Regression test of various versions of STRmix

Jo-Anne Bright¹, Judi Morawitz¹, Duncan Taylor²,³ and John Buckleton⁴

1. ESR, P.B.92021 Auckland, New Zealand.
2. Forensic Science SA, 21 Divett Place, Adelaide, SA 5000, Australia
3. School of Biological Sciences, Flinders University, GPO Box 2100 Adelaide SA, Australia 5001
4. University of Auckland, Department of Statistics, Auckland, New Zealand

Abstract

STRmix™ has been in operational use since 2012 for the interpretation of forensic DNA profiles. During that time incremental improvements have been made to the modelling of variance for single and composite peaks, and drop-in. The central element of the algorithm has remained as the Markov chain Monte Carlo (MCMC) based on the Metropolis-Hastings algorithm.

Regression experiments are reported comparing versions V2.3 to V2.9.

There is a high degree of similarity in LRs for true contributors across multiple versions of STRmix™ that span 7 years of development (from V2.3 to V2.9). This is due to the fact that the underlying core models of STRmix™ that are used to describe DNA profile behaviour have remained stable across that time.

Introduction

STRmix™ has been in operational use since 2012 for the interpretation of forensic DNA profiles. During that time incremental improvements have been made to the modelling of variance for single and composite peaks, and drop-in. The central element of the algorithm has remained as the Markov chain Monte Carlo (MCMC) based on the Metropolis-Hastings algorithm. Some major changes to the biological and statistical models are listed below:

- In version 2.3 the allele and stutter variances were, themselves, allowed to vary.
- In version 2.3 the MCMC stepping was changed to the current Gaussian walk.
- In version 2.3 the HPD interval was expanded to include theta (which was also now able to be specified as a distribution) and MCMC variability.
- In version 2.3 the presence of relatives of the POI in the population was introduced into LR calculations.
- In version 2.3.07 a change was made to disallow the chains to pass through the plane of symmetry that exists between two donors of similar template.
- In version 2.4 forward stutter modelling was introduced.
- In versions 2.6, 2.7 and 2.8 drop-in modelling was changed and refined.
- In version 2.6 generalised stutter was introduced.
- In version 2.6 limits were placed on the level of variability that could be exhibited by peaks with very low expected heights (Taylor Quantum Effect).
- In versions 2.7 and 2.8 a limit was placed on the size of the HPD interval generated as a result of allele proportion uncertainty (the limit based on population size and then later the minimum resampled count).
In version 2.7 the variance of a composite peak was changed from a weighted average of the contributing peaks to the shifted log normal model.

In version 2.7 the starting template values per contributor within the MCMC were changed from a 1000 rfu to dynamic values based on the profile.

In version 2.7 the locus specific amplification efficiency variance was added to the model as a parameter.

In version 2.8 a restriction was placed on potential stutter peaks so that if drop-in was a more favourable explanation, then it would be invoked instead of forcing a stutter.

In version 2.9 a restriction was added that meant an undersized stutter peak could not become more favourable by adding fluorescence of a type with higher peak height variability.

These changes are incremental rather than revolutionary and often designed to deal with infrequently encountered situations, to expand the types of profiles that could be analysed, or reduce the amount of data pre-processing that was required. We would expect a regression test of a modern version against a legacy version to give similar results for all but the fringe cases that the modelling improvements were designed to address. Again, this would mean that testing and quality scrutiny is, to a major extent, cumulative rather than confined to one version.

Method

Experiment 1. The original input files and parameters from the study “A sensitivity analysis to determine the robustness of STRmix™ with respect to laboratory calibration” [1] were used. These files had been set up for V2.5 and had retained forward and back stutter but not double back and 2 bp back stutter. Both V2.5 and V2.9 can, therefore, interpret these input files.

The sample set containing mixtures (N = 71) with varying numbers of contributors (35 × NoC = 2, 36 × NoC = 3) and varying degrees of degradation was selected from the PROVEDIt set [2]. These had been profiled using Applied Biosystems™ GlobalFiler™ using 29 cycles of PCR and analysed on a 3500 genetic analyser. These were analysed using STRmix™ V2.5.10 and V2.9.1 using the same settings. LRs were calculated with propositions that included the POI and the remaining contributors as unknown under H1 and all contributors unknown under H2. Mixtures were tested against the true donors (H1 tests) and a set of known non-donors (H2 tests).

Experiment 2. A total of 18 validation profiles from Forensic Science South Australia, that had been analysed in versions of STRmix™ from versions V2.3 to V2.9 were compiled and LRs compared. A description of these mixtures appears in Table 1.

LRs were calculated with propositions that included all known DNA donors in H1 and all unknowns in H2. These propositions maximise the potential effects of variability in modelling. The recorded values were the sub-source point estimate (no HPD interval) of the unified and stratified (across Caucasian, Asian, and Aboriginal sub-populations from [3]) LR.

A description of the mixtures used and some summary data for experiment 2 appears in table 1. Labelling the data in the graph led to a cluttered view where the vertical spread of log10LR became difficult to perceive. We invite the reader to use the average log10LR to identify the
mixtures if desired. Samples V1 to V15, and V17 are GlobalFiler™, Sample V16 is Profiler Plus™.

Table 1. A description of the mixtures used in experiment 2, the average log₁₀LR and the number of versions (including some developmental versions) tested.

Mixture label, NoC, ratios, and total template	Average log₁₀LR	Number of versions tested
V1 2p, 1:1 400pg	42.1	11
V2 2p, 2:1 400pg	53.6	11
V3 2p 1:1:1 50pg	37.2	11
V4 2p 2:1 50pg	34.4	11
V5 2p 10:1 50pg	28.1	11
V6 3p 1:1:1 50pg	27.5	11
V7 2p 1:1:1 50pg	31.9	11
V8 3p 3:2:1 50pg	31.7	11
V9 3p 3:2:1 50pg	30.9	11
V10 2p 20:1 100pg	47.9	11
V11 2p 20:1 100pg	43.4	11
V12 2p 50:1 50pg	30.6	11
V13 2p 100:1 100pg	30.6	11
V14 1p 100pg	13.9	6
V15¹ - GF 1p 100pg	14.8	6
V16² - PP 1p 100pg	9.3	6
V17³ - GF + PP (multi-kit) 1p 100pg	14.6	5
GF⁴ 1-2 1-2p (GT=2p) 100pg	-11.3	4

Experiment 3

A comparison of the log₁₀LRs for 32 mixtures using STRmix™ versions 2.8 and 2.9 was undertaken. The mixtures used appear in Table 2.

Table 2. The mixtures used in experiment 3.

1000pg 10-5-2-1	400pg_100-1 - 2 PCR	400pg_4-3-2-1 - GS
100pg - 10-5-2-1	100pg_1-1-1 - 3p to 4p	400pg_20-1 - GS
200pg - 20-10-10-1	100pg_1-1-1	400pg_200-1 - GS
400pg - 50-25-10-1	200pg_1-1-1 - GS	400pg_20-10-5-1 - Assume C123
3500x2 - 50pg - 1-1	200pg_10-5-2-1 - GS	50pg_1-1 - 2p
50pg_1-1-1 - 3p	400pg_1-1-1	50pg_5-1 - 2 2p to 3p
50pg_5 - 1 - 2 PCR	400pg_1-1-1 - GS	50pg_1-1-1 - 3p to 4p
200pg_50 - 1 - 2 PCR	400pg_3-2-1 - 3p to 4p	400pg_1-1 - 2p to 3p

¹ This is an artificially created single source sample made to contain the most common genotypes in Australia
² This is the same sample as V15
³ This is the two samples V15 and V16 run together using the multi-kits function
⁴ This is a sample treated using the varNoC function with options NoC = 1 or 2. Ground truth is NoC = 2. This is a 2p GF mixture with a major and minor. The person being compared is not a contributor and is excluded under 1p and favours exclusion under 2p
Results

Experiment 1. The sub-source LRs for the 178 H₁ true tests in the two versions are plotted in Figure 1. The sub-source LRs for the 17,572 H₂ true tests in the two versions are plotted in Figure 2.
Figure 1. x-y scatter plot of the results for the 178 H_1 true tests for Experiment 1. Four data points are signified by an arrow. These are examined in more detail within Table S1 of the Appendix. The $x = y$ and the $x = y \pm 1$ are shown.
Figure 2. x-y scatter plot of the results for the 17,572 H$_2$ true tests for Experiment 1.

The four data points examined in detail all require a drop-in under H$_1$. Additional notes on these four data points appears in the Appendix, Table S1.

Experiment 2:

The results of the retrospective comparison of LRs for the 18 validation profiles are shown in Figure 3.
Figure 3: comparison of LRs generated for 18 validation profiles tested in STRmix™ versions from V2.3 to V2.9 for Experiment 2. The $x = y$ and the $x = y \pm 1$ are shown.

Experiment 3.

The results for Experiment 3 appear in Figure 4.
Conclusion

There is a high degree of similarity in LRs for true contributors across multiple versions of STRmix™ that span 7 years of development (from V2.3 to V2.9). This is due to the fact that the underlying core models of STRmix™ that are used to describe DNA profile behaviour have remained stable across that time. Changes to modelling that have occurred in STRmix™ are generally to:

- Improve the performance of STRmix™ in modelling fringe cases,
- Expand the level of functionality in STRmix™ to accommodate a greater pool of DNA profiles of varying behaviour.

Taking this concept further, the main bulk of validation work that has been carried out on previous versions of STRmix™ are as applicable for current versions as they were for the version in which they were originally generated. The only exception to this is for those profiles that fall into the categories of fringe cases or previously uninterpretable profiles that the modelling improvements were targeted to address.

Figure 4. A plot of $\log_{10} LR$ for the mixtures described in Experiment 3 in STRmix™ V2.8 and V2.9. The $x = y$ and the $x = y \pm 1$ are shown.
References

[1] H. Kelly, J.-A. Bright, M. Kruijver, S. Cooper, D. Taylor, K. Duke, M. Strong, V. Beamer, C. Buettner, J. Buckleton, A sensitivity analysis to determine the robustness of STRmix™ with respect to laboratory calibration, Forensic Science International: Genetics 35 (2018) 113-122.

[2] L.E. Alfonse, A.D. Garrett, D.S. Lun, K.R. Duffy, C.M. Grgicak, A large-scale dataset of single and mixed-source short tandem repeat profiles to inform human identification strategies: PROVEDIt, Forensic Science International: Genetics 32 (2018) 62-70.

[3] D. Taylor, J.-A. Bright, C. McGovern, S. Neville, D. Grover, Allele frequency database for GlobalFiler(TM) STR loci in Australian and New Zealand populations, Forensic Science International: Genetics 28 (2017) e38-e40.
Appendix

Table S1. The four data points examined in detail.

Evidence	True donor tested	Log\(_{10}\)LR V2.5.10	Log\(_{10}\)LR V2.9.1
L1_K42K43_47	K42	7.1	3.4
L1_K44K45_27	K44	-30\(^5\)	8.0
L1_K42K43_4	K42	-30	7.4
L1_K46K47K48_41	K47	-30	0.0

Sample 1:

Examination of the comparison of L1_K42K43_47 with the true donor K42

Table S2. The LRs by locus for the two comparisons using V2.5.10 and V2.9.1

Locus	V2.5.10	V2.9.1								
	Pr(E	Hp)	Pr(E	Hd)	LR	Pr(E	Hp)	Pr(E	Hd)	LR
D3S1358	1.61E-02	1.19E-02	1.35E+00	1.66E-02	1.23E-02	1.35E+00				
vWA	6.08E-04	2.54E-04	2.40E+00	6.80E-04	2.62E-04	2.60E+00				
D16S539	1.32E-03	3.65E-04	3.63E+00	1.36E-03	3.86E-04	3.52E+00				
CSF1PO	3.07E-02	2.63E-02	1.17E+00	3.05E-02	2.64E-02	1.16E+00				
TPOX	5.11E-02	4.59E-03	1.11E+01	4.85E-02	4.31E-03	1.13E+01				
Yindel										
D8S1179	1.67E-02	2.46E-03	6.78E+00	2.05E-02	2.43E-03	8.43E+00				
D21S11	1.09E-03	1.36E-03	7.96E-01	1.16E-03	1.39E-03	8.32E-01				
D18S51	1.61E-03	3.48E-04	4.61E+00	1.75E-03	3.55E-04	4.94E+00				
DYS391										
D2S441	5.65E-03	2.75E-03	2.05E+00	6.02E-03	2.80E-03	2.15E+00				
D19S433	1.68E-03	7.63E-05	2.21E+01	1.56E-03	7.41E-05	2.11E+01				
TH01	6.17E-03	7.61E-03	8.11E-01	6.25E-03	7.58E-03	8.25E-01				
FGA	8.62E-06	5.81E-06	1.48E+00	8.35E-06	5.46E-06	1.53E+00				
D22S1045	1.20E-04	4.13E-05	2.90E+00	1.16E-04	4.07E-05	2.85E+00				
D5S818	4.20E-02	4.91E-02	8.56E-01	4.52E-02	4.81E-02	9.38E-01				
D13S317	1.23E-02	2.79E-02	4.42E-01	1.13E-02	2.77E-02	4.08E-01				
D7S820	1.38E-02	3.75E-03	3.69E+00	1.33E-02	3.77E-03	3.52E+00				
SE33	4.06E-05	7.19E-06	5.65E+00	1.62E-09	2.15E-06	7.51E-04				
D10S1248	1.53E-03	2.17E-03	7.06E-01	1.45E-03	2.29E-03	6.30E-01				
D1S1656										
D12S391	8.24E-03	5.28E-03	1.56E+00	8.01E-03	5.40E-03	1.48E+00				
D2S1338	1.86E-03	3.50E-04	5.31E+00	1.81E-03	3.40E-04	5.31E+00				
Sub-Sub-Source	LR	2.77E+07	LR	4.58E+03						
Sub-source	LR	1.38E+07		2.29E+03						

\(^5\) -30 is used when the LR is 0 and hence the log cannot be calculated.
The largest difference is at SE33 (highlighted in Table 2).

Table S3 The peak heights and alleles at the SE33 locus above AT.

Allele	Height	mwt	
SE33	16	179	354.24
SE33	17	1274	358.27
SE33	20	118	370.45
SE33	21	1157	374.5
SE33	22	111	378.65
SE33	25.2	127	392.53

Table S4. The genotypes of the two true donors to L1_K42K43_47

Reference ID	SE33
K42 | 25.2 | 25.2 |
K43 | 17 | 21 |

The 22 peak within the evidence file is either a large forward stutter or a drop-in.

Table S5. The genotype probability distributions for the SE33 locus (note the drop-in peaks for V2.5 have been inferred from the genotype set and are not part of the genotype pdf file as they are in V2.9)

SE33 V 2.5.10	Genotype C1	Genotype C2	Drop-in	Weight
[17,21]	[22,25.2]		22	0.807682139
[17,21]	[16,25.2]	22	0.140840426	
[17,21]	[17,25.2]	22	0.017502459	
[17,21]	[25.2,25.2]	22	0.012024451	
[17,21]	[21,25.2]	22	0.011995398	
[17,21]	[-1,25.2]	22	0.005961737	
[17,21]	[20,25.2]	22	0.002662012	
[17,21]	[16,22]	25.2	0.001194819	
[17,21]	[16,17]	22, 25.2	3.30E-04	
[17,21]	[22,22]	25.2	8.13E-05	

SE33 V2.9.1	Genotype C1	Genotype C2	Drop-in	Weight
[17,21]	[22,25.2]		25.2	0.998367575
[17,21]	[16,22]	25.2	4.97E-04	
[17,21]	[16,25.2]	22	2.75E-04	
[17,21]	[17,22]	25.2	2.70E-04	
[17,21]	[17,25.2]	22	2.12E-04	
[17,21]	[21,25.2]	22	1.94E-04	
[17,21]	[25.2,25.2]	22	9.56E-05	
[17,21]	[-1,25.2]	22	4.02E-05	
[17,21]	[21,22]	25.2	3.45E-05	
[17,21]	[22,22]	25.2	1.41E-05	
The genotype combinations that align with the two known contributors are highlighted in Table S5. The difference in LR is that STRmix™ V2.9 is allowing drop-in for 22 more rarely.

Sample 2:
Examination of the comparison of L1_K42K43_4 with the true donor K42
The LR for TH01 is 0 for V2.5. The true donors are 8,9.3 and 9,9.3

Table S6 The peak heights and alleles at the TH01 locus above AT.

TH01	Height	mwt
7	149	191.23
8	1229	195.31
9	147	199.3
9.3	1681	202.39

TH01 stutter regression is SR = 0.007541 + 0.001577 × LUS. Hence the expected SR for the 8 allele is about 0.020. The observed SR is 0.12. STRmix™ V2.5 has all the weight on genotype 7,9 for the minor. V2.9 allows the 7 to be drop-in.

Table S7. The genotype probability distributions for the TH01 locus

V2.5.10	Genotype C1	Genotype C2	Drop-in	Weight
	[8,9.3]	[7,9]		
V2.9.1	[8,9.3]	[7,9]	7	1.51E-04
	[8,9.3]	[9,9.3]	7	1.51E-04
	[8,9.3]	[7,9.3]	9	5.12E-05
	[8,9.3]	[7,8]	9	3.35E-05

The difference is that STRmix™ V2.9 is allowing drop-in for the 7 whereas V2.5 is not. Neither model the 7 as a large stutter.

Sample 3:
Examination of the comparison of L1_K44K45_27 with the true donor K44
The LR is 0 at D13S317 in V2.5.10

Table S8. The genotypes of the two true donors to L1_K44K45_27 at D13S317

Reference ID	D13S317	
K44	8	8
K45	12	13
Table S9. The peak heights and alleles at the D13S317 locus above AT.

Allele	Height	mwt
D13S317 8	849	210.83
D13S317 12	259	227.02
D13S317 13	410	231.1
D13S317 14	120	235.19

Table S10. The genotype probability distributions for the D13S317 locus

Genotype C1	Genotype C2	Drop-in	Weight
[8,13]	[12,14]		0.455
[8,12]	[13,14]		0.199
[12,13]	[8,14]		0.126
[8,14]	[12,13]		0.081
[12,14]	[8,13]		0.070
[13,14]	[8,12]		0.069

V2.9.1

Genotype C1	Genotype C2	Drop-in	Weight
[8,13]	[12,14]		0.465
[8,12]	[13,14]		0.181
[12,13]	[8,14]		0.136
[8,14]	[12,13]		0.083
[13,14]	[8,12]		0.071
[12,14]	[8,13]		0.060
[8,13]	[8,12]	14	8.80E-04
[8,8]	[12,13]	14	7.92E-04
[12,13]	[8,8]	14	5.14E-04
[8,12]	[8,13]	14	2.96E-04

The difference is that STRmix™ V2.9 is allowing drop-in whereas V2.5 is not.

Sample 4:

Examination of the comparison of L1_K46K47K48_41 with the true donor K47

The LR for FGA is 0 in V2.5.10.

Table S11. The genotypes of the three true donors to L1_K46K47K48_41 at FGA

Reference ID	FGA
K46	25
K47	21
K48	19

Table S12. The peak heights and alleles at the FGA locus above AT.

Allele	Height	mwt
The analysis was run as NoC = 2 because that was the assignment from the epg. When run this way H₃ needs a drop-in of one of 19, 25, or 26.

Table S13: The genotype probability distributions for the FGA locus (note the drop-in peaks for V2.5 have been inferred from the genotype set and are not part of the genotype pdf file as they are in V2.9)

FGA V2.5	Genotype C1	Genotype C2	Drop-in	Weight
[25,26]	[19,21]			0.183
[19,21]	[25,26]			0.181
[21,26]	[19,25]			0.170
[19,25]	[21,26]			0.165
[19,26]	[21,25]			0.151
[21,25]	[19,26]			0.148
[21,26]	[21,25]	19		4.19E-04
[-1,25]	[21,26]	19		2.08E-04
[25,25]	[21,26]	19		9.03E-05
[25,26]	[21,21]	19		6.81E-05

FGA V2.9

[19,21]	[25,26]			0.199
[21,26]	[19,25]			0.181
[25,26]	[19,21]			0.162
[19,25]	[21,26]			0.160
[19,26]	[21,25]			0.155
[21,25]	[19,26]			0.145
[21,26]	[25,26]	19		9.21E-05
[-1,21]	[19,26]	25		1.60E-05
[21,25]	[-1,19]	26		8.23E-06
[19,25]	[-1,26]	21		5.15E-06

The difference is that STRmix™ V2.9 is allowing the 21,22 (it is aligned with the -1,21) by allowing drop-in of the 25. STRmix™ V2.5 has allowed drop-in of the 19 only.