Bounds on Variation of Spectral Subspaces under J-Self-adjoint Perturbations

Sergio Albeverio, Alexander K. Motovilov and Andrei A. Shkalikov

Abstract. Let A be a self-adjoint operator on a Hilbert space \mathcal{H}. Assume that the spectrum of A consists of two disjoint components σ_0 and σ_1. Let V be a bounded operator on \mathcal{H}, off-diagonal and J-self-adjoint with respect to the orthogonal decomposition $\mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_1$ where \mathcal{H}_0 and \mathcal{H}_1 are the spectral subspaces of A associated with the spectral sets σ_0 and σ_1, respectively. We find (optimal) conditions on V guaranteeing that the perturbed operator $L = A + V$ is similar to a self-adjoint operator. Moreover, we prove a number of (sharp) norm bounds on the variation of the spectral subspaces of A under the perturbation V. Some of the results obtained are reformulated in terms of the Krein space theory. As an example, the quantum harmonic oscillator under a \mathcal{PT}-symmetric perturbation is discussed.

Mathematics Subject Classification (2000). Primary 47A15; Secondary 47A25, 47A62, 47B50.

Keywords. Subspace perturbation problem, Krein space, J-symmetric operator, J-self-adjoint operator, \mathcal{PT} symmetry, \mathcal{PT}-symmetric operator, Riccati equation, Sylvester equation, Davis-Kahan theorems.

1. Introduction

Let A be a (possibly unbounded) self-adjoint operator on a Hilbert space \mathcal{H}. Assume that V is a bounded operator on \mathcal{H}. It is well known that in such a case the spectrum of the perturbed operator $L = A + V$ lies in the closed $\|V\|$-neighborhood of the spectrum of A even if V is non-self-adjoint. Thus, if the spectrum of A consists of two disjoint components σ_0 and σ_1, that is, if

$$\text{spec}(A) = \sigma_0 \cup \sigma_1 \quad \text{and} \quad \text{dist}(\sigma_0, \sigma_1) = d > 0,$$

This work was supported by the Deutsche Forschungsgemeinschaft (DFG), the Heisenberg-Landau Program, and the Russian Foundation for Basic Research.
then the perturbation V with a sufficiently small norm does not close the gaps between σ_0 and σ_1 in \mathbb{C}. This allows one to think of the corresponding disjoint spectral components σ_0' and σ_1' of the perturbed operator $L = A + V$ as a result of the perturbation of the spectral sets σ_0 and σ_1, respectively.

Assuming (1.1), by $E_A(\sigma_0)$ and $E_A(\sigma_1)$ we denote the spectral projections of A associated with the disjoint Borel sets σ_0 and σ_1, and by \mathcal{H}_0 and \mathcal{H}_1 the respective spectral subspaces, $\mathcal{H}_0 = \text{Ran } E_A(\sigma_0)$ and $\mathcal{H}_1 = \text{Ran } E_A(\sigma_1)$. If there is a possibility to associate with the disjoint spectral sets σ_0' and σ_1' the corresponding spectral subspaces of the perturbed (non-self-adjoint) operator $L = A + V$, we denote them by \mathcal{H}_0' and \mathcal{H}_1'. In particular, if one of the sets σ_0' and σ_1' is bounded, this can easily be done by using the Riesz projections (see, e.g. [24, Sec. III.4]).

In the present note we are mainly concerned with bounded perturbations V that possess the property

$$V^* = JVJ,$$

(1.2)

where J is a self-adjoint involution on \mathcal{H} given by

$$J = E_A(\sigma_0) - E_A(\sigma_1).$$

(1.3)

Operators V with the property (1.2) are called J-self-adjoint.

A bounded perturbation V is called diagonal with respect to the orthogonal decomposition $\mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_1$ if it commutes with the involution J, $VJ = JV$. If V anticommutes with J, i.e. $VJ = -JV$, then V is said to be off-diagonal. Clearly, any bounded V can be represented as the sum $V = V_{\text{diag}} + V_{\text{off}}$ of the diagonal, V_{diag}, and off-diagonal, V_{off}, terms. The spectral subspaces \mathcal{H}_0 and \mathcal{H}_1 remain invariant under $A + V_{\text{diag}}$ while adding a non-zero V_{off} does break the invariance of \mathcal{H}_0 and \mathcal{H}_1. Thus, the core of the perturbation theory for spectral subspaces is in the study of their variation under off-diagonal perturbations (cf. [25]). This is the reason why we add to the hypothesis (1.2) another basic assumption, namely that all the perturbations V involved are off-diagonal with respect to the decomposition $\mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_1$.

We recall that if an off-diagonal perturbation V is self-adjoint in the usual sense, that is, $V^* = V$, then the condition

$$\|V\| < \frac{d}{2}$$

(1.4)

ensuring the existence of gaps between the perturbed spectral sets σ_0' and σ_1' may be essentially relaxed. Generically, if no assumptions on the mutual position of the initial spectral sets σ_0 and σ_1 are made except (1.1), the sets σ_0' and σ_1' remain disjoint for any off-diagonal self-adjoint V satisfying the bound $\|V\| < \sqrt{d}$ (see [27, Theorem 1 (ii)] and [49, Theorem 5.7 (ii)]). If, in addition to (1.1), it is known that one of the sets σ_0 and σ_1 lies in a finite gap of the other set then this bound may be relaxed further: for the perturbed sets σ_0' and σ_1' to be disjoint it only suffices to require that $\|V\| < \sqrt{d}$ (see [26, Theorem 3.2 and Remark 3.3]; cf. [27, Theorem 2 (i)] and [49, Theorem 5.7 (iii)]). Finally, if the sets σ_0 and σ_1 are subordinated, say $\sup \sigma_0 < \inf \sigma_1$, then no requirements on $\|V\|$ are needed.