A Scalable Module System

Florian Rabea, Michael Kohlhasea

aJacobs University Bremen, Computer Science, Germany

Abstract

Symbolic and logic computation systems ranging from computer algebra systems to theorem provers are finding their way into science, technology, mathematics and engineering. But such systems rely on explicitly or implicitly represented mathematical knowledge that needs to be managed to use such systems effectively.

While mathematical knowledge management (MKM) \textit{“in the small”} is well-studied, scaling up to large, highly interconnected corpora remains difficult. We hold that in order to realize MKM \textit{“in the large”}, we need representation languages and software architectures that are designed systematically with large-scale processing in mind.

Therefore, we have designed and implemented the \textsc{Mmt} language – a module system for mathematical theories. \textsc{Mmt} is designed as the simplest possible language that combines a module system, a foundationally uncommitted formal semantics, and web-scalable implementations. Due to a careful choice of representational primitives, \textsc{Mmt} allows us to integrate existing representation languages for formal mathematical knowledge in a simple, scalable formalism. In particular, \textsc{Mmt} abstracts from the underlying mathematical and logical foundations so that it can serve as a standardized representation format for a formal digital library. Moreover, \textsc{Mmt} systematically separates logic-dependent and logic-independent concerns so that it can serve as an interface layer between computation systems and MKM systems.
Contents

1 Introduction

2 Features of Knowledge Representation Languages
 2.1 Packages and Modules ... 6
 2.2 Inheritance .. 7
 2.3 Realizations .. 9
 2.4 Semantics .. 11
 2.5 Genericity .. 11
 2.6 Degree of Formality .. 12
 2.7 Scalability .. 13

3 Central Features of MMT

4 Syntax
 4.1 MMT Theory Graphs ... 23
 4.1.1 Grammar .. 23
 4.1.2 Identifiers .. 24
 4.1.3 The Object Level 25
 4.1.4 The Symbol Level 27
 4.1.5 The Module Level 29
 4.2 Realizations .. 30
 4.3 Valid Declarations ... 33
 4.4 Normal Terms ... 38

5 Well-formed Expressions
 5.1 Judgments .. 40
 5.2 Foundations .. 41
 5.3 Inference Rules for the Structural Levels 43
 5.4 Inference Rules for Morphisms 45
 5.5 Inference Rules for Terms 46
 5.6 Module-Level Reasoning 47

6 Formal Properties
 6.1 Theory Graphs ... 48
 6.2 Properties of Morphisms 49
 6.3 Structural Well-Formedness 52
 6.4 Flattening .. 55

7 Specific Foundations
 7.1 OpenMath .. 58
 7.2 The Edinburgh Logical Framework (LF) 59
8 Web- Scalability .. 60
 8.1 Documents and Libraries 60
 8.2 XML-based Concrete Syntax 61
 8.3 URI-based Addressing .. 65
 8.4 An API for Knowledge Management 67

9 Implementations .. 69
 9.1 The MMT Reference Implementation 69
 9.2 TNTbase – a Scalable MMT-Compliant Database 70
 9.3 Twelf – an MMT-Compliant Logical Framework 71

10 Related Work .. 71

11 Conclusion and Future Work 79
 11.1 The MMT Language .. 80
 11.2 Beyond MMT .. 81
 11.3 Applying MMT ... 85
1. Introduction

Mathematics is one of the oldest areas of human knowledge and provides science with modeling tools and a knowledge representation regime based on rigorous language. However, mathematical knowledge is far too vast to be understood by one person — it has been estimated that the total amount of published mathematics doubles every ten to fifteen years [Od95]. Indeed, for example, Zentralblatt Math [ZBM31] maintains a database of 2.9 million reviews for articles from 3500 journals from 1868 to 2010.

The currently practiced way to organize mathematical knowledge is to have humans build a cognitive representation of the contents in their minds and to communicate their results in natural — i.e., informal — language with interspersed formulas. This process is well-suited for doing mathematics “in the small” where human creativity is needed to create new mathematical insights. But the sheer volume of mathematical knowledge precludes this approach from organizing mathematics “in the large”: Except for prestige projects such as the classification of finite simple groups [Sol95], collaboration in mathematics is largely small-scale.

But this leads to increasing specialization and missed opportunities for knowledge transfer, and the question of supporting the management and dissemination of mathematical knowledge in the large remains difficult. This problem has been tackled in the field of mathematical knowledge management (MKM), which uses explicitly annotated content as the basis for mathematical software services such as semantics-based searching and navigation. MKM in the large has been pioneered in the field of formal methods in software engineering, where a sound logical foundation and the incorruptibility of computers are combined to verify computer systems. These computer-aided proofs rely on large amounts of formal knowledge about the programming language constructs and data structures, and the productivity of formal methods is restricted in practice by the effectivity of managing this knowledge.

We currently see five obstacles for large scale computerized MKM:

Informality As computer programs still lack any real understanding of mathematics, human mathematicians must make structures in mathematical knowledge sufficiently explicit. This usually means that the knowledge has to be formalized, i.e., represented in a formal, logical system. While it is generally assumed that all mathematical knowledge can in principle be formalized, this is so expensive that it is seldom even attempted.

Logical Heterogeneity One of the advantages of informal, but rigorous mathematics is that it does not force the choice of a formal system. There are many formal systems, each optimized for expressing and reasoning about different aspects of mathematical knowledge. All attempts to find the “mother of all logical systems” (and convince others to use it) have failed. Even though logics themselves can be made the objects of mathematical investigation and even of formalization (in logical frameworks), we do not have scalable methods for
efficiently dealing with heterogeneous, i.e., multi-logic, presentations of mathematical knowledge.

Foundational Assumptions Logical heterogeneity is not only a matter of optimization because different developments of mathematical knowledge make different foundational assumptions. For example, classical mathematics usually assumes some kind of set theory as a foundation and embraces a platonist philosophy. But there are different ones of differing expressivity, such as those with and those without the axiom of choice. Other mathematicians even reject the law of excluded middle or insist on constructive witnesses for existential theorems. Corresponding developments often take a more formalist stance and use type theoretic foundations.

Modularity Modern developments of mathematical knowledge are highly modular. They take pains to identify minimal sets of assumptions so that results are applicable at the most general possible level. This modularity and the mathematical practice of “framing”, i.e., of viewing objects of interest in terms of already understood structures, must be supported to even approach human capabilities of managing mathematical knowledge in computer systems.

Global Scale Mathematical research and applications are distributed globally, and mathematical knowledge is highly interlinked by explicit and implicit references. Therefore, a computer-supported management system for mathematical knowledge must support global interlinking and framing as well as management algorithms that scale up to very large (global) data sets.

In this paper we contribute to a uniform solution of four of the five challenges: We give a globally scalable module system for mathematical theories (Mmt) that abstracts from and mediates between different logics and foundations.\(^1\) With this, we lay a conceptual and technical foundation for formal MKM in the large.

Because our solution draws intuitions from the fields of mathematics, formal methods, and knowledge management, we give a comprehensive overview over the relevant language features and introduce a terminology for them in Sect. 2. This gives us a solid footing to describe the central design choices underlying Mmt in Sect. 3. Then we describe the formal syntax of Mmt in Sect. 4 and an inference system that defines the well-formed expressions in Sect. 5. In Sect. 6, we discuss the meta-theoretical properties of Mmt, which include a flattening algorithm that defines the semantics of modular Mmt-expressions. The semantics of Mmt is parametric in what we call foundations, and we look at particular foundations in Sect. 7. Then we discuss the web scalability of Mmt and our implementations in Sect. 8 and 9. Finally we give an extensive discussion of related representation languages in Sect. 10 and conclude in Sect. 11.

\(^1\)We have already solved the integration of formal and informal mathematical knowledge in the OMDoc format, whose formal part is a predecessor of the work presented in this paper. We plan to integrate this solution with the much stronger formal basis of Mmt in the future.
2. Features of Knowledge Representation Languages

In order to compare MMT to other representation languages for mathematical knowledge, we will first develop a classification vocabulary that will allow us to place MMT in the taxonomy of modular, machine-processable knowledge representation languages. We will also use this vocabulary in Sect. 10 to compare MMT to other module systems.

By a module system, we mean a formal language that provides constructs to express high-level design patterns such as namespaces, imports, parametricity, encapsulation, etc. Very often the modular features of a language can be separated from the non-modular ones. In that case, we call the fragment containing no modularity the base language. Typical base languages are logics, type theories, or programming languages. Base language and module system can be designed together or independently, and in the latter case the module system may be designed before or after the base language. We will sometimes use the phrases modular expression and base expression to distinguish expressions of the module system and the base language.

2.1. Packages and Modules

Module systems typically feature one or both of two main scoping devices. Unfortunately, these overlap, and even when they are distinguished, there is no universal convention on how to name them. We will use the names package and module. Other names in common use for package are “library”, “namespace”, and “module”; the latter is the one used in Modula [Wir77], one of the first systems with this functionality. Other names used instead of module are “theory”, “signature”, “specification”, “(type) class”, “(module) type”, and “locale”.

Packages provide scopes for the grouping of related toplevel declarations into – possibly nested – components. The main purpose of packages is namespace management: Packages have names, and their named toplevel declarations are identified by a qualified name: a pair of a package name and a declaration name. This facilitates reuse and distribution of declarations over files and networks. Often the packaging structure is transparent to the semantics of the language; in that case the semantics of packages is that they identify and locate the available toplevel declarations.

When identifying these declarations, we distinguish open and closed packaging. With open packages, all packages can refer all toplevel declarations in all other packages via qualified names. With closed packages, import declarations are necessary as only explicitly imported declarations are accessible. In both cases, import declarations are often used to make the imported declarations available without qualification.

When locating these declarations, we speak of logical package identifiers if package identifiers are different from physical locations as given by file systems, databases, and networks; otherwise, we speak of physical identifiers. With logical identifiers, the location of resources requires a resolution algorithm that maps logical identifiers to physical locations. This resolution can be relegated to an extra-linguistic catalog. Catalogs provide an abstraction layer that makes
the distribution of resources over physical locations transparent to the language and avoids conflicts due to naming conventions of operating systems and storage solutions. Using URI-based package identifiers, logical identifiers can be made globally unique to support global interlinking.

Typically, the declarations in a package are module declarations, and a package can be seen as a group of modules. But there are also languages featuring only packages or only modules. In the former case, every package can be considered to contain a single unnamed module; this is the case in many XML-related languages where the packages are called namespaces such as in XQuery [W3C07]. In the latter case, all modules share the same namespace, which can be considered to form a single unnamed package; this is the case in SML where a configuration file is used to list the files over which the modules are distributed. We will call the latter single-package module systems.

Like packages, modules are scoped groups of declarations. But contrary to packages, modules are opaque to the language semantics and are used to realize modular design patterns such as inheritance, instantiation, and hiding. For example, moving a declaration between packages has no semantic consequences except that references to the moved declaration must be updated. But a module has a meaning itself that will be affected if a declaration is removed or added. For example, a mathematical theory should be represented as a module because moving axioms between theories changes the semantics; a mathematical paper should be represented as a package because some parts may be relegated to other papers.

Typically, languages provide a number of different types of declarations that may occur in a module. The most typical declarations are sorts and types, constants and values, operations and functions, and predicates. These are usually named. Further examples of named or unnamed declarations are axioms, theorems, inference rules, abbreviations, or notations for parsing and printing. A named declaration within a module can often be identified as a triple of package name, module name, and declaration name.

2.2. Inheritance

In the simplest case, inheritance is a binary relation between modules, which is usually seen as an inheritance graph whose nodes are the modules and whose edges make up the inheritance relation. The individual edges are called imports: If T inherits from S, then T imports all knowledge items of S, which then become available in T. An important distinction is whether the individual imports are named or unnamed. In the former case, the name of the import is available to refer to (i) the imported module as a whole, or (ii) the imported knowledge items via qualified names.

Other names for named imports are “structure” and “instance”. Other names for unnamed imports are “mixin”, “inclusion”, “inheritance”, and “definition morphism/link”.

Inheritance leads to a diamond situation when the same module is imported in two different ways. The language may identify multiple imports of
the same module or distinguish them. For named imports, the distinguish-semantics is natural because the multiply imported knowledge items can have different qualified names. But then sharing declarations are necessary to force the identification of these items. The identify-semantics is more natural with unnamed imports. Then renaming declarations are needed to force the distinction of multiply imported knowledge items.

A related problem is the import name clash, which arises when unnamed imports import from different modules which happen to contain knowledge items with the same local name. In large-scale developments, this is a very typical situation, which can be difficult to detect. Here module systems may signal an error, the knowledge item imported first can be shadowed by the one imported later, the name of the module can be used to form a unique qualified name, or overload/identify-semantics can be used. In the latter case, overloading resolution is used to disambiguate a reference to a knowledge item; and knowledge items that cannot be distinguished in this way (e.g., because they have the same types) are identified.

A more complex form of inheritance is instantiation. It means that when importing S into T, some names declared in S may be mapped to expressions of T. This set of mappings can be seen as the passing of argument values over T to parameters of S. If instantiations are possible, multiple imports of the same module with different instantiations should be distinguished. Therefore, the distinguish-semantics is more natural. But it is also possible to identify two imports iff they use the same instantiations.

Module systems differ as to what kind of mappings are allowed. Some systems only allow the map of S-symbols to T-symbols. This has the advantage that it is easier to check whether a map is well-typed. Other systems allow mapping symbols to composed expressions. And systems with named imports, can permit the map of an import itself to a realization (see below).

Another difference is which symbols or imports may be instantiated: We speak of a free instantiation if arbitrary symbols or imports can be instantiated. Free instantiations must explicitly associate some names of S with expressions of T. And we speak of interfaced instantiation if the declarations of S are divided into two blocks, and only the declarations in the first block — the interface — are available for instantiations. Interfaced instantiations are often implicit: The order of declarations in the interface of S must correspond to the order of provided T-expressions. Furthermore, instantiations may be total or partial: Total instantiations provide expressions for all symbols or imports in (the interface of) S. Finally, some systems restrict inheritance to axioms; in such systems, imports must carry instantiations for all symbols; we speak of axiom-inheritance.

A further distinction regards the relation between the imports and the other declarations. We speak of separated imports if all imports must be given at the beginning of the module; otherwise, we call them interspersed imports. Separated imports are conceptually easier, but less expressive: At the beginning of a module, less syntactic material is available to form expressions that can be used in instantiations.
More general forms of imports permit hiding and filtering of declarations. Both are similar syntactically but not semantically. When importing from S to T, filtering a declaration of S means to exclude that declaration from the import. Hiding is more complicated – one way to think of it is that if a declaration is hidden, it is still imported but rendered inaccessible. In both cases, it is necessary to maintain a dependency relation between declarations: If a declaration is hidden or filtered, so must be all declarations that depend on it.

Hiding can be quite difficult to formalize but has an elegant interpretation in the context of algebraic specification. There, it is used to represent the hiding of implementation details or auxiliary constants. For example, implementations of a specification S must also implement the hidden functions of S, but are considered equal if they differ only in the implementation of hidden functions. More precisely, we speak of simple hiding.

Complex hiding arises if not only declarations, i.e., atomic expressions, can be hidden but composed expressions as well. Syntactically, a complex hiding from S to T can be seen as a morphism from T to S in a category of specifications. Then simple hiding is the special case where this morphism is an inclusion. Complex hiding has the appeal that instantiation and hiding become dual to each other.

2.3. Realizations

Many module systems use a concept that we will call realization. Its treatment can vary substantially between systems, which makes it more difficult to describe abstractly. The common intuition is that we can often think of a module as a specification, an interface, or a behavioral description. Then the realizations are the objects that conform to such a specification. Further names used instead of “realization” are “interpretation”, “structure”, “instance”, and “(module) term/value/expression”. Very often it is fruitful to consider modules as types and apply the intuitions of type theory to them. Then a realization is a value that is typed by a module.

For example, in SML, the structures are the realizations of the signatures. In Java, the instances of concrete classes are the realizations of the abstract classes and the interfaces. In logic, the models are the realizations of the theories. In formal specification, the implementations are the realizations of the specifications.

More concretely, a realization of a module S in terms of some context C must provide values over C for all symbols declared in the module S. Two special cases are of particular importance.

Firstly, if C is the empty context – or more precisely: the global environment implicitly determined by the base language – we speak of grounded realizations. For example, in formal specification, the grounded realizations of S are the programs implementing S; the implicit global environment is given by the built-in datatypes and values of the programming language. In logic, the grounded realizations are the models of S; the implicit global environment is given by the foundation of mathematics, e.g., set theory.
Secondly, if C is another module T, we obtain the notions of “views from S to T” and of “functors from T to S”. They are dual in the sense that a view from S to T is a functor from T to S and vice versa. But because they are often associated with very different intuitions, this duality is rarely explicited. We can also recover imports as a special case of realizations akin to views.

Functors are associated with the intuitions of type theory: If modules are seen as types and realizations as values, then functors are the module-level analogue of functions. If $r(x)$ is a realization of T that is given in terms of a realization x of S, then λ-abstraction yields a functor $\lambda x : S.r(x)$. For such a functor, **functor application** maps a realization of S to a realization of T by β-reduction. A module system is **higher-order** if functors may take other functors as arguments.

Views are associated with the intuitions of category theory: Many declarative languages can be naturally formulated as categories with modules as objects and views as morphisms. A view from S to T interprets all declarations of S in terms of T, and this often yields a **homomorphic extension** that maps expressions over S to expressions over T: All symbols in an S-expression are replaced with their T-definition provided by r. Other names used instead of “view” are “signature/theory/specification morphism” and “postulated morphism/link”.

Imports are similar to views in that every import from S to T yields a realization of S in terms of T. Using the intuitions of type theory, declaring a named import from S can be seen as the declaration of a symbol of type S.

The duality between views and functors is connected to a duality of two important translation functions. Consider a realization r of S in terms of T. The **syntactic translation** maps S-expressions to T-expressions using the homomorphic extension of r. This is closely related to the intuition of r as a view from S to T. The **semantic translation** maps realizations of T to realizations of S by functor application. This is closely related to the intuition of r as a functor from T to S.

For example, let S be the theory of monoids and T the theory of groups, and let r realize every symbol of the language of monoids by its analogue in the language of groups. Then the syntactic translation maps an expression in the language of monoids to the corresponding expression in the language of groups. And the semantic translation maps every group to itself seen as a monoid.

A language that features realizations may or may not provide concrete syntax for these two translations. A language that can talk about both translations may also state the duality between them as an adjunction between two functors in the sense of category theory.

Finally, we have the notion of **subtyping** between modules. If every expression over S is also an expression over T, then S is a **syntactic subtype** of T. Dually, if every realization of S is also a realization of T, then S is a **semantic subtype** of T. If both subtyping relations are present in a language, then they are usually opposites of each other.

More concretely, S is a syntactic subtype of T iff there is a realization r of S in terms of T whose syntactic and semantic translations are inclusions. Then we
speak of nominal subtyping if \(r \) is an import, and of structural subtyping if \(r \) is a view.

2.4. Semantics

There are two ways to give a formal semantics of modular expressions. We speak of a model theoretical semantics if models are used to interpret modules. This is typical in the algebraic specification community. We speak of a proof theoretical semantics if the semantics is given by typing judgments and inference rules.

Often for some or all modular expressions, there is an expression of the base language with the same semantics. In the type and proof theory community, this is often built-in: The semantics of a modular expression is defined by transforming it into a non-modular one; this is called elaboration. In contrast, in languages with a model theoretical semantics, it is a theorem about the semantics and often called flattening.

We say that a module system is conservative if every modular expression can be flattened or elaborated into an expression of the base language. Language features that typically prevent conservativity are higher-order functors and hiding.

Similar to conservativity is the internalization of a module system. For certain languages, it is usually possible to represent the module level judgment \(s \) as a realization of the module \(S \) as a typing judgment of the base language. This is possible if the base language features record types, in which all declarations that can occur in a module may also occur as fields in a record. Then modules are records, realizations are values, and functors are functions. However, such expressive record types are often not present and can often only be added at great cost, e.g., an internalized module system for simple type theory requires type polymorphism. Moreover, in languages where declarations build on each other, dependent record types are needed.

2.5. Genericity

A logical framework is a formal representation system that provides an uncommitted set of primitives. Such a framework can be used as a meta-language to define other languages. We call a module system generic if it is not specific to a certain base language, but defined within a logical framework. A generic module system is parametrized by an arbitrary base language defined within the logical framework.

We distinguish further whether the logical framework is based on set theory or type theory. The former typically has a model theoretical, the latter a proof theoretical semantics. The choice of framework often implies a foundational commitment because the framework must make some assumptions about the base language.

For example, set/model theoretical module systems may assume the semantics of the base language as an institution. An example is ASL based on the framework of institutions [GB92, SW83]. This implies a commitment to a certain axiomatic set theory in which models and institutions are given. But for
example, if the foundation includes axioms for choice or large cardinals, the models of the same module differ.

Similarly, a type/theoretical module system may assume the semantics of the base language as a system of judgments and inference rules. An example is the locale module system based on the logical framework Isabelle [Pan94, KWP99]. This implies a commitment to a formal language in which judgments and inference rules are described. But different logical frameworks permit the representation of different object logics.

We use the term foundation to refer to the mathematical theory that formalizes this implicit commitment: the axiomatic set theory in the former, and the logical framework in the latter case. We call a module system foundation-independent if it avoids such a commitment. This can for instance be achieved by explicitly representing the foundation itself as a module. Foundation-independent module systems are not only parametric in the base language but also in the foundation used to express the semantics of the base language.

2.6. Degree of Formality

Mathematics has traditionally been written in natural language with interspersed formulas. This is different from the fully formal style that is often used in computer-supported mathematics. Even though the focus of MMT is on formal languages, it is worthwhile to discuss informal languages as well because many aspects of module systems are independent of the degree of formality.

Formal languages are based on a formal syntax with a precisely defined semantics. The syntax is based on a formal grammar that can be implemented so that computers can parse and understand it. A typical service that a computer can offer for a formal language is the validation of knowledge to guarantee correctness. Computers can also automatically generate knowledge, such as in automated theorem proving where the generated knowledge item is a proof. This category also includes controlled grammars of natural language that are used to give formal representations a more human-friendly appearance.

Informal languages do not have a formal syntax and are based on unrestricted natural language. While mathematicians use informal language rigorously to obtain an unambiguous semantics, this semantics can only be understood by humans but not by machines. Therefore, only shallow machine-processing services are available such as authoring, storing, and distributing papers and books.

But mathematicians frequently use formal objects within natural language. This has motivated the design of semi-formal representation languages that combine formal and informal representations and degrade gracefully when the latter is used. The automated type-setting provided by \LaTeX{} is a simple example; here the formal representation aspects include the structuring of text into, e.g., definitions, theorems, and formulas.

Note that in the example of \LaTeX{}, the formulas themselves are not formal in our sense: While formal symbols are used, the representation is still human-oriented, and machines can usually not determine the syntax tree of a formula.
from its \LaTeX{} representation. Such representations are called presentation-based and distinguished from content-based representations that make the syntax tree accessible to machines.

2.7. Scalability

For machine-processable representation languages, performance and language design are not always orthogonal. We are specifically interested in language aspects that affect scalability.

We call a module system **web standard-compliant** if it provides a concrete syntax that uses XML [W3C98] for all language expressions and URIs [BLFM05] for all identifiers. XML enables standardized document fragment access by technologies like XPath [W3C99] and document fragment aggregation by XQuery [W3C07]. Deployment on web servers allows distributed storage and flexible access methods. URIs provide a standardized and flexible language for logical identifiers. They support the unambiguous identification of all meaningful components of modular theories and provide an abstraction layer over physical locations. An **XML catalog** can translate URIs into their physical locations represented as URLs.

A common feature in implementations of formal languages is a distinction between **internal** and **external** syntax. The latter is more relaxed in order to ease reading and writing for humans, whereas the latter is stricter and fully disambiguated to ease machine-processing. A **reconstruction** algorithm is used to obtain the internal representation from the external one. For programming languages, this is usually called **compilation**. Typical steps of the reconstruction algorithm are parsing of infix operators using precedences, disambiguation of overloaded symbol names, inference of omitted types, and automated proof search to discharge incurred proof obligations. Moreover, often the internal syntax is non-modular, and the reconstruction includes the elaboration or flattening.

If different systems are to communicate mathematical knowledge, a complex reconstruction algorithm can be problematic. If internal syntax is communicated, human-oriented information is lost; when external syntax is communicated, the receiving system must implement the costly reconstruction. Therefore, we speak of **authoring-oriented** languages if the reconstruction algorithm is complex and of **interchange-oriented** languages if it is simple (or even the identity).

We speak of **incremental** processing if modular expressions can be processed step-wise. We say that a language is **decomposable** if there is an algorithm that decompose a modular declaration into a sequence of **atomic** declarations with an acyclic dependency relation. We say that a language is **order-invariant** if the semantics is independent of the order of declarations as long as the order respects the dependency relation. Any decomposable, order-invariant language permits streaming of documents and optimized storage in databases.

The flattening (elaboration) operation is usually defined by induction on expressions and leads to an exponential increase in size. We speak of **eager**
flattening if every induction step requires the recursive flattening of all sub-expressions. If we regard flattening as the evaluation of a modular expression, this corresponds to call-by-value evaluation. We speak of lazy flattening if a corresponding call-by-reference evaluation is possible. In the latter case, the exponential blow-up may be avoided.

3. Central Features of MMT

We will now discuss the central design goals that have guided the development of MMT in terms of the concepts introduced above. For other systems with different applications and design choices see Sect. 10.

A Generic Formal Module System. MMT is a generic, formal module system for mathematical knowledge. It is designed to be applicable to a large collection of declarative formal base languages, and all MMT notions are fully abstract in the choice of base language.

MMT is designed to be applicable to all base languages based on theories. Theories are modules in the sense of Sect. 2, in the simplest case they are defined by a set of typed symbols (the signature) and a set of axioms describing the properties of the symbols. A signature morphism σ from a theory S to a theory T translates or interprets the symbols of S in T.

If we have entailment relations for the formulas of S and T, a signature morphism is particularly interesting if it translates all theorems of S to theorems of T; this is called a theory morphism. Using the Curry-Howard representation, MMT drops the distinction between symbols and axioms and between signatures and theories altogether, and only uses theories. Axioms are constants whose type is the asserted proposition, and theorem are defined constants whose definiens is a proof.

The flat fragment of MMT provides a generic syntax for theories and theory morphisms (called views in MMT). A view from S to T is a list of assignments $c \mapsto \omega$ where c is an S-constant (axiom) and ω is a T-term (proof). Such a list of assignments induces a homomorphic translation of S-terms to T-terms by replacing every c with the corresponding ω. Such translations are often called structural, recursive, or compositional.

Full MMT adds the most general form of inheritance: interspersed named imports (called structures in MMT) carrying free, explicit, and partial instantiations. In particular, we choose named imports to avoid the problems caused by the diamond situation and import name clashes, which occur frequently in large-scale developments.

MMT has been designed in the tradition of the semi-formal OMDoc language, and an extension of MMT to cover informal knowledge is poised to culminate in a successor to OMDoc. But in this paper, we will focus on the formal aspects only. We will nonetheless discuss the relation to semi-formal languages below. To ensure machine-processing MMT uses a content-oriented representation building on OPENMATH [BCC+04] and akin to OMDoc [Koh06]. We have designed and implemented an extension of MMT with notation definitions
that transform MMT-content representations into presentation-oriented formats [Rab08b], but this will not be the focus of this work.

A Simple Ontology. A scalable module system must be both expressive and simple, which forms a difficult trade-off. Therefore, MMT carefully picks only a few primitive language features: The ontology of MMT language features is so simple that it can be visualized in a single graph, see Fig. 1. MMT concepts are distinguished into four levels: the document, module, symbol, and object level.

Expressions at the document level are the documents, which act as packages. MMT systematically follows the intuition that documents are transparent to the semantics. Therefore, scalable knowledge management services can be implemented easily at the document level. Documents are open packages – every document may refer to every other document as long as the dependency relation is acyclic – and the distribution of modules into documents is transparent. Logical identifiers are used for all knowledge items and are given as MMT URIs, and the translation of URIs into URLs is relegated to an extra-linguistic catalog; thus, MMT documents provide namespace management and abstract from physical locations.

Documents contain modules, and MMT uses only two kinds of module declarations: theories and views. MMT does not need other module declarations because both grounded realizations and functors can be represented as views. Most declarative languages, can be stated naturally as a category. The objects are sets of declarations and are represented as MMT theories. And the morphisms are translations between theories, which are represented as MMT views.

More precisely, MMT theories contain symbol declarations, and views
contain symbol assignments. A view from theory S to theory T must realize all S-symbols in terms of T-objects. Consequently, for every kind of symbol declaration, there is a corresponding kind of objects. MMT uses only two kinds of symbol declarations: Constants represent all declarations of the base language, and structures represent inheritance between theories (see below). A constant assignment provides a T-term for an S-constant, and structure assignments provide a T-morphism for an S-structure.

Objects are complex expressions that represent mathematical expressions, formulas, etc. MMT only uses two kinds of objects: terms and morphisms. Constants occur as the atomic terms, and structures and views as the atomic morphisms. The grammar for terms is motivated by the OPENMATH grammar [BCC+04]. It uses generic constructs for application and binding to form complex terms in a way that is general enough to represent most mathematical languages. MMT achieves this by relegating the semantics of terms to a foundation (see below).

Morphisms from S to T are realizations of S over T. We take the concept of links from development graphs [AHMS99] to unify the two atomic morphisms: Structures are morphisms induced by imports, views are morphisms declared (and proved) explicitly. Complex morphisms are formed by composition. The representation of realizations as morphisms has the advantage that MMT can easily provide concrete syntax for the two translations induced by a realization: The syntactic translation is given by applying morphisms to terms, and the semantic translation by composition of morphisms. Thus, MMT can capture the semantics of realizations while being parametric in the semantics of terms.

A Simple Semantics using Theory Graphs. The semantics of a collection of MMT documents is given as a theory graph, which serves as a compact specification of a collection of mathematical theories and their relations. The nodes of a theory graph are the theories; the edges are the links. Each path in a theory graph yields a theory morphism. In particular, if a declarative language is given as a category whose components are represented as MMT theories and morphisms, then diagrams in that category are represented as MMT theory graphs. It is a crucial observation that theory graphs are universal in the sense that they arise naturally and in the same way in any declarative language. Using theory graphs, MMT can capture the semantics of modular theories generically.

Example 1 (Running Example: Elementary Algebra) For a simple example, consider the theory graph on the right with nodes for the theories of monoids, commutative groups, and rings, and three structures between them. The theory Monoid might declare symbols for composition and unit, and axioms for associativity and neutrality. The theory of commutative groups is an extension of the theory of monoids: it arises by adding symbols and axioms to Monoid. Therefore, we only need to represent those added symbols and axioms in CGroup and add a structure mon importing from Monoid.
Fig. 2 gives a more detailed view of the theory graph adding the symbols in the theory nodes, but eliding the axioms. \texttt{Ring} declares two structures for addition and multiplication, and the distinguish-semantics yields two different monoid operations for addition and multiplication.

Our running example shows a slight complication in the case of first-order logic: We can declare a symbol for the first-order universe either in \texttt{Monoid} or in the theory \texttt{FOL}, which we will introduce in Ex. 5. Both choices are justified, and we will assume the latter for the sake of our example.

Structures in MMT are always named and the distinguish-semantics is used in the case of diamonds. Qualified identifiers for the imported constants are formed by concatenating the structure name and the name of the imported symbols. For example, the theory \texttt{Ring} from Fig. 2 can access the symbols \texttt{add/mon/comp} (addition), \texttt{add/mon/unit} (zero), \texttt{add/inv} (additive inverse), \texttt{mult/comp} (multiplication), and \texttt{mult/unit} (one).

Both structures and views from \(S\) to \(T\) are defined by a list of assignments \(\sigma\) that assigns \(T\)-objects to \(S\)-symbols, and both induce theory morphisms from \(S\) to \(T\) that map all \(S\)-objects to \(T\)-objects. This can be utilized to obtain the identity-semantics: sharing declarations are special cases of assignments in structures.

\textit{Example 2} (Sharing via Instantiation) Consider Ex. 1 but with the change that we declare a symbol \texttt{univ} in \texttt{Monoid} for the first-order universe. Then \texttt{univ} must be shared between the two imports from \texttt{Monoid} to \texttt{Ring}. We obtain an asymmetric sharing declaration by first declaring the import \texttt{add} and then adding the assignment \texttt{univ} \(\mapsto\) \texttt{add/mon/univ} to the structure \texttt{mult} in order to identify the two copies of the universe. Alternatively, we can give a symmetric sharing declaration by declaring \texttt{univ} in \texttt{Ring} as well and adding the assignment \texttt{univ} \(\mapsto\) \texttt{univ} to both structures.
We will see that whole structures can be shared in the same way.

While a view relates two fixed theories without changing either one, structures from S to T occur within T and change T by including a copy of S. Thus, structures induce theory morphisms by definition, and views correspond to representation theorems.

Example 3 (Views (continued from Ex. 1)) The node on the right side of the graph in Fig. 2 represents a theory for the integers declaring the constants 0, +, and −. The fact that the integers are a monoid is represented by the view v_1. It is a theory morphism that explicitly gives the interpretations of all symbols: $\text{comp} \mapsto +$ and $\text{unit} \mapsto 0$. If we did not omit axioms, this view would also have to interpret all the axioms of Monoid as proof terms.

The view v_2 is particularly interesting because there are two ways to represent the fact that the integers are a commutative group. In the first variant, all constants of CGroup are interpreted separately: inv as − and the two imported constants mon/comp and mon/unit as + and 0, respectively. In the second variant v_2 is constructed modularly by importing the existing view v_1: The MMT structure assignment $\text{mon} \mapsto v_1$ maps all symbol imported by mon according to v_1. The intuition behind a structure assignment is that it makes the right triangle commute: v_2 is defined such that $v_2 \circ \text{mon} = v_1$. Clearly, both variants lead to the same theory morphism; the second one is conceptually more complex but eliminates redundancy because it is structured.

Partial Morphisms. The assignments defining a structure may be (and typically are) partial whereas a view should be total. In order to treat structures and views uniformly, we admit partial views as well. This is not only possible, but in fact desirable. A typical scenario when working with views is that some of the specific assignments making up the view constitute proof obligations and must be found by costly procedures. Therefore, it is reasonable to represent partial views, namely views where some proof obligations have already been discharged whereas others remain open.

Example 4 (Partial Morphisms (continued from Ex. 3)) Consider for instance the situation in Fig. 2 but this time taking axioms into account. Recall that under the Curry-Howard correspondence, axioms are just symbols whose types is given by the asserted formula. So we would have additional constants assoc and neut for associativity and the properties of the neutral element in Monoid, the constants inv_ax and comm for the properties of the inverse element and commutativity in CGroup, and finally the constant dist for distributivity in Ring.

Thus, the views v_1 and v_2 are clearly partial views, and the missing assignments for assoc and neut in v_1 and for inv_ax and comm in v_2 are proof obligations that need to be discharged by proving the translated axioms in theory integers. If these proof terms are known, they can be added to the views as assignments to the respective (axiom) constants. In this situation, the structured view v_2 shows its strength: It imports the constant assignments from v_1 that discharge proof obligations so that these proofs do not have to be repeated.
Partial morphisms also arise when representations are inherently partial. For example, we can give a one-sided inverse to the structure \(\text{mon} \) in Fig. 2 by mapping \(\text{mon} / \text{comp} \) and \(\text{mon} / \text{unit} \) to \(\text{comp} \) and \(\text{unit} \).

MMT introduces \textit{filtering} to obtain a semantics for partial morphisms: All constants for which a view does not provide an assignment are implicitly filtered, i.e., are mapped to a special term \(\top \). If a link \(l \) from \(S \) to \(T \) filters a \(S \)-constant that has a definiens, this is harmless because the filtered constant can be replaced with its definiens. But if undefined constants are filtered, MMT enforces the strictness of filtering: All terms depending on a filtered constant, are also filtered. In that case, we speak of filtered terms, which are also represented by \(\top \).

\textit{A Foundation-Independent Semantics.} Mathematical knowledge is described using very different foundations. Most of them can be grouped into set theory and type theory. Within each group there are numerous variants, e.g., Zermelo-Fraenkel [Zer08, Fra22] or Gödel-Bernays set theory [Göd40, Ber37], or set theories with or without the axiom of choice. Therefore, scalability across semantic domains requires a foundation-independent representation language. It is a unique feature of MMT to provide such a high level of genericity and still be able to give a rigorous semantics in terms of theory graphs and a foundation-independent \textit{flattening theorem}.

The semantics of MMT is given proof theoretically by flattening in order to avoid a commitment to a particular model theory. This also makes MMT conservative over the base language so that we can combine MMT with arbitrary base languages without affecting their semantics. Therefore, we have to exclude non-conservative language features, but we have shown in [Rab10, HR11] that despite the proof theoretical semantics of MMT, model theoretical module systems can be represented in MMT. Moreover, we have given an extension of MMT with hiding in [CHK11a].

Foundation-independence is achieved by representing all logics, logical frameworks, and the foundational languages themselves simply as theories. For example, an MMT theory graph based on ZFC set theory starts with a theory that declares the symbols of ZFC such as \(\in \) and \(\subseteq \). Moreover, MMT does not prescribe a set of well-typed terms. Instead, MMT uses generic term formation operators, and any term may occur as the type of any other term.

We recover this loss of precision by formalizing the notion of \textit{meta-languages}, which pervades mathematical discourse. Let us write \(M/T \) to express that we work in the object language \(T \) using the meta-language \(M \). For example, most of mathematics is carried out in \textit{FOL/ZFC}, i.e., first-order logic is the meta-language, in which set theory is defined. \textit{FOL} itself might be defined in a logical framework such as \textit{LF} [HHP93], and within \textit{ZFC}, we can define the language of natural numbers, which yields \(\text{LF}/\text{FOL}/\text{ZFC}/\text{Nat} \). In MMT, all of these languages are represented as theories. In many ways \(M/T \) behaves like an import from \(M \) to \(T \), but using only an import would fail to describe the meta-relationship. Therefore, MMT uses a binary \textit{meta-theory} relation between theories.
In the example in Fig 3 and generally in this paper, the meta-theory relation is visualized using dotted inclusion morphisms. The theory FOL for first-order logic is the meta-theory for Monoid and Ring. And the theory LF for the logical framework LF is the meta-theory of FOL and the theory HOL for higher-order logic. Note how the meta-theory can indicate both to humans and to machines how T is to be interpreted. For example, interpretations of Monoid are always stated relative to a fixed interpretation of FOL.

The importance of meta-theories M/T in MMT is that M defines the semantics of T. More precisely, a foundational theory declares all primitive concepts and axioms of the foundational language and occurs as the upper-most meta-theory – like LF and Isabelle in the example in Fig 3. The semantics of the foundational theory is called the foundation; it is given externally and assumed by MMT, and it induces the semantics of all other theories. Formally, MMT assumes that the foundation for the foundational theory M defines typing and equality judgments for arbitrary theories T with (possibly indirect) meta-theory M.

The choice of typing and equality is motivated by their universal importance in the formal languages of mathematics and computer science. Here we should clarify that, from an MMT perspective, languages like untyped set theory are in fact typed languages, if only coarsely-typed: For example, typical formalizations of set theory at least distinguish types for sets, propositions, and proofs, and a concise definition of axiom schemes naturally leads to a notion of function types.

Example 5 (Meta-Theories (continued from Ex. 4))

We can add meta-theories by adding a theory FOL for first-order logic, which occurs as the meta-theory of monoids, groups, and rings. In particular, FOL declares symbols for the first-order universe and the connectives and quantifiers. We use a theory for ZFC as the meta-theory of the integers. In that case the views v_1 and v_2 are only meaningful relative to an interpretation of first-order logic in set theory. In MMT, this interpretation is given as a view FOLSem from FOL to ZFC which is attached to v_1 and v_2 as a meta-morphism. FOLSem represents the inductive interpretation function that defines the semantics of first-order logic in set theory.
Little Logics and Little Foundations. The little theories methodology [FGT92] strives to state every mathematical theorem in the theory with the smallest possible set of axioms in order to maximize theorem reuse. Using the foundations-as-theories approach of, we can extend it to the little logics and little foundations methodology.

Mmt provides a uniform module system for theories, logics, and foundational languages. Thus, we can use structures to represent inheritance at the level of logical foundations and views to represent formal translations between them. For example, the morphisms \(m \) and \(m' \) in Fig. 3 indicate possible translations on the levels of logical frameworks and logics, respectively. Therefore, just like in the little theories approach, we can prove meta-logical results in the simplest logic or foundation that is expressive enough and then use views to move results between foundations.

Example 6 (Proof and Model Theory of First-Order Logic) In [HR11], we formalize the syntax, proof theory, and model theory and prove the soundness of first-order logic in MMT/LF. We use the theory graph given in the commutative diagram on the right. We represent the syntax – i.e., the connectives and quantifiers – in the theory FOLSyn. (This theory was called FOL in Ex. 5.) For the proof theory, the theory FOLPf imports FOLSyn and adds constants for the rules of a calculus for first-order logic encoded via the Curry-Howard correspondence.

For the definition of the model theory in FOLMod, we should use set theory as the meta-theory. However, doing proofs in set theory as needed for the soundness proof is tedious. Therefore, we use higher-order logic HOL as the meta-theory of FOLMod; it is expressive enough to carry out the soundness proof but permits typed reasoning. The syntax is interpreted in the model theory by a view FOLSem1.

Then the view refine from HOL to ZFC proves that ZFC is a refinement of HOL. We reuse refine to give a morphism FOLSem2 that interprets FOLMod in ZFC. The composition of FOLSem1 and FOLSem2 yields the view FOLSem from Ex. 5.

Finally the soundness proof – which shows that all proof terms over FOLPf induce valid statements over FOLMod – is represented as the view sound. sound is given as a structured view: It imports the view FOLSem1 using the structure assignment \(\text{syn} \rightarrow \text{FOLSem1} \).

To establish the views into ZFC, it must have proof rules of its own. We use a variant of first-order logic as the meta-theory of ZFC, namely FOLd. It arises by importing FOLPf and then adding a description operator \(\iota \). This yields two morphisms from FOLPf to ZFC: one via the import fol and the meta-theory relation, and one as the composition of sound and FOLSem2. These morphisms are not equal: If...
\(o \) is the type of formulas in \(\text{FOLsyn} \), then the former morphism maps \(o \) to the type of propositions of \(\text{ZFC} \); but the latter maps \(o \) to the set of boolean truth values. Note that to express this difference in our commutative diagram, we must use two copies of the node \(\text{FOLPf} \).

Moreover, in \([\text{HR11}]\), all theories have \(\text{LF} \) as the ultimate meta-theory, which we omitted from the diagram on the right. In addition, \([\text{HR11}]\) gives all theories and views using our little logics approach, e.g., using separate theories for each connective. Thus, we can reuse these fragments to define other logics as we do in \([\text{KMR09}]\).

Built-in Web-Scalability. Most module systems in mathematics and computer science are designed with the implicit assumption that all theories of a graph are retrieved from a single file system or server and are processed by loading them into the working memory of a single process. These assumptions are becoming increasingly unrealistic in the face of the growing size of both mathematical knowledge and formalized mathematical knowledge. Moreover, this mathematical knowledge is represented in different formal languages, which are processed with different implementations.

\(\text{Mmt} \) is designed as a representation language that scales well to large interlinked document collections that are processed with a wide variety of systems across networks and implementation languages. Therefore, \(\text{Mmt} \) offers integration support through web standards-compliance, incremental processing of large theory graphs, and an interchange-oriented fully disambiguated external syntax.

Scalable transport of \(\text{Mmt} \) documents must be mediated by standardized protocols and formats. While the use of XML as concrete syntax is essentially orthogonal to the language design, the use of \text{URIs as identifiers} is not because it imposes subtle constraints that can be hard to meet a posteriori. In \(\text{Mmt} \), all constants, including imported ones, that are available in a theory have canonical URIs. \(\text{Mmt} \) uses tripartite URIs \(\text{doc?mod?sym} \) formed from a document URI \(\text{doc} \), a module name \(\text{mod} \), and a qualified symbol name \(\text{sym} \). For example, if the theory graph from Fig. 3 is given in a document with URI \(\text{http://cds.omidoc.org/mmt/paper/example} \), then the constant \(\text{unit} \) imported from \(\text{Monoid} \) into \(\text{CGroup} \) has the URI \(\text{http://cds.omidoc.org/mmt/paper/example?CGroup?mon/unit} \).

Note that theories are containers for declarations, and relations between theories define the declarations that are available in a given theory. Therefore, if every available constant has a canonical identifier, the syntax of identifiers is inherently connected to the possible relations between theories. Consequently, and maybe surprisingly, defining the canonical identifiers is almost as difficult as defining the semantics of the whole language.

All \(\text{Mmt} \) definitions and algorithms are designed with incremental processing in mind. In particular, \(\text{Mmt} \) is decomposable and order-invariant. For example, the declaration \(T = \{ s_1 : \tau_1, s_2 : \tau_2 \} \) of a theory \(T \) with two typed symbols yields the atomic declarations \(T?s_1 : \tau \), and \(T?s_2 : \tau_2 \). Documents, views,
and structures are decomposed accordingly. This “unnesting” of declarations is possible because every declaration has a canonical URI so that declarations can be taken out of context for transport and storage and re-assembled later.

The understanding of structures and their induced declarations is crucial to achieve web-scalability. Languages with imports and instantiations tend to be much more complex than flat ones making them harder to specify and implement. Therefore, the semantics of modularity must often remain opaque to generic knowledge management services, an undesirable situation. Because MMT has a simple and foundation-independent flattening semantics, modularity can be made transparent whenever a system is unable to process it.

Moreover, the flattening of MMT is lazy: Every structure declaration can be eliminated individually without recursively flattening the imported theory. Thus, systems gain the flexibility to flatten MMT documents partially and on demand.

4. Syntax

We will now develop the abstract syntax of MMT, our formal module system that realizes the features described in the last section. We introduce the syntax in Sect. 4.1. Then we use MMT to give a precise definition of the concept of “realizations” in Sect. 4.2. In Sect 4.3 and 4.4, we introduce auxiliary functions for lookup and normalization that are used to talk about MMT theory graphs.

4.1. MMT Theory Graphs

The MMT syntax for theory graphs distinguishes the module, symbol, and object level. We defer the description of the document level to Sect. 8 because documents are by construction transparent to the semantics.

4.1.1. Grammar

The MMT grammar is given in Fig. 4 where \(+ \), \(| \), and \([\) denote non-empty repetition, alternative, and optional parts, respectively. Note that several non-terminal symbols correspond directly to concepts of the MMT ontology given in Sect. 3. In order to state the flattening theorem below, we also introduce the flat MMT syntax; it arises by removing the productions given in gray. We will call a theory graph, module, or definiens flat, iff it can be expressed in the flat MMT syntax.

The meta-variables we will use are given in Fig. 5. References to named MMT knowledge items are Latin letters, MMT objects and lists of knowledge items are Greek letters. We will occasionally use _ as an unnamed meta-variable for irrelevant values.

In the following we describe the syntax of MMT and its intended semantics in a bottom-up manner, i.e., identifiers, object level, symbol level, and module level. Alternatively, the following subsections can be read in top-down order.
Theory Graph

Level	Declaration	Expression
Module	theory T, S, R, M	theory graph γ (set of modules)
Link	l	$\gamma, View$
Symbol	constant c	theory body ϑ (set of symbols)
	structure r, s	link body σ (set of assignments)
Object	variable x	term ω
		morphism μ

Document Identifier

Level	Declaration	Expression
URI, no query, no fragment	g	URI, no query, no fragment

Module Identifier

Level	Declaration	Expression
S, T, M, l	g	URI, no query, no fragment

Symbol Identifier

Level	Declaration	Expression
$T?c$	$T?c$	$T?c$

Local Identifier

Level	Declaration	Expression
c, s, I	$i/[i]^+$	$i/[i]^+$

Meta-Variables

Level	Declaration	Expression
Variable context	Υ	$\Upsilon, x: \omega\models \omega$
Symboll	ϑ	ϑ, Con, Str
Term	ω	$\omega, T?c, \omega^\mu, \vartheta(\omega, \omega^+)$
Morphism	μ	μ

4.1.2. Identifiers

All MMT identifiers are URIs and the productions for URIs given in RFC 3986 [BLFM05] are part of the MMT grammar. We distinguish identifiers of documents, modules, and symbols.

Document identifiers g are URIs without queries or fragments (The query and fragment components of a URI are those starting with the special characters ? and #, respectively.)

Module identifiers are formed by pairing a document identifier g with a local module identifier I valid in that document. We use $?$ as a separating character. Similarly, symbol identifiers $T?c$ arise by pairing a theory identifier with an local identifier valid in that theory.
Local identifiers may be qualified and are thus lists of names separated by "/". Finally, names are non-empty strings of pchars. pchar is defined in RFC 3986 and produces any Unicode character where certain reserved characters must be %-encoded; reserved characters are ?/#[]% and all characters generally illegal in URIs.

Example 7 (Continued from Ex. 1) We assume that the MMT theory graph for the running example is located in a document with some URI \(e \). Then the MMT URIs of theories and views are for example \(e?\text{Ring} \) and \(e?v1 \). The MMT URIs of the constants available in the theory \(e?\text{Ring} \) are

- \(e?\text{Ring}\text{/add/mon/comp} \),
- \(e?\text{Ring}\text{/add/mon/unit} \),
- \(e?\text{Ring}\text{/add/inv} \),
- \(e?\text{Ring}\text{/mult/comp} \),
- \(e?\text{Ring}\text{/mult/unit} \).

The identifiers of structures are special because they may be considered both as symbol level and as module level knowledge items. This is reflected in MMT by giving structures two identifiers. Consider the structure that imports \text{Monoid} into \text{CGroup}: If we want to emphasize its nature as a declaration within \text{CGroup}, we use the symbol identifier \(e?\text{CGroup}/\text{mon} \); if we want to emphasize its nature as a morphism, we use the module identifier \(e?\text{CGroup}/\text{mon} \). Consequently, the non-terminal symbol \(l \) for links may refer both to a view and to a structure (as expected).

4.1.3. The Object Level

Following the OpenMath approach, MMT objects are distinguished into terms and morphisms. Terms \(\omega \) are formed from:

- **constants** \(T?c \) referring to constant \(c \) declared in theory \(T \),
- **variables** \(x \) declared in an enclosing binder,
- **applications** \(@((\omega_1,\omega_1,\ldots,\omega_n)) \) of \(\omega \) to arguments \(\omega_i \),
- **bindings** \(\beta(\omega_1;\Upsilon;\omega_2) \) by a binder \(\omega_1 \) of a list of variables \(\Upsilon \) with body \(\omega_2 \),
- **morphism applications** \(\omega^\mu \) of \(\mu \) to \(\omega \),
- a special term \(\top \) for filtered terms (see below).

Variable contexts are lists of variable declarations. Parallel to constant declarations, variables carry an optional type and an optional definition. The scope of a bound variable consists of the types and definitions of the succeeding variable declarations and the body of the binder.
For every occurrence of a term, there is a **home theory** against which the term is checked. For occurrences in constant declarations, this is the containing theory. For occurrences in assignments, this is the codomain of the containing link. We call a term \(t \) that is well formed in a theory \(T \) a **term over** \(T \). Terms over \(T \) may use \(T?c \) to refer to a previously declared \(T \)-constant \(c \). And if \(s \) is a previously declared structure instantiating \(S \), and \(c \) is a constant declared in \(S \), then \(T \) may use \(T?s/c \) to refer to the copy of \(c \) induced by \(s \). Note that MMT assumes that the declarations occur in an order that respects their dependencies; we will see later that the precise order chosen does not matter.

Example 8 (Continued from Ex. 7) The running example only contains constants. Complex terms arise when types and axioms are covered. For example, the type of the inverse in a commutative group is \(@((\rightarrow, \iota, \iota))\). Here \(\rightarrow \) represents the function type constructor and \(\iota \) the carrier set. These two constants are not declared in the example. Instead, we will add them in Ex. 12 by giving \(\text{CGroup} \) a meta-theory, in which these symbols are declared. A more complicated term is the axiom for left-neutrality of the unit:

\[
\omega_e := \beta(\forall; x : \iota; @(=, @(\text{e?Monoid?comp}, \text{e?Monoid?unit}, x), x)).
\]

Here \(\forall \) and \(= \) are further constants that are inherited from the meta-theory.

Morphisms are built up from links and compositions. If \(s \) is a structure declared in \(T \) that imports from \(S \), then \(T/s \) is a link from \(S \) to \(T \). Similarly, every view \(m \) from \(S \) to \(T \) is a link. Composition is written \(\mu \mu' \) where \(\mu \) is applied before \(\mu' \), i.e., composition is in diagrammatic order. The identity morphism of the theory \(T \) is written \(\text{id}_T \). A morphism application \(\omega^\mu \) takes a term \(\omega \) over \(S \) and a morphism \(\mu \) from \(S \) to \(T \), and returns a term over \(T \).

Just like a structure declared in \(T \) is both a symbol of \(T \) and a link into \(T \), a morphism from \(S \) to \(T \) can be regarded as a composed object over \(T \). To stress this often fruitful perspective, we also call the codomain of a morphism its **home theory**, and the domain its **type**. Then morphism composition \(\mu' \mu \) can be regarded as the application of \(\mu \) to \(\mu' \): It takes a morphism \(\mu' \) with home theory \(S \) and type \(R \) and returns a morphism with home theory \(T \) of the same type.

Example 9 (Continued from Ex 8) In the running example, an example morphism is

\[
\mu_e := \text{e?CGroup/mon e?v2}.
\]

It has domain \(\text{e?Monoid} \) and codomain \(\text{e?integers} \). The intended semantics of the term \(\omega_e^{\mu_e} \) is that it yields the result of applying \(\mu_e \) to \(\omega_e \), i.e.,

\[
\beta(\forall; x : \iota; @(=, @(+, 0, x), x)).
\]

Here, we assume \(\mu_e \) has no effect on those constants that are inherited from the meta-theory. We will make that more precise below by using the identity as a meta-morphism.
We define a straightforward abbreviation for the application of morphisms to whole contexts:

Definition 10. We define Υ^μ by

$$\cdot^\mu := \cdot \quad \text{and} \quad (\Upsilon, x : \tau = \delta)^\mu := \Upsilon^\mu, x : \tau^\mu = \delta^\mu$$

Here we assume $\perp^\mu = \perp$ to avoid case distinctions.

The analogy between terms and morphisms is summarized in Fig. 6.

Terms	Atomic object	Complex object	Type	Checked relative to
Morphisms	link	morphism	domain	codomain

The analogy between terms and morphisms is summarized in Fig. 6.

![Figure 6: The Object Level](image)

4.1.4. The Symbol Level

We distinguish four symbol level concepts as given in Fig. 7: constants and structures, and assignments to them.

Terms	Declaration	Assignment
Morphisms	of a constant Con	to a constant $c \mapsto \omega$
Morphisms	of a structure Str	to a structure $s \mapsto \mu$

A **constant declaration** of the form $c : \tau = \delta$ declares a constant c of type τ with definition δ. Both the type and the definition are optional yielding four kinds of constant declarations. If both are given, then δ must have type τ. In order to unify these four kinds, we will sometimes write \perp for an omitted type or definition.

Recall that via the Curry-Howard representation, a theorem can be declared as a constant with the asserted proposition as the type and the proof as the definiens. Similarly, (derived) inference rules are declared as (defined) constants.

A **structure declaration** of the form $s : S \vDash \{\sigma\}$ in a theory T declares a structure s instantiating the theory S defined by assignments σ. Such structures can have an optional meta-morphism μ (see below). Alternatively, structures may be introduced as an abbreviation for an existing morphism: $s : S = \mu$. While the domain of a structure is given explicitly (in the style of a type), the codomain is the theory in which the structure is declared. Consequently, if $s : S = \mu$ is declared in T, μ must be a morphism from S to T.

Just like symbols are the constituents of theory bodies, assignments are the constituents of link bodies. Let l be a link from S to T. A **assignment to a constant** of the form $c \mapsto \omega$ in the body of l expresses that l maps the constant
c of S to the term ω over T. Assignments of the form c ↦ ⊤ are special: They express that the constant c is filtered, i.e., l is undefined for c.

If s is a structure declared in S and μ a morphism over (i.e., into) T, then an assignment to a structure of the form s ↦ μ expresses that l maps s to μ. This means that the triangle S/s l = μ commutes.

Both kinds of assignments must type-check to ensure that typing is preserved by theory morphisms. In the case of constants, this means that the term ω must type-check against τ l where τ is the type of c declared in S. In the case of structures, it means that μ must be a morphism from R to T where R is the type, i.e., the domain, of s.

Induced Symbols. Intuitively, the semantics of a structure s with domain S declared in T is that all symbols of S are copied into T. For example, if S contains a constant c, then an induced constant s/c is available in T. In other words, / is used as the operator that dereferences structures.

Similarly, every assignment to a structure induces assignments to constants. Continuing the above example, if a link with domain T contains an assignment to s, this induces assignments to the induced constants s/c. Furthermore, assignments may be deep in the following sense: If c is a constant of S, a link with domain T may also contain assignments to the induced constant s/c. Of course, this can lead to clashes if a link contains assignments for both s and s/c; links with such clashes will not be well-formed.

Example 11 (Continued from Ex. 9) The symbol declarations in the theory CGroup are written formally like this:

\[
\text{mon}: e?\text{Monoid} = \{\} \quad \text{and} \quad \text{inv}: @() (\cdot, \cdot, \cdot).
\]

The former induces the constants e?CGroup?mon/comp and e?CGroup?mon/unit. Ring contains only the two structures

\[
\text{add}: e?\text{CGroup} = \{\} \quad \text{and} \quad \text{mult}: e?\text{Monoid} = \{\}.
\]

Instead of inheriting a symbol τ for the first-order universe from the metatheory, we can declare a symbol univ in Monoid. Then Ring would inherit two instances of univ, which must be shared. Ring would contain the two structures

\[
\text{add}: e?\text{CGroup} = \{\} \\
\text{mult}: e?\text{Monoid} = \{\text{mon/univ} \mapsto e?\text{Ring/add}, \text{mon/univ}\}
\]

Using an assignment to a structure, the assignments of the view v2 look like this:

\[
\text{inv} \mapsto e?\text{integers}? - \quad \text{and} \quad \text{mon} \mapsto e?v1.
\]

The latter induces assignments for the induced constants e?CGroup?mon/comp as well as e?CGroup?mon/unit. For example, e?CGroup?mon/comp is mapped to e?Monoid?compεv1.
The alternative formulation of the view v2 arises if two deep assignments to the induced constants are used instead of the assignment to the structure mon:

$$\text{mon/comp} \mapsto e?\text{integers} + \quad \text{and} \quad \text{mon/unit} \mapsto e?\text{integers?0}$$

4.1.5. The Module Level

On the module level a [theory declaration](#) of the form $T \ [M] \ {\{\vartheta\}}$ declares a theory T defined by a list of symbol declarations ϑ, which we call the body of T. Theories have an optional meta-theory M. A [view declarations](#) of the form $m : S \rightarrow T \ [\mu] \ {\{\sigma\}}$ declares a view m from S to T defined by a list of assignments σ and by an optional meta-morphism μ. Just like structures, views may also be defined by an existing morphism: $m : S \rightarrow T = \mu$.

Meta-Theories. Above, we have already mentioned that theories may have meta-theories and that links may have meta-morphisms. Meta-theories provide a second dimension in the theory graph. If M is the meta-theory of T, then T may use all symbols of M. M provides the syntactic material that T can use to define the semantics of its symbols.

Because a theory S with meta-theory M implicitly imports all symbols of M, a link from S to T must provide assignments for these symbols as well. This is the role of the meta-morphism: Every link from S to T must provide a meta-morphism from M to T (or any meta-theory of T).

Example 12 (Continued from Ex. 11) We can now combine the situations from Ex. 5 and 6 in one big MMT theory graph. In a document with URI m, we declare an MMT theory for the logical framework as

$$m?LF = \{\text{type}, \rightarrow, \ldots\}$$

where we only list the constants that are relevant for our running example: type represents the kind of types, and \rightarrow is the function type constructor.

We declare a theory for first-order logic in a document with URI f like this:

$$f?f\text{FOLSyn} = m?LF\{\text{type, o : m?LF?type, equal : @(m?LF?\rightarrow, ??\iota, ??\iota, ??\sigma), \ldots}\}$$

Here we already use relative identifiers (see Sect. 8.3) in order to keep the notation readable: Every identifier of the form $??c$ is relative to the enclosing theory: For example, $??\iota$ resolves to $f?f\text{FOLSyn}?\iota$. Again we restrict ourselves to a few constant declarations: The types ι and o represent terms and formulas, and the equality operation takes two terms and returns a formula.

Then the theories Monoid, CGroup, and Ring are declared using $f?f\text{FOLSyn}$ as their meta-theory. For example, the declaration of the theory CGroup finally looks like this:

$$e?CGroup = m?f\text{FOLSyn}\{\text{mon : e?Monoid, inv : @(m?LF?\rightarrow, m?f\text{FOLSyn}?\iota, m?f\text{FOLSyn}?\iota)\}$$

29
Here the structure mon must have a meta-morphism translating from the meta-theory of Monoid to the current theory, and that is simply the identity morphism of $f?\text{FOLSyn}$ because Monoid and $e?\text{CGroup}$ have the same meta-theory. If the meta-theory of integers is ZFC, then the meta-morphism of v1 and v2 is FOLSem.

4.2. Realizations

\(\text{MMT}\) permits an elegant and precise formulation of a general theory of realizations, which formalizes the intuitions we introduced in Sect. 2.3. The central idea is to formalize the implicit global environment as an \(\text{MMT}\) theory \(D\). In particular, \(\text{MMT}\) naturally provides concrete syntax for both the syntactic and the semantic translations associated with views and functors.

We will consider examples from programming languages and logic. In the former case, we use SML and \(D\) is a theory for the global environment of SML. In the latter case, \(D\) is a theory for ZFC set theory.

Definition 13 (Grounded Realizations). An \(\text{MMT}\)-theory with meta-theory \(D\) is called a “\(D\)-theory”. Then a grounded realization of the \(D\)-theory \(S\) is a morphism from \(S\) to \(D\) that is the identity on \(D\).

Example 14 (Realizations in SML) The theory SML contains declarations for all primitives of the simple type theory underlying SML, such as \(\rightarrow\), \(\text{fn}\), and \(\text{type}\). These constants are untyped and undefined. SML is used as the meta-theory of the theory \(D = \text{SMLLib}\), which extends SML with typed constants for all declarations of the SML basis library [SML97].

Now we represent SML signatures \(S\) as \text{SMLLib}-specifications and SML structures \(s\) realizing \(S\) as grounded realizations of \(S\). For example, consider the simple SML signature \(S\) and the structure \(s\) realizing it given on the right of Fig. 8. Its representation in \text{MMT} is given by the commutative theory graph on the left side of the same figure. \(\tau S\) contains one \text{MMT} constant declaration for every declaration in \(S\). These constants have a type according to \(S\) but no definiens. The view \(\tau s\) maps every declaration of \(\tau S\) to its value given by \(s\).
More generally, SML structures s may also contain declarations that do not correspond to declarations present in S. In that case, an auxiliary theory T with meta-theory SMLib is used that contains one declaration for every declaration in s. Then the view $\langle s \rangle$ arises as the partial view from T to SMLib.

In Ex. 14, a single meta-theory SMLib is used because both SML signatures and SML structures may use the SML basis library. A common alternative is that the specification and the implementation language are separated into two different languages. We encounter this, for example, in logic where specifications (i.e., theories) are written using only the syntax of the logic whereas implementations (i.e., models) are given in terms of the semantic domain – in our example ZFC set theory.

Example 15 (Realizations in Logic)

The theory graph on the right continues Ex. 5. The theory of monoids is represented as a FOL-theory Monoid. To represent models as grounded realizations, we need a ZFC-theory MonoidMod. This theory arises as the pushout of Monoid along FOLSem over FOL. In MMT, this pushout can be expressed easily:

$$\text{MonoidMod}^{\text{ZFC}} \equiv \{ \text{mon} : \text{Monoid}^{\text{FOLSem}} = \{\} \}$$

Thus, MonoidMod declares the same local symbols as Monoid but translated along FOLSem.

Then we can represent models M, i.e., monoids, as grounded realizations $\langle M \rangle$ of MonoidMod. Indeed, a monoid M provides one value for every declaration of Monoid, just like an MMT-morphism.

So far, we have declared the universe in FOL, which means that we actually need a family of views FOLSem(U), each of which interprets the universe as the set U. If we declare the universe in Monoid (rather than in FOL), this example becomes more intuitive. Then Monoid and thus also MonoidMod have constant declarations for the names univ, comp, unit, assoc, and neut. Consequently, a monoid $M = (U, \circ, e)$ is encoded as the view $\langle M \rangle$ that contains assignments $\text{univ} \mapsto \langle U \rangle$, $\text{comp} \mapsto \langle \circ \rangle$, $\text{unit} \mapsto \langle e \rangle$, $\text{assoc} \mapsto P$, and $\text{neut} \mapsto Q$. Here $\langle U \rangle$, $\langle \circ \rangle$, and $\langle e \rangle$ are the MMT-terms over ZFC that represent the objects U, \circ, and e. Moreover, P and Q are the terms representing the necessary proofs that show that M is indeed a monoid.

As we will see in Sect. 5, MMT guarantees that $\langle s \rangle$ and $\langle M \rangle$ preserve typing. Thus, the properties of implementing a specification and modeling a theory are captured naturally by the properties of MMT theory morphisms.

Definition 16 (Functors). Given two D-theories S and T, a **functor** from S to T is a morphism from T to S that is the identity on D. Given such a functor
and a grounded realization \(r\) of \(S\), the **functor application** is defined as the grounded realization \(fr\).

It is often convenient to give such a functor as a triple \((B, i, o)\) as in the diagram on the right. Here the body of the theory \(B\) consists of a structure declaration \(i : S \stackrel{id}{\Rightarrow} \{\}\) followed by arbitrary constant declarations all of which have a definiens. The intuition is that \(B\) imports its input theory \(S\) and then implements the intended output theory \(T\); the view \(o\) determines how \(T\) is implemented by \(B\).

Let \(i^{-1}\) denote the view from \(B\) to \(S\), which inverts \(i\), i.e., it maps every constant induced by the structure \(i\) to the corresponding constant of \(S\). Because all local constant declarations of \(B\) have a definiens, \(i^{-1}\) is total. Then we obtain the intended functor as the composition \(f = o i^{-1}\). Given a grounded realization \(r\) of \(S\), functor application is simply composition.

Note that we are flexible whether the intelligence of the functor is given in \(B\) or in \(o\). \(B\) may contain defined constants for all declarations of \(T\) already so that \(o\) is just an inclusion. The opposite extreme arises if \(B\) contains no declaration besides \(i\) and the assignments in \(o\) give the body of the functor.

Sometimes it is not desirable to use the view \(i^{-1}\) because applying \(i^{-1}\) to a \(B\)-term involves expanding all the definitions of \(B\). In that case, we can use structure assignments to represent functor application. Consider a \(D\)-theory \(C\), which has access to a realization \(r\) of \(S\), i.e., \(r\) is a morphism from \(S\) to \(C\). We wish to apply the functor given by \((B, i, o)\) to \(r\) in order to obtain a realization of \(T\), i.e., a morphism from \(T\) to \(C\). We can do that by using the following structure declaration in \(C\)

\[
\text{apply} : B \overset{id}{\Rightarrow} \{i \mapsto r\}
\]

Now the composed morphism \(o\text{apply}\) is the result of applying \((B, i, o)\) to \(r\).

Example 17 (SML (continued from Ex. 14)) An SML functor

\[
\text{functor } f(\text{struct } i : S) : T = \text{struct } \Sigma \text{ end}
\]

can be represented directly as a triple \((B, i, o)\) where \(B\) is the theory

\[
B \overset{id}{\Rightarrow} \{i : \overset{\text{id}}{S} \overset{\text{id}}{\Rightarrow} \{\}, \overset{\text{id}}{\Sigma} \}
\]

and the view \(o\) from \(\overset{\text{val}}{T}\) to \(B\) is an inclusion.

Functors with multiple arguments can be represented by first declaring an auxiliary theory that collects all the arguments of the functor.

Example 18 (Logic (continued from Ex. 15))
Consider the functor that maps a monoid \(M = (U, \circ, e) \) to its group of units (whose universe is the set \(\{ u \in U | \exists v \in U, u \circ v = v \circ u = e \} \)). We represent it as a triple \((?\text{UnitGroup}, \text{mon}, o)\) as in the diagram on the right. We assume that all involved modules are declared in the same document so that we can use relative identifiers (see Sect. 8.3) and declare

\[
\text{UnitGroup}^{\text{ZFC}} \{ i : ?\text{MonoidMod} \} \]

\[
o : ?\text{GroupMod} \rightarrow ?\text{UnitGroup} \}
\]

Here \(\sigma \) contains the assignments that realize a group in terms of a set theory and an assumed monoid \(\text{mon} \). For example, \(\sigma \) contains an assignment

\[
\text{univ} \mapsto \mathcal{O}(C, ?\text{UnitGroup}\{i/\text{univ}, I\})
\]

where we assume that \(C \) is defined in ZFC such that \(\mathcal{O}(C, s, p) \) represents the set \(\{ x \in s | p(x) \} \), and we use \(I \) to represent the property of having an inverse element.

We can strengthen the above representations considerably by using an additional meta-theory: A foundational theory for a logical framework that occurs as the meta-theory of \(D \). For example, we can use LF as the meta-theory of SML and ZFC. Then the constants occurring in SML and ZFC can be typed using the type theory of LF.

If the semantics of LF is given in terms of typing and equality judgments, then MMT induces a precise semantics of realizations and functors that adequately represents that of, for example, SML and first-order logic. More generally, the type preservation of MMT morphism formalizes the “conforms-to” relation between a specification and an implementation or between a model and a theory.

We follow this approach systematically in [HR11] as indicated in Ex. 5. In [IR11], we show how to formalize other foundations of mathematics. A corresponding representation of the semantics of SML in LF can be found in [LCH07].

4.3. Valid Declarations

In the following we define the valid declarations of a theory graph, which arise by adding all induced symbols and assignments. This corresponds to the flattening semantics of structures that eliminates structures and transforms MMT theory graphs into flat ones.

The judgments for valid declarations are given in Fig. 9. All of them are parametrized by a theory graph \(\gamma \). The first four judgments are functional in the sense that they take identifiers as input (red) and return declarations (blue) as output. The mutually recursive definitions of all judgments are given below.
Judgment	Intuition: in theory graph γ . . .
γ > T = {ϑ} | T is a theory in T with body ϑ.
γ ≫ l : S → T = B | l is a link from S to T with definiens B.
γ > T c : τ = δ | c : τ = δ is an induced constant of T.
γ ≫ l c ↦→ δ | c ↦→ δ is an induced constant assignment of l.
M ↦→ T | M is the meta-theory of T.
µ ↦→ l | µ is the meta-morphism of l.

Figure 9: Judgments for Valid Declarations

Valid Modules. Firstly, the judgments \(\gamma > T = \{\vartheta\} \) and \(\gamma ≫ l : S \to T = B \) define the structure of the MMT theory graph, i.e., the valid module level identifiers. Here B is of the form \(\{\sigma\} \) or \(\mu \) according to whether \(l \) is defined by a link body or a morphism. Moreover, we write \(M \hookrightarrow T \) and \(\mu \hookrightarrow l \) to give the meta-theory and meta-morphism of a theory \(T \) or a link \(l \). These judgments are somewhat trivial because they hold iff a meta-theory or meta-morphism is provided explicitly in the syntax of the theory graph.

The first five rules in Fig. 10 are straightforward: They simply cover the declaration of a theory, and the two possible ways each to declare a view or a structure. We use square brackets to denote the optional meta-theories or meta-morphisms, and we give the cases for \(M \hookrightarrow T \) and \(\mu \hookrightarrow l \) as second conclusions of a rule.

The only non-trivial rule is \(\text{indstr} \), which covers the case of induced structures: \(T/s/r \) identifies the structure induced when a structure declaration \(s \) instantiates \(S \) and \(S \) itself has a structure \(r \). The induced structure is defined to be equal to the composition of the two structures, which formalizes the intended semantics of induced structures.

Valid Symbols. For every theory or link of \(\gamma \), we define the symbol level identifiers valid in it. If \(\gamma > T = \{\vartheta\} \), we write \(\gamma > T c : \tau = \delta \) if \(c : \tau = \delta \) is a valid constant declaration of \(T \). To avoid case distinctions, we write \(\bot \) for \(\tau \) or \(\delta \) if they are omitted. If \(\gamma ≫ l : _ \to _ = _ \), we write \(\gamma ≫ l c ↦→ \delta \) if \(c ↦→ \delta \) is a valid assignment of \(T \).

The induced constants of a theory are defined by the rules in Fig. 11. The rule \(\text{con} \) simply handles explicit constant declarations. The remaining rules handle induced constants that arise by translating a declaration \(c : \tau = \delta \) along a structure \(T/s \). In all cases, the type of the induced constant is determined by translating \(\tau \) along \(T/s \). To avoid case distinctions, we assume \(\bot^{T/s} = \bot \), i.e., untyped constants induce untyped constants.

But three cases are distinguished to determine the definiens of the induced constant. Firstly, rule \(\text{indcondef} \) applies if the constant \(c \) already has a definiens \(\delta \neq \bot \). Then the induced constant has the translation of \(\delta \) along \(T/s \) as its definiens. Otherwise, there are two further cases depending on the assignment provided by the structure \(T/s \) (see the respective rules in Fig. 12). If \(T/s \) provides the default assignment \(T/s/c \) the induced constant has no definiens
\[
\frac{T \overset{[M]}{=} \{\varnothing\}}{\gamma \overset{\text{thy}}{=} T = \{\varnothing\} \quad [M \mapsto T]}
\]

\[
l : S \rightarrow T = \mu \quad \text{in} \quad \gamma
\]

\[
\frac{\gamma \gg l : S \rightarrow T = \mu}{\text{viewdef}}
\]

\[
l : S \rightarrow T \overset{[\mu]}{=} \{\sigma\} \quad \text{in} \quad \gamma
\]

\[
\frac{\gamma \gg l : S \rightarrow T = \{\sigma\} \quad [\mu \mapsto l]}{\text{view}}
\]

\[
\frac{\gamma \gg T = \{\varnothing\} \quad s : S = \mu \quad \text{in} \quad \varnothing}{\text{strdef}}
\]

\[
\frac{\gamma \gg T/s : S \rightarrow T = \mu}{\gamma \gg l : S \rightarrow T = \{\sigma\} \quad [\mu \mapsto l]}
\]

\[
\frac{\gamma \gg T = \{\varnothing\} \quad s : S = \mu \quad \text{in} \quad \varnothing}{\text{str}}
\]

\[
\frac{\gamma \gg T/s : S \rightarrow T = \{\sigma\} \quad [\mu \mapsto T/s]}{\gamma \gg l : S \rightarrow T = \{\sigma\} \quad [\mu \mapsto l]}
\]

\[
\frac{\gamma \gg T = \{\varnothing\} \quad s : S = \mu \quad \text{in} \quad \varnothing}{\text{ind}_\text{str}}
\]

Figure 10: Valid Modules

\[\frac{\gamma \gg T = \{\varnothing\} \quad c : \tau = \delta \quad \text{in} \quad \varnothing}{\gamma \gg T : c : \tau = \delta}{\text{con}}\]

\[\gamma \gg T/s : S \rightarrow T = \mu \quad \gamma \gg s : c : \tau = \delta \quad \delta \not= \perp}{\gamma \gg T/s : c : \tau = \delta = \delta^{T/s}}{\text{ind}_\text{con}}\]

\[\gamma \gg T/s : S \rightarrow T = \mu \quad \gamma \gg s : c : \tau = \perp \quad \gamma \gg T/s : c \mapsto T/s}{\gamma \gg T/s : c : \tau = \perp \quad \gamma \gg T/s : c \mapsto \delta}{\text{ind}_\text{conflt}}\]

\[\gamma \gg T/s : S \rightarrow T = \mu \quad \gamma \gg s : c : \tau = \perp \quad \gamma \gg T/s : c \mapsto \delta}{\gamma \gg T/s : c : \tau = \perp \quad \gamma \gg T/s : c \mapsto \delta}{\text{ind}_\text{conass}}\]

Figure 11: Valid Constants

(rule \textit{ind_con_dflt}). If \(T/s\) provides an explicit definiens \(\delta\), it becomes the definiens of the induced constant (rule \textit{ind_con_ass}).
The induced assignments of a link \(l \) are defined by the rules in Fig. 12. The rule \(\text{def}_{\text{link-ass}} \) defines the assignments of a link that is defined as \(\mu \): Every undefined constant is translated along \(\mu \).

For links that are defined by a list of assignments, four cases must be distinguished. Firstly, the rule \(\text{ass} \) applies if there is an explicit assignment \(c \mapsto \omega \) in \(l \). Secondly, rule \(\text{ind-ass} \) creates induced assignments to \(s/c \), which arise if there is an assignment of a morphism \(\mu \) to the structure \(r \) in a link \(l \). Since \(r/c \) identifies the constant \(c \) imported along \(r \), the induced assignment arises by translating \(c \) along \(\mu \).

Finally, it is possible that neither rule \(\text{ass} \) nor rule \(\text{ind-ass} \) applies to \(c \) – namely if the body of \(l \) contains neither an explicit nor an induced assignment for \(c \). We abbreviate that by “\(c \) not covered by \(\sigma \)”. In that case the rules \(\text{dflt-ass-str} \) and \(\text{dflt-ass-view} \) define default assignments depending on whether \(l \) is a structure or a view. If \(l \) is a structure, \(c \) is mapped to the induced constant \(T^?s/c \) in rule \(\text{dflt-ass-str} \). If \(l \) is a view, \(c \) is filtered via rule \(\text{dflt-ass-view} \).

\[
\begin{align*}
\gamma \gg l : S \rightarrow T = \mu & \quad \gamma >_{S} c : \bot = \bot \quad \text{def}_{\text{link-ass}} \\
\gamma \gg l : S \rightarrow T = \sigma & \quad c \mapsto \omega \quad \text{in} \quad \sigma \quad \text{ass} \\
\gamma \gg l : S \rightarrow T = \sigma & \quad \gamma >_{S} r/c : \bot = \bot \quad r \mapsto \mu \quad \text{in} \quad \sigma \\
\gamma \gg l : S \rightarrow T = \sigma & \quad c \mapsto \omega \quad \text{in} \quad \sigma \quad \text{ind-ass} \\
\gamma \gg l : S \rightarrow T = \sigma & \quad c \mapsto \delta \quad \text{for some} \quad \delta \\
\gamma \gg l : S \rightarrow T = \sigma & \quad \gamma >_{S} c : \bot = \bot \quad \text{l structure} \\
\gamma \gg l : S \rightarrow T = \sigma & \quad c \text{ not covered by } \sigma \quad \text{dflt-ass-str} \\
\gamma \gg l : S \rightarrow T = \sigma & \quad \gamma >_{S} c : \bot = \bot \quad \text{l view} \\
\gamma \gg l : S \rightarrow T = \sigma & \quad c \text{ not covered by } \sigma \quad \text{dflt-ass-view} \\
\gamma \gg l : S \rightarrow T = \sigma & \quad \gamma >_{S} c : \bot = \bot \\
\end{align*}
\]

Figure 12: Valid Assignments

Clash-Freeness. It is easy to prove that if \(\gamma >_{S} c : \bot = \bot \) and \(\gamma \gg l : S \rightarrow T = \omega \), then always \(\gamma \gg l : c \rightarrow \delta \) for some \(\delta \), but \(\delta \) is not necessarily unique. More generally, the elaboration judgments do not necessarily define functions from qualified identifiers to induced declarations. For example, a theory graph

\[
\begin{align*}
\gamma \gg l : S \rightarrow T = \mu & \quad \gamma >_{S} c : \bot = \bot \\
\gamma \gg l : S \rightarrow T = \sigma & \quad c \mapsto \omega \quad \text{in} \quad \sigma \\
\gamma \gg l : S \rightarrow T = \sigma & \quad \gamma >_{S} r/c : \bot = \bot \\
\gamma \gg l : S \rightarrow T = \sigma & \quad c \mapsto \delta \quad \text{for some} \quad \delta \\
\gamma \gg l : S \rightarrow T = \sigma & \quad \gamma >_{S} c : \bot = \bot \\
\gamma \gg l : S \rightarrow T = \sigma & \quad c \text{ not covered by } \sigma \\
\gamma \gg l : S \rightarrow T = \sigma & \quad \gamma >_{S} c : \bot = \bot \\
\gamma \gg l : S \rightarrow T = \sigma & \quad c \text{ not covered by } \sigma \\
\gamma \gg l : S \rightarrow T = \sigma & \quad \gamma >_{S} c : \bot = \bot \\
\gamma \gg l : S \rightarrow T = \sigma & \quad c \text{ not covered by } \sigma \\
\end{align*}
\]
might declare the same module name twice or a theory might declare the same symbol name twice. To exclude theory graphs with such name clashes, we use the following definition:

Definition 19. A theory graph γ is called *clash-free* if all of the following hold:

- γ contains no two module declarations for the names i and j such that $i = j$ or such that j is of the form i/j' and the body of i contains a declaration for the name j'.
- There is no module in γ whose body contains two declarations for the names i and j such that $i = j$ or j is of the form i/j'.

This definition is a bit complicated because it covers theory graphs and theories that explicitly declare qualified identifiers such as in a constant declaration $s/c : \tau = \delta$. In most languages, such declarations are forbidden. But such declarations are introduced when flattening the theory graph, and we want the flat theory graph to be well-formed as well. It is natural to solve this problem by assuming that the flattening algorithm can always generate fresh names for the induced constants. However, such a non-canonical choice of identifiers prevents interoperability.

Therefore, MMT permits declarations that introduce qualified identifiers. This is in fact quite natural because deep assignments in links introduce assignments to qualified identifiers already. The definition of clash-freeness handles both theories and links uniformly: Theories may not explicitly declare both a structure s and a constant s/c, and links may not provide both an assignment for a structure s and a deep assignment for an induced constant s/c.

More precisely, we have:

Lemma 20. If a theory graph γ is clash-free, then the judgments of Fig. 9 are well-defined functions where the red parameters are input and the blue ones output.

Proof. This follows by a simple induction over the derivations of the elaboration judgments. □

Example 21 (Continued from Ex. 1) In our running example, we have the theory $\gamma > e?\text{CGroup} = \{\ldots\}$ and the structure $\gamma \gg e?\text{CGroup}/\text{mon} : e?\text{Monoid} \to e?\text{CGroup} = \{\}$. This structure has the induced assignment $\gamma \gg e?\text{CGroup}/\text{mon} \mapsto e?\text{CGroup}/\text{mon}/\text{comp}$ according to rule `dflt_ass_str`. And we have the induced constant

$$\gamma > e?\text{CGroup} \text{mon}/\text{comp} : @((m?\text{LF}?\to, f?\text{FOL}?i, f?\text{FOL}?t, f?\text{FOL}?t) e?\text{CGroup}/\text{mon} = \bot$$

according to rule `ind_con_dflt`.

37
4.4. Normal Terms

Because MMT is foundation-independent, the equality relation on terms is transparent to MMT. However, some concepts of MMT influence the equality between terms. In particular, the result of a morphism application \(\omega^\mu \) can be computed by homomorphically replacing all constants in \(\omega \) with their assignments under \(\mu \). In the sequel, we define this equality relation to the extent that it is imposed by MMT.

We define a normal form \(\overline{\omega} \) for MMT terms \(\omega \). Normalization eliminates all morphism applications, expands all definitions, and enforces the strictness of filtering. The latter means that a term with a filtered subterm is also filtered. Technically, \(\overline{\omega} \) is relative to a fixed theory graph, but we will suppress that in the notation.

\(\overline{\omega} \) is defined by structural induction using sub-inductions for the case of morphism application. The definition is given in Fig. 13. There, we also define \(\Upsilon \), the straightforward extension of normalization to contexts; as before, we assume \(\bot \mid \gamma = \bot \) to avoid case distinctions.

Among the cases in Fig. 13, the case \((D?c)^l \) is the most interesting. First of all, we assume \(\gamma \gg l : S \rightarrow T = \bot \) and \(\gamma >_D c : \bot = \delta \). Note that we permit the case \(D \not= S \): Below we will see that in well-formed theory graphs \(D \) must be \(S \) or a possibly indirect meta-theory of \(S \). The definition distinguishes three subcases. If \(D?c \) has a definiens \(\delta \not= \bot \), it is expanded before applying \(l \) (first subcase) – firstly because \(l \) should not have to give assignments for defined constants, and secondly because \(l \) might filter the name \(c \). Otherwise, if \(D \not= S \), then \(l \) must have a meta-morphism \(\mu \hookrightarrow l \), which is applied to \(D?c \) (second case). Finally, if \(D = S \), then \(l \) must provide an assignment \(\gamma \gg l c \mapsto \delta' \) (third subcase).

We use a functional notation \(\overline{\omega} \) for the normal form. But technically, if the underlying theory graph is arbitrary, the normal form does not always exist uniquely, e.g., if the theory graph is not clash-free. We will show in Sect. 5 that \(\overline{\omega} \) exists uniquely if the underlying theory graph \(\gamma \) is well-formed, which justifies our notation.

Example 22 (Continued from Ex. 1)
Consider the type of the constant \(e : C\text{Group}\,^?\text{mon/comp} \) from Ex. 21. After two normalization steps, we obtain

\[
\overline{\mathbf{e}}(m?\text{LF}\rightarrow f?\text{FOL}\,^?\,t, f?\text{FOL}\,^?\,t_2, f?\text{FOL}\,^?\,t_3)_{C\text{Group}/\text{mon}} = \\
\overline{\mathbf{e}}(m?\text{LF}\rightarrow e?\text{CGroup/mon}, f?\text{FOL}\,^?\,t, e?\text{CGroup/mon}, f?\text{FOL}\,^?\,t_2, e?\text{CGroup/mon}, f?\text{FOL}\,^?\,t_3)_{C\text{Group}/\text{mon}}
\]

And using \(\text{id}_{f?\text{FOL}} \hookrightarrow e?\text{CGroup/mon} \) \(\gamma > f?\text{FOL} \) \(t : \bot = \bot \), we obtain further

\[
f?\text{FOL}\,^?\,t_{e?\text{CGroup/mon}} = f?\text{FOL}\,^?\,t_{\text{id}_{f?\text{FOL}}} = f?\text{FOL}\,^?\,t = f?\text{FOL}\,^?\,t
\]

so that the result of normalization is \(\overline{\mathbf{e}}(m?\text{LF}\rightarrow, f?\text{FOL}\,^?\,t, f?\text{FOL}\,^?\,t_2, f?\text{FOL}\,^?\,t_3) \) as expected.
5. Well-formed Expressions

In this section we define the well-formed Mmt expressions (also called valid expressions). Only those are meaningful. First we define a set of judgments in Sect. 5.1, and we give a set of inference rules for them in Sect. 5.3-5.5. Because Mmt is generic, both the judgments and the rules are parametric in a foundation, which we define in Sect. 5.2.
5.1. Judgments

The judgments for MMT are given in Fig. 14. They are relative to a fixed foundation, which we omit from the notation.

Judgment	Intuition
$\triangleright \gamma$	γ is a well-formed theory graph.
$\gamma; Y \triangleright_T \omega$	ω is structurally well-formed over γ, T, and Y.
$\gamma; Y \triangleright_T \omega : \omega'$	ω is well-typed with type ω' over γ, T, and Y.
$\gamma; Y \triangleright_T \omega \equiv \omega'$	ω and ω' are equal over γ, T, and Y.
$\gamma \triangleright \mu : S \rightarrow T$	μ is a well-typed morphism from S to T.
$\gamma \triangleright \mu \equiv \mu' : S \rightarrow T$	μ and μ' are equal as morphisms from S to T.

Figure 14: Typing Judgments

For the structural levels, the inference system uses a single judgment $\triangleright \gamma$ for well-formed theory graphs. The inference rules will define how well-formed theory graphs can be extended incrementally. There are three kinds of extensions of a theory graph γ:

- add a module at the end of γ – see the rules in Fig. 15,
- add a symbol at the end of the last module of γ (which must be a theory) – see the rules in Fig. 16,
- add an assignment to the last link of γ (which may be a view if γ ends in that view, or a structure if γ ends in a theory which ends in that structure) – see the rules in Fig. 17.

When theories or links are added, their body is empty initially and populated incrementally by adding symbols and assignments, respectively. This has the effect that there is exactly one inference rule for every theory, view, symbol, or assignment, i.e., for every URI-bearing knowledge item.

For the object level, we use judgments for terms and for morphisms. $\gamma; Y \triangleright_T \omega : \omega'$ and $\gamma; Y \triangleright_T \omega \equiv \omega'$ express typing and equality of terms in context Y and theory T. These judgments are not defined generically by MMT; instead, they are defined by the foundation (see Sect. 5.2). MMT only provides the judgment $\gamma; Y \triangleright_T \omega$, for structurally well-formed terms; this is the strongest necessary condition for the well-formedness of ω that does not depend on the foundation. In all three judgments, we omit Y when it is empty.

As before, we will occasionally write \perp when the optional type or definition of a constant or variable is not present. For that case, it is convenient to extend the equality and typing judgment to \perp. We write $\gamma; Y \triangleright_T \omega : \perp$ to express that ω is a well-formed untyped value, and $\gamma; Y \triangleright_T \perp : \omega$ to express that ω is a well-formed type, i.e., a term that may occur on the right hand side of $:\perp$. Moreover, we assume that $\gamma \triangleright_T \perp \equiv \perp$.

Contrary to the judgments for terms, all judgments for typing and equality of morphisms are defined foundation-independently by MMT. $\gamma \triangleright \mu : S \rightarrow T$
expresses that \(\mu \) is a well-formed morphism from \(S \) to \(T \). Similarly, \(\gamma \vdash \mu \equiv \mu' : S \rightarrow T \) expresses equality. This notation emphasizes the category theoretic intuition of morphisms with domain and codomain. If, instead, we prefer the type theoretic intuition of realizations as typed objects, we can use the notation \(\gamma \vdash_T \mu : S \) (speak: \(\mu \) is a well-typed realization of \(S \) over \(T \)).

5.2. Foundations

Intuitively, foundations attach a semantics to the constants occurring in the foundational theories. For the purposes of MMT, this is achieved as follows:

Definition 23. A **foundation** is a definition of the judgments \(\gamma; \Upsilon \vdash_T \omega : \omega' \) and \(\gamma; \Upsilon \vdash_T \omega \equiv \omega' \). In order to avoid case distinctions, we require foundations to define these judgments also for the cases where \(\omega \) or \(\omega' \) are \(\perp \).

In theoretical accounts, foundations can be given, for example, as an inference system or a decision procedure, or via a denotational semantics. In the MMT implementation, foundations are realized as oracles that are provided by plugins.

In fact, inspecting the rules of MMT will show that MMT only needs the special case of these judgments where \(\Upsilon \) is the empty context. But it is useful to require the general case to permit future extensions of MMT; moreover, for most foundations, the use of an arbitrary context makes the definitions easier.

While the details of the foundation are transparent to MMT, it is useful to impose a regularity condition on foundations that captures some intuitions of typing and equality. First we need an auxiliary definition for the declaration-wise equality of contexts:

Definition 24. For two contexts \(\Upsilon^j = (x : \tau^j_1 = \delta^j_1, \ldots, x : \tau^j_n = \delta^j_n) \) for \(j = 1, 2 \), we write \(\gamma; \Upsilon^0, \Upsilon^1_{i-1} \vdash_T \tau^1_i \equiv \tau^2_i \) and \(\gamma; \Upsilon^0, \Upsilon^1_{i-1} \vdash_T \delta^1_i \equiv \delta^2_i \) where \(\Upsilon^1_i := x : \tau^1_i = \delta^1_i, \ldots, x : \tau^1_n = \delta^1_n \). Recall that we assume \(\gamma \vdash_T \perp \equiv \perp \) to avoid case distinctions.

Definition 25 (Regular Foundation). A foundation is called **regular** if it satisfies the following conditions where \(\gamma, T, \) and all terms are arbitrary:

1. The equality judgment respects normalization:

\[
\gamma \vdash_T \omega \equiv \overline{\omega}
\]

2. The equality relation induced by \(\gamma; \Upsilon \vdash_T \omega \equiv \omega' \) is an equivalence relation for every \(\Upsilon \) and satisfies the following congruence laws (where \(i \) runs over...
the respective applicable indices):

\[\gamma; \Upsilon \vdash T \omega_i \equiv \omega'_i \implies \gamma; \Upsilon \vdash T (\omega_0, \ldots, \omega_n) \equiv (\omega'_0, \ldots, \omega'_n) \]

\[\gamma; \Upsilon_0 \vdash T \omega_i \equiv \omega'_i \text{ and } \gamma; \Upsilon_0 \vdash \Upsilon \equiv \Upsilon' \implies \gamma; \Upsilon \vdash T \beta(\omega_0; \Upsilon; \omega_1) \equiv \beta(\omega'_0; \Upsilon'; \omega'_1) \]

\[\gamma; \Upsilon \vdash T \omega_i \equiv \omega'_i \text{ and } \gamma; \Upsilon \vdash T \omega_1 : \omega_2 \implies \gamma; \Upsilon \vdash T \omega'_1 : \omega'_2 \]

\[\gamma \vdash T \Upsilon \equiv \Upsilon' \text{ and } \gamma \vdash T \omega_1 \equiv \omega_2 \implies \gamma; \Upsilon \vdash T \omega'_1 \equiv \omega'_2 \]

\[\gamma \vdash T \Upsilon \equiv \Upsilon' \text{ and } \gamma \vdash T \omega_1 \equiv \omega_2 \implies \gamma; \Upsilon \vdash T \omega'_1 \equiv \omega'_2 \]

Note that we do not impose a congruence law for morphism application at this point.

3. Foundations preserve typing and equality along flat morphisms. To state this precisely, assume flat theories \(S \) and \(T \). Moreover, assume a mapping \(f \) of constant identifiers to terms such that: Whenever \(D = S \) or \(D \) is a possibly indirect meta-theory of \(S \) and \(c : \tau = \delta \) is declared in \(D \), then \(\gamma \vdash T f(D?c) : f(\tau) \) and \(\gamma \vdash T f(D?c) \equiv f(\delta) \).

Then we require that for two flat terms \(\gamma \vdash S \omega_i \)

\[\gamma \vdash S \omega_i \equiv \omega'_i \implies \gamma \vdash T f(\omega_1) : f(\omega'_1) \]

\[\gamma \vdash S \omega_i \equiv \omega'_i \implies \gamma \vdash T f(\omega_1) \equiv f(\omega'_1) \]

where \(f(\omega) \) arises by replacing every constant \(D?c \) in \(\omega \) with \(f(D?c) \).

Regular foundations are uniquely determined by their action on flat terms so that the module system is transparent to the foundation:

Lemma 26. For every regular foundation and arbitrary \(\gamma; \ Upsilon, \omega, \omega' : \)

\[\gamma \vdash T \omega \equiv \omega' \text{ iff } \gamma \vdash T \overline{\omega} \equiv \overline{\omega}' \]

\[\gamma \vdash T \omega : \omega' \text{ iff } \gamma \vdash T \overline{\omega} : \overline{\omega}' \]

Proof. The first equivalence follows easily using property (1), symmetry, and transitivity. The second equivalence follows easily using property (1), symmetry, and the last of the congruence properties. \(\square \)

Note that the typing and equality judgments are only assumed for the foundational theories. For all other theories, the typing and equality judgments are inherited from the respective meta-theory. For example, a foundation for SML must specify the typing and normalization relations of SML expressions. And a foundation for ZFC must specify the well-formedness and provability of propositions, both of which we consider as special cases of typing.

It is no coincidence that exactly these two judgments form the interface between MM'T and the foundation: They are closely connected to the syntax of MM'T constant declarations, which may carry types and definitions. If types
can be declared for the constants of a language, then the typing relation should be extended to all complex expressions. This is necessary, for example, to check that theory morphisms preserve types. Similarly, if the constants may carry definitions, an equality relation for complex expressions becomes necessary. Vice versa, MMT constant declarations provide the foundation with the base cases for the definitions of typing and equality.

5.3. Inference Rules for the Structural Levels

When defining well-formed theory graphs, we assume for simplicity that all theory graphs are clash-free. It is straightforward to extend all inference rules with additional newness hypotheses for identifiers such that eventually ⊲ γ implies that γ is clash-free. But we omit this here to simplify the notation.

The rules in Fig. 15 define theory graphs as lists of modules. The rule Start starts with an empty theory graph, and the rules Thy and View add modules with empty bodies (that will be filled incrementally). Rule View unifies the cases whether S has a meta-theory or not by using square brackets for optional parts; whether T has a meta-theory, is irrelevant. Finally ViewDef adds a view defined by a morphism.

In rule View, one might intuitively expect the assumption [M ⊲ S, M’ ⊲ T, γ ⊲ μ : M → M’] which is the situation depicted in the diagram on the right. That case is subsumed by View as we will see in the rules for morphisms below.

\[
\begin{array}{c}
\text{Start} \\
\text{Thy} \\
\text{ViewDef} \\
\text{View}
\end{array}
\]

The rules in Fig. 16 add symbols to theories. There are three cases corresponding to the three kinds of symbols: constants, structures defined by a morphisms, and structures defined by a list of assignments. The rule Con says that constant declarations c : τ = δ can be added if δ has type τ. Recall that this includes the cases where τ = ⊥ or δ = ⊥.

Note also that γ ⊲ T δ and γ ⊲ T τ are necessary even though we require γ ⊲ T δ : τ. Indeed in most type systems, the latter would entail the former two,
but in MMT the typing judgment is given by the foundation as an oracle, so we cannot be sure.

The rules \(\text{Str} \) and \(\text{StrDef} \) are completely analogous to the rules \(\text{View} \) and \(\text{ViewDef} \). Again square brackets are used in \(\text{Str} \) to unify the two cases where \(S \) has a meta-theory or not. In all three rules it is irrelevant whether \(T \) has a meta-theory or not; we indicate that by giving this optional meta-theory in gray.

\[
\begin{array}{ll}
\vdash \gamma, T \overset{M}{=} \{\emptyset\} & \gamma' \triangleright_T \delta \quad \gamma' \triangleright_T \tau \quad \gamma' \triangleright_T \delta : \tau \\
\vdash \gamma, T \overset{M}{=} \{\emptyset, c : \tau = \delta\} & \text{Con} \\
\vdash \gamma, T \overset{M}{=} \{\emptyset\} & \gamma' \triangleright \mu : S \rightarrow T \\
\vdash \gamma, T \overset{M}{=} \{\emptyset, s : S = \mu\} & \text{StrDef} \\
\vdash \gamma, T \overset{M}{=} \{\emptyset\} & \gamma > S = \{\ldots, [M' \leftarrow S \quad \gamma' \triangleright \mu : M' \rightarrow T]\} \\
\vdash \gamma, T \overset{M}{=} \{\emptyset, s : S \overset{[\mu]}{=} \{\sigma\}\} & \text{Str} \\
\end{array}
\]

Figure 16: Adding Symbols (\(\gamma' \) abbreviates \(TG \), \(T \overset{M}{=} \{\emptyset\} \))

The addition of assignments to a link \(l \) is more complicated because assignments can be added to views or structures. MMT treats both cases in the same way, which we want to stress by unifying the rules. Therefore, let \(\gamma \gg \text{last} \ l : S \rightarrow T \) denote that \(l \) is a link occurring at the end of \(\gamma \), i.e., either

- \(l \) refers to a view and \(\gamma = \ldots, l : S \rightarrow T \overset{[\mu]}{=} \{\sigma\} \) or
- \(l = T/s \) refers to a structure and \(\gamma = \ldots, T \overset{[M]}{=} \{\ldots, s : S \overset{[\mu]}{=} \{\sigma\}\} \),

and in that case let \(\gamma + \text{Ass} \) be the theory graph arising from \(\gamma \) by replacing \(\sigma \) with \(\sigma, \text{Ass} \).

Then the rules in Fig. 17 add assignments to a link. \(\text{ConAss} \) adds an assignment \(c \mapsto \delta \) for an undefined constant \(c \) of \(S \). Such assignments are well-typed if \(\delta \) is typed by the translation of the type of \(c \) along \(l \). Again we assume \(\bot \vdash \bot \) to avoid case distinctions.

Rule \(\text{ConAss} \) includes the case of \(\delta = \top \), i.e., undefined constants can be filtered by mapping them to \(\top \). For defined constants, filtering is the only possible assignment; this is covered by Rule \(\text{ConFlt} \).

The rule \(\text{StrAss} \) is similar to \(\text{ConAss} \) except that adding assignments for structures is a bit more complicated. The first three hypotheses correspond to the rule
StrAss. The guiding intuition for the remaining hypotheses is that an assignment $r \mapsto \mu$ for a structure r in S should make the diagram on the right commute. From this intuition, we can immediately derive the typing requirements that μ must be a well-typed morphism from R to T.

However, this is not sufficient yet to make the diagram commute. In general, the link l already contains some assignments and possibly a meta-morphism so that the semantics of the composition $S/r/l$ is already partially determined. Therefore, μ must agree with $S/r/l$ whenever the latter is already determined.

This is easy for a possible meta-morphism of $\gamma \triangleright \mu' : M \rightarrow S$ of S/r. The composition of μ' and l must agree with the restriction of μ to M. Additionally, for all constants r/c of S that have a definens δ, the translation of δ along l must be equal to the translation of $R?c$ along μ.

The rule StrAss is in fact inefficient because it requires to flatten S, i.e., to compute all induced constants r/c of S. But it is important for scalability to avoid this whenever possible. Therefore, we give some admissible rules of inference in Sect. 5.6 that use module-level reasoning to avoid flattening.

5.4. Inference Rules for Morphisms

Fig. 18 gives the typing rules for morphisms. The rule $\mathcal{M}_{\text{link}}$ handles links. $\mathcal{M}_{\text{ident}}$ and $\mathcal{M}_{\text{comp}}$ give identity and composition of morphisms. Meta-theories behave like inclusions with regard to composition of morphisms: The rules $\mathcal{M}_{\text{covar}}$ and $\mathcal{M}_{\text{contravar}}$ give the usual co- and contravariance rules.

Finally, we define the equality of morphisms in rule \mathcal{M}_{\equiv}. We use an extensional equality that identifies two morphisms if they map the same argument to equal terms. This is to equivalent to the special case where the morphisms agree for all undefined constants. If the domain has a meta-theory M, the
meta-morphisms must be equal as well. This is checked recursively by requiring
\[\gamma \triangleright \mu \equiv \mu' : M \to T. \]

\[
\begin{array}{c}
\gamma \triangleright l : S \to T = - \mathcal{M}_{\text{link}} \\
\gamma \triangleright l : S \to T
\end{array}
\]

\[
\begin{array}{c}
\gamma \triangleright \text{id}_T : T \to T = - \mathcal{M}_{\text{id}} \\
\gamma \triangleright \mu : R \to S \\
\gamma \triangleright \mu' : S \to T
\end{array}
\]

\[
\gamma \triangleright \mu : M \to T = - \mathcal{M}_{\text{comp}}
\]

\[
\gamma \triangleright \mu : M \to T
\]

\[
\gamma \triangleright \mu : S \to T
\]

\[
\gamma \triangleright \mu' : S \to T
\]

\[
\gamma \triangleright \mu : S \to T \\
\gamma \triangleright \mu' : S \to T
\]

\[\gamma \triangleright \text{id}_T : T \to T \]

\[
\gamma \triangleright \mu : R \to S \\
\gamma \triangleright \mu' : S \to T
\]

\[
[M \triangleright S \\
\gamma \triangleright \mu \equiv \mu' : M \to T]
\]

\[
\gamma \triangleright \mu \equiv \mu' : S \to T
\]

Figure 18: Morphisms

5.5. Inference Rules for Terms

As noted above, MMT relegates the judgments
\[\gamma; \Upsilon \triangleright \omega \equiv \omega' \]

for typing and equality of terms to the foundation. MMT only defines the
judgment \[\gamma; \Upsilon \triangleright \omega \] for structurally well-formed terms. Structural well-
formedness guarantees in particular that only constants and variables are used
that are in scope.

This judgment is axiomatized by the rules in Fig. 19. First we define an
auxiliary judgment \[\gamma \triangleright \Upsilon \] for well-formed contexts using the rules \[T_x \] and \[T_\Upsilon \].
These are such that every variable may occur in the types and definitions of
subsequent variables. The rules \[T_x, T_\Upsilon, T_\Gamma, T_\Theta, \] and \[T_\square \] are straightforward. \[T_\square \]
is such that a bound variable may occur in the type or definition of subsequent
variables in the same binder.

Finally, \[T_\mu \] and \[T_\triangleright \] formalize the cases relevant for the MMT module system.
\[T_\mu \] moves closed terms along morphisms, and \[T_\triangleright \] moves terms along the meta-
theory relation. Note that \[\omega^\mu \] is well-formed independent of whether \(\omega \) is filtered
by \(\mu \). This is important because the decision whether \(\omega \) is filtered is expensive
if the theory graph has not been flattened yet.
\[
\frac{\gamma > T = \{\cdot\}}{\gamma T\cdot} \quad \frac{\gamma T Y \quad [\gamma T \tau]}{\gamma T Y, x[\cdot\tau]}_{\tau}\]

\[
\frac{\gamma T Y \quad x : _= _ \text{ in } Y}{\gamma Y T x} \quad \frac{\gamma T Y \quad \gamma T c : _= _}{\gamma Y T \gamma T c}_{c}
\]

\[
\gamma T Y \quad \gamma T \gamma \quad \gamma T \gamma \quad \gamma T \gamma \quad \gamma T \gamma
\]

\[
\frac{\gamma T Y}{\gamma Y T} T_T
\]

\[
\frac{\gamma Y T \omega_i \text{ for all } i = 1, \ldots, n}{\gamma Y T 0(\omega_1, \ldots, \omega_n)} T_{\omega_0}
\]

\[
\gamma Y T Y \quad \gamma Y T Y' \quad \gamma Y T \beta (\omega; Y'; \omega')_{\beta[\omega']}
\]

\[
\frac{\gamma Y T \gamma \quad \gamma Y T \mu : S \to T}{\gamma Y T \gamma T \omega^\mu} T_{\omega}
\]

\[
\frac{\gamma Y M \omega \quad M \to T}{\gamma Y T \omega} T_{\omega}
\]

Figure 19: Structurally Well-formed Terms

It is easy to prove a subexpression property for structural well-formedness: If \(\gamma Y T \omega\) then all subexpressions of \(\omega\) are well-formed in the respective context.

5.6. Module-Level Reasoning

The extensional definition of the equality of morphisms is very inefficient because it requires the full elaboration of the domain. We encountered a similar problem in rule \textit{StrAss}. To remedy this, we introduce the following admissible rule of inference, which refines rule \textit{M}\(\equiv\) to avoid elaboration:

\[
\gamma Y T \mu : S \to T \quad \gamma Y T \mu' : S \to T
\]

\[
\gamma Y T S?\gamma \equiv S?\gamma' \quad \text{whenever } c : _= _ \text{ in } S
\]

\[
\gamma Y T S/s \mu \equiv S/s \mu' : R \to T \quad \text{whenever } s : R \equiv \{\cdot\} \text{ in } S
\]

\[
[M \mapsto T] \quad \gamma Y T \mu \equiv \mu' : M \to T \quad \gamma Y T \gamma T \gamma \equiv \gamma Y T \gamma T \gamma \quad \gamma Y T \gamma T \gamma
\]

\[
\gamma Y T \gamma T \gamma \gamma T \gamma T \gamma T T_{\omega}
\]

Both \(M_{\equiv}\) and \(M'_{\equiv}\) require \(\gamma Y T S?\gamma \equiv S?\gamma'\) for the constants of \(S\). But in \(M_{\equiv}\), this is required for all constants, including the ones induced by structures. \(M'_{\equiv}\), on the other hand, only requires it for the local constants of \(S\), which can be verified without elaboration. For the induced constants of \(S\),

47
rule \mathcal{M}_\equiv' recursively checks equality of morphisms for every structure declared in S. A variant of StrAss that does not require elaboration can be obtained in a similar way.

By unraveling the recursion, it is easy to see that \mathcal{M}_\equiv' eventually checks the same prerequisites as \mathcal{M}_\equiv. Therefore, \mathcal{M}_\equiv' by itself does not yield an efficiency gain. However, we can often avoid the recursive calls in \mathcal{M}_\equiv' by using other, more efficient admissible rules to establish the equality of two morphisms.

These additional rules are axioms that are obtained from the invariants of Mmt. Firstly, we have one equality axiom for every defined view or structure. And secondly, Thm. 31 establishes the soundness of one equational axiom for every structure assignment. Recall that all nodes and edges in the theory graph have URIs, and morphisms are paths in the theory graph, i.e., lists of URIs. Therefore, representing them and reasoning about the equality of morphisms using these equational axioms is efficient in most cases.

We call this module-level reasoning because it forgets all details about the bodies of theories and links and only uses the theory graph. Naturally module-level reasoning about equality of morphisms is sound but not complete. Moreover, the equational theory of paths in the theory is not necessarily decidable. However, in our experience, module-level reasoning succeeds in the majority of cases occurring in practice.

6. Formal Properties

Now that we have established the grammar and well-formedness conditions for Mmt, we can analyze the properties of well-formed theory graphs: In Sect. 6.1 we establish that normalization is well-defined and in Sect. 6.2 that assignment to structures can be used to establish commutativity conditions in theory graphs. In Sect. 6.3 we introduce the concept of structural well-formedness, as a computationally motivated compromise between Mmt-well-formedness and grammatical well-formedness. Finally, in Sect 6.4 we examine the operation of flattening (i.e. copying out the modular aspects of MMT) as a semantics-giving operation of theory graphs and show that in MMT it can be made incremental, which is important for computational tractability and scalability.

6.1. Theory Graphs

To finish the formal definition of MMT, we must take care of one proof obligation that we have deferred so far: the well-definedness of normalization.

Lemma 27. Assume a regular foundation and (i) $\triangleright \gamma$ for a clash-free γ and (ii) $\gamma \triangleright_T \omega$. Then $\overline{\omega}$ is well-defined and does not contain any morphism applications.

Proof. Inspecting the definition of $\overline{\omega}$, we see there is exactly one case for every possible term ω. Technically, this observation uses (i) to deduce that γ is clash-free so that all lookups occurring during the normalization are well-defined. It also uses (ii) to conclude that whenever the case $D?c?\overline{\gamma}$ occurs, D is either the domain of l or a possibly indirect meta-theory of it.
Furthermore, a straightforward induction shows that if the normal form is well-defined, it does not contain morphism applications.

Therefore, the only thing that must be proved is the well-foundedness of the recursive definition. Essentially, this follows because every case decreases one of the following: the size of γ, the size of ω, or the size of the subterms of ω to which a morphism is applied. Only some cases warrant closer attention:

- $\omega^{\mu'}$ and $(\omega^{\mu})'$. These cases do not decrease the size of the terms involved. But it is easy to see that they recurse between themselves only finitely many times, namely until the term

$$\omega^{l_1 \ldots l_n}$$

is reached where l_1, \ldots, l_n is the list of links comprising $\mu' \mu$ (modulo associativity and identity morphism).

- $T?c$. This case may increase the size of the involved terms when a constant is replaced with its definiens. But due to the well-formedness of γ and the regularity of the foundation, the definiens must be structurally well-formed over a theory graph smaller than γ. (In particular, there are no cyclic dependencies between definitions in well-formed theory graphs.)

- $S?c^l$. Similar to the previous case, this case may increase the size of the involved terms when $S?c^l$ is replaced with the assignment l provides for $S?c$. The same argument applies.

$$\Box$$

6.2. Properties of Morphisms

With this bureaucracy out of the way, we can prove some intended properties of morphisms. First we show that morphisms behave as expected. In fact, the presence of filtering makes some of these theorems quite subtle. Therefore, we use the following definition:

Definition 28. A morphism $\gamma \triangleright \mu : S \rightarrow T$ is **total** if $S?c^{\mu} \neq \top$ whenever $\gamma >_S c : _ = _$ and if its metamorphism (if there is one) is total as well. A theory graph is total if all its links are total morphisms.

Note that a morphism that filters only defined constants is still total because the normalization expands definitions. A morphism is not total if it filters undefined constants. Partial (i.e., non-total) morphisms often behave badly because they do not preserve truth: Assume a view from S to T that does not provide an assignment for an axiom a, maybe because that axiom is not provable in T at all. Then clearly we cannot expect all theorems of S to be translated to theorems of T. However, this property is also what makes partial morphisms interesting in practice: For example, a partial morphism can be used to represent
a translation from a higher-order axiomatization of the real numbers to a first-order one: Such a translation would only translate the first-order-expressible parts, which is still useful in practice.

First, we prove the following intuitively obvious, but technically difficult lemma.

Lemma 29. If $\gamma \triangleright S \omega$ and $\gamma \triangleright \mu : S \to T$, then $\overline{\omega \mu} = \overline{\omega \mu'}$.

Proof. This is proved by a straightforward but technical induction on the structure of ω^μ. A notable subtlety is that the primary induction is on γ and μ using the statement for arbitrary ω as the induction hypothesis. Then the case where μ is a link uses a sub-induction on ω.

We give some example cases where Def refers to the definition of normalization and IH refers to the induction hypothesis:

- case for a composed morphism in the induction on μ:

 \[
 \overline{\omega \mu \mu'} \overset{\text{Def}}{=} \overline{(\omega^\mu)^{\mu'}} \overset{\text{IH}}{=} \overline{\omega^{\mu'}^{\mu'}} \overset{\text{IH}}{=} \overline{\overline{\omega^{\mu'}}^{\mu'}} \overset{\text{Def}}{=} \overline{\omega \mu \mu'}
 \]

- case for ω^l for a single link l, proved by a sub-induction on ω:

 - case for application:

 \[
 \overline{@((\omega_1, \ldots, \omega_n)^{\mu})} \overset{\text{Def}}{=} \overline{@((\omega_1^{\mu}, \ldots, \omega_n^{\mu}))} \overset{\text{IH}}{=} \overline{\overline{\omega_1^{\mu}, \ldots, \omega_n^{\mu}}} \overset{\text{Def}}{=} \overline{@((\omega_1, \ldots, \omega_n)^{\mu})}
 \]

 - case for a constant $D?c$: If $\gamma \triangleright_D c : _ = \bot$, the statement is trivial because $\overline{D?c} \overset{\text{Def}}{=} D?c$. If $\gamma \triangleright_D c : _ = \delta$ for $\delta \not= \bot$, then

 \[
 \overline{D?c} \overset{\text{Def}}{=} \overline{\delta} \overset{\text{IH}}{=} \overline{\delta} \overset{\text{IH}}{=} \overline{D?c}
 \]

Then we have the main technical results about theory graphs and morphisms.

Theorem 30 (Morphisms). Assume a fixed regular foundation. Then

1. For fixed γ, the binary relation on morphisms induced by $\gamma \triangleright \mu \equiv \mu' : S \to T$ is an equivalence relation.

2. If $\gamma \triangleright \mu_1 \equiv \mu'_1 : R \to S$ and $\gamma \triangleright \mu_2 \equiv \mu'_2 : S \to T$ and μ_2 and μ'_2 are total, then $\gamma \triangleright \mu_1 \mu_2 \equiv \mu'_1 \mu'_2 : R \to T$.

3. When composition is well-formed, it is associative and id_T is a neutral element.
4. The identity and the composition of total morphisms are total. In particular, every well-formed total theory graph induces a category of theories and – modulo equality – morphisms.

5. If \(\gamma \triangleright_R \omega \) and \(\gamma \triangleright \mu \equiv \mu' : R \rightarrow T \), then \(\gamma \triangleright_T \omega^\mu \equiv (\omega^\mu)' \).

6. If \(\gamma \triangleright_S \omega \) and \(\gamma \triangleright \mu \equiv \mu' : S \rightarrow T \), then

\[
\gamma \triangleright_T \omega^\mu \equiv \omega'^\mu.
\]

7. If \(\gamma \triangleright \mu : S \rightarrow T \), \(\gamma \triangleright_S \omega \), \(\gamma \triangleright_S \omega' \), then

- if \(\overline{\omega} = \overline{\omega}' \), then \(\overline{\omega^\mu} = \overline{\omega'^\mu} \), and
- if \(\gamma \triangleright_S \omega \equiv \omega' \) and \(\mu \) is total, then \(\gamma \triangleright_T \omega^\mu \equiv \omega'^\mu \).

Proof. 1. Reflexivity, symmetry, and transitivity follow immediately from the corresponding properties for terms using rule \(M \equiv \).

2. This is proved by induction on the number of meta-theories of \(R \). If there is none, the result follows using rule \(M \equiv \) and applying (5) and twice (7). If \(M \mapsto R \), the same argument applies with \(M \) instead of \(R \).

3. Because of rule \(M \equiv \), the equality of two morphisms is equivalent to a set of judgments of the form \(\gamma \triangleright_D C^\mu \equiv C'^\mu \) for all constants \(c \) of \(S \) or one of its meta-theories. Because the foundation is regular, every such judgment is equivalent to \(\gamma \triangleright_T \overline{C^\mu} \equiv \overline{C'^\mu} \). Then the conclusion follows from the definition of normalization.

4. The totality properties are easy to prove. A category is obtained by taking the theories \(\gamma \triangleright_T = \{ _ \} \) as the objects, and the quotient

\[
\{ \mu \mid \gamma \triangleright \mu : S \rightarrow T \} / \{ (\mu, \mu') \mid \gamma \triangleright \mu \equiv \mu' \rightarrow S \rightarrow T \}
\]

as the set of morphisms from \(S \) to \(T \). Identity and composition are induced by \(\text{id}_T \) and \(\mu \mu' \). (See [Lan98] for the notion of a category.)

5. Because the foundation is regular, the conclusion is equivalent to \(\gamma \triangleright_T \overline{\omega^\mu \mu'} \equiv (\omega^\mu)' \). And this follows directly from the definition of normalization.

6. Using regularity, it is sufficient to show \(\overline{\omega^\mu} = \overline{\omega'^\mu} \). Using Lem. 29, this reduces to the case where \(\omega \) is flat. For flat \(\omega \), the definition of normalization shows that \(\omega^\mu \) arises from \(\omega \) by replacing all constants \(C \) with \(C^\mu \). \(\gamma \triangleright \mu \equiv \mu' : S \rightarrow T \) yields \(\gamma \triangleright_T C^\mu \equiv C'^\mu \). Because \(\omega \) is flat, the result follows from property (2) in Def. 25.

7. The first statement follows immediately from Lem. 29. Also using Lem. 29, the conclusion of the second statement reduces to \(\gamma \triangleright_T \overline{\omega^\mu} \equiv \overline{\omega'^\mu} \), i.e., it is sufficient to consider the case where \(\omega \) and \(\omega' \) are flat. And that
case follows using property (3) in Def. 25 and the type-preservation of well-formed total morphisms guaranteed by rule ConAss.

The restriction that μ must be total in part (7) of Thm. 30 is necessary. To see why, assume ω = @(π₁, @(pair, a, b)). A foundation might define γ ⊳ₘ S ω = a. Now if μ filters b, then over = ⊤ but not necessarily over' = ⊤. An even trickier example arises when S contains an axiom a : @(true, @(equal, ω, ω')) and the foundation uses a to derive γ ⊳ₘ S ω ≡ ω'. If μ filters a, then it is possible that γ ⊳ₘ ω'' ⊳ₘ ω'' does not hold even when μ filters neither ω nor ω'.

The following theorem establishes a central property of Mmt theory graphs that plays a crucial role in adequacy proofs. In the diagram on the right, S is a theory with a structure instantiating R, and l is a link from S to T that assigns μ to r. The theorem states that the triangle commutes. This means that assignments to structures can be used to represent commutativity conditions on diagrams.

Theorem 31. Assume ⊳ γ relative to a fixed regular foundation. If γ ⊳ μ : R → T and γ ≫ l : S → T = {σ} such that σ contains the assignment r ↦→ μ, then

\[γ ⊳ S/r l ≡ μ : R → T. \]

Proof. By rule \(M_γ \), we have to show γ ⊳ₘ R?c S/r l ≡ R?cμ for all γ >ₘ R c : _ = ⊥. Using the regularity, it is enough to show equality after normalization.

A first normalization step reduces the left hand side to \(S?r/c' \). Now there are two cases differing by whether \(r/c \) has a definient in S or not.

- If \(γ >ₘ S r/c : _ = ⊥ \), then γ ≫₝ r/c ↦→ R?cμ, and the left hand side normalizes to \(R?c'' \).
- If \(γ >ₘ S r/c : _ = δ \) for some \(δ ≠ ⊥ \), a further normalization step reduces the left hand side to \(δ' \). And rule StrAss guarantees that in this case \(γ ⊳ₘ δ'' ≡ R?cμ \).

Furthermore, we have to show that the morphisms agree on the meta-theory of R if there is one. This is explicitly required in rule StrAss.

6.3. Structural Well-Formedness

The formal definition of structural well-formedness of theory graphs and terms was the original motivation of Mmt. Essentially, it means that all references to modules, symbols, or variables exist and are in scope, and that all morphisms are well-typed. But it does not guarantee that terms are well-typed. This yields an intermediate well-formedness level between context-free and semantic validation.
Context-free validation checks a theory graph against a context-free grammar. This is the state of the art in XML-based languages, where the grammar is usually given as XML schema. It is simple and widely implemented, but it is very weak and accepts many meaningless expressions. For example, documents containing references to non-existent knowledge item pass validation. For many knowledge management applications, this is too weak.

Semantic validation on the other hand accepts only meaningful expressions. It checks a theory graph using a type system or an interpretation function. This is normal for formal languages such as logics and type theories. But semantic validation depends on the foundation. Therefore, it is complex, and often only one implementation is available for a specific formal language, which cannot easily be reused by other applications.

Structural well-formedness is a trade-off between these extremes. It is foundation-independent and therefore easy to implement. And the added strength of full validation is not necessary as a precondition for many web scale algorithms such as browsing or versioning.

Technically, structural well-formedness can be defined using a special foundation:

Definition 32. The *structural foundation* is the foundation where $\gamma \vdash T \omega : \omega'$ and $\gamma \vdash T \omega \equiv \omega'$ always hold. A theory graph γ is **structurally well-formed** if it is clash-free and $\triangleright \gamma$ holds relative to the structural foundation.

Clearly, it is not a reasonable mathematical foundation, but it is useful because it is maximal or most permissive among all foundations. It is also easy to implement and can be used as a default foundation when the actual foundation is not known or an implementation for it not available.

Structural well-formedness is foundation-independent in the following sense:

Theorem 33. If a theory graph is well-formed relative to any foundation, then it is structurally well-formed. If γ is structurally well-formed, then $\gamma \triangleright T \omega$ is independent of the foundation.

Proof. The first statement holds because the use of the structural foundation simply amounts to removing the typing and equality hypotheses in the rules Con and $ConAss$. The second statement holds because the rules for the judgment $\gamma \triangleright T \omega$ do not refer to any other judgment. \hfill \square

Corresponding to the notions of structural and semantic validation, we can define structural and semantic equivalence of theory graphs:

Definition 34. Relative to a fixed foundation, two well-formed theory graphs γ and γ' are called **structurally equivalent** if the following holds:

- $\gamma \triangleright T = \{_\}$ iff $\gamma' \triangleright T = \{_\}$, and in that case T has meta-theory M in γ iff it does so in γ',
- $\gamma \triangleright l : S \rightarrow T = _ \iff \gamma' \triangleright l : S \rightarrow T = _$.
• whenever $\gamma > T = \{_\}$, where $\gamma > T c : _ = _ \iff \gamma' > T c : _ = _$. The intuition behind structural equivalence is that structurally equivalent theory graphs declare the same names: they have the same theories, the same constants, and the same links. It leaves open whether a constant of name s/c is declared or whether a constant c is imported via a structure s. It also leaves open whether a link is a structure or a view.

The value of structural equivalence is that it imposes no requirements on the foundation. Furthermore, structural equivalence is sufficiently strong an invariant for many applications such as indexing or cross-referencing. This is formalized in the following next theorem.

Theorem 35. Assume two structurally equivalent theory graphs γ and γ'. Then for all theories S, T of γ:

- $\gamma \triangleright_T \omega$ iff $\gamma' \triangleright_T \omega$,
- $\gamma \triangleright \mu : S \rightarrow T$ iff $\gamma' \triangleright \mu : S \rightarrow T$.

Proof. This follows by a straightforward induction on the derivations of well-formed terms and morphisms. □

In structurally equivalent theory graphs, the same constant might have different types. Semantic equivalence refines this:

Definition 36. Two structurally equivalent theory graphs γ and γ' are called **semantically equivalent** if the following holds:

- If $\gamma > T = \{_\}$, $\gamma > T c : \tau = \delta$, and $\gamma' > T c : \tau' = \delta'$, then $\overline{\delta'} = \overline{\delta}$ and $\overline{\tau'} = \overline{\tau}$.
- For all $\gamma \gg_T l : S \rightarrow T = _$, if $\gamma \gg_T l c \mapsto \delta$ and $\gamma' \gg_T l c \mapsto \delta'$, then $\overline{\delta'} = \overline{\delta}$.

Intuitively, if two theory graphs are semantically equivalent, then they have the same constant declarations and the same assignments. Another way to put it, is that the theory graphs are indiscernible in the following sense:

Theorem 37. Assume two semantically equivalent theory graphs γ and γ' and a regular foundation. Then for all module declarations Mod:

$\triangleright \gamma, \text{Mod} \iff \triangleright \gamma', \text{Mod}$.

Proof. First of all, due to the structural equivalence, γ, Mod is clash-free iff γ', Mod is. Now assume a well-formedness derivation D for $\triangleright \gamma, \text{Mod}$. Let D' arise from D by replacing every occurrence of γ with γ', and replacing the subtree of D deriving $\triangleright \gamma$ with some derivation of $\triangleright \gamma'$. We claim that every subtree of D' is a well-formedness derivation for its respective root. Then in particular, D' is a well-formedness derivation for $\triangleright \gamma', \text{Mod}$. This is shown by induction on Mod. All induction steps are simple because in most rules
the theory graph only occurs as a fixed parameter. Those rules that “look into” the theory graph do so via the judgments given in Sect. 4.3, and the semantic equivalence of γ and γ' guarantees that these judgments agree up to normalization, and normalization is respected by a regular foundation.

This provides systems working with MMT theory graphs with an invariant for foundation-independent and semantically indiscernible transformations. Systems maintaining theory graphs can apply such transformations to increase the efficiency of storage or lookup in a way that is transparent to other applications. Moreover, it provides an easily implementable criterion to analyze the management relevance of a change.

Of course, Def. 36 is just a sufficient criterion for semantic indiscernability. If a foundation adds equalities between terms, then theory graphs that are distinguished by Def. 36 become equivalent with respect to that foundation. But the strength of Def. 36 and Thm. 37 is that they are foundation-independent. Therefore, it can implemented easily and generically.

The most important examples of semantical equivalence are reordering and flattening (see Sect. 6.4).

Theorem 38. If γ and γ' are well-formed theory graphs that differ only in the order of modules, symbols, or assignments, then they are semantically equivalent.

Proof. Clear since the elaboration judgments are insensitive to reorderings.

However, note that not all reorderings preserve the well-formedness of theory graphs as defined here – there is a partial order on declarations that the linearization in the theory graph must respect, for example, constants must be declared before they are used. But Thm. 38 permits to generalize the definition of well-formed theory graphs as follows: A theory graph can be considered well-formed if there is some reordering for which it is well-formed. Using this relaxed definition is extremely valuable in practice because it permits applications to forget the order and thus to store theory graphs more efficiently. It is also relevant for distributed developments where keeping track of the order is often not feasible.

6.4. Flattening

The representation of theory graphs introduced in the last section is geared towards expressing mathematical knowledge in its most general form and with the least redundancy: constants can be shared by inheritance (i.e., via imports), and terms can be moved between theories via morphisms. This style of writing mathematics has been cultivated by the Bourbaki group [Bou68, Bou74] and lends itself well to a systematic development of theories.

However, it also has drawbacks: Items of mathematical knowledge are often not where or in the form in which we expect them, as they have been generalized to a different context. For example, a constant c need not be explicitly
represented in a theory T, if it is induced as the image of a constant c' under some import into T.

In this section, we show that for every theory graph there is an equivalent flat one. This involves adding all induced knowledge items to every theory thus making all theories self-contained (but hugely redundant between theories). For a given MMT theory graph γ, we can view the flattening of γ as its semantics because flattening eliminates the specific MMT-representation infrastructure of structures and morphisms.

Theorem 39. Given a fixed regular foundation, every well-formed theory graph is semantically equivalent to a flat one.

Proof. Given a $\vartriangleright \gamma$ the flat theory graph γ' is obtained as follows.

1. Theories
 - For every $\gamma > T = \{\cdot\}$, there is a theory T in γ'. It has the same meta-theory (if any) in γ' as in γ.
 - For every $\gamma > T c : \tau = \delta$, the theory T of γ' contains a constant declaration $c : \tau = \delta$.

2. Links with definiens: For every $\gamma \gg l : S \to T = \mu$, γ' contains a view $l : S \to T = \mu$.

3. Links with assignments:
 - For every $\gamma \gg l : S \to T = \{\cdot\}$, γ' contains a view from S to T. It has the same meta-morphism (if any) in γ' as in γ.
 - For every $\gamma \gg l c \mapsto \delta$, the view l of γ' contains a constant assignment $c \mapsto \delta$.

It is easy to see that these declarations can be arranged in some way that makes γ' structurally well-formed. Furthermore, it is clear from the construction of γ' that γ' is flat and that γ and γ' are semantically equivalent. The only property that is not obvious is that γ' is well-formed. For that, we must show in particular that all assignments in all views in γ' satisfy the typing assumption of rule Con.Ass. This follows from the construction of γ and property (1) of regular foundations (which is the only property of regular foundations needed for this proof).

Example 40 (Continued from Ex. 1) The flattening of the theory graph of our running example contains the module declarations in Fig 20, where we omit all types for simplicity

Two features of MMT are not eliminated in the flattening: meta-theories and filtering.

Regarding meta-theories, the definitions and results in this section could be easily extended to elaborate meta-theories as well. For example, a meta-theory
\[e?\text{Monoid} \overset{f?\text{FOL}}{=} \{ \text{comp}, \text{unit} \} \]

\[e?\text{CGroup} \overset{f?\text{FOL}}{=} \{ \text{mon/comp}, \text{mon/unit}, \text{inv} \} \]

\[e?\text{CGroup/mon} : e?\text{Monoid} \rightarrow e?\text{CGroup} \overset{id_{f?\text{FOL}}}{=} \{ \]
\[\text{comp} \mapsto e?\text{CGroup/mon/comp}, \]
\[\text{unit} \mapsto e?\text{CGroup/mon/unit} \}

\[e?\text{Ring} \overset{f?\text{FOL}}{=} \{ \]
\[\text{add/mon/comp}, \text{add/mon/unit}, \text{add/inv}, \text{mult/comp}, \text{mult/unit} \}

\[e?\text{Ring/add} : e?\text{CGroup} \rightarrow e?\text{Ring} \overset{id_{f?\text{FOL}}}{=} \{ \]
\[\text{mon/comp} \mapsto e?\text{Ring/add/mon/comp}, \]
\[\text{mon/unit} \mapsto e?\text{Ring/add/mon/unit}, \]
\[\text{inv} \mapsto e?\text{Ring/add/inv} \}

\[e?\text{Ring/mult} : e?\text{Monoid} \rightarrow e?\text{Ring} \overset{id_{f?\text{FOL}}}{=} \{ \]
\[\text{comp} \mapsto e?\text{Ring/mult/comp}, \]
\[\text{unit} \mapsto e?\text{Ring/mult/unit} \}

\[e?\text{Ring/add/mon} : e?\text{Monoid} \rightarrow e?\text{Ring} = e?\text{CGroup/mon} \]

Figure 20: Module Declarations for the running example

\[M \] can be reduced to a structure that instantiates \(M \) and has some reserved name. In fact, that is what we did in an earlier version of MMT [Rab08a]. However, this is not desirable because both humans and machines can use meta-theories to relate MMT theories to their semantics. In particular, constants of the meta-theory are often treated differently than the others; for example, their semantics might be hard-coded in an implementation.

Regarding filtering, the situation is more complicated. Imagine a constant declaration \(c : \tau = \top \) in the flat theory graph. This is particularly intuitive if we think of \(c \) as a theorem stating \(\tau \). Then \(c : \tau = \top \) means that the theorem holds but its proof is filtered because it relies on a filtered assumption.

It is now a foundational question how to handle this case. One possibility is to delete the declaration of \(c \). This is especially appealing from a type/proof theoretical perspective where constant declarations are what defines the existence of objects and their meaning. This community might argue that if the proof is filtered, then the theorem is useless because it can never be applied or verified. Consequently, it can just as well be removed. Another possibility is to replace \(c \) with the declaration \(c : \tau \), i.e., to turn it into an axiom. This is appealing from a set/model theoretical perspective where constant declarations merely introduce names for objects that exist in the models. This community might argue that it is irrelevant whether the proof is filtered or not as long as we know that there is one.

In order to stay neutral to this foundational issues, we do not elaborate filtering. Instead, we leave all filtered declarations in the flattened signature and leave it to the foundation to decide whether they are used or not.
The most important practical aspect of the flattening in MMT is not its existence but that it can be applied incrementally. This is significantly more difficult. Consider a theory graph

\[\gamma_0, T \overset{M}{=\{\vartheta_0, s : S = \{\sigma\}, \vartheta_1\}, \gamma_1}. \]

We would like to flatten only the structure \(T/s \). Then the structure can be replaced with a translated copy of the body of \(S \).

For example \(c : \tau = \bot \) is translated to \(s/c : \tau' = \bot \), where \(\tau' \) is the translation of \(\tau \). In particular, in \(\tau' \) all names referring to constant of \(S \) must be prefixed with \(s \). If \(s \) has an assignment \(c \mapsto \delta' \), then the declaration is translated to \(s/c : \tau' = \delta' \).

We obtain incrementality if structure declarations in \(S \) are not flattened recursively. This is possible in MMT. For example, for a structure \(r : R \) in the body of \(S \), a structure \(s/r : R = S/r T/s \) can be added to \(T \) rather than adding all induced constants \(T\gamma s/r/c \). Individual assignments to structures can be flattened similarly.

7. Specific Foundations

To define a specific foundation, we need to define the judgments \(\gamma; \Upsilon \vdash_T \omega \equiv \omega' \) and \(\gamma; \Upsilon \vdash_T \omega : \omega' \).

For a fixed theory graph, let \(<\) be the transitive closure of the relation “\(X \) has meta-theory \(Y \)”. Then the foundational theories are the \(<\)-maximal ones; and for every other theory \(T \), there is a unique foundational theory \(M \) with \(T < M \), which we call the foundational theory of \(T \). A specific foundation is typically coupled with a certain foundational theory \(M \) and only defines \(\gamma \vdash_T \omega \equiv \omega' \) and \(\gamma \vdash_T \omega : \omega' \) for theories \(T < M \). For example, a foundation for set theory could be coupled with the foundational theory ZFC.

Foundational theories and foundations can be given for a wide variety of formal languages. As examples, we give them for two very different languages: OPENMATH and LF.

7.1. OpenMath

OPENMATH [BCC+04] is used for the communication of set theory-based mathematical objects over the internet. OPENMATH content dictionaries correspond to MMT theories, so that MMT yields a module system for OPENMATH content dictionaries. Pure OPENMATH is an untyped language, in which \(\alpha \)-conversion of bound variables is the only non-trivial equality relation. Clearly, this foundation is very easy to implement.

The foundational theory for OPENMATH is empty because OPENMATH does not use any predefined constant names. Thus the standard content dictionaries can be introduced as MMT theories with that meta-theory. We can define a foundation for OPENMATH as follows.

Firstly, \(\gamma \vdash_T \omega : \omega' \) holds iff one of the following holds:

58
1. $\gamma \triangleright_T \omega$ and $\omega' = \bot$,
2. $\omega = \bot$ and $\omega' = \bot$.

To understand why this characterizes OpenMath, consider how it affects the rules Con and ConAss. According to rule Con, a constant declaration $c : \tau = \delta$ is only well-formed if $\gamma \triangleright_T \delta : \tau$. Thus, each of the above cases leads to one kind of constant declaration: The first case is used to define a constant to be equal to some term. The second case is used to declare undefined constants. All constants are untyped.

According to rule ConAss, an assignment $c \mapsto \delta$ must satisfy that δ is typed by the translation of the type of c. Since all constants are untyped, this is vacuous.

Secondly, $\gamma \triangleright_T \omega \equiv \omega'$ is the smallest relation on structurally well-formed terms that

- is reflexive,
- is closed under substitution of equals,
- is closed under α-renaming,
- respects normalization, i.e, $\gamma \triangleright_T \omega \equiv \overline{\omega}$.

Theorem 41. The foundation for OpenMath is regular.

Proof. All properties can be verified directly.

Foundations for other untyped languages such as set theories can be defined similarly. The main difference is that significantly more complicated definitions of the (undecidable) equality judgment must be employed.

7.2. The Edinburgh Logical Framework (LF)

LF [HHP93] is a logical framework based on dependent type theory. Being a logical framework, it represents both logics and theories as LF signatures. Mmt subsumes this approach by also representing LF as a (foundational) Mmt theory. As for OpenMath, Mmt yields a module system for LF.

The foundational theory for LF is given by:

$$
\text{LF} = \{ \text{type}, \text{kind}, \text{lambda}, \text{Pi} \}.
$$

type is the kind of all types. kind is the universe of kinds; it does not occur in concrete syntax for LF, but is needed as the Mmt type of all well-formed LF kinds. Pi is the dependent type constructor, and lambda its introductory form. The application of Mmt can be used as the eliminatory form of Pi.

If $T = \text{LF}$, only the typing judgment $\gamma \triangleright_{\text{LF}} \bot : \bot$ holds. This is needed to make the untyped constants in the theory LF well-formed (see rule ConAss). $\gamma \triangleright_{\text{LF}} \omega \equiv \omega'$ holds iff $\overline{\omega} = \overline{\omega'}$.

Otherwise, typing and equality are defined according to the LF type theory:
For constants, $\gamma \vdash_T D?c : \tau$ holds if $T < LF$ and $\gamma >_D c : \tau = \omega$.

- For other terms, $\gamma \vdash_T \omega : \omega'$ holds if ω is a well-formed LF-term of type ω' or a well-formed LF-type family of kind ω'. The details are as in [HHP93] except that the rule for constants is not needed.

- $\gamma \vdash_T \bot : \omega$ holds if ω is a well-formed LF-type or a well-formed LF-kind. This permits declarations of typed or kinded constants.

Similarly, the judgment $\gamma \vdash_T \omega \equiv \omega'$ is defined by the rules given in the properties (1) and (2) of Def. 25 and the equality rules for LF given in [HHP93].

Theorem 42. The foundation for LF is regular.

Proof. The properties (1) and (2) are built into the definition. Property (3) follows from the results in [HST94] after observing that every type-preserving mapping from S to T yields an LF signature morphisms from \mathcal{S} to \mathcal{T}. Here \mathcal{S} denotes the union of the bodies of all theories D with $T \leq D < LF$.

Regular foundations for any pure type system and for other type theories can be given in the same way.

8. Web-Scalability

Because MMT documents are transparent to the semantics, they have been deliberately ignored so far. But documents play a central role for web-scalability because they permit the packaging and distribution of theory graphs. We will discuss them in Sect. 8.1. The basis for web-scalability is web standards-compliance, and we introduce the XML-based concrete, external syntax for MMT theory graphs in Sect. 8.2 and a URI-based concrete syntax for identifiers in Sect. 8.3. We will also define relative URI references that are indispensable for scalability. Finally, we describe in Sect. 8.4 the decomposition of MMT documents into sequences of atomic declarations, their incremental validation, and a basic query language for atomic document fragments.

8.1. Documents and Libraries

Recall that our syntax uses two-partite module identifiers $g?I$. g is a URI that identifies a package, called **document** in MMT. We use the syntax

$$Doc ::= g = \{\gamma\}$$

to declare a document g containing the theory graph γ. A document is called **primary** if all modules declared within γ have module identifiers of the form $g?I$. Non-primary documents arise when documents are aggregated dynamically using fragments from different documents, i.e., as the result of a search query; we call those **virtual** documents in [KRZ10].

Within MMT documents, we define two relaxations of the MMT syntax that are important for scalability and that can be easily elaborated into the official
syntax: relative identifiers and remote references. **Relative identifiers** and their resolution into the official identifiers are defined in Sect. 8.3. We speak of **remote references** if a document refers to a module that is declared in some other document. Technically, according to the rules of MMT, such a non-self-contained theory graph would be invalid. Therefore, we make documents with remote references self-contained by adding all referenced remote modules in some valid order at the beginning. This is always possible if there is no cyclic dependency between documents.

The semantics of remote references is well-defined because MMT identifiers are URIs and thus globally unique. However, they are not necessarily URLs and thus do not necessarily indicate physical locations from which the remote module could be retrieved. Therefore, we make use of a **catalog** that translates MMT URIs into URLs, which give the physical locations. This way applications are free to retrieve content from a variety of backends, such as file systems, databases, or local working copies, in a way that is transparent to the MMT semantics.

We call a collection of documents together with a catalog an **MMT library**. A library’s document collection can be anything from a self-contained document to (the MMT-relevant subset of) the whole internet. The central component is the catalog that defines the meaning of identifiers in terms of physical locations. Adding a document to a library may include the upload of a physical document, but may also simply consist in adding some catalog entries.

Well-formedness of libraries is checked incrementally by checking individual documents when they are added. A document \(g = \{ \gamma \} \) is **well-formed** relative to a library \(L \) if the following hold:

- If a module identifier declared in \(\gamma \) already exists in \(L \), then the two modules must be identical.
- \(\gamma_L \) is a well-formed theory graph where \(\gamma_L \) arises by prepending all remotely referenced modules according to their resolution in \(L \).

It is easy to prove that if we only ever add well-formed documents to an initially empty library, all modules in the library can be arranged into a single well-formed theory graph. This can be realized, for example, by implementing \(L \) as a database that rejects the commit of ill-formed content (see Sect. 9). Thus, libraries provide a safe and scalable way of building large theory graphs.

8.2. XML-based Concrete Syntax

For the XML syntax, we build on the OMDoc format [Koh06], which already integrates some of the primitive notions of MMT including the MATHML 3 syntax for terms (interpreted as OpenMath objects). In fact, the MMT data model and the XML syntax presented here will form the kernel of the upcoming version of the OMDoc format.

The XML grammar mostly follows the abstract grammar of MMT. Theory graphs are **omdoc** elements with **theory** and **view** elements as children. The
children of theory elements are constant and structure elements. And the children of view and structure elements are conass and strass elements. Both terms and morphisms are represented as strict content MathML expressions.

The definition of the XML encoding $E(\cdot)$ is given in Fig. 21, 22, and 23. The encoding of identifiers is given in Sect. 8.3. In the definition of the encoding, we assume that the following namespace bindings are in effect:

```
xmlns="http://www.omdoc.org/ns/omdoc"
xmlns:m="http://www.w3.org/1998/Math/MathML"
```

Moreover, we assume a special OPENMATH content dictionary with cdbase http://cds.omdoc.org/omdoc/mmt.omdoc and name mmt declaring the following symbols:

$E(T?c)$	$E^{\text{triple}}(T?c)$
$E(x)$	$<\text{m:ci}>x</\text{m:ci}>$
$E(\top)$	mmt(filtered)

$E(\omega^n)$	$<\text{m:apply} >$
	mmt(morphism-application)
	$E(\omega)$
	$E(\mu)$
	$</\text{m:apply}>$

| $E(\mu\{\omega_1, \ldots, \omega_n\})$ | $<\text{m:apply}>E(\omega_1) \ldots E(\omega_n)</\text{m:apply}>$ |

$E(\beta(\omega_1; \Upsilon; \omega_2))$	$<\text{m:bind}>$
	$E(\omega_1)$
	$E(\Upsilon)$
	$E(\omega_2)$
	$</\text{m:bind}>$

$E(\Upsilon, x: [\tau][= \delta])$	$E(\Upsilon)$
	$<\text{m:bvar}>$
	$<\text{m:semantics}>$
	$<\text{m:ci} name="x"/>$
	$[<\text{m:annotation-xml base="\{MMTURI\}" cd="mmt" name="type">$
	$E(\tau)$
	$</\text{m:annotation-xml}>]$
	$[<\text{m:annotation-xml base="\{MMTURI\}" cd="mmt" name="value">$
	$E(\delta)$
	$</\text{m:annotation-xml}>]$
	$</\text{m:semantics}>$
	$</\text{m:bvar}>$

$$\langle \text{MMTURI} \rangle = \text{http://cds.omdoc.org/omdoc/mmt.omdoc}$$

Figure 21: XML Encoding of Terms
These symbols are used to encode the MMT primitives discussed in Sect. 4. We write \textit{mmt}(n) for the element

\begin{verbatim}
<m:csymbol base="http://cds.ocup.org/ocup/mmt.ocup" module="mmt" name="n"/>
\end{verbatim}

The encoding of the structural levels in Fig. 23 is straightforward.

The encoding of terms in Fig. 21 is similar to the encoding of \textsc{openmath} objects in strict content MathML [ABC+10]. It differs in some minor respects:

- We use a \texttt{base} attribute to give the document URI (interpreted as the "content dictionary base" in MathML 3) of \texttt{csymbol}s and annotations. This is necessary because MathML 3 does not provide a way to ascribe different CD bases to individual symbols except when format-specific mechanisms are defined by the format in which MathML is embedded. For MMT, this mechanism is given by the \texttt{base} attribute and Def. 44.

- The \texttt{csymbol} element is used to refer to both symbols and modules. This is only necessary when encoding modular MMT theory graphs.

- Symbol and module names permit a larger set of characters. In particular, the forward slash character that we use for constructing theory paths is not allowed in names, which are restricted to NCNames (see [W3C98]). We do not normalize these away here and assume an omitted encoding step that eliminates the offending characters.

- We do not enclose \textsc{openmath} objects in \texttt{math} elements. This is redundant due to the use of XML namespaces.

Alternatively, we could use the XML encoding of \textsc{openmath} objects defined by the \textsc{openmath} 2 standard [BCC+04].
| Document | $E(g = \{\text{Mod}_1, \ldots, \text{Mod}_n\})$ | <omdoc base="g">
| Theory | $E(T \equiv \{S_1, \ldots, S_n\})$ | <theory name="T" meta="E(\text{URI}(M))">
| View | $E(l : S \to T \equiv \{\sigma\})$ | <view name="l" from="E(\text{URI}(S))" to="E(\text{URI}(T))">
| | $E(l : S \to T = \mu)$ | <view name="l" from="E(\text{URI}(S))" to="E(\text{URI}(T))">
| Constant | $E(c : \tau)[= \delta]$ | <constant name="c">
| Structure | $E(s : S \equiv \{\sigma\})$ | <structure name="s" from="E(\text{URI}(S))">
| | $E(s : S = \mu)$ | <structure name="s" from="E(\text{URI}(S))">
| Assignment | $E(\text{Ass}_1, \ldots, \text{Ass}_n)$ | $E(\text{Ass}_1) \ldots E(\text{Ass}_n)$
| | $E(c \mapsto \omega)$ | <conass name="E(c)">
| | $E(s \mapsto \mu)$ | <strass name="E(s)">

Figure 23: XML Encoding of Structural Levels
8.3. URI-based Addressing

As defined in the MMT grammar, an **absolute identifier** of an MMT knowledge item is a document URI G, a module identifier $G?M$, or a symbol identifier $G?M?S$. It is convenient to unify these three cases by assuming $M = \varepsilon$ and/or $S = \varepsilon$ if the respective component is not present. Then absolute references are always triples (G, M, S).

Similarly, a **relative identifier** is a triple (g, m, s). g is a relative document reference, i.e., a URI reference as defined in RFC 3986 [BLFM05] but without query or fragment. Note that this includes the case $g = \varepsilon$. m and s are usually of the form I, i.e., slash-separated (possibly empty) sequences of non-empty names. For completeness, we mention that MMT also permits m and s to be relative: If $g = \varepsilon$, m may be of the form /I, which is a module reference that is interpreted relative to the current module; and if $g = m = \varepsilon$, s may also be of the form /I, which is a symbol reference that is interpreted relative to the current symbol.

Since absolute and relative identifiers are both triples, they can be encoded in the same way. There are two different ways to encode MMT identifiers, which are given in Fig. 24. When identifiers occur as XML elements, we use $\text{triple}(\cdot)$ to obtain the triple of document, module, and symbol name. If they occur as attribute values, we use $\text{URI}(\cdot)$ to obtain a string.

This triple-based addressing model takes up an idea (called “reference by context”) from OMDoc 1.1 that was dropped in OMDoc 1.2 because its semantics could not be rigorously defined without the MMT concepts. In particular triples (g, T, c) correspond to the $(cd\text{base}, cd, name)$ triples of the OPENMATH standard [BCC+04].

When names occur in attribute values, we encode identifiers as URI strings using ? as a separating character. In this encoding, concrete and abstract syntax are identical. Absolute and relative identifiers are encoded as URIs and URI references, respectively. We adopt the convention that trailing but not leading ? characters can be dropped. For example, we encode

- (g, m, ε) as $g?m$,
- (ε, m, s) as $?m?s$,
- $(\varepsilon, \varepsilon, s)$ as ??s,

This encoding can be parsed back uniquely into triples.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|}
\hline
triple & $\text{triple}(g?I?I')$ \\
\hline
 & $<\text{m:csymbol base="g" cd="I"}>I'</\text{csymbol}>$ \\
\hline
URI & $\text{URI}(g?I?I')$ \\
\hline
 & $g?I'$ \\
\hline
\end{tabular}
\caption{XML Encoding of Identifiers}
\end{table}
Definition 43 (Relative URI Resolution). The resolution of relative identifier \(R = (g, m, s) \) is defined relative to an absolute identifier \(B = (G, M, S) \), which serves as the base of the resolution. The result is the following absolute identifier:

\[
\text{resolve}(B, R) :=
\begin{cases}
 (G + g, m, s) & \text{if } g \neq \varepsilon \\
 (G, M + m, s) & \text{if } g = \varepsilon, m \neq \varepsilon \\
 (G, M, S + s) & \text{if } g = m = \varepsilon, s \neq \varepsilon \\
 (G, M, S) & \text{if } g = m = s = \varepsilon
\end{cases}
\]

where \(G + g \) denotes the resolution of the URI reference \(g \) relative to the URI \(G \) as defined in RFC 3986 [BLFM05]. Furthermore, \(M + m \) resolves \(m \) relative to \(M \): If \(m = /m' \), then \(M + m \) arises by appending \(m' \) to \(M \); otherwise \(M + m = m \). \(S + s \) is defined accordingly.

The above definition yields the ill-formed result \((G, \varepsilon, s)\) when resolving a symbol level reference \(R = (\varepsilon, \varepsilon, s) \) against a document level base \(B = (G, \varepsilon, \varepsilon) \). We forbid that pathological case, which would correspond to a symbol being declared outside a theory.

To resolve relative identifiers within a document, we need the following:

Definition 44 (Base URI). Let \(\gamma \) a theory graph, then we define a base URI for MMT expressions occurring in \(\gamma \):

1. The base of a module declaration or a remote reference to a module is the URI of the containing document.
2. The base of a symbol declaration is the URI of the containing theory.
3. The base of an assignment to a symbol is the URI of the codomain theory.
4. If \(\mu \) is a morphism with domain \(S \), then the bases of \(\omega \) in \(\omega^\mu \), and \(\mu' \) in \(\mu' \mu \), are \(S \).
5. In all other cases, the base of an expression is the base of the parent node in the syntax tree.

Furthermore, in the XML encoding of documents, authors may override the base reference by using an attribute base. This attribute may be present on any XML element occurring in the encoding, and all relative MMT URIs are interpreted relative to the closest enclosing base attribute. Thus, base is similar to the xml:base attribute except that its value is an MMT URI and that relative identifiers are resolved according to Def. 43. Note that the value of base may itself be relative – this implies that there is no semantic difference between an empty and an omitted base attribute.

URIs are the main data structure needed for cross-application scalability, and our experience shows that they must be implemented by almost every peripheral system, even those that do not implement MMT itself. Already at this point, we
had to implement them in SML [RS09], Javascript [GLR09], XQuery [ZKR10], Haskell (for Hets, [MML07]), and Bean Shell (for a jEdit plugin) – in addition to the Scala-based reference API presented in Sect. 9.1.

This was only possible because MMT-URIs constitute a well-balanced trade-off between mathematical rigor, feasibility, and URI-compatibility: In particular, due to the use of the two separators / and ? (rather than only one), they can be parsed locally, i.e., without access to or understanding of the surrounding MMT document.

8.4. An API for Knowledge Management

We use the concepts introduced above to specify an API for MMT documents. It is designed around MMT library operations that add or retrieve atomic URI-identified knowledge items. It is easy to implement and can be quickly integrated with different front and back ends ranging from HTTP servers to interactive editors.

Adding Knowledge Items. MMT fragments are added during the validation algorithm. In general, we distinguish three levels of validation with varying strictness: Plain XML validation is quick but cannot guarantee MMT-well-formedness. The latter is guaranteed by structural validation, which implements the inference system given in this paper. Structural validation uses a default foundation, in which typing and equality of terms is always true. Foundation-relative validation refines structural validation by additionally checking typing and equality constraints by using a plugin for specific foundations.

Structural validation of MMT theory graphs can be implemented by decomposing the theory graph into a sequence of atomic declarations that are validated and added incrementally. Except for structures, every symbol or assignment is an atomic declaration. Declarations of documents, theories, views, and structures, are atomic if the body is empty. For example, a view is decomposed into the declaration of an empty view and one declaration for each assignment.

The MMT inference system is designed such that structural validation is possible. In particular, later atomic declarations can never invalidate earlier ones.

Retrieving Knowledge Items. To retrieve knowledge items from a library, we use atomic queries given in Fig. 25. These take an MMT URI and return the MMT declaration identified by the elaboration judgments.

Atomic queries permit not only the retrieval of all declarations of the original documents in the library, but also of all induced declarations. Note that there are two ways to combine a structure URI $g?T/s$ and a constant c: The query $g?T/s?c$ retrieves an assignment provided by s for c (defaulting to $c \mapsto g?T/s$ if there is none); and the query $g?T?s/c$ retrieves the induced constant declaration of T.

Example 45 (Continued from Ex. 21) Examples for atomic queries were already indicated in Ex. 21.
Atomic queries are relatively easy to implement and provide a sufficient interface for higher knowledge management layers to implement many additional services. For example, we can use them to implement local validation. Given a library L and an implementation of atomic queries, we can validate documents and document fragments relative to L without having to read all of L. Instead, the respective atomic query is sent to L whenever a reference to an unknown knowledge item is encountered.

Moreover, if we are interested in structural validation only, it is sufficient to know only the type of a query result (i.e., theory, view, constant, structure, assignment to constant, assignment to structure). This information can be precomputed and cached by the library.

Atomic queries also yield an easy implementation of flattening because they already return all declarations of induced constants and assignments that occur in the flattened theory graph. Therefore, to implement flattening, we only have to know the URIs of the induced declarations. Again this information can be cached by the library, and applications can aggregate the flattened theory graph without having to implement MMT.

Foundations as Plugins. An implementation of MMT should provide a plugin interface for foundations. Every plugin must identify a theory M, and implement functions that decide (or attempt to prove) instances of the typing and equality judgments for any theory $T < M$. Foundations should be regular, and due to Lem. 26, they only need to consider flat instances of these judgments. Moreover, due to Thm. 39, they can assume that T is flat. Thus, existing implementations of formal systems for M can easily be reused to obtain plugins for the corresponding foundational theory.
9. Implementations

The design of the MMT language has been driven in a tight feedback loop between theoretical analysis of knowledge structures and practical implementation efforts. In particular, we have evaluated the space of possible module systems along the classifications developed in Sect. 2 in terms of expressivity, computational tractability, and scalability in a variety of case studies. The most relevant one for MMT is the logic atlas in the LATIN project [KMR09, CHK+11b], where we are attempting a modular development of logics and inference systems currently used in mathematical/logic-based software systems with a focus on concept sharing and trans-logic interoperability. These efforts led to three implementations, which we will present here. All of them are open source, and can be obtained from the authors.

9.1. The MMT Reference Implementation

The MMT implementation [Rab08b] provides a Scala-based [OSV07] (and thus fully Java-compatible) open-source implementation for the API from Sect. 8.4. The core of the implementation acts as a library with atomic add and retrieve methods. XML documents are decomposed, validated, and added incrementally, and retrieval of document fragments is implemented via atomic queries.

The validation algorithm provides a plugin interface for foundations. Every plugin must identify a foundational theory M, and implement functions that decide or (attempt to prove) instances of the typing and equality judgments for any theory $T < M$.

Foundations should be regular, and due to Lem. 26, they only need to consider flat instances of these judgments. Moreover, due to Thm. 39, they can assume that T is flat. Thus, existing algorithms and implementations for the flat case can be reused, and the MMT reference implementation adds a module system to them. Currently, one such plugin exists for the foundation for LF from Sect. 7.

As a by-product of validation, a relational representation of the validated document is generated, which corresponds to an ABox in the MMT ontology. The individuals of this ontology are the valid MMT URIs, and the relations between them include for example “Constant c_1 occurs in the type of constant c_2.” or “View v has domain S.”. This information is cached, and the implementation includes a simple relational query language. The combination of atomic queries and relational queries is a simple but powerful interface to MMT libraries.

The library component can be combined with various back and front ends. The back ends implement the catalog that translates MMT URIs into physical locations. The current implementation includes back ends that retrieve documents from remote MMT libraries via HTTP or from local working copies of repositories via file system access. This catalog is fully transparent to the library component.

The front ends provide users and systems access to the library. The current implementation includes a shell and a web server front end. The shell is scriptable and can be used to explicitly retrieve, validate, and query MMT
documents. The web server is implemented using the Lift web framework for Scala [Pea07]. The interaction with the web server proceeds like with the shell except that input and output are passed via HTTP. In particular, the web server can easily be run as a local proxy that provides MMT functionality and file system abstraction to local applications. An example instance of the web server is serving the content of the TNTBase repository of the LATIN project [KMR09].

In fact, the MMT language is significantly larger than presented here. Going beyond the scope of this paper, it also provides an OMDoc-style notation language with a simple declarative syntax to define renderings of MMT content in arbitrary human- or machine-oriented formats; see [KMR08] for an overview of a precursor of the MMT notation system. Notations can be grouped into styles, which are themselves subject to the MMT module system. The web server mentioned above can serve documents as XHTML with presentation MathML and integrates the JOBAD technology for interactive browsing we presented in [GLR09]. Another use of notations is as a fast way of translating MMT into system’s concrete input syntax so that MMT can serve as an interchange language.

9.2. TNTbase – a Scalable MMT-Compliant Database

The TNTBase system [ZK09] is an open-source versioned XML database developed at Jacobs University. It was obtained by integrating Berkeley DB XML [Ora10] into the Subversion Server [Apa00], is intended as a basis for collaborative editing and sharing XML-based documents, and integrates versioning and access of document fragments. We have extended TNTBase with an MMT plugin that makes it MMT-aware [KRZ10, ZKR10].

The most important aspect of this plugin is validation-upon-commit. Using the \texttt{tntbase:validate} property, folders and files can be configured to require validation. Thus, users can choose between no, XML-based, structural, or foundational validation of MMT files. Since the commit of ill-formed files can be rejected, TNTBase can guarantee that it only contains well-formed documents. Thus, other systems can use MMT-enriched TNTBase for the long term storage of their system libraries and can trust in the correctness of documents retrieved from the database.

Moreover, the plugin computes the relational representation of a committed well-formed document, which TNTBase stores as an XML file along with every MMT file. TNTBase exposes the relational representation of MMT documents via an XQuery interface, and we have implemented a variety of custom queries in an XQuery module that is integrated into TNTBase. TNTBase indexes the files containing the relational representation so that such queries scale very well. For example, our XQuery module includes a function that computes the transitive closure of the structural dependency relation between MMT modules and dynamically generates a self-contained MMT document that includes all dependencies of a given module. Even for small libraries and even if TNTBase runs on a remote server, this query outperforms the straightforward implementation based on local files.
Moreover, using the virtual documents of TNTBase, such generated documents are editable; see [ZK10] for details. TNTBase keeps track of how a document was aggregated and propagates the necessary patches when a changed version of the virtual document is committed.

9.3. Twelf – an MMT-Compliant Logical Framework

The MMT implementation from Sect. 9.1 starts with a generic MMT implementation and adds a plugin for a specific formal language F. Alternatively, an invasive implementation is possible, which starts with an implementation of F and adds the MMT module system to it. Such implementations are restricted to theory graphs with a single foundational theory for F, but can reuse special features for F such as user interfaces and type inference. We have implemented this for LF as well [RS09] using the Twelf implementation [PS99] of LF.

The effect of adding MMT to Twelf is that Twelf becomes a tool for authoring theory graphs with LF as the single foundational theory. A major advantage of this approach is that authors can benefit from the advanced Twelf features, in particular infix parsing, type reconstruction, and implicit arguments. This implementation was used successfully to generate large case studies of MMT theory graphs in [DHS09], [HR11], and [IR11].

Twelf also supports several advanced language features that are part of MMT but were not mentioned in this paper. In particular, this includes nested theories and unnamed imports between theories and links. Furthermore, fixity and precedence declarations of Twelf are preserved as MMT notations that are used when rendering the MMT theory graph.

Twelf can produce MMT documents in XML syntax from its input that are guaranteed to be well-formed. In [CHK+11c], we showed how logics written in Twelf can be exported in MMT concrete syntax and imported into and used in the Hets system [MML07].

10. Related Work

In this section, we survey the state of the art in module systems for formal languages using the terminology developed in Sect. 2 and relate MMT to them. Fig. 26 gives an overview of the discussed systems.

Mathematical Language. Even though mathematical knowledge can vary greatly in its presentation as well as its level of formality and rigor, there is a level of deep semantic structure that is common to all forms of mathematics. This large-scale structure of mathematical knowledge is much less apparent than that of formulas and is usually implicit in informal representations. Experienced mathematicians are nonetheless aware of it, and use it for navigating in and communicating mathematical knowledge.

Much of this structure can be found in networks of theories such as those in a monograph “Introduction to Group Theory” or a chapter in a textbook. The relations among such theories are described in the text, sometimes supported
by mathematical statements called “representation theorems”. We can observe that mathematical texts can only be understood with respect to a particular mathematical context given by a theory which the reader can usually infer from the document, e.g., from the title or the specialization of the author. The intuitive notion of meta-theory is well-established in mathematics, but again
it is mainly used informally. Formal definitions are found in the area of logic
where a logic is used as the meta-language of a logical theory.

Mathematical theories have been studied by mathematicians and logicians in
the search of a rigorous foundation for mathematical practice. They have usually
been formalized as collections of symbol declarations and axioms. Mathematical
reasoning often involves several related mathematical theories, and it is desirable
to exploit these relationships by moving theorems between theories. The first
systematic, large-scale applications of this technique in mathematics are found
in the works by Bourbaki [Bou68, Bou74], which tried to prove every theorem
in the theory with the smallest possible set of axioms.

This technique was formalized in [FGT92], which introduced the little theories
approach. Theories are studied as formal objects. And structural relationships
between them are represented as theory morphisms, which serve as conduits for passing information (e.g., definitions and theorems) between theories (see [Far00]).

Web Scale Languages. The challenge in putting mathematics on the World
Wide Web is to capture both notation and meaning in a way that documents
can utilize the human-oriented notational forms of mathematics and provide
machine-supported interactions at the same time. The W3C recommendation
for mathematics on the web is the MathML language [ABC+10]. It provides
two sublanguages: presentation MathML permits the specification of notations for mathematical formulas, and content MathML is geared towards
specifying the meaning in a machine-processable way. The latter is structurally
equivalent to OPENMATH. In particular, both formats represent the structure
of mathematical formulas as OPENMATH objects, i.e. tree-like expressions built
up from constants, variables, and primitive data types via function applications
and bindings.

Mmt constants correspond to symbols in MathML and OPENMATH and
Mmt theories to content dictionaries (CDs). CDs are machine-readable and
web-accessible documents that provide a very simple way to declare mathematical
objects for the communication over the WWW and attach meaning to them.
Meaning can be expressed in the form of axioms or types given as OPENMATH
objects representing logical formulas or in the form informal mathematical text.

OPENMATH provides a certain communication safety over traditional mathematics: It can no longer be the case that the author writes \mathbb{N} for the set of natural
numbers with 0, and the reader understands the set of natural number without
0, as the two notions of “natural numbers” — even though presented identically
— are represented by different symbols (probably from different CDs). Thus, the
service offered by the OPENMATH/MATHML approach is one of disambiguation
as a base for further machine support.

In MMT terms, the productions for constants, variables, application, and
binding correspond closely to OPENMATH. MMT adds morphism application
and the special term \top, and we omit the primitive data types. We use typed
and defined variables in analogy to MMT constant declarations and do not use
the attributions of OPENMATH.
OpenMath CDs enable formula disambiguation and web scale communication, but the lack of machine-understandable intra-CD knowledge structure and inter-CD relations preclude higher-level machine support. Therefore, OMDoc [Koh06] represents mathematical knowledge at the levels of objects, statements, theories, and documents: OPENMATH and content MathML are subsumed to represent objects. Statements are symbols, axioms, definitions, theorems, proofs and occur as declarations within theories. Moreover, theories may declare unnamed, interspersed, free instantiations, and structured theory morphisms can be declared as in development graphs. Documents provide a basic content-oriented infrastructure for communication and archival.

Syntactically, OMDoc and OpenMath are distinguished from purely formal representation languages by the fact that all formal mathematical elements of the language can be augmented or replaced by natural language text fragments. Semantically, they differ because they do not supplement the formal syntax with a formal semantics.

Some implementations of purely formal representation languages have made use of XML, OpenMath/MathML, or OMDoc as primary or secondary representation formats. For example, Mizar [TB85] uses XML as the primary internal format, and Matita [ACTZ06] uses content and presentation MathML; Coq [CH88, BC04] provides an OMDoc export, and Isabelle [Pau94] a partial XML export. Web-scale languages can in principle serve as standardized interchange formats between such systems. Some examples of interoperability mediated by OMDoc and OpenMath are [CHK*11c, CO01, HR09]. But applications have so far been limited due to the lack of an interchange format with a standardized semantics.

Mmt provides such a semantics. It keeps OMDoc’s leveled representation but restricts attention to a subset for which a formal semantics can be developed. Syntactically, the main addition of Mmt is the use of named imports and of theory morphisms as objects.

OpenMath and OMDoc use URIs [BLFM05] to identify symbol by triples of symbol name, CD id, and CD base. The CD base is a URI acting as a namespace identifier, which corresponds to the triples in Mmt identifiers. But the formation of OpenMath URIs is only straightforward via the one-CD-one-file restriction imposed by OpenMath, which is too restrictive in general. Mmt is designed such that all knowledge items have canonical URIs. Moreover, the formation of symbol URIs in OpenMath and OMDoc uses the fragment components of URIs. Therefore, fragment access does not scale well because clients have to download a complete document and then execute the fragment access locally. Mmt avoids this by using the query component of the URI.

Algebraic Specification Languages. In algebraic specification, theories are used to specify the behavior of programs and software components, and realizations (theory morphisms in Mmt) are used to enable reuse of components (structures in Mmt) and to formalize refinements of specifications (views in Mmt).

In this setting, implementations can be regarded as refinements into executable specifications, which we have called grounded realizations. This ap-
Approach naturally leads to a regime of specification and implementation co-development, where initial, declarative specifications are refined to take operational issues into account. Implementations are adapted to changing specifications, and verification conditions and their proofs have to be adapted as programming errors are found and fixed. This has been studied extensively, and a number of systems have been developed. We will discuss OBJ \cite{GWM+93}, ASL \cite{SW83, ST88}, CASL \cite{CoF04, MML07}, and development graphs \cite{AHMS99, MAH06} as representative examples.

OBJ refers to a family of languages based on variants of sorted first-order logic. It was originally developed in the 1970s based on the Clear programming language and pioneered many ideas of modular specifications, in particular the use of initial model semantics \cite{GTW78}. The most important variant is OBJ3; Maude \cite{CELM96} is a closely related system based on rewriting logic. OBJ is a single-package system. Theories and views are similar to MMT. OBJ permits unnamed imports without instantiation and with identify-semantics, and named imports with interfaced, implicit, and total instantiations. All imports are separated. Named imports can be instantiated with views, but more complex realizations cannot be formed.

ASL is a generic module system over an arbitrary institution \cite{GB92} with a model theoretical semantics. Similar to institutions, the focus is on abstract modeling rather than concrete syntax. Modules are called “specifications” and are formed using the operations of union (which corresponds to concatenation of theory bodies in MMT), imports, and complex hiding (which was introduced by ASL). Imports between specifications are unnamed and do not use instantiations but only axiom-inheritance and renaming. Unnamed views are used to express refinement theorems. We gave a representation of ASL in MMT in \cite{CHK+11a}, which uses an extension of MMT to accommodate hiding.

The development graph language is an extension of ASL specifically designed for the management of change. The central data structure are theory graphs of theories and two kinds of links, which correspond to the ones in MMT. (Global) “definitional links” are unnamed imports like in ASL and provide axiom-inheritance; (global) “theorem links” are partial views where the missing instantiations are treated as proof obligations that are to be discharged by theorem proving systems. ASL style hiding is supported by hiding links. The Maya system \cite{AHMS02} implements development graphs for first-order logic. Like the MMT implementation and contrary to most other systems discussed here, Maya does not flatten the specification while reading it in. Thus, the modular information, in particular the theory graph, is available in the internal data structures. This is much more robust against changes in the underlying modules and provides a good basis for theorem reuse and management of change.

The development graph calculus uses local links. From the MMT perspective, a local link is a link which filters all but the local constants of its domain. A global theorem theorem link can be decomposed into a set of commuting local theorem links. By finding these local theorem links individually and reusing them where possible, development graphs can avoid redundancy and move the-
orems between theories. From the MMT perspective, a decomposed global theorem link is simply a set of total views without deep assignments, i.e., views where all structures are mapped to morphisms. Thus, MMT provides not only a representation format for development graphs and decomposed theorem links, but also for intermediate development graphs in which theorem links have been partially decomposed or where local theorem links are postulated but have not been found yet.

Our rules for the module-level reasoning about morphisms are very similar to such decompositions: A judgment about all (possibly imported) constants in S is decomposed into separate judgments about the local constants and the structures declared of S.

The common algebraic specification language (CASL) was initiated in 1994 in an attempt to unify and standardize existing specification languages. As such, it was strongly influenced by other languages such as OBJ and ASL. The CASL logics are centered around partial subsorted first-order logic, and specific logics are obtained by specializing (e.g., total functions, no subsorting) or extending (e.g., modal logic or higher-order logic). CASL uses closed physical packages based on files and called “libraries”. The modules are called “specifications”, the imports are unnamed and interspersed, permit renaming, and use the identify-semantics. The overload/identify-semantics is used to handle import name clashes. Instantiations are interfaced, explicit, and total, and map constants to constants. In parametric specifications, special separated imports are used that can be instantiated with views. CASL offers simple hiding.

In HetCASL [Mos05] and the Hets system [MML07], CASL is extended to heterogeneous specifications using different logics and logic morphism (the same specification). Imports and views may go across logics if logic morphisms are attached. This is very similar to the use of meta-theories and metamorphisms in MMT. Contrary to MMT, the logics and logic morphisms are implemented in the underlying programming language and not declared within the formal language itself. Hets implements the development graph calculus for heterogeneous specifications.

Type Theories. Type theories and related formal languages utilize strong logical systems to express both mathematical statements and proofs as mathematical objects. Some systems like AutoMath [dB70], Isabelle [Pau94], or Twelf [PS99] even allow the specification of the logical language itself, in which the reasoning takes place. Semi-automated theorem proving systems have been used to formalize substantial parts of mathematics and mechanically verify many theorems in the respective areas.

These systems usually come with a module system that manages and structures the body of knowledge formalized in the system and a library containing a large set of modules. We will consider the module systems of IMPS [FGT93], PVS [ORS92, OS97], Isabelle [Pau94], Coq [CH88, BC04], Agda [Nor05], and Nuprl [CAB+86]. We have already discussed the module system of Twelf, which was designed based on MMT, in Sect. 9.3.
IMPS was the first theorem proving system that systematically exploited the “little theories approach” of separating theories into small modules and moving theorems along theory morphisms. It was initiated in 1990 and is built around a custom variant of higher-order logic. It is a single-package system, the imports are unnamed and separated without instantiations; there is no renaming. Modules can be related via views, which map symbols to symbols.

PVS is an interactive theorem prover for a variant of classical higher-order logic with a rich undecidable type system. The PVS packages are called “libraries” and are physical packages based on directories. Unnamed, interspersed imports have interfaced, total, and implicit instantiations, which map symbols to terms. Unnamed imports of the same module are identified if the instantiations agree. There is no renaming, and the import name clash situation is handled using the overload/identify semantics. Simple hiding is supported by export declarations that determine which names become available upon import.

Isabelle is an interactive theorem prover based on simple type theory [Chu40] with a structured high-level proof language. Its packages are called “theories” and are identified physically based on files, packaging is closed. Isabelle provides two generic module systems.

Originally, only axiomatic type classes were used as modules. They permit only inheritance via unnamed, separated imports without instantiations. Type class ascriptions to type variables and overloading resolution are used to access the symbols of a type class. Later locales were introduced as modules in [KWP99] and gradually extended. In the current release, locales offer unnamed, separated imports with free instantiations; renaming is possible. Type classes are recovered as a special case.

Realizations are treated differently depending on whether they are grounded or not and whether the domain is a type class or a locale: Theory morphism between locales are called “sublocale” and “subclass declarations”, and grounded realizations are called “interpretation” for locales and “instantiation” for type classes.

Isabelle assigns the semantics of a modular theory by elaboration. Locales are internalized by locale predicates that abstract over all symbols and assumptions of the locale; every theorem proved in the locale is relativized by the locale predicate and exported to the toplevel. Thus, instantiation is reduced to β-reduction.

Nuprl is an interactive theorem prover based on a rich undecidable type theory. It does not provide an explicit module system. However, its type theory is so expressive that it can in principle be used to define an internalized module system as shown in [CH00]. Then modules, grounded realizations, and higher-order functors can be defined using Nuprl types, terms, and function terms, respectively. Named and unnamed imports are defined using intersection and dependent sum types. But Nuprl does not provide specific module system-like syntax for these notions.
Coq is an interactive theorem prover based on the calculus of constructions [CH88]. Physical open packages are called “libraries” and correspond to directories and files.

The Coq module system is modeled after the SML module system (see below). SML signatures, structures, and functors correspond to Coq module types, modules without parameters, and modules with parameters, respectively. Contrary to SML, no shadowing is used, and errors are signaled instead. In addition, Coq can be used with an internalized higher-order module system using record types. As for Nuprl, this yields modules, grounded realizations, and higher-order functors. Both module systems are used independently. The standard library mainly uses the former. The latter is used systematically in [GM08].

Agda is a functional programming language based on Martin-Löf’s dependent type theory [ML74]. It uses dependent record types to internalize certain theories. In addition, the notion of “modules” combines aspects of what we call packages and modules. These modules are physical closed packages based on files and are used mainly for namespace management. Named interspersed imports between modules are possible using nested module declarations where the inner one is defined in terms of a parametric module. These imports carry interfaced, implicit, and total instantiations that map symbols to term. Named imports may not occur as parameters so that this does not yield a notion of functors.

Programming Languages. Programming languages differ from the languages mentioned above in that they focus on aspects of execution including input/output and state. But if we ignore those aspects, we find the same module system patterns as in the other languages. We discuss the functional language SML [MTHM97] and the object-oriented language Java [GJJ96] as examples.

SML uses a single-package system that permits the modular design of specifications (called “signatures”) and realizations (called “functors”, and if grounded “structures”).

The specification level module system has signatures as modules. Imports are interspersed and can be named (called “structure declarations”) or unnamed (called “inclusions”). Both kinds of imports carry free, explicit, and partial instantiations that map symbols to symbols or structures to realizations. If unnamed imports lead to a diamond situation or a name clash, the later declarations always shadow the previous ones. Views are restricted to inclusion morphisms between signatures (called “structural subtyping”); these views are implicit and inferred by implementations.

Realizations can themselves be given modularly. A functor is a realization of a signature that is parametric in symbols or structure declarations. Imports between realizations are possible by declaring a structure and defining it to be equal to the result of a functor application. Consequently, these imports are named and interspersed, and the instantiations are interfaced, explicit, and total, map symbols to symbols and structures to realizations. Structures are typed structurally by signatures, which permits simple hiding.
From an MMT perspective, SML signatures, structures, and functors can be unified conceptually. Signatures correspond to MMT theories in which no constant has a definition; structures to MMT theories in which all constants have definitions; and functors to MMT theories where only a few declarations at the beginning (the interface of the functor) have no definition. Both the structural subtyping relation between signatures and the typing relation between structures and signatures correspond to an inclusion view between the respective MMT theories.

Java uses open packages with optional imports. Package names are the authority components of URIs [BLFM05]. Packages are provided in jar archive files, and implementations provide a catalog to locate packages that is based on the classpath. Java packages are very close to MMT documents. Similar to MMT, Java identifiers are logical and formed from the three hierarchical components package URI, class name, and field name. However, Java uses “.” as a separator character both between and within these components and resolves ambiguities dynamically; MMT uses “?” and “/” so that MMT URIs can be understood statically.

Java modules are called “classes”. There are two kinds of imports. Firstly, unnamed, separated imports without renaming are called “class inheritance”; a class may only inherit from one other class though. Secondly, named, interspersed imports are called “object instantiation”, and the resulting structures “objects”. Instantiations are interfaced, implicit, and total, but a class may provide multiple interfaces (called “constructors”), which map symbols to expressions or objects to objects. As constructors may execute code, the expressions passed to the constructor do not have to correspond to symbols or objects declared in the class. Views are restricted to inclusion morphism out of special modules (called “interfaces”). Simple hiding is realized via private declarations.

Java internalizes its module system, and functors are subsumed by the concept of methods.

Scala [OSV07] is a higher-order extension of Java that retains all features listed above for Java. Moreover, Scala permits multiple unnamed imports into the same class by using “traits”.

11. Conclusion and Future Work

Formal knowledge is at the core of mathematics, logic, and computer science, and we are seeing a trend towards employing computational systems like (semi-)automated theorem provers, model checkers, computer algebra systems, constraint solvers, or concept classifiers to deal with it. It is a characteristic feature of these systems that they either have mathematical knowledge implicitly encoded in their critical algorithms or (increasingly) manipulate explicit representations of this knowledge, often in the form of logical formulas. Unfortunately, these systems have differing domains of applications, foundational assumptions, and input languages, which makes them non-interoperable and
difficult to compare and relate in practice. Moreover, the quantity of mathematical knowledge is growing faster than our ability to formalize and organize it, aggravating the problem that mathematical software systems cannot easily share knowledge representations.

In this work, we contributed to the solution of this problem by providing a scalable representation language for mathematical knowledge. We have focused on the modular organization of formal, explicitly represented mathematical knowledge. We have developed a classification of modular knowledge representation languages and evaluated the space of possible module systems in terms of expressivity, computational tractability, and scalability. We have distilled our findings into one particularly well-behaved system – MMT – discussed its properties, and described a set of loosely coupled implementations.

11.1. The MMT Language

MMT is a foundationally unconstrained module system that serves as a web-scalable interface layer between computational systems working with formally represented knowledge.

MMT integrates successful features of existing paradigms

- reuse along theory morphisms from the “little theories” approach,
- the theory graph abstraction from algebraic specification languages,
- categories of theories and logics from model theoretical logical frameworks,
- the logics-as-theories representation from proof theoretical logical frameworks,
- declarations of constants and named realizations from type theory,
- the Curry-Howard correspondence from type/proof theory,
- URIs as logical namespace identifiers from OpenMath/OMDoc and Java,
- standardized XML-based concrete syntax from web-oriented representation languages,

and makes them available in a single, coherent representational system for the first time.

The combination of these features is reduced to a small set of carefully chosen, orthogonal primitives in order to obtain a simple and extensible language design. In fact, some of the primitives combine so many intuitions that it was rather difficult to name them.

MMT contributes three new features:

Canonical identifiers By making morphisms named objects, MMT can provide globally unique, web-scalable identifiers for all knowledge items. Even in the presence of modularity and reuse, all induced knowledge items become addressable via URIs. Moreover, identifiers are invariant under MMT operations such as flattening.
Meta-theories The logical foundations of domain representations of mathematical knowledge can be represented as modules themselves and can be structured and interlinked via meta-morphisms. Thus, the different foundations of systems can be related and the systems made interoperable. The explicit representation of epistemic foundations also benefits systems whose mathematical knowledge is only implicitly embedded into the algorithms: The explicit representation can serve as a documentation of the system interface as well as a basis for verification or testing attempts.

Foundation-independence The design, implementation, and maintenance of large scale logical knowledge management services will realistically only pay off if the same framework can be reused for different foundations of mathematics. Therefore, MMT does not commit to a particular foundation and provides an interface layer between the logical-mathematical core of a mathematical foundation and knowledge management services. Thus, the latter can respect the semantics of the former without knowing or implementing the foundation.

MMT is web-scalable in the sense that it supports the distribution of resources (theories, proofs, etc.) over the internet thus permitting their collaborative development and application. We can encapsulate MMT-based or MMT-aware systems as web-services and use MMT as a universal interface language. At the same time MMT is fully formal in the sense that its semantics is specified rigorously in a self-contained formal system, namely using the type-theoretical style of judgments and inference rules. Such a level of formality is rare among module systems, SML being one of the few examples.

We contend that the dream of formalizing large parts of mathematics to make them machine-understandable can only be reached based on a system with both these features. However, in practice, they are often in conflict, and their combination makes MMT unique. In particular, it is easy to write large scale implementations in MMT, and it is easy to verify and trust them.

11.2. Beyond MMT

We have designed MMT as the simplest possible language that combines foundation-independence, modularity, web-scalability, and formality. Future work can now build on MMT and add individual orthogonal language features – in each case preserving these four qualities. In particular, for each feature, we have to define grammar and inference rules, the induced knowledge items and their URIs, and their behavior under theory morphisms. In fact, we have already developed some of these features but excluded them in this paper to focus on a minimal core language.

In the following we list some language features that we will carefully add to MMT in the future:

Unnamed Imports In addition to the described named imports with distinguish-semantics, MMT is designed to provide also unnamed imports with identify-semantics. They are already part of the MMT API, and the main reason to
omit them here was to simplify the presentation of the formal semantics of MMT.

Cyclic Imports Inspecting the flattening theorem reveals that cyclic imports are not as harmful as one might think: Cyclic imports can be elaborated easily if we permit theories with infinitely many constant declarations. In particular, cyclic imports will permit elegant representations of languages with an infinite hierarchy of universes or with an infinite hierarchy of reflection.

Nested Theories Nested theories will provide a scalable mechanism for representing hierarchic scopes and visibility. Many language features naturally suggest such a nesting of scopes such as mutual recursion, local functions, record types, or proofs with local definitions.

Intuitively, if S is a subtheory of T, the declarations of T occurring before S are implicitly imported into S via an unnamed import, and the declarations of T succeeding S can refer to S, e.g., by importing it. The main difficulty here is to add nested theories in a way that preserves the order-invariance of declarations.

(Co-)Inductive Data Types Using some of the above features, it is possible to give foundation-independent definitions of inductive and coinductive data types. An inductive data type over T is declared as a theory I with a distinguished type t over I: The values of the induced type are defined using the closed terms ω such that $\gamma \triangleright_I \omega : t$. Functions from this type to some type u over T can be defined by induction, which amounts to giving a theory morphism from I to T that maps t to u.

A coinductive data type over T is declared as a theory C with a distinguished partial morphism m from C to T. The values of the induced type are defined using the valid morphisms $\gamma \triangleright C : \mu : C \to T$ that agree with m. Thus, definitions by coinduction are reduced to theory morphisms. In particular, C specializes to a record type if it does not contain cyclic imports.

Coinductive types can be used to reflect the MMT-concept of realizations into individual foundations. For example, consider Ex. 15 with $C = \text{Monoid}$, $T = \text{ZFC}$, and $m = \text{FOLSem}$. Then the values of the coinductive type over T given by C and m are the models of C.

Theory Expressions Some module systems, e.g., CASL or Isabelle, provide complex theory expressions. For example, $S \cup T$ can denote the union of the theories S and T. Other examples are the translation of a theory along a morphism, the extension of a theory with some declarations, or the pushout of certain morphisms. Similarly, we can add further productions for morphism expression, e.g., for the mediating morphism out of a pushout.

The main difficulty here is that these complex theories and consequently their declarations do not have canonical identifiers. Indeed, most systems handle theory expressions by decomposing them internally and generating fresh internal names for the involved subexpressions. Similarly, all of these constructions can be expressed in MMT already by introducing auxiliary theories as
we showed in [CHK'11a]. But certain theory expressions – most importantly unions and pushouts along unnamed imports – can be added to MMT in a way that preserves canonical identifiers without using generated names.

Conservative Extensions A common practice is to give a theory \(S \) with undefined constants – the primitive concepts – and then another theory \(T \) that imports \(S \) and adds with defined constants – the derived concepts. This is particularly important when the declarations of \(S \) represent axioms and those of \(T \) theorems. In that case, it is desirable to make this kind of conservativity of \(T \) explicit in order to exploit it later. For example, if \(T \) is conservative over \(S \), then a theory importing \(S \) should implicitly also gain access to \(T \).

Hiding and Filtering In [KRC11], we showed how a slight extension of the semantics of filtering yields a substantial increase in expressivity. In particular, it becomes possible to safely relax the strictness of filtering. The key idea is that foundations do not only say “yes” when confirming a typing or equality relation but also return a list of dependencies, which MMT maintains and uses to propagate filtering. We use a syntactically similar but semantically different extension of MMT in [CHK'11a] to extend MMT with model theoretical hiding. We expect that further research will permit the unification of these two features.

Sorting The components of a constant declaration – type and definiens – correspond to the base judgments provided by the foundations – typing and equality. In particular, MMT uses the constant declarations to provide the axioms of the inference systems used in specific foundations. It is natural but not necessary to consider exactly typing and equality. For example, we can extend MMT with constant declarations \(c <: \tau \) that declare \(c \) as a sort refining \(\tau \). Examples are subtypes (refining types), type classes (refining the kind of types), and set theoretical classes (refining the universe of sets). This extension would go together with a subsorting judgment \(\gamma \vdash_T \omega <: \omega' \) in the foundation.

Logical Relations The notions of theory and theory morphisms between theories can be extended with logical relations between theory morphisms. MMT logical relations will be purely syntactical notions that correspond to the well-known semantic ones. A preliminary account was given in [Soj10]. They will permit natural representations of relations between realizations – such as model morphisms – as well as of extensional equality relations.

Computation MMT is currently restricted to declarative languages thus excluding the important role of computation, e.g., in computer algebra systems, decision procedures, and programs extracted from proofs. Generating code from appropriate MMT theories is relatively simple. But we also want to permit literal code snippets in the definiens of a constant. This will provide a formal interface between a formal semantics and scalable implementations.

Aliases MMT avoids the introduction of new names for symbols; instead, canonical qualified identifiers are formed. But this often leads to long unfriendly identifiers. Aliases for individual identifiers or identifier prefixes are
a simple syntactic device for providing human-friendly names, e.g., by declaring
the aliases + and ∗ for \texttt{add/mon/comp} and \texttt{mult/comp} in the theory \texttt{Ring}.
Moreover, such names can be used to make the modular structure of a theory
transparent. This is already part of our implementation.

Declaration Patterns and Functors A common feature of declarative lan-
guages is that the declarations in a theory \(T\) with meta-theory \(M\) must follow
one out of several patterns. For example, if \(M\) is first-order logic, then \(T\) should
contain only function symbol, predicate symbol, and axiom declarations. We
can capture this foundation-independently in \texttt{Mmt} by declaring such patterns
in \(M\) and then pattern-checking the declarations in \(T\) against them.

Patterns also permit adding a notion of functors to \texttt{Mmt} whose input is an
arbitrary well-patterned theory \(T\) with meta-theory \(M\). The output is a theory
defined by induction on the list of declarations in \(T\). This permits concise
representations of functors between categories of theories, e.g., the functor that
takes a sorted first-order theory and returns its translation to unsorted first-
order logic by relativization of quantifiers. This can be extended to functors
between categories of diagrams.

Minimal Foundations Not all language features can be defined foundation-
independently. Consider Mizar-style [TB85] implicit definitions of the form

\[
\text{func } c \text{ means } F(c); \text{ correctness } P;
\]

where \(P\) is a proof of \(\exists^!x. F(x)\) and \(c\) is defined as that unique value. Such a
definition is meaningful iff the foundational theory can express the quantifier
\(\exists^!\) of unique existence. Moreover, in that case it can be elaborated into the two
declarations \(c\) and \(c \text{ def } : F(c)\) (which is in fact what Mizar and most other
systems are doing).

In the spirit of little foundations, we will add such pragmatic language features
to \texttt{Mmt} together with the minimal foundations needed to define their semantics.
If an individual foundational theory \(M\) imports one of these distinguished
minimal foundations, the corresponding pragmatic feature becomes available
in theories with meta-theory \(M\).

Further pragmatic declarations include, for example, function declarations
(possible if \(M\) can express \(\lambda\)-abstraction) and constants with multiple types
(possible if \(M\) can express intersection types). The above-mentioned features
of sorting and (co-)inductive data types as well as the Curry-Howard representa-
tion of axioms, theorems, and proof rules can become special cases of
pragmatic features as well. We can even generalize the notion of foundations
and then recover the type and definiens of a constant as pragmatic features
that are possible if \(M\) can express typing and equality.

Narrative and Informal Representations One motivation of \texttt{Mmt} has been
to give a formal semantics to \texttt{OMDoc 1.2}, and the present work does this for
the \texttt{OMDoc} fragment concerned with formal theory development. It omits
narrative aspects (e.g., document structuring, notations, examples, citations) as well as informal and semi-formal representations. We will extend MMT towards all of OMDoc, and this effort will culminate in the OMDoc 2 language. As a first step, we have included sectioning and notations in the MMT API. Many other features of OMDoc 1.2 will be recovered as pragmatic features in the above sense.

11.3. Applying MMT

The development of MMT and its implementations has been driven by our ongoing and intended applications. Most importantly, we have evaluated MMT on the logic atlas built in the LATIN project as described in Sect. 9. Here, MMT is applied in two ways.

Firstly, MMT provides the ontology used to organize the highly interlinked theories in the logic graph. In particular, the MMT principles of meta-theories and foundation-independence provide a clean separation of concerns between the logical framework (LF in the case of LATIN), the logics, and the domain theories written in these logics.

Secondly, MMT serves as the scalable interface language between the various MMT-aware software systems used in LATIN. Twelf [PS99] is used to write logics, TNTBase [ZK09] for persistent storage, the MMT API for presentation and indexing, JOBAD [GLR09] for interactive browsing, and Hets [MML07] for institution-based cross-logic proof management, and we are currently adding sTeXIDE [JK10] for semantic authoring support. MMT is crucial to communicate the content and its semantics between both the heterogeneous platforms and the respective developers. In particular, the canonical MMT identifiers have proved pivotal for the integration of software systems.

Building on the LATIN atlas, we are creating an “Open Archive of FlexiForms” (OAFF). It will store flexiformal (i.e., represented at flexible degrees of formality) representations of mathematical knowledge and supply them with MMT-base knowledge management services. OAFF will contain the domain theories and libraries written in the logics that are part of the LATIN atlas. Using MMT, it becomes possible to represent libraries developed in different foundational systems in one uniform formalism. Since MMT can also represent relations between the underlying foundational system, this provides a base for practical reliable system integration. For example, we are currently importing the libraries of TPTP [SS98] and Mizar [TB85] into OAFF. Other systems like Coq [BC04], Isabelle [Pau94], or PVS [ORS92] already have XML or OMDoc 1.2 exports that can be updated to export MMT. Variables:

[ABC+10] R. Aushbrooks, S. Buswell, D. Carlisle, G. Chavchanidze, S. Dalmas, S. Devitt, A. Diaz, S. Dooley, R. Hunter, P. Ion, M. Kohlhase, A. Lazrek, P. Libbrecht, B. Miller, R. Miner, C. Rowley, M. Sargent, B. Smith, N. Soiffer, R. Sutor, and S. Watt. Mathematical Markup Language (MathML) Version 3.0. Technical report, World Wide Web Consortium, 2010. See http://www.w3.org/TR/MathML3.
[ACTZ06] A. Asperti, C. Sacerdoti Coen, E. Tassi, and S. Zacchioli. Crafting a Proof Assistant. In T. Altenkirch and C. McBride, editors, *TYPES*, pages 18–32. Springer, 2006.

[AHMS99] S. Autexier, D. Hutter, H. Mantel, and A. Schairer. Towards an Evolutionary Formal Software-Development Using CASL. In D. Bert, C. Choppy, and P. Mosses, editors, *WADT*, volume 1827 of *Lecture Notes in Computer Science*, pages 73–88. Springer, 1999.

[AHMS02] S. Autexier, D. Hutter, T. Mossakowski, and A. Schairer. The Development Graph Manager Maya (System Description). In H. Kirchner and C. Ringeissen, editors, *Algebraic Methods and Software Technology, 9th International Conference*. Springer, 2002.

[Apa00] Apache Software Foundation. Apache Subversion, 2000. see http://subversion.apache.org/.

[BC04] Y. Bertot and P. Castéran. *Coq’Art: The Calculus of Inductive Constructions*. Springer, 2004.

[BCC+04] S. Buswell, O. Caprotti, D. Carlisle, M. Dewar, M. Gaetano, and M. Kohlhase. The Open Math Standard, Version 2.0. Technical report, The Open Math Society, 2004. See http://www.openmath.org/standard/om20.

[Ber37] P. Bernays. A System of Axiomatic Set Theory – Part I. *Journal of Symbolic Logic*, 2(1):65–77, 1937.

[BLFM05] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifier (URI): Generic Syntax. RFC 3986, Internet Engineering Task Force, 2005.

[Bou68] N. Bourbaki. *Theory of Sets*. Elements of Mathematics. Springer, 1968.

[Bou74] N. Bourbaki. *Algebra I*. Elements of Mathematics. Springer, 1974.

[CAB+86] R. Constable, S. Allen, H. Bromley, W. Cleaveland, J. Cremer, R. Harper, D. Howe, T. Knoblock, N. Mendler, P. Panangaden, J. Sasaki, and S. Smith. *Implementing Mathematics with the Nuprl Development System*. Prentice-Hall, 1986.

[CELM96] M. Clavel, S. Eker, P. Lincoln, and J. Meseguer. Principles of Maude. In J. Meseguer, editor, *Proceedings of the First International Workshop on Rewriting Logic*, volume 4, pages 65–89, 1996.

[CH88] T. Coquand and G. Huet. The Calculus of Constructions. *Information and Computation*, 76(2/3):95–120, 1988.
[CH00] R. Constable and J. Hickey. Nuprl's Class Theory and Its Applications. In F. Bauer and R. Steinbruggen, editors, Foundations of Secure Computation, pages 91–115. IOS Press, 2000.

[CHK+11a] M. Codescu, F. Horozal, M. Kohlhase, T. Mossakowski, and F. Rabe. A Proof Theoretic Interpretation of Model Theoretic Hiding. In Workshop on Abstract Development Techniques, Lecture Notes in Computer Science. Springer, 2011. To appear.

[CHK+11b] M. Codescu, F. Horozal, M. Kohlhase, T. Mossakowski, and F. Rabe. Project Abstract: Logic Atlas and Integrator (LATIN). Submitted to CICM Systems & Projects, 2011.

[CHK+11c] M. Codescu, F. Horozal, M. Kohlhase, T. Mossakowski, F. Rabe, and K. Sojakova. Towards Logical Frameworks in the Heterogeneous Tool Set Hets. In Workshop on Abstract Development Techniques, Lecture Notes in Computer Science. Springer, 2011. To appear.

[Chu40] A. Church. A Formulation of the Simple Theory of Types. Journal of Symbolic Logic, 5(1):56–68, 1940.

[CO01] Olga Caprotti and Martijn Oostdijk. On communicating proofs in interactive mathematical documents. In Eugenio Roanes Lozano, editor, Proceedings of Artificial Intelligence and Symbolic Computation, AISC’2000, number 1930 in LNAI, pages 53–64. Springer Verlag, 2001.

[CoF04] CoFI (The Common Framework Initiative). CASL Reference Manual, volume 2960 of LNCS. Springer, 2004.

[dB70] N. de Bruijn. The Mathematical Language AUTOMATH. In M. Laudet, editor, Proceedings of the Symposium on Automated Demonstration, volume 25 of Lecture Notes in Mathematics, pages 29–61. Springer, 1970.

[DHS09] S. Dumbrava, F. Horozal, and K. Sojakova. A Case Study on Formalizing Algebra in a Module System. In F. Rabe and C. Schürmann, editors, Workshop on Modules and Libraries for Proof Assistants, volume 429 of ACM International Conference Proceeding Series, pages 11–18, 2009.

[Far00] W. Farmer. An Infrastructure for Intertheory Reasoning. In D. McAllester, editor, Conference on Automated Deduction, pages 115–131. Springer, 2000.

[FGT92] W. Farmer, J. Guttman, and F. Thayer. Little Theories. In D. Kapur, editor, Conference on Automated Deduction, pages 467–581, 1992.
[FGT93] W. Farmer, J. Guttman, and F. Thayer. IMPS: An Interactive Mathematical Proof System. *Journal of Automated Reasoning*, 11(2):213–248, 1993.

[Fra22] A. Fraenkel. Zu den Grundlagen der Cantor-Zermeloschen Mengenlehre. *Mathematische Annalen*, 86:230–237, 1922. English title: On the Foundation of Cantor-Zermelo Set Theory.

[GB92] J. Goguen and R. Burstall. Institutions: Abstract model theory for specification and programming. *Journal of the Association for Computing Machinery*, 39(1):95–146, 1992.

[GJJ96] J. Gosling, W. Joy, and G. Steele Jr. *The Java Language Specification*. Addison-Wesley, 1996.

[GLR09] J. Gičeva, C. Lange, and F. Rabe. Integrating Web Services into Active Mathematical Documents. In J. Carette and L. Dixon and C. Sacerdoti Coen and S. Watt, editor, *Intelligent Computer Mathematics*, volume 5625 of *Lecture Notes in Computer Science*, pages 279–293. Springer, 2009.

[GM08] G. Gonthier and A. Mahboubi. A Small Scale Reflection Extension for the Coq system. Technical Report RR-6455, INRIA, 2008.

[Göt40] K. Gödel. The Consistency of Continuum Hypothesis. *Annals of Mathematics Studies*, 3:33–101, 1940.

[GTW78] J. Goguen, J. Thatcher, and E. Wagner. An initial algebra approach to the specification, correctness and implementation of abstract data types. In R. Yeh, editor, *Current Trends in Programming Methodology*, volume 4, pages 80–149. Prentice Hall, 1978.

[GWM+93] J. Goguen, Timothy Winkler, J. Meseguer, K. Futatsugi, and J. Jouannaud. Introducing OBJ. In J. Goguen, D. Coleman, and R. Gallimore, editors, *Applications of Algebraic Specification using OBJ*. Cambridge, 1993.

[HHP93] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. *Journal of the Association for Computing Machinery*, 40(1):143–184, 1993.

[HR09] Peter Horn and Dan Roozemond. OpenMath in SCIEnce: SC-SCP and POPCORN. In Jacques Carette, Lucas Dixon, Claudio Sacerdoti Coen, and Stephen M. Watt, editors, *MKM/Calculemus Proceedings*, number 5625 in LNAI, pages 474–479. Springer Verlag, July 2009.

[HR11] F. Horozal and F. Rabe. Representing Model Theory in a Type-Theoretical Logical Framework. *Theoretical Computer Science*, 2011. To appear, see http://kwarc.info/frabe/Research/HR_folsound_10.pdf.
[HST94] R. Harper, D. Sannella, and A. Tarlecki. Structured presentations and logic representations. *Annals of Pure and Applied Logic*, 67:113–160, 1994.

[IR11] M. Iancu and F. Rabe. Formalizing Foundations of Mathematics. *Mathematical Structures in Computer Science*, 2011. To appear, see http://kwarc.info/frabe/Research/IR_foundations_10.pdf.

[JK10] C. Jucovschi and M. Kohlhase. sTeXIDE: An Integrated Development Environment for sTeX Collections. In S. Autexier, J. Calmet, D. Delahaye, P. Ion, L. Rideau, R. Rioboo, and A. Sexton, editors, *Intelligent Computer Mathematics*, number 6167 in Lecture Notes in Artificial Intelligence. Springer, 2010.

[KMR08] M. Kohlhase, C. Müller, and F. Rabe. Notations for Living Mathematical Documents. In S. Autexier and J. Campbell and J. Rubio and V. Sorge and M. Suzuki and F. Wiedijk, editor, *Mathematical Knowledge Management*, volume 5144 of *Lecture Notes in Computer Science*, pages 504–519, 2008.

[KMR09] M. Kohlhase, T. Mossakowski, and F. Rabe. The LATIN Project, 2009. See https://trac.OMDoc.org/LATIN/.

[Koh06] M. Kohlhase. *OMDoc: An Open Markup Format for Mathematical Documents (Version 1.2)*. Number 4180 in Lecture Notes in Artificial Intelligence. Springer, 2006.

[KRC11] M. Kohlhase, F. Rabe, and C. Sacerdoti Coen. A Foundation View on Integration Problems. Submitted to CICM, see http://kwarc.info/frabe/Research/KRS_integration_10.pdf, 2011.

[KRZ10] M. Kohlhase, F. Rabe, and V. Zholudev. Towards MKM in the Large: Modular Representation and Scalable Software Architecture. In S. Autexier, J. Calmet, D. Delahaye, P. Ion, L. Rideau, R. Rioboo, and A. Sexton, editors, *Intelligent Computer Mathematics*, volume 6167 of *Lecture Notes in Computer Science*, pages 370–384. Springer, 2010.

[KWP99] F. Kammüller, M. Wenzel, and L. Paulson. Locales – a Sectioning Concept for Isabelle. In Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and L. Thery, editors, *Theorem Proving in Higher Order Logics*, pages 149–166. Springer, 1999.

[Lan98] S. Mac Lane. *Categories for the working mathematician*. Springer, 1998.

[LCH07] D. Lee, K. Crary, and R. Harper. Towards a mechanized metatheory of Standard ML. In M. Hofmann and M. Felleisen, editors,
Symposium on Principles of Programming Languages, pages 173–184. ACM, 2007.

[MAH06] T. Mossakowski, S. Autexier, and D. Hutter. Development graphs - Proof management for structured specifications. *J. Log. Algebr. Program*, 67(1–2):114–145, 2006.

[ML74] P. Martin-Löf. An Intuitionistic Theory of Types: Predicative Part. In Proceedings of the ’73 Logic Colloquium, pages 73–118. North-Holland, 1974.

[MML07] T. Mossakowski, C. Maeder, and K. Lüttich. The Heterogeneous Tool Set. In O. Grumberg and M. Huth, editor, TACAS 2007, volume 4424 of Lecture Notes in Computer Science, pages 519–522, 2007.

[Mos05] T. Mossakowski. Heterogeneous Specification and the Heterogeneous Tool Set. 2005. Habilitation thesis, see http://www.informatik.uni-bremen.de/~till/.

[MTHM97] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard ML, Revised edition. MIT Press, 1997.

[Nor05] U. Norell. The Agda WiKi, 2005. http://wiki.portal.chalmers.se/agda.

[Odl95] A. Odlyzko. Tragic loss or good riddance? The impending demise of traditional scholarly journals. *International Journal of Human-Computer Studies*, 42:71–122, 1995.

[Ora10] Oracle. Oracle berkeley db xml, 2010. see http://www.oracle.com/us/products/database/berkeley-db/xml/index.html.

[ORS92] S. Owre, J. Rushby, and N. Shankar. PVS: A Prototype Verification System. In D. Kapur, editor, 11th International Conference on Automated Deduction (CADE), pages 748–752. Springer, 1992.

[OS97] S. Owre and N. Shankar. The formal semantics of PVS. Technical Report SRI-CSL-97-2, SRI International, 1997.

[OSV07] M. Odersky, L. Spoon, and B. Venners. *Programming in Scala*. artima, 2007.

[Pau94] L. Paulson. *Isabelle: A Generic Theorem Prover*, volume 828 of Lecture Notes in Computer Science. Springer, 1994.

[Pea07] D. Pollak and et. al. Lift web framework, 2007. http://liftweb.net.
[PS99] F. Pfenning and C. Schürmann. System description: Twelf - a meta-logical framework for deductive systems. Lecture Notes in Computer Science, 1632:202–206, 1999.

[Rab08a] F. Rabe. Representing Logics and Logic Translations. PhD thesis, Jacobs University Bremen, 2008. Available at http://kwarc.info/frabe/Research/phdthesis.pdf.

[Rab08b] F. Rabe. The MMT System, 2008. See https://trac.kwarc.info/MMT/.

[Rab10] F. Rabe. A Logical Framework Combining Model and Proof Theory. Submitted to Mathematical Structures in Computer Science, see http://kwarc.info/frabe/Research/rabe_combining_09.pdf, 2010.

[RS09] F. Rabe and C. Schürmann. A Practical Module System for LF. In J. Cheney and A. Felty, editors, Proceedings of the Workshop on Logical Frameworks: Meta-Theory and Practice (LFMTP), pages 40–48. ACM Press, 2009.

[SML97] Standard ml basis library, 1997. See http://www.standardml.org/Basis/.

[Soj10] K. Sojakova. Mechanically Verifying Logic Translations, 2010. Master’s thesis, Jacobs University Bremen.

[Sol95] R. Solomon. On Finite Simple Groups and Their Classification. Notices of the AMS, pages 231–239, 1995.

[SS98] G. Sutcliffe and C. Suttner. The TPTP Problem Library: CNF Release v1.2.1. Journal of Automated Reasoning, 21(2):177–203, 1998.

[ST88] D. Sannella and A. Tarlecki. Specifications in an arbitrary institution. Information and Control, 76:165–210, 1988.

[SW83] D. Sannella and M. Wirsing. A Kernel Language for Algebraic Specification and Implementation. In M. Karpinski, editor, Fundamentals of Computation Theory, pages 413–427. Springer, 1983.

[TB85] A. Trybulec and H. Blair. Computer Assisted Reasoning with MIZAR. In A. Joshi, editor, Proceedings of the 9th International Joint Conference on Artificial Intelligence, pages 26–28, 1985.

[W3C98] W3C. Extensible Markup Language (XML), 1998. http://www.w3.org/XML.

[W3C99] W3C. XML Path Language, 1999. http://www.w3.org/TR/xpath/.

91
[W3C07] W3C. XQuery 1.0: An XML Query Language, 2007. http://www.w3.org/TR/xquery/.

[Wir77] N. Wirth. Design and Implementation of Modula. Software-Practice and Experience, 7(1):67–84, 1977.

[ZBM31] Zentralblatt MATH, 1931. http://www.zentralblatt-math.org.

[Zer08] E. Zermelo. Untersuchungen ber die Grundlagen der Mengenlehre I. Mathematische Annalen, 65:261–281, 1908. English title: Investigations in the foundations of set theory I.

[ZK09] V. Zholudev and M. Kohlhase. TNTBase: a Versioned Storage for XML. In Proceedings of Balisage: The Markup Conference 2009, volume 3 of Balisage Series on Markup Technologies. Mulberry Technologies, Inc., 2009.

[ZK10] V. Zholudev and M. Kohlhase. Scripting Documents with XQuery: Virtual Documents in TNTBase. In Proceedings of Balisage: The Markup Conference, Balisage Series on Markup Technologies. Mulberry Technologies, Inc., 2010.

[ZKR10] V. Zholudev, M. Kohlhase, and F. Rabe. A [insert XML Format] Database for [insert cool application]. In Proceedings of XML-Prague. XMPPrague.cz, 2010.