ABCC4/MRP4: a MYCN-regulated transporter and potential therapeutic target in neuroblastoma

Tony Huynh, Murray D. Norris, Michelle Haber and Michelle J. Henderson*

Experimental Therapeutics Program, Lowy Cancer Research Centre, Children’s Cancer Institute Australia for Medical Research, University of New South Wales and Sydney Children’s Hospital, Sydney, NSW, Australia

ARTICLE

INTRODUCTION

Neuroblastoma, a cancer which arises from primitive cells of the sympathetic nervous system is the most common extra cranial solid tumor to occur in children. More than 50% of cases present as high risk disease, for which long-term survival rates remain below 50% (Brodeur, 2003; Maris et al., 2007). Within the last decade, considerable effort has been made toward universal risk stratification for neuroblastoma patients with a view to better tailoring of treatment. A recent international review of 8,800 patients throughout 1990–2002 confirmed patient age at diagnosis, tumor stage, DNA ploidy, chromosome 11q status, and MYCN status as important parameters to consider for patient risk stratification (Cohn et al., 2009). Detected in 20% of neuroblastoma cases, amplification of the MYCN oncogene has been characterized as a powerful independent predictor of clinical outcome in neuroblastoma (Maris et al., 2007). Consequently, the MYCN oncogene has been shown to be a direct transcriptional target of MYCN and expression of this transporter is a powerful independent predictor of clinical outcome in neuroblastoma. Together, these features suggest that inhibition of MRP4 may be an attractive therapeutic approach for neuroblastoma and other cancers that rely on MRP4. In this respect, existing options for MRP4 inhibition are relatively non-selective and thus development of more specific anti-MRP4 compounds should be a major focus of future work in this area.

Resistance to cytotoxic drugs is thought to be a major cause of treatment failure in childhood neuroblastoma, and members of the ATP-binding cassette (ABC) transporter superfamily may contribute to this phenomenon by active efflux of chemotherapeutic agents from cancer cells. As a member of the C subfamily of ABC transporters, multidrug resistance-associated protein MRP4/ABCC4 has the ability to export a variety of endogenous and exogenous substances across the plasma membrane. In light of its capacity for chemotherapeutic drug efflux, MRP4 has been studied in the context of drug resistance in a number of cancer cell types. However, MRP4 also influences cancer cell biology independently of chemotherapeutic drug exposure, which highlights the potential importance of endogenous MRP4 substrates in cancer biology. Furthermore, MRP4 is a direct transcriptional target of Myc family oncogenes and expression of this transporter is a powerful independent predictor of clinical outcome in neuroblastoma. Together, these features suggest that inhibition of MRP4 may be an attractive therapeutic approach for neuroblastoma and other cancers that rely on MRP4. In this respect, existing options for MRP4 inhibition are relatively non-selective and thus development of more specific anti-MRP4 compounds should be a major focus of future work in this area.

Keywords: neuroblastoma, MRP4/ABCC4, ATP-binding cassette transporter protein
In addition to protecting cells against metabolic products and signaling substrates of MRP4, Cyclic adenosine monophosphate (cAMP) plays a critical role as an intracellular second messenger, mediating a range of cellular functions. For example, cAMP-mediated signaling promotes monocyte differentiation (Giordano et al., 2003). Interestingly, ARCC4 expression levels decrease with the differentiation toward mature leukocytes (Overmann et al., 2009), which could promote cAMP accumulation and hence the strength of signaling down differentiation pathways. In cardiomycocytes, MRP4 regulates cAMP homeostasis which in turn controls the activity of key properties such as cardiac performance and structure (Sassi et al., 2011). Elevation of intracellular cAMP also promotes morphological differentiation and decreases proliferation in cultured neuroblastoma cell lines (Prasad et al., 2003; Sanchez et al., 2004).

In addition to supporting the normal development of various tissues, signaling molecules exported by MRP4 are able to support tumor growth in a variety of cancers. As mediators of the cyclooxygenase pathway, prostaglandins support an inflammatory microenvironment and can promote cell proliferation and survival in tumor cells, including neuroblastoma (Ramsdell et al., 2012). In addition, prostaglandin-E2 (PGE2) secreted from neuroblastoma cells can facilitate interactions with tumor-supportive bone marrow stromal cells (Ara et al., 2009). Clinical observations and mouse models have demonstrated the importance of prostaglandin-mediated pathways in colorectal cancer. Increased levels of PGE2 are reported in human colorectal adenomas and carcinomas compared to paired normal mucosa (Pugh and Thomas, 1994). Furthermore, clinical studies have shown that adenoma development in familial adenomatous polyposis patients can be prevented by inhibiting prostaglandin production (Chell et al., 2006). Conversely, mouse models have shown direct evidence of prostaglandin-promoted tumor growth, with an increase in tumor incidence following PGE2 treatment in ApcMin+ mice (Greenough et al., 2009).

Signaling via leukotrienes, another class of substrates transported by MRP4, promotes cell survival and proliferation through the activation of both autocrine and paracrine pathways. Up-regulation of leukotrienes in various cancers is thought to stimulate epithelial and surrounding stromal cells to produce relevant growth factors, pro-inflammatory mediators, and angiogenic factors which provide a tumor-supportive microenvironment (Wang and Dulbois, 2010). In neuroblastoma cells, prolonged exposure to leukotriene B4 leads to increased cell viability in SK-N-BE(2)-C cells, while inhibitors of leukotriene production or signaling lead to cell cycle arrest and apoptosis (Sveinbjornsson et al., 2008).

MRP4 AND DRUG RESISTANCE IN CANCER

Chemotherapy resistance is a major obstacle to successful cancer treatment and members of the ABCC/MRP transporter family are perhaps best known for their abilities to confer drug resistance through the active export of structurally dissimilar bioactive substances (Table 1). Notably, a number of signaling molecules with established roles in normal tissue function and tumor biology are MRP4 substrates and these include cyclic nucleotides, prostaglandins, and leukotrienes (Chen et al., 2001; Reid et al., 2003; Rius et al., 2008).

Table 1 | Drug and endogenous substrates of MRP4.

Pharmacological class	Drug	Endogenous substances
Folic acid derivative	Leucovorin	Cyclic and ADP
DNA	Topotecan*	cGAMP
Topoisomerase inhibitor	Irinotecan* (SN38)†	Nucleotides ADP
		Purine Urate
		Analog Eicosanoids
		Folates PGE2
		bile acids PGE2
		sterols Cholate
		Conjugated Cholyltaurine
		17β-D-glucuronide

Table modified from Russel et al. (2008).

1† Relevant to neuroblastoma treatment; camptothecins.
2‡ Anti-viral Adefovir; Anti-metabolite 6-Mercaptopurine; Methotrexate.
3* Relevance to neuroblastoma treatment; camptothecins.
4Pharmacological class: Cyclic and ADP, cyclic-adenosine monophosphate; ADP: adipose acid, DHEAS, dehydroepiandrosterone; E17βG, estradiol-17β-glucuronide.
5Nucleotide and nucleoside analog drugs.
chemotherapeutic compounds in various cancers (Borst et al., 2000). Clinically relevant drugs known to be transported by MRP4 include nucleoside and nucleotide analogs (Chen et al., 2001) and, relevant to neuroblastoma, the camptothecins irinotecan (Norris et al., 2005) and topotecan (Tian et al., 2003) (Table 1). Therefore, the role of MRP4 in establishing drug resistance has been explored in a number of cancer cell lines. HepG2 cells transfected with the human ABCC4 plasmid showed enhanced resistance to irinotecan, topotecan, and cyclophosphamide, all of which are used in neuroblastoma treatment or are in trial for use (Lengerl et al., 2002; Kushner et al., 2006; London et al., 2010). Using established MRP4 inhibitors such as MK571 and celecoxib, resistance to these cytotoxic agents was significantly reduced (Tian et al., 2005, 2006). Resistance to irinotecan and reduction in its intracellular accumulation was additionally shown in HEK-293 cells transfected with the human ABCC4 plasmid when compared to parental HEK-293 cells (Norris et al., 2005).

Expression of MRP4 in leukemia cells correlated with drug resistance to relevant chemotherapeutic agents used in leukemia treatment. A fourfold increase in MRP4 expression was observed in CEM-MP5 leukemia cells, which were selected for resistance through step-wise exposure to 6-mercaptopurine (6-MP). Compared to the parental CEM cell line, CEM-MP5 cells displayed a 100-fold greater resistance to 6-MP (Peng et al., 2008). Additionally, the acute myeloid leukemia (AML) cell line K562/ADR showed elevated expression of MRP4 compared to parental K562, which had a greater resistance to adriamycin, a standard chemotherapy for AML. Although there is no evidence of direct efflux of adriamycin by MRP4, knockdown of MRP4 through lentiviral-mediated shRNA within the K562/ADR cell line enhanced adriamycin-induced apoptosis (Liu et al., 2012), suggesting MRP4 may contribute drug resistance by other means, such as removal of toxic metabolites associated with drug exposure.

In the gastric cancer cell line SGC7901/DSD, resistance to cisplatin was developed through incremental cisplatin exposure and was associated with increased MRP4 expression. This resistance was reversed upon siRNA-mediated MRP4 knockdown (Zhang et al., 2010). Although cisplatin is not an MRP4 substrate, the elevation of MRP4 might promote cell survival through increased export of autocrine signaling molecules involved in regeneration, such as various nucleotides or prostanooids (Ahlsunes et al., 2008).

MRP4, AN INDEPENDENT PROGNOSTIC FACTOR IN NEUROBLASTOMA

In an attempt to gain insight into the potential clinical relevance of MRP4, the relationship between expression, pathology, and patient outcome has been examined in several tumor types. To address this question in neuroblastoma, in two independent studies, quantitative reverse transcriptase-PCR was used to determine ABCC4 expression levels in primary neuroblastoma tumors obtained prior to treatment (Norris et al., 2005; Henderson et al., 2011). In both studies, ABCC4 expression was associated with MYCN amplification as well as advanced tumor stage. Interestingly, chromatin immunoprecipitation and luciferase reporter assays were used to demonstrate that MRFP4 expression is directly regulated by the MYCN and MYC oncogenes (Porro et al., 2010), raising the possibility that MYCN induction of ABCC4 expression may contribute to the malignant phenotype driven by MYCN in neuroblastoma.

More importantly, ABCC4 expression in primary neuroblastoma is strongly associated with reduced event-free survival and overall survival and multivariate analysis revealed that ABCC4 expression retained prognostic significance following adjustment for tumor stage, age, and MYCN amplification (Henderson et al., 2011). Analysis of a microarray dataset from a third independent cohort of patients enrolled in the German Neuroblastoma Trial NB90-NR2004 confirmed these findings (Oberthuer et al., 2006; Henderson et al., 2011). For none of the three cohorts however, were any of the chemotherapeutic agents used to treat patients substrates of MRP4, suggesting the link between MRP4 and poor patient outcome is not attributable to resistance mechanisms related to drug efflux. Furthermore, expression of ABCC4 was determined in primary untreated neuroblastoma tumors indicating that ABCC4 expression levels were independent of prior treatment exposure. These observations suggested that enhanced MRP4 expression contributes to poor outcome in neuroblastoma through mechanisms other than facilitation of drug export. In support of this, siRNA-mediated knockdown of ABCC4 in the neuroblastoma cell lines SK-N-BE(2)C and SH-SY-5Y reduced cell proliferation and clonogenicity (Henderson et al., 2011). These studies indicate ABCC4 expression may be an important biological factor in neuroblastoma, outside of its ability to contribute to drug efflux. Studies currently in progress involving cross breeding between MYCN transgenic mice and Abcc4 gene knockout mice will further assess the biological impact of ABCC4 in neuroblastoma development, progression, and treatment response.

MRP4 IN OTHER CANCERS

While definitive studies are yet to be reported, some evidence suggests MRP4 may be important in the biology of other cancers. In addition to playing a role in drug-resistant leukemia cell lines, MRP4 appears to regulate leukemia cell proliferation and differentiation independently of drug efflux through the endogenous MRP4 substrate cAMP. Blockage of MRP4 through shRNA or the MRP4 inhibitor, probenecid, in the human leukemia cell line U937 caused intracellular accumulation of cAMP and consequent leukemic maturation toward a more differentiated phenotype (Copsel et al., 2011). These findings are consistent with the apparent role for MRP4 and cAMP-mediated signaling in normal hematopoietic cell development, where ABCC4 expression levels decrease during differentiation toward mature leukocytes (Overmann et al., 2009). Other studies suggest a vital role for MRP4 in T-cell malignancies, where inhibition of MRP4, either by viral shRNA or smallmRNA, impaired the abilities of intestinal dendritic cells to migrate toward lymph node chemokines (van de Ven et al., 2008), raising the possibility that MRP4 could also influence migratory properties of either cancer cells or their neighbors.

Polymorphisms within the ABCC4 gene are associated with poor outcome in acute lymphoblastic leukemia. Persons with the C-allele of the TC-1393 polymorphism may influence ABCC4 gene promoter activity, had longer event-free survival and persons with the A-allele of the CA-934 polymorphism had...
reduced event-free survival compared to the respective other genotypes. Despite the CA-934 polymorphism, the level of MRP4 expression within the liver and amount of 6-MP accumulation in the kidney remained unchanged, suggesting the CA-934 polymorphism does not contribute a drug resistant phenotype within this patient cohort (Ansari et al., 2009). Although the mechanism underlying CA-934 polymorphism and poor outcome is unknown, the efflux of an endogenous substrate is one potential mechanism.

MRP4 protein was more abundant in pancreatic cancers when compared to adjacent non-cancerous pancreatic tissue and knockdown of MRP4 using shRNA in two pancreatic cancer cell lines, Panc1 and BxPC-3, inhibited cell growth and clonogenicity in vitro (Zhang et al., 2011). These initial findings suggest that MRP4 could contribute to pancreatic cancer progression, however, the underlying mechanism responsible for the observed cell cycle arrest and reduction in cell proliferation during MRP4 knockdown is currently unknown.

Androgens are steroid hormones required for normal prostate development and are also important signalling molecules in driving prostate cancer. Upon androgen binding, the androgen receptor translocates into the nucleus where it binds to androgen response elements in androgen-responsive genes, including various genes involved in cell proliferation and apoptosis (Heinlein and Chang, 2001; Langler et al., 2002; London et al., 2010), treatment through androgen treatment using bicalutamide reduced MRP4 expression in normal prostate cells (Suzuki et al., 2003; Ho et al., 2008). Anti-androgen treatment using bicalutamide reduced MRP4 expression in the LNCaP prostate cancer cell line and tumors from patients treated with androgen ablation pre-operatively were found to have lower levels of MRP4 expression compared to those from uncastrated prostate cancer patients. Despite MRP4 being a potentially important target of the androgen receptor, no correlation was seen between MRP4 expression and known prognostic factors or relapse free survival (Ho et al., 2008).

Despite these observations and the association between MRP4 expression and drug resistance in various cancer cell lines, few studies have adequately explored the relationship between MRP4 expression and clinical outcome in these cancers, and, with the exception of neuroblastoma, no association has been reported (Steinbach et al., 2003; Zhang et al., 2011). Future studies will be required to follow-up these suggestive observations.

TARGETING MRP4 FOR THE TREATMENT OF NEUROBLASTOMA

In neuroblastoma, given the strong association between MRP4 expression and poor clinical outcome, the effects on cancer cell biology, and the use of MRP4 cytotoxic substrates such as topotecan in relapsed neuroblastoma patients (Sayfou et al., 2001; Langler et al., 2002; London et al., 2010), treatment through MRP4 inhibition may provide a novel approach to influence both treatment efficacy and tumour growth.

Table 2 | MRP4 inhibitors and their selectivity.

MRP4 inhibitor	Mode of action/ structural class	Additional targets
Daunorubicin	Nucleoside transport inhibition	P-gp, MRP1
Sirolimus	POS inhibitor	MRP1, BCRP
MK571	Leukotriene antagonist	MRP1, MRP2, MRP5
Indomethacin	Non-steroidal anti-inflammatory	MRP1, MRP2
Celecoxib	COX-2 inhibitor	MRP1
Probencid	Organic anion	MRP2, MRP3
Sulindac	Non-steroidal anti-inflammatory	MRP2
Losartan	Angiotensin II type 1 receptor	P-gp
Quercetin	Flavonoid	MRP1, MRP2, MRP5

A number of pharmacological agents with MRP4 inhibitory activity have been identified. However, most are non-specific and are able to target other ABC transporter family members (Table 2). Experience from early clinical trials using inhibitors of the multidrug transporter P-glycoprotein (P-gp/MDR1) indicates that future generations of inhibitors should be selective if the benefit of targeting MRP4 is to be effectively realized (Szakacs et al., 2006). Such inhibitors should block transport of the relevant exogenous or endogenous substrates, thus identification of key physiological substrates should be a focus of future work. Screening for selective MRP4 small molecule inhibitors may allow for the development of a more targeted approach for neuroblastoma therapy and better treatment strategies for other malignancies, particularly if patients whose tumors have high levels of MRP4 are selected for intervention.

Small molecule inhibitors are able to inhibit the function of specific proteins through a number of mechanisms. These include binding DNA at various gene promoters, thereby inhibiting gene expression at either the transcriptional or translational level, through to inhibiting protein–substrate interaction through competitive binding or inducing a protein conformational change (Yap et al., 2012). High-throughput screens commonly involve rapidly testing tens of thousands of potential drug candidates in target-based or cell-based assays with the aim of identifying potentially active compounds from large compound collections (Macarron et al., 2011). Small molecule inhibitors have the advantage of being efficiently produced and further developed in order to inhibit relevant oncogenic targets (Bleicher et al., 2003). Such screening methods led to development of Imatinib (Glivec), which is a potent inhibitor of the ABL tyrosine kinase and selectively kills leukemia cells expressing the Bcr-Abl oncogene (Druker et al., 1996). With a high response rate to therapy and a favorable cytotoxic profile compared to standard chemotherapy this compound and its relatives represent an incredible breakthrough in therapy for chronic myelogenous leukemia and other Philadelphia chromosome-positive leukemias (O’Brien et al., 2003; Novak, 2004).
High-throughput screening of chemical libraries has been used successfully to identify novel inhibitors of ABC transporters (Burkhart et al., 2009). A library of 2,300 analogs based upon P-gp modulators was screened for MRP1 inhibition through a cell-based readout system. The breast cancer cell line MCF7/VP16, which has amplified MRP1 levels but low P-gp levels was transduced with a p33-responsive LacZ reporter to create a read-out of MRP1 inhibition during accumulation of doxorubicin, a cytotoxic MRP1 substrate. Based on these screening efforts, six structural scaffolds which effectively inhibit MRP1 were identified (Burkhart et al., 2009).

Similarly, we have developed high-throughput screening methodology for MRP4 inhibitors using MRP4-over expressing HEK-293 cells which exhibit the cytotoxic substrate 6-MP. From 30,000 random chemical small molecules we were able to identify 19 “hit” compounds able to reverse the resistance of MRP4-overexpressing HEK-293 cells to 6-MP, and to cause intracellular 6-MP accumulation. Remarkably, in the absence of drug exposure, two of the compounds also recapitulated the effects of siRNA-mediated MRP4 knockdown in that they inhibited growth of the neuroblastoma cell line, SK-N-BE(2)C, and this was accompanied by extension of neuritic processes, thereby characterizing MRP4 behavior toward a particular inhibitor. Given the high structural homology and substrate overlap of MRP4 with other ABC transporters, such as MRP1, MRP5, and ABCG2 (Borst et al., 2009; Klaassen and Attenhoefer, 2010), it is essential to screen for specific MRP4 inhibitors in order to limit potential off target effects. To overcome this issue, candidate inhibitors can be tested on cell lines overexpressing a range of ABC transporters, each paired with their respective parental control, in the presence of cytotoxic substrate relevant to each transporter in order to determine the specificity of inhibitors (Burkhart et al., 2009).

Additionally, inside-out vesicle assays can also be used to characterize ABC transporter substrate specificity and the effects on inhibitors on transporter-mediated ejection of individual substrates (Schlummer and Stoszek, 1994; Lee et al., 1996).

CONSIDERATIONS AND FUTURE DIRECTIONS

MRP4 offers a valuable and novel target for the treatment of neuroblastoma and potentially other malignancies for which evidence implicates MRP4 in cancer biology and chemotherapy resistance. With specific MRP4 inhibitors, it is expected that side effects would be minimal given MRP4 knock-out mice do not show any obvious abnormalities (Belinsky et al., 2007). However, drug distribution to various organs and potential toxicities of MRP4 inhibitors in combination with established chemotherapies must be considered and their effects profiled in combination with relevant chemotherapeutics in appropriate preclinical models. A potential benefit from the role of MRP4 in biodistribution lies in the possibility that MRP4 inhibitors may enhance drug availability to tumor tissues through uptake across the blood brain barrier or reduced renal elimination. This may be particularly beneficial for drugs in clinical trials for the treatment of neuroblastoma such as irinotecan and topotecan and, as suitable cohorts emerge, this possibility should be explored by examining the relationship between clinical outcome and MRP4 expression in primary tumors of neuroblastoma patients receiving these drugs (Kashner et al., 2006; Simon et al., 2007). Furthermore, the ability to examine pharmacological inhibition of MRP4 using *in vitro* and *in vivo* models will offer a tool with which to gain greater insight into its role in the transcriptional program of MYCN in neuroblastoma.

REFERENCES

Alkunus, I. M., Augurine, I. M., Scheife, G. L., Cherryton, N. J., and Manoukian, I. E. (2008). *Rational therapeutic strategy* for MRP4-negative AML. *Science* 319, 42-48.

Amari, M., Saeys, G., Labuda, M., Gagne, V., Lenzhofer, C., Mophlebi, A., et al. (2009). Polymorphisms in the MRP4 transcript are differentially expressed in mice following colipase treatment. *Toxicology* 250, 82-88.

Arnold, M., Sauty, G., Labuda, M., Gagne, V., Lenzhofer, C., Mohrlebi, A., et al. (2009). Polymorphism in the MRP4 transcript is associated with drug resistance in mice following colipase treatment. *Toxicology* 250, 82-88.

Beech, K. H., Bolen, H. J., Muller, K., and Ahnle, A. I. (2005). High-molecular generation by high-throughput screening. *Nat. Rev. Drug Discov.* 4, 369-378.

Breslow, P., Bees, K., Rood, K., Moeller, W., and Wijnholds, J. (2005). A family of drug transporters: the multidrug resistance-associated proteins. *Nat. Rev. Cancer* 5, 329-337.

Breslow, P. (2005). *Neuroblastoma: biological insights into a clinical enigma.* Nat. Rev. Cancer 5, 329-337.

Brodeur, G. M. (2003). Neuroblastoma: biological insights into a clinical enigma. *Nat. Rev. Cancer* 3, 213-220.

Burkhart, C. A., Watts, E., Murray, J., Paic, M., Proksch, A., Xia, C., et al. (2009). Small-molecule multidrug resistance-associated protein 4 inhibitor increases the therapeutic index of chemotherapeutics in mouse models of neuroblastoma. *Cancer Res.* 69, 6577-6580.

Chen, Z.-S., Schuetz, J. D., and Boyer, W. B., Monclair, T., Ambros, P. F., et al. (2009). *International Neuroblastoma Risk Group (INRG) Classification System*. *Blood* 114, 39-45.

Copsel, S., Garcia, C., Doss, F., Vermaelen, M., Balda, A., Biancotti, L. G., et al. (2011). Multidrug resistance protein 4 (MRP4/ABCC4) regulates cAMP cellular levels and controls human leukemia cell proliferation and differentiation. *J. Biol. Chem.* 286, 6079-6088.

Denk, G. U., Sorkin, C. J., Takeyama, Y., Chen, W.-S., Sorkin, C. J., and Boys, J. L. (2004). Multidrug resistance-associated protein 4 is up-regulated in liver but down-regulated in kidney in obstructive cholangitis in the rat. *J. Hepatol.* 40, 585-592.

Drake, R. J., Tamura, S., Buchdunger, E., Ohnes, S., Segal, G. M., Finning, S., et al. (1996). Effects of a selective inhibitor of the Ah tyrosine kinase on the growth of Rev-Abi positive cells. *Nat. Med.* 2, 565-566.

Fletcher, J. J., Habib, M., Henderson, M. J., and Norris, M. D. (2010). *ABC...
transports in cancer: more than just drug efflux pumps. Nat. Rev. Cancer 10, 147–156.

Giordano, D., Magatti, D. M., Clark, E. A., and Bueno, A. J. (2015). Cyclic nucleotides promote motoneuron differentiation toward a DC-SEMA4D (C20D9) intercellular cell and impair differentiation into dendritic cells. J. Immunol. 197, 6421–6430.

Goodough, A., Smartt, H. J. M., Mounce, A. E., Roberts, H. R., Williams, A. C., Parouskos, C., et al. (2009). The COX-2 (PGH2) pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis 30, 377–386.

Habel, M., Smith, J., Bordow, S. B., Fleming, C., Cohn, S. L., London, W. B. et al. (2009). Association of high-level MRP expression with poor clinical outcome in a large prospective study of primary neuroblastoma. J. Clin. Oncol. 27, 1548–1555.

Heinemann, C. A., and Chang, C. (2014). Androgen receptors in prostate cancer. Endocr. Rev. 25, 276–286.

Henderson, M. J., Haber, M., Perez, A., Mouné, M. M., Ito, N., Xue, C., et al. (2011). ARCC multibody transporters in childhood neuroblastoma: clinical and biological effects independent of estrogenic drug efflux. J. Biol. Chem. 286, 153–156.

Huynh et al. Targeting MRP4 in neuroblastoma

A., Munoz, M. A., Iraci, N., Xue, Williams, A. C., Paraskeva, C., in prostate cancer. associated protein 4 (MRP4/ABCC4)

Kryspin, K., Czep, R., Mishal, S., and Cheung, N.-K. V. (2006). Membrane transporters in resectable refractory neuroblastoma. J. Clin. Oncol. 24, 5271–5276.

Koemmerling, P., Schuh, M., Takemoto, K., Nishagari, D., Morgan, J., Leske, M., et al. (2008). Transporter-mediated protection against dopamine-induced homotypic toxicity. Cancer Res. 68, 4983–4990.

Kusuhara, H., Kusuhara, T., Obara, H., and Sugiyama, Y. (2007). Functional characterization and regulation of multidrug resistance– protein 4 in colorectal cancer. Cancer Res. 67, 1172–1179.

Langer, A., Christians, A., Nishagari, K., Krauth, K., Her, E., and Berthold, E. (2002). Topotecan in the treatment of resectable neuroblastoma and other malignant tumors in childhood—a phase II study. Clin. Diam 234, 155–156.

Larson, M., Li, L., Kurdgs, I., Handelmann, D. J., Schiesser, G. L., Strider, P. D., Georgij, G., et al. (2008). Androgen receptor dysfunction and resistance associated protein 4 (ABCC4) in prostate cancer. Prostate 68, 1423–1429.

Lincoff, T., Ransohoff, H., Aichl, M., Sablone, J. D., Takazima, K., and Sugiura, Y. (2017). Functional importance of circulating resistance-associated protein 4 (MRP4/ABCC4) in the normal elimination of the antiretroviral drug efavirenz and its metabolite. Mol. Pharm. 77(5), 619–627.

Lindkau, D., Michigami, S., Strand, D., Gosh, Sathar, A., Habermeyer, A., Geidel, A., et al. (2008). 6-mercaptopurine and 9-(2-phosphonylmethoxyethyl) adenine (PMEA) transport altered by two missense mutations in the drug transporter gene ABCA4. Hum. Mutat. 29, 679–688.

Katoh, K., Endo, K., Watanabe, M., Watanabe, M., Kikukawa, K., Teppelfelder, K., et al. (2004). Membrane transporters in prostatic tumors: a pediatric oncology group study. J. Clin. Oncol. 22, 7007–7012.

Kan, D., B. Frantz, C. N., Campbell, L. A., Seeger, R. C., Brumback, B., C. To, L. C. et al. (2010). Phase II randomised comparison of topotecan plus cyclophosphamide versus topotecan alone in children with recurrent or refractory neuroblastoma. A Children’s Oncology Group Study. J. Clin. Oncol. 28, 3048–3055.

Kaczmarek, R., Banks, M. N., Bejamin, D., Burns, D. J., Catter, D. A., Gurney, T., et al. (2011). Impact of high-throughput screening in biomedical research. Nat Rev Drug Discov 10, 148–150.

Kumar, A., Haber, M., Dietl, D. I., Haid, M., Hendon, M., Gharabli, S., et al. (2010). Direct and coordinate regulation of ATP-binding cassette transporter genes by Myf factors generates specific transcription signatures that significantly affect the chemoresistance phenotypes of cancer cells. J. Biol. Chem 285, 19522–19545.

Kradin, R. L., Nau, C. W., Tao, X. D., Nakhripa, P., Kumar, R., Hansen, A., et al. (2005). Defects in cAMP- and density-mediated transport of leukotrienes in childhood neuroblastoma. Leuk Res. 29, 799–809.

Pepin, A., Haber, M., Dietl, D., Izari, N., Hendon, M., Gharabli, S., et al. (2010). 6-mercaptopurine and 9-(2-phosphonylmethoxyethyl) adenine (PMEA) transport altered by two missense mutations in the drug transporter gene ABCA4. Hum. Mutat. 29, 679–688.

Pugh, S., and Thomas, G. A. (1994). Patients with adenomatus polyps and carcinoma have increased colorectal mucosal prostaglandin E2. Gut 35, 675–678.

Rassmann, A., Koch, A., Peskar, O. M., Kusunoki, M., Simon-Santamaria, J., Gogvadze, V., et al. (2012). Autocrine prostaglandin E2 signaling promotes tumor cell survival and proliferation in childhood neuroblastoma. PLoS ONE 7(5):e39350. doi: 10.1371/journal.pone.0039350.

Reid, G., Wolting, F., Zilb, W., Van Der Heiden, I., Koch, A., Dufall, M., et al. (2013). The human multidrug resistance protein MRPs function as a prostaglandin efflux transporter and is inhibited by nonsteroidal anti-inflammatory drugs. Proc. Natl. Acad. Sci. U.S.A. 110, 9244–9249.

Rues, M., Hummel-Eisenboeck, J., Hofmann, A. F., and Keppel, D. (2006). Substrate specificity of human ABCA4 (MRP4)-mediated cotransport of bile acids and reduced glutathione. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G46–G50.

Rues, M., Hummel-Eisenboeck, J., and Keppel, D. (2008). ATP-dependent transport of ileokinetin B and C by the multidrug resistance protein ABCG2 (MRP4). J. Pharmacol. Exp. Ther. 324, 86–94.

Russo, F. M., KアニメST, J. R., and Boccia, G. (2008). Multidrug resistance protein 4 (MRP4/ABCC4): a versatile efflux transporter for drugs and signalling molecules. Trends Pharmacol. Sci. 29, 200–207.

Sánchez, S., Jiménez, C., Carrera, A. C., Diaz-Nido, A., Ariz, E., and Wendosell, E. (2004). A cAMP-activated pathway, including PKA and PKAc, regulates neuronal differentiation. Neuroscience 137, 231–242.

Santo, V., Arias-Agaton, G., Fuenmayor, M., Reimann, S., Haghhi, K., et al. (2011). Regulation of cAMP homoeostasis by the efflux protein MRP4 in cardiac myocytes. JASPER J. 26, 1009–1017.

Schofield, R. L., Stimpson, K., Sullivan, J., Kapt, J. L., Wall, D. A., Bernstein, M. L., et al. (2001). Cyclophosphamide plus topotecan in children with recurrent or refractory solid tumors: a pediatric oncology group phase II study. J. Clin. Oncol. 19, 3645–3649.

Schlemmer, S. R., and Strewart, F. M. (1998). Functional studies of P-glycoprotein in mouse-planta murine membrane vesicles derived from murine erythroblasts cells over-expressing MDR 3. Properties and
kinetics of the interaction of vinblastine with P-glycoprotein and evidence for its active mediated transpor
t. J. Biol. Chem. 269, 31059–31066. Schuetz, J. D., Connelly, M. C., Sun, D., Pabst, S. G., Flynn, P. M., Smits-
von, B. V., et al. (1999). MRP4: a previously unidentified factor in resistance to nucleoside-based anti-
retroviral drugs. Nat. Med. 5, 1048–1052.

Simons, T., Lantier, A., Harrischmacher, U., Fröhwald, M., Jorch, N., Claviez, A., et al. (2007). Topostrain, cyto- phaspholamin, and etoposide (TCE) in the treatment of high-risk neuroblastoma. Results of a phase-II tri
l. J. Cancer Res. Clin. Oncol. 133, 653–661.

Steinbach, D., Wittig, S., Cario, G., Viehmann, S., Mueller, A., Gruhn, B., et al. (2003). The multidi-
grug resistance-associated protein 3 (MRP3) is associated with a poor outcome in childhood ALL and may account for the worse prognosis in male patients and T-cell immunophenotype. Blood 102, 4493–4498.

Suzuki, H., Ueda, T., Ichikawa, T., and Ito, H. (2003). Androgen receptor involvement in the progression of prostate cancer. Endocr. Relat. Cancer 10, 209–216.

van de Ven, R., Scheffer, G. L., Reurs, A. W., Lindenberg, J. J., Oerlemans, R., Jansen, G., et al. (2008). A role for multidrug resistance protein 4 (MRP4; ABCC4) in human dendritic cell migration. Blood 112, 2353–2359.

Wagner, M., Flickert, P., Zollner, G., Pudlo, A., Silbert, D., Try-
brocky, O., et al. (2013). Role of famcizum X receptor in determining hepatic ABC transporter expression and liver injury in bile duct-ligated mice. Gastroenterology 145, 825–838.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any com-
mercial or financial relationships that could be construed as a potential con-
flict of interest.

Received: 14 September 2012; accepted: 09 November 2012; published online: 19 December 2012.

Citation: Huynh T, Norris MD, Haber M and Henderson MJ (2012) ABCC4/MRP4: a MYCN-regulated transpor-
ter and potential therapeutic target in neuroblastoma. Front. Oncol. 2:178. doi: 10.3389/fonc.2012.00178

This article was submitted to Frontiers in Cancer Molecular Targets and Therapeu-
tics, a specialty of Frontiers in Oncology. Copyright © 2012 Huynh, Norris, Haber and Henderson. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are cred-
ited and subject to any copyright notices concerning any third-party graphics etc.