A Forbidden-Minor Characterization for the Class of graphic Matroids which yield the Co-graphic Element-Splitting Matroids

March 20, 2018

S. B. DHOTRE
Department of Mathematics
University of Pune, Pune-411007 (India)
E-mail: dsantosh2@yahoo.co.in

P. P. MALAVADKAR
MIT College of Engineering, Pune, Pune-411038 (India)
E-mail: pmalavadkar@gmail.com

M. M. SHIKARE
Department of Mathematics
University of Pune, Pune-411007 (India)
E-mail: mmshikare@gmail.com

Abstract

The element splitting operation on a graphic matroid, in general may not yield a cographic matroid. In this paper, we give a necessary and sufficient condition for the graphic matroid to yield cographic matroid under the element splitting operation.

AMS Subject Classification: 05B35
Key words: binary matroids, splitting, element splitting
1 Introduction

Fleischner [5] introduced the idea of splitting a vertex of degree at least three in a connected graph and used the operation to characterize Eulerian graphs. Raghunathan, Shikare and Waphare [10] extended the splitting operation from graphs to binary matroids. $M_{x,y}$ denotes the splitting matroid obtained by applying splitting operation on a binary matroid M, by a pair of elements $\{x, y\}$ of M.

Slater [13] specified the n-point splitting operation on a graph in the following way:

Let G be a graph and u be a vertex of degree at least $2n - 2$ in G. Let H be the graph obtained from G by replacing u by two adjacent vertices u_1, u_2 such that each point formerly joined to u is joined to exactly one of u_1 and u_2 so that in H, $\deg(u_1) \geq n$ and $\deg(u_2) \geq n$. We say that H arises from G by n-element splitting operation.

![Figure 1](image)

If $X = \{x_1, x_2, ... x_k\}$ be the set of edges incident at u_1 then we denote H by G'_X. Tutte [15] characterized 3-connected graphs in terms of edge addition and 3-point splitting. Slater [13] obtained the following two useful results in this regard.

Theorem 1.1. The class of 2-connected graphs is the class of graphs obtained from K_3 by finite sequence of edge addition and 2-element splitting.

Theorem 1.2. If G is n-connected and H arise from G by n-element splitting, then H is n-connected.

Further, he classified 4-connected graphs using n-element splitting operation (see [13]).

Shikare and Azadi [12] [11] extended the notion of n-point splitting operation on graphs to binary matroids as follows.
Definition 1.3. Let M be a binary matroid on a set E and A be a matrix over $GF(2)$ that represents the matroid M. Suppose that X is a subset of $E(M)$. Let A'_X be the matrix that is obtained by adjoining an extra row to A with this row being zero everywhere except in the columns corresponding to the elements of X where it takes the value 1 and then adjoining an extra column (corresponding to a) with this column being zero everywhere except in the last row where it takes the value 1. Suppose M'_X be the vector matroid of the matrix A'_X. The transition from M to M'_X is called the element splitting operation.

We call matroid M'_X as the element splitting matroid. If $|X| = 2$ and $X = \{x, y\}$. We denote the matroid M'_X by $M'_{x,y}$. Azadi [1], characterized circuits of the element splitting matroid in terms of circuits of the binary matroids as follows.

Proposition 1.4. Let $M(E, C)$ be a binary matroid together with the collection of circuits C. Suppose $X \subseteq E$ and $a \notin E$. Then $M'_X = (E \cup \{a\}, C')$ where $C' = C_0 \cup C_1 \cup C_2$ and

$$
C_0 = \{ C \in C \mid C \text{ contains an even number of elements of } X \};
$$

$$
C_1 = \text{The set of minimal members of } \{ C_1 \cup C_2 \mid C_1, C_2 \in C, C_1 \cap C_2 \neq \emptyset \text{ and each of } C_1 \text{ and } C_2 \text{ contains an odd number of elements of } X \text{ such that } C_1 \cup C_2 \text{ contains no member of } C_0 \};
$$

$$
C_2 = \{ C \cup \{a\} \mid C \in C \text{ and } C \text{ contains an odd number of elements of } X \};
$$

Various properties concerning the element splitting matroids have been studied in [1, 6, 12]. The element splitting operation on a graphic (cographic) matroid may not yield a graphic (cographic) matroid.

Dalvi, Borse and Shikare [3, 4] characterized graphic (cographic) matroids whose element splitting matroids are graphic (cographic) when $|X| = 2$. In fact, they proved the following result.

Theorem 1.5. The element splitting operation, by any pair of elements, on a graphic (cographic) matroid yields a graphic (cographic) matroid if and only if it has no minor isomorphic to $M(K_4)$, where K_4 is the complete graph on 4 vertices.
In this paper, we obtain a forbidden-minor characterization for graphic matroids whose element splitting matroid is cographic when \(|X| = 2\). The main result in this paper is the following theorem.

Theorem 1.6. The element splitting operation, by any pair of elements, on a graphic matroid yields a cographic matroid if and only if it has no minor isomorphic to \(M(K_4)\), where \(K_4\) is the complete graph on 4 vertices.

2 Properties of Element Splitting Operation

In this section, we provide necessary Lemmas which are used in the proof of Theorem 1.6. Dalvi, Borse and Shikare proved the following useful Lemma.

Lemma 2.1. Let \(x\) and \(y\) be distinct elements of a binary matroid \(M\) and let \(r(M)\) denote the rank of \(M\). Then, using the notations introduced in Section 1,

1. \(M_{x,y} = M_{x,y}' \setminus \{a\}\);
2. \(M = M'_{x,y}/\{a\}\);
3. \(r(M_{x,y}') = r(M) + 1\);
4. Every cocircuit of \(M\) is a cocircuit of the matroid \(M'_{x,y}\); (v) if \(\{x, y\}\) is a cocircuit of \(M\) then \(\{a\}\) and \(\{x, y\}\) are cocircuits of \(M'_{x,y}\);
5. If \(\{x, y\}\) does not contain a cocircuit, then \(\{x, y, a\}\) is a cocircuit of \(M'_{x,y}\);
6. \(M'_{x,y} \setminus x/y \cong M \setminus x\);
7. If \(M\) is graphic and \(x, y\) are adjacent edges in a corresponding graph, then \(M'_{x,y}\) is graphic;
8. \(M'_{x,y}\) is not eulerian.

The following two results are well known minor based characterizations of graphic and cographic matroids (see [9]).

Theorem 2.2. A binary matroid is graphic if and only if it has no minor isomorphic to \(F_7, F_7^*, M^*(K_{3,3})\) or \(M^*(K_5)\).
Theorem 2.3. A binary matroid is cographic if and only if it has no minor isomorphic to $F_7, F_7^*, M(K_{3,3})$ or $M(K_5)$.

Notation. For the sake of convenience, let $\mathcal{F} = \{F_7, F_7^*, M(K_5), M(K_{3,3})\}$.

In the following Lemma, we provide a necessary condition for a graphic matroid whose element splitting matroid is not cographic.

Lemma 2.4. Let M be a graphic matroid and let $x, y \in E(M)$ such that $M'_{x,y}$ is not cographic. Then M has a minor isomorphic to $M(K_4)$ or there is a minor N of M such that no two elements of N are in series and $N_{x,y}^f \setminus \{a\}/\{x\} \cong F$ or $N_{x,y}^f \setminus \{a\}/\{x,y\} \cong F$ or $N_{x,y}^f \setminus \{y\} \cong F$ or $N_{x,y}^f \setminus \{x, y\} \cong F$ for some $F \in \mathcal{F}$.

Proof. Suppose that $M'_{x,y}$ is not cographic and M has no minor isomorphic to $M(K_4)$. Since $M'_{x,y}$ is not cographic $M'_{x,y} \setminus T_1/T_2 \cong F$ for some $T_1, T_2 \subseteq E(M_{x,y})$. Let $T_i' = T_i - \{a, x, y\}$ for $i = 1, 2$. Then $T_i' \subseteq E(M)$ for each i. Let $N = M \setminus T_1/T_2$. Then $N_{x,y} = M'_{x,y} \setminus T_1/T_2$. Let $T_i'' = T_i - T_i'$ for $i = 1, 2$. Then $N_{x,y} \setminus T_1''/T_2'' \cong F$. If $a \in T_2''$, then F is a minor of $M'_{x,y}/a$ and hence, by Lemma 2.1(i), F is a minor of M. Since M is graphic F_7, F_7^* can not be the minors of M. So $F = M(K_5)$ or $F = M(K_{3,3})$, but both $M(K_5)$ and $M(K_{3,3})$ have minor isomorphic to $M(K_4)$. Consequently M has a minor isomorphic to $M(K_4)$. Which is a contradiction. Suppose $a \in T_1''$. By Lemma 2.1(i), $M_{x,y} = M'_{x,y} \setminus a$. Hence F is a minor of $M_{x,y}$. It follows from Theorem 2.3 of [11] that N does not contain a 2-cocircuit and further, $N_{x,y}/x \cong F$ or $N_{x,y}/\{x, y\} \cong F$. This implies that $N_{x,y}^f \setminus \{a\}/\{x\} \cong F$ or $N_{x,y}^f \setminus \{a\}/\{x, y\} \cong F$. Suppose that $a \notin T_1'' \cup T_2''$. Hence $a \notin T_1 \cup T_2$. If $T_1'' \cup T_2'' = \phi$, then $N_{x,y} \cong F$. If $T_2'' = \phi$, then $N_{x,y} \setminus y \cong F$ or $N_{x,y} \setminus y \cong F$ or $N_{x,y} \setminus \{x, y\} \cong F$. In the first case, a forms a 2-cocircuit with x or y which ever is remained, and in the later case, a is a coloop, both are contradictions. Hence $T_2'' \neq \phi$. If $T_1'' \neq \phi$ then, by Lemma 2.1(vi), F is minor of M, which is a contradiction. Hence $T_2'' = \phi$ and $N_{x,y}/x \cong F$ or $N_{x,y}/y \cong F$ or $N_{x,y}/x, y \cong F$. Assume that N contains a 2-cocircuit Q. By Lemma 2.1(iv), Q is a 2-cocircuit in $N_{x,y}$. Since F is 3-connected, it does not contain a 2-cocircuit. It follows that $N_{x,y}^f$ is not isomorphic to F. Hence $N_{x,y}^f \setminus \{a\}/\{x\} \cong F$ or $N_{x,y}^f \setminus \{x, y\} \cong F$ or $N_{x,y}^f \setminus \{y\} \cong F$ or $N_{x,y}^f \setminus \{x, y\} \cong F$. If $Q \cap \{x, y\} \neq \phi$, then it is retained in all these cases and thus F has a 2-cocircuit, which is a contradiction. If $Q = \{x, y\}$, a contradiction follows from Lemma 2.1(v). Hence Q contains exactly one of x and y. Suppose that
Let $x \in Q$. Then $N''_{x,y}/y \not\cong F$. Let x_1 be the other element of Q. Let $L = N/x_1$. Then L is a minor of M in which no pair of elements is in series. Further, $L'_{x,y} = N''_{x,y}/x_1 \cong N''_{x,y}/x$. Thus we have $L'_{x,y} \{a\} \cong F$ or $L'_{x,y} \{a\}/y \cong F$ or $L'_{x,y} \cong F$ or $L'_{x,y}/y \cong F$. Since $L_{x,y} \cong L'_{x,y} \{a\}$, and x, y are in series in $L_{x,y}$, it follows that $L'_{x,y} \{a\} \not\cong F$ and also $L'_{x,y} \{a\}/y \cong L'_{x,y} \{a\}/x$. If $y \in Q$, then $N''_{x,y}/x \not\cong F$. Also, $L'_{x,y} \cong N''_{x,y}/y$. In this case we get $L'_{x,y} \{a\}/x \cong F$ or $L'_{x,y} \cong F$ or $L'_{x,y}/x \cong F$. □

Definition 2.5. Let M be a graphic matroid in which no two elements are in series and let $F \in \mathcal{F}$. We say that M is minimal with respect to F and the element splitting operation if there exist two elements x and y of M such that $M'_{x,y}\{a\}/\{x\} \cong F$ or $M'_{x,y}\{a\}/\{x, y\} \cong F$ or $M'_{x,y} \cong F$ or $M'_{x,y}/\{x\} \cong F$ or $M'_{x,y}/\{x, y\} \cong F$.

Corollary 2.6. Let M be a graphic matroid. For $x, y \in E(M)$, the matroid $M'_{x,y}$ is cographic if and only if M has no minor isomorphic to a minimal matroid with respect to any $F \in \mathcal{F}$.

Proof. If $M'_{x,y}$ is not cographic for some x, y then, by Lemma 2.4, M has a minor N in which no two elements are in series and $N'_{x,y}\{a\}/\{x\} \cong F$ or $N'_{x,y}\{a\}/\{x, y\} \cong F$ or $N'_{x,y} \cong F$ or $N'_{x,y}/\{x\} \cong F$ or $N'_{x,y}/\{y\} \cong F$ or $N'_{x,y}/\{x, y\} \cong F$ for some $F \in \mathcal{F}$. If $N'_{x,y}/y \cong F$ but $N'_{x,y}/x \not\cong F$, then interchange roles of x and y.

Conversely, suppose that M has a minor N isomorphic to a minimal matroid with respect to some $F \in \mathcal{F}$. Then $N'_{x,y}\{a\}$ or $N'_{x,y}/\{x\}$ or $N'_{x,y}/\{x, y\}$ or $N'_{x,y} \cong F$, for some $x, y \in E(M)$. We conclude that $M'_{x,y}$ has a minor isomorphic to F and hence it is not cographic.

In the following Lemma, we prove some basic properties of graphic minimal matroids.

Lemma 2.7. Let M be a graphic matroid. If M is minimal with respect to some $F \in \mathcal{F}$, then

(i) M has neither loops nor coloops;

(ii) every pair of parallel elements of M must contain either x or y;

(iii) x and y cannot be parallel in M;

(iv) if $M'_{x,y} \cong F^*_7$ or $M(K_{3,3})$ then M is simple, and there is no odd circuit of M containing both x and y, and also there is no even circuit of M containing precisely one of x and y;

(v) if $M'_{x,y}/\{x\} \cong F^*_7$ or $M(K_{3,3})$ then M is simple and there is no
3-circuit of M containing both x and y;

(vi) if $M'_{x,y}/\{x\} \cong F_7$ or $M(K_5)$, then M has exactly one pair of parallel elements and there is no 3-circuit of M containing both x and y;

(vii) if $M'_{x,y}/\{x,y\} \cong F$ then M is simple and there is no 3 or 4-circuit of M containing both x and y; and

(viii) $M'_{x,y}$ is not isomorphic to F_7 or $M(K_5)$.

Proof. The proof is straightforward.

Lemma 2.8. Let $F \in \mathcal{F}$ and let M be a binary matroid such that either $M_{x,y}/\{x\} \cong F$ or $M_{x,y}/\{x,y\} \cong F$ for some pair $x, y \in E(M)$. Then the following statements hold.

(i) M has neither loops nor coloops;

(ii) x and y can not be parallel in M;

(iii) if x_1 and x_2 are parallel elements of M, then one of them is either x or y;

(iv) if $M_{x,y}/\{x,y\} \cong F$, then M has at most one pair of parallel elements;

(v) if $M_{x,y}/\{x\} \cong M(K_{3,3})$ or $M_{x,y}/\{x,y\} \cong M(K_{3,3})$, then every odd circuit of M contains x or y; and

(vi) if $M_{x,y}/\{x\} \cong M(K_5)$ or $M_{x,y}/\{x,y\} \cong M(K_5)$, then every odd cocircuit of M contains x or y.

A matroid is said to be Eulerian if its ground set can be expressed as a union of circuits [16].

Lemma 2.9. [17] Suppose x and y are non adjacent edges of a graph G and $M = M(G)$. If $M_{x,y}/\{x,y\}$ is Eulerian, then either G is Eulerian or the end vertices of x and y are precisely the vertices of odd degree.

3 A Forbidden-Minor Characterization for the Class of Cographic Matroids which yield the Graphic Element-Splitting Matroids

In this section, we obtain the minimal cographic matroids corresponding to each of the four matroids $F_7, F_7^*, M(K_{3,3})$ and $M(K_5)$ and use them to give a proof of Theorem 1.6.
The minimal graphic matroids corresponding to the matroid F_7 and F_7^* are characterized by Shikare and Dalvi \cite{3} in the following Lemma 3.1 and Lemma 3.2

Lemma 3.1. Let M be a graphic matroid. Then M is minimal with respect to the matroid F_7 if and only if M is isomorphic to one of the cycle matroids $M(G_1)$, $M(G_2)$ or $M(G_3)$, where G_1, G_2 and G_3 are the graphs of figure 2.

![figure 2](image1)

Lemma 3.2. Let M be a graphic matroid. Then M is minimal with respect to the matroid F_7^* if and only if M is isomorphic the cycle matroid $M(G_4)$ or $M(G_5)$, where G_4 and G_5 are the graphs of figure 3.

![figure 3](image2)

In the following Lemma, the minimal matroids corresponding to the matroid $M(K_{3,3})$ are characterized.

Lemma 3.3. Let M be a graphic matroid. Then M is minimal with respect to the matroid $M(K_{3,3})$ if and only if M is isomorphic to $M(G_6)$, $M(G_7)$, $M(G_8)$, $M(G_9)$, or $M(G_{10})$, where G_6, G_7, G_8, G_9, G_{10} are the graphs of Figure 4.
Proof. We have $M'(G_6)_{x,y\setminus\{a\}/\{x\}} \cong M(K_{3,3})$, $M'(G_7)_{x,y\setminus\{a\}/\{x\}} \cong M(K_{3,3})$, $M'(G_8)_{x,y\setminus\{a\}/\{x\}} \cong M(K_{3,3})$, $M'(G_9)_{x,y\setminus\{a\}/\{x\}} \cong M(K_{3,3})$, $M'(G_{10})_{x,y} \cong M(K_{3,3})$. Therefore $M(G_6)$, $M(G_7)$, $M(G_8)$, $M(G_9)$, $M(G_{10})$ are minimal matroids with respect to the matroid $M(K_{3,3})$.

Conversely, suppose that M is a minimal matroid with respect to the matroid $M(K_{3,3})$. Then there exist elements x and y of M such that $M'_{x,y\setminus\{a\}/\{x\}} \cong M(K_{3,3})$ or $M'_{x,y\setminus\{a\}/\{x,y\}} \cong M(K_{3,3})$ or $M'_{x,y}/\{x\} \cong M(K_{3,3})$ or $M'_{x,y}/\{x,y\} \cong M(K_{3,3})$ and further, no two elements of M are in series.

Case (i) $M'_{x,y\setminus\{a\}/\{x\}} \cong M(K_{3,3})$.

By Lemmas 2.8, 2.9 and 2.7, $M_{x,y}/\{x\} \cong M(K_{3,3})$. Since $r(M_{x,y}/\{x\}) = r(M(K_{3,3})) = 5$. $M_{x,y}$ is a matroid of rank 6 and $|E(M)| = 10$. In the light of the Lemma 2.1(iii), the matroid M has rank 5 and its ground set has 10 elements. Let G be a connected graph corresponding to M. Then G has 6 vertices, 10 edges, and has no vertex of degree 2. Hence, by Lemma 2.7, G has minimum degree at least 3 since no two elements are in series. Thus the degree sequence of G is $(5,3,3,3,3,3,3)$ or $(4,4,3,3,3,3)$. By Harary [7], p 223, each simple connected graph with these degree sequences is isomorphic to one of the graphs of Figure 5 below.
By the nature of the circuits of $M(K_{3,3})$ or $M_{x,y}$ and by Lemma 2.7, it follows that G cannot have, (i) two or more edge disjoint triangles, (ii) a circuit of size 3 or 4 or 6 containing both x and y. Since each of the graphs (i), (ii) and (iii) of Figure 5 contains two or more edge disjoint triangles, we discard them. The graph (iv) of Figure 5, is isomorphic to the graph G_6 in the statement of the Lemma.

Suppose G is a multigraph. Then by Lemma 3.3 of [2], G is isomorphic to G_7 or G_8 of Figure 4.

Case (ii). $M_{x,y} \setminus \{a\}/\{x, y\} \cong M(K_{3,3})$.

By Lemma 2.1(i), $M_{x,y}/\{x, y\} \cong M(K_{3,3})$. As $r(M_{x,y}) = 7$, $r(M(K_{3,3})) = 5$. Hence $r(M) = 6$ and $|E(M)| = 11$. Let G be connected graph corresponding to M. Then G has 7 vertices, 11 edges and has minimum degree at least 3. Therefore the degree sequence of G is $(4,3,3,3,3,3,3)$. It follows from Lemma 2.7 that G cannot have (i) more than two edge disjoint triangles; (ii) a cycle of size other than 6 which contains both x and y; and (iii) a triangle and a 2-circuit which are edge disjoint.

Then, by case (ii) of Lemma 3.3 of [2], G is isomorphic to G_9 of Figure 4.

Case (iii). $M_{x,y}' \cong M(K_{3,3})$.

Since $r(M(K_{3,3})) = 5$ and $|E(M(K_{3,3}))| = 9$, $r(M) = 4$ and $|E(M)| = 8$. Therefore M cannot have $M(K_{3,3})$ and $M(K_5)$ as a minor. We conclude that M is cographic. Let G be a graph which corresponds to the matroid M. Then G has 5 vertices and 8 edges. As M is graphic and cographic, G is
planar. By Lemma 2.7 (iv), \(G \) is simple. Since \(M \) has no coloop and no two elements are in series, minimum degree in \(G \) is at least 3. There is only one non-isomorphic simple graph with 5 vertices and 8 edges [7], see Figure 6.

Thus, \(G \) is isomorphic to this graph, which is nothing but the graph \(G_{10} \) of Figure 4.

Case (iv). \(M'_{x,y}/\{x\} \cong M(K_{3,3}) \).

As in the above cases, considering the rank of \(M(K_{3,3}) \) we have \(r(M) = 5 \) and \(|E(M)| = 9 \). If \(M \) is not cographic then \(M \) has minor a isomorphic to \(M(K_{3,3}) \) or \(M(K_5) \). Suppose \(M \) has a minor isomorphic to \(M(K_{3,3}) \) and \(M'_{x,y}/\{x\} \cong M(K_{3,3}) \). Then \(M \cong M(K_{3,3}) \). Now \(x, y \in M \) and since \(M \) is isomorphic to \(M(K_{3,3}) \), \(x, y \) lie in a 4-circuit say \(C \) but then \(C - \{x\} \) is a triangle in \(M'_{x,y}/\{x\} \cong M(K_{3,3}) \), a contradiction to the fact that \(M'_{x,y}/\{x\} \) is bipartite and does not contain any odd circuit. Thus \(M \) does not contain \(M(K_{3,3}) \) as a minor.

If \(M \) has minor a isomorphic to \(M(K_5) \) then \(r(M) = 5 \), \(|E(M)| = 9 \), and \(|E(M(K_5))| = 10 \), so \(M \) does not contain \(M(K_5) \) as a minor. Hence \(M \) is cographic.

Let \(M = M(G) \) be graphic matroid. Then \(G \) has 6 vertices and 9 edges. Further, \(G \) is simple and planar. Also, minimum degree in \(G \) is at least 3. Thus \(G \) is isomorphic to the graph of

Figure 7

Figure 7 (see [4]). If a triangle of \(G \) contains neither \(x \) nor \(y \) then it is preserved in \(M'_{x,y}/\{x\} \), a contradiction. Hence \(x \) belongs to a triangle of \(G \). This gives rise to a 4-circuit in \(M'_{x,y} \) containing \(x \) and \(a \). Hence, we get a 3-circuit in \(M'_{x,y}/\{x\} \), a contradiction. Thus \(M \) is not isomorphic to the graph in Figure 7.
Case (v). $M'_{x,y}/\{x,y\} \cong M(K_{3,3})$.

Then $r(M) = 6$ and $|E(M)| = 10$. If M is not cographic then, M has minor isomorphic to $M(K_{3,3})$ or $M(K_5)$.

Suppose M has a minor isomorphic to $M(K_{3,3})$ then, since M is graphic, M must be the graph in Figure 8 (see [7]).

![Figure 8](image)

Any two edges in the graph of Figure 8 are in a 4-cycle or in a 5-cycle so are x and y also. Then these circuits (cycles in G) will be preserved in $M'_{x,y}$ and hence a 2-circuit or a triangle is formed in $M'_{x,y}/\{x,y\} \cong M(K_{3,3})$, a contradiction to the fact that $M'_{x,y}/\{x,y\} \cong M(K_{3,3})$ is a simple bipartite matroid. Thus M has no minor isomorphic to $M(K_{3,3})$.

Suppose that M has a minor isomorphic to $M(K_5)$ but then $|E(M)| = 10$, hence $M = M(K_5)$. Consequently $r(M) = 4$ and this is a contradiction to the fact that $r(M) = 6$. Thus M does not have a minor isomorphic to $M(K_5)$.

Thus M is cographic. We conclude that M is graphic as well as cographic. Suppose G is a graph corresponding to M, then G has 7 vertices and 10 edges. This implies that G has at least one vertex of degree 2, which is a contradiction to the fact that M has no 2-cocircuit. Therefore, the situation $M'_{x,y}/\{x,y\} \cong M(K_{3,3})$ does not occur.

Finally, we characterize minimal matroids corresponding to the matroid $M(K_5)$ in the following Lemma.

Lemma 3.4. Let M be a cographic matroid. Then M is minimal with respect to the matroid $M(K_5)$ if and only if M is isomorphic to one of the seven matroids $M(G_{11})$, $M(G_{12})$, $M(G_{13})$, $M(G_{14})$, $M(G_{15})$, $M(G_{16})$ and $M(G_{17})$, where G_{11}, G_{12}, G_{13}, G_{14}, G_{15}, G_{16} and G_{17} are the graphs of Figure 9.
Proof. We have $M'(G_{11})_{x,y} \setminus \{a\}/\{x\} \cong M(K_5), \ M'(G_{12})_{x,y} \setminus \{a\}/\{x,y\} \cong M(K_5), \ M'(G_{13})_{x,y} \setminus \{a\}/\{x\} \cong M(K_5), \ M'(G_{16})_{x,y}/\{x\} \cong M(K_5)$, $M'(G_{14})_{x,y} \setminus \{a\}/\{x,y\} \cong M(K_5), \ M'(G_{15})_{x,y} \setminus \{a\}/\{x,y\} \cong M(K_5), \ M'(G_{17})_{x,y}/\{x,y\} \cong M(K_5)$. Therefore $M(G_{11}), \ M(G_{12}), \ M(G_{13}), \ M(G_{14}), \ M(G_{15}), \ M(G_{16})$ and $M(G_{17})$ are minimal matroids with respect to the matroid $M(K_5)$.

Conversely, suppose that M is a minimal matroid with respect to the matroid $M(K_5)$. Then there exist elements x and y of M such that $M'_{x,y} \setminus \{a\}/\{x\} \cong M(K_5)$ or $M'_{x,y} \setminus \{a\}/\{x,y\} \cong M(K_5)$ or $M'_{x,y} \cong M(K_5)$ or $M'_{x,y}/\{x\} \cong M(K_5)$ or $M'_{x,y}/\{x,y\} \cong M(K_5)$ and also, M does not contain a 2-cocircuit.

Case (i). $M'_{x,y} \setminus \{a\}/\{x\} \cong M(K_5)$.

By Lemma 2.1(i), $M(G)_{x,y}/\{x\} \cong M(K_5)$. Hence, by Lemma 3.4 Chapter 4 of [?], M is isomorphic to the cycle matroid $M(G_{11})$, where G_{11} is the graph of Figure 9.

Case (ii). $M'_{x,y} \setminus \{a\}/\{x,y\} \cong M(K_5)$.

By Lemma 2.1(i), $M(G)_{x,y}/\{x,y\} \cong M(K_5)$. Then $r(M(K_5)) = 4$, $r(M_{x,y}) = 6$ and $|E(M)| = 12$. Let G be a connected graph corresponding to M. Then G has 6 vertices, 12 edges and has minimum degree at least 3. Suppose that G is simple. By Lemma 3.4 of [2], there are 5 non isomorphic simple graphs.
each with 6 vertices and 12 edges, out of which, two graphs are discarded in case (ii) of Lemma 3.4 of [2]. So, only three graphs are remaining and these graphs are not planar. These graphs are given in Figure 10.

![Figure 10](image)

In graph (i) of Figure 10, not every odd cocircuit of M contains x or y, a contradiction to the fact that if $M(G)_{x,y}/\{x, y\} \cong M(K_5)$, then every odd cocircuit contain x or y otherwise if both of them are absent then that odd cocircuit of M is the odd cocircuit in $M(G)_{x,y}/\{x, y\} \cong M(K_5)$. Consequently $M(G)_{x,y}/\{x, y\}(\cong M(K_5))$ becomes non Eulerian. In each of the graphs (ii) and (iii) of Figure 10, x and y together belong to a 3-cycle or a 4-cycle, a contradiction to Lemma 2.8

Suppose that G is not simple. Then, by Lemma 2.8 (iv), G has exactly one pair of parallel edges. Then G can be obtained from a simple graph on 6 vertices and 11 edges by adding a parallel edge.

There are 8 non isomorphic connected simple graphs, each with 6 vertices and 11 edges ([7] pp. 223) as shown in Figure 11. It follows that by Lemma
Lemma 2.8 and Lemma 2.9 that G cannot be obtained from the graphs (ii), (iii) and (vii) of Figure 11. Suppose that G is obtained from the graphs (i) or (iv). Then G is isomorphic to one of the four graphs of Figure 12. By Lemma 2.8, G is not isomorphic to each of the two graphs (i) and (ii) of Figure 12. Hence G is isomorphic to graphs (iii) and (iv) of Figure 12, which are nothing but the graphs G_{12} and G_{13} of Figure 9.

Figure 12

By Lemma 2.8, G cannot be obtained from graph (v) of Figure 11. Suppose that G is obtained from graph (viii) of Figure 11. Then G is isomorphic to one of the two graphs of Figure 13. By Lemma 2.8 (iv) and Lemma 2.9, G is not isomorphic to graph (i) of Figure 13. By Lemma 2.8 (ii) and (iv) and the fact that $M(K_5)$ does not contain odd cocircuit, G cannot be isomorphic to the graph (ii) of Figure 13.

Figure 13

Suppose that G is obtained from graph (vi) of Figure 11. Then G is isomorphic to one of the two graphs G_{14} and G_{15} of Figure 9.
Case (iii). \(M'_{x,y} \cong M(K_5) \).

Then a contradiction follows from Lemma 2.7 (viii).

Case (iv). \(M'_{x,y}/\{x\} \cong M(K_5) \).

Subcase (i). Suppose that \(M \) is not cographic.

Let \(G \) be a graph that corresponds to the matroid \(M \). Since \(r(M(K_5)) = 4 \), \(r(M'_{x,y}) = 5 \). Further, \(r(M) = 4 \) and \(|E(M)| = 10 \). Therefore, \(G \) has 5 vertices and 10 edges. \(M \) has no minor isomorphic to \(M(K_{3,3}) \) as \(K_{3,3} \) has 6 vertices. Suppose that \(M \) has a minor isomorphic to \(M(K_5) \) then \(M \cong M(K_5) \). By Lemma 2.7, \(x, y \) can not both be in a triangle. Hence \(x \) and \(y \) are not adjacent. Let \(C^* \) ba cocircuit of \(M \) containing \(y \) but not \(x \) such that \(|C^*| = 4 \), since we can always find a set of 4 edges containing \(y \) incident to some vertex in \(K_5 \), that set of edges is a cocircuit of \(M(K_5) \). Then \(C^* \cup \{a\} \) becomes a cocircuit of \(M'_{x,y}/\{x\} \cong M(K_5) \), a contradiction to the fact that \(M(K_5) \) is Eulerian and \(|C^* \cup \{a\}| = 5 \). Thus \(M \) is cographic. Since \(M \) is graphic and cographic, \(G \) is planar. By Harary [7], there is no simple planar graph with 5 vertices and 10 edges. Hence \(G \) must be non-simple. Then, by Lemma 2.7 (vi), \(G \) has exactly one pair of parallel edges. \(G \) can be obtained from a simple planar graph with 5 vertices and 9 edges by adding an edge in parallel. By Harary [7], every simple planar graph with 5 vertices and 9 edges is isomorphic to graph (i) of Figure 14. Therefore, \(G \) is isomorphic to the graph (ii) or (iii) of Figure 14. In graph (iii), there are two edge-disjoint 3-cutsets (i.e. 3-cocircuits in \(M(G) \)). Hence, one of them is preserved in \(M'_{x,y}/\{x\} \), and this is a contradiction. Thus, \(G \) is isomorphic to graph (ii) of Figure 16, which is nothing but the graph \(G_{16} \) of Figure 9.

![Figure 14](image)

Case (v). \(M'_{x,y}/\{x, y\} \cong M(K_5) \).

Subcase (i). Suppose that \(M \) is not cographic.

Let \(G \) be a graph which corresponds to the matroid \(M \). Since \(r(M(K_5)) = 4 \), \(r(M'_{x,y}) = 5 \). Further, \(r(M) = 4 \) and \(|E(M)| = 10 \). Therefore, \(G \) has 5 vertices and 10 edges. \(M \) has no minor isomorphic to \(M(K_{3,3}) \) as \(K_{3,3} \) has 6 vertices. Suppose that \(M \) has a minor isomorphic to \(M(K_5) \) then \(M \cong M(K_5) \). By Lemma 2.7, \(x, y \) can not both be in a triangle. Hence \(x \) and \(y \) are not adjacent. Let \(C^* \) ba cocircuit of \(M \) containing \(y \) but not \(x \) such that \(|C^*| = 4 \), since we can always find a set of 4 edges containing \(y \) incident to some vertex in \(K_5 \), that set of edges is a cocircuit of \(M(K_5) \). Then \(C^* \cup \{a\} \) becomes a cocircuit of \(M'_{x,y}/\{x\} \cong M(K_5) \), a contradiction to the fact that \(M(K_5) \) is Eulerian and \(|C^* \cup \{a\}| = 5 \). Thus \(M \) is cographic. Since \(M \) is graphic and cographic, \(G \) is planar. By Harary [7], there is no simple planar graph with 5 vertices and 10 edges. Hence \(G \) must be non-simple. Then, by Lemma 2.7 (vi), \(G \) has exactly one pair of parallel edges. \(G \) can be obtained from a simple planar graph with 5 vertices and 9 edges by adding an edge in parallel. By Harary [7], every simple planar graph with 5 vertices and 9 edges is isomorphic to graph (i) of Figure 14. Therefore, \(G \) is isomorphic to the graph (ii) or (iii) of Figure 14. In graph (iii), there are two edge-disjoint 3-cutsets (i.e. 3-cocircuits in \(M(G) \)). Hence, one of them is preserved in \(M'_{x,y}/\{x\} \), and this is a contradiction. Thus, \(G \) is isomorphic to graph (ii) of Figure 16, which is nothing but the graph \(G_{16} \) of Figure 9.
4. $r(M_{x,y}') = 6$. So, $r(M) = 5$. Further, $|E(M)| = 11$.

Suppose that M has a minor isomorphic to $M(K_{3,3})$. Let G be the connected graph corresponding to M. Then G is the graph with 6 vertices and 11 edges. By Lemma 2.7 (vii), G has to be simple. Consequently, G is isomorphic to one of the following two graphs in Figure 15 (see Harary [7]).

![Figure 15](image)

Figure 15

In the graph (i) of Figure 15, any two edges are either in a 3-cycle or a 4-cycle. The elements x and y cannot be in a 3-circuit or a 4-circuit because such circuit becomes a loop or a 2-circuit in $M_{x,y}'/{x, y} \cong M(K_5)$. This is a contradiction to the fact that $M(K_5)$ is simple.

In the graph (ii) of Figure 15, $M_{x,y}'/{x, y} \cong M(K_5)$ for the edges x, y shown in the graph (ii) of Figure 15. Hence the graph (ii) which is G_{17} of Figure 9, is a minimal graph with respect to $M(K_5)$. Suppose that M has a minor isomorphic to $M(K_5)$. Since $r(M(K_5)) = 4$, $r(M_{x,y}') = 6$. So, $r(M) = 5$. Further, $|E(M)| = 11$. Let G be a graph corresponding to the matroid M. Thus G is the graph with 6 vertices and 11 edges with $M(K_5)$ as a minor. In fact G is the graph shown in Figure 16.

![Figure 16](image)

Figure 16

Observe that the graph of Figure 16, contains a vertex of degree 2 i.e. there is a 2-cocircuit in M. This is a contradiction to the fact that M does not have any pair of elements in series (i.e. 2-cocircuit). Hence M has no minor isomorphic to $M(K_5)$.

Thus M is cographic. Consequently, G is the planar graph with 6 vertices and 11 edges and has minimum degree at least 3. By Lemma 2.7 (vii), G is simple.
There are in all 9 non-isomorphic simple graphs with 6 vertices and 11 edges (see [7]). Out of which, four graphs are non-planar and two graphs contain a degree two vertex, remaining 3 graphs are shown in Figure 17. Here, G cannot have a 3 or a 4-cycle containing both x and y. Also, each

![Figure 17](image)

3-cocycle and a 5-cocycle of G must contain x or y. These conditions are not satisfied for the graphs (i) and (iii) for any pair of edges x, y. The choice for (x, y) in graph (ii) is (k, l). But then $M_{x,y}/\{x, y\}$ is not eulerian. Hence the cycle matroids of the graphs in Figure 17 are not minimal with respect to $M(K_5)$.

Now, we use Lemmas 3.1, 3.2, 3.3, and 3.4 to prove Theorem 1.6.

Proof of Theorem 1.6 Let M be a graphic matroid. On combining Corollary 2.6 and Lemmas 3.1, 3.2, 3.3, and 3.4 it follows that $M_{x,y}$ is cographic for every pair $\{x, y\}$ of elements of M if and only if M has no minor isomorphic to any of the matroids $M(G_i)$, $i = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17$, where the graphs G_i are shown in the statements of the Lemmas 3.1, 3.2, 3.3, and 3.4. However, one can check that each of the matroids $M(G_i)$, $i = 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17$ has matroid $M(G_5)$ of Figure 5 as a minor. Hence the proof.

References

[1] Azadi G., *Generalized splitting operation for binary matroids and related results*, Ph.D. Thesis, University of Pune (2001).

[2] Borse Y. M., Shikare M. M. and Dalvi Kiran, Excluded-Minor characterization for the class of cographic splitting matroids, *Ars Combin.* 105(2014), 219-237.
[3] Dalvi K.V., Borse Y.M., Shikare M.M., Forbidden-minors for the class of graphic element-splitting matroids. *Discussiones Mathematicae Graph Theory*, 29 (2009), 629-644.

[4] Dalvi K.V., Borse Y.M., Shikare M.M., Forbidden-minors for the class of cographic element-splitting matroids. *Discussiones Mathematicae Graph Theory*, 31(2011), 601-606.

[5] Fleischner H., *Eulerian Graphs and Related Topics*, Part 1, Vol 1, North Holland, Amsterdam (1990).

[6] Habib Azanchiler, *Some new operations on matroids and related results*, Ph. D. Thesis, University of Pune (2005).

[7] Harary F., *Graph Theory*, Addison-Wesley, Reading, 1969.

[8] Naiyer P., *The Splitting operation for binary matroids and excluded minors for certain classes of splitting Matroids*, Ph.D. Thesis, University of Pune (2011).

[9] Oxley G., *Matroid Theory*, Oxford University Press, Oxford, 1992.

[10] Raghunathan T. T., Shikare M. M. and Waphare B. N., Splitting in a binary matroid, *Discrete Math.* 184 (1998), 267-271.

[11] Shikare M. M. and Waphare B. N., Excluded-Minors for the class of graphic splitting matroids, *Ars Combinatoria* 97 (2010), 111.

[12] Shikare M. M., The Element Splitting Operation for Graphs, Binary Matroids and Its Applications, *The Mathematics Student*, 80(2010), 85-90.

[13] Slater P. J., A Classification of 4-connected graphs, *J. Combin. Theory*, 17 (1974), 282-298.

[14] Tyler M., A minor-based characterization of matroid 3-connectivity, *Advances in Applied Mathematics* 50 (2013), 132-141.

[15] Tutte W. T., A theory of 3-connected graphs, *Indag. Math.* 23 (1961), 441-455.

[16] Welsh D. J. A., *Matroid Theory*, Academic Press, London, 1976.