L-Fuzzy Filters of a Poset

Berhanu Assaye Alaba, Mihret Alamneh and Derso Abeje

Abstract—Many generalizations of ideals and filters of a lattice to an arbitrary poset have been studied by different scholars. The authors of this paper introduced several generalizations of L-fuzzy ideal of a lattice to an arbitrary poset in [1]. In this paper, we introduce several L-fuzzy filters of a poset which generalize the L-fuzzy filter of a lattice and give several characterizations of them.

Index Terms—Poset, Filter, L-fuzzy closed filter, L-fuzzy Frink filter, L-fuzzy V-Filter, L-fuzzy semi-filter, L-fuzzy filter, l-L-fuzzy filter.

I. INTRODUCTION

We have found several generalizations of ideals and filters of a lattice to arbitrary poset (partially ordered set) in a literature. Birkhoff in [2, p. 59] introduced a closed or normal ideals who gives accredit to the work of Stone in [3]. Next, in 1954 the second type of ideal and filter of a poset called Frink ideal and Frink filter have been introduced by O. Frink [4]. Following this P. V. Venkatanarasimhan developed the theory of semi ideals and semi filter in [5] and ideals and filters for a poset in [6], in 1970. These ideals (respectively, filters) are called ideals (respectively, filter) in the sense of Venkatanarasimhan or V-ideals (V-filters) for short. Later Haláš [7], in 1994, introduced a new ideal and filter of a poset which seems to be a suitable generalization of the usual concept of ideal and filter in a lattice. We will simply call it ideal (respectively, filter) in the sense of Haláš.

Moreover, the concept of fuzzy ideals and filters of a lattice has been studied by different authors in series of papers [8], [9], [10], [11] and [12]. The aim of this paper is to notify several generalizations of L-fuzzy filters of a lattice to an arbitrary poset whose truth values are in a complete lattice satisfying the infinite meet distributive law and give several characterizations of them. We also prove that the set of all L-fuzzy filters of a poset forms a complete lattice with respect to point-wise ordering “⊆”. Throughout this work, L means a non-trivial complete lattice satisfying the infinite meet distributive law: \(x \land \sup S = \sup \{x \land s : s \in S\} \) for all \(x \in L \) and for any subset \(S \) of \(L \).

II. PRELIMINARIES

We briefly recall certain necessary concepts, terminologies and notations from [2], [13] and [14]. A binary relation “≤” on a non-empty set \(Q \) is called a partial order if it is reflexive, anti-symmetric and transitive. A pair \((Q, ≤)\) is called a partially ordered set or simply a poset if \(Q \) is a non-empty set and “≤” is a partial order on \(Q \). When confusion is unlikely, we use simply the symbol \(Q \) to denote a Poset \((Q, ≤)\). Let \(Q \) be a poset and \(S ⊆ Q \). An element \(x \) in \(Q \) is called a lower bound (respectively, an upper bound) of \(S \) if \(x ≤ a \) (respectively, \(x ≥ a \)) for all \(a ∈ S \). We denote the set of all lower bounds and upper bounds of \(S \) by \(S^l \) and \(S^u \), respectively. That is \(S^l = \{x ∈ Q : x ≤ a \land a ∈ S\} \) and \(S^u = \{x ∈ Q : x ≥ a \land a ∈ S\} \). \(S^u \) shall mean \(\{S^u\}^l \) and \(S^l \) shall mean \(\{S^l\}^u \). Let \(a, b ∈ Q \). Then \(\{a\}^u \) is simply denoted by \(a^u \) and \(\{a,b\}^u \) is denoted by \((a,b)^u \). Similar notations are used for the set of lower bounds. We note that \(S ⊆ S^u \) and \(S ⊆ S^l \) and if \(S ⊆ T \) in \(Q \) then \(S^u ⊆ T^u \) and \(S^l ⊆ T^l \). Moreover, \(S^u = S^u \), \(S^l = S^l \), \((a^u)^l = a \) and \((a^l)^u = a^l \). An element \(x_0 \) in \(Q \) is called the least upper bound of \(S \) or supremum of \(S \), denoted by sup\(S \) (respectively, the greatest lower bound of \(S \) or infimum of \(S \), denoted by inf\(S \) if \(x_0 ∈ S^u \) and \(x_0 ≤ x \forall x ∈ S^u \) (respectively, if \(x_0 ∈ S^l \) and \(x ≤ x_0 \forall x ∈ S^l \)). An element \(x_0 \) in \(Q \) is called the largest (respectively, the smallest) element if it exists in \(Q \) is denoted by 1 (respectively, by 0). A poset \((Q, ≤)\) is called bounded if it has 0 and 1. Note that if \(S = \emptyset \) we have \(S^u = (\emptyset)^l = \emptyset^u \) which is equal to the empty set or the singleton set \(\{1\} \) if \(Q \) has the largest element 1.

Now we recall definitions of filters of a poset that are introduced by different scholars.

Definition 2.1 (Dual of [2]): A subset \(F \) of a poset \((Q, ≤)\) is said to be a closed or a normal filter in \(Q \) if \(F^u ⊆ F \).

Definition 2.2 ([4]): A subset \(F \) of a poset \((Q, ≤)\) is said to be a Frink filter in \(Q \) if \(F^u ⊆ F \) whenever \(S \) is a finite subset of \(F \).

Definition 2.3 ([5]): A non-empty subset \(F \) of a poset \((Q, ≤)\) is called a semi-filter or an order filter of \(Q \) if \(a ≤ b \) and \(a ∈ F \) implies \(b ∈ F \).

Definition 2.4 ([6]): A subset \(F \) of a poset \((Q, ≤)\) is said to be a V-filter or a filter in the sense of Venkatanarasimhan if \(F \) is a semi-filter and for any nonempty finite subset \(S \) of \(F \), if inf\(S \) exists, then inf\(S \) ∈ \(F \).

Definition 2.5 ([7]): A subset \(F \) of a poset \((Q, ≤)\) is called a filter in \(Q \) in the sense of Haláš if \((a,b)^u \) contained in \(F \) whenever \(a, b ∈ F \).

Note that every filter of a poset \(Q \) defined above contains \(Q^u \).

Remark 2.6: The following remarks are due to R. Haláš and J. Rachůnek [15].

1. If \((Q, ≤)\) is a lattice then a non-empty subset \(F \) of \(Q \) is a filter as a poset if and only if it is a filter as a lattice \((Q, ≤)\).
2. If a poset does not have the largest element then the empty subset \(\emptyset \) is a filter in \((Q, ≤)\) (since \(\emptyset^u = (\emptyset)^l = \emptyset^u = \emptyset \)).
Definition 2.7: Let A be any subset of a poset Q. Then the smallest filter containing A is called a filter generated by A and is denoted by $\langle A \rangle$. The filter generated by a singleton set \{a\}, is called a principal filter and is denoted by $[a]$. Note that for any subset S of Q if $\inf S$ exists then $S^lu = [\inf S]$.

The followings are some characterizations of filters generated by a subset S of a poset Q. We write $T \subset S$ to mean T is a finite subset of S.

1) The closed or normal filter generated by S, denoted by $[S]c$, is $[S]c = \bigcup\{T^lu : T \subset S\}$ where the union is taken over all subsets T of S.

2) The Frink filter generated by S, denoted by $[S]f$, is $[S]f = \bigcup\{T^lu : T \subset S\}$, where the union is taken over all finite subsets T of S.

3) Define $B_1 = \bigcup\{(a,b)^lu : a,b \in S\}$ and $B_n = \bigcup\{(a,b)^lu : a,b \in S_{n-1}\}$ for each positive integer $n \geq 2$, inductively.

Then the filter generated by S in the sense of Halaš, denoted by $[S]h$, is $[S]h = \bigcup\{B_n : n \in \mathbb{N}\}$ where \mathbb{N} denotes the set of positive integers.

4) If $a \in Q$ then $[a] = \{x \in Q : x \leq a\} = d^l$ is the principal ideal generated by a.

Definition 2.8 (177): A filter F of a poset Q is called an l-filter if (x,y)^l \cap F \neq \emptyset$ for all x,y \in F.

Note that an easy induction shows that F is an l-filter if B^l \cap F \neq \emptyset for every non-empty subset B of Q.

Theorem 2.9 (177): Let $\mathcal{F}(Q)$ be the set of filters of a poset Q and A and B be l-filters of Q. Then the supremum $A \lor B$ of A and B in $\mathcal{F}(Q)$ is $A \lor B = \bigcup\{(a,b)^lu : a \in A, b \in B\}$.

Definition 2.10 (167): An l-fuzzy subset η of a poset Q is a function from Q into L. Note that if L is a unit interval of real numbers $[0,1]$, then the l-fuzzy subset η is the fuzzy subset of Q which is introduced by L. Zadeh [17]. The set of all l-fuzzy subsets of Q is denoted by L^Q.

Definition 2.11 (111): Let $\eta \in L^Q$. Then for each $a \in L$ the set $\eta_a = \{x : \eta(x) \geq a\}$ is called the level subset or level cut of η at a.

Lemma 2.12 (197): Let $\eta \in L^Q$. Then $\eta(x) = \sup\{a \in L : x \in \eta_a\}$ for all $x \in Q$.

Definition 2.13 (167): Let $\nu, \sigma \in L^Q$. Define a binary relation \subseteq^L on L^Q by $\nu \subseteq^L \sigma$ if and only if $\nu(x) \leq \sigma(x)$ for all $x \in Q$.

It is simple to verify that the binary relation \subseteq^L on L^Q is a partial order and it is called the pointwise ordering.

Definition 2.14 (187): Let θ and η be in L^Q. Then the union of fuzzy subsets θ and η of X, denoted by $\theta \cup^L \eta$, is a fuzzy subset of Q defined by $(\theta \cup^L \eta)(x) = \theta(x) \lor \eta(x)$ for all $x \in Q$ and the intersection of fuzzy subsets θ and η, denoted by $\theta \cap^L \eta$, is a fuzzy subset of X defined by $(\theta \cap^L \eta)(x) = \theta(x) \land \eta(x)$ for all $x \in Q$.

More generally, the union and intersection of any family $\{\eta_i\}_{i \in \Delta}$ of l-fuzzy subsets of Q, denoted by $\bigcup_{i \in \Delta} \eta_i$ and $\bigcap_{i \in \Delta} \eta_i$ respectively, are defined by:

$(\bigcup_{i \in \Delta} \eta_i)(x) = \sup_{i \in \Delta} \eta_i(x)$ and $(\bigcap_{i \in \Delta} \eta_i) = \inf_{i \in \Delta} \eta_i(x)$ for all $x \in Q$, respectively.

Definition 2.15 (1107): A l-fuzzy subset η of a lattice Q with 1 is said to be an L-fuzzy filter of Q, if $\eta(1) = 1$ and $\eta(a \land b) = \eta(a) \land \eta(b)$ for all $a, b \in Q$.

Definition 2.16: Let η be an L-fuzzy subset of a poset Q. Then the smallest L-fuzzy filter of Q containing η is called a L-fuzzy filter generated by η and is denoted by $[\eta]$.

III. l-FUZZY FILTERS OF A POSET

In this section, we notify the concept of L-fuzzy filters of a poset and give several characterizations of them. Throughout this paper, Q stands for a poset (Q, \leq) with 1 unless otherwise stated. We begin with the following

Definition 3.1: An L-fuzzy subset η of Q is called an L-fuzzy closed filter if it fulfills the following conditions:

1) $\eta(1) = 1$
2) For any subset S of Q, $\eta(x) \geq \inf \{\eta(a) : a \in S\}$ for all $x \in S^lu$.

Lemma 3.2: A subset F of Q is a closed filter of Q if and only if it has a characteristic map χ_F which is an L-fuzzy closed filter of Q.

Proof: Suppose F is a closed filter of Q. Then we have $\chi_F(1) = 1$. Let S be any subset of Q and $x \in S^lu$. Then if $S \subseteq F$, we have $S^lu \subseteq F^lu \subseteq F$ and $\chi_F(a) = 1$ for all $a \in S$. Therefore $\chi_F(x) = 1 = \inf \{\chi_F(a) : a \in S\}$. Again if $S \not\subseteq F$, then there is $c \in S$ such that $c \not\in F$ and hence $\chi_F(c) = 0$ and hence $\chi_F(x) \geq 0 = \inf \{\chi_F(a) : a \in S\}$. Thus in either cases, $\chi_F(x) \geq \inf \{\chi_F(a) : a \in S\}$. This implies in either cases, $\chi_F(x) \geq \inf \{\chi_F(a) : a \in S\} = 1$. Hence $F^lu \subseteq F$ and hence F is a closed filter. This proves the result.

The following result characterizes the L-fuzzy closed filter of Q in terms of its level subsets.

Lemma 3.3: Let η be in L^Q. Then η is an L-fuzzy closed filter of Q if and only if η_{α} is a closed filter of Q for all $\alpha \in \Lambda$.

Proof: Let η be an L-fuzzy closed filter of Q and $\alpha \in \Lambda$. Then $\eta(1) \geq \alpha$ and hence $1 \in \eta_{\alpha}$, i.e., $\{1\} = Q^lu \subseteq \eta_{\alpha}$. Again let $x \in (\eta_{\alpha})^lu$. Then $\eta(x) \geq \inf \{\eta(a) : a \in \eta_{\alpha}\} \geq \alpha$ and hence $x \in \eta_{\alpha}$. Therefore $(\eta_{\alpha})^lu \subseteq \eta_{\alpha}$ and hence η_{α} is a closed filter. Conversely, let η_{α} be a closed filter of Q for all $\alpha \in \Lambda$. In particular η_1 is a closed filter. Since $1 \in (\eta_1)^lu \subseteq \eta_1$, we have $\eta(1) = 1$.

Again let S be any subset of Q. Put $\alpha = \inf \{\eta(a) : a \in S\}$. Then $\eta(a) \geq \alpha \forall a \in S$ and hence $S \subseteq \mu_\alpha$. This implies $S^lu \subseteq \mu_{\alpha} \subseteq \mu_\alpha$. Now $x \in S^lu \Rightarrow x \in \eta_{\alpha} \Rightarrow \eta(x) \geq \alpha = \inf \{\eta(a) : a \in S\}$. Therefore η is an L-fuzzy closed filter of Q. This proves the result.

Lemma 3.4: Let η be fuzzy closed filter of a poset Q. Then η is iso-tone, in the sense that $\eta(x) \leq \eta(y)$ whenever $x \leq y$.

Proof: Let $x, y \in Q$ such that $x \leq y$. Put $\eta(x) = \alpha$. Since η is a fuzzy closed filter, η_{α} is a closed filter of Q and hence $(\eta_{\alpha})^lu \subseteq \eta_{\alpha}$. Now $\eta(x) = \alpha \Rightarrow x \in \eta_{\alpha} \Rightarrow x \in (\eta_{\alpha})^lu \subseteq (\eta_{\alpha})^lu \subseteq \eta_{\alpha}$. Thus $x \leq y \Rightarrow y \in (\eta_{\alpha})^lu \Rightarrow y \in \eta_{\alpha}$. Therefore $\eta(x) = \alpha \leq \eta(y)$. This proves the result.

Theorem 3.5: Let (Q, \leq) be a lattice. Then an L-fuzzy subset η of Q is an L-fuzzy closed filter in the poset Q if and only if it is an L-fuzzy filter in the lattice Q.

Proof: Let η be an L-fuzzy filter in the poset Q and $a, b \in Q$. Then $\eta(1) = 1$ and since $S = \{a, b\} \subseteq Q$ and $a \land b \in S^lu$.
we have $\eta(a \land b) \geq \inf\{\eta(x) : x \in S\} = \eta(a) \land \eta(b)$. Again since η is iso-tone, we have $\eta(a \land b) \leq \eta(a)$ and $\eta(a \land b) \leq \eta(b)$ and hence we have $\eta(a) \land \eta(b) \leq \eta(a,b)$. Therefore $\eta(a,b) = \eta(a) \land \eta(b)$ and hence η is an L-fuzzy filter in the lattice Q. Conversely suppose μ be an L-fuzzy filter in the lattice Q. Then $\eta(1) = 1$ and $\eta(a \land b) = \eta(a) \land \eta(b)$ $\forall a, b \in Q$. Let $S \subseteq Q$ and $x \in (S)^I$. Then x is an upper bound of $(S)^I$. Since $\inf \in \langle (\alpha)^I \rangle$, we have $x \geq \inf S$ and hence we have $\eta(x) \geq \eta(\inf S) = \inf\{\eta(a) : a \in S\}$. Therefore η is an L-fuzzy closed filter in the poset Q. This proves the result.

Lemma 3.6: The intersection of any family of L-fuzzy closed filters is an L-fuzzy closed filter.

Theorem 3.7: Let $[S]_C$ be a closed filter generated by a subset S of Q and χ_S be its characteristic functions. Then the $[\chi_S] = [\chi_{[S]_C}]$.

Proof: Since $[S]_C$ is a closed filter of Q containing S, by Lemma 3.2, we have $\chi_{[S]_C}$ is a fuzzy closed filter. Again since $S \subseteq [S]_C$, clearly we have $\chi_S \subseteq \chi_{[S]_C}$. Now, we show that it is the smallest L-fuzzy closed filter containing χ_S. Let η be an L-fuzzy closed filter such that $\chi_S \subseteq \eta$. Then $\eta(a) = 1$ for all $a \in S$. Now we claim $\chi_{[S]_C} \subseteq \eta$. Let $x \in Q$. If $x \notin [S]_C$, then $\chi_{[S]_C}(x) = 0 \leq \eta(x)$. If $x \in [S]_C$, then $x \in T^I$ for some subset T of S and hence $\inf\{\eta(a) : a \in T\} = 1 = \chi_{[S]_C}(x)$. Hence in either cases, $\chi_{[S]_C}(x) \leq \eta(x)$ for all $x \in Q$ and hence $\chi_{[S]_C} \subseteq \eta$. This proves the theorem.

In the following theorem we characterize a fuzzy closed filter generated by a fuzzy subset of Q in terms of its level closed filters.

Theorem 3.8: Let $\eta \in L^Q$. Then the L-fuzzy subset $\hat{\eta}$ of Q defined by $\hat{\eta}(x) = \sup\{\alpha \in L : x \in \eta(a)\}$ for all $x \in Q$ is a fuzzy closed filter generated by η, where $\{\mu(a)\}$ is a closed filter generated by η_a.

Proof: Now we show $\hat{\eta}$ is the smallest fuzzy closed filter containing η. Let $x \in Q$ and put $\hat{\eta}(x) = \beta$. Then $x \in \eta_\beta \subseteq \eta_{\hat{\eta}(x)} = \beta$ $\in \{\alpha \in L : x \in \eta(a)\}$. Thus $\hat{\eta}(x) = \beta \leq \sup\{\alpha \in L : x \in \eta(a)\} = \hat{\eta}(x)$ and hence $\hat{\eta} \subseteq \beta$. Again since $\{1\} = Q^I \subseteq \{\eta_\alpha\}$ for all $\alpha \in L$, clearly we have $\hat{\eta}(1) = 1$. Let S be any subset of Q and $x \in S^I$. Now inf $\hat{\eta}(a) : a \in S\} = \inf\{\sup\{\eta_\alpha : a \in \eta(a)\} : a \in S\} = \inf\{\sup\{\eta_\alpha : a \in S\} : a \in \eta(a)\}$. Thus $\lambda = \inf\{\alpha_\alpha : a \in S\}$ and hence $\eta_\lambda \subseteq \eta_a$. Therefore $\{\eta_\lambda\}$ is a closed filter generated by η_a.

Theorem 3.9: Let $\eta \in L^Q$. Then the fuzzy subset $\hat{\eta}$ defined by

$$\hat{\eta}(x) = \begin{cases} 1 & \text{if } x = 1 \\ \sup\{\inf\{\eta(a) : x \in S^I \} \subseteq S \} & \text{if } x \neq 1 \end{cases}$$

is a fuzzy closed filter of Q generated by η.

Proof: It is easy to show that $\hat{\eta} = \hat{\eta}$ where $\hat{\eta}$ is an L-fuzzy subset given in the above theorem. Let $x \in Q$. If $x = 1$, then $\hat{\eta}(x) = 1 = \hat{\eta}(x)$. Let $x \neq 0$. Put $A_1 = \{\inf\{\eta(a) : x \in S^I \} \subseteq S \}$ and $B_1 = \{\alpha \in L : x \in \eta(a)\}$. Now we show $\sup A_1 = \sup B_1$. Let $\alpha \in A_1$. Then $\alpha = \inf\{\eta(a) : x \in S^I \}$ for some subset S of Q such that $x \in S^I$. This implies that $\alpha \leq \eta(a)$ for all $a \in S$ and hence $S \subseteq \eta(a) \subseteq \{\eta_\alpha\}$. Thus $S^I \subseteq \{\eta_\alpha\}$ and hence $x \in \{\eta_\alpha\}$. Therefore $\alpha \leq \eta$. Thus $A_1 \subseteq B_1$ and hence $\sup A_1 \leq \sup B_1$. Again let $\alpha \in B_1$. Then $x \in \{\eta_\alpha\}$. Since $\{\mu(a)\} = \bigcup\{S^I : x \in \{\eta_\alpha\}\}$, we have $x \in S^I$ for some subset S of η_α. This implies $\alpha \geq \eta(a)$ for all $a \in S$ and hence $\inf\{\eta(a) : x \in S^I \} \geq \alpha$. Thus $\beta = \inf\{\eta(a) : a \in S\} \subseteq \eta(a)$. Therefore $\alpha \geq \eta$. For each $\alpha \in B_1$ we get $\beta \in A_1$ such that $\beta \leq \eta$ and hence $\sup A_1 \geq \sup B_1$. Therefore $\sup A_1 = \sup B_1$. Hence $\hat{\eta} = \hat{\eta}$.

The above result yields the following.

Theorem 3.10: Let $\mathcal{F} \subseteq \mathcal{F}(Q)$ be the set of all L-fuzzy closed filters of Q. Then $(\mathcal{F} \subseteq \mathcal{F}(Q))$ forms a complete lattice with respect to the point wise ordering ” \subseteq”, in which the supremum $\sup\{\eta_i\}_{\eta_i = \eta}$ and the infimum $\inf\{\eta_i\}$ of any family $\{\eta_i : i \in I\}$ in $(\mathcal{F} \subseteq \mathcal{F}(Q))$ are given by:

$$\sup\{\eta_i\} = \bigcup_{i \in I} \{\eta_i\}$$

$$\inf\{\eta_i\} = \bigcap_{i \in I} \{\eta_i\}$$

Corollary 11: For any L-fuzzy closed filters η and ν of Q, the supremum $\eta \lor \nu$ and the infimum $\eta \land \nu$ of η and ν in $(\mathcal{F} \subseteq \mathcal{F}(Q))$ respectively are:

$$\eta \lor \nu = \overline{\eta \lor \nu}$$

$$\eta \land \nu = \overline{\eta \land \nu}$$

Now we introduce the fuzzy version of a filter (dual ideal) of a poset introduced by O. Frink [4].

Definition 3.12: An L-fuzzy subset η of Q is an L-fuzzy Frink filter if it satisfies the following conditions:

1) $\eta(1) = 1$ and
2) for any finite subset F of Q, $\eta(x) \geq \inf\{\eta(a) : a \in F\}$ $\forall x \in F^I$

Lemma 13: Let $\eta \in L^Q$. Then η is an L-fuzzy Frink filter of Q if and only if η is a Frink filter of Q for all $a \in L$.

Lemma 14: Let η be fuzzy Frink filter of a poset Q. Then η is iso-tone, in the sense that $\eta(x) \leq \eta(y)$ whenever $x \leq y$.

Corollary 15: A subset S of Q is a Frink filter of Q if and only if its characteristic map χ_S is an L-fuzzy Frink filter of Q.

Theorem 16: Let (Q, \leq) be a lattice and $\eta \in L^Q$. Then η is an L-fuzzy Frink filter in the poset Q if and only if it is an L-fuzzy filter in the lattice Q.

Lemma 17: The intersection of any family of L-fuzzy Frink-filters is an L-fuzzy Frink filter.

Theorem 18: Let $[S]_C$ be a Frink-filter generated by subset S of Q and χ_S be its characteristic functions. Then $[\chi_S] = [\chi_{[S]_C}]$.

The following theorems, we give characterizations of L-Fuzzy Frink filters generated by fuzzy subset of Q.

Theorem 19: Let $\eta \in L^Q$. Define a fuzzy subset $\hat{\eta}$ of Q by $\hat{\eta}(x) = \sup\{\alpha \in L : x \in \eta(a)\}$ for all $x \in Q$ where $\{\eta_a\}$ a
Frink filter generated by η_α, where $[\eta_\alpha]_F$ is a Frink filter generated by η_α. Then $\hat{\eta}$ is an L-fuzzy Frink filter of Q generated by η.

In the following, we give an algebraic characterization of L-fuzzy Frink filters generated by fuzzy subset of Q.

Theorem 3.20: Let η be a fuzzy subset of Q. Then the fuzzy subset $\overrightarrow{\eta}$ defined by

$$\overrightarrow{\eta}(x) = \begin{cases} 1 & \text{if } x = 1 \\ \sup\{\inf_{a\in F} \eta(a) : F \subseteq Q, x \in F^{lu}\} & \text{if } x \neq 1 \end{cases}$$

is a Frink fuzzy filter of Q generated by η.

Theorem 3.21: Let $\mathcal{F} \subseteq \mathcal{F}(Q)$ be the set of all L-fuzzy Frink filters of Q. Then $(\mathcal{F}, \mathcal{F}(Q), \subseteq)$ forms a complete lattice with respect to pointwise ordering “\subseteq”, in which the supremum and the infimum of any family $\{\eta_i : i \in \Lambda\}$ in $\mathcal{F}(Q)$ respectively are: $\sup_{i \in \Lambda} \eta_i = \bigcup_{i \in \Lambda} \{\eta_i\}$ and $\inf_{i \in \Lambda} \eta_i = \bigcap_{i \in \Lambda} \eta_i$.

Corollary 3.22: For any L-fuzzy Frink ideals η and ν of Q in the supremum $\eta \vee \nu$ and the infimum $\eta \wedge \nu$ of η and ν in $\mathcal{F}(Q)$ respectively are: $\eta \vee \nu = \eta \wedge \nu = \nu \wedge \eta = \nu \wedge \eta$.

Now we introduce the fuzzy version of semi-filters and V-filters of a poset introduced by P.V. Venkataramasimhan [5] and [6].

Definition 3.23: η in L^Q is said to be an L-fuzzy semi-filter or L-fuzzy order filter if $\eta(x) \leq (y)$ whenever $x \leq y$ in Q.

Definition 3.24: η in L^Q is said to be an L-fuzzy V-filter if it satisfies the following conditions:
1) for any $x, y \in Q$ $\eta(x) \leq (y)$ whenever $x \leq y$ and
2) for any non-empty finite subset B of Q, if $\inf B$ exists then $\eta(\inf B) \geq \inf \{\eta(b) : b \in B\}$.

Theorem 3.25: Every L-fuzzy Frink filter is an L-fuzzy V-filter.

Proof: Let η be an L-fuzzy Frink filter and let $x, y \in Q$ such that $x \leq y$. Put $\eta(\alpha) = \alpha$. Since η is an L-fuzzy Frink filter, η_α is a Frink filter of Q. Now $\eta(\alpha) = \alpha \Rightarrow x \in \eta_\alpha \Rightarrow \{x\} \subseteq \eta_\alpha$. Now $x \leq y \Rightarrow y \in x^L = x^L \subseteq \eta_\alpha \Rightarrow \eta(\alpha) = \alpha \leq (y)$. Again let B be any nonempty subset of Q such that $\inf B$ exists in Q. Then $\inf B \in B^L$ and hence $\eta(\inf B) \geq \inf \{\eta(a) : a \in B\}$. Therefore η is an L-fuzzy V-filter.

Now we introduce the fuzzy version filters of a poset introduced by Halaš [7] which seems to be a suitable generalization of the usual concept of L-fuzzy filter of a lattice.

Definition 3.26: η in L^Q is called an L-fuzzy filter in the sense of Halaš if it fulfills the following:
1) $\eta(1) = 1$ and
2) for any $a, b \in Q$, $\eta(x) \geq \eta(a) \land \eta(b)$ for all $x \in (a, b)^L$.

In the rest of this paper, an L-fuzzy filter of a poset will mean an L-fuzzy filter in the sense of Halaš.

Lemma 3.27: η in L^Q is an L-fuzzy filter of Q if and only if η_α is a filter of Q in the sense of Halaš for all $\alpha \in L$.

Corollary 3.28: A subset S of Q is a filter of Q in the sense of Halaš if and only if its characteristic map χ_S is an L-fuzzy filter of Q.

Lemma 3.29: If η is an L-fuzzy filter of Q, then the following assertions hold:
1) for any $x, y \in Q$, $\eta(x) \leq (y)$ whenever $x \leq y$.
2) for any $x, y \in Q$, $\eta(x \land y) \geq \mu(x) \land \eta(y)$ whenever $x \land y$ exists.

Theorem 3.30: Let (Q, \subseteq) be a lattice. Then an L-fuzzy subset η of Q is an L-fuzzy filter in the poset Q if and only if an L-fuzzy filter is in the lattice Q.

Theorem 3.31: Let $[\delta_{S}]$ be a filter generated by subset S of Q in the sense of Halaš and χ_S be its characteristic functions. Then $[\delta_{S}] = \chi_{[\delta_{S}]}$.

Lemma 3.32: The intersection of any family of L-fuzzy filters is an L-fuzzy filter.

Now we give characterization of an L-fuzzy filter generated by a fuzzy subset of a poset Q.

Definition 3.33: Let η be a fuzzy subset of Q and \mathcal{N} be a set of positive integers. Define fuzzy subsets of Q inductively as follows:

$$B_n^1(x) = \sup\{\eta(a) \land \eta(b) : x \in (a, b)^L\}$$

and

$$B_n^\eta(x) = \sup\{B_{n-1}^\eta(a) \land B_{n-1}^\eta(b) : x \in (a, b)^L\}$$

for each $n \geq 2$ and $a, b \in Q$.

Theorem 3.34: The set $\{B_n^\eta : n \in \mathcal{N}\}$ forms a chain and the fuzzy subset $\hat{\eta}$ defined by $\hat{\eta}(x) = \sup\{B_n^\eta(x) : x \in \mathcal{N}\}$ is a fuzzy filter generated by η.

Proof: Let $x \in Q$ and $n \in \mathcal{N}$. Then

$$B_{n+1}^\eta(x) = \sup\{B_n^\eta(a) \land B_n^\eta(b) : x \in (a, b)^L\}$$

$$\geq B_n^\eta(x) \land B_n^\eta(x) \text{ (since } x \in (a, b)^L)$$

$$= \eta(x) \land \eta(x) \Rightarrow x \in Q.$$

Therefore $B_n^\eta \subseteq B_{n+1}^\eta$ for each $n \in \mathcal{N}$ and hence $\{B_n^\eta : n \in \mathcal{N}\}$ is a chain. Now we show $\hat{\eta}$ is the smallest fuzzy filter containing η.

Since

$$\hat{\eta}(x) = \sup\{B_n^\eta(x) : n \in \mathcal{N}\}$$

$$= B_1^\eta(x) \geq \sup\{\eta(a) \land \eta(b) : x \in (a, b)^L\}$$

$$\geq \eta(x) \land \eta(x) \text{ (since } x \in (a, b)^L)$$

$$= \eta(x) \land \eta(x) \Rightarrow x \in Q.$$

Therefore $\eta \subseteq \hat{\eta}$. Let $a, b \in L$ and $x \in (a, b)^L$.

Now

$$\hat{\eta}(x) = \sup\{B_n^\eta(x) : n \in \mathcal{N}\}$$

$$\geq B_n^\eta(x) \text{ for all } n \in \mathcal{N}$$

$$= \sup\{B_{n-1}^\eta(y) \land B_{n-1}^\eta(z) : x \in (y, z)^L\}$$

for all $n \geq 2$.

$$\geq B_n^\eta(x) \land B_{n-1}^\eta(b) \forall n \geq 2$$

$$= B_{n+1}^\eta(a) \land B_{n+1}^\eta(b) \forall n \in \mathcal{N}$$

Thus

$$\hat{\eta}(a) \land \hat{\eta}(b).$$

Therefore $\hat{\eta}$ is a fuzzy filter. Again let θ be any L-fuzzy filter of Q such that $\theta \subseteq \theta$. Now let $a, b \in Q$ and $x \in (a, b)^L$. Then $\theta(x) \geq \sup\{\eta(a) \land \eta(b) : x \in (a, b)^L\} = B_1^\eta(x)$. Therefore $\theta(x) \geq B_1^\eta(x)$ for all $x \in (a, b)^L$. Again for any $x \in (a, b)^L$ we have $\theta(x) \geq \sup\{\eta(a) \land \eta(b) : x \in (a, b)^L\} = B_1^\eta(x)$. This implies

$$\theta(x) \geq \sup\{B_1^\eta(a) \land B_1^\eta(b) : x \in (a, b)^L\} = B_2^\eta(x).$$
induction we have $\theta(x) \geq B_n^j(x)$ $\forall n \in N$ and $\forall x \in (a,b)^{lu}$. Thus for any $x \in Q$, we have

$\hat{\eta}(x) = \sup\{B_n^j(x) : n \in N\} = \sup\{B_n^j(a) \land B_n^j(b) : n \in N, x \in (a,b)^{lu}\} \leq \sup\{\theta(a) \land \theta(b) : x \in (a,b)^{lu}\}$

(since, $a,b \in (a,b)^{lu}$.)

$\leq \theta(x)$

Therefore $\theta \geq \hat{\eta}$. This proves the theorem.

The above result yields the following.

Theorem 3.35: Let $\mathcal{F}(Q)$ be the set of all L-fuzzy filter of Q. Then $\mathcal{F}(Q)$ forms a complete lattice with respect to the point wise ordering \subseteq, in which the supremum and the infimum of any family $\{\eta_i : i \in A\}$ in $\mathcal{F}(Q)$ respectively are: $\left(\sup_{i \in A}\eta_i\right)(x) = \sup\{B_i(x) : n \in N\}$ and $\left(\inf_{i \in A}\eta_i\right)(x) = \left(\bigcap_{i \in A}\eta_i\right)(x)$ for any $x \in Q$.

Corollary 3.36: For any L-fuzzy filter η and ν of Q, the supremum $\eta \lor \nu$ and the infimum $\eta \land \nu$ of η and ν in $\mathcal{F}(Q)$ respectively are: $\left(\eta \lor \nu\right)(x) = \sup\{B_i \lor B_j(x) : n \in N\}$ and $\left(\eta \land \nu\right)(x) = \left(\bigcap_{i \in A}\eta_i\right)(x)$ for any $x \in Q$.

Theorem 3.37: The following implications hold, where all of them are not equivalent:

1) L-fuzzy closed filter \implies L-fuzzy Frink filter \implies L-fuzzy V-filter \implies L-fuzzy semi-filter.

2) L-fuzzy closed filter \implies L-fuzzy Frink filter \implies L-fuzzy filter \implies L-fuzzy semi-filter.

The following examples show that the converse of the above implications do not hold in general.

Example 3.38: Consider the Poset $([0,1], \leq)$ with the usual ordering. Define a fuzzy subset $\eta : [0,1] \to [0,1]$ by

\[
\eta(x) = \begin{cases} 1 & \text{if } x \in [\frac{1}{2},1] \\ 0 & \text{if } x \in [0,\frac{1}{2}] \end{cases}
\]

Then η is an L-fuzzy Frink filter but not an L-fuzzy closed filter.

Example 3.39: Consider the poset (Q, \leq) depicted in the figure below. Define a fuzzy subset $\nu : Q \to [0,1]$ by $\nu(1) = \nu(a) = 1, \nu(b) = \nu(c) = \nu(d) = \nu(0) = 0.2, \nu(b') = 0.6, \nu(c') = 0.5$ and $\nu(d') = 0.7$. Then ν is an L-fuzzy filter but not an L-fuzzy Frink-filter.

Example 3.40: Consider the poset (Q, \leq) depicted in the figure below. Define a fuzzy subset $\theta : Q \to [0,1]$ by $\theta(U) = 1, \theta(L) = \theta(M) = 0.8$ and $\theta(N) = 0.6$. Then θ is an L-fuzzy V-filter but not an L-fuzzy Frink-filter.

Example 3.41: Consider the poset (Q, \leq) depicted in the figure below. Define a fuzzy subset $\sigma : Q \to [0,1]$ by $\sigma(1) = 1, \sigma(a) = 0.8, \sigma(b) = 0.9$ and $\sigma(0) = 0.2$.

Then σ is an L-fuzzy semi-filter but not an L-fuzzy filter.

Theorem 3.42: Let $x \in Q$ and $\alpha \in L$. Define an L-fuzzy subset α^x of Q by

\[
\alpha^x(y) = \begin{cases} 1 & \text{if } y \in [x] \\ \alpha & \text{if } y \notin [x] \end{cases}
\]

for all $y \in Q$. Then α^x is an L-fuzzy filter.

Proof: By the definition of α^x, we clearly have $\alpha_x(1) = 1$. Let $a,b \in Q$ and $y \in (a,b)^{lu}$. Now if $a,b \in [x]$, then we have $(a,b)^{lu} \subseteq [x]$ and $\alpha^x(a) = \alpha^x(b) = 1$. Thus $\alpha^x(y) = 1 = 1 \land 1 = \alpha^x(a) \land \alpha^x(b)$. Again if $a \notin [x]$ or $b \notin [x]$, we have $\alpha^x(a) \land \alpha^x(b) = \alpha$ and hence $\alpha^x(y) \geq \alpha = \alpha^x(a) \land \alpha^x(b)$. Therefore in either cases we have $\alpha^x(y) \geq \alpha^x(a) \land \alpha^x(b)$ for all $y \in (a,b)^{lu}$ and hence α^x is an L-fuzzy filter.

Definition 3.43: The L-fuzzy filter α^x defined above is called the α-level principal fuzzy filter corresponding to x.

Definition 3.44: An L-fuzzy filter μ of a poset Q is called an l-L-fuzzy filter if for any $a,b \in Q$, there exists $x \in (a,b)^l$ such that $\mu(x) = \mu(a) \land \mu(b)$.

Lemma 3.45: An L-fuzzy filter μ of Q is an l-L-fuzzy filter of Q if and only if μ_a is an l-filter of Q for all $\alpha \in L$.

Proof: Suppose μ is an l-L-fuzzy filter and $\alpha \in L$. Since μ is an L-fuzzy filter, μ_a is a filter of Q. Let $a,b \in \mu_a$. Then $\mu(a) \geq \alpha$ and $\mu(b) \geq \alpha$ and hence $\mu(a) \land \mu(b) \geq \alpha$. Also since μ is an l-L-fuzzy filter there exists $x \in (a,b)^l$ such that $\mu(x) = \mu(a) \land \mu(b)$ and hence $\mu(x) \geq \alpha$. Therefore $x \in \mu_a \land (a,b)^l$.
and hence $\mu_a \cap (a,b)^l \neq \emptyset$. Therefore μ_a is an l-filter of a poset Q. Conversely suppose μ_a is an l-filter of a poset Q for all $\alpha \in L$. Then μ is an L-fuzzy filter. Let $a, b \in Q$ and put $\alpha = \mu(a) \wedge \mu(b)$. Then $\mu_a \cap (a,b)^l \neq \emptyset$. Let $x \in \mu_a \cap (a,b)^l$. Then $x \in \mu_a$ and $x \in (a,b)^l$. This implies $x(a) = \mu(a \wedge b)$ and $x \leq a$, $x \leq b$. Since μ is iso-tone we have $x \leq \mu(a)$ and $\mu(x) \leq \mu(b)$ and hence $x \leq \mu(a \wedge b)$. Therefore there exists $x \in (a,b)^l$ such that $x(a) = \mu(a \wedge b)$ and hence μ is an L-fuzzy filter.

Corollary 3.46: Let (Q, \leq) be a poset with 0 and let $x \in Q$ and $\alpha \in L$. Then the α-level principal fuzzy filter corresponding to x is an l-fuzzy filter.

Remark 3.47: Every L-fuzzy filter is not an l-fuzzy filter. For example consider the poset (Q, \leq) depicted in the figure below and define a fuzzy subset $\mu : Q \rightarrow [0,1]$ by $\mu(1) = 1$, $\mu(e) = \mu(d) = 0.9$, $\mu(a) = \mu(b) = \mu(0) = 0.7$. Then μ is an L-fuzzy filter but not an l-fuzzy filter.

![Fig. 4. A Poset.](image)

Theorem 3.48: Every L-fuzzy filter is an l-fuzzy Frink filter.

Proof: Suppose η is an l-fuzzy filter. Let F be a finite subset of Q. Then there exists $y \in F^l$ such that $\eta(y) = \inf \{ \eta(a) : a \in F \}$.

Again $x \in F^l$ implies $s \leq x \forall s \in F^l$.

$\Rightarrow y \leq x$ (since $y \in F^l$)

$\Rightarrow \eta(x) \geq \eta(y) = \inf \{ \eta(a) : a \in F \}$

$\Rightarrow \eta(x) \geq \inf \{ \eta(a) : a \in F \}$

Therefore η is an L-fuzzy Frink filter.

Theorem 3.49: Let η and θ be l-fuzzy filters of Q. Then the supremum $\eta \lor \theta$ of η and θ in $\mathcal{F}(Q)$ is given by:

$(\eta \lor \theta)(x) = \sup \{ \eta(a) \lor \theta(b) : x \in (a,b)^l \}$ for all $x \in Q$.

Proof: Let σ be an L-fuzzy subset of Q defined by $\sigma(x) = \sup \{ \eta(a) \lor \theta(b) : x \in (a,b)^l \}$ $\forall x \in Q$. Now we claim σ is the smallest L-fuzzy filter of Q containing $\eta \lor \theta$. Let $x \in Q$.

Now $\sigma(x) = \sup \{ \eta(a) \lor \theta(b) : x \in (a,b)^l \}$

$\geq \eta(x) \lor \theta(1)$, (since $x \in (x,1)^l$)

$= \eta(x) \lor 1 = \eta(x)$

and hence $\sigma \supset \eta$. Similarly we can show $\sigma \supset \theta$ and hence $\sigma \supset \eta \lor \theta$.

Let $a,b \in Q$ and $x \in (a,b)^l$. Now

$\sigma(a) \lor \sigma(b) = \sup \{ \eta(c) \lor \theta(d) : a \in (c,d)^l \} \lor \sup \{ \eta(e) \lor \theta(f) : b \in (e,f)^l \}$

$= \sup \{ \eta(c) \lor \theta(d) \lor \eta(e) \lor \theta(f) : a \in (c,d)^l, b \in (e,f)^l \}$

$\leq \sup \{ \eta(c) \lor \eta(e) \lor \theta(d) \lor \theta(f) : a \in (c,d)^l, b \in (e,f)^l \}$

Again since η and θ are l-fuzzy filters, for each c,e and d,f there are $r \in (c,e)^l$ and $s \in (d,f)^l$ such that $\eta(r) = \eta(c) \lor \eta(e)$ and $\theta(s) = \theta(d) \lor \theta(f)$. Now

$r \in (c,e)^l$ and $s \in (d,f)^l$ $\Rightarrow \{ c,d,e,f \}^l \subseteq \{ s,r \}^l$

$= a,b \in \{ s,r \}^l$

$= (a,b)^l \subseteq \{ s,r \}^l$

$= x \in \{ s,r \}^l$

Thus $\sigma(a) \lor \sigma(b) \leq \sup \{ \eta(c) \lor \eta(e) \lor \theta(d) \lor \theta(f) : a \in (c,d,e,f)^l \} \leq \sup \{ \eta(r) \lor \theta(s) : x \in (r,s)^l \} \leq \sigma(x)$ for all $x \in (a,b)^l$ and hence σ is an L-fuzzy filter.

Let ϕ be any L-fuzzy filter of Q such that $\eta \lor \theta \subseteq \phi$. Now for any $x \in Q$, we have

$\sigma(x) = \sup \{ \eta(a) \lor \theta(b) : x \in (a,b)^l \}$

$\leq \sup \{ \phi(a) \lor \phi(b) : x \in (a,b)^l \}$

$\leq \phi(x)$

and hence $\sigma \subseteq \phi$. Therefore $\sigma = (\eta \lor \theta) = \eta \lor \theta$, that is σ is the supremum of η and θ in $\mathcal{F}(Q)$.

REFERENCES

[1] B. Alaba, M. Taye, and D. Engidaw, “L-fuzzy ideals of a poset,” Ann. Fuzzy Math. Inform., vol. 16, pp. 285–299, 2018.

[2] G. Birkhoff, Lattice theory. American Mathematical Soc., 1940, vol. 25.

[3] M. Stone, "The theory of representation for boolean algebras," Transactions of the American Mathematical Society, vol. 40, no. 1, pp. 37–111, 1936.

[4] O. Frink, “Ideals in partially ordered sets,” The American Mathematical Monthly, vol. 61, no. 4, pp. 223–234, 1954.

[5] P. Venkatanarasimhan, “Pseudo-complements in posets,” Proceedings of the American Mathematical Society, vol. 28, no. 1, pp. 9–17, 1971.

[6] ———, “Semi-ideals in posets,” Mathematische Annalen, vol. 185, no. 4, pp. 338–348, 1970.

[7] R. Halaš, “Annihilators and ideals in ordered sets,” Czechoslovak Mathematical Journal, vol. 45, no. 1, pp. 127–134, 1995.

[8] N. Ajmal and K. Thomas, “Fuzzy lattices,” Information sciences, vol. 79, no. 3–4, pp. 271–291, 1994.

[9] B. Koguop, C. Nkaim, and C. Lele, “On fuzzy prime ideals of lattice,” SJPAM, vol. 3, pp. 1–11, 2008.

[10] T. Rao, C. Rao, D. Solomon, and D. Abeje, “Fuzzy ideals and filters of lattices,” Asian Journal of Current Engineering and Maths, vol. 2, no. 4, 2013.

[11] U. Swamy and D. Raju, “Fuzzy ideals and congruences of lattices,” Fuzzy sets and systems, vol. 95, no. 2, pp. 249–253, 1998.

[12] Y. Bo and W. Wangming, “Fuzzy ideals on a distributive lattice,” Fuzzy sets and systems, vol. 35, no. 2, pp. 231–240, 1990.

[13] B. Davey and H. Priestley, Introduction to lattices and order. Cambridge university press, 2002.

[14] G. Grätzer, General lattice theory. Springer Science & Business Media, 2002.

[15] R. Halaš and J. Rachůnek, “Polars and prime ideals in ordered sets,” Discuss. Math., Algebra Stoch. Methods, vol. 15, pp. 43–59, 1995.

[16] J. Goguen, “L-fuzzy sets,” Journal of mathematical analysis and applications, vol. 18, no. 1, pp. 145–174, 1967.
[17] L. Zadeh, “Fuzzy sets,” *Information and control*, vol. 8, no. 3, pp. 338–353, 1965.

[18] J. Mordeson and D. Malik, *Fuzzy commutative algebra*. World scientific, 1998.