IN VITRO INTERACTION OF MOUSE HEPATITIS VIRUS
AND MACROPHAGES FROM GENETICALLY
RESISTANT MICE

II. BIOLOGICAL CHARACTERIZATION OF A VARIANT VIRUS
MHV(CsH) ISOLATED FROM STOCKS OF MHV(PRI)

BY ILAN SHIF, Sc.D., AND FREDERIK B. BANG, M.D.

(From the Department of Pathobiology, The Johns Hopkins University School of
Hygiene and Public Health, Baltimore, Maryland 21205)

(Received for publication 20 November 1969)

Since the virulence of a virus is usually multifactorial in both natural and
experimental infections, it is of considerable interest to identify a situation in
which a single genetic character controls virulence. Susceptibility or resistance
to mouse hepatitis virus (MHV) may be controlled by a single genetic char-
acter. In turn the genetic resistance of the CsH mice to MHV Princeton strain
(PRI) may be overcome by a change in the virus and we here report the sudden
regularly produced change of MHV(PRI) which is incapable of killing resistant
CsH mice or their macrophages to one which regularly kills both the macro-
phages and the host mice. In the preceding paper (1) we demonstrated that
even though resistant cells adsorb the virus, the virus does not develop a full-
blown infection in the CsH system; further, it remains infectious only for the
original mouse (PRI) cells even after it has been resident in the resistant
(CsH) cells for some 100 hr.

Since the original report of Bang and Warwick in 1960, (2) it had been con-
tinually noticed that resistant CsH cells were destroyed by very large amounts
of the original “wild” strain of virus, but the phenomenon was assumed to be
due to “toxicity” and was not investigated. It is clear from the studies here re-
ported that destruction of resistant cells by a high multiplicity of the wild virus
is uniformly associated with the emergence of a new strain of the virus
MHV(CsH) which in low dilutions is virulent for CsH cells and young adult
CsH mice. It may then be asked whether the original MHV(PRI) virus itself
has any effect on the CsH cells. In a later paper, we examine some factors in-
fluencing the conversion of MHV(PRI) virus from CsH-nonvirulent to CsH-
virulent virus.2

1 Abbreviations used in this paper: MHV, mouse hepatitis virus; pfu, plaque-forming units;
PRI, Princeton strain mice; TCID50, tissue culture infective dose, median.
2 In this and subsequent papers the PRI-mouse-adapted virus is referred to as MHV(PRI),
Materials and Methods

(These have been described in the preceding article).

EXPERIMENTAL RESULTS

Conditions Favoring the Emergence of the Variant Virus MHV(C3H).—Table I shows that a high input of the original MHV(PRI) virus was necessary to produce a delayed (4–6 days) destruction of C3H-cultured macrophages, and that the ratio of destructiveness or virulence for the two cell systems was much greater for cloned PRI virus than for the stock preparation of MHV(PRI).

TABLE I

Virus source	TCD50* per 0.1 ml of virus preparation	Exp. PRI	C3H	Ratio of titer
A. MHV(PRI) harvested from livers of PRI mice	1	7.0 × 10^6	7.0 × 10^6	10^3
	2	7.0 × 10^5	1.0 × 10^2	7 × 10^1
	3	9.0 × 10^5	1.1 × 10^3	8 × 10^3
B. Cloned MHV(PRI) (virus derived from macrophage cultures)	1	7.0 × 10^6	0.7 × 10^1	10^6
	2	1.0 × 10^8	8.5 × 10^1	1.2 × 10^5
	3	9.0 × 10^5	8.5 × 10^1	10^7
C. Cloned and macrophage culture propagated virus, concentrated X 15 with the aid of Carbowax powder	1.6 × 10^7	1.5 × 10^1	10^6	

Titers determined at 8 days after inoculation of both PRI and C3H macrophage cultures.

* TCID50, tissue culture infective dose, median.

When fluids from the destroyed C3H cultures were passed to new C3H cells, destruction was not delayed but occurred within 2–3 days, and the end point of destruction rose markedly. This suggested that the virus replicated when very large amounts were added to the cells. It was then puzzling to find that the same virus concentrations did not form plaques on C3H macrophage monolayers prepared with an overlay (3). Therefore, the agar overlay was withheld from a series of C3H monolayers for different intervals after they were inoculated with MHV(PRI) and incubated at 37°C (Table II). Plaques then clearly developed when the agar overlay was withheld for 20 hr or more. With increased time, more plaques developed but this was perhaps because the virus had replicated and spread to other cells before they were covered with the agar.

and the C3H-adapted virus as MHV(C3H). That there may be degrees of adaptation has already been indicated by studies of Gallily et al. (2) on the ontogeny of the resistance to mouse hepatitis virus in C3H mice.
Host Range Characteristic of the Variant Virus MHV(C₃H).—After inoculation, and up to the point of delayed destruction of C₃H cultures, the virus maintained its high titer when tested on PRI cultures (Fig. 1), but showed essen-

TABLE II
Effect of Different Time Intervals of Exposure of C₃H Macrophage Monolayers to Fluid Medium on the Number of Plaques Produced by MHV(PRI)

Time interval of incubation at 37°C before covering C₃H monolayers with an agar overlay	Number of plaques
hr	
16	0; 0; 0; 0
18	0; 0; 0; 0; 0
20	2; 2; 3; 1; 6; 0
22	26; 32; 100

Fig. 1. Emergence of MHV(C₃H) from stocks of MHV(PRI). C₃H macrophage cultures were infected with undiluted MHV(PRI) stock virus at a multiplicity of about 10. At different intervals after virus inoculation and subsequent incubation at 37°C, the contents of individual C₃H tubes were harvested and assayed in both PRI (open circles) and C₃H (closed circles) macrophage cultures. The cultures were subjected to five rapid cycles of freezing and thawing before harvesting. The titer of the virus is represented as reciprocals of logs virus present in 1.0 ml of culture fluids.

Initially no titer when initially tested on C₃H macrophage cultures; the titer in the latter case increased with incubation time to a point where the virus gave equal titers on C₃H and PRI cultures. A growth curve of the MHV(C₃H) first passage (Fig. 2), showed that the new virus grew well and now had equal titers on both
C3H and PRI cultures throughout its growth. The same result was achieved by plaquing the new stock of virus on monolayers of both cell types (Table II).

In addition, plaques of MHV(C3H) were apparently initiated by single infec-

![Graph showing titration in C3H and PRI cultures](image)

Fig. 2. Second passage of MHV(C3H) in C3H macrophage cultures. At different intervals after inoculation and subsequent incubation at 37°C, sample tube cultures were harvested and subjected to five rapid cycles of freezing and thawing. Their contents were assayed in both C3H (closed triangles) and PRI (closed circles) macrophage cultures. The titers of the virus are represented in reciprocals of logs virus present in 1.0 ml of culture fluids.

TABLE III

Virus dilution inoculated (0.2 ml per dilution)	Number of plaques on C3H monolayers	Number of plaques on PRI monolayers
10^{-6}	85; 73	87; 80
10^{-5}	6; 8	8; 7
10^{-4}	1; 0; 1	1; 0

fectious particles since a one-hit dose response curve was obtained on PRI as well as on C3H monolayers (Table III). In addition, MHV(C3H), the strain which had been isolated from macrophage cultures, killed both C3H and PRI adult mice and also Swiss albino mice (Table IV). However, the effects of the new virus on the different strains of mice were not identical: (a) Adult PRI mice succumbed to the virus 2–3 days after intraperitoneal inoculation, but
adult C₃H and Swiss albino mice died only after 4 or more days; (b) High titers of undiluted MHV(C₃H) killed all injected PRI mice, but only one third of C₃H and Swiss albino mice.

TABLE IV

Virus dilution	Death rate	Time required to succumb to the infection				
	PRI C₃H	Swiss-Albino	PRI C₃H	Swiss-albino		
	days	days	days			
10⁰	10/10	14/40	21/60	2	4–8	5–8
10⁻¹	10/10	8/8	ND	2	4–7	—
10⁻²	5/5	5/5	ND	2	4–7	—
10⁻³	5/5	5/5	ND	3	5–7	—

* Virus was diluted in Hanks' BSS and 0.1 ml injected intraperitoneally into 1 month old male mice.

† ND, not done.

TABLE V

Dilution of MHV (PRI)	Number of C₃H cultures	Destruction at 8 days	Presence of MHV (C₃H)
10⁰	15	15/15	15/15
10⁻¹	8	6/8‡	6/8
10⁻²	7	4/7‡	4/7
10⁻³	26	0/26	0/26
10⁻⁴	20	0/20	0/20
10⁻⁵	13	0/13	0/13

* C₃H cultures were inoculated with 0.1 ml of each of the above viral dilutions. The tubes were incubated at 37°C and examined daily for 8 days. Cultures which showed destruction before or on the 8th day, were removed and frozen. (No culture showed destruction before day 3.) All of the remaining 64 tube cultures and the 26 previously frozen cultures were subjected to 5 rapid cycles of freezing and thawing. The fluid was then inoculated into 5 C₃H tube cultures each. Complete destruction in 48 hr resulted in all cultures inoculated with fluid from tubes where there had originally been delayed destruction. No destruction was seen in 2 wk of observation in cultures inoculated with fluid from C₃H cultures that themselves showed no destruction.

† In all cases, the same tubes which showed destruction yielded the variant virus, and those not showing destruction failed to yield the variant.

The Association of C₃H Cell Destruction with the Emergence of MHV(C₃H).—The appearance of a virus strain which apparently had a new host range, and which developed in association with destruction of “resistant” C₃H cells, raised the question whether the destruction of C₃H cells by the original MHV(PRI) preceded the emergence of the new virus or whether the emergence of the new virus was a necessary antecedent to the destruction of the cells. While the ques-
tion has not yet been fully answered, one experiment has yielded some insight into the association between destruction and emergence of new virus. Serial dilutions of MHV(PRI) were inoculated onto C3H cultures. The new strain was found present in all tube cultures showing delayed destruction, while in the absence of destruction, new virus failed to appear (Table V).

The question whether the MHV(C3H) virus was a stable variant was tested by growing the virus for one passage in PRI macrophages and analyzing the progeny virus. If this variation was host dependent, progeny virus might, in PRI cells, reverse to the wild type, MHV(PRI). As shown from Table VI, this did not occur. Progeny of PRI grown MHV(C3H) retained the broader host range.

Two interpretations concerning the emergence of MHV(C3H) are possible.

TABLE VI

Titel of MHV(C3H) (Fifth Passage) on PRI and C3H Cells at Different Intervals of Growth in PRI Macrophage Cultures

Time (hr)	Logs virus per 1.0 ml*	
	PRI cells	C3H cells
0	2.0	2.5
0.5	2.0	1.5
2.0	1.0	1.0
6.0	2.5	3.0
11.0	4.5	4.5
24.0	8.0	8.0

* Two tubes per dilution were used.

The variant may be a constantly occurring mutant, or its appearance may be in some way dependent upon the host cell itself which ingests and protects the MHV(PRI). In favor of the selection of a constantly occurring true mutant is the fact that different stocks of virus differed in the tendency to give rise to the variant, and that a real decrease in the appearance of the variant was produced by cloning the original.

A search was therefore made in the MHV(PRI)-infectious material for some factor which would increase the conversion of wild virus to the variant. When UV-irradiated MHV(PRI), reduced in the titer by 100-fold, was put on C3H macrophages or was combined with low multiplicities of unirradiated virus before putting it on macrophages, no destruction occurred. The same virus which was not UV irradiated (control) did cause a delayed destruction of the C3H cells.

Antigenic Relationship of MHV(PRI) and MHV(C3H).—Since it seemed that a virus with an apparently new host range had emerged, it was important to see if this new virus differed antigenically.
Three pools of antisera were tested for their capacity to neutralize 100 TCIDₙ₀ (tissue culture infective dose, median) of plaque-purified MHV(PRI) and plaque-purified MHV(C₃H): (a) antisera prepared against MHV(PRI) in 1 month old Swiss albino mice; (b) antisera against MHV(C₃H) was prepared in and pooled from survivor Swiss albino mice; and (c) pooled serum from survivor C₃H mice injected with undiluted MHV(C₃H).

Results (Table VII) show that the two viruses were antigenically indistinguishable.

TABLE VII

Neutralisation of MHV(PRI) and MHV(C₃H) by Specific Antisera

Antisera	Highest dilution of serum neutralizing 100 TCIDₙ₀ of	
	MHV (PRI)	MHV (C₃H)
A. Antiserum to MHV(PRI) (prepared in Swiss-Albino mice)	1/128	1/128
B. Antiserum to MHV(C₃H) (prepared in Swiss mice)	1/256	1/128
C. Antiserum to MHV(C₃H) (pooled serum from survivor C₃H mice, injected with undiluted virus)	1/64	1/64
D. Normal serum (Swiss mice)	1/2	1/2
E. Normal serum (C₃H mice)	1/2	1/2

* Due to virus lability at 37°C, virus and sera were incubated overnight in the cold (4°C), after which period the presence of residual virus was checked in either PRI for MHV(PRI) or C₃H for MHV(C₃H) macrophage cultures. Since normal sera contained traces of antiviral activity which could be eliminated by heat inactivation, all sera and antisera were heated to 56°C for half an hour prior to testing.

TABLE VIII

Inhibition of MHV(C₃H) Growth in C₃H Macrophages by Different Concentrations of MHV(PRI)*

Concentration of MHV(PRI) inoculated on 2 × 10⁶ C₃H cells (in TCIDₙ₀)	Titer of MHV (C₃H) 20 hr after the double infection	Inhibition
--	7.0 × 10⁵	--
2.3 × 10⁵	3.0 × 10⁴	95.7
2.3 × 10⁴	8.5 × 10²	99.9
2.3 × 10³	8.5 × 10⁴	87.8
2.3 × 10²	7.0 × 10⁵	0
2.3 × 10¹	9.0 × 10⁵	0

* A series of cultures containing 2 × 10⁶ C₃H cells were inoculated with different concentrations of MHV(PRI). After 1 hr at room temperature they were superinfected with 3.0 × 10³ TCIDₙ₀ of MHV(C₃H) and incubated at 37°C. 20 hr later MHV(C₃H) titers were determined by diluting the samples and infecting five C₃H tube cultures for each dilution.

(b) antisera against MHV(C₃H) was prepared in and pooled from survivor Swiss albino mice; and (c) pooled serum from survivor C₃H mice injected with undiluted MHV(C₃H).
Interference of MHV(PRI) with MHV(C3H).—A delay in the destruction of C3H cultures after inoculation of MHV(PRI) might have been caused by the interference of the prevalent MHV(PRI) virus with the variant MHV(C3H).

To test this, C3H macrophage cultures were infected with different multiplicities of MHV(PRI), and an hour later, superinfected with a given concentration of MHV(C3H). The

Combination	Mean
VSV alone (control)	90
Dilution of culture fluids	
Normal C3H culture fluids (Chang's medium) + VSV	45
Normal C3H culture fluids (Eagle's medium) + VSV	64
Infected C3H culture fluids (Chang's medium) + VSV	65
Infected C3H culture fluids (Eagle's medium) + VSV	78

The ability to inhibit vesicular stomatitis virus is taken as a criterion for the presence of interferon. Assays were conducted on monolayers of L cells using the plaque technique.

* C3H culture fluids were collected at 24 hr postinfection, dialyzed against KCl-HCl buffer (Colowick, S. P., and N. O. Kaplan. 1955. Methods in Enzymology. Academic Press Inc., 1:138) of pH = 2 with three successive changes of the buffer, then transferred to neutral pH, again with several changes. Finally, fluids at various dilutions were put on monolayers of L cells for 24 hr. Thereafter, monolayers were infected with 100 pfu of vesicular stomatitis virus and overlaid with agar containing neutral red. After 48 hr of incubation at 37°C plaques were counted.

† Actual dilution 1:10.
‡ Actual dilution 1:20.

There was a 90–99.9% inhibition in MHV(C3H) yields (Table VIII) and a 1–2 day delay in the destruction of the doubly infected cultures over those infected by MHV(C3H) alone. In other words, the double infection simulated the delay in the emergence of MHV(C3H) when high concentrations of the original virus were inoculated onto C3H macrophage cultures.

Interferon Production in C3H Macrophage Cultures.—It has been shown by
several authors (4-7) that cultured macrophages are a good source of interferon even when unstimulated by viruses or by bacterial endotoxin. Therefore, in order to try to explain the interference found here, it was essential to search for interferon in this system.

C3H cultures supplemented with either Chang's or Eagle's medium were infected with undiluted preparations of MHV(PRI). 20 hr after incubation at 37°C, the culture fluids were collected in a dialyzing bag. The bag was kept in a cold KCl-HCl buffer (pH 2) and after three changes transferred to phosphate buffer of neutral pH. The capacity of fluids to reduce the plaque titer of vesicular stomatitis virus on L cell monolayers was tested. Monolayers of L cells were grown in plastic Petri dishes and covered with infected or normal C3H culture fluids. 24 hr later the plates were infected with 100 plaque-forming units (pfu) of vesicular stomatitis virus. The plaques were counted 2 days later after additions of 1:10,000 neutral red (Table IX).

No interferon activity was found in either normal or infected C3H culture fluids.

DISCUSSION

It is clear that C3H macrophages are not resistant to MHV(PRI) as a consequence of a generalized failure to support MHV but rather due to a specific genetic trait of these cells and their donors. It would seem that C3H cultured macrophages are fully resistant to all concentrations of MHV(PRI) but that high concentrations of virus either contain a variant capable of growing in and destroying with equal ease both C3H and PRI macrophages or can induce the formation of this new variant.

A number of important questions have been raised by the demonstration that the destructive effect of high multiplicities of MHV(PRI) on genetically resistant C3H macrophages is accompanied by the prompt appearance of a new variant virus. In the studies of ontogeny of resistance of C3H mice by Gallily et al. (8), a virus which was capable of killing C3H cells and mice did indeed appear after the virus MHV(PRI) had been grown in baby mice of the genetically resistant strain. However, no attempt to characterize this variant or to analyze the factors responsible for its emergence were made. In this present study the same or a similar variant appeared during the first passage on the resistant cells, but only if the cells were given large inocula of virus and if the cells were destroyed.

The variety of factors known to cause a change in the susceptibility of a host to a standard virus preparation must then be analyzed in terms of both the host itself and the virus population. In the present instance one might argue that C3H cells are continually resistant to MHV(PRI) and that only when, under some yet unknown conditions, the virus is converted to the MHV(C3H) type.

3 The virus was kindly provided by Dr. R. R. Wagner who was at that time with the Department of Microbiology, the Johns Hopkins University School of Medicine.
does the resistant C3H host or its cells succumb. However, recent unpublished work by D. O. Willenborg et al. on a cortisone-induced change in the susceptibility of C3H mice (9) weighs heavily against this explanation. On the other hand the report by Kantoch and Bang (10) that resistant cells in culture may be made more susceptible by the addition of an extract of susceptible cells can also be interpreted as an increase in the capacity of these resistant cells to produce virus which is capable of killing resistant cells.

In most cases adaptation to new hosts requires serial passages of the virus to build up titer or to select for variants with increasingly higher affinity for the new host. Stim and Henderson (11) have shown that adaptation of several group A arboviruses to new hosts involved a gradual selection of variants which were antigenically distinguishable. In the case presented here, adaptation was immediate and the two variants were also antigenically indistinguishable. In addition the second passage of MHV(C3H) multiplied with no delay and with high yield in both PRI and C3H cells.

However, adaptation to a new host in this present instance involves an adaptation to a strain of mice which differs in terms of susceptibility from the original host mouse (PRI) apparently by only one genetic locus. Thus, the change in virus which is necessary to overcome the genetic barrier to growth in resistant macrophages may also be a limited step, and therefore occurs much more readily. Furthermore, because of the apparent blocking effect of MHV(PRI) on the growth of MHV(C3H), it is not possible at the moment to know exactly when MHV(C3H) appears.

It is most unlikely that MHV(C3H) resided as a latent virus in the C3H cells: (a) the degree of the delayed destruction was dependent upon the concentration of the prevalent virus, MHV(PRI), (b) virus-free fluids or UV-inactivated MHV(PRI) had no effect in the initiation of delayed destruction or on the emergence of the new variant, and (c) the variant virus was not isolated from normal C3H cultured macrophages held in culture for as long as 1 month.

Finally the variant virus maintained its capacity to destroy the genetically resistant cells after one passage back to the originally genetically susceptible (PRI) cells.

The genetics of RNA viruses are at present poorly understood. Among animal viruses the outstanding work on influenza initiated by Hirst (12) has indicated that a number of complex interactions occur whereby this virus, which has many affinities for the nucleus of the host cell, may undergo genetic recombination and may also produce a number of differing variants when large amounts of virus are inoculated on cells. In favor of a host-dependent step in the emergence of the variant MHV(C3H) is the fact that the variant appeared much more frequently in C3H cells which remained continually exposed to air than it did in C3H cells which were covered by an agar overlay. Subsequent unpublished work on this same system by Lavelle et al. has demonstrated that
the environment of the C3H cultures has a marked effect on the susceptibility of the resistant C3H cells.

In their original work, Bang and Warwick (1) suggested that the genetic resistance of C3H mice resides largely, if not wholly, in the macrophage cells. All of the subsequent work supports this interpretation. The present study showing that the conversion or selection of the MHV(C3H) variant, which occurs in tissue culture, is accompanied by an almost identical change in the virulence of the virus for the host mouse, strongly supports this interpretation. However, the differential killing capacities of the variant, depending on the particular mouse strain into which it is inoculated, remain to be explained.

SUMMARY

A variant mouse hepatitis virus MHV(C3H) to which cultured peritoneal macrophages from both PRI and C3H mice were susceptible was isolated from stocks of the MHV(PRI) strain of mouse hepatitis virus. It was cloned on C3H macrophage monolayers and killed both adult PRI and C3H mice when injected intraperitoneally. This new variant was antigenically indistinguishable from the wild type virus. While the emergence of the variant virus was delayed in the course of infecting C3H macrophages with large inocula of MHV(PRI), the second passage grew to a high titer in both cell types without delay. Thus, adaptation to the new host was immediate. Interference, apparently not interferon-mediated, between the two variant viruses may have been the cause for the delay in the emergence of the variant virus. The delayed destruction of C3H-cultured macrophages by large inocula of MHV(PRI) uniformly resulted in the emergence of MHV(C3H). Whether the new variant emerged as a result of a selection of a pre-existing stable mutant or was conditioned by “growth” in the resistant host was not determined.

BIBLIOGRAPHY

1. Shif, I., and F. B. Bang. 1970. In vitro interaction of mouse hepatitis virus and macrophages from genetically resistant mice. I. Adsorption of virus and growth curves. J. Exp. Med. 131:843.

2. Bang, F. B., and A. Warwick. 1960. Mouse macrophages as host cells for the mouse hepatitis virus and the genetic basis of their susceptibility. Proc. Nat. Acad. Sci. U.S.A. 46:1065.

3. Shif, I., and F. B. Bang. 1966. Plaque assay for mouse hepatitis virus (MHV-2) on primary macrophage cell cultures. Proc. Soc. Exp. Biol. Med. 121:829.

4. Ho, M., and Y. Kono. 1965. Effect of actinomycin-D on virus and endotoxin induced interferon-like inhibitors in rabbits. Proc. Nat. Acad. Sci. U.S.A. 53:220.

5. Kono, Y., and M. Ho. 1965. The role of reticuloendothelial system in interferon formation in the rabbit. Virology. 25:162.
6. Kono, Y. 1967. Rapid production of interferon in bovine leukocyte cultures.
 Proc. Soc. Exp. Biol. Med. **124:**155.

7. Smith, T. B., and R. R. Wagner. 1967. Rabbit macrophage interferon. I. Conditions for biosynthesis by virus infected and uninfected cells. *J. Exp. Med.* **125:**559.

8. Gallily, R., A. Warwick, and F. B. Bang. 1967. Ontogeny of macrophage resistance to mouse hepatitis in vivo and in vitro. *J. Exp. Med.* **125:**537.

9. Gallily, R., A. Warwick, and F. B. Bang. 1964. Effect of Cortisone on genetic resistance to mouse hepatitis virus *in vivo* and *in vitro*. *Proc. Nat. Acad. Sci. U.S.A.* **51:**1158.

10. Kantoch, M., and F. B. Bang. 1962. Conversion of genetic resistance of mammalian cells to susceptibility to a virus infection. *Proc. Nat. Acad. Sci. U.S.A.* **48:**1553.

11. Stim, T. B., and J. R. Henderson. 1968. Experimentally induced changes in serotype properties of Chikungunya, O nyong-nyong and Semliki Forest viruses. Abstracts of the American Society of Microbiology 68th Annual Meeting. Detroit, Mich. **123**.

12. Hirst, G. K. 1962. Genetic recombination with Newcastle disease virus, poliovirus, and influenza. *Cold Spring Harbor Symp. Quant. Biol.* **27:**303.