Photoionization of Cl-like Argon using the Breit-Pauli R-matrix method

Tyndall, N. B., Ramsbottom, C. A., & Hibbert, A. (2015). Photoionization of Cl-like Argon using the Breit-Pauli R-matrix method. Journal of Physics: Conference Series, 635, [092115]. https://doi.org/10.1088/1742-6596/635/9/092115

Published in:
Journal of Physics: Conference Series

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2015 The Authors
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence (https://creativecommons.org/licenses/by/3.0/). Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Photoionization of Cl–like Argon using the Breit–Pauli R–matrix method

This content has been downloaded from IOPscience. Please scroll down to see the full text.
2015 J. Phys.: Conf. Ser. 635 092115
(http://iopscience.iop.org/1742-6596/635/9/092115)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 143.117.193.21
This content was downloaded on 08/04/2016 at 12:35

Please note that terms and conditions apply.
Photoionization of Cl–like Argon using the
Breit–Pauli R–matrix method

N. B. Tyndall†1, C. A. Ramsbottom†2, A. Hibbert†3,

* School of Mathematics & Physics, The Queen’s University of Belfast, Belfast BT7 1NN, Northern Ireland

Synopsis Here we present the photoionization cross sections for the ground and metastable states of Cl–like Argon by exploiting the fully relativistic Breit–Pauli R–matrix computer codes to determine these transitions of interest. We compare our work with previous theoretical and experimental results and present a detailed investigation into the model of Ar III, the resonant structure and identification process.

Investigation into the structure of ionic targets is essential for the generation of accurate radiative transitions, of which the bound-free photoionisation (PI) process is to be discussed. Such data is useful in modelling various synthetic spectra through packages such as Cloudy [1]. We focus solely on the PI of Ar II governed by,

\[\text{hv} + \text{Ar II} \rightarrow \text{Ar III} + e^- \]

in which a direct PI pathway leaves the target Ar III plus the ejected photoelectron, but also indirectly via autoionizing bound states, where the photoelectron is firstly excited into a more energetic state prior to ejection.

Results are obtained through the implementation of large scale Breit–Pauli R–matrix computer codes, to include the one body relativistic operators [2] by availing of the well established R–matrix theory [3]. A delineation of configuration interaction terms are also required to allow for electron correlation effects.

Once an accurate model for Ar III is established, we then compute all PI cross sections in the length gauge defined by,

\[\sigma = \frac{4\pi^2 a_0^2 \alpha \omega}{3g_i} \sum_{L,lf} |\langle \Psi_f | D| \Psi_i \rangle|^2 \]

where the wavefunctions of the initial bound state, \(\Psi_i \) and final free state of \(\Psi_f \) are computed over a very fine energy mesh to allow for sharp resolution of the spectra. \(a_0 \equiv \) bohr radius, \(\alpha \equiv \) fine structure constant, \(\omega \equiv \) photon energy and \(g_i \equiv \) statistical weight of initial state.

We compute and present transitions within the intermediate coupling frame for the ground and metastable initial odd states of \(J = 3/2 \) and \(J = 1/2 \) to accessible, dipole allowed final states through Equation (2). A direct comparison with M. Covington et al [6] can be achieved by performing both a 10meV gaussian convolution of the spectra and a weighting comprising of the two initial states. We also conduct a resonance identification procedure using the QB technique [7] which exploits the analytical properties of the R–matrix to identify autoionizing bound states of the indirect path in Equation (1).

References

[1] Ferland et al, PA Soc Pac 110 761 – 778, 1998
[2] Scott et al, J Phys B 13 4299 – 4314, 1980
[3] Burke et al, J Phys B 8 16 2630 – 2639, 1975
[4] Clementi et al, ADNDT 14 177 – 478, 1974
[5] Hibbert, CPC 9 141 – 172, 1975
[6] Covington et al, PRA 84, 2011
[7] Quigley et al, CPC 114 225 – 235, 1998

1E-mail: ntyndall01@qub.ac.uk
2E-mail: c.ramsbottom@qub.ac.uk
3E-mail: a.hibbert@qub.ac.uk