Bile acid analogues are activators of Pyrin inflammasome

Irina Alimov1, Suchithra Menon1, Nadire Cochran1, Rob Maher1, Qiong Wang1, John Alford1, John B. Concannon1, Zinger Yang1, Edmund Harrington1, Luis Llamas1, Alicia Lindeman1, Gregory Hoffman1, Tim Schuhmann2, Carsten Russ1, John Reece-Hoyes1, Stephen M. Canham1*, Xinming Cai1,3*

1 Novartis Institutes for Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
2 Novartis Institute for Biomedical Research, Novartis Pharma AG, Forum 1 Novartis Campus, 4056 Basel, Switzerland
3Present address: Sanofi US, 270 Albany Street, Cambridge, MA 02139, USA

Running title: Bile acid analogues are activators of Pyrin inflammasome

*To whom correspondence should be addressed: xinming.cai@sanofi.com, steve.canham@novartis.com

Keywords: Bile acid, Inflammasome, Pyrin, Familial Mediterranean Fever, CRISPR screen, Microbiota, Mucosal immunology, biotransformation, immune response, gut homeostasis, autoimmune disease

ABSTRACT

Bile acids are critical metabolites in the gastrointestinal tract which contribute to maintaining intestinal immune homeostasis through crosstalk with the gut microbiome. The conversion of bile acids by the gut microbiome is now recognized as a factor affecting both host metabolism and immune responses, but its physiological roles remain unclear. We conducted a screen for microbiome metabolites that would function as inflammasome activators and herein report the identification of 12-oxo-lithocholic acid, (BAA485), a potential microbiome-derived bile acid metabolite. We demonstrate the more potent analog 11-oxo-12S-hydroxy lithocholic acid methyl ester (BAA473) can induce secretion of interleukin-18 (IL18) through activation of the inflammasome in both myeloid and intestinal epithelial cells. Using a genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) screen with compound induced pyroptosis in THP-1 cells, we identified inflammasome activation by BAA473 is Pyrin-dependent (MEFV). To our knowledge, the bile acid analogues BAA485 and BAA473 are the first small molecule activators of the Pyrin inflammasome. We surmise that Pyrin inflammasome activation through microbiota-modified bile acid metabolites such as BAA473 and BAA485 plays a role in gut microbiota regulated intestinal immune response. The discovery of these two bioactive compounds may help further unveil the importance of Pyrin in gut homeostasis and autoimmune diseases.

INTRODUCTION

The stimulation of microbe-associated molecular patterns (MAMPs) or damage-associated molecular patterns (DAMPs) triggers the assembly of the cytosolic inflammasome, a multiprotein complex that leads to the release of interleukin 1β (IL1β), interleukin 18 (IL18), and induction of pyroptosis, a type of inflammasome-associated cell death (1). Accumulating evidence suggests a critical role of the inflammasome in coordinating the immune response against pathogens (2), and excessive inflammasome signaling is associated with auto-inflammatory diseases such as Muckle-Wells syndrome (3). Proper modulation of the inflammasome activity is therefore necessary to maintain immune system homeostasis.
The inflammasome complex components are highly expressed in both the epithelial and immune cells of the gut. Recent studies have indicated that perturbations of the inflammasome pathway may be an axis of dysbiosis in human inflammatory bowel disease (IBD). For example, mice deficient in the inflammasome sensors NLRP3, NLRP6, and Pyrin all display impaired immune responses, exacerbation of chemically induced colitis, and dysbiosis of the gut microbiota (4-6). Interestingly, human genetics studies have identified IBD associated single-nucleotide polymorphisms (SNPs) in inflammasome-related genes such as ILRAP (7). While numerous studies have focused on the physiological functions of intestinal inflammasomes, specific ligands that elicit inflammasome activation and their underlying mechanisms are poorly understood.

Bile acids are a family of steroid acids produced in the liver from cholesterol. In a process called enterohepatic circulation, the primary bile acids such as chenodeoxycholic acid (CDCA) and cholic acid (CA) are synthesized in the liver, secreted into the duodenum via the bile, reabsorbed in the ileum and circulated back to the liver via the portal vein (8). During enterohepatic circulation, about 3% of the total bile acids remain in the gut where they exist at high concentrations (about 200-1000 µM)(9). Bile acids can be further modified by the gut microbiota. For instance, CA can be converted into the secondary bile acid deoxycholic acid (DCA), which can comprise up to 20-30% of the human bile acid pool in the gut (10). While there is emerging appreciation of the bioconversion of bile acids by the gut microbiota in impacting host metabolism and immune responses (8,11), the exact physiological roles of gut microbiota-mediated biotransformation of bile acids are still largely unknown.

In this study, we screened a focused set of predicted microbiome-derived metabolites and identified potential bacteria-metabolized bile acid analogues as inflammasome activators. Further, we used pooled CRISPR screen technology to identify Pyrin as the inflammasome sensor of these bile acid analogues. Our results suggest that intestinal microbiota-mediated bile acid conversion may regulate intestinal immune homeostasis by modulating Pyrin inflammasome signaling.

RESULTS

Bile acid analogues, BAA485 and BAA473, induce IL18

Accumulating evidence suggests that proper modulation of the intestinal inflammasome is required for maintenance of immune homeostasis in the gut; however, the specific ligands that regulate the inflammasome response are not fully deciphered. We hypothesized that the intestinal inflammasome may sense the presence of gut bacteria by recognizing secondary metabolites derived from commensal bacteria. Therefore, we screened a small collection of known and predicted microbiome-derived metabolites for induction of IL18 in human peripheral blood mononuclear cells (PBMCs) primed with LPS. While none of the principal bile acids including DCA induced IL18 production (Supplemental Figure 1 & Figure 6B-C), 12-oxo-lithocholic acid (BAA485), a putative intestinal bacteria-produced derivative of DCA (12), induced secretion of IL18 in LPS-primed PBMCs (Figure 1A and 1B). These results suggest that BAA485 could be an inflammasome activator and that C12-oxidation of DCA by the gut microbiota may potentially play a role in the immunogenicity of BAA485.(13) We performed structure-activity relationship (SAR) studies and identified a more potent analog, BAA473, as a robust activator of IL18 secretion in PBMCs (Figure 1A and 1B). The enhanced potency of BAA473 led us to focus on this compound for further mechanistic experiments.

BAA473 activates inflammasome in both myeloid and intestinal epithelial cells

Several approaches were used to demonstrate that BAA473 activates the inflammasome pathway. BAA473 selectively induced secretion of the inflammasome-regulated cytokines, IL1β and IL18, but not IL6 and IL8, in LPS-primed PBMCs (Figure 1B and 2A). Likewise, in THP-1 cells BAA473 induced the secretion of IL1β and IL18 (Figure 2B), activated
caspase-1 (CASP1) and stimulated release of lactate dehydrogenase (LDH) (Figure 2C and 2D). Moreover, the CASP1 inhibitor VX-765 blocked BAA473-induced IL1β production in THP-1 cells (Figure 2E). Together, these data suggest that BAA473 functions as an inflammasome activator.

In immune cells the functional role of the inflammasome is well appreciated; however, the role in epithelial cells remains understudied. Many inflammasome components are highly expressed by intestinal epithelial cells (IEC) which act as a barrier between the host and the intestinal microbiota. Recent reports have identified functional roles of the IEC inflammasomes in mucosal immune defense, inflammation, and tumorigenesis (14). To understand the potential connection of the bile acid analogues role in gut homeostasis we evaluated BAA473 in IECs. In addition to its effects on immune cells, BAA473 induced secretion of IL18 but not IL1β in the T84 human colonic adenocarcinoma cell line (Figure 3A). In order to mimic a differentiated and polarized gut epithelium we used an epithelial monolayer derived from primary human intestinal organoids as an in vitro system (15,16). Addition of BAA473 on the luminal side of the epithelial monolayer resulted in apical secretion of IL18, whereas no secretion of IL18 was detected on the basolateral side (Figure 3B). Together, these results demonstrate that BAA473 is an inflammasome activator in both myeloid and intestinal epithelial cells, two key cell types involved in immune homeostasis in the gut.

BAA473 activates Pyrin inflammasome

To understand mechanistically how BAA473 activates the inflammasome pathway we first evaluated if BAA473 was NLRP3 dependent. Interestingly, BAA473-induced IL1β and IL18 secretion was blocked by CASP1 inhibition, but cytokine secretion was not blocked by the NLRP3 inhibitor, MCC950 (17). This suggests BAA473-induced inflammasome activation is independent of the NLRP3 pathway (Figure 2E and 4A). In order to define the inflammasome pathway modulated by BAA473, we took an unbiased approach and performed a whole-genome pooled CRISPR screen using BAA473-mediated pyroptosis as a readout (Figure 4C). A similar approach recently identified NEK7 as an essential component of the inflammasome (18). To conduct our genome-wide screen, THP-1-Cas9 cells were infected with a whole-genome gRNA library and treated with BAA473 to induce cell death (Figure 4B). The gRNAs enriched in “non-responding” cells, unaffected by BAA473-mediated pyroptosis, were analyzed by next generation sequencing. We identified ASC, a common adaptor for multiple inflammasome pathways, and the inflammasome sensor Pyrin (MEFV) (19) as the two strongest hits in the screen (Figure 4D). To validate ASC and Pyrin, each gene was knocked out with two independent gRNAs in THP-1-Cas9 cells (Figure 5A). Validating the screening results, ASC and Pyrin were both required for BAA473-induced cell death as well as IL1β and IL18 secretion (Figure 5B-D). This data suggests Pyrin is likely the responding inflammasome sensor for BAA473 and mediates the classical inflammasome pathway activation involving ASC.

Pyrin is genetically associated with Familial Mediterranean Fever (FMF), a monogenic auto-inflammatory disease. More than 80 mutations in Pyrin associated with FMF have been identified (http://fmf.igh.cnrs.fr/ISSAID/infevers/index.php). The first line treatment for FMF is the drug colchicine, which inhibits activation of Pyrin by disrupting the microtubule network (20). Intriguingly, colchicine blocked inflammasome activation by BAA473 (Figure 5E), which supports Pyrin as the sensor for BAA473. To confirm inflammasome activity of BAA473 is Pyrin-dependent, we generated a U937-Pyrin stable cell line and observed that BAA473-enhanced secretion of IL18 and cell death in cells stably expressing Pyrin, but not in cells expressing the empty vector (Figure 6A). While BAA485 was too weak to induce inflammasome activation in THP-1 cells (data not shown), it could induce IL18 production in the U937-Pyrin reporter cell line as well as in PBMCs (Figure 1B, 6B-C), which suggests both BAA473 and BAA485 activate the Pyrin inflammasome with a similar mechanism.
The BAA473-sensitized inflammasome CRISPR screen also identified other hits; some of these may help define potential pathways that converge on regulation of bile acid metabolite-mediated Pyrin inflammasome activation (Supplemental Figure 3). It is worth noting that none of these hits scored in the reported NLRP3 CRISPR screen (18). Molecular signatures database (MSigDB) analysis identified a few enriched gene sets (Supplemental Table S1) including the inositol phosphate signaling regulators (IPMK, IPPK, and ITPK1) and components of the transcription factor complex (IRF8 and SPI1) that controls interferon (IFN)-induced gene expression (21,22). Pyrin has been reported to be upregulated following IFN stimulation, it is possible that IRF8 and SP1 regulate BAA473-mediated inflammasome activation by modulation of pyrin expression. Further studies are needed to explore how these signaling pathways might influence Pyrin inflammasome activation.

DISCUSSION

In an unbiased approach, we developed a short path from focused screen to identification of ligand–target component of the inflammasome. Our focused screen concept could be readily expandable to identify other potential endogenous ligand—inflammasome component pairs, with rapid target validation by genome-wide CRISPR screening. The combination of stable Pyrin expressing U937 cells with the control compound BAA473 should enable larger screening effort to identify other potential metabolites or drugs that would modulate the Pyrin inflammasome. Modulation of the Pyrin inflammasome has been limited to the use of colchicine and the bacterial toxin TcdB, which as indirect modulators have limitations. The Pyrin inflammasome activators, BAA485 and BAA473, will hopefully enable further insights and better mechanistic understandings around Pyrin in the context of gut homeostasis and autoimmune diseases.

Accumulating evidence supports that the inflammasome has a key role in shaping epithelial responses at the host—lumen interface. Previously, microbiota metabolites such as taurine have been identified to have a role in regulating NLRP6 inflammasome signaling (23). We show that BAA485 and BAA473 activate the Pyrin inflammasome pathway in cell types relevant to maintaining intestinal immune homeostasis. Intriguingly, Pyrin inflammasome activation in the gut can have multiple consequences. Minimal activation of Pyrin in the resting state may promote intestinal barrier integrity and prevent inflammation and tumorigenesis in the colon (4), however, acute or excessive activation for example by the toxin TcdB produced by Clostridium difficile can lead to pathogenic inflammation (19). One can speculate that the level of Pyrin activation in the gut might be controlled by gut microbiota-modified bile acids such as BAA485, which are likely to be present at significantly lower concentrations than the principal bile acids thereby preventing full activation of Pyrin inflammasome.

FMF patients display a dramatic range of disease severity which is contingent on mutations in Pyrin (24,25); however, the range in symptom intensity is also attributed to environmental factors (26). Previous work has established that the gut microbial diversity is specifically restructured in FMF. In a study done in Armenian patients with FMF; those that settled in the USA were shown to develop secondary amyloidosis with a much lower incidence than those settled in Armenia (27). A similar effect was observed in Turkish patients with FMF who had spent their childhood years in Turkey compared to Germany or the USA (28,29). Together, this suggests the possibility that diet, and diversity of the regional bacterial milieu may impact Pyrin function and gut homeostasis. Our data also prompts us to suggest that bile acid metabolites produced by gut microbiota may mediate some of these effects (30-32).

Both the bile acid analogues BAA485 and BAA473 utilized in this study were synthetically derived molecules (33-35). However, it is not unreasonable that gut microbiota could be envisaged to generate such bile acid species via a two-step transformation starting with DCA (Supplemental Figure 2) (12). Generation of our initial screening hit BAA485
could be envisioned through enzymatic conversion of DCA by 12α-hydroxysteroid dehydrogenase (HSDH) produced by gut bacteria and a second transformation step of BAA485 methylation yielding the more potent analog BAA473 (36-39). Unfortunately, to-date we have been unable to identify intestinal bacteria that can convert DCA to BAA485 or BAA473.

In conclusion, we have identified bile acid analogues that activate the Pyrin inflammasome pathway in immune and intestinal epithelial cells. Because bile acid analogues, but not the principal bile acids induce Pyrin inflammasome, we hypothesize that the gut microbiota metabolizes endogenous bile acids into metabolites such as BAA485 in order to regulate Pyrin inflammasome activation and intestinal immune homeostasis. The identification of BAA485 suggests a novel interplay between gut microbiota and host immune system.

EXPERIMENTAL PROCEDURES

Antibodies and Reagents

Anti-Pyrin (#AL196) and anti-ASC (#AL177) antibodies were obtained from Adipogen, anti-Tubulin antibody was from Sigma (#T6199). Lipopolysaccharide from *Escherichia coli* O26:B6 was from Sigma-Aldrich (#L2654). ATP(#tlrl-atpl), Nigericin(#tlrl-nig), VX-765(#inh-vx765i), MCC950(#inh-mcc) were purchased from Invivogen.

Protein extraction and Western blot analysis

THP-1 Cas9 cell pellets were lysed in 100 µL RIPA buffer (Cell Signaling Technology, #9806) in the presence of Halt Protease Inhibitor Cocktail (ThermoFisher, #78430). Cell lysis was performed with an ultrasonic bath. Lysates containing proteins were cleared by centrifugation at 13,000 rpm, 4°C. Total protein concentration was determined using the BCA protein assay kit (Pierce, #23225). 30 µg lysate was loaded per lane, and the proteins were separated using Criterion™ TGX™ 4-15% gel system (Bio-Rad, #5671084), transferred to Trans-Blot Turbo, 0.2 µm Nitrocellulose membrane (Bio-Rad, #1704159), and subjected to immunoblotting.

Cell culture

Blood was collected from healthy human donors after obtaining their informed consent from an internal Novartis Cambridge Research Donor Program. Blood related research at Novartis is being overseen by an Institutional Review Board, a group which performs independent review of research studies (New England IRB, Newton, MA). This study was conducted in accordance with the ethical principles of the Declaration of Helsinki. Human PBMCs were isolated from peripheral human blood in the presence of heparin as an anticoagulant using Ficoll-Paque (GE Healthcare Life Sciences, #17-1440-03). The cells were cultured in RPMI 1640 medium (Gibco, #11875-093) supplemented with 10% heat inactivated Fetal Bovine Serum (FBS, Gibco, #16140), 1% Penicillin-Streptomycin (P/S, Gibco, #15140-122), 0.1 mM MEM Non-Essential Amino Acids Solution (NEAA, Gibco, #11140-050), 1 mM Sodium Pyruvate (Gibco, #11360-070), 2 mM L-Glutamine (Gibco, #25030-081), and 10 mM HEPES (Gibco, #15630-070). THP-1 (ATCC, #TIB-202) and U937 (ATCC #CRL-1593.2) cell lines were cultured in RPMI 1640 medium (ATCC, #30-2001) containing 10% FBS and 1% P/S while, T84 (ATCC, #CCL-248) cells were grown in a 1:1 mixture of complete Ham's F12 medium and Dulbecco's modified Eagle's medium (ATCC, #30-2006) containing 10% FBS and 1% P/S. The cells were either not primed or primed with LPS before plating and were incubated in a humidified chamber at 37°C and 5% CO₂. Primary human colon cell culture was established according to Moon et al., 2014 and VanDussen et al., 2015. Cells in monolayer were cultured in a 96-well insert plate (Falcon, #351130) and BAA473 was applied to the top chamber.

Assays

For the CellTiter-Glo assay, CTG reagent (Promega, #G7570) was mixed at 1:1 ratio with supernatant from the treatment plate. The mix was incubated for 10 minutes at room
temperature on the shaker followed by luminescence measurement. The HTRF IL1β immunoassay (Cisbio, #62HIL1BPEH) was carried out according to the manufacturer’s instructions for 384-well plate. Human IL18 AlphaLISA detection kit (PerkinElmer, #AL241C) was used to assess IL18 secretion according to the manufacturer’s protocol. Caspase-1 activity was determined using Caspase-Glo 1 inflammasome assay from Promega (#G9951). LDH released into the media was measured using the LDH colorimetric assay kit from Abcam (#ab102526).

CRISPR screen and validation

THP-1 cells were engineered to stably express Cas9 by lentiviral delivery of pNGx-LV-c004 Cas9 construct followed by blasticidin selection. A genome wide gRNA library targeting 18,360 genes covering most protein coding genes was constructed and the pooled CRISPR screen was performed as described previously (DeJesus et al., 2016). Packaging of the lentiviral gRNA library was done according to Hoffman et al., 2014. THP-1-Cas9 cells were transduced with the lentiviral gRNA library and seven days post transduction the cells were primed with 1 µg/ml LPS followed by treatment with 75 µM BAA473 after 24 h. The next day, cells were stained using LIVE/DEAD® Fixable Far Red Dead Cell Stain kit (Thermo Scientific, #L10120) and live cells were sorted by FACS.

For validation experiments, individual single guide RNAs were selected according to the screening results and cloned into the BbsI restriction site of pNGx-LV-g003 lentiviral backbone. gRNA sequences are listed in Supplemental Table 2. The g003 vector expresses the sgRNA of interest along with an RFP marker. 293T cells were transfected with 0.28 µg lentiviral packaging mix (4:1 mix of Gag/Pol & VSV-G) along with 0.23 µg of the lentiviral vector using the transfection reagent TransIT-293 (Mirus, # MIR 2700). Supernatant was collected 48 h post transfection and cleared by centrifugation at 2,000 rpm for 5 min followed by syringe filtering using a 0.45 µm filter (Millipore, #HAWP04700). THP-1 cells were transduced in the presence of 5 µg/ml polybrene via spin-infection at 2100 rpm for 90 min. Cells were rested for 24 h before being selected with 1.5 µg/ml puromycin for 72 h.

Generation of U937 Pyrin reporter cell line

Human MEFV ORF (isoform NP_000234) was subcloned into the pXP1510 lentiviral vector allowing for expression driven by the EF1-alpha promoter utilizing NotI and Ascl restriction sites. To establish stable cell line, the lentiviral vector was packaged and viral supernatant was produced as described above. U937 cells were transduced in the presence of 5 µg/ml polybrene via spin-infection at 2100 rpm for 90 min. Cells were allowed to recover for 24 h before being selected with 0.4 mg/mL neomycin (G418:Geneticin, Gibco, #10131027) for 72 h.

ACKNOWLEDGEMENTS

We would like to thank Xiaowei Xiong for help with the gut organoid culture; Christopher Ng Thow Hing, Rajiv Chopra, and Michael Schaefer for biophysics and structural help; Christopher Faraday, Philip Smith, Henry Haiser and Bindu Sukumaran for reviewing the manuscript. We would also like to thank Leon Murphy, Aron Jaffe, Rishi Jain, John Tallarico, and Jeff Porter for support and input through the course of this work.

CONFLICT OF INTEREST STATEMENT

I.A., S.M., E.H., L.L, N.C., R.M., Q.W., J.A., J.C., Z.Y., A.L., G.H., T.S., C.R. J.R-H., S.M.C. are full-time employees of Novartis Institutes for BioMedical Research (NIBR). X.C. is a full-time employee of Sanofi US.
1. Broz, P., and Dixit, V. M. (2016) Inflammasomes: mechanism of assembly, regulation and signalling. *Nature reviews. Immunology* **16**, 407-420
2. Guo, H., Callaway, J. B., and Ting, J. P. (2015) Inflammasomes: mechanism of action, role in disease, and therapeutics. *Nature medicine* **21**, 677-687
3. Hoffman, H. M., Mueller, J. L., Broide, D. H., Wanderer, A. A., and Kolodner, R. D. (2001) Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. *Nature genetics* **29**, 301-305
4. Sharma, D., Malik, A., Guy, C. S., Karki, R., Vogel, P., and Kanneganti, T. D. (2017) Pyrin Inflammasome Regulates Tight Junction Integrity to Restrict Colitis and Tumorigenesis. *Gastroenterology*
5. Elinav, E., Strowig, T., Kau, A. L., Henao-Mejia, J., Thaiss, C. A., Booth, C. J., Peaper, D. R., Bertin, J., Eisenbarth, S. C., Gordon, J. I., and Flavell, R. A. (2011) NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. *Cell* **145**, 745-757
6. Allen, I. C., TeKippe, E. M., Woodford, R. M., Uronis, J. M., Holl, E. K., Rogers, A. B., Herfarth, H. H., Jobin, C., and Ting, J. P. (2010) The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer. *The Journal of experimental medicine* **207**, 1045-1056
7. Zhernakova, A., Festen, E. M., Franke, L., Trynka, G., van Diemen, C. C., Monsuur, A. J., Bevova, M., Nijmeijer, R. M., van 't Slot, R., Heijmans, R., Boezen, H. M., van Heel, D. A., van Bodegraven, A. A., Stokkers, P. C., Wijmenga, C., Crusius, J. B., and Weersma, R. K. (2008) Genetic analysis of innate immunity in Crohn's disease and ulcerative colitis identifies two susceptibility loci harboring CARD9 and IL18RAP. *American journal of human genetics* **82**, 1202-1210
8. Wahlstrom, A., Sayin, S. I., Marschall, H. U., and Backhed, F. (2016) Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism. *Cell metabolism* **24**, 41-50
9. Hamilton, J. P., Xie, G., Raufman, J.P., Hogan, S., Griffin, T.L., Packard, C.A., Chatfield, D.A., Steinbach, J.H., Hofmann, A.F. (2007) Human cecal bile acids: concentration and spectrum. *American Journal of Physiology-Gastrointestinal and Liver Physiology* **293**, G256-G263
10. Macdonald, I. A., Bokkenheuser, V. D., Winter, J., McIverlon, A. M., and Mosbach, E. H. (1983) Degradation of steroids in the human gut. *Journal of lipid research* **24**, 675-700
11. Yao, L., Seaton, C., Ndousse-Fetter, S., Adhikari, A. A., DiBenedetto, N., Mina, A.I., Banks, A.S., Bry, L., Devlin, A.S. (2018) A selective gut bacterial bile salt hydrolase alters host metabolism. *eLife*, e37182
12. Groh, H., Schade, K., and Horhold-Schubert, C. (1993) Steroid metabolism with intestinal microorganisms. *Journal of basic microbiology* **33**, 59-72
13. Devlin, A. S., and Fischbach, M. A. (2015) A biosynthetic pathway for a prominent class of microbiota-derived bile acids. *Nat Chem Biol* **11**, 685-690
14. Lei-Leston, A. C., Murphy, A. G., and Maloy, K. J. (2017) Epithelial Cell Inflammasomes in Intestinal Immunity and Inflammation. *Frontiers in immunology* **8**, 1168
15. Moon, C., VanDussen, K. L., Miyoshi, H., and Stappenbeck, T. S. (2014) Development of a primary mouse intestinal epithelial cell monolayer culture system to evaluate factors that modulate IgA transcytosis. *Mucosal immunology* **7**, 818-828
16. VanDussen, K. L., Marinshaw, J. M., Shaikh, N., Miyoshi, H., Moon, C., Tarr, P. I., Ciorba, M. A., and Stappenbeck, T. S. (2015) Development of an enhanced human gastrointestinal epithelial culture system to facilitate patient-based assays. *Gut* **64**, 911-920
17. Coll, R. C., Robertson, A. A., Chae, J. J., Higgins, S. C., Munoz-Planillo, R., Inserra, M. C., Vetter, I., Dungan, L. S., Monks, B. G., Stutz, A., Croker, D. E., Butler, M. S., Haneklaus, M., Sutton, C. E., Nunez, G., Latz, E., Kastner, D. L., Mills, K. H., Masters, S. L., Schroder, K., Cooper, M. A., and O'Neill, L. A. (2015) A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. *Nature medicine* 21, 248-255

18. Schmid-Burgk, J. L., Chauhan, D., Schmidt, T., Ebert, T. S., Reinhardt, J., Endl, E., and Hornung, V. (2016) A Genome-wide CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) Screen Identifies NEK7 as an Essential Component of NLRP3 Inflammasome Activation. *The Journal of biological chemistry* 291, 103-109

19. Xu, H., Yang, J., Gao, W., Li, L., Li, P., Zhang, L., Gong, Y. N., Peng, X., Xi, J. J., Chen, S., Wang, F., and Shao, F. (2014) Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. *Nature* 513, 237-241

20. Gao, W., Yang, J., Liu, W., Wang, Y., and Shao, F. (2016) Site-specific phosphorylation and microtubule dynamics control Pyrin inflammasome activation. *Proceedings of the National Academy of Sciences of the United States of America* 113, E4857-4866

21. Kubosaki, A., Lindgren, G., Tagami, M., Simon, C., Tomaru, Y., Miura, H., Suzuki, T., Arner, E., Forrest, A. R., Irvine, K. M., Schroder, K., Hasegawa, Y., Kanamori-Katayama, M., Rehli, M., Hume, D. A., Kawai, J., Suzuki, M., Suzuki, H., and Hayashizaki, Y. (2010) The combination of gene perturbation assay and ChIP-chip reveals functional direct target genes for IRF8 in THP-1 cells. *Molecular immunology* 47, 2295-2302

22. Liberzon, A. (2014) A description of the Molecular Signatures database (MSigDB) Web site. *Methods Mol Biol.* 1150, 153-160

23. Levy, M., Thaiss, C. A., Zeevi, D., Dohnalova, L., Zilberman-Schapira, G., Mahdi, J. A., David, E., Savidor, A., Korem, T., Herzig, Y., Pevtsner-Fischer, M., Shapiro, H., Christ, A., Harmelin, A., Halpern, Z., Latz, E., Flavell, R. A., Amit, I., Segal, E., and Elinav, E. (2015) Microbiota-Modulated Metabolites Shape the Intestinal Microenvironment by Regulating NLRP6 Inflammasome Signaling. *Cell* 163, 1428-1443

24. Fidder, H., Chowers, Y., Ackerman, Z., Pollak, R. D., Crusius, J. B., Livneh, A., Bar-Meir, S., Avidan, B., and Shinar, Y. (2005) The familial Mediterranean fever (MEFV) gene as a modifier of Crohn's disease. *The American journal of gastroenterology* 100, 338-343

25. Villani, A. C., Lemire, M., Louis, E., Silverberg, M. S., Collette, C., Fortin, G., Nimmo, E. R., Renaud, Y., Brunet, S., Libioule, C., Belaiche, J., Bitton, A., Gaudet, D., Cohen, A., Langelier, D., Rioux, J. D., Arnott, I. D., Wild, G. E., Rutgeerts, P., Satsangi, J., Vermeire, S., Hudson, T. J., and Franchimont, D. (2009) Genetic variation in the familial Mediterranean fever gene (MEFV) and risk for Crohn's disease and ulcerative colitis. *PloS one* 4, e7154

26. Yepiskoposyan, L., and Harutyunyan, A. (2007) Population genetics of familial Mediterranean fever: a review. *European journal of human genetics : EJHG* 15, 911-916

27. Schwabe, A. D., and Peters, R. S. (1974) Familial Mediterranean Fever in Armenians. Analysis of 100 cases. *Medicine* 53, 453-462

28. Ozen, S., Aktay, N., Lainka, E., Duzova, A., Bakkaloglu, A., and Kallinch, T. (2009) Disease severity in children and adolescents with familial Mediterranean fever: a comparative study to explore environmental effects on a monogenic disease. *Annals of the rheumatic diseases* 68, 246-248

29. Batu, E. D., Kara Eroglu, F., Tsoukas, P., Hausmann, J. S., Bilginer, Y., Kenna, M. A., Licameli, G. R., Fuhlbrigge, R. C., Ozen, S., and Dedeoglu, F. (2016) Periodic Fever, Aphthosis, Pharyngitis, and Adenitis Syndrome: Analysis of Patients From Two Geographic Areas. *Arthritis care & research* 68, 1859-1865
30. Khachatryan, Z. A., Ktsoyan, Z. A., Manukyan, G. P., Kelly, D., Ghazaryan, K. A., and Aminov, R. I. (2008) Predominant role of host genetics in controlling the composition of gut microbiota. *PloS one* **3**, e3064

31. Ktsoyan, Z., Beloborodova, N., Sedrakyan, A., Osipov, G., Khachatryan, Z., Manukyan, G., Arakelova, K., Hovhannisyan, A., Arakelyan, A., Ghazaryan, K., Zakaryan, M., and Aminov, R. (2013) Management of familial Mediterranean fever by colchicine does not normalize the altered profile of microbial long chain fatty acids in the human metabolome. *Frontiers in Cellular and Infection Microbiology* **3**

32. Ktsoyan, Z. A., Mkrtchyan, M. S., Zakharyan, M. K., Mnatsakanyan, A. A., Arakelova, K. A., Gevorgyan, Z. U., Sedrakyan, A. M., Hovhannisyan, A. I., Arakelyan, A. A., and Aminov, R. I. (2016) Systemic Concentrations of Short Chain Fatty Acids Are Elevated in Salmonellosis and Exacerbation of Familial Mediterranean Fever. *Frontiers in microbiology* **7**, 776

33. Marker, R. E., and Lawson, E. J. (1938) Sterols. XXXIII. 3,11-Dihydroxy-12-ketocholanic Acid and Derivatives. *Journal of the American Chemical Society* **60**, 1334-1337

34. Gallagher, T. F. (1946) Partial synthesis of compounds related to adrenal cortical hormones: Vi. The structure of the "3(α),11-dihydroxy-12-ketocholanic acid" of marker and lawson and of the products obtained by "wolff-kishner reduction". *Journal of Biological Chemistry* **162**, 539-548

35. Hershberg, E. B., Herzog, H. L., Coan, S. B., Weber, L., and Jevnik, M. (1952) Cortisone Intermediates. I. A New Preparation of 12α-Bromo-24,24-diphenylchol-23-en-3α-ol-11-one Acetate. *Journal of the American Chemical Society* **74**, 2585-2589

36. Edenharder, R., and Mielek, K. (1984) Epimerization, oxidation and reduction of bile acids by Eubacterium lentum. *Systematic and Applied Microbiology* **5**, 287-298

37. Edenharder, R., and Schneider, J. (1985) 12 beta-dehydrogenation of bile acids by Clostridium paraputrificum, C. tertium, and C. difficile and epimerization at carbon-12 of deoxycholic acid by cocultivation with 12 alpha-dehydrogenating Eubacterium lentum. *Applied and environmental microbiology* **49**, 964-968

38. Edenharder, R., and Hammann, R. (1985) Deoxycholic Acid Methyl Ester — a Novel Bacterial Metabolite of Cholic Acid. *Systematic and Applied Microbiology* **6**, 18-22

39. Kelsey, M. I., and Sexton, S. A. (1976) The biosynthesis of ethyl esters of lithocholic acid and isolithocholic acid by rat intestinal microflora. *Journal of steroid biochemistry* **7**, 641-647
FIGURE LEGENDS

Figure 1. (A) Structures of a novel inflammasome inducer BAA485 and BAA473. SAR studies revealed that moving the ketone from the 12-oxo position of the weak inflammasome inducer BAA485 to the 11-oxo position of BAA473 as well as adding the methyl pentanoate group results in a more potent inflammasome activity. (B) BAA485 induces secretion of IL18 in PBMCs. PBMCs were primed with 0.1 ng/ml LPS overnight. Following treatment with BAA485 (4-(3R,5R,10S,13R,17R)-3-hydroxy-10,13-dimethyl-12-oxohexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoic acid) or BAA473 (methyl 4-(3R,5R,10S,12S,13R,17R)-3,12-dihydroxy-10,13-dimethyl-11-oxohexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoate) for 16 h, IL18 secretion was measured by AlphaLISA. Data presented is mean ± SEM (n=3), *p value <0.004 vs vehicle (paired t-test).

Figure 2. (A) BAA473 selectively induces secretion of IL1β but not IL6 and IL8. PBMCs were primed with 0.1 ng/ml LPS overnight followed by BAA473 treatment for 16 h and HTRF detection of secreted levels of IL1β, IL6, and IL8. Data presented is mean ± SEM (n=3), *p value <0.005 vs vehicle (paired t-test). (B-D) BAA473 induces secretion of cytokines as well as Caspase-1 and LDH activity in THP-1 cells. THP-1 cells were primed with 1 µg/ml LPS overnight followed by compound treatment for 24 h. (B) Cytokine secretion in supernatant was measured by HTRF (*p-value <0.0007). (C) Caspase-1 activity was assessed using Caspase-Glo® 1 assay. Nigericin is used as a NALP3 activator. (D) LDH activity (*p-value <0.003) was measured using colorimetric LDH assay kit. (E) BAA473 induces cytokine production via ASC/CASP1. THP-1 cells primed with 1 µg/ml LPS were pretreated with 10 µM of BAA473 or 5 mM ATP for 1 h followed by overnight treatment with Caspase-1 inhibitor (VX-765). Level of IL1β secretion was measured by HTRF assay. Data presented is mean ± SEM (n=3).

Figure 3. (A) BAA473 induces secretion of IL18 in T84 cells as well as in the intestinal organoid-derived epithelial monolayer. TLR unprimed T84 cells constitutively expressing pro-IL18 were treated with BAA485 and BAA473 overnight. IL1β cytokine secretion was measured by HTRF, and IL18 cytokine secretion was measured by AlphaLISA. Data presented is mean ± SEM (n=3), *p value <0.05 vs vehicle (paired t-test). (B) TLR unprimed human intestinal organoid-derived epithelial cells were plated in a monolayer in 96-well transwell membrane cell culture inserts and treated with BAA473 overnight followed by measurement of IL18 secretion by AlphaLISA. Data presented is mean ± SEM (n=3), *p value <0.04 vs vehicle (paired t-test).

Figure 4. (A) BAA473 induces cytokine production via ASC/CASP1 but not NLRP3. LPS primed (0.1 ng/ml) PBMCs were pretreated with 5 µM BAA473 or 5 mM ATP for 1 h followed by overnight treatment with increasing concentrations of the NLRP3 inhibitor MCC950. IL1β secretion was measured by HTRF. (B-D) Genome-wide CRISPR screen to determine the mechanism of action of BAA473. (B) Screening workflow. (C) LPS primed (1 µg/ml) THP-1 cells were treated with BAA473 overnight after which cell death was assessed by CTG while IL1β secretion was measured by HTRF. Induced cell death observed in LPS primed (1 µg/ml) THP-1 cells upon treatment with BAA473 was used as a readout in the genome-wide CRISPR screen. (D) THP-1-Cas9 cells were transduced with a genome wide lentiviral CRISPR library. Cells were primed with LPS and after 24 h were treated with 75 µM BAA473. The next day live cells were FACS sorted using fluorescent live stain. The screen was run in duplicate. Gene-centric visualization is shown as the average log2 fold change versus significance score in live cells.
Figure 5. (A) Pyrin hit validation. Pyrin and ASC knockout cells were validated by western blot using anti-Pyrin and anti-ASC antibodies. (B-D) BAA473-induced production of IL1β and IL18 as well as pyroptosis were blocked in TLR primed THP-1-Cas9 cells with knockout of Pyrin and ASC. Two knockout cell lines each for Pyrin and ASC were generated by transducing THP-1-Cas9 cells with lentiviral vectors expressing the corresponding gRNAs. The knockout cells were primed with 1 µg/ml LPS overnight and then treated with increasing concentrations of BAA473. Data presented is mean ± SEM (n=3), *p value <0.002 (IL1β), *p value <0.01 (IL18), *p-value <0.03 (CTG) vs control (paired t-test). (E) Colchicine blocks cytokine production but not cell death. TLR primed (1 µg/ml LPS) THP-1 cells were pretreated with 10 µM of BAA473 for 1 h followed by overnight treatment with colchicine. IL1β secretion was measured by HTRF and cell death was assessed by CTG. Data presented is mean ± SEM (n=3), *p value <0.02 vs vehicle (paired t-test).

Figure 6. (A) BAA473 induces inflammasome activation in U937 cells overexpressing Pyrin. Control and Pyrin over-expression lines were established via lentiviral transduction in U937 cells lacking endogenous Pyrin expression. Cells were primed with 1 µg/ml LPS and treated with increasing concentrations of BAA473. IL1β secretion was measured by HTRF. (B, C) BAA473 is a stronger Pyrin Inflammasome activator than BAA485. U937-Pyrin cells and PBMCs were primed overnight with LPS (1 µg/ml and 0.1 ng/ml respectively) and treated with BAA473, BAA485, and DCA for 16 h followed by measurement of IL18 secretion. Data presented is mean ± SEM (n=3), *p value <0.001, **p value <0.01 vs vehicle (paired t-test).
FIGURE 1

A.

BAA485

BAA473

B. IL18, ng/ml

Compound, µM

0 .1 .4 .2 .7 11 33

BAA485
BAA473

* * * * *
FIGURE 2

A. Activity, %

B. Cytokine, ng/ml

C. Caspase-1 activity, RLU x 10^5

D. LDH activity/ DMSO

E. IL1β, ng/ml
B.

FIGURE 3

A.

[Graph showing cytokine levels (IL18) in response to BAA473 concentrations (µM).]

B.

[Bar graph comparing cytokine levels (IL18) between basolateral and apical sides at different BAA473 concentrations (µM).]
A.

IL1β, ng/ml

- BAA473, 5μM
- ATP, 5mM

MCC950, μM

B.

Lentiviral pool of sgRNA

THP-1 Cas9 cells

LPS → 24 hrs → BAA473 → Selection of live cells by FACS → Genomic DNA → sgRNA counts by NGS

C.

IL1β, ng/ml

Cell viability, RLU x 10^5

BAA473, μM

D.

Statistical Significance

Fold Change

PYRIN

ASC

Downloaded from http://www.jbc.org/ by secon on March 24, 2020
FIGURE 6

A. Vector Pyrin

	IL18	CTG
0	0.7	0.3
0.1	0.8	0.4
0.4	0.9	0.5
1	1.0	0.6

Cell viability, RLU x10^6

B. U937-Pyrin

	IL18, ng/ml
0	1.0
0.1	2.0
0.4	3.0
1	4.0

Compound, µM

C. PBMC

	IL18, ng/ml
0	1.0
0.1	2.0
0.4	3.0

Compound, µM
Bile acid analogues are activators of Pyrin inflammasome
Irina Alimov, Suchithra Menon, Nadire Cochran, Rob Maher, Qiong Wang, John Alford, John B. Concannon, Zinger Yang, Edmund Harrington, Luis Llamas, Alicia Lindeman, Gregory Hoffman, Tim Schuhmann, Carsten Russ, John Reece-Hoyes, Stephen M. Canham and Xinming Cai

J. Biol. Chem. published online January 15, 2019

Access the most updated version of this article at doi: [10.1074/jbc.RA118.005103](https://doi.org/10.1074/jbc.RA118.005103)

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts