Finite-Element Analysis on Percolation Performance of Foam Zinc

Yu Li, ‡ Jie Liu, † Yida Deng, ‡ Xiaopeng Han, ‡ Wenbin Hu, ‡, † and Cheng Zhong, ‡†

†Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering and ‡Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, No. 135 Yaguan Road, Jinnan District, Tianjin 300350, China

ABSTRACT: With the aid of X-ray microcomputed tomography and digital image processing technology, the three-dimensional structure of foam zinc prepared by the electrodeposition process is reconstructed. Furthermore, a simplified finite-element model of foam zinc, which can more accurately reflect its structure, is proposed. Based on the Brinkman—Forchheimer-extended-Darcy law, the finite-element method is used for the numerical simulation of the percolation performance of the foam zinc. The results indicate that for high-porosity foam zinc, the pore density is the main factor affecting its percolation performance. A function is established to describe the relationship between the pore density and pressure drop. To obtain an optimum structure, a tetrakaidecahedron cylinder model is established and compared to a previously built model, and the comparison demonstrates that the optimized model performs better in the field of percolation performance.

1. INTRODUCTION

The rechargeable metal—air battery has advantages such as low cost, environmental friendliness, and high safety performance; especially, zinc—air batteries are expected to be one of the most promising new energy batteries for the next generation because of their high energy density.1–4 The theoretical energy density can reach as high as 1350 kW h kg−1.5–7 However, because of technical limitations, the rechargeable zinc—air batteries have not yet been commercialized.8–10 Taking the zinc anode as an example, it is much denser and has a smaller specific surface area; dendritic or mossy growth of zinc results in the morphology and shape change during the charging/discharging process, leading to the decline in the performance and the low cycling stability of the battery.11,12

Because of its three-dimensional (3D) through-pore structure, foam metal has a low density, high specific surface area, low flow resistance, good mechanical properties, and good thermal management performance.13,14 As a structural and functional integrated material,15,16 foam metal can be used as an electrode material for batteries. Foam Zn electrode with a higher specific surface area increases the charge/discharge capacity and enhances the rated performance of batteries; therefore, the charge/discharge efficiency of the battery is improved and the energy loss is reduced. The pores can also provide sufficient space for the growth of dendrites formed by the Zn electrode during the charging/discharging process, improving the performance of the Zn electrode and providing the flow channel of the electrolyte. The good performance of the foamed structure on the thermal management can improve the heat dissipation efficiency and the thermal failure of materials or structures resulting from the heat concentration during the battery charging and discharging process.17 The high porosity of the porous structure can greatly reduce the density of the electrode, reducing the weight of the battery to increase the current density per unit mass, and promoting the development of low-weight and heterotrophic battery cells. The researchers studied the percolation properties of foam metal with gas and liquid as working fluids.18,19 It was found that the increase in pressure drop is exponentially related to pore density.19 For foam metals with a high porosity, a large number of irregular zigzag flow channels can continuously disturb the fluid boundary layer.20 Fluid flow often occurs as reflux, turbulence, and unsteady flow, making the influencing factors of seepage characteristics extremely complex.21,22,23 The performance analysis of porous materials has been carried out using simplified mathematical models.24,25 Although these models are quite different from the actual structure of foam metal, they are relatively simple and easy to be used for experimental analysis, and the simulation results are consistent with most experimental results.26,27 The applications of the finite-element method in numerical simulation of the percolation properties of foam metal is of great practical significance.28,29 Studies on percolation properties of foam zinc contribute to comprehend the flow behavior of electrolyte in foam zinc electrode, which could provide a theoretical basis for the selection of the pore structure parameters of foam zinc as the anode of the zinc—air battery regarding the flow resistance.

At first, foam zinc as the research object in this study is prepared by the ultrasonic-assisted electrodeposition process.30 The 3D structure of the foam zinc is reconstructed. Furthermore, a simplified finite-element model of the foam zinc, which can reflect its actual structure, is proposed. Based on the Brinkman—Forchheimer-extended-Darcy law, the finite-element method13,32 is applied in the finite-element analysis.
(FEA) for revealing the quantitative relationship between the pore structure and the percolation performance of foam zinc, and the foam zinc structure is optimized. Through the numerical simulation of the related process, a continuous and complete performance curve of the pressure drop and flow velocity is obtained,23,33 which provides the theoretical basis for the selection of the pore structure parameters of foam zinc as the anode of the zinc−air battery and shortens the test period.

2. RESULTS AND DISCUSSION

The average pore diameter d_p of the foam zinc samples obtained by the electrodeposition process is measured using the direct section observation method. Based on this, foam zinc cell models with different parameters were established. According to the pore density, it can be divided into four types: 10, 25, 45, and 70 PPI and 90, 93, 95, and 97%, respectively, according to porosity. The pore structure parameters are presented in Table 1. There are about 700 000 nodes and 340 000 elements in the tetrakaidecahedron triprism cell model.

d_p (mm)	pore density (PPI)	porosity (%)
5.35	10	90
5.35	10	93
5.35	10	95
5.35	10	97
2.16	25	97
1.14	45	97
0.67	70	97

2.1. Validation of FEA. The finite-element model of foam zinc with a pore density of 10 PPI and porosity of 93% is selected, and the pressure drop of foam zinc per unit length at different velocities is calculated; the results of the comparison are presented in Figure 1. Figure 1 presents the FEA results compared to the experimental results using water as the fluid.

By comparison, it is found that the FEA results agree well with the experimental results and the data available in the literature.17,24 It is revealed that the model and finite-element method established in this paper can be applied to the research on the percolation performance of foam metal.

2.2. Influence of Porosity on the Percolation Performance of Foam Zinc. Foam zinc samples with a pore density of 10 PPI and porosity varying from 90 to 97% are selected as the objects to study the influence of porosity on the percolation properties of foam metal. A part of the FEA is presented in Figure 2. Figure 2 indicates that with the flow rate v increasing from 0.4 to 1.2 m s$^{-1}$, the unit pressure drop $\Delta P/L$ increases continuously, and the growth rate of the unit pressure drop $\Delta P/L$ increases with the flow rate v. Under the same flow rate, the unit pressure drop $\Delta P/L$ increases continuously with the decrease in porosity. The results indicate that it will lead to an increase in the fluid flow resistance with the increase in flow velocity v or decrease in porosity. It is known from the curve that the unit pressure drop $\Delta P/L$ does not conform to a linear relationship with the flow velocity v, indicating that the flow state of the water in the foam zinc with a pore density of 10 PPI and porosity of 90−97% deviates from the laminar state described by Darcy’s law (5).

The pressure difference of unit length $\Delta P/L$ under different velocities v was calculated, and the relationship between these two parameters is illustrated in Figure 3.
The FEA results obtained in Figure 3 are processed to obtain the relationship curve between $\Delta P/Lv$ and the velocity v, as shown in Figure 4. The curve indicates that there is a linear relationship between $\Delta P/Lv$ and the flow velocity v, that is to say, the unit distance pressure difference $\Delta P/L$ and velocity v exhibit a quadratic function relation, which is in agreement with the Brinkman–Forchheimer-extended-Darcy law (6), indicating that the flow state of the fluid in foam zinc with a pore density of 10 PPI and porosity of 90–97% is a laminar turbulent complex state. Under this condition, the flow resistance of foam zinc is affected by the laminar flow and turbulent flow of the fluid.

The percolation performance of foam metals can be characterized by the viscosity percolation performance coefficient k_1 and the inertial percolation performance coefficient k_2. The larger k_1 and k_2 are, the better the percolation performance of the foam metal. The k_1 and k_2 of foam zinc with a pore density of 10 PPI and porosity of 90–97% can be calculated by the Brinkman–Forchheimer-extended-Darcy law (6) and the relationship curve between $\Delta P/Lv$ and v in Figure 4.

Table 2 indicates that when the pore density of the foam metal is constant, the skeleton of foam metal becomes thinner with the increase in porosity, the effective cross-sectional area of the flow increases, and the resistance to fluid flow decreases. At the same time, as the skeleton of the foam metal gets disturbed, the disturbance of the foam metal skeleton decreases with the porosity of the foam metal, which is beneficial to the fluid flow in that it improves the percolation performance of foam metal.

2.3. Influence of Pore Density on the Percolation Performance of Foam Zinc. Foam zinc samples with a porosity of 97% and pore density varying from 10 to 70 PPI are selected as the objects to study the influence of the pore density on the percolation properties of foam metal. A part of the FEA is shown in Figure 5.

Figure 4. Dependence of $\Delta P/Lv$ on v for foam zinc with a pore density of 10 PPI.

Table 2. Viscosity Percolation Performance Coefficient k_1 and Inertial Percolation Performance Coefficient k_2 of Foamed Zinc with Different Porosities

Porosity	$k_1 \times 10^5$ (m²)	$k_2 \times 10^5$ (m)
10 PPI, $\varepsilon = 90$	1.87	2.13
10 PPI, $\varepsilon = 93$	2.21	3.08
10 PPI, $\varepsilon = 95$	2.39	4.32
10 PPI, $\varepsilon = 97$	2.94	6.77

Figure 5. Press distributions of foam zinc with a pore density of 10 PPI and different porosities at flow velocity $v = 0.8$ m s$^{-1}$ ((a) 25 PPI, $\varepsilon = 97$; (b) 70 PPI, $\varepsilon = 97$).

Table 3 indicates that as the pore density of foam zinc increases from 10 to 70 PPI, k_1 decreases from 29.40×10^{-8} to 0.66×10^{-8} m² and k_2 decreases from 6.77×10^{-3} to 0.84×10^{-3} m, which reveals that although the porosity of foam zinc is constant, the low pore density will result in a lower fluid resistance and better percolation performance. Comparing the

Table 3. Viscosity Percolation Performance Coefficient k_1 and Inertial Percolation Performance Coefficient k_2 of Foamed Zinc with Different Porosities

Porosity	$k_1 \times 10^5$ (m²)	$k_2 \times 10^5$ (m)
10 PPI, $\varepsilon = 90$	29.40	6.77
10 PPI, $\varepsilon = 93$	5.09	2.90
10 PPI, $\varepsilon = 95$	1.73	1.51
10 PPI, $\varepsilon = 97$	0.66	0.84
ranges of \(k_1 \) and \(k_2 \) in Table 2 with those in Table 1, it is known that under high-porosity (greater than 90%) conditions, the pore density is the main variable that affects the percolation performance.

The Ergun model is an empirical equation based on the pore structure to describe the flow resistance of porous materials. The Ergun-like model has been proposed for foam metals by Dukhan and others.\(^{34-36}\)

\[
\frac{\Delta P}{L} = \frac{1}{7.45 \times 10^7} \left(\frac{1}{d_p} \right) \mu v + \frac{1}{7.72 \times 10^2} \left(\frac{1}{d_p} \right) \rho v^2
\]

(1)

Based on the Ergun-like model, the influence of aperture (pore density) on the percolation performance is investigated in this study. Formula 1 can be written as

\[
\frac{\Delta P}{L} = \frac{1}{d_p} \left(\frac{1}{\varepsilon} \right)^m \mu v + \left(\frac{1}{\varepsilon} \right)^n \left(\frac{1}{d_p} \right)^2 \mu v^2
\]

(2)

\(k_1 \) and \(k_2 \) can be obtained by combining with formula 13

\[
K_1 = \frac{1}{A} d_p^m
\]

(3)

\[
K_2 = \frac{1}{B} d_p^n
\]

(4)

The relationships between \(k_1 \), \(k_2 \), and the aperture \(d_p \) can be obtained from the fitting formulas 3 and 4 with the data of both \(d_p \) in Table 3 and \(k_1 \) and \(k_2 \) in Table 2

\[
K_1 = \frac{1}{7.45 \times 10^7} \left(\frac{1}{d_p} \right) \mu v
\]

(5)

\[
K_2 = \frac{1}{7.72 \times 10^2} \left(\frac{1}{d_p} \right) \rho v^2
\]

(6)

The formula of the flow resistance of the foam zinc with a porosity of 97% is obtained by substituting formulas 5 and 6 into the Forchheimer-extended-Darcy law expression 13

\[
\frac{\Delta P}{L} = \frac{1}{7.45 \times 10^7} \left(\frac{1}{d_p} \right) \mu v + \frac{1}{7.72 \times 10^2} \left(\frac{1}{d_p} \right) \rho v^2
\]

(7)

\((0.67 \text{ mm} \leq d_p \leq 5.35 \text{ mm}, 0.4 \text{ m s}^{-1} \leq v \leq 1.2 \text{ m s}^{-1})\)

3. OPTIMUM STRUCTURAL DESIGN OF FOAM ZINC

The framework of the FEA model, namely, the tetrakaidecahedron tri-prism model of foam zinc based on the real structure, was optimized. A tetrakaidecahedron cylinder model of foam zinc is established, as shown in Figure 7.

The two models with the same pore structure parameters (pore density of 10 PPI and porosity of 97%) are selected for FEA calculation. The definitions of the boundary condition and application of the load are identical. The FEA results of the two different models are presented in Figures 8 and 9.

Figures 8 and 9 indicate that with the increase in flow velocity \(v \), the unit pressure drop \(\Delta P/L \) of the two structures both increases. When the flow velocity \(v \) is constant, the \(\Delta P/L \) of the tetrakaidecahedron cylinder model is smaller, that is to say, it has a lower flow resistance. The \(\Delta P/Lv \) of the two models has a linear relationship with the flow velocity \(v \). The percolation factors of the two models are obtained using a linear fitting method and presented in Table 4.

Table 4 indicates that the tetrakaidecahedron cylinder model has a smaller viscous seepage coefficient and a lower flow resistance but a greater inertial percolation performance coefficient. When the flow velocity \(v \) is increased to a certain extent, the inertial effect gradually replaces the viscous effect as...
optimized 3D network structure can provide theoretical guidance for the preparation of high-performance foam zinc.

In the process of building up the finite-element models and setting the boundary conditions, a reasonable degree of simplification is made in both mathematics and physics. Although the mathematical and physical simplifications are carried out in this article, the conclusions obtained are instructive on predicting the percolation properties of foam zinc.

5. EXPERIMENTAL SECTION

5.1. Experimental Materials. Polyurethane sponge of 10 PPI is used as the matrix, and foam zinc is prepared by the electrodeposition process. The polyurethane foam is cut into the specimen with a size of 140 mm × 110 mm × 15 mm. The specimen is pretreated through the following steps: degreasing, roughening, sensitizing by SnCl4 and PdCl2, and activating and then peptizing before plating. Chemical zinc-plating technology with the assistance of ultrasound is adopted to perform the conductivity treatment. The plating solution is developed according to the formula of Table 5 and then put into the ultrasonic generator. When the ultrasonic power is adjusted to 300 W and the current is adjusted to 12 A, the specimen is immersed in the plating solution. After undergoing electrodeposition for 10 h, the specimen is taken out, washed by clear water, and finally dried in an oven. The foam zinc is processed into the specimen with a size of 60 mm × 40 mm × 10 mm using the wire electrode cutting technology. Foam zinc is heat treated at 360 °C with hydrogen atmosphere for 8 h, and then heat treated at 100–150 °C with hydrogen atmosphere for 8 h to remove polyurethane sponge. Table 5 lists the components of the electroplating solution.

5.2. Calculation Method of Percolation Performance. Assuming the fluid is turbulent in foam zinc without a phase transition, the two-equation k–ε turbulence model is used as follows

$$\frac{dk}{dt} = \frac{\partial k}{\partial t} + \frac{\partial (\tau_{ij} \frac{\partial k}{\partial x_j})}{\partial x_i} = \frac{\partial}{\partial x_i} \left[-
abla \cdot \left(k \nabla \left(\frac{\varepsilon}{\kappa} \right) \right) \right] + G - \varepsilon $$

$$\frac{d\varepsilon}{dt} = \frac{\partial \varepsilon}{\partial t} + \frac{\partial (\tau_{ij} \frac{\partial \varepsilon}{\partial x_j})}{\partial x_i} = \frac{\partial}{\partial x_i} \left[-
abla \cdot \left(\varepsilon \nabla \left(\frac{k}{\varepsilon} \right) \right) \right] + (\epsilon G - c_1 \varepsilon) \frac{\varepsilon}{k} $$

where

$$G = \nu \left(\frac{\partial \tau_{ij}}{\partial x_j} \right) \left(\frac{\partial \tau_{ij}}{\partial x_i} + \frac{\partial \tau_{ij}}{\partial x_j} \right) $$

and

$$\nu = \frac{k}{\varepsilon} $$

Table 4. Viscosity Percolation Performance Coefficient k_1 and Inertial Percolation Performance Coefficient k_2 of Different Models

tetrakaidecahedron tri-prism model	tetrakaidecahedron cylinder model
$k_1 \times 10^7$ (m$^{-1}$)	2.94
$k_2 \times 10^7$ (m$^{-1}$)	6.77

Table 5. Components of Electroplating Solution

component	concentration ratio
ZnSO$_4$·7H$_2$O (AR)	12–23 g L$^{-1}$
EDTA·2Na (AR)	15–20 g L$^{-1}$
HCHO (36%) (AR)	10–15 mL L$^{-1}$
KNaC$_4$H$_4$O$_6$·4H$_2$O (AR)	relative
K_3Fe(CN)$_6$ (AR)	relative

In this study, we have prepared the open-cell foam zinc by the ultrasonic-assisted electrodeposition process. The tetrakaidecahedron tri-prism model is established based on the real structure using X-ray micro-CT as the FEA model of foam zinc. Furthermore, FEA calculations of the percolation performance of foam zinc are carried out, which indicated that pore density is the main factor affecting the percolation performance of foam zinc. According to the FEA results, the empirical relationship between the fluid flow resistance in foam zinc and the aperture is obtained.

Formula 7 can provide a theoretical basis for the selection of the pore structure parameters of foam zinc as the anode of the zinc–air battery regarding the flow resistance.

The tetrakaidecahedron cylinder model of foam zinc is established by optimizing the tetrakaidecahedron tri-prism model. By comparing the percolation performance of the two models, it can be concluded that the tetrakaidecahedron cylinder model will perform well regarding percolation.
The pressure gradient of $\Delta P / L$ of the fluid in the porous media is linear with velocity \bar{v} under a low flow velocity

$$\frac{\Delta P}{L} = \frac{\mu}{k_1} \bar{v}$$ (12)

The viscous percolation performance coefficient k_1 of the foam metal can be calculated using formula 12.

When the flow rate rises, the relationship in the porous media between the pressure gradient $\Delta P / L$ and velocity \bar{v} deviates from the Darcy’s law, where the Brinkman–Forchheimer-extended-Darcy law is satisfied

$$\frac{\Delta P}{L} = \frac{\mu}{k_1} \bar{v} + \frac{\rho}{k_2} \bar{v}^2$$ (13)

The inertial percolation performance coefficient k_2 of foam metal can be calculated using formula 13.

Both k_1 and k_2 are the intrinsic parameters related to the pore structure characteristics of the foam metal, which do not change with the fluid properties. Therefore, these two parameters can be used to describe the percolation performance of the foam metal.

The device for testing the percolation performance of the foam zinc is illustrated in Figure 10. During the experiment, we first investigate the sealing performance of the test device and then open the cooling cycle system for cleaning and cooling using the cycle of deionized water in the device. By adjusting the flow rate Q_f, the pressure difference ΔP of deionized water flowing through the foam zinc samples with different pore densities is measured at different flow rates \bar{v}, and k_1 and k_2 are calculated using the above-mentioned formulas.

Using the Ansys Fluent software package, the standard two-equation $k-\varepsilon$ turbulence model is selected. The material property of the foam metal is set to foam zinc, the fluid is set to water, and the inlet and outlet of the flow channel are, respectively, set to the speed inlet and the pressure outlet. The pore diameter is used as the length scale in the FEA.

5.3. Finite-Element Model of Foam Zinc. The percolation performance test does not destroy the structure of the foam zinc, and the test specimen is used for the microcomputed tomography (micro-CT) scanning. The foam zinc structure is scanned using a Bruker Micro-CT SKYSCAN 1172 (made in Belgium). The acceleration voltage and current of the X-rays are set to 100 kV and 100 μA,
respectively. During the experiment, although the increment of the fixed angle is set to 0.7°, we select the appropriate scanning resolution of 12 μm for the pore density of 10 PPI and finally produce a set of two-dimensional (2D) tomography images (Figure 11a) of the foam zinc specimens. Using the extreme point threshold method, the approximate range of the gray threshold is determined within the values ranging from 4 to 20 (Figure 11b). The image segmentation is processed in MATLAB, the statistical data of surface density are calculated, and the porosity of foam zinc with a certain threshold is calculated using the Origin software (shown in Table 6).

The 3D structure of pores in the foam zinc is approximately tetrakaidecahedral, whereas the 2D structures are roughly quadrilateral and hexagonal. The tetrakaidecahedron tri-prism model is proposed by cutting off prisms inside the tetrakaidecahedra by the pretreatment module of the ANSYS software. Considering the geometric characteristics of the tetrakaidecahedron, the spatial topology of the original models is based on the close-packed structure; then, we perform Boolean intersection operation with a cylinder. Finally, a simplified finite-element model of foam zinc is proposed, as shown in Figure 11f. Figure 11g shows the tetrakaidecahedron tri-prism cell model, which can accurately reflect the structure of foam zinc.

Table 6. Porosity of Different Thresholds and Experiments

threshold value (T)	porosity (%)
8	94.313
10	94.301
12	94.284
14	94.265
experimental value	94.28

Figure 11. Procedure of tetrakaidecahedron tri-prism model establishment ((a) 2D tomography image; (b) grayscale maps; (c) full structures; (d, e) partial structure; (f) tetrakaidecahedron tri-prism cell model; (g) tetrakaidecahedron tri-prism model).

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation for Excellent Young Scholar (No. 51722403), the National Natural Science Foundation of China (No. 51771134), National Natural Science Foundation of China and Guangdong Province (No. U1601216), the National Youth Talent Support Program, and Tianjin Natural Science Foundation (No. 16JCYBJC17600).

REFERENCES

(1) Wang, F.; Chen, H.; Wu, Q.; Mei, R.; Huang, Y.; Li, X.; Luo, Z. Study on the Mixed Electrolyte of N,N-Dimethylacetamide/Sulfolane and Its Application in Aprotic Lithium–Air Batteries. ACS Omega 2017, 2, 236–242.

(2) Li, Y.; Zhong, C.; Liu, J.; Zeng, X.; Qu, S. X.; Han, X.; Deng, Y.; Hu, W.; Lu, J. Atomically Thin Mesoporous Co3O4 Layers Strongly Coupled with N–rGO Nanosheets as High-Performance Bifunctional Catalysts for 1D Knittable Zinc–Air Batteries. Adv. Mater. 2018, 30, No. 1703657.

(3) Sakai, K.; Iwamura, S.; Sumida, R.; Ogino, I.; Mukai, S. R. Carbon Paper with a High Surface Area Prepared from Carbon Nanofibers Obtained through the Liquid Pulse Injection Technique. ACS Omega 2018, 3, 691–697.

(4) Lee, J. S.; Sun, T. K.; Cao, R.; Choi, N. S.; Liu, M.; Lee, K. T.; Cho, J. Metal-Air Batteries: Metal–Air Batteries with High Energy Density: Li–Air Versus Zn–Air. Adv. Energy Mater. 2011, 1, 34–50.

(5) Miyatake, K.; Shimizu, Y. Pt/Co Alloy Nanoparticles Prepared by Nanocapsule Method Exhibit a High Oxygen Reduction Reaction Activity in the Alkaline Media. ACS Omega 2017, 2, 2085–2089.
(6) Chen, X.; Zhong, C.; Liu, B.; Liu, Z.; Bi, X.; Zhao, N.; Han, X.; Deng, Y.; Lu, J.; Hu, W. Atomic Layer CoO$_x$ Nanosheets: The Key to Knittable Zn−Air Batteries. Small 2018, 14, No. 1702987.

(7) Chen, X.; Liu, B.; Zhong, C.; Liu, Z.; Liu, J.; Ma, L.; Deng, Y. D.; Han, X.; Wu, T.; Hu, W. B.; Lu, J. Ultrathin CoO$_x$ Layers with Large Contact Area on Carbon Fibers as High-Performance Electrode for Flexible Zinc−Air Battery Integrated with Flexible Display. Adv. Energy Mater. 2017, 7, No. 1700779.

(8) Han, X.; Wu, X.; Deng, Y.; Liu, J.; Lu, J.; Zhong, C.; Hu, W. Ultrafine Pt Nanoparticle−Decorated Pyrite−Type CoS$_x$ Nanosheet Arrays Coated on Carbon Cloth as a Bifunctional Electrode for Overall Water Splitting. Adv. Energy Mater. 2018, No. 1800935.

(9) Qiu, S.; Song, Z.; Liu, J.; Li, Y.; Koy, M.; Ma, C.; Han, X.; Deng, Y.; Zhao, N.; Hu, W.; Zhong, C. Electrochemical Approach to Prepare Integrated Air Electrodes for Highly Stretchable Zinc−Air Battery Array with Tunable Output Voltage and Current for Wearable Electronics. Nano Energy 2017, 39, 101−110.

(10) Sun, K. E.; Hoang, T. K.; Doan, T. N.; Yu, Y.; Zhu, X.; Tian, Y.; Chen, P. Suppression of Dendrite Formation and Corrosion on Zinc Anode of Secondary Aqueous Batteries. ACS Appl. Mater. Interfaces 2017, 9, 9681−9687.

(11) Harry, K. J.; Hallinan, D. T.; Parkinson, D. Y.; Macdowell, A. J.; Balsara, N. P. Detection of Subsurface Structures Underneath Dendrites Formed on Cycled Lithium Metal Electrodes. Nat. Mater. 2014, 13, 69−73.

(12) Kou, Y.; Liu, J.; Li, Y. B.; Qu, S. X.; Ma, C.; Song, Z. S.; Han, X. P.; Deng, Y. D.; Hu, W. B.; Zhong, C. Electrochemical Oxidation of Chlorine-Doped Co(OH)$_x$ Nanosheet Arrays on Carbon Cloth as a Bifunctional Oxygen Electrode. ACS Appl. Mater. Interfaces 2018, 10, 796−805.

(13) Kong, H.; Chen, T.; Shi, R.; Zhang, Y.; Wang, Z. Hierarchical NiCo$_2$O$_4$@NiCo$_2$S$_4$ Nanocomposite on Ni Foam as an Electrode for Hybrid Supercapacitors. ACS Omega 2018, 3, 5634−5642.

(14) Tarig, F.; Yufit, V.; Kishimoto, M.; Shearing, P. R.; Menkin, S.; Golodnitsky, D.; Gelb, J.; Peled, E.; Brandon, N. P. Three-Dimensional High Resolution X−Ray Imaging and Quantification of Lithium Ion Battery Mesocarbon Microbead Anodes. J. Power Sources 2014, 248, 1014−1020.

(15) Choe, H.; Dunand, D. C. Synthesis, Structure, and Mechanical Properties of Ni−Al and Ni−Cr−Al Superalloy Foams. Acta Mater. 2004, 52, 1283−1295.

(16) Burhan, O.; Bryan, L.; Burton, B. Thermal Applications of Open−Cell Metal Foams. Mater. Manuf. Processes 2004, 19, 839−862.

(17) Bai, M.; Chung, J. N. Analytical and Numerical Prediction of Heat Transfer and Pressure Drop in Open−Cell Metal Foams. Int. J. Heat Mass Transfer 2011, 50, 869−880.

(18) Hwang, J. J.; Hwang, G. J.; Yeh, R. H.; Chao, C. H. Measurement of Interstitial Convective Heat Transfer and Friction Drag for Flow across Metal Foam. J. Heat Transfer 2002, 124, 120−129.

(19) Steemert, C. P.; Jongmans, J. N.; Schaar, J. V. D.; Kuster, B. F. M.; Schouten, J. C. Hydrodynamics of Gas−Liquid Counter−Current Flow in Solid Foam Packings. Chem. Eng. Sci. 2005, 60, 6422−6429.

(20) Liu, J. F.; Wu, W. T.; Chiu, W. C.; Hsieh, W. H. Measurement and Correlation of Friction Characteristic of Flow through Foam Matrixes. Exp. Therm. Fluid Sci. 2006, 30, 329−336.

(21) Dukhan, N.; Alvarez, P. Pressure Drop Measurements for Air Flow through Open−Cell Aluminum Foam. Fluids Eng. 2004, 595−601.

(22) Medraj, M.; Baril, E.; Loya, V.; Lefebvre, L. P. The Effect of Microstructure on the Permeability of Metallic Foams. J. Mater. Sci. 2007, 42, 4372−4383.

(23) Lu, W.; Zhao, C. Y.; Tassou, S. A. Thermal Analysis on Metal−Foam Filled Heat Exchangers. Part I: Metal−Foam Filled Pipes. Int. J. Heat Mass Transfer 2006, 49, 2751−2761.

(24) Boomsma, K.; Poulikakos, D. On the Effective Thermal Conductivity of a Three-Dimensionally Structured Fluid-Saturated Metal Foam. Int. J. Heat Mass Transfer 2001, 44, 827−836.

(25) Ashby, M.; Evans, T.; Fleck, N.; Hutchinson, J.; Wadley, H.; Gibson, L. Metal Foams: A Design Guide: A Design Guide; Elsevier, 2000.

(26) Kopanidis, A.; Theodorakakos, A.; Gavaises, E.; Bouris, D. 3D Numerical Simulation of Flow and Conjugate Heat Transfer through a Pore Scale Model of High Porosity Open Cell Metal Foam. Int. J. Heat Mass Transfer 2001, 44, 3619−3635.

(27) Lu, T. J.; Stone, H. A.; Ashby, M. F. Heat Transfer in Open-Cell Metal Foams. Acta Mater. 1998, 46, 3619−3635.

(28) De Jaeger, P.; Christophe, T. J.; Henk, H.; Bernd, A.; Schampherele, S. D.; Paepe, M. D. Influence of Geometrical Parameters of Open-Cell Aluminum Foam on Thermohydraulic Performance. Heat Transfer Eng. 2013, 34, 1202−1215.

(29) Gong, L.; Kyriakides, S.; Triantafyllidis, N. On the Stability of Kelvins Cell Foams under Compressive Loads. J. Mech. Phys. Solids 2005, 53, 771−794.

(30) Gao, H.; Xiao, F.; Ching, C. B.; Duan, H. One-Step Electrochemical Synthesis of Ptni Nanoparticulate−Graphene Nano-composites for Nonenzymatic Amperometric Glucose Detection. ACS Appl. Mater. Interfaces 2011, 3, 3049−3057.

(31) Juran, T. R.; Young, J.; Smee, M. Density Functional Theory Modeling of Mn$_x$ Polymorphs as Cathodes for Multivoltan Ion Batteries. J. Phys. Chem. C 2018, 122, 8788−8795.

(32) Abstract Book, 2008 IEEE International Ultrasonics Symposium; IEEE, 2008; pp 350−390.

(33) Boomsma, K.; Poulikakos, D. The Effects of Compression and Pore Size Variations on the Liquid Flow Characteristics in Metal Foam. J. Fluids Eng. 2002, 124, 263−270.

(34) Dukhan, N.; Picon-Feliciano, R.; Álvarez-Hernández, A. R. Air Flow through Compressed and Uncompressed Aluminum Foam: Measurements and Correlations. J. Fluid Eng. 2006, 128, 1004−1012.

(35) Crosnier, S.; Plessis, J. P. D.; Riva, R.; Legrand, J. Modeling of Gas Flow through Isotropic Metallic Foams. J. Porous Media 2006, 9, 35−54.

(36) Wang, W.; Wahl, C. G.; He, Z. In Maximum Likelihood Estimation Maximization Deconvolution in Spatial and Combined Spatial-Energy Domains for a Detector Array System, Nuclear Science Symposium Conference Record; IEEE, 2007; pp 1965−1970.

(37) Saikia, P. P.; Majumder, A. Performance Study Continuous Helical Baffle Shell and Tube Heat Exchanger with Central Low Pressure Regions. J. Therm. Sci. Eng. Appl. 2016, 8, No. 031002.

(38) Madhesh, D.; Parameshwaran, R.; Kalaiselvam, S. Experimental Investigation on Convective Heat Transfer and Rheological Characteristics of Cu−TiO$_2$ Hybrid Nanofluids. Exp. Therm. Fluid Sci. 2014, 52, 104−115.

(39) Kim, S. Y.; Paek, J. W.; Kang, B. H. Flow and Heat Transfer Correlations for Porous Fin in a Plate-Fin Heat Exchanger. J. Heat Transfer 2000, 122, 572−578.

(40) Khayargoli, P.; Loya, V.; Lefebvre, L. P.; Medraj, M. The Impact of Microstructure on the Permeability of Metal Foams. CSME Forum 2004, 42, 4372−4383.

(41) Zhang, Q.; Lee, P. D.; Singh, R.; Wu, G.; Lindley, T. C. Micro-CT Characterization of Structural Features and Deformation Behavior of Fly Ash/Aluminum Syntactic Foam. Acta Mater. 2009, 57, 3003−3011.

(42) Gibson, L. J.; Ashby, M. F. Cellular Solids: Structure and Properties; Cambridge University Press, 2014; Vol. 33, pp 487−488.

(43) Gong, L.; Kyriakides, S.; Triantafyllidis, N. On the Stability of Kelvins Cell Foams under Compressive Loads. J. Mech. Phys. Solids 2005, 53, 771−794.