Adjacent Context Coordination Network for Salient Object Detection in Optical Remote Sensing Images

Gongyang Li§, Zhi Liu§, Senior Member, IEEE, Dan Zeng§, Senior Member, IEEE, Weisi Lin¶, Fellow, IEEE, and Haibin Ling§, Senior Member, IEEE

Abstract—Salient object detection (SOD) in optical remote sensing images (RSIs), or RSI-SOD, is an emerging topic in understanding optical RSIs. However, due to the difference between optical RSIs and natural scene images (NSIs), directly applying NSI-SOD methods to optical RSIs fails to achieve satisfactory results. In this article, we propose a novel adjacent context coordination network (ACCoNet) to explore the coordination of adjacent features in an encoder–decoder architecture for RSI-SOD. Specifically, ACCoNet consists of three parts: 1) an encoder; 2) adjacent context coordination modules (ACCoMs); and 3) a decoder. As the key component of ACCoNet, ACCoM activates the salient regions of output features of the encoder and transmits them to the decoder. ACCoM contains a local branch and two adjacent branches to coordinate the multilevel features simultaneously. The local branch highlights the salient regions in an adaptive way, while the adjacent branches introduce global information of adjacent levels to enhance salient regions. In addition, to extend the capabilities of the classic decoder block (i.e., several cascaded convolutional layers), we extend it with two bifurcations and propose a bifurcation-aggregation block (BAB) to capture the contextual information in the decoder. Extensive experiments on two benchmark datasets demonstrate that the proposed ACCoNet outperforms 22 state-of-the-art methods under nine evaluation metrics, and runs up to 81 fps on a single NVIDIA Titan X GPU. The code and results of our method are available at https://github.com/MathLee/ACCoNet.

Index Terms—Adjacent context coordination, bifurcation-aggregation block (BAB), optical remote sensing images (RSIs), salient object detection (SOD).

I. INTRODUCTION

Salient object detection (SOD) aims at distinguishing and highlighting visually attractive objects/regions in a scene, which has been extended from natural scene images (NSIs) [1]–[3] to videos [4], image groups [5], RGB-D images [6], etc. It has many applications, such as object segmentation [7], [8]; object tracking [9], [10]; quality assessment [11], [12]; hyperspectral image classification [13]; etc. Recently, SOD has been extended to optical remote sensing images (RSIs) [14]–[22], and has produced encouraging results. For conciseness, in the remainder of this article, we use RSI-SOD for the task of SOD in optical RSIs.

During the past decades, SOD in NSIs [1]–[3], or NSI-SOD in short, has made a remarkable progress, especially when armed with deep learning techniques such as the convolutional neural network (CNN) [24]. Naturally, researchers will consider applying the mature NSI-SOD solutions to RSI-SOD. However, there are significant differences in shooting devices, scenes, and view orientations between NSIs and optical RSIs, resulting in differences in their resolutions, object types, and object scales [18], [20]. Consequently, direct migration of NSI-SOD solutions to RSI-SOD often leads to unsatisfactory performance. As shown in the last column of Fig. 1, GateNet [23], which is a representative CNN-based NSI-SOD method and retrained on optical RSIs, cannot highlight salient objects in optical RSIs completely.

The existing specialized methods for RSI-SOD can be divided into traditional methods and CNN-based methods. Traditional methods rely heavily on specific handcrafted features based on classical principles, such as color information content [14], sparse representation [15], saliency feature analysis [16], and self-adaptive multiple feature fusion [17]. They usually fail in complex scenes of optical RSIs. CNN-based methods focus on exploring effective feature interaction strategies to overcome the complex topology and unique scenes of optical RSIs. The nested network [18] fuses multiresolution features; the parallel down-up fusion network [19] focuses on the cross-path interaction, which is from low-level path/features to high-level path/features, between two adjacent

2168-2267 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
features; and the dense attention fluid network (DAFNet) \[20\] transfers shallow-layer attention cues of low-level features, which capture edge and texture information, to deep layers, that is, high-level features, which capture semantic and object location information. However, the influence of high-level features on low-level features is ignored, the coverage in feature interaction is insufficient, and the cascade structure of decoder blocks is plain, which may lead to incomplete exploitation of the contextual information in optical RSIs. As shown in the penultimate column of Fig. 1, the saliency maps of DAFNet \[20\], which is currently the best specialized method, lose sharp boundaries and finer details.

Inspired by the above observations, in this article, we propose a novel specialized solution for RSI-SOD, namely, adjacent context coordination network (ACCoNet), which focuses on coordinating adjacent features and capturing contextual information to adapt to diverse object types and object sizes in optical RSIs. Our key idea is to comprehensively explore the contextual information contained in adjacent features, expand the coverage of feature interaction, and improve the context capture capability of plain decoder blocks. Specifically, we consider features processing of three adjacent blocks (i.e., the current, previous, and subsequent blocks) in the backbone in a special module. This way, the previous and subsequent features can provide comprehensive global auxiliary information to the current features. Besides, we introduce bifurcations into plain decoder blocks to capture multiscale context and increase the feature diversity.

In particular, we implement our ACCoNet in an encoder–decoder architecture. ACCoNet is composed of an adjacent context coordination module (ACCoM) for three adjacent features and a bifurcation-aggregation block (BAB) for the decoder. ACCoM consists of three branches, one for local information and the other two for adjacent context. Specifically, the local branch is responsible for modulating and enhancing current features in an adaptive manner, while the other two adjacent branches are responsible for assisting current features with the previous and subsequent features through the previous-to-current and subsequent-to-current interactions. For BAB, we put a bifurcation after each cascaded convolutional layer, and then aggregate these bifurcations to capture diverse contexts. In this way, our ACCoNet achieves the best performance as compared with 22 state-of-the-art methods (an average \(S_{\alpha}\) of 93.64%, an average max \(F_{\beta}\) of 89.93%, and an average max \(E_{\xi}\) of 97.62% on two datasets), and generates the most accurate saliency maps, as exemplified in the middle column of Fig. 1.

Our main contributions are summarized as follows.

1) We explore the coordination of adjacent features in an encoder–decoder architecture for RSI-SOD, and propose a novel ACCoNet, which effectively promotes the interaction of adjacent features for comprehensive coordination and fully captures contextual information, outperforming previous methods on public benchmarks.

2) We propose an ACCoM to coordinate cross-scale interactions in the feature embedding provided by the encoder and to deliver the valuable information to the decoder.

3) We extend the cascade structure of classic decoder blocks to the bifurcation-aggregation structure, and propose a BAB to capture the multiscale contextual information in the decoder.

The remaining parts of this article are organized as follows. In Section II, we summarize the related works of NSI-SOD and RSI-SOD. In Section III, we elaborate our ACCoNet. In Section IV, we present the experiments and ablation studies of our ACCoNet. Finally, the conclusion is drawn in Section V.

II. RELATED WORK

In this section, we review the classic works of NSI-SOD and RSI-SOD, including traditional methods and CNN-based methods.

A. Salient Object Detection in NSIs

1) Traditional NSI-SOD Methods: SOD starts with NSIs \[25\], and a lot of traditional methods \[1\] have investigated hand-crafted features for NSI-SOD. Traditional NSI-SOD methods can be divided into three categories:

1) unsupervised methods \[25\]–\[34\];

2) semisupervised methods \[35\]; and

3) supervised methods \[36\].

Numerous principles and technologies have been proposed for unsupervised methods, such as center-surround differences \[25\]; the maximal entropy random walk \[26\]; the saliency tree \[27\]; the regularized random walks ranking \[28\], \[29\]; directional information \[30\]; the high-dimensional color transform \[31\]; the sparse graph \[32\]; the structured matrix decomposition \[33\]; the hybrid sparse learning \[34\]; etc. Compared with unsupervised methods, there are relatively fewer semisupervised and supervised methods in traditional methods. Zhou et al. \[35\] first utilized a boundary homogeneity model to generate pseudolabels. Then, based on a linear feedback control system model, they presented an iterative semisupervised learning framework to establish relationships between control states and saliency map. Liang and Hu \[36\] trained a support vector machine to select features through the supervised learning, which removes redundant features and speeds up model learning. Wang et al. \[37\] presented a supervised multiple-instance learning framework for saliency detection, which incorporates a set of low-, mid-, and
high-level features to comprehensively predict the scores of salient regions.

2) **CNN-Based NSI-SOD Methods:** Different from traditional methods, most CNN-based NSI-SOD methods [2], [3] are based on supervised learning, and they greatly improve the detection accuracy. A large number of well-known strategies of feature processing have been proposed, such as the multilevel and multiscale feature interaction [38], [39]; the feature suppress and balance [23]; the sparse and dense labeling aggregation [40]; the edge-aware feature fusion [41], [42]; and the global context-aware aggregation [43], [44]. In addition, many popular mechanisms in the deep learning community are applied to NSI-SOD, such as the deep supervision [45], [46]; the recurrent mechanism [47], [48]; the attention mechanism [44], [49]–[51]; the generative adversarial learning [52]; and the adversarial attack [53].

B. Salient Object Detection in Optical RSIs

As an emerging field, the SOD in optical RSIs, that is, RSI-SOD, has attracted more and more attention. Zhang et al. [14] first performed the color information content analysis on the input optical RSI to get the saliency scores of each color component, and then they constructed the saliency map based on these saliency scores. Zhao et al. [15] obtained low-level features via the global cues and background prior, and the sparse representation was introduced to transform low-level features via the global cues and background prior, called SOD. Zhang et al. [17] fused the features of color, intensity, texture, and global contrast adaptively based on the low-rank matrix recovery to generate the saliency map.

The proposed ACCoNet is based on the encoder–decoder architecture, which has shown outstanding ability in pixel-level prediction tasks, such as semantic segmentation [69], medical image segmentation [70], NSI-SOD [23], [43], and RGB-D SOD [71]–[73]. As shown in Fig. 2, ACCoNet consists of an encoder network, several ACCoM components, and a decoder network with BABs.

A. Network Overview and Motivation

The proposed ACCoNet is based on the encoder–decoder architecture, which has shown outstanding ability in pixel-level prediction tasks, such as semantic segmentation [69], medical image segmentation [70], NSI-SOD [23], [43], and RGB-D SOD [71]–[73]. As shown in Fig. 2, ACCoNet consists of an encoder network, several ACCoM components, and a decoder network with BABs.

1) **Encoder Network:** Following [69] and [71]–[73], we adopt the plain VGG-16 [74] as our basic encoder network, where the last max-pooling layer and three fully connected layers are truncated. As shown at the top of Fig. 2, our encoder network consists of five blocks, denoted by E_t ($t \in \{1, 2, 3, 4, 5\}$ is the block index), and we adopt the feature contained in two adjacent features to detect diversely scaled salient objects in optical RSIs. Zhang et al. [20] first established shallow-to-deep connections between different levels through dense attention fluid structure, and then they exploited global-context information to achieve feature alignment and reinforcement. Zhang and Ma [21] combined the weakly and fully supervised learning for RSI-SOD. They obtained pseudoannotations based on a classification network and the gradient-weighted class activation mapping to train the feedback saliency analysis network. Tu et al. [57] proposed a multiscale joint region and boundary model for RSI-SOD. Following [18], Zhou et al. [58] proposed a three inputs-based edge-aware feature integration network.

Aside from the above studies, there are some works on tasks related to RSI-SOD, such as airport detection [59]; building extraction [60]; residential areas extraction [61]; ship detection [62]; oil tank detection [63], [64]; and region-of-interest detection/extraction [65]–[68]. These methods show good performance in specific scenes of optical RSIs, but may not generalize well to various optical RSI scenes, resulting in poor performance in RSI-SOD.

As we know, the salient objects in optical RSIs usually have complex geometry structures, variable sizes, and uncertain quantities, and are often accompanied with occlusion, shadows, and abnormal illumination. The specialized methods mentioned above put forward meaningful solutions to the characteristics of optical RSIs. However, we believe that the contextual information in optical RSIs needs to be further explored, which is important to overcome these challenging scenes. We thoroughly explore the contextual information in both encoder and decoder of our ACCoNet. Concretely, the previous-to-current and subsequent-to-current feature interactions are established among three adjacent blocks in the encoder, and the cascade structure is updated to the bifurcation-aggregation structure in the decoder.
LI et al.: ACCoNet FOR RSI-SOD 529

First, the encoder network extracts the basic features at five scales. Then, these basic features are fed to five ACCoMs to coordinate the feature activation. Finally, the output contextual features of ACCoM are transmitted to the decoder, which employs BABs to further capture contextual information, for inferring the salient objects. Notably, in the training phase, we adopt the deep supervision strategy, and attach the pixel-level supervision to each decoder block. GT denotes ground truth.

2) Adjacent Context Coordination Module: Contextual information is crucial for RSI-SOD. It exists not only in one feature level but also in features at adjacent levels. Using convolutional layers with different convolution kernels in parallel is a popular strategy to capture local and global contents within one feature level. This is conducive to capturing salient objects with variable sizes or uncertain quantities in optical RSIs. Introducing feature interaction among features at adjacent levels is an effective strategy to capture cross-level contextual complementary information. This is effective for refining the details and determining the location of salient objects in optical RSIs. Thus motivated, we explore the above two kinds of contextual information with these two mentioned strategies. Since high-level features provide a lot of semantic clues and low-level features provide a lot of fine details, we coordinate cross-scale features from the current, previous, and subsequent blocks.

In practice, we design three branches (i.e., one local branch and two adjacent branches) in ACCoM. The local branch is based on the first strategy. Moreover, it is equipped with the attention mechanism for further feature modulation in an adaptive way. The two adjacent branches are based on the second strategy, and consist of the previous-to-current branch and the subsequent-to-current branch. Since that the previous and subsequent features are different in scale from the current features, the two adjacent branches provide cross-scale information via two spatial attention (SA) maps to align salient regions twice. Comprehensive coordination enables the proposed ACCoM to transmit valuable contextual information to the decoder. Notably, as shown in Fig. 2, for ACCoM-1 and ACCoM-5, due to their special position, we can only make one adjacent branch in them. We present ACCoM in detail in Section III-B, and assess its effectiveness in Section IV-C.

3) Bifurcation-Aggregation Block: The decoder network is in charge of inferring the salient objects. Generally, the classic decoder network [69], [70] is comprised of five plain decoder blocks, in which the convolutional layers are cascaded. However, the inference ability of the cascade structure depends more on the features transmitted by the encoder, and the cascade structure is not sensitive to the unique scenes of optical RSIs, which may damage the inference accuracy of salient objects of the decoder network. As previously mentioned, contextual information is crucial for RSI-SOD, so we further explore them in the decoder. We introduce dilated convolutions [75] as bifurcations after the first two cascaded blocks of the last convolutional layer of each block, that is, conv1-2, conv2-2, conv3-3, conv4-3, and conv5-3, denoted by $f^c_c \in \mathbb{R}^{h_t \times w_t \times c_t}$ ($c_t = \{64, 128, 256, 512, 512\}$), for subsequent processing. The input size of our encoder network is 256×256, so $h_t = (256/2^{t-1})$ and $w_t = (256/2^{t-1})$.
convolutional layers, and then aggregate the information from the two bifurcations and the original one via the concatenation-convolution operation. In this way, the bifurcation-aggregation structure enriches the topology of the decoder through two dilated convolutions, expands the receptive field of features, and captures rich contextual information, which is beneficial for inferring the salient objects. We present BAB in detail in Section III-C, and show its ablation studies in Section IV-C.

B. Adjacent Context Coordination Module

ACCoM is the key component in ACCoNet. It connects the encoder and the decoder, and its details are illustrated in Fig. 2. There are usually three branches in ACCoM (e.g., ACCoM-2, ACCoM-3 and ACCoM-4): one local branch (the middle one in ACCoM) and two adjacent branches (the left and right ones in ACCoM). While ACCoM-1 and ACCoM-5 only contain two branches: one local branch and one adjacent branch. Thus, we generally define the processing of ACCoM as \(F(\cdot) \), which is formulated as follows:

\[
F'_{\text{accom}} = \begin{cases}
F(f^t_e, f^{t+1}_e), & t = 1 \\
F(f^{-1}_e, f^t_e, f^{t+1}_e), & t = 2, 3, 4 \\
F(f^{-5}_e, f^t_e), & t = 5
\end{cases}
\]

(1)

where \(F'_{\text{accom}} \in \mathbb{R}^{h \times w \times c_l} \) is the output feature of ACCoM-\(t \), and \(f^{-1}_e, f^t_e, \) and \(f^{t+1}_e \) are the previous, current, and subsequent features, respectively.

1) Local Branch: The local branch operates on the current features \(f^t_e \in \mathbb{R}^{h \times w \times c_l} \), and contains two main operations. First, we apply four dilated convolutions [75] (rather than normal convolutional layers) with different dilation rates in parallel to \(f^t_e \), which are defined as follows:

\[
f_{dc}^{i} = \text{DConv}_{\sigma}(f^t_e; W_{3 \times 3}^{i}, r^i), \quad i \in \{1, 2, 3, 4\}
\]

(2)

where \(f_{dc}^{i} \in \mathbb{R}^{h \times w \times c_l} \) is the output feature of each dilated convolution, \(\text{DConv}_{\sigma}(\cdot;*,*,*) \) is the dilated convolution with batch normalization (BN) [76] and ReLU activation function \(\sigma \). \(W_{3 \times 3}^{i} \) is the parameters with \(3 \times 3 \) kernel, and \(r^i = i \) is the dilation rate. This can effectively traverse regions of different sizes in \(f^t_e \).

Then, we summarize these output features using the concatenation-convolution operation, obtaining features with rich contextual cues, that is, \(f^c_e \in \mathbb{R}^{h \times w \times c_l} \), which is defined as follows:

\[
f^c_e = \text{Conv}_{\sigma}(\text{Concat}(f_{dc}^{1}, f_{dc}^{2}, f_{dc}^{3}, f_{dc}^{4}); W_{3 \times 3})), \quad \text{where Concata}(\cdot) \quad \text{is the cross-channel concatenation, and Conv}_{\sigma}(\cdot;*,*) \quad \text{is the normal convolutional layer with BN and ReLU activation function. The subsequent operations in ACCoM are based on } f^c_e.
\]

(3)

However, the summary operation is relatively straightforward, resulting in some redundant information in \(f^c_e \). We adopt the subtle channel attention (CA) and SA [77], [78] to further purify \(f^c_e \) in an adaptive manner, which is formulated as follows:

\[
f_{\text{loc}} = \text{SA}(\text{CA}(f^c_e) \odot f^c_e) \odot f^c_e
\]

(4)

where \(f_{\text{loc}} \in \mathbb{R}^{h \times w \times c_l} \) is the output feature of the local branch, \(\odot \) is the channelwise multiplication, and \(\odot \) is the elementwise multiplication. Specifically, we implement CA with a spatially global max pooling (GMP), a fully connected layer with ReLU activation function and a fully connected layer with sigmoid activation function; and we implement SA with a channelwise GMP and a convolutional layer with the sigmoid activation function. Such an adaptive modulation process selects valuable contents from \(f^c_e \).

2) Adjacent Branch(es): The adjacent branches contribute two types of assistance to \(f^c_e \). The first one is the previous-to-current branch, which can be computed as

\[
f_{\text{pc}} = \text{SA}(\text{Down}(f^{-1}_e)) \odot f^c_e, \quad t = 2, 3, 4, 5
\]

(5)

where \(f_{\text{pc}} \in \mathbb{R}^{h \times w \times c_l} \) is the output feature of the previous-to-current branch, and Down(\cdot) is the \(2 \times 2 \) downsampling implemented by max-pooling. This branch brings alignment information with fine details to \(f^c_e \).

The second one is the subsequent-to-current branch, which can be computed as

\[
f_{\text{sc}} = \text{SA}(\text{Up}(f^{t+1}_e)) \odot f^c_e, \quad t = 1, 2, 3, 4
\]

(6)

where \(f_{\text{sc}} \in \mathbb{R}^{h \times w \times c_l} \) is the output feature of the subsequent-to-current branch, and Up(\cdot) is the \(2 \times 2 \) upsampling implemented by bilinear interpolation. This branch brings alignment information with object location to \(f^c_e \).

3) Branches Integration: After the above effective coordination, we integrate the output features of these three (or two) branches with the original current features as follows:

\[
F'_{\text{accom}} = \begin{cases}
\text{f}_{\text{loc}} \odot f_{\text{sc}} \odot f^c_e, & t = 1 \\
\text{f}_{\text{loc}} \odot (f_{\text{pc}} \odot f_{\text{sc}} \odot f^c_e), & t = 2, 3, 4 \\
\text{f}_{\text{loc}} \odot \text{f}_{\text{pc}} \odot f^c_e, & t = 5
\end{cases}
\]

(7)

where \(\odot \) is the elementwise summation and the original current features are regarded as the basic content. In summary, \(f^c_e \) is coordinated by various contents, which greatly enhances the robustness and stability of \(f'_{\text{accom}} \).

In Fig. 3, we visualize features in ACCoM-3. It shows that with all branches (i.e., \(f_{\text{loc}}, f_{\text{pc}}, \) and \(f_{\text{sc}} \)) working together, ACCoM accurately activates each salient region through comprehensive coordination, making the salient objects in \(f'_{\text{accom}} \) more obvious than those in \(f^c_e \).
TABLE I

Aspects	Dilated conv.	\(r^1 \)	\(r^2 \)	Output size
BAB-1	(3 x 3, 64, 64)	5	3	[256 x 256 x 64]
BAB-2	(3 x 3, 128, 128)	5	3	[128 x 128 x 128]
BAB-3	(3 x 3, 256, 256)	5	3	[64 x 64 x 256]
BAB-4	(3 x 3, 512, 512)	3	2	[32 x 32 x 512]
BAB-5	(3 x 3, 512, 512)	3	2	[16 x 16 x 512]

C. Bifurcation-Aggregation Block

BAB is the basic unit of the decoder. It processes the features from the current ACCoM and the previous BAB, and finally, infers the mask of salient objects. We define the processing of BAB as \(B(\cdot) \), which is formulated as follows:

\[
\begin{align*}
 f_{bab}^t &= \begin{cases}
 B(f_{accon}^t, \text{Deconv}(f_{bab}^{t+1})), & t = 1, 2, 3, 4 \\
 B(f_{accon}^t), & t = 5
 \end{cases}
\end{align*}
\]

where \(f_{bab}^t \) is the output feature of BAB-\(t \), and Deconv(\cdot) is the deconvolution layer with BN and ReLU activation function.

For convenience, we define the features generated by the three cascaded convolutional layers in BAB-\(t \) as \(f_{bif}^{t,l} \) (\(l \in \{1, 2, 3\} \)). So the output feature of two bifurcations (i.e., \(f_{bif}^{t,l} \)) can be computed as

\[
 f_{bif}^{t,l} = \text{DConv}_e \left(f_{bif}^{t,l}; \text{W}^{t,l}_{3x3} \right), \quad l = 1, 2
\]

in which we adopt the dilated convolution to expand the receptive field and capture contextual cues from \(f_{accon}^t \). In practice, considering the difference in feature resolution of each BAB, we set different dilation rates for rates of different BABs. The detailed parameters are shown in Table I.

Then, we adopt the concatenation-convolution operation to aggregate these two bifurcations and the original \(f_{bif}^{t,1} \) as

\[
 f_{bab}^t = \text{Conv}_e \left(\text{Concat} \left(f_{bif}^{t,1}, f_{bif}^{t,2}, f_{bif}^{t,3} \right); \text{W}^{t}_{3x3} \right).
\]

This way, BAB further scans regions with different sizes based on \(f_{accon}^t \) at the inference stage, which can be well adapted to the characteristics of changes in the shape, size, and quantity of salient objects in optical RSIs.

D. Loss Function

As shown at the bottom of Fig. 2, in the training phase, we attach the pixel-level supervision to each decoder block (i.e., the deep supervision strategy [79]) for quick convergency. Specifically, we arrange a convolutional layer after BAB-\(t \) to generate the intermediate/final saliency map, denoted as \(S' \). For \(S' \), we combine the pixel-level binary cross-entropy (BCE) loss with the map-level intersection-over-union (IoU) loss [73], [80] for comprehensive and complement content enhancement. We formulate the total loss function \(\mathbb{L} \) as

\[
 \mathbb{L} = \sum_{j=1}^{5} \left(L_{\text{box}}(\text{Up}(S'), \text{GT}) + L_{\text{IoU}}'(\text{Up}(S'), \text{GT}) \right)
\]

where \(L_{\text{box}}(\cdot, \cdot) \) is the BCE loss, \(L_{\text{IoU}}'(\cdot, \cdot) \) is the IoU loss, and \(\text{GT} \) is the ground truth. In this way, the deep supervision strategy with hybrid losses not only stabilizes our ACCoNet training process but also improves the detection accuracy.

IV. EXPERIMENTAL RESULTS

A. Experimental Protocol

1) Datasets: We evaluate the proposed method on two recently proposed datasets for RSI-SOD.

ORSSD [18] is the first publicly available dataset for RSI-SOD, collected from the Google Earth and some existing RSI datasets. It contains 800 optical RSIs and provides corresponding pixelwise annotation for each image. Among these optical RSIs, 600 images are used as training set and the remaining 200 images as testing set.

EORSSD [20] is the largest public dataset for RSI-SOD. It extends the original ORSSD dataset to 2000 images with corresponding pixelwise GTs. Among these, 1400 images are used as training set and 600 images as testing set.

2) Network Training Details: We implement the proposed ACCoNet by PyTorch [81] with an NVIDIA Titan X GPU. In the training and testing phases, the input optical RSIs are resized into 256 x 256. We adopt the parameters of the pre-trained VGG-16 model [74] to initialize the parameters of the encoder network in our ACCoNet, while the parameters of all other newly added layers are initialized by the normal distribution [82]. We set the initial learning rate to \(1e^{-4} \), and it will be divided by 10 after 30 epochs. Due to the limitation of GPU memory, we set the batch size to 6. We use the Adam optimizer [83] for network optimization. For data augmentation, we adopt the flipping and rotation, producing seven additional variants of the original training data. Specifically, on the EORSSD dataset [20], we train our ACCoNet with 11 200 augmented pairs for 39 epochs. On the ORSSD dataset [18], we train our ACCoNet with 4800 augmented pairs for 54 epochs.

3) Evaluation Metrics: We adopt nine widely used evaluation metrics, including S-measure (\(S_{\alpha}, \alpha = 0.5 \) [84], maximum, mean, and adaptive \(F \)-measure (\(F_\beta, \beta^2 = 0.3 \) [85], maximum, mean, and adaptive \(E \)-measure (\(E_\alpha \) [86], mean absolute error (MAE, \(M \)), and precision-recall (PR) curve, to comprehensively measure the performance of our ACCoNet and other compared methods. Specifically, S-measure simultaneously measures the region-aware and object-aware structural similarity. \(F \)-measure is the weighted harmonic mean of precision and recall, and we pay more attention to precision in this article. \(E \)-measure jointly considers the local pixel-level match information and the global image-level statistics. MAE evaluates the average pixel-level errors. PR curve presents the correlation between precision and recall. The evaluation tool provided by Fan et al. [6] is adopted by us for convenient evaluation.

\(^1\) http://dpfan.net/d3netbenchmark/
TABLE II
QUANTITATIVE COMPARISON OF OUR METHOD AND OTHER 22 STATE-OF-THE-ART METHODS, INCLUDING FIVE TRADITIONAL NSI-SOD METHODS, TEN CNN-BASED NSI-SOD METHODS, AND SEVEN RSI-SOD METHODS, ON TWO POPULAR DATASETS IN TERMS OF S-MEASURE, MAXIMUM, MEAN AND ADAPTIVE F-MEASURE, MAXIMUM, MEAN AND ADAPTIVE E-MEASURE, AND MAE. WE ALSO REPORT THE FRAMES PER SECOND (FPS) OF ALL METHODS. ↑ AND ↓ INDICATE LARGER AND SMALLER IS BETTER, RESPECTIVELY. THE TOP THREE RESULTS ARE MARKED IN RED, BLUE, AND GREEN, RESPECTIVELY. MEANS THE DEEP LEARNING-BASED METHOD. FOR SIMPLICITY, R3 IS R3N ET, POOL IS POOL NET, EG IS EGNET, MI IS M I N ET, GATE IS GATENET, LV IS LVNET, DAF IS DAFN ET, MJRB IS MJRBM, EMFI IS EMFIN ET, AND ACCO IS ACCONET.

Traditional NSI-SOD Methods	CNN-based NSI-SOD Methods	RSI-SOD Methods	Acca.																				
RRWR	HDCT	DSG	SMDDCR	DSS	RADI	R3	PFAN	Pool	EG	GC	MI	ITS	Gate	NOS	VOS	SC	MIF	EMF	DAF	MJRB	EMFI	ACCO	
2015	2016	2017	2017	2018	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017	
F	S	M	A	S	M	A	S	M	A	S	M	A	S	M	A	S	M	A	S	M	A	S	M
0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9		
10.3	10.3	10.3	10.3	10.3	10.3	10.3	10.3	10.3	10.3	10.3	10.3	10.3	10.3	10.3	10.3	10.3	10.3	10.3	10.3	10.3	10.3		
3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3		
7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7		
12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12		
25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25		
81	81	81	81	81	81	81	81	81	81	81	81	81	81	81	81	81	81	81	81	81	81		

B. Comparison With State of the Arts

1) Comparison Methods: Following the two popular RSI-SOD benchmarks [18], [20], we compare our method with 22 state-of-the-art NSI-SOD and RSI-SOD methods for a comprehensive evaluation. Concretely, these compared methods include five traditional NSI-SOD methods (RRWR [28], HDCT [31], DSG [32], SMDD [33], and CRDR [29]), ten CNN-based NSI-SOD methods (DSS [45], RADF [47], R3Net [48], PFAN [49], PoolNet [43], EGNet [41], GCPA [44], MINet [39], ITSD [42], and GateNet [23]), three traditional RSI-SOD methods (VOS [59], CMC [63], and SMFF [17]), and four recent CNN-based RSI-SOD methods (LVNet [18], DAFNet [20], MJRBM [57], and EMFINet [58]). Notably, except for GCPA [44], MINet [39], ITSD [42], and GateNet [23], the saliency maps of all the other compared methods are provided by Zhang et al. [20]2 and/or by the authors. Following [18] and [20], we fine-tune GCPA [44], MINet [39], ITSD [42], and GateNet [23] with their default hyperparameter settings using the same training data as our method on the two datasets.

2) Quantitative Comparison on EORSSD: We present the quantitative comparison of EORSSD [20] in terms of Sα, Fβ, Eξ, and M in the upper part of Table II. Among the eight metrics in Table II, our method ranks first in four metrics and second in other four metrics. Overall, on the EORSSD dataset, our method performs the best among all compared methods. EMFINet [58] is the best among the seven existing RSI-SOD methods, and GateNet [23] is the best among existing NSI-SOD methods. In comparison to EMFINet, our method performs marginally lower in terms of adp Fβ and adp Fβ. However, EMFINet by 1.17% on max Fβ. Compared with GateNet, our method greatly outperforms it by 2.71%, 3.24%, 5.41%, and 8.60% on max Fβ, mean Fβ, adp Eξ, and adp Fβ, respectively. In addition, we show the PR curve in Fig. 4(a), and our method is better than all compared methods.

3) Quantitative Comparison on ORSSD: The quantitative comparison of ORSSD [18] on eight metrics is shown at the bottom part of Table II, and the PR curve is shown in Fig. 4(b). Our method consistently outperforms all compared methods among all nine quantitative metrics. Notably, compared with the second best method, the performance gain of our method reaches 1.89% on adp Fβ, 1.47% on max Fβ, and 1.15% on mean Fβ. Among all the compared methods, ours is the only method whose M is lower than 0.0100, that is, 0.0088.

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on December 24,2022 at 02:52:23 UTC from IEEE Xplore. Restrictions apply.
According to the quantitative comparison on the two datasets, our method is the best method for RSI-SOD. In addition, comparing the specialized RSI-SOD methods and the NSI-SOD methods in the same period, we can find that the specialized methods are better than the NSI-SOD methods, which indicates that the development of specialized methods is necessary and urgent.

4) Visual Comparison: We show some qualitative results in Fig. 5, including several representative and challenging scenes of optical RSIs, such as object with shadows, tiny object, multiple objects, multiple tiny objects, and irregular geometry structure.

For the first scene, shadows are usually connected with salient objects, which will interfere with the detection and highlight inaccurate regions on the saliency map. We can clearly observe that in the second example, LVNet, GateNet, ITSD, CMC, and SMD are in this dilemma, but our method can highlight the plane more accurately.

The second scene is unique to optical RSIs and is different from the scene with the small object in NSIs. In this scene, optical RSIs contain much smaller object, that is, the tiny object. Such extreme scene invalidates traditional methods and two CNN-based NSI-SOD methods, that is, CMC, SMD, MINet, and GCPA. The first two methods detect wrong objects in the first example, and the latter two methods fail to detect any objects in the second example. Besides, other methods can only roughly determine the location of the tiny object but the details cannot be described well. Our method can capture the tiny object with fine details.

Scene with multiple objects has always been the difficulty of the SOD task. In the first example, MINet misses an object. Although other methods detect all objects, objects are incomplete. In the second example, due to the complexity of the scene, GateNet, ITSD, MINet, CMC, and SMD incorrectly detect more regions. On the contrary, our method locates all objects finely without any redundant regions.

The fourth scene is a combination of the second and third scenes, which puts forward higher requirements for the SOD method. All representative compared methods appear to miss

Fig. 5. Visual comparisons with eight representative state-of-the-art methods, including two CNN-based RSI-SOD methods (DAFNet [20] and LVNet [18]), four CNN-based NSI-SOD methods (GateNet [23], ITSD [42], MINet [39], and GCPA [44]), one traditional RSI-SOD method (CMC [63]), and one traditional NSI-SOD method (SMD [33]). Zoom-in for the best view, especially for tiny object and multiple tiny objects.
the detection of some objects, while our method distinguishes all tiny objects.

The last scene refers specifically to the river. Rivers often have very complex irregular geometric structures and span the entire image. They have different widths in different positions, which is not friendly to some methods, causing LVNet, ITSD, and MINet to detect only part of the river. Thanks to our method thoroughly explores the contextual information in both encoder and decoder, which is particularly advantageous for variable object scales, object shapes, and object quantities in optical RSIs, our method can overcome the above common and complex scenes in optical RSIs.

5) Speed Comparison: In Table II, we report the speed of 15 compared methods and ours. Our method reaches a fast processing speed of 81 fps on a GPU, which ranks first among 16 compared methods and is more than three times that of the second best method EFMINet (i.e., 25 fps). Based on the above comprehensive comparison, our method shows remarkable detection accuracy and astonishing speed.

C. Ablation Studies

In this section, we conduct thorough ablation studies on EORSSD [20] and ORSSD [18] to investigate the impact of the two vital components in our method. Specifically, we analyze: 1) the overall contributions of ACCoM and BAB in ACCoNet; 2) the effectiveness of two types of branches in ACCoM; 3) the rationality of the dilated convolution-based bifurcations in BAB; 4) the complementarity between BCE and IoU in loss function; and 5) the flexibility of our method.

To investigate the effectiveness of two types of branches in ACCoM, we provide two variants: 1) removing the local branch in ACCoM (i.e., w/o LB) and 2) removing the adjacent branches in ACCoM (i.e., w/o AB). The ablation results are reported in the third and fourth rows of Table IV.

We discover that the performances of w/o LB and w/o AB are worse than ours, which demonstrates that these two types of branches are effective. Concretely, on the ORSSD dataset, the performance of w/o LB is degraded, for example, max F_β: 90.46$\% \rightarrow 90.29$\%, \mathcal{M}: 0.0088 \rightarrow 0.0113, max E_ξ: 97.96$\% \rightarrow 96.91$\%, while the performance of w/o AB drops slightly, for example, max F_β: 91.49$\% \rightarrow 90.72$\%, \mathcal{M}: 0.0088 \rightarrow 0.0108, max E_ξ: 97.96$\% \rightarrow 97.39$\%. The same trend is only BABS (i.e., “Baseline+ACCoM”). Besides, the complete ACCoNet is “Baseline+ACCoM+BAB.” We report the quantitative results in Table III.

On the EORSSD dataset, we observe that “Baseline” only achieves 86.42$\%$ on max F_β, 0.0093 on \mathcal{M}, and 95.47$\%$ on max E_ξ. ACCoM increases “Baseline” by 1.76$\%$, 0.0017, and 1.26$\%$ on these three metrics, respectively, while BAB increases “Baseline” by 1.35$\%$, 0.0007, and 1.08$\%$ on these three metrics, respectively. With the joint cooperation of ACCoM and BAB, our complete ACCoNet improves “Baseline” by 1.95$\%$, 0.0017, and 1.80$\%$ on these three metrics, respectively. The trends on the ORSSD dataset are the same as that on the EORSSD dataset. Notably, our complete ACCoNet improves “Baseline” by 3.17$\%$, 0.0050, and 2.30$\%$ on max F_β, \mathcal{M}, and max E_ξ, respectively, which more clearly validates the effectiveness of each proposed module.

In addition, we show saliency maps of these three variants and our method in Fig. 6. In the first and second examples, “Ba” (i.e., “Baseline”) misses an object. In the first example, both ACCoM and BAB complete the missing object. Differently, in the second example, only BAB completes the missing object. This means that as long as ACCoM or BAB can complete the missing object, the complete ACCoNet (i.e., “Ours”) can get accurate saliency maps. In the third example, “Ba” mistakenly highlights the background region. BAB suppresses part of the background and ACCoM suppresses more background, resulting in a satisfactory saliency map of “Ours.” The above quantitative and qualitative analysis confirms that both ACCoM and BAB are important for ACCoNet, and the contextual information explored by these two modules is conducive to the detection of salient objects in optical RSIs.

2) Effectiveness of Two Types of Branches in ACCoM:

To investigate the effectiveness of two types of branches in ACCoM, we provide two variants: 1) removing the local branch in ACCoM (i.e., w/o LB) and 2) removing the adjacent branches in ACCoM (i.e., w/o AB). The ablation results are reported in the third and fourth rows of Table IV.

We discover that the performances of w/o LB and w/o AB are worse than ours, which demonstrates that these two types of branches are effective. Concretely, on the ORSSD dataset, the performance of w/o LB is degraded, for example, max F_β: 91.49$\% \rightarrow 90.29$\%, \mathcal{M}: 0.0088 \rightarrow 0.0113, max E_ξ: 97.96$\% \rightarrow 96.91$\%, while the performance of w/o AB drops slightly, for example, max F_β: 91.49$\% \rightarrow 90.72$\%, \mathcal{M}: 0.0088 \rightarrow 0.0108, max E_ξ: 97.96$\% \rightarrow 97.39$\%. The same trend is
TABLE IV
ABLATION RESULTS ON CONFIRMING THE EFFECTIVENESS OF TWO TYPES OF BRANCHES IN ACCoM AND THE RATIONALITY OF THE DILATED CONVOLUTION-BASED BIFURCATIONS IN BAB. THE BEST RESULT IN EACH COLUMN IS BOLD

Models	EORSSD [20]	ORSSD [18]
	max \(F_\beta \leq M \leq \max E_G \)	max \(F_\beta \leq M \leq \max E_G \)
ACCoNet (Ours)	88.37 .0074 .9727	91.49 .0088 .9796
w/o LB	88.00 .0079 .9681	90.29 .0113 .9691
w/o AB	88.30 .0075 .9704	90.72 .0108 .9739
w/o DC	88.31 .0075 .9727	91.16 .0093 .9790
w/o NC	88.34 .0074 .9716	91.44 .0090 .9783

w/o LB: ACCoM without local branch, w/o AB: ACCoM without adjacent branches. w/o DC: two bifurcations of BAB are direct connection operations. w/o NC: two bifurcations of BAB are normal convolutional layers.

Fig. 7. Visual examples of two variants, w/o LB and w/o AB.

observed on the EORSSD dataset. The reason is that the feature modulation of adjacent branches is based on \(f^c_e \), which belongs to the local branch. If we remove the local branch, the global assistance provided by two adjacent features will act on \(f^c_e \), which cannot exert the maximum effect of global assistance. Thus, we conclude that the local branch is the core of ACCoM.

Specifically, in Fig. 7, we show saliency maps of these two variants and our complete method to visually evaluate the role of the local branch and the adjacent branches. As shown in the first three examples of Fig. 7, the saliency maps of w/o LB miss objects in the case of multiple salient objects (the first two examples), and cannot detect the complete object in the case of large salient object (the third one). This is because after removing the local branch, the location information of salient objects will be reduced, resulting in two types of missed detections.

TABLE V
ABLATION STUDY ON EVALUATING THE COMPLEMENTARITY BETWEEN BCE AND IOU IN LOSS FUNCTION. THE BEST RESULT IN EACH COLUMN IS BOLD

No.	BCE	IoU	
	EORSSD [20]	ORSSD [18]	
	max \(F_\beta \leq M \leq \max E_G \)	max \(F_\beta \leq M \leq \max E_G \)	
1	✓	87.31 .0085 .9666	90.18 .0117 .9703
2	✓	88.01 .0081 .9711	90.27 .0105 .9747
3	✓	88.37 .0074 .9727	91.49 .0088 .9796

Differently, for the saliency maps of w/o AB, the salient objects are basically located accurately, but the details are not perfectly outlined, such as the regions occluded by the tree (the fourth one), the airplane tail (the fifth one), and the slender river (the last one). After removing the adjacent branches, the cross-level contextual complementary information is discarded, causing the damage of the salient object details. In summary, the local branch is good for scenes with multiple salient objects and large salient object, while the adjacent branches are good for scenes containing salient objects with fine details.

3) Rationality of the Dilated Convolution-Based Bifurcations in BAB: To validate the rationality of the dilated convolution-based bifurcations in BAB, we conduct two variants: 1) replacing dilated convolutions by direct connection operations (i.e., w/ DC) and 2) replacing dilated convolutions by normal convolutional layers (i.e., w/ NC). The ablation results are reported in the last two rows of Table IV.

In general, we find that the performance gap between these two variants and our original BAB is small. However, with direct connection operations, BAB cannot fully demonstrate its ability to capture contextual information, which leads to performance degradation, for example, max \(F_\beta \): 88.31\% (w/ DC) versus 88.37\% (Ours) on the EORSSD and 91.36\% (w/ DC) versus 91.49\% (Ours) on the ORSSD. The normal convolutional layers slightly improve the ability of BAB compared to direct connection operations, for example, max \(F_\beta \): 88.31\% (w/ DC) → 88.34\% (w/ NC) on the EORSSD and 91.36\% (w/ DC) → 91.44\% (w/ NC) on the ORSSD. In summary, the dilated convolution-based bifurcations can capture better various contextual information with different receptive fields in the decoder.

4) Complementarity Between BCE and IoU in Loss Function: To prove the complementarity between BCE and IoU in loss function, we provide two variants: 1) training our method with only BCE loss and 2) training our method with only IoU loss. We report the quantitative results in Table V.

As shown in Table V, training our ACCoNet with only BCE loss or IoU loss can achieve promising performance, but the performance of these two variants is worse than that of our complete loss function. This is because BCE loss is a pixel-level supervision, and IoU loss is a map-level supervision. The two losses train the network from different aspects, and they can complement each other. Combining the two losses to train our method together is conducive to keeping the completeness
of salient objects. This composite loss function is popular in the field of SOD [58], [73], [80].

5) Flexibility of Our Method: To demonstrate the flexibility of our method, we provide a variant, namely, ACCoNet-ResNet, which adopts ResNet-50 [87] as the encoder backbone, and report the performance in Table VI. As shown in Table VI, with the more powerful encoder backbone ResNet-50, the performance of ACCoNet-ResNet is improved on most evaluation metrics as compared with our original method, that is, ACCoNet-VGG in Table VI, whose encoder backbone is VGG-16. We can conclude that our method shows strong adaptability to different encoder backbones.

V. CONCLUSION

In this article, we investigated the contextual knowledge in an encoder-decoder architecture and proposed an effective ACCoNet for RSI-SOD. We believed that the contextual information is beneficial to tackle variable object scales, object shapes, and object quantities in RSI-SOD. In the encoder, we proposed the ACCoM to coordinate the adjacent features (i.e., the current, previous, and subsequent features) and explored adjacent information for salient regions activation. In the decoder, we proposed the BAB to capture the multiscale contents for salient regions inference. Both ACCoMs and BABs learn contextual information to improve the representation of salient objects. In particular, we employed the deep supervision with hybrid losses to stabilize the network training. Extensive experiments, including quantitative, visual, and speed comparisons and ablation studies, demonstrate that the proposed method is superior to 22 relevant state-of-the-art methods, and the two proposed modules contribute significantly to performance.

REFERENCES

[1] A. Borji, M.-M. Cheng, H. Jiang, and J. Li, “Salient object detection: A benchmark,” IEEE Trans. Image Process., vol. 24, pp. 5706–5722, 2015.
[2] A. Borji, M.-M. Cheng, Q. Hou, H. Jiang, and J. Li, “Salient object detection: A survey,” Comput. Vis. Media, vol. 5, no. 2, pp. 117–150, Jun. 2019.
[3] W. Wang, Q. Lai, H. Fu, J. Shen, H. Ling, and R. Yang, “Salient object detection in the deep learning era: An in-depth survey,” IEEE Trans. Pattern Anal. Mach. Intell., early access, Jan. 12, 2021, doi: 10.1109/TPAMI.2021.3051099.
[4] W. Wang, J. Shen, J. Xie, M.-M. Cheng, H. Ling, and A. Borji, “Revisiting video saliency prediction in the deep learning era,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 1, pp. 220–237, Jan. 2021.
[5] R. Cong, J. Lei, H. Fu, M.-M. Cheng, W. Lin, and Q. Huang, “Review of visual saliency detection with comprehensive information,” IEEE Trans. Circuits Syst. Video Technol., vol. 29, no. 10, pp. 2941–2959, Oct. 2019.
[6] D.-P. Fan, Z. Lin, Z. Zhang, M. Zhu, and M.-M. Cheng, “Rethinking RGB-D salient object detection: Models, data sets, and large-scale benchmarks,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 5, pp. 2075–2089, May 2021.
[7] G. Li, Z. Liu, R. Shi, and W. Wei, “Constrained fixation point based segmentation via deep neural network,” Neurocomputing, vol. 368, pp. 180–187, Nov. 2021.
[8] G. Li et al., “Personal fixations-based object segmentation with object localization and boundary preservation,” IEEE Trans. Image Process., vol. 30, pp. 1461–1475, 2021.
[9] S. Hong, T. You, S. Kwak, and B. Han, “Online tracking by learning discriminative saliency map with convolutional neural network,” in Proc. ICML, Jul. 2015, pp. 597–606.
[10] P. Zhang, W. Liu, D. Wang, Y. Lei, H. Wang, and H. Lu, “Nonrigid object tracking via deep multi-scale spatial-temporal discriminative saliency maps,” Pattern Recognit., vol. 100, Apr. 2020, Art. no. 107130.
[11] K. Gu et al., “Saliency-guided quality assessment of screen content images,” IEEE Trans. Multimedia, vol. 18, no. 6, pp. 1098–1110, Jun. 2016.
[12] S. Yang, Q. Jiang, W. Lin, and Y. Wang, “SGDNet: An end-to-end saliency-guided deep neural network for no-reference image quality assessment,” in Proc. ACM MM, Oct. 2019, pp. 1383–1391.
[13] Q. Wang, J. Lin, and Y. Yuan, “Salient band selection for hyperspectral image classification via manifold ranking,” IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 6, pp. 1279–1289, Jun. 2016.
[14] L. Zhang, S. Wang, and X. Li, “Salient region detection in remote sensing images based on context information,” in Proc. IEEE IGARSS, Jul. 2015, pp. 1877–1880.
[15] D. Zhao, J. Wang, J. Shi, and Z. Jiang, “Sparsity-guided saliency detection for remote sensing images,” J. Appl. Remote Sens., vol. 9, no. 1, pp. 1–14, Sep. 2015.
[16] L. Zhang, Y. Wang, and Y. Sun, “Salient target detection based on the combination of super-pixel and statistical saliency feature analysis for remote sensing images,” in Proc. IEEE ICIP, Oct. 2018, pp. 2336–2340.
[17] L. Zhang, Y. Liu, and J. Zhang, “Saliency detection based on self-adaptive multiple feature fusion for remote sensing images,” Int. J. Remote Sens., vol. 40, no. 22, pp. 8270–8297, May 2019.
[18] C. Li, R. Cong, J. Hou, S. Zhang, Y. Qian, and S. Kwong, “Nested network with two-stream pyramid for salient object detection in optical remote sensing images,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 11, pp. 9156–9166, Nov. 2019.
[19] C. Li et al., “A parallel down-up fusion network for salient object detection in optical remote sensing images,” Neurocomputing, vol. 415, pp. 411–420, Nov. 2020.
[20] Q. Zhang et al., “Dense attention fluid network for salient object detection in optical remote sensing images,” IEEE Trans. Image Process., vol. 31, pp. 1305–1317, 2021.
[21] L. Zhang and J. Ma, “Salient object detection based on progressively supervised learning for remote sensing images,” IEEE Trans. Geosci. Remote Sens., vol. 59, no. 11, pp. 9682–9696, Nov. 2021.
[22] G. Li, Z. Liu, W. Lin, and H. Ling, “Multi-content complementation network for salient object detection in optical remote sensing images,” IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1–13, Feb. 2022.
[23] X. Zhao, Y. Pang, L. Zhang, H. Lu, and L. Zhang, “Suppress and balance: A simple gated network for salient object detection,” in Proc. ECCV, Aug. 2020, pp. 35–51.
[24] Y. LeCun et al., “Backpropagation applied to handwritten zip code recognition,” Neural Comput., vol. 1, no. 4, pp. 541–551, Dec. 1989.
[25] L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual attention for rapid scene analysis,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 11, pp. 1254–1259, Nov. 1998.
[26] J.-G. Yu, J. Zhao, J. Tian, and Y. Tan, “Maximal entropy random walk for region-based visual saliency,” IEEE Trans. Image Process., vol. 23, pp. 1937–1952, 2014.
[27] C. Li, Y. Yuan, W. Cai, Y. Xia, and D. D. Feng, “Robust saliency detection via regularized random walks ranking,” in Proc. IEEE CVPR, Jun. 2015, pp. 2710–2717.
[28] C. Yu, L. Cui, L. Li, W. Cai, and D. D. Feng, “Reversion correction and regularized random walk ranking for saliency detection,” IEEE Trans. Image Process., vol. 27, pp. 1311–1322, 2018.
[29] M. Jian, K.-M. Lam, J. Dong, and L. Shen, “Visual-patch-attention-aware saliency detection,” IEEE Trans. Cybern., vol. 45, no. 8, pp. 1575–1586, Aug. 2015.
Salient region detection via high-dimensional color transform and local spatial support,” *IEEE Trans. Image Process.*, vol. 25, pp. 9–23, 2016.

L. Zhou, Z. Yang, Z. Zhou, and D. Hu, “Salient region detection using diffusion process on a two-layer spare graph,” *IEEE Trans. Image Process.*, vol. 26, pp. 5882–5894, 2017.

H. Peng, W. Hu, W. Xiong, and S. J. Maybank, “Salient object detection via structured matrix decomposition,” *IEEE Trans. Pattern Anal. Mach. Intell.*, vol. 39, no. 4, pp. 818–832, Apr. 2017.

S. Wang, S. Yang, M. Wang, and L. Jiao, “New contour cue-based hybrid sparse learning for salient object detection,” *IEEE Trans. Cybern.*, vol. 51, no. 8, pp. 4212–4226, Aug. 2021, doi: 10.1109/TCYB.2021.3084182.

Y. Zhou, S. Huo, W. Xiang, C. Hou, and S.-Y. Kung, “Semi-supervised salient object detection using a linear feedback control system model,” *IEEE Trans. Cybern.*, vol. 49, no. 4, pp. 1173–1185, Apr. 2019.

M. Liang and X. Hu, “Feature selection in supervised saliency prediction,” *IEEE Trans. Cybern.*, vol. 45, no. 5, pp. 914–926, May 2015.

Q. Wang, Y. Yuan, P. Yan, and X. Li, “Saliency detection by multiple-instance learning,” *IEEE Trans. Cybern.*, vol. 43, no. 2, pp. 660–672, Apr. 2013.

M. Huang, Z. Liu, L. Ye, X. Zhou, and Y. Wang, “Saliency detection via multi-level integration and multi-scale fusion neural networks,” *Neurocomputing*, vol. 364, pp. 310–321, Oct. 2019.

Y. Pang, X. Zhao, L. Zhang, and H. Lu, “Multi-scale interactive network for salient object detection,” in *Proc. IEEE CVPR*, Jun. 2020, pp. 9410–9419.

K. Yan, X. Wang, J. Kim, and D. Feng, “A new aggregation of DNN sparse and dense labeling for saliency detection,” *IEEE Trans. Cybern.*, vol. 51, no. 12, pp. 5907–5920, Dec. 2021.

J. Zhao, J.-J. Liu, D.-P. Fan, Y. Cao, J. Yang, and M.-M. Cheng, “E3Net: Edge guidance network for salient object detection,” in *Proc. IEEE ICCV*, Oct. 2019, pp. 3779–8788.

H. Zhou, X. Xie, J.-H. Lai, Z. Chen, and L. Yang, “Interactive two-stream decoder for accurate and fast saliency detection,” in *Proc. IEEE CVPR*, Jun. 2020, pp. 9138–9147.

J.-J. Liu, Q. Hou, M.-M. Cheng, J. Feng, and J. Jiang, “A simple pooling-based design for real-time salient object detection,” in *Proc. IEEE CVPR*, Jun. 2019, pp. 3912–3921.

Z. Chen, Q. Xu, R. Cong, and Q. Huang, “Global context-aware progressive aggregation network for salient object detection,” in *Proc. AAAI*, Feb. 2020, pp. 10599–10606.

Q. Hou, M.-M. Cheng, X. Hu, A. Borji, Z. Tu, and P. Torr, “Deeply supervised salient object detection with short connections,” in *Proc. IEEE CVPR*, Jul. 2017, pp. 5300–5309.

Y. Liu, M.-M. Cheng, X.-Y. Zhang, G.-Y.Nie, and M. Wang, “DNA: Deeply supervised nonlinear aggregation for salient object detection,” *IEEE Trans. Cybern.*, early access, Feb. 2, 2021, doi: 10.1109/TCYB.2021.3051350.

X. Hu, L. Zhu, J. Qin, C.-W. Fu, and P.-A. Heng, “Recursively aggregating deep features for salient object detection,” in *Proc. AAAI*, Feb. 2018, pp. 6943–6950.

Z. Deng et al., “R3Net: Recurrent residual refinement network for saliency detection,” in *Proc. IJCAI*, Jul. 2018, pp. 684–690.

T. Zhao and X. Wu, “Pyramid feature attention network for saliency detection,” in *Proc. IEEE CVPR*, Jun. 2019, pp. 3080–3089.

J. Li, Z. Pan, Q. Liu, Y. Cui, and Y. Sun, “Complementarity-aware attention network for salient object detection,” *IEEE Trans. Cybern.*, vol. 50, no. 2, pp. 1783–8766, Feb. 2022.

S. Chen, B. Wang, X. Tan, and X. Hu, “Embedding attention and residual network for accurate salient object detection,” *IEEE Trans. Cybern.*, vol. 50, no. 5, pp. 2050–2062, May 2020.

Y. Wu, Z. Liu, and X. Zhou, “Saliency detection using adversarial learning networks,” *J. Vis. Commun. Image Represent.*, vol. 67, Feb. 2020, Art. no. 101278.

H. Li, G. Li, and Y. Yu, “ROSIA: Robust salient object detection against adversarial attacks,” *IEEE Trans. Cybern.*, vol. 50, no. 11, pp. 4835–4847, Nov. 2020.

H. Li, G. Li, B. Yang, G. Chen, L. Lin, and Y. Yu, “Depthwise nonlocal module for fast salient object detection using a single thread,” *IEEE Trans. Cybern.*, vol. 51, no. 12, pp. 6188–6199, Dec. 2021.

Y. Liu, Y.-C. Gu, X.-Y. Zhang, W. Wang, and M.-M. Cheng, “Lightweight salient object detection via hierarchical visual perception learning,” *IEEE Trans. Cybern.*, vol. 51, no. 9, pp. 4439–4449, Sep. 2021.
Gongyang Li received the B.E. degree from Shanghai Normal University, Shanghai, China, in 2016. He is currently pursuing the Ph.D. degree with the School of Communication and Information Engineering, Shanghai University, Shanghai.

His research interests include image/video object segmentation and saliency detection.

Zhi Liu (Senior Member, IEEE) received the B.E. and M.E. degrees from Tianjin University, Tianjin, China, in 1999 and 2002, respectively, and the Ph.D. degree from the Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, China, in 2005.

He is currently a Professor with the School of Communication and Information Engineering, Shanghai University, Shanghai. From August 2012 to August 2014, he was a Visiting Researcher with the SIROCCO Team, IRISA/INRIA, Rennes, France, with the support by EU FP7 Marie Curie Actions. He has published more than 200 refereed technical papers in international journals and conferences. His research interests include image/video processing, machine learning, computer vision, and multimedia communication.

Prof. Liu was a TPC Member/Session Chair of ICIP 2017, PCMS 2016, VCIP 2016, ICME 2014, and WIAMIS 2013. He co-organized special sessions on visual attention, saliency models, and applications at WIAMIS 2013 and ICME 2014. He is an Area Editor of Signal Processing: Image Communication and served as a Guest Editor for the special issue on Recent Advances in Saliency Models, Applications, and Evaluations in Signal Processing: Image Communication.

Dao Zeng (Senior Member, IEEE) received the B.S. degree in electronic science and technology and the Ph.D. degree in circuits and systems from the University of Science and Technology of China, Hefei, China, in 2003 and 2008, respectively.

She is a Full Professor and the Dean of the Department of Communication Engineering and the Computer Vision and Pattern Recognition Lab, Shanghai University, Shanghai, China. Her main research interests include computer vision, multimedia analysis, and machine learning.

Weisi Lin (Fellow, IEEE) received the Ph.D. degree from King’s College London, London, U.K., in 1993.

He is currently a Professor with the School of Computer Science and Engineering, Nanyang Technological University, Singapore. His research interests include image processing, visual quality evaluation, and perception-inspired signal modeling, with more than 340 refereed papers published in international journals and conferences.

Prof. Lin has been on the Editorial Board of the IEEE TRANSACTIONS ON IMAGE PROCESSING, IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, IEEE TRANSACTIONS ON MULTIMEDIA, IEEE SIGNAL PROCESSING LETTERS, and Journal of Visual Communication and Image Representation. He was a Distinguished Lecturer of the IEEE Circuits and Systems Society from 2016 to 2017 and the Asia-Pacific Signal and Information Processing Association from 2012 to 2013. He was a Technical-Program Chair for Pacific-Rim Conference on Multimedia 2012, the IEEE International Conference on Multimedia and Expo 2013, and the International Workshop on Quality of Multimedia Experience 2014. He is a Fellow of IET and an Honorary Fellow of the Singapore Institute of Engineering Technologists.

Haibin Ling (Senior Member, IEEE) received the B.S. and M.S. degrees from Peking University, Beijing, China, in 1997 and 2000, respectively, and the Ph.D. degree from the University of Maryland at College Park, College Park, MD, USA, in 2006.

From 2000 to 2001, he was an Assistant Researcher with Microsoft Research Asia, Beijing. From 2006 to 2007, he worked as a Postdoctoral Scientist with the University of California at Los Angeles, Los Angeles, CA, USA. In 2007, he joined Siemens Corporate Research, Princeton, NJ, USA, as a Research Scientist; then, from 2008 to 2019, he worked as a Faculty Member with the Department of Computer Sciences, Temple University, Philadelphia, PA, USA. In Fall 2019, he joined Stony Brook University, Stony Brook, NY, USA, as a SUNY Empire Innovation Professor with the Department of Computer Science. His research interests include computer vision, augmented reality, medical image analysis, and human–computer interaction.

Dr. Ling received the Best Student Paper Award at ACM UIST 2003, the Best Journal Paper Award at IEEE VR 2021, the NSF CAREER Award in 2014, the Yahoo Faculty Research and Engagement Award in 2019, and the Amazon Machine Learning Research Award in 2019. He serves as an Associate Editor for several journals, including IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, Pattern Recognition, and Computer Vision and Image Understanding. He has served as an Area Chair various times for CVPR and ECCV.