The relationship between pneumonitis and programmed cell death-1/programmed cell death ligand 1 inhibitors among cancer patients

A systematic review and meta-analysis

Dongmei Xu, Bachelor Degreea, Hongmei Liub, Meiyi Xiang, Master Degreec, Alei Feng, Doctor Degreedd, Mei Tian, Doctor Degreeee, Donghua Lib, Bachelor Degreec, Yantao Maog, Master Degreeg, Li Zhang, Bachelor Degreeh, Shuisheng Zhange, Doctor Degreei, Yuan Tian, MD, PhD*,

Abstract

Background: We put the meta-analysis into practice to reveal the relationship between the incidence risk of immune-related pneumonitis and the use of programmed cell death-1 (PD-1) and ligand 1 (PD-L1) inhibitors related pneumonitis in cancer patients.

Method: The meta-analysis was put into practice according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. Odds ratio (OR) was evaluated by random effect model.

Results: After screening and eligibility assessment, 33 clinical trials involving 19,854 patients were selected and used for the final meta-analysis after selection criteria checked. Compared with chemotherapy, the use of PD-1/PD-L1 inhibitors alone increased the incidence risk of all-grade (OR = 4.29, 95% confidence interval: [2.97, 6.19], P < .00001) and grade 3 to 5 immune-related pneumonitis (OR = 3.53, 95% confidence interval: [2.04, 6.11], P < .00001). Similar trend could also be found when PD-1/PD-L1 inhibitors were prescribed alone or in combination with other anti-tumor therapies.

Conclusion: Whether PD-1/PD-L1 inhibitors were used alone or combined with other antitumor drugs, the incidence risk of immune-related pneumonitis would be increased.

Abbreviations: CI = confidence interval, NSCLC = non-small cell lung cancer, OR = odds ratio, PD-1 = programmed cell death-1, PD-L1 = programmed cell death ligand 1, PRISMA = preferred reporting items for systematic reviews and meta-analyses, RCC = renal cell carcinoma, RE = random effect.

Keywords: cancers, immune-related, meta-analysis, pneumonitis, programmed cell death-1/programmed cell death ligand 1
1. Introduction

The programmed death 1 (PD-1) receptor, expressed on activated T cells, binds to the ligands PD-L1 and PD-L2, which are expressed by tumor cells and invasive immune cells.[1] The expression of PD-L1 is common in non-small cell lung cancer (NSCLC) patients, and the interaction of PD-1 with PD-L1 and PD-L2 ligands suppress T cell activation and promotes tumor immune escape.[2,3] Since the phase 1 study of nivolumab monotherapy displayed durable antitumor activity and encouraging survival for metastatic melanoma, colorectal cancer, castrate-resistant prostate cancer, NSCLC, or renal cell carcinoma (RCC),[4–6] more and more clinical trials involving PD-1/PD-L1 inhibitors were put into practice for all kinds of cancer patients.[7–40] While many clinical trials had achieved encouraging and satisfactory clinical results, a variety of therapeutic side effects had also emerged and drawn our attention to deal with them.[7–40] Pneumonitis was one of the PD-1/PD-L1 related side effects, which was reported in several studies.[7–40] Pneumonitis, occurred in PD-1/PD-L1 inhibitor related therapy, was considered to be a kind of interstitial pneumonia and referred as a relatively uncommon but serious and potentially life threatening side effects leading to treatment-related death. It had been considered as one of the events of special interest in clinical work.[6,14,18,35,41–44] Though it was a very low incidence of complications, it had an important impact on the prognosis of patients with lung cancer, especially for the discontinuation of PD-1 inhibitor related treatment.[14,18,35] With more and more reports of the results of phase III clinical trials, we are able to comprehensively evaluate the incidence risk of immune-related pneumonitis.[7–40] In order to reveal the relationship between the incidence risk of pneumonitis and the use of PD-1/PD-L1 drugs in clinical trials involving as many tumor types as possible, we designed this meta-analysis study.

2. Methods

2.1. Search methods and study selection

We put a systematic search of the literature into practice, according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) to search materials[45] to select clinical trials involving PD1/PD-L1 inhibitors in cancer patients. Original studies, including information of clinical trials with PD1/PD-L1 related regimens for cancer patients, involving monotherapy or combination therapy, were checked by a PubMed search. The literature searching time range is limited from January 1, 2015 to February 27, 2019 with keywords just as follows: “PD-1/PD1,” “PD-L1/PD/L1,” “nivolumab/BMS-963558,” “pembrolizumab/MK-3475,” “atezolizumab/MPDL3280A,” “PD-1 inhibitor,” “PD-L1 inhibitor,” “cancer,” “random clinical trial,” “RCT,” “CTLA-4,” “pneumonitis.” Several studies were limited to human beings displayed in full text, abstract, or poster form. The specific searching history of PubMed, according to the participants, interventions, comparisons, outcomes (PICOS) searching strategy recommended by the Cochrane Collaboration,[45] was provided in Supplemental Digital Content (Supplemental Material I, http://links.lww.com/MD/E973). Four members of our team (Dongmei Xu, Hongmei Liu, Meiyi Xiang, and Alei Feng) were designated for checking their eligibility. The criteria for enrolled clinical trials:

(1) available information for PD1/PD-L1 related drugs and controls;

(2) pneumonitis but pneumonia was collected for evaluating odds ratio (OR) with 95% confidence interval (CI) or other evaluable indicators such as risk ratio, hazard ratio, and so on;

(3) definite cancer diagnosis by typical imaging changes or pathological biopsy.

Exclusion criteria:

(1) single arm clinical trial;

(2) pneumonitis was not shown in any arm and/or cohort;

(3) studies were presented with incomplete results or data;

(4) involved combination regimens with other therapies other than PD1/PD-L1 inhibitors.

Any discrepancies in trials selections were resolved through consultation and the corresponding author was responsible for the final decision.

2.2. Data extraction and outcome of interest

The collection of the data from all clinical trials was finished referred to the criteria suggested by the Cochrane Collaboration.[46] All involving patients prescribed with PD1/PD-L1 inhibitor drugs and the number of patients with pneumonitis of all grades were collected from eligible studies. The trial phase, National Clinical Trial (NCT) number, tumor type, drug type, dose, and prescription regimen were gathered. If only pneumonia but pneumonitis was displayed, we would ask for some help from the corresponding author of the article to determine whether the 2 were deemed to be the same disease. If no data of pneumonitis or pneumonia was found, the study would be excluded from the final analysis. The treatment regimen was divided into subgroups according to the type of experimental group and control group. Sometimes, according to the actual situation, we divide the extracted data into multiple subgroup types. The data collection of PD1/PD-L1 involving drugs was performed independently by 2 members of our team, and then the comparison was made for checking the conformity of the data selection. The corresponding author of the meta-analysis was responsible for all discrepancies and had the right for the final decision. The primary objectives were pneumonitis of all grade and grade 3 to 5. Both all-grade and grade 3 to 5 pneumonitis data would be used for the final comprehensive meta-analysis.

2.3. Evaluation of study quality and publication bias

The qualities of all enrolled studies were evaluated by Newcastle–Ottawa scale, Funnel plot, and Egger test, which were proposed by the Cochrane Collaboration.[45,47,50–52] Four members of our team (Dongmei Xu, Hongmei Liu, Meiyi Xiang, and Alei Feng) were appointed to evaluate the quality of all enrolled clinical trials. The content of the evaluation, including random sequence generation, allocation concealment, blinding of participants and personnel, blinding of outcome assessment, incomplete outcome data, and selective outcome reporting, would be gathered and shown in Supplemental Digital Content (Fig. S1, http://links.lww.com/MD/ E968).[17–30] Harbord test was used to check publication bias for all enrolled clinical trials.[49] *P* < .05 was taken as publication bias.

2.4. Effect model and assessment of heterogeneity

As the existence of differences among all studies was inevitable, random effect (RE) model was adopted for evaluating all the
OR of incidence and 95% CI were reported by RE model. \(P < .05 \) was considered to be of statistical significance. Heterogeneity was evaluated by Cochrane Q statistic and the \(I^2 \) statistic which was proposed by Higgins and colleagues. Heterogeneity was deemed to be low, moderate or high according to the range of \(I^2 \) values (<25%, 25%–50%, and >50%). The software of Review Manager 5.3 was used for dealing with all the data. Statistical tests were all 2-sided.

3. Results

3.1. Literature search results

Following our preliminary searching principles, 207 PD-1/PD-L1 related clinical trials were collected on the PubMed website, and 63 related literature were collected from other websites or published articles. Thirty-three clinical trials involving 19,854 patients were selected and used for the final comprehensive meta-analysis after selection criteria evaluation. The PRISMA Flow Diagram chart of the meta-analysis was shown in Figure 1, and the risk of bias summary was displayed in Supplemental Digital Content (Fig. S1, http://links.lww.com/MD/E968). A control group was essential for all clinical trials enrolled in the meta-analysis. Results from different periods of the same large clinical trial were reported in 2 separate articles. Only 1 of them was enrolled for the final analysis as the data was consistent with each other. According to different prescription regimens, all enrolled trials were divided into 6 groups, which were shown just as follows: Group A (PD-1/PD-L1 vs chemotherapy), Group B (PD-1/PD-L1 plus chemotherapy vs chemotherapy), Group C (PD-1/PD-L1 vs placebo), Group D (PD-1 vs PD-1 + CTLA-4), Group E (PD-1 + CTLA-4 vs CTLA-4), Group F (PD-1/PD-L1 + targeted therapy vs targeted therapy).

3.2. Characteristics of identified trials

After screening and eligibility assessment, the basic characteristics of 33 enrolled clinical trials were shown in (Table 1).
Table 1
Basic characteristics of 33 enrolled clinical trials.

No	Reference	Year	NCT number	Drug name	PD-1/ PD-L1 Treatment regimen	Involving patients	Incidence of pneumonitis	Previous therapy	Phase	RCT	Tumor type
1	Ascietto PA, et al[7]	2019	NCT02130466	Pembrolizumab	Pembrolizumab + dabrafenib + trametinib vs Dabrafenib + trametinib	120	10	NO	II	YES	Melanoma
2	Rini BI, et al[8]	2019	NCT02382681	Atezolizumab	Atezolizumab + bevacizumab vs sunitinib	897	12	NO	III	YES	RCC
3	Mok TSK, et al[9]	2019	NCT02250142	Pembrolizumab	Pembrolizumab vs chemotherapy	1241	56	NO	III	YES	NSCLC
4	Cohen EEW, et al[10]	2019	NCT02520342	Pembrolizumab	Pembrolizumab vs (methotrexate, docetaxel, cetuximab)	480	13	YES	III	YES	HNSCC
5	Schmid P, et al[11]	2019	NCT02425891	Atezolizumab	Atezolizumab + Nab-paclitax vs Nab-paclitax	890	15	NO	III	YES	Breast Cancer
6	Horn L, et al[12]	2019	NCT02635790	Pembrolizumab	Pembrolizumab + etoposide + carboplatin vs etoposide + carboplatin	394	7	NO	III	YES	SCLC
7	Socinski MA, et al[13]	2019	NCT02366143	Atezolizumab	Atezolizumab + bevacizumab + carboplatin + paclitax vs bevacizumab + carboplatin + paclitax	787	9	NO	III	YES	NSCLC
8	Paz-Ares L, et al[14]	2019	NCT02775435	Pembrolizumab	Pembrolizumab + carboplatin + paclitax vs carboplatin + paclitax	558	24	NO	III	YES	NSCLC
9	Barlesi F, et al[15]	2019	NCT02395172	Avelumab	Avelumab vs docetaxel	792	15	YES	III	YES	NSCLC
10	Shitara K, et al[16]	2019	NCT02370498	Pembrolizumab	Pembrolizumab vs paclitax	570	8	YES	III	YES	Gastric or Junction Cancer
11	Hida T, et al[17]	2019	NCT02088277	Atezolizumab	Atezolizumab vs docetaxel	101	3	YES	III	YES	NSCLC
12	Hellmann MD, et al[18]	2019	NCT02477562	Nivolumab	Nivolumab plus ipilimumab or Nivolumab + ipilimumab	1537	34	NO	III	YES	NSCLC
13	Eggermont AMM, et al[19]	2019	NCT02623994	Pembrolizumab	Pembrolizumab vs placebo	1011	20	NO	III	YES	Melanoma
14	Kang YK, et al[20]	2019	NCT02287343	Nivolumab	Nivolumab vs placebo	491	1	YES	III	YES	Gastric or Junction Cancer
15	Wolchok JD, et al[21]	2019	NCT01944505	Nivolumab	Nivolumab vs ipilimum + ipilimum + Nivolumab	937	32	NO	III	YES	Melanoma
16	Bellmunt J, et al[22]	2019	NCT02025406	Pembrolizumab	Pembrolizumab vs chemotherapy	521	12	YES	III	YES	UC
17	Rittmeyer A, et al[23]	2019	NCT02088277	Atezolizumab	Atezolizumab vs docetaxel	1187	6	YES	III	YES	NSCLC
18	Langer CJ, et al[24]	2019	NCT02039674	Pembrolizumab	Pembrolizumab vs pemetrexed + carboplatin + carboplatin	121	3	NO	II	YES	NSCLC
19	Reck M, et al[25]	2019	NCT02142738	Pembrolizumab	Pembrolizumab vs chemotherapy	304	10	NO	III	YES	NSCLC
20	Ferris RL, et al[26]	2019	NCT02105636	Nivolumab	Nivolumab vs (methotrexate, docetaxel, or cetuximab)	347	6	YES	III	YES	HNSCC
21	Antonia SJ, et al[27]	2019	NCT01928394	Nivolumab	Nivolumab vs Nivolumab + ipilimum + ipilimum	213	8	YES	III	NA	SCLC
22	Fehrenbacher L, et al[28]	2019	NCT01903993	Pembrolizumab	Pembrolizumab vs docetaxel	277	4	YES	III	YES	NSCLC
23	Herbst RS, et al[29]	2019	NCT01905675	Pembrolizumab	Pembrolizumab vs docetaxel	991	37	YES	III	YES	NSCLC
24	Hodi FS, et al[30]	2019	NCT01927419	Nivolumab	Nivolumab vs ipilimum + ipilimum	140	9	NO	III	YES	Melanoma
25	Borghaei H, et al[31]	2019	NCT01973647	Pembrolizumab	Pembrolizumab vs docetaxel	555	4	YES	III	YES	NSCLC
26	Brahmer J, et al[32]	2019	NCT01942004	Nivolumab	Pembrolizumab vs docetaxel	260	6	YES	III	YES	NSCLC
27	Motzer RJ, et al[33]	2019	NCT01668794	Nivolumab	Nivolumab vs everolimus	803	74	YES	III	YES	RCC
28	Weber JS, et al[34]	2019	NCT01927146	Nivolumab	Nivolumab vs chemotherapy	370	5	YES	III	YES	Melanoma
29	Gandhi L, et al[35]	2019	NCT02578860	Pembrolizumab	Pembrolizumab + chemotherapy vs chemotherapy	439	17	NO	III	YES	NSCLC
30	Antonia SJ, et al[36]	2019	NCT02125451	Durvalumab	Durvalumab vs placebo	709	78	NO	III	YES	NSCLC
31	Kabo K, et al[37]	2019	NCT02396242	Nivolumab	Nivolumab vs chemotherapy	417	6	YES	III	YES	OSCLC
32	Bunneth BS, et al[38]	2019	NCT02383061	Pembrolizumab	Pembrolizumab alone or with chemotherapy vs cetuximab + chemotherapy	863	37	NO	III	YES	HNSCC
33	Paz-Ares L, et al[39]	2019	NCT03043872	Durvalumab	Durvalumab + Etoposide + Carboplatin vs Etoposide + Carboplatin	531	9	NO	III	YES	SCLC

HNSCC = head-and-neck squamous cell carcinoma, NA = no available, NSCLC = non-small cell lung cancer, OSCLC = oesophageal squamous cell carcinoma, RCC = renal cell carcinoma, RCT = randomized controlled trial, SCLC = small cell lung cancer, UC = urothelial carcinoma.
The involving PD-1 inhibitors were nivolumab (n = 11),[18,20,21,26,27,30–34,37] durvalumab (n = 12),[8,9,10,14,16,19,22,24,25,29,35,38] pembrolizumab (n = 2),[36,39] and atezolizumab (n = 7).[6–13,17,23,28] While the involving PD-L1 inhibitors were avelumab (n = 1),[13] and avelumab (n = 1).[15] Among all enrolled clinical trials, 28 were phase III,[6–23,25,26,30–39] 3 was phase II,[7,24,28] 1 was phase II/III,[29] and 1 was phase I/II.[27] The tumor types in 33 clinical trials were squamous cell carcinoma (n = 1),[12] breast cancer (n = 1),[11] head and neck squamous cell carcinoma (n = 1),[10,26,38] melanoma (n = 5),[7,19,21,30,34] RCC (n = 2),[8,33] oesophageal squamous cell carcinoma (n = 1),[37] and advanced gastric or gastro-oesophageal junction cancer (n = 2).[16,20] Thirty-two clinical trials were reported to be randomized controlled trials,[7–28,29] while the information of 1 clinical trial was unavailable.[27] Seventeen enrolled clinical trials, related to the regimen PD-1/PD-L1 inhibitors versus chemotherapy, were taken as the first line therapy choice for the other 16 clinical trials.[7–9,11,14,18,19,21,24,25,31,32,34,37,38] The subgroup analysis results of Group A relating to pneumonitis, including all grade and grade 3 to 5, performed meta-analysis of all grade pneumonitis.[11,14,24,35,39] The results suggested that the use of PD-1/PD-L1 inhibitor drugs increased the incidence risk of developing immune-related pneumonitis among all kinds of cancers with significant statistical difference (Fig. 2C). Similar results could also be found in the separate analyses of lung cancer-related clinical trials (OR = 4.52, 95% CI: [2.61, 7.83], P = 25%, Z = 5.38 [P < 0.0001]; Fig. 2D).[9,10,15,17,18,22,23,25,28,29,31,32] Especially for the subgroup of PD-1 versus chemotherapy (OR = 5.54, 95% CI: [3.63, 23.06], I² = 26%, Z = 4.58 [P < 0.0001]; Fig. 2D).[9,18,25] The existence of heterogeneity was seen in some individual subgroup analysis results (I² = 15%, Fig. 2A; I² = 25%, Fig. 2C; I² = 26%, Fig. 2D). When a full subgroup analysis was performed, no heterogeneity could be found (Fig. 2E). The corresponding funnel plots were provided in Supplemental Digital Content (Fig. S2A–E, http://links.lww.com/MD/E969).

Just as the incidence risk trend of immune-related pneumonitis for all grades, similar OR could also be seen in the analysis results of pneumonitis for grade 3 to 5 (OR = 3.53, 95% CI: [2.04, 6.11], I² = 0%, Z = 4.50 [P < 0.0001]) (Fig. 3A–C and E).[9,10,15,17,18,22,23,25,28,29,31,32] The study confirmed the obvious heterogeneity when all the data were used for analysis results (I² = 55%, Fig. 5A).[18,25] The subgroup analysis results of Group A relating to pneumonitis, including all grade and grade 3 to 5, performed according to the tumor type by RE model, were provided in (Table 2).

3.4. OR of pneumonitis for Group A (PD-1/PD-L1 vs chemotherapy)

Seventeen enrolled clinical trials, related to the regimen PD-1/PD-L1 inhibitors versus chemotherapy, were taken to meta-analysis about the incidence risk of pneumonitis by grade.[9,10,15,16,18,22,23,25,28,29,31,32,34,37,38] The results of the analysis, shown in different subgrouping approaches, were summarized at the bottom of Figure 4A (OR = 3.02, 95% CI: [1.44, 6.37], I² = 34%, Z = 2.91 [P = .004]).[11,14,24,35,39] Moderate heterogeneity was found (I² = 34%). Subgroup analysis results suggested that the source of heterogeneity was the subgroup of PD-L1 plus combined chemotherapy versus chemotherapy (I² = 50%, Fig. 4A).[12,39] The corresponding funnel plots of OR could be seen in Supplemental Digital Content (Fig. S4A, http://links.lww.com/MD/E971). In a word, When PD-1/PD-L1 plus chemotherapy were compared with chemotherapy alone, the incidence of pneumonitis for all grade was significantly higher than that of the control group.

Different from the above results, no significant statistical analysis results were found when all the data were used for calculating the incidence risk of pneumonitis for grade 3 to 5 (OR = 1.94, 95% CI: [0.91, 4.12], I² = 0%, Z = 1.73 [P = .08]).[11,14,24,35,39] No obvious heterogeneity was found among all enrolled trials (I² = 0%).[11,14,24,35,39] The corresponding funnel plots were provided in Supplemental Digital Content (Fig. S5A, http://links.lww.com/MD/E972). No obvious publication bias was found.
according to the tumor type by RE model, were provided in (Table 2).

3.6. OR of pneumonitis for Group C (PD-1/PD-L1 vs placebo)

Compared with placebo, the incidence risk of pneumonitis for all grade was significantly higher than that of the control group, and the OR results were shown in Figure 4B (OR = 2.48, 95% CI: [1.05, 5.86], I^2 = 36%, Z = 2.07 [P = .04]). Through subgroup analysis, we could conclude that moderate heterogeneity (I^2 = 36%) might originate from this subgroup (durvalumab vs placebo). The corresponding funnel plots were shown in Supplemental Digital Content (Fig. S4B, http://links.lww.com/MD/E971). No obvious publication bias was found.

No significant statistical analysis results were found when all the data were taken to calculate the incidence risk of pneumonitis for grade 3 to 5 (OR = 1.49, 95% CI: [0.53, 4.22], I^2 = 0%, Z =...
No obvious heterogeneity was found among all enrolled trials ($I^2 = 0\%$).

3.7. OR of pneumonitis for Group D (PD-1/PD-L1 vs PD-1/PD-L1 + CTLA-4)

Three clinical trials, related to melanoma, NSCLC, and small cell lung cancer separately, were put into meta-analysis.[18,21,27] Compared with the control group of PD-1/PD-L1 inhibitors plus CTLA-4, the incidence risk of pneumonitis for all grade was significantly lower (OR = 0.45, 95\% CI: [0.25, 0.81], $I^2 = 0\%$, $Z = 2.66$ [$P = .008$]; Fig. 4C)[18,21,27] while no significant statistical difference was seen in the analysis for grade 3 to 5 (OR = 0.60, 95\% CI: [0.27, 1.36], $I^2 = 0\%$, $Z = 1.23$ [$P = .22$]; Fig. 5C)[18,21,27] No obvious heterogeneity was found among all enrolled trials ($I^2 = 0\%$).[18,21,27] The corresponding funnel plots were provided in Supplemental Digital Content (Fig. S5C, http://links.lww.com/MD/E972). No obvious publication bias was found.
3.8. OR of pneumonitis for Group E (PD-1/PD-L1 + CTLA-4 vs CTLA-4)

Two clinical trials about melanoma were put into meta-analysis.[21,30] Compared to the control group of CTLA-4, the incidence risk of pneumonitis for all grade was significantly higher (OR = 5.04, 95% CI: [1.99, 12.77], I² = 0%, Z = 3.40 [P = .0007]; Fig. 4D),[21,30] while no significant statistical difference was seen in the analysis for grade 3 to 5 (OR = 2.82,
Table 2

No	Treatment regimen	Tumor type	OR of pneumonitis	95% CI	Z	P	Grade
1	PD-1 vs chemotherapy	NSCLC	9.54	[3.36, 25.36]	4.58	<.00001	All grade
2	PD-1 vs docetaxel	NSCLC	2.78	[1.46, 5.29]	3.12	.002	All grade
3	PD-L1 vs docetaxel	NSCLC	3.23	[1.28, 8.19]	2.47	.01	All grade
4	PD-1 vs (methotrexate, docetaxel, or cetuximab)	Head-and-neck	4.22	[1.85, 9.65]	3.42	.0006	All grade
5	PD-1/PD-L1 + chemotherapy vs chemotherapy	NSCLC	2.97	[1.39, 6.32]	2.82	.005	All grade
6	PD-L1 + chemotherapy vs chemotherapy	SCLC	1.60	[0.34, 7.54]	0.59	.55	All grade
7	Nivolumab + ipilimumab vs ipilimumab	Melanoma	5.04	[1.99, 12.77]	3.40	.0007	All grade
8	PD-1 vs chemotherapy	NSCLC	6.93	[2.29, 21.04]	3.42	.0006	Grade 3–5
9	PD-1 vs docetaxel	NSCLC	5.19	[1.51, 17.88]	2.61	.009	Grade 3–5
10	PD-L1 vs docetaxel	NSCLC	2.67	[0.68, 10.45]	1.41	.16	Grade 3–5
11	PD-1/PD-L1 + chemotherapy vs chemotherapy	NSCLC	2.24	[0.94, 5.35]	1.82	.07	Grade 3–5
12	PD-L1 + chemotherapy vs chemotherapy	SCLC	1.00	[0.18, 5.47]	0.00	1.00	Grade 3–5

95% CI: [0.46, 17.42], $I^2=0\%$, $Z=1.11$ ($P=.27$; Fig. 5D). No obvious heterogeneity was found among all enrolled trials ($I^2=0\%$). The corresponding funnel plots were provided in Supplemental Digital Content (Fig. S5E, http://links.lww.com/MD/E972). No obvious publication bias was found.

3.9. OR of pneumonitis for Group F (PD-1/PD-L1 + targeted vs targeted therapy)

Two clinical trials, related to melanoma and RCC separately, were put into meta-analysis. Compared to the group of targeted therapy, the incidence risk of pneumonitis for all grade was significantly higher (OR = 14.29, 95% CI: [2.65, 77.15], $I^2=0\%$, $Z=3.09$ [$P=.002$; Fig. 4E]). No information of pneumonitis for grade 3 to 5 could be found. No obvious heterogeneity was found ($I^2=0\%$). The corresponding funnel plots were provided in Supplemental Digital Content (Fig. S5E, http://links.lww.com/MD/E972). No obvious publication bias was found.

4. Discussion

PD-1/PD-L1 related antitumor therapy had been improving outcomes for all kinds of malignant diseases. Some of them had been used as the first line choice alone or combined with chemotherapy. Compared to the range of use expanded, the potential exposure to immune-related adverse events associated with these PD-1/PD-L1 inhibitors also increased. Pneumonitis, an immune-related adverse event, occurred in PD-1/PD-L1 inhibitor related therapy and considered to be a kind of interstitial pneumonia, had been referred as an uncommon and potentially devastating side effects, leading to treatment-related death and had been considered as one of the events of special interest. The incidence of pneumonitis had been administered in various ways in clinical trials. Therefore, in order to comprehensively evaluate the relationship between PD-1/PD-L1 and the incidence risk of immune-related pneumonitis, it is necessary to comprehensively evaluate the different modes of administration after grouping, and then to finish the meta-analysis of each.

The process of the meta-analysis was put into practice by us according to the PRISMA guidelines. After screening and eligibility evaluation, a total of 33 enrolled clinical trials involving 19,854 cancer patients were collected for the final consolidation and comprehensive meta-analysis. The PRISMA flow diagram of the meta-analysis was listed in (Fig. 1). Thirty-three clinical trials, assessed by Newcastle–Ottawa scale, were considered to be of better quality showing in Supplemental Digital Content (Fig. S1, http://links.lww.com/MD/E968). Therefore, we could reduce the possibility of bias in the analysis results due to the quality of the clinical trials included in the study. Among all clinical trials enrolled in the study, slight differences are inevitable, so a RE model is considered to be a better choice for more accurate results.

All enrolled trials were divided into 6 groups (Group A–F) according to different prescription regimens, and RE model was used to deal with all the data. The meta-analysis results of OR, displayed in the form of forest and funnel plots, were shown in (Figs. 2–5) and Supplemental Digital Content (Fig. S2–5, http://links.lww.com/MD/E969). Seventeen clinical trials, involving PD-1/PD-L1 alone versus chemotherapy (Group A), are the most common type among 33 clinical trials. Compared with chemotherapy, the results suggested that the use of PD-1/ PD-L1 inhibitors increased the incidence risk of immune-related pneumonitis for all grades in cancer patients (OR = 4.29, 95% CI: [2.97, 6.19], $P=0\%$, $Z=7.77$ [$P<.00001$]), while such incidence risk trend could also be obtained in the analysis results of grade 3 to 5 immune-related pneumonitis (OR = 3.53, 95% CI: [2.04, 6.11], $I^2=0\%$, $Z=4.50$ [$P<.00001$]; Fig. 3A–C and E). Through different subgroup analysis for all grade pneumonitis, it was found that moderate heterogeneity (Fig. 2B and C) mainly originated from those clinical trials related to NSCLC (Fig. 2D). So, we separately listed this part of the clinical data for further subgroup analysis. The analysis results displayed that the heterogeneity might mainly originate from 3 clinical trials in the subgroup of PD-1 versus chemotherapy ($I^2=26\%$; Fig. 2D). Most of the enrolled clinical trials were used for the analysis of grade 3 to 5 pneumonitis (Fig. 3A–E). When those 3 clinical trials were taken for the analysis of grade 3 to 5 pneumonitis, the heterogeneity was low ($I^2=3\%$; Fig. 3D). Therefore, we concluded that the heterogeneity was mainly related to the data changes in those 3 clinical trials. The funnel plots were provided in Supplemental Digital Content (Fig. S2, http://links.lww.com/MD/E969 and Fig. S3, http://links.lww.com/MD/E970). No obvious publication bias was found among them.
Compared with placebo, the incidence risk of immune-related pneumonitis for all grade was significantly higher in the experimental group than that of the control group (OR = 2.48, 95% CI: [1.05, 5.86], $P = 0.06$, $Z = 1.73$ [$P = 0.08$]). Through subgroup analysis, we could conclude that moderate heterogeneity ($I^2 = 36\%$) might originate from this subgroup (durvalumab vs placebo).

When PD-1/PD-L1 inhibitors plus other anti-tumor treatments were compared with the use of one of the antitumor treatments alone, the incidence risks of immune-related pneumonitis were increased (Fig. 4A and C-E). All the above analysis results were considered to be statistical significant.

When all the above enrolled clinical trials were taken into account for further analysis of grade 3 to 5, the trend that PD-1/PD-L1 inhibitors increased the risk of developing immune-related pneumonitis could only be found in Group B (PD-1/PD-L1 + chemotherapy vs chemotherapy) (OR = 1.94, 95% CI: [0.91, 4.12], $P = 0.05$, $Z = 1.73$ [$P = 0.08$]). No significant statistical analysis results were found (Fig. 5A–D).

Funnels plots were provided in Supplemental Digital Content (Fig. S4A–E).

Taking all enrolled clinical trials into account, we speculated that they might be related to the lack of clinical trials included in the subgroup analysis and the lower incidence rate of immune-related pneumonitis (Fig. 5A–D).

Although the clinical trials included in this study had been evaluated for higher quality, there were still some limitations. There were too few trials enrolled in some groups to make a meta-analysis about the relationship between incidence risk of pneumonitis and PD-1 and PD-L1 inhibitors.

Although pneumonitis was relatively rare immune-related adverse events, they might cause devastating or even fatal outcomes if not promptly identified and treated appropriately. For the treatment of immune-related pneumonitis, some treatment options have been reported and recommended in NSCLC.

More clinical trials and mechanism research for immune-related pneumonitis are still needed.

In a word, compared with chemotherapy, placebo or other anti-tumor therapies, the results suggested that the use of PD-1/PD-L1 inhibitors would be increased incidence risk of immune-related pneumonitis.

5. Conclusions

Whether PD-1/PD-L1 inhibitors were used alone or combined with other antitumor drugs, the incidence risk of immune-related pneumonitis would be increased.

Author contributions

The corresponding author (Yuan Tian) had the right to keep and deal with all the primary data of the meta-analysis, and had the final responsibility for the decision to submit it for publication.

Yuan Tian, Dongmei Xu, Hongmei Liu, Meiyi Xiang, and Mei Tian had the full data of the paper. Donghua Li, and Yantao Mao were responsible for the collection of clinical data. Li Zhang and Shuisheng Zhang were appointed for gathering online data and evaluating the quality of the data.

References

[1] Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012;12:252–64.

[2] Chen YB, Mu CY, Huang JA. Clinical significance of programmed-death-1 ligand-1 expression in patients with non-small cell lung cancer: a 5-year follow-up study. Tumour 2012;98:751–5.

[3] Velchev V, Schlaper KA, Carvajal DE, et al. Programmed death ligand-1 expression in non-small cell lung cancer. Lab Invest 2014;94:107–16.

[4] Brahmer JR, Drake CG, Wolleter I, et al. Phase I study of single-agent anti-programmed-death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol 2010;28:3167–75.

[5] Wang C, Thudium KB, Han M, et al. In vitro characterization of the anti-PD-1 antibody nivolumab, BMS-936558, and in vivo toxicity in non-human primates. Cancer Immunol Res 2014;2:846–56.

[6] Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 2012;366:2443–54.

[7] Ascieto PA, Ferrucci PF, Fisher R, et al. Dabrafenib, trametinib and pembrolizumab or placebo in BRAF-mutant melanoma. Nat Med 2019;25:941–6.

[8] Rini BI, Powles T, Atkins MB, et al. IMmotion151 Study Group. Atezolizumab plus bevacizumab versus sunitinib in patients with previously untreated metastatic renal cell carcinoma (IMmotion151): a multicentre, open-label, phase 3, randomised controlled trial. Lancet 2019;393:2404–15.

[9] Mok TS, Wu YL, Kudaba I, et al. KEYNOTE-042 Investigators. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial. Lancet 2019;393:1819–30.

[10] Cohen EEW, Soulères D, Le Tourneau C, et al. KEYNOTE-040 Investigators. Pembrolizumab versus methotrexate, docetaxel, or cetuximab for recurrent or metastatic head-and-neck squamous cell carcinoma (KEYNOTE-040): a randomised, open-label, phase 3 study. Lancet 2019;393:156–67.

[11] Schmid P, Adams S, Rugo HS, et al. IMpassion130 Trial Investigators. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med 2018;379:2108–21.

[12] Horn L, Mansfield AS, Szczyzn A, et al. IMpower133 Study GroupFirst-line atezolizumab plus chemotherapy in extensive-stage small-cell lung cancer. N Engl J Med 2018;379:2220–9.

[13] Socinski MA, Jotte RM, Cappuzzo F, et al. IMpower150 Study Group. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Engl J Med 2018;378:2288–301.

[14] Paz-Ares L, Luft A, Vicente D, et al. KEYNOTE-061 Investigators. Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N Engl J Med 2018;379:2040–51.

[15] Barlesi F, Vansteenkiste J, Spigel D, et al. Avelumab versus docetaxel in patients with platinum-treated advanced non-small-cell lung cancer (JAVELIN Lung 200): an open-label, randomised, phase 3 study. Lancet 2018;2018;1468–79.

[16] Shitara K, Özgüroğlu M, Bang YJ, et al. KEYNOTE-061 Investigators. Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro-oesophageal junction cancer (KEYNOTE-061): a randomised, open-label, controlled, phase 3 trial. Lancet 2018;392:123–33.

[17] Hida T, Kaj R, Satouchi M, et al. Atezolizumab in Japanese patients with previously treated advanced non-small-cell lung cancer: a subgroup analysis of the phase 3 OAK study. Clin Lung Cancer 2019;19: e405–15.

[18] Hellmann MD, Ciuleanu TE, Pluzanski A, et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N Engl J Med 2018;378:2093–104.

[19] Eggemann AM, Blank CL, Mandal M, et al. Adjuvant pembrolizumab versus placebo in resected stage III melanoma. N Engl J Med 2018;378:1789–801.

[20] Kang YK, Boku N, Satoh T, et al. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017;389:2461–71.

[21] Wolchok JD, Chiarion-Sileni V, Gonzalez R, et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med 2017;377:1345–56.

[22] Bellmunt J, de Wit R, Vaughn DJ, et al. KEYNOTE-045 Investigators.Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N Engl J Med 2017;376:1015–26.

[23] Reck M, Rodríguez-Abreu D, Robinson AG, et al. KEYNOTE-240 Investigators.OAK Study Group.Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet 2017;389:255–65.

[24] Rittmeyer A, Barlesi F, Waterkamp D, et al. OAK Study Group.Atezolizumab versus docetaxel in patients with advanced non-small-cell lung cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study. Lancet Oncol 2016;17:1497–508.

[25] Reck M, Rodríguez-Abreu D, Robinson AG, et al. KEYNOTE-024 Investigators.Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 2016;375:1823–33.

[26] Ferris RL, Blumenschein G Jr, Fayette J, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med 2016;375:1856–67.

[27] Antonia SJ, Chiarion-Sileni V, Gonzalez R, et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med 2019;381:1535–46.

[28] Fehrenbacher L, Blumenschein G Jr, Fayette J, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med 2016;375:1866–67.

[29] Herbst RS, Baas P, Kim DW, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet 2016;387:1837–46.

[30] Hodi FS, Chesney J, Pavlick AC, et al. Combined nivolumab and ipilimumab versus ipilimumab alone in patients with advanced melanoma: 2-year overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial. Lancet Oncol 2016;17:1558–68.

[31] Borchard H, Paz-Ares L, Horn L, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 2016;375:1862–73.

[32] Brahmer J, Reckamp KL, Baas P, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 2015;373:123–35.

[33] Motzer RJ, Escudier B, McDermott DF, et al. CheckMate 025 Investigators.Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med 2015;373:1803–13.

[34] Weber JS, D’Angelo SP, Minor D, et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol 2015;16:375–84.

[35] Gandhi L, Rodríguez-Abreu D, Gadgeel S, et al. KEYNOTE-189 Investigators.Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med 2018;378:2078–89.

[36] Antonia SJ, Villegas A, Daniel D, et al. PACIFIC Investigators.Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC. N Engl J Med 2018;379:2342–50.

[37] Kato K, Cho BC, Takahashi M, et al. Nivolumab versus chemotherapy in patients with advanced oesophageal squamous cell carcinoma refractory to or intolerant to previous chemotherapy (ATTRACTION-3): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol 2019;20:1506–17.

[38] Bunn Jr, Harrington KJ, Greil R, et al. KEYNOTE-048 Investigators.Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study. Lancet 2019;394:1913–28.

[39] Par-Ares L, Dvorkin M, Chen Y, et al. CASPIAN Investigators.Durvalumab plus platinum-etoposide versus platinum-etoposide in first-line treatment of extensive-stage small-cell lung cancer (CASPIAN): a randomised, controlled, open-label, phase 3 trial. Lancet 2019;394:1929–39.

[40] Carbone DP, Giralt S, Armstrong J, et al. Nivolumab versus ipilimumab in patients with advanced melanoma progressing after ipilimumab and chemotherapy. N Engl J Med 2015;373:123–32.

[41] Armand P, Chen YB, Redd RA, et al. PD-1 blockade with nivolumab in patients with classical Hodgkin lymphoma after autologous stem-cell transplantation. Blood 2019;134:22–9.

[42] Davies MJ, Chiang AC. Management of Pneumonitis and neuropathy in patients treated with nivolumab. J Clin Oncol 2014;32:1020–6.

[43] Aranda J, Antonia SJ, Wang J, et al. Nivolumab for classical Hodgkin lymphoma after autologous stem-cell transplantation. JCO Oncol Pract 2020;16(2_suppl):4s.