ON KLOOSTERMAN SUMS OVER FINITE FIELDS OF CHARACTERISTIC 3

L. A. BASSALYGO AND V.A. ZINOVIEV

ABSTRACT. We study the divisibility by 3^k of Kloosterman sums $K(a)$ over finite fields of characteristic 3. We give a new recurrent algorithm for finding the largest k, such that 3^k divides the Kloosterman sum $K(a)$. This gives a new simple test for zeros of such Kloosterman sums.

1. Introduction

Let $\mathbb{F} = \mathbb{F}_q$ be a field of characteristic p of order $q = p^m$, where $m \geq 2$ is an integer and let $\mathbb{F}^* = \mathbb{F} \setminus \{0\}$. By \mathbb{F}_p denote the field, consisting of p elements. For any element $a \in \mathbb{F}^*$ the Kloosterman sum can be defined as

\begin{equation}
K(a) = \sum_{x \in \mathbb{F}} \omega^{\text{Tr}(x + a/x)},
\end{equation}

where $\omega = \exp 2\pi i/p$ is a primitive p-th root of unity and

\begin{equation}
\text{Tr}(x) = x + x^p + x^{p^2} + \cdots + x^{p^{m-1}}.
\end{equation}

Recall that under x^{-i} we understand $x^{p^{m-1-i}}$, avoiding by this way a division into 0.

Kloosterman sums are used for solutions of equations over finite fields \cite{19}, in the theory of error correcting codes \cite{18}, for studying and constructing of bent and hyper-bent functions \cite{8, 16} and so on. Surely, any Kloosterman sum $K(a)$ for a given a can be found directly computing its value for every element of the field, but this method requires a large amount of computations, which is a multiple of the size of the field. Hence more simple methods of computations of Kloosterman sums are quite interesting. The values of characteristic $p \in \{2, 3\}$ are especially interesting in connection with the number of q-rational points of some elliptic curves \cite{17, 18, 20, 23}. Divisibility of binary Kloosterman sums by numbers 8, 16, . . . , 256 and computations of such sums modulo some numbers was considered in papers \cite{6, 7, 11, 12, 15, 20, 21, 24}. Divisibility of ternary Kloosterman sums $K(a)$ by 9 and by 27 was considered in \cite{11, 12, 13, 14, 20, 21}.

2010 Mathematics Subject Classification. Primary 11T23; Secondary 11L05.

Key words and phrases. Kloosterman sums over \mathbb{F}_{3^m}, divisibility by 3^k, zeros of Kloosterman sums.

THIS WORK HAS BEEN PARTIALLY SUPPORTED BY THE RUSSIAN FUND OF FUNDAMENTAL RESEARCHES (NUMBER OF PROJECT 15 - 01 - 08051).
Furthermore, in [11, 12, 13] a complete characterization of $K(a)$ modulo 9, 18 and 27 was obtained for any m and a.

In the recent papers [2, 3] we provide two algorithms to find the maximum divisor of $K(a)$ of type 2^k. Similar results for the case $p = 3$ have been announced in [4] and here we prove these results. In particular, we give a simple test of divisibility of $K(a)$ by 27. We suggest also a new recursive algorithm of finding the largest divisor of $K(a)$ of the type 3^k which needs at every step the limited number of arithmetic operations in \mathbb{F}. For the case when $m = gh$ we derive the exact connection between the divisibility by 3^k of $K(a)$ in \mathbb{F}_{3^g}, $a \in \mathbb{F}_{3^g}$, and the divisibility by 3^k of $K(a)$ in $\mathbb{F}_{3^{gh}}$.

2. Known results

In this section we state the known results about Kloosterman sums $K(a)$ [20, 23] and elliptic curves $E(a)$ [9, 22] over finite fields \mathbb{F} of characteristic 3. Our interest is the divisibility of such sums by the maximal possible number of type 3^k (i.e. 3^k divides $K(a)$, but 3^{k+1} does not divide $K(a)$; in addition, when $K(a) = 0$ we assume that 3^m divides $K(a)$, but 3^{m+1} does not divide; recall that $q = 3^m = |\mathbb{F}|$).

For a given \mathbb{F} and any $a \in \mathbb{F}^*$ define the elliptic curve $E(a)$ as follows:

$$E(a) = \{ (x, y) \in \mathbb{F} \times \mathbb{F} : y^2 = x^3 + x^2 - a \}.$$

The set of \mathbb{F}-rational points of the curve $E(a)$ over \mathbb{F} forms a finite abelian group, which can be represented as a direct product of a cyclic subgroup $G(a)$ of order 3^t and a certain subgroup $H(a)$ of some order s (which is not multiple to 3): $E(a) = G(a) \times H(a)$, such that

$$|E(a)| = 3^t \cdot s$$

for some integers $t \geq 2$ and $s \geq 1$ (see [9]), where $s \not\equiv 0 \pmod{3}$.

Moisio [23] showed that

$$|E(a)| = 3^m + K(a),$$

where $|A|$ denotes the cardinality of a finite set A (earlier the same result was obtained in [17] for the curve $y^2 + xy + ay = x^3$). Therefore a Kloosterman sum $K(a)$ is divisible by 3^t, if and only if the number of points of the curve $E(a)$ is divisible by 3^t. Lisonëk [20] observed, that $|E(a)|$ is divisible by 3^t, if and only if the group $E(a)$ contains an element of order 3^t.

Since $|E(a)|$ is divisible by $|G(a)|$, which is equal to 3^t, then generator elements of $G(a)$ and only these elements are of order 3^t.

Let $Q = (\xi, *) \in E(a)$. Then the point $P = (x, *) \in E(a)$, such that $Q = 3P$ exists, if and only if the equation

$$x^9 - \xi x^6 + a(1 - \xi)x^3 - a^2(a + \xi) = 0.$$
has a solution in \(\mathbb{F} \) (see [9]). This equation is equivalent to equation
\[
(2.3) \quad x^3 - \xi^{1/3}x^2 + (a(1 - \xi))^{1/3}x - (a^2(a + \xi))^{1/3} = 0.
\]
The equation (2.3) is solvable in \(\mathbb{F} \) if and only if (see, for example, [1])
\[
(2.4) \quad \text{Tr}\left(\frac{a\sqrt{\xi^3 + \xi^2 - a}}{\xi^3}\right) = 0.
\]
Since the point \((a^{1/3}, a^{1/3})\) of \(E(a) \) has the order 3, and hence belongs to \(G(a) \), then solving the recursive equation
\[
(2.5) \quad x_i^3 - x_{i-1}^{1/3}x_i^2 + (a(1 - x_{i-1}))^{1/3}x_i - (a^2(a + x_{i-1}))^{1/3} = 0, \quad i = 0, 1, ...
\]
with initial value \(x_0 = a^{1/3} \), we obtain that the point \((x_i, *) \in G(a)\) for \(i = 0, 1, \ldots, t-1 \), and the point \((x_{t-1}, *)\) is a generator element of \(G(a) \). Such algorithm of finding of cardinality of \(G(a) \) was given in [1].

Similar method was presented in our previous papers [2, 3] for finite fields of characteristic 2. Besides, some another results have been obtained in [2, 3] for the case \(p = 2 \). Our purpose here is to generalize these results for finite fields of characteristic 3.

3. NEW RESULTS

We begin with a simple result. It is known [1, 14, 21], that 9 divides \(K(a) \) if and only if \(\text{Tr}(a) = 0 \). In this case \(a \) can be presented as follows: \(a = z^{27} - z^9 \), where \(z \in \mathbb{F} \), and, hence \(x_0 = a^{1/3} = z^9 - z^3 \) (see (2.3)). We found the expression for the next element \(x_1 \), namely:
\[
x_1 = (z^4 - 1)(z^3 - 1)z^2
\]
and, therefore, from the condition (2.4), the following result holds.

Proposition 3.1. Let \(a \in \mathbb{F}^* \) and \(\text{Tr}(a) = 0 \), i.e. \(a \) can be presented in the form: \(a = z^{27} - z^9 \). Then \(x_0 = z^9 - z^3, \ \ x_1 = (z^4 - 1)(z^3 - 1)z^2, \) and, therefore, \(K(a) \) is divisible by 27, if and only if
\[
(3.1) \quad \text{Tr}\left(\frac{z^5(z - 1)(z + 1)^7}{(z^2 + 1)^3}\right) = 0,
\]
This condition (3.1) is more compact than the corresponding condition from the papers [12, 13], where it is proven that \(K(a) \) is divisible by 27, if \(\text{Tr}(a) = 0 \) and
\[
2 \sum_{1 \leq i \leq j \leq m-1} a^{3^i + 3^j} + \sum_{1 \leq i < j < k \leq m-1} a^{3^i + 3^j + 3^k} = 0.
\]
Emphasize once more, that similar conditions permit in [11, 12, 13] to find all values of \(K(a) \) modulo 9, 18 and 27, while the condition (3.1) gives only divisibility of \(K(a) \) by 27.
Similar to the case \(p = 2 \) [2, 3], we give now also another algorithm to find the maximal divisor of \(K(a) \) of the type \(3^t \), which requires at every step the limited number of arithmetic operations in \(\mathbb{F} \).

Let \(a \in \mathbb{F}^* \) be an arbitrary element and let \(u_1, u_2, \ldots, u_\ell \) be a sequence of elements of \(\mathbb{F} \), constructed according to the following recurrent relation (compare with (2.5)):

\[
(3.2) \quad u_{i+1} = \frac{(u_i^3 - a)^3 + au_i^3}{(u_i^3 - a)^2}, \quad i = 1, 2, \ldots,
\]

where \((u_1, *) \in E(a)\) and

\[
(3.3) \quad \text{Tr} \left(\frac{a\sqrt{u_1^3 + u_1^2 - a}}{u_1^3} \right) \neq 0.
\]

Then the following result is valid.

Theorem 3.2. Let \(a \in \mathbb{F}^* \) and let \(u_1, u_2, \ldots, u_\ell \) be a sequence of elements of \(\mathbb{F} \), which satisfies the recurrent relation (3.2), where the element \(u_1 \) satisfies (3.3) and \((u_1, *) \in E(a)\). Then there exists an integer \(k \leq m \) such that one of the two following cases takes place:

(i) either \(u_k = a^{1/3} \), but the all previous elements \(u_i \) are not equal to \(a^{1/3} \);
(ii) or \(u_{k+1} = u_{k+1+r} \) for a certain \(r \) and the all elements \(u_i \) are different for \(i < k+1+r \).

In the both cases the Kloosterman sum \(K(a) \) is divisible by \(3^k \) and is not divisible by \(3^{k+1} \).

Proof. Let \(a \in \mathbb{F}^* \) and let \(u_1, u_2, \ldots, u_\ell \) be a sequence of elements of \(\mathbb{F} \), which satisfies the recurrent relation (3.2), where the element \(u_1 \) satisfies (3.3) and the point \(P_1 = (u_1, *) \) belongs to \(E(a) \). Assume that \(E(a) \) has the order \(3^t \cdot s \), where \(s \) is prime to 3. We have to show that \(k = t \).

Denote \(P_i = (u_i, *) \). Since \(P_1 = (u_1, *) \) belongs to \(E(a) \), it follows from the addition operation in the additive abelian group \(E(a) \) (Table 2.3 in [3]) and from (3.2), that for \(i \geq 2 \) all points \(P_i \) belongs to \(E(a) \) and \(P_i = 3^{i-1}P_1 \) for \(i \geq 2 \).

There are only two possibilities: either \(P_1 \in G(a) \), or \(P_1 \in E(a) \setminus G(a) \).

First consider the case \(P_1 \in G(a) \). We claim that the condition (3.3) implies that \(P_1 \) is a generating element of the (cyclic) group \(G(a) \). Indeed, assume that it is not the case. Then it means that there is the point \(Q \in G(a) \) such that \(P_1 = 3Q \). Assuming that \(Q = (x, *) \) and using the addition operation in \(E(a) \) [3], we arrive to the following equation for \(x \):

\[
x^3 - u_1^{1/3}x^2 + (a(1-u_1))^{1/3}x - (a^2(a+u_1))^{1/3} = 0.
\]
As we already mentioned in Section 2, this equation has a solution, if and only if

$$\text{Tr} \left(\frac{a \sqrt{u_1^3 + u_1^2 - a}}{u_1^3} \right) = 0,$$

that contradicts to (3.3). We conclude that P_1 is a generating point of $G(a)$ and, therefore, has the order 3^t. This means that the point $P_t = (u_t, *) = 3^{t-1}P_1$ is of the order 3. Since there are exactly two points in $E(a)$ of the order 3^t [9], namely, the points $(a^{1/3}, \pm a^{1/3})$, it means that for any $i \leq t - 1$ we have that $u_i \neq a^{1/3}$. Therefore, $k = t$ and $K(a)$ is divisible by 3^t.

Now consider the case when $P_1 \in E(a) \setminus G(a)$. Then the order d of the point $3^tP_1 = (u_{t+1}, *)$ divides s. The point dP_1 belongs to the cyclic group $G(a)$, and it is a generating element, since the equality $dP_1 = 3Q$ for some $Q \in E(a)$ implies the equality $P_1 = 3Q'$, that contradicts to (3.3). Therefore the order of the point P_1 is equal to $d \cdot 3^t$ and $K(a)$ is divisible by 3^t.

Denote by r the least integer, such that d divides $3^r - 1$ or $3^r + 1$. Then we have the following equalities:

in the first case

$$3^{t+r} \cdot P_1 = 3^t \cdot P_1$$

and in the second case

$$3^{t+r} \cdot P_1 = -3^t \cdot P_1.$$

In the both cases we obtain, that $u_{t+1} = u_{t+1+r}$, and our sequence u_1, u_2, \ldots, u_t becomes periodic with a period r, starting from the element u_{t+1}. □

Remark 3.3. It is clear, that, for the case (ii) of Theorem 1, this algorithm needs $k+r$ computations of values

$$x^3 - a + \frac{ax^3}{(x^3 - a)^2}$$

for finding the largest divisor of $K(a)$ of the type 3^k. Besides, the following lower bound for the number of \mathbb{F}-rational points of the curve $E(a)$ is valid:

$$|E(a)| \geq 3^k(2r + 1)$$

and, respectively, the following upper bound for the value of Kloosterman sum $K(a)$ takes place:

$$K(a) \leq 3^m - 3^k(2r + 1).$$

Directly from Theorem 3.2 we obtain the following necessary and sufficient condition for an element $a \in \mathbb{F}^*$ to be a zero of the Kloosterman sum $K(a)$.
Corollary 3.4. Let \(a \in \mathbb{F}^* \) and \(u_1, u_2, \ldots, u_\ell \) be a sequence of elements of \(\mathbb{F} \) of the order \(|\mathbb{F}| = 3^m \), which satisfies the recurrent relation (3.2), where the element \(u_1 \) satisfies (3.3). Then \(K(a) = 0 \), if and only if \(u_m = a^{1/3} \), and \(u_i \neq a^{1/3} \) for all \(1 \leq i \leq m - 1 \).

Example 3.5. Suppose the field \(\mathbb{F} \) of order 3\(^5\) is generated by \(\phi(x) = x^5 + x^4 + x^2 + 1 \) and its root \(\alpha \) is a primitive element of \(\mathbb{F} \). Take \(a = \alpha^{31} \). Following to Statement 3.7, present \(a \) as \(a = z^{27} - z^9 \). We find that \(z \in \{ \alpha^{16}, \alpha^{106}, \alpha^{231} \} \). The corresponding possible values of \(x_1 \) are \(\alpha^7, \alpha^{19}, \alpha^{105} \), respectively. For all these values of \(z \) the condition (3.1) is satisfied. We conclude that \(K(a) \) is divisible by 27. Choosing \(x_1 = \alpha^7 \) and solving the cubic equation (2.5), we obtain three solutions for \(x_2 \), namely, \(x_2 \in \{ \alpha^{138}, \alpha^{196}, \alpha^{237} \} \).

Choose \(x_2 = \alpha^{138} \). Then the condition (2.4) (with \(\xi = x_2 \)) is not valid:

\[
\text{Tr} \left(a \sqrt{x_2^3 + x_2^3 - a} \right) = \text{Tr}(\alpha^{202}) = 1.
\]

It means that we find the exact divisor 3\(^6\) of \(K(\alpha^{31}) \) and the maximal cyclic subgroup \(G(\alpha^{31}) \) of the curve \(E(\alpha^{31}) \) is of the order 27. The \(x \)-th coordinates of all points \((x, *)\) of the cyclic group \(G(\alpha^{31}) \) are presented below as a graph, which gives all possible nine sequences \(x_0 = a^{1/3}, x_1, x_2 \).

As the condition (2.4) for all elements of the last third level (numeration of the levels 0, 1, \ldots is starting from the top) is not satisfied, then \(k = 3 \), and we conclude that \(K(\alpha^{31}) \) is divisible by 27 (indeed, \(K(\alpha^{31}) = 27 \)). Note that all points \(P_i = (x_i, y_i) \), corresponding to the \(i \)-th level of the graph satisfy the condition \(3^{i+1}P_i = \mathcal{O} \), where \(\mathcal{O} \) is the identity element of the group \(E(a) \).

Now start from the down, choosing the point \(u_1 = \alpha^{159} \), which satisfies (3.3). Then using (3.2), we obtain the sequence

\[
\alpha^{159}, \alpha^{44}, \alpha^{162}, \alpha^{162}, \ldots.
\]

We conclude that \(k = 3 \) (see Theorem 3.2) and \(K(a) \) is divisible by \(3^3 \) (here \(r = 1 \)). The choice \(u_1 = \alpha^{193} \) results in the following sequence:

\[
\alpha^{193}, \alpha^{199}, \alpha^{50}, \alpha^{197}, \alpha^{223}, \alpha^{197} \alpha^{223}, \ldots.
\]

We again conclude that \(k = 3 \) (and here \(r = 2 \)).
Assume now that the field F_q of order $q = 3^m$ is embedded into the field $F_{q^n} (n \geq 2)$, and a is an element of F_q^*. Recall that

$$\text{Tr}_{q^n \to q}(x) = x + x^q + x^{q^2} + \ldots + x^{q^{n-1}}, \ x \in F_{q^n}.$$

For any elements $a \in F_q$ and $b \in F_{q^n}$ define

$$e(a) = \omega^{\text{Tr}(a)}, \ e_n(b) = \omega^{\text{Tr} \circ \text{Tr}_{q^n \to q}(b)},$$

where ω is a primitive 3-th root of unity. For a given $a \in F_q^*$ it is possible to consider the following two Kloosterman sums:

$$K(a) = \sum_{x \in F_q} e \left(x + \frac{a}{x} \right), \ K_n(a) = \sum_{x \in F_{q^n}} e_n \left(x + \frac{a}{x} \right).$$

Denote by $H(a)$ the maximal degree of 3, which divides $K(a)$, and by $H_n(a)$ the maximal degree of 3, which divides $K_n(a)$. Recall that in the case, when $K(a) = 0$ over F_q, where $q = 3^m$, we assume that 3^m divides $K(a)$, but 3^{m+1} does not divide. There exists a simple connection between $H(a)$ and $H_n(a)$.

Theorem 3.6. Let $n = 3^h \cdot s, \ n \geq 2, \ s \geq 1$, where 3 and s are mutually prime, and $a \in F_q^*$. Then

$$H_n(a) = H(a) + h.$$

The proof follows from two simple statements.

Proposition 3.7. Let $h = 0$ (that is n and 3 are coprime). Then

$$H_n(a) = H(a).$$

Proof. By definition of the trace we have for any element $x \in F_q$

$$\text{Tr}(\text{Tr}_{q^n \to q}(x)) = \text{Tr}(x + x^q + x^{q^2} + \ldots + x^{q^{n-1}}) =$$

$$= \text{Tr}(x) + \text{Tr}(x^q) + \text{Tr}(x^{q^2}) + \ldots + \text{Tr}(x^{q^{n-1}}) =$$

$$= n \text{Tr}(x) =$$

$$= \pm \text{Tr}(x),$$

where the last equality follows, since n and 3 are coprime. Therefore, $\text{Tr}_{q^n \to p}(x) = 0$ for any $x \in F_q$, if and only if $\text{Tr}_{q \to p}(x) = 0$. And, since $a, a^{1/3} \in F_q$, then all solutions of the equation (2.22) belong to F_q, that gives the statement.

Proposition 3.8. Let $n = 3$ and $a \in F_q^*$. Then

$$H_3(a) = H(a) + 1.$$
Proof. It is known [3] that

\[K_3(a) = K(a)^3 - 3K(a)^2 + 3K(a) - 3qK(a). \]

Assume that \(K(a) \) is divisible by \(3^k \). Then it is easy to see that \(K_3(a) \) is divisible by \(3^{k+1} \) and is not divisible by \(3^{k+2} \).

\[\square \]

From Theorem 3.6, recalling that equality \(K(a) = 0 \) over \(\mathbb{F}_q \) means divisibility of \(K(a) \) by \(q \), we immediately obtain the following known result [21].

Corollary 3.9. Let \(a \in \mathbb{F}_q^* \) and \(n \geq 2 \). Then \(K_n(a) \) is not equal to zero.

References

[1] O. Ahmadi and R. Granger, An efficient deterministic test for Kloosterman sum zeros, Math. of Computation, 83 (2014), 347 - 363.
[2] L.A. Bassalygo and V.A. Zinoviev, On divisibility of exponential sums of polynomials of special type over fields of characteristic 2, in: Seventh International Workshop on Coding and Cryptography, WCC 2011 (April 11-15, 2011, Paris, France) Proceedings (eds. D. Augot and A. Canteaut), 2011, 389 - 396.
[3] L.A. Bassalygo and V.A. Zinoviev, On divisibility of exponential sums of polynomials of special type over fields of characteristic 2, Designs, Codes and Crypt., 66 (2013), 1-3, 129-143.
[4] L.A. Bassalygo and V.A. Zinoviev, On Kloosterman sums over finite fields of characteristic 3, in: Proceedings of Thirteenth International Workshop. Algebraic and Combinatorial Coding Theory, ACCT - 13 (June 15-21, 2012), Pomorie, Bulgaria), 83-87.
[5] L. Carlitz, Kloosterman sums and finite field extensions, Acta Arithmetica, vol. XVI (1969), pp. 179-193.
[6] P. Charpin, T. Helleseth and V.A. Zinoviev, The divisibility modulo 24 of Kloosterman sums on \(GF(2^m) \), \(m \) odd, J. Comb. Theory Ser. A, 114 (2007), 2, 322-338.
[7] P. Charpin, T. Helleseth and V.A. Zinoviev, On divisibility properties of classical binary Kloosterman sums, Discrete Math., 309 (2009), 12, 3975-3984.
[8] P. Charpin and G. Gong, Hyperbent functions, Kloosterman sums, and Dickson polynomials, IEEE Trans. Inform. Theory, 54 (2008), 9, 4230-4238.
[9] A. Enge, Elliptic curves and their applications to cryptography: an introduction, Klumer Academic Publishers, Boston, 1999.
[10] F. G"oloğlu, P. Lisonek, G. McGuire, and R. Moloney, Binary Kloosterman sums modulo 256 and coefficients of the characteristic polynomial, IEEE Trans. Inform. Theory, 58 (2012), 4, 2516-2523.
[11] F. G"oloğlu, G. McGuire, and R. Moloney, Binary Kloosterman sums using Stickelberger’s theorem and the Gross-Koblitz formula, Acta Arithmetica, 148 (2011), 3, 269-279.
[12] F. Göloğlu, G. McGuire, and R. Moloney, Some results on Kloosterman sums and their minimal polynomials, in: Seventh International Workshop on Coding and Cryptography, WCC 2011 (April 11-15, 2011, Paris, France.), Proceedings (eds. D. Augot and A. Canteaut), 2011, 403 - 412.

[13] F. Göloğlu, G. McGuire, and R. Moloney, Some congruences on Kloosterman sums and their characteristic polynomials, J. Number Theory, 143 (2013), 1596-1607; see arXiv:1006.1802v1 [math.NT] 9 Jun 2010.

[14] G. van der Geer and M. van der Vlugt, Kloosterman sums and the p-torsion of certain Jacobians, Math. Ann., 290 (1991), 3, 549 - 563.

[15] T. Helleseth and V.A. Zinoviev, On Z4-Linear Goethals Codes and Kloosterman Sums, Designs, Codes and Crypt., 17 (1999), 1-3, 246-262.

[16] T. Helleseth and A. Kholosha, Monomial and quadratic bent functions over the finite fields of odd characteristic, IEEE Trans. Inform. Theory, 52 (2006), 2018-2032.

[17] Katz N. and Livne R., Sommes de Kloosterman et courbes elliptiques universelles en caracteristiques 2 et 3, C. R. Acad. Sci. Paris Ser. I Math., 309 (1989), 11, 723-726.

[18] Lachaud, G. and Wolfmann, J., The Weights of the Orthogonals of the Extended Quadratic Binary Goppa Codes, IEEE Trans. Inform. Theory, 36 (1990), 3, 686-692.

[19] R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and Its Applications, Reading, MA: Addison Wesley, 20, 1983.

[20] P. Lisonek, On the connection between Kloosterman sums and elliptic curves, in: Proceedings of the 5th International Conference on Sequences and Their Applications (SETA 2008) (S. Golomb et al. Eds., Lecture Notes in Computer Science, Springer, 5203 (2008), 182 - 187.

[21] P. Lisonek, and M. Moisio, On zeros of Kloosterman sums, Designs, Codes and Crypt., 59 (2011), 1 - 3, 223 - 230.

[22] A. Menezes, Elliptic Curve Public Key Cryptosystems, Kluwer Academic Publishers, Boston-Dordrecht-London, 1993.

[23] M. Moisio, Kloosterman sums, elliptic curves, and irreducible polynomials with prescribed trace and norm, Acta Arithmetica, 132 (2008), 4, 329 - 350.

[24] M. Moisio, The divisibility modulo 24 of Kloosterman sums on GF(2m), m even, Finite Fields and Their Appl., 15 (2009), 174 - 184.

Kharkevich Institute for Problems of Information Transmission of the Russian Academy of Sciences,, Russia, 127994, Moscow, GSP-4, B. Karetnyi per. 19

E-mail address: bass@iitp.ru, zinov@iitp.ru