Infrared observations of the recurrent nova T Pyxidis: ancient dust basks in the warm glow of the 2011 outburst

A. Evans, R. D. Gehrz, L. A. Helton, S. Starrfield, M. F. Bode, J. P. Osborne, D. P. K. Banerjee, J.-U. Ness, F. M. Walter, C. E. Woodward, E. Kuulkers, S. P. S. Eyres, J. M. Oliveira, N. M. Ashok, J. Krautter, T. J. O’Brien, K. L. Page and M. T. Rushton

1 Astrophysics Group, Keele University, Keele, Staffordshire ST5 5BG
2 Minnesota Institute for Astrophysics, School of Physics and Astronomy, University of Minnesota, Minneapolis, 116 Church Street SE, MN 55455, USA
3 Stratospheric Observatory for Infrared Astronomy, NASA Ames Research Center, MS 211-3, Moffett Field, CA 94035, USA
4 School of Earth and Space Exploration, Arizona State University, PO Box 871404, Tempe, AZ 85287-1404, USA
5 Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Birkenhead CH41 1LD
6 Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH
7 Astronomy and Astrophysics Division, Physical Research Laboratory, Navrangapura, Ahmedabad 380009, Gujarat, India
8 Science Operations Department, European Space Astronomy Centre, ESAC, PO Box 78, E-28691 Villanueva de la Cañada, Madrid, Spain
9 Department of Physics and Astronomy, SUNY Stony Brook, Stony Brook, NY 11794-3800, USA
10 Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE
11 Landessternwarte, Zentrum für Astronomie der Universität Heidelberg, Koenigstuhl, D-69117 Heidelberg, Germany
12 Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL

Received 2012 May 20; in original form 2012 April 16

ABSTRACT

We present Spitzer Space Telescope and Herschel Space Observatory infrared observations of the recurrent nova T Pyx during its 2011 eruption, complemented by ground-based optical-infrared photometry. We find that the eruption has heated dust in the pre-existing nebulosity associated with T Pyx. This is most likely interstellar dust swept up by T Pyx – either during previous eruptions or by a wind – rather than the accumulation of dust produced during eruptions.

Key words: circumstellar matter – stars: individual: T Pyx – novae, cataclysmic variables – ISM: general – infrared: stars.

1 INTRODUCTION

Nova eruptions occur as a result of a thermonuclear runaway (TNR) on the surface of a white dwarf (WD) in a semi-detached binary system. In classical novae (CNe) the secondary star is normally a red dwarf. Mass is transferred from the secondary through the inner Lagrangian point on to the surface of the WD via an accretion disc. The degenerate layer of accreted material is compressed and heated, and a TNR occurs (Starrfield, Iliadis & Hix 2008). Consequently, \(\sim 10^{-4} M_\odot \) of material, enriched in CNO (and other metals), is ejected at a few hundred to a few thousand km s\(^{-1}\) (Gehrz et al. 1998; Bode & Evans 2008) in a CN eruption. Once the eruption has subsided the mass transfer resumes, and in time (\(\sim 10^3-10^4 \) years) another nova eruption occurs. A CN system therefore undergoes many eruptions during its lifetime: nova eruptions recur.

Recurrent novae (RNe) undergo the same evolution; however, eruptions recur on less than a human time-scale, typically 10–20 years (e.g. Evans et al. 2008 for a recent review). They seem to be divided into three subclasses (Anupama 2008). These are the ‘U Sco’ class (with short orbital periods and spectral evolution similar to that of the ‘He/N’ class of CNe; see Williams 1992), the ‘RS Oph’ class (with long orbital periods) and the ‘T Pyx’ class (also with short orbital periods and spectral evolution that evolves from ‘He/N’ to ‘Fe II’). The T Pyx class resembles the CNe in terms of the nature of the binary system and the spectral evolution during eruption.

We present here infrared (IR) space-based and ground-based IR spectrophotometry, as well as optical broad-band photometry, of the RN T Pyx following its 2011 eruption.

2 T Pyx

2.1 The system

T Pyx has undergone recorded nova eruptions in 1890, 1902, 1920, 1944 and 1966; in fact, it was the first nova identified as a recurrent. The T Pyx binary has an orbital period of 1.83 h (Uthas, Knigge & Steeghs 2010). The mass ratio is determined to be 0.20 \(\pm \) 0.03 by Uthas et al. (2010), who estimate the WD and cool companion mass...
to be 0.7 and 0.14 M\sol, respectively. The former is rather low for either a RN or a CN and if the WD mass is a more plausible \(\geq 1\) M\sol, the secondary mass has to be \(\geq 0.2\) M\sol; in the discussion below we assume 1.2 M\sol for the WD mass in T Pyx (Anupama 2008; Schaefer, Pagnotta & Shara 2010). Uthas et al. (2010) determine that the inclination of the binary is \(\sim 10^\circ\), i.e. nearly face-on. Possible evolutionary scenarios for T Pyx have been discussed by Schaefer et al. (2010) and Uthas et al. (2010). In T Pyx, as in a CN, the nova explosion occurs on the surface of the WD following a TNR in a layer of degenerate material accreted from the secondary.

T Pyx is unusual amongst RNe in that it lies at the centre of a nova-like shell with diameter \(\sim 15\) arcsec (Dürbeck & Seitter 1979, see also Schaefer et al. 2010). A detailed study of knots in the nebula (Schaefer et al. 2010) has revealed complex interactions between material ejected in earlier eruptions. Schaefer et al. find that there has been no significant deceleration of the knots and, based on the angular expansion rate of the knots, deduce that they were ejected by a CN-type eruption close to the year 1866. They find knots ejected in 1866 that have ‘turned on’ since 1995, and suggest that these knots are powered by shocks caused by collisions with fast ejecta from more recent RN eruptions.

Selvelli et al. (2008) estimated the distance of T Pyx as 3500 ± 350 pc. Schaefer et al. (2010) summarize several estimates of the interstellar reddening and conclude that \(E(B - V) = 0.25 \pm 0.02\). On the basis of observations carried out in the aftermath of the 2011 eruption (see below), Shore et al. (2011) propose a distance of \(\geq 4.5\) kpc and reddening \(E(B - V) = 0.50 \pm 0.10\). We shall use \(D = 4\) kpc and \(E(B - V) = 0.4\) here, although the precise values do not affect our main conclusions (e.g. reddening has a negligible effect on the IR wavelengths of interest here).

2.2 The 2011 eruption

T Pyx was discovered to be in outburst on 2011 April 14.29 UT (MJD 55665.29) by M. Linnolt (see Waagan 2011). The 2011 eruption, almost 50 years after its last, was well overdue; this delay led Schaefer et al. (2010) to speculate that T Pyx was entering ‘hibernation’, and that there would be no further eruptions for \(\sim 10^6\) years. Possible reasons for this inter-outburst behaviour are discussed by Schaefer et al. (2011), who also provide a comprehensive discussion of the early visual light curve.

Spectroscopic observations by Shore et al. (2011) revealed expansion velocities \(\sim 2500\) km s\(^{-1}\) during the early stages of the eruption. They deduce an ejected mass of \(10^{-5}\) \(f\) \(M\sol\), where \(f\) is the filling factor for the ejected material. VLTI and Mount Wilson CHARA IR observations (Chesneau et al. 2011) provide evidence for a bipolar ejection that is essentially face-on, consistent with the low inclination of the system (Uthas et al. 2010).

Swift (Gehrels 2004) observations started some 7.5 h after the discovery, and revealed a soft X-ray source (Kuulkers et al. 2011a), but between days 12 and 109 (which covers the IR data reported here) the X-ray source was very weak (Osborne et al. 2011). Subsequently (from day 142), the X-ray emission was bright and variable (Kuulkers et al. 2011b).

The visual (V-band) light curve during the 2011 eruption is shown in Fig. 1. The Ultraviolet/Optical Telescope (UVOT) instrument on Swift showed that the UV flux at 2246 Å peaked some 25 d later than the visual flux (Osborne et al. 2011).

3 OBSERVATIONS

Broad-band photometric IR observations were carried out at the Infrared Telescope on Mount Abu (Deshpande 1995; Anandarao 2000). Near-IR photometry of T Pyx in the \(JHK\) bands was undertaken with the 1.2-m telescope using the 256 x 256 HgCdTe NICMOS3 array of the Near-Infrared Imager/Spectrometer (see Banerjee & Ashok 2011). Detailed results of the near-IR studies of T Pyx from Mt Abu will be presented elsewhere.

3.1 Mt Abu

Near-IR photometry of T Pyx in the \(JHK\) bands was carried out with the Mt Abu 1.2-m telescope using the 256 x 256 HgCdTe NICMOS3 array of the Near-Infrared Imager/Spectrometer (see Banerjee & Ashok 2011). Observations of both T Pyx and a comparison star (SAO 177754: \(J = 7.082 \pm 0.029, H = 7.070 \pm 0.061\) and \(K = 6.963 \pm 0.018\)) were made at five dithered positions in each of the \(J, H\) and \(K\) bands. The dithered images were combined to produce a median sky frame, with dark counts included, which was subsequently subtracted from the object frames.

Aperture photometry of the sky-subtracted frames was done using IRAF to yield the \(JHK\) magnitudes given in Table 1; the magnitudes were converted to \(J\) using standard zero magnitude fluxes in Cox (2000). Detailed results of the near-IR studies of T Pyx from Mt Abu will be presented elsewhere.

3.2 Spitzer Space Telescope

T Pyx was observed as a target of opportunity target using a Director’s Discretionary Time allocation (PID: 70260) with the Infrared Array Camera (IRAC; Fazio et al. 2004) on the Spitzer Space Telescope (Werner et al. 2004) at wavelengths 3.6 and 4.5 \(\mu\)m, on two occasions as detailed in Table 1. The observations were carried out in full array mode, and consisted of nine-point random, medium-scale dither patterns. The frame time was 0.4 s and the on-source integration time was 3.6 s per pointing. The data were reduced using MOPEX (MOPEX 2011).

3.3 Herschel Space Observatory

T Pyx was observed with the Photodetector Array Camera and Spectrometer (PACS) instrument (Poglitsch et al. 2010) on the
IR observations of T Pyx

Table 1. Optical and IR fluxes for T Pyx. Ground-based data are given both in magnitudes and, immediately beneath, in mJy; IRAC and PACS data are in mJy. All mJy values are in bold font.

UT date	Optical	IRAC (mJy)	PACS (mJy)
YYYY-MM-DD.DD	JHK	3.6 µm	4.5 µm
	Facility	70 µm	100 µm
MJD	Ground-based IR		
t (d)			
2011-05-09.64	55690.64	25.32	64.80
	S	7.37(1)	1.68(1)
2011-05-10.50	55691.50	28.21	76.00
	S	7.87(1)	1.90(1)
2011-06-04.51	55716.51	26.21	69.40
	A	7.08(1)	1.78(1)
2011-07-20.84	55762.84	26.24	73.55
	I	7.10(1)	1.79(1)
2011-07-20.96	55763.96	26.24	76.50

We note that T Pyx is unresolved in both IRAC and PACS images. All the data are summarized in Table 1.

4 RESULTS AND DISCUSSION

For wavelengths ≲2.2 µm the spectral energy distribution (SED) of T Pyx resembles a blackbody with temperature 9000 K. There is a clear excess at long wavelengths (see Fig. 3) that appears in the Herschel Space Observatory PACS data. While there are several fine structure lines that may contribute to the broad-band PACS fluxes, our PACS spectroscopic observations show that emission lines cannot have contributed to the observed PACS fluxes.

We show below that the far-IR SED is consistent with emission at ~45 K and we conclude that the far-IR emission we see is due to cool dust. Newly formed dust would have a temperature of several hundreds of degrees K so soon after the eruption (e.g. Evans et al. 2005), and would be evident in near-IR (≲5 µm) spectra obtained throughout the early phase of the eruption (Woodward et al., in preparation). Furthermore, moving at ~2500 km s⁻¹, the 2011 ejecta would not reach a distance from the central star commensurate with the low dust temperature for >100 years after outburst. This rules out the formation of the cool dust in the material ejected in the 2011 eruption.

Figure 3. SED of T Pyx; data are dereddened by E(B-V) = 0.4. The solid and broken black curves are dusty fits, with Sil and AmC grains, respectively, to the BVRI, JHK and PACS data for MJD 55691.5 (2011 May 10.53 UT; filled circles). The other curves are 9000-K blackbody fits to BVRI and IRAC data for MJD 55690.5 (2011 May 9.52; triangles) and MJD 55716.96 (2011 June 4.96 UT; squares). See text for details.
The visual light curves of RNe tend to be replicated from outburst to outburst (Schaefer 2010); T Pyx is no exception, and there is no evidence for extinction events in the light curve that would be associated with dust formation during the eruptions of T Pyx. The lack of dust formation is very likely in the case of RNe like RS Oph (in which the ejected material runs into and shocks the stellar wind; Evans et al. 2007a). However, we take a more cautious approach in the case of T Pyx, particularly as the T Pyx class of RNe resembles CNe, many of which are known dust producers. We therefore do not rule out the possibility that dust might have formed in the ejecta of previous RN eruptions (even if it did not do so in the 2011 eruption).

We explore the origin of the dust evident in emission at $\lambda \gtrsim 30\,\mu$m (Fig. 3) in terms of (i) dust ejected in previous T Pyx eruptions and (ii) interstellar dust swept up by ejecta, or by winds originating in the T Pyx system (e.g. Knigge, King & Patterson 2000). We consider two cases: (a) amorphous carbon (AmC) grains of radius $a = 0.2\,\mu$m, such as condense in CN winds (see e.g. Evans et al. 1997, 2005; Gehrz et al. 1998; Evans & Rawlings 2008), and (b) 0.1\,μm silicate (Sil) grains. In case (a) the grains represent dust formed in previous eruptions and accumulated in the environment of T Pyx, while case (b) represents swept-up interstellar dust.

We have modelled the SED using the DUSTY code (Ivezić & Elitzur 1995), using a 9000-K blackbody at the Eddington luminosity for a 1.2\,M_\odot WD (Schaefer et al. 2010) as the input source (see above); we note that the X-ray emission at this time was weak (Osborne et al. 2011) and we are therefore justified in not including any other sources (especially hot sources) of dust heating in our modelling. We assume a geometrically thin dust shell and take optical constants for Sil grains from Draine & Lee (1984) and from Hanner (1988) for AmC.

We find that, in both AmC and Sil cases the dust temperature at the inner boundary of the dust shell is $45\pm 5\,K$, significantly higher than that of dust in the interstellar medium ($\gtrsim 20\,K$; Cox 2000); we conclude therefore that the dust is indeed associated with T Pyx. We further find that the SED is well fitted by an optically thin dust shell (optical depth $\tau_\nu \simeq 1.0(\pm 0.2) \times 10^{-4}$ at V for AmC and $\tau_\nu \simeq 2.2(\pm 0.3) \times 10^{-4}$ for Sil). The dust mass is $\sim 8.3 \times 10^{-5}\,M_\odot$ (AmC) or $\sim 2.1 \times 10^{-5}\,M_\odot$ (Sil); see Fig. 3 and Table 2 for other parameters. For a thin shell with inner radius r_1 the dust mass scales as $r_1^2\tau$, and the value of r_1 is fixed by the assumed luminosity of the central source, the dust temperature at the inner boundary and the grain material. The main source of uncertainty is in τ, and so the uncertainty in the dust mass δM_{dust} is given by $\delta M_{\text{dust}} \simeq \delta \tau / \tau$. Table 2 summarizes the best-fitting DUSTY model parameters.

While the optical depth and temperature of the dust shell are reasonably well constrained by the SED, the data are inadequate to provide any information about grain size or composition. However, the deduced angular diameter θ of the dust shell is, for the Sil case, ~ 33 arcsec, comparable with the dimensions of the optical nebula associated with T Pyx (and less than the aperture used to measure the Herschel fluxes; see above). The corresponding value for AmC is substantially greater than this, ~ 78 arcsec, and significantly greater than the dimensions of the nebula; we restrict the remainder of the discussion to the Sil case.

We should inject a cautionary note in that the inner radius of the dust shell as deduced from the DUSTY modelling is $r_1 \simeq 1.0 \times 10^{16}$ m or ~ 390 light days. In view of the fact that T Pyx is highly variable, light-travel times are likely to be important (see also Fig. 4; Bode & Evans 1979) but these are not built into DUSTY. It can be shown that the angular diameter of the heated region as seen by an infinitely distant observer, at $t = 26.24$ d (the time of the PACS observation) and for the above r_1, is

$$\theta = \frac{2ct}{D} \sqrt{\left(\frac{2r_1}{ct} - 1\right)} \simeq 12.2\,\text{arcsec;}$$

this is somewhat less than the ‘full’ angular diameter of the dust shell (~ 33 arcsec) and of the optical nebula (~ 15 arcsec).

Also, if the (geometrically thin) dust shell is spherically symmetric, it can be shown that only a fraction $ct/2r_1$ of the dust shell is perceived by the observer to be illuminated (i.e. heated); at $t = 26.24$ d, this fraction is 3.4 per cent for Sil grains. DUSTY models of the cool dust emission yield a Sil dust mass of $2.1 \times 10^{-5}\,M_\odot$ (Table 2); however, only 3.4 per cent of the total dust mass is actually perceived to be illuminated at this epoch. Thus, a lower limit to the Sil total dust mass can be determined simply by scaling. We estimate that there is actually $\sim 6.2 \times 10^{-4}\,M_\odot$ of silicate dust present.

We can definitely rule out dust formation in the 2011 ejecta of T Pyx because there is no near-IR evidence. In addition, the ‘scaled mass’ of dust far exceeds that produced in a nova eruption. Indeed, if confined to a circumstellar shell of radius $\sim 5.7 \times 10^{12}$ m (the distance that ejecta moving at 2.50 km s$^{-1}$ would travel in 26.24 d), it would have resulted in substantial extinction in the optical, and the corresponding ejected mass (assuming a gas-to-dust ratio of ~ 100) would be very large. We conclude that the cool dust we see in the environment of T Pyx is either (a) condensed dust accumulated from earlier eruptions or (b) interstellar dust that has been swept up by material ejected by T Pyx in previous eruptions or by a wind from the underlying binary. If the ejected mass determined by Shore et al. (2011), $10^{-5}\,f\,M_\odot$, is typical of previous eruptions, the dust-to-gas ratio is unfeasibly large. If the dust we see is the dust condensed

![Figure 4. Geometry of IR echo. Star at O ‘switches on’ at time $t = 0$ and illuminates the dust shell (shaded); the locus of constant light travel time at time t after eruption is parabola (dotted line) with focus at O and semi-latus rectum $OS = ct/2$. From the point of view of a distant observer, only the hatched area is perceived to be illuminated; the observed diameter is labelled by θ.](https://academic.oup.com/mnrasl/article-abstract/424/1/L69/983004/4?highres=1)
in previous eruptions it must be the accumulation of at least ~60 eruptions (as f ≤ 1, and not all eruptions will have produced dust).

The mass of interstellar dust contained in a sphere having the angular diameter of the dusty T Pyx nebula (~33 arcsec), assuming 10^{-6} 0.1 \mu m silicate grains m^{-3} (Allen 1973), is expected to be \sim 3.1 \times 10^{-5} M_{\odot} (the corresponding mass in the Herschel aperture is \sim 9.2 \times 10^{-5} M_{\odot}). This is of the same order as the dust mass we detect. The simplest interpretation therefore is that we are seeing the result of interstellar dust swept up by winds from T Pyx. As the dust shell will continue to be heated by the 2011 eruption for some time (>2r_{lc} ∼ 2 years), there is ample time to plan further far-IR observations to place tighter constraints on the shell parameters deduced here.

5 CONCLUSIONS

We have presented IR observations of the RN T Pyx following its 2011 outburst. We see a cool, weak IR excess, which we argue is due to the heating of dust in the environment of T Pyx that was present before the 2011 eruption. We attribute this to the interstellar dust that has been swept up by the material ejected by the T Pyx system, either in the course of eruptions or a wind from the binary.

It is particularly interesting that two RNe have now been found to have dusty environments that pre-date their eruptions, although the respective circumstances are very different. While the dust around T Pyx is cool, Evans et al. (2007b) found hot silicate dust in the immediate environment of RS Oph shortly after its 2006 outburst, and in this case the dust seemed to have survived the extreme environment (hard radiation field and shock blast wave) of the 2006 eruption (see also Rushton et al., in preparation). On the other hand, there is no evidence for any dust in the environment of the RN U Sco in the near-IR (Evans et al. 2001; Banerjee et al. 2010). These three RNe represent very different facets of the RN phenomenon and, indeed, each is representative of the specific classes of RN (Anupama 2008) noted in Section 1, although membership of each class is very small.

Further observations of RNe, particularly at wavelengths >10 \mu m, would help to throw light on the environments of RNe, and hence potentially on their recent history and evolution.

ACKNOWLEDGMENTS

This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. We thank the directors of the Herschel Space Observatory and Spitzer Space Telescope for declaring T Pyx a target for Director’s Discretionary Time.

RDG and CEW were supported by NASA and the United States Air Force. SS is grateful to partial support from NSF and NASA grants to ASU. JPO and KLP acknowledge financial support from the UK Space Agency.

We acknowledge with thanks the variable star observations from the AAVSO International Database contributed by observers worldwide and used in this research.

REFERENCES

Allen C. W., 1973, Astrophysical Quantities. Athlone Press, London
Anandarao B. G., Chakraborty A., 2010, in Ojha D. K., ed., ASI Conf. Ser. 1, Interstellar Matter and Star Formation: A Multi-wavelength Perspective. Astron. Soc. India, Bangalore, p. 211

Anupama G. C., 2008, in Evans A., Bode M. F., O’Brien T. J., Darney M. J., eds, ASP Conf. Ser. Vol. 401, RS Ophiuchi (2006) and the Recurrent Nova Phenomenon, Astron. Soc. Pac., San Francisco, p. 31
Banerjee D. P. K., Ashok N. M., 2011, Astron. Telegram, 3297
Banerjee D. P. K. et al., 2010, MNRAS, 408, L71
Bode M. F., Evans A., 1979, A&A, 73, 113
Bode M. F., Evans A., eds, 2008, Classical Novae, 2nd edn. Cambridge Univ. Press, Cambridge
Chesneau O. et al., 2011, A&A, 534, L11
Cox A. N., 2000, ed., Allen’s Astrophysical Quantities. Springer, New York
Deshpande M. R., 1995, Bull. Astron. Soc. India, 23, 13
Draine B. T., Lee H. M., 1984, ApJ, 285, 89
Dürbeck H., Seitter W. C., 1979, ESO Messenger, 17, 3
Evans A., Rawlings J. M. C., 2008, in Bode M. F., Evans A., eds, Classical Novae, 2nd edn. Cambridge Univ. Press, Cambridge
Evans A. et al., 1997, MNRAS, 292, 192
Evans A. et al., 2001, A&A, 378, 132
Evans A. et al., 2005, MNRAS, 360, 1483
Evans A. et al., 2007a, MNRAS, 374, L1
Evans A. et al., 2007b, ApJ, 671, L157
Evans A. et al., eds, 2008, ASP Conf. Ser. Vol. 401, RS Ophiuchi (2006) and the Recurrent Nova Phenomenon. Astron. Soc. Pac., San Francisco
Fazio G. G. et al., 2004, ApJS, 154, 10
Gehrels N., 2004, New Astron. Rev., 48, 431
Gehrz R. D. et al., 1998, PASP, 110, 3
Gehrz R. D. et al., 2007, Rev. Sci. Instrum., 78, 011302
Hanner M. S., 1988, NASA Conf. Publ., 3004, 22
Ivezić Ž. et al., 1995, ApJ, 445, 415
Knigge C., King A. R., Patterson J., 2000, A&A, 364, L75
Kuulkers E. et al., 2011a, Astron. Telegram, 3285
Kuulkers E. et al., 2011b, Astron. Telegram, 3647
MOPEX Users’ Guide, 2011, Spitzer Heritage Archive Documentation, Post-BCD Tools Team and Science User Support Team, Version 18.4.1
Oksanen A., Schaefer B. E., 2011, Astron. Telegram, 3782
Osborne J. P. et al., 2011, Astron. Telegram, 3549
Ott S., 2010, in Mizumoto Y., Morita K.-H., Ohsishi M., eds, ASP Conf. Ser. Vol. 434, Astronomical Data Analysis Software and Systems XIX. Astron. Soc. Pac., San Francisco, p. 139
Pilbratt G. L., 2003, Proc. SPIE, 4850, 586
Pilbratt G. L. et al., 2010, A&A, 518, L1
Poglitsch A. et al., 2010, A&A, 518, 2
Schaefer B. E., 2010, ApJS, 187, 275
Schaefer B. E. et al., 2010, ApJ, 708, 381
Schaefer B. E. et al., 2011, ApJ, submitted
Selvelli P. L. et al., 2008, A&A, 492, 787
Shore S. N. et al., 2011, A&A, 533, L8
Starrfield S. et al., 2008, in Bode M. F., Evans A., eds, Classical Novae, 2nd edn. Cambridge Univ. Press, Cambridge
Uthas H. et al., 2010, MNRAS, 409, 237
Waagan E., 2011, IAU Circular, 9205
Werner M. W. et al., 2004, ApJS, 154, 1
Williams R. E., 1992, AJ, 104, 725
Werner M. W. et al., 2004, ApJS, 154, 1
Williams R. E., 1992, AJ, 104, 725

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article.

Figure 2. Three representative PACS spectra in each of the PACS photometry bands.

Please note: Wiley-Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.

This paper has been typeset from a TeX\LaTeX{} file prepared by the author.