Effects of breakpoint changes on carbapenem susceptibility rates of Enterobacteriaceae: Results from the SENTRY Antimicrobial Surveillance Program, United States, 2008 to 2012

Robert P Rennie PhD D(ABMM) FCCM¹, Ronald N Jones MD FCAP²

RP Rennie, RN Jones. Effects of breakpoint changes on carbapenem susceptibility rates of Enterobacteriaceae: Results from the SENTRY Antimicrobial Surveillance Program, United States, 2008 to 2012. Can J Infect Dis Med Microbiol 2014;25(5):285-287.

In the absence of clinical resistance, breakpoints for many antimicrobial agents are often set high. Clinical failures following use of the agents over time requires re-evaluation of breakpoints. This is based on patient response, pharmacokinetic/pharmacodynamic information and in vitro minimal inhibitory concentration data. Data from the SENTRY Antimicrobial Surveillance Program has shown that Clinical and Laboratory Standards Institute breakpoint changes for carbapenems that occurred between 2008 and 2012 in North America have resulted in decreased levels of susceptibility for some species. In particular, reduced susceptibility to imipenem was observed for Proteus mirabilis (35%) and Morganella morgani (80%). Minor decreases in susceptibility were also noted for Enterobacter species with ertapenem (5%) and imipenem (4.3%), and Serratia species with imipenem (6.4%). No significant decreases in susceptibility were observed for meropenem following the breakpoint changes. There were no earlier breakpoints established for doripenem. Very few of these Enterobacteriaceae produce carbapenemase enzymes; therefore, the clinical significance of these changes has not yet been clearly determined. In conclusion, ongoing surveillance studies with in vitro minimal inhibition concentration data are essential in predicting the need for breakpoint changes and in identifying the impact of such changes on the percent susceptibility of different species.

Key Words: Carbapenems; Surveillance; Susceptibility breakpoints

Antimicrobial susceptibility breakpoints are initially determined under statutes by regulatory agencies (United States Food and Drug Administration and European Medicines Agency) at the time of clinical approval based on accumulated microbiology, pharmacokinetic (PK)/pharmacodynamic (PD) and clinical trial outcome information. On their release, resistance to antimicrobials is often uncommon. This is especially true for broad-spectrum β-lactams, particularly the carbapenems. In the present article, we document the extent of spectrum/coverage impact for the four most approved from 1980 to 2000. These processes were initially addressed by the European Committee on Antimicrobial Susceptibility Testing (EUCAST) (4) and later by the Clinical and Laboratory Standards Institute (CLSI) (5-7).

Responses to these lowered CLSI breakpoints have varied widely, from “there was no perceived adverse clinical signal and in fact the change would lead to unneeded applications of potentially toxic broader spectrum agents” to “the new lowered breakpoints without companion resistance enzyme screening would place patients at risk, or these recent changes were based on flawed science” (8-12).

Regardless of the ongoing debate, the CLSI breakpoint changes (6,7) have resulted in significantly decreased susceptibility rates for some β-lactams, particularly the carbapenems. In the present article, we document the extent of spectrum/coverage impact for the four most

¹Medical Microbiology, University of Alberta Hospital, Edmonton, Alberta; ²JMI Laboratories, North Liberty, Iowa, USA

Correspondence: Dr Robert P Rennie, Medical Microbiology, University of Alberta Hospital, WMC 1B1.11 8440 – 112 Street, Edmonton, Alberta T6G 2J2. Telephone 780-407-3785, fax 780-407-3864, e-mail robert.rennie@albertahealthservices.ca

This open-access article is distributed under the terms of the Creative Commons Attribution Non-Commercial License (CC BY-NC) (http://creativecommons.org/licenses/by-nc/4.0/), which permits reuse, distribution and reproduction of the article, provided that the original work is properly cited and the reuse is restricted to noncommercial purposes. For commercial reuse, contact support@pulsus.com
TABLE 1
Clinical Laboratory Standards Institute (CLSI) clinical breakpoint concentration (µg/mL) criteria for Enterobacteriaceae in 2010 and 2013 for carbapenems

Susceptibility breakpoints	Carbapenem and CLSI year*					
	Doripenem	Ertapenem	Imipenem	Meropenem		
	2010	2013	2010	2013	2010	2013
Susceptible	NC	≤ 1	≤ 2	≤ 0.5	≤ 4	≤ 1
Intermediate	NC	2	4	1	8	2
Resistant	NC	≥ 16	≥ 16	≥ 16	≥ 16	≥ 16

*Criteria from CLSI, references 5-7. NC No criteria published

TABLE 2
Spectrum effects of Clinical Laboratory Standards Institute (CLSI) 2012 breakpoint criteria changes on carbapenems (results from the North America SENTRY Antimicrobial Surveillance Program, 2008–2012)

Enterobacteriaceae (19,382)	Ertapenem	Imipenem	Meropenem	Doripenem
Escherichia coli (6882)	97.1/98.1	92.4/98.6	98.3/98.6	98.3/-
Klebsiella species (5467)	94.7/95.1	95.3/95.9	95.3/95.9	95.3/-
Enterobacter species (2662)	92.9/97.9	94.7/99.0	98.7/99.2	98.7/-
Proteus mirabilis (1244)	99.9/100	64.5/99.8	99.9/100	99.9/-
Serratia species (1119)	98.0/98.8	92.9/99.3	98.8/99.2	98.8/-
Citrobacter species (746)	97.7/98.8	97.1/99.3	98.8/99.3	98.9/-
Morganella morgani (490)	100/100	19.6/100	100/100	100/-

*No earlier breakpoints were published by CLSI; †Significant (lowering of susceptibility rate of >4%) decline in susceptibility rate
It is still uncertain what these changes (6,7) will mean clinically over time. The vast majority of these Enterobacteriaceae tested against the carbapenems do not produce clinically significant carbapenemases; otherwise, reduced susceptibility to meropenem and possibly doripenem would also be observed (Table 2). The current study was based only on MICs to the carbapenems to reflect the

REFERENCES
1. Lee NY, Lee CC, Huang WH, Tsai KC, Hsu YC, Ko WC. Cefepime therapy for monomicrobial bacteremia caused by cefepime-susceptible extended-spectrum beta-lactamase-producing Enterobacteriaceae: MIC matters. Clin Infect Dis 2013;56:488-95.
2. Weisenberg SA, Morgan DJ, Espinal-Witter R, Larone DH. Clinical outcomes of patients with Klebsiella pneumoniæ carbapenemase-producing K. pneumoniæ after treatment with imipenem or meropenem. Diagn Microbiol Infect Dis 2009;64:233-5.
3. Andes D, Craig WA. Treatment of infections with ESBL-producing organisms: Pharmacokinetic and pharmacodynamic considerations. Clin Microbiol Infect 2005;11(Suppl 6):10-7.
4. EUCAST. 2013. Breakpoint tables for interpretation of MICs and zone diameters. Version 3.0, January 2013. <www.eucast.org/clinical_breakpoints/> (Accessed January 2, 2013).
5. Clinical and Laboratory Standards Institute. 2010. M100-S20. Performance standards for antimicrobial susceptibility testing: 20th informational supplement. Wayne: Clinical and Laboratory Standards Institute.
6. Clinical and Laboratory Standards Institute. 2013. M100-S23. Performance standards for antimicrobial susceptibility testing: 23rd informational supplement. Wayne: Clinical and Laboratory Standards Institute.
7. Dudley MN, Ambrose PG, Bhavnani SM, Craig WA, Ferraro MJ, Jones RN. Background and rationale for revised Clinical and Laboratory Standards Institute interpretive criteria (breakpoints) for Enterobacteriaceae and Pseudomonas aeruginosa: I. Cephalosporins and aminoglycosides. Clin Infect Dis 2013;56:1301-9.
8. Livermore DM, Andrews JM, Hawkey PM, et al. Are susceptibility tests enough, or should laboratories still seek ESBLs and carbapenemases directly? J Antimicrob Chemother 2012;67:1569-77.
9. Tamma PD, Powers JH. Do patient data really support the clinical and laboratory standards institute recommendation for lowering third-generation cephalosporin interpretive breakpoints? Clin Infect Dis 2013;57:624-5.
10. Tamma PD, Wu H, Gerber JS, et al. Outcomes of children with Enterobacteriaceae bacteremia with reduced susceptibility to ceftriaxone: Do the revised breakpoints translate to improved patient outcomes? Pediatr Infect Dis J 2013;32:965-9.
11. Thomson KS. Lowering of third generation cephalosporin breakpoints. Clin Infect Dis 2013; 57:1663-4.
12. Dudley MN, Ambrose PG, Jones RN. Commentary: Revised susceptibility breakpoints: Fear, loathing and good science. Pediatr Infect Dis J 2013;32:970-1.
13. Clinical and Laboratory Standards Institute. 2012. M07-A9. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: approved standard, 9th ed. Wayne: Clinical and Laboratory Standards Institute.
14. Acar JE. Therapy for lower respiratory tract infections with imipenem/cilastatin: A review of worldwide experience. Rev Infect Dis 1985;7(Suppl 3):S513-S517.
15. Chiadini PL, Geddes AM, Smith EG, Conlon CP, Farrell ID. Imipenem/cilastatin in the treatment of serious bacterial infections. Rev Infect Dis 1985;7(Suppl 3):S490-S495.
16. Kager L, Nord CE. 1985. Imipenem/cilastatin in the treatment of intraabdominal infections: A review of worldwide experience. Rev Infect Dis 1985;7(Suppl 3):S518-S521.
17. MacGregor RR, Gentry LO. Imipenem/cilastatin in the treatment of osteomyelitis. Am J Med 1985;78:100-3.
18. Marier RL. Role of imipenem/cilastatin in the treatment of soft tissue infections. Am J Med 1985;78:140-4.
19. Shah PM. Clinical experience with imipenem/cilastatin: Analysis of a multicenter study. Rev Infect Dis 1985;7(Suppl 3):S471-S475.
20. Won SY, Munoz-Price LS, Lollaas K, Hota B, Weinstein RA, Hayden MK; Centers for Disease Control Prevention Epicenter Program. Emergence and rapid regional spread of Klebsiella pneumoniae carbapenemase-producing Enterobacteriaceae. Clin Infect Dis 2011;53:532-40.
21. Zilberberg MD, Shorr AF. Prevalence of multidrug-resistant Pseudomonas aeruginosa and carbapenem-resistant Enterobacteriaceae among specimens from hospitalized patients with pneumonia and bloodstream infections in the United States from 2000 to 2009. J Hosp Med 2013;8:559-63.
22. Jacob JT, Klein E, Laxminarayan R, et al. Vital signs: Carbapenem-resistant Enterobacteriaceae. MMWR Morb Mortal Wkly Rep 2013;62:162-70.