R-MATRIX FORMULATION OF THE QUANTUM INHOMOGENEOUS GROUPS ISO$q,r(N)$ AND IS$p,q,r(N)$.

Paolo Aschieri

Scuola Normale Superiore
Piazza dei Cavalieri 7, 56100 Pisa
and
Istituto Nazionale di Fisica Nucleare,
Sezione di Pisa, Italy

Leonardo Castellani

II Facoltà di Scienze M.F.N. di Torino, sede di Alessandria
Dipartimento di Fisica Teorica
and
Istituto Nazionale di Fisica Nucleare
Via P. Giuria 1, 10125 Torino, Italy.

Abstract

The quantum commutations $RTT = TTR$ and the orthogonal (symplectic) conditions for the inhomogeneous multiparametric q-groups of the B_n, C_n, D_n type are found in terms of the R-matrix of $B_{n+1}, C_{n+1}, D_{n+1}$. A consistent Hopf structure on these inhomogeneous q-groups is constructed by means of a projection from $B_{n+1}, C_{n+1}, D_{n+1}$. Real forms are discussed: in particular we obtain the q-groups $ISO_{q,r}(n+1, n-1)$, including the quantum Poincaré group.
Inhomogeneous groups play an important role in many physical situations, for instance when translations enter the game. One fundamental example is Einstein-Cartan gravity, whose algebraic basis is the Poincaré group. After the discovery of \(q\)-deformed simple Lie groups \([1, 2]\), it was natural to construct the corresponding \(q\)-deformed gauge theories \([3, 4]\). A similar program can be applied to inhomogeneous \(q\)-groups, and indeed in ref. \([5]\) a \(q\)-deformation of Poincaré gravity was found, one of the main motivations being the possibility of \(q\)-regularizing gravity. The gauge program relies on the bicovariant calculus on \(q\)-groups: for a review see for ex. \([6]\) and references quoted therein.

We present in this Letter the \(R\)-matrix formulation of multiparametric inhomogeneous \(q\)-groups, whose homogeneous part are the \(B_n, C_n, D_n\) \(q\)-groups. This extends to the orthogonal and symplectic case the treatment of ref. \([7, 8]\), where the multiparametric (uniparametric in \([7]\)) \(q\)-groups \(IGL_{q,r}(N)\) and their associated differential calculi were constructed via a projection from \(GL_{q,r}(N+1)\). Some of the references on the quantum inhomogeneous groups are collected in \([9]\).

The method used in \([7, 8]\) to obtain \(IGL_{q,r}(N)\), and in this Letter to obtain \(ISO_{q,r}(N)\) and \(ISp_{q,r}(N)\), is based on a consistent projection from the corresponding quantum groups of higher rank \(A_{n+1}, B_{n+1}, C_{n+1}, D_{n+1}\). By consistent we mean that it is compatible (or “commutes”) with the Hopf structure of the \(q\)-groups, as we will see in the sequel. This method was in fact already exploited in ref. \([5]\) to obtain bicovariant differential calculi on \(ISO_{q,r=1}(N)\) and \(ISp_{q,r=1}(N)\).

We give here the explicit structures of \(ISO_{q,r}(N)\) and \(ISp_{q,r}(N)\), and show that they are Hopf algebras by proving that they can be obtained as quotients of \(SO_{q,r}(N+2)\) and \(Sp_{q,r}(N+2)\) with respect to a suitable Hopf ideal. The projection from \(SO_{q,r}(N+2)\) \([Sp_{q,r}(N+2)]\) to the quotient is introduced and found to be an Hopf algebra epimorphism. The (bicovariant) differential calculi on the multiparametric \(ISO_{q,r}(N)\) \([ISp_{q,r}(N)]\), found by means of this projection method, will be presented in a separate publication.

We begin by recalling some basic facts about the \(B_n, C_n, D_n\) multiparametric quantum groups. They are freely generated by the noncommuting matrix elements \(T_{ab}\) (fundamental representation) and the identity \(I\). The noncommutativity is controlled by the \(R\) matrix:

\[
R^{ab}_{\quad ef} T^{e}_{c} T^{f}_{d} = T^{b}_{f} T^{a}_{e} R^{ef}_{\quad cd} \tag{1}
\]

which satisfies the quantum Yang-Baxter equation

\[
R^{a_{1}b_{1}}_{\quad a_{2}b_{2}} R^{a_{2}c_{1}}_{\quad a_{3}c_{2}} R^{b_{2}c_{2}}_{\quad b_{3}c_{3}} = R^{b_{1}c_{1}}_{\quad b_{2}c_{2}} R^{a_{1}c_{1}}_{\quad a_{2}c_{2}} R^{a_{2}b_{2}}_{\quad a_{3}b_{3}}, \tag{2}
\]

a sufficient condition for the consistency of the “\(RTT\)” relations \([1]\). The \(R\)-matrix components \(R^{ab}_{\quad cd}\) depend continuously on a (in general complex) set of parameters \(q_{ab}, r\). For \(q_{ab} = q, r = q\) we recover the uniparametric \(q\)-groups of ref. \([2]\). Then
$q_{ab} \to 1, r \to 1$ is the classical limit for which $R_{cd}^{ab} \to \delta_c^a \delta_d^b$: the matrix entries T^a_b commute and become the usual entries of the fundamental representation. The multiparametric R matrices for the A, B, C, D series can be found in [10] (other ref.s on multiparametric q-groups are given in [11, 12]). For the B, C, D case they read:

$$R_{cd}^{ab} = \frac{\delta_c^a \delta_d^b}{\epsilon_a \epsilon_d} + \frac{r}{r-1} \delta_c^a \delta_d^b \left(1 - \delta^{an^2} + \delta_a^b \delta_c^d \delta_d^a \delta_c^b \right)$$

where $\theta^{ab} = 1$ for $a > b$ and $\theta^{ab} = 0$ for $a \leq b$; we define $n_2 \equiv \frac{N+1}{2}$ and primed indices as $\alpha' \equiv N + 1 - \alpha$. The indices run on N values (N-dimension of the fundamental representation T^a_b), with $N = 2n + 1$ for $B_n[SO(2n + 1)]$, $N = 2n$ for $C_n[Sp(2n)]$, $D_n[SO(2n)]$. The terms with the index n_2 are present only for the B_n series. The ϵ_a and ρ_a vectors are given by:

$$\epsilon_a = \begin{cases} +1 & \text{for } B_n, D_n; \\ +1 & \text{for } C_n \text{ and } a \leq n; \\ -1 & \text{for } C_n \text{ and } a > n. \end{cases}$$

Moreover the following relations reduce the number of independent q_{ab} parameters [10]:

$$q_{aa} = r, \quad q_{ba} = \frac{r^2}{q_{ab}}$$

$$q_{ab} = \frac{r^2}{q_{ba}} = \frac{r^2}{q_{a'b'}} = q_{a'b'}$$

where (9) also implies $q_{aa'} = r$. Therefore the q_{ab} with $a < b \leq \frac{N}{2}$ give all the q’s.

It is useful to list the nonzero complex components of the R matrix (no sum on repeated indices):

$$\begin{align*}
R_{aa}^{aa} &= r, & a \neq n_2 \\
R_{aa'}^{aa'} &= r^{-1}, & a \neq n_2 \\
R_{a}^{n_2n_2} &= 1 \\
R_{ab}^{ab} &= \frac{r}{q_{ab}}, & a \neq b, a' \neq b \\
R_{ab}^{ba} &= r - r^{-1}, & a > b, a' \neq b \\
R_{a'a'}^{a'a'} &= (r - r^{-1})(1 - r^2) \epsilon_a \epsilon_d \rho_{a'} \rho_{a'}, & a > d' \\
R_{a'b'}^{b'a'} &= -(r - r^{-1}) \epsilon_a \epsilon_d \rho_{a'} \rho_{b'}, & a > b, a' \neq b
\end{align*}$$

where $\epsilon = \epsilon_a \epsilon_{a'}$, i.e. $\epsilon = 1$ for B_n, D_n and $\epsilon = -1$ for C_n.

Remark 1: The matrix R has the following symmetry:

$$R_{cd}^{ab} = R_{a'b'}^{c'd'}$$

2
Remark 2: If we denote by \(q, r \) the set of parameters \(q_{ab}, r \), we have
\[
R_{q,r}^{-1} = R_{q^{-1},r^{-1}}^{-1}
\] (10)
The inverse \(R^{-1} \) is defined by \((R^{-1})^{ab}_{cd} R^{cd}_{ef} = \delta^a_e \delta^b_f = R^{ab}_{cd} (R^{-1})^{cd}_{ef}\). Eq. (10) implies that for \(|q| = |r| = 1\), \(\hat{R} = R^{-1} \).

Remark 3: Let \(R_r \) be the uniparametric \(R \) matrix for the \(B, C, D \) \(q \)-groups. The multiparametric \(R_{q,r} \) matrix is obtained from \(R_r \) via the transformation
\[
R_{q,r} = F^{-1} R_r F^{-1}
\] (11)
where \((F^{-1})^{ab}_{cd}\) is a diagonal matrix in the index couples \(ab, cd \):
\[
F^{-1} \equiv \text{diag}(\sqrt{\frac{r}{q_{11}}}, \sqrt{\frac{r}{q_{12}}}, \ldots, \sqrt{\frac{r}{q_{NN}}})
\] (12)
where \(ab, cd \) are ordered as in the \(R \) matrix. Since \(\sqrt{\frac{r}{q_{ab}}} = (\sqrt{\frac{q_{ba}}{r}})^{-1} \) and \(q_{aa} = q_{bb} \), the non diagonal elements of \(R_{q,r} \) coincide with those of \(R_r \). The matrix \(F \) satisfies \(F_{12} F_{21} = 1 \) i.e. \(F^{ab}_{ef} F^{fe}_{dc} = \delta^a_c \delta^b_d \), the quantum Yang-Baxter equation \(F_{12} F_{13} F_{23} = F_{23} F_{13} F_{12} \) and the relations \((R_r)_{12} F_{13} F_{23} = F_{23} F_{13} (R_r)_{12}\).

Remark 4: Let \(\hat{R} \) the matrix defined by \(\hat{R}^{ab}_{cd} \equiv R^{ba}_{cd} \). Then the multiparametric \(\hat{R}_{q,r} \) is obtained from \(\hat{R}_r \) via the similarity transformation
\[
\hat{R}_{q,r} = F \hat{R}_r F^{-1}
\] (13)
The characteristic equation and the projector decomposition of \(\hat{R}_{q,r} \) are therefore the same as in the uniparametric case, and we have
\[
(\hat{R} - r I)(\hat{R} + r^{-1} I)(\hat{R} - \epsilon r^{-N} I) = 0
\] (14)
\[
\hat{R} = r P_S - r^{-1} P_A + \epsilon r^{-N} P_0
\] (15)
with
\[
P_S = \frac{1}{r + r^{-1}} [\hat{R} + r^{-1} I - (r^{-1} + \epsilon r^{-N}) P_0]
\]
\[
P_A = \frac{1}{r + r^{-1}} [-\hat{R} + r I - (r - \epsilon r^{-N}) P_0]
\]
\[
P_0 = Q_N(r) K
\]
\[
Q_N(r) \equiv (C^{ab} C^{ab})^{-1} = \frac{1 - r^2}{(1 - r^{N+1}) (1 + r^{N+1} + \epsilon)}
\]
\[
K^{ab}_{cd} = C^{ab} C^{cd}
\]
(16)
I = P_S + P_A + P_0
Orthogonality (and symplecticity) conditions can be imposed on the elements \(T^a_{\ b} \), consistently with the \(RTT \) relations [:]
\[
C^{bc} T^a_{\ b} T^d_{\ c} = C^{ad} I
\]
\[
C_{ac} T^a_{\ b} T^d_{\ c} = C_{bd} I
\] (17)
where the (antidiagonal) metric is:

\[C_{ab} = \epsilon_ar^{-\rho_a}\delta_{ab'} \]

(18)

and its inverse \(C^{ab} \) satisfies \(C^{ab}C_{bc} = \delta_a^c = C_{cb}C^{ba} \). We see that for the orthogonal series, the matrix elements of the metric and the inverse metric coincide, while for the symplectic series there is a change of sign: \(C^{ab} = \epsilon C_{ab} \). Notice also the symmetry \(C_{ab} = C_{b'a'} \).

The consistency of (17) with the RTT relations is due to the identities:

\[C_{ab}R^{bc}_{de} = (R^{-1})^{cf}_{ad}C^{fe} \]

(19)

\[R^{bc}_{de}C^{ea} = C^{bf}(R^{-1})^{ca}_{fd} \]

(20)

These identities hold also for \(R \mapsto R^{-1} \) and can be proved using the explicit expression (8) of \(R \).

We note the useful relations, easily deduced from (15):

\[C_{ab}\hat{R}^{ab}_{cd} = \epsilon\epsilon_{r^l}C_{cd}^{l} \]

(21)

\[\hat{R}^{ab}_{cd}C_{cd}^{ef} = C_{ab}^{ef}C_{ab}^{ef} \]

(22)

The metric \(C \) can be used to express the symmetry property (9) in the covariant notation:

\[R^{ab}_{cd} = C^{cp}_{Cq}R^{pq}_{ef}C^{eq}_{Cf}C^{bf}_{ae} = C^{ae}_{Cf}R^{pq}_{ef}C^{qc}_{Cp}C^{qd}_{Cq} \]

(23)

The co-structures of the \(B, C, D \) multiparametric quantum groups have the same form as in the uniparametric case: the coproduct \(\Delta \), the counit \(\varepsilon \) and the coinverse \(\kappa \) are given by

\[\Delta(T^a_{b}) = T^a_{b} \otimes T^b_{c} \]

(23)

\[\varepsilon(T^a_{b}) = \delta^a_b \]

(24)

\[\kappa(T^a_{b}) = C^{ac}T^d_{c}C_{db} \]

(25)

A conjugation (i.e. algebra antihomomorphism, coalgebra homomorphism and involution, satisfying \(\kappa((T^*)^*) = T \)) can be defined

- trivially as \(T^* = T \). Compatibility with the RTT relations (1) requires \(R_{q,r} = R_{q^{-1},r^{-1}} \), i.e. \(|q| = |r| = 1\). Then the CTT relations are invariant under \(*\)-conjugation. The corresponding real forms are \(SO_{q,r}(n,n;\mathbb{R}) \), \(SO_{q,r}(n,n+1;\mathbb{R}) \) (for \(N \) even and odd respectively) and \(Sp_{q,r}(n;\mathbb{R}) \).

- via the metric as \(T^* = (\kappa(T))^t \). The condition on \(R \) is \(R_{q,r}^{ab}_{cd} = R_{q,r}^{dc}_{ba} \), which happens for \(q_{ab}q_{ab} = r^2, r \in \mathbb{R} \). Again the CTT relations are \(*\)-invariant. The metric on a “real” basis has compact signature \(+,+,+,...+\) so that the real form is \(SO_{q,r}(N;\mathbb{R}) \).

- as \((T^a_{b})^* = T^{a'}_{b'} \). This conjugation, as far as we know, has never been discussed in the literature. The conditions on \(R \) are \(R_{q,r}^{ab}_{cd} = R_{q,r}^{b'a'}_{d'e'} \), and due to (2)
they turn out to be the same as for the preceding conjugation. The compatibility with the CTT relations follows from \(\tilde{C}_{ab} = C_{ba} \) (when \(r \in \mathbb{R} \)).

- there is also a fourth way \([3] \) to define a conjugation on the orthogonal quantum groups \(SO_{q,r}(2n, \mathbb{C}) \), which extends to the multiparametric case the one proposed by the authors of ref. \([13]\) for \(SO_{q}(2n, \mathbb{C}) \). The conjugation is defined by:

\[
(T^a)_{b}^* = \mathcal{D}_c^a T^c_d \mathcal{D}_b^d
\]

\(\mathcal{D} \) being the matrix that exchanges the index \(n \) with the index \(n+1 \). This conjugation is compatible with the coproduct: \(\Delta(T^*) = (\Delta T)^* \); for \(|r| = 1 \) it is also compatible with the orthogonality relations \([17]\) (due to \(\bar{C} = C^T \) and also \(\mathcal{D}_{CT} \mathcal{D} = C \)) and with the antipode: \(\kappa(\kappa(T^*)) = T \). Compatibility with the RTT relations is easily seen to require

\[
(\bar{R})_{n+n+1} = R^{-1},
\]

which implies

i) \(|q_{ab}| = |r| = 1 \) for and \(b \) both different from \(n \) or \(n+1 \);

ii) \(q_{ab}/r \in \mathbb{R} \) when at least one of the indices \(a, b \) is equal to \(n \) or \(n+1 \).

This last conjugation leads to the real form \(SO_{q,r}(n+1, n-1; \mathbb{R}) \), and is in fact the one needed to obtain \(ISO_{q,r}(3,1; \mathbb{R}) \), as discussed in ref. \([4]\) and later in this Letter.

Finally, we consider the \(R \) matrix for the \(SO_{q,r}(N+2) \) and \(Sp_{q,r}(N+2) \) quantum groups. Using formula \([3]\) or \([5]\), we find that it can be decomposed in terms of \(SO_{q,r}(N) \) and \(Sp_{q,r}(N) \) quantities as follows (splitting the index \(A \) as \(A=(o, a, \bullet) \), with \(a = 1, \ldots N \)):

\[
R^{AB}_{\quad CD} = \begin{pmatrix}
\circ o & \bullet \circ & \bullet \circ & \circ d & \bullet d & \circ c & \bullet c & cd \\
\circ o & r & 0 & 0 & 0 & 0 & 0 & 0 \\
\bullet o & 0 & r^{-1} & 0 & 0 & 0 & 0 & 0 \\
\bullet o & 0 & f(r) & r^{-1} & 0 & 0 & 0 & 0 \\
\bullet o & 0 & 0 & r & 0 & 0 & 0 & 0 \\
\bullet o & 0 & 0 & 0 & r & 0 & 0 & 0 \\
\circ b & 0 & 0 & 0 & 0 & \frac{r q_{ob}}{q^b_d} \delta^b_d & 0 & 0 & 0 \\
\bullet b & 0 & 0 & 0 & 0 & 0 & \frac{r q_{ob}}{q^b_d} \delta^b_d & 0 & \lambda^b_d \\
\circ a & 0 & 0 & 0 & 0 & \lambda^a_d & 0 & \frac{r q_{oa}}{q^a_c} \delta^a_c & 0 \\
\bullet a & 0 & 0 & 0 & 0 & 0 & \frac{r q_{oa}}{q^a_c} \delta^a_c & 0 & 0 \\
ab & 0 & -C^{ba} \lambda r^{-\rho} & 0 & 0 & 0 & 0 & 0 & R^{ab}_{\quad cd}
\end{pmatrix}
\]

where \(R^{ab}_{\quad cd} \) is the \(R \) matrix for \(SO_{q,r}(N) \) or \(Sp_{q,r}(N) \), \(C_{ab} \) is the corresponding metric, \(\lambda \equiv r - r^{-1} \), \(\rho = \frac{N+1}{2} \) (\(r^\rho = C_{\bullet} \)) and \(f(r) \equiv \lambda(1 - e^{-2 \rho}) \). The sign \(\epsilon \) has been defined after eq. s \([8]\).

Theorem 1: the quantum inhomogeneous groups \(ISO_{q,r}(N) \) and \(ISp_{q,r}(N) \) are freely generated by the non-commuting elements

\[
T^a_{\quad b}, x^a, v, u \equiv v^{-1} \text{ and the identity } I \quad (a = 1, \ldots N)
\]

(29)
modulo the relations:

\[
R^a_{\, \, ef} T^e_c T^f_d = T^b_f T^a_e R^c_{\, \, fd} \quad (30)
\]
\[
T^a_c C^{bc} T^d_c = C^{ad} I \quad (31)
\]
\[
T^a_c C^{ac} T^c_d = C^{bd} I \quad (32)
\]
\[
T^b_d x^a = \frac{r}{q_d} R^a_{\, \, ef} T^e_c T^f_d \quad (33)
\]
\[
P^a_{\, \, cd} x^c x^d = 0 \quad (34)
\]
\[
T^b_d v = \frac{q_b v}{q_d} T^b_d \quad (35)
\]
\[
x^b v = q_b v x^b \quad (36)
\]
\[
u v = vu = I \quad (37)
\]
\[
u x^b = q_b x^b u \quad (38)
\]
\[
u T^b_d = \frac{q_b}{q_d} T^b_d u \quad (39)
\]

where \(q_{\bullet} \) are \(N \) free complex parameters. The matrix \(P_A \) in eq. (34) is the \(q \)-antisymmetrizer for the \(B, C, D \) \(q \)-groups given by (cf. (10)):

\[
P^a_{\, \, cd} = -\frac{1}{r + r^{-1}} (\hat{R}^a_{\, \, cd} - r \delta^a_c \delta^b_d + \frac{r - r^{-1}}{\epsilon r N - 1 - \epsilon + 1} C^{ab} C_{cd}) \quad (40)
\]

The co-structures are given by:

\[
\Delta(T^a_b) = T^a_c T^c_b \quad (41)
\]
\[
\Delta(x^a) = T^a_c x^c + x^a \otimes v \quad (42)
\]
\[
\Delta(v) = v \otimes v \quad (43)
\]
\[
\Delta(u) = u \otimes u \quad (44)
\]
\[
\kappa(T^a_b) = C^{ac} T^d_c C_{db} = \epsilon_a \epsilon_b r^{-\rho_a + \rho_b} T^{b'}_{\, \, a'} \quad (45)
\]
\[
\kappa(x^a) = -\kappa(T^a_c) x^c u \quad (46)
\]
\[
\kappa(v) = \epsilon u \quad (47)
\]
\[
\kappa(u) = \epsilon v \quad (48)
\]
\[
\epsilon(T^a_b) = \delta^a_b \quad ; \quad \epsilon(x^a) = 0 \quad ; \quad \epsilon(u) = \epsilon(v) = \epsilon(I) = 1 \quad (49)
\]

In the commutative limit \(q \to 1, r \to 1 \) we recover the algebra of functions on \(ISO(N) \) and \(ISp(N) \) (plus the dilatation \(v \) that can be set to the identity).

Proof: our strategy will be to prove that the quantum groups \(ISO_{q,r}(N) \) and \(ISp_{q,r}(N) \) can be derived as the quotients

\[
\frac{SO_{q,r}(N + 2)}{H}, \quad \frac{Sp_{q,r}(N + 2)}{H} \quad (50)
\]
where H is a suitable Hopf ideal in $SO_{q,r}(N + 2)$ or $Sp_{q,r}(N + 2)$. Then the Hopf structure of the groups in the numerators of (50) is naturally inherited by the quotient groups $[14]$. We indicate by T^A_B the basic elements of $SO_{q,r}(N + 2)$ or $Sp_{q,r}(N + 2)$, with the index convention $A=(_\circ, a, _\bullet)$, $a = 1, ..., N$, induced by the R matrix of (28).

The space H is defined as the space of all sums of monomials containing at least an element of the kind $T^\circ_a T^\bullet_b T^\bullet_o$.

We introduce the following convenient notations: T stands for $T^\circ_a T^\bullet_b$, T^\bullet_o or $T^\bullet_b T^\circ_o$, $S_{q,r}(N + 2)$ stands for either $SO_{q,r}(N + 2)$ or $Sp_{q,r}(N + 2)$, and we indicate by Δ_{N+2}, ε_{N+2} and κ_{N+2} the corresponding co-structures.

We start the proof of Theorem 1 by proving first the important Lemma:

Lemma: the space H is a Hopf ideal in $S_{q,r}(N + 2)$, that is, if
i) H is a two-sided ideal in $S_{q,r}(N + 2)$,
ii) H is a co-ideal, i.e.
$$\Delta_{N+2}(H) \subseteq H \otimes S_{q,r}(N + 2) + S_{q,r}(N + 2) \otimes H; \quad \varepsilon_{N+2}(H) = 0$$ (51)
iii) H is compatible with κ_{N+2}:
$$\kappa_{N+2}(H) \subseteq H$$ (52)

Proof:

i) H is trivially a subalgebra of $S_{q,r}(N + 2)$. It is a right and left ideal since $\forall h \in H, \forall a \in S_{q,r}(N + 2)$, $ha \in H$ and $ah \in H$. This follows immediately from the definition of H as sums of monomials containing at least a factor T. H is the ideal in $S_{q,r}(N + 2)$ generated by the elements T.

ii) First notice that $\Delta_{N+2}(T) \in H \otimes S_{q,r}(N + 2) + S_{q,r}(N + 2) \otimes H$. Now by definition of H we have
$$\forall h \in H, \quad h = bTc, \quad b, c \in S_{q,r}(N + 2).$$ (53)
where bTc represents a sum of monomials. Then we find
$$\Delta_{N+2}(h) = \Delta_{N+2}(b)\Delta_{N+2}(T)\Delta_{N+2}(c) \in H \otimes S_{q,r}(N + 2) + S_{q,r}(N + 2) \otimes H.$$. (54)
Moreover, since ε_{N+2} vanishes on T we have:
$$\varepsilon_{N+2}(h) = 0, \quad \forall h \in H.$$ (55)
These relations ensure that (51) holds.

iii)
$$\kappa_{N+2}(T^\circ_a) = C^{aa'}T^\bullet_{a'}, C^\bullet_{_o}$$ (56)
$$\kappa_{N+2}(T^\bullet_b) = C^\bullet_{_o}T^\circ_{b'} C^\bullet_{_o'}$$ (57)
$$\kappa_{N+2}(T^\bullet_o) = C^\bullet_{_o}T^\circ_{_o} C^\bullet_{_o}$$ (58)
so that $\kappa_{N+2}(T) \propto T$ and therefore

$$\kappa_{N+2}(h) = \kappa_{N+2}(bTc) = \kappa_{N+2}(c)\kappa_{N+2}(T)\kappa_{N+2}(b) \in H$$ \hspace{1cm} (59)

and the Lemma is proved. □

Consider now the quotient

$$\frac{S_{q,r}(N + 2)}{H}, \hspace{1cm} (60)$$

and the canonical projection

$$P : S_{q,r}(N + 2) \rightarrow S_{q,r}(N + 2)/H \hspace{1cm} (61)$$

Any element of $S_{q,r}(N + 2)/H$ is of the form $P(a)$. Also, $P(H) = 0$, i.e. $H = \text{Ker}(P)$.

Since H is a two-sided ideal, $S_{q,r}(N + 2)/H$ is an algebra with the following sum and products:

$$P(a) + P(b) \equiv P(a + b) ; \quad P(a)P(b) \equiv P(ab) ; \quad \mu P(a) \equiv P(\mu a), \quad \mu \in \mathbb{C} \hspace{1cm} (62)$$

We will use the following notation:

$$u \equiv P(T^0_a), \quad v \equiv P(T^*_a), \quad z \equiv P(T^c_a) \hspace{1cm} (63)$$

and with abuse of symbols:

$$T^a_b \equiv P(T^a_b) ; \quad I \equiv P(I) ; \quad 0 \equiv P(0) \hspace{1cm} (65)$$

Using (65) it is easy to show that T^a_b, x^a, y_b, u, v, z and I generate the algebra $S_{q,r}(N + 2)/H$. Moreover from the RTT relations (65) $R_{12}T_1T_2 = T_2T_1R_{12}$ and the $CTT = C$ relations (66) in $S_{q,r}(N + 2)$ we find the "$P(RTT)$" and "$P(CTT)$" relations in $S_{q,r}(N + 2)/H$:

$$P(R_{12}T_1T_2) = P(T_2T_1R_{12}) \quad \text{i.e.} \quad R_{12}P(T_1)P(T_2) = P(T_2)P(T_1)R_{12} \hspace{1cm} (66)$$

$$P(CTT) = C \quad \text{i.e.} \quad CP(T)P(T) = C \hspace{1cm} (67)$$

Proposition: The projected relations (66) and (67) are equivalent to the relations (30)-(39), supplemented by the two constraints:

$$y_b = -r^\rho T^a_b C_{ac} x^c u \hspace{1cm} (68)$$

$$z = -\frac{1}{(r^\rho - r^\rho - 2)} x^b C_{ba} x^a u \hspace{1cm} (69)$$

Proof: Consider the R matrix decomposition (28). The three kinds of indices \circ, a, \bullet yield 81 RTT relations. Out of these only 41 are independent and give all
the q-commutations between the T_{AB} elements: they contain all the information of the RTT relations. We then project these 41 relations to obtain the $P(RTT)$ relations. We proceed in a similar way with the 9 CTT relations to obtain the $P(CTT)$ relations: in particular one finds $uv = vu = I$.

The projected relations obtained in this way are not independent. In fact choosing the lower indices in the $P(CTT)$ relations as \bullet we find the constraint (68). All the projected relations that contain the elements y are a consequence of the remaining projected relations and of (68). Therefore (68) is a consistent constraint. The contraction of the $(^a\bullet^b\bullet) P(RTT)$ relations with the metric C_{ab} gives (69) \[\text{use (21) and } C_{ab}C^{ab} \text{ in (13)}\] . All the other projected relations containing the element z are a consequence of the remaining ones and of (68). Finally all the projected relations containing the element u are a consequence of $u = v^{-1}$.

We thus arrive at the minimal set of $P(RTT)$ and $P(CTT)$ relations given by (30)-(39), (68) and (69). The Proposition is then proved. □

This implies that we can choose as independent generators the set T_{ab}^a, x^a, v, $u \equiv v^{-1}$, and I.

Let us indicate by $\Delta_{N+2}, \varepsilon_{N+2}$ and κ_{N+2} the costructures of $S_{q,r}(N+2)$, defined by:

\[
\Delta_{N+2}(T_{AB}^a) = T_{AC}^a \otimes T_{CB}^b \quad (70)
\]

\[
\kappa_{N+2}(T_{AB}^a) = C^{AC}T_D^D C_{DB} \quad (71)
\]

\[
\varepsilon_{N+2}(T_{AB}^a) = \delta_{AB} \quad (72)
\]

Since H is a Hopf ideal then $S_{q,r}(N+2)/H$ is also a Hopf algebra with costructures:

$\Delta(P(a)) \equiv (P \otimes P)\Delta_{N+2}(a) \quad \varepsilon(P(a)) \equiv \varepsilon_{N+2}(a) \quad \kappa(P(a)) \equiv P(\kappa_{N+2}(a)) \quad (73)$

Indeed (71) and (72) ensure that Δ, ε, and κ are well defined. For example

\[
(P \otimes P)\Delta_{N+2}(a) = (P \otimes P)\Delta_{N+2}(b) \quad \text{if} \quad P(a) = P(b) \quad (74)
\]

In order to prove the Hopf algebra axioms of the Appendix for Δ, ε, κ we just have to project those for Δ_{N+2}, ε_{N+2}, κ_{N+2} . For example, the first axiom is proved by applying $P \otimes P \otimes P$ to $(\Delta_{N+2} \otimes id)\Delta_{N+2}(a) = (id \otimes \Delta_{N+2})\Delta_{N+2}(a)$. The other axioms are proved in a similar way.

In conclusion, the elements T_{ab}^a, x^a, v, $u \equiv v^{-1}$ and I generate the Hopf algebra $S_{q,r}(N+2)/H$ and satisfy the $P(RTT)$ and $P(CTT)$ relations (30)-(39). The costructures defined in (73) act on them exactly as the co-structures defined in (41)-(49). Therefore the explicit structure of the Hopf algebra $S_{q,r}(N+2)/H$ is the one described in Theorem 1. We have

\[
\mathcal{I}S_{q,r}(N) = \frac{S_{q,r}(N+2)}{H} \quad , \quad (75)
\]
and Theorem 1 is proved. □

The canonical projection $P : S_{q,r}(N+2) \to IS_{q,r}(N)$ is an epimorphism between these two Hopf algebras.

Note 1: the consistency of the $P(RTT)$ and $P(CTT)$ relations with the co-structures Δ, ε and κ is easily proved. For example,

$$\Delta(P(R_{12}T_1T_2) - P(T_2T_1R_{12})) = 0$$

is a particular case of eq. (74). Similarly for ε and κ, and for the $P(CTT)$ relations.

We are now able to give a R matrix formulation of the inhomogeneous $ISO_{q,r}(N)$ and $ISp_{q,r}(N)$ groups. Indeed recall that $S_{q,r}(N+2)$ is the Hopf algebra freely generated by the non-commuting matrix elements T^A_B modulo the ideal generated by the RTT and CTT relations [R matrix and metric C of $S_{q,r}(N+2)$]. This can be expressed as:

$$S_{q,r}(N+2) \equiv \frac{< T^A_B >}{[RTT, CTT]}$$

Therefore we have (recall that $H \equiv [T^a_o, T^b\cdot, T^\cdot o] \equiv [T]$):

$$IS_{q,r}(N) = \frac{S_{q,r}(N+2)}{[T]} = \frac{< T^A_B >}{[RTT, CTT]} = \frac{< T^A_B >}{[RTT, CTT, T]}$$

So that we have shown the following

Theorem 2: the quantum inhomogeneous groups $ISO_{q,r}(N)$ and $ISp_{q,r}(N)$ are freely generated by the non-commuting matrix elements T^A_B [A=(o, a, \cdot), with $a = 1, \ldots N$] and the identity I, modulo the relations:

$$T^a_o = T^\cdot b = T^\cdot o = 0,$$

the RTT relations

$$R^{AE}_{EF} T^E_C T^F_D = T^B_F T^A_E R^{EF}_{CD},$$

and the orthogonality (symplecticity) relations

$$C^{BC} T^A_B T^D_C = C^{AD}$$

$$C_{AC} T^A_B T^C_D = C_{BD}$$

The co-structures of $ISO_{q,r}(N)$ and $ISp_{q,r}(N)$ are simply given by:

$$\Delta(T^A_B) = T^A_C \otimes T^C_B$$

$$\kappa(T^A_B) = C^{AC} T^D_C C_{DB}$$

$$\varepsilon(T^A_B) = \delta^A_B$$

Note 2: the T^A_B matrix elements in eq. (80) are really a redundant set: indeed not all of them are independent, see the constraints (68) and (69). This is necessary
if we want to express the q-commutations of the $ISO_{q,r}(N)$ and $ISp_{q,r}(N)$ basic group elements as $RTT = TTR$ (i.e. if we want an R-matrix formulation). Remark that, in the R-matrix formulation for $IGL_{q,r}(N)$, all the T^A_B are independent.

Note 3: From the commutations (31) - (39) we see that one can set $u = I$ only when $q_a \odot = 1$ for all a. From $q_a \odot = r^2/q_a \bullet$, cf. eq. (7), this implies also $r = 1$, in agreement with the results of ref. [3], where a differential calculus for $ISO_{q,r}(N)$ without dilatations was found only for $r = 1$.

Note 4: eq.s (34) are the multiparametric (orthogonal or symplectic) quantum plane commutations. They follow from the $(a \odot b) P(RT) T$ components and (69).

Finally, it is not difficult to see how the real forms of $S_{q,r}(N+2)$ are inherited by $IS_{q,r}(N)$. In fact, only the first and the fourth real forms of $S_{q,r}(N+2)$, discussed after (25), are compatible with the coset structure of $IS_{q,r}(N)$. More precisely, H is a \ast-Hopf ideal, i.e. $(H)^\ast \subseteq H$, only for $T^\ast = T$ or $(T^a_b)^\ast = D^a_c T^c_d D^d_b$. Then we can define a \ast-structure on $IS_{q,r}(N)$ as $[P(a)]^\ast \equiv P(a^\ast)$, $\forall a \in S_{q,r}(N+2)$. The conditions on the parameters are respectively:

- $|q_{ab}| = |q_a\bullet| = |r| = 1$ for $ISO_{q,r}(n, n; \mathbb{R})$, $ISO_{q,r}(n, n+1; \mathbb{R})$ and $ISp_{q,r}(n; \mathbb{R})$.

- For $ISO_{q,r}(n+1, n-1; \mathbb{R})$, $|r| = 1$; $|q_{ab}| = 1$ for a and b both different from n or $n+1$; $q_{ab}/r \in \mathbb{R}$ when at least one of the indices a, b is equal to n or $n+1$; $q_a\bullet/r \in \mathbb{R}$ for $a = n$ or $a = n+1$.

In particular, the quantum Poincaré group $ISO_{q,r}(3, 1; \mathbb{R})$ is obtained by setting $|q_1\bullet| = |q_2\bullet| = |r| = 1$, $q_{12}/r \in \mathbb{R}$.

APPENDIX : the Hopf algebra axioms

A Hopf algebra over the field K is a unital algebra over K endowed with the linear maps:

$$\Delta : A \to A \otimes A$$
$$\varepsilon : A \to K$$
$$\kappa : A \to A$$

satisfying the following properties $\forall a, b \in A$:

$$(\Delta \otimes \text{id})\Delta(a) = (\text{id} \otimes \Delta)\Delta(a)$$

$$(\varepsilon \otimes \text{id})\Delta(a) = (\text{id} \otimes \varepsilon)\Delta(a) = a$$

$$m(\kappa \otimes \text{id})\Delta(a) = m(\text{id} \otimes \kappa)\Delta(a) = \varepsilon(a)I$$

$$\Delta(ab) = \Delta(a)\Delta(b) ; \Delta(I) = I \otimes I$$
\[\varepsilon(ab) = \varepsilon(a)\varepsilon(b) \ ; \ \varepsilon(I) = 1 \]

(92)

where \(m \) is the multiplication map \(m(a \otimes b) = ab \). From these axioms we deduce:

\[\kappa(ab) = \kappa(b)\kappa(a) \ ; \ \Delta[\kappa(a)] = \tau(\kappa \otimes \kappa)\Delta(a) \ ; \ \varepsilon[\kappa(a)] = \varepsilon(a) \ ; \ \kappa(I) = I \]

(93)

where \(\tau(a \otimes b) = b \otimes a \) is the twist map.

References

[1] V. Drinfeld, Sov. Math. Dokl. 32 (1985) 254; M. Jimbo, Lett. Math. Phys. 10 (1985) 63; 11 (1986) 247

[2] L.D. Faddeev, N.Yu. Reshetikhin and L.A. Takhtajan, Algebra and Analysis, 1 (1987) 178.

[3] D. Bernard, Progress of Theor. Phys. Suppl. 102 (1990) 49; I.Y. Aref’eva and I.V. Volovich, Mod. Phys. Lett A6 (1991) 893; Phys. Lett. B264 (1991) 62; A. P. Isaev and Z. Popowicz, Phys. Lett. B281 (1992) 271; L. Castellani, Phys. Lett. B279 (1992) 291 and Phys. Lett. B292 (1992) 93; S. Meljanac and S. Pallua, Classical field lagrangian and deformed algebras, DFPF/92/TH/15; A. Dimakis and F. Müller-Hoissen, Noncommutative differential calculus, gauge theory and gravitation, GOET-TP-33/92; K. Wu and R.-J. Zhang, Commun. Theor. Phys. 17 (1992) 175; T. Brzeziński and S. Majid, Phys. Lett. B298 (1993) 339 and Quantum group gauge theory on quantum spaces, DAMTP/92-27.

[4] L. Castellani, Phys. Lett. B292 (1992) 93; \(U_q(N) \) gauge theories, Torino preprint DFTT 74/92, hep-th 9212141, to be publ. in Mod. Phys. Lett. A.

[5] L. Castellani, Differential calculus on \(ISO_q(N) \), quantum Poincaré algebra and q-gravity, DFTT-70/93, hep-th 9312173, to be publ. in Commun. Math. Phys.; Phys. Lett. B327 (1994) 22, hep-th 9402033.

[6] P. Aschieri and L. Castellani, An Introduction to non-commutative differential geometry on quantum groups, Int. Jou. Mod. Phys. A8 (1993) 1667.

[7] L. Castellani, Phys. Lett. 298 (1993) 335, hep-th 9211032; L. Castellani, Lett. Math. Phys. 30 (1994) 233 (contains the first part of the unpublished preprint On the quantum Poincaré group, DFTT-57-92, hep-th 9212013).

[8] P. Aschieri and L. Castellani, Inhomogeneous quantum groups \(IGL_{q,r}(N) \): universal enveloping algebra and differential calculus, DFTT-9/94 and hep-th 9408031, subm. to Commun. Math. Phys.
[9] S.L. Woronowicz, Comm. Math. Phys. 136 (1991) 399; Lett. Math. Phys. 23 (1991) 251; M. Schlieker, W. Weich and R. Weixler, Z. Phys. C -Particles and Fields 53 (1992) 79; E. Celeghini, R. Giachetti, E. Sorace and M. Tarlini, J. Math. Phys. 32 (1991) 1159; A. Chakrabarti, in the proceedings of the Wigner Symposium II, Goslar 1991; L. Castellani, Phys. Lett. B279 (1992) 291; P. Schupp, P. Watts and B. Zumino, Lett. Math. Phys. 24 (1992) 141; J. Rembielinski, Phys. Lett. B296 (1992) 335; M. Chaichian and A.P. Demichev, Helsinki Univ. prep. HU-TFT-92-38, 1992; V.K. Dobrev and P. Parashar, J. Phys. A26 (1993) 6991; M. Schlieker, W. Weich and R. Weixler, Lett. Math. Phys. 27 (1993) 217; A. Shariati and A. Aghamohammadi, IPM-94-47, hep-th/9408059.

[10] A. Schirrmacher, J. Phys. A24 (1991) L1249.

[11] N. Reshetikhin, Lett. Math. Phys. 20 (1990) 331.

[12] A. Sudbery, J. Phys. A23 (1990) L697; D.D. Demidov, Yu. I. Manin, E.E. Mukhin and D.V. Zhidanovich, Progr. Theor. Phys. Suppl. 102 (1990) 203; A. Schirrmacher, Z. Phys. C 50 (1991) 321; D.B. Fairlie and C.K. Zachos, Phys. Lett. B256 (1991) 43.

[13] E. Celeghini, R. Giachetti, A. Reyman, E. Sorace, M. Tarlini, $SO_q(n+1, n-1)$ as a real form of $SO_q(2n, C)$, Lett. Math. Phys. 23 (1991) 45.

[14] M.E. Sweedler, Hopf Algebras, Benjamin, New York (1969).