Unleashing the potential of the root hair cell as a single plant cell type model in root systems biology

Zhenzhen Qiao
University of Oklahoma

Marc Libault
University of Oklahoma, marc.libault@unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/agronomyfacpub

Part of the Agricultural Science Commons, Agriculture Commons, Agronomy and Crop Sciences Commons, Botany Commons, Horticulture Commons, Other Plant Sciences Commons, and the Plant Biology Commons

Qiao, Zhenzhen and Libault, Marc, "Unleashing the potential of the root hair cell as a single plant cell type model in root systems biology" (2013). *Agronomy & Horticulture -- Faculty Publications*. 1190. https://digitalcommons.unl.edu/agronomyfacpub/1190

This Article is brought to you for free and open access by the Agronomy and Horticulture Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Agronomy & Horticulture -- Faculty Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Unleashing the potential of the root hair cell as a single plant cell type model in root systems biology

Zhengzheng Qiao and Marc Libault*
Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA

*Correspondence: Marc Libault, Department of Microbiology and Plant Biology, University of Oklahoma, 770 Van Vleet Oval, Norman, OK 73019, USA
E-mail: libaultm@ou.edu

To enhance our current understanding of root biology, a systems biology approach is needed to take advantage of the recent improvements in technologies such as mass spectrometry and high-throughput sequencing. One challenge when studying root biology is the multicellular complexity of plant roots. For example, -omic analysis at the level of a complex organ such as the root represents an average of the responses of the different cells composing the sample. Consequently, cell specific transcripts, proteins and metabolites as well as cell-specific epigenomic changes will not be revealed resulting in a partial understanding of the specific response of a cell or cell type to a stress and difficulties to fully integrate the various -omic data sets.

Plant root is an organ composed of multiple cell types with different functions. This multicellular complexity limits our understanding of root biology because -omics studies performed at the level of the entire root reflect the average responses of all cells composing the organ. To overcome this difficulty and allow a more comprehensive understanding of root cell biology, an approach is needed that would focus on one single cell type in the plant root. Because of its biological functions (i.e., uptake of water and various nutrients; primary site of infection by nitrogen-fixing bacteria in legumes), the root hair cell is an attractive single cell model to study root cell response to various stresses and treatments.

To fully study their biology, we have recently optimized procedures in obtaining root hair cell samples. We culture the plants using an ultrasound aeroponic system maximizing root cell density on the entire root systems and allowing the homogeneous treatment of the root system. We then isolate the root hair cells in liquid nitrogen. Isolated root hair yields could be up to 800 to 1000 mg of plant cells from 60 root systems. Using soybean as a model, the purity of the root hair was assessed by comparing the expression level of genes previously identified as soybean root hair specific between preparations of isolated root hair cells and stripped roots, roots devoid in root hairs. Enlarging our tests to include other plant species, our results support the isolation of large quantities of highly purified root hair cells which is compatible with a systems biology approach.

Keywords: stress response, root hair cell, single plant cell type, systems biology, ultrasound aeroponic system

EXPERIMENTAL OBJECTIVES

Our understanding of root biology (i.e., root development, root cell differentiation and elongation, response to biotic and abiotic stresses) is based on -omic studies performed at the level of the entire root system or specific regions of the root as well as from the identification of mutants showing defects in root development. These mutants were characterized from the model plant Arabidopsis thaliana (Benedek et al., 1993; Begg et al., 2001; Misha et al., 2009) as well as other plants where genetic tools are well developed [e.g., Medicago truncatula (Tadege et al., 2008), Oriza sativa (Karasta and Yamazaki, 2006), Lotus japonicus (Schauser et al., 1998; Perry et al., 2003)]. These valuable studies led to the identification of important genes and even gene networks controlling plant development and adaptation to stresses (Schiefelbein et al., 2009; Bruck et al., 2012).

To enhance our current understanding of root biology, a systems biology approach is needed to take advantage of the recent improvements in technologies such as mass spectrometry and high-throughput sequencing. One challenge when studying root biology is the multicellular complexity of plant roots. For example, -omic analysis at the level of a complex organ such as the root represents an average of the responses of the different cells composing the sample. Consequently, cell specific transcripts, proteins and metabolites as well as cell-specific epigenomic changes will not be revealed resulting in a partial understanding of the specific response of a cell or cell type to a stress and difficulties to fully integrate the various -omic data sets.

To demonstrate that a single cell type model represents an attractive alternative to overcome plant multicellular complexity and to better understand gene networks, we compared the transcriptomes of the soybean root hair to that of the whole root (Libault et al., 2010b). Of the 5671 transcription factor (TF) genes known in soybean (Schmutz et al., 2010; Wang et al., 2010), we were able to detect transcripts for 3960 TF genes mining the whole root transcriptome. Out of the 1711 TFs undetected in the whole root transcriptome, 425 (25%) were only detected in the root hair cell transcriptome. This result is surprising since root hair cells were clearly one of the cell type represented in the root samples used for transcriptomic analysis. We are assuming that the low proportion of root hair cells in the root sample led to a dilution of root hair specific transcripts challenging their detection. This analysis strongly supports the need to work on a single cell type such as the root hair cell rather than an entire tissue to enable a more sensitive and accurate depiction of transcript abundance and, as a consequence, plant cellular responses to environmental perturbation. In addition, working at the single cell level will provide data more amenable to the development of computational models and the mapping of gene networks. Using a single cell type system as a model, the information obtained will be clearly unambiguous and would lead to a better characterization of gene networks.

The understanding of root hair cell biology requires the application of the full repertoire of functional genomic tools. However, major challenges in characterizing the biology of a single differentiated root cell type are the limited access to the root system and

*Correspondence: Marc Libault, Department of Microbiology and Plant Biology, University of Oklahoma, 770 Van Vleet Oval, Norman, OK 73019, USA
E-mail: libaultm@ou.edu

To demonstrate that a single cell type model represents an attractive alternative to overcome plant multicellular complexity and to better understand gene networks, we compared the transcriptomes of the soybean root hair to that of the whole root (Libault et al., 2010b). Of the 5671 transcription factor (TF) genes known in soybean (Schmutz et al., 2010; Wang et al., 2010), we were able to detect transcripts for 3960 TF genes mining the whole root transcriptome. Out of the 1711 TFs undetected in the whole root transcriptome, 425 (25%) were only detected in the root hair cell transcriptome. This result is surprising since root hair cells were clearly one of the cell type represented in the root samples used for transcriptomic analysis. We are assuming that the low proportion of root hair cells in the root sample led to a dilution of root hair specific transcripts challenging their detection. This analysis strongly supports the need to work on a single cell type such as the root hair cell rather than an entire tissue to enable a more sensitive and accurate depiction of transcript abundance and, as a consequence, plant cellular responses to environmental perturbation. In addition, working at the single cell level will provide data more amenable to the development of computational models and the mapping of gene networks. Using a single cell type system as a model, the information obtained will be clearly unambiguous and would lead to a better characterization of gene networks.

The understanding of root hair cell biology requires the application of the full repertoire of functional genomic tools. However, major challenges in characterizing the biology of a single differentiated root cell type are the limited access to the root system and

*Correspondence: Marc Libault, Department of Microbiology and Plant Biology, University of Oklahoma, 770 Van Vleet Oval, Norman, OK 73019, USA
E-mail: libaultm@ou.edu

To demonstrate that a single cell type model represents an attractive alternative to overcome plant multicellular complexity and to better understand gene networks, we compared the transcriptomes of the soybean root hair to that of the whole root (Libault et al., 2010b). Of the 5671 transcription factor (TF) genes known in soybean (Schmutz et al., 2010; Wang et al., 2010), we were able to detect transcripts for 3960 TF genes mining the whole root transcriptome. Out of the 1711 TFs undetected in the whole root transcriptome, 425 (25%) were only detected in the root hair cell transcriptome. This result is surprising since root hair cells were clearly one of the cell type represented in the root samples used for transcriptomic analysis. We are assuming that the low proportion of root hair cells in the root sample led to a dilution of root hair specific transcripts challenging their detection. This analysis strongly supports the need to work on a single cell type such as the root hair cell rather than an entire tissue to enable a more sensitive and accurate depiction of transcript abundance and, as a consequence, plant cellular responses to environmental perturbation. In addition, working at the single cell level will provide data more amenable to the development of computational models and the mapping of gene networks. Using a single cell type system as a model, the information obtained will be clearly unambiguous and would lead to a better characterization of gene networks.

The understanding of root hair cell biology requires the application of the full repertoire of functional genomic tools. However, major challenges in characterizing the biology of a single differentiated root cell type are the limited access to the root system and
Nevertheless, it has been successfully applied to study root cell types but it is labor-intensive and cell yields are very limited.

The isolation of single differentiated root cell types is limited by: (1) the accessibility to the root system; (2) the cell wall which also an excellent model to decipher plant cell regulatory networks in response to abiotic stresses. This is based on their primary role in water and nutrient uptake.

Another strategy to study plant single-cell biology is to massively isolate easily accessible cell types. Such method has been successfully applied on aerial parts of the plant. For example, cotton fiber and pollen cells were isolated to investigate plant cell elongation mechanisms (Franklin-Tong, 1999; Ruan et al., 2001; Arpat et al., 2004; Padmalatha et al., 2012). More recently, the soybean root hair (Figure 1) has emerged as a new single cell type model (Libault et al., 2010a). Various studies validate the use of the root hair cell as a model in systems biology through the analysis of the infection of soybean root hair cells by mutualistic symbiotic bacteria [i.e., the soybean root hair cell is the first site of infection by Bradyrhizobium japonicum, the nitrogen-fixing symbiotic bacterium involved in soybean nodulation (Gage, 2004; Kathryn et al., 2007)]. In these studies, soybean seedlings were germinated on agar plate preliminary to the inoculation of the plants with B. japonicum followed by the isolation of the root hair cells. Various -omics approaches were successfully used to decipher root hair cell biology, including transcriptomic (Libault et al., 2010b), proteomic (Wan et al., 2005; Brechenmacher et al., 2009, 2012), phosphoproteomic (Nguyen et al., 2012) and metabolomic (Brechenmacher et al., 2010) methods. In addition to being a model to investigate plant microbe interactions, the root hair cell is also an excellent model to decipher plant cell regulatory networks in response to abiotic stresses. This is based on their primary role in water and nutrient uptake.

To utilize full potential of this attractive single cell type as a model in root systems biology, root hairs must be evenly treated preliminary to their isolation from the rest of the root system in quantities compatible with any -omic analysis, and a fortiori, transgenic root hair cells must be isolated to perform functional genomic studies at the level of a single cell type. To reach these two goals, we developed the method described below combining the use of an ultrasound aeroponic system to generate and evenly treat a large population of root hair cells and the purification of frozen root hair cells using a highly selective filtration system. This method overcomes the limitations related to the isolation of the resulting GFP positive protoplasts using cell sorting technology. This strategy allowed the identification of root cell type-specific genes validating the concept of root cell-specific transcriptomes. However, as reported by the authors of these studies, the digestion of the cell wall also led to a few changes of the plant transcriptome independently of the cell line or treatment. In addition, several studies highlighted a massive restructuration of the chromatin and epigenetic marks in leaf protoplasts in comparison to differentiated leaves cells (Zhao et al., 2001; Tessadori et al., 2007; Orndt et al., 2009; Chappeau et al., 2013). A third method, the INTACT method, was applied on Arabidopsis thaliana to isolate hair and non-hair cells and analyze their transcriptome and epigenome (Dral and Henikoff, 2010, 2011). This method is based on the expression of biotinylated nuclear envelope protein under the control of a cell type-specific promoter sequence and the isolation of labeled nuclei using streptavidin–coated magnetic beads. The characterization of a cell-specific promoter is a pre-requisite to the INTACT method. While RNA and chromatin structure can be accessed using the INTACT method, other aspects of the biology of the plant cell such as its entire proteome and metabolome cannot be reached with this method.

To utilize full potential of this attractive single cell type as a model in root systems biology, root hairs must be evenly treated preliminary to their isolation from the rest of the root system in quantities compatible with any -omic analysis, and a fortiori, transgenic root hair cells must be isolated to perform functional genomic studies at the level of a single cell type. To reach these two goals, we developed the method described below combining the use of an ultrasound aeroponic system to generate and evenly treat a large population of root hair cells and the purification of frozen root hair cells using a highly selective filtration system. This method overcomes the limitations related to the

LIMITATIONS OF CURRENT TECHNIQUES

The isolation of single differentiated root cell types is limited by: (1) the accessibility to the root system; (2) the cell wall which confers the rigidity of the plant and its overall structure. Laser capture microdissection is a popular technique to isolate specific cells types but it is labor-intensive and cell yields are very limited. Nevertheless, it has been successfully applied to study root biology (Klink et al., 2005; Ithal et al., 2007; Santi and Schmidt, 2008; Takehisa et al., 2012). A second method based on the labeling of cell type by the GFP has been recently established to measure Arabidopsis thaliana single plant cell type transcriptomes and their regulation in response to environmental stresses (Zhang et al., 2005; Petersson et al., 2009). Using a collection of transgenic plants expressing the GFP in different root cell lines, Arabidopsis thaliana root cell types were isolated after digestion of the cell wall and the isolation of the root cells of interest. In this manuscript, we present a method to (1) homogeneously treat the plant’s root hair cells; (2) easily access the root system and, a fortiori, the root hair cell; (3) isolate large quantities of this single cell type.

FIGURE 1 Root hair cells (black arrow pointing at one of the root hair cells) are single tubular root cells. Their distinctive lateral elongation increases the surface of exchange between the plant’s root system and the soil. The main function of root hairs is the uptake of water and nutrients from the rhizosphere.

Qiao and Libault Root hair cell systems biology
FIGURE 2 | Soybean seedlings grown in the ultrasound aeroponic system; (A,B) the whole system for plant culturing; (C,D) the plants in the EZ-cloner; (E) soybean root showing a high density in root hair cells.

use of the agar media to germinate seedlings such as the heterogeneity of the root hair cell population produced (i.e., root hair cells interact with the agar or are expanding in the atmosphere impacting their physiology) and open new avenues to investigate root hair cell biology because enabling functional genomic studies (see below). To date, we focused on the isolation of soybean root hair cells but the method described below has been validated using other plant models such as maize, sorghum, and rice.

DETAILED PROTOCOL OF THE OPTIMIZED METHOD

USE OF AN ULTRASOUND AEROPONIC SYSTEM TO ENHANCE ROOT HAIR DENSITY AND TREATMENT

The study of root hair cell response to stresses presupposes:

1. The even treatment of the root system under control and stressed conditions to minimize biological variations;
2. The optimization of the growth conditions of the root system and the enhancement of the differentiation of root hair cells on the root system;
3. An easy access to the root hair cell compatible with their observation and isolation;
4. The development of methods to efficiently isolate them.

We recently developed a method which fulfills these different requirements. Five days-old soybean seedlings germinated on a mixture of vermiculite and perlite (3:1) were transferred to the ultrasound aeroponic system under controlled conditions (long day conditions, 25–27°C, 80% humidity; Figure 2). This system is composed of two units: the fogger system and the cloner unit (EZ-CLONE Enterprises Inc.). The fogger system relays on the production of a 5 micrometres (μm) droplets of nutritive solution by ultrasound misters (OCEAN MIST®, DK24) which atomize nutrient solution into a nutrient-rich mist by vibrating at an ultrasonic frequency [in the case of soybean, we are using the B&D nutritive solution (Broughton and Dilworth, 1971)]. An air flow pushes the cool mist into the cloner unit where plants are growing. The quantity of mist produced by the fogger system is controlled by the number of mist makers used per fogger system as well as by a timer controlling the frequency and duration of the production of mist. Using a thin mist to feed the plant maximized the oxygenation of the root system, an important factor contributing to a higher density in root hair cells of the root system [(Shiao and Doran, 2000); Figures 2C,D]. Altogether, this unique system optimizes root growth, enhances root hair cell density and offers an easy access to the root hair cell compatible with their observation and isolation (Figure 2E).

ROOT HAIR ISOLATION PROCEDURE

Root hair cell isolation has been repetitively applied on soybean (Wan et al., 2005; Brechenmacher et al., 2010; Libault et al., 2010b; Nguyen et al., 2012). Concomitantly to the development of the aeroponic system, the method used to isolate soybean root hair cell was updated to reach two objectives: (1) maintain or enhance the level of purity of the root hair cell preparation from the rest of the root system; (2) maximize root hair yields. Several methods exist to isolate root hairs including gentle brushing of the frozen root system into liquid nitrogen (Bisseling and Ramos Escriveno, 2003) or stirring of the roots immersed in the liquid nitrogen with glass rod preliminary to their isolation (Roehm and Werner, 1987; Bucher et al., 1997). The first method maximizes root hair purification but root hair yields are low and the method is labor intensive. The second method provides large quantities of plant material but the root hair cell preparation could be easily contaminated...
by non-root hair cells such as root fragments resulting from the stirring.

We optimized the latter method as described below. Briefly, the root systems of 3 weeks-old soybean plants are isolated, rapidly wiped off to remove extra moisture then immediately immersed into liquid nitrogen. This rapid freezing prevents undesirable stress of the root and root hair cells due to their manipulation. All subsequent steps are performed in liquid nitrogen. Frozen roots are gently stirred into liquid nitrogen by a glass rod for 10 min. The flow of liquid nitrogen is sufficient to break root and root hairs. The liquid nitrogen containing the root hairs is filtered through 90 μm sieve into a beaker. Based on stereomicroscopic observations, this mesh offers the best compromise to maximize the level of purification of the root hair cells without compromising the yield (Figure 3). The stripped roots are rinsed 5–7 times to collect the remaining root hair cells and increase the yield (i.e., as much as 1000 mg of isolated root hair cells were isolated from 63-week old soybean plants). The plant material harvested is usable the most up-to-date molecular approaches.

Molecular quantification of the level of purity of the root hair cell preparations

To evaluate the purity of the root hair cell preparations, we quantified the expression of several "root hair-specific" genes in both isolated root hair and stripped root samples. These genes were selected from the soybean transcriptome atlas (Libault et al., 2010c) based on their high or specific expression in root hair cells compared to stripped roots (Figure 4A). We are assuming that the low transcript abundance of these "root hair-specific" genes in stripped roots is the consequence of the presence of remaining root hair cells or root hair cell nuclei in the stripped root samples (i.e., the nucleus of mature root hairs are located in the base of the cell).

The fold change of gene expression level in root hair cell versus stripped root ranged from 11.9 (Glyma09g05340) to 44.1 (Glyma15g02380) based on RNA-seq data (Figure 4A). Applying qRT-PCR methods, we analyzed the quality of the plant material collected using our optimized method compared to a previous root hair cell isolation method (Wan et al., 2005; Figure 4B). Independently of the root hair isolation method.
used, we observed a higher abundance of transcripts encoded by the nine candidate genes in isolated root hairs compared to stripped roots supporting high levels of purification of the root hair cells. Using root hair cells and stripped roots collected using the method described by Wan et al. (2005), the fold changes of expression of root hair specific genes was quantified between isolated root hairs and stripped roots. The plant material was generated using our optimized protocol (dark bars) and the method provided by Wan et al. (2005) (light gray bars). For each experiment, a minimum of three biological replicates were performed and analyzed. The student t-test was applied to highlight significant differences between these two methods. The asterisk indicates significantly difference (*p < 0.05).

Figure 4 | Expression analyses of soybean root hair specific genes.

(A) Relative expression levels of nine soybean genes in root hair cells and stripped roots from the Illumina read data (Libault et al., 2010c); (B) The fold-change of the expression of nine root hair specific genes was quantified between isolated root hairs and stripped roots. The plant material was generated using our optimized protocol (dark bars) and the method provided by Wan et al. (2005) (light gray bars). For each experiment, a minimum of three biological replicates were performed and analyzed. The student t-test was applied to highlight significant differences between these two methods. The asterisk indicates significantly difference (*p < 0.05).

Figure 5

An important aspect of the aeroponic system is the generation of composite plants (i.e., plants carrying a mixture of transgenic and non-transgenic roots growing from a wild type shoot) and, a fortiori, the easy access to a large mass of transgenic roots compatible with their observation and various molecular analyses. To test this potential utilization of the aeroponic system, we inoculated soybean shoots with *Agrobacterium rhizogenes* carrying our transgene of interest (in this case, a fusion between the cassava vein mosaic virus promoter and the *β-glucuronidase* gene which encodes the beta-glucuronidase). Ten days after inoculation, a large number of nodules fixing symbiont. As soon as 10 days after inoculation, nodules were developing on the hypernodulating soybean roots (NOD1-3 (106.8 ± 27.7 nodules per plant), NOD2-4 (159.7 ± 42.7 nodules per plant), NOD3-7 (99.7 ± 29 nodules per plant)). Compared to these mutants, 4- to 7-fold fewer nodules were counted on wild type root system (22.8 ± 9.25 nodules per plant). Although, we found that the number of nodules per root system is lower in the aeroponic system grown plants compared to variciculte grown plants (i.e., wild type, NOD1-3, NOD2-4, and NOD3-7 mutants showed 67, 441, 344, and 143 nodules per plant, 17–18 days after inoculation, respectively; Ito et al., 2007), the NOD hypernodulating phenotype is observed in the aeroponic system. These data support that this technology is fully compatible with the analysis of the early and late stages of legume nodulation. We assume that additional experiments and tests using the aeroponic system would maximize the number of nodules per plant.

Another potential attractive application of the aeroponic system is the generation of composite plants (i.e., plants carrying a mixture of transgenic and non-transgenic roots growing from a wild type shoot) and, a fortiori, the easy access to a large mass of transgenic roots compatible with their observation and various molecular analyses. To test this potential utilization of the aeroponic system, we inoculated soybean shoots with *Agrobacterium rhizogenes* carrying our transgene of interest (in this case, a fusion between the cassava vein mosaic virus promoter and the *β-glucuronidase* gene which encodes the beta-glucuronidase). Ten days after inoculation, a large number of nodules fixing symbiont. As soon as 10 days after inoculation, nodules were developing on the hypernodulating soybean roots (NOD1-3 (106.8 ± 27.7 nodules per plant), NOD2-4 (159.7 ± 42.7 nodules per plant), NOD3-7 (99.7 ± 29 nodules per plant)). Compared to these mutants, 4- to 7-fold fewer nodules were counted on wild type root system (22.8 ± 9.25 nodules per plant). Although, we found that the number of nodules per root system is lower in the aeroponic system grown plants compared to variciculte grown plants (i.e., wild type, NOD1-3, NOD2-4, and NOD3-7 mutants showed 67, 441, 344, and 143 nodules per plant, 17–18 days after inoculation, respectively; Ito et al., 2007), the NOD hypernodulating phenotype is observed in the aeroponic system. These data support that this technology is fully compatible with the analysis of the early and late stages of legume nodulation. We assume that additional experiments and tests using the aeroponic system would maximize the number of nodules per plant.

CONCLUSION

In this manuscript, we combined the use of an ultrasound aeroponic system with updated method to isolate root hair cells to maximize the potential of plant root hair cell as a single cell type model for systems biology. This updated method has the following advantages: (1) enhance root hair cell density on the root system; (2) even and long-term treatment of the entire population of root hair cells to access the molecular response of the root hairs to various biotic and abiotic stresses; (3) compatibility with the microscopic observation of the root hair cells; (4) leading to high yields of isolated root hair cells compatible with any -omic analyses.
In addition to being well-suited to perform –omics analyses at the level of an individual cell type, the ultrasound aeroponic system has been validated to study plant-bacteria interactions and to produce large quantities of easily accessible plant material allowing functional genomic studies. Undoubtedly, our updated method of generating large amounts of pure root hair cells will promote the progress of deciphering the regulatory mechanism of plant cell biology including plant cell response to environmental stresses.

EXPERIMENT PROCEDURE

PLANT GROWTH

Soybean seeds (*Glycine max* [L.]) were surface-sterilized by three sequential treatments with 1.65% sodium hypochlorite (10 min each), rinsed three times with deionized water before a 10 min treatment with 10 mM hydroxychloride. Seeds were finally washed three times with sterile water before sowing on sterilized mixture of vermiculite and perlite (3:1 ratio). Seeds were germinated under permanent light conditions at 25 °C. One week later, the seedlings were transferred into a fogger system and supplemented with the mist of B&K plus 10 mM KNO₃. Cultured for another 2 weeks in aeroponic system, the seedlings were collected into liquid nitrogen for root hair isolation.

RNA EXTRACTION AND cDNA SYNTHESIS

Total RNAs were extracted using Trizol Reagent (Invitrogen). Six to ten μg of total RNA were extracted from one preparation of isolated root hairs. Total RNA samples were treated with the TURBO DNase (Ambion) according to the protocol provided by the manufacturer before to reverse transcribe 1 μg of DNA-free RNA using oligodT and the Moloney murine leukemia virus reverse transcriptase as previously described (Libault et al., 2010b).

Soybean gene ID	Forward primer	Reverse primer
Glyma02g01970	TGGCTGCAAAGTGAAAATGA	TCAATTCTTCGTGCCAATGA
Glyma03g34560	ATGAGTTGGGGCAGTACGAC	TAGTTGACCTTGACCCAGA
Glyma04g04800	CCACGCGAACAAAGGTTGAT	TACCGAOGTACATCCACA
Glyma08g12130	GCGCAAAAGGATTAACGSA	TACCTCACAGTGCCACTCA
Glyma09g05340	GGGATAAACGAGGCTACAG	GCCCTGTCCGTTGTGTT
Glyma11g35560	TCTGACGTGAAGGCTACAT	AGTGCGACCCATTGAGA
Glyma15g02380	CAAAGTGGACCTTGAGCTG	TCTCGAACCTTGGCAAGAT
Glyma17g14230	GCTGATGATGTGGAGGTG	GTTGGCAAATGCTGGTATGA
Glyma18g02870	GACCCTTAGCTTTCCGTCCT	GCCCTCCGTTGTCAAGG

Table 1 | qRT-PCR primers.
As described by Libault et al. (2010c), cloning of the cassava vein hair and stripped root samples play the significant differences of gene expression between root significant.

cates were generated for each condition and Student t-tests with
two tails and two samples equal variance applied to display
the significant differences of gene expression between root hair and striped root samples. P value < 0.05 was regarded significant.

ACKNOWLEDGMENT

This work was funded by a grant from the National Science Foundation (Plant Genome Research Program, 0835-1339194).

REFERENCES

Arpe, A. B., Wang, M., Sullivan, J. P., Gomesan, M., Frech, D., Main, D., et al. (2004). Functional genomics of cell elongation in developing cotton fibers. *Plant Mol. Biol.* 54, 911-929. doi: 10.1023/B:PLBO.0000045369-y

Bentley, P. N., Limekiln, P. J., Roberts, K., Schaalbien, J. W., Hause, M. T., and Ausbacher, R. A. (1999). Root development in *Arabidopsis*four mutants with dramatically altered root morphogenesis. *Development* 125, 57–70.

Bosiling, T., and Ramos Escrigán, J. (2003). A method for the isolation of root hairs from the model legume *Medicago truncatula*. *J. Exp. Bot.* 54, 2245-2250. doi: 10.1038/sj.jeb.7200759

Brechenmacher, L., Lec, J., Schuster, S., Song, Z., Nguyen, T. H. N., Jouli, T., et al. (2009). Establishment of a protein reference map for soybean root hairs. *Plant Physiol.* 149, 670-682. doi: 10.1104/pp.108.131649

Brechenmacher, L., Los, Z., Libault, M., Findlay, S., Sagonas, M., Sadownik, M. J., et al. (2010). Soybean metabolites regulated in root hairs in response to the symbiotic bacteria *Bradyrhizobium japonense*. *Plant Physiol.* 153, 1808–1822. doi: 10.1104/pp.110.157800

Brechenmacher, L., Nguyen, T. H. N., Huisen, K., Libault, M., Aldrich, L., Pau-Tole, L., et al. (2012). Identification of soybean proteins from a single cell type: the root hair. *Proteomics* 12, 3585–3597. doi: 10.1002/pmic.201200160

Broughton, W. J., and Dewith, M. J. (1971). Control of lipoxygenase synthetase in mung beans. *Rev. Bot.* 125, 1075–1080.

Brenn, A., Kandozaran, B. M., Wiekowsk, Y., Kang, Y. H., Bembrink, C., Xia, Y., et al. (2012). A gene regulatory network for root epidermis cell differentiation in *Arabidopsis*. *PLoS Genet.* 8(10):e1002446. doi: 10.1371/journal.pgen.1002446

Buchert, M., Schwartz, B., Willemsen, L., and Rieken, D. (1997). Two genes encoding extensin-like proteins are predominantly expressed in tomato root hair cells. *Plant Cell* 9, 497–509. doi: 10.1105/tpc.9.4.497

Chopra, M. C., Grantor, F., Pechon, O., Renou, J.-P., Gaudin, V., and Chopra, V. (2013). Characterisation of the early events leading to tootropism in an *Arabidopsis*protoplast liquid culture by temporal transcript profiling. *Plant Cell* 25, 2446–2463. doi: 10.1105/tpc.113.109558

Deul, R. B., and Henkoff, S. (2010). A simple method for gene expression and chromatin profiling of individual cell types within a tissue. *Dev. Cell* 18, 1091–1101. doi: 10.1016/j.devcel.2010.03.013

Deul, R. B., and Henkoff, S. (2011). The INSECT method for cell-type-specific gene expression and chromatin profiling in *Arabidopsis thaliana*. *Nat. Protoc.* 6, 56–68. doi: 10.1038/nprot.2010.175

Franklin-Tong, V. E. (1999). Signaling and the modulation of pollen tube growth. *Plant Cell* 11, 727–738. doi: 10.1105/tpc.11.4.727

Gage, D. J. (2004). Infection and invasion of roots by symbiotic, nitrogen-fixing *Rhizobium* during nodulation of temperate legumes. *Microb. Mol. Biol. Rev.* 68, 280–309. doi: 10.1128/MMBR.68.2.280-309.2004

Habu, N., Bocke, J., Netto, D., Mainz, E., Baum, T. J., and Mithen, M. G. (2007). Developmental transcript profiling of cyst nematode feeding cells in soybean roots. *Mol. Microbiol. Interact.* 20, 510–525. doi: 10.1094/MIPI-20-5-2010

Ho, S., Ohnaka, N., Szyndziol, K., and Ohmura, T. (2007). Characteristics of initial growth of hypernodulation soybean mutants, NOD1-3, NOD2-4 and NOD3-7, affected by inoculation of *Bradyrhizobium japonicum* and *Sinorhizobium* strain. *Soil Sci. Plant Nutr.* 53, 66–71. doi: 10.1080/0038567970939113

Kathryn, M. J., Hujane, K., Bryan, W. D., Mccullogh, E. T., and Graham, C. W. (2007). How *Rhizobium* symbiont plants the *Sinorhizobium*-Medicago model. *Nat. Rev. Microbiol.* 5, 519–533. doi: 10.1038/nrmicro1705

Klein, V., Alkhalaf, N., MacDonald, M., and Matthews, B. (2005). Laser capture microdissection (LCM) and expression analysis of *Glycine max* (soybean) *nptII* expression in the model legume *Medicago truncatula*. *Plant Mol. Biol.* 54, 895–906. doi: 10.1007/s11103-004-0216-7

Kurata, N., and Tanaka, Y. (2006). Oryzabase. An integrated biological and genomic information database for rice. *Plant Physiol.* 140, 32–37. doi: 10.1104/pp.105.060008

Libault, M., Brechenmacher, L., Chen, J., Xia, D., and Stacey, G. (2010a). Root hair systems biology. *Trends Plant Sci.* 15, 641–650. doi: 10.1016/j.tplants.2010.08.010
Libault, M., Farmer, A., Brechenmacher, L., Devreux, J., Langley, R. J., Bilgin, D. D., et al. (2010b). Complete transcriptome of the soybean root hair cell, a single-cell model, and its alteration in response to Bradyrhizobium japonicum infection. Plant Physiol 152, 541–552. doi: 10.1104/pp.110.168579

Libault, M., Farmer, A., Brechenmacher, L., Langley, R. J., Bilgin, D. D., et al. (2010a). An integrated transcriptome atlas of the crop model Glycine max, and its use in comparative analysis in plants. Plant J 63, 86–99. doi: 10.1111/j.1365-313X.2010.04222.x

Libault, M., Zhang, X.-C., Gottardis, M., Qin, J., Ong, Y. T., Brechenmacher, L., et al. (2010d). A member of the highly conserved PW1 (somatic-PW2.2-hsc) gene family is essential for soybean nodule organogenesis. Plant J 62, 852–864. doi: 10.1111/j.1365-313X.2010.04214.x

Libault, M., Joshi, T., Takahashi, K., Harley-Sommer, A., Paracelii, K., Blaž, S., et al. (2009). Large-scale analysis of putative soybean regulatory gene expression identifies a flhB gene involved in soybean nodule development. Plant Physiol 151, 1287–1301. doi: 10.1104/pp.109.148379

Libault, M., Thibivilliers, S., Bilgin, D. D., Radwan, O., Benitez, M., Clough, S. J., Libault, M., Joshi, T., Takahashi, K., Hurley-Sommer, A., Puricelli, K., Blake, S., Rogg, L. E., Lasswell, J., and Bartel, B. (2001). A gain-of-function mutation in IAA28 suppresses lateral root development. Plant Cell 13, 465–480. doi: 10.1105/tpc.13.3.465

Roehm, M., and Werner, D. (1987). Isolation of root hairs from seedlings of Cucumis sativum as a potential conflict of interest. J. Exp. Bot. 38, 131, 866–871. doi: 10.1093/jxb/313.13.131

Schauser, L., Handberg, K., Sandal, N., Stiller, J., Thykjaer, T., Pajuelo, E., et al. (2008). Laser microdissection-assisted analysis of the functional fate of iron deficiency-induced root hairs in cucumber. J. Exp. Bot. 59, 697–704. doi: 10.1093/jxb/erm351

Santi, S., and Schmidt, W. (2008). Laser microdissection-assisted analysis of the functional fate of iron deficiency-induced root hairs in cucumber. J. Exp. Bot. 59, 697–704. doi: 10.1093/jxb/erm351

Shio, T.-J., and Dean, P. M. (2000). Root hairiness: effect on fluid flow and oxygen transfer in hairy root cultures. J. Bacteriol. 182, 199–203. doi: 10.1128/jb.182.1.199-203.2000

Tai, H., Wei, H., Ke, K., Xie, L., Zhong, F., Tsai, C.-H., et al. (2008). Identification of root hair specific proteins by in situ labeling. J. Proteome Res 7, 339, 62–66. doi: 10.1021/pr800028h

Takehisa, H., Sato, Y., Igarashi, M., Abe, T., Antonis, B. C., Komatsu, K., et al. (2012). Genome-wide transcriptomic dissection of the rice root system: implications for developmental and physiological functions. Plant J 70, 126–140. doi: 10.1111/j.1365-313X.2011.05177.x

Teodori, F., Chuperay, M.-C., Chuperay, Y., Kip, M., Germann, S., van Driel, R., et al. (2007). Large-scale dissociation and sequential reassembly of pericentric heterochromatin in differentiated Arabidopsis cells. J. Cell Sci. 120, 1200–1208. doi: 10.1242/jcs.039526

Vanoppen, J., De Preter, K., Fytche, P., Poppe, B., Van Rey, N., De Paepe, A., et al. (2002). Accurate normalization of real-time quantitative RT-PCR data by geomat-rix: averaging of multiple internal control genes. Genome Biol 3, REVIEWS0034. doi: 10.1186/gb-2002-3-7-research0034

Wan, J., Jortner, M., Ganapathy, A., Tholen, J., DaGrazia, B., Mooney, B., et al. (2005). Proteomic analysis of soybean root hair after infection by Bradyrhizobium japonicum. Mol. Plant Microbe Interact 18, 498–507. doi: 10.1094/MPMI-18-0498

Wang, Z., Libault, M., Joshi, T., Vialva, B., Nguyen, H. T., Xu, D., et al. (2010). SoyDf1: A knowledge database of soybean transcription factors. BMC Plant Biol 10:14. doi: 10.1186/1471-2229-10-14

Zhang, C., Gong, E., Lambert, G., and Gallbraith, D. (2005). Cell-type specific characterization of nuclear DNA contents within complex tissues and organs. Plant Methods 1, 7. doi: 10.1186/1746-4811-1-7

Zhao, J., Morozova, N., Williams, L., Libs, L., Avivi, Y., and Grafi, G. (2001). Two phases of chromatin decondensation during dedifferentiation of plant cells: distinction between competence for cell line switch and a commitment to a phase. J. Biol. Chem. 276, 22772–22778. doi: 10.1074/jbc.M1075620

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 27 August 2013; accepted: 10 November 2013; published online: 26 November 2013.

Copyright © 2013 Qiao and Libault. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction in any medium which does not comply with these terms.