Co-Infection with *M. tuberculosis* and *M. leprae*-Case Report and Systematic Review

Srinivas Rajagopala*, Uma Devaraj1, George D’Souza2 and Vijay V Aithal3

1Division of Chest diseases, Department of Medicine, St John’s Medical College Hospital, India
2Division of Chest diseases, Department of Medicine, St John’s Medical College Hospital, India
3Department of Dermatology, St John’s Medical College Hospital, India

Summary

The relationship between *M. tuberculosis* and *M. leprae* remains enigmatic with evidence to support relative protection to predisposition cited in the literature. With the near eradication of *M. leprae*, recognition of new cases may be delayed with poor outcomes. We describe a case of drug-resistant extra-pulmonary tuberculosis co-infection with tuberculosis leprosy. We also discuss the findings of our comprehensive literature review on clinical features, treatment and outcomes of dual infections. We hope that this manuscript serves as a timely reminder and ready reckoner of findings of this rare situation.

Abstract

Background: Co-infection with *Mycobacterium tuberculosis* and *M. leprae* is infrequent and conflicting views on their interaction exist.

Methods: We describe an immunocompetent male with simultaneously diagnosed primary multi-drug resistant extra-pulmonary tuberculosis and borderline lepromatous leprosy; we also review all cases of dual infection reported in English literature.

Results: Our search yielded 156 cases of dual infections. Most dual infections were reported in middle-aged males. The sentinel infection was leprosy in 90.4%. Most affected patients had lepromatous leprosy (52.5%) but tuberculosis occurred throughout the disease spectrum of leprosy. The time to development of the second infection varied from 1 month-25 years (median 1.5 years). Tuberculosis was reported to occur in 2.5-13.5% of cases in six series of patients with lepromatous leprosy. Most patients were diagnosed by sputum smears and radiography. Co-morbid conditions predisposed to development of tuberculosis in most patients. The most common pre-disposing factor was malnutrition (92.5%). Dual infections were associated with high mortality (37.2%) and morbidity (5.3%).

Conclusions: Dual mycobacterial infections occur despite partial cross-immunity between both species. Directly observed treatment for tuberculosis with intensive medical monitoring is required to prevent poor outcomes during management of these complex patients.

Keywords: Mycobacterium tuberculosis; Mycobacterium leprae; Leprosy; Tuberculosis; Drug-resistant extra-pulmonary tuberculosis

Case Report

A 55-year-old male farmer presented with swelling and purulent discharge from his right foot for six months. There was no history of fever, cough, and foot trauma or weight loss. He denied any smoking, alcohol and substance abuse. He had received several courses of oral antibiotics with no reduction in the ulcer or discharge. He denied any contact with patients having tuberculosis or leprosy. General physical examination showed a firm 6 x 5 centimeters nodular swelling on the dorsum of the right foot, with discharging sinuses. Two punched out ulcers, about 3 x 3 centimeters, with clean base and pale granulation tissue were seen. The discharge was about 5-10 mL/ day, mucopurulent and without any granules. Multiple hypopigmented anesthetic macules over the trunk and limbs along with ichthyosis and scaling were also noticed. No deformity or digit resorption was observed. Neurological examination revealed thickened ulnar and peroneal nerves with loss of touch, vibration and joint position till ankle. Respiratory examination was normal. Investigations showed normal hemoglobin (12.3 g/dL) and peripheral smear. Renal function tests, serum electrolytes and liver function tests were normal. Chest radiograph was normal and radiographs of the right foot did not show any evidence of osteomyelitis. Fasting serum glucose was 130 mg/dL and HbA1c was 6.5%. Human Immunodeficiency virus ELISA was non-reactive and Mantoux test was negative (four millimeters, 1 TU at 48 hours). Pus from the right foot ulcer was sterile by aerobic bacterial cultures. Stains for nocardia and actinomyces were negative. Zehl-Neelson’s staining showed acid-fast bacilli. Biopsy form edge of ulcer showed granulomatous inflammation with necrosis; multiple langhans giant cells, histiocytes and lymphocytes were present. BACTEC culture showed *M. tuberculosis* and he was initiated on isoniazid 300 mg, rifampicin 600 mg, pyrazinamide 1250 mg and ethambutol 1 gm/day. Biopsy from the hypo-anaesthetic patches showed features of tuberculosis leprosy; six site slit smears were negative. He was also initiated on regimen for multi-bacillary leprosy with dapson 100 mg/day and clofazamine 50 mg/day and monthly clofazamine 300 mg. Metformin 1 gram/day

*Corresponding author: Srinivas Rajagopala, Assistant Professor, Division of Chest diseases, Department of Medicine, St John’s Medical College Hospital, Sarjapur Road, Bangalore, India-560034, Tel: +91 80 22065333; Fax: +91 80 25501144; E-mail: visitsrinivasan@gmail.com

Received May 25, 2012; Accepted June 14, 2012; Published June 16, 2012

Citation: Rajagopala S, Devraj U, D’Souza G, V Aithal V (2012) Co-Infection with *M. tuberculosis* and *M. leprae*-Case Report and Systematic Review. J Mycobac Dis 2:118. doi:10.4172/2161-1068.1000118

Copyright: © 2012 Rajagopala S, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Reference	Year	Number (if series)	Age/sex	First infection	Time between two infections	Leprosy spectrum (Jopling)	Clinical presentation of tuberculosis	Mode of diagnosis of tuberculosis	Aggravating co-morbidity	Clinical features at diagnosis	Outcome	
Gajwani et al	1968	3	60/M	Tuberculosis	6 months; diagnosed simultane-ously	BT	Pulmonary tuberculosis (SP)	Sputum smear	Malnutrition	Fever, cough, hemoptysis	NA	
			30/M	Leprosy	2 years; diagnosed simultaneously	TT	Pulmonary tuberculosis (SP)	Sputum smear		Fever, cough	NA	
			60/M	Tuberculosis	2 years; diagnosed simultaneously	BT	Pulmonary tuberculosis (SP)	Sputum smear		Cough, expectoration	NA	
Gupta et al	1971	2	50/M	Leprosy	1 year; diagnosed simultaneously	TT	Pulmonary tuberculosis (SP)	Sputum smear/ culture	Diabetes, CAD	Asymptomatic Leprosy reaction, better	NA	
			25/F	Leprosy	6 months; diagnosed simultaneously				Euthyroid nodular goitre	Fever, cough, expectoration	Better	
Agnihoti et al	1973	3	65/M	Tuberculosis	1 year; diagnosed simultaneously	TT	Pulmonary tuberculosis (SP)-relapse	Sputum smear	Malnutrition	Fever, emaciation	Better	
			18/M	Tuberculosis	4 year; relapse simultaneously diagnosed	TT	Pulmonary tuberculosis (SP)	Sputum smear	None	Cough, expectoration, hemoptysis	NA	
			30/F	Leprosy	1 month	TT			None	Cough	NA	
Bhargava et al	1976	4	39/M	Leprosy	3 years	LL	Pulmonary tuberculosis (SP)	Sputum smear	None	Fever, cough	NA	
			50/M	Leprosy	1 year	LL	Pulmonary tuberculosis (SP)	Sputum smear	None	Cough, weakness	NA	
			45/M	Leprosy	4 years	LL	Pulmonary tuberculosis (SP)	Sputum smear	Cough, expectoration	NA		
			35/M	Leprosy	15 years	LL	Pulmonary tuberculosis (SP)	Sputum smear	None	Cough, expectoration	NA	
Premnath et al	1976	40 (in 2 years)	Median 27; range 21-64 years	Leprosy	1-25 years; individual data NA	LL (72.5%); BL (27.5%)	Pulmonary tuberculosis (SP)	Sputum smear	Malnutrition	Cough, expectoration (87.5%), fever (57.5%), and weight loss (35%)	Died (30%), LAMA (20%), Improved (50%)	
Ganapathi et al	1976	1	30/M	Leprosy	NA	LL	Cutaneous (lupus vulgaris)	Histopathology	None	NA	NA	
Vachharajani et al	1977	4	50/M	Tuberculosis	4 months	TT	Pulmonary tuberculosis (SP)	Sputum smear	None	Hypopigmented anesthetic patches	Better	
			26/M	Tuberculosis	4 months	TT	Pulmonary tuberculosis (SP)	Sputum smear	None	Single hypopigmented anesthetic patch	Better	
			30/M	Tuberculosis	2 months	LL	Pulmonary tuberculosis (SP)	Sputum smear	None	Macular rash	Better	
			29/M	Tuberculosis	1.5 months	TT	Pulmonary tuberculosis (SP)	Sputum smear	None	Multiple patches	Better	
Nigam et al	1979	20 (2.5% of 793)	16-58, mean 28.4; M(15); F(5)	Leprosy	10-15 years	LL (15), BL (3), TT (2)	Pulmonary tuberculosis (SP-16, SN-4); pleural effusion (2)	Sputum smear(16); chest radiograph (4)	Malnutrition	Cough, expectoration (100%), fever (80%), weight loss (60%), hemoptysis (25%)	Died (4); LAMA (5)	Better (11)
Kaur et al	1979	2 out of 25 (8%)	Age, Sex NA	Leprosy	4.2 years	LL (2)	SP-1 Pulmonary tuberculosis; SN-1	Sputum smear; chest radiograph	Malnutrition	Individual data	NA	
Gatnar et al	1980	13.4% (15 of 112 active; 8 healed)	Age, Sex NA	Leprosy	NA	LL(4), BL (3), BB(1)	BT(7)	Pulmonary tuberculosis SP-6; SN-7	Sputum smear; chest radiograph	Malnutrition	Screening	10/15 improved; rest NA

Citation: Rajagopala S, Devaraj U, D’Souza G, V Aithal V (2012) Co-Infection with M. tuberculosis and M. leprae-Case Report and Systematic Review. J Mycobac Dis 2:118. doi:10.4172/2161-1068.1000118
was started for newly detected diabetes mellitus. He had significant reduction in the number of cutaneous patches at two months follow-up; however ulcers continued to discharge. Drug susceptibility testing of BACTEC cultures was reported as

M. tuberculosis resistant to isoniazid and rifampicin. The patient denied any contact with patients diagnosed with multi-drug resistant tuberculosis (MDR-TB). His regimen was modified to observed levofloxacin 750 mg/day, kanamycin 750 mg/day, ethionamide 250 mg and cycloserine 250 mg thrice a day. He had resolution of discharge from these ulcers with healing at two months follow-up. Kanamycin was continued till 6 months and stopped. He resolved reduction in the number of cutaneous patches at two months follow-up. Kanamycin was continued till 6 months and stopped. He resolved

Two of the authors (R.S and U.D) independently performed a MEDLINE search using the free text terms tuberculosis and leprosy, M. tuberculosis and M. leprae in the English literature. This was further supplemented by direct search of the references and our personal databases. Both abstracts and full text articles, where available, were reviewed and only those articles which documented both infections by microbiological criteria were included for analysis. Data was extracted regarding the clinical features, first infection, time to development of second infection, leprosy spectrum of patients, mode of diagnosis, co-morbidities, site of tuberculosis and outcomes where available (Table 1).

Results

Our search yielded 2194 citations. These included 22 citations [1-22], including 156 cases of dual infection. Full text was available for all cases in the articles reviewed (Table 1). Dual infections have been reported from throughout the globe. The mean age was 37.8 (N=87) years (Table 2). Males accounted for 81.25% of cases ([123 (N=64)]). The first infection was leprosy in most patients (90.4%) but tuberculosis was diagnosed prior to symptoms of leprosy in 5.7% of patients [1,2,3]. In some instances, symptoms of both the mycobacterial infections occurred simultaneously:[4-8] Most affected patients

Table 1: Summary of all reported cases of co-infection with leprosy and tuberculosis (English literature).

Authors	Year	Total	Gender	First Infection	Second Infection	First Infection Duration	Second Infection Duration	Symptoms	Treatments		
Kumar et al	1982	9 (7.7% of 117)	NA	Leprosy	NA	LL (4), BL (3) TT (2)	Pulmonary tuberculosis (SP-3, SN-6)	Sputum smear (3), chest radiograph (6)	NA	Screening	NA
Singh et al	1987	25 (2.9% of 846)	NA	Leprosy	NA	Individual data	Pulmonary tuberculosis	Sputum, chest radiograph	NA	Screening	NA
Saha et al	1989	18 of 133 (13.5%)	15(M); 3(F)	15-65	Leprosy	NA	Pulmonary tuberculosis (SP)	Sputum, chest radiograph	Malnutrition	Screening	NA
Patki et al	1990	1	35/F	Leprosy	5 years	BL	Multicentric lupus vulgaris	Histopathology	None	Swelling	Better
Pinto et al	1991	1	36/M	Simultaneous occurrence	BT	Cutaneous tuberculosis	Histopathology	Thom prick	Warty lesion	Jaundice	
Inamadar et al	1994	1	23/M	Simultaneous occurrence	TT	Cutaneous and pulmonary tuberculosis (SP)	Sputum smear	None	Patch, ulcer and discharge	Type 1 reaction, better	
Arora et al	1994	1	40/M	Simultaneous re-occurrence due to HIV	BL	Lymph nodal tuberculosis	Histopathology	HIV	Patch, sinus	Better	
Agarwal et al	2000	1	40/M	Simultaneous occurrence	LL	Pulmonary tuberculosis (SP)	Sputum smear/culture	CKD, transplantation, immunosuppression	Fever, cough, anesthetic patch	Reaction, resolved	
Srilakshmi et al	2003	1	32/M	Leprosy	10 years	LL	Pulmonary tuberculosis (SP)	Sputum smear	Nil	Fever, cough	Dead
Lee et al	2003	1	62/M	Tuberculosis	6 months	BL	Pulmonary tuberculosis (SP)	Sputum smear/culture	Nil	Cough, expectoration	Type I reversal reaction, better
Agarwal et al	2007	1	36/F	Simultaneous occurrence	BL	Pulmonary tuberculosis (SP)	Sputum smear	Rheumatoid arthritis, methotrexate, steroids, lefunomide	Fever, weight loss	ENL, better	
Sreerama Reddy et al	2007	2	65/M	Leprosy	3 months	BL	Pulmonary tuberculosis (SP), pleural effusion	Sputum smear	Steroids for ulcer neuritis	Cough, expectoration, chest pain	Better

Abbreviations: Male (M), Female (F), Sputum positive (SP), Sputum negative (SN), Not available (NA), Left against medical advice (LAMA), Erythema nodosum lepra (ENL), Tuberculosis leprosy (TT), Borderline tuberculosis leprosy (BT), Mid-borderline leprosy (BB) Borderline lepromatous leprosy (BL), Lepromatous leprosy (LL)

*The numerator is the number of cases in males and the denominator is the total number of cases reported
suffered from borderline lepromatous leprosy [9-14] (20.5%) and lepromatous leprosy [7,9,11,14-19] (52.5%), but tuberculosis occurred throughout the disease spectrum [3,5,10,20]. The time to development of the second infection varied from 1 month to 25 years (median 1.5 years). When series of lepromatous leprosy in which screening for tuberculosis was done were examined, tuberculosis has been reported to complicate leprosy in 2.5-13.5% of cases in endemic areas. [9-11,18,20,21] Most patients presented with cough, expectoration, weight loss and fever. The site of tuberculosis was reported as lung (96.7%); cutaneous [4,5,12,16] and lymph nodal tuberculosis [6] have also been reported in association with leprosy. Most patients were diagnosed by sputum smears and radiography. Co-morbid conditions predisposed to development of tuberculosis in most patients (67.9%). Malnutrition was the most common pre-disposing factor (85.8%) in the development of tuberculosis [18]; human immunodeficiency virus infection [6], diabetes mellitus type 2 [22], systemic steroid use [14] and immunosuppressive therapies [8] and chronic kidney disease [7] have also been implicated. Dual infections were associated with high mortality [9,10,19] (37.2%). Leprosy reversal reactions [22], both type 1 [5,7,13] and type 2 [8], and jaundice [4] also complicated 4.25% of treatments for dual infections.

Discussion

The exact nature of the interaction between leprosy and tubercul-

Table 2: Summary of findings of co-infection with leprosy and tuberculosis (English literature).

Parameter	Value
Total number of cases	N=156
Age (Mean)	37.8 (N=87)
Sex (M:F)	12:3 (N=64)
First infection	Tuberculosis 5.7% (9/156)
	Leprosy 90.4% (141/156)
	Simultaneous diagnosis 3.9% (6/156)
Time from first infection diagnosis to the second	Median 1.5 years (range 1 month-25 years)
Leprosy spectrum (Data available N=122/156)	TT 10.6% (13/122)
	BT 15.6% (19/122)
	BB 0.8% (1/122)
	BL 20.5% (25/122)
	LL 52.5% (64/122)
Clinical presentation of tuberculosis	Pulmonary tuberculosis 96.7% (151/156)
	Extra-pulmonary tuberculosis 2.6% (4/156)
	Both 0.8% (1/122)
	Cutaneous tuberculosis 2.6% (4/156)
	Lymph-nodal tuberculosis 0.6% (1/156)
Co-morbidity	67.9% (N=106/156)
	Malnutrition 85.8 % (91/106)
	HIV 0.9% (1/106)
	Steroid treatment/ Immunosuppression 3.6% (4/106)
	Chronic kidney disease 0.9% (1/106)
	Diabetes 0.9% (1/106)
	Goiter 0.9% (1/106)
Outcome	Died 37.2% (35/94)
	Better 72.8% (59/94)
	Reactions 4.2% (4/94)
	Jaundice 1.1% (1/94)

Citation: Rajagopala S, Devaraj U, D’Souza G, V Aithal V (2012) Co-Infection with M. tuberculosis and M. leprae-Case Report and Systematic Review. J Mycobac Dis 2:118. doi:10.41722161-1068.1000118
9. Premanath M, Ramu G (1976) The association of leprosy and tuberculosis. J Indian Med Assoc 67: 143-145.
10. Nigam P, Dubey AL, Dayal SG, Goyal BM, Saxena HN, Samuel KC (1979) The association of leprosy and pulmonary tuberculosis. Lepr India 51: 65-73.
11. Gatner EM, Glatthaar E, Imkamp FM, Kok SH (1980) Association of tuberculosis and leprosy in South Africa. Lepr Rev 51: 5-10.
12. Patki AH, Jadhav VH, Mehta JM (1990) Leprosy and multicentric lupus vulgaris. Indian J Lepr 62: 368-370.
13. Lee HN, Embi CS, Vigeland KM, White CR, Jr (2003) Concomitant pulmonary tuberculosis and leprosy. J Am Acad Dermatol 49: 755-757.
14. Sreeramareddy CT, Menezes RG, Kishore P (2007) Concomitant age old infections of mankind - tuberculosis and leprosy: a case report. J Med Case Reports 1: 43.
15. Bhargava NC, Mathur KC (1976) Simultaneous occurrence of leprosy and pulmonary tuberculosis. Indian J Chest Dis Allied Sci 18: 101-104.
16. Ganapatil R, Deshpande DH, Chulawala RG (1976) Some interesting disease combinations--report on two cases. Lepr India 48: 428.
17. Kaur S, Malik SK, Kumar B, Singh MP, Chakravarty RN (1979) Respiratory system involvement in leprosy. Int J Lepr Other Mycobact Dis 47: 18-25.
18. Saha K, Rao KN (1989) Undernutrition in lepromatous leprosy. V. Severe nutritional deficit in lepromatous patients co-infected with pulmonary tuberculosis. Eur J Clin Nutr 43: 117-128.
19. Srilakshmi MA, Amit H, Jayantilal, Raveendranath S, Pais N (2003) Concomitant infection with pulmonary tuberculosis and lepromatous leprosy. J Assoc Physicians India 51: 528-529.
20. Kumar B, Kaur S, Kataria S, Roy SN (1982) Concomitant occurrence of leprosy and tuberculosis—a clinical, bacteriological and radiological evaluation. Lepr India 54: 671-676.
21. Singh M, Kaur S, Kumar B, Kaur I, Sharma VK (1987) The associated diseases with leprosy. Indian J Lepr 59: 315-321.
22. Gupta MC, Prasad M (1971) Associated infection of pulmonary tuberculosis and leprosy. Indian J Med Sci 25: 183-185.
23. Zodpey SP, Shrikhande SN, Salodkar AD, Maldhure BR, Kulkarni SW (1998) Effectiveness of bacillus Calmette-Guerin (BCG) vaccination in the prevention of leprosy: a case-finding control study in Nagpur, India. Int J Lepr Other Mycobact Dis 66: 309-315.
24. Kaleab B, Wondimu A, Likassa R, Woldehawariat N, Ivanyi J (1995) Sustained T-cell reactivity to Mycobacterium tuberculosis specific antigens in split-anergic leprosy. Lepr Rev 66: 19-28.
25. Chaussinand R (1961) Apropos of the theory concerning the antagonism between tuberculosis and leprosy. Sem Hop 37: 2304-2307.
26. Donoghue HD, Marosi A, Matheson C, et al. (2005) Co-infection of Mycobacterium tuberculosis and Mycobacterium leprae in human archaeological samples: a possible explanation for the historical decline of leprosy. Proc Biol Sci 272: 389-394.