PF-AES-PUF: a novel PUF architecture against non-invasive attacks

Weize Yu and Jia Chen

In this letter, a physical unclonable function (PUF)-advanced encryption standard (AES)-PUF is proposed as a new PUF architecture by embedding an AES cryptographic circuit between two conventional PUF circuits to conceal their challenge-to-response pairs (CRPs) against machine learning attacks. Moreover, an internal confidential data is added to the secret key of the AES cryptographic circuit in the new PUF architecture to update the secret key in real-time against side-channel attacks. As shown in the results, even if 1 million number of data are enabled by the adversary to implement machine learning or side-channel attacks, the proposed PUF can not be cracked. By contrast, only 5,000 (1,000) number of data are sufficient to leak the confidential information of a conventional PUF via machine learning (side-channel) attacks.

Introduction: In the field of cybersecurity, silicon physical unclonable functions (PUFs) are well known hardware security primitives which are applied in, for example, generating secret keys, executing authentications, and devising wireless sensors [1]. The basic mechanism of a silicon PUF is to exploit the intrinsic physical randomness of identically designed integrated circuit (IC) components induced by the fabrication process to establish a unique mapping between the input challenges and the output responses (i.e., the challenge-to-response pairs (CRPs)).

Although the present silicon PUFs may be effective for protecting the IoT against some specific malicious attacks, like hardware reverse engineering attacks, one of the most significant security concerns is their robustness against machine learning attacks [2]. High linear relationships exist between the CRPs for most conventional silicon PUFs, such as ring-oscillator (RO) PUFs [3] and arbiter PUFs [3], which cause them to be extremely vulnerable to machine learning. All the improving techniques [2, 3, 4] to combat machine learning attacks are focused on increasing the degree of non-linearity between the CRPs. Unfortunately, the high degree of non-linearity may undermine the performance of silicon PUFs [2, 4]. Furthermore, improving the degree of non-linearity of silicon PUFs only hinders the execution of machine learning attacks; it is incapable of thoroughly eliminating the threat of such attacks.

Side-channel attacks are a type of powerful non-invasive attacks that can be utilized by the adversary to leak the confidential information of modern ICs through exploiting the correlation between the processed data and the physical leakages (i.e., power dissipation, electromagnetic (EM) emission, temperature, and timing) of the modern IC [5]. Advanced encryption standard (AES) is a modern cryptographic algorithm that contains a stored secret key and is widely used to encrypt confidential data [5]. It is well-known that the secret key of an unprotected AES cryptographic circuit can be disclosed without much effort if side-channel attacks are implemented. In order to secure an AES cryptographic circuit against side-channel attacks, all the existing countermeasures such as masking [5] and hiding [6, 7] are trying to break the aforementioned correlation between the processed data and the physical leakages. Unfortunately, these existing countermeasures [5, 6, 7] are not adequately secure and cause significant power/area/performance overhead to the AES circuit.

In this letter, a novel and innovative PUF: key-updating (KU) AES-embedded PUF is proposed as shown in Fig. 1(c). The novel and innovative PUF architecture is secure against machine learning attacks, without increasing the degree of nonlinearity between the CRPs. As indicated in Fig. 1(a), an AES circuit is embedded between two conventional PUF circuits and the output response R_1 of the PUF #1 circuit is encrypted by the AES circuit to provide the input challenge R_2 to the PUF #2 circuit. Since the output response R_1 of the PUF #1 and the input challenge R_2 of the PUF #2 are concealed, the adversary is incapable of performing machine learning attacks on either of the two PUF circuits.

Another novel innovation is proposed to eliminate the threat of side-channel attacks, which does not rely on any of the existing countermeasures. It is proposed to add a real-time key-updating function to the architecture that combines the output response R_1 of the PUF #1 with the stored secret key K_1 of the AES to create the actual key K_1^a used by the AES circuit ($K_1^a = R_1 \oplus K_1$). This is illustrated in Fig. 1(c). Since the input data R_1 and the output data R_2 of the AES are unknown to the adversary and the actual secret key K_1^a of the AES is updating in real-time, the adversary is unable to execute side-channel attacks to discover the stored secret key K_1.

Performance evaluation: Commonly, uniqueness, randomness, and reliability are the three most significant parameters for assessing the performance of a designed PUF [1]. To evaluate the performance of the proposed PUF, a 128-bit AES-embedded PUF is designed and simulated in Cadence software. The designed PUF consists of two 128-bit arbiter PUF circuits (PUF #1 and PUF #2) and a 128-bit AES.
cryptographic circuit. Moreover, Monte Carlo simulations are executed on the designed PUF in Cadence to emulate the random fabrication process. As shown in Fig. 2(a), the uniqueness U is improved from 52.4% to 50.4% if the CMOS technology node L is scaled from 130 nm to 14 nm; while the randomness R improves from 47.1% to 49.5%. In addition, Fig. 2(b) shows the worst reliability of the embedded PUF is about 97.4% when the supply voltage is 1.0 V. The simulations result manifests the proposed PUF has excellent uniqueness, randomness, and reliability.

Resilience against side-channel attacks: For the KU AES-embedded PUF we propose, the input data R_1 and output data R_2 of the AES in Fig. 3(e) are unknown to the adversary. As a result, to implement side-channel attacks on the KU AES-embedded PUF, the adversary can only analyze the correlation between the input challenge C_1 and output response R_2 in Fig. 3(c) and the physical leakages of the PUF chip. Power attacks [6, 7] are a kind of side-channel attacks that are widely used by the adversary to disclose the secret key of a cryptographic circuit through monitoring the correlation between the processed data and the power dissipation of the cryptographic circuit. The results of simulated power attacks are shown in Fig. 4 for (a) a 128-bit unprotected AES cryptographic circuit and (b) the 128-bit KU AES-embedded PUF. As shown in Fig. 4(a), the 8-bit secret sub-key 96 of the unprotected AES circuit is disclosed after inputting 1,000 plaintexts of data. However, for the AES-embedded PUF, the secret sub-key 96 is masked from being leaked to the adversary even if 1 million plaintexts are enabled, as shown in Fig. 4(b). In addition, the absolute value of correlation coefficient (AVCC) of the correct key 96 in Fig. 3(b) is two orders of magnitude lower than the AVCC of the correct key 96 in Fig. 3(a). The primary reason is that the actual secret key in the embedded PUF is updating in real-time which greatly weakens the correlation between the processed data and the power dissipation against power attacks.

Robustness against machine learning attacks: Linear regression (LR) [3] and kernel support vector machine (SVM) [2] are two commonly used machine learning algorithms to estimate the relationship between the CRPs of a PUF.

Assume the input data of an IC is an n-bit binary data $X = (x_1, x_2, … , x_n)$ and the corresponding output data of the IC is an m-bit binary data $Y = (y_1, y_2, … , y_m)$. If an LR algorithm is selected for executing a machine learning attack on the IC to model the 1st bit y_1 of the output data Y, the relationship between the input data X and the predicted output bit y'_1 can be denoted as

$$y'_1 = \sum_{i=1}^{n} a_i x_i + a_0$$ \hspace{1cm} (1)

where $a_0, a_1, … , a_n$ are the linear coefficients of the LR algorithm. If k number of input and output data pairs: $(X_1, Y_1), (X_2, Y_2), … , (X_k, Y_k)$ are used as the training data sets, the cost function $F(a)$ of the LR algorithm and the coefficient $a_i, (i = 1, 2, … , n)$ under the gradient descend training can, respectively, be written as

$$F(a) = \frac{1}{2k} \sum_{i=1}^{k} \sum_{j=1}^{n} a_i x_{i,j} + a_0 - y_{i,j}^2$$ \hspace{1cm} (2)

$$a_i := a_i - \beta \frac{\partial F(a)}{\partial a_i} = a_i - 2\beta \sum_{i=1}^{n} x_{i,j} F(a)$$ \hspace{1cm} (3)

where β is the learning rate of the LR algorithm and $x_{i,j}$ is the ith $(j = 1, 2, … , k)$ input (output) data $X_j (Y_j)$.

By contrast, if a kernel SVM algorithm is applied to study a machine learning attack on the IC, the classification function $G_{SVM}(X')$ is

$$G_{SVM}(X') = \sum_{j=1}^{k} c_j y_j f(X_j, X') + b$$ \hspace{1cm} (4)

where c_j is the jth support variable and b is the optimal bias. $K(X_j, X')$ denotes a Gauss kernel function whose bandwidth parameters are set as the median of the corresponding Euclidean distances.

When the LR algorithm is used to train the CRPs of a 128-bit simulated arbiter PUF circuit, as shown in Fig. 4 the 1st output bit of the 128-bit arbiter PUF circuit is cracked by the LR algorithm after training about 5×10^5 number of CRPs. By contrast, when the LR algorithm is implemented on the 128-bit simulated AES cryptographic circuit, it fails to predict the output bit even if 1×10^6 number of CRPs are enabled for training. Moreover, as shown in Fig. 4 if a more advanced algorithm: kernel SVM is selected for studying a machine learning attack, both the AES cryptographic circuit and the proposed PUF circuit are able to resist the kernel SVM. That indicates AES and AES-embedded circuits are robust against the common machine learning attacks.

Conclusion: A novel PUF-AES-PUF architecture in conjunction with a key-updating technique is utilized to design a state-of-the-art PUF primitive that is able to resist non-invasive attacks. The proposed PUF not only has excellent uniqueness (52.4%), randomness (47.1%), and reliability (97.4%) but also maintains a high security level (>1 million data) against both side-channel and machine learning attacks.

Weize Yu (Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23529, USA)

E-mail: wyu@odu.edu

Jia Chen (Department of Electrical and Computer Engineering, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA)

References

1. Gao, Y., Ma, H., Abbott, D., and Al-Sarawi, S. F.: ‘PUF sensor: Exploiting PUF unreliability for secure wireless sensing’, IEEE Trans. on Circuits and Systems I: Regular Papers, 2017, 64, (9), pp. 2532-2543.

2. Kalyanaraman, M., and Orshansky M.: ‘Novel strong PUF based on nonlinearity of MOSFET subthreshold operation’, Proc. Hardware Oriented Security and Trust, Austin, TX, USA, Jun. 2013, pp. 13-18.

3. Vijayakumar, A., Patil, V. C., Prado, C., and Kundu, S.: ‘Machine learning resistant strong PUF: Possible or a pipe dream?’. Proc. Hardware Oriented Security and Trust, McLean, VA, USA, May 2016, pp. 19-24.

4. Awano, H., and Sato, T.: ‘Ising-PUF: A machine learning attack resistant PUF featuring lattice like arrangement of arbiter-PUFs’. Proc. DATE, Dresden, Germany, Mar. 2018, pp. 1447-1452.

5. Yu, W., and Köse, S.: ‘A lightweight masked AES implementation for securing IoT against CPA attacks’, IEEE Trans. on Circuits and Systems I: Regular Papers, 2017, 64, (11), pp. 2934-2944.

6. Yu, W., and Köse, S.: ‘A voltage regulator-assisted lightweight AES implementation against DPA attacks’, IEEE Trans. on Circuits and Systems I: Regular Papers, 2016, 63, (8), pp. 1152-1163.

7. Yang, S., Gupta, P., Wolf, M., Serpanos, D., Narayanan, V., and Xie, Y.: ‘Power analysis attack resistance engineering by dynamic voltage and frequency scaling’, ACM Trans. on Embedded Computing Systems (TECS), 2012, 11, (3), pp. 62:1-62:16.