The T_4 and G_4 constructions of Costas arrays

Tim Trudgian*
Mathematical Sciences Institute
The Australian National University, ACT 0200, Australia
timothy.trudgian@anu.edu.au

and

Qiang Wang†
School of Mathematics and Statistics
Carleton University
Ottawa, Ontario, K1S 5B6, Canada
wang@math.carleton.ca

September 25, 2014

Abstract
We examine two particular constructions of Costas arrays known as the Taylor variant of the Lempel construction, or the T_4 construction, and the variant of the Golomb construction, or the G_4 construction. We connect these constructions with the concept of Fibonacci primitive roots, and show that under the Extended Riemann Hypothesis the T_4 and G_4 constructions are valid infinitely often.

1 Introduction
A Costas array is an $N \times N$ array of dots with the properties that one dot appears in each row and column, and that no two of the $N(N-1)/2$ line segments connecting dots have the same slope and length. It is clear that a permutation f of $\{1, 2, \ldots, N\}$, from the columns to the rows (i.e. to each column x we assign exactly one row $f(x)$), gives a Costas array if and only if for $x \neq y$ and $k \neq 0$ such that $1 \leq x, y, x+k, y+k \leq N$, then $f(x+k) - f(x) \neq f(y+k) - f(y)$.

*Supported by Australian Research Council DECRA Grant DE120100173.
†Supported by NSERC of Canada.
Costas arrays were first considered by Costas [4] as permutation matrices with ambiguity functions taking only the values 0 and (possibly) 1, applied to the processing of radar and sonar signals. The use of Costas arrays in radar is summarized in [11, §5.2]. Costas arrays are also used in the design of optical orthogonal codes for code division multiple access (CDMA) networks [14], and in the construction of low-density parity-check (LDPC) codes [1].

Let us briefly recall some known constructions on Costas arrays. One can find more details in the survey papers of Golomb and Taylor [10, 9], Drakakis [5], Golomb and Gong [8]. In the following, p is taken to be a prime and q a prime power. The known general constructions for $N \times N$ Costas arrays are the Welch construction for $N = p - 1$ and $N = p - 2$, the Lempel construction for $N = q - 2$, and the Golomb construction for $N = q - 2$, $N = q - 3$. Moreover, if $q = 2^k$, $k \geq 3$, the Golomb construction works for $N = q - 4$. The validity of the Welch and Lempel constructions is proved by Golomb in [6]. The Golomb constructions for $N = q - 3$ and $N = 2^k - 4$ depend on the existence of (not necessarily distinct) primitive elements α and β in \mathbb{F}_q such that $\alpha + \beta = 1$. The existence of primitive elements α and β in \mathbb{F}_q such that $\alpha + \beta = 1$ was proved by Moreno and Sotero in [15]. (Cohen and Mullen give a proof with less computational checking in [2]; more recently, Cohen, Oliveira e Silva, and Trudgian proved [3] that, for all $q > 61$, every non-zero element in \mathbb{F}_q can be written as a linear combination of two primitive roots of \mathbb{F}_q.)

Among these algebraic constructions over finite fields, there are the T_4 variant of the Lempel construction for $N = q - 4$ when there is a primitive element α in \mathbb{F}_q such that $\alpha^2 + \alpha = 1$, and the G_4 variant of the Golomb construction for $N = q - 4$ when there are two primitive elements α and β such that $\alpha + \beta = 1$ and $\alpha^2 + \beta^{-1} = 1$. Through the study of primitive elements of finite fields, Golomb proved in [7] that q must be either 4, 5, or 9, or a prime $p \equiv \pm 1 \pmod{10}$ in order for the T_4 construction to apply. Note that this is a necessary but not sufficient condition (for example $p = 29$). In the same paper, Golomb also proved that the values of q such that the G_4 construction occurs are precisely $q = 4, 5, 9$, and those primes p for which the T_4 construction occurs and which satisfy either $p \equiv 1 \pmod{20}$ or $p \equiv 9 \pmod{20}$.

In this paper, we connect the T_4 and G_4 constructions with the concept of Fibonacci primitive roots. We show, in Theorems [1] and [2] that under the Extended Riemann Hypothesis (ERH) there are infinitely many primes such that T_4 and G_4 can apply. We conclude with some observations and questions about trinomials of primitive roots.

2 Fibonacci primitive roots

The T_4 construction requires a primitive root α such that

$$\alpha^2 + \alpha = 1.$$ \hspace{1cm} (1)

To investigate the nature of solutions to (1) we recall the notion of a Fibonacci primitive root, or FPR. We say that g is a FPR modulo p if $g^2 \equiv g + 1 \pmod{p}$. Shanks and Taylor [18] proved a similar statement to that which we give below.
Lemma 1. If \(g \) is a FPR modulo \(p \), then \(g - 1 \) is a primitive root modulo \(p \) that satisfies (1), and vice versa.

Proof. It is clear that \(g \) satisfies \(g^2 \equiv g + 1 \pmod{p} \) if and only if \(g - 1 \) satisfies (1): all that remains is to check that \(g \) and \(g - 1 \) are primitive. Suppose first that \(g \) is a FPR modulo \(p \).

Then, since \(g(g - 1) \equiv 1 \equiv g^{p - 1} \), we have

\[
(g - 1)^n \equiv g^{p - n - 1} \pmod{p},
\]

Note that, as \(n \) increases from 1 to \(p - 1 \), \(g^{p - n - 1} \) generates \(\mathbb{F}_p \), since \(g \) is primitive. Hence \(g - 1 \) is a primitive root modulo \(p \). The converse is similarly proved. \(\square \)

Let \(F(x) \) denote the number of primes \(p \leq x \) that have at least one FPR. Shanks [17] conjectured that under ERH, \(F(x) \sim C\pi(x) \), where \(\pi(x) \) is the prime counting function, and where \(C \approx 0.2657 \ldots \). Lenstra [12] proved Shanks’ conjecture; a proof also appears in Sander [16]. We therefore have

Theorem 1. Let \(T(x) \) be the number of primes \(p \leq x \) for which \(p \) satisfies the \(T_4 \) construction. Then, under the Extended Riemann Hypothesis

\[
T(x) \sim \frac{27}{38} \pi(x) \prod_{p=2}^\infty \left(1 - \frac{1}{p(p-1)} \right) \sim (0.2657 \ldots)\pi(x).
\]

Unconditionally, it seems difficult to show that there are infinitely many primes that have a FPR. Phong [13] has proved some results about a slightly more general class of primitive roots. For our purposes, [13, Cor. 3] implies that if \(p \equiv 1, 9 \pmod{10} \) such that \(\frac{1}{2}(p - 1) \) is prime then there exists (exactly) one FPR modulo \(p \). This does not appear, at least to the authors, to make the problem any easier!

We turn now to the \(G_4 \) construction, which requires two primitive roots \(\alpha, \beta \) such that

\[
\alpha + \beta = 1, \quad \alpha^2 + \beta^{-1} = 1.
\]

Since we require that \(p \equiv 1, 9 \pmod{20} \) we are compelled to ask: how many of these primes have a FPR? We can follow the methods used in [12, §8], and also examine Shanks’s discussion in [17, p. 167]. Since we are now only concerned with \(p \equiv 1, 9 \pmod{20} \) we find that the asymptotic density should be \(\frac{9}{38} A \), where \(A = \prod_{p=2}^\infty \left(1 - \frac{1}{p(p-1)} \right) \approx 0.3739558138 \) is Artin’s constant. This leads us to

Theorem 2. Let \(G(x) \) be the number of primes \(p \leq x \) for which \(p \) satisfies the \(G_4 \) construction. Then, under the Extended Riemann Hypothesis

\[
G(x) \sim \frac{9}{38} \pi(x) \prod_{p=2}^\infty \left(1 - \frac{1}{p(p-1)} \right) \sim (0.08856 \ldots)\pi(x).
\]
3 Conclusion

One can show that, for $p > 7$ there can be no primitive root α modulo p that satisfies $\alpha + \alpha^{-1} \equiv 1 \pmod{p}$. (Suppose there were: then $\alpha^2 + 1 \equiv \alpha \pmod{p}$ so that $\alpha^3 + \alpha^2 + 1 \equiv \alpha^2 \pmod{p}$ whence $\alpha^3 \equiv -1 \pmod{p}$. Hence $\alpha^6 \equiv 1 \pmod{p}$ — a contradiction for $p > 7$.) From this, it follows that $x^{p-2} + x - 1$ is never primitive over \mathbb{F}_p for $p > 7$.

Consider the following question: given $1 \leq i \leq j \leq p - 2$, let $d(i, j)$ denote the density of primes for which there is a primitive root α satisfying $\alpha^i + \alpha^{-i} \equiv 1 \pmod{p}$. The above comments show that $d(1, p - 2) = 0$; Theorem 1 shows that under ERH, $d(1, 2) \approx 0.2657$.

What can be said about $d(i, j)$ for other prescribed pairs (i, j)? In the case $i = j$, we have $2\alpha^i \equiv 1 \pmod{p}$ and thus $\alpha^i = \frac{p-1}{2}$. In particular, if $(i, p - 1) = 1$ then it is equivalent to ask for the density of primes such that $\frac{p-1}{2}$ is a primitive root modulo p. We have not been able to find a reference for this in the literature, though computational evidence seems to suggest that this value should be close to Artin’s constant $0.37395 \ldots$.

When $i \neq j$, it is easy to see that $d(2, \frac{p-1}{2} + 1) = d(1, 2)$. Therefore, under ERH the trinomial $x^{\frac{p-1}{2}} + x^2 - 1$ is primitive over \mathbb{F}_p for infinitely many primes p. More generally, we can show that for $p > 3i$ there does not exist a primitive root α such that $\alpha^{\frac{p-1}{2}+i} + \alpha^{\frac{p-1}{2}+2i} \equiv 1 \pmod{p}$, and thus $d(\frac{p-1}{2} + i, \frac{p-1}{2} + 2i) = 0$. Similarly, $d(i, 2i + \frac{p-1}{2}) = 0$. Indeed, if $\alpha^i - \alpha^{2i} \equiv 1 \pmod{p}$ for a primitive α, we obtain $\alpha^{3i} \equiv \alpha^{2i} - \alpha^i \equiv -1 \pmod{p}$. Hence we can show that if $p > 6i$ there is no primitive element α such that $\alpha^i + \alpha^{2i+\frac{p-1}{2}} \equiv 1 \pmod{p}$. Using the same arguments as before, we can also show that $d(i, p - 1 - i) = 0$ for any prefixed i.

References

[1] S. C. Chae and Y. O. Park, Low complexity encoding of improved regular LDPC codes, 2004 IEEE 60th Vehicular Technology Conference (VTC2004-Fall, Los Angeles, CA, September 26-29, 2004), vol. 4, 2004, 2535–2539.

[2] S. D. Cohen and G. L. Mullen, Primitive elements in finite fields and Costas arrays, Appl. Algebra Engrg. Comm. Comput. 2 (1991), no. 1, 45–53.

[3] S. D. Cohen, T. Oliveira e Silva, and T. S. Trudgian. A proof of the conjecture of Cohen and Mullen on sums of primitive roots. Math. Comp., to appear.

[4] J. P. Costas, Medium constraints on sonar design and performance, Proceedings of EASCON (Washington, D.C., September 29-October 1, 1975), 68A–68L.

[5] K. Drakakis, A review of Costas arrays, J. Appl. Math. 2006 (2006), 1–32.

[6] S. W. Golomb, Algebraic constructions for Costas arrays, J. Combin. Theory Ser. A 37 (1984), no. 1, 13–21.

[7] S. W. Golomb, The T_4 and G_4 constructions for Costas arrays, IEEE Trans. Inform. Theory 38 (1992), no. 4, 1404–1406.
[8] S. W. Golomb and G. Gong. *The status of Costas arrays*, IEEE Trans. Inform. Theory, 53 (2007), no. 11, 4260–4265.

[9] S. W. Golomb and H. Taylor, *Constructions and properties of Costas arrays*, Proc. IEEE 72 (1984), no. 9, 1143–1163.

[10] S. W. Golomb and H. Taylor, *Two-dimensional synchronization patterns for minimum ambiguity*, IEEE Trans. Inform. Theory 28 (1982), no. 4, 600–604.

[11] N. Levanon and E. Mozeson, *Radar signals*, John Wiley & Sons, 2004.

[12] H. W. Lenstra, *On Artin’s conjecture and Euclid’s algorithm in global fields*, Inventiones Math. 42 (1977), 201-224.

[13] B. M. Phong, *Lucas Primitive Roots*, Fibonacci Quart. 29 (1991), no. 1, 66-71.

[14] S. V. Maric, M. D. Hahm, and E. L. Titlebaum, *Construction and performance analysis of a new family of optical orthogonal codes for CDMA fiber-optic networks*, IEEE Trans. Commun. 43 (1995), no. 234, 485–489.

[15] O. Moreno and J. Sotero, *Computational approach to Conjecture A of Golomb*, Congr. Numer. 70 (1990), 7–16.

[16] J. W. Sander. *On Fibonacci primitive roots*, Fibonacci Quart. 28 (1990), no. 1, 79–80.

[17] D. Shanks. *Fibonacci primitive roots*, Fibonacci Quart. 10 (1972), no. 2, 163–181.

[18] D. Shanks and L. Taylor. *An observation on Fibonacci primitive roots*, Fibonacci Quart. 11 (1973), no. 2, 159–160.