Receptor-Recognized α₂-Macroglobulin Binds to Cell Surface-Associated GRP78 and Activates mTORC1 and mTORC2 Signaling in Prostate Cancer Cells

Uma K. Misra, Salvatore V. Pizzo

Department of Pathology, Duke University Medical Center, Durham, North Carolina, United States of America

Abstract

Objective: Tetrameric α₂-macroglobulin (α₂M), a plasma panproteinase inhibitor, is activated upon interaction with a proteinase, and undergoes a major conformational change exposing a receptor recognition site in each of its subunits. Activated α₂M (α₂M*) binds to cancer cell surface GRP78 and triggers proliferative and antiapoptotic signaling. We have studied the role of α₂M* in the regulation of mTORC1 and TORC2 signaling in the growth of human prostate cancer cells.

Methods: Employing immunoprecipitation techniques and Western blotting as well as kinase assays, activation of the mTORC1 and mTORC2 complexes, as well as down stream targets were studied. RNAi was also employed to silence expression of Raptor, Rictor, or GRP78 in parallel studies.

Results: Stimulation of cells with α₂M* promotes phosphorylation of mTOR, S6-Kinase, 4EBP, AktT308, and AktS473 in a concentration and time-dependent manner. Rheb, Raptor, and Rictor also increased. α₂M* treatment of cells elevated mTORC1 kinase activity as determined by kinase assays of mTOR or Raptor immunoprecipitates. mTORC1 activity was sensitive to LY294002 and rapamycin or transfection of cells with GRP78 dsRNA. Down regulation of Raptor expression by RNAi significantly reduced α₂M*-induced S6-Kinase phosphorylation at T389 and kinase activity in Raptor immunoprecipitates. α₂M*-treated cells demonstrate about a twofold increase in mTORC2 kinase activity as determined by kinase assay of AktS473 phosphorylation and levels of p-AktS473 in mTOR and Rictor immunoprecipitates. mTORC2 activity was sensitive to LY294002 and transfection of cells with GRP78 dsRNA, but insensitive to rapamycin. Down regulation of Rictor expression by RNAi significantly reduces α₂M*-induced phosphorylation of AktS473 phosphorylation in Rictor immunoprecipitates.

Conclusion: Binding of α₂M* to prostate cancer cell surface GRP78 upregulates mTORC1 and mTORC2 activation and promotes protein synthesis in the prostate cancer cells.

Introduction

The ability of cancer cells to thrive in vivo depends on many factors among which are the repertoire of proteins modulating their environment. While the liver produces large amounts of the proteinase inhibitor α₂-macroglobulin (α₂M) it is produced by cancer cells and is linked with tumor growth [1]. α₂M is also produced locally in tumor stromal tissue such as associated with prostate cancer [2]. It is a pan-proteinase inhibitor which reacts with tumor-derived matrix metalloproteinases and prostate specific antigen (PSA). While PSA is most closely identified with prostate cancer, it is also produced by other tumors including breast [3]. When proteinases attack the "bait region" in each of the four α₂M subunits, thiol esters rupture and the protein undergoes a very large conformational change exposing receptor recognition sites in each subunit [4]. In addition to proteinases, exposure of α₂M to small primary amines or ammonia, by direct attack on the thiol esters, also induces a large conformational change exposing these receptor recognition sites [4]. These activated forms are designated α₂M*. Although GRP78 (glucose regulated protein of Mr ~78000) is primarily known as a resident endoplasmic reticulum chaperone, it appears on the cell surface of many types of malignant cells [5–10]. Binding of α₂M* to tumor cell surface GRP78 causes its autophosphorylation [11,12] activating down stream pro-proliferative and anti-apoptotic signaling cascades including RAS/MAPK and PI 3-kinase/Akt [5–10]. It has, therefore, been suggested that upregulation of cell surface GRP78 is part of the aggressive phenotype in various cancers including prostate and melanoma [8]. Consistent with this hypothesis, autoantibodies against the NH₂-terminal domain of GPR78 appear in the sera of prostate cancer and melanoma patients where they are a biomarker of aggressive behavior [13,14]. These antibodies are agonists which bind to the same region of GRP78 where α₂M* binds [15]. In contrast, monoclonal antibodies directed against the carboxyl-terminal domain of GRP78 are antagonists of α₂M* and anti-GRP78-NH₂-terminal domain antibodies in cell culture and mice [10,12,16–20]. Based
on these and other observations, we hypothesize that activated α2M functions like a growth factor and cell surface-associated GRP78 as a growth factor-like receptor [5–10].

Akt is a Ser/Thr kinase expressed as isoforms, Akt1, Akt2, and Akt3, encoded by three different genes [21]. These isoforms are nearly identical in amino acid sequence; however, their relative expression differs in various mammalian tissues [21]. Akt is the major downstream effector in the PI 3-kinase pathway and it regulates cell survival, proliferation, and metabolism. PI 3-kinase phosphorylates PIP2 to generate PIP3 which binds to Akt thus promoting its translocation to the plasma membrane where it is phosphorylated at Thr308 in the catalytic domain by PDK1 and Ser473 in the hydrophobic motif domain by mTORC2 [21–24]. Phosphorylation at both these positions is required for full activation of Akt. Akt1 is also phosphorylated co-translationally at Thr450 in the “turn” motif by mTORC2 [25–27]. The turn motif phosphorylation of Akt is essential for newly synthesized Akt to assume its proper folding and stability. Mutations of RAS which activate Akt, occur in ~30% of epithelial tumors and Akt gene amplification also occurs in a subset of human cancers. In addition, partial ablation of Akt is sufficient to inhibit the development of tumors in Pten+/− mice [28,29]. In clinical specimens of prostate cancer the overexpression and activation of Akt1 is associated with high pre-operative PSA levels, higher Gleason grades, and shorter disease relapse times [29–32]. Immunohistochemical studies show a greatly enhanced staining of p-AktS473 in poorly differentiated prostate cancer [29,32].

Mammalian target of rapamycin (mTOR), an evolutionarily conserved Ser/Thr kinase, is a key regulator of Akt phosphorylation (see reviews [33–37], and references therein). There is growing interest in targeting mTOR in the treatment of cancers such as prostate [28,33–35,36,37]. This goal may be complicated by the fact that mTOR is present in two physically and functionally distinct protein complexes designated as mTORC1 and mTORC2, respectively (see reviews 33–37, and references therein). These two complexes differ in their regulation, downstream targets, and sensitivity to the inhibitor rapamycin.

mTORC1 is a homodimer containing mTOR Raptor, and GβL; it is sensitive to rapamycin. Activated mTORC1 promotes cell growth in part by directly phosphorylating the translational regulators S6-Kinase and eIF4E binding protein (4EBP) [35]. Akt-induced phosphorylation of PRAS40 and Deptor causes their dissociation from Raptor and promotes recruitment of its downstream substrates S6-Kinase1 and 2, 4EBP1, and 4EBP2 (see reviews [33–37] and references therein). Binding of Rheb-GTP to mTORC1 results in mTORC1 activation, while binding to Rheb-GDP in its inhibition. Phosphorylation of TSC2 by Akt1 inhibits its GTPase activity leading to increased GTP loading on Rheb and consequent increase in mTORC1 activity (see reviews [33–37] and references therein). S6-Kinase regulates mTORC1 through a negative feedback signaling pathway that phosphorylates IRS and inhibits PI 3-kinase and Akt activation. The mTORC2 complex, in addition to mTOR, contains Rictor, GβL, Deptor, Protor, and mSiN1 and is insensitive to acute rapamycin inhibition (see [33–37] and references therein). However, prolonged mTORC2 exposure to rapamycin inhibits mTORC2 in some cell types [24,33–35]. Protor binds tightly to Rictor, but is not required for mTORC2 activity [33–35]. Both mTORC1 and mTORC2 are activated by growth factors including insulin and insulin like growth factor [33–35]. However, the mechanisms by which growth factors activate mTORC2 are not clearly understood [33–37]. mTORC2 associates with ribosomes and this may serve as an upstream regulatory mechanism [38,39]. Insulin stimulation of normal and cancer cells promotes mTORC2 binding to ribosomes and PI 3-kinase signaling [38,39]. GβL binds mTORC1 and mTORC2 near the kinase domain and is required for mTORC2 integrity. Deptor also binds to both mTORC1 and mTORC2 near the kinase domain and negatively regulates both mTORC1 and mTORC2 activity [33–37].

In our earlier studies we demonstrated that α2M-NH₂ binding to cell surface-associated GRP78 in prostate cancer cells triggers proliferation and anti-apoptotic signaling. Pretreatment of cells with inhibitors of these signaling pathways, pretreatment with antibodies against the carboxy-terminal domain of GRP78, or transfection of cells with dsGRP78 RNA, profoundly inhibits these signaling pathways [10,12,16–20]. Stimulation of prostate cancer cells with α2M also induces synthesis of GRP78 which in part is
mediated by the transcription factor TFII-I since cell transfection with dsTFII-I RNA significantly suppresses GRP78 upregulation [40]. This treatment also inhibits cell surface translocation of TFII-I, promoted calcium entry, and apoptotic signaling [40]. Stimulation of prostate cancer cells with α2M* also causes transcriptional and translational upregulation of PSA synthesis [10], which is secreted and complexes with α2M. Treatment of cells with α2M-PSA complex promotes DNA and protein synthesis and upregulates RAS/MAPK and PI 3 kinase/Akt signaling pathways similar to those observed in α2M-NH2 stimulated cells [10]. Like α2M-NH2, α2M-PSA, causes an increased expression of p-S6-Kinase, p-Akt T308, and p-Akt S473, the effector signaling components of activated mTORC1 and mTORC2 [10]. In view of the crucial role of mTOR signaling in tumor growth and
metastasis, and our observations on $\alpha_2\mathbf{M}^\ast$-induced prostate cancer cells growth, cell proliferation and upregulation of PI 3-kinase/Akt signaling [6,7,9,10,12,16,17,18], we have evaluated the role of mTORC1 and mTORC2 signaling pathways in prostate cancer cells stimulated with $\alpha_2\mathbf{M}^\ast$. To assess the specificity of cell surface GRP78 in $\alpha_2\mathbf{M}^\ast$-induced signaling events, we have silenced the expression of GRP78 by RNAi as well as pretreatment of cells with antibodies against the carboxyl-terminal domain of GRP78. To determine the specificity of mTORC1 in activating its downstream substrate S6-Kinase and of mTORC2 in phosphorylating AktS473, we have employed Raptor and Rictor RNAi treatment, respectively. Here we show that $\alpha_2\mathbf{M}^\ast$ activates mTORC1 kinase as determined by S6-Kinase and 4EBP1 phosphorylation and mTORC2 kinase as determined by AktS473 phosphorylation. Silencing GRP78 gene expression by RNAi or treatment with GRP78 antibodies greatly suppressed $\alpha_2\mathbf{M}^\ast$-induced activation of mTORC1 and mTORC2 in these cells. These studies further demonstrate the role of circulating $\alpha_2\mathbf{M}$, a pan proteinase inhibitor, as a growth factor and of the chaperone GRP78 as a growth factor receptor important for cellular growth in pathophysiological environments.

Materials and Methods

Materials

Culture media were purchased from Invitrogen. Receptor-recognized $\alpha_2\mathbf{M}^\ast$ was produced by reaction of $\alpha_2\mathbf{M}$ with methylamine as described previously [9]. Antibodies against mTOR, p-mTORS2481, GβL, p-TSC2T1462, Rheb, S6-Kinase, p-S6-KinaseT24/28, p-S6-KinaseT389, p-S6-KinaseT229, 4EBP1, p-4EBP1T37/46, Akt1, p-AktT308, p-AktS473 were purchased from Cell Signaling Technology (Danvers, MA). Antibodies against Raptor, Rictor, Protor were from Santa Cruz Biotechnology (Santa Cruz, CA). Anti-mSin1 antibody was from Bethyl Laboratories, Inc (Montgomery, TX). Anti-actin antibody was from Sigma (St. Louis, MO). PHAS-1 (4EBP1) was from Stratagene. GST-S6-Kinase construct was expressed and purified according to the protocol provided by Prof Blenis (Harvard University Medical School). Antibodies against the carboxyl-terminal domain of GRP78 were from Aventa Biopharmaceutical Corp (San Diego, CA). [3H]Leucine (specific activity 115.4 Ci/mmol) and [33P]-γ-ATP (specific activity 3000 Ci/mmol) were from Perkin-Elmer Life Sciences. Rapamycin and LY294002 were from Biomol (Plymouth, PA). All other materials were of analytical grade and were procured locally.

![Figure 3](link)
Prostate Cancer Cell Lines

In an earlier report, we studied two prostate cancer lines 1-LN and DU-145, which express GRP78 on their cell surface and the PC-3 prostate cancer line, which expresses little GRP78 on its cell surface [10,12]. The highly metastatic 1-LN cell line is derived from the PC-3 line and was a kind gift of Dr. Phillip Walther (Duke University Medical Center, Durham, NC). The PC-3 and DU-145 cell lines were obtained from the American Type Culture Collection. The 1-LN cell line was derived from a flank tumor model in which PC-3 cells were implanted in nude mice. The cells were obtained from a lymph node metastasis in these mice. Because this cell line expresses GRP78 on the cell surface and none or very little LRP, we have extensively used this line for studying the role of cell surface GRP78 in cancer cell growth. This cell line is available to any investigator who wishes to use them. Depending on the experiments, these cells were grown either in 6, 12, 24- or 48-well plates to confluence in RPMI medium containing 10% fetal bovine serum, 2 mM glutamine, 12.5 units/ml penicillin, 6.5 μg/ml streptomycin and 10 nM insulin (RPMI-S) in a humidified CO2 (5%) incubator. At 90% confluency the medium was aspirated. The monolayers washed with ice-cold HHBSS, a fresh volume of medium added and the cells used for the experiments described below.

Determination of the Effects of \(\alpha_{2}M^{+} \) on Protein Synthesis in 1-LN Cells

1-LN cells (300×10^3 cells/well) in 48 well plates were grown in RPMI-S medium in a humidified CO2 (5%) incubator at 37°C. At about 90% confluency, the medium was aspirated a volume of RPMI-S was added followed by the addition of either buffer or \(\alpha_{2}M^{+} \) (50 pM). To each well was added [3H] leucine (2 μCi/ml) and cells were incubated overnight. The reactions were terminated by aspirating the medium and monolayers washed thrice with ice-cold 5% TCA, followed by three washings with ice-cold PBS. Cells were lysed in a volume of 1 N NaOH (40°C/2 h), protein was estimated and the lysates were counted in a liquid scintillation counter. In experiments where modulation of \(\alpha_{2}M^{+}\)-induced protein synthesis was studied, cells were pretreated with the PI 3-kinase inhibitor LY294002 (20 μM/20 min), mTOR inhibitor

Figure 4. Effect of treatment of 1-LN prostate cancer cells with \(\alpha_{2}M^{+} \) (50 pM) for varying periods of time (Panel A) or concentration (Panel B) on expression of p-Akt\(^{308} \) (O) and p-Akt\(^{3473} \) (●) as determined by Western blotting. A representative immunoblot of p-Akt\(^{308} \) and p-Akt\(^{3473} \) of three to four experiments is shown below the graph. The expression of these proteins is shown in arbitrary fluorescence units and is expressed as the mean ± SE from three to four experiments. The protein loading controls for Panel A and Panel B are shown below the respective immunoblots.

doi:10.1371/journal.pone.0051735.g004

Prostate Cancer Cell Lines

In an earlier report, we studied two prostate cancer lines 1-LN and DU-145, which express GRP78 on their cell surface and the PC-3 prostate cancer line, which expresses little GRP78 on its cell surface [10,12]. The highly metastatic 1-LN cell line is derived from the PC-3 line and was a kind gift of Dr. Phillip Walther (Duke University Medical Center, Durham, NC). The PC-3 and DU-145 cell lines were obtained from the American Type Culture Collection. The 1-LN cell line was derived from a flank tumor model in which PC-3 cells were implanted in nude mice. The cells were obtained from a lymph node metastasis in these mice. Because this cell line expresses GRP78 on the cell surface and none or very little LRP, we have extensively used this line for studying the role of cell surface GRP78 in cancer cell growth. This cell line is available to any investigator who wishes to use them. Depending on the experiments, these cells were grown either in 6, 12, 24- or 48-well plates to confluence in RPMI-S medium containing 10% fetal bovine serum, 2 mM glutamine, 12.5 units/ml penicillin, 6.5 μg/ml streptomycin and 10 nM insulin (RPMI-S) in a humidified CO2 (5%) incubator. At 90% confluency the medium was aspirated. The monolayers washed with ice-cold HHBSS, a fresh volume of medium added and the cells used for the experiments described below.

Determination of the Effects of \(\alpha_{2}M^{+} \) on Protein Synthesis in 1-LN Cells

1-LN cells (300×10^3 cells/well) in 48 well plates were grown in RPMI-S medium in a humidified CO2 (5%) incubator at 37°C. At about 90% confluency, the medium was aspirated a volume of RPMI-S was added followed by the addition of either buffer or \(\alpha_{2}M^{+} \) (50 pM). To each well was added [3H] leucine (2 μCi/ml) and cells were incubated overnight. The reactions were terminated by aspirating the medium and monolayers washed thrice with ice-cold 5% TCA, followed by three washings with ice-cold PBS. Cells were lysed in a volume of 1 N NaOH (40°C/2 h), protein was estimated and the lysates were counted in a liquid scintillation counter. In experiments where modulation of \(\alpha_{2}M^{+}\)-induced protein synthesis was studied, cells were pretreated with the PI 3-kinase inhibitor LY294002 (20 μM/20 min), mTOR inhibitor

Figure 5. Characterization of protein constituents of Raptor and Rictor immunoprecipitates of 1-LN cells treated with \(\alpha_{2}M^{+} \). A representative immunoblot from three to four experiments of mTOR, Raptor, GβL, mSIN1, Rictor and Protor presence in these respective immunoprecipitates is shown. The cells were treated with: (1) buffer and (2) 50 μM of \(\alpha_{2}M^{+} \) for 25 min.

doi:10.1371/journal.pone.0051735.g005
rapamycin (100 nM/15 min) or actinomycin D (5 μg/ml/20 min), before adding α2M* (50 pM/ml/overnight). Other details of quantifying [3H] leucine incorporation into cellular proteins were as described [41].

Effects of 1-LN Cell Incubation with α2M* on p-mTORS2481, p-TSC2T1462, p-4EBP1T37/46, Rictor, Raptor, GβL, p-S6-Kinase, p-4EBP1, p-AktT308, and p-AktS473

1-LN cells (300 x 10^6 cells/well) in RPMI-S medium in 6 well plates were incubated as above. At 90% confluency, the medium was aspirated, a volume of RPMI-S medium added to each well. In one set of experiments, cells were stimulated with 50 pM of α2M* and incubated for various times at 37°C in a humidified CO2 (5%) incubator. The reactions were terminated by aspirating the medium, a volume of lysis Buffer A containing 50 mM Tris·HCl (pH 7.5), 120 mM NaOH, 0.1% NP40, 25 mM sodium fluoride, 1 mM sodium pyrophosphate, 0.1 mM sodium orthovanadate, 1 mM PMSF, 1 mM benzamidine, and leupeptin (10 μg/ml) added and placed over ice for 15 min. The lysates were transferred into Eppendorf tubes and centrifuged at 1000 rpm for 5 min at 4°C to remove cell debris. The supernatants were removed to new tubes and their protein contents determined [42]. To an equal amount of protein, a volume of 4× sample buffer added, tubes boiled for 5 min and centrifuged. The samples were electrophoresed in polyacrylamide gels (12.5%, 10% or 4-20% gradient gels as required). The protein bands in gels were transferred to Hybond-P membranes and in separate experiments membranes immunoblotted with antibodies against p-mTORS2481, p-TSC2T1462, Rictor, Raptor, GβL, Rb, Rheb, p-S6-Kinase, p-4EBP1, p-AktT308, and p-AktS473 for 16 h at 4°C with rotation. The detection and quantification of immunoblots for the respective antigens were performed by ECF and Storm 860 phosphorimager. The respective membranes were re-probed for the protein loading controls, unphosphorylated target protein or actin, in this and the following studies. The specificity of antibodies employed here and in the experiments described below was determined by treating the cells with non-immune antibodies and cell lysates processed as above. Under the experimental conditions, no reactivity of these controls was observed [10,43,44].

Characterization of the Components of mTORC1 and mTORC2 Complexes in 1-LN Prostate Cancer Cells Stimulated with α2M*

1-LN cells (3 x 10^6 per well in 6 well plates) incubated overnight in RPMI-S medium were washed twice with ice-cold HBSS and a volume of RPMI-S medium added to each well. After temperature equilibration, cell in the wells were exposed to either buffer or α2M* (50 pM/25 min) and incubated as above. Reactions were stopped by aspirating the medium and a volume of CHAPS lysis buffer (Buffer B) was added and cells lysed over ice for 15 min. The lysates were transferred to separate Eppendorf tubes, micro-centrifuged (1000 rpm/5 min/4°C) and supernatants used for protein estimation and immunoprecipitation. In separate experiments, equal amounts of lysate protein (200–250 μg) were used for immunoprecipitation with mTOR antibodies (1:50) or Raptor antibodies (1:50), followed by the addition of 40 μl of protein A agarose and contents incubated with rotation overnight at 4°C. mTOR and Raptor immunoprecipitates were recovered by micro-centrifugation (2500 rpm/3 min/4°C). To these immunoprecipitates, 40 μl of reaction buffer containing 20 mM Hepes pH 7.2, 10 mM MgCl2, 50 μM ATP and 3 μg substrate peptide was added. The reactions were started by adding 5 μCi of [3P]-γ-ATP. The contents were incubated for 15 min at 30°C in a shaking water bath. The reactions were stopped by adding a volume of 4× sample buffer and tubes boiled for 5 min, centrifuged, electrophoresed in 12.5% gel transferred to membranes and membrane autoradiographed. Phosphorylated S6Kinase substrate peptide bands were visualized and quantified as above. In experiments where the sensitivity of mTORC1 kinase in mTOR and Raptor immunoprecipitates towards PI 3-kinase inhibitor LY294002 (20 μM/25 min) and mTORC1 inhibitor rapamycin (100 nM/15 min) was determined, the cells were pretreated with these inhibitors before stimulation with α2M* (50 pM/25 min/37°C) and cell lysates processed as above. Other details for autoradiographic visualization of
Figure 6. α2M*-induced activation of mTORC1 as measured by phosphorylation of S6 Kinase (■) and 4EBP1 (□) in prostate cancer cells. The phosphorylation of S6-Kinase and 4EBP1 was determined by [33P]-ATP incorporation and autoradiography (AR) and by immunoblotting (IB). Panel A. A bar diagram showing α2M*-induced activation of mTORC1 and its modulation by LY294002 and rapamycin in mTOR immunoprecipitates as determined by autoradiography. The bars and lanes in the autoradiographs are: (1) buffer; (2) α2M* (50 pM/25 min); (3) LY294002 (20 μM/20 min) then α2M* (50 pM/25 min); and (4) rapamycin (100 nM/15 min) then α2M* (50 pM/25 min). A representative autoradiograph (AR) of three individual experiments is shown below the bar diagram. The phosphorylation of S6-Kinase (■) and 4EBP1 (□) is expressed in arbitrary fluorescence units and is the mean ± from three independent experiments. Also shown below AR is a representative immunoblot (IB) of three experiments of p-S6-Kinase and p-4EBP1 obtained from mTOR immunoprecipitates of cells treated as in autoradiographic analysis in Panel A. Panel B. A bar diagram showing the effect of silencing GRP78 expression by RNAi on α2M*-induced activation of mTORC1 in mTOR.
phosphorylation of S6-Kinase substrate peptide were as above. We also determined α2M*-induced activation of mTORC1 kinase by assaying the phosphorylation of S6-Kinase in vivo in mTOR and Raptor immunoprecipitates by Western blotting. Experimentation details were identical to those described above except that to mTOR and Raptor immunoprecipitates isolated from cells treated as above, was added a volume of 4× sample buffer, tubes boiled, centrifuged, electrophoresed (12.5% gel), transferred to membrane, immunoblotted with p-S6-Kinase 125I/235I antibody and protein bands quantified as above. In experiments where the effect of pretreatment of cells with antibodies directed against the carboxyl-terminal domain of GRP78 on α2M*-induced phosphorylation of S6-Kinase was determined, the antibody (3 μg/ml/60 min) was added 60 min before α2M* addition. Other details were as above.

Determination of mTORC1 Kinase Activity in mTOR and Raptor Immunoprecipitates Towards 4EBP1 Phosphorylation

α2M*-induced phosphorylation of 4EBP1 in prostate cancer cells was determined in mTOR and Raptor immunoprecipitates of 1-LN, DU-145, or PC-3 cells [43]. These cells (3×10⁶ cells/ per well in 6 well plates) were incubated in RPMI-S medium overnight, washed twice with ice-cold HHBSS and a volume of RPMI-S medium added to each well. After temperature equilibration, cell in the wells were exposed to either buffer or α2M* (50 pM/25 min) and incubated as above. Reactions were stopped by aspirating the medium and a volume of CHAPS lysis buffer (Buffer B) was added and cells lysed over ice for 15 min. The lysates were transferred to separate Eppendorf tubes, micro-centrifuged (1000 rpm/5 min/4°C) and supernatants used for protein estimation and immunoprecipitation. In separate experiments, equal amounts of lysate protein (200–250 μg) were immunoprecipitated with mTOR antibodies (1:50) or Raptor antibodies (1:50), followed by the addition of 40 μl of protein G agarose and contents incubated with rotation overnight at 4°C. mTOR and Raptor immunoprecipitates were recovered by centrifugation (2000 rpm/3 min/4°C) and washed twice with lysis buffer B and micro-centrifuged (2500 rpm/5 min/4°C). Respective immunoprecipitates were suspended in 40 μl of kinase buffer containing 10 mM Hepes pH 7.4, 50 mM NaCl, 50 mM β-glycerophosphate, 0.1 mM EDTA, 1 mM DTT, 20 mM MnCl₂, 200 μM ATP and 4 μg PHAS. The reactions were initiated by adding 5 μCi of [32P]γ-phosphate. Tubes incubated in a shaking water bath for 15 min at 30°C. The reactions were stopped by adding a volume of 4× sample buffer, tubes boiled for 5 min, and supernatants electrophoresed on 12.5% acrylamide gels. The protein bands were transferred to membranes and membranes autoradiographed. Phosphorylated PHAS peptide bands were visualized and quantified as above. In experiments where the sensitivity of mTORC1 kinase in mTOR and Raptor immunoprecipitates towards PI 3-kinase inhibitor LY294002 (20 μM/25 min) and mTORC1 inhibitor rapamycin (100 nM/15 min) was determined, the cells were pretreated with these inhibitors before stimulation with α2M* (50 pM/25 min/37°C) and cell lysates processed as above. Other details are as described above. We also determined α2M*-induced activation of mTORC1 kinase by assaying the phosphorylation of 4EBP1 in vivo in mTOR and Raptor immunoprecipitates by Western blotting. Experimentation details were identical to those described above except that to mTOR and Raptor immunoprecipitates isolated from cells treated as above was added a volume of 4× sample buffer added, tubes boiled, centrifuged, electrophoresed (12.5% gel), transferred to membrane, immunoblotted with p-4EBP1 (T37/46) antibody, and protein bands quantified as above [43].

Determination of α2M*-induced Activation of mTORC2 in mTOR and Rictor Immunoprecipitates of Cancer Cells

1-LN, DU-145, and PC-3 prostate cancer cells (3×10⁶ cells/ per well in 6 well plates) incubated overnight in RPMI-S medium were washed twice with ice-cold HHBSS and a volume of RPMI-S medium added to each well. After temperature equilibration, cell in the respective wells were exposed to either buffer or α2M* (50 pM/25 min) and incubated as above. Reactions were stopped by aspirating the medium and a volume of CHAPS lysis buffer (Buffer B) was added and cells lysed over ice for 15 min. The lysates were transferred to separate Eppendorf tubes, centrifuged (1000 rpm/3 min/4°C) and supernatants used for protein estimation and immunoprecipitation. In separate experiments, equal amounts of lysate protein (200–250 μg) were immunoprecipitated with anti-mTOR antibodies (1:50) or Rictor antibodies (1:50), followed by the addition of 40 μl of protein A agarose, and the contents
Figure 7. Effect of silencing Raptor expression by RNAi on phosphorylation of S6 kinase and 4EBP1 in 1-LN cells stimulated with 2M* and insulin. Panel A. Bar diagram showing levels of Raptor in cells transfected with Raptor dsRNA and stimulated with 2M* or insulin. The bars are: (1) lipofectamine + buffer; (2) lipofectamine + 2M* (50 pM/25 min); (3) lipofectamine + insulin (200 nM/20 min); (4) scrambled dsRNA (100 nM/48 h) + insulin; (5) Raptor dsRNA (100 nM/48 h); (6) Raptor dsRNA (100 nM/48 h) then 2M*; (7) Raptor dsRNA (100 nM/48 h) then insulin (200 nM/20 min); (8) rapamycin (100 nM/20 min) then insulin. Values are mean ± SE from three to four independent experiments and are expressed as arbitrary fluorescence units. Values significantly different at 5% level for 2M*, insulin and scrambled dsRNA treated cells are indicated by an asterisk (*). A representative immunoblot of Raptor from three to four experiments along with its protein loading control actin is shown below the bar diagram. Panel B. A bar diagram showing mTORC1 activation in cells treated with 2M* and insulin and effect of transfection with Raptor dsRNA on its activation as measured by assaying phosphorylation of S6-kinase by autoradiography. The bars and lanes in autoradiograph are: (1) lipofectamine + buffer; (2) lipofectamine + 2M* (50 pM/25 min); (3) Raptor dsRNA (100 nM/48 h); (4) Raptor dsRNA + 2M*; (5) lipofectamine + insulin (200 nM/20 min); (6) scrambled dsRNA (100 nM/48 h) + insulin; (7) Raptor dsRNA (100 nM/20 min) then insulin; (8) rapamycin (100 nM/20 min) then insulin; (9) LY294002 (20 mM/20 min) then insulin; (10) rapamycin (100 nM/20 min) then insulin. A representative autoradiograph of three experiments of S6-kinase phosphorylation is shown below the bar diagram. Values are the mean ± SE from three experiments and are expressed in arbitrary units. Values significantly different at 5% levels for 2M*, insulin or scrambled dsRNA are indicated by an asterisk (*). Panel C. A bar diagram showing levels of S6-kinase phosphorylated at T389 (p-S6K^T389), T229 (p-S6K^T229) and T235/236 (p-S6K^T235/236) in cells stimulated with 2M* or insulin and transfected with Raptor dsRNA. The bars are as in Panel A. Representative immunoblots of p-S6-kinase^T389, p-S6-kinase^T229 and p-S6-kinase^T235/236 of three experiments along with its protein loading control is shown below the bar diagram. Values are the mean ± SE from three experiments and are expressed in arbitrary units. Values significantly different at 5% level for 2M*, insulin or scrambled dsRNA are indicated by an asterisk (*). Panel D. A bar diagram showing phosphorylation levels of 4EBP1, in cells treated with 2M* and insulin or transfected with Raptor dsRNA. The bars are as in Panel A. A representative immunoblot of p-4EBP1 of three experiments along with its protein loading control is shown below the bar diagram. Values are the mean ± SE from three experiments and are expressed in arbitrary fluorescence units. Values significantly different at 5% level for 2M*, insulin or scrambled dsRNA-treated cells are indicated by an asterisk (*).

doi:10.1371/journal.pone.0051735.g007
incubated with rotation overnight at 4°C. mTOR and Rictor immunoprecipitates were washed with lysis Buffer B containing 0.5 M NaCl, and Tris·HCl (pH 7.4) supplemented with 1 mM DTT, 1 mM PMSF, and 1 mM benzamidine. The tubes were centrifuged at 2500 rpm for 5 min at 4°C. To the immunoprecipitates, 40 µl of kinase buffer containing 50 mM Tris·HCl (pH 7.5), 10 mM MgCl2, 1 mM DTT, 1 mM PMSF, 1 mM benzamidine and 20 µg/ml leupeptin was added followed by the addition of 30 µM of AktS473 kinase substrate (NH2-GGEEEEYFEL VKKKKCOOH (ZAK 3 tide) RRPHFPQ-FSYSA-COOH) to the respective tubes. The peptide (NH2-GGEEEEYFEL VKKKKCOOH (ZAK 3 tide) served as the control. The reaction was initiated by adding 50 µM ATP and 5 µCi of [33P]-γ-ATP in each tube and the tubes incubated for 30 min at 30°C in a shaking water bath. The reaction was stopped by the addition of 5 µl of 0.5 M EDTA in each tube, the tubes centrifuged at 3000 rpm for 3 min, 40 µl of each supernatant applied on pH1 phosphocellulose paper (Whatman, NJ) allowed to dry and papers washed four times each for 3 min by immersing them in a liter of 1 M phosphoric acid for 3 min. The papers were rinsed with acetone and their radioactivity was counted in a liquid scintillation counter. In preliminary experiments the kinase activities of AktS473, kinase towards control Zak 3 peptide were always 50–60% of buffer control. Hence, control peptide activities are not being shown. Experiments were performed to study the sensitivities of mTORC2 kinase activities in mTOR or Rictor immunoprecipitates with respect to the PI 3-kinase inhibitor LY294002 (20 µM/25 min) and the mTORC1 inhibitor rapamycin (100 nM/15 min). These cells were pretreated with these inhibitors before stimulation with 2M* (60 min for 2M* and S473) or 2M* (50 µM/25 min) then 2M* and (4) scrambled dsRNA (100 nM/48 h) then 2M* (5) antibodies directed against the carboxyl-terminal domain of GRP78 (3 µg/ml/60 min) then 2M*. Immunoblot of p-AktS473 under bar 5 is not being shown since this has been reported earlier (18). Values are from four independent experiments and are expressed as fmol [33P]-γ-ATP incorporated/mg cell protein. Values significantly different for 2M*-treated cells are indicated by an asterisk (*) (Fig. 8). A bar diagram showing 2M*-induced phosphorylation of Akt at T308 (■) and S473 (□) in kinase assays of mTOR immunoprecipitates. The bars and lanes in the immunoblot are: (1) buffer; (2) 2M* (50 µM/25 min); (3) LY294002 (20 µM/25 min) then 2M*; (4) scrambled dsRNA (100 nM/20 min) then 2M*; (5) antibodies directed against the carboxyl-terminal domain of GRP78 (3 µg/ml/60 min) then 2M*. Values are the mean ± SE from four independent experiments and are expressed as fmol [33P]-γ-ATP incorporated per mg cell protein. Values significantly different at the 5% level for 2M*-treated cells are indicated by an asterisk (*). Panel B. A bar diagram showing 2M*-induced phosphorylation of Akt at T308 (■) and S473 (□) in kinase assays of Rictor immunoprecipitates. The bars and lanes in the immunoblot are: (1) buffer; (2) 2M* (50 µM/25 min); (3) LY294002 (20 mM/25 min) then 2M*; (4) scrambled dsRNA (100 nM/48 h) then 2M* (5) antibodies directed against the carboxyl-terminal domain of GRP78 (3 µg/ml/60 min) then 2M*. Values are the mean ± SE from four independent experiments and are expressed as fmol [33P]-γ-ATP incorporated per mg cell protein. Values significantly different for 2M*-treated cells are indicated by an asterisk (*). Panel C. A bar diagram showing 2M*-induced phosphorylation of Akt at T308 (■) and S473 (□) residues in kinase assays of mTOR immunoprecipitates and its modulation subsequent to suppression of GRP78 expression by RNAi. The bars and lanes in immunoblot are: (1) lipofectamine + buffer; (2) lipofectamine + 2M* (50 µM/25 min); (3) GRP78 dsRNA (100 nM/48 h) then 2M*; (4) scrambled dsRNA (100 nM/48 h) then 2M* (50 µM/25 min). Values are the mean ± SE from four independent experiments and are expressed as fmol [33P]-γ-ATP incorporated per mg cell protein. Values significantly different for 2M* and scrambled dsRNA + 2M*-treated cells are indicated by an asterisk (*). Panel D. A bar diagram of Akt phosphorylation of S473 in kinase assays and a p-AktS473 immunoblot showing 2M*-induced phosphorylation of Akt S473 in Rictor immunoprecipitates of 1-LN cells and its modulation by silencing GRP78 expression by RNAi. The bars are: (1) lipofectamine + buffer; (2) lipofectamine + 2M* (50 µM/25 min); (3) GRP78 dsRNA (100 nM/48 h) then 2M*; (4) scrambled dsRNA (100 nM/48 h) and (5) antibodies against the carboxyl-terminal domain in GRP78 (3 µg/ml/60 min) then 2M*. Immunoblot of p-AktS473 under bar 5 is not being shown since this has been reported earlier (18). Values are from four independent experiments and are expressed as fmol [33P]-γ-ATP incorporated per mg cell protein. Values significantly different for 2M* and scrambled dsRNA + 2M*-treated cells are indicated by an asterisk (*). Panel E. A bar diagram showing 2M*-induced increased phosphorylation of Akt at S473 in kinase assays of Rictor immunoprecipitates of 1-LN (■) and DU-145 cells (□). The bars are: (1) buffer; (2) 2M* (50 µM/25 min); (3) Rapamycin (100 nM/15 min) then 2M*; (4) LY294002 (25 µM/25 min) then 2M*; (5) antibodies directed against the carboxyl-terminal domain of GRP78 (3 µg/ml/60 min) then 2M*. Values are the mean ± SE from three experiments and are expressed as fmol [33P]-γ-ATP incorporated/mg cell protein. Values significantly different at the 5% level for 2M*-treated cells are indicated by an asterisk (*), Panel F. Immunoblot showing 2M*-induced increased protein levels of p-AktS473 in Rictor immunoprecipitates of DU-145 prostate cancer cells but not in PC-3 cells. The lanes in the immunoblots are: (1) buffer-treated and (2) 2M* (50 µM/25 min)-treated.

doi:10.1371/journal.pone.0051735.g008

The Effect of Silencing GRP78 Gene Expression by RNAi on 2M*-induced Activation of mTORC1 and mTORC2 Kinase Activities

To determine the requirement of cell surface GRP78 for 2M*-induced upregulation of mTORC1 activities, we silenced GRP78 expression by RNAi. In our earlier publications, we have used two GRP78 targeting mRNA sequences for silencing the gene expression and found identical effects on GRP78 expression as well as downstream signaling [8]. In our earlier experiments, we found that transfection of cells with GRP78 dsRNA downregulates both the total cellular GRP78 pool and cell surface-localized GRP78 by about 60–65% ([12] and references therein). Therefore in this investigation we have used only one GRP78 targeting mRNA sequence for silencing the gene expression of GRP78. The chemical synthesis of dsRNA homologous in sequence to the target GRP78 5'AAAA ATA CAG CAA TTA GTA AAG-3' (Swiss Prot GRF primary sequence accession number P11021) were performed by Ambion (Austin TX). For making GRP78 dsRNA sense (5'-AAU ACA GCA AUU AGU AAA GTT-3') and antisense (5'-CUU UAG UAA UUG CUG UAU UTT-3') oligonucleotides were annealed by Ambion. Transfection of cells with GRP78 dsRNA was performed as described [8–10]. Briefly, confluent cell monolayers (1.5x10^6 cells/well in 6 well plates) were incubated as above and transfected with 75 nM annealed GRP78 dsRNA and control cells were

Cell Surface GRP78, mTORC1, and mTORC2 Activation

PLOS ONE | www.plosone.org 11 December 2012 | Volume 7 | Issue 12 | e51735

doi:10.1371/journal.pone.0051735.g008
transfected with lipofectamine as described previously [8–10]. Forty-eight h after transfection, the control cells were stimulated with either buffer or a2M* (50 pM/25 min). Cells transfected with scrambled dsRNA (75 nM/48 h) and treated with a2M* were used as the control. The reaction was terminated by aspirating the medium, and cells lysed in lysis buffer B. Equal amounts of lysate protein was immunoprecipitated with anti-Raptor antibodies. mTORC1 kinase activities in washed Raptor immunoprecipitates were determined by phosphorylation of S6-Kinase and 4EBP1. The effect of silencing GRP78 gene expression on mTORC2 kinase activity in mTOR immunoprecipitates and Rictor immunoprecipitates was also determined by assaying AktS473 phosphorylation.

Figure 9. Rictor and its regulation by a2M* and insulin in 1-LN cells. Panel A. A bar diagram showing levels of Rictor in 1-LN cells treated with (1) lipofectamine + buffer; (2) lipofectamine + a2M* (50 pM/25 min); (3) lipofectamine + insulin (200 nM/20 min); (4) scrambled dsRNA (100 nM/48 h); (5) Rictor dsRNA (100 nM/48 h); (6) Rictor dsRNA (100 nM/48 h) + a2M; (7) Rictor dsRNA (100 nM/48 h) and (8) Rictor dsRNA + insulin. A representative immunoblot of Rictor from three experiments along with the protein loading control is shown below the bar diagram. Values are the mean ± SE from three experiments and are expressed in arbitrary fluorescence units. Values significantly different at the 5% level for a2M*, insulin- and scrambled dsRNA-treated cells are indicated by an asterisk (*).

Panel B. A bar diagram showing the effect of silencing Rictor expression by RNAi on phosphorylation of Akt at S473 in kinase assays of Rictor immunoprecipitates of 1-LN cells treated with a2M* (50 pM/25 min) (■); or insulin (200 nM/20 min) (□). The bars are: (1) lipofectamine + buffer; (2) lipofectamine + a2M or insulin; (3) Rictor dsRNA (100 nM/48 h); (4) Rictor dsRNA (100 nM/48 h) then a2M* or insulin; (5) scrambled dsRNA (100 nM/48 h) and (6) scrambled dsRNA + a2M or insulin. Values are the mean ± SE from three independent experiments and are expressed as fmol [33P]-γ-ATP incorporated/mg cell protein values significantly different at 5% level for a2M/insulin/scrambled dsRNA-treated cells are indicated by an asterisk (*).

Panel C. Immunoblot showing p-AktS473 in 1-LN cells treated as in Panel A. Values significantly different at the 5% level for a2M* and insulin-treated are indicated by an asterisk (*).

doi:10.1371/journal.pone.0051735.g009
To further demonstrate that α2M-induced phosphorylation of Akt at S473 is brought by mTORC2, we silenced Rictor gene expression by RNAi to disrupt the assembly of mTORC2 complex and thus suppress mTORC2 kinase activation. Annealed and validated small interfering RNA of the gene was purchased from Ambion (small interfering RNA ID S226002) of the sense sequence (5'-3') GGG UUA GUU UAC AAU CAG Ctt and antisense (5'-3') GCU GAU UGU AAA CUA ACCtt. The cancer cells were transfected with 100 nM of annealed Rictor dsRNA and control cells were transfected with lipofectamine as described previously. In preliminary experiments we found that transfection of cells with Rictor dsRNA was maximally effective at 75–100 nM and this knocked down Rictor by about 60–65% as measured by Rictor mRNA (data not shown) and protein levels. Forty eight h after transfection, the control cells were stimulated with either buffer α2M* (50 pM/25 min) or insulin (200 nM/20 min). The bars are: (1) lipofectamine + buffer; (2) lipofectamine + α2M* (50 pM/25 min); (3) Raptor dsRNA (100 nM/48 h) then α2M*; (4) Rictor dsRNA (100 nM/48 h) then α2M*; (5) lipofectamine + insulin; (6) Raptor dsRNA (100 nM/48 h), then insulin (200 nM/20 min); (7) Rictor dsRNA (100 nM/48 h) + insulin; and (8) scrambled dsRNA (100 nM/48 h) then insulin. Values are mean ± SE from three experiments and are expressed as fmol [33P]-γ-ATP incorporated/mg cell protein. Panel B. Levels of p-AktT308 and p-AktS473 in cell lysates of 1-LN cells treated with α2M* (50 pM/25 min) or insulin (200 nM/15 min). Representative immunoblots of p-AktT308 and p-AktS473 from three experiments of cells transfected with Raptor dsRNA or Rictor dsRNA as above are being shown.

doi:10.1371/journal.pone.0051735.g010

Measurement of AktS473 Phosphorylation in Rictor Immunoprecipitates of 1-LN Cells Transfected with Rictor dsRNA

To further demonstrate that α2M-induced phosphorylation of Akt at S473 is brought by mTORC2, we silenced Rictor gene expression by RNAi to disrupt the assembly of mTORC2 complex and thus suppress mTORC2 kinase activation. Annealed and validated small interfering RNA of the gene was purchased from Ambion (small interfering RNA ID S226002) of the sense sequence (5'-3') GGG UUA GUU UAC AAU CAG Ctt and antisense (5'-3') GCU GAU UGU AAA CUA ACCtt. The cancer cells were transfected with 100 nM of annealed Rictor dsRNA and control cells were transfected with lipofectamine as described previously. In preliminary experiments we found that transfection of cells with Rictor dsRNA was maximally effective at 75–100 nM and this knocked down Rictor by about 60–65% as measured by Rictor mRNA (data not shown) and protein levels. Forty eight h after transfection, the control cells were stimulated with either buffer α2M* (50 pM/25 min/37 °C) or insulin (200 nM/15 min/37 °C). Cells for the negative control were transfected with scrambled dsRNA (100 nM/48 h, Ambion) and then stimulated with either buffer, α2M* or insulin as above. The reactions were terminated by aspirating the medium and cells were lysed in a volume of Buffer B as described above. Equal amounts of lysate proteins was employed for immunoprecipitating Rictor with anti-Rictor antibodies. Rictor immunoprecipitates were used for measuring phosphorylation of Akt at S473. Equal amounts of lysate protein were also used for determining p-AktS473 by Western blotting.

Measurement of S6-Kinase Phosphorylation in Raptor Immunoprecipitates of 1-LN Cells Transfected with Raptor dsRNA

To further ascertain the specificity of mTORC1 in α2M*-induced the phosphorylation of S6-Kinase, we silenced Raptor gene expression by RNAi, which would disrupt the assembly of mTORC1 complex and thus suppress the phosphorylation of its downstream target S6-Kinase. Insulin has been widely used in studies on mTORC1 and mTORC2 signaling in various contexts, therefore, we have used insulin as a positive control in these studies. Annealed small interfering RNA of the gene was purchased from Sigma of the sense sequence (5'-3') CUC AAC AAA UGU UUG CAG At (ID #SAS1_Hs01_00048387) and antisense (5'-3') UCU GCA AAG AUU UGU UGA Gets (ID #SAS1_Hs)_1_00048307_AS. The cancer cells were transfected with 100 nM of annealed Raptor and control cancer cells
were transfected with lipofectamine as described previously. In preliminary experiments we found that transfection of cells with Raptor dsRNA (100 nM/48 h) knocked down α2M-stimulated Raptor pool by about 60–70% as judged by its mRNA (data how shown) and protein levels. Forty eight h after transfection the control cells were stimulated with either buffer, α2M (50 pM/20 min/37°C) or insulin (200 nM/15 min/37°C). Cells for the negative control were transfected with scrambled dsRNA.

Figure 11. A model summarizing the results of this study. The abbreviation CTGRP78 Ab refers to antibodies directed against the COOH-terminal domain of GRP78. S6K is S6-Kinase. doi:10.1371/journal.pone.0051735.g011
(100 nM/48 h, Ambion) and then stimulated with either buffer, α2M (50 pM/20 min/37°C) or insulin (200 nM/15 min/37°C). Equal amounts of lysate protein were used for immunoprecipitati-
ing Raptor with Raptor antibodies as described above. Raptor immunoprecipitates were used for measuring phosphorylation of S6-Kinase as described above. Equal amounts of lysate protein were also used for determining levels of Raptor, p-S6-Kinase308,
p-S6-Kinase229, p-S6-Kinase235/236 and p-4EBP137/46 by Western blotting in cells transfected with Raptor dsRNA as described above. In experiments where we studied the dependence of AktT308 and AktS473 phosphorylation described above. In experiments where we studied the dependence of AktT308 and AktS473 phosphorylation on mTORC1 inhibition rapamycin, and PI 3-kinase inhibitors. Determination of cells with the transcriptional inhibitor actinomycin D,
downs stream targets. We first examined the role of mTORC1 on protein synthesis in 1-LN prostate cancer cells stimulated with varying concentrations of α2M* and its sensitivity to the mTORC1 inhibitor rapamycin and PI 3-kinase inhibitors, wortmannin and LY294002 (Figure 1). α2M* treatment of cells caused a dose-dependent increase in protein synthesis which was maximal between 50–100 pM, and plateaued thereafter (Figure 1A). These results are similar to those we have observed on α2M*-induced macromolecular synthesis in prior studies [6,10,46–47]. Treatment of cells with the transcriptional inhibitor actinomycin D, mTORC1 inhibitor rapamycin, and PI 3-kinase inhibitors wortmannin and LY294002 before α2M* treatment abrogated α2M*-induced increase in protein synthesis in these cells (Figure 1B). These results show that α2M*-induced increase in prostate cancer cells protein synthesis is regulated by mTORC1 and not by mTORC2. These results are similar to those reported in the literature [6,10,46,47].

Upregulation of Components of the mTORC1 Complex in 1-LN Cells Treated with α2M *
Akt, ERK, and RSK-mediated phosphorylation of TSC2 inhibits TSC2/TSC1 complex formation [22,35–39] and references therein). Insulin-stimulated autophosphorylation of mTOR at S2411 regulates mTOR specific autocatalytic activity, substrate phosphorylation, and cell growth and is PI 3-kinase dependent [47]. Phosphorylation of mTOR at S2448 is mediated by S6-Kinase [48,49]. Phosphorylation of mTOR at S2446 increases upon nutrient withdrawal and decreases upon insulin stimulation [50]. Raptor is a specific and essential binding partner of mTORC1. Phosphorylation of Raptor by RSK at S327 and by mTOR at S863 enhances mTOR activity [36] whereas phosphorylation at S722 and S792 by AMPK inhibits mTORC1 activity [51]. Stimulation of prostate cancer cells with α2M* resulted in an increase in phosphorylation of mTOR[S2411, p-TSC2T1462 and protein level of Raptor, Rictor, GβL, and Rheb in α2M* concentration- and time-dependent manner (Figure 2A and B). The optimal increase in p-mTOR and p-TSC2 occurred in these cells at about 50–100 pM of α2M* and 20–25 min of incubation (Figure 2A and B). We have previously shown that treatment of 1-LN cancer cells with α2M* upregulates the expression RAS-MAPK, PI 3-kinase-Akt [1,8,10,46]. Thus α2M*-induced increase in RAS-MAPK and Akt activation would promote phosphorylation of TSC2 and inhibit its activity towards the GTPase Rheb causing an increase in the Rheb pools which would promote mTORC1 activation as seen in p-mTOR[S2411 levels (Figure 2A and B). These results are consistent with those reported in the literature (see [33,35,37,47,54], and references therein).

α2M*-stimulated Prostate Cancer Cells Express Elevates p-S6-Kinase and p-4EBP1
S6-Kinase activation is initiated by mTOR-mediated phosphorylation of T389 in the hydrophobic motif, regulating formation of a docking pocket for PDK1 which phosphorylates S6-Kinase at T229 in the catalytic activation loop [52,53]. mTOR directly regulates the mRNA cap-binding protein eIF4E which phosphorylates eIF4E inhibitor 4EBPs. On mTOR activation, phosphorylated 4EBP1 dissociates from eIF4E allowing recruitment of eIF4A and eIF4E to the 5′ end of an mRNA [55,53]. In the next series of experiments we determined the effect of α2M*-induced activation of mTORC1 kinase on activation of S6-Kinase1 and 4EBP1 by determining their phosphorylation by Western blotting (Figure 3A and B). Incubation of 1-LN cells with 50 pM of α2M* for varying periods of time showed peak elevated expression of both p-S6-Kinase and p-4EBP1 at about 10–20 min of incubation which declined upon longer periods of incubation (Figure 3A). Stimulation of 1-LN cells with varying concentrations of α2M* for 25 min showed peak phosphorylation of p-S6-Kinase1 and p-4EBP1 at about 50 pM of α2M*, which declined at higher concentrations of α2M* (Figure 3B). Thus like growth factors, binding of α2M* to cell surface GRP78, upregulates activation of mTORC1 kinase and is essential for its activation in 1-LN prostate cancer cells (Figure 1).

α2M* Increases p-AktT308 and p-AktS473 in Prostate Cancer Cells
The mTORC2 complex is assembled by binding Rictor and mSIN1 to mTOR [54,55]. The adaptor protein GβL binds to the kinase domain of mTOR and regulates kinase activity of mTOR and is essential for mTORC2 function [34–36]. In a variety of cancer cells increased levels of Rictor which, correlates with Akt3473 phosphorylation, have been observed [44,49,60]. In the preceding sections studies demonstrate that treatment of cancer cells with α2M* elevates mTOR and Rictor, the interacting proteins of the mTORC2 complex (Figure 2A and B). The observed α2M*-induced increase in Rictor in 1-LN cells would positively affect mTORC2 kinase activity. We, therefore, determined expression of p-AktT308 and Akt3473 in prostate cancer cells treated with varying concentrations of α2M* and incubated for 25 min or incubated for varying periods of time with 50 pM of α2M* (Figure 4A and B). α2M* upregulated both p-AktT308 and Akt3473 maximally at about 50–100 pM of α2M* and about 20 min of incubation (Figure 4A and B). The data presented in Figures 1, 2, 3, and 4 demonstrate that like growth factors, α2M* activates pro-growth, pro-cell proliferative and pro-survival mTORC1 and mTORC2.
signaling cascade consequent to its binding to cell surface GRP78 in prostate cancer cells.

Characterization of Components of mTORC1 and mTORC2 Complexes in 1-LN Cells Treated with 2M*

In subsequent studies both Raptor and Rictor immunoprecipitates were employed to assay mTORC1 and mTORC2 activities in prostate cancer cells treated with 2M*. Therefore, we first determined the presence of the Raptor and Rictor interacting proteins by Western blotting (Figure 5). Raptor immunoprecipitates showed the presence of mTOR, Raptor, Gβ1L but not of Rictor, mSIN1 and Protor. Rictor immunoprecipitates showed the presence of mTOR, Rictor, mSIN1, Gβ1L, but protor and not of Raptor (Figure 5). These results are similar to those previously reported [22,33–37]. We have used these immunoprecipitates in studies described below.

Kinase Assays of S6-Kinase and 4EBP1 Phosphorylation in mTOR and Raptor Immunoprecipitates of Cancer Cells Stimulated with 2M*

To further demonstrate 2M*-induced activation of mTORC1, we assayed mTORC1 kinase activity in 2M*-stimulated cells by measuring the incorporation of 32P from [32P]-γ-ATP to S6-Kinase peptide for S6-Kinase phosphorylation (Figure 6) and PHAS-1 (4EBP) for 4EBP1 phosphorylation (Figure 6). We measured these respectively, by autoradiography, and Western blotting (Figure 6) in mTOR and Raptor immunoprecipitates. The autoradiographic analysis showed that 2M* treatment of cancer cells stimulates phosphorylation of S6-Kinase and 4EBP1 in mTOR and Raptor immunoprecipitates (Figure 6A-AR) respectively by about 2–2.5-fold. In experiments where the effect of PI 3-kinase inhibitor LY294002 and mTOR inhibitor rapamycin (100 nM/15 min) on mTORC1 kinase activation was studied, these inhibitors were added prior to 2M* addition (Figure 6A-AR). Both autoradiographic and immunoblotting results showed that indeed 2M*-induced increase in mTORC1 activity was sensitive to both PI 3-kinase inhibitor LY29400-2 and mTOR inhibitor rapamycin (Figure 6a-AR and IB). We have shown the requirement of cell surface expression of GRP78 in eliciting the pro-growth and pro-survival responses of 2M* [8–10,12,18,19]. In this context, here we employed two approaches. First we knocked down the GRP78 pool by RNAi and assayed S6-Kinase and 4EBP1 phosphorylation by autoradiography and immunoblotting (Figure 6B-AR and C-AR and 1B). Knocking down the endogenous GRP78 pool by RNAi profoundly reduced S6-Kinase and 4EBP1 phosphorylation in mTOR (Figure 6B-AR, 1B) and Raptor immunoprecipitates both in kinase assays and by Western blotting (Figure 6B AR and 1B and Fig. 6C-AR and 1B). Second, we studied prostate cancer cells which express GRP78 on their cell surface namely, DU-145 and cells which do not namely, PC-3 (Figure 6D AR). 2M* treated DU-145 cells showed significant S6-Kinase and 4EBP1 phosphorylation while PC-3 cells showed no 2M*-induced mTORC1 activation (Figure 6D-AR). We also assessed the requirement of cell surface GRP78 on 2M*-induced activation of mTORC1 activation in 1-LN cells by blocking cell surface GRP78 using antibodies against carboxy terminus of GRP78 (Figure 6E). Pretreatment of cells with this antibody significantly inhibited 2M*-induced phosphorylation of S6-Kinase and 4EBP1 in 1-LN cells (Figure 6E). The results show the importance of cell surface expression of GRP78 in 2M*-induced mTORC1 activation.

Phosphorylation of S6-Kinase in Prostate Cancer Cell Raptor Immunoprecipitates Transfected with Raptor dsRNA and Stimulated with 2M* and Insulin

In the next series of experiments, we determined the specificity of mTORC1 in phosphorylating S6-Kinase1 and 4EBP1 in 1-LN cells transfected with Raptor RNAi and stimulated with 2M* and the positive control insulin. Immunoblot analysis showed that silencing Raptor gene expression by RNAi significantly reduced 2M*- and insulin-inhibition of Raptor (Figure 7A). Autoradiographic analysis showed that transfection of cells with Raptor dsRNA significantly inhibited 2M*-induced phosphorylation of S6-Kinase in I-N cells (Figure 7B, AR). Pretreatment of 1-LN cells with PI 3-kinase inhibitor LY294002 (20 μM/20 min) greatly suppressed S6-Kinase phosphorylation in cell lysates of 1-LN cells stimulated with 2M* and insulin (Figure 7B). These results are similar to those observed on S6-Kinase phosphorylation in mTOR and Raptor immunoprecipitates in 1-LN cells (Figure 6). Full and sustained activation of S6-Kinase requires multiple growth factors-induced phosphorylation events. S6-Kinase activation is initiated by mTORC1-mediated phosphorylation of S6-Kinase on T389 in the hydrophobic motif which results in the formation of a docking site for PDK1 which phosphorylates S6-Kinase at T229 site. We next studied the effect of silencing the expression of Raptor gene by RNAi on phosphorylation of S6-Kinase by mTOR at T389, by PDK1 at T229, and by RSK at S235/236 [59] in 1-LN cells stimulated with 2M* and insulin by immunoblotting (Figure 7C). As expected, Raptor RNAi nearly abolished 2M*-induced increased phosphorylation of S6-Kinase at T389, T229 and S235/236 in cancer cells treated with 2M* (Figure 7C). Thus not only inhibits mTOR-mediated S6-Kinase phosphorylation at T389, but also inhibits other kinases involved in S6-Kinase phosphorylation. These data suggest that Raptor dsRNA either limits assembly of a functioning mTORC1 complex and/or PDK1 requires its tethering to Raptor for phosphorylation of S6-Kinase at T229 sites in a multiprotein signaling complex on mTORC1 [44]. Silencing Raptor expression also suppressed phosphorylation of 4EBP1 (Figure 7D).

Activation of mTORC2 as Measured by Akt1S473Phosphorylation in Prostate Cancer Cells Stimulated with 2M*

Stimulation of prostate cancer cells with 2M* causes about a twofold increase in p-Akt1S473 (Figure 4 and Ref [10]). Pretreatment of cells with PI 3-kinase inhibitors LY294002 and antibodies against carboxyl-terminal domain of GRP78 suppressed 2M*-induced phosphorylation of Akt1 at S473 [10]. 2M*-induced increase in phosphorylation of Akt1S473 was insensitive to rapamycin [10]. In the next series of experiments, we have determined mTORC2 activation in mTOR (Figure 8A) and Rictor immunoprecipitates (Figure 8B) by quantifying the phosphorylation of Akt1 at S473 in prostate cancer cells stimulated with 2M*. Treatment of cells with 2M* elevated phosphorylation of Akt1 at both T308 and S473 by about 1.5–2-fold in mTOR immunoprecipitates (Fig. 8A). Increased phosphorylation of Akt1 at T308 sites was sensitive to the PI 3-kinase inhibitor and mTOR inhibitor whereas Akt1 phosphorylation at S473 was sensitive only to the PI 3-kinase inhibitor in mTOR immunoprecipitates (Figure 8A). Since the mTOR immunoprecipitate would contribute to both mTORC1 and mTORC2 activities, we next determined mTORC2 activity in Rictor immunoprecipitates (Figure 8B). As in mTOR immunoprecipitates, an about twofold increase in phosphorylation of Akt at S473 occurred in Rictor immunoprecipitates of
cells stimulated with 2M* which was insensitive to rapamycin but sensitive to LY294002 (Figure 8B). However, unlike results with mTOR immunoprecipitates, Rictor immunoprecipitates showed negligible phosphorylation of Akt at T308 (Figure 8B). We next assessed the requirement of cell surface GRP78 expression on activation of mTORC1 and mTORC2 by RNAi-induced downregulation of GRP78. Transfection of cells with GRP78 dsRNA significantly inhibited 2M*-induced upregulation of AktT308 and AktS473 phosphorylation in mTOR immunoprecipitates (Figure 8C). Silencing the expression of GRP78 by RNAi significantly inhibited phosphorylation of Akt at S473 in Rictor immunoprecipitates on 1-LN cancer cells stimulated with 2M* (Figure 8D). Similar results were observed in phosphorylation of Akt1 at S473 in Rictor immunoprecipitates of DU-145 cells treated with 2M* (Figure 8E). Pretreatment of cells with anti-GRP78 antibodies directed against its carboxyl-terminal domain before 2M* stimulation abrogated 2M*-induced increase in AktS473 phosphorylation in 1-LN and DU-145 cells (Figure 8D and 8E). These results are similar to those observed in prostate cancer cells transfected with GRP78 dsRNA (Figure 8D). This antibody also inhibits PSA synthesis and cell proliferative signaling in prostate cancer cells (10). These results demonstrate that 2M*-induced activation of mTORC1 (Figure 6 and 7) and mTORC2 as measured by phosphorylation of Akt at S473 is dependent on cell surface GRP78 (Figure 8 and 9).

Phosphorylation of AktT308 in Rictor Immunoprecipitates of Prostate Cancer Cells Transfected with Rictor dsRNA and Stimulated with 2M* and Insulin

Stimulation of prostate cancer cells with 2M* elevates Rictor and GBL in a concentration and time of incubation dependent manner (Figure 2A). Like insulin, treatment of cancer cells with 2M* upregulates Rictor protein levels (Figure 9A) and the phosphorylation of Akt at S473 by about 1.5–2-fold compared to buffer treated cells (Figure 9B and C). Transfection of cells with Rictor dsRNA significantly suppressed 2M*-induced increase in levels of Rictor (Figure 9A), and p-AktT308 (Figure 9B and C). 2M*-induced increase in AktT308 phosphorylation was insensitive to rapamycin but sensitive PI 3-kinase inhibitor LY294002 (Figure 9B and C). Thus we demonstrate that cell growth and cell proliferative responses observed in prostate cancer cells treated with 2M* (6–10,12,41,46 and Figure 1) require cell surface expression of GRP78 and PI kinase/mTOR signaling. Thus like insulin and other growth factors (24,33–37,47,50,53–55 and references therein) 2M* in prostate cancer cells expressing GRP78 on their cell surface promotes cancer growth. Furthermore, unlike Rapamycin but like dual active site inhibitors down regulation of cell surface GRP78 either by RNAi or by antibodies directed against the carboxyl-terminal domain of GRP78 inhibits both mTORC1 and mTORC2 activation and inhibits growth while promoting apoptosis (Figures 6, 7, 8, 9, and References [6,7,9,10,12,16–19]).

Independence of AktT308 and AktS473 Phosphorylation in 1-LN Cells Treated with 2M* and Insulin

Phosphorylation of Akt at T308 by PDK1 and S473 by mTORC2, respectively has been reported as interdependent or independent events [23,26,56,60–62]. Targeting of mTORC2 by RNAi, homologous recombination [56,60,62] or long term rapamycin treatment results in the decreased AktT308 phosphorylation [23,26]. Long term rapamycin treatment and RNAi targeting of mTOR also results in the loss of AktT308 phosphorylation [63,64]. In mouse embryonic fibroblasts lacking mSin1, phosphorylation of Akt at T308 remains intact showing its independence from AktS473 phosphorylation. However, in Rictor and mTOR knockdown cells both AktT308 and AktS473 phosphorylation were attenuated suggesting an interdependence of AktT308 and AktS473 phosphorylation [63,64]. In the current study, cell lysates of 1-LN transfected with Raptor dsRNA or Rictor dsRNA, were stimulated with 2M* or insulin (Figure 10A and B). Western blotting analyses and Akt kinase assays showed that phosphorylation of Akt at T308 and S473 sites were independent of each other (Figure 10A and B). Silencing of Rictor expression by RNAi greatly attenuated AktS473 phosphorylation, but showed no effect on AktT308 phosphorylation in cell lysates of 1-LN cells stimulated with either 2M* or insulin (Figure 10B). Likewise silencing of Raptor expression by RNAi greatly attenuated AktT308 phosphorylation but showed no effect on AktS473 phosphorylation in cell lysates of 1-LN cells stimulated with either 2M* or insulin (Figure 2B). Thus phosphorylation of Akt at T308 and S473 are independent of each other under our experimental conditions.

Discussion

The molecular chaperon GRP78 is constitutively expressed, but its synthesis is induced by stressful conditions that perturb protein folding and assembly within the ER [5–10]. A small pool of this newly synthesized GRP78 translocate to the cell surface from the ER in association with co-chaperon MTJ1, where it functions as a receptor for activated forms of the plasma proteinase inhibitor z2-macroglobulin (z2-M*) [64,65]. Activation of this receptor on the surface of 1-LN, and DU-145 human prostate cancer cells, and A375 melanoma cells by z2-M* triggers pro-proliferation and prosurvival cellular responses [5–10]; therefore, it has been argued that upregulation of cell surface GRP78 is part of the aggressive phenotype in cancer. Consistent with this hypothesis, autoantibodies against GRP78 appear in the sera of prostate cancer patients, and they are a biomarker of aggressive behavior [13,14]. The circulating concentration of z2-M is about 2–5 μM and its proteinase activated form may comprise approximately 200–500 nM concentration of this pool [66]. Various tumors including aggressive prostate cancers, produce matrix metalloproteinases as well as PSA which readily convert z2-M to z2-M* [10,66,67]. Therefore, it could be envisaged that under the conditions that exist in patients harboring prostate cancer, a substantial amount of z2-M* is available to bind to cell surface GRP78 thus triggering mitogenic signaling and promoting cellular proliferation. In our earlier reports we observed inhibition of z2-M*-induced elevated macromolecule synthesis by use of the mTOR inhibitor rapamycin and several PI 3-kinase inhibitors. z2-M*-stimulated cells also showed increased phosphorylated S6-Kinase and AktT308 which is abrogated by pretreatment of cells with antibodies against the carboxyl-terminal domain of GRP78 [8–10,12,18].

In the present study, we hypothesized that cellular proliferation observed in z2-M*-stimulated prostate cancer cells (6–10) involves cell surface GRP78 and activation of mTORC1 and mTORC2 signaling in these cells. We thus elucidated mTORC1 and mTORC2 signaling in 1-LN and DU-145 prostate cancer cells. The salient points of this study are: (1) z2-M* treatment of cells causes about a twofold increase in protein synthesis which is sensitive to rapamycin and PI 3-kinase inhibitors; (2) a concentration and time-dependent increase in p-mTOR, Raptor, Rictor, p-TSC2, Rheb, p-S6-Kinase, p-IEBP1, p-AktT308 and p-AktS473 is observed in z2-M*-stimulated cells; (3) stimulation of prostate cancer cells with z2-M* and insulin elevates mTORC1-dependent phosphorylation of S6-Kinase and 4EBP1 as determined by kinase
assays and phosphorylated protein levels in mTOR and Raptor immunoprecipitates; (4) α2M*-induces increase in S6-Kinase and 4EBP1 phosphorylation in mTOR and Raptor immunoprecipitates is greatly suppressed by pretreatment with LY294002, rapamycin, or transfection of cells with GRP78 dsRNA and Raptor dsRNA; (5) treatment of prostate cancer cells with α2M* and insulin significantly elevates mTORC2 activity as measured by phosphorylation of Akt at S473 by kinase assays and phosphorylated protein levels in mTOR and Rictor immunoprecipitates; (6) α2M*-induced increase in mTORC2 activity is insensitive to rapamycin, but is significantly reduced by LY294002 and transfection of cells with GRP78 dsRNA and Rictor dsRNA in mTOR and Rictor immunoprecipitates.

Akt is activated by extracellular and intracellular stimuli to regulate survival, proliferation, differentiation, and metabolism. Full activation of Akt requires its phosphorylation at T308 in the catalytic loop by PDK1 and S473 in the hydrophobic domain by mTORC2 [22–26]. PI 3-kinase Akt and RAS/MAPK are most common oncogenic signaling pathways which are activated in human cancers. Both these oncogenic signaling pathways activate mTORC1 and mTORC2, which are key regulators of cell proliferation, survival, and metabolism. mTOR is a PI 3-kinase-related Ser/Thr kinase that integrates signals from nutrients, energy sufficiency, and growth factors to regulate cell growth, organ and body size in a variety of organisms. mTOR performs these functions by assembling two distinct complexes; namely, mTORC1 and mTORC2 that participate in different pathways and recognize distinct substrates, the specificity of which is determined by mTOR-interacting proteins. mTOR pathways are frequently deregulated in a majority of human cancers. mTORC1 controls cell growth in part by phosphorylating S6-Kinase1, and 4EBP1, which are key regulators of protein synthesis. mTORC2 phosphorylates and activates Akt1 at S473, which regulates cell proliferation, survival, and metabolism. A schematic representation of mTORC1 and mTORC2 activation promoting cellular growth in prostate cancer cell stimulated with α2M* is shown in Figure 11.

Conclusion
Based on our earlier observations and our current data, we propose the following mechanism(s) by which α2M* promotes cell proliferation and cell survival in prostate cancer cells and possibly other malignancies. The availability of circulating or tissue-derived α2M regulates its conversion to receptor-recognized forms (α2M*) by complexing with proteinases, such as PSA. α2M* binds to cell surface GRP78, the availability of which is increased several fold under ER stress conditions which are prevalent in cancer tissue. Binding of α2M* to cell surface GRP78 causes its autophosphorylation triggering downstream signaling cascades which include RAS/MAPK, and PI 3-kinase/Akt/mTOR, which causes cellular proliferation and promotes survival. As a result, the TSC1-TSC2 complex is phosphorylated inhibiting its GAP activity towards Rheb, thus freeing it for mTORC1 activation. Likewise phosphorylation of PRAS40 and Deptor by Akt causes their dissociation from mTOR and promotes mTORC1 activation. α2M*-induced phosphorylation of PIP2 by PI 3-kinases promotes membrane recruitment of PDK1 and Akt, where PDK1 phosphorylates Akt at T308 and mTORC2 phosphorylates Akt at S473 causing its full activation. This is the first demonstration of the involvement of prostate cancer cell-surface GRP78 in upregulating mTOR signaling thereby causing cancer cell proliferation and survival. These studies should be considered in the context of newer chemotherapeutic approaches for treating castration resistant prostate cancer with rapamycin analogues which target mTORC1 only [60]. Our previous studies suggest a role for α2M* in the progression of such tumors [10]. Moreover, as noted above, agonist auto-antibodies to GRP78, the receptor for α2M*, appear in patients with prostate cancer [14,15]. These antibodies are a marker for a poor prognosis in this disease [14,15]. We, therefore, suggest that both mTORC1 and mTORC2 may need to be targets in prostate cancer by more novel forms of therapy such as immunotherapy targeted at cell-surface GRP78. Figure 11 provides a model for the results reported in this study.

Author Contributions
Conceived and designed the experiments: UKM SVP. Performed the experiments: UKM. Analyzed the data: UKM. Contributed reagents/materials/analysis tools: UKM. Wrote the paper: UKM SVP.

References
1. Smorenburg SM, Griffin P, Tiggesman AB, Moorman AF, Boen W, et al. (1996) alpha2-macro-globulin is mainly produced by cancer cells and not by hepatocytes in rats with colon carcinoma metastases in liver. Hepatology 23: 560–570.
2. Kantoff PW, Schuetz TJ, Blumstein BA, Gloviczki LM, Bilharz DL, et al. (2010) Overall survival analysis of a phase II randomized controlled trial of a Poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. J Clin Oncol 28: 1099–1105.
3. Wu SM, Pizzo SV (2000) In:Coleman R.W., Hirsh, J., Marder, V.J., and Salzman, E.W. editors. Hemostasis and Thrombosis Basic Principles and Clinical Practice. Baltimore: J.B. Lippincott; Williams and Williams, 367–386.
4. Wu SM, Pizzo SV (2000) In:Coleman R.W., Harsh, J., Marder, V.J., and Salzman, E.W. editors. Hemostasis and Thrombosis Basic Principles and Clinical Practice. Baltimore: J.B. Lippincott; Williams and Williams, 367–386.
5. Misra UK, Gonzalez-Gronow M, Gawdi G, Hart JP, Johnson CE, et al. (2002) The role of Gp 70 in alpha 2-macroglobulin-induced signal transduction. Evidenced from RNA interference that the ubiquitylation ligase receptor-related protein is associated with, but not necessary for, GP 70-mediated signal transduction. J Biol Chem 277: 42082–42087.
6. Misra UK, Gonzalez-Gronow M, Gawdi G, Hart JP, Johnson CE, et al. (2002) The role of Gp 70 in alpha 2-macroglobulin-induced signal transduction. Evidenced from RNA interference that the ubiquitylation ligase receptor-related protein is associated with, but not necessary for, GP 70-mediated signal transduction. J Biol Chem 277: 42082–42087.
7. Misra UK, Deedwania R, Pizzo SV (2005) Novel receptor function for the heat shock protein GRP78: Silencing of GRP 78-meditated signal transduction. J Biol Chem 280: 1248–1259.
8. Misra UK, Pizzo SV (2006) Activation and cross-talk between Akt, NF-kappaB, and unfolded protein response signaling in 1-LN prostate cancer cells consequent to ligation of cell surface-associated GRP78. J Biol Chem 281: 13694–13707.
9. Misra UK, Payne S, Pizzo SV (2011) Ligation of prostate cancer cell surface GRP78 activates a proapoptotic and antiapoptotic feedback loop: a role for secreted prostate-specific antigen. J Biol Chem 286: 1248–1259.
10. Misra UK, Sharma T, Pizzo SV (2005) Ligation of cell surface-associated glucose-regulated protein 78 by receptor-recognized forms of alpha 2-macroglobulin: activation of p21-activated protein kinase-2-dependent signaling in murine peritoneal macrophages. J Immunol 175: 2525–2533.
11. Misra UK, Mowery Y, Kazcokowa S, Pizzo SV (2009) Ligation of cancer cell surface GRP78 with antibodies directed against its carboxy-terminal domain up-regulates p33 activity and promotes apoptosis. Mol Cancer Ther 8: 1350–1359.
12. Mintz PJ, Jin J, Do KA, Wang X, Zinner RG, et al. (2003) Fingerprinting the circulating repertoire of antibodies from cancer patients. Nat Biotechnol 21: 57–63.
13. Mintz PJ, Jin J, Do KA, Wang X, Zinner RG, et al. (2003) Fingerprinting the circulating repertoire of antibodies from cancer patients. Nat Biotechnol 21: 57–63.
14. Arap MA, Lahdenranta J, Mintz PJ, Hajitou A, Sarkis AS, et al. (2004) Cell surface expression of the stress response chaperone GRP78 enables tumor targeting by circulating ligands. Cancer Cell 6: 275–284.
15. Gonalez-Gronow M, Cuchacovich M, Llanos C, Urzua C, Gawdi G, et al. (2006) Prostate cancer cell proliferation in vitro is modulated by antibodies against glucose-regulated protein 78 isolated from patient serum. Cancer Res 66: 11424–11431.
16. Miura UK, Pizzo SV (2010) Inhibition of NF-kappaB1 and NF-kappaB2 activation in prostate cancer cells treated with antibody against the carboxyl-terminal domain of GRP78: effect of p53 upregulation. Biochem Biophys Res Commun 392: 538–542.

17. Miura UK, Pizzo SV (2007) PpFalpha inhibits antibody-induced activation of p53 and pro-apoptotic signaling in 1-LN prostate cancer cells. Biochem Biophys Res Commun 391: 272–276.

18. Miura UK, Pizzo SV (2010) Ligation of cell surface GRP78 with antibody directed against the carboxyl-terminal domain of GRP78 suppresses Ras-RAF-MAPK and PI-3 kinase/Akt signaling while promoting caspase activation in human prostate cancer cells. Cancer Biology and Therapy 9: 142–152.

19. Miura UK, Pizzo SV (2010) Modulation of the unfolded protein response in prostate cancer cells by antibody-directed against the carboxyl-terminal domain of GRP78. Apoptosis 15: 173–182.

20. deRidder G, Ray R, Pizzo SV (2012) A murine monoclonal antibody directed against the carboxyl-terminal domain of GRP78 suppresses melanoma growth in mice. Melanoma Res 22: 225–235.

21. Fayerd E, Xue G, Parcellier A, Bonville L, Hemmings BA (2010) Protein kinase B (PKB/Akt), a key mediator of the PKC signaling pathway. Curr Top Microbiol Immunol. 346: 31–56.

22. Hers I, Vincent EE, Tavare JM (2011) Akt signalling in health and disease. Cell Signal. 23: 1513–1527.

23. Alexee DR, Andjelkovic B, Caudwell P, Cron N, Morrice N, et al. (1996) Mechanism of activation of protein kinase B by insulin and IGF-I. EMBO J 15: 6341–6351.

24. Sarbassov DD, Guerlin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307: 1988–1990.

25. Facchinetti V, Ouyang W, Wei H, Soto N, Lazarack A, et al. (2006) The mammalian target of rapamycin complex 2 controls folding stability and Akt signaling by protein kinase C. EMBO J 27: 1932–1943.

26. Ikemoue T, Inoki K, Yang Q, Zhou X, Guan KL (2008) Essential function of Akt1 is sufficient to suppress tumor development in Pten null mice. Proc Natl Acad Sci U S A 105: 6143–6148.

27. Chen ML, Xu PZ, Peng XD, Chen WS, Guzman G, et al. (2006) The deficiency of PTK2/FAK inhibits antibody-induced activation of Akt and early events of mouse melanoma growth in vivo. J Biol Chem 281: 22517–22523.

28. Yang W-L, Wang J, Chan C-H, Lee S-W, Campos AD, et al. (2009) The E3 ubiquitin ligase TRAF6 regulates Akt ubiquitination and activation. Science 325: 1134–1138.

29. Misra UK, Pizzo SV (1998) Ligation of the alpha2M signaling receptor with microgram quantities of protein utilizing the principle of protein-dye binding. Clin Cancer Res 4: 121–128.

30. Liao Y, Grobholz R, Abel U, Trojan L, Michel MS, et al. (2003) Increase of GRP78 synthesis in prostate cancer cells. J Cell Physiol 194: 24–31.

31. Ayala G, Thompson T, Yang G, Frolov A, Li R, et al. (2004) High levels of GRP78 preclude apoptosis in prostate cancer cells. Cancer Res 64: 5667–5673.

32. Kreisberg JI, Malik S, Prihoda TJ, Bedolla RG, Troyer DA, et al. (2004) Phosphorylation of Akt (Ser473) is an excellent predictor of poor clinical outcome in prostate cancer. J Biol Chem 279: 15719–15727.

33. Otto A, Bar J, Birkenmeier G (1998) Prostate-specific antigen forms complexes with p21ras in microgram quantities of protein utilizing the principle of protein-dye binding. Acta Pathol Microbiol Immunol Scand A 1401: 121–128.

34. Sengupta S, Peterson TR, Sabatini DM (2010) Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell 40: 310–322.

35. Ma XM, Blenis J (2004) Phosphoinositide-dependent protein kinase 1, a sensor of nutrient status. J Biol Chem 279: 15719–15727.

36. Shiota C, Woo J-T, Lindner J, Shelton KD, Magnuson MA (2006) Multiallelic deletion of the Pten gene in mice induces diabetes and premature death. PLoS Biol. 2009, e10000038, p. 03781–0383.

37. Roux PP, Shahbazian D, Vu H, Holz MK, Cohen MS, et al. (2007) RAS/ERK inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol. 2007, e204, p. 1–11.

38. Oh WJ, Wu C-C, Kim SJ, Facchinetti V, Julien LA, et al. (2010) mTORC2 complex 2 inhibitors in cancer therapy. Oncogene 29: 3733–3744.

39. Zinzalla V, Stracka D, Oppliger W, Hall MN (2011) Activation of mTORC2 by phosphorylation sites reveals direct regulation of mTOR complex 2 by S6K1. Mol Cell 39: 537–547.

40. Dhillon GC, Xiaa AJ, Malamas BD (2009) Characterization of Rictor phosphorylation sites reveals direct regulation of mTOR complex 2 by S6K1. Mol Cell Biol 29: 5657–5670.

41. Triens C, Varne PH, Magoun MA, Pende M, Downward J (2010) Rictor is a novel binding partner of mTORC2, regulates Akt and modifies thyroid hormone response. EMBO J 29: 3003–3016.

42. Roux PP, Shahbazian D, Wu H, Holz MK, Cohen MS, et al. (2007) RAS/ERK signaling promotes site-specific ribosomal protein S6 phosphorylation via RSK and stimulates cap-dependent translation. J Biol Chem 282: 14065–14068.

43. Guerlin DA, Stevens DM, Thoren CC, Burkh A, Kalyani NY, et al. (2006) Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not PKCdelta and mTORC1. PLoS Biol. 2006, e189, p. 1–11.

44. Misra UK, Pizzo SV (2012) Upregulation of mTORC2 activation by the selective agonist of EPAC, 8-CPT-2Me-cAMP, in prostate cancer cell lines. Mol Cell 39: 4308–4324.

45. Misra UK, Pizzo SV (2005) Coordinate regulation of forskolin-induced cellular proliferation in macrophages by protein kinase A/cAMP-response-element-binding protein (CREB) and Epac1-Rap1 signaling effects of silencing CREB gene expression on Akt activation. J Biol Chem 280: 38276–38289.

46. Misra UK, Akabani G, Pizzo SV (2002) The role of mTORdependent signaling in receptor-recognized forms of alpha 2-macroglobulin-induced cellular proliferation. J Biol Chem 277: 19339–19348.

47. Acosta-Jaquez HA, Keller JA, Foster KG, Ekim B, Soliman GA, et al. (2009) Site-specific mTOR phosphorylation promotes mTORC1-mediated signaling and cell growth. Mol Cell Biol 29: 4308–4324.

48. Cheng SW, Fryer LG, Carling D, Shepherd PR (2004) Thr2446 is a novel binding target of rictor/mTORC2 phosphorylation site regulated by nutrient status. J Biol Chem 279: 15719–15722.

49. Corrierre A, Corngelio M, Julien LA, Gao H, Bonelle E, et al. (2008) Oncogenic MAPK phosphorylation stimulates mTORC1 activity by promoting RSK-mediated mTORC1 phosphorylation. Cell 135: 1289–1299.

50. Mora A, Komander D, Van Aalst DM, Alessi DR (2004) PI3K, the master regulator of AGC kinase signal transduction. Semin Cell Dev Biol 15: 161–170.

51. Sasaki RM (2008) Phosphoinoside-dependent protein kinase 1, a sensor of protein conformation. Trends Biochem Sci 32: 136–142.

52. Foster KG, Fingar DC (2010) Mammalian target of rapamycin (mTOR): conducting the cellular signaling symphony. J Biol Chem 285: 14071–14077.

53. Foster KG, Fingar DC (2010) Mammalian target of rapamycin (mTOR): conducting the cellular signaling symphony. J Biol Chem 285: 14071–14077.

54. Sengupta S, Peterson TR, Sabatini DM (2010) Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell 40: 310–322.

55. Sarbassov DD, Ali SM, Kim D-H, Guerlin DA, Latek RR, et al. (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14: 1296–1302.

56. Sicardo E, Facchinetti V, Liu D, Soto N, Wei S, et al. (2006) SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 127: 125–137.

57. Zhang Z, Sun D, Guan KL (2005) Rictor phosphorylation in prostate cancer cells by antibody-directed against the carboxyl-terminal domain of GRP78, mTORC1, and mTORC2 Activation Cell Surface GRP78, mTORC1, and mTORC2 Activation.