On the Calculation of \(\text{gl.dim} G^N(A) \) and \(\text{gl.dim} \tilde{A} \) by Using Gröbner Bases

Huishi Li
Department of Applied Mathematics
College of Information Science and Technology
Hainan University
Haikou 570228, China

Abstract. Let \(A = K \langle X_1, \ldots, X_n \rangle / \langle G \rangle \) be a \(K \)-algebra defined by a finite Gröbner basis \(G \). It is shown how to use the Ufnarovski graph \(\Gamma(\text{LM}(G)) \) and the graph of \(n \)-chains \(\Gamma_C(\text{LM}(G)) \) to calculate \(\text{gl.dim} G^N(A) \) and \(\text{gl.dim} \tilde{A} \), where \(G^N(A) \), respectively \(\tilde{A} \), is the associated \(N \)-graded algebra of \(A \), respectively the Rees algebra of \(A \) with respect to the \(N \)-filtration \(FA \) of \(A \) induced by a weight \(\mathbb{N} \)-grading filtration of \(K \langle X_1, \ldots, X_n \rangle \).

2000 Mathematics Classification Primary 16W70; Secondary 68W30 (16Z05).

Key words Global dimension, Growth of algebra, Gröbner basis, \(n \)-chain

Let \(K \langle X \rangle = K \langle X_1, \ldots, X_n \rangle \) be the free algebra generated by \(X = \{X_1, \ldots, X_n \} \) over a field \(K \), \(I \) an arbitrary (two-sided) ideal of \(K \langle X \rangle \), and \(A = K \langle X \rangle / I \) the corresponding quotient algebra. Fixing a positive weight \(\mathbb{N} \)-gradation \(\{K \langle X \rangle_p \}_{p \in \mathbb{N}} \) for \(K \langle X \rangle \) by assigning to each \(X_i \) a positive degree \(n_i \), \(1 \leq i \leq n \), so that \(K \langle X \rangle = \bigoplus_{p \in \mathbb{N}} K \langle X \rangle_p \), and considering the \(\mathbb{N} \)-filtration \(FA \) of \(A \) induced by the weight \(\mathbb{N} \)-grading filtration \(FK \langle X \rangle = \{F_p K \langle X \rangle = \bigoplus_{i \leq p} K \langle X \rangle_i \}_{p \in \mathbb{N}} \) of \(K \langle X \rangle \), then it is well-known that \(FA \) determines two \(\mathbb{N} \)-graded \(K \)-algebras, namely the associated \(\mathbb{N} \)-graded algebra \(G^N(A) = \bigoplus_{p \in \mathbb{N}} (F_p A / F_{p-1} A) \) of \(A \) and the Rees algebra \(\tilde{A} = \bigoplus_{p \in \mathbb{N}} F_p A \) of \(A \), both are intimately related to the structure theory of \(A \). Let \(\preceq_{gr} \) be an \(\mathbb{N} \)-graded monomial ordering on the standard \(K \)-basis \(B \) of \(K \langle X \rangle \), and let \(\langle \text{LM}(I) \rangle \) be the monomial ideal of \(K \langle X \rangle \) generated by the set \(\text{LM}(I) \) of leading monomials of \(I \) with respect to \(\preceq_{gr} \). If \(\Omega \) is the unique reduced monomial generating set of \(\langle \text{LM}(I) \rangle \) such that the graph \(\Gamma_C(\Omega) \) of \(n \)-chains (in the sense of [1], [11]) does not contain any \(d \)-chains, then, based on ([2], Theorem 4), it was proved in [7],

\[\text{gl.dim} G^N(A) \]

\[\text{gl.dim} \tilde{A} \]
without any extra assumption, that
\[\text{gl.dim} A \leq \text{gl.dim} G^N(A) \leq \text{gl.dim}(K \langle X \rangle / \langle \text{LM}(I) \rangle) \leq d, \]
\[\text{gl.dim} \tilde{A} \leq d + 1, \]
where gl.dim abbreviates the phrase “global dimension”. This note aims to strengthen the above results, that is, firstly we will show further that if \(K \langle X \rangle / \langle \text{LM}(I) \rangle \) has the polynomial growth of degree \(m \), then

(i) the following two equalities hold:
\[\text{gl.dim} G^N(A) = \text{gl.dim}(K \langle X \rangle / \langle \text{LM}(I) \rangle) = m, \quad \text{gl.dim} \tilde{A} = m + 1; \]

(ii) \(I \) is generated by a finite Gröbner basis \(\mathcal{G} \), and consequently both \(G^N(A) \) and \(\tilde{A} \) are defined by finite Gröbner bases;

and secondly, we demonstrate, by examining interesting examples, that bringing the problem of determining (i) above down-to-earth, if we start with (ii), i.e., with a finite Gröbner basis for \(I \), then an effective solution to (i) may be achieved. Moreover, the last example given in section 3 will indicate in passing that under the assumption of ([2], Theorem 6), the Hilbert series of a finitely presented monomial algebra does not always have the form \(\prod_{i=1}^{d} (1 - z^{e_i})^{-1} \) as asserted in loc. cit.

Throughout this paper we let \(K \langle X \rangle \) denote the free \(K \)-algebra \(K \langle X_1, \ldots, X_n \rangle \), and let \(\mathcal{B} \) be the standard \(K \)-basis of \(K \langle X \rangle \) consisting of words in the alphabet \(X = \{X_1, \ldots, X_n\} \) (including the empty word which gives the identity element 1). Unless otherwise stated, the \(\mathbb{N} \)-gradation of \(K \langle X \rangle \) means any positive weight \(\mathbb{N} \)-gradation of \(K \langle X \rangle \) by assigning to each \(X_i \) a positive degree \(n_i \), \(1 \leq i \leq n \). Moreover, ideals mean two-sided ideals, and if \(M \subset K \langle X \rangle \), then we use \(\langle M \rangle \) to denote the ideal of \(K \langle X \rangle \) generated by \(M \). For a general theory on Gröbner bases in \(K \langle X \rangle \), we refer to [9].

1. Preliminaries

In this section we recall several well-known algorithmic results from [10], [2], and [5], that will be used in deriving the main results of this note.

Adopting the commonly used terminology in computational algebra, let us call elements in \(\mathcal{B} \) the monomials. Given a monomial ordering \(\prec \) on \(\mathcal{B} \), as usual we write \(\text{LM}(f) \) for the leading monomial of \(f \in K \langle X \rangle \); and if \(S \) is any subset of \(K \langle X \rangle \), then we write \(\text{LM}(S) \) for the set of leading monomials of \(S \), i.e., \(\text{LM}(S) = \{\text{LM}(f) \mid f \in S\} \). If \(\mathcal{G} \) is a Gröbner basis in \(K \langle X \rangle \) with respect to \(\prec \), then it is well-known that we may always assume that \(\mathcal{G} \) is \(LM \)-reduced, that is, \(g_1, g_2 \in \mathcal{G} \) and \(g_1 \neq g_2 \) implies \(\text{LM}(g_1) \not\div \text{LM}(g_2) \). Consequently, if \(\Omega \) is a subset of \(\mathcal{B} \) satisfying \(u_i \not\div u_j \) for all \(u_i, u_j \in \Omega \) with \(i \neq j \), then we just say simply that \(\Omega \) is reduced.
Let $\Omega = \{u_1, ..., u_s\}$ be a reduced finite subset of B. For each $u_i \in \Omega$, say $u_i = X_{i_1}^{\alpha_1} \cdots X_{i_s}^{\alpha_s}$ with $X_{i_j} \in X$ and $\alpha_j \in \mathbb{N}$, we write $l(u_i) = \alpha_1 + \cdots + \alpha_s$ for the length of u_i. Put

$$\ell = \max \{l(u_i) \mid u_i \in \Omega\}.$$

Then the Ufnarovski graph of Ω (introduced by V. Ufnarovski in [10]), denoted $\Gamma(\Omega)$, is defined as a directed graph, in which the set of vertices V is given by

$$V = \{v_i \mid v_i \in B - \langle \Omega \rangle, \ l(v_i) = \ell - 1\},$$

and the set of edges E contains the edge $v_i \rightarrow v_j$ if and only if there exist $X_i, X_j \in X$ such that $v_iX_i = X_jv_j \in B - \langle \Omega \rangle$. Thus, for an LM-reduced finite Gröbner basis $G = \{g_1, \ldots, g_s\}$ in $K\langle X \rangle$, the Ufnarovski graph of G is defined to be the Ufnarovski graph $\Gamma(\text{LM}(G))$ of the reduced subset of monomials $\text{LM}(G) = \{\text{LM}(g_1), \ldots, \text{LM}(g_s)\}$.

Remark To better understand the practical application of $\Gamma(\Omega)$, it is essential to notice that the Ufnarovski graph is defined by using the length $l(u)$ of the monomial (word) $u \in B$ instead of using the degree of u as an \mathbb{N}-homogeneous element in $K\langle X \rangle$, though both notions coincide when each X_i is assigned to degree 1.

The first effective application of $\Gamma(\Omega)$ was made to determine the growth of the monomial algebra $K\langle X \rangle/\langle \Omega \rangle$.

1.1. Theorem ([10], 1982) Let $\Omega = \{u_1, ..., u_s\}$ be a reduced finite subset of B, and let $\Gamma(\Omega)$ be the Ufnarovski graph of Ω as defined above. Then the growth of $K\langle X \rangle/\langle \Omega \rangle$ is alternative. It is exponential (i.e., the Gelfand-Kirillov dimension of $K\langle X \rangle/\langle \Omega \rangle$ is ∞) if and only if there are two different cycles with a common vertex in the graph $\Gamma(\Omega)$; Otherwise, $K\langle X \rangle/\langle \Omega \rangle$ has the polynomial growth of degree m (i.e., the Gelfand-Kirillov dimension of $K\langle X \rangle/\langle \Omega \rangle$ is equal to m), where m is, among all routes of $\Gamma(\Omega)$, the largest number of distinct cycles occurring in a single route.

Let the free K-algebra $K\langle X \rangle = K\langle X_1, ..., X_n \rangle$ be equipped with the augmentation map ε sending each X_i to zero. For any ideal J contained in the augmentation ideal $\langle X_1, ..., X_n \rangle$ (i.e., the kernel of ε), by using the n-chains determined by $\text{LM}(J)$, D. J. Anick constructed in [1] a free resolution of the trivial module K over the quotient algebra $K\langle X \rangle/J$ which gave rise to several efficient applications to the homological aspects of associative algebras ([1], [2]). Let $\Omega \subset B$ be a reduced (finite or infinite) subset of monomials. Following [1] and [2], V. Ufnarovski constructed in [11] the graph of n-chains of Ω as a directed graph $\Gamma_C(\Omega)$, in which the set of vertices V is defined as

$$V = \{1\} \cup X \cup \{\text{all proper suffixes of } u \in \Omega\},$$
and the set of edges E consists of all edges

$$1 \rightarrow X_i \text{ for every } X_i \in X$$

and edges defined by the rule: for $u, v \in V - \{1\}$,

$$u \rightarrow v \text{ in } E \iff \text{there is a unique } w = X_{i_1} \cdots X_{i_{m-1}} X_{i_m} \in \Omega \text{ such that } uv = \{ w, \text{ or } sw \text{ with } s \in B, sX_{i_1} \cdots X_{i_{m-1}} \in B - \langle \Omega \rangle \}$$

For $n \geq -1$, an n-chain of Ω is a monomial (word) $v = v_1 \cdots v_n v_{n+1}$ given by a route of length $n + 1$ starting from 1 in $\Gamma_C(\Omega)$:

$$1 \rightarrow v_1 \rightarrow \cdots \rightarrow v_n \rightarrow v_{n+1}$$

Writing C_n for the set of all n-chains of Ω, it is clear that $C_{-1} = \{1\}$, $C_0 = X$, and $C_1 = \Omega$.

For an LM-reduced (finite or infinite) Gröbner basis G of $K\langle X \rangle$, $\Gamma_C(\text{LM}(G))$ is referred to as the graph of n-chains of Ω.

Remark As with the Ufnarovski graph $\Gamma(\Omega)$ defined in section 2, to better understand the practical application of the graph $\Gamma_C(\Omega)$ of n-chains determined by Ω in the subsequent sections and the next chapter, it is essential to notice that an n-chain is defined by a route of length $n + 1$ starting with 1, as described above, instead of by the degree of the \mathbb{N}-homogeneous element $v = v_1 \cdots v_n v_{n+1}$ read out of that route.

1.2. Theorem ([2], Theorem 4) Let $\Omega \subset B$ be a reduced subset of monomials. Then $\text{gl.dim}(K\langle X \rangle / \langle \Omega \rangle) \leq m$ if and only if the graph $\Gamma_C(\Omega)$ of n-chains of Ω does not contain any m-chains.

□

1.3. Theorem ([2], Theorem 6) Let Ω be as in Theorem 1.2. Suppose $K\langle X \rangle / \langle \Omega \rangle$ has finite global dimension m. If $K\langle X \rangle / \langle \Omega \rangle$ does not contain a free subalgebra of two generators, then the following statements hold.

(i) $K\langle X \rangle / \langle \Omega \rangle$ is finitely presented, that is, $\langle \Omega \rangle$ is finitely generated.

(ii) $K\langle X \rangle / \langle \Omega \rangle$ has the polynomial growth of degree m.

(iii) The Hilbert series of $K\langle X \rangle / \langle \Omega \rangle$ is of the form $H_{K\langle X \rangle / \langle \Omega \rangle}(t) = \prod_{i=1}^{m} (1 - t^{e_i})^{-1}$, where each e_i is a positive integer, $1 \leq i \leq m$.

□

By using the above theorem, the following result was derived by T. Gateva-Ivanova in [5].

1.4. Theorem ([5], Theorem II) Let J be an \mathbb{N}-graded ideal of $K\langle X \rangle$ and $R = K\langle X \rangle / J$ the corresponding \mathbb{N}-graded algebra defined by J. Suppose that the associated monomial algebra
\(\overline{R} = K \langle X \rangle / \langle \text{LM}(J) \rangle \) of \(R \) has finite global dimension and the polynomial growth of degree \(m \), where \(\text{LM}(J) \) is taken with respect to a fixed \(\mathbb{N} \)-graded monomial ordering \(\prec_{\text{gr}} \) on \(B \) (see the definition in the next section). Then the following statements hold.

(i) \(\text{gl.dim} R = \text{gl.dim} \overline{R} = m \).

(ii) The ideal \(J \) has a finite Gröbner basis.

(iii) The Hilbert series of \(R \) is of the form \(H_R(t) = \prod_{i=1}^{m} (1 - t^{e_i})^{-1} \), where each \(e_i \) is a positive integer, \(1 \leq i \leq n \).

\(\Box \)

2. The Main Results

In this section we show how to obtain the results of (i) – (ii) announced in the beginning of this note.

Concerning the first equality \(\text{gl.dim} G^\mathbb{N}(A) = \text{gl.dim}(K \langle X \rangle / \langle \text{LM}(I) \rangle) = m \), let us first recall some results from [8], [6], and [7]. Note that with respect to the fixed weight \(\mathbb{N} \)-gradation of \(K \langle X \rangle \), every element \(f \in K \langle X \rangle \) has a unique expression \(f = \sum_{p=1}^{p} F_p \) with \(F_p \neq 0 \), where each \(F_i \) is an \(\mathbb{N} \)-homogeneous element of degree \(i \) in \(K \langle X \rangle \), \(1 \leq i \leq p \). We call \(F_p \) the \(\mathbb{N} \)-leading homogeneous element of \(f \), denoted \(\text{LH}(f) \), i.e., \(\text{LH}(f) = F_p \). For a subset \(S \subset K \langle X \rangle \), we then write \(\text{LH}(S) \) for the set of \(\mathbb{N} \)-leading homogeneous elements of \(S \), that is, \(\text{LH}(S) = \{ \text{LH}(f) \mid f \in S \} \).

2.1. Proposition ([8], Proposition 2.2.1; [7], Theorem 1.1) Let \(I \) be an arbitrary ideal of \(K \langle X \rangle \) and \(A = K \langle X \rangle / I \). Considering the \(\mathbb{N} \)-filtration \(FA \) of \(A \) induced by the weight \(\mathbb{N} \)-grading filtration \(FK \langle X \rangle \) of \(K \langle X \rangle \), if \(G^\mathbb{N}(A) \) is the associated \(\mathbb{N} \)-graded algebra of \(A \) determined by \(FA \), then there is an \(\mathbb{N} \)-graded \(K \)-algebra isomorphism

\[K \langle X \rangle / \langle \text{LH}(I) \rangle \cong G^\mathbb{N}(A). \]

\(\Box \)

Also recall that any well-ordering \(\prec \) on \(B \) may be used to define a new ordering \(\prec_{\text{gr}} \): for \(u, v \in B \),

\[u \prec_{\text{gr}} v \iff d(u) < d(v) \]

or \(d(u) = d(v) \) and \(u \prec v \),

where \(d(\) \) is referred to the degree function on homogeneous elements of \(K \langle X \rangle \). If \(\prec_{\text{gr}} \) is a monomial ordering on \(B \), then it is called an \(\mathbb{N} \)-graded monomial ordering. Typical \(\mathbb{N} \)-graded monomial ordering on \(B \) is the well-known \(\mathbb{N} \)-graded (reverse) lexicographic ordering.

2.2. Theorem ([8], Theorem 2.3.2; [7], Proposition 3.2.) Let \(I \) be an arbitrary ideal of \(K \langle X \rangle \) and \(G \subset I \). Then \(G \) is a Gröbner basis of \(I \) with respect to some \(\mathbb{N} \)-graded monomial ordering.
\(\prec\) on \(\mathcal{B}\) if and only if the set of \(\mathbb{N}\)-leading homogeneous elements \(\mathbf{LH}(\mathcal{G})\) of \(\mathcal{G}\) is a Gröbner basis for the \(\mathbb{N}\)-graded ideal \(\langle \mathbf{LH}(I) \rangle\) with respect to \(\prec\).

\[\Box\]

We are ready to obtain the first result of this section.

2.3. Theorem Let \(I\) be an arbitrary ideal of \(K\langle X\rangle\), \(A = K\langle X\rangle/I\), and \(\overline{A} = K\langle X\rangle/(\mathbf{LM}(I))\) the associated monomial algebra of \(A\) with respect to a fixed \(\mathbb{N}\)-graded monomial ordering \(\prec\) on \(\mathcal{B}\). Suppose that \(\text{gl.dim}\overline{A} < \infty\), and that \(\overline{A}\) has the polynomial growth of degree \(m\). With notation as before, the following statements hold.

(i) \(\text{gl.dim}\mathcal{G}^\mathbb{N}(A) = \text{gl.dim}\overline{A} = m\).

(ii) The ideal \(I\) has a finite Gröbner basis \(\mathcal{G}\), and \(\mathbf{LH}(\mathcal{G})\) is a finite homogeneous Gröbner basis in \(K\langle X\rangle\) such that \(\mathcal{G}^\mathbb{N}(A) \cong K\langle X\rangle/(\mathbf{LH}(\mathcal{G}))\).

Proof (i) Since we are using the \(\mathbb{N}\)-graded monomial ordering \(\prec\), it is straightforward that \(\mathbf{LM}(I) = \mathbf{LM}(\langle \mathbf{LH}(I) \rangle)\). Hence, both algebras \(A = K\langle X\rangle/I\) and \(K\langle X\rangle/(\mathbf{LH}(I))\) have the same associated monomial algebra \(\overline{A} = K\langle X\rangle/(\mathbf{LM}(I))\). So, by making use of the unique reduced monomial generating set \(\Omega\) of the monomial ideal \(\langle \mathbf{LM}(I) \rangle\), the equality in (i) follows from Theorem 1.3(ii), Theorem 1.4(i), and Proposition 2.1.

(ii) It is a well-known fact that if \(\langle \mathbf{LM}(I) \rangle\) is finitely generated, then \(I\) is generated by a finite Gröbner basis. That \(I\) has a finite Gröbner basis \(\mathcal{G}\) is guaranteed by Theorem 1.3(i). Thus, the second assertion of (ii) concerning \(\mathbf{LH}(\mathcal{G})\) follows from Proposition 2.1 and Theorem 2.2.

\[\Box\]

It remains to show that under the same assumption as in Theorem 2.3, the Rees algebra \(\overline{A}\) of \(A\) has the properties listed in the beginning of this paper. To this end, we need a little more preparation.

Let \(\prec\) be a fixed \(\mathbb{N}\)-graded monomial ordering on \(\mathcal{B}\) with respect to the positive weight \(\mathbb{N}\)-gradation of \(K\langle X\rangle\). If \(f \in K\langle X\rangle\) has the linear presentation by elements of \(\mathcal{B}\):

\[f = \mathbf{LC}(f)\mathbf{LM}(f) + \sum_i \lambda_i w_i \text{ with } \mathbf{LM}(f) \in \mathcal{B} \cap K\langle X\rangle_{p^i}, \; w_i \in \mathcal{B} \cap K\langle X\rangle_{q_i},\]

where \(\mathbf{LC}(f)\) is the leading coefficient of \(f\), then \(f\) corresponds to a unique homogeneous element in the free algebra \(K\langle X, T \rangle = K\langle X_1, \ldots, X_n, T \rangle\), i.e., the element

\[\overline{f} = \mathbf{LC}(f)\mathbf{LM}(f) + \sum_i \lambda_i T^{p^i q_i} w_i.\]

Assigning to \(T\) the degree 1 in \(K\langle X, T \rangle\) and using the fixed positive weight of \(X\) in \(K\langle X\rangle\), we get the weight \(\mathbb{N}\)-gradation of \(K\langle X, T \rangle\) which extends the weight \(\mathbb{N}\)-gradation of \(K\langle X\rangle\). Consequently, writing \(\mathcal{B}\) for the standard \(\mathbb{N}\)-basis of \(K\langle X, T \rangle\), we may extend \(\prec\) to an \(\mathbb{N}\)-graded monomial ordering \(\prec_{T-\mathcal{B}}\) on \(\mathcal{B}\) such that

\[T \prec_{T-\mathcal{B}} X_i, \; 1 \leq i \leq n,\]

and hence \(\mathbf{LM}(f) = \mathbf{LM}(\overline{f})\).
If \(I \) is an ideal of \(K\langle X \rangle \) generated by the subset \(S \), then we put
\[
\widetilde{I} = \{ f | f \in I \} \cup \{ X_i T - TX_i | 1 \leq i \leq n \},
\]
\[
\widetilde{S} = \{ f | f \in S \} \cup \{ X_i T - TX_i | 1 \leq i \leq n \}.
\]
The assertion of the next proposition was inferred in ([8], Theorem 2.3.1; [6], CH.III, Corollary 3.8) and a detailed proof was given in ([7], section 8)

2.4. Proposition With the preparation made above, let \(\mathcal{G} \) be a Gröbner basis of the ideal \(I \) in \(K\langle X \rangle \) with respect to \(\prec_{gr} \), and \(A = K\langle X \rangle / I \). Then \(\widetilde{\mathcal{G}} \) is a Gröbner basis for the \(\mathbb{N} \)-graded ideal \(\langle \tilde{I} \rangle \) in \(K\langle X, T \rangle \) with respect to \(\prec_{\tau_{\mathbb{N}gr}} \), and consequently \(\tilde{A} \cong K\langle X, T \rangle / \langle \tilde{I} \rangle = K\langle X, T \rangle / \langle \widetilde{\mathcal{G}} \rangle \), where \(\tilde{A} \) is the Rees algebra of \(A \) defined by the \(\mathbb{N} \)-filtration \(FA \) induced by the weight \(\mathbb{N} \)-grading filtration \(FK\langle X \rangle \) of \(K\langle X \rangle \).

\[\Box \]

Now, the following result is established.

2.5. Theorem Let \(I \) be an arbitrary ideal of \(K\langle X \rangle \), \(A = K\langle X \rangle / I \), and \(\overline{A} = K\langle X \rangle / (\text{LM}(I)) \) the associated monomial algebra of \(A \) with respect to a fixed \(\mathbb{N} \)-graded monomial ordering \(\prec_{gr} \) on \(B \). Suppose that \(\text{gl.dim} \overline{A} < \infty \), and that \(\overline{A} \) has the polynomial growth of degree \(m \). With notation as before, the following statements hold.

(i) \(\text{gl.dim} \overline{A} = m + 1 \).

(ii) The ideal \(I \) has a finite Gröbner basis \(\mathcal{G} \), and \(\widetilde{\mathcal{G}} \) is a finite homogeneous Gröbner basis of \(K\langle X, T \rangle \) such that \(\tilde{A} \cong K\langle X, T \rangle / (\widetilde{\mathcal{G}}) \).

Proof By the assumption, \(\overline{A} \) has Gelfand-Kirillov dimension \(m \). Hence \(A \) has Gelfand-Kirillov dimension \(m \). It follows from ([7], Theorem 8.3(i)) that \(\tilde{A} \) has Gelfand-Kirillov dimension \(m + 1 \). But by the assumption and Theorem 2.3, \(I \) has a finite Gröbner basis \(\mathcal{G} \). So by Proposition 2.4, \(\widetilde{\mathcal{G}} \) is a finite Gröbner basis for the ideal \(\langle \tilde{I} \rangle \) and \(\tilde{A} \cong K\langle X, T \rangle / (\widetilde{\mathcal{G}}) \). Thus, \(\tilde{A} \) must have the polynomial growth of degree \(m + 1 \) by Theorem 1.1. Therefore, the associated monomial algebra \(K\langle X, T \rangle / (\text{LM}(\widetilde{\mathcal{G}})) \) of \(\tilde{A} \) has the polynomial growth of degree \(m + 1 \). In order to finish the proof, by Theorem 1.4, it remains to show that \(K\langle X, T \rangle / (\text{LM}(\widetilde{\mathcal{G}})) \) has finite global dimension. To see this clearly, we quote the argument from the proof of ([7], Theorem 8.5) as follows.

Note that by the definition of \(\prec_{\tau_{\mathbb{N}gr}} \), we have
\[
\text{LM}(\widetilde{\mathcal{G}}) = \{ \text{LM}(g), X_i T | g \in \mathcal{G}, 1 \leq i \leq n \}.
\]

Thus, it is easy to see that the graph of \(n \)-chains \(\Gamma_C(\text{LM}(\mathcal{G})) \) of \(\mathcal{G} \) is a subgraph of the graph of \(n \)-chains \(\Gamma_C(\text{LM}(\widetilde{\mathcal{G}})) \) of \(\widetilde{\mathcal{G}} \), and that

(a) the graph \(\Gamma_C(\text{LM}(\widetilde{\mathcal{G}})) \) of \(\widetilde{\mathcal{G}} \) has no edge of the form \(T \to v \) for all \(v \in \widetilde{V} \), where \(\widetilde{V} \) is the set of vertices of \(\Gamma_C(\text{LM}(\widetilde{\mathcal{G}})) \);
(b) if \(v \in \tilde{V} \) is of the form \(v = sX_j, s \in B \), then \(\Gamma_C(\text{LM}(\tilde{G})) \) contains the edge \(v \to T \);
(c) any \(d + 1 \)-chain in \(\Gamma_C(\text{LM}(\tilde{G})) \) is of the form

\[
1 \to X_i \to v_1 \to v_2 \to \cdots \to v_{d-1} \to T,
\]

where

\[
1 \to X_i \to v_1 \to v_2 \to \cdots \to v_{d-1}
\]
is a \(d \)-chain in \(\Gamma_C(\text{LM}(G)) \).

Therefore, if the graph \(\Gamma_C(\text{LM}(G)) \) does not contain any \(d \)-chain, then \(\Gamma_C(\text{LM}(\tilde{G})) \) does not contain any \(d+1 \)-chain. Hence, if \(\text{gl.dim}A = K\langle X \rangle /\langle \text{LM}(I) \rangle < \infty \), then \(\text{gl.dim}K\langle X, T \rangle /\langle \text{LM}(\tilde{G}) \rangle < \infty \) by Theorem 1.2, as desired. \(\square \)

3. Examples of Calculating \(\text{gl.dim}G^N(A) \) and \(\text{gl.dim}\tilde{A} \)

Let \(I, A = K\langle X \rangle /I, \tilde{A} = K\langle X \rangle /\langle \text{LM}(I) \rangle, G^N(A), \) and \(\tilde{A} \) be as in section 2. Combining Theorem 1.1, Theorem 1.2, Proposition 2.1 and Proposition 2.4, it is now clear that if, with respect to a fixed \(\mathbb{N} \)-graded monomial ordering \(\prec_{gr} \) on \(B \), we start with a finite Gröbner basis \(G = \{ g_1, \ldots, g_s \} \) for the ideal \(I \), then the equalities of Theorem 2.3(i) and Theorem 2.5(i) may be determined in a computational way:

1. Determine whether \(\tilde{A} \) has polynomial growth by checking the Ufnarovski graph \(\Gamma(\text{LM}(G)) \); if \(\tilde{A} \) has polynomial growth, then the degree \(m \) is read out of the graph simultaneously.
2. Determine whether \(\tilde{A} \) has finite global dimension by checking the set \(C_n \) of \(n \)-chains in the graph \(\Gamma_C(\text{LM}(G)) \); if \(C_d = \emptyset \) for some \(d \), then \(\text{gl.dim}A \leq d \).
3. If both (1) and (2) have a positive result, i.e., \(\tilde{A} \) has the polynomial growth of degree \(m \) and \(\text{gl.dim}A < \infty \), then immediately we can write down the following:

\[
\text{gl.dim}G^N(A) = m, \quad \text{gl.dim}\tilde{A} = m + 1.
\]

Let us point out incidentally that when the above (2) is done, the Hilbert series for both \(G^N(A) \) and \(\tilde{A} \) may also be written down just by using the \(n \)-chains in \(\Gamma_C(\text{LM}(G)) \), respectively the \(n \)-chains in \(\Gamma_C(\text{LM}(\tilde{G})) \) as described in the proof of Theorem 2.5, and ([1], formula 16), that is,

\[
H_{G^N(A)}(t) = \left(1 - \sum_{i=0} (-1)^i H_{C_i}(t) \right)^{-1}, \quad H_{\tilde{A}}(t) = \left(1 - \sum_{i=0} (-1)^i H_{\tilde{C}_i}(t) \right)^{-1},
\]

where \(H_{C_i}(t) \) denotes the Hilbert series of the \(\mathbb{N} \)-graded \(K \)-module spanned by the set \(C_i \) of \(i \)-chains in \(\Gamma_C(\text{LM}(G)) \), and similarly, \(H_{\tilde{C}_i}(t) \) denotes the Hilbert series of the \(\mathbb{N} \)-graded \(K \)-module spanned by the set \(\tilde{C}_i \) of \(i \)-chains in \(\Gamma_C(\text{LM}(\tilde{G})) \).

We illustrate the computational procedure mentioned above by examining several examples. Notations are maintained as before.
Let \(\Omega = \{ X_j X_i \mid 1 \leq i < j \leq n \} \subset B \subset K(X) \). Then by ([2], Example 3), \(\text{gr.dim}(K(X) / \langle \Omega \rangle) = n \) is the degree of the polynomial growth of \(K(X) / \langle \Omega \rangle \). Note that \(B - \langle \Omega \rangle = \{ X_1^{\alpha_1} X_2^{\alpha_2} \cdots X_n^{\alpha_n} \mid \alpha_1, \ldots, \alpha_n \in \mathbb{N} \} \), which gives rise to a PBW \(K \)-basis for \(K(X) / \langle \Omega \rangle \). Enlightened by this fact, our first example will be the algebra \(A = K(X) / I \), which, with respect to a fixed monomial ordering \(\prec \) on \(B \), has the property that \(B - \langle \Omega \rangle = \{ X_1^{\alpha_1} X_2^{\alpha_2} \cdots X_n^{\alpha_n} \mid \alpha_1, \ldots, \alpha_n \in \mathbb{N} \} \) yields a PBW \(K \)-basis for both \(A \) and \(K(X) / \langle \Omega \rangle \).

Below let us describe first the ideal \(I \) by Gröbner basis (probably a known result but the author has lack of a proper reference).

3.1. Proposition Let \(I \) be an ideal of \(K(X) \) and \(A = K(X) / I \). The following two statements are equivalent with respect to a fixed monomial ordering \(\prec \) on \(B \):

(i) \(B - \langle \Omega \rangle = \{ X_1^{\alpha_1} X_2^{\alpha_2} \cdots X_n^{\alpha_n} \mid \alpha_j \in \mathbb{N} \} \) and hence \(A \) has the PBW \(K \)-basis \(\{ X_1^{\alpha_1} X_2^{\alpha_2} \cdots X_n^{\alpha_n} \mid \alpha_j \in \mathbb{N} \} \), where each \(X_i \) is the image of \(X_i \) in \(A \);

(ii) \(I \) is generated by a reduced Gröbner basis of the form

\[
G = \left\{ R_{ji} = X_j X_i - F_{ji} \mid F_{ji} \in K(X), \ 1 \leq i < j \leq n \right\}
\]

satisfying \(\text{LM}(R_{ji}) = X_j X_i, \ 1 \leq i < j \leq n \), and

\[
F_{ji} = \sum_{p=1}^{m} \lambda_p w_p \text{ with } \lambda_p \in K^*, \ w_p \in \{ X_1^{\alpha_1} X_2^{\alpha_2} \cdots X_n^{\alpha_n} \mid \alpha_j \in \mathbb{N} \}.
\]

Proof (i) \(\Rightarrow \) (ii) First, we show that under the assumption of (i) \(I \) has a finite Gröbner basis \(G = \{ R_{ji} \mid 1 \leq i < j \leq n \} \) of the described form such that \(\text{LM}(R_{ji}) = X_j X_i \). By classical Gröbner basis theory, it is sufficient to prove that the reduced monomial generating set \(\Omega \) of \(\langle \text{LM}(I) \rangle \) is of the form \(\Omega = \{ X_j X_i \mid 1 \leq i < j \leq n \} \). To see this, recall that

\[
\Omega = \{ w \in \text{LM}(I) \mid \text{if } u \in \text{LM}(I) \text{ and } u | w \text{ then } u = w \},
\]

and consequently \(B - \langle \Omega \rangle \) is obtained by the division by \(\Omega \). Since \(X_i \in B - \langle \Omega \rangle \), and \(X_j X_i \notin B - \langle \Omega \rangle \), it follows that \(X_j X_i \notin \Omega \), \(1 \leq i < j \leq n \). Furthermore, noticing the feature of monomials in \(B - \langle \Omega \rangle \), it is clear that the only monomials of length 2 contained in \(\Omega \) are \(X_j X_i, \ 1 \leq i < j \leq n \), and that \(\Omega \) cannot contain monomials of length \(\geq 3 \). Therefore, \(\Omega \) has the form as we claimed above, and \(\Omega \) determines a Gröbner basis \(G = \{ R_{ji} \mid 1 \leq i < j \leq n \} \) with \(\text{LM}(R_{ji}) = X_j X_i \). It follows from classical Gröbner basis theory that \(G \) can be reduced further to a Gröbner basis such that \(F_{ji} = R_{ji} - \text{LM}(R_{ji}) \) is a normal element, which is clearly a linear combination of monomials in \(\{ X_1^{\alpha_1} X_2^{\alpha_2} \cdots X_n^{\alpha_n} \mid \alpha_j \in \mathbb{N} \} \), but this means actually that \(G \) is a reduced Gröbner basis.

(ii) \(\Rightarrow \) (i) If \(G \) is a Gröbner basis of \(I \) as described, then since \(\langle \text{LM}(I) \rangle = \langle \text{LM}(G) \rangle \) and \(\text{LM}(R_{ji}) = X_j X_i, \ 1 \leq i < j \leq n \), the division by \(\text{LM}(G) \) yields

\[
B - \langle \text{LM}(I) \rangle = \left\{ X_1^{\alpha_1} X_2^{\alpha_2} \cdots X_n^{\alpha_n} \mid \alpha_i \in \mathbb{N} \right\},
\]

as desired. \(\square \)
Remark The last proposition tells us that in order to have a PBW K-basis in terms of Gröbner basis in $K\langle X \rangle$, it is necessary to consider a finite subset G of $K\langle X \rangle$ as described in Proposition 3.1(ii).

In light of Proposition 3.1, the next result is now obtained by using Theorem 2.3, Theorem 2.5 and ([2], Example 3).

3.2. Theorem Fixing a positive weight \mathbb{N}-gradation for the free K-algebra $K\langle X \rangle = K\langle X_1, ..., X_n \rangle$, let \prec_{gr} be an \mathbb{N}-graded monomial ordering on the standard K-basis B of $K\langle X \rangle$. With notation as in section 2, if G is a Gröbner basis in $K\langle X \rangle$ with respect to \prec_{gr}, such that the ideal $I = \langle G \rangle$ has the property that $B - LM(I) = \{X_1^{\alpha_1}X_2^{\alpha_2}\cdots X_n^{\alpha_n} \mid \alpha_1, ..., \alpha_n \in \mathbb{N}\}$, then with respect to the \mathbb{N}-filtration FA of $A = K\langle X \rangle/I$ induced by the weight \mathbb{N}-grading filtration $FK\langle X \rangle$,

$$\text{gl.dim}\,G^{\mathbb{N}}(A) = \text{gl.dim}(K\langle X \rangle/\langle LM(G) \rangle) = \text{gl.dim}(K\langle X \rangle/\langle LM(G) \rangle) = n;$$
$$\text{gl.dim}\,\tilde{A} = \text{gl.dim}(K\langle X, T \rangle/\langle LM(G) \rangle) = n + 1.$$

\[\square\]

Example (1) Rather than quoting those well-known Gröbner bases that give rise to a PBW K-basis, let us look at a small one. Consider the ideal $I = \langle R_{21} \rangle$ of the free K-algebra $K\langle X \rangle = K\langle X_1, X_2 \rangle$ generated by the single element

$$R_{21} = X_2X_1 - qX_1X_2 - \alpha X_2 - f(X_1),$$

where $q, \alpha \in K$, and $f(X_1)$ is a polynomial in the variable X_1. Assigning to X_1 the degree 1, then in either of the following two cases:
(a) $\deg f(X_1) \leq 2$, and X_2 is assigned to the degree 1;
(b) $\deg f(X_1) = n \geq 3$, and X_2 is assigned to the degree n,

$G = \{R_{21}\}$ forms a Gröbner basis for I with respect to the \mathbb{N}-graded lexicographic ordering $X_1 \prec_{gr} X_2$, such that $LM(G) = \{X_2X_1\}$. Putting $A = K\langle X_1, X_2 \rangle/I$, and noticing that in both gradations $LH(R_{21}) = X_2X_1 - qX_1X_2$ and $\tilde{R}_{21} = X_2X_1 - qX_1X_2 - \alpha TX_2 - f(X_1)$, it follows from Theorem 3.2 that $\text{gl.dim}G^{\mathbb{N}}(A) = 2$, $\text{gl.dim}\,\tilde{A} = 3$.

Example (2) Let the free K-algebra $K\langle X \rangle = K\langle X_1, X_2 \rangle$ be equipped with a positive weight \mathbb{N}-gradation, such that $d(X_1) = n_1$ and $d(X_2) = n_2$, and let $G = \{g_1, g_2\}$ be any Gröbner basis with respect to some \mathbb{N}-graded monomial ordering \prec_{gr} on the standard basis B of $K\langle X \rangle$, such that $LM(g_1) = X_1^2X_2$ and $LM(g_2) = X_1X_2^2$. For instance, with respect to the \mathbb{N}-graded lexicographic ordering $X_2 \prec_{gr} X_1$,

$$g_1 = X_1^2X_2 - \alpha X_1X_2X_1 - \beta X_2X_1^2 - \lambda X_2X_1 - \gamma X_1, \quad \alpha, \beta, \lambda, \gamma \in K,$$
$$g_2 = X_1X_2^2 - \alpha X_2X_1X_2 - \beta X_2^2X_1 - \lambda X_2^2 - \gamma X_2,$$
Consider the algebra $A = K\langle X \rangle/\langle \mathcal{G} \rangle$ which is equipped with the \mathbb{N}-filtration FA induced by the weight \mathbb{N}-grading filtration $FK\langle X \rangle$. With notation as before, the following statements hold.

(i) All three algebras A, $G^\mathbb{N}(A)$ and $K\langle X \rangle/\langle \text{LM}(G) \rangle$ have the polynomial growth of degree 3, while \tilde{A} and $K\langle X_1, X_2, T \rangle/\langle \text{LM}(\tilde{G}) \rangle$ have the polynomial growth of degree 4.

(ii) $\text{gl.dim}G^\mathbb{N}(A) = \text{gl.dim}K\langle X \rangle/\langle \text{LM}(G) \rangle = 3$, and $\text{gl.dim}\tilde{A} = \text{gl.dim}K\langle X_1, X_2, T \rangle/\langle \text{LM}(\tilde{G}) \rangle = 4$.

In particular, all results mentioned above hold for the down-up algebra $A(\alpha, \beta, \gamma)$ (in the sense of [3]) which is defined by the relations

$$
g_1 = X_1^2X_2 - \alpha X_1X_2X_1 - \beta X_2X_1^2 - \gamma X_1, \quad \alpha, \beta, \gamma \in K.
$$

$$
g_2 = X_1X_2^2 - \alpha X_1X_2X_2 - \beta X_2^2X_1 - \gamma X_2.
$$

Proof Put $\Omega = \{X_1^2X_2, X_1X_2^2\}$. Then the Ufnarovski graph $\Gamma(\Omega)$ of Ω is presented by

$$
\begin{array}{cccc}
X_1X_2 & \overset{\alpha}{\longrightarrow} & X_2X_1 & \overset{\beta, \gamma}{\longrightarrow} X_1^2
\end{array}
$$

which shows that $K\langle X \rangle/\langle \text{LM}(G) \rangle$ has the polynomial growth of degree 3. Hence, by referring to the proof of Theorem 2.5, the assertions of (i) are determined. Next, the graph of n-chains $\Gamma_C(\Omega)$ of Ω is presented by

$$
\begin{array}{cccc}
X_1^2 & \overset{\gamma}{\longrightarrow} & X_1 & \overset{\alpha, \beta}{\longrightarrow} X_1X_2 & \overset{\beta, \beta, \beta}{\longrightarrow} X_2
\end{array}
$$

which shows that

$$
C_{i-1} = \begin{cases}
\{X_1, X_2\}, & i = 1, \\
\{X_1X_2, X_1^2X_2\}, & i = 2, \\
\{X_1^2X_2\}, & i = 3, \\
\emptyset, & i \geq 4.
\end{cases}
$$

Note that $\text{LM}(G) = \{X_1^2X_2, X_1X_2^2, X_1T, X_2T\}$. By referring to the proof of Theorem 2.5, it is then straightforward that the set \tilde{C}_{i-1} consisting of $i - 1$-chains from $\Gamma_C(\text{LM}(G))$ is

$$
\tilde{C}_{i-1} = \begin{cases}
\{X_1, X_2, T\}, & i = 1, \\
\{X_1T, X_2T, X_1X_2^2, X_1^2X_2\}, & i = 2, \\
\{X_1^2X_3^2, X_1X_2^2T, X_1^2T\}, & i = 3, \\
\{X_1^2T\}, & i = 4, \\
\emptyset, & i \geq 5.
\end{cases}
$$
So the conditions of Theorem 2.3 and Theorem 2.5 are satisfied, and consequently the assertions of (ii) are determined.

Example (3) Let the free K-algebra $K\langle X \rangle = K\langle X_1, X_2 \rangle$ be equipped with a positive weight \mathbb{N}-gradation such that $d(X_1) = n_1$ and $d(X_2) = n_2$, and for any positive integer n, let $G = \{ g \}$ with $g = X_2^nX_1 - qX_1X_2^n - F$ with $q \in K$ and $F \in K\langle X \rangle$. Consider the algebra $A = K\langle X \rangle / \langle G \rangle$ which is equipped with the \mathbb{N}-filtration FA induced by the weight \mathbb{N}-grading filtration $FK\langle X \rangle$.

With notation as before, the following statements hold.

(i) All three algebras A, $G^{\mathbb{N}}(A)$ and $K\langle X \rangle / \langle \text{LM}(G) \rangle$ have the polynomial growth of degree 2, while \tilde{A} and $K\langle X_1, X_2, T \rangle / \langle \text{LM}(\tilde{G}) \rangle$ have the polynomial growth of degree 3.

(ii) $\text{gl.dim} G^{\mathbb{N}}(A) = \text{gl.dim} K\langle X \rangle / \langle \text{LM}(G) \rangle = 2$, and $\text{gl.dim} \tilde{A} = \text{gl.dim} K\langle X_1, X_2, T \rangle / \langle \text{LM}(\tilde{G}) \rangle = 3$.

(iii) If $n_1 = n_2 = 1$, then $G^{\mathbb{N}}(A)$, respectively \tilde{A}, has Hilbert series

$$H_{G^{\mathbb{N}}(A)}(t) = \frac{1}{1 - 2t + t^{n+1}}$$

respectively

$$H_{\tilde{A}}(t) = \frac{1}{1 - 3t + 2t^2 + t^{n+1} - t^{n+2}},$$

which, in the case of $n \geq 2$, cannot be always the form

$$\frac{1}{(1 - t^{e_1})(1 - t^{e_2})},$$

respectively

$$\frac{1}{(1 - t^{e_1})(1 - t^{e_2})(1 - t^{e_3})},$$

as claimed in ([2], Theorem 6).

Proof Consider the \mathbb{N}-graded lexicographic ordering $X_1 \prec_{gr} X_2$ with respect to the natural \mathbb{N}-gradation of $K\langle X \rangle$. For any positive integer n, if $g = X_2^nX_1 - qX_1X_2^n - F$ with $q \in K$ and $F \in K\langle X \rangle$ such that $\text{LM}(F) \prec_{gr} X_2^nX_1$, then it is easy to check that $G = \{ g \}$ forms a Gröbner basis for the ideal $I = \langle G \rangle$. Put $\Omega = \{ \text{LM}(G) = X_2^nX_1 \}$. Then it is straightforward to verify that for $n = 1$, the Ufnarovski graph $\Gamma(\Omega)$ is presented by

\[X_1 \xrightarrow{\cap} X_2 \]

for $n = 2$, the Ufnarovski graph $\Gamma(\Omega)$ is presented by

\[X_1^2 \xrightarrow{\cap} X_2^2 \]

\[X_2X_1 \xrightarrow{\cap} X_1X_2 \]

and for $n \geq 3$, the Ufnarovski graph $\Gamma(\Omega)$ is presented by

\[X_1^{n-1}X_2 \rightarrow X_1^{n-2}X_2^2 \rightarrow \cdots \rightarrow X_1X_2^{n-1} \rightarrow X_2^n \]

\[X_1^n \xrightarrow{\cap} X_2X_1^{n-1} \xrightarrow{\cap} X_2^{n-2}X_1 \xrightarrow{\cap} X_2^{n-1}X_1 \]
Hence \(K_\langle X \rangle / \langle \mathrm{LM}(\mathcal{G}) \rangle \) has the polynomial growth of degree 2, and then (i) follows. Since the graph \(\Gamma_C(\Omega) \) of \(n \)-chains of \(\Omega \) is presented by

\[
\begin{align*}
X_1 & \leftarrow X_2 & X_1 & \rightarrow X_2 \\
1 & \quad 1 & (n = 1) & (n \geq 2)
\end{align*}
\]

where \(q \leq n - 2 \) for the vertices \(X_2^q X_1 \), it is clear that

\[
C_{i-1} = \begin{cases}
\{X_1, X_2\}, & i = 1, \\
\{X_2^q X_1\}, & i = 2, \\
\emptyset, & i \geq 3.
\end{cases}
\]

Also note that \(\mathrm{LM}(\widetilde{\mathcal{G}}) = \{X_2^q X_1, X_2 T, X_1 T\} \). By referring to the proof of Theorem 2.5, it is then straightforward that the set \(\widetilde{C}_{i-1} \) consisting of \(i - 1 \)-chains from \(\Gamma_C(\mathrm{LM}(\mathcal{G})) \) is

\[
\widetilde{C}_{i-1} = \begin{cases}
\{X_1, X_2, T\}, & i = 1, \\
\{X_1 T, X_2 T, X_2^n X_1\}, & i = 2, \\
\{X_2^n X_1 T\}, & i = 3, \\
\emptyset, & i \geq 4.
\end{cases}
\]

So the conditions of Theorem 2.3 and Theorem 2.5 are satisfied, and consequently the assertions of (ii) and (iii) are determined.

\[\square\]

Remark For every positive integer \(N = n + 1 \geq 2 \), it was shown in [7] that if \(q \neq 0 \) and \(F \neq 0 \) with total degree \(< n \), then the algebras defined by \(\mathcal{G} \) and \(\mathrm{LH}(\mathcal{G}) \) in the last example provide a (non-monomial) homogeneous \(N \)-Koszul algebra and a non-homogeneous \(N \)-Koszul algebra (in the sense of [4]), respectively.

References

[1] D. J. Anick, On the homology of associative algebras, *Trans. Amer. Math. Soc.*, 296(1986), 641–659.

[2] D. J. Anick, On Monomial algebras of finite global dimension, *Trans. Amer. Math. Soc.*, 1(291)(1985), 291–310.

[3] G. Benkart, Down-up algebras and Witten’s deformations of the universal enveloping algebra of \(sl_2 \), *Contemp. Math.*, 224(1999), 29–45.

[4] R. Berger and V. Ginzburg, Higher symplectic reflection algebras and nonhomogeneous \(N \)-Koszul property, *J. Alg.*, 1(304)(2006), 577–601.

[5] T. Gateva-Ivanova, Global dimension of associative algebras, in: *Proc. AAECC-6*, LNCS, Vol.357, Springer-Verlag, 1989, 213–229.
[6] H. Li, *Noncommutative Gröbner Bases and Filtered-Graded Transfer*, LNM, 1795, Springer-Verlag, 2002.

[7] H. Li, Γ-leading homogeneous algebras and Gröbner bases, *Alg. Colloq.*, to appear. (see a full version at http://www.geocities.com/huishipp/gam_grob.pdf)

[8] H. Li, Y. Wu and J. Zhang, Two applications of noncommutative Gröbner bases, *Ann. Univ. Ferrara - Sez. VII - Sc. Mat.*, XLV(1999), 1–24. (a full version is at http://www.springerlink.com/content/v67351x2031p1079/)

[9] T. Mora, An introduction to commutative and noncommutative Gröbner Bases, *Theoretic Computer Science*, 134(1994), 131–173.

[10] V. Ufnarovski, A growth criterion for graphs and algebras defined by words, *Mat. Zametki*, 31(1982), 465–472 (in Russian); English translation: *Math. Notes*, 37(1982), 238–241.

[11] V. Ufnarovski, On the use of graphs for computing a basis, growth and Hilbert series of associative algebras, (in Russian 1989), *Math. USSR Sbornik*, 11(180)(1989), 417-428.