The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases

Chen, Chen; Song, Xiaolei; Wei, Weixia; Zhong, Huanzi; Dai, Juanjuan; Lan, Zhou; Li, Fei; Yu, Xinlei; Feng, Qiang; Wang, Zirong

Total number of authors: 30

Published in:
Nature Communications

Link to article, DOI:
10.1038/s41467-017-00901-0

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Chen, C., Song, X., Wei, W., Zhong, H., Dai, J., Lan, Z., Li, F., Yu, X., Feng, Q., Wang, Z., Xie, H., Chen, X., Zeng, C., Wen, B., Zeng, L., Du, H., Tang, H., Xu, C., Xia, Y., ... Jia, H. (2017). The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases. Nature Communications, 8(1), [875]. https://doi.org/10.1038/s41467-017-00901-0
The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases

Chen Chen1,2, Xiaolei Song1,3, Weixia Wei4,5, Huanzi Zhong1,2,6, Juanjuan Dai4,5, Zhou Lan1, Fei Li1,2,3, Xinlei Yu1,2, Qiang Feng1,7, Zirong Wang1, Hailiang Xie1, Xiaomin Chen1, Chunwei Zeng1, Bo Wen1,2, Liping Zeng4,5, Hui Du4,5, Huiru Tang4,5, Changlu Xu1,8, Yan Xia1,3, Huihua Xia1,2,9, Huanming Yang1,10, Jian Wang1,10, Jun Wang1,11, Lise Madsen1,2,9,12, Susanne Brix1,9,13, Karsten Kristiansen1,6, Xun Xu1,2, Junhua Li1,2,9,14, Ruifang Wu4,5 & Huijue Jia1,2,9,11

Reports on bacteria detected in maternal fluids during pregnancy are typically associated with adverse consequences, and whether the female reproductive tract harbours distinct microbial communities beyond the vagina has been a matter of debate. Here we systematically sample the microbiota within the female reproductive tract in 110 women of reproductive age, and examine the nature of colonisation by 16S rRNA gene amplicon sequencing and cultivation. We find distinct microbial communities in cervical canal, uterus, fallopian tubes and peritoneal fluid, differing from that of the vagina. The results reflect a microbiota continuum along the female reproductive tract, indicative of a non-sterile environment. We also identify microbial taxa and potential functions that correlate with the menstrual cycle or are over-represented in subjects with adenomyosis or infertility due to endometriosis. The study provides insight into the nature of the vagino-uterine microbiome, and suggests that surveying the vaginal or cervical microbiota might be useful for detection of common diseases in the upper reproductive tract.
n marsupials and placental mammals, the female reproductive tract has developed unique structures such as the vagina and the uterus. During the reproductive cycle, mature oocytes from the ovaries enter the peritoneal cavity to be captured by fimbrae of the fallopian tubes. The oocytes are fertilised in the fallopian tubes, and the zygotes develop and translocate to the uterus for implantation. While the vagina is home for trillions of bacteria, the uterus and the fallopian tubes are generally believed to be sterile, which would require the cervix to be a perfect barrier. Mucins in the cervix, however, are known to change conformation, leading to aggregations dependent on pH variations during the menstrual cycle. Such changes may in theory allow passage of bacteria during certain conditions.

Lactobacilli are known as the keystone species of the vaginal microbiota in reproductive-age women. Indeed, culture-independent 16S rRNA gene amplicon sequencing studies from the United States have identified 5 community types of vaginal microbiota, 3 or 4 of which contain >90% *Lactobacillus*. The lactate produced by the vaginal microbiota helps maintain a sterile environment, potentially harmful bacteria. Alterations in the vaginal microbiota may play a role in common conditions such as bacterial vaginosis, sexually transmitted diseases, urinary infections and preterm birth. In contrast, the upper reproductive tract remains largely unexplored. Bacteria have mostly been studied in small sample sizes in the context of infection, especially in relation to preterm birth. Although controversial, the placenta has recently been reported to harbour a microbiota. It is as yet not clear what type of bacteria, if any, may exist in the upper reproductive tract of the vast majority of women who are not in periods of infection or pregnancy. Furthermore, it is not known if an upper reproductive tract microbiota could play a role in uterine-related diseases such as hysteromyoma, adenomyosis and endometriosis.

Here, we systematically sampled the microbiota at six sites within the female reproductive tract, from a large cohort of Chinese women of reproductive age. Bacteria were identified by using 16S rRNA gene amplicon sequencing, real-time qPCR, as well as conventional bacterial culturing. The results indicate a continuity of the vagino-uterine microbiome, with a distinct trend within the same individual. Potential bacterial markers for adenomyosis and endometriosis were also identified.

Results

Microbiota composition at six sites within the female reproductive tract. To explore the microbiota beyond the vagina, we collected samples from six locations (CL, lower third of vagina; CU, posterior fornix; CV, cervical mucus drawn from the cervical canal; ET, endometrium; FLL and FRL, left and right fallopian tubes; PF, peritoneal fluid from the pouch of Douglas) throughout the reproductive tract from an initial study cohort of 95 Chinese women submitted to surgery for conditions not known to involve infections (Fig. 1). These conditions included hysteromyoma (also known as uterine fibroids), adenomyosis, endometriosis and salpingectomy, which are to our knowledge the best proxies for the upper reproductive tract in healthy young women (Supplementary Data 1). Samples from the vagina and the cervical mucus (CL, CU, CV) were taken upon visit to the clinic (without any prior disturbance). Samples from the peritoneal and uterine sites (PF, FL, ET) were taken during laparoscopy or laparotomy from minimally invasive surgery cuts to avoid possible contamination from the vaginal microbiota if the samples were to go through the cervical os (Fig. 1, Supplementary Fig. 1). The samples were subjected to 16S rRNA gene amplicon sequencing, quality-controlled and clustered into operational taxonomic units (OTUs) (Supplementary Data 2, 3).

The lower (CL, CU, CV) and upper (ET, FL, PF) reproductive tract samples separated when subjected to principal coordinate analyses (PCoA) based on weighted and unweighted UniFrac distances (Fig. 1a, b). The FLL and FRL showed essentially the same microbiota (Fig. 1a, b), and were therefore clustered into a common FL category for further analysis (except for calculation of intra-individual and inter-individual differences, referred to later).

Consistent with previous reports, the CL as well as the CV were dominated by the *Lactobacillus* genus (Fig. 1c), and exhibited a low α-diversity (Supplementary Fig. 2a). At the species level, the CL and CU samples contained *L. crispatus*, *L. iners* and other *Lactobacillus* spp. (Supplementary Fig. 2b), similar to previous reports from the US. Notably, CV samples generally contained a lower proportion of *Lactobacillus* than the vaginal samples (Fig. 1c), and varied among the sampled individuals (Supplementary Fig. 3a). In the ET samples, *Lactobacillus* no longer dominated, and bacteria such as *Pseudomonas*, *Acinetobacter*, *Vagococcus* and *Sphingobium* constituted a notable fraction of the microbiota (Fig. 1c, Supplementary Fig. 3b). The proportion of these bacteria further increased at the openings of the FL leaving a median relative abundance of 1.69% for *Lactobacillus* (Fig. 1c, Supplementary Fig. 3d). The PF samples generally lacked the presence of *Lactobacillus*, but otherwise harboured a microbiota as diverse but not completely the same as the FL samples (Fig. 1, Supplementary Fig. 3c).

At the phylum level, the Firmicutes-dominated lower reproductive tract microbiota contrasted the large proportions of Proteobacteria, Actinobacteria and Bacteroidetes in the upper reproductive tract (Supplementary Fig. 3e).

As noted above, we took samples from the uterine and peritoneal sites without going through the cervical os to address a major concern in the field that transcervical samples might be contaminated by the vaginal microbiota. We nonetheless tested the specificity of sampling route by collection of ET samples via the uterus as well as through the cervical os, and of CV from the cervical os as well as from the uterine end. The distribution of bacteria in the samples taken through the cervical os showed high similarity to that in samples taken by opening the uterus during surgery (Supplementary Fig. 4a, b), suggesting that both the uterine and cervical microbiota could be readily accessed and analysed in women not undergoing surgery.

Estimation of bacterial biomass in the female reproductive tract. In order to provide some absolute measure of the microbiota beyond the vagina, we developed a species-specific real-time qPCR approach, focusing on the dominant vaginal bacteria *Lactobacilli*. The abundances of *L. crispatus*, *L. iners*, *L. gasseri* and *L. jensenii* monotonously decreased from CL, CU, CV, to ET and PF (Supplementary Fig. 5a–d), consistent with genus level data from 16S rRNA gene amplicon sequencing (Fig. 1). The concordance between qPCR and amplicon sequencing results were further confirmed by Spearman’s correlation, which showed a correlation coefficient of 0.72 for *L. crispatus* and 0.56 for *L. iners*, the two dominant *Lactobacilli* species (Supplementary Fig. 2b).

The total bacterial biomass within each site was then calculated based on the copy number from qPCR, divided by the corresponding relative abundance in the sample according to 16S rRNA gene sequencing. This calculation revealed that, while the vaginal sites contained about four orders of magnitude more...
Fig. 1 Composition of the vagino-uterine microbiota. a, b PCoA on the samples based on weighted (a) and unweighted (b) UniFrac distances. Samples were taken from CL, CU and CV before operation, and from ET, FLL, FRL and PF during operation. Each dot represents one sample. c Pie chart for the microbial genera at each body site according to the median relative abundance. Genera that took up <1% of the microbiota were labelled together as ‘others’. A pink rod represents about 10^2 copies/sample, according to the qPCR results in Supplementary Fig. 5e. Samples derive from the study cohort of 95 reproductive-age women ($n=94$ CL, 95 CU, 95 CV, 80 ET, 93 PF, 9 FLL and 10 FRL, Supplementary Data 1).
bacteria (10^{10}–10^{11}), the PF samples contained similar bacterial biomass as the ET samples (Supplementary Fig. 5e), which are orders of magnitude above potential background noise. The negative controls (sterile phosphate-buffered saline (PBS), sterile saline and ultrapure water) showed much higher cycle threshold (Ct values) than the low biomass ET and PF samples (Supplementary Table 1, Supplementary Fig. 1), signifying that much less bacterial DNA was detected in non-bio control samples. It is thus important to bear in mind that the higher bacterial diversity in the upper reproductive tract corresponds to a lower bacterial biomass than the much better established vaginal microbiota (Fig. 1c).

Cultivation of live bacteria from the upper reproductive tract. Another important question is whether live bacteria rather than debris makes up the bacterial DNA signal in the upper reproductive tract samples. Hence, in a validation study we performed 16S rRNA gene amplicon sequencing along with culturing of live bacteria from an additional cohort of 15 women.

Of the 21 diluent negative controls, 19 had lower DNA concentrations and library concentrations (close to zero) than their respective tissue samples (Supplementary Data 4), again confirming that there was little DNA in the non-bio control samples. In PCoA, microbial profiles differed between the low biomass upper reproductive tract samples and diluent controls.

Fig. 2 Signature species for each body site. Heatmap for the relative abundances of signature OTUs from each body site ($P < 0.05$, multi-level pattern analysis, and IndVal > 0.5). Each bar represents one sample ($n = 94$ CL, 95 CU, 95 CV, 80 ET, 93 PF, 9 FLL and 10 FRL, Supplementary Data 1).
Signature species for each site of the reproductive tract. To get more insight into the ecology of the vagino-uterine communities, we defined signature OTUs for each body site considering both the occurrence and abundance of the given OTUs (P < 0.05 in multi-level pattern analysis, and indicator value index (IndVal) >0.5, Fig. 2, Supplementary Data 6). *L. iners* and *L. crispatus* were identified as signature species of the vaginal sites (CL and CU). No signature OTUs with IndVal >0.5 were identified for CV or ET, suggesting that they are bacterial transition zones between the vagina and the upper anatomical sites. The FL had a number of signature OTUs including *Pseudomonas, Erysipelothrix* and *Facklamia* (Fig. 2, Supplementary Data 6). The PF featured many signature OTUs, including *Pseudomonas, Morganella, Sphingobium* and *Vagococcus*, all of which increased from ET, CV, to CU and CL (Fig. 2), hinting at the possibility of minimally invasive surveys of the uterine and peritoneal microbiota by cervical mucus sampling in the general population.

Of note, the clear distinction between the upper and lower reproductive tract, intersecting at CV and ET, remained intact even when performing an inter-individual comparison (Fig. 3d) (although the level of the inter-individual indices diminished from that of the intra-individual (Fig. 3c)), hence underscoring both anatomical as well as individual-specific features of the vagino-uterine microbiota.

Site-specific community types in the vagino-uterine microbiota. To further understand the relationship between communities at each site, we examined community types in all samples using the Dirichlet multinomial mixture (DMM) model. Of the five community types detected by DMM (Supplementary Fig. 7), Type 1 and 5 were dominated by the *Lactobacillus* genus, which was present in notable amounts also in Type 2, 3 and 4 (Fig. 4a, b, Supplementary Data 7). Type 4, which contained a higher proportion of *Prevotella* and might correspond to the more diverse vaginal microbiota type reported previously, was detected in some of the CV and ET samples but was not found in the FL and PF samples of this cohort (Fig. 4, Supplementary Fig. 7).

The major type in PF, Type 2 was also present in CV, while Type 3 contained a variety of bacteria that grow in mildly alkaline conditions, contrasting the *Lactobacillus*-dominated low pH environment of the vagina.

Fig. 3 Similarity of the vagino-uterine microbiota within and between individuals. a, b Weighted UniFrac distance of the microbiota at each body site relative to the CL (a) and PF (b) in the same individual. Boxes denote the interquartile range (IQR) between the first and third quartiles (25th and 75th percentiles, respectively), and the line inside the boxes denote the median. The whiskers denote the lowest and highest values within 1.5 times the IQR from the first and third quartiles, respectively. Circles represent data points beyond the whiskers. c Intra-individual Sorenson indices between different body sites. d Inter-individual Sorenson indices between different body sites. Samples derive from the study cohort of 95 reproductive-age women (n = 94 CL, 95 CV, 80 ET, 93 PF, 9 FLL and 10 FRL, Supplementary Data 1).
was present at all sites, yet dominating in the FL samples (Fig. 4, Supplementary Fig. 7).

When we examined transitions between community types at neighbouring sites, most subjects with Type 1 in the vagina (I CL) remained Type 1 at the CU, and changed to Type 5 either at CV or at ET, and then turned to Type 2 in PF (Fig. 4c). By contrast, subjects with Type 3 or 4 at the vaginal sites rarely became Type 5 at the uterine sites, while some Type 4 subjects were found to switch to Type 3 in the upper part (Fig. 4b, Supplementary Fig. 7c). These findings corroborated our aforementioned results that there is an intra-individual continuum of the microbiota from the vagina to the peritoneal fluid that gradually changes according to the habitat.

Lifestyle and clinical factors associated with microbiota changes. The vaginal microbiota has previously been reported to vary between ethnic groups (in the US) and the menstrual cycle. With our comprehensive collection of metadata (Supplementary Data 1), we examined whether various clinical and lifestyle factors were associated with changes in the vagino-uterine microbiota in women of reproductive age. Factors such as age of initial sexual intercourse, duration of menstrual period, and gravida and para appeared associated with microbiota composition at one or more sites, but failed to reach statistical significance after controlling for multiple testing (permutational multivariate analysis of variance (PERMANOVA), P < 0.05 but q > 0.05, Supplementary Data 8 and 9). Having given birth (multipara versus nullipara) was associated with microbiota composition in CV and PF (q < 0.05, Supplementary Data 9). Herbal medication was associated with microbiota composition in the CV only (q < 0.05, Supplementary Data 9). Age, hysteromyoma, adenomyosis and endometrosis were also associated with microbiota composition in the PF (q < 0.05, Supplementary Data 8, 9). Therefore, variations in the composition of the vagino-uterine microbiota are associated with a number of natural and diseased physiological conditions important for women’s health.

Identification of diseases based on the vagino-uterine microbiota. We further examined whether variations in the vagino-uterine microbiota composition were associated with different physiological conditions and diseases of the reproductive tract. In relation to hysteromyoma (benign tumours in the uterus), Lactobacillus sp. were found to be more abundant in the vaginal and cervical samples of individuals with no hysteromyoma, while L. iners was more abundant in the CV of individuals with hysteromyoma (Supplementary Fig. 8). Among the hysteromyoma-enriched OTUs, one OTU in the CU and 11 OTUs in the PF were also identified to be influenced by the stage in the menstrual cycle (Spearman’s correlation coefficient >0.3 or <−0.3, q < 0.05, Supplementary Fig. 8); however, none of these OTUs showed a correlation with age. Overall, the results were consistent with hysteromyoma being associated with a minimally altered vagino-uterine microbiota.

Subjects with adenomyosis (abnormal presence of endometrial tissue within the myometrium) showed depletion or enrichment of many bacteria throughout the reproductive tract, some of which overlapped with bacteria associated with anaemia (Supplementary Figs. 9 and 10), which was consistent with clinical links between the two conditions (P = 0.001062 between the two conditions in our cohort, Fisher’s exact test). Furthermore, cross-validated random forest models distinguished subjects with adenomyosis from those without according to OTUs...
The microbiota-based models also allowed us to distinguish subjects without and with infertility attributed to endometriosis, a condition where endometrial cells present abnormal growth outside the uterus, and a major cause of infertility (Fig. 5, Supplementary Data 11). Altogether, these results suggest that the composition of the vagino-uterine microbiota potentially could be used to detect a number of ailments common to reproductive age women.

Functional inferences of the reproductive tract microbiota. To estimate the functional capacities of the vagino-uterine microbiota, we predicted KOs (Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology groups) from the 16S rRNA gene data.

In the case of adenomyosis, the analyses revealed that adenomyosis affected functions throughout the vagino-uterine microbiota (Supplementary Fig. 12). The microbiota in subjects with adenomyosis were especially enriched in pathways involved in flagella assembly and biosynthesis of aromatic amino acids, while the microbiota in subjects without adenomyosis were enriched in phosphotransferase system and fatty acid biosynthesis. These results suggest that functionally, the microbiota is also a continuum in the reproductive tract, and could be perturbed at multiple sites in a disease.

Menstrual cycle relates to the vagino-uterine microbiota and its function. Differences in the vagino-uterine microbiota were also identified between phases of the menstrual cycle, as was apparent from cross-validated random-forest models that classified samples into different phases of the cycle (Supplementary Fig. 13). OTUs that led to optimal classification included *L. iners*, and *Lactobacillus* sp. from vaginal sites, *Sphingobium* sp., *Propionibacterium acnes* and *Pseudomonas* sp. from the ET or PF, which were differentially enriched during the proliferative and secretory phases (Supplementary Fig. 13c). Notably, *P. acnes* was more abundant in the secretory phase in the ET (Supplementary Fig. 13l), and has previously been identified in the placenta and cultured from follicular fluid (20–22). Functionally, the proliferative phase appeared associated with increased bacterial proliferation in the vagina and ET compared to the secretory phase, seen as higher abundance of pathways for pyrimidine and purine metabolism, aminoacyl-tRNA biosynthesis, and peptidoglycan biosynthesis (Fig. 6). The secretory phase, on the other hand, showed higher abundance of pathways for porphyrin metabolism, arginine and proline metabolism, degradation of benzoate, nitrotoluene and biosynthesis of siderophore (Fig. 6). These results indicate that the vagino-uterine microbiota probably varies according to the menstrual cycle.

Discussion

Herein we demonstrate the existence of distinct bacterial communities throughout the female reproductive tract forming a continuum of microbiotas changing from the vagina to the uterus, and a major cause of infertility (Fig. 5, Supplementary Data 11). Altogether, these results suggest that the composition of the vagino-uterine microbiota potentially could be used to detect a number of ailments common to reproductive age women.

Menstrual cycle relates to the vagino-uterine microbiota and its function. Differences in the vagino-uterine microbiota were also identified between phases of the menstrual cycle, as was apparent from cross-validated random-forest models that classified samples into different phases of the cycle (Supplementary Fig. 13). OTUs that led to optimal classification included *L. iners*, and *Lactobacillus* sp. from vaginal sites, *Sphingobium* sp., *Propionibacterium acnes* and *Pseudomonas* sp. from the ET or PF, which were differentially enriched during the proliferative and secretory phases (Supplementary Fig. 13c). Notably, *P. acnes* was more abundant in the secretory phase in the ET (Supplementary Fig. 13l), and has previously been identified in the placenta and cultured from follicular fluid (20–22). Functionally, the proliferative phase appeared associated with increased bacterial proliferation in the vagina and ET compared to the secretory phase, seen as higher abundance of pathways for pyrimidine and purine metabolism, aminoacyl-tRNA biosynthesis, and peptidoglycan biosynthesis (Fig. 6). The secretory phase, on the other hand, showed higher abundance of pathways for porphyrin metabolism, arginine and proline metabolism, degradation of benzoate, nitrotoluene and biosynthesis of siderophore (Fig. 6). These results indicate that the vagino-uterine microbiota probably varies according to the menstrual cycle.
ovaries, which challenge the traditional view of human foetal development being a sterile event. Indeed, vertical transmission of the mothers' microbiota before birth could be the norm throughout the animal kingdom, as previously alluded to by others. Demonstrating a microbiota in traditionally unchartered territories remains a challenging task, and as illustrated here, the combination of high-throughput sequencing, quantitative PCR, culturing of live bacteria and other techniques would make a stronger case. Endosymbiotic, instead of free-living bacteria, is also an intriguing possibility.

As it is not possible to directly sample the upper reproductive tract (without going through the cervical os. and especially for FL, PF) of fully healthy women, we have included a handful of fertile and infertile conditions that are not known to involve infection. The relevance of the vagino-uterine microbiota to female fecundity would require further analyses in large cohorts and in model systems. Although differing by disease cohorts and methodology, our sequencing-based analyses nevertheless showed some similarity to an early study on chronic endometritis and a recent study on endometrial cancer. Notably, the latter study also pointed to the exciting possibility of identifying endometrial cancer through sampling the vaginal microbiota. How disturbances to the vagino-uterine microbiota might eventually lead to benign or malignant conditions threatening the health of pre-menopausal and post-menopausal women is a major open question.

Fig. 6 Associations between inferred microbial functions and menstrual phases. Microbial KEGG pathways enriched in the proliferative or the secretory phases (orange versus blue, reporter score >1.96 or < −1.96) and present in all the body sites were plotted as a heatmap. The pathways were arranged by unsupervised hierarchical clustering. Samples derive from the study cohort of 95 reproductive-age women (n = 94 CL, 95 CU, 95 CV, 80 ET, 93 PF, 9 FLL and 10 FRL, Supplementary Data 1).
Of relevance for clinical practice was the finding of intra-individual correlations between microbiota of the PF and that of CV, as this indicates that (minimally invasive) sampling of cervical mucosa could be used to survey the status of the uterus and peritoneal cavity in the general population. This is of relevance in relation to the demonstrated associations between the uterine microbiota and diseases such as adenomyosis and endometriosis.

We also showed that microbiota at the upper reproductive tract can be evaluated through laparoscopy with minimal artificial effects and contaminations, laying the basis for the usage of this sampling route in subsequent studies.

We find that both the upper and the lower reproductive tract are home for facultative anaerobes and aerobes, in contrast to the situation in bacterial vaginosis (and more recently also reported in endometrial cancer30, Supplementary Table5), represented by

saline was injected into peritoneal cavity, and then the FL and ET were sampled for contamination by blood. PF was sampled at the Pouch of Douglas after sterile sampling. BGI-Shenzhen.

We also showed that microbiota at the upper reproductive tract can be evaluated through laparoscopy with minimal artificial effects and contaminations, laying the basis for the usage of this sampling route in subsequent studies.

We find that both the upper and the lower reproductive tract are home for facultative anaerobes and aerobes, in contrast to the situation in bacterial vaginosis (and more recently also reported in endometrial cancer30, Supplementary Table5), represented by

saline was injected into peritoneal cavity, and then the FL and ET were sampled for contamination by blood. PF was sampled at the Pouch of Douglas after sterile sampling. BGI-Shenzhen.

DNA extraction and 16S rRNA amplicon sequencing. DNA extraction was performed as described32. Sample was treated with Lysozyme, proteinase K and SDS, then purified by phenol-chloroform-isomylalkohol, precipitated by glycogen, sodium acetate and cold isopropanol, washed with 70% ethanol and resuspended in 1 x TE buffer. The V4–V5 region of the 16S rRNA genes was amplified by polymerase chain reaction (PCR) with a universal forward primer and a unique bar-coded fusion reverse primer (V4: 5′-GTTCAGCCCGGTCGCTGTA-3′ and V5-907R: 5′- CCTGCAATTGCTTTAGT-3′, where M indicates A or C and R indicates G or A).

PCR was performed using the following conditions: 3 min denaturation at 94°C, 25 cycles of denaturation at 94°C for 45 s, annealing at 50°C for 60 s, elongation at 72°C for 90 s; and final extension at 72°C for 10 min. The amplicons were purified using the AMPure beads (Agencourt). Barcoded libraries were generated by emulsion PCR, and sequenced in a V2 to V4 reverse direction on a 318 chip using the 400 bp sequencing kit of the Ion Torrent Personal Genome Machine (PGM) system according to manufacturer’s instructions.

Processing of 16S sequencing data. The raw data from the PGM system were exported and pre-processed by using Mothur (V1.33.3)34. The criteria for high-quality reads included: (1) longer than 200 bp; (2) less than two mismatches with the degenerate PCR primers; (3) average quality score <25. OTUs based on the 16S rRNA gene sequences were generated with the identity cutoff of 97% using QIIME’s UCLUST program28. The seed sequences of each OTU were chosen for taxonomic classification against the Greengene reference sequences (gg_13_8_otus) by the UCLUST taxonomy assigner. The α-diversities and β-diversities, UniFrac analyses were also calculated in QIIME with taxonomic abundance profiles at the OTU or genus level.

For OTU #1 from our samples (an abundant OTU from the vagina), the seed sequence showed over 97% identity with the V4/V5 region of both of the Lactobacillus kitaitoensis and Lactobacillus crispatus 16S rRNA genes. To resolve this ambiguity, full-length 16S rRNA gene and a 289 bp fragment of the conserved single-copy gene encoding phenylalanine-rRNA ligase beta subunit (PF03147) were cloned from a sample containing 99% OTU #1 (O356CU), and Sanger sequencing (Applied Biosystems 3730 DNA analyzer) confirmed both genes to be from L. crispatus ST1 (NCBI gene ID: 9107847 and 9107287, respectively).

Identification of signature OTUs. Signature OTUs were identified according to their IndVal values, which consider both the occurrence and abundance of a taxon25, 36.

Concordance of the microbiota between samples. We used the Sorensen index (Sorensen–Dice index) to measure the similarity between microbiota at different body sites of the same individual, based on the presence and absence of OTUs. The index was calculated as:

where A is the sum of the abundances of species within the samples from body site p, n, is the number of occurrences of the species within the samples from site p, a is the sum of the abundances of species from all body sites, N, is the number of samples from site p. Statistical tests on the IndVal values were performed as described previously, through permutation of the relative abundance of each genus or OTU across communities, using the multiapp part function of the R package ‘indspecs’27.

Community types of the vagina-uterine microbiota. Relative abundances of genera in all 476 samples were used to determine the optimal number of clusters according to DMM2. Transitions between community types were assessed statistically from community type assignments for all subjects together, as well as for those who had fallopian tube samples.

PERMANOVA on the influence of phenotypes. We applied PERMANOVA on the relative abundances of OTUs or metabolites in the samples to assess impact from each of the factors listed27, 38. We used Bray–Curtsis or UniFrac distance and 9999 permutations in R (3.0.0, vegan package38, 39).

Random-forest classification. In order to construct a model that could distinguish samples of different menstrual phases for each body site, the relative abundances of OTUs (found in at least 10% of the samples) in the samples were fitted against the samples’ actual days in the menstrual cycle using default parameters in the randomForest package in R (3.1.2 RC) except that 1000 trees were used, as in previous reports on the gut microbiota age of infants27, 40. Ten-fold cross-validation was performed five times. The cross-validation error curves from the five trials were averaged, and the minimum error in the averaged curve plus the standard deviation at that point were used as the cut-off for acceptable error. From the sets of OTUs with a classification error less than the cutoff, the set with the smallest number of OTUs was chosen as the optimal set.

Random-forest classification of samples according to non-continuous phenotypes was performed in the same manner.

MetaScope in the Progenesis QI software was used to search for compound identifications not only based on neutral mass, isotope distribution and retention time, but also based on collisional cross-sectional area and MS/MS fragmentation data in the HMDB database.

Functional inference of 16S data. PICRUSt (phylogenetic investigation of communities by reconstruction of unobserved states) was used to infer KOs from OTU data as previously described42. The relative abundance of KEGG pathways...
and modules was summed from the relative abundance of KOs belonging to these pathways and modules.

Differentially enriched KEGG pathways or modules were identified according to their reporter score and the Z-scores of individual KEGG orthology groups. A reporter score of $Z = 1.96$ was used as a detection threshold for pathways or modules that were significantly over-represented in one group relative to the other, corresponding to 95% confidence.

Real-time quantitative PCR. Four major vaginal *Lactobacillus* species including *L. crispatus*, *L. iners*, *L. jensenii* and *L. gasseri* were quantified by real-time qPCR modified from a previously described regimen. After DNA quantification was conducted for each sample using Qubit Fluorometer (Life Technologies), 1.6 μl DNA solution was used as the template for real-time PCR. Standard curves were generated using serial tenfold dilutions of plasmids. The range of amplification efficiency was from 90 to 110%, and linearity values were all ≥0.99. Real-time qPCR was conducted using SYBR Premix Ex Taq GC (TAKARA) using the StepOnePlus Real-time PCR System (Life Technologies). Each reaction included a standard curve, and each sample was run in triplicate and contained 10 μl SYBR Premix Ex Taq GC, 1.6 μl of DNA template along with 0.2 μM primers in a final reaction volume of 20 μl. Sterile PBS and sterile physiological saline were used as diluent negative controls, which were subject to sample processing, DNA extraction and real-time qPCR in parallel with samples according to our standard protocol, in order to determine the source of contamination. In addition, non-template control, which was ultrapure water, was also included when performing real-time qPCR. Total DNA amount for each sample was calculated by multiplying the concentration of DNA by the total volume of extracted DNA.

Validation cohort used for control of contamination and bacterial culturing. We used an independent validation cohort comprised of additional 15 reproductive surgeons from a previously described regimen. After DNA quantification was conducted for each sample using Qubit Fluorometer (Life Technologies), 1.6 μl DNA solution was used as the template for real-time PCR. Standard curves were generated using serial tenfold dilutions of plasmids. The range of amplification efficiency was from 90 to 110%, and linearity values were all ≥0.99. Real-time qPCR was conducted using SYBR Premix Ex Taq GC (TAKARA) using the StepOnePlus Real-time PCR System (Life Technologies). Each reaction included a standard curve, and each sample was run in triplicate and contained 10 μl SYBR Premix Ex Taq GC, 1.6 μl of DNA template along with 0.2 μM primers in a final reaction volume of 20 μl. Sterile PBS and sterile physiological saline were used as diluent negative controls, which were subject to sample processing, DNA extraction and real-time qPCR in parallel with samples according to our standard protocol, in order to determine the source of contamination. In addition, non-template control, which was ultrapure water, was also included when performing real-time qPCR. Total DNA amount for each sample was calculated by multiplying the concentration of DNA by the total volume of extracted DNA.

References

1. Brunelli, R. et al. Globular structure of human ovariatal cervical mucus. FASEB J. 21, 3872–3876 (2007).
2. Ma, B., Forney, L. J. & Ravel, J. Vaginal microbiome: rethinking health and disease. Annu. Rev. Microbiol. 66, 371–389 (2012).
3. Ravel, J. et al. Vaginal microbiome of reproductive-age women. Proc. Natl Acad. Sci. USA 108, 4685–4689 (2010).
4. Gajer, P. et al. Temporal dynamics of the human vaginal microbiota. Sci. Transl. Med. 4, 132ra52–132ra52 (2012).
5. Ding, T. & Schloss, P. D. Dynamics and associations of microbial community types across the human body. Nature 509, 357–360 (2014).
6. Golubovskaya, B. L., Hazumi, J. C. & Andrews, W. M. Intrauterine infection and preterm delivery. N. Engl. J. Med. 362, 1500–1507 (2000).
7. Hyman, R. W. et al. Diversity of the vaginal microbiome correlates with preterm birth. Reprod. Sci. doi:10.1177/19337191134188838 (2013).
8. Aagaard, K. et al. The placenta harbors a unique microbiome. Sci. Transl. Med. 6, 237ra5 (2014).
9. Saltz, S. J. et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12, 87 (2014).
10. Vásquez, A., Jakobsson, T., Ahrné, S., Forsum, U. & Molin, G. Vaginal *Lactobacillus Flora* of healthy Swedish women. J. Clin. Microbiol. 40, 2746–2749 (2002).
11. Gibbs, R. S., Blanco, J. D., St Clair, P. J. & Castaneda, Y. S. Quantitative bacteriology of amniotic fluid from women with clinical intraamniotic infection at term. J. Infect. Dis. 145, 1–8 (1982).
12. Jimenez, E. et al. Isolation of commensal bacteria from umbilical cord blood of healthy neonates born by cesarean section. Curr. Microbiol. 51, 270–274 (2005).
13. Hogue, R., Graves, M., Moler, S. & Janda, J. M. Pink-pigmented non-fermentative gram-negative rods associated with human infections: a clinical diagnostic challenge. Infect. 35, 126–133 (2007).
14. Flynn, A. N., Lyndon, C. A. & Churchill, D. L. Identification by 16S RNA gene sequencing of an Actinomycyes hongkongensis isolate recovered from a patient with pelvic actinomycosis. J. Clin. Microbiol. 51, 2721–2723 (2013).
15. Chang, D.-H., Rhee, M.-S. & Kim, B.-C. Dermabacter vaginale sp. nov., isolated from human vaginal fluid. Int. J. Syst. Evol. Microbiol. 66, 1881–1886 (2016).
16. McCormack, W. M. et al. Vaginal colonization with Corynebacterium vaginale (Haemophilus vaginalis). J. Infect. Dis. 136, 740–745 (1977).
17. Holcombe, I. J. et al. Pseudomonas aeruginosa secreted factors impair biofilm development in *Candida albicans*. Microbiology 156, 1476–1485 (2010).
18. Ligon, J. M. et al. Natural products with antifungal activity from Pseudomonas biocontrol bacteria. Pest Manag. Sci. 56, 688–695 (2000).
19. Kim, T. K. et al. Heterogeneity of vaginal microbial communities within individuals. J. Clin. Microbiol. 47, 1181–1189 (2009).
20. Yu, R. R. et al. A Chinese rhesus macaque (Macaca mulatta) model for vaginal *Lactobacillus colonization and live microbiode development. J. Med. Primatol. 2, 125–136 (1999).
21. Albert, A. Y. K. et al. A study of the vaginal microbiome in healthy Canadian women utilizing cpn60-based molecular profiling reveals distinct Gardnerella subgroup community state types. PLoS ONE 10, 1–21 (2015).
22. Pelzer, E. S. et al. Hormone-dependent bacterial growth, persistence and biofilm formation - a pilot study investigating human follicular fluid collected during IVF cycles. PLoS ONE 7, e49965 (2012).
23. Pelzer, E. S. et al. Microorganisms within human follicular fluid: effects on IVF. PLoS ONE 8, e59062 (2013).
24. Mackie, R. L., Sghir, A. & Gaskins, H. R. Developmental microbial ecology of the neonatal gastrointestinal tract. Am. J. Clin. Nutr. 69, 1035S–1045S (1999).
25. Matamoros, S., Gras-Leguen, C., Le Vacon, F., Potel, G. & De La Cochetiere, M. F. Development of intestinal microbiota in infants and its impact on health. Trends Microbiol. 21, 167–173 (2013).
26. Bäckhed, F. et al. Dynamics and stabilization of the human gut microbiota during the first year of life. Cell Host Microbe 17, 690–703 (2015).
27. Bibiloni, R., J. R. & Bordeau, L. M. Mom knows best: the Universality of microbiome in the development of endometrial cancer. Genome Med. 8, 122 (2016).
28. Huang, B., Fettweis, J. M., Brooks, J. P., Jefferson, K. K. & Buck, G. The changing landscape of the vaginal microbiome. Clin. Lab. Med. 34, 747–761 (2014).
29. Wang, J. & Jia, H. Metagenome-wide association studies: fine-mining the microbiome. Nat. Rev. Microbiol. 14, 508–522 (2016).
30. Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012).
31. Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).
32. Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7, 335–336 (2010).
33. Dufrêne, M. & Legendre, P. Species assemblages and indicator species: the need for flexible asymmetrical approach. Ecol. Monogr. 65, 345–366 (1995).
34. Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Aust. Ecol. 36, 32–46 (2001).
35. Feng, Q. et al. Gut microbiome development along the colorectal adenoma–canceroma sequence. Nat. Commun. 6, 6528 (2015).
39. Zapala, M. A. & Schork, N. J. Multivariate regression analysis of distance matrices for testing associations between gene expression patterns and related variables. Proc. Natl Acad. Sci. USA 103, 19430–19435 (2006).
40. Subramanian, S. et al. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature 509, 417–421 (2014).
41. Zhang, X. et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat. Med. 21, 895–905 (2015).
42. Langille, M. G. I. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821 (2013).
43. Patil, K. R. & Nielsen, J. Uncovering transcriptional regulation of metabolism by using metabolic network topology. Proc. Natl Acad. Sci. USA 102, 2685–2689 (2005).
44. De Backer, E. et al. Quantitative determination by real-time PCR of four vaginal Lactobacillus species, Gardnerella vaginalis and Atopobium vaginae indicates an inverse relationship between L. gasseri and L. iners. BMC Microbiol. 7, 115 (2007).
45. Augustinos, A. A. et al. Exploitation of the medfly gut microbiota for the enhancement of sterile insect technique: Use of Enterobacter sp. in larval diet-based probiotic applications. PLoS ONE 10, 1–17 (2015).

Acknowledgements
The study was supported by the Shenzhen Municipal Government of China (JCYJ20160229172757249, JCYJ20150601096833370), the Danish Strategic Research Council grant (2106-07-0021), the Ole Rømer grant from Danish Natural Science Research Council and Solexa project (272-07-0196). We gratefully acknowledge colleagues at BGI-Shenzhen for DNA quality control, library construction, sequencing and helpful discussions.

Author contributions
H.Z., J.L., H.J. and R.W. conceived and directed the project. W.W., J.D., L.Z., H.D., H.T. and R.W. performed the clinical diagnosis, sample collection and result analyses. C.C., X.S., Z.L., F.L., Z.W., H.Xie, C.X., Y.X. and H.Xia performed the bioinformatic analyses, molecular biology experiments and prepared display items. X.C., C.Z. and B.W. analysed the metabolome. C.C., X.S., H.Z., X.Y., H.J., K.K. and S.B. wrote the manuscript. All authors contributed to the revision of the manuscript.

Additional information
Supplementary Information accompanies this paper at doi:10.1038/s41467-017-00901-0.

Competing interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2017