Transplantation of the pancreas or of isolated islets is presently the only curative therapy for type 1 diabetes. In contrast to pancreas transplantation, islet transplantation is a minimally invasive, relatively benign procedure that can be done on an outpatient basis. Unfortunately, early results with islet transplantation were disappointing, with few centers reporting sustainable insulin independence (1). This high rate of late transplant failure has been attributed to immunorejection, toxicity of immunosuppression agents, and aberrant blood delivery in the recanalized intrahepatic islet grafts (2).

Since then, introduction of a new immunosuppressive regimen, known as the Edmonton protocol, has dramatically improved the results (3). On this corticosteroid-free immunosuppressive program, consisting of sirolimus, low-dose tacrolimus, and anti–interleukin-2 receptor antibody, ~70% of transplant recipients become insulin independent during a 5-year follow-up, but only ~13% maintain insulin independence for 2 years (1), despite persistence of C-peptide levels (2). The evidence that not all β-cells are destroyed, together with the salutary effect of elimination of glucocorticoids from the treatment program, raised the possibility that slow, incomplete loss of islets was not the result of a destructive immunological process. Rather, the slow, incomplete β-cell dysfunction was more reminiscent of type 2 diabetes than rejection.

A well-described cause of slow, incomplete β-cell dysfunction and death in rodents is known as “lipotoxicity.” This process was first identified in obese Zucker diabetic fatty (ZDF) rats in which a progressive overaccumulation of lipids in native islets leads to β-cell destruction and type 2 diabetes (4). The consequences of lipid overaccumulation in vivo were duplicated by culturing normal islets in long-chain fatty acids at concentrations comparable with those observed in ZDF rats (5). Moreover, in vivo destruction of native islets of prediabetic ZDF rats could be prevented by measures that reduced lipid accumulation (6,7).

There is a plausible theoretical basis for considering lipotoxic destruction as a cause of failure of human islet transplants. Chronic exposure of normal islets transplanted to the liver would expose them to high portal vein levels of nutrients and gut hormones; the resulting hypersecretion of undiluted insulin into surrounding hepatocytes would elicit a powerful lipogenic response, overloading the

Original Article

Metabolic Mechanisms of Failure of Intraportally Transplanted Pancreatic β-Cells in Rats

Role of Lipotoxicity and Prevention by Leptin

Young Lee,1 Mariella Ravazzola,2 Byung-Hyun Park,1 Yuriy K. Bashmakov,3 Lelio Orci,2 and Roger H. Unger1,4

The objective of this study was to determine whether the late failure of β-cells in islets transplanted via the portal vein is caused by excess insulin-stimulated lipogenesis and lipotoxicity and, if so, whether the damage can be prevented by reducing lipogenesis surrounding the islets. Based on the premise that high portal vein levels of nutrients and incretins would stimulate hyperinsulinemia, thereby inducing intense lipogenesis in nearby hepatocytes, normal islets were transplanted into livers of syngeneic streptozotocin-induced diabetic recipients. Hydrolysis of the surrounding fat would flood the islet grafts with fatty acids that could damage and destroy the β-cells. Reducing lipogenesis by leptin or caloric restriction should prevent or reduce the destruction. After a rise after transplantation, insulin levels gradually declined and hyperglycemia increased. Four weeks after transplantation mRNA of the lipogenic transcription factor, sterol regulatory element–binding protein-1c (SREBP-1c) and its lipogenic target enzymes were elevated in livers of these recipients, as was triacylglycerol content. Positive oil red O staining for lipids and immunostaining for SREBP-1 were observed in hepatocytes surrounding islets with damaged β-cells. Leptin-induced lipopenia prevented and caloric restriction reduced steatosis, hyperglycemia, and apoptotic β-cell destruction. Excessive SREBP-1c-mediated lipogenesis, induced in hepatocytes by insulin hypersecretion, is followed by β-cell destruction in the grafts and reappearance of diabetes. Graft failure is prevented by blocking lipogenesis. The results suggest that strict antilipogenic intervention might improve outcomes after human islet transplantation. *Diabetes* 56:2295–2301, 2007

From the 1Gifford Laboratories of the Touchstone Center for Diabetes Research, University of Texas Southwestern Medical Center, Dallas, Texas; the 2Department of Cell Physiology and Metabolism, University Medical Center, Geneva, Switzerland; the 3Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas; and the 4Veterans Affair Medical Center, Dallas, Texas.

Address correspondence and reprint requests to Roger H. Unger, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-8854. E-mail: roger.unger@ut southwestern.edu.

Received for publication 3 April 2007 and accepted in revised form 26 May 2007.

Published ahead of print at http://diabetes.diabetesjournals.org on 11 June 2007. DOI: 10.2337/db07-0460.
nearby hepatocytes with triacylglycerol. Islets would be chronically exposed to both a uniquely high lipid environment and a high glucose environment. This combination would result in glucolipotoxicity. This idea is supported by liver biopsy evidence (8–10) and by a report that fatty liver diagnosed by magnetic resonance imaging (11) occurs in 20% of subjects in association with graft dysfunction (12). The potential pathogenic consequences of the lipid excess are suggested by the fact that exposure of isolated human islets to fatty acids damages β-cells and directly or indirectly results in apoptosis (13).

Because late failure of islet transplants is a serious limitation in a procedure that might otherwise benefit larger numbers of patients with type 1 diabetes, we have attempted to determine whether the overaccumulation of lipids in the hepatocytes surrounding the islets creates a lipotoxic environment that damages β-cells in islet grafts and, if so, whether the damage can be prevented by lowering the lipid content in the liver.

RESEARCH DESIGN AND METHODS

Lean, wild-type ZDF (+/+) rats were housed in individual cages with constant temperature and 12 h of light alternating with 12 h of darkness. All rats were fed Teklad 6% mouse/rat diet (Teklad, Madison, WI) and had free access to water. Diabetes was induced at 10–12 weeks of age by intravenous streptozotocin (80 mg/kg body wt). Within 7 days all rats were profoundly hypoglycemic, with nonfasting hyperglycemia above 400 mg/dl, polyuria, and zotocin (80 mg/kg body wt). Administration of 80 mg/kg streptozotocin to six normal, closely related donors, into the portal vein of six recipients. We hypothesized that in this milieu, the β-cells of their grafts would be chronically hyperstimulated by the high portal venous levels of nutrients and incretins perfusing the intrahepatic islet transplants. High, undiluted levels of insulin would flood nearby hepatocytes with insulin, eliciting intense lipogenesis, while the residual hyperglycemia of the streptozotocin-induced diabetes would assure ample substrate for glucose-derived lipid synthesis. Hepatocytes closest to islet transplants would produce the highest abundance of VLDL. The islet lipoprotein lipase (18) would hydrolyze triacylglycerol, creating local excess fatty acids that could diffuse into islet cells by rapid "flip-flopping" across their plasma membranes (19). If the lipotoxicity concept is correct, this lipid excess should injure and kill β-cells through one or more of the pathways that lead to apoptosis (20–24), and hyperglycemia should worsen. Furthermore, if lipid excess is the primary factor, it should be preventable by reducing the lipid excess surrounding the islets. The following experiments were designed to test this hypothesis.

RESULTS

Rationale for β-cell lipotoxicity in failure of intra-portal islet transplants. To create an insulin-deficient diabetic recipient model equivalent to human recipients of islet transplants, we induced severe diabetes with streptozotocin. One week later, we injected ~1,500 islets, isolated from normal, closely related donors, into the portal vein of six recipients. We hypothesized that in this milieu, the β-cells of their grafts would be chronically hyperstimulated by the high portal venous levels of nutrients and incretins perfusing the intrahepatic islet transplants. High, undiluted levels of insulin would flood nearby hepatocytes with insulin, eliciting intense lipogenesis, while the residual hyperglycemia of the streptozotocin-induced diabetes would assure ample substrate for glucose-derived lipid synthesis. Hepatocytes closest to islet transplants would produce the highest abundance of VLDL. The islet lipoprotein lipase (18) would hydrolyze triacylglycerol, creating local excess fatty acids that could diffuse into islet cells by rapid "flip-flopping" across their plasma membranes (19). If the lipotoxicity concept is correct, this lipid excess should injure and kill β-cells through one or more of the pathways that lead to apoptosis (20–24), and hyperglycemia should worsen. Furthermore, if lipid excess is the primary factor, it should be preventable by reducing the lipid excess surrounding the islets. The following experiments were designed to test this hypothesis.

Gradual functional loss of β-cells in islets transplanted to the liver of syngeneic diabetic recipients. Administration of 80 mg/kg streptozotocin to six normal rats induced severe diabetes with polydipsia, polyphagia, and weight loss. Blood glucose averaged 449 ± 32 mg/dl. One week later, after losing 36–40 g body wt, the rats received an intraportal infusion of ~1,500 islets, after which their mean insulin level rose to 0.89 ± 0.05 ng/ml and blood glucose declined to 298 ± 23 mg/dl. Thereafter, glucose rose slowly to >600 mg/dl at 15 weeks (Fig. 1), as insulin declined gradually to 0.1 ng/ml. The animals became increasingly catabolic and cachectic, dying within 18 weeks after the transplantation procedure. The chronology of the decline in plasma insulin was similar to that of obese pre-diabetic ZDF (fa/fa) rats (4). Examination of hematoxylin and eosin–stained liver sections revealed only minimal inflammatory changes, seemingly excluding immunological rejection.

Relationship of islet transplants to hepatic lipid content. If lipotoxic injury contributed to β-cell failure, there should be evidence of an increase in hepatic lipid content...
surrounding the islets before β-cell failure. We therefore repeated the foregoing experiment in 18 rats but killed them 4 weeks after transplantation. Oil red O staining of liver for lipids revealed areas of intense positivity in hepatocytes immediately surrounding transplanted islets (Fig. 2A and B). The proximity of oil red O staining to islet grafts is consistent with a relationship between localized steatosis and loss of β-cells.

If loss of β-cell function was the result of lipid excess surrounding the islets, then any factor that reduces steatosis surrounding the islets should attenuate β-cell failure. Therefore, in one group of six recipients, we administered adenovirus containing leptin cDNA; the intense hyperleptinemia thereby generated rapidly depletes body lipids (25). In this group, in which food intake declined by 50%, the mean plasma leptin level rose to 140 ng/ml on the seventh day and declined slowly thereafter, but remained above normal throughout the 28 days of observation (data not shown). Hepatic triacylglycerol content (Fig. 2C) averaged 2.8 ± 0.2 mg/g liver wt in ad lib–fed islet recipients, significantly above the normal level of 1.7 ± 0.02 mg/g (P < 0.001). It was reduced to 0.8 ± 0.03 mg/g by the hyperleptinemia. The hyperleptinemic rats were normoglycemic throughout the 4 weeks (Fig. 2D) and appeared clinically normal. In another group of six islet recipients, less profound lipopenia was induced by a 50% reduction in food intake, which matched the reduction in food intake of the hyperleptinemic group. In this diet-restricted group, hepatic triacylglycerol content averaged 1.4 ± 0.2 mg/g liver wet wt, one-half the triacylglycerol content of the ad lib–fed recipients (Fig. 2C). We assume that this lipopenic effect was caused by the 50% reduction in lipogenic substrate derived from the restricted diet.

Although reduction in hyperglycemia was modest in the diet-restricted group of recipients, they seemed much healthier than the ad lib–fed group and gained 72 ± 5 g body wt over the 4 weeks. By contrast, ad lib–fed recipients regained only 17 ± 3 g of the 38 ± 3.3 g lost after streptozotocin administration (P < 0.001). We attribute this difference to the slower rate of β-cell loss in the diet-restricted group.

FIG. 1. Plasma insulin (○) and glucose (●) levels in six rats with severe streptozotocin-induced diabetes in which a suboptimal dose of 1,500 islets harvested from syngeneic donors was injected via the portal vein.

FIG. 2. A: Lipid content in islet transplants shown by oil red O staining of a liver cryosection from an ad lib–fed rat 4 weeks after islet transplantation (magnification ×5). The oil red O–positive spots correspond to peri-portal regions surrounding the transplanted islets. B: Higher magnification of a portion of the section shown in A. Most of the peri-portal hepatocytes surrounding the transplanted islet (*) are heavily stained with oil red O. C: Triglyceride levels in whole liver extracts of normal (●), ad lib–fed (●●), diet-restricted (●●●), and hyperleptinemic (●●●) recipients. #P = 0.001; ##P = 0.05. Norm, normal nondiabetic controls; D-R, diet-restricted. D: Blood glucose levels in the three groups. *P = 0.05. E: Plasma insulin levels in the three groups.
Insulin levels during the 4 weeks after transplantation were highest in the diet-restricted group. In the normoglycemic leptinized group they remained at the low pretransplantation levels throughout the study period (Fig. 2E).

Molecular mechanism of lipid overaccumulation in hepatocytes surrounding the islets. The lipogenic action of insulin is mediated by the transcription factor, SREBP-1c, which upregulates the expression of lipogenic enzymes, including acetyl CoA carboxylase (ACC), SCD-1, glycerol phosphate acyl transferase, and FAS (26,27). We previously reported a 2.4-fold increase of SREBP-1c mRNA in lipid-laden livers of leptin-unresponsive ZDF rats, together with upregulation of its lipogenic target enzymes, ACC and FAS (28), suggesting that this transcription factor might be implicated in the pathogenesis of lipid overaccumulation.

To determine whether SREBP-1c is similarly involved in hepatic steatosis after transplantation and subsequent β-cell failure of normal islet transplants, we compared SREBP-1c precursor protein in liver lysates of the three groups of diabetic transplant recipients and in normal nondiabetic rats (Fig. 3A, lane 1). In ad lib–fed islet transplant recipients undergoing progressive failure of their grafts, hepatic SREBP-1c precursor protein was well below normal (Fig. 3A, lane 2), as expected. Nevertheless, in rats with a blood glucose level of 389 mg/dl and reduced total hepatic SREBP-1 protein on immunoblotting, SREBP-1–positive hepatocytes could still be identified surrounding a relatively well-preserved islet, whereas more remotely situated hepatocytes were SREBP-1 negative (Fig. 3B).

Because SREBP isoforms become transcriptionally active only after processing and transport of the active product into nuclei (26,27), we compared both membrane and nuclear SREBP-1 proteins in the liver of a normal, nondiabetic control rat, arbitrarily assigned a value of 1. Severely diabetic untransplanted rats (■), normoglycemic recipients of ∼2,000 islets (□), and hyperleptinemic, normoglycemic recipients (□). To determine whether SREBP-1c is similarly involved in hepatic steatosis after transplantation and subsequent β-cell failure of normal islet transplants, we compared SREBP-1c precursor protein in liver lysates of the three groups of diabetic transplant recipients and in normal nondiabetic rats (Fig. 3A, lane 1). In ad lib–fed islet transplant recipients undergoing progressive failure of their grafts, hepatic SREBP-1c precursor protein was well below normal (Fig. 3A, lane 2), as expected. Nevertheless, in rats with a blood glucose level of 389 mg/dl and reduced total hepatic SREBP-1 protein on immunoblotting, SREBP-1–positive hepatocytes could still be identified surrounding a relatively well-preserved islet, whereas more remotely situated hepatocytes were SREBP-1 negative (Fig. 3B). The SREBP-1–positive cells were virtually superimposable upon oil red O–positive hepatocytes of an adjacent section. In three other livers from the same group, SREBP-1 staining surrounding islets was extremely weak and was therefore considered to be negative.

In islet recipient rats in which severe diabetes had been attenuated by 50% diet restriction, total SREBP-1 was almost normal on immunoblotting (Fig. 3A, lane 3). This suggests that the reduction in triacylglycerol content in their livers was the result of dietary restriction of lipogenic substrate rather than diminished SREBP-1 expression. In hyperleptinemic recipients with normoglycemia (blood glucose <120 mg/dl), SREBP-1 was very low (Fig. 3A, lane 4). Thus, when insulin is low because of insulin deficiency or because of its suppression by hyperleptinemia, SREBP-1 protein is reduced and lipid synthesis is minimal.

Because SREBP isoforms become transcriptionally active only after processing and transport of the active product into nuclei (26,27), we compared both membrane and nuclear SREBP-1 proteins in the liver of a normal, nondiabetic rat (Fig. 4A, lane 1) with an untransplanted, untreated, severely catabolic streptozotocin-induced diabetic rat (blood glucose >500 mg/dl) (Fig. 4A, lane 2) and a severely catabolic streptozotocin-induced diabetic rat made normoglycemic by transplanting an optimal dose of ∼2,000 islets (blood glucose <100 mg/dl) (Fig. 4A, lane 3). In the untransplanted diabetic group, nuclear SREBP-1 was virtually undetectable, and the membrane fraction was markedly reduced; in the diabetic rats rendered normoglycemic by an optimal dose of islets, both membrane and nuclear fractions of SREBP-1 protein were as high as in nondiabetic control rats, in association with a triacylglycerol content of 3.1 ± 0.2 mg/g liver, which is...
This strongly suggests that accelerated \(\beta\)-cell failure in the latter rats resulted from greater abundance of lipogenic substrate provided by elevated glucose levels or from direct glucotoxic effect or from both, as proposed by Robertson et al. (23) and Harmon et al. (23).

The mRNA of SREBP-1c, expressed as fold difference from nondiabetic controls, followed the same pattern. In untransplanted streptozotocin-induced diabetic rats, liver SREBP-1c mRNA was 20\% of the level in normal nondiabetic liver (Fig. 4B). In recipients with normoglycemia after optimal dose islet transplantation, it had risen to normal, but in normoglycemic, hyperleptinemic recipients, it was suppressed to 35\% of normal. By contrast, the mRNA of SREBP-2, a transcription factor involved mostly in cholesterologenesis, was the same in all groups (Fig. 4B).

The mRNA of two of the SREBP-1c target enzymes, SCD-1 and FAS, reflected the foregoing changes in the expression of their transcription factor. Both were low in livers of insulin-deficient, uncontrolled diabetic rats, and both rose to control or near-control levels after high-dose islet transplantation. Hyperleptinemia reduced these incremental abnormalities in suboptimally transplanted recipients worsened in 4 weeks. Thus, all expression patterns of SREBP-1c mRNA and SREBP-1 protein were consistent with a role in insulin-mediated lipogenesis and leptin-induced antilipogenesis.

Relationship of triacylglycerol content to \(\beta\)-cell loss, islet fibrosis, and diabetes. To obtain further evidence that reduction in lipid accumulation will protect against \(\beta\)-cell loss, we compared the area of insulin-positive cells per \(1 \times 10^6 \mu m^2\) area in three randomly selected liver sections in three animals from each group of islet transplant recipients. In ad lib–fed recipients with failing transplants and uncontrolled diabetes, only 114 ± 12 \(\mu m^2\) insulin-positive cells were present per \(1 \times 10^6 \mu m^2\) liver. In diet-restricted recipients, with significantly reduced triacylglycerol content, the insulin-positive area was 3.7-fold greater, averaging 423 ± 128 \(\mu m^2\) per \(1 \times 10^6 \mu m^2\) liver. In the leptinized group with the lowest triacylglycerol content, the insulin-positive area was 24-fold greater than in the ad lib–fed rats, averaging 2,806 ± 377 \(\mu m^2\) per \(1 \times 10^6 \mu m^2\) liver (\(P < 0.001\) vs. the other groups). Figure 5A displays a representative islet from each group.

In the ad lib–fed group, islets were markedly distorted, and \(\beta\)-cells were replaced by thick bands of collagen with a volume density of 0.29 ± 0.03 (\(n = 10\) islets). Fibrosis was less in the diet-restricted group, measuring only 0.11 ± 0.01 (\(n = 8\) islets). In the hyperleptinemic recipients, it was virtually absent, with a volume density of 0.05 ± 0.01 (\(n = 8\) islets). Thus, \(\beta\)-cell depletion and fibrosis were most severe in the islets with the greatest lipid exposure, and both abnormalities were reduced by diet restriction and hyperleptinemia, consistent with a lipid-related mechanism. Figure 5B displays a representative islet from each group. Note that the fibrosis resembles that reported in islets of type 2 diabetic ZDF rats (6), in which diet restriction also prevented \(\beta\)-cell loss, fibrosis, and diabetes (7). Poststeatotic fibrosis is a familiar occurrence in nonalcoholic steatohepatitis and can occur in other organs, including the heart (29).

Apoptosis as the cause of the \(\beta\)-cell loss. Previously, we invoked lipid-induced apoptosis as the cause of \(\beta\)-cell destruction and type 2 diabetes in obese ZDF rats (6). This was based on the association of high lipid content with increased DNA fragmentation and severe mitochondrial alterations of \(\beta\)-cells (6). To determine whether lipid-related destruction of \(\beta\)-cells noted in islet transplants is also involved an apoptotic mechanism, we used TUNEL staining of the livers as an index of apoptosis.

In ad lib–fed rats, in which \(\beta\)-cells were very sparse,
LIPOTOXIC DESTRUCTION OF TRANSPLANTED β-CELLS

TUNEL-positive cells were virtually absent, presumably because affected β-cells had already disappeared by the time of killing. However, in three liver sections from three diet-restricted rats, in which insulin-positive β-cells were 3.7-fold more abundant than in the ad lib–fed group, TUNEL-positive cells averaged 2 ± 0.2 cells per portal area. In hyperleptinemic recipient rats, in which β-cells were 24 times as abundant as in the ad lib–fed group, apoptotic granules averaged only 0.8 ± 0.1 per portal area (P < 0.01) (data not shown).

DISCUSSION

Despite the early promise of islet transplantation as a cure for type 1 diabetes, the results have been less than anticipated. In an international, multicenter trial using the so-called Edmonton protocol, only 13% of transplant recipients were insulin independent at 2 years after the procedure (3). The cause of this high rate of late transplant failure has not been elucidated, but immunorejection, toxicity of immunosuppression agents, and aberrant blood supply to the intrahepatic islet grafts have been considered. The possibility of lipotoxicity (4), a metabolic form of β-cell rejection, had not been entertained previously.

“Lipotoxicity” of β-cells has been proposed as a cause of non–insulin-dependent type 2 diabetes based on studies of obese ZDF rats (30), in which hyperphagia and hyperinsulinemia are followed by overaccumulation of lipids in the islets and β-cell hyperplasia (5) and then by β-cell apoptosis (24) and overt type 2 diabetes (4). As in the present model, β-cell loss and diabetes in ZDF rats could be prevented by reduction of ectopic lipid accumulation by caloric restriction (7), thiazolidinediones (6), and 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (31). In addition, thioridazine treatment can prevent ZDF diabetes (21), presumably by depleting lipogenic substrate via a renal glucose leak, thereby lowering islet triacylglycerol, and by suppressing insulin, the lipogenic hormone, while stimulating antilipogenic glucagon (32). In the ZDF model, lipotoxicity has been attributed to the lack of leptin action resulting from a loss-of-function mutation in the leptin receptor; this results in a severe lipid accumulation that ultimately disables and kills β-cells through apoptosis. It seemed plausible that the slow, late β-cell destruction in intraportal islet grafts might not involve the same metabolic pathology. We reasoned that in recipients of intraportal islet transplants, the combination of systemic hyperglycemia and high portal vein levels of nutrients and incretins would increase the secretion of insulin by the grafts, creating a surrounding zone of overinsulinized hepatocytes with upregulation of SREBP-1c and its target enzymes of lipogenesis. Lipoprotein lipase of the islets (18) would hydrolyze the increased levels of triacylglycerol released by surrounding hepatocytes, thereby exposing their β-cells to increasing fatty acids. This, we imagined, would cause lipotoxicity of β-cells and failure of the islet grafts, particularly if there was accompanying hyperglycemia (33). If so, interventions that reduce lipogenesis should prevent the damage.

These predictions were borne out. In livers of normoglycemic rats, in which severe diabetes had been reversed by optimal dose islet transplantation, the mRNA of the lipogenic transcription factor SREBP-1c was far above that of severely diabetic, untransplanted controls, as was the SREBP-1 protein in nuclear fractions of their liver. mRNA of its target enzymes, SCD-1 and FAS, was also increased from the depressed levels of untransplanted diabetic rats. Despite the marked reduction in SREBP-1 protein in extracts of livers from ad lib–fed rats after failure of their transplanted islets, hepatocytes immediately surrounding some islets still remained oil red O– and SREBP-1–positive, suggesting residual localized insulin action. Most islets within this steatotic zone were clearly abnormal, with a sharp reduction in insulin-positive β-cells and replacement by thick collagen strands reminiscent of the poststeatotic fibrosis observed in islets of ZDF rats (6), in heart (34), and in liver. The mildness of the inflammatory reaction seemed to exclude immunological rejection as the cause of the β-cell loss.

In contrast to these normoglycemic, optimally transplanted recipients in which blood glucose levels remained normal until 21 to 28 weeks after the procedure, combined glucose and lipid overload in suboptimally transplanted recipients appears to be far more toxic than lipid overload alone, in support of the gluco-lipotoxicity concept (23,33) (Fig. 6). In suboptimally transplanted recipients with moderate hyperglycemia, the metabolic deterioration occurred within 4 weeks. We speculate that the uncorrected hyperglycemia provided a greater abundance of lipogenic substrate, while stimulating insulin, the lipogenic hormone, and suppressing glucagon, an antilipogenic hormone. Alternatively, hyperglycemia itself might have caused direct injury to β-cells, although the marked fibrosis strongly argues for lipotoxicity.

The possible role of lipotoxic destruction in human islet transplants is supported by magnetic resonance images of such patients showing accumulation of intrahepatic fat surrounding the graft sites (12) not unlike those found by oil red O staining in this study (Fig. 2B). This raises the possibility that lipopenic interventions might extend survival of intraportal islet transplants in humans, as they did in rats.

In summary, this study demonstrates, first, that transplantation of islets into the liver is accompanied by insulin-stimulated SREBP-1c–mediated lipogenesis followed by destruction of β-cells. Second, it shows that the destruction can be prevented by reducing the availability

![FIG. 6. Putative pathogenesis of lipotoxic type 2 diabetes based on this study. We postulate that type 2 diabetes can be caused by overstimulation of insulin secretion by chronic overnutrition. The combined caloric excess and hyperinsulinemia induce excessive SREBP-1c–mediated lipogenesis in liver and adipocytes that provide a source of ectopic lipids to islets and other organs. Fatty acids derivatives from imported fatty acids or from locally synthesized fatty acids can impair and destroy β-cells, thereby causing overt type 2 diabetes. The coexistence of hyperglycemia, as in the suboptimally transplanted streptozotocin-induced diabetic islet recipients of this study, can accelerate the lipotoxicity by providing glucose, a substrate for lipogenesis, and/or by causing direct damage (broken arrow).](image-url)
of lipogenic substrates such as glucose and lipids. It implies that a key pathological abnormality in the failure of intrahepatic islet grafts may well be insulin-mediated lipotoxicity due to excessive insulin-stimulated lipogenesis. Its elimination by hyperleptinemia prevents the failure. This evidence that lipid excess can destroy normal β-cells is compatible with the concept of lipotoxicity as a factor in type 2 diabetes (30), as depicted in Fig. 6.

ACKNOWLEDGMENTS

R.H.U. received grants from the National Institute of DiabeteS and Digestive and Kidney Diseases, the Department of Veterans Affairs Merit Review, the Juvenile Diabetes Research Foundation, and Takeda Pharmaceuticals. L.O. received a grant from the Swiss National Science Foundation. Y.K.B. received support from National Institutes of Health Grant HL-20948 to the Brown-Goldstein laboratory.

We are grateful to Sara Kay McCorkle, Ariane Widmer, and Marie Ebrahim Malek for technical assistance; Nadine Dupont for image processing; and Peggy McCravy for secretarial work. We thank James A. Richardson and John Shelton for their work in the UT Southwestern Molecular Pathology Core. Chris Newgard, Daniel Foster, Scott Grundy, and Lorenzo Orci provided critical reviews.

REFERENCES

1. Ricordi C, Strom TB: Clinical islet transplantation: advances and immunological challenges. Nat Rev Immunol 4:250–268, 2004
2. Ryan EA, Puty BW, Senior PA, Bigam D, Alfaidi E, Kneteman NM, Lakey JR, Shapiro AM: Five-year follow-up after clinical islet transplantation. Diabetes 54:2060–2069, 2005
3. Shapiro AM, Ricordi C, Hering J, Aminchinhoe H, Lindblad R, Robertson RP, Secchi J, Benzel MD, Berney T, Newgard R, Bergad S, Marchetti P: Five-years of experience with clinical islet transplantation. Diabetes 54:2060–2069, 2005
4. Lee Y, Hirose H, Ohneda M, Johnson JH, McGarry JD, Unger RH: Beta-cell lipotoxicity in the pathogenesis of non-insulin-dependent diabetes mellitus of obese rats: impairment in adipocyte-beta-cell relationships. Proc Natl Acad Sci USA 91:10878–10882, 1994
5. Milburn JL Jr, Hirose H, Lee YH, Nagasawa Y, Ogawa A, Ohneda M, BeltrandRi Ng H, Newgard CB, Johnson JH, Unger RH: Pancreatic beta-cells in obesity: evidence for induction of functional, morphologic, and metabolic abnormalities by increased long chain fatty acids. J Biol Chem 270:1205–1209, 1995
6. Higa M, Zhou YY, Rajavand A, Baertens D, Orel L, Unger RH: Triglyceride prevents mitochondrial alterations, beta cell death, and diabetes in obese prediabetic rats. Proc Natl Acad Sci USA 96:11515–11518, 1999
7. Ohneda M, Inman LE, Unger RH: Caloric restriction in obese prediabetic rats prevents beta-cell depletion, loss of beta-cell GLUT 2 and glucose incompetence. Diabetologia 38:173–179, 1995
8. Eckhard M, Lommel D, Hackstein N, Winter D, Ziegler A, Rau W, Choschatz M, Brellei KG, Breendi MD: Disseminated perifocal fatty degeneration after allogeneic intraportal islet transplantation in a patient with type 1 diabetes mellitus: a case report. Transplant Proc 30:1111–1113, 1994
9. Hirshberg B, Mog S, Patterson N, Leconte J, Harlan DM: Histopathological study of intrahepatic islets transplanted in the nonhuman primate model using Edmond protocol immunosuppression. J Clin Endocrinol Metab 87:5424–5429, 2002
10. Robertson RP, Harum JS: Pancreatic islet beta-cell and oxidative stress: the importance of glutathione peroxidase. FEBS Lett 2007
11. Markmann JF, Rosen M, Siegelman ES, Soulen MC, Deng S, Barker CF, Naji A: Magnetic resonance imaging of beta-cells and insulin in vivo: a potential tool for monitoring beta-cell function. Diabetologia 52:1591–1594, 2003
12. Bhardwaj R, Senior PA, Ackerman TE, Ryan EA, Puty BW, Lakey JR, Shapiro AM: Prevalence of hepatic steatosis after islet transplantation and its relation to graft function. Diabetes 53:1311–1317, 2004
13. Lupi R, Dotta F, Marselli L, Del Guerra S, Masini M, Santangelo C, Patane G, Boggi U, Piro S, Anello M, Bergamini E, Mosca F, Di Mario U, Del Prato S, Marchetti P: Prolonged exposure to free fatty acids has cytoprotective and pro-apoptotic effects on human pancreatic islets: evidence that beta-cell death is caspase mediated, partially dependent on ceramide pathway, and P38 regulated. Diabetes 51:114–124, 2002
14. Orl C, Baetens D, Ruffner C, Amherdt M, Ravazolla M, Studer P, Malalase-Lage F, Unger RH: Hypertrophy and hyperplasia of somatostatin-containing D-cells in diabetes. Proc Natl Acad Sci USA 73:1338–1342, 1976
15. Polch J, Lees M, Sloane Stanley GH: A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–500, 1957
16. Engling L, Liang G, Hammer RE, Takaishi K, Kuriyama H, Evers BM, Li WP, Horton JD, Goldstein JL, Brown MS: Schoenheimer effect explained: feedback regulation of cholesterol synthesis in mice mediated by Inig proteins. J Clin Invest 115:2489–2498, 2005
17. Shimomura I, Bashmakov Y, Ikemoto S, Horton JD, Brown MS, Goldstein JL: Insulin selectively increases SREBP-1c mRNA in the livers of rats with streptozotocin-induced diabetes. Proc Natl Acad Sci USA 96:13656–13661, 1999
18. Cruz WS, Kwon G, Marshall CA, McDaniel ML, Semenkovich CF: Glucose and insulin stimulate heparin-releasable lipoprotein lipase activity in mouse islets and INS-1 cells: a potential link between insulin resistance and beta-cell dysfunction. J Biol Chem 276:12162–12168, 2001
19. Hamilton JA: Fast flip-flop of cholesterol and fatty acids in membranes: implications for membrane transport proteins. Curr Opin Lipidol 14:263–271, 2003
20. Donath MY, Ehses JA, Maedler K, Schumann DM, Ellingsgaard H, Ellpeter E, Reinecke M: Mechanisms of beta-cell death in type 2 diabetes. Diabetes 54 (Suppl. 2):S108–S113, 2005
21. Harmon JS, Gleason CE, Tanaka Y, Poitout V, Robertson RP: Antecedent hyperglycemia, not hyperlipidemia, is associated with increased islet triacylglycerol content and decreased insulin gene mRNA level in Zucker diabetic fatty rats. Diabetes 50:2481–2486, 2001
22. Maedler K, Donath MY: Beta-cells in type 2 diabetes: a loss of function and mass. Horm Res 62 (Suppl. 3):67–73, 2004
23. Robertson RP, Harmon J, Tran PO, Poitout V: Beta-cell glucose toxicity, lipotoxicity, and chronic oxidative stress in type 2 diabetes. Diabetes 53 (Suppl. 1):S119–S124, 2004
24. Shimabukuro M, Higa M, Zhou YT, Wang MY, Newgard CB, Unger RH: Lipoprotein lipase and beta-cells of obese prediabetic fa/fa rats: role of serine palmitoyltransferase overexpression. J Biol Chem 273:32487–32490, 1998
25. Chen G, Koyama K, Yuan X, Lee YH, Zhou YT, O'Doherty R, Newgard CB, Unger RH: Disappearance of body fat in normal rats induced by adenosine-mediated leptin gene therapy. Proc Natl Acad Sci USA 93:14706–14710, 1996
26. Brown MS, Goldstein JL: The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89:331–340, 1997
27. Brown MS, Goldstein JL: Sterol regulatory element binding proteins (SREBPs): controllers of lipid synthesis and cellular uptake. Nat Rev 5:51–53; discussion 54–57, 1998
28. Kalka T, Lee Y, Higa M, Wang Z, Pan W, Shimomura I, Unger RH: Leptin, troglitazone, and the expression of sterol regulatory element binding proteins in liver and pancreatic islets. Proc Natl Acad Sci USA 97:8536–8541, 2000
29. Lee Y, Naseem RH, Park BH, Garry DJ, Richardson JA, Schaffer JE, Unger RH: Alpha-lipoic acid prevents lipotoxic cardiomyopathy in acyl CoA synthase transgenic mice. Biochim Biophys Acta 1744:446–452, 2006
30. Schaffer JE: Lipotoxicity in the pathogenesis of obesity-dependent NIDDM: genetic and clinical implications. Diabetes 44:863–870, 1995
31. Yu X, McCorkle S, Wang M, Lee Y, Li J, Saha AK, Unger RH, Ruderman NB: Leptinomimetic effects of the AMP kinase activator AICAR in lepin-resistant rats: prevention of diabetes and ectopic lipid deposition. Diabetologia 47:1024–2021, 2004
32. Starke A, Grundy S, McCurdy GJ, Unger RH: Correction of hyperglycemia with phosphoribizin decreases the glucagon response to glucose in insulin-deficient dogs: implications for human diabetes. Proc Natl Acad Sci USA 82:1544–1546, 1985
33. Poitout V, Robertson RP: Minireview: Secondary beta-cell failure in type 2 diabetes: a convergence of glucotoxicity and lipotoxicity. Endocrinology 143:339–342, 2002
34. Lee Y, Naseem RH, Dubomb P, Park BH, Garry DJ, Richardson JA, Schaffer JE, Unger RH: Hyperleptinemia prevents lipotoxic cardiomyopathy in acyl CoA synthase transgenic mice. Proc Natl Acad Sci USA 101:13624–13629, 2004