Original Article

Study of the Hepatoprotective Activity of Methanolic Extract of Feijoa sellowiana Fruits Against MDMA using the Isolated Rat Liver Perfusion System

Mohammad Karami*a, Sodabah Saeidniab and Anahita Nosratic

*aDepartment of Toxicopharmacology, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran. bMedical Plants Research Center, Tehran University of Medical Sciences, Tehran, Iran. cPathology Department, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.

Abstract

Liver injury induced by viruses, chemicals and drugs can be protected by different medicinal plants. Feijoa sellowiana (Myrtaceae) is an evergreen bush native to southern areas of South America, as well as Iran where the fruits are very popular. Feijoa has shown a potent antimicrobial effect. Moreover, the antioxidant activity of total Feijoa extract has also been reported. MDMA or ecstasy is a ring-substituted amphetamine derivative which has been abused as a widespread recreational drug by the young generation. Liver is a target organ for MDMA toxicity. In fact, this sense MDMA is metabolized by cytochromes P450 2D, 2B and 3A and reactive metabolites are readily oxidized to the corresponding o-quinones and reactive oxygen species (ROS).

This study investigated whether methanolic Feijoa sellowiana fruits can produce biochemical changes using the Isolated Rat Liver Perfusion (IRLP) system. The liver was perfused with different concentrations of the extract (10, 20, 40, 50, 100 mg/kg), added to the buffer and perfused within 2 h. During the perfusion we tried to find out the antioxidant activity or liver protective effect of Feijoa, by determining amino-transferases activities (SGOT and SGPT) and glutathione reductase (GSH) level in comparison with the positive and negative controls. Subsequently, sections of liver tissue were examined for any histopathological changes. The results revealed that the activities of SGOT and SGPT were seriously decreased and GSH level was significantly increased by the Feijoa extract. Overall, necrosis in the liver parenchyma was decreased. These findings revealed that Feijoa sellowiana is an effective hepatoprotective plant.

Keywords: Feijoa sellowiana; Liver perfusion; Kerbs-Henseleit buffer; MDMA; SGOT; SGPT; GSH.

Introduction

Feijoa sellowiana (Myrtaceae) is an evergreen bush native to southern areas of South America, where it is widely distributed. Owing to its easy adaptability in subtropical regions, nowadays it is extensively cultivated in many countries (1), and also in Iran where the fruits are very popular. Although the chemical composition of Feijoa has been clearly reported (2-6), in-depth studies on its constituents have barely been carried out. Feijoa has shown potent antimicrobial and antifungal activities and a sensible activity...
Animals (CPCSEA). The Institutional Animal Ethical Committee (IAEC) of Mazandaran University of Medical Sciences approved the proposal.

Feijoa fruits were collected from Fajr citrus experimental institute in autumn 2010.

Fruit peels were dried at room temperature and coarsely grounded before extraction. A known amount of each part was extracted at room temperature, using the by percolation method, with methanol and water; methanol/water; (80:20, 400 mL × 3 times) as the extraction solvent. The resulting extract was concentrated in a rotary vacuum, until a crude solid extract was obtained. The extract was freeze-dried for complete solvent removal (16). The extract was dissolved in phosphate buffer (pH = 7.4) for pharmacological studies. The fruit peels aqueous extract and fruit peels methanolic extract (FM, 20.5%) were obtained, respectively.

Experimental design
Rats were divided into five treatment groups and control groups. Each group contained four male rats, and whose livers were perfused by a single dose of 10, 20, 40, 50 and 100 mg/kg of aqueous extract of aerial parts of Feijoa sellowiana, respectively (total = 7 groups). Control livers were perfused with the perfusion buffer. Following the preliminary study, a dose of 100 mg/kg was chosen for the remaining of the study in order to evaluate the hepatoprotective activity of Feijoa (17).

Buffer
Perfusion fluid was made of Kerbs-henseleit buffer. The perfusion medium consisted of 118.9 mM NaCl, 4.76 mM KCl, 1.19 mM KH₂PO₄, 2.55 mM CaCl₂, and 24.8 mM NaHCO₃ at 37°C. Glucose (1% W/V) was usually added (18). The perfusion medium was gassed continuously with carbogen (95%O₂, 5%CO₂) (Figure 1).

Perfusion conditions and parameters of liver viability
Temperature, perfusion pressure, flow rate and perfusion fluid pH were closely monitored during the perfusion time, particularly during
Methanolic Extract of Feijoa sellowiana

![Graph showing SGOT & SGPT activity (I.U) vs Dose Of Extract (mg/kg)]

Figure 1. Activity of ALT (Alanine transferase) and AST (Asparate transferase) enzymes methanolic fruit extract of Feijoa sellowiana at different concentrations. Values are presented as mean ± SEM (N = 5), ***p < 0.001 with respect to control, (ANOVA followed by Newman–Keuls multiple comparisons test).

The first 30 min of equilibration (18). These parameters were initially checked every 10 to 15 min and the experiment did not begin until they had reached constant and acceptable values. The temperature in the perfusion system was also set and maintained at 37°C. Perfusion pressure was not raised above 10-15 cm of water, with a flow rate of approximately 2 mL/min/g liver weight, in order to provide adequate oxygenation. The perfusion fluid pH was always set between 7.2 and 7.4, by adjusting the CO₂ gas. As soon as the perfusion began, the liver displayed an even light-brown color. The liver was soft and kept moistened. Serum amino-transferases activities (ALT and AST) served as indicators of liver viability during perfusion, and was determined in samples of the perfusion medium.

Biochemical determinations

The activities of Aspartate aminotransferase (AST) activity and Alanine aminotransferase (ALT) activity in samples of perfusion medium were assayed using a commercial Kit of Zist chimie, (Tehran, Iran). Reduced glutathione (GSH) was estimated by the Ellman’s method (19).

Histological studies

The liver was completely excised and all the extraneous tissue was meticulously stripped off. After that multiple samples were taken from each liver (mean diameter of 3 mm) and placed in 10% neutral buffered formalin. The liver was cut into small pieces, then sections were prepared and stained by Hematoxylin - Eosin and examined blindly for histopathological changes by an expert pathologist.

Surgery

The rats were anesthetized with ether-Heparin (500 unit; IP) in order to prevent blood clotting prior to anesthesia (20). First of all an incision was made along the length of the abdomen to expose the liver. Next sutures were placed loosely around the common bile duct, which was then was annulated with PE-10 tubing and secured. Sutures were placed loosely around the inferior vena cava, above and below the renal veins, and the distal suture around the vena cava was tightened and an 18 g polyethylene catheter was inserted, and placed above the renal vein. Then, diaphragm was incised and the inferior vena cava ligated suprahepatically. At the end, following attachment of the perfusion tubing to-cannulate, the liver was perfused in-situ, carefully, through the portal vein (20).

Data analysis

Statistical analysis was performed using the SPSS for Windows (Ver.10, SPSS, Inc. Chicago,
USA) software. All values were analyzed by the one-way analysis of variance (ANOVA) test and expressed as mean ± standard error of the mean (SEM), in 5 rats.

Student-Newman-Keuls test was used to evaluate the significance of the obtained results. \(P < 0.05 \) was considered to be significant.

Results

Activity changes in the serum amino-transfereases enzymes

This study demonstrated that the methanolic extract of Feijoa fruits produced statistically significant results, such as a decrease in the activity of amino-transfereases enzymes dose-dependently \((p < 0.01) \) at 24th h, in comparison with the positive control group at a single dose of 10, 20, 40, 50 and 100 mg/kg (Figure 2).

Hepatic Glutathione reductase (GSH) level changes

Level of blood GSH of rats injected by methanolic extract of Feijoa fruit was relatively increased, compared with the positive control group. Antioxidant effect of Feijoa has been indicated to inhibit the hepatotoxic effect of MDMA \((p < 0.05) \), with respect to the control group (Figure 3).

Light microscope observation

Histopathological studies, using a light microscope, showed a meaningful decrease in hepatocellular damage, including necrosis and inflammatory cells infiltration, due to the use of the methanolic extract of Feijoa Fruit (Figure 4d), compared with the control group (Figure 4a). In addition, other histopathological parameters, such as the number of Kupffer and mononuclear cells, changed significantly with the methanolic extract of Feijoa fruit (Table 1).

Discussion

The liver has been identified as the most important target tissue for MDMA in mice (21). In order to elucidate the MDMA-induced hepatotoxicity, the effects of MDMA on transaminase enzyme activity and total glutathione mouse liver were determined. Moreover, the antioxidant effect antioxidant of Feijoa on MDMA–induced hepatotoxicity was assessed.

In the present study, we pondered upon how the hepatotoxicity of MDMA can be prevented or reduced. The activity of aminotransferase enzyme was increased significantly, which correlated well with decrease in glutathione (22). On the other hand, after the use of aqueous and methanolic extracts of Feijoa fruit as, an antioxidant, the hepatotoxic effect on enzymes was reduced by up to 40-50% compared to the control group. Glutathione depletion has been shown to correlate somehow with the
lipid peroxidation in liver. It is believed that MDMA in ecstasy, is one of the primary toxic constituents. Other toxic constituents have also been identified, including MDA and DOM. In this study, MDMA induced formation of reactive oxygen species and an oxidative stress, resulting in lipid peroxidation (21, 23). Further studies, however, are needed to elucidate the exact mechanism by which MDMA induces hepatotoxicity. Moreover, MDMA was also shown to be an inhibitor of glutathione peroxidase, which catalyzes the destruction of \(\text{H}_2\text{O}_2 \) of lipid hydroperoxidase by reduced glutathione. Therefore, glutathione peroxidase inhibition can diminish GSH activity and actually resulted in an accelerated lipid peroxidation (24, 25). Antioxidants such as vitamin E and selenium have been proposed to prevent membrane damage of lipid peroxidation, not only through prohibiting glutathione peroxidation, but also by allowing hydrogen to be abstracted from their own structure (rather than from the allylic hydrogen of an unsaturated lipid). Thus, interrupting the free radical chain reaction (26). Treatment with methanolic extract of \textit{Feijoa sellowiana} fruit has been exhibited to importantly decrease the toxicity of MDMA (Table 1).

![Figure 3. Photomicrograph of lobules from control groups and fruit extract of \textit{Feijoa sellowiana} at differences concentration–treated liver. Staining of negative Control shows that cytoplasm was acidophilic and surrounded by a bright basophilic nucleus (a). MDMA (5 mg/kg) or positive control showed limited changes in lobules of liver and hepatocellular necrosis, with infiltration of mononuclear cells and accumulation of necrotic Kupffer cells with pyknotic nuclei (b). Histo-pathological changes of aqueous (for comparison) and methanolic extract of \textit{Feijoa sellowiana} fruit at a single dose of 100 mg/kg, respectively (c and d).]

Table 1. Histo-pathological effects of the methanolic extract of \textit{Feijoa sellowiana} fruit at different concentrations of 10, 20, 40, 50, 100 mg/kg.

Histopathological Parameters	Negative Control (10mL/Kg)	\textit{Feijoa sellowiana} (mg/kg)	Positive Control (5mg/kg)
Kupffer cells	+	+3 +3 +3 +2* +2**	+3*
Edematous cells		+1 +1 +1 +2* +2**	+4*
Mononuclear cells	+	- +1 +1 +2 +2	+2*
Hemorrhage	_	+1 +1 +1 +2* +3**	+4
Necrosis	_	- +1 +1 +2* +3**	+5*

-no effect, +1 minor effect, +2 medium effect, +3 major effect, +4 high effect, +5 extra-high effect. *p < 0.05, **p < 0.01, significantly different from the control group using Fisher exact test. Data are presented as means of three replicates.
as well as the fact that this extract may have good reductive capability for reducing Fe$^{3+}$ to Fe$^{2+}$ by donating an electron Fe$^{2+}$ chelating activity and anti-lipid peroxidation activity (27). All in all, other extensive investigations on individual compounds, regarding their different in-vivo antioxidant activities, are required to be conducted.

Acknowledgement

This research was partially supported by a grant from the research council of Mazandaran University of Medical Sciences, Iran. Also, we are indebted to Fajr citrus experimental fields manager for his friendly cooperation.

References

(1) Giuseppe R and Corrado T. Secondary metabolites from the leaves of Feijoa sellowiana Berg. Phyto. (2004) 65: 2947-2951.
(2) Herrmann K. Review on chemical composition and constituents of some important exotic fruits. Z Lebensm Unters Forsch. (1981) 173: 47-60.
(3) Romero-Rodriguez MA, Vazquez-Oderiz ML, Lopez-Hernandez J and Simal-Lozano J. Composition of babaco, Feijoa, passionfruit and tamarillo produced in Galicia (North-west Spain). Food Chem. (1994) 49: 251-255.
(4) Foo LY and Porter LJ. The structure of tannins of some edible fruits. J. Sci. Food Agric. (1981) 32: 711-716.
(5) Ielpo MT, Basile A, Miranda R, Moscatelli V, Nappo C, Sorbo S, Laghi E, Ricciardi MM, Ricciardi L and Vuotto ML. Immunopharmacological properties of flavonoids. Fitoterapia. (2000) 71: 101-109.
(6) Shaw GJ, Allen JM and Yates MK. Volatile flavor constituents of Feijoa (Feijoa sellowiana) analysis of fruit flesh. J. Sci. Food Agric. (1990) 50: 357.
(7) Basile A, Vuotto ML and Violante U. Antibacterial activity in Actinidia chinensis, Feijoa sellowiana and Aeria caffra. Int. J. Antimicrobial Agents. (1997) 8: 199-203.
(8) Motohashi N, Kawase M, Shirataki Y. Biological activity of feijoa peel extracts. Anticancer Res. (2000) 20: 4323-4329.
(9) Vuotto ML, Basile A, Moscatelli V, Desole P, Castaldo-cobianchi R, Laghi E and Ielpo MTL. Antimicrobial and antioxidant activities of Feijoa sellowiana fruit. Int. J. Antimicrob Agents. (2000) 123: 197-201.
(10) Bontempo P, Mita L, Miceli M, Doto A, Nebbioso A, De Bellis F, Conte M, Minichielli A, Manzo F, Carafa V, Basile A, Rigano D, Sorbo S, Castaldo C, Rosa S, Ettore M, Ferrara F, De Simone M, Vietri M, Cioffi M, Sica V, Bresciani F, de Lera AR, A L and Molinari AM. Feijoa sellowiana derived natural Flavone exerts anti-cancer action displaying HDAC inhibitory activities. Int. J. of Bioch. Cell Biology. (2007) 39:1902-1914.
(11) Nakashima H. Biological activity of Feijoa peel extracts. Kagoshima University Research Center for the Pacific Islands. Occasional Papers. (2001) 34: 169-175.
(12) Carvalho M, Carvalho F, Remiao F, de Lourdes PM, Pires-Das-Neves R, de Lourdes BM. Effect of 3,4-methylenedioxy- methamphetamine (ecstasy) on body temperature and liver antioxidant status in mice: influence of ambient temperature. Arch. Toxicol. (2002) 76: 166-172.
(13) Kalant H. The pharmacology and toxicity of ecstasy (MDMA) and related drugs. Canad Med. Ass. J. (2001)165: 917-928.
(14) Tucker GT, Lennard MS, Ellis SW, Woods HF, Cho AK, Lin LY, Hiratsuka A, Schmitz DA and Chu TY. The demethylation of Methylenedioxyamphetamine (ecstasy) by debrisoquine hydroxylase (CYP2D6). Biochem Pharm. (1994) 47: 1151-1156.
(15) Carvalho M, Hawksworth G, Milhares N, Borges F, Monks TJ, Fernandes E, Carvalho F and Bastos ML. Role of metabolites in MDMA (ecstasy)-induced nephrotoxicity: an in-vitro study using rat and human renal proximal tubular cells. (2002) 76: 581-588.
(16) Samsasamshariat H, Moattar F and Asharypour S. Treatment with plants. Tehran: Marshal Press. (1981) 85.
(17) Ahmet CÖ, Ufuk M, Hatice Ö, Nureddin C, Remzi E and Hanefi Ö. Anti-inflammatory and Hepatoprotective Activities of Trigonella foenum-graecum L. Pharmacologyonline. (2008) 2: 126-132.
(18) Wolkoff AW. The isolated perfused rat liver: preparation and application. Analytical. Biochemistry. (1987) 167: 1-14.
(19) Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys.(1959) 82:70-71.
(20) Bemeyer HW, Bernt E. Practical Clinical Biochemistry:Varley H, Gowenlok AH, and Bell M, eds. William Heinemann Medical books Ltd. London. (1980) 741-742.
(21) Cheung K, Hickman PE, Potter JM, Walker NJ, Jericho M, Haslam R and Roberts M. An optimized model for rat perfusion studies. J. Surgical Res. (1996) 66: 81-89.
(22) Carvalho M, Carvalho F and Bastos ML. Is hyperthermia the triggering factor for hepatotoxicity induced by 3, 4-methylenedioxyamphetamin (ecstasy)? An in-vivo study using freshly isolated mouse hepatocytes. Arch. Toxicol. (2001) 74: 789-793.
(23) Hibayama SY. The isolated perfused rat liver: enhancement of endotoxin hepatotoxicity. Exp. Toxicol Pathol. (1992) 44: 205-208.
(24) Khajeamiri AR, Kobafard F, Ahmadkhaniha R and Mostashari G. Profiling of ecstasy tablets seized in Iran. Iranian J. Pharm. Res. (2011) 10: 211-220.
(25) Torres AM, Ochoa JE and Elias MM. Role of lipid
peroxidation on renal dysfunction associated with glutathione depletion. *Toxicology*. (1991) 70:163-172.

(26) Maddaiah VT. Glutathione correlates with lipid peroxidation in liver mitochondria of triiodothyronine-injected hypophysectomized rats. *FASEB J.* (1990) 4: 1513-1518.

(27) Bus FS and Gibson RF. 1979. Lipid Peroxidation and its Role in Toxicology. In: Hadjson ed. Reviews in Biochemical Toxicology North Holland: Elsevier. (1979) 1249-54.

(28) Donfack JH, Njayou FN, Rodrigue TK, Chuisseu DDP, Tchana NA, Vita Finzi P, Tchouanguep MF, Ngadjui TB and Moundipa FP. Study of a hepatoprotective and antioxidant fraction from Erythrina Senegalensis stem bark extract: *In-vitro and in-vivo.* Pharmacologyonline. (2008) 1: 120-130.

This article is available online at http://www.ijpr.ir