Compact families of Jordan curves and convex hulls in three dimensions

Colm Ó Dúnlaing
Mathematics, Trinity College, Dublin 2, Ireland *

December 2, 2013

Abstract

We prove that for certain families of semi-algebraic convex bodies in \mathbb{R}^3, the convex hull of n disjoint bodies has $O(n \lambda_s(n))$ features, where s is a constant depending on the family: $\lambda_s(n)$ is the maximum length of order-s Davenport-Schinzel sequences with n letters. The argument is based on an apparently new idea of ‘compact families’ of convex bodies or discs, and of ‘crossing content’ and ‘footprint width’ among disc intersections.

Contents

Introduction 1
Convex hull 2
Discs, overlaps, and crossways 3
Crossing content 4
Footprint width 5
$O(n)$ overlaps 6
The complexity bounds 7
References 8
Appendix: nature and continuity of the pre-seam map A

1 Introduction

The construction of convex hulls is a well-studied problem, certainly for finite sets of points in any dimension, and for more general sets, such as curved objects in two dimensions [1], quadric surfaces in three dimensions [14], and spheres in any dimension [3]. This paper gives a reasonably straightforward derivation of an $o(n^2 \log^* n)$ upper bound for the feature complexity (descriptive complexity) of the convex hull of n disjoint bodies in three dimensions, granted that the bodies come from a ‘compact family,’ a term defined in this paper.

*e-mail: odunlain@maths.tcd.ie. Mathematics department website http://www.maths.tcd.ie.
In 1995 Hung and Ierardi [8] reported $O(n^{2+\epsilon})$ complexity bounds, together with algorithms for constructing the hull, but their approach is indirect and hard to understand. In this paper we (hopefully) develop a theory sufficient for a convincing proof.

(1.3) S will be a set of n disjoint convex bodies in \mathbb{R}^3. $H(S)$ denotes the convex hull of S. As in [14] the boundary $\partial H(S)$ is divided into exposed facets, tunnel facets, and planar facets. These, with their separating edges and vertices, constitute the features of $H(S)$. In the case of spherical bodies it is known that $H(S)$ has $O(n^2)$ features, and this is also a lower bound (Figure 1, [10,3]).

Every facet is incident to an edge or vertex of an exposed facet, so the feature complexity can be estimated by counting the edges and/or vertices on the exposed facets. Thus the complexity can be reduced to that of unions of discs.

(1.4) It is necessary to assume some complexity bounds on the bodies. For example, Figure 2 shows how the convex hull of two bodies can have many features. To eliminate this we assume that the bodies are semialgebraic of bounded degree.

Unions of n circular discs have complexity $O(n)$, whereas unions of n thin ellipses can have complexity $\Omega(n^2)$, obviously because they are ‘thin,’ and the analysis of various notions of ‘fatness’ which reduce the complexity, has been of great interest [4,5].

One distinguishes two kinds of disc intersection: overlaps and crossways. Given two (topological) discs D_1 and D_2, an overlap (respectively, crossway) is a connected component of $D_1 \cap D_2$ whose intersection with the boundaries ∂D_1 and ∂D_2 is connected (respectively, disconnected): see Figure 3.

1This is how the complexity was stated, though probably an estimate close to ours could have been given.
Given a list of \(n \) discs where any two intersect in at most one component, and that an overlap, the arrangement is termed one of pseudodiscs and the union has \(O(n) \) features \[4\]. We generalise this, slightly: if there is a bound on the number of intersection components between any two discs, then the union has \(O(n) \) overlaps, no matter how many crossways.

On the other hand, \(n \) thin ellipses can have \(\Omega(n^2) \) crossways.

In order to limit the number of crossways, we posit the notion of positive crossing content, where there is a lower bound on the area of any crossway. This requires the disc boundaries to be differentiable (Figure 4).

We achieve positive crossing content using arguments based on compactness and continuity.

\[1.5\] Accordingly, our point of departure is the notion of a compact family of convex bodies, which have twice-differentiable boundaries and have a distance function based on the \(C^2 \) norm. From these we pass to compact families of discs which are \(C^1 \) and have a metric based on the \(C^1 \) norm. We show that the map from bodies to discs — which are hidden regions on the boundaries — is continuous, from which the compactness of the disc family and positive crossing content are derived.

With one further idea, that of footprint width, we are able to show that on any body \(B \) there are \(O(n) \) pairs \((D, E)\) of incident hidden and exposed areas (called discs and holes in the paper), whence the exposed areas on \(B \) have \(O(\lambda_s(n)) \) features, and \(H(S) \) has \(O(n\lambda_s(n)) \) features overall. Here \(\lambda_s(n) \) is the maximum length of \(n \)-letter order-\(s \) Davenport-Schinzel sequences, and \(s \) is a constant depending on the semialgebraic complexity of the bodies.

2 Convex hull

2.1 First assumptions; features.

\[2.1\] Let \(S \) be a set of solid bodies in \(\mathbb{R}^3 \). We make the following assumptions.

- The bodies are closed, bounded, and convex.
Figure 5: Convex hull of five spheres. Exposed facets, tunnel facets, and planar facets are marked e, t, and p, respectively.

- They are in general position: no four bodies possess a common tangent plane.
- They are pairwise disjoint.
- They are rounded: their boundary surfaces have unique tangent planes (or outward unit normals) at all points, and every tangent plane meets the boundary at just one point.

$H(S)$ is the (closed) convex hull of $\bigcup S$, i.e., of $\bigcup\{B : B \in S\}$.

Structure of $H(S)$. The features of $H(S)$ are its facets, edges, and vertices, as follows. As discussed in [14], $\partial H(S)$ is naturally divided into connected regions: its exposed facets, tunnel facets, and planar facets. The exposed facets are (path-) connected components of $(\partial H(S)) \cap \bigcup S$, tunnel facets are connected part-surfaces generated by line-segments touching two bodies, and (since the bodies are in general position) planar facets are triangular. Tunnel facets are bounded by two exposed facets and by two planar facets (or are quasi-cylindrical, joining two bodies).

Facets meet along edges, and edges meet at vertices; also, an edge could be a closed loop.

Under the assumption of general position, no facet touches more than three bodies. Figure 5 illustrates these features, except that exposed facets need not be simply connected.

The feature complexity of $H(S)$ is the total number of features, generally proportional to the number of facets.

If $B \in S$, we call $\partial B \cap \partial H(S)$ the exposed part of B, whereas $\overline{\partial B \cap H(S)^\circ}$ is its hidden part. (The exposed and hidden parts are both closed and they intersect along their common boundaries).²

2.2 Compact families and placements

Our analysis requires further assumptions about the kinds of body occurring in S. We require that each is a translated copy of a ‘model’ body. The ‘model’ bodies are to be taken from a restricted

² X° is the interior of X and \overline{X} is its closure.
family. For this reason, a model is a convex body subject to various restrictions. One restriction is that its boundary should be twice differentiable.

By the derivative $f'(x)$ of a function f at x we mean the Fréchet derivative [12], i.e., the linear map $h \mapsto f'(x)h$, if it exists, such that

$$f(x + h) = f(x) + f'(x)h + o(\|h\|).$$

A C^r-function is one which is r times continuously differentiable.

We assume that each body in S is specified by an inequality

$$f(x - a) \leq 1 : \quad B^{f,a} = \{ x \in \mathbb{R}^3 : f(x - a) \leq 1 \}.$$

$B^{f,a}$ is the translation by a, or a placement, of a model

$$B^f = B^{f,O} = \{ x : f(x) \leq 1 \}.$$

\mathcal{F} is the family of all such functions f.

Our notation for open and closed balls in \mathbb{R}^3 is

$$N_d(x) = \{ y \in \mathbb{R}^3 : \|y - x\| < d \}$$

$$\overline{N}_d(x) = \{ y \in \mathbb{R}^3 : \|y - x\| \leq d \}$$

(2.2) In addition to the assumptions [2.1] for every $f \in \mathcal{F}$,

- The domain of f is an open set containing $\overline{N}_1(O)$.
 The codomain of f is \mathbb{R}.

- f is piecewise algebraic of bounded algebraic degree (involving a bounded number of polynomials in $\mathbb{R}[x, y, z]$ with bounded total degree).

- f is C^2. The derivative $f'(x)$ is, properly speaking, a row vector, but we shall work with its transpose, a column vector. Then $f''(x)$ is equivalent to a 3×3 matrix. The matrix is symmetric since the second derivatives are continuous.

- $f(x) > 1$ if $\|x\| = 1$, so B^f is contained in the open ball $N_1(O)$.

- $f''(x)$ is positive definite, and $f'(x)$ is nonzero, for all x in ∂B^f.

- The origin is interior to all models, i.e., $f(O) < 1$ for all $f \in \mathcal{F}$.

- \mathcal{F} is closed under rotation around O, i.e., for any $f \in \mathcal{F}$ and $R \in SO(3)$, the group of rotations, $f \circ R \in \mathcal{F}$.

The last two assumptions are for simplicity. The norm $\|x\|$ is the usual Euclidean norm, which may also be used for matrices, and thus for second derivatives.
The C^2 norm on parametrisations $f \in \mathcal{F}$ is
\[
|f|_{C^2} = \text{(def)} \sup_{\|x\| \leq 1} \max(\|f(x)\|, \|f'(x)\|, \|f''(x)\|) =
\max \left(\sup_{\|x\| \leq 1} \|f(x)\|, \sup_{\|x\| \leq 1} \|f'(x)\|, \sup_{\|x\| \leq 1} \|f''(x)\| \right).
\]
and the C^2-distance $d(f, g)$ between two functions is $|f - g|_{C^2}$.

Lemma $SO(3)$ acts continuously on \mathcal{F}.

Sketch proof. That is, if A and B are rotations, and $\|B - A\|$ is small, then $|f \circ B - f \circ A|_{C^2}$ is small.

If $\|B - A\|$ is small, then for all $x \in \overline{N}_1(O)$, $Bx - Ax$ is small, whence $f(Bx) - f(Ax)$, $f'(Bx) - f'(Ax)$, and $f''(Bx) - f''(Ax)$ are small.

Definition A family of models is compact if the parametrising family \mathcal{F} is compact under the C^2 metric.

Definition Given a body $B = B^{f,a}$ and $p \in \partial B$, the (outward) unit normal $n(p)$ at p is
\[
n(p) = \frac{f'(p - a)}{\|f'(p - a)\|}.
\]

Proposition If B is a rounded compact convex body, then the map
\[
\partial B \to S^2 : \quad p \mapsto n(p)
\]
is a homeomorphism [6, Lemma 1].

Compact families of discs

We shall prove that hidden regions arising from a compact family of models form a compact family of discs. A transformation will be applied to hidden regions so they are topological discs on the unit sphere S^2.

Suppose $\phi : [0, 2\pi] \to \mathbb{R}^3$ is a continuous map. By its derivative $\frac{df}{d\phi}$ at ϕ is meant a one- or two-sided limit, presuming it exists:
\[
\frac{df}{d\phi} = \begin{cases}
\lim_{h \to 0} \frac{f(\phi + h) - f(\phi)}{h} & \text{if } 0 < \phi < 2\pi, \\
\lim_{h \to 0+} \frac{f(\phi + h) - f(\phi)}{h} & \text{if } \phi = 0, \\
\lim_{h \to 0-} \frac{f(2\pi + h) - f(2\pi)}{h} & \text{if } \phi = 2\pi.
\end{cases}
\]

Definition A (closed) disc is generally taken in the topological sense, i.e., a topological space homeomorphic to the closed unit disc
\[
\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1\}.
\]

This paper is concerned with discs on the unit sphere S^2. An oriented C^1 Jordan curve in S^2 is the image of a map $f : [0, 2\pi] \to S^2$, satisfying the following conditions.
• The map f is injective, except that $f(0) = f(2\pi)$.

• It is continuously differentiable, i.e., $\frac{df}{d\phi}$ is defined and continuous everywhere and $\frac{df}{d\phi}(0) = \frac{df}{d\phi}(2\pi)$.

• Its derivative is nowhere zero: $\frac{df}{d\phi} \neq \vec{O}$.

The Jordan-Schönflies Theorem (an extension of the Jordan Curve Theorem) [13], adapted to S^2, implies that every Jordan curve J defines a unique closed disc in S^2: the curve may be oriented in the direction of increasing ϕ, and $S^2 \setminus J$ is the union of two disjoint open topological discs of which J is the boundary of both; the one meeting the oriented curve from its left-hand side is the interior D° of the disc, and $D = D^\circ \cup J$ is the closed disc. This gives a way of parametrising closed discs in S^2 with differentiable boundary, by C^1 maps.

(2.9) The C^1 norm on parametrisations f is

$$\sup_{0 \leq \phi \leq 2\pi} \max(\|f(\phi)\|, \|df/d\phi\|) = \max \left(\sup_{0 \leq \phi \leq 2\pi} \|f(\phi)\|, \sup_{0 \leq \phi \leq 2\pi} \|df/d\phi\| \right).$$

leading to a metric on the space of all such closed discs in S^2. A compact family of discs is a compact set of parametrisations, under this metric.

2.4 The theorem on pre-seams

Suppose that B_0 and B_1 are disjoint copies of ‘model’ bodies. The B_0, B_1-seam is the set of points on ∂B_0 at which the tangent plane is also a (supporting) tangent plane to B_1. Since the model bodies are rounded, the seam is homeomorphic to the circle S^1 [6, Lemma 5].

The normal map from ∂B_0 is as follows. Explicitly, if $B_0 = \{x : f_0(x - a_0) \leq 1\}$, and $p \in \partial B_0$ (i.e., $f_0(p - a_0) = 1$), then the outward unit normal to B_0 at p is

$$\frac{f'(p)}{\|f'(p)\|}.$$

It is known to map ∂B_0 homeomorphically onto the 2-sphere S^2 [6, Lemma 1].

(2.10) Definition The B_0, B_1 pre-seam is the image of the B_0, B_1-seam under the normal map to ∂B_0.

(2.11) Lemma Both the B_0, B_1-seam, and the B_0, B_1 pre-seam, are semi-algebraic of bounded degree.

Proof. (See [6 Theorem 3]). B_0, B_1 are semi-algebraic, so $H = H(B_0, B_1)$ is semialgebraic; also, so is ∂H, and $D = H \cap B_0^\circ$, and \overline{D}, and $E = (\partial H) \cap \partial B_0$, and \overline{E}, which is the B_0, B_1-seam, call it S. Suppose $B_0 = B_{f_0, a_0}$.

The B_0, B_1 pre-seam is the set of all unit vectors ω which are positive multiples of $f'(x - a_0)$ where x is on the seam, i.e., given S is the B_0, B_1-seam,

$$\{\omega \in \mathbb{R}^3 : \|\omega\|^2 = 1 \land (\exists t \in \mathbb{R})(\exists x \in S)(\omega = t^2 f'(x - a_0))\}.$$
It is therefore semi-algebraic of bounded degree.

Since the family of models is closed under rotations, we can assume for convenience that the bodies B_0, B_1 form a ‘balanced pair’:

(2.12) Definition A balanced pair of bodies $B_0 = B^{f,a}, B_1 = B^{g,b}$ is a pair of bodies such that

- $B_0^* \cap B_1^* = \emptyset$ (the bodies can touch but not overlap properly).

- Let $c_0 \in B_0, c_1 \in B_1$ be the points, unique since the bodies are rounded, such that $\|c_1 - c_0\|$ is minimal. Then they are opposite points on the z-axis, with c_0 left of c_1, i.e., $c_0 = (-s, 0, 0)$ and $c_1 = (s, 0, 0)$, where $s \geq 0$.

Given a compact family \mathcal{F} of convex models,

$$\text{BP}(\mathcal{F})$$

denotes the set of balanced pairs.

Based on the C^1 metric on Jordan curves (§2.9), $\text{BP}(\mathcal{F})$ is given the metric

$$d((B^{f_0,a_0}, B^{f_1,a_1}), (B^{g_0,b_0}, B^{g_1,b_1})) = (\text{def}) \max (\|g_0 - f_0\|_{C^2}, \|b_0 - a_0\|, \|g_1 - f_1\|_{C^2}, \|b_1 - a_1\|).$$

The space of balanced pairs is unbounded and therefore not compact.

(2.13) Theorem For any balanced pair B_0, B_1, the B_0, B_1 pre-seam is an oriented C^1 Jordan curve in S^2, and the pre-seam map from $\text{BP}(\mathcal{F})$ to oriented C^1 Jordan curves on S^2, is continuous, and the image of $\text{BP}(\mathcal{F})$ is a compact family of discs.

Proof deferred to Appendix A

3 Discs, overlaps, and crossways

The complexity of unions of discs has been widely studied [5]. In this paper the discs correspond to hidden regions but they are on S^2, bounded by pre-seams.

(3.1) Definition In this paper, discs will be subspaces of S^2, and be parametrised by C^1 maps as described in [2.8].

Two discs D, E are in general position if $(\partial D) \cap \partial E$ is finite, and at any point in the intersection, the boundary tangents intersect transversally.

A list of discs is in general position if every two are in general position (transverse intersections), and for every three, D_i, D_j, D_k, $\partial D_i \cap \partial D_j \cap \partial D_k = \emptyset$.

A list of discs D_i (in general position) has bounded intersection number if any two discs intersects in at most κ points. The uniform bound κ is usually left implicit.

In a list D_i of discs, a disc D_i is redundant if $D_i \subseteq \bigcup_{j \neq i} D_j$. A list is irredundant if no disc is redundant.
Clearly, omission of redundant discs leaves $\bigcup D_i$ unchanged.

The complexity of $\bigcup D_i$ is the total number of edges in the boundary $\partial (\bigcup D_i)$. This could be $\Omega(n^2)$, as with n pairwise intersecting thin ellipses, whose complement has $\Omega(n^2)$ components. Under suitable assumptions related to convex hulls in \mathbb{R}^3, there are $O(n)$ exposed regions. Firstly, we distinguish two kinds of intersection, as mentioned in the introduction.

3.2 Definition Let D and E be two discs in general position. An intersection component is a connected component of $D \cap E$. We distinguish overlaps from crossways as follows.

Let K be an intersection component. The boundary ∂K is composed of edges alternately from D and from E. If K is bounded by just two edges (and vertices), it is an overlap. Otherwise, it is bounded by four or more, and is termed a crossway (see Figure 3).

Put more briefly: K is an overlap iff $K \cap \partial D$ is connected, so $K \cap \partial E$ is connected. Similar ideas occur in [4] in connection with ‘pseudodiscs’ which are sets of discs whose intersection, if nonempty, is a single overlap. Also, [4] discusses discs with polygonal boundaries. It shows that unions of n pseudodiscs have $O(n)$ features.

We could generalise [4] slightly by showing that the union of n discs in general position, with no crossways, and bounded intersection, has $O(n)$ features.

A family (of Jordan curves or the discs they enclose) has positive crossing content if there is a positive lower bound κ such that, for every two discs D, E in general position drawn from the family, every crossway K from $D \cap E$ has measure $\geq \kappa$.

4 Crossing content

In this section it is proved (Corollary 4.16) that every compact family of discs has positive crossing content, as defined above. One generally expects measure to be a continuous function of sets under various metrics. The curious fact is that measure is discontinuous under the Hausdorff metric, as observed in [2]. The reason is very simple. If K is a bounded set of positive measure, then it contains a countable dense subset, and hence there is an increasing sequence F_n of finite subsets whose union is dense in K: $d(F_n, K) \to 0$ in the Hausdorff metric, whereas $\mu(K) > 0$ and $\mu(F_n) = 0$ for all n. Measure may or may not be continuous for closed discs under the Hausdorff metric: we show that it is continuous for closed discs under the C^1 metric.

4.1 Successor convention. If i is an index in finite range $1 \ldots n$, we interpret $i \pm 1$ cyclically:

$$i + 1 \quad \text{means } (i \mod n) + 1; \quad i - 1 \quad \text{means } ((i - 2) \mod n) + 1$$

Our interest in compactness is largely because of the following well-known proposition, which is an easy consequence of the finite intersection property.

4.2 Proposition Let X be a nonempty compact space and $f : X \to \mathbb{R}$ a continuous map. Then $f(X)$ is bounded, and there exist points x_0, x_1 in X such that

$$f(x_0) = \inf_X f(x) \quad \text{and} \quad f(x_1) = \sup_X f(x).$$

3 An edge could be a disc boundary. Otherwise (in general position) it is incident to two vertices.
(4.3) Definition Given two bounded nonempty sets \(X\) and \(Y\) in any metric space, the Hausdorff distance between \(X\) and \(Y\) is

\[
d(X, Y) = (\text{def}) \max \left(\sup_{x \in X} \inf_{y \in Y} d(x, y), \sup_{y \in Y} \inf_{x \in X} d(x, y) \right). \]

If we take (in any metric space) the \(\epsilon\)-ball around any point \(x\) to mean

\[
N_\epsilon(x) = \{y : d(x, y) < \epsilon\} \quad \text{and} \quad \overline{N}_\epsilon(x) = \{y : d(x, y) \leq \epsilon\},
\]

then in a vector space with bounded nonempty set \(X\), the \(\epsilon\)-neighbourhood of \(X\) with respect to Hausdorff distance is

\[
N_\epsilon(X) = \{Y : X \subseteq Y + N_\epsilon(O) \quad \text{and} \quad Y \subseteq X + N_\epsilon(O)\}. \]

If the metric space is complete, then the set of closed bounded nonempty subsets is complete under the Hausdorff metric \([7]\).

(4.4) Definition Recall that an intersection component is a connected component of \(D \cap E\), where \(D\) and \(E\) are discs in general position (Definition [2.2]). Given a compact family \(F\), an intersection component from \(F\) is an intersection component of two discs, in general position, from \(F\).

The space \(\text{IC}(F)\), the space of intersection components, is the completion of the space \(T\), where \(T\) is the metric space consisting of all triples

\[
D, E, K
\]

where \(D\) and \(E\) are in general position\(^4\) \(K \neq \emptyset\), and \(K\) is a component of \(D \cap E\).\(^5\) The metric on \(T\) is

\[
d((D, E, K), (\hat{D}, \hat{E}, \hat{K})) = \max \left(|f - \hat{f}|_{C^1}, |g - \hat{g}|_{C^1}, d(K, \hat{K}) \right), \]

where \(f, \hat{f}, g, \hat{g}\) parametrise \(D, \hat{D}, E, \hat{E}\), and \(d(K, \hat{K})\) is Hausdorff distance.

\(^4\) or rather, parametrisations of these discs, being \(C^1\) oriented Jordan curves with the disc interiors to their left.

\(^5\) On the other hand, \(K\) is taken at face value, as a set.
(4.5) Remarks. Suppose \((D_n, E_n, K_n)\) is a Cauchy sequence, converging to \((D, E, K)\). \(D\) and \(E\) are (parametrised by maps) in \(\mathcal{F}\), and \(K\) consists of all limit points of all sequences \(x_n, x_n \in K_n\). Theorem 3-3. \(K\) is a (path)-connected subset of \(D \cap E\), but not necessarily a connected component of \(D \cap E\), and not necessarily a closed disc (Figure 6). It can be a contractible union of closed discs which are connected by touching or linked by edges. Each linking edge is a closed segment of \(\partial D \cap \partial E\) where the ‘inside’ of \(D\) and of \(E\) are on opposite sides of this segment.

(4.6) Lemma The above set \(K = \lim_n K_n\) is connected.

Proof. Again from [7]: limits of connected sets are connected.

(4.7) Definition If \(A\) is a 2-dimensional set in \(S^2\), its natural metric measure (spherical area) will be written \(\mu(A)\).

If \(J\) is a rectifiable curve in \(S^2\), then its length will be written \(\lambda(J)\).

(4.8) Lemma For any disc \(D\) parametrised by a function in \(\mathcal{F}\), and any \(\epsilon > 0\),
\[
\mu((S^2 \cap (\partial D + N_\epsilon(O)))) = O(\epsilon \lambda(\partial D)).
\]

Proof. For each \(x \in \partial D\), let \(I_x\) be the connected component of \(N_\epsilon(x) \cap \partial D\) which contains \(x\). Because \(\partial D\) is compact, we can choose \(x_1, \ldots, x_n\), in cyclic order around \(\partial D\), so that \(\partial D \subseteq \bigcup I_{x_j}\). We can assume that \(n\) is minimal, which implies that for \(1 \leq j \leq n\),
\[
I_{x_j} \setminus \bigcup_{i \neq j} I_{x_i} \neq \emptyset.
\]
Let
\[
V = \bigcup_j N_{2\epsilon}(x_j)
\]
Next, \(\partial D + N_\epsilon(0) \subseteq V\).

Given \(x \in \partial D + N_\epsilon(0)\), choose \(y \in \partial D\) so that \(x \in y + N_\epsilon(0)\). Then choose \(j\) so that \(y \in x_j + N_\epsilon(0)\). Then \(x \in x_j + N_{2\epsilon}(0)\). Thus \(\partial D + N_\epsilon(0) \subseteq V\) as claimed.

For any \(j\),
\[
S^2 \cap N_{2\epsilon}(x_j)
\]
is a circular region on \(S^2\) subtending an angle \(\theta = 2 \sin^{-1}(\epsilon)\) at \(O\). Projection from \(O\) onto the tangent plane at \(x_j\) is an area-increasing map, so the area of the circular region
\[
\mu(S^2 \cap N_{2\epsilon}(x_j)) \leq \pi \tan^2(2 \sin^{-1}(\epsilon))
\]
is \(O(\epsilon^2)\).

\(^\text{6}\) Recall that all these discs are in the unit sphere \(S^2\).
Consider the subsequence \(x_1, x_3, x_5, \ldots \). Note that \(I_{x_1} \cap I_{x_3} = \emptyset \), since otherwise \(I_{x_1} \cap I_{x_3} \) would be an interval containing \(I_{x_2} \), so \(x_2 \) would be redundant. In general, successive intervals \(I_{x_{2j-1}} \) and \(I_{x_{2j+1}} \) are disjoint. If \(n \) is odd then \(I_n \cap I_1 \) is nonempty and we need to discard \(I_n \), but in any case \(n/2 \) intervals are retained, and

\[
\sum_{j=1,3,\ldots} \lambda(I_j) \leq \lambda(\partial D)
\]

Each interval \(I_j \) is the connected component containing \(x_j \) of \(N_\epsilon(x_j) \cap \partial D \). Its endpoints are on the boundary of that region, and it passes through the centre, so its length is at least \(2\epsilon \). Therefore

\[2\epsilon n/2 \leq \lambda(\partial D).\]

Therefore

\[n\epsilon^2 \quad \text{is} \quad O(\epsilon \lambda(\partial D)).\]

Also,

\[\mu(V) \leq \sum_j \mu(S^2 \cap N_{2\epsilon}(x_j))\]

which is \(O(n\epsilon^2) \), so \(\mu(V) \) is \(O(\epsilon \lambda(\partial D)) \).

\[\mu(K_n) \leq \mu(K) + O(\epsilon(\lambda(\partial D) + \lambda(\partial E)))\]

\[\mu(K_n) \leq \mu(K) + O(U\epsilon).\]

Lemma The map

\[\text{IC}(\mathcal{F}) \rightarrow \mathbb{R}; \quad (D, E, K) \rightarrow \mu(K)\]

is continuous on \(\text{IC}(\mathcal{F}) \).

Proof. Suppose \((D_n, E_n, K_n) \rightarrow (D, E, K) \) where \(D_n \) and \(E_n \) are in general position, so \(\partial K_n \) is a Jordan curve. (This cannot be assumed for \(\partial K \)).

Since \(\lim D_n = D \) under the \(C^1 \) norm on parametrisations, \(\partial D \) is rectifiable and \(\lambda(\partial D_n) \rightarrow \lambda(\partial D) \). Similarly for \(E_n \) and \(E \). Therefore there exists an upper bound, call it \(U \), on all these lengths:

\[U = \max \left(\lambda(\partial D), \sup_n \lambda(\partial D_n), \lambda(\partial E), \sup_n \lambda(\partial E_n) \right).\]

Fix \(\epsilon > 0 \). For sufficiently large \(n \),

\[K_n \subseteq S^2 \cap (K + N_\epsilon(O)) \quad \text{and} \quad K \subseteq S^2 \cap (K_n + N_\epsilon(O)).\]

Given

\[x \in S^2 \cap (K + N_\epsilon(O)) \setminus K,\]

let \(y \) be a point in \(K \) closest to \(x \). Clearly \(y \) is not interior to \(K \), so \(y \in \partial K \) and therefore \(y \in \partial D \cup \partial E \). Therefore

\[x \in (\partial D \cup \partial E) + N_\epsilon(0).\]

Therefore

\[K_n \subseteq K \cup ((\partial D \cup \partial E) + N_\epsilon(O))\]

\[\mu(K_n) \leq \mu(K) + O(\epsilon(\lambda(\partial D) + \lambda(\partial E)))\]

\[\mu(K_n) \leq \mu(K) + O(U\epsilon).\]
Similarly $\mu(K) \leq \mu(K_n) + O(U\epsilon)$. Therefore

$$\lim_{n} \mu(K_n) = \mu(K).$$

(4.10) **Lemma** Taking discs D from a compact family, μD is a continuous function of D (with respect to the C^1 norm). (Proof similar to above lemma, but easier.)

(4.11) **Corollary** Taking discs D (parametrised) from a compact family \mathcal{F},

$$\inf_{D \in \mathcal{F}} \mu D > 0.$$

Proof. Measure is continuous on \mathcal{F}, and \mathcal{F} is compact and therefore complete, so there exists a disc D of minimal measure, and that measure must be positive.

(4.12) **Definition** A list D_1, \ldots, D_n of discs has positive crossing content if there is a positive constant κ, left implicit, such that every crossway occurring among the discs has crossing content $\geq \kappa$.

(4.13) **Definition** Suppose that $f : [0, 2\pi]$ parametrises a C^1 Jordan curve on S^2, enclosing a disc D on S^2. The normal at any point x on S^2 is just x itself.

The second outward normal to ∂D at $f(\theta)$ is

$$\frac{df/d\theta \times f(\theta)}{\|df/d\theta \times f(\theta)\|}$$

The lemma below is a form of mean-value theorem.

(4.14) **Lemma** Let e be a differentiable curve-segment in S^2 joining two points A and B. Let L be the line through O in \mathbb{R}^3 parallel to AB. Then there exists a plane through L tangent to e.
Proof (sketch). See Figure 8. Let P be the plane OAB. $S^2 \cap P$ is the great circle containing AB. If e is entirely within P then the statement holds. Otherwise $e \setminus P$ consists of a union of nonempty open intervals. Let I be one of them: it is contained in one of the open hemispheres whose union is $S^2 \setminus P$. The plane P can be rotated around L, maintaining nonempty intersection with I, until it becomes tangent to I and thus to e. \[\]

(4.15) Theorem. Let (D_i, E_i, K_i) be an infinite sequence of triples in $IC(F)$ converging to (D, E, K) (Definition 4.4). Then $\mu(K) > 0$.

Proof. Suppose $\mu(K) = 0$.

Referring to the remarks in [4.3] and Figure 6 it must be that $K^\circ = \emptyset$ and $K = \partial K$ is entirely contained in $\partial D \cap \partial E$. Also, $D \neq E$ since otherwise $K = D = E$ would have positive measure.

By the Jordan Curve Theorem (on S^2) $\partial D \neq \partial E$, and $\partial D \cap \partial E$ is a union of closed curve-segments and/or points. Thus K is a closed curve-segment contained in $\partial D \cap \partial E$. Possibly K is a single point.

Implicitly D_i is parametrised by a C^1 map $f_i : [0, 2\pi] \to S^2$ and D by a map f, where $f_i \to f$ in the C^1 metric. Similarly E_i and E are parametrised by maps g_i and g. We write θ for the argument of f_i and f and ϕ for that of g.

By choosing a subsequence if necessary, it may be assumed that all K_i have the same number of vertices. Suppose they have ν vertices. The vertices V_{ij} can be written as

$$V_{ij} = f_i(\theta_{ij}) = g_i(\phi_{ij}), \quad 1 \leq j \leq \nu.$$

By choosing a subsequence, it may be assumed that for each j, θ_{ij} and ϕ_{ij} converge, so the vertices converge,

$$V_{ij} \to V_j, \quad 1 \leq j \leq \nu,$$

and the second outward normals to D_i and E_i at those vertices also converge.

K is a point or a simple closed curve-segment common to ∂D and ∂E. Let X and Y be the endpoints of K.

Claim: $V_j \neq V_{j+1}$ (4.1). For suppose that $V_{i,j}$ and $V_{i,j+1}$ converge to the same point. Let d_i and e_i be the edges joining these vertices along ∂D_i and ∂E_i respectively. One of these edges is an edge of K_i, and the other is outside K_i except at its endpoints. Certainly one or the other happens infinitely often and we can take a subsequence so that, without loss of generality, d_i is an edge of K_i and e_i is outside K_i, for each i.

By Lemma 4.14 if L is the line through O parallel to $V_{ij} V_{i,j+1}$, then there are planes through L, one tangent to d_i, at x_i, say, one through $V_{ij} V_{i,j+1}$, and one tangent to e_i, at y_i, say.

For each i, the outward normal to ∂D_i, call it $n(d_i)$, at x_i, is normal to the first of the three planes, and that to ∂E_i at y_i, call it $n(e_i)$, is normal to the third. If η_i is the angle between the first and third planes, then rotation through η_i about L takes the first plane to the third, and takes $n(d_i)$ to $\pm n(e_i)$.

Furthermore, rotation through η_i is in the general direction of $n(d_i)$, away from D_i at x_i, so in fact rotation takes $n(d_i)$ to $n(e_i)$.

As $i \to \infty$, the points x_i and y_i become arbitrarily close to V_{ij}, and the angle separating the two planes decreases to zero. This implies that the outward normals to ∂D_i and to ∂E_i at V_{ij} converge to the same vector. But, in the limit, the outward normals must add to zero, since D and E are externally tangent along K (otherwise K would have nonempty interior). This contradiction shows that the points V_j and V_{j+1} are different, as claimed. As a consequence, $X \neq Y$.

14
Again, claim that no vertex V_j can differ from X and Y. For suppose that the edges incident to V_{ij} are d_i and e_i. Their outward normals $n(d_i)$ and $n(e_i)$ converge to vectors which are either equal or complementary. But they cannot be complementary, because the angle of separation must decrease to zero (Figure 10), proving the claim.

Summing up: all vertices V_j are distinct, and they only be at X or Y. Therefore $\nu = 2$, and the K_i are overlaps: a contradiction.

(4.16) **Corollary** Every compact family has positive crossing content.

Proof. Crossing content is continuous on IC(\mathcal{F}) (Lemma 4.9). Since the family is compact, there exists a pair D, E of discs with a limiting crossway K such that $\mu(K)$ minimises the crossing content. But $\mu(K) > 0$.

5 **Footprint width**

From positive crossing content it is possible to deduce that $S^2 \setminus \bigcup D_i$ has $O(n)$ components, which we shall call ‘holes.’ However, we need a stronger bound, an $O(n)$ bound on the number of pairs (D, H) where D is a disc and H a hole and $D \cap H \neq \emptyset$. It is not clear whether this bound is a consequence of bounded intersection number. But the ‘positive footprint width’ property discussed here will make it clear (assuming that all intersections are crossways, not overlaps).

Suppose that D is a disc with disjoint crossways K_1 and K_2. Each side of K_1 not lying in ∂D is incident to a unique component of $D \setminus K_1$, and exactly one of these components contains K_2. The point is that there is a lower bound on the length of that side, or, more simply, on the separation of its endpoints.

(5.1) **Definition** Consider the family of tuples (D, E, s, E') where the discs D, E, E' are in general position, s is a side of a crossway from of $D \cap E$, and the component of $D \setminus E$ incident to s contains a crossway from $E \cap E'$.
The edge s we call a footprint on ∂D.

The distance separating the endpoints of s we call a footprint width from E on D.

(5.2) Lemma If \mathcal{G} is a compact family of discs, then there is a strictly positive lower bound on the set of possible footprint widths.

Proof. We parametrise the given family by the three discs and the two vertices (on $\partial D \cap \partial D_1$) which are endpoints of s. Thus we represent configurations as quintuples. We give it a metric in the usual way: the distance between D_1, E_1, x_1, y_1, E'_1 and D_2, E_2, x_2, y_2, E'_2 is the maximum distance between corresponding components. Consider the completion of this space as a compact metric space.

Given a convergent sequence $(D_n, E_n, x_n, y_n, E'_n)$, since the component of $D_n \setminus E_n$ incident to s_n contains E'_n, its area is bounded from below (by positive content), and therefore the endpoints of s_n cannot converge to the same point. But the distance $\|x_n - y_n\|$ is a continuous function of the quintuples, so the distance cannot decrease to zero, and the footprint width is bounded below.

6 $O(n)$ overlaps

In this section, and the next, we consider a list D_1, \ldots, D_n of discs in general position, irredundant (Definition 3.1), with bounded intersection number, and positive crossing content.

(6.1) Definition An o-vertex is an external vertex in $\bigcup D_i$ which is incident to an overlap between two discs.

In this section, the goal is to prove that $\bigcup D_i$ has $O(n)$ o-vertices.

(6.2) Definition A proper hub is a connected component of the union of all crossways. A hub is either a proper hub or a disc without crossways, i.e., a disc D_i whose only intersection components with other discs D_j, if any, are overlaps.

The result below depends crucially on crossing content.
(6.3) **Lemma** There are $O(1)$ proper hubs.

Proof. For each proper hub H, choose a crossway K_H contained in H. These crossways K_H are disjoint. The discs have positive crossing content, so the measure of crossways, and hence of proper hubs, is bounded below, and S^2 has area 4π, so there are $O(1)$ proper hubs.

(6.4) **Lemma** There are $O(n)$ (external) vertices incident to overlaps.

Proof. In other words, there are $O(n)$ o-vertices. Given a disc D_i, let V_i be the set of all overlaps between D_i and other discs, i.e., connected components L of $D_i \cap D_j$ such that $L \cap \partial D_i$ and $L \cap \partial D_j$ are connected. For the rest of this proof, let ‘overlap’ mean a maximal connected union of such overlaps L, i.e., a connected component of $\bigcup_{E \in V_i} E$.

The overlaps can be made arbitrarily thin by retracting without changing the external features of $\bigcup D_i$.

Once they are sufficiently thin the overlaps around D_i become disjoint7 and

$$C_i = \text{ (definition) } D_i \setminus \bigcup_{E \in V_i} E$$

will be simply connected. Whether C_i intersects any crossways is irrelevant: it is only overlaps which are being counted. Choose an internal vertex x_i in each C_i.

Choose paths joining x_i to all the o-vertices on ∂C_i. Since C_i is path-connected, these paths can be made disjoint except at the internal vertices x_i. The union of these paths define a planar multigraph whose vertices are the n vertices x_i. Let k be the maximum number of edges joining any two vertices x_i and x_j, so there are $\leq 3nk$ edges. By assumption the discs have bounded intersection number, so k is bounded, and there are $O(n)$ such edges and $O(n)$ o-vertices.

One can continue the retraction a little further to actually eliminate the overlaps and leave only crossways. This will of course remove $O(n)$ vertices and probably introduce some new ones; we may conclude

(6.5) **Corollary** Given a collection of n discs D_i in general position, it is possible to shrink the discs so as to remove the $O(n)$ overlaps while leaving the crossways unchanged.

7This distinguishes overlaps from crossways.
7 The complexity bounds

(7.1) Lemma Let \(D_1, \ldots, D_n \) be a collection of discs in \(S^2 \), in general position.

In establishing upper bounds for the union \(\bigcup D_i \), we can assume that the union is connected and every component of the complement \(S^2 \setminus \bigcup D_i \) is simply connected.

Proof. Let \(C_1, \ldots, C_k \) be the connected components of \(\bigcup D_i \). Every (boundary) feature on \(\bigcup D_i \) is on one of these components, so the feature complexity is the total of the component complexities. It is enough, therefore, to estimate the complexity of a component \(C_j \) in terms of the number of discs forming the component.

This allows us to assume \(\bigcup D_i \) is connected, in which case every component of its complement is simply connected.

(7.2) Removing overlaps. For the rest of this section we shall assume that \(D_1, \ldots, D_n \) are in general position, that \(\bigcup D_i \) is connected, and, using Corollary 6.5 that there are no overlaps between discs, only crossways.

(7.3) Definition A hole is a connected component of

\[
S^2 \setminus \bigcup D_i
\]

Since \(\bigcup D_i \) is connected, the holes themselves are homeomorphic to closed discs.

(7.4) Lemma For each disc \(D_k \), the number of holes incident to \(D_k \) is uniformly bounded.

Proof. Follow \(\partial D_k \) anticlockwise, noting the holes to which it is incident. Suppose that \(H_1 \) and \(H_2 \) meet \(D_k \) in consecutive order, and \(H_1 \not= H_2 \).

Let \(H'_i, i = 1, 2, \) be the holes in

\[
\bigcup_{i \not= k} D_i
\]

containing \(H_i \). (Possibly the smaller union is disconnected.)

Suppose first that \(H'_1 = H'_2 \). Then, as illustrated in Figure 13, \(D_k \) intersects some other disc between successive intersections of \(\partial D_k \) with this hole, and by the positive crossing content property (Corollary 4.16), this can happen \(O(1) \) times.

Figure 13: \(H'_1, H'_2 \) merge into one ‘hole’ when \(D_k \) is omitted. The shaded region contains a crossway, so it has positive measure.
Otherwise $H'_1 \neq H'_2$. Let x and y be successive intersections of ∂D_k with H'_1 and H'_2, and consider the segment of ∂D_k joining x and y. It meets other discs D_i, such as the disc E illustrated in Figure 14.

Claim that at least one such disc intersects another disc to the right of the segment xy. For otherwise there would be a chain of exposed edges joining x to y and they would belong to the same hole in $S^2 \setminus \bigcup_{i \neq k} D_i$.

By this claim, the disc E, say, intersects another disc E' to the right of xy and has a positive footprint width on ∂D_k (Lemma 5.2). So this, too, happens $O(1)$ times.

Therefore there are $O(n)$ pairs D_i, H_j where disc D_i intersects hole H_j. If i_j is the number of discs meeting H_j, then H_j has at most $\lambda_s(i_j)$ features, where $s + 1$ bounds the number of disc boundary intersections, and we deduce

(7.5) Corollary Suppose D_1, \ldots, D_n are drawn from a compact family G of discs on S^2. Then $\bigcup D_i$ has feature complexity $\leq \lambda_s(dn)$ where s and d are constants.

(7.6) Corollary Let \mathcal{F} be a compact family of convex bodies in \mathbb{R}^3. Given a set B_1, \ldots, B_n of bodies in general position drawn from \mathcal{F}, $H(\cup B_i)$ has complexity $O(n \lambda_s(n))$ where s is a constant depending on \mathcal{F}.

From [11] section 3.4] estimates for $\lambda_s(n)$ are given of the form $n \cdot 2^{p(\alpha(n))}$ where p is a polynomial and $\alpha(n)$ is the inverse Ackermann function. For any fixed s, $n \log^* n$ is a simple overestimate. So we have

(7.7) Corollary Under the conditions of the above corollaries, the union of n discs has $O(n \log^* n)$ features and the convex hull of n bodies has $O(n^2 \log^* n)$ features.

8 References

1. Helmut Alt, Otfried Cheung, and Antoine Vigneron (2005). The Voronoi diagrams of curved objects. *Discrete and Computational Geometry*, 34, 439–453.

2. Gerald A. Beer (1974). The Hausdorff metric and convergence in measure. *Michigan Math. Journal* 21:1, 63–64.
3. Jean-Daniel Boissonnat, André Cérézo, Olivier Devillers, Jacqueline Duquesne, and Mariette Yvinec (1996). An algorithm for constructing the convex hull of a set of spheres in dimension d. *Computational Geometry: Theory and Applications* 6:2, 123–130.

4. Mark de Berg, Otfried Cheong, and Marc van Kreveld (2008). *Computational geometry: algorithms and applications*. Springer, 3rd edition.

5. Alon Efrat and Matthew J. Katz (1999). On the union of κ-curved objects. *Computational Geometry* 14, 241–254.

6. Paul Harrington, Colm Ó Dúnlaing, and Chee-Keng Yap (2007). Optimal Voronoi diagram construction with n convex sites in three dimensions, *International Journal of Computational Geometry and Applications*, 17:6, 555–593.

7. Jeff Henrikson (1999). Completeness and total boundedness of the Hausdorff metric. *MIT Undergraduate Journal of Mathematics*.

8. C.-K. Hung and D. Ierardi (1995). Constructing convex hulls of quadratic surface patches. *Proc 7th Canadian Conf. on Computational Geometry*, 255–260.

9. Jiří Matoušek (2002). *Lectures on discrete geometry*. Springer GTM 212.

10. Jacob T. Schwartz and Micha Sharir (1990). On the 2-dimensional Davenport-Schinzel problem. *J. Symbolic Computation*, 10, 371–393.

11. Micha Sharir and Pankaj Agarwal (1995). *Davenport-Schinzel sequences and their geometric applications*. Cambridge University Press.

12. Michael Spivak (1998). *Calculus on manifolds*. Addison-Wesley.

13. John Stillwell (1980). *Classical topology and combinatorial group theory*. Springer Graduate Texts in Mathematics 72.

14. Nicola Wolpert (2002). An exact and efficient approach for computing a cell in an arrangement of quadrics. Doctoral dissertation, University of the Saarland, Saarbrücken.

A Appendix: nature and continuity of the pre-seam map

This appendix contains a proof of Theorem 2.13.

Let \mathcal{F} be a compact family of convex bodies in \mathbb{R}^3. For any balanced pair B_0, B_1, the B_0, B_1 pre-seam is an oriented C^1 Jordan curve in S^2, and the pre-seam map from $\text{BP}(\mathcal{F})$ to oriented C^1 Jordan curves on S^2, is continuous, and its image is a compact family of discs.
A.1 Silhouettes

The convention that $[0, 2\pi]$ is the domain of parametrisations can complicate the notation. To remedy this, we introduce the following ad-hoc

(A.1.1) Notation Given $\theta \in [0, 2\pi]$ and $0 < \kappa < \pi$, we use $(\theta \pm \kappa)$ as an abbreviation for $(\theta - \kappa, \theta + \kappa)$, and $((\theta \mp \kappa))$ for an equivalent open subset of $[0, 2\pi]$:

$((\theta \mp \kappa)) = ([0, 2\pi] \cap (\theta \mp \kappa)) \cup ([0, 2\pi] \cap (\theta + 2\pi \mp \kappa))$.

If $\theta \neq 0$ and $\theta \neq 2\pi$ and $\kappa \leq |\theta|$ then $((\theta \mp \kappa)) = (\theta \mp \kappa)$. Also,

$((0 \mp \kappa)) = ((2\pi \mp \kappa)) = [0, \kappa) \cup (2\pi - \kappa, 2\pi]$.

We call $((\theta_0 \mp \kappa))$ a generalised interval.

Silhouettes enable one to relate tangent planes in \mathbb{R}^3 to tangent lines in \mathbb{R}^2: let P be a plane in \mathbb{R}^3. If a tangent plane T to B intersects P perpendicularly, then its projection in P is its intersection $T \cap P$, a line tangent to the silhouette of B. This simplifies the construction of tangent planes.

(A.1.2) Definition The silhouette of a (translated) convex body B in a plane $P \subseteq \mathbb{R}^3$ is the image of B under orthogonal projection from \mathbb{R}^3 onto P. It is a convex two-dimensional set.

(A.1.3) In discussing the silhouette of a body B,

(i) $B = B^{f,O}$

will be a model centred at the origin, (ii) P will be

$P = \{(x, y, 0) : x, y \in \mathbb{R}\}$,

i.e., the xy-plane; until further notice, (iii) π will be vertical projection onto P, or (by abuse of language) onto \mathbb{R}^2,

$\pi : (x, y, z) \mapsto (x, y, 0) \in \mathbb{R}^3 \equiv (x, y) \in \mathbb{R}^2$,
(iv) S will be the silhouette in P (the xy-plane) or \mathbb{R}^2,

$$S = \pi B$$

and (v) X or X_P will be the inverse image in B of the silhouette boundary

$$X = X_P = B \cap \pi^{-1} \partial S.$$

Note

- $S = \{(x, y) \text{ or } (x, y, 0) : \exists z ((x, y, z) \in B)\}$ so S is semi-algebraic of bounded degree.

- $X \subseteq \partial B$, because projection is an open map, taking the interior of B to the (relative) interior of S.

- By Proposition 2.7, $\partial B \to S^2 : p \mapsto n(p)$ is a homeomorphism. It takes X to the equator, so X is homeomorphic to S^1 and to ∂S.

(A.1.4) Lemma $p \in X_P \iff \text{(p \in \partial B and the tangent plane to \partial B at p is vertical)}$.

Proof. Suppose $p \in \partial B$ and T is vertical, where T is the tangent plane to ∂B at p. B is entirely on one side of T, i.e., $B \subseteq H$ where H is one of the two closed half-spaces bounded by T. Let $L = P \cap T$ and $h = P \cap H$, so L is a line in P and h is a half-plane in P bounded by L. Note that $x \in H \iff \pi(x) \in h$. Since $B \subseteq H$, $S = \pi B \subseteq h$. Also, $\pi(p) \in L$, so L is tangent to S at $\pi(p)$, $\pi(p) \in \partial S$, and $p \in \pi^{-1} \partial S$. Therefore $p \in X_P$.

Suppose $p \in X_P$, so $\pi p \in \partial S$. Let L be the line tangent to ∂S at πp and let $T = \pi^{-1} L$. Let h be the half-plane bounded by L which contains S. Then $\pi^{-1}(h)$ is a half-space bounded by T and containing $\pi^{-1} S$, so it contains B. Since $\pi p \in L$, $p \in T$, so $p \in \partial B$, and T is the plane tangent to ∂B at p, so the tangent plane is vertical.

Next we shall use the Implicit Function Theorem [12] to provide X, and hence ∂S, with local C^1 coordinate systems. Given $B = B^{f,0}$, that is,

$$B = \{x : f(x) \leq 1\} \text{ and } \partial B = \{x : f(x) = 1\},$$

we define

$$F(p) = \begin{bmatrix} f(p) \\ \frac{\partial f}{\partial z} |_p \end{bmatrix}.$$

Since $f'(p)$ is normal to the tangent plane to ∂B at p, the plane is vertical if and only if $f'(p)$ is horizontal, i.e., $\partial f / \partial z = 0$. Therefore $p \in X \iff f(p) = 1 \land \partial f / \partial z = 0$, so

(A.1.5) Lemma

$$X = F^{-1}(1, 0).$$
Since F involves only f and its derivative, and f is C^2, F is C^1. Differentiating F, the top row is $f'(p)^T$ and the bottom row is as shown below. The bottom row is $(\vec{k})^T f''(p)$ where the column-vector $\vec{k} = [0 \ 0 \ 1]^T$ is the unit vector in the z-direction.

$$F'(p) = \begin{bmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial z} \\ \frac{\partial^2 f}{\partial x \partial z} & \frac{\partial^2 f}{\partial y \partial z} & \frac{\partial^2 f}{\partial z^2} \end{bmatrix} = \begin{bmatrix} f'(p)^T \\ (\vec{k})^T f''(p) \end{bmatrix}$$

To apply the Implicit Function Theorem we need only show

(A.1.6) Lemma $F(p)$ has rank 2 for all $p \in X$.

Proof. With \vec{k} as above, for any $p \in X$,

$$(\vec{k})^T f'(p) = 0$$

and

$$(\vec{k})^T f''(p) \vec{k} \neq 0$$

since f'' is positive definite (§2.2). Also, $f''(p)$ is symmetric since f is C^2. Therefore $f'(p)$ is nonzero and horizontal, and $f''(p)\vec{k}$ is nonzero and not horizontal, so the two column vectors are linearly independent. Transposing, we get the rows of $F'(p)$, so the latter are linearly independent.

From the Implicit Function Theorem it follows that

(A.1.7) Lemma At any point $p \in X$, projection onto one of the three coordinate axes is a local C^1 coordinate system.

Moreover, in the case of this map F,

(A.1.8) Lemma At any point $p \in X$, either the x- or the y-coordinate is a local C^1 coordinate system.

Proof. One could use the z-coordinate near p if

$$\begin{bmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\ \frac{\partial^2 f}{\partial x \partial z} & \frac{\partial^2 f}{\partial y \partial z} \end{bmatrix}$$

has rank 2. In order to rule out the other two coordinates, the other two square submatrices would need to be singular. Looking at the third column of $F''(p)$,

$$\begin{bmatrix} \frac{\partial f}{\partial z} \\ \frac{\partial^2 f}{\partial z^2} \end{bmatrix}$$

its top entry is zero and its bottom entry, $(\vec{k})^T f''(p) \vec{k}$, is nonzero. For the other two columns to depend on it, their top entry would be zero; that is, $f'(p) = \vec{0}$, which is false. Clearly the projection map $(x, y, z) \mapsto (x, y, 0) \equiv (x, y)$ is C^∞, so

(A.1.9) Lemma Whenever the y-coordinate (respectively, x-) is a local (C^1) coordinate system for X near p, it is also a local coordinate system for $\pi X = \partial S$ near πp. Therefore ∂S is a C^1 manifold.
Having established that ∂S is a C^1 manifold, we consider a particular parametrisation.

Let $\rho : P \rightarrow P$ be radial projection from $P \setminus \{O\}$ onto the unit circle in P, and thence to the unit circle S^1 in \mathbb{R}^2. Explicitly

\[
\rho : (x, y, 0) \mapsto \left(\frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}} \right).
\]

Take the usual parametrisation of S^1

\[
[0, 2\pi] \rightarrow S^1; \quad \theta \mapsto (\cos \theta, \sin \theta).
\]

Compose it with the inverse of ρ (restricted to ∂S) to get a continuous parametrisation of ∂S, denoted $b^{f, O}$ (where $B = \{x : f(x) \leq 1\}$).

\[
b^{f, O}(\theta) = \rho|_{\partial S}^{-1}(\cos \theta, \sin \theta).
\]

By construction,

(A.1.10) Lemma $b^{f, O}$ is a continuous parametrisation of ∂S. (See Definition 2.8).

(A.1.11) Lemma $b^{f, O}$ is C^1.

Proof. Fix $\theta_0 \in [0, 2\pi]$ and let $q_0 = b^{f, O}(\theta_0)$.

By Lemma A.1.8, there exists an open interval containing q_0 in ∂S on which either the y-coordinate or the x-coordinate map, i.e., the map $(x, y) \rightarrow y$ or $(x, y) \rightarrow x$, is a homeomorphism with C^1 inverse. Say the y- or x-coordinate is 'suitable.' Write σ_y or σ_x for the inverse of this map, which parametrises ∂S near q_0.

First assume θ_0 is different from 0 and 2π, and that the y-coordinate is suitable. There exists an open interval $I \subseteq (0, 2\pi)$ containing θ_0 and a composition of maps from I onto an open interval $I' \subseteq \partial S$ and then onto $J \subseteq \mathbb{R}$:

\[
\theta \mapsto (\cos \theta, \sin \theta) \xrightarrow{\rho|_{\partial S}^{-1}} (x, y) \mapsto y.
\]

If we invert this chain of maps, the first (from J to I') is C^1 and the others (ρ, $(\cos \theta, \sin \theta) \mapsto \theta$) are C^∞. Therefore the composite inverse from J to I is C^1. By the Inverse Function theorem [12], the original composite from I to J is C^1. If we extend the composition by σ_y, noting of course that $\sigma_y \circ y$ is the identity,

\[
\theta \mapsto (\cos \theta, \sin \theta) \xrightarrow{\rho|_{\partial S}^{-1}} (x, y)
\]

is a C^1 homeomorphism. But this is just the restriction of $b^{f, O}$ to an open interval containing θ_0.

If the y-coordinate is unsuitable, we use the x-coordinate, and reach the same conclusion.

In the case where θ is 0 or 2π, the above argument shows that there is a C^1 homeomorphism

\[
(-\kappa, \kappa) \rightarrow I'
\]

\[
\theta \mapsto (\cos \theta, \sin \theta) \mapsto \ldots (x, y)
\]
Figure 16: frustum.

Take
\[g : [0, \kappa) \cup (2\pi - \kappa, 2\pi] \to (-\kappa, \kappa); \]
\[\theta \mapsto \theta \quad \text{if} \quad \theta < \kappa \]
\[\theta \mapsto \theta - 2\pi \quad \text{if} \quad \theta > \kappa. \]

Clearly \(g \) is surjective and \(C^\infty \) with derivative 1, and by composition we get a map
\[[0, \kappa) \cup (2\pi - \kappa, 2\pi] \to I' \]
which is differentiable and whose derivative is everywhere nonzero, and the value and derivative at 0 and \(2\pi \) are equal (See Definition 2.8).

\textbf{(A.1.12)} Needless to say, Lemma \textbf{A.1.11} applies to silhouettes in \textit{any} plane \(P \) and to \textit{any} translated body \(B^{f,a} \).

It remains to prove that the map
\[\mathcal{F} \times \mathbb{R}^3 : (f, a) \mapsto b^{f,a} \]
is continuous, in the sense that if \((f, a)\) is close to \((g, b)\) under the metric
\[\max(|g - f|_{C^2}, \|b - a\|) \]
then \(b^{f,a} \) is close to \(b^{g,b} \) under the metric
\[|b^{g,b} - b^{f,a}|_{C^1}. \]

We prove it in two stages: first, continuity of \(b^{f,a} \) under the sup norm; second, continuity of \(db/d\theta \) under the sup norm.

\textbf{(A.1.13) Lemma} The map \((f, a) \mapsto b^{f,a}\) is continuous under the sup norm.

\textbf{Proof.} Fix \((f_0, a_0)\). If \(c, d \) are points (not on the same vertical line) and \(\theta \) an angle, we denote by
\[(c, d), A(c, d), A(c, \theta) \]
respectively the open line-segment from \(c \) to \(d \), the vertical plane containing \(c \) and \(d \), and the vertical plane containing \(c \) and forming the angle \(\theta \) with the positive \(x \)-axis.
Fix θ_0. Let p_0 be the unique point in $\partial B^{f_0, a_0}$ whose vertical projection $\pi(p_0)$ in P is $b^{f_0, a_0}(\theta_0)$. Since $\pi(p_0) \in \partial S^{f_0, a_0}$, p_0 is in X^{f_0, a_0}. Let T_0 be the tangent plane to B^{f_0, a_0} at p_0. T_0 is vertical.

Given $\delta > 0$, let Q^δ be the square region in T_0 whose side-length is 2δ, which is centred at p_0, and whose bottom and top sides are horizontal, i.e., parallel to the xy plane, so its left and right sides are parallel to the z-axis. There is an infinite solid cone of square oblique cross-section formed by rays from a_0 passing through Q^δ. It has four faces: a top face, a bottom face, a left face, and a right face. It is bisected by $A(a_0, p_0)$, and its left and right faces are vertical.

There are two planes parallel to T_0 and at distance δ from T_0: T_1 and T_2 where $T_2 \cap B^{f_0, a_0} = \emptyset$ and, assuming δ is small enough, $T_1 \cap B^{f_0, a_0} \neq \emptyset$.

We assume that δ is small enough so that T_1 intersects the open line-segment (a_0, p_0).

Intersecting the solid cone with the space between T_1 and T_2, we get a frustum denoted

$$R^{f_0, a_0, \delta}$$

It has six sides: bottom, top, left, right, far (from a_0; in T_2) and near in T_1.

For points x along the ray from a_0 through p_0,

$$f_0(x - a_0) - 1$$

is negative on (a_0, p_0), zero at p_0, and positive beyond p_0. Since f_0 is continuous, if δ is small enough,

$$f_0(x - a_0) - 1$$

is negative on the near face and positive on the far face.

For points x along the curve-segment

$$A(a_0, \theta_0) \cap R^{f_0, a_0, \delta} \cap \partial B^{f_0, a_0}$$

the function

$$(\vec{k})^T f_0''(x - a_0)\vec{k}$$

is negative at the bottom point and positive at the top point. Since f_0 is C^2, this is continuous in x, so if δ is small enough then it is negative on the bottom face and positive on the top.

There exists a small neighbourhood $N(a_0)$ of a_0 and a small open set I_{θ_0} in $[0, 2\pi]$ containing θ_0 such that for every $a \in N(a_0), \theta \in I_{\theta_0}$, $A(a, \theta)$ passes between the left and right sides of $R^{f_0, a_0, \delta}$.

There exists a small neighbourhood $N(f_0)$ of f_0 in \mathcal{F} (under the C^2 norm) such that for every $f \in N(f_0)$,

(a) $f(x - a) - 1$
is negative on the near face of $R_{f_0,a_0,\delta}$ and positive on the far face, and

$$(b) \quad (\vec{k})^T f''(x - a) \vec{k}$$

is negative on the bottom face and positive on the top.

Given a near a_0 and θ near θ_0, let

$$E = A(a, \theta) \cap R_{f_0,a_0,\delta}.$$

E is a trapezium with two vertical sides (near and far). Given f close to f_0, $f(x - a) - 1$ is negative on the near side and positive on the far side, so E intersects $\partial B^{f,a}$ in a curve-segment passing through its bottom and top sides. Along this curve,

$$(\vec{k})^T f''(x - a) \vec{k}$$

is negative at the bottom and positive at the top, so it is zero at an intermediate point p, and $p \in X_{P}^{f,a}$. Therefore $\pi p = b^{f,a}(\theta)$. That is, $b^{f,a}(\theta) \in \pi R_{f_0,a_0,\delta}$. If δ is small enough,

(A.0) $$\|b^{f,a}(\theta) - b^{f_0,a_0}(\theta)\| < \epsilon.$$

To summarise: given θ_0, there is an open set I_{θ_0} containing θ_0 and an open neighbourhood V_{θ_0} of (f_0, a_0) in $\mathcal{F} \times \mathbb{R}^3$ such that for all $\theta \in I_{\theta_0}$ and $(f, a) \in V_{\theta_0}$, (A.0) holds.

Since $[0, 2\pi]$ is compact, we can choose a finite set θ_j^0, $1 \leq j \leq k$, and a finite subcover $I_{\theta_j^0}$ satisfying the obvious variants of inequality (A.0). Let

$$V = V_{\theta_1^0} \cap \ldots \cap V_{\theta_k^0}.$$

Then for all $(f, a) \in V$ and $\theta \in [0, 2\pi]$,

$$\|b^{f,a}(\theta) - b^{f_0,a_0}(\theta)\| < \epsilon.$$

The following lemma will complete the proof that the map $f, a \mapsto b^{f,a}$ is continuous with respect to the C^1 norm. The proof cites Lemma A.1.13 without needing to retrace the steps in that lemma, loosely speaking because $db^{f,a}/d\theta$ can be expressed as a continuous function of $b^{f,a}(\theta)$.

(A.1.15) Lemma The map

$$f, a \mapsto \frac{db^{f,a}}{d\theta}$$

is continuous under the sup norm.

Proof. As before, π is projection onto P. Fix f_0, a_0, and $\epsilon > 0$. For each θ there is a unique point $(x, y, z) = (x(\theta), y(\theta), z(\theta))$ such that $\pi(x, y, z) = b^{f,a}(\theta)$. Recalling that $X_P = X^{f,a} = F^{-1}(1, 0)$ where $F(p) = (f(p), \frac{\partial f}{\partial y}(p))$, $F(p)$ is constant along the curve X_P, so its derivative with respect to θ vanishes.

$$\begin{bmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial z} \\ \frac{\partial^2 f}{\partial x \partial z} & \frac{\partial^2 f}{\partial y \partial z} & \frac{\partial^2 f}{\partial z^2} \end{bmatrix} \begin{bmatrix} \frac{dx}{d\theta} \\ \frac{dy}{d\theta} \\ \frac{dz}{d\theta} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}. $$
Note $\partial f / \partial z = 0$. Recall that the first and third, or the second and third, columns are linearly independent, and that $\partial^2 f / \partial z^2 \neq 0$ (Lemma [A.1.6]). Therefore the first and third columns are linearly independent if and only if $\partial f / \partial x \neq 0$.

If the first and third are, the y-coordinate can be used to parametrise the curve, and

$$\frac{\partial f}{\partial x} \frac{dx}{dy} + \frac{\partial f}{\partial y} = 0,$$

so

$$\frac{dx}{dy} = -\frac{\partial f / \partial y}{\partial f / \partial x} \quad \text{and} \quad \frac{dx}{dy} = -\frac{\partial f / \partial x}{\partial f / \partial y} \frac{dy}{d\theta}.$$

If the second and third columns are linearly independent then we get a similar expression for $dy/d\theta$ in terms of $dx/d\theta$.

Now, given $a = (\alpha, \beta, \gamma)$, and $b^{f,a}(\theta) = (x, y)$, if $x - \alpha \neq 0$, i.e., (x, y) is not directly above or below α in S, and $\partial f / \partial x \neq 0$, so y gives a local coordinate system,

$$\tan \theta = \frac{y - \beta}{x - \alpha},$$

$$\frac{d}{dy} \left(\frac{y - \beta}{x - \alpha} \right) \frac{dy}{d\theta} = \sec^2 \theta = \frac{(x - \alpha)^2 + (y - \beta)^2}{(x - \alpha)^2},$$

$$\frac{dy}{d\theta} = \frac{(x - \alpha)^2 + (y - \beta)^2}{x - \alpha - (y - \beta) \frac{dx}{dy}} = \frac{(x - \alpha)^2 + (y - \beta)^2}{x - \alpha + (y - \beta) \frac{\partial f / \partial y}{\partial f / \partial x}}.$$

Let us write $G_{f,a}(x, y, z)$ for

$$\frac{\partial f / \partial y}{\partial f / \partial x}.$$

Fix θ_0 and let $p_0 = X_{f,a}^{f_0,a_0}(\theta_0)$.

There exists a neighbourhood $N(p_0)$ of p_0 on which G_{f_0,a_0} is continuous and bounded, and if we write b for (x, y) and a for (α, β, γ), we can write

$$H(b, a, t) = \frac{(x - \alpha)^2 + (y - \beta)^2}{x - \alpha + (y - \beta)t} (-t, 1),$$

bounded and continuous in b, a, t except where the denominator vanishes.

(A.0) \begin{equation}
\frac{db^{f,a}}{d\theta} = H(b^{f,a}(\theta), a, G_{f,a}(X_{f,a}^{f_0,a_0}(\theta))).
\end{equation}

Let $b_0 = b^{f_0,a_0}(\theta_0)$ and $t_0 = G_{f_0,a_0}(X_{f_0,a_0}^{f_0,a_0}(\theta_0))$. Choose $\delta > 0$ so if $\|b - b_0\| < \delta$, $\|a - a_0\| < \delta$, and $|t - t_0| < \delta$,

$$\|H(b, a, t) - H(b_0, a_0, t_0)\| < \epsilon.$$

Choose neighbourhoods $N(f_0), N(a_0), N(p_0)$, and $N(\theta_0)$ so that for all $\theta \in N(\theta_0)$, $f \in N(f_0)$, and $a \in N(a_0)$,

$$b^{f,a}(\theta) \in N(p_0)$$

28
and
\[\| H(b, a, t) - H(b_0, a_0, t_0) \| < \epsilon, \]
where \(b = b^{f,a}(\theta) \), \(t = G_{f,a}(\theta) \), and \(t_0 = G_{f_0,a_0}(\theta) \).

Choose a finite set \(\theta^*_0 \) from which we get a finite cover \(\bigcup N(\theta^*_0) \) of \([0, 2\pi] \), with associated open sets \(N_i(f_0) \) and \(N_i(a_0) \). Let
\[V = \bigcap_i N_i(f_0) \times \bigcap_i N_i(a_0). \]
Then for all \((f, a) \in V\),
\[\sup_\theta \left\| \frac{db^{f,a}}{d\theta} - \frac{db^{f_0,a_0}}{d\theta} \right\| < \epsilon. \]

A.2 Upper common tangent

(A.2.1) Definition If \(B_0, B_1 \) are a balanced pair in \(\mathbb{R}^3 \) (Definition 2.12), and \(H \) is a half-plane bounded by the \(x \)-axis, extending to a plane \(P \), with silhouettes \(S_0, S_1 \) in \(P \), there are four tangent lines common to their silhouettes, two separating, two supporting.

The upper tangent to \(S_0, S_1 \) is that supporting tangent line which touches \(S_0 \) and \(S_1 \) within \(H \).

(A.2.2) Lemma The upper common tangent exists.

Sketch proof. At any point \(p \) on \(\partial S_0 \) above the \(x \)-axis, let \(H(p) \) be the closed half-plane bounded by the tangent at \(p \) and whose interior is disjoint from \(S_0 \). If \(p \) is rightmost in \(S_0 \) then \(H(p) \cap S_1 = S_1 \) and if \(p \) is leftmost then \(H(p) \cap S_1 = \emptyset \). By the finite intersection property (\(S_1 \) being compact) there exists a point \(p \in \partial S_0 \) such that \(H(p) \) is tangent to \(S_1 \): unique, since \(S_0 \) and \(S_1 \) are rounded; the tangent at \(p \) is the upper common tangent.

(A.2.3) Lemma Given a fixed half-plane bounded by the \(x \)-axis, let \(P \) be the plane containing it. The point \(x_0(B_0, B_1, P) \), where the upper common tangent to the silhouettes \(S_0 \) and \(S_1 \) in \(P \) of \(B_0 \) and \(B_1 \) touches \(S_0 \), depends continuously on the balanced pair \(B_0, B_1 \) of convex bodies in \(\mathbb{R}^3 \).
Sketch Proof. Suppose that \(B_i = B^{f_i,a_i} \), \(i = 0, 1 \).

Suppose \(x_0(B_0, B_1, P) = b^{f_0,a_0}(\theta_0) \). As in Lemma A.2.2 given \(p \) in the ‘upper part’ of \(\partial S_0 \), i.e., \(p \) is on the silhouette boundary within the half-plane, let \(H(p) \) be a half-plane coplanar with \(P \) and tangent to \(S_0 \) at \(p \) (\(p \in P \)). Let \(p_0 = b^{f_0,a_0}(\theta_0) \) where \(\theta \) parametrises \(\partial S_0 \). \(H(p_0) \) touches \(S_0 \). Given small positive \(\delta \), \(H(b^{f_0,a_0}(\theta_0 + \delta)) \cap S_1 = \emptyset \) and \(H(b^{f_0,a_0}(\theta_0 - \delta)) \cap S_1 \neq \emptyset \).

For all pairs \(g_i, b_i \) sufficiently close to \(f_i, a_i \), the upper common tangent to the silhouettes of \(B^{g_i,b_i} \) touches \(b^{g_0,b_0}(\theta) \) at some point \(b^{g_0,b_0}(\theta) \) where \(\theta \in ((\theta_0 \pm \delta)) \). Since \(b^{g_0,b_0}(\theta) \) is close to \(b^{f_0,a_0}(\theta) \), the upper common tangent touches \(S^{g_0,b_0} \) at a point close to \(x_0(B_0, B_1, P) \).

A.3 The pre-seam

(A.3.1) Definition Let \(B_0, B_1 \) be a balanced pair of convex bodies in \(\mathbb{R}^3 \). That is, \(B_i = B^{f_i,a_i} \) for \(i = 0, 1 \). For any \(\phi \in [0, 2\pi] \), let \(P_\phi \) be the half-plane bounded by the \(x \)-axis and containing the point \((0, \cos \phi, \sin \phi)\). There is a unique upper common tangent \(U \) to the silhouettes in \(P_\phi \). Define

\[
s(B_0, B_1, \phi) \quad \text{or} \quad s(f_0, a_0, f_1, a_1, \phi)
\]

to be the outward normal to \(U \): i.e., the unit vector in \(P_\phi \) normal to \(U \) and directed away from the two silhouettes.

(A.3.2) Lemma Let \(\pi_\phi \) be orthogonal projection onto the unique plane containing \(P_\phi \). The map

\[
\mathcal{F} \times \mathbb{R}^3 \times [0, 2\pi] \to S^2 : \quad (f, a, \phi) \mapsto \pi_\phi B^{f,a}
\]

is jointly continuous in \(f, a, \phi \).

Proof. If \(R_\phi \) represents rotation around the \(x \)-axis, and \(B \) is any body then

\[
\pi_\phi(B) = R_\phi \pi R_{-\phi}(B)
\]

where \(\pi \) is orthogonal projection onto the \(yz \)-plane. The map \(B \mapsto R_{-\phi}(B) \) is continuous (Lemma 2.4) and \(B \mapsto \pi B \) is continuous and \(\pi B \mapsto R_{-\phi} \pi B \) is an isometry, so the composite map is continuous.

Combining this with Lemma A.2.3

(A.3.3) Lemma The map

\[
\phi \mapsto s(B_0, B_1, \phi)
\]

is jointly continuous in \(B_0, B_1, \) and \(\phi \).

(A.3.4) Corollary For fixed \(B_0, B_1 \),

\[
[0, 2\pi] \to S^2 : \quad \phi \mapsto s(B_0, B_1, \phi)
\]

is continuous and bijective except that \(s(B_0, B_1, 0) = s(B_0, B_1, 2\pi) \).

Passing from upper common tangent line \(U \) to its inverse image, a plane \(T = \pi_\phi^{-1} U \), the latter is the unique tangent plane common to \(B_0 \) and \(B_1 \) whose normal is within the half-plane \(P_\phi \), and that normal is \(s(B_0, B_1, \phi) \). Hence

(A.3.5) Lemma \(\{s(B_0, B_1, \phi) : 0 \leq \phi \leq 2\pi\} \) is a parametrisation of the \(B_0, B_1 \) pre-seam, and the pre-seam is a continuous Jordan curve.
Given

\[B = B^{f,a} \]

and \(n \) is its normal, we define a right inverse to \(n, p : \mathbb{R}^3 \setminus \{ O \} \rightarrow \partial B \):

\[p(y) = n^{-1} \left(\frac{y}{\|y\|} \right). \]

It is well-defined and continuous because \(n \) is a homeomorphism from \(\partial B \) onto \(S^2 \).

(A.3.7) **Lemma** For any \(\omega \in \mathbb{R}^3 \setminus \{ O \} \),

\[\omega^T p'(\omega) = \vec{O}_{1 \times 3}. \]

Proof. Let \(x = p(\omega) \) so \(\omega/\|\omega\| = f'(x)/\|f'(x)\| \).

If \(\omega + h \neq 0 \), \(f(p(\omega + h)) = f(p(\omega)) = 1 \), so

\[
\begin{align*}
 f(p(\omega + h)) - f(p(\omega)) &= 0 \\
 (f'(p(\omega)))^T p'(\omega)h &= o(\|h\|) \\
 (f'(x))^T p'(\omega) &= \vec{O} \\
 \omega^T p'(\omega) &= \vec{O}
\end{align*}
\]

since \(\omega \propto f'(x) \). \(\blacksquare \)

(A.3.8) **Lemma** The pre-seam is a \(C^1 \) manifold.

Proof. We shall define a \(C^1 \) map \(F : \mathbb{R}^3 \setminus \{ O \} \rightarrow \mathbb{R}^2 \) and show that its derivative has rank 2 along the pre-seam. It then follows from the Implicit Function Theorem [12] that for any point \(\omega \) on the pre-seam, projection onto one of the three coordinate axes is a local \(C^1 \) diffeomorphism near \(\omega \).

Given \(B_0 \) and \(B_1 \), we associate with them \(f_0, n_0, p_0 \) and \(f_1, n_1, p_1 \) (see §A.3.6). Let \(\omega \) be a point in \(S^2 \). It is the outward unit normal at exactly one point in \(\partial B_0 \) and one in \(\partial B_1 \), namely, \(p_0(\omega) \) and \(p_1(\omega) \) respectively. Let

\[q(\omega) = p_1(\omega) - p_0(\omega). \]

This is the displacement connecting a point in \(\partial B_0 \) with a point in \(\partial B_1 \). The (oriented) tangent plane at \(p_0(\omega) \) is the unique plane tangent to \(B_0 \) with outward normal \(\omega \). The other point \(p_1(\omega) \) is in that plane if and only if the plane is a common (supporting) tangent plane to \(B_0 \) and \(B_1 \). Equivalently,

(A.3.1)

\[\omega^T q(\omega) = 0. \]

Therefore the pre-seam is the set of all \(\omega \in S^2 \) such that \(\omega^T q(\omega) = 0 \).

The map \(F \) will be

\[F : \omega \mapsto (\omega^T \omega, \omega^T q(\omega)). \]

Using Equation [A.3.1] the pre-seam is \(F^{-1}(1, 0) \).
Since \((\omega + h)^T(\omega + h) - \omega^T\omega = 2h^T\omega + o(\|h\|)\), the derivative of \(\omega^T\omega\) (as a column vector) is \(2\omega\). The derivative of \(\omega^Tq(\omega)\) is \(q(\omega) + \omega^Tq'(\omega)\) and \(\omega^Tq'(\omega) = \omega^Tp'_1(\omega) - \omega^Tp'_0(\omega) = O\) (Lemma A.3.7). Writing \(F'\) as a \(2 \times 3\) matrix, which is the correct format,

\[
F'(\omega) = \begin{bmatrix} 2\omega^T & q^T(\omega) \end{bmatrix}
\]

All points in the pre-seam have unit length, so near the pre-seam, \(\omega\) is nonzero, and \(q(\omega)\) is nonzero since \(B_0\) and \(B_1\) can touch at one point at most, and at that point the outward normals are opposite. Also, if \(\omega\) is on the pre-seam then \(\omega\) and \(q(\omega)\) are orthogonal (Equation A.3.1). Therefore \(F'(\omega)\) has rank 2 near the pre-seam. By the Implicit Function Theorem [12], the pre-seam is a \(C^1\) manifold with local coordinate systems provided by projection onto the coordinate axes.

For this application we can say more.

(A.3.9) Lemma At any point \(\omega\) in the pre-seam, either the y- or the z-coordinate is a local \(C^1\) coordinate system.

Proof. Suppose \(\omega\) is written with coordinates \((x, y, z)\), and \(q = (q_1, q_2, q_3)\). The coordinates of \(F'(\omega)\) are

\[
\begin{bmatrix}
2x & 2y & 2z \\
q_1 & q_2 & q_3
\end{bmatrix}.
\]

We would be obliged to coordinatise by the \(x\)-coordinate if the only choice of columns with rank 2 were the second and third.

But the first column is nonzero \((x < 0\) and \(q_1 > 0)\), so it could be exchanged with one of the other two to produce a linearly independent pair of columns. Therefore the pre-seam can be coordinatised by projection onto the \(y\) or \(z\)-axis, as claimed.

Recall (Definition A.3.1, Lemma A.3.5), the continuous parametrisation \(\phi \mapsto s(B_0, B_1, \phi)\) of the \(B_0, B_1\) pre-seam.

(A.3.10) Lemma The map \(\phi \mapsto s(B_0, B_1, \phi)\) is a \(C^1\) parametrisation of the pre-seam.

Proof. We have seen that the pre-seam is a \(C^1\) manifold, and projection onto the \(y\)- or \(z\)-axis will serve for local coordinate systems.

Let \(q_0 = (x_0, y_0, z_0) = s(B_0, B_1, \phi_0)\). Suppose that the \(z\)-coordinate gives a local coordinate system for the pre-seam near \(q_0\). Reversing the maps, and taking another parametrisation \(\eta \mapsto (\cos(\eta + \phi_0), \sin(\eta + \phi_0))\),

\[
z \mapsto (x, y, z) \mapsto \left(\frac{y}{\sqrt{y^2 + z^2}}, \frac{z}{\sqrt{y^2 + z^2}}\right) = (\cos(\eta + \phi_0), \sin(\eta + \phi_0)) \mapsto \eta
\]

which is a composition of invertible \(C^1\) maps, so, by the Inverse Function Theorem [12] its inverse is a \(C^1\) map taking \(\eta\) to \(z\). Attaching the map \(z \mapsto (x, y, z)\), the latter in the pre-seam, we get a \(C^1\) map.
from a subinterval of \((-\pi/2, \pi/2)\) to the pre-seam. By the same arguments as in Lemma A.1.11, we deduce that the map \(\phi \mapsto s(B_0, B_1, \phi)\) is \(C^1\).

The pre-seam given by a balanced pair \(B_0, B_1\) is a differentiable Jordan curve on \(S^2\), orientated so that it is anticlockwise with respect to the positive \(x\)-direction (the closest points in \(B_0, B_1\) are on the \(x\)-axis). This defines a unique closed disc, that to the left of the pre-seam in \(S^2\), which corresponds to that part of \(\partial B_0\) hidden by \(B_1\) (Figure 19).

(A.3.11) Lemma The map \(B_0, B_1 \mapsto s(B_0, B_1, \cdots)\) is continuous, in the sup norm on parametrisations of Jordan curves in \(S^2\).

Proof. Again \(P_\phi\) is the half-plane bounded by the \(x\)-axis at angle \(\phi\) with the positive \(y\)-axis. By Lemma A.2.3 for any \(\phi_0 \in [0, 2\pi]\), the point \(x_0(B_0, B_1, \phi_0)\), where the upper common tangent to the two silhouettes in \(P_{\phi_0}\) touches that of \(B_0\), depends continuously on \(B_0\) and \(B_1\).

Formally, \(B_i = B^{f_i, a_i}, i = 0, 1\), and we are considering \(x_0(f_0, a_0, f_1, a_1, \phi_0)\). If \(R_\eta\) denotes rotation through angle \(\eta\) around the \(x\)-axis, then
\[
x \in R_{-\eta}B_i \iff R_\eta(x) \in B_i \iff f_i(R_\eta(x - R_{-\eta}(a_i)) \leq 1.
\]
But the map \(\eta \mapsto f \circ R_\eta\) is continuous (Lemma 2.4), as is the map \(\eta \mapsto (x \mapsto x - R_{-\eta}(a_i))\). Also, the silhouette of \(B_i\) in \(P_{\phi_0 + \eta}\) is \(R_\eta S_i\), where \(S_i\) is the silhouette of \(R_{-\eta}B_i\) in \(P_{\phi_0}\).

It follows that \(x_0(B_0, B_1, \phi_0 + \eta)\) depends continuously on \(B_0, B_1,\) and \(\eta\).

The image of \(x_0(B_0, B_1, \phi)\) under the normal map is \(s(B_0, B_1, \phi)\):
\[
s(B_0, B_1, \phi) = \frac{c}{\|c\|}, \quad \text{where} \quad c = f_0'(x_0(B_0, B_1, \phi) - a_0),
\]
and it depends continuously on \(B_0, B_1, \phi\).

Fix \(\epsilon > 0\). For each \(\phi_0\) there is a neighbourhood \(V_{f_0, a_0, f_1, a_1, \phi_0}\) of \(B_0, B_1\), and an open interval \(I_{\phi_0}\) containing \(\phi_0\), such that for all \(C_0, C_1 \in V_{f_0, a_0, f_1, a_1, \phi_0}\) and \(\phi \in I_{\phi_0}\),
\[
\|s(B_0, B_1, \phi) - s(C_0, C_1, \phi)\| < \epsilon
\]

Take a finite cover of \([0, 2\pi]\) by such intervals \(I_{\phi_0}\) and let \(V\) be the intersection of the neighbourhoods \(V_{f_0, a_0, f_1, a_1, \phi_0}\). For any \(\phi \in [0, 2\pi]\), and \(C_0, C_1 \in V\), \(\phi\) belongs to one of the intervals \(I_{\phi_0}\), so
\[
\|s(B_0, B_1, \phi) - s(C_0, C_1, \phi)\| < \epsilon.
\]
Therefore
\[
\sup_{\phi} \|s(B_0, B_1, \phi) - s(C_0, C_1, \phi)\| < \epsilon. \]

Figure 19: left of pre-seam corresponds to hidden region.
(A.3.12) Lemma Continuing the conditions of the above lemma, the map \(B_0, B_1 \mapsto ds/d\phi \in \mathbb{R}^3 \) is continuous under the sup norm.

Proof. Fix \(B_i = B^{f_i,a_i} \). The pre-seam is \(F^{-1}(1,0) \) where

\[
F(\omega) = (\omega^T \omega, \omega^T q(\omega)), \quad F'(\omega) = \begin{bmatrix}
2\omega^T \\
n^T(\omega)
\end{bmatrix},
\]

(these depend implicitly on \(f_i \) and \(a_i \)) and it can be parametrised locally by projection onto the \(y \) or the \(z \)-axis. Let \(s \) or \(s(\phi) \) abbreviate \(s(B_0, B_1, \phi) \), and \((x(\phi), y(\phi), z(\phi)) \), or \((x, y, z) \) for short, a point on the pre-seam. \(F \) is constant on the pre-seam, so \(F'(s(\phi))ds/d\phi = 0 \):

\[
\begin{bmatrix}
2x \\
2y \\
2z
\end{bmatrix}
\begin{bmatrix}
dx/d\phi \\
dy/d\phi \\
dz/d\phi
\end{bmatrix} = \vec{0}.
\]

Recall that \(x_0(B_0, B_1, \phi) \) is the point on \(\partial B_0 \) where the tangent plane with outer normal \(s(\phi) \) touches \(B_0 \). Let \(x_1(B_0, B_1, \phi) \) be the corresponding point on \(\partial B_1 \). Then \(q = x_1 - x_0 \), and \(q \) depends continuously on \(B_0, B_1, \phi \) and \(\phi \). Also, \((x, y, z) = f_0'(x_0(\phi))/\|f_0'(x_0(\phi))\| \).

Let \(C_0, C_1 \) be a balanced pair (near \(B_0, B_1 \)): \(C_i = B^{a_i,b_i} \), and \(x_j = x_j(C_0, C_1, \phi), j = 0,1 \). Since \(g'(x_0)/\|g'(x_0)\| \) is on the \(C_0, C_1 \) pre-seam,

\[
\begin{bmatrix}
g_0'(x_0) \\
\phi - x_0
\end{bmatrix}
\begin{bmatrix}
dx/d\phi \\
dy/d\phi \\
dz/d\phi
\end{bmatrix} = \vec{0}.
\]

If projection on the \(z \)-axis is a local coordinate system near \(s(B_0, B_1, \phi_0) \), then by this formula, \(dx/d\phi \) and \(dy/d\phi \) depend continuously on \(C_0, C_1, \phi \), where \(C_0, C_1 \) are near \(B_0, B_1 \).

Suppose \(\phi_0 \neq \pi/2, 3\pi/2 \) so \(\tan \phi \) is finite and \(C^\infty \) near \(\phi_0 \).

\[
\tan \phi = \frac{z}{y}, \quad \sec^2 \phi = \frac{y^2 + z^2}{y^2} = \frac{dz}{d\phi} \frac{d}{dz} \left(\frac{z}{y} \right) = \left(\frac{z}{y} \right) \frac{dz}{d\phi}, \quad \frac{dz}{d\phi} = \frac{y^2 + z^2}{z} \frac{dy}{dz} - y.
\]

If \(\phi_0 = \pi/2 \) or \(3\pi/2 \) then a similar formula can be derived by differentiating \(\cot \phi \).

This shows that \(ds(C_0, C_1, \phi)/d\phi \) depends continuously on \(C_0, C_1, \) and \(\phi \) in a suitable neighbourhood \(V_{f_0,a_0,f_1,a_0} \) and interval \(I_{\phi_0} \). We can conclude, in the same way as in the previous lemma, that the map

\[
B_0, B_1 \mapsto \frac{ds}{d\phi}
\]

is continuous in \(B_0, B_1 \).}

The last part of Theorem 2.13 is
(A.3.13) **Corollary** The family G of pre-seams, arising from a compact family F of convex bodies, is compact.

Proof. It is enough to show G is sequentially compact. Given a sequence $J_n \to J$ where J_n are pre-seams, taken from a family of balanced pairs B_0, B_1, we must show that J is a pre-seam. We choose balanced pairs B^0_n, B^1_n defining J_n. We may re-label as follows

$$B^0_n + a_n, B^1_n + b_n$$

where B^0_n, B^1_n are convex bodies and a_n, b_n are displacements. We may translate by $-a_n$ and assume that all the a_n are O; of course, the balancing property is lost, but the pre-seams are unchanged. Also, by taking a subsequence if necessary, we can assume that B^0_n and B^1_n converge (with respect to the distance function on F) to B^0 and B^1 respectively.

Given that all the a_n are at the origin, if b_n are bounded then we can take a further subsequence so they converge to some b. In this case, since the map $B_0, B_1 \mapsto s(B_0, B_1)$ is continuous, the seams J_n converge to J.

If the b_j are unbounded, then by passing to a subsequence if necessary, we can assume that $b_n/\|b_n\|$ converge — i.e., that the b_n go to infinity, but along the x-axis. The limiting pre-seam is the circle $\{(0, y, z) : y^2 + z^2 = 1\}$. But this circle itself belongs to G, as it is the pre-seam of any balanced pair B_0, B_1 where B_0 and B_1 are copies of the same body.

This concludes the proof of Theorem 2.13.