Research on Wasp population based on Gray Prediction and Fuzzy Analytic hierarchy process

Xinyuan Wu1,*, Yujia Wu1, Xiaohan Xu2

1Jinan University-University of Birmingham Joint Institute of Jinan University, Guangzhou, 511486, China
2Institute for Economic and Social Research of Jinan University, Guangzhou, 511486, China

*Corresponding author: xinyuanwu1998@jnu.edu.cn

Abstract. The invasion of exotic species should be paid attention to because of its severe consequences, and governments have constructed monitoring and tracking system to collect people’s sightings of species. For example, Asian giant hornet, an exotic species for North American countries was first discovered in September, 2019. Interpretations based on received reports are of essential to master the current situation of species and to predict its spread. However, there is a considerable number of mistake reports, it is necessary to select the most likely positive reports out of mountains of reports to be detailly investigate first. In this paper, two main problems are focused: interpretation of historical reports and strategy of prioritization. First of all, this paper preprocesses the image data based on Gaussian filtering and convolution neural network to make it as balanced as possible. In addition, the image consists of a wide range of array data. Proper treatment can improve the efficiency of analysis. Then, construct the GPSM model (Gray Predicting Spread Model) based on gray prediction to measure the spread of the pest. From the historical positive sighting location provided in the dataset, the GPSM model is able to output the predicted next location following the previous principle. If the distance between predicted location and current outbreak area are significant, a spread can be concluded. Tests for the GPSM model shows the model has a very high level of precision.

Keywords: Hornet, image recognition system, the GPSM model, the Prioritizing Judgment model.

1. Introduction

The invasion of exotic species is getting more and more attention in the last few decades since it can change and even damage the local biodiversity and ecosystem [1]. Since the difference of living habit and absence of natural enemy in local ecosystem, exotic species can reproduce without limit and occupy the limited resources, leading local species to die. Therefore, government has created helplines and websites for people to report their sightings. It is essential using these reports to detect the existence and current situation of exotic species and predict their spread [2].
This article verifies all reports and produces complete data sets, classifying each report as positive or negative. Then explain the reports received, determine whether the spread of pests can be predicted, and give the level of accuracy of the prediction.

2. Data preprocessing based on convolution Neural Network

2.1. Convolution neural network

Step 1: Defining training set and test set

Given the image data after processing, the data will be randomly split into two set based on the lab status that respectively contain 80% and 20% of the raw data. The bigger data will be used to train our CNN model and the other one will be used to test the accuracy of the identification. Here the classes will be the lab status.

Step 2: Constructing convolutional layers

At each convolutional layer, the dataset will be packed into an input cube that is convoluted with multiple feature maps. For our image data X_1, it will be enclosed into a matrix X_2 of $m \times n \times d$, where $m \times n$ refers to the spatial size of the data, d is the number of the channels and X_2 is the i-th feature map of the matrix. Define there will be k filters at this convolutional layer and the j-th filter can be characterized by the weight w_j and bias b_j. The j-th output can be generate through this formula:

$$ y_j = \sum_{i=1}^{d} f(x_i \cdot w_j + b_j) $$

Where $j = 1, 2, \cdots, k$, \cdot represents the convolution operator and f is the function to improve the nonlinearity of the network.

Step 3: Constructing pooling layers

The layers are created to reduce the size of feature maps in the previous layers to obtain more general and abstract features within classes. Due to the existence of the redundant information, the pooling layers are periodically inserted after several convolutional layers. Reducing the spatial size of the feature maps progressively, the pooling layers will decrease the number of parameters and computation of the network. For the $k \times k$ window-size neighbor R, the average pooling operation will be:

$$ z = \frac{1}{F} \sum_{(i,j) \in R} x_{ij} $$

where F is the number of the elements in the neighbor and x_{ij} is the activation value at (i,j).

Step 4: Constructing a fully connected layer

At the last step of the network construction, the feature maps of the previous layers are flattened and fed to this layer. The fully connected layers will be:

$$ Y' = \sum_{i=1}^{c} f(WX' + b) $$

Where X', Y', W and b are the input data, output label, weight and bias of the fully connected layers.
2.2. Results

Figure 1. Accuracy of results

Due to the data limitation, the accuracy seems not to be significantly improved a lot and stays at around 0.98 when more learning is done. However, through the progress of multi-layers learning of the training set, the validation loss has a downward trend which implies that the CNN model will be more efficient when more data is reported.

3. The GPSM Model

In this section, the paper proposes the GPSM model (Gray Predicting Spread Model) to predict the spread of the Asian giant hornet can be predicted [3] [4]. The main process of our model is to operate gray prediction based on gray model. The GPSM model is constructed based on the idea of gray prediction. The gray system is an unascertained information system containing both the known and unknown information. This property makes the GPSM model outputting accurate predictions.

3.1. Model Overview

The purpose of this model is to predict the sighting location of next time unit. Specific process shown below is to predict the latitude of the location, and its longitude can be obtained by operating the same method [5].

By approximately analyze the dataset given and the background information of the occurrence of Asian giant hornet, a month is the appropriate time unit. Take the average latitude and longitude of a month to be the average sighting location of the month [6]. If the distance between the predicted location and the average current sighting location is larger than the critical value, then the spread of Asian giant hornet can be concluded.

3.2. Steps of GPSM Model

From the dataset given, the positive reports are all clustered in the same area, and the attached file shows the Asian giant hornet is found in September 2019, which is not far from today. Hence, take every month to be a time unit. The dataset provided gives 14 positive reports in total from September 2019 to October 2020.

Step 1: Data examining and adjusting
From the dataset given, calculate the average latitude of the sighting spot, expressed it as:

\[x^{(0)} = (x^{(0)}(1), x^{(0)}(2), \ldots, x^{(0)}(n)) \] (4)

To guarantee the effectiveness of gray prediction, step ratio of the sequence should be checked. Step ratio is calculated by:
\[\sigma(k) = \frac{x^{(0)}(k-1)}{x^{(0)}(k)} \] (5)

If all step ratio \(\sigma(k) \) are in the range \(\chi = (e^{-\frac{2}{n+1}}, e^{\frac{2}{n+1}}) \), then sequence \(x^{(0)} \) can be used as model GM (1, 1) and implement gray prediction. Otherwise, sequence \(x^{(0)} \) should be switched to fall in the range, and an appropriate constant \(c \) is needed to translate:

\[y^{(0)}(k) = x^{(0)}(k) + c \quad (k = 1, 2, \ldots, n) \] (6) to make sequence \((y^{(0)}(1), y^{(0)}(2), \ldots, y^{(0)}(n))\) has step ratio

\[\sigma_y(k) = \frac{y^{(0)}(k-1)}{y^{(0)}(k)} \in \chi \quad (k = 2, 3, \ldots, n) \] (7)

Step 2: Construct model GM (1,1)

Operate the accumulated generating process on the original sequence \(x^{(0)} \) to obtain a new sequence:

\[x^{(1)} = (x^{(1)}(1), x^{(1)}(2), \ldots, x^{(1)}(n)) \] (8)

Where \(x^{(1)}(k) = \sum_{i=1}^{k} x^{(0)}(i) \). Define the gray derivative of \(x^{(1)} \) to be:

\[d(k) = x^{(0)}(k) = x^{(1)}(k) - x^{(1)}(k - 1) \] (9)

\(x^{(1)} \) is the one-time accumulated generating sequence, and in the gray prediction model, \(x^{(1)} \) is sufficient to predict and it’s not essential to accumulate more times.

Define \(z^{(1)} \) to be the mean sequence of \(x^{(1)} \):

\[z^{(1)}(k) = 0.5x^{(1)}(k) + 0.5x^{(1)}(k - 1) \] (10)

and \(z^{(1)} = z^{(1)}(2), z^{(1)}(3), \ldots, z^{(1)}(n) \).

Then, the gray differential equation model of GM (1,1) is defined to be:

\[d(k) + az^{(1)}(k) = b \] (11)

i.e.

\[x^{(0)}(k) + az^{(1)}(k) = b \] (12)

In this equation, \(x^{(0)}(k) \) is called gray derivative, \(a \) developing derivative, \(z^{(1)}(k) \) whitening background value, and \(b \) graying quantity.

Its corresponding whitening differential equation is:

\[\frac{dx^{(1)}}{dt} + ax^{(1)}(t) = b \] (13)
Define \(u = (a, b)^T \), \(Y_1 = (x^{(0)}(2), x^{(0)}(3), \cdots x^{(0)}(n))^T \), \(B = \begin{bmatrix} -z^{(1)}(2) & 1 \\ -z^{(1)}(3) & 1 \\ \vdots & \vdots \\ -z^{(1)}(n) & 1 \end{bmatrix} \).

Here gives the method to determine vector \(u \), if \((B^T \cdot B)^{-1} \) exists, then by least square method,

\[
\hat{u} = (\hat{a}, \hat{b})^T = (B^T \cdot B)^{-1}B^TY_1
\]

Therefore, by solving the whitening differential equation, it can be obtained that:

\[
\hat{x}^{(1)}(k+1) = \left(x^{(0)}(1) - \frac{b}{a}\right)e^{-ak} + \frac{b}{a} (k = 1, 2, \cdots, n-1)
\]

And \(\hat{x}^{(0)}(k+1) = \hat{x}^{(1)}(k+1) - \hat{x}^{(1)}(k) \) \((k = 1, 2, \cdots, n-1) \).

Step 3: Test predicting value

Since the future value is unknown, this paper use step ratio deviation value to test precision. Calculate step ratio \(\sigma_0(k) \) by \(x^{(0)}(k-1) \) and \(x^{(0)}(k) \), then combine \(a \) to obtain corresponding step ratio deviation:

\[
\rho(k) = 1 - \frac{1 - 0.5a}{1 + 0.5a}\sigma_0(k)
\]

If \(\rho(k) < 0.2 \), then the prediction meets the normal standard, and if \(\rho(k) < 0.1 \), then the prediction meets a high standard.

3.3. Results of GPSM Model

The model gives the developing derivative \(a = 2.0035 \times 10^{-4} \), graying quantity \(b = -122.7698 \). Similarly, in the process of predicting longitude, the developing derivative \(a = 1.2767 \times 10^{-4} \), graying quantity \(b = 48.9885 \). Then, with these estimations, their corresponding whitening differential equations can be obtained.

The predicted latitude and longitude are obtained and the outcomes are shown as Figure 2:

![Figure 2. Predicted location](#)

predicted latitude: 48.9291; predicted longitude: -122.5362
Figure 2 indicates that for most months, the predicted locations are precise while there is a significant difference in June. Our GPSM model gives the predicted next location having latitude 48.9291 and longitude −122.5362. From the past data, predict a location of Asian giant hornet in June which has a significant difference to its actual location. Therefore, it can be deduced that a spread might exists in June.

The level of precision of the GPSM model is indicated by the step ratio deviation. The step ratio deviation of latitude and longitude predictions are:

Table 1. Step ratio deviation of predicted location

	1/2	2/3	3/4	4/5
latitude	-0.0019	0.0012	-0.0008	0.0007
longitude	-0.0049	0.0011	-0.0008	-0.0001
month/month	5/6	6/7	7/8	8/9
latitude	-0.0046	0.0032	0.0013	0.0001
longitude	-0.0017	0.0029	-0.0012	0.0002

It can be seen that all step ratio deviations are under 0.2, which means our prediction meets a high standard of precision.

4. The Prioritizing Judgment Model

The paper designs the Prioritizing Judgment Model to evaluate key factors deciding the likelihood of correct classification and capture information of reports to provide a strategy of prioritizing.

4.1. Determining the weight for each factor

(A) Season-A1: According to the background information of Pennsylvania State University, Asian bumblebee is one-year biological species. There are obvious differences in the number of populations in different seasons. Therefore, the season is a factor to be considered.

(B) Location-A2: Asian bumblebee mainly occurs in specific areas, with little change in latitude and longitude. At the same time, the paper should be on guard against the possible spread and movement of pests. Therefore, the location is a factor determining positive sightings, while the distance from the outbreak area and the number of recent reports in the area are detailed factors in determining whether the site is important or not.

(C) Image recognition-A3: Despite the picture itself and the content of notes, the form of report is also a meaningful information contributing to the likelihood of positive classification. Report with more pictures and concrete note are preferred.

4.2. 3.2 Fuzzy Preferential Relation Matrix

In fuzzy analytic hierarchy process, preferential relation matrix is a matrix with three possible elements (0, 0.5, 1). The meaning of preferential relation matrix is:

Table 2. Value of elements in preferential relation matrix

	Degree of importance
1	u_i is more important than u_j
0.5	u_i and u_j have the same importance
0	u_i is less important than u_j

For the level indicators and secondary indicators listed in the prioritizing judging system, their preferential relation matrix should be confirmed. Denote the preferential relation matrix of level
indicators to be G_A, the degree of membership r_i in G_A is obtained by summing up $G = |g_{ij}|_{n \times n}$ according to rows, i.e. $r_i = \sum_{k=1}^{n} g_{ik}$.

Table 3. Relation matrix of level indicators-A

	A_1	A_2	A_3	r_i
$G_A =$				
A_1	0.5	0	0	0.5
A_2	1	0.5	0	1.5
A_3	1	1	0.5	2.5

The prioritizing relation is *image recognition > location > season*.

Applying the same method, the preferential relation matrix of two secondary indicators under A_1 (season), denoted by G_{A1} is given by:

Table 4. Relation matrix of level indicators-A1

	B_{11}	B_{12}	r_i
$G_{A1} =$			
B_{11}	0.5	0	0.5
B_{12}	1	0.5	1.5

As an annual species building nests every year the current nests will be abandoned and the only individuals surviving are fertilized queens at winters. During spring and summer next year, the growth of Asian giant hornets is slow and its population reaches peak around August. After male and queens are produced and begin to leave, the colony falls to disarray and finally die out in winter. By its life history, the prioritizing relation is (summer & autumn) > (winter & spring).

Following the same method, the preferential relation matrix of two secondary indicators under A_2 (location), denoted by G_{A2} is given by:

Table 5. Relation matrix of level indicators-A2

	B_{21}	B_{22}	r_i
$G_{A2} =$			
B_{21}	0.5	1	1.5
B_{22}	0	0.5	0.5

The prioritizing relation is *distance to outbreak > num of nearby reports*. We believe locations near the outbreak area are more likely to sight the pest.

4.3. Weight of indicator

With formulas $h_{ij} = \frac{r_i - r_j}{2 \times n} + 0.5$ and $W_i = \frac{\bar{h}_i}{\sum_{i=1}^{n} \bar{h}_i}$, in which $\bar{h}_i = \sqrt[n]{\prod_{j=1}^{n} h_{ij}}$. h_{ij} is the element of the i-th row and j-th column, W_i is the weight of the i-th indicator.

By calculation, the weight for each level indicator is shown as matrix W_A. The weight for image recognition(0.4543) is larger than the weight for location(0.3348), which is larger than the weight for season(0.2109).
Table 6. Index weight matrix-A

	A1	A2	A3	W_i
A1	0.5	0.333	0.167	0.2109
A2	0.667	0.5	0.333	0.3348
A3	0.833	0.667	0.5	0.4543

The weight for secondary indicators under A1 (season) is shown as matrix W_{A1}. Weights for two indicators are *summer & autumn*(0.634) and *winter & spring*(0.634):

Table 7. Index weight matrix-A1

	B_{11}	B_{12}	W_i
B_{11}	0.5	0.25	0.366
B_{12}	0.75	0.5	0.634

Similarly, the weight for secondary indicator under A2 (location) is shown as matrix W_{A2}. Weights for two indicators are *distance to outbreak*(0.634), and *num of nearby reports*(0.366):

Table 8. Index weight matrix-A2

	B_{21}	B_{22}	W_i
B_{21}	0.5	0.75	0.634
B_{22}	0.25	0.5	0.366

4.4. Results

(1) Mark for A1(season)

To avoid falling into dummy variable trap, we combine the mark and weight for secondary indicators. If the report has a season that is winter & spring, it is marked 0.366. Otherwise, it is marked 0.634.

![Figure 3. Periodicity](image_url)

(2) Mark for A2(location)

From the living habit of Asian giant hornet, a new queen has a range of 30km for building her new nest. Hence, it is possible to sight the pest in 30km around. On the basis of the outbreak area drawn, enlarge the radius by 30km to obtain circle A, then continuously enlarge the radius of circle A by 30km and obtain circle B.
(3) Mark for A2 (image recognition)

By continuously adding more image into the model, the level of precision increases with a longer training time. However, it is never impossible for the model to have a precision of 100%, and outcomes of this algorithm can only be part of the judgment evidence.

It is believed that reports with image recognition outcome “positive” are more likely to be a positive sighting than those with outcome “negative”. Reports with outcome “positive” is marked 0.7, while reports with outcome “negative” is marked 0.3.

5. Conclusion

The invasion of alien species has serious consequences, which should be paid great attention to. This paper mainly focuses on historical data and optimization strategies to study the population invasion behavior of alien species-Asian wasp. First of all, the convolution neural network is used for data processing, and then the gray prediction of the image array is carried out to get the data of the next location. Then combined with the fuzzy analytic hierarchy process, quantify the season, location, image recognition three indicators to determine the event. Appropriate choice of data processing method. According to the main idea of Gaussian filter and convolutional neural network, our image recognition system enlarges sample size, balances ratio of different samples, improves predicting precision and increases calculating speed.

References

[1] Shutao Li, Weiwei Song, Leyuan Fang, Yushi Chen, Pedram Ghamisi, Jón Atlí Benediktsson. Deep Learning for Hyperspectral Image Classification: An Overview [J]. IEEE.
[2] Studies on Applying Gray System Theory to Forecasting Population Dynamic of Rodent [J]. Journal of August 1st Agri. College, 1992 (01): 63 - 68.
[3] Cai MuZhen, Dong Bo, Xiao Yuhui. Prediction of Fish School based on Neural Network and Gray Prediction [J]. Journal of Physics: Conference Series, 2021, 1802 (4).
[4] Qihong Zhou, Guangzong Wu, Zhenxi Wang, Bing Wang, Ge Chen, Zhihong Sun. Analysis and prediction of the width of spreading carbon fiber tow based on gray system theory [J]. Journal of Applied Polymer Science, 2021, 138 (12).
[5] Wang Shu, Li Hao, Zhong Ke, Nie Shan, Zhou Wenan. Application of fractional prediction model based on improved grayscale algorithm [J]. Electronic Technology and Software Engineering,
2020 (11): 212 - 215.

[6] Shan Zhilong, Liu Lanhui, Zhang Yingsheng, Huang Guangxiong. A strong adaptive mobile node location algorithm using grayscale prediction model [J]. Journal of Electronics and Information, 2014 1492 36 (06): 2014 - 1497.