite, siderite. Authors of literature classify the analyzed material as primary carbonatites (PC). This is mainly done on the basis of petrographic studies, in which secondary endo- and exogenous minerals are not detected. Single anomalous values are excluded from the primary category by the author of the article. Numerous δ¹⁸O-δ¹³C values refer to secondary carbonatites in the used literature: carbonate tuffs and lavas, hydrothermal veins, hydrothermally altered and recrystallized carbonatites, weathered and oxidized carbonatites, secondary calcite. Data on secondary carbonatites is not used in this article.

All isotope diagrams have a horizontal x-axis δ¹⁸O (‰, V-SMOW) and a vertical y-axis δ¹³C (‰, V-PDV). The equal scale of both axes, a multiple of 1‰, allows to visually comparing the shape of the point sets (point fields) and the slope of the trend lines. The names of carbonatite occurrences and their identification number (ID) are coordinated with the database [8] and are given in English transcription.

2. Summary Data

The diagram in Figure 1 contains 1593 points of the δ¹⁸O-δ¹³C from 173 carbonatite occurrences, including various carbonatite facies in one occurrence. The number of points in the individual occurrences varies from 2 to 54. The points fill a very wide field. Analysis of the field is complex and incorrect due to the variable number and large scatter of points that characterize individual carbonatite occurrences. The contours PC-98% and PC-90% presented in the diagram are proved in Figure 2 and Figure 3.
Figure 1. Primary carbonatites (PC) of the world: a summary of $\delta^{18}O-\delta^{13}C$ paired values ($n = 1593$) and contours PC-98% (external) and PC-90% (internal).

Figure 2. Trend lines and middle points (black square) in occurrences with a linear trend ($n = 70$). Only middle points (black triangle) in other occurrences ($n = 103$). Polygonal contour PC-98% includes 98% of points.

Figure 3. The starting points in occurrences with a linear trend (fat point, $n = 70$) and in other occurrences (oblique cross, $n = 103$). The outer contour PC-98%. The internal contour PC-90% includes 90% of points and is divided into two halves of PC-45%.
Subsequent statistical analysis of isotope data uses summary indicators characterizing carbonatite occurrences. Trend (linear regression) analysis was performed in 140 occurrences that satisfy two conditions: 1) there are three or more points; 2) the arithmetic difference between the maximum and minimum δ18O values is more than 0.5‰. Trend lines under opposite conditions (less than three points and difference δ18O less than 0.5‰) cannot be reliable. The linear regression equation \(y = kx + b \) and the trend line are calculated in Microsoft Excel 97-2003. The complete database (it is too large to be here) contains a point diagram for each occurrence, a calculated angular coefficient \(k \), a constant \(b \), a coefficient of determination (approximation) \(R^2 \).

Examples of point diagrams in order of increasing coefficient \(R^2 \) are shown in Figure 4. According to the visual observation of the diagrams, the linear trend is absent or indistinct in the occurrences that have \(R^2 \) from 0.00 to 0.29. The number of such occurrences in the database is 70. The linear form of point fields begins to confidently be fixed from \(R^2 \geq 0.30 \) (occurrence 413. Chetlassky in Figure 4). The linear trend is found in 70 occurrences, where \(R^2 \) is from 0.30 to 0.99. The trend line is depicted as a vector directed upwards δ18O. Such a direction is taken in the literature on the geochemistry of carbonatites.

Appendix provides a summary Table with brief data on 173 carbonatite occurrences. The names of occurrences that are not in the database [8] are given without an ID number. Digital data include: 1) \(n, n^* \) is the number of paired values δ18O-δ13C in occurrences without a linear trend (\(n \)) and with a linear trend (\(n^* \)); 2) middle point arithmetic average δ18O-δ13C from among the values; 3) the starting point of the trend line or nonlinear field of δ18O-δ13C points; 4) minimum initial ratio 87Sr/86Sr. The position of carbonatite occurrences in the diagrams (Figure 2 and Figure 3) can be determined using the table values.

Trend line and middle point for 70 occurrences in which a linear trend is revealed are shown in the diagram (Figure 2). Only the middle point is shown for the remaining 103 occurrences. The polygonal contour PC-98% is delineated. It includes about 98% of all middle points. The diagram shows that trend lines vary significantly in length. The horizontal span of the lines (the arithmetic difference δ18Omax - δ18Omin) ranges from 0.5‰ to 11‰, in 90% of cases it does not exceed 7.5‰, on average it is 3.5‰.

The slope of the trend line varies widely, as seen in Figure 2. The slope is determined by the angular coefficient \(k \). Statistical analysis of the coefficient is shown in Figure 5. Three separate intervals of \(k \) are read on the point diagram: \(-0.73 \sim 0.09; 0.09 - 0.51; 0.51 - 1.51\). On the rose diagram, the intervals are shown as sectors, and the average for the three sectors is shown as vectors. Sector \(k \) with a range of 0.09 - 0.51 and a middle vector of 0.30 is sharply dominant. Sector \(-0.73 \sim 0.09 \) with a middle vector of \(-0.27 \) and sector 0.51 - 1.51 with a middle vector of 0.96 have a subordinate meaning.

The averaged shape of the field of points for three groups of occurrences with a linear trend and for one group without a trend is modeled in Figure 6. The
Figure 4. Examples of trend analysis of δ^{18}O (x-axis, ‰) and δ^{13}C (y-axis, ‰) values in carbonatite occurrences in order of increasing coefficient R^2.

arithmetic average differences δ^{18}Omax - δ^{18}Omin and δ^{13}Cmax - δ^{13}Cmin are calculated in each group. Rectangles with sides equal to these averages are shown in Figures 6(a)-(d). The modeled fields of points are inscribed in rectangles along the middle trend line. All fields in accordance with their averages are placed in Figure 6(e). Comparison of the fields shows that the lack of a clear linear form in the field 6d is due to the increased variation in the δ^{13}C value. This may be due to the cumulative effect of trends 6a, 6b and 6c.
Figure 5. Point diagram (left) and rose diagram (right) of the angular coefficient k in the regression equation $y = kx + b$ in occurrences with the linear trend $\delta^{18}O - \delta^{13}C$. The point diagram shows separate intervals k: $-0.73 - 0.09$ (average -0.27); $0.09 - 0.51$ (average 0.30); $0.51 - 1.51$ (average 0.96).

Figure 6. The averaged form of point fields: (a, b, c) occurrences with a linear trend with an angular coefficient of 0.96, 0.30 and -0.27; (d) occurrences without a linear trend with a middle point (straight cross) and a starting point (oblique cross); (e) comparison of the fields in the diagram.

Each carbonatite occurrence with a linear trend can be characterized by the starting point of the trend. The $\delta^{18}O$ of the starting point is equal to the minimum value in the statistical sample. The $\delta^{13}C$ value is calculated from the empirical regression equation. The values of $\delta^{18}O - \delta^{13}C$ starting points of the trends are given in the Table. Occurrences without a linear trend also imply the presence of a starting point. This follows from the previously made assumption that the nonlinear point field 6d in Figure 6 is the result of the cumulative influence of trends 6a, 6b and 6c. All trends are directed upwards $\delta^{18}O$, but in different directions along $\delta^{13}C$. Therefore, the starting point of field 6d must have $\delta^{18}O$ equal to the minimum of the statistical sample. The $\delta^{13}C$ value in some approximation can be taken equal to the average of the sample (Figure 6(d)). The $\delta^{18}O - \delta^{13}C$ of the starting point in the occurrences without the identified linear
trend is also given in the Table.

The diagram shows two groups of points (Figure 3): 1) the starting point of the trend line in the occurrences with a linear trend (n = 70); 2) the starting point of nonlinear fields in other occurrences (n = 103). The second group includes occurrences without a linear trend (n = 70), and also occurrences with only two points δ¹⁸O-δ¹³C (n = 24) and with a difference δ¹⁸Omax - δ¹⁸Omin < 0.5 (n = 9) that were excluded from the trend analysis. Visual analysis of the diagram allows to delineate the internal contour PC-90% in addition to the PC-98% contour justified in Figure 2. This contour includes a compact group of 90% starting points. The vertical line δ¹⁸O = 7.9‰ divides the contour PC-90% into two parts, each of which is 45% of the total number of starting points.

The contours of primary carbonatites PC-98%, PC-90% and PC-45% (left and right contours) are shown in the diagram (Figure 7). For comparison, the contours and points of primary igneous (mantle) carbonatites are given according to other authors. The closest is the left contour of PC-45% and the contour of Jones et al. [7]. The three middle vectors of the angular coefficient k are also shown in the diagram. The dominant trend k = 0.30 in the literature is usually associated with two factors that coincide in direction: 1) Rayleigh isotopic fractionation at high-temperature differentiation of carbonatite melts; 2) sedimentation (crustal) contamination of mantle melts. The second factor is illustrated by the directionality of the dominant trend on the contour of normal sedimentary rocks. The subordinate trend k = −0.27 is associated with the degassing of CO₂ from melts. Another subordinate trend k = 0.96 is not discussed in the literature. The beginning of the vectors is at the point (5‰ δ¹⁸O; −6.5‰ δ¹³C). The full sector of the angular coefficient (from −0.73 to 1.51) covers almost all occurrences from this point. Perhaps this point is close to the primary mantle source of carbonatites.

The used literature on O-C isotopy also contains data on the isotope composition of strontium. The minimum initial value of ⁸⁷Sr/⁸⁶Sr in 92 carbonatite occurrences is given in the Table. The field of minimum values in the coordinates ⁸⁷Sr/⁸⁶Sr-δ¹⁸O is presented in the diagram (Figure 8). There is no correlation between the values. The oblique line in the diagram is the line of mixing the mantle source (⁸⁷Sr/⁸⁶Sr = 0.702; δ¹⁸O = 5‰) and the sedimentary contaminant (⁸⁷Sr/⁸⁶Sr = 0.710; δ¹⁸O = 20‰) at equal concentrations of strontium in the sources. The stable enrichment of carbonatites with strontium in comparison with sedimentary carbonates is known. Under this condition, a band of points above the mixing line may reflect crustal contamination of magmas. However, a wide scatter of points below the mixing line leaves room for other hypotheses, including contamination of the source in the mantle. The PC-98%, PC-90% and PC-45% contours, previously substantiated in the coordinates δ¹⁸O-δ¹³C, are delineated in the diagram. The PC-45% contour is divided by the value ⁸⁷Sr/⁸⁶Sr = 0.704 into two fields. The field ⁸⁷Sr/⁸⁶Sr < 0.704 and δ¹⁸O < 7.75‰ can be considered as the primary mantle field in the O-C-Sr isotope system.
Figure 7. Fields and points of primary igneous carbonatites and middle trend vectors. NSC—normal sedimentary carbonates.

Figure 8. The isotope composition of strontium (minimum initial value) and oxygen (starting point) in carbonatite occurrences.

3. Conclusions

Data on the oxygen and carbon isotope composition of primary carbonatites for 173 carbonatite occurrences of the world were collected (1593 paired values of δ¹⁸O-δ¹³C). Primary carbonatites are rocks without petrographic signs of secondary hydrothermal and exogenous mineral changes. Primary carbonatites demonstrate a wide variation of the δ¹⁸O-δ¹³C values and linear trends, which indicates the isotopic heterogeneity of carbonatite substance.

Linear regression analysis of δ¹⁸O-δ¹³C values reveals linear trends in half of the carbonatite occurrences. The trend with an average angular coefficient of 0.30 (positive correlation δ¹⁸O-δ¹³C) sharply dominates. In the literature, this is explained by the Rayleigh high-temperature fractionation of carbonatite melts or by their sedimentary (crustal) contamination. The trend line span (arithmetic difference δ¹⁸Omax - δ¹⁸Omin) ranges from 0.5‰ to 11‰, on average it is 3.5‰. Increased trends (over 7.5‰) suggest the action not only of endogenous factors, but also the influence of secondary processes not recorded in petrographic ob-
The second trend with an average angular coefficient of -0.27 (negative correlation $\delta^{18}\text{O}-\delta^{13}\text{C}$) is rarer. This trend is usually associated with the CO$_2$ degassing from melts. A rare third trend is not discussed in the literature. It has an average angular coefficient of 0.96 (positive correlation $\delta^{18}\text{O}-\delta^{13}\text{C}$). The linear trend of $\delta^{18}\text{O}-\delta^{13}\text{C}$ values is not detected in half of carbonatite occurrences due to increased variation of $\delta^{13}\text{C}$. This may be due to the combined action of different factors—contamination, high-temperature fractionation and degassing of melts.

The fields of primary carbonatites (PC) are delineated in the coordinates $\delta^{18}\text{O}-\delta^{13}\text{C}$ (‰), including 98%, 90% and 45% of the numbers of occurrences. The PC-90% contour can be considered acceptable for primary carbonatites. In-depth petrographic and other argumentation of the primary nature of carbonates is required for occurrences outside this contour. The PC-45% ($\delta^{18}\text{O} < 7.75\%$) contour with a high probability includes only primary carbonatites with a mantle source of a carbonate substance and with minimal effect of isotope fractionation or contamination of melts. A greater influence of these factors is expected for occurrences in the PC-45% ($\delta^{18}\text{O} > 7.75\%$) contour.

Strontium in carbonatite occurrences has a wide variation of the initial $^{87}\text{Sr}/^{86}\text{Sr}$ ratio from 0.701 to 0.708. This variation and the absence of correlation between $^{87}\text{Sr}/^{86}\text{Sr}$ and the $\delta^{18}\text{O}-\delta^{13}\text{C}$ allow both mantle and crustal contamination of carbonatite magmas.

The stated statistical data on the O, C and Sr isotope composition in primary carbonatites leave room for additional and alternative judgments.

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this paper.

References

[1] Deines, P. (1989) Stable Isotope Variations in Carbonatites. Carbonatites: Genesis and Evolution. Unwin Hyman, London, 301-359.

[2] Demény, A., Sitnikova, M.A. and Karchevsky, P.I. (2004) Stable C and O Isotope Compositions of Carbonatite Complexes of the Kola Alkaline Province: Phoscorite-Carbonatite Relationships and Source Compositions. In: Wall, F. and Zaitsev, A.N., Eds., Phoscorites and Carbonatites from Mantle to Mine, Mineralogical Society Series 10, Mineralogical Society, London, 407-431. https://doi.org/10.1180/MSS.10.12

[3] Vladykin, N.V., Morikiyo, T., Miyazaki, T. and Tsypukova, S.S. (2004) Geochemistry of Carbon and Oxygen Isotopes of Siberian Carbonatites and Geodynamics. Deep Magmatism, Its Sources and Their Connection with Plume Processes, Irkutsk. 89-107. (In Russian)

[4] Bell, K. and Simonetti, A. (2010) Source of Parental Melts to Carbonatites-Critical Isotopic Constraints. Mineralogy and Petrology, 98, 77-89. https://doi.org/10.1007/s00710-009-0059-0
[5] Taylor, H.P., Frechen, J. and Degens, E.T. (1967) Oxygen and Carbon Isotope Studies of Carbonatites from the Laacher See District, West Germany and the Alnö District, Sweden. *Geochimica et Cosmochimica Acta*, **31**, 407-430. https://doi.org/10.1016/0016-7037(67)90051-8

[6] Keller, I. and Hoefs, I. (1995) Stable Isotope Characteristics of Recent Natrocarbonatite from Oldoinyo Lengai. In: Bell, K. and Keller, J., Eds., *Carbonatite Volcanism: Oldoinyo Lengai and the Petrogenesis of Natrocarbonatites*, Proceedings in Volcanology, Vol. 4, Springer, Berlin, 113-123. https://doi.org/10.1007/978-3-642-79182-6_9

[7] Jones, A.P., Genge, M. and Carmody, L. (2013) Carbonate Melts and Carbonatites. *Reviews in Mineralogy & Geochemistry*, **75**, 289-322. https://doi.org/10.2138/rmg.2013.75.10

[8] Woolley, A.R. and Kjarsgaard, B.A. (2008) Carbonatite Occurrences of the World: Map and Database. Geological Survey of Canada, Ottawa. https://doi.org/10.4095/225115
Appendix

Carbonatite occurrences: δ¹⁸O-δ¹³C values of middle and starting points of trends; minimum initial ratio ⁸⁷Sr/⁸⁶Sr (n* – occurrences with a linear trend, n – other occurrences)

ID	Occurrence note	Country	Literary source	n, n*	Middle point	Starting point	⁸⁷Sr/⁸⁶Sr		
					δ¹⁸O	δ¹³C	δ¹⁸O	δ¹³C	⁸⁷Sr/⁸⁶Sr
1	InOuzzal	Algeria	Ouzegane et al., 1988	7	9.38	−7.72	7.65	−7.72	-
5	Bailundo	Angola	Pineau et al., 1973; Alberti et al., 1999	8*	9.60	−5.34	6.70	−6.50	-
6	Monte Verde	Angola	Pineau et al., 1973; Alberti et al., 1999	15*	9.01	−4.53	5.30	−6.21	-
10	Tchivira-Bonga	Angola	Alberti et al., 1999	7*	12.28	−3.74	9.42	−4.51	-
15	Lupongola	Angola	Alberti et al., 1999	10*	9.23	−7.37	7.52	−7.88	-
16	Matongo	Bourundi	Dolenek et al., 2015; Decree et al., 2015	13*	7.54	−5.21	6.53	−5.63	-
19	Lueshe	Congo	Самойлов, 1984	2	7.90	−5.85	7.80	−5.85	-
21	Wadi Tarr	Egypt	Shimron, 1975	3*	6.43	−7.67	5.20	−6.76	-
29	Rangwa	Kenya	Suva et al., 1975	5*	15.10	−5.56	10.10	−4.22	0.7042
33	Homa Mountain	Kenya	Dennis and Schrag, 2010	8*	8.51	−3.36	7.70	−3.52	-
34	Buru-siderite	Kenya	Onguona, 1997	16	14.48	−3.94	12.61	−3.94	-
39	Kangankunde	Malawi	Dennis and Schrag, 2010; Nelson, 1987; Broom-Fendley et al., 2017	9	8.49	−4.79	5.50	−4.79	0.7016
47	Chilwa Island	Malawi	Simonetti and Bell, 1994	16	11.48	−2.61	7.90	−2.61	0.7032
48	Tundulu	Malawi	Самойлов, 1984	2	12.35	−3.25	10.40	−3.25	-
51	Songwe Hill	Malawi	Broom-Fendley et al., 2016	4*	11.13	−4.00	7.80	−3.40	-
64	Tamazert	Morocco	Bouabdellah et al., 2010; Marks et al., 2009	42	8.60	−5.62	6.94	−5.62	0.7033
73	Xíluvo	Mozambique	Melluso et al., 2004	3*	9.63	−5.32	7.50	−5.10	0.7032
75	Swartbooisdrif	Namibia	Thompson et al., 2002	2	8.01	−7.37	7.90	−7.37	-
78	Okorusu	Namibia	Le Roex and Lanyon, 1998	2	8.80	−4.64	8.11	−4.64	0.7043
79	Ondurakorume	Namibia	Le Roex and Lanyon, 1998	2	8.80	−4.64	6.47	−4.64	0.7035
82	Lofdal	Namibia	Vistorina Nandigolo, 2013	3*	8.08	−5.13	6.43	−5.57	0.7027
89	Dicker Willem	Namibia	Reid and Cooper, 1992	2	8.00	−5.00	7.00	−5.00	-
103	Phalaborwa	S. Africa	Suwa et al., 1975	4	9.05	−3.85	8.00	−3.85	0.7039
105	Spitskop-calcite	S. Africa	Harmer, 1999; Suwa et al., 1975	8*	14.14	−2.86	11.70	−2.80	0.7028
105	Spitskop-dolomite	S. Africa	Harmer, 1999; Suwa et al., 1975	7	16.72	−1.99	15.97	−1.99	-
108	Noolgedacht	S. Africa	Clarke, 1989	2	9.05	−4.30	8.20	−4.30	-
109	Kruidfonten	S. Africa	Clarke, 1989	5*	13.32	−2.40	10.90	−3.14	-
113	Premier Mine	S. Africa	Suwa et al., 1975	4*	11.93	−6.50	11.40	−6.84	-
122	Zandkopsdrift	S. Africa	Onguona, 1997; Halama et al., 2007	10	14.95	−5.77	13.20	−5.77	-
126	Oldoinyo Lengai	Tanzania	Bell and Keller, 1995; Halama et al., 2007	9	7.47	−6.86	5.78	−6.86	0.7044
Continued

Place	Country	Origin	Study Authors	Age (Ma)	Depth (m)	Temperature (°C)	Heat Flow (mW/m²)	Heat Production (μW/m³)
Kerimasi	Tanzania	Zaitsev et al., 2013	3*	9.43	–3.73	7.43	–4.20	
Panda Hill (Mbeya)	Tanzania	Suwa et al., 1975; Dennis and Schrag, 2010; Dolenek et al., 2015	13	7.48	–4.70	5.90	–4.70	0.7034
Bukusu	Uganda	Cassola et al., 1984	2	10.40	–2.90	8.50	–2.90	
Tororo	Uganda	Nelson, 1987; Dennis, 2010	10*	9.03	–2.73	7.30	–3.49	0.7025
Sukulu	Uganda	Deines and Gold, 1973	8*	9.65	–2.66	7.30	–3.18	0.7026
Aley-calcite	Canada	Mader, 1986; Chakhmouradian et al., 2015	6	8.53	–5.23	7.70	–5.23	
Wicheeda-calcite	Canada	Trofanenko, 2014	2	6.94	–6.29	6.91	–6.29	
Wicheeda-dolomite	Canada	Trofanenko, 2014	4	9.72	–5.59	9.36	–5.59	
Eden Lake	Canada	Chakhmouradian et al., 2008	9	8.08	–7.96	7.91	–7.96	
Albany Forks	Canada	Suva et al., 1975	10*	9.30	–4.42	8.50	–4.42	
St-Andre	Canada	Suva et al., 1975	15*	10.78	–2.55	8.70	–3.32	
Oka	Canada	Dennis and Schrag, 2010; Chen and Simonetti, 2015; Haynes et al., 2003	26	6.96	–5.43	6.44	–5.43	0.7032
Aillik Bay-dolomite	Canada	Tappe et al., 2006	3*	11.13	–2.77	10.80	–2.82	0.7040
Aillik Bay-dol-calc	Canada	Tappe et al., 2006	11	10.75	–3.86	9.60	–3.86	0.7039
Paint Lake	Canada	Chakhmouradian et al., 2010	2	8.45	–6.05	7.80	–6.05	
Wekusko Lake	Canada	Chakhmouradian et al., 2009	7	23.54	–5.83	20.04	–5.83	0.7035
Gardiner	Greenland	Nielsen and Buchardt, 1985	3*	10.97	–3.53	10.30	–3.93	
Sarfartog	Greenland	Tappe et al., 2011	2	12.02	–3.21	11.63	–3.21	0.7036
Grnmedal-Ika	Greenland	Pearson 1997; Coulson et al., 2003; Halama et al., 2005	18	7.70	–4.40	6.65	–4.40	0.7029
Qaarssuk-olivine sövite	Greenland	Knudsen and Buchardt, 1991	7*	7.47	–3.31	7.06	–3.47	
Qaarssuk-sövite	Greenland	Knudsen and Buchardt, 1991	4	7.28	–3.82	6.90	–3.82	
Qaarssuk-dolomite sövite	Greenland	Knudsen and Buchardt, 1991	5*	8.40	–3.29	7.32	–3.51	
Igaliko	Greenland	Coulson et al., 2003	9	13.02	–3.81	8.60	–3.81	0.7027
Bearpaw Mount.	USA	Dennis and Schrag, 2010	8*	8.70	–7.74	8.30	–8.19	
Bear Lodge	USA	Moore, 2014	10	10.12	–9.20	8.70	–9.20	0.7046
Wet Mountains	USA	Armbrustmacher, 1979	4	8.88	–4.40	7.10	–4.40	
Iron Hill	USA	Jones et al., 2013; Hugh et al., 1966	3*	8.33	–5.13	7.30	–5.66	0.7046
Magnet Cove	USA	Haynes et al., 2003; Nelson et al., 1988	8*	7.30	–5.50	5.40	–5.66	0.7035
Cerro Sapo	Bolivia	Schultz et al., 2004	4*	9.84	–8.39	7.16	–7.71	0.7034
Chiaracke	Bolivia	Schultz et al., 2004	3	12.10	–5.60	11.90	–5.60	0.7035
Angico dos Dias	Brazil	Antonini et al., 2003	16	14.78	–6.48	11.92	–6.48	0.7033
Catalao II	Brazil	Vincenza Guarino et al., 2016	10	8.79	–6.00	8.45	–6.00	0.7050
Catalao I	Brazil	P. F. de Oliveira Cordeiro et al., 2011	5*	10.86	–5.74	9.20	–5.27	0.7051
Salitre	Brazil	Brod, 1999	12*	7.55	–6.90	6.90	–7.23	
Araxa	Brazil	Santos and Clayton, 1995	4*	9.78	–6.98	8.70	–6.88	

DOI: 10.4236/ojg.2019.98028 435 Open Journal of Geology
	Location	Country							
299	Tapira	Brazil	Brod, 1999	45°	9.32	−6.54	5.40	−7.84	0.7052
303	Jacupiranga	Brazil	Comin-Chiaramonti et al., 2007; Haynes et al., 2003; Nelson, 1987	25°	7.28	−6.37	5.40	−7.21	0.7050
305	Barra do Itapirapua	Brazil	Andrade et al., 1999; Santos and Clayton, 1995; Andrade et al., 1999; Comin-Chiaramonti et al., 2001	9°	8.34	−5.91	6.70	−6.46	-
306	Mato Preto	Brazil	Comin-Chiaramonti et al., 2007; Haynes et al., 2003; Nelson, 1987	20°	12.35	−1.38	8.00	−6.96	0.7047
310	Chiriguelo	Paraguay	Gomide et al., 2016; Comin-Chiaramonti et al., 2007; Haynes et al., 2003; Nelson, 1987	20°	14.97	−6.36	5.40	−7.78	0.7072
318	Wajilitage	China	W. Song et al., 2017	9°	7.62	−4.62	6.40	−3.91	0.7037
323	Bayan Obo-dike	China	Yang X et al., 2000; Le Bas 2000; Andrade et al., 1999; Comin-Chiaramonti et al., 2001	12°	14.24	−6.03	11.90	−6.75	-
325	South Qinling	China	C. Xu et al., 2014	17°	11.45	−4.78	8.62	−6.16	0.7036
332	Dashigou	China	H.-M. Ye et al., 2013	7	8.70	−3.88	8.24	−3.88	0.7056
332	Yuantou	China	C. Xu et al., 2010	2	9.16	−6.68	9.13	−6.68	-
337	Miaoya	China	Çimen et al., 2018	10	11.14	−5.23	9.41	−5.23	0.7036
338	Shaxiongdong	China	C. Xu et al., 2008	5°	7.58	−5.94	6.92	−6.05	-
340	Maoniuping	China	Z. Hou et al., 2009	7°	8.03	−5.97	7.00	−6.91	0.7061
340	Muluozhai	China	Z. Hou et al., 2009	5	8.70	−6.72	7.22	−6.72	0.7066
340	Lihuang	China	Z. Hou et al., 2009	2	11.00	−4.85	10.10	−4.85	0.7063
346	Sarnu-Dandali	India	Ray and Ramesh, 1999; Ray et al., 2000	7°	8.91	−5.10	8.20	−5.52	-
349	Mundwara	India	Ray and Ramesh, 1999; Ray et al., 2000	8°	7.54	−5.44	6.00	−6.55	-
350	Newania	India	Viladkar and Ramesh, 2014	7°	10.51	−4.24	7.60	−5.49	0.7021
355	Siriwasan	India	Viladkar and Gittins, 2016	14	12.50	−6.17	8.50	−6.17	0.7054
356	Amba Dongar	India	Gwalani et al., 2010; Viladkar and Ramesh, 2014; Simonetti et al., 1995	48	10.88	−4.16	7.20	−4.16	0.7055
356	Amba Dongar-dike	India	Viladkar and Ramesh, 2014; Gwalani et al., 2010	21°	11.75	−4.11	7.60	−4.71	-
357	Swangkre	India	Ray et al., 1999	7	9.51	−3.60	9.30	−3.60	-
358	Sung Valley	India	Ray et al., 1999; Srivastava et al., 2005; Viladkar and Ramesh, 2014	35	7.66	−3.06	7.10	−3.06	0.7047
360	Samchampi	India	Ray et al., 1999	11	7.25	−3.60	7.00	−3.60	-
365	Hogenakkal	India	Pandit, 2002	4	8.23	−6.13	8.10	−6.13	0.7016
366	Samalpatti	India	Ackerman et al., 2017	6	10.78	−3.50	10.10	−3.50	0.7058
367	Sevattur	India	Pandit, 2003; Kumar et al., 1998; Ackerman et al., 2017	12	8.93	−5.25	7.51	−5.25	0.7052
369	Mulakkadu	India	Pandit, 2002	5	7.44	−3.78	7.30	−3.78	0.7066
378	Matcha	Kirgystan	Vrublevskii, 2017	9°	20.73	−3.58	18.00	−5.49	0.7070
379	Hongcheon	S. Korea	Kim et al., 2005; Kwon and Yeang, 2003	7°	9.53	−6.36	7.96	−7.71	-
379	Yonghwa	S. Korea	Jieun Seo et al., 2016	7	9.23	−7.00	7.70	−7.00	-
380	Mushugai Khuduk	Mongolia	Владыкин и др., 2004	4	15.73	−1.53	15.20	−1.53	0.7054
No.	Location	Country	Reference Details						
-----	-------------------	---------	---						
383	Ulugei	Mongolta	Kuleshov, 1986						
393	Zhlobin	Belarus	Veretennikov and dr., 2007						
398	Khibiny	Russia	Zaitzev, 1996; Покровский, 2000						
399	Ozernaya Varaka	Russia	Самойлов, 1984						
400	Africkanda	Russia	Самойлов, 1984						
401	Lesnaya Varaka	Russia	Кухаренко и Донцова, 1962						
405	Telyachi Island	Russia	Beard et al., 1996						
406	Turiy Mys	Russia	Dunworth and Bell, 2001; Demeny et al., 2004						
407	Kovdor	Russia	Плюснин и др., 1980; Владыкин и др., 2004						
408	Sallanlatvi	Russia	Demeny et al., 2004						
409	Vuoriyarvi	Russia	Demeny et al., 2004; Владыкин и др., 2004						
410	Tikaheozero	Russia	Щипцов, 1988						
413	Chetlassky	Russia	Удоратина и др., 2014; Шумилова и др., 2012						
417	Guli	Russia	Владимырик и др., 2000						
418	Odikhincha	Russia	Плюснин и др., 1980						
420	Kugda	Russia	Покровский, 2000						
426	Magan	Russia	Кравченко и Багдасаров, 1987						
428	Essei	Russia	Кравченко и Багдасаров, 1987; Владыкин и др., 2004						
436	Up. Petropavlovka	Russia	Proskurnin et al., 2010						
437	Edelveis	Russia	Vrublevskii, 2015						
438	Tagna	Russia	Владыкин и др., 2004						
439	Nizhnesayansky	Russia	Doroshkevich et al., 2016; Владыкин и др., 2004						
440	Verkhesayansky	Russia	Владыкин и др., 2004						
441	Kharly	Russia	Vrublevskii, 2003						
443	Zhidoy	Russia	Morikyio et al., 2000						
445	Karasug-calcite	Russia	Nikiforov et al., 2006						
446	Karasug-siderite	Russia	Nikiforov et al., 2006						
447	Karasug-Teli	Russia	Nikiforov et al., 2006						
Continued

Location	Country	Authors, Year(s)	A	B	C	D		
Karasug-Ulatay	Russia	Nikiforov et al., 2006	3*	11.70	−4.30	10.40	−4.02	
Yuzhnoe	Russia	Никифоров и др., 2000; Рипп и др., 2000	4*	7.55	−5.60	6.20	−5.97	
Khaluta	Russia	Никифоров и др., 2000; Рипп и др., 2000	8	12.03	−6.50	9.30	−6.50	0.7057
Oshurkovo	Russia	Никифоров и др., 2000; Рипп и др., 2000	10	10.74	−6.40	7.00	−6.40	0.7053
West. Baical-calcite	Russia	Савельева et al., 2016	4	12.70	−3.98	12.50	−3.98	0.7048
West. Baical-dolomite	Russia	Савельева et al., 2016	6*	12.37	−3.28	11.90	−3.48	0.7057
Yuzhnoe	Russia	Doroshkevich et al., 2007; Ласточкин, 2009	10	10.16	−1.59	9.10	−1.59	
Pogranichnoe	Russia	Doroshkevich et al., 2006	3	8.67	−0.20	8.41	−0.20	0.7038
Murun	Russia	Владыкин и др., 2004; Покровский, 2000	20	8.42	−7.36	6.0	−7.36	0.7062
Seligdar	Russia	Doroshkevich et al., 2018	5	16.48	−5.36	15.90	−5.36	0.7064
Khani	Russia	Владыкин и др., 2004	2	8.55	−8.20	8.50	−8.20	0.7045
Ingili	Russia	Владыкин и др., 2004	2	8.05	−6.55	8.00	−6.55	
Arbarastakh	Russia	Владыкин и др., 2004	3	8.27	−5.07	7.60	−5.07	
Koksharovsky	Russia	Октябрьский и др., 2010	9	11.00	−5.17	9.00	−5.17	
Eppawala	Sri Lanka	Мантилаке et al., 2008; Питавала et al., 2003	27*	14.27	−2.69	7.70	−3.73	0.7049
Karacayır	Turkey	Суичи, 2012; Лихов и др., 2007	11*	10.06	−1.71	6.50	−2.59	
South Nam Xe	Vietnam	T. Nguyễn Thị et al., 2014	17	9.80	−3.30	9.10	−3.30	0.7082
Mt Weld	Australia	Salier et al., 2004	5	10.51	−5.44	9.24	−5.44	0.7033
Yungul	Australia	Gwalani et al., 2010	37*	13.84	−5.69	10.40	−6.20	
Cummins Range	Australia	Downes et al., 2014	6*	8.28	−4.10	7.50	−4.17	
Mud Tank	Australia	Wilson, 1979	4	7.50	−4.13	7.50	−4.13	0.7032
Haast River-calcite	New Zealand	Cooper and Paterson, 2008	6*	8.97	−6.22	6.70	−6.69	
Haast River-dolomite	New Zealand	Cooper and Paterson, 2008	4*	13.48	−5.18	11.50	−5.77	
Sokli	Finland	Демене et al., 2004	7*	7.86	−3.76	7.10	−4.13	
Laivajoki	Finland	Нюканен et al., 1997	7*	6.81	−4.44	5.91	−3.93	
Kortejärvi	Finland	Нюканен et al., 1997	7*	7.49	−4.03	6.58	−3.87	
Siilinjarvi	Finland	Нюканен et al., 1997	6	9.22	−4.07	7.40	−4.07	
Laacher See	Germany	Hugh et al., 1966; Jones et al., 2013	13	7.39	−6.60	6.30	−6.60	
Rockeskyll	Germany	Riley et al., 1999	3*	12.40	−5.07	11.10	−4.94	0.7041
Kaiserstuhl	Germany	Hubberten, 1988; Dolenek et al., 2015; Dennis and Schrag, 2010	54	9.69	−5.95	5.70	−5.95	0.7036
Pelagonian Zone	Greece	Schenker et al., 2018	6	10.75	−5.49	10.40	−5.49	0.7042
Location	Country	Source	N	Zn (ppm)	Cu (ppm)	Ni (ppm)	Fe (ppm)	Mn (ppm)
-------------------	-------------	--	----	----------	----------	----------	----------	----------
Mt. Vulture	Italy	Stoppa et al., 2016; Rosatelli et al., 2010	4*	10.90	-4.78	10.30	-4.93	
Fen	Norway	Broom-Fendley et al., 2016; Andersen, 1987	8	6.90	-4.79	5.70	-4.79	0.7021
Alnö	Sweden	Roopnarain, 2013; Hugh et al., 1966; Jones et al, 2013	29	7.71	-5.53	6.40	-5.53	0.7029
Chernigovsky	Ukraine	Луговая и др., 1978	11	8.49	-5.77	5.30	-5.77	0.7013
Loch Borralan	UK Scotland	Young et al., 1994	2	10.36	-5.02	10.32	-5.02	
Fuerteventura	Spain	Hoernle et al., 2002; Шумилова и др., 2012	12	7.32	-5.72	6.60	-5.72	
Sao Vicente	Cape Verdes	Hoernle et al., 2002	2	7.85	-4.80	7.30	-4.80	0.7031
Fogo	Cape Verdes	Hoernle et al., 2002	4*	6.58	-6.70	5.30	-7.09	0.7031