Model Combination for Event Extraction in BioNLP 2011

Sebastian Riedel,a David McClosky,b Mihai Surdeanu,b Andrew McCallum,a and Christopher D. Manningb

aUniversity of Massachusetts at Amherst and bStanford University

BioNLP 2011 — June 24th, 2011
Previous work / Motivation

- BioNLP 2009: model combination led to 4% F1 improvement over best individual system (Kim et al., 2009)
Previous work / Motivation

- BioNLP 2009: model combination led to 4% F1 improvement over best individual system (Kim et al., 2009)
- Netflix challenge: winning entry relies on model combination (Bennett et al., 2007)
Previous work / Motivation

- BioNLP 2009: model combination led to 4% F1 improvement over best individual system (Kim et al., 2009)
- Netflix challenge: winning entry relies on model combination (Bennett et al., 2007)
- CoNLL 2007: winning entry relies on model combination (Hall et al., 2007)
Previous work / Motivation

- BioNLP 2009: model combination led to 4% F1 improvement over best individual system (Kim et al., 2009)
- Netflix challenge: winning entry relies on model combination (Bennett et al., 2007)
- CoNLL 2007: winning entry relies on model combination (Hall et al., 2007)
- CoNLL 2003: winning entry relies on model combination (Florian et al., 2003)

- Most of these use stacking — so do we

 Stacked model's output as features in stacking model
Previous work / Motivation

- BioNLP 2009: model combination led to 4% F1 improvement over best individual system (Kim et al., 2009)
- Netflix challenge: winning entry relies on model combination (Bennett et al., 2007)
- CoNLL 2007: winning entry relies on model combination (Hall et al., 2007)
- CoNLL 2003: winning entry relies on model combination (Florian et al., 2003)
- etc. etc. etc.
Previous work / Motivation

- BioNLP 2009: model combination led to 4% F1 improvement over best individual system (Kim et al., 2009)
- Netflix challenge: winning entry relies on model combination (Bennett et al., 2007)
- CoNLL 2007: winning entry relies on model combination (Hall et al., 2007)
- CoNLL 2003: winning entry relies on model combination (Florian et al., 2003)
- etc. etc. etc.
- Most of these use **stacking**—so do we
Previous work / Motivation

- BioNLP 2009: model combination led to 4% F1 improvement over best individual system (Kim et al., 2009)
- Netflix challenge: winning entry relies on model combination (Bennett et al., 2007)
- CoNLL 2007: winning entry relies on model combination (Hall et al., 2007)
- CoNLL 2003: winning entry relies on model combination (Florian et al., 2003)
- etc. etc. etc.
- Most of these use **stacking**—so do we
- **Stacked** model’s output as features in **stacking** model
Stacking Model

Maximize \(s(e, a, b) = \sum_i s_i^T(e_i) + \sum_{i,j} s_{i,j}^A(a_{i,j}) + \sum_{p,q} s_{p,q}^B(b_{p,q}) \)

under global constrains

\[
\begin{align*}
\text{Binding} & : s(\text{Binding}) = -0.1 \\
\text{Regulation} & : s(\text{Regulation}) = 3.2 \\
\text{Phosphor.} & : s(\text{Phosphor.}) = 0.5
\end{align*}
\]

phosphorylation of TRAF2 inhibits binding to the CD40 domain

\[
\begin{align*}
& s(\text{None}) = -2.2 \\
& s(\text{Theme}) = 0.2 \\
& s(\text{Cause}) = 1.3 \\
& b_{p,q} \\
& s(\cdots) = -2.2 \\
& s(\cdots) = 3.2
\end{align*}
\]
Scores

\[s(\text{Regulation}) = 3.2 \]

\[
\begin{pmatrix}
1 \\
\vdots \\
1
\end{pmatrix}^T
\begin{pmatrix}
-2.1 \\
\vdots \\
1.3
\end{pmatrix}
\]

\(e = \text{Reg} \)

\(e = \text{Reg and } w = "\text{inhibit}" \)
Stacked Features

\[
s(\text{Regulation}) = 3.2
\]

\[
\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1 \\
\end{array} \right)^\top \left(\begin{array}{c}
-2.1 \\
1.2 \\
\vdots \\
1.3 \\
\end{array} \right)
\]

- \(e = \text{Reg}\)
- \(e = \text{Reg and } y = \text{Reg}\)
- \(e = \text{Reg and } w = \text{”inhibit”}\)
Stacked model

- Stanford Event Parsing system

- Recall: Four different decoders:
 (1st, 2nd-order features) × (projective, non-projective)

- Only used the parser for stacking (1-best outputs)

- Different segmentation/tokenization

- Different trigger detection
Performance of individual components

System	F_1
UMass	54.8

(Genia development section, Task 1)
Performance of individual components

System	F_1
UMass	54.8
Stanford (1N)	49.9
Stanford (1P)	49.0
Stanford (2N)	46.5
Stanford (2P)	49.5

(Genia development section, Task 1)
Performance of individual components

System	F_1	with reranker
UMass	54.8	—
Stanford (1N)	49.9	50.2
Stanford (1P)	49.0	49.4
Stanford (2N)	46.5	47.9
Stanford (2P)	49.5	50.5

(Genia development section, Task 1)
Model combination strategies

System	F_1
UMass	54.8
Stanford (2P, reranked)	50.5
UMass (1P)	55.7
UMass (2P)	55.7
UMass (all)	55.9

(Genia development section, Task 1)
Model combination strategies

System	F_1
UMass	54.8
Stanford (2P, reranked)	50.5
Stanford (all, reranked)	50.7

(Genia development section, Task 1)
Model combination strategies

System	F_1
UMass	54.8
Stanford (2P, reranked)	50.5
Stanford (all, reranked)	50.7
UMass←2N	54.9
UMass←1N	55.6
UMass←1P	55.7
UMass←2P	55.7

(Genia development section, Task 1)
Model combination strategies

System	F_1
UMass	54.8
Stanford (2P, reranked)	50.5
Stanford (all, reranked)	50.7
UMass←2N	54.9
UMass←1N	55.6
UMass←1P	55.7
UMass←2P	55.7
UMass←all	55.9

(Genia development section, Task 1)
Model combination strategies

System	F_1
UMass	54.8
Stanford (2P, reranked)	50.5
Stanford (all, reranked)	50.7
UMass←2N	54.9
UMass←1N	55.6
UMass←1P	55.7
UMass←2P	55.7
UMass←all (FAUST)	55.9

(Genia development section, Task 1)
Ablation analysis for stacking

System	F_1
UMass	54.8
Stanford (2P, reranked)	50.5
UMass←all	55.9

(Genia development section, Task 1)
Ablation analysis for stacking

System	F_1
UMass	54.8
Stanford (2P, reranked)	50.5
UMass←all	**55.9**
UMass←all (triggers)	54.9
UMass←all (arguments)	55.1

(Genia development section, Task 1)
Conclusions

- Stacking: easy, effective method of model combination
- Variability in models critical for success
- Tree structure best provided by projective decoder
- Incorporated in UMass model via 2P stacking
- Future work: Incorporate projectivity constraint directly

Questions?
Conclusions

- Stacking: easy, effective method of model combination
 - ...even if base models differ significantly in performance

Future work: Incorporate projectivity constraint directly
Conclusions

- Stacking: easy, effective method of model combination
 - ...even if base models differ significantly in performance

- Variability in models critical for success
Conclusions

- Stacking: easy, effective method of model combination
 - ...even if base models differ significantly in performance

- Variability in models critical for success

- Tree structure best provided by projective decoder
Conclusions

- Stacking: easy, effective method of model combination
 - ...even if base models differ significantly in performance

- Variability in models critical for success

- Tree structure best provided by projective decoder
 - Incorporated in UMass model via 2P stacking
Conclusions

- Stacking: easy, effective method of model combination
 - ...even if base models differ significantly in performance

- Variability in models critical for success

- Tree structure best provided by projective decoder
 - Incorporated in UMass model via 2P stacking

- Future work: Incorporate projectivity constraint directly

Questions?
Backup slides
Stacked Features

\[
\begin{pmatrix}
1 \\
1 \\
\vdots \\
1
\end{pmatrix}^T
\begin{pmatrix}
-2.1 \\
1.2 \\
\vdots \\
1.3
\end{pmatrix}
\]

\[
es(\text{Regulation}) = 3.2
\]

- \(e = \text{Reg}\)
- \(e = \text{Reg and } y = \text{Reg}\)
- \(e = \text{Reg and } w = "\text{inhibit}"\)

13
Conjoined Features

\[
s(\text{Regulation}) = 3.2
\]

\[
\begin{pmatrix}
1 \\
1 \\
\vdots \\
1 \\
1
\end{pmatrix}^T
\begin{pmatrix}
-2.1 \\
1.2 \\
\vdots \\
1.3 \\
3.2
\end{pmatrix}
\]

- \(e = \text{Reg}\)
- \(e = \text{Reg and } y = \text{Reg}\)
- \(e = \text{Reg and } w = "\text{inhibit}"\)
- \(e = \text{Reg and } w = "\text{inhibit}" \text{ and } y = \text{Reg}\)
Results on Genia

System	Simple	Binding	Regulation	Total
UMass	74.7	47.7	42.8	54.8
Stanford 1N	71.4	38.6	32.8	47.8
Stanford 1P	70.8	35.9	31.1	46.5
Stanford 2N	69.1	35.0	27.8	44.3
Stanford 2P	72.0	36.2	32.2	47.4
UMass ← All	76.9	43.5	44.0	55.9
UMass ← 1N	76.4	45.1	43.8	55.6
UMass ← 1P	75.8	43.1	44.6	55.7
UMass ← 2N	74.9	42.8	43.8	54.9
UMass ← 2P	75.7	46.0	44.1	55.7
UMass ← All (triggers)	76.4	41.2	43.1	54.9
UMass ← All (arguments)	76.1	41.7	43.6	55.1
Results on Infectious Diseases

System	Rec	Prec	F_1
UMass	46.2	51.1	48.5
Stanford 1N	43.1	49.1	45.9
Stanford 1P	40.8	46.7	43.5
Stanford 2N	41.6	53.9	46.9
Stanford 2P	42.8	48.1	45.3
UMass \leftarrow All	47.6	54.3	50.7
UMass \leftarrow 1N	45.8	51.6	48.5
UMass \leftarrow 1P	47.6	52.8	50.0
UMass \leftarrow 2N	45.4	52.4	48.6
UMass \leftarrow 2P	49.1	52.6	50.7
UMass \leftarrow 2P (conjoined)	48.0	53.2	50.4
Results on test

	UMass	UMass ↔ All				
	Rec	Prec	F_1	Rec	Prec	F_1
GE (Task 1)	48.5	64.1	55.2	49.4	64.8	56.0
GE (Task 2)	43.9	60.9	51.0	46.7	63.8	53.9
EPI (Full task)	28.1	41.6	33.5	28.9	44.5	35.0
EPI (Core task)	57.0	73.3	64.2	59.9	80.3	68.6
ID (Full task)	46.9	62.0	53.4	48.0	66.0	55.6
ID (Core task)	49.5	62.1	55.1	50.6	66.1	57.3