Nathanson, M. B.
Congruence classes and maximal nonbases. (English) Zbl 1463.11022
Acta Math. Hung. 161, No. 2, 768-779 (2020).

Summary: The set A is an asymptotic nonbasis of order h for an additive abelian semigroup X if there are infinitely many elements of X not in the h-fold sumset hA. For all $h \geq 2$, this paper constructs new classes of asymptotic nonbases of order h for \mathbb{Z} and for \mathbb{N}_0 that are not subsets of maximal asymptotic nonbases.

MSC:
11B13 Additive bases, including sumsets
11B05 Density, gaps, topology
11B34 Representation functions
11B75 Other combinatorial number theory
11A07 Congruences; primitive roots; residue systems

Keywords:
asymptotic basis; asymptotic nonbasis; maximal asymptotic nonbasis; additive number theory

Full Text: DOI arXiv

References:
[1] Deshouillers, J.-M; Grekos, G., Propriétés extrémales de bases additives, Bull. Soc. Math. France, 107, 319-335 (1979) · Zbl 0414.10054 · 10.24033/bsmf.1900
[2] Erdős, P.; Nathanson, MB, Maximal asymptotic nonbases, Proc. Amer. Math. Soc., 48, 57-60 (1975) · Zbl 0296.10031 · 10.1090/S0002-9939-1975-0357363-0
[3] Erdős, P.; Nathanson, MB, Oscillations of bases for the natural numbers, Proc. Amer. Math. Soc., 53, 2, 253-258 (1975) · Zbl 0319.10066 · 10.1090/S0002-9939-1975-0384739-8
[4] Erdős, P.; Nathanson, MB, Partitions of the natural numbers into infinitely oscillating bases and nonbases, Comment. Math. Helv., 51, 171-182 (1976) · Zbl 0357.10029
[5] Erdős and M. B. Nathanson, Nonbases of density zero not contained in maximal nonbases, J. London Math. Soc. (2), 15 (1977), 403-405 · Zbl 0357.10029
[6] Erdős, P.; Nathanson, MB, Bases and nonbases of square-free integers, J. Number Theory, 11, 197-208 (1979) · Zbl 0409.10042 · 10.1016/0022-314X(79)90039-8
[7] Erdős and M. B. Nathanson, Problems and results on minimal bases in additive number theory, in: Number Theory (New York, 1984-1985), Lecture Notes in Math., vol. 1240, Springer (Berlin, 1987), pp. 87-96
[8] Hennefeld, J., Asymptotic nonbases which are not subsets of maximal asymptotic nonbases, Proc. Amer. Math. Soc., 62, 23-24 (1977) · Zbl 0347.10041 · 10.1090/S0002-9939-1977-0506141-X
[9] Ling, D., A note on asymptotic nonbases, Bull. Aust. Math. Soc., 95, 1-4 (2017) · Zbl 1390.11042 · 10.1017/S0004972716000678
[10] Ling, D., A construction of maximal asymptotic nonbases, Int. J. Number Theory, 14, 4, 919-923 (2018) · Zbl 1425.11017 · 10.1142/S1793042118500550
[11] Nathanson, MB, Minimal bases and maximal nonbases in additive number theory, J. Number Theory, 6, 324-333 (1974) · Zbl 0287.10051 · 10.1016/0022-314X(74)90028-6
[12] M. B. Nathanson, s-maximal nonbases of density zero, J. London Math. Soc. (2), 15 (1977), 29-34 · Zbl 0345.10028
[13] M. B. Nathanson, Additive problems in combinatorial number theory, in: Number Theory (New York, 1985-1988), Lecture Notes in Math., vol. 1383, Springer (Berlin, 1989), pp. 123-139
[14] M. B. Nathanson, Problems in additive number theory. III, in: Combinatorial Number Theory and Additive Group Theory, Adv. Courses Math. CRM Barcelona, Birkhäuser Verlag (Basel, 2009), pp. 279-297 · Zbl 1221.11023
[15] Nathanson, MB; Sárközy, A., Metric theorems on minimal bases and maximal nonbases, Studia Sci. Math. Hungar., 32, 207-226 (1996) · Zbl 0864.11009

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.