Effect of polishing protocols on the surface roughness of polyetheretherketone

Kosuke Kurahashi, Takashi Matsuda, Yuichi Ishida, and Tetsuo Ichikawa

Department of Prosthodontics and Oral Rehabilitation, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan

Abstract: The purpose of this study was to evaluate the influence of various polishing protocols on the surface roughness of polyetheretherketone (PEEK) and identify an effective polishing method of dental prostheses at the chairside. The PEEK specimens were assigned to seven groups with different protocols: no additional polishing (NT); polishing using a rubber point (C); polishing using “silky shine” (S); polishing using “aqua blue paste” (A); protocol C followed by protocol S (CS); protocol C followed by protocol A (CA); and protocol C followed by protocols S and A (CSA). The surface roughness (Sa and Ra) of the polished surfaces was measured. The surface roughness decreased in the following order of groups: NT, C, S, CS, CSA, CA, and A. In Groups C and S, wide deep pits formed by abrasive grains of SiC paper were observed, whereas only fine linear structures were observed on the surface in other groups. With respect to the polishing protocol of PEEK, clinically acceptable surface roughness was obtained using a soft polishing brush and agent for more than 3 min.

Materials and Methods

Materials

Table 1 shows the materials prepared and used in this study: non-filler-type PEEK; two types of rotating polishing instruments, the abrasive rubber point and the soft polishing brush; and two types of polishing agents, a liquid-type “silky shine” and a paste-type “aqua blue paste.”

Specimen preparation

PEEK specimens were prepared as cylinders of 10-mm diameter and 10-mm height. The specimens were designed on a computer and machine-milled (RXP500 DSC, Röders GmbH, Soltau, Germany). All specimens were manually trimmed, and the bases of the cylinders were polished under water using 800-grit abrasive SiC paper, followed by ultrasonic cleaning in 70% isopropanol for 15 min. Finally, all specimens were washed three times with distilled water.

Surface treatment modalities

Six PEEK surface-polishing protocols were prepared, and all procedures were randomly performed by a single practitioner (K.K.) to minimize outcome variability. NT: No additional polishing C: Polishing using a rubber point for 1 min at a rotation speed of 20,000 rpm CS: Polishing using a rubber point for 1 min at 20,000 rpm, followed by polishing using “silky shine” and a soft brush for 1 min at 10,000 rpm CSA: Polishing using a rubber point for 1 min at 20,000 rpm, followed by polishing using “silky shine” and a soft brush for 30 s at 10,000 rpm and polishing using “aqua blue paste” and a soft brush for 30 s at 10,000 rpm (in that order)

CA: Polishing using a rubber point for 1 min at 20,000 rpm, followed by polishing using “aqua blue paste” and a soft brush for 1 min at 10,000 rpm
S: Polishing using “silky shine” and a soft brush for 3 min at 10,000 rpm
A: Polishing using “aqua blue paste” and a soft brush for 3 min at 10,000 rpm

All rotating polishing instruments were attached to a dental micromotor (EWL K11, KaVo Dental, Biberach, Germany). Polishing was repeated by adding the respective polishing paste every 30 s. The rotation number and polishing time were determined based on the operation manual of the polishing agents and previous literature, respectively.

The specimens were washed with distilled water and dried after every polishing step. Post polishing, all specimens were ultrasonically cleaned in 70% isopropanol for 15 min, washed three times with distilled water, and then air-dried.

Ten specimens were prepared for each of the seven conditions mentioned above.

Surface roughness measurement

The specimens’ mean surface height (Sa) and the assessed surface profile’s mean deviation (Ra) were measured using a laser microscope (Optetrics Hybrid, Lasertec Corp., Yokohama, Japan). Three points per base surface were measured, and the median value was used as the representative value of the specimen. Ra, the most widely used parameter in evaluating surface roughness, presents the average surface roughness in two dimensions, and Sa is obtained by extending Ra in three dimensions; thus, the influence of directional scratches becomes very small, making it possible to obtain a
The mean values of the seven groups were compared using the Kruskal-Wallis and Games-Howell post-hoc test. A significance level of 0.05 was used. The data were analyzed using the IBM SPSS Statistics, Version 24.0 software package (IBM Corp., Armonk, NY, USA).

Results

Table 2 shows the Sa and Ra values for every polishing protocol. Sa and Ra for Group NT showed the largest values, 0.69 μm and 0.65 μm, respectively. These values were more than 0.5 μm, which represents recognizable roughness. Among the polished groups, surface roughness decreased in the following order: Groups C, S, CS, CSA, CA, and A. The surface roughness of Groups C and S exceeded the threshold value of 0.2 μm, whereas that of the other groups was below 0.2 μm, which is the threshold for bacterial adherence.

The surface roughness of the six polished groups was significantly lower than that of Group NT. Furthermore, the surface roughness of Group C was significantly higher than those of the other five polished groups. The Sa value of Group A was significantly lower than those of Groups CS, CA, and S, whereas its Ra value was significantly lower than those of Groups CS, CSA, and S.

The two-dimensional images captured using the laser microscope are shown in Fig. 1. In Group NT, roughness was observed throughout the surface. In Groups C and S, wide deep pits formed by abrasive grains of SiC paper were captured on the images, whereas only fine linear structures were observed on the surfaces in the other groups. Three-dimensional color-mapped images of the surfaces in Fig. 2 support this result. The find-
ings shown in Fig. 1 can be quantitatively evaluated. The forms of deep pits were observed in Group NT and C. Surface waviness appeared in the Group A. Group CS, CSA, and S, was high. In contrast, protocols that used the “aqua blue paste” for the resin/metal offered more effective polishing, especially when only the “aqua blue paste” was used for a long duration. Heimer et al. also evaluated the surface roughness of the same type of PEEK, polished using P, and P, SiC abrasive papers as controls, through laboratory and chairside polishing protocols and found surface roughness to be 0.032 ± 0.003 μm [9]. Polishing with mops using Abraso polishing paste (duration: 1 min; rotation speed: 3,000 rpm) as the laboratory-side protocol yielded the lowest surface roughness of 0.034 ± 0.010 μm. The surface roughness obtained upon polishing using a Prisma-gloss polishing paste (duration: 40 s only paste and 20 s paste with water in small amounts; rotation speed: 8,000 rpm) as the chairside protocol yielded the lowest surface roughness of 0.072 ± 0.009 μm. The polishing effect is reciprocally affected by the hardness of the PEEK, which is almost equal to or slightly more than that of acrylic resin, and polishing materials. The researchers speculate that the surface irregularities of PEEK are reduced by polishing because of the cutting action of the diamond particles in the rubber point; a similar effect is achieved by the surface plastic flow of the ingredients in protocols S and A. However, as “silky shine” and the “aqua blue paste” in these protocols are in the liquid paste form and their hardness properties remain confidential, it is difficult to discuss their polishing effect from the perspective of material hardness.

In this study, the three-body abrasive wear mode of PEEK surface in Groups CS, CSA, CA, and S showed lower surface roughness than the two-body mode in Group C, as suggested in the two aforementioned previous studies [8,9]. Further, the effect of “silky shine” for thermoplastics was smaller than that of the polish used in the other five polished groups, and the surface roughness for the three polishing protocols that included “silky shine,” CS, CSA, and S, was high. In contrast, protocols that used the “aqua blue paste” for the resin/metal offered more effective polishing, especially when only the “aqua blue paste” was used for a long duration in Group A.

Although a multiple-step polishing protocol can provide a smoother surface, a single-step polishing protocol is preferable at the chairside to save time and expense [20]. In the actual polishing procedure, the following measures are also needed: reducing frictional resistance and minimizing change in temperature of the material surface during polishing, avoiding splashing the polishing agent, and ensuring that the polishing agent can be easily washed away after polishing to avoid bacterial adherence. Furthermore, preferably, polishing should be performed while adding a soluble paste, such as the “aqua blue paste,” at regular intervals.

Thus, it can be concluded that clinically acceptable surface roughness of PEEK was obtained using polishing agents with a soft polishing brush; in particular, the polishing agent for resin/metal is more effective than that for thermoplastic resin.

Acknowledgments

PEEK materials were provided free of charge by Invibio Biomaterial Solutions. This work was supported by JSPS KAKENHI Grant Number JP16K11597.

Conflict of interest

The authors have no conflict of interest in the companies whose materials are mentioned in the article.

References

1. Panayotov IV, Orii V, Cuisinier F, Yachou J (2016) Polyetheretherketone (PEEK) for medical applications. J Mater Sci Mater Med 27, 118.
2. Zoidis P, Papathanassious I, Polyzois G (2016) The use of a modified poly-ether-ether-ketone (PEEK) as an alternative metal-free material for removable dental prostheses. A clinical report. J Prosthet Dent 20, 580-584.
3. Wagner C, Stock V, Mørk S, Schmidlin PR, Roos M, Eichberger M et al. (2018) Retention load of telescopic crowns with different taper angles between cohab-chronol and polyetheretherketone made with three different manufacturing processes examined by pull-off test. J Prosthet Dent 27, 162-168.
4. Hart IE, Abdel-Khalik FA, Hegavy SA (2019) CAD/CAM constructed polyetheretherketone (PEEK) framework of Kennedy class I removable partial denture: a clinical report. J Prosthet Dent 28, e595-598.
5. Jones CS, Billington RW, Pearson GJ (2004) The in vivo perception of roughness of restora-
tions. Int Dent J 196, 42-45.
6. Bollen CM, Papaoanou P, Van Eldere J, Schepers E, Quirynen M, van Steenbergen D (1996) The influence of abutment surface roughness on plaque accumulation and peri-
implant mucositis. Clin Oral Implants Res 7, 201-211.
7. Bürgers R, Gerlach T, Hahn S, Schwarz F, Handel G, Gouas M (2010) In vivo and in vitro biofilm formation on two different titanium implant surfaces. Clin Oral Implants Res 21, 156-164.
8. Sturz CR, Faber FJ, Scheer M, Rothamel D, Neugebauer J (2015) Effects of various chair-side surface treatment methods on dental restorative materials with respect to contact angles and surface roughness. Dent Mater J 34, 796-813.
9. Heimer S, Schmidlin PR, Roos M, Stawarczyk B (2017) Surface properties of polyether-
etherketone after different laboratory and chairside polishing protocols. J Prosthet Dent 117, 419-425.
10. Abzur MA, Beller S, Duong N, Kim BB, Lu P, Palfreyman N et al. (2010) Evaluating surface roughness of a polyamide denture base material in comparison with poly (methyl methacrylate). J Oral Sci 52, 577-581.
11. Wisckiewicz M, Opite V, Richter G, Boening KW (2014) Physical properties of polylac-
tic acid versus PMMA denture base material. Biomed Res Int 2014, 150298.
12. Moussa AR, Dehis WM, Elbarawy AN, ElGhairy HS (2016) A comparative clinical study of the effect of denture cleansing on the surface roughness and hardness of two denture base materials. Open Access Maced J Med Sci 4, 476-481.
13. Kuhar M, Funduk N (2005) Effects of polishing techniques on the surface roughness of acrylic denture base resins. J Prosthet Dent 93, 76-85.
14. Gunogor H, Gundogdu M, Yesil Duyraz Y (2014) Investigation of the effect of different polishing techniques on the surface roughness of denture base and repair materials. J Prosthe-
dent 112, 1271-1277.
15. Rao DC, Kalavathy N, Mohammad HS, Hariprasad A, Kumar CR (2015) Evaluation of the surface roughness of three heat-cured acrylic denture base resins with different conven-
tional lathie polishing techniques: a comparative study. J Indian Prosthodont Soc 15, 374-380.
16. Owusu SC, Vahed A, Singh S, Kanny KM (2017) Reducing the surface roughness of dental acrylic resins by using an eggshell abrasive material. J Prosthet Dent 117, 310-314.
17. Choi MS, Lee YK, Lim BS, Rhee SH, Yang HC (2005) Changes in surface characteristics of dental denture materials after polishing. J Mater Sci Mater Med 16, 347-353.
18. Jung M, Eichelberger K, Klimek I (2007) Surface geometry of four nanofiller and one hybrid composite after one-step and multiple-step polishing. Oper Dent 32, 347-355.
19. Antonson SA, Yazici AR, Kilinc E, Antonson DE, Hardigan PC (2011) Comparison of conven-
tional lathe polishing techniques: a comparative study. J Indian Prosthodont Soc 15, 156-164.
20. Sturz CR, Faber FJ, Scheer M, Rothamel D, Neugebauer J (2015) Effects of various chair-side surface treatment methods on dental restorative materials with respect to contact angles and surface roughness. Dent Mater J 34, 796-813.
21. Pala K, Tekçe N, Tuncer S, Serim ME, Demirci M (2016) Evaluation of the surface hard-
ness, roughness, gloss and color of composites after different finishing/polishing treatments and thermocycling using a multi-technique approach. Dent Mater J 35, 278-289.