Systems biology

NetQuilt: deep multispecies network-based protein function prediction using homology-informed network similarity

Meet Barot 1,*, Vladimir Gligorijević2, Kyunghyun Cho1 and Richard Bonneau1,2,*

1Center for Data Science, New York University, New York, NY 10011, USA and 2Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA

*To whom correspondence should be addressed.

Associate Editor: Pier Luigi Martelli

Received on August 18, 2020; revised on February 4, 2021; editorial decision on February 7, 2021; accepted on February 9, 2021

Abstract

Motivation: Transferring knowledge between species is challenging: different species contain distinct proteomes and cellular architectures, which cause their proteins to carry out different functions via different interaction networks. Many approaches to protein functional annotation use sequence similarity to transfer knowledge between species. These approaches cannot produce accurate predictions for proteins without homologues of known function, as many functions require cellular context for meaningful prediction. To supply this context, network-based methods use protein-protein interaction (PPI) networks as a source of information for inferring protein function and have demonstrated promising results in function prediction. However, most of these methods are tied to a network for a single species, and many species lack biological networks.

Results: In this work, we integrate sequence and network information across multiple species by computing IsoRank similarity scores to create a meta-network profile of the proteins of multiple species. We use this integrated multispecies meta-network as input to train a maxout neural network with Gene Ontology terms as target labels. Our multispecies approach takes advantage of more training examples, and consequently leads to significant improvements in function prediction performance compared to two network-based methods, a deep learning sequence-based method and the BLAST annotation method used in the Critical Assessment of Functional Annotation. We are able to demonstrate that our approach performs well even in cases where a species has no network information available: when an organism’s PPI network is left out we can use our multi-species method to make predictions for the left-out organism with good performance.

Availability and implementation: The code is freely available at https://github.com/nowittynamesleft/NetQuilt. The data, including sequences, PPI networks and GO annotations are available at https://string-db.org/.

Contact: mmb557@nyu.edu or rb133@nyu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Sequences have been the primary source of information protein function prediction, mainly because of their abundance and the ease with which many models can incorporate large amounts of sequence data. However, for function prediction, sequence information fails to give the context of a protein in an organism; this context can be highly relevant in determining the protein’s function. Protein interaction networks, on the other hand, offer a way to understand how proteins function in cellular pathways, and thus have been a powerful source of information for inferring the functions of unannotated proteins (Chen et al., 2014; Cho et al., 2016; Milenković and Pržulj, 2008; Mostafavi et al., 2008; Sharan et al., 2007).

In community benchmarks, such as the Critical Assessment of Functional Annotation (CAFA), the best-performing methods rely on multiple complementary data sources—protein sequence, structure and network information—in order to make more accurate predictions (Radivojac et al., 2013; Rentzsch and Orengo, 2009; Zhou et al., 2019). There are many reviews of protein function prediction methods in general (Friedberg, 2006; Kihara, 2016; Lee et al., 2007; Rentzsch and Orengo, 2009). Most previous network-based approaches integrate different types of networks containing complementary information to achieve state-of-the-art performance (Cho
et al., 2016; Gligorijević et al., 2018; Mostafaviet al., 2008), but are limited to training on and making predictions for a single organism’s proteins. Methods for sequence and structure-based function prediction are numerous (Cazzato et al., 2016; Gligorijević et al., 2019; Gong et al., 2016; Kulmanov and Hoehndorf, 2020); these methods are inherently able to predict functions for proteins of multiple organisms, and can have certain other advantages such as region specificity for predictions (Gligorijević et al., 2019; Koo and Bonneau, 2019; Vacic et al., 2010). A remaining challenge is using the vast amounts of network information from multiple species in a single model.

Our method, NetQuilt, accomplishes several important goals in function prediction. First, NetQuilt allows for the integration of sequences and networks, which allows the limited knowledge of the homology between proteins to be supplemented by knowledge of the network topology, and vice versa—incomplete protein-protein interaction networks are supplemented by homology. NetQuilt also creates protein features that are not tied to single species and that include evolutionary and functional information. As a result of the increased training examples in the multispecies setting compared to methods considering only single species, rarer Gene Ontology (GO) (Ashburner et al., 2000) terms are able to be trained on. The much larger set of training examples also serves to improve prediction on more abundant terms. Most importantly, our method enables network-based function prediction even for species for which knowledge of their protein interaction networks is limited. We demonstrate the achievement of these goals in several settings. We compare the quality of protein features of a single organism in a single species versus a multispecies setting. We show that multispecies features are more indicative of a protein’s function than single-species features. We also test the model’s ability to predict functions of a species whose entire PPI network is missing, with the model trained on all other species in the set being considered, in an approach termed ‘leave one species out’ (LOSO). We demonstrate that our model is capable of using information from other species to correctly infer functions of the missing species.

2 Related work

Protein function prediction using PPI networks is a node classification problem, the methods for which can be categorized into two groups: label-propagation methods, and classifiers trained on graph features. Label propagation methods propagate labels from labeled nodes to unlabeled nodes via random walks; this strategy is used to predict protein function in a method called GeneMANIA (Mostafaviet al., 2008). Another approach, FunctionalFlow, uses the idea of network flow to propagate labels based on simple local rules (Nabieva et al., 2005). The category of classifiers trained on graph features can be split further into two categories: those that manually engineer features from the network data, or those methods that learn network embeddings of nodes in order to be used in a classifier. The manually engineered graph features can be based on graph measures such as node degree, neighborhood size within some number of steps, number of shortest paths, etc. Other features that can be constructed over nodes include graphlets (Milenković and Pržulj, 2008; Pržulj, 2007; Vacic et al., 2010), and random walk profiles of nodes within their graph, which have been extended and applied to heterogeneous and multiplex biological networks (Li and Patra, 2010; Valdeolmillos et al., 2019). Network embedding has been extensively used in protein functional analysis and includes methods based on matrix factorization (Cho et al., 2016), graph kernels (Fan et al., 2019) and deep learning (Gligorijević et al., 2018; Wan et al., 2019; Zitnik and Leskovec, 2017). A comprehensive review of network embedding in computational biology compared to other types of network-based algorithms for several applications can be found in Nelson et al. (2019), and reviews of network representation learning methods in general can be found in Hamilton et al. (2017) and Goyal and Ferrara (2018).

Our previous study (Gligorijević et al., 2018) introduced a method called deepNF (deep Network Fusion), which involves using a multimodal autoencoder to create embeddings of nodes from different types of protein-protein interaction networks of an organism. These embeddings are then used to train support vector machines (SVM) to predict GO terms. This method outperformed other methods using different types of interaction networks to predict function, including Mashup (Cho et al., 2016) and GeneMANIA (Mostafaviet al., 2008), all of which had access to six STRING network types (‘experimental’, ‘coexpression’, ‘cocurrence’, ‘neighborhood’, ‘fusion’ and ‘database’). This work demonstrated that multimodal autoencoder neural networks could effectively extract functionally informative features from graphs with multiple edge types. Another method, STRING2GO, uses max-out neural networks in order to create functional representations of proteins from protein interaction networks of a single species (Wan et al., 2019). The maxout network is trained to predict GO terms from Mashup or Node2Vec (Grover and Leskovec, 2016) node embeddings, and the representations of each protein is taken from the layer before the output predictions. These representations are then used to train SVMs to predict GO terms. The authors show that these representations are able to outperform the original Mashup and Node2Vec embeddings of PPI networks when used to train SVMs for the function prediction task. In Zitnik and Leskovec (2017), an unsupervised neural network is used to learn embeddings from a tissue-specific multi-layer PPI graph. These task-independent embeddings are then used to predict multi-cellular function.

However, these methods are limited to using information from single organisms for prediction, because they operate on a feature space common only to proteins of that organism. A better approach would be to take into account information from proteins of many different organisms at once in order to take advantage of large-scale training sets. A few methods make use of information from protein interaction networks of multiple species. One such method is NetGO, an ensemble learning-to-rank method that combines six component methods, one of which is a k-nearest-neighbors method that uses PPI networks of multiple species (You et al., 2019). One drawback to this method is that it is unable to use the homology information in any way beyond direct transfer of annotation between homologues. Ideally, a protein function prediction method should be able to use homology information to supplement network information even on proteins whose sequences are not similar to the training set protein sequences. In addition, MetaGO (Zhang et al., 2018) is a method that combines scores of sequence homology, structure alignment and homologues of PPI network neighbors combined with logistic regression in order to transfer functional annotations. This method is unable to predict function for a protein without either a sequence homolog, a structurally similar protein in the training set or with a network neighbor with a training set homolog. Another method, MUNK, is a kernel-based method that produces functional embedding vectors for proteins that are then used to order similarity between sets of proteins (Fan et al., 2019); they additionally demonstrate that proteins close in this embedding space are similar in function. The key idea of their approach is that proteins from different species are embedded in the same vector space using graph kernels with landmark proteins in the networks of the two species that perform the same functions.

The problem of network alignment is to find topological and functional similarities between nodes of different networks. Local network alignment algorithms aim to find subgraphs which are conserved between input networks, while the goal of global network alignment algorithms is to find mappings of all nodes between the input networks. Most network alignment methods focus on this latter goal (Gligorijević et al., 2016; Liao et al., 2009; Malod-Dognin and Pržulj, 2015; Patro and Kingsford, 2012; Saraph and Milenković, 2014; Singh et al., 2008; Vijayanet al., 2015). IsoRank (Singh et al., 2008) is a global network alignment algorithm used to align multiple PPI networks. This is done in two stages: first by solving an eigenvalue problem across all pairs of input networks to obtain protein similarity scores, and then by using k-partite matching methods on the final alignments to find homologs for all organisms, and functional orthologs across species. IsoRankK (Liao et al., 2009) was developed as an improvement to the alignment extraction portion of
IsoRank in which instead of k-partite matching, spectral clustering was applied to the meta-graph of all organisms’ proteins induced by the similarity scores given by the eigenvalue problem. More recent global network alignment algorithms include L-GRAAL (Malod-Dognin and Przulj, 2015), which uses a graphlet similarity-scoring function used with a search heuristic based on Lagrangian relaxation, and GHOS,T, whose key step uses a signature of nodes based on the spectrum of the normalized Laplacian of local subgraphs; this signature is then used to measure topological similarity of networks (Patro and Kingsford, 2012). Fuse (Gilgorevijetc et al., 2016) is another network alignment method consisting of two steps. The first step calculates functional similarity between proteins using a weighted sum of scores from a non-negative matrix tri-factorization of all considered PPI networks and sequence similarity. The second step constructs an edge-weighted k-partite graph (where k is the number of PPI networks) from these similarities and then obtains the one-to-one network alignment using an approximate maximum weight k-partite matching solver. A comprehensive review of biological network alignment can be found in Faisal et al. (2015). Other algorithms for network alignment include those that focus on finding small network region similarities conserved among networks, unconstrained by the assumption of one-to-one mapping of nodes. These algorithms fall into the local network alignment category. A comparison study of local and global network alignment methods can be found in Meng et al. (2016), where it was found that network topology has additional biological knowledge compared to sequence data; additionally, global and local network alignment methods may give complementary information for protein function prediction.

In this study, we use the first step of IsoRank to integrate sequence homology information with PPI network information to generate functionally informative similarity scores between species as well as within species themselves. We use these similarity scores for every protein as its feature representation to enable the training of a neural network with proteins coming from many different organisms’ PPI networks in the same input space.

3 Materials and methods

In this section, we describe the problem of protein function prediction from PPI network and homology information, define our performance measures and outline the components of our method, NetQuilt. These components are the global network alignment algorithm for creating both intranetwork (within-species) and internetwork (between proteins in different species) node-similarity profiles, and the maxout network, which uses the concatenated aligned-network vectors to predict Gene Ontology (GO) terms. See Figure 1 for an overview of the procedure.

3.1 Problem specification

Consider a set of N_{org} undirected graphs, where each graph is a protein-protein interaction network of a different organism. The graphs each have a set of nodes representing proteins for each organism, and a set of edges representing the interactions between these proteins. The graphs are represented by adjacency matrices $\{A_1, A_2, \ldots, A_{N_{org}}\}$. Consider further that we have a set $\{R_{1}, R_{1,2}, R_{1,3}, \ldots, R_{N_{org}}, R_{2,2}, R_{2,3}, R_{2,4}, \ldots, R_{N_{org},N_{org}}\}$ of edges representing homology links, between all proteins of all species. Our objective is to assign a predicted GO score vector $\tilde{y}_i \in \mathbb{R}^T$ to each protein i, where \mathbb{R} is the number of considered terms of a particular GO branch, and each entry \tilde{y}_{ij} in \tilde{y}_i is a score between 0 and 1 representing the confidence of assigning the jth GO term to protein i.

3.2 Evaluation metrics

We evaluate our predictions with three function-centric measures; precision recall curve (AUPR), under macro and micro averaging, as well as function-centric F1-score, and two protein-centric measures; accuracy, and F-max score.

Under macro averaging, AUPR is calculated for each GO term label in the prediction matrix, and then averaged across all terms. Under micro averaging, the label and prediction matrices are vectorized, and then AUPR is computed across the resulting label and prediction vectors. We calculate F-1 score as in Gilgorevijetc et al. (2018) and as previously introduced in Cho et al. (2016); we take the top three scoring terms for each protein as ‘positive’ predictions, and calculate the geometric mean of precision and recall under ‘micro’ averaging for all terms. We have chosen AUPR, rather than the area under the ROC curve, because the ROC can mask poor classification performance in datasets where there is an imbalance of positive labels, which is the case in protein function prediction (Saito and Rehmsmeier, 2015).

The remaining two, accuracy and F-max score, are protein-centric measures. We define accuracy to be the proportion of proteins that were assigned all of their correct GO terms, with no additional terms, using a threshold of 0.5 for assignment. F-max is calculated as in the CAFA competition (Zhou et al., 2019): for each protein, calculate the precision and recall of all GO term predictions for a given threshold between 0 and 1, averaging across all proteins, and compute the F-1 score for all thresholds. F-max is then the maximum of these F-1 scores.

3.3 Creating multispecies similarity profiles with IsoRank

Our method computes profiles of the nodes in all species’ networks, creating a shared feature space for all proteins, which we then use to train a maxout neural network to predict protein function. We first compute similarity scores between proteins of different species in a way derived from the IsoRank method of multispecies network alignment (Singh et al., 2008). The scores are given by the following recurrence equation:

$$ S_{ij}^{t+1} = \alpha S_{ij}^t A_i + (1 - \alpha) R_{ij} $$

(1)

where:

- S_{ij}^t is the similarity matrix between networks (species) i and j after t steps of diffusion;
- R_{ij} is the blast e-value similarity between protein i in network (species) i and protein j in network (species) j, with a maximum e-value cutoff of 1e-3 and with the log score scaled between 0 and 1;
- A_i, A_j are the row-normalized adjacency matrices of networks (species) i and j.

Starting with $S_{ij}^{(0)} = \Gamma^{\omega/8}$, we iterate this calculation (Equation 1) until convergence with respect to the norm of the difference between the previous matrix $S_{ij}^{(t-1)}$ and the current matrix $S_{ij}^{(t)}$. We then calculate IsoRank similarity scores between proteins within each species. This computes’alignment’ scores between a network and itself, integrating sequence homology scores computed using BLAST and protein-protein interactions.

We can now construct a large symmetric matrix S in which the IsoRank similarity matrices of all species with themselves are placed along the diagonal, resulting in a block-diagonal matrix. Next, each interspecies protein similarity matrix S_{ij} is placed on the off-diagonal, comprising the submatrix with row indices of the proteins of species i and column indices of the proteins of species j. Refer to steps B, C, D, E and F in Figure 1 for a visual description of this matrix construction. S now contains the information from all the individual protein interaction networks as well as the links between them, integrated with sequence-similarity information. We finally use this matrix as input to a maxout neural network, with each row of the matrix S being used as a single training sample. We note that since the maxout neural network input depends on the dimensionality of S, the total number of proteins considered by the algorithm is limited by the available GPU memory to contain a batch of training samples.
3.4 Using maxout neural networks to predict protein function from aligned Meta-network features

Maxout neural networks, introduced in Goodfellow et al. (2013), are neural networks whose layers have the maxout activation function. The maxout activation of a layer is the element-wise maximum of a set of affine transformations to the input of that layer. More explicitly, a maxout layer’s i^{th} output value h_i given an input $x \in \mathbb{R}^d$ is defined as:

$$h_i(x) = \max_{j=1}^{k} z_{ij}$$

where $z_{ij} = x^T W_{ij} + b_{ij}$ is the j^{th} element of the i^{th} affine transformation of the input vector with learned parameters $W \in \mathbb{R}^{d \times m \times k}$ and $b \in \mathbb{R}^{m \times k}$. Maxout activation functions are able to approximate arbitrary convex functions given a sufficient number of maxout units, i.e., affine transformations, and therefore enable the neural network to learn not only relationships between hidden units but also the activation functions themselves. This provides additional flexibility, which enables the neural network to learn features that are more specifically tailored to a prediction task.

Goodfellow et al. (2013) also demonstrated that maxout networks more precisely approximate the average over all neural networks from a set of affine transformations to the input of that layer. This can be interpreted as a more effective approximation of an ensemble of these neural networks. This applies to the ReLU activation function as well: in fact, maxout activation can be seen as a generalization of ReLU, which is itself a piecewise linear function. However, maxout activation does not have the problem of output units ‘dying’—becoming and staying at 0 during optimization.

The architectures for our models are listed in Table 1 (see also part G in Fig. 1). To avoid overfitting, we use early stopping with the criterion of improving AUPR calculated over a validation set consisting of 20% of the training data, with patience 30 (i.e., if the AUPR score does not improve in 30 consecutive epochs, the training is stopped).

The architectures were chosen using cross-validation performance on datasets for eukaryotes and bacteria using a previous version of the STRING (v10.5) database (Szklarczyk et al., 2017) for annotations and network information. The hyperparameter search started with an architecture based on Wan et al. (2019), with three rounds of random search, trying 1% of possible models each round.

We include a list of hyperparameter ranges for these rounds, as well as a description of this process, in Supplementary Section S5. Empirically, maxout neural networks performed better than neural networks with sigmoid or ReLU activation functions for this task. Other benefits of maxout neural networks include fast gradient...
computations relative to other activation functions, e.g. sigmoid, and fewer choices of hyperparameters, since the activation function is learned. The models were implemented using Keras (Chollet et al., 2015).

3.5 Datasets
We conduct our analyses on both a collection of eukaryote networks and a separate collection of bacteria networks. Each dataset consists of STRING PPI networks, of which we use only the ‘experimental’ category for our method, and Gene Ontology annotations of each organism retrieved from STRING version 11 (Szklarczyk et al., 2017). The statistics on the organisms we include in our study are given in Supplementary Figures S1 and S2, which show the networks’ largest connected component ratios and the annotation percentages of proteins present in STRING. The numbers in our study are given in Supplementary Figures S1 and S2, which show the networks’ largest connected component ratios and the annotation percentages of proteins present in STRING. The numbers in our study are given in Supplementary Figures S1 and S2, which show the networks’ largest connected component ratios and the annotation percentages of proteins present in STRING.

3.6 Cross-validation
In our first set of evaluations, in order to compare with single-species methods, we perform cross-validation on a single test species at a time. The performance is averaged over 5 repetitions with 20% of data used as the test set. We train our models, as well as the BLAST baseline, on GO term annotations of any evidence code (Ashburner et al., 2000), but evaluate our predictions with annotations covering between 0.5% - 5% of the species’ proteins in its PPI network (including IEA annotations), and remove proteins without annotations of these GO terms from training and evaluation sets. We note that GO terms, organized in a hierarchy, are dependent on each other, and so average performance across all terms can be influenced by these relationships. A table of the number of GO terms that we consider for both cross-validation and leave-one-species-out validation for each organism can be found in Supplementary Table S3. However, by choosing specific GO terms, with annotations covering between 0.5%-5% of a given organism’s proteome, we reduce the influence of the hierarchy on the aggregated performance as a result of removing the more general terms.

training the maxout neural network only on the S_{11} matrix for human proteins represented in Fig. 1E).

These benchmarks allow us to disentangle the effects that the number of training examples and the addition of new features have on performance. In addition to these, we also include deepNF, BLAST [propagating labels from training to test proteins based on sequence similarity as in CAFA (Radivojac et al., 2013)], DeepGOPlus (Kulmanov and Hoehndorf, 2020) and MetaGO. DeepNF includes information from STRING network types not used by our models: i.e. the coexpression, cooccurrence, neighborhood, and database networks. BLAST, like our main multispecies model, uses proteins from all organisms in the set of chosen species to make predictions on the cross-validation test proteins. DeepGOPlus is a method combining predictions from a deep convolutional neural network and homology-based annotation transfer. DeepGOPlus was trained on its original training set described in Kulmanov and Hoehndorf (2020) with the default parameters, but with proteins present in our test sets removed for each evaluation.

The next set of experiments we performed simulate a scenario in which we use the networks of multiple species in order to predict the functions of proteins of an organism with no PPI network available (a reasonably common occurrence for non-model species). An outline of the procedure is shown in Figure 2.

We first take a single organism with its annotations left out from training and used as the test set, and leave out the network for that organism. In order to construct the features of the organism for use
in the maxout neural network, we first need to obtain interspecies connections between the test organism and all other organisms in the dataset. To do this, we first calculate the sequence similarity between the test organisms’ proteins and all other organisms’ proteins, and run IsoRank in the previously described way, except that we use the identity matrix in place of the PPI network of the left-out organism. We obtain an $n_1 \times n_{\text{test}}$ interspecies protein similarity matrix $S_{{\text{test}}}$, relating each species’ n_1 proteins with the test species’ n_{test} proteins. We then perform a one-mode projection, given by $E_{S_{\text{test}}}^{ST}$, which predicts connections between the nodes of the test species from their shared neighbors (through the IsoRank connections) in other species. Since we have a prediction matrix for every other species in the set besides the test species, we take the element-wise mean of these different matrices to get the predicted network A_{test}. Finally, using this matrix as a proxy for a real PPI network, we run IsoRank on the matrix with itself, combined with its own species’ BLAST connections, to obtain the matrix $S_{\text{test,test}}$. In these LOSO evaluations, we did not remove any network information from MetaGO. It was run under default settings to predict function for the given organisms.

4 Results

In the following sections, we present the performance of our method in two evaluation settings. The first setting is cross-validation over the annotations of a single species, in which we can compare our method to single-species network-based methods. The second setting is leave-one-species-out (LOSO) evaluation, in which we leave out both a species’ PPI network and its annotations while using the rest of the organisms to train, as outlined in the previous section.

4.1 Cross validation over annotations of one species

We present the performance of our method in cross-validation on human, fly, mouse and E.coli. We summarize our results using AUPR under micro and macro averaging, accuracy score (Acc), F1 score and F-max, as described in Section 3.2. We show results separately for the three different branches of Gene Ontology, molecular function (MF), biological process (BP) and cellular component (CC).

In Figures 3–5, we see that the NetQuilt network trained on model bacteria proteins outperforms the other methods across the three branches of Gene Ontology for E. coli, human and mouse, for macro and micro AUPRs, F1 score and F-max. This can primarily be attributed to the large number examples included in the training set compared to the benchmark versions of NetQuilt and deepNF, which can only run on a single organism. In addition, the diversity of training examples across multiple species also serves to increase performance, as indicated by the higher performance of the maxout network trained on subsampled sets of annotations from multiple species equal in size to the training set for a single species. As for the methods taking multiple species’ annotations into account, NetQuilt has several advantages allowing it to perform better. Compared to DeepGOPlus, NetQuilt has access to PPI information of several species, whereas DeepGOPlus only uses sequence information. Compared to MetaGO, NetQuilt’s high-capacity neural network is able to learn more complex dependencies between homology and network topology to predict function. However, for the accuracy measure, NetQuilt performs worse than the other methods. It is likely that the 0.5 cutoff, which we use to consider a GO term ‘predicted’ in the accuracy measure, is not optimal for NetQuilt, as its predictions are not necessarily calibrated for classification for that particular cutoff.

For fly, shown in Figure 6, deepNF outperforms our method in the biological process and cellular component branches for the macro and micro AUPR, accuracy and F1 scores. We note that
deepNF has additional information—the coexpression, cooccurrence, neighborhood, fusion and database networks—in addition to the experimental PPI network from STRING, while our method incorporates only the experimental network and BLAST connections. The performance of the CAFA BLAST baseline method also performs poorly for fly, which reflects the smaller number and magnitude of BLAST connections between fly and the other organisms (see Supplementary Fig. S7 for network and homology comparisons between eukaryotes). Similarly, for biological process and cellular component, both DeepGOPlus and MetaGO perform relatively poorly compared to their performance in molecular function. This indicates that the homology of the organisms in the set does not give as much information as the other sources of information that deepNF takes into account for the fly protein function prediction task. Since our method also relies on homology information, we expect a corresponding decrease in performance when such information is not as salient to the classification task. We see this effect also in the maxout network trained in the subsampled setting, where homology information from the proteins of other organisms is included in the training data at the expense of other proteins in the fly network.

For all organisms, NetQuilt trained only on a single species’ annotations performs similarly whether it uses multispecies features or single-species features. For *E. coli* and human, training on multispecies features gives slightly better performance with regard to the molecular function ontology than training on single-species features. However, for cross-validation on human in the biological process ontology, the multispecies features actually decrease performance.

This is because adding a significantly larger number of features without increasing the number of training examples has limited benefits, with a higher number of parameters needing more samples to train on. On the other hand, both of these baseline models’ performances are comparable to that of deepNF for the molecular function ontology for all of the considered organisms. This suggests that the features based on PPI networks integrated with homology through our method can enable the neural network to have competitive performance even without large numbers of training examples.

4.2 Leave-one-species-out validation

In order to explore the performance of our method in a situation in which no PPI interaction network is known for an organism but homology information is present, we present results for *E. coli* and fly LOSO validation in Figures 7 and 8, and for human and mouse in Supplementary Figures S3 and S4. This setting often describes the case for many newly sequenced species; mass spectrometry or yeast-two-hybrid data may not be available for such organisms.

For *E. coli*, we see that our model outperforms the CAFA BLAST labeling method, DeepGOPlus and MetaGO. There are annotations available from all other bacteria, including another well-annotated strain of *E. coli* (K-12 substr. W3110; see Supplementary Fig. S2). BLAST can use these presumably useful homologs in transferring annotations to the *E. coli* K-12 substr. MG1655, our test organism. However, even with this information, our method outperforms BLAST by more than double in the macro-AUPR performance for biological process, and by similarly large margins in the molecular function and cellular component ontologies. MetaGO does do better than the other two benchmark methods, likely because the *E. coli* PPI network information, which was removed for NetQuilt, is quite relevant to the function prediction task. In addition, MetaGO has access to annotations of some test set proteins, given that the default dataset included with the method was not modified.

For fly, we see NetQuilt generally outperforming the CAFA BLAST labeling method, though for cellular component, the improvement is not as significant. In terms of F-max score, NetQuilt outperforms all other benchmark methods, but MetaGO and DeepGOPlus outperform NetQuilt in the other measures. We note that for MetaGO, the PPI network for fly was not removed, as it was run with its default dataset and settings. This likely contributed to MetaGO’s performance, since NetQuilt outperformed MetaGO.
when both methods had access to the fly network in the cross-validation setting.

On human and mouse (see Supplementary Figs S3 and S4), our model performs approximately as well as the CAFA BLAST labeling method. The BLAST labeling method performs much better for these organisms than it does for fly and E. coli. When homology information is highly informative, as is the case in human and mouse, BLAST is difficult to improve upon. However, in cases where homology is not as informative for the annotation task, the complementary PPI data used by our model allows for significant improvements in performance.

We observe consistent underperformance of DeepGOpPlus across E. coli, human and mouse organisms in LOSO which could be explained by the fact the DeepGOpPlus was trained only on experimental annotations and the removal of the entire organism greatly impairs its performance. MetaGO, too, relies only on experimental evidence codes to transfer annotations to the test proteins. This could be one reason that both MetaGO and DeepGOpPlus perform worse than NetQuilt and the BLAST baseline for human and mouse.

These results show that our method of integrating multiple species’ PPI networks and their homology link information can be used effectively to annotate proteins for organisms for which neither PPI network nor annotations are available. In particular, it shows that evidence codes to transfer annotations to the test proteins. This could be one reason that both MetaGO and DeepGOpPlus perform worse than NetQuilt and the BLAST baseline for human and mouse.

This method shows promise for training deep learning models on large multispecies PPI network datasets. In light of the informative representations learned by deep-learning algorithms trained on sequence datasets with millions of training examples, we have a vision of applying deep learning techniques similarly to the millions of nodes in all PPI networks. In future work, we hope to explore principled ways of integrating much larger numbers of PPI networks with homology information for function prediction.

Acknowledgements

The authors thank Nicholas Carriero and Ian Fisk of the Flatiron Institute for discussion and help with high performance computing.

Funding

R.B. and V.G. acknowledge funding from the Simons Foundation (M.B., K.C. and R.B. acknowledge funding from National Science Foundation (NSF) [1922658] and New York University, R.B. and M.B. acknowledge funding from NSF Chemical, Bioengineering, Environmental and Transport Systems (CBE) [CBE-1728858], National Institutes of Health (NHI) Centers for Excellence in Genomic Science [RM1HG011014], NIH [R01HD096770 and R01CA229235]. K.C. acknowledges funding from Samsung Research (Improving Deep Learning using Latent Structure).

Conflict of Interest: The authors declare that there is no conflict of interest regarding this work.

References

Ashburner, M. et al. (2000) Gene Ontology: tool for the unification of biology. *Nat. Genet.*, 25, 25–29.

Chen, B. et al. (2014) Identifying protein complexes and functional modules—from static PPI networks to dynamic PPI networks. *Brief. Bioinf.*, 15, 177–194.

Cho et al. (2016) Compact integration of multi-network topology for functional analysis of genes. *Cell Syst.*, 3, 348.e5.

Chollet, F. et al. (2015) Keras. https://keras.io (accessed July 2020).

Cozzetto, D. et al. (2016) FPred 3: feature-based function prediction for all gene ontology domains. *Sci. Rep.*, 6, 1–11.

Duchi, J. et al. (2011) Adaptive subgradient methods for online learning and stochastic optimization. *J. Mach. Learn. Res.*, 12, 2121–2159.

Faisal, F. E. et al. (2015) The post-genomic era of biological network alignment. *EURASIP J. Bioinf. Syst. Biol.*, 2015, 3.

Fan, J. et al. (2019) Functional protein representations from biological networks enable diverse cross-species inference. *Nucleic Acids Res.*, 47, e51.

Friedberg, L. (2006) Automated protein function prediction—the genomic challenge. *Brief. Bioinf.*, 7, 225–242.

Gligorijević, V. et al. (2016) Fuse: multiple network alignment via data fusion. *Bioinformatics*, 32, 1195–1203.

Gligorijević, V. et al. (2018) deepNF: deep network fusion for protein function prediction. *Bioinformatics*, 34, 3873–3881.

Gligorijević, V. et al. (2019) Structure-based function prediction using graph convolutional networks. *bioRxiv*. DOI: 10.1101/786236.

Gong, Q. et al. (2016) GoFdr: a sequence alignment based method for predicting protein functions. *Methods*, 93, 3–14.

Goodfellow, I. J. et al. (2013) *Deep learning*. International Conference on Machine Learning, PMLR 28:1319–1327.

Goyal, P. and Ferrara, E. (2018) Graph embedding techniques, applications, and performance: a survey. *Knowledge Based Syst.*, 151, 78–94.

Grover, A. and Leskovec, J. (2016) node2vec: scalable feature learning for networks. In *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*. San Francisco, California, USA: Association for Computing Machinery (ACM), pp. 855–864.

Hamilton, W. L. et al. (2017) Representation learning on graphs: methods and applications. *IEEE Data Engineering Bulletin*, New York, USA: IEEE, vol. 40, pp. 52–74.

Ioffe, S. and Szegedy, C. (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. International conference on machine learning, Lille, France: PMLR, vol. 37, pp. 448–456.

Kihara, D. (2016) Computational protein function predictions. *Methods*, 93, 1–2.

Koo, D. C. E. and Bonneau, R. (2019) Towards region-specific propagation of protein functions. *Bioinformatics*, 35, 1737–1744.

Kulmanov, M. and Hoehndorf, R. (2020) Deepgoplus: improved protein function prediction from sequence. *Bioinformatics*, 36, 422–429.

Lee, D. et al. (2007) Predicting protein function from sequence and structure. *Nat. Rev. Mol. Cell Biol.*, 8, 995–1005.
Li,Y. and Patra,J.C. (2010) Genome-wide inferring gene–phenotype relationship by walking on the heterogeneous network. *Bioinformatics*, 26, 1219–1224.

Liao,C.-S. et al. (2009) Isorankn: spectral methods for global alignment of multiple protein networks. *Bioinformatics*, 25, i253–i258.

Malod-Dognin,N. and Pržul,N. (2015) L-graal: Lagrangiangraphlet-based network aligner. *Bioinformatics*, 31, 2182–2189.

Meng,L. et al. (2016) Local versus global biological network alignment. *Bioinformatics*, 32, 3155–3164.

Milenković,T. and Pržul,N. (2008) Uncovering biological network function via graphlet degree signatures. *Cancer Inf.*, 6, CIN.S680.

Mostafavi,S. et al. (2008) Genemania: a real-time multiple association network integration algorithm for predicting gene function. *Genome Biol.*, 9, 54.

Nabieva,E. et al. (2005) Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps. *Bioinformatics*, 21, i302–i310.

Nelson,W. et al. (2019) To embed or not: network embedding as a paradigm in computational biology. *Front. Genet.*, 10, 381.

Patro,R. and Kingsford,C. (2012) Global network alignment using multiscale spectral signatures. *Bioinformatics*, 28, 3105–3114.

Pržul,N. (2007) Biological network comparison using graphlet degree distribution. *Bioinformatics*, 23, e177–e183.

Radivojac,P. et al. (2013) A large-scale evaluation of computational protein function prediction. *Nat. Methods*, 10, 221–227.

Rentzsch,R. and Orengo,C.A. (2009) Protein function prediction—the power of multiplicity. *Trends Biotechnol.*, 27, 210–219.

Saito,T. and Rehmsmeier,M. (2015) The precision-recall plot is more informative than the roc plot when evaluating binary classifiers on imbalanced datasets. *PLoS One*, 10, e0118432–21.

Saraph,V. and Milenković,T. (2014) MAGNA: Maximizing Accuracy in Global Network Alignment. *Bioinformatics*, 30, 2931–2940.

Sharan,R. et al. (2007) Network-based prediction of protein function. *Mol. Syst. Biol.*, 3, 88.

Singh,R. et al. (2008) Global alignment of multiple protein interaction networks with application to functional orthology detection. *Proc. Natl. Acad. Sci. USA*, 105, 12763–12768.

Soklaczycy,D. et al. (2017) The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. *Nucleic Acids Res.*, 45, D362–D368.

Vacic,V. et al. (2010) Graphlet kernels for prediction of functional residues in protein structures. *J. Comput. Biol.*, 17, 55–72.

Valdeolivas,A. et al. (2019) Random walk with restart on multiplex and heterogeneous biological networks. *Bioinformatics*, 35, 497–505.

Vijayan,V. et al. (2015) MAGNA++: Maximizing Accuracy in Global Network Alignment via both node and edge conservation. *Bioinformatics*, 31, 2409–2411.

Wan,C. et al. (2019) Using deep maxout neural networks to improve the accuracy of function prediction from protein interaction networks. *PLoSOne*, 14, e0209958.

You,R. et al. (2019) NetGO: improving large-scale protein function prediction with massive network information. *Nucleic Acids Res.*, 47, W379–W387.

Zhang,C. et al. (2018) Metago: predicting gene ontology of non-homologous proteins through low-resolution protein structure prediction and protein–protein network mapping. *J. Mol. Biol.*, 430, 2256–2265.

Zhou,N. et al. (2019) The cafa challenge reports improved protein function prediction and new functional annotations for hundreds of genes through experimental screens. *Genome Biol.*, 20, 1–23.

Zitnik,M. and Leskovec,J. (2017) Predicting multicellular function through multi-layer tissue networks. *Bioinformatics*, 33, i190–i198.