Cognitive Function: Is There More to Anticoagulation in Atrial Fibrillation Than Stroke?

Lin Cao*; Sean D. Pokorney, MD, MBA*; Kathleen Hayden, PhD; Kathleen Welsh-Bohmer, PhD; L. Kristin Newby, MD, MHS

Atrial fibrillation (AF) is the most common cardiac arrhythmia, and those afflicted have reduced quality of life, functional status, and cardiac performance. Patients with AF have a higher risk of stroke, heart failure, and premature death relative to patients without AF. It is estimated that 2.5% of the population worldwide has AF, and the prevalence of AF increases substantially with age, especially after 50 years of age. AF is more common among white persons than black persons, and men are at 1.5 times greater risk for developing AF than women. In the United States, about 2.3 million people currently have AF, and the numbers are increasing rapidly. It is predicted that by 2050, 5.6 million people in the United States will have AF, with more than half of those patients aged >80 years. This represents a 2.5-fold increase over 50 years, reflecting both the growing proportion of elderly persons in the population and the increasing rates of comorbidities associated with AF, including coronary artery disease, hypertension, and congestive heart failure.

Although the prevalence of AF is increasing, cognitive disorders are also on the rise in tandem with the aging of the population. Patients with mild cognitive impairment have increased morbidity and lower quality of life relative to patients with normal cognitive function, and compared with those with normal cognition, patients with dementia have increased mortality. The diagnosis of mild cognitive impairment is made based on cognitive testing scores that are lower than expected for a patient’s age, typically due to memory, but these persons maintain independent functional status in terms of activities of daily living and instrumental activities of daily living. Patients are diagnosed with dementia when they have evidence of cognitive impairment on testing and this cognitive deficit affects their functional status.

More than 20% of people aged >70 years have mild cognitive impairment. There are ≈800,000 cases of mild cognitive impairment and ≈560,000 cases of dementia annually in the United States, and patients who have progressed from mild cognitive impairment to dementia account for 75% of patients with dementia. The prevalence of dementia increases with age from about 5% of patients in their 70s to nearly 40% of patients in their 90s. The aging population is predicted to result in an increase in the prevalence of dementia such that >80 million people worldwide are expected to have dementia by 2040. Historically, patients were classified as having Alzheimer’s disease if they had neurodegenerative disease and vascular dementia or if they had cerebral vascular lesions. This was an oversimplification because most patients have a combination of neurodegenerative and vascular lesions contributing to the clinical phenotype of dementia.

This review is intended to review the literature and present the current findings on the association between AF and cognitive decline. The focus is on whether evidence shows that AF is associated with cognitive impairment beyond the relationship with stroke.

Literature Search Methods

Series of PubMed literature searches were conducted. The searches were limited to articles written in English and were performed January 7, 2015. The search terms included atrial fibrillation and hypoperfusion, atrial fibrillation and cognitive function, atrial fibrillation and silent stroke, atrial fibrillation and covert stroke, atrial fibrillation and cognitive impairment, atrial fibrillation and dementia, cardiovascular and dementia, and cognitive decline. The search yielded 3279 unique articles, and the titles and abstracts were screened for relevance. The citations in all relevant articles were examined for additional
studies. The principal findings from the search follow, presented by topic.

Cardiovascular Disease and Cognitive Impairment

The link between cardiovascular diseases and cognitive impairment has been well established. Coronary artery disease was associated with cognitive decline in a 6-year longitudinal study, and elevated risk scores for coronary heart disease, such as the Framingham Risk Score, were associated with cognitive decline in adults aged >50 years in both primarily white and primarily Hispanic populations. Blood pressure has been associated with cognitive decline, and this relationship includes hypertension, large variations in systolic blood pressure, and hypotension due to low cardiac output. A meta-analysis of 2937 heart failure patients and 14,848 control patients found that heart failure was associated with cognitive impairment (hazard ratio [HR] 1.62, 95% CI 1.48 to 1.79).

Cognitive Decline and Stroke

Stroke is a major cause of cognitive impairment, and even mild to moderate strokes cause long-term decline in cognitive function. A study by Tatemichi et al was designed to determine the association between stroke and cognitive domains (memory, orientation, verbal skills, visuospatial ability, abstract reasoning, and attention to detail) affected by stroke. The study evaluated 227 patients 3 months after stroke and 240 control patients with no history of stroke. Impairment of memory, orientation, language, and attention were associated with stroke. Among a group of patients with cerebral small vessel disease, the number of lacunar infarcts at baseline was associated with cognitive impairment 3 to 5 years after presentation (HR 3.06, 95% CI 1.71 to 5.50).

White Matter Lesions and Silent or Covert Cerebral Infarcts

The mechanisms mediating cognitive disorder in cardiovascular diseases, including hypertension and atherosclerosis, are not entirely clear but appear to be related to central nervous system changes, including overt stroke events and covert cerebral infarcts. These covert cerebral infarcts are non-clinical events that are detected by magnetic resonance imaging of the brain, such as silent cerebral infarcts and white matter lesions. White matter lesions originate from demyelination, gliosis, cerebral infarct, and small vessel disease. White matter lesions on magnetic resonance imaging have been associated with cognitive decline, especially speed of cognitive processes. A meta-analysis showed that white matter lesions were associated with stroke (HR 3.3, 95% CI 2.6 to 4.4), dementia (HR 1.9, 95% CI 1.3 to 2.8), and death (HR 2.0, 95% CI 1.6 to 2.7). Furthermore, cardiovascular risk conditions of hypertension (odds ratio 1.73, 95% CI 1.23 to 2.42) and diabetes mellitus (odds ratio 3.68, 95% CI 1.89 to 7.19) have also been associated with covert or silent cerebral infarcts. Silent or covert cerebral infarcts appear meaningful, being associated with cognitive decline, increased risk of stroke, and dementia. The Rotterdam Scan Study of 1015 persons identified an HR of 2.26 (95% CI 1.09 to 4.70) for the association between silent cerebral infarcts and dementia. Similarly, data from the Atherosclerosis Risk in Communities study found that incident AF was associated with cognitive decline in patients with silent cerebral infarcts diagnosed by magnetic resonance imaging.

Atrial Fibrillation and Risk of Embolic Events

The extent to which AF is related to cognitive impairment is unclear. Although AF is associated with many cardiovascular conditions, it is also an established risk factor for ischemic stroke and systemic thromboembolism. AF is associated with an 3- to 5-fold increase in the risk of stroke. Stroke risk in AF patients increased with age, and up to 30% of strokes were in people aged >80 years. Among patients with coronary heart disease or heart failure, AF was associated with a 2-fold increase in stroke risk for men and a 3-fold increase for women. Strokes secondary to AF had worse prognoses than strokes in patients without AF.

Overview of Anticoagulation for Atrial Fibrillation

Risk stratification and stroke prevention are critical to the management of AF patients, and the current European and US guidelines for the management of AF are similar in their recommendations. Oral anticoagulation is important in patients at high risk for stroke because it decreases the stroke rate by nearly 80%, and patients at the highest risk for stroke derive the most benefit. One of the most commonly used anticoagulants is adjusted-dose warfarin, which reduces stroke risk by 64% relative to aspirin. Relative to aspirin, warfarin approximately doubles the risk of intracranial and major extracranial hemorrhage, but the absolute rate of intracranial hemorrhage with warfarin is low at 0.2% to 0.4% per year. A number of targeted non-vitamin K antagonist oral anticoagulants are now approved by the US Food and Drug Administration for stroke prevention in nonvalvular AF, including dabigatran (direct thrombin inhibitor), rivaroxaban (factor Xa inhibitor), apixaban (factor Xa inhibitor), and
edoxaban (factor Xa inhibitor) (Table 1).55–58 The most important benefits that these newer drugs offer over warfarin are a >50% reduction in intracranial bleeding and a 10% reduction in all-cause mortality.54 In fact, the novel oral anticoagulants appear to have similar risk profiles to low-dose aspirin in terms of major bleeding and intracranial hemorrhage.59

Beyond Stroke: Atrial Fibrillation and Cognitive Decline

The role of AF in cognitive decline, independent of stroke, is uncertain. Many studies have found that AF is associated with cognitive decline,40,44,60,61 but it is less clear whether this association is directly related to AF itself or is a function of the population in which AF occurs, that is, an aging cohort with multiple comorbidities (Table 2).22,41,43,44,60–83 Cognitive impairment has been identified in as many as 69% of AF patients.84 In 1 study, AF was associated with increased risk of cognitive decline, new dementia, loss of independence in everyday life, and admission to long-term care facilities.22 Conversely, others have found no differences in cognitive decline between AF and non-AF patients.44

Multiple potential mechanisms explain the association between AF and cognitive decline. Cerebral microbleeds increase with age and anticoagulation,85 and microbleeds are associated with cognitive decline.86 Cerebral hypoperfusion during AF may contribute to cognitive impairment. Decreased diastolic cerebral perfusion has also been associated with AF,87 and irregularity of ventricular contraction during AF affects preload and cardiac output, which may result in a decreased mean cerebral flow.88 Inflammatory markers, including C-reactive protein, TNF-α, and IL-6, are associated with AF.89–91 Inflammatory markers such as C-reactive protein and IL-6 have been associated with cognitive decline and Alzheimer’s disease.92,93

Given the propensity to form thrombus (micro- and macrothrombi) in the left atrium and atrial appendage in the setting of AF, it is biologically plausible that AF could contribute to cognitive impairment through chronic ischemic–embolic insults, even without overt evidence of clinical stroke. Cognitive dysfunction in AF patients has been correlated with less effective anticoagulation, more vascular events, and more bleeding, likely related to decreased adherence to prescribed oral anticoagulation.48 In support of the hypothesis of chronic subclinical embolic contribution to cognitive decline in AF, silent infarcts are significantly more frequent among patients with AF than in those without AF (Table 3).39,41,43,73,94–97 The prevalence of silent cerebral infarcts among patients with AF varies widely in the literature but has been reported to be as high as 92%, which is twice the prevalence of silent cerebral infarcts among patients with normal sinus rhythm.39,73 Of the 92% of patients with silent cerebral infarcts, 61% had CHA2DS2-VASc scores ≤1, meaning they were not currently recommended to be treated with oral anticoagulation based on the AF guidelines in the United States.73 Furthermore, cognitive impairment rates are higher among AF patients than non-AF patients, even after excluding all patients with abnormalities on magnetic resonance imaging of the brain.50

Among AF patients with neurological imaging, the number of abnormal brain areas with tissue loss was significantly

Table 1. Comparative Effectiveness Trials of Non–Vitamin K Oral Anticoagulants Versus Warfarin

Medication dose	Apixaban (ARISTOTLE)	Dabigatran Low-Dose (RE-LY)	Dabigatran High-Dose (RE-LY)	Rivaroxaban (ROCKET)	Edoxaban Low-Dose (ENGAGE)	Edoxaban High-Dose (ENGAGE)
Stroke or systemic embolism, HR (95% CI)	0.79 (0.66 to 0.95)	0.91 (0.74 to 1.11)	0.66 (0.53 to 0.82)	0.79 (0.66 to 0.96)	1.07 (0.87 to 1.31)	0.79 (0.63 to 0.99)
Ischemic stroke, HR (95% CI)	0.92 (0.74 to 1.13)	1.11 (0.89 to 1.40)	0.76 (0.60 to 0.98)	0.91 (0.73 to 1.13)	1.41 (1.19 to 1.67)	1.00 (0.83 to 1.19)
Total mortality, HR (95% CI)	0.89 (0.80 to 0.998)	0.91 (0.80 to 1.03)	0.88 (0.77 to 1.00)	0.85 (0.70 to 1.02)	0.87 (0.79 to 0.96)	0.92 (0.83 to 1.01)
Intracranial hemorrhage, HR (95% CI)	0.42 (0.30 to 0.58)	0.31 (0.20 to 0.47)	0.40 (0.27 to 0.60)	0.67 (0.47 to 0.93)	0.30 (0.21 to 0.43)	0.47 (0.34 to 0.63)
Major bleeding, HR (95% CI)	0.69 (0.60 to 0.80)	0.80 (0.69 to 0.93)	0.93 (0.81 to 1.07)	1.04 (0.95 to 1.13)	0.47 (0.41 to 0.55)	0.80 (0.71 to 0.91)

HR indicates hazard ratio.
Table 2. Data on Cognitive Decline in Atrial Fibrillation

Author	Year	Patients	AF Patients	Population	Follow-up	Cognitive Function Assessment	AF Association Cognitive Decline
Farina	1997	74	37	21 PAF, 16 persistent AF	Cross-section	MMSE*	Statistically significant for persistent, not significant for paroxysmal
Ott	1997	6584	195	Mean age 69±9 years	Cross-section	MMSE and Geriatric Mental State Schedule	Adjusted OR 1.7 (1.2 to 2.5)
Kilander	1998	952	44	Mean age 72±1 years	Cross-section	Trail Making Tests A and B, MMSE	Unadjusted, statistically significant
O’Connell	1998	81	27	Mean age 72±1 years	Cross-section	Mini-Mental Status†	MMSE not statistically significant
Rozzini	1999	269	55	13 PAF, 42 persistent AF	Cross-section	MMSE	Adjusted OR for paroxysmal AF 1.2 (0.3 to 4.8), OR for persistent AF 3.2 (1.5 to 6.6)
Elias	2006	1011	59	Men, mean age 61 years	Cross-section	Wechsler Adult Intelligence Scale†	Adjusted, statistically significant
Jozwiak	2006	2314	547	Median age 80 years (75 to 86)	Cross-section	MMSE	OR 1.56 (1.27 to 1.92, P=0.0001)
Debette	2007	83	32	Mean age 62 years	Cross-section	MMSE	Adjusted OR 8.1 (1.9 to 34.6, P=0.008)
Rastas	2007	553	122	85 years and older	Cross-section	MMSE§	Unadjusted, not statistically significant
Knecht	2008	533	87	Mean age 63±8 years	Cross-section	Composite§	Adjusted, statistically significant
Bilato	2009	1576	135	Mean age 74 years	Cross-section	MMSE	Adjusted OR 1.14 (0.73 to 1.80)
Bellomo	2012	57	26	Mean age 72±8 years	Cross-section	MMSE	Adjusted, statistically significant
Gaita	2013	270	180	Mean age 76±5 years	Cross-section	Repeatable Battery for the Assessment of Neuropsychological Status	Unadjusted, statistically significant
Stefansdottir	2013	4251	330	Mean age 76±5 years	Cross-section	Modified California Verbal Learning Test	Adjusted, statistically significant
Horstmann	2014	788	165	Mean age 67±14 years	Cross-section	Informant questionnaire on cognitive decline in the elderly	OR of 2.97 (1.0 to 8.8, P=0.05)
Tilvis	2004	650		Mean 5 years	MMSE and Clinical Dementia Rating	RR 2.8	
Forti	2006	431	13	Mean age 75±5 years	Mean of 4 years	MMSE	Adjusted HR 1.10 (0.40 to 3.03)
Park	2007	362	174	Mean age 76 years	Mean 3 years	MMSE	No significant association
Peters	2009	3336	190	Mean age 53±6 years	Mean of 2 years	MMSE	HR 1.031 (0.619 to 1.718)
Bunch	2010	37 025	10 161	Mean age 61±18 years	Mean of 5 years	ICD-9 code for dementia	Adjusted OR 1.73 (P=0.001)
Dublin	2011	3045	402	Median age 74 years	Mean of 7 years	Cognitive Abilities Screening Instrument	Adjusted HR 1.50 (1.16 to 1.94)
greater compared with non-AF patients. The areas with tissue loss were usually located in the cortex, but there was no difference in the size of the lesions between control and AF patients. Silent cerebral infarction was not a predictor of stroke in AF patients. AF has also been associated with smaller brain volumes than in patients without AF, and AF has been associated with lower total brain mass, gray matter, and white matter. The longer AF was present, the more brain volume decreased, and this was noted even without overt cerebral infarction. The memory domain appeared dispropor-

Table 2. Continued

Author	Year	Patients	AF Patients	Population	Follow-up	Cognitive Function Assessment	AF Association Cognitive Decline
Li80	2011	650	30	Mean age 67 years	Mean of 5 years	MMSE	Adjusted OR 1.09 (0.54 to 2.20, P=0.82)
Marengoni81	2011	785	68	Mean age 78 years	Mean of 4 years	MMSE	Adjusted HR 0.8 (0.4 to 1.5)
Marzona22	2012	31 546	3068	Mean age 67±7 years	Median 56 months	MMSE	HR 1.30 (1.14 to 1.49)
Haring82	2013	6455	255	Women age 60 to 84 years	Mean of 8 years	Annual modified MMSE	HR 1.25 (0.78 to 2.0)
Thacker83	2013	5150	552	Mean age 73±5 years	Mean of 7 years	Annual modified MMSE	Adjusted, statistically significant
Chen43	2014	935	48	Mean age 62±4 years	Median 10.6 years	Delayed word recall, digit symbol substitution, first-letter word fluency	Statistically significant

AF indicates atrial fibrillation; HR, hazard ratio; ICD-9, International Classification of Diseases, 9th Revision; MMSE, Mini Mental Status Exam; OR, odds ratio; PAF, paroxysmal atrial fibrillation; RR, relative risk. Data are displayed as median (interquartile range), mean +/- standard deviation, OR (95% confidence interval), and HR (95% confidence interval).

*Also includes Weschler Adult Intelligence, Logical Memory Test, Paired Associated Learning Test, Corsi’s Block Tapping Test, Attentional Matrices, Raven Progressive Matrices, Judgment of Line Orientation, Rey-Osterrieth Complex, Verbal Fluency for Letters, Wisconsin Sorting Card Test.
†Also includes National Adult Reading Test, Wechsler Logical Memory Test, Rey Complex Figure Test, Digit Span, Paced Auditory Serial Addition Test.
‡Also includes Wechsler Memory Scale, Hooper Visual Organization Test, Halstead-Reitan Battery.
§Also includes Short Portable Mental Status Questionnaire, Clinical Dementia Rating.
Auditory verbal learning test, Stroop test, Trail-making test, Wechsler Memory Scale, category and letter fluency, Rey-Osterrieth complex figure test, digit symbol substitution test.

Table 3. Data on Silent Cerebral Infarct in Atrial Fibrillation

Author	Year	Patients	Population	Design	Silent Cerebral Infarcts
Petersen96	1987	58	29 (50%) with AF	AF patients matched to non-AF patients, single CT head	48% of AF patients and 28% of non-AF patients (P=0.10)
Kempster97	1988	222	54 (24%) with AF	Retrospective analysis of patients with CT head	13% of AF patients and 4% of non-AF patients (P=0.05)
Raiha95	1993	204	30 (15%) with AF	CT head scans from a geriatrics clinic	73% of AF patients and 48% of non-AF patients (P=0.0095)
Ezekowitz19	1995	516	516 (100%) with AF	Noncontrast CT head done at beginning and end of study	15% of AF patients
de Leeuw94	2000	1077	28 (3%) with AF	RR of white matter lesions 2.2 (95% CI 1.0, 5.2)	
Gaita73	2013	270	180 (67%) with AF	90 sinus rhythm, 90 paroxysmal AF, and 90 persistent AF	89% of paroxysmal AF, 92% of persistent AF, and 46% sinus rhythm
Stefansdottir41	2013	4251	330 (8%) with AF	Single MRI brain	49% of AF patients and 29% of non-AF patients (P=0.001)
Chen43	2014	935	48 (5%) with AF	Serial MRI scan at baseline and 9 to 13 years later	33% of AF patients and 17% of non-AF patients

AF indicates atrial fibrillation; CT, computed tomography; MRI, magnetic resonance imaging; RR, relative risk.
Cognitive Function in Atrial Fibrillation

Cao et al

DOI: 10.1161/JAHA.114.001573

Journal of the American Heart Association

Poor performance on the MMSE in the cognitive function. The Alzheimer disease due to TIA or stroke.108 Additional prospective work is needed to quantify cognitive function and rates of cognitive decline among AF patients.

Antithrombotics and Cognitive Decline in Atrial Fibrillation

There is variation across the available data regarding the effects of antithrombotic therapy on cognitive function among patients with AF. In a nonrandomized study, warfarin therapy did not affect the association between brain volume loss and AF.41 In another study, the use of antithrombotic agents did not affect cognitive decline among AF patients.22 Similarly, Park and colleagues found no differences in cognitive decline among AF patients on aspirin, warfarin, or neither.44 An observational study, however, found a trend toward an association between warfarin use and lower rates of cognitive decline among patients with AF.109 The Birmingham Atrial Fibrillation Treatment of the Aged Study randomized 973 patients with CHA2DS2-VASc of at least 2 to warfarin versus aspirin and found a non-statistically significant trend toward decreased cognitive decline at 33 months within the warfarin group.110 The clinical benefit of warfarin was seen only when a high frequency of time is in the therapeutic range.111 Data from the Atrial Fibrillation Clopidogrel Trial with Irbesartan for Prevention of Vascular Events (ACTIVE-W) found that among patients who had AF, who had a mean CHADS2 score of 2, and who were on warfarin, cognitive dysfunction was associated with lower time in the therapeutic range of anticoagulation, suggesting that maintaining therapeutic anticoagulation may decrease cognitive decline.45 Because non–vitamin K oral anticoagulants mitigate the challenges of time in the therapeutic range, there has been speculation that they may be able to slow or reverse cognitive decline among AF patients.

Evaluating Cognitive Decline in Atrial Fibrillation

There is no single, universally accepted test to assess cognitive function. The Alzheimer’s Association provided 16 cognitive function tools that were evaluated in several review articles and that could be used by primary care providers to assess cognitive impairment (Table 4).99 One of the most commonly reported cognitive function tests in the research literature is the Mini Mental Status Examination (MMSE), which has been in use since 1975 to detect memory loss and to assess cognitive function. Typically, scores <24 are suggestive of dementia, and scores of 24 or 25 are associated with increased risk for developing dementia within 3 years.24 Poor performance on the MMSE in the first week after acute ischemic stroke is one of the important predictors of cognitive decline over the ensuing 3 months.24 Many of the existing studies evaluating cognitive impairment in AF have used the MMSE to evaluate cognitive decline.44,100,101 Among AF patients, low scores on the MMSE have been associated with out-of-range International Normalized Ratios and an increased risk of vascular events and bleeding in AF patients.24 There were concerns that the MMSE was less sensitive with mild cognitive impairment.102,103 The Montreal Cognitive Assessment (MoCA) was developed as a screening tool for early cognitive decline, and the MoCA was found to have a sensitivity of 90% in identifying mild cognitive impairment compared with a sensitivity of only 18% with the MMSE.104 The MoCA was also more sensitive in detecting mild cognitive impairment than the Cognitive Capacity Screening Examination (sensitivity 74%) and the DemTect (sensitivity 80%), which were 2 other cognitive function screening tests.

Vascular cognitive impairment, as seen in AF patients with stroke and transient ischemic attack, was associated with deficits in executive function, attention, and speed of information processing more than other domains.107 The MMSE places more emphasis on language and memory than on other cognitive domains. The MoCA weighs executive function and attention more heavily than the MMSE, and the MoCA has been shown to be superior to the MMSE in identifying cognitive impairment in patients with vascular disease due to TIA or stroke.108

Table 4. Cognitive Function Tests That Could be Used to Screen for Cognitive Impairment

Test
7-Minute Screener
Abbreviated Mental Test
Cambridge Cognitive Examination
Clock Drawing Test
General Practitioner Assessment of Cognition
Mini-Cog
Memory Impairment Screen
Mini Mental State Examination
Montreal Cognitive Assessment
Rowland University Dementia Assessment
Short and Sweet Screening Instrument
Short Blessed Test
St. Louis University Mental Status
Short Portable Mental Status Questionnaire
Short Test of Mental Status
Time and Change Test

Atrial Fibrillation
Antithrombotics and Cognitive Decline in Atrial Fibrillation

There is variation across the available data regarding the effects of antithrombotic therapy on cognitive function among patients with AF. In a nonrandomized study, warfarin therapy did not affect the association between brain volume loss and AF.41 In another study, the use of antithrombotic agents did not affect cognitive decline among AF patients.22 Similarly, Park and colleagues found no differences in cognitive decline among AF patients on aspirin, warfarin, or neither.44 An observational study, however, found a trend toward an association between warfarin use and lower rates of cognitive decline among patients with AF.109 The Birmingham Atrial Fibrillation Treatment of the Aged Study randomized 973 patients with CHA2DS2-VASc of at least 2 to warfarin versus aspirin and found a non–statistically significant trend toward decreased cognitive decline at 33 months within the warfarin group.110 The clinical benefit of warfarin was seen only when a high frequency of time is in the therapeutic range.111 Data from the Atrial Fibrillation Clopidogrel Trial with Irbesartan for Prevention of Vascular Events (ACTIVE-W) found that among patients who had AF, who had a mean CHADS2 score of 2, and who were on warfarin, cognitive dysfunction was associated with lower time in the therapeutic range of anticoagulation, suggesting that maintaining therapeutic anticoagulation may decrease cognitive decline.45 Because non–vitamin K oral anticoagulants mitigate the challenges of time in the therapeutic range, there has been speculation that they may be able to slow or reverse cognitive decline among AF patients.

Additional prospective work is needed to quantify cognitive function and rates of cognitive decline among AF patients.
Cognitive Function in Atrial Fibrillation

Cao et al

compared with non-AF patients, especially by using more sensitive tools such as the MoCA. An ongoing clinical trial is the Aspirin in Reducing Events in the Elderly (ASPREE) study (ClinicalTrials.gov identifier NCT01038583), which is comparing aspirin and placebo for prevention of death, dementia, or disability in 19,000 patients. A neuroimaging substudy (ENVIS-ion) will evaluate the effect of aspirin on the development of white matter hyperintense lesions, and results are expected in 2018. More data are also needed on the relationship between cognitive decline with AF and estimated vascular embolic risk, as well as how this may be affected by anticoagulation. These findings may be particularly important among subpopulations of AF patients for whom the US guidelines do not currently recommended anticoagulation therapy over aspirin or no antithrombotic therapy (CHA$_2$DS$_2$-VASc score of 0 or 1).

Conclusions

Most studies suggest that AF is independently associated with cognitive decline, even among patients with no clinical history of stroke. Cognitive decline is associated with stroke and silent cerebral infarcts, and patients with AF have higher rates of silent cerebral infarcts than patients without AF. The impact of anticoagulation on silent cerebral infarcts remains unknown. Cognitive decline is an important public health concern, and clinical trials are needed to evaluate the effect of oral anticoagulation on cognitive decline in patients with AF.

Disclosures

Ms Cao has no disclosures to report. Dr Pokorney reports modest research grant support from AstraZeneca, Gilead, and Boston Scientific; modest Advisory Board from Janssen Pharmaceuticals. Drs Welsh-Bohmer and Hayden have received research support from Takeda and Zinfandel Pharmaceutical Companies. Dr Newby has received research grant funding for EARLY ACS through Duke/Duke Clinical Research Institute from Merck-Schering Plough, Amgen, Inc, Amylin, AstraZeneca, Eli Lilly, Daichi-Sankyo, dia Dexus, Bristol Myers Squibb, Genentech, GlaxoSmithKline, Johnson & Johnson, Merck, Murdock Study, Regado Biosciences, NHLBI, Novartis, and Roche.

References

1. January CT, Wann LS, Alpert JS, Calkins H, Cigarroa JE, Cleveland JC Jr, Conti JB, Ellison PT, Ezekowitz MD, Field ME, Murray KT, Sacco RL, Stevenson WG, Tchou PJ, Tracy CM, Yancy CW; Members AATF. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines and the Heart Rhythm Society. Circulation. 2014;130:2071–2104.

2. Miyasaka Y, Barnes ME, Gersh BJ, Cha SS, Bailey KR, Abhayaratna WP, Seward JB, Tsang TS. Secular trends in incidence of atrial fibrillation in Olmsted County, Minnesota, 1980 to 2000, and implications on the projections for future prevalence. Circulation. 2006;114:119–125.

3. Go AS, Hylek EM, Phillips KA, Chang Y, Henaault LE, Selby JV, Singer DE. Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the Anticoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study. JAMA. 2001;285:2370–2375.

4. Benjamin EJ, Levy D, Vaziri SM, D’Agostino RB, Belanger AJ, Wolf PA. Independent risk factors for atrial fibrillation in a population-based cohort. The Framingham Heart Study. JAMA. 1994;271:840–844.

5. Lyketsos CG, Lopez O, Jones B, Fitzpatrick AL, Breitner J, DeKosky S. Prevalence of neuropsychiatric symptoms in dementia and mild cognitive impairment: results from the Cardiovascular Health Study. JAMA. 2002;288:1475–1483.

6. Tabert MH, Albert SM, Borukhova-Milov L, Camacho Y, Pelton G, Liu X, Stern Y, Devanand DP. Functional deficits in patients with mild cognitive impairment: prediction of AD. Neurology. 2002;58:758–764.

7. Jagger C, Andersen K, Breteler MM, Copeland JR, Heimer C, Baldreschi M, Fratiglioni L, Lobo A, Soininen H, Hofman A, Launer LJ. Prognosis with dementia in Europe: a collaborative study of population-based cohorts. Neurologic Diseases in the Elderly Research Group. Neurology. 2000;54: S16–S20.

8. Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, Gamst A, Holtzman DM, Jagust WJ, Petersen RC, Snyder PJ, Carrillo MC, Thies B, Phelps CH. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:270–279.

9. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, Kplat WE, Koroshetz WJ, Manly JJ, Mayeux R, Mohs RC, Morris JC, Rossor MN, Scheltens P, Carrillo MC, Thies B, Weintraub S, Phelps CH. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:263–269.

10. Plassman BL, Langa KM, Fisher GG, Heeringa SG, Weir DR, Ofstedal MB, Burke JR, Hurd MD, Potter GG, Rodgers WL, Steffens DC, Mc Ardle JJ, Willis RJ, Wallace RB. Prevalence of cognitive impairment without dementia in the United States. Ann Intern Med. 2008;148:427–434.

11. Plassman BL, Langa KM, McCammon RJ, Fisher GG, Potter GG, Burke JR, Steffens DC, Foster NL, Giordani B, Unverzagt FW, Welsh-Bohmer KA, Heeringa SG, Weir DR, Wallace RB. Incidence of dementia and cognitive impairment, not dementia in the United States. Ann Neurol. 2011;70:418–426.

12. Plassman BL, Langa KM, Fisher GG, Heeringa SG, Weir DR, Ofstedal MB, Burke JR, Hurd MD, Potter GG, Rodgers WL, Steffens DC, Willis RJ, Wallace RB. Prevalence of dementia in the United States: the aging, demographics, and memory study. Neuroepidemiology. 2007;29:125–132.

13. Ferri CP, Prince M, Brayne C, Brodaty H, Fratiglioni L, Ganguli M, Hall K, Hasegawa K, Hendrie H, Huang Y, Jorm A, Mathers C, Menezes PR, Rimmer E, Scacuzza M, Alzheimer’s Disease I. Global prevalence of dementia: a Delphi consensus study. Lancet. 2005;366:2112–2117.

14. Brookmeyer R, Johnson E, Stolp P, Giordani B, Unverzagt FW, Welsh-Bohmer KA, Heeringa SG, Weir DR, Wallace RB. Incidence of dementia and cognitive impairment, not dementia in the United States. Ann Neurol. 2007;3:186–191.

15. Viswanathan A, Rocca WA, Tounio C. Vascular risk factors and dementia: how to move forward? Neurology. 2009;72:368–374.

16. Singh-Manoux A, Sabia S, Lajcak M, Ferrie JE, Jorm A, Mathers C, Menezes PR, Rimmer E, Scacuzza M. Cardiovascular risk factors and cognitive decline in adults aged 50 and over: a population-based cohort study. Age Ageing. 2013;42:338–345.

17. Zeki Al Hazzouri A, Haan MN, Neuhaus JM, Pletcher M, Peralta CA, Lopez L, Perez Stable EJ. Cardiovascular risk score, cognitive decline, and dementia in older Mexican Americans: the role of sex and education. J Am Heart Assoc. 2013;2:e004978 doi: 10.1161/JAHA.113.004978.

18. Okonkwo OC, Cohen RA, Gunstad J, Poppas A. Cardiac output, blood pressure variability, and cognitive decline in geriatric cardiac patients. J Cardiopulm Rehabil Prev. 2011;3:290–297.

19. Vogels RL, Scheltens P, Schroder-Tank M, Weinstein HC. Cognitive impairment in heart failure: a systematic review of the literature. Eur J Heart Fail. 2007;9:440–449.

20. Inizantti D, Di Carlo A, Pracucci G, Lamassa M, Vanni P, Romaneli M, Spolveri S, Adriani P, Meucci I, Landini G, Ghteti A. Incidence and determinants of

DOI: 10.1161/JAHA.114.001573

Journal of the American Heart Association
Cognitive Function in Atrial Fibrillation

24. Tatemichi TK, Desmond DW, Stern Y, Paik M, Sano M, Bagiella E. Increased risk of cognitive and functional decline in patients with atrial fibrillation: results of the ONTARGET and TRANSCEND studies. CMAJ. 2012;184:E329–E336.

23. Srikanth VK, Thrift AG, Saling MM, Anderson JF, Dewey HM, Macdonell RA, Srole L, Granger CB, Anand IS, Connolly SJ. Cognitive function and anticoagulation control in patients with atrial fibrillation. Circ Cardiovasc Qual Outcomes. 2010;3:277–283.

27. Liao D, Cooper L, Cai J, Toole JF, Bryan NR, Hutchinson RA. Presence and severity of cerebrovascular disease hypertension, its treatment, and its control. The ARIC Study. Atherosclerosis Risk in Communities Study. JAMA. 1996;272:2262–2270.

30. Longstreth WT Jr. Brain vascular disease overt and covert. JAMA. 2005;396:2062–2063.

31. van Swieten JC, van den Hout JH, van Ketel BA, Hijdra A, Wokke JH, van Gijn J. Periventricular lesions in the white matter on magnetic resonance imaging and cognitive function in the Cardiovascular Health Study. Neurology. 1998;52:2839–2846.

32. de Leeuw FE, de Groot JC, Oudkerk M, Witteman JC, Hofman A, van Gijn J, Breitner MM. Aortic atherosclerosis at middle age predicts cerebral white matter lesions in the elderly. Stroke. 2000;31:425–429.

33. Kuller LH, Shemanski L, Manolio T, Haan M, Fried LS, Bryan N, Burke GL, Roccella EJ, Brandslager G, Shikany JM, Borch-Jensen L, Chen Y, Cook NR, Goetz FC, Haan MN, Hsia J, O’Leary DH, Wilson PW, Cupples LA. Cognitive function in the Cardiovascular Health Study. Neurology. 1998;52:2839–2846.

34. Connolly SJ, Ezekowitz MD, Yusuf S, Eikelboom J, Oldgren J, Parekh A, Pogue J, Ruff CT, Giugliano RP, Braunwald E, Hoffman EB, Deenadayalu N, Ezekowitz MD, Camm AJ, Joyner CD, Wallentin L. Dabigatran versus warfarin in patients with atrial fibrillation: a major contributor to warfarin in patients with atrial fibrillation. N Engl J Med. 2013;369:1139–1151.

35. Patel MR, Mahaffey KW, Garg J, Pan G, Singer DE, Hacke W, Breithardt G, Halperin JL, Hankey GJ, Piccini JP, Becker RC, Nessel CC, Paolino IF, Berkowitz SD, Fox KA, Califf RM. Rivaroxaban versus warfarin in patients with atrial fibrillation: a meta-analysis of randomised trials. Lancet. 2014;383:955–962.

36. Connolly SJ, Ezekowitz MD, Yusuf S, Ezekowitz MD, Camm AJ, Joyner CD, Wallentin L. Dabigatran versus warfarin in patients with atrial fibrillation: a major contributor to warfarin in patients with atrial fibrillation. N Engl J Med. 2013;369:1139–1151.
Cognitive Function in Atrial Fibrillation

Cha MJ, Park HE, Lee MH, Cho Y, Choi EK, Oh S. Prevalence of and risk factors for silent ischemic stroke in patients with atrial fibrillation as determined by brain magnetic resonance imaging. *Am J Cardiol*. 2014;113:655–661.

Horstmann S, Rizos T, Rauch G, Fuchs M, Arden C, Veltkamp R. Atrial fibrillation is an independent determinant of low cognitive function: a cross-sectional study in elderly men. *Stroke*. 1998;29:1816–1820.

Connell JE, Gray CS, French JM, Robertson IH. Atrial fibrillation and cognitive function: case-control study. *J Neurol Neurosurg Psychiatry*. 1998;60:386–389.

Rozzini R, Sabatini T, Trabucchi M. Chronic atrial fibrillation and low cognitive function. *Stroke*. 1999;30:190–191.

Diabetes LF, Sullivan LM, Elias PS, Vasan RS, *et al.* Atrial fibrillation is associated with lower cognitive performance in the Framingham offspring men. *J Stroke Cerebrovasc Dis*. 2006;15:214–222.

Joziwcik A, Guzik P, Mathew A, Wykretowicz A, Wysocki H. Association of atrial fibrillation and focal neurologic deficits with impaired cognitive function in hospitalized patients >or=65 years of age. *Am J Cardiol*. 2006;98:1238–1241.

Debette S, Bauters C, Leys D, Lamblin N, Pasquier F, *et al.* Prevalence and determinants of cognitive impairment in chronic heart failure patients. *Congest Heart Fail*. 2007;13:205–208.

Rastas S, Verkkoniemi A, Polvikoski T, Juva K, Niinisto L, *et al.* Prevalence, functional impact, and mortality of atrial fibrillation and dementia in a population-based study. *The Rotterdam Stroke Study*. 1997;28:316–321.

Kilander L, Andren B, Nyman H, Lind L, Boberg M, Leth LM. Atrial fibrillation is an independent determinant of low cognitive function: a cross-sectional study in elderly women. *Stroke*. 2008;39:2905–2910.

O'Connell JE, Gray CS, French JM, Robertson IH. Atrial fibrillation and cognitive function: case-control study. *J Neurol Neurosurg Psychiatry*. 1998;60:386–389.

Rozzini R, Sabatini T, Trabucchi M. Chronic atrial fibrillation and low cognitive function. *Stroke*. 1999;30:190–191.

Elias MF, Sullivan LM, Elias PS, Vasan RS, *et al.* Atrial fibrillation is associated with lower cognitive performance in the Framingham offspring men. *J Stroke Cerebrovasc Dis*. 2006;15:214–222.

Bellomo A, De Benedetto G, Fossati C, D'ottavo E, Formosa V, Gianturco V, Iori A, Marangili B, Lo Iacono C, Troisi G, Marangili V. Atrial fibrillation (AF) and cognitive impairment in the elderly: a case-control study. *Arch Gerontol Geriatr*. 2012;55:247–250.

Gaeta F, Corsinovi L, Anselmino M, Raimondo C, Pianelli M, Toso E, Bergamasco L, Boffano C, Consuelo Valenti M, Cesarani F, Scaglione M. Prevalence of silent cerebral ischemia in paroxysmal and persistent atrial fibrillation and correlation with cognitive function. *J Am Coll Cardiol*. 2013;61:362–369.

Horstmann S, Rizos T, Rauch G, Fuchs M, Arden C, Veltkamp R. Atrial fibrillation and prestroke cognitive impairment in stroke. *J Neurol*. 2014;261:546–553.

Tilvis RS, Kahonen-Vare MH, Jolkonen J, Valvanne J, Pitkala KH, Strandberg TE. Predictors of cognitive decline and mortality of aged people over a 10-year period. *J Gerontol A Biol Sci Med Sci*. 2004;59:268–274.

Forti P, Masiol F, Pisacane N, Rietti E, Montesi F, Ravaglia G. Atrial fibrillation and risk of dementia in non-demented elderly subjects with and without mild cognitive impairment. *Neurool Res*. 2006;28:625–629.

Peters R, Poutier R, Beckett N, Forette F, Fagard R, Potter J, Swift C, Anderson C, Fletcher A, Bulipt C. Cardiovascular and biochemical risk factors for incident dementia in the Hypertension in the Very Elderly Trial. *J Hypertens*. 2009;27:2055–2062.

Burch TJ, Weiss JP, Coghill BG, May HT, Bair TL, Osborn JS, Anderson JL, Muheim JS, Horne BD, Lappe DL, Day JD. Atrial fibrillation is independently associated with senile, vascular, and Alzheimer dementia. *Heart*. 2010;107:433–437.

Dublin S, Anderson ML, Haneuse SJ, Heckbert SR, Crane PK, Breitner JC, McCormick W, Bowen JD, Teri L, McCurry SM, Larson EB. Atrial fibrillation and risk of dementia: a prospective cohort study. *J Am Geriatr Soc*. 2011;59:1369–1375.

Li J, Wang YJ, Zhang M, Xu ZQ, Gao CQ, Fang CQ, Yan JC, Zhou HD. Chongqing Ageing Study G. Vascular risk factors promote conversion from mild cognitive impairment to Alzheimer disease. *Neurolology*. 2011;76:1485–1491.

Maremongi A, Qiu C, Winblad B, Fratiglioni L. Atrial fibrillation, stroke and dementia in the very old: a population-based study. *Neurobiol Aging*. 2011;32:1336–1337.
105. Xu G, Meyer JS, Thornby J, Chowdhury M, Quach M. Screening for mild cognitive impairment (MCI) utilizing combined mini-mental-cognitive capacity examinations for identifying dementia prodromes. Int J Geriatr Psychiatry. 2002;17:1027–1033.

106. Kalbe E, Kessler J, Calabrese P, Smith R, Passmore AP, Brand M, Bullock R. DemTect: a new, sensitive cognitive screening test to support the diagnosis of mild cognitive impairment and early dementia. Int J Geriatr Psychiatry. 2004;19:136–143.

107. O’Brien JT, Erkinjuntti T, Reisberg B, Sawada T, Pantoni L, Bowler JV, Ballard C, DeCarli C, Gorelick PB, Rockwood K, Burns A, Gauthier S, DeKosky ST. Vascular cognitive impairment. Lancet Neurol. 2003;2:89–98.

108. Pendlebury ST, Cuthbertson FC, Welch SJ, Mehta Z, Rothwell PM. Underestimation of cognitive impairment by Mini-Mental State Examination versus the Montreal Cognitive Assessment in patients with transient ischemic attack and stroke: a population-based study. Stroke. 2010;41:1290–1293.

109. Barber M, Tait RC, Scott J, Rumley A, Lowe GD, Stott DJ. Dementia in subjects with atrial fibrillation: hemostatic function and the role of anticoagulation. J Thromb Haemost. 2004;2:1873–1878.

110. Mavaddat N, Roalfe A, Fletcher K, Lip GY, Hobbs FD, Fitzmaurice D, Mant J. Warfarin versus aspirin for prevention of cognitive decline in atrial fibrillation: randomized controlled trial (Birmingham Atrial Fibrillation Treatment of the Aged Study). Stroke. 2014;45:1381–1386.

111. Connolly SJ, Pogue J, Eikelboom J, Flaker G, Commerford P, Franzosi MG, Healey JS, Yusuf S. Benefit of oral anticoagulant over antiplatelet therapy in atrial fibrillation depends on the quality of international normalized ratio control achieved by centers and countries as measured by time in therapeutic range. Circulation. 2008;118:2029–2037.

112. Reid CM, Storey E, Wong TY, Woods R, Tonkin A, Wang J, Kam A, Janke A, Essex R, Abhayaratna WP, Budge MM; Group AS. Aspirin for the prevention of cognitive decline in the elderly: rationale and design of a neuro-vascular imaging study (ENVIS-ion). BMC Neurol. 2012;12:3.

Key Words: anticoagulation • atrial fibrillation • cognitive impairment • silent brain infarction • stroke