The clinical features and optimal treatment of anorectal malignant melanoma

Soomin Nam, Chang Woo Kim, Se Jin Baek, Hyuk Hur, Byung Soh Min, Seung Hyuk Baik, Nam Kyu Kim
Division of Colon and Rectal Surgery, Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea

INTRODUCTION

Anorectal malignant melanoma (AMM), which has rare incidence, is as less than 0.05%–4.6% of anorectal malignancies [1,2]. Every year, 76,000 people are newly diagnosed with melanoma in America, and among them 6,100 are diagnosed as mucosal melanoma, which is 0.38% of newly diagnosed cancer patients in America [3]. In Europe, 47,241 people are newly diagnosed with malignant melanoma of the skin, and its incidence rate is 11.4% [4]. Seventy-nine AMM cases were reported for 10 years in Japan, and they showed very poor survival [5]. AMM has a very poor prognosis. Due to its low incidence, AMM has been studied well, and most of the publications are case reports or series. Although various treatment modalities for AMM have been suggested including surgical resection, chemotherapy, and radiotherapy, all of them are debatable and evidence is insufficient. Moreover, a randomized controlled trial is impossible in AMM due to its rarity.

When we review the articles concerning about AMM, the physiologic and medical features of AMM are described in similar detail in most articles. Although every article agrees that the initial treatment of AMM should be surgical resection, the method of surgical resection has many debates among the many authors. In Korea, there have been several case reports and review articles of AMM, though the ideal option for surgical excision is not concluded [10]. This review aimed to review the management of AMM in current studies in order to better understand AMM.
INCIDENCE AND CLINICAL MANIFESTATIONS

AMM is a very rare disease and accounts for less than 0.05%–4.6% of all anorectal malignancies [1,2]. AMM is the third most common primary origin of melanoma following skin and retina [2]. Malignant melanoma arising in anorectal lesions accounts for 0.4%–1.6% of all malignant melanomas [11]. AMM patients are more frequently female [6,7,11,12,14,15], and the median age at diagnosis is 60 years or higher [6,11,12].

The main complaint of an AMM patient is not specific compared with other anorectal benign or malignant disease. The most frequent symptom of AMM patient is bleeding (54%–78%) [6,7,11]. Other symptoms include mass (12%–16%) [6,7,11], pain (14%–27%) [6,7,11], obstipation (6%) [11], diarrhea (4%) [11], and pathologic diagnosis after a hemorrhoidectomy (8%–16%) [7,11]. Moreover, AMM is sometimes diagnosed by a routine health check-up without any symptoms [16]. In the literature review, more than 50% of patients complained of rectal bleeding. Due to delayed diagnosis and the aggressive nature of AMM, 37% of the patients already had distant or regional metastasis at the time of diagnosis [17]. Weinstock [14] reported that at the time of diagnosis only 37% of AMM is confined at the anorectal area. 41% has regional spread and 22% has distant metastasis. Lymphatic spread is common and tends to involve mesenteric and inguinal lymph nodes [18]. The major sites of distant metastasis are lung, liver, and bone [18]. The brain is the most common metastasis site, followed by liver and lung [19].

SURGICAL TREATMENT

The treatment of AMM has not been standardized due to low incidence and lack of evidence. For now, treatment results are evaluated by survival rates alone [20]. There are various treatment modalities of AMM, including surgical excision, chemotherapy, radiation therapy, and immunotherapy. However, there is no definite treatment of choice.

Generally, surgical excision is considered a primary treatment option for AMM. Traditionally, APR is regarded as the standard surgery for AMM [7,21,22]. APR is preferred because it can control lymphatic spread (mainly to mesenteric lymph nodes) and guarantee a larger negative margin for local control [23]. Ishizone et al. [2] reported that APR with lymph node dissection should be performed because of regional lymph node metastasis if there is submucosal invasion (T1). However, due to high morbidity and mortality of APR. Wide local excision (WLE) is also advocated by some authors [12,20,23,24]. WLE has many benefits such as quicker recovery, minimal impact on bowel function and no need for a stoma [18]. Some reports suggest that APR leads to complications such as urinary and sexual dysfunction and has no advantage over WLE [18,25]. However, Ramalingam et al. [13] documented that laparoscopic APR could control disease and reduce morbidity at the same time. Between the two groups who underwent APR and WLE, there was no difference in five year survival rates [7,9,25-27].

Bullard et al. [25] reported that APR has no benefit for locoregional recurrence and systemic recurrence compared to WLE. This means that most recurrences occur systemically regardless of the initial surgical procedure [18]. Locoregional recurrence of AMM occurs more at the pelvis than at the pelvic lymph nodes [9]. Neither APR nor WLE affect any of the inguinal lymph nodes, therefore neither of them offers an advantage in controlling locoregional recurrence [9,28]. However, it is important to achieve a negative resection margin irrespective of the surgical method performed for local control [28]. WLE with successful R0 resection could show better survival than APR [28]. WLE is curative for stage 0 disease and would be proper concerning the quality of life.

The depth and size of tumor is one of the important prognostic factors. If the lesion is thick (>3 mm) and large (>30 mm), curative surgery cannot be achieved [29]. In this case, conservative local excision and adjuvant therapy can result in a better prognosis [6]. At the time of diagnosis, if AMM is already in the advanced stage, surgical options should be selected based on quality of life [30]. For advanced stage, WLE with adjuvant radiotherapy and biochemotherapy could be done concerning favorable functional outcome and longer median survival.

Conclusively, most authors suggest that WLE should be the first treatment of choice if surgically feasible. and APR would be the palliative method when there is obstruction and need for salvage surgery [19,24,31].

RADIOTHERAPY

Adjuvant radiation therapy after surgical excision has also been attempted. Radiotherapy to extended field followed by sphincter saving wide excision reduced locoregional recurrence rate to 17% from 50% compared to WLE alone [32]. In comparison to APR, WLE with adjuvant radiotherapy achieves equal locoregional control [33]. In fact, extended radiation therapy to the pelvic/inguinal lymph nodes is associated with serious complications such as lymphedema and proctitis [32,34]. Preoperative neoadjuvant radiotherapy demonstrated only minimal effect on local tumor burden [34]. Adjuvant radiotherapy can decrease locoregional recurrence, but distant relapse, which cannot be controlled, is the main cause of death [32]. Gupta et al. [35] investigated interstitial brachytherapy with caesium-137 and analyzed its ability to prevent local recurrence.

CHEMOTHERAPY

Currently, a standard therapeutic regimen for chemotherapy
in the setting of AMM does not exist. In addition, the rarity of AMM makes it difficult to evaluate the clinical efficacy of systemic therapy [36]. Many regimens, including dacarbazine, Bacile Calmette-Gurin (BCG), levamisole, cisplatin, vinblastine, interleukin-2 and interferon, have been investigated [16,25]. These regimens are based on drugs developed for advanced cutaneous melanoma [16].

OTHER TREATMENTS

Recently, the use of immune-modulating agent for cancer treatment has increased, since chemotherapy or radiotherapy alone is insufficient to completely eradicate AMM. Moreover, immunotherapy can boost anticancer immunity [37]. Immunotherapy is a chemotherapy regimen which includes an immunologic agent. Immunotherapy includes specific active immunization and adoptive immunotherapy based on antigenic system [38]. The response rate of dacarbazine, which is one of the most effective agents for metastatic melanoma, is only 20% [23,39]. Immunochemistry use with cisplatin, vinblastine, dacarbazine, interferon alpha-2b and interleukin-2 demonstrated similar overall response and complete response rates to that of advanced cutaneous melanoma [36]. Phade and Lawrence [40] reported a case review of immunochemistry (dacarbazine, BCG) with encouraging results. When comparing patients treated with and without biochemotherapy, the former group showed a longer median survival [36].

A newly developed agent, temozolomide, demonstrates equivocal efficacy to dacarbazine and is an oral alternative for advanced metastatic melanoma [41]. Yeh et al. [42] administered a combination of temozolomide, cisplatin and liposomal doxorubicin (intrahepatic infusion to liver metastasis) in a patient whose primary lesion was unresectable, and regression of the primary and metastatic tumors was confirmed.

PROGNOSIS

The prognosis of AMM is very poor due to its aggressive characteristics. The five year survival rate of AMM is 6%–22% [6-9], and the median survival in the literature is 19–26.4 months [6,7,26]. The five year survival rate varies according to the presence of metastasis. If AMM is confined to the local area, the five year survival rate is 37%–50% [14,17]. However, if there is regional and distant metastasis, the five year survival rate decreases in 7%–17% and 0%–6%, respectively [14,17]. Though the prevalence of AMM in women is higher, the overall survival was longer in women compared to men (15.7% and 10.6%, respectively) [28].

The prognosis of AMM differs depending on the stage of AMM. There is no specific system for staging of AMM at this point. Ross et al. [9] classified AMM patients into three stages; stage I (localized disease), stage II (regional disease), and stage III (with distant metastasis). According to this staging system, stage I was associated with better survival results than stage II or III [26]. Concerning cutaneous melanoma, (1) thickness of cancer, (2) mitotic rate, and (3) presence of ulceration are the most important prognostic factors [43]. The thickness of the tumor proves to be an influential factor in AMM, and thickness less than 2 mm is the major factor for determining long-term survival [6,8,23,44]. In AMM, ulceration is frequently seen on examination of the gross specimen of AMM [36]. It has been proven by various institutions that the tumor depth has a significant effect on the survival rate [23,45,46]. The size of the tumor can also determine the survival [7]. In addition, the nodal status at the time of diagnosis is another predictive factor [23]. At the time of diagnosis, a patient with nodal metastasis had decreased five year disease-specific survival, disease-free survival and distant metastasis-free survival compared to those patients without nodal metastasis [33]. Duration of the initial symptom also influences the prognosis [23]. As the initial symptom is similar to that of hemorrhoids, clinicians often look over it as a common benign disease. Therefore diagnosis of AMM is frequently delayed [36].

The relationship between the tumor location and prognosis is unclear at this point. If the tumor locates proximal to the dentate line, the disease showed an advanced stage more than the distal tumor. If the tumor is located proximal to the dentate line, the disease stage is more advanced than if the tumor is located distal to the dentate line. However, if the tumor is located distal to the dentate line, the lymph node recurrence rate is higher than if the tumor is proximal to the dentate line. Therefore, the overall prognosis of the two groups is not significantly different [47].

As mentioned before, nodal metastasis can be a prognostic factor of AMM. If R0 resection is not successful and metastatic lymph nodes remain, regional recurrence is more likely [28]. However, prophylactic lymph node dissection for every patient is too risky due to the complexity of the procedure [18]. Sentinel lymph node mapping (SLNM) is used in cutaneous melanoma to determine the extent of excision. SLNM could potentially be used in AMM. In the circumstance of pathologically positive nodal metastasis but clinically negative nodal metastasis, SLNM can prevent understaging [18]. SLNM can also aid in planning the extent of surgery [48].

CONCLUSION

AMM has no treatment guidelines currently, the choice of therapeutic method should be carefully considered. Early diagnosis and a tailored, multidisciplinary treatment plan would likely improve the treatment result of AMM. Large scale
prospective clinical trials should be conducted in the future to investigate effective treatments for AMM.

CONFLICTS OF INTEREST

No potential conflict of interest relevant to this article was reported.

REFERENCES

1. Falch C, Stojadinovic A, Hann-von-Weyhern C, Protic M, Nissan A, Faries MB, et al. Anorectal malignant melanoma: extensive 45-year review and proposal for a novel staging classification. J Am Coll Surg 2013;217:324-35.
2. Ishizone S, Koide N, Karasawa F, Akita N, Muranaka F, Ubara H, et al. Surgical treatment for anorectal malignant melanoma: report of five cases and review of 79 Japanese cases. Int J Colorectal Dis 2008;23:1257-62.
3. Siegel R, Ward E, Brawley O, Jemal A. Cancer statistics. 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin 2011;61:212-36.
4. International Agency for Research on Cancer. Malignant melanoma of skin [Internet]. Lyon: International Agency for Research on Cancer; 2012 [cited 2014 Mar 14]. Available from: http://eu-cancer.iarc.fr/EUCAN/Cancer.aspx?Cancer=20.
5. National Cancer Control and Information Services. Cancer Statistics in Japan [Internet]. Tokyo: National Cancer Control, Center for Cancer Control and Information Services; [cited 2014 Mar 14]. Available from: http://ganjoho.jp/pro/statistics/en/table_download.html.
6. Wanebo HJ, Woodruff JM, Farr GH, Quan SH. Anorectal melanoma. Cancer 1981;47:891-900.
7. Brady MS, Kavolius JP, Quan SH. Anorectal melanoma. A 64-year experience at Memorial Sloan-Kettering Cancer Center. Dis Colon Rectum 1995;38:146-51.
8. Thibault C, Sagar P, Nivatvongs S, Ilstrup DM, Wolff BG. Anorectal melanoma--an incurable disease? Dis Colon Rectum 1997;40:661-8.
9. Ross M, Pezzi C, Pezzi T, Meurer D, Hickey R, Falch C. Patterns of failure in anorectal melanoma. A guide to surgical therapy. Arch Surg 1990;125:313-6.
10. Ma MS, Kim CY, Kim JA. Anorectal malignant melanoma: a case report. J Korean Surg Soc 1997;52:458-64.
11. Goldman S, Glimelius B, Pahlman L. Anorectal malignant melanoma in Sweden: Report of 49 patients. Dis Colon Rectum 1990;33:674-7.
12. Cagir B, Whiteford MH, Topham A, Rakinic J, Fry RD. Changing epidemiology of anorectal melanoma. Dis Colon Rectum 1999;42:1203-8.
13. Ramalingam G, Gan EY, Kutt-Sing W. Laparoscopic abdominoperineal resection for anorectal melanoma: a case report and review of the literature. Surg Laparosc Endosc Percutan Tech 2009;19:e149-51.
14. Weinstock MA. Epidemiology and prognosis of anorectal melanoma. Gastroenterology 1993;104:174-8.
15. Heaney A, Mulsow J, Hyland JM. Treatment and outcomes of anorectal melanoma. Surgeon 2011;9:27-32.
16. Homsi J, Garrett C. Melanoma of the anal canal: a case series. Dis Colon Rectum 2007;50:1004-10.
17. Podnos YD, Tsai NC, Smith D, Ellenhour JD. Factors affecting survival in patients with anal melanoma. Am Surg 2006;72:917-20.
18. Stoidis CN, Spyropoulos BG, Misiakos EP, Fountzilas CK, Paraskeva PP, Fotiadis CI. Diffuse anorectal melanoma: review of the current diagnostic and treatment aspects based on a case report. World J Surg Oncol 2009;7:64.
19. Aytaç B, Adim SB, Yerci O, Yılmazlar T. Anorectal malignant melanomas: experience of Uludag University. Kaohsiung J Med Sci 2010;26:658-62.
20. Yap LB, Neary P. A comparison of wide local excision with abdominoperineal resection in anorectal melanoma. Malignoma Res 2004;14:147-50.
21. Cooper PH, Mills SE, Allen MS Jr. Malignant melanoma of the anus: report of 12 patients and analysis of 255 additional cases. Dis Colon Rectum 1982;25:693-703.
22. Chiu YS, Unni KK, Beart RW Jr. Malignant melanoma of the anorectum. Dis Colon Rectum 1980;23:122-4.
23. Pessaux P, Pocard M, Elias D, Duvilleard P, Avril MF, Zimmerman P, et al. Surgical management of primary anorectal melanoma. Br J Surg 2004;91:1183-7.
24. Yeh JJ, Shia J, Hwu WJ, Busam KJ, Paty PB, Guillem JG, et al. The role of abdominoperineal resection as surgical therapy for anorectal melanoma. Ann Surg 2006;244:1012-7.
25. Bullard KM, Tuttle TM, Rothenberger DA, Madoff RD, Baxter NN, Finne CO, et al. Surgical therapy for anorectal melanoma. J Am Coll Surg 2003;196:206-11.
26. Slingluff CL Jr, Seigler HF. Anorectal melanoma: clinical characteristics and the role of abdominoperineal resection. Ann Plast Surg 1992;28:85-8.
27. Ward MW, Romano G, Nicholls RJ. The surgical treatment of anorectal malignant melanoma. Br J Surg 1986;73:68-9.
28. Nilsson PJ, Ragnarsson-Olding BK. Importance of clear resection margins in anorectal malignant melanoma. Br J Surg 2010;97:98-103.
29. Fukui R, Hata F, Yasoshima T, Honma T, Nomura H, Sasaki K, et al. Malignant melanoma of the anorectum: report of
15. Carcoforo P, Raiji MT, Palini GM, Pedriali M, Maestroni U, Soliani G, et al. Primary anorectal melanoma: an update. J Cancer 2012;3:449-53.
16. Seol BR, Bae HD, Lee CW. Anal malignant melanoma: a case report and review of literatures. J Korean Surg Soc 1993;44:306-14.
17. Kelly P, Zagars GK, Cormier JN, Ross MI, Guadagnolo BA. Sphincter-sparing local excision and hypofractionated radiation therapy for anorectal melanoma: a 20-year experience. Cancer 2011;117:4747-55.
18. Ballo MT, Gershenwald JE, Zagars GK, Lee JE, Mansfield PF, Strom EA, et al. Sphincter-sparing local excision and adjuvant radiation for anal-rectal melanoma. J Clin Oncol 2002;20:4555-8.
19. Moozar KL, Wong CS, Couture J. Anorectal malignant melanoma: treatment with surgery or radiation therapy, or both. Can J Surg 2003;46:345-9.
20. Gupta R, Sharma SC, Bose SM. Adjuvant interstitial brachytherapy in a case of anorectal melanoma. Trop Gastroenterol 2000;21:86-7.
21. Kim KB, Sanguino AM, Hodges C, Papadopoulos NE, Eton O, Camacho LH, et al. Biochemotherapy in patients with metastatic anorectal mucosal melanoma. Cancer 2004;100:1478-83.
22. Vacchelli E, Prada N, Kepp O, Galluzzi L. Current trends of anticancer immunotherapy. Oncoimmunology 2013;2:e25396.
23. Kim JO, Yang HY, Son S, Park KH. Clinical experiences in malignant melanoma. J Korean Surg Soc 1997;53:905-10.
24. Hill GJ 2nd, Krementz ET, Hill HZ. Dime thyl triazeno imidazole carboxamide and combination therapy for melanoma. IV. Late results after complete response to chemotherapy (Central Oncology Group protocols 7130, 7131, and 7131A). Cancer 1984;53:1299-305.
25. Phade VR, Lawrence WR. Anorectal melanoma. Br J Surg 1981;68:667-8.
26. Middleton MR, Grob J, Aaronson N, Fierlbeck G, Tilgen W, Seiter S, et al. Randomized phase III study of temozolomide versus dacarbazine in the treatment of patients with advanced metastatic malignant melanoma. J Clin Oncol 2000;18:158-66.
27. Yeh JJ, Weiser MR, Shia J, Hwu WJ. Response of stage IV anal mucosal melanoma to chemotherapy. Lancet Oncol 2005;6:438-9.
28. Balch CM, Gershenwald JE, Soong SJ, Thompson JF, Atkins MB, Byrd DR, et al. Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol 2009;27:6199-206.
29. Soong SJ, Ding S, Cott D, Balch CM, Gershenwald JE, Thompson JF, et al. Predicting survival outcome of localized melanoma: an electronic prediction tool based on the AJCC Melanoma Database. Ann Surg Oncol 2010;17:2006-14.
30. Che X, Zhao DB, Wu YK, Wang CF, Cai JQ, Shao YF, et al. Anorectal malignant melanomas: retrospective experience with surgical management. World J Gastroenterol 2011;17:534-9.
31. Siegal B, Cohen D, Jacob ET. Surgical treatment of anorectal melanomas. Am J Surg 1983;146:396-8.
32. Bello DM, Smyth E, Perez D, Khan S, Temple LK, Ariyan CE, et al. Anal versus rectal melanoma: does site of origin predict outcome? Dis Colon Rectum 2013;56:150-7.
33. Olisha O, Mintz A, Gimon Z, Gold Deutsch R, Rabin I, Halevy A, et al. Anal melanoma in the era of sentinel lymph node mapping: a diagnostic and therapeutic challenge. Tech Coloproctol 2005;9:60-2.