Prevalence of Toxoplasmosis in Sheep and Goats in Pakistan: A Systematic Review and Meta-Analysis

Tanzila Mumtaz 1,†, Usman Ayub Awan 2,‡, Aqsa Mushtaq 1, Muhammad Sohail Afzal 3, Tahir Mahmood 4,5, Samia Wasif 6, Abid Ali 7,‡, Kiran Ajmal 1, Teroj Mohamed 8,‡, Ali Muhammad 9, Hua Liu 10, Haroon Ahmed 1,∗,‡ and Jianping Cao 10,11,∗

1 Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Chak Shahzad, Islamabad 22620, Pakistan
2 Department of Medical Laboratory Technology, The University of Haripur, Haripur 31261, Khyber Pakhtunkhwa, Pakistan
3 Department of Life Sciences, School of Science, University of Management & Technology (UMT), Lahore 22209, Punjab, Pakistan
4 Department of Industrial and Systems Engineering, College of Computing and Mathematics, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
5 Interdisciplinary Research Center for Smart Mobility & Logistics, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
6 Department of Humanities, COMSATS University Islamabad (CUI), Islamabad 45550, Pakistan
7 Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Khyber Pakhtunkhwa, Pakistan
8 Dental Sciences Department, College of Dentistry, University of Duhok, Duhok 1006, Iraq
9 Department of Zoology, University of Poonch (UOP), Rawalakot 12350, Azad Jammu and Kashmir, Pakistan
10 National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of the People’s Republic of China, World Health Organization Collaborating Center for Tropical Diseases, Shanghai 200025, China
11 The School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University, Shanghai 200025, China
∗ Correspondence: haroonahmad12@yahoo.com (H.A.); caojp@chinacdc.cn (J.C.)
† These authors contributed equally to this work.

Abstract: Toxoplasmosis, a parasitic disease caused by Toxoplasma gondii, results in congenital disorders and miscarriages among livestock and humans worldwide. This systematic review and meta-analysis were conducted to determine the prevalence of T. gondii infection in sheep and goats in Pakistan from 2000 to 2020. We searched the PubMed, Scopus, EMBASE, and Google Scholar databases and selected 17 publications that fulfilled our inclusion criteria. Eight studies were conducted in Southern Punjab, six in Khyber Pakhtunkhwa, two in Northern Punjab, and one in Central Punjab. The diagnostic tests used in the included articles to confirm toxoplasmosis were the latex agglutination test in 56% of the studies, the enzyme-linked immunosorbent assay in 38%, and the indirect hemagglutination assay in 6%. The infection rates were substantially higher among sheep > 1 year of age (37%) than among sheep ≤ 1 year old (19%). Statistically significant differences in infection rates were found between male and female sheep and goats. The overall infection rate by age was also significant among sheep and goats. Sex and age variability between sheep investigations were significant, and sex heterogeneity and age homogeneity were significant among goats. Hence, robust infection control protocols should be implemented to prevent infection in animals and humans.

Keywords: toxoplasmosis; Toxoplasma gondii; prevalence; sheep; goat; Pakistan

1. Introduction

Toxoplasmosis is a zoonotic disease caused by Toxoplasma gondii (T. gondii), an obligate intracellular protozoan parasite. Toxoplasmosis affects domestic animals (including goats...
and sheep) and humans and requires combined approaches across disciplinary boundaries [1]. This disease is a significant public health issue for humans, animal agriculture, and livestock [2,3].

The world’s most significant livestock, sheep and goats, are consumed, especially in developing nations [4]. Considering this, toxoplasmosis surveillance and eradication need extensive epidemiological surveys. According to the previous literature, a wide range of serological studies has been undertaken to understand the epidemiology of toxoplasmosis in different regions, including South and North America [5–7], Europe [8–10], Africa [11–13], and Asia [14,15]. However, in Asian countries, such as Bangladesh [16–20], India [21–25], China [26–33], Iran [34–37], Iraq [38–40], Afghanistan [41], and Sri Lanka [42], toxoplasmosis remains a major risk factor for the public health of humans and for livestock.

Pakistan is Asia’s third largest breeding country, with a population of 78.2 million goats and 31.2 million sheep [43]. Pakistan’s livestock sector has become the most significant contributor to agriculture; it contributed approximately 60.6% to Pakistan’s agriculture sector and 11.7% to its gross domestic product (GDP) in 2019–2020, and its goats and sheep have had a significant economic impact on the country. In the fiscal year 2019–2020, Pakistan added approximately 1 million, 0.47 million, 0.75 million, and 0.29 million tons of milk, wool, meat, and hair, respectively, and 59.5 million pounds of small ruminant skin to its total GDP [44].

Small ruminants, such as sheep and goats, are particularly vulnerable to *T. gondii*, resulting in various problems in these animals [45]. Toxoplasmosis causes deficits in health and production through neonatal deaths, stillbirths, and abortions [46], damaging the reproductive system and, thus, negatively affecting the cost-effectiveness of goats and sheep [47]. Toxoplasmosis was unknown in sheep and goats until the first case was reported by Feldman and Hartley [2,48]. The primary source of infection was determined to be the oocysts shed by cats in their feces, indicating that wild and domestic cats are the definitive hosts [2,49].

Humans contract toxoplasmosis by consuming undercooked/raw meat or food contaminated with oocysts excreted by cats [50]. Approximately 33% of the global population has been identified as infected with toxoplasmosis [51], and drinking unpasteurized and unboiled sheep and goat milk has been identified as the cause of human toxoplasmosis [48,52–54]. Food animals, goats, and sheep (small ruminants) are the most highly afflicted species among mammals with infection of *T. gondii* [55], and they are potential pathways for human disease transmission [56].

Toxoplasmosis has a detrimental effect on the national economy and poses risks to the health of humans. In Pakistan, detailed data are limited despite the high frequency of the disease; therefore, a systematic review of the current research literature and meta-analysis was performed to estimate the prevalence of *T. gondii* infection in goats and sheep and its relationship with various risk factors to identify gaps in the research literature and highlight future research opportunities to improve our knowledge and control of toxoplasmosis in the sheep and goats of Pakistan.

2. Results

Our search for relevant research literature published over two decades (from 2000 to 2020) yielded 17 articles for inclusion in this study (Table 1). All of the included articles were cross-sectional studies that examined the frequency of toxoplasmosis in various regions of Pakistan. The enzyme-linked immunosorbent assay (ELISA) and latex agglutination test (LAT) diagnostic tests were used in 15 of the 17 studies, and the 2 remaining studies used the indirect hemagglutination assay (IHA) diagnostic test.
Table 1. Year(s) the study was conducted and prevalence of T. gondii infection among sheep and goats by province.

| No. | Year(s) the Study was Conducted | Reference | Province(s) | Animal | Lab Test |
|-----|---------------------------------|-----------|-------------|--------|----------|
|     |                                 |           |             | Sheep  |          |
| 1   | 2006–2007                        | Ramzan et al. [57]. | Southern Punjab | 90 10 11.11 110 28 25.45 | LAT |
| 2   | 2010                            | Lashari and Tasawar [58] | Southern Punjab | 518 103 19.88 | LAT ELISA |
| 3   | 2011                            | Tasawar et al. [54] | Southern Punjab | 413 75 18.15 419 60 14.31 | ELISA |
| 4   | 2011–2012                       | Ahmad et al. [59] | Northern Punjab | 288 81 28.12 | ELISA |
| 5   | 2012–2013                       | Hanif and Tasawar [60] | Southern Punjab | 288 98 34.03 | LAT |
|     |                                 |           |             | Goats   |          |
| 6   | 2013                            | Shah et al. [61] | Central Punjab | 350 148 42.28 290 128 44.12 | IHA |
| 7   | 2013                            | Ahmed et al. [62] | Khyber Pakhtunkhwa | 113 18 15.92 86 38 44.18 | ELISA |
| 8   | 2013                            | Shah et al. [61] | Khyber Pakhtunkhwa | 100 36 36 104 56 53.84 | IHA |
| 9   | 2012–2013                       | Ahmad and Tasawar [55] | Southern Punjab | 335 125 37.31 | LAT |
| 10  | 2015                            | Ullah et al. [47] | Southern Punjab | 55 20 36.36 55 21 31.18 | LAT |
| 11  | 2016                            | Ahmad and Tasawar [63] | Southern Punjab | 335 125 37.3 865 252 29.13 | LAT |
| 12  | 2018                            | Khan et al. [64] | Khyber Pakhtunkhwa | 65 30 46.15 | LAT |
| 13  | 2018                            | Khan et al. [64] | Khyber Pakhtunkhwa | 61 20 32.79 | LAT |
| 14  | 2019                            | Ahmed et al. [65] | Northern Punjab | 45 15 33.33 46 11 23.91 | ELISA |
| 15  | 2019                            | Hussain and Zahid [66] | Khyber Pakhtunkhwa | 103 89 86.4 121 99 81.82 | LAT |
| 16  | 2019                            | Kamal et al. [67] | Khyber Pakhtunkhwa | 66 25 37.88 | LAT |
| 17  | 2020                            | Lashari et al. [68] | Southern Punjab | 103 24 23.3 101 33 32.6 | ELISA |

LAT, latex agglutination test; ELISA, enzyme-linked immunosorbent assay; IHA, indirect hemagglutination assay.

Our study consisted of 3630 sheep, of which 1124 were positive for toxoplasmosis, and a total of 3128 goats, of which 1112 were infected. Hence, the overall prevalence of toxoplasmosis was 35.5% among the goats and 30.9% among the sheep (Figure 1). The incidence of T. gondii infection among the sheep and goats varied geographically; the highest prevalence of infection among the sheep was observed in Charsadda, Khyber Pakhtoon Khwa (KPK), followed by various districts in Punjab province, including 60% in Jalalpur, 48% in Sargodha, and 45% in Shujbad. Infection among the goats was most prevalent in the district of Charsadda, followed by districts in Punjab province, such as 61% in Sargodha, 60% in Jalalpur, and 53% in Mohmand Agency, KPK (cf. Table 2).
in Jalalpur, 48% in Sargodha, and 45% in Shujbad. Infection among the goats was most prevalent in the district of Charsadda, followed by districts in Punjab province, such as 61% in Sargodha, 60% in Jalalpur, and 53% in Mohmand Agency, KPK (cf. Table 2)

Figure 1. The overall study design and graphs of the prevalence of toxoplasmosis among sheep and goats.

Table 2. Year of publication and prevalence of T. gondii infection among sheep and goats by province and city.

| Year of Publication | Reference | Province(s)          | City                          | Animal Lab Method | Sheep | Goats |
|---------------------|-----------|----------------------|-------------------------------|-------------------|-------|-------|
| 2009                | Ramzan et al. [57] | Southern Punjab | Rahim Yar Khan | Total Positive | 90 | 11.11 |
|                     | Lashari and Tasawar [58] | Southern Punjab | Dera Ghazi Khan, Multan and Khanewal | 518 | 19.88 |
| 2011                | Tasawar et al. [54] | Southern Punjab | Multan | Total Positive | 200 | 104  |
| 2010                | Lashari and Tasawar [58] | Southern Punjab | Dera Ghazi Khan, Multan and Khanewal | Total Positive | 413 | 18.15 |
| 2011                | Tasawar et al. [54] | Southern Punjab | Multan | Total Positive | 288 | 34.03 |
| 2015                | Ahmad et al. [59] | Northern Punjab | Pothwar region | Total Positive | 212 | 77.02 |
| 2016                | Hanif and Tasawar [60] | Southern Punjab | Multan | Total Positive | 288 | 29.12 |
| 2016                | Hanif and Tasawar [60] | Southern Punjab | Multan | Total Positive | 212 | 26.41 |
| 2013                | Shah et al. [61] | KPK | Multan | Total Positive | 350 | 42.96 |
| 2013                | Shah et al. [61] | KPK | Multan | Total Positive | 113 | 15.92 |
| 2015                | Ahmad and Tasawar [63] | Southern Punjab | Multan | Total Positive | 90 | 7.77 |
| 2016                | Ahmed et al. [62] | Central Punjab | Shalpur | Total Positive | 137 | 33.57 |
| 2016                | Ahmed et al. [62] | Central Punjab | Silanwali | Total Positive | 60 | 48.33 |
| 2016                | Shah et al. [61] | KPK | Mohmand Agency (Khanzera, Nawagai, Chamarkan, Ulai And Ghaliana) | Total Positive | 100 | 36.36 |
| 2015                | Ahmad and Tasawar [55] | Southern Punjab | Cholistan | Total Positive | 335 | 37.31 |
| 2018                | Ullah et al. [47] | Southern Punjab | Multan | Total Positive | 55 | 36.36 |
| 2016                | Ahmad and Tasawar [63] | Southern Punjab | Cholistan Desert, Rahim Yar Khan And Rajan Pur | Total Positive | 335 | 37.31 |
| 2018                | Khan et al. [64] | KPK | Charsada | Total Positive | 65 | 46.15 |
| 2018                | Khan et al. [64] | KPK | Tangi | Total Positive | 61 | 32.79 |
| 2018                | Khan et al. [64] | KPK | Shabqadar | Total Positive | 23 | 52.17 |
Twelve of the fourteen included articles on sheep investigated the prevalence of toxoplasmosis by sex (Table 3). In some of the studies, the statistical analyses revealed a strong correlation between gender and toxoplasmosis, and in a few other studies, no significant difference was found between them. However, a small difference in infection rates by gender was found between male (29%) and female (31%) sheep, compared to a larger difference between male (24%) and female (47%) goats.

Significant differences in infection rates among sheep were reported in studies from different geographical areas, including Multan (females: 65%; males: 25%), Rahim Yar Khan (females: 17%; males: 4.5%), and Dera Ismail Khan, Multan, and Khanewal (females: 18%; males: 30%). Similarly, only a few of the included studies reported a significant difference in the rates of infection among male and female goats, such as Mohmand Agency (females: 69%; males: 38%); Multan (females: 55%; males: 25%); Bhalwal, Kotmomin, Sahiwal, Shahpur, Silanwali, and Sargodha (females: 50%; males: 23%); and Rahim Yar Khan (females: 37%; males: 62%) (cf. Table 3).

Two of the ten studies on sheep were not included in the meta-analysis due to the variation in the data of their age groups. Therefore, eight studies were included, and their findings proved that the infection rates increased with age. In contrast, two of the seven articles on goats were not included in the meta-analysis due to the variation of the data on their age groups; thus, five studies were included (Table 4). Four of the five studies conducted on goats reported a strong positive correlation with age. The findings indicated that the infection rates were significantly greater (37%) among sheep older than 1 year compared to the 19% infection rate among sheep-bearing age (younger than 1 year).

The results of the fixed-effects model showed a statistically significant difference in infection rates between male and female sheep (i.e., odds ratio (OR) 0.67, 95% confidence interval (CI) 0.56–0.82) and goats (OR 0.34, 95% CI 0.28–0.43) (cf. Tables 5 and 6). Similar findings were observed in the random effects model for both sheep (OR 0.64, 95% CI 0.41–0.99) and goats (OR 0.35, 95% CI 0.27–0.45) (cf. Tables 5 and 6). Extensive variation among the different studies in the prevalence estimates of infection among the sheep was observed in the analysis by sex, and the Q statistic was 35.67, \( p < 0.001 \), and \( I^2 = 69\% \) (Figure 2a). The Q statistic of 7.97, \( p = 0.54 \), and \( I^2 = 0\% \) in Figure 2b revealed no significant variation in the prevalence estimates of infection among goats in the different studies.
Table 3. Prevalence of *T. gondii* infection among sheep and goats by sex.

| Reference                  | Province                | City                        | Sheep | Total | Male | NI | % | Female | NI | % | Total | Male | NI | % |
|----------------------------|-------------------------|-----------------------------|-------|-------|------|----|----|--------|----|----|-------|------|----|----|
| Ahmad et al. [59]          | Northern Punjab         | Pothwar Region              |       | 413   | 156  | 20 | 12.82 | 257 | 55 | 21.4  | 419 | 153 | 16 | 10.46 | 266 | 44 | 16.54 |
| Lashari and Tasawar [58]   | Southern Punjab         | Dera Ghazi Khan, Multan and Khanewal |      | 518   | 63   | 19 | 30.15 | 455 | 84 | 18.4  |      |      |    |        |      |    |      |
| Ramzan et al. [57]         | Southern Punjab         | Rahim Yar Khan Bhalwal, Kotomomin, Sahiwal, Shahpur, Sialwali, and Sargodha |     | 90    | 44   | 2  | 4.5  | 46  | 8  | 17.3  | 110  | 62  | 10 | 16.1  | 48  | 18 | 37.5  |
| Ahmed et al. [62]          | Central Punjab          |                             |       | 470   | 72   | 16 | 22.2 | 398 | 107 | 26.9  | 530  | 150 | 35 | 23.3  | 380  | 192 | 50.5  |
| Shah et al. [56]           | Khyber Pakhtunkhwa      | Mardan                      |       | 290   | 120  | 55 | 45.83 | 170 | 73  | 42.94 | 350  | 150 | 39 | 26    | 200  | 99 | 55    |
| Lashari and Tasawar [54]   | Southern Punjab         | Multan                      |       | 200   | 20   | 5  | 25   | 180 | 99 | 55    |      |      |    |        |      |    |      |
| Ramzan et al. [57]         | Southern Punjab         | Multan, Khanewal            |       | 500   | 51   | 16 | 31.37| 449 | 152 | 33.85 |      |      |    |        |      |    |      |
| Ullah et al. [47]          | Khyber Pakhtunkhwa      | Multan District              |       | 125   | 63   | 16 | 25.39| 62  | 40  | 64.52 | 125  | 63  | 15 | 23.81 | 62  | 36 | 58.06 |
| Khan et al. [54]           | Khyber Pakhtunkhwa      | Charadsda                   |       | 149   | 56   | 18 | 32.14| 93  | 44  | 47.31 |      |      |    |        |      |    |      |
| Shah et al. [61]           | Khyber Pakhtunkhwa      | Mohmand Agency D.G. Khan district |      | 100   | 52   | 16 | 30.76| 48  | 20  | 41.6  | 104  | 52  | 20 | 38.46 | 52  | 36 | 69.23 |
| Lashari et al. [68]        | Southern Punjab         |                              |       | 103   | 15   | 5  | 33.3 | 88  | 21  | 23.86 | 101  | 8   | 3  | 37.5  |      |      |      |
| Hussain and Zahid [66]     | Khyber Pakhtunkhwa      | Charsadda                   |       | 103   | 33   | 25 | 84.78| 70  | 64  | 91.42 | 121  | 29  | 21 | 72.4  | 92  | 78 | 84.78 |
| Kamal et al. [67]          | Khyber Pakhtunkhwa      |                              |       | 143   | 78   | 26 | 33.3 | 65  | 32  | 49.23 |      |      |    |        |      |    |      |
| Ahmad and Tasawar [55]     | Southern Punjab         | Cholistan                   |       | 335   | 169  | 52 | 30.7 | 166 | 73  | 43.9  |      |      |    |        |      |    |      |

NI, number of animals infected; LAT, latex agglutination test; ELISA, enzyme-linked immunosorbent assay; IHA, indirect hemagglutination assay.

Table 4. Prevalence of *T. gondii* infection among sheep and goats by age group.

| Reference                  | Province                | Sheep Age Group | Total Positives | Percentage of Positives | Goat Age Group | Total Positives | Percentage of Positives |
|----------------------------|-------------------------|-----------------|-----------------|-------------------------|----------------|-----------------|-------------------------|
| Ahmad et al. [59]          | Northern Punjab         | <12 months      | 44              | 9.09                    | 30             | 10.0           |                          |
|                            |                         | 13–24 months    | 174             | 9.20                    | 181            | 6.29           |                          |
|                            |                         | 25–36 months    | 138             | 25.36                   | 137            | 16.79          |                          |
|                            |                         | >36 months      | 57              | 35.09                   | 23             | 16.98          |                          |
| Lashari and Tasawar [58]   | Southern Punjab         | 1–1.5 years     | 54              | 38.8                    | 117            | 17.94          |                          |
|                            |                         | 2–2.5 years     | 137             | 24.08                   | 26             | 14.9           |                          |
|                            |                         | 3–4 years       | 117             | 17.94                   | 26             | 14.9           |                          |
|                            |                         | 5–6 years       | 75              | 16.0                    | 26             | 14.9           |                          |
|                            |                         | 7–8 years       | 47              | 8.51                    | 26             | 14.9           |                          |
| Ramzan et al. [57]         | Southern Punjab         | ≤1 year         | 14              | 25.45                   | 23             | 10.00          |                          |
|                            |                         | 1–1.5 years     | 35              | 5.7                     | 44             | 18.98          |                          |
|                            |                         | 2–2.5 years     | 32              | 18.7                    | 26             | 14.9           |                          |
|                            |                         | ≥3 years        | 9               | 22.7                    | 17             | 8.51           |                          |
Table 4. Prevalence of *T. gondii* infection among sheep and goats by age group.

| Reference                  | Province                  | Sheep                        | Goats                        |
|----------------------------|---------------------------|------------------------------|------------------------------|
|                            | Total No. in Age Group    | No. of Positives in Age Group| Percentage of Positives in Age Group |
|                            | No. in Age Group          | No. of Positives in Age Group| Percentage of Positives in Age Group |
|                            | Total No. in Age Group    | No. of Positives in Age Group| Percentage of Positives in Age Group |
| Ahmed et al. [62]          | Central Punjab (64)       | 227                          | 193                          | 36.8 |
|                            | Central Punjab (64)       | 122                          | 40.2 |
|                            | Central Punjab (64)       | 215                          | 49.8 |
| Shah et al. [61]           | Khyber Pakhtunkhwa        | 128                          | 60                            | 13.33 |
|                            | Khyber Pakhtunkhwa        | 110                          | 36.36 |
|                            | Khyber Pakhtunkhwa        | 120                          | 66.66 |
| Hanif and Tasawar [60]     | Southern Punjab (LAT)     | 168                          | 125                          | 26.40 |
|                            | Southern Punjab (LAT)     | 120                          | 32.33 |
|                            | Southern Punjab (LAT)     | 120                          | 30.83 |
|                            | Southern Punjab (LAT)     | 72                           | 40.27 |
|                            | Southern Punjab (LAT)     | 31                           | 64.50 |
| Hanif and Tasawar [60]     | Southern Punjab (ELISA)   | 137                          | 125                          | 22.40 |
|                            | Southern Punjab (ELISA)   | 152                          | 28.28 |
|                            | Southern Punjab (ELISA)   | 120                          | 26.66 |
|                            | Southern Punjab (ELISA)   | 72                           | 30.55 |
|                            | Southern Punjab (ELISA)   | 31                           | 38.70 |
| Ullah et al. [47]          | Southern Punjab (LAT)     | 56                           | 11                            | 27.27 |
|                            | Southern Punjab (LAT)     | 50                           | 60 |
|                            | Southern Punjab (LAT)     | 59                           | 37.28 |
|                            | Southern Punjab (LAT)     | 05                           | 20 |
| Ahmad and Tasawar [63]     | Southern Punjab (LAT)     | 374                          | 64                            | 17.11 |
|                            | Southern Punjab (LAT)     | 338                          | 75                            | 22.18 |
|                            | Southern Punjab (LAT)     | 289                          | 127                           | 43.94 |
|                            | Southern Punjab (LAT)     | 114                          | 65                            | 57.01 |
|                            | Southern Punjab (LAT)     | 85                           | 46                            | 54.11 |
| Khan et al. [64]           | Khyber Pakhtunkhwa        | 62                           | 11                            | 41.61 |
|                            | Khyber Pakhtunkhwa        | 33                           | 10                            | 30.30 |
|                            | Khyber Pakhtunkhwa        | 45                           | 25                            | 55.56 |
|                            | Khyber Pakhtunkhwa        | 59                           | 23                            | 38.99 |
|                            | Khyber Pakhtunkhwa        | 12                           | 02                            | 16.67 |
| Lashari et al. [68]        | Southern Punjab (LAT)     | 26                           | 34                            | 20.58 |
|                            | Southern Punjab (LAT)     | 42                           | 7                             | 16.6 |
|                            | Southern Punjab (LAT)     | 27                           | 12                            | 44.4 |
|                            | Southern Punjab (LAT)     | 34                           | 5                             | 14.7 |
|                            | Southern Punjab (LAT)     | 31                           | 9                             | 21.9 |
|                            | Southern Punjab (LAT)     | 28                           | 10                            | 35.7 |
| Kamal et al. [67]          | Khyber Pakhtunkhwa        | 24                           | 27                            | 33.33 |
|                            | Khyber Pakhtunkhwa        | 20                           | 9                             | 33.33 |
|                            | Khyber Pakhtunkhwa        | 31                           | 17                            | 39.53 |
|                            | Khyber Pakhtunkhwa        | 45                           | 19                            | 42.2 |
|                            | Khyber Pakhtunkhwa        | 28                           | 13                            | 46.4 |

LAT, latex agglutination test; ELISA, enzyme-linked immunosorbent assay.
Table 5. Overall prevalence of *T. gondii* infection among sheep by sex.

| Author(s)               | Male Infected/Total | Female Infected/Total | OR  (95% CI)        | %W (Fixed) | %W (Random) |
|-------------------------|---------------------|-----------------------|---------------------|------------|------------|
| Ahmad et al. [66]       | 20/156              | 55/257                | 0.5401 [0.3097; 0.9418] | 13.4       | 9.8        |
| Lashari and Tasawar [58]| 19/63               | 84/455                | 1.9072 [1.0595; 3.4332] | 5.3        | 6.9        |
| Ramzan et al. [57]      | 2/44                | 8/46                  | 0.2262 [0.0452; 1.1321] | 2.8        | 4.2        |
| Ahmed et al. [62]       | 16/72               | 107/398               | 0.777 [0.4272; 1.4132] | 9.5        | 9.3        |
| Shah et al. [61]        | 55/120              | 73/170                | 1.1243 [0.7025; 1.7995] | 12.1       | 10.3       |
| Hanif and Tasawar [60]  | 10/51               | 127/449               | 0.6184 [0.3007; 1.2719] | 7.7        | 8.7        |
| Ullah et al. [47]       | 16/63               | 40/62                 | 0.1872 [0.0867; 0.4043] | 11.2       | 8.4        |
| Shah et al. [61]        | 16/52               | 20/46                 | 0.6222 [0.2734; 1.4159] | 5.3        | 8.0        |
| Lashari et al. [68]     | 5/15                | 19/88                 | 1.8158 [0.5338; 5.9541] | 1.4        | 5.9        |
| Ahmed et al. [62]       | 16/72               | 107/398               | 0.777 [0.4272; 1.4132] | 9.5        | 9.3        |
| Shah et al. [61]        | 55/120              | 73/170                | 1.1243 [0.7025; 1.7995] | 12.1       | 10.3       |
| Hanif and Tasawar [60]  | 10/51               | 127/449               | 0.6184 [0.3007; 1.2719] | 7.7        | 8.7        |
| Ullah et al. [47]       | 16/63               | 40/62                 | 0.1872 [0.0867; 0.4043] | 11.2       | 8.4        |
| Shah et al. [61]        | 16/52               | 20/46                 | 0.6222 [0.2734; 1.4159] | 5.3        | 8.0        |
| Lashari et al. [68]     | 5/15                | 19/88                 | 1.8158 [0.5338; 5.9541] | 1.4        | 5.9        |
| Hussain and Zahid [66]  | 25/33               | 64/70                 | 0.293 [0.0923; 0.9299]  | 3.7        | 6.1        |
| Kamal et al. [67]       | 26/78               | 32/65                 | 0.5156 [0.2621; 1.0145] | 8.6        | 9.0        |
| Ahmad and Tasawar [55]  | 52/169              | 73/166                | 0.5662 [0.3618; 0.8862] | 18.9       | 10.5       |
| Total (fixed effects)   | 262/916             | 702/2274              | 0.6794 [0.5626; 0.8205] | −4.02      | <0.0001    |
| Total (random effects)  | 262/916             | 702/2274              | 0.6367 [0.4114; 0.9853] | −2.28      | 0.0439     |

OR, odds ratio; CI, confidence interval.

Table 6. Overall prevalence of *T. gondii* infection in goats by sex.

| Author(s)               | Males Infected/Total | Females Infected/Total | OR  (95% CI)        | %W (Fixed) | %W (Random) |
|-------------------------|----------------------|------------------------|---------------------|------------|------------|
| Ahmad et al. [59]       | 16/153               | 44/266                 | 0.5893 [0.3200; 1.0850] | 9.6        | 12.8       |
| Ramzan et al. [57]      | 10/62                | 18/48                  | 0.3205 [0.1311; 0.7837] | 5.7        | 7.4        |
| Ahmed et al. [62]       | 35/150               | 192/380                | 0.298 [0.1942; 0.4574] | 27.8       | 18.9       |
| Shah et al. [61]        | 39/150               | 109/200                | 0.2933 [0.1854; 0.4641] | 23.1       | 17.7       |
| Tasawar et al. [54]     | 5/20                 | 99/180                 | 0.2727 [0.0951; 0.7824] | 5          | 5.7        |
| Ullah et al. [47]       | 15/63                | 36/62                  | 0.2257 [0.1047; 0.4867] | 9.2        | 9.3        |
| Khan et al. [64]        | 18/86                | 44/93                  | 0.5275 [0.2638; 1.0548] | 7.5        | 10.8       |
| Shah et al. [61]        | 20/52                | 36/52                  | 0.2778 [0.1234; 0.6255] | 7.4        | 8.6        |
| Lashari et al. [68]     | 2/8                  | 31/93                  | 0.6667 [0.1271; 3.4970] | 1.2        | 2.5        |
| Hussain and Zahid [66]  | 21/29                | 78/92                  | 0.4712 [0.1745; 1.2722] | 3.4        | 6.3        |
| Total (fixed effects)   | 181/743              | 687/1466               | 0.3445 [0.2780; 0.4269] | −9.74      | <0.0001    |
| Total (random effects)  | 181/743              | 687/1466               | 0.3510 [0.2746; 0.4488] | −9.64      | <0.0001    |

OR, odds ratio; CI, confidence interval.

Using the data analyzed by sex, a forest plot was drawn based on the proportion of infected cases among the male and female sheep (Figure 3a). The Q statistic of 294.09, \( p < 0.01 \), and \( I^2 = 96\% \) show significant variation among the different studies in the prevalence estimates of infection among the sheep. The Q statistic of 275.10, \( p < 0.01 \), and \( I^2 = 97\% \) (cf. Figure 3b) show significant variation among the different studies in the prevalence estimates of infection among the male and female goats.

We divided the animals into two groups, i.e., group 1 (\( \leq 1 \) year of age) and group 2 (>1 year of age) to analyze the data by age. The fixed-effects model showed a significant difference in the infection rates between the two age groups of the sheep (OR 0.32, 95% CI 0.26–0.39) and goats (OR 0.44, 95% CI 0.30–0.67) (cf. Tables 7 and 8). Similar findings using a random effects model were also observed in sheep (OR 0.37, 95% CI 0.22–0.61) and goats (OR 0.48, 95% CI 0.30–0.84) (cf. Tables 7 and 8). Moreover, extensive variation among the different studies in the analysis by age was observed for the prevalence estimates of infection among the male and female goats.

The Q statistic of 21.44, \( p = 0.003 \), and \( I^2 = 67\% \) in Figure 4a. The Q statistic of 5.08, \( p = 0.40 \), and \( I^2 = 2\% \) in Figure 4b showed no significant variation among the different studies in the prevalence estimates of infection among goats.
Figure 2. Forest schematic graph for overall prevalence odds ratio and 95% CI of *T. gondii* infection by gender (a) sheep (b) goats (random effects) [47,54,55,57,62,64,65,67–72].

**Table 7.** The Q statistic of 5.08, *p* = 0.003, and *I*² = 67% in Figure 4a.

*Total (random effects)* 262/916 702/2274 0.6794 [0.5626; 0.8205] −14.6 10.8 13.4

*Total (fixed effect)* 196/1027 669/1827 0.3200 [0.2617; 0.3913] −11.11 <0.0001

*Prediction interval* [0.19; 0.64]

**Figure 3.** Forest plots showing the proportion of *T. gondii* infection in sheep by age group.

**Figure 3b) show significant variation among the different studies in the prevalence estimates of infection among the sheep. The Q statistic of 275.10, *p* < 0.01, and *I*² = 97% (cf. Tables 7 and 8). Moreover, extensive variation among the different studies in the prevalence estimates of infection among goats (random effects) [47,54,55,57,62,64,65,67–72].

*Total (random effects)* 196/1027 669/1827 0.3200 [0.2617; 0.3913] −11.11 <0.0001

*Prediction interval* [0.19; 0.64]
Table 7. Overall prevalence of *T. gondii* infection in sheep by age group.

| Author(s) * | Age ≤ 1 Year Infected/Total | Age > 1 Year Infected/Total | OR | 95% CI | %W (Fixed) | %W (Random) |
|-------------|----------------------------|----------------------------|----|--------|------------|-------------|
| Ahmad et al. [59] | 4/44 | 71/369 | 0.4197 | [0.1454; 1.2113] | 3.8 | 11.2 |
| Ramzan et al. [57] | 0/14 | 10/76 | 0.0464 | [0.0001; 24.1651] | 0.9 | 0.6 |
| Shah et al. [61] | 8/60 | 120/230 | 0.141 | [0.0641; 0.3101] | 11.9 | 14.6 |
| Hanif and Tasawar [60] | 28/125 | 109/375 | 0.7044 | [0.4377; 1.1338] | 11.7 | 19.2 |
| Ullah et al. [47] | 3/11 | 53/114 | 0.4316 | [0.1089; 1.7104] | 1.9 | 8.2 |
| Ahmad and Tasawar [55] | 139/712 | 238/488 | 0.2548 | [0.1971; 0.3294] | 63.1 | 22 |
| Lashari et al. [68] | 5/34 | 19/59 | 0.3630 | [0.1214; 1.0850] | 3.3 | 10.8 |
| Kamal et al. [67] | 9/27 | 49/116 | 0.6837 | [0.2833; 1.6497] | 3.4 | 13.4 |

Total (fixed effects) | 196/1027 | 669/1827 | 0.3200 | [0.2617; 0.3913] | −11.1 | <0.0001 |
Total (random effects) | 196/1027 | 669/1827 | 0.3681 | [0.2210; 0.6132] | −4.63 | 0.0024 |

* Out of 10 articles, 2 articles were not included due to the variation in the age group data. OR, odds ratio; CI, confidence interval.

Table 8. Overall prevalence of *T. gondii* infection among goats by age group.

| Author(s) * | Age ≤ 1 Year Infected/Total | Age > 1 Year Infected/Total | OR | 95% CI | %W (Fixed) | %W (Random) |
|-------------|----------------------------|----------------------------|----|--------|------------|-------------|
| Ahmad et al. [59] | 3/30 | 57/389 | 0.6472 | [0.1900; 2.2041] | 9.4 | 13.9 |
| Ramzan et al. [57] | 6/23 | 22/87 | 1.0428 | [0.3654; 2.9762] | 8.7 | 17.2 |
| Shah et al. [61] | 10/50 | 138/300 | 0.2935 | [0.1415; 0.6085] | 40.6 | 25.7 |
| Ullah et al. [47] | 1/9 | 50/116 | 0.165 | [0.0200; 1.3624] | 8.2 | 5.8 |
| Khan et al. [64] | 10/33 | 52/114 | 0.5184 | [0.2263; 1.1875] | 20.9 | 22.6 |
| Lashari et al. [68] | 4/29 | 19/72 | 0.4463 | [0.1374; 1.4502] | 12.1 | 14.7 |

Total (fixed effects) | 34/174 | 338/1078 | 0.4474 | [0.2972; 0.6734] | −3.86 | 0.0001 |
Total (random effects) | 34/174 | 338/1078 | 0.4768 | [0.2964; 0.8438] | −4.63 | 0.0207 |

* Two of the seven articles were not included due to the variation in the age group data. OR, odds ratio; CI, confidence interval.

Figure 4. Forest schematic graph for overall prevalence odds ratio and 95 % CI of *T. gondii* infection by age group (a) Sheep (b) Goats [47,57,64–68,70,72].
Further analysis by the age of the proportion of infected cases was conducted. The Q statistic of 99.07, \( p < 0.01 \), and \( I^2 = 93\% \) in Figure 5a revealed significant variation among the different studies in the prevalence estimates of infection among sheep. The Q statistic of 102.95, \( p < 0.01 \), and \( I^2 = 95\% \) in Figure 5b also showed significant variation in the prevalence estimates of infection among the different studies of goats.

![Figure 5. Forest plots showing the overall prevalence of T. gondii infection by age group; (a) sheep (b) goats [47,57,64–68,70,72].](image)

3. Discussion

Over several decades, Pakistan’s livestock industry has become a vital subsector of the country’s agricultural sector. Goats and sheep are used for various purposes, including producing meat, milk, and other dairy products and breeding. Goat and sheep populations have increased substantially during the last 3 years, as have meat and milk production from sheep and goats. Goats and sheep are most frequently infected among livestock with toxoplasmosis [57], and the primary route of T. gondii infection is cat feces; however, it may be transported through the consumption of tissue cysts in raw foods and undercooked foods [73]. The prevalence of toxoplasmosis among livestock varies significantly worldwide, ranging from 0 to 100% in different nations [74,75], depending on the country’s traditions, customs, lifestyle, meteorological conditions, farming practices, and the age of the animal [76]. Prevalence rates are related to the oocyst excretion of cats and the infection of animals and humans after sporulation [3].

After searching four databases, 17 articles, including 3630 sheep with a positive case count of 1124 and 3128 goats with a positive case count of 1112, were selected for the analysis. The data showed that the overall prevalence of infection with toxoplasmosis was 35% among goats and 30.9% among sheep. The peak incidence of T. gondii was 86.4%, which was reported in KPK (Shahqadar, Tangi, and Charsadda), and the lowest prevalence rate was 1.47% in the Bannu district [66,77]. The studies reported a significant association between toxoplasmosis infection and the ages of goats and sheep. The higher disease prevalence in animals older than 1 year may be caused by longer exposure throughout their lives (Tables 7 and 8) [47,57,60,61,63,67,68].

In countries other than Pakistan, the frequency of toxoplasmosis infection in goats and sheep varies. Prevalences of 33.62% for sheep and 36.41% for goats were observed in...
Iran [78], and a more recent study reported a prevalence of 14.4% among sheep and 8.8% among goats [35]. Seroprevalence, which was reported to be 52.6% among sheep and 24% among goats in Nazareth, Ethiopia, was confirmed by the modified agglutination test, and seroprevalence of 56% among sheep and 25.9% among goats were verified by the ELISA test in the same region [79]. The seropositivity of *T. gondii* in China was reported in 9.84% of sheep and 10.73% of goats [27], and another study reported it in 9.9% of goats [80].

The findings of the fixed-effects model indicated a significant difference in the infection rates between male and female sheep (OR 0.67, 95% CI 0.56–0.82) and goats (OR 0.34, CI 0.28–0.43) (cf. Tables 5 and 6). The results of the present study are consistent with those of previous studies [54,61,81–83], although the results of two studies [69,84] that reported higher seropositivity in males than females were inconsistent with our findings. Females are more susceptible to protozoan parasites than males are. The stress of lactation and childbirth causes immunological suppression in female sheep and goats, predisposing them to toxoplasmosis [70,85–87].

The included articles reported that infection rates were significantly higher among sheep more than 1 year of age (37%) compared to sheep less than 1 year (19%) of age (cf. Table 4). The risk factors for toxoplasmosis were more prevalent among older sheep than younger sheep, implying that animals have a greater probability of infection as they age, which is consistent with the study by Shah et al. [61]. The higher susceptibility of older animals than younger animals to infection is thought to be related to their longer exposure to risk factors for infection, and the observations of sheep and goats in other studies are consistent with those of our study [54,58]. However, our findings contradict those of Ramzan et al. [57]. Seroprevalence increases with age due to an increased risk of environmental contamination [88]. This increase could be related to the inability of animals 1 year and younger to retain adequate passive immunity transferred from their mothers. Therefore, the age of the animal is regarded as an essential risk factor for toxoplasmosis infection in animals [89].

In the current study, the overall prevalence of toxoplasmosis in Pakistan was 35.5% among goats and 30.9% among sheep. A higher *T. gondii* seropositivity was observed in goats than in sheep in Northern Punjab [59]. Similarly, the results of other studies indicated that goats are more vulnerable to toxoplasmosis than sheep, owing to increased mobility and migration [57,90], which may have increased their probability of coming into contact with contaminated sources. These correlations may be explained by the constant grazing of the many sheep flocks in the included articles, whereas the goat herds were confined to houses. As a result, the potential for contacting contaminated food and grasslands was higher among the sheep flocks throughout the grazing season. In Pakistan and other countries worldwide, there is significant variation in the occurrence of toxoplasmosis. The findings of our study indicate that toxoplasmosis is widespread in goats and sheep in Sargodha, Sahiwal, Bhalwal, Silanwali, and Shaahpur. Similar results have been reported in Pakistan’s southern areas [54,57,58], KPK [61] and Iran, India, and China [71,72,91]. This substantial variation in the seroprevalence of toxoplasmosis between regions is attributed to differences in temperature, sanitary conditions, farming techniques, sample size, and diagnostic techniques [72].

There are some limitations in this systematic review and meta-analysis. In the different studies, the sex of the animals was not examined equally; hence, uneven samples from each sex were included in the analysis, which may have biased the results and conclusions of the study. Finally, age, which is a critical factor, was not investigated in all of the included articles.

4. Materials and Methods
4.1. Data Search Strategy

Our study was a detailed investigation of the prevalence of *T. gondii* infection among goats and sheep in Pakistan. We collected data from searches of four databases, including Google Scholar, Scopus, EMBASE, and PubMed, and analyzed relevant findings identified
in the articles. Keywords, including “toxoplasmosis”, “T. gondii”, “prevalence”, “sheep”, “goat”, and “Pakistan” were searched alone or in combination in the four databases.

4.2. Data Collection

Research articles written in English were selected for review. All the study’s authors conducted the systematic review and meta-analysis of the included articles, gathered research reports, and defined the study’s inclusion criteria.

4.3. Inclusion and Exclusion Criteria

The exclusion and inclusion criteria were evaluated, and the articles for inclusion were selected accordingly. Studies conducted in Pakistan that investigated the prevalence of toxoplasmosis in the country’s sheep and goats were screened and evaluated for inclusion in the systematic review and meta-analysis. Irrelevant data, incomplete information, duplicate articles, case series, studies that did not examine the prevalence of toxoplasmosis, and studies without sheep and goats were excluded. A PRISMA flowchart of the selection of articles is presented in Figure 6.

A total of 17 articles were chosen based on the study’s inclusion criteria. The following information about the included articles were collected: year of publication, country where the study was conducted, sample size, diagnostic tests, number of animals tested, number of cases of infected animals, and prevalence rates. The studies were then coded as per the defined parameters, and the data were entered into Microsoft Excel.

![Figure 6. PRISMA flowchart of the selection of studies.](image)

4.4. Meta-Analysis

The weighted prevalence of T. gondii infection was used in the analyses of sheep and goats by sex (i.e., male and female) and age group, i.e., group 1 (≤1 year of age) and group 2 (>1 year of age). We used ORs for the pooled effect sizes of both analyses; the Sidik–Jonkman estimator was used to estimate the variance, and 0.1 increments were added for a continuity correction of zero cells. However, for the proportions of the infected cases by sex and age group, we analyzed single proportions. We used the Freeman–Tukey double arcsine transformation for the analyses of the proportions, and the DerSimonian–Laird method to estimate the inverse variances. Cochran’s Q test and the I² Statistics were used to determine heterogeneity between the studies, and forest plots with 95% CIs and effect sizes were used to present a graphical summary of the results.
5. Conclusions

Examining these findings contributes to an updated epidemiological assessment and geographic context in Pakistan. More surveys are recommended to monitor this infection continuously. Attention should be paid to farming and testing animals using techniques to control the disease before a contaminated product is obtained and consumed. Health measures and precautions should be taken to prevent and control the disease. Our data provide meaningful information and statistics on the prevalence of toxoplasmosis, which may aid in the disease’s control and management. Additional investigations are needed to improve control strategies, reduce toxoplasmosis among goats and sheep, and continuously buffer Pakistan’s community health, economy, and financial status against the societal damages caused by toxoplasmosis.

Authors Contributions

Conceptualization and Design, T.M (Tanzila Mumtaz), A.A. and U.A.A.; Analysis and Interpretation of Data, T.M (Tahir Mahmood) and A.M. (Aqsa Musthaq); Writing—Original Draft Preparation, T.M (Tahir Mahmood), U.A.A., K.A., S.W. and T.M (Teroj Mohamed); Statistical Analysis, T.M. (Tahir Mahmood) and T.M. (Tanzila Mohamed); Supervision, H.A., M.S.A. and J.C.; Writing—Review and Editing, H.A., A.M. (Ali Muhammad), U.A.A., M.S.A., H.L. and J.C. All authors have read and agreed to the published version of the manuscript.

Funding: This study was supported by the National Natural Science Foundation of China (Nos. 81971969, 82272369, and 81772225 to J.C.). The funders had no role in the study design, the data collection and analysis, the decision to publish, or the preparation of the manuscript. Ethical standards.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors thank the researchers whose work on toxoplasmosis in humans in Pakistan was used in this study.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Aguirre, A.A.; Longcore, T.; Barbieri, M.; Dabritz, H.; Hill, D.; Klein, P.N.; Lepczyk, C.; Lilly, E.L.; McLeod, R.; Milcansky, J. The one health approach to toxoplasmosis: Epidemiology, control, and prevention strategies. *EcoHealth* **2019**, *16*, 378–390. [CrossRef]

2. Buxton, D.; Maley, S.W.; Wright, S.E.; Rodger, S.; Bartley, P.; Innes, E.A. *Toxoplasma gondii* and ovine toxoplasmosis: New aspects of an old story. *Vet. Parasitol.* **2007**, *149*, 25–28. [CrossRef]

3. Dubey, J. Toxoplasmosis in sheep—The last 20 years. *Vet. Parasitol.* **2009**, *163*, 1–14. [CrossRef]

4. Abd-Rahman, N.H. Immunological studies of toxoplasmosis in the sheep model in Baghdad/Iraq. *Int. J. Adv. Biol. Res.* **2012**, *2*, 778–781.

5. Dubey, J.; Hill, D.; Jones, J.; Hightower, A.; Kirkland, E.; Roberts, J.; Marcet, P.; Lehmann, T.; Vianna, M.C.B.; Miska, K. Prevalence of viable *Toxoplasma gondii* in beef, chicken, and pork from retail meat stores in the United States: Risk assessment to consumers. *J. Parasitol.* **2005**, *91*, 1082–1093. [CrossRef]

6. de Figueiredo Pereira, M.; de Moraes Peixoto, R.; Langoni, H.; Greca Junior, H.; de Azevedo, S.S.; Porto, W.J.N.; de Medeiros, E.S.; Mota, R.A. Risk factors associated with infection by *Toxoplasma gondii* in goats in the State of Pernambuco, Brazil. *Pesqui. Vet. Bras.* **2011**, *44*, 157–162. [CrossRef]

7. Anderlini, G.A.; Mota, R.A.; Faria, E.B.; Cavalcanti, E.F.T.S.F.; Valença, R.M.B.; Pinheiro Júnior, J.W.; de Albuquerque, P.P.F.; de Souza Neto, O.L. Occurrence and risk factors associated with infection by *Toxoplasma gondii* in goats in the State of Alagoas, Brazil. *Rev. Soc. Bras. Med. Trop.* **2011**, *44*, 157–162. [CrossRef]

8. Acici, M.; Babur, C.; Kilic, S.; Hokeleka, M.; Kurt, M. Prevalence of antibodies to *Toxoplasma gondii* infection in humans and domestic animals in Samsun province, Turkey. *Trop. Anim. Health Prod.* **2008**, *40*, 311–315. [CrossRef]

9. Gilot-Fromont, E.; Aubert, D.; Belkili, S.; Hermitte, P.; Gibout, O.; Geers, R.; Villena, I. Landscape, herd management and within-herd seroprevalence of *Toxoplasma gondii* in beef cattle herds from Champagne-Ardenne, France. *Vet. Parasitol.* **2009**, *161*, 36–40. [CrossRef]
10. Pereira-Bueno, J.; Quintanilla-Gozalo, A.; Pérez-Pérez, V.; Alvarez-Garcia, G.; Collantes-Fernández, E.; Ortega-Mora, L.M. Evaluation of ovine abortion associated with Toxoplasma gondii in Spain by different diagnostic techniques. Vet. Parasitol. 2004, 121, 33–43. [CrossRef]
11. Negash, T.; Tilahun, G.; Medhin, G. Seroprevalence of Toxoplasma gondii in Nazaret town, Ethiopia. East Afr. J. Public Health 2008, 5, 211–214. [PubMed]
12. Bisson, A.; Maley, S.; Rubaire-Akiiki, C.; Wastling, J. The seroprevalence of antibodies to Toxoplasma gondii in domestic goats in Uganda. Acta Trop. 2000, 76, 33–38. [CrossRef]
13. Yimer, E.; Abebe, P.; Kassahun, J.; Woldemichael, T.; Bekele, A.; Zewudie, B.; Beyene, M. Seroprevalence of human toxoplasmosis in Addis Ababa, Ethiopia. Ethiop. Vet. J. 2005, 9, 109–122.
14. Yang, H.-J.; Jin, K.-N.; Park, Y.-K.; Hong, S.-C.; Bae, J.-M.; Lee, S.-H.; Choi, H.-S.; Hwang, H.-S.; Chung, Y.-B.; Lee, N.-S. Seroprevalence of toxoplasmosis in the residents of Cheju island, Korea. Korean J. Parasitol. 2000, 38, 91. [CrossRef] [PubMed]
15. Huang, C.; Lin, Y.; Dai, A.; Li, X.; Yang, X.; Yuan, Z.; Zhu, X. Seroprevalence of Toxoplasma gondii infection in breeding sows in Western Fujian Province, China. Trop. Anim. Health Prod. 2010, 42, 115–118. [CrossRef] [PubMed]
16. Samad, M.A.; Rahman, K.; Basher, S. Serological status to natural Toxoplasma gondii infection in mixed flocks of sheep and goats in Bangladesh. J. Protozool. Res. 1993, 3, 25–28.
17. Sah, R.P.; Dey, A.R.; Rahman, A.A.; Alam, M.Z.; Talukder, M.H. Molecular detection of Toxoplasma gondii from aborted fetuses of sheep, goats and cattle in Bangladesh. Vet. Parasitol. Reg. Stud. Rep. 2019, 18, 100347. [CrossRef]
18. Rahman, M.; Azad, M.T.A.; Nahar, L.; Rouf, S.M.A.; Ohyya, K.; Chiou, S.-P.; Baba, M.; Kitoh, K.; Takashima, Y. Age-specificity of Toxoplasma gondii seropositivity in sheep, goats and cattle on subsistence farms in Bangladesh. J. Vet. Med. Sci. 2014, 76, 1257–1259. [CrossRef]
19. Sah, R.P.; Talukder, M.H.; Rahman, A.A.; Alam, M.Z.; Ward, M.P. Seroprevalence of Toxoplasma gondii infection in ruminants in selected districts in Bangladesh. Vet. Parasitol. Reg. Stud. Rep. 2018, 11, 1–5. [CrossRef]
20. Sah, R.; Talukder, M.H.; Rahman, A.A.; Hossain, M.B. Toxoplasmosis in Cats and Its Zoontopic Potential in and Around Bangladesh Agricultural University Campus. Nepal. Vet. J. 2019, 36, 38–45. [CrossRef]
21. Sreekumar, C.; Graham, D.; Dahl, E.; Lehmann, T.; Raman, M.; Bhalerao, D.; Vianna, M.; Dubey, J. Genotyping of Toxoplasma gondii isolates from chickens from India. Vet. Parasitol. 2003, 118, 187–194. [CrossRef] [PubMed]
22. Mirdha, B.; Samantyaray, J.; Pandey, A. Seropositivity of Toxoplasma gondii in domestic animals. Indian J. Public Health 1999, 43, 91–92. [PubMed]
23. Kalambde, D.; Gill, J.; Singh, B.B. Molecular detection of Toxoplasma gondii in the slaughter sheep and goats from North India. Vet. Parasitol. 2017, 241, 35–38. [CrossRef]
24. Sharma, S.; Gautam, O. Prevalence of Toxoplasma antibodies in sheep and goats in the area of Hissar, Haryana, India. Trop. Anim. Health Prod. 1972, 4, 245–248. [CrossRef] [PubMed]
25. Satbige, A.S.; Sreekumar, C.; Rajendran, C.; Bharathi, M.V. Isolation and characterization of Toxoplasma gondii from small ruminants (sheep and goats) in Chennai City, South India. J. Parasit. Dis. 2017, 41, 869–873. [CrossRef] [PubMed]
26. Sun, L.-X.; Liang, Q.-L.; Nie, L.-B.; Hu, X.-H.; Li, Z.; Yang, J.-F.; Zou, F.-C.; Zhu, X.-Q. Serological evidence of Toxoplasma gondii and Neospora caninum infection in black-boned sheep and goats in southwest China. Parasitol. Res. 2015, 118, 102041. [CrossRef]
27. Ay, K.; Huang, C.-Q.; Guo, X.-J.; Cong, H.; He, S.-Y.; Zhou, C.-X.; Cong, W. Molecular detection of Toxoplasma gondii infection in the slaughter sheep and goats from Shandong Province, Eastern China. Vector-Borne Zoonotic Dis. 2020, 20, 193–196. [CrossRef]
28. Liu, Q.; Ma, R.; Zhao, Q.; Shang, L.; Cai, J.; Wang, X.; Li, J.; Hu, G.; Jin, H.; Gao, H. Seroprevalence of Toxoplasma gondii infection in Tibetan sheep in northwestern China. J. Protozool. Res. 2010, 96, 1222–1223. [CrossRef]
29. Wang, C.; Qiu, J.; Gao, J.; Liu, L.; Wang, C.; Liu, Q.; Yan, C.; Zhu, X. Seroprevalence of Toxoplasma gondii infection in sheep and goats in northeastern China. Small Rumin. Res. 2011, 130, 133. [CrossRef]
30. Liu, Z.-K.; Li, J.-Y.; Pan, H. Seroprevalence and risk factors of Toxoplasma gondii and Neospora caninum infections in small ruminants in China. Prev. Vet. Med. 2015, 118, 488–492. [CrossRef]
31. Zou, F.; Yu, X.; Yang, Y.; Hu, S.; Chang, H.; Yang, J.; Duan, G. Seroprevalence and risk factors of Toxoplasma gondii infection in buffaloes, sheep and goats in Yunnan Province, Southwestern China. Iran. J. Parasitol. 2015, 10, 648. [PubMed]
32. Dong, H.; Su, R.; Lu, Y.; Wang, M.; Liu, J.; Jian, F.; Yang, Y. Prevalence, risk factors, and genotypes of Toxoplasma gondii infection in food animals and humans (2000–2017) from China. Front. Microbiol. 2018, 9, 2108. [CrossRef] [PubMed]
33. Yin, M.-Y.; Wang, J.-L.; Huang, S.-Y.; Qin, S.-Y.; Zhou, D.-H.; Liu, G.-X.; Tan, Q.-D.; Zhu, X.-Q. Seroprevalence and risk factors of Toxoplasma gondii in Tibetan Sheep in Gansu province, Northwestern China. BMC Vet. Res. 2015, 11, 41. [CrossRef] [PubMed]
34. Gholami, S.; Behrestaghi, L.E.; Sarvi, S.; Alizadeh, A.; Spotin, A. First description of the emergence of Echinococcus ortleppi (G5 genotype) in sheep and goats in Iran. Parasitol. Int. 2021, 83, 102316. [CrossRef] [PubMed]
35. Bahreh, M.; Hajimohammadi, B.; Eslami, G. Toxoplasma gondii in Sheep and Goats from Central Iran. BMC Res. Notes 2021, 14, 46. [CrossRef]
36. Sharif, M.; Sarvi, S.; Shokri, A.; Teshnizi, S.H.; Rahimi, M.; Mizani, A.; Ahmadvand, E.; Daryani, A. Toxoplasma gondii infection among sheep and goats in Iran: A systematic review and meta-analysis. Parasitol. Res. 2015, 114, 1–16. [CrossRef]
37. Al-Taie, I.H. Seroprevalence of toxoplasmosis in sheep and goat: Iraq/Sulaimania. Iraqi J. Vet. Med. 2011, 35, 16–24. [CrossRef]
38. Partoandazanpoor, A.; Sadeghi-Dehkordi, Z.; Ekradi, L.; Khordadmehr, M.; Rassouli, M.; Sazmand, A. Molecular Diagnosis and Pathological Study of Toxoplasma gondii in Aborted Fetal Mice in Borderline of Iran–Iraq. Acta Parasitol. 2020, 65, 187–192. [CrossRef]

39. Kader, J.; Al-Khayat, Z. Serodiagnosis of toxoplasmosis in sheep and goats in Erbil city, Iraq.Iraqi J. Vet. Sci. 2013, 27, 21–23. [CrossRef]

40. Al-Ramahi, H.M.; Hamza, R.H.; Abdulla, M.A. Seroprevalence study of Toxoplasmosis in domestic animals in Mid-Euphrates region-Iraq. J. Babylon Univ. 2010, 18, 1382–1387.

41. Koozjed, V.; Blazek, K.; Amin, A. Incidence of toxoplasmosis in domestic animals in Afghanistan. Folia Parasitol. 1976, 23, 273–275.

42. Donny, P.; Van Aken, D. Prevalence of Toxoplasma gondii antibodies in goats in Sri Lanka. Ann. Trop. Med. Parasitol. 1992, 86, 83–85. [CrossRef] [PubMed]

43. Devendra, C. Small ruminants in Asia; Contribution to food security, poverty alleviation and opportunities for productivity enhancement. In Proceedings of the Proceeding of International Workshop on Small Ruminant Production and Development in South East Asia, Hanoi, Vietnam, 2–4 March 2005; pp. 19–32.

44. Ministry of Finance, G.o.P(Government of Pakistan). Pakistan Economic Survey (2019-20). 2020. Available online: https://www.finance.gov.pk/survey_1920.html (accessed on 5 April 2022).

45. Gebremedhin, E.Z.; Abdurahman, M.; Hadush, T.; Tessema, T.S. Seroprevalence and risk factors of Toxoplasma gondii infection in sheep and goats slaughtered for human consumption in Central Ethiopia. BMC Res. Notes 2014, 7, 696. [CrossRef] [PubMed]

46. Li, F.; Wang, S.-P.; Wang, C.-J.; He, S.-C.; Wu, X.; Liu, G.-H. Seroprevalence of Toxoplasma gondii in goats in Hunan province, China. Parasite 2016, 23, 44. [CrossRef]

47. Ullah, M.; Awais, M.; Akhtar, M.; Anwar, M.; Khan, I.; Razzaq, A. Seroprevalence, associated risk factors and hematological impacts of toxoplasmosis in small ruminants of Multan, Punjab-Pakistan. Trop. Biomed. 2018, 35, 1028–1040.

48. Garcia, G.; Sotomaior, C.; do Nascimento, A.J.; Navarro, I.T.; Soccol, V.T. Toxoplasma gondii in goats from Curitiba, Paraná, Brazil: Risks factors and epidemiology. Rev. Bras. Parasitol. Vet. 2012, 21, 42–47. [CrossRef]

49. Robert-Gangneux, F.; Darde, M.-L. Epidemiology of and diagnostic strategies for toxoplasmosis. Clin. Microbiol. Rev. 2012, 25, 264–296. [CrossRef]

50. Awais, M.A.; Ahmed, A.; Muhammad, M.; Muhammad, A.; Saleemi, K.; Ashraf, K.; Hiszczyński, W. Seroprevalence of Toxoplasma gondii in the Backyard Chickens of the Rural Areas of Faisalabad Punjab Pakistan. Int. J. Agric. Biol. 2014, 16.

51. Liu, Q.; Wang, Z.-D.; Huang, S.-Y.; Zhu, X.-Q. Diagnosis of toxoplasmosis and typing of Toxoplasma gondii. Parasites Vectors 2015, 8, 292. [CrossRef]

52. Khezri, M.; Mohammadian, B.; Esmaeilnia, K.; Khezri, O. Toxoplasmosis in sheep from Kurdistan province, Iran. Afr. J. Microbiol. Res. 2012, 6, 3989–3992. [CrossRef]

53. Hill, D.; Dubey, J. Toxoplasma gondii prevalence in farm animals in the United States. Int. J. Parasitol. 2013, 43, 107–113. [CrossRef] [PubMed]

54. Tasawar, Z.; Lashari, M.H.; Hanif, M.; Hayat, C. Seroprevalence of Toxoplasma gondii in domestic goats in Multan, Punjab, Pakistan. Pak. J. Life Soc. Sci. 2011, 9, 24–27.

55. Ahmad, S.; Tasawar, Z. Seroprevalence of Toxoplasma gondii in Four Ovine Breeds of Cholistan Desert of Pakistan. Pak. J. Life Soc. Sci. 2015, 2, 91–96.

56. Satbige, A.S.; Bharathi, M.V.; Ganesan, P.; Sreekumar, C.; Rajendran, C. Detection of Toxoplasma gondii in small ruminants in Chennai using PCR and modified direct agglutination test. J. Parasit. Dis. 2016, 40, 1466–1469. [CrossRef]

57. Ramzan, M.; Akhtar, M.; Muhammad, F.; Hussain, I.; Hiszczyński-Sawicka, E.; Haq, A.; Mahmood, M.; Hafeez, M. Seroprevalence of Toxoplasma gondii in sheep and goats in Rahim Yar Khan (Punjab), Pakistan. Trop. Anim. Health Prod. 2009, 41, 1225–1229. [CrossRef] [PubMed]

58. Lashari, M.H.; Tasawar, Z. Seroprevalence of toxoplasmosis in sheep in Southern Punjab, Pakistan. Pak. Vet. J. 2010, 30, 91–94.

59. Ahmad, N.; Iqbal, Z.; Mukhtar, M.; Mushtaq, M.; Khan, K.M.; Qayyum, M. Seroprevalence and associated risk factors of toxoplasmosis in sheep and goats in Pothwar region, Northern Punjab, Pakistan. Pak. J. Zool. 2015, 1, 161–167.

60. Hanif, M.; Tasawar, Z. Seroprevalence and risk factors associated with toxoplasmosis infection in sheep and Multan and Khanewal districts of Punjab (Pakistan). J. Anim. Plant Sci. 2016, 26, 1620–1627.

61. Shah, M.; Zahid, M.; Asmat, P.; Alam, A.; Sthanadar, A. Seroprevalence of Toxoplasma gondii in goats and sheep of district Mardan, Pakistan. Int. J. Biosci. 2013, 7, 90–97.

62. Ahmed, H.; Malik, A.; Arshad, M.; Mustafa, I.; Khan, M.R.; Afzal, M.S.; Ali, S.; Moeen, M.; Simsek, S. Seroprevalence and spatial distribution of toxoplasmosis in sheep and goats in North-Eastern Region of Pakistan. Korean J. Parasitol. 2016, 54, 439. [CrossRef]

63. Ahmad, S.; Tasawar, Z. Seroprevalence of Toxoplasma gondii in Small Ruminants from Cholistan Desert and Agricultural Areas of Rahim Yar Khan and Rajan Pur (Punjab) Pakistan. Pak. J. Zool. 2016, 48.

64. Khan, M.T.; Din, J.U.; Ali, S.; Kamal, A.; Hussain, A.; Yar, A.; Bibi, H.; Hasnain, F.; Faisal, S. Seroprevalence of toxoplasma gondii infection in cows and goats of district Charsadda, Khyber Pakhtunkhwa, Pakistan. Int. J. Fauna Biol. Stud. 2018, 5, 18–22.

65. Ahmad, N.; Khan, I.A.; Iqbal, Z.; Naseem, A.A.; Kayani, A.R.; Afshan, K.; Qayyum, M. Seroepidemiology of Toxoplasmosis in Human Population with Reference to Its Zoonotic Potential in Sub-Tropical Areas of Pakistan. Pak. Vet. J. 2019, 39.

66. Hussain, A.; Zahid, M. Seroprevalence of Toxoplasma gondii infection in domestic animals of district Charsadda, Khyber Pakhtunkhwa, Pakistan. Int. J. Biosci. 2019, 14, 514–520.
67. Kamal, A.; Din, J.U.; Kamil, A.; Khan, M.T.; Bibi, H.; Hussain, A.; Yar, A.; Faisal, S. Seroprevalence of *Toxoplasma gondii* in sheep and buffalo of District Charsadda, Khyber Pakhtunkhwa, Pakistan. *Int. J. Biosci.* 2019, 14, 497–502.

68. Lashari, M.; Farooq, U.; Mubeen, S.; Hassan, W.; Azhar, M.; Shahida, S.; Khan, M.; Aslam, S.; Masood, S.; Anam, M. Seroprevalence of *Toxoplasma gondii* and associated hematological alterations in small ruminants of DG Khan district of Southern Punjab, Pakistan. *Arq. Bras. Med. Vet. Zootec.* 2020, 72, 1698–1704. [CrossRef]

69. Khalil, K.M.; Elrayah, I.E. Seroprevalence of *Toxoplasma gondii* antibodies in farm animals (camels, cattle, and sheep) in Sudan. *J. Vet. Med. Anim. Health* 2011, 3, 36–39.

70. Tilahun, B.; Tolossa, Y.H.; Tilahun, G.; Ashenafi, H.; Shemelis, S. Seroprevalence and risk factors of *Toxoplasma gondii* infection among domestic ruminants in East Hararghe zone of Oromia Region, Ethiopia. *Vet. Med. Int.* 2018, 2018, 4263470. [CrossRef]

71. Ghorbani, M.; Hafizi, A.; Shegerfcar, M.; Rezaian, M.; Nadim, A.; Anwar, M.; Afshar, A. Animal toxoplasmosis in Iran. *Glob. Vet.* 2012, 9, 576–582. [CrossRef]

72. Zhao, G.-H.; Zhang, M.-T.; Lei, L.-H.; Shang, C.-C.; Cao, D.-Y.; Tian, T.-T.; Li, J.; Xu, J.-Y.; Yao, Y.-I.; Chen, D.-K. Seroprevalence of *Toxoplasma gondii* infection in dairy goats in Shaanxi Province, Northwestern China. *Parasites Vectors* 2011, 4, 47. [CrossRef]

73. Schlundt, J.; Toyofuku, H.; Jansen, J.; Herbst, S. Emerging food-borne zoonoses. *Rev. Sci. Tech.* 2004, 23, 513–534. [CrossRef] [PubMed]

74. Andreoletti, O.; Budka, H.; Buncic, S.; Colin, P.; Collins, J.D.; De, A.; Noeckler, B.N.; Maradona, M.P.; Roberts, T.; Vågsholm, I. Surveillance and monitoring of toxoplasmosis in humans, food and animals scientific opinion of the panel on biological hazards. EFSA J. 2007, 583, 1–64.

75. Tenter, A.M.; Heckerath, A.R.; Weiss, L.M. *Toxoplasma gondii*: From animals to humans. *Int. J. Parasitol.* 2000, 30, 1217–1258. [CrossRef]

76. Smith, J.L. Foodborne toxoplasmosis. *J. Food Saf.* 1991, 12, 17–57. [CrossRef]

77. Khan, S.U.; Khan, R.A. Characterisation of breeding sites of anopheline mosquitoes in District Bannu, KPK, Pakistan. *JPMA. J. Pak. Med. Assoc.* 2018, 68, 175–186. [PubMed]

78. Izadyar, N.; Abd Nikfarjam, B.; Rastaghi, A.R.E.; Alizadeh, S.A.; Heydarian, P.; Saraei, M. A serologic study on *Toxoplasma gondii* infection in slaughtered sheep and goats in Qazvin Province, Iran. *Trop. Anim. Health Prod.* 2019, 51, 1289–1293. [CrossRef]

79. Negash, T.; Tilahun, G.; Patton, S.; Prevot, F.; Dorchies, P. Serological survey on toxoplasmosis in sheep and goats in Nazareth, Ethiopia. *Rev. Med. Vet.* 2004, 155, 486–488.

80. Wei, X.-Y.; Gong, Q.-L.; Zeng, A.; Wang, W.; Wang, Q.; Zhang, X.-X. Seroprevalence and risk factors of *Toxoplasma gondii* infection in goats from China from 2010 to 2020: A systematic review and meta-analysis. *Prev. Vet. Med.* 2020, 186, 105230. [CrossRef]

81. Gebremedhin, E.Z.; Agonafir, A.; Tessema, T.S.; Tilahun, G.; Medhin, G.; Vitale, M.; Di Marco, V.; Cox, E.; Vercruysse, J.; Dorny, P. Seroepidemiological study of ovine toxoplasmosis in East and West Shewa Zones of Oromia regional state, Central Ethiopia. *BMC Vet. Res.* 2013, 9, 117. [CrossRef]

82. Zewdu, E.; Agonafir, A.; Tessema, T.S.; Tilahun, G.; Medhin, G.; Vitale, M.; Di Marco, V.; Cox, E.; Vercruysse, J.; Dorny, P. Seroepidemiological study of caprine toxoplasmosis in east and west Shewa zones, Oromia regional state, central Ethiopia. *Res. Vet. Sci.* 2013, 94, 43–48. [CrossRef]

83. Tiley, D.; Getachew, T. Study on toxoplasmosis in sheep and goats in Debre Birhan and surrounding areas in Ethiopia. *Bull. Anim. Health Prod. Afr.* 2002, 50, 138–147.

84. Figueiredo Neto, A.; Godinho, M.; Toth-Katona, T.; Palffy-Muhoray, P. Optical, magnetic and dielectric properties of non-liquid crystalline elastomers doped with magnetic colloids. *Braz. J. Phys.* 2005, 35, 184–189. [CrossRef]

85. Dubey, J.; Lappin, M. Toxoplasmosis and neosporosis. *Infect. Dis.* *Dog Cat* Vet.* Sci.* 2002, 13, 49–57. [PubMed]

86. Tegegne, E.; Bartley, P.M.; Burrells, A.; Gunn, G.; Maley, S.W.; Cousens, C.; Innes, E.A. Toxoplasmosis and Associated Risk Factors in Ruminant Species of the Khyber Pakhtunkhwa Province of Pakistan. *Toxoplasma gondii* infection in slaughtered sheep and goats in Qazvin Province, Iran. *Trop. Anim. Health Prod.* 2019, 51, 1289–1293. [CrossRef]

87. Dubey, J.; Romand, S.; Hilali, M.; Kwok, O.; Thulliez, P. Seroprevalence of antibodies to *Neospora caninum* and *Toxoplasma gondii* in water buffaloes (*Bubalus bubalis*) from Egypt. *Int. J. Parasitol.* 1998, 28, 527–529. [CrossRef]

88. Katzer, F.; Brüllsauer, F.; Collantes-Fernández, E.; Bartley, P.M.; Burrells, A.; Gunn, G.; Maley, S.W.; Cousins, C.; Innes, E.A. Increased *Toxoplasma gondii* positivity relative to age in 125 Scottish sheep flocks; evidence of frequent acquired infection. *Vet. Res.* 2011, 42, 121. [CrossRef] [PubMed]

89. Ali, A.; Omer, T.; Ullah, A.; Haleem, A.; Naseem, M.; Ullah, M.; Shamim, F.; Tehreem, A.; Bilal, M.; Khan, M.N. Epidemiological Survey of *Toxoplasma gondii* and Associated Risk Factors in Ruminant Species of the Khyber Pakhtunkhwa Province of Pakistan. *J. Parasitol. Res.* 2021, 2021, 6653239. [CrossRef]

90. Ahmed, Y.; Sokkar, S.; Desouky, H.; Soror, A. Abortion due to toxoplasmosis in small ruminants. *Glob. Vet.* 2008, 2, 337–342.

91. Sharma, S.; Sandhu, K.; Bal, M.; Kumar, H.; Verma, S.; Dubey, J. Serological survey of antibodies to *Toxoplasma gondii* in sheep, cattle, and buffaloes in Punjab, India. *J. Parasitol.* 2008, 94, 1174–1175. [CrossRef]