Interleukin-8 Gene –251 A/T (rs4073) Polymorphism and Coronary Artery Disease Risk: A Meta-Analysis

Shunrong Zhang
Yue Gao
Jinyu Huang

Corresponding Author: Jinyu Huang, e-mail: hjyuo@163.com
Source of support: This study was financially supported by Zhejiang Provincial Natural Science Foundation of China under Grant No. Y15H020003, Zhejiang Medical and Health Science and Technology Project under Grant No. 2016D8010, and Zhejiang Science and Technology Plan Project under Grant No. 2016C33207

Background: Inflammation plays an important role in the pathogenesis of coronary artery disease (CAD). Studies have reported that inflammatory cytokine interleukin-8 (IL-8) gene –251 A/T (rs4073) polymorphism is correlated with CAD susceptibility, but the result remains controversial. The objective of this study was to clarify the association between IL-8 gene –251 A/T polymorphism and CAD risk.

Material/Methods: A meta-analysis included 8244 patients from 9 individual studies with 10 populations was conducted. Heterogeneity test was conducted, and pooled odds ratio (OR) with 95% confidence interval (CI) was calculated used fixed-effect or random-effects model accordingly. Publication bias was evaluated with the Begg’s funnel plot and Egger’s test. Sensitivity analysis was also conducted.

Results: A significant association between IL-8 gene –251 A/T polymorphism and CAD risk was found in the dominant model (OR 1.42, 95% CI 1.16–1.76, \(P < 0.001 \)), recessive model (OR 1.30, 95% CI 1.12–1.52, \(P < 0.001 \)), allelic model (OR 1.28, 95% CI 1.12–1.47, \(P < 0.001 \)), homozygote model (OR 1.59, 95% CI 1.21–2.08, \(P < 0.001 \)), and heterozygote model (OR 1.35, 95% CI 1.11–1.64, \(P = 0.002 \)). Subgroup analysis by ethnicity found significant associations in the Chinese population in the dominant model (OR 1.43, 95% CI 1.26–1.61, \(P < 0.001 \)), recessive model (OR 1.39, 95% CI 1.21–1.59, \(P < 0.001 \)), allelic model (OR 1.31, 95% CI 1.21–1.42, \(P < 0.001 \)), homozygote model (OR 1.66, 95% CI 1.41–1.95, \(P < 0.001 \)), and heterozygote model (OR 1.34, 95% CI 1.18–1.52, \(P < 0.001 \)), but no significant association was found in the Caucasian population. No significant publication bias was found.

Conclusions: The IL-8 gene –251 A/T polymorphism was significantly associated with CAD risk in the Chinese population but not in the Caucasian population, –251 A allele carrier had an increased risk of CAD in the Chinese population.

MeSH Keywords: Coronary Artery Disease • Genetic Variation • Interleukin-8 • Meta-Analysis

Full-text PDF: https://www.medscimonit.com/abstract/index/idArt/913591
Background

 Coronary artery disease (CAD), also known as coronary heart disease, is one of the leading causes of death worldwide. Its pathogenesis involves many risk factors including hypertension, diabetes, dyslipidemia. Several hypotheses have been proposed including inflammation hypothesis, immunological theory, etc. The inflammation mechanism in the initiation and development of CAD was once a research hotspot, and CAD was regarded as an inflammatory disease [1,2]. However, the inflammation hypothesis of CAD’s pathogenesis had not been validated until recently with the release of CANTOS (Anti-inflammation Therapy with Canakinumab for Atherosclerotic Disease) trial. As a landmark study, the CANTOS trial found that anti-inflammation therapy could improve prognosis of high-risk CAD patients significantly, thus validating the inflammation hypothesis of CAD for the first time [3,4].

 The inflammatory cytokine interleukin-8 (IL-8), also known as CXCL8, plays an important role in the initiation, progression, and prognosis of atherosclerosis and CAD. Studies have reported high expression levels of IL-8 in human arterial atherosclerotic wall [5]; and IL-8 can rapidly cause rolling monocytes to firmly adhere to endothelial monolayers expressing E-selectin [6]. On the other hand, clinical studies have observed high expression levels of IL-8 in human arterial atherosclerotic wall [5]; and IL-8 can rapidly cause rolling monocytes to firmly adhere to endothelial monolayers expressing E-selectin [6]. The IL-8 gene is located in chromosome 4q13.3 and belongs to the superfamily of CXC chemokines. One single-nucleotide polymorphism (SNP) of IL-8 gene at position −251 A/T (rs4073) has been well-characterized and was known to influence the expression of IL-8 and susceptibility of several diseases including Alzheimer’s disease [9], cancer[10], and periodontitis [11]. Vogiatzi et al. first reported that IL-8 gene −251 A/T polymorphism was associated with susceptibility to restenosis after PCI [12]. Thereafter, several other studies found that IL-8 gene −251 A/T polymorphism was associated with susceptibility of CAD, and that the −251 A allele may increase CAD risk [13–16]. However, other studies reported no significant correlation between the IL-8 gene −251 A/T polymorphism and the risk of CAD [17–21]. Thus, the association between this SNP of the IL-8 gene and susceptibility of CAD is controversial.

 A reliable method to resolve the contradictions between individual studies is meta-analysis. In order to comprehensively evaluate the correlation between the IL-8 gene −251 A/T (rs4073) polymorphism and the risk of CAD, we conducted a meta-analysis that included 4103 CAD patients and 4141 controls from 10 study populations.

Material and Methods

 Literature search

 All studies about the association between IL-8 gene −251 A/T polymorphism and CAD were identified by comprehensive computer-based searches of PubMed, EMBASE, Web of Science, Wan Fang database, VIP database, and China National Knowledge Infrastructure (CNKI). The keywords used for the literature search were combined: (“interleukin 8” OR “IL-8” OR “CXCL8”) and (“coronary artery disease” OR “coronary heart disease” OR “CAD” OR “CHD” “ OR “myocardial infarction” OR “acute coronary syndrome” OR “angina” OR “ischemic cardiovascular disease”) and (“polymorphism” OR “single nucleotide polymorphism” OR “SNP” OR “mutation” OR “variation” OR “allele” OR “genotype” OR “rs4073” OR “251 A/T”). The literature language was limited to English and Chinese, and the last search was updated on November 20, 2018.

 Inclusion criteria

 The inclusion criteria for eligible studies were as follow: 1) studies evaluated the association between the IL-8 gene −251 A/T polymorphism and the risk of CAD. 2) The CAD diagnostic criteria were angiographically confirmed CAD or acute myocardial infarction (AMI) diagnosed with general standard criteria. 3) Studies were case-control or officially published cohort studies. 4) Studies had intact original data on genotype distribution and sufficient data to calculate an odds ratio (OR) with 95% confidence interval (CI).

 Exclusion criteria

 Studies were excluded as follows: repeated publications, when different studies reported the same or overlapping patients, only the latest or most complete was included; review articles; articles with insufficient information; studies about the association between the IL-8 gene other SNPs and CAD risk; unpublished studies or studies not in English or Chinese language; and studies in which CAD patients were further specially selected with traditional Chinese medicine (TCM) syndrome differentiation.

 Data extraction

 Two authors (Zhang and Gao) performed the data extraction independently. The following data were collected from all included studies: the first author’s name, publication year, study population (ethnicity, sex, and age), number of genotypes, genotyping methods, allele frequency of cases and controls, diagnostic methods for cases and controls, and P value for Hardy-Weinberg equilibrium (HWE) in controls. The results were compared, and disagreements were settled by consensus.
If these 2 authors could not reach a consensus, the results were further reviewed by the third author (Huang).

Study quality assessment

The Newcastle-Ottawa Quality Assessment Scale (NOS) [22] was used to assess the quality of the included studies by 2 authors independently. The NOS uses a “star” rating system ranging between zero (worst) up to 9 stars (best) to judge the quality of observational studies. Any inconsistencies about study quality judgement between the 2 authors were solved through discussion.

Statistical analysis

The statistical analysis was performed by using Review Manager 5.30 (Cochrane Collaboration, The Nordic Cochrane Centre, Copenhagen) and Stata 14.0 (STATA Corp., College Station, TX, USA). To measure the strengths of the genetic associations of the IL-8 gene –251 A/T polymorphism with the risk of CAD, the pooled odds ratios (ORs) and 95% confidence interval (CI) were calculated. A χ² test was used to check whether the frequencies of the genotypes deviated from the HWE [23] in controls of each included study. Heterogeneity between studies was assessed by I² test, P<0.10 and I²>50% was considered existing significant heterogeneity [24]. If significant heterogeneity was observed, the Mantel-Haenszel test with random-effects model was used to evaluate the pooled ORs (95% CIs), otherwise, the Mantel-Haenszel test with fixed-effect model was used to calculate the pooled ORs (95% CIs) [25]. To further explore the effect of ethnicity on heterogeneity among the studies, subgroup analysis was performed based on different ethnicities (Chinese versus Caucasian). The potential publication bias was checked by using the Begg’s funnel plot and Egger’s test. Sensitivity analysis was conducted to observe the influence of any single study on the pooled ORs. Except for I² test for assessing heterogeneity, a 2-tailed P<0.05 was considered significant.

Results

Study characteristics

A total of 199 studies were initially identified according to the search criteria described. After screening titles and abstracts, 183 studies were discarded for being irrelevant. After full-text assessment, 7 studies were further excluded for repetitive publications, comparison of different CAD types, other loci, and reviews. Finally, 9 eligible studies were identified for overall data combination, but 1 of the studies [13] had 2 different populations, so a total of 10 populations with 4103 CAD cases and 4141 controls were included for data analysis in this meta-analysis.

The flow diagram of study selection process is shown in Figure 1. HWE of genotype distribution in the controls was tested in all the included studies, and the distribution of genotypes in controls was not in HWE in 3 of the included studies. Of the 9 included studies, polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method was used to determine IL-8 gene –251 A/T genotypes in 5 studies, while the remaining 4 studies used allele-specific polymerase chain reaction (AS-PCR), matrix adsorbed laser desorption-ionization-time of flight (MALDI-TOF), tetra-primer amplification refractory mutation system-polymerase chain reaction (tetra-primer ARMS-PCR), and Sequenom MassARRAY to genotyping respectively. The characteristics and genotype frequencies of the included studies are presented in Tables 1 and 2.

Meta-analysis results

Before calculating pooled ORs, a heterogeneity test was conducted, and heterogeneity was found in the allelic model (I²=78%, P<0.001), dominant model (I²=77%, P<0.001), recessive model (I²=49%, P=0.04), homozygote model (I²=77%, P<0.001), and heterozygote model (I²=68%, P<0.001) of the IL-8 gene –251 A/T polymorphism. We used random-effects models to merge ORs for all the comparison models of the IL-8 gene –251 A/T polymorphism. A significant association was found between the IL-8 gene –251 A/T polymorphism and the risk of CAD in all dominant (OR 1.42, 95% CI 1.16–1.76, P<0.001), recessive (OR 1.30, 95% CI 1.12–1.52, P<0.001), allelic (OR 1.28, 95% CI 1.12–1.47, P<0.001), homozygote (OR 1.59, 95% CI 1.21–2.08, P<0.001), and heterozygote (OR 1.35, 95% CI 1.11–1.64, P=0.002) models (Figures 2–6).
Table 1. Characteristics of the included studies in the meta-analysis.

Study	Ethnicity	Genotyping method	Subjects of cases	Matching criteria	Sample size (n)	Quality score
Zhang X et al. (a*) [13]	Chinese	PCR-RFLP	CAC patients	Age, gender, LDL-C	675/636	6
Zhang X et al. (b*) [13]	Chinese	PCR-RFLP	CAC patients	Age, gender, LDL-C	360/360	6
Vogiatzi K et al. [17]	Caucasian	AS-PCR	CAC patients	Age, hypertension	241/157	6
Zhang RJ et al. [15]	Chinese	PCR-RFLP	CAC patients	Age, alcohol consumption, FH	217/245	6
Velasquez IM et al. [19]	Caucasian	MALDI-TOF	MI patients	Age, gender	867/1035	5
Yang HT et al. [21]	Chinese	PCR-RFLP	CAC patients	Age, alcohol consumption	410/410	5
Wang S et al. [14]	Chinese	PCR-RFLP	CAC patients	Age, alcohol consumption, FH	264/286	6
Hou H et al. [18]	Chinese	PCR-RFLP	CAC patients	Age, gender	244/170	6
Ren B et al. [20]	Chinese	SequenomMassARRAY	CAC patients	Age, gender, alcohol consumption	325/342	5
Kaur N et al. [16]	Caucasian	Tetra-primerARMSPCR	CAC patients	BMI, HDL-C, TG	500/500	6

PCR-RFLP – polymerase chain reaction-restriction fragment length polymorphism; AS-PCR – allele specific-polymerase chain reaction; MALDI-TOF – Matrix Adsorbed Laser Desorption-Ionisation-Time of Flight; ARMS-PCR – amplification refractory mutation system-polymerase chain reaction; CAC – coronary angiography-confirmed CAD; MI – myocardial infarction; FH – family history; LDL-C – low-density lipoprotein cholesterol; HDL-C – high-density lipoprotein cholesterol; TG – triglycerides; BMI – body mass index. * This study has two different populations, here we marked as population a and b.

Table 2. Genotype frequencies of the included studies in the meta-analysis.

Study	Ethnicity	Case/Control (n)	CAD group (~251 A/T)	Control (~251 A/T)	PHWE
		AA AT TT A T A T			
Zhang X et al. (a*) [13]	Chinese	675/636 123 320 232 566 784 80 292 264 452 820	0.96		
Zhang X et al. (b*) [13]	Chinese	360/360 76 176 108 328 392 58 159 143 275 445	0.22		
Vogiatzi K et al. [17]	Caucasian	241/157 41 127 73 209 273 28 76 53 132 182	0.93		
Zhang RJ et al. [15]	Chinese	217/245 69 101 47 239 195 57 108 80 222 268	0.08		
Velasquez IM et al. [19]	Caucasian	867/1035 269 416 182 954 780 330 516 189 1176 894	0.61		
Yang HT et al. [21]	Chinese	410/410 114 178 118 406 414 105 171 134 381 439	<0.01		
Wang S et al. [14]	Chinese	264/286 78 125 61 281 247 56 128 102 240 332	0.17		
Hou H et al. [18]	Chinese	244/170 41 130 73 212 276 21 85 64 127 213	0.37		
Ren B et al. [20]	Chinese	325/342 93 147 85 333 317 85 149 108 319 365	0.02		
Kaur N et al. [16]	Caucasian	500/500 199 225 76 623 377 148 195 157 491 509	<0.01		

HWE – Hardy-Weinberg equilibrium; CAD – coronary artery disease. * This study has two different populations, here we marked as population a and b.
Table 1

Study or subgroup	Control Events	Control Total	CAD group Events	CAD group Total	Weight	Odds ratio M-H, Random, 95% CI
AA						
1.1 Chinese						
Hou H et al. (2012)	41	244	21	170	5.3%	1.4 [0.81, 2.53]
Ren B et al. (2015)	93	325	85	342	10.2%	1.21 [0.86, 1.71]
Wang S et al. (2016)	78	264	56	286	8.8%	1.72 [1.16, 2.55]
Yang HT et al. (2015)	114	410	105	410	11.4%	1.12 [0.82, 1.52]
Zhang RJ et al. (2017)	69	217	57	245	8.3%	1.54 [1.02, 2.32]
Zhang X et al. (2011a)	123	675	80	636	11.6%	1.55 [1.14, 2.10]
Zhang X et al. (2011b)	76	360	58	360	9.2%	1.39 [0.95, 2.03]
Subtotal (95% CI)	2495	2449			64.8%	1.39 [1.21, 1.59]
Total events	594	462				

Table 2

Study or subgroup	Experimental Events	Experimental Total	Control Events	Control Total	Weight	Odds ratio M-H, Random, 95% CI
AA						
1.1 Chinese						
Hou H et al. (2012)	171	244	106	170	8.8%	1.41 [0.93, 2.14]
Ren B et al. (2015)	240	325	234	342	10.0%	1.30 [0.93, 1.82]
Wang S et al. (2016)	203	264	184	286	9.4%	1.84 [1.27, 2.68]
Yang HT et al. (2015)	292	410	276	410	10.6%	1.20 [0.89, 1.62]
Zhang RJ et al. (2017)	170	217	165	245	8.7%	1.75 [1.15, 2.67]
Zhang X et al. (2011a)	443	675	372	636	11.6%	1.36 [1.08, 1.70]
Zhang X et al. (2011b)	252	360	217	360	10.4%	1.54 [1.13, 2.09]
Subtotal (95% CI)	2495	2449			69.5%	1.43 [1.26, 1.61]
Total events	1771	1554				

Figure 2

Forest plot for overall comparison in dominant model (AA+AT versus TT).

Figure 3

Forest plot for overall comparison in recessive model (AA versus AT+TT).
Table 1. Study or subgroup

Study or subgroup	Control	CAD group				
	Events	Total	Events	Total		
Hou H et al. (2012)	212	488	127	340	8.5%	1.29 [0.97, 1.71]
Ren B et al. (2015)	333	650	319	684	10.0%	1.20 [0.97, 1.49]
Wang S et al. (2016)	281	528	240	572	9.5%	1.57 [1.24, 2.00]
Yang HT et al. (2015)	406	820	381	820	10.5%	1.13 [0.93, 1.37]
Zhang L et al. (2017)	239	434	222	490	9.0%	1.48 [1.14, 1.92]
Zhang K et al. (2011)a	566	1350	452	1272	11.3%	1.31 [1.12, 1.53]
Zhang K et al. (2011)b	328	720	275	720	10.1%	1.35 [1.10, 1.67]
Subtotal (95%CI)	4990	4898	2365	2016	68.9%	1.31 [1.21, 1.42]

Figure 4. Forest plot for overall comparison in allelic model (A versus T).

Table 2. Study or subgroup

Study or subgroup	Control	CAD group				
	Events	Total	Events	Total		
Kaur N et al. (2018)	623	1000	491	1000	10.9%	1.71 [1.43, 2.05]
Velasquez IM et al. (2014)	954	1734	1176	2670	1.9%	0.93 [0.82, 1.06]
Vogiatzi K et al. (2008)	209	482	132	314	8.4%	1.06 [0.79, 1.41]
Subtotal (95%CI)	3216	3384	1786	1799	31.1%	1.19 [0.78, 1.81]

Figure 5. Forest plot for overall comparison in homozygote model (AA versus TT).
In a subgroup analysis stratified by ethnicity (Chinese versus Caucasian), 7 original studies with 4944 patients (2495 cases and 2449 controls) were allocated into a Chinese population subgroup, and 3 original studies with 3300 patients (1608 cases and 1692 controls) were allocated into a Caucasian subgroup population. No significant heterogeneity was found in the Chinese population subgroup in the recessive model (I²=93%, P=0.929), dominant model (I²=94%, P=0.001), allelic model (I²=93%, P<0.001), and heterozygote model (I²=92%, P<0.001) (Figures 2–6).

In a subgroup analysis stratified by ethnicity (Chinese versus Caucasian), 7 original studies with 4944 patients (2495 cases and 2449 controls) were allocated into a Chinese population subgroup, and 3 original studies with 3300 patients (1608 cases and 1692 controls) were allocated into a Caucasian subgroup population. No significant heterogeneity was found in the Chinese population subgroup in the recessive model (I²=93%, P=0.929), dominant model (I²=94%, P=0.001), allelic model (I²=93%, P<0.001), and heterozygote model (I²=92%, P<0.001) (Figures 2–6).

In a subgroup analysis stratified by ethnicity (Chinese versus Caucasian), 7 original studies with 4944 patients (2495 cases and 2449 controls) were allocated into a Chinese population subgroup, and 3 original studies with 3300 patients (1608 cases and 1692 controls) were allocated into a Caucasian subgroup population. No significant heterogeneity was found in the Chinese population subgroup in the recessive model (I²=93%, P=0.929), dominant model (I²=94%, P=0.001), allelic model (I²=93%, P<0.001), and heterozygote model (I²=92%, P<0.001) (Figures 2–6). Significant associations between the IL-8 gene –251 A/T polymorphism and the risk of CAD were found in the Chinese population in the dominant model (OR 1.12, 95% CI 1.05–1.19, P=0.001), recessive model (OR 1.19, 95% CI 1.11–1.28, P=0.001), and heterozygote model (OR 1.13, 95% CI 1.06–1.20, P=0.001). But no significant association was found in the Chinese population in all dominant (OR 1.03, 95% CI 0.96–1.10, P=0.44), recessive (OR 1.00, 95% CI 0.96–1.04, P=0.57), and heterozygote (OR 1.00, 95% CI 0.95–1.05, P=0.20) models (Figures 2–6).

Publication bias

The Begg's funnel plot and Egger's test [26] were used to evaluate publication bias of the included studies. No obvious asymmetry was found in funnel plots for all the genetic models (Figure 7). The Begg's test suggested no significant publication bias in the recessive model (Z=0.09, P=0.264), dominant model (Z=0.239, P=0.808), allelic model (Z=0.13, P=0.518), and heterozygote model (Z=0.12, P=0.582). In comparison to the Begg's test, the Egger's test is more sensitive, so we further conducted the Egger's test to rule out possible publication bias. The Egger's test results also showed no significant publication bias in the recessive model (t=1.27, P=0.239), dominant model (t=1.12, P=0.296), allelic model (t=1.20, P=0.264), homozygote model (t=0.93, P=0.382), and heterozygote model (t=1.25, P=0.248). These results demonstrated that there was no significant publication bias in the included studies, indicating the reliability of this meta-analysis.

Sensitivity analysis

To evaluate the influence of each study on the pooled ORs and to ensure no single study was completely responsible for the combined results, sensitivity analysis was conducted. The pooled ORs in all models were not significantly altered by omitting each of the individual studies (Table 3), which indicated that the results of this meta-analysis were robust [27].
As shown in Table 2, the genotype distribution in controls is not in HWE in 3 of the included studies [16,20,21], this may influence the reliability of the study results. So to overcome this shortcoming, we recalculated the pooled ORs by excluding these 3 studies, and found that a significant association was still present in all dominant (OR 1.35, 95% CI 1.08–1.70, \(P = 0.01 \)), recessive (OR 1.32, 95% CI 1.07–1.63, \(P = 0.01 \)), allelic (OR 1.26, 95% CI 1.07–1.48, \(P = 0.007 \)), homozygote (OR 1.54, 95% CI 1.11–2.14, \(P = 0.01 \)), and heterozygote (OR 1.27, 95% CI 1.04–1.55, \(P = 0.02 \)) models of the IL-8 gene –251 A/T polymorphism. The results further demonstrated the steadiness and reliability of this meta-analysis.

Discussion

In the present meta-analysis, we included 9 studies (10 study populations) with a total of 4103 CAD patients and 4141 controls to assess the correlation between the IL-8 gene –251 A/T polymorphism and the risk of CAD. A significant association between –251 A/T polymorphism and CAD risk was found in dominant, recessive, allelic, homozygote, and heterozygote models, –251 A allele carrier has an increased risk of CAD. After subgrouping by ethnicity, the association between –251 A/T polymorphism and CAD risk was significant in all the genetic
was once regarded as an inflammatory disease [1]. The newly
diseases (ASCVD) aroused people's attention, atherosclerosis
arteries. Over the past 10 years, the important role of inflam
pathological feature of CAD is atherosclerosis of coronary ar

tion, dyslipidemia, hypertension, diabetes mellitus, but its ex
genesis involves many risk factors, such as genetic predisposi
CAD threatens people's health seriously worldwide, its patho

results showed no single study was completely responsible for the
combined results, and significant associations between this
SNP and CAD risk were still present in all the genetic models
or in the Caucasian population.

models in the Chinese population, but not in all the genetic
models in the Chinese population, but not in all the genetic

For publication bias evaluation, we first conducted funnel plot
analysis, and found the funnel plots presented symmetrical
shape in all the genetic models, indicating no obvious publ
publication bias in this meta-analysis [28]. However, observing the
symmetry of the funnel plot shape visually is subjective to some extent [29], so we conducted the Begg’s test [30] and
and the Egger’s test [26] respectively to evaluate publication bias.
Both the Egger’s and the Begg’s tests identified no significant
publication bias in all recessive, dominant, allelic, homozygote,
and heterozygote models. These results indicated that there
is no significant publication bias in the included studies, sug
suggesting our meta-analysis was reliable. Sensitivity analysis
showed no single study was completely responsible for the
combined results, and significant associations between this
SNP and CAD risk were still present in all the genetic models
after omitting the 3 studies in which the genotype distribu
shape in all the genetic models, indicating no obvious publi

CAD threatens people's health seriously worldwide, its patho
genesis involves many risk factors, such as genetic predisposi
dyslipidemia, hypertension, diabetes mellitus, but its ex
act mechanism has not been completely elucidated. The major
pathological feature of CAD is atherosclerosis of coronary ar
Over the past 10 years, the important role of inflam
mation in the pathogenesis of atherosclerotic cardiovascular
diseases (ASCVD) aroused people’s attention, atherosclerosis
was once regarded as an inflammatory disease [1]. The newly
released CANTOS trial found that canakinumab, a therapeutic
monoclonal antibody targeting the inflammatory cytokine in
nterleukin-1β (IL-1β), can significantly reduce recurrent cardio
vascular events of CAD, validated the inflammatory hypothesis
of CAD pathogenesis for the first time [2,3].

IL-8 as another important inflammatory mediator, its role in the
pathogenesis of CAD has been extensively researched [5,6,8].
Several polymorphisms have been detected in the IL-8 gene,
and a common SNP of IL-8 gene at −251 position (−251 A/T, or rs4073) of the promoter region has been well-character
ized. Studies proved that the −251 A/T polymorphism of IL-8
can affect susceptibility of a large number of inflammatory
diseases, as well as disease severity and clinical prognosis,
including CAD. Several studies reported that −251 A allele of the
IL-8 gene can increase CAD risk [13–15], but negative re
sults were also observed in other studies [17,19,21]. In or
der to overcome the result contradictories between different
studies, we conducted this meta-analysis and found that the
−251 A/T polymorphism of the IL-8 gene was significantly as
associated with CAD risk in the Chinese population, but not in
the Caucasian population.

There are several possible metabolic and molecular mechanisms
to explain the conclusion. This polymorphism has been associ
ated with transcriptional activity of IL-8 gene, the −251 A allele
was associated with its increased expression [31,32]. Hull et al.
reported that the −251 A allele increases IL-8 levels after stim
ulation with lipopolysaccharide (LPS) [33]. IL-8 is a powerful
pro-inflammatory cytokine, and as aforementioned, CAD is an
inflammatory disease, so it is reasonable to conclude that an
elevated level of IL-8 in —251 A allele carriers will increase the risk of CAD. This is in line with the results of our meta-analysis that —251 A allele increases the risk of CAD significantly.

This is the first meta-analysis assessing the association between the IL-8 gene —251 A/T polymorphism and the susceptibility of CAD. Inevitably, there are some limitations in our meta-analysis. First, the number of qualified studies was not large. Second, inclusion criteria were limited to articles published only in English and Chinese, this may have missed related non-English or non-Chinese literatures, resulting in the risk of bias [34]. Third, the genotype distribution in controls in 3 of the included studies was not in HWE, which may influence the reliability of the study results.

On the other hand, this meta-analysis has its distinct merits. First, a total number of 8244 subjects were recruited into the final pooled data analysis under our strict inclusion criteria. Second, the cases in all the included studies were angiographically confirmed CAD or MI patients, guaranteeing the diagnostic reliability of the cases. And the NOS quality scores of all the included studies were relatively high (6 or 5 score), indicating the original studies of this meta-analysis have a good quality [22]. Third, no significant publication bias was found in the included studies by both the Begg’s and Egger’s tests. Fourth, sensitivity analysis found no single study significantly influences the pooled ORs in all the genetic models, and, although as aforementioned, 3 of the included studies were not in HWE, we recalculated the pooled data after excluding these 3 studies and found significant associations were still present in all the genetic models, further confirming the reliability and stability of our results [27]. In addition, a subgroup analysis by ethnicity of study population was conducted, and the results showed a significant association between the IL-8 gene —251 A/T polymorphism and the risk of CAD in the Chinese population, but no significant association was found in the Caucasian population.

Conclusions

Our meta-analysis found that the IL-8 gene —251 A/T polymorphism was significantly associated with the risk of CAD in the Chinese population, individuals with the A allele of the IL-8 gene —251 A/T polymorphism had an increased risk of suffering from CAD. But this association was not found in the Caucasian population. This conclusion may be helpful for formulating individualized prevention and treatment strategies for CAD in the Chinese population in the future. However, in the light of the limitations of this meta-analysis, additional well-designed studies are needed to further verify the association of the IL-8 gene —251 A/T polymorphism with CAD risk.

Conflict of interests

None.

References:

1. Taleb S. Inflammation in atherosclerosis. Arch Cardiovasc Dis, 2016; 109: 708–15
2. Harrington RA. Targeting inflammation in coronary artery disease. N Engl J Med, 2017; 377: 1197–98
3. Ridker PM, Everett BM, Thuren T et al: Anti-inflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med, 2017; 377: 1119–31
4. Weber C, von Hundelshausen P. CANTOS trial validates the inflammatory pathogenesis of atherosclerosis. Setting the stage for a new chapter in therapeutic targeting. Circ Res, 2017; 121: 1119–21
5. Rus HG, Vlaicu R, Niculescu F. Interleukin-6 and interleukin-8 protein and gene expression in human arterial atherosclerotic wall. Atherosclerosis, 1996; 127: 263–71
6. Genszen RE, Garcia-Zepeda EA, Lim YC et al: MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions. Nature, 1999; 398: 718–23
7. Herder C, Baumert J, Thoroan B et al: Chemokines and incident coronary heart disease: Results from the MONICA/KORA Augsburg case-cohort study, 1984–2002. Arterioscler Thromb Vasc Biol, 2006; 26: 2147–52
8. Inoue T, Komoda H, Nonaka M et al: Interleukin-8 is an independent predictor of long-term clinical outcome in patients with coronary artery disease. Int J Cardiol, 2008; 124: 319–25
9. Qin B, Li L, Wang S et al: Interleukin-8 gene polymorphism —251T>A contributes to Alzheimer’s disease susceptibility. Medicine (Baltimore), 2016; 95: e5039
10. Wang Z, Liu Y, Yang L et al: The polymorphism interleukin-8 —251 A/T is associated with a significantly increased risk of cancers from a meta-analysis. Tumour Biol, 2014; 35: 7115–23
11. Yang ZL, Tang XP, Lai QG et al: Interleukin-8 —251 A/T polymorphism and periodontitis susceptibility: A meta-analysis. Genet Mol Res, 2016; 15
12. Vogiatzi K, Apostolakis S, Voudris V et al: Interleukin 8 gene polymorphisms and susceptibility to restenosis after percutaneous coronary intervention. J Thromb Thrombolysis, 2010; 29: 134–40
13. Zhang X, Zhang B, Zhang M et al: Interleukin-8 gene polymorphism is associated with acute coronary syndrome in the Chinese Han population. Cytokine, 2011; 56: 188–91
14. Wang S, Chen L, Dai Y et al: Association of IL-8 —251 A/T and +781C/T polymorphisms with the susceptibility to coronary artery disease in a population of China. Int J Clin Exp Pathol, 2016; 9: 8471–77
15. Zhang RJ, Li XD, Zhang SW et al: IL-8 —251 A/T polymorphism contributes to coronary artery disease susceptibility in a Chinese population. Genet Mol Res, 2017; 16
16. Kaur N, Singh J, Reddy S. Association of IL-8 —251 A/T rs4073 and IL-10 rs1800872 —592C/A polymorphisms and coronary artery disease in north Indian population. Biochem Genet, 2018 [Epub ahead of print]
17. Vogiatzi K, Apostolakis S, Voudris V et al: Interleukin 8 and susceptibility to coronary artery disease: A population genetics perspective. J Clin Immunol, 2008; 28: 329–35
18. Hou H, Gong H, Zhao H et al: Relationship between IL-8 —251 A/T single nucleotide polymorphism and plasma level with coronary heart disease susceptibility. Chin J Arterioscler, 2012; 20: 261–64
19. Velasquez IM, Frumento P, Johansson K et al: Association of interleukin 8 with myocardial infarction: Results from the Stockholm Heart Epidemiology Program. Int J Cardiol, 2014; 172: 173–78
20. Ren B, She Q: Study on the association between IL-1β, IL-8 and IL-10 gene polymorphisms and risk of coronary artery disease. Int J Clin Exp Med, 2015; 8: 7937–43
21. Yang HT, Wang SL, Yan LJ et al: Association of interleukin gene polymorphisms with the risk of coronary artery disease. Genet Mol Res, 2015; 14: 12489–96
22. Stang A: Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol, 2010; 25: 603–5
23. Wakefield J: Bayesian methods for examining Hardy-Weinberg equilibrium. Biometrics, 2010; 66: 257–65
24. Higgins JP, Thompson SG: Quantifying heterogeneity in a meta-analysis. Stat Med, 2002; 21: 1539–58
25. Mantel N, Haenszel W: Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst, 1959; 22: 719–48
26. Egger M, Davey Smith G, Schneider M, Minder C: Bias in meta-analysis detected by a simple, graphical test. BMI, 1997; 315: 629–34
27. Riley RD, Sutton AJ, Abrams KR, Lambert PC: Sensitivity analyses allowed more appropriate and reliable meta-analysis conclusions for multiple outcomes when missing data was present. J Clin Epidemiol, 2004; 57: 911–24
28. Sedgwick P, Marston L: How to read a funnel plot in a meta-analysis. BMI, 2015; 351: h4718
29. Terrin N, Schmid CH, Lau J: In an empirical evaluation of the funnel plot, researchers could not visually identify publication bias. J Clin Epidemiol, 2005; 58: 894–901
30. Begg CB, Mazumdar M: Operating characteristics of a rank correlation test for publication bias. Biometrics, 1994; 50: 1088–101
31. Hacking D, Knight JC, Rockett K et al: Increased in vivo transcription of an IL-8 haplotype associated with respiratory syncytial virus disease-susceptibility. Genes Immun, 2004; 5: 274–82
32. Wacharasint P, Nakada TA, Boyd JH et al: AA genotype of IL-8 –251 A/T is associated with low PaO(2)/FiO(2) in critically ill patients and with increased IL-8 expression. Respirology, 2012; 17: 1253–60
33. Hull J, Ackerman H, Isles K et al: Unusual haplotypic structure of IL8, a susceptibility locus for a common respiratory virus. Am J Hum Genet, 2001; 69: 413–19
34. Lyons G: Language: Another cause of publication bias. Eur J Anaesthesiol, 2016; 33: 620–21