Method of extracting control points from GF-7 remote sensing image based on five-layer-fifteen-level tiles

Qiang Xiong¹, Shenghui Fang¹* and Xiaojuan Liu¹

¹School of Remote Sensing and Information Engineering, Wuhan University, Wuhan; 430079, China

*E-mail: shfang@whu.edu.cn

Abstract: In view of the traditional manual and semi-automatic methods can not quickly and effectively extract control points, this paper uses five-layer fifteen-level tiles (FLFLT) as reference images, and proposes an efficient and automatic method for automatic extraction control points of GF-7 image. Firstly, the remote sensing image and reference image are sampled down, and the remote sensing image is partitioned to improve the image processing efficiency. The Harris algorithm is used to extract the feature points of the remote sensing image and reference image, the normalized cross-correlation (NCC) algorithm is used for feature matching, and the Random Sampling Consistent (RANSAC) algorithm is used for gross error elimination. Finally, the least-square algorithm was used to fit the geometric transformation parameters, and the geometric transformation model was used to carry out geometric correction of GF-7 image, and the better correction results were achieved. Experimental results show that the proposed algorithm can extract control points quickly and effectively, and can be used for automatic extraction and geometric correction of high resolution satellite data.

1. Introduction

Aiming at the characteristics of large amount of multi-source remote sensing image data, high resolution and non-standardization of geographical location information, the former Institute of Remote Sensing and Digital Earth designed a five-layer-fifteen-level (FLFLT) remote sensing data organization model[1]. Based on this model, the research can quickly carry out the operational and mass processing of remote sensing image[2]. Compared with other spatial data management methods, this model can solve the problems of precision loss and unable to update locally[3]. Meanwhile, the redundancy information of each image based on this model is the lowest, which has obvious advantages in meeting the national scale standard[4].

GF-7 satellite has high spatial resolution, high time resolution, high spectral resolution, high positioning accuracy of the earth observation ability, the texture features are clear and the spectral information is rich for each image[5]. It has realized the 1:10,000 scale satellite stereoscopic mapping, and play an important role in territorial mapping, urban and rural construction, statistical investigation and so on[6]. Before the Gaofen-7 satellite images are put into use, geometric correction is needed to eliminate the geometric distortion caused by the satellite attitude, atmospheric influence, earth rotation and other complex environment in the imaging process[7]. To register GF-7 images, the original processing method with manual operation needs a lot of manpower and material resources, and due to the influence of human subjective factors, there will be different errors, which affects the production efficiency[8]. Therefore, finding a fast, high precision and automatic registration method of GF-7
image has a better application prospect[9].

In this paper, FLFLT were used as reference images to extract control points of GF-7 image[10-11]. The GF-7 image was segmented and the corner points were extracted by Harris algorithm[12]. Searching the best matching point as the control point between the GF-7 image and FLFLT[13]. Finally, The GF-7 image was calibrated by control points which the accuracy less than 1 pixel, and the corrected image was aligned well with the reference image[14-15].

2. Method

Fig.1 shows the process of extracting control points from GF-7 images based on FLFLT. Firstly, the GF-7 image and FLFLT were sampled down. Then, the GF-7 image was segmented into blocks, and Harris algorithm was used to extract a large number of corner points in each block images. The normalized cross correlation (NCC) algorithm was used to find the feature points on FLFLT. The RANSAC algorithm was used to eliminate gross errors and retain most of the better quality control points and then output them. The least square method was used to fit the geometric transformation parameters and the control points were used to correct the GF-7 image.

3. Experiment and Evaluation

3.1. Experimental data

(1) Remote sensing image

In this paper, we use a GF-7 multispectral image to extract control points which located in the southwest of Mudanjiang City, Heilongjiang Province, China. The basic image information is shown in Tab.1 and the product grade is 1A.

Tab.1 Basic Information of GF-7 Satellite Image in Research Area
Collection Time
2021-01-10

(2) Reference image

FLFLT were used as reference images. The segmentation principle of FLFLT is as follows. The sphere surface of the earth with each block was filled with a 1000×1000 image. Each layer has three levels with a size proportion of 5:2.5:1, and the ratio between each layer is 10:1. The block size of the first layer are 50°×50°, 25°×25° and 10°×10° in sequence, the second layer are 5°×5°, 2.5°×2.5° and 1°×1°. And so on for the layers of 3, 4 and 5.
3.2. Experimental results and evaluation

A total of 115,740 control points were extracted, and 4499 points were matched by NCC. There are 400 points after the gross error was proposed, and the median error was 2.10692. There are many control points.
points automatically extracted with different errors, so not all of them they are suitable for saving as control points. In this paper, the control points are sorted from small to large by errors. We select 30 control points whose errors are less than 1 pixel for geometric correction showed in Tab.2. Column 1 is the point number. Column 2 and 3 are the row number and column number, which correspond to the pixel positions of the control points on GF-7 image. Column 4 and 5 are longitude and latitude, which correspond to the geographical positions of control points. The final column is the error size, which represents the error of the control point relative to the reference tiles.

Point NO.	Row	Column	Lon./°	Lat./°	Error/pixel
1	19812.49153	7881.971271	129.405924	44.164808	0.095977
2	14970.92959	14609.98244	129.348487	44.1276	0.12185
3	18103.17515	9679.840285	129.386953	44.158081	0.166885
4	871.564006	26760.97802	129.198333	44.06148	0.207614
5	14508.7364	11097.98156	129.352447	44.153168	0.215121
6	2989.442538	9204.82009	129.346444	44.182897	0.238083
7	1859.351	8179.52009	129.393995	44.168132	0.264779
8	7849.286227	18012.64313	129.278786	44.113595	0.34007
9	14198.02808	12456.16453	129.346668	44.143959	0.371591
10	7380.287799	22420.49814	129.264722	44.083052	0.388
11	18969.42116	12106.63661	129.388955	44.139675	0.462069
12	15653.90769	12883.31941	129.358376	44.138893	0.493462
13	13834.03287	6892.816415	129.356144	44.183929	0.519549
14	9475.717082	21250.81032	129.285622	44.088354	0.519608
15	9448.028617	3158.563643	129.326416	44.216635	0.531089
16	7183.400455	6631.514837	129.298827	44.195212	0.546421
17	9129.770848	18192.32534	129.289566	44.110525	0.558663
18	9646.966722	6016.102849	129.321672	44.196063	0.580938
19	15769.4814	11945.08748	129.361484	44.145375	0.587701
20	7022.460598	18199.16494	129.271172	44.113447	0.618811
21	13363.63468	20384.42219	129.321381	44.088973	0.658644
22	2014.944687	8816.226051	129.248872	44.18703	0.684577
23	10241.22467	21790.16924	129.291066	44.083423	0.772282
24	4443.09177	12269.78124	129.262161	44.159106	0.773874
25	13674.99179	23387.79708	129.317248	44.067282	0.788268
26	16127.9613	19834.91744	129.346672	44.088937	0.87895
27	13606.52085	17928.42113	129.329052	44.106045	0.911498
28	7371.631049	14699.07882	129.282149	44.137767	0.932171
29	21124.77247	13533.56419	129.404478	44.126483	0.938443
30	20668.18862	17781.71259	129.390818	44.097042	0.998493

The control points in Tab.2 are used to carry out geometric correction for GF-7 image based on the quadratic polynomial model. Fig.3(a) is the overall checkerboard map of the corrected GF-7 image and the FLFLT. Fig.3(b) is the checkerboard map of the local area I~IV. Compared with Fig.2, the GF-7 image and the edge features of area I~IV are well aligned.
4. Conclusion
In this paper, the control points of GF-7 image are extracted automatically through the research of corner point extraction algorithm. The errors of extracted control points are different, so it is not ideal to use all of them for geometric correction. Therefore, the errors of extracted control points are sorted, and the small error control points are selected as the final control points. Finally, checkerboard maps are used for analyse the corrected GF-7 image and FLFLT, the method has a good effect on the experimental data. However, sorting the control points may make them distribute uneven, further research will be carried out in the future.

Funding: This research was funded by the National Key Research and Development Project (2016YFD0101105).

References
[1] Wang D, Zheng F, Lai J, Yu T, Li J, Guo S. 2012. A new parallel algorithm based on five-layer fifteen-level remote sensing data organization. Microcomputer Information, 1, 1–5.
[2] Yu T, Li J, Cheng T, Hu X, Xie D, Guo H, Gu X. 2012. Data Grading Organization Method Based on Longitude and Latitude Grid. China Patent. No. CN102346923 A. 2012-02-06. (in Chinese).
[3] X G, T Y, D X, et al. Yu T, Li J, Cheng T, Hu X, Xie D, Guo H, Gu X. 2012. Data Grading Organization Method Based on Longitude and Latitude Grid. China Patent. No. CN102346923 A. 2012-02-06. (in Chinese).
[4] Huang Y, CHEN Z, YU T, et al. Agricultural remote sensing big data: Management and applications[J]. Journal of Integrative Agriculture, 2018,17(9):1915-1931.
[5] Yue Q, Tang X, Gao X. GF-7 IMAGING SIMULATION AND DSM ACCURACY ESTIMATE[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2017,XLII-1/W1:353-356.
[6] Liu L, Xie J, Tang X, et al. Coarse-to-Fine Image Matching-Based Footprint Camera Calibration of the GF-7 Satellite[J]. Sensors, 2021,21(7):2297.
[7] Yao J, Tang X, Li G, et al. Cloud detection of GF - 7 satellite laser footprint image[J]. IET Image
Processing, 2021,15(10):2127-2134.

[8] Xie J, Huang G, Liu R, et al. Design and Data Processing of China's First Spaceborne Laser Altimeter System for Earth Observation: GaoFen-7[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020,13:1034-1044.

[9] Ren C, Xie J, Zhi X, et al. Laser Spot Center Location Method for Chinese Spaceborne GF-7 Footprint Camera[J]. Sensors, 2020,20(8):2319.

[10] Fan X, Rhody H, Saber E. A Spatial-Feature-Enhanced MMI Algorithm for Multimodal Airborne Image Registration[J]. IEEE transactions on geoscience and remote sensing, 2010,48(6):2580-2589.

[11] Wang Y, Lai H, Ma H, et al. A Novel Harris Feature Detection-Based Registration for Remote Sensing Image[J]. Journal of the Indian Society of Remote Sensing, 2020,48(9):1245-1252.

[12] Zeng L, Du Y, Lin H, et al. A Novel Region-Based Image Registration Method for Multisource Remote Sensing Images Via CNN[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2021,14:1821-1831.

[13] Li Y, Li F, Yang K, et al. Remote sensing image registration based on Gaussian-Hermite moments and the Pseudo-RANSAC algorithm[J]. Remote sensing letters, 2017,8(12):1162-1171.

[14] Chang X, Du S, Li Y, et al. A Coarse-to-Fine Geometric Scale-Invariant Feature Transform for Large Size High Resolution Satellite Image Registration[J]. Sensors (Basel), 2018,18(5).

[15] Yang H, Li X, Ma Y, et al. A High Precision Feature Matching Method Based on Geometrical Outlier Removal for Remote Sensing Image Registration[J]. IEEE Access, 2019,7:180027-180038.