Efficient masking of plant genomes by combining kmer counting and curated repeats
Bruno Contreras-Moreira 1*, Carla V Filippi 1,2,3, Guy Naamati 1, Carlos García Girón 1, James E Allen 1, Paul Flicek 1

1 European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
2 Instituto de Biotecnología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto Nacional de Tecnologia Agropecuaria (INTA); Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET Nicolas Repetto y Los Reseros s/n (1686), Hurlingham, Buenos Aires, Argentina
3 Consejo Nacional de Investigaciones Científicas y Técnicas–CONICET, Ciudad Autónoma de Buenos Aires, Argentina

* Corresponding author: bcontreras@ebi.ac.uk

II. Summary/Abstract

The annotation of repetitive sequences within plant genomes can help in the interpretation of observed phenotypes. Moreover, repeat masking is required for tasks such as whole-genome alignment, promoter analysis or pangenome exploration. While homology-based annotation methods are computationally expensive, k-mer strategies for masking are orders of magnitude faster. Here we benchmark a two-step approach, where repeats are first called by k-mer counting and then annotated by comparison to curated libraries. This hybrid protocol was tested on 20 plant genomes from Ensembl, using the kmer-based Repeat Detector (Red) and two repeat libraries (REdat and nrTEplants, curated for this work). We obtained repeated genome fractions that match those reported in the literature, but with shorter repeated elements than those produced with conventional annotators. Inspection of masked regions overlapping genes revealed no preference for specific protein domains. Half of Red masked sequences can be successfully classified with
nrTEplants, with the complete protocol taking less than 2h on a desktop Linux box. The repeat library and the scripts to mask and annotate plant genomes can be obtained at https://github.com/Ensembl/plant-scripts.

Key Words
Plant genomes, repetitive sequences, transposable elements, NLR genes, sequence masking, annotation
1. Introduction

Besides genes, plant genomes contain intergenic sequences, with increasing repetitive sequences as genome size grows. The growth in repeat content is roughly linear up to a genome size of 10Gbp, including most known angiosperms, and then plateaus (1). The repetitive fraction of the genome is made up of low-copy repeats, simple repeats (such as satellite DNA), and transposable elements (TEs), which were discovered by Barbara McClintock in maize (2). TEs can be important to explain observed phenotypes or domestication (see for instance reference (3)) and are used as a source of genetic variability in breeding programs (4). The hypothesis is that the copy-and-paste and cut-and-paste mechanisms of TEs might leave footprints in the genome and can potentially affect the expression, regulation or coding sequence of neighboring genes. Moreover, TEs are increasingly receiving attention in studies tackling plant pangenomes (see for instance (5)). According to the Wicker classification, plant TEs can be classified either as class I RNA retrotransposons or class II DNA transposons (6). Software resources such as RepeatMasker (RM) (7), RepBase (8) or RepetDB (9) that are typically used to annotate TEs in plant genomes use the Wicker classification rules (see (10) for a software review). However, it has been reported that disease resistance (R) genes, which are of great interest for plant breeding, are often masked by these annotation strategies (11). Furthermore, in our experience creating the Ensembl Plants resources, repeat annotation jobs can take up to several days on a computer cluster depending on the genome size. Moreover, the RepBase library requires subscription.

In addition to the intrinsic biological value of TEs, the annotation of repeats can be used to estimate assembly quality (12), as an alternative to gene completeness (13). For other genomic analyses, the bulk of repeated sequences may disrupt common computational genomic analyses and are thus often masked out without any classification attempt. For instance, whole-genome alignment (WGA), promoter analysis or the construction of graph genomes require the computation of resulting in frequency tables of k-mers, which are
nucleotide words of size k. If repeated sequences are not masked, the frequency tables are severely biased and can affect the obtained results (see for instance (14)). While annotation approaches based on sequence similarity are computationally expensive, k-mer masking strategies are orders of magnitude faster (15–18) and, in our experience, much better to prepare WGAs of barley and wheat cultivars using LASTZ (19).

In this paper we benchmark a two-step approach for the annotation of plant repeated sequences. First, repeats are called by k-mer counting with the Repeat Detector (Red). Second, the discovered repeated sequences are annotated by sequence alignment to a newly curated metacollection of repeats called nrTEplants. We compare this approach to the conventional RM pipeline, with both nrTEplants and the REdat (20) library, on a set of 20 angiosperms from Ensembl. We then compare their performance and discuss the results. The nrTEplants library is bundled with scripts to mask and annotate genomes of angiosperms, enabling interoperability, reuse and reproducible analyses (21).
2. Materials and methods

2.1 Plant repeat libraries

We searched the literature for plant-specific libraries of repeated sequences and selected those in Table 1. While some are specific for a species or repeat family, others comprise repeats from mixed species, such as REdat from PGSB PlantsDB (20) or RepetDB (9). FASTA files with nucleotide sequences of repeats were downloaded from the indicated URLs or obtained from the authors.

2.2 Plant cDNA sequences

Plant species in Ensembl Plants release 46 (November 2020) (22) were ranked in terms of the number of proteins reviewed in Uniprot by February 22nd, 2020 (23). This was considered as an indicator of annotation quality. A list of the best annotated dicot and monocot species was produced, including Arabidopsis thaliana, Brassica napus, Glycine max, Helianthus annuus, Medicago truncatula, Phaseolus vulgaris, Populus trichocarpa, Solanum lycopersicum, Vitis vinifera, Brachypodium distachyon, Hordeum vulgare, Oryza sativa subsp. japonica, Sorghum bicolor and Zea mays. Transcripts from these species were downloaded with the script ens_sequences.pl from https://github.com/Ensembl/plant-scripts.

2.3 Sequence clustering

All cDNA and TE sequences were clustered with GET_HOMOLOGUES-EST version 10042020 (24). This software runs BLASTN and the MCL algorithm, and computes coverage by combining local alignments. The sequence identity cutoff was 95% and the alignment coverage 75%. Global variables in script get_homologues-est.pl lines L36-7 were set to $MAXSEQLENGTH = 55000 and $MINSEQLENGTH = 90. Sequences were clustered with command get_homologues-est.pl -d repeats -m cluster -M -t 0 -i 100 . Check https://github.com/Ensembl/plant_tools/tree/master/bench/repeat_libs for more details.
2.4 Positive control Pfam domains

A list of 22 Pfam domains found in transposable elements was curated (25), available at https://github.com/Ensembl/plant_tools/blob/master/bench/repeat_libs/control_pos.list

2.5 Negative control: Pfam domains of disease resistance (R) genes

For the identification and curation of Pfam domains encoded by R genes, the following steps were performed. First, a set of 153 protein sequences encoded by reference R genes (i.e. cloned and/or with robust evidence) was retrieved from http://www.prgdb.org/prgdb (26). Second, the program hmmscan from HMMER v3.2.1 (27) was used for initial Pfam domain identification (v32, default settings), yielding a total of 60 Pfam hidden Markov models. The observed order and combinations of Pfam domains were retrieved. Third, the proteins of 6 plant species (A. thaliana, B. distachyon, G. max, H. annuus, H. vulgare and Triticum aestivum) containing at least one of the 60 pfam previously identified were retrieved from https://plants.ensembl.org/biomart/martview (28). These proteins were subsequently filtered, retaining only those with the ordered combinations of Pfam domains observed in the reference R proteins, and were considered as potential R proteins (428 in A. thaliana, 577 in B. distachyon, 1,008 in G. max, 849 in H. annuus, 838 in H. vulgare, and 3,607 in T. aestivum). From the initial set of Pfam domains, only 43 were consistently identified in our final panel of potential R gene’s encoded proteins, and used as negative control. Note that one of them (PF02892, zf-BED) is often found in transposases (25). The list is available at https://github.com/Ensembl/plant_tools/blob/master/bench/repeat_libs/control_neg_NLR.list.

2.6 De novo annotation of nucleotide-binding and leucine-rich repeat immune receptor (NLR) genes

The NLR-annotator software was used for de novo annotation of NLR genes, which are the most abundant R genes characterized to date, in whole genome sequences (29). Briefly, the set of 20 plant genomes were dissected into fragments of 20 kb length, with 5 kb overlaps, using the ChopSequence.jar routine. The cut sequences were then scanned to find
NLR-associated sequence motifs using \textit{NLR-Parser.jar}. Finally, \textit{NLR-Annotator.jar} was used to integrate the annotated motifs and retrieve the actual NLR loci in BED format. In order to compute intersections with repeats only NLR loci with overlap > 50bp were considered. Moreover, to account for the fact that the tested masking strategies cover different fractions of the genome, odd ratios of NLR masking were computed with \textbf{Equation 1}:

\[
\text{odds ratio} = \frac{\text{masked NLR space / masked genome space}}{\text{NLR space / genome space}}
\]

\subsection*{2.7 Masking and annotation of repeats in plant genomes}

RepeatMasker version v4.0.5 and a fork of Repeat Detector (Red) v2.0 adapted for Ensembl, available at \url{https://github.com/EnsemblGenomes/Red}, were used to call repeats in plant genomes with libraries REdat v9.3 and nrTEplanst v0.3. Red was called from script \url{https://github.com/Ensembl/plant-scripts/blob/master/repeats/Red2Ensembl.py}, which can run several sequences in parallel and feed the results into a Ensembl core database (30). In addition, minimap2 version 2.17-r974-dirty (31) was used to annotate repeats called by Red with sequences from nrTEplants as follows: \texttt{minimap2 -K100M --score-N 0 -x map-ont nrTEplants}. Minimap2 is called from script \url{https://github.com/Ensembl/plant-scripts/blob/master/repeats/AnnotRedRepeats.py}, which parses its output to annotate the repeats. By default only repeats with length > 90 bp are processed. TE classification terms are parsed from the FASTA header of the library after a hash char (#, i.e. ‘RLG_43695:mipsREdat_9.3p_ALL#LTR/Gypsy’). Elapsed runtime and RAM consumption was obtained with \texttt{command time -v}.

Genomic intersections among repeated sequences called by Red and RM and genomic features (ie protein-coding genes, exons, proximal downstream/upstream 500bp windows, NLR loci) were computed with Bedtools (v2.26.0) (32) using \texttt{bedtools intersect -a bed/genes.bed -b repeat.bed -sorted -wo}. To avoid redundancy, exons were extracted from Ensembl canonical transcripts (see \url{http://plants.ensembl.org/info/website/glossary.html}). Neighbor genes were also subtracted from downstream/upstream windows.
2.8 K-mer analysis of repeats in downstream/upstream windows

Repeats overlapping proximal downstream/upstream 500bp windows were extracted using bedtools intersect analysis and the sequences cut with bedtools getfasta. Canonical K-mers with K=[16,21,31] were counted with Jellyfish v2.3.0 (33) with commands jellyfish-linux count -C -m K -s 2G -t 4 and jellyfish-linux dump -L 20.

2.9 Enrichment of Pfam domains

Enrichment was computed with R function fisher.test (34) and Pfam domains (25) retrieved with recipe B4 of https://github.com/Ensembl/plant-scripts (35). Pfam domain counts for the complete proteome were used as expected frequencies. Only genes with an overlap > 50bp and domains with False Discovery Rate adjust values (p<0.05) were considered.

2.10 Control sets of annotated repeated sequences

Repeated sequences annotated by sequencing consortia of olive tree (36), *Rosa chinensis* (37) and sunflower (38) were downloaded and formatted from https://genomaolivar.dipujaen.es/db/downloads.php, https://iris.angers.inra.fr/obh/downloads and https://sunflowergenome.org/annotations-data.
3. Results and discussion

3.1 Construction and benchmark of a non-redundant library of repeats: nrTEplants

A set of plant TE libraries and annotated repeats from selected species, listed on Table 1, plus cDNA sequence sets from the best annotated plant species in Ensembl, were curated and their TE classification terms uniformized. Then, they were merged and clustered (95% identity, 75% coverage of shortest sequence). From the resulting 994,349 clusters, a total 174,426 clusters contained TE sequences and were 6-frame translated and assigned Pfam domains. Of these, a subset of 8,910 mixed clusters comprised both TE and cDNA sequences and required further processing (see example on Figure S1). After empirical assessment, we decided to take only clusters i) containing sequences from at least 6 different TE libraries (6 replicates), which eventually left out RosaTE repeats; and ii) with a fraction of sequences marked as ‘Potential Host Gene’ in RepetDB < 0.00. The resulting nrTElibrary contains 171,104 sequences (see Tables S1 and S3).

In order to benchmark the newly constructed library we compiled a positive control, comprising 22 Pfam domains found in transposable elements, and a negative control, a list of 43 Pfam domains found in disease resistance NLR genes. With these controls, we estimated the sensitivity (0.909) and specificity (0.947). The nrTEplants library can be obtained at https://github.com/Ensembl/plant-scripts/releases/tag/v0.3.

3.2 Masking repeats within plant genomes

A set of 20 plant genomes were selected from Ensembl (22) to benchmark repeat calling strategies. These are listed on Table 2 next to the genomic fraction of repeats reported in the literature and their GC content. All these genome sequences were annotated with RepeatMasker (7), nrTEplants and REdat (20), a repeat library used in Ensembl Plants. In addition, the fraction of repeats called by Red, based on K-mer enrichment, is also shown. Note that Red automatically selected k values from 13 to 16.
On Figure 1 the resulting percentages of repeated sequences are plotted next to the values reported in the literature. The median difference between REdat repeated fraction and the literature reports is 26.5%. This number is 9.8% for nrTEplants and 4.3% for Red. These results suggest that Red can successfully mask any genomes without previous knowledge of the repetitive sequence repertoire of a species. Moreover, repeats called by Red generally overlap sequences masked with REdat (66.6%) and nrTEplants (73.8%).

Table 3 summarizes the number of repeats, and their length, called by all tested strategies. We observe that Red calls more (a median of 845 per Mbp, compared to 391 for nrTEplants and 221 for REdat) but shorter repeats (median 143, compared to 284 and 217, respectively). Note that the numbers below are shown in the same REdat, nrTEplants, REdat order for clarity.

Figure 2 summarizes how called repeats overlap with genes, exons and 500pb windows upstream and downstream genes. It can be seen that Red overlaps more with genes (median 17.8%, compared to 13.7% and 5%, respectively), but when exons are considered these numbers change to 9%, 15% and 4%, respectively. The figure also shows that Red masks more proximal upstream and downstream space, which will likely have a positive impact on k-mer counting strategies for promoter analysis (39). The analysis on Table S4 shows that Red identifies four times more K-mers with 20+ copies in this regulatory space, which agrees with recent work that found that unidentified TEs are over-represented in specific regulatory networks (40).

In order to check whether the compared approaches masked preferentially genes from certain families, a Pfam enrichment analysis was carried out and summarized on Figure 3. It can be seen that Red repeats show the least enrichment. Furthermore, Red enriched Pfam domains are different across genomes with the exception of four domains found enriched in three genomes (reverse transcriptase-like, TIR, NB-ARC, and integrase core domains). In contrast, a few Pfam domains were enriched in 10+ genomes in genes overlapping repeats annotated with RM. The results on Table S5 show that nrTEplants performs better than REdat in this respect, with 87 domains compared to 153 (Red had 39 in total).
As gene annotation is frequently performed after repeat masking, we reasoned this could affect the Pfam enrichment analyses. Therefore we carried out a complementary analysis where NLR genes were called de novo on the genomic sequences instead of using the Ensembl gene annotation. The results, summarized on Table S5, confirm that Red tends to mask less NLR genes than expected at genomic scale, with only one species (Trifolium pratense) with an odds ratio > 1. In contrast, we obtained odd ratios greater than 1 for several species with REdat (n=7) and nrTEplants (n=12).

Overall, we observe that Red consistently produces repeated fractions similar to the expected values from the literature. The library nrTEplants also shows good performance in most species, but fails to recover the expected repeat fraction in cases such as melon or sunflower. Red also performs better than nrTEplants in terms of exon and upstream/downstream overlap. Furthermore, Red does not seem to systematically mask certain gene families. The lower values observed for REdat are a consequence of it underpredicting repeats, showing less sensitivity than the other approaches.

3.3 Annotating Red-masked repeats within genomes with nrTEplants and minimap2

In the previous analyses we showed that Red-base masking is an effective way of calling repeats in plant genomes. Moreover, we observed that nrTEplants behaves better than REdat in most cases. Therefore, we wanted to check whether repeats called with Red can be annotated and classified. For that, we aligned the repeat sequences against the non-redundant nrTElibrary with minimap2. The results are plotted on Figure 4, where it can be seen that, in most species, more than half of the repeat space can be annotated (median 65.9%). As our library contains only transposable elements, we expected a fraction of unmapped space containing simple repeats or satellite DNA. However, as also observed on Figure 1, in a few species, only a small repeat fraction could be classified. We reasoned this was due to repeat consensus not represented in the library. This was confirmed in a separate experiment where olive and R. chinensis repeated sequences obtained from their
authors were mapped to Red repeats, as seen in Figure 4 in a grey dashed line. A positive control was also carried out with sunflower repeated sequences, in order to confirm that no valuable repeats had been lost during the construction of nrTEplants. These results were obtained with the default map-ont settings of minimap2. We also tried map-pab and asm20 settings, but obtained similar results. Red clover (Trifolium pratense) was re-analyzed replacing minimap2 with BLAST algorithms megablast, dc-megablast, blastn and rmblastn (41). Compared to the mapped fraction produced by minimap2 (0.4%), a maximum value of 6.1% was obtained with blastn. This modest gain in sensitivity required 1,412 minutes. The algorithm rmblastn, used by RM, yielded a mapped fraction of 0.7%. We concluded that the alternatives to minimap2 offered little gain at the cost of spiralling computing time.

Figure 5 shows the runtime and RAM required by the two-step protocol presented in this paper, measured on a CentOS7.9 computer using 4 cores of a Xeon E5-2620 v4 (2.10GHz) CPU. Panels A and B correspond to the first step, Red masking. It can be seen that all genomes tested take less than 40 min to run, with the exception of tetraploid Triticum turgidum, which took 71 min. The memory consumption was below 20GB in all cases, but climbed to 22.7GB and 29.9GB in A. tauschii and T. turgidum. Panel C illustrates the runtime of the second step, the mapping of nrTEplants. It can be seen that all plants required less than 27 min, except A. tauschii and T. turgidum, that took 3h and 1h respectively. The memory consumed by minimap2 was 3.8-4.0GB in all cases.
Conclusions

The hybrid, two-step methodology presented in this paper was tested on 20 angiosperms with genome sizes from 0.12 to 10.46 Gbp. Compared to RM, Red calls more and shorter repeats, and the obtained repeated genome fractions agree closely with those reported in the literature. Moreover, we find that Red k-mer masking does not have a preference for particular protein-coding families, in contrast to repeats annotated with RM using REDat and nrTEplants. Overall, more than half of Red masked sequences can be classified with nrTEplants, except in species with repeats not present in that library. Our protocol takes less than 2h to run and up to 30GB of RAM, and can use nrTEplants or any repeat library in FASTA format.
Acknowledgements

We are grateful to Hani Girgis for his help with the Red source code and Doreen Ware for comments on drafts of this manuscript. We thank the Gramene team for continuous support and cooperation, as well as members of the Ensembl team for developing and maintaining the front-end and back-end software and infrastructure that underpins Ensembl Plants.
Funding

The UK Biosciences and Biotechnology Research Council [BB/P016855/1, BB/P027849/1 and Ensembl-4-Breeders workshop support], the National Sciences Foundation [1127112], the ELIXIR implementation studies FONDUE and 'Apple as a Model for Genomic Information Exchange' and the European Molecular Biology Laboratory. Funding for open access charge: UK Biosciences and Biotechnology Research Council [BB/P016855/1]. Conflict of interest statement. Paul Flicek is a member of the Scientific Advisory Boards of Fabric Genomics, Inc. and Eagle Genomics, Ltd.
Figure captions

Figure 1. Fraction of repeated sequences in plant genomes. Twenty genomes from release 49 (November 2020) of Ensembl Plants were annotated with RepeatMasker (7) and libraries REdat (20) and nrTEplants. The resulting percentage of repeated sequences is plotted next to the values reported in the literature for those genomes and the fraction of repeats provided by Repeat Detector (Red), based on K-mer enrichment (15). Species are sorted from small to large genome size.
Figure 2. Fraction of exons, genes and 500bp up/downstream regions overlapping annotated repeats in plant genomes. Twenty genomes from release 49 (November 2020) of Ensembl Plants were annotated with Red (15) or RepeatMasker (7) with libraries REDat (20) and nrTEplants. The median genome space occupied by genes, exons and proximal upstream/downstream 500bp windows in these species are 126.7Mbp, 62.9Mbp and 37.7Mbp, respectively. This plot was generated with R package vioplot (42).
Figure 3. Enriched Pfam domains of protein-coding genes overlapping repeats. Twenty genomes from release 49 (November 2020) of Ensembl Plants were annotated with Repeat Detector (Red) (15) and RepeatMasker (7) with libraries REDat (20) and nrTEplants.
Figure 4. Fraction of Red repeats mapped to nrTEplants sequences. Twenty genomes from release 49 (November 2020) of Ensembl Plants were annotated with Repeat Detector (15). The resulting repeats were subsequently mapped to library nrTEplants with minimap2 (31), producing the genome fractions shown. Repeats from three species (R. chinensis, O. europaea and H. annuus) were also mapped to annotated repeats provided by the respective sequencing consortia as a control. Species are sorted from small to large genome size.
Figure 5. Runtime and memory requirements of a two-step repeat annotation protocol based on the Repeat Detector (15), minimap2 (31) and the nrTEplants library. The protocol was tested on twenty genomes from release 49 (November 2020) of Ensembl Plants. Similar values were measured on a Ubuntu box with four Core i5-6600 (3.30GHz) CPU cores.
Supplementary Figures

Figure S1. Cluster with two Arabidopsis thaliana cDNA sequences (AT4G16920.2 and AT4G16950.1) and transposable element TEdeno-B-R2288-Map4 from library repetDB. These sequences contain Pfam domain NB-ARC (PF00931), which is part of NLR defense proteins. Figure generated with Bioedit (43) from cluster 269_AT4G16920.2.
Tables

Table 1. Collections of plant repeated sequences used as components of nrTEplants.

Dataset	Description / URL	Last updated	Total sequences	Median length (bp)
TREP	TEs from *Triticeae* and various other species. http://botserv2.uzh.ch/kelldata/trep-db	2019	4162	4234
SINEbase	Consensus sequences of SINE families (44). http://sines.eimb.ru	2020	60	183
REdat	Repeat sequences from several sources and the species in PGSB PlantsDB (20). https://pgsb.helmholtz-muenchen.de/plant/recat	2013	61730	7504
RepetDB	Repeats detected and classified by TEdenovo and used by TEannot (9). http://urgi.versailles.inra.fr/repetdb	2019	33416	3567
EDTArice	Extensive *de-novo* TE Annotator (45). https://github.com/oushujun/EDTA	2019	2431	984
EDTAmaize	Extensive *de-novo* TE Annotator (45) https://github.com/oushujun/EDTA	2019	1362	3308
SoyBaseTE	Comprehensive database of soybean TEs (46). https://www.soybase.org/soytedb	2010	38664	1716
TAIR10TE	*Arabidopsis thaliana* TEs https://www.arabidopsis.org	2019	31189	305
SunflowerTE	(47) https://www.sunflowergenome.org	2016	73627	4709
SUNREP	The repetitive component of the sunflower genome (48) pgagl.agr.unipi.it/sequence-repository	2013	47441	616
MelonTE	Personal communication (49)	2020	1560	3981
RosaTE	(37) https://iris.angers.inra.fr/obh/downloads	2017	355304	226
Table 2. Plant genomes from release 49 (September 2020) of Ensembl Plants (22) used in this work and their reported repeated fractions in the literature.

Species	%GC	Assembled genome size (Mbp)	Reported % repeated fraction (source)
Arabidopsis thaliana	36.1	119.7	19.0 (50)
Arabidopsis halleri	36.0	196.2	32.7 (50)
Prunus dulcis	37.6	227.5	37.6 (51)
Brachypodium distachyon	46.4	271.2	21.4 (52)
Brassica rapa	35.3	283.8	32.3 (53)
Trifolium pratense	32.4	304.8	41.8 (54)
Arabis alpina	36.8	308.0	47.9 (55)
Cucumis melo	33.5	357.9	44.0 (56)
Citrullus lanatus	33.6	365.5	45.2 (57)
Oryza sativa	43.6	375.0	35 (58)
Setaria viridis	46.2	395.7	46 (59)
Vitis vinifera	34.5	486.3	41.4 (60)
Rosa chinensis	38.8	515.6	67.9 (61)
Camelina sativa	36.6	641.4	28 (62)
Malus domestica	38.0	702.9	59.5 (63)
Olea europaea	35.4	1140.9	43 (64)
Zea mays	46.9	2135.1	85 (65)
Helianthus annuus	38.5	3027.8	74.7 (38)
Aegilops tauschii	46.3	4224.9	85.9 (66)
Triticum turgidum	46.0	10463.1	82.2 (67)
Table 3. Summary of repeated sequences annotated with Red (15) and RepeatMasker (7) with libraries nrTEplants and REdat (20). Repeats per Mbp (r/Mbp) and median length (len) are shown.

Species	Red	nrTEplants	REdat			
	r/Mbp	len	r/Mbp	len	r/Mbp	len
Arabidopsis thaliana	357	404	184	1173	201	963
Arabidopsis halleri	1152	124	417	308	295	209
Prunus dulcis	1445	123	402	267	241	181
Brachypodium distachyon	906	169	474	415	318	222
Brassica rapa	554	121	274	193	249	183
Trifolium pratense	1227	110	564	259	244	163
Arabis alpina	1106	122	417	281	313	223
Cucumis melo	886	112	416	190	145	183
Citrullus lanatus	853	118	416	329	145	213
Oryza sativa	788	198	118	388	158	352
Setaria viridis	756	148	301	478	180	201
Vitis vinifera	790	139	255	254	329	238
Rosa chinensis	742	147	428	255	344	239
Camelina sativa	837	109	464	287	162	148
Malus domestica	900	150	367	268	182	207
Olea europaea	626	165	294	271	266	274
Zea mays	911	206	457	153	511	147
Helianthus annuus	410	312	183	1270	171	1456
Aegilops tauschii	872	132	381	395	143	247
Triticum turgidum	397	211	171	696	174	669
Supplementary Tables

Table S1. Contribution of individual datasets to the nrTEplants library of repeats (v0.3).

Dataset	# of sequences
SunflowerTE	58071
REdat	39509
repetDB	26006
SoyBaseTE	21766
TAIR10TE	21056
EDTArice	1844
MelonTE	1171
EDTAmaize	805
TREP	789
SINEbase	44
SUNREPI	43
Table S2. Enriched Pfam domains of protein-coding genes overlapping repeats called with Red (15) and RepeatMasker (7) with libraries nrTEplants and REdat (20). Only domains found enriched in at least three species are shown. Domains in bold are shared by all repeat-calling strategies and correspond to Integrase core domains (PF00665), NB-ARC (PF00931), Reverse transcriptase-like (PF13456) and TIR (PF01582).

REdat	nrTEplants	Red			
Pfam domain	count	Pfam domain	count	Pfam domain	count
PF00069	13	PF00931	11	PF13456	3
PF07714	10	PF07727	6	PF01582	3
PF00005	10	PF07714	6	PF00931	3
PF01095	9	PF01582	6	PF00665	3
PF13947	8	PF00078	6		
PF07727	8	PF00069	6		
PF00931	8	PF18052	5		
PF13855	7	PF14223	5		
PF01453	7	PF07725	5		
PF00847	7	PF00665	5		
PF00665	7	PF17921	4		
PF00078	7	PF13976	4		
PF14510	6	PF13855	4		
PF14432	6	PF03732	4		
PF14223	6	PF00560	4		
PF08370	6	PF14111	3		
PF08276	6	PF13947	3		
PF01582	6	PF13456	3		
PF00954	6	PF08276	3		
PF00067	6	PF08263	3		
PF17921	5	PF01453	3		
PF17919	5	PF00954	3		
PF17917	5	PF00122	3		
PF13976	5	PF00005	3		
PF11721	5				
PF08387	5				
PF08284	5				
PF08263	5				
PF07725	5				
PF07723	5				
PF03732	5				
---------	---				
PF00560	5				
PF00082	5				
PF19055	4				
PF17766	4				
PF08246	4				
PF02365	4				
PF01061	4				
PF00664	4				
PF00201	4				
PF00112	4				
PF00098	4				
PF00012	4				
PF14380	3				
PF13456	3				
PF12819	3				
PF08372	3				
PF08031	3				
PF05922	3				
PF00450	3				
PF00305	3				
PF00249	3				
PF00223	3				
Table S3. Summary of classified repeats in the nrTEplants library.

Superfamily/family	count	
LTR/Gypsy	45394	
LTR/Copia	26009	
LTR	24532	
TIR	18590	
RC/Helitron	9080	
TRIM	6573	
Helitron	4384	
MobileElement	4020	
DNA/MuDR	3900	
TIR/Tc1-Mariner	3404	
LINE	3342	
Unclassified	3061	
TIR/Mutator	2287	
DNA	1810	
TIR/PIF-Harbinge	1367	
DNA/En-Spm	1088	
LINE/L1	1076	
Mutator	820	
SINE	785	
DNA/HAT	751	
DIRS	707	
MITE	663	
rRNA	565	
DNA/Harbinger	516	
Other	416	
DNA/Mite	397	
Retroelement	389	
DNA/hAT	300	
TIR/hAT	299	
LARD	299	
Sequence Type	Count	
--------------------------	-------	
DNAnona/HLitin	260	
DNAnona/MULE	251	
DNA/Pogo	245	
DNA/TcMar	233	
DNAnona/hAT	202	
Other/Simple	184	
TIR/PIF-Harbinger	176	
nonLTR	172	
DNA/Stowaway	161	
RathE1_cons	156	
Satellite	155	
non	130	
hAT	129	
DNA/Mariner	126	
DNA/Mutator	122	
MITE/Tourist	112	
TIR/CACTA	105	
DNAnona/MULEtir	92	
RathE3_cons	87	
DNA/Tc1	86	
TIR/Mariner	81	
DNAnona/CACTA	74	
DNAauto/MULE	72	
LINE?	68	
TIR/Harbinger	62	
RathE2_cons	50	
Helitron/Helitron	45	
non-LTR(SINE)	43	
DNA/CACTA	37	
DNA/Tc1-Mariner	35	
MITE/Stow	35	
DNA/Tourist	32	
Non-LTR(SINE)/I	32	
------------------------	----	
Maverick	31	
DNAnona/Tourist	29	
LTR/TRIM	26	
DNAnona/PILE	26	
TIR/EnSpm/CACTA	25	
LARD	TRIM	24
DNAauto/hAT	22	
DNAauto/Helitron	17	
DNAauto/CACTA	17	
LINE/Ukn	15	
DNAauto/MLE	14	
DNAnona/POLE	14	
DNAauto/POLE	12	
SINE	TRIM	10
DNAnona/CACTG	10f	
non-LTR(SINE)/Jokey	10	
LTR/TIR	10	
DNAnona/MLE	8	
DIRS	TIR	8
DNAauto/PILE	8	
non-LTR(SINE)/Pan	8	
DNA/hAT-Ac	8	
TIR/PONG	8	
non-LTR(SINE)/L1	8	
Helitron	LARD	7
LTR/Echo	5	
PLE	5	
LTR/Halcyon	5	
Other/Centromeric	4	
Sequence Type	Count	
----------------------------------	-------	
Helitron	TRIM	3
LTR/Solo	3	
DNA/Helitron	3	
LTR	DIRS	3
DNAAnona	3	
Crypton	2	
SINE	LARD	2
Evirus/ERTBV	2	
TIR/PiggyBac	2	
TIR	Maverick	2
DNAauto/CACTG	2	
subtelomere/4-12-1	1	
Satellite/rice	1	
TIR/P	1	
Evirus/ERTBV-A	1	
Centro/tandem	1	
non-LTR(SINE)/R2	1	
DNAtransposon	1	
non-LTR(SINE)/Chronos	1	
knob/TR-1	1	
Table S4. Median number of repeat K-mers with 20+ copies overlapping 500bp up/downstream regions in plant genomes. Values were computed from twenty genomes from release 49 (November 2020) of Ensembl Plants annotated with Red (15) or RepeatMasker (7) with libraries REdat (20) and nrTEplants. Total k-mers are also shown.

K	REdat (n>20)	nrTEplants (n>20)	Red (n>20)	REdat (total)	nrTEplants (total)	Red (total)
16	2101	3806.5	14730	1212499.5	3230821	6125298
21	1307.5	2285.5	8057	1178632.5	3150425.5	5925111.5
31	606.5	984	4256.5	1112352.5	2993877.5	5533979
Table S5. Odd ratios of NLR masking for genes overlapping > 50bp of masked sequences. Values were computed from twenty genomes from release 49 (November 2020) of Ensembl Plants annotated with Red (15) or RepeatMasker (7) with libraries REdat (20) and nrTEplants.

Species	NLR genes	NLR space (bp)	REdat	nrTEplants	Red
Arabidopsis thaliana	69	201660	0.77	2.6	0.71
Arabidopsis halleri	209	635687	0.56	2.41	0.62
Prunus dulcis	387	1354547	2.52	2.05	0.97
Brachypodium distachyon	344	1249602	0.46	0.59	0.46
Brassica rapa	219	729119	0.89	2.22	0.66
Trifolium pratense	553	1781566	2.65	4.11	1.06
Arabis alpina	364	1201405	0.51	1.46	0.44
Cucumis melo	89	294239	1.59	1.46	0.37
Citrullus lanatus	43	164993	1.33	2.44	0.22
Oryza sativa	45	169051	0.22	0.44	0.22
Setaria viridis	453	1682607	0.35	0.47	0.56
Vitis vinifera	739	2723777	1.54	1.36	0.98
Rosa chinensis	963	3347977	1.42	2.97	0.8
Camelina sativa	573	1808571	0.39	2.3	0.53
Malus domestica	637	2535932	1.5	1.63	0.89
Olea europaea	402	1095646	0.42	0.73	0.21
Zea mays	158	487237	0	0	0.43
Helianthus annuus	604	2055877	0.29	0.88	0.59
Aegilops tauschii	916	3144217	0	0.14	0.14
Triticum turgidum	2459	8351371	0	0.13	0.13
1. Novák P, Guignard MS, Neumann P, Kelly LJ, Mlinarec J, Koblížková A, et al. Repeat-sequence turnover shifts fundamentally in species with large genomes. Nat Plants. 2020 Oct 19;6(11):1325–9.

2. McClintock B. The origin and behavior of mutable loci in maize. Proc Natl Acad Sci USA. 1950 Jun;36(6):344–55.

3. Studer A, Zhao Q, Ross-Ibarra J, Doebley J. Identification of a functional transposon insertion in the maize domestication gene tb1. Nat Genet. 2011 Sep 25;43(11):1160–3.

4. Thiem M, Lanciano S, Balzergue S, Daccord N, Mirouze M, Bucher E. Inhibition of RNA polymerase II allows controlled mobilisation of retrotransposons for plant breeding. Genome Biol. 2017 Jul 7;18(1):134.

5. Gordon SP, Contreras-Moreira B, Woods DP, Des Marais DL, Burgess D, Shu S, et al. Extensive gene content variation in the Brachypodium distachyon pan-genome correlates with population structure. Nat Commun. 2017 Dec 19;8(1):2184.

6. Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, et al. A unified classification system for eukaryotic transposable elements. Nat Rev Genet. 2007 Dec;8(12):973–82.

7. Smit AFA, Hubler R, Green P. RepeatMasker Open-4.0. 2015.

8. Bao W, Kojima KK, Kohany O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob DNA. 2015 Jun 2;6:11.

9. Amselem J, Cornut G, Choisne N, Alaux M, Alfama-Depauw F, Jamilloux V, et al. RepetDB: a unified resource for transposable element references. Mob DNA. 2019 Jan 29;10:6.

10. Lerat E. Identifying repeats and transposable elements in sequenced genomes: how to find your way through the dense forest of programs. Heredity. 2010 Jun;104(6):520–33.

11. Bayer PE, Edwards D, Batley J. Bias in resistance gene prediction due to repeat masking. Nat Plants. 2018 Oct 1;4(10):762–5.

12. Wierzbicki F, Schwarz F, Cannalonga O, Kofler R. Generating high quality assemblies for genomic analysis of transposable elements. BioRxiv. 2020 Mar 28;

13. Van Bel M, Bucchini F, Vandepoele K. Gene space completeness in complex plant genomes. Curr Opin Plant Biol. 2019 Feb 21;48:9–17.

14. Hickey G, Heller D, Monlong J, Sibbesen JA, Sirén J, Eizenga J, et al. Genotyping structural variants in pangenome graphs using the vg toolkit. Genome Biol. 2020 Feb 12;21(1):35.

15. Girgis HZ. Red: an intelligent, rapid, accurate tool for detecting repeats de-novo on the genomic scale. BMC Bioinformatics. 2015 Jul 24;16:227.

16. Kurtz S, Narechania A, Stein JC, Ware D. A new method to compute K-mer frequencies and its application to annotate large repetitive plant genomes. BMC Genomics. 2008 Oct 31;9:517.

17. Beier S, Ulpinnis C, Schwalbe M, Münch T, Hoffie R, Koeppel I, et al. Kmasker plants -
a tool for assessing complex sequence space in plant species. Plant J. 2020 Jan 11;102(3):631–42.

18. da Cruz MHP, Domingues DS, Saito PTM, Paschoal AR, Bugatti PH. TERL: classification of transposable elements by convolutional neural networks. Brief Bioinformatics. 2020 Sep 8;

19. Harris RS. Improved pairwise alignment of genomic DNA [Doctoral dissertation]. The Pennsylvania State University; 2007.

20. Nussbaumer T, Martis MM, Roessner SK, Pfeifer M, Bader KC, Sharma S, et al. MIPS PlantsDB: a database framework for comparative plant genome research. Nucleic Acids Res. 2013 Jan;41(Database issue):D1144-51.

21. Wilkinson MD, Dumontier M, Aalbersberg IJJ, Appleton G, Axton M, Baak A, et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data. 2016 Mar 15;3:160018.

22. Howe KL, Contreras-Moreira B, De Silva N, Maslen G, Akanni W, Allen J, et al. Ensembl Genomes 2020-enabling non-vertebrate genomic research. Nucleic Acids Res. 2020 Jan 8;48(D1):D689–95.

23. UniProt Consortium. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2019 Jan 8;47(D1):D506–15.

24. Contreras-Moreira B, Cantalapiedra CP, García-Pereira MJ, Gordon SP, Vogel JP, Igartua E, et al. Analysis of Plant Pan-Genomes and Transcriptomes with GET_HOMOLOGUES-EST, a Clustering Solution for Sequences of the Same Species. Front Plant Sci. 2017 Feb 14;8:184.

25. Mistry J, Chugurskay S, Williams L, Qureshi M, Salazar GA, Sonnhammer ELL, et al. Pfam: The protein families database in 2021. Nucleic Acids Res. 2021 Jan 8;49(D1):D412–9.

26. Osuna-Cruz CM, Paytuvi-Gallart A, Di Donato A, Sundesha V, Andolfo G, Aiese Cigliano R, et al. PRGdb 3.0: a comprehensive platform for prediction and analysis of plant disease resistance genes. Nucleic Acids Res. 2018 Jan 4;46(D1):D1197–201.

27. Eddy SR. Profile hidden Markov models. Bioinformatics. 1998;14(9):755–63.

28. Kinsella RJ, Kähäri A, Haider S, Zamora J, Proctor G, Spudich G, et al. Ensembl BioMarts: a hub for data retrieval across taxonomic space. Database (Oxford). 2011 Jul 23;2011:bar030.

29. Steuernagel B, Witek K, Krattinger SG, Ramirez-Gonzalez RH, Schoonbeek H-J, Yu G, et al. The NLR-Annotator Tool Enables Annotation of the Intracellular Immune Receptor Repertoire. Plant Physiol. 2020 Mar 17;183(2):468–82.

30. Stabenau A, McVicker G, Melsopp C, Proctor G, Clamp M, Birney E. The Ensembl core software libraries. Genome Res. 2004 May;14(5):929–33.

31. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018 Sep 15;34(18):3094–100.

32. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010 Mar 15;26(6):841–2.

33. Marçais G, Kingsford C. A fast, lock-free approach for efficient parallel counting of
occurrences of k-mers. Bioinformatics. 2011 Mar 15;27(6):764–70.

34. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2020.

35. Contreras-Moreira B, Naamati G, Rosello M, Allen JE, Hunt SE, Muffato M, et al. Ensembl/plant-scripts. GitHub; 2021.

36. Jiménez-Ruiz J, Ramírez-Tejero JA, Fernández-Pozo N, Leyva-Pérez M de la O, Yan H, Rosa R de la, et al. Transposon activation is a major driver in the genome evolution of cultivated olive trees (Olea europaea L.). Plant Genome. 2020 Mar 27;13(1):e20010.

37. Hibrand Saint-Oyant L, Ruttink T, Hamama L, Kirov I, Lakhwani D, Zhou NN, et al. A high-quality genome sequence of Rosa chinensis to elucidate ornamental traits. Nat Plants. 2018 Jun 11;4(7):473–84.

38. Badouin H, Gouzy J, Grassa CJ, Murat F, Staton SE, Cottret L, et al. The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution. Nature. 2017 Jun 1;546(7656):148–52.

39. Ksouri N, Castro-Mondragón JA, Montardit-Tardá F, van Helden J, Contreras-Moreira B, Gogorcena Y. Tuning promoter boundaries improves regulatory motif discovery in nonmodel plants: the peach example. PLANT PHYSIOLOGY. 2021 Jan 13;

40. Baud A, Wan M, Nouaud D, Anxolabehere D, Quesneville H. Traces of past transposable element presence in Brassicaceae genome dark matter. BioRxiv. 2019 Feb 18;

41. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–402.

42. Adler D, Kelly ST. vioplot: violin plot. 2020;

43. Hall TA. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95–8.

44. Vassetzky NS, Kramerov DA. SINEBase: a database and tool for SINE analysis. Nucleic Acids Res. 2013 Jan;41(Database issue):D83-9.

45. Ou S, Su W, Liao Y, Chougule K, Agda JRA, Hellinga AJ, et al. Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. Genome Biol. 2019 Dec 16;20(1):275.

46. Du J, Grant D, Tian Z, Nelson RT, Zhu L, Shoemaker RC, et al. SoyTEdb: a comprehensive database of transposable elements in the soybean genome. BMC Genomics. 2010 Feb 17;11:113.

47. Staton SE, Bakken BH, Blackman BK, Chapman MA, Kane NC, Tang S, et al. The sunflower (Helianthus annuus L.) genome reflects a recent history of biased accumulation of transposable elements. Plant J. 2012 Oct;72(1):142–53.

48. Natali L, Cossu RM, Barghini E, Giordani T, Buti M, Mascagni F, et al. The repetitive component of the sunflower genome as shown by different procedures for assembling next generation sequencing reads. BMC Genomics. 2013 Oct 6;14:686.

49. Castanera R, Ruggieri V, Pujol M, Garcia-Mas J, Casacuberta JM. An Improved Melon
Reference Genome With Single-Molecule Sequencing Uncovers a Recent Burst of Transposable Elements With Potential Impact on Genes. Front Plant Sci. 2019;10:1815.

50. Legrand S, Caron T, Maumus F, Schwartzman S, Quadrana L, Durand E, et al. Differential retention of transposable element-derived sequences in outcrossing Arabidopsis genomes. Mob DNA. 2019 Jul 17;10:30.

51. Alioto T, Alexiou KG, Bardil A, Barteri F, Castanera R, Cruz F, et al. Transposons played a major role in the diversification between the closely related almond and peach genomes: results from the almond genome sequence. Plant J. 2020;101(2):455–72.

52. International Brachypodium Initiative. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature. 2010 Feb 11;463(7282):763–8.

53. Zhang L, Cai X, Wu J, Liu M, Grob S, Cheng F, et al. Improved Brassica rapa reference genome by single-molecule sequencing and chromosome conformation capture technologies. Hortic Res. 2018 Aug 15;5:50.

54. De Vega JJ, Ayling S, Hegarty M, Kudma D, Goicoechea JL, Ergon A, et al. Red clover (Trifolium pratense L.) draft genome provides a platform for trait improvement. Sci Rep. 2015 Nov 30;5:17394.

55. Willing E-M, Rawat V, Mandáková T, Maumus F, James GV, Nordström KJV, et al. Genome expansion of Arabis alpina linked with retrotransposition and reduced symmetric DNA methylation. Nat Plants. 2015 Feb 2;1:14023.

56. Ruggieri V, Alexiou KG, Morata J, Argyris J, Pujol M, Yano R, et al. An improved assembly and annotation of the melon (Cucumis melo L.) reference genome. Sci Rep. 2018 May 24;8(1):8088.

57. Guo S, Zhang J, Sun H, Salse J, Lucas WJ, Zhang H, et al. The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet. 2013 Jan;45(1):51–8.

58. International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature. 2005 Aug 11;436(7161):793–800.

59. Thielen PM, Pendleton AL, Player RA, Bowden KV, Lawton TJ, Wisecaver JH. Reference genome for the highly transformable Setaria viridis cultivar ME034V. BioRxiv. 2020 May 3;

60. Jaillon O, Aury J-M, Noel B, Policriti A, Clepet C, Casagrande A, et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature. 2007 Sep 27;449(7161):463–7.

61. Raymond O, Gouzy J, Just J, Badouin H, Verdenaud M, Lemainque A, et al. The Rosa genome provides new insights into the domestication of modern roses. Nat Genet. 2018 Apr 30;50(6):772–7.

62. Kagale S, Koh C, Nixon J, Bollina V, Clarke WE, Tuteja R, et al. The emerging biofuel crop Camelina sativa retains a highly undifferentiated hexaploid genome structure. Nat Commun. 2014 Apr 23;5:3706.

63. Daccord N, Celton J-M, Linsmith G, Becker C, Choisne N, Schijlen E, et al.
High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nat Genet. 2017 Jul;49(7):1099–106.

64. Unver T, Wu Z, Sterck L, Turktas M, Lohaus R, Li Z, et al. Genome of wild olive and the evolution of oil biosynthesis. Proc Natl Acad Sci USA. 2017 Oct 31;114(44):E9413–22.

65. Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, et al. The B73 maize genome: complexity, diversity, and dynamics. Science. 2009 Nov 20;326(5956):1112–5.

66. Zhao G, Zou C, Li K, Wang K, Li T, Gao L, et al. The Aegilops tauschii genome reveals multiple impacts of transposons. Nat Plants. 2017 Dec;3(12):946–55.

67. Maccaferri M, Harris NS, Twardziok SO, Pasam RK, Gundlach H, Spannagl M, et al. Durum wheat genome highlights past domestication signatures and future improvement targets. Nat Genet. 2019 Apr 8;51(5):885–95.