Longitudinal size effects on electrical and actuation behaviors of ionic polymer-metal composite

Qingfeng Zhang¹, Shuang Chen², Hongguang Liu³ and Ke Xiong³

Abstract
The structural characteristics of ionic polymer-metal composite (IPMC) were analyzed, and the effects of IPMC length ranging from 1 to 5 cm (with a width of 0.5 cm) were evaluated in terms of electrical parameters and actuation behavior. It has been concluded that the electrical parameters of IPMC materials (including capacitance, electrode resistance in thickness-direction, and internal resistance) decrease, and the bending strain of the setpoint increases as the length increases. The simulation of the current response of IPMC to 2 V DC voltage shows that the error between simulated peak current using 1 cm-IPMC parameters and the measured value is 8.23 times higher than that of 5 cm-IPMC. The strain of the setpoint on 5 cm-IPMC sample is 5.65 times bigger than that of the 1 cm-IPMC sample.

Keywords
IPMC, electrical parameter, length effect, simulation, actuation behavior

Date received: 20 May 2021; accepted: 19 July 2021

Handling Editor: Chenhui Liang

Introduction
Ionic polymer-metal composite (IPMC) is one of the most promising soft smart materials for electromechanical or mechanoelectrical transduction, because of its lightweight, flexibility, noiselessness, structural simplicity, fast response, and a large deformation under a low voltage.¹⁻⁴ The attractive inherent advantages of IPMC make it a wide range of medical and industrial applications in artificial muscles and soft robotic actuators as well as dynamic sensors.⁵⁻⁸ The typical structure of IPMC is composed of one ionically conductive electrolyte membrane (e.g. Nafion, Flemion, or Aciplex) plated with a metal (e.g. Platinum, Silver, or Copper) electrode on both sides. When an excitation voltage is applied to the electrodes, the uniformly distributed hydrated cations in the membrane are forced to move toward the cathode, resulting in the IPMC bending toward the anode side.⁹,¹⁰

The behavior of IPMC materials exhibits coupling among electrical, chemical, and mechanical properties. Since the late 20th century, a lot of studies have been focused on fabrication, modeling for transduction behaviors, and complicated application of IPMC materials.⁵,¹¹ However, only a few authors studied on the effect of the size on the response of IPMC materials. Li and Yip¹² investigated the effects of the thickness of IPMCs on their characterization and actuation performances. Yang et al.¹³ fabricated IPMCs with various

¹Flight Technology College, Civil Aviation Flight University of China, Guanghan, People’s Republic of China
²Aircraft Repair and Overhaul Plant, Civil Aviation Flight University of China, Guanghan, People’s Republic of China
³State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, People’s Republic of China

Corresponding author:
Ke Xiong, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, 29 Yuda Street, 210016, Jiangsu Province, Nanjing, People’s Republic of China.
Email: kexiong@nuaa.edu.cn
thickness and studied the effect of substrate thickness on their displacements and blocking forces. Yilmaz et al.14 investigated nonlinear relationship between electrode thickness and electroactive characteristics of IPMC actuators. Wang et al.15 studied the effects of the dimensions on sensing performance of IPMC materials, including thickness, length, and width. Most of them focused on the size effects on the displacements and blocking forces of IPMC samples.

Measurement of the size effects on electrical, electrochemical, and actuation performances of IPMC materials under excitation voltages can provide comprehensive information of IPMC actuators. In this study, Nafion 117 membrane based IPMC material is fabricated and cut into samples with same width and different lengths to study the longitudinal size effects on their electrical and actuation behaviors.

Materials and methods

In this work, Nafion 117 membrane (provided by Dupont) based IPMC samples with Platinum (Pt) electrodes were fabricated by the electroless deposition process. Typically, the electroless deposition process mostly requires two steps: the adsorption and diffusion of Pt salt (e.g. Pt[NH$_3$]$_4$HCl) within the Nafion membrane, and the successive reduction of the platinum cations absorbed into the polymer to the metallic state using a reducing agent (generally NaBH$_4$ or LiBH$_4$).16–18 Samples with a width of 0.5 cm and lengths of 1, 2, 3, 4, and 5 cm were cut from the IPMC strips to study the size-effect in the electrical response. All prepared samples were stored in deionized water, and the fully hydrated IPMC samples were used for performance testing.

The electroless deposition imparts a complex interfacial layered structure to IPMC due to the penetration of metallic particles into the membrane.19–22 Figure 1(a) shows a cross-sectional SEM image of the IPMC with line EDX analysis of the metal (Pt). It indicates that the layer-up structure is composed of the surface metal electrodes, the gradient polymer-metal composites, and the polymer membrane. Different layers play different roles in IPMC transduction.23–26 A double-layer capacitor C is formed at the interface of the surface electrode and the electrolyte, electrode resistances R_{sa} (R_{sb}) in length-direction and R_1 in thickness-direction are introduced by the surface electrodes, and an internal resistance R_2 is introduced by the electrolyte. A phenomenological model to illustrate the roles of IPMC is also shown in Figure 1(a).

Due to the making process of IPMC, the surface metal electrodes (also called an outer electrode) is not plain but porous metal,27 as shown in Figure 1(b). In this study, voids in the surface Pt metal layer are air, which could not conduct electricity and could be considered as non-isolated inclusions. The electrical resistivity of the outer electrode could be represented as26,28

$$\gamma_s = \gamma_{Pt} \frac{4}{1 - \phi}$$

where, γ_s and γ_{Pt} ($2.22 \times 10^{-7} \Omega \text{m}$) are the resistivity of the porous and compact platinum metals respectively, ϕ is the volume fraction of voids (porosity of the metal electrode). The sheet resistance R_s could be obtained by $R_s = \gamma_s / t_0$, where t_0 is the thickness of the surface electrodes. As shown in Figure 1(c), the increase of voids in the metal electrode leads to an increase in electrical resistance.

According to our previous work,26 the EDX line analysis of metal element for IPMC samples could be used to obtain the thickness of the surface electrodes, and the surface and cross-sectional SEM images as shown in Figure 1(b), segmented by Otsu’s thresholding...
method, can be used to obtain the porosity of the metal electrode of IPMC samples by using ImageJ software. Specifications of the IPMC samples are listed in Table 1. The surface electrode resistance R_{sa} is considered to be the same as R_{sb} when no voltage is applied on the IPMC sample. The value of the IPMC electrode calculated using equation (1) is $2.26 \Omega/\text{sq}$, which is very close to the measured value $2.41 \pm 0.158 \Omega/\text{sq}$ (measured 10 times using an ST-2258C multifunction digital four-probe tester).

The imperfect electrical conductivity of the metal electrode leads to a decrease in the electric field applied to the IPMC sample along its length (x-direction) and causes a nonuniform bending curvature of the sample. Therefore, a distributed RC electric circuit24,25 with a series of similar circuits was developed to describe the performance of IPMC, as illustrated in Figure 1(d). The parameters $R_c = R_{sa} + R_{sb}$, C, R_1, and R_2 in the single unit circuit are assumed to be time-invariant and uniform. It should be noted that the surface resistance of the anode (cathode) electrode decreases (increases) with increasing curvature of IPMC sample, but the sum of the two surface electrode resistances R_s does not change with curvature of IPMC consulting our previous research.14 In other words, the assumption of the single unit circuit is suitable for bending IPMC actuators.

Table 1. Specifications of IPMC samples.

Specification	Description
Ionic polymer	Nafion 117
Electrode	Pt
Cations	Na+
Solution	Water
Cross-section of IPMC sample	$5 \times 0.2 \text{mm}^2$
Thickness of metal electrode, t_0	$0.99 \pm 0.083 \mu\text{m}$
Porosity of metal electrode, ϕ	0.611 ± 0.0316
Electrode resistance R_{sa}/R_{sb}	$2.41 \pm 0.158 \Omega/\text{sq}$

Figure 2. (a) Current response of the 5 cm-IPMC under 2 V DC voltage and (b) dependence of the electrical parameters R_1, R_2, and C with the length of IPMC samples.

The change of the three parameters R_1, R_2, and C of IPMC with the length is shown in Figure 2(b). The results show a significant dependence of the electrical parameter per unit length (1 cm) with the length of IPMC samples. All three electrical parameters of per unit length decrease and the trend of the decrease become slowly as the length of IPMC increase. When the length of the IPMC samples changed from 1 to 5 cm, the changes in R_1, R_2, and C are from 4.75×10^{-4} to 2.88×10^{-4} Ω/cm, from 7.50×10^{-5} to 3.31×10^{-5} F/cm, and from 8.93×10^{-4} to 3.23×10^{-4} Ω/cm, respectively.

Results

A testing technique with voltage step pulses proposed by Punning et al.24 was used to study the size effect on the values of the parameters R_1, R_2, and C. A voltage of 2 V was applied on the five fully hydrated IPMC samples through two pieces of silver clamps to measure the responses of electric current in the air at 50% RH and 26°C respectively. The contact clamps covered the whole surface electrodes of all the samples to avoid the influence of the surface electrode resistance on the results.

Figure 2(a) shows the typical current response of the IPMC sample (5 cm-IPMC). At the very first moment when capacity C is totally discharged, the current comes to the peak i_A (2.87 mA). After charging the whole pseudocapacitor in t_C seconds (5.7 s), the electric current remains at a stable level i_B (0.299 mA). The values of the parameters R_1, R_2, and C can be obtained by analyzing the circuit shown in Figure 1(d), based on the response of electric currents.
The current response of 5 cm-IPMC to 2 V DC voltage was simulated by the model shown in Figure 1(d) to illustrate the importance of the parameters \(R_{sa} \) (\(R_{sb} \)), \(R_1 \), \(R_2 \), and \(C \) for IPMC modeling. The simulated equivalent circuit using different parameters measured from IPMC samples with different lengths was separated into 10 segments to predict electrical currents \(i_{A_{\text{sim}}} \) and \(i_{B_{\text{sim}}} \) (listed in Table 2). The results show that the parameters have a significant influence on the accuracy of model simulation. The error \(e_A \) (\(e_B \)) between simulated current \(i_{A_{\text{sim}}} \) (\(i_{B_{\text{sim}}} \)) from simulation using 1 cm-IPMC parameters and measured value \(i_A \) (\(i_B \)) is 84% (149.5%), which is 8.23 (13.4) times higher than that of 5 cm-IPMC, 9.1% (10.4). Water lose of IPMC samples, which is inevitable during the testing, may leads to the size effects of the length on the electrical parameters. The smaller the sample is, the faster the rate of water loss is, and the lager the error of electrical parameters is.

To explore the actuation behavior of the samples with the same cross-section but different lengths, the electrochemical performances of hydared IPMC samples were characterized by cyclic voltammetry (CV) in aqueous electrolyte with a three-electrode system on Autolab electrochemical workstation (PARSTAT MC). The CV curves of the IPMC samples in a 1 M KOH solution at a 100 mV/s scan rate in a potential window from 0.6 to 0 V are shown in Figure 3. No remarkable peak appears in all the curves for the IPMCs with different lengths. The quasi-rectangular CV curves signify the ideal double-layer capacitor characteristic.

The specific capacitances in CV measurements were calculated using the equation

\[
C_{sp} = \frac{1}{\Delta V v S} \int_{V_1}^{V_2} I dV
\]

Where \(\Delta V \), \(v \), and \(S \) are the potential window, scan rate, and the weight taken of the IPMC samples, respectively. Namely, the specific capacitances from the integrated area of CV curves are plotted against scan rates, as presented in the inset of Figure 3. The capacitances are 3.91, 3.60, 1.47, 1.73, and 1.41 mF/g at a scan for the IPMC samples with lengths of 1, 2, 3, 4, 5 cm. The result shows that the capacitance decreases as the length of the IPMC sample increase, which is consistent with the previous testing result. The capacitance obtained from the 1 cm-IPMC sample exhibits 3.91 mF/g at a scan rate of 100 mV/s, which is 2.8 times higher than that of the 5 cm-IPMC sample (1.41 mF/g). However, a little change in capacitance with length when the length of the sample is longer than 3 cm.

The measurements of displacement were performed to test the length effect on the mechanical responses of a fully hydrated IPMC actuator in the air at 50% RH and 26°C. All the samples were cantilevered using two parallel Ag plates at one end, and the effective lengths of the beam actuators were 0.5, 1.5, 2.5, 3.5, and 4.5 cm, respectively. The displacements of the points at a 5 mm distance away from the fixed end under DC voltage inputs were detected by a laser displacement sensor. In this configuration, the IPMC cantilever actuators demonstrate significant bending deformation toward the anode. Based on the assumption that no torsional deformations exist, the measured displacements were transformed into bending strain (difference of strain between two surfaces of IPMC sample) by using the following equation.

\[
\varepsilon = \frac{28d}{l^2 + \delta^2}
\]

where \(d \) is the thickness of the IPMC, \(\delta \) is the extreme deflection of the set point on the IPMC strip, and \(l \) is the length from the fixed end of the IPMC sample to the set point.

Figure 4 shows the extreme strains of the set points on IPMC samples with different lengths under voltages of 1, 2, and 3 V DC. It is obvious the strain of the set-point increases with the increase of the length of the

\(L \) (cm)	\(i_{A_{\text{sim}}} \) (mA)	\(e_A \) (%)	\(i_{B_{\text{sim}}} \) (mA)	\(e_B \) (%)
1	5.28	84.0	0.746	149.5
2	3.41	18.8	0.446	49.2
3	3.12	8.7	0.412	37.8
4	3.15	9.8	0.354	18.4
5	3.13	9.1	0.311	10.4

Figure 3. Cyclic voltammetry analysis of the IPMCs with different lengths at a scan rate of 100 mV/s.
testing sample regardless of excitation voltage. Under 1 (2 or 3) V DC voltage, the strain of the set point on 5 cm-IPMC sample is 13.3×10^{-3} (16.1×10^{-3} or 19.5×10^{-3}), which is 5.65 (5.44 and 1.2) times bigger than that of the 1 cm-IPMC sample (2×10^{-3}, 2.5×10^{-3}, or 8.8×10^{-3}).

Discussion

In summary, the effects of sample length on electrical parameters and actuation behaviors of IPMC were systematically examined, based on the analysis of the structural characteristics of IPMC materials. The porous metal electrodes, the polymer membrane, and the polymer-metal composites making up the layered structure of IPMC play the roles of electrode resistance, internal resistance, and capacitance in transduction, respectively. The values of the electrical parameters per unit length, which have a significant influence on the accuracy of model simulation, decrease with the increase of the length of the IPMC sample. The specific capacitance in CV measurement decreases and the bending strain of the set point on the IPMC sample increases, as the length of the sample increases.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the National Natural Science Foundation of China (Grants 11372132 and 11502109).

References

1. Shahinpoor M, Bar-Cohen Y, Simpson JO, et al. Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles – a review. *Smart Mater Struct* 1998; 7: R15–R30.

2. Nemat-Nasser S. Micromechanics of actuation of ionic polymer-metal composites. *J Appl Phys* 2002; 92: 2899–2915.

3. Akle BJ, Bennett MD, Leo DJ, et al. Direct assembly process: a novel fabrication technique for large strain ionic polymer transducers. *J Mater Sci* 2007; 42: 7031–7041.

4. Liu S, Montazami R, Liu Y, et al. Layer-by-layer self-assembled conductor network composites in ionic polymer metal composite actuators with high strain response. *Appl Phys Lett* 2009; 95: 023505.

5. De Luca V, Digiambardino P, Di Pasquale G, et al. Ionic electroactive polymer metal composites: fabricating, modeling, and applications of post-silicon smart devices. *J Polym Sci B Polym Phys* 2013; 51: 699–734.

6. Jain RK, Majumder S and Dutta A. SCARA based peg-in-hole assembly using compliant IPMC micro gripper. *Robot Auton Syst* 2013; 61: 297–311.

7. Aw KC and McDaid AJ. Bio-applications of ionic polymer metal composite transducers. *Smart Mater Struct* 2014; 23: 074005.

8. Palmre V, Pugal D, Kim KJ, et al. Nanothorn electrodes for ionic polymer-metal composite artificial muscles. *Sci Rep* 2014; 4: 6176.

9. Gennes PGD, Okumura K, Shahinpoor M, et al. Mechnoelectric effects in ionic gels. *EPL* 2000; 50: 513–518.

10. Nemat-Nasser S and Li JY. Electromechanical response of ionic polymer-metal composites. *J Appl Phys* 2000; 87: 3321–3331.

11. Jo C, Pugal D, Oh IK, et al. Recent advances in ionic polymer-metal composite actuators and their modeling and applications. *Prog Polym Sci* 2013; 38: 1037–1066.

12. Li S and Yip J. Characterization and actuation of ionic polymer metal composites with various thicknesses and lengths. *Polymers* 2019; 11: 91.

13. Yang L, Zhang D, Zhang X, et al. Property of ionic polymer metal composite with different thicknesses based on solution casting technique. *Int J Mod Phys B* 2020; 34: 2050263.

14. Yilmaz OC, Sen I, Gurses BO, et al. The effect of gold electrode thicknesses on electromechanical performance of Nafion-based ionic polymer metal composite actuators. *Compos B Eng* 2019; 165: 747–753.

15. Wang J, Wang Y, Zhu Z, et al. The effects of dimensions on the deformation sensing performance of ionic polymer-metal composites. *Sensors (Basel)* 2019; 19: 2104.

16. Shahinpoor M and Kim KJ. Ionic polymer-metal composites: I. Fundamentals. *Smart Mater Struct* 2001; 10: 819–833.
17. Bian K, Liu H, Tai G, et al. Enhanced actuation response of Nafion-based ionic polymer metal composites by doping BaTiO$_3$ nanoparticles. *J Phys Chem B* 2016; 120: 12377–12384.

18. Liu H, Xiong K, Bian K, et al. Experimental study and electromechanical model analysis of the nonlinear deformation behavior of IPMC actuators. *Acta Mech Sin* 2017; 33: 382–393.

19. Kim SJ, Kim SM, Kim KJ, et al. An electrode model for ionic polymer–metal composites. *Smart Mater Struct* 2007; 16: 2286–2295.

20. Tiwari R and Kim KJ. Effect of metal diffusion on mechanoelectric property of ionic polymer-metal composite. *Appl Phys Lett* 2010; 97: 244104.

21. Cha Y, Aureli M and Porfiri M. A physics-based model of the electrical impedance of ionic polymer metal composites. *J Appl Phys* 2012; 111: 124901.

22. Wang Y, Zhu Z, Chen H, et al. Effects of preparation steps on the physical parameters and electromechanical properties of IPMC actuators. *Smart Mater Struct* 2014; 23: 125015.

23. Kanno R, Tadokoro S, Takamori T, et al. (1996). Linear approximate dynamic model of ICPF actuator. In: *Proceedings of IEEE international conference on robotics and automation*, Minneapolis, 1996, pp.219–225.

24. Punning A, Johanson U, Anton M, et al. A distributed model of ionicomer polymer metal composite. *J Intell Mater Syst Struct* 2009; 20: 1711–1724.

25. Moeinkhah H, Rezaeeazahand J and Akbarzadeh A. Analytical dynamic modeling of a cantilever IPMC actuator based on a distributed electrical circuit. *Smart Mater Struct* 2013; 22: 055033.

26. Liu HG, Xiong K and Wang M. A gradient model for Young’s modulus and surface electrode resistance of ionic polymer–metal composite. *Acta Mech Solida Sin* 2019; 32: 754–766.

27. Kloke A, von Stetten F, Zengerle R, et al. Strategies for the fabrication of porous platinum electrodes. *Adv Mater* 2011; 23: 4976–5008.

28. Langlois S and Coeuret F. Flow-through and flow-by porous electrodes of nickel foam. II. Diffusion-convective mass transfer between the electrolyte and the foam. *J Appl Electrochem* 1989; 19: 51–60.

29. Sugino T, Kiyohara K, Takeuchi I, et al. Actuator properties of the complexes composed by carbon nanotube and ionic liquid: the effects of additives. *Sens Actuators B Chem* 2009; 141: 179–186.

30. Dias JC, Lopes AC, Magalhães B, et al. High performance electromechanical actuators based on ionic liquid/poly(vinylidene fluoride). *Polym Test* 2015; 48: 199–205.