Research progress in damage evolution of woven composites
果立成, 廖锋, 李志兴, 黄金钊, 赵九州 and 郑滔
Citation: 中国科学: 技术科学, 50, 876 (2020); doi: 10.1360/SST-2020-0123
View online: http://engine.scichina.com/doi/10.1360/SST-2020-0123
View Table of Contents: http://engine.scichina.com/publisher/scp/journal/SST/50/7
Published by the 《中国科学》杂志社

Articles you may be interested in
Research status and progress of tunnel frost damage
Journal of Traffic and Transportation Engineering (English Edition) 6, 297 (2019);

Ballistic impact properties of woven bamboo- woven E-glass- unsaturated polyester hybrid composites
Defence Technology 15, 282 (2019);

Stress transfer around a broken fiber in unidirectional fiber-reinforced composites considering matrix damage evolution and interface slipping
SCIENCE CHINA Physics, Mechanics & Astronomy 54, 296 (2011);

Recent research and progress of biodegradable zinc alloys and composites for biomedical applications; Biomechanical and biocorrosion perspectives
Bioactive Materials 6, 836 (2021);

Research progress of the NSFC Major Research Plan “Dynamic Disaster Evolution of Major Engineering Structures”
SCIENCE CHINA Technological Sciences 53, 592 (2010);
机织复合材料损伤演化研究进展

果立成*, 廖锋, 李志兴*, 黄金钊, 赵九州, 郑滔

哈尔滨工业大学航天科学与力学系, 哈尔滨 150001

* E-mail: guolc@hit.edu.cn; lizx@hit.edu.cn

摘要 机织复合材料内部交织的纱线使得其相较于铺层复合材料具有更好的整体性和抗分层性能, 但也使得这类材料的失效机理更加复杂, 给此类材料的损伤演化研究带来了极大的挑战。本文从机织复合材料的试验技术、损伤演化模型与仿真方面总结和评述了机织复合材料损伤演化研究的现状。在试验技术方面, 重点描述了表征机织复合材料损伤演化的试验手段, 主要在基于应变、声发射技术、红外特征和CT技术的损伤表征。在损伤演化模型和仿真方法方面, 以材料受到的载荷特征为主线, 总结了机织复合材料在静态、疲劳以及冲击荷作用下的典型研究方法。基于上述总结, 提出了未来机织复合材料损伤演化研究的发展方向, 包括多手段集成的损伤机理表征、损伤关联的宏细观基础力学性能测试、宏细观强度准则及强度设计、机器学习算法与有限元方法相结合的仿真模型以及复杂条件下基于数字孪生概念和全寿命周期的使用性能研究等。

关键词 机织复合材料, 损伤表征, 损伤机理, 损伤演化模型与仿真, 试验技术

1 引言

现代复合材料的理论与应用研究始于19世纪40年代[1]。近年来, 随着工业化的逐步深入和节能减排的需要, 轻质高强的复合材料正逐渐成为研究机构和工业领域所关注的重点。近半个世纪的研究和发展, 依据增强体结构类型的不同, 复合材料已演化为长纤维增强复合材料、短切纤维增强复合材料、颗粒增强复合材料等多种类型。长纤维复合材料由于兼具优异的刚度和强度性能以及较小的密度, 逐步成为航空、航天、船舶、汽车等迫切需要对产品减重的工业领域的发展重点[2,3]。机织复合材料是一种典型的长纤维复合材料, 由机织物、基体以及纤维基体间的界面相组成。与传统的铺层复合材料相比, 机织复合材料在经纬两方向均表现出良好的稳定性。常见的机织复合材料又分为二维和三维等形式。机织复合材料的研究考虑了多种性能, 如角结连锁交织结构和层-层结构的性能特征[4,5], 见图1。机织复合材料又分为三维交联交织复合材料、层-层接结角连锁交织复合材料以及贯穿接结角连锁交织复合材料等[5,6], 见图2。随着机织工艺的进步, 三维机织复合材料的应用前景愈发广阔, 部分学者已经尝试将其应
用于船舶[7]、生物医学[8]和土木工程领域[9]。当前世界上最先进的航空发动机——法国CFM公司设计的LEAP-X发动机，其风扇叶片就采用三维机织复合材料制成，在提高叶片抗疲劳和抗冲击性能的同时，大幅度地降低了发动机的质量。其叶片总重76 kg，仅叶片就比上一代发动机减重32 kg[10,11]。

为了便于机织复合材料的应用和结构优化设计，各国学者针对机织复合材料在不同载荷工况下的损伤演化机理展开了深入的试验研究[12-15]。对比二维机织复合材料和三维机织复合材料，可以发现两者的损伤模式有所不同。在准静态载荷和疲劳载荷下，二维机织复合材料除了界面脱黏、纱线内部裂纹和基体开裂之外，还可能出现较明显的分层现象[16,17]，而三维机织复合材料表现出更优良的整体性以及更高的损伤容限[18]。在冲击载荷下，三维机织复合材料的损伤面积更小，冲击损伤阻抗更高[19]。这与Z向纱线的绑定作用有关。依据这些研究结果，学者们提出了大量仿真方法和预测模型，极大地推动了机织复合材料的发展和应用[20-22]。

本文以机织复合材料在多种载荷工况下的损伤行为为研究对象，以机织复合材料损伤演化试验技术和损伤演化模型为主线，总结和梳理了近年来机织复合材料损伤演化研究现状，讨论了机织复合材料损伤演化的未来发展。

2 机织复合材料损伤表征及损伤机理研究方法

2.1 基于应变的机织复合材料损伤表征

应力-应变曲线是表征材料力学行为最基础的物理关系。因此，机织复合材料损伤的应变表征一直是材料损伤表征最基本也是最重要的方法。常用的获取应变的试验方法有：应变片测试方法、引伸计测试方法和数字图像相关(DIC)测试方法等。

应变片测试方法是在试验件表面粘贴电阻应变片。在加载过程中，测量电阻中电流的变化来表征试验件表面的应变。直到现在，其仍是实验室和工业界常用的测试材料应变的方法。正如前文所提到的，机织复
合材料具有独特的重复结构(单胞). 因此，为了获得机织复合材料的等效应变，应变片尺寸应覆盖测试应变方向上机织复合材料的最小单胞尺寸\(^{23-25}\). 此外，应变片测试方法也被广泛用于霍普金森杆试验中，用于测试试验件在高应变率下的应力应变曲线. Zhao等人\(^{26}\)利用霍普金森杆结合应变片测试方法研究了三维机织复合材料的动态力学性能，见图3. 试验结果显示，三维机织复合材料的模量和强度随应变率的变化规律因加载方向和载荷方式的不同而发生改变. 应变片测试方法的精度及数据可靠性会受粘贴技术以及应变片在外部载荷下自身损伤状况的影响，这给此方法在疲劳和冲击试验领域的应用带来了一定的挑战.

机织复合材料在疲劳载荷作用下的刚度退化是表征其力学性能变化的常用手段. 现有文献表明，引伸计方法是测试材料刚度随疲劳周次增长而退化的主要方式之一\(^{27-29}\). Daggumati等人\(^{30}\)利用动态引伸计研究了缎纹复合材料在拉-拉疲劳载荷作用下的刚度退化，结果表明，材料在疲劳初始阶段机织复合材料的刚度会发生较大的退化. 在使用该方法测试材料疲劳初期退化时，为避免材料最终失效对引伸计的冲击，常常在材料失效前移除引伸计，导致无法获取试验件最终失效前的刚度退化. 为解决这一问题，Xu等人\(^{31}\)结合数字图像相关技术和试验机横梁位移数据，实现了对材料疲劳全过程刚度退化的测量. 具体方法见公式(1)~(3).

\[
D_{\text{machine}}(F) = D_{\text{total}}(F) - D_{\text{sample}}(F), \quad (2)
\]
\[
D_{\text{sample}}(F) = D_{\text{total}}(F) - D_{\text{machine}}(F), \quad (3)
\]

式中，\(L_{\text{sample}}\)表示试验件的自由段长度，\(D_{\text{sample}}\)表示当试验应力应变为\(\varepsilon_{\text{sample}}\)时的伸长量，\(D_{\text{machine}}\)为试验机的总位移. 引伸计的使用也有其局限性，该方法只能用于形状规则的材料级试验件，且对安装空间有严格的限制，过小的测量区域很难找到与其匹配的小型引伸计. 同时，采用该方法只能获得试验件的平均应变，无法获取材料的全局应变场，故其对材料的局部损伤表征能有限.

数字图像相关技术(DIC)是逐渐被广泛应用的测量试验件表面位移及应变的方法. 其通过对比变形前后的试验表面散斑位置来计算试验件表面发生的位移和应变. Yang等人\(^{33}\)基于DIC技术研究了三维机织复合材料平板的高速侵彻问题，利用高速相机获得了材料平板在冲击荷载作用下的全场应变，并结合超声波C扫和光学显微镜研究了材料在冲击荷载作用下的损伤机理，试验装置和应变场演化结果见图4和5. 随着CT技术的进步，众多学者尝试将数字图像相关技术与CT相结合，提出可以表征试验件内部应变的数字体图像相关方法(DVC)\(^{34,35}\)和数字体散斑法(DVSP). Mao等人\(^{36}\)运用数字体散斑法实现了对机织复合材料梁在三点弯载荷作用下内部应变的测量，采用数字图像相关技术获得应变的准确性会受到散斑制作质量和散

图 3 (网络版彩图) 高速冲击载荷作用下三维机织复合材料应力-应变曲线. (a) 面外压缩; (b) 面内拉伸\(^{35}\)

Figure 3 (Color online) Stress-strain curves of 3D woven composite under high velocity impact loads. (a) Through-the-thickness compression; (b) in-plane tension \(^{35}\).
斑随试验件损伤发生脱落情况的影响。

除了上述常见应变表征方法外，在材料内部植入纤维光纤传感器(FOS)也是一种测试试验件内部应变的方法。Daggumati等人[37]采用在机织复合材料内部埋设FOS的方法研究了平纹机织复合材料内部的应变分布规律。

2.2 基于声发射技术的机织复合材料损伤表征

对于机织复合材料，声发射现象主要是指材料在外作用下，伴随着材料内部新裂纹面的萌生和扩展而发生的能量以应力波形式释放的现象。20世纪50年代，德国学者Kaiser[38]针对金属和非金属材料的声发射问题就已经开展了系统性的科学研究。他发现声发射现象是一种不可逆的物理现象——Kaiser效应。而后，诸多学者尝试依据声发射现象对材料的失效和损伤进行监测和定位[39]。

随着复合材料的发展和广泛应用，声发射技术开始被尝试应用于复合材料及结构的损伤检测中[40]。Berthelot等学者[41]将声发射技术应用于碳纤维复合材料的损伤识别中，研究了复合材料内部不同失效模式的
声发射特征。20世纪90年代以后，众多学者将声发射技术应用于机织复合材料的损伤和失效特征上。Morscher\(^\text{[42]}\)利用声发射技术研究了二维SiC机织复合材料在单轴拉伸和往复载荷作用下的失效过程，运用时域和频域信号分析技术对材料内部的损伤类型、损伤位置进行了研究。Lomov等学者\(^\text{[43,44]}\)应用声发射技术对二维和三维机织复合材料在沿纤维方向和偏轴载荷作用下的失效过程展开研究。声发射累积能量被用来划分材料的失效阶段，所得的研究结果同应变数据和显微观测结果具有一致性。

除了用于机织复合材料在准静态载荷下的损伤表征外，声发射技术还被应用于机织复合材料在疲劳及冲击作用下的失效表征。Takemura等学者\(^\text{[45]}\)利用声发射技术研究了平纹机织复合材料在拉-拉疲劳载荷作用下的损伤发展，用平均声发射事件计数和声发射信号幅值特征材料内不同损伤模式随疲劳载荷的发生和发展。Shahkhosravi等学者\(^\text{[46]}\)研究了钻孔机织复合材料在三点弯疲劳载荷作用下的失效过程，发现试验过程中采集到的声发射事件累积能量与损伤面积高度线性相关。Jin等学者\(^\text{[47]}\)运用声发射原理研究了三维机织复合材料在拉-拉疲劳载荷作用下的失效过程。声发射事件的计数将三维机织复合材料的拉-拉疲劳损伤失效过程划分为三个阶段。该划分结果与材料刚度退化过程具有很高的一致性。Woo等学者\(^\text{[48,49]}\)结合声发射检测系统和分离式霍普金斯杆系统，设计了用于开展机织复合材料冲击损伤过程研究的试验系统，见图6。他们应用该系统研究了Kevlar纤维以及Kevlar-Carbon纤维混合机织复合材料在高应变率压缩载荷下的失效机理，选择声发射幅值、声发射计数和累积声发射计数的斜率等参数表征机织复合材料的冲击损伤过程。随着计算机计算能力的不断提高，很多学者将声发射信号处理技术与聚类、自组织映射、人工神经网络等数据挖掘技术结合，发展了新的声发射损伤过程表征方法，并将其应用于机织复合材料的损伤表征之中\(^\text{[50-55]}\)。

声发射方法可以实现对机织复合材料损伤过程的连续、无损和原位表征。但由于机织复合材料受到机织结构、基体类型以及成型工艺的影响，失效机理异常复杂，声发射方法在损伤类型确认以及损伤程度量化等方面均不完善。因此，该方法同其他损伤识别方法相结合，可以在解析机织复合材料损伤失效机理方面发挥更大的作用。

2.3 基于红外特征的机织复合材料损伤表征

材料发生损伤后，损伤区域附近应力的变化、能量的释放以及裂纹面间的摩擦使得损伤区域的温度可能高于其他未损伤区域。学者们根据这一现象将试验件表面红外特征用于材料损伤表征，从而能够对材料
开展非接触、原位和实时损伤评估。

红外特征表征方法在层合复合材料的疲劳损伤研究中应用较早[56~59]，在疲劳试验过程中，试验件表面的温度上升曲线与材料的刚度退化曲线表现出很强的相关性，均呈现三段式的发展规律。Naderi等人[58~60]的研究表明层合复合材料在疲劳过程中的红外特征可以作为疲劳损伤表征的一种手段。近年来，随着有机复合材料的广泛应用，越来越多的学者关注机织复合材料的疲劳损伤，而红外特征表征方法也成为一种检测机织复合材料疲劳损伤的有效手段。Montesano等人[61,62]研究发现，红外特征表征方法能够捕获材料在静态载荷作用下裂纹的萌生位置及扩展情况。此外，研究结果表明，机织复合材料表面的温度分布与裂纹的饱和度和循环加载时的刚度退化行为有关，试验件表面温度可以用于捕获纤维裂纹及表面裂纹扩展等疲劳损伤机制。Shao等人[63]采用热弹性应力分析方法（TSA）研究了基体的断裂韧性对纤维织物表面的温度分布与裂纹的饱和度和循环加载时的刚度退化行为的影响。

2.4 基于CT技术的机织复合材料损伤表征

近年来，CT技术得到了快速的发展，可以实现从宏观结构到单纤维尺度的损伤检测。随着机织复合材料被广泛关注，在其损伤研究中，CT技术也被越来越多的学者所应用。Yu等学者[18,67]基于CT技术研究了三维编织复合材料在拉-拉疲劳载荷作用下的损伤演化过程。通过对不同加载周次后的疲劳试件显微观察，识别出该类型材料在拉-拉疲劳载荷作用下内部的损伤类型以及渐进损伤阶段，见图8。Jespersen等学者[29]应用X射线CT对纤维增强复合材料的疲劳损伤开展研究，在研究过程中，采用多尺度方法研究了不同疲劳周次后试验件的损伤状态，详细分析和描述了疲劳三阶段的损伤机理。Ogi等人[68]运用X射线CT研究了三维SiC/SiC机织复合材料在高速金属子弹冲击下的损伤状态。X射线CT观测结果显示，当撞击速度较低时，撞击坑下方会产生多个锥形裂纹。当撞击速度超过临界
速度时，一个碎片从试验件后表面贯穿出来，碎片内部未发现纤维断裂。Cao等人[69]通过Micro-CT研究了三维机织复合材料在不同冲击能量作用下的损伤模式。按照冲击能量从低到高的顺序，材料内部分别出现了基体失效、纤维劈裂、界面损伤、分层及纤维断裂。

在外部载荷作用下，材料内部损伤的起始和扩展过程研究对于确定材料失效机理以及损伤演化规律具有十分重要的意义。针对这一问题，目前已有部分学者采用原位检测方法获取复合材料的损伤演化规律[70-72]。

碳纤維和环氧树脂往往具有相近的X射线吸收系数，这使得采用传统吸收成像方法的μCT对碳纤维与环氧树脂基体的分辨能力不足[73]。针对这一问题，Li等学者[72]提出了基于上海光源同步辐射CT开展三维机织复合材料面外损伤机理的原位试验方法，试验系统及流程图9所示，并分别对三维机织碳纤维增强复合材料在面外拉伸和剪切载荷下的损伤演化进行了研究，获得了其损伤机理和破坏过程。部分CT结果如图10所示。研究结果表明，在面外拉伸和剪切载荷作用下，界面破坏是导致面外破坏的首要因素。缝经纱的强度影响着界面脱粘后的承载能力。此外，Li等学者[72]基于获得的损伤机理讨论了编织角度对三维机织复合材料面外拉伸强度和剪切强度的影响。而后，李志兴[74]将基于同步辐射CT损伤分析方法推广到三维机织复合材料在面外拉-拉疲劳载荷作用下的损伤分析中，研究了材料在面外拉-拉疲劳失效各阶段的损伤机理。

Na等学者[75]在机织复合材料的基体中分散碳纳米管传感器，采用原位CT检测方法，观察了机织复合材料在变形过程中的内部结构。对机织复合材料在单
轴和双轴载荷作用下的力学性能和压电性能进行了同步表征，发现机织复合材料的电阻随应力-应变曲线梯度的变化而变化，说明材料的电阻与机织复合材料的损伤模式相对应。这一结论在原位CT结果中得到了验证。

基于CT技术的原位检测方法可以连续、无损的获得机织复合材料的损伤演化的过程，且精度高、可视性强。但是该方法在机织复合材料损伤机理研究中尚存在一定的局限性。传统CT检测设备的空间往往较局限，安装大载荷加载设备的难度高，所以当前的原位检测方法仅局限于小载荷试验。高精度、高加载能力的原位试验加载设备备受期待。

3 机织复合材料损伤演化模型与仿真研究进展

3.1 机织复合材料的损伤判定准则

机织复合材料损伤发展过程涉及复杂的失效机理和破坏过程。机织复合材料的失效一般分为初始损伤触发阶段和损伤演化阶段。为了实现复合材料力学性能的预测，国内外学者先后提出了Hill准则[76]、Tsai-Wu准则[77,78]、Hoffman准则[79]、Hashin准则[80~83]、Puck准则[84~86]、LaRC系列准则[87~91]及Pinho准则[92,93]等受到广泛关注的失效准则。这些准则主要针对单向纤维增强复合材料，并可应用于机织复合材料中纤维束的失效判断。失效准则定义了复合材料的初始损伤触发条件。为了表征复合材料在外加载荷作用下材料性能的渐进演化过程，众多学者将连续介质损伤力学理论与失效准则相结合，建立了复
合材料力学行为渐进损伤演化预测方法。损伤演化模型众多，比较有代表性的有指数演化模型[94]、双曲正切型演化模型[95,96]、反比例演化模型[97]及基于等效应变的双线性演化模
型[98,99]。不同的损伤演化模型往往通过定义损伤因子随应变或应力的变化来表征材料的失效过程，损伤初始准则和损伤演化模型结合起来可以描述机织复合材料损伤发展的整个过程。

3.2 机织复合材料准静态损伤演化模型与仿真研究

早期，将渐进失效分析方法应用到复合材料研究的Talreja等人[100~102]提出采用两个损伤因子描述材料两个主要失效方向力学性能退化的方法。计算所得层合板的失效过程与实验吻合得较好。Murakami-Ohno损伤理论[103]是描述机织复合材料渐进损伤过程最常用的损伤力学理论。Fang等学者[99,104,105]基于该理论提出了各向异性损伤演化本构方程。Zeng等人[106~109]建立了三维编织复合材料的力学性能预报模型，Fang等人[110~112]采用Murakami-Ohno损伤理论研究了三维编织复合材料的渐进损伤过程。Ge等人[113,114]采用Matzenmiller损伤理论建立了耦合弹塑性损伤模型研究三
由于编织复合材料的非线性力学行为。这些针对编织复合材料提出的损伤模型同样适用于机织复合材料性能的预测。

Nagai等学者\cite{115}提出一种基于细观力学单胞的有限元分析模型，将一个大型复杂的织物结构分为各种类型的单胞，并应用其开展机织复合材料力学性能的非线性分析。这种建模方法在机织复合材料的力学性能预测中被广泛应用。Jia等人\cite{116,117}建立了三维机织复合材料细观尺度的代表性单元模型(包括表面单胞和内部单胞模型)，分析了三维机织复合材料的非线性黏弹性能与损伤过程。

Zhong等人\cite{118}整合了Puck准则(针对纤维束)和抛物线屈服准则(针对基体材料)提出了一种连续介质损伤模型，并用于预报三维机织复合材料的准静态损伤触发及演化过程。结果表明，该模型能够预报纤维束和基体尺度下的纤维断裂、纤维间断裂及基体断裂，如图11所示。

在此基础上，Lu等学者\cite{119}研究了三维机织复合材料基体和纤维束之间的界面性能对材料拉伸荷作用下的力学性能的影响。Lu学者\cite{120}还提出了一种三维机织复合材料压缩损伤模型，并讨论了纤维扭结和初始不对齐对三维机织复合材料压缩性能的影响。此外，Zhong等人\cite{121}还研究了线波对三维机织复合材料面内刚度和强度的影响。最近，Zheng等人\cite{122}结合等效位移、应力、单元特征长度和断裂性提出了种新的三维机织复合材料渐进损伤模型，并应用该模型研究了三维机织复合材料的有效性能和失效机理。三维机织复合材料内部的纤维交织结构复杂，为了考虑材料内部真实的纤维束弯曲波动、截面扭转和尺寸变化规律等关键几何信息，作者高还原度地重构了细观单胞模型，如图12所示。考虑到纤维束的横向可能存在的多个裂纹的情况，采用了两个与断裂角度相关的损伤因子来表征纤维束横向损伤的演化，有效地解决了纤维束横向应力异常的问题。

Zeng等人\cite{108}采用了一种新型的非均匀有限元法预报了三维编织复合材料的有效模量和局部应力。
三维四向编织复合材料的单胞划分为六面体单元。然后，利用高斯积分点处的材料参数计算单元的刚度矩阵。最后，由单元的刚度矩阵形成单胞的整体刚度矩阵，进而对三维四向编织复合材料的有效弹性模量进行预报。在该工作的基础上，Liu 等人[123]提出了一种三维机织复合材料的多尺度渐进损伤方法。该方法基于材料的细观尺度几何结构通过非均匀有限元方法建立宏观的渐进损伤模型。这种方法的优点在于可以高效、准确地预测较大尺寸的三维机织复合材料的力学性能。同时，该方法也适用于机织复合材料的疲劳和冲击损伤演化仿真研究。

近年来，机器学习等方法正在与材料性能及损伤预报研究相结合。Liu 等人[124]采用深度学习人工神经网络建立了三维机织复合材料的初始失效准则，并将该失效准则与传统失效准则进行对比研究。发现新准则具有很高的精度和效率，并且可以对任意组合应力作用下的初始损伤进行预报。目前，传统机织复合材料研究方法与机器学习等新技术结合的研究成果尚少，但无疑是一个值得探索的研究方向，这给机织复合材料力学性能的高效预报带了新的机遇。

3.3 机织复合材料疲劳损伤演化仿真研究

机织复合材料早期研究表明，纤维增强相对复合材料的疲劳性能有非常大的影响[125]。诸多失效模式以及各种失效模式之间的复杂耦合机制使得机织复合材料疲劳失效模式及寿命预报变得困难。一些重要研究工作[56,126-128]主要采用实验方法对机织复合材料的性能进行研究。机织复合材料疲劳损伤演化仿真方面的研究工作相对较少。

Khan 等人[129]建立了基于疲劳载荷作用下的刚度
果立成等: 机织复合材料损伤演化研究进展

退化的理论分析模型，对平纹机织铺层复合材料疲劳性能进行研究，见图13。结果表明损伤扩展速率是刚度退化速率的函数。三种不同铺层的平纹机织复合材料试验结果与该模型的分析结果具有很好的一致性。

Huang [130] 建立了桥联细观力学模型，预报了平纹机织复合材料在多轴疲劳载荷作用下的疲劳寿命和S-N曲线。该模型需要机织复合材料中纤维和基体的疲劳性能参数以及纤维组分含量作为输入，来完成对机织复合材料性能的预报。Van Paepegem等人[131]通过位移控制模式的疲劳试验获得了机织复合材料的损伤模式和刚度退化的数据，基于这些试验结果建立了机织复合材料损伤失效模型，并在商业软件平台对疲劳损伤过程进行模拟。该模型所预报的刚度退化、损伤扩展及损伤分布与试验结果吻合得较好。Hochard等人[132,133]建立了一种非线性损伤累积模型用于预报机织复合材料的疲劳性能，见图14。该模型用两层虚拟的经向和纬向正交单向铺层来替代平纹机织物层。其中，两个虚拟单向复合材料层采用连续损伤方法和纤维非局部断裂失效准则，通过有限元方法预报机织复合材料的疲劳性能，这样就可以将模型的通用范围从单向复合材料扩展到平纹机织复合材料。

Li[134]利用细观力学方法预测了二维机织陶瓷基复合材料在室温和高温下的疲劳寿命。他们采用剪滞模型描述纤维损伤的微观应力场，采用随机基体多裂纹模型和断裂力学界面脱粘准则确定了单体裂纹间韧性和界面脱粘长度，采用界面剪切应力、纤维强度退化模型和氧化区扩展模型，分析了界面摩擦滑移和氧气在基体复合裂纹内扩散对复合材料疲劳寿命的影响。

Chen等人[135]研究了平纹机织复合材料在随机疲劳载荷作用下的剩余强度和失效概率。在恒幅残差模型和试验的S-N曲线基础上，提出基于随机疲劳载荷作用过程中应力峰密度函数和功率谱密度的新疲劳寿命预测模型，该模型预报结果与试验结果吻合得较好。

Xu等人[136]提出一种细观尺度(单胞)的有限元方法，用于预报平纹机织复合材料拉-拉疲劳损伤。见图15。该模型采用单向复合材料的疲劳S-N曲线作为输入参数，同时考虑了基体主导的多轴疲劳和纤维主导的疲劳损伤。通过数值均匀化的方法得到材料在疲劳未破坏及破坏后的平均力学性能。预报结果与两种组分性能一致但机织参数不同的平纹机织复合材料疲劳试验结果相吻合。该模型所需的输入参数能通过试验直接测得，所以可以用于开展不同类型机织复合材料的疲劳性能预测。

机织复合材料疲劳损伤演化仿真研究的成果对于二维机织复合材料，三维机织复合材料疲劳损伤演化方面的仿真成果较少。这也从侧面表明机织复合

图13 碳-碳平纹机织层合板复合材料的试验疲劳寿命和预报疲劳寿命对比图[129]
Figure 13 Compare between the tested and predicted fatigue life of carbon/carbon plain weave laminate [129].

图14 (网络版彩图) Hochard所提模型的示意图[133]
Figure 14 (Color online) Schematic diagram of the model proposed by Hochard [133].

http://engine.scichina.com/doi/10.1360/SST-2020-0123
材料疲劳损伤演化仿真分析的难度很大。随着三维机织复合材料在实际工程中应用日益增多，急需开展这方面的研究工作。

3.4 机织复合材料冲击损伤演化仿真实验

机织复合材料的冲击力学性能预测一直是研究者们关注的焦点。其中，机织复合材料的动态力学性能预测和抗侵彻性能预测又是其中最受关注的两类问题。国内的顾伯洪[4]团队在纺织复合材料冲击等领域开展了比较系统的研究工作。

在机织复合材料动态力学性能的有限元仿真分析中，研究者们通常建立全尺寸细观模型（区分纱线和基体）进行有限元分析。Pankow等人[137]和Zhang等人[138,139]采用该方法研究了多种机织复合材料的动态力学性能。见图16。通过有限元仿真获得了试样在加载过程中的变形、失效、能量变化和损伤形貌。材料承受冲击后，出现屈服、失效、能量耗散等特征；而后对特征信息简化并建立织物单胞几何模型（即代表性体积单元）。在此基础上，对代表性体积单元重复排列，即可获得尺寸较大的机织复合材料平板的几何模型。从而实现机织复合材料细观结构的全尺寸模型。其中包括多尺度的模型，图17。Zhao等人[142]基于多尺度方法，建立了一种二维三轴编织复合材料平板模型。该模型从三个尺度分别建模，如图18所示，实现了单纤维-纤维束-单胞-平板的逐步分析，在此基础上研究了材料的冲击损伤行为。

除了上述的细观建模方法以外，还有一些宏细观的建模方法，这些方法在宏观建模的同时兼顾了细观结构及其性能的影响。仲苏洋[143]采用基于细观结构的全尺寸建模方法建立了一种三维机织复合材料平板冲击有限元模型，见图19。这种模型采用宏观手段建立有限元网格，但是在有限元计算过程中，通过单元的位置来区分其材料属性，从而实现宏观模型中区分出了机织复合材料各组分材料的目的。张超[144]基于一种单胞平均化的思想[145]，建立了三维编织复合材料宏观模型。该模
型在确定材料面单胞、内单胞、角单胞结构力学性能基础上，通过平均化方法得到各个单胞的等效性能，并在宏观平板范围内划分相应单胞的区域以赋予等效性能，从而建立平板的宏观抗侵彻模型。

在冲击相关问题的研究中，应当采用动态本构模型来描述材料的本构关系，即在本构方程中考虑材料性能的应变率相关性。

有限元软件LS-DYNA中，开发者内嵌了一种针对平纹机织复合材料的动态本构模型，其强度、模量的应变率效应分别表示为公式(4)和(5)，式中，\(S_{RT} \)，\(E_{RT} \)，\(S_0 \)，\(E_0 \)分别是材料的动态强度、静态强度、动态模量、静态模量；\(\dot{\varepsilon} \)是静态参考应变率，\(C_{rate} \)是应变率常数。

此外，ZWT本构模型也是一种常用的描述聚合物基复合材料力学响应的模型，该模型在本构方程中引入了应变率以表示材料的非线性行为，表示为公式(6)。

\[
\begin{align*}
(S_{RT}) & = S_0 \left[1 + C_{rate} \ln \left(\frac{\dot{\varepsilon}}{\dot{\varepsilon}_0} \right) \right], \\
(E_{RT}) & = E_0 \left[1 + C_{rate} \ln \left(\frac{\dot{\varepsilon}}{\dot{\varepsilon}_0} \right) \right], \\
\sigma & = E_r \varepsilon + \alpha \varepsilon^2 + \beta \varepsilon^3 + E_1 \int_0^t \dot{\varepsilon} \exp \left(\frac{I - \tau}{\theta_1} \right) d\tau \\
& + E_2 \int_0^t \dot{\varepsilon} \exp \left(\frac{I - \tau}{\theta_2} \right) d\tau,
\end{align*}
\] (6)

式中，\(E_r, \alpha, \beta \)是材料的弹性常数，两个积分式分别表示材料在低应变率、高应变率下的黏弹性响应，\(E_1, \theta_1 \)和\(E_2, \theta_2 \)分别是相应的弹性常数和松弛时间。沈立成等[153]采用该模型确定了一种三维正交机织玻璃纤维复合材料的动态应力-应变关系。

对于小尺寸的SHPB模型，通常可以选择细观模型来完成。但是在尺寸较大的平板冲击问题中，为了平衡计算能力和模型精度，偏宏观的模型成为更常见选择。但是，宏观模型又无法准确描述机织结构在冲击载荷作用下的失效机理。因此，发展高效的多尺度分析模型是解决这一难题的重要途径。此外，界面在冲击载荷作用下的损伤行为也是影响模型精度的关键因素和研究难点。

图 16 (网络版彩图) 三维机织复合材料分离式霍普金森压杆(SHPB)测试的细观有限元模型[137]
Figure 16 (Color online) Micro-scale finite element model of SHPB test of 3D woven composite [137].

图 17 (网络版彩图)基于细观结构的三维机织复合材料平板的有限元模型[141]
Figure 17 (Color online) Micro-scale finite element model of 3D woven composite plate [141].
总结与展望

本文通过总结和评述机织复合材料损伤演化进展，对机织复合材料损伤演化研究的现状和未来发展趋势总结如下。

（1）机织复合材料复杂的损伤演化机理使得当前任何一种独立的损伤表征方法都很难全面表征其损伤机理和失效过程。通过多种损伤表征手段的集成可以实现能力的互补。为克服单一损伤表征方法的不足，未来针对机织复合材料，需要开展基于同步辐射CT等先进损伤观测手段并整合多信息损伤识别技术的原位损伤演化测试方法研究。同时，还需要开展损伤演化快速精准在线检测原理与技术研究。其意义在于通过多种损伤表征手段的集成，能够实现三维机织复合材料损伤机理和失效过程的全面表征。

（2）当前细观尺度复合材料损伤演化分析仍面临很多基础科学问题，比如与整体机织材料相同制备条件下的树脂、单纤维、纤维束和界面的静态动态力学参数、疲劳退化参数的测试方法研究。基于原位取样的材料性能测试方法以及微观尺度下纤维丝和界面的力学性能测试为解决上述问题提供了新的思路。这些基础问题的解决将极大地推动机织复合材料损伤演化分析方法的发展和完善。

图 18 (网络版彩图)多尺度模型框架图[142]
Figure 18 (Color online) Schematic diagram of multi-scale model [142].

图 19 (网络版彩图)基于非均匀有限元方法的三维机织复合材料平板冲击有限元模型[143]
Figure 19 (Color online) Finite element model of 3D woven composite plate under impact load using finite multiphase element method [143].
(3) 当前的宏细观损伤强度准则(纤维束和界面的静动态损伤模型)不能充分地反映三维机织复合材料在各种复杂工况下的损伤机理，因此开展机织复合材料的宏细观强度准则及强度设计方法研究，将为机织复合材料的进一步广泛应用提供强有力的基础支撑。

(4) 在各种复杂条件下(湿热环境、盐雾环境、复杂应力环境)，国家重大工程领域的机织复合材料及结构面临着使用性能变化的问题，给机织复合材料力学性能的基础和应用研究提出了新的挑战。数字孪生概念和基于全寿命周期的力学性能预测理念为这一问题的解决提供了新思路。

(5) 机器学习算法的发展，使得一体化分析多种类型数据(包括图像)成为可能。将机器学习算法与有限元等仿真方法相结合，发展高效、准确、智能的机织复合材料损伤演化仿真算法和模型，能够实现时间成本和物质成本的显著降低，以及设计质量的显著提高，从而极大地推动机织复合材料的损伤评价及优化设计。

致谢 感谢上海同步辐射光源的支持。

参考文献

1 Xiong D B. Introduction to aviation composites of the United States (in Chinese). J Mater Eng, 1984, 3: 45–49
2 Kaw A. Mechanics of Composite Materials. Boca Raton: CRC Press, 2006. 1–16
3 Gibson R F. Principles of Composite Material Mechanics. Boca Raton: CRC Press, 2016. 1–5
4 Gu B H, Sun B Z. Impact Dynamics of Textile Composites (in Chinese). Beijing: Science Press, 2012
5 Tong L, Mouritz A P, Bannister M K. 3D Fiber Reinforced Polymer Composites. Oxford: Elservier, 2002. 7–10
6 Gereke T, Cherif C. A review of numerical models for 3D woven composite reinforcements. Composite Struct, 2019, 209: 60–66
7 Jiang Z X, Geng L, Huang Y D. Fabrication of superhydrophobic 3-D braided carbon fiber fabric boat. Materials Letters, 2010, 64: 2441–2443
8 Limmer L, Weissenbach G, Brown D, et al. The potential of 3-D woven composites exemplified in a composite component for a lower-leg prosthesis. Compos Part A-App Sci Manufact, 1996, 27: 271–277
9 Müller J, Zulliger A, Dom M. Economic production of composite beams with 3D fabric tapes. Textile Month, 1994, 9: 9–13
10 Li J. Technology innovations of LEAP-X (in Chinese). Aerona Sci T ech, 2011, 4: 12–14
11 Li J, Ju Y B. Application and development of composite materials for GE new generation civil aero-engines (in Chinese). In: Proceedings of the 17th National Conference on Composite Materials. Beijing: China Academic Journal Electronic Publishing House, 2010. 1272–1276
12 Lomov S V, Ivonov D S, Truong T C, et al. Experimental methodology of study of damage initiation and development in textile composites in uniaxial tensile test. Compos Sci Tech, 2008, 68: 2340–2349
13 Rudov-Clark S, Mouritz A P. Tensile fatigue properties of a 3D orthogonal woven composite. Compos Part A-App Sci Manufact, 2008, 39: 1018–1024
14 Luo Y, Lv L, Sun B, et al. Transverse impact behavior and energy absorption of three-dimensional orthogonal hybrid woven composites. Composite Struct, 2007, 81: 202–209
15 Pan B, Yu L, Yang Y, et al. Full-field transient 3D deformation measurement of 3D braided composite panels during ballistic impact using single-camera high-speed stereo-digital image correlation. Composite Struct, 2016, 157: 25–32
16 Pankowa M, Justusson B, Riosbaas M, et al. Effect of fiber architecture on tensile fracture of 3D woven textile composites. Composite Structures, 2019, 225: 14
17 Naik N K. Woven-fibre thermoset composites. In: Fatigue in Composites. Cambridge: Woodhead Publishing. 2003. 296–313
18 Yu B, Bradley R S, Soutis C, et al. 2D and 3D imaging of fatigue failure mechanisms of 3D woven composites. Compos Part A-Appl Sci Manufacturing, 2015, 77: 37–49
19 Potluri P, Hogg P, Arshad M, et al. Influence of fibre architecture on impact damage tolerance in 3D woven composites. Appl Compos Mater, 2012, 19: 799–812
20 Lomov S, Ivanov D, Verpoest I, et al. Meso-FE modelling of textile composites: Road map, data flow and algorithms. Compos Sci Tech, 2007, 67: 1870–1891
21 Sevenois R D B, Van Paepegem W. Fatigue damage modeling techniques for textile composites: Review and comparison with unidirectional composite modeling techniques. Appl Mech Rev, 2015, 67: 021401
22 Naik N K, Shrirao P, Reddy B C K. Ballistic impact behaviour of woven fabric composites: Formulation. Int J Impact Eng, 2006, 32: 1521–1552
23 ASTM D3039/D3039M-14. Standard test method for tensile properties of polymer matrix composite materials. West Conshohocken: ASTM International, 2014
24 ASTM D5379/D5379M-12. Standard test method for shear properties of composite materials by the V-notched beam method. West Conshohocken: ASTM International, 2012
25 Arif M F, Saintier N, Meraghni F, et al. Multiscale fatigue damage characterization in short glass fiber reinforced polyamide-66. Compos Part B-Eng, 2014, 61: 55–65
26 Zhao J, Zhang L, Guo L, et al. Dynamic properties and strain rate effect of 3D angle-interlock carbon/epoxy woven composites. J Reinforced Plastics Compos, 2017, 36: 1531–1541
27 ASTM D3479/D3479M-12. Standard test method for tension-tension fatigue of polymer matrix composite materials. West Conshohocken: ASTM International, 2012
28 de Vasconcellos D S, Touchard F, Chocinski-Arnault L. Tension-tension fatigue behaviour of woven hemp fibre reinforced epoxy composite: A multi-instrumented damage analysis. Int J Fatigue, 2014, 59: 159–169
29 Jespersen K M, Zangenberg J, Lowe T, et al. Fatigue damage assessment of uni-directional non-crimp fabric reinforced polyester composite using X-ray computed tomography. Compos Sci Tech, 2016, 136: 94–103
30 Daggumati S, De Baere I, Van Paepegem W, et al. Fatigue and post-fatigue stress-strain analysis of a 5-harness satin weave carbon fibre reinforced composite. Compos Sci Tech, 2013, 74: 20–27
31 Xu J, Lomov S V, Verpoest I, et al. A comparative study of twill weave reinforced composites under tension-tension fatigue loading: Experiments and meso-modelling. Composite Struct, 2016, 135: 306–315
32 Pan B, Qian K, Xie H, et al. Two-dimensional digital image correlation for in-plane displacement and strain measurement: A review. Meas Sci Technol, 2009, 20: 062001
33 Yang L, Zhang L, Guo L, et al. Dynamic response and research of 3D braided carbon fiber reinforced plastics subjected to ballistic impact loading. Composite Struct, 2018, 206: 578–587
34 Bay B K, Smith T S, Fyhrie D P, et al. Digital volume correlation: Three-dimensional strain mapping using X-ray tomography. Exp Mech, 1999, 39: 217–226
35 Smith T S, Bay B K, Rashid M M. Digital volume correlation including rotational degrees of freedom during minimization. Exp Mech, 2002, 42: 272–278
36 Mao L, Chiang F. Interior strain analysis of a woven composite beam using X-ray computed tomography and digital volumetric speckle photography. Composite Struct, 2015, 134: 782–788
37 Daggumati S, Voet E, Van Paepegem W, et al. Local strain in a 5-harness satin weave composite under static tension: Part I–Experimental analysis. Compos Sci Tech, 2011, 71: 1171–1179
38 Kaiser J. A study of acoustic phenomena in tensile test. Dissertation for Doctoral Degree. Munich: Technische Hochschule, 1950
39 Harbower C, Morais C, Reuter W. Development of a nondestructive testing technique to determine flaw criticality. Aerojet Solid Propulsion Company, Sacramento, 1972. AFML-TR-71-218
40 Cole P T. Using acoustic emission (AE) to locate and identify defects in composite structures. Composite Struct, 1985, 3: 259–267
41 Berthelot J M, Rhazi J. Acoustic emission in carbon fibre composites. Compos Sci Tech, 1990, 37: 411–428
42 Morscher G N. Modal acoustic emission of damage accumulation in a woven SiC/SiC composite. Compos Sci Tech, 1999, 59: 687–697
43 Lomov S V, Bogdanovich A E, Ivanov D S, et al. A comparative study of tensile properties of non-crimp 3D orthogonal weave and multi-layer
plain weave E-glass composites. Part 1: Materials, methods and principal results. Compos Part A-Appl Sci Manufacturing, 2009, 40: 1134–1143

44 Ivanov D S, Lomov S V, Bogdanovich A E, et al. A comparative study of tensile properties of non-crimp 3D orthogonal weave and multi-layer plain weave E-glass composites. Part 2: Comprehensive experimental results. Compos Part A-Appl Sci Manufacturing, 2009, 40: 1144–1157

45 Takemura K, Fujii T. Fatigue damage and fracture of carbon fabric/epoxy composites under tension-tension loading. JSME Int J Ser A Mech material Eng, 1994, 37: 472–480

46 Shahhosravi N A, Yousefi J, Najafabadi M A, et al. Fatigue life reduction of GFRP composites due to delamination associated with the introduction of functional discontinuities. Compos Part B-Eng, 2019, 163: 536–547

47 Jin L, Jin B C, Kar N, et al. Tension-tension fatigue behavior of layer-to-layer 3-D angle-interlock woven composites. Mater Chem Phys, 2013, 140: 183–190

48 Woo S C, Kim T W. High-strain-rate impact in Kevlar-woven composites and fracture analysis using acoustic emission. Compos Part B-Eng, 2014, 60: 125–136

49 Woo S C, Kim T W. High strain-rate failure in carbon/Keve lar hybrid woven composites via a novel SHPB-AE coupled test. Compos Part B-Eng, 2016, 97: 317–328

50 Loutas T, Kostopoulos V. Health monitoring of carbon/car bon, woven reinforced composites. Damage assessment by using advanced signal processing techniques. Part I: Acoustic emission monitoring and damage mechanisms evolution. Compos Sci Tech, 2009, 69: 265–272

51 Li L, Lomov S V, Yan X. Correlation of acoustic emission with optically observed damage in a glass/epoxy woven laminate under tensile loading. Composite Struct, 2015, 123: 45–53

52 Li L, Lomov S V, Yan X, et al. Cluster analysis of acoustic emission signals for 2D and 3D woven glass/epoxy composites. Composite Struct, 2014, 116: 286–299

53 Li L, Swolfs Y, Straumit I, et al. Cluster analysis of acoustic emission signals for 2D and 3D woven carbon fiber/epoxy composites. J Composite Mater, 2015, 50: 1921–1935

54 Ramasamy P, Sampathkumar S. Prediction of impact damage tolerance of drop impacted WGFRP composite by artificial neural network using acoustic emission parameters. Compos Part B-Eng, 2014, 60: 457–462

55 Gutkin R, Green C J, Vangrattanachai S, et al. On acoustic emission for failure investigation in CFRP: Pattern recognition and peak frequency analyses. Mech Syst Signal Processing, 2011, 25: 1393–1407

56 Toubal L, Karama M, Lorrain B. Damage evolution and infrared thermography in woven composite laminates under fatigue loading. Int J Fatigue, 2006, 28: 1867–1872

57 Reis P N B, Ferreira J A M, Richardson M O W. Fatigue damage characterization by NDT in polypropylene/glass fibre composites. Appl Compos Mater, 2011, 18: 409–419

58 Naderi M, Kahirdeh A, Khonsari M M. Dissipated thermal energy and damage evolution of glass/epoxy using infrared thermography and acoustic emission. Compos Part B-Eng, 2012, 43: 1613–1620

59 Naderi M, Khonsari M M. Thermodynamic analysis of fatigue failure in a composite laminate. Mech Mater, 2012, 46: 113–122

60 Naderi M, Khonsari M M. On the role of damage energy in the fatigue degradation characterization of a composite laminate. Compos Part B-Eng, 2013, 45: 528–537

61 Montesano J, Bougherara H, Fawaz Z. Application of infrared thermography for the characterization of damage in braided carbon fiber reinforced polymer matrix composites. Compos Part B-Eng, 2014, 60: 137–143

62 Montesano J, Fawaz Z, Bougherara H. Non-destructive assessment of the fatigue strength and damage progression of satin woven fiber reinforced polymer matrix composites. Compos Part B-Eng, 2015, 71: 122–130

63 Shao Y, Okubo K, Fujii T, et al. Effect of matrix properties on the fatigue damage initiation and its growth in plain woven carbon fiber vinylester composites. Compos Sci Tech, 2014, 104: 125–135

64 Fruehmann R K, Dulieu-Barton J M, Quinn S. Assessment of fatigue damage evolution in woven composite materials using infra-red techniques. Compos Sci Tech, 2010, 70: 937–946

65 Guo L, Liao F, Xu Y, et al. Experimental method and failure mechanisms investigation for out-of-plane shear fatigue behavior of 3D woven composites. Int J Fatigue, 2020, 134, doi: 10.1016/j.ijfatigue.2020.105477

66 Battams G P, Dulieu-Barton J M. Data-rich characterisation of damage propagation in composite materials. Compos Part A-Appl Sci Manufacturing, 2016, 91: 420–435
67 Yu B, Blanc R, Soutis C, et al. Evolution of damage during the fatigue of 3D woven glass-fibre reinforced composites subjected to tension-tension loading observed by time-lapse X-ray tomography. Compos Part A-App Sci Manuf, 2016, 82: 279–290
68 Ogi K, Okabe T, Takahashi M, et al. Experimental characterization of high-speed impact damage behavior in a three-dimensionally woven SiC/SiC composite. Compos Part A-App Sci Manuf, 2010, 41: 489–498
69 Cao W, Zhang J, Sun B, et al. X-ray tomography and numerical study on low-velocity impact damages of three-dimensional angle-interlock woven composites. Composite Struct, 2019, 230: 111525
70 Moffat A J, Wright P, Helfen L, et al. In situ synchrotron computed laminography of damage in carbon fibre-epoxy [90/0]s laminates. Scripta Mater, 2010, 62: 97–100
71 Garcea S C, Sinclair I, Spearing S M. In situ synchrotron tomographic evaluation of the effect of toughening strategies on fatigue micromechanisms in carbon fibre reinforced polymers. Compos Sci Tech, 2015, 109: 32–39
72 Li Z, Guo L, Zhang L, et al. In situ experimental investigation on the out-plane damage evolution of 3D woven carbon-fiber reinforced composites. Compos Sci Tech, 2018, 162: 101–109
73 Hu X, Wang L, Xu F, et al. In situ observations of fractures in short carbon fiber/epoxy composites. Carbon, 2014, 67: 368–376
74 Li Z X. Investigation on damage evolution and failure mechanism of 3D woven composites under out-of-plane loads (in Chinese). Dissertation for Doctoral Degree. Harbin: Harbin Institute of Technology, 2019.
75 Na W J, Byun J H, Lee M G, et al. In-situ damage sensing of woven composites using carbon nanotube conductive networks. Compos Part A-App Sci Manufacturing, 2015, 77: 229–236
76 Hill R. A theory of the yielding and plastic flow of anisotropic metals. Proc R Soc London Ser A-Math Phys Sci, 1948, 193: 281–297
77 Tsai S W, Wu E M. A general theory of strength for anisotropic materials. J Compos Mater, 1971, 5: 58–80
78 Azzi V D, Tsai S W. Anisotropic strength of composites. Exp Mech, 1965, 5: 283–288
79 Hoffman O. The brittle strength of orthotropic materials. J Compos Mater, 1967, 1: 200–206
80 Hashin Z, Rotem A. A fatigue failure criterion for fiber reinforced materials. J Composite Mater, 1973, 7: 448–464
81 Hashin Z. Failure criteria for unidirectional fiber composites. J Appl Mech, 1980, 47: 329–334
82 Hashin Z. Cumulative damage theory for composite materials: Residual life and residual strength methods. Compos Sci Tech, 1985, 23: 1–19
83 Hashin Z. Analysis of orthogonally cracked laminates under tension. J Appl Mech, 1987, 54: 872–879
84 Puck A. Failure analysis of FRP laminates by means of physically based phenomenological models. Compos Sci Tech, 1998, 58: 1045–1067
85 Puck A, Kopp J, Knops M. Guidelines for the determination of the parameters in Puck’s action plane strength criterion. Compos Sci Tech, 2002, 62: 371–378
86 Puck A, Schürmann H. Failure analysis of FRP laminates by means of physically based phenomenological models. Compos Sci Tech, 2002, 62: 1633–1662
87 Davila C G, Camanho P P. Failure criteria for FRP laminates in plane stress. Hampton: NASA Langley Research Center, 2003. NASA/TM-2003-212663
88 Davila C G, Jaunky N, Goswami S. Failure criteria for FRP laminates in plane stress. In: Proceedings of the 44th AIAA-ASME-ASCE-AHS-ASC Structures, Structural Dynamics and Materials Conference. Norfolk, 2003
89 Pinho S, Dávila C, Camanho P, et al. Failure models and criteria for FRP under in-plane or three-dimensional stress states including shear non-linearity. Technical Paper. Aeronautics and Space, NASA Scientific and Technical Information (STI) Program Office, 2005
90 Pinho S, Darvizeh R, Robinson P, et al. Material and structural response of polymer-matrix fibre-reinforced composites. J Composite Mater, 2012, 46: 2313–2341
91 Pinho S, Vyas G, Robinson P. Material and structural response of polymer-matrix fibre-reinforced composites: Part B. J Composite Mater, 2013, 47: 679–696
92 Pinho S T, Iannucci L, Robinson P. Physically-based failure models and criteria for laminated fibre-reinforced composites with emphasis on fibre kinking: Part I: Development. Compos Part A-App Sci Manufact, 2006, 37: 63–73
93 Pinho S T, Iannucci L, Robinson P. Physically based failure models and criteria for laminated fibre-reinforced composites with emphasis on fibre kinking. Part II: FE implementation. Compos Part A-App Sci Manufact, 2006, 37: 766–777
94 Chang F K, Springer G S. The strengths of fiber reinforced composite bends. J Composite Mater, 1986, 20: 30–45
95 Joo S G, Hong C S, Kim C G. Free edge effect on the post failure behavior of composite laminates under tensile loading. *J Reinforced Plastics Compos*, 2001, 20: 191–221
96 Lee J W, Daniel I M. Progressive transverse cracking of crossply composite laminates. *J Composite Mater*, 1990, 24: 1225–1243
97 Tang Y, Zhou Z, Pan S, et al. Mechanical property and failure mechanism of 3D carbon-carbon braided composites bolted joints under unidirectional tensile loading. *Mater Des (1980-2015)*, 2015, 65: 243–253
98 Lapczyk I, Hurtado J A. Progressive damage modeling in fiber-reinforced materials. *Compos Part A-Appi Sci Manufact*, 2007, 38: 2333–2341
99 Fang G D, Liang J, Wang B L. Progressive damage and nonlinear analysis of 3D four-directional braided composites under unidirectional tension. *Composite Struct*, 2009, 89: 126–133
100 Talreja R. Transverse cracking and stiffness reduction in composite laminates. *J Composite Mater*, 1985, 19: 355–375
101 Talreja R. A continuum-mechanics characterization of damage in composite-materials. *Proc R Soc London Ser A-Math Phys Eng Sci*, 1985, 399: 195–216
102 Niu K, Talreja R. Modeling of compressive failure in fiber reinforced composites. *Int J Solids Struct*, 2000, 37: 2405–2428
103 Murakami S. Mechanical modeling of material damage. *J Appl Mech*, 1988, 55: 280–286
104 Zako M, Takano N, Tsumura T. Numerical prediction of strength of notched UD laminates by analyzing the propagation of intra- and inter-laminar damage. *Mater Sci Res Int*, 1996, 2: 117–122
105 Zako M, Uetsuji Y, Kurashiki T. Finite element analysis of damaged woven fabric composite materials. *Compos Sci Tech*, 2003, 63: 507–516
106 Zeng T, Fang D, Ma L, et al. Predicting the nonlinear response and failure of 3D braided composites. *Mater Lett*, 2004, 58: 3237–3241
107 Zeng T, Wu L, Guo L. A finite element model for failure analysis of 3D braided composites. *Mater Sci Eng-A*, 2004, 366: 144–151
108 Zeng T, Wu L, Guo L. Mechanical analysis of 3D braided composites: A finite element model. *Composite Struct*, 2004, 64: 399–404
109 Zeng T, Wu L, Guo L, et al. A mechanical model of 3D braided composites with internal transverse crack. *J Composite Mater*, 2005, 39: 301–321
110 Fang G, Chen C, Meng S, et al. Mechanical analysis of three-dimensional braided composites by using realistic voxel-based model with local mesh refinement. *J Composite Mater*, 2019, 53: 475–487
111 Fang G, Liang J, Lu Q, et al. Investigation on the compressive properties of the three dimensional four-directional braided composites. *Composite Struct*, 2011, 93: 392–405
112 Fang G, Wang B, Liang J. A coupled FE-FFT multiscale method for progressive damage analysis of 3D braided composite beam under bending load. *Compos Sci Tech*, 2019, 181: 107691
113 Ge J, He C, Liang J, et al. A coupled elastic-plastic damage model for the mechanical behavior of three-dimensional (3D) braided composites. *Compos Sci Tech*, 2018, 157: 86–98
114 Zhong Y, Cheng M, Zhang X, et al. Hygrothermal durability of glass and carbon fiber reinforced composites—A comparative study. *Composite Struct*, 2019, 211: 134–143
115 Nagai K, Yokoyama A, Maekawa Z I, et al. Strength analysis for three-dimensional fiber reinforced composites. *Adv Perform Mater*, 1995, 2: 161–176
116 Jia X, Xia Z, Gu B. Nonlinear viscoelastic multi-scale repetitive unit cell model of 3D woven composites with damage evolution. *Int J Solids Struct*, 2013, 50: 3539–3554
117 Jia X, Xia Z, Gu B. Micro/meso-scale damage analysis of three-dimensional orthogonal woven composites based on sub-repeating unit cells. *J Strain Anal Eng Des*, 2012, 47: 313–328
118 Zhong S, Guo L, Liu G, et al. A continuum damage model for three-dimensional woven composites and finite element implementation. *Composite Struct*, 2015, 128: 1–9
119 Lu H, Guo L, Liu G, et al. Progressive damage investigation of 2.5D woven composites under quasi-static tension. *Acta Mech*, 2019, 230: 1323–1336
120 Lu H, Guo L, Liu G, et al. A progressive damage model for 3D woven composites under compression. *Int J Damage Mech*, 2019, 28: 857–876
121 Zhong S, Guo L, Liu G, et al. A random waveness model for the stiffness and strength evaluation of 3D woven composites. *Composite Struct*, 2016, 152: 1024–1032
122 Zheng T, Guo L, Huang J, et al. A novel mesoscopic progressive damage model for 3D angle-interlock woven composites. *Compos Sci Tech*, 2020, 185: 107894
123 Liu G, Zhang L, Guo L, et al. Multi-scale progressive failure simulation of 3D woven composites under uniaxial tension. Composite Struct, 2019, 208: 233–243
124 Liu X, Gasco F, Goodsell J, et al. Initial failure strength prediction of woven composites using a new yarn failure criterion constructed by deep learning. Composite Struct, 2019, 230: 1–11
125 Ding Y Q, Yan Y, McIlhagger R, et al. Comparison of the fatigue behaviour of 2-D and 3-D woven fabric reinforced composites. J Mater Processing Tech, 1995, 55: 171–177
126 de Vasconcellos D S, Sarasini F, Touchard F, et al. Influence of low velocity impact on fatigue behaviour of woven hemp fibre reinforced epoxy composites. Composites Part B-Engineering, 2014, 66: 46–57
127 Kawai M, Taniguchi T. Off-axis fatigue behavior of plain weave carbon/epoxy fabric laminates at room and high temperatures and its mechanical modeling. Compos Part A-Apppl Sci Manufac, 2006, 37: 243–256
128 van Paepegem W, Degrieck J. Experimental set-up for and numerical modelling of bending fatigue experiments on plain woven glass/epoxy composites. Composite Struct, 2001, 51: 1–8
129 Khan Z, Al-Sulaiman F A, Farooqi J K, et al. Fatigue life predictions in woven carbon fabric/polyester composites based on modulus degradation. J Reinforced Plastics Compos, 2001, 20: 377–398
130 Huang Z M. Fatigue life prediction of a woven fabric composite subjected to biaxial cyclic loads. Compos Part A-Apppl Sci Manufac, 2002, 33: 253–266
131 Van Paepegem W, Degrieck J. Simulating in-plane fatigue damage in woven glass fibre-reinforced composites subject to fully reversed cyclic loading. Fatigue Fract Eng Mater Struct, 2004, 27: 1197–1208
132 Hochard C, Payan J, Bordreuil C. A progressive first ply failure model for woven ply CFRP laminates under static and fatigue loads. Int J Fatigue, 2006, 28: 1270–1276
133 Hochard C, Thollon Y. A generalized damage model for woven ply laminates under static and fatigue loading conditions. Int J Fatigue, 2010, 32: 158–165
134 Li L B. Fatigue life prediction of 2D woven ceramic-matrix composites at room and elevated temperatures. J Materi Eng Perform, 2017, 26: 1209–1222
135 Chen X, Sun Y, Wu Z, et al. An investigation on residual strength and failure probability prediction for plain weave composite under random fatigue loading. Int J Fatigue, 2019, 120: 267–282
136 Xu J, Lomov S V, Verpoest I, et al. A progressive damage model of textile composites on meso-scale using finite element method: Fatigue damage analysis. Comput Struct, 2015, 152: 96–112
137 Pankow M, Waas A M, Yen C F, et al. Modeling the response, strength and degradation of 3D woven composites subjected to high rate loading. Composite Struct, 2012, 94: 1590–1604
138 Zhang F, Liu K, Wan Y, et al. Experimental and numerical analyses of the mechanical behaviors of three-dimensional orthogonal woven composites under compressive loadings with different strain rates. Int J Damage Mech, 2014, 23: 636–660
139 Hou Y, Hu H, Sun B, et al. Strain rate effects on tensile failure of 3-D angle-interlock woven carbon fabric. Mater Des, 2013, 46: 857–866
140 Turner P, Liu T, Zeng X. Dynamic response of orthogonal three-dimensional woven carbon composite beams under soft impact. J Appl Mech, 2015, 82: 121008
141 Turner P, Liu T, Zeng X, et al. Three-dimensional woven carbon fibre polymer composite beams and plates under ballistic impact. Composite Struct, 2018, 185: 483–495
142 Zhao Z, Dang H, Liu P, et al. On the impact failure behavior of triaxially braided composites subjected to metallic plate projectile. Compos Part B-Eng, 2020, 186: 107816
143 Zhong S Y. Investigation of damage evolution and failure of the three-dimensional woven composites (in Chinese). Dissertation for Doctoral Degree. Harbin: Harbin Institute of Technology, 2015 [仲苏洋. 三维编织复合材料损伤演化与失效行为研究. 博士学位论文. 哈尔滨: 哈尔滨工业大学, 2015]
144 Zhang C. Research on macro-meso-mechanical properties and high velocity impact damage of 3D multi-directional braided composites (in Chinese). Dissertation for Doctoral Degree. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013 [张超. 三维多向编织复合材料宏观细观力学性能及高速冲击损伤研究. 博士学位论文. 南京: 南京航空航天大学, 2013]
145 Fang G D. Progressive damage and failure analysis of 3D four-step carbon/epoxy braided composites (in Chinese). Dissertation for Doctoral
Research progress in damage evolution of woven composites

GUO LiCheng, LIAO Feng, LI ZhiXing, HUANG JinZhao, ZHAO JiuZhou & ZHENG Tao

Department of Astronautic Science and Mechanics, Harbin Institute of Technology, Harbin 150001, China

Woven composites have better integrity and anti-delamination properties than laminates, due to the interlaced yarns in the woven structures. However, these structural characteristics lead to a more complex failure mechanism, which brings great challenges to the damage evolution studies of woven composites. In this paper, the research status of damage evolution of woven composites is summarized and reviewed from the aspects of experimental techniques, damage evolution model and simulation. In terms of experimental techniques, the methods to characterize the damage evolution of woven composites are summarized emphatically, including the damage characterization based on strain, acoustic emission, infrared characteristics and computed tomography (CT). The application conditions, problems and challenges of these methods are reviewed briefly. In terms of damage evolution models and numerical simulations, the typical research methods for woven composites under quasi-static load, fatigue and impact load are summarized considering the loading characteristics. On the basis of the above summaries, the future research trends of damage evolution of woven composites are put forward, including the multi-means integrated characterization of damage mechanisms, damage related tests of macro and meso basic mechanical properties, macro and meso strength criterion and strength design, simulation models combining machine learning algorithm and finite element method or more, service performance studies based on digital twin and whole life cycle under complex circumstances, etc.

woven composites, damage characterization, damage mechanism, damage evolution models and simulation, experimental techniques

doi: 10.1360/SST-2020-0123