Genetic Hearing Loss and Gene Therapy

Nathanial T Carpena¹, Min Young Lee¹,2*

¹Department of Otolaryngology-Head and Neck Surgery, Dankook University College of Medicine, Cheonan 31116, Korea,
²Beckman Laser Institute Korea, Dankook University, Cheonan 31116, Korea

Genetic hearing loss crosses almost all the categories of hearing loss which includes the following: conductive, sensory, and neural; syndromic and nonsyndromic; congenital, progressive, and adult onset; high-frequency, low-frequency, or mixed frequency; mild or profound, and recessive, dominant, or sex-linked. Genes play a role in almost half of all cases of hearing loss but effective treatment options are very limited. Genetic hearing loss is considered to be extremely genetically heterogeneous. The advancements in genomics have been instrumental to the identification of more than 6,000 causative variants in more than 150 genes causing hearing loss. Identification of genes for hearing impairment provides an increased insight into the normal development and function of cells in the auditory system. These defective genes will ultimately be important therapeutic targets. However, the auditory system is extremely complex which requires tremendous advances in gene therapy including gene vectors, routes of administration, and therapeutic approaches. This review summarizes and discusses recent advances in elucidating the genomics of genetic hearing loss and technologies aimed at developing a gene therapy that may become a treatment option for in the near future.

Keywords: gene therapy, genomics, hearing loss

Introduction

The World Health Organization reported that 466 million people worldwide suffers from hearing loss and estimated to rise over 900 million by 2050 [1]. Hearing loss means not able to hear as well as someone with normal hearing or a hearing threshold of more than 25 decibels in one or both ears. Hearing loss can also be classified as either conductive, sensorineural or mixed hearing loss. Conductive hearing loss is when there is a problem conducting the sound waves along the outer ear, tympanic membrane (eardrum) and ossicular chain of the middle ear towards the cochlea. Sensorineural hearing loss (SNHL) is when there is problem translating the sound vibrations into electrical signals in the sensory hair cells (HCs) inside the cochlear or damage in transmitting the information involving the afferent nerves towards the brain. This communication between the ear and brain can be damaged by aging, acoustic overexposure and ototoxic drugs. Heredity also plays a big part wherein genes for hearing are mutated or genes may increase the susceptibility to ear damage or deterioration from aging.

Hearing loss causes an annual global deficit of US $750 billion [2] which offers a high demand for an effective solution. Conductive hearing loss can be surgically managed in most patients. In contrast, SNHL is mostly irreversible and results in permanent hearing loss. However, hearing rehabilitation is possible thru hearing devices that can either be worn externally or implanted. Despite the advances in hearing aid and cochlear implant technologies, the quality of perceived sound still cannot mimic that of the normal ear. Impaired speech perception in noisy environments and musical sound perception are the biggest hurdles of cochlear implants [3, 4].

Scientist around the world are working on genomics-based research and development in hearing science. In this review, we consolidated the genes that are currently identified to be associated with hearing loss. We reviewed ways in which genes are used to restore or protect hearing and ways to deliver the genes to their target cells such as viral and non-viral vectors. We also discussed the various strategies used in gene therapy such as gene replacement, slicing and editing.
Genetic Hearing Loss

Syndromic vs. nonsyndromic hearing loss

Clinically, hearing impairment may be associated with other disorders (syndromic) or it may only be a symptom (nonsyndromic). Syndromic hearing loss occurs with malformations of the external ear, together with other malformations in other organs or organ systems. Nonsyndromic hearing loss has no associated visible deformities or the external ear or any related medical conditions, but could be associated with problems of the middle or inner ear.

Deafness genes

Genes are responsible for hearing loss among 50%–60% of children born with hearing loss [5]. According to the Hereditary Hearing Loss Homepage [6] to date, there is a total of 112 non-syndromic hearing loss genes that has been identified (Fig. 1), 71 autosomal recessive (Table 1) [7-125], 45 autosomal dominant (Table 2) [126-207], and 5 X-linked and 1 non-syndromic genes (Table 3) [208-218]. The most common cause of severe-to-profound nonsyndromic hearing loss in most populations is the autosomal recessive mutation of GJB2. While the most common cause of mild-to-moderate hearing loss is the autosomal recessive mutation on STRC [219]. On the other hand, about 30% of inherited hearing loss is associated with a syndrome [220]. Syndromic hearing impairment tends to be less genetically heterogeneous than nonsyndromic, but more than one locus has been identified for several syndromes. There are currently 11 syndromes (Table 4) [221-265] associated with hearing loss with a total of 47 syndromic hearing loss genes with 27 autosomal recessive, 13 autosomal dominant, 4 autosomal dominant or recessive and 2 X-linked recessive pattern of inheritance.

Relevance of genomics in hearing loss

With the rapid advancement of genomics, it became possible to establish high-resolution genetic and physical maps, genomic and cDNA libraries which made it easier to correlate the genes for hearing loss. The establishment of the human fetal cochlear cDNA library gave way to the cloning of majority of the genes identified related to hearing loss [266]. Screening strategies can be made in combination with next-generation sequencing platforms to study sets of deafness subjects who are likely to have the same defective gene to effectively diagnose patients with genetic hearing loss [267].

Gene therapy

As mentioned above, genetic hearing loss can now be screened in utero. In principle, gene therapy can fix a genetic mutation like the ones involving hearing genes removing or replacing the defective gene or supplying the absent gene. However, compared to other target organs for gene therapy, there are several obstacles related to the anatomy of the inner ear. The cochlea is a spiraled and fluid-filled cavity in a bony labyrinth that is very vulnerable to changes which affect the conversion of sound vibration into electrical signals. Consequently, maintaining this homeostasis is the biggest challenge in delivering any kind of therapeutic products into the inner ear. Different routes of administration have been explored with various purposes, such as efficiency in transduction and reduced cochlear toxicity. The most successful way to deliver therapeutic agents to the cochlea is an intracochlear approach through the round window membrane (RWM). The RWM is a semipermeable soft tissue separating the middle and inner ear. It allows low molecular weight molecules to up to molecules with molecular weight 45,000 under normal physiological conditions [268]. Direct injection through the RWM can also be done with a microsyringe and a narrow-gauge needle. Another option is to insert material inside the cochlear cavity to create an opening, in a procedure called a cochleostomy. This was the approach used by our group to inject material into the three cochlear cavities (scala vestibule, scala media, and scala tympani) [269, 270].

Fig. 1. Inheritance pattern of identified genes for genetic hearing loss. Drawn with data adapted from Hereditary Hearing Loss Homepage [6].
Table 1. Autosomal recessive non-syndromic hearing loss genes and loci as modified from the Hereditary Hearing Loss Homepage [6]

Locus (OMIM)	Location	Gene (OMIM)	Key references (PubMed)
DFNB1A	13q12	GJB2	[7, 8]
DFNB1B	13q12	GJB6	[9]
DFNB2	11q13.5	MYO7A	[10-12]
DFNB3	17p11.2	MYO15A	[13, 14]
DFNB4	7q31	SLC26A4	[15, 16]
DFNB5	14q12	Unknown	[17]
DFNB6	3p14-p21	TMIE	[18, 19]
DFNB7/11	9q13-q21	TMC1	[20-22]
DFNB8/10	21q22	TMPRSS3	[23-25]
DFNB9	2p22-p23	OTOF	[26, 27]
DFNB10	See DFNB8	-	-
DFNB11	See DFNB7	-	-
DFNB12	10q21-q22	CDH23	[28, 29]
DFNB13	7q34-36	Unknown	[30]
DFNB14	7q31	Unknown	[31]
DFNB15/ 72/95	3q21-q25,19p13	GIPC3	[32-34]
DFNB16	15q21-q22	STRC	[35]
DFNB17	7q31	Unknown	[36]
DFNB18/18B	11p14-15.1	USH1C	[37-39]
DFNB19	11p15.1	OTOG	[40]
DFNB20	18p11	Unknown	[41]
DFNB21	11q	TECTA	[43]
DFNB22	16p12.2	OTOA	[44]
DFNB23	10p11.2-q21	PCDH15	[45]
DFNB24	11q23	RDX	[46]
DFNB25	4p13	GRXCR1	[47]
DFNB26	4q31	GAB1	[48]
DFNB27	2q23-q31	Unknown	[49]
DFNB28	22q13	TRIOBP	[50, 51]
DFNB29	21q22	CLDN14	[52]
DFNB30	10p11.1	MYO3A	[53]
DFNB31	9q32-q34	WHRN	[54, 55]
DFNB32/105	1p13.3-22.1	CDC14A	[56, 57]
DFNB33	9q34.3	Unknown	[58]
DFNB35	14q24.1-24.3	ESRRB	[59, 60]
DFNB36	1p36.3	ESPN	[61]
DFNB37	6q13	MYO6	[62]
DFNB38	6q26-q27	Unknown	[63]
DFNB39	7q21.1	HCF	[64]
DFNB40	22q	Unknown	[65]
DFNB42	3q13.31-q22.3	ILDRI	[66, 67]
DFNB44	7p14.1-q11.22	ADCY1	[68, 69]
DFNB45	1q43-q44	Unknown	[70]
DFNB46	18p11.32-p11.31	Unknown	[71]
DFNB47	2p25.1-p24.3	Unknown	[72]
DFNB48	15q23-q25.1	CIB2	[73]
DFNB49	5q12.3-q14.1	MARVELD2/BDP1	[74-76]
DFNB51	11p13-p12	Unknown	[77]
DFNB53	6p21.3	COL11A2	[78]
DFNB55	4q12-q13.2	Unknown	[79]
DFNB59	2q31.1-q31.3	PIVK	[80]
Table 1. Continued

Locus (OMIM)	Location	Gene (OMIM)	Key references (PubMed)
DFNB60	5p23.1q31.1	SLC22A4	[81]
DFNB61	7q22.1	SLC26A5	[82]
DFNB62	12p12.1q11.23	Unknown	[83]
DFNB63	11q13.2-q13.34	LRTOMT/COMT2	[84, 85]
DFNB65	20q13.2-q13.32	Unknown	[86]
DFNB66	6p2.21-22.3	DCDC2	[87]
DFNB66/67	6p21.31	LFHPL5	[88-90]
DFNB68	19p13.2	S1PR2	[91, 92]
DFNB71	8p22.1	Unknown	[93]
DFNB72	See DFNB15		
DFNB73	1p32.3	BSND	[94]
DFNB74	12q14.2-q15	MSRB3	[95, 96]
DFNB76	19q13.12	SYNE4	[97]
DFNB77	18q12q-21	LOXHD1	[98]
DFNB79	9p34.3	TPRN	[99]
DFNB80	2p16.1-p21	Unknown	[100]
DFNB81	19p	Unknown	[34]
DFNB82	1p13.1	(see note 4)	[101]
DFNB83	See DFNA47		
DFNB84	12q21.2	PTPRO/OTOGL	[102, 103]
DFNB85	17p12-q11.2	Unknown	[101]
DFNB86	16p13.3	TBC1D24	[104, 105]
DFNB88	2p12-p11.2	ELMOD3	[106]
DFNB89	16q21-q23.2	KARS	[107]
DFNB90	7p22.1-p15.3	Unknown	[108]
DFNB91	6p2.5	SERPINB6	[109]
DFNB93	11q12.31-q13.2	CABP2	[110]
DFNB94	-	NARS2	[111]
DFNB95	See DFNB15		
DFNB96	1p36.13-p36.13	Unknown	[112]
DFNB97	7q31.2q31.31	MET	[113]
DFNB98	21q22.3-qter	TSPEAR	[114]
DFNB99	17q12	TMEM132E	[115]
DFNB100	5q13.2-q23.2	PPIP5K2	[116]
DFNB101	5q32	GRXCR2	[117]
DFNB102	12p12.3	EPS8	[118]
DFNB103	6p21.1	CLIC5	[119]
DFNB104	6p22.3	FAM51B	[120]
DFNB105	See DFNB32	-	[57]
DFNB106	11p15.5	EPS8L2	[121]
DFNB108	1p31.3	ROR1	[122]

Note 1: DFNB5 was reported originally as DFNB4.
Note 2: DFNB9 was reported originally as DFNB6.
Note 3: DFNB26 is suppressed by dominant modifier DFNM1.
Note 4: The gene at the DFNB82 locus was initially reported as GPSM2 [123], but this gene was later determined to cause Chudley-McCullough syndrome [124, 125].

Viral vs. non-viral gene delivery

Gene transfection to inner ear cells have mostly utilized replication defective viral vectors (Table 5) [271-280]. For example, adenoviruses were used to transfer gene markers such as \(\beta \)-galactosidase and red fluorescent protein as well as functional genes such as glial-derived neurotrophic factor (GDNF) to the auditory system [270, 281, 282]. Another example is the use of adeno-associated viral vectors (AAV), such as AAV1, 2, 6, 8, and Anc80L65, which showed greater transfection efficiency in inner ear delivery [283]. Recently, the USH1 protein network component harmonin (USH1C)
Table 2. Autosomal dominant non-syndromic hearing loss genes and loci according to Hereditary Hearing Loss Homepage [6]

Locus (OMIM)	Location	Gene (OMIM)	Key references (PubMed)
DFNA1	5q31	DIAPH1	[126, 127]
DFNA2A	1p34	KCNQ4	[129, 130]
DFNA2B	1p35.1	GJB3	[132]
DFNA2C	-	IFNLR1	[134]
DFNA3A	13q11-q12	GJB2	[8, 135, 136]
DFNA3B	13q12	GJB6	[138]
DFNA4A	19q13	MYH14	[139, 140]
DFNA4B	19q13.32	CEACAM16	[142]
DFNA5	7p15	GSDME	[144, 145]
DFNA6	4p16.3	WFS1	[148-151]
DFNA7	1q21-q23	LMX1A	[152, 153]
DFNA8	See DFNA12		-
DFNA9	14q12-q13	COCH	[157, 158]
DFNA10	6q22-q23	EYA4	[160, 161]
DFNA11	11q12.3-q21	MYO7A	[164, 165]
DFNA12	11q2224	TECTA	-
DFNA13	6p21	COL11A2	[169, 170]
DFNA14	See DFNA6		-
DFNA15	5q31	POU4F3	[172]
DFNA16	2q24	Unknown	[174]
DFNA17	22q	MYH9	[176, 177]
DFNA18	3q22	Unknown	[179]
DFNA19	10(pericentr.)	Unknown	[181]
DFNA20	17q25	ACTG1	[183-185]
DFNA21	6p21	Unknown	[187]
DFNA22	6q13	MYO6	[189]
DFNA23	14q21-q22	SIX1	[191, 192]
DFNA24	4q	Unknown	[194]
DFNA25	12q21-24	SLC17A8	[196, 197]
DFNA26	See DFNA20		-
DFNA27	4q12	REST	[199, 200]
DFNA28	8q22	GRHL2	[202]
DFNA30	15q25-26	Unknown	[204]
DFNA31	6p21.3	Unknown	[206]
DFNA32	11p15	Unknown	[128]
DFNA33	13q34-qter	Unknown	[131]
DFNA34	1q44	NLRP3	[133]
DFNA36	9q13-q21	TMEM1	[22]
DFNA37	1p21	COL11A1	[137]
DFNA38	See DFNA6		-
DFNA39 (see note 1)	4q21.3	DSPP	[141]
DFNA40	16p12.2	CRYM	[143]
DFNA41	12q24-qter	P2RX2	[146, 147]
DFNA42	5q31.1-q32	Unknown	[141]
DFNA43	2p12	Unknown	[154]
DFNA44	3q28-29	CCDC50	[155, 156]
DFNA47	9p21-22	Unknown	[159]
DFNA48	12q13-q14	MYO1A	[162, 163]
DFNA49	1q21-q23	Unknown	[166]
DFNA50	7q32.2	MIHR96	[167, 168]
DFNA51	9q21	TJP2	[171]
DFNA52	4q28	Unknown	[141]
Table 2. Continued

Locus (OMIM)	Location	Gene (OMIM)	Key references (PubMed)
DFNA53	14q11.2-q12	Unknown	[173]
DFNA54	5q31	Unknown	[175]
DFNA56	9q31.3-q34.3	TNC	[178]
DFNA57	19p13.2	Unknown	[180]
DFNA58	2p12-p21	Unknown	[182]
DFNA59	11p14.2-q12.3	Unknown	[186]
DFNA60	2q21.3-q24.1	Unknown	[188]
DFNA64	12q24.31-q24.32	SMAC/DIABLO	[190]
DFNA65	16p13.3	TBC1D24	[193]
DFNA66	6q15-21	CD164	[195]
DFNA67	20q13.33	OSBPL2	[175]
DFNA68	15q25.2	HOMER2	[198]
DFNA69	12q21.32-q23.1	KITLG	[201]
DFNA70	3q21.3	MCM2	[203]
DFNA73	12q21.31	PTPRQ	[205]

Note 1: Mutations in DSPP dentinogenesis imperfect associated with hearing impairment in some families.
Note 2: MYO1A has been called in to question as the causative gene for DFNA48 [207].

Table 3. Other non-syndromic hearing loss genes and loci as modified from the Hereditary Hearing Loss Homepage [6]

Locus (OMIM)	Location	Gene (OMIM)	Key references (PubMed)
X-linked			
DFNX1	Xq22	PRPS1	[208]
DFNX2	Xq21.1	POL3F4	[209]
DFNX3	Xp21.2	Unknown	[210, 211]
DFNX4	Xp22	SMPX	[212]
DFNX5	Xq26.1	AIFM1	[213]
DFNX6	Xp22.3	COL4A6	[214]
Y-linked			
DFNY1	Y	Unknown	[215]
Modifier			
DFNM1	1q24	METTL13	[48]
DFNM2	8q23	Unknown	[216]
AUNA-Auditory Neuropathy	13q14-21	DIAPH3	[217, 218]

Note: Previous nomenclature designated X-linked loci as DFN but this has been changed to DFNX.

gene delivery using synthetic Anc80L65 vectors to treat hearing loss in mice with Usher syndrome restored complex auditory and balance behaviour similar to near wild-type levels with up to 90% transduction efficiency [276]. AAV2/8 vectors that encode wild-type whirlin (WHRN) gene restored inner hair cells (IHC) but not outer hair cells and auditory function [272]. AAV2/1 vectors were injected in transmembrane channel like 1 (TMCI) mutant mice restored moderate hearing function with minimal auditory-brainstem-response threshold [284]. A similar viral capsid and a promoter that restricted expression to IHCs partially restored auditory function in mice deficient in the IHC gene encoding for vesicular glutamate transporter 3 (VGluT3) [271]. Furthermore, the cellular tropism of a novel adeno-associated bovine virus vector efficiently transduced cochlear and vestibular HC and supporting cells without pathological effects outperforming other viral vectors [285].

The concept of gene therapy seems straightforward, but numerous problems and risks exist that prevent gene therapy using viral vectors [286]. Even with all the potential benefits of gene therapy, the utilization of viral vectors in the clinical setup is hindered by the possibility of tumorigenesis and unexpected adverse effects from virus integration in human DNA. Therefore, non-viral delivery systems are developed as an alternative to harness gene therapy. These non-viral vectors include cationic liposomes and other non-liposomal polymers along with the use of biolistic materials and electroporation (Table 6) [287-301].

Cationic liposomes are phospholipid vesicles that fuses to the cellular membrane due to their cationic charge, thereby releasing the DNA to the cytoplasm [302]. Cationic liposomes can be easily prepared in large amounts, non-infectious and has a large gene capacity. Meanwhile, synthetic and naturally occurring polycationic polymers attract negatively charged phosphates of the DNA [303]. These include polyethyleneimine, dextran, chitosan, PLGA and among others. Cationic polymers are also easy to prepare and non-immunogenic. However, both types have low transfection yields and may still provoke an acute immune response.

Another mode of gene transfection makes use of DNA-coated gold microparticles and bombarded into a targeted cellular surface by a pressure pulse of compressed
Table 4. Syndromic hearing loss genes according to Hereditary Hearing Loss Homepage [6]

Gene (OMIM)	Location	Inheritance	Key references (PubMed)
Alport syndrome			
COL4A3	2q36.3	Autosomal recessive	[221]
COL4A4	2q36.3	Autosomal recessive	[221]
COL4A5	Xq22.3	X-linked recessive	[222]
Branchio-Oto-Renal syndrome			
EYA1	8q13.3	Autosomal dominant	[223]
SIX5	19q13.32	Autosomal dominant	[224]
SIX1	14q23.1	Autosomal dominant	[225]
CHARGE syndrome			
SEMA3E	7q21.11	Autosomal dominant	[226]
CHD7	8q12.2	Autosomal dominant	[227]
Jervell & Lange-Nielsen syndrome			
KCNQ1	11p15.5–15.4	Autosomal recessive	[228]
KCNE1	21q22.12	Autosomal recessive	[229, 230]
Norrie disease		X-linked recessive	[231, 232]
NDP	Xp11.3	X-linked recessive	
Pendred syndrome			
SLC26A4	7q22.3	Autosomal recessive	[233]
FOX11	5p35.1	Autosomal recessive	[234]
KCNJ10	1q23.2	Autosomal recessive	[235]
Perrault syndrome			
HSD17B4	5q23.1	Autosomal recessive	[236]
HARS2	5q31.3	Autosomal recessive	[236]
CLPP	19p13.3	Autosomal recessive	[237]
LARS2	3p21.31	Autosomal recessive	[238]
TWNK	10q24.21	Autosomal recessive	[239]
ERAL1	17q11.2	Autosomal recessive	[240]
Stickler syndrome			
COL2A1	12q13.11	Autosomal dominant	[241]
COL11A1	1p21	Autosomal dominant	[242]
COL11A2	6p21.32	Autosomal recessive/dominant	[243]
COL9A1	6q13	Autosomal recessive	[244]
COL9A2	1p34.2	Autosomal recessive	[245]
Treacher Collins syndrome			
TCOF1	5q32–q33.1	Autosomal dominant	[246]
POLR1D	13q12.2	Autosomal dominant	[247]
POLR1C	6p21.1	Autosomal recessive	[247]
Usher syndrome			
MYO7A	11q13.5	Autosomal recessive	[248]
USH1C	11p15.1	Autosomal recessive	[249]
CDH23	10q22.1	Autosomal recessive	[250]
PCDH15	10q21.1	Autosomal recessive	[251]
SANS/USH1G	17q25.1	Autosomal recessive	[252]
See Note A	15q25.1	Autosomal recessive	[253]
USH2A	1q41	Autosomal recessive	[254]
ACRV1/VLGR1/GPR98	5q14.3	Autosomal recessive	[255]
WHRN	9q32	Autosomal recessive	[256]
CLRN1	3q25.1	Autosomal recessive	[257]
Waardenburg syndrome			
PAX3	2q36.1	Autosomal dominant	[258]
MTF	3p13	Autosomal dominant	[259]
SNAI2	8q11	Autosomal recessive	[260]
SOX10	22q13.1	Autosomal dominant	[261]
PAX3	2q36.1	Autosomal dominant or recessive	[262]
EDNRB	13q22.3	Autosomal dominant or recessive	[263]
EDN3	20q13.32	Autosomal dominant or recessive	[264]
SOX10	22q13.1	Autosomal dominant	[265]
Table 5. Viral vectors used in gene therapy for genetic hearing loss studies

Viral vector	Example	Load	Animal	Route of administration	Reference
Adenovirus	Ad5-CMV-Atoh1-GFP	Atoh1	Guinea pig	Cochleostomy (scala media)	[274]
Ad5-CMV-Math1.11D		Math1	Guinea pig	Cochleostomy (scala media)	[275]
Ad28-CMV-GFP + Ad28-GFAP-Atoh1		Atoh1	Mouse	Round window (scala tympani)	[278]
Adeno-associated virus	AAV-mVGLUT3	VGLUT3	Mouse	Round window (scala tympani)	[271]
	AAV8-CMV-whirlin-GFP	WHRN	Mouse	Round window (scala tympani)	[272]
	AAV2/Anc80L65.CMV.trunc-harm	USH1C	Mouse	Round window (scala tympani)	[276]
	BAAV-β-actin-GFP	β-actin	Guinea pig	Cochleostomy (scala media)	[279]
Herpes simplex virus	pH5V-bcl-2	BCL2	Rat	Organ of Corti explants	[280]
	pH5V-BDNF-LacZ	BDNF	Rat	Spiral ganglia explant	[273]
Lentivirus	Lenti-HOX-GFP	GFP	Mouse	Round window (scala tympani)	[277]

Table 6. Non-viral vectors used in gene therapy for genetic hearing loss studies

Non-viral vector	Example	Load	Animal	Route of administration	Reference
Cationic liposomes	Liposomes β-gal plasmid	β-gal plasmid	Guinea pig	RWM after cochleostomy	[287]
	Liposomes eGFP plasmid	eGFP plasmid	Mouse	Gelfoam on RWM	[288-290]
	Lipofectamine 2000	Math1	Rat	OC-derived cell line	[291]
Cationic non-liposomal	Polybrene Integrin antisense	Integrin antisense oligonucleotide	Rat	OC-derived cell line	[292]
polymers	Polybrene eGFP plasmid	eGFP plasmid	Guinea pig	Sponge on RWM/ cochlear explants	[293]
	Polybrene (HPNP)		Guinea pig	Scala tympani injection	[294]
	Polyethyleneimine (PEI)	eGFP plasmid	Guinea pig	Gelfoam on RWM	[295]
	PLGA nanoparticles	Fluorescent dye			
Electroporation	Gold particles using Gene gun	MyoXVa	Mouse	OC explants	[296, 297]
	Electroporation	Math1	Rat	OC explants	[298, 299]
	Electroporation	Math1	Mouse	In utero	[300, 301]

RWM, round window membrane; eGFP, enhanced green fluorescent protein; OC, organ of Corti; PLGA, poly(lactic-co-glycolic acid).

helium gas [304]. These are not immunogenic and results in a very good in vivo activity. Electroporation is also used to create transient pores in the lipid membrane, allowing the transfection of plasmid DNA, using electric field pulses [305]. However, these methods may cause significant tissue damage during the procedure and need surgery for targeted internal organs. Gene transfer is also limited to the targeted area only.

Gene therapy strategies

Gene replacement using cDNA

Gene replacement is basically delivering a functional cDNA with the correct coding sequence to supplement a nonfunctional mutant gene of interest in specific cell types [306]. The ideal application of gene replacement is in genetic disorders caused by mutations leading to loss in phenotype, such as recessive diseases. However, effectiveness of this gene therapy is limited by the duration in which gene is delivered during development of target organs. If the mutation begins during prenatal development, gene replacement may not be able to recover normal physiology after significant malformations. In addition, an extended expression of the exogenous sequence must be maintained if the mutated gene is expressed into adulthood. Dominant deafness mutations are less likely to be recovered with gene replacement strategies but other approaches can still be utilized.

Gene silencing using RNA interference

Dominant hearing loss mutations in heterozygous animals can be “silenced” or negatively regulated by suppressing the mutant allele while allowing expression of the wild-type allele to overcome the consequences of the mutation. Gene silencing can be achieved at the transcriptional level by preventing the mRNA from being transcribed. At the post-transcriptional level, gene silencing occurs with use of RNA interference (RNAi) to prevent mRNA translation [307]. The central role in RNAi is played by two types of short complementary small RNA—microRNA (miRNA) or small interfering RNA (siRNA). In an acoustic overexposure study in mouse, siRNA was found...
to be able to silence the expression of AMP-activated protein kinase which causes HC loss and cochlear synaptopathy [308]. The main advantage of this method is its sequence specificity which makes it very suitable for silencing dominant mutations without affecting wild-type sequences or off target sequences [309].

Gene editing using CRISPR/Cas9 system

Another gene therapy approach that recently gained much attention to edit genome sequences is the use of the CRISPR/Cas9 system. This approach is derived from prokaryotic immune systems for resistance to phages and plasmids [310]. It is the most recent and advanced programmable nuclease adapted for genome engineering which allows for the precise direct manipulation of genome sequences in the inner ear [311]. Engineered nuclease-based enzymes are used to find a target genome sequence and to introduce single- or double-strand DNA, which stimulates innate DNA repairing machinery.

CRISPR/Cas is considered as the most pervasive and easy-to-use system with multiple applications. Cas9 requires the presence of a protospacer adjacent motif (PAM) immediately following the DNA target sequence which enables the system to be very specific but at the same time limits its clinical application [312]. To date, much effort has been directed toward the design of CRISPR nucleases with altered PAM specificities and diminished off target activities allowing even more applications [313].

Clinical Application and Conclusions

Gene therapy is making a comeback after safety concerns during the late 1990s and early 2000s hampered research. Gene therapy for genetic hearing loss is also getting one step closer into being a clinical treatment after several clinical trials have been approved but yet to bear results. Although gene therapy is a promising treatment option, its application is currently limited by the risk of side effects and is still under study to ensure that it will be safe and effective. In the meantime, there are 2,597 clinical trials undertaken in 38 countries that have been either completed, are in progress, or approved involving gene therapy [314]. As we wait for preliminary results to ongoing clinical trials for gene therapy for hearing loss, there are already several syndromic hearing loss genes mentioned above wherein gene therapy trials have begun for their corresponding syndromes. These include the autosomal recessive gene MYO7A causing deaf-blindness in Usher syndrome [315]. Furthermore, lessons from different approaches in gene therapy in other systems can greatly influence the advancement in design and implementation of gene therapy for genetic hearing loss. Additional advances are expected in the coming years as the field of inner gene therapy moves toward the collective goal of developing novel and effective treatments for patients with genetic hearing loss.

ORCID: Nathaniel T. Carpena: https://orcid.org/0000-0001-6984-3979; Min Young Lee: https://orcid.org/0000-0002-6860-8042

Authors’ contribution

Conceptualization: MYL
Funding Acquisition: MYL
Writing – original draft: NTC
Writing – review and editing: NTC, MYL

Conflicts of Interest

No potential conflicts of interest relevant to this article was reported.

Acknowledgments

This study was supported by the Ministry of Science, Information and Communications technology (ICT) and Future Planning grant funded by the Korean Government (NRF2016R1D1A1B03932624), and supported by Leading Foreign Research Institute Recruitment Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (MSIT) (NRF-2018K1A4 A3A02060572).

References

1. World Health Organization. Deafness and hearing loss. Geneva: World Health Organization, 2018. Accessed 2018 Nov 20. Available from: https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss.
2. Centers for Disease Control and Prevention. Hearing loss in children. Atlanta: Center for Disease Control and Prevention, 2018. Accessed 2018 Nov 20. Available from: https://www.cdc.gov.
3. Bruns L, Murbe D, Hahne A. Understanding music with cochlear implants. Sci Rep 2016;6:32026.
4. Huang J, Sheffield B, Lin P, Zeng FG. Electro-tactile stimulation enhances cochlear implant speech recognition in noise. Sci Rep 2017;7:2196.
5. Morton CC, Nance WE. Newborn hearing screening: a silent revolution. N Engl J Med 2006;354:2151-2164.
6. Van Camp G, Smith RJ. Hereditary Hearing Loss Homepage. The Authors: Hereditary Hearing Loss Homepage, 2018. Accessed 2018 Nov 20. Available from: https://www.hereditaryhearingloss.org.
7. Guilford P, Ben Arab S, Blanchard S, Levilliers J, Weissenbach J, Belkahia A, et al. A non-syndrome form of neurosensory, recessive deafness maps to the pericentromeric region of chromosome 13q. *Nat Genet* 1994;6:24-28.

8. Kelsell DP, Dunlop J, Stevens HP, Lench NJ, Liang JN, Parry G, et al. Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature 1997;387:80-83.

9. del Castillo I, Villamar M, Moreno-Pelayo MA, del Castillo FJ, Alvarez A, Telleria D, et al. A deletion involving the connexin 30 gene in nonsyndromic hearing impairment. *N Engl J Med* 2002;346:243-249.

10. Guilford P, Ayadi H, Blanchard S, Chaib H, Le Paslier D, Weissenbach J, et al. A human gene responsible for neurosensory, non-syndromic recessive deafness is a candidate homologue of the mouse sh-1 gene. *Hum Mol Genet* 1994;3:989-993.

11. Liu XZ, Walsh J, Mburu P, Kendrick-Jones J, Cope MJ, Steel KP, et al. Mutations in the myosin VIIA gene cause non-syndromic recessive deafness. *Nat Genet* 1997;16:188-190.

12. Weil D, Küssel P, Blanchard S, Lévy G, Levi-Acobas F, Drira M, et al. The autosomal recessive isolated deafness, DFNB2, and the Usher 1B syndrome are allelic defects of the myosin-VIIA gene. *Nat Genet* 1997;16:191-193.

13. Friedman TB, Liang Y, Weber JL, Hinnant JT, Barber TD, et al. Mapping of DFNB3 maps to the pericentromeric region of chromosome 17. *Nat Genet* 1995;5:91-96.

14. Wang A, Liang Y, Fiddell RA, Probst FJ, Wilcox ER, Touchman JW, et al. Association of unconventional myosin MYO15 mutations with human nonsyndromic deafness DFNB3. *Science* 1998;280:1447-1451.

15. Baldwin CT, Weiss S, Farrer LA, De Stefano AL, Adair R, Franklyn B, et al. Linkage of congenital, recessive deafness DFNB4 to chromosome 7q31 and evidence for genetic heterogeneity in the Middle Eastern Bedouin kindreds. *Am J Hum Genet* 1996;59:385-391.

16. Fujimura K, Ramesh A, Srisailapathy CR, Ni L, Chen A, et al. Identification of a locus on chromosome 7q31, DFNB14, responsible for prelingual sensorineural non-syndromic deafness. *Hum Mol Genet* 1995;4:1637-1642.

17. Li XC, Everett LA, Lalwani AK, Desmukh D, Friedman TB, Green ED, et al. A mutation in PDS causes non-syndromic recessive deafness. *Nat Genet* 1998;18:215-217.

18. Fukushima K, Ramesh A, Srisailapathy CR, Ni L, Shen A, O'Neill M, et al. Consanguineous nuclear families used to identify a new locus for recessive non-syndromic hearing loss on 14q. *Hum Mol Genet* 1995;4:1643-1648.

19. Fukushima K, Ramesh A, Srisailapathy CR, Ni L, Wayne S, O'Neill ME, et al. An autosomal recessive nonsyndromic form of sensorineural hearing loss maps to 3p-DFNB6. *Genome Res* 1995;5:305-308.

20. Nak S, Giguerre CM, Kohrman DC, Mitchem KL, Riazzuddin S, Morell RJ, et al. Mutations in a novel gene, TMIE, are associated with hearing loss linked to the DFNB6 locus. *Am J Hum Genet* 2002;71:632-636.

21. Jain PK, Fukushima K, Desmukh D, Ramesh A, Thomas E, Lalwani AK, et al. A human recessive neurosensory non-syndromic hearing impairment locus is potential homologue of murine deafness (dn) locus. *Hum Mol Genet* 1995;4:2391-2394.

22. Kurima K, Peters LD, Yang Y, Riazzuddin S, Ahmed ZM, Naz S, et al. Dominant and recessive deafness caused by mutations of a novel gene, TMCI, required for cochlear hair-cell function. *Nat Genet* 2002;30:277-284.

23. Veské A, Oehlmann R, Younus F, Mohyuddin A, Müller-Myhosok B, Mehdi SQ, et al. Autosomal recessive non-syndromic deafness locus (DFNB8) maps on chromosome 21q22 in a large consanguineous kindred from Pakistan. *Hum Mol Genet* 1996;5:165-168.

24. Bonné-Tamir B, DeStefano AL, Briggs CE, Adair R, Franklin B, Weiss S, et al. Linkage of congenital recessive deafness (gene DFNB10) to chromosome 21q22.3. *Am J Hum Genet* 1996;58:1254-1259.

25. Scott HS, Kudoh J, Wattenhofer M, Shibuya K, Berry A, Chrust R, et al. Insertion of beta-satellite repeats identifies a transmembrane protease causing both congenital and childhood onset autosomal recessive deafness. *Nat Genet* 2001;27:59-63.

26. Chaib H, Place C, Salem N, Chardenoux S, Vincent C, Weissenbach J, et al. A gene responsible for a sensorineural nonsyndromic recessive deafness maps to chromosome 2p22-23. *Hum Mol Genet* 1996;5:155-158.

27. Yasunaga S, Grati M, Cohen-Salmon M, El-Amraoui A, Mustapha M, Salem N, et al. A mutation in OTOF, encoding otoferlin, a FER-1-like protein, causes DFNB9, a nonsyndromic form of deafness. *Nat Genet* 1999;21:363-369.

28. Chaib H, Place C, Salem N, Dodé C, Chardenoux S, Weissenbach J, et al. Mapping of DFNB12, a gene for a non-syndromal autosomal recessive deafness, to chromosome 10q21-22. *Hum Mol Genet* 1996;5:1061-1064.

29. Bork JM, Peters LM, Riazzuddin S, Bernstein SL, Ahmed ZM, Ness SL, et al. Usher syndrome 1D and nonsyndromic autosomal recessive deafness DFNB12 are caused by allelic mutations of the novel cadherin-like gene CDH23. *Am J Hum Genet* 2001;68:26-37.

30. Mustapha M, Chardenoux S, Nieder A, Salem N, Weissenbach J, el-Zir E, et al. A sensorineural progressive autosomal recessive form of isolated deafness, DFNB13, maps to chromosome 7q34-3q36. *Eur J Hum Genet* 1998;6:245-250.

31. Mustapha M, Salem N, Weissenbach J, el-Zir E, Loiselet J, Petit C. Identification of a locus on chromosome 7q31, DFNB14, responsible for prelingual sensorineural non-syndromic deafness. *Eur J Hum Genet* 1998;6:548-551.

32. Chen A, Wayne S, Bell A, Ramesh A, Srisailapathy CR, Scott DA, et al. New gene for autosomal recessive nonsyndromic hearing loss maps to either chromosome 3q or 19p. *Am J Med Genet* 1997;71:467-471.

33. Charizopoulou N, Delaunay N, Lelli A, Schraders M, Ray K, Hildebrand MS, Ramesh A, et al. GIPC3 mutations associated with audiogenic seizures and sensorineural hearing loss in mouse and human. *Nat Commun* 2011;2:201.

34. Rehman AU, Gij R, Morell RJ, Lee K, Ahmed ZM, Riazzuddin S, et al. Mutations of GIPC3 cause nonsyndromic hearing loss DFNB72 but not DFNB81 that also maps to chromosome...
19p. Hum Genet 2011;130:759-765.

35. Verpy E, Masmoudi S, Zwaenepeel I, Leibovici M, Hutchin TP, Del Castillo I, et al. Mutations in a new gene encoding a protein of the hair bundle cause nonsyndromic deafness at the DFNB16 locus. Nat Genet 2001;29:345-349.

36. Greinwald JH Jr, Wayne S, Chen AH, Scott DA, Zbar RI, Kraft ML, et al. Localization of a novel gene for nonsyndromic hearing loss (DFNB17) to chromosome region 7q31. Am J Med Genet 1998;78:107-113.

37. Jain PK, Lalwani AK, Li XC, Singleton TL, Smith TN, Chen A, et al. Mutations in the alternatively spliced exons of USH1C cause nonsyndromic recessive deafness. Hum Genet 2002;111: 26-30.

38. Ahmed ZM, Smith TN, Riazuddin S, Makishima T, Ghosh M, et al. A gene for recessive nonsyndromic sensorineural deafness (DFNB18) maps to the chromosomal region 11p14-p15.1 containing the Usher syndrome type 1C gene. Genomics 1998;50:290-292.

39. Ouyang XM, Xia XJ, Verpy E, Du LL, Pandya A, Petit C, et al. Mutations in the alternatively spliced exons of USH1C cause nonsyndromic recessive deafness. Hum Genet 2002;111: 26-30.

40. Schraders M, Ruiz-Palmero L, Kalay E, Oostrik J, del Castillo I, et al. Mutations of the gene encoding otogelin as a cause of autosomal-recessive nonsyndromic deafness. Proc Natl Acad Sci U S A 2002;99:743-746.

41. Ahmed ZM, Smith TN, Riazuddin S, Makishima T, Ghosh M, et al. A gene for recessive nonsyndromic sensorineural deafness (DFNB18) maps to the chromosomal region 11p14-p15.1 containing the Usher syndrome type 1C gene. Genomics 1998;50:290-292.

42. Schraders M, Ruiz-Palmero L, Kalay E, Oostrik J, del Castillo I, et al. Mutations of the gene encoding otogelin as a cause of autosomal-recessive nonsyndromic deafness. Proc Natl Acad Sci U S A 2002;99:743-746.
60. Collin RW, Kalay E, Tariq M, Peters T, van der Zwaag B, Venselaar H, et al. Mutations of ESRRB encoding estrogen-related receptor beta cause autosomal-recessive non-syndromic hearing impairment DFNB35. *Am J Hum Genet* 2008;82:125-138.

61. Naz S, Griffith AJ, Riazuddin S, Hampton LL, Battey JP Jr, Khan SN, et al. Mutations of ESPN cause autosomal recessive deafness and vestibular dysfunction. *J Med Genet* 2004;41:591-595.

62. Ahmed ZM, Morell RJ, Riazuddin S, Gropman A, Shaukat S, Ahmad MM, et al. Mutations of MYO6 are associated with recessive deafness, DFNB37. *Am J Hum Genet* 2003;72:1315-1322.

63. Ansar M, Ramzan M, Pham TL, Yan K, Jamal SM, Haque S, et al. Localization of a novel autosomal recessive non-syndromic hearing impairment locus (DFNB38) to 6q26-q27 in a consanguineous kindred from Pakistan. *Hum Hered* 2003;55:71-74.

64. Schulte JM, Khan SN, Ahmed ZM, Riazuddin S, Waryah AM, Chhatre D, et al. Noncoding mutations of HGFl are associated with nonsyndromic hearing loss, DFNB39. *Am J Hum Genet* 2009;85:25-39.

65. Delmaghani S, Aghaie A, Compain-Nouaille S, Ataie A, Lemainque A, Zeinali S, et al. DFNB40, a recessive form of sensorineural hearing loss, maps to chromosome 22q11.21-12.1. *Eur J Hum Genet* 2003;11:816-818.

66. Aslam M, Wajid M, Chahrour MH, Ansar M, Haque S, Pham TL, et al. A novel autosomal recessive nonsyndromic hearing impairment locus (DFNB42) maps to chromosome 3q13.31-q22.3. *Am J Hum Genet* 2005;133A:18-22.

67. Borck G, Ur Rehman A, Lee K, Pogoda HM, Kakar N, von Ameln S, et al. Loss-of-function mutations of ILDRI cause autosomal-recessive hearing impairment DFNB42. *Am J Hum Genet* 2011;88:127-137.

68. Ansar M, Chahrour MH, Amin Ud Din M, Arshad M, Haque S, Pham TL, et al. DFNB44, a novel autosomal recessive nonsyndromic hearing loss, maps to chromosome 7p14.1-1q11.22. *Hum Genet* 2004;57:195-199.

69. Santos-Cortez RL, Lee K, Giese AR, Ansar M, Amin-Ud-Din M, Rehn K, et al. Adenylate cyclase 1 (ADCY1) mutations cause recessive deafness in humans and defects in hair cell function and hearing in zebrafish. *Hum Mol Genet* 2014;23:3289-3298.

70. Bhatti A, Lee K, McDonald ML, Hassan MJ, Gutala R, Ansar M, et al. Mapping of a new autosomal recessive nonsyndromic hearing impairment locus (DFNB45) to chromosome 1q43-q44. *Clin Genet* 2008;73:395-398.

71. Mir A, Ansar M, Chahrour MH, Pham TL, Wajid M, Haque S, et al. Mapping of a novel autosomal recessive nonsyndromic deafness locus (DFNB46) to chromosome 18p11.32-p11.31. *Am J Med Genet A* 2005;133A:23-26.

72. Hassan MJ, Santos RL, Rafiq MA, Chahrour MH, Pham TL, Wajid M, et al. A novel autosomal recessive non-syndromic hearing impairment locus (DFNB47) maps to chromosome 2p25.1-p24.3. *Hum Genet* 2006;118:605-610.

73. Ahmad J, Khan SN, Khan SY, Ramzan K, Riazuddin S, Ahmed ZM, et al. DFNB48, a new nonsyndromic recessive deafness locus, maps to chromosome 15q23-q25.1. *Hum Genet* 2005;116:407-412.

74. Ramzan K, Shaikh RS, Ahmad J, Khan SN, Riazuddin S, Ahmed ZM, et al. A new locus for nonsyndromic deafness DFNB49 maps to chromosome 5q12.3-q14.1. *Hum Genet* 2005;116:17-22.

75. Riazuddin S, Ahmed ZM, Fanning AS, Lazzini A, Kitajiri S, Ramzan K, et al. Tricellulin is a tight-junction protein necessary for hearing. *Am J Hum Genet* 2006;79:1040-1051.

76. Girotto G, Abdulhadi K, Buniello A, Vo desi D, Licastro D, d’Eustacchio A, et al. Linkage study and exome sequencing identify a BDP1 mutation associated with hereditary hearing loss. *PLoS One* 2013;8:e80323.

77. Shaikh RS, Ramzan K, Nazli S, Sattar S, Khan SN, Riazuddin S, et al. A new locus for nonsyndromic deafness DFNB51 maps to chromosome 11p13-p12. *Am J Med Genet A* 2005;138:392-395.

78. Chen W, Kahrizi K, Meyer NC, Riazalhosseini Y, Van Camp G, Najmabadi H, et al. Mutation of COL11A2 causes autosomal recessive non-syndromic hearing loss at the DFNB53 locus. *J Med Genet* 2005;42:e61.

79. Irshad S, Santos RL, Muhammad D, Lee K, McArthur N, Haque S, et al. Localization of a novel autosomal recessive nonsyndromic hearing impairment locus DFNB55 to chromosome 4q12-q31.3. *Clin Genet* 2005;68:262-267.

80. Delmaghani S, del Castillo FJ, Michel V, Leibovici M, Aghaie A, Ron U, et al. Mutations in the gene encoding pejvakin, a newly identified protein of the afferent auditory pathway, cause DFNB59 auditory neuropathy. *Nat Genet* 2006;38:770-778.

81. Ben Said M, G r a t i M, I s h i m o t o T, Zou B, Chakchouk I, Ma Q, et al. A mutation in SLC22A4 encoding an organic cation transporter expressed in the cochlea strial endothelium causes human recessive non-syndromic hearing loss DFNB60. *Hum Genet* 2016;135:513-524.

82. Liu XZ, Ouyang XM, Xiao X, Zheng J, Pandy A, Li F, et al. Prestin, a cochlear motor protein, is defective in non-syndromic hearing loss. *Hum Mol Genet* 2003;12:1155-1162.

83. Ali G, Santos RL, John P, Wambangco MA, Lee K, Ahmad W, et al. The mapping of DFNB62, a new locus for autosomal recessive non-syndromic hearing impairment, to chromosome 12p13.2-p11.23. *Clin Genet* 2006;69:429-433.

84. Du X, Schwander M, Moresc o EM, Viviani P, H aller C, Hildebrandt MS, et al. A catechol-O-methyltransferase that is essential for auditory function in mice and humans. *Proc Natl Acad Sci U S A* 2008;105:14609-14614.

85. Ahmed ZM, Masmoudi S, Kalay E, Belyantseva IA, Mosrati MA, Collin RW, et al. Mutations of LRTOMT, a fusion gene with alternative reading frames, cause nonsyndromic deafness in humans. *Nat Genet* 2008;40:1335-1340.

86. Tariq A, Santos RL, Khan MN, Lee K, Hassan MJ, Ahmad W, et al. Localization of a novel autosomal recessive non-syndromic hearing impairment locus DFNB65 to chromosome 20q13.2-q13.32. *J Mol Med (Berl)* 2006;84:484-490.

87. Grati M, Chakchouk I, Ma Q, Bensaid M, Desmidt A, Turki N, et al. A missense mutation in ODC2 causes human recessive deafness DFNB66, likely by interfering with sensory hair cell...
and supporting cell cilia length regulation. *Hum Mol Genet* 2015;24:2482-2491.

88. Tili A, Männikkö M, Charfedine I, Lahmar I, Benzina Z, Ben Amor M, et al. A novel autosomal recessive non-syndromic deafness locus, DFNB66, maps to chromosome 6p21.2-22.3 in a large Tunisian consanguineous family. *Hum Hered* 2005;60:123-128.

89. Shabbir MI, Ahmed ZM, Khan SY, Riazuddin S, Warayah AM, Khan SN, et al. Mutations of human TMHS cause recessively inherited non-syndromic hearing loss. *J Med Genet* 2006;43:634-640.

90. Kalay E, Li Y, Uzumcu A, Uyguner O, Collin RW, Caylan R, et al. Mutations in the lipoma HMGCIC fusion partner-like 5 (LHFPL5) gene cause autosomal recessive nonsyndromic hearing loss. *Hum Mutat* 2006;27:633-639.

91. Santos RL, Hassan MJ, Sikandar S, Lee K, Ali G, Martin PE Jr, et al. DFNB68, a novel autosomal recessive non-syndromic hearing impairment locus at chromosomal region 19p13.2. *Hum Genet* 2006;120:85-92.

92. Santos-Cortez RL, Faridi R, Rehman AU, Lee K, Ansar M, Wang X, et al. Autosomal-recessive hearing impairment due to rare missense variants within S1PR2. *Am J Hum Genet* 2016;98:331-338.

93. Chishti MS, Lee K, McDonald ML, Hassan MJ, Ansar M, Ahmad W, et al. Novel autosomal recessive non-syndromic hearing impairment locus (DFNB7) is mapped to chromosome 8p22-21.3. *J Hum Genet* 2009;54:141-144.

94. Riazuddin S, Anwar S, Fischer M, Ahmed ZM, Khan SY, Janssen AG, et al. Molecular basis of DFNB73: mutations of BSND can cause nonsyndromic deafness or Bartert syndrome. *Am J Hum Genet* 2009;85:273-280.

95. Warayah AM, Rehman A, Ahmad ZM, Bashir ZH, Khan SY, Zafar AU, et al. DFNB74, a novel autosomal recessive non-syndromic hearing impairment locus on chromosome 12q14.2-15. *Clin Genet* 2009;76:270-275.

96. Ahmed ZM, Youssf R, Lee BC, Khan SN, Lee S, Lee K, et al. Functional null mutations of MSRB3 encoding methionine sulfoxide reductase are associated with human deafness DFNB74. *Am J Hum Genet* 2011;88:19-29.

97. Horn HF, Brownstein Z, Lenz DR, Shvatzi S, Dror AA, Dagan-Rosenfeld O, et al. The LINC complex is essential for hearing. *J Clin Invest* 2013;123:740-750.

98. Grillet N, Schwander M, Hildebrand MS, Sczaniecka A, Kolatkar A, Velasco J, et al. Mutations in LOKHD1, an evolutionarily conserved stereociliary protein, disrupt hair cell function in mice and cause progressive hearing loss in humans. *Am J Hum Genet* 2009;85:328-337.

99. Rehman AU, Morell RJ, Belyantseva IA, Khan SY, Boger ET, Shahzad M, et al. Targeted capture and next-generation sequencing identifies C9orf75, encoding taperin, as the mutated gene in nonsyndromic deafness DFNB79. *Am J Hum Genet* 2010;86:378-388.

100. Ali Mosrati M, Schrauwen I, Ben Said M, Aifa-Hmani M, Fransen E, Mnejja M, et al. Genome-wide analysis reveals a novel autosomal-recessive hearing loss locus DFNB80 on chromosome 2p16.1-p21. *J Hum Genet* 2013;58:98-101.

101. Shahin H, Walsh T, Rayyan AA, Lee MK, Higgins J, Dickel D, et al. Five novel loci for inherited hearing loss mapped by SNP-based homozygosity profiles in Palestinian families. *Hum Genet* 2010;128:407-413.

102. Schraders M, Oostrik J, Huygen PL, Strom TM, van Wijk E, Kunst HP, et al. Mutations in PTPRQ are a cause of autosomal-recessive nonsyndromic hearing impairment DFNB84 and associated with vestibular dysfunction. *Am J Hum Genet* 2010;86:604-610.

103. Yazir KO, Duman D, Zazo Seco C, Dallman J, Huang M, Peters TA, et al. Mutations in OTOGL, encoding the inner ear protein otogelin-like, cause moderate sensorineural hearing loss. *Am J Hum Genet* 2012;91:872-882.

104. Ali RA, Rehman AU, Khan SN, Husnain T, Riazuddin S, Friedman TB, et al. DFNB86, a novel autosomal recessive non-syndromic deafness locus on chromosome 16p13.3. *Clin Genet* 2012;81:498-500.

105. Rehman AU, Santos-Cortez RL, Morell RJ, Drummond MC, Ito T, Lee K, et al. Mutations in TBC1D24, a gene associated with epilepsy, also cause nonsyndromic deafness DFNB86. *Am J Hum Genet* 2014;94:144-152.

106. Jaworek TJ, Richard EM, Ivanova AA, Giese AP, Choo DI, Khan SN, et al. An alteration in ELMOD3, an Arl2 GTPase-activating protein, is associated with hearing impairment in humans. *PLoS Genet* 2013;9:e1003774.

107. Basit S, Lee K, Habib R, Chen L, Umm e K, Santos-Cortez RL, et al. DFNB89, a novel autosomal recessive nonsyndromic hearing impairment locus on chromosome 16q21-q23.2. *Hum Genet* 2011;129:379-385.

108. Ali G, Lee K, Andrade PB, Basit S, Santos-Cortez RL, Chen L, et al. Novel autosomal recessive nonsyndromic hearing impairment locus DFNB90 maps to 7p22.1-q23.2. *Clin Genet* 2011;79:594-598.

109. Simon M, Richard EM, Wang X, Shahzad M, Huang VH, Qaiser TA, et al. Mutations of human NARS2, encoding the mitochondrial asparaginyl-tRNA synthetase, cause nonsyndromic deafness and Leigh syndrome. *PLoS Genet* 2015;11:e1005097.

110. Ansar M, Lee K, Naqvi SK, Andrade PB, Basit S, Santos-Cortez RL, et al. A new autosomal recessive nonsyndromic hearing impairment locus DFNB96 on chromosome 1p36.31-p36.13. *J Hum Genet* 2011;56:866-868.

111. Muñiga G, Schultz JM, Imtiaz A, Morell RJ, Friedman TB, Naz S. A mutation of MET, encoding hepatocyte growth factor receptor, is associated with human DFNB97 hearing loss. *J Med Genet* 2015;52:548-552.

112. Delmagnani S, Aghaie A, Michalski N, Bonnet C, Weil D, Peti C. Defect in the gene encoding the EAR/EPTD domain-containing protein TSPear causes DFNB98 profound deafness. *Hum Mol Genet* 2012;21:3835-3844.
115. Li J, Zhao X, Xin Q, Shan S, Jiang B, Jin Y, et al. Whole-exome sequencing identifies a variant in TMEM132E causing autosomal-recessive nonsyndromic hearing loss DFNB99. *Hum Mutat* 2015;36:98-105.

116. Youssaf R, Gu C, Ahmed ZM, Khan SN, Friedman TB, Riazuddin S, et al. Mutations in diphosphoinositol-pentakisphosphate kinase PIP5K2 are associated with hearing loss in human and mouse. *PLoS Genet* 2018;14:e1007297.

117. Imtiaz A, Kohrman DC, Naz S. A frameshift mutation in GRXCR2 causes recessively inherited hearing loss. *Hum Mutat* 2014;35:618-624.

118. Behlouli A, Bonnet C, Abdí S, Bouaita A, Hardelin JP, et al. EPS8, encoding an actin-binding protein of cochlear hair cell stereocilia, is a new causal gene for autosomal recessive profound deafness. *Orphanet J Rare Dis* 2014;9:55.

119. Seco CZ, Oonk AM, Domínguez-Ruíz M, Draisma JM, Gandía M, Oostrik J, et al. Progressive hearing loss and vestibular dysfunction caused by a homozygous nonsense mutation in CLC5. *Eur J Hum Genet* 2015;23:189-194.

120. Diaz-Horta O, Subasioglu-Uzak A, Grati M, DeSmidt A, Foster J 2nd, Cao L, et al. FAM65B is a membrane-associated protein of hair cell stereocilia required for hearing. *Proc Natl Acad Sci U S A* 2014;111:9864-9868.

121. Dahmani M, Ammar-Khodja F, Bonnet C, Lefèvre GM, Hardelin JP, Ibrahim H, et al. EPS8L2 is a new causal gene for childhood onset autosomal recessive progressive hearing loss. *Orphanet J Rare Dis* 2015:10:96.

122. Diaz-Horta O, Abad C, Sennaroglu L, Foster J 2nd, DeSmidt A, Badeneci G, et al. ROR1 is essential for proper innervation of auditory hair cells and hearing in humans and mice. *Proc Natl Acad Sci U S A* 2016;113:5993-5998.

123. Walsh T, Shahin H, Elkan-Miller T, Lee MK, Thornton AM, Roeb W, et al. Whole exome sequencing and homozygosity mapping identify mutation in the cell polarity protein GPSM2 as the cause of nonsyndromic hearing loss DFNB82. *Am J Hum Genet* 2010;87:90-94.

124. Diaz-Horta O, Sirmaci A, Doherty D, Nance W, Arnos K, Lemire EG, et al. GPSM2 mutations cause the brain malformations and hearing loss in Chudley-McCullough syndrome. *Am J Hum Genet* 2012;90:1088-1093.

125. Leon PE, Raventos H, Lynch E, Morrow J, King MC. The gene for an inherited form of deafness maps to chromosome 5q31. *Am J Hum Genet* 1995;49:1581-1584.

126. Lynch ED, Lee MK, Morrow J, Welsh PL, León PE, King MC. Nonsyndromic deafness DFNA1 associated with mutation of a human homolog of the Drosophila gene diaphanous. *Science* 1997;278:1315-1318.

127. Coucke P, Van Camp G, Doyodihaerjo B, Smith SD, Frants RR, Padberg GW, et al. Linkage of autosomal dominant hearing loss to the short arm of chromosome 1 in two families. *N Engl J Med* 1994;331:425-431.

128. Kubisch C, Schroeder BC, Friedrich T, Lutjohann B, El-Amraoui A, Marlin S, et al. KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness. *Cell* 1999;96:437-446.

129. Xia JH, Liu CY, Tang BS, Pan Q, Huang L, Dai HP, et al. Mutations in the gene encoding gap junction protein beta-3 associated with autosomal dominant hearing impairment. *Nat Genet* 1998;20:370-373.

130. Gao X, Yuan YY, Lin QF, Xu JC, Wang WQ, Qiao YH, et al. Mutation of IFNLR1, an interferon lambda receptor 1, is associated with autosomal-dominant non-syndromic hearing loss. *J Med Genet* 2018;55:298-306.

131. Chaib H, Lina-Granade G, Guilford P, Plaucho H, Levilliers J, Morgan A, et al. A gene responsible for a dominant form of neurosensory non-syndromic deafness maps to the NSRD1 recessive deafness gene interval. *Hum Mol Genet* 1994;3:2219-2222.

132. Denoyelle F, Lina-Granade G, Plaucho H, Bruzzone R, Chaib H, Lévi-Acobas F, et al. Connexin 26 gene linked to a dominant deafness. *Nature* 1998;393:319-320.

133. Grifa A, Wagner CA, D’Ambrosio L, Melchionda S, Bernardi F, Lopez-Bigas N, et al. Mutations in GJB6 cause non-syndromic autosomal dominant deafness at DFNA3 locus. *Nat Genet* 1999:23:16-18.

134. Chen AH, Ni L, Fukushima K, Marietta J, O’Neill M, Coucke P, et al. Linkage of a gene for dominant non-syndromic deafness to chromosome 19. *Hum Mol Genet* 1995:4:1073-1076.

135. Donaudy F, Snoeckx R, Pfister M, Zenner HP, Blin N, Di Stazio M, et al. Nonmuscle myosin heavy-chain gene MYH14 is expressed in cochlea and mutated in patients affected by autosomal dominant hearing impairment (DFNA4). *Am J Hum Genet* 2004;74:770-776.

136. Zheng J, Miller KK, Yang T, Hildebrand MS, Shearer AE, DeLuca AP, et al. Carinocembryonic antigen-related cell adhesion molecule 16 interacts with alpha-tectorin and is mutated in autosomal dominant hearing loss (DFNA4). *Proc Natl Acad Sci U S A* 2011;108:4218-4223.

137. van Camp G, Coucke P, Balemans W, van Velzen D, van de Bilt C, van Laer L, et al. Localization of a gene for non-syndromic hearing loss (DFNA5) to chromosome 7p15. *Hum Mol Genet* 1995:4:2159-2163.

138. Van Laer L, Huijing EH, Verstrekken M, van Zuijlen D, Wauters JG, Bossuyt PJ, et al. Nonsyndromic hearing impairment is associated with a mutation in DFNA5. *Nat Genet* 1998:20:194-197.

139. Lesperance MM, Hall JW 3rd, Bess FH, Fukushima K, Jain KA, et al. Non-syndromic progressive hearing loss DFNA38 is associated with autosomal dominant hearing impairment. *Hum Genet* 2014;133:2141-2153.

140. Lesperance MM, Hall JW 3rd, Bess FH, Fukushima K, Jain KA, et al. Non-syndromic progressive hearing loss DFNA38 is associated with autosomal dominant hearing impairment. *Hum Genet* 2014;133:2141-2153.
caused by heterozygous missense mutation in the Wolfram syndrome gene WFS1, *Hum Mol Genet* 2001;10:2509-2514.

144. Fagerheim T, Nilssen O, Raeymaekers P, Brox V, Mouni T, Elverland HH, *et al.* Identification of a new locus for autosomal dominant non-syndromic hearing impairment (DFNA7) in a large Norwegian family. *Hum Mol Genet* 1996;5:1187-1191.

145. Wesdorp M, de Koning Gans PA, Schraders M, Oostrik J, Huynen MA, Venselaar H, *et al.* Heterozygous missense variants of LMX1A lead to nonsyndromic hearing impairment and vestibular dysfunction. *Hum Genet* 2018 May 12 [Epub]. https://doi.org/10.1007/s00439-018-1880-5.

146. Manolis EN, Yandavi N, Nadol JB Jr, Eavey RD, McKenna M, Rosenbaum S, *et al.* A gene for non-syndromic autosomal dominant progressive postlingual sensorineural hearing loss maps to chromosome 14q12-13. *Hum Mol Genet* 1996;5:1047-1050.

147. Robertson NG, Lu L, Heller S, Merchant SN, Eavey RD, McKenna M, *et al.* Mutations in a novel cochlear gene cause DFNA9, a human nonsyndromic deafness with vestibular dysfunction. *Nat Genet* 1998;20:299-303.

148. O'Neill ME, Marietta J, Lang-Roth R, Seiffert E, Storch P, *et al.* A novel locus for severe sensorineural hearing impairment maps to chromosome 2q23-24.3. *Am J Hum Genet* 1999;65:141-150.

149. Lalwani AK, Luxford WM, Mhatre AN, Attaie A, Wilcox ER, Castelain CM. A new locus for nonsyndromic hereditary hearing impairment, DFNA17, maps to chromosome 22 and represents a gene for cochleosaccular degeneration. *Am J Hum Genet* 1999;64:318-323.

150. Lalwani AK, Goldstein JA, Kelley MJ, Luxford W, Castelain CM, Mhatre AN. Human nonsyndromic hereditary deafness DFNA17 is due to a mutation in nonmuscle myosin MYH9. *Am J Hum Genet* 2000;67:1121-1128.

151. Bonsch D, Scheer P, Neumann C, Lang-Roth R, Seiffert E, Storch P, *et al.* Mutations in the gamma actin gene (ACTG1) are associated with dominant progressive deafness (DFNA20/26). *Am J Hum Genet* 2003;73:1082-1091.

152. van Vijk E, Krieger E, Kemperman MH, De Lenneer EM, Huygen PL, Cremers CW, *et al.* A mutation in the gamma actin 1 (ACTG1) gene causes autosomal dominant hearing loss (DFNA20/26). *J Med Genet* 2003;40:879-884.

153. Kunst H, Marres H, Huygen P, van Duijnhoven G, Krebsvo A, van der Velde S, *et al.* Non-syndromic autosomal dominant progressive non-specific mid-frequency sensorineural hearing impairment with childhood to late adolescence onset (DFNA21), *Clin Otolaryngol Allied Sci* 2000;25:45-54.

154. Melchionda S, Ahituv N, Bisceglia L, Sobe T, Glaser F, Rabionet R, *et al.* MYO6, the human homologue of the gene responsible for deafness in Snell’s waltzer mice, is mutated in autosomal dominant nonsyndromic hearing loss. *Am J Hum Genet* 2001;69:635-640.

155. Salam AA, Häfner FM, Linder TE, Spillmann T, Schinzell AA, Leal SM. A novel locus (DFNA23) for prelingual autosomal dominant nonsyndromic hearing loss maps to 14q21-q22 in a Swiss German kindred. *Am J Hum Genet* 2000;66:1984-1988.

156. Mosrati MA, Hammami B, Rebeh IB, Ayadi L, Dhouib L, Ben Mahmoud K, *et al.* A novel dominant mutation in SIX1, affecting a highly conserved residue, result in only auditory defects in humans. *Eur J Med Genet* 2011;54:e484-488.

157. Häfner FM, Salam AA, Linder TE, Balmer D, Baumer A, Schinzell AA, *et al.* A novel locus (DFNA24) for prelingual nonprogressive autosomal dominant nonsyndromic hearing loss maps to 4q35-qter in a large Swiss German kindred. *Am J Hum Genet* 2000;66:1437-1442.

158. Greene CC, McMillan PM, Barker SE, Kurnool P, Lomax MI, Burmeister M, *et al.* DFNA25, a novel locus for dominant nonsyndromic hereditary hearing impairment, maps to 12q21-24. *Am J Hum Genet* 2001;68:254-260.
in null mice. *Am J Hum Genet* 2008;83:278-292.
170. Nakano Y, Kelly MC, Rehman AU, Boger ET, Morell RJ, Kelley MW, et al. Defects in the alternative splicing-dependent regulation of REST cause deafness. *Cell* 2018;174:536-548.e521.
171. Peters LM, Friedl RA, Boger ET, San Agustín TB, Madoe AC, Griffith AJ, et al. A locus for autosomal dominant progressive non-syndromic hearing loss, DFNA27, is on chromosome 4q12-13.1. *Clin Genet* 2008;73:367-372.
172. Peters LM, Anderson DW, Griffith AJ, Grundfast KM, San Pinto-Patarroyo G, et al. Mutation of a transcription factor, TFCP2L3, causes progressive autosomal dominant hearing loss, DFNA28. *Hum Mol Genet* 2002;11:2877-2885.
173. Mangino M, Flex E, Capon F, Sanguinoto F, Carraro E, Gualandi F, et al. Mapping of a new autosomal dominant non-syndromic hearing loss locus (DFNA30) to chromosome 15q25-26. *Eur J Hum Genet* 2001;9:667-671.
174. Snoeckx RL, Kremer H, Ensink RJ, Flothmann K, de Brouwer M, et al. Identification of REST cause deafness. *J Med Genet* 2002;39:567-570.
175. Kingston J, Bell RE. DFNA33 deafness (DFNA33) is situated on chromosome 13q34-qter. *HNO* 2009;57:371-376.
176. Bonsch D, Schmidt CM, Scheer P, Bohlender J, Neumann C, Booth KT, Askew JW, Talebizadeh Z, Huygen PLM, Eudy J, et al. Mutation of a transcription factor, TFCP2L3, causes progressive autosomal dominant hearing loss, DFNA28. *Hum Mol Genet* 2002;11:2877-2885.
177. Mangino M, Flex E, Capon F, Sanguinoto F, Carraro E, Gualandi F, et al. Mapping of a new autosomal dominant non-syndromic hearing loss locus (DFNA30) to chromosome 15q25-26. *Eur J Hum Genet* 2001;9:667-671.
178. Snoeckx RL, Kremer H, Ensink RJ, Flothmann K, de Brouwer M, et al. Identification of REST cause deafness. *J Med Genet* 2002;39:567-570.
179. Modamio-Hoybjør S, Moreno-Pelayo MA, Mencía A, del Castillo I, Chardenoux S, Armentry D, et al. A novel locus for autosomal dominant nonsyndromic hearing loss (DFNA44) maps to chromosome 3q28-29. *Hum Genet* 2003;112:24-28.
180. Modamio-Hoybjør S, Mencia A, Gooyear R, del Castillo I, Richardson G, Moreno F, et al. A mutation in CCDC50, a gene encoding an effector of epidermal growth factor-mediated cell signaling, causes progressive hearing loss. *Am J Hum Genet* 2007;80:1076-1089.
181. Bonsch D, Schmidt CM, Scheer P, Bohlender J, Neumann C, Booth KT, Askew JW, Talebizadeh Z, Huygen PLM, Eudy J, et al. Mutation of a transcription factor, TFCP2L3, causes progressive autosomal dominant hearing loss, DFNA28. *Hum Mol Genet* 2002;11:2877-2885.
182. Yan D, Zhu Y, Walsh T, Xie D, Yuan H, Sirmaci A, et al. A novel locus for autosomal dominant non-syndromic hearing loss, DFNA31, maps to chromosome 11p14.2-q12.3.
183. Modamio-Hoybjør S, Moreno-Pelayo MA, Mencía A, del Castillo I, Chardenoux S, Armentry D, et al. A novel locus for autosomal dominant nonsyndromic hearing loss maps at chromosome 11p14.2-q12.3.
184. Modamio-Hoybjør S, Mencia A, Gooyear R, del Castillo I, Richardson G, Moreno F, et al. A mutation in CCDC50, a gene encoding an effector of epidermal growth factor-mediated cell signaling, causes progressive hearing loss. *Am J Hum Genet* 2007;80:1076-1089.
dominant, non-syndromic hearing impairment (DFNA57) located on chromosome 19p13.2 and overlapping with DFNB15. NHO 2008;56:177-182.

197. Lezirovitz K, Braga MC, Thiele-Aguiar RS, Aurichchio MT, Pearson PL, Otto PA, et al. A novel autosomal dominant deafness locus (DFNAS58) maps to 2p12-p21. Clin Genet 2009; 75:490-493.

198. Ouyang XM, Yan D, Du LL. A novel locus for autosomal dominant non-syndromic hearing loss maps to chromosomes 2q11.3-2q14. In: Midwinter Meeting for the Association for Research in Otolaryngology. 2007 Feb 11-15, Denver, CO, USA.

199. Cheng J, Zhu Y, He S, Lu Y, Shen J, Han B, et al. Functional mutation of SMAC/DIABLO, encoding a mitochondrial pro-apoptotic protein, causes human progressive hearing loss DFNAS64. Am J Hum Genet 2011;89:56-66.

200. Azaiez H, Booth KT, Bu F, Huygen P Shibata SB, Shearer AE, et al. TBC1D24 mutation causes autosomal-dominant non-syndromic hearing loss. Hum Mutat 2014;35:819-823.

201. Nyegaard M, Rendtorff ND, Nielsen MS, Corydon TJ, Thoenes M, Zimmermann U, Ebermann I, Ptok M, Lewis Azaiez H, Booth KT, Bu F, Huygen P, Shibata SB, Shearer AE, et al. A novel locus harbouring a functional CD164 nonsense mutation identified in a large Danish family with nonsyndromic hearing impairment. PLoS Genet 2015;11:e1005386.

202. Thoenes M, Zimmermann U, Ebermann I, Ptok M, Lewis MA, Thiele H, et al. OSBP2L2 encodes a protein of inner and outer hair cell stereocilia and is mutated in autosomal dominant hearing loss (DFNAS67). Orphanet J Rare Dis 2015;10:15.

203. Azaiez H, Decker AR, Booth KT, Simpson AC, Shearer AE, Huygen PL, et al. HOMER2, a stereociliary scaffolding protein, is essential for normal hearing in humans and mice. PLoS Genet 2015;11:e1005137.

204. Zazo Seco C, Serrão de Castro L, van Nierop JW, Morin M, Jhangiani S, Verver EJ, et al. Allelic mutations of KITLG, encoding KIT ligand, cause asymmetric and unilateral deafness and Waardenburg syndrome type 2. Am J Hum Genet 2015;97:647-660.

205. Gao J, Wang Q, Dong C, Chen S, Qi Y, Liu Y. Whole exome sequencing identified a C-terminal nonsense mutation in a Chinese family. PLoS One 2015;10:e0133522.

206. Eisenberger T, Di Donato N, Decker C, Delle Vedove A, Neuhaus C, Nürnberg G, et al. A C-terminal nonsense mutation links PTRBPQ with autosomal-dominant hearing loss, DFNAG7. Genet Med 2018;20:614-621.

207. Eisenberger T, Di Donato N, Baig SM, Neuhaus C, Beyer A, Decker E, et al. Targeted and genomewide NGS data disqualify mutations in MYO1A, the “DFNA48 gene”, as a cause of deafness. Hum Mutat 2014;35:565-570.

208. Liu X, Han D, Li J, Han B, Ouyang X, Cheng J, et al. Loss-of-function mutations in the PRPS1 gene cause a type of nonsyndromic X-linked sensorineural deafness, DFN2. Am J Hum Genet 2010;86:65-71.

209. de Kok YJ, van der Maarel SM, Bitner-Glindzicz M, Huber I, Monaco AP, Malcolm S, et al. Association between X-linked mixed deafness and mutations in the POU domain gene POU3F4. Science 1995;267:685-688.

210. Schraders M, Haas SA, Weegerink NJ, Oostrik J, Hu H, Hoefsloot LH, et al. Next-generation sequencing identifies mutations of SMRX, which encodes the small muscle protein, X-linked, as a cause of progressive hearing impairment. Am J Hum Genet 2011;88:628-634.

211. Huibner AK, Gandía M, Frommolt P, Maak A, Wicklein EM, Thiele H, et al. Nonsense mutations in SMRX, encoding a protein responsive to physical force, result in X-chromosomal hearing loss. Am J Hum Genet 2011;88:621-627.

212. del Castillo I, Villamar M, Sarduy M, Romero L, Herráiz C, Hernández FJ, et al. A novel locus for non-syndromic sensorineural deafness (DFN6) maps to chromosome Xp22. Hum Mol Genet 1996;5:1383-1387.

213. Zong L, Guan J, Ealy M, Zhang Q, Wang D, Wang H, et al. Mutations in apoptosis-inducing factor cause X-linked recessive auditory neuropathy spectrum disorder. J Med Genet 2015;52:523-531.

214. Rost S, Bach E, Neuner C, Nanda I, Dysekk S, Bittner RE, et al. Novel form of X-linked nonsyndromic hearing loss with cochlear malformation caused by a mutation in the type IV collagen gene COL4A6. Eur J Hum Genet 2014;22:208-215.

215. Wang QJ, Lu CY, Li N, Rao SQ, Shi YB, Han DY, et al. Y-linked inheritance of non-syndromic hearing impairment in a large Chinese family. J Med Genet 2004;41:e80.

216. Bykikhovskaya Y, Estivill X, Taylor K, Hang T, Hamon M, Casano RA, et al. Candidate locus for a nuclear modifier gene for maternally inherited deafness. Am J Hum Genet 2000;66:1905-1910.

217. Schoen CJ, Emery SB, Thorne MC, Amanna HR, Silverska E, Arnett J, et al. Increased activity of Diaphanous homolog 3 (DIAPH3)/diaphanous causes hearing defects in humans with auditory neuropathy and in Drosophila. Proc Natl Acad Sci USA 2010;107:13396-13401.

218. Kim TB, Isaacson B, Sivakumaran TA, Starr A, Keats BJ, Lesperance MM. A gene responsible for autosomal dominant auditory neuropathy (AUNA1) maps to 13q14-21. J Med Genet 2004;41:872-876.

219. Sloan-Heggen CM, Bierer AO, Shearer AE, Kolbe DL, Nishimura CJ, Frees KL, et al. Comprehensive genetic testing in the clinical evaluation of 1119 patients with hearing loss. Hum Genet 2016;135:441-450.

220. Hilgert N, Smith RJ, Van Camp G. Function and expression pattern of nonsyndromic deafness genes. Curr Med Mol Biol 2009;9:546-564.

221. Mochizuki T, Lemmink HH, Mariyama M, Antignac C, Gubler MC, Pirson Y, et al. Identification of mutations in the alpha 3(IV) and alpha 4(IV) collagen genes in autosomal recessive Alport syndrome. Nat Genet 1994;8:77-81.

222. Barker DF, Hostilka SL, Zhu J, Chow LT, Oliphant AR, Gerken SC, et al. Identification of mutations in the COL4A5 collagen gene in Alport syndrome. Science 1990;248:1224-1227.

223. Abdelhak S, Kalatzis V, Heilig R, Compain S, Samson D, Vincent C, et al. A human homologue of the Drosophila eyes absent gene underlies branchio-oto-renal (BOR) syndrome and identifies a novel gene family. Nat Genet 1997;15:157-164.

224. Hoskins BE, Cramer CH, Silvius D, Zou D, Raymond RM,
Orten DJ, et al. Transcription factor SIX5 is mutated in patients with branchio-oto-renal syndrome. *Am J Hum Genet* 2007;80:800-804.

225. Ruf RG, Berkman J, Wolf MT, Nurnberg P, Gattas M, Ruf EM, et al. A gene locus for branchio-otic syndrome maps to chromosome 14q21.3-q24.3. *J Med Genet* 2003;40:515-519.

226. Lalani SR, Safiullah AM, Molinari LM, Fernbach SD, Martin DM, Belmont JW. SEMA3E mutation in a patient with CHARGE syndrome. *J Med Genet* 2004;41:e94.

227. Vissers LE, van Ravenswaaij CM, Admiraal R, Hurst JA, de Vries BB, Janssen IM, et al. Mutations in a new member of the chromodomain gene family cause CHARGE syndrome. *Nat Genet* 2004;36:955-957.

228. Neyroud N, Tesson F, Denjoy I, Leibovici M, Donger C, van de Pol D, W arburg M, Gal A, Bleeker-Wagemakers E, et al. A novel mutation in the potassium channel gene KVLT1 causes the Jervell and Lange-Nielsen cardioauditory syndrome. *Nat Genet* 1999;15:186-189.

229. Tyson J, Tranebjaerg L, Bellman S, Wren C, Taylor JF, Bathen J, et al. Isk and KvLQT1: mutation in either of the two subunits of the slow component of the delayed rectifier potassium channel can cause Jervell and Lange-Nielsen syndrome. *Hum Mol Genet* 1996;5:2179-2185.

230. Schulze-Bahr E, Wang Q, Wedekind H, Haverkamp W, Chen L, de Silva H, et al. The transcription factor SIX5 is mutated in patients with branchio-oto-renal syndrome. *Am J Hum Genet* 2004;85:957-962.

231. Berger W, van de Pol D, Warburg M, Gal A, Bleeker-Wagemakers E, et al. Mutations in the candidate gene for Norrie disease. *Hum Mol Genet* 1992;1:461-465.

232. Chen ZY, Hendriks RW, Jobling MA, Powell JF, Breakfeild XO, Sims KB, et al. Isolation and characterization of a candidate gene for Norrie disease. *Nat Genet* 1992;1:204-208.

233. Everett LA, Glaser B, Beck JC, Idol JR, Bucha A, Heyman M, et al. Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS). *Nat Genet* 1997;17:411-422.

234. Yang T, Vidarsson H, Rodrigo-Blomqvist S, Rosengren SS, Enerback S, Smith RJ. Transcriptional control of SLC26A4 is involved in Pendred syndrome and nonsyndromic enlargement of vestibular aqueduct (DFNB4). *Am J Hum Genet* 2007;80:1055-1063.

235. Yang T, Gurrola JG 2nd, Wu H, Chiu SM, Wagatsuma M, Snyder PM, et al. Mutations of KCNJ10 together with mutations of SLC26A4 cause digenic nonsyndromic hearing loss associated with enlarged vestibular aqueduct syndrome. *Am J Hum Genet* 2009;85:651-657.

236. Pierce SB, Walsh T, Chisholm KM, Lee MK, Thornton AM, Yang T, Gurrola JG 2nd, Wu H, Chiu SM, Wangemann P, et al. Mutations in the candidate gene for Norrie disease. *Hum Mol Genet* 1992;1:461-465.

237. Jenkins EM, Rehman AU, Walsh T, Clayton-Smith J, Lee K, Morell RJ, et al. Pendred syndrome is caused by recessive mutations in CLIP1 encoding a mitochondrial ATP-dependent chambered protease. *Am J Hum Genet* 2013;92:605-613.

238. Morino H, Pierce SB, Matsuda Y, Walsh T, Ohsawa R, Newby M, et al. Mutations in Twinkle primase-helicase cause Pseudorata syndrome with neurologic features. *Neurology* 2014;83:2054-2061.

239. Chatzispyrou IA, Alders M, Guerrero-Castillo S, Zapata Perez R, Haagmans MA, Mouchiroud L, et al. A homozygous missense mutation in ERAL1, encoding a mitochondrial rRNA chaperone, causes Pseudorata syndrome. *Hum Mol Genet* 2017;26:2541-2550.

240. Ahmad NN, Ala-Kokko L, Knowlton RG, Jimenez SA, Weaver EJ, Maguire JL, et al. Stop codon in the procollagen II gene (COL2A1) in a family with the Stickler syndrome (arthro-ophtalmopathy). *Proc Natl Acad Sci U S A* 1991;88:6624-6627.

241. Richards AJ, Yates JR, Williams R, Payne SJ, Pope FM, Scott JD, et al. A family with Stickler syndrome type 2 has a mutation in the COL11A1 gene resulting in the substitution of glycine 97 by valine in alpha 1 (XI) collagen. *Hum Mol Genet* 1996;5:1339-1343.

242. Vissers LE, Mariman EC, Lui VC, Zhidkova NI, Tiller GE, Goldring MB, et al. Autosomal dominant and recessive osteochondrodysplasias associated with the COL11A2 locus. *Cell* 1995;80:431-437.

243. Van Camp G, Snoeckx RL, Hilgert N, van den Ende J, Fukuoka H, Wagatsuma M, et al. A new autosomal recessive form of Stickler syndrome is caused by a mutation in the COL9A1 gene. *Am J Hum Genet* 2006;79:449-457.

244. Baker S, Booth C, Fillman C, Shapiro M, Blair MP, Hyland JC, et al. A defect of function mutation in the COL9A2 gene causes autosomal recessive Stickler syndrome. *Am J Med Genet A* 2011;155A:1668-1672.

245. Verpy E, Leibovici M, Zwaenepoel I, Liu XZ, Gal A, Salem N, et al. A family with Stickler syndrome type 2 has a mutation in the COL11A1 gene. *Hum Mol Genet* 2007;16:2727-2735.

246. Weil D, Blanchard S, Kaplan J, Guilford P, Walsh J, et al. Defective myosin VIIA gene responsible for Usher syndrome type 1B. *Nature* 1995;374:60-61.

247. Verpy E, Leibovici M, Zwaenepoel I, Liu XZ, Gal A, Salem N, et al. A defect in harmonin, a PDZ domain-containing protein expressed in the inner ear sensory hair cells, underlies Usher syndrome type 1C. *Nat Genet* 2000;26:51-55.

248. Bolz H, van Brederlow B, Ramirez A, Bryda EC, Kutsche K, Notthwang HG, et al. Mutation of CDH23, encoding a new member of the cadherin gene family, causes Usher syndrome type 1C. *Nat Genet* 2000;26:51-55.

249. Bolz H, van Brederlow B, Ramirez A, Bryda EC, Kutsche K, Notthwang HG, et al. Mutation of CDH23, encoding a new member of the cadherin gene family, causes Usher syndrome type 1C. *Nat Genet* 2000;26:51-55.
Ahmed ZM, Riazuddin S, Khan SN, Friedman PL, Riazuddin S, Friedman TB. USH1H, a novel locus for type I Usher syndrome, maps to chromosome 15q22-23. Clin Genet 2009; 75:86-91.

Eudy JD, Weston MD, Yao S, Hoover DM, Rehm HL, Ma-Edmonds M, et al. Mutation of a gene encoding a protein with extracellular matrix motifs in Usher syndrome type IIa. Science 1998;280:1753-1757.

Weston MD, Luijendijk MW, Humphrey KD, Moller C, Kimberling WJ. Mutations in the VLGR1 gene implicate G-protein signaling in the pathogenesis of Usher syndrome type II. Am J Hum Genet 2004;74:357-366.

Ebermann I, Scholl HP, Charbel Issa P, Becirovic E, Lamprecht J, Jurklies B, et al. Restoration of hearing in the VGLUT3 knockout mouse using virally mediated gene therapy. Neuroan 2012;75:283-293.

Chien WW, Isgrig K, Roy S, Belyantseva IA, Drummond MC, May LA, et al. Gene therapy restores hair cell stereocilia morphology in inner ears of deaf whirler mice. Mol Ther 2016;24:17-25.

Geschwind MD, Hartnick CJ, Liu W, Amat J, Van De Water TR, Federoff HJ. Defective HSV-1 vector expressing BDNF in auditory ganglia elicits neurite outgrowth: model for treatment of neuron loss following cochlear degeneration. Hum Gene Ther 1996;7:173-182.

Izumikawa M, Minoda R, Kavamoto K, Abrashkin KA, Swiderski DL, Dolan DF, et al. Auditory hair cell replacement and hearing improvement by Atoh1 gene therapy in deaf mammals. Nat Med 2005;11:271-276.

Kavamoto K, Ishimoto S, Minoda R, Brough DE, Raphael Y. Math1 gene transfer generates new cochlear hair cells in mature guinea pigs in vivo. J Neurosci 2003;23:4395-4400.

Pan B, Askew C, Galvin A, Heman-Ackah S, Asai Y, Indzhykulian AA, et al. Gene therapy restores auditory and vestibular function in a mouse model of Usher syndrome type 1c. Nat Biotechnol 2017;35:264-272.

Pietola L, Aarnisalo AA, Joensuu J, Pellinen R, Wahlfors J, et al. SOX10 mutations in patients with Waardenburg syndrome. Am J Hum Genet 2007;81:1169-1185.

Zlotogora J, Lerer I, Bar-David S, Ergaz Z, Abeliovich D. Homozygosity for Waardenburg syndrome type 2 caused by mutations in the human microphthalmia (MITF) gene. Nat Genet 1994;8:251-255.

Sánchez-Martín M, Rodríguez-García A, Pérez-Losada J, Sagrera A, Read AP, Sánchez-García I. SLUG (SNAI2) deletions in patients with Waardenburg disease. Hum Mol Genet 2002;11:3231-3236.

Bondurand N, Kuhlbrodt K, Pingault V, Enderich J, Sajus M, Ahmed ZM, Riazuddin S, Khan SN, Friedman PL, Riazuddin S, Friedman TB. USH1H, a novel locus for type I Usher syndrome, maps to chromosome 15q22-23. Clin Genet 2009; 75:86-91.

Lee MY, Kurioka T, Nelson MM, Prieskorn DM, Swiderski DL, Takada Y, et al. Viral-mediated Notch disruption innervation and hearing in nondeafened guinea pig cochlea. Mol Ther Methods Clin Dev 2016;3:16052.

Takada Y, Takada T, Lee MY, Swiderski DL, Kabara LL, Dolan DF, et al. Otoxotoxins-induced loss of hearing and inner hair cells is attenuated by HSP70 gene transfer. Mol Ther Methods Clin Dev 2015;2:15019.

Akil O, Seal RP, Burke K, Wang C, Alemi A, Duling M, et al. Restitum of hearing in the VGLUT3 knockout mouse using virally mediated gene therapy. Neuroan 2012;75:283-293.

Chien WW, Isgrig K, Roy S, Belyantseva IA, Drummond MC, May LA, et al. Gene therapy restores hair cell stereocilia morphology in inner ears of deaf whirler mice. Mol Ther 2016;24:17-25.

Geschwind MD, Hartnick CJ, Liu W, Amat J, Van De Water TR, Federoff HJ. Defective HSV-1 vector expressing BDNF in auditory ganglia elicits neurite outgrowth: model for treatment of neuron loss following cochlear degeneration. Hum Gene Ther 1996;7:173-182.

Izumikawa M, Minoda R, Kavamoto K, Abrashkin KA, Swiderski DL, Dolan DF, et al. Auditory hair cell replacement and hearing improvement by Atoh1 gene therapy in deaf mammals. Nat Med 2005;11:271-276.

Kavamoto K, Ishimoto S, Minoda R, Brough DE, Raphael Y. Math1 gene transfer generates new cochlear hair cells in mature guinea pigs in vivo. J Neurosci 2003;23:4395-4400.

Pan B, Askew C, Galvin A, Heman-Ackah S, Asai Y, Indzhykulian AA, et al. Gene therapy restores auditory and vestibular function in a mouse model of Usher syndrome type 1c. Nat Biotechnol 2017;35:264-272.

Pietola L, Aarnisalo AA, Joensuu J, Pellinen R, Wahlfors J, Jero J. HOX-GFP and WOX-GFP lentivirus vectors for inner ear gene transfer. Acta Otolaryngol 2008;128:613-620.

Schloeger C, Praetorius M, Brough DE, Presler RG Jr, Hsu C, Plinkert PK, et al. Selective aronal gene delivery improves balance function in a mouse model of vestibular disease. Gene Ther 2011;18:884-890.

Shibata SB, Chiorini JA, Raphael Y. Gene therapy using bovine adeno-associated virus in the guinea pig cochlea. Gene Ther 2007;69:43-50.

Staecker H, Liu W, Malgrange B, Lefebvre PP, Van De Water TR. Vector-mediated delivery of bcl-2 prevents degeneration of auditory hair cells and neurons after injury. ORL J Otorhinolaryngol Relat Spec 2007;69:43-50.

Raphael Y, Frisano J, Roessler BJ. Adenoviral-mediated gene transfer into guinea pig cochlear cells in vivo. Neurosci Lett 1996;207:137-141.
283. Landegger LD, Pan B, Askew C, Wassmer SJ, Gluck SD, Galvin A, et al. A synthetic AAV vector enables safe and efficient gene transfer to the mammalian inner ear. *Nat Biotechnol* 2017;35:280-284.

284. Askew C, Rochat C, Pan B, Asai Y, Ahmed H, Child E, et al. TmC gene therapy restores auditory function in deaf mice. *Sci Transl Med* 2015;7:295ra108.

285. Di Pasquale G, Rzadzinska A, Schneider ME, Bossis I, Chiorini JA, Kachar B. A novel bovine virus efficiently transduces inner ear neuroepithelial cells. *Mol Ther* 2005;11: 849-855.

286. Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. *Nat Rev Genet* 2003;4:346-358.

287. Wareing M, Mhatre AN, Pettis R, Han JJ, Pfister MH, et al. Cationic liposome mediated transgene expression in the guinea pig cochlea. *Hear Res* 1999;128:61-69.

288. Jero J, Mhatre AN, Tseng CJ, Stern RE, Coling DE, Goldstein JA, et al. Cochlear gene delivery through an intact round window membrane in mouse. *Hum Gene Ther* 2001;12:539-548.

289. Zhang W, Zhang Y, Sood R, Ranjan S, Surovtseva E, Ahmad A, et al. Expression of the integrin genes in the developing cochlea of rats. *Hear Res* 2001;151:106-114.

290. Staecker H, Li D, O’Malley BW Jr, Van De Water TR. Gene expression in the mammalian cochlea: a study of multiple vector systems. *Acta Otolaryngol* 2001;121:157-163.

291. Zhang W, Zhang Y, Sood R, Ranjan S, Surovtseva E, Ahmad A, et al. Visualization of intracellular trafficking of Math1 protein in different cell types with a newly-constructed non-viral gene delivery plasmid. *J Gene Med* 2011;13:134-144.

292. Toyama K, Ozeki M, Hamajima Y, Lin J. Expression of the integrin genes in the developing cochlea of rats. *Hear Res* 2005;201:21-26.

293. Zhang W, Zhang Y, Löhler M, Schmitz KR, Ahmad A, Pyykko I, et al. Nuclear entry of hyperbranched polylsine nanoparticles into cochlear cells. *Int J Nanomedicine* 2011;6:535-546.

294. Tan BT, Foong KH, Lee MM, Ruan R. Polyethyleneimine-mediated cochlear gene transfer in guinea pigs. *Arch Otolaryngol Head Neck Surg* 2008;134:884-891.

295. Tamura T, Kita T, Nakagawa T, Endo T, Kim TS, Ishihara T, et al. Drug delivery to the cochlea using PLGA nanoparticles. *Laryngoscope* 2005;115:2000-2005.

296. Belyantseva IA, Boger ET, Friedman TB. Myosin XVa localizes to the tips of inner ear sensory cell stereocilia and is essential for staircase formation of the hair bundle. *Proc Natl Acad Sci U S A* 2003;100:13958-13963.

297. Belyantseva IA, Boger ET, Naz S, Frolenkov GI, Sellers JR, Ahmed ZM, et al. Myosin-XVa is required for tip localization of whirin and differential elongation of hair-cell stereocilia. *Nat Cell Biol* 2005;7:148-156.

298. Woods C, Montcouquiol M, Kelley MW. Math1 regulates development of the sensory epithilum in the mammalian cochlea. *Nat Neurosci* 2004;7:1310-1318.

299. Zheng JL, Gao WQ. Overexpression of Math1 induces robust production of extra hair cells in postnatal rat inner ears. *Nat Neurosci* 2000;3:580-586.

300. Brigande JV, Gubels SP, Woessner DW, Jungwirth JJ, Bressee CS. Electroporation-mediated gene transfer to the developing mouse inner ear. *Methods Mol Biol* 2009;493:125-139.

301. Gubels SP, Woessner DW, Mitchell JC, Ricci AJ, Brigande JV. Functional auditory hair cells produced in the mammalian cochlea by in utero gene transfer. *Nature* 2008;455:537-541.

302. Wrobel I, Collins D. Fusion of cationic liposomes with mammalian cells occurs after endocytosis. *Biochim Biophys Acta* 1995;1235:296-304.

303. Gao X, Kim KS, Liu D. Nonviral gene delivery: what we know and what is next. *AAPS J* 2007;9:E92-E104.

304. Belyantseva IA. Helios Gene Gun-mediated transfection of the inner ear sensory epithilum. *Methods Mol Biol* 2009;493:103-123.

305. Heller LC, Ugen K, Heller R. Electroporation for targeted gene transfer. *Expert Opin Drug Deliv* 2005;2:255-268.

306. Ahmed H, Shubina-Oleinik O, Holt JR. Emerging gene therapies for genetic hearing loss. *J Assoc Res Otolaryngol* 2017; 18:649-670.

307. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. *Nature* 2001;411:494-498.

308. Hill K, Yuan W, Wang X, Sha SH. Noise-induced loss of hair cells and cochlear synaptopathy are mediated by the activation of AMPK. *J Neurosci* 2016;36:7497-7510.

309. Shibata SB, Ranum PT, Moteki H, Pan B, Goodwin AT, Goodman SS, et al. RNA interference prevents autosomal-dominant hearing loss. *Am J Hum Genet* 2016;98:1101-1113.

310. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. *Science* 2013;339:819-823.

311. Lee MY, Park YH. Potential of gene and cell therapy for inner ear hair cells. *BioMed Res Int* 2015;2015:1101-1104.

312. Zou B, Mittal R, Grati M, Lu Z, Shu Y, Tao Y, et al. The application of genome editing in studying hearing loss. *Hear Res* 2015;327:102-108.

313. Hirano S, Nishimatsu H, Ishitani R, Nureki O. Structural basis for the altered PAM specificities of engineered CRISPR-Cas9. *Mol Cell* 2016;61:886-894.

314. Ginn SL, Amaya AK, Alexander IE, Edelstein M, Abedi MR. Gene therapy clinical trials worldwide to 2017: an update. *J Gene Med* 2018;20:e3015.

315. Lopes VS, Williams DS. Gene therapy for the retinal degeneration of Usher syndrome caused by mutations in MYO7A. *Cold Spring Harb Perspect Med* 2015;5:a017319.