Magnetic Ionic Liquid Nanocatalyst to Improve Mechanical and Thermal Properties of Epoxy Nanocomposites

Ayman M. Atta *, Hamad A. Al-Lohedan, Ahmed M. Tawfeek and Nourah I. Sabeela

Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; hlohedan@ksu.edu.sa (H.A.A.-L.); a.tawfik@ksu.edu.sa (A.M.T.); noonah-37@hotmail.com (N.I.S.)

* Correspondence: atta@ksu.edu.sa

Received: 21 October 2020; Accepted: 19 November 2020; Published: 24 November 2020

Abstract: New magnetic imidazolium ionic liquid (IIL) was synthesized to improve the curing, mechanical, and thermal characteristics of the epoxy/polyamine system. In this respect, 2-(4-minophenyl)-1.3-bis(triethoxysilyl)-1H-imidazol-3-ium acetate as IIL was synthesized and characterized by different spectroscopy tools. The IIL was used as capping to prepare Fe₃O₄ nanoparticles (NPs) as new Fe₃O₄-IIL NPs. The thermal stability, morphology, crystal lattice structures, and magnetic properties were evaluated to confirm the formation of uniform, thermal, stable, and superparamagnetic Fe₃O₄-IIL NPs. The prepared Fe₃O₄-IIL NPs were mixed with an epoxy/polyamine system to improve the curing, thermal, and mechanical properties of epoxy through chemical reactions. The dynamic mechanical analyzer and differential scanning calorimeter were used to investigate the flexibility and storage modulus of the cured epoxy/polyamine system in the absence and presence of Fe₃O₄-IIL NPs. The atomic force microscope and scanning electron microscope were used to evaluate the dispersion and embedding of Fe₃O₄-IIL NPs into epoxy matrix. The thermal, mechanical, and surface morphologies data confirmed that the incorporation of Fe₃O₄-IIL NPs using 3 wt.% during the curing of an epoxy/polyamine system produces superior epoxy films without cracks, holes, and NPs agglomeration.

Keywords: magnetite; imidazolium ionic liquid; epoxy; curing; dynamic mechanical; thermal

1. Introduction

Epoxy thermoset polymers have great industrial applications as structural composites, adhesive, and organic coatings [1]. The mechanical properties of the cured epoxy resins were affected by the curing rate, degree of crosslinking, hardener chemical structures, fillers types, and contents [2]. The modification epoxy chemical structures and degree of crosslinking were investigated to obtain useful mechanical properties such as high modulus, strength, and glass transition temperature, although they produced tough, brittle, and cracked surfaces due to fast curing [1]. Moreover, the higher rigidity and brittleness degree of the cured epoxy films decrease their resistivity for cracking propagation to influence the mechanical, barrier, anti-corrosive, and coatings performances of the cured epoxy films as external coatings [2]. Usually, there are two techniques based on improvement: the epoxy chemical curing and physical blending of fillers with epoxy networks were used to improve their anticorrosion, mechanical, adhesion, and thermal properties [3–5]. In this respect, wide verities of chemicals were used to tailor and control the chemical crosslinking of epoxy via forming chemical bonds [4–6]. The modification of fillers surfaces with either epoxy or amines functional groups was better to embed the fillers with the epoxy networks via chemical linking [4–6]. This technique was used to produce multifunctional epoxy organic coatings with superior coating performances [3–6].
However, the nanomaterials attracted great attention to overcome the limitation of polymeric and inorganic filler materials via increasing the epoxy thermal and mechanical properties using lower concentrations of multifunctional nanofillers [7–12]. The nanomaterials were used to improve the fracture toughness of epoxy resins [13–15]. There are two main challenges influencing the formulation and applications of nanomaterials with polymers to produce polymer nanocomposites with superior properties. One is based on the dispersion of nanomaterials in the polymer nanocomposites, and the other is the nature of the interactions between polymers chains or networks with nanomaterials.

The aggregation of nanomaterials decreases their dispersion in the epoxy or hardener resins during the curing and increases the epoxy processing viscosity to limit their applications as nanofillers [13–15].

Recently, ionic liquids (ILs), as organic salts at room temperature, have been used to improve either the curing or processing of epoxy resins with superior properties and to prolong the pot life of epoxy compositions [16–20]. Moreover, the ILs were used to prepare nanomaterials and control their sizes, shapes, and dispersion [21,22]. The ILs nanocomposites are proposed to apply as superior nanofillers to improve the curing of epoxy resins having excellent mechanical, thermal, and anti-corrosion properties [23,24]. In this respect, the objective of this work is to modify the nanomaterials surfaces with new ILs that contain an amine functional group to chemically bond with epoxy networks during the curing process to improve its curing, epoxy network crosslinking densities, and thermomechanical performances. The chemical structures of imidazolium ILs anions (organic cations and ions) were varied to investigate their reactivity as both capping for nanomaterials and a curing agent with the epoxy resins [25,26]. Imidazolium ILs (IIILs) can attack or activate the nucleophilic reaction on the oxirane ring of epoxy resins to control the crosslinking densities of the polymer networks. In this respect, imidazolium ILs were used to improve the mechanical properties and to decrease of the onset curing temperature of epoxy. ILs were used as a curing agent to offer both good stability of the ring in oxidative and low viscosity formulations [25,26]. The magnetite nanoparticles (NPs) have attracted great considerable research interest due to their unique catalytic, barrier properties as anticorrosive and toughening efficiency improver epoxy films [7,27]. IIILs were previously used to prepare highly stable magnetic IIILs nanodispersions using a silanization process to form surface-modified magnetic IIILs [28]. IIILs provide a flexible liquid platform for catalysis by transition metal NPs (MNPs) as a stabilizer, ligand capping, and support for MNPs [29]. In our previous work [30,31], silylated IIILs were prepared and used to produce mesoporous silica/magnetite nanoparticles as effective adsorbents. In this respect, silylated IIIIL can be designed as curing and dispersing agents for magnetite NPS to improve thermal and mechanical properties of epoxy. Herein, the present work aims to design IIILs combined with siloxane and inorganic magnetic nanoparticles to improve the dispersion, magnetic, and oxidative stability of magnetite NPs to act as nanofiller. Moreover, the amine functional group on the IIIIL surface was used to promote the curing of epoxy and chemical link both IIIIL and magnetite NPs with the epoxy matrix. In this respect, 3-aminopropyltriethoxysilane (APTS) was condensed with 4-aminobenzaldehyde (ABA) in the presence of glyoxal to produce IIIIL. The siloxylimidazolium IIIIL was hydrolyzed with tetraethoxysilane (TES) and iron cations (Fe$^{3+}$ and Fe$^{2+}$) in the basic medium to produce magnetite IIIIL. It is expected that the incorporation of magnetite IIIIL during the curing of the commercial epoxy resin with polyamine (PA) hardener will alter the densely crosslinked part of the epoxy networks and their curing mechanism due to the presence of imidazolium, amine, and hydroxide functional groups on magnetite NPs. For these reasons, the curing of epoxy resin with PA in the presence and absence of magnetite IIIIL was investigated by differential scanning calorimeter and dynamic mechanical analyses. The improvement of molecular crosslinking of the epoxy networks with magnetite IIIIL is another goal to enhance the adhesion, mechanical, and thermal properties of epoxy resins.
2. Experimental

2.1. Materials

All chemicals consumed in this work were supplied from Sigma-Aldrich Chemicals Co. and used without further purification due to their high analytical grade. Glyoxal (GA), 4-aminobenzaldehyde (ABA), and acetic acid were used to produce imidazolium IL (IIL). Anhydrous FeCl$_3$ and KI and ammonia solution (25 wt. %) were used for magnetite IIL synthesis (Fe$_3$O$_4$-IIL). Tetraethoxysilane (TES) and 3-aminopropyltriethoxysilane (APTS) were used as siloxane precursor sources. Deionized DIW (DIW) with 0.1 M Ω cm resistivity was used for preparing IIL. Epikote epoxy resin 828 (based on bisphenol A diglycidyl ether; DGEB) with epoxy equivalent weight 190–200 g/eq (Hexion, Olana, Italy) and its long-chain length aliphatic polyamines Epikure™ 270 hardener (PA) were used to prepare epoxy network after mixing with weight ratio 4:1 (wt. %).

2.2. Preparation of Magnetic IIL

2.2.1. Preparation of IIL

APTS (0.5 mol; 11.1 g) dissolved into acetic acid aqueous solution (50 mL; 50/50 vol. %) was added to the mixture of GA (0.025 mol; 1.45 g), ABA (0.025 mol; 3.025 g), and acetic acid aqueous solution (50 mL; 50/50 vol. %) at temperature -4°C. The reaction mixture was stirred (900 rpm) for 30 min until clear solution was obtained. The reaction temperature was increased up to 70 $^\circ$C (heating rate 2 $^\circ$C per 5 min) and kept for 5 h, after which it was cooled for purification. The reaction mixture was washed several times (five times) with diethyl ether to remove the unreacted materials and to obtain a colorless organic phase. The unreacted GA, acetic acid, and DIW were removed by heating under reduced pressure (35 $^\circ$C at 40 psi) for 24 h using rotary evaporator to obtain colorless liquid of IIL with 95% yield percentage. The nitrogen content of the purified IIL was determined using (Kjeldahl method; using a Tecator Digestion System (Hilleroed, Denmark) and a Tecator distillation unit, Kjeltec 1003), and found to be 8.245 ± 0.07 wt. %, which agrees with the theoretical value (8.25 wt. %).

2.2.2. Preparation of Fe$_3$O$_4$-IIL

Anhydrous FeCl$_3$ solution (4 g; dissolved in 30 mL DIW) was added to KI solution (1.32 g, dissolved in 5 mL DIW) and stirred using a mechanical stirrer (400 rpm) at room temperature under N$_2$ atmosphere for 1 h. The iron cations filtrate was obtained after removal of the solids precipitate (iodine byproduct) by filtration as described in the previous work [30]. IIL (1 g) and TES (1 g) were dispersed into DIW/ethanol mixture (100 mL; 50/50 vol. %) using an ultrasonic processor (TEC-40 model, Roop-Telsonic Ultrasonics Ltd., Mumbai, India; power density, 750 watts; frequency, 20 kHz) for 5 min. The IIL and TMS solution was added to the iron cations solution at the same time with ammonia solution (10 mL; 25 wt. %) under vigorous mechanical stirring (1200 rpm). The reaction mixture was heated and stirred at 45 $^\circ$C for 36 h. The magnetic IIL was collected from the reaction suspension by an external magnet and dispersed into HCl solution (1 L; 4 M) for 1 h to remove the uncapped magnetite. The Fe$_3$O$_4$-IIL was separated from the suspension by an external magnet (made from the neodymium magnet; magnetic attraction force, 845.8 N; magnetic flux density, 534 mT). The precipitate was washed several times (5 times) with ethanol. The yield percentage of reaction was 90 wt. %.

2.3. Characterization of Magnetite and IIL

The chemical structures of IIL and Fe$_3$O$_4$-IIL were investigated by using Fourier transform infrared analysis (Nicolet Magna 750 FTIR spectrometer using KBr, Newport, NJ, USA). The hydrogen and carbon nuclear magnetic resonance (1HNMR and 13CNMR; 400 MHz Bruker Avance DRX-400 spectrometer; Toronto, ON, Canada) was carried out using deuterated dimethyl sulfoxide (DMSO) as organic solvent and tetramethylsilane as internal solvent. The particle size, polydispersity index (PDI), and zeta potential of aqueous dispersion of Fe$_3$O$_4$-IIL in the presence of 0.001 M KCl at 25 $^\circ$C were
measured using dynamic light scattering (DLS; Malvern Instrument Ltd., London, UK). The DLS calibration was carried out for standardized aqueous solutions having particle sizes from 1 to 100 nm and zeta potential ranged from −40 to 50 mV. The crystalline lattice structure of Fe$_3$O$_4$-IIL was determined using X-ray powder diffraction (X’Pert, Philips, Amsterdam, The Netherlands, using CuKα radiation of wavelength λ = 1.5406 Å with 40 kV voltage and 35 mA intensity). XRD patterns of Fe$_3$O$_4$-IIL were recorded in the range of 15° ≤ 2θ ≤ 80° at the scan speed of 0.01° s$^{-1}$. The magnetic characteristics of Fe$_3$O$_4$-IIL were measured using a vibrating sample magnetometer (VSM; USALDJ9600-1; LDJ Electronics, Troy, MI, USA) operating at a vibrational frequency of 75 Hz. A magnetic hysteresis loop of Fe$_3$O$_4$-IIL was recorded at room temperature under an applied magnetic field that ranged from −20,000 to +20,000 Oe to determine its saturation magnetization (Ms). The thermal stability of IIL, Fe$_3$O$_4$-IIL, and cured DGBE/PA films was evaluated using thermogravimetric and differential thermogravimetric analysis (TGA-DTG; NETZSCH STA 449 C instrument, New Castle, DE, USA) under an N$_2$ atmosphere with a heating rate of 10 °C min$^{-1}$ and flow rate of 60 mL min$^{-1}$. Weights of samples used in this experiment were between 10 and 20 mg. The morphologies of Fe$_3$O$_4$-IIL were evaluated by transmission electron microscopy (TEM JEOL JEM-2100 F) at an acceleration voltage of 200 kV JEOL, Tokyo, Japan) and scanning electron microscopy (JEOL JXA-840A) at 10 kV. The Fe$_3$O$_4$-IIL dispersion in ethanol was sprayed over the 3 mm TEM carbon-coated copper grid and dried overnight at room temperature (25 ± 2°C). The repeatability precision for all IIL and Fe$_3$O$_4$-IIL samples analyses was successively analyzed 6 times. Three different sample weights of certified reference material, analyzed in three replicates, were used for trueness determination. The range of linearity was evaluated by checking the linear regression coefficient (R^2) of the calibration curve. The linearity of the calibration curve was considered acceptable when $R^2 > 0.995$.

2.4. Curing of DGBE/PA in the Presence of Fe$_3$O$_4$-IIL

The thermal characteristics of IIL and Fe$_3$O$_4$-IIL were determined by using differential scanning calorimetry (DSC; Q10 DSC calorimeter from TA Instrument). All samples were dried in a vacuum oven for 2 h at 45 °C to remove any contaminated air humidity. A DSC device equipped with manual cooling unit and calibrated with zing was used to determine the phase transitions of IIL and Fe$_3$O$_4$-IIL (10–20 mg) after they were sealed in an aluminum pan. The samples were subsequently heated to 80 °C after they cooled to −120 °C under a heating rate of 5 °C min$^{-1}$ under a N$_2$ flow. The glass transition temperature (T_g) and the heat evolved during the curing exothermic reaction DGBE/PA (ΔH) in the presence and absence of Fe$_3$O$_4$-IIL were measured by a DSC device. In this respect, different amounts of Fe$_3$O$_4$-IIL (1–6 wt. % related to the total weight of DGBE and PA resins) were dispersed with PA using a mechanical stirrer at a speed of 1000 rpm and ultra-sonicating with alternative 30 s cycles using ultrasonic waves of 20 kHz (Bandel in Co., 150 W). The PA suspensions were manually mixed with the recommended DGBE weight percentages (PA: DGBE; 1:4 wt. %) into a Pyrex beaker put in an ice bath. The sample of DGBE/PA (5–7 mg) in the absence or presence of Fe$_3$O$_4$-IIL was sealed in hermetic aluminum pans and an identical empty reference pan was used to analyze their curing characteristics by DSC analyzer. The curing exothermic was evaluated by using the non-isothermal DSC measurements. Then, the sample pan was put in the DSC cell, which was pre-cooled to −50 °C. The DSC cell was subsequently heated at a constant rate 5 °C min$^{-1}$ from −30 to 300 °C under N$_2$ atmosphere. The ΔH was evaluated by measuring the integrating the exothermic peak. Three measurements were carried out for each sample to determine the averages of the measurements.

Dynamic mechanical properties of the cured DGBE/PA in the presence of Fe$_3$O$_4$-IIL were evaluated using a dynamic mechanical analyzer (DMA; Q200, TA Instruments) in double cantilever mode. The DGBE/PA was cured and casted into Teflon molds and hardened at 150 °C/2 h as rectangle-shaped samples having the dimensions of the 20.0 × 10.0 × 5.0 mm3. The samples were cooled and heated from 0 to 300 °C at a rate of 3 °C min$^{-1}$ under N$_2$ atmosphere with a frequency of 1 Hz and amplitude of 40 μm. The T_g and tan δ values were determined using DMA with a dual cantilever at a heating rate of 2 °C min$^{-1}$ from 30 to 220 °C at a frequency of 1 Hz.
The ultra-thin sectioning (50–70 nm) of the cured DGEB/PA in the presence of Fe$_3$O$_4$-IIL films was performed by ultra-microtomy at low temperature. The morphology of the fractured surfaces of the samples was investigated using scanning electron microscopy (JEOL JXA-840A). Atomic force microscope (AFM; Agilent 5500 with multipurpose closed loop scanner) is used to investigate the surface roughness and topologies of the cured DGEB/PA using different weight ratios of Fe$_3$O$_4$-IIL. Imaging the DGEB/PA was performed in the tapping mode with silicon cantilevers with a nominal spring constant of 48 N/m and a resonance frequency of around 300 kHz. The scanning rates and resolution were 12 Hz and 512 pixels per line, respectively.

3. Results and Discussion

The IIL can be easily prepared by the condensation of the primary amine with aldehyde under acidic condition [30]. In this respect, ABA was selected as the aromatic aldehyde to condense with APTS as the primary amine in the presence of GA under acidic condition to prepare 2-(4-miophenyl)-1.3-bis(triethoxysilyl)-1H-imidazol-3-ium acetate as IIL, as illustrated in the experimental section and Scheme 1. In the previous works [30], p-hydroxybenzaldehyde was used as the aromatic aldehyde that affected the solubility of the produced IIL. In this work, the amine group of ABA facilitates its condensation with APTS and the solubility of the produced IIL (Scheme 1) due to the formation of amine salt in the presence of acetic acid. The formation of amine salt of ABA (CH$_3$COOH.NH$_2$–Ph) at temperature (−4 °C) prevents the condensation of the amine group with GA and facilitates the condensation of its aldehyde group with APTS. The produced IIL (Scheme 1) was easily mixed with ethanol and water as well as toluene and xylene. The IIL was added to iron cations, prepared from the reaction of FeCl$_3$ with KI after the removal of I$_2$, under the basic condition to hydrolyze the triethoxysilyl groups of IIL with TES. The siloxane as well as formation of iron oxide NPs can be formed according to the sol–gel technique and co-precipitation method [31]. The proposed chemical structures of IIL and Fe$_3$O$_4$-IIL (Scheme 1) without the formation of other iron oxides as well as the thermal stability, crystalline lattice structure, surface morphologies, and magnetic properties will be confirmed in the forthcoming section.

3.1. Characterization of the Prepared IIL and Fe$_3$O$_4$-IIL

The purity and chemical structure of the prepared IIL were identified from its 1HNMR and 13CNMR spectrum represented in Figure 1a,b, respectively. The all 1HNMR peaks of IIL were marked and correlated to their corresponding protons (Figure 1a). The appearance of deshielded imidazolium and methyl protons appeared at 7.7 and 1.6 ppm, respectively, confirms the formation of imidazolium cation and an acetate ion. The appearance of the broad peak at 5.5 ppm of amino group elucidates that the amine group of ABA was not contributed in the condensation with GA due to it weaker basicity than APTS. The appearance of peaks at 0.6 and 3.53 ppm correlated to methyl and methylene protons, respectively, indicates that ethoxy groups of APTS were not hydrolyzed under acidic condition. The 13CNMR spectrum of IIL (Figure 1b) elucidate the formation of imidazolium cation and acetate anion with the appearance of peaks at 144 and 176 ppm, respectively. The other IIL peaks were marked and correlated to its chemical structure as represented in Figure 1b.

The chemical structures of IIL and Fe$_3$O$_4$-IIL were confirmed from their FTIR spectra summarized in Figure 2a,b, respectively. The disappearance of peaks at 2950 and 2850 cm$^{-1}$ (Figure 2a; attributed to aliphatic C–H stretching) from the spectrum of Fe$_3$O$_4$-IIL and appearance of new peaks at 800 and 580 cm$^{-1}$ (Figure 2b; attributed to Si–OH and Fe–O bending and stretching vibration, respectively) illustrate the formation of the Fe$_3$O$_4$-IIL chemical structure (Scheme 1) [30]. The presence of an Si–O–Si bond was proved from the appearance of broad bands at 1024–1124 cm$^{-1}$, 850 cm$^{-1}$, which were attributed to Si–O–Si asymmetric and symmetric stretching vibration, confirming the hydrolysis of ethoxy groups of IIL and TEOS under basic condition. The appearance of bands at 3400, 1680, and 1580 cm$^{-1}$ in the spectrum of IIL (Figure 2a; referred to NH stretching, C=O acetate stretching, and N–H bending vibration, respectively) confirms the formation of an imidazolium ring cation and
acetate ion. The broad band at 3400 cm$^{-1}$, referred to OH stretching, in the spectrum of Fe$_3$O$_4$-IIL proves the presence of an Si–OH and –OH group surrounding siloxane and iron oxide. Moreover, the lower intensity of the O–H band in the spectrum of Fe$_3$O$_4$-IIL (Figure 2b) confirms the linking of the hydroxyl groups surrounded on the magnetite surfaces with the hydroxyl groups of Si–OH during the hydrolysis of IIL in the presence of magnetite NPs [30]. These results elucidate that the magnetite NPs were linked with silica via the hydrolyzing of TEOS and triethoxy groups of IIL. The linking of magnetite with IIL increases its oxidation stability without the formation of other iron oxides such as hematite, maghemite, and others.

Figure 1. NMR (a) 1HNMR and (b) 13C NMR spectra of IIL.
Scheme 1. Synthesis route of Fe$_3$O$_4$-IIL.

The thermal stability of IIL and Fe$_3$O$_4$-IIL and contents of magnetite and silica were evaluated from their thermogravimetric and differential thermogravimetric (TGA-DTG thermograms represented in Figure 3a,b, respectively. The initial degradation temperature (IDT) of IIL was started at 350 °C. The presence of magnetite and silica in the chemical structure Fe$_3$O$_4$-IIL loses approximately 8 wt. % at temperature ranged from 70 to 120 °C. These data confirm that the IIL cannot adsorb humidity; rather, the Fe$_3$O$_4$-IIL NPs have the tendency to adsorb the humidity on the magnetite and silica surfaces [32,33]. Figure 3 shows that the IIL starts to lose weight (approximately 15 wt. %) from about 220 °C and in the range 220 to 420 °C, which is attributed to the presence of acetate anion that degraded to DIW and CO$_2$. The IDT of Fe$_3$O$_4$-IIL at 415 °C (Figure 3) confirms that the chemical linking of magnetite and siloxane improved its thermal stability and reduces the plasticization effect of IIL [28]. The remained residual after the decomposition of IIL and Fe$_3$O$_4$-IIL are 76 and 14 wt. % at 750 °C confirm that the magnetite and silica contents of Fe$_3$O$_4$-IIL are 48 and 12 wt. % (after excluding the humidity and remained residual of IIL).
The morphology and particle sizes (nm) of Fe$_3$O$_4$-IIL were determined from TEM and DLS measurements, as illustrated in the experimental section and represented in Figure 5a,b, respectively. The morphology of Fe$_3$O$_4$-IIL (Figure 5a) show stretched rough spherical nanoparticles (NPs) with particle sizes at dry state that approximately ranged from 15 to 26 nm with the formation of small aggregates. The dispersion and particle sizes were increased when Fe$_3$O$_4$-IIL dispersed in DIW at pH 7 in 0.001 M of KCl (Figure 5b). Its polydispersity index and particle sizes from DLS data (Figure 5b) are 0.183 ± 0.01 and 31.2 ± 1.5 nm. The presence of an amino group in the chemical structure of IIL increases the basicity of the reaction medium and facilitates the rate of hydrolysis of TEOS with silica surfaces [32,33]. Figure 3 shows that the IIL starts to lose weight (approximately 15 wt. %) from about 220 °C and in the range 220 to 420 °C, which is attributed to the presence of acetate anion that degraded to DIW and CO$_2$. The IDT of Fe$_3$O$_4$-IIL at 415 °C (Figure 3) confirms that the chemical linking of magnetite and silica in the chemical structure Fe$_3$O$_4$-IIL loses approximately 8 wt. % at temperature ranged from 70 to 120 °C. These data confirm that the IIL cannot adsorb humidity; rather, the Fe$_3$O$_4$-IIL NPs have the tendency to adsorb the humidity on the magnetite and silica surfaces [32,33].

Figure 2. FTIR spectra of (a) IIL and (b) Fe$_3$O$_4$-IIL.

Figure 3. TGA-DTG thermograms of (a) IIL and (b) Fe$_3$O$_4$-IIL.
(negative charges) oriented at the Fe$_3$O$_4$-IIL and imidazolium group were oriented into the interior core of the NPs. This means that the linking of hydroxyl groups of hydrolyzed siloxane group with hydroxyl groups of magnetite can be easily obtained in basic medium to form negatively dispersed Fe$_3$O$_4$-IIL.

![Figure 4](image.png)

Figure 4. Differential scanning calorimetry (DSC) thermograms of imidazolium ionic liquid (IIL) and its blend with 25 wt. % of Fe$_3$O$_4$-III.

The surface morphology of Fe$_3$O$_4$-IIL was investigated from the SEM micrograph represented in Figure 6. The SEM micrograph shows the spherical rough surface that agrees with the TEM and DLS data (Figure 5a,b). The rough surfaces can be attributed to the formation of silica and magnetite on the IIL surfaces on the basis of the added negative charge of the nanomaterials surface, which would enhance the dispersion of Fe$_3$O$_4$-IIL due to repulsive forces among the NPs [36].

![Figure 5](image.png)

Figure 5. Fe$_3$O$_4$-IIL nanoparticles (NPs) (a) TEM micrograph and (b) dynamic light scattering (DLS) measurement at pH 7 in 0.001 M KCl at 25 °C.

The XRD diffractograms of IIL and Fe$_3$O$_4$-IIL were used to determine their lattice structures as summarized in Figure 7a,b. The IIL (Figure 7a) shows an amorphous lattice structure and Fe$_3$O$_4$-IIL (Figure 7b) suggests diffraction peaks that correspond to the (2 2 0), (3 1 1), (4 0 0), (4 2 2), (5 1 1), and (4 4 0) of magnetite and no obvious sharp diffraction peak corresponding to the IIL to indicate that most of the IIL is amorphous. These data confirm that the magnetite can be formed without other
iron oxides during the hydrolysis of IIL in the basic condition to prove the strong capability of IIL as capping to protect the oxidation of magnetite to another iron oxide [30,31].

![Figure 6. SEM micrograph of Fe3O4-IIL.](image)

Figure 6. SEM micrograph of Fe3O4-IIL.

The magnetic properties of Fe3O4-IIL can be investigated from its VSM hysteresis loop as represented in Figure 8. The saturation magnetization (emu. g⁻¹), remanent magnetization (emu. g⁻¹), and coercivity (G) of Fe3O4-IIL are 33.41, 0.19, and 9.04, respectively. These values confirm the superparamagnetic characteristics of the prepared Fe3O4-IIL due to the lowering of coercivity and remnant magnetization and increasing of saturation magnetization when compared with other coated magnetite NPs [30,31,36]. These data confirm also that the magnetite NPS were capped on the Fe3O4-IIL surfaces as confirmed from TEM and DLS data (Figure 5a,b).

![Figure 7. XRD diffractograms of (a) imidazolium ionic liquid (IIL) and (b) Fe3O4-IIL at 20 °C.](image)

Figure 7. XRD diffractograms of (a) imidazolium ionic liquid (IIL) and (b) Fe3O4-IIL at 20 °C.

![Figure 8. VSM hysteresis loop of Fe3O4-IIL at 25 °C.](image)

Figure 8. VSM hysteresis loop of Fe3O4-IIL at 25 °C.
3.2. Curing of Fe₃O₄-IIL with Epoxy and Polyamine Hardener

The epoxy resin was cured with long-chain aliphatic polyamine (DGEBA) in the absence and presence of different weight ratios of Fe₃O₄-IIL (ranged from 1 to 6 wt. % related to DGEBA/PA weights). The chemical structure of cured epoxy in the absence and presence of Fe₃O₄-IIL (6 wt. %) was selected and represented in Figure 9a,b, respectively. The intensity of bands at 3465, 1650, and 1121 cm⁻¹, attributed to OH, C–N and C–O, or Si–O–Si stretching vibrations, was increased in the DGEBA-Fe₃O₄-IIL spectrum (Figure 9b) more than the cured DGEBA/PA (Figure 9a). This result elucidates that the Fe₃O₄-IIL was incorporated to produce more hydroxyl groups in the polymer networks. The presence of new broad intense bands at 1650, 905, and 580 cm⁻¹, referred to NH bending, Si–OH, and Fe–O stretching vibrations, confirms that imidazolium, siloxane, and magnetite NPs were incorporated with the epoxy without thermal degradation during the curing process.

![Figure 9. FTIR spectra of the cured bisphenol A diglycidyl ether (DGEBA)/polyamine (PA) in the different wt. % of Fe₃O₄-II (a) 0 and (b) 6.0 wt. %.

The curing of the epoxy with long-chain aliphatic polyamine hardener is a very important parameter that controls the mechanical and anti-corrosion characteristics of the epoxy coatings. This can be attributed to the fast chemical curing producing microcracks and holes besides the increasing of epoxy toughness. It was previously reported that the incorporation of iron oxide and ILs during the curing of epoxy with hardener improves the thermal and mechanical properties of the epoxy resins [37]. In this respect, this work aims to modify the curing, thermal, and mechanical properties of the epoxy resin based on diglycidyl ether of bisphenol A cured with polyamine (DGEBA/PA) in the presence different weight ratios of Fe₃O₄-IIL (ranged from 1 to 6 wt. % related to DGEBA/PA weights). DSC investigated the curing behavior of DGEBA/PA under non-isothermal mode at a heating rate of 5 °C min⁻¹, as represented in their thermograms represented in Figure 10. This heating rate was selected as a slow heating rate to study the curing exothermic reactions of epoxy [37]. The total heat of the curing reactions of DGEBA/PA as blank and mixed with different wt. % of Fe₃O₄-IIL were calculated from the area under peaks (ΔH) and summarized in Table 1. Careful inspection of the DGEBA/PA curing data (Table 1 and Figure 10) proves that the addition of Fe₃O₄-IIL reduces the onset curing temperature (Table 1) and increases the curing reaction enthalpy. These data mean that the incorporation of magnetite and IIL (containing amino and imidazolium N atoms having a lone pair of electrons) accelerates the curing process of DGEBA/PA. Accordingly, Fe₃O₄-IIL can act as a curing catalyst or co-curing agent with PA hardener. The presence of a shoulder peak in the curing curves of DGEBA/PA at lower temperature in the presence 3 and 6 wt. % of Fe₃O₄-IIL (Figure 10) confirms the catalytic behavior of iron oxide as a curing catalyst [37,38]. The glass transition temperatures before curing and after dynamic curing represented as T_g1 and T_g2, respectively were measured for the DGEBA/PA system in the absence and presence of Fe₃O₄-IIL and summarized in Table 1. The T_g1 values
determined for DGEAB/PA blends on the cooling run before heating to show the effect of Fe$_3$O$_4$-IIL on the glass transition temperatures of DGEAB/PA. Moreover, increasing the T_{g1} value of DGEAB/PA (Table 1) with the incorporation of Fe$_3$O$_4$-IIL elucidates its good dispersion into an epoxy system before curing even with increasing its wt. % up to 6 wt. % [28]. The T_{g2} values were recorded from the second heating run at a heating rate of 5 °C min$^{-1}$ after curing under nitrogen, as represented in Figure 10. The decreasing of T_{g2} with the incorporation of Fe$_3$O$_4$-IIL (Figure 10 and Table 1) confirms the good dispersion of Fe$_3$O$_4$-IIL into a DGEAB/PA network and the flexibility of the network after curing due to the plasticizing effect of IIL. It was noticed that the T_{g2} decreased with increasing Fe$_3$O$_4$-IIL up to 3 wt. % and increased with increasing Fe$_3$O$_4$-IIL at 6 wt. % to confirm the lower dispersion of Fe$_3$O$_4$-IIL more than 3 wt. % in the DGEAB/PA.

Figure 10. DSC thermograms for dynamic curing of DGEAB/PA at heating rate 5 °C min$^{-1}$ in the absence and presence different wt. % of Fe$_3$O$_4$-IIL.

Table 1. DSC data of DGEAB/PA at heating rate 5 °C min$^{-1}$ in the absence and presence different wt. % of Fe$_3$O$_4$-IIL.

Fe$_3$O$_4$-IIL wt. %	T_{g1} before Curing (°C)	T_{g2} after Curing (°C)	ΔH J g$^{-1}$	Onset Temperature (°C)	Maximum Temperature (°C)
0	-15.36	105	260	90	218
1	-12.3	95	350	95	219
3	-2.3	85	355	70	215
6	0	98	365	60	207

The surface morphologies and roughness of the cured epoxy DGEAB/PA in the absence and presence different wt. % of Fe$_3$O$_4$-IIL NPs were investigated by SEM and AFM micrographs represented in Figures 11a–d and 12a–d, respectively. It was noticed that the cured blank DGEAB/PA shows micro cracks (Figures 11a and 12a) due to the fast curing of the DGEAB/PA system in the absence of Fe$_3$O$_4$-IIL NPs. The cracks among the epoxy layers and holes appeared in SEM of cured epoxy blank and in the presence of Fe$_3$O$_4$-IIL NPs 1 and 2 wt. % (Figure 11a–c). The incorporation of Fe$_3$O$_4$-IIL NPs (from 1 to 2 wt. %) started to fill the cracks and holes as appeared in Figures 11b,c and 12b,c. The incorporation of Fe$_3$O$_4$-IIL NPs (3 wt. %) during the epoxy curing with PA produces uniform rough surfaces without holes or cracks (Figures 11 and 12d). Figure 11d shows that the Fe$_3$O$_4$-IIL NPs (3 wt. %) fills all cracks to produce uniform layers. The high loading of Fe$_3$O$_4$-IIL NPs (6 wt. %) into DGEAB/PA leads to formation of the aggregates or clusters (Figures 11 and 12e).
Figure 11. SEM micrographs of the fractured cured DGEB/PA in the presence of different weight ratios of Fe$_3$O$_4$-IIL NPs (a) 0 (blank), (b) 1, (c) 2, (d) 3, and (e) 6 wt. %.

Figure 11. SEM micrographs of the fractured cured DGEB/PA in the presence of different weight ratios of Fe$_3$O$_4$-IIL NPs (a) 0 (blank), (b) 1, (c) 2, (d) 3, and (e) 6 wt. %.
3.3. DMA and Thermal Characteristics

The rigidity and flexibility of the cured epoxy networks based on DGEB/PA in the presence and absence of Fe$_3$O$_4$-IIL can be investigated from DMA as represented in Figure 13a,b. The glass transition temperatures of the cured epoxy resins in the presence and absence of Fe$_3$O$_4$-IIL determined from the effect of temperature on Tan δ (Figure 13a) agree with those obtained from DSC thermograms (Figure 10). Moreover, the onset temperatures for the storage modulus (Figure 13b) of DGEB/PA in the presence different wt. % of Fe$_3$O$_4$-IIL 0, 1, 2, 3, and 6 wt. % are 79.4, 66.8, 69.5, and 79.8 $^\circ$C, respectively. These data prove that the mixing of DGEB/PA blank with Fe$_3$O$_4$-IIL (1–3 wt. %) increases the epoxy network flexibility and mobility. The stiffness of epoxy networks was increased by increasing Fe$_3$O$_4$-IIL NPs contents by more than 3 wt. %. This can be attributed to the effect of magnetite and ILs on the curing rate of epoxy crosslinking that increased with increasing the Fe$_3$O$_4$-IIL contents due to the formation of highly crosslinked heterogeneous epoxy networks [37]. Moreover, the increasing of Fe$_3$O$_4$-IIL NPs more than 3 wt. % decreases their dispersion in the epoxy matrix to produce clusters that increase the rigidity of the epoxy networks [38].

Figure 12. Atomic force microscope (AFM) micrographs of the fractured cured DGEB/PA in the presence different weight ratios of Fe$_3$O$_4$-IIL NPs (a) 0 (blank), (b) 1, (c) 2, (d) 3 and (e) 6 wt. %.
The crosslinking densities \((\rho, \text{mol. dm}^{-3}) \) are hard to ascertain for strong resistances of epoxy to swell in organic solvents. The crosslinking densities \((\rho, \text{mol. dm}^{-3}) \) of the cured DGB/PA system in the absence and presence different wt. % of Fe\(_3\)O\(_4\)-IL NPs networks can be determined as \(\rho = \frac{G_e}{R T_e} \); where \(R = \text{universal gas constant (8.314 J mol}^{-1} \text{K}^{-1}) \), \(G_e \) is the storage modulus (MPa; after the samples have reached a plateau), and \(T_e \) is the extended temperature. The \(T_e \) values were determined from relation \(T_e = T_g + 30 \text{°C} \) (taken from the loss modulus data). The semi-empirical relation of \(\rho \) and \(G_e \) was more correctly applied to lightly crosslinked elastomers but it was previously applied in the curing of epoxy with ILs \[21\]. The data summarized in Table 2 confirm that the crosslinking densities of DGB/PA (blank was increased in the order Fe\(_3\)O\(_4\)-IL NPs wt. % 6 >1>3, which agrees with the \(T_g \) data determined with DSC (Figure 10) or DMA data (Figure 13a)). These data elucidate that the mixing of Fe\(_3\)O\(_4\)-IL NPs with DGB/PA produces an elastic network with increasing the Fe\(_3\)O\(_4\)-IL NPs contents from 1 to 3 wt. %. This observation was referred to the presence of a higher number of initiating species being formed at the expense of ether linkages with the increase in Fe\(_3\)O\(_4\)-IL NPs concentrations \[21\].
Table 2. DMA and crosslinking densities data of DGEB/PA in the absence and presence different wt. % of Fe₃O₄-IIL.

Fe₃O₄-IIL wt. %	T_g (°C)	Ge (MPa)	T_r (K)	Crosslink Density ρ × 10³ (mol. dm⁻³)
0	105	2200	408	0.648
1	72	2800	350	0.9622
3	52	2600	375	0.834
6	92	4200	395	1.27

The effect of Fe₃O₄-IIL NPs on the thermal properties of the cured epoxy DGEB/PA in the absence and presence different wt. % of Fe₃O₄-IIL NPs was evaluated from TGA thermograms represented in Figure 14. The data of thermal stability proves that the increasing of Fe₃O₄-IIL NPs contents from 1 to 6 wt. % improves the thermal stability of the cured epoxy rather than that of the blank. It was also found that the blank DGEB/PA was degraded at temperature of 285 °C and 15 wt. % of the epoxy degraded up to 350 °C. The initial thermal degradation temperatures of DGEB/PA cured in the presence of 1, 3, and 6 wt. % of Fe₃O₄-IIL NPs were 290, 350, and 400 °C, respectively. It was also found that the char yields or residues at 650 °C were increased with increasing wt. % of Fe₃O₄-IIL NPs to confirm that the presence of magnetite and IIL leads to the formation of a barrier that prevents the evolution of volatiles during the degradation of organic compounds and increases the residues [39].

Figure 14. TGA thermographs of the cured DGEB/PA in the presence of different weight ratios of Fe₃O₄-IIL NPs.

The previous DMA, TGA, and DSC data proposed that the Fe₃O₄-IIL NPs will initiate the polymerization of the epoxide ring at room temperature, which was confirmed via the appearance of a shoulder peak in the curing curves of DGEB/PA at lower temperature in the presence 3 and 6 wt. % of Fe₃O₄-IIL (Figure 10). It was previously reported that the curing of epoxy was carried out with 1-ethyl-3-methylimidazolium acetate, 1-ethyl-3-methylimidazolium diethyl phosphate, 1-ethyl-3-methylimidazolium dicyanamide, and 1-ethyl-3-methylimidazolium thiocyanate via either a nucleophilic route or the decomposition of IILs via the carbinol route and imidazole route with anionic polymerization [21]. The presence of an amine group in the chemical structure of IIL improves the nucleophilic ring opening of epoxy, as illustrated in Scheme 2. Moreover, the presence of acetate anion facilitates the carbene reaction of imidazolium cation that was produced by the deprotonation of...
imidazolium to carbene with the formation of acetic acid [37]. The imidazolium carbene is responsible to start an acid-aided epoxy–amine curing reaction with the aid of magnetite NPs [37].

Scheme 2. Mechanism of Fe₃O₄-IIL curing with epoxy networks.

4. Conclusions

New IIL based on 2-(4-minophenyl)-1.3-bis(triethoxysilyl)-1H-imidazol-3-ium acetate was hydrolyzed with TES and iron cations to produce Fe₃O₄-IIL NPs. The uniform Fe₃O₄-IIL NPs nanostructures were confirmed from its sizes, polydispersity index, and surface charges as 31.2 nm, 0.183 ± 0.01 nm, and 31.2 ± 1.5 nm, −30.4 mV, respectively. The DMA, DSC, TGA, SEM, and AFM data confirm that the incorporation of Fe₃O₄-IIL during the curing of DGEB/PA increases the epoxy networks flexibility and thermal stability after curing due to the plasticizing effect of IIL. The glass transition temperatures of the cured DGEB/PA determined from DSC data in the presence of different
wt. % of Fe$_3$O$_4$-III. 0, 1, 3, and 6 wt. % are 105, 95, 85, and 98, respectively. Moreover, the onset temperatures for the storage modulus of DGEBA/PA in the presence different wt. % of Fe$_3$O$_4$-III 0, 1, 2, 3, and 6 wt. % are 79.4, 66.8, 69.5 and 79.8 °C, respectively. These data prove that the mixing of a DGEBA/PA blank with Fe$_3$O$_4$-III (1–3 wt. %) increases the epoxy network’s flexibility and mobility. It was also concluded that Fe$_3$O$_4$-III (3 wt. %) was sufficient to modify the curing of the DGEBA/PA epoxy matrix.

Author Contributions: Conceptualization, A.M.A.; methodology, A.M.T. and N.I.S.; software, A.M.T.; validation, A.M.A.; formal analysis, A.M.A.; investigation, A.M.A.; resources, A.M.A. and H.A.A.-L.; data curation, A.M.A.; writing—original draft preparation, A.M.A.; writing—review and editing, A.M.A., H.A.A.-L., N.I.S. and A.M.T.; visualization, A.M.A.; supervision, A.M.A.; project administration, A.M.A.; funding acquisition, A.M.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Deanship of Scientific Research at King Saud University (RG-1441-235).

Acknowledgments: The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research group No. (RG-1441-235).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kinloch, A.J. *Adhesion and Adhesives: Science and Technology*; Springer Science & Business Media: London, UK, 2012.
2. Jin, F.-L.; Li, X.; Park, S.-J. Synthesis and application of epoxy resins: A review. *J. Ind. Eng. Chem.* 2015, 29, 1–11. [CrossRef]
3. Matin, E.; Attar, M.; Ramezanazadeh, B. Investigation of corrosion protection properties of an epoxy nanocomposite loaded with polysiloxane surface modified nanosilica particles on the steel substrate. *Prog. Org. Coat.* 2015, 78, 395–403. [CrossRef]
4. Atta, A.M.; Shaker, N.; Maysour, N. Influence of the molecular structure on the chemical resistivity and thermal stability of cured Schiff base epoxy resins. *Prog. Org. Coat.* 2006, 56, 100–110. [CrossRef]
5. Atta, A.M.; Ahmed, M.A.; Al-Lohedan, H.A.; El-Faham, A. Multi-Functional Cardanol Triazine Schiff Base Polymine Additives for Self-Healing and Super-Hydrophobic Epoxy of Steel Coating. *Coatings* 2020, 10, 327. [CrossRef]
6. El-Faham, A.; Atta, A.M.; Osman, S.M.; Ezzat, A.O.; El-Saeed, A.M.; Al Othman, Z.A.; Al-Lohedan, H.A. Silver-embedded epoxy nanocomposites as organic coatings for steel. *Prog. Org. Coat.* 2018, 123, 209–222. [CrossRef]
7. Atta, A.M.; El-Saeed, A.M.; El-Mahdy, G.M.; Al-Lohedan, H.A. Application of magnetite nano-hybrid epoxy as protective marine coatings for steel. *RSC Adv.* 2015, 5, 101923–101931. [CrossRef]
8. Atta, A.M.; Al-Lohedan, H.A.; Al-Haddad, K.A. Epoxy coating with embedded self-healing networks formed by nanogel particles. *RSC Adv.* 2016, 6, 41229–41238. [CrossRef]
9. Atta, A.M.; Al-Lohedan, H.A.; Ezzat, A.O.; Al-Hussain, S. Characterization of superhydrophobic epoxy coatings embedded by modified calcium carbonate nanoparticles. *Prog. Org. Coat.* 2016, 101, 577–586. [CrossRef]
10. Atta, A.M.; Al-Lohedan, H.A.; El-Saeed, A.M.; El-Shafey, H.I.; Wahby, M. Epoxy embedded with TiO$_2$ nanogel composites as promising self-healing organic coatings of steel. *Prog. Org. Coat.* 2017, 105, 291–302. [CrossRef]
11. Atta, A.M.; El-Saeed, A.M.; Al-Lohedan, H.A.; Wahby, M. Effect of Montmorillonite Nanogel Composite Fillers on the Protection Performance of Epoxy Coatings on Steel Pipelines. *Molecules* 2017, 22, 905. [CrossRef]
12. Atta, A.M.; Ezzat, A.O.; El-Saeed, A.M.; Wahby, M.H.; Abdallah, M.M. Superhydrophobic organic and inorganic clay nanocomposites for epoxy steel coatings. *Prog. Org. Coat.* 2020, 140, 105502. [CrossRef]
13. Ma, J.; Mo, M.-S.; Du, X.; Rosso, P.; Friedrich, K.; Kuan, H.-C. Effect of inorganic nanoparticles on mechanical property, fracture toughness and toughening mechanism of two epoxy systems. *Polymers* 2008, 49, 3510–3523. [CrossRef]
14. Wetzel, B.; Rosso, P.; Haupert, E.; Friedrich, K. Epoxy nanocomposites—fracture and toughening mechanisms. *Eng. Fract. Mech.* 2006, 73, 2375–2398. [CrossRef]
15. Marouf, B.T.; Mai, Y.-W.; Bagheri, R.; Pearson, R.A. Toughening of Epoxy Nanocomposites: Nano and Hybrid Effects. *Polym. Rev.* 2016, 56, 70–112. [CrossRef]

16. Kong, M.; Liu, C.; Tang, B.; Xu, W.; Huang, Y.; Li, G. Improved Mechanical and Thermal Properties of Trifunctional Epoxy Resins through Controlling Molecular Networks by Ionic Liquids. *Ind. Eng. Chem. Res.* 2019, 58, 8080–8089. [CrossRef]

17. Binks, F.C.; Cavalli, G.; Henningsen, M.; Howlin, B.J.; Hamerton, I. Examining the effects of storage on the initiation behaviour of ionic liquids towards the cure of epoxy resins. *React. Funct. Polym.* 2018, 133, 9–20. [CrossRef]

18. Xiao, F.; Wu, K.; Luo, F.; Yao, S.; Lv, M.; Zou, H.; Lu, M. Influence of Ionic Liquid-Based Metal–Organic Hybrid on Thermal Degradation, Flame Retardancy, and Smoke Suppression Properties of Epoxy Resin Composites. *J. Mater. Sci.* 2018, 53, 10135–10146. [CrossRef]

19. Maksym, P.; Tarnacka, M.; Dzienia, A.; Matuszek, K.; Chrobok, A.; Kaminski, K.; Paluch, M. Enhanced Polymerization Rate and Conductivity of Ionic Liquid-Based Epoxy Resin. *Macromolecules* 2017, 50, 3262–3272. [CrossRef]

20. Chen, S.; Zhang, J.; Zhou, J.; Zhang, D.; Zhang, A. Dramatic toughness enhancement of benzoxazine/epoxy thermosts with a novel hyperbranched polymeric ionic liquid. *Chem. Eng. J.* 2018, 334, 1371–1382. [CrossRef]

21. Binks, F.C.; Cavalli, G.; Henningsen, M.; Howlin, B.J.; Hamerton, I. Investigating the mechanism through which ionic liquids initiate the polymerisation of epoxy resins. *Polymers* 2018, 139, 163–176. [CrossRef]

22. Feng, J.; Loussala, H.M.; Han, S.; Ji, X.; Li, C.; Sun, M. Recent advances of ionic liquids in sample preparation. *TrAC Trends Anal. Chem.* 2020, 125, 115833. [CrossRef]

23. Nguyen, T.K.L.; Livi, S.; Pruvost, S.; Soares, B.G.; Duchet-Rumeau, J. Ionic liquids as reactive additives for the preparation and modification of epoxy networks. *J. Polym. Sci. Part A Polym. Chem.* 2014, 52, 3463–3471. [CrossRef]

24. Zheng, X.; Li, D.; Feng, C.; Chen, X. Thermal properties and non-isothermal curing kinetics of carbon nanotubes/ionic liquid/epoxy resin systems. *Thermochim. Acta* 2015, 618, 18–25. [CrossRef]

25. Dzienia, A.; Tarnacka, M.; Koperwas, K.; Maksym, P.; Ziemia, A.; Feder-Kubis, J.; Kaminski, K.; Paluch, M. Impact of Imidazolium-Based Ionic Liquids on the Curing Kinetics and Physicochemical Properties of Nascent Epoxy Resins. *Macromolecules* 2020, 53, 6341–6352. [CrossRef]

26. Fonseca, E.; Da Silva, V.D.; Klitzke, J.; Schrekker, H.; Amico, S. Imidazolium ionic liquids as fracture toughening agents in DGEBA-TETA epoxy resin. *Polym. Test.* 2020, 87, 106556. [CrossRef]

27. Wu, S.; Ladani, R.B.; Zhang, J.; Kinloch, A.J.; Zhao, Z.; Ma, J.; Zhang, X.; Mouritz, A.P.; Ghorbani, K.; Wang, C.H. Epoxy nanocomposites containing magnetite-carbon nanofibers aligned using a weak magnetic field. *Polym. 2015, 68*, 25–34. [CrossRef]

28. Medeiros, A.M.M.S.; Parize, A.L.; Oliveira, V.M.; Neto, B.A.D.; Bakuzis, A.F.; Sousa, M.H.; Rossi, L.M.; Rubim, J.C. Magnetic Ionic Liquids Produced by the Dispersion of Magnetic Nanoparticles in 1-n-Butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (BMI.NTf2). *ACS Appl. Mater. Interfaces* 2012, 4, 5458–5465. [CrossRef]

29. Scholten, J.D.; Leal, B.C.; Dupont, J. ChemInform Abstract: Transition Metal Nanoparticle Catalysis in Ionic Liquids. *Chemin* 2012, 43. [CrossRef]

30. Atta, A.M.; Moustafa, Y.M.; Ezzat, A.O.; Hashem, A.I. Novel Magnetic Silica-Ionic Liquid Nanocomposites for Wastewater Treatment. *Nanomater.* 2019, 10, 71. [CrossRef]

31. Zeng, D.; Zhang, H.; Wang, B.; Sang, K.; Yang, J. Effect of Ammonia Concentration on Silica Spheres Morphology and Solution Hydroxyl Concentration in Stober Process. *J. Nanosci. Nanotechnol.* 2015, 15, 7407–7411. [CrossRef]

32. Bagheri, M.H.; Masterifarhahani, M.; Ghorbani, M. Synthesis and characterization of heteropolytungstate-ionic liquid supported on the surface of silica coated magnetite nanoparticles. *J. Magn. Magn. Mater.* 2013, 327, 58–63. [CrossRef]

33. Lee, W.G.; Hwang, J.; Kang, S.W. Control of nanoporous polymer matrix by an ionic liquid and water pressure for applications to water-treatment and separator. *Chem. Eng. J.* 2016, 284, 37–40. [CrossRef]

34. Rosenholm, J.M.; Zhang, J.; Sun, W.; Gu, H.-C. Large-pore mesoporous silica-coated magnetite core-shell nanocomposites and their relevance for biomedical applications. *Microporous Mesoporous Mater.* 2011, 145, 14–20. [CrossRef]
35. Lee, C.H.; Park, S.H.; Chung, W.; Kim, J.Y.; Kim, S.H. Preparation and characterization of surface modified silica nanoparticles with organo-silane compounds. *Colloids Surf. A Physicochem. Eng. Asp.* **2011**, *384*, 318–322. [CrossRef]

36. Zhang, Z.; Kong, J.-L. Novel magnetic Fe$_3$O$_4$@C nanoparticles as adsorbents for removal of organic dyes from aqueous solution. *J. Hazard. Mater.* **2011**, *193*, 325–329. [CrossRef]

37. Jouyandeh, M.; Shabanian, M.; Khaleghi, M.; Parand, S.M.R.; Ghiyasi, S.; Vahabi, H.; Formela, K.; Puglia, D.; Saeb, M.R. Acid-aided epoxy-amine curing reaction as reflected in epoxy/Fe$_3$O$_4$ nanocomposites: Chemistry, mechanism, and fracture behavior. *Prog. Org. Coat.* **2018**, *125*, 384–392. [CrossRef]

38. Jouyandeh, M.; Rahmati, N.; Movahedifar, E.; Hadavand, B.S.; Karami, Z.; Ghaffari, M.; Taheri, P.; Bakhshandeh, E.; Vahabi, H.; Ganjali, M.R.; et al. Properties of nano-Fe$_3$O$_4$ incorporated epoxy coatings from Cure Index perspective. *Prog. Org. Coat.* **2019**, *133*, 220–228. [CrossRef]

39. Atta, A.M.; Hameed, R.S.A.; Al-Lohedan, H.A.; Ezzat, A.O.; Hashem, A.I. Magnetite doped cuprous oxide nanoparticles as modifier for epoxy organic coating. *Prog. Org. Coat.* **2017**, *112*, 295–303. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).