BPA, Parabens, and Phthalates in Relation to Endometrial Cancer Risk: A Case-Control Study Nested in the Multiethnic Cohort

Danja Sarink,1 Adrian A. Franke,4 Kami K. White,1 Anna H. Wu,2 Iona Cheng,1 Brandon Quon,1 Loïc Le Marchand,1 Lynne R. Wilkens,1 Herbert Yu,1 and Melissa A. Merritt1

1Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA
2Department of Preventive Medicine, University of Southern California Keck School of Medicine, Los Angeles, California, USA
3Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, USA
4Department of Preventive Medicine, University of Southern California Keck School of Medicine, Los Angeles, California, USA

https://doi.org/10.1289/EHP8998

Introduction

Bisphenol A (BPA), phthalates, parabens, and triclosan are endocrine disrupting chemicals (EDCs); that is, they are exogenous substances that alter functions of the endocrine system and may cause adverse health effects. BPA and phthalates are plasticizers, whereas parabens and triclosan are antimicrobial chemicals or preservatives (Giuilivo et al. 2016). Nuclear estrogen and progesterone receptors are EDC targets and BPA, selected phthalates, and parabens can bind to the estrogen receptor (ER) (Malozzzi et al. 2017; Nowak et al. 2018; Zacharewski et al. 1998). Because exposure to estrogen unopposed by progesterone is key to endometrial cancer development (Key and Pike 1988), we investigated whether BPA, triclosan, parabens, and phthalate metabolites were associated with endometrial cancer risk among participants in the prospective Multiethnic Cohort (MEC).

Methods

The MEC has been described previously (Kolonel et al. 2000). A baseline questionnaire was completed by participants in Hawaii and California in 1993–1996. In 2001–2006, biospecimens and a short questionnaire were collected. The study was approved by institutional review boards at the participating institutions, and participants provided written informed consent at biospecimen collection. This study included postmenopausal women from five main racial/ethnic groups included in the MEC, each of whom provided an overnight or first morning urine sample and had no previous hysterectomy or diagnosis of endometrial or breast cancer. Incident invasive endometrial cancers (International Classification of Diseases for Oncology 3rd revision codes C54.0-C54.9) diagnosed after urine collection, and through 2017, were identified by linkage to Hawaii and California Surveillance, Epidemiology, and End Results cancer registries. Controls were selected from participants who were alive and endometrial/breast cancer–free at the time of diagnosis of their index case. Controls were matched 1:1 on race/ethnicity and birth year, as well as on urine type, time of day, year, fasting hours, and current postmenopausal hormone use at biospecimen collection.

Urinary concentrations (in nanograms per milliliter) of BPA, triclosan, parabens, and phthalate metabolites were measured using liquid chromatography high-resolution accurate-mass mass spectrometry (Model Q-Exactive; Thermo Scientific) (Li and Franke 2015; Townsend et al. 2013); creatinine (in milligrams per milliliter) was measured using a clinical autoanalyzer (Cobas MiraPlus; Roche), all in the Analytical Biochemistry Shared Resource, University of Hawaii Cancer Center. Personnel were blinded to sample status. Case–control sets were analyzed in the same batch. Intrabatch coefficients of variation (CVs) were <14% except for butyl paraben (24%) and BPA (22%); interbatch CVs were <16% except for methyl paraben (30%) and monoethyl phthalate (MEP) (23%).

Observations with urinary EDC concentrations below the limit of detection (LOD) for butyl paraben (35%) and BPA, triclosan, methyl paraben, ethyl paraben, MEP, monoisobutyl phthalate (MiBP), and monomethyl phthalate (MMP) (≤8% each) were set to half of their respective LOD values. Urinary concentrations of benzyl paraben and monocylohexyl phthalate were below the LOD for ≥95% of participants, and these markers were excluded from analysis. We used conditional logistic regression to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for associations between EDC metabolite excretion (in nanograms per milligram creatinine; tertiles based on the distribution in controls) and endometrial cancer risk, adjusted for body mass index (BMI), diabetes, and Mediterranean Diet Score. A two-tailed p < 0.05 was considered statistically significant. Analyses were performed using SAS (version 9.4; SAS Institute Inc.).

Results

In 139 case–control sets, comparisons of the crude creatinine-adjusted EDC excretion showed similar median values and overlapping interquartile ranges (Table 1). BMI at urine collection was higher in cases than controls (42% vs. 22% ≥30 kg/m² BMI), whereas diabetes prevalence was lower (12% vs. 22%). Endometrial cancer cases were diagnosed a median of 6.6 y after urine collection. Most cases were diagnosed with endometrioid histology (75%) and localized disease (71%).

All estimates had wide 95% CIs, reflecting the modest sample size, with no significant trends (Table 2). However, mono-n-butyl phthalate (MnBP) excretion was positively associated with endometrial cancer risk (second vs. first tertile: OR = 2.35 (95% CI: 1.19, 4.65), and a nonsignificant association was observed for the third vs. first tertile: OR = 1.82 (95% CI: 0.81, 4.10). Associations were similar for dibutyl phthalate [DBP (sum of MiBP and MnBP excretion)], with corresponding ORs = 2.09 (95% CI: 1.05, 4.16) and 1.77 (95% CI: 0.75, 4.17). No other associations were statistically significant.

Discussion

In this case–control study nested in the MEC, prediagnostic urinary DBP metabolite excretion was positively associated with endometrial cancer risk. Trend tests showed no clear indication of linearly increasing endometrial cancer risk for any of the EDCs in our study; associations for MnBP were limited to the second (vs. the first) tertile, whereas ORs were similar but nonsignificant when comparing extreme tertiles.
Table 1. Population characteristics in postmenopausal endometrial cancer cases and matched controls nested within the Multiethnic Cohort.

Characteristic	Controls n = 139	Cases n = 139
Creatinine-adjusted EDC excretion [median (IQR)]		
BPA\(^a\)	1.54 (0.81–2.95)	1.62 (1.01–2.93)
Triclosan\(^a\)	9.70 (2.94–32.67)	9.29 (2.52–37.99)
Methyl paraben\(^a\)	98.73 (28.37–246.26)	78.84 (21.30–229.18)
Ethyl paraben\(^a\)	3.23 (0.48–12.19)	1.47 (0.33–11.75)
Propyl paraben	20.16 (4.18–82.67)	11.30 (2.54–41.62)
Butyl paraben\(^a\)	0.36 (0.00–2.83)	0.15 (0.00–1.29)
Total parabens\(^a\)	137.13 (36.93–358.83)	111.55 (29.01–323.44)
MBzP	13.65 (8.77–23.41)	14.17 (9.03–19.76)
MECPP	33.03 (21.23–63.80)	34.40 (22.79–59.59)
MEHHP	33.57 (23.30–55.40)	34.74 (21.76–57.97)
MEHP	8.02 (5.46–12.18)	7.97 (4.42–13.65)
MEP\(^b\)	64.53 (28.36–133.23)	51.51 (31.70–116.34)
MiBP\(^a\)	4.22 (3.05–7.23)	5.38 (3.44–7.89)
MMP\(^a\)	7.17 (5.21–11.50)	7.09 (4.69–10.06)
MnBP	22.01 (15.10–42.21)	22.44 (17.36–41.78)
PA	58.94 (40.28–91.89)	54.24 (39.05–98.34)
DBP\(^d\)	27.90 (19.46–50.11)	30.00 (22.04–55.58)
DEHP\(^d\)	90.81 (67.34–161.01)	95.33 (66.25–157.6)
Total phthalates\(^e\)	259.37 (181.45–387.84)	253.07 (176.75–450.75)
Creatinine	0.53 (0.33–0.76)	0.54 (0.32–0.80)

Population characteristics [n (%) or median (IQR)]

Characteristic	Controls	Cases
Age at urine collection (y)\(^f\)	62 (59–69)	62 (59–69)
Race/ethnicity\(^f\)		
White	35 (25)	35 (25)
African American	9 (6)	9 (6)
Native Hawaiian	26 (19)	26 (19)
Japanese American	52 (37)	52 (37)
Latina	17 (12)	17 (12)
Parity at baseline		
Nulliparous	28 (20)	26 (19)
Parous	111 (80)	113 (81)
Oral contraceptive use at baseline		
Never	55 (40)	64 (46)
Former	84 (60)	75 (54)
Postmenopausal hormone use at urine collection\(^a\)		
Not current	114 (82)	114 (82)
Current	25 (18)	25 (18)
BMI at urine collection (kg/m\(^2\))\(^g\)		
<25	56 (40)	43 (31)
25–29	52 (37)	37 (27)
≥30	31 (22)	59 (42)
Diabetes prevalence\(^b\)		
No	108 (78)	122 (88)
Yes	31 (22)	17 (12)

Case characteristics [n (%) or median (IQR)]

Characteristic	Controls	Cases
Age at diagnosis (y)		69 (65–75)
Years from urine collection to diagnosis		6.6 (3.4–9.4)
Tumor histology\(^i\)		
Endometrioid		104 (75)
Serous		15 (11)
Other		20 (14)
Disease stage\(^j\)		
Localized		99 (71)
Regional and distant		36 (26)
Tumor grade		
1		46 (33)
2		27 (19)
3		42 (30)
4		24 (17)

Note: —, not applicable; BMI, body mass index; BPA, bisphenol A; DBP, dibutyl phthalate; DEHP, di(2-ethylhexyl) phthalate; EDC, endocrine disrupting chemical; IQR, interquartile range; LOD, limit of detection; MBzP, mono-benzyl phthalate; MECPP, mono(2-ethyl-5-carboxypentyl) phthalate; MEHHP, mono(2-ethyl-5-hydroxyhexyl) phthalate; MEHP, mono(2-ethylhexyl) phthalate; MEOHP, mono(2-ethyl-5-oxohexyl) phthalate; MEP, monoethyl phthalate; MiBP, monoisobutyl phthalate; MMP, monomethyl phthalate; MnBP, monon-n-butyl phthalate; PA, phthalic acid.

\(^a\) Including observations with concentrations below the LOD of the assay, set to half the LOD: butyl paraben (35%) and BPA, triclosan, methyl paraben, ethyl paraben, MEP, MiBP, and MMP (≤5% each).

\(^b\) Sum of butyl, ethyl, methyl, and propyl paraben excretion.

\(^c\) Sum of MiBP and MnBP excretion.

\(^d\) Sum of MECPP, MEHHP, MEHP, and MEOHP excretion.

\(^e\) Sum of MBzP, MECPP, MEHHP, and MEHP excretion.

\(^f\) Matching factor.

\(^g\) BMI at baseline used for three cases missing BMI at urine collection.

\(^h\) Self-reported diabetes at baseline and/or diabetes medication use at biospecimen collection.

\(^i\) Including adenocarcinoma with squamous cell differentiation and adenoscarcinoma not otherwise specified.

\(^j\) n = 4 (3%) cases missing stage.
A limitation of the current study is the use of a single urine specimen. In the Nurses' Health Study (NHS)/NHSII there was a fair within-person reproducibility over 1–3 y for urinary phthalate excretion (Townsend et al. 2013). Reproducibility of urinary methyl and propyl paraben (median = 6.7 y) was poor in the Shanghai Women’s Health Study (Engel et al. 2014). Both studies reported poor reproducibility over time for BPA, indicating that a single measurement may not reflect usual exposure. Although we included all postmenopausal incident endometrial cancer cases with an available prediagnosis urine sample in our study, estimates were imprecise owing to the small number of observations and were not adjusted for coexposure to related metabolites. In addition, 35% of observations for butyl paraben were below the LOD.

EDC exposures differ between racial/ethnic groups (Nguyen et al. 2020), and it is important to study health outcomes in diverse populations. As far as we are aware, this study is the first to investigate prediagnosis EDC excretion in relation to endometrial cancer risk using prospectively collected urine samples. This work highlights new avenues for collaborative research that aim to explain observed racial/ethnic disparities in endometrial cancer risk.

Acknowledgments

The project described here was supported by grants U54MD007601 from the National Institute on Minority Health and Health Disparities [NIMHD; primary investigator (PI): M.A.M.] and P30CA17789-03 from the National Cancer Institute (NCI; PI: R. Holcombe.). Both the NIMHD and the NCI are components of the National Institutes of Health (NIH). The Multiethnic Cohort is supported by NCI grant U01CA164973 (L.L.M., C. Haiman, L.R.W.). The content is solely the responsibility of the authors and does not represent the official view of the NIMHD or NIH. For information on applications to gain access to data from the Multiethnic Cohort please see https://www.uchancercenter.org for-researchers/mec-data-sharing. For queries relating to the data included in this manuscript, please contact the corresponding author.

References

Ahern TP, Broe A, Lash TL, Cronin-Fenton DP, Ulrichsen SP, Christiansen PM, et al. 2019. Phthalate exposure and breast cancer incidence: a Danish nationwide cohort study. J Clin Oncol 37(21):1800–1809, PMID: 30995175, https://doi.org/10.1200/JCO.2019.37.21_suppl.740, PMID:24659570, https://doi.org/10.12969/jphp.1308830.

Giolito M, Lopez de Alda M, Capri E, Barceló D. 2016. Human exposure to endocrine disrupting compounds: their role in reproductive systems, metabolic syndrome and breast cancer. A review. Environ Res 151:251–284, PMID:27048732, https://doi.org/10.1016/j.envres.2016.07.011.

International Classification of Diseases for Oncology 3rd revision codes C54.0-C54.9. https://www.who.int/classifications/other-classifications/international-classification-of-diseases-for-oncology accessed [4 May 2021].

Key TJ, Pike MC. 1988. The dose-effect relationship between ‘unopposed’ oestrogens and endometrial mitotic rate: its central role in explaining and predicting endometrial cancer risk. Br J Cancer 57(2):205–212, PMID: 3359133, https://doi.org/10.1038/bjc.1988.44.

Kolonel LN, Henderson BE, Hankin JH, Nomura AM, Wilkens LR, Pike MC, et al. 2000. Predictors and variability of repeat measurements of urinary phenols and parabens in a cohort of Shanghai women and men. Environ Health Perspect 112(7):733–740, PMID: 10895593, https://doi.org/10.1289/ehp.1308830.

Li X, Franke AA. 2015. Improvement of bisphenol A quantitation from urine by LCMS. Anal Bioanal Chem 407(13):3869–3874, PMID: 25721138, https://doi.org/10.1007/s00216-015-8563-z.

Mallozzi M, Leone C, Manurita F, Bellati F, Caserta D. 2017. Endocrine disrupting chemicals and endometrial cancer: an overview of recent laboratory evidence and epidemiological studies. Int J Environ Res Public Health 14(3):334, PMID: 28227940, https://doi.org/10.3390/ijerph14030334.

Morgan M, Deoraj A, Felty Q, Yoo C, Roy D. 2016. Association between exposure to estrogenic endocrine disruptors—polychlorinated biphenyls, phthalates, and...
bisphenol A and gynecologic cancers—cervical, ovarian, uterine cancers. J Carcinog Mutagen 7(6):1000275, https://doi.org/10.4172/2157-2518.1000275.

Nguyen VK, Kahana A, Heidt J, Polemi K, Kvasnicka J, Jolliot O, et al. 2020. A comprehensive analysis of racial disparities in chemical biomarker concentrations in United States women, 1999–2014. Environ Int 137:105496, PMID: 32113086, https://doi.org/10.1016/j.envint.2020.105496.

Nowak K, Ratajczak-Wrona W, Górska M, Jabłońska E. 2018. Parabens and their effects on the endocrine system. Mol Cell Endocrinol 474:238–251, PMID: 29596967, https://doi.org/10.1016/j.mce.2018.03.014.

Townsend MK, Franke AA, Li X, Hu FB, Eliassen AH. 2013. Within-person reproducibility of urinary bisphenol A and phthalate metabolites over a 1 to 3 year period among women in the Nurses’ Health Studies: a prospective cohort study. Environ Health 12(1):80, PMID: 24034517, https://doi.org/10.1186/1476-069X-12-80.

Zacharewski TR, Meek MD, Clemons JH, Wu ZF, Fielden MR, Matthews JB. 1998. Examination of the in vitro and in vivo estrogenic activities of eight commercial phthalate esters. Toxicol Sci 46(2):282–293, PMID: 10048131, https://doi.org/10.1006/toxs.1998.2505.