Reflection spectra from an accretion disc illuminated by a neutron star X-ray burst

D. R. Ballantyne

Canadian Institute for Theoretical Astrophysics, 60 St. George Street, Toronto, Ontario, Canada M5S 3H8

11 December 2004

ABSTRACT

Recent time-resolved X-ray spectra of a neutron star undergoing a superburst revealed an Fe Kα line and edge consistent with reprocessing from the surrounding accretion disc. Here, we present models of X-ray reflection from a constant density slab illuminated by a blackbody, the spectrum emitted by a neutron star burst. The calculations predict a prominent Fe Kα line and a rich soft X-ray line spectrum which is superimposed on a strong free-free continuum. The lines slowly vanish as the ionization parameter of the slab is increased, but the free-free continuum remains dominant at energies less than 1 keV. The reflection spectrum has a quasi-blackbody shape only at energies greater than 3 keV. If the incident blackbody is added to the reflection spectrum, the Fe Kα equivalent width varies between 100 and 300 eV depending on the ionization parameter and the temperature, kT, of the blackbody. The equivalent width is correlated with kT, and therefore we predict a strong Fe Kα line when an X-ray burst is at its brightest (if iron is not too ionized or the reflection amplitude too small). Extending the study of reflection features in the spectra of superbursts to lower energies would provide further constraints on the accretion flow. If the Fe Kα line or other features are relativistically broadened then they can determine the system inclination angle (which leads to the neutron star mass), and, if the mass is known, a lower-limit to the mass/radius ratio of the star.

Key words: accretion, accretion discs — line: profiles — radiative transfer — X-rays: binaries — X-rays: bursts

1 INTRODUCTION

The reprocessing of external X-rays by accreting material has been observed from active galactic nuclei (AGN) and Galactic black hole candidates (GBHCs) for over a decade (e.g., Pounds et al. 1990; Nandra & Pounds 1994; Gierliński et al. 1999; Ballantyne, Vaughan & Fabian 2003; Miller et al. 2004). In these objects, the origin and location of the illuminating X-ray power-law is largely unknown, although it is widely believed to be either within a magnetic accretion disc corona (e.g., Galeev, Rosner & Vaiana 1979; Haardt & Maraschi 1993; Haardt, Maraschi & Ghisellini 1999; Di Matteo 1998) or a centrally located geometrically thick flow (e.g., Shapiro, Lightman & Eardley 1976; Zdziarski, Lubinski & Smith 1993; Zdziarski et al. 2003). Nevertheless, many models of X-ray reflection from black hole accretion discs have been computed (George & Fabian 1991; Matt, Perola & Piro 1991; Ross & Fabian 1993; Zycki et al. 1994; Ross, Fabian & Young 1999; Navakshin, Kazanas & Kallman 2000; Navakshin & Kallman 2001; Ballantyne, Ross & Fabian 2001b; Rożanska et al. 2002; Ballantyne, Turner & Blaes 2004), and, in some cases, successfully applied to data (Ballantyne, Iwasawa & Fabian 2001).

Recently, Strohmayer & Brown (2002) discovered an Fe Kα line and edge in the X-ray spectra of the low-mass X-ray binary (LMXB) 4U 1820–30 as it was undergoing a superburst — a powerful thermonuclear explosion on the surface of the neutron star that can last many hours (Cornelisse et al. 2000; Strohmayer & Bildsten 2003; Kuulkers 2003). Based on the strength of the Fe Kα line, these authors suggested that the features were caused by reflection of the burst blackbody spectrum from the surrounding accretion disc (e.g., Day & Dondi 1991). This hypothesis was supported by spectral fitting with detailed reflection models (Ballantyne & Strohmayer 2004). The unique aspect of reflection during a burst from a LMXB is that there is no uncertainty in the location of the X-ray source, as it is located on the surface of the neutron star and outshines the persistent X-ray emission from the disc. This fact allows for far less ambiguity when analyzing changes to the reflection features, as they are more likely to trace the evolution in the accretion flow (Ballantyne & Strohmaver 2004).

X-ray emission lines have also been observed in the persistent emission from LMXBs (e.g., Smale et al. 1993; Angelini et al. 1995; Schulz 1999; Asai et al. 2000), and, these are also thought to be caused by reprocessing by matter in the accretion flow (Shakura & Sunyaev 1973; Meyer & Meyer-Hofmeister 1978).
The spectral shape of the persistent emission is consistent with bremsstrahlung with a temperature of 5–10 keV (Liu, van Paradijs & van den Heuvel 2001), most likely arising from the boundary layer between the disc and the neutron star. Detailed models of the photoionized layer on the disc have been performed and predict a wealth of emission lines in the soft X-ray band (e.g., Ko & Kallman 1994; Jimenez-Garate, Raymond & Liedahl 2002) that can be compared against observations made with the grating spectrometers onboard Chandra and XMM-Newton (e.g., Schulz et al. 2001; Cottam et al. 2001; Kallman et al. 2003). In contrast, a X-ray burst emits a blackbody spectrum (Swank et al. 2001; Cottam et al. 2001; Kallman et al. 2003), and can reach the Edington luminosity ($L_{\text{Ed}} \sim 10^{38}$ erg s$^{-1}$), well over an order of magnitude greater than the persistent luminosity of many LMXBs (Strohmayer & Bildsten 2003). Thus, disc reflection will be dominated by the blackbody component during the burst.

This paper presents reflection spectra from a uniform accretion disc illuminated by a blackbody, as in a LMXB during a Type I X-ray (super)burst. These spectra were used to fit the super-burst data of 4U 1820–30 (Ballantyne & Strohmayer 2004), but, as shown below, they contain much more information than what was actually needed for those Rossi X-ray Timing Explorer (RXTE) data. Observations of reflection features from Type I bursts or super-bursts with sensitive, large bandwidth instruments such as the X-ray Telescope (XRT) on Swift could provide a wealth of new information on the structure and behaviour of accretion discs.

In the next section we outline the reflection calculations, and present the resulting spectra in Section 3. We conclude by discussing the results in Section 4.

2 CALCULATIONS

The reflection spectra were computed using the code of Ross & Fabian (1993). Details of the computational techniques can be found in that paper and in references therein (see also Ross et al. 1995 and Ballantyne et al. 2001b), and so only a brief overview will be presented here.

A one-dimensional slab of material with a constant hydrogen number density n_{H} is illuminated by a blackbody spectrum with temperature kT and flux (defined between 1 eV and 100 keV) F_{X}. Thus, we define the ionization parameter

$$\xi = \frac{4\pi F_{\text{X}}}{n_{\text{H}}}.$$ \hspace{1cm} (1)

The input radiation is transferred into the layer using the two-stream approximation (Rybicki & Lightman 1979) while the outgoing radiation is treated using the modified Fokker-Planck/diffusion method of Ross, Weaver & McCray (1978). Therefore, the output spectrum is averaged over all viewing angles. The ionization and thermal structure of the illuminated gas is iterated until each zone reaches ionization and thermal balance, and at this point the final reflection spectrum is computed. The illuminated slab always has a large enough Thomson depth ($\tau_T = 6–20$, depending on ξ) so that the highest energy photons will interact many times with the gas. The cosmic abundances of Morrison & McCammon (1983) were assumed, but hydrogen and helium are taken to be completely ionized at all times (i.e., $n_e = 1.2n_{\text{H}}$). The following ionization stages of the most important astrophysical metals are treated in the calculation: C vi–vii, N vi–viii, O vi–ix, Mg ix–xii, Si xi–xv and Fe xvi–xxvii.

Models were calculated for $1 \leq kT \leq 3.15$ keV, as this spans the range most often observed during X-ray bursts (Kuulkers 2003), and for $1 \leq \log \xi \leq 3.75$. To change ξ, n_{H} was fixed at 10^{20} cm$^{-3}$, and F_{X} was varied.

3 RESULTS

We begin by considering the evolution of the reflection spectra as a function of ξ (cf. Fig. 2 in Ross et al. 1995). Figure 1 shows a series of spectra for four different values of kT. Each panel shows reflection spectra with $\log \xi = 1, 1.5, 2, 2.5, 3, 3.5$ (from bottom to top), thereby spanning the range from very weakly ionized reflectors to highly ionized ones. For the $\log \xi = 2$ model, we have also plotted the incident blackbody spectrum.

Unlike the power-law continua of AGN and GBHCs where the radiant energy per frequency decade reaches a maximum at energies > 10 keV (for photon-indices $\Gamma < 2$) where atomic absorption is minimal, the blackbody spectra peak at energies where the photoelectric absorption by metals is very important. As a result, only a small fraction of the photons incident on the slab are scattered back without first being absorbed by an ion. The reflection spectra therefore only mimics a blackbody at energies $E \gtrsim 3$ keV, with the agreement increasing as $\log \xi$ grows and the metals are ionized. The energy absorbed by the metals in the gas is thermalized and reemerges as a strong soft free-free continuum with a variety of recombination lines superimposed. As this thermal emission includes the power absorbed at higher energies, it outshines the incident blackbody at $E \lesssim 1$ keV for all values of ξ considered. The rich emission line spectrum is reminiscent of those predicted from models of reprocessing of the persistent emission (Jimenez-Garate et al. 2002). However, in the most luminous stage of an X-ray burst, the disc may be severely ionized (Ballantyne & Strohmayer 2004), and will leave a Compton broadened O viii Lyα line as the only emission feature in the soft X-ray region of the spectrum.

It is instructive to look at the most important heating and cooling processes within the illuminated layer. A plot of the heating and cooling rates as a function of Thomson depth into the slab for the $\log \xi = 3$, $kT = 2.5$ keV model is shown in the lower panel of Figure 2. In this figure, the heating and cooling processes are shown by red and blue lines respectively, while the different line styles separate the physical process (for example, Compton heating is denoted by the red dotted line, but Compton cooling is shown with the blue dotted line). The upper panel of Figure 2 shows the final iron ionization structure in the slab. Hydrogenic iron dominates between the surface and the first Thomson depth, but recombines to He-like Fe before reaching $\tau_T = 2$. The iron recombines rapidly just beyond this point and reaches the lowest ionization stage treated (Fe xvi) at $\tau_T \approx 5$. Turning to the heating and cooling rates, we see that free-free emission is the dominant cooling mechanism over the entire depth of the slab. At the surface, where the gas temperature reaches $T \sim 5 \times 10^{6}$ K (the black line in the lower panel of Fig. 2), the bremsstrahlung cooling is balanced by Compton and photoelectric heating. However, the Compton heating rate falls rapidly with τ_T because there are very few high energy photons in the incident blackbody spectra. In contrast, the photoelectric heating rate increases with τ_T until it reaches a maximum at $\tau_T \sim 3$, where iron is rapidly recombining (upper panel of Fig. 2) and the photoionization rates jumps. The line cooling rate also increases rapidly here, but cannot overcome the free-free cooling. After the iron has almost fully recombined at $\tau_T \sim 5$, the photoelectric heating rate falls (very few ionizing photons can penetrate to such depths) and the dominant heating process becomes free-free absorption. The
Reflection from a disc during a neutron star burst

Figure 1. Examples of reflection spectra from an accretion disc illuminated by a blackbody continuum. The four panels show results for different values of kT. Within each panel 6 reflection spectra are shown with solid lines. They denote models with (moving from bottom to top) $\log \xi = 1, 1.5, 2, 2.5, 3, 3.5$. All of the spectra, except for the $\log \xi = 2$ model, have been vertically offset from one another for clarity. The dotted line in each panel shows the illuminating blackbody for the $\log \xi = 2$ model.

The dominance of free-free cooling and photoelectric heating in the thermal structure of the illuminated slab emphasizes the dominance of the absorption-thermalization process in these models. The observational outcome is the rich X-ray line spectrum seen below 1 keV in Figure 1.

Similar to the reflection spectra predicted for the environment of accreting black holes, the Fe Kα line is the most important spectral feature above ~ 3 keV in the blackbody models, and is an important indicator of the ionization parameter of the reflecting medium. Fig. 1 shows that in each panel the Fe Kα line evolves from a strong 6.4 keV line to a weak, Auger-destroyed line, and then to a broad 6.7 keV feature before disappearing entirely due to the complete ionization of iron. This is the same sequence as that presented by [Ross et al. 1999] for illumination by a power-law.

The equivalent width (EW) of the Fe Kα line as a function of $\log \xi$ is shown in Figure 2. The top panel shows the EWs mea-
The EW of the Fe Kα line should be most prominent at the point where the burst is most easily observable. However, a superburst may cause changes in the accretion geometry close to the neutron star which would reduce the reflection amplitude. The neutron star which would reduce the reflection amplitude and superburst may cause changes in the accretion geometry close to the point where the burst is most easily observable. However, a superburst may cause changes in the accretion geometry close to the neutron star which would reduce the reflection amplitude.

The Fe Kα line (Ballantyne & Strohmayer 2004), as well as basic information about the neutron star itself. For example, if the emission lines are about the neutron star itself. For example, if the emission lines are expected to be redshifted and would therefore be a measure of the mass-to-radius ratio of the star (via $1 + z = (1 - GM/c^2R)^{-1/3}$), a number needed to constrain the many possible equations of state of nuclear matter. During the 1980s there were a few reports of X-ray absorption lines at 4.1 keV during Type I X-ray bursts (Waki et al. 1984, Nakamura, Inoue & Tanaka 1988, Maignier et al. 1989), which were interpreted as redshifted Lyα absorption from He-like iron. However, the equivalent width of these absorption lines were on the order of hundreds of eV, which theoretical models of spectral formation in burst atmospheres could not reproduce (Foster, Ross & Fabian 1983, Day, Fabian & Ross 1992). Observations by more sensitive instruments on RXTE and BeppoSAX have been unable to discover any other examples of a 4.1 keV absorption line. Recently, the Reflection Grating Spectrometer (RGS) on XMM-Newton has uncovered evidence for redshifted absorption lines during the X-ray bursts of EXO 0748-676 (Cottam, Paerels & Mendez 2002), although data from 28 bursts were needed in order to obtain the minimum signal-to-noise necessary to find the lines.

As first suggested by Day & Done (1991), X-rays from an explosion on a neutron star can be reprocessed by the surrounding accretion disc, leading to features such as an Fe Kα line and edge. The analysis of these features can lead to many new insights about the structure and evolution of the accretion disc (Ballantyne & Strohmayer 2004), as well as basic information about the neutron star itself. For example, if the emission lines are

Figure 2. Details from the log $\xi = 3, kT = 2.5$ keV reflection calculation as a function of Thomson depth into a slab with $n_{H} = 10^{31}$ cm$^{-3}$. The upper panel plots the ionization structure. Moving from the surface down into the slab, the iron ions encountered are Fe XXVII (long-dashed line), hydrogenic Fe XXVI (solid line), Fe XX (short-dashed line), Fe XVII–XXIV (dotted lines) and Fe XVI (solid line: the most neutral iron ion treated). The lower panel plots the (H) heating (red curves) and (C) cooling (blue curves) rates and the gas temperature (right-hand axis; black solid line). The line types distinguish the various physical processes: Compton heating/cooling (dotted lines), free-free heating/cooling (short-dashed lines), recombination heating/cooling (long-dashed lines), photoelectric heating/line cooling (dot-short-dashed lines), and three-body interactions (dot-long-dashed lines).

Figure 3. The Fe Kα equivalent width (EW) as a function of log ξ for the four values of kT shown in Figure 2. The upper panel plots the EW measured from the pure reflection spectrum (i.e., there is no contribution from the blackbody). The lower panel plots the EW measured from the sum of the reflected and incident spectra. In both panels the different line types separate the values of kT: 1.5 keV (solid line), 2 keV (dotted line), 2.5 keV (short-dashed line), and 3 keV (long-dashed line).

4 DISCUSSION

Searches for spectral features during X-ray bursts from neutron stars have been ongoing for many years. Since the explosion is occurring on the surface of the star, the spectral features would be expected to be redshifted and would therefore be a measure of the mass-to-radius ratio of the star (via $1 + z = (1 - GM/c^2R)^{-1/3}$), a number needed to constrain the many possible equations of state of nuclear matter.
relativistically broadened then modeling can reveal the inclination angle of the system to the line of sight (Fabian et al. 1989), a parameter often needed to obtain masses of the neutron star and its binary companion. Modeling of relativistic lines also produce a radius where the reflection originates (assuming some emissivity profile). This radius is measured in gravitational units (GM/c²), so if the mass of the neutron star is known, the radius can be converted to physical units, allowing a determination of a mass-to-radius ratio. Since the reflection may occur very close to the surface of the neutron star (10–20 GM/c² in 4U 1820-30; Ballantyne & Strohmayer 2004), the measurement may provide a useful lower-limit to the M/R ratio for the neutron star.

RXTE has so far been the most successful telescope to obtain time-resolved spectroscopy of X-ray bursts, especially of the more energetic superbursts (e.g., Strohmayer & Brown 2002). The telescope produces data for energies greater than 3 keV which allows a good determination of the blackbody spectrum and, if detected, the Fe Kα line. Yet, the reflection models predict a wealth of information at energies less than 3 keV (Fig. 1) that can provide further constraints on the abundances, ionization state and dynamics of the accretion disc. These features will also strongly depend on the density of the disc because of the importance of collisional effects and free-free emission/absorption. The spectra shown in Fig. 1 were calculated assuming a density of n_H = 10^{15} cm⁻³, appropriate for the outer regions of the disc. The density at a distance of a few gravitational radii from the neutron star is expected to be > 10^{23} cm⁻³ even for a radiation-pressure dominated disc (Shakura & Sunyaev 1973), which is beyond the range of validity for the reflection code. To illustrate the effects of higher density on the soft X-ray spectrum, Figure 4 compares three reflection spectra computed with n_H = 10^{15} cm⁻³ with ones computed at 10^{18} cm⁻³, where the code remains valid. The figure shows very little difference in the spectra in the RXTE band including the Fe Kα line. This implies that the Fe Kα EWs computed from the n_H = 10^{15} cm⁻³ models (Fig. 4) should still be useful guidelines for future observations. On the other hand, the three order of magnitude increase in density significantly alters the soft X-ray features predicted by the reflection spectra. The differences mainly lie at energies < 0.5 keV, where the continuum level is raised due to the increase in free-free emission and absorption. As a result, the EWs of many of the emission lines have been substantially decreased. The expectation is that increasing the density further will continue to raise the continuum level at soft energies, as more line emission is absorbed by the continuum, and decrease the EW of the remaining emission lines. Clearly, the soft X-ray emission features are a strong diagnostic for the accretion disc density. It would be therefore very interesting to obtain rapid, time-resolved broad-band spectra of X-ray bursts to exploit the information in those spectral features. In the near future only the XRT onboard the Swift satellite will have these features, plus the necessary rapid response capability. Unfortunately, soft X-ray spectroscopy of burst sources will be challenging. LMXBs are old systems and many of them lie toward to the Galactic center, thus suffering from significant absorption due to neutral hydrogen along the line of sight. However, there are a number of LMXBs which reside in globular clusters that may provide lower extinction columns and allow sensitive soft X-ray observations. Rapid follow-up of X-ray bursts from LMXBs globular clusters therefore provide the best chance of utilizing the full information obtained in the reflection spectra.

Figure 4. The solid lines show three reflection spectra computed with a density of n_H = 10^{18} cm⁻³, while the dotted lines denote models with identical ξ but with n_H = 10^{15} cm⁻³. A kT = 2.5 keV blackbody was the illuminating continuum for all cases. The increase in density results in only minor differences in the spectra at energies ≥ 3 keV, but there are significant changes at lower energies.

ACKNOWLEDGMENTS

The author thanks R. Ross and A. Fabian for advice on the reflection models, and acknowledges financial support from the Natural Sciences and Engineering Research Council of Canada.

REFERENCES

Angelini L., White N.E., Nagase F., Kallman T.R., Yoshida A., Takeshima T., Becker C., Paerels F., 1995, ApJ, 449, L41
Asai K., Dotani T., Nagase F., Mitsuda K., 2000, ApJS, 131, 571
Ballantyne D.R., Strohmayer T.E., 2004, ApJ, 601, L105
Ballantyne D.R., Iwasawa K., Fabian, A.C., 2001a, MNRAS, 323, 506
Ballantyne D.R., Ross R.R., Fabian A.C., 2001b, MNRAS, 327, 10
Ballantyne D.R., Vaughan S., Fabian A.C., 2003, MNRAS, 342, 239
Ballantyne D.R., Turner N.J., Blaes O.M., 2004, ApJ, in press (astro-ph/0311390)
Barrio F.E., Done C., Nayakshin S., 2003, MNRAS, 342, 557
 Cornelisse R., Heise J., Kuulkers E., Verbunt F., in ’t Zand J.J.M., 2000, A&A, 357, L21
Cottam J., Sako M., Kahn S.M., Paerels F., Liedahl D.A., 2001, ApJ, 557, L101
Cottam J., Paerels F., Mendez M., 2002, Nature, 420, 51
Day C.S.R., Done C., 1991, MNRAS, 253, 35p
Day C.S.R., Fabian A.C., Ross R.R., 1992, MNRAS, 257, 471
De Rosa A., Piro L., Fiore F., Grandi P., Maraschi, L., Matt G., Nicastro F., Petrucci P.O., 2002, A&A, 387, 838
Di Matteo T., 1998, MNRAS, 299, L15

Department of Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada. E-mail: ballantyn@astro.uwaterloo.ca

Copyright © 2004, the American Astronomical Society.
This paper has been typeset from a \TeX/{\slshape{L}}\TeX file prepared by the author.