INTRODUCTION

Many US Americans consume diets that are overly high in energy and in constituents associated with disease risk, particularly saturated fat (SFA), cholesterol and sodium and low in protective components such as fiber or β-carotene. Poorly balanced diets contribute to overweight, cardiovascular disease, type 2 diabetes and other conditions.1-3

In clinical research studies, individuals who adopt diets emphasizing vegetables, fruits, whole grains and legumes report significant reductions in the intake of fat and cholesterol and increases in fiber, β-carotene, magnesium, potassium and vitamin K intake.4-6 Plant-based diets are associated with improvements in body weight, plasma lipid concentrations,7 glycemic control8 and blood pressure9 and may assist in the management of prostate cancer.10-12

We tested a program designed to translate a plant-based dietary intervention from the research environment to the workplace. An initial controlled study at two corporate sites of the Government Employees Insurance Company, a large US insurer, showed that providing instruction in the use of plant-based diets tended to cause weight loss, improvements in plasma lipid concentrations and, for those with diabetes, improved blood glucose control.1-3 A subsequent trial at 10 corporate Government Employees Insurance Company sites in diverse regions of the United States showed similar results.14

As plant-based diets may alter a wide range of macronutrient and micronutrient intakes affecting health in many ways, we sought to assess the nutrient changes associated with the intervention diet in the latter study. Those nutrient changes are the focus of the current report. We hypothesized that a plant-based dietary intervention would reduce the intake of energy, SFA and cholesterol and increase the intake of fiber, β-carotene, vitamin C, magnesium and potassium. The reduction in calcium intake indicates the need for planning for this nutrient.

MATERIALS AND METHODS

The study design and major physiological results have been described elsewhere.14 Briefly, the overall study tested the hypothesis that a program including a low-fat vegan diet taught through group sessions at worksites in widely divergent areas of the United States would elicit improvements in body weight and other health indicators. The study was intended to translate the findings of intervention trials into a simple program

Keywords: vegan; vegetarian; nutrition; diet; workplace
that could be implemented for large groups of individuals at work. It was
designed not to test individual program components (for example, a diet
or a group of classes) but rather to assess the effect of the intervention
program as a whole, similar to the design of the Diabetes Prevention
Program, which tested the combined effects of diet and exercise
interventions in individuals at risk for diabetes.12

Individuals aged 18 years or above with a body mass index of
≥ 25 kg/m² or a previous diagnosis of type 2 diabetes were recruited
through employee notices at 10 Government Employees Insurance
Company corporate offices in the United States: Tucson, Arizona;
San Diego, California; Lakeland, Florida; Macon, Georgia; Chevy Chase,
Maryland; Buffalo, New York; Woodbury, New York; Dallas, Texas;
Fredericksburg, Virginia; and Virginia Beach, Virginia. Exclusion criteria
were current alcohol or drug abuse, pregnancy, history of severe mental
illness, unstable medical status, current adherence to a low-fat vegetarian
diet, participation in the previous Government Employees Insurance
Company study and inability to attend weekly meetings.

Interest in individual participants was given to the research staff.
Those who appeared to satisfy the participation criteria were scheduled for
individual interviews to review the study procedures and confirm
eligibility. These interested individuals were then asked to complete a
practice 2-day online diet recall.

The study was approved by an external institutional review board
(Independent Review Consulting, whose name was later changed to
Ethics and Integrity Review Services, Corte Madera, CA, USA).
All participants provided written informed consent.

Worksites were then pair-matched based on the number of volunteers
per site. Each pair of sites represented a cluster, and, using a random-
number table, the sites within each pair were randomly assigned to the
intervention (fives sites) or control (five sites) groups. As the assignment
was done by site rather than by individual, all participants at a given site
were in the same assigned group. This method was used because of the
likelihood that the intervention, which would be strongly apparent in the
work environment, would tend to influence the behavior of individuals
throughout the worksite, including those not assigned to the intervention
group.

At intervention sites, participants were asked to follow a low-fat vegan
diet and attend weekly group meetings. They received no monetary
compensation. Individuals at control sites were given no dietary guidance
and were not asked to make any dietary changes. They were given
monetary compensation in the form of gift certificates to retail stores
(Whole Foods Market or Target), totaling $50 for completion of all baseline
and week-18 assessments. The rationale for compensation of control
participants was that, unlike the intervention group, they received no
other benefit from the study and had no contact with the investigators,
aside from the assessments. All participants in both groups were asked to
complete a 2-day online diet recall.

The study was approved by an external institutional review board
(Independent Review Consulting, whose name was later changed to
Ethics and Integrity Review Services, Corte Madera, CA, USA).
All participants provided written informed consent.

Worksites were then pair-matched based on the number of volunteers
per site. Each pair of sites represented a cluster, and, using a random-
number table, the sites within each pair were randomly assigned to the
intervention (fives sites) or control (five sites) groups. As the assignment
was done by site rather than by individual, all participants at a given site
were in the same assigned group. This method was used because of the
likelihood that the intervention, which would be strongly apparent in the
work environment, would tend to influence the behavior of individuals
throughout the worksite, including those not assigned to the intervention
group.

At intervention sites, participants were asked to follow a low-fat vegan
diet and attend weekly group meetings. They received no monetary
compensation. Individuals at control sites were given no dietary guidance
and were not asked to make any dietary changes. They were given
monetary compensation in the form of gift certificates to retail stores
(Whole Foods Market or Target), totaling $50 for completion of all baseline
and week-18 assessments. The rationale for compensation of control
participants was that, unlike the intervention group, they received no
other benefit from the study and had no contact with the investigators,
aside from the assessments. All participants in both groups were asked to
avoid changing exercise patterns during the study period.

Intervention diet
Participants at intervention sites were asked to avoid animal products
(that is, meat, poultry, fish, dairy products and eggs) and to base their diets
on whole grains, vegetables, legumes and fruits. They were also
encouraged to minimize added oils and to favor foods with a low
glycemic index, such as beans, fruit, pasta, rye and pumpernickel bread
(rather than typical wheat breads), and oatmeal or bran cereal (rather than
typical cold cereals). No restrictions were placed on portion sizes or on
energy or carbohydrate intakes. Intervention-group participants were also
asked to take a daily supplement of vitamin B12, such as a multiple vitamin.
At intervention sites with cafeterias, food service managers were asked to
include low-fat plant-based menu options, such as oatmeal, minestrone
or lentil soup, veggie burgers and portobello sandwiches, among the daily
offerings. Whether and how to implement such menu additions were
left to their discretion, and their progress in doing so was not formally
assessed.

Participants at intervention sites were asked to follow the prescribed
diet for 18 weeks. They were provided group support in the form of weekly
lunch-hour classes at the worksite led by a registered dietitian, physician
and/or a cooking instructor, following an established curriculum for the
duration of the study. Classes included sessions on replacements
for animal products, healthful snacking, dining out, travel, shopping and
cooking, as well as nutrition-related health topics such as weight loss,
diabetes, heart disease and cancer. Group discussions during each session
focused on common diet challenges and successes. Participants were
offered additional support through an interactive online message board on
which they could ask or respond to questions. All instructors received
training in study procedures and best practices for facilitating group
discussion and used identical instruction materials (a standardized
curriculum, handouts, videos, instructions for cooking, and so on).

Assessment of dietary intake and adherence to dietary intervention
The following measures were assessed at baseline and week 18:
A diet recall was used to assess nutrient intake over two 24-h periods at
baseline and two 24-h periods at 18 weeks, using an online (Automated
Self-administered 24-h Recall, ASA-24) program developed by the National
Cancer Institute (Bethesda, MD, USA). The format and design of the ASA-24 are based on the interviewer-
administered Automated Multiple Pass Method 24-h recall developed by the US Department of Agriculture. The online program has the advantages
of ease of use and scoring and face validity; however, although the
Automated Multiple Pass Method is a validated instrument, validation trials of ASA-24 remained in progress at the time of this study.17 Subjects were
asked to complete their diet records online as best they could. Subjects
were advised of vegan items that ASA-24 does include, such as
vegan burger, seitan and tofu, and of common vegan items that are not on
ASA-24, such as quinoa and tempeh. Subjects were instructed not to skip
entries even if exact matches were not found in ASA-24. Instead, they
were coached on how to find a suitable alternative, such as substituting
brown rice for quinoa or a vegetarian sub for vegan sandwich. Registered
dietitians cross-checked data on ASA-24 by taking participant nutrient data
and entering them into the USDA nutrient database to make sure nutrient
intake numbers were relevant to ASA-24. Numbers that appeared erroneous
were excluded, such as an intake of 500 calories reported for an entire day.
Macronutrient intakes were reported as percentages of total energy intake, and fiber and micronutrients were reported as quantities per 1000 kcal.

As animal products are the only significant source of dietary cholesterol,
cholesterol intake reported at 18 weeks served as a rough gauge of
adherence to the intervention diet. The numbers of group participants
whose cholesterol intake was ≥ 500 mg/day (the amount of cholesterol in
~ 2 ounces of typical meats or cheeses) and ≤ 75 mg/day (the amount of
cholesterol found in ~ 3 ounces of typical meats or cheeses) were calculated from 18-week diet recalls. The number of group participants
whose fat intake was below 25 and 35% of the total calorie intake was also
calculated. Use of low-glycemic-index foods was not tracked.
All participants were asked to continue their pre-existing medication
regimens unless otherwise instructed by their personal physicians. No
other restrictions were placed on medication use.

Statistical analysis
Student’s t-tests and χ²-tests were used to assess whether any
demographic or clinical measures between groups at baseline were
unbalanced. Nutrient data were examined for extreme values, and
distributions of variables were examined for skewness using a normality
plot and the Shapiro–Wilk test.

Statistical analyses of nutrient intake were performed on an intention-
to-treat basis, including all participants who completed an initial diet
calendar, with the post-intervention values for dropouts set to the pre-intervention
values. A second analysis was limited to participants who completed diet
recalls at baseline and 18 weeks. The significance of within-group changes
in dietary variables was determined using paired t-tests. A general linear
model univariate analysis (analysis of covariance) was used to estimate the
treatment effect and determine whether the changes in nutrient intake of
the intervention and control groups during the 18-week trial were
significantly different from each other. Diet group was included as a fixed
factor in these models, with the baseline value of each nutrient as a
considered significant.

RESULTS
The intervention sites were in Tucson, Macon, Chevy Chase, Buffalo and Lakeland. The control sites were in San Diego,
Fredericksburg, Woodbury, Dallas and Virginia Beach. Of 319 volunteers screened for eligibility, 292 (142 at intervention sites and 150 at control sites) met the participation criteria and were enrolled in the overall clinical trial. Of this group, 271 (130 at intervention sites and 141 at control sites) completed usable baseline diet recalls and constituted the baseline sample for the current inquiry. At 18 weeks, 183 (78 in the intervention group and 105 in the control group) completed diet recalls and were considered study completers for purposes of the nutrient analysis.

There were no significant demographic differences between the intervention and control groups at baseline, except for a somewhat greater percentage of women at control sites (Table 1). Among completers, the intervention-group and control-group completers differed only with regard to gender (76% women in the intervention group, 88% women in the control group, \(P = 0.04 \)). Compared with noncompleters, study completers were older (45.5 versus 41.6 years, \(P = 0.008 \)) and had a lower mean baseline body mass index (34.3 versus 37.3 kg/m\(^2\), \(P = 0.006 \)).

The median percentage of group sessions attended per participant (among the completers at intervention sites) ranged from 33% in Macon to 75% in Chevy Chase, with an overall median of 50%.

Adherence to the intervention

Among study completers, cholesterol intake at 18 weeks was \(\leq 75 \text{ mg/day for 85%} (66/78) \) of intervention-group participants and 21% (22/105) of control-group participants (\(P < 0.001 \)). Cholesterol intake was \(\leq 50 \text{ mg/day for 74%} (58/78) \) of intervention-group participants but only 13% (14/105) of control-group participants (\(P < 0.001 \)).

Total fat intake was \(\leq 35\% \) of the total calorie intake for 86% (67/78) of intervention-group participants compared with 40% (42/105) of the control-group participants (\(P < 0.001 \)). Fat intake was \(\leq 25\% \) for 49% (38/78) of intervention-group participants and for 8% (8/105) of control-group participants (\(P < 0.001 \)).

SFA intake was \(\leq 10\% \) of total calorie intake for 88% (69/78) of intervention-group participants and 38% (40/105) of control-group participants (\(P < 0.001 \)). SFA intake was \(\leq 5\% \) of total calorie intake for 51% (40/78) of intervention-group participants but only for 5% (5/105) of control-group participants (\(P < 0.001 \)).

Nutrient intake at baseline and 18 weeks

At baseline, there were significant differences between participants in the two study arms with respect to the percentage of energy from fat (\(P = 0.04 \)) and vitamin B\(_1\)\(_2\) per 1000 kcal (\(P = 0.05 \)). During the 18-week intervention, both groups reduced the reported energy intake but the between-group difference was not significant (Table 2). Comparing nutrient intake changes over time between the two groups in the intention-to-treat analysis, adjusting for baseline values and accounting for within-site correlations in outcome, the intervention group significantly reduced the mean reported intake of fat, particularly of SFA but also of monounsaturated fat (Table 2). It increased carbohydrate and fiber intake and reduced protein and cholesterol intake. The intervention group also increased the reported intake of \(\beta \)-carotene, vitamin C, magnesium and potassium. The calcium intakes of both groups were below the recommended levels at baseline, and calcium intake fell further in the intervention group.

Limiting the analysis to study completers, results were similar to those in the intention-to-treat analysis (Table 3). Overall reported energy intake fell in both groups. Compared with changes in the control group, the intervention group reduced the reported intake of fat (total, monounsaturated fat and SFA), protein and cholesterol and increased carbohydrate and fiber intake. In addition, retinol intake fell, which was compensated for by an increase in \(\beta \)-carotene. Reported intakes of vitamin K, vitamin B6,

Table 1. Baseline demographic and clinical characteristics by group assignment for participants in the GEICO\(^a\) multicenter trial

Characteristics	All subjects (n = 271)	Intervention (n = 130)	Control (n = 141)	P-value\(^b\)
Age, years (s.d.)	44.2 (11.1)	43.3 (10.6)	45.1 (11.5)	0.19
Gender, n (%)				
Men	44 (16%)	27 (21%)	17 (12%)	0.052
Women	227 (84%)	103 (79%)	124 (88%)	
Race, n (%)				
White	171 (63%)	79 (61%)	92 (65%)	0.24
Black	73 (27%)	33 (25%)	40 (28%)	
Asian	12 (4%)	8 (6%)	4 (3%)	
Other	15 (6%)	10 (8%)	5 (4%)	
Ethnicity, n (%)				
Hispanic	24 (9%)	15 (12%)	9 (6%)	0.14
Non-Hispanic	247 (91%)	115 (88%)	132 (94%)	
Occupation, n (%)				
Sales/service	183 (68%)	83 (64%)	100 (71%)	0.30
Supporting staff	53 (20%)	30 (23%)	23 (16%)	
Professional	14 (5%)	5 (4%)	9 (6%)	
Unknown	21 (8%)	12 (9%)	9 (6%)	
Body mass index, kg/m\(^2\) (s.d.)	35.2 (7.7)	35.0 (7.0)	35.5 (8.3)	0.55
Alcohol consumption, n (%)				
None	86 (36%)	45 (40%)	41 (33%)	0.28
Moderate	142 (60%)	63 (56%)	79 (63%)	
Frequent	9 (4%)	4 (4%)	5 (4%)	
Diabetes at entry	40 (15%)	18 (14%)	22 (16%)	0.70

\(^a\)The Government Employees Insurance Company (GEICO) is a major US vehicle insurance company. \(^b\)P-values refer to differences between groups, using \(\chi^2 \)-tests for categorical variables and \(t \)-tests for continuous variables.
folic acid, vitamin C, iron, magnesium and potassium increased, whereas calcium intake decreased.

DISCUSSION

A nutrition intervention program at the workplace yielded clinically important changes in nutrient intake. These changes were similar to those previously observed in clinical research settings, suggesting that these research findings effectively translated into an intervention implemented at worksites in widely divergent areas of the United States.

The overall reported energy intake fell in both groups. Part of this reduction may be because of underreporting, which is common in clinical trials of non-institutionalized participants. Another possible explanation is that because ASA-24 does not contain common vegan food items, subjects may have omitted these foods, resulting in lower energy intake reports. However, it is likely that the reduced energy intake of the intervention group is, at least in part, on account of increased fiber intake and reduced fat intake, both of which would tend to reduce the energy density of the diet. In turn, a reduction in energy intake favors weight loss, which has been observed in prior studies using low-fat, plant-based diets and was observed in the current study.

Reductions in reported energy intake and weight loss commonly occur with a vegetarian diet as a part of a program of lifestyle changes has been shown to reverse atherosclerosis and reduce the risk of cardiovascular risk in later life. However, this may indicate the need for further instruction on plant-based sources of calcium, such as green leafy vegetables and legumes. Reported iron intake increased in the intervention group, reflecting the increased intake of plant-based sources of iron.

The 18-week nutrient intake data indicate that some intervention group participants continued to include some animal products in their diets and consumed more fat than had been recommended. Nonetheless, the two groups diverged markedly in their reported dietary behavior, suggesting that the intervention elicits significant changes even for those participants who do not fully adhere to the prescribed guidelines. As previously reported, these nutrient changes are reflected in improvements in body weight, plasma lipid concentrations, and, for those with diabetes, improvements in glycemic control.

The tendency of plant-based diets to favorably influence nutrient intake and clinical measures related to disease risk raises the question of their sustainability over the long term. A University of Pittsburgh survey of young women who had tried both vegetarian and various calorie-restricted diets found that the mean duration of adherence to vegetarian diets was at least 2 years, compared with only 4 months for calorie-restricted diets. In the course of dietary intervention trials, adherence, attrition and

Table 2. Nutrient intakes at baseline and 18 weeks for participants in the GEICO multicenter trial, including all participants, using baseline data for noncompleters.

Nutrients	Intervention group (n = 130)	Control group (n = 141)	Estimated treatment effect (95% CI)c	P-valued					
Baseline mean (s.e.)	18 weeks Mean (s.e.)	Within-group changes Mean (s.e.)	Baseline Mean (s.e.)	18 weeks Mean (s.e.)	Within-group changes Mean (s.e.)	Baseline Mean (s.e.)	18 weeks Mean (s.e.)	Within-group changes Mean (s.e.)	
Energy (kcal)	1978 (83.4)	1647 (64.2)	–331 (79.1)*	1835 (77.8)	1712 (58.2)	–124 (77.0)	112 (409 to 185)	0.41	
Energy from fat (%)	34.9 (0.9)	30.8 (1.0)	–4.1 (0.9)*	37.5 (0.8)	36.9 (0.7)	–0.5 (0.9)	5.4 (–8.4 to –0.9)	0.02	
Energy from carbohydrate (%)	50.3 (1.2)	56.7 (1.3)	6.4 (1.2)*	47.5 (1.0)	47.3 (0.9)	–0.2 (1.0)	8.6 (3.2 to 13.9)	0.006	
Energy from protein (%)	15.8 (0.4)	14.7 (0.4)	–1.1 (0.4)**	16.5 (0.4)	17.1 (0.5)	0.7 (0.5)	2.4 (–4.4 to 0.4)	0.03	
Energy from MUFA (%)	12.6 (0.4)	10.9 (0.4)	–1.7 (0.4)*	13.6 (0.4)	13.4 (0.3)	–0.3 (0.4)	2.2 (–3.8 to 0.6)	0.01	
Energy from PUFA (%)	7.3 (0.3)	7.8 (0.3)	0.5 (0.3)	7.8 (0.3)	7.9 (0.3)	0.1 (0.3)	0.1 (1.4 to 1.6)	0.92	
Energy from SFA (%)	11.3 (0.4)	8.5 (0.5)	–2.8 (0.4)*	12.0 (0.4)	11.6 (0.4)	–0.4 (0.4)	2.9 (–4.7 to 1.1)	0.006	
Cholesterol (mg per 1000 kcal)	136 (9.7)	84 (11.2)	51.7 (10.7)*	167 (7.7)	137 (10.7)	30.0 (10.7)	8.6 (2.8 to 16.8)	0.009	
Fiber (g per 1000 kcal)	102 (0.5)	148 (0.7)	4.6 (0.6)*	99.5 (0.5)	103 (0.4)	0.4 (0.4)	4.5 (2.3 to 6.7)	0.002	
Retinol (µg per 1000 kcal)	213 (28.0)	158 (12.6)	–54.6 (28.8)	176 (9.5)	193 (12.0)	17.1 (12.7)	39.3 (80.3 to 1.8)	0.06	
β-carotene (µg per 1000 kcal)	1348 (161)	2102 (202)	754 (219)*	1706 (216)	1345 (154)	–361 (197)	891 (221 to 1560)	0.01	
Vitamin E as α-tocopherol (mg per 1000 kcal)	4.0 (0.2)	4.6 (0.2)	0.6 (0.3)**	4.2 (0.2)	4.3 (0.3)	0.1 (0.3)	0.4 (–0.7 to 1.4)	0.43	

Abbreviations: MUFA, monounsaturated fat; PUFA, polyunsaturated fat; SFA, saturated fat. The Government Employees Insurance Company (GEICO) is a major US vehicle insurance company. aGeographical site and baseline value adjusted (analysis of covariance). bValue for analysis adjusted for geographical site and baseline value. *P < 0.001, **P < 0.01, ***P < 0.05 for unadjusted t-test assessing significance of within-group changes.

Among micronutrients, the intervention group increased the reported intake of β-carotene, vitamin C, magnesium and potassium. As expected, vitamin B12 from food sources fell in the intervention group. However, participants were asked to take supplemental B12. For both groups, calcium intake was below the levels recommended by the Institute of Medicine at baseline and again at 18 weeks, and was dropped in the intervention group. In their reported dietary behavior, suggesting that the intervention elicits significant changes even for those participants who do not fully adhere to the prescribed guidelines. As previously reported, these nutrient changes are reflected in improvements in body weight, plasma lipid concentrations, and, for those with diabetes, improvements in glycemic control.

The tendency of plant-based diets to favorably influence nutrient intake and clinical measures related to disease risk raises the question of their sustainability over the long term. A University of Pittsburgh survey of young women who had tried both vegetarian and various calorie-restricted diets found that the mean duration of adherence to vegetarian diets was at least 2 years, compared with only 4 months for calorie-restricted diets. In the course of dietary intervention trials, adherence, attrition and
In summary, the present study demonstrated that a simple nutrition education program using modest group support at the worksite can reproduce in other corporate dietary intervention that can be reproduced in other corporate environments. NDB also recommends the use of animal-derived, fatty and sugary foods. NDB also recommends the use of animal-derived, fatty and sugary foods.

CONFLICT OF INTEREST

NDB, JG, JX, UA and SML are on the staff of the Physicians Committee for Responsible Medicine, a nonprofit organization that promotes the use of low-fat, plant-based diets and discourages the use of animal-derived, fatty and sugary foods. NDB also writes books and articles and delivers lectures about therapeutic diets, including vegan diets, and has received royalties and honoraria from these sources. The remaining authors declare no conflict of interest.

ACKNOWLEDGEMENTS

We thank Richard Holubkov, PhD, of the University of Utah, for consultation regarding statistical analyses.

REFERENCES

1 U.S. Department of Agriculture, Agricultural Research Service. 2012. Nutrient Intakes from Food: Mean Amounts Consumed per Individual, by Gender and Age, What We Eat in America, NHANES 2009–2010. Available at http://www.ars.usda.gov/ba/bhnrc/fsrg.

2 Flegal KM, Carroll MD, Kit BK, Ogden CL. Prevalence of obesity and trends in the prevalence of obesity among adults, 1999–2010. JAMA 2012; 307: 491–497.

3 National Heart Lung Blood Institute. Fact Book, Heart Disease prevalence chapter 42010. Available at: http://www.nhlbi.nih.gov/about/factbook/chapter4.html#4_5 (accessed May 2012).

4 National Center for Chronic Disease Prevention and Health Promotion. Division of Diabetes Translation. National Diabetes Fact sheet, 2011. Available at http://www.cdc.gov/diabetes/pubs/pdf/ndfs_2011.pdf (accessed May 2012).

5 Turner-McGravy GM, Barnard ND, Scialli AR, Lanou AE. Effects of a low-fat, vegan diet and a Step II diet on macro- and micronutrient intakes in overweight, postmenopausal women. Nutrition 2004; 20: 738–746.

6 Turner-McGravy GM, Barnard ND, Cohen J, Jenkins DJA, Gloede L, Green AA. Changes in nutrient intake and dietary quality among participants with type 2 diabetes following a low-fat vegan diet or a conventional diabetes diet for 22 weeks. J Am Diet Assoc 2008; 108: 1636–1645.
7 Ferdowsian HR, Barnard ND. Effects of plant-based diets on plasma lipids. Am J Cardiol 2009; 104: 947–956.
8 Barnard ND, Cohen J, Jenkins DJ, Turner-McGrievy GM, Gloede L, Green A et al. A low-fat vegan diet and a conventional diabetes diet in the treatment of type 2 diabetes: a randomized, controlled, 74-wk clinical trial. Am J Clin Nutr 2009; 89: 1588S–1596S.
9 Berkow S, Barnard ND. Blood pressure regulation and vegetarian diets. Nutr Rev 2005; 63: 1–8.
10 Ornish D, Weidner G, Fair WR, Marlin R, Pettengill EB, Raisin CJ et al. Intensive lifestyle changes may affect the progression of prostate cancer. J Urol 2005; 174: 1065–1069, discussion 1069–1070.
11 Frattaroli J, Weidner G, Dnistrian AM, Kemp C, Daubenmier JJ, Marlin RO et al. Clinical events in prostate cancer lifestyle trial: results from two years of follow-up. Urology 2008; 72: 1319–1323.
12 Berkow SE, Barnard ND, Saxe GA, Ankerberg-Nobis T. Diet and survival after prostate cancer diagnosis. Nutr Rev 2007; 65: 391–403.
13 Ferdowsian HR, Barnard ND, Hoover VJ, Katcher HI, Levin SM, Green AA et al. A multi-component intervention reduces body weight and cardiovascular risk at a GEICO corporate site. Am J Health Promot 2010; 24: 20–24.
14 Mishra S, Xu J, Agarwal U, Gonzales J, Levin S, Barnard N. A multicenter randomized controlled trial of a plant-based nutrition program to reduce body weight and cardiovascular risk in the corporate setting: the GEICO study. Eur J Clin Nutr 2013; 67: 718–724.
15 Ratner RE. Diabetes prevention program research. an update on the diabetes prevention program. Endocr Pract 2006; 12(Suppl 1): 20–24.
16 ASA: National Cancer Institute ASA24. Available at http://www.riskfactor.cancer.gov/tools/instruments/asa24/ (accessed 30 April 2013).
17 ASA: National Cancer Institute ASA24 Evaluation & Validation. Available at http://www.riskfactor.cancer.gov/tools/instruments/asa24/validation/ (accessed 30 April 2013).
18 Satia-Abouta J, Patterson RE, Schiller RN, Kristal AR. Energy from fat is associated with obesity in U.S. men: results from the Prostate Cancer Prevention Trial. Prev Med 2002; 34: 493–501.
19 Livingstone MB, Black AE. Markers of the validity of reported energy intake. J Nutr 2003; 133: 895S–902S.
20 Berkow S, Barnard ND. Vegetable diets and weight status. Nutr Rev. 2006; 64: 175–188.
21 Brown L, Rosner B, Willett WW, Sacks FM. Cholesterol-lowering effects of dietary fiber: a meta-analysis. Am J Clin Nutr 1999; 69: 30–42.
22 Jenkins DJ, Jones PJ, Lamarche B, Kendall CW, Faulkner D, Cermakova L et al. Effect of a dietary portfolio of cholesterol-lowering foods given at 2 levels of intensity of dietary advice on serum lipids in hyperlipidemia: a randomized controlled trial. JAMA 2011; 306: 831–839.
23 Omish D, Schwitz LW, Billings JH, Brown SE, Gould KL, Menitt TA et al. Intensive lifestyle changes for reversal of coronary heart disease. JAMA 1998; 280: 2001–2007.
24 Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids. The National Academies Press: Washington, DC, USA, 2002.
25 Diet, nutrition, and the prevention of chronic diseases. Report of a Joint WHO/FAO Expert Consultation, World Health Organization. WHO Technical Report Series, No. 916: Geneva, Switzerland, 2003.
26 Smith CF, Burke LE, Wing RR. Young adults remain on vegetarian diets longer than on weight loss diets. Ann Behav Med 1999; 21(Suppl): S90.
27 Berkow SE, Barnard ND, Eckart J, Katcher HI. Four therapeutic diets: adherence and acceptability. Can J Diet Pract Res 2010; 71: 199–204.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/