Scaffold fragmentation and substructure hopping reveal potential, robustness, and limits of computer-aided pattern analysis (C@PA)

Vigneshwaran Namasivayama, Katja Silbermanna, Jens Pahnkeb,c,d,e, Michael Wiesea, Sven Marcel Stefana,b,f

a Department of Pharmaceutical and Cellbiological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
b Department of Neuro-/Pathology, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
c IJED, University of Lübeck, Ratzenburger Allee 160, 23538 Lübeck, Germany
d Department of Pharmacology, Faculty of Medicine, University of Latvia, Jēkabpils iela 1, 1004 Riga, Latvia
e Department of Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
f Cancer Drug Resistance and Stem Cell Program, University of Sydney, Kolling Building, 10 Westbourne Street, Sydney, New South Wales 2065, Australia

Abstract

Computer-aided pattern analysis (C@PA) was recently presented as a powerful tool to predict multitarget ABC transporter inhibitors. The backbone of this computational methodology was the statistical analysis of frequently occurring molecular features amongst a fixed set of reported small-molecules that had been evaluated toward ABCB1, ABCC1, and ABCG2. As a result, negative and positive patterns were elucidated, and secondary positive substructures could be suggested that complemented the multitarget fingerprints. Elevating C@PA to a non-statistical and exploratory level, the concluded secondary positive patterns were extended with potential positive substructures to improve C@PA’s prediction capabilities and to explore its robustness. A small-set compound library of known ABCC1 inhibitors with a known hit rate for triple ABCB1, ABCC1, and ABCG2 inhibition was taken to virtually screen for the extended positive patterns. In total, 846 potential broad-spectrum ABCB1, ABCC1, and ABCG2 inhibitors resulted, from which 10 have been purchased and biologically evaluated. Our approach revealed 4 novel multitarget ABCB1, ABCC1, and ABCG2 inhibitors with a biological hit rate of 40%, but with a slightly lower inhibitory power than derived from the original C@PA. This is the very first report about discovering novel broad-spectrum inhibitors against the most prominent ABC transporters by improving C@PA.

Keywords: Well-studied ABC transporters; ABCB1 (P-gp); ABCC1 (MRP1); ABCG2 (BCRP); Under-studied ABC transporters (e.g., ABCA7); Triple / multitarget / broad-spectrum / promiscuous inhibitor / antagonist; Pan-ABC inhibition / antagonist / blockade (PANABC); Pattern analysis (C@PA); Multitarget fingerprints; Alzheimer’s disease (AD); Multidrug resistance (MDR)

1. Introduction

ATP-binding cassette (ABC) transport proteins are ubiquitously present in the human body [1–4], and hence, promote solute and drug distribution, influencing their pharmacokinetic. However, dysfunction of these efflux pumps contribute also to major human diseases. Amongst these diseases are neurological disorders [2], such as Alzheimer’s disease [2,5–8], metabolic diseases and related illnesses [9], such as atherosclerosis [9], but also malignant diseases, such as multidrug-resistant cancer [3,10–14]. For example, half of the A and G subclasses of ABC transporters have been identified as contributors in Alzheimer’s disease, correlating their downregulation or defective function with a negative disease development [6,7]. Another example is multidrug-resistant cancer, where the vast majority of ABC transporters has been associated with the multidrug resistance (MDR) phenotype [12,13], and many transporters were indeed found to export applied antineoplastic...
agents out of cancer cells, ultimately protecting these from cell death [11,14].

Unfortunately, only a small fraction of the 49 existing ABC transporters can be considered as well-studied, in particular ABCB1 [8,14–19], ABCB11 [20–22], ABCC1 [1,4,14,15,17,23,24], and ABCC2 [14,15,17,25]. Less-studied ABC transporters that have found much less attention are ABC2, ABCC4–5, and ABCT10 [1,4,14,24,26], as well as – to a lesser extent – ABCA1 [27–30], ABCC4 [14,24], ABC3 [1,4,14,24], as well as ABC7–9 and ABC11 [1,4,31,32]. The remaining 34 transporters can be considered as under-studied which cannot be addressed by small-molecule modulators besides very rare exceptions. However, small-molecules would represent a potential tool to monitor, influence, and study these transporters for (i) a general understanding of their mechanism of action, and more importantly, for (ii) their exploration as potential pharmacological targets to develop innovative diagnostics and therapeutics.

As a logical consequence, the number of synthetic approaches to gain novel lead structures and potent modulators of ABC transporters is also very unequally distributed amongst the ABC transport proteins, and very scarce for under-studied ABC transporters. While many hundreds of small-molecule modulators of ABCB1 [14–19], ABCC1 [1,4,14,15,17,23,24], and ABCC2 [14,15,17,25] exist, synthetic approaches to target other ABC transporters have barely been reported. Rare exceptions are, for example, ABCC4 [33,34], ABC8 [35], or ABC10 [36]. This lack of synthetic approaches is explained by the absence of lead structures as starting point for potential synthesis and lead optimization.

Computational approaches are great tools for lead discovery and subsequent optimization with the support of organic synthesis. They have extensively been used within the past 20 years. The vast majority of reports specified structure-based retrosynthetic computational approaches, in which observed biological effects of compounds were underpinned mostly through molecular docking experiments with cryo-EM structures or homology models. Most pronounced are, again, ABCB1 [37–42] and ABCC2 [43–53]. Less- or under-studied ABC transporters are barely reflected in the literature. In terms of retrospective molecular docking experiments, rare exceptions are ABCB5 [54], ABCB6 [55], or ABCC10 [56,57]. Ligand-based retrospective approaches are much less present in literature and have been described, for example, for ABCB1 [20–22], or ABCC2 [58].

Prospective approaches for the discovery of novel lead molecules are generally limited with respect to ABC transporters. Regarding structure-based design through molecular docking approaches, ABCB1 [59–61] and ABCC2 [43,62,63] are most pronounced, but also ABCC4 [64] or ABCC5 [65,66] have been investigated. Prospective ligand-based design is more preferred, as it does not rely on crystal structures, cryo-EM structures, or homology models of ABC transporters. Similarity search (ABCC1 [67] or not rely on crystal structures, cryo-EM structures, or homology gates. Prospective ligand-based design is more preferred, as it does not rely on crystal structures, cryo-EM structures, or homology approaches, ABCB1 [59–61] and ABCG2 [43,62,63] are most pro-

Regarding structure-based design through molecular docking experiments with cryo-EM structures or homology modeling (ABCB1 [61,68], ABCB11 [69], or other pattern-based approaches [72]) were demonstrated as powerful computational tools for lead identification, which eventually led often to virtual screenings and actual hit discovery [64,67,69]. However, these approaches always took only one transporter into account, completely leaving out the potential of multitarget inhibition. Multitargeting is a promising approach to explore under-studied ABC transporters by targeting similar or mutually overlapping binding sites [15,73,74]. Several pharmacological drugs have already been revealed as (weak) pan-ABC transporter inhibitors (=inhibiting several ABC transporters simultaneously), as for example, benzbromarone (1: ABCB1 [75], ABCB11 [20], ABCC1–6 [23,24,58,76,77], and ABCC2 [75]), cyclosporine A (2: ABCA1 [27], ABCB1 [16], ABCB4 [78], ABCB11 [20], ABCC1–2 [23,58], ABCC10 [24], ABCG1–2 [75,79]), glibenclamide (glyburide, 3: ABCA1 [29], ABCB11 [20], ABCC1 [23], ABCC5 [80], ABCC7–9 [81,83], ABCC2 [58], probenecid (4: ABCA8 [84], ABCB1–6 [23,24,85–87], ABCC10 [88]), verapamil (5: ABCA8 [84], ABCB1 [16], ABCB4–5 [54,78], ABCB11 [89], ABCC1 [23], ABCC4 [90], ABCC10 [88], ABCC2 [58]), or verlukast (MK571, 6: ABCA8 [84], ABCB4 [78], ABCB11 [20], ABCC1–5 [23,58,80,87,91], ABCC10–11 [24,92], ABCC2 [58]). Fig. 1 provides the molecular formulae of the most prominent drug-like pan-ABC transporter inhibitors known until today.

As indicated above, ABCB1, ABCC1, and ABCC2 are the most investigated and understood ABC transporters, and hence, represent model targets for the generation of pan-ABC transporter inhibitors [15]. However, even for these well-studied ABC transporters, only 133 broad-spectrum ABCB1, ABCC1, and ABCG2 inhibitors were described to date [15,43,45,62,67,75,93–126], amongst which only 56 exerted their effects below 10 μM [15,43,45,62,67,75,93–95,98,99,101,103,107,109–113,118–123,126], and only 23 showed effects at ≤5 μM [43,62,98,101,103,109–112,119,121,122,126]. There is generally a lack of highly potent ABCB1, ABCC1, and ABCC2 inhibitors and only a highly limited understanding regarding prediction and discovery of such agents. Recently, we were the first to report on a novel computer-aided pattern analysis (COPA) approach for the prediction of potent multitarget ABCB1, ABCC1, and ABCC2 inhibitors, discovering compounds 7–11 (Fig. 2) [15]. As the data regarding ABCB1, ABCC1, and ABCG2 is much more advanced than toward other transporters, we continued to improve COPA’s prediction capabilities, which is reported in the presented study.

2. Results and discussion

2.1. Basic scaffold dissection and potential positive hit identification

In our latest report about COPA, we identified so-called ‘multitarget fingerprints’ for the prediction of broad-spectrum ABCB1, ABCC1, and ABCC2 inhibitors amongst a manually assembled and curated initial dataset of 1,049 compounds [15]. The model was generated on the basis of (i) the identification of basic scaffolds amongst the most potent known ABCB1, ABCC1, and ABCG2 inhibitors; (ii) the definition of substructures with a positive impact regarding multitarget ABCB1, ABCC1, and ABCG2 inhibition; and (iii) the definition of substructures with a negative impact with respect to multitarget ABCB1, ABCC1, and ABCG2 inhibition. As a result, compounds 8–9 as well as 11 were discovered by a virtual screening as so-called ‘class 7 compounds’ (=IC50 values below 10 μM toward ABCB1, ABCC1, and ABCC2: Fig. 3).

In total, 5 multitarget ABCB1, ABCC1, and ABCC2 inhibitors were discovered (7–11) [15], which contained 5 partial structures that were suggested by us as ‘secondary positive hits’; (i) 1,2,4-oxadiazole; (ii) 1,3,4-thiadiazole; (iii) piperazine; (iv) homopiperazine; and (v) piperidine. In the present study, we extended the positive pattern fingerprints by ‘potential positive hits’ in order to explore their impact on the inhibitory nature of molecules on ABCB1, ABCC1, and ABCC2 function in combination with already known primary positive substructures.

As a first step, we dissected the basic scaffolds (‘Scaffold Fragmentation’; Fig. 4 A) as derived by COPA [15], which resulted in the first extension of the positive pattern fingerprints with potential positive hits: (i) pyrimidine; (ii) pyrrole; (iii) pyridine; and (iv) thiophene. As a second step, we extended the structural variety of the non-aromatic heterocycles (‘Heterocyclic Substructure Hop-
Fig. 1. Drugs and drug-like compounds that were shown in several independent studies to be pan-ABC transporter inhibitors. Cyclosporine A (2) was used as standard ABCB1 inhibitor in the presented study.

Fig. 2. Broad-spectrum ABCB1, ABCC1, and ABCG2 inhibitors obtained from computational approaches. Compounds 7–11 were derived from C@PA as reported by Namasivayam et al. in 2021 [15]. Compounds 12–15 resulted from a combined ligand-based approach using similarity search and pharmacophore modelling as reported by Silbermann et al. in 2019 [67]. The corresponding IC50 values can be found in Table 1. Red mark: suggested secondary positive hits as proposed before [15]. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
must be noted that pyrrolidine was earlier identified by C@PA as a ‘clear negative hit’ [15]. However, for a detailed investigation of the original substructure (‘Heteroaromatic Substructure Hopping’; [15,43,45,67,101,103,107,113,118–123,126]. Amongst these molecules are the compounds revealed by C@PA, 8–9 and 11.

As a first step, the 1,510 compounds were screened for redundant molecules in form of stereoisomers to increase the diversity of the virtual screening data set. In total, 281 were removed, resulting in 1,229 unique compounds. These were in a second step subject to the negative pattern search [15]. While 383 compounds have been eliminated, 846 remained in the virtual screening data set. Finally, the 846 compounds were screened for the extended positive hits. At least one of these favored substructures was present in these 846 molecules with the following distribution: (i) 1 time: 29 molecules; (ii) 2 times: 277 molecules; (iii) 3 times: 356 molecules; (iv): 4 times: 149 molecules; (v) 5 times: 34 molecules; (vi): 6 times: 1 molecule. From these 846 potential broad-spectrum ABCB1, ABCC1, and ABCG2 inhibitors we manually selected and purchased 10 candidates (compounds 16–25; Fig. 5) depending on manner and number of extended positive hits present and general molecular composition, as well as commercial availability and affordability at MolPort® (www.molport.com). Fig. 6 shows the virtual screening flow as exerted in this study.

2.3. Biological evaluation

Compounds 16–25 were screened at 10 μM in calcein AM (ABCB1 and ABCC1) as well as peophorbide A (ABCG2) fluorescence accumulation assays using either ABCB1-overexpressing A2780/ADR, ABCC1-overexpressing H69AR, or ABCG2-overexpressing MDCK II BCRP cells, respectively, as reported earlier [15,43,45,67,101]. Calcein AM and peophorbide A are substrates of ABCB1 and ABCC1 as well as ABCG2, respectively, which passively diffuse into the used cells and become extruded by the corresponding ABC transporter. Inhibition of the respective transporter results in the accumulation of these substrates. Calcein AM is subsequently cleaved by intracellular esterases to the fluorescent calcein, while peophorbide A is already fluorescent. Intracellular fluorescence was determined via microplate reader (calcein AM; ABCB1 and ABCC1) and flow cytometry (peophorbide A; ABCG2), respectively. Compounds 2 (Fig. 1) and 26–27 (Fig. 5) were used as reference inhibitors against ABCB1, ABCC1, and ABCG2, respectively, as reported before [67,101]. Fig. 7 provides the screening results for ABCB1 (A), ABCC1 (B), and ABCG2 (C).

As a result, 7 compounds had activities against ABCB1 (16–17, 19, 21–24), while 5 candidates inhibited ABCC1 (16, 18, 22–24), and 8 were active against ABCG2 (16–19, 22–25). Amongst the 10 evaluated compounds, 7 multitarget ABC transporter inhibitors could be identified: 4 triple ABCB1, ABCC1, and ABCG2 inhibitors (16, 22–24), 2 dual ABCB1 and ABCG2 inhibitors (17, 19), and 1 dual ABCB1 and ABCG2 inhibitor (18), which represents a multitarget hit rate of 70%. This even exceeded the very high multitarget hit rate of C@PA of 60.9% as reported earlier [15]. Compounds 21 and 25 were shown to be selective ABCB1 and ABCG2 inhibitors, respectively, while compound 20 did inhibit neither of the evaluated transporters. Table 1 presents the determined IC_{50} values of the compounds that reached at least 20% [+SEM (standard error of the mean)] compared to the standard ABCB1 (2), ABCC1 (26), and ABCG2 (27) inhibitors.

The discovery of 4 triple ABCB1, ABCC1, and ABCG2 inhibitors out of 10 candidates represents a biological hit rate of 40%, which was higher than the individual multitarget hit rates as reported in the combined similarity search and pharmacophore modelling approach (23.5%) and C@PA (21.7%) [15,67]. Amongst these multitarget ABCB1, ABCC1, and ABCG2 inhibitors, compound 23 showed promising inhibitory activities against ABCB1 (4.01 μM), ABCC1 (14.8 μM), and ABCG2 (9.27 μM), almost qualifying it as a class 7 compound (Fig. 5). Besides the above mentioned 56 class 7 compounds [15,43,45,62,67,75,93–95,98,99,101,103,107,109–113,118–123,126], further 20 compounds are known which exert their
inhibitor effect against ABCB1, ABCC1, and/or ABCG2 up to 15.0 μM [15,45,75,98,101,102,110,113,116,117,119]. Considering this, compound 23 belongs to the 76 most potent multitarget ABCB1, ABCC1, and ABCG2 inhibitors known until today. Fig. 8 depicts the concentration-effect curves of compound 23 against ABCB1 (A), ABCC1 (B), and ABCG2 (C).

2.4. Pharmacophore modelling

In our previous study, we have explored different ligand-based approaches to validate C@PA [15]. A generated pharmacophore model based on the 6 most potent and diverse class 7 compounds (Supplementary Fig. 1) showed a sensitivity value of 60.4% and a specificity value of 44.5% (C@PA: 62.5% and 90.8%, respectively). Five pharmacophore features were discovered: (i–iv) F1–F4: aromatic/hydrophobic; and (v) F5: acceptor (Fig. 9 A). In the present study, we aimed for an additional investigation of the potential binding properties of compound 23. Hence, we performed a search on the recently presented pharmacophore model [15] for triple ABCB1, ABCC1, and ABCG2 inhibitors known until today. As can be seen in Fig. 9 B, compound 23 reflected all five pharmacophore features as derived from the previously reported similarity search and pharmacophore modelling approach [(i) F1: aromatic; (ii–iii) F2 and F3: aromatic/hydrophobic; (iv) F4: hydrophobic; and (v) F5: acceptor; Fig. 9 C–D [67]. This suggests that compound 23 represents a good lead molecule for further improvement via synthesis to gain novel potent multitarget ABCB1, ABCC1, and ABCG2 inhibitors focusing ABCC1 inhibition. Furthermore, the findings support the hypothesis of a common multitarget binding site amongst different ABC transporter subfamilies as postulated earlier [15,74].

3. Conclusions

3.1. Statistical framework of C@PA

The aim of the present study was to extend the knowledge regarding multitarget fingerprints independent from the statistical background as reported previously [15]. This measure was necessary as it is almost impossible to change the statistical distribution of substructures amongst multitarget inhibitors (classes 4–7),
Fig. 5. Hit molecules 16–25 derived from the herein presented virtual screening approach as well as the reference ABCC1 and ABCG2 inhibitors, 26 and Ko143 (27), respectively, used in the present study [67,101]. The corresponding IC50 values of compounds 16–25 can be found in Table 1. Red Mark: extended positive pattern. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Workflow of the herein presented virtual screening approach.
specifically class 7 molecules, but also non-multitarget compounds (classes 0–3), unless a compound library of significant size (=hundreds of compounds) compared to the initial dataset of 1,049 compounds of C@PA\([15]\) is synthesized and biologically evaluated on all three transporters. This is unlikely to happen within the next years.

The clear limit of the presented study was to discover class 7 compounds, supporting the threshold values set initially as the selection criteria of C@PA\([15]\). These C@PA-derived clear positive hit and clear negative hit substructures are an important framework to obtain potent multitarget ABCB1, ABCC1, and ABCG2 inhibitors \[15\]. Especially the 32 clear negative hits proved to be of major importance compared to the only 8 found clear positive hits. However, the present work revealed that changes in these substructure compositions are tolerated, indicating an acceptable robustness of C@PA. This can also be visualized when comparing the initial hit rate for multitarget ABCB1, ABCC1, and ABCG2 inhibition of the virtual screening data set (23.5%)\[67\] with the hit rate of 40% found in the presented work, which indicates that C@PA_1.2 is an even more powerful methodology for the prediction of broad-spectrum ABCB1, ABCC1, and ABCG2 inhibitors. Strikingly, the present work demonstrated that the combination of C@PA with other computational approaches, in particular similarity search and pharmacophore modelling, led to a predictive synergism. Hence, the refinement of computer-chemical approaches with improved patterns and data sets may provide even higher biological hit rates in further developed pattern analysis models (e.g., C@PA_1.X).

3.2. Potential of extended positive hits: under-represented substructures

Several defined extended positive hits were reflected in the discovered multitarget ABCB1, ABCC1, and ABCG2 inhibitors 16 and 22–24, namely (i) pyrimidine (24), (ii) pyridine (22–24), (iii) isoxazole (16), (iv) imidazole (23), (v) pyrazole (22 and 24), and pyrrolidine (16). This discovery ultimately showed that the 8 clear
positive hits as derived from C@PA [15] may indeed be supported by secondary positive hits, revealing the high potential of substructure extension in C@PA. A detailed analysis of these substructures according to their statistical distribution amongst the 133 known multitarget ABCB1, ABCC1, and ABCG2 inhibitors [15,43,45,62,67,75,93–126] showed that the substructures isoxazole, imidazole, pyrazole, and pyrrolidine occurred only 1, 3, 1, and 2 times [67,96,106,107,117,127], respectively, in these 133 compounds, and were generally only present in 1, 16, 8, and 8 molecules, respectively, of the initial dataset of 1,049 compounds as used in C@PA [15]. Our results indicate that these ‘underrepresented substructures’ pose a high exploratory potential for the improvement of C@PA’s prediction capabilities and the discovery of novel pan-ABC transporter inhibitors, as their specific statistical evaluation as exerted in our previous report [15] can easily be changed with a small number of additional compounds.

3.3. Potential of extended positive hits: rejected putative positive substructures

The omnipresent substructures pyrimidine [15,17] and pyridine [15] must be seen in a different light, as these cannot be regarded on their own as indicators for multitarget ABCB1, ABCC1, and ABCG2 inhibition due to their ubiquitousness. However, our results indicate that these substructures have generally a positive impact on broad-spectrum ABCB1, ABCC1, and ABCG2 inhibition, depending on the composition of and combination with other substructures. Statistically, pyrimidine and pyridine occurred 56 and 28 times, respectively, in the 133 known multitarget ABCB1, ABCC1, and ABCG2 inhibitors [15,43,45,62,67,75,93–126]. In terms of class 7 compounds, 26 and 14 molecules contained pyrimidine and pyridine, respectively [15]. Indeed, pyrimidine and pyridine could not be considered as clear positive hits in our previous study [15] because many compounds of the other classes 0–6 contained these substructures as well (407 and 209 molecules, respectively). However, these ‘rejected putative positive substructures’ – which, nevertheless, resulted in class 7 molecules in a significant number – must be taken into special consideration for the further improvement of C@PA’s prediction capabilities (e.g., C@PA_1.X). Besides pyrimidine and pyridine, we identified 14 more substructures from the initial data set of 1,049 compounds [15] that should be reconsidered in terms of multitarget ABCB1, ABCC1, and ABCG2 inhibition in particular, and pan-ABC transporter inhibition in general: (i) aniline; (ii) benzoyl; (iii) benzyl; (iv) cyano; (v) 9-deazapurine; (vi) ether; (vii) ethylenediamine; (viii) methoxy; (xv) methoxyphenyl; (x) phenol; (xi) phenyl; (xii) piperazine; (xiii) pyrrole; and (xiv) resorcin. Cyano, methoxy, and piperazine were already proposed in our previous study as secondary positive hits [15]. Nevertheless, it must clearly be noted that the percentage of occurrence of these particular substructures amongst class 7 compounds is rather low. However, they might support other, clearer positive indicators of broad-spectrum ABCB1, ABCC1, and ABCG2 inhibition, enhancing compound potency through their proportionate contribution and combination, which represents a high potential for further developed C@PA-derived models (e.g., C@PA_1.X).

Table 1

Compound	IC50 ± SEM [μM] ABCB1 calcine AM	IC50 ± SEM [μM] ABCC1 calcine AM	IC50 ± SEM [μM] ABCG2 phophorbid A A
7*	8.59 ± 0.57	11.0 ± 0.4	1.31 ± 0.17
8*	2.53 ± 0.17	9.11 ± 0.78	1.98 ± 0.21
9*	2.64 ± 0.34	5.63 ± 0.69	6.27 ± 0.74
10*	3.64 ± 0.31	14.2 ± 0.2	9.07 ± 1.17
11*	2.00 ± 0.14	9.66 ± 0.65	0.540 ± 0.150
12*	39.3 ± 6.3	27.8 ± 0.6	16.0 ± 0.6
13*	5.04 ± 1.18	1.73 ± 0.31	2.38 ± 0.47
14*	36.3 ± 6.7	17.7 ± 1.7	10.2 ± 0.4
15*	22.7 ± 4.0	4.83 ± 0.66	1.39 ± 0.21
16	10.5 ± 0.9	31.6 ± 7.6	12.4 ± 1.2
17	17.2 ± 0.9	n.d.*	12.6 ± 1.1
18	n.d.*	19.9 ± 3.2	11.7 ± 1.1
19	7.60 ± 0.34	n.d.*	15.9 ± 0.0
20	n.d.*	n.d.*	n.d.*
21	15.2 ± 2.1	n.d.*	n.d.*
22	6.71 ± 0.51	31.0 ± 4.8	3.34 ± 0.16
23	4.01 ± 0.30	14.8 ± 4.8	9.27 ± 0.94
24	11.5 ± 0.7	36.3 ± 9.9	12.6 ± 0.5
25	n.d.*	n.d.*	18.1 ± 0.1

* Compound was reported before [15].

b Compound was reported before [67].

* Not determined due to the lack of inhibitory activity in the initial screening (Fig. 7 A–C).
3.4. Outlook: the future of pan-ABC transporter modulators

The present study contributed to a major understanding of pattern analysis and possibilities to extend chemical patterns with the purpose to enhance the prediction rate to obtain biologically active compounds. The statistical distribution of certain substructures that occurred in class 7 or class 4–6 molecules in the initial data set of 1,049 compounds needs revision and re-evaluation, taking the results of the present study into account. We propose a ranking methodology to maximally increase the impact of secondary positive substructures in combination with primary positive hits for the best possible multitarget ABCB1, ABCC1, and ABCG2 inhibition. Deciphering the interconnection between manner, number, as well as the orientational composition of certain substructures and maximal possible impact on ABCB1, ABCC1, and ABCG2 will provide potential candidates for biological screening on other ABC transporters, exploring their nature, function, as well as their suitability as therapeutic or diagnostic drug targets. Furthermore, recent advances in crystallographic methodologies, such as cryo-EM, increasingly provided structural information of ABC transporters of different sub-families. This will allow for the analysis of the ‘multitarget binding site’ [15,74] with the identified multitarget pan-ABC transporter inhibitors applying a combination of structure-based computational approaches. Using the knowledge derived from C@PA, C@PA_1.2, and potentially C@PA_1.X, new truly multitarget pan-ABC transporter modulators will be derived that could address less- and under-studied ABC transporters to tackle common and rare human diseases.

4. Experimental section

4.1. Computational analysis

4.1.1. Virtual screening dataset

The virtual screening dataset of the 1,510 putative ABCC1 inhibitors was derived by a combined similarity search and pharmacophore modelling approach as described earlier [67]. In short, an initial dataset of 288 known ABC1 inhibitors with definite IC_{50} values was collected from ChEMBL [128] and categorized ['active' (IC_{50} < 1 \mu M); 'moderate' (IC_{50} = 1–10 \mu M); 'inactive' (IC_{50} > 10^{-6} \mu M)]. Similarity search applying the FTrees algorithm [129,130] from BioSolveIT GmbH (Sankt Augustin, Germany) was conducted with a Tanimoto coefficient (Tc) of 0.8 by which the database was analyzed according to 4 query molecules (Supplementary Fig. 2) [101,104,131,132]. The flexible alignment tool as well as the MMFF94x force field implemented in MOE (version 2016.08; Chemical Computing Group ULC, Montreal, QC, Canada) were applied for pharmacophore modelling using UNICON [133] to generate the 1000 best (=quality level 3) conformers with a tolerance distance of 1.5 Å and a threshold of 50.0% conservation. Virtual screening was performed with the ZINC12 library [134] consisting of 16,403,865 molecules from which a set of 1,510 molecules as potential ABCC1 inhibitors resulted.

4.1.2. Computer-aided pattern analysis (C@PA)

The computer-aided pattern analysis (C@PA) to predict multitarget ABCB1, ABCC1, and ABCG2 inhibitors was very recently reported [15]. In short, a manually assembled initial dataset of 1,049 compounds that have at least once been assessed for their inhibitory power against ABCB1, ABCC1, and ABCG2 was categorized ['active' (IC_{50} < 10 \mu M); 'inactive' (IC_{50} ≥ 10 \mu M)] and classified as class0: inactive compounds; class 1: selective ABCB1 inhibitors; class 2: selective ABCC1 inhibitors; class 3: selective ABCG2 inhibitors; class 4: dual ABCB1 and ABCC1 inhibitors; class 5: dual ABCB1 and ABCG2 inhibitors; class 6: dual ABCC1 and ABCG2 inhibitors; and class 7: triple ABCB1, ABCC1, and ABCG2 inhibitors; Fig. 3). In total, 48 class 7 compounds were identified and analyzed for their basic scaffolds [(i) 4-anilinopyrimidine; (ii) quinazoline; (iii) pyrrolo[3,2-d]pyrimidine; (iv) pyrimido[5,4-b]indole; (v) quinoline; and (vi) thieno[2,3-b]pyrimidine] using the
negative hits’ ['Negative Pattern'; (i) isopropyl; (ii) amino; (iii) carboxylic
acid ethyl ester; (iv) indole; (v) 3,4,5-trimethoxyphenyl; (vi) morpholine; (vii) thieno[3,2-b]pyrimidin; (viii) sulphone] and ‘clear negative hits’ ['Negative Pattern'; (i) tert-butyl; (ii) vinyl; (iii) cyclopropyl; (iv) cyclohexyl; (v) anellated cyclopropyl; (vi) anellated cycloheptyl; (vii) dimethylamino; (viii) diethylamino; (ix) cyclopropyl; (iv) indole; (v) 3,4,5-trimethoxyphenyl; (vi) morpholine; (vii) thieno[3,2-b]pyrimidin; (viii) sulphone] and ‘clear positive hits’ ['Positive Pattern'; (i) isopropyl; (ii) amino; (iii) carboxylic

Structure-Activity-Report (SAReport) tool [135] implemented in MOE (version 2019.01). InstantJChem (version 20.15.9) was applied to statistically analyze the initial dataset of 1,049 compounds for 308 commonly occurring chemical substructures [136] and their distribution amongst classes 0–7. ‘Clear positive hits’ ['Positive Pattern'; (i) F1: aromatic/hydrophobic; (ii–iii) F2 and F3: aromatic/hydrophobic; (v) F5: acceptor] as reported before [67] are shown (C), and the respective conformer pose of compound 23 (D). The distances between the pharmacophore features are shown as light green lines. While nonpolar hydrogen atoms were omitted, carbon, oxygen, and nitrogen atoms were colored in green, red, and blue, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Pharmacophore model of the most potent triple ABCB1, ABCC1, and ABCG2 inhibitor presented in this work, compound 23. The five multitarget ABCB1, ABCC1, and ABCG2 features [(i–iv) F1–F4: aromatic/hydrophobic; and (v) F5: acceptor] as reported before [15] are depicted (A), to which compound 23 was aligned to (B). In comparison, the five features for ABCC1 inhibition [(i) F1: aromatic; (ii–iii) F2 and F3: aromatic/hydrophobic; (v) F5: acceptor] as reported before [67] are shown (C), and the respective conformer pose of compound 23 (D). The distances between the pharmacophore features are shown as light green lines. While nonpolar hydrogen atoms were omitted, carbon, oxygen, and nitrogen atoms were colored in green, red, and blue, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

4.1.3. Scaffold fragmentation, substructure hopping, virtual screening, and compound selection

The C@PA-derived basic scaffolds were dissected using Chem-Draw Pro [version 17.0.1.05 (19)] to (i) pyrimidine, (ii) pyrrole, (iii) pyridine, and (iv) thiopeptide and added to the extended positive hit list. Moreover, the non-aromatic heterocycles piperazine, piperidine, and morpholine were extended to (i) pyrimidine, (ii) homo-piperidine, (iii) pyridyl, (iv) hydroxy, and (v) oxazolidine. The aromatic substructures 1,2,4-oxadiazole and 1,3,4-thiadiazole were extended to (i) isoxazole, (ii) oxazole, (iii) imidazole, (iv) furan, (v) thiazole, (vi) pyrazole, and (vii) thijophene, and added to the extended positive hit list. In total, 29 extended positive hit substructures including the 8 clear positive hits as defined by C@PA [15] resulted. Subsequently, the 1,510 molecules derived from the combined similarity search and pharmacophore modelling approach [67] were subject to a clear negative hit exclusion (except for pyrrolidine and oxazole), with eventual extended positive hit screening. Depending on price and availability, the 10 candidates 16–25 were manually selected from the residual dataset of 846 potential multitarget ABCB1, ABCC1, and ABCG2 inhibitors and purchased at MolPort® (http://www.molport.com): compound 16 (Name: 2-[(2-(3,4-dihydro-2H-benzol)[1,4]dioxin-7-yl)pyrrolidin-1-yl]methyl)-5-(5-methyl-3-phenyl-isoxazol-4-yl)-1,3-oxadiazole; ZINC ID: 08938070; MolPort® ID: 005–547-575; Link: https://www.molport.com/shop/moleculelink/XFQPDVQEQZTEIY-UHFFFAOYSA-N/5547575; Supplier: ENAMINE LTD.; Catalog No.: Z103927872; SMILES: C1 C2=C(N=C2C(O=C(C1)C=C1)C=C1)C=C1; purity: ≥90%; compound 17 (Name: 4-(1-(4-fluorophenyl)-1H-imidazole-5-carboxamido)cyclohexyl-1-(4-fluorophenyl)-1H-imidazole-5-carboxylate; ZINC ID: 09672163; MolPort® ID: 004–504-763; Link: https://www.molport.com/shop/moleculelink/PAIVADUCKBGFQ-UHFFFAOYSA-N/4504763; Supplier: Ukr-Organisation Synthese Ltd.; Catalog No.: PB169991190; SMILES: FC1=CC=C(N2C=NC=C2=C(N=CC=CC=CC=CC=CC=CC=CC=CC=C)C)C(C=C)C(C1)C=C1; purity: ≥90%; compound 18 (Name: 3-[(2-(2-(4-(2-azepan-1-yl)-2-oxygenyl)piperazin-1-yl)-2-oxygenyl)-5-(thiophen-2-yl)thieno[2,3-d]pyrimidin-4(3H)-one; ZINC ID: 14239968; MolPort® ID: 005–770-351; Link: https://www.molport.com/shop/moleculelink/LCTNTHHIFNEAA-UHFFFAOYSA-N/5770351; Supplier: Ukr-Organisation Synthese Ltd.; Catalog No.: PB146323516; SMILES: O=C(N1CCN(C1C)C(N2CCCCCC22)=O)NC3C=NC4=C(C3=O)C(C5=C(C5=C=C=C)=CS)CS4; purity: ≥90%; compound 19 (Name: 4-(benzo[d][1,3]dioxol-5-yl)methyl)piperazin-1-yl)[1-(5-(pyrrolidin-1-yl)-1,3,4-thiadiazol-2-yl)-1H-pyrrol-2-yl)methanone; ZINC ID: 15731308; MolPort® ID: 007–821-780; Link: https://www.molport.com/shop/moleculelink/YMCNSQXIHXWXTB-UHFFFAOYSA-N/7821780; Supplier: ChemDiv Inc.; Catalog No.: G015-0322; SMILES: O=C(C1=CC=NC1C2=NN=C(N3CC3C3)=S2)N4CC(C4)=CC5=C(C6=CO)C6=C5; purity: ≥90%; compound 20 (Name: 4-(3-(6-(pyridin-2-yl)-4,6,7a, 12a-tetrahydro-1H-benzol[4,5]imidazo[1,2-a][1,3]triazinol[1,2-c][]...
were stored as 10 mM stock solutions at 26°C. Calcein AM and pheophorbide A were obtained from LGC Standards (Stahnsdorf, Germany), Carl Roth (Karlsruhe, Germany), Merck KGaA (Darmstadt, Germany). All other chemicals were purchased from EMD Chemicals (San Diego, USA), supplied by Merck KGaA (Darmstadt, Germany), as well as Sigma-Aldrich (St. Louis, USA). Compounds 3–22 were added into a 96-well flat-bottom clear plate (Greiner Bio-One, Frickenhausen, Germany) at a concentration of 100 μM and 160 μM of cell suspension containing either ABCB1-overexpressing A2780/ADR cells or ABCG2-overexpressing MDCK II BCRP cells, which were cultivated in Dulbecco’s modified eagle medium (DMEM; Sigma Life Science, Steinheim, Germany) complemented with 10% FCS (20%), streptomycin (50 μg/mL), as well as L-glutamine (2 mM) as a nutrient deficiency. The incubation period at 37°C under 5% CO2-humidified atmosphere lasted 30 min before 20 μL of a 3.125 μM calcein AM was added to each well, subsequently followed by measurement of fluorescence increase at an excitation wavelength of 485 nm and an emission wavelength of 520 nm.

4.2.3. Calcein AM assay

The inhibitory activity against ABCB1 and ABC1 was evaluated in a calcein AM assay as reported earlier [15,67,101]. Compounds 16–25 were added into a 96-well flat-bottom clear plate (Greiner, Frickenhausen, Germany) at a concentration of 100 μM and 160 μM of cell suspension containing either ABCB1-overexpressing A2780/ADR (30,000 cells/well) or ABCG2-overexpressing H69AR (60,000 cells/well) cells were added. The incubation period at 37°C under 5% CO2-humidified atmosphere lasted 30 min before 20 μL of a 3.125 μM calcein AM was added to each well, subsequently followed by measurement of fluorescence increase at an excitation wavelength of 485 nm and an emission wavelength of 520 nm in 60 sec intervals for 1 h in either POLARStar and FLUOstar Optima microplate readers (BMG Labtech, software versions 2.00R2/2.20 and 4.11-0; Offenburg, Germany). The slope values from the linear fluorescence increase revealed the effect value which has been normalized to the effect value of 10 μM of either compounds 2 (ABCB1) or 26 (ABCG2). As compounds 16, 17, 19, and 21–24 as well as 18, 22–24 resulted in significant inhibition (20% ± SEM) of ABCB1 and ABC1, respectively, full-blown concentration-effect curves were generated and IC50 values were calculated applying GraphPad Prism (version 8.4.0, San Diego, CA, USA) using the statistically preferred model (three- or four-parameter logistic equation).

4.2.4. Pheophorbide A assay

The inhibitory activity against ABCG2 was evaluated in a pheophorbide A assay as reported earlier [15,67]. Each well of a flat-bottom clear 96 well plate was complemented with 20 μL of either of the compounds 16–25 (100 μM), 160 μL of ABCG2-overexpressing MDCK II BCRP cells (45,000 cells/well), as well as 20 μL of a pheophorbide A solution (5 μM), subsequently incubating the plate at 37°C in a 5% CO2-humidified atmosphere for 120 min. The effect values of compounds 16–25 were measured via flow cytometry [Guava easyCyte™ HT, (Merck Millipore, Billerica, MA, USA; excitation: 488 nm; emission: 695/50 nm)] and compared to the effect value of 10 μM of compound 27. As compounds 16–19 and 22–25 resulted in significant inhibition against ABCG2,
innovation programme under grant agreement #643417 (JPCo-fuNd). SMS receives a Walter Benjamin fellowship of the DFG; 446812474).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.csbj.2021.05.018.

References

[1] Wang JQ, Yang Y, Cai CY, Teng QX, Lin J, et al. Multidrug resistance proteins (MRPs): structure, function, and the overcoming of cancer multidrug resistance. Drug Resist Updat 2021;54:100745.
[2] Gil-Martins E, Barbosa DJ, Silva V, Remão F, Silva R. Dysfunction of ABC transporters at the blood-brain barrier: role in neurological disorders. Pharmacol Ther 2020;213:107554.
[3] Pasello M, Giudice AM, Scotlandi K. The ABC subfamily A transporters: Multifaceted players with incipient potencies in cancer. Semin Cancer Biol 2020:60:57–71.
[4] Fehr T, Kaur I, Sehgal A, Kumar A, Uddin MS, Bungau S. The interplay of ABC transporters in Aβ translocation and cholesterol metabolism: implicating their roles in Alzheimer’s Disease. Mol Neurobiol 2020;58:1463–85.
[5] Abuznait AH, Kaddoumi A. Role of ABC transporters in the pathogenesis of Alzheimer’s Disease. ACS Chem Neurosci 2012;3:820–31.
[6] Ye Z, Lu Y, Wu T. The impact of ATP-binding cassette transporters on metabolic diseases. Nutr Metab (Lond) 2020;17:61.
[7] Domenichini A, Adamska A, Falasca M. ABC transporters as cancer drivers: Potential functions in cancer development. Biochim Biophys Acta Gen Subj 1863;2019:52–60.
[8] Robey RW, Pucikonis KM, Hall MD, Fojo AT, Bates SE, Gottesman MM. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat Rev Cancer 2018;18:452–64.
[9] Adamska A, Falasca M. ATP-binding cassette transporters in progression and clinical outcome of pancreatic cancer: What is the way forward? World J Gastroenterol 2018;24:3222–38.
[10] Pan ST, Li ZL, He ZX, Qiu JX, Zhou SF. Molecular mechanisms for tumour resistance to chemotherapy. Clin Exp Pharmocol Physiol 2016;43:723–37.
[11] Ween MP, Armstrong MA, Gehler MK, Ricciardelli C. The role of ABC transporters in ovarian cancer progression and chemoresistance. Curr Opin Oncol Hematol 2015;96:220–56.
[12] Namasivayam V, Silbermann K, Wiese M, Pahnke J, Stefan SM. C@PA: Computer-aided pattern analysis to predict multidrug ABC transporter inhibitors. J Med Chem 2021;64:3350–66.
[13] Zhang H, Xu H, Ashby Jr CR, Assaraf YG, Chen ZS, Liu HM. Chemical molecular-based approach to overcome multidrug resistance in cancer by targeting P-glycoprotein [P-gp]. Med Res Rev 2021:41:525–55.
[14] He ZX, Zhao TQ, Gong YP, Zhang X, Ma LY, Liu HM. Pyrimidine: A promising scaffold for optimization to develop the inhibitors of ABC transporters. Eur J Med Chem 2020;200:105453.
[15] Dong J, Qin Z, Zhang WD, Cheng G, Yehuda AG, Ashby Jr CR, et al. Medicinal chemistry strategies to discover P-glycoprotein inhibitors: an update. Drug Resist Updat 2020:49:100681.
[16] Palmeira A, Sousa E, Vasconcelos MH, Pinto MM. Three decades of P-gp inhibitors: skimming through several generations and scaffolds. Curr Med Chem 2012;19:1946–2005.
[17] Pedersen JM, Matsson P, Bergström CA, Hoogstraate J, Norén A, LeCluyse EL. A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development. Toxicol Sci 2013;136:216–41.
[18] Warner DJ, Chen H, Cantin LD, Kenna JG, Stahl S, Walker CL, et al. Mitigating multidrug resistance associated protein 1 and related processes: a historic approach and recent advances. Med Res Rev 2019;39:176–264.
[19] Zhou SF, Wang LL, Li YM, Xue CC, Duan W, Li CG, et al. Substrates and inhibitors of human multidrug resistance associated proteins and the implications in drug development. Curr Med Chem 2008;15:1981–2039.
[20] V. Namasivayam et al. Computational and Structural Biotechnology Journal 19 (2021) 3269–3283
Nagao K, Maeda M, Maufut NC, Ueda K. Cyclosporine A and PSC833 inhibit ABCA1 function via direct binding. Biochim Biophys Acta 1831:20:2399–408.

Favari E, Zanotti I, Zimetti F, Bernini F, Rothblat GH. Probucol inhibits ABCA1-mediated cellular lipid efflux. Arterioscler Thromb Vasc Biol 2004;24:2345–50.

Nemetti TJ, Chroni A, Maliga Z, Zannis VI, Kirchhausen T, et al. Cross-inhibition of SR-BI- and ABCA1-mediated cholesterol transport by the small molecules BLT-4 and glyburide. J Lipid Res 2004;45:1256–65.

Beil C, Hamon Y, Bajetto A, Gola M, Chimini G, et al. ABC1, an ATP binding cassette transporter required for phagocytosis of apoptotic cells, regulates a regulated anion flux after expression in Xenopus laevis oocytes. J Biol Chem 1997;272:6295–9.

Bardin E, Pastor A, Semeraro M, Golec A, Chevalier B, et al. Modulators of CFTR. Updates on clinical development and future directions. Eur J Med Chem 2021;213:113195.

Kathawala RJ, Wang JQ, Ashby Jr CR, Chen ZS. Recent advances regarding the role of ABC family member 10 (ABC10) in the efflux of antitumor drugs. Chin J Cancer 2014;33:223–30.

Ono M, Urabe T, Okamoto H, Okamoto Y, Murakami H, Ohno S, et al. Augmentation of murine organ-associated natural immune responses by cephaparin. Gan To Kagaku Ryoho 1988;15:127–33.

Tan TM, Yang F, Wang JQ, Lei ZN, Wang JQ, et al. Sitravatinib, a tyrosine kinase inhibitor, modulates ABCG2-mediated multidrug resistance in lung cancer cells. Front Oncol 2020;10:1219.

Wu ZX, Yang Y, Teng QX, Wang JQ, Lei ZN, et al. Sitravatinib, A c-Met inhibitor, enhances the efficacy of chemotherapeutic agents in wild-type breast cancer cells. Biol Chem 1997;272:6295–9.

Stefan SM. Multi-target ABC transporter modulators: what next and where to go?. Future Med Chem 2019;11:2353–8.

El-Sheikh AA, van den Heuvel JJ, Koenderink JB, Russel FG. Effect of overexpression of ABCG2 on the metabolism of drugs in human cancer cells. Front Oncol 2020;10:674.

Kathawala RJ, Espitia CM, Jones TM, Islam S, Gupta P, Zhang YK, et al. ABCG2 overexpression contributes to pevonedistat resistance. Cancers (Basel) 2020;12:429.

Ono M, Urabe T, Okamoto H, Murakami H, Hattori H, Ohno S, et al. Augmentation of murine organ-associated natural immune responses by cephaparin. Gan To Kagaku Ryoho 1988;15:127–33.

Favari E, Zanotti I, Zimetti F, Bernini F, Rothblat GH. Probucol inhibits ABCA1-mediated cellular lipid efflux. Arterioscler Thromb Vasc Biol 2004;24:2345–50.

Nemetti TJ, Chroni A, Maliga Z, Zannis VI, Kirchhausen T, et al. Cross-inhibition of SR-BI- and ABCA1-mediated cholesterol transport by the small molecules BLT-4 and glyburide. J Lipid Res 2004;45:1256–65.

Beil C, Hamon Y, Bajetto A, Gola M, Chimini G, et al. ABC1, an ATP binding cassette transporter required for phagocytosis of apoptotic cells, regulates a regulated anion flux after expression in Xenopus laevis oocytes. J Biol Chem 1997;272:6295–9.

Bardin E, Pastor A, Semeraro M, Golec A, Hayes K, Chevalier B, et al. Modulators of CFTR. Updates on clinical development and future directions. Eur J Med Chem 2021;213:113195.

Kathawala RJ, Wang JQ, Ashley Jr CR, Chen ZS. Recent advances regarding the role of ABC family member 10 (ABC10) in the efflux of antitumor drugs. Chin J Cancer 2014;33:223–30.
Borst P, de Wolf C, van de Wetering K. Multidrug resistance-associated proteins 3 and 4, and S. Pfurtschell Arch 2007;435:661–73.

Berghaus A, Jouvat E. Technique and interpretation of extended subhalide lung lavage (“inhalation desmolarique”). Respiration 1991;59:105–10.

Lim JG, Lee H, Yun JE, Kim SP, Park JW, Suh SI, et al. Taurine block of cloned ATP-sensitive K+ channels with different sulfonfurea receptor subunits expressed in Xenopus oocytes. Biochem Pharmacol 2004;68:901–10.

York NW, Parker H, Xie Z, Tyus D, Waheed MA, Yan Z, et al. Kir1.1- and SUR2B-dependent KATP over-activity disrupts intestinal motility in murine models of Cystic Fibrosis. JCI Insight 2020;5.

Tsukuda S, Ishii M, Yamanoto H, Wakaumi S, Suzuki M, Schwartz GJ, et al. Functional analysis of ABCA1, a new drug transporter. Biochem Biophys Res Commun 2002;298:41–8.

Horikawa M, Kato Y, Suga Y. Reduced gastrointestinal toxicity following inhibition of the bile excretion of irinotecan and its metabolites by probenecid in rats. Pharm Res 2002;19:1345–53.

Smeets PH, van Aurbel RA, Wouterse AC, van den Heuvel JJ, Russel FG. Participation of mixed function oxidase in the biotransformation of disoproxil fumarate is a new substrate of ATP-binding cassette subfamily C member 4. Drug Metab Pharmacokinet 2003;18:7–16.

Zhou Y, Hoppe E, Shen T, Hof C, Vagiannis D, Xu KG, et al. Cephapisol is a potent reversal agent for MRP7(ABCC10)-mediated multidrug resistance. Biochem Pharmacol 2009;79:993–1001.

Horikawa M, Kato Y, Tyson CA, Sugiyama Y. Potential cholestatic activity of anti-tumor agents assessed by bile canalicular membrane vesicles isolated from rats and humans. Drug Metab Pharmacokinet 2003;18:16–22.

Bai J, Lai L, Yeo HC, Goh BC, Tan TM. Multidrug resistance protein 4 (MRP4/ABCC4) mediates efflux of bumine-glutathione. Int J Cell Bio 2004;36:247–57.

Videman B, Mazallon M, Prouillac C, Delafarge M, Lecoeur S, ABCB1, ABCB2 and ABCB3 are implicated in the transpalatine attraction of the moxestrogen zearalenone and its major metabolites. Toxicol Lett 2009;190:215–23.

Tsun-Yong H, Chinaspal C, Pamsinlapatham P, Kaewkitichai S. Tenofovir disoproxil furmate is a new substrate of ATP-binding cassette subfamily C member 1. Antimicrob Agents Chemother 2007;51.

Telbiss A, Ambrus C, Mózner O, Szabó É, Várady G, Balázs É, et al. Interactions of potential anti-COVID-19 compounds with multispecies specific ABC and OATP drug transporters. Pharmaceutics 2021;13.

Antoni F, Bause M, Scholler M, Bauer S, Stark SA, Jackson SM, et al. Tarquidar-related triazoles as potent, selective and stable inhibitors of ABCG2 (BCRP). Eur J Med Chem 2020;191:112133.

Kraf P, Gublik J, Spindler A, Wiese M. Synthesis and biological evaluation of quinazolinediones as novel derivatives – a SAR study of novel inhibitors of ABCG2. Eur J Med Chem 2019;161:506–25.

Sor A, Novotná E, Hofman J, Morell A, Staud F, Wsol V, et al. Cyclin-dependent kinase inhibitors AZD5438 and R547 show potential for enhancing efficacy of the multidrug resistance-linked ATP-binding cassette transporter ABCG2 overexpressing cells in vitro and in vivo. Oncotarget 2015;6:46463–59.

Krause A, Grinberg S, Kravina L, Adlere I, Sokolova E, Domracheva I, et al. Thioureas – a new class of multidrug resistance (MDR) modulators. Bioorg Med Chem Lett 2014;22:5860–76.

Ma SL, Hu YP, Wang F, Huang ZC, Chen YF, Wang XK, et al. Effect of ceritinib (LC101003) on enhancement of chemotherapeutic agents in ABCB1 and ABCG2 overexpressing cells in vitro and in vivo. Oncotarget 2015;6:46463–59.

Juvale K, Stefan K, Wiese M. Synthesis and biological evaluation of flavones substituted quinazolines as highly potent inhibitors of breast cancer resistance protein 1. Biochem Cell Biol 2013;81:783–78.

Sor A, Hofman J, Ceckova M. Interactions of cyclin-dependent kinase inhibitors with the ATP-binding cassette subfamily C member 1 and G member 2. Biochem Biophys Res Commun 2011;418:302–8.

Pic A, Klinkhammer W, Wiese M. Specific inhibitors of the breast cancer resistance protein C. Biochem J 2003;368:181–91.

Sor A, Hofman J, Ceckova M. Interactions of cyclin-dependent kinase inhibitors with the ATP-binding cassette subfamily C member 1 and G member 2. Biochem Biophys Res Commun 2011;418:302–8.

Lucin T, Juvale K, Stefan K, Wiese M. Synthesis and biological evaluation of flavones substituted quinazolines as highly potent inhibitors of breast cancer resistance protein 1. Biochem Cell Biol 2013;81:783–78.
Wang S, Wan NC, Harrison J, Miller W, Chuckowree I, Sohal S, et al. Design and synthesis of new templates derived from pyrrolopyrimidine as selective multidrug-resistance-associated protein inhibitors in multidrug resistance. J Med Chem 2004;47:1339–50.

Sommer K, Friedrich NO, Bietz S, Hilbig M, Inhester T, Rarey M. UNICON: A Powerful and Easy-to-Use Compound Library Converter. J Chem Inf Model 2016;56:1105–11.

Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG. ZINC: a free tool to discover chemistry for biology. J Chem Inf Model 2012;52:1757–68.

Clark AM, Labute P. Detection and assignment of common scaffolds in project databases of lead molecules. J Med Chem 2009;52:469–83.

Jordan AM, Roughley SD. Drug discovery chemistry: a primer for the non-specialist. Drug Discov Today 2009;14:731–44.