What is a metric space?

Stephen Semmes
Rice University

Abstract
A metric space is a mathematical notion that includes classical Euclidean geometry and a variety of other situations. Some basic examples and their properties are briefly discussed.

Contents
1 The Euclidean plane 1
2 Abstract metric spaces 2
3 The real line 3
4 Back to the plane 3
5 Spheres and other surfaces 7
6 Intrinsic and extrinsic geometry 11
7 Non-Euclidean geometry 12
8 Symmetry 13
9 A nice little picture 14

1 The Euclidean plane
Let p and q be a pair of distinct points in a Euclidean plane. There is a unique line L in the plane passing through p and q. The distance $d(p,q)$
between p and q may be defined as the length of the line segment on L that connects p to q, as in Figure 1.

If x, y, and z are any three points in the plane, then

\begin{equation}
 d(x, z) \leq d(x, y) + d(y, z).
\end{equation}

This is known as the triangle inequality. If T is the triangle with vertices x, y, z, as in Figure 2, then (1) says that the length of the side of T connecting x to z is less than or equal to the sum of the lengths of the other two sides.

2 Abstract metric spaces

A metric space is a set M, which is to say a collection of some sort of objects, for which the distance $d(p, q)$ between any two elements p and q of M has been defined and satisfies certain conditions. Specifically,

\begin{equation}
 d(q, p) = d(p, q) \geq 0
\end{equation}
for every $p, q \in M$, with $d(p, q) = 0$ exactly when $p = q$, and the triangle inequality (1) should hold for every $x, y, z \in M$. Thus, ordinary Euclidean geometry on a plane is an example of a metric space. The distance function $d(p, q)$ is also known as a metric. On any set M, a metric can be defined by putting $d(p, q) = 1$ when $p \neq q$, called the discrete metric. If $(M, d(x, y))$ is a metric space, and E is a subset of M, then the restriction of $d(x, y)$ to $x, y \in E$ defines a metric on E. The triangle inequality and other requirements of a metric are automatically satisfied on E, since they hold on M.

3 The real line

The real line \mathbb{R} consists of all real numbers, as in Figure 3. If r is a real number, then the absolute value of r is denoted $|r|$ and defined by $|r| = r$ when $r \geq 0$ and $|r| = -r$ when $r \leq 0$. For every $r, t \in \mathbb{R}$,

$$|r + t| \leq |r| + |t|. \quad (3)$$

More precisely, $|r + t| = |r| + |t|$ when r or t is equal to 0, or when r and t have the same sign, and otherwise there is some cancellation in $r + t$. The standard distance between r and t can be defined by $d(r, t) = |r - t|$. In this case, the triangle inequality reduces to (3). For if $x, y,$ and z are arbitrary real numbers, then $x - z = (x - y) + (y - z)$, and therefore

$$|x - z| \leq |x - y| + |y - z|. \quad (4)$$

With this metric, the real line is equivalent to a line in Euclidean geometry.

4 Back to the plane

Points in a plane can also be described in terms of numbers, using Cartesian coordinates. More precisely, a point p in the plane can be represented by two real numbers p_1 and p_2, the first and second coordinates of p. Suppose that

$$p = (p_1, p_2) \quad \text{and} \quad q = (q_1, q_2) \quad (5)$$
are two points in the plane represented by pairs of numbers in this manner. The usual Euclidean distance \(d(p, q) \) between \(p \) and \(q \) is determined by the formula

\[
(6) \quad d(p, q)^2 = (p_1 - q_1)^2 + (p_2 - q_2)^2.
\]

This follows from the well-known Pythagorean theorem, which states that the length of the hypotenuse of a right triangle is equal to the sum of the squares of the lengths of the other two sides. Remember that the hypotenuse of a right triangle is the side opposite from the right angle. Here we can consider the triangle in the plane whose vertices are \(p, q, \) and the point corresponding to \((q_1, p_2)\), as in Figure 4. This is a right triangle whose hypotenuse is the line segment that connects \(p \) to \(q \), and whose other two sides are parallel to the coordinate axes and have lengths \(|p_1 - q_1|\) and \(|p_2 - q_2|\).

One can also look at the distance between \(p \) and \(q \) as in (5) defined by

\[
(7) \quad d'(p, q) = |p_1 - q_1| + |p_2 - q_2|.
\]

This satisfies the requirements of a metric space too, just like the Euclidean distance. This is not the same as the Euclidean distance, because the distance between \((0, 0)\) and \((1, 1)\) is \(\sqrt{2}\) in the Euclidean metric, and is equal to 2 with respect to (7). Another example is given by

\[
(8) \quad d''(p, q) = \max(|p_1 - q_1|, |p_2 - q_2|),
\]

which is to say that

\[
(9) \quad d''(p, q) = |p_1 - q_1| \quad \text{when} \quad |p_1 - q_1| \geq |p_2 - q_2|,
\]
and
\[d''(p, q) = |p_2 - q_2| \quad \text{when } |p_1 - q_1| \leq |p_2 - q_2|. \]

One can check that this satisfies the requirements of a metric space as well. Note that the distance between \((0, 0)\) and \((1, 1)\) is equal to 1 with respect to (8). The distance between \((0, 0)\) and \((1, 0)\) is equal to 1 with respect to each of these three metrics.

Let \(p \) be a point in the plane, and let \(r \) be a positive real number. The usual Euclidean circle in the plane with center \(p \) and radius \(r \) consists of the points \(q \) in the plane such that
\[d(p, q) = r, \]
where \(d(p, q) \) is the standard Euclidean distance, as in Figure 5. By contrast, the set of points \(q \) in the plane such that
\[d'(p, q) = r \]
has the shape of a diamond, as in Figure 6. Similarly, the set of \(q \) such that
\[d''(p, q) = r \]
is a square, as in Figure 7.

The metric \(d'(p, q) \) is sometimes called the “taxicab metric”, because it measures the minimum distance from \(p \) to \(q \) along a combination of horizontal and vertical segments, with no diagonal shortcuts. More precisely, it is customary to consider points whose coordinates are whole numbers, and to think of horizontal and vertical lines through these points as being like streets, as in Figure 8. Note that there can be more than one such path of minimal length between two points.
Figure 6: The set of points q such that $d'(p, q) = r$ has the shape of a diamond.

Figure 7: The set of points q such that $d''(p, q) = r$ has the shape of a square.

Figure 8: The taxicab metric measures distance between points in a grid by following horizontal and vertical segments.
The same idea can be applied to any collection of points connected by various paths, as in Figure 9. If x, y, and z are three of the points, then any route from x to y can be combined with a route from y to z to get a route from x to z. This means that the distance from x to z is less than or equal to the sum of the distances from x to y and from y to z, since this distance is defined by minimizing the lengths of paths between two points. Thus the triangle inequality holds automatically in this type of situation.

5 Spheres and other surfaces

Suppose now that M is a nice round two-dimensional sphere in ordinary three-dimensional Euclidean space. One way to measure distance between points on M is to simply use the Euclidean distance from the ambient three-dimensional space. Another way is to minimize lengths of paths on M. If p and q are distinct points on M, then the Euclidean distance between p and q is the same as the length of the line segment connecting p and q, which is not contained in M. It turns out that the path on M connecting p and q with minimal length is the short arc of a great circle passing through p and q. A great circle on a sphere is a circle with the same radius as the sphere, like longitudinal circles through the poles, or the equator. Equivalently, each circle on a sphere is the intersection of the sphere with a plane, and a great circle is the intersection of the sphere with a plane passing through the center of the sphere. If p and q are antipodal points on M, then there are infinitely many great circles passing through p and q. The arcs of these great circles
connecting \(p \) and \(q \) have the same length, which is one-half the circumference of the sphere. Otherwise, there is exactly one great circle on \(M \) passing through \(p \) and \(q \), and the shorter arc of this great circle connecting \(p \) and \(q \) is the path of minimal length on \(M \) connecting \(p \) and \(q \).

More generally, if \(M \) is a nice surface in three-dimensional Euclidean space, then one can consider the distance defined by minimizing lengths of paths on \(M \) between a given pair of points. Instead of a flat plane or a round sphere, \(M \) could be bumpy, like a golf ball. The shape of a path of minimal length depends on the geometry of the surface, and may not be so simple as a line segment, or a circular arc, or the intersection of \(M \) with a plane. There may be many paths of minimal length, as for antipodal points on a sphere.

Implicit in the discussion of the case of a sphere is a geometric fact that makes sense already in two dimensions: the length of the short arc of a circle between a fixed pair of points in a Euclidean plane decreases as the radius of the circle increases, as in Figure 10. One might also say that the curvature of the circle decreases as the radius increases, and that a line is like a circle with infinite radius and curvature zero. The same principle applies to circular arcs in three dimensions, by rotating an arc so that it lies in the same plane as another arc.

Why exactly does the length of a circular arc between two fixed points decrease as the radius of the circle increases? Here are a few ways to look at this question. It does not matter where the endpoints of the arcs are, and so we can suppose that they correspond to \(-1\) and \(1\) on the \(x\)-axis. Each circular arc can be described as the graph of a real-valued function on the interval \([-1, 1]\), and one can check that the magnitude of the slope of the tangent to a point on such an arc over a particular point in the interval decreases as the radius of the circle increases. This is pretty clear from the picture, and it implies that the length of the arc decreases as the radius increases.

Alternatively, we can reformulate the original statement by saying that the distance between two points on the unit circle divided by the length of
the shorter arc between them increases as the points move closer together. One can see that this is equivalent to the previous version by rescaling the picture. The length of the shorter arc determines an angle \(\theta \), \(0 < \theta \leq \pi \), and the distance between the two points is equal to \(2 \sin(\theta/2) \). Thus one would like to show that
\[
\frac{\sin t}{t}
\]
is monotone decreasing when \(0 < t \leq \pi/2 \), which can be treated as an exercise in calculus. Note that \(t = 0 \) can be included using the continuous extension of the ratio equal to 1 there.

As another approach, let \(C \) be a circle in the plane with center \(z \), and let \(E \) be the set of points on \(C \) or in the exterior of \(C \). By definition, the circular projection sends a point \(p \neq z \) in the plane to the element of \(C \) on the line segment connecting \(p \) to \(z \). If \(p \) and \(q \) are elements of \(E \), then the distance between their projections in \(C \) is less than or equal to their distance in the plane. In terms of vector calculus, the differential of the circular projection at any point \(p \in E \) corresponds to a linear mapping that does not increase the Euclidean norm of a vector. This implies that the length of any curve in \(E \) with endpoints on \(C \) is greater than or equal to the length of the shorter arc of \(C \) with the same endpoints, and applies in particular to circular arcs with endpoints on \(C \) associated to circles of smaller radius.

Let \(M \) be the unit sphere in three-dimensional Euclidean space, consisting of points whose distance to the origin is equal to 1, and let \(d(p, q) \) be the ordinary Euclidean distance between any two points \(p, q \in M \). For each \(p, q \in M \), \(0 \leq d(p, q) \leq 2 \), and there is a unique \(\tilde{d}(p, q) \in [0, \pi] \) such that
\[
\sin \left(\frac{\tilde{d}(p, q)}{2} \right) = \frac{d(p, q)}{2}.
\]
Equivalently, \(\tilde{d}(p, q) \) is the length of the shorter arc of a great circle on the unit sphere passing through \(p \) and \(q \). To show that this defines a metric on \(M \), we need to check that the triangle inequality
\[
\tilde{d}(p, r) \leq \tilde{d}(p, q) + \tilde{d}(q, r)
\]
holds for every \(p, q, r \in M \). Consider the set \(A \) of \(r' \in M \) with
\[
\tilde{d}(q, r') = \tilde{d}(q, r),
\]
which is the same as
\[(18) \quad d(q, r') = d(q, r).\]

Thus \(A\) is a circle, which reduces to a single point in the trivial cases where \(q\) and \(r\) are equal or antipodal. Let \(r_0\) be the point in \(A\) such that
\[(19) \quad d(p, r') \leq d(p, r_0)\]
for each \(r' \in A\), which is the same as
\[(20) \quad \tilde{d}(p, r') \leq \tilde{d}(p, r_0)\]
for every \(r \in A\). One can show that \(p, q,\) and \(r_0\) lie on a great circle, as in the next paragraph. The triangle inequality holds for points on a great circle, which is to say that
\[(21) \quad \tilde{d}(p, r_0) \leq \tilde{d}(p, q) + \tilde{d}(q, r_0).\]

Therefore
\[(22) \quad \tilde{d}(p, r) \leq \tilde{d}(p, r_0) \leq \tilde{d}(p, q) + \tilde{d}(q, r_0) = \tilde{d}(p, q) + \tilde{d}(q, r),\]
as desired. One can also check that equality holds in the triangle inequality only for points on a great circle.

In a Euclidean plane, the distance between a point \(x\) and elements of a circle is maximized and minimized on the intersection of the circle with the line through \(x\) and the center of the circle. The same holds for a point and a sphere in three-dimensional Euclidean space. Suppose that we have a point \(x\) and a circle in three-dimensional Euclidean space, where \(x\) is not on the plane of the circle. Let \(\tilde{x}\) be the projection of \(x\) onto the plane of the circle, which is to say that the line through \(x\) and \(\tilde{x}\) is perpendicular to the plane of the circle. The distance from \(x\) to an element of the circle can be expressed in terms of the distance from \(x\) to \(\tilde{x}\) and the distance from \(\tilde{x}\) to the point in question, by the Pythagorean theorem. Maximizing or minimizing the distance from the circle to \(x\) is hence the same as maximizing or minimizing the distance to \(\tilde{x}\), respectively. The maximum and minimum occur on the intersection of the circle with the line through \(\tilde{x}\) and the center of the circle, since \(\tilde{x}\) is on the plane of the circle. In terms of \(x\), the maximum and minimum occur on the plane passing through \(x\) and the center of the circle which is perpendicular to the circle. For the problem in spherical geometry in the previous paragraph, the Euclidean center of the circle \(A\) is on the line passing through \(q\) and
the origin, and the plane of \(A \) is perpendicular to this line. The plane that contains the origin, \(p \), and \(q \) also contains the Euclidean center of \(A \) and is perpendicular to the plane of \(A \), and so the distance from \(p \) to elements of \(A \) is maximized and minimized on the intersection of this plane with \(A \). Thus the maximum and minimum occur on a great circle through \(p \) and \(q \).

By construction,

\[
\text{d}(p, q) \leq \tilde{\text{d}}(p, q)
\]

for every \(p, q \in M \). The distances are practically the same locally, in the sense that for every \(\epsilon > 0 \) there is a \(\delta > 0 \) such that

\[
\tilde{\text{d}}(p, q) \leq (1 + \epsilon) \text{d}(p, q)
\]

when \(\text{d}(p, q) < \delta \), because

\[
\lim_{x \to 0} \frac{\sin x}{x} = 1.
\]

This means that the two metrics are the same “infinitesimally” at each point, and in particular that the length of a path in \(M \) is the same relative to either metric. One can use this to show that arcs of great circles with length \(\leq \pi \) are the paths of minimal length, since the length of a path is always greater than or equal to the distance between its endpoints. Hence the spherical metric \(\tilde{\text{d}}(p, q) \) is the same as the metric defined by minimizing lengths of paths in this case.

6 **Intrinsic and extrinsic geometry**

Let \(C \) be a nice smooth curve in the plane, as in Figure 11. Suppose that \(C \) is *simple*, i.e., without crossings. It may be that \(C \) is bounded, like a line segment or circular arc, or unbounded, like a line or ray. As in the previous section, the distance between two points \(p \) and \(q \) on \(C \) might be measured using the Euclidean metric from the plane, or using the length of the arc on \(C \) between \(p \) and \(q \). This is the path of minimal length on \(C \) connecting \(p \) to \(q \), which is more complicated on a surface, since the paths can move around more. As usual, the Euclidean distance between \(p \) and \(q \) is less than or equal to the length of the arc on \(C \) between them. Normally the inequality is strict, because of curvature. With respect to the distance defined by the length of arcs, \(C \) looks flat. Using a parameterization of \(C \) by arc length, as in vector calculus, \(C \) looks the same as if it were contained in a line relative to this
distance. Thus C may be intrinsically flat even if it is extrinsically curved. However, surfaces are typically curved intrinsically as well as extrinsically.

7 Non-Euclidean geometry

If L is a line in a Euclidean plane and p is a point in the plane not on L, then there is exactly one line L' in the plane passing through p and parallel to L. This is the famous *parallel postulate* in Euclidean geometry. A well-known question asked whether the parallel postulate could be derived from the other postulates. Eventually it was discovered that this is not possible, because there are non-Euclidean geometries in which the parallel postulate does not work while the other postulates hold. One of these is based on spherical geometry, with great circles playing the role of lines. More precisely, it is better to use projective space, where antipodal points in the sphere are identified. In this case, the problem with the parallel postulate is that great circles always intersect. In *hyperbolic geometry*, the problem with the parallel postulate is that there is more than one line through a point p that is parallel to a fixed line not containing p. Hyperbolic geometry can also be represented by a metric space, where arcs of “lines” minimize length and determine distance.
8 Symmetry

A basic question that one might ask about a metric space is what kind of symmetry it has. On the real line, for example, there are symmetries by translation. For each real number \(a \), one can translate every element of \(\mathbb{R} \) by \(a \) without changing the distances. For if \(\tau_a(x) = x + a \), then

\[
|\tau_a(x) - \tau_a(y)| = |(x + a) - (y + a)| = |x - y|
\]

for every \(x, y \in \mathbb{R} \). Similarly, if \(\rho(x) = -x \), then

\[
|\rho(x) - \rho(y)| = |(-x) - (-y)| = |y - x| = |x - y|
\]

for every \(x, y \in \mathbb{R} \). This is the reflection of \(\mathbb{R} \) about 0, and the reflection of \(\mathbb{R} \) about any other point preserves distances too. The reflection about any other point can also be expressed in terms of \(\rho \) and suitable translations.

Translation symmetries on the plane can be described similarly in coordinates by

\[
(x_1, x_2) \mapsto (x_1 + a_1, x_2 + a_2),
\]

where \(a_1, a_2 \in \mathbb{R} \). Reflection about the origin can be given by

\[
(x_1, x_2) \mapsto (-x_1, -x_2).
\]

One can reflect about the axes independently, as in

\[
(x_1, x_2) \mapsto (-x_1, x_2)
\]

and

\[
(x_1, x_2) \mapsto (x_1, -x_2),
\]

or about the line \(x_1 = x_2 \), as in

\[
(x_1, x_2) \mapsto (x_2, x_1).
\]

A remarkable feature of Euclidean geometry is that the metric is preserved by arbitrary rotations. This does not work for the metrics \(d'(p, q) \) and \(d''(p, q) \) defined in Section 4, although translations and the reflections just mentioned preserve these metrics.

For a two-dimensional round sphere in three-dimensional Euclidean space, there are symmetries by rotation about the center of the sphere. One can reflect about the center of the sphere, or about any plane through the center of the sphere. As in the previous examples, these symmetries are sufficient to move any point in the space to any other point in the space.
Figure 12: If $d(p, q) < r$ and $0 < t \leq r - d(p, q)$, then $B(q, t) \subseteq B(p, r)$.

9 A nice little picture

Let $(M, d(x, y))$ be a metric space. For each $p \in M$ and $r > 0$, $B(p, r)$ denotes the open ball in M with center p and radius r, defined by

$$B(p, r) = \{ x \in M : d(p, x) < r \}.$$ (33)

In the real line with the standard metric, this is the same as the open interval $(p - r, p + r)$. In a Euclidean plane, $B(p, r)$ is a round disk.

If $q \in B(p, r)$ and $0 < t \leq r - d(p, q)$, then

$$B(q, t) \subseteq B(p, r),$$ (34)

as in Figure 12. For if x is any element of $B(q, t)$, then $d(q, x) < t$, and

$$d(p, x) \leq d(p, q) + d(q, x) < d(p, q) + t \leq r,$$ (35)

by the triangle inequality. Thus $d(p, x) < r$, as desired. More precisely, Figure 12 shows a Euclidean plane and is suggestive of the general case.