The Noether number for the groups with a cyclic subgroup of index two

Kálmán Cziszter a * and Mátyás Domokos b †

a Central European University, Department of Mathematics and its Applications, Nádor u. 9, 1051 Budapest, Hungary
Email: cziszter_kalman-sandor@ceu-budapest.edu

b Rényi Institute of Mathematics, Hungarian Academy of Sciences, Reáltanoda u. 13-15, 1053 Budapest, Hungary
Email: domokos.matyas@renyi.mta.hu

Abstract

For the finite groups with a cyclic subgroup of index two the exact degree bound for the generators of rings of polynomial invariants is determined.

1 Introduction

The Noether number $\beta(G)$ of a finite group G is $\sup_V \beta(G, V)$, where V ranges over all finite dimensional G-modules V over a fixed base field F, and $\beta(G, V)$ is the smallest integer d such that the algebra $F[V]^G := \{ f \in F[V] : f^g = f \ \forall \ g \in G \}$ of polynomial invariants is generated by its elements of degree at most d. By Noether’s classic result [9] we have $\beta(G) \leq |G|$ if $\operatorname{char}(F) = 0$, and Fleischmann [4] and Fogarty [5] proved the same inequality when $\operatorname{char}(F)$ does not divide the order of G. Recently, it has been proved that —apart from four particular groups of small order—the inequality $\beta(G) \geq \frac{1}{2} |G|$ holds only if G is cyclic or G has a cyclic subgroup of index two (see Theorem 1.1 in [2]). It is well known and easy to see that for the cyclic group Z_n we have $\beta(Z_n) = n$. The main result of the present article is Theorem 10.3 giving the precise value of $\beta(G)$ for every non-cyclic group containing a cyclic subgroup of index 2. It turns out that for these groups the difference $\beta(G) - \frac{1}{2} |G|$ equals 1 or 2. Despite the longstanding interest in the Noether number of finite groups, there are relatively few groups for which the exact value is known. It is of some interest therefore that a few infinite series of groups is added now to the list of groups with known Noether number.

*The paper is based on results from the PhD thesis of the first author written at the Central European University.
†The second author is partially supported by OTKA NK81203 and K101515.
A remarkable consequence of Theorem 10.3 and the main result of [2] is that for any constant $c > 1/2$, up to isomorphism there are only finitely many non-cyclic groups G with $\beta(G)/|G| > c$, whereas there are infinitely many isomorphism classes of groups G with $\beta(G)/|G| > 1/2$. In particular, $1/2$ is a limit point in the set $\{\beta(G)/|G| : G$ is a finite group$\} \subset \mathbb{Q}$, and there are no other limit points between $1/2$ and 1.

In Section 2 we recall the generalized Noether numbers $\beta_k(G)$ and some related reduction lemmata introduced in [2]. They play an essential role in the proof of Theorem 10.3. In Section 3 we give a general lower bound on the Noether number of a group G with $\beta(G)/|G| > 1/2$, whereas there are infinitely many isomorphism classes of groups G with $\beta(G)/|G| > 1/2$. In particular, $1/2$ is a limit point in the set $\{\beta(G)/|G| : G$ is a finite group$\} \subset \mathbb{Q}$, and there are no other limit points between $1/2$ and 1.

2 Preliminaries

Throughout this paper F denotes our base field, and G will be a finite group with $\text{char}(F) \nmid |G|$. By a G-module we mean here a finite dimensional F-vector space endowed with a linear action of the finite group G. Note that $\beta(G)$ is unchanged if we replace F by its algebraic closure, therefore we shall assume that F is algebraically closed. Given a finitely generated graded module $M = \bigoplus_{d=0}^{\infty} M_d$ over a commutative graded F-algebra $R = \bigoplus_{d=1}^{\infty} R_d$ with $R_0 = F$ and $s \in \mathbb{N}$ write $M_{\leq s} := \bigoplus_{d=0}^{s} M_d$ and $M_{\geq s} := \bigoplus_{d=s}^{\infty} M_d$. For a positive integer k define

$$\beta_k(M, R) := \min\{s \in \mathbb{N} \mid M$ is generated as an $R_k^+\text{-module by } M_{\leq s}\}$$

where R_k^+ is the k-th power of the maximal homogeneous ideal $R_+ := \bigoplus_{d=1}^{\infty} R_d$ of R. By the graded Nakayama Lemma $\beta_k(M, R)$ is the maximal degree of a non-zero homogeneous component of the factor space M/R_k^+M (inheriting the grading from M). Viewing R_+ as an R-module we write

$$\beta_k(R) := \beta_k(R_+, R).$$
The generalized Noether numbers of the finite group G were introduced in [2] as follows: for a G-module V write
\[\beta_k(G, V) := \beta_k(F[V]^G) \]
where $F[V]$ is the symmetric tensor algebra of V^*, the dual of V, so $F[V]$ is a $\dim(V)$-variable polynomial ring endowed with its standard grading. In particular, $F[V]_1 = V^*$. Moreover, set
\[\beta_k(G) := \sup_V \beta_k(G, V) \]
where V ranges over all G-modules over F. In the special case $k = 1$ we recover the Noether number. The finiteness of $\beta_k(G)$ follows from the obvious inequality $\beta_k(G) \leq k \beta(G)$; this inequality is strict in general (see [3] for more information in this respect), and the usefulness of the concept of the generalized Noether numbers stems from the following statements proved in [2] (below for subsets S, T in a commutative F-algebra we write ST for the F-vector space spanned by \{st \mid s \in S, t \in T\}, and $S^d := S \ldots S$ (with d factors):

Lemma 2.1. Let H be a subgroup of G and V a G-module.

(i) We have $(F[V]^H)|^{G:H} \subseteq F[V]^H \subseteq F[V]^G + F[V]^G$.

(ii) We have $\beta_k(F[V]^+, F[V]^G) \leq \beta_k(G:H)(F[V]^+, F[V]^H)$. In particular,
\[\beta_k(G, V) \leq \beta_k(G:H)(H, V). \]

(iii) If H is normal in G, then $\beta_k(G, V) \leq \beta_k(G/H)(H, V)$.

For later use we recall the relative transfer map
\[\tau_H^G(u) = \sum_{i=1}^n u^{g_i} \]
where g_1, \ldots, g_n is a system of right H-coset representatives in G. (In the special case when H is the 1-element subgroup of G we write τ^G instead of $\tau_{(1)}^G$.) The map τ_H^G is a graded $F[V]^G$-module epimorphism from $F[V]^H$ onto $F[V]^G$. We shall use this fact most frequently in the following form:

Proposition 2.2. We have $\beta_k(G, V) \leq \beta_k(F[V]^H, F[V]^G)$.

It was shown in [11] that for an abelian group A we have $\beta(A) = D(A)$, the Davenport constant of A, defined as the maximal length of an irreducible zero-sum sequence over A. (For definitions and notation related to zero-sum sequences see Section [11].) The generalized Noether number also has its ancestor for abelian groups, namely $\beta_k(A) = D_k(A)$, the kth generalized Davenport constant of A introduced in [8] as the maximal length of a zero-sum sequence over A that does not factor as the product of $k+1$ non-empty zero-sum sequences over A.

3
3 A lower bound

Schmid [11] proved that the Noether number is monotone with respect to taking subgroups. This extends for the generalized Noether number as well:

Lemma 3.1. Let W be a finite dimensional H-module, where H is a subgroup of a finite group G, and denote by V the G-module induced from W. Then the inequality $\beta_k(G, V) \geq \beta_k(H, W)$ holds for all positive integers k.

Proof. View W as an H-submodule of $V = \bigoplus_{g \in G/H} gW$ where G/H stands for a system of left H-coset representatives. Restriction of functions from V to W is a graded F-algebra surjection $\phi : F[V] \to F[W]$. Clearly ϕ is H-equivariant, hence maps $F[V]^G$ into $F[W]^H$. Even more, as observed in the proof of Proposition 5.1 of [11], we have $\phi(F[V]^G) = F[W]^H$; indeed, the projection from V to W corresponding to the direct sum decomposition (1) identifies $F[W]$ with a subalgebra of $F[V]$, and for an arbitrary $f \in F[W]^H \subset F[W] \subset F[V]$, we get that $\tau(f) := \sum_{g^{-1} \in G/H} f^g \in F[V]^G$ is a G-invariant mapped to f by ϕ. Hence if $F[V]^G \subset (F[V]^G)^{k+1}$ for some integer $d > 0$ then $F[W]^H = \phi(F[V]^G) \subset \phi((F[V]^G)^{k+1}) = (F[W]^H)^{k+1}$. By definition of the generalized Noether number we get that $\beta_k(G, V) \geq \beta_k(H, W)$. \hfill \Box

Corollary 3.2. Let H be a subgroup of a finite group G. Then for all positive integers k we have the inequality $\beta_k(H) \leq \beta_k(G)$.

Next we give a strengthening of Corollary 3.2 in the special case when H is normal in G and the factor group G/H is abelian. For a character $\theta \in \widehat{G/H}$ denote by $F[V]^{G, \theta}$ the space $\{f \in F[V] \mid f^g = \theta(g)f \ \forall g \in G\}$ of the relative G-invariants of weight θ. Generalizing the construction in the proof of Lemma 3.1 for $f \in F[W]^H \subset F[V]$ (here again $V = \text{Ind}_H^G W$) set

$$
\tau^\theta(f) := \sum_{g^{-1} \in G/H} \theta(g)^{-1} f^g \in F[V]^{G, \theta}.
$$

Then $\phi(\tau^\theta(f)) = f$, hence

$$
\phi(F[V]^{G, \theta}) = F[W]^H \text{ holds for all } \theta \in \widehat{G/H}.
$$

Let $U := \bigoplus_{i=1}^d U_i$ be a direct sum of one-dimensional G/H-modules U_i. Making the identification $F[U \oplus V] = F[U] \otimes F[V] = \bigoplus_{\alpha \in \mathbb{N}_d^d} x^\alpha \otimes F[V]$, where the variables x_1, \ldots, x_d in $F[U]$ are G/H-eigenvectors with weight denoted by $\theta(x_i)$ (see the conventions in Section 2), we have

$$
F[U \oplus V]^G = \bigoplus_{\alpha \in \mathbb{N}_d^d} x^\alpha \otimes F[V]^{G, -\theta(x)}
$$
Since \(t \) assume to the contrary that addition, and the characters \(\theta \) length zero-sum free sequence over the abelian group \(\hat{\rho} \). Indeed, \(d \) zero-sum sequences). In particular, \(\beta \) \(k \) \(\sigma \) homogeneous of degree \(\beta_k(H, W) \), not contained in \((F[W]_+^H)^{k+1} \), and consider the \(G \)-invariant

\[
t := x_1 \cdots x_d \otimes t^\theta(f) \in F[U \oplus V]^G,
\]

where \(\theta = \sum_{i=1}^d \theta_i \) (we write the character group \(\widehat{G/H} \) additively). Then \(t \in F[U \oplus V]^G \) is homogeneous of degree \(d + \beta_k(H, W) \). We will show that \(t \notin (F[U \oplus V]^G)^{k+1} \), implying \(\beta_k(G, U \oplus V) \geq \beta_k(H, W) + d = \beta_k(H) + d \). Indeed, assume to the contrary that \(t \in (F[U \oplus V]^G)^{k+1} \). Then by (4) we have

\[
x_1 \cdots x_d \otimes f = \tilde{\phi}(t) \in \left(F[U]^G_+ \oplus \bigoplus_{\alpha \in \mathbb{N}_0} F[W]^H_+ \right)^{k+1}.
\]

Since \(F[U]^G_+ \) is spanned by monomials not dividing the monomial \(x_1 \cdots x_d \) (recall that \(\theta_1, \ldots, \theta_d \) is a zero-sum free sequence), we conclude that

\[
x_1 \cdots x_d \otimes f \in \left(\bigoplus_{\alpha \in \mathbb{N}_0} F[W]^H_+ \right)^{k+1}.
\]

Denote by \(\rho : F[U] \otimes F[V] \to F[V] \) the \(F \)-algebra homomorphism given by the specialization \(x_i \mapsto 1 \) \((i = 1, \ldots, d) \). Applying \(\rho \) to (5) we get that \(f \in (F[W]^H_+)^{k+1} \), contradicting the choice of \(f \).

\[\square\]

Theorem 3.3. Let \(H \) be a normal subgroup of a finite group \(G \) with \(G/H \) abelian. Then for all positive integers \(k \) we have the inequality

\[
\beta_k(G) \geq \beta_k(H) + D(G/H) - 1.
\]

Proof. Take \(W, V, U = \bigoplus_{i=1}^d U_i \) as above, where we have \(\beta_k(H) = \beta_k(H, W) \) in addition, and the characters \(\theta_1, \ldots, \theta_d \) of the summands \(U_i \) constitute a maximal length zero-sum free sequence over the abelian group \(G/H \) (see Section 4 for zero-sum sequences). In particular, \(d = D(G/H) - 1 \) (since \(F \) is assumed to be algebraically closed). Choose a homogeneous \(H \)-invariant \(f \in F[W]^H \) of degree \(\beta_k(H, W) \), not contained in \((F[W]^H_+)^{k+1} \), and consider the \(G \)-invariant

\[
t := x_1 \cdots x_d \otimes t^\theta(f) \in F[U \oplus V]^G,
\]

where \(\theta = \sum_{i=1}^d \theta_i \) (we write the character group \(\widehat{G/H} \) additively). Then \(t \in F[U \oplus V]^G \) is homogeneous of degree \(d + \beta_k(H, W) \). We will show that \(t \notin (F[U \oplus V]^G)^{k+1} \), implying \(\beta_k(G, U \oplus V) \geq \beta_k(H, W) + d = \beta_k(H) + d \). Indeed, assume to the contrary that \(t \in (F[U \oplus V]^G)^{k+1} \). Then by (4) we have

\[
x_1 \cdots x_d \otimes f = \tilde{\phi}(t) \in \left(F[U]^G_+ \oplus \bigoplus_{\alpha \in \mathbb{N}_0} F[W]^H_+ \right)^{k+1}.
\]

Since \(F[U]^G_+ \) is spanned by monomials not dividing the monomial \(x_1 \cdots x_d \) (recall that \(\theta_1, \ldots, \theta_d \) is a zero-sum free sequence), we conclude that

\[
x_1 \cdots x_d \otimes f \in \left(\bigoplus_{\alpha \in \mathbb{N}_0} F[W]^H_+ \right)^{k+1}.
\]

Denote by \(\rho : F[U] \otimes F[V] \to F[V] \) the \(F \)-algebra homomorphism given by the specialization \(x_i \mapsto 1 \) \((i = 1, \ldots, d) \). Applying \(\rho \) to (5) we get that \(f \in (F[W]^H_+)^{k+1} \), contradicting the choice of \(f \).

Remark 3.4. (i) The proof of Theorem 3.3 also yields the stronger conclusion

\[
\beta_k(G) \geq \max_{0 \leq s \leq k-1} \beta_{k-s}(H) + D_{s+1}(G/H) - 1
\]

(ii) If \(G \) is abelian, we get \(\beta_k(G) \geq \beta_k(H) + D(G/H) - 1 \) for any subgroup \(H \leq G \). For the case \(G = H \oplus H_1 \), this was proved in [8], Proposition 3 (i).
4 The role of zero-sum sequences

In the rest of the paper we shall deal with the following situation: there is a distinguished non-trivial abelian normal subgroup \(A \) in \(G \), and any \(G \)-module \(V \) has an \(A \)-eigenbasis permuted up to non-zero scalar multiples by \(G \). This holds for example when \(A \) is an index two subgroup, since then an irreducible \(G \)-module is either 1-dimensional or is induced from a 1-dimensional \(A \)-module.

We shall always tacitly assume that our variables \(x_1, \ldots, x_n \) are permuted up to non-zero scalar multiples by \(G \) and \(x_i^a = \theta_i(a)x_i \) for all \(a \in A \), where \(\theta_i : A \to F^\times \) is a character of \(A \), called the shape of \(x_i \). The set of characters of \(A \) is denoted by \(\hat{A} \); there is a (non-canonic) isomorphism \(\hat{A} \cong A \) of abelian group, and we shall write \(\hat{A} \) additively. Let \(M(V) \) denote the set of monomials in \(F[V] \); this is a monoid with respect to ordinary multiplication and unit element 1. On the other hand we denote by \(\mathcal{M}(\hat{A}) \) the free commutative monoid generated by the elements of \(\hat{A} \). Define a monoid homomorphism \(\Phi : M(V) \to \mathcal{M}(\hat{A}) \) by sending each variable \(x_i \) to its weight \(\theta_i \). We shall call \(\Phi(m) \) the weight sequence of the monomial \(m \in M(V) \).

An element \(S \in \mathcal{M}(\hat{A}) \) can be interpreted as a sequence \(S := (s_1, \ldots, s_n) \) of elements of \(\hat{A} \) where their order is disregarded and repetition of elements is allowed; we number the occurrences of an element its multiplicity in \(S \). The length of \(S \) is \(|S| := n \). By a subsequence of \(S \) we mean \(S_J := (s_j \mid j \in J) \) for some subset \(J \subseteq \{1, \ldots, n\} \). Given a sequence \(R \) over an abelian group \(A \) we write \(R = R_1R_2 \) if \(R \) is the concatenation of its subsequences \(R_1, R_2 \), and we call the expression \(R_1R_2 \) a factorization of \(R \). Given an element \(a \in A \) and a positive integer \(r \), write \((a^r)\) for the sequence in which \(a \) occurs with multiplicity \(r \). For an automorphism \(b \) of \(A \) and a sequence \(S = (s_1, \ldots, s_n) \) we write \(S^b \) for the sequence \((s_1^b, \ldots, s_n^b)\), and we say that the sequences \(S \) and \(T \) are similar if \(T = S^b \) for some \(b \in \text{Aut}(A) \).

Let \(\theta : \mathcal{M}(\hat{A}) \to \hat{A} \) be the monoid homomorphism which assigns to each sequence over \(A \) the sum of its elements. The value \(\theta(\Phi(m)) \in \hat{A} \) is called the weight of the monomial \(m \in M(V) \) and it will be abbreviated by \(\theta(m) \). The sequence \(S \) is a zero-sum sequence if \(\theta(S) = 0 \). Our interest in zero-sum sequences and the related results in additive number theory stems from the observation that the invariant ring \(F[V]^A \) is spanned as a vector space by all those monomials for which \(\Phi(m) \) is a zero-sum sequence over \(\hat{A} \). Moreover, as an algebra, \(F[V]^A \) is minimally generated by those monomials \(m \) for which \(\Phi(m) \) does not contain any proper zero-sum subsequences. These are called irreducible zero-sum sequences. A sequence is zero-sum free if it has no non-empty zero-sum subsequence. See for example [7] for a survey on zero-sum sequences.

5 Groups of dihedral type

Definition 5.1. A sequence \(C \) over an abelian group \(A \) is called a zero-corner if \(C \) has a factorization \(C = EFH \) into non-empty subsequences \(E, F, H \) such that \(EF \) and \(EH \) are zero-sum sequences. We denote by \(\rho(C) \) the minimal value of
max{\(|EF|, |EH|, |FH|\)} over all factorizations \(C = EFH\) satisfying the above properties, and we call it the diameter of \(C\).

Lemma 5.2. Let \(S = (s_1, \ldots, s_l)\) be a sequence over \(A\) consisting of non-zero elements. Suppose that \(S\) contains a maximal zero-sum free subsequence of length \(d \leq l - 3\). Then \(S\) contains a zero-corner \(C\) with \(\rho(C) \leq d + 1\).

Proof. For \(I \subseteq \{1, \ldots, l\}\) we denote by \(S_I\) the subsequence \((s_i : i \in I)\). We may suppose that a maximal zero-sum free subsequence of \(S\) is \(S_J\) where \(J = \{1, \ldots, d\}\). For each \(i = 1, 2, 3\) a nonempty subset \(H_i \subseteq J \cup \{d+i\}\) exists such that \(S_{H_i}\) is an irreducible zero-sum sequence and \(d+i \in H_i\). Observe that \(|H_i| \geq 2\) as the zero-sum sequence \(S_{H_i}\) must consist of non-zero elements. There are two cases:

(i) If the three sets \(H_i\) are pairwise disjoint then \(C := S_{H_1}S_{H_2}S_{H_3}\) is a zero-corner with \(\rho(C) \leq d + 3 - \min\{|H_1|, |H_2|, |H_3|\} \leq d + 1\).

(ii) Otherwise, if e.g. \(H_1 \cap H_2 \neq \emptyset\) then \(C := S_{H_1 \cup H_2}\) is a zero-corner with \(\rho(C) \leq \max\{|H_1|, |H_2|, d + 2 - |H_1 \cap H_2|\} \leq d + 1\); indeed, \(C = EFH\) with \(E := S_{H \cap H_2}, F := S_{H_3 \triangle H_2}, H := S_{H_2 \triangle H_1}\).

We turn now to a semidirect product \(G = A \rtimes Z_2\) where \(A\) is a non-trivial abelian group and \(Z_2 = (b)\) acting on it by inversion (in particular, when \(A = Z_n\) is the cyclic group of order \(n\), we obtain the dihedral group \(D_{2n}\) of order \(2n\)). Keeping conventions, notations and terminology introduced in Sections 2 and 4 let \(W\) be a \(G\)-module over \(F\), \(I = F[W]^A, R = F[W]^G\) and \(\tau := \tau_A^I : I \to R\) is the relative transfer map.

Proposition 5.3. For any monomial \(m \in I\) and integer \(k \geq 0\) it holds that \(m \in I_+ R^A_+\) provided that

(i) \(\deg(m) \geq k \text{D}(A) + 2\), or

(ii) \(\deg(m) \geq (k - 1) \text{D}(A) + d + 2\) where \(\Phi(m)\) contains a zero-corner with diameter \(d\)

Proof. We apply induction on \(k\). The case \(k = 0\) is trivial so we may suppose \(k \geq 1\). Assume condition (ii). Thus \(m = nr\) where the monomial \(n = efh\) is such that \(ef\) and \(eh\) are \(A\)-invariant monomials, and \(\max\{\deg(ef), \deg(eh), \deg(fh)\} = d\). Denoting \(\theta(e)\) by \(a \in A\) we have \(\theta(f) = \theta(h) = -a\) and \(\theta(r) = \theta(e) = a\).

The generator \(b\) of \(Z_2\) transforms each monomial of weight \(a\) into a monomial of weight \(-a\), and vice versa, hence \(fh^b\) and \(e^b r\) are both \(A\)-invariant. Given that \(b^2 = 1\) the following relation holds:

\[
2m = \tau(ef)hr + \tau(eh)fr - \tau(fh^b)e^br.
\]

(7)

After division by \(2 \in F^\times\) we get from (7) that \(m \in I_{\geq \deg(m) - d(R_+) \leq d}\). Given that \(\deg(m) - d \geq (k - 1) \text{D}(A) + 2\) by assumption, the induction hypothesis applies, whence \(I_{\geq \deg(m) - d} \subseteq R^A_{\geq \deg(m) - d}\) and \(m \in I_+ R^A_+\) as claimed. Suppose next
that condition (i) holds. If \(m \) contains three \(A \)-invariant variables, then \(\Phi(m) \) contains the zero corner \((0,0,0)\) with diameter 2, hence we are back in case (ii). Otherwise \(\Phi(m) \) contains a subsequence of length at least \(kD(A) \) of non-zero elements. If \(k > 1 \), then by Lemma 5.2 \(\Phi(m) \) has a zero-corner of diameter at most \(D(A) \), so again we are back in case (ii). It remains that \(k = 1 \). If \(m \) contains one or two \(A \)-invariant variables, then \(m \in I^3_+ \subseteq I_+R^k_+ \) by Lemma 6.2. Otherwise \(\Phi(m) \) contains a subsequence of length at least \(D(A) + 2 \) of non-zero elements, hence by Lemma 5.2 \(\Phi(m) \) contains a zero-corner of diameter at most \(D(A) \). We are done by case (ii).

\[\text{Theorem 5.4. Let } G = A \rtimes_{-1} Z_2 \text{ and suppose } |G| \in \mathbb{R}^\times. \text{ Then}\]
\[D_k(A) + 1 \leq \beta_k(G) \leq kD(A) + 1\]

\[\text{Proof. By Proposition 2.2 we have } \beta_k(G, W) \leq \beta_k(I_+, R). \text{ Since } I_d \subseteq I_+ R^k_+ \text{ for } d \geq kD(A) + 2 \text{ by Proposition 5.3 it follows that } \beta_k(I_+, R) \leq kD(A) + 1. \text{ The lower bound is given by Theorem 3.3.}\]

If \(k = 1 \) then \(D_1(A) = D(A) \) and if \(A = Z_n \) is cyclic then \(D_k(Z_n) = kD(Z_n) \), hence we obtain the following immediate consequences:

\[\text{Corollary 5.5. For any abelian group } A \text{ we have } \beta(A \rtimes_{-1} Z_2) = D(A) + 1.\]

\[\text{Corollary 5.6. For the dihedral group } D_{2n} \text{ of order } 2n \text{ and an arbitrary positive integer } k \text{ we have } \beta_k(D_{2n}) = nk + 1, \text{ provided that } 2n \in \mathbb{R}^\times.\]

The special case \(k = 1 \) of Corollary 5.6 is due to Schmid \cite{11} when \(\text{char}(F) = 0 \) and to Sezer \cite{12} in non-modular positive characteristic.

\section{Extremal invariants}

Let \(A \) be an abelian normal subgroup in a finite group \(G \), and assume the conditions and conventions from the beginning of Section 4.

\[\text{Definition 6.1. Let } R = \mathbb{F}[V]^G; \text{ a monomial } u \in \mathbb{F}[V]^A \text{ will be called } k-\text{extremal with respect to } \tau_A^G \text{ if } \deg(u) = \beta_k(G) \text{ while } \tau_A^G(u) \notin R^{k+1}_+. \text{ A sequence } S \text{ over } \hat{A} \text{ is } k-\text{extremal if there is a } G \text{-module } V \text{ and a monomial } m \in \mathbb{F}[V]^A \text{ with } \Phi(m) = S \text{ such that } m \text{ is } k-\text{extremal with respect to } \tau_A^G.\]

For any sequence \(S = (s_1, ..., s_d) \) over an abelian group \(A \) the set of its partial sums is
\[\Sigma(S) := \left\{ \sum_{i \in I} s_i : I \subseteq \{1, ..., d\} \right\}.\]

\[\text{Lemma 6.2. Let } p \text{ be a prime and } S = (s_1, ..., s_d) \text{ a sequence of non-zero elements of } Z_p. \text{ Then } |\Sigma(S)| \geq \min\{p, d + 1\}.\]

\[\text{Proof. This is a well known and easy consequence of the Cauchy-Davenport Theorem, asserting that } |C + D| \geq \min\{p, |C| + |D| - 1\} \text{ for any non-empty subsets } C, D \text{ in } Z_p, \text{ where } p \text{ is a prime.}\]
Lemma 6.3. (Freeze – Smith [6]) For any zero-sum free sequence S over \mathbb{Z}_n of length d and maximal multiplicity $h = h(S)$ it holds that

$$|\Sigma(S)| \geq 2d - h + 1.$$

Proposition 6.4. Let $G = A \rtimes_{\kappa} \mathbb{Z}_2 = D_{2n}$ be the dihedral group of order $2n$ where $n \geq 3$. A sequence over $A \cong \mathbb{Z}_n$ is k-extremal with respect to τ^G_A only if it has the form $(0, a^{kn})$ for some generator a of A.

Proof. Let $m \in \mathbb{F}[W]^A$ be a monomial of $\deg(m) = \beta_k(D_{2n}) = kn + 1$ such that $\tau^G_A(m) \not\in R_k^{k+1}$. If m is divisible by the product of two weight zero variables, then $m \in R_k I_{2kn-1}$ by Lemma 2.1. Since $kn - 1 > \beta_{k-1}(D_{2n})$, we get $\tau^G_A(m) \in R_k \tau^G_A(I_{2kn-1}(D_{2n})) \subseteq R_k^{k+1}$, a contradiction. It remains that the multiplicity of 0 in $\Phi(m)$ is at most one. Let $H \subseteq \mathbb{Z}_n$ be the set of nonzero values occurring in $\Phi(m)$. Suppose $|H| \geq 2$; if $\Phi(m)$ contains a zero-corner of the form $(w, w, -w)$ with diameter 2, then $\tau(m) \in R_k^{k+1}$ by Proposition 6.3(ii), a contradiction. We are done if $n = 3$, so assume for the rest that $n \geq 4$. Then $\Phi(m)$ contains a zero-sum free subsequence of length 2, consisting of two distinct elements. By Lemma 6.3 this extends to a maximal zero-sum free subsequence of length at most $n - 2$. If $k > 1$ or $0 \notin \Phi(m)$, then $\tau(m) \in R_k^{k+1}$ by Lemma 6.2 and Proposition 6.3, a contradiction. If $k = 1$ and $0 \in \Phi(m)$, then $m \in I_0^2$ by Lemma 2.1, hence $\tau(m) \in R_0^2$ by Lemma 2.1 a contradiction again. Consequently $|H| = 1$ and $\Phi(m) = (0, a^{kn})$. Taking into account Lemma 2.1 a must have order n, whence our claim.

7 A result on zero-sum sequences

Let e be a generator of the cyclic group \mathbb{Z}_n; for an arbitrary element $a \in \mathbb{Z}_n$, the smallest positive integer r such that $a = re$ is denoted by $\|a\|_e$. For any sequence $S = (a_1, ..., a_t)$ over \mathbb{Z}_n we set $||S||_e := ||a_1||_e + ... + ||a_t||_e$.

The following two statements are based on an intermediary step in the proof of the Savchev – Chen Theorem (see Proposition 2. in [10]):

Proposition 7.1. Let $S_1 \subseteq S_2 \subseteq ... \subseteq S_t$ be zero-sum free sequences over the cyclic group \mathbb{Z}_n such that $|S_i| = i$ for all $i = 1, ..., t$ and

$$|\Sigma(S_{i+1})| \geq |\Sigma(S_i)| + 2$$

for all $i \leq t - 1$ (8)

If moreover $S_t(b)$ is also zero-sum free for some $b \in \mathbb{Z}_n$ and $|\Sigma(S_t(b))| = |\Sigma(S_t)| + 1$, then b is the unique element with these two properties.

Lemma 7.2. Any sequence S over \mathbb{Z}_n contains either a zero-sum sequence of length at most $\lceil \frac{n}{2} \rceil$ or an element of multiplicity at least $\lceil |S| - \frac{n}{2} \rceil$.

Proof. Suppose that S does not contain a zero-sum sequence of length at most $\lceil \frac{n}{2} \rceil$ and let $S_1 \subseteq ... \subseteq S_t$ be zero-sum free sequences where t is maximal with the property that $|\Sigma(S_{i+1})| \geq |\Sigma(S_i)| + 2$ and $|S_i| = i$ for every $i \leq t - 1$; let
\[S = S_t R. \] By this assumption \(n \geq |\Sigma(S_t)| \geq 2t. \] If \(t = \left\lfloor \frac{n}{2} \right\rfloor \), which enforces that \(n \) is even, then \(|\Sigma(S_t)| = n \), hence any \(a \in R \) can be completed into a zero-sum sequence \(U(a) \) with some \(U \subseteq S_t \). By our assumption it is necessary that \(|U(a)| > \left\lfloor \frac{n}{2} \right\rfloor \), hence \(U = S_t \) and the multiplicity of \(a = -\theta(S_t) \) is at least \(|R| = |S| - \frac{n}{2} \). It remains that \(t \leq \left\lfloor \frac{n}{2} \right\rfloor - 1 \). Then for any \(b \in R \) the sequence \(S_t(b) \) of length at most \(\left\lfloor \frac{n}{2} \right\rfloor \) must be zero-sum free by our assumption, hence by the maximality property of \(S_t \) necessarily \(|\Sigma(S_t(b))| = |\Sigma(S)| + 1 \). But we know from Proposition 7.1 that the element \(b \) with these two properties is unique, hence \(b \) has multiplicity \(|R| \geq |S| - \left\lfloor \frac{n}{2} \right\rfloor + 1 \).

\[\square \]

Lemma 7.3. Let \(S \) be a zero-sum sequence over \(Z_n \) of length \(|S| \geq kn + 1 \) where \(k \geq 2 \), which does not factor into more than \(k + 1 \) non-empty zero-sum sequences. Then \(S = T_1T_2(e^{(k-1)n}) \) where \((e) = Z_n \) and \(||T_1||_e = ||T_2||_e = n \).

Proof. First we prove that an element \(e \in S \) has multiplicity at least \((k-1)n\); if so \(e \) will have order \(n \), for otherwise \(S \) factors into at least \(2(k - 1) + 2 > k + 1 \) non-empty zero-sum sequences. Let \(S = T_1T_2 \) where \(T_1 \) is a non-empty zero-sum sequence of minimal length in \(S \). If \(|T_1| > \left\lfloor \frac{n}{2} \right\rfloor \) then \(h(S) \geq |S| - \left\lfloor \frac{n}{2} \right\rfloor \) by Lemma 7.2 and we are done. If however \(|T_1| \leq \left\lfloor \frac{n}{2} \right\rfloor \) then \(S_1 = T_1T_2 \) where \(T_2 \) is a minimal non-empty zero-sum sequence in \(S_1 \); obviously \(|T_2| \geq |T_1| \). If \(|T_2| > \left\lfloor \frac{n}{2} \right\rfloor \) then \(h(S) \geq h(S_1) \geq |S_1| - \left\lfloor \frac{n}{2} \right\rfloor \geq |S| - \left\lfloor \frac{n}{2} \right\rfloor - |T_2| = |S| - n \) by Lemma 7.2 and we are done again. It remains that \(|T_2| \leq \left\lfloor \frac{n}{2} \right\rfloor \). Then \(|T_1T_2| \leq n + 1 \) and \(|S_2| \geq (k - 1)n \). Given that \(S_2 \) cannot be factored into more than \(k - 1 \) non-empty zero-sum sequences it is necessary that \(S_2 = (e^{(k-1)n}) \).

Now suppose to the contrary that \(||T_1||_e > n \), say. Then \(T_1 = U(a)V \) where \(U, V \) are non-empty subsequences such that \(||U||_e < n, ||U(a)||_e > n \). But then \(e^{n}T_1 = (e^{n-||U||_e})U \cdot (e^{n-||a||_e}a) \cdot (e^{||U||_e+a||e-n})V \) is a factorization which leads to a decomposition of \(S \) into more than \(k + 1 \) non-empty zero-sum sequences, and this is a contradiction.

\[\square \]

8 **The contraction method: the groups** \(Z_r \times_{-1} Z_{2^n} \)

Let \(B \leq A \) be a subgroup of an abelian group \(A \). If \(S = (s_1, ..., s_d) \) is a sequence over \(A \), then \((s_1 + B, ..., s_d + B) \) is a sequence over \(A/B \) which will be denoted by \(S/B \). Suppose that \(\theta(S) \in B \); a \(B \)-**contraction** of \(S \) is a sequence over \(B \) of the form \((\theta(S_1), ..., \theta(S_i)) \) where \(S = S_1...S_1 \) and each \(S_i/B \) is an irreducible zero-sum sequence over \(A/B \); so indeed \(\theta(S_i) \in B \).

Suppose that \(A \) is a non-trivial abelian normal subgroup of \(G \). Let \(C < A \) be a subgroup such that \(C \triangleleft G \) hence \(A/C \) is a non-trivial abelian normal subgroup of \(G/C \). Suppose moreover that any \(G \)-module has an \(A \)-eigensubspace permuted up to scalars by \(G \), so we can apply the conventions of Section 4 both for the pair \((G, A) \) and \((G/C, A/C) \). Note that \(\widehat{A/C} \) is a trivial subgroup of \(A \), thus the above notion of contractions can be applied based on the following observation:

Lemma 8.1. For any \(G \)-module \(V \) there exists a \(G/C \)-module \(U \) and a \(G/C \)-equivariant \(\mathbb{F} \)-algebra epimorphism \(\pi : \mathbb{F}[U] \rightarrow \mathbb{F}[V]^C \) such that any monomial...
Let \(m \in \mathbb{F}[V]^C \) have a preimage \(\tilde{m} \in \pi^{-1}(m) \) with \(\Phi(\tilde{m}) \) equal to an arbitrarily prescribed \(A/C \)-contraction of \(\Phi(m) \).

Proof. By assumption \(V^* \) has a basis \(x_1, \ldots, x_n \) consisting of \(A \)-eigenvectors which are permuted up to scalars by \(G \). Let \(M \) be the set of \(C \)-invariant monomials in these variables, and \(E \subset M \) the subset of the irreducibles among them, i.e. which cannot be factored into two non-trivial \(C \)-invariant monomials. \(\mathbb{F}[V]^C \) is minimally generated as an algebra by \(E \). Moreover the factor group \(G/C \) has an inherited action on \(\mathbb{F}[V]^C \), and permutes the elements of \(E \) up to non-zero scalar multiples. Define \(U \) as the dual of the \(G/C \)-invariant subspace \(\text{Span}_E(E) \). \(E \) is a basis of this vector space, hence \(E \) is identified with the set of variables in \(\mathbb{F}[U] \). The \(\mathbb{F} \)-algebra epimorphism \(\pi : \mathbb{F}[U] \to \mathbb{F}[V]^C \) taking a variable to the corresponding irreducible \(C \)-invariant monomial is \(G/C \)-equivariant. Now let \((\theta(S_1), \ldots, \theta(S_l)) \) be an arbitrary \(A/C \)-contraction of \(\Phi(m) \) for a monomial \(m \in \mathbb{F}[V]^C \). By definition this means that \(m = m_1 \ldots m_l \) where each \(m_i \) is an irreducible \(C \)-invariant monomial with \(\Phi(m_i) = S_i \). Hence for each \(i \) there are variables \(y_1, \ldots, y_i \in \mathbb{F}[U] \) such that \(\pi(y_i) = m_i \) by construction, and the monomial \(\tilde{m} := y_1 \ldots y_l \) has the required property. \(\square \)

Using this map \(\pi \) we can derive information on the generators of \(\mathbb{F}[V]^G \) from our preexisting knowledge about the generators of \(\mathbb{F}[U]^{G/C} \). As an example of this principle, we will study here the group \(G := Z_r \times_{-1} Z_{2n} \) where \(r \) and \(2n \) are coprime, \(r \geq 3 \), and the generator of \(Z_{2n} \) operates by inversion on \(Z_r \). The center of \(G \) is \(C = Z_n \) and \(G/C \) is isomorphic to the dihedral group \(D_{2n} \), whose extremal monomials were described before. \(G \) has the abelian normal subgroup \(A \cong Z_{rn} \), \(A \geq C \) such that \(G/A = \langle b \rangle \cong Z_2 \). We will write \(S \sim S' \) for two sequences over \(A \) if \(S = EF \) and \(S' = E^bF \) for a zero-sum sequence \(E \) of length at most \(n \).

Proposition 8.2. If \(S \) is a \(k \)-extremal sequence over \(A \) then any \(A/C \)-contraction of any sequence \(S' \sim S \) is a \(k \)-extremal sequence over \(A/C \).

Proof. Since \(S \) is a \(k \)-extremal sequence, there is a \(G \)-module \(V \) and a monomial \(m \in \mathbb{F}[V]^A \) such that \(\Phi(m) = S \) and \(m \) is \(k \)-extremal with respect to \(\tau^G_S \). Let \(\pi : \mathbb{F}[U]^{A/C} \to \mathbb{F}[V]^A \) denote the restriction of the map constructed in Lemma 8.1 to the \(A \)-invariants, and consider the transfer maps \(\hat{\tau} : \mathbb{F}[U]^{A/C} \to \mathbb{F}[U]^{G/C} \), \(\tau : \mathbb{F}[V]^A \to \mathbb{F}[V]^G \). The \(G/C \)-equivariance of \(\pi \) implies that \(\tau \pi = \pi \hat{\tau} \). Suppose first that \(S \) has a non-\(k \)-extremal \(C \)-contraction \(\hat{S} \). Since \(|\hat{S}| \geq \frac{1}{k-1} |S| \) where we have \(|S| = \beta_k(G) \geq knr + 1 \) by Theorem 3.3, it follows that \(|\hat{S}| \geq kr + 1 = \beta_k(G/C) \) by Corollary 8.0. So for the monomial \(\hat{m} \in \mathbb{F}[U] \) with \(\pi(\hat{m}) = m \) and \(\Phi(\tilde{m}) = \hat{S} \), which exists by Lemma 8.1, we have \(\hat{\tau}(\hat{m}) \in (\mathbb{F}[U]^{G/C})^{k+1} \). But then \(\tau(m) = \pi(\hat{\tau}(\hat{m})) \in (\mathbb{F}[V]^G)^{k+1} \), a contradiction.

Now suppose that a sequence \(S' = E^bF \) has a \(C \)-contraction \(\hat{S} \) which is not \(k \)-extremal, where \(0 < |E| \leq n \). Then take a factorization \(m = uv \) with \(\Phi(u) = E \) and \(\Phi(v) = F \). By the previous argument \(\tau(u^b) \in (\mathbb{F}[V]^G)^{k+1} \). By Lemma 2.1 and Corollary 5.1 we have \(\beta_k(G) \leq \beta_k(D_{2n})(C) = nrk + n \), hence
\text{deg}(v) = \text{deg}(m) - |E| \geq \beta_k(G) - n \geq nrk + 1 - n > nr(k - 1) + n \geq \beta_{k-1}(G). \]

Consequently \(\tau(v) \in (\mathbb{F}[V\sharp_1^r])^k\) and \(\tau(m) = \tau(u)\tau(v) - \tau(v^b) \in (\mathbb{F}[V\sharp_1^r])^{k+1},\) a contradiction again.

In the following statement we identify \(\hat{A} = \mathbb{Z}_{rn}\) with the additive group of \(\mathbb{Z}/rn\mathbb{Z}\) and write 0, 1, 2, \ldots for its elements, whenever it seems convenient.

Lemma 8.3. Let \(S\) be a zero-sum sequence over \(\hat{A} = \mathbb{Z}_{rn}\) having length at least \(nrk + 1\), where \(k \geq 1, n \geq 3, r \geq 3,\) and \(r\) and \(2n\) are coprime. If any \(Z_r\)-contraction of any sequence \(S' \sim S\) is similar to \((0, nr^k)\) then \(S\) is similar to \((0, nr^k)\).

Proof. By assumption any \(Z_r\)-contraction of \(S\) must have length \(l := rk + 1\). By Lemma 8.3 then \(S = T_1 ... T_l\) where \(T_i/Z_r = (e^n)\) for every \(i \leq l - 2\) and some generator \(e\) of \(Z_{rn}/Z_r \cong \mathbb{Z}_n\), while \(|T_{l-1}/Z_r|_e = |T_l/Z_r|_e = n\), and we may assume that the sequence \(\theta(T_1), \ldots, \theta(T_l)\) equals \((0, nr^k)\). In particular, at most one element of the sequence \(S\) belongs to \(\mathbb{Z}_n\), and so \(x^b \neq x\) for \(x \in S\) with at most one exception. As \(l \geq 4\) we may assume that \(\theta(T_1) \neq 0\) and let \(i \neq 1\) be any other index for which \(\theta(T_i) \neq 0\). Take an arbitrary element \(x \in T_i\) and let \(U \subseteq T_i\) be an arbitrary subsequence of length \(d := ||x + Z_r||_e < n\). After exchanging the proper subsequences \(U\) and \((x)\) in \(T_1\) and \(T_i\), the resulting \(T_1\) and \(T_i\) projects to zero-sum sequences over \(\mathbb{Z}_n\), so we get another \(Z_r\)-contraction of \(S\):

\[
(\theta(T_1), \theta(T_2), \ldots, \theta(T_i), \ldots, \theta(T_l)) = (0, nr^{k-2}, \ldots, n - \delta, n + \delta)
\]

where \(\delta := \theta(U) - x\). By assumption this must be similar to \((0, nr^k)\) which is only possible if they are actually equal (here we used that \(l \geq 4\)). Therefore \(\delta = 0\) and \(x = \theta(U)\). As this holds for any subsequence \(U \subseteq T_1\) of the same length \(d < |T_1|\), necessarily \(T_1 = (f^n)\) for some generator \(f \in Z_{nr}\) such that \(f + Z_r = e\). Moreover, as \(x = \theta(U) = df\), we get by the definition of \(d\) and \(||x||_f\) that

\[
||x||_f = ||x + Z_r||_e
\]

for every \(x \in T_i\), where \(i\) differs from that unique index \(s\) for which \(\theta(T_s) = 0\). Observe on the other hand that \(9\) cannot be true for every element \(y \in T_s\), for otherwise \(||T_s||_f = ||T_s/Z_r||_e = n\), which is impossible, as \(||T_s||_f\) must be a multiple of \(nr\). Now suppose that \(|T_s| \geq 2\) and that \(9\) fails for \(y \in T_s\). Then swapping \(y\) with a proper subsequence \(U \subseteq T_1\) of length \(||y + Z_r||_e\) we get as before that \(\delta := \theta(U) - y = -nf\), whence \(||y||_f = ||y + Z_r||_e + n(r - 1)\). On the other hand if \(z \in T_s\) is a second element besides \(y\) for which \(9\) fails, then in particular \((yz) \neq T_s\), as otherwise calculating \(||z||_f\) by the same argument yields that \(||T_s||_f = ||T_s/Z_r||_e + 2n(r - 1) = n(2r - 1)\), which is not a multiple of \(nr\). Now swapping \((yz)\) with a proper subsequence of \(T_1\) of length \(||y + Z_r||_e\) gives a \(Z_r\)-contraction of \(S\) of the form \((2n, -n, nr^{k-2})\) which is not similar to \((0, nr^k)\).

This contradiction shows that \(y\) is unique with the property that \(||y||_f \neq ||y + Z_r||_e\). So if \(|T_s| \geq 3\) then the sequence \(S'\) obtained from \(S\) by replacing \(T_s\) with \(T_s^\tau\) will not satisfy this requirement: indeed, \(||x + Z_r||_e = ||x^b + Z_r||_e\) for all \(x,\)
whereas $\|x\|_f = \|x^b\|_f$ means $x \in Z_n \subset \mathbb{Z}_{nr}$. Thus S' will have Z_r-contractions not similar to $(0, n)ek$, which is a contradiction as $S' \sim S$. It remains that $|T_s| = 2$ and $T_s = (-y, y)$. Then necessarily $s \in \{l - 1, l\}$ and $T_1 = \cdots = T_{l-2} = (f^n)$. If moreover $y \neq -f$ then $n(r-1) < \|y\|_f < nr - 1$ and consequently we have the factorization $T_sT_1 = (-y, y, f^n) = (y, f^{nr-\|y\|_f}(-y, f^{\|y\|_f-n(r-1)})$ which leads us back to the case when $|T_s| \geq 3$. Finally, if $y = -f$ then observe that $f^n \neq \pm f$, as we have $n > 2$; hence after replacing T_s with $T_s^b \neq (-f, f)$ we get back to the case when $y \neq -f$.

As a result of these contradictions we excluded that $|T_s| \geq 2$. Therefore $|T_s| = 1$ and $T_s = (0)$. Then we must have $|T_i| = n$ for every $i \neq s$ whence $|T_i/Z_i| = (e^n)$ follows. Using (9) this implies that $S = (0, f^{nrk})$.

Theorem 8.4. For the group $G = \mathbb{Z}_s \times (\mathbb{Z}_r \times \mathbb{Z}_{2n+1})$, where $r \geq 3$, $n \geq 1$ and r, s are coprime odd integers, we have $\beta_k(G) = 2^n srk + 1$, except if $s = n = 1$, in which case $\beta_k(G) = 2rk + 2$.

Proof. $\beta_k(G)$ is the length of a sequence S over $A := \mathbb{Z}_{2n}srk$ which is k-extremal with respect to τ^G_A. By Proposition 8.2 any Z_r-contraction of any sequence equivalent to S must be k-extremal with respect to τ^D_{2s}, hence it is similar to $(0, (2^n s)rk)$ by Proposition 6.4. Therefore S is similar to $(0, 12^n srk)$ by Lemma 8.3 provided that $2^n s \geq 3$; in particular $\beta_k(G) = |S| = 2^n srk + 1$.

For the case $s = n = 1$ we have $\beta_k(\mathbb{Z}_r \times \mathbb{Z}_4) \leq 2\beta_k(D_{2r}) = 2r + 2$ by Lemma 2.1 and Corollary 7.6. To see the reverse inequality consider the representation on $V = \mathbb{F}^2$ of $G := \langle a, b \rangle$ given by the matrices

$$
a \mapsto \begin{pmatrix} \omega & 0 \\ 0 & \omega^{-1} \end{pmatrix} \quad b \mapsto \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \quad (10)
$$

where ω is a primitive $2r$-th root of unity and $i = \sqrt{-1}$ a primitive fourth root of unity. Then $\mathbb{F}[V] = \mathbb{F}[x, y]$ where x, y are the usual coordinate functions on \mathbb{F}^2. Obviously $(xy)^2$ is invariant under a and b alike; from this it is easily seen that $R = \mathbb{F}[V]^G$ is generated by $(xy)^2$, $\tau_A(x^{2r})$ and $\tau_A(x^{2r+1})y$. This shows that any element of R^{k+1} not divisible by $(xy)^2$ must have degree at least $2r(k+1)$. As a result $(R^{k+1})_{2rk+2} \subseteq (xy)^2$. The invariant $\tau_A(x^{2rk+1}y) \in R_+$ of degree $2rk+2$ does not belong to the ideal $\langle (xy)^2 \rangle$ and this proves that $\beta_k(G) \geq 2rk + 2$. □

9 The quaternion group

The dicyclic group Dic_{4n} is defined for any $n > 1$ by the presentation

$$
\text{Dic}_{4n} = \langle a, b : a^{2n} = 1, b^2 = a^n, bab^{-1} = a^{-1} \rangle
$$

In particular for $n = 2$ we retrieve the quaternion group $Q = \text{Dic}_8$. The equality $\beta(Q) = 6$ for $\mathbb{F} = \mathbb{C}$ was proved in [11].

Proposition 9.1. We have $\beta_k(\text{Dic}_{4n}) = 2nk + 2$ for $n > 1$ even and $k \geq 1$. Moreover if $(r, 4n) = 1$ then $1 \leq \beta_k(\mathbb{Z}_r \times \text{Dic}_{4n}) - 2nrk \leq 2$.

Proof. Taking \(\omega \) a primitive \(2n \)-th root of unity in \((10)\), the same argument as in the proof of Theorem \((5.4)\) shows that \(\beta_k(Dic_{4n}) \geq 2nk + 2 \). Moreover for \(G := Z_r \times Dic_{4n} \), we have \(\beta_k(G) \geq 2nk + 1 \) by Theorem \((5.3)\). Observe that \(G/Z(Dic_{4n}) \) is isomorphic to \(Z_r \times D_{2n} \), respectively to \(Z_{2r} \times Z_2 \) for \(n = 2 \). Combining Lemma \((2.1)\) with Corollary \((5.6)\) leads to the inequality \(\beta_k(G) \leq 2nk + 2 \). \(\square \)

Proposition 9.2. Let \(Q = \langle a, b \rangle \) be the quaternion group where \(A := \langle a \rangle \) is isomorphic to \(Z_4 \). If \(S \) is a zero-sum sequence over \(A \) of length \(4k + 2 \) which is \(k \)-extremal with respect to \(\tau_A \) then \(S = (1^t, 3^s) \) where \(t \neq s \).

Proof. Set \(I = \mathbb{F}[V]^A, R = \mathbb{F}[V]^Q \) and let \(S = (0^t, 2^y, 1^t, 3^s) \) be the weight sequence of a monomial \(m \in I \) of degree \(4k + 2 \) such that \(\tau(m) \notin R_{+}^{k+1} \). By replacing \(m \) with \(m^b \), if needed, we may suppose that \(t \geq s \). We will use induction on \(t - s \). Suppose first that \(t - s \leq 4 \) and consider the factorization \(S = (22)(y/2)(13)^s(0)^tT \). If \(y \) is odd then necessarily \(T = (211) \) and \(x \geq 1 \), hence \(m \in I_{2k+1}^+ \), which is a contradiction by Lemma \((2.1)\). If however \(y > 0 \) then either \(T \) is empty, and then \(m \in I_{2k+1}^+ \) again, or else \(T = (11111) \); in this later case if \(x \geq 2 \) then again \(m \in I_{2k+1}^+ \) or otherwise, taking into account that \(|S| \) is even, it remains that \(x = 0 \) and \(S = (2^y, 1^{s+1}, 3^s) \). Now, if \(y > 0 \) then take a factorization \(m = uv \) such that \(\Phi(u) = (211) \) and observe that \(\tau(m) = \tau(u)v - \tau(u^kv) \notin R_{+}^{k+1} \), because on the one hand \(\deg(v) = 3k - 1 > \beta_{k-1}(Q) \), while on the other hand \(\Phi(u^kv) = (2^y)(13)^{s+2} \), hence \(u^kv \in I_{2k+1}^+ \) by what has been said before. From this contradiction we conclude that \(y = 0 \) and \(S = (1^t, 3^s) \) whenever \(t - s \leq 4 \) holds.

Finally, if \(t - s > 4 \) we have a factorization \(m = uv \) with \(\Phi(u) = (11111) \), and since \(\tau(m) = \tau(u)v - \tau(u^kv) \notin R_{+}^{k+1} \) by assumption, it is necessary that either \(\tau(v) \notin R_{+}^{k+1} \), when \(\Phi(v) = (1^{t-1}, 3^s) \) by the induction hypothesis, or \(\tau(u^kv) \notin R_{+}^{k+1} \), when similarly \(\Phi(u^kv) = (1^{t-1}, 3^{s+2}) \), and in both cases \(\Phi(m) = (1^t, 3^s) \), as claimed. \(\square \)

Theorem 9.3. Let \(G = Z_p \times Q \) for an odd prime \(p \). Then \(\beta_k(G) = 4pk + 1 \) for every \(k \geq 1 \).

Proof. Here the distinguished abelian normal subgroup is \(A := C \times B \cong Z_{4p} \), where \(C := Z_p \triangleleft G \) and \(B := \langle a \rangle \). Set \(L := \mathbb{F}[V] \) and \(R := L^G \). We write \(\theta|_C \) and \(\theta|_B \) for the restriction of the character \(\theta \in \hat{A} \) to \(C \) or \(B \), respectively, and we define accordingly \(S|_C \) and \(S|_B \) for any sequence \(S \) over \(A \); note that \(\theta = (\theta|_C, \theta|_B) \) by the natural isomorphism \(\hat{A} \cong \hat{C} \times \hat{B} \).

We already proved in Proposition \((9.1)\) that \(1 \leq \beta_k(G) - 4kp \leq 2 \). Suppose for contradiction that there is a \(G \)-module \(V \) and a monomial \(m \in \mathbb{F}[V]^A \) with \(\deg(m) = 4pk + 2 \) and \(\tau^G_A(m) \notin R_{+}^{k+1} \). Given that the restriction of \(\tau^G_B \) to \(L^A \) coincides with \(\tau^G_A \), the sequence \(\Phi(m)|_B \) is \(kp \)-extremal: indeed, otherwise \(\tau^G_A(m) \in (L^G_{+})^{kp+1} \) as \(\deg(m) = \beta_k(Q) \), and since \((L^G_{+})^{kp+1} \subseteq R_{+}^{k+1} \) by Lemma \((2.1)\) we get that \(\tau^G_A(m) = \tau^G_B(m) \in (R_{+}^{k+1}L^G_{+}) \cap R_{+} \), but for any \(f \in (R_{+}^{k+1}L^G_{+}) \cap R_{+} \) we have \(\left[(1^t, 3^s) \right] \tau^G_A(f) \) for any monomial \(m \in \mathbb{F}[V]^A \). Combining Lemma \((2.1)\) with Corollary \((5.6)\) leads to the inequality \(\beta_k(G) \leq 2nk + 2 \). \(\square \)
contradiction. As a result $\Phi(m)|_B = (1^4, 3^s)$ by Proposition 9.2, where $t > s$ can be assumed and $t + s = 4pk + 2$. Accordingly m has a factorization

$$m = m_1 \cdots m_l$$

(11)

where $\Phi(m_i)|_B = (1, 3)$ for $i \leq s$ and $\Phi(m_i)|_B = (1^4)$ for $s < i \leq l$, so that $l = s + \frac{t - s}{3}$. Consider the sequence $S := \{\theta(m_1)|_C, \ldots, \theta(m_l)|_C\}$; it contains at most one occurrence of 0, for otherwise $m \in (L^A_+)^2 L^A_{\geq 4pk-6} \subseteq R_+ L^A_{> \beta_{k-1}(G)}$ by Lemma 2.1 hence $\tau_A^G(m) \in R^k_{+1}$, a contradiction. Moreover S cannot be factored into $2k + 1$ zero-sum sequences over C, for otherwise $\tau^G_A(m) \in R^k_{+1}$ follows again as $m \in (L^A_+)^{2k+1} \in R^k_+ L^A_+$.

We claim that $\{1, \ldots, l\}$ can be partitioned into two disjoint, non-empty subsets U, V such that the monomials $u = \prod_{i \in U} m_i$ and $v = \prod_{i \in V} m_i$ are A-invariant, $\tau_A^G(u^b v) \in R^k_{+1}$ and deg$(v) > 4p(k-1) + 2 \geq \beta_{k-1}(G)$. Under these assumptions $\tau_A^G(m) = \tau_A^G(u)\tau_A^G(v) - \tau_A^G(u^b v) \in R^k_{+1}$, since $\tau_A^G(v) \in R^k_+$ and this will refute our indirect hypothesis.

We will prove our claim by induction on $\frac{t-s}{3}$. Suppose first that $\frac{t-s}{3} = 1$, i.e. $l = 2pk$. Then $\theta(m_1)|_C = \ldots = \theta(m_l)|_C$ for otherwise S could be factored into $2k + 1$ zero-sum sequences. Observe that if x is a variable in m_i and y is a variable in m_j where $i \neq j$ and $\theta(x)|_B = \theta(y)|_B$, then $\theta(x) = \theta(y)$, since otherwise swapping the variables x and y yields another factorization as in (11) where $l = 2pk$ but not all $\theta(m_i)|_C$ are equal. We conclude that $\Phi(m) = (e^{2pk+1}, 3e^{2pk+1})$ for some generator e of A. Then $U := \{1, \ldots, p\}, V := \{p+1, \ldots, l\}$ is the required bipartition, since $\Phi(u^b v)$ is not similar to $\Phi(m)$ and consequently $\tau_A^G(u^b v) \in R^k_{+1}$ by the above considerations.

For the rest it remains that $\frac{t-s}{3} > 1$, hence $\Phi(m_{l-1})|_B = \Phi(m_l)|_B = (1^4)$. If $\theta(m_i) = 0$ for some $i > s$, say $i = l$, then choosing $U = \{l\}$ gives the required factorization: indeed, $\Phi(u^b v)|_B = (1^r, 3^s)$ where $r - s < t - s$ and consequently $\tau_A^G(u^b v) \in R^k_{+1}$ by induction on $\frac{t-s}{3}$. If however S contains at least $p + 1$ non-zero elements then using Lemma 6.2 we get a subset $I \subseteq \{1, \ldots, l-2\}$ such that $|I| \leq p+1$ and $\theta(\prod_{i \in I} m_i) = -\theta(m_l)$. Now set $U := I \cup \{l\}$, $V := \{1, \ldots, l-1\}\backslash I$ and observe that $\Phi(u^b v)|_B = (1^r, 3^s)$ where $r - s < t - s$. So we are done as before, provided that $|U| < p - 1$ or there is an index $i \in U$ such that $i \leq s$, because this guarantees that deg$(u) \leq 4p - 2$.

Otherwise it remains that $l = p + 1$, $s = 1$ and $\theta(m_1) = 0$. Here $m_1 = xy$, where $\theta(x)|_B = 1$ and $\theta(y)|_B = 3$. If there is a variable z in $m_2 \ldots m_l$ with $\theta_C(z) \neq \theta_C(x)$, then by swapping the variables x and z we get back to a case considered already. Thus $\Phi(m/y) = ((1, c)^{4p+1})$ for a non-zero element $c \in C \cong Z_p$, and $\theta(y) = (3, -c)$. Here $U := \{1\}, V := \{2, \ldots, l\}$ is the required bipartition, because $\Phi(u^b v) = ((1, -c), (3, c), (1, c)^{4pk})$, and since $c \neq -c$ it follows by the above considerations that $\tau_A^G(u^b v) \in R^k_{+1}$.

}\)
10 Proof of the main result

We shall use for the semidirect product of two cyclic groups the notation:

\[Z_m \times_d Z_n = \langle a, b : a^m = 1, b^n = 1, bab^{-1} = a^d \rangle \quad \text{where } d \in \mathbb{N} \text{ is coprime to } m \]

Proposition 10.1 (Burnside 1894, see for example [1] ch. IV.4). If \(G \) is a finite \(p \)-group with a cyclic subgroup of index \(p \) then it is one of the following:

1. \(Z_p^n \) \quad \(n \geq 1 \)
2. \(Z_{p^{n-1}} \times Z_p \) \quad \(n \geq 2 \)
3. \(M_{p^n} := Z_{p^{n-1}} \times_d Z_p \quad d = p^{n-2} + 1 \quad (n \geq 3) \)
4. \(D_{2^n} := Z_{2^{n-1}} \rtimes Z_2 \quad (n \geq 4) \)
5. \(SD_{2^n} := Z_{2^{n-1}} \rtimes_d Z_2 \quad d = 2^{n-2} - 1 \quad (n \geq 4) \)
6. \(\text{Dic}_{2^n} := \langle a, b \mid a^{2^{n-1}} = 1, b^2 = a^{2^{n-2}}, bab^{-1} = a^{-1} \rangle \quad (n \geq 3) \)

Let \(H \) be one of the 2-groups in the above list, \(\langle a \rangle \) an index 2 subgroup in \(H \), and \(b \in H \setminus \langle a \rangle \), so that \(H = \langle a, b \rangle \). If \(H \) is a 2-group as in case (3)–(6) of Proposition 10.1 then for any odd integer \(r > 1 \) it is customary to denote by \(M_{r,2^n}, D_{r,2^n}, SD_{r,2^n}, \text{Dic}_{r,2^n} \) the group \(Z_r \rtimes_{-1} H \), where \(b \in H \) acts on \(Z_r \) by inversion \(x \mapsto x^{-1} \) and \(\langle a \rangle \) centralizes \(Z_r \).

Proposition 10.2. Any finite group containing a cyclic subgroup of index two is isomorphic to

\[Z_s \times (Z_r \rtimes_{-1} H) \]

where \(r, s \) are coprime odd integers, and \(H \) is a 2-group in Proposition 10.1.

Proof. Let \(G \) be a finite group with an index two cyclic subgroup \(C \). Then \(C \) uniquely decomposes as \(C = Z_m \times Z_{2^n-1} \) for some odd integer \(m > 0 \) and \(n \geq 1 \). As \(Z_m \) is a characteristic subgroup of \(C \), it is normal in \(G \). Thus by the Schur-Zassenhaus theorem \(G = Z_m \times H \) for a Sylow 2-subgroup \(H \) of \(G \).

Moreover, the characteristic direct factor \(Z_{2^n-1} \) is also normal in \(G \), hence we may suppose that it is identical to the index two cyclic subgroup \(\langle a \rangle \leq H \) (as the automorphism group of \(H \) acts transitively on the set of index two subgroups of \(H \)). Now \(Z_m \) decomposes uniquely as a direct product \(Z_m = P_1 \times \cdots \times P_t \) of its Sylow subgroups. After a possible renumbering we may assume that \(H \) centralizes \(P_1, \ldots, P_t \), and \(H / \langle a \rangle \) acts on \(P_{t+1}, \ldots, P_t \) via the automorphism \(x \mapsto x^{-1} \). Setting \(Z_s := P_1 \times \cdots \times P_t, Z_r := P_{t+1} \times \cdots \times P_t \) we obtain the desired conclusion.

Theorem 10.3. If \(G \) is a non-cyclic group with a cyclic subgroup of index two then

\[
\beta_k(G) = \frac{1}{2} |G| k + \begin{cases}
2 & \text{if } G = \text{Dic}_{4n}, \ n \text{ even} \\
& \text{or } G = Z_r \rtimes_{-1} Z_4, \ r \text{ odd}
\end{cases} \\
1 & \text{otherwise}
\]

16
Proof. If G is any group with a cyclic subgroup $A = \langle a \rangle$ of index 2, then Theorem 3.3 gives us the following lower bound:

$$\beta_k(G) \geq \beta_k(A) + D(G/A) - 1 = k|A| + D(Z_2) - 1 = \frac{1}{2}|G| + 1$$

To establish the precise value of the generalized Noether number β_k for these groups, by Proposition 10.2 we will have to consider the groups of the form $G := Z_s \times (Z_r \rtimes -1 H)$ where H is one of the groups of order 2^n listed in Proposition 10.1. In all these cases $\beta_k(G) \leq \beta_{sk}(Z_r \rtimes -1 H)$ by Lemma 2.1.

1. If $H = Z_{2^n}$ then by Theorem 3.4 we have $\beta_k(G) = 2^{n-1}rs + 1$ except if $n = 2$ and $s = 1$, in which case $\beta_k(G) = 2^{n-1}rs + 2$.

2. If $H = Z_2 \times Z_{2^{n-1}}$ by the isomorphism $Z_2 \rtimes -1(Z_2 \times Z_{2^{n-1}}) \cong Z_{2^{n-1}} \times D_2$, we get from the application of Lemma 2.1 and Corollary 5.6 that

$$\beta_k(G) \leq \beta_{sk}(Z_{2^{n-1}} \times D_{2r}) \leq \beta_{2^{n-1}sk}(D_{2r}) \leq 2^{n-1}rs + 1$$ \hspace{1cm} (12)

3. If $H = M_{2^n}$ then the group $Z_r \rtimes -1 M_{2^n} = M_{2^n}$ will contain a subgroup $C = \langle a^2, b \rangle \cong Z_{n-2} \times D_2$. The subgroup $N := Z_s \times C$ has index 2 in G and falls under case (2), hence by Lemma 2.1 and case (2) we have

$$\beta_k(G) = \beta_{2^k}(N) = 2^{n-1}ks + 1$$ \hspace{1cm} (13)

4. If $H = D_{2^n}$ then $G = Z_s \times D_{2^{n-1}}$, and we are done by Corollary 5.6.

5. If $H = SD_{2^n}$ then the group $Z_r \rtimes -1 SD_{2^n} = SD_{2^{n-1}}$ contains a subgroup $B = \langle a^2, b \rangle \cong D_{2^{n-1}}$. Observe that B is a normal subgroup, as it has index 2, hence by Lemma 2.1 and Corollary 5.6 we get that

$$\beta_k(G) \leq \beta_{sk}(SD_{2^{n-1}}) \leq \beta_{2sk}(D_{2^{n-1}}) \leq 2^{n-1}rs + 1$$ \hspace{1cm} (14)

6. If $H = Dic_{2^n}$ then for $n = 2$ we get back to case (2), as $Dic_4 = Z_2 \times Z_2$; if however $n \geq 3$ then the quaternion group Q is a subgroup of index $2^{n-3}r$ in $Z_r \rtimes -1 H$, therefore by Proposition 9.1 we have $\beta(G) = 2^{n-1}rs + 2$ if $s = 1$ and for $s > 1$ we get using Lemma 2.1 combined with Theorem 9.3 that for any prime p dividing s:

$$\beta_k(G) \leq \beta_{k^{n-3}r}(Z_s \times Q) \leq \beta_{k^{n-3}rs/p}(Z_p \times Q) \leq 2^{n-1}rs + 1$$ \hspace{1cm} (15)

With this all possibilities are accounted for and our claim is established.

References

[1] K. Brown, Cohomology of Groups, Springer GTM 87, 1982.

[2] K. Cziszter and M. Domokos, Groups with large Noether bound, arXiv preprint.

[3] K. Cziszter and M. Domokos, On the generalized Davenport constant and the Noether number, preprint, to be posted on arXiv.
[4] P. Fleischmann, The Noether bound in invariant theory of finite groups, Adv. Math. 156 (2000), 23-32.

[5] J. Fogarty, On Noether’s bound for polynomial invariants of a finite group, Electron. Res. Announc. Amer. Math. Soc. 7 (2001), 5-7.

[6] M. Freeze and W. W. Smith, Sumsets of zero-free sequences, Arab J. Sci. Eng. Section C: Theme Issues 26 (2001), 97-105.

[7] W. Gao and A. Geroldinger, Zero-sum problems in finite abelian groups: A survey, Expo. Math. 24 (2006), 337-369.

[8] F. Halter-Koch, A generalization of Davenport’s constant and its arithmetical applications, Colloquium Mathematicum 63 (1992), 203-210.

[9] E. Noether, Der Endlichkeitssatz der Invarianten endlicher Gruppen, Math. Ann. 77 (1916), 89-92.

[10] S. Savchev and F. Chen, Long zero-free sequences in finite cyclic groups, Discrete Mathematics 307 (2007), 2671-2679.

[11] B. J. Schmid, Finite groups and invariant theory, “Topics in Invariant Theory”, Lect. Notes in Math. 1478 (1991), 35-66.

[12] M. Sezer, Sharpening the generalized Noether bound in the invariant theory of finite groups, J. Algebra 254 (2002), 252-263.