Self-normalized deviation inequalities with application to \(t \)-statistics

Xiequan Fan

Center for Applied Mathematics, Tianjin University, 300072 Tianjin, China

Abstract

Let \((\xi_i)_{i=1,...,n}\) be a sequence of independent and symmetric random variables. We consider the upper bounds on tail probabilities of self-normalized deviations

\[
P\left(\max_{1 \leq k \leq n} \frac{\sum_{i=1}^{k} |\xi_i|}{\left(\sum_{i=1}^{n} |\xi_i|^{\beta} \right)^{1/\beta}} \geq x \right)
\]

for \(x > 0\) and \(\beta > 1\). Our bound is the best that can be obtained from the Bernstein inequality under the present assumption. An application to Student’s \(t \)-statistics is also given.

Keywords: Self-normalized deviations; Student’s \(t \)-statistic; exponential inequalities

2000 MSC: Primary 60E15; 60F10

1. Introduction

Let \((\xi_i)_{i \geq 1}\) be a sequence of independent, centered and nondegenerate real-valued random variables (r.v.s). Denote by

\[
S_n = \sum_{i=1}^{n} \xi_i \quad \text{and} \quad V_n(\beta) = \left(\sum_{i=1}^{n} |\xi_i|^{\beta} \right)^{1/\beta}, \quad \beta > 1.
\]

The study of the tail probabilities \(P(S_n/V_n(\beta) \geq x)\) certainly has attracted some particular attentions. In the case where r.v.s \((\xi_i)_{i \geq 1}\) are identically distributed and \(E|\xi_1|^{\beta} = \infty, \beta > 1\), Shao [3] proved the following deep large deviation principle (LDP) result: for any \(x > 0\),

\[
\lim_{n \to \infty} P\left(\frac{S_n}{V_n(\beta)^{1-1/\beta}} \geq x \right)^{1/n} = \sup_{c \geq 0} \inf_{t \geq 0} E \left[\exp \left\{ t \left(cX - x \left(\frac{1}{\beta}|X|^{\beta} + \frac{\beta - 1}{\beta} c^{\beta/(\beta - 1)} \right) \right) \right\} \right].
\]

The related moderate deviation principles (MDP) are also given by Shao [3] and Jing, Liang and Zhou [4]. However, the LDP and MDP results do not diminish the need for tail probability inequalities valid for given \(n\). Such inequality have been obtained in particular by Wang and Jing [7]. They proved that if the r.v.s \((\xi_i)_{i \geq 1}\) are symmetric (around 0), then for all \(x > 0\),

\[
P\left(\frac{S_n}{V_n(2)} \geq x \right) \leq \exp \left\{ -\frac{x^2}{2} \right\}.
\]

*Corresponding author.

E-mail: fanxiequan@hotmail.com (X. Fan).
This bound is rather tight for moderate \(x\)'s. Indeed, as showed by the MDP result of Shao [5] (cf. Theorem 3.1), for certain class of r.v.s it holds that

\[
x_n^{-2} \ln P \left(\frac{S_n}{V_n(2)} \geq x \right) = -\frac{1}{2},
\]

with \(x_n \to \infty\) and \(x_n = o(\sqrt{n})\). See also Theorem 2.1 of Jing, Liang and Zhou [6] for non identically distributed r.v.s. In Fan, Grama and Liu [2], inequality (1) has been further extended to the case of partial maximum: for all \(x > 0\),

\[
P \left(\max_{1 \leq k \leq n} \frac{S_k}{V_n(2)} \geq x \right) \leq \exp \left\{ -\frac{x^2}{2} \right\}.
\]

On the other hand, by the Cauchy-Schwarz inequality, it is easy to see that \(S_n^2 \leq n (V_n(2))^2\). Thus for all \(x > \sqrt{n}\),

\[
P \left(\frac{S_n}{V_n(2)} \geq x \right) \leq P \left(\max_{1 \leq k \leq n} \frac{S_k}{V_n(2)} \geq x \right) = 0,
\]

which cannot be deduced from (1) and (3). Hence, the inequalities (1) and (3) are not tight enough.

In this paper we give an improvement on inequality (3). Our inequality implies (4). More general, we establish the upper bound on tail probabilities \(P(\max_{1 \leq k \leq n} S_k/V_n(\beta) \geq x), x > 0\), for symmetric r.v.s \((\xi_i)_{i \geq 1}\). In particular, we show that our inequality is the best that can be obtained from the classical Bernstein inequality: \(P(X > x) \leq \inf_{\lambda > 0} E[e^{\lambda (X-x)}]\). An application to Student’s \(t\)-statistics is also given.

The paper is organized as follows. Our main result and the applications are stated and discussed in Section 2. Proofs are deferred to Section 3.

2. Main results

In the following theorem, we give a self-normalized deviation inequality for independent and symmetric random variables.

Theorem 2.1. Assume that \((\xi_i)_{i=1,...,n}\) is a sequence of independent, symmetric and nondegenerate random variables. Given a constant \(\beta \in (1, \infty)\), denote by

\[
V_n(\beta) = \left(\sum_{i=1}^{n} |\xi_i|^\beta \right)^{1/\beta}.
\]

Then for all \(0 < x \leq n^{\frac{\beta-1}{\beta}}\),

\[
P \left(\max_{1 \leq k \leq n} \frac{S_k}{V_n(\beta)} \geq x \right) \leq B_n(\beta, x) := \frac{1}{2^n} \left(\sqrt{t} + \frac{1}{\sqrt{t}} \right)^n t^{-\frac{1}{2} n^{1/\beta} x},
\]

where

\[
t = \frac{n^{\frac{\beta-1}{\beta}} + x}{n^{\frac{\beta-1}{\beta}} - x}.
\]
with the convention $B_n(\beta, n^{\frac{\beta - 1}{\beta}}) = 2^{-n}$. Moreover $B_n(2, x)$ is increasing in n and for any $x > 0$,

\[
\lim_{n \to \infty} B_n(2, x) = \exp \left\{ -\frac{x^2}{2} \right\}.
\]

The range of validity of our inequality (5) is optimal. Indeed, Hölder’s inequality implies that $S_n \leq V_n(\beta)n^{\frac{\beta - 1}{\beta}}$. Thus when $x > n^{\frac{\beta - 1}{\beta}}$, it holds that

\[
P \left(\max_{1 \leq k \leq n} \frac{S_k}{V_n(\beta)} \geq x \right) = 0.
\]

Notice that bound (5) is the best that can be obtained from the following Bernstein inequality

\[
P \left(\frac{S_n}{V_n(\beta)} \geq x \right) \leq \inf_{\lambda \geq 0} E \left[e^{\lambda \left(\frac{S_n}{V_n(\beta)} - x \right)} \right]. \tag{6}
\]

Indeed, if $\xi_i = \pm a, a > 0$, with probabilities $1/2$, then it holds for all $0 < x < \sqrt{n},$

\[
\inf_{\lambda \geq 0} E \left[e^{\lambda \left(\frac{S_n}{V_n(\beta)} - x \right)} \right] = \inf_{\lambda \geq 0} \left[e^{\lambda \left(\frac{S_n}{an(\beta)} - x \right)} \right] = \inf_{\lambda \geq 0} e^{-\lambda x} \left[\cosh \left(\frac{\lambda}{n^{1/\beta}} \right) \right]^n = B_n(\beta, x).
\]

Moreover, when $x \to n^{\frac{\beta - 1}{\beta}}$, bound (5) tends to 2^{-n}, which is the best possible at $x = n^{\frac{\beta - 1}{\beta}}$. Indeed, for the ξ_i’s mentioned above, it holds

\[
P \left(\max_{1 \leq k \leq n} \frac{S_k}{V_n(\beta)} \geq n^{\frac{\beta - 1}{\beta}} \right) = P \left(\xi_i = a \text{ for all } i \in [1, n] \right) = \frac{1}{2^n}.
\]

Since the random variables $(\xi_i)_{i=1, \ldots, n}$ are symmetric, it is obvious that for all $0 < x \leq n^{\frac{\beta - 1}{\beta}}$,

\[
P \left(\max_{1 \leq k \leq n} \frac{S_k}{V_n(\beta)} \leq -x \right) \leq B_n(\beta, x),
\]

where $B_n(\beta, x)$ is defined by (5).

When $\beta \in (1, 2]$, inequality (5) implies the following bound.

Corollary 2.1. Assume the condition of Theorem 2.1. If $\beta \in (1, 2]$, then for all $x > 0$,

\[
P \left(\max_{1 \leq k \leq n} \frac{S_k}{V_n(\beta)} \geq x \right) \leq \exp \left\{ -\frac{x^2}{2n^{\frac{\beta - 1}{\beta}}} \right\}. \tag{7}
\]

In particular, the last inequality implies that for $\beta \in (1, 2)$,

\[
\frac{S_n}{V_n(\beta)} \to 0, \quad n \to \infty,
\]

in probability.
For $\beta \in (1, 2]$, inequality (7) implies the following upper bound of LDP:

$$\limsup_{n \to \infty} \frac{1}{n} \ln \mathbb{P} \left(\frac{\max_{1 \leq k \leq n} S_k}{V_n(\beta)n^{\beta-1}} \geq x \right) \leq -\frac{x^2}{2}, \quad x \in (0, 1].$$

(8)

It also implies the following upper bound of MDP: for any $\alpha \in (\frac{\beta-2}{2\beta}, \frac{\beta-1}{\beta})$,

$$\limsup_{n \to \infty} \frac{1}{n^{2\alpha+\frac{1}{\beta}-1}} \ln \mathbb{P} \left(\frac{\max_{1 \leq k \leq n} S_k}{V_n(\beta)n^{\alpha}} \geq x \right) \leq -\frac{x^2}{2}, \quad x \in (0, \infty).$$

(9)

With certain regularity conditions on tail probabilities of ξ_i, the LDP and MDP results are allowed to be established. We refer to Shao [5] and Jing, Liang and Zhou [6].

Wang and Jing [7] proved that for all $x > 0$,

$$\mathbb{P} \left(\frac{S_n}{V_n(2)} \geq x \right) \leq \exp \left\{ -\frac{x^2}{2} \right\}.$$

(10)

An earlier result similar to (10) can be found in [4], where Hitczenko has obtained the same upper bound on tail probabilities $\mathbb{P}(S_n \geq x ||S_n||_\infty)$. When $\beta = 2$, inequality (7) reduces to the following inequality of Fan et al. [2]: for all $x > 0$,

$$\mathbb{P} \left(\frac{\max_{1 \leq k \leq n} S_k}{V_n(2)} \geq x \right) \leq \exp \left\{ -\frac{x^2}{2} \right\}.$$

(11)

Thus inequality (7) can be regarded as a generalization of (10) and (11). Moreover, since the bound (5) is less than the bound (11), our inequality (5) improves on (11).

Let $\{Y_i\}_{i \geq 1}$ be a sequence of independent nondegenerate r.v.s, and $\{d_i\}_{i \geq 1}$ be a sequence of independent Rademacher r.v.s, i.e. $\mathbb{P}(d_i = \pm 1) = \frac{1}{2}$. Let $\xi_i = d_i Y_i$. Assume that $\{Y_i\}_{i \geq 1}$ and $\{d_i\}_{i \geq 1}$ are independent. Then we now have

$$S_n = \sum_{i=1}^{n} d_i Y_i, \quad V_n(\beta) = \left(\sum_{i=1}^{n} |Y_i|^\beta \right)^{1/\beta}, \quad \text{for } \beta > 1.$$

The following result easily follows from Theorem 2.1 and Corollary 2.1.

Corollary 2.2. Let $\xi_i = d_i Y_i$ for $i = 1, \ldots, n$. If $\beta \in (1, 2]$, then for all $0 < x \leq n^{\frac{\beta-1}{\beta^2}}$,

$$\mathbb{P} \left(\frac{\max_{1 \leq k \leq n} S_k}{V_n(\beta)} \geq x \right) \leq B_n(\beta, x) \leq \exp \left\{ -\frac{x^2}{2} n^{\frac{2}{\beta^2}} \right\}.$$

(12)

In particular, the last inequality implies that for $\beta \in (1, 2)$,

$$\frac{S_n}{V_n(\beta)} \to 0, \quad n \to \infty,$$

in probability.
Consider Student’s t-statistic T_n defined by

$$T_n = \sqrt{n} \frac{\xi_n}{\hat{\sigma}},$$

where

$$\xi_n = \frac{S_n}{n} \quad \text{and} \quad \hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (\xi_i - \xi_n)^2.$$

It is known that for all $x > 0$,

$$\mathbb{P}(T_n \geq x) = \mathbb{P}\left(\frac{S_n}{\sqrt{\frac{1}{n}} \xi_n} \geq x \left(\frac{n}{n+x^2-1}\right)^{1/2}\right);$$

see Efron [1]. Notice that for all $x > 0$, it holds $0 < x \left(\frac{n}{n+x^2-1}\right)^{1/2} \leq n^{1/2}$. With the help of (5), we have the following exponential bound for Student’s t-statistics.

Theorem 2.2. Assume that $(\xi_i)_{i=1,...,n}$ is a sequence of independent, symmetric and nondegenerate random variables. Then for all $x > 0$,

$$\mathbb{P}(T_n \geq x) \leq B_n \left(2, x \left(\frac{n}{n+x^2-1}\right)^{1/2}\right), \quad (13)$$

where $B_n(2, x)$ is defined by (5).

3. Proofs of Theorems

The proof of Theorem 2.1 is based on a method called change of probability measure for martingales. The method is developed by Grama and Haeusler [3].

Proof of Theorem 2.1. For any $i = 1, \ldots, n$, set

$$\eta_i = \frac{\xi_i}{\sqrt{n} \xi_n}, \quad \mathcal{F}_0 = \sigma(\{\xi_j, 1 \leq j \leq n\}) \quad \text{and} \quad \mathcal{F}_i = \sigma(\{\xi_k, 1 \leq k \leq i, |\xi_j|, 1 \leq j \leq n\}). \quad (14)$$

Since $(\xi_i)_{i=1,...,n}$ are independent and symmetric, then

$$\mathbb{E}[\xi_i > y | \mathcal{F}_{i-1}] = \mathbb{E}[\xi_i > y | \xi_i] = \mathbb{E}[\xi_i - y | \xi_i] = \mathbb{E}[\xi_i > y | \mathcal{F}_{i-1}].$$

Thus $(\eta_i, \mathcal{F}_i)_{i=1,...,n}$ is a sequence of conditionally symmetric martingale differences, i.e. $\mathbb{E}[\eta_i > y | \mathcal{F}_{i-1}] = \mathbb{E}[-\eta_i > y | \mathcal{F}_{i-1}]$. It is easy to see that

$$\frac{S_n}{\sqrt{V_n(\beta)}} = \sum_{i=1}^{n} \eta_i \quad (15)$$

is a sum of martingale differences, and that $(\eta_i, \mathcal{F}_i)_{i=1,...,n}$ satisfies

$$\sum_{i=1}^{n} |\eta_i|^\beta = \sum_{i=1}^{n} \frac{|\xi_i|^\beta}{V_n(\beta)^{\beta}} = 1.$$
For any $x > 0$, define the stopping time T:

$$T(x) = \min \left\{ k \in [1, n] : \sum_{i=1}^{k} \eta_i \geq x \right\},$$

with the convention that $\min \emptyset = 0$. Then it follows that

$$1 \left\{ \max_{1 \leq k \leq n} \frac{S_k}{V_n(\beta)} \geq x \right\} = \sum_{k=1}^{n} 1\{T(x) = k\}.$$

For any nonnegative number λ, define the martingale $M(\lambda) = (M_k(\lambda), F_k)_{k=0, \ldots, n}$, where

$$M_k(\lambda) = \prod_{i=1}^{k} \frac{\exp \{ \lambda \eta_i \}}{E[\exp \{ \lambda \eta_i \} | F_{i-1}]} , \quad M_0(\lambda) = 1.$$

Since T is a stopping time, then $M_{T\land k}(\lambda), \lambda > 0$, is also a martingale. Define the conjugate probability measure P_{λ} on (Ω, F):

$$dP_{\lambda} = M_{T\land n}(\lambda) dP.$$ \hfill (16)

Denote E_{λ} the expectation with respect to P_{λ}. Using the change of probability measure (16), we have for all $x > 0$,

$$P\left(\max_{1 \leq k \leq n} \frac{S_k}{V_n(\beta)} \geq x \right) = E_{\lambda} \left[M_{T\land n}(\lambda)^{-1} 1\{ \max_{1 \leq k \leq n} \frac{S_k}{V_n(\beta)} \geq x \} \right] = \sum_{k=1}^{n} E_{\lambda} \left[\exp \left\{ -\lambda \sum_{i=1}^{k} \eta_i + \Psi_k(\lambda) \right\} 1\{T(x) = k\} \right], \hfill (17)$$

where

$$\Psi_k(\lambda) = \sum_{i=1}^{k} \log E[\exp \{ \lambda \eta_i \} | F_{i-1}].$$

Since $(\eta_i, F_i)_{i=1, \ldots, n}$ is conditionally symmetric, one has

$$E[\exp \{ \lambda \eta_i \} | F_{i-1}] = E[\exp \{ -\lambda \eta_i \} | F_{i-1}],$$

and thus it holds

$$E[\exp \{ \lambda \eta_i \} | F_{i-1}] = E[\cosh(\lambda \eta_i) | F_{i-1}], \hfill (18)$$

Since

$$\cosh(x) = \sum_{k=0}^{\infty} \frac{1}{(2k)!} x^{2k}$$

is an even function, then $\cosh(\lambda \eta_i)$ is F_{i-1}-measurable. Thus (18) implies that

$$E[\exp \{ \lambda \eta_i \} | F_{i-1}] = \cosh(\lambda \eta_i).$$
Notice that the function \(g(x) = \log(\cosh(x)) \) is even and convex in \(x \in \mathbb{R} \) and increasing in \(x \in [0, \infty) \). Since \(|\sum_{i=1}^{n} \eta_i| \leq n^{1-1/\beta}(\sum_{i=1}^{n} |\eta_i|^\beta)^{1/\beta} = n^{1-1/\beta} \), it holds

\[
\Psi_k(\lambda) \leq \Psi_n(\lambda) = \sum_{i=1}^{n} g(\lambda \eta_i) \leq ng\left(\frac{\lambda}{n^{1/\beta}}\right).
\]

By the fact \(\sum_{i=1}^{k} \eta_i \geq x \) on the set \(\{ T(x) = k \} \), inequality (17) implies that for all \(x > 0 \),

\[
\begin{align*}
P\left(\max_{1 \leq k \leq n} \frac{S_k}{V_n(\beta)} \geq x \right) &\leq \sum_{k=1}^{n} E_\lambda \left[\exp \left\{-\lambda x + ng\left(\frac{\lambda}{n^{1/\beta}}\right)\right\} 1_{\{T=k\}} \right] \
&\leq \exp \left\{-\lambda x + ng\left(\frac{\lambda}{n^{1/\beta}}\right)\right\}. \numberthis (19)
\end{align*}
\]

The last inequality attains its minimum at

\[
\lambda = \lambda(x) = \frac{n^{1/\beta}}{2} \log \left(\frac{n^{\frac{\beta-1}{\beta}} + x}{n^{\frac{\beta-1}{\beta}} - x}\right), \quad x \in (0, n^{\frac{\beta-1}{\beta}}).
\]

Substituting \(\lambda = \lambda(x) \) in (19), we obtain the desired inequality (5).

Notice that the function \(h(x) = g(\sqrt{x}) \) is convex and increasing in \(x \in [0, \infty) \). Therefore \(g(\sqrt{x})/x \) is increasing in \(x \), and \(g(\sqrt{\lambda^2/n})/(\lambda^2/n) \) is decreasing in \(n \). Thus

\[
B_n(2, x) = \inf \lambda \geq_{\lambda > 0} \exp \left\{-\lambda x + ng\left(\frac{\lambda}{n^{1/\beta}}\right)\right\}
\]

is increasing in \(n \). Since \(ng\left(\frac{\lambda}{n^{1/\beta}}\right) \rightarrow \lambda^2/2, n \rightarrow \infty \), we obtain

\[
\lim_{n \to \infty} \inf_{n} B_n(2, x) = \sup_{n} B_n(2, x) = \inf_{\lambda \geq 0} \exp \left\{-\lambda x + \frac{\lambda^2}{2}\right\} = \exp \left\{-\frac{x^2}{2}\right\}.
\]

This completes the proof of theorem. \(\square \)

Proof of Corollary 2.1 Since \(\cosh(x) \leq \exp\{x^2/2\} \), we have

\[
ng\left(\frac{\lambda}{n^{1/\beta}}\right) \leq \frac{\lambda^2}{2} n^{1-\frac{2}{\beta}} \numberthis (20)
\]

for all \(\lambda > 0 \). Thus, from (19), for all \(x > 0 \),

\[
\begin{align*}
P\left(\max_{1 \leq k \leq n} \frac{S_k}{V_n(\beta)} \geq x \right) &\leq \inf \lambda \geq_{\lambda > 0} \exp \left\{-\lambda x + ng\left(\frac{\lambda}{n^{1/\beta}}\right)\right\} \\leq \inf \lambda \geq_{\lambda > 0} \exp \left\{-\lambda x + \frac{\lambda^2}{2} n^{1-\frac{2}{\beta}}\right\} \\leq \exp \left\{-\frac{x^2}{2} n^{\frac{\beta-1}{\beta}}\right\}, \numberthis (21)
\end{align*}
\]

which gives the desired inequality (7). \(\square \)
Acknowledgements

The work has been partially supported by the National Natural Science Foundation of China (Grants no. 11601375).

References

[1] B. Efron, Student’s t-test under symmetry conditions, J. Amer. Statist. Assoc. 64 (328) (1969) 1278-1302.

[2] X. Fan, I. Grama, Q. Liu, Exponential inequalities for martingales with applications, Electron. J. Probab. 20, no. 1 (2015) 1-22.

[3] I. Grama, E. Haeusler, Large deviations for martingales via Cramér’s method, Stochastic Process. Appl. 85 (2000) 279–293.

[4] P. Hitczenko, Upper bounds for the L_p-norms of martingales, Probab. Theory Related Fields 86 (1990) 225–238.

[5] Q.M. Shao, Self-normalized large deviations, Ann. Probab. 25 (1997) 285–328.

[6] B.Y. Jing, H.Y. Liang, W. Zhou, Self-normalized moderate deviations for independent random variables, Sci. China Math. 55 (11) (2012) 2297–2315.

[7] Q.Y. Wang, B.Y. Jing, An exponential nonuniform Berry-Esseen bound for self-normalized sums, Ann. Probab. 27 (4) (1999) 2068–2088.