INTRODUCTION

Optimal diastolic blood pressure (DBP) during antihypertensive treatment in patients without a history of cardiovascular disease (CVD) remains unknown.

OBJECTIVES

This post-hoc analysis of the SPRINT (Systolic Blood Pressure Intervention Trial) data aimed to determine the optimal DBP evaluated using automated office blood pressure measurements (AOBPM) in hypertensive patients without a history of CVD.

PATIENTS AND METHODS

Data of 1470 patients with CVD and 7117 patients without CVD were used. Clinical composite endpoint (CE) was defined as the occurrence of myocardial infarction, acute coronary syndrome other than myocardial infarction, decompensation of heart failure, stroke, or cardiovascular death. Two different approaches based on the hazard ratio plot were used to identify the optimal DBP range. The first approach was to determine the 10 mm Hg–wide DBP range with the lowest risk for CE. In the second approach, it was assumed that the hazard ratio of CE at the boundary points of the optimal DBP range should be the same in patients with and without CVD.

RESULTS

Two ranges of on-treatment DBP were proposed: 73.7 to 83.7 mm Hg (first approach) and 63.6 to 95.8 mm Hg (second approach). The risk for CE was increased by 3% and 20% at the boundary points of the range, respectively, depending on the method of DBP determination.

CONCLUSIONS

Due to the fact that the range determined by the second method was wide and substantially different from the one recommended by the European Society of Cardiology (70–79 mm Hg), we have concluded that a DBP range of 73.7 to 83.7 mm Hg, measured using AOBPM, should be considered optimal in patients without CVD.
Both high and low values of diastolic blood pressure (DBP) during antihypertensive treatment are recognized as harmful. On-treatment (DBP) in the range of 70 to 79 mm Hg is currently considered optimal; however, the evidence regarding patients without prior cardiovascular disease is lacking. In the present study, 2 different strategies of optimal DBP determination were evaluated. As a result, the optimal DBP on-treatment range of 73.7 to 83.7 mm Hg in patients without prior cardiovascular disease was proposed.

SPRINT a composite primary outcome event was defined as myocardial infarction (MI), acute coronary syndrome other than MI, exacerbation of heart failure, stroke, and cardiovascular death. The trial proved that intensive as compared with standard (target <140 mm Hg) blood pressure lowering was associated with reduced heart failure, stroke, and cardiovascular death. For the purposes of our analysis, we excluded the patients with unavailable data after the sixth month from enrollment until the end of the study were included. Out of 1877 patients with CVD, the data of 1470 with clinical CVD were used as a basis to determine risk thresholds for selecting the optimal DBP values (FIGURE 1).

The limited SPRINT data, obtained from the National Heart, Lung and Blood Institute (NHLBI) Biologic Specimen and Data Repository Information Coordinating Centre, were used to perform the analysis; however, the manuscript does not necessarily reflect the opinions or views of the SPRINT Research Group or the NHLBI. Our analysis was approved by the Ethics Committee of the Medical University of Warsaw (no. AKBE/5/2018) and by the NHLBI.

All participants provided written consent for their participation in SPRINT; nevertheless, the requirements for written consent to perform the current analysis were waived because the data were anonymized.

Data availability statement
The data supporting the findings of this study can be obtained from the NHLBI, but restrictions apply regarding their availability. Since these data are under the license for the current study, they are not publicly obtainable. The data are available from the NHLBI upon reasonable request. The authors have no right to share the data.

Blood pressure measurement
Omron Healthcare Model 907 (Kyoto, Japan) was used for AOBPM in SPRINT. Blood pressure was measured 3 times per visit with a 1-minute interval after 5 minutes of rest. The mean of the 3 measurements was computed. In the intensive treatment arm, BP was lowered to achieve SBP of less than 120 mm Hg; in the standard treatment arm, the BP value was lowered to achieve SBP of less than 140 mm Hg and hypotensive treatment was down-titrated when SBP was lower than 130 mm Hg at a single visit or lower than 135 mm Hg at 2 consecutive visits. No DBP target was established in both intensive and standard treatment arms; however, after meeting the SBP goal, the participants were treated to achieve DBP of less than 90 mm Hg.

In our study, on-treatment BP values were computed as means of each participant’s SBP and DBP values during the analyzed period (since the sixth month from enrolment to the end of the study).

Clinical endpoint
The clinical composite endpoint (CE) analyzed in our study was defined in the same way as the primary composite outcome in original SPRINT and included MI, acute coronary syndrome other than MI, decompensation of heart failure, stroke, or cardiovascular death.

Statistical analysis
We performed a post-hoc analysis of the SPRINT subset data. All continuous variables were expressed as mean (SD) or median and interquartile range, depending on the distribution. All discrete variables were expressed as percentage. Restricted
Optimal DBP in hypertensive patients without cardiovascular disease

For this reason, we proposed 2 approaches which were considered and applied to estimate the optimal on-treatment DBP range. Both of them are based on the plot showing the relationship between HR and on-treatment DBP. Hazard ratio was computed and plotted using the on-treatment DBP value with the minimum of HR as a reference (HR at minimum: 1).

In the first approach (the 10 mm Hg–wide optimal DBP range approach), in accordance with the current ESC guidelines, the optimal on-treatment DBP range should be 10 mm Hg wide. Such approach was successfully applied previously in the group of SPRINT participants with CVD.

In the second approach (the equal HR approach), the data of patients with CVD were used to plot HR against DBP. Then, the HRs at the cubic splines were used to present the nonlinear relationship between DBP and HR on the plot. The optimal range of DBP was selected using the HR plot.

All computations were performed in the R 3.4.0 environment for statistical programming (R Foundation for Statistical Computing, Vienna, Austria) using standard, survival, and rms packages.

Selecting the optimal on-treatment diastolic blood pressure range There is no statement or position paper outlining how the optimal BP range should be determined. The concept of an “optimal” range of BP entered the clinical practice for the first time after the publication of the ESC guidelines. Nevertheless, the authors of that document did not provide the rationale of the strategy for selecting the optimal DBP range. For this reason, we proposed 2 approaches which were considered and applied to estimate the optimal on-treatment DBP range. Both of them are based on the plot showing the relationship between HR and on-treatment DBP. Hazard ratio was computed and plotted using the on-treatment DBP value with the minimum of HR as a reference (HR at minimum: 1).

In the first approach (the 10 mm Hg–wide optimal DBP range approach), in accordance with the current ESC guidelines, the optimal on-treatment DBP range should be 10 mm Hg wide. Such approach was successfully applied previously in the group of SPRINT participants with CVD.

In the second approach (the equal HR approach), the data of patients with CVD were used to plot HR against DBP. Then, the HRs at the
RESULTS

The data of 7117 participants (women, 37.4%) without CVD were analyzed. The mean (SD) on-treatment DBP and SBP values were 72 (9.4) mm Hg and 128.2 (10.7) mm Hg, respectively. A total of 3745 participants (52.6%) were older than 65 years, and 1649 (23.2%) were aged over 75 years. The baseline characteristics and outcomes of the investigated subpopulation and patients with CVD are listed in Table 2.

In the study population, 44 patients (0.6%) had DBP <50 mm Hg; 698 (9.8%) had DBP ≥50 and <60 mm Hg; 2210 (31.1%) had DBP ≥60 and <70 mm Hg; 2705 (38%) had DBP ≥70 and <80 mm Hg, and 1460 (20.5%) had DBP ≥80 mm Hg.

During the study period, CE occurred in 293 patients (4.1%), including 110 (1.5%) with MI, 29 (0.4%) with acute coronary syndrome other than MI, 82 (1.2%) with acute exacerbations of heart failure, 74 (1%) with stroke, and 44 (0.6%) with cardiovascular death. The histogram of on-treatment DBP and percentage of CE events at each level of on-treatment DBP are shown in Figure 2.

The relationship between on-treatment DBP and HR is presented in Figure 3A (patients with CVD) and Figure 3B (patients without CVD). Hazard ratios were adjusted for age, sex, current smoking status, on-treatment SBP, body mass index (BMI), and a history of chronic kidney disease. In patients without a history of CVD according to the HR plot, we found the minimum HR value for on-treatment DBP of 78.3 mm Hg. In accordance with the first approach (10 mm Hg–wide optimal DBP range), the calculation of the DBP range was based on the 10 mm Hg width of the range, as proposed in the ESC guidelines, with the 10 mm Hg–wide optimal DBP range of 73.7 to 83.7 mm Hg. At the boundary points of the interval (considering DBP of 78.3 mm Hg as the value with the lowest risk), HRs were 1.035 (95% CI, 0.92–1.17) and 1.033 (95% CI, 0.86–1.24), respectively (Figure 3B). Almost one-third (2227 [31.3%]) of the SPRINT study participants without a history of CVD had on-treatment DBP in the specified range. Most of the SPRINT study participants without prior CVD

Table 2

Clinical characteristics and outcomes in patients with and without cardiovascular disease

Parameter	Participants without CVD (n = 7117)	Participants with CVD (n = 1470)	P value
Age, y	66 (60–75)	70 (63–78)	<0.001
Allocation to the intensive treatment arm	3561 (50)	737 (50.1)	0.984
Female sex	2661 (37.4)	354 (24.1)	<0.001
Black race	2343 (32.9)	284 (19.3)	<0.001
BMI, kg/m², mean (SD)	30 (5.8)	29.2 (5.4)	<0.001
Prior subclinical CVD	0	166 (11.3)	<0.001
Prior CKD	1889 (26.5)	518 (35.2)	<0.001
Creatinine, mg/dl, mean (SD)	1.06 (0.33)	1.1 (0.3)	<0.001
eGFR, ml/min/1.73 m², mean (SD)	72.6 (20.5)	68.3 (19.9)	<0.001
Current smoker	924 (13)	208 (14.1)	0.236
Former smoker	2916 (41)	760 (51.7)	<0.001
Never smoker	3271 (46)	501 (34.1)	<0.001
On aspirin	3203 (45.1)	1204 (82.1)	<0.001
On statin	2644 (37.4)	1116 (76.3)	<0.001
Total cholesterol, mg/dl	191 (167–218)	161 (142–190)	<0.001
Non-HDL cholesterol, mg/dl	137 (114–163)	112 (92–138)	<0.001
HDL cholesterol, mg/dl, mean (SD)	53.5 (14.7)	49.8 (12.8)	<0.001
Triglycerides, mg/dl	107 (77–151)	108 (77–148)	0.978
Glucose, mg/dl	97 (90–105)	98 (92–106)	<0.001
Baseline DBP, mm Hg, mean (SD)	79 (11.7)	74.2 (12.1)	<0.001
Baseline SBP, mm Hg, mean (SD)	139.9 (15.5)	138.1 (15.8)	<0.001
On-treatment DBP, mm Hg, mean (SD)	72 (9.4)	68.3 (9.4)	<0.001
On-treatment SBP, mm Hg, mean (SD)	128.2 (10.7)	127.9 (10.7)	0.439
Clinical composite endpoint	293 (4.1)	159 (10.8)	<0.001
MI	110 (1.5)	62 (4.2)	<0.001
Acute coronary syndrome other than MI	29 (0.4)	35 (2.4)	<0.001
Acute exacerbation of heart failure	82 (1.2)	40 (2.7)	<0.001
Stroke	74 (1)	33 (2.2)	<0.001
Cardiovascular death	44 (0.6)	33 (2.2)	<0.001
All-cause death	188 (2.6)	91 (6.2)	<0.001

Data are presented as number (percentage) of patients or median (interquartile range) unless otherwise indicated.

Abbreviations: BMI, body mass index; CKD, chronic kidney disease; DBP, diastolic blood pressure; eGFR, estimated glomerular filtration rate according to the Modification of Diet in Renal Disease equation; HDL, high-density lipoprotein; MI, myocardial infarction; SBP, systolic blood pressure; others, see Figure 1.
On-treatment DBP lower than 63.6 mm Hg was present in 1357 (19.1%) participants, while only in 27 (0.4%) on-treatment DBP was higher than 95.8 mm Hg.

There were 215 cases of CE (rate of 3.8%) in patients who had on-treatment DBP within the range of 63.6 to 95.8 mm Hg and 78 cases (rate of 5.6%) in those with DBP outside this range. After the adjustment for age, sex, smoking status, on-treatment SBP, BMI, and a history of chronic kidney disease, on-treatment DBP higher than 95.8 mm Hg or lower than 63.6 mm Hg was related to a 18.9% higher risk for CE in comparison with on-treatment DBP in the range of 63.6 to 95.8 mm Hg (HR, 1.19; 95% CI, 0.89–1.59).

DISCUSSION In the current study, we proposed 2 optimal DBP ranges based on AOBPM for patients without CVD. The use of both proposed DBP ranges should be commented in view of their advantages and limitations.

The range of 73.7 to 83.7 mm Hg, which was calculated using the 10 mm Hg–wide range approach seems to be in line with the current guidelines. However, this DBP range was associated with only a 3% increase of risk at the boundary points of the DBP interval. Diastolic BP outside the range was associated with a 5.5% higher risk than DBP within the range of 73.7 to 83.7 mm Hg. Therefore, it should be considered whether such a small increase of risk has any clinical significance in a population with a 4.1% rate of CE during the trial. On the other hand, the wide DBP range of 63.6 to 95.8 mm Hg was present in 1357 (19.1%) participants, while only in 27 (0.4%) on-treatment DBP was higher than 95.8 mm Hg.

There were 215 cases of CE (rate of 3.8%) in patients who had on-treatment DBP within the range of 63.6 to 95.8 mm Hg and 78 cases (rate of 5.6%) in those with DBP outside this range. After the adjustment for age, sex, smoking status, on-treatment SBP, BMI, and a history of chronic kidney disease, on-treatment DBP higher than 95.8 mm Hg or lower than 63.6 mm Hg was related to a 18.9% higher risk for CE in comparison with on-treatment DBP in the range of 63.6 to 95.8 mm Hg (HR, 1.19; 95% CI, 0.89–1.59).
The strategies for determination of an optimal DBP range proposed herein are the first attempt to solve this problem in a quantitative manner. There is limited evidence supporting the ESC recommendation of a DBP range of 70 to 79 mm Hg in patients without CVD. This recommendation is based mainly on studies conducted in patients reaching the SBP goals would have DBP values within such a broad range. Consequently, this would lead to a situation when there is no target DBP value during the treatment and the increase in risk within the optimal range is acceptable.

FIGURE 3 Hazard ratio (HR) plots according to on-treatment diastolic blood pressure (DBP) in patients with (A) and without (B) cardiovascular disease; the hazard ratio was computed using the DBP value with the minimum risk as a reference. A – 10 mm Hg–wide interval of DBP showing optimal DBP in patients with cardiovascular disease; B – 2 intervals of DBP considered optimal in patients without cardiovascular disease: 63.6 to 95.8 mm Hg (the 10 mm Hg–wide optimal DBP range approach; red) and 73.7 to 83.7 mm Hg (the equal HR approach; green)

95.8 mm Hg, based on the equal HR strategy, may not be applicable in clinical practice. Almost all patients reaching the SBP goals would have DBP values within such a broad range. Consequently, this would lead to a situation when there is no target DBP value during the treatment and the increase in risk within the optimal range is acceptable.
with CVD. Until prospective studies are conducted, an indirect analysis is warranted to determine optimal DBP in hypertensive patients without CVD. Thus, we decided to present both of the above approaches. In our opinion the first approach (the 10 mm Hg–wide range strategy) delivers DBP values that are more applicable in clinical conditions than the second method (the equal HR approach). The currently presented DBP range of 73.7 to 83.7 mm Hg is not identical to the one recommended by the ESC (70–79 mm Hg); however, the differences between AOBPM and office BP measurement should be taken into consideration.

The difference in the width of DBP ranges is due to different assumptions taken for the calculation of the optimal on-treatment DBP range in populations with and without a history of CVD. It is also tempting to speculate that the increased risk of CE associated with too high and too low on-treatment DBP is less potent in patients without CVD compared with those with prior CVD. Considering this hypothesis and bearing in mind that most SPRINT participants had no history of CVD, the results of our analysis and other studies showing no increase in risk for low DBP are not surprising.6,13

A difference was observed between the optimal on-treatment DBP range proposed herein and the one recommended in the guidelines for patients with hypertension, without a distinction based on the presence of previous CVD.6 The reason behind this discrepancy remains unclear, but 2 possibilities have been considered. First, AOBPM delivers different BP values than other methods of BP measurement that were used to establish the optimal DBP range recommended in the guidelines.6 To date, only small differences were found between AOBPM and other methods of BP measurement, which does not justify the difference between the width of DBP range and its values. Tang et al14 showed that DBP values based on AOBPM were higher by 3.8 mm Hg than those obtained using research-grade methods. In a previous study that compared AOBPM and office or research-grade measurements, small differences in DBP values (−3 and −2.4 mm Hg) were found.15 Similarly, Filipovsky et al16 showed a moderate correlation between the automated and auscultatory or home BP measurements, with large limits of agreement. Corresponding results were found when DBP based on AOBPM was compared with values obtained from ABPM.17 On the contrary, the SPRINT Ambulatory Blood Pressure Study showed lack of agreement between SBP derived from AOBPM and daytime ABPM, based on the Bland–Altman plots.18 Comparing the DBP values, Myers et al19 showed that DBP of 80 mm Hg based on AOBPM corresponded with the mean awake ABPM of DBP at 81.5 mm Hg. In a recent meta-analysis, Roerecke et al20 showed that the AOBPM values were similar to the ABPM values. Our previous analysis10 suggested that the optimal DBP of 68.6 to 78.6 mm Hg is similar to the DBP range recommended by the ESC.6 Thus, the difference between various methods of BP measurement does not explain the discrepancy in the currently calculated optimal on-treatment DBP range in patients without CVD and the DBP range recommended by the ESC.6 Another possible explanation for this difference is that the range proposed by the ESC is the same, regardless of the presence or absence of CVD. Probably, the optimal on-treatment DBP in patients without CVD is different from that in individuals with prior CVD. Such a hypothesis can be supported by the fact that patients without CVD have better preserved blood flow autoregulation mechanisms than those with a history of CVD. This was confirmed by the observation of a less potent risk increase towards lower or higher DBP in patients without CVD in comparison with those with CVD (FIGURE 3A and 3B).

So far, none of the randomized studies aimed to establish the optimal DBP values which are currently achieved during intensive SBP lowering; hence, the available evidence regarding the optimal DBP in patients with no history of CVD is limited. In an analysis by Lonn et al,21 patients at intermediate cardiovascular risk who were actively treated did not benefit from the study intervention despite the reduction in SBP (by a mean [SD] value of 6 [3] mm Hg) and DBP (by a mean [SD] value of 3 [8] mm Hg). In SPRINT, patients who achieved a mean SBP of 121.4 mm Hg after 1 year of participation had a mean DBP of 68.7 mm Hg.22 The participants of the ACCORD (Action to Control Cardiovascular Risk in Diabetes) trial also achieved lower DBP values (intensive BP reduction group: mean, 64.4 mm Hg; standard BP reduction group: mean, 70.5 mm Hg).1 In the ONTARGET (Ongingo Telmisartan Alone and in Combination with Ramipril Global Endpoint Trial) and TRASCEND (Telmisartan Randomised Assessment of Study in ACE and Intolerant Participants with Cardiovascular Disease) trials, every fifth person who achieved the SBP therapeutic goal of 120 to 130 mm Hg had DBP lower than 70 mm Hg.23 The DBP targets recommended by the ESC were based on several meta-analyses and post-hoc analyses of large trials.6 However, there was limited evidence supporting the recommendation of DBP between 70 and 79 mm Hg in patients without CVD. Thomopoulos et al24 revealed that lowering DBP to less than 80 mm Hg is more beneficial than maintaining DBP of 80 mm Hg or higher. Nevertheless, the lower values were not determined. In contrast, Ettehad et al25 did not focus on determining the optimal DBP target. A study by Xie et al26 did not provide the optimal DBP target, since it was focused on intensive BP lowering and the direct targets were not defined. An analysis of the ONTARGET and TRASCEND trials showing an optimal DBP range of 70 to 80 mm Hg was performed in a population with CVD.22 Similarly to our study, a post-hoc analysis of the VALUE (Valsartan Antihypertensive Long-Term Use Evaluation) trial did not show any evidence of the J-shaped curve in patients without CVD.26
Limitations Our study had some limitations. First, the post-hoc design could lead to potential bias and the results should be interpreted carefully. Second, the number of participants with DBP higher than 90 mm Hg was relatively small, which led to a small number of events in this group of patients. This limitation could have had an impact on the accuracy of determining the higher boundary point of the optimal DBP range. The premature termination of SPRINT was related to the limited number of events that could be analyzed. The AOBP method in SPRINT was not properly implemented in the majority of measurements; only 50% of measurements were unattended. Patients with diabetes and those who experienced stroke were excluded from SPRINT; therefore, caution should be used when generalizing our results to other populations. It should also be underlined that patients younger than 50 years were not included in SPRINT.

Conclusions In summary, our analysis, which focused on patients without a history of CVD, suggested that the optimal on-treatment DBP range is different from the one currently recommended for all individuals with hypertension. From the perspective of everyday clinical practice, the optimal on-treatment DBP range of 73.7 to 83.7 mm Hg based on AOBPM should be considered in patients without CVD and those older than 50 years.

ARTICLE INFORMATION

NOTE Online identifiers were assigned to PS (ORCID ID, https://orcid.org/0000-0003-0662-8678), JL (ORCID ID, https://orcid.org/0000-0003-3780-8073), and MS (ORCID ID, https://orcid.org/0000-0001-8548-9782).

CONTRIBUTION STATEMENT JL, MS, and PS contributed to the concept of the study. PS performed the statistical analysis. All authors interpreted the results of the study. PS and MS prepared a draft version of the manuscript. JL revised and corrected the manuscript. All authors approved the final version of the manuscript.

CONFLICT OF INTEREST None declared.

OPEN ACCESS This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY‑NC‑SA 4.0), allowing third parties to copy and re‑distribute the material in any medium or format and to remix, transform, and distribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited, distribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited, and used for noncommercial purposes only. For commercial use, please contact the journal office at pamw@mp.pl.

HOW TO CITE Sobieraj P, Lewandowski J, Siński M. Determination of the optimal on-treatment diastolic blood pressure range using automated office measurements in patients without cardiovascular disease. Pol Arch Intern Med. 2021; 131: 249‑256. doi:10.20452/pamw.15789

REFERENCES

1 Cushman WC, Evans GW, Byington RP, et al. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N Engl J Med. 2010; 362: 1575‑1585.
2 Benavente DR, Coffey CS, Connolly R, et al. Blood-pressure targets in patients with recent lacunar stroke: the SP3S randomized trial. Lancet. 2013; 382: 507‑515.
3 Wright JT Jr, Williamson JD, Whelton PK, et al. A randomized trial of intensive versus standard blood-pressure control. N Engl J Med. 2015; 373: 2103‑2116.
4 Zanchetti A, Liu L, Mancia G, et al. Blood pressure and LDL-cholesterol targets for prevention of recurrent strokes and cognitive decline in the hypertensive patient: design of the European Society of Hypertension-Chinese Hypertension League Stroke in Hypertension Optimal Treatment randomized trial. J Hypertens. 2014; 32: 1888‑1897.
5 Whelton PK, Carey RM, Aronow WS, et al. 2017 ACC/AHA/ABC/ACPM/AAS/AAPA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension. 2018; 71: e13‑e115.
6 Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018 39: 3021‑3104.
7 O’Brien E, Dolan E, Stengou GS. Achieving reliable blood pressure measurements in clinical practice: It’s time to meet the challenge. J Clin Hypertens (Greenwich). 2018; 20: 1084‑1088.
8 Gavze PE, lv Jh. BP measurement in clinical practice: time to SPRINT to guideline-recommended protocols. J Am Soc Nephrol. 2018; 29: 383‑388.
9 Nerenberg KA, Zannek KB, Leung AA, et al. Hypertension Canada’s 2018 guidelines for diagnosis, risk assessment, prevention, and treatment of hypertension in adults and children. Can J Cardiol. 2018; 34: 506‑525.
10 Sobieraj P, Lewandowski J, Siński M, Gaciaong Z. Determination of optimal on-treatment diastolic blood pressure range using automated measurements in subjects with cardiovascular disease — analysis of a SPRINT trial subpopulation. J Clin Hypertens (Greenwich). 2019; 21: 911‑918.
11 National Heart, Lung and Blood Institute. 2019 Systolic Blood Pressure Intervention Trial (SPRINT). Biologic Specimen and Data Repository Information Coordinating Center. Accession Number HLBD02021921a.
12 Sobieraj P, Lewandowski J, Siński M, Gaciaong Z. Low-on-treatment diastolic blood pressure and cardiovascular outcome: a post hoc analysis using NHLBI SPRINT research materials. Scip Rep. 2019; 10: 13070.
13 Stensrud M, Strohmaier S. Diastolic hypertension due to intensive blood pressure therapy: is it harmful? Atherosclerosis. 2017; 265: 29‑34.
14 Tang O, Juraschek SP, Appel LJ, et al. Comparison of automated clinical and research blood pressure measurements: implications for clinical practice and trial design. J Clin Hypertens (Greenwich). 2018; 20: 1676‑1682.
15 Rinfret L, Coutlier L, Wistatn R, et al. Comparison of different automatet office blood pressure measurement devices: evidence of non equivalence and clinical implications. Can J Cardiol. 2017; 33: 1639‑1644.
16 Filipovski J, Sledzlerova J, Kratochvil Z, et al. Automated compared to manual office blood pressure and to home blood pressure in hypertensive patients. Blood Press. 2016; 25: 228‑234.
17 Sledzlerova J, Gelinski J, Matěřánková M, et al. In the aftermath of SPRINT: further comparison of unattended automated office blood pressure measurement and 24-hour blood pressure monitoring. Blood Press. 2018; 27: 256‑261.
18 Gavze PE, Pajevski NM, Bates JT, et al. Effect of intensive versus standard clinic-based hypertension management on ambulatory blood pressure: results from the SPRINT (Systolic Blood Pressure Intervention Trial) ambulatory blood pressure study. Hypertension. 2017; 69: 435‑443.
19 Myers MG, Matsang M, Kaczorowski J. Comparison of awake ambulatory blood pressure and automated office blood pressure using linear regression analysis in untreated patients in routine clinical practice. J Clin Hypertens (Greenwich). 2018; 20: 1636‑1702.
20 Roerecke M, Kaczorowski J, Myers MG. Comparing automated office blood pressure readings with other methods of blood pressure measurement for identifying patients with possible hypertension: a systematic review and meta-analysis. JAMA Intern Med. 2019; 179: 351‑362.
21 Lonn EM, Bosch J, López-Jamallillo P, et al. Blood-pressure lowering in intermediate-risk persons without cardiovascular disease. N Engl J Med. 2016; 374: 2009‑2020.
22 Bähn M, Schumacher H, Teo KK, et al. Achieved blood pressure and cardiovascular outcomes in high-risk patients: results from ONTARGET and TRANSCEND trials. Lancet. 2017; 389: 2226‑2237.
23 Thomopoulos C, Parati G, Zanchetti A. Effects of blood pressure lowering on outcome incidence in hypertension: 7. effects of more vs. less intensive blood pressure lowering and different achieved blood pressure levels – updated overview and meta-analyses of randomized trials. J Hypertens. 2016; 34: 613‑622.
24 Etteddah D, Emdin CA, Kiran A, et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet. 2016; 387: 957‑967.
25 Xie X, Akina E, Le J, Bennett A, et al. Effects of intensive blood pressure lowering on cardiovascular and renal outcomes: updated systematic review and meta-analysis. Lancet. 2016; 387: 435‑443.
26 Kjeldsen SE, Benge R, Bangalore S, et al. No evidence for a J-shaped curve in treated hypertensive patients with increased cardiovascular risk: the VALUE trial. Blood Press. 2016; 25: 83‑92.