High mortality from blood stream infection in Addis Ababa, Ethiopia, is due to antimicrobial resistance: an observational cohort study.

Teshale Seboxa, Wondwossen Amogne, Workabeba Abebe, Tewodros Tsegaye, Aklillu Azazh, Workagegnhu Hailu, Kebede Fufa, Ayelign Derebe, Nils Grude, Thor-Henrik Henriksen.
Antibiotic timeline

CID 2013; 56(9):1310-18
Why is resistance a concern?

- Leads to treatment failures (of otherwise treatable infections).
- Leads to increased healthcare costs.
- Leads to increased societal costs (loss of income mostly).
- Resistance can spread (community effect is even greater than individual effect).
Risk of Death is Higher in Patients Infected with Resistant Strains

Outcome (number of studies included)	Resistant	Not resistant	RR (95% CI)
Escherichia coli resistant to:			
3rd gen. cephalosporins	23.6	12.6	2.02 (1.41 to 2.90)
Fluoroquinolones	0	0	
Klebsiella pneumoniae resistant to:			
3rd gen. cephalosporins	20	10.1	1.93 (1.13 to 3.31)
Carbapenems	27	13.6	1.98 (0.61 to 6.43)
Staphylococcus aureus resistant to:			
Methicillin (MRSA)	26.3	16.9	1.64 (1.43 to 1.87)

Antimicrobial Resistance
Global Report on Surveillance 2014
Table A3.2 Complete overview of findings addressing the question: *Does the published scientific literature indicate that there is an inferior outcome in infections caused by the following bacteria if they are resistant to the following antibacterial drugs?*

Parameter	*E. coli*	Fluoroquinolones	*K. pneumoniae*	Carbapenems	Beta-lactam antibiotics (MRSA)
3rd generation cephalosporins					
All-cause mortality	Yes (n = 16)	Yes (n = 8)	Yes (n = 14)	Yes (n = 11)	Yes (n = 107)
Bacterium-attributable mortality	Yes (n = 4)	No (n = 1)	Yes (n = 4)	No (n = 1)	Yes (n = 46)
30-day mortality	Yes (n = 11)	Yes (n = 5)	Yes (n = 7)	Yes (n = 3)	Yes (n = 16)
Intensive care mortality	ND	ND	ND	No (n = 1)	Yes (n = 5)
LOS in hospital	No (n = 3)	No (n = 3)	No (n = 9)	Unclear (n = 3)	Yes (n = 50)
Admission to ICU	No (n = 1)	Yes (n = 1)	Yes (n = 3)	ND	No (n = 17)
LOS in ICU	ND	ND	ND	No (n = 1)	Yes (n = 21)
Progression to septic shock	ND	Yes (n = 1)	No (n = 3)	ND	Yes (n = 21)
Postinfection LOS	No (n = 3)	ND	Yes (n = 4)	No (n = 1)	Yes (n = 27)
Transfer to other health-care facility	ND	ND	ND	No (n = 1)	Yes (n = 1)
Transfer to long-term care facility	ND	ND	ND	Unclear (n = 1)	Yes (n = 1)
Attributable readmission	ND	ND	ND	ND	No (n = 6)
Attributable mechanical ventilation	ND	ND	ND	No (n = 1)	No (n = 14)
Does ABR lead to inferior outcomes? YES

Table A3.2 Complete overview of findings addressing the question: Does the published scientific literature indicate that there is an inferior outcome in infections caused by the following bacteria if they are resistant to the following antibacterial drugs?

Parameter	E. coli	K. pneumoniae	S. aureus		
	3rd generation cephalosporins	Fluoroquinolones	3rd generation cephalosporins	Carbapenems	Beta-lactam antibiotics (MRSA)
All-cause mortality	Yes (n = 16)	Yes (n = 8)	Yes (n = 14)	Yes (n = 11)	Yes (n = 107)
Bacterium-attributable mortality	Yes (n = 4)	No (n = 1)	Yes (n = 4)	No (n = 1)	Yes (n = 46)
30-day mortality	Yes (n = 11)	Yes (n = 5)	Yes (n = 7)	Yes (n = 3)	Yes (n = 16)
Intensive care mortality	ND	ND	ND	No (n = 1)	Yes (n = 5)
LOS in hospital	No (n = 3)	No (n = 3)	No (n = 9)	Unclear (n = 3)	Yes (n = 50)
Admission to ICU	No (n = 1)	Yes (n = 1)	Yes (n = 3)	ND	No (n = 17)
LOS in ICU	ND	ND	ND	No (n = 1)	Yes (n = 5)
Progression to septic shock	ND	Yes (n = 1)	No (n = 3)	ND	Yes (n = 21)
Postinfection LOS	No (n = 3)	ND	Yes (n = 4)	No (n = 1)	Yes (n = 27)
Transfer to other health-care facility	ND	ND	ND	No (n = 1)	Yes (n = 1)
Transfer to long-term care facility	ND	ND	ND	Unclear (n = 1)	Yes (n = 1)
Attributable readmission	ND	ND	ND	ND	No (n = 6)
Attributable mortality	ND	ND	ND	ND	No (n = 14)
E. coli resistance in Ethiopia

- 53% of strains R to ceftazidime
- 70% of strains R to ceftriaxone
- 71% of strains R to fluoroquinolones

Based on national data submitted to WHO – ? denominator

WHO report on ABR 2014
Klebsiella and other GNB: Resistance in Ethiopia

- **Klebsiella:**
 - 14% of strains R to ceftazidime
 - 20% of strains R to ceftriaxone
 - No data for Carbapenems (imipenem)

- **Shigella:**
 - 0 - 9.2% of strains R to Fluoroquinololones

- **Non-typhoidal Salmonella:**
 - 14% of strains R to FQ

WHO report on ABR 2014

June 2015 ESIM oral presentation
MRSA in Ethiopia

- 31.6% of *S. aureus* strains are R to Methicillin
- Comparisons:
 - Canada: 21% of strains are MRSA
 - USA: 51% of strains are MRSA
 - Netherlands: 1.4% of strains are MRSA

WHO report on ABR 2014
Summary Ethiopian data

• National data submitted to WHO suggest:
 – High rates of R to cephalosporins and FQ among common G(-) bacteria
 – High rates of methicillin resistance among S. aureus (MRSA)

• BUT:
 – Questions re. methods used to measure R
 – Data may be skewed towards urban hospitalized patients, and denominators are low
 – Resistance rates may be overestimated – which can lead to prescription of broader spectrum AB and worsening of the problem!
The study objectives:

1. Bacteremia as predictor of mortality?
2. Antimicrobial sensitivity vs. survival?
3. G(-) resistance to 3rd gen cephalosporins?
4. Distribution of antimicrobial resistance?
 Any co-variations?
Materials & methods
Study groups

Three different groups from Oct 2012 - Sept 2013.

Group 1: Adults pts (> 18 yrs) admitted at Tikur Anbessa Hospital with clinical suspicion of septicemia.

Group 2: Blood culture from peds and adult cases admitted with clinical suspicion of septicemia at Yekatit 12 Hospital Medical College.

Group 3: Blood culture (+) Peds cases admitted at Tikur Anbessa Hospital.
Study design:

Study design	Group 1	Group 2	Group 3
	Case series,	Case series,	Case series,
	prospective	prospective	Cross-sectional
Out comes	Discharge/Death	Discharge/Death	Culture result
	Culture result	Culture result	
Blood culture	Aerobic &	Aerobic &	In house
	anaerobic (Bactec)	anaerobic (Bactec)	method
Number /Total	299	107	166 = 572

Notes:
- June 2015 ESIM oral presentation
- 9/15/2015
Study methods

• Blood cultures were collected with Bactec aerobic and anaerobic blood culture bottles plus in house method.
• Negative sample= No growth with in 5 days of incubation.
• Samples were kept for 10 days in Endocarditis suspects.
• Sensitivity evaluated for antimicrobial agents used in Ethiopia except carbapenems.
• Sensitivity testing was performed with Kirbauer’s method.
Study criteria for Group 1 & 2

Inclusion criteria:
Clinical suspicion of septicemia or septic shock plus any 2 of the following.

1. Axillary T^0: $> 38.5^0C$ or $< 36.5^0C$.
2. Heart rate > 90 beats/min
3. RR > 20 breaths/min
4. WBC $> 12K$, $< 4K$, or $> 10\%$ bands.

Exclusion criteria:
1. Antimicrobial therapy within the last 72 hrs.
2. No consent
Results (Group 1)
Baseline characteristics

Variable	Frequency	Percentage
Age (Mean ± SD)	32 (16)	
Sex (M:F)	155:144	1.1:1
Departments		
Medical	168 (56.2%)	168 (56.2%)
Emergency	128 (42.8%)	128 (42.8%)
Surgical	2 (0.7%)	2 (0.7%)
Gyne-obs	1 (0.3%)	1 (0.3%)
Prior antimicrobials	74	24.7%
Mean hospital days (± 1SD)		
Medical	9 (14)	
Emergency	1.6 (1.7)	
Surgical	9 (7)	
Gyne-obs	1 (1)	
Baseline characteristics of mortality & survivor cases

Variable	Mortality	Survivors
Frequency	44	255
Female: Male	20:24	124:131
Age (Median/Range)	25 (13-70)	28 (13-98)
Number of days within the hospital before blood culture (median)	2	2
Hgb < 7 gms /dL	17	52
ANC < 0.5 K	9	20
Platelets < 20 K	20	25
HIV status (+)	3	41
Recent IV antibiotics (Yes)	8	30
Clinical diagnosis

Diagnosis	Number (% total)
Hematology:	
1. acute leukemia	53 (17.7%)
2. pancytopenia	21 (7%)
3. Others	13 (14.9%)
Total	87 (29.1%)
Cardiac:	
Infective endocarditis	55 (18.4%)
HIV/AIDS +	38 (12.7%)
Sepsis +	34 (11.4%)
Others	85 (28.4%)
Total	299
Number of Positive culture samples

Bacteria	Medical	Emergency	Gyne obs	Surgical	Total								
E. coli	9	7	0	0	16								
CoNS	9	2			11								
S. aureus	3	4			7								
Salmonella sp.	2												
Klebsiella sp.	1												
C. braakii	1												
Bacteria	Number (%)												
----------------------	---------------												
E. coli	16 (42.1%)												
CoNS	11 (28.9%)												
S. aureus	7 (18.4%)												
Salmonella sp.	2 (5.3%)												
Klebsiella sp.	1 (2.6%)												
C. braakii	1 (2.6%)												
Total	**38/299 (12.7%)**												
Bacteria	N	A/cla (n)	Cefo (n)	Ceftr (n)	Ceph (n)	Cipro (n)	Clin (n)	Ery (n)	Gen (n)	Nor (n)	Nit (n)	Sulf (n)	Van (n)
-------------	---	-----------	----------	----------	---------	----------	----------	--------	--------	--------	--------	---------	--------
Gram +ves													
CoNS	11	1	7	7	6	5	4	7				5	2
S. aureus	7	0	1	2	1	2	0	0	0	0	0	5	0
Total Gm +ves	18	1	8	9	7	5	6	7	3	3	2	10	2
Gram –ves													
E. coli	16	11	10	9	11/15	8/15	12	3/7	12				
Salmonella sp	2	0	0	0	0	0	0	0	0				
Klebsiella sp	1	1	1	1	1	1	1	1	0				
C. braakii	1	0	0	0	0	0	0	0					
Total Gm -ves	20	9	9	9	8	9	12	12					
Resistant E. Coli (Medical wards vs. Emergency room)

	A/clav	Cefo	Ceftr	Cipro	Genta	Norfl
Med E. coli	7/9	6/9	5/9	6/8	5/9	7/8
Emer E. coli	4/7	4/7	4/7	5/7	3/6	5/7
Total	11/16	10/16	9/16	11/15	8/15	12/15
Resistant CoNS (Medical wards vs. Emergency room)

CoNS	A/cla	Cefo	Ceft	Ceph	Clin	Ery	Sulfa	Van
Med	0/9	5/9	6/9	4/9	3/9	6/9	4/9	2/8
Emer	1/2	2/2	1/2	2/2	1/2	1/2	1/2	0/2
Total	1/11	7/11	7/11	6/11	4/11	7/11	5/11	2/10
Blood culture result vs. mortality

	Discharged alive	Died in hospital	Total
Culture (+)	21 (8%)	17 (39%)	38 (13%)
Culture (-)	234 (92%)	27 (61%)	261 (87%)
Total	255	44	299

OR= 7.0 (95% CI 3.3 -14.9)

10% of those who died & 80% of the survivors had *Enterobacteriaceae* sensitive to both ceftriaxone & cefotaxime.
Death proportions vs. Charlson comorbidity index scores

Comorbidity score	0-1	2-3	4-5	6+
Deaths	11	25	4	4
No of patients	132	110	14	43
% mortality	8.3	22.7	28.6	9.3
Group 2
Yekatit 12 Hospital Medical College

- Age: 36 days – 50 years.
- Challenge: Most had taken antibiotics prior to 72 hrs.
- Culture technique: One sampling – 3 bottles each
- Positive culture: 2 patients - both positive by both methods.

Sample	Organism	Cefotaxime	Gentamycin
M 8/12	Citrobacter spp	R	S
M 3	E coli	R	R

30 June 2015 ESIM oral presentation

9/15/2015
Distribution of species responsible for childhood sepsis, Tikur Anbessa Hospital

Species	All	Early onset (newborn) sepsis N=20	Late onset (newborn) sepsis N= 14	Age unknown N=15	< 15 yrs but > 1 month N= 67
Non-fermenters	29	4	7	5	13
Klbsiella spp	35	5	1	5	24
Non-Klebsiella enterobacteriaceae	31	7	1	5	18
S. aureus	15	3	4	0	8
Enterococci	1	1	0	0	0
Streptococcus spp	4	0	0	0	4
Aspergillus spp	1	0	1	0	0

9/15/2015 June 2015 ESIM oral presentation
Percent co-variation of resistant and sensitive isolates between ceftazidime and six other antibiotics.

	Non-Klebsiella Enterobacter	Klebsiella spp	Pseudomonas spp	Acientobacter spp	All
Ceftaz	R=18 S=11	R=29 S=5	R=6 S=5	R=11 S=7	R=64 S=28
Gent	83% 100%	93% 20%	83% 100%	64% 100%	84% 85%
Chlor	44% 100%	76% 75%	83% 20%	91% 72%	71% 74%
Tetra	89% 36%	88% 60%	67% 80%	64% 67%	82% 56%
Co-tri	94% 73%	83% 60%	50% 80%	80% 86%	82% 75%
Cipro	67% 100%	31% 60%	0% 100%	45% 100%	39% 83%
Amik	8% 100%	4% 60%	32% 50%	10% 100%	10% 81%
Phenotypic betalactamases from TAH

• 17 consecutive ceftazidime-resistant isolates
• 16/17 carried ESBL-A, One was AmpC (+).
• One ESBL – A neg and amp-C neg.

This strain was meropenemase resistant.

(Before introduction of carbapenems in Ethiopia)
• 12.7% of blood cultures were positive (Group 1)

• G (+) : CoNS= 60%, S aureus= 40%, G (-): E. coli=80%

• Anaerobic culture : No positives.

• E. coli & CoNS more in the medical wards, mean stay= 9 days vs. emergency room= 2 days.

• E. coli > 70% were resistant to 3rd generation cephalosporins, ciprofloxacin & Gentamycin(Previous study 90% were ESBL).
• In-hospital mortality from proven BSI is high.
• 10% of the mortality cases had *Enterobacteriaceae* sensitive to both ceftriaxone & cefotaxime.
• 2/3 of G(-) resistant to 3rd generation cephalosporins were resistant to ciprofloxacin and gentamycin.
• Carbapenem resistance before its introduction.
• Amikacin seems a better option provided used rationally.
Thank You.