Momentum transfer across shear flows in Smoothed Particle Hydrodynamic simulations of galaxy formation

T. Okamoto1*, A. Jenkins1, V. R. Eke1, V. Quilis2, and C. S. Frenk1

1Institute for Computational Cosmology, Physics Department, Durham University, South Road, Durham DH1 3LE, UK
2Departament d’Astronomia i Astrofísica, Universitat de València, 46100-Burjassot (Valencia), Spain

ABSTRACT

We investigate the evolution of angular momentum in Smoothed Particle Hydrodynamic (SPH) simulations of galaxy formation, paying particular attention to artificial numerical effects. We find that a cold gas disc forming in an ambient hot gas halo receives a strong hydrodynamic torque from the hot gas. By splitting the hydrodynamic force into artificial viscosity and pressure gradients, we find that the angular momentum transport is caused not by the artificial viscosity but by the pressure gradients. Using simple test simulations of shear flows, we conclude that the pressure gradient-based viscosity can be divided into two components: one due to the noisiness of SPH and the other to ram pressure. The former is problematic even with very high resolution because increasing resolution does not reduce the noisiness. On the other hand, the ram pressure effect appears only when a cold gas disc or sheet does not contain enough particles. In such a case, holes form in the disc or sheet, and then ram pressure from intra-hole hot gas, causes significant deceleration. In simulations of galactic disc formation, star formation usually decreases the number of cold gas particles, and hole formation leads to the fragmentation of the disc. This fragmentation not only induces further angular momentum transport, but also affects star formation in the disc. To circumvent these problems, we modify the SPH algorithm, decoupling the cold from the hot gas phases, i.e. inhibiting the hydrodynamic interaction between cold and hot particles. This, a crude modelling of a multi-phase fluid in SPH cosmological simulations, leads to the formation of smooth extended cold gas discs and to better numerical convergence. The decoupling is applicable in so far as the self-gravitating gas disc with negligible external pressure is a good approximation for a cold gas disc.

Key words: hydrodynamics – methods: numerical – galaxies: formation – galaxies: evolution.

1 INTRODUCTION

Understanding the formation of galactic discs is one of the most important, unsolved problems in astrophysics. In the currently favoured cold dark matter (CDM) cosmological framework, in which structure builds up hierarchically (Davis et al. 1985), discs are assumed to form in the potential wells of virialised dark matter halos through radiative cooling (White & Rees 1978; Fall & Efstathiou 1980; Dalcanton, Spergel & Summers 1997; Mo, Mao & White 1998; van den Bosch 2001). In this scenario, baryons are required to retain most of the angular momentum imparted to them by tidal torques in order for the resulting centrifugally supported discs to have realistic sizes. The conservation of gas angular momentum is an important assumption made in semi-analytic modelling of disc formation (Kauffmann, White & Guiderdoni 1993; Somerville & Primack 1999; Cole et al. 2000; Nagashima et al. 2001; Okamoto & Nagashima 2003).

However, to date, numerical simulations of galaxy formation starting from appropriate CDM initial conditions, and allowing just radiative cooling of the gas and no star formation or feedback, find that the infalling gas loses too much angular momentum. This problem is commonly called “the angular momentum problem”. The angular momentum losses arise during the hierarchical clustering process. At early times in a CDM dominated universe, small dense dark matter halos form. Radiative cooling is very efficient in these objects and a large fraction of the gas cools into them. As these gas rich halos merge to form larger halos their incoming orbital angular momentum is drained by dynamical friction and exported to the dark matter at the outskirts of the new halos. Much of the original angular momentum of the gas is lost through these processes by the time it reaches the middle and forms a disc.
Weil, Eke & Efstathiou (1998) and Eke, Efstathiou & Wright (2001) have shown that if cooling is suppressed until the host halos are well established, then the numerical simulations yield much larger discs. Two ideas have been suggested which might prevent the early collapse of small proto-galactic gas clouds. One is that cooling may be suppressed by feedback due to energy injected by stellar winds and supernovae. Simulations invoking very energetic feedback have illustrated the possibility of resolving the angular momentum problem in this way. Thacker & Couchman (2001); Sommer-Larsen, Götz & Portinari (2003). The second idea that has been suggested to prevent the formation of small proto-galactic clouds is to invoke an alternative form of dark matter, “warm dark matter,” in which case the initial density field does not have small scale fluctuations (Pagels & Primack 1983). Sommer-Larsen & Dolgov (2001) and Governato et al. (2002) have shown that galaxies formed in this model have larger discs and smaller bulges than in simulations with CDM. The angular momentum problem is potentially a strong clue which can help unravel the processes of galaxy formation and the complicated star formation and feedback processes involved. For this to be possible, however, we must be careful to understand the role of any numerical effects which may be important in determining the outcome of galaxy formation simulations.

Smoothed particle hydrodynamics (SPH) has been widely used to study galaxy formation (e.g. Katz, Hernquist & Weinberg 1992; Evrard, Summers & Davis 1994; Navarro, Frenk & White 1995; Steinmetz & Navarro 1999; Thacker & Couchman 2000; Steinmetz & Navarro 2002), both because its fully Lagrangian nature is suited to problems that need a wide dynamic range like galaxy formation, and because of its simplicity and robustness which make it easy to incorporate into N-body codes. Despite these attractive features, there are problems. First of all, most of the SPH implementations utilise an artificial viscosity to capture shocks (but see also Inutsuka 2002). This artificial viscosity can introduce numerical momentum and angular momentum transport, and spurious energy dissipation. Indeed, Sommer-Larsen & Dolgov (2001) found that the angular momentum of a simulated galaxy increased when they used higher resolution. Another problem arises from SPH’s intrinsic smoothing properties. Since SPH represents a fluid element by smoothing over neighbouring particles, it is not well suited for treating large density and velocity gradients. This can be a serious problem when a cold gas disc forms through radiative cooling in an ambient hot gas at the virial temperature. In this situation, the cold gas disc is much denser than the hot gas and generally rotates faster than the ambient hot medium. In addition, because star formation can lead to a decrease in the number of particles in the disc (∼90% of baryonic matter becomes stars in a disc), the effective spatial resolution degrades with time, an effect which may play an important role at low redshift.

In this paper we investigate angular momentum transfer from a cold gas disc to the hot halo gas and its effect on the simulation outcomes. Although alternative techniques based on Eulerian approaches coupled with a grid refinement scheme — Adaptive Mesh Refinement (AMR) — have been recently implemented in Cosmology (Abel, Bryan & Norman 2000; Teissier 2004, and references therein), we concentrate here on numerical effects in SPH simulations of galaxy formation because SPH is by far the most widely used method in this area.

The outline of this paper is as follows. A brief description of our simulation code is given in Section 2. In Section 3, we carry out cosmological simulations of disc formation in a virialised halo, and then demonstrate there is angular momentum transfer from the cold gas disc to the ambient hot gas. A forensic study is performed in Section 4 using simplified simulations to find the source of the problem and the dependence on the numerical resolution. In Section 5 we propose that decoupling of cold gas from ambient hot gas can avoid the problems found in earlier sections. The effect of the decoupling is shown using simplified simulations and cosmological simulations. The results are summarised and discussed in Section 6.

2 THE CODE

We use a modified and extended version of the parallel TreeSPH code GADGET (Springel, Yoshida & White 2001). Unless otherwise specified, we will use the novel formulation of SPH that manifestly conserves energy and entropy when appropriate (Springel & Hernquist 2002) throughout this paper. As shown in Springel & Hernquist (2002), this formulation greatly reduces numerical inaccuracies compared to the more commonly used formulations.

GADGET employs an artificial viscosity which is the shear-reduced version (Balsara 1995; Steinmetz 1996) of the “standard” Monaghan & Gingold (1983) artificial viscosity. Lombardi et al. (1999) and Thacker et al. (2000) endorsed this form of the artificial viscosity. We set the parameter α that appears in Eq. 27 of Springel, Yoshida & White (2001) to 0.75. We have checked that the choice of the value of this parameter hardly affects our results.

We also modify the gradient of the smoothing kernel from the public version of GADGET according to Thomas & Couchman (1995) to overcome the clumping instability (Schüssler & Schmit 1981). GADGET adopts the kernel, W, so-called \(B_2 \)-spline (Monaghan 1983)

\[
W(r, h) = \frac{8}{\pi h^3} \begin{cases}
1 - 6u^2 + 6u^3 & \text{for } 0 \leq u \leq \frac{1}{2}, \\
2(1 - u)^3 & \text{for } \frac{1}{2} < u \leq 1, \\
0 & \text{for } u > 1,
\end{cases}
\]

where \(r \) and \(h \) are the particle separation and smoothing length, respectively, and \(u = r/h \). Note that the smoothing kernel is defined over the interval [0, h] and not [0, 2h] as is more common. The kernel gradient vanishes at \(u = 0 \), i.e. the pressure gradient forces between two close SPH particles vanishes in the limit of small separation. We modify the gradient for \(u \leq \frac{1}{3} \) so that even close pairs of SPH particles continue to repel each other, but leave the kernel itself unchanged,

\[
\frac{dW}{du} = \frac{dW}{du} \left(u = \frac{1}{3} \right) = -\frac{16}{\pi h^3}, \quad u \leq \frac{1}{3},
\]

Except in cosmological simulations, where we solve for the ionisation, we assume a fixed mean molecular weight, \(\mu = 0.59 \), corresponding to a fully ionised gas of primordial composition. We use the adiabatic index, \(\gamma = 5/3 \) throughout this paper.

3 COSMOLOGICAL SIMULATIONS OF DISC FORMATION

In order to study disc formation and to concentrate on the investigation of numerical angular momentum transfer, we wish to avoid the physical angular momentum losses which occur during hierarchical clustering as much as possible while retaining a degree of realism. To meet these requirements, we choose a halo, from a pre-existing N-body simulation, that is known to have a quiet merger history — the redshift of the last major merger is larger than 1. In addition
the gas is not allowed to cool radiatively until after $z = 1$. After this both cooling and star formation are allowed. This procedure completely suppresses the early formation of proto-galactic clouds and leads to quiescent gas accretion for $z < 1$, with the result that a disc forms with a reasonable size (Weil, Eke & Efstathiou 1998; Eke, Efstathiou & White 2000). The details of the simulation are described in the following subsections.

3.1 Initial conditions

The background cosmology that we assume is a low-density flat CDM universe (ΛCDM). This model is currently the favourite amongst hierarchical clustering models. We use the following choice of the cosmological parameters: $\Omega_0 = 0.3, h \equiv H_0/100$ km s$^{-1}$ Mpc$^{-1} = 0.7, \lambda_0 = \Lambda_0/(3H_0^2) = 0.7$, and $\sigma_8 = 0.9$. The baryon density, Ω_b, is set to 0.04 (Netterfield et al. 2002).

To generate our initial conditions, we use the resimulation technique introduced by Frenk et al. (1996). We first perform a dark matter only simulation in a 35.325h^{-1} Mpc periodic cube. On this scale, the density fluctuations are still in the linear regime at $z = 0$. Having completed this simulation, we then select a dark halo that has a quiet merger history. The halo’s mass is about $1.3 \times 10^{12} h^{-1} M_\odot$ within the sphere having virial overdensity, $\delta_{vir} = 337$ at $z = 0$. To make the new initial conditions, the initial density field of the parent simulation is recreated and appropriate additional short wavelength perturbations are added to the region out of which the halo forms. In this region we also place SPH particles in a ratio of 1:1 with dark matter particles. The region external to this was populated with high mass dark matter particles whose function is to reproduce the appropriate tidal fields. The initial redshift of the simulation is 50. The masses of the SPH and high resolution dark matter particles are $\sim 2.6 \times 10^6 h^{-1} M_\odot$ and $\sim 1.7 \times 10^7 h^{-1} M_\odot$, respectively.

The gravitational softening length for the SPH particles is kept fixed in comoving coordinates for $z > 3$ and after this, it is frozen in physical units to a value of 0.5 kpc, in terms of the ‘equivalent’ Plummer softening given in Springel, Yoshida & White (2001). The gravitational force obeys the exact r^{-2} law at $r > 2.8c$. The softening lengths for all particles are defined as $\epsilon_i = \epsilon_{\text{sph}} \times (m_p/m_{\text{sph}})^{\frac{1}{2}}$, where m_p is the particle mass of a particle ‘i’ and ϵ_{sph} and m_{sph} are the softening and mass of the SPH particles. We do not allow the smoothing length to become smaller than a minimum value of $h_{\text{min}} = 1.4c$.

3.2 Cooling and star formation

For $z < 1$ the cooling/heating rate and ionisation state of each particle are calculated assuming collisional ionisation equilibrium and the presence of an evolving but uniform UV background (Haardt & Madau 1996) by using the fitting formula provided by Theuns et al. (1998). A primordial composition for the gas is assumed. Inverse Compton cooling is also considered at $z < 1$ although the effect is minor. Since we do not include molecular cooling, the coolest gas typically has a temperature $T_{\text{cold}} \approx 10^4$ K. We define the gas in an overdense region that has a temperature $T < 3 \times 10^4$ K as “cold gas.”

Cold gas particles are eligible to form stars when the following criteria are satisfied: (i) the gas particle is in a converging flow ($\nabla \cdot \mathbf{v} < 0$) and (ii) the density of the gas particle is above a threshold density ($\rho_i > \rho_{\text{th}}$). We use $\rho_{\text{th}} = 5 \times 10^{-25} g$ cm$^{-3}$. The value that we adopt is higher than the typical value used in other cosmological simulations, $2 \times 10^{-25} g$ cm$^{-3}$ (Katz, Weinberg & Hernquist 1996). This choice allows us to have sufficient cold gas to observe the numerical effect on the cold phase. Note that Buonomo et al. (2003) found that the criterion on the velocity divergence has no sizeable effect on their results, and so criterion (i) may not be needed. We ignore the Jeans condition, used by some other authors (e.g. Katz, Weinberg & Hernquist 1996), for reasons detailed below.

The Jeans condition is usually denoted as $h_i/c_s > t_{\text{dyn}}$, \hspace{1cm} (3)
where h_i, c_s, and $t_{\text{dyn}} = (4\pi G \rho_i)^{-\frac{1}{2}}$ are the smoothing length, the sound speed, and the dynamical time of the gas particle ‘i’, respectively. Since the h_i have no direct physical significance in the SPH formalism, and depend for example on the particle mass, adopting such a Jeans condition, as given above, would introduce an unphysical resolution dependence into the simulations.

In fact this Jeans condition should be regarded as determining the resolution limit rather than as a star formation criterion. Bate & Burkert (1997) have shown that if the minimum resolvable mass $\sim 2N_{\text{ngb}}/m_{\text{sph}}$, where N_{ngb} is the number of neighbours used in the SPH calculation, becomes larger than the local Jeans mass, $\sim G \rho c_s^2$, artificial fragmentation may occur, and real fragmentation will definitely be suppressed. In our adopted SPH implementation, the smoothing length, h_i, is defined as $(4\pi/3)h_i^3 \rho_i = m_{\text{sph}} N_{\text{ngb}}$, and one finds combining these relations that the above resolution limit is equivalent to

$$h_i/c_s < \pi \left(\frac{3}{\pi} \right)^{\frac{1}{3}} t_{\text{dyn}} \approx \pi^{\frac{1}{3}} t_{\text{dyn}}.$$ \hspace{1cm} (4)

It is clear that the condition represented by Eq. (3) is hardly satisfied if the condition represented by Eq. (4) is satisfied. We adopt $N_{\text{ngb}} = 40$ in this paper, and this gives, for a gas temperature, $T = 10^4$ K, that for densities below $\rho_{\text{max}} \approx 1.2 \times 10^{-25} g$ cm$^{-3}$ the SPH treatment of the gas is reliable. Note that this is well below our threshold density ρ_{th} for star formation. Therefore, our results may be affected by artificial effects because of insufficient mass resolution.

When a gas particle is eligible to form stars, the star formation rate (SFR) for a particle ‘i’ is

$$\frac{d\rho_s}{dt} = c_s \rho_i \frac{t_{\text{dyn}}}{t_{\text{dyn}}},$$ \hspace{1cm} (5)

where c_s is a dimensionless SFR parameter. This formula corresponds to the Schmidt law that implies an SFR proportional to $\rho_{\text{th}}^{1.5}$. The value of c_s controls the star formation efficiency. The physics of star formation is not understood well enough to predict the value of this parameter. It is known for spiral galaxies that the star formation time-scale is long compared to the dynamical time-scale, so to mimic this, the value of c_s must be significantly less than unity. We assume a value of $c_s = 0.05$ throughout this paper.

This is consistent with the relatively small values of c_s used in simulations of disc formation (e.g. Katz 1992, Weil, Eke & Efstathiou 1998; Thacker & Couchman 2000). For an SPH particle, of mass m_{gas}, which is eligible to form a star, of mass m_*, the probability of this event occurring during a time-step Δt is given by

$$p_{\ast} = \frac{m_{\text{gas}}}{m_*} \left[1 - \exp \left(-c_s \frac{\Delta t}{t_{\text{dyn}}} \right) \right].$$ \hspace{1cm} (6)

We use two star formation recipes to study the dependence
of the results on the star formation scheme and also the number of particles left in a cold gas disc. In the first recipe, a gas particle is completely converted into a stellar particle during Δt so that $m_{\text{gas}}/m_*=1$ in Eq. 6. We call a simulation using this star formation scheme a “conversion run”. The other recipe allows an initial SPH particle to spawn up to three stellar particles with mass of $m_{\text{sph}}/3$, where m_{sph} is the original mass of the SPH particle, so that the values possible for m_{gas}/m_* are 3, 2 or 1. This scheme reduces the rapid decrease in the number of cold gas particles in the disc due to star formation, and helps counter the large drop in the SPH spatial resolution which otherwise occurs as the cold gas is used up. The simulation which employs this scheme is dubbed a “spawning run.”

3.3 Results

In Fig. 1 we show the distributions of stars and cold gas in the conversion and spawning runs at $z = 0$. The galaxy in the spawning run has a smoother stellar distribution than in the conversion run as expected. Although the galaxy in the conversion run has a stronger bar, we cannot find any significant difference in the distribution of the stars when we compare the surface density profiles of these galaxies.

However, the morphologies of the cold gas discs are quite different. The cold gas disc in the conversion run has a core and ring structure: the cold gas disc has large holes and most of the cold gas particles are found in dense filaments. The cold gas disc in the spawning run is perhaps more realistic with spiral arm-like features, though a large fraction of the cold gas lives in the arms. One might think that the fragmentation is caused by the Toomre instability. However, we find that when we calculate the value of Toomre’s Q-parameter for the azimuthally averaged surface gas density, that $Q > 1$ is satisfied everywhere and at all redshifts. Because of efficient star formation, the gas surface density never reaches high values. Having ruled out the Toomre instability we need to examine the time evolution of the gas distributions to understand the physical or numerical mechanisms that cause the break up of the cold gas discs.

The distributions of the cold gas particles are shown in Fig. 2 for several redshifts in each simulation. We find that the core–ring structure is very common, regardless of the star formation scheme.
Momentum transfer in SPH simulations

The spawning galaxy has a larger-sized cold gas disc at lower redshift than the conversion galaxy. This is consistent with the idea that angular momentum transfer away from cold gas is a way which depends on the number of the cold gas particles.

Since star formation turns low angular momentum gas particles into collisionless stellar particles and the gas particles that accrete onto the disc later tend to have larger angular momenta, the specific angular momentum of the cold gas disc should monotonically increase with time. We plot the evolution of the specific angular momentum of the cold gas disc in Fig. 3 Here, we consider the material in a sphere of radius 20 h^{-1} kpc, which is centred on the galaxy centre at each redshift. The specific angular momentum for the conversion run shows surprisingly little evolution, being nearly constant. In contrast, the angular momentum of the cold gas disc in the spawning run increases monotonically except for the last few gigayears. This indicates that more angular momentum is lost from the cold gas disc in the conversion run compared to the spawning run.

The lower left panel of Fig. 3 shows the integrated cooling rates (the mass in stars and cold gas at each redshift) in the galaxies. The figure shows that the cooling in the conversion run is suppressed relative to the spawning run. This indicates that a significant amount of angular momentum from the cold gas disc in the conversion run has been transferred to the ambient hot gas, and that the cooling rate has decreased because the hot gas has been puffed up by this "angular momentum feedback." Since the difference in the amount of cold gas in the discs between the two simulations is small, the difference in the masses of the cooled baryon (i.e. cold gas and stars) is mainly due to the difference in the masses of stellar discs. By comparing the evolution of the angular momenta of the cold gas discs and the number of cold gas particles in the discs (upper right panel of Fig. 3), one might draw a naive conclusion that at least 2000 cold gas particles are needed to suppress the angular momentum transfer. However, we have to understand the mechanism that causes the angular momentum transfer and the fragmentation of the cold gas disc before we can reach definite conclusions.

To this end, we next investigate the hydrodynamic torques acting on the cold gas particles. In Fig. 4 we plot the azimuthally averaged specific hydrodynamic torques acting on the cold gas particles for the spawning simulation for 5 radial bins. The negative value indicates that the torque spins down the rotation of the disc. As expected from Fig. 3, the absolute magnitude of the torque is larger at lower redshift. Surprisingly, the torque is dominated not by the artificial viscosity but by the contribution to the force due to pressure gradients. The total hydrodynamic torques normalised by the angular momenta of the cold gas discs (τ_z/J_z) at $z = 0$ are -0.84 and -0.90 Gyr$^{-1}$ for the conversion and spawning runs, respectively. This means that the hydrodynamic torque can stop the rotation completely in only ~ 1 Gyr. While the number of the cold gas particles in the spawning run is more than twice as large as that in the conversion run, both discs receive comparable torques at $z = 0$. This implies that the strength of the hydrodynamic torque is defined by the distribution (morphology) of the cold gas as well as the number of the cold gas particles in the disc.

To know whether there is significant angular momentum transfer between the cold gas particles at different radii, we calculate the
Figure 3. Evolution of the cold gas disc. The upper left, upper right, lower right, and lower left panels show the specific angular momentum of the cold gas disc, the number of cold gas particles in the discs, the mass in the stars and cold gas (integrated cooling rate), and the mass of the cold gas disc, respectively, as a function of the age of the universe. The solid and dotted lines indicate the conversion and spawning run, respectively.

Instantaneous hydrodynamic torque acting on the cold gas disc ignoring the interaction between the cold \((T < 3 \times 10^4 \text{ K})\) and hot \((T > 10^5 \text{ K})\) phases. Fig. 5 shows the original torque that is identical to the solid line in the lower panel of Fig. 4 and the torque ignoring the hot gas. We find that the hydrodynamic torque becomes almost 0 at all radii when we decouple instantaneously the cold and hot phases. There is no significant transport of angular momentum within the cold gas itself. This confirms results from previous studies, which insist that the angular momentum transfer in the galactic disc itself cannot be a serious problem over a Hubble time when the shear-reduced artificial viscosity is adopted (e.g. Steinmetz 1996). Unfortunately, all test simulations have been performed in the absence of a surrounding (hot) medium.

Since our results indicate that the artificial viscosity is not very important for the angular momentum transfer, the transfer may be caused by fragmentation or may cause the fragmentation. We will investigate this point using simplified simulations in the next Section. We note that, the gravitational torque acting on the cold gas disc is also significant when the cold gas is fragmented.

4 SIMPLIFIED SIMULATIONS

4.1 Shear flows

Several authors have presented shear flow tests using SPH, and their results are promising (Lombardi et al. 1993, Thacker et al. 2000). However, these studies have focused primarily on the variation re-
Momentum transfer in SPH simulations

4.1.1 A single temperature test

We use simulations of a periodic cube of side 10 kpc, containing $10^{10} M_\odot$ of gas, to investigate the SPH transfer of momentum across a discontinuity in the velocity field. The gas is all given a temperature of 10^6 K. Particles in the central slab with $|z| < 0.3$ kpc are given a velocity of $v_x = 50$ km s$^{-1}$, and the remaining gas is set up with $v_x = -50$ km s$^{-1}$. At this relative velocity of 100 km s$^{-1}$, it takes ~ 100 Myr to cross the box. The self-gravity of the gas is ignored for simplicity, and replaced with an external potential of the form

$$\Psi(z) = -10000 \left[\cos \left(\frac{2\pi z}{L_{\text{box}}} \right) - 1 \right] (\text{km s}^{-1})^2,$$

(7)

where L_{box} is the side length of the simulation box. The choice of external potential is not very important because the transfer of momentum is not greatly affected by the size of the instabilities that it suppresses. To generate relaxed initial conditions, we first distribute particles using the rejection method assuming hydrostatic equilibrium to calculate the density. This system is evolved without any shear, while damping the particle temperature and velocity until a relaxed state is reached. Then the shear is introduced and the tests are commenced. Simulations have been run with $(N_{\text{gas}}, N_{\text{ngb}}) = (32^3, 40), (64^3, 40)$ and $(64^3, 320)$. A single variant of SPH has been used for the runs in this subsection, but we do consider some other popular flavours with different symmetrisations in subsection 4.1.3. We have also used the three-dimensional Eulerian fixed-grid hydrodynamic code described by Quilis, Ibáñez & Sáez (1996) to provide a comparison. This finite difference (FD) code employs a Riemann solver to compute the numerical viscosity, thus removing the need for an artificial viscosity, and has already been used to simulate gas stripping from a galaxy by the ram pressure of the intracluster medium (ICM) (Quilis, Moore & Bower 2000) and the evolution of a bubble in the ICM (Quilis, Bower & Balogh 2001). We set up the same initial conditions for the shear test on 1513 cells. This number provides ample resolution and ensures that each cell hosts only one phase initially. Random noise is added to the density in each cell ($\Delta \rho/\rho \leq 0.01$), otherwise nothing will happen.

The evolution of the velocity profile for each simulation is shown in Fig. 6. For the SPH runs employing only 40 neighbours, the velocity shear decays rapidly owing to momentum transfer across the shear boundary. Using 320 neighbours, the transfer of momentum is significantly suppressed. In the FD simulation, the width of the distribution of v_x values at a particular z coordinate reflects large scale turbulence that is not apparent in the SPH runs. The peak velocities are typically larger and the velocities of the layers distant from the contact surfaces remain intact even after 5 box crossings of evolution.

Figure 6. The evolution of the velocity profile in the single temperature shear tests. The results from the SPH runs are shown in the three left-hand columns ($(N_{\text{gas}}, N_{\text{ngb}}) = (32^3, 40), (64^3, 40)$ and $(64^3, 320)$ from left to right) and the results from the FD code are shown in the right panels. The top and bottom panels corresponds the outputs at $t = 293$, and 440 Myr for the SPH simulation and $t = 286$, and 461 Myr for the FD simulation, respectively, and an insert in the top left panel shows the initial velocity field.
Figure 7. Evolution of the mean x velocity of the cold phase in units where 1 corresponds to the initial velocity and 0 is reached when all shear has gone. Solid, dotted, and dashed lines indicate the shear simulations using $(N_{\text{gas}}, N_{\text{ngb}}) = (32^3, 40), (64^3, 40)$ and $(64^3, 320)$, respectively. At early times, the momentum loss is caused largely by artificial viscosity. As the relative velocity decreases, pressure gradients provide the more important deceleration.

By its very nature, SPH is not well-suited to solving problems involving large discontinuities. In the following subsection we will show more vividly how the SPH and FD methods give qualitatively different results regarding turbulence. However, it is instructive to understand the difference between the SPH runs considered above. As we have seen, the hydrodynamical force can be split into two components: pressure gradients and artificial viscosity. The latter depends upon the relative velocity of the fluids and the size of the interacting volume. This boundary layer should be the same for the $(32^3, 40)$ and $(64^3, 320)$ simulations, because $N_{\text{ngb}}/N_{\text{gas}}$ is identical. However, the first and third columns in Fig. 6 provide drastically different results, so we can infer that the pressure gradients must be behind this variation. Fig. 7 shows at early times that these two simulations do lose momentum at a similar rate. The $(64^3, 40)$ run, and its smaller boundary layer, initially slow down less rapidly. As the relative velocity of the gases decreases, the dominant force leading to deceleration becomes that coming from pressure gradients. This depends on N_{ngb}, such that more neighbours yield smaller deceleration. Thus, it seems to be noisiness in the SPH smoothing of variables which gives rise to these pressure gradients and a significant proportion of the deceleration. The late time evolution in Fig. 7 shows the reduced deceleration of the $(64^3, 320)$ run relative to the other two. Note that increasing the number of neighbours in SPH calculation significantly slows down the simulation as well as decreasing the mass resolution. Imaeda & Inutsuka (2002) pointed out that density errors in SPH simulations of shear flows can be substantially suppressed by treating particle velocity and fluid velocity separately. However, their method is quite slow and so far only works with a constant smoothing length (Imaeda, private communication).

Figure 8. Densities (top), pressures (middle), and temperatures (bottom) of the particles in the relaxed initial conditions with $N = 32^3$. The target density and pressure calculated from the external potential are given by the solid lines.

4.1.2 A two phase gas

Now that we have seen how SPH behaves when there is a sharp velocity gradient, it is worth investigating the more realistic case of a cold slab of gas moving relative to a hotter medium. To this end, we have recreated initial conditions with the central slab of gas having $T_{\text{cold}} = 10^5$ K and the remaining gas left at $T_{\text{hot}} = 10^6$ K. The sound crossing time for the cold slab (i.e. 0.6 kpc/c) is ~ 12 Myr, and ~ 57% of the mass is in the cold phase. This time, when creating the initial conditions, only the temperature of the cold phase and velocities were damped, although a maximum temperature of T_{hot} is also imposed. Simulations were performed using 16^3, 32^3, and 64^3 particles.

Fig. 8 shows the densities, pressures, and temperatures of the particles in the relaxed initial conditions using $N = 32^3$ particles. It is apparent that the SPH density and pressure deviate from the analytical curves near to the boundary. The presence of features like these is inevitable with SPH (see Pearce et al. 1998).
Momentum transfer in SPH simulations

Figure 9. The evolution of the x–z projections of particles in the shear simulations using 16^3 SPH particles (left-hand column), 32^3 particles (middle column) and gas density in the FD code (right column).

Ritchie & Thomas (2001). Hot particles near to the cold dense slab overestimate their densities and hence pressures. This causes the hot gas to expand away from the dense region, adiabatically cooling in the process, and creating a gap between the two phases which is clearly visible in Fig. 9. This figure also shows that the cold slabs are divided into layers, the number of which depends upon the size of the SPH smoothing length.

We now switch on the shear flow as before. The boundary layer is now unstable to the Kelvin-Helmholtz instability (Landau & Lifshitz 1987). The presence of a fixed gravitational potential can in principle stabilise long wavelength modes but for our configuration this effect can be largely ignored. The left-hand column in Fig. 9 shows the evolution of the x–z projections of particles in the $N = 16^3$ simulation. It is apparent at later times that the cold slab is breaking apart. Instabilities are clearly visible at $t = 98$ Myr. At $t = 342$ Myr an underdensity can be seen at $(x, y) \sim (4.5, 2)$. This subsequently grows and the cold phase at $t = 489$ Myr no longer looks like a slab. This is confirmed in the face-on projections shown in Fig. 10. Note that while the morphology of the phases changes, the membership of each phase is constant with cold particles remaining cold and hot ones hot. This contrasts starkly with the behaviour of the FD simulation, shown in the right-hand column of Fig. 9, where the turbulence mixes the phases at the boundary between them.

In the middle column of Fig. 9, we show the particle distributions in the $N = 32^3$ simulation. The instability appears at $t = 49$ Myr, and then vanishes quickly. No significant evolution is observed in either this run or that with $N = 64^3$, and in neither case do the two phases mix at all. Rerunning the $N = 32^3$ simulation with a cold gas slab of width 0.4 kpc, rather than 0.6 kpc, does produce holes. These runs lead us to conclude that the holes seen here, and also in the simulations of disc formation, were formed due to numerical artifacts. To avoid the formation of holes, the cold phase must contain enough particles. This is a more important consideration than the number of SPH neighbours being used. It is quite hard to maintain enough cold gas disc particles to prevent hole formation in galaxy formation simulations, especially when star formation is included.

One consequence of hole formation is shown in Fig. 11 where the evolution of the mean velocity of the cold phase in the x direction is traced for each SPH simulation. Since there is no mixing...
of the two phases, the evolution of the mean velocity is equivalent to the evolution of the momentum of the cold slab. The momentum of all the gas is well conserved, so any change in the velocity of the cold phase should be regarded as the result of a momentum transfer with the hot phase. There is a resolution dependence of the size of the initial deceleration when the slab is perturbed by the Kelvin-Helmholtz instability. We have confirmed that this deceleration is caused by the pressure gradient force rather than the artificial viscosity. After the initial deceleration, the slabs lose their momentum at an almost constant rate, where the acceleration from pressure gradients and artificial viscosity are both important. For the lowest resolution run, an additional feature in the momentum evolution can now be seen at \(t \sim 350 \) Myr. This corresponds to the epoch when the hole forms in this run and ram pressure from the hot intra-hole gas leads to an extra deceleration of the cold material. Such an effect is not evident in the simulations using 32\(^3\) and 64\(^3\) particles. Their results nearly converge, apart from the initial deceleration, although presumably not to a realistic answer given that the SPH scheme suppresses any phase mixing.

In Table 1, we show the hydrodynamic acceleration parallel to the \(x \) direction acting on the cold phase in each SPH simulation at \(t = 489 \) Myr. The first column indicates the number of particles in the simulation. The second, third, fourth, and last columns show the total acceleration, the acceleration from the artificial viscosity, the acceleration from the pressure gradients, and the acceleration from the ram pressure respectively. The acceleration is normalised by the velocity of the cold phase. The unit is Gyr\(^{-1}\).

\(N \)	(\(\frac{a_{\text{total}}}{\rho} \))	(\(\frac{a_{\text{AV}}}{\rho} \))	(\(\frac{a_{\text{VP}}}{\rho} \))	(\(\frac{a_{\text{RP}}}{\rho} \))
\(16^3 \)	-1.9	-0.21	-1.7	-1.0
\(32^3 \)	-0.55	-0.35	-0.21	0.035
\(64^3 \)	-0.59	-0.32	-0.27	-0.011

Figure 12. The same as Fig. 11, but for the different implementations of SPH. In each simulation, 32\(^3\) particles are used. The solid, dotted, and dot-dashed lines indicate “entropy: conservation”, “energy: asymmetric”, and “energy: geometric” implementations, respectively. The solid line here is the same as the dotted line in Fig. 11.

4.1.3 Other SPH implementations

While the numerical difficulties caused by sharp boundaries will inevitably impact adversely upon all standard implementations of SPH, it is useful to be aware of the variation in momentum transfer rates within this set of algorithms. We now show the results for two other SPH implementations. The first one employs an arithmetically symmetrised equation of motion and an asymmetric form of the energy equation. This was dubbed ‘energy: asymmetric’ in Sprinzel & Hernquist (2002), produced the best results among the conventional SPH family and has been widely used in galaxy formation. The second implementation, half of the deceleration comes from ram pressure, while the contribution of the ram pressure is negligible in other simulations. It proves that the artificial hole formation in the smallest simulation significantly enhances the momentum transfer.

In Fig. 12, we plot the evolution of the mean velocity of the cold slabs in the simulations adopting the above three flavours of SPH. The number of the particles in each simulation is 32\(^3\). If we assume that better algorithms lose less momentum, then we reach the same conclusion as Springel & Hernquist (2002) despite using a completely different test, namely that ‘entropy: conservation’ is the best and ‘energy: geometric’ is the worst.

4.2 Disc formation in a rotating sphere

While the numerical difficulties caused by sharp boundaries will inevitably impact adversely upon all standard implementations of SPH, it is useful to be aware of the variation in momentum transfer rates within this set of algorithms. We now show the results for two other SPH implementations. The first one employs an arithmetically symmetrised equation of motion and an asymmetric form of the energy equation. This was dubbed ‘energy: asymmetric’ in Sprinzel & Hernquist (2002), produced the best results among the conventional SPH family and has been widely used in galaxy formation. The second implementation, half of the deceleration comes from ram pressure, while the contribution of the ram pressure is negligible in other simulations. It proves that the artificial hole formation in the smallest simulation significantly enhances the momentum transfer.

In Fig. 12, we plot the evolution of the mean velocity of the cold slabs in the simulations adopting the above three flavours of SPH. The number of the particles in each simulation is 32\(^3\). If we assume that better algorithms lose less momentum, then we reach the same conclusion as Springel & Hernquist (2002) despite using a completely different test, namely that ‘entropy: conservation’ is the best and ‘energy: geometric’ is the worst.

\(N \)	(\(\frac{a_{\text{total}}}{\rho} \))	(\(\frac{a_{\text{AV}}}{\rho} \))	(\(\frac{a_{\text{VP}}}{\rho} \))	(\(\frac{a_{\text{RP}}}{\rho} \))
\(16^3 \)	-1.9	-0.21	-1.7	-1.0
\(32^3 \)	-0.55	-0.35	-0.21	0.035
\(64^3 \)	-0.59	-0.32	-0.27	-0.011

Figure 12. The same as Fig. 11, but for the different implementations of SPH. In each simulation, 32\(^3\) particles are used. The solid, dotted, and dot-dashed lines indicate “entropy: conservation”, “energy: asymmetric”, and “energy: geometric” implementations, respectively. The solid line here is the same as the dotted line in Fig. 11.

4.1.3 Other SPH implementations

While the numerical difficulties caused by sharp boundaries will inevitably impact adversely upon all standard implementations of SPH, it is useful to be aware of the variation in momentum transfer rates within this set of algorithms. We now show the results for two other SPH implementations. The first one employs an arithmetically symmetrised equation of motion and an asymmetric form of the energy equation. This was dubbed ‘energy: asymmetric’ in Sprinzel & Hernquist (2002), produced the best results among the conventional SPH family and has been widely used in galaxy formation. The second implementation, half of the deceleration comes from ram pressure, while the contribution of the ram pressure is negligible in other simulations. It proves that the artificial hole formation in the smallest simulation significantly enhances the momentum transfer.

In Fig. 12, we plot the evolution of the mean velocity of the cold slabs in the simulations adopting the above three flavours of SPH. The number of the particles in each simulation is 32\(^3\). If we assume that better algorithms lose less momentum, then we reach the same conclusion as Springel & Hernquist (2002) despite using a completely different test, namely that ‘entropy: conservation’ is the best and ‘energy: geometric’ is the worst.

4.2 Disc formation in a rotating sphere

While the numerical difficulties caused by sharp boundaries will inevitably impact adversely upon all standard implementations of SPH, it is useful to be aware of the variation in momentum transfer rates within this set of algorithms. We now show the results for two other SPH implementations. The first one employs an arithmetically symmetrised equation of motion and an asymmetric form of the energy equation. This was dubbed ‘energy: asymmetric’ in Sprinzel & Hernquist (2002), produced the best results among the conventional SPH family and has been widely used in galaxy formation. The second implementation, half of the deceleration comes from ram pressure, while the contribution of the ram pressure is negligible in other simulations. It proves that the artificial hole formation in the smallest simulation significantly enhances the momentum transfer.

In Fig. 12, we plot the evolution of the mean velocity of the cold slabs in the simulations adopting the above three flavours of SPH. The number of the particles in each simulation is 32\(^3\). If we assume that better algorithms lose less momentum, then we reach the same conclusion as Springel & Hernquist (2002) despite using a completely different test, namely that ‘entropy: conservation’ is the best and ‘energy: geometric’ is the worst.

4.2 Disc formation in a rotating sphere

While the numerical difficulties caused by sharp boundaries will inevitably impact adversely upon all standard implementations of SPH, it is useful to be aware of the variation in momentum transfer rates within this set of algorithms. We now show the results for two other SPH implementations. The first one employs an arithmetically symmetrised equation of motion and an asymmetric form of the energy equation. This was dubbed ‘energy: asymmetric’ in Sprinzel & Hernquist (2002), produced the best results among the conventional SPH family and has been widely used in galaxy formation. The second implementation, half of the deceleration comes from ram pressure, while the contribution of the ram pressure is negligible in other simulations. It proves that the artificial hole formation in the smallest simulation significantly enhances the momentum transfer.

In Fig. 12, we plot the evolution of the mean velocity of the cold slabs in the simulations adopting the above three flavours of SPH. The number of the particles in each simulation is 32\(^3\). If we assume that better algorithms lose less momentum, then we reach the same conclusion as Springel & Hernquist (2002) despite using a completely different test, namely that ‘entropy: conservation’ is the best and ‘energy: geometric’ is the worst.

4.2 Disc formation in a rotating sphere

While the numerical difficulties caused by sharp boundaries will inevitably impact adversely upon all standard implementations of SPH, it is useful to be aware of the variation in momentum transfer rates within this set of algorithms. We now show the results for two other SPH implementations. The first one employs an arithmetically symmetrised equation of motion and an asymmetric form of the energy equation. This was dubbed ‘energy: asymmetric’ in Sprinzel & Hernquist (2002), produced the best results among the conventional SPH family and has been widely used in galaxy formation. The second implementation, half of the deceleration comes from ram pressure, while the contribution of the ram pressure is negligible in other simulations. It proves that the artificial hole formation in the smallest simulation significantly enhances the momentum transfer.

In Fig. 12, we plot the evolution of the mean velocity of the cold slabs in the simulations adopting the above three flavours of SPH. The number of the particles in each simulation is 32\(^3\). If we assume that better algorithms lose less momentum, then we reach the same conclusion as Springel & Hernquist (2002) despite using a completely different test, namely that ‘entropy: conservation’ is the best and ‘energy: geometric’ is the worst.

4.2 Disc formation in a rotating sphere

While the numerical difficulties caused by sharp boundaries will inevitably impact adversely upon all standard implementations of SPH, it is useful to be aware of the variation in momentum transfer rates within this set of algorithms. We now show the results for two other SPH implementations. The first one employs an arithmetically symmetrised equation of motion and an asymmetric form of the energy equation. This was dubbed ‘energy: asymmetric’ in Sprinzel & Hernquist (2002), produced the best results among the conventional SPH family and has been widely used in galaxy formation. The second implementation, half of the deceleration comes from ram pressure, while the contribution of the ram pressure is negligible in other simulations. It proves that the artificial hole formation in the smallest simulation significantly enhances the momentum transfer.
a quantitative understanding of how the numerical effects studied in
the preceding subsections impact upon simulations that are closer
to what we expect occurs when galaxies form.

The initial conditions are created by placing particles on a cu-
bic grid with a spherical edge, and perturbing them radially to give a
density profile of the form $\rho(r) \propto r^{-3}$. Their velocities are cho-

en so that the sphere will end up in solid-body rotation around the
z-axis; the initial angular momentum J corresponds to a value of the
spin parameter, $\lambda = J|E|^2/(GM^2) \sim 0.1$, where E is the
total energy of the system. The initial radius of the sphere is
taken to be 100 kpc, and its mass $M 10^{12} M_\odot$, giving a free-fall
time from the edge of the system of about 524 Myr. A baryon frac-
tion of 0.1 is assumed and equal numbers of dark matter and gas
particles are used.

In order to prevent the disc from becoming Toomre unsta-
ble, we impose a high minimum temperature $T_{\text{min}} = 10^5$ K.
This floor is still well below the virial temperature of the system
$T_{\text{vir}} \sim 3 \times 10^6$ K, and has the additional benefit of softening the
Jeans condition given in Eq. 4.

The simulation is allowed to evolve for 1.25 Gyr without cool-
ing to let the hot gas reach equilibrium in the halo. Then radiative
cooling is switched on (using the cooling function computed for
collisional ionisation equilibrium by Sutherland & Dopita [1993]
assuming a primordial mix of H and He, and $\mu = 0.59$) and the
system is followed until $t = 8$ Gyr.

4.2.1 Cooling only simulations

We first perform a series of cooling only (no star formation) simu-
lations using $N_{\text{gas}} = 1736, 5544, 15408, 28624$, and 44442 SPH
particles. The same gravitational softening, $\epsilon = 2$ kpc, is adopted
for gas and dark matter particles for the simulation using 2×1736
particles. Softening lengths for other simulations are chosen as $\epsilon = 2 \times (1736/N_{\text{gas}})^{1/3}$ kpc. The SPH smoothing length is allowed to decrease to $h_{\text{min}} = 0$ in all runs because this choice results in
better numerical convergence. Here, the relatively high temperature
floor (10^6 K) obviates the need to impose a minimum smoothing
length.

`Cold gas’ is defined as gas that with a temperature lower than
1.3 $\times 10^5$ K. The top panel of Fig. 13 shows the evolution of the
cold gas disc mass. Higher resolution allows higher central gas
densities, so the better resolved runs have higher cooling rates in the
first ~ 1 Gyr. After this time, the simulations using more than
~ 15000 gas particles create almost identical disc masses, and that
with 5544 SPH particles is only a few per cent lower.

The evolution of the specific angular momenta of the cold gas
discs, shown in the lower panel of Fig. 13, is more varied. Since the
cooling is not calculated correctly in the simulation with 1736 gas
particles, we will ignore this case. Among the remaining simula-
tions, there is a monotonic increase of angular momentum with in-
creasing resolution and the evolution converges at $N_{\text{gas}} = 28624$.
In all cases, the specific angular momenta are decreasing functions
after $t = 3$ Gyr for all the simulations that resolve the cooling ade-
quately, despite the monotonic increase of specific angular mo-
mentum with radius when the cooling is switched on. As the total
angular momentum of the gas is well conserved, this implies that
there is some transfer within the gas.

In summary, for this particular test, at least 5000 total gas par-
ticles are needed before the disc mass is well determined, while
more than 25000 are required to estimate the disc’s angular mo-

Figure 13. Evolution of the cold gas discs in the cooling only simulations. The solid, dotted, dashed, dot-dashed, and triple-dot-dashed lines denote simulations that employ $N_{\text{gas}} = 1736, 5544, 15408, 28624$, and 44442, re-
spectively. The upper panel shows the mass of the cold gas disc as a function of time (integrated cooling rate). The lower panel shows the specific angular momentum of the cold gas disc.

4.2.2 Simulations with star formation

As seen in Section 4.2, the specific angular momentum of a cold
gas disc depends strongly on the number of particles it contains.
Thus, including star formation with an algorithm that decreases the
number of cold gas particles should exacerbate the loss of angular
momentum from the cold gas disc. We now present simulations
similar to those of the previous section, but also employing the
‘conversion’ star formation scheme. A lower threshold density of $\rho_{\text{th}} = 10^{-25}$ g cm$^{-3}$ was adopted, because the cold gas disc is
more diffuse than in the cosmological simulation as a result of the
higher minimum temperature allowed for the cold gas (10^5 K).
We only show results from simulations for which a minimum smooth-
ing length was not imposed, and omit both the lowest resolution
simulation, in which cooling was not properly followed, and the
$N_{\text{gas}} = 28624$ simulation, which is biased by star formation to the
low resolution family. A simulation using $N_{\text{gas}} = 130536$ is added
to study resolution effects.

In Fig. 14, we plot the integrated cooling and star formation
rates, the mass of the cold gas disc, and the specific angular momen-

Figure 14. Evolution of the cold gas discs in the simulation with star formation. The integrated cooling rate, the integrated star formation rate, the remaining cold gas mass, and the specific angular momentum of the remaining cold gas are plotted in the upper left, upper right, lower left, and lower right panels, respectively. The solid, dotted, dashed, and dot-dashed lines indicate the simulations with $N_{\text{gas}} = 5544, 15408, 44442$, and 130536, respectively.

tum of the cold gas disc. The cooling rates are very similar to those in the cooling only simulations, so star formation does not greatly affect the cooling rate when a halo contains a sufficient number of gas particles ($N_{\text{gas}} \geq 5000$). At the end of the simulation there is a factor of two difference in the cold gas masses as the resolution is varied. However, this is a small fraction of the baryonic mass, with only 48, 94, 794, and 2192 cold gas particles remaining in the $N_{\text{gas}} = 5544, 15408, 44442$, and 130536 simulations, respectively.

As was seen in the cooling only simulations, the decline of the specific angular momentum of the cold gas discs starts from $t \sim 3$ Gyr when the rapid accretion of cold gas finishes. These decreases are much stronger than those in the cooling only simulations, because the cold gas discs now contain fewer particles. Despite this, the two highest resolution simulations still manage to produce reassuringly similar results. Compared with the cooling only runs, the values of the specific angular momenta of the cold gas discs are significantly higher. This is because the low angular momentum cold gas is preferentially creamed off and converted into stars.

The lower panel in Fig. 15 shows the final specific angular momenta of the stars as a function of their formation time. The overall shape of these curves reflects the angular momentum evolution in the cold gas, albeit shifted downwards by ~ 30 per cent. The declining stellar specific angular momentum at late times implies that there would be outside-in disc formation, i.e. older stars have larger angular momentum. The outside-in disc formation found by Sommer-Larsen, Götz & Portinari (2003) might be explained by this process. It is crucial to obtain a numerically robust estimate of
the angular momentum evolution of the cold gas before the stellar population distribution in the disc can be reliably studied.

The evolution of the total stellar specific angular momentum is shown in the upper panel of Fig. 15. These results are dominated by the bulk of the stars which form in the first few Gyr after cooling is switched on. The small differences in the cold gas angular momenta for the two highest resolution runs at these early times are sufficient to imprint similar sized differences in the final stellar angular momenta. It should be noted that the specific angular momenta of the stellar discs would depend on the resolution even if the cold gas discs had exactly the same specific angular momenta. The reason for this is that higher resolution enables higher density regions to be resolved at large radii. In addition, a shorter gravitational softening length gives higher gas density for a given surface gas density. Consequently, higher resolution allows higher angular momentum gas to form stars. In order to achieve numerical convergence, we should include self-regulated star formation tuned to give the surface density of the star formation rate as a function of the surface gas density (Gerritsen & Icke 1997; Springel & Hernquist 2003, see also Yepes et al. 1997; Hultman & Pharasyn 1999) as the observations suggest (Kennicutt 1998; Carraro, Lia & Chiosi 1998) and Buonomo et al. (2000) have pointed out that inclusion of feedback processes, for example, Type Ia and II supernovae, stellar winds, and ultraviolet radiation from massive stars, has a significant impact on the evolution of model galaxies. Including feedback processes is, however, beyond the scope of this paper.

Fig. 16 shows the distribution of the cold gas particles in the star formation runs with $N_{\text{gas}} = 5544$ and 130536. In the $N_{\text{gas}} = 5544$ simulation, the cold gas disc has some small holes at $t = 3$ Gyr. At $t = 6$ Gyr the holes have become large and finally the cold gas disc shrinks to the centre at $t = 8$ Gyr. The evolution in the $N_{\text{gas}} = 130536$ simulation shows the same trend, but the disc is much smoother. At $t = 3$ Gyr the disc has beautiful spiral arms, and then some small holes appear at $t = 6$ Gyr. The final disc is much more extended than that in the lower resolution simulation, but it has acquired unphysically large holes.

Table 2 displays the hydrodynamic torques acting on the cold gas discs parallel to the angular momenta of cold gas discs at $t = 5.5$ Gyr. The second, third, and fourth column show the total hydrodynamic torques, the hydrodynamic torques from the pressure gradient force, and the hydrodynamic torques caused by the artificial viscosity. The torques are normalised by the angular momenta. The unit is Gyr$^{-1}$.

Simulation	Hydrodynamic torque	Pressure torque	Artificial viscosity torque
15408 (no SF)	-0.048	-0.017	-0.031
28624 (no SF)	-0.035	-0.013	-0.021
44442 (no SF)	-0.033	-0.015	-0.017
15408 (SF)	-0.19	-0.11	-0.079
44442 (SF)	-0.069	-0.028	-0.042
130536 (SF)	-0.067	-0.044	-0.023

Figure 15. Evolution of the stellar discs angular momentum (upper panel) and formation time-angular momentum distributions in the stellar discs at $t = 8$ Gyr (lower panel). The solid, dotted, dashed, and dot-dashed lines indicate the simulations with $N_{\text{gas}} = 5544, 15408, 44442$, and 130536, respectively.

5 DECOUPLING THE COLD PHASE FROM THE HOT PHASE

In the previous sections we have seen that the angular momentum transfer from the cold gas to the hot halo gas is mainly caused by numerical problems which are intrinsic to the SPH technique. The collapsing rotating sphere test in the previous section reveals that the problem becomes worse when star formation is included. The reason for this is as follows. Star formation decreases the number of particles in the cold gas disc causing the disc to becomes thinner. We had found in the preceding section that a disc is prone to develop holes when the number of particles in it is not sufficient. Once these holes appear, ram pressure between the hot and cold gas pressure caused by the creation of holes once enough gas particles have been converted to stars. In the $N_{\text{gas}} = 130536$ simulation, this torque becomes stronger than that caused by the artificial viscosity. Thus, even in this best-resolved simulation, the cold gas disc is depleted to an extent where resolution-dependent holes are formed and resolution-dependent fractions of the angular momentum are lost.
phases becomes important and a rapid loss of angular momentum from the cold gas ensues.

It is interesting therefore to see what happens when we inhibit the angular momentum transfer from cold gas to hot gas in simulations of galaxy formation. This can be achieved in a drastic way by decoupling the cold and hot phases.

\[N_{\text{gas}} = 15408 \text{ or } 130536 \]

The cold phase is decoupled from the hot phase, angular momentum transfer to the hot gas during accretion before the gas temperature has reached the accretion threshold. This proves that most of the angular momentum loss from the cold gas disc is due to the hydrodynamic interaction with the ambient hot gas, which cannot be dealt with adequately by SPH. A resolution dependence is still present, because the accreting gas can have large velocity shears before it reaches the temperature below which it becomes decoupled from the hot gas. We have also investigated the torque that causes the decline of the angular momentum of the cold gas disc in the lowest resolution simulation. We find that most of the negative torque is coming from the gravitational interaction with stellar and dark matter particles. We conjecture that this is because the density distributions of the cold gas disc and the stellar disc are not smooth enough to prevent angular momentum transfer due to tidal torques.

In Fig. 13, we show the face-on views of the cold gas discs in the simulations using \(N_{\text{gas}} = 15408 \) and 130536. Both produce smooth extended cold gas discs without any holes. The main difference due to resolution is in the three-dimensional density of cold gas particles and in the ability to resolve spiral arms. These are direct consequences of the differences in the spatial resolution of gravity and mass resolution in the SPH.

The evolution of the stellar discs and their age-angular momentum distribution at \(t = 8 \) Gyr are presented in Fig. 13. Except for the lowest resolution simulation, the angular momentum evolution shows better convergence than in the normal SPH simulations. The reason why the stellar disc in the \(N_{\text{gas}} = 15408 \) simulation has larger specific angular momentum than that in the \(N_{\text{gas}} = 44442 \) simulation is as follows. Although the cold phase is decoupled from the hot phase, angular momentum transfer to the hot gas during accretion before the gas temperature has reached the accretion threshold (\(1.3 \times 10^5 \) K; see Section 4.2.1) is still allowed. Consequently, the lower resolution simulation produces a lower angular momentum cold gas disc. Since the local star formation rate is a function of density and we impose a threshold density for star formation, the low angular momentum of the cold gas disc does not always result in a lower angular momentum for the stellar disc. Higher angular momentum gas particles are often not dense enough to be eligible for star formation. Thus, the angular momentum transfer that brings such gas particles to the inner disc where the gas particles can form stars sometimes produces a higher angular momentum stellar disc. The increasing resolution is also likely to increase the angular momentum of the stellar disc, because higher mass resolution allows fragmentation to be resolved in less dense environments. As a result, the high angular momentum gas particles that cannot form stars in a low resolution simulation are allowed to form stars if they reside in the dense structures like spiral arms that are resolved with higher resolution (see Fig. 13).

The above complex picture also provides a reasonable explanation for the fact that, at the highest resolution, the stellar disc in
The normal SPH simulation (Fig 15) has a slightly higher angular momentum than in the simulation with decoupling (Fig 19), despite the fact that the angular momentum of the cold gas disc in the normal SPH simulation is lower than in the simulation with decoupling. The angular momentum transfer from the cold gas makes more cold gas particles eligible to form stars and the holes in the cold gas disc enhance the density of the cold gas disc at large radii. Of course, the pressure from the hot gas also enhances the density and thus the star formation rate all over the disc, but, as we have seen, this process cannot be modelled appropriately by SPH.

The age-angular momentum distribution exhibits the outside-in disc formation feature again, although this is weaker than in the standard SPH simulation. This is not surprising because the star forming region shrinks when the surface density of the cold gas disc is reduced by star formation. However, as we mentioned above, higher resolution allows stars to form in the outskirts of the disc even when the surface gas density becomes quite low. Hence the outside-in feature becomes weaker with increasing resolution. Even though the resolution limits for the $N_{\text{gas}} = 44442$ and 130536 simulations (Eq. 4) are far below the threshold density for star formation ($\rho_{\text{th}} = 10^{-25}$ g cm$^{-3}$), the age-angular momentum distributions do not converge. Self-regulated star formation may remove this resolution dependence as we discussed previously. We will test this in future work.

5.2 Cosmological simulations

Finally, we present cosmological simulations adopting the decoupling of the cold and hot phases. In this case, we allow warm gas ($3 \times 10^4 < T < 5 \times 10^5$ K) to interact with both the cold and hot
phases so that the simulations do not fail when there are too few cold gas particles to perform the SPH calculation. All conditions are the same as the simulations presented in Section 3 except for the decoupling between the hot and cold phases.

In Fig. 20, we show the redshift evolution of the cold gas discs in the decoupling simulations. As in Section 3 we adopt two star formation schemes, "conversion" and "spawning." The distributions of the cold gas particles are quite different from those in the standard SPH simulations (see Fig. 17 and Fig. 18). In the standard SPH simulations, most of the cold gas particles are in the filaments and the remaining regions are almost empty. Now the galaxies have smooth, extended cold gas discs. These gas discs have spiral arms instead of filaments. Since the cold gas particles have a temperature $\sim 10^4$ K, that is one order of magnitude smaller than the lower limit in the idealised simulations of Section 4, the cold gas discs are much thinner. This makes the problems encountered in the shear tests more serious. Consequently, the cold gas disc will have an unphysical morphology because of numerical effects unless we decouple the cold gas from the hot halo gas. Note that the smooth density distribution of the cold gas disc significantly decreases angular momentum transfer due to tidal torques as well.

Fig. 21 shows the specific angular momenta of the cold gas discs, the integrated cooling rates, and the integrated star formation rates in the galaxies as functions of time. The results from the standard SPH simulations (Fig. 3) are also plotted for reference. Now, with decoupling, the specific angular momenta of the cold gas discs in the two decoupling simulations. This might be because the cold gas disc in the spawning case is less affected by the angular momentum transfer between the cold gas and the warm gas, although we cannot find any significant difference in the hydrodynamic and tidal torques in these two simulations. To decide whether the high specific angular momentum of the cold gas disc in the spawning run is the result of the larger number of cold gas particles or a side effect of the multi-mass SPH imposed by this star formation prescription, we would have to perform another conversion simulation with a larger number of the SPH particles leaving all other conditions unchanged. In this paper we do not perform this test because it would require a much larger number of particles in order to satisfy the Jeans condition (Eq. 4) beyond the threshold density for star formation.

The cooling rates and the star formation rates are almost the same between the two decoupling simulations, and they are higher than in the standard SPH simulations. This proves that the numerical angular momentum feedback puffs up the hot halo gas and the cooling rate is reduced in the standard SPH simulations. Because this effect was not observed in the idealised simulations, we conclude that as the temperature of the cold gas disc becomes lower, the numerical angular momentum transfer becomes more problematic.

To find out how the angular momentum transfer affects the stellar disc, we plot the evolution of the specific angular momenta of the stellar discs and the age-angular momentum distributions at $z = 0$ in the decoupling and standard SPH simulations in Fig. 22.
Figure 20. Face-on views of the distribution of cold gas, the left panels show the galaxy in the simulation with decoupling and the “conversion” star formation prescription and the right panels for the simulation with decoupling and the “spawning” star formation prescription. The length is in units of h^{-1} kpc.

Interestingly, except for the standard conversion simulation, all the other simulations show similar evolution of the specific angular momentum of the stellar discs. On the other hand, except for the standard spawning simulation, all the simulations produce similar results for the age-angular momentum distributions. These may be just a coincidence. Since we impose a relatively high density threshold as a star formation criterion, only cold gas particles that have small angular momenta can form stars and thus the threshold density determines the angular momenta of the stellar discs. It makes the specific angular momentum evolution of the stellar discs almost independent of those of the cold gas discs.

In the standard SPH simulation with the conversion star formation prescription, the formation of holes in the cold gas disc results in the cold gas being swept out to form a dense ring at large radius at high redshifts (see the top left panel of Fig. 2). Gas particles having large angular momenta can form high angular momentum stars in this ring. On the other hand, in the standard spawning simulation, the gas disc has a large ring at low redshift (see the bottom right panel of Fig. 2). From this ring, the high angular momentum population stars of age ~ 2 Gyr are born. Since these holes are numerical artifacts as we showed in the shear tests, the large angular momentum of the stellar disc and the high angular momentum population in the standard SPH simulations are numerical artifacts as well. If the gas disc is puffed up by some feedback processes...
and if we choose a lower threshold density for star formation, the simulations with and without decoupling would produce different results as in the case of the idealised simulations with the temperature floor at $T = 10^5$ K. The idealised simulations and the cosmological simulations presented in this paper suggest that the angular momentum transfer from the cold gas disc sometimes results in too large and sometimes too small angular momentum of the stellar disc depending on the resolution and the modelling of the ISM and star formation. It thus must depend on the modelling of feedback as well.

6 SUMMARY AND DISCUSSION

We have found in a cosmological SPH simulation that a disc of cold gas breaks up into filaments and there is a significant transfer of angular momentum from the cold gas disc to the ambient hot halo gas. The dominant contribution to the hydrodynamical torque between the cold and hot phases comes from the pressure gradient forces and not from the artificial viscosity. The hot gas is puffed up by this angular momentum ‘feedback’ and this, in turn, can affect the cooling rate.

By using simple shear tests, we find that SPH cannot correctly solve problems where there are strong shear flows. When a dense cold gas sheet is moving in ambient diffuse hot gas, the gas sheet receives strong negative acceleration due to pressure gradients and artificial viscosity. By varying the number of neighbouring particles involved in the SPH smoothing, we find that the deceleration due to pressure gradients is related to the noisiness in SPH variables. Moreover, if the cold gas sheet does not contain a sufficient number of particles, it undergoes hole formation. Ram pressure from the hot gas in these holes leads to further momentum transfer.

The comparison of simulations using SPH and a finite-difference Eulerian code clearly exhibits a shortcoming of the SPH method: SPH does not generate the turbulent mixing of the fluid components in the shear flow tests that is present with the Eulerian code. Instead, with SPH the fluid velocities change to damp out the shear flow but without any mixing of fluids. This feature of SPH only becomes problematic when there are large velocity gradients. Since previous test simulations did not consider such a large shear, SPH has produced promising results. However, as we have shown in this paper, such a large shear can exist in galaxy formation problems where a rotationally supported cold gas disc forms within hot halo gas that is mainly supported by thermal pressure.

The idealised simulations of disc formation in rotating hot gas reveal that this problem has a strong dependence on the resolution. Having star formation in a simulation makes the situation worse by decreasing the number of cold gas particles. If not enough particles are used, the angular momentum of the cold gas disc steeply declines with time. Consequently, the stellar disc forms from the outside to the inside. This process may explain the outside-in formation of disc galaxies found in the simulations by Sommer-Larsen, Götz & Portinari (2002).

One way to avoid these problems, is to decouple the cold and hot gas phases. In the simulations with decoupling, the specific angular momenta of the cold gas discs become monotonically increasing functions of time as expected on theoretical grounds. The main difference from the standard SPH simulations is seen in the morphology of cold gas discs. The simulations with decoupling produce smooth extended cold gas discs that do not have any holes. These simulations also reveal that the numerical angular momentum transfer sometimes increases the specific angular momenta of stellar discs and sometimes decreases them, while it always decreases the specific angular momenta of cold gas discs. This strange feature is caused by the density dependence of star formation. Hence, the way in which this problem affects stellar discs is highly dependent on resolution and on the modelling of subgrid physics in the interstellar medium.

We do not believe that the angular momentum transfer that we have identified here is the main explanation for the angular momentum problem in galaxy formation simulations, because the difference in the specific angular momenta of stellar discs between simulations with and without decoupling is not that large, although it seems to depend strongly on the modelling of subgrid physics such as star formation. At higher resolution, the numerical breaking up of cold gas discs is likely to increase the specific angular momentum of the stellar discs by enhancing the cold gas density and hence star formation rate in the outskirts of the discs. Anyway, as long as the cold gas disc suffers spurious angular momentum transfer and has a strange morphology, the properties of the resulting stellar disc are quite unreliable.

The angular momentum transfer takes up all the cold gas into the star forming region and spurious fragmentation of the disc induces quite effective star formation in these dense filaments. Consequently, the problem can be much more serious when one investigates the details of simulated galaxies like the cold gas distribution, the hot gas distribution, the distribution of stellar populations, and all observables related to them. The problem may also affect sim-
ulations of elliptical galaxies. After the galaxy has exhausted most of its cold gas in, for example, a starburst, newly accreting cold gas is quickly supplied to the centre regardless of its angular momentum (newly accreting cold gas implies the existence of halo gas). The decoupling of the cold and hot gas phases that we have introduced offers the opportunity to investigate the detailed structure of galaxies by avoiding this spurious angular momentum transfer.

However, it seems clear that complex physical processes taking place in the interstellar medium and in the hot halo gas must play a key role in galaxy formation. A code that can solve problems involving large shear motions, together with the ability to treat a wide dynamic range, is required to study these processes in detail. AMR is an obvious candidate, although it has not yet been widely used in this subject, and thus still needs substantial testing. On the other hand, substantial refinements of SPH have been introduced recently which could prove useful in this context, for example [Monaghan 1983, redefined particle velocity by locally averaged velocity, Owen et al. 1993, tensorial smoothing kernels, Ritchie & Thomas 2001, smoothed pressure SPH, Inutsuka 2002, SPH with Riemann solver, Imaeda & Inutsuka 2002, consistent particle velocity with fluid velocity], Kitchens & Whitworth 2002, adaptive mass resolution], and Springel & Hernquist 2002, conservation of both entropy and energy. We encourage colleagues who have developed and implemented these refinements to perform the shear tests presented in this paper. The implementation by Imaeda & Inutsuka 2002 is particularly interesting since it substantially suppresses spurious density errors in SPH calculations of shear flows.

The phase decoupling technique that we have introduced may be regarded as a crude way of modelling a multi-phase fluid in cosmological simulations and seems to produce much better results than standard SPH. This decoupling seems a reasonable approximation when the disk is self-gravitating and consists of cold gas and stars. As the multi-phase structure of the interstellar medium begins to be resolved in a simulation, this approximation must break down since the external pressure from halo gas plays a role in confining the hot phase of the interstellar medium. Modelling these processes remains a challenge which may hold the key for realistic simulations of the formation of galactic discs.

ACKNOWLEDGMENTS

We are grateful to Volker Springel for kindly providing the improved version of GADGET. We also thank to Simon White, Lars Hernquist, Peter Thomas, Julio Navarro, Rob Thacker and Richard Bower for their highly useful comments on this work. We acknowledge the financial support from UK PPARC. VRE acknowledges a Royal Society University Research Fellowship. VQ is a Ramon y Cajal Fellow from the Spanish Ministry of Science and Technology and has partial financial support from grant AYA2000-2045.

REFERENCES

Abel T., Bryan G. L., Norman M. L., 2000, ApJ, 540, 39
Bate M. R., Burkert A., 1997, MNRAS, 288, 1060
Balsara D. W., 1995, J. Comp. Phys., 121, 357
Buonomo F., Carraro G., Chiosi C., Lia C., 2000, MNRAS, 312, 371
Carraro G., Lia C., Chiosi C., 1998, MNRAS, 297, 1021

Cole S., Lacey C. G., Baugh C. M., Frenk C. S., 2000, MNRAS, 319, 168
Dalcanton J. J., Spergel D. N., Summers F. J., 1997, ApJ, 482
Davis, M., Efstathiou, G., Frenk, C. S., White, S. D. M., 1985, ApJ, 292, 371 659
Eke V. R., Efstathiou G., Wright L., 2000, MNRAS, 315, L18
Evrard A. E., 1988, MNRAS, 235, 911
Evrard, A. E., Summers, F. J., Davis, M. 1994, ApJ, 422, 11
Fall S. M., Efstathiou G., 1980, MNRAS, 193, 189
Frenk, C. S., Evrard, A. E., White, S. D. M., Summers, F. J., 1996, ApJ, 472, 460
Gerritsen J. P. E., Icke V., 1997, A&A 325, 972
Governato F., Mayer L., Wadsley J. P., Gardner J. P., Willman B., Hayashi E., Quinn T., Stadel J., Lake G., 2002, preprint [astro-ph/0207044]
Haardt F., Madau P., 1996, ApJ, 461, 20
Haltman J., Källander D., 1997, A&A, 324, 534
Hernquist L., Katz N., 1989, ApJ, 70, 419
Hultman J., Pharasyn A., 1999, A&A, 347, 769
Imaeda Y., Inutsuka S., 2002, ApJ, 565, 501
Inutsuka S., 2002, J. Comp. Phys., 179, 238
Katz N., 1992, ApJ, 391, 502
Katz N., Hernquist L., Weinberg D. H., 1992, ApJ, 399, L109
Katz N., Weinberg D. H., Hernquist L., 1996, ApJS, 105, 19
Kaufmann G., White S. D. M., Guiderdoni B., 1993, MNRAS, 264, 201
Kitsionas S., Whitworth A. P., 2002, MNRAS, 330, 129
Kennicutt R. C., 1998, ApJ, 498, 541
Landau L. D., Lifshitz E. M., 1987, Course in Theoretical Physics: Fluid Mechanics, Institute of Physical Problems, USSR Academy of Sciences, Moscow
Lombardi J. C., Sills A., Rasio F. A., Shapiro S. L., 1999, J. Comp. Phys., 152, 687
Mo H. J., Mao S., White S. D. M., 1998, MNRAS, 295, 319
Monaghan J. J., 1985, J. Comp. Phys. Rep., 3, 71
Monaghan J. J., 1989, J. Comp. Phys., 82, 1 Monaghan J. J., 1997, J. Comp. Phys., 136, 298
Monaghan J. J., Gingold R. A., 1983, J. Comp. Phys., 52, 374
Nagashima M., Totani T., Gouda N., Yoshii Y., 2001, ApJ, 557, 505
Navarro J. F., White S. D. M., 1993, MNRAS, 319, 619
Navarro J. F., White S. D. M., 1994, MNRAS, 267, 401
Navarro J. F., Frenk C. S., White S. D. M., 1995, MNRAS, 275, 56
Nelson R. P., Papaloizou, J. C. B., 1994, MNRAS, 270, 1
Netterfield et al., 2002, ApJ, 571, 604
Okamoto T., Nagamashima M., 2003, ApJ, 587, 500
Owen J. M., Villumsen J. V., Shapiro P. R., Marlén H., 1998, ApJS, 115, 155
Pagels H., Primack J. R., 1982, Phys. Rev. Lett., 48, 223
Pearce F. R. et al., 1999, (The Virgo Consortium), ApJ, 521, L99
Quilis V., Ibáñez J. M., Sáez D., 1996, ApJ, 469, 11
Quilis V., Moore B., Bower R. G., 2000, Sci, 288, 1617
Quilis V., Bower R. G., Balogh M. L., 2001, MNRAS, 328, 1091
Rasio F. A., Shapiro S. L., 1991, ApJ, 377, 559
Ritchie B. W., Thomas P. A., 2001, MNRAS, 323, 743
Schüssler M., Schnitt D., 1981, A&A, 97, 373
Semelin B., Combes F., 2002, A&A, 388, 829
Somerville R. S., Primack J. R., 1999, MNRAS, 310, 1087
Sommer-Larsen J., Dolgov A., 2001, ApJ, 551, 608
Sommer-Larsen J., Götz M., Portinari L., 2002, preprint [astro-ph/0204366]
Springel V., 2000, MNRAS, 307, 162
Springel V., Hernquist L., 2002, MNRAS, 333, 649
Springel V., Hernquist L., 2003, MNRAS, 339, 289
Springel V., Yoshida N., White S. D. M., 2001, New Astronomy, 6, 79
Steinmetz M., 1996, MNRAS, 278, 1005
Steinmetz M., Müller E., 1993, A&A, 268, 391
Steinmetz M., Navarro J. F., 1999, ApJ, 513, 555
Steinmetz M., Navarro J. F., 2002, New Ast., 7, 155
Sutherland R. S., Dopita M. A., 1993, ApJS, 88, 253
Thacker R. J., Couchman H. M. P., 2000, ApJ, 545, 728
Thacker R. J., Couchman H. M. P., 2001, ApJ, 555, L17
Thacker R. J., Tittley E. R., Pearce F. R., Couchman H. M. P., Thomas P. A., 2000, MNRAS, 319, 619
Theuns T., Leonard A., Efstathiou G., Pearce F. R., Thomas P. A., 1998, MNRAS, 301, 478
Thomas P. A., Couchman H. M. P., 1992, MNRAS, 257, 11
Teyssier R., 2002, A&A, 385, 337
van den Bosch F. C., 2001, MNRAS, 327, 133
Weil M. L, Eke V. R., Efstathiou G., 1998, MNRAS, 300, 773
White S. D. M., Rees M. J., 1978, MNRAS, 183, 341
Yepes G., Kates R., Khokhlov A., Klypin A., 1997, MNRAS, 284, 235

This paper has been typeset from a \LaTeX/ \TeX file prepared by the author.