Soyasapogenol-A targets CARF and results in suppression of tumor growth and metastasis in p53 compromised cancer cells

Amr Omar1,2, Rajkumar Singh Kalra1, Jayarani Putri1, Ahmed Elwakeel1,2, Sunil C. Kaul1,2* & Renu Wadhwa1,2*

We screened some phytochemicals for cytotoxic activity to human cancer cells and identified Soyasapogenol-A (Snol-A) as a potent candidate anti-cancer compound. Interestingly, Soyasapogenin-I (Snin-I) was ineffective. Viability assays endorsed toxicity of Snol-A to a wide variety of cancer cells. Of note, wild type p53 deficient cancer cells (SKOV-3 and Saos-2) also showed potent growth inhibitory effect. Molecular analyses demonstrated that it targets CARF yielding transcriptional upregulation of p21WAF1 (an inhibitor of cyclin-dependent kinases) and downregulation of its effector proteins, CDK2, CDK-4, Cyclin A and Cyclin D1. Targeting of CARF by Snol-A also caused (i) downregulation of pATR-Chk1 signaling leading to caspase-mediated apoptosis and (ii) inactivation of β-catenin/Vimentin/hnRNPK-mediated EMT signaling resulting in decrease in migration and invasion of cancer cells. In in vivo assays, Snol-A caused suppression of tumor growth in subcutaneous xenograft model and inhibited lung metastasis in tail vein injection model. Taken together, we demonstrate that Snol-A is a natural inhibitor of CARF and may be recruited as a potent anti-tumor and anti-metastasis compound for treatment of p53-deficient aggressive malignancies.

Cancer chemotherapy has made a remarkable progress in last two decades. However, conventional chemotherapeutic drugs are known to produce serious health issues, by affecting the normal body functions, and QOL of patients during and after the treatment. These adverse side-effects along with the emerging drug resistance, have underlined a need of safe and effective alternatives for cancer treatment. Natural compounds, due to their easy availability, safety, and economic aspects have recently got much attention of researchers. Anticancer properties of several natural compounds have been demonstrated and their mechanism(s) of action against malignant disease are beginning to be revealed. Triterpenoids include a diverse group of triterpenes with more than 100 distinct skeletons. Ursolic acid, oleanolic acid, saponins and betulinic acid are among the well-known triterpenes and have been shown to possess a wide variety of biological activities such as anti-inflammatory, anti-allergic, cardio protective, anti-diabetic, metabolic regulation activities and anti-cancer.

Soybean has been a preferred source of protein in dietary regime worldwide. Soy-based food alternatives have attained a larger recognition, owing to their health benefits as functional food. In Asian sub-continent, especially Japan, soy-based foods e.g. tofu, miso, soy sauce, milk, natto, edamame are major source of daily protein intake. In above soy-based foods, soyasaponins were found to constitute a larger proportion as compared to the soyasapogenols. Amongst soyasaponogens, content of soyasaponenol B has been found to be higher as compared to soyasapogenol A. Several studies on the structural analyses have revealed that soyasaponins are amphiphilic oleanane triterpenoids. The later consist of polar and nonpolar moieties combined with a penta-cyclic ring structure, and are broadly categorized into group A and B depending on the sugar moieties. Soyasaponins have been shown to possess a variety of therapeutic activities including anticancer and several studies have suggested a link between the chemical structure of soyasaponins and their anti-cancer potency. Whereas...
Soyasapogenol-A and -B (aglycone soyasaponin with no sugar moieties) were shown to be cytotoxic to HT-29 colon carcinoma, the glycosidic soyasaponins showed less toxicity. Molecular basis of such differential activities has not been characterized. Soyasaponin II (SS-II) has been shown to induce apoptosis in HeLa cells by increasing the intracellular Ca²⁺, disrupting mitochondrial function and instigating the cytochrome C release in the cytoplasm. Extracts containing Soyasapogenol-A and -B were shown to have more cytotoxicity to hepatocellular carcinoma cells (Hep-G2) than those that lacked these soyasaponogens. Furthermore, extracts containing soyasaponin I and III were shown to cause apoptosis in Hep-G2 cells through activation of caspases, however, the molecular mechanisms leading to apoptosis/growth arrest remained largely unclear. In this report, we have identified a possible mechanism by which Soyasapogenol-A can cause apoptosis/growth arrest via targeting CARF protein.

CARF (Collaborator of ARF) is an essential cell-survival protein, originally identified as a novel binding partner of ARF (Alternative Reading Frame). It was shown to be an essential protein for cell survival and plays a key role in control of cell proliferation fates through p53-HDM2-p21⁰⁰⁰⁰ and DNA damage signaling. It was shown that whereas overexpression of CARF caused growth arrest in cancer cells, its super-expression leads to malignant transformation. CARF was shown to act by multiple mechanisms viz., its (i) direct interactions with proteins including ARF, p53, HDM2, (ii) transcriptional repression of HDM2 and p21⁰⁰⁰⁰ and (iii) promote cancer cell invasion and malignant metastases via epithelial-mesenchymal transition (EMT). Consistent to these findings, diverse clinical tumors are marked by genomic amplification of CARF and its enriched protein levels endorsing its role in human carcinogenesis and progression to metastasis. These reports have established CARF as a potential therapeutic target for aggressive malignancies, and underlined a need to find an efficient targeting approach to antagonize CARF functions.

In the present study, we investigated several natural bioactive compounds for their cytotoxic effect against human cancer cells in cell-based viability assays. Of note, Soyasapogenol-A (Soyasapogenol-A) was found to be toxic to a variety of cancer cell lines; Soyasaponin-I (Soyasaponin-I), on the other hand, showed no effect. We investigated the molecular mechanism of such activity and found that Soyasaponol-A, but not Soyasaponin-I, targets CARF protein leading to cell cycle arrest, apoptosis, inhibition of migration and metastasis in p53-deficient cancer cells. Remarkably, inhibition of CARF expression by Soyasapogenol-A in p53-deficient tumors restricted their growth and lung metastases in vivo assays.

Results

Soyasapogenol-A, but not Soyasaponin-I, caused potent cytotoxicity to cancer cells. We screened 23 natural compounds for their cytotoxicity in human normal lung fibroblasts (TIG-3) and three cancer cell types, osteosarcoma (U2OS; wild type p53), breast adenocarcinoma (MCF-7; wild type but functionally inactive p53) and HT1080 fibrosarcoma (mutant p53). In a comparative cytotoxicity analysis, cells were treated with 5 μM of all the compounds for 24–48 h. We found that Phytochemical (PH)-11 (Soyasapogenol-A; Soyasaponin-I) was significantly cytotoxic (50–70%) to U2OS, HT1080 and MCF-7 cells; normal human fibroblast cells showed milder (20–30%) in several independent experiments (Fig. S1). Furthermore, PH-10 (Soyasaponin-I; Soyasaponin-I) with similar structure was not toxic to any of the cancer cell types (Fig. S1). In order to confirm such differential effect of Soyasaponol-A and Soyasaponin-I, we investigated dose-dependent response using more human cancer cells including osteosarcoma (U2OS; wild type p53 and Saos-2; null p53), ovarian adenocarcinoma (SKOV3; null p53), and breast adenocarcinoma (MDA-MB-231; mutant p53). As shown in Fig. 1A, B, whereas Soyasaponin-I caused dose-dependent inhibition of cell proliferation in all the four cancer cell types, Soyasaponin-I was ineffective. Microscopic observations of U2OS and SKOV-3 cancer cells treated with Soyasaponin-I (10–20 μM) for 48 h showed stressed phenotype (irregular and flattened cell shapes) and restricted growth as compared to control cells (Fig. 1C) and was further confirmed by long-term clonogenicity assay (Fig. 1D). Soyasaponin-I caused no effect in these assays (Figs. 1B, C and 2A, B). Of note, Soyasaponin-I treated cancer cells that lacked wild type p53 function (SKOV-3 and Saos-2) also showed considerable dose-dependent cytotoxicity.

Soyasaponin-I structurally owns one hydroxy group at C-22 and three sugars at C-3, while Soyasaponin-I was found to have no sugar chains on the C-3, and possessed two hydroxy groups at C-21 and C-22⁰⁰⁰⁰. ADMET predictions on pharmacodynamic activity (distribution, metabolism, excretion and toxicity) revealed better human intestinal absorption (HIA) score for Soyasaponin-I than Soyasaponin-I (Fig. S3A–C). ADMET predictions of Soyasaponol-A showed no sugar chains on the C-3, and possessed two hydroxy groups at C-21 and C-22⁰⁰⁰⁰. ADMET predictions on pharmacodynamic activity (distribution, metabolism, excretion and toxicity) revealed better human intestinal absorption (HIA) score for Soyasaponol-A than Soyasaponin-I (Fig. S3A–C). ADMET predictions of Soyasaponol-A, but not Soyasaponin-I, caused potent cytotoxicity to cancer cells.

Soyasaponol-A caused growth arrest that was mediated by upregulation of p21⁰⁰⁰⁰. In order to investigate the molecular mechanism of Soyasaponol-A-induced toxicity, we first analyzed the cell cycle profiles in control and treated (sub-toxic (IC₃₀) and moderately toxic doses (IC₅₀)) of Soyasaponol-A: SKOV-3 (6 μM and 10 μM), and MDA-MB-231 and Saos-2 (10 μM & 20 μM). As shown in Fig. 2A, there was an increase in S phase population, suggesting cell cycle arrest, in all the three cell lines in response to Soyasaponol-A treatment. Cells treated with higher dose (10–20 μM) showed a distinct apoptotic sub-population, clearly evident in SKOV-3. Analyses of cell cycle progression key proteins by immunoblotting revealed decrease in the levels of CDK2, Cyclin A, Cyclin D1 and CDK4 in SKOV-3 cells (Fig. 2B). Of note, p21⁰⁰⁰⁰ showed a significant increase in Soyasaponol-A treated cells (Fig. 2B). Analysis of its transcript levels reaffirmed increased p21⁰⁰⁰⁰ levels in Soyasaponol-A treated SKOV-3 cells (Fig. 2C). To analyze the effect of Soyasaponol-A on p21⁰⁰⁰⁰ transcript, we enrolled p21⁰⁰⁰⁰ promoter (pWWP)-Luciferase reporter system that affirmed a significant increase in p21⁰⁰⁰⁰ promoter activity in Soyasaponol-A treated SKOV-3 cells (Fig. 2D). Decreased levels of Cyclin D1 and CDK2 were also confirmed by immunostaining (Fig. 2E) in Soyasaponol-A treated
SKOV-3 cells. These results suggested that Snol-A induced growth arrest is modulated by the activation of p21WAF1 in p53-deficient cancer cells.

p21WAF1 activation in Snol-A treated p53-deficient cells was mediated by targeting CARF. We next examined the mechanism of p21WAF1 activation in p53-null SKOV-3 cells. Based on our earlier report that demonstrated CARF as a transcriptional repressor of p21WAF1 in p53-deficient cells, we analyzed the status of CARF in control, Snin-I and Snol-A treated SKOV-3 cells. As shown in Fig. 3A, Snol-A, and not Snin-1, (10μM) treated cells showed a significant decrease in CARF protein levels. Furthermore, Snol-A led CARF suppression was found to be consistent with an increase in p21WAF1 expression (Fig. 3B), but no such effect was observed with Snin-I. As shown in Fig. 3C,D, Snol-A induced downregulation of CARF and upregulation of p21WAF1 in SKOV-3 cells was found to be dose and time dependent, showing stronger effects at the higher doses (~6–8μM) and longer treatment (48 h) time (Fig. 3C,D). Similar results were obtained in p53-deficient Saos-2 cells (Fig. 2E) and p53 mutant (MDA-MB-231 and H1299) cells (Fig. S4A,B) that required higher IC50 doses as compared to SKOV3.

Snol-A led CARF-suppression inhibits pATM-Chk1 signaling and promote apoptosis at higher concentration. CARF has earlier been shown to regulate DNA damage response (DDR) in cells. Overexpression of CARF caused activation of DDR, promoting growth arrest and senescence via activated ATR-Chk1 pathway. In light of this information, we examined ATR-Chk1 signaling axis in control and Snol-A treated SKOV-3 cells. As shown in Fig. 4A, dose dependent decrease in CARF protein levels in Snol-A treated cells were accompanied by decrease in ATR, pATR and Chk-1 expression. Furthermore, Snol-A treated cells also showed a significant decrease in PARP1/2 and corresponding increase in cleaved PARP1/2. Consistent with these altered expression levels and acquired apoptosis phenotype in cells treated with higher Snol-A concentrations, pro-caspase -9 and -3 showed a marked decrease, while an increase in cleaved Caspase-3 was observed in Snol-A treated cells (Fig. 4B). As shown in Fig. 4C, increased expression of cleaved PARP1/2 and its nuclear staining affirmed apoptosis in these cells at higher doses of Snol-A.
CARF-targeting by Snol-A reduced cancer cell migration and invasion properties. CARF enrichment in cancer cells was shown to promote cell migration and invasion and led to Epithelial-Mesenchymal Transition (EMT) during malignant metastases. In the light of this information, we investigated the effect of Snol-A on cell migration and invasion in cellular and molecular assays. Dose dependent effect of Snol-A was determined by treating the SKOV-3 cells with 0.5, 2 and 4 μM. Although in several independent cell viability assays, 4 μM Snol-A was seen to cause cytotoxicity. In Wound-healing assays wherein the cells are first grown to a monolayer and then treated with Snol-A, only a minor cytotoxicity was observed with 4 μM. On the other hand, as shown in Fig. 5A, significant inhibition of cell migration was observed. Furthermore, Snol-A treated cells showed marked reduction in invasive properties as analyzed by matrigel invasion assay (Fig. 5B).

Expression analysis of key proteins associated with cell migration and invasion signaling revealed decrease in CARF, β-catenin, Vimentin, Smad 2/3, heterogeneous nuclear ribonucleoprotein K (hnRNP-K), and matrix metalloproteinase-9 (MMP-9) protein levels (Fig. 5C). CARF upregulation was earlier shown to instigate nuclear enrichment of β-catenin. We, therefore, next examined the effect of Snol-A on β-catenin levels in nucleus. As shown in Fig. 5D, Snol-A treated cells showed a distinct decrease in nuclear β-catenin suggesting Snol-A targeted CARF-inhibition abrogated β-catenin nuclear function, and resulted in reduced migration and invasion capacity of cells. Immunostaining of Vimentin and Fibronectin, the two key mesenchymal markers showed a decrease in their levels in response to Snol-A treatment (Fig. 5D). Furthermore, Snol-A treated cells showed remarkable decrease in hnRNP-K, a key effector protein involved in cell migration.

Overexpression of CARF rescued the cells from Snol-A induced growth arrest, apoptosis, and EMT. In order to check whether overexpression of CARF could rescue the cells from CARF-inhibitory activity of Snol-A, we generated CARF-GFP overexpressing (CARF-OE) SKOV-3 cells and determined the effect of...
Snol-A on their growth arrest, apoptosis, and EMT phenotypes (Fig. 6A). Observation of cell phenotype showed resistance of CARF-OE cells to Snol-A induced growth arrest/apoptosis as compared to the control cells (infected with empty pCX Neo vector) (Fig. 6B). Of note, control, not the CARF-OE, cells showed stressed morphology with high doses (6 and 10 μM) of Snol-A (Fig. 6B). Consistent to these, no significant change in p21 WAF1 expression was observed in Snol-A treated CARF-OE cells (Fig. 6C). Furthermore, immunoblotting for cell cycle (p21 WAF1, CDK2, Cyclin D1, CDK4) and apoptosis (ATR, Chk1, PARP1 and Procasepase-9) markers showed no significant alteration in their levels in these cells (Figs. 6D and S5A,B). Snol-A treated control (SKOV-3 / pCX Neo) cells, as expected, exhibited decrease in CARF, β-catenin, ATR, PARP1/2, and increase in p21 WAF1 (Fig. S5C). We also analyzed cell migration and invasion characteristics of Snol-A treated CARF-OE cells. As shown in Fig. 6E and consistent with the earlier reports36,37, CARF-OE cells showed higher migration as compared to the control. Of note, whereas control cells showed delayed migration when treated with Snol-A, CARF-OE did not show significant effect (Fig. 6E). Similar results were obtained for invasion characteristics of these cells (Fig. 6F). Molecular analyses revealed no significant change in expression level of proteins (β-catenin, vimentin, Smad 2/3, hnRNPK, and MMP9) involved in migration and invasion signaling in CARF-OE Snol-A treated cells (Fig. 6G,H). Taken together, we found that overexpression of CARF rescued the cells from anti-proliferative and anti-migration activity of Snol-A suggesting that CARF is one of its main target proteins.

Snol-A caused suppression of tumor growth and lung metastasis. We next examined the effect of Snol-A on tumor growth and metastasis in in vivo xenograft model of immunodeficient mice. As shown in Fig. 7A, mice were fed with Snol-A for two weeks (15 mg/Kg of body weight (BW), twice/week) before xenografting of SKOV-3 cells by subcutaneous and intravenous injections. Post-1 week of injections, mice were fed with Snol-A (15 mg/Kg BW, as determined by independent experiment) for next 4 weeks, before sacrifice. As shown in Fig. 7B, Snol-A treated mice exhibited no significant signs of toxicity (monitored by body weight) (Fig. 7B).
Of note, Snol-A fed mice demonstrated a potent and significant reduction (>55%) in growth of subcutaneous xenografts and lung metastases (>60%) (Fig. 7C,D). On the other hand, heart, liver, stomach, intestine and spleen were not seen to have any tumors either in the control or treated mice group. Furthermore, the fed mice looked as active as the control group. No signs of skin rash or eczema scars or particular slow behavior such as prolonged sleep, inactivity were observed in fed mice.

Snol-A as a natural inhibitor of CARF. As shown in several earlier reports, CARF has been demonstrated as a dual regulator of cell proliferation fates. Its upregulation in replicative and stress induced senescence caused activation of p53-p21WAF1 axis and growth arrest. Knockdown of CARF caused ATR/Chk1-driven apoptosis, and its super-high levels caused activation of EMT through β-catenin function. The current data showed Snol-A caused downregulation of CARF at the transcript and protein level. In view of the earlier reports that demonstrated that CARF represses p21WAF1 transcription, leading to pro-proliferation effect. In this context, Snol-A mediated inhibition of CARF was expected to cause upregulation of p21WAF1 and was actually observed in Snol-A treated cells (Figs. 2, 3 and 8). Consistent to the upregulation of p21WAF1, downregulation of CDK/cyclins (essential for cell cycle progression) and growth arrest was observed (Figs. 2 and 8). We found that effect of Snol-A is similar to CARF siRNA and high dose of doxorubicin as reported earlier yielding apoptosis through inhibition of ATR/Chk1 signaling (Figs. 4, 8 and S6). Furthermore, we found the decrease in CARF in Snol-A treated cells caused decrease in β-catenin and other proteins involved in cell migration and this was translated into attenuation of cell migration, invasion and EMT signaling (Figs. 5 and 8). Taken together, the data demonstrated that Snol-A could target CARF and bring about effects similar to CARF-compromise obtained by its specific shRNA suggesting that it is a natural inhibitor of CARF (Fig. 8). Consistent to the earlier reports on tumor suppressor effect of CARF shRNA, Snol-A caused delay in tumor growth and inhibited lung metastasis suggested that it may be recruited as a natural inhibitor of CARF for cancer treatment.
Discussion

CARF (Collaborator of ARF) was shown to be an essential nuclear protein that possesses a dose dependent control on cell proliferation29,34. CARF-compromised cells showed caspase-dependent apoptosis35. It was shown that CARF regulates and stabilizes p53 either directly or indirectly by binding to p14ARF and HDM2, p53 positive and negative regulators, respectively31. In wild type p53 harboring cancer cells, CARF overexpression activated the DNA damage response pathway leading to growth arrest and senescence via activation of p53-p21WAF1 axis30. On the other hand, at excessively high level of expression (super-expression), CARF caused pro-proliferation and malignant transformation of cancer cells by downregulation of p53 and DDR signaling34,42. In p53-compromised cancer cells, CARF overexpression was shown to cause pro-proliferation effect by transcriptional repression of p21WAF136. Furthermore, enriched level of CARF was found in a variety of cancer cells and clinical tumor samples37 suggesting it to be a promising therapeutic target in aggressive malignancies. In the present manuscript, we have identified that Snol-A as a natural inhibitor of CARF.

Natural/herbal compounds have gained much attention for cancer therapy due to their safety and bio-availability as compared to conventional chemotherapeutic drugs that are usually expensive and often exert adverse effects. Soybeans have been reported to possess anti-cancer activity25,27,28,43–50. Natural triterpenoids compounds are well known for their wide range of bioactivities and comprised promising effects against allergy10, metabolic syndrome13, diabetes12, inflammation9 and cancer14,15. Soyasaponins are a group of complex oleanane triterpenoids proven to have diverse biological properties23 of which the molecular mechanisms remain unclear. The active anti-cancer ingredients of soybeans have been found as different groups of soyasaponins that share a common core structure except the sugar moieties attached to carbon 3 and carbon 22. The compounds with shorter sugar chains have been suggested to be more active due to higher lipophilicity25. By comparative assays, we demonstrate that whereas Snin-I (3 sugar moieties) was non-toxic, Snol-A (no sugar moieties) was toxic to many cancer cell types. Cytotoxicity of soyasaponins have earlier been shown to be mediated by caspase-induced apoptosis or disruption of the mitochondrial functions36. Based on the cytotoxicity assays in a variety of cancer cells with variable p53 status, we found that Snol-A, but not Snin-I, was cytotoxic to p53 (null) cells as much as...
p53-wild type/ mutant cells. By molecular analysis, we identified that CARF is a specific target of Snol-A. Snol-A led CARF-inhibition attenuated its inhibitory effect on p21WAF1 protein in p53-null cancer cells and resulted in growth arrest, mediated by decreased levels of p21WAF1-effector targets including Cyclin A, CDK2, CDK4 and cyclin D1. Higher doses of Snol-A caused apoptosis, mediated by activation of PARP 1/2, caspase-3 and caspase-9. We had earlier reported that the suppression of CARF by siRNA induces cell death, essentially mediated via ATR-Chk135 signaling. Snol-A led CARF-inhibition was evidently marked by decrease in ATR and Chk1 levels and treated cells led to apoptosis via activation of Caspase-3 and Caspase-9. Snol-A treated cells showed similar expression profile of apoptosis markers and therefore, corroborated the findings (i) CARF-suppression could lead to cancer cell death and (ii) it could be achieved by Snol-A. As shown in Fig. 1, Snol-A treated U2OS cells (harbor wild type p53) showed inhibition of growth equivalent to the p53-null (SKOV-3 and Saos-2) cells. We subjected these cells to molecular analyses and found decrease in CARF endorsing its targeting by Snol-A (Fig. S6A). Consistent to the decrease in CARF, p53 also showed decrease in Snol-A treated cells (Fig. S6A,B). p21WAF1 expression is regulated by transcriptional activation of function of wild type p53 and transcriptional repression function of CARF. The latter also regulates p53 by positive feedback control30–34. In view of these, CARF targeting-driven upregulation of p21WAF1 may be compensated by simultaneous downregulation of p53. Similar
decrease in CARF in U2OS cells was obtained by high dose of doxorubicin in earlier studies that demonstrated dose-dependent dual control of CARF on cell proliferation and apoptosis. Overexpression of CARF causes growth arrest through activation of p21WAF1 signaling, super-expression causes pro-proliferation/malignant transformation and activation of EMT signaling. CARF knockdown by siRNA and miRNA, marked by grey text and lines causes apoptosis through ATR/Chk1 signaling. Current study showed that Snol-A is a natural inhibitor of CARF. Its modulated CARF functions yielding activation of growth arrest/apoptosis and decrease in EMT (shown by grey lines, at right and grey blocks at the bottom).
determine the viability of both control and treated cells, as described earlier. DMSO concentration, as diluent (1, 2, 4, 8, 16, 32, and 64 \(\mu \text{M} \)) of Soyasapogenol-A or Soyasaponin-I for 48 h. Tetrazolium dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT reagent, Invitrogen, Life technologies) was used to measure cell viability assay. 4000 cells were seeded in a 96-well plate and treated with natural compounds (5 \(\mu \text{M} \)) for 48 h. Selected compounds were used for dose response effects. Cells were treated with serial concentrations (1, 2, 4, 8, 16, 32 and 64 \(\mu \text{M} \)) of Soyasapogenol-A or Soyasaponin-I for 48 h. Tetrazolium dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT reagent, Invitrogen, Life technologies) was used to determine the viability of both control and treated cells, as described earlier. DMSO concentration, as diluent control was taken as 0.1%.

Methods

Cells, culture condition and drugs. Human normal lung fibroblast (TIG-3) and human cancer cell lines including ovarian adenocarcinoma (SKOV-3), osteosarcoma (Saos-2), non-small cell lung cancer (H-1299), osteosarcoma (U2OS), fibrosarcoma (HT-1080) and breast adenocarcinoma (MBA-MB-231, MCF-7) were procured from the Japanese Collection of Research Bioresources Cell Bank (JCRB), Tokyo. Control (pCXNeo, empty vector) and CARF (full length CARF, GFP-tagged)-expressing (CARF-HEK) cells were constructed and maintained in medium supplemented with G418 (200 \(\mu \text{g/mL} \)) as described earlier. Cells were cultured in Dulbecco's Modified Eagle's Medium (D-MEM; Wako, Japan) constituted with 10% fetal bovine serum (FBS) and 1% antibiotics in a humidified incubator at 5% CO2 and 37 °C. As described earlier, Soyasapogenol-A and Soyasaponin-I (Product code; P2303 and P2505, respectively) were procured from Funakoshi Co., Ltd. Japan. Chemical structures for Soyasapogenol-A and Soyasaponin-I were retrieved from PubChem Database (https://pubchem.ncbi.nlm.nih.gov/compound/), having Compound IDs as CID = 12442849, and CID = 122097, respectively.

Cell viability assay. 4000 cells were seeded in a 96-well plate and treated with natural compounds (5 \(\mu \text{M} \)) for 48 h. Selected compounds were used for dose response effects. Cells were treated with serial concentrations (1, 2, 4, 8, 16, 32 and 64 \(\mu \text{M} \)) of Soyasapogenol-A or Soyasaponin-I for 48 h. Tetrazolium dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT reagent, Invitrogen, Life technologies) was used to determine the viability of both control and treated cells, as described earlier. DMSO concentration, as diluent control was taken as < 0.1%.

Immunoblotting. Harvested cell pellets were lysed in (100–200 \(\mu \text{l} \)) of RIPA buffer (Sigma-Aldrich) and then proteins were extracted and quantified. 10 \(\mu \text{g} \) of extracted lysate was resolved in SDS-polyacrylamide gel electrophoresis (SDS-PAGE), followed by electroblotting onto methanol-activated PVDF membranes (Millipore, USA) using a semidry transfer unit (ATTO, Japan). Immunoblotting was performed with antibodies against caspase-9 (sc-7885), caspase-3 (sc-7148), Cyclin D1 (sc-450), Cyclin A (sc-239), Vimentin (sc-6260),

\[
\beta-\text{catenin (sc-7963),}
\]

CDK4 (sc-260), CDK2 (sc-163), PARP1/2 (sc-7150), ATR (SC-28901), pATR (sc-109912), purchased from Santa Cruz. hnRNP-K (#4675), MMP-9 (#2270), p21WAF1 (#2947), SMAD-2/3 (#8685) and CHK-1 (#2345) were procured from Cell Signaling Technologies. Antibody for CARF (rabbit polyclonal) was generated endogenously in the laboratory. The immunoblots were incubated with horseradish peroxidase-conjugated goat anti-mouse or -rabbit antibodies (Santa Cruz Biotechnology) and detected using ECL substrate (GE Healthcare, NJ, USA). Densitometric quantitation of the immunoblots was carried out using the ImageJ software from NIH (National Institute of Health). All the experiments were performed in triplicate.

Immunofluorescence. Cells were harvested and seeded (4 \(\times 10^4 \) /well) on glass coverslips in a 12-well plate for 24 h. Treatments with indicated Snol-A concentrations were given for 48 h. The cells were fixed in pre-chilled methanol at room temperature for 5 min and then permeabilized with phosphate buffered saline (PBS)-Triton-X-100 (0.1%) for 10 min followed by blocking with 2% bovine serum albumin (BSA) for 20 min. Cells were probed with antibodies as indicated (\(\beta \)-catenin, hnRNP-K, Vimentin, Fibronectin, CARF, Cleaved PARP1/2, CDK2, p21WAF1 and Cyclin D1) at 4 °C overnight or at room temperature 1 h followed by incubation with Alexa Fluor-conjugated antibodies (Molecular Probes, USA) and then with Hoechst 33258 (Roche) for counterstaining. Immunofluorescence images were acquired on Carl Zeiss Axioplan-2 microscope equipped with Zeiss AxioCam HRc camera.

Wound healing assay. Migration of cells was observed using the Wound-healing assay. Monolayers of SKOV-3 cells were wounded by uniformly scratching the surface with a 20-gaugescraper tip, followed by PBS washings twice. Cells were fed with fresh reduced-serum medium and were allowed to migrate into the wound for next 24 and 48 h. Images on different time-points were captured using Nikon phase-contrast microscope at 10X objective. Images were processed by ImageJ software. Covered area was calculated using ImageJ after threshold adjustment and selecting RGB stack type (Measurements setting was adjusted to calculate the area, area fraction, label display and limited to the threshold).
Matrigel invasion assay. SKOV-3 cells (2.5 × 10⁴) were seeded into the upper invasion chamber, coated on the surface with 1/10 dilution of Matrigel (BD Biosciences, FL, NJ). Cells were allowed to invade to the lower chamber for next 24 h in control (DMSO) and Snol-A treated cells (0.5 and 2 µM) following the method described earlier⁶. Invaded cells were fixed in chilled methanol and stained in crystal violet. Invaded cells were counted using phase contrast microscope.

Cell cycle analysis. Cells (SKOV-3, MDA-MB-231 and Saos-2) were seeded in 10-cm dishes and were treated with Snol-A at 60–70% confluence. Control and treated cells were harvested by trypsinization and centrifuged at 2000 rpm for 10 min at RT. Then cell pellet was washed with PBS by centrifugation again. 300 µl cold PBS was added to the pellet and mixed with 700 µl of cold 100% ethanol. The cell pellets were kept at −20 °C for 24 h followed by centrifugation twice (450 g at 4 °C for 5 min). Cells were washed two times with cold PBS with spinning down (450 g at 4 °C for 5 min). RNAs (100 µg/ml, Thermo Fisher Scientific) was added and mixed by slow vortex followed by incubation (37 °C, 1–2 h), centrifugation (450 g at 4 °C for 5 min), and cells were re-suspended in 200 µl Guava Cell Cycle Reagent (Millipore) followed by ~30 min incubation in dark at RT. Finally, cells were diluted in 0.5–1 mL volume and samples were acquired using Guava PCA-96 (Millipore) system. Acquired data was analyzed using ModFit LT (Version 5.0) software to distinguish the cell cycle profiles.

Reverse transcription polymerase chain reaction (RT-PCR). Total RNA from control and Snol-A treated cells was extracted using RNAeasy kit (Qiagen Inc.). 2 µg of RNA was taken to synthesize cDNA using the ThermoScript™ Reverse Transcriptase (Qiagen Inc.) following the manufacturer's instructions. cDNA was than subjected to PCR amplification using transcript specific set of primers using Takara Ex Taq® DNA polymerase. PCR amplifications reaction included steps i.e. denaturation 95 °C-10 min, followed by 34 cycles at 95 °C for 45 s, 60 °C for 1 min and 72 °C for 45 s, and a final 10 min annealing at 72 °C. PCR amplifications were performed using transcript specific primers as follows (i) p21WAF1_F 5′-ATGAAATTCACGCTCACTTC-3′, p21WAF1_R 5′-ATGAAATTCACGGTCACCTTC-3′, GAPDH_F 5′-CATCCCTTCTCCACACAC-3′, GAPDH_R 5′-AGTCCAGGGCTTTGATTTG-3′ using transcript specific primers. Amplified PCR products were resolved on a 1.2% agarose gel stained with EtBr (Ethidium Bromide; 0.5 µg/ml) for visualization.

Luciferase reporter assay. SKOV-3 cells were transfected with pWWP-Luc (p21WAF1 promoter; sequence 2.4 kbp) and control pRL-TK (Renilla Luciferase) control reporter plasmids using Lipofectamine (Thermo Fisher Scientific, USA) transfection reagent, as described earlier⁶. After 24 h of transfection, cells were treated with Snol-A at 6 µM concentration for 48 h, then lysates were prepared from SKOV-3 cells in passive lysis buffer. The luciferase activity was estimated using Dual-Luciferase Reporter Assay System (Promega, WI, USA) by using Infinite M200 PRO (Tecan, Switzerland) luminescent plate reader.

Colony formation assay. 500 cells/well were seeded and cultured for 2 days. On the 3rd day, cells were treated with Snol-A and Snin-I (2, 4, 6, 8µM) over 10–14 days. Colonies were rinsed with cold PBS and fixed (methanol: acetic acid (1:1)) at RT for 5–10 min. Next, 0.5% crystal violet stain was added at RT for 2 h, followed by washing and left to dry at RT overnight, colonies were counted using stereomicroscope.

In vivo xenograft assay. Athymic balb/c nude female mice (4-week-old) were purchased from NihonClea, Japan and acclimatized for 2 weeks. In a preliminary experiment, the effect of a range (5–25 mg/kg BW) of Snol-A doses was tested and a reduction in tumor growth in the range of 10–20 mg/kg BW was observed. Based on this preliminary data, we chose 15 mg/ kg BW Snol-A for further in vivo assays. Animals were pre-fed with either vehicle (0.1% carboxymethyl cellulose (CMC)) or Soyasapogenol-A supplemented vehicle (Snol-A 15 mg/ kg BW) in 250 µL suspension twice a week. SKOV3 cells (5 × 10⁶ in 200 µL PBS) were injected subcutaneously (for subcutaneous xenograft) over the left and right thigh flanks, and intravenously (for metastases) through tail vein injections. Upon emergence of tumor buds from xenografts, mice were regularly fed thrice a week for 4 weeks. Tumors were regularly monitored and sized with Vernier caliper. Tumor volume (V) was calculated using the formula V = (LxW²)/2 with caliper measurements of length (L) and width (W). Mice were sacrificed by post anesthesia cervical dislocation before tumors grew to about 1.5 cm length and examined for tumors in internal organs and lung metastasis. All animals in randomized groups were closely monitored for activity during- and after- treatments, and physiological observations for skin rash or eczema scars was also regularly carried out. This study was carried out in strict accordance with the recommendations from the Animal Experiment Committee, Safety and Environment Management Division, National Institute of Advanced Industrial Science & Technology (AIST), Japan. The experimental protocols were approved by AIST (Experimental plan approval #2017-025).

ADMET prediction. The SMILE and sdf files of Snol-I and Snin-I was retrieved from PubChem database (https://pubchem.ncbi.nlm.nih.gov/). The 2D and 3D drug structure was viewed using PyMol software (https://pymol.org/2/). The profile of Snol-I and Snin-I including Absorption, Distribution, Metabolism, Excretion and Toxicity profiles (ADMET) was retrieved from ADMED webserver (http://lmmd.ecust.edu.cn/admetsar1/home/).

Statistical analysis. All experiments were performed in triplicates. The data were expressed as mean ± SEM. Statistical analyses were executed using Student’s t-test or nonparametric Mann-Whitney U-test; whichever was applicable. Statistical significance was defined as p-value ≤ 0.05. The p value represents *<0.05, **<0.01, ***<0.001.
40. Pupiolkiewicz, J., Polkowski, K., Skierski, J. S. & Mazurek, A. P. In vitro toxicity evaluation in the development of new anticancer drugs-genistin glycosides. Cancer Lett 229, 67–75, https://doi.org/10.1016/j.canlet.2005.01.014 (2005).
41. Singh, R. et al. Molecular characterization of collaborator of ARF (CARF) as a DNA damage response and cell cycle checkpoint regulatory protein. Exp Cell Res 322, 324–334, https://doi.org/10.1016/j.yexcr.2014.01.022 (2014).
42. Wadhwa, R., Kalra, R. S. & Kaul, S. C. CARF is a multi-module regulator of cell proliferation and a molecular bridge between cellular senescence and carcinogenesis. Mech Aging Dev 166, 64–68, https://doi.org/10.1016/j.mad.2017.07.008 (2017).
43. Pei, Y., Zhao, H., Du, X. & Li, J. Apoptosis effects on human esophageal cancer cells by soyasaponin Bb and its mechanism. Wei Sheng Yan Jia 39, 444–446 (2010).
44. Chang, W. W., Yu, C. Y., Lin, T. W., Wang, P. H. & Tsai, Y. C. Soyasaponin I decreases the expression of alpha2,3-linked sialic acid on the cell surface and suppresses the metastatic potential of B16F10 melanoma cells. Biochem Biophys Res Commun 341, 614–619, https://doi.org/10.1016/j.bbrc.2005.12.216 (2006).
45. Hsu, C. C. et al. Soyasaponin-I-modified invasive behavior of cancer by changing cell surface sialic acids. Gynecol Oncol 96, 415–422, https://doi.org/10.1016/j.ygyno.2004.10.010 (2005).
46. Ellington, A. A., Berhow, M. A. & Singletary, K. W. Inhibition of Akt signaling and enhanced ERK1/2 activity are involved in induction of macroautophagy by triterpenoid B-group soyasaponins in colon cancer cells. Carcinogenesis 27, 298–306, https://doi.org/10.1093/carcin/bgl214 (2006).
47. Marcela, G. M., Eva, R. G., Del Carmen, R. M. & Rosalva, M. E. Evaluation of the Antioxidant and Antiproliferative Effects of Three Peptide Fractions of Germinated Soybeans on Breast and Cervical Cancer Cell Lines. Plant Foods Hum Nutr 71, 368–374, https://doi.org/10.1007/s11130-016-0568-z (2016).
48. MacDonald, R. S. et al. Environmental influences on isoflavones and saponins in soybeans and their role in colon cancer. J Nutr 135, 1239–1242, https://doi.org/10.1093/jn/135.5.1239 (2005).
49. Toyomura, K. & Kono, S. Soybeans, Soy Foods, Isoflavones and Risk of Colorectal Cancer: A Review of Experimental and Epidemiological Data. Asian Pac J Cancer Prev 3, 125–132 (2002).
50. Barnes, S., Grubbs, C., Setchell, K. D. & Carlson, J. Soybeans inhibit mammary tumors in models of breast cancer. Prog Clin Biol Res 347, 239–253 (1990).
51. Li, L. et al. Tumor suppressor activity of miR-451: Identification of CARF as a new target. Sci Rep 8, 375, https://doi.org/10.1038/s41598-018-18559-5 (2018).
52. Chaudhary, A. et al. 2,3-Dihydro-3beta-methoxy Withaferin-A Protects Normal Cells against Stress: Molecular Evidence of Its Potent Cytoprotective Activity. J Nat Prod 80, 2756–2760, https://doi.org/10.1021/acs.jnatprod.7b00573 (2017).

Acknowledgements
Authors thank Shu Dan, Tomoko Itsuka, Anupama Chaudhary and Damini Sharma for kind assistance. This work was supported by grants from the National Institute of Advanced Industrial Science & Technology (AIST), Japan and Department of Biotechnology (DBT), Govt. of India. Amr Omar and Ahmed Elwakeel were supported by Japan International Cooperation Center-African Business Education initiative (JICE-ABE) scholarship.

Author contributions
Renu Wadhwa designed the study and obtained grants. Amr Omar, Rajkumar Singh Kalra Jayarani Putri and Ahmed Elwakeel designed and performed experiments. Amr Omar, Rajkumar Singh Kalra, Renu wadhwa and Sunil Kaul wrote the manuscript. All authors reviewed the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-62953-5.

Correspondence and requests for materials should be addressed to S.C.K. or R.W.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2020