safely across a variety of pediatric nervous tumors. Larger studies are needed to confirm these findings.

MODL-02. TARGETING REPLICA STRESS IN PEDIATRIC BRAIN TUMORS
Sonja Krauss1,2, Sander Lambro1,2, Norman Misch1,2, Benjamin Schwall1,2, Stefan Pfister1,2, and Mathias Peric1,2,3,4

Pediatric brain tumors harboring amplifications or high overexpression of MYC/MYCN are often associated with poor outcome. High MYC/N expression in these tumors leads to increased transcription, which can be in conflict with DNA replication and subsequently can cause replication stress, R-loops and DNA damage. We hypothesize that high MYC/N expression makes them vulnerable to DNA damage response inhibitors (DDRIs) and even more vulnerable to combinations of DDRIs and chemotherapeutics. To test this hypothesis we performed in vitro drug experiments using Group 3 medulloblastoma (MB) and EMTR cell lines. IC50-values were evaluated of topoisomerase inhibitors ICRF193 (SN-38) and Palbociclib (GRB-290), a brain-penetrant PARP-inhibitor, in monotherapy. All cell lines were sensitive for SN-38 and showed IC50-values in the low nM-range but PARP-inhibitors were ineffective. However, a significant decrease in IC50 can be observed when SN-38 and Pamatipar in combination are used in combination. For in vivo treatments, we injected NSG mice with luciferase labelled patient-derived xenograft (PDX)- cells of various models (MB Group 3, MB SHH, EMTR, RELA EPN), monitored tumor growth via IVIS and randomized the mice into different treatment arms. We observed in vitro and in vivo interactions between DDRIs and PARP-inhibitors when a pre-defined threshold of tumor growth was reached. Mice were treated with Inrnotecan (or vehicle) once per day i.p. and Pamatipar (or vehicle) twice per day per oral gavage. Treatment with Pamatipar did not show any survival benefit, but mice treated with Inrnotecan or the combination showed a clear survival benefit. Treatments are ongoing and more results will be presented at the conference.

MODL-03. ADAPTING PALBOCICLAB FOR MEDULLOBLASTOMA THERAPY BY IMPROVING DRUG DELIVERY AND ADDRESSING RESISTANCE
Taylor Dineke, and Timothy Gershon; University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA

CDK4/6 inhibition may be a promising therapy for medulloblastoma. All medulloblastoma subgroups show D-cyclin/CDK4/6 pathway activity, supporting this potential for efficacy. To address drug delivery and systemic toxicity limitations, we developed a nanoparticle formulation of CDK 4/6 inhibitor, palbociclab, in poly (2-oxazoline) micelles (POx-palbo). POx-palbo showed reduced systemic toxicity in transgenic engineered to display CDK4/6 pathway activity, demonstrated by Gli-luc reporter tumor mice. Importantly, POx-palbo therapy, administered daily, reduced tumor growth and improved the survival of mice with medulloblastoma. While POx-palbo was clearly effective as a single agent, all mice treated with POx-palbo eventually developed progressive disease, as resistant populations of tumors developed. To understand the mechanisms of resistance, we compared tumors early and late in the course of therapy. We found that after 5 days of treatment, palbociclab altered cell cycle progression to produce an extended period of S-phase and that the fractions of cells expressing the stem cell marker Olig2 were markedly increased. Based on these data, we propose that tumors respond to the initial suppressive effect of palbociclab by increasing the pool of Olig2+ stem cells, that these cells show discernably different cell cycle kinetics and are resistant to CDK4/6 inhibition. Combining POx-palbo with additional therapies that target Olig2+ stem cells by disrupting their prolonged S-phase, or by disrupting Olig2 function, may lead to newly effective medulloblastoma treatment.

MODL-04. MODELING CNS HGNET-BCOR PATHOGENESIS USING NEURAL STEM CELLS
Satoshi Nakata1, Ming Yuan, Eric Raabe, and Charles Eberhart; Johns Hopkins University, Baltimore, MD, USA

Central nervous system high-grade neuroepithelial tumor with BCL6 corepressor alteration (CNS HGNET-BCOR) is a recently identified entity characterized by internal tandem duplication (ITD) of BCOR, a core component of polycomb repressive complex (PRC) 1.1. BCOR-ITD exclusively occurs within an essential binding domain, suggesting aberrant epigenetic activities as a possible mechanism of gliomagenesis; however, the effect of this alteration on the transcriptome and DNA methylation are poorly understood. We have generated novel CNS HGNET-BCOR models by lentiviral transduction of the BCOR-ITD into human and murine neural stem cells. In the human model, qRT-PCR and subsequent RNA-seq identified a transient derepression of PRC2 target genes compared to the model with overexpression of wildtype-BCOR. A similar effect was found in clinical specimens from previous studies. In the murine-cell model, we confirmed increased clonogenicity in soft-agar assays, and tumors developed in mice faster than wildtype. Global DNA methylation levels evaluated by ELISA were significantly lower than those of parent cells, and 177 genes were differentially expressed on RNA-seq analysis comparing to BCOR-overexpressing control cells, including upregulation of known oncogenes. These results suggest that BCOR-ITD and associated alterations in the function of PRC1.1 affect methylation patterns in neural stem cells, driving transcriptional imbalance and oncogenic transformation into CNS HGNET-BCOR. More detailed analyses, including methylation array comparisons with clinical samples and in-silico drug sensitivity testing, are being performed.

MODL-06. PRECLINICAL EFFICACY OF THE IMIPRIDONE ONC-206 AGAINST MEDULLOBLASTOMA
Jose Velazquez Vega1,2, Matthew Schniederjans3, Varun Prabhu4, Joshua Allen5, and Toheb Macdonald1; 1Emory University, Atlanta, GA, USA, 2Children’s Healthcare of Atlanta, Atlanta, GA, USA, 3Oncoceutics, Inc, Philadelphia, PA, USA

Treatment for medulloblastoma (MB) is typically ineffective for MYC amplified or metastatic SHH, Group 3 and 4 subgroups. Promising preclinical drug testing has been observed in in-vitro and ex-vivo studies for the imipridone ONC-201, a selective antagonist of DRD2, a G-protein coupled receptor that regulates prosurvival pathways. Herein, we report the activity of ONC-201 and ONC-206, which has increased non-competitive antagonism of DRD2, against MB. We treated three different MB cell types representative of SHH- and Group 3-like cells, with varied levels of DRD2 expression, and consistently observed increased cell death in a dose-dependent manner at lower doses of ONC-206 compared to ONC-201. We also evaluated Cplp as an additional drug target in MR. Cplp is a mitochondrial protease that has been shown to directly bind and be activated by ONC 201, and is highly expressed at the protein level across pediatric MB, malignant glioma and ATRT, but not normal brain. We observed that similar to ONC-201, ONC-206 treatment induced significant cell death in a dose-dependent manner in the patient xenograft- (PDX-) cells of various models (MB Group 3, MB SHH, WNT, and Group 3 tumors ex vivo and Group 4 cells in vitro, while having no observable toxicity in normal brain. Efficacy studies of ONC-206 against MB in vivo will be reported in preparation for a planned Phase I study of ONC-206 in children with malignant brain tumors.

MODL-08. OPTIMIZATION OF A NOVEL LOCAL DELIVERY SYSTEM FOR THE TREATMENTS OF SUPRATENTORIAL EPENDYMOMA
Lisa Ruff1, Chris Parkins1, Sabrina Terranova1, Erica Nathan1, Paraskevi Kasapidou2, Renata Lang3, Oren Scherman3, and Richard J Gilbertson1; 1Cancer Research UK Cambridge Institute, Cambridge, United Kingdom, 2Melville Laboratory, Department of Chemistry, Cambridge, United Kingdom

Ependymomas are the third most common paediatric brain tumour, incurable in up to 40% of cases. Until recently, ependymomas were regarded as a single disease group with all patients receiving combinations of maximal surgical resection and radiotherapy. Use of chemotherapy has been limited by the resistant nature of the tumour and poor access to tumours behind the blood brain barrier (BBB). It is now known that ependymoma comprises up to nine different molecular subgroups. One subgroup is characterized by a novel fusion protein, C11orf93-RELA, which acts as a potent driver of oncogenesis resulting in a poor prognosis. Here, we present the optimization of a novel drug delivery system that uses biodegradable hydrogels to deliver drugs with potent anti-ependymoma properties into post-resection cavity of supratentorial ependymoma. Our previous high-throughput in-vivo drug screens identified candidate ependymoma therapies with poor BBB penetration. Using in-vitro and in-vivo cell lines, we have confirmed and monitored the release of these compounds from the hydrogel. Additionally, we have implemented this delivery system in our preclinical mouse hospital in which mice receive standard-of-care surgery and radiotherapy. The efficacy of hydrogel-based delivery of these compounds is now being tested preclinically, in combination with radiotherapy. Treatment for ependymoma patients have not changed in the last 30 years and therefore an effective chemotherapy could add a great survival benefit to the clinic.