Analysis of NKX2-5 in 439 Chinese Patients with Sporadic Atrial Septal Defect

BCDEF 1,2 Hongshu Wang*
ABC 3 Yong Liu*
ABG 1 Yaxiong Li
AFG 1,2 Wenju Wang
D 1,2 Lin Li
B 1 Mingyao Meng
B 1 Yanhua Xie
B 1 Yanyong Zhang
B 1 Yunfeng Zi
BC 1,2 Shen Han
B C 1,2 Jianying Zeng
ADG 1,2 Zongliu Hou
ACDEFG 4 Lihong Jiang

* Hongshu Wang and Yong Liu are Co-first authors

Corresponding Authors: Lihong Jiang, e-mail: jianglihong_yayy@163.com, Zongliu Hou, e-mail: HZL579@163.com

Source of support: This work was supported by grants from National Natural Science Foundation of China (No. 81560060, 31160230, 81760059), Project of “YUN LING Scholar” and Yunnan/Kunming Key Laboratory of Cardiovascular Surgery

Background: The NKX2 gene family is made up of core transcription factors that are involved in the morphogenesis of the vertebrate heart. NKx2-5 plays a pivotal role in mouse cardiogenesis, and mutations in NKx2-5 result in an abnormal structure and function of the heart, including atrial septal defect and cardiac electrophysiological abnormalities.

Material/Methods: To investigate the genetic variation of NKX2-5 in Chinese patients with sporadic atrial septal defect, we sequenced the full length of the NKX2-5 gene in the participants of the study. Four hundred thirty-nine patients and 567 healthy unrelated individuals were recruited. Genomic DNA was extracted from the peripheral blood leukocytes of the participants. DNA samples from the participants were amplified by multiplex PCR and sequenced on an Illumina HiSeq platform. Variations were detected by comparison with a standard reference genome and annotation with a variant effect predictor.

Results: Thirty variations were detected in Chinese patients with sporadic atrial septal defect, and 6 single nucleotide polymorphisms (SNPs) had a frequency greater than 1%. Among the 30 variations, the SNPs rs2277923 and rs3729753 were extremely prominent, with a high frequency and odds ratio in patients.

Conclusions: Single nucleotide variations are the prominent genetic variations of NKX2-5 in Chinese patients with sporadic atrial septal defect. The SNPs rs2277923 and rs3729753 are prominent single nucleotide variations (SNVs) in Chinese patients with sporadic atrial septal defect.

MeSH Keywords: Genetic Variation • Heart Diseases • Heart Septal Defects, Atrial • Polymorphism, Single Nucleotide

Full-text PDF: https://www.medscimonit.com/abstract/index/idArt/916052
Background

The heart is an extremely important dynamic organ. The development of the heart is complex and involves many signaling pathways and transcription factors [1–3]. Many factors, such as environmental factors, maternal factors, special medicine taken during pregnancy, genetic variations and so on [4–9], may disturb these regulated factors and lead to an aberrant structure and function of the heart, potentially resulting in congenital heart disease (CHD). CHD includes atrial septal defect (ASD), ventricular septal defect (VSD), patent ductus arteriosus, tetralogy of Fallot and so on. Among them, ASD is one of the most common subtypes of CHD [10].

Human NKX2-5, murine Nkx2-5, and Drosophila tinman all belong to the NK homeobox gene family, which includes a conserved homeodomain [11] and plays a crucial role in the development of the heart, regulating the proliferation, differentiation, and electrophysiological properties of cardiac cells. In mice, Nkx2-5 is expressed in progenitor cells of the heart in the first heart field (FHF), second heart field (SHF), and pharyngeal endoderm [12,13], and it is necessary and sufficient for the development of the SHF [13] and a determinate of differentiation into the myocardial lineage [12]. In the SHF of mice, Nkx2-5 regulates the proliferation of heart progenitors and the morphology of the outflow tract [14]. In zebrafish, Nkx genes regulate electrophysiological patterning [15]. Mutations in murine Nkx2-5 result in embryonic death and an abnormal structure and function of heart, including contraction defects, valvular dysmorphogenesis, atrial septal defect, ventricular noncompaction cardiomyopathy, and arrhythmias [16–22].

The aforementioned results demonstrate that NKx2-5 is a core regulatory transcription factor in cardiogenesis, and that disruption of NKx2-5 results in an abnormal structure and function of heart. However, the pathogenic mechanism of Nkx2-5 in Chinese patients with sporadic atrial septal defect is unclear. To investigate the genetic variation of Nkx2-5 in Chinese patients with sporadic atrial septal defect, we performed sequence analysis on full length Nkx2-5.

Material and Methods

Study participants

For this study, 439 patients with sporadic atrial septal defect (157 males and 282 females) and 567 healthy unrelated individuals (274 males and 293 females) were recruited. Patients were recruited from the Department of Cardiovascular Surgery at Yan’an Affiliated Hospital of Kunming Medical University. Healthy unrelated individuals, confirmed by a medical examination and cardiac color Doppler ultrasound, were recruited from our previous epidemiological investigation. The ethnic groups of the participants included Han, Bai, Yi, Dai, and so on. There was no obvious ethnic group difference between the patients and the healthy controls. Diagnosis of ASD was confirmed by cardiac color Doppler ultrasound and findings during cardiac surgery, and other CHDs, such as ventricular septal defect, tetralogy of Fallot, Ebstein anomaly, patent ductus arteriosus, endocardial cushion defect, and Holt-Oram syndromes, were exclusion criteria for this study. This study was approved by the institutional research ethics committee of Yan’an Affiliated Hospital of Kunming Medical University. All participants or their parents provided informed consent. Genomic DNA was extracted from the peripheral blood leukocytes of the participants.

Primers

Primers (Table 1) were designed to amplify full-length Nkx2-5. The specificity and efficiency of the primers was validated by polymerase chain reaction (PCR). The amplification system and experimental procedure of PCR are described in the supplementary data (Supplementary Tables 1, 2).

Multiplex PCR and qPCR

Multiplex PCR was performed twice to amplify full-length Nkx2-5. The amplification system and experimental procedure of multiplex PCR are described in the supplementary data (Supplementary Tables 3–6). The accuracy and efficiency of the multiplex PCR were validated by quantitative polymerase chain reaction (qPCR). The amplification system and experimental procedure of qPCR are described in the supplementary data (Supplementary Tables 7, 8).

Variation detection and statistical analysis

The products of multiplex PCR were mixed to form the sequencing library. An Illumina HiSeq platform was used to sequence the library. Human reference genome sequences (Edition: GRCh38.p7) and Burrows-Wheeler Alignment (BWA) (Edition: 0.1.22) were used to compare the sequences of the samples with the standard reference genome sequences. Detection of variation was processed by a genome analysis toolkit (GATK, Edition: v3.1). An online software variant effect predictor was used to annotate the variation. A square test was used to compare the 2 samples. SPSS 22.0 (IBM, USA) was used to analyze the data. A P-value <0.05 was used to indicate a statistically significant difference.

Results

Collation and statistics of raw data

The Q30 for all of the samples was greater than 90%. The total reads of Nkx2-5 were 147 014 508 bp. After filtering, the reads of...
NKX2-5 were 145,502,856 bp. The total reads of **NKX2-5** matched to the reference sequence were 79,266,998 bp. After filtering, the corrected reads were 66,473,696 bp. The average depth of the sequencing of each amplicon was approximately 5800-fold. Thirty variations detected in 439 patients

Through comparison with the standard reference genome sequences, 30 variations (Supplementary Table 9) were detected in patients. The 30 variations included 18 single nucleotide polymorphisms (SNPs) and 12 novel variations (without rs number). The 18 SNPs were rs2277923, rs703752, rs3729753, rs3729754, rs549757001, rs562842387, rs531139209, rs892817393, rs1004442524, rs540202205, rs375010127, rs200271628, rs553757559, rs759221178, rs767243751, rs72554029, and rs551687864. The 12 novel variations, described as chromosomal locations, are 173233943, 173234153, 173233940, 173233733, 173232329, 173233307, 173234249, 173235293, 173234696, 173234963, 173235001, and 173233307. Six SNPs of the 30 variations had a high frequency greater than 1%. The 6 high-frequency SNPs in the 439 patients are listed in Table 2.

Two SNPs detected in 567 healthy controls

Two SNPs (Table 3) were detected in healthy controls. These SNPs were rs703752 and rs2277923 and had frequencies of 68.78% and 15.17%, respectively.

rs2277923 and rs3729753 are prominent SNVs with a high frequency and odds ratio in patients

Among the 30 variations, rs2277923 and rs3729753 were prominent with a high frequency and odds ratio (Table 4) in patients.
In this study, we sequenced full-length \textit{NKX2-5} and detected 30 variations of \textit{NKX2-5} in Chinese patients with sporadic atrial septal defect. Six of the 30 variations had a frequency greater than 1%. The SNPs rs2277923 and rs3729753 were prominent SNVs with a high frequency and odds ratio in Chinese patients with sporadic atrial septal defect.

\textit{Human NKX2-5} consisted of 3218 bp located at 5q35.1 and encoded 3 isoforms through pre-RNA splicing. The 3 isoforms were isoform 1, isoform 2, and isoform 3. Isoform 1 has the homeodomain, which is strictly expressed in the heart, and is the most abundant isoform in heart tissue. Isoform 2 and isoform 3 lack the homeodomain and have a low abundance in heart tissue [23]. Isoform 1 consists of 324 amino acids, which contain an evolutionarily conserved homeodomain-containing domain (HD, amino acids 138–197) in the middle, a tinman domain (TN, amino acids 10–21) at the N-terminus, a nuclear localization signal (NLS) near the N-terminus of the homeodomain [11,24-26], and a tyrosine-rich homophilic interaction domain (YRD) near the NK2 domain [27,28]. The HD domain is involved in DNA binding activity and transcriptional activation [29]. The NLS domain could influence the location of NKX2-5 by phosphorylation and dephosphorylation [30]. The NK2 domain functions as a regulator of transcriptional activation [31]. The YRD domain is essential for the function of NKX2-5 in cardiogenesis and embryonic development [27]. The function of the TN domain is still unclear. As a crucial transcriptional factor, NKX2-5 is a regulator of the development of the heart that functions by binding its downstream targets through its functional domain, such as the HD domain, TN domain, NK domain, and YRD domain [28,31,34,35].

Table 2. Six high-frequency SNPs detected in 439 patients.

LOC1	rs number	REF	ALT	AAC	LOC2	SNP (n=439)	Frequency (%)
173230521	rs2277923	T	C	Glu>Glu	Extron	352	80.18
173232508	rs703752	C	A	None	3/UTR	73	16.63
173233891	rs3131915	C	G	None	Intron	68	15.49
173232938	rs3729753	C	G	Leu>Leu	Extron	21	4.78
173233982	rs37690353	C	A	None	Intron	9	2.05
173233290	rs549757001	G	A	None	Intron	8	1.82

LOC1 – position in the chromosome; **REF** – reference genomic locus information; **ALT** – locus variation information in the sample; **AAC** – amino acid change; **LOC2** – position in the \textit{NKX2-5}; **SNPs** – single nucleotide polymorphisms.

Table 3. Two SNPs detected in healthy controls.

LOC1	rs number	REF	ALT	AAC	LOC2	SNP (n=567)	Frequency (%)
173232508	rs703752	C	A	none	3/UTR	390	68.78
173235021	rs2277923	G	A	Glu>Glu	Extron	86	15.17

LOC1 – position in the chromosome; **REF** – reference genomic locus information; **ALT** – locus variation information in the sample; **AAC** – amino acid change; **LOC2** – position in the \textit{NKX2-5}; **SNPs** – single nucleotide polymorphisms.

Table 4. \(\chi^2 \), P-value and OR of SNPs in ASD versus control.

SNP	ASD (n=439)	Control (n=567)	\(\chi^2 \), P-value	OR, 95%CI
rs2277923	352	86	\(\chi^2 = 425.45, P<0.001 \)	5.286 (4.328–6.458)
rs3729753	21	0	\(\chi^2 = 27.70, P<0.001 \)	27.123 (3.663–200.858)
rs703752	73	390	\(\chi^2 = 270.92, P<0.001 \)	0.242 (0.195–0.300)
rs20071628	1	0	\(\chi^2 = 1.293, P=0.256 \)	0.998 (0.993–1.002)

OR – odds ratio; **ASD** – atrial septal defect; **SNP** – single nucleotide polymorphisms.

Discussion

In this study, we sequenced full-length \textit{NKX2-5} and detected 30 variations of \textit{NKX2-5} in Chinese patients with sporadic atrial septal defect. Six of the 30 variations had a frequency greater than 1%. The SNPs rs2277923 and rs3729753 were prominent SNVs with a high frequency and odds ratio in Chinese patients with sporadic atrial septal defect.

Human \textit{NKX2-5} consisted of 3218 bp located at 5q35.1 and encoded 3 isoforms through pre-RNA splicing. The 3 isoforms were isoform 1, isoform 2, and isoform 3. Isoform 1 has the homeodomain, which is strictly expressed in the heart, and is the most abundant isoform in heart tissue. Isoform 2 and isoform 3 lack the homeodomain and have a low abundance in heart tissue [23]. Isoform 1 consists of 324 amino acids, which contain an evolutionarily conserved homeodomain-containing domain (HD, amino acids 138–197) in the middle, a tinman domain (TN, amino acids 10–21) at the N-terminus, a nuclear localization signal (NLS) near the N-terminus of the homeodomain, a NK2-specific domain (NK2, amino acids 212–234) at the C-terminus [11,24-26], and a tyrosine-rich homophilic interaction domain (YRD) near the NK2 domain [27,28]. The HD domain is involved in DNA binding activity and transcriptional activation [29]. The NLS domain could influence the location of \textit{NKX2-5} by phosphorylation and dephosphorylation [30]. The NK2 domain functions as a regulator of transcriptional activation [31]. The YRD domain is essential for the function of \textit{NKX2-5} in cardiogenesis and embryonic development [27]. The function of the TN domain is still unclear. As a crucial transcriptional factor, \textit{NKX2-5} is a regulator of the development of the heart [1–3,32,33] that functions by binding its downstream targets through its functional domain, such as the HD domain, TN domain, NK domain, and YRD domain [28,31,34,35].
In this study, we detected 30 genetic variations of *NKX2-5* in patients with sporadic atrial septal defect, and no frameshift mutations or insertion/deletion mutations were detected. These results demonstrate that single nucleotide variations (SNVs) are the prominent genetic variations of *NKX2-5* in Chinese patients with sporadic atrial septal defect. Among them, 6 SNPs had a high frequency greater than 1%. These SNPs were distributed in the exons, introns, and 3'UTR of *NKX2-5*. Although these SNPs did not change the amino acid sequence and structure of the domains of *NKX2-5*, we still considered these variations, especially the SNPs rs2277923 and rs3729753, to have the potential and ability to cause sporadic atrial septal defect for the following reasons. First, compared with healthy people, patients with sporadic atrial septal defect had a high frequency of and odds ratio for rs2277923 and rs3729753. Second, although synonymous SNVs did not change the structure of the protein, a synonymous SNV can influence the structure of the pre-RNA and the binding to RNA binding protein [36,37]. Pre-RNA of *NKX2-5* was spliced through an alternative splicing mechanism to generate 3 isoforms. The presence of an SNV may influence the recognition and binding of the RNA binding protein and spliceosomes. The presence of an SNV may also influence the stability and degradation of RNA in the cytoplasm [36,37]. Third, as a crucial transcription factor, the regulatory functions of *NKX2-5* depended on its quality and abundance. SNV might influence the RNA level, resulting in changes in the abundance and distribution of the transcript of *NKX2-5*, which then disturbs the downstream targets of *NKX2-5*.

Conclusions

Single nucleotide variations are the prominent genetic variations of *NKX2-5* in Chinese patients with sporadic atrial septal defect. The SNPs rs2277923 and rs3729753 are prominent SNVs in Chinese patients with sporadic atrial septal defect. A pathogenic mechanism of rs2277923 and rs3729753 may exist at the RNA level. Further studies are needed to validate this possibility.

Supplementary Tables

Supplementary Table 1. Amplification system of PCR.

Reagent component	Volume	Concentration
Buffer (10×)	1 uL	
Primer (1 uM)	2 uL	
dNTP (2.5 mM)	0.8 uL	
DNA polymerase (5 U/μL)	0.1 uL	1x
Template DNA	2 uL	
Mg²⁺ (100 mM)	1 uL	
ddH₂O	3.2 uL	
Paraffin oil	10 uL	

Supplementary Table 2. Experimental procedure of PCR.

Step	Temperature	Time	Cycle
1	95°C	15 min	1 cycle
2	94°C	30 s	
3	60°C	90 s	35 cycles
4	72°C	30 s	
5	72°C	10 min	1 cycle

Supplementary Table 3. Amplification system of the first turn multiplex PCR.

Reagent component	Volume	Concentration
Buffer (10×)	1 uL	
Primer (50 nM)	2 uL	
dNTP (2.5 mM)	0.8 uL	
DNA polymerase (5 U/μL)	0.1 uL	1x
Template DNA	2 uL	
Mg²⁺ (100 mM)	1 uL	
ddH₂O	3.2 uL	
Paraffin oil	10 uL	

Supplementary Table 4. Experimental procedure of the first turn multiplex PCR.

Step	Temperature	Time	Cycle
1	95°C	15 min	1 cycle
2	94°C	30 s	
3	60°C	10 min	4 cycles
4	72°C	30 s	
5	72°C	30 s	
6	60°C	1 min	20 cycle
7	72°C	30 s	
Supplementary Table 5. Amplification system of the second turn multiplex PCR.

Reagent component	Volume	Concentration
Buffer (1×)	2 uL	
Barcode (2 uM)	3.6 uL	
dNTP (2.5 mM)	0.8 uL	
DNA polymerase (5 U/μL)	0.1 uL	1×
Template DNA	10 uL	
Mg+ (100 mM)	1 uL	
ddH2O	30 uL	
Paraffin oil	20 uL	

Supplementary Table 6. Experimental procedure of the second turn multiplex PCR.

Step	Temperature	Time	Cycle
1	95°C	15 min	1 cycle
2	94°C	30 s	
3	60°C	4 min	3 cycles
4	72°C	30 s	
5	94°C	30 s	
6	65°C	1 min	10 cycle
7	72°C	30 s	

Supplementary Table 7. Amplification system of qPCR.

Reagent component	Volume	Concentration
Mix	6 uL	
Primer (1 uM)	2 uL	
Template DNA	1.8 uL	1×
ROX	0.24 uL	
ddH2O	2 uL	

Supplementary Table 8. Experimental procedure of qPCR.

Step	Temperature	Time	Cycle
1	95°C	15 min	1 cycle
2	94°C	30 s	
3	60°C	30 s	35 cycles
4	72°C	30 s	

Supplementary Table 9. 30 variations detected in 439 patients.

LOC	rs number	REF	ALT	SNP (n=439)	Frequency (%)
173235021	rs2277923	T	C	352	80.18
173232508	rs703752	C	A	73	16.63
173233891	rs313915	C	G	68	15.49
173232938	rs3729753	C	G	21	4.78
173233982	rs376790353	C	A	9	2.05
173233290	rs549757001	G	A	8	1.82
173233943	None	C	A	4	0.91
173233270	rs562842387	T	C	6	6.06
173234153	None	A	G	2	0.46
173234425	rs531139209	C	G	2	0.46
173233698	rs892817393	A	G	2	0.46
173233940	None	G	T	2	0.46
173234640	rs1004442524	C	T	2	0.46
LOC – position in the chromosome; **REF** – reference genomic locus information; **ALT** – locus variation information in the sample.

References:

1. Hill JT, Demarest B, Gorsi B et al: Heart morphogenesis gene regulatory networks revealed by temporal expression analysis. Development, 2017; 144(19): 3487–98
2. DeLaughter DM, Bick AG, Wakimoto H et al: Single-cell resolution of temporal gene expression during heart development. Dev Cell, 2016; 39(4): 480–90
3. Kathiriya IS, Nora EP, Bruneau BG: Investigating the transcriptional control of cardiovascular development. Circ Res, 2015; 116(4): 700–14
4. Jenkins KJ, Correa A, Feinstein JA et al: Noninherited risk factors and congenital cardiovascular defects: Current knowledge: A scientific statement from the American Heart Association Council on Cardiovascular Disease in the Young; Endorsed by the American Academy of Pediatrics. Circulation, 2007; 115(23): 2995–3014
5. Schulkey CE, Regmi SD, Magnan RA et al: The maternal-age-associated risk of congenital heart disease is modifiable. Nature, 2015; 520(7546): 230–33
6. Cooper WO, Hernandez-Diaz S, Arbogast PG et al: Major congenital malformations after first-trimester exposure to ACE inhibitors. N Engl J Med, 2007; 354(23): 2443–51
7. Wemakor A, Casson K, Garne E et al: Selective serotonin reuptake inhibitor antidepressant use in first trimester pregnancy and risk of specific congenital anomalies: A European register-based study. Eur J Epidemiol, 2015; 30(11): 1187–98
8. Zaidi S, Brueckner M: Genetics and genomics of congenital heart disease. Circ Res, 2017; 120(6): 923–40
9. Su W, Zhu P, Wang R et al: Congenital heart diseases and their association with the variant distribution features on susceptibility genes. Clin Genet, 2017; 91(3): 349–54
10. Chung IM, Rajakumar G: Genetics of congenital heart defects: The NKX2-5 gene, a key player. Genes (Basel), 2016; 7(2): 6
11. Harvey RP: Nk-2homeobox genes and heart development. Dev Biol, 1996; 178(2): 203–16
12. Lints TJ, Parsons LM, Hartley L et al: Nkk-2.5: A novel marine homeobox gene expressed in early heart progenitor cells and their myogenic descendants. Development, 1993; 119(2): 419–31
13. Zhang L, Nomura-Kitabayashi A, Sultana N et al: Mesodermal Nkx2.5 is necessary and sufficient for early second heart field development. Dev Biol, 2014; 390(1): 68–79
14. Prall OW, Menon MK, Solloway MJ et al: An Nkx2-5/Bmp2/Smad1 negative feedback loop controls heart progenitor specification and proliferation. Cell, 2007; 128(5): 947–59
15. Colombo S, de Sena-Tomas C, George V et al: Nkk genes establish second heart field cardiomyocyte progenitors at the arterial pole and pattern the venous pole through Isl1 repression. Development, 2018; 145(3): dev161497
16. Lyons I, Parsons LM, Hartley L et al: Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homebox gene Nkx2-5. Genes Dev, 1995; 9(13): 1654–66
17. Terada R, Warren S, Lu JT et al: Ablation of Nkx2-5 at mid-embryonic stage results in premature lethality and cardiac malformation. Cardiovasc Res, 2011; 91(2): 289–99
18. Briggs LE, Takeda M, Cuadra AE et al: Perinatal loss of Nkx2-5 results in rapid conduction and contraction defects. Circ Res, 2008; 103(6): 580–90
19. Biben C, Weber R, Kesteven S et al: Cardiac septal and valvular dysmorphogenesis in mice heterozygous for mutations in the homeobox gene Nkx2-5. Circ Res, 2000; 87(4): 888–95
20. Wakimoto H, Kasahara H, Maguire CT et al: Cardiac electrophysiological phenotypes in postnatal expression of Nkx2.5 transgenic mice. Genesis, 2003; 37(3): 144–50
21. Choquet C, Nguyen THM, Sicard P et al: Deletion of Nkx2-5 in trabecular myocardium reveals the developmental origins of pathological heterogeneity associated with ventricular non-compaction cardiomyopathy. PLoS Genet, 2018; 14(7): e1007502

22. Zakariyah AF, Rajgara RF, Horner E et al: In vitro modeling of congenital heart defects associated with an NKK2-5 mutation revealed a dysregulation in BMP/Notch-mediated signaling. Stem Cells, 2018; 36(4): 514–26

23. Shiojima I, Komuro I, Mizuno T et al: Molecular cloning and characterization of human cardiac homeobox gene CSX1. Circ Res, 1996; 79(5): 920–29

24. Akazawa H, Komuro I: Cardiac transcription factor Csx/Nkx2-5: Its role in cardiac development and diseases. Pharmacol Ther, 2005; 107(2): 252–68

25. Turbay D, Wechsler S, Blanchard K, Izumo S: Molecular cloning, chromosomal mapping, and characterization of the human cardiac-specific homeobox gene hCsx. Mol Med, 1996; 2(1): 86

26. Shiojima I, Komuro I, Inazawa J et al: Assignment of cardiac homeobox gene CSX to human chromosome 5q34. Genomics, 1995; 27(1): 204–6

27. Elliott DA, Solloway MJ, Wise N et al: A tyrosine-rich domain within homeodomain transcription factor Nkx2-5 is an essential element in the early cardiac transcriptional regulatory machinery. Development, 2006; 133(7): 1311–22

28. Bouveret R, Waardenberg AJ, Schonrock N et al: NKK2-5 mutations causative for congenital heart disease retain functionality and are directed to hundreds of targets. eLife, 2015; 4: e06942

29. Kasahara H, Lee B, Schott JJ et al: Loss of function and inhibitory effects of human CSX/NKK2.5 homeoprotein mutations associated with congenital heart disease. J Clin Invest, 2000; 106(2): 299–308

30. Kasahara H, Izumo S: Identification of the in vivo casein kinase II phosphorylation site within the homeodomain of the cardiac tissue-specifying homeobox gene product Csx/Nkx2.5. Mol Cell Biol, 1999; 19(1): 526–36

31. Watada H, Mirnima RG, Kalamara J, German MS: Intramolecular control of transcriptional activity by the NK2-specific domain in NK-2 homeodomain proteins. Proc Natl Acad Sci USA, 2000; 97(17): 9443–48

32. Neph S, Stergachis AB, Reynolds A et al: Circuity and dynamics of human transcription factor regulatory networks. Cell, 2012; 150(6): 1274–86

33. Anderson DJ, Kaplan DI, Bell KM et al: NKK2-5 regulates human cardiomyogenesis via a HEY2 dependent transcriptional network. Nat Commun, 2018; 9(1): 1373

34. Scott MP, Tamkun JW, Hartzell GW III: The structure and function of the homeodomain. Biochim Biophys Acta, 1989; 989(1): 25–48

35. Billeter M: Homeodomain-type DNA recognition. Prog Biophys Mol Biol, 1996; 66(3): 211–25

36. Baralle FE, Giudice I: Alternative splicing as a regulator of development and tissue identity. Nat Rev Mol Cell Biol, 2017; 18(7): 437–51

37. Sauna ZE, Kimchi-Sarfaty C: Understanding the contribution of synonymous mutations to human disease. Nat Rev Genet, 2011; 12(10): 683–91