Decomposing a Matrix into Two Submatrices with Extremely Small Operator Norm

I. V. Limonova¹,²*

¹Laboratory “Multidimensional Approximation and Applications,” Lomonosov Moscow State University, Moscow, 119991 Russia
²Moscow Center of Fundamental and Applied Mathematics, Moscow, 119991 Russia

Received February 17, 2020; in final form, February 17, 2020; accepted February 19, 2020

DOI: 10.1134/S0001434620070135

Keywords: submatrix, operator norm.

The paper deals with estimates of operator norms of submatrices. At present, this field of research is being actively developed and finds various applications. The paper continues the study in [1], where the case of $(2, 1)$-norm was considered. For matrices orthogonal with respect to columns, this case was previously studied in [2], where it was shown that there exists an analog of partition (2) (see below) with extremely small $(2, 1)$-norms of the corresponding submatrices. In what follows, we significantly strengthen Statement 4 in [1] and generalize Statement 3 to the case of (X, q)-norm with $1 ≤ q < ∞$; the case of $(1, q)$-norm is considered separately.

Given an $N × n$ matrix A considered as an operator from l^p to l^q, we define its (p, q)-norm as

$$\|A\|(p, q) = \sup_{\|x\|_p ≤ 1} \|Ax\|_q, \quad 1 ≤ p, q ≤ ∞.$$ (1)

Statement 2 is proved below in the case of the more general (X, q)-norm, where X is an arbitrary n-dimensional normed space.

We use the following notation:

- $\text{rk}(A)$ is the rank of a matrix A;
- $\langle N \rangle$ is the set of positive integers $1, 2, \ldots, N$;
- the $v_i, i ∈ \langle N \rangle$, are the rows of A;
- the $w_j, j ∈ \langle n \rangle$, are the columns of A;
- a_{ij} is the element of A in the ith row and the jth column.

For a subset $ω ⊂ \langle N \rangle$, $A(ω)$ is the submatrix of A formed by the rows $v_i, i ∈ ω$, and $\overline{ω} = \langle N \rangle \setminus ω$. We denote the inner product in \mathbb{R}^n by (\cdot, \cdot) and the norm of a vector $x ∈ \mathbb{R}^N$ in the space l^q, $1 ≤ q ≤ ∞$, by $∥x∥_q$. For the normed space X, $∥·∥_X$ is the norm on X.

The following condition is a direct analog of the condition imposed in [1] on a matrix in the case of arbitrary $1 ≤ q < ∞$:

$$\forall x ∈ \mathbb{R}^n \quad \forall i_0 ∈ \langle N \rangle \quad |(v_{i_0}, x)| ≤ ε \left(\sum_{i=1}^{N} |(v_i, x)|^q \right)^{1/q}. \quad (1)$$

*E-mail: limonova_irina@rambler.ru
Statement 1. Assume that, for an \(N \times n \) matrix \(A \), condition (1) is satisfied for some \(\varepsilon \) and \(q \) with \(0 < \varepsilon \leq (\text{rk}(A))^{-1/q} \) and \(1 \leq q < \infty \). Then there exists a partition

\[
\langle N \rangle = \Omega_1 \cup \Omega_2, \quad \Omega_1 \cap \Omega_2 = \emptyset,
\]

such that, for any \(x \in \mathbb{R}^n \) and \(k = 1, 2 \),

\[
\|A(\Omega_k)x\|_q \leq \gamma \|Ax\|_q, \quad \gamma = \frac{1}{2}^{1/q} + \frac{2 + 3 \cdot 2^{-1/q}}{q} \left(\text{rk}(A)\varepsilon^q \ln \frac{6q}{(\text{rk}(A)\varepsilon^q)^{1/3}} \right)^{1/3}.
\]

Sketch of the Proof. First, we prove the statement for a matrix \(A \) with \(\text{rk}(A) = n \). We write

\[
\delta = \frac{(n\varepsilon^q)^{1/3}}{q}.
\]

Let \(X \) be the space \(\mathbb{R}^n \) with norm \(\|x\|_X = \|Ax\|_q \) (this is a norm on \(\mathbb{R}^n \), because \(\text{rk}(A) = n \)). Let \(S_X = \{x \in \mathbb{R}^n : \|x\|_X = 1\} \) be the unit sphere in the space \(X \). Let \(Y \) be a \(\delta \)-net in the metric of \(X \) on \(S_X \) containing \((3/\delta)^n \) elements. Assume that the required assertion is false, i.e., for any partition (2), there is either a vector \(x_1 \in S_X \) such that

\[
\|A(\Omega_1)x_1\|_q > \gamma \|Ax_1\|_q
\]

(in this case, we set \(\omega' = \Omega_1 \) and \(x_{\omega'} = x_1 \)) or a vector \(x_2 \in S_X \) such that

\[
\|A(\Omega_2)x_2\|_q > \gamma \|Ax_2\|_q
\]

(in this case, we set \(\omega' = \Omega_2 \) and \(x_{\omega'} = x_2 \)). For each pair \((\omega, \bar{\omega})\), we find \(\omega' \) and \(x_{\omega'} \). Let \(y_{\omega'} \) be one of the vectors in \(Y \) that are nearest to \(x_{\omega'} \). The total number of distinct partitions of the set \(\langle N \rangle \) into two nonempty parts is equal to \(2^{N-1} - 1 \). Therefore, there exists a \(y_0 \in Y \) such that the set \(K = \{\omega' : y_0 = y_{\omega'}\} \) is sufficiently large:

\[
|K| \geq (2^{N-1} - 1) \left(\frac{\delta}{3} \right)^n \geq 2^N \left(\frac{\delta}{6} \right)^n
\]

(we assume that \(n > 1 \); otherwise, the statement is obvious). Thus, there exists a \(y_0 \in S_X \) and at least \(2^N (\delta/6)^n \) subsets \(\omega' \subset \langle N \rangle \) for which \(\|A(\omega')x_{\omega'}\|_q \geq \gamma \|Ax_{\omega'}\|_q \) and \(\|y_0 - x_{\omega'}\|_X < \delta \).

We note that \(\|A(\omega)x\|_q \leq \|A(\omega)\|_{(X,q)} \leq \|A\|_{(X,q)} \) for \(x \in S_X \) and \(\omega \subset \langle N \rangle \).

We assume that \(\gamma < 1 \); otherwise, estimate (3) is obvious. For \(\omega' \in K \), taking into account the fact that \(\gamma < 1 \), we obtain

\[
\|A(\omega'y_0)\|_q \geq \|A(\omega')x_{\omega'}\|_q - \|A(\omega')(x_{\omega'} - y_0)\|_q > \gamma \|Ax_{\omega'}\|_q - \delta \left\| \frac{x_{\omega'} - y_0}{\|x_{\omega'} - y_0\|_X} \right\|_q
\]

\[
\geq (\gamma - \delta) A_{y_0} - \delta \left\| \frac{x_{\omega'} - y_0}{\|x_{\omega'} - y_0\|_X} \right\|_q
\]

\[
\geq (\gamma - \delta) A_{y_0} - 2\delta \geq (\gamma - 2\delta) A_{y_0} = \|A_{y_0}\|_q (\gamma - 2\delta).
\]

In the penultimate inequality, we have used the fact that \(\|A_{y_0}\|_q = \|y_0\|_X = 1 \) for \(y_0 \in S_X \).

We let \(R \) denote the number of subsets \(\omega \subset \langle N \rangle \) for which

\[
\|A(\omega)y_0\|_q > (\gamma - 2\delta) \|A_{y_0}\|_q = (\gamma - 2\delta).
\]

Let \(K_1 \) be the set of such subsets. We shall show that \(R < 2^N (\delta/6)^n \) and thus obtain a contradiction, which will complete the proof of Statement 1 for the case \(\text{rk}(A) = n \). We write

\[
M = 3 \cdot 2^{-1/q}, \quad \phi(n, \varepsilon) = \frac{n \varepsilon^q \ln (6q/((n\varepsilon)^{1/3}))^{1/3}}{q}.
\]
Since $\delta \leq \phi(n, \varepsilon)$, for $\omega' \in K_1$, we have

$$\sum_{i \in \omega'} |(v_i, y_0)|^q > (\gamma - 2\delta)^q > \left(\frac{1}{2^{1/q}} + M\phi(n, \varepsilon) \right)^q \geq \frac{1}{2} + q\frac{1}{2^{(q-1)/q}} M\phi(n, \varepsilon) = \frac{1}{2} + q\frac{2^{1/q}}{2} M\phi(n, \varepsilon).$$

Now the quantity R can be estimated just as in the proof of Statement 3 in [1].

Now assume that the rank of the matrix is $r < n$. To be definite, assume that w_1, \ldots, w_r are linearly independent. It is clear that, for the matrix A composed of the first r columns of the matrix A, condition (1) is satisfied and $\text{rk} A = r$. Therefore, there exists a partition of the form (2) such that estimate (3) holds. Let $w_j = \sum_{i=1}^r x_i^j w_i$. For $x \in \mathbb{R}^n$, we construct the vector $\tilde{x} \in \mathbb{R}^r$ with coordinates $\tilde{x}_i = x_i + \sum_{j=r+1}^n x_i^j x_j$. Then $Ax = \tilde{A}x$ and $A(\Omega_k)x = \tilde{A}(\Omega_k)\tilde{x}$ for $k = 1, 2$, and hence, for the obtained partition, the matrix A has property (3) as well.

The following statement is a simple consequence of Statement 1.

Statement 2. Assume that, for an $N \times n$ matrix A, condition (1) is satisfied for some ε and q with $0 < \varepsilon \leq (\text{rk}(A))^{-1/q}$ and $1 \leq q < \infty$. Then there exists a partition of the form (2) such that, for $k = 1, 2$,

$$\|A(\Omega_k)\|_{(x,q)} \leq \gamma \|A\|_{(x,q)},$$

where γ is defined in Statement 1.

The following assertion is an analog of Statement 2 for the $(1,q)$-norm. Let $e_j, j \in \langle n \rangle$, be the standard basis in \mathbb{R}^n.

Statement 3. Assume that, for an $N \times n$ matrix A, the inequality

$$|a_{ij}^n| \leq \varepsilon \|w_j\|_q$$

holds for some $1 \leq q < \infty$ and $0 < \varepsilon < 1$ and for any $i \in \langle N \rangle$ and $j \in \langle n \rangle$. Then there exists a partition of the form (2) such that, for $k = 1, 2$,

(a) $\|A(\Omega_k)\|_{(1,q)} \leq \left(\frac{1}{2} + \frac{3}{2} \varepsilon^{q/3} \ln^{1/3} (4n) \right)^{1/q} \|A\|_{(1,q)},$

(b) $\|A(\Omega_k)\|_{(1,q)} \leq \left(\frac{1}{2} + \frac{1}{2} \varepsilon^{q} \sqrt{N} \left(1 + \log \left(\frac{n}{N} + 1 \right) \right)^{1/2} \right)^{1/q} \|A\|_{(1,q)},$

(c) $\|A(\Omega_k)\|_{(1,q)} \leq \left(\frac{1 + n\varepsilon^q}{2} \right)^{1/q} \|A\|_{(1,q)}.$

Remark. For Statement 3 to hold, it is sufficient to impose a significantly weaker condition on the elements of the matrix than that in Statement 2.

Proof. Since the function $\|Ax\|_q$ is convex, it follows that the $(1,q)$-norm of the matrix is attained at an element of the standard basis.

The proof of assertion (a) is similar to the above argument; therefore, we only outline it here. We assume that this assertion is false, that is, for any partition of the form (2), there exists a k such that

$$\|A(\Omega_k)\|_{(1,q)} > \left(\frac{1}{2} + \frac{3}{2} \varepsilon^{q/3} \ln^{1/3} (4n) \right)^{1/q} \|A\|_{(1,q)}.$$
We write \(\omega' = \Omega_k \). The \((1,q)\)-norm of the matrix \(A_{\omega'} \) is attained at a certain vector \(e_{j_{\omega'}} \), \(j_{\omega'} \in \langle n \rangle \), which implies

\[
\sum_{i \in \omega'} |a_{i,j_{\omega'}}|^q > \left(\frac{1}{2} + \frac{3}{2} \varepsilon q/3 \ln^{1/3} (4n) \right) \| w_{j_{\omega'}} \|^q_q.
\]

As in the proof of Statement 1, there exists a \(j_0 \in \langle n \rangle \) such that the set \(K = \{ \omega' : j_{\omega'} = j_0 \} \) is sufficiently large:

\[
|K| \geq \frac{(2N-1) - 1}{n} \geq \frac{2N-2}{n}.
\] (6)

In this case, it is clear that, for any \(\omega \in K \),

\[
\sum_{i \in \omega} |a_{i,j_0}|^q > \left(\frac{1}{2} + \frac{3}{2} \varepsilon q/3 \ln^{1/3} (4n) \right) \| w_{j_0} \|^q_q.
\] (7)

Therefore, to prove assertion (a), it suffices to verify that the number \(R \) of subsets \(\omega \subset \langle N \rangle \) for which inequality (7) holds is less than the right-hand side of (6). The quantity \(R \) can be estimated just as in the proof of Statement 3 in [1].

To prove assertion (b), we use Corollary 5 in [3]. We let \(\tilde{w}_j = (|a_{j,1}|^q, \ldots, |a_{j,N}|^q) \) denote the vector obtained from the \(j \)th column of the matrix \(A \) by raising the absolute values of coordinates to the power \(q \). For all \(j \in \langle n \rangle \), we have \(\| w_j \|^q_q \leq \| A \|^q_{(1,q)} \), and hence it follows from (5) that \(\| \tilde{w}_j \|_\infty \leq \varepsilon q \| A \|^q_{(1,q)} \). Then the above-cited corollary in [3] implies the existence of a vector \(\xi = (\xi_1, \ldots, \xi_N) \in \mathbb{R}^N \) with unit (in absolute value) coordinates which satisfies, for all \(j \in \langle n \rangle \), the inequality

\[
|\langle \tilde{w}_j, \xi \rangle| \leq \varepsilon q \sqrt{N} \left(1 + \log \left(\frac{n}{N} + 1 \right) \right)^{1/2} \| A \|^q_{(1,q)}.
\]

Assume that \(\Omega_1 = \{ i \in \langle N \rangle : \xi_i = 1 \} \) and \(\Omega_2 = \langle N \rangle \setminus \Omega_1 = \{ i \in \langle N \rangle : \xi_i = -1 \} \). Let us verify that assertion (b) holds for the partition thus constructed. We write

\[
\theta = \sqrt{N} \left(1 + \log \left(\frac{n}{N} + 1 \right) \right)^{1/2}.
\]

For \(k = 1, 2 \), there exists a \(j_0^k \in \langle n \rangle \) such that

\[
\| A(\Omega_k) \|^q_{(1,q)} = \sum_{i \in \Omega_k} |a_{i,j_0^k}|^q \leq \frac{1}{2} \left(\sum_{i \in \langle N \rangle} |a_{i,j_0}|^q + \varepsilon q \theta \| A \|^q_{(1,q)} \right) \leq \left(\frac{1}{2} + \frac{1}{2} \varepsilon q \theta \right) \| A \|^q_{(1,q)},
\]

as required.

To prove assertion (c), we apply the following statement (generalized ham sandwich theorem).

Theorem ([4, p. 287]). Let \(A_1, \ldots, A_n \) be sets of finite Lebesgue measure in \(\mathbb{R}^n \). Then there exists a hyperplane \(\pi \) that divides the measure of each set in half.

We write \(M = \max_{i,j} \{|a_{ij}|^q\} + 1 \). In \(\mathbb{R}^n \), we place \(N \) cubes with sides equal to \(M \) and parallel to the coordinate axes so that any hyperplane in \(\mathbb{R}^n \) passes through at most \(n \) cubes. It is easy to construct such cubes from \(N \) point in general position in \(\mathbb{R}^n \) by using the general equation of the plane that passes through \(n \) given points. Let us number the obtained cubes. For \(i \in \langle N \rangle \), we let \(u_i \) denote the vertex of the \(i \)th cube with the least coordinates. For each element of the matrix \(a_{ij} \), we define the parallelepiped

\[
\hat{P}_j = [0,1]^{j-1} \times [1,1 + |a_{ij}|^q] \times [0,1]^{n-j}.
\]

In the \(i \)th cube, we place \(n \) rectangular parallelepipeds constructed from the elements in the row \(v_i \) (\(P_j^i = u_i + \hat{P}_j \)). We note that \(\mu(P_j^i) = |a_{ij}|^q \). The set of parallelepipeds \(P_j^i, j \in \langle n \rangle \), for a fixed \(i \), will be called the \(i \)th corner.
For $j \in \langle n \rangle$, we write $A_j = \bigcup_{i \in \langle N \rangle} P^i_j$. Now we apply the theorem to the sets A_j thus constructed. We obtain a hyperplane π that divides the volume of each A_j in half. Let P_1 and P_2 be the half-spaces into which π divides the space \mathbb{R}^n. It follows from the construction that π intersects at most n of the constructed cubes and, therefore, at most n corners. Now it is clear how to obtain a partition of the form (2): we put the numbers of the corners that are completely contained in the half-spaces P_1 and P_2 in Ω_1 and Ω_2, respectively, and the numbers of the corners intersecting both half-spaces in Ω_1 (we denote the set of numbers of such corners by G). Let us show that, for any $j \in \langle n \rangle$, the l_q^N-norm of the column w_j decreases at least by a factor of $((1 + ne^q)/2)^{1/q}$ for the partition described above. This immediately implies the desired assertion. Since π divides the measure A_j in half, we have

$$\sum_{i \in \Omega_1 \setminus G} |a^i_j|^q + V_1 = \sum_{i \in \Omega_2} |a^i_j|^q + V_2,$$

where the V_k, $k = 1, 2$, denote the volumes of $\bigcup_{i \in \langle G \rangle} P^i_j \cap P_k \setminus P_k$. Condition (5) and the fact that π intersects at most n corners imply

$$V_1 + V_2 \leq ne^q \sum_{i \in \langle N \rangle} |a^i_j|^q;$$

therefore, for $k = 1, 2$,

$$\sum_{i \in \Omega_k} |a^i_j|^q \leq \frac{1 + ne^q}{2} \sum_{i \in \langle N \rangle} |a^i_j|^q.$$

This completes the proof of Statement 3. \qed

The following statement shows that condition (5) with $\varepsilon < 1$ does not always imply the existence of a partition of a matrix into two submatrices with lesser $(1, q)$-norms.

Statement 4. For $n = 2^{2k-1}$, there exists a $2k \times n$ matrix A for which condition (5) with $\varepsilon^q \log_2 2n \geq 2$ is satisfied, and the following relation holds for any partition of the form (2):

$$\max\{\|A(\Omega_1)\|_{1,q}, \|A(\Omega_2)\|_{1,q}\} = \|A\|_{1,q}.$$

Proof. For each pair of subsets ω and $\langle 2k \rangle \setminus \omega$ of the set $\langle 2k \rangle$, we choose any subset of the greatest cardinality. We number the chosen subsets as $B_1, \ldots, B_{2^{2k-1}}$ and use them to construct a matrix A as follows: the element a^i_j is equal to $1/|B_j|^{1/q}$ if $i \in B_j$ and to 0 otherwise. Condition (5) and the fact that $\|A(\Omega_1)\|_{1,q} = \|A\|_{1,q}$ or $\|A(\Omega_2)\|_{1,q} = \|A\|_{1,q}$ for an arbitrary partition of the form (2) can be verified directly. \qed

For $q = \infty$, there does not exist a partition into two submatrices with lesser (X, ∞)-norms for any matrix A, since, in this case, the matrix A has a row v_{\sup} such that $\|A\|_{(X, \infty)} = \sup_{\|x\|_X \leq 1} \langle x, v_{\sup} \rangle$, and the norm of the submatrix containing the row v_{\sup} is equal to the norm of the matrix A.

FUNDING

This work was supported by the Government of the Russian Federation (grant no. 14.W03.31.0031).

REFERENCES

1. B. S. Kashin and I. V. Limonova, Math. Notes **106** (1) (2019).
2. B. S. Kashin, Russian Math. Surveys **72** (2) (2017).
3. E. D. Gluskin, Math. USSR–Sb. **64** (1) (1989).
4. B. Gray, *Homotopy Theory. An Introduction to Algebraic Topology*, in Pure Appl. Math. (Academic Press, New York, 1975), Vol. 64.