GUIDELINE CONCORDANT CHEMOTHERAPY IN PATIENTS WITH HORMONE RECEPTOR POSITIVE AND NODAL POSITIVE, EARLY BREAST CANCER LEADS TO BETTER OVERALL AND METASTASES-FREE SURVIVAL WITH LIMITED BENEFIT IN ELDERLY PATIENTS

Inaugural – Dissertation
zur Erlangung des Doktorgrades
der Humanmedizin

der
Fakultät für Medizin
der Universität Regensburg

vorgelegt von
Clara Taubenhansl

2020
GUIDELINE CONCORDANT CHEMOTHERAPY IN PATIENTS WITH HORMONE RECEPTOR POSITIVE AND NODAL POSITIVE, EARLY BREAST CANCER LEADS TO BETTER OVERALL AND METASTASES-FREE SURVIVAL WITH LIMITED BENEFIT IN ELDERLY PATIENTS

Inaugural – Dissertation
zur Erlangung des Doktorgrades
der Humanmedizin

der
Fakultät für Medizin
der Universität Regensburg

vorgelegt von
Clara Taubenhansl

2020
Dekan: Prof. Dr. Dirk Hellwig

1. Berichterstatterin: PD Dr. Elisabeth C. Inwald

2. Berichterstatter: Prof. Dr. Alois Fürst

Tag der mündlichen Prüfung: 05.11.2020
Inhaltsverzeichnis

1. Erläuternde deutschsprachige Zusammenfassung der publizierten Arbeit
 a. Vorwort
 b. Fragestellung der retrospektiven Studie
 c. Einleitung
 d. Material und Methode
 e. Ergebnisse
 f. Diskussion
 g. Literaturverzeichnis

2. Publizierte Arbeit „Guideline concordant chemotherapy in patients with hormone receptor positive and nodal positive, early breast cancer leads to better overall and metastases-free survival with limited benefit in elderly patients”
 a. Abstract
 b. Introduction
 c. Material and Methods
 d. Results
 e. Discussion
 f. References

3. Danksagung
Vorwort

Frau Clara Taubenhansl ist die Autorin dieser Arbeit im Rahmen der Dissertation zur Erlangung des Doktorgrades der Humanmedizin. Beteiligt an dieser Publikation waren sowohl das Institut für Qualitätssicherung und Versorgungsforschung der Universität Regensburg (Frau Prof. Dr. M. Klinkhammer-Schalke, Herr Dr. M. Gerken) als auch der Lehrstuhl für Frauenheilkunde und Geburtshilfe (Herr Prof. Dr. O. Ortmann, Frau PD Dr. E.C. Inwald).

Das vorliegende Paper wurde in dem im Springer Verlag erscheinenden „The Archives of Gynecology and Obstetrics“ am 20.11.2019 elektronisch publiziert. 1870 als „Archiv für Gynäkologie“ gegründet, ist die Zeitschrift der Deutschen Gesellschaft für Gynäkologie und Geburtshilfe heute in 40 Ländern weltweit etabliert. Artikel werden in „PubMed/Medline“ und „Science Citation Index Expanded / Journal Citation Report“ indexiert. Im Jahre 2018 lag der Impact factor bei 2,199 [1].

Fragestellung der retrospektiven Studie

Anhand bevölkerungsbezogener klinischer Krebsregisterdaten sollte der klinische Benefit bezüglich Überleben- und Fernmetastasen-Rezidivraten bei leitliniengerecht durchgeführter Chemotherapie (CHT) bei Patientinnen mit invasivem Brustkrebs untersucht werden. Die dazu benötigten Daten wurden im regionalen klinischen Krebsregister des Instituts für Qualitätssicherung und Versorgungsforschung der Universität Regensburg erhoben und bearbeitet.

Einleitung

Brustkrebs ist weltweit die häufigste Krebserkrankung bei Frauen und verursacht die meisten krebsbedingten Todesfälle [2]. In Deutschland wurden im Jahr 2014 69870 neue Krankheitsfälle und 17804 Todesfälle durch Brustkrebs erfasst [3]. Die deutsche interdisziplinäre S3-Leitlinie zur „Früherkennung, Diagnostik, Therapie und Nachsorge des Mammakarzinoms (Registernummer 032-045 OL) unterstützt die medizinische Entscheidung hinsichtlich verschiedener Therapieoptionen. Gemäß der Empfehlung der S3-Leitlinie ist eine CHT bei HER2-positivem Mammakarzinom, bei Triple negativen Tumoren sowie bei Patientinnen mit einem Hochrisikotumor indiziert [4]. Um den Nutzen und die Auswirkung der Leitlinienempfehlung in einer bestimmten Patientengruppe zu evaluieren, untersuchte diese Studie den Benefit einer CHT bei Patientinnen mit hormonrezeptorpositivem und nodalpositivem Brustkrebs. Der Nutzen der CHT ist in der Literatur vielmals belegt. Als
führende Studie bewies die Early Breast Cancer Trialists Collaborative Group (EBCTCG) als internationale Studiengruppe für frühes Mammakarzinom, dass die adjuvante CHT bei Brustkrebspatientinnen zu einer signifikanten Senkung der Mortalität sowie der Rezidivrate, insbesondere bei Patientinnen unter 50 Jahren, führt. Ein Überlebenvorteil wurde auch bei älteren Patientinnen gezeigt [5].

Dennoch ist die CHT kurz- und langfristig mit vielen unerwünschten Nebenwirkungen verbunden, die sich auf die gesundheitsbezogene Lebensqualität auswirken [6]. Vor allem ältere Patientinnen sind von negativen Begleiterscheinungen betroffen. Diese führen zu einer Unterbehandlung älterer Patientinnen im Vergleich zu jüngeren Patientinnen in der Routineversorgung [7]. Darüber hinaus mangelt es an Studien für die Behandlung von Brustkrebs bei älteren Patientinnen, da das Alter häufig ein Grund für den Ausschluss aus randomisierten klinischen Studien zur Behandlung von Brustkrebs ist [8]. Dies hat zur Folge, dass der Einsatz von CHT sorgfältig abgewogen werden sollte und insbesondere bei älteren Brustkrebspatientinnen häufig kontrovers diskutiert wird.

Die Diagnose, Therapie und Nachsorge von Brustkrebspatientinnen erfordern ein multidisziplinäres Konzept. Die Deutsche Krebsgesellschaft hat ein Zertifizierungsprogramm entwickelt, um Patientinnen eine Behandlung mit hohem Qualitätsstandard anzubieten. Das Zertifizierungssystem wird von OnkoZert betreut, einer auf medizinische Zertifizierung spezialisierten Institution. Die Qualität der patientenzentrierten Versorgung in verschiedenen Bereichen wird anhand von Qualitätsindikatoren gemessen, die sich aus den deutschen Leitlinien zur Behandlung von Brustkrebspatientinnen ableiten. Eine Neubewertung der Qualitätsindikatoren erfolgt durch jährliche Audits. Qualitätsindikator Nr. 6 fordert die chemotherapeutische Behandlung bei Patientinnen mit hormonrezeptorpositivem und nodalpositivem invasivem Brustkrebs mit einer Mindestquote von 60% [9]. Ziel der vorliegenden Studie ist die Analyse dieses ausgewählten Qualitätsindikators der Deutschen Krebsgesellschaft.

Unserem Kenntnisstand zufolge liegen keine populationsbezogenen Studien vor, die sich auf die Rezidivrate von Fernmetastasen und das Fernmetastasen-freie Überleben konzentrieren. Zusammenfassend war das Ziel dieser Studie, die Auswirkungen der CHT bei Patientinnen mit hormonrezeptorpositivem und nodalpositivem Brustkrebs auf das Gesamtüberleben und das Fernmetastasen-freie Überleben zu analysieren, insbesondere unter Berücksichtigung der Altersgrenze von 70 Jahren.
Material und Methode

Datenbank

Die aktuelle Studie basiert auf Daten des Tumorzentrums Regensburg (Bayern). Es handelt sich um ein bevölkerungsbezogenes klinisches Krebsregister, das Informationen zu allen Tumorpatientinnen in der Oberpfalz und Niederbayern sammelt. In diesem Gebiet leben mehr als 2,3 Millionen Menschen. Die Dokumentation enthält Informationen zu Diagnose, Therapie sowie dem Langzeit-Verlauf der Erkrankung. Die Daten werden von dem Universitätsklinikum Regensburg, 53 Kliniken und über 1500 niedergelassenen Ärzten bezogen. Medizinische Berichte, pathologische Befunde und Nachsorgeunterlagen bilden die Grundlage für die Dokumentation im Krebsregister. Das Krebsregister wird zusätzlich von den regionalen Standesämtern und Gesundheitsämtern über Sterbedaten informiert.

Etwa 80% aller Brustkrebspatientinnen werden in spezialisierten Brustkrebszentren behandelt. Diese Einrichtungen sind von der Deutschen Krebsgesellschaft (DKG) zertifiziert. In dem genannten Gebiet sind 8 Brustkrebszentren enthalten, die die von der DKG geforderten standardisierten Verfahren für Diagnose, Therapie und Dokumentation erfüllen. Die aktuelle Studie basiert auf Daten dieser 8 Brustkrebszentren.

Unsere Analyse stützt sich auf folgende Definitionen zur Klassifizierung von Brustkrebs: In Bezug auf den Nodalstatus ist N1 als 1–3 befallene axilläre Lymphknoten, N2 als 4–9 befallene axilläre Lymphknoten und N3 als 10 oder mehr befallene axilläre Lymphknoten definiert. HER2 ist Teil der Rezeptorfamilie der humanen epidermalen Wachstumsfaktoren. HER2-positive Tumoren sind durch eine Überexpression dieses Onkogens gezeichnet und sind mit einer schlechteren Prognose verbunden. Triple negativer Brustkrebs ist als fehlende Expression der Gene für Östrogenrezeptor (ER), Progesteronrezeptor (PR) und HER2 definiert. Der molekulare Subtyp mit hormonrezeptorpositivem, HER2-negativem Status und einer Ki67 Proliferationsrate von <= 15% wird Luminal A genannt. Luminal B beschreibt den molekularen Subtyp von Brustkrebspatientinnen mit hormonrezeptorpositivem, HER2-negativem Status und einer Ki67 Proliferationsrate von > 15%.

Ein- und Ausschlusskriterien

Der vorliegende Datensatz basiert auf 13104 Fällen von Brustkrebspatientinnen aus Oberpfalz und Niederbayern, die zwischen Januar 2003 und Dezember 2013 diagnostiziert und in zertifizierten Brustkrebszentren behandelt wurden. Um den Fokus nur auf invasiven Brustkrebs zu lenken, wurden Patientinnen mit nicht-invasivem Brustkrebs oder primär metastasiertem Brustkrebs ausgeschlossen. Auch Patientinnen mit hormonrezeptornegativem und...
nodalnegativem Tumorstatus wurden exkludiert. Um eine vergleichbare Ausgangsbasis zu erstellen, wurden nur mit endokriner Therapie behandelte Brustkrebspatientinnen berücksichtigt. Bei 30,6% dieser Patientinnen fehlten Informationen zur CHT. Deshalb wurden nur dokumentierte Fälle einer durchgeführten oder nicht durchgeführten CHT in die weitere Analyse mit einbezogen. Diese Einschlusskriterien führten zu einem Datensatz von 1772 Fällen.

Statistische Analyse
Kontinuierliche Variablen wurden als Mittelwert ± Standardabweichung (SD) und kategoriale Variablen in Prozent ausgedrückt. Zum Vergleich der Patientencharakteristika wurden für normalverteilte kontinuierliche Variablen der T-Test und für kategoriale Variablen der Chi-Quadrat-Test verwendet. Das Gesamtüberleben beschrieb den Zeitraum vom Datum der Brustkrebsdiagnose bis zum Sterbedatum. Beim rezidivfreien Überleben wurde das erste Fernmetastasenrezidiv als Ereignis definiert. Fälle wurden als zensiert deklariert, wenn während des Beobachtungszeitraums oder bis zum Ende der Nachsorge (2003-2013) nicht der Tod oder ein Fernmetastasenrezidiv auftrat. Kaplan-Meier-Diagramme veranschaulichten das Gesamtüberleben, das Fernmetastasen-freie Überleben und die kumulative Rezidivrate von Fernmetastasen. Cox-Regressionsmodelle wurden berechnet, um Hazard Ratios (HR) und entsprechende 95%-Konfidenzintervalle (95%-CI) darzustellen. Sie wurden für die bekannten Confounder-Varialben adjustiert: Diagnosealter, Grading, Tumorgröße, Nodalstatus, Lymphgefäβinvasion, Blutgefäβinvasion und HER2-Status. Der p-Wert von 0,05 des Log-Rank-Tests wurde als Schwelle der statistischen Signifikanz definiert, alle angegebenen p-Werte waren zweiseitig. Das mittlere Follow-Up betrug 6,6 Jahre (Median 6,4 Jahre). Alle Ergebnisse wurden mit der Software IBM SPSS Statistics 24.0 berechnet.

Ergebnisse
Charakteristika der Patientinnen
Insgesamt erhielten 1544 Brustkrebspatientinnen eine CHT (87,1%) und 228 keine CHT (12,9%). Im Durchschnitt sank der Anteil der mit CHT behandelten Patientinnen im Zeitverlauf von 97,9% im Jahr 2003 auf 79,2% im Jahr 2013. Die Verteilung des Diagnosealters war bei Patientinnen, die mit CHT behandelt wurden, anders als bei Patientinnen ohne CHT (p<0,001). Die Mehrheit der mit CHT behandelten Patientinnen war zwischen 50 und 69 Jahre alt (55,4%). Im Gegensatz dazu war die Mehrheit der Patientinnen ohne CHT 70 Jahre oder älter (59,6%). Die Verteilung des Gradings war in den
verglichenen Gruppen bezüglich des am häufigsten diagnostizierten Gradings G2 ähnlich (68,9% bei CHT und 68,0% bei Nicht-CHT). In der mit CHT behandelten Gruppe war G1 seltener als G3 (6,7% gegenüber 24,4%). Die unbehandelte Gruppe zeigte einen geringeren Unterschied in der Verteilung des Gradings zwischen G1 und G3 (13,2% gegenüber 18,9%, p=0,001). Patientinnen, die keine CHT erhielten, hatten häufiger einen niedrigen Nodalstatus N1 (p=0,001). Darüber hinaus hatte diese Patientengruppe häufiger keine Lymphgefäβinvasion (37,3% bei Nicht-CHT gegenüber 24,9% bei CHT, p<0,001).

Überlebensanalysen
Um die Langzeiteffekte der CHT zu bewerten, wurden Patientinnen mit oder ohne Behandlung im Hinblick auf das Gesamtüberleben verglichen. 1544 Patientinnen wurden mit CHT behandelt, 228 Patientinnen wurden nicht mit CHT behandelt. Patientinnen, die CHT erhielten, zeigten ein besseres Gesamtüberleben (OS) als Patientinnen ohne CHT. Die 10-Jahres-Überlebensraten betrugen 85,8% für Patientinnen mit CHT im Vergleich zu 72,9% für Patientinnen ohne CHT. Im Zeitverlauf nahm der Unterschied der Überlebensraten stetig zu (3-Jahres-OS 96,3% gegenüber 88,7% und 5-Jahres-OS 91,3% gegenüber 76,8%, p<0,001).

Nach Adjierung für mögliche Störvariablen (Diagnosealter, Grading, Tumorgröße, Nodalstatus, Lymphgefäβinvasion, Blutgefäβinvasion, HER2-Status) in einem multivariablen Cox-Regressionsmodell war das bessere Gesamtüberleben in der CHT-Gruppe weiterhin deutlich (HR 0,494, 95%-CI 0,343-0,711, p<0,001). Das Tumorstadium wurde vom Modell aufgrund der Kollinearität mit der Tumorgröße und dem Nodalstatus ausgeschlossen. Neben der CHT erwiesen sich das Diagnosealter, das Grading, die Tumorgröße und der Nodalstatus als unabhängige Faktoren für das Gesamtüberleben.

Fernmetastasen-Rezidivrate und Fernmetastasen-freies Überleben
Um die kumulative Rezidivrate von Fernmetastasen zu untersuchen, konzentrierten wir uns auf operierte Patientinnen mit R0-Resektion (N=1695, 95,7%). In dieser Analyse umfasste ein Rezidiv nur Fernmetastasen, keinen lokalen oder lymphatischen Metastasen.

Die Fernmetastasen-Rezidivrate beschreibt im Folgenden die Häufigkeit von Fernmetastasen, die in unserer Studie erfasst wurden. Die Verwendung der CHT zeigte eine signifikante Verbesserung der 3-Jahres-Fernmetastasen-Rezidivrate (5,4% bei mit CHT behandelten Patientinnen vs. 9,6% bei nicht behandelten Patientinnen) und der 5-Jahres-Fernmetastasen-Rezidivrate (9,8% vs. 17,2%, p=0,001). Adjustiert für alle Confounder mittels multivariabler
Cox-Regressionsmodellanalyse zeigte sich weiter bei Patientinnen, die eine CHT erhielten, eine signifikant niedrigere Rezidivrate (HR 0,433, 95%-CI 0,281-0,666, p<0,001).

Das Fernmetastasen-freie Überleben umfasst den Zeitraum nach der Krebsdiagnose bis zum Nachweis von Fernmetastasen. Die kumulativen Fernmetastasen-freien 3-Jahres- und 5-Jahres-Überlebensraten bei Brustkrebspatientinnen mit CHT waren höher als bei Patientinnen ohne CHT (93,4% gegenüber 84,5%, 86,7% gegenüber 74,4%, p<0,001). Eine multivariable Cox-Regressionsanalyse bestätigte das signifikant bessere Fernmetastasen-freie Überleben bei Patientinnen, die CHT erhielten (HR 0,484, 95%-CI 0,344-0,682, p<0,001).

Auswirkung der Chemotherapie in zwei Altersgruppen

Um die Effekte der CHT genauer zu untersuchen, wurde das Gesamtüberleben und das Fernmetastasen-freie Überleben zwischen zwei Altersgruppen verglichen: Patientinnen mit Diagnosealter <70 Jahre und Patientinnen mit Diagnosealter ≥70 Jahre.

Die erste Gruppe mit Patientinnen <70 Jahren umfasste 1446 Personen, von denen 1354 (93,6%) eine CHT und 92 (6,4%) keine CHT erhielten. Im Gegensatz dazu wurde in der zweiten Gruppe mit 326 Patientinnen, die >70 Jahre alt waren, seltener einer CHT zugeführt (190 Patientinnen entspricht 58,3%).

In der jüngeren Patientengruppe (N=1446) starben 182 Personen im Beobachtungszeitraum (12,1% der Patientinnen mit CHT gegenüber 19,6% der Patientinnen ohne CHT). Im Zeitverlauf zeigte sich bei Patientinnen, die eine CHT erhielten, ein signifikant besseres Gesamtüberleben (3-Jahre-OS 97,0% bei behandelten Patientinnen gegenüber 92,8% bei nicht behandelten Patientinnen, 5-Jahre-OS 93,6% gegenüber 83,4%, p<0,001). Nach Adjustierung für alle Störvariablen (Diagnosealter, Grading, Tumorgröße, Nodalstatus, Lymphgefäßinvasion, Blutgefäßinvasion, HER2-Status) in einem multivariablen Cox-Regressionsmodell war das signifikant bessere Gesamtüberleben in der CHT-Gruppe immer noch evident (HR 0,270, 95%-CI 0,161-0,451, p<0,001).

Im Gegensatz dazu starben in der zweiten Gruppe der älteren Patientinnen mit Diagnosealter ≥70 Jahre (N=326) 101 (31,0%) Personen im Beobachtungszeitraum (28,9% der Patientinnen mit CHT gegenüber 33,8% der Patientinnen ohne CHT). Es gab einen kleinen, aber immer noch signifikanten Überlebenvorteil für die behandelte Gruppe (3-Jahres-OS 91,2% bei behandelten Patientinnen gegenüber 85,9% bei nicht behandelten Patientinnen, 5-Jahres-OS 75,4% gegenüber 72,6%, p=0,038). Ein multivariables Cox-Regressionsmodell zeigte jedoch keinen signifikanten Nutzen für Patientinnen mit Diagnosealter ≥70 Jahren und einer CHT-
Behandlung im Vergleich zu Patientinnen ohne Behandlung (HR 0,754, 95%-CI 0,470-1,209, p=0,242).

Zusätzlich zum Gesamtüberleben wurde das Fernmetastasen-freie Überleben analysiert. Die erste Gruppe der jüngeren Patientinnen mit R0-Resektion (N=1396) listete 227 Fernmetastasenrezidive bzw. Todesfälle auf (15,9% der Patientinnen mit CHT-Behandlung gegenüber 21,8% der Patientinnen ohne Behandlung). In dieser Gruppe war der Unterschied in Bezug auf das Fernmetastasen-freie Überleben (DMFS) zwischen der Behandlung und der Nichtbehandlung von CHT signifikant (3-Jahres-DMFS 94,3% vs. 87,7% und 5-Jahres-DMFS 88,4% vs. 78,6%, p=0,003). Ein Cox-Regressionsmodell lieferte weitere Belege für eine bessere Fernmetastasen-freies Überleben bei mit CHT behandelten Patientinnen (HR 0,344, 95%-CI 0,210-0,562, p<0,001).

In der Patientengruppe mit Diagnosealter >=70 Jahren und R0-Resektion (N=299) wurden 91 Fernmetastasenrezidive bzw. Todesfälle festgestellt (29,1% der Patientinnen mit CHT gegenüber 32,5% der Patientinnen ohne CHT). In dieser Gruppe gab es keinen signifikanten Unterschied in Bezug auf das Fernmetastasen-freie Überleben zwischen der Behandlung und der Nichtbehandlung von CHT (3-Jahres-DMFS 87,1% vs. 82,3% und 5-Jahres-DMFS 74,0% vs. 71,4%, p=0,112). Das Cox-Regressionsmodell zeigte ebenfalls keinen signifikanten Vorteil bei der CHT-Behandlung hinsichtlich des Fernmetastasen-freien Überlebens (HR 0,650, 95%-CI 0,412-1,027, p=0,065).

Überlebensanalysen basierend auf verschiedenen Untergruppen

Um die Auswirkung von CHT auf das Überleben differenzierter zu untersuchen, wurde das Gesamtüberleben mittels multivariablem Cox-Regressionsmodell in verschiedenen Untergruppen analysiert, die nach Diagnosealter, molekularen Subtypen (Luminal A, Luminal B) und Nodalstatus (N1, N2/3) unterteilt waren. Über alle Altersgruppen hinweg führte die CHT-Behandlung bei Patientinnen mit Luminal-A-Tumoren zu einem signifikant besseren Gesamtüberleben (HR 0,191, 95%-CI 0,089-0,409, p<0,001), während Luminal-B-Patientinnen nur geringfügig von CHT profitierten (HR 0,495, 95%-CI 0,241-1,019, p=0,056). Patientinnen mit niedrigem Nodalstatus N1 ebenso wie mit hohem Nodalstatus N2/3 lebten bei Behandlung mit CHT signifikant länger (p=0,001 bzw. p=0,038). Patientinnen mit Diagnosealter <50 Jahren und Luminal-A-Tumor zeigten ein signifikant besseres Gesamtüberleben, wenn sie mit CHT behandelt wurden, während junge Patientinnen mit niedrigem Nodalstatus keinen Nutzen hatten. Die Analyse der CHT-Behandlung bei Luminal-
B-Patientinnen und Tumoren mit hohem Nodalstatus lieferte aufgrund der geringen Anzahl von Ereignissen in dieser Altersgruppe keine valide Aussage hinsichtlich des Gesamtüberlebens. In der mittleren Altersgruppe der Patientinnen im Alter von 50 bis 69 Jahren erzielte die CHT einen Überlebensvorteil sowohl bei Luminal A- als auch bei Luminal B-Tumoren. Ebenso wurde in beiden behandelten Gruppen mit niedrigem und hohem Nodalstatus ein besseres Gesamtüberleben beobachtet. Im Gegensatz dazu wiesen weder Luminal A- noch Luminal B-Patientinnen mit einem Diagnosealter >=70 Jahren ein besseres Gesamtüberleben auf, wenn sie mit CHT behandelt wurden, im Gegensatz zu Patientinnen ohne Behandlung.

Diskussion

Die interdisziplinäre S3-Leitlinie zur „Früherkennung, Diagnostik, Therapie und Nachsorge des Mammakarzinoms (Registernummer 032-045 OL) wurde erstmals 2004 publiziert und seitdem stetig aktualisiert. In den zertifizierten Brustkrebszentren in Deutschland, in denen im Jahr 2015 78,8% aller Brustkrebspatientinnen behandelt wurden [10], kam es aufgrund der Standardisierung zu einer Verbesserung und Qualitätssicherung der Brustkrebstherapie. Seit der ersten Zertifizierung eines Brustkrebszentrums im Jahr 2003 stieg die Zahl der Zentren in Deutschland kontinuierlich auf 266 im Jahr 2019 [11]. Patientinnen, die in zertifizierten Brustkrebszentren behandelt werden, können aufgrund der Umsetzung der S3-Leitlinie hohe Qualitätsstandards erwarten. In Bezug auf die systemische Therapie wird in der Leitlinie die CHT für Patientinnen mit hormonrezeptorpositivem und nodalpositivem, invasivem Brustkrebs empfohlen. Diese Studie untersuchte die Implementierung und die Auswirkungen einer konkordanten Leitlinientherapie und demonstrierte den Krankheitsverlauf von Brustkrebspatientinnen auf der Grundlage von Daten aus einem qualitativ hochwertigen bevölkerungsbezogenen regionalen Krebsregister. Zusätzlich wurde der Krankheitsverlauf älterer Patientinnen ab 70 Jahren im Verhältnis zu jüngeren Patientinnen verglichen. Es mangelt an wissenschaftlichen Belegen für die Behandlung von Brustkrebs bei älteren Patientinnen, da das Alter häufig ein Grund für den Ausschluss aus randomisierten klinischen Studien zur Brustkrebsbehandlung ist [8].

Während des Beobachtungszeitraums erhielten in dieser Studie 87,1% aller Patientinnen mit hormonrezeptor- und nodalpositivem, invasivem Brustkrebs eine CHT. Diese Rate ist mit anderen Studien vergleichbar. Der Anteil aller hormonrezeptor- und nodalpositiven Brustkrebspatientinnen, die 2010 in Deutschland mit CHT behandelt wurden, lag bei 89,7% [12]. Unsere Daten des bevölkerungsbezogenen regionalen Krebsregisters können daher als repräsentativ für die Gesundheitsversorgung in Deutschland angesehen werden und stimmen...
mit der Brustkrebsversorgung deutschlandweit überein. Auffällig ist der Rückgang der mit CHT behandelten Patientinnen in Bezug auf den 10-jährigen Beobachtungszeitraum. Dieses Phänomen ist teilweise auf die verbesserte Dokumentation der durchgeführten Therapien im Zeitverlauf zurückzuführen. Zu Beginn der Beobachtung waren nur einige Brustkrebszentren zertifiziert und die Dokumentation war weniger repräsentativ. Mit der Verbesserung der Dokumentation wurden einige Fälle, die zunächst als „unbekannte Therapie“ eingestuft und von der Analyse ausgeschlossen wurden, im Laufe der Zeit als „keine Chemotherapie“ detektiert. Darüber hinaus sind Änderungen der Behandlungsstandards ein weiterer Grund für die Abnahme der CHT am Ende des Rekrutierungszeitraums. Wie beispielsweise Haque et al. beschreiben, wurde bei Luminal-A-Patientinnen mit niedrigem Nodalstatus N1 im Laufe der Zeit seltener eine CHT eingesetzt [13].

Die Altersverteilung zeigte, dass mehr als die Hälfte der Patientinnen mit CHT zwischen 50 und 69 Jahre alt waren. Ebenso haben Inwald et al. bestätigt, dass CHT und endokrine Therapie bei Patientinnen im Alter von 50 bis 69 Jahren häufiger angewendet werden als bei Patientinnen ab 70 Jahren [14]. Darüber hinaus war mehr als die Hälfte der Patientinnen, die nicht mit einer CHT behandelt wurden, in unserer Studie 70 Jahre oder älter. Gründe für die Unterbehandlung bei älteren Patientinnen sind beispielsweise die ablehnende Haltung der Patientinnen oder die Empfehlung des behandelnden Arztes aufgrund von Komorbiditäten oder möglichen unerwünschten Nebenwirkungen. Die Tumoreigenschaften zwischen der behandelten und der nicht behandelten Gruppe unterschieden sich insbesondere hinsichtlich des Gradings und des Nodalstatus. Patientinnen ohne CHT hatten häufiger einen niedrigeren Nodalstatus und ein niedrigeres Grading. Dieser Trend spiegelt die Umsetzung der S3-Leitlinie wider, die eine CHT bei Hochrisikotumoren vorsieht [4].

Der Überlebensvorteil einer CHT ist in Bezug auf unsere Studie ebenso offensichtlich wie in der renommierten EBCTCG-Polychemotherapie-Übersicht von 2011 [15]. Palmieri et al. beschreibt eine Verringerung der 10-jährigen Brustkrebssterblichkeit um etwa ein Drittel bei behandelten im Vergleich zu nicht behandelten Patientinnen. Dieses Phänomen ist vergleichbar mit der Verbesserung des 5-Jahres-Gesamtüberlebens um 14,5% in unserer bevölkerungsbasierten Studie. Obwohl unsere Analyse im Gegensatz zu allen in EBCTCG-Polychemotherapie-Übersicht enthaltenen Patientinnen nur nodalpositive Patientinnen umfasst, liegt der Überlebensvorteil einer CHT auf der Hand.

Eine weitere Studie befasst sich mit den verschiedenen Aspekten der CHT bei nodalpositiven Brustkrebspatientinnen. Gnant et al. berichtet über einige Untergruppen von nodalpositiven Brustkrebspatientinnen mit begrenztem Metastasierungsrisiko. Diese Patientinnen sollten
wegen eines zu geringen Nutzens von den unerwünschten Nebenwirkungen einer CHT verschont bleiben [16].

In unserer retrospektiven Studie fiel die differierende Häufigkeitsverteilung der CHT zwischen jüngeren und älteren Patientinnen auf (93,6% der Patientinnen mit Diagnosealter <70 Jahren im Vergleich zu 58,3% der Patientinnen mit Diagnosealter >=70 Jahren). Diese Tendenz steht im Einklang mit dem SENORA-Projekt der deutschen TMK-Kohortenstudie (Tumorregister Mammakarzinom), welches prospektiv die klinische Behandlungsrealität der älteren Patientinnen (>70 Jahre) untersucht. Es ist jedoch zu erwähnen, dass Patientinnen mit fehlenden Informationen über CHT hier nicht ausgeschlossen wurden. Im adjuvanten Setting des SENORA-Projekts erhielten 75,1% aller Patientinnen im Alter von <70 Jahren eine CHT. Im Gegensatz dazu haben sich nur 66,2% der über 70-jährigen Patientinnen einer CHT unterzogen [17]. Wie bereits erwähnt, hat das Diagnosealter einen starken Einfluss auf die Entscheidung zur Durchführung einer CHT.

Der Nachweis eines besseren Gesamtüberlebens bei mit CHT behandelten Patientinnen unter 70 Jahren im Vergleich zu nicht behandelten Patientinnen wird in unserer Analyse deutlich. Studien zufolge ist der Überlebensvorteil unbestritten, wenn eine eindeutige medizinische Indikation für eine CHT vor allem bei jüngeren Brustkrebspatientinnen vorliegt [18]. Daher ist die CHT insbesondere bei jüngeren Patientinnen ohne Komorbiditäten eine seit vielen Jahren etablierte Therapie in der Behandlung von Brustkrebs.

Andererseits zeigt die Studie, dass Patientinnen mit Diagnosealter >=70 Jahren mit CHT nur einen minimalen Überlebensvorteil im Gegensatz zu nicht behandelten Patientinnen im gleichen Alter erhalten. In mehreren Studien wurde der umstrittene Einsatz der CHT bei älteren Patientinnen mit nodalpositivem Brustkrebs mit gleichen [19,20] oder abweichenden Schlussfolgerungen [21] diskutiert. Im Gegensatz zu unserer Analyse erwies sich in der Untersuchung von Giordano et al. bei Frauen im Alter >=65 mit nodalpositivem und Östrogenrezeptor-positivem Brustkrebs eine CHT als nicht vorteilhaft [22]. Ein geringeres Rezidivrisiko sowie Sterberisiko aus anderen Gründen sollte der Grund für den fehlenden Vorteil bei älteren Patientinnen mit nodalpositivem und hormonrezeptorpositivem Brustkrebs sein. Andererseits stellte die EBCTCG fest, dass die CHT plus endokriner Therapie bei älteren Patientinnen im Gegensatz zu dem offensichtlichen Überlebensvorteil bei prämenopausalen Patientinnen nur minimal, aber immer noch vorhanden ist [5]. Ähnlich dazu bestätigte Albain et al. den Überlebensvorteil einer CHT in Kombination mit einer endokrinen Therapie im Vergleich zu einer alleinigen endokrinen Therapie bei postmenopausalen Patientinnen mit nodal- und hormonrezeptorpositivem Brustkrebs [23]. Es ist offensichtlich, dass die CHT bei
älteren Patientinnen mit nodalpositivem Brustkrebs weiter umstritten ist und weiteren Untersuchungen bedarf.

Klinische Studien bestätigen den Nutzen einer CHT bei jungen Patientinnen mit hormonrezeptorpositivem und nodalpositivem Brustkrebs sowie unsere retrospektive Kohortenstudie. Die Anwendung der CHT bei älteren Patientinnen ist nach wie vor umstritten, insbesondere weil die meisten randomisierten Studien Patientinnen über 70 Jahre ausschließen. Es muss berücksichtigt werden, dass bestimmte Patientinnen nicht von einer CHT profitieren. Mehrere Studien beschreiben kein signifikant besseres Überleben für Luminal A-Patientinnen mit Lymphknotenbeteiligung, die mit CHT behandelt wurden [24, 25]. Ebenso haben Nielsen et al. festgestellt, dass eine CHT bei prämenopausalen Luminal A-Patientinnen zu keinem besseren Überleben führt [26]. Im Gegensatz dazu bestätigt unsere Analyse den Nutzen der CHT bei Luminal A-Patientinnen mit Diagnosealter <50 Jahren. Folglich bleibt die CHT bei Luminal-A-Patientinnen ein umstrittenes Thema.

Luminal B-Patientinnen im Alter zwischen 50 und 69 Jahren, die die Mehrheit aller Patientinnen in unserer Studie darstellt, profitieren von einer CHT. Damit wird in einer populationsbasierter Studie die Empfehlung des St. Gallen Internationalen Experten Konsensus bestätigt, der eine CHT bei Luminal-B-Patientinnen vorsieht [27]. Im Gegensatz dazu zeigten Patientinnen mit Diagnosealter >=70 Jahren und demselben Subtyp laut unserer Studie kein besseres Gesamtüberleben, wenn sie mit CHT behandelt wurden. Eine Möglichkeit zur Lösung dieser Kontroverse könnte darin bestehen, den Ki-67-Score mit zu berücksichtigen. Criscitiello et al. konstatiert, dass die Ki-67-Überexpression eine Untergruppe von Patientinnen mit nodalpositivem Luminal-B-Brustkrebs identifiziert, die von einer CHT zusätzlich zur endokrinen Therapie profitieren könnte [28].

Zusammenfassend lässt sich festhalten, dass Patientinnen mit hormonrezeptor- und nodalpositivem, invasivem Brustkrebs von einer CHT profitieren. Dennoch gibt es bestimmte Subgruppen, bei denen eine CHT nicht von Vorteil ist.
Literaturverzeichnis

1. https://www.springer.com/journal/404, Stand 05.12.2019

2. Fitzmaurice C, Dicker D, Pain A, Hamavid H, Moradi-Lakeh M et al (2015) The Global Burden of Cancer 2013. JAMA Oncology. 1(4): 505–527. https://doi.org/10.1001/jamaoncol.2015.0735

3. Robert Koch-Institut und die Gesellschaft der epidemiologischen Krebsregister in Deutschland e.V. (2017) Krebs in Deutschland für 2013/2014, 11th edn. Berlin, pp 72–79. https://doi.org/10.17886/rkipubl-2017-007

4. Deutsche Krebgesellschaft, Deutsche Krebshilfe, AWMF (Leitlinienprogramm Onkologie) (2017) S3-Leitlinie Früherkennung, Diagnose, Therapie und Nachsorge des Mammakarzinoms. Version 4.0. http://www.leitlinienprogramm-onkologie.de/leitlinien/mammakarzinom. Accessed 17 February 2019

5. Early Breast Cancer Trialists ´ Group (EBCTCG) (2005) Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365 (9472):1687–1717. https://doi.org/10.1016/S0140-6736(05)66544-0

6. Tao JJ, Visvanathan K, Wolff AC (2015) Long term side effects of adjuvant chemotherapy in patients with early breast cancer. The Breast 24(2):149–153. https://doi.org/10.1016/j.breast.2015.07.035

7. Malik MK, Tartter PL, Belfer R (2013) Undertreated breast cancer in the elderly. Journal of Cancer Epidemiology 2013:893104. https://doi.org/10.1155/2013/893104

8. Tesarova P (2016) Specific Aspects of Breast Cancer Therapy of Elderly Women. BioMed Research International 2016:1381695. https://doi.org/10.1155/2016/1381695

9. Deutsche Krebgesellschaft (2019) Kennzahlen und Matrix zu den Brustkrebszentren. https://www.krebsgesellschaft.de/zertdokumente.html. Accessed 17 February 2019

10. Klauber J, Geraedts M, Friedrich J, Wasem J (2015) Krankenhaus-Report 2015. Schattauer, Stuttgart

11. Deutsche Krebgesellschaft (2019) oncoMAP. http://www.oncomap.de/centers. Accessed 17 February 2019

12. Kreienberg R, Schwentner L, Wöckel A, Wesselmann S (2012) Hat sich die Versorgungsqualität von Patientinnen mit Brustkrebs in Deutschland verbessert? Eine aktuelle Datenanalyse. FRAUENARZT 10:930–939

13. Haque W, Verma V, Hatch S, Klimberg VS, Butler EB et al (2018) Omission of chemotherapy for low-grade, luminal A N1 breast cancer: Patterns of care and clinical outcomes. The Breast 41:67-73. https://doi.org/10.1016/j.breast.2018.06.014

14. Inwald EC, Ortman O, Koller M, Zeman F, Hofstädter F et al (2017) Screening-relevant age threshold of 70 years and older is a stronger determinant for the choice of adjuvant treatment in breast cancer patients than tumor biology. Breast Cancer Research and Treatment 163(1):119–130. https://doi.org/10.1007/s10549-017-4151-6

15. Palmieri C, Jones A (2012) The 2011 EBCTCG polychemotherapy overview. Lancet 379(9814):390–392. https://doi.org/10.1016/S0140-6736(11)61823-0

16. Gnant M, Sestak I, Filipits M, Dowsett M, Balic M et al (2015) Identifying clinically relevant prognostic subgroups of postmenopausal women with node-positive hormone receptor-positive early-stage breast cancer treated with endocrine therapy: a combined
analysis of ABCSG-8 and ATAC using the PAM50 risk of recurrence score and intrinsic subtype. Annals of Oncology 26(8):1685–1691. https://doi.org/10.1093/annonc/mdv215

17. Fietz T, Zahn MO, Köhler A, Engel E, Frank M et al (2018) Routine treatment and outcome of breast cancer in younger versus elderly patients: results from the SENORA project of the prospective German TMK cohort study. Breast Cancer Research and Treatment 167(2):567–578. https://doi.org/10.1007/s10549-017-4534-8

18. Early Breast Cancer Trialists' Collaborative Group (1998) Polychemotherapy for early breast cancer: an overview of the randomised trials. Lancet 352(9132):930–942. https://doi.org/10.1016/S0140-6736(98)03301-7

19. Pagani O, Gelber S, Simoncini E, Castiglione-Gertsch M, Price KN et al (2009) Is adjuvant chemotherapy of benefit for postmenopausal women who receive endocrine treatment for highly endocrine-responsive, node-positive breast cancer? International Breast Cancer Study Group Trials VII and 12-93. Breast Cancer Research and Treatment 116(3):491–500. https://doi.org/10.1007/s10549-008-0225-9

20. Muss HB, Woolf S, Berry D, Cirrincione C, Weiss RB et al (2005) Adjuvant chemotherapy in older and younger women with lymph node-positive breast cancer. Journal of the American Medical Association 293(9):1073–1081. https://doi.org/10.1001/jama.293.9.1073

21. Inal A, Akman T, Yaman S, Demir Ozturk S, Geredeli C et al (2013) Endocrine therapy alone vs. chemotherapy plus endocrine therapies for the treatment of elderly patients with endocrine-responsive and node positive breast cancer: a retrospective analysis of a multicenter study (Anatolian Society of Medical Oncology). Journal of BUON 18(1):64–69.

22. Giordano SH, Duan Z, Kuo YF, Hortobagyi GN, Goodwin JS (2006) Use and outcomes of adjuvant chemotherapy in older women with breast cancer. Journal of Clinical Oncology 24(18):2750–2756. https://doi.org/10.1200/JCO.2005.02.3028

23. Albain KS, Barlow WE, Ravdin PM, Farrar WB, Burton GV et al (2009) Adjuvant chemotherapy and timing of tamoxifen in postmenopausal patients with endocrine-responsive, node-positive breast cancer: a phase 3, open-label, randomised controlled trial. Lancet 374(9707):2055–2063. https://doi.org/10.1016/S0140-6736(09)61523-3

24. Taskaynatan H, Kucukzeybek Y, Alacacioglu A, Yildiz Y, Salman T et al (2018) Is adjuvant chemotherapy necessary for Luminal A-like breast cancer?. Journal of BUON 23(4):877-882.

25. Diessner J, Wischnertsky M, Blettner M, Häusler S, Janni W et al (2016) Do Patients with Luminal A Breast Cancer Profit from Adjuvant Systemic Therapy? A Retrospective Multicenter Study. PLOS ONE 11(12):e0168730. https://doi.org/10.1371/journal.pone.0168730

26. Nielsen TO, Jensen MB, Burugu S, Gao D, Jørgensen CL et al (2017) High-Risk Premenopausal Luminal A Breast Cancer Patients Derive no Benefit from Adjuvant Cyclophosphamide-based Chemotherapy: Results from the DBCG77B Clinical Trial. Clinical Cancer Research 23(4):946-953. https://doi.org/10.1158/1078-0432.CCR-16-1278

27. Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thürlimann B et al (2011) Strategies for subtypes—dealing with the diversity of breast cancer: highlights of the St Gallen
28. Criscitiello C, Disalvatore D, De Laurentiis M, Gelao L, Fumagalli L et al (2014) High Ki-67 score is indicative of a greater benefit from adjuvant chemotherapy when added to endocrine therapy in luminal B HER2 negative and node-positive breast cancer. Breast 23(1):69-75. https://doi.org/10.1016/j.breast.2013.11.007
Guideline-concordant chemotherapy in patients with hormone receptor-positive and node-positive, early breast cancer leads to better overall and metastases-free survival with limited benefit in elderly patients

Clara Taubenhansl1 · Olaf Ortmann2 · Michael Gerken3 · Elisabeth C. Inwald2 · Monika Klinkhammer-Schalke3

Received: 29 July 2019 / Accepted: 12 November 2019 © The Author(s) 2019

Abstract

Purpose The German guideline for breast cancer recommends using chemotherapy (CHT) in patients with hormone receptor-positive and node-positive, invasive breast cancer. The aim of this study was to analyse the effects of CHT in this patient group on overall survival (OS) and distant metastases-free survival (DMFS), especially considering the 70-year threshold.

Methods 1772 patients from the clinical cancer registry Regensburg (Germany) with hormone receptor-positive and node-positive, invasive breast cancer diagnosed between 2003 and 2013 were analysed in a retrospective cohort study. OS and DMFS were evaluated by means of Kaplan–Meier and multivariable Cox-regression method. Results were further examined according to age at diagnosis.

Results The comparison of 1544 patients with CHT to 228 patients without CHT showed a significant benefit for CHT regarding 5-year OS (91.3% vs. 76.8%) and 5-year DMFS (86.7% vs. 74.4%, both \(p < 0.001\)). Likewise, better OS and DMFS were seen in patients aged < 70 years using CHT compared to patients without CHT of the same age. Patients aged ≥ 70 years with CHT had a minimal benefit regarding 5-year OS compared to patients without CHT, but no advantage considering DMFS. All results were confirmed in multivariable analyses except for patients being ≥ 70 years of age.

Conclusion Patients with hormone receptor-positive and node-positive, invasive breast cancer benefit from chemotherapy with regard to a significantly better overall and distant metastases-free survival, although chemotherapy use in patients aged ≥ 70 years results in a smaller benefit considering OS and no benefit considering DMFS.

Keywords Breast cancer · Hormone and node positive · Chemotherapy · Elderly patients · Overall survival · Distant metastases-free survival
Introduction

Breast cancer is the most common cancer in women worldwide and the most frequent cause of death from cancer across all tumor types [1]. 69,870 new cases of illness and 17,804 breast cancer deaths were reported in Germany in 2014 [2]. In Germany, the interdisciplinary S3 guideline for diagnosis, treatment and aftercare of breast cancer supports the medical decision depending on the different therapy options. According to the recommendation of the S3 guideline, chemotherapy is indicated for patients with targeted therapy required, triple negative tumors or patients with a high-risk tumor type [3]. To examine the benefit and the effect of the guideline recommendation in a patient’s subgroup, this study investigates the benefit of chemotherapy treatment in patients with hormone receptor positive and node positive breast cancer. The positive effect of chemotherapy is proven in lots of studies. As a leading study, the Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) documented statistically significant positive effects of adjuvant chemotherapy in reducing breast cancer recurrence and mortality, above all regarding patients being 50 years of age or less. A benefit is also established in elderly patients [4].

Nevertheless, chemotherapy treatment can be attendant on different negative short-term or long-term side effects, which have an impact on health-related quality of life [5]. Especially, elderly patients are predestined to suffer from negative side effects. These well-known consequences lead to an undertreatment of elderly patients concerning the systemic therapy compared to younger patients [6]. In addition to that, there is a lack of evidence for breast cancer care in elderly patients, because age is often a reason for exclusion from randomized clinical trials on breast cancer treatment [7]. The result of which is that the use of chemotherapy should be weighed with care and is often a heavily debated topic especially in elderly breast cancer patients.

The diagnosis, therapy and follow-up care of breast cancer patients require a multi-disciplinary concept. The German Cancer Society has developed a certification program to offer patients a treatment that is based on high-quality standards. The entire certification system is organised by OnkoZert, an institution specialised in medical certification. The quality of the patient-centred care in different sectors is measured by quality indicators derived from the German guidelines that define the treatment of breast cancer patients. A reevaluation of the quality indicators is performed by yearly audits. Indicator no. 6 demands the chemotherapy treatment in patients with hormone receptor positive and node positive invasive breast cancer and has a minimum quote of 60% [8]. The intention of the present study is the analysis of this selected quality indicator of the German Cancer Society.

To our knowledge, studies with focus on distant metastases recurrence rate and distant metastases-free survival are not available.

The aim of this study was to analyse the effects of chemotherapy for patients with hormone receptor positive and node positive breast cancer on overall and distant metastases-free survival, especially considering the 70-year threshold.

Material and methods

Database

The current study is based on data from the Tumor Centre Regensburg (Bavaria, Germany). It is a high-quality population-based regional cancer registry collecting information about all cancer sites from Upper Palatinate and Lower Bavaria. This area comprises a population of more than 2.3 million people. The documentation includes information about diagnosis, therapies, course of disease, and long-term follow-up. The Tumor Centre obtains information about patients from the University Hospital Regensburg, 53 regional hospitals and more than 1500 practicing doctors. Medical reports, pathology, and follow-up records are the basis for the documentation in the cancer registry. The cancer registry is additionally informed by the regional registry offices and health offices about mortality data.

About 80% of all breast cancer patients are treated in specialized breast cancer centres. These institutions are focused on breast cancer and are certified by the German Cancer Society (Deutsche Krebsgesellschaft, DKG). In the mentioned area, eight breast cancer centres are included complying with the conditions the DKG claims for, i.e., standardized procedures in diagnosis, therapies and documentation. The current study is based on data from these eight breast cancer centres.

In the following paragraph, some definitions are given regarding the classifications of breast cancer subtypes used in the analyses. Concerning the nodal status, N1 is defined as 1–3, N2 as 4–9, and N3 as 10 or more affected axillary lymph nodes. Her2 is a member of the human epidermal growth factor receptor family. Her2-positive breast cancer type has an amplification or overexpression of this oncogene. The overexpression is analysed by immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH). If the IHC result is 0 or 1+, the cancer is considered HER2 negative, if it is 3+, the cancer is HER2 positive. In case of an equivocal IHC result 2+, the HER2 status of the tumor needs to be tested with FISH to clarify the result. Triple negative breast cancer is defined as a missing expression of the genes for estrogen receptor (ER), progesterone receptor...
(PR) and HER2. The molecular subtype of breast cancer with positive hormone receptor status, Her2 negative expression, grading G1 or G2, and Ki67 expression ≤ 15% is called Luminal A. Luminal B describes the molecular subtype of breast cancer patients with positive hormone receptor status, Her2-negative expression, grading G1, G2 or G3 and Ki67 expression > 15%.

Inclusion and exclusion criteria

The present data pool is based on 13,104 breast cancer patients from Upper Palatinate and Lower Bavaria, who had been diagnosed between January 2003 and December 2013 and treated in certified breast cancer centres. To focus only on invasive breast cancer, patients with non-invasive breast cancer or primary metastatic breast cancer were excluded. Also, patients with hormone receptor-negative and node-negative tumors were omitted. To create a data pool with similar initial basis, only breast cancer patients treated with endocrine therapy were analysed. 30.6% of these patients were characterized with missing information about receiving chemotherapy or not. To achieve a precise evidence to the influence of the chemotherapy, only proven cases of realized or non-realized chemotherapy were included in the further evaluation. The inclusion criteria lead to a data pool of 1772 eligible patients (Fig. 1).

Statistical analyses

Continuous data are expressed as means ± standard deviations (SD) and categorical data as frequency counts (percentage). Student’s t test for normally distributed continuous variables and Pearson’s chi-square tests for categorical variables were used for comparing the baseline characteristics of patients. Overall survival was calculated from the date of breast cancer diagnosis to the date of death from any cause. In case of recurrence-free survival rates, the first recurrence was included as event. Cases were declared as censored if there occurred no death or recurrence in the period of observation or until end of follow-up (2003–2013). Kaplan–Meier plots illustrate the overall survival, the metastases-free survival and the cumulative distant metastases recurrence rate. Cox regression models were calculated to render hazard ratios (HR) and corresponding 95% confidence intervals (95% CI). They are adjusted for the known confounding variables: age at diagnosis, grading, tumor size, nodal status, lymphatic invasion, venous invasion, and Her2 status. p value from Log-rank test of 0.05 was considered the threshold of statistical significance and all reported p values were two sided. All results were calculated with the software IBM SPSS Statistics 24.0.

Results

Patients’ characteristics

In total, 1544 breast cancer patients received chemotherapy (87.1%) and 228 received no chemotherapy (12.9%). On average, the percentage of patients treated with CHT decreased over the years from 97.9% in 2003 to 79.2% in 2013 (Table 1).

The distribution of the age at diagnosis was different between patients treated with CHT compared to patients without CHT (p < 0.001, Table 2). The majority of patients receiving CHT was between 50 and 69 years old (55.4%). In contrast, the majority of patients without CHT was 70 years of age or older (59.6%). Distribution of grading...
was similar in the compared groups concerning G2, which was the most diagnosed type of grading (68.9% in CHT and 68.0% in no CHT). In the CHT-treated group, the low grading type G1 was listed more rarely than the advanced grading type G3 (6.7% vs. 24.4%). The untreated group showed a smaller difference in the distribution of grading between G1 and G3 (13.2% vs. 18.9%, \(p = 0.001 \)). Patients not obtaining CHT had more frequently a low nodal status N1 (\(p = 0.001 \)). Additionally, this group of patients had more often no lymphatic invasion (37.3% in no CHT vs. 24.9% in CHT, \(p < 0.001 \)). Detailed description of the data pool is shown in Table 2.

Survival analyses

To evaluate the long-term effects of CHT, patients with or without treatment were compared considering overall survival. Mean follow-up was 6.6 years (median 6.4 years). 1544 patients were treated with CHT, 228 patients were not treated. Patients receiving CHT showed a better OS than patients without CHT (Fig. 2). In the course of the years, the difference between the survival rates increased steadily (3-year OS 96.3% vs. 88.7% and 5-year OS 91.3% vs. 76.8%, 10-year OS 85.8% vs. 72.9%, \(p < 0.001 \)).

Adjusted to all influential variables (age of diagnosis, grading, tumor size, nodal status, lymphatic invasion, venous invasion, HER2 status) in a multivariable Cox regression model, the better OS in the CHT group was still evident (HR 0.494, 95% CI 0.343–0.711, \(p < 0.001 \), Table 3). Stage of tumor was rejected by the model due to collinearity with tumor size T and nodal status N. Besides CHT, age, grading, tumor size and nodal status proved to be independent factors for OS.

Distant metastases recurrence rate and distant metastases-free survival

To investigate the cumulative relapse rate of distant metastases in our study, we focussed on operated patients with R0-resection only (\(N = 1695 \), 95.7%). In this case, relapse includes only distant metastases, no local or lymphatic node relapse.

In the following, the distant metastases recurrence rate describes the frequency of distant metastatic lesions, which were recorded in our study. There was a significant benefit in using CHT evaluating both the 3-year distant metastases recurrence rate (5.4% in CHT-treated patients vs. 9.6% in not-treated patients) and the 5-year distant metastases recurrence rate (9.8% vs. 17.2%, \(p = 0.001 \), Fig. 3). Adjusted to all variables by means of multivariable Cox regression model a significant lower recurrence rate persisted in patients obtaining CHT (HR 0.433, 95% CI 0.281–0.666, \(p < 0.001 \)).

The distant metastases-free survival comprises the period after cancer diagnosis until distant metastases were detected. The 3-year and 5-year cumulative metastases-free survival rates in breast cancer patients with CHT were higher than in patients without treatment (93.4% vs. 84.5%, 86.7% vs. 74.4%, respectively, \(p < 0.001 \), Fig. 4). A multivariable Cox regression analysis confirmed the significant better DMFS in patients obtaining CHT (HR 0.484, 95% CI 0.344–0.682, \(p < 0.001 \)).

Subgroup analysis in Her2-negative patients

An additional analysis comprising a cohort with HER2-negative patients only (\(N = 1451 \) instead of \(N = 1772 \)) showed no differences in OS and DMFS compared to the original data pool when comparing chemotherapy and no adjuvant treatment. The overall survival rates in patients with chemotherapy were 96.7%, 91.5%, and 76.2% after 3, 5 and 10 years compared with 90.9%, 81.0% and 47.0% in patients without chemotherapy. Multivariable analysis yielded a HR for OS of 0.543 (95% CI 0.361–0.816, \(p = 0.003 \)). The DMFS rates in patients with CHT treatment were 93.9%, 87.3% and 73.2 after 3, 5 and 10 years vs. 87.2%, 77.2%, and 50.4% in patients without chemotherapy. Here, a HR of 0.548 was estimated (95% CI 0.373–0.804, \(p = 0.002 \)).

Effect of chemotherapy in two age groups

To differentiate the effect of CHT on overall and distant metastases-free survival, two age groups were compared in the complete cohort. Patients with age at diagnosis under 70 and patients being 70 years of age or older.

The first group with patients aged < 70 years included 1446 persons with 1354 obtaining (93.6%) vs. 92 not
obtaining (6.4%) CHT. In contrast, the second group with 326 patients being 70 years of age or older obtained CHT more rarely. Of these, 190 patients (58.3%) received CHT.

In the group representing patients aging less than 70 (N = 1446), 182 persons passed away during the period of observation (12.1% of patients with CHT vs. 19.6% of patients without CHT). In the course of the years, there was a significantly better OS in patients receiving CHT (3-year OS 97.0% in treated patients vs. 92.8% in not-treated patients, 5-year OS 93.6% vs. 83.4%, p < 0.001, Fig. 5). Using Cox regression model, the better OS observed in the CHT group was confirmed (HR 0.270, 95% CI 0.161–0.451, p < 0.001, Table 4).

In contrast to this, the second group including the elderly patients with age ≥ 70 years (N = 326), 101 (31.0%) persons died in the follow-up time (28.9% of patients with CHT vs. 33.8% of patients without CHT). There was a small, but still significant OS benefit for the

| Table 2 Patient and tumor characteristics compared between breast cancer patients with use or with non-use of chemotherapy |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| | CHT | No CHT | Total | | | | | |
| | N | % | N | % | N | % | N | % | Ch2^ |
| Age at diagnosis | | | | | | | | | |
| < 50 | 499 | 32.3 | 21 | 9.2 | 520 | 29.3 | <0.001 |
| 50–69 | 855 | 55.4 | 71 | 31.1 | 926 | 52.3 | |
| ≥ 70 | 190 | 12.3 | 136 | 59.6 | 326 | 18.4 | |
| Grading | | | | | | | | | |
| G1 | 103 | 6.7 | 30 | 13.2 | 133 | 7.5 | |
| G2 | 1064 | 68.9 | 155 | 68.0 | 1219 | 68.8 | 0.001 |
| G3 | 377 | 24.4 | 43 | 18.9 | 420 | 23.7 | |
| Tumor size | | | | | | | | | |
| T1 | 591 | 38.3 | 82 | 36.0 | 673 | 38.0 | |
| T2 | 753 | 48.8 | 107 | 46.9 | 860 | 48.5 | |
| T3 | 135 | 8.7 | 22 | 9.6 | 157 | 8.9 | 0.163 |
| T4 | 65 | 4.2 | 17 | 7.5 | 82 | 4.6 | |
| Nodal status | | | | | | | | | |
| N1 | 916 | 59.3 | 161 | 70.6 | 1077 | 60.8 | |
| N2 | 393 | 25.5 | 33 | 14.5 | 426 | 24.0 | 0.001 |
| N3 | 235 | 15.2 | 34 | 14.9 | 269 | 15.2 | |
| Stage of tumor | | | | | | | | | |
| I | 16 | 1.0 | 7 | 3.1 | 23 | 1.3 | |
| II | 844 | 54.7 | 135 | 59.2 | 979 | 55.2 | 0.011 |
| III | 684 | 44.3 | 86 | 37.7 | 770 | 43.5 | |
| Lymphatic invasion | | | | | | | | | |
| L0 | 385 | 24.9 | 85 | 37.3 | 470 | 26.5 | |
| L1 | 905 | 58.6 | 125 | 54.8 | 1030 | 58.1 | <0.001 |
| L n.s. | 254 | 16.5 | 18 | 7.9 | 272 | 15.3 | |
| Venous invasion | | | | | | | | | |
| V0 | 1050 | 68.0 | 184 | 80.7 | 1234 | 69.6 | |
| V1 | 142 | 9.2 | 21 | 9.2 | 163 | 9.2 | <0.001 |
| V n.s. | 352 | 22.8 | 23 | 10.1 | 375 | 21.2 | |
| Her2 status | | | | | | | | | |
| Negative | 1249 | 80.9 | 202 | 88.6 | 1451 | 81.9 | |
| Positive | 293 | 19.0 | 26 | 11.4 | 319 | 18.0 | 0.018 |
| n.s. | 2 | 0.1 | 0 | 0.0 | 2 | 0.1 | |
| Residual tumor | | | | | | | | | |
| R0 | 1488 | 96.4 | 207 | 90.8 | 1695 | 95.7 | |
| R1/2 | 29 | 1.9 | 8 | 3.5 | 37 | 2.1 | <0.001 |
| RX/n.s | 27 | 1.7 | 13 | 5.7 | 40 | 2.3 | |
| Total | 1544 | 100.0| 228 | 100.0| 1772 | 100.0| |

n.s. not specified
treated group (3-year OS 91.2% in treated patients vs. 85.9% in not-treated patients, 5-year OS 75.4% vs. 72.6%, \(p = 0.038 \), Fig. 6). However, a multivariable Cox regression model showed no significant benefit for patients with age 70+ and CHT treatment vs. no treatment (HR 0.754, 95% CI 0.470–1.209, \(p = 0.242 \)).

In addition to OS, the distant metastases-free survival was analysed. The first group representing the younger patients with R0 resection (\(N = 1396 \)) listed 227 distant metastases relapses or deaths (15.9% of patients with CHT treatment vs. 21.8% of patients without treatment). In the younger patients’ group, the difference concerning the DMFS between the treatment and no treatment of CHT was significant (3-year DMFS 94.3% vs. 87.7% and 5-year DMFS 88.4% vs. 78.6%, \(p = 0.003 \), Fig. 7). A Cox regression model provided further evidence for a better DMFS in patients treated with CHT (HR 0.344, 95% CI 0.210–0.562, \(p < 0.001 \)).

In the group including patients aged 70 years or more and R0 resection (\(N = 299 \)), 91 distant metastases relapses or deaths were noticed (29.1% of patients with chemotherapy treatment vs. 32.5% of patients without treatment). In the elder patients’ group, there was no significant difference concerning the DMFS between the treatment and no treatment of CHT (3-year DMFS 87.1% vs. 82.3% and 5-year DMFS 74.0% vs. 71.4%, \(p = 0.112 \), Fig. 8). Also, the Cox regression model showed no significant advantage in CHT treatment regarding the DMFS (HR 0.650, 95% CI 0.412–1.027, \(p = 0.065 \)).

Table 3 Results of multivariable Cox proportional hazard model on overall survival

	Hazard ratio	95% CI	\(p \)
Chemotherapy			
No CHT	Reference		
CHT	0.494	0.343–0.711	<0.001
Age at diagnosis			
< 40	Reference		
40–49	0.492	0.283–0.857	0.012
50–59	0.519	0.302–0.893	0.018
60–69	0.981	0.598–1.607	0.938
70–79	1.273	0.758–2.138	0.361
> 80	2.231	1.056–4.713	0.035
Grading			
G1	Reference		
G2	2.364	1.039–5.380	0.040
G3	3.280	1.413–7.614	0.006
Tumor size			
T1	Reference		
T2	1.511	1.114–2.050	0.008
T3	1.591	1.039–2.435	0.032
T4	2.627	1.655–4.172	<0.001
Nodal status			
N1	Reference		
N2	1.360	1.007–1.837	0.045
N3	2.438	1.810–3.283	<0.001
Lymphatic invasion			
L0	Reference		
L1	1.348	0.949–1.914	0.096
n.s	1.878	1.010–3.494	0.047
Venous invasion			
V0	Reference		
V1	1.223	0.855–1.748	0.270
n.s	0.830	0.507–1.359	0.459
Her2 status			
Negative	Reference		
Positive	1.109	0.826–1.488	0.492
n.s	7.015	0.948–51.904	0.056

\(n.s. \) not specified

Survival analyses based on different subgroups

To examine the potential effect modification of CHT on survival, the OS was analysed with multivariable Cox regression model in different subgroups divided into age at diagnosis, molecular subtypes (Luminal A, Luminal B) and nodal status (N1, N2/3). Across all age groups, CHT treatment in patients with Luminal A tumors leads to a significant better OS (HR 0.191, 95% CI 0.089–0.409, \(p < 0.001 \), Table 5), while Luminal B patients do only marginally benefit from CHT (HR 0.495, 95% CI 0.241–1.019, \(p = 0.056 \)). Patients...
with low nodal status N1 as well as high nodal status N2/3 live significantly longer when treated with CHT (\(p = 0.001\) and \(p = 0.038\), respectively). Patients aged < 50 years with Luminal A tumor shows a significant better OS when treated with CHT, while young patients with low nodal status had no benefit. The analyses of CHT treatment in Luminal B patients and high nodal status tumors produce no statement about OS due to small number of events in this age group.

In the middle-age group representing patients aged 50–69 years, CHT causes a survival benefit in both Luminal A and Luminal B patients. Likewise, better OS was seen in both treated groups with low and high nodal status. Contrary to this, neither Luminal A nor Luminal B patients with age ≥ 70 have better OS when treated with CHT in contrast to patients without treatment.

Discussion

The implementation of the interdisciplinary S3 guideline of diagnosis, treatment and aftercare of breast cancer becomes established in the last 15 years. Regarding the certified breast cancer centers in Germany, which treated 78.8% of all patients in 2015 [9], the standardization of the breast cancer treatment results in an improvement and quality assurance of breast cancer care. Since the first certification of a breast cancer center in 2003, the number of these centers in Germany increase steadily to 266 in 2019 [10]. Patients treated in certified breast cancer centers can expect high-quality standards due to implementation of the national S3 guideline. Regarding systemic therapy, the guideline favours chemotherapy for patients with hormone receptor positive and node positive, invasive breast cancer. This study investigated implementation and effects of guideline concordant chemotherapy and demonstrates the long-term outcome of breast cancer patients based on data from a high-quality population-based regional cancer registry. In addition, it is worth analyzing elderly patients being 70 years of age or older in relation to younger patients separately. There is a lack of evidence for breast cancer care in elderly patients, because age is often a reason for exclusion from randomized clinical trials of breast cancer treatment [7].
During the period of observation, 87.1% of all patients with hormone positive and node positive, invasive breast cancer received chemotherapy in this study. This rate is comparable to other studies, the percentage of all hormone- and node-positive breast cancer patients treated with chemotherapy in 2010 being 89.7% [11]. So, data of this population-based regional cancer registry can be considered as representative for the health care in Germany and corresponds with the breast cancer care all over the country. Conspicuous is the decline of the treated patients regarding the 10 years of observation. This phenomenon is partly attributed to the improved documentation of the conducted therapies during the years. In the beginning of the observation, some of the breast cancer centers were just certified and the documentation was not as representative. With the improvement of the documentation, some patients who were first classified as “unknown therapy” and were excluded from analysis, were categorized in “no chemotherapy” in the course of the time. Additionally, changes in treatment standards are another reason for decreasing chemotherapy treatment in the end of the recruitment period. As Haque et al. describe, chemotherapy was used more rarely in Luminal A patients with low nodal status N1 in the course of time [12].

The age distribution showed that more than half of the patients with chemotherapy treatment were among 50 and 69 years old. Likewise, Inwald et al. confirm that chemotherapy and endocrine therapy is more often used in patients aging 50–69 than in patients being 70 years of age or older [13]. In addition, more than half of the patients not treated

Table 4 Overview of overall survival (OS) and distant metastases-free survival (DMFS) rates in breast cancer patients after 3 and 5 years in different age groups

Age group and outcome	Chemotherapy	N	N	3 years (%)	5 years (%)	p
All age OS	Yes	1544	219	96.3	91.3	< 0.001
	No	228	64	88.7	76.8	
All age DMFS	Yes	1488	260	93.4	86.7	< 0.001
	No	207	58	84.5	74.4	
Age < 70 OS	Yes	1354	164	97.0	93.6	< 0.001
	No	92	18	92.8	83.4	
Age < 70 DMFS	Yes	1309	208	94.3	88.4	0.003
	No	87	19	87.7	78.6	
Age ≥ 70 OS	Yes	190	55	91.2	75.4	0.038
	No	136	46	85.9	72.6	
Age ≥ 70 DMFS	Yes	179	52	87.1	74.0	0.112
	No	120	39	82.3	71.4	

Fig. 6 Kaplan–Meier plot of overall survival in breast cancer patients with age ≥ 70 and with use and non-use of chemotherapy

Fig. 7 Kaplan–Meier plot of distant metastases-free survival in breast cancer patients with age < 70 and with use and non-use of chemotherapy
with chemotherapy were 70 years or older in our study. Reasons for the undertreatment in elderly patients are refusal of the patients themselves or recommendation of the attending physicians because of comorbidities or threatening negative side effects. The tumor characteristics between the treated and not-treated group differed in particular concerning the grading and the nodal status. Patients without chemotherapy treatment had more often a lower nodal status and a lower grading type. This trend may reflect the implementation of the S3 guideline, which claims for chemotherapy treatment in high-risk tumor types [3].

The survival benefit using chemotherapy vs. no treatment is evident regarding our study just as the 2011 EBCTCG polychemotherapy overview [14]. Palmieri et al. describes a reduction of 10-year breast cancer mortality by about a third in treated vs. not treated patients. This phenomenon is similar to the improvement of 5-year overall survival of 14.5% in our population-based study. Although this analysis includes only node-positive patients in contrast to all patients included in the polychemotherapy overview, the advantage of chemotherapy treatment is obvious.

A further study views the diverse ankles of chemotherapy treatment in node-positive breast cancer patients. Gnant et al. report on some subgroups of node-positive breast cancer patients with limited risk of metastasis. These patients should be spared from the negative side effects of chemotherapy treatment because of a too low benefit [15].

In our retrospective study, the different frequency of chemotherapy treatment between younger and elderly patients was remarkable (93.6% of patients aging < 70 were treated vs. 58.3% of patients aging ≥ 70). This tendency is in concordance with the SENORA project of the prospective German TMK (Tumour Registry Breast Cancer) cohort study, although it is worth mentioning, that patients with missing information about receiving CHT or not were not excluded. In the adjuvant setting of the SENORA project, 75.1% of all patients aging < 70 years received chemotherapy. In contrast to this, only 66.2% of patients aging ≥ 70 have undergone chemotherapy [16]. As mentioned above, age at diagnosis has a strong impact on the decision of

Table 5 Results of multivariable Cox proportional hazard model on overall survival based on subtype in patients of different ages

Age group	Subtype	N (CHT yes/no)	Hazard ratio (CHT yes/no)	95% CI	p value
All ages	Luminal A	540 (417/123)	0.191	0.089–0.409	< 0.001
	Luminal B	506 (455/51)	0.495	0.241–1.019	0.056
	N1	1077 (916/161)	0.394	0.229–0.680	0.001
	N2/3	695 (628/67)	0.585	0.352–0.972	0.038
Age < 50	Luminal A	149 (132/17)	0.053	0.006–0.500	0.010
	Luminal B	158 (155/3)	–	–	0.968
	N1	328 (308/20)	0.211	0.041–1.091	0.063
	N2/3	192 (191/1)	–	–	0.987
Age 50–69	Luminal A	288 (245/43)	0.166	0.053–0.520	0.002
	Luminal B	256 (243/13)	0.264	0.076–0.922	0.037
	N1	573 (518/55)	0.314	0.128–0.771	0.012
	N2/3	353 (337/16)	0.253	0.121–0.527	< 0.001
Age ≥ 70	Luminal A	103 (40/63)	0.363	0.116–1.135	0.081
	Luminal B	92 (57/35)	0.496	0.203–1.212	0.124
	N1	176 (90/86)	0.459	0.222–0.951	0.036
	N2/3	150 (100/50)	1.091	0.561–2.125	0.797

*No estimate due to small number (coefficients did not converge)
chemotherapy treatment with a cautious attitude in elderly patients.

The evidence of better overall survival in chemotherapy-treated patients being < 70 years of age in comparison to not-treated patients is clearly shown in this analysis. According to studies, the survival benefit is indisputable, if there is a clear medical indication for chemotherapy treatment in younger breast cancer patients [17]. Therefore, chemotherapy is especially in younger patients without comorbidities an established treatment in breast cancer care for many years.

On the other hand, the study demonstrates that patients with age ≥ 70 made just a minimal profit from chemotherapy treatment concerning the overall survival in relation to not-treated patients the same age. Several studies analysed the conflicting use of chemotherapy in elderly patients with node-positive breast cancer with the same [18, 19] or differing conclusions [20]. In contrast to our analysis, Giordano et al. proved no benefit of chemotherapy among women with age ≥ 65 with lymph node-positive and estrogen receptor-positive breast cancer [21]. A lower risk of recurrence and death from other causes should be the reason for the missing advantage in elderly patients with node-positive and hormone receptor-positive breast cancer. On the other hand, the Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) found that chemotherapy plus endocrine therapy in elderly patients is just minimally but still favourable, in contrast to major survival advantages in premenopausal patients [4]. Similar to this fact, Albain et al. confirmed the benefit of overall survival of chemotherapy combined with endocrine therapy vs. sole endocrine therapy in postmenopausal patients with node- and hormone receptor-positive breast cancer [22]. Apparently, the chemotherapy treatment in older patients with node-positive breast cancer is controversial and requires further investigation.

Clinical studies confirm the benefit of chemotherapy treatment in young patients with hormone receptor-positive and node-positive breast cancer exactly as our retrospective cohort study. The use of chemotherapy in elderly patients remains a controversial issue, particularly because most randomized trials exclude patients older than 70 years.

It has to be considered that particular patients do not benefit from CHT. Several studies describe no significant better OS for Luminal A patients with lymph node involvement treated with CHT [23, 24]. Likewise, Nielsen et al. describe that CHT treatment in premenopausal Luminal A patients results in no better OS [25]. In contrast to this, our analysis confirms the benefit of CHT in Luminal A patients being < 50 years. Consequently, CHT treatment in Luminal A patients remains a controversial issue.

Luminal B patients aged between 50 and 69, who represents the majority of all patients in our study, benefit from CHT treatment. With that, the recommendation of the St Gallen International Expert Consensus, which claims for CHT treatment in Luminal B patients, is confirmed in a population-based study [26]. Contrary to this, patients with age ≥ 70 and the same subtype do not show a better OS when treated with CHT according to our study. One option to resolve the conflict could be to take the Ki-67 score into consideration. Criscitiello et al. claim that Ki-67 expression identifies a subset of patients with Luminal B and node-positive breast cancer who could benefit from addition of CHT to endocrine therapy [27].

A limitation of our study is the missing information concerning non-oncologic comorbidities. This is a very important limitation of this survey, since patients with comorbidities are more likely to die from strenuous treatment side effects and, therefore, are not selected for chemotherapy. However, adjustment for age partially includes adjustment for comorbidities as a study has shown [28]. The older a patient is, the more non-oncologic comorbidities he suffers from. Furthermore, a survey of the Dutch Cancer Registry on colorectal cancer patients reported a significant association between age and the number of a person’s comorbidities [29]. Still, it would be desirable to have comorbidity score included in retrospective cohort analysis to be able to conduct an even more accurate risk adjustment.

In conclusion, patients with hormone-positive and node-positive, invasive breast cancer mainly benefit from CHT treatment. Nevertheless, there is a small fraction of these patients, where CHT is inadvisable.

Author contributions CT: project development, data management, data analysis, manuscript writing. OO: project development, manuscript editing. MG: data management, data analysis, manuscript editing. ECI: project development, manuscript editing. MK-S: project development, manuscript editing.

Compliance with ethical standards

Ethical standards All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. For this type of study, formal consent is not required.

Conflict of interest The authors declare that they have no conflict of interest.

Human and animal rights statement This article is a retrospective study and does not contain any studies with human participants or animals performed of any of the authors.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

© Springer
References

1. Fitzmaurice C, Dicker D, Pain A, Hamavid H, Moradi-Lakeh M et al (2015) The global burden of cancer 2013. JAMA Oncol 1(4):505–527. https://doi.org/10.1001/jamaoncol.2015.0735

2. Robert Koch-Institut und die Gesellschaft der epidemiologischen Krebsregister in Deutschland e.V. (2017) Krebs in Deutschland für 2013/2014, 11th edn. Berlin, pp 72–79. https://doi.org/10.17886/rkipubl-2017-007

3. Deutsche Krebsgesellschaft, Deutsche Krebshilfe, AWMF (Leitlinienprogramm Onkologie) (2017) S3-Leitlinie Früherkennung, Diagnose, Therapie und Nachsorge des Mammakarzinoms. Version 4.0. https://www.leitlinienprogramm-onkologie.de/leitlinie/mammakarzinom. Accessed 17 Feb 2019

4. Early Breast Cancer Trialists’ Group (EBCTCG) (2005) Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365(9472):1687–1717. https://doi.org/10.1016/S0140-6736(05)66544-0

5. Tao JJ, Visvanathan K, Wolff AC (2015) Long term side effects of adjuvant chemotherapy in patients with early breast cancer. Breast 24(2):149–153. https://doi.org/10.1016/j.breast.2015.07.035

6. Malik MK, Tartter PI, Belfer R (2013) Undertreated breast cancer in the elderly. J Cancer Epidemiol 2013:893104. https://doi.org/10.1155/2013/893104

7. Tesarova P (2016) Specific aspects of breast cancer therapy of elderly women. Biomed Res Int 2016:1381695. https://doi.org/10.1155/2016/1381695

8. Deutsche Krebsgesellschaft (2019) Kennzahlen und Matrix zu den Brustkrebszentren. https://www.krebsgesellschaft.de/zertifikate.html. Accessed 17 Feb 2019

9. Klauber J, Geraedts M, Friedrich J, Wasem J (2015) Krankenhaus-Monitoring, Diagnose, Therapie und Nachsorge des Mammakarzinoms 2013/2014, 11th edn. Berlin, pp 72–79. https://doi.org/10.17886/rkipubl-2017-007

10. Deutsche Krebsgesellschaft (2019) oncoMAP. https://www.oncomap.de/centers. Accessed 17 Feb 2019

11. Kreitenberg R, Schwentner L, Wöckel A, Wessellmann S (2012) Hat sich die Versorgungsqualität von Patientinnen mit Brustkrebs in Deutschland verbessert? Eine aktuelle Datenanalyse. FRAUENARZT 10:930–939

12. Haque W, Verma V, Hatch S, Klimberg VS, Butler EB et al (2018) Omission of chemotherapy for low-grade, luminal A N1 breast cancer: Patterns of care and clinical outcomes. Breast 41:67–73. https://doi.org/10.1016/j.breast.2018.06.014

13. Inwald EC, Ortmann O, Koller M, Zeman F, Hofstädter F et al (2015) Endocrine therapy alone vs. chemotherapy plus endocrine therapies for the treatment of elderly patients with endocrine-responsive and node positive breast cancer: a retrospective analysis of a multicenter study (Anatolian Society of Medical Oncology). J BUON 18(1):64–69

14. Giordano SH, Duan Z, Kuo YF, Hortobagyi GN, Goodwin JS (2006) Use and outcomes of adjuvant chemotherapy in older women with breast cancer. J Clin Oncol 24(18):2750–2756. https://doi.org/10.1200/JCO.2005.02.3028

15. Palmieri C, Jones A (2012) The 2011 EBCTCG polychemotherapy overview. Lancet 374(9707):2055–2063. https://doi.org/10.1016/S0140-6736(09)61523-3

16. Fietz T, Zahn MO, Köhler A, Engel E, Frank M et al (2018) Routine treatment and outcome of breast cancer in younger versus elderly patients: results from the SENORA project of the prospective German TMK cohort study. Breast Cancer Res Treat 167(2):567–578. https://doi.org/10.1007/s10549-017-4534-8

17. Early Breast Cancer Trialists’ Collaborative Group (1998) Polychemotherapy for early breast cancer: an overview of the randomised trials. Lancet 352(9132):930–942. https://doi.org/10.1016/S0140-6736(98)03301-7

18. Pagani O, Gelber S, Simoncini E, Castiglione-Gertsch M, Price KN et al (2009) Is adjuvant chemotherapy of benefit for post-menopausal women who receive endocrine treatment for highly endocrine-responsive, node-positive breast cancer? International Breast Cancer Study Group Trials VII and 12–93. Breast Cancer Res Treat 116(3):491–500. https://doi.org/10.1007/s10549-008-0225-9

19. Muss HB, Woolf S, Berry D, Cirrincione C, Weiss RB et al (2005) Adjuvant chemotherapy in older and younger women with lymph node-positive breast cancer. J Am Med Assoc 293(9):1073–1081. https://doi.org/10.1001/jama.293.9.1073

20. Inal A, Akman T, Yaman S, Demir Ozturk S, Geredeli C et al (2013) Endocrine therapy alone vs. chemotherapy plus endocrine therapies for the treatment of elderly patients with endocrine-responsive and node positive breast cancer: a retrospective analysis of a multicenter study (Anatolian Society of Medical Oncology). J BUON 18(1):64–69

21. Diessner J, Wischnewsky M, Blettner M, Häusler S, Janni W et al (2016) Do patients with Luminal A breast cancer profit from adjuvant systemic therapy? A retrospective multicenter study. PLoS ONE 11(12):e0168730. https://doi.org/10.1371/journal.pone.0168730

22. Nielsen TO, Jensen MB, Burugu S, Gao D, Jørgensen CL et al (2016) Do patients with Luminal A breast cancer profit from adjuvant systemic therapy? A retrospective multicenter study. Breast Cancer Res Treat 116(3):491–500. https://doi.org/10.1007/s10549-017-4534-8

23. Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thürlimann B et al (2011) Strategies for subtypes—dealing with the diversity of breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol 22(8):1736–1747. https://doi.org/10.1093/annonc/mdr304

24. Criscitiello C, Disalvatore D, De Laurentis M, Gelao L, Fumagalli L et al (2014) High Ki-67 score is indicative of a greater benefit from adjuvant chemotherapy when added to endocrine therapy in luminal B HER2 negative and node-positive breast cancer. Breast 23(1):69–75. https://doi.org/10.1016/j.breast.2013.11.007

25. Piccirillo JF, Vlahiotis A, Barrett LB, Flood KL, Spitznagel EL et al (2008) The changing prevalence of comorbidity across the age spectrum. Crit Rev Oncol Hematol 67(2):124–132. https://doi.org/10.1016/j.critrevonc.2008.01.013

26. Van Leersum NJ, Janssen-Heijnen M, Wouters MW, Rutten HJ, Coebergh JW et al (2013) Increasing prevalence of comorbidity in patients with colorectal cancer in the South of the Netherlands 1995–2010. Int J Cancer 132(9):2157–2163. https://doi.org/10.1002/ijc.28781

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Danksagung

Zuerst möchte ich mich bei Frau PD Dr. Inwald herzlich bedanken, die mich bei der Verfassung des Manuskripts mit wertvollen Ideen und aufschlussreichen Kommentaren unterstützt hat und meine Arbeit betreut und begutachtet hat.

Weiter danke ich Herrn Prof. Dr. Ortmann für die wissenschaftliche Unterstützung und die konstruktive Kritik bei der Erstellung dieser Arbeit.

Gleich viel Dank gebührt Frau Prof. Dr. Klinkhammer-Schalke, die mir dieses aktuelle Thema großzügig überlassen hat und mich mit ihrer konstruktiven Kritik maßgeblich unterstützt hat.

Zudem bedanke ich mich für die großzügige Möglichkeit der Datenverwendung vom klinischen Krebsregister des Tumorzentrums Regensburg.

Ein besonderer Dank gilt Herrn Dr. Gerken für seine stets vorhandene Unterstützung bei der statistischen Auswertung. Darüber hinaus bedanke ich mich dafür, dass er mir bei jeglicher Problematik uneingeschränkt und mit viel Geduld zur Seite gestanden hat.

Zu guter Letzt möchte ich mich bei meiner Familie und meiner Studienpartnerin Theresa Wimmer bedanken, die mich während der Anfertigung des Manuskripts tatkräftig motiviert haben und mich bis zum Abschluss der Arbeit geduldig begleitet haben.