A NOTE ON DEGENERATE BELL NUMBERS AND POLYNOMIALS

TAE KYUN KIM AND DAE SAN KIM

Abstract. Recently, several authors have studied the degenerate Bernoulli and Euler polynomials and given some interesting identities of those polynomials. In this paper, we consider the degenerate Bell numbers and polynomials and derive some new identities of those numbers and polynomials associated with special numbers and polynomials. In addition, we investigate some properties of the degenerate Bell polynomials which are derived by using the notion of composita. From our investigation, we give some new relations between the degenerate Bell polynomials and the special polynomials.

1. Introduction

As is well known, the ordinary Bernoulli polynomials are defined by the generating function

\[\frac{t}{e^t - 1} e^{xt} = \sum_{n=0}^{\infty} B_n(x) \frac{t^n}{n!}, \quad (\text{see } [2, 3]). \]

When \(x = 0 \), \(B_n = B_n(0) \) are called ordinary Bernoulli numbers. From (1.1), we note that

\[B_n(x) = \sum_{l=0}^{n} \binom{n}{l} B_l x^{n-l}, \quad (n \geq 0), \quad (\text{see } [2, 3]). \]

In [3], L. Carlitz considered the degenerate Bernoulli polynomials which are given by the generating function

\[\frac{t}{(1 + \lambda t)^{x} - 1} (1 + \lambda t)^{x} = \sum_{n=0}^{\infty} \beta_n(x \mid \lambda) \frac{t^n}{n!}, \quad (\text{see } [1, 6, 8, 10, 12, 17, 18]). \]

When \(x = 0 \), \(\beta_n(\lambda) = \beta_n(0 \mid \lambda) \) are called the degenerate Bernoulli numbers. These degenerate Bernoulli numbers and polynomials are studied by several authors (see [1, 6, 8, 10, 12, 17, 18]).

For \(n \geq 0 \), the Stirling number of the first kind is defined as

\[(x)_n = x (x - 1) \cdots (x - n + 1) = \prod_{l=0}^{n-1} (x - l) = \sum_{l=0}^{n} S_1(n, l) x^l, \quad (\text{see } [3, 10]), \]

2000 Mathematics Subject Classification. 05A19, 11B37, 11B73, 11B83.

Key words and phrases. Degenerate Bell numbers and polynomials, Degenerate Stirling numbers of the second kind.
and the Stirling number of the second kind is defined as

\[(1.5) \quad x^n = \sum_{l=0}^{n} S_2(n, l) (x)_l, \quad (\text{see [11]}) .\]

It is known that the generating functions of \(S_1(n, l) \) and \(S_2(n, l) \) are given by

\[(1.6) \quad (e^t - 1)^n = n! \sum_{l=n}^{\infty} S_2(l, n) \frac{t^l}{l!}, \]

and

\[(1.7) \quad (\log (1 + t))^n = n! \sum_{l=n}^{\infty} S_1(l, n) \frac{t^l}{l!}, \quad (\text{see [9, 16]}) .\]

The Bell polynomials (also called the exponential polynomial and denoted by \(\phi_n(x) \)) are defined by the generating function

\[(1.8) \quad e^x (e^t - 1) = \sum_{n=0}^{\infty} \frac{\text{Bel}_n(x)}{n!} t^n, \quad (\text{see [4, 7, 13–15]}) .\]

It is not difficult to show that the first few of them are given by

\[
\begin{align*}
\text{Bel}_0(x) &= 1, \\
\text{Bel}_1(x) &= x, \\
\text{Bel}_2(x) &= x^2 + x, \\
\text{Bel}_3(x) &= x^3 + 3x^2 + x, \\
\text{Bel}_4(x) &= x^4 + 6x^3 + 7x^2 + x, \\
\text{Bel}_5(x) &= x^5 + 10x^4 + 25x^3 + 15x^2 + x, \\
\text{Bel}_6(x) &= x^6 + 15x^5 + 65x^4 + 90x^3 + 35x^2 + x, \cdots .
\end{align*}
\]

When \(x = 1, \text{Bel}_n = \text{Bel}_n(1) \) are called the Bell numbers.

From (1.8), we can easily derive the following equation:

\[(1.9) \quad \text{Bel}_n(x+y) = \sum_{l=0}^{n} \binom{n}{l} \text{Bel}_l(x) \text{Bel}_{n-l}(y), \quad (n \geq 0),\]

and

\[(1.10) \quad \frac{1}{e^x} \sum_{k=0}^{\infty} k^n \frac{x^k}{k!} = \sum_{k=0}^{n} S_2(n, k) x^k = \text{Bel}_n(x), \quad (n \in \mathbb{N}).\]

If we set \(x = 1 \), then we obtain Dobiński formula as follows:

\[(1.11) \quad \sum_{k=0}^{n} k^n \frac{1}{k!} = e \sum_{k=1}^{n} S_2(n, k) = e \text{Bel}_n, \quad (n \geq 1),\]

which is equivalent to

\[(1.12) \quad \text{Bel}_n = \frac{1}{e} \sum_{k=0}^{n} k^n \frac{1}{k!}, \quad (\text{see [16]}).\]

Let

\[(1.13) \quad G(t, x) = e^{x(e^t - 1)} = \sum_{n=0}^{\infty} \text{Bel}_n(x) \frac{t^n}{n!}\]

By differentiating \(G(t, x) \) with respect to \(t \), we get

\[(1.14) \quad \sum_{n=0}^{\infty} \text{Bel}_n(x) \frac{nt^{n-1}}{n!} = \frac{d}{dt} G(t, x) = xe^x e^{x(e^t - 1)}.\]
\[= \sum_{n=0}^{\infty} \left(x \sum_{j=0}^{n} \text{Bel}_j (x) \binom{n}{j} \right) \frac{t^n}{n!}. \]

From (1.14), we have

\[(1.15) \quad \text{Bel}_{n+1} (x) = x^{\sum_{j=0}^{n} \binom{n}{j} \text{Bel}_j (x)}. \]

In particular, for \(x = 1 \), we get

\[(1.16) \quad \text{Bel}_{n+1} = \sum_{j=0}^{n} \binom{n}{j} \text{Bel}_j. \]

Recently, several authors have studied the degenerate Bernoulli and Euler polynomials and given some interesting identities of those polynomials (see [1, 6, 8, 10, 12, 17, 18]). In this paper, we consider the degenerate Bell numbers and polynomials and derive some new identities of those numbers and polynomials associated with special numbers and polynomials. In addition, we investigate some properties of the degenerate Bell polynomials which are derived by using the notion of composita. From our investigation, we give some new relations between the degenerate Bell polynomials and the special polynomials.

2. Degenerate Bell Polynomials and Numbers

Now, we consider the degenerate Bell polynomials which are given by the generating function

\[(2.1) \quad (1 + \lambda)^{\frac{1}{\lambda^t}} (1 + \lambda t)^{-1} = \sum_{n=0}^{\infty} \text{Bel}_{n,\lambda} (x) \frac{t^n}{n!}. \]

When \(x = 1 \), \(\text{Bel}_{n,\lambda} = \text{Bel}_{n,\lambda} (1) \) are called the degenerate Bell numbers.

From (2.1), we note that

\[(2.2) \quad \lim_{\lambda \to 0} \sum_{n=0}^{\infty} \text{Bel}_{n,\lambda} (x) \frac{t^n}{n!} = \lim_{\lambda \to 0} (1 + \lambda)^{\frac{1}{\lambda^t}} (1 + \lambda t)^{-1} = e^{(e^t - 1)} = \sum_{n=0}^{\infty} \text{Bel}_n (x) \frac{t^n}{n!}. \]

Thus, by (2.2), we get

\[(2.3) \quad \lim_{\lambda \to 0} \text{Bel}_{n,\lambda} (x) = \text{Bel}_n (x), \quad (n \geq 0). \]

From (2.1), we can derive the following equation:

\[(2.4) \quad \sum_{n=0}^{\infty} \text{Bel}_{n,\lambda} (x) \frac{t^n}{n!} = (1 + \lambda)^{\frac{1}{\lambda^t}} (1 + \lambda t)^{-1} = \sum_{m=0}^{\infty} \left(\frac{\log (1 + \lambda)}{\lambda} \right)^m \frac{1}{m!} x^m \left((1 + \lambda t)^{\frac{1}{\lambda^t}} - 1 \right)^m. \]
\[\sum_{m=0}^{\infty} \left(\log \left(1 + \lambda \right) \right)^{m} \frac{x^{m}}{m!} \left(e^{\frac{x}{\lambda} \log(1+\lambda t) - 1} \right)^{m} \]

\[= \sum_{m=0}^{\infty} \left(\log \left(1 + \lambda \right) \right)^{m} x^{m} \sum_{k=m}^{\infty} S_{2} (k, m) \lambda^{-k} \frac{1}{k!} (\log (1 + \lambda t))^{k} \]

\[= \sum_{k=0}^{\infty} \sum_{m=0}^{\infty} \left(\log \left(1 + \lambda \right) \right)^{m} x^{m} S_{2} (k, m) \lambda^{-k} \sum_{n=k}^{\infty} S_{1} (n, k) \frac{\lambda^{n}}{n!} t^{n} \]

\[= \sum_{n=0}^{\infty} \sum_{\lambda k=0}^{\infty} \sum_{m=0}^{\infty} \left(\log \left(1 + \lambda \right) \right)^{m} S_{2} (k, m) \lambda^{-k} x^{m} S_{1} (n, k) \frac{t^{n}}{n!}. \]

By comparing the coefficients on the both sides of (2.4), we obtain the following theorem.

Theorem 1. For \(n \geq 0 \), we have

\[\text{Bel}_{n, \lambda} (x) = \sum_{k=0}^{n} \sum_{m=0}^{k} \frac{\log (1 + \lambda)}{\lambda} \left(\frac{\log (1 + \lambda)}{\lambda} \right)^{m} S_{1} (n, k) S_{2} (k, m) \lambda^{-k} x^{m}. \]

Now, we observe that

\[(1 + \lambda)^{\frac{1}{\lambda} (1 + \lambda t)^{\frac{1}{\lambda}}} = \sum_{k=0}^{\infty} \frac{(x)^{k} (log (1 + \lambda))^{k}}{k!} (1 + \lambda t)^{\frac{k}{\lambda}} \]

\[= \sum_{k=0}^{\infty} \frac{(x)^{k} (log (1 + \lambda))^{k}}{k!} \frac{1}{k!} e^{\frac{x}{\lambda} \log(1+\lambda t)} \]

\[= \sum_{k=0}^{\infty} \frac{(x)^{k} (log (1 + \lambda))^{k}}{k!} \frac{1}{k!} \sum_{l=0}^{\infty} \left(\frac{k}{l} \right)^{l} \frac{(log (1 + \lambda))^{l}}{l!} \]

\[= \sum_{k=0}^{\infty} \frac{(x)^{k} (log (1 + \lambda))^{k}}{k!} \sum_{l=0}^{\infty} \left(\frac{k}{l} \right)^{l} \sum_{n=l}^{\infty} \frac{S_{1} (n, l) \lambda^{n}}{n!} t^{n} \]

\[= \sum_{k=0}^{\infty} \sum_{\lambda l=0}^{\infty} \left(\frac{x}{\lambda} \right)^{k} \frac{\log (1 + \lambda)}{\lambda} \sum_{n=0}^{\infty} \sum_{l=0}^{\infty} k^{l} \lambda^{n-l} S_{1} (n, l) \frac{t^{n}}{n!} \]

Thus, by (2.1) and (2.5), we get

\[(1 + \lambda)^{\frac{1}{\lambda}} \sum_{n=0}^{\infty} \text{Bel}_{n, \lambda} (x) \frac{t^{n}}{n!} \]

\[= \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \sum_{l=0}^{n} \frac{x^{k}}{k!} \left(\frac{\log (1 + \lambda)}{\lambda} \right)^{k} \frac{k^{l} \lambda^{n-l} S_{1} (n, l) \lambda^{n}}{n!} \right) \frac{t^{n}}{n!} \]

Therefore, by Theorem (1) and (2.6), we obtain the following theorem.

Theorem 2. For \(n \geq 0 \), we have

\[(1 + \lambda)^{\frac{1}{\lambda}} \sum_{k=0}^{n} \sum_{m=0}^{k} \frac{\log (1 + \lambda)}{\lambda} \left(\frac{\log (1 + \lambda)}{\lambda} \right)^{m} S_{1} (n, k) S_{2} (k, m) \lambda^{-k} x^{m} \]
\[
\sum_{k=0}^{\infty} \sum_{l=0}^{n} \frac{x^k}{k!} \left(\frac{\log (1 + \lambda)}{\lambda} \right)^k k^l \lambda^{n-l} S_1(n, l).
\]

Remark:
\[
e^x \sum_{m=0}^{n} S_2(n, m) x^m
\]
\[
= \lim_{\lambda \to 0} (1 + \lambda)^{\frac{1}{\lambda}} \sum_{k=0}^{n} \sum_{m=0}^{\infty} \frac{\log (1 + \lambda)}{\lambda}^m S_1(n, k) S_2(k, m) \lambda^{n-k} x^m
\]
\[
= \lim_{\lambda \to 0} \sum_{k=0}^{\infty} \sum_{l=0}^{n} \frac{x^k}{k!} \left(\frac{\log (1 + \lambda)}{\lambda} \right)^k k^l \lambda^{n-l} S_1(n, l)
\]
\[
= \sum_{k=0}^{\infty} k^n \frac{x^k}{k!}.
\]

When \(x = 1 \), we have
\[
\sum_{k=0}^{\infty} \sum_{l=0}^{n} \frac{\log (1 + \lambda)}{\lambda}^k k^l \lambda^{n-l} S_1(n, l).
\]

Note that
\[
e^n \sum_{k=0}^{n} S_2(n, k)
\]
\[
= \lim_{\lambda \to 0} (1 + \lambda)^{\frac{1}{\lambda}} \sum_{k=0}^{n} \sum_{m=0}^{\infty} \frac{\log (1 + \lambda)}{\lambda}^m S_1(n, k) S_2(k, m) \lambda^{n-k}
\]
\[
= \lim_{\lambda \to 0} \sum_{k=0}^{\infty} \sum_{l=0}^{n} \frac{1}{k!} \left(\frac{\log (1 + \lambda)}{\lambda} \right)^k k^l \lambda^{n-l} S_1(n, l)
\]
\[
= \sum_{k=0}^{\infty} k^n \frac{1}{k!}, \text{ where } n \in \mathbb{N}.
\]

Now, we define the degenerate Stirling numbers of the second kind as follows:
\[
\left(e^{\frac{1}{\lambda} \log(1 + \lambda)} - 1 \right)^n = n! \sum_{m=n}^{\infty} S_2(m, n \mid \lambda) \frac{t^m}{m!}.
\]

Thus, from (2.8), we have
\[
\left(e^{\frac{1}{\lambda} \log(1 + \lambda)} - 1 \right) = e^{\frac{1}{\lambda} \log(1 + \lambda)}\left(e^{\frac{1}{\lambda} \log(1 + \lambda)} - 1 \right)
\]
\[
= \sum_{m=0}^{\infty} \frac{1}{m!} \left(\frac{x}{\lambda} \right)^m \log (1 + \lambda) m! \sum_{k=m}^{\infty} S_2(k, m \mid \lambda) \frac{t^k}{k!}
\]
\[
= \sum_{k=0}^{\infty} \left(\sum_{m=0}^{k} \frac{\log (1 + \lambda)}{\lambda}^m x^m S_2(k, m \mid \lambda) \right) \frac{t^k}{k!}
\]
\[
= \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \left(\frac{\log (1 + \lambda)}{\lambda} \right)^k \right) x^n S_2(n, k | \lambda) \frac{t^n}{n!}.
\]

By (2.9), we get

\[(2.10) \quad \text{Bel}_{n,\lambda}(x) = \sum_{m=0}^{n} S_2(n, m | \lambda) \left(\frac{\log (1 + \lambda)}{\lambda} \right)^m x^m.
\]

We observe that

\[(2.11) \quad \sum_{k=0}^{n} \left(\frac{\log (1 + \lambda)}{\lambda} \right)^k S_2(n, k | \lambda) x^k
= \sum_{k=0}^{n} \sum_{m=0}^{k} \left(\frac{\log (1 + \lambda)}{\lambda} \right)^m S_1(n, k) S_2(k, m) \lambda^{n-k} x^m
= \sum_{m=0}^{n} \left(\sum_{k=m}^{n} S_1(n, k) S_2(k, m) \lambda^{n-k} \right) \left(\frac{\log (1 + \lambda)}{\lambda} \right)^m x^m.
\]

Thus, by (2.11), we get

\[(2.12) \quad S_2(n, m | \lambda) = \sum_{k=m}^{n} S_1(n, k) S_2(k, m) \lambda^{n-k},
\]

where \(0 \leq m \leq n\).

Therefore, by (2.11) and (2.12), we obtain the following theorem.

Theorem 3. For \(n \in \mathbb{N}\), we have

\[
\text{Bel}_{n,\lambda}(x) = \sum_{m=0}^{n} S_2(n, m | \lambda) \left(\frac{\log (1 + \lambda)}{\lambda} \right)^m x^m,
\]

where the degenerate Stirling numbers \(S_2(n, m | \lambda)\) of the second kind have the expression

\[
S_2(n, m | \lambda) = \sum_{k=m}^{n} S_1(n, k) S_2(k, m) \lambda^{n-k},
\]

for \(0 \leq m \leq n\).

Let us define the generating function of the degenerate Bell polynomials as follows:

\[(2.13) \quad G_\lambda(t, x) = (1 + \lambda)^{\frac{t(1 + \lambda t)^{\frac{1}{\lambda}} - 1}{t}} = \sum_{n=0}^{\infty} \text{Bel}_{n,\lambda}(x) \frac{t^n}{n!}.
\]

Then, by (2.13), we get

\[(2.14) \quad G_\lambda(t, x + y) = (1 + \lambda)^{\frac{t(y + t)}{t}} \left(1 + \lambda \right)^{\frac{(1 + \lambda t)^{\frac{1}{\lambda}} - 1}{t}} (1 + \lambda)^{\frac{(1 + \lambda t)^{\frac{1}{\lambda}} - 1}{t}} = \left(\sum_{m=0}^{\infty} \text{Bel}_{m,\lambda}(x) \frac{t^m}{m!} \right) \left(\sum_{l=0}^{\infty} \text{Bel}_{l,\lambda}(y) \frac{t^l}{l!} \right).
\]
\[
\sum_{n=0}^{\infty} \left(\sum_{m=0}^{n} \binom{n}{m} \text{Bel}_{m,\lambda}(x) \text{Bel}_{n-m,\lambda}(y) \right) \frac{t^n}{n!}.
\]

Therefore, by (2.14), we obtain the following theorem.

Theorem 4. For \(n \geq 0 \), we have
\[
\text{Bel}_{n,\lambda}(x + y) = \sum_{m=0}^{n} \binom{n}{m} \text{Bel}_{m,\lambda}(x) \text{Bel}_{n-m,\lambda}(y).
\]

By differentiating \(G_{\lambda}(t, x) \) with respect to \(t \), we get
\[
\sum_{n=1}^{\infty} \text{Bel}_{n,\lambda}(x) \frac{nt^{n-1}}{n!} = \frac{d}{dt} G_{\lambda}(t, x)
\]
\[
= (1 + \lambda)^\frac{t}{\lambda} \left((1+\lambda t)^\frac{1}{\lambda} - 1 \right) x \log (1 + \lambda) (1 + \lambda t)^{-1+\frac{1}{\lambda}}
\]
\[
= \left(\sum_{k=0}^{\infty} \frac{\text{Bel}_{k,\lambda}(x) t^k}{k!} \right) \frac{x \log (1 + \lambda)}{\lambda} \sum_{m=0}^{\infty} \left(\frac{1 - \lambda}{\lambda} \right)^m \frac{\lambda^n t^m}{m!}
\]
\[
= \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \binom{n}{k} \text{Bel}_{k,\lambda}(x) (1 - \lambda | \lambda)^{n-k} \right) \frac{x \log (1 + \lambda)}{\lambda} \frac{t^n}{n!},
\]
where \((x | \lambda)_n = x(x - \lambda) \cdots (x - (n - 1) \lambda)\).

Therefore, by (2.15), we obtain the following theorem.

Theorem 5. For \(n \geq 0 \), we have
\[
\text{Bel}_{n+1,\lambda}(x) = x \log (1 + \lambda)^\frac{t}{\lambda} \sum_{k=0}^{n} \binom{n}{k} \text{Bel}_{k,\lambda}(x) (1 - \lambda | \lambda)^{n-k}
\]
where
\[
(x | \lambda)_n = x(x - \lambda) \cdots (x - (n - 1) \lambda).
\]

Note that
\[
\sum_{k=0}^{\infty} \text{Bel}_{k,\lambda}(x) \frac{t^k}{k!}
\]
\[
= (1 + \lambda)^\frac{t}{\lambda} \left((1+\lambda t)^\frac{1}{\lambda} - 1 \right)
\]
\[
= (1 + \lambda)^{-\frac{t}{\lambda}} (1 + \lambda)^\frac{t}{\lambda}(1+\lambda t)^\frac{1}{\lambda}
\]
\[
= (1 + \lambda)^{-\frac{t}{\lambda}} e^{(1+\lambda t)^\frac{1}{\lambda} \log(1+\lambda)^\frac{1}{\lambda}}
\]
\[
= (1 + \lambda)^{-\frac{t}{\lambda}} \sum_{l=0}^{\infty} \frac{x^l}{l!} \left(\log (1 + \lambda)^\frac{1}{\lambda} \right)^l (1 + \lambda t)^\frac{1}{\lambda}
\]
\[
= (1 + \lambda)^{-\frac{t}{\lambda}} \sum_{l=0}^{\infty} \frac{x^l}{l!} \left(\sum_{k=0}^{\infty} \left(\frac{1}{\lambda} \right) \frac{\lambda^k t^k}{k!} \right)
\]
\[
= (1 + \lambda)^{-\frac{t}{\lambda}} \sum_{k=0}^{\infty} \left(\sum_{l=0}^{\infty} \frac{x^l}{l!} \left(\frac{\log (1 + \lambda)}{\lambda} \right)^l (l | \lambda)_k \right) \frac{t^k}{k!}.
\]

Therefore, by (2.16), we obtain the following theorem.
Theorem 6. For $k \geq 0$, we have

\[
\text{Bel}_{k,\lambda}(x) = (1 + \lambda)^{-\frac{x}{\lambda}} \sum_{l=0}^{\infty} \frac{x^l}{l!} \left(\frac{\log(1 + \lambda)}{\lambda} \right)^l (l | \lambda)_k.
\]

For $n \in \mathbb{N}$, we have

\[
\text{Bel}_{n,\lambda}(x) = (1 + \lambda)^{-\frac{x}{\lambda}} \sum_{l=0}^{\infty} \frac{x^l}{l!} \left(\frac{\log(1 + \lambda)}{\lambda} \right)^l (l | \lambda)_n.
\]

Therefore, by (2.17), we obtain the following theorem.

Theorem 7. For $n \geq 1$, we have

\[
\text{Bel}_{n,\lambda}(x) = \frac{\log(1 + \lambda)}{\lambda} x \sum_{k=1}^{n} \sum_{j=1}^{k} S_1(n, k) \lambda^{n-k} \binom{k-1}{j-1} \text{Bel}_{j-1} \left(\frac{\log(1 + \lambda)}{\lambda} x \right).
\]
We observe that

\begin{equation}
\sum_{n=0}^\infty \frac{d}{dx} \text{Bel}_{n,\lambda}(x) \frac{t^n}{n!} = \frac{d}{dx} \left((1 + \lambda) \frac{\lambda}{1 + \lambda t} \right) \log(1 + \lambda) \nonumber
\end{equation}

\begin{equation}
\frac{d}{dx} \left\{ e^{\frac{\lambda}{1 + \lambda t} \log(1 + \lambda) - \frac{\lambda}{1 + \lambda t} (1 + \lambda t)^{\frac{1}{\lambda}} - 1} \right\} \nonumber
\end{equation}

\begin{equation}
= \frac{1}{\lambda} \left((1 + \lambda t)^{\frac{1}{\lambda}} - 1 \right) \log (1 + \lambda) \left(1 + \lambda \right)^{\frac{1}{\lambda}} (1 + \lambda t)^{\frac{1}{\lambda} - 1} \nonumber
\end{equation}

\begin{equation}
= \frac{1}{\lambda} \left(\log (1 + \lambda) \right) \left(1 + \lambda \right)^{\frac{1}{\lambda} - 1} - \frac{\log (1 + \lambda)}{\lambda} \left(1 + \lambda \right)^{\frac{1}{\lambda} - 1} \nonumber
\end{equation}

\begin{equation}
= \left(\sum_{l=0}^\infty \lambda \frac{t^l}{l!} \right) \left(\sum_{m=0}^\infty \text{Bel}_{m,\lambda}(x) \frac{t^m}{m!} \right) \frac{\log (1 + \lambda)}{\lambda} - \frac{\log (1 + \lambda)}{\lambda} \sum_{n=0}^\infty \text{Bel}_{n,\lambda}(x) \nonumber
\end{equation}

\begin{equation}
= \sum_{n=0}^\infty \left(\sum_{m=0}^n \frac{n}{m} \text{Bel}_{m,\lambda}(x) \right) \frac{t^n}{n!} \frac{\log (1 + \lambda)}{\lambda} - \frac{\log (1 + \lambda)}{\lambda} \sum_{n=0}^\infty \text{Bel}_{n,\lambda}(x) \frac{t^n}{n!} \nonumber
\end{equation}

By comparing the coefficients on the both sides of (2.18), we obtain the following theorem.

Theorem 8. For \(n \geq 1 \), we have

\[\frac{\lambda}{\log (1 + \lambda)} \frac{d}{dx} \text{Bel}_{n,\lambda}(x) = \sum_{m=0}^{n-1} \binom{n}{m} \text{Bel}_{m,\lambda}(x) (1 | \lambda)^{n-m} \cdot \]

3. Further remarks

In [11], V. Kruchinin and D. Kruchinin introduced the notion of composita in order to study the coefficients of the powers of an ordinary generating function and their properties.

Here we apply their technique to find an explicit expression of the degenerate Bell polynomial \(\text{Bel}_{n,\lambda}(x) \). For this, we first note that

\[\sum_{n=0}^\infty \text{Bel}_{n,\lambda}(x) \frac{t^n}{n!} = R(F(t)) \],

where \(R(t) = (1 + \lambda)^{\frac{1}{\lambda} t} \), \(F(t) = (1 + \lambda t)^{\frac{1}{\lambda} - 1} \).

We recall from [11] that the composita \(G^\Delta(n, k) \) of the ordinary generating function \(G(t) = \sum_{n=1}^\infty g(n) t^n \) is defined as the \(n \)th coefficient of \(G(t)^k \). So we have

\[G(t)^k = \sum_{n=k}^\infty G^\Delta(n, k) t^n. \]

Then it was noted in [11] that

\[G^\Delta(n, k) = \sum_{\lambda_1 + \cdots + \lambda_k = n} g(\lambda_1) g(\lambda_2) \cdots g(\lambda_k), \]

where the sum is over all compositions of the positive integer \(n \) with \(k \) parts.
In order to apply the following Theorem 9, we need to determine the composita $F^\Delta (n, k)$ of $F(t)$ and the coefficients $r(k)$ of $R(t) = \sum_{k=0}^{\infty} r(k) t^k$.

$$\sum_{k=0}^{\infty} r(k) t^k = (1 + \lambda)^{\frac{x}{\lambda}} t^k = e^{x \log(1 + \lambda)} t^k$$

Then we obtain, for $k \geq 0$,

$$r(k) = \frac{1}{k!} \left(\frac{\log(1 + \lambda)}{\lambda} \right)^k x^k. \quad (3.1)$$

Also, for $k \geq 1$,

$$\sum_{n=0}^{\infty} F^\Delta (n, k) t^n = F(t)^k$$

$$= \left((1 + \lambda t)^{\frac{x}{\lambda}} - 1 \right)^k$$

$$= \sum_{j=0}^{k} \binom{k}{j} (-1)^{k-j} (1 + \lambda t)^x$$

$$= \sum_{j=0}^{k} \binom{k}{j} (-1)^{k-j} \sum_{n=0}^{\infty} \frac{(j | \lambda)_{n} t^n}{n!}$$

$$= \sum_{n=0}^{\infty} \sum_{j=0}^{k} (-1)^{k-j} \binom{k}{j} \frac{(j | \lambda)_{n}}{n!} t^n. \quad (3.2)$$

Hence, we have, for $k \geq 1$,

$$F^\Delta (n, k) = \frac{1}{n!} \sum_{j=0}^{k} (-1)^{k-j} \binom{k}{j} (j | \lambda)_{n}$$

$$= \frac{1}{n!} \sum_{j=1}^{k} (-1)^{k-j} \binom{k}{j} (j | \lambda)_{n}.$$
Now, the main result in this section follows from Theorem 9, (3.1) and (3.2).

Theorem 10. For all integers \(n \geq 0 \), the degenerate Bell polynomial \(\text{Bel}_{n,\lambda}(x) \) has the following expression

\[
\text{Bel}_{n,\lambda}(x) = \begin{cases}
1, & \text{for } n = 0, \\
\sum_{k=1}^{n} \left(\sum_{j=1}^{k} \frac{(-1)^{k-j-1}(j)}{n!j!} \left(\frac{(1+\lambda)\log(1+\lambda)}{\lambda} \right)^k (j|\lambda)_n \right)x^k, & \text{for } n \geq 1.
\end{cases}
\]

References

1. A. Adelberg, *A finite difference approach to degenerate Bernoulli and Stirling polynomials*, Discrete Math. **140** (1995), no. 1-3, 1–21. MR 1333708 (96i:39001)
2. S. Araci, M. Acikgoz, and H. Jolany, *On the families of q-Euler polynomials and their applications*, J. Egyptian Math. Soc. **23** (2015), no. 1, 1–5. MR 3317290
3. L. Carlitz, *Degenerate Stirling, Bernoulli and Eulerian numbers*, Utilitas Math. **15** (1979), 51–88. MR 531621 (80i:05014)
4. C.-O. Chow and T. Mansour, *On the real-rootedness of generalized Touchard polynomials*, Appl. Math. Comput. **254** (2015), 204–209. MR 3314447
5. Y. He and W. Zhang, *A convolution formula for Bernoulli polynomials*, Ars Combin. **108** (2013), 97–104. MR 3060257
6. F. T. Howard, *Explicit formulas for degenerate Bernoulli numbers*, Discrete Math. **162** (1996), no. 1-3, 175–185. MR 1425786 (97m:11024)
7. D. S. Kim and T. Kim, *Some identities of Bell polynomials*, Sci. China Math. **58** (2015), doi:10.1007/s11425-015-5006-4.
8. D. S. Kim, T. Kim, and D. V. Dolgy, *A note on degenerate Bernoulli numbers and polynomials associated with \(p \)-adic invariant integral on \(\mathbb{Z}_p \)*, Appl. Math. Comput. **259** (2015), 198–204.
9. T. Kim, *Identities involving Laguerre polynomials derived from umbral calculus*, Russ. J. Math. Phys. **21** (2014), no. 1, 36–45. MR 3182545
10. **Barnes’ type multiple degenerate Bernoulli and Euler polynomials**, Appl. Math. Comput. **258** (2015), 556–564. MR 3323091
11. V. V. Kruchinin and D. V. Kruchinin, *Composita and its properties*, J. Ana. Num. Theor. **2** (2014), no. 2, 1–8.
12. G. D. Liu, *Degenerate Bernoulli numbers and polynomials of higher order*, J. Math. (Wuhan) **25** (2005), no. 3, 283–288.
13. T. Mansour and M. Schork, *The generalized Stirling and Bell numbers revisited*, J. Integer Seq. **15** (2012), no. 8, Article 12.8.3, 47 pp.
14. T. Mansour and M. Shattuck, *A recurrence related to the Bell numbers*, Integers **12** (2012), no. 3, 373–384. MR 2955520
15. F. Qi and M.-M. Zheng, *Explicit expressions for a family of the Bell polynomials and applications*, Appl. Math. Comput. **258** (2015), 597–607. MR 3323095
16. S. Roman, *The umbral calculus*, Pure and Applied Mathematics, vol. 111, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1984. MR 741185 (87c:05015)
17. Y. Simsek, *Interpolation functions of the Eulerian type polynomials and numbers*, Adv. Stud. Contemp. Math. (Kyungshang) **23** (2013), no. 2, 301–307. MR 3088760
18. Z. Zhang and J. Yang, *On sums of products of the degenerate Bernoulli numbers*, Integral Transforms Spec. Funct. **20** (2009), no. 9-10, 751–755. MR 2568788 (2010k:11035)

Department of Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea

E-mail address: kimtk2015@gmail.com

Department of Mathematics, Sogang University, Seoul 121-742, Republic of Korea

E-mail address: dskim@sogang.ac.kr