Improved NMR transfer of magnetization from protons to half-integer spin quadrupolar nuclei at moderate and high MAS frequencies

Jennifer S. Gómez¹, Andrew G.M. Rankin¹,#, Julien Trébosc², Frédérique Pourpoint¹, Yu Tsutsumi³, Hiroki Nagashima⁴, Olivier Lafon¹,⁵, Jean-Paul Amoureux¹,⁶,⁷

¹Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, Lille, 59000, France
²Univ. Lille, CNRS, INRAE, Centrale Lille, Univ. Artois, FR 2638 – IMEC – Fédération Chevreul, Lille, 59000, France
³Bruker Japan, 3-9 Moriya-cho, Kanagawa-ku, Yokohama-shi, Kanagawa, 221-0022, Japan
⁴Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
⁵Institut Universitaire de France, 1 rue Descartes, Paris, 75231, France
⁶Riken NMR Science and Development Division, Yokohama-shi, Yokohama-shi, Kanagawa, 230-0045, Japan
⁷Bruker Biospin, 34 rue de l’industrie, Wissembourg, 67166, France

*Present address: Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4 place Jussieu, Paris, 75005, France

Correspondance to: Olivier Lafon (olivier.lafon@univ-lille.fr) and Jean-Paul Amoureux (jean-paul.amoureux@univ-lille.fr)

Keywords: Quadrupolar nuclei, proton, D-RINEPT, PRESTO, adiabatic pulses, composite pulses.

Abstract. Half-integer spin quadrupolar nuclei are the only magnetic isotopes for the majority of the chemical elements. Therefore, the transfer of polarization from protons to these isotopes under magic-angle spinning (MAS) can provide precious insights into the interatomic proximities in hydrogen-containing solids, including organic, hybrid, nanostructured and biological solids. Furthermore, this transfer has recently been combined with dynamic nuclear polarization (DNP) in order to enhance the NMR signal of half-integer quadrupolar isotope. Nevertheless, the cross-polarization transfer lacks of robustness in the case of quadrupolar nuclei and we have recently introduced as an alternative technique a through-space refocused insensitive nuclei enhancement by polarization transfer (D-RINEPT) scheme combining hetero-nuclear dipolar recoupling built from adiabatic pulses and continuous wave decoupling. This technique has been demonstrated at 9.4 T with moderate MAS frequencies, ν_R ≈ 10-15 kHz, in order to transfer the DNP-enhanced ¹H polarization to quadrupolar nuclei. Nevertheless, polarization transfers from protons to quadrupolar nuclei are also required at higher MAS frequencies in order to improve the resolution of ¹H spectra. We investigate how this transfer can be achieved at ν_R ≈ 20 and 60 kHz. We demonstrate that the D-RINEPT sequence using adiabatic pulses still produces efficient and robust transfer but requires large rf-fields, which may not be compatible with the specifications of commonly employed MAS NMR probes. As an alternative, we introduce robust and efficient variants of D-RINEPT and PRESTO (phase-shifted recoupling effects a smooth transfer of order) sequences using symmetry-based recoupling schemes built from single and composite π-pulses. Their performances are compared using the
average Hamiltonians and experiments at $B_0 = 18.8$ T on γ-alumina and isopropylamine templated microporous aluminophosphate AlPO$_4$-14, featuring low and significant 1H-1H dipolar interactions, respectively. These experiments demonstrate that the 1H magnetization can be efficiently transferred to 27Al nuclei using D-RINEPT with SR4½($270\nu R_{180}$) recoupling, and PRESTO with R22½(180) or R16½(270) schemes at $\nu R = 20$ or 62.5 kHz, respectively. The D-RINEPT and PRESTO recouplings complement each other since the latter is affected by dipolar truncation, whereas the former is not.

I. Introduction

Quadrupolar nuclei with a nuclear spin quantum number $S = 3/2, 5/2, 7/2$ or $9/2$ are the only NMR-active isotopes for over 60% of the chemical elements of the first six periods of the periodic table, including six of the eight most abundant elements by mass in the Earth’s crust: O, Al, Ca, Na, Mg and K.\,(Ashbrook and Sneddon, 2014) A wide range of materials, including organic compounds, biological macromolecules as well as nanostructured or hybrid materials, contain half-integer spin quadrupolar nuclei and protons. Proximities between these isotopes have notably been probed in solid-state NMR experiments by transferring the polarization of protons to half-integer quadrupolar nuclei through dipolar couplings under magic-angle spinning (MAS) conditions.\,(Rocha et al., 1991; Hwang et al., 2004; Peng et al., 2007; Vogt et al., 2013; Chen et al., 2019) More recently, this polarization transfer has been combined under MAS with DNP (dynamic nuclear polarization) in order to enhance the NMR signals of half-integer spin quadrupolar nuclei.\,(Vitzthum et al., 2012; Perras et al., 2015a; Nagashima et al., 2020) This approach has notably allowed the detection of insensitive quadrupolar nuclei with low natural abundance, such as 17O or 43Ca, or low gyromagnetic ratio, γ, such as 47,49Ti, 67Zn or 95Mo, near surfaces of materials.\,(Perras et al., 2015a; Nagashima et al., 2020; Blanc et al., 2013; Perras et al., 2016, 2017; Hope et al., 2017; Lee et al., 2017; Nagashima et al., n.d.; Li et al., 2018) This transfer has originally been achieved using cross-polarization under MAS (CPMAS).\,(Harris and Nesbitt, 1988) Nevertheless, this technique lacks robustness for quadrupolar nuclei since the spin-locking of the central transition (CT) between energy levels $\pm 1/2$ is sensitive to the strength of the quadrupole interaction, the offset, the CSA (chemical shift anisotropy) and the rf-field inhomogeneity.\,(Vega, 1992; Amoureux and Pruski, 2002; Tricot et al., 2011, p.20) Furthermore, CPMAS experiments require a careful adjustment of the rf-field applied to the quadrupolar isotope in order to fulfill the Hartmann-Hahn condition $(S+1/2)v_{1S} + ev_{1H} = n\nu R$, where v_{1S} and v_{1H} denote the amplitudes of the rf-fields applied to the quadrupolar isotope S and to the protons, respectively, $e = \pm 1$, $n = \pm 1$ or ± 2, and νR is the MAS speed, while avoiding the rotary resonance recoupling $(R^p) v_{1S} = p\nu R/(S+1/2)$ with $p = 0, 1, 2, 3$.\,(Amoureux and Pruski, 2002; Ashbrook and Wimperis, 2009) Moreover, the magnetization of the quadrupolar nuclei cannot be spin-locked for some crystallite orientations, which leads to line-shape distortions.\,(Barrie, 1993; Hayashi and Hayamizu, 1993; Ding and Mcdowell, 1995) These issues have been circumvented by the use of the PRESTO (phase-shifted recoupling effects a smooth transfer of order) scheme,\,(Perras et al., 2015a, b) and more recently, the through-space refocused INEPT (denoted RINEPT
This schemes benefit from higher robustness than CPMAS since they do not employ a spin-lock on the quadrupolar channel, but instead a limited number (two or three) of pulses selective to the CT. In these sequences, the dipolar interactions between protons and quadrupolar nucleus are reintroduced by applying on the 1H channel symmetry-based recoupling sequences, such as R182_5 for PRESTO or SR42_1 for RINEPT. (Zhao et al., 2001; Brinkmann and Kentgens, 2006a) In the case of recoupling sequences built from single square π-pulses, the RINEPT sequence using SR42_1 (denoted RINEPT-SR42_1) is more efficient than PRESTO at $v_R \geq 60$ kHz because of its higher robustness to rf-field inhomogeneity and 1H offset and CSA. At $v_R \leq 20$ kHz, the PRESTO technique is more efficient since the efficiency of RINEPT-SR42_1 is reduced by the increased losses due to 1H-1H interactions at lower MAS frequencies during the SR42_1 recoupling and the windows used to rotor-synchronize the SR42_1 blocks, whereas the PRESTO sequence is devoid of these windows. (Giovine et al., 2019a)

Recently, we have introduced a novel variant of the RINEPT sequence employing SR42_1 recoupling built (i) from tanh/tan (tt) adiabatic inversion pulses, (ii) continuous-wave (CW) irradiations during the windows, and (iii) composite $\pi/2$ and π pulses on the 1H channel, in order to limit the losses due to 1H-1H interactions and improve the transfer efficiency at moderate MAS frequencies. (Nagashima et al., 2020, n.d.) This novel RINEPT variant, denoted RINEPT-CWc-SR42_1(tt), is more efficient than PRESTO and CPMAS at $v_R \approx 12.5$ kHz and has been combined with DNP to detect the NMR signal of quadrupolar nuclei with small dipolar coupling with protons, including quadrupolar low-γ isotopes, such as 47,49Ti, 67Zn or 95Mo, and unprotonated 17O nuclei. However, several NMR experiments require the transfer of 1H magnetization to quadrupolar nuclei at $v_R > 12.5$ kHz. In particular, MAS frequencies of $v_R \geq 20$ kHz are needed to avoid the overlap between the center-bands and the spinning sidebands of satellite transitions (ST) in 27Al spectra at 18.8 T. In addition, magnetization transfers at $v_R \geq 60$ kHz are advantageous to acquire 2D hetero-nuclear correlation spectra between protons and quadrupolar nuclei endowed with high resolution along the 1H dimension since fast MAS averages out the 1H-1H dipolar couplings. Concurrently, we have demonstrated that the efficiency of PRESTO transfers using the R162_5 recoupling can be improved at $v_R = 62.5$ kHz using $270\phi_{90,180}$ composite π-pulses as a basic inversion element, where the standard notation for composite pulses is used: $\xi\phi$ denotes a rectangular, resonant rf-pulse with flip angle ξ and phase ϕ in degrees. (Giovine et al., 2019a) More recently, SR42_1 and R122_5 recoupling schemes built from $90_{\phi45}90_{\phi45}90_{\phi45}$ composite π-pulses have been proposed, but they have not yet been incorporated into RINEPT transfers. (Perras et al., 2019) Globally, no systematic study of RNh_n recouplings built from composite π-pulses has been carried out.

In the present article, we investigate the use of RINEPT-CWc using an adiabatic recoupling scheme at the higher MAS frequencies of $v_R = 20$ and 62.5 kHz. We demonstrate using numerical simulations of spin dynamics and experiments on γ-alumina and isopropylamine templated microporous aluminophosphate AlPO$_{4}$-14 (hereafter AlPO$_{4}$-14) that the rf requirement of this technique increases with the 1H-1H dipolar interactions and is not compatible with the specifications of most MAS probes at $v_R \geq 20$ kHz. As an alternative, we introduce variants of the PRESTO and RINEPT sequences by selecting with AH
(average Hamiltonian) the recoupling schemes built from single rectangular or composite π-pulses. Finally, using experiments on γ-alumina and AlPO₄-14, which feature different ¹H-¹H dipolar interactions, we identify the most robust and efficient PRESTO and RINEPT transfers at B₀ = 18.8 T with νₚ = 20 and 62.5 kHz.

![Figure 1](https://doi.org/10.5194/mr-2021-29)

Figure 1: ¹H → ²⁷Al (a,c) PRESTO-RNᵥⁿ and (b,c) D-RINEPT-CWc-RNᵥⁿ pulse sequences. The sequences applied to ¹H and ²⁷Al channels are shown in (a,b) and (c), respectively. The narrow and broad black bars represent π/2 and π-pulses, respectively. The acquisition of the FIDs (indicated with the vertical dashed line) starts after (a) the end of the RNᵥⁿ block or (b) on top of the echo shifted with τ/2 with respect to the end of the last recoupling block.

II. Pulse sequences and theory

II.1. PRESTO

II-1-1. Single-quantum hetero-nuclear dipolar recoupling

A RNᵥⁿ sequence, where N is an even positive integer and n and v are integers, consists of N/2 pairs of elements RₚR '⁻φ with R an inversion pulse with a duration of nTₚ/N, where Tₚ = 1/νₚ = 2π/ωₚ is the rotor period, R ' an inversion pulse derived from R by changing the sign of all phases and φ = πv/N radians an overall phase shift. The rf-field requirement of RNᵥⁿ is equal to:

\[
\nu_s = \frac{N \xi_{tot}}{\frac{2\pi}{n}} \nu_R
\]

where \(\xi_{tot} = \sum_{i=1}^{p} \xi_i\) is the sum of the flip angles of the P individual pulses of the R element.

In the PRESTO sequence (Fig.1a), symmetry-based γ-encoded RNᵥⁿ schemes applied to the ¹H channel reintroduce the |m| = 2 space components and the single-quantum (SQ) terms of the hetero-nuclear dipolar couplings between the protons and the quadrupolar nuclei, as well as the ¹H CSA, while they suppress the contributions of ¹H isotropic chemical shifts, the hetero-nuclear J-couplings with protons, and the ¹H-¹H dipolar couplings to the first-order average Hamiltonian. (Zhao et al., 2004)
nuclear dipolar recoupling must selectively reintroduce the two components \{l, m, \lambda, \mu\} = \{2, 2, 1, \mu\} and \{2, -2, 1, -\mu\} of the hetero-nuclear dipolar coupling and \(^1\)H CSA with \(\mu = \pm 1\), while other components must be suppressed.

During these recoupling schemes, the contribution of the dipolar coupling between \(I = \(^1\)H\) and \(S\) nuclei to the first-order Hamiltonian is equal to:\(^{(2)}\) (Zhao et al., 2004)

\[
\hat{H}_{D,IS}^{(1)} = \omega_{D,IS} S_y \{I^+ \exp(i2\varphi) + I^- \exp(-i2\varphi)\},
\]

where \(I^\pm = I_x \pm iI_y\) are the shift operators, and the magnitude and phase of the recoupled \(I-S\) dipolar coupling are given by

\[
\omega_{D,IS} = -\kappa \frac{\sqrt{3}}{2} b_{IS} \sin^2 \left(\rho_{PR}^{D,IS}\right)
\]

and

\[
\varphi = \gamma_{PR}^{D,IS} - \omega_R t^0,
\]

respectively, where \(b_{IS}\) is the dipolar coupling constant in rad/s, and \(\kappa\) is the scaling factor of the recoupled hetero-nuclear dipolar interaction, which depends on the RN\(_n^\gamma\) symmetry and the \(\mathcal{R}\) element. The Euler angles \(\{\rho_{PR}^{D,IS}, \gamma_{PR}^{D,IS}\}\) relate the \(I-S\) vector to the MAS rotor frame, and \(\rho^0\) refers to the starting time of the recoupling. The norm of \(\hat{H}_{D,IS}^{(1)}\) does not depend on the \(\gamma_{PR}^{D,IS}\) angle, since these recoupling schemes are \(\gamma\)-encoded.\(^{(4)}\) (Pileio et al., 2007; Martineau et al., 2012) The Hamiltonian of Eq.2 does not commute among different spin-pairs, and therefore the PRESTO sequence is affected by dipolar truncation, \(i.e.,\), the transfer to distant nuclei is attenuated by the stronger couplings with nearby spins. As mentioned above, the SQ hetero-nuclear dipolar recoupling schemes also reintroduce the \(^1\)H CSA with the same scaling factor \(\kappa\), but without commuting with the recoupled \(^1\)H-S dipolar interactions. Therefore, in the case of large \(^1\)H CSA, for instance at high magnetic fields, this interaction can interfere with the \(^1\)H-S dipolar couplings, especially with small ones. These interferences can be limited by the use of the PRESTO-III variant, depicted in Fig.1a,c,\(^{(2)}\) (Zhao et al., 2004) in which three CT-selective pulses are applied to the \(S\) nucleus. Indeed, the CT-selective \(\pi\)-pulses partly refocus the \(^1\)H CSA, which limits these interferences.

II-1.2. Selection of the recoupling sequence

On the basis of the AH and numerical simulations of spin dynamics, \(R18_7^\gamma\) and \(R18_5^\gamma\) schemes built from single rectangular \(\pi\)-pulses were selected for hetero-nuclear dipolar recoupling at moderate MAS frequencies, \(v_R \approx 10\) kHz.\(^{(3)}\) (Zhao et al., 2001) while more recently, sequences based on symmetries \(R12_4^\gamma, R14_5^\gamma, R16_5^\gamma, R14_8^\gamma, R18_5^\gamma, R16_6^\gamma, R20_6^\gamma\) and \(R18_{160}^\gamma\) using \(270^\circ 90^\circ 180^\circ\) as inversion element were chosen for the measurement of \(^1\)H CSA at fast MAS frequencies, \(v_R \approx 60-70\) kHz.\(^{(5)}\) (Pandey et al., 2015)

We also transferred the proton polarization to \(^{27}\)Al nuclei at \(v_R = 62.5\) kHz using PRESTO with \(R16_3^\gamma\) recoupling built from a single rectangular \(\pi\)-pulse.\(^{(6)}\) (Giovine et al., 2019a)

We screened here the RN\(_n^\gamma\) schemes built from single rectangular and composite \(\pi\)-pulses to achieve \(\gamma\)-encoded \(|m| = 2\) SQ hetero-nuclear dipolar recoupling at \(v_R = 20\) or 62.5 kHz. Dipolar recoupling at \(v_R \geq 60\) kHz is useful to correlate the signals.
of quadrupolar nuclei with high-resolution 1H spectra without using homo-nuclear dipolar decoupling. We tested the following composite π-pulses: $270^\circ 90^\circ 180^\circ$, with $\xi_{tot}/(2\pi) = 2$, which is offset-compensated and amplitude modulated and has been employed in several RN$^\nu_H$ sequences,(Giovine et al., 2019a; Carravetta et al., 2000; Levitt, 2002; Pandey et al., 2015) $90^\circ 240^\circ 90^\circ$ with $\xi_{tot}/(2\pi) = 7/3$, which compensates both rf inhomogeneity and offset,(Freeman et al., 1980; Duong et al., 2019) and $90^\circ 45^\circ 90^\circ 45^\circ$, with $\xi_{tot}/(2\pi) = 3/2$, which has homo-nuclear decoupling properties.(Madhu et al., 2001) Adiabatic pulses cannot be employed for SQ hetero-nuclear dipolar recoupling since they yield vanishing scaling factors for the rotational components with $\mu \neq 0$.(Nagashima et al., 2018)

A total of 109 RN$^\nu_H$ symmetries with $2 \leq N \leq 30$, $2 \leq n \leq 7$ and $1 \leq v \leq 11$ were found which recouple {2, ±2, 1, ±1} or {2, 1, ±2, 1, ±1} rotational components of the 1H-S dipolar coupling and 1H CSA. We selected the RN$^\nu_H$ recouplings based on those symmetries with rf-field limited to $v_1 \leq 120$ and 190 for $v_\nu = 20$ and 62.5 kHz, respectively. As the currently employed γ-encoded $|m| = 2$ SQ hetero-nuclear dipolar recoupling schemes have $50^\circ \leq \phi \leq 70^\circ$, we only considered RN$^\nu_H$ symmetries with $45^\circ \leq \phi \leq 135^\circ$. The scaling factor, κ, of the recoupled 1H-S dipolar interaction was calculated using the ‘C and R symmetries’ Mathematica package.(Carravetta et al., 2000; Brinkmann and Levitt, 2001; Brinkmann et al., 2000; Brinkmann and Edén, 2004)

These RN$^\nu_H$ symmetries eliminate the contribution of 1H-1H dipolar interactions to the first-order Hamiltonian, but not their contribution to the second-order. The cross-terms between 1H-1H interactions in the second-order Hamiltonian can be written(Brinkmann and Edén, 2004)

$$H^{(2), DD_1 \times DD_2} = \frac{1}{vR} \sum_{[1,2]} k^{DD_1 \times DD_2}_{[1,2]} \left[A^{DD_2}_{ijm_2} \right] \left[A^{DD_1}_{ijm_1} \right] \exp[i(m_1 + m_2)\omega_Rt^0] \left[T^{DD_2}_{\lambda\mu_2, \lambda\mu_1} T^{DD_1}_{\lambda\mu_1} \right] (5)$$

where the sum is taken over all second-order cross-terms $[1,2]$ between the $\{i_1, m_1, \lambda_1, \mu_1\}$ and $\{i_2, m_2, \lambda_2, \mu_2\}$ rotational components of DD$_1$ and DD$_2$ 1H-1H dipolar interactions, respectively.

The scaling factor of this cross-term, $k^{DD_1 \times DD_2}_{[1,2]}$ is $\kappa_{DD_1 \times DD_2}$ and $T^{DD_i}_{\lambda\mu_i}$ denote the component m_i of the i^{th} rank spatial irreducible spherical tensor A^{DD_i} in the MAS rotor-fixed frame and the component μ_i of the λ_i^{th} rank spin irreducible spherical tensor operator T^{DD_i}. Eq.5 indicates that the amplitude of the second-order Hamiltonian decreases at higher MAS frequency. The magnitude of the cross-terms between 1H-1H interactions was estimated by calculating the Euclidian norm(Hu et al., 2009; Gansmüller et al., 2013)

$$\| k^{DD_1 \times DD_2}_{[1,2]} \|_2 = \sqrt{\sum_{[1,2]} | k^{DD_1 \times DD_2}_{[1,2]} |^2} .$$

For each basic element R, we selected the RN$^\nu_H$ schemes with the highest ratio $\kappa/\| k^{DD_1 \times DD_2}_{[1,2]} \|_2$ in order to minimize the interference of 1H-1H dipolar interactions with the 1H-S dipolar recoupling. Besides 1H-1H dipolar interactions, other cross-terms involving 1H CSA and offset can also interfere with the 1H-S dipolar recoupling. These cross-terms can be expressed by Eq.5, in which DD$_1$ and DD$_2$ indexes are substituted by other interactions, such as 1H CSA or isotropic chemical shift (δ_{iso}).
For the selected symmetries, we estimated the magnitude of the cross-terms between 1H CSA or offset by calculating the Euclidean norms $\|{^1\text{H}}\times{^1\text{H}}\|_2$ and $\|{^1\text{H}}\times{\text{offset}}\|_2$ given by Eq.6.

The corresponding selected RN$_h^v$ sequences are listed in Table 1 for $\nu_R = 20$ kHz and Table 2 for $\nu_R = 62.5$ kHz.

For $\nu_R = 20$ kHz, according to the AH, the RN$_h^v$ sequence with the highest robustness to 1H-1H dipolar interactions is R227_2(180$_0$). However, this recoupling is slightly less robust to 1H CSA and offset than R185_2(180$_0$), which has already been reported. For this MAS frequency, the RN$_h^v$ schemes using the chosen composite pulses either required rf-fields greater than 120 kHz, e.g. $v_1 = 130$ and 173 kHz for the R264_2 schemes built from 90$^{-}\Rightarrow$90,90$^{-}\Rightarrow$90 and 270θ90θ80 pulses, or did not suppress efficiently the second-order cross-terms between 1H-1H interactions because of small rf-field ($v_1 \leq 62.5$ kHz).

Table 1. Selected RN$_h^v$ $|m| = 2$ SQ hetero-nuclear dipolar recoupling for $\nu_R = 20$ kHz.

\mathcal{R}	RN$_h^v$	ϕ^o	v_1/ν_R	κ	$\|\kappa_{DD_1\times DD_2}\|_2$	$\kappa/\|k_{CSA}\|_2$	$\kappa/\|k_{\text{offset}}\|_2$
R227_2	57	5.5	0.178	162	7.12	17.58	
180o_0	R282_2	51	4.67	0.176	156	5.08	18.29
180o_0	R185_2	50	4.5	0.175	140	7.20	18.49

For $\nu_R = 62.5$ kHz, the RN$_h^v$ sequences using composite π-pulses recouple the 1H-1S dipolar interaction with a higher scaling factor than those built from single π-pulses. According to AH, the 90θ240θ90θ basic element leads to the highest robustness to 1H-1H interferences. Even if the amplitude of the cross-terms is inversely proportional to the MAS frequency (Eq.5), the amplitude of these terms is lower at $\nu_R = 20$ than 62.5 kHz. The 270θ90θ80 element is less robust to 1H-1H interferences, but benefits from a high robustness to offset. The selected RN$_h^v$ symmetries for this element include R145_6 and R165_7, which have already been employed for the measurement of 1H CSA and the transfer of 1H polarization to half-integer quadrupolar nuclei at $\nu_R \geq 60$ kHz. (Giovine et al., 2019a; Pandey et al., 2015) As the scaling factors κ of the 1H-1S dipolar interaction of the RN$_h^v$ schemes built from single π-pulses with $45^o \leq \phi \leq 135^o$ are small, we also selected in Table 3 RN$_h^v$ schemes built from single π-pulses with $\kappa \geq 0.15$, but with extended ϕ ranges. These recoupling schemes are less robust to offset than the RN$_h^v$ schemes built from 270θ90θ80 element.

Table 2. Selected RN$_h^v$ $|m| = 2$ SQ hetero-nuclear dipolar recoupling with $45^o \leq \phi \leq 135^o$ for $\nu_R = 62.5$ kHz.

\mathcal{R}	RN$_h^v$	ϕ^o	v_1/ν_R	κ	$\|\kappa_{DD_1\times DD_2}\|_2$	$\kappa/\|k_{CSA}\|_2$	$\kappa/\|k_{\text{offset}}\|_2$
90$^\theta_0$240$^\theta_0$90$^\theta_0$	R104_2	54	2.92	0.227	39.63	2.82	12.63
90$^\theta_0$240$^\theta_0$90$^\theta_0$	R145_6	64.3	2.72	0.232	36.33	1.87	12.39
Table 3. Selected $R \mathbf{N}_n |m| = 2$ SQ hetero-nuclear dipolar recoupling built from single π pulses with $20^\circ \leq \phi \leq 160^\circ$ and $\kappa \geq 0.15$ for $\nu_R = 62.5$ kHz.

R	$R \mathbf{N}_n \psi$	ϕ	ν_1/ν_R	κ	$\kappa'\|K^{DD_1 \times DD_2}_{1(2)}\|_2$	$\kappa'\|K^{CSA_1 \times CSA_2}_{1(2)}\|_2$	$\kappa'\|K^{\delta_{iso} \times \delta_{iso}}_{1(2)}\|_2$
270°	R_{12}^2	60	2.80	0.230	36.08	2.25	12.47
	R_{12}^5	120	2.00	0.227	35.96	1.61	7.72
90°	R_{16}^2	67.5	2.28	0.150	17.96	1.85	3.50×10^4
	$R_{16}^{2,0}$	112.5	2.28	0.150	17.96	1.85	3.50×10^4
	R_{14}^5	64.3	2.33	0.150	15.90	2.33	3.58×10^4
	R_{14}^8	115.7	2.33	0.150	15.90	2.15	3.58×10^4
180°	R_{10}^2	54	1.88	0.186	16.70	2.97	15.07
	R_{18}^2	50	1.93	0.189	15.73	1.98	25.49
	R_{14}^5	64.3	1.75	0.177	15.55	2.09	5.49
	R_{12}^5	60	1.80	0.181	15.17	2.47	8.11
90°	R_{14}^6	64.3	1.16	0.085	5.35	2.26	1.34
	R_{14}^9	115.7	1.16	0.085	5.35	2.26	1.34
	R_{16}^9	67.5	1.14	0.082	4.90	1.98	1.09
	$R_{16}^{1,0}$	112.5	1.14	0.082	4.90	1.98	1.09

II-2. _D-RINEPT_

II-2-1. Zero-quantum hetero-nuclear dipolar recoupling

In the _D-RINEPT_ sequence, the 1H-S dipolar interactions are reintroduced under MAS by applying non-γ-encoded two-spin order dipolar recoupling to the 1H channel. These recoupling schemes reintroduce the $|m| = 2$ space components and the zero-quantum (0Q) terms of the 1H-S dipolar interaction and 1H CSA, _i.e._, the rotational components $\{l, m, \lambda, \mu\} = \{2, \pm 2, 1, 0\}$, while they suppress the contributions of 1H isotropic chemical shifts, the hetero-nuclear J-couplings with protons, and the 1H-1H dipolar couplings to the first-order average Hamiltonian. (Brinkmann and Kentgens, 2006a, b) The contribution of the 1H-S dipolar coupling to this Hamiltonian is equal to: (Giovine et al., 2019a; Brinkmann and Kentgens, 2006a; Lu et al., 2012)
\[H_{D,IS}^{(1)} = 2\omega_{D,IS} l_z s_z \]
\[\omega_{D,IS} = \kappa b_{1S} \sin^2 (\beta_{PR}^{DJS}) \cos (2\varphi) \],

The norm of \(H_{D,IS}^{(1)} \) depends on the \(\varphi \) phase, given by Eq.4, and hence on the \(\gamma_{PR}^{DJS} \) angle. Therefore, these two-spin order dipolar recoupling schemes are non-\(\gamma \)-encoded. The Hamiltonian of Eq.7 commutes among different spin pairs and hence, these recoupling schemes are not affected by dipolar truncation. Similarly, the recoupled \(^1H \) CSA contribution to the first-order Hamiltonian is proportional to \(I_z \) and hence, commutes with the recoupled \(^1H-S \) dipolar interactions and does not interfere with the hetero-nuclear dipolar recoupling.

II-2-2. Selection of the recoupling sequence

Different RN\(_n^y \) sequences have been proposed to achieve non-\(\gamma \)-encoded \(|m| = 2\) two-spin order dipolar recoupling, including (i) symmetries \(\mathrm{R}(4n)^{2n-1} = R12^5_5, R16^5_4, R20^9_5, R24^11_6, R28^13_7 \) and \(R32^15_8 \) for \(n = 3, 4, 5, 6, 7 \) and 8 using single \(\pi \)-pulses as basic element, which have been employed to measured \(^1H-^{17}O \) dipolar couplings at \(\nu_R = 50 \) kHz,((Brinkmann and Kentgens, 2006b) (ii) SR4\(_2^2 \) recoupling built from a single \(\pi \)-pulse, which corresponds to the \([R4^2_1R4^{-2}_2][R4^2_1R4^{-2}_2][R4^2_1R4^{-2}_2]_240 \) sequence and has been employed in the RINEPT scheme,((Nagashima et al., n.d.; Giovine et al., 2019a) (iii) R12\(_5^5 \) and SR4\(_2^2 \) schemes using a 90-4590-45 composite \(\pi \)-pulse as a basic element, which have been incorporated into \(D \)-HMQC sequences at \(\nu_R = 36 \) kHz,(Perras et al., 2019) and (iv) SR4\(_2^2 \) schemes built from a tanh/tan adiabatic pulse, which have been used in RINEPT sequence at \(\nu_R = 36 \) kHz.(Nagashima et al., 2020, n.d.) During the tanh/tan pulse, the instantaneous rf-amplitude is equal to:

\[\omega_1(t) = \omega_{1,max} \begin{cases} \tanh \left[\frac{\delta t}{T_R} \right], & 0 \leq t < T_R/8 \\ \tanh \left[2\xi \left(1 - \frac{4t}{T_R} \right) \right], & T_R/8 \leq t < T_R/4 \end{cases} \]
\[\phi(t) = \frac{\Delta v_{0,max}}{2\Theta_{0} \Theta(0)} \ln \left[\cos \left(\Theta \left(1 - \frac{t}{T_R} \right) \right) \right]. \]
the 1H-S dipolar coupling and 1H CSA. We only considered the $R_{N_n}^{\gamma}$ symmetries with $60^\circ \leq \phi \leq 120^\circ$ since the currently employed non-γ-encoded $|m| = 2$ two-spin order hetero-nuclear dipolar recoupling schemes have $75^\circ \leq \phi \leq 90^\circ$.

We calculated the scaling factor of the recoupled 1H-S dipolar interaction and the Euclidean norm and $\|K_{(1,2)}^{DD_1\times DD_2}\|_2$ of the cross-terms between 1H-1H interactions using the ‘C and R symmetries’ Mathematica package. (Carravetta et al., 2000; Brinkmann and Levitt, 2001; Brinkmann et al., 2000; Brinkmann and Edén, 2004) For each basic element \mathcal{R}, we selected the $R_{N_n}^{\gamma}$ schemes with the highest ratios $\kappa/\|K_{(1,2)}^{DD_1\times DD_2}\|_2$. The selected $R_{N_n}^{\gamma}$ sequences are listed in Table 4. The parameters of the $SR4_2^\gamma$ schemes built from the different basic element \mathcal{R} are also listed in Table 4 for the sake comparison. For those $R_{N_n}^{\gamma}$ sequences, we calculated the Euclidean norms $\|K_{\{1,2\}}^{\text{CSA} \times \text{CSA}}\|_2$ and $\|K_{\{1,2\}}^{\delta \text{iso} \times \delta \text{iso}}\|_2$ in order to estimate the magnitudes of the cross-terms between 1H CSA and offset.

According to the AH, the $90_0^{\circ}240_0^{\circ}90_0^{\circ}$ composite π-pulse yields the highest robustness to 1H-1H dipolar interactions. However, the rf-field requirement of the $R_{N_n}^{\gamma}$ sequences built from this composite pulse, $\nu_1 = 4.66\nu_R$, $i.e.$, $\nu_1 = 291$ kHz at $\nu_R = 62.5$ kHz, is not compatible with most 1.3 mm MAS probes. Furthermore, the highest robustness to 1H CSA and offset is achieved using the $270_0^{\circ}90_0^{\circ}$ composite π-pulse. The $SR4_2^\gamma$ schemes benefit from the highest robustness to 1H CSA, because of the three-step multiple-quantum super-cycle. (Brinkmann and Edén, 2004; Brinkmann and Kentgens, 2006a) Contrary to the $R_{N_n}^{\gamma}$ $|m| = 2$ SQ hetero-nuclear dipolar recouplings, the rf-field of the $R_{N_n}^{\gamma}$ $|m| = 2$ two-spin orders is always higher than $2\nu_R$ since these $R_{N_n}^{\gamma}$ symmetries with $2n > N$, such as $R12_3^\gamma$, lead to vanishing κ scaling factor.

In the case of the adiabatic $R_{N_n}^{\gamma}$ (tt) sequences, the determination of the scaling factors of first- and second-order terms of the effective Hamiltonian is more cumbersome since they depend on the $\nu_{1,max}$, $\Delta \nu_{0,max}$, ξ and θ parameters. (Nagashima et al., 2018) For example, the scaling factor of the $R12_3^\gamma$ and $SR4_2^\gamma$ schemes is $\kappa = 0.31$ for $\nu_{1,max}/\Delta \nu_{0,max} = 0.685$, $\xi = 10$ and $\theta = 87^\circ$, and this value monotonously decreases for increasing $\nu_{1,max}/\Delta \nu_{0,max}$ ratios.

Table 4. Selected $R_{N_n}^{\gamma}$ $|m| = 2$ two-spin order hetero-nuclear dipolar recoupling.

\mathcal{R}	$R_{N_n}^{\gamma}$	ϕ°	ν_1/ν_R	κ	$\kappa/\|K_{(1,2)}^{DD_1\times DD_2}\|_2$	$\kappa/\|K_{(1,2)}^{\text{CSA} \times \text{CSA}}\|_2$	$\kappa/\|K_{(1,2)}^{\delta \text{iso} \times \delta \text{iso}}\|_2$
$R16_4^\gamma$	101	4.66	0.131	63.17	16.48	9.31	
$R20_5^{\gamma 1}$	99	4.66	0.131	60.68	16.59	14.45	
$R12_3^\gamma$	105	4.66	0.131	51.25	16.11	9.70	
$90_0^{\circ}240_0^{\circ}90_0^{\circ}$	$R16_4^\gamma$	79	4.66	0.131	45.52	15.76	13.60
$R28_5^{\gamma 0}$	64	4.66	0.131	44.55	14.06	11.98	
$R20_5^{\gamma 2}$	81	4.66	0.131	44.30	15.95	14.46	
$R12_3^\gamma$	75	4.66	0.131	43.91	15.40	12.83	
II-2-3. D-RINEPT-CWc sequence

The D-RINEPT-CWc sequence is displayed in Fig.1b,c. The 1H-S dipolar couplings are reintroduced by applying the $R_{\text{N}}n\gamma$ schemes listed in Table 4 during the defocusing and refocusing delays τ, which are identical in this article, even if distinct defocusing and refocusing delays can improve the transfer efficiency. (Nagashima et al., 2020) As the two-spin order recoupling schemes are non-γ-encoded, they must be rotor-synchronized. We used here a delay of T_{R} between two successive $R_{\text{N}}n\gamma$ blocks. In the D-RINEPT-CWc sequence, a CW irradiation is applied during these delays in order to limit the losses due to 1H-1H dipolar interactions. (Nagashima et al., n.d.) The nutation during this CW irradiation is eliminated by employing CW irradiations with opposite phases. Furthermore, the robustness to 1H rf-field inhomogeneity is improved by replacing the first
\[\pi \text{ and second } \pi/2 \text{ pulses by composite } 90^\circ,180^\circ,90^\circ \text{ and } 90^\circ,90^\circ \text{ pulses, respectively, the CW irradiation being applied between the individual pulses.} (\text{Freeman et al., 1980; Levitt and Freeman, 1979}) \]

III. Numerical simulations

III-1. Simulation parameters

All simulations were performed using the version 4.1.1 of SIMPSON package (Bak et al., 2000, p.200). The powder average calculation was performed using 462 \{ \alpha_{\text{MR}}, \beta_{\text{MR}}, \gamma_{\text{MR}} \} \text{ Euler angles relating the rotor and molecular frames}. This set of angles was obtained by considering 66 \{ \alpha_{\text{MR}}, \beta_{\text{MR}} \} \text{ pairs and 7 } \gamma_{\text{MR}} \text{ angles}. The \{ \alpha_{\text{MR}}, \beta_{\text{MR}} \} \text{ values were selected according to the REPULSION algorithm (Bak and Nielsen, 1997b), while the } \gamma_{\text{MR}} \text{ angles were regularly stepped from 0 to } 360^\circ. \n
To accelerate the simulations, the \(^1\text{H} \rightarrow ^{15}\text{N}\) RINEPT transfer was used, instead of the \(^1\text{H} \rightarrow ^{27}\text{Al}\) one, because the computing time is proportional to the cube of the size of the density matrix. Furthermore, in RINEPT experiments, only CT-selective pulses are applied to the quadrupolar nuclei and hence, the contribution of STs to the signal can be disregarded. The \(^1\text{H} \rightarrow ^{15}\text{N}\) RINEPT transfer was simulated for a \(^{15}\text{N}^4\text{H}_4\) spin system. A similar approach has already been applied for the simulation of the RINEPT transfer from protons to quadrupolar nuclei (Nagashima et al., n.d.; Giovine et al., 2019b). This \(^{15}\text{N}^4\text{H}_4\) spin system comprises a tetrahedron of four protons with a \(^{15}\text{N}\) nucleus on one of its symmetry axis. The dipolar coupling constants between protons are all equal to \(|b_{\text{HN}}|/(2\pi) = 1, 7 \text{ or } 15 \text{ kHz}\). The dipolar coupling between \(^{15}\text{N}\) nucleus and its closest \(^1\text{H}\) neighbor is \(|b_{\text{HN}}|/(2\pi) = 2575 \text{ Hz}\), corresponding to a \(^1\text{H},^{27}\text{Al}\) distance of 2.3 Å, typical of the distance between the protons of hydroxyl groups and the Al atoms of the first surface layer of hydrated γ-alumina (Lee et al., 2014). All protons were subject to a CSA of 6 kHz, \text{i.e.}, 7.5 ppm at 18.8 T, their asymmetry parameters were null, and their principal axis coincide with the 3-fold rotational axes of the \(^1\text{H}_4\) tetrahedron.

The simulations were performed for a static magnetic field of 18.8 T, for which the \(^1\text{H}\) and \(^{15}\text{N}\) Larmor frequencies were equal to 800 and 81 MHz, respectively using MAS frequencies of \(v_R = 20 \text{ or } 62.5 \text{ kHz}\) (Liang et al., 2018). \(^1\text{H} \rightarrow ^{15}\text{N}\) RINEPT-CWc sequences incorporating either SR4\(^2\) (tt) or R12\(^3\) (tt) recoupling schemes were simulated. The defocusing and refocusing periods were both equal to their optimal values \(\tau = 650 \text{ or } 640 \mu s\) at \(v_R = 20 \text{ or } 62.5 \text{ kHz}\), respectively. The rf-field nutation frequency on the \(^1\text{H}\) channel was equal to 200 kHz during the \(\pi/2\) and \(\pi\)-pulses, which do not belong to the recoupling sequence, as well as the CW irradiation, whereas the pulses applied to \(S = ^{15}\text{N}\) nuclei were considered as ideal Dirac pulses. Simulations were performed for recoupling schemes made of tanh/tan adiabatic pulses with \(v_{\text{1,max}}\) and \(\Delta v_{\text{v,max}}\) parameters ranging from 0.5\(v_R\) to 10\(v_R\) and from 10\(v_R\) to 200\(v_R\), respectively. The other pulses were applied on resonance. The density matrix before the first pulse was equal to \(I_{1z} + I_{2z} + I_{3z} + I_{4z}\). We normalized the transfer efficiency of \(^1\text{H} \rightarrow ^{15}\text{N}\) RINEPT sequences to the maximal signal for a \(^1\text{H} \rightarrow ^{15}\text{N}\) through-bond RINEPT sequence made of ideal Dirac pulses in the case of a \(^{15}\text{N}^1\text{H}\) spin system with a \(J\)-coupling constant of 150 Hz.
Figure 2: (a-d) Simulated transfer efficiency of $^1\text{H} \rightarrow ^{15}\text{N}$ D-RINEPT-𝐒𝐑𝟒𝟏𝟐(𝐭𝐭) sequence for a $^{15}\text{N}^4\text{H}_4$ spin system as function of $v_{1,\text{max}}/v_R$ and $\Delta v_{0,\text{max}}/v_R$ for $v_R = 20$ and 62.5 kHz and $b_{\text{HH}}/(2\pi) = (a)$ 1, (b,d) 7 and (c) 15 kHz. (e,f) Experimental $^1\text{H} \rightarrow ^{15}\text{N}$ D-RINEPT-𝐒𝐑𝟒𝟏𝟐(𝐭𝐭) signal of L-histidine·HCl as function of $v_{1,\text{max}}/v_R$ and $\Delta v_{0,\text{max}}/v_R$ at 18.8 T with $v_R = (e)$ 40 (e) or (f) 62.5 kHz. The white star indicates recoupling conditions with minimal rf field leading to maximal transfer efficiency. The white vertical line mimics the rf field distribution within the coil.

III.2. Optimal adiabatic recoupling

The transfer efficiency of RINEPT using RN_H^x schemes built from adiabatic pulses, depends on $v_{1,\text{max}}$ and $\Delta v_{0,\text{max}}$ parameters. For a similar $^{15}\text{N}^4\text{H}_4$ spin system with $|b_{\text{HN}}|/(2\pi) = 2.575$ and $|b_{\text{HH}}|/(2\pi) = 7$ kHz, spinning at $v_R = 12.5$ kHz, we showed using numerical simulations of spin dynamics that a maximal transfer efficiency was achieved provided that $v_{1,\text{max}} = 0.07\Delta v_{0,\text{max}}$ and $v_{1,\text{max}}/v_R \geq 8$. (Nagashima et al., n.d.) In practice, we used $v_{1,\text{max}} = 11v_R = 137$ kHz and $\Delta v_{0,\text{max}} = 160v_R = 2$ MHz. Similar simulations were performed here for $v_R = 20$ or 62.5 kHz. As seen in Fig.2a-c, at a given MAS frequency, higher $^1\text{H}^1\text{H}$ dipolar couplings require higher rf-field and broader carrier frequency sweep so that the tanh/tan pulses remain adiabatic in spite of the modulation of the $^1\text{H}^1\text{H}$ dipolar couplings by MAS. (Nagashima et al., n.d.; Kervern et al., 2007) For $|b_{\text{HH}}|/(2\pi) = 7$ kHz, the minimal $v_{1,\text{max}}/v_R$ ratio decreases for higher MAS frequencies (compare Figs.2b and d) since the contribution of
the modulation of 1H-1H dipolar couplings by MAS to the first adiabaticity factor is proportional to $(v_{1,\text{max}})^2/v_R$ and hence, $v_{1,\text{max}}$ values proportional to $\sqrt{v_R}$, i.e. $v_{1,\text{max}}/v_R$ ratio inversely proportional to $\sqrt{v_R}$, are sufficient to maintain the adiabaticity of the pulses.(Kervern et al., 2007) Nevertheless, Fig.2d indicates that SR42_T(tt) recoupling requires $v_{1,\text{max}} \geq 313$ kHz for $v_R = 62.5$ kHz. This rf field is not compatible with the specifications of most 1.3 mm MAS probes. Similar transfer efficiencies were simulated for the RINEPT sequence with R125_T(tt) recoupling scheme (not shown).

IV. NMR experiments

IV-1. Samples and experimental conditions

L-[U-15N]-histidine-HCl (hereafter referred to as “histidine”) and isotopically unmodified γ-alumina were purchased from Merck, and AlPO$_4$-14 was prepared as described previously.(Antonijevic et al., 2006)

All 1H \rightarrow S RINEPT-CWc and PRESTO-III experiments were performed at $B_0 = 18.8$ T on Bruker BioSpin Avance NEO spectrometers equipped with double-resonance 1H/X probes.

1H\rightarrow^{15}N RINEPT-CWc experiments using SR42_T(tt) recoupling (denoted RINEPT-CWc-SR42_T(tt) hereafter) on histidine were performed with 1.3 and 0.7 mm MAS probes spinning at $v_R = 40$ or 62.5 kHz, with defocusing and refocusing delays equal to $\tau = 375$ or 384 μs, respectively. The rf-field of the 1H $\pi/2$ and π pulses, which do not belong to the recoupling scheme, was equal to 200 kHz, that of the continuous wave irradiation to $v_{1,CW} = 100$ kHz, and that of the 15N pulses to 62 kHz. 1H decoupling was applied with a rf-field of 16 kHz applied during the acquisition. The pulses on the 1H channel were applied on resonance, whereas those on 15N channel were applied at the isotropic chemical shift of the 15NH$^+$ signal (172 ppm). These 1D spectra resulted from averaging 8 transients with a relaxation delay of 3 s. The 15N isotropic chemical shifts were referenced to an aqueous saturated solution of NH$_4$NO$_3$ using $[^{15}$N]-glycine as a secondary reference.

1H\rightarrow^{27}Al RINEPT-CWc and PRESTO-III experiments on γ-alumina and AlPO$_4$-14 were performed with a 1.3 mm MAS probe spinning at $v_R = 20$ (to test the RN4_T schemes with large rf-fields) or 62.5 kHz. The tested recoupling schemes are listed in Tables 5 and 6 for $v_R = 20$ kHz and Tables 7 and 8 for $v_R = 62.5$ kHz. The rf-field of the 1H $\pi/2$ and π pulses, which do not belong to the recoupling scheme, was equal to 208 kHz, that of the continuous wave irradiation to $v_{1,CW} = 147$ kHz, and the 27Al CT selective one for $\pi/2$ and π pulses to 10 kHz. The defocusing and refocusing delays τ are given in Table 5 to 8. The pulses on the 1H channel were applied on resonance, whereas those on 27Al channel were applied (i) on resonance with AlO$_6$ signal of γ-alumina in Figs.4 and 7, Tables 5 and 7, as well as in Figs. 5 and 8 when the offset is null, (ii) on resonance with AlO$_4$ signal of AlPO$_4$-14 in Figs.S1 and S3, Tables 6 and 8 as well as in Figs.S2 and S4 when the offset is null, and (iii) in the middle of the AlO$_4$ and AlO$_6$ peaks for the 1D spectra shown in Figs.3 and 6. These differences in offset explain some changes in the relative efficiencies of the recoupling between the figures. These 1D spectra resulted from averaging 64 transients with a relaxation delay of 1 s The 27Al isotropic chemical shifts were referenced at 0 ppm to 1 mol.L$^{-1}$ [Al(H$_2$O)$_6$]$^{3+}$ solution.
IV-2. Optimal adiabatic recoupling

Figs. 2e and f show the efficiency of 1H \rightarrow 15N RINEPT-SR$_4$1$_2$(tt) transfer for histidine as function of $\nu_{1,max}/\nu_R$ and $\Delta\nu_{0,max}/\nu_R$ for $\nu_R = 40$ or 62.5 kHz, respectively. These experimental data indicate that at higher MAS frequency, an efficient adiabatic recoupling can be achieved for lower $\nu_{1,max}/\nu_R$ and $\Delta\nu_{0,max}/\nu_R$ ratios. This result agrees with the numerical simulations of Figs. 2b and d.

Figure 3: 1D 27Al spectra of γ-alumina at $B_0 = 18.8$ T with $\nu_R = (a) 20$ and (b) 62.5 kHz acquired using 1H \rightarrow 27Al RINEPT-CW$_c$ and PRESTO-III transfers using the following recoupling schemes: SR$_4$2$_2$(tt), SR$_4$2$_2$(270,90,180) or R125_2 (270,90,180) for RINEPT and R225_2(180) or R185_2 (180) for PRESTO at $\nu_R = 20$ kHz, and R165_2 (270,90,180) or R145_6 (270,90,180) for PRESTO at $\nu_R = 62.5$ kHz (b). τ delay and $\nu_1/\nu_{1,max}$ rf-field were fixed to their optimum values given in Tables 5 and 7.

IV-3. PRESTO and RINEPT performances for $\nu_R = 20$ kHz

IV-3-1. γ-alumina

The 1D NMR spectra of γ-alumina acquired using 1H \rightarrow 27Al RINEPT and PRESTO sequences, shown in Fig.3, exhibit two resonances at 70 and 10 ppm, assigned to tetra- (AlO$_4$) and hexa-coordinated (AlO$_6$) resonances, respectively. (Morris and
Ellis, 1989) The signal of penta-coordinated (AlO₅) sites, which are mainly located in the first surface layer, is barely detected because of the lack of sensitivity of conventional solid-state NMR spectroscopy. (Lee et al., 2014, p. 201) The most intense peak, AlO₅, was used to compare the transfer efficiencies of RINEPT and PRESTO sequences with different recoupling schemes.

Table 5 lists the measured performances of ¹H → ²⁷Al RINEPT-CWc and PRESTO transfers using various recoupling for γ-alumina at νᵣ = 20 kHz. We notably compared the PRESTO sequences using R22⁰₇ (180₀) and R18⁰₅ (180₀) recoupling (Table 1) with the RINEPT-CWc scheme using a recoupling based on SR4⁰ₙ and R12⁰₅ symmetries with: single 180₀, composite 27₀,9₀₁₈₀ and 9₀−₄₅,9₀,₄₅,₉₀−₄₅ or tanh/tan adiabatic pulses. A low transfer efficiency was obtained for RINEPT-CWc-SR4⁰ₙ (9₀,2₄₀,₉₀₀) because of its low scaling factor κ = 0.131 and hence, its performances are not reported in Table 5. We also tested the recoupling schemes based on the symmetry SC4⁰₂, corresponding to the [C4₂][1][C4₂][1]₂₄₀ sequence with a basic element 9₀₆₉₀₁₃₉₀₄₅₉₀₂₆₉₀₃₆₉₀₂₄₀, or C6⁰₅ built from 9₀₃₉₀₁₂₀₉₀₈₉₀₂₆₉₀₃₆₉₀₂₄₀. These recoupling schemes, which have been recently proposed, (Perras et al., 2019) derive from the SR4⁰₅ (9₀−₄₅,9₀₄₅) and R12⁰₅ (9₀−₄₅,9₀₄₅) schemes. As seen in Table 5, the sequences yielding the highest transfer efficiencies are by decreasing order RINEPT-CWc with SR4⁰₅ (tt) or R12⁰₅ (tt) > PRESTO- R22⁰₇ (180₀) > RINEPT-CWc- SR4⁰₅ (27₀,9₀₁₈₀) ≈ PRESTO- R18⁰₅ (180₀) > RINEPT-CWc-R12⁰₅ (27₀,9₀₁₈₀). Figs. 4 and 5 display the signal intensity of these sequences as function of the rf-field amplitude and offset, respectively.

The highest transfer efficiency is obtained with the RINEPT-CWc sequence incorporating an adiabatic recoupling. This recoupling also leads to the highest robustness to offset and rf inhomogeneity, and SR4⁰₅ (tt) and R12⁰₅ (tt) yield identical transfer efficiency and robustness. Hence, the three-step multiple-quantum super-cycle of the SR4⁰₅ symmetry does not improve the robustness in the case of a tanh/tan basic element. However, these recoupling schemes require maximum rf fields of \(v_{1,max} \geq 8\nu_r = 160 \text{ kHz} \), which may exceed the rf power specifications of most 3.2 mm MAS probes.

The PRESTO sequences using R22⁰₇ (180₀) and R18⁰₅ (180₀) recoupling also result in good transfer efficiencies, i.e., 27 and 39 %, respectively, but lower than RINEPT-CWc-SR4⁰₅ (tt). However, they use rf-fields of \(v_1/\nu_r = 5.5 \) and 4.5, which are compatible with the specifications of 3.2 mm MAS probes. The higher transfer efficiency of R22⁰₇ (180₀) with respect to R18⁰₅ (180₀) stems from its weaker second-order cross-terms between ¹H-¹H interactions (Table 1).

The efficiency of the RINEPT-CWc-SR4⁰₅ (27₀,9₀₁₈₀) sequence, with rf-field \(v_1 = 4\nu_r \), is comparable to that of PRESTO-R18⁰₅ (180₀), but with a higher robustness to offset and rf inhomogeneity. We can notice that amplitude modulated recoupling schemes, for which the phase shifts are equal to 180°, such as SR4⁰₅ (27₀,9₀₁₈₀) and SR4⁰₅ (180₀), exhibit a high robustness to offset (Fig. 5). (Carravetta et al., 2000) The use of 27₀,9₀₁₈₀ composite pulses in SR4⁰₅ symmetries instead of single π pulses improves their transfer efficiency as well as their robustness to offset and rf field inhomogeneity.

In summary, for \(\nu_r = 20 \text{ kHz} \) in γ-alumina, the RINEPT-CWc-SR4⁰₅ (27₀,9₀₁₈₀) sequence achieves efficient and robust transfers of magnetization from protons to ²⁷Al nuclei using a moderate rf field of \(v_1 = 4\nu_r \). For ¹H spectra with a width smaller than 20
kHz and MAS probes with a good rf-homogeneity, PRESTO-R22(270°) sequence can result in slightly higher transfer efficiencies.

Figure 4: Variation at $\nu_R = 20$ kHz of the 27AlO$_6$ signal of γ-alumina as function of ν_1 or $\nu_{1,\text{max}}$ of the recoupling for PRESTO-R22(180°) and -R18(180°) as well as RINEPT-SR4(270°90°180°) and -R12(270°90°180°). For each curve τ was fixed to its optimum value given in Table 5.

Figure 5: Variation at $\nu_R = 20$ kHz of the 27AlO$_6$ signal of γ-alumina as function of offset of the recoupling for PRESTO-R22(180°) and -R18(180°) as well as RINEPT-SR4(270°90°180°) and -R12(270°90°180°). For each curve τ and ν_1 or $\nu_{1,\text{max}}$ were fixed to their optimum values given in Table 5.
Table 5. Comparison of the performances of 1H → 27Al RINEPT-CWc and PRESTO transfers using various recoupling for AlO$_6$ signal of γ-alumina at $\nu_R = 20$ kHz.

PRESTO /RINEPT	Recoupling	τ /μs	ν_1/$\nu_{1,\text{max}}$	AlO$_4$	$\Delta \nu_0$	$\Delta \nu_1$	$\Delta \nu_1$/ν_1
RINEPT	SR45_1(tt)	400	160	1	110	0.68	> 100d > 0.62
	R125_3(tt)	400	160	1	110	0.68	> 100d > 0.62
PRESTO	R222_2(1800_0)	400	110	0.73	30	0.27	39 0.35
RINEPT	SR45_1(270,900_0)	400	80	0.63	50	0.63	44 0.55
PRESTO	R185_1(1800_0)	400	90	0.61	28	0.31	27 0.30
	R125_3(270,900_0)	400	80	0.50	40	0.50	35 0.44
	SR45_1(900_0-45,900_0-45)	400	63	0.42	14	0.22	14 0.22
	SR45_1(1800_0)	400	45	0.40	17	0.38	24 0.53
RINEPT	R125_3(1800_0)	400	45	0.35	10	0.22	15 0.33
	R125_3(900_0-45,900_0-45)	400	66	0.35	11	0.17	18 0.27
	SC20_1	400	63	0.31	14	0.22	45 0.71
	C60_1	400	66	0.28	10	0.15	40 0.60

a AlO$_6$ signal normalized to that with 1H→27Al RINEPT-CWc-SR45_1(tt). b FWHM of the robustness to offset. c FWHM of the robustness to rf-field. d Only a lower bound of rf-field could be determined due to probe rf specifications (Fig.4).

IV-3-2. Isopropylamine-templated AlPO$_4$-14

Fig.6 shows the 1D 1H → 27Al RINEPT and PRESTO spectra of AlPO$_4$-14. They exhibits three 27Al resonances at 43, 21 and \sim2 ppm assigned to AlO$_4$, AlO$_5$ and AlO$_6$ sites, respectively. (Ashbrook et al., 2008) The AlO$_5$ and AlO$_6$ sites are directly bonded to OH groups. The 1H MAS spectrum is shown in Fig.S1. According to the literature, the 27AlO$_4$ signal subsumes the resonances of two AlO$_4$ sites with quadrupolar coupling constants $C_Q = 1.7$ and 4.1 MHz, whereas the C_Q constants of 27AlO$_5$ and 27AlO$_6$ sites are equal to 5.6 and 2.6 MHz, respectively. (Fernandez et al., 1996; Antonijevic et al., 2006) The 1H-1H dipolar couplings within the isopropylamine template molecule are larger than in γ-alumina. We used the most intense peak, AlO$_4$, to compare the 1H → 27Al transfer efficiencies of RINEPT-CWc and PRESTO sequences with different recoupling schemes, and the results are given in Table 6. The six sequences yielding the highest transfer efficiencies are the same for AlPO$_4$-14 and γ-alumina and their relative efficiencies are comparable for the AlO$_4$ peak of AlPO$_4$-14 and the AlO$_6$ signal of γ-alumina.
Figure 6: 1D 27Al spectra of AlPO$_{4}$-14 at $B_0 = 18.8$ T with $\nu_R = 20$ (a) and 62.5 (b) kHz acquired using 1H $\rightarrow ^{27}$Al RINEPT-CWc and PRESTO-III transfers using the following recoupling schemes: SR42_1(tt), SR4$^2_1(270^090_{180})$ and R12$^5_2(270^090_{180})$ for RINEPT, and (a) R22$^3_2(180_{90})$ and R18$^5_3(180_{90})$, or (b) R16$^7_2(270^090_{180})$ and R14$^6_2(270^090_{180})$ for PRESTO. τ delay and $\nu_1/\nu_{1,\text{max}}$ rf field were fixed to their optimal values given in Tables 6 and 8. The resonance at ca. 11 ppm in (a) is due to an impurity.

Nevertheless, the rf requirement of the SR42_1(tt) and R125_2(tt) schemes is higher for AlPO$_{4}$-14 than for γ-alumina because of larger 1H-1H dipolar couplings, in agreement with the numerical simulations of Figs.2a-c. This rf requirement prevents the use of these adiabatic recoupling schemes at $\nu_R = 20$ kHz with most 3.2 mm MAS probes. The rf requirement of the other sequences, and their robustness to offset and rf-fields homogeneity are similar for both samples (Table 6 and Figs.S2 and S3).

With respect to the RINEPT sequence, PRESTO yields higher transfer efficiency for AlO$_5$ and AlO$_6$ resonances than for AlO$_4$ signals in the case of AlPO$_{4}$-14 since (i) these Al sites are directly bonded to OH groups and (ii) R22$^3_2(180_{90})$ and R18$^5_3(180_{90})$ recoupling schemes are subject to dipolar truncation (section II-1-1), which prevents to transfer the 1H magnetization of these OH groups to 27AlO$_4$ nuclei.

Hence, for both AlPO$_{4}$-14 and γ-alumina, RINEPT-CWc-SR4$^2_1(270^090_{180})$ and PRESTO-R22$^3_2(180_{90})$ sequences are the methods of choice to transfer 1H magnetization to 27Al nuclei at $\nu_R = 20$ kHz.
Table 6. Comparison of the performances of 1H \rightarrow 27Al RINEPT-CWc and PRESTO transfers with AlPO$_4$-14 at $\nu_R = 20$ kHz.

PRESTO /RINEPT	Recoupling	τ /µs	$v_1/v_{1,\text{max}}$ /kHz	Intensity a	Δv_0 /kHz	$\Delta v_0/v_1$	Δv_1 /kHz	$\Delta v_1/v_1$		
RINEPT	SR42_1 (tt)	800	208	1	1	120	0.58	b	b	
	R122_5 (tt)	800	208	0.99	0.99	0.98	120	0.58	b	
PRESTO	R222_2 (180b_0)	600	114	1.54	1.07	0.67	26	0.23	38	0.33
RINEPT	SR42_1 (270b_090b_0)	800	77	0.72	0.65	0.67	45	0.58	48	0.62
PRESTO	R182_2 (180b_0)	600	94	1.45	1.03	0.62	25	0.27	26	0.28
	R122_5 (270b_090b_0)	800	77	0.58	0.50	0.48	46	0.60	36	0.47
	SR42_1 (180b_0)	600	43	0.64	0.45	0.36	14	0.33	23	0.53
	SR42_1 (90b_0-45b_090b_0-45)	800	61	0.56	0.43	0.25	16	0.26	20	0.32
RINEPT	SC3_1	800	68	0.54	0.41	0.24	18	0.26	52	0.73
	R122_5 (90b_0-45b_090b_0-45)	600	61	0.43	0.30	0.21	8	0.13	18	0.29
	R122_5 (180b_0)	600	45	0.34	0.28	0.21	8	0.18	18	0.40
	C63_0	600	68	0.52	0.36	0.21	10	0.15	42	0.61

a Intensities of AlO$_6$, AlO$_5$ and AlO$_4$ resonances normalized to their intensities with 1H \rightarrow 27Al RINEPT-CWc-SR42_1 (tt).

b FWHM of the robustness to rf-field was not measured for RINEPT-SR42_1 (tt) and -R122_5 (tt) (Fig.S1).

IV-4. PRESTO and RINEPT performances for $\nu_R = 62.5$ kHz

Similar comparisons of the performances of the various RINEPT-CWc and PRESTO sequences were performed for γ-alumina and AlPO$_4$-14 at $\nu_R = 62.5$ kHz.

IV-4-1. γ-alumina

The corresponding data for γ-alumina are given Table 7. The sequences yielding the highest transfer efficiencies are by decreasing order RINEPT-CWc with SR42_1 (tt) or R122_5 (tt) > RINEPT-CWc-SR42_1 (270b_090b_0) \approx PRESTO-R166_5 (270b_090b_0) > PRESTO-R146_2 (270b_090b_0) > RINEPT-CWc-R122_5 (270b_090b_0). Nevertheless, the nominal rf requirements of the RINEPT sequences using adiabatic pulses or 270b_090b_0 composite π-pulses correspond to $v_{1,max} = 5\nu_R$ (313 kHz: Fig.2d) or $4\nu_R$ (250 kHz), which exceeds the specifications of our 1.3 MAS probe, and the sequences were tested only up to $v_{1,max} = 208$ kHz (Fig.7). This suboptimal rf field could potentially limit the transfer efficiencies of these sequences.

The PRESTO-R166_5 (270b_090b_0) and -R146_2 (270b_090b_0) sequences yield transfer efficiencies comparable to those of RINEPT-CWc-SR42_1 (270b_090b_0), but with a significantly lower rf field, 137 kHz \approx 2.3\nu_R. Furthermore, the robustness to offset of these
PRESTO sequences is comparable to that of RINEPT-CWc-SR4_1_2(270,90,180) (Fig. 8). PRESTO-R22_3(180) and -R16_3(180) sequences with the small phase shift of $2\phi \leq 52^\circ$ are less efficient because they are sensitive to rf inhomogeneity.

Figure 7: Variation at $v_R = 62.5$ kHz of the 27AlO$_6$ signal of γ-alumina as function of v_1 or $v_{1,max}$ of the recoupling for PRESTO-R16_3(270,90,180) and -R14_3(270,90,180) as well as RINEPT-SR4_1_2 (tt), -SR4_2_3 (270,90,180) and -R12_3 (270,90,180). For each curve τ was fixed to its optimum value given in Table 7.

Figure 8: Variation at $v_R = 62.5$ kHz of the 27AlO$_6$ signal of γ-alumina as function of offset of the recoupling for PRESTO-R16_3(270,90,180) and -R14_3(270,90,180) as well as RINEPT-SR4_1_2 (tt), -SR4_2_3 (270,90,180) and -R12_3 (270,90,180). For each curve τ and v_1 or $v_{1,max}$ were fixed to their optimum values given in Table 7.
Table 7. Comparison of the performances of 1H→27Al RINEPT-CWc and PRESTO transfer using various recoupling for the AlO₆ signal of γ-alumina at $\nu_R = 62.5$ kHz.

PRESTO/RINEPT	Recoupling	τ /μs	$\nu_1/\nu_{1,\text{max}}$/kHz	AlO₆ a	$\Delta\nu_0$/kHz	$\Delta\nu_0/\nu_1$	$\Delta\nu_1$/kHz	$\Delta\nu_1/\nu_1$
RINEPT	SR4a_4(tt)	256	208	1	74	0.36	b	b
	R12a_5(tt)	256	208	1	74	0.36	b	b
	SR4a_4(270°,90°)	320	208	0.92	96	0.46	b	b
PRESTO	R16a_5(270°,90°)	448	137	0.91	90	0.66	42	0.31
	R14a_5(270°,90°)	384	146	0.86	100	0.68	38	0.26
RINEPT	R12a_5(270°,90°)	320	208	0.82	86	0.41	b	b
	SR4a_4(180°)	320	125	0.75	52	0.42	88	0.70
	R12a_5(180°)	288	125	0.74	16	0.13	85	0.68
PRESTO	R22a_4(180°)	256	157	0.67	68	0.43	20	0.13
	R16a_5(180°)	384	155	0.51	48	0.31	40	0.26
RINEPT	SC2a_1	256	186	0.34	50	0.27	84	0.45
	G6a_5	256	186	0.34	43	0.23	76	0.41
	SR4a_4(90°-45°,90°-45°)	256	186	0.32	47	0.25	70	0.38
	R12a_5(90°-45°,90°-45°)	256	186	0.32	40	0.22	70	0.38

a Intensities of AlO₆, AlO₅ and AlO₄ resonances normalized to their intensities with 1H→27Al RINEPT-CWc-SR4a_4(tt).
b FWHM of the robustness to rf-field was not measured for RINEPT-SR4a_4(tt) and -R12a_5(tt) (Fig.7).

IV-4.2. Isopropylamine-templated AlPO₄-14

In the case of AlPO₄-14, the relative transfer efficiencies for 27Al nuclei follow a similar order as for γ-alumina, except that the transfer efficiencies of PRESTO-R16a_5(270°,90°) and -R14a_5(270°,90°) are significantly lower than that of RINEPT-CWc-SR4a_4(270°,90°) (Table 8). This decreased efficiency of the PRESTO schemes for AlO₄ stems notably from the dipolar truncation, which prevents the transfer of magnetization from the protons of OH groups bonded to AlO₅ and AlO₆ sites to 27AlO₄ nuclei. In Table, S1 we give the 1H-27Al distances of AlPO₄-14, which confirms that OH groups are closer to AlO₅ and AlO₆ sites, and hence, why the transfer efficiency for PRESTO-R16a_5(270°,90°) and -R14a_5(270°,90°) is higher than for RINEPT-CWc-SR4a_4(270°,90°). However, the latter sequence uses amplitude-modulated recoupling, and hence benefits from a higher robustness to rf-field inhomogeneity than the PRESTO schemes (Fig.S3). Conversely, the robustness to offset of these three sequences are comparable (Fig.S4), whereas the rf requirements of R16a_5(270°,90°) and R14a_5(270°,90°) are much lower than that of SR4a_4(270°,90°).
In summary, at \(R = 62.5 \text{ kHz} \), for both \(\gamma \)-alumina and isopropylamine-templated AlPO\(_4\)-14, PRESTO-R16\(_4\)(270,90\(_{180}\)) and RINEPT-CWc-SR4\(_2\)(270,90\(_{180}\)) are the methods of choice to transfer polarization of protons to quadrupolar nuclei. However, the first sequence requires a much lower rf-field than the second.

V. Conclusions

In this work, we have introduced novel symmetry-based hetero-nuclear dipolar recoupling schemes, which can be incorporated into the RINEPT and PRESTO sequences to transfer the magnetization from protons to half-integer quadrupolar nuclei at \(v_R = 20 \) or 62.5 kHz. These novel recouplings have been compared to existing schemes. We have shown that the RINEPT-CWc-SR4\(_2\)(tt) sequence, which produces efficient and robust transfers at \(v_R \approx 10-15 \text{ kHz} \), (Nagashima et al., 2020) requires rf-fields incompatible with the specifications of most MAS probes for \(v_R \geq 20 \text{ kHz} \). Conversely, the introduced RINEPT-CWc-SR4\(_2\)(270,90\(_{180}\)) and PRESTO-R22\(_2\)(180\(_0\)) techniques with rf-fields of 4\(v_R \) and 5.5\(v_R \), respectively, are the methods of choice.
at $\nu_R = 20$ kHz to transfer the magnetization from protons to quadrupolar nuclei. At $\nu_R = 62.5$ kHz, the RINEPT-CWc-SR4$\frac{7}{2}$$(270,90_{180})$ and PRESTO-R16$\frac{7}{2}$$(270,90_{180})$ sequences with rf-requirements of $4\nu_R$ and $2.3\nu_R$, respectively, result in the most robust and efficient transfers. At both MAS frequencies, the RINEPT and PRESTO techniques complement each other since the latter is dipolar truncated, whereas the former is not. As result, the RINEPT sequences must be chosen to observe simultaneously protonated and unprotonated sites, whereas the PRESTO schemes can be employed for the selective observation of quadrupolar nuclei in proximity to protons. These techniques are expected to be useful for transferring the DNP-enhanced magnetization of protons to quadrupolar nuclei in indirect MAS DNP experiments at $\nu_R \geq 20$ kHz, notably used at high magnetic fields.\(\text{(Nagashima et al., 2020, n.d.; Rankin et al., 2019; Berruyer et al., 2020)}\)

Author contributions: JSG, AGMR and JT carried out the NMR experiments on γ-alumina and AlPO$_4$-14. YT performed the spin dynamics simulations and carried out the NMR experiments on l-histidine-HCl. OL derived average Hamiltonian theory for the investigated recoupling sequences. OL and JPA wrote the manuscript. All the authors contributed to the editing of the manuscript.

Acknowledgments

This article is dedicated to Dr Francis Taulelle, our friend, who passed away very recently. The Chevreul Institute (FR 2638), Ministère de l’Enseignement Supérieur, de la Recherche et de l’Innovation, Hauts-de-France Region, and FEDER are acknowledged for supporting and funding partially this work. Financial support from the IR-RMN-THC FR-3050 CNRS for conducting the research is gratefully acknowledged. This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 731019 (EUSMI). OL acknowledges financial support from Institut Universitaire de France (IUF) and contract ANR-18-CE08-0015-01 (ThinGlass). FP acknowledges financial support from I-site contract OPE-2019-0043 (5400-MOFFIN).

References

Amoureux, J.-P. and Pruski, M.: Theoretical and experimental assessment of single- and multiple-quantum cross-polarization in solid state NMR, 100, 1595–1613, https://doi.org/10.1080/00268970210125755, 2002.

Antonijevic, S., Ashbrook, S. E., Biedasek, S., Walton, R. I., Wimperis, S., and Yang, H.: Dynamics on the Microsecond Timescale in Microporous Aluminophosphate AlPO-14 as Evidenced by 27Al MQMAS and STMAS NMR Spectroscopy, J. Am. Chem. Soc., 128, 8054–8062, https://doi.org/10.1021/ja057682g, 2006.

Ashbrook, S. E. and Sneddon, S.: New Methods and Applications in Solid-State NMR Spectroscopy of Quadrupolar Nuclei, J. Am. Chem. Soc., 136, 15440–15456, https://doi.org/10.1021/ja504734p, 2014.
Ashbrook, S. E. and Wimperis, S.: Spin-locking of half-integer quadrupolar nuclei in nuclear magnetic resonance of solids: Second-order quadrupolar and resonance offset effects, J. Chem. Phys., 131, 194509, https://doi.org/10.1063/1.3263904, 2009.

Ashbrook, S. E., Cutajar, M., Pickard, C. J., Walton, R. I., and Wimperis, S.: Structure and NMR assignment in calcined and as-synthesized forms of AlPO-14: a combined study by first-principles calculations and high-resolution 27Al–31P MAS NMR correlation, Phys. Chem. Chem. Phys., 10, 5754–5764, https://doi.org/10.1039/B805681A, 2008.

Bak, M. and Nielsen, N. C.: REPULSION, A Novel Approach to Efficient Powder Averaging in Solid-State NMR, Journal of Magnetic Resonance, 125, 132–139, https://doi.org/10.1006/jmre.1996.1087, 1997a.

Bak, M., Rasmussen, J. T., and Nielsen, N. C.: SIMPSON: a general simulation program for solid-state NMR spectroscopy., 147, 296–330, https://doi.org/10.1006/jmre.2000.2179, 2000.

Barrie, P. J.: Distorted powder lineshapes in 27Al CP / MAS NMR spectroscopy of solids, Chemical Physics Letters, 208, 486–490, https://doi.org/10.1016/0009-2614(93)87177-5, 1993.

Berruyer, P., Björgvinsdóttir, S., Bertarello, A., Stevanato, G., Rao, Y., Karthikeyan, G., Casano, G., Ouari, O., Lelli, M., Reiter, C., Engelke, F., and Emsley, L.: Dynamic Nuclear Polarization Enhancement of 200 at 21.15 T Enabled by 65 kHz Magic Angle Spinning, J. Phys. Chem. Lett., 11, 8386–8391, https://doi.org/10.1021/acs.jpclett.0c02493, 2020.

Blanc, F., Sperrin, L., Jefferson, D. A., Pawsey, S., Rosay, M., and Grey, C. P.: Dynamic Nuclear Polarization Enhanced Natural Abundance 17O Spectroscopy, J. Am. Chem. Soc., 135, 2975–2978, https://doi.org/10.1021/ja4004377, 2013.

Brinkmann, A. and Edén, M.: Second order average Hamiltonian theory of symmetry-based pulse schemes in the nuclear magnetic resonance of rotating solids: Application to triple-quantum dipolar recoupling, 120, 11726, https://doi.org/10.1063/1.1738102, 2004b.

Brinkmann, A. and Kentgens, A. P. M.: Proton-Selective 17O–1H Distance Measurements in Fast Magic-Angle-Spinning Solid-State NMR Spectroscopy for the Determination of Hydrogen Bond Lengths, J. Am. Chem. Soc., 128, 14758–14759, https://doi.org/10.1021/ja065415k, 2006a.

Brinkmann, A. and Kentgens, A. P. M.: Sensitivity Enhancement and Heteronuclear Distance Measurements in Biological 17O Solid-State NMR, J. Phys. Chem. B, 110, 16089–16101, https://doi.org/10.1021/jp062809p, 2006b.

Brinkmann, A. and Levitt, M. H.: Symmetry principles in the nuclear magnetic resonance of spinning solids: Heteronuclear recoupling by generalized Hartmann-Hahn sequences, 115, 357–384, https://doi.org/10.1063/1.1377031, 2001.

Brinkmann, A., Edén, M., and Levitt, M. H.: Synchronous helical pulse sequences in magic-angle spinning nuclear magnetic resonance: double quantum recoupling of multiple-spin systems, 112, 8539–8554, https://doi.org/10.1063/1.481458, 2000.

Carravetta, M., Edén, M., Zhao, X., Brinkmann, A., and Levitt, M. H.: Symmetry principles for the design of radiofrequency pulse sequences in the nuclear magnetic resonance of rotating solids, Chemical Physics Letters, 321, 205–215, https://doi.org/10.1016/S0009-2614(00)00340-7, 2000.

Chen, J., Wu, X.-P., Hope, M. A., Qian, K., Halat, D. M., Liu, T., Li, Y., Shen, L., Ke, X., Wen, Y., Du, J.-H., Magusin, P. C. M. M., Paul, S., Ding, W., Gong, X.-Q., Grey, C. P., and Peng, L.: Polar surface structure of oxide nanocrystals revealed with solid-state NMR spectroscopy, Nat Commun, 10, 1–10, https://doi.org/10.1038/s41467-019-13424-7, 2019.
Ding, S. W. and McDowell, C. A.: Theoretical Calculations of the CPMAS Spectral Lineshapes of Half-Integer Quadrupole Systems, Journal of Magnetic Resonance, Series A, 114, 80–87, https://doi.org/10.1006/jmra.1995.1108, 1995.

Duong, N. T., Trébosc, J., Lafon, O., and Amoureux, J.-P.: Improved sensitivity and quantification for 29Si NMR experiments on solids using UDEFT (Uniform Driven Equilibrium Fourier Transform), Solid State Nuclear Magnetic Resonance, 100, 52–62, https://doi.org/10.1016/j.ssnmr.2019.03.007, 2019.

Fernandez, C., Amoureux, J. P., Chezeau, J. M., Delmotte, L., and Kessler, H.: 27Al MAS NMR characterization of AlPO$_4$-14 enhanced resolution and information by MQMAS Dr. Hellmut G. Karge on the occasion of his 65th birthday, Microporous Materials, 6, 331–340, https://doi.org/10.1016/0927-6513(96)00040-5, 1996.

Gansmüller, A., Simorre, J.-P., and Hediger, S.: Windowed R-PDLF recoupling: A flexible and reliable tool to characterize molecular dynamics, Journal of Magnetic Resonance, 234, 154–164, https://doi.org/10.1016/j.jmr.2013.06.017, 2013.

Garwood, M. and DelaBarre, L.: The Return of the Frequency Sweep: Designing Adiabatic Pulses for Contemporary NMR, Journal of Magnetic Resonance, 153, 155–177, https://doi.org/10.1006/jmre.2001.2340, 2001.

Giovine, R., Trébosc, J., Pourpoint, F., Lafon, O., and Amoureux, J.-P.: Magnetization transfer from protons to quadrupolar nuclei in solid-state NMR using PRESTO or dipolar-mediated refocused INEPT methods, Journal of Magnetic Resonance, 299, 109–123, https://doi.org/10.1016/j.jmr.2018.12.016, 2019.

Harris, R. K. and Nesbitt, G. J.: Cross polarization for quadrupolar nuclei—Proton to sodium-23, Journal of Magnetic Resonance (1969), 78, 245–256, https://doi.org/10.1016/0022-2364(88)90268-5, 1988.

Hayashi, S. and Hayamizu, K.: Line shapes in CP/MAS NMR spectra of half-integer quadrupolar nuclei, Chemical Physics Letters, 203, 319–324, https://doi.org/10.1016/0009-2614(93)85575-9, 1993.

Hope, M. A., Halat, D. M., Magusin, P. C. M. M., Paul, S., Peng, L., and Grey, C. P.: Surface-selective direct 17O DNP NMR of CeO$_2$ nanoparticles, Chem. Commun., 53, 2142–2145, https://doi.org/10.1039/C6CC10145C, 2017.

Hu, B., Delevoye, L., Lafon, O., Trébosc, J., and Amoureux, J. P.: Double-quantum NMR spectroscopy of 31P species submitted to very large CSAs., 200, 178–88, https://doi.org/10.1016/j.jmr.2009.06.020, 2009.

Hwang, S.-J., Chen, C.-Y., and Zones, S. I.: Boron Sites in Borosilicate Zeolites at Various Stages of Hydration Studied by Solid State NMR Spectroscopy, J. Phys. Chem. B, 108, 18535–18546, https://doi.org/10.1021/jp0476904, 2004.

Kervern, G., Pintacuda, G., and Emsley, L.: Fast adiabatic pulses for solid-state NMR of paramagnetic systems, 435, 157–162, https://doi.org/10.1016/j.cplett.2006.12.056, 2007.

Lee, D., Duong, N. T., Lafon, O., and De Paëpe, G.: Primostrato Solid-State NMR Enhanced by Dynamic Nuclear Polarization: Pentacoordinated Al$^{3+}$ Ions Are Only Located at the Surface of Hydrated γ-Alumina, 118, 25065–25076, https://doi.org/10.1021/jp508009x, 2014.
Lee, D., Leroy, C., Crevant, C., Bonhomme-Coury, L., Babonneau, F., Laurencin, D., Bonhomme, C., and Paëpe, G. D.: Interfacial Ca2+ environments in nanocrystalline apatites revealed by dynamic nuclear polarization enhanced 43Ca NMR spectroscopy, 8, 14104, https://doi.org/10.1038/ncomms14104, 2017.

Levitt, M. H.: Symmetry-based pulse sequences in magic-angle spinning solid-state NMR, in: Encyclopedia of Nuclear Magnetic Resonance. Volume 9, Advances in NMR, edited by: Grant, D. M. and Harris, R. K., Wiley, 165–196, 2002.

Levitt, M. H. and Freeman, R.: NMR population inversion using a composite pulse, 33, 473–476, https://doi.org/10.1016/0022-2364(79)90265-8, 1979.

Li, W., Wang, Q., Xu, J., Aussenac, F., Qi, G., Zhao, X., Gao, P., Wang, C., and Deng, F.: Probing the surface of γ-Al\textsubscript{2}O\textsubscript{3} by oxygen-17 dynamic nuclear polarization enhanced solid-state NMR spectroscopy, Phys. Chem. Chem. Phys., 20, 17218–17225, https://doi.org/10.1039/C8CP03132K, 2018.

Liang, L., Hou, G., and Bao, X.: Measurement of proton chemical shift anisotropy in solid-state NMR spectroscopy, Solid State Nuclear Magnetic Resonance, 93, 16–28, https://doi.org/10.1016/j.ssnmr.2018.04.002, 2018.

Lu, X., Lafon, O., Trébosc, J., Tricot, G., Delevoye, L., Méar, F., Montagne, L., and Amoureux, J. P.: Observation of proximities between spin-1/2 and quadrupolar nuclei: which heteronuclear dipolar recoupling method is preferable?, 137, 144201, https://doi.org/10.1063/1.4753987, 2012.

Madhu, P. K., Zhao, X., and Levitt, M. H.: High-resolution 1H NMR in the solid state using symmetry-based pulse sequences, 346, 142–148, https://doi.org/10.1016/S0009-2614(01)00876-4, 2001.

Martineau, C., Bouchevreau, B., Taulelle, F., Trébosc, J., Lafon, O., and Amoureux, J. P.: High-resolution through-space correlations between spin-1/2 and half-integer quadrupolar nuclei using the MQ-D-R-INEPT NMR experiment, Phys. Chem. Chem. Phys., 14, 7112–7119, https://doi.org/10.1039/C2CP40344G, 2012.

Morris, H. D. and Ellis, P. D.: Aluminum-27 cross polarization of aluminas. The NMR spectroscopy of surface aluminum atoms, J. Am. Chem. Soc., 111, 6045–6049, https://doi.org/10.1021/ja00198a012, 1989.

Nagashima, H., Lilly Thankamony, A. S., Trébosc, J., Montagne, L., Kerven, G., Amoureux, J.-P., and Lafon, O.: Observation of proximities between spin-1/2 and quadrupolar nuclei in solids: Improved robustness to chemical shielding using adiabatic symmetry-based recoupling, Solid State Nuclear Magnetic Resonance, 94, 7–19, https://doi.org/10.1016/j.ssnmr.2018.07.001, 2018.

Nagashima, H., Trébosc, J., Kon, Y., Sato, K., Lafon, O., and Amoureux, J.-P.: Observation of Low-γ Quadrupolar Nuclei by Surface-Enhanced NMR Spectroscopy, J. Am. Chem. Soc., 142, 10659–10672, https://doi.org/10.1021/jacs.9b13838, 2020.

Nagashima, H., Trebosc, J., Kon, Y., Lafon, O., and Amoureux, J.-P.: Efficient transfer of 1H magnetization to half-integer quadrupolar nuclei in solids, enhanced by dynamic nuclear polarization at moderate spinning rate, Magnetic Resonance in Chemistry, In press, https://doi.org/10.1002/mrc.5121, n.d.

Pandey, M. K., Malon, M., Ramamoorthy, A., and Nishiyama, Y.: Composite-180° pulse-based symmetry sequences to recouple proton chemical shift anisotropy tensors under ultrafast MAS solid-state NMR spectroscopy, Journal of Magnetic Resonance, 250, 45–54, https://doi.org/10.1016/j.jmr.2014.11.002, 2015.
Peng, L., Huo, H., Liu, Y., and Grey, C. P.: 17O Magic Angle Spinning NMR Studies of Brønsted Acid Sites in Zeolites HY and HZSM-5, J. Am. Chem. Soc., 129, 335–346, https://doi.org/10.1021/ja064922z, 2007.

Perras, F. A., Kobayashi, T., and Pruski, M.: Natural Abundance 17O DNP Two-Dimensional and Surface-Enhanced NMR Spectroscopy, J. Am. Chem. Soc., 137, 8336–8339, https://doi.org/10.1021/jacs.5b03905, 2015a.

Perras, F. A., Kobayashi, T., and Pruski, M.: PRESTO polarization transfer to quadrupolar nuclei: implications for dynamic nuclear polarization, Phys. Chem. Chem. Phys., 17, 22616–22622, https://doi.org/10.1039/C5CP04145G, 2015b.

Perras, F. A., Chaudhary, U., Slowing, I. I., and Pruski, M.: Probing Surface Hydrogen Bonding and Dynamics by Natural Abundance, Multidimensional, 17O DNP-NMR Spectroscopy, J. Phys. Chem. C, 120, 11535–11544, https://doi.org/10.1021/acs.jpcc.6b02579, 2016.

Perras, F. A., Wang, Z., Naik, P., Slowing, I. I., and Pruski, M.: Natural Abundance 17O DNP NMR Provides Precise O–H Distances and Insights into the Brønsted Acidity of Heterogeneous Catalysts, Angewandte Chemie International Edition, 56, 9165–9169, https://doi.org/10.1002/anie.201704032, 2017.

Perras, F. A., Goh, T. W., Wang, L.-L., Huang, W., and Pruski, M.: Enhanced 1H-X D-HMQC performance through improved 1H homonuclear decoupling, Solid State Nuclear Magnetic Resonance, 98, 12–18, https://doi.org/10.1016/j.ssnmr.2019.01.001, 2019.

Pileio, G., Concistrè, M., McLean, N., Gansmüller, A., Brown, R. C. D., and Levitt, M. H.: Analytical theory of γ-encoded double-quantum recoupling sequences in solid-state nuclear magnetic resonance, Journal of Magnetic Resonance, 186, 65–74, https://doi.org/10.1016/j.jmr.2007.01.009, 2007.

Rankin, A. G. M., Trébosc, J., Pourpoint, F., Amoureux, J.-P., and Lafon, O.: Recent developments in MAS DNP-NMR of materials, Solid State Nuclear Magnetic Resonance, 101, 116–143, https://doi.org/10.1016/j.ssnmr.2019.05.009, 2019.

Rocha, J., Carr, S. W., and Klinowski, J.: 27Al quadrupole nutation and 1H-27Al cross-polarization solid-state NMR studies of ultrastable zeolite Y with fast magic-angle spinning, Chemical Physics Letters, 187, 401–408, https://doi.org/10.1016/0009-2614(91)80272-Y, 1991.

Tricot, G., Lafon, O., Trébosc, J., Delevoye, L., Méar, F., Montagne, L., and Amoureux, J.-P.: Structural characterisation of phosphate materials: new insights into the spatial proximities between phosphorus and quadrupolar nuclei using the D-HMQC MAS NMR technique, Phys. Chem. Chem. Phys., 13, 16786–16794, https://doi.org/10.1039/C1CP20993K, 2011.

Vega, A. J.: CPMAS of quadrupolar S = 32 nuclei, Solid State Nuclear Magnetic Resonance, 1, 17–32, https://doi.org/10.1016/0926-2040(92)90006-U, 1992.

Vitzthum, V., Mievile, P., Carnevale, D., Caporini, M. A., Gajan, D., Copéret, C., Lelli, M., Zagdoun, A., Rossini, A. J., Lesage, A., Emsley, L., and Bodenhausen, G.: Dynamic nuclear polarization of quadrupolar nuclei using cross polarization from protons: surface-enhanced aluminium-27 NMR, 48, 1988–1990, https://doi.org/10.1039/c2cc15905h, 2012.

Vogt, F. G., Yin, H., Forcino, R. G., and Wu, L.: 17O Solid-State NMR as a Sensitive Probe of Hydrogen Bonding in Crystalline and Amorphous Solid Forms of Diflunisal, Mol. Pharmaceutics, 10, 3433–3446, https://doi.org/10.1021/mp400275w, 2013.
Zhao, X., Edén, M., and Levitt, M. H.: Recoupling of heteronuclear dipolar interactions in solid-state NMR using symmetry-based pulse sequences, 342, 353–361, https://doi.org/10.1016/S0009-2614(01)00593-0, 2001.

Zhao, X., Hoffbauer, W., Schmedt auf der Günne, J., and Levitt, M. H.: Heteronuclear polarization transfer by symmetry-based recoupling sequences in solid-state NMR, Solid State Nuclear Magnetic Resonance, 26, 57–64, https://doi.org/10.1016/j.ssnmr.2003.11.001, 2004.