Risk of chlorine dioxide as emerging contaminant during SARS-CoV-2 pandemic: enzyme, cardiac, and behavior effects on amphibian tadpoles

Paola M. Peltzer1,2 · Ana P. Cuzziol Boccioni1,2 · Andrés M. Attademo1,2 · Candela S. Martinuzzi1,2 · Carlina L. Colussi1 · Rafael C. Lajmanovich1,2

Accepted: 21 October 2021 / Published online: 3 November 2021
© The Author(s), under exclusive licence to Korean Society of Environmental Risk Assessment and Health Science 2021

Abstract
Objective The use of chlorine dioxide (ClO2) increased in the last year to prevent SARS-CoV-2 infection due to its use as disinfectant and therapeutic human treatments against viral infections. The absence of toxicological studies and sanitary regulation of this contaminant represents a serious threat to human and environmental health worldwide. The aim of this study was to evaluate the acute toxicity and sublethal effects of ClO2 on tadpoles of Trachycephalus typhonius, which is a common bioindicator species of contamination from aquatic ecosystems.

Materials and methods Median lethal concentration (LC50), the lowest-observed effect concentration (LOEC), and the no-observed effect concentration (NOEC) were performed. Acetylcholinesterase (AChE) and glutathione-S-transferase (GST) activities, swimming behavior parameters, and cardiac rhythm were estimated on tadpoles of concentrations ≤ LOEC exposed at 24 and 96 h. ANOVA and Dunnett’s post-hoc comparisons were performed to define treatments significance (p ≤ 0.05).

Results The LC50 of ClO2 was 4.17 mg L⁻¹ (confidence limits: 3.73–4.66). In addition, NOEC and LOEC values were 1.56 and 3.12 mg L⁻¹ ClO2, respectively, at 48 h. AChE and GST activities, swimming parameters, and heart rates increased in sublethal exposure of ClO2 (0.78–1.56 mg L⁻¹) at 24 h. However, both enzyme activities and swimming parameters decreased, whereas heart rates increased at 96 h.

Conclusion Overall, this study determined that sublethal concentrations of ClO2 produced alterations on antioxidant systems, neurotoxicity reflected on swimming performances, and variations in cardiac rhythm on treated tadpoles. Thus, our findings highlighted the need for urgent monitoring of this chemical in the aquatic ecosystems.
Graphical abstract

Keywords Chlorine disinfectant · COVID-19 treatment · Anurans · Sublethal toxicity

Introduction

Chlorine dioxide (ClO₂) is a disinfection agent that is massively used due to its high oxidizing capacity that deactivates chlorine-resistant pathogens and prevents biofilm formation [1]. In the last decades, drinking water treatments and industrial processes increase the use of ClO₂, which replaces other chlorine disinfectants [2, 3]. Several studies determined that the consumption of ClO₂ solutions is a preventive and therapy tool against different viral human infections, such as HIV/AIDS [4, 5]. The occurrence of ClO₂ had an exponential increase in surface water during the last two years due to its use as treatment and preventive therapy against SARS-CoV-2 [6, 7]. Although ClO₂ lacks of scientific and sanitary approval as medical treatment against SARS-CoV-2 for human consumption, the ClO₂ began to be commonly commercialized specially in Latin America [8–10]. Moreover, the increased use of ClO₂, together with other pharmaceutical products and disinfection agents poses a serious threat to aquatic systems, animal and human health [11, 12].

In addition, treatment protocols to prevent waterborne pathogens in public water systems and drinking water was determined by the World Health Organization, including also those treatments with ClO₂ water. It has been reported that a concentration higher than 0.5 mg L⁻¹ of free chlorine and 2.19 mg L⁻¹ ClO₂ inactivate SARS viruses. In general, residual chlorine and ClO₂ concentrations in wastewater treatments do not exceed 6.5 mg L⁻¹ and 10 mg L⁻¹, respectively [6, 13, 14]. However, solutions of 20 mg L⁻¹ ClO₂ are recommended for SARS-CoV-2 inactivation for domestic use as disinfectant, whereas solutions over 500 mg L⁻¹ ClO₂ are suggested for hospital and health unit care disinfections. Thus, maximum concentrations of 0.8 mg L⁻¹ ClO₂ and 1.0 mg L⁻¹ chlorite ion for drinking waters were recommended by U.S.EPA recommends [15].

During COVID-19 pandemic, sanitation with chlorinated products increased in domestic wastewater, drinking water, and surface water, which pose a healthy human and environmental risk [16]. For example, concentrations of chlorine ranged between 1.5 and 4–5 mg L⁻¹ in wastewater treatment plants were used for preventive measure in China [17]. The same study recorded residual chlorine concentration up to 0.4 mg L⁻¹ in some Chinese lakes, where had not been detected before the actual COVID pandemic. This concentration produced acute toxicity on freshwater organism [17].

The effect of ClO₂ on virus, bacteria, algae, and plankton has been analyzed during last decades [18–20]. However, few studies described ClO₂ effect on wild organisms, such as aquatic vertebrates. The ClO₂ lethal toxicity has been reported for the early stages of several fishes [21, 22], chironomid larvae [23], and nematodes [24]. It is important to note that ClO₂ toxicity data obtained for common sentinel organisms of model organisms (e.g., Cyprinidae, Daphniidae, Brachionidae, and Hyalellidae) is generally used by U.S.EPA water quality criteria method [25]. The monitoring of ClO₂ on aquatic environments and ecotoxicological studies that include lethally and sublethal parameters of other
sentinel species is needed. To the best of our knowledge, no information exists on ClO₂ toxicity on amphibian tadpoles.

Amphibians present the highest decrease of population than other vertebrates worldwide, due to their complex life cycle that involves physiological, morphological, and behavioral changes during metamorphosis. These biological traits increase amphibian vulnerability to man-made environmental modifications [26–28]. Contaminants (e.g., pharmaceuticals, agrochemicals, health care products) affect survival and produce several sublethal effects on amphibians [29, 30]. Death and sublethal effects at different biological levels (e.g., cell, endocrinology, metabolic and behavior alterations, metamorphosis rates, malformations, among others) were determined for amphibian tadpoles [31–33]. In addition, the cholinesterase (ChEs) enzyme activity is useful to indicate the presence of neurotoxic substances in amphibian tadpoles [34]. Moreover, acetylcholinesterase (AChE) activity is inhibited in presence of neurotoxic substances, leading to acetylcholine accumulation and producing alterations in nerve function that can be lethal on exposed organisms [35]. The alteration in normal AChE activity has been linked with neurotoxic effects on locomotor activity in different invertebrates and vertebrates [36, 37]. Thus, glutathione-S-transferase (GST) activity is used to assess the detoxification process of contaminants [38]. The GST activity is frequently quantified in amphibian tadpoles exposed to several contaminants, such as pharmaceutical residues [39, 40]. However, other sublethal effects of tadpole regarding to physiology, such as heart function and rhythm are poorly explored [41]. Tadpoles’ heart rate is considered novel biomarkers in amphibian ecotoxicology [32, 42] and could reflect of what happens at biochemical, physiological, and ecological levels in aquatic organisms exposed to different contaminants [43].

The aim of this study was to evaluate the acute and sublethal effects of ClO₂ on Trachycephalus typhonius tadpoles. It has been hypothesized that the ClO₂ produces different biological changes on AChE and GST activities and physiological (cardiac rhythm and swimming behavior) endpoints.

Results and discussion

Mortality

LC₅₀ of ClO₂ was 4.17 mg L⁻¹ (CL: 3.73–4.66) at 48 h. NOEC and LOEC values were 1.56 and 3.12 mg L⁻¹ ClO₂, respectively, at 48 h. The TU for ClO₂ was 23.98, meaning a high acute toxicity substance (Class IV) in the hazard classification system.

The toxicity of ClO₂ has been studied in alkaline solutions when it becomes chlorate [44]. In fishes (feather minnows Pimephales promelas), the LC₅₀ was determined to be 0.19 mg L⁻¹ of ClO₂, whereas LC₅₀ was recorded to 63.38 mg L⁻¹ of chlorite within 24 h of exposure [45, 46]. In amphibians, the LC₅₀ values are only reported for chlorite concentration that varied between 65.69 mg L⁻¹ (Lithobates pipiens) and 149.60 mg L⁻¹ (Anaxyrus americanus). Chlorite is much less toxic than its precursor chlorine [25]. No estimation could be made regarding to the toxicity of ClO₂ in terms of values of LC₅₀ obtained in this study for T. typhonius with respect to other amphibian species because mortality values of ClO₂ are unknown for other anurans. Time of exposure, acclimation temperature, and chlorine species can be considered as factors that influence the ClO₂ toxicity [46]. For example, the LC₅₀ values of ClO₂ varied between 0.41 and 0.23 mg L⁻¹ for different instar larvae (1st to 4th) of chironomid species at 24 h [23], whereas these values were 0.022 mg L⁻¹ for planktonic crustacean (Daphnia magna) and 47 mg L⁻¹ for mosquitoes larvae [25].

Enzyme activities

AChE activity significantly increased (51%, F = 7.18, p < 0.01) in 0.78 mg L⁻¹ ClO₂ treated tadpoles with respect to CO (Dunnnett’s test p < 0.01) at 24 h (Fig. 1A, Table S1 in supplementary material). In contrast, AChE activity significantly decreased (F = 5.16, p < 0.01) between 32.15 and 36.51% in ClO₂ treated tadpoles with respect to CO (Dunnnett’s test p < 0.01) after 96 h of exposure (Fig. 1B, Table S1). In addition, exposure to ClO₂ also altered the AChE activity of larvae of Indianmeal moth (Plodia interpunctella) [47]. Matsushita et al. [48] who recognized ClO₂ as insecticide, reported that ClO₂ produced a fast increase of AChE activities in P. interpunctella than those insecticide-based-malathion or -methidathion formulations. Moreover, the AChE activities decreased with increasing chlorination time in ClO₂ treated T. typhonius tadpoles at 24 and after 96 h, which may be explained in terms of enzyme synthesis as a response to initial inhibition [49]. It is important to note that AChE is involved in the cleavage of the acetylcholine neurotransmitter within the synaptic cleft. An inhibition of AChE activity leads to acetylcholine accumulation, hyper-stimulation of nicotinic and muscarinic receptors, and disrupted neurotransmission, consequently affecting the animal behavior [50].

The GST activity of ClO₂ treated tadpoles significantly increased (F = 4.47, p < 0.05) in 0.78 mg L⁻¹ and 1.56 mg L⁻¹ ClO₂ concentrations with respect to CO (Dunnnett’s test p < 0.05) at 24 h (87.84% and 79.41%, respectively; Fig. 1B, Table S1). There was a positive correlation between the responses of both AChE and GST enzyme activities (r Spearman = 1; p < 0.01) at 24 h. The mean GST activity significantly decreased (30%, F = 8.19, p < 0.01) in 0.78 mg L⁻¹ ClO₂ concentration with respect to CO (Dunnnett’s test p < 0.01) after 96 h (Fig. 1B, Table S1).
The ClO$_2$ is recognized as a powerful oxidant that affects the first line of antioxidant defense, which is mediated by GST in animals [51]. Besides, the GST plays a pivotal role in cellular detoxification via conjugation of their electrophilic group with the GSH nucleophilic group of harmful contaminants. In contrast to our results, Elia et al. [52] reported an increase in liver GST activity in carp fishes (Cyprinus carpio) exposed to 1.6 mg L$^{-1}$ ClO$_2$ after 20 days, suggesting that GST acts as a useful biomarker of disinfectants-mediated oxidative stress. The significant decrease in the GST activity in treated tadpoles exposed to 0.76 mg L$^{-1}$ of ClO$_2$ after 96 h, could be related to the availability of substrate of this enzyme. It is well known that ClO$_2$ oxidizes the glutathione and produces several products that block substrates for normal reaction [53].

Swimming activity

The mean total distance of ClO$_2$ treated tadpoles significantly increased ($F = 39.73, p < 0.01$) in 0.78 and 3.12 mg L$^{-1}$ ClO$_2$ concentrations (103.19% and 139.36%, respectively) with respect to CO (Dunnett’s test $p < 0.01$) at 24 h (Fig. 2A, Table S1). The mean speed of ClO$_2$ treated tadpoles increased ($F = 77.18, p < 0.01$) in all concentrations (103.16; 78.29 and 139.36% for 0.78; 1.56 and 3.12 mg L$^{-1}$, respectively; Fig. 2B, Table S1) with respect to CO (Dunnett’s test $p < 0.01$). The global activity significantly increased ($F = 53.02, p < 0.05$) at 1.56 and 3.12 mg L$^{-1}$ ClO$_2$ concentrations (456.57 and 994.48%, respectively; Fig. 2C, Table S1) with respect to CO (Dunnett’s test $p < 0.05$). The effects of ClO$_2$ concentrations on global activity were negatively correlated with both enzyme activities (r Spearman $= -1; p < 0.01$) at 24 h.

The mean total distance significantly decreased ($F = 44.03, p < 0.05$) in 1.56 and 3.12 mg L$^{-1}$ ClO$_2$ treated tadpoles (43.67 and 66.51%, respectively) with respect to CO (Dunnett’s test $p < 0.05$) after 96 h (Fig. 2A, Table S1). Also, the mean speed significantly decreased ($F = 18.04, p < 0.05$) in the same concentrations (44.4 and 58.34%, respectively) with respect to CO (Dunnett’s test $p < 0.05$; Fig. 2B, Table S1). Similarly, the global activity significantly decreased ($F = 25.8, p < 0.05$) in 0.78 mg L$^{-1}$ ClO$_2$ treated tadpoles (64.29%) with respect to CO (Dunnett’s test $p < 0.05$ after 96 h (Fig. 2C, Table S1).

The observed responses of swimming activity parameters indicated that ClO$_2$ affects the mechanisms involved in the elongation and contraction of muscles, which is essential for swimming.
in swimming behavior at different times (24 and after 96 h). For example, swimming behavior has been related to AChE activity in invertebrates, fish, and amphibian larvae exposed to different contaminants [32, 34, 39, 54, 55]. In this sense, swimming behavior observed in ClO₂ treated tadpoles at 24 h may be related to neurotoxicity through AChE over-activation [50]. Conversely, decrease in swimming behavior observed in ClO₂ treated tadpoles after 96 h could be related to the disruption of the normal nervous system function by inhibition of the AChE activity and the resulting transduction signal [56, 57]. Regarding to these behavior disparities, a higher expression of AChE genes may occur as a response to acetylcholine neurotransmitters accumulation [58].
Yonkos et al. [45] described gill pathology with epithelial lifting, hypertrophy, hyperplasia, lamellar fusion, and necrosis on feather minnow *P. promelas* exposed to ClO₂. Histological alterations in gills may produce alteration in swimming activity due to its demands of oxygen [59]. In this sense, the decrease of swimming parameters after 96 h of exposure may be related to structural changes in the body of tadpoles such as gills that are related to physiological changes [60]. Moreover, Orme et al. [61] reported a reduced level of thyroxine in Sprague Dawley rats exposed to ClO₂ during development and demonstrated anti-thyroid and neuro-behavioral effects during their development. Thyroid hormones play important roles in neuro-behavioral functioning during anuran development [32], however, studies regarding to thyrotoxicosis and neuro-behavioral performance are scarce.

Cardiac rhythm

The mean heart rate (heartbeats per minute) in 0.78 and 3.12 mg L⁻¹ ClO₂ treated tadpoles significantly increased (84.61% and 70.19%; \(F = 5.323, p < 0.01 \)) with respect to CO (Dunnett’s test \(p < 0.01 \)) at 24 h (Fig. 3, Table S1). Heart rates were positively related (\(r \) Spearman = 0.8; \(p < 0.01 \)) to some swimming parameters (total distance, mean speed) and GST activities.

Heart rate showed a significant (\(F = 7.25, p < 0.01 \)) increase in treated tadpoles exposed to 0.78, 1.56 and 3.12 mg L⁻¹ ClO₂ concentrations after 96 h (75.88%, 84.93% and 69.64%, respectively) respect to CO (Dunnett’s test \(p < 0.01 \); Fig. 3, Table S1). Heart rate showed a negative correlation with AChE (\(r \) Spearman = − 1; \(p < 0.01 \)). Results of Spearman correlation between biological endpoints were summarized in Table S2 (supplementary material). The cardiac rhythm is recognized as effective biomarkers for amphibian’s health in several ecotoxicological investigations [32, 39, 41, 62]. In the present study, heart rate increased in ClO₂ treated tadpoles at 24 and after 96 h. In contrast, reduction of heartbeats was reported in ClO₂ treated larvae of *P. interpunctella* [47]. The relation among heart rhythm, oxidative stress, and GST activities were determined in tadpoles exposed to other chemicals such as pyriproxyfen, however, mechanisms involved in these relations remain unclear [32]. A study on pigeons (*Columba livia*) suggested that ClO₂ may increase the risk of cardiac rhythm alteration due to an increase in plasma cholesterol levels and size of thrombocytes in blood vessels [63].

Materials and methods

Chemical

Chlorine dioxide was synthesized as described by Hey et al. [64] and Chhetri et al. [65]. Demineralized water (400 mL) was mixed with 25 mL of 4% HCl and 25% NaClO₂. This mixture was diluted to 1000 mL in demineralized water after an overnight reaction. This procedure produced an approximately 1 g L⁻¹ chlorine dioxide solution, which was used for three replicates of stock solutions of 100 mg L⁻¹ ClO₂. The stability of concentration of stock solutions was verified by chlorine dioxide Sensing Strip (Insta-TEST, LaMotte®-USA) [66, 67] in lab conditions immediately after preparation and at every 24 h for three consecutive days. These observations were used for defining the renewal time of treatment solutions. The initial concentration (0 h) was reduced by 30% at 24 h, and more than half at 48 h, so it was decided to renew the solutions at every 48 h.

Organisms and experimental design

Tadpoles (Gosner Stage 28–32) of the veined tree frog *Trachycephalus typhonius* were sampled from temporary small ponds from the Paraná River floodplain, Argentina (31° 11’
31° S, 60° 9′ 29″ W). Authorization for tadpole sampling was given by the Ministerio de Ambiente de la Provincia de Santa Fe (No 02101–0018518–1). Site of tadpole sampling was contamination-free, as determined in a previous research of our lab [68]. Tadpoles were transported immediately to laboratory in dechlorinated tap water (DTW) and acclimatized. Tadpoles’ acclimation period was performed under controlled lab conditions of 12/12 h (light N100 Lx/dark photoperiod cycles) at 24 ± 2 °C for two days. Tadpole behavior such as eat and swim was checked daily.

The experiments followed regulations of ASIH [69]. Tadpoles were euthanized following the protocol of the Animal Euthanasia Guide proposed by the Institutional Animal Care and Use Committee and the Advisory Committee on Ethics and Safety in research of the Facultad de Bioquímica y Ciencias Biológicas of the Universidad Nacional del Litoral (No 388/06).

There is lack of environmental concentration data on aquatic ecosystems and doubts related to the fate of ClO₂ on surface freshwater. For this reason, a first approximation to the toxicity of ClO₂ on tadpoles was performed to determine the median lethal concentration (LC₅₀), similarly as previously performed for different contaminants [39]. A first bioassay was carried out by exposing three replicate solutions each containing 12 tadpoles. The nominal concentrations of ClO₂ assayed were: 12.5, 6.25, 3.125, 1.56, and 0.78 mg L⁻¹. Mortality was recorded at 24 and 48 h to estimate LC₅₀, lowest-observed effect concentration (LOEC), and no-observed effect concentration (NOEC) values.

The sublethal effects (enzyme activities, swimming behavior, and heart rhythm as biomarkers) were evaluated in tadpoles of treatments with ≤ LOEC at 24 and after 96 h of exposure. These effects were analyzed in subsequent bioassays with the same lab conditions. The solutions were renewed at 48 h in the 96 h experiment.

Biomarkers

Enzyme activities

Tadpoles (n = 7 per treatment) were weighed (g), and homogenized (1:10, w/v) in ice-cold 25 mM sucrose, 20 mM Tris–HCl buffer (pH 7.4) containing 1 mM EDTA, using a polytron tissue grinder. The homogenates were centrifuged at 10,000 g for 15 min at 4 ± 1 °C, and stored at − 80 °C until measurements. Enzyme activities were quantified after considering total protein concentration at − 80 °C until measurements. Enzyme activities were quantified and analyzed using video-tracking software Smart (3.0.02 PanLab Harvard Apparatus ™).

Swimming activity

The swimming activity of individual tadpoles was recorded for one minute using a digital video camera (Motic®, 10.0 M pixel) that was mounted in a tripod and placed just above the petri dish. The petri dish was filled with 200 ml of different treatment solutions, following procedures previously established in our lab [39, 74]. For each treatment, three tadpoles were evaluated independently.

Total distance moved (cm), mean speed (cm s⁻¹), and global activity (cm²) were evaluated on each tadpole. These behavior parameters were quantified and analyzed using video-tracking software Smart (3.0.02 PanLab Harvard Apparatus ™).

Cardiac rhythm

Cardiac rhythm was evaluated following the methodology described for other native amphibian species [32, 39]. The body of tadpoles (n = 5 per treatment) was located in a thin concave plate in ventral side up position. Continual transillumination on heart area (front quarter body) was applied bottom-up with a spot-led light (Luxeon Rebel 3 watt Led). Videos were recorded in completely immobile tadpoles with a remote-triggered portable USB Digital Microscope (Video capture resolution: 640×480, 30 fps) at lab conditions (constant 24 °C) during 15 s.

The heart rate (HR; beats. min⁻¹) was quantified from slow-speed digital videos by direct visual examination of maximum systole ventricle beating [39, 75]. The number of beats measured in the recorded 15 s was multiplied by four to obtain the value of a complete one min [76, 77].

Data analyzes

The LC₅₀ value and its respective 95% confidence limits (95% CL) were calculated by the trimmed Spearman–Karber method [78]. Post-hoc comparison Dunnett’s test was used to analyze means of mortality of LOEC and NOEC values [79]. The toxicity of this compound was estimated according.
to the hazard classification system for wastewater discharged into the aquatic environment because the effects of ClO$_2$ were not previously studied for tadpoles [80]. The obtained LC$_{50}$ value was transformed into Toxic Units (TU) following the criterion of Lajmanovich et al. [81]: TU = 100 / LC$_{50}$. The values were classified into five classes: I (No acute toxicity) = TU < 0.4; II (Slight acute toxicity) = 0.4 < TU < 1; III (Acute toxicity): 1 < TU < 10; IV (High acute toxicity): 10 < TU < 100; V (very high acute toxicity): TU > 100.

The data of biomarkers were expressed as means ± standard deviation (SD). Kolmogorov–Smirnov test and Levene test were used to confirm normality and homogeneity of variances, respectively. Differences in enzymatic activity of CO and ClO$_2$ treated tadpoles were analyzed by one-way ANOVA and Dunnett’s test for post-hoc comparisons. GraphPad InStat® software was used for statistical analyses. In addition, Spearman correlations were used to evaluate correlation between all pairs of variables (biochemical, behavioral, and cardiac endpoints, shown in table S2 from Supplementary material) for each treatment at 24 and after 96 h exposure. Values were considered significant at p < 0.05. No significant differences were found among replicates (p > 0.05), so, replicates from each treatment were pooled.

Conclusion

The present study determined the toxicity of ClO$_2$ in amphibian tadpoles for first time worldwide. These data would be included in the maximum concentration criterion of chlorine compound toxicity assessment that has only been determined for freshwater fish and invertebrates. Our findings indicate a high risk of ClO$_2$ exposure to anuran tadpoles that present alterations of AChE and GST enzymes, swimming behavior, and cardiac rhythm. The relevance of our study resides in the fact that this compound that extensively and continuously input to water become a threat for aquatic organisms and aquatic ecosystems functions and services, many of which are essential to human well-being.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s13530-021-00116-3.

Acknowledgements We acknowledge Boccioni L.S. for supplying the chemical compounds for test solutions preparation and Lajmanovich R.F. for providing information regarding to the erroneous human ClO$_2$ use as “miracle mineral solution”. We also thanks to ANPCyT FONCyT and UNL for providing subsidies (PICT 2017 N 1069-RCL; CAI+D 2020-PMP). Finally, we acknowledge reviewers for their comments and suggestions.

Author contributions Conceptualization: RL and PP; Methodology: PP, ACB, CM, AA and CC; Formal analysis and investigation: PP, ACB; Writing—original draft preparation and Writing—review and editing: PP, ACB and RL.

Funding This study was supported in part by National Agency for Promotion of Science and Technology, Argentine (ANPCyT FONCyT PICT, No. 1069), and Course of Action for Research and Science Promotion, Argentine (CAI-D-UNL, PIC No. 100004 LI).

Availability of data and material Data presented in this study are available on request from the corresponding author.

Declarations

Conflict of interest Paola M. Pelitzer, Ana P. Cuzziol Boccioni, Andrés M. Attademo, Candela S. Martinuzzi, Carlina L. Colussi, and Rafael C. Lajmanovich declare that we have no conflict of interest.

Ethics approval Animals were treated according the Institutional Committee for the Care and Use of Animals (IACUC), and approval was obtained from the bioethics committee of the FBCB-UNL (Res. No. 388/06).

References

1. Vertova A, Miani A, Lesma G, Rondinini S, Minguzzi A, Falcioni L, Ortenzi MA (2019) Chlorine dioxide degradation issues on metal and plastic water pipes tested in parallel in a semi-closed system. Int J Environ Res Public Health 16(22):4582. https://doi.org/10.3390/ijerph16224582
2. Gordon G, Rosenblatt AA (2005) Chlorine dioxide: the current state of the art. Ozone Sci Eng 27(3):203–207
3. Chatuev BM, Peterson JW (2010) Analysis of the sporicial activity of chlorine dioxide disinfectant against Bacillus anthracis (Sterne strain). J Hosp Infect 74(2):178–183. https://doi.org/10.1016/j.jhin.2009.09.017
4. Ogata N, Shibata T (2009) Effect of chlorine dioxide gas of extremely low concentration on absenteeism of schoolchildren. Int J Med Sci 1(7):288–289. https://doi.org/10.5897/IJMS.9000077
5. Kály-Kullai K, Wittmann M, Noszticzius Z, Rosivall L (2020) Can chlorine dioxide prevent the spreading of coronavirus or other viral infections? Med Hypotheses Physiol Int 107(1):1–11. https://doi.org/10.1556/2060.2020.00015
6. Wang J, Shen D, Ye X, Yan Y, Zhang W et al (2020) Disinfection technology of hospital wastes and wastewater: suggestions for disinfection strategy during coronavirus Disease 2019 (COVID-19) pandemic in China. Environ Pollut 262:114665. https://doi.org/10.1016/j.envpol.2020.114665
7. Trigo MS, Kurmanaev A, Cabrera JML (2020) Coronavirus en América Latina: algunas autoridades respaldan tratamientos cuestionables. NY Times. Available online at: https://www.nytimes.com/es/2020/07/23/espanol/américa-latina/bolivia-cloro-coronavirus-ivermectina.html. Accessed 11 Aug 2021
8. Bendezú-Quispe G, Rodríguez-Zúñiga MM, Roman YM, Morliontop LM, Peralta V, Fiestas F (2020) Agentes potencialmente terapéuticos contra el SARS-CoV-2: revisión rápida de la evidencia. Rev Peru Med Exp Salud Pública 37(2):320–326. https://doi.org/10.17843/rpmesp.2020.372.5409
9. Burela A, Hernández-Vásquez A, Cománd D, Peralta V, Fiestas F (2021) Dióxido de cloro y derivados del cloro para prevenir la COVID-19: revisión sistemática. Rev Peru Med Exp Salud Pública 37:605–610. https://doi.org/10.17843/rpmesp.2020.374.6330
10. Mostajo-Radji MA (2021) Pseudoscience in the times of crisis: how and why chlorine dioxide consumption became popular in...
Latin America during the COVID-19 pandemic. Front Polit Sci 3:25. https://doi.org/10.3389/fpos.2021.621370

11. García-Ávila F, Valdviézco-Gonzales L, Cadme-Galabay M, Gutiérrez-Ortega H, Altamirano-Cárdenas L, Zhindón-Arévalo C, Flores del Pino L (2020) Considerations on water quality and the use of chlorine in times of SARS-CoV-2 (COVID-19) pandemic in the community. Case Stud CSCE 2:100049. https://doi.org/10.1016/j.csce2020.100049

12. Quevedo R, Bastías JM, Espinoza T, Ronceros B, Balic I, Muñoz O (2020) Inactivation of Coronavirus in food industry: the use of inorganic and organic disinfectants, ozone, and UV radiation. Scientia Agropoecuaria 11(2):257–266

13. Katijima M, Ahmed W, Bibby K, Carducci A, Gerba CP, Hamilton KA, Haramoto E, Rose JB (2020) SARS-CoV-2 in wastewater: state of the knowledge and research needs. Sci Total Environ 739:139076. https://doi.org/10.1016/j.scitotenv.2020.139076

14. Environmental Assessment for Food Contact Notification No. 1804. Available at https://www.fda.gov/food/environmental-decisions/environmental-decision-memo-food-contact-notification-on-no-1804

15. Toxicological profile for chlorine dioxide and chloride. Available at: https://www.atsdrc.cdc.gov/txprofiles/tp160.pdf

16. Dewey HM, Jones JM, Keating MR, Budhathoki-Uprety J (2021) Increased use of disinfectants during the COVID-19 pandemic and its potential impacts on health and safety. ACS Chem Health Saf 4:3. https://doi.org/10.1021/acs.chemhealsaf.1c00040

17. Chu W, Fang C, Deng Y, Xu Z (2020) Intensified disinfection of inorganic and organic disinfectants, ozone, and UV radiation. Sci Total Environ 739:139076. https://doi.org/10.1016/j.scitotenv.2020.139076

18. Juníl HLW, Nengi R, Li LX, Fun SR, Guanle Y (1997) Disinfection effect of chlorine dioxide on viruses, algae, and animal planktons in water. Wat Res 31:455–460. https://doi.org/10.1016/S0043-1354(96)00276-X

19. Wigginton KR, Pecson BM, Sigstam T, Bosshard F, Kohn T (2018) Evaluations of gaseous chlorine dioxide for the inactivation of Tulane virus on blueberries. Int J Food Microbiol 273:28–32. https://doi.org/10.1016/j.ijfoodmicro.2018.01.024

20. Hose JE, Di Fiore D, Parker HS, Scarrotta T (1989) Toxicity of chlorine dioxide to early life stages of marine organisms. Bull Environ Contam Toxicol 42(3):315–319. https://doi.org/10.1007/BF01699554

21. Sveczecius G, Syvokiene J, Sastuuniite P, Mickeniene L (2005) Acute and chronic toxicity of chlorine dioxide (ClO2) and chloride (ClO2-) to rainbow trout (Oncorhyncus mykiss). Environ Sci Pollut Res Int 5:302–305. https://doi.org/10.1007/s11356-004-00980-8

22. Sun XB, Cui FY, Guo ZH (2007) Toxicity and influencing factors of chlorine dioxide to chironomid larvae. Huan Jing KeXue 28:139076. https://doi.org/10.1016/j.scitotenv.2020.139076

23. Sun XB, Cui FY, Guo ZH (2007) Toxicity and influencing factors of chlorine dioxide to chironomid larvae. Huan Jing KeXue 28:139076. https://doi.org/10.1016/j.scitotenv.2020.139076

24. Kos J, Brmež M, Markić M, Sipos L (2019) The mortality of nematodes in drinking water in the presence of ozone, chlorine dioxide, and chloride. Ozone Sci Eng 42:120–127

25. Burton DT, Fisher DJ (2001) Chlorine dioxide: the state of science, regulatory, environmental issues, and case histories. In: Proceedings of the 4th international symposium, Las Vegas, NV

26. Blaustein AR, Bancroft BA (2007) Amphibian population declines: evolutionary considerations. BioScience 57(5):437–444. https://doi.org/10.1641/B570517

27. Hayes TB, Falso P, Gallipeau S, Stice M (2010) The cause of global amphibian declines: a developmental endocrinologist's perspective. J Exp Biol Mar 213(6):921–933. https://doi.org/10.1242/jeb.040865

28. Blaustein AR, Han BA, Relyea RA, Johnson PT, Buck JC, Gervasi SS, Kats LB (2011) The complexity of amphibian population declines: understanding the role of cofactors in driving amphibian losses. Ann N Y Acad Sci 1223:108–119. https://doi.org/10.1111/j.1749-6632.2010.05909.x

29. Egea-Serrano A, Relyea RA, Tejedo M, Torralva M (2012) Understanding of the impact of chemicals on amphibians: a meta-analytic review. Ecol Evol 2(7):1382–1397. https://doi.org/10.1002/ece3.249

30. Connion RE, Geist J, Werner I (2012) Effect-based tools for monitoring and predicting the ecotoxicological effects of chemicals in the aquatic environment. Sensors 12(9):12741–12771. https://doi.org/10.3390/s120912741

31. Brodeur JC, Polisertas MB, D’Andrea MF, Sánchez M (2014) Synergy between glyphosate and cypermethrin-based pesticides during acute exposures in tadpoles of the common South American Toad Rhinella arenarum. Chemosphere 112:70–76. https://doi.org/10.1016/j.chemosphere.2014.02.065

32. Lajmanovich RC, Peltzer PM, Martinuzzi CS, Attademo AM, Bassó A, Colussi CL (2019) Insecticide pyriproxyfen (Dragón®) damage biotransformation, thyroid hormones, heart rate, and swimming performance of Odontophrynusamericanus tadpoles. Chemosphere 220:714–722. https://doi.org/10.1016/j.chemosphere.2018.12.181

33. Bahl MF, Brodeur JC, Costa D, D’Andrea MF, Sanisiñena JA, Marino DJ, Natale GS (2021) Lethal and sublethal effects of the natural and healthy spinosad-based formulation Trace® on tadpoles of two neotropical species. Environ Sci Pollut Res 28(11):13524–13535. https://doi.org/10.1007/s11356-020-09808-5

34. Peltzer PM, Junges CM, Attadamo AM, Bassó A, Grenón P, Lajmanovich RC (2013) Cholinesterase activities and behavioral changes in Hypsibosca pulchella (Anura: Hylidae) tadpoles exposed to glufosinate ammonium herbicide. Ecotoxicology 22(7):1165–1173. https://doi.org/10.1007/s10646-013-1103-8

35. Nunes B (2011) The use of cholinesterases in ecotoxicology. In: Whitacre DM (ed) Reviews of environmental contamination and toxicology. Springer, New York, pp 29–60

36. Walker CH, Hopkin SP, Sibly RM, Peakall DB (2001) Principles of ecotoxicology, 2nd edn. Taylor and Francis, New York

37. Denoël M, D’Hooghe B, Ficetola GF, Burggren WW (2017) Morphology and cardiac physiology of Hypsiboas pulchellus (Anura: Hylidae) tadpoles exposed to endosulfan. J Exp Zool 311(4):249–257. https://doi.org/10.1002/jez.249

38. Prokić MD, Borković-Mitić SS, Krizmanić II, Mutić JJ, Gavrić JP, Despotović SG, Sačić ZS (2017) Oxidative stress parameters in two Pelophylax esculentus complex frogs during pre-and post-hibernation: arousal vs heavy metals. Comp Biochem Physiol Part C Toxicol Pharmacol 202:19–25

39. Peltzer PM, Lajmanovich RC, Martinuzzi CS, Attadamo AM, Curi LM, Sandoval MT (2019) Biotoxicity of diclofenac on two larval amphibians: Assessment of development, growth, cardiac function and rhythm, behavior and antioxidant system. Sci Total Environ 683:624–637. https://doi.org/10.1016/j.scitotenv.2019.05.275

40. Fernández LP, Brasca R, Attadamo A, Peltzer PM, Lajmanovich RC, Culzoni MJ (2020) Bioaccumulation and glutathione S-transferase activity on Rhinella arenarum tadpoles after short-term exposure to antiretrovirals. Chemosphere 246:125830. https://doi.org/10.1016/j.chemosphere.2020.125830

41. Costa MJ, Monteiro DA, Oliveira-Neto AL, Rantin FT, Kalinin AL (2008) Oxidative stress biomarkers and heart function in bullfrog tadpoles exposed to Roundup Original. Ecotoxicology 17(3):153–163. https://doi.org/10.1007/s10646-007-0178-5

42. Perrichon P, Pasparakis C, Mager EM, Stieglitz JD, Benetti DD, Grosell M, Burggren WW (2017) Morphology and cardiac physiology are differentially affected by temperature in developing larvae of the marine fish mahi-mahi (Coryphaena hippurus). Biology open 6(6):800–809
43. Denoël M, Libon S, Kestemont P, Brassard C, Focant JF, De Paauw E (2013) Effects of a sublethal pesticide exposure on locomotor behavior: a video-tracking analysis in larval amphibians. Chemosphere 90:945e951
44. Couri D, Abdel-Rahman MS, Bull RJ (1982) Toxicological effects of chlorine dioxide, chlorite and chlorate. Environ Health Persp 46:13
45. Yonkos LT, Fisher DJ, Wright DA, Kane AS (2000) Pathology of fathead minnows (Pimephales promelas) exposed to chlorine and chlorite. Mar Environ Res 50(1–5):267–271. https://doi.org/10.1016/S0141-1136(00)00848-9
46. López-Galindo C, Vargas-Chacoff L, Nebot E, Casanueva JF, Rabío D, Solé M, Manzera JM (2010) Biomarker responses in Solea senegalensis exposed to sodium hypochlorite used as anti-fouling. Chemosphere 78(7):885–893. https://doi.org/10.1016/j.chemosphere.2009.11.022
47. Kim M, Kwon H, Kim W, Kim Y (2016) Enhanced Acetylcholinesterase activity of the Indianmeal Moth, Plodia interpunctella, under chlorine dioxide treatment and altered negative phototaxis behavior. Kor J Appl Entomol 55(1):27–33
48. Matsushita T, Fujita Y, Huang Y, Matsui Y, Shiraishi N (2020) Effect of chlorination on anti-acetylcholinesterase activity of organophosphorous insecticide solutions and contributions of the parent insecticides and their oxons to the activity. Chemosphere 261:127743
49. Carvalho CS, Utsunomiya HS, Pasquoto T, Costa MJ, Fernandes MN (2017) Cholinesterase activity as potential biomarkers: Characterization in bullfrog tadpole’s brain after exposure to metals. In: XVII safety, health and environment world congress, Vila Real, Portugal, pp 86–88
50. Barillet S, Adam-Guillermin C, Palluel O, Porcher JM, Devaux MN (2017) Cholinesterase activity as potential biomarkers: Characterization in bullfrog tadpole’s brain after exposure to metals. In: XVII safety, health and environment world congress, Vila Real, Portugal, pp 86–88
51. Pozzetti L, Broccoli M, Potenza G, Canestro D, Affatato A, Sapone A, Antelli A, D’Amico E, Vangelisti S, Cantelli-Forti G, Sapone A, Antelli A, D’Amico E, Vangelisti S, Cantelli-Forti G, Taticchi MI, Manetti A, Odeh IN, Margerum DW (2006) Tecnicheenzimatiche per valutare la tossicità di acquepotabilizzate. Acqua Aria 4:64–68
52. Elia AC, Anastasi V, Dör AJM (2006) Hepatic antioxidant enzymes and total glutathione of Cyprinus carpio exposed to three disinfectants, chlorine dioxide, sodium hypochlorite and peracetic acid, for superficial water potabilization. Chemosphere 64(10):1633–1641
53. Ison A, Odeh IN, Margerum DW (2006) Kinetics and mechanisms of chlorine dioxide and chloride oxidations of cyanine and glutathione. Inorg Chem 45(21):8768–8775
54. Bonansea RI, Wunderlin DA, Amé MV (2016) Behavioral swimming effects and acetylcholinesterase activity changes in Jenynsia multidentata exposed to chlorpyrifos and cypermethrin individually and in mixtures. Ecotox Environ Safe 129:311–319
55. Ren Q, Zhao R, Wang C, Li S, Zhang T, Ren Z, Wang X (2017) The role of AChE in swimming behavior of Daphnia magna: correlation analysis of both parameters affected by deltamethrin and methoxymethyl exposure. J Toxicol. https://doi.org/10.1155/2017/3265727
56. Ballesteros ML, Durando PE, Nores ML, Díaz MP, Bistoni MA, Wunderlin DA (2009) Endosulfan induces changes in spontaneous swimming activity and acetylcholinesterase activity of Jenynsia multidentata (Anablepidae, Cyprinodontiformes). Environ Pollut 157(5):1573–1580
57. Pan H, Zhang X, Ren B, Yang H, Ren Z, Wang W (2017) Toxic assessment of cadmium based on online swimming behavior and the continuous AChE activity in the gill of zebrafish (Danio rerio). Water Air Soil Pollut 228(9):1–9
58. Kauffer D, Friedman A, Seidman S, Soreq H (1998) Acute stress facilitates long-lasting changes in cholinergic gene expression. Nature 393(6683):373–377
59. Choi E, Alsop D, Wilson JY (2018) The effects of chronic acetaminophen exposure on the kidney, gill and liver in rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 198:20–29
60. Lajmanovich RC, Izaguirre MF, Casco VH (1998) Paroxetine tolerance and alteration of internal gill structure of Sinax nasica tadpoles (Anura: Hylidae). Arch Environ Contam Toxicol 34:364–369
61. Orme J, Taylor DH, Laurie RD, Bull RJ (1985) Effects of chlorine dioxide on thyroid function in neonatal rats. J Toxicol Environ Health A Curr Issues 15(2):315–322
62. Dal-Medico SE, Risoli RZ, Gamero FU, Victória JA, Salla RF, Abdalla FC, Costa MJ (2014) Negative impact of a cadmium concentration considered environmentally safe in Brazil on the cardiac performance of bullfrog tadpoles. Ecotoxicol Environ Saf 104:168–174
63. Revis NW, McCauley P, Bull R, Holdsworth G (1986) Relationship of drinking water disinfectants to plasma cholesterol and thyroid hormone levels in experimental studies. PNAS 83(5):1485–1489
64. Hey G, Ledin A, Jansen JLC, Andersen HR (2012) Removal of pharmaceuticals in biologically treated wastewater by chlorine dioxide or peracetic acid. Environ Technol 33:1041–1047. https://doi.org/10.1080/09593330.2011.606528
65. Chhetri RK, Baun A, Andersen HR (2019) Acute toxicity and risk evaluation of the CSO disinfectants peracetic acid, peracetic acid, chlorine dioxide and their by-products hydrogen peroxide and chlorite. Sci Total Environ 677:1–8. https://doi.org/10.1016/j.scitotenv.2019.04.350
66. Lee YB, Kim WS (2020) CI02 Dipping treatment inhibits gray mold on cut rose flowers during storage. Hort J UTD 138
67. Han GD, Na J, Chun YS, Kumar S, Kim W, Kim Y (2017) Chlorine dioxide enhances lipid peroxidation through inhibiting calcium-independent cellular PLA2 in larvae of the Indianmeal moth, Plodia interpunctella. Pestic Biochem Physiol 143:48–56
68. Lajmanovich RC, Attademo AM, Lener G, Cuzzol Bocconia AP, Pelzler PM, Martinuzzi CS, Repetti MR (2021) Glycophate and chlorosulfuron ammonium, herbicides commonly used on genetically modified crops, and their interaction with microplastics: Ecotoxicity in anuran tadpoles. STOTEN 150177
69. ASIH (2004) Guidelines for use of live amphibians and reptiles in field and laboratory research. Lawrence, Kansas: Herpetological Animal Care and Use Committee (HACC) of the American Society of Ichthyologists and Herpetologists
70. Kingsley GR (1942) The direct biueret method for the determination of serum proteins as applied to photoelectric and visual colorimetry. J Lab Clin Med 27:840–845
71. Ellman GL, Courtney KD, Jr A, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7(2):88–95
72. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first step in mercapturic acid formation. J Biol Chem 249:7130–7139
73. Habdous M, Vincent-Viry M, Visvikis S, Siest G (2002) Rapid determination of serum proteins as applied to photoelectric and visual colorimetry. J Lab Clin Med 27:840–845
74. Hapib WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferase: the first step in mercapturic acid formation. J Biol Chem 249:7130–7139
75. Chan PK, Lin CC, Cheng SH (2009) Non invasive technique for measurement of heartbeat regularity in zebrafish (Danio rerio) embryos. BMC Biotechnol 9(1):11. https://doi.org/10.1186/1472-6750-9-11
76. Kang R, Jeong JS, Yoo JC, Lee JH, Choi SJ, Gwak MS, Ko JS (2018) Effective dose of intravenous dexmedetomidine to prolong the analgesic duration of interscalene brachial plexus block: a single-center, prospective, double-blind, randomized controlled trial. Reg Anesth Pain Med 43(5):488–495
77. Hoage T, Ding Y, Xu X (2012) Quantifying cardiac functions in embryonic and adult zebrafish. In: Cardiovascular development, Humana Press, Totowa, New Jersey, pp 11–20
78. Hamilton MA, Russo RC, Thurston RV (1977) Trimmed spearman-karber method for estimating median lethal concentrations in toxicity bioassays. Environ Sci Technol 11:714–719
79. US EPA (U.S. Environmental Protection Agency). Short-term methods for estimating the chronic toxicity of effluents and receiving waters to fresh water organisms; Report No. EPA/600/ 4–89/001. Environmental Protection Agency: Cincinnati, OH, 1989
80. Persoone G, Marsalek B, Blinova I, Torokne A, Zarina D, Manusadzianas L, Nalecz-Jawecki G, Tofan L, Stepanova N, Tothova L, Kolar B (2003) A practical and user-friendly toxicity classification system with microbiotests for natural waters and wastewaters. Environ Toxicol 18(6):395–402. https://doi.org/10.1002/tox.10141
81. Lajmanovich RC, Peltzer PM, Martinuzzi CS, Attademo AM, Colussi CL, Basso A (2018) Acute toxicity of colloidal silicon dioxide nanoparticles on amphibian larvae: emerging environmental concern. Int J Environ Sci 12(3):269–278