Motor learning of mice lacking cerebellar Purkinje cells

M. Elena Porras-García1, Rocío Ruiz2, Eva M. Pérez-Villegas2 and José Á. Armengol1*

1 División de Neurociencias, Departamento de Fisiología, Anatomía y Biología Celular, Área de Anatomía y Embriología Humana y Fisiología, Universidad Pablo de Olavide, Seville, Spain
2 y Fisiología, Universidad Pablo de Olavide, Seville, Spain

The cerebellum plays a key role in the acquisition and execution of motor tasks whose physiological foundations were postulated on Purkinje cells’ long-term depression (LTD). Numerous research efforts have been focused on understanding the cerebellum as a site of learning and/or memory storage. However, the controversy on which part of the cerebellum participates in motor learning, and how the process takes place, remains unsolved. In fact, it has been suggested that cerebellar cortex, deep cerebellar nuclei, and/or their combination with some brain structures other than the cerebellum are responsible for motor learning. Different experimental approaches have been used to tackle this question (cerebellar lesions, pharmacological agonist and/or antagonist of cerebellar neurotransmitters, virus tract tracings, etc.). One of these approaches is the study of spontaneous mutations affecting the cerebellar cortex and depriving it of its main input–output organizer (i.e., the Purkinje cell). In this review, we discuss the results obtained in our laboratory in motor learning of both Lurcher (Lc/+) and tambaleante (tbl/tbl) mice as models of Purkinje-cell-devoid cerebellum.

Keywords: cerebellum, motor learning, Lurcher, tambaleante, Purkinje cells

INTRODUCTION

The cerebellum coordinates motor activities to be performed or already underway. In fact, cerebellar damage produces disturbance in movements and in body support. The relationship between cerebellum and motor learning was first suggested with the studies of Ramón y Cajal (1911), Dow and Moruzzi (1958), and Eccles et al. (1967). Dow and Moruzzi (1958) hypothesized that the cerebellum contributes to motor learning by determining how to perform accurate and correct movements. Thereafter, numerous studies have been devoted to analyzing the role of the cerebellum in perceptive and cognitive processes. Thus, the essential contribution of Marr localizing the site of motor learning in the cerebellar cortex (Marr, 1969), and the later application of Marr’s theory to the classical conditioning (Albus, 1971), whose physiological basis are directly related to long-term depression (LTD) mechanisms (Ito, 1989), defined the neuronal circuit involved in associative motor learning which remains accepted and discussed.

The anatomically highly refined organization of the cerebellum and its afferent/effector pattern of projections from/to motor and premotor regions of cerebral cortex and spinal cord provides a paradigmatic substrate supporting its participation in motor behavior and learning (see Bernard et al., 2012). Furthermore, the analysis of the development of the cerebellar hemispheres and the expansion of the cerebral cortex in phylogeny also suggests the involvement of the cerebellum in cognitive functions (Leiner et al., 1986). The topography of the cerebellar cortex is closely related to deep cerebellar nuclei arrangement which also have different motor function according to the region of the cerebellum in which they are situated, and each nucleus controls a different aspect of the movement for the whole-body map (Thach et al., 1992; Thach, 1997).

Numerous studies have been performed in order to determine the role of the different cerebellar parts as a site of motor learning and/or memory storage. Among the authors who give a central role to the cerebellum, some point to the cerebellar cortex (Attwell et al., 2001; Chen et al., 1996), some to the deep cerebellar nuclei (Clark et al., 1992; Bracha et al., 2001), while others postulate the coordinated work of cerebellar and extra-cerebellar regions (Aou et al., 1992; Delgado-García and Gruart, 2002; Christian and Thompson, 2003; Koekkoek et al., 2003; Jiménez-Díaz et al., 2004; Porras-García et al., 2005, 2010; Sánchez-Campusano et al., 2007, 2009; Freeman and Steinmetz, 2011). Different experimental approaches, such as retrograde trace with virus (Morcuende et al., 2002), lesions, or pharmacological studies of cerebellar structures (Yeo et al., 1985a,b; Bracha et al., 1999; Christian and Thompson, 2003; Jiménez-Díaz et al., 2004), electrophysiological recordings from cerebellar cortex and nuclear neurons (Gruart et al., 2000; Porras-García et al., 2010), the study of cerebellar developmental disorders (Manto and Jissendi, 2012), and the use of mutant mice (Chen et al., 1996; Grüsser-Cornehls and Bäurle, 2001; Koekkoek et al., 2003, 2005; Porras-García et al., 2005, 2010), have been used to elucidate the function of the cerebellum. For this last approach, some mutations resulting in a total loss of Purkinje cells are very useful. Here, we summarize the results obtained in tambaleante and Lurcher mutant mice as models used for this purpose.

LURCHER MUTATION

The Lurcher mutation appeared spontaneously in 1954 in the mouse colony of the Medical Research Council Radiobiological
Research Unit at Harwell, England. In 1960, Phillips described motor-coordination problems associated to the Lurcher mutation. He also reported that this mutation was semi-dominant and the gene was localized on chromosome 6 (Phillips, 1960). The Lurcher mutation is caused by mutation in the α2 globutamate receptor (GluR2; Caddy and Bisoe, 1979; Zuo et al., 1997). GluR2 is predominantly expressed in both Purkinje cells and several hindbrain cells (Araki et al., 1993; Lameli et al., 1993; Mayat et al., 1995; Takayama et al., 1995, 1996; Landsend et al., 1997). Homozygous Lurcher mice (Le/Le) die after birth (P0) through a massive loss of mid- and hind-brain cells (Cheng and Heintz, 1997; Resibois et al., 1997). In contrast, the heterozygous Lurcher mouse (Le/+) suffers cerebellar Purkinje cell death from the third and fourth day after birth (P3–P4) (Swisher and Wilson, 1977). From the 8th day after birth (P8), the Purkinje cell loss produces the degeneration of granule cells and olivary neurons (Caddy and Bisoe, 1979). Three months after birth, the Le/+ mouse has lost almost every Purkinje cell, some 90% of granule cells, and some 75% of the olivary neurons (Caddy and Bisoe, 1979; Wets and Herrup, 1982; Heckroth and Eisenman, 1991; Norman et al., 1995; Wullner et al., 1995; Doughty et al., 2000).

Despite the motor problems that appeared in Le/+ mice in various motor tests performed (fall, rotarod, ladder, horizontal bar, eyeblink classical conditioning), they were able to learn new motor tasks, but the amplitude of the learned responses were significantly lower than in wild-type mice (Lalande, 1994; Caston et al., 1995; Le Marec et al., 1997; Hilber and Caston, 2001; Porras-Garcia et al., 2005) (Figure 1). However, the lesion of the interpositus nucleus prevented the generation of conditioned eyeblink responses in Le/+ and wild-type mice (Yeo et al., 1985a; Welsh and Harvey, 1989; Bracha et al., 1999; Jiménez-Díaz et al., 2004; Porras-García et al., 2010). Moreover, electrophysiological recordings of interpositus and red nuclei in Lurcher mice during the eyeblink classical conditioning suggest compensatory mechanisms in the absence of cerebellar cortex during performance of learned movements (Porras-Garcia et al., 2010). These results suggest that deep cerebellar nuclear neurons (interpositus and dentate nuclei) may be involved more in the modulation and proper performance of ongoing conditioned responses than in their generation and/or initiation during learning processes (Gruart et al., 1997; Delgado-Garcia and Gruart, 2002; Jiménez-Díaz et al., 2004).

TAMBALEANTE MUTATION

The tambaleante mutation (tbl) is a recessive mutation that appeared spontaneously in a DW/J-Pas background at the Pasteur Institute (Paris, France). This mutation affects cerebellar Purkinje cells, leading to their disappearance (Wassef et al., 1987). In the homozygous tambaleante (tbl/tbl) mutation, the degeneration of Purkinje cells begins from the second month of life—a date from which the Purkinje cell number decreases dramatically. When the tbl/tbl mouse is 1 year old, fewer than 1% of the cerebellar Purkinje cells survive (Dusart et al., 2006) (Figure 2).

The gene related to the mutation is Herc1, which expresses a protein involved in the growth and maintenance of the cerebellar cytoarchitecture. Moreover, there seems to be a relationship between the increased levels of the mutated protein HERC1 and the autophagic death of the Purkinje cells in the tambaleante mouse (Mashimo et al., 2009).

The tambaleante (tbl/tbl) mutation develops an ataxic syndrome (Wassef et al., 1987; Rossi et al., 1995), with signs of tremor, unstable gait, and abnormal posture of hind limbs, similar to that in other mutated cerebella devoid of Purkinje cells (Table 1). However, the phenotype of the tbl/tbl mouse and the regressive phenomena that will take place “en cascade” as in other Purkinje-cell-mutated cerebella (Sotelo and Changeux, 1974a; Caddy and Bisoe, 1979) are not completely understood. Thus, data are still not available as to whether the tbl/tbl mutation could affect only cerebellar Purkinje cells or whether other cerebellar and extracerebellar neuronal cell populations would also be affected directly or indirectly by the mutation. Despite the lack of concrete data on the extent of the tbl/tbl mutation, the late onset of complete Purkinje-cell degeneration with respect to other mutations (Table 1), once all cerebellar circuits have developed normally, makes it a perfect model for studying the cerebellar involvement in various motor learning tasks.

Recent studies carried out in our lab show that the tbl/tbl mouse seems not to have its motor learning capabilities completely affected (Figure 1). Thus, although slower than wild-type mice, tbl/tbl mice perform both fall and horizontal bar test successfully (Figures 1A,B), learning consistently from the first to last session. However, tbl/tbl mice were unable to adapt their motor responses in the vertical pole test, in which they systematically failed to learn through the four sessions (Figure 1C).

Purkinje cell loss elicits a series of compensatory structural changes in the main cerebellar output (i.e., from deep cerebellar and vestibular nuclei). The diminution on Purkinje cell inhibitory input leads to changes in these neuronal populations that have been closely related to mutant behavioral phenotypes. Among these neural responses, an increase in the parvalbumin (Parv) was consistently found in cerebellar and vestibular nuclei after spontaneous or surgical Purkinje cell deprivation (Grüsser-Cornehls and Bäurle, 2001). In DW/J-Pas wild-type mice, deep cerebellar and vestibular nuclei neuronal somata are Parv- (Figure 2D), while small Parv+ terminal endings are present (Figure 2E). As in the Le/+ mutation (Grüsser-Cornehls and Bäurle, 2001), Parv+ somata are found through all deep cerebellar nuclei in tbl/tbl mice (Figures 2F,G). Parv immunoreactivity of presynaptic boutons is also different in tbl/tbl deep cerebellar nuclei, and—together with small boutons (Figure 2I)—there is an increase in the presence of larger Parv+ endings (Figure 2H). Therefore, Parv immunoreactivity of tbl/tbl mice is similar to that observed in other Purkinje-cell-deprived mutations, reinforcing the relationships between motor behavior and Parv expression in deep cerebellar and vestibular nuclei (Grüsser-Cornehls and Bäurle, 2001).

Despite the similarities in the structural changes suffered by the different Purkinje-cell-devoid mutant mice sharing a similar motor behavior (Table 1), there are subtle differences in the motor response of the two strains analyzed here. Thus, while no differences were found in the fall test (Figure 1A), tbl/tbl mice seemed to perform the horizontal bar test more easily than did Le/+ ones (Figure 1B). In contrast, tbl/tbl mice were consistently unable to successfully perform the vertical
FIGURE 1 | Comparison of motor activity and motor learning in tambaleante (tbl−/−), Lurcher (Lc+/+), and wild-type (WT) mice evaluated in various motor tasks: fall (A), horizontal bar (B), and vertical pole (C) performed twice a day during 4 days. Significant differences were found between groups in the percentage (%) mean values (left) [One-Way ANOVA F-test, $F(6, 1158) = 17.50$ (fall); $F(6, 1158) = 8.45$ (horizontal bar); $F(6, 1158) = 45.29$ (vertical pole), $P < 0.05$] as well as in the temporal evolution for each of the tests (right) [Two-Way ANOVA F-test, $F(4, 360) = 2.41$ (fall); $F(4, 360) = 0.56$ (horizontal bar); $F(4, 360) = 1.62$ (vertical pole), $P < 0.05$]. ♦, significant differences between tambaleante mice; +, between different sessions of wild-type animals; ♠, between Lurcher mice; ●, between tambaleante and wild-type mice; ▲, between tambaleante and Lurcher animals; and •, between Lurcher and wild-type mice. Lurcher mice data collected from Porras-García et al. (2005).
pole test, while Lc/+ mice did (Figure 1C). These differences in motor learning could be due to dissimilarities between the two mutant mice in the structural changes in cerebellar connectivity as the result of Purkinje cell loss. A possible explanation of these differences could reside in the different temporal onset of Purkinje-cell degeneration, as tbl/tbl is the only mutation that losses all Purkinje cells once the cerebellar circuits have developed normally (Wassef et al., 1987; Rossi et al., 1995; Dusart et al., 2006) (Table 1). A detailed analysis of the tbl/tbl cerebellum regarding the total amount of granule cells after Purkinje cell loss, and the cerebellar cortico-nuclear relationships at the beginning of the mutation effect, would explain these motor learning differences. Accordingly, the comparison of amounts of GABAergic input to cerebellar deep nuclei between Lc/+ and tbl/tbl mice could help to solve the question (see Grüsson-Cornéhls and Bäurle, 2001). However, it is noteworthy that genes leading to Purkinje cell degeneration also affect other brain regions, and that atactic symptoms and motor behavior are most severe in mutant mice whose brain is widely affected (Table 1). Hence, the analysis of tbl/tbl brain areas involved in motor behavior and the possible compensatory processes taking place after the loss of Purkinje cells when all motor circuitry is fully developed would explain the differences in tbl/tbl motor behavior.

CONCLUSION
Various studies give the cerebellar cortex an important role in motor learning. However, the results obtained in our laboratory,
Table 1 | Main mutations affecting cerebellar Purkinje cells (Pc).

Mutation	Onset of Pc degeneration	End of Pc degeneration	Size of Pc degeneration	Cerebellar and pre-cerebellar associated cell degenerations	Associate neural degenerative changes	Motor impairment	References
Leaner (tg^{1a}/tg^{1a})¹	P15–40	5, 6 month	Alternate Pc bands with bands devoid of Pc²	Golgi neurons³, granule cells², inferior olivary neurons⁴	Hippocampus^{5, 6}	Most severe that in other mutations⁶	1 Dickie (1962) 2 Heckroth and Abbott (1994) 3 Herrup and Wilczynski (1982) 4 Zanjani et al. (2004) 5 Alonso et al. (2008) 6 Grüsser-Cornehls and Bäurle (2001)
Lurcher (Lc/+)¹	P3–4	4 month	Complete	Inferior olivary neurons², granule cells²	No data available	Mild³	1 Phillips (1960) 2 Caddy and Biscoe (1979) 3 Grüsser-Cornehls and Bäurle (2001)
Nervous (nhr)¹	P23	P50	Alternate Pc bands with bands devoid of Pc²	Inferior olivary neurons³	Retinal photoreceptors⁴	Mild⁶	1 Sidman and Green (1970) 2 Wassef et al. (1987) 3 Zanjani et al. (2004) 4 Mullen and LaVail (1975) 5 Grüsser-Cornehls and Bäurle (2001)
Pogo (pogo/pogo)¹	P120	–	Vermal Pc²	No data available	No data available	Mild^{1, 2}	1 Lee and Jeong (2009) 2 Jeong et al. (2000)
Purkinje cell degeneration (pcd/pcd)¹	P15	P45	Complete	Inferior olivary neurons², granule cells³, cerebellar nuclei neurons⁴	Retinal photoreceptors¹, olfactory bulb mitral cells³, thalamic neurons⁵	Mild⁶	1 Mullen et al. (1976) 2 Gheotti et al. (1987) 3, 4 Triarhou et al. (1995); Triarhou et al. (1987) 5 O’Gorman (1985) 6 Grüsser-Cornehls and Bäurle (2001)
Reeler (r/r)¹	P0	P15	≤50% with ectopic remaining Pc²	GABAergic interneurons³, granule cells⁴, unipolar brush cells⁶	Hippocampus⁵, neocortex⁶	Mild	1 Falconer (1961) 2 Heckroth et al. (1998) 3 Takayama (1994) 4 Ilijic et al. (2005) 5 Park and Curran (2008)
Staggerer (sg/sg)¹	P0	P24	75% with ectopic remaining Pc²	All granule cells², inferior olivary neurons³	Hippocampus⁴, olfactory bulb⁵	Most severe than in Lc, nhr, or pcd⁶	1 Sidman et al. (1962) 2 Sotelo and Changeux (1974a) 3 Zanjani et al. (2007) 4 Vi et al. (2010) 5 Deiss et al. (2001) 6 Grüsser-Cornehls and Bäurle (2001)
Tambaleante (tb/tb)¹	P60	4–6 month	Complete¹	No data available	No data available	Mild, like Lc or pcd², 3	1 Wassef et al. (1987) 2 Rossi et al. (1995) 3 present observations
Weaver (wv/wv)¹	P0	P14	25% with great alteration of the dendritic trees of remaining Pc², 3	Granule cells², 3	Hippocampus⁴, substantia nigra pars compacta⁵	Most severe than in Lc, nhr, pcd, or sfg⁶	1 Lane (1965) 2 Sotelo and Changeux (1974b) 3 Sotelo (1980) 4 Sekiguchi et al. (1995) 5 Schmidt et al. (1982) 6 Grüsser-Cornehls and Bäurle (2001)
using two Purkinje-cell-deprived mutant mice, show that while this structure is not essential in learning, its absence disturbs the performance and the magnitude of the learned response (Porras-García et al., 2005, 2010). This is not so in the case of the interpositus nucleus of the cerebellum, in which any injury causes a total lack of learning (Porras-García et al., 2010). In accord with our results and those of some other authors, it seems motor learning must be due to coordinated work between several cerebellar and extra-cerebellar structures.

ACKNOWLEDGMENTS

We are indebted to Dr. J. L. Rosa for his generous gift of tam-baleante founders. We are also grateful to Dr. J. M. Delgado-García for critical reading of the manuscript. José Á. Armengol is supported by a P07-CVI-2487 grant.

REFERENCES

Albus, J. S. (1971). A theory of cerebellar function. Math. Biosci. 10, 25–61.
Alonso, I., Marques, J. M., Sousa, N., Sequeiros, J., Olsson, I. A., and Silveira, I. (2008). Motor and cognitive deficits in the heterozygous leaner mouse, a Ca2+ voltage-gated Ca2+ channel mutant. Neurobiol. Aging 29, 1733–1743.
Aou, S., Woody, C. D., and Birt, D. (1992). Changes in the activity of units of the cat motor cortex with rapid conditioning and extinction of a compound eyeblink movement. J. Neurosci. 12, 549–559.
Araki, K., Meguro, H., Kushiya, E., Christian, K. M., and Thompson, R. F. (2003). Neural substrates of cerebellar ataxia. Prog. Brain Res. 136, 41–49.
Caddy, K. W., and Biscoe, T. J. (1979). Nerve cell atrophy and cerebellar pathology in adult lurcher mutant mice. J. Comp. Neurol. 312, 641–651.
Caycedo, L., Ballester, M., and Ayala, A. (1998). A simple method for the study of cerebellar Purkinje cells. J. Neurosci. 18, 2525–2532.
Dow, R. S., and Moruzzi, G. (1958). The Physiology and Pathology of the Cerebellum. Minneapolis, MN: University of Minnesota Press.
Dusart, I., Guenet, J. L., and Sotelo, C. (2006). Purkinje cell death: differences between developmental cell death and neurodegenerative death in mutant mice. Cerebellum 5, 409–423.
Eccles, J. C., Ito, M., and Szentágothai, J. (1967). The Cerebellum as a Neuronal Machine. Berlin: Springer-Verlag.
Falconc, D. S. (1951). 2 new mutants, trembler and reeler, with neurologic actions in the house mouse (mus-musculus l). J. Genet. 50, 192–201.
Freeman, J. H., and Steinmetz, A. B. (2001). Neural circuitry and plasticity mechanisms underlying delay eyeblink conditioning. Learn. Mem. 8, 666–677.
Ghetti, B., Norton, J., and Triarhou, J. C. (1997). Nerve cell atrophy and loss in the inferior olivary complex of “Purkinje cell degeneration” mutant mice. J. Comp. Neurol. 260, 427–455.
Gruart, A., Guillazo-Blanch, G., Fernández-Mas, R., Jiménez-Díaz, L., and Delgado-García, J. M. (2000). Cerebellar posterior interpositus nucleus as an enhancer of classically conditioned eyelid responses in alert cats. J. Neurophysiol. 84, 2680–2690.
Heckroth, J. A., Goldowitz, D., and Eisenman, L. M. (1998). Purkinje cell reduction in the reeler mutant mouse: a quantitative immunohistochemical study. J. Comp. Neurol. 279, 546–555.
Herrup, K., and Wiczyński, S. L. (1982). Cerebellar cell degeneration in the leaner mutant mouse. Neuroscience 7, 2185–2196.
Hilber, P., and Caston, J. (2001). Motor skills and motor learning in Lurcher mutant mice during aging. Neuroscience 102, 615–623.
Hutziger, E., Guidotti, A., and Mugnaini, E. (2005). Moving up or moving down? Malpositioned cerebellar unipolar brush cells in reeler mouse. Neuroscience 136, 633–647.
Ito, M. (1989). Long term depression. Annu. Rev. Neurosci. 12, 85–102.
Jeong, Y. G., Hyun, B. H., and Hawkes, R. (2000). Abnormalities in cerebellar Purkinje cells in the novel ataxic mutant mouse, pogo. Dev. Brain Res. 125, 61–67.
Jiménez-Díaz, L., Navarro-López, J. D., Gruart, A., and Delgado-García, J. M. (2004). Role of cerebellar interpositus nucleus in the genesis and control of reflex and conditioned eyelid responses. J. Neurosci. 24, 9138–9145.
Koekoek, S. K., Hulscher, H. C., Dordtland, B. R., Hensbroek, R. A., Eiglsperger, Y., Ruigrok, T. J., et al. (2003). Cerebellar LTD and learning-dependent timing of conditioned eyelid responses. Science 301, 1736–1739.
Koekoek, S. K., Yamaguchi, K., Milojkovic, B. A., Dortland, B. R., Ruigrok, T. J., Maex, R., et al. (2005). Deletion of FMR1 in Purkinje cells enhances parallel fiber LTD, enlarges spines, and attenuates cerebellar eyelid conditioning in Fragile X syndrome. Neuron 47, 339–352.
Koekoek, S. K., Yamaguchi, K., Milojkovic, B. A., Dortland, B. R., Ruigrok, T. J., Maex, R., et al. (2005). Deletion of FMR1 in Purkinje cells enhances parallel fiber LTD, enlarges spines, and attenuates cerebellar eyelid conditioning in Fragile X syndrome. Neuron 47, 339–352.
Lalonde, R. (1994). Motor learning in lurcher mutant mice. Physiol. Behav. 63, 351–353.
Landsend, A. S., Amiry-Moghaddam, M., Matsubara, A., Bergersen, L.,
Mullen, R. J., Eicher, E. M., and Sidman, R. L. (1976). Purkinje cell degeneration, a new neurological mutation in mouse. Proc. Natl. Acad. Sci. U.S.A. 73, 208–212.

Mullen, R. L. and LaVail, M. (1975). Two types of retinal degeneration in cerebellar mutant mice. Nature 258, 528–530.

Norman, D. J., Feng, L., Cheng, S. S., Gubbay, J., Chan, E., and Heintz, N. (1995). The lurcher gene induces apoptotic death in cerebellar Purkinje cells. Development 121, 1183–1193.

O’Gorman, S. (1985). Degeneration of thalamic neurons in “Purkinje cell degeneration” mutant mice. II. Cytology of neuron loss. J. Comp. Neurol. 234, 298–316.

Park, T. J., and Tom Curran, T. (2008). Crk and Crk-like play essential overlapping roles downstream of disabled-1 in the reelin pathway. J. Neurosci. 28, 13551–13566.

Phillips, R. I. S. (1960). “Lurcher”, a new gene in linkage group XI of the house mouse. J. Genet. 57, 35–42.

Porras-García, E., Cendelin, J., Domínguez-del-Toro, E., Vozeh, F., and Delgado-García, J. M. (2005). Purkinje cell loss affects differentially the execution, acquisition and prepulse inhibition of skeletal and facial motor responses in Lurcher mice. Eur. J. Neurosci. 21, 979–988.

Porras-García, E., Sánchez-Camposano, R., Martínez-Vargas, D., Domínguez-del-Toro, E., Cendelin, J., Vozeh, F., et al. (2010). Behavioral characteristics, associative learning capabilities, and dynamic association mapping in an animal model of cerebellar degeneration. J. Neuropathol. 104, 346–365.

Ramón y Cajal, S. (1911). Histología del Sistema Nervioso de l’Animal. Paris: Maloine.

Resibois, A., Cuvelier, L., and Goffinet, A. M. (1997). Abnormalities in the cerebellum and brainstem in homozygous lurcher mice. Neuroscience 80, 175–190.

Rossi, F., Jankowski, A., and Soto, C. (1995). Target neuron controls the integrity of afferent axon phenotype: a study on the Purkinje cell-climbing fiber system in cerebellar mutant mice. J. Neurosci. 15, 2040–2056.

Sánchez-Camposano, R., Gruart, A., and Delgado-García, J. M. (2007). The cerebellar interpositus nucleus and the dynamic control of learned motor responses. J. Neurosci. 27, 6620–6632.

Sánchez-Camposano, R., Gruart, A., and Delgado-García, J. M. (2009). Dynamic associations in the cerebellar-motoneuron network during motor learning. J. Neurosci. 29, 10750–10763.

Schmidt, M. J., Sawyer, B. D., Perry, K. W., Fuller, R. W., Foreman, M. M., and Ghetti, B. (1982). Dopaamine deficiency in weaver mutant mouse. J. Neurosci. 2, 376–380.

Segikuchi, M., Nowakowski, R. S., Nagato, W., Tanaka, O., Guo, H., Madoka, M., et al. (1995). Morphological abnormalities in the hippocampus of weaver mutant mouse. Brain Res. 696, 262–267.

Sidman, R. L., and Green, M. M. (1970). “Nervous, a new mutant mouse with cerebellar disease,” in Les Mutations Pathologiques chez l’Animal, ed M. Sabourdy (Paris: CNRS), 69–79.

Sidman, R. L., Ryan, P., and Dickie, M. (1962). Staggerer, a new mutation in the mouse affecting the cerebellum. Science 137, 610–612.

Sotole, C. (1980). Mutant mice and the formation of the cerebellar circuitry. Trends Neurosci. 3, 33–36.

Sotole, C., and Changeux, J. P. (1974a). Transsynaptic degeneration ‘en cascade’ in the cerebellar cortex of staggerer. Brain Res. 67, 519–526.

Sotole, C., and Changeux, J. P. (1974b). Bergmann fibers and granule cell migration in the cerebellum of homozygous weaver mutant mouse. Brain Res. 77, 484–491.

Swisher, D. A., and Wilson, D. B. (1977). Cerebellar histogenesis in the Lurcher (Lc) mutant mouse. J. Comp. Neurol. 173, 205–217.

Takeyama, C. (1994). Altered distribution of inhibitory synaptic terminals in reeler cerebellum with special reference to malposition of GABAergic neurons. Neurosci. Res. 20, 239–250.

Takeyama, C., Nakagawa, S., Watanabe, M., Mishina, M., and Inoue, Y. (1995). Light- and electron-microscopic localization of the glutamate receptor channel delta2 subunit in the mouse Purkinje cell. Neurosci. Lett. 188, 89–92.

Takeyama, C., Nakagawa, S., Watanabe, M., Mishina, M., and Inoue, Y. (1996). Developmental changes in expression and distribution of the glutamate receptor channel delta2 subunit according to the Purkinje cell maturation. Brain Res. Dev. Brain Res. 92, 147–155.

Thach, W. T. (1997). Context-response linkage. Int. Rev. Neurobiol. 41, 599–611.

Thach, W. T., Googkin, H. P., and Keating, J. G. (1992). The cerebellum and the adaptive coordination of movement. Annu. Rev. Neurosci. 15, 403–442.

Tirriahou, L. C., Norton, J., Alyea, C., and Ghetti, B. (1985). A quantitative study of the granule cells in Purkinje cell degeneration (pcd) mutant. Ann. Neurol. 18, 146.

Tirriahou, L. C., Norton, J., and Ghetti, B. (1987). Anterograde transsynaptic degeneration in the deep cerebellar nuclei of Purkinje cell degeneration (pcd) mutant mice. Exp. Brain Res. 66, 577–588.

Wassif, M., Sotole, C., Cholley, B., Brehiër, A., and Thomasset, M. (1987). Cerebellar mutations affecting the postnatal survival of Purkinje cells in the mouse disclose a longitudinal pattern of differentially sensitive cells. Dev. Biol. 124, 379–389.

Welsh, I. P., and Harvey, I. (1989). Cerebellar lesions and the nicotinatable membrane reflex: performance deficits of the conditioned and unconditioned response. J. Neurosci. 9, 299–311.

Wetts, R., and Herrup, K. (1982). Cerebellar Purkinje cells are descended from a small number of progenitors committed during early development: quantitative analysis of lurcher chimeric mice. J. Neurosci. 2, 1494–1498.

Wullner, U., Loschmann, P. A., Weller, M., and Klockgether, T. (1995). Apoptotic cell death in the cerebellum of mutant weaver and lurcher mice. Neurosci. Lett. 200, 109–112.

Yeo, C. H., Hardiman, M. J., and Glickstein, M. (1985a). Classical conditioning of the nicotinatable membrane response of the rabbit. I. Lesions of the cerebellar nuclei. Exp. Brain Res. 60, 87–98.

Yeo, C. H., Hardiman, M. J., and Glickstein, M. (1985b). Classical conditioning of the nicotinatable membrane response of the rabbit. II. Lesions of the cerebellar cortex. Exp. Brain Res. 60, 99–113.

Yi, S. S., Hwang, I. K., Shin, J. H., Baek, S. H., Yoon, S. Y., and Seong, J. K. (2010). Neuronal differentiation and developmental characteristics in the dentate gyrus of staggerer mutant mice. BMB Rep. 43,122–126.

Zanjanii, H., Herrup, K., and Mariani, J. (2004). Cell number in the inferior olive of nervous and learen mutant mice. J. Neurogenet. 18, 327–339.
Zanjani, H. S., Mariani, J., and Herrup, K. (2007). Cell loss in the inferior olive of the staggerer mutant mouse is an indirect effect of the gene. J. Neurogenet. 21, 257–269.

Zuo, J., DeJager, P. L., Takahashi, K. A., Jiang, W., Linden, D. J., and Heintz, N. (1997). Neurodegeneration in Lurcher mice caused by mutation in d2 glutamate receptor. Nature 388, 769–773.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 29 September 2012; paper pending published: 19 January 2013; accepted: 29 March 2013; published online: 23 April 2013.

Citation: Porras-García ME, Ruiz R, Pérez-Villegas EM and Armengol JA (2013) Motor learning of mice lacking cerebellar Purkinje cells. Front. Neuroanat. 7:4. doi: 10.3389/fnana.2013.00004

Copyright © 2013 Porras-García, Ruiz, Pérez-Villegas and Armengol. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.