malignancy. Isolated EMPD, without a coexisting internal primary lesion, is usually an indolent, slow-growing cancer that rarely metastasizes. Rare invasive EMPD has a propensity to metastasize to inguinal nodal basins\(^{(5)}\). EMPD involving the external genitalia has a strong association with gastrointestinal and genitourinary adenocarcinomas\(^{(4,6)}\). A small subset of invasive EMPD cases show signet-ring cell morphology with extracellular mucin. Immunohistochemical analysis establishes the distinction between signet-ring cells intrinsic to EMPD and those originating from coexisting visceral neoplasms\(^{(7,8)}\). Poor prognostic factors include dermal invasion, nodular skin lesions, lymph node involvement, and distant metastasis\(^{(3)}\). Given the multiple presentations of EMPD and their varying prognoses, there is a need to identify distant metastases and the primary visceral tumor: that effort is facilitated by functional \(^{18}\)F-FDG PET/CT imaging\(^{(1–6)}\).

REFERENCES

1. Zhu Y, Ye DW, Yao XD, et al. Clinicopathological characteristics, management and outcome of metastatic penoscrotal extramammary Paget’s disease. Br J Dermatol. 2009;161:577–82.
2. Kim JC, Kim HC, Jeong CS, et al. Extramammary Paget’s disease with aggressive behavior: a report of two cases. J Korean Med Sci. 1999;14:223–6.
3. Li ZG, Qin XJ. Extensive invasive extramammary Paget disease evaluated by F-18 FDG PET/CT: a case report. Medicine (Baltimore). 2015;94:e371.
4. Cho SB, Yun M, Lee MG, et al. Variable patterns of positron emission tomography in the assessment of patients with extramammary Paget’s disease. J Am Acad Dermatol. 2005;53:353–5.
5. Anyagü S, Sato-Matsumura KC, Shimizu H. Staging and assessment of lymph node involvement by \(^{18}\)F-fluorodeoxyglucose-positron emission tomography in invasive extramammary Paget’s disease. Dermatol Surg. 2005;31:595–8.
6. Niederkohr RD, Gambhir SS. F-18 FDG PET/CT imaging of extramammary Paget disease of the perianal region. Clin Nucl Med. 2006;31:561–3.
7. Chu B, Shen XQ, Chen P, et al. Primary invasive extramammary Paget disease on penoscrotum: a clinicopathological analysis of 41 cases. Hum Pathol. 2016;47:70–7.
8. Uchimiya H, Yonekura K, Hashiguchi T, et al. Extramammary Paget’s disease with prominent signet-ring cells. J Dermatol. 2009;36:557–8.

Kelly Tung\(^{1}\), Ba D. Nguyen\(^{1}\)

1. Department of Radiology, Mayo Clinic, Arizona, Scottsdale, AZ, USA. Mailing address: Ba D. Nguyen, MD. Department of Radiology, Mayo Clinic, Arizona, 13400 East Shea Blvd., Scottsdale, AZ, 85259. E-mail: nguyen.ba@mayo.edu.

http://dx.doi.org/10.1590/0100-3984.2016.0144

Congenital lobar emphysema

Dear Editor,

A 34-year-old asymptomatic woman underwent a chest radiography examination as an admission requirement for a new job. The X-ray showed focal hyperlucency in the left upper lobe of the lung (Figure 1A). High-resolution computed tomography (HRCT) was performed to confirm the findings (Figures 1B and 1C). The HRCT findings were characteristic of congenital lobar emphysema (CLE).

The evaluation by imaging methods in pediatrics has been the subject of a series of recent publications in the radiology literature of Brazil\(^{(1–6)}\). CLE is characterized by hyperinflation of one or more lung lobes in the absence of extrinsic bronchial obstruction\(^{(7)}\). It is a rare disease and its incidence is 20–30 cases/1000 births, most commonly affecting a single lobe of the lung (typically the left upper lobe), although multiple lobes or specific lobar segments may be involved\(^{(7–8)}\). The disease has a variety of causes, including bronchial cartilage deficiency (bronchomalacia) and endobronchial lesions, resulting in narrowing of the airway lumen and obstruction with air trapping, as well as progressive lobar overexpansion, usually with compression of the remaining areas of the ipsilateral lung\(^{(9)}\).

CLE is generally diagnosed during early infancy, presenting with persistent progressive respiratory distress. It is known that CLE can occur in association with other malformations, especially cardiac malformations, which are present in 20% of cases\(^{(7)}\). In rare cases, it is diagnosed in adulthood and must be differentiated from other causes of localized pulmonary hyperinflation, because the treatments differ\(^{(9)}\). In such cases, the patients are usually asymptomatic and the disease can go unnoticed, resulting in underestimation of the true incidence of this condition.

Conventional chest X-rays are typically used in order to establish the diagnosis of CLE, showing a unilateral hyperlucent hemithorax. This finding is also present in a variety of other conditions, which include tension pneumothorax—the main differential diagnosis on routine chest radiography\(^{(7)}\)—as well as

Figure 1. Anteroposterior chest X-ray (A) showing radiolucency and hyperinflation of the upper two thirds of the left lung. HRCT with coronal and sagittal reconstructions (B and C, respectively) showing hyperinflation of the left upper lobe of the lung, as well as vessel attenuation.

Radiol Bras. 2018 Mai/Jun;51(3):200–208
bulous disease, pneumatocoele, Swyer-James syndrome, endo-
bronchial mass, unilateral pulmonary agenesis, proximal inter-
ruption of the pulmonary artery, scimitar syndrome, diaphrag-
matic hernia, and Poland syndrome.\(^{(8)}\) It can also exclude an in-
trathoracic mass or vascular ring. HRCT is useful for confirming
radiographic findings, delineating the affected lobe and showing
relative narrowing of the bronchus associated with hyperinfla-
tion and attenuated vessels in the hyperlucent lobe, which facil-
tate the differential diagnosis.

Lobectomy is the treatment for nearly all cases of CLE with
respiratory distress. According to Karnak et al.\(^{(9)}\), lobectomy is
the recommended treatment for CLE in all infants under two
months of age and in older infants who present with severe respira-
tory symptoms. Apparently, the earlier the presentation is, the
greater is the need for surgery. Conservative management, with
close outpatient follow-up, can be used in older children who
present with mild to moderate symptoms. Because our patient
had remained asymptomatic throughout her life, her case was
managed with clinical and radiographic follow-up.

REFERENCES
1. Werner Jr H, Santos JL, Belmonte S, et al. Applicability of three-dimen-
sional imaging techniques in fetal medicine. Radiol Bras. 2016;49:281–7.
2. Barbosa AG, Pena D, Zanetti G, et al. Foreign body in the bronchus
of a child: the importance of making the correct diagnosis. Radiol Bras.
2016;49:340–2.

Erhdeim-Chester disease with isolated neurological involvement

Dear Editor,

A 25-year-old female patient presented with a seven-month
history of progressive dysphagia, dysphonia, diplopia, ptosis of
the right eyelid, weight loss, and sporadic pulsatile headache
on the right side of the face. She had a history of hypertension,
diabetes, unspecified thyroid disease, and smoking. The physical
examination revealed satisfactory general health, although the
patient was found to be malnourished, as well as to have deficits
in the right third, fifth, and sixth cranial nerves. Magnetic reso-
nance imaging (Figure 1) showed an expansile lesion located in
the right sellar and juxtasellar region. A transphenoidal biopsy
was performed. The pathology and immunohistochemical study
showed xanthomatous macrophages, together with CD 68 posi-
tive and CD1A negative histiocytes, consistent with a diagnosis of
Erdheim-Chester disease. Computed tomography of the chest
and abdomen showed no abnormalities.

Erdheim-Chester disease is currently considered a clonal disorder,
the pathogenesis of which is mediated primarily by a chronic,
uncontrolled inflammatory process.\(^{(10)}\) The Th1-type immune
response involves activation of the following cytokines: IFN-\(\gamma\), IL-1/IL-1Ra, IL-6, IL-12, and MCP-1/CCL2. In stud-
ies of Erdheim-Chester disease, the most commonly reported
gene mutation is that occurring in the BRAF V600E gene,
which is seen in 57–75% of patients diagnosed with the disease.
Mutations have also been reported in the MAPK (NRAS and
MAP2K1) and PIK3 (PIK3CA) pathways.\(^{(2)}\)

Histopathologically, Erdheim-Chester disease is a non-
Langerhans cell histiocytosis, characterized by numerous macro-

![Figure 1](http://dx.doi.org/10.1590/0100-3984.2016.0224)