A preliminary study of microRNA expression in different types of primary melanoma

Ioana Gencia, Flavia Baderca, Stefania Avram, Armand Gogulescu, Anca Marcu, Edward Seclaman, Catalin Marian, Caius Solovan

ABSTRACT

MicroRNAs (miRNAs) have been proven to regulate the development and progression of cancer through various mechanisms. The aim of the present study was to compare miRNA expression between primary melanomas from different sites. We analyzed the expression of 84 miRNAs in 27 primary melanomas and 5 nevus formalin-fixed paraffin-embedded (FFPE) samples using the Human Cancer PathwayFinder miScript miRNA PCR Array. The FFPE samples were obtained from the archives of the Municipal Clinical Emergency Hospital of Timisoara and included 10 cutaneous melanomas, 10 uveal melanomas, 7 mucosal melanomas, and 5 cutaneous nevi. Out of 84 miRNAs, 11 miRNAs showed altered expression in all types of melanoma compared with the nevi. Among these, miR-155-5p, miR-9-5p, miR-142-5p, miR-19a-3p, miR-134-5p, and miR-10a-3p were upregulated, while miR-205-5p, miR-203a-3p, miR-27b-3p, miR-218-5p, and miR-23b-3p were downregulated. The highest similarity in miRNA expression pattern was found between uveal and mucosal melanoma groups, i.e., 15 miRNAs had altered expression in both groups. Overall, we identified several miRNAs with significantly altered expression in primary melanomas, including those reported for the first time in this type of cancer. Among them, mir-9-5p, mir-203a-3p, mir-19a-3p, mir-134-5p, and mir-218-5p showed altered expression in all three melanoma types vs. nevi. Further research should explore the potential of these miRNAs in melanoma.

KEYWORDS: microRNA; primary melanoma; miScript miRNA PCR Array

INTRODUCTION

Primary melanoma, a malignant neoplasm of melanocytes, can be highly aggressive and has an increasing incidence worldwide [1]. In 2016, 76,380 new cases of melanoma were estimated in the United States (US) from which approximately 10,130 cases would be fatal [2]. Romania and other countries from Central and Eastern Europe show a higher incidence of 111 primary melanomas at advanced stage compared with Western Europe, which may be due to the lack of proper health education in these countries, among other reasons [3]. Based on this information, we consider melanoma to be one of the most important research areas in our country.

Melanoma can occur in any tissue that contains melanocytes. These cells are predominantly present in the skin, but they can also be found in organs such as the eyes, inner ear, and brain (the substantia nigra and locus coeruleus) as well as in the mucosal lining of the leptomeninges, oral cavity, esophagus, anal canal, nasal cavity, paranasal sinuses, larynx, vagina, and cervix [4-13]. In each of these tissues melanocytes have different functions and are influenced by different local factors [13].

Primary melanomas originating from different sites show characteristic tumor mutational burden [14-20]. According to the site of involvement, primary melanomas are classified as: cutaneous melanoma (CM), uveal melanoma (UM), mucosal melanoma (MM), and melanoma of the internal organs.

Numerous genomic studies showed different mutational patterns in melanoma, which was followed by the investigation of epigenetic factors involved in melanoma development. MicroRNAs (miRNAs) are small noncoding RNAs (~22 nt in length) that can regulate the development and progression of cancer through various mechanisms. Different miRNAs have been shown to be upregulated or downregulated in melanoma, which suggests their use as diagnostic and prognostic biomarkers as well as therapeutic targets [21]. Furthermore,
Mucosal melanoma can be used for non-invasive diagnosis and prognosis of early metastatic disease, representing a more cost-effective method for monitoring patients and deciding about the treatment. These biomarkers have a higher sensitivity for detection in early stages of disease than the current imaging techniques (e.g., computed tomography [CT], positron emission tomography [PET] scan, etc.), and they are less invasive compared with tumor excision and sentinel lymph node biopsy, used for staging of melanoma [22].

Several studies investigated miRNA expression changes in melanomas, most notably in cutaneous and uveal types, however, there is little data on miRNA expression in primary mucosal melanoma. To the best of our knowledge, only two studies have investigated changes in miRNA expression in conjunctival melanomas [23,24] and none in mucosal melanomas involving other sites. Therefore, the current study is the first to analyze miRNA expression in primary mucosal melanomas involving mucosal surfaces other than the conjunctiva. Here, we compared miRNA expression among three primary melanoma types (CM, UM, and MM) and control cutaneous nevi. We identified several miRNAs with significantly altered expression in primary melanomas, including those reported for the first time in this type of cancer.

MATERIALS AND METHODS

Tissue samples

We obtained 27 primary melanoma and 5 nevus formalin-fixed paraffin-embedded (FFPE) samples from the archives of the Pathology Department at the Municipal Clinical Emergency Hospital of Timisoara. The FFPE samples included 10 cutaneous melanomas (stage III-IV), 10 uveal melanomas, 7 mucosal melanomas (2 intestinal mucosa, 2 genital mucosa, 1 nasal mucosa, and 2 oral mucosa) and 5 cutaneous nevi (Table 1). To reduce genomic and transcriptomic changes that occur because of environmental factors, we collected the control nevus samples from younger individuals.

All participants signed informed consent to participate in the study, and the study was approved by the Institutional Ethics Committee (approval number 1-015922/2019). Patients did not receive any treatment prior to tumor excision.

Real-time polymerase chain reaction (real-time PCR)

MiRNAs were purified from FFPE samples using a miRNA-Neasy FFPE Kit (Qiagen, MD, US), according to the manufacturer’s instructions. We analyzed the expression of 84 miRNAs using the Human Cancer PathwayFinder miScript miRNA PCR Array (Qiagen, MD, US), on an ABI 7900HT real-time PCR instrument (Thermo Fisher Scientific, MA, US).

Real-time PCR data were analyzed using the online QIAGEN GeneGlobe Data Analysis Center, with a threshold of 2 for fold changes of miRNA expression in melanoma samples. Afterwards, we compared these results with miRNA expression in control nevus samples. We corrected the results using the Benjamini-Hochberg procedure to account for any possible false discovery rate. Moreover, we

| Table 1. Characteristics of patients with primary melanoma (n = 27) and controls (n = 5) |
|-------------------------------|-----------------|-----------------|-----------------|-----------------|
| Characteristic | Cutaneous melanoma | Uveal melanoma | Mucosal melanoma | Cutaneous nevi |
| Mean age (years) | 61 | 60 | 66 | 33 |
| Number of samples | 10 | 10 | 7 | 5 |
| Male | 7 | 5 | 2 | 3 |
| Female | 3 | 5 | 5 | 2 |
| Melanocyte type | | | | |
| Epithelioid | 8 | 3 | 4 | Medium size, round nevus cells |
| Spindle-shaped | 1 | 3 | 0 | |
| Mixed (epithelioid and spindle-shaped) | 1 | 4 | 3 | |

Table 2. MicroRNAs (miRNAs) with most significant changes in their expression in primary melanoma samples (n = 27) compared with cutaneous nevi (n = 5)

Melanoma type	Uregulated miRNAs	Downregulated miRNAs
Cutaneous	miR-155-5p, miR-9-5p, miR-19a-3p, miR-142-5p, miR-134-5p, miR-127-3p, miR-372-3p, miR-15a-5p, miR-301a-3p	miR-205-5p, miR-203a-3p, miR-130a-3p, miR-218-5p, miR-146a-3p, miR-27b-3p, miR-125b-5p, miR-146b-3p, miR-23b-3p, miR-92a-3p
Uveal	miR-206, miR-181, miR-130a-3p, miR-29a-3p, miR-9-5p, miR-29b-3p, miR-378a-3p, miR-155-5p, miR-183-5p, miR-142-5p, miR-124-3p, miR-181d-5p, miR-96-5p, miR-373-3p, miR-335-5p, miR-1-3p, miR-146b-5p, miR-134-5p, miR-7-5p, miR-133b, miR-19a-3p, miR-138-5p, miR-34a-5p, miR-301a-3p, miR-135b-5p, miR-110-5p, miR-200c-3p, miR-203a-3p, miR-205-5p, miR-100-5p, miR-196a-5p, miR-27b-3p, miR-149-5p, miR-193b-3p, miR-10a-5p, miR-214-3p, miR-143-3p, miR-23b-3p, miR-215-5p, miR-218-5p	
Mucosal	miR-206, miR-1-3p, miR-155-5p, miR-18a-5p, miR-21-5p, miR-9-5p, miR-373-3p, miR-142-5p, miR-17-5p, miR-196a-5p, miR-7-5p, miR-138-5p, miR-301a-3p, miR-127-5p, miR-20b-5p, miR-215-5p, miR-133b, miR-19a-3p, miR-134-5p, miR-143-3p, miR-135b-5p, miR-110-5p, miR-200c-3p, miR-203a-3p, miR-205-5p, miR-100-5p, miR-196a-5p, miR-27b-3p, miR-149-5p, miR-193b-3p, miR-10a-5p, miR-214-3p, miR-143-3p, miR-23b-3p, miR-215-5p, miR-218-5p	miR-200c-3p, miR-203a-3p, miR-183-5p, miR-205-5p, miR-100-5p, miR-196a-5p, miR-27b-3p, miR-149-5p, miR-186a-5p, miR-27b-3p, miR-193b-3p, miR-218-5p, miR-125a-5p, miR-122-5p
used the Qiagen Ingenuity pathway analysis (IPA) tool to identify pathways and diseases associated with miRNAs with altered expression.

RESULTS

The distribution of upregulated and downregulated miRNAs in the three primary melanoma types compared with control nevi is presented in Figure 1-3. MiRNAs with most significant changes in their expression in the primary melanoma samples compared with nevus group are presented in Table 2. We used these results to generate a cluster dendrogram that highlights the segregation of miRNA expression according to the 4 studied groups (Figure 4). The samples clustered together for each melanoma type and for nevi, showing similar RNA expression patterns in all three repetitions of miRNA expression analysis.

Out of 84 miRNAs, 11 miRNAs showed altered expression in all types of melanoma compared with the nevi. Among these, miR-155-5p, miR-9-5p, miR-142-5p, miR-19a-3p, miR-134-5p, and miR-301a-3p were upregulated, while miR-205-5p, miR-203a-3p, miR-27b-3p, miR-218-5p, and miR-23b-3p were downregulated. The highest similarity in miRNA expression pattern was found between uveal and mucosal melanoma groups, i.e., 15 miRNAs had altered expression in both groups.

Using the IPA, we determined the diseases, pathways, and biological functions associated with the miRNAs with altered expression. The IPA revealed that the dysregulated miRNAs are involved in many physiological and pathological processes. Table S1 shows tumor stages, tumor sites, and diseases associated with the dysregulated miRNAs for each melanoma type. It is worth noting that both primary and metastatic disease are common to all three melanoma types. We used IPA for each data set, identifying the targets of the miRNAs that were significantly overexpressed or underexpressed in our study ($p < 0.05$). Matching our results against the IPA data sets we generated pathway networks for each data set and, by identifying shared molecules, we created merged networks for each type of melanoma (Figure S1-S3). The targets common to all three types of melanoma were Smad2/3, insulin, sirtuin 1 (SIRT1), and tumor protein p53. The other identified targets were either unique to each type of melanoma (35 targets in MM, 29 targets in CM, and 38 targets in UM) or common to at least 2 of the analyzed melanoma types (MM and CM: Dickkopf WNT signaling pathway inhibitor 1 [DKKI], G protein signaling modulator 2 [GPSM2], one cut homeobox 2 [ONECUT2], protein

![Figure 1. Volcano plot representing the microRNAs (miRNAs) in cutaneous melanomas compared with cutaneous nevi. Upregulated (yellow) and downregulated (blue) miRNAs with a fold change >2 vs. nevi, and miRNAs that were not significantly differently expressed (black, fold change <2 vs. nevi).](attachment:volcano_plot.png)
regulator of cytokinesis 1 [PRC1], reversion-inducing-cysteine-rich protein with kazal motifs [RECK], and secretory carrier membrane protein 1 [SCAMP1]; CM and UM: protein kinase B [PKB or Akt], and insulin receptor [INSR]; UM and MM: interferon alpha [IFN-α], pro-inflammatory cytokines, parathyroid hormone like hormone [PTHLH], retinoblastoma [Rb] protein, and telomerase reverse transcriptase [TERT]).

DISCUSSION

In this study, we analyzed the expression of 84 miRNAs in cutaneous, uveal, and mucosal melanomas compared with miRNA expression in control cutaneous nevi. Out of 84 miRNAs, 11 miRNAs showed altered expression in all types of melanoma compared with the nevi. Among these miRNAs, only miR-155-5p, miR-142-5p, miR-205-5p, miR-23b-3p, miR-134-3p, and miR-301a-3p were previously studied in melanoma. Thus, for the first time, here we reported altered expression of miR-9-5p, miR-203a-3p, miR-19a-3p, miR-27b-3p, and miR-218-5p in the three melanoma types vs. nevi.

We found that miR-155-5p was upregulated in all three types of melanoma. Similarly, a previous study reported miR-150 and miR-155 to be upregulated in primary and metastatic melanoma compared with nevi [25]. In addition, miR-155-5p was suggested to play a role in the development of other solid and hematopoietic cancers [26-29]. Nevertheless, in melanoma cell lines, ectopic expression of miR-155-5p had an anti-proliferative and pro-apoptotic effect [30], and higher miR-155-5p expression in metastatic melanoma could predict longer post-recurrence survival [25,31]. The expression of miR-155-5p increases during inflammatory response, especially during lymphocyte proliferation, and some authors suggest this to support the role of miR-155 in melanoma progression [32,33].

In this study, miR-205-5p was downregulated in melanoma vs. nevus samples, which is consistent with previous studies [34,35]. MiR-205 was shown to act as a tumor suppressor, inhibiting melanoma cell proliferation and inducing apoptosis by targeting vascular endothelial growth factor (VEGF) and transcription factor E2F1 *in vitro* as well as *in vivo* [35-37].

MiR-142-5p was upregulated in our melanoma samples compared with control nevi, and previous research indicated that miR-142 is one of five miRNAs with important clinical implications and a high prognostic value in metastatic melanoma [38].
MiR-23b-3p was downregulated in our melanoma samples vs. control nevi. This miRNA was shown to have altered expression in different malignant tumors, including melanoma, with clinical, therapeutic, and prognostic significance [34,39].

We showed for the first time that miR-9-5p is upregulated in melanoma compared with nevi. MiR-9-5p promotes cell proliferation and metastasis in non-small cell lung cancer (NSCLC) and colorectal cancer [40,41]. It is involved in the differentiation of B lymphocytes into plasma cells by the negative regulation of the transcription factor PR domain zinc finger protein 1 (PRDM1/BLIMP-1), showing lower levels as the lymphocytes differentiate. This explains high levels of miR-9-5p in primary large-B cell lymphomas [42]. On the other hand, miR-9 is downregulated in human ovarian cancer compared with normal ovary, and the overexpression of miR-9 inhibits cell growth in ovarian cancer in vitro through the negative regulation of nuclear factor NF-kappa-B p105 (NFκB1) [42,43]. MiR-9-5p may represent a new prognostic marker in melanoma and possibly a new therapeutic target.

MiR-19a-3p is upregulated in melanoma vs. nevi, which is another novel finding in this cancer type. In gastric cancer, miR-19a-3p had a negative prognostic impact and promoted cell malignancy [44].

MiR-134-5p was upregulated in our melanoma samples compared with nevi. Previous studies showed that miR-134-5p is downregulated in NSCLC cells [45] and nasopharyngeal carcinoma cells [46] and that it has a role in inhibiting tumor progression. Interestingly, another study on melanoma showed that miR-134-5p is downregulated in melanoma patients compared with healthy controls [47], and this discrepancy with our results should be further investigated.

We reported in this study upregulation of miR-301a-3p in melanoma vs. nevi. MiR-301a was previously reported to be upregulated in melanoma samples compared to benign melanocytic lesions [48]. In addition, in hepatocellular carcinoma cell lines, miR-301a-3p overexpression was shown to stimulate cell proliferation, invasion, and chemoresistance [49].

For the first time, we showed that miR-203a-3p was downregulated in melanoma compared with nevi. The overexpression of miR-203a-3p in colorectal cancer cell lines inhibited cell proliferation and reduced chemoresistance [50] and similarly, in nasopharyngeal carcinoma, overexpressed miR-203a-3p inhibited cell proliferation, migration, and invasion in vitro as well as...
On the other hand, in hepatocellular carcinoma cells, miR-203a-3p overexpression was reported to be oncogenic [52]. MiR-27b-3p and miR-218-5p were another two downregulated miRNAs in our case study that are reported for the first time in melanoma. MiR-27b-3p was also downregulated in lung cancer tissues [53] and in breast cancer tissues and cell lines, where it was associated with chemoresistance [54]. However, miR-27b-3p expression was increased in Dox-resistant anaplastic thyroid cancer (ATC) cells [55]. MiR-218-5p expression was reduced in gastric cancer [56], NSCLC [57], and gallbladder cancer (GBC) tissue [58]; moreover, miR-218-5p overexpression reversed the resistance of GBC cells to gemcitabine [58].

Among miRNAs with altered expression in at least one type of melanoma (Table 3), we focused on those previously studied in melanoma. Although some studies reported that miR-127-5p and miR-15a-5p were not significantly differently expressed in different melanoma types, we observed that these miRNAs were downregulated in melanoma tissues and cell lines compared to normal skin tissues and cell lines [59].

Table 3. MicroRNAs (miRNAs) with altered expression in at least one group of the studied melanoma types (n = 27) that were previously studied in melanoma or were not investigated before

miRNA	Previously studied in melanoma	Not yet studied in melanoma
miR-127-5p, miR-142-5p, miR-15a-5p, miR-206, miR-184, miR-130a-3p, miR-29a-3p, miR-29b-3p, miR-378-3p, miR-181d-5p, miR-96-5p, miR-373-3, miR-146b-5p, miR-7-5p, miR-34a-5p, miR-301a-3p, miR-18a-5p, miR-21-5p, miR-17-5p, miR-20b-5p, miR-143-3p, miR-132-3p, miR-127-5p, miR-15a-5p, miR-335-5p, miR-205-5p, miR-146a-5p, miR-125b-5p, miR-23b-3p, miR-106b-5p, miR-100-5p, miR-149-5p, miR-193b-5p, miR-10a-5p, miR-214-3p, miR-200c-3p, miR-140-5p, miR-125a-5p, miR-122-5p, miR-134-5p	miR-372-3p, miR-183-5p, miR-124-3p, miR-1-3p, miR-133b, miR-138-5p, miR-133b-5p, miR-196a-5p, miR-218-5p, miR-27b-3p, miR-92a-3p, miR-215-5p	

xenograft tumor growth and lung metastasis *in vivo* [51]. On the other hand, in hepatocellular carcinoma cells, miR-203a-3p overexpression was reported to be oncogenic [52].

MiR-27b-3p and miR-218-5p were another two downregulated miRNAs in our case study that are reported for the first time in melanoma. MiR-27b-3p was also downregulated in lung cancer tissues [53] and in breast cancer tissues and cell lines, where it was associated with chemoresistance [54]. However, miR-27b-3p expression was increased in Dox-resistant anaplastic thyroid cancer (ATC) cells [55]. MiR-218-5p expression was reduced in gastric cancer [56], NSCLC [57], and gallbladder cancer (GBC) tissue [58]; moreover, miR-218-5p overexpression reversed the resistance of GBC cells to gemcitabine [58].
expressed in melanoma compared to melanocytic nevi [59,60], our results showed these miRNAs to be overexpressed in both cutaneous and mucosal melanomas vs. nevi. In addition, miR-335-5p was reported to be significantly differentially expressed in the melanoma cell line MML-1 compared to benign nevi [33], but our results showed a significant overexpression of miR-335-5p only in uveal melanoma group compared to control nevi.

The main limitation to our study is the small sample size. Thus, although we consider some of our findings to be groundbreaking in melanoma research, they still need to be confirmed in large-scale studies. To this end, we propose analyzing miRNAs in each melanoma sample separately and in combination with follow-up data, so to determine changes in miRNA expression specific to each cell type and site of origin, the impact of local factors, and the prognostic potential of miRNAs in melanoma. To achieve this, we plan to conduct a prospective study in the future.

CONCLUSION

Overall, we identified several miRNAs with significantly altered expression in primary melanomas, including those reported for the first time in this type of cancer. Mir-9-5p, miR-203a-3p, miR-19a-3p, miR-134-5p, miR-301a-3p, miR-155-5p, miR-142-5p, miR-205-5p, miR-23b-3p, miR-27b-3p, and miR-218-5p had altered expression in all three melanoma types. Further research should explore the potential of these miRNAs in melanoma. The primary contribution of this study is to demonstrate that despite originating from the same cell type, the three melanoma types are still separate entities characterized by different miRNA expression patterns.

ACKNOWLEDGMENTS

This project was financed by the Victor Babes University of Medicine and Pharmacy Timisoara, through the project for young researchers PII-C5-TC-2017-02 C.I.

REFERENCES

[1] Ocana-Xavier JP, Xavier-Junior ICC, Marques MEA. Melanoma: clinical, evolutive and histopathological characteristics of a series of 136 cases. An Bras Dermatol 2018;93(1):373-6. https://doi.org/10.1590/abd1806-4841.20188690.
[2] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin 2016;66(1):7-30.
[3] Fuchte O, Ungureanu L, Seníl S, Vornicescu D, Dănescu S, Vaslavić A, et al. Risk factors for melanoma and skin health behaviour: an analysis on Romanian melanoma patients. Oncol Lett 2016;13(4):1339-44. https://doi.org/10.3892/ol.2016.7317.
[4] Barrett AW, Raju AM. The immunohistochemical identification of human oral mucosal melanocytes. Arch Oral Biol 1997;42(1):77-81. https://doi.org/10.1016/S0003-9909(96)00113-6.
[5] Tolleston WH. Human melanocyte biology, toxicology, and pathology. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 2005;23(2):105-61. https://doi.org/10.1080/109050920002343070.
[6] De La Pava S, Nagyosy G, Pickren JW, Cabrera A. Melanosis of the esophagus. Cancer 1963;16:48-50. http://dx.doi.org/10.1002/1097-0142(19630116)1:48<1:CID-CNCR28201601073.0.CO;2-M.
[7] Werdin C, Limas C, Knodell RG. Primary malignant melanoma of the rectum. Evidence for origination from rectal mucosal melanocytes. Cancer 1988;61(7):1364-70. https://doi.org/10.1002/1097-0142(19880704)61:7.<1:CID-CNCR28201601073.0.CO;2-M.
[8] Zak FG, Lawson W. The presence of melanocytes in the nasopharynx. Ann Otol Rhinol Laryngol 1979;88(4):5-9. https://doi.org/10.1177/000348947908300444.
[9] Uchra T, Matsubara O, Kasuga T. Melanocytes in the nasopharynx, naso- and paranasal sinus. Incidence and distribution in Japan. Acta Pathol Jpn 1987;37(7):1105-14. https://doi.org/10.1141/1.441-1987.tb00427.x.
[10] Goldman JL, Lawson W, Zak FG, Roffman JD. The presence of melanocytes in the human larynx. Laryngoscope 1972;82(5):824-35. https://doi.org/10.1289/00055377-197205000-00009.
[11] Nagyosy G, De La Pava S, Pickren JW. Melanoblasts in the larynx. Melanomas of the upper respiratory tract and sinonasal mucosa. Origin for primary malignant melanoma. Cancer 1999;14:791-3. https://doi.org/10.1002/1097-0142(19991420.0000177.<791:CID-CNCR28201601073.0.CO;2-E. 19791-3.
[12] Uchra T, Takayama S, Takekura T, Kasuga T. Foci of stromal melanocytes (so-called blue naevus) of the uterine cervix in Japanese women. Virchows Arch A Pathol Anat Histopathol 1991;418(4):327-31. https://doi.org/10.1007/BF01006162.
[13] Brenner M, Hearing VJ. What are melanocytes really doing all day long…?: from the ViewPoint of a keratinocyte: Melanocytes - cells with a secret identity and incomparable abilities. Exp Dermatol 2009;18(9):799-819. https://doi.org/10.1111/j.1600-0625.2009.0092.x.
[14] Beadling C, Jacobson-Dunlop E, Hodi FS, Le C, Warrick A, Patterson J, et al. KIT gene mutations and copy number in melanoma subtypes. Clin Cancer Res 2008;14(21):6821-8. https://doi.org/10.1158/1078-0432.CCR-08-0575.
[15] Griewank K, Westekemper H, Murali R, Mach M, Schilling B, Wiesner T, et al. Conjunctival melanomas harbor BRAF and NRAS mutations and copy number changes similar to cutaneous and mucosal melanomas. Clin Cancer Res 2013;19(12):3143-52. https://doi.org/10.1158/1078-0432.CCR-13-0856.
[16] Bastian BC, Olden AB, LeBoit PE, Pinkel D. Classifying melanocytic tumors based on DNA copy number changes. Am J Pathol 2003;163(5):1765-70. https://doi.org/10.1016/S0002-9440(03)63565-5.
[17] Abysheva SN, Ilyeva AG, Efimova NV. KIT mutations in Russian melanocytes (so-called blue naevus) of the uterine cervix in Japanese women. Virchows Arch A Pathol Anat Histopathol 1991;418(4):327-31. https://doi.org/10.1007/BF01006162.
[18] Antonescu CR, Busam KJ, Francone TD, Wong GC, Guo T, et al. KIT gene mutations and copy number in mucosal melanoma. Clin Cancer Res 2003;9(12):4143-52. https://doi.org/10.1158/1078-0432.CCR-03-0585.
[19] Aulmann S, Sinn HP, Penzel R, Wiesner T, et al. Conjunctival melanomas harbor BRAF and NRAS mutations and copy number changes similar to cutaneous and mucosal melanomas. Clin Cancer Res 2013;19(12):3143-52. https://doi.org/10.1158/1078-0432.CCR-13-0856.
[20] Bardele C, Jacobson-Dunlop E, Hodi FS, Le C, Warrick A, Patterson J, et al. KIT gene mutations and copy number in melanoma subtypes. Clin Cancer Res 2008;14(21):6821-8. https://doi.org/10.1158/1078-0432.CCR-08-0575.
[21] Aulmann S, Sinn HP, Penzel R, Wiesner T, et al. Conjunctival melanomas harbor BRAF and NRAS mutations and copy number changes similar to cutaneous and mucosal melanomas. Clin Cancer Res 2013;19(12):3143-52. https://doi.org/10.1158/1078-0432.CCR-13-0856.
[22] Bastian BC, Olden AB, LeBoit PE, Pinkel D. Classifying melanocytic tumors based on DNA copy number changes. Am J Pathol 2003;163(5):1765-70. https://doi.org/10.1016/S0002-9440(03)63565-5.

www.bjbms.org
Mirzaei HR, et al. MicroRNAs as potential diagnostic and prognostic biomarkers in melanoma. Eur J Cancer 2016;53:25-32. https://doi.org/10.1016/j.ejca.2015.10.009.

Ross CL, Kaushik S, Valdes-Rodriguez R, Anvekar R. MicroRNAs in cutaneous melanoma: role as diagnostic and prognostic biomarkers. J Cell Physiol 2018;233(7):5313-41. https://doi.org/10.1002/jcp.26955.

Nakagawa S, Nakarrouk D, Boyle GM, Cook AL, Whiteman DC, et al. Characterization of the melanoma miRNAome by deep sequencing. PLoS One 2010;5(2):e9685. https://doi.org/10.1371/journal.pone.0009685.

Larsen AC, Mikkelsen LH, Borup R, Kiss K, Toft PB, von Buenzow C, et al. MicroRNA expression profile in conjunctival melanoma. Invest Ophthalmol Vis Sci 2016;57(10):4205-12. https://doi.org/10.1167/iovs.16-18962.

Segura MF, Belitskaya-Lévy I, Rose AE, Zakrzewski J, Gaziel A, Hanniford D, et al. Melanoma MicroRNA signature predicts post-recurrence survival. Clin Cancer Res 2016;22(5):1577-86. https://doi.org/10.1158/1078-0432.CCR-15-2714.

Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res 2005;65(16):7065-70. https://doi.org/10.1158/0008-5472.CAN-05-1783.

Jung M, Mollenkopf HJ, Grimm C, Wagner I, Albrecht M, Waller T, et al. MicroRNA profiling of clear cell renal cell cancer identifies a robust signature to define renal malignancy. J Cell Mol Med 2009;13(5B):2918-29. https://doi.org/10.1111/j.1365-2966.2009.00975.x.

Wang X, Tang S, Le SY, Lu R, Rader JS, Meyers C, et al. Abrupt expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PLoS One 2008;3:e2557. https://doi.org/10.1371/journal.pone.0002557.

Segura MF, Greenwald HS, Hanniford D, Osman I, Hernando E, et al. Small RNA deep sequencing discriminates subsets of extracellular vesicles. RNA Biology 2015;12(8):810-23. https://doi.org/10.4161/rna.38979.

Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res 2005;65(16):7065-70. https://doi.org/10.1158/0008-5472.CAN-05-1783.

Jung M, Mollenkopf HJ, Grimm C, Wagner I, Albrecht M, Waller T, et al. MicroRNA profiling of clear cell renal cell cancer identifies a robust signature to define renal malignancy. J Cell Mol Med 2009;13(5B):2918-29. https://doi.org/10.1111/j.1365-2966.2009.00975.x.

Lunavat TR, Cheng L, Kim DK, Bhadury J, Jang SC, Lässer C, et al. Small RNA deep sequencing discriminates subsets of extracellular vesicles released by melanoma cells - Evidence of unique microRNA cargos. RNA Biology 2015;12(8):810-23. https://doi.org/10.4161/rna.38979.

Kozubek J, Ma Z, Fleming E, Duggan T, Wu R, Shin DG, et al. Comparative microarray analysis of microRNA expression profiles in primary cutaneous malignant melanoma, cutaneous inflammation and cancer. Int Rev Immunol 2013;32(5):203-18. https://doi.org/10.3109/02614143.2013.828201.

Kozubek J, Ma Z, Fleming E, Duggan T, Wu R, Shin DG, et al. Comparative microarray analysis of microRNA expression profiles in primary cutaneous malignant melanoma, cutaneous inflammation and cancer. Int Rev Immunol 2013;32(5):203-18. https://doi.org/10.3109/02614143.2013.828201.

Rosy C, Tramonti D, Schramm M, Goicoechea I, Armesto M, Hernandez LI, et al. The circulating transcriptome as a source of biomarkers for melanoma. Cancers (Basel) 2015;7(1):1-70. https://doi.org/10.3390/cancers7010070.

Sand M, Skrygan M, Sand D, Georgas D, Gambichler T, Hahn SA, et al. Comparative microarray analysis of microRNA expression profiles in primary cutaneous malignant melanoma, cutaneous malignant melanoma metastases, and benign melanocytic nevi. Cell Tissue Res 2013;351(1):85-98. https://doi.org/10.1007/s00441-013-1514-5.

Hui I, Ruan J, Liu X, Xiao C, Xiong I. MicroRNA-210a-3p suppressed the progression of hepatocellular carcinoma via targeting VEGF1. Pathol Res Pract 2018;214(12):2039-45. https://doi.org/10.1016/j.prp.2018.09.008.

Xiao Z, Qu Z, Chen Z, Fang Z, Zhou K, Huang Z, et al. LncRNA HOXATIR is a prognostic biomarker for the proliferation and chemoresistance of colorectal cancer via miR-19a-3p. Biomed Pharmacother 2017;96:1170-8. https://doi.org/10.1016/j.biopha.2017.11.105.

Koens L, Yin Q, Leung WY, Corver WE, Jansen PM, Willemze R, et al. MicroRNA profiling of primary cutaneous large B-cell lymphomas. PLoS One 2013;8(12):e82471. https://doi.org/10.1371/journal.pone.0082471.

Guo LM, Pu Y, Han Z, Liu T, Li YX, Liu M, et al. MicroRNA-9 inhibits ovarian cancer cell growth through regulation of NF-kappaB. FEBS J 2009;276(19):5337-46. https://doi.org/10.1111/j.1742-4658.2009.07237.x.

Qiao F, Gong P, Song Y, Shen X, Su X, Li Y, et al. Downregulated PITX2 modulated by miR-19a-3p promotes cell malignancy and predicts a poor prognosis of gastric cancer: by affecting transcriptionally activated PDCD5. Cell Physiol Biochem 2018;46(6):2245-51. https://doi.org/10.1159/000489590.

Liu Q, Wu Y, Xiao I, Zou J. Long non-coding RNA prostate cancer-associated transcript 7 (PCAT7) induces poor prognosis and promotes tumorigenesis by inhibiting miR-134-3p in non-small-cell lung (NSCLC). Med Sci Monit 2017;23:6089-98. https://doi.org/10.12659/MSM.907904.

Liu Y, Tao Z, Qu J, Zhou X, Zhang C. Long non-coding RNA PCAT7 regulates ELF2 signaling through inhibition of miR-134-3p in nasopharyngeal carcinoma. Biochem Biophys Res Commun 2017;491(2):374-81. https://doi.org/10.1016/j.jbrc.2017.07.093.

Soké C, Tramonti D, Schramm M, Goicoechea I, Armesto M, Hernandez LI, et al. The circulating transcriptome as a source of biomarkers for melanoma. Cancers (Basel) 2019;11(1):70. https://doi.org/10.3390/cancers11010070.

Sand M, Skrygan M, Sand D, Georgas D, Gambichler T, Hahn SA, et al. Comparative microarray analysis of microRNA expression profiles in primary cutaneous malignant melanoma, cutaneous malignant melanoma metastases, and benign melanocytic nevi. Cell Tissue Res 2013;351(1):85-98. https://doi.org/10.1007/s00441-013-1514-5.

Hui I, Ruan J, Liu X, Xiao C, Xiong I. MicroRNA-210a-3p suppressed the progression of hepatocellular carcinoma via targeting VEGF1. Pathol Res Pract 2018;214(12):2039-45. https://doi.org/10.1016/j.prp.2018.09.008.

Xiao Z, Qu Z, Chen Z, Fang Z, Zhou K, Huang Z, et al. LncRNA HOXATIR is a prognostic biomarker for the proliferation and chemoresistance of colorectal cancer via miR-19a-3p. Biomed Pharmacother 2017;96:1170-8. https://doi.org/10.1016/j.biopha.2017.11.105.

Koens L, Yin Q, Leung WY, Corver WE, Jansen PM, Willemze R, et al. MicroRNA profiling of primary cutaneous large B-cell lymphomas. PLoS One 2013;8(12):e82471. https://doi.org/10.1371/journal.pone.0082471.
Ioana Gencia, et al.: MiRNA expression in primary melanoma

on lung cancer cells via targeting Fzd7. Eur Rev Med Pharmacol Sci 2017;21(18):4113-23.

[54] Chen D, Si W, Shen J, Du C, Lou W, Bao C, et al. miR-27b-3p inhibits proliferation and potentially reverses multi-chemoresistance by targeting CBLB/GRB2 in breast cancer cells. Cell Death Dis 2018;9(2):188. https://doi.org/10.1038/s41419-017-0211-4.

[55] Xu Y, Han YE, Ye B, Zhang YL, Dong JD, Zhu SI, et al. miR-27b-3p is involved in doxorubicin resistance of human anaplastic thyroid cancer cells via targeting peroxisome proliferator-activated receptor gamma. Basic Clin Pharmacol Toxicol 2018;123(6):670-7. https://doi.org/10.1111/bcpt.13076.

[56] Deng M, Zeng C, Lu X, He X, Zhang R, Qiu Q, et al. miR-218 suppresses gastric cancer cell cycle progression through the CDK6/Cyclin D1/E2F1 axis in a feedback loop. Cancer Lett 2017;403:175-85. https://doi.org/10.1016/j.canlet.2017.06.006.

[57] Zhu K, Ding H, Wang W, Liao Z, Fu Z, Hong Y, et al. Tumor-suppressive miR-218-5p inhibits cancer cell proliferation and migration via EGFR in non-small cell lung cancer. Oncotarget 2016;7(19):28075-85. https://doi.org/10.18632/oncotarget.8576.

[58] Wang H, Zhan M, Xu SW, Chen W, Long MM, Shi YH, et al. miR-218-5p restores sensitivity to gemcitabine through PRKCE/MDR1 axis in gallbladder cancer. Cell Death Dis 2017;8(5):e2770. https://doi.org/10.1038/cddis.2017.178.

[59] Zehavi L, Avraham R, Barzilai A, Bar-Ilan D, Navon R, Sidi Y, et al. Silencing of a large microRNA cluster on human chromosome 14q32 in melanoma: biological effects of mir-376a and mir-376c on insulin growth factor 1 receptor. Mol Cancer 2012;11:44. https://doi.org/10.1186/1476-4598-11-44.

[60] Chai L, Kang XL, Sun ZZ, Zeng MF, Yu SR, Ding Y, et al. MiR-497-5p, miR-195-5p and miR-455-3p function as tumor suppressors by targeting hTERT in melanoma A375 cells. Cancer Manag Res 2018;10:989-1003. https://doi.org/10.2147/CMAR.S163335.

Related articles published in BJBMS
1. The effect of micro-sized titanium dioxide on WM-266-4 metastatic melanoma cell line
 Tanja Prunk Zdravković et al., BJBMS, 2019
2. Early detection of melanoma skin cancer
 Faruk Alendar et al., BJBMS, 2009
3. Correlation of cell cycle regulatory proteins (p53 and p16ink4a) and bcl-2 oncoprotein with mitotic index and thickness of primary cutaneous malignant melanoma
 Miloš Kostov et al., BJBMS, 2010
SUPPLEMENTAL DATA

TABLE S1. Tumor stages, tumor sites, and diseases associated with dysregulated microRNAs (miRNAs) for each melanoma type, according to the Qiagen Ingenuity pathway analysis (IPA)

Diseases and function annotations	Cutaneous melanoma	Metastatic melanoma	Macusal melanoma	Uveal melanoma
Primary melanoma	5.84E-30	2.01E-18	5.77E-12	3.49E-41
miR-125b-5p, miR-133a-3p, miR-142-5p, miR-146a-5p, miR-155-5p, miR-159-5p, miR-203a-3p, miR-205-5p, miR-218-5p, miR-223a-3p, miR-27a-3p, miR-291a-3p, miR-9-5p, miR-92a-3p				
Primary neoplasm	1.79E-21	4.04E-18	1.61E-37	7.76E-35
miR-125b-5p, miR-126-5p, miR-130a-3p, miR-142-5p, miR-166a-5p, miR-155-5p, miR-19b-3p, miR-203a-3p, miR-205-5p, miR-218-5p, miR-23a-3p, miR-27a-3p, miR-291a-3p, miR-9-5p				
Primary solid tumor	6.14E-21	2.63E-27	2.7E-25	2.15E-22
miR-125b-5p, miR-130a-3p, miR-142-5p, miR-146a-5p, miR-155-5p, miR-19b-3p, miR-203a-3p, miR-218-5p, miR-23a-3p, miR-27a-3p, miR-291a-3p, miR-9-5p, miR-92a-3p				
Early-stage invasive cervical squamous cell carcinoma	7.59E-21	2.7E-25	5.79E-22	1.07E-20
miR-130a-3p, miR-142-5p, miR-155-5p, miR-16-5p, miR-19b-3p, miR-203a-3p, miR-218-5p, miR-3118, miR-9-5p, miR-92a-3p				
Primary tumor	2.4E-20	2.01E-18	1.61E-37	7.76E-35
miR-125b-5p, miR-130a-3p, miR-142-5p, miR-146a-5p, miR-155-5p, miR-19b-3p, miR-203a-3p, miR-205-5p, miR-218-5p, miR-23a-3p, miR-27a-3p, miR-291a-3p, miR-9-5p, miR-92a-3p				
Cervical squamous cell carcinoma	2.01E-18	4.04E-18	2.7E-25	2.15E-22
miR-128-3p, miR-130a-3p, miR-142-5p, miR-155-5p, miR-16-5p, miR-19b-3p, miR-203a-3p, miR-218-5p, miR-23a-3p, miR-27a-3p, miR-291a-3p, miR-3118, miR-9-5p, miR-92a-3p				
Early-stage solid tumor	3.35E-17	2.01E-27	2.7E-25	2.15E-22
miR-125b-5p, miR-130a-3p, miR-142-5p, miR-146a-5p, miR-155-5p, miR-203a-3p, miR-205-5p, miR-23a-3p, miR-27a-3p, miR-92a-3p				
Metastatic melanoma	6.69E-14	2.63E-27	2.7E-25	1.07E-20
miR-125b-5p, miR-130a-3p, miR-142-5p, miR-146a-5p, miR-155-5p, miR-203a-3p, miR-205-5p, miR-218-5p, miR-23a-3p, miR-27a-3p, miR-9-5p, miR-92a-3p				
Cervical squamous cell carcinoma	7.59E-21	2.7E-25	5.77E-12	5.79E-22
miR-125b-5p, miR-130a-3p, miR-142-5p, miR-146a-5p, miR-155-5p, miR-203a-3p, miR-205-5p, miR-218-5p, miR-23a-3p, miR-27a-3p, miR-9-5p, miR-92a-3p				

(Contd.)
TABLE S1. (Continued)

Diseases and function annotations	p	miRNAs
Early-stage solid tumor	9.25E-28	let-7a-5p, miR-10a-5p, miR-130a-3p, miR-133a-3p, miR-135a-5p, miR-142-5p, miR-149-5p, miR-155-5p, miR-181a-5p, miR-192-5p, miR-19b-3p, miR-200b-3p, miR-203a-3p, miR-204-3p, miR-218-5p, miR-29b-3p, miR-3118, miR-34a-5p, miR-9-5p
Invasive carcinoma	7.76E-26	let-7a-5p, miR-10a-5p, miR-130a-3p, miR-133a-3p, miR-135a-5p, miR-142-5p, miR-149-5p, miR-155-5p, miR-181a-5p, miR-183-5p, miR-192-5p, miR-19b-3p, miR-200b-3p, miR-203a-3p, miR-214-5p, miR-218-5p, miR-29b-3p, miR-3118, miR-34a-5p, miR-9-5p
Primary solid tumor	2.36E-25	let-7a-5p, miR-100-5p, miR-10a-5p, miR-130a-3p, miR-133a-3p, miR-135a-5p, miR-142-5p, miR-149-5p, miR-155-5p, miR-183-5p, miR-196a-5p, miR-19b-3p, miR-200b-3p, miR-203a-3p, miR-205-5p, miR-218-5p, miR-23a-3p, miR-27a-3p, miR-291a-3p, miR-29b-3p, miR-9-5p
Cervical squamous cell carcinoma	1.2E-24	let-7a-5p, miR-10a-5p, miR-130a-3p, miR-133a-3p, miR-135a-5p, miR-142-5p, miR-149-5p, miR-155-5p, miR-181a-5p, miR-192-5p, miR-19b-3p, miR-200b-3p, miR-203a-3p, miR-214-3p, miR-218-5p, miR-291a-3p, miR-29b-3p, miR-3118, miR-34a-5p, miR-9-5p
Primary tumor	1.8E-24	let-7a-5p, miR-100-5p, miR-10a-5p, miR-130a-3p, miR-133a-3p, miR-135a-5p, miR-142-5p, miR-149-5p, miR-155-5p, miR-183-5p, miR-196a-5p, miR-19b-3p, miR-200b-3p, miR-203a-3p, miR-205-5p, miR-218-5p, miR-23a-3p, miR-27a-3p, miR-291a-3p, miR-29b-3p, miR-9-5p
Squamous cell cancer of the hypopharynx	2.39E-24	let-7a-5p, miR-1-3p, miR-100-5p, miR-10a-5p, miR-130a-3p, miR-133a-3p, miR-135a-5p, miR-143-3p, miR-183-5p, miR-196a-5p, miR-200b-3p, miR-203a-3p, miR-205-5p, miR-218-5p, miR-23a-3p, miR-27a-3p, miR-291a-3p, miR-29b-3p, miR-378a-3p, miR-7a-5p
Advanced malignant solid tumor	1.2E-20	let-7a-5p, miR-1-3p, miR-10a-5p, miR-130a-3p, miR-133a-3p, miR-135a-5p, miR-142-5p, miR-149-5p, miR-155-5p, miR-183-5p, miR-196a-5p, miR-200b-3p, miR-203a-3p, miR-205-5p, miR-218-5p, miR-23a-3p, miR-27a-3p, miR-29b-3p, miR-34a-5p, miR-9-5p, miR-96-5p
Ioana Gencia, et al.: MiRNA expression in primary melanoma

FIGURE S1. The Qiagen Ingenuity pathway analysis (IPA) in cutaneous melanoma (n = 10)

FIGURE S2. The Qiagen Ingenuity pathway analysis (IPA) in mucosal melanoma (n = 7)

FIGURE S3. The Qiagen Ingenuity pathway analysis (IPA) in uveal melanoma (n = 10)