Co-production of microbial oil and exopolysaccharide by the oleaginous yeast

Sporidiobolus pararoseus grown in fed-batch culture

Mei Han\(^1\), Jian-Zhong Xu\(^1\,*\), Zhen-Min Liu\(^2\), He Qian\(^3\), Wei-Guo Zhang\(^1\)

1: The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi 214122, Jiangsu Province, China

2: State Key Laboratory of Dairy Biotechnology, Technology Center Bright Dairy & Food Co., Ltd, 1518# Jiangchang West Road, Shanghai 200436, China

3: School of food science and technology, Jiangnan University, 1800# Lihu Road, Wuxi-214122, Jiangsu Province, China

* Corresponding authors:

Jian-Zhong Xu; E-mail: xujianzhong@jiangnan.edu.cn; Tel: +86-510-85329312; Fax: +86-510-85329312

Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2018
1 Thin layer chromatography

The preparation of samples was carried out according to the reports of Han et al.1. When analyzing the fat soluble nutrients in \textit{S. pararoseus} oil by TLC, extracts were spotted on a silica gel plate (60GF254 plate; Amresco, Ohio, USA) with benzinum:ethyl acetate:acetone (1:1:1, v/v) solvent as developing solvent. The standard sample was used to compare spots with extracts.

2 The separation of the fat soluble nutrients in \textit{S. pararoseus} oil by High-performance chromatography (HPLC)

The major components were quantified by a high-performance liquid chromatography (HPLC; Hitachi L-2000, Japan) equipped with a photodiode array detector and using C\textsubscript{18} column (25 mm×4.6 mm; 4.6 μm particle size; Agilent, USA). Isocratic elution analysis was carried out with acetonitrile:tetrahydrofuran=60:40 described in our laboratory previous study2.

3 The component identification by mass spectrometry (HPLC-MS)

The identifications of oils and carotenoids were analyzed by a mass spectrometry (MS) equipped with a Waters ACQUITY PDA detector and BEH C\textsubscript{18} column (2.1 mm×100 mm and filler diameter is 1.7 μm; Waters, USA). The detail of operation was carried out according to the description of Han et al.3.
Table S1 The composition of exopolysaccharide produced by different yeasts

Yeast strain	Molecular weight (kDa)	Monosaccharide composition	References
Sporobolomyces salmonicolor	AL 1	>1000 54.1% of glucose, 42.6% of mannose, and 3.3% of fucose	4, 5
Cryptococcus laurentii	AL 100	4.2 61.1% of arabinose, 15.0% of mannose, 12.0% of glucose, 5.9% of galactose, and 2.8% of rhamnose	6
Cryptococcus flavus A51	1010	55.1% of mannose, 26.1% of glucose, 9.60% of xylose, and 1.90% of galactose	7
Rhodotorula acheniorum MC	Component 1: 310	Component 1: 92.8% of mannose	8
	Component 2: 249	Component 2: 90.6% of mannose	
Rhodotorula glutinis KCTC 7989	100-380	85% of neutral sugars (mannose:fucose:glucose:galactose=67:2:1:1) and 15% of uronic acid	9
Pichia (Hansenula) holstii	NRRL Y-2448	5000-3900 mannose:phosphorus:potassium=5:1:1	10, 11
Sporidiobolus pararoseus JD-2	1300	galactose:glucose:mannose=16:8:1	This study
Figure S1. The scheme for co-production of exopolysaccharide and oil by *S. pararoseus* JD-2.
Figure S2. The sample and its thin-layer chromatography of oil produced by *S. pararoseus* JD-2.
Figure S3. The main compositions of oil produced by *S. pararoseus* JD-2 separated by isocratic elution (A)
and by gradient elution (B). Chromatographic peaks: peak 1 - Squalene; peak 2 - β-carotene; peak 3 - γ-carotene; peak 4-1-4-6 - Ergosterol ester; peak 5 - Torulene; peak 6 - Triglyceride; peak 7 - Free fatty acid; peak 8 - Ergosterol; peak 9 - Torularhodin. The red frame represents the same composition, and the springgreen frame represents data amplification.
Figure S4. HPLC-MS and UV spectrum of squalene (A), ergosterol (B) and ergosterol esters (C).
Figure S5. The main compositions of fat soluble nutrients in *S. pararoseus* oil separated by HPLC.
Supplementary References

1. M. Han, Z. Y. Xu, C. Du, H. Qian and W. G. Zhang, *Bioproc Biosyst Eng*, 2016, 39, 1425-1433.
2. Q. Shi, H. Wang, C. Du, W. Zhang and H. Qian, *Anal. Sci.*, 2013, 29, 997-1002.
3. M. Han, Q. He and W. G. Zhang, *Prep Biochem Biotechnol*, 2012, 42, 293-303.
4. S. Dimitrova, K. Pavlova, L. Lukanov, E. Korotkova, E. Petrova, P. Zagorchev and M. Kuncheva, *Appl Biochem Biotech*, 2013, 169, 301-311.
5. A. Poli, G. Anzelmo, G. Tommonaro, K. Pavlova, A. Casaburi and B. Nicolaus, *Folia Microbiol*, 2010, 55, 576-581.
6. K. Pavlova, S. Rusinova-Videva, M. Kuncheva, M. Kratchanova, M. Gocheva and S. Dimitrova, *Appl Biochem Biotech*, 2011, 163, 1038-1052.
7. K. Pavlova, I. Panchev, M. Krachanova and M. Gocheva, *Folia Microbiol*, 2009, 54, 343-348.
8. K. Pavlova and D. Grigorova, *Food Res Int*, 1999, 32, 473-477.
9. D. H. Cho, H. J. Chae and E. Y. Kim, *Appl Biochem Biotech*, 2001, 95, 183-193.
10. A. Jeanes, J. E. Pittsley, P. R. Watson and R. J. Dimler, *Arch Biochem Biophys*, 1961, 92, 343-350.
11. L. A. Parolis, H. Parolis, L. Kenne, M. Meldal and K. Bock, *Carbohydr. Res.*, 1998, 309, 77-87.